

UNITED STATES AIR FORCE RESEARCH LABORATORY

Articulated Total Body Model Version V User's Manual

Huaining Cheng Annette L. Rizer

VERIDIAN 5200 Springfield Pike Suite 200 Dayton OH 45431-1289

Louise A. Obergefell

Crew Survivability and Logistics Division Human Effectiveness Directorate Air Force Research Laboratory

February 1998

19980514 144

Approved for public release; distribution is unlimited.

Human Effectiveness Directorate Crew Survivability and Logistics Division 2610 Seventh Street Wright-Patterson AFB OH 45433-7901

NOTICES

When US Government drawings, specifications of other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Air Force Research Laboratory. Additional copies may be purchased from:

National Technical Information Services 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies registered with the Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Center 8725 John J. Kingman Rd STE 0944 Ft. Belvoir, VA 22060-6218

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-1998-0015

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE DIRECTOR

THOMAS J. MOOKE

Chief, Crew Survivability and

Logistics Division

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of	information is estimated to average 1 hour per ad completing and reviewing the collection of it	response, including the time for reviewing instruction. Send comments regarding this bu	aructions, searching existing data sources, anden estimate or any other aspect of this
collection of information, including suggestic	ons for reducing this burden, to Washington He	adquarters Services, Directorate for Informat	ion Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, vA 2	22202-4302, and to the Office of Management	and Budget, Paperwork Reduction Project (0	704-0 188), Washington, DC 20503
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE February 1998	3. REPORT TYPE AND DATES CO	VERED
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Articulated Total Body Model Version V	User's Manual		C-F-41624-95-C-6014
			PE: 62202F
			PR: 7184
6. AUTHOR(S)			TA: 718443
Huaining Cheng, Annette L. Rizer, and	Louise A Ohengefall		WU: 71844301
Huanning Cheng, Aimette L. Rizer, and	Louise A. Obergeien		
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
VERIDIAN 5200 Springfield Pike Suite 200			REPORT NUMBER
Dayton OH 45431-1289			
•			
	GENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Human Effectiveness Directorate			AGENCI RELORI NORIBER
Crew Survivability and Logistics I	Division		AFRL-HE-WP-TR-1998-0015
2610 Seventh Street			
Wright-Patterson AFB OH 45433-	-7901		
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Approved for public release; distri	bution is unlimited		
13. ABSTRACT (Maximum 200 words)			
predicting gross human body response in Model introduces three new simulation to User's Guide accompanies the release of a completely from the previous version's U	I is used by the Air Force Research Laborat n various dynamic environments, especially sols: water force simulation, joint actuator the ATB-V version. It contains comprehens ser Guide with extensive modifications. Sec odel and its structure. An overview of the A nodel.	automobile crashes and aircraft ejection simulation, and deformable segments, alor tive information on the ATB model and its ation 1 provides guidelines on how to insta	with windblast exposure. The ATB-V ng with several minor changes. This input structure. It is restructured Il and run the ATB program. Section 2
			,
			·
			16 NULTUEN CERACES
14. SUBJECT TERMS			15. NUMBER OF PAGES 105
Thindunania madalisa Audia 1-4-1	Total Dady Cinculation Coast Fir	antinus.	16. PRICE CODE
biodynamic modeling, Articulated	l Total Body, Simulation, Crash, Eje	ZUOH	10. 110.2 00.2
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	10. LIMITATION OF ABSTRACT UNLIMITED
	,	· · · · · · · · · · · · · · · · · · ·	

This page intentionally left blank.

PREFACE

This report serves as a user's guide to present the start up procedures and general formulation of the Articulated Total Body (ATB) Model Version V, a dynamics simulation tool for the human body biomechanics in various dynamic environments.

To provide a complete user's guide, Obergefell, Gardner, Kaleps, and Fleck's "Articulated Total Body Model Enhancements, Volume 2: User's Guide," AAMRL-TR-88-043 (1), has been modified and incorporated into this report.

TABLE OF CONTENTS

PREFACE	iii
LIST OF FIGURES	vi
LIST OF TABLES	. vii
1. INTRODUCTION	1
1.1 Installation and Hardware Requirements	1
1.2 Running the ATB Model An Example	2
1.2.1 Programs and I/O Files in the ATB Model	2
1.2.2 Running ATB on PC	4
1.2.3 Runtime Error Message and Troubleshooting	4
2. GENERAL FORMULATION OF THE ATB MODEL	5
2.1 Chain Structure of the ATB Model	5
2.2 Reference Coordinate Systems	9
2.2.1 Inertial Reference Coordinate System	10
2.2.2 Vehicle Reference Coordinate Systems	11
2.2.3 Body Segment Reference Coordinate Systems	11
2.2.4 Joint Reference Coordinate Systems	13
2.3 Environment Modeling	16
2.3.1 Modeling the Environment Using Contact Planes	16
2.3.2 Additional Contact (Hyper)Ellipsoids	18
2.3.3 Belt Restraint Systems	19
2.3.4 Simple Airbag Restraint System	21
2.3.5 Applied Force and Torque	23
2.3.6 Wind Force Modeling	23
2.3.7 Water Force Simulation Environment Modeling	24
2.4 Contact Definitions	26
2.4.1 Plane/Ellipsoid and Ellipsoid/Ellipsoid Contact	26
2.4.2 Functions of Contact Properties	28
2.5 Prescribed Motion and Initial Conditions	31
2.5.1 Vehicle Definition and Prescribed Motion	31
2.5.2 Initial Positioning of Body	33
2.6 Dimension Units, Gravity, and Time Control of the ATB Program	35
2.6.1 Selecting Dimensional Units	35
2.6.2 Specifying Gravity	36
2.6.3 Integration and Output Time Control	36
3. ORGANIZATION OF ATB INPUT DATA AND CONTROL OF OUTPUT DATA	38
3.1 Structure of Input File	38

3.2 ATB Output Files	40
3.2.1 View Output (Unit 1)	
3.2.2 Primary Output (Unit 6)	
3.2.3 Tabular Time Histories (Units 21, 22, 23,)	
REFERENCES	45
APPENDIX A ATB Simulation Example	47
APPENDIX B Developing New Deformable Segment Models	97

LIST OF FIGURES

Figure 1.	Organization of ATB Program and Files	3
Figure 2.	Standard Body Setup	6
Figure 3.	Spring-Dampers	7
Figure 4.	One-Segment Vehicle	9
Figure 5	Yaw Pitch and Roll	0
Figure 6.	Inertial (Ground) Coordinate System	0
Figure 7.	Segment Local and Principal Moment of Inertia Coordinate Systems	2
Figure 8.	Ellipsoid Coordinate Systems	2
Figure 9	Ioint Coordinate Systems	3
Figure 10	Joint Types in the ATB Model	4
Figure 11	. Joint Spring Torque	5
Figure 12	Joint Torques	6
Figure 13	Plane Definition	7
Figure 14	Positive Side of Plane	7
Figure 15	Additional (Hyper) Ellipsoids l	8
Figure 16	Simple Belt	9
Figure 17	. Harness Belt	U.
Figure 18	A Three Anchor Point Belt System	O
Figure 19	Airbag	2
Figure 20	. Applied Forces	3
Figure 21	Wind Forces	4
Figure 22	. Water Force Simulation of a Human Subject with PFDs	4
Figure 23	. Water Surface Model	5
Figure 24	Plane/Ellipsoid Contact	7
Figure 25	Ellipsoid-Ellipsoid Contact	8
Figure 26	Functions2	9
Figure 27	. Rate Dependent Functions	0
Figure 28	Function Subdivisions	U
Figure 29	Pickup Truck Rollover with Roof Crush	1
Figure 30	Prescribed Motion Options 1 and 2	2
Figure 31	Prescribed Motion Option 4	3
Figure 32	. Initial Conditions	4
Figure 33	. Time Step Definitions	0
Figure A-	1. Sled Test and ATB Simulation4	٠Ŏ

LIST OF TABLES

Table 1	Segment and Joint Assignments and Connectivity	. 8
Table 2	Summary of ATB Program I/O Units	41
Table 3	Time History Files	44

This page intentionally left blank.

1. INTRODUCTION

The Articulated Total Body (ATB) Model is used by the Air Force Research Laboratory (AFRL) and other organizations, companies, and educational institutions for predicting gross human body response in various dynamic environments, especially automobile crash and aircraft ejection with windblast exposure. The ATB Model originated from the Crash Victim Simulation (CVS) program (2). Aerodynamic force application and a harness belt capability were added to the CVS program by Calspan Corporation in 1975 for AFRL (3), and the resulting program became known as the ATB Model. In 1980, Calspan made a number of modifications to the ATB Model, combining it with the then-current 3-D Crash Victim Simulation program to form the ATB-II Model (4). Complete documentation of the program through the ATB-II version was performed by Calspan (5, 6, 7, 8). The next version, ATB-III, which included improvements made by J&J Technologies, Inc., was generated to model the body response to windblast for AFRL (9). The version ATB-IV (1, 10, 11) was released in 1988 with a number of additional efforts being made to improve various aspects of the ATB-III Model, with emphasis on its capability to simulate aircraft ejection with windblast exposure, as well as complex automobile accidents.

The ATB-V Model introduces three new simulation tools: water force simulation (12), joint actuators (13), and deformable segments (14). A major change has been made to the data arrays to increase the maximum number of segments, planes, and contact definitions. A new type of structured ASCII graphics data output file has been designed for use by the Interactively Manipulated ATB Graphical Environment (IMAGE) program (15) and the VIEW program (16). It has a more efficient format that the original graphics data file and mikes troubleshooting easier for the IMAGE and VIEW programs. Several outdated features, such as the restart and plotting options, have been deleted from the ATB Model. There are also a number of other minor modifications and input/output enhancements, such as enhanced HIC value computations, clarified joint property definitions, calculation of moments of inertia and principal axes for a set of segments, and control of individual contact output.

This User's Guide accompanies the release of the ATB-V version. It contains comprehensive information on the ATB Model and its input structure. It is completely restructured from the previous version's User's Guide with extensive modifications. Section 2 gives a general description of the ATB Model and its structure. An overview of the ATB input data and output files is provided in Section 3. The appendices contain example input and output files from the model.

1.1 Installation and Hardware Requirements

The ATB Model is written in FORTRAN so it can be run on a number of platforms, including personal computers and UNIX workstations. The software package includes the FORTRAN source code, the PC executable, and example simulation files. For installation information, please see the file *readme*.

The PC executable requires a 486 or higher personal computer (PC) supporting MS-DOS mode operation. It is recommended that the PC have at least 8 MB RAM and 5-10 MB free hard disk space. The program is typically distributed on 3.5-inch high density (1.44 MB) diskettes.

1.2 Running the ATB Model --- An Example

In order to demonstrate the procedure for running the program, the example file shipped with this program is used as the input file in the following discussion. It is listed as *example.ain* on the shipment disk and is presented in the Appendix. This example simulates a sled test with a male subject in a seated position facing forward.

1.2.1 Programs and I/O Files in the ATB Model

The executable program of the ATB Model is named atbv-x.exe. There are two other executable files shipped together with the ATB Model. One is the GEBOD program, gebodx.exe (17), which is used to generate the human and dummy data sets for the ATB input file, i.e., the B cards of the input file. The other is the VIEW program viewx.exe (16), which is a graphics program used to generate the pictures of body motion based on the simulation results. An alternative graphics program, called IMAGE (Interactively Manipulated ATB Graphical Environment), is available on Silicon Graphics workstations to generate solid object animations. Figure 1 presents the organization among these programs and their corresponding input and output files.

When using the ATB Model for occupant modeling, one typically uses the GEBOD program to generate the occupant segment and joint data. The GEBOD program creates the B cards for ATB's input file and saves them in a file with an .ain extension. The generated B cards are inserted into the input file, which also has the extension .ain. (The ATB Model's input file requires an .ain extension following the file name.) In the example case, it has the full filename example.ain. Upon successful execution of the program, a set of output files is generated with a user-chosen filename and a set of unique extensions to distinguish them. There are three kinds of extensions assigned to the output files, .aou, .tp1 or .sa1, and .t??. The question mark stands for a number character. The file with the .aou extension is the main output file containing all the input data, clearly labeled, and extensive run time information. The file with the extension .sa1 or .tp1 is the data file used by the VIEW and IMAGE programs for graphical image generation. The set of files with .t?? are the tabular time history outputs of user-chosen simulation data, such as segment accelerations, contact forces, joint forces and torques, etc. The number of time history files is defined by the user input.

Figure 1. Organization of ATB Program and Files

1.2.2 Running ATB on PC

To start running the program, make sure you are in MS-DOS shell or mode and type:

atbv-1

then press [Enter]. You will be prompted by the message "ENTER INPUT FILENAME, EXTENSION .ain IS ASSUMED:". To run the input file example.ain, type in:

example

then press [Enter]. You will be prompted by another message "ENTER FILENAME FOR ALL OUTPUT FILES, EXTENSIONS WILL BE ASSIGNED:". Type in:

example

then press the [Enter] key. You can choose another output file name instead of *example* if you wish. The program will start running and generate the output files. If no error occurs, the program will terminate automatically with a message "COMPLETED ATB SIMULATION" displayed on the screen.

The ATB Model also has a workstation version running under UNIX. The running procedures are exactly the same as for the PC version.

1.2.3 Runtime Error Message and Troubleshooting

There are two types of runtime error messages. One is from the compiler or operating system. For these errors, consult the relevant reference manuals. The other type of error message is generated from within the ATB program, in which case a stop number will be displayed on the computer monitor. You can find the cause of this stop by referencing the numbered stop list attached at the end of the ATB Input Manual.

To troubleshoot a simulation problem, the main output .aou file often offers a good indication. This file first prints all the input data with labels for each variable. If an error occurs in an input card, the output stops near the error card. Therefore, it indirectly indicates that there are problems in the next few input cards, such as wrong format or inconsistency with data in earlier input cards.

Once the program is running, extensive dynamic and kinematic data are printed to the .aou file at each successful time step. These include segment linear and angular positions, velocities, and accelerations, joint forces and torques, and external forces and torques. Additionally, information about when the belt reference points are being dropped and picked up, and convergence of the integrator is also included in the .aou file. If an error occurs, the output stops and an error message is usually printed out at the end of the file.

2. GENERAL FORMULATION OF THE ATB MODEL

The Articulated Total Body (ATB) Model is primarily designed to evaluate the three-dimensional dynamic response of a system of bodies when subjected to a dynamic environment consisting of applied forces and interactive contact forces. Although the ATB Model was originally developed to model the dynamic response of crash dummies and, with later modifications, the response of the human, the ATB Model is quite general in nature and can be used to simulate a wide range of physical problems that can be approximated as a system of connected or free bodies. The ATB Model has been used to model such widely diverse physical phenomena as human body dynamics, the motion of the balls in a billiards game, and the transient response of an MX missile suspended from cables in a wind tunnel. Version V further expands the model's capabilities to include water force simulation with personal flotation devices, robotic motion simulation, and deformable segment modeling. This flexibility in the ATB Model can cause the application of the ATB program to appear to be overly complex to the uninitiated user. The purpose of this section is to present the primary program features that should be mastered to utilize the ATB program. Throughout this discussion a number of input variables will be mentioned. A complete description of these and all input variables is presented in the ATB Model Input Manual file included with the program. For a more detailed discussion of how the model uses these data, the various theory manuals are recommended (1, 3, 4, 9, 10, 11, 18, 13, 14).

2.1 Chain Structure of the ATB Model

The system to be simulated by the ATB Model can be made up of one or more segments which may be connected or free. To avoid confusion between the overall body or object to be modeled and the individual rigid or deformable bodies that make up the overall body, throughout this report the term "segment" will henceforth be used to refer to the individual rigid or deformable bodies and the term "body" will refer to the overall body or object to be modeled. The approach used in the ATB Model is to consider the body as being segmented into individual rigid or deformable segments. Segments are assigned mass and moments-of-inertia and are joined at locations representing the physical joints of the human body, such as the shoulder joint or the knee joint.

The system can be made up of a number of free segments, bodies of segments coupled together at joints, or a combination of both. A body made up of coupled segments should form an open chain or a tree structure. While this is not an absolute requirement, closed chains may encounter computational problems. One must also be careful not to exceed the maximum number of segments (MAXSEG) specified by the dimension statements of the program variables (See ATB Model Input Manual for a list of program parameters and their current values).

The total number of body segments (NSEG) and total number of joints (NJNT) used to compose all the bodies in a simulation are input parameters. Figure 2 depicts a typical 17-segment (NSEG = 17) model with 16 joints (NJNT = 16) that is commonly used in car crash and aircraft ejection simulations for modeling humans and dummies. The number of segments can be readily varied in

Figure 2. Standard Body Setup

the input without any code modifications for up to MAXSEG segments. Variations of the 17-segment body have combined the forearms and hands for a 15-segment body (NSEG = 15 and NJNT = 14), added shoulder segments, or used different torso configurations.

Whatever the specific body model, the procedure to construct the body remains the same. The body is assembled as a chain of individual segments. The body can take on a tree-like structure, with several chains (here representing the arms and the legs) branching out from several connected segments.

The body segments and joints are assigned identification numbers, I for the segments ranging from 1 to NSEG and J for the joints ranging from 1 to NJNT. The assignment of the identification numbers is defined by the order in which the segments and joints are listed in the input. They are

used, along with the one-dimensional array, JNT(J) for J = 1 to NJNT, to define the connectivity of the segments. Segment 1 and the first segment of any body are considered reference segments. Although the reference segment may be any of the body segments, it has been found that, for this 17-segment body model, the lower torso is the best choice for the reference segment. When the ATB Model was first developed, the head was chosen as the reference segment. It was found that the erratic accelerations of the head caused numerical problems with the program integrator and that it was more beneficial to use a more stable, nonextremity segment, hence the choice of the lower torso as the reference segment. A generalization of this result is the recommendation that, regardless of the body model, the reference segment be chosen to be one that undergoes the smallest accelerations of any of the segments and/or is the heaviest segment. Use of the lower torso as the reference segment also makes positioning the body into a seat easier.

Once the lower torso is selected as the reference segment and is designated as segment number 1, the remaining segments should be numbered in an order moving away from the reference segment. The left side of Table 1 shows the segment numbers for this 17-segment body. Each segment can also be given a symbol name of up to four alphanumeric characters for output labeling purposes, as shown in column 3. The connectivity of the segments is provided by the joints. The JNT(J) array provides the relationship between the segments and joints. When JNT(J) = I, the joint J connects segment I with segment J + 1. In other words, JNT(J) stores the segment number of the proximal segment for the Jth joint. In the context of the ATB Model, a proximal segment is the segment nearest to the reference segment, whereas a distal segment is the segment further from the reference segment. For example in Table 1, joint J = 4 (head pivot) connects segment J + 1 = 5 (head) to segment 4 (neck). Therefore JNT for joint 4 is 4. Another example is joint J = 5 (right hip) which connects segment J + 1 = 6 (right upper leg) to the lower torso, segment 1. Therefore, JNT for joint 5 is 1.

Successive segments and joints are assigned with the provision that each joint J connect segment J + 1 to a previously assigned segment. If the J + 1 segment is a reference segment for an additional

body, JNT(J) is set to 0. This signifies that joint J will be a null joint and that segment J+1 will be the reference or base segment of another body. This permits the specification of multiple bodies that are disconnected or free.

Besides using a joint, two segments can also be connected by using a spring-damper combination, as shown in Figure 3. One situation where you might like to use a spring-damper combination is when you want to model the thorax as two segments (spine and sternum) connected by a spring-damper combination in order to evaluate chest deflection.

Ellipsoids are used to represent the physical appearance of the segments. They are the outer surfaces of the segments, and can interact with the environment. The B.2 cards in the input file are Figure

Figure 3. Spring-Dampers

Table 1 Segment and Joint Assignments and Connectivity

I	SEGMENT NAME	SYMBOL	J	JOINT NAME	SYMBOL	JNT(J)	CONNECTS SEGMENTS
1	Lower Torso	LT	1	Pelvis	P	1	1 - 2
2	Center Torso	CT	2	Waist	W	2	2 - 3
3	Upper Torso	UT	3	Neck Pivot	NP	3	3 - 4
4	Neck	N	4	Head Pivot	HP	4	4 - 5
5	Head	Н	5	Right Hip	RH	1	1 - 6
6	Right Upper Leg	RUL	6	Right Knee	RK	6	6 - 7
7	Right Lower Leg	RLL	7	Right Ankle	RA	7	7 - 8
8	Right Foot	RF	8	Left Hip	LH	1	1 - 9
9	Left Upper Leg	LUL	9	Left Knee	LK	9	9 - 10
10	Left Lower Leg	LLL	10	Left Ankle	LA	10	10 - 11
11	Left Foot	LF	11	Right Shoulder	RS	3	3 - 12
12	Right Upper Arm	RUA	12	Right Elbow	RE	12	12 - 13
13	Right Lower Arm	RLA	13	Right Wrist	RW	13	13 - 14
14	Right Hand	RH	14	Left Shoulder	LS	3	3 - 15
15	Left Upper Arm	LUA	15	Left Elbow	LE	15	15 - 16
16	Left Lower Arm	LLA	16	Left Wrist	LW	16	16 - 17
17	Left Hand	LH					

used to define the segments. Each card contains the segment's weight, principal moments of inertia, its ellipsoid's semi-axes and center offset from the center of gravity (CG). The ellipsoid's semi-axes define the size of the segment. Following the B.2 cards, a set of B.3 cards gives the location of each joint. For the Jth joint, the B.3 card has the value of JNT(J) and the joint location with respect to each of the two connected segments. The B cards can be automatically generated using the GEBOD program for human and dummy subjects.

Although human and dummy subjects are most often simulated in the ATB Model, there is no limitation on the type of subject. For example, a MERLIN robot arm modeled in six segments and five joints (13) has been simulated. In this case, the user defined the chain structure and built B.2 and B.3 cards manually instead of using the GEBOD program. The program also allows multiple

bodies as long as the total segment number does not exceed MAXSEG. For example, two (driver and passenger) occupants' motions in an accident can be simulated together. The user needs only to generate the B cards for both occupants and combine them, with a null joint between. It should be noted that there are two reference segments in this case, the lower torso segments of the driver and the passenger. A body may also consist of only one segment. An example is a vehicle simulation of a pickup truck's rollover (18). The body is the pickup truck represented by a single segment. Its outer shape is described using multiple contact hyperellipsoids (see section 2.3.2) attached to the segment (Figure 4) instead of only one ellipsoid.

Figure 4. One-Segment Vehicle

In addition to rigid segments, the ATB Model accepts deformable segments created by finite element analysis tools. The need for a deformable segment arises when an accurate response is required for relatively "flexible" segments, such as the human neck, or where local segment vibrations occur. To use this option, the user must first develop a finite element model of each deformable segment and perform modal analysis to determine their selected natural frequencies and mode shapes. The data required by the ATB Model for each deformable segment are then placed in separate data files. Each deformable segment's finite element data file consists of node numbers and coordinates, natural frequencies, and mode shapes. Names of these files are input on the B.1.b card. The procedure for developing deformable segment models is outlined in Appendix B.

2.2 Reference Coordinate Systems

The ATB Model utilizes many reference coordinate systems, with respect to which points in space and directions are calculated within the program. Considerable flexibility in the choice of coordinate systems and their specification for both input and output are available. The primary coordinate systems used in the model are the inertial, vehicle, local body segment, segment principal moment of inertia, joint, and contact ellipsoid reference coordinate systems. The specification of each reference coordinate system requires an origin and a direction cosine matrix which relates one reference coordinate system to another. The direction cosine matrix is usually initially specified by three rotation angles, yaw, pitch, and roll, as depicted in Figure 5. These are consecutive body fixed rotations about the Z, Y, and X axes, respectively. All coordinate systems discussed in this section are orthogonal.

Figure 5. Yaw, Pitch, and Roll

2.2.1 Inertial Reference Coordinate System

The ATB Model assumes that the coordinates of the origin of the inertial reference system are zero and all other coordinate systems are specified with respect to this system. The user may place the origin of the inertial reference coordinate system at any convenient point from which his data are referenced. The orientation is partially specified by defining which way is down by the values supplied for the components of the gravity vector. It has been customary to supply (zero, zero, g) as the components of the gravity vector to specify that the positive Z_I axis is pointing downward, as shown in Figure 6. Hence, in terms of a standing man, the force of gravity would be pointing in the direction from his head to his feet. Typically, the forward direction (pointing from the back of the standing man to his chest) is taken as the positive X_I axis and (by the right hand rule) the positive Y_I axis is in the lateral direction (pointing from the standing man's left side to his right side).

Figure 6. Inertial (Ground) Coordinate System

However, the user may specify any frame of reference that suits their application, one with which they are more familiar, or in which their input data have been measured.

It is sometimes necessary that contact surfaces (planes or ellipsoids) be located with respect to the inertial reference coordinate system, e.g., the ground for pedestrian simulations. Since the program assumes that contact surfaces are associated with segments, a special segment identification number (NGRND) is used within the program for this purpose. NGRND is the largest segment number used by the program and is assigned the value NGRND = NSEG + number of airbags (NBAG) + number of vehicles + 1 and corresponds to the inertial coordinate system. The linear position and velocity for this segment are set to zero and its direction cosine matrix is an identity matrix throughout the duration of the simulation. This permits the use of segment NGRND for the attachment of contact surfaces.

2.2.2 Vehicle Reference Coordinate Systems

Up to six prescribed motions can be defined. These can be prescribed motions of segments defined earlier in the B cards, or of vehicles. The primary vehicle is the last prescribed motion defined and is different from the other vehicles in that it serves as the default reference coordinate system for several types of input and output. Most of the contact panels are usually defined with respect to this system and much of the output can be produced with respect to this system. The origin of each vehicle coordinate system is arbitrary, and any convenient reference point may be chosen to which input and output data would be most meaningful. The frames of reference (the directions of the positive X, Y, and Z axes) are arbitrary and should be chosen to accommodate input data.

A special segment identification number is assigned for each of the vehicles where NVEH1 = NSEG + 1, NVEH2 = NSEG + 2, etc. so that each vehicle may be treated like other segments for contact surface specifications. However, no matter how large the computed contact forces and torques are on these vehicle segments, the prescribed motion of the vehicle segment will not change. See section 2.5 for more information.

2.2.3 Body Segment Reference Coordinate Systems

Each body segment has a local reference coordinate system, sometimes referred to as the segment geometric coordinate system. Each body segment has a mass and principal moments of inertia. The local reference coordinate system, marked with subscript 'L' in Figure 7, has its origin at the segment mass center. The principal moment of inertia axes, subscripted with 'P', are specified with respect to the local reference system. The contact (hyper) ellipsoid's origin and orientation, represented by the ellipsoid coordinate system in Figure 8, are also specified with respect to the local reference system. There is no direct association within the ATB Model of the segment inertial properties and the contact (hyper) ellipsoid. Unlike the vehicle segments, a body segment's kinematics are computed based on the dynamic interactions the body segment experiences during a simulation. A body segment can be given an initial position, orientation, and linear and angular velocities, and its motion is then computed for the remainder of the simulation subject to any imposed constraints (e.g.

Figure 7. Segment Local and Principal Moment of Inertia Coordinate Systems

number and type of joint) and applied forces. The motion of the body segments cannot be specified unless the body segment is a reference segment. The orientation of the segment local reference coordinate systems can be arbitrarily defined. The standard convention has been to choose the axes so that when the body is in an upright standing position with arms at the side, the Z axis is downward, the X axis is to the front, and the Y axis is to the body's right.

The segment center of gravity is indirectly determined through the segment's joint coordinates because these coordinates are given in the local reference systems by Card B.3. If the segment is deformable, there is no meaningful local reference system because the center of mass keeps changing when deformation occurs. Its joint locations are specified by the node numbers.

Figure 8. Ellipsoid Coordinate Systems

A contact ellipsoid is associated with each segment and is used for interactions with the environment. The ellipsoid number is the same as the segment number of the associated segment. The ellipsoid coordinate system origin is located at the ellipsoid center and its axes are the ellipsoid semiaxes. The ellipsoid coordinate system can be translated from the segment local coordinate system, but cannot be rotated in the B cards. In order to rotate the ellipsoid axes, the ellipsoid must be redefined in the D.5 cards (additional (hyper)ellipsoids), using the original ellipsoid number. See Section 2.3.2.

The dynamic equations in the ATB Model are solved in terms of the principal axes. All three-dimensional bodies have an inertia tensor. Six of the nine inertia tensor elements are independent, therefore it is a second order, symmetric tensor. Any body has three principal directions for which there are three moments of inertia, corresponding to the diagonal elements of an inertia tensor when all the off-diagonal terms are equal to zero. The segment principal coordinate system axes correspond to the three principal directions, therefore only the three principal moments of inertia must be specified.

The principal axes are fixed with respect to the segment local reference axis. After input, the ATB model converts all data points expressed in the local segment reference coordinate systems to principal coordinates and, prior to output, back to the local segment reference coordinate systems in a manner that is transparent to the user. Therefore, when the input description refers to local segment reference, the local and not the principal moment of inertia reference coordinate system is implied. Note that, for some cases where the principal axes are aligned with the local reference axes, the two are coincident.

2.2.4 Joint Reference Coordinate Systems

In the ATB Model, the maximum number of joints is MAXJNT. A complete definition of a joint consists of geometric location, joint coordinate systems, type of joint, and mechanical properties.

Based on the mathematical formulations in the joint force and torque computation subroutines, it is necessary to define two coordinate systems for a joint, one rigidly attached to each of the two segments that are connected by the joint, as shown in Figure 9. As described in the previous

Figure 9. Joint Coordinate Systems

sections, these two segments are identified as segments JNT (J) and J+1 for joint J. The origin of each joint reference coordinate system (or the location of the joint) is specified in the segment local reference coordinate systems of both segments JNT (J) and J+1. The orientations of the joint axis systems are specified by rotation angles (yaw, pitch, and roll) from the local reference systems of both segments. Note that once the two joint coordinate systems are defined, they are fixed in their corresponding segments and do not move relative to the segments. In *example.ain*, Cards B.3.a and B.3.b specify the joint origin locations and joint coordinate system orientations, respectively.

In Card B.3.a, the parameter IPIN is used to specify the joint type. Figure 10 shows all the joint types used in the ATB Model. Among them, the null joint can be used to disconnect two bodies within the required chain structure. For example, in an automobile crash simulation with two occupants, the first occupant's joint data are followed by a null joint and then the second occupant's joint data. The ball-and-socket joint is suitable for modeling a human shoulder joint and a pin joint is suitable for an elbow joint. The Euler joint is a type of joint which has full three-dimensional motion and at the same time allows the user to impose various constraints on its motion. An Euler joint is used in the modeling of the Hybrid III dummy's shoulder joint. The slip-type joints can be used in spine and neck modeling, to account for compression and tension.

Figure 10. Joint Types in the ATB Model

Joint forces and torques are computed by the ATB program as a function of the relative orientation of the two joint coordinate systems at the joint, i.e., the joint angle and angular velocity. The joint coordinate system associated with the JNT (J) segment is used as the base reference system for determining the joint parameters. For the pin joint, the Y axis is the axis of rotation. For the ball joint or free joint, flexure (theta) is the angle between the two Z axes, while azimuth (phi) is the angle between the base X axis and the projection of the segment J+1's Z axis into the X-Y base plane, and twist is rotation about the base Z axis. For the Euler joints, precession, nutation and spin are defined as the rotations about the Z, X, and Z axes respectively from the base joint coordinate system to the segment J+1's joint coordinate system. For the slip joint, the linear motion is defined along the base Z axis. Further descriptions of the joint types and their axis systems can be found in References 5 and 10.

The joint mechanical properties define the relationship between the joint resistive torque and the joint angle and angular velocity. These properties include the joint spring, viscous, and coulomb torque characteristics. Two options are available for specifying the spring torques. Figure 11 shows the joint spring torque function for the first option. In this definition, a linear torque vs. joint angle is prescribed until a specific, user-defined, joint stop angle, S_5 , is reached. For angles greater than the joint stop, a quadratic or cubic restoring torque is added. Using this option, the torques are symmetric about the zero position. Alternatively, the user has the option to define a joint resistive torque function that depends on two joint angles, flexure and azimuth, by using the E.7 card to construct a two-dimensional matrix data array. The joint's B.4 card then references the function in the E.7 card for the joint spring characteristics instead of using the coefficients in the B.4 card. The spring characteristics of the hip and shoulder joints, etc., in *example.ain* are defined using E.7 cards. Figure 12 shows the viscous and coulomb torques, defined as functions of joint angular velocity. These functions are used with both spring torque options and are defined in *example.ain* using the B.5 cards.

Figure 11. Joint Spring Torque

Besides resistive-type torque, the joint actuator option allows active torques to be applied at the joints, driving the joints to prescribed target angles. It can be used to simulate the joint actuators on a robot or active muscles. The basic computational scheme uses feedback control logic. The F.10 card is used to define a relationship between the joint target angle functions and their corresponding active torques' control gain functions. For detailed information, Reference 13 is recommended.

2.3 Environment Modeling

There are several aspects in building the environment to which the body is exposed. Contact planes and ellipsoids are used to represent important geometric objects with which the body may interact. Harness belts, airbag systems, and personal flotation devices offer different restraint systems for the body. A predefined force or torque on the body can also be modeled.

2.3.1 Modeling the Environment Using Contact Planes

The contact planes are parallelograms which do not have any inertial properties, but which provide contact surfaces used to define the environment configuration. The interaction between the body and surrounding environment can be provided by contact forces between segments and contact planes.

Figure 13. Plane Definition

In the ATB Model, a set of D.2 cards is used to define the contact planes. A plane is represented by the coordinates of its three corner points, P_1 , P_2 , and P_3 shown in Figure 13. These coordinates are given in the reference system of the segment, vehicle segment, or the ground (inertial segment) to which the plane is attached. The segment to which the plane is attached is specified in the F.1 cards. See Section 2.4 for further explanation. The order in which these points are listed defines the positive side of the plane. If the order is P_1 , P_2 , and P_3 , then the force generated by the plane contact will be in the direction of the vector produced by the cross-product $P_1P_2 \times P_1P_3$, as shown in Figure 14. Users can refer to the D.2 cards in *example.ain* for an example of modeling a seat using contact planes.

Figure 14. Positive Side of Plane

The maximum number of contact planes is MAXPLN. Though a user can use as many planes as possible to model the environment, the number of plane contacts can affect the computation time.

2.3.2 Additional Contact (Hyper)Ellipsoids

In addition to the ellipsoids defined with the body segments, the ATB Model has an option to attach contact (hyper)ellipsoids to body segments, vehicle segments or the ground (inertial) segment. The (hyper)ellipsoids have no mass or moments of inertia and hence no dynamic response. They are rigidly attached to a segment at a point and with an orientation specified with respect to the segment local reference coordinate system, as shown in Figure 15. As with the planes, the segment to which the (hyper)ellipsoid is attached is chosen on the F.1 or F.3 cards. See Section 2.4. The contact (hyper)ellipsoid coordinate system is formed by the three orthogonal semi-axes of the (hyper)ellipsoid, with the coordinate system's origin at the geometric center of the (hyper)ellipsoid. A normal contact ellipsoid has its power values, m, n, and p, equal to 2. An ellipsoid with its powers greater than 2 is called a hyperellipsoid. The function describing a (hyper)ellipsoid is $(x/a)^m + (y/b)^n + (z/c)^p = 1$. As the powers increase, the shape of the hyperellipsoid becomes more square. An example of using contact hyperellipsoids is the modeling of a pickup truck's squared exterior shape, as shown in Figure 4. Like the planes, the (hyper)ellipsoids are for contact purposes only.

The location of the contact (hyper)ellipsoid is specified with an offset vector which starts at the origin of the segment's local reference coordinate system and ends at the point where the center of the contact (hyper)ellipsoid is to be attached. The orientation of the contact (hyper)ellipsoid is specified by rotation angles with respect to the local segment reference system. If no rotation angles are specified for the contact (hyper)ellipsoid, the X, Y, and Z semi-axes of the contact (hyper)ellipsoid will coincide with the X, Y, and Z axes of the local reference system of the segment.

Figure 15. Additional (Hyper)Ellipsoids

Contact (hyper)ellipsoids can be used for (hyper)ellipsoid/(hyper)ellipsoid contacts and (hyper) ellipsoid/plane contacts, but only normal ellipsoids can be used for belt/ellipsoid contacts, harness belt/ellipsoid contacts or airbag/ellipsoid contacts (where the airbag is a special type of contact ellipsoid). More than one contact (hyper)ellipsoid can be attached to one (body, vehicle, or ground) segment.

2.3.3 Belt Restraint Systems

The ATB Model provides two options for modeling of belt restraint systems: simple belt and harness belt systems. In a simple belt system, each restraint belt is assumed to lie in a plane defined by two anchor points attached to a segment (usually the vehicle) and by a fixed point on a contact ellipsoid rigidly attached to some other segment (see Figure 16). Therefore, the belt is restricted to pass around a single segment. Although several simple belts may be used in an application, they cannot interact with each other. The dynamic properties of the simple belt are defined by initial slack, a force-strain function, and friction of the contact between the belt and the segment's ellipsoid. However, the friction is limited to either zero or infinite. A strain-rate-dependent function is not allowed for the simple belt. The main limitation of the simple belt model is that the point at which the belt contacts a segment is fixed to the segment and moves with it. The simple belt system is modeled by a set of D.3 and F.2 cards in input files.

Figure 16. Simple Belt

The harness belt model overcomes some of the simple belt's limitations by allowing interactive belts that can slip over multiple segments. A harness consists of one or several belts. Each belt is formed by a set of straight line segments connecting prescribed reference points, shown in Figure 17. Endpoints of the belt may be anchor points or junction/tie points where several belts may join together. In *example.ain*, the set of F.8 cards models a harness system of four belts: a conventional double shoulder strap and a negative G strap tied together at the middle point of a lap belt.

Figure 17. Harness Belt

The harness belt reference points are points of contact between the belts and contact ellipsoids. Their X, Y, and Z coordinates in the contact ellipsoid reference systems are given in Card F.8.d1 to determine their location on the contact ellipsoids' surfaces. These coordinates are the only ATB input data specified in terms of the contact ellipsoid coordinate systems. The supplied values are adjusted by the program to lie on the ellipsoid surface. Additional contact ellipsoids can be attached to a segment to better model the surface of the body. For example, in modeling the shoulder belt of a three-point harness shown in Figure 18, an additional contact ellipsoid with reference points is attached to the upper left portion of the upper torso to represent the belt layout on a human shoulder. It should be pointed out that hyperellipsoids cannot contact harness belts.

Figure 18. A Three Anchor Point Belt System

Depending upon the layout of the belt during each time step, some reference points may be "dropped" from the calculation of the belt trajectory and forces. A surface normal is used to determine whether a reference point will be included in the calculations. As shown in Figure 17, the surface normal is an outward normal vector to the surface of the ellipsoid at the reference point. If the net belt force on the ellipsoid at this reference point has a positive component along this normal, the point will be ignored in computing the belt forces. These dropped points may be picked up at a later time. In addition, if no ellipsoid is specified for a reference point, this point will always be used in the calculations. The user can find those reference points being dropped and picked up at any particular time step by checking the primary output file *.aou, which is example.aou in the example case. A detailed description of the belt algorithms is given in Reference 3.

For a harness belt, you are required to define a strain or strain-rate-dependent force function for computing belt forces. If the belt's reference points are allowed to penetrate into the surface of the ellipsoids, force-deflection functions are also needed to describe these penetrations. These functions are assigned to each reference point in Cards F.8.d. If no force-deflection functions are provided, the ATB Model assumes the surface is rigid and no perturbations of the reference points normal to the surface are allowed. Furthermore, users can specify initial slack where a negative value indicates a pre-tightened belt.

A reference point can move tangential to the ellipsoid surface, both along and normal to the belt line. Friction coefficients between the belt and each ellipsoid can be defined in order to control the belt movement on the surface. Once the belt contact ceases at a reference point, the reference point will remain at its last belt contact position on the surface, until it has a negative normal force and is picked up again. If the belt separates completely from an ellipsoid and contacts it again later, the belt may not be able to pick up any reference points if the ellipsoid has rotated significantly. In that case, the belt may cut through the ellipsoid without producing any resistance forces. Therefore, in a simulation involving complex body motion, some additional reference points, such as the dropped point in Figure 17, may need to be defined in the input file. These will be used solely for later contacts. Care must be taken to make sure these points will not be picked up at the beginning of the simulation in order to avoid an unrealistic belt configuration.

2.3.4 Simple Airbag Restraint System

The simple airbag model is a non-stretchable bag of ellipsoidal shape which interacts with contact ellipsoids attached to selected segments of the bodies or the vehicle. Figure 19 gives a complete picture of the airbag model. Those contact ellipsoids attached to the vehicle for holding up or confining the airbag are called reaction panels. At least one such contact ellipsoid, called the primary reaction panel, is required in modeling the airbag. A point on this panel is specified as the deployment point from which the bag deploys. At the beginning of the simulation, the bag is assumed to have zero volume and be located at the deployment point. After a specified time, the bag is inflated by using the gas dynamic relations for the choked flow of gas through a nozzle. The gas source is a high pressure tank of constant volume. The total amount of gas coming through the nozzle is the volume of gas in the fully inflated bag, at atmospheric pressure.

Figure 19. Airbag

During inflation, the size of the bag is determined by scaling the semi-axes of the ellipsoid by the cube root of the volume. The center of the bag lies on a vector which has one end at the deployment point and is parallel to the X axis of the primary reaction panel but in the negative X direction. The center's distance from the deployment point is equal to the X semi-axis of the sealed bag at that instant of time. The set of ellipsoids drawn by dashed lines in Figure 19 illustrates this inflation process.

When the bag is fully inflated, it is assigned mass properties and moves dynamically like any other mass system. Until it is fully inflated, the orientation of the bag with respect to the vehicle is held constant and equal to its initial orientation. The dynamic motion of the bag is updated by the program integrator. An artificial spring force is applied at the end of the positive X axis of the bag and is exterior to the primary reaction panel. This holds the bag to the panel.

During the inflation, the bag is assumed to be at atmospheric pressure and hence no contact forces are produced until the sum of the instantaneous volume of the bag and the volume of intersection due to contacts with other segments reaches the geometric volume of the fully inflated bag. Once the bag is fully inflated, any additional gas from the gas tank or an increase in the volume of intersection will cause the pressure in the bag to increase and thus produce contact forces on any contact ellipsoids intersecting the bag. Each intersection of a contact ellipsoid and the bag is treated separately by the ATB program, which computes the decrease in the volume of the bag, the effective area of the contact and the force and torque per unit pressure. After all the contacts have been considered, the total decrease in volume is used to compute the pressure of the gas in the bag and then the forces and torques are applied to the various ellipsoids at their maximum penetration point into the bag.

A set of D.4 cards are used in the ATB Model to define airbag parameters. A detailed airbag formulation can be found in Reference 5.

2.3.5 Applied Force and Torque

The ATB model has the capability to apply time-dependent forces and torques to body segments, as shown in Figure 20. A force/torque coordinate system is defined such that a positive force is applied in the positive X direction of the force/torque coordinate system and a positive torque is applied about the positive X axis of the force/torque coordinate system using the right-hand rule. The origin and orientation (rotation) of the force/torque coordinate systems are specified with respect to the local reference coordinate system of the segment to which the force/torque is to be applied. Cards D.9 specify these parameters for the ATB simulation.

Figure 20. Applied Forces

2.3.6 Wind Force Modeling

The wind force option was developed to tackle the case where pilot ejection is simulated. It applies pressure type forces, such as aerodynamic forces, to any segments which penetrate a boundary plane, called the wind plane, as shown in Figure 21. Once a segment's ellipsoid penetrates the wind plane, an estimate of the projected area normal to the wind pressure is made, and the force and torque are computed and applied to the segment. For partial penetration, the force is applied at the center of the intersection ellipse between the ellipsoid and wind plane. At full penetration, the force is applied at the center of the ellipsoid.

The wind plane is defined using the D.2 card, the same as other regular planes. The user must state explicitly in the F.7.a card which segments are desired for wind force calculation. Then, the F.7.b card associates these segments with the wind plane and wind pressure functions, as well as drag coefficients defined in Card E.6. There are two types of wind pressure functions. The first is a time-dependent wind pressure function which gives the X, Y and Z components of the wind pressure vector in the reference coordinate system with respect to time. The second type computes the wind pressure vector as a function of the relative velocity of a segment. A time-dependent drag coefficient function can also

Figure 21. Wind Forces

be defined in Card E.6. The wind force acting on a segment will equal the wind pressure function value multiplied by the drag coefficient. If no drag coefficient is defined, 1.0 will be used. Additionally, a method of calculating the wetted area to account for segments blocking the wind is also available. A detailed formulation of the wind force modeling method can be found in References 3 and 10.

2.3.7 Water Force Simulation Environment Modeling

The water force simulation is used to predict gross human or dummy body response due to water forces with the body fully or partially submerged and with or without attached PFDs (Personal Floatation Devices). Modeling of water forces requires representation of the water surface and PFDs. Figure 22 shows a human subject wearing PFDs floating above the water surface. The subject is partially submerged.

Figure 22. Water Force Simulation of a Human Subject with PFDs

A representation of the water surface consists of the mean water surface and waves forming the free-water surface. The mean water surface is defined as the X-Y plane of a Cartesian coordinate system called the water frame. The water frame's origin and orientation are given with respect to the inertial coordinate system, and its Z axis points downwards into the water. Figure 23 depicts this relationship. Therefore, the mean water surface is fixed in space and time and used as the location of the water surface. To have both spatial and time variations for the actual free-water surface, waves are defined and superimposed on the mean water surface. There are two representations of the free-water surface available in the ATB Model. One uses a set of regular waves which are two-dimensional, sinusoidal waves. The user inputs wave length, amplitude and phase angle, etc., to define these waves. The ATB Model allows the user to utilize up to ten regular waves to describe the free-water surface. The program will superimpose the components due to each wave in computing the free-water surface. Another option allows the user to represent the free-water surface by a single regular wave based on the Pierson-Markovitz spectrum for fully-developed ocean waves. The user only needs to supply a wind velocity at a standard height of 63.98 ft above the free surface. The ATB Model will compute the rest of the wave parameters.

Figure 23. Water Surface Model

For the portion of the body submerged in water, the ATB Model computes the water forces and torques acting on it. The water forces include the effects of hydrostatic pressure, wave excitation, added mass, drag and lift. The hydrostatic effects arise as a result of hydrostatic fluid pressure acting on a body. The wave excitation effects are due to the dynamic pressure exerted by the waves. The added mass effects result from a volume of surrounding fluid accelerated with a body. The parameters describing these effects are supplied in the ATB input file by a set of corresponding coefficients.

The ATB Model allows the user to approximate each PFD by up to five rigid ellipsoids. These ellipsoids are called PFD ellipsoids. Each PFD ellipsoid is modeled as if it is rigidly connected to a body segment and has similar characteristics as a regular contact ellipsoid. The semi-axes, ellipsoid center offset, and orientation of the ellipsoid coordinate system are defined with respect to the local

reference system of the segment to which it is attached. The ATB Model allows modeling of up to five PFDs.

In an ATB input file, a set of F.9 cards are used to define the water surface, water force coefficients, PFDs, and other water force simulation parameters. For a detailed theoretical formulation of the water force model, Reference 12 is recommended.

2.4 Contact Definitions

The interactions between the body and the environment are expressed in terms of the contacts which happen between the body's segments and the elements representing the environment. There are seven major types of contacts used in the ATB Model:

- 1. Plane/ellipsoid
- 2. Ellipsoid/ellipsoid
- 3. Segment/belt
- 4. Segment/airbag
- 5. Segment/water
- 6. Segment/harness belt
- 7. Segment/spring-damper

The last five types of contacts have been described in previous sections. This section focuses on the contact models used most frequently (plane/ellipsoid and ellipsoid/ellipsoid contacts) and the functions used by all of the contact models.

2.4.1 Plane/Ellipsoid and Ellipsoid/Ellipsoid Contact

The outer shape of each segment is defined by the contact ellipsoid attached to the segment. Most segments have only one contact ellipsoid while some segments may have several contact ellipsoids, hyperellipsoids, or planes. Since the vehicle and ground are also segments, they may have contact (hyper)ellipsoids attached to them, as well as planes. Therefore, a contact with the segment is in effect a contact with the segment's contact (hyper)ellipsoids. Referring to example.ain, the sets of Cards F.1 and Cards F.3 define the plane/ellipsoid and ellipsoid/ellipsoid contacts, respectively, in this way. The user can define contacts for all of the combinations between planes and ellipsoids, and ellipsoids and ellipsoids. However, it will save computational time to define only the contacts which are likely to occur. Several test runs can be used to refine and reduce the contact definitions.

For a plane/ellipsoid contact, the contact forces consist of a normal force and a friction force computed by the ATB Model's force-deflection routines. When an ellipsoid contacts with a plane, it penetrates the plane. The ATB Model finds the maximum penetration of the given ellipsoid into the given plane at each time step, as shown in Figure 24. This penetration is the deflection meant by the ATB Model. The contact forces corresponding to this deflection are calculated from the contact property functions used in Cards F.3 for defining this contact. The computed forces are applied at a point along the line joining the point of maximum penetration and the center of the intersection area. The ATB Model has the capabilities to conduct an edge effect test, handle complete penetration by the ellipsoid, and deal with infinite planes. The edge effect test handles the situation where only part of the intersecting ellipse is within the plane boundaries. The infinite plane option allows the user to assume an infinite plane; therefore, no boundary test is made. It should be noted that the plane has a positive side and a negative side, as described earlier. The contact force vector has the same direction as the plane normal, directed out of the positive side. If an ellipsoid comes into contact from the negative side of the plane, it results in a sudden large contact force pushing the ellipsoid through the positive side of the plane.

Figure 24. Plane/Ellipsoid Contact

Similar to plane/ellipsoid contacts, the contact forces generated from an ellipsoid/ellipsoid contact are functions of the penetration value of one ellipsoid into another, as shown in Figure 25. The penetration value is decided by contracting both ellipsoids until a single point of contact is achieved. Figure 25 shows an exterior contact in which one ellipsoid approaches another from the exterior. The ATB Model also allows an interior contact in which ellipsoid A contacts ellipsoid B at B's interior surface,

though this is a rarely used option. For interior contacts, ellipsoid A must be completely inside ellipsoid B before contact.

Figure 25. Ellipsoid-Ellipsoid Contact

It should be pointed out that the contact properties are mutual characteristics associated with each specific paired contact. For example, if test data are available, the contact properties between the head ellipsoid and dashboard plane should be different from those between the upper torso ellipsoid and dashboard plane.

2.4.2 Functions of Contact Properties

For many of the contact definitions, a set of function numbers are used to define the contact properties for that particular contact. Each individual contact function is defined in Cards E.1 through E.4. Contact properties are described by a combination of individual functions. In most cases there are two ways to specify this combination.

The first method uses five functions in combination to describe the contact properties. They are: the base force-deflection function, the inertial spike function, the energy absorption function, the permanent deflection function, and the friction coefficient function. The function numbers of these five functions are used in the contact definition. Figure 26 depicts this concept. These are all functions of deflection or constant values. The base force-deflection function is used to determine the normal contact force. The inertial spike function is used to model the inertial loading that might take place when a plane/ellipsoid contact is initiated. The definition of each inertial spike function includes an abscissa value D3 in Card E.2 for the function such that if unloading occurs after deflection exceeds D3, the inertial spike is to be ignored. An example using inertial spike might be the contact between the head and the car's windshield, in which case an extra inertial loading is needed before the windshield is broken. The energy absorption function, also called the R factor, ranges from 0 to 1 and is used to specify the amount of energy recovered at the end of unloading. The permanent deflection function, also called the G factor, ranges from 0 to 1 and is used to model permanent deformation X_{PERM} due to the contact force. For the subsequent contacts, loading will not start until X_{PERM} . Both the R and G factors are used to approximate the effects of hysteresis, defining the unloading and reloading curve calculations. The unloading curve is a quadratic polynomial from the base curve to

 X_{PERM} . The reloading curve is a cubic polynomial from the point of reloading to the base curve at X_{MAX} . The friction coefficient function is used to compute the contact friction force which is proportional to the normal force and in the opposite direction of the tangential velocity. In summary, this method establishes a contact behavior as first loading along the base force-deflection curve plus the inertial spike (if it exists), then proceeding down an unloading curve between X_{PERM} and X_{MAX} after the deflection reaches X_{MAX} . In example.ain, the ellipsoid/ellipsoid contact definitions in Cards F.3 use this method.

Figure 26. Functions

The second method describes the contact properties using a rate-dependent function, F(x, x'), where x and x' are the deflection and deflection rate, respectively. A combination of four individual functions are used to construct F as shown in Figure 27. F_1 , F_2 , F_3 , and F_4 do not have to have any special physical meanings and may be used as pure mathematical expressions for the purpose of constructing F. The function numbers of these four individual functions plus the friction coefficient function are used in the contact definition. This option is invoked by setting the function numbers of F_2 , F_3 , and F_4 in Cards F.1 or F.3 all to be negative. In *example.ain*, the block of F.1 cards defining plane/ellipsoid contacts uses this method.

Figure 27. Rate-Dependent Functions

Each individual function used in the above methods can be defined using tabular data and/or a polynomial expression of up to the fifth-degree in Cards E.1 to E.4. Constant value functions are allowed. For example, in *example.ain*, function 14 is a constant function specifying the friction coefficient; function 13 is a tabular function defining a base force-deflection function for contact between ellipsoids and stiff surfaces; function 31 is a linear (first-order polynomial) function defining the force-strain relation for harness belts. Furthermore, each individual function may be subdivided into two adjacent functions f_1 and f_2 , where the upper abscissa value of f_1 will be the lower abscissa value of f_2 , as indicated in Figure 28. The input formats of f_1 and f_2 depend on the signs of D0, D1, and D2 on the E.2 cards.

30

2.5 Prescribed Motion and Initial Conditions

2.5.1 Vehicle Definition and Prescribed Motion

A vehicle in the ATB Model is a massless segment with prescribed motion. Unlike the body segments described by B cards, vehicle segments are automatically created by C cards where its prescribed motion is defined. Vehicle segments are primarily used to offer a reference coordinate system (see section 2.2.2) and establish an acceleration time history for the environment in which the bodies reside. Therefore, it usually has contact planes and/or additional ellipsoids defined with respect to it (see section 2.3). For example, in *example.ain*, the sled is a vehicle segment with a deceleration sequence defined in the C.3 cards. The seat panels are defined in the vehicle coordinate system, i.e., with respect to the sled.

The ATB Model allows up to six prescribed motions to be defined. Each prescribed motion has its own set of C cards, with the primary vehicle being defined by the last set of C cards in the input file. The remaining prescribed motions not associated with a segment defined in the B cards are called secondary vehicles. The numbering convention for segments in the ATB Model is, from low to high, the body segments followed by the secondary vehicles, the primary vehicle, the airbags if any, and then the inertial system segment, which is the ground segment by default. In example.ain, the sled is the only vehicle; therefore it is also a primary vehicle. The secondary vehicles are very useful in modeling objects which move within the primary vehicle. For example, in a pickup truck simulation with roof crush as shown in Figure 29, the primary vehicle is the pickup truck and the roof is modeled as a secondary vehicle. Most planes are defined with respect to the primary vehicle, which has its segment local reference system at the point described by the pickup truck's prescribed motion. However, the roof and side rails are attached and defined in the local reference system of the secondary vehicle, which has the time history of roof crush movement as the prescribed motion. The roof crush movement in turn may be defined with respect to the primary vehicle or the inertial reference system.

Figure 29. Pickup Truck Rollover with Roof Crush

The ATB Model requires at least one vehicle, the primary vehicle, to be defined in every simulation. If there is no object suitable for vehicle definition, a motionless dummy vehicle can be defined as the primary vehicle for the simulation. The water force simulation in Section 2.3.7 is such a case.

A body segment defined in the B cards may also be given prescribed motion if the segment is a reference segment. Similar to a vehicle, the body segment's prescribed motion is defined by a set of C cards.

Each prescribed motion time history in the C cards is specified relative to a reference system. The reference system can be that of another prescribed motion segment, or the default ground (inertial) segment. Four options are available for specifying the motion data. They are:

Option 1: Half sine wave deceleration pulse Option 2: Tabular unidirectional deceleration

Option 3: Six-degree-of-freedom deceleration

Option 4: Spline fit position, velocity, or deceleration data.

Option 1, as depicted by Figure 30, is the simplest way to define vehicle motion. The half sine wave in the top graph is obtained by inputting an initial velocity and time duration, VTIME, of the pulse. The magnitude of the deceleration is automatically calculated so that the final velocity is zero. The orientation of the deceleration vector is given by azimuth and elevation angles. A set of X, Y, Z coordinates is used to specify the vehicle's initial position in the reference system. This option is often used to approximate the vehicle motion when detailed motion data are unavailable. *Example.ain* uses this option. Option 2 is similar to option 1 except that the half sine wave is replaced by a table of unidirectional deceleration data supplied at a fixed time interval, ATD, as in the bottom graph.

Figure 30. Prescribed Motion Options 1 and 2

To define more complex three-dimensional vehicle motion, option 4 is recommended for its spline fit capability. Figure 31 demonstrates the input involved in this option. A table of data of the vehicle's position, velocity, or acceleration vs. time is used to generate spline fit functions. If the table is a position table, the position vector (X_x, X_y, X_z) and the vehicle's yaw, pitch, and roll $(\theta_z, \theta_y, \theta_x)$ are input. If it is a velocity table, the velocity vector (v_x, v_y, v_z) and angular velocity vector $(\omega_x, \omega_y, \omega_z)$ are input. An acceleration table uses the deceleration vector (a_x, a_y, a_z) and angular acceleration vector $(\alpha_x, \alpha_y, \alpha_z)$. The ATB Model will spline fit these data using polynomials and then compute the vehicle motion at a fixed time interval, set by the user. In spline fitting angular positions, the angle values will be transformed into quaternions and the four quaternion components are each spline fit independently. The yaw, pitch, and roll are then computed from the quaternions. Option 3 is similar to option 4 except that only decelerations are allowed and the data must be supplied at even time points. The decelerations are used directly by the program and spline fitting is not required.

Figure 31. Prescribed Motion Option 4

2.5.2 Initial Positioning of Body

For body segments, the initial positions and velocities are defined by a set of G cards. First, a G.2 card is used to specify the initial velocity and CG position of each body's reference segment in a vehicle or ground (inertial) reference system. Initial segment velocities can be set equal to a vehicle's initial velocity. Once the reference segment is positioned, the initial yaw, pitch, roll, and angular velocities of all the body segments' local reference systems are specified by a set of G.3 cards. This in effect defines all the segments' initial conditions since the body is modeled in a chain structure. Therefore, in the process of setting up a body's initial conditions, the positioning of the reference segment in the

G.2 cards defines the whole body's location and the specifying of angles and angular velocities in the G.3 cards defines the body's posture. These initial orientations and velocities may be specified with respect to the ground, any vehicle, or any segment previously positioned. Figure 32 depicts this concept.

Figure 32. Initial Conditions

For a body free in space, the above process can be relatively straightforward; however, when the body is confined by the surrounding environment (for example, sitting on a seat), the process can become fairly involved. The reason for this is that the body must initially be in static equilibrium, and this equilibrium is achieved by balancing gravitational forces against contact forces. The latter are highly position-dependent and must be properly chosen to avoid large initial segment accelerations due to unbalanced forces and torques on the body. An iterative adjustment process is often used to achieve this objective. In adjusting the segment orientations, care should be taken that the joints are not positioned beyond their stops or inconsistent with their rotational constraints.

The iterative method requires that the simulation is executed to zero time. A tabular printout of all of the external forces and torques and resulting linear and angular accelerations is produced for time zero. Joint torques can also be checked for inconsistencies. Then the user adjusts the positions based on the contact forces and the initial linear and angular accelerations. This procedure usually requires several iterations to ensure that the body is in static equilibrium with its environment, which is determined by the absence of large accelerations for any of the body segments. Perfect equilibrium is generally not attainable for the seated or standing position; however, small initial accelerations are tolerable, especially for the angular accelerations which are usually difficult to balance, as long as they are much smaller than the accelerations induced by the dynamic environmental conditions under study.

For initially balancing seated human or dummy subjects, the following steps are suggested:

- 1. Start position.
 - Torso segments parallel with the seat back.
 - Legs rotated above the floor and pedals.
- 2. Adjust the lower torso position to balance more than 60% of the total body weight.
 - Rotate torso segments to contact seat back.
- 3. Rotate upper legs down to balance most of the body weight.
 - Check horizontal forces. The combined forces should be close to zero.
- 4. Rotate lower legs to fully balance weight with foot/floor contacts.

2.6 Dimension Units, Gravity, and Time Control of the ATB Program

Before any body or vehicle data can be considered for input to the model, the user must decide the units of measurement to be used and the gravity direction, relative to the inertial system.

2.6.1 Selecting Dimensional Units

The units of measurement for the input data (i.e., pounds/inches/seconds or Newtons/meters/seconds) must be chosen. The choice is arbitrary and there is no default, but once the selection is made, all input data must be in the same units. Choosing the units of measurement for the input data also automatically specifies the units for the output data. The units of measurement are selected by supplying the alphanumeric names of the abbreviations for the units of force (UNITM), distance (UNITL) and time (UNITT).

The units of measurement used in the ATB Input Description for illustrative purposes are pounds, inches, and seconds. These units were selected at the time of the initial development of the model when most available data were in these units. Although there are no official units, the format (field width and number of digits following the decimal) for various input and output items was established on the basis of the expected magnitude of these data for a simple car crash type simulation, assuming the pound, inch, and second measurement system. Hence it is possible that a different choice of units may result in data that, while numerically correct, may not fit in the specified input and output format.

Note that mass units are not required for input and output purposes, although they are assumed internally by the program. This is accomplished by supplying the weight of the body segments using the force units. The ATB program converts these input values to mass units by dividing these force units by the value of the acceleration due to gravity, which must be provided as input. Unfortunately, an inconsistency was introduced during the early development of the program for the principal moments of inertia input units. In retrospect, the units for the principal moments of inertia should have been weight (force) multiplied by distance squared, and the input values converted by the program by dividing by the acceleration due to gravity, as is done for the segment weights. As the input is now established, the required units for these principal moments of inertia are weight (force) multiplied by distance multiplied by time squared, which is equivalent to mass multiplied by distance squared. This

inconsistency has never been removed because its removal would invalidate many already established input files.

Finally, both the GEBOD and VIEW programs employ similar unit conventions as the ATB Model.

2.6.2 Specifying Gravity

Once the units of measurement have been selected, the user must define what is meant by the inertial coordinate system. As discussed earlier, the inertial coordinate system is the coordinate system to which all other coordinate systems are referred and it is within this system that Newton's laws hold. The inertial coordinate system of the model is assumed to be at rest, but is designated as a segment called the ground segment with its segment number given by NGRND. The inertial coordinate system is defined by specifying the gravity vector GRAVTY. Most whole-body simulations define the gravity vector GRAVTY as (0, 0, g), to be aligned with the positive Z axis of the inertial coordinate system. g corresponds to the standard coefficient of gravity at the surface of the earth.

The gravity field defined by GRAVTY is assumed to be constant throughout space and time in the ATB Model and is applied to all segments that are given a nonzero weight. The magnitude of the vector GRAVTY is used to compute the masses of the segments from their supplied weights. If the user wants to simulate the motion of an object in a zero gravity field, such as a spacecraft in deep space, the gravity vector would be supplied as GRAVTY (0, 0, 0). The magnitude of this vector is obviously zero, so computation of the masses of the segments from their weights would not be possible using the magnitude of GRAVTY. To circumvent this problem, the user has the option of supplying G. G represents a factor by which the weights of the segments will be divided to yield a mass. If G is supplied as nonzero, the ATB program will use the value of G (rather than the magnitude of GRAVTY) to compute the masses of the segments and will apply the force vector, GRAVTY, to all segments with a nonzero mass. G must be nonzero when GRAVTY (0, 0, 0) is used.

2.6.3 Integration and Output Time Control

Time control parameters must be specified for each simulation. These parameters control the length (simulation time) of the run, the amount and format of the output, the tabular time histories, and operation of the program integrator. Although the program places no restrictions on these input parameters, a judicious choice of the parameters can improve computational efficiency and numerical stability. For the purpose of clarity, the following description will assume that UNITT, units of time, are seconds.

Figure 33 illustrates the time control mechanism. After all input and initialization are performed, time is advanced in overall steps of **DT** seconds. The optional output is provided at time zero and each integral multiple of **DT** seconds of simulation time. The total simulation time is **NSTEPS*DT** seconds where **NSTEPS** and **DT** are input parameters. The values of **NSTEPS** and **DT** should be chosen to provide the desired length of the simulation, and the amount and frequency of output data.

A secondary control of time is performed by the program integrator. Integrator steps are controlled by the supplied values for HO, HMIN, and HMAX. The integrator advances time in substeps of H seconds starting with HO and varying between HMIN and HMAX. H is halved when convergence of the integrator parameters is not achieved, but H is not permitted to become less than HMIN. If convergence is not attained with an HMIN time step, the simulation stops with a descriptive error message written to the .aou file. If the convergence criteria are satisfied for several integration steps, H is doubled. This can continue until the integration step reaches HMAX. H is also adjusted to provide an integrator time step at each integer multiple of DT, so that output data is available. For this reason, it is best that DT be an integer multiple of HMAX so that the DT time step will be executed in equal HMAX substeps during periods of stable activity. Also, since the value of H is permitted to double during these stable periods or be halved during unstable periods, the integrator will execute more efficiently if HMAX is a power of two multiple of HMIN and HO.

Figure 33. Time Step Definitions

It has been observed that suitable values for **HMAX** lie between one and five msec for most occupant and pedestrian simulations. Generally, values for **DT** of 0.002, 0.004, 0.010, or 0.020 seconds; for **HMAX** of 0.001 or 0.002 seconds; and for **HMIN** and **HO** of 0.000125 or 0.000250 seconds work satisfactorily. It is possible to execute the integrator in a "fixed step mode" by setting **HMAX** = **HMIN** = **HO**, but this is not recommended.

3. ORGANIZATION OF ATB INPUT DATA AND CONTROL OF OUTPUT DATA

3.1 Structure of Input File

The input for the ATB program is contained in a single primary input file (FORTRAN unit No. 5). It is a formatted file, structured in a fixed 80 column card format, of alphanumeric data input (see example.ain). Each record or line of the file therefore corresponds to the contents of an input card that has a unique identification (e.g., input Card A.1.a). This produces a modular form for the contents of an input file for the ATB program. For example, the A input cards contain the general run parameters, the B input cards contain the inertial and geometric parameters that define the segments and joints of the body, the C input cards contain the parameters that define the prescribed motions, etc.

During the input portion of the ATB program execution, considerable program initialization is performed and a completely annotated listing of the program input is produced on the primary output unit (FORTRAN unit No. 6), as shown at the beginning of *example.aou*.

Following is a summary of all of the input cards. A complete description giving the format for each card, the conditions that specify its necessity, the input parameters to be supplied on each card, and a definition of each of these parameters is provided in the ATB Model Input Manual.

Card A. Run control parameters

A.1.a-c	Date and comment
A.2	Not used
A.3	Dimensional units, components of gravity
A.4	Integrator parameters
A.5	NPRT array for output control

Card B. Physical characteristics of the body

B.1	Body title, number of segments, joints, and of deformable segments
B.1.b-e	Finite element analysis data for deformable segments
B.2.a-b	Physical characteristics of body segments
B.3.a-b	Physical characteristics of joints
B.3.c	Node numbers used to compute rotational deformation for
	deformable segments
B.4	Joint spring function coefficients, or restoring torque function numbers
B.5	Joint viscous function coefficients
B.6	Integrator convergence tests for body segments
B.7.a-b	Controls for flexible elements

Card C. Prescribed motion

C.1	Vehicle motion title
C.2.a-b	Prescribed motion control parameters
C.3	Unidirectional deceleration tables
C.4	Six degrees-of-freedom deceleration tables
C.5	Spline fit tables

Card D. Contact surface and other environment definitions

D.1.a-b	Number of contact panels, belts, airbags, etc., and water force and joint
	actuator switches
D.2.a-d	Plane description and input data
D.3.a-c	Simple belt description and input data
D.4.a-h	Airbag description and input data
D.5	Additional contact (hyper)ellipsoid data
D.6	Constraint and tension element input data
D.7	Body segment symmetry options
D.8.a	Spring-damper input data
D.8.b	Spring-damper attachment node for deformable segments
D.9.a	Applied force/torque function input data
D.9.b	Deformable segments' node numbers for applied force/torque

Card E. Function definitions

E.1	Function identification number and title				
E.2	Function definition control parameters				
E.3	5th degree polynomial coefficients				
E.4.a-b	Tabular function definition				
E.5	(No longer required by program)				
E.6.a-d	Wind force functions input data				
F 7 a-d	Joint restoring force functions input data				

Card F. Allowed contacts and associated functions

F.1.a-b	Plane/ellipsoid contact definition
F.2.a-b	Belt/segment contact definition
F.3.a-b	Ellipsoid/ellipsoid contact definition
F.4.a-b	Specifications for global graphic joint functions
F.5.a	Not used
F.6	Airbag/segment contact definition
F.7.a-b	Wind force function specification
F.8.a-d	Harness/belt system input data

F.9.a-m	Water force simulation data input
F.10	Joint actuator data input

Card G. Initial positioning input

G.1.a	Segment initial velocity data source
G.1.b	Not used
G.2	Initial position and velocity for reference segments
G.3.a-b	Initial segment angular orientation and velocity input data
G.4	Equilibrium control parameters
G.5	Equilibrium control assignments
G.6	Equilibrium constraint assignments

Card H. Tabular time history output control parameters

H.1.a-b	Linear accelerations of selected points on segments					
H.2.a-b	Linear velocities of selected points on segments					
H.3.a-b	Linear positions of selected points on segments					
H.4	Angular accelerations of selected segments					
H.5	Angular velocities of selected segments					
H.6	Angular orientations of selected segments					
H.7	Joint parameters for selected joints					
H.8	Wind forces on selected segments					
H.9	Joint forces and torques for selected joints					
H.10.a-c	Properties of selected groups of segments					
H.11	Actuator joint torques					
H.12	Parameters for HIC, HSI, and CSI computations					

3.2 ATB Output Files

Because of the complexity of the ATB Model and the potential for huge amounts of output from a single simulation, the ATB program was written so that possible output files are controlled for each run. This tailoring of the number of files to be written for each simulation has been somewhat confusing because some aspects of it are explicit (the user sets a flag for the type and frequency of the desired output) and others are implicit (indirectly determined by the type and number of force deflection interactions, etc).

A logical unit is the device or file from which or to which input or output from a FORTRAN program is to be sent. Except for the primary input and output files (FORTRAN unit Nos. 5 and 6), the use of each I/O file is controlled by input parameters contained within the program input file. The ATB model has an open-ended number of required logical units which depends on the amount of output requested by parameters in the input file. Table 2 summarizes major FORTRAN logical units that may be used by the ATB program.

Table 2 Summary of ATB Program I/O Units

Logical Unit	Filename Extension	Туре*	Description	Controlling Parameters
1	.SA1, .TP1, .UF1	U or F	Program VIEW input	NPRT (1) & (35) on Card A.5
5	.AIN	F	Primary input	always required
6	.AOU	F	Primary output	always required
21+	.T??	F	Time histories	NPRT (4) on Card A.5 & Cards H.1~ H.12

^{*} Type is F for formatted, U for unformatted file.

3.2.1 View Output (Unit 1)

Logical unit No. 1 is typically an ASCII-formatted output file designed to be used as data input to VIEW, the program that creates the graphics frequently associated with the ATB Model. This output file has an extension name .sal, or .tpl. For backward compatibility with an early version of VIEW, an optional unformatted (binary) output file is also included, with an extension name .ufl.

The generation of this output file is controlled by the value of **NPRT** (1) that is supplied on input Card A.5. A blank or zero value for **NPRT** (1) will suppress the generation of output file .sal or .tpl, whereas a non-zero positive value will produce data records that are equally spaced at every **m*DT** seconds of simulation time starting at 0 time, where **m** is the integer value of **NPRT** (1) and **DT** is defined on input Card A.4.

File .sa1 and .tp1 contain fixed initialization data describing the planes, contact ellipsoids, and harness belts. These are followed by records containing the values of time and the corresponding dynamic data, including segment positions in the inertial reference and the direction cosine matrix for each of the body segments. The only difference between the .sa1 and .tp1 files is the formatting. The .sa1 file uses the new structured ASCII graphics output format used by VIEW and is selected by setting NPRT(35) to 0. The structured graphics output file is designed for easier troubleshooting and smaller file size. The .tp1 file uses the old ASCII graphics output format used by older versions of VIEW and is selected by setting NPRT(35) to 2.

3.2.2 Primary Output (Unit 6)

The primary output file for the ATB program is logical unit No. 6. It has an extension name .aou. Except for injury criteria (HIC, HSI, etc.) results, it is recommended that this file be used mainly for diagnostics and input reference instead of simulation result analysis. Referring to example.aou in the Appendix, the primary output file contains the following items:

- 1. A labeled echo of the ATB program input data.
- 2. Tables of segment linear and angular position, velocity, and acceleration information, joint forces and torques, the sum of all external forces and torques acting on each segment, and constraint forces data. These data are generated at fixed time intervals of m*DT seconds, where m is the integer value of NPRT(3). These tables are useful in determining whether the occupant is initially balanced.
- 3. Tables of the computer elapsed CPU time used by selected subroutines and the number of calls to these subroutines. They are printed at fixed time intervals as specified by **DT** and at a frequency specified by **NPRT** (2). When **NPRT** (2) is zero, the table is generated only once at the successful completion of an ATB program run.
- 4. Diagnostic-type output produced at every call to various subroutines, as controlled by the values supplied for NPRT (8) to (28) on input Card A.5. This output is intended for diagnostic or checkout purposes only, and, if used indiscriminately, can produce voluminous amounts of output.
- 5. Short descriptions of changes in some of the simulation run conditions are produced as they occur. They include:
 - a. Failures of the program integrator convergence tests that cause the integration step to decrease in size. The time, step size, segment and test involved, and the final convergence test parameters are printed. NOTE: These messages are normal and do not indicate an error in the simulation. A stop will occur if the integration step becomes too small.
 - b. Changes in the lock conditions of joints as detected by changes in the values of IPIN or IEULER for the various joints. The time, previous and new values of the indicator, and the identification number and nomenclature of the joint involved are printed.
 - c. Each time a point is added to or deleted from the set of harness belt reference points, changes are indicated by listing the time, the set of points, and the distance between them.

- 6. A page containing values of the head injury criterion (HIC), head and chest severity indices (HSI and CSI), and related information.
- 7. The tabular time histories may be generated on the primary output file as described in the next section.

3.2.3 Tabular Time Histories (Units 21, 22, 23, ...)

The tabular time histories are perhaps the most useful output of the ATB program. Most ATB simulation result analyses are performed with these time history files. These files are designed in such a way as to allow easy data export to spreadsheet software, such as Microsoft Excel and SigmaPlot. Depending on the value of NPRT(4), they may be output at the end of the .aou file or to consecutive logical units starting from UNIT21, with one logical unit for each time history. For the latter, each time history file has an extension name .txx, where xx is the corresponding logical unit number. Their generation, contents, frequency of output, and the manner by which they are generated are completely controlled by program input parameters. The Appendix includes several example time history files.

There are two types of time history files. The first type is controlled by Cards H.1 to H.11. The files in this set primarily contain the body kinematic data and properties. The output of each individual file in this set is optional and is defined by the user's specification in the H cards. If there are any output files of this type, they will be assigned logical unit numbers starting with 21. The second type of output files include contact results, such as deflections, forces, and contact locations, and spring-damper forces. Their output is controlled by the value of **NPRT(18)** on input Card A.5 and an output flag in each contact definition. For plane/ellipsoid and ellipsoid/ellipsoid contacts, the value of **NPRT(18)** determines whether any data will be output. If **NPRT(18)** allows this output, then the user can specify which individual contacts to output on the F.1 and F.3 cards. This gives users the ability to output only those contacts of interest.

Table 3 summarizes the time history files and their control cards. The listing order of the time histories reflects the order in which they are assigned logical unit numbers.

Table 3 Time History Files

Time History	Output Control Cards
Point Linear Accelerations: Components and Resultant	H.1
Point Linear Velocities: Components and Resultant	H.2
Point Linear Positions: Components and Resultant	H.3
Segment Angular Accelerations: Components and Resultant	H.4
Segment Angular Velocities: Components and Resultant	H.5
Segment Angular Positions: Yaw, Pitch, Roll, and Resultant	H.6
Joint Parameters: Lock Condition, Angles, and Resistive Torques	H.7
Segment Wind Forces: Components and Resultant	H.8
Joint Forces and Torques: Components and Resultant	H.9
Total Body Properties: CG Location, Linear and Angular Momentum, Kinetic Energy, Inertial Tensor Matrix, Principal Moments of Inertia and Principal Axes	H.10
Active (Actuator) Joint Torques: Components and Resultant	H.11
Plane/Ellipsoid Contacts: Normal, Friction, and Resultant Contact Forces, Deflection, and Contact Point Coordinates	A.5 and F.1
Simple Belt Contacts: Belt Strain and Anchor Point Forces	A.5
Harness Belt Contacts: Belt Strain and Anchor Point Forces	A.5
Spring Damper Forces: Component and Resultant	A.5
Ellipsoid/Ellipsoid Contacts: Normal, Friction, and Resultant Contact Forces, Deflection, and Contact Point Coordinates	A.5 and F.3
Airbag Contacts: Airbag Parameters and Contact Forces	A.5 and F.6

REFERENCES

- 1. Obergefell, L.A., Gardner, T.R., Kaleps, I., and Fleck, J.T., January 1988, "Articulated Total Body Model Enhancements, Volume 2: User's Guide," Report No. AAMRL-TR-88-043 (NTIS No. A203-566).
- 2. Fleck, J.T., Butler, F.E., and Vogel, S.L., April 1975, "An Improved Three Dimensional Computer Simulation of Crash Victims," NHTSA Report Nos. DOT-HS-801-507 through 510, Vols. 1-4.
- 3. Fleck, J.T. and Butler, F.E., July 1975, "Development of an Improved Computer Model of the Human Body and Extremity Dynamics," Report No. AMRL-TR-75-14 (NTIS No. AD-A014 816).
- 4. Butler, F.E. and Fleck, J.T., May 1980, "Advanced Restraint System Modeling," Report No. AFAMRL-TR-80-14 (NTIS No. AD-AØ88 029).
- 5. Fleck, J.T., and Butler, F.E., December 1981, "Validation of the Crash Victim Simulator; Volume 1: Engineering Manual -Part I: Analytical Formulation," Department of Transportation Report No. DOT-HS-806-279.
- 6. Fleck, J.T., Butler, F.E., and Delays, N.J., August 1982, "Validation of the Crash Victim Simulator; Volume 2: Engineering Manual -Part II: Validation Effort," Department of Transportation Report No. DOT-HS-806-280.
- 7. Fleck, J.T., and Butler, F.E., February 1982, "Validation of the Crash Victim Simulator; Volume 3: User's Manual," Department of Transportation Report No. DOT-HS-806-281.
- 8. Fleck, J.T., and Butler, F.E., March 1982, "Validation of the Crash Victim Simulator; Volume 4: Programmer's Manual," Department of Transportation Report No. DOT-HS-806-282.
- 9. Butler, F.E., Fleck, J.T., and Difranco, D.A., October 1983, "Modeling of Whole-Body Response to Windblast," Report No. AFAMRL-TR-83-073 (NTIS No. AD-B079 184) (limited distribution).
- 10. Obergefell, L.A., Fleck, J.T., Kaleps, I., and Gardner, T.R., January 1988, "Articulated Total Body Model Enhancements, Volume 1: Modifications," Report No. AAMRL-TR-88-009 (NTIS No. A198-726).
- 11. Obergefell, L.A., Kaleps, I., Gardner, T.R., and Fleck, J.T., February 1988, "Articulated Total Body Model Enhancements, Volume 3: Programmer's Guide," Report No. AAMRL-TR-88-007 (NTIS No. A197-940).
- 12. Weerappuli, D.P.V., Zhao, Y.M., Shams, T., Rangarajan, N., and Obergefell, L., November 1992, "Development of a Software Tool to Analyze Personal Flotation Devices," Proceedings of

- the Thirtieth Annual Symposium of the SAFE Association.
- 13. Obergefell, L., Avula, X., and Kaleps, I., July 1988, "The Use of the Articulated Total Body Model as a Robot Dynamics Simulation Tool," Second Annual Workshop on Space Operations Automation and Robotics (SOAR '88) Proceedings.
- 14. Ashrafiuon, H., Colbert, R., Obergefell, L., and Kaleps, I., 1996, "Modeling of a Deformable Manikin Neck for Multibody Dynamic Simulation," Mathl. Comput. Modelling, Vol. 24, No. 2, pp. 45-56.
- 15. Smith, J., Cheng, H., Brunderman, J., Brodkin, C., 1998, "IMAGE User's Manual," AFRL Handout. Available from AFRL/HESA, Bldg. 441, 2610 Seventh Street, Wright-Patterson AFB OH 45433-7901.
- 16. Leetch, B., and Bowman, B., June 1983, "Articulated Total Body (ATB) "VIEW" Program Software Report, Part II, User's Guide," Report No. AFAMRL-TR-81-111 (Volume II).
- 17. Cheng, H., Obergefell, L.A., and Rizer, A., March 1994, "Generator of Body (GEBOD) Manual," Report No. AL/CF-TR-1994-0051.
- 18. Cheng, H., Rizer, A., and Obergefell, L., February 1995, "Pickup Truck Rollover Accident Reconstruction Using the ATB Model," SAE Paper No. 950133.

APPENDIX A

ATB Simulation Example

A standard sled test simulation is used as the example throughout this User's Guide. In this example, a 167 lb male subject was the occupant restrained using a double shoulder harness and a lap belt with a negative G strap. A generic seat was used with the seat back reclined 13° from vertical and the seat pan inclined 6° from horizontal. The acceleration waveform of the impact sled was an approximate half-sine pulse with a 209 msec impact duration and a 9.47 G amplitude. The ATB simulation time was 300 msec. Figure A-1 shows the simulation graphics generated by the VIEW program. VIEW reads in data from the ATB output file example.sal and draws the graphics. Example.sal is not included in this appendix since it is merely a data file. Corresponding frames from high speed film are presented to offer a comparison between the ATB simulation results and the actual occupant response. A set of simulation input and output files are included in the following sections. It is recommended that this example be used as a trial run for users learning the ATB program.

Figure A-1. Sled Test and ATB Simulation

Example.ain File

Example.ain is the ATB Model input file for the sled test simulation. Each line is labeled with a card number at the end of the line. (The term "card" is a carryover from the days of punchcards.) The B Cards are generated using the GEBOD program. The user should refer to the ATB Model Input Manual for detailed variables and input format descriptions.

```
CARD A1
21 FEB 1997
              0
                  00.000000
                                                                   CARD A2
SIMULATION OF THE HUMAN VOLUNTEER SLED TEST
USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS
                                                                   CARD A2
                                                0.000000
                                                                   CARD A3
                                     386.0880
 IN. LB.SEC.
               0.000000
                          0.000000
                                                                   CARD A4
   4 150.0020000.0005000.0010000.0000625
 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 CARD A5
                                                                   CARD A6
 1
    5
       1 15
                  MALE HUMAN 167 LB
                                                                   CARD B1
   15
         14
    123.597.84590.77400.977304.61706.85004.2530-.4620.00000.83700
                                                                   CARD B2
                                                                1
LT
           .00000.00000.00000
    24.8720.13360.07370.200904.29105.97103.3030-1.430.00000.09500
                                                                1
                                                                   CARD B2
 CT
           .00000.00000.00000
    350.5914.07732.99622.52424.73806.35807.0970.00000.00000-.1080
                                                                1
                                                                   CARD B2
 UT
           .0000014.400.00000
    42.1790.01450.01750.021602.37602.37604.3700-.4750.000001.1710
                                                                1
                                                                   CARD B2
N
           .00000.00000.00000
    59.2360.17970.20490.132803.90103.06105.6610-1.115.00000.00000
                                                                1
                                                                   CARD B2
Н
           .0000036.000.00000
RUL 620.313.25680.25550.014403.00103.001011.623.00000-.3210.50900
                                                                   CARD B2
           .00000.00000.00000
                                                                   CARD B2
RLL 78.0080.49270.50010.056902.29702.297010.188.91900-1.110.87200
                                                                1
           .00000.00000.00000
    82.0100.03840.03640.006901.38301.90905.2870-.0230-.6270.00000
                                                                1
                                                                   CARD B2
RF
           -4.0008.4000-6.100
                                                                1
                                                                   CARD B2
LUL 920.313.25680.25550.014403.00103.001011.623.00000.32100.50900
           .00000.00000.00000
LLL A8.0080.49270.50010.056902.29702.297010.188.919001.1100.87200
                                                                1
                                                                   CARD B2
           .00000.00000.00000
    B2.0100.03840.03640.006901.38301.90905.2870-.0230.62700.00000
                                                                1
                                                                   CARD B2
LF
           4.00008.40006.1000
RUA C4.0180.10680.11310.021601.93901.93906.5350.00000-.2230-.5490
                                                                   CARD B2
           .00000.00000.00000
                                                                   CARD B2
RLA D3.9140.25680.25550.014401.74201.74209.1950.00000.611001.1510
                                                                1
           .00000.00000.00000
                                                                1
                                                                   CARD B2
LUA E4.0180.10680.11310.021601.93901.93906.5350.00000.22300-.5490
           .00000.00000.00000
LLA F3.9140.25680.25550.014401.74201.74209.1950.00000-.61101.1510
                                                                1
                                                                   CARD B2
           .00000.00000.00000
            \tt 0-1.400.00000-2.230-2.340.000002.2100
                                                 0.00000.00000
                                                                   CARD B3
 P
        1
             .00000.00000.00000.000005.0000.00000.00000.00000.00000 3 2 1 3 2 1
                                                                   CARD B3
                                                 0.00000.00000
        2
            0-1.680.00000-.8300-.2700.000006.9900
 W
             .00000.00000.00000.000005.0000.00000.00000.00000.00000 3
                                                                 2 1 3 2 1
        3
            0-.2200.00000-7.210-.8800.000001.4900
                                                 0.00000.00000
                                                                   CARD B3
 NP
             .00000.00000.00000.000010.000.00000.00000.00000.00000 3 2 1 3 2 1
            0.98000.00000-2.500-.8200.000001.9600
                                                 0.0000.00000
                                                                   CARD B3
        4
 HP
             .00000.00000.00000.000010.000.00000.00000.00000.00000 \ 3 \ 2 \ 1 \ 3 \ 2 \ 1
            0-.54002.11001.4800-.4100-1.920-7.500
                                                 0.0000.00000
                                                                   CARD B3
 RH
        1
             14.00048.000.00000.00000.00000-7.000.00000.00000.00000 3 2 1 3 2 1
            1-.2400.360009.7000.63000-.5500-6.890
                                                 0.00000.00000
                                                                   CARD B3
 RK
        6
             0.00000.00000
                                                                   CARD B3
        7
            0.39000-.75009.67001.3600-.3100-2.740
 RA
             0-.5400-2.1101.4800-.41001.9200-7.500
                                                 0.0000.00000
                                                                   CARD B3
        1
 LH
             -14.0048.000.00000.00000.000007.0000.00000.00000.00000 3 2 1 3 2 1
            1-.2400-.36009.7000.63000.55000-6.890
                                                 0.00000.00000
                                                                   CARD B3
        9
 LK
             CARD B3
                                                 0.00000.00000
            0.39000.750009.67001.3600.31000-2.740
 LA
       10
             CARD B3
                                                 0.00000.00000
 RS
        3
            0-.93006.5200-4.240.51000-.2200-5.150
             59.29079.080.00000.00000.00000.00000.00000.00000 3 2 1 3 2 1
                                                                   CARD B3
            1-.6500-.39005.0200-.5000.31000-7.080
                                                 0.0000.00000
 RE
       12
             -15.0065.000.00000-15.00.00000.00000.00000.00000.00000 3 2 1 3 2 1
            0 - .9300 - 6.520 - 4.240.51000.22000 - 5.150
                                                 0.0000.00000
                                                                   CARD B3
 LS
        3
```

```
1-.6500.390005.0200-.5000-.3100-7.080
                                                     0.0000.00000
  LE
               15.0065.000.00000 15.00.00000.00000.00000.00000.00000 3 2 1 3 2 1
                                                                 5.000000CARD B4
                            20.00000.0000010.000.00000.70000
.0000010.000.00000.70000
.0000010.000.00000.70000
                            20.00000.0000010.000.00000.70000
                                                                 35.00000CARD B4
.000004.0000.00000.70000
                            35.00000.0000010.000.00000.70000
                                                                 35.00000CARD B4
                            25.00000.0000010.000.00000.70000
                                                                 35.00000CARD B4
.000004.0000.00000.70000
      .00000.00000.00000
                            0.000000.00000.20020-8E-04.70000
                                                                 10.00000CARD B4
 -4
      1.8000.00000.70000
                            60.00000.00000.00000.00000
                                                                 0.00000CARD B4
                            35.000005.8378.05646.00000.70000
     7.0000.00000.70000
                                                                 4.000000CARD B4
 -12
                            0.000000.00000.20020-8E-04.70000
                                                                 10.00000CARD B4
 -5
      .00000.00000.00000
                            60.00000.00000.00000.00000
 -11
      1.8000.00000.70000
                                                                 0.00000CARD B4
      7.0000.00000.70000
                            35.000005.8378.05646.00000.70000
                                                                 4.00000CARD B4
 -15
                                                                 25.00000CARD B4
                            0.000000.00000.07450-3E-04.70000
 -1
      .00000.00000.00000
                            70.00000.00000.00000.00000.00000
 -8
      1.8000.00000.70000
                                                                 0.00000CARD B4
      .00000.00000.00000
                            0.000000.00000.07450-3E-04.70000
                                                                 25.00000CARD B4
 -2
      1.8000.00000.70000
                            70.00000.00000.00000.00000.00000
                                                                 0.00000CARD B4
 -9
.50000.0000030.000.00000.00000
                                                 .00000.00000
                                                                         CARD B5
                                                .00000.00000
                                                                         CARD B5
.50000.0000030.000.00000.00000
.60000.0000030.000.00000.00000
                                                .00000.00000
                                                                         CARD B5
.60000.0000030.000.00000.00000
                                                .00000.00000
                                                                         CARD B5
                                                 .00000.00000
.30000.0000030.000.00000.00000
                                                                         CARD B5
.30000.0000030.000.00000.00000
                                                .00000.00000
                                                                         CARD B5
.30000.0000030.000.00000.00000
                                                 .00000.00000
                                                                         CARD B5
                                                .00000.00000
                                                                         CARD B5
.30000.0000030.000.00000.00000
.30000.0000030.000.00000.00000
                                                .00000.00000
                                                                         CARD B5
.30000.0000030.000.00000.00000
                                                .00000.00000
                                                                         CARD B5
                                                 .00000.00000
                                                                         CARD B5
.60000.0000030.000.00000.00000
.30000.0000030.000.00000.00000
                                                 .00000.00000
                                                                         CARD B5
.60000.0000030.000.00000.00000
                                                 .00000.00000
                                                                         CARD B5
                                                 .00000.00000
                                                                         CARD B5
.30000.0000030.000.00000.00000
.01000.01000.01000.01000.01000.01000.10000.10000.10000.10000.10000.01000CARD B6
.01000.01000.01000.00000.00000.00000.10000.10000.10000.00000.00000.00000.00000 B6
.01000.01000.01000.00000.00000.00000.10000.10000.10000.00000.00000.00000CARD B6
.01000.01000.01000.00000.00000.00000.10000.10000.10000.00000.00000.00000.00000 B6
.01000.01000.01000.00000.00000.00000.10000.10000.10000.00000.00000.00000.00000 B6
.01000.01000.01000.00000.00000.00000.10000.10000.10000.00000.00000.00000.00000 B6
.01000.01000.01000.00000.00000.00000.10000.10000.10000.00000.00000.00000.00000 B6
.01000.01000.01000.00000.00000.00000.10000.10000.10000.00000.00000.00000.00000.00000
.01000.01000.01000.00000.00000.00000.10000.10000.10000.00000.00000.00000.00000 B6
                                                                         CARD C1
SLED ACCELERATION
57.00000.00400
.02560.09520.00140.02560.00140.02560.09520.00140.02560.00140.02560.04690CARD C3A
.02270.11930.21600.554201.76202.22102.75243.67044.61255.65126.59337.4629CARD C3B
8.38098.98489.39559.39559.41969.25059.17819.17818.98488.81578.62258.6225CARD C3C
8.57418.40508.13937.77707.41467.00406.56916.11025.72375.14394.46753.8878CARD C3D
3.25972.55921.8103.98900.26430.55700.50870.24300.00000
                                                                         CARD C3E
                 0
                       0
                             0
                                   0
                                         1
                                               0
                                                            0
                                                                         CARD D1
   12
           0
                               n
                                   0
                                                                         CARD D2A
        SEAT CUSHION
    10.00000
                8.000000
                           -10.00000
                                                                         CARD D2B
                8.000000
                           -11.89000
                                                                         CARD D2C
    28.01000
                           -10.00000
                                                                         CARD D2D
    10.00000
               -8.000000
                                                                         CARD D2A
        SEAT BACK
    1.000000
                9.000000
                           -48.97000
                                                                         CARD D2B
                9.000000
                                                                         CARD D2C
                           -10.00000
    10.00000
                                                                         CARD D2D
    1.000000
               -9.000000
                           -48.97000
        FLOOR.
                               0
                                  0
                                                                         CARD D2A
                12.00000
    0.000000
                           -1.300000
                                                                         CARD D2B
                           -1.300000
                                                                         CARD D2C
    60.00000
                12.00000
```

```
-1.300000
                                                                        CARD D2D
  0.000000
             -12.00000
                                                                        CARD D2A
                              0
     HEAD PAD
                                                                        CARD D2B
              7.499822
                          -45.99358
  2.891687
                                                                        CARD D2C
              7.499822
                         -35.28358
  5.371688
                                                                        CARD D2D
                         -45.99358
             -7.500182
 2.891687
                                                                        CARD D2A
                             0 0
     SEAT FRONT PANEL.
              8.000000
                         -11.89000
                                                                        CARD D2B
  28.01000
                          -4.400000
                                                                        CARD D2C
  26.66000
              8.000000
                                                                        CARD D2D
  28.01000
             -8.000000
                         -11.89000
     BACK PANEL2. 13 DEGR 0 0
                                                                        CARD D2A
                                                                        CARD D2B
  1.000000
              9.000000
                         -48.97000
                                                                        CARD D2C
                         -10.00000
  10.00000
              9.000000
             -9.000000
                         -48.97000
                                                                        CARD D2D
  1.000000
                                                                        CARD D2A
                             0 0
 7
     FIREWALL.
                                                                        CARD D2B
                         -25.00000
  60.00000
              12.00000
                                                                        CARD D2C
                         -25.00000
             -12.00000
  60.00000
                                                                        CARD D2D
                        -0.7500000
 60.00000
              12.00000
                                                                        CARD D2A
     RIGHT SIDE SEAT/IN.
                            0 0
                                                                        CARD D2B
                         -6.660000
  8.410000
              8.100000
                                                                        CARD D2C
              8.100000
                         -14.73000
  8.700000
                                                                        CARD D2D
 30.58001 . 8.100000
                          -6.640000
                                                                        CARD D2A
                          0 0
     LEFT SIDE SEAT/IN.
                                                                        CARD D2B
                         -6.660000
  8.410000
             -8.100000
                                                                        CARD D2C
                         -6.640000
  30.58001
             -8.100000
                         -14.73000
                                                                        CARD D2D
             -8.100000
  8.700000
                                                                        CARD D2A
     RUDDER PEDALS.
10
                             0 0
                                                                        CARD D2B
                          -1.423467
  44.99118
              8.999872
                                                                        CARD D2C
                         -3.562127
  48.27194
              8.999872
                                                                        CARD D2D
  44.99118
             -9.000128
                         -1.423467
                                                                        CARD D2A
                             0 0
     LEFT SIDE PANEL.
11
             -9.000000
                                                                        CARD D2B
                         -48.97000
  1.000000
                                                                        CARD D2C
                         -6.100000
  10.90000
             -9.000000
                                                                        CARD D2D
 -7.770000
                         -46.95000
             -9.000000
                                                                        CARD D2A
     RIGHT SIDE PANEL.
                            0 0
                                                                        CARD D2B
 1.000000
              9.000000
                         -48.97000
                                                                        CARD D2C
                         -46.95000
 -7.770000
              9.000000
                                                                        CARD D2D
 10.90000
              9.000000
                         -6.100000
                                                      0
                                                                        CARD D7
                                                           0
                                          0
                                            . 0
                                                  0
 0 0 0
             0 0 0
                         0 0 0
                                                                        CARD E1
     SEGMENT-SEGMENT FCN.
                             0
                                 0
3
                                                                        CARD E2
                                                   1.000000
                          0.000000
                                       0.000000
             -5.000000
  0.000000
                                                                        CARD E4A
  6
                                                                889.9999CARD E4B
 0.000000
                                       470.0000
                                                   2.000000
              0.000000
                          1.000000
                                                   5.000000
                                                                1580.000CARD E4C
              1220.000
                           4.000000
                                       1470.000
 3.000000
                                                                        CARD E1
                              0 0
     R FACTOR.
                                                                        CARD E2
                                       0.000000
                                                   0.000000
              0.000000
                          0.7000000
  0.000000
                                                                        CARD E1
     STIFF SURFACES
                             0
                                 0
                          0.000000
                                       0.000000
                                                   1.000000
                                                                        CARD E2
             -4.000000
  0.000000
                                                                        CARD E4A
  8
              0.000000
                                                  0.2000000
                                                                20.00000CARD E4B
                         0.1000000
                                       5.000000
  0.000000
                                                   1.000000
                                                                560.0001CARD E4C
              40.00000
                         0.4000000
                                       60.00000
 0.3000000
                          3.000000
                                       4000.000
                                                                        CARD E4D
              1200.000
  2.000000
                                                                        CARD E1
     FRICTION FUNC.
                             0
                                 0
14
                                                                        CARD E2
                                                   2.000000
                                       0.000000
  0.000000
              0.000000
                         2.0000000
                                                                        CARD E1
                            0 0
19
     CF=.25, CREST=.25
                                                                        CARD E2
              0.000000
                         0.2500000
                                       0.000000
                                                   0.000000
  0.000000
                                                                        CARD E1
     DAMPING COEFF. C=100
                            0 0
20
                                                   1.000000
                                                                        CARD E2
              1.000000
                          0.000000
                                       0.000000
  0.000000
                                                                0.00000CARD E3
                           0.000000
                                       0.000000
                                                   0.000000
              1000.000
  0.000000
                                                                        CARD E1
     RATE OF DEFLEC.
                            0 0
21
                          0.000000
                                       0.000000
                                                   1.000000
                                                                        CARD E2
             -150.0000
 -40.00000
                                                                        CARD E4A
 21
                                       0.000000
                                                                0.00000CARD E4B
                                                  -20.00000
                         -30.00000
 -40.00000
              0.000000
              0.000000
                          0.000000
                                       0.000000
                                                   5.000000
                                                                1.000000CARD E4C
 -10.00000
                                                   30.00000
                                                               0.9650000CARD E4D
              1.000000
                          20.00000
                                      0.9899999
  10.00000
```

```
40.00000
              0.9279998
                            50.00000
                                       0.8600001
                                                     60.00000
                                                                 0.6900000CARD E4E
              0.4750000
                            80.00000
                                       0.3400000
                                                     90.00000
                                                                 0.2600000CARD E4F
   70.00000
                                                     120.0000
                            110.0000
                                       0.1800000
                                                                0.09000000CARD E4G
   100.0000
              0.2000000
            0.06000000
                            140.0000
                                      0.02500000
                                                     150.0000
                                                                  0.00000CARD E4H
   130.0000
       DAMPING COEFF. C=35
                               0 0
                                                                          CARD E1
                            0.000000
                                                                          CARD E2
                                         0.000000
                                                     1.000000
   0.000000
               1.000000
                                       0.000000
                                                     0.000000
                                                                  0.00000CARD E3
               35.00000
                            0.000000
   0.000000
      VERY STIFF BELT.
                               0 0
                                                                          CARD E1
                                                                          CARD E2
                            0.000000
                                         0.000000
                                                     1.000000
   0.000000
              -4.000000
                                                                          CARD E4A
  12
  0.000000
               0.000000
                           0.2500000
                                         4000.000
                                                    0.3333300
                                                                  6000.000CARD E4B
                                                    0.5833300
                           0.5000000
                                                                  14700.00CARD E4C
                                         11640.00
  0.4166699
               7500.000
               18210.00
                           0.7500000
                                         21600.00
                                                    0.8333300
                                                                  25320.00CARD E4D
  0.6666998
                            1.000000
                                         33720.00
                                                     4.000000
                                                                  225000.0CARD E4E
  0.9166700
               30000.00
                                                                          CARD E1
      HARNESS
               N-G STRAP
                               0 0
                            0.000000
                                         0.000000
                                                     0.000000
                                                                          CARD E2
   0.000000
               10.00000
                            0.000000
                                         0.000000
                                                     0.000000
                                                                  0.000000CARD E3
   0.000000
               2500.000
                               0 0
                                                                          CARD E1
       BELT FRICTION
                           0.9000000
                                         0.000000
                                                    0.2000000
                                                                          CARD E2
               0.000000
   0.000000
                               0 0
                                                                          CARD E1
      HARNESS FRICTION
34
                           1.9900000
                                         0.000000
                                                    1.9900000
                                                                          CARD E2
   0.000000
               0.000000
                                                                          CARD E1
999
       RIGHT SHOULDER JOINT
                                                                          CARD E7A
  1
                                                                          CARD E7B
                                                                          CARD E7C
  -4
         12
                            212.3940
   60.07121
                                         12.03720
                                                                          CARD E7D
               233.6540
                                         21.20680
                                                                          CARD E7D
                            258.3800
   65.93372
               326.3510
  82.40853
                            217.7140
                                         11.67850
                                                                          CARD E7D
               356.2500
  91.21090
                            163.5090
                                         5.066480
                                                                          CARD E7D
               272.0920
                            176.1420
                                                                          CARD E7D
   89.27122
               258.4990
                                         10.21010
               288.6960
                            176.4290
                                        6.454900
                                                                          CARD E7D
  89.62075
               225.0060
                            121.3410
                                        -12.06520
                                                                          CARD E7D
   84.04031
                                                                          CARD E7D
                            95.93260
                                       -21.24050
  80.09302
               195.8620
                                                                          CARD E7D
  77.24643
               204.1740
                            119.9530
                                        -11.66900
                                                                          CARD E7D
   80.60311
               189.2130
                            117.3500
                                       -5.125761
                            75.28892
                                       -10.24110
                                                                          CARD E7D
               188.2180
   99.29332
                            117.3850
                                       -6.466969
                                                                          CARD E7D
  84.86960
               225.4650
                                                                          CARD E7A
      LEFT SHOULDER JOINT
                                                                          CARD E7B
                                                                          CARD E7C
   -4
         12
   60.07121
               233.6540
                            212.3940
                                        12.03720
                                                                          CARD E7D
                                                                          CARD E7D
               225,4650
                            117.3850
                                        -6.466969
   84.86960
                                                                          CARD E7D
               188.2180
                            75.28892
                                        -10.24110
   99.29332
                                                                          CARD E7D
                            117.3500
                                        -5.125761
   80.60311
               189.2130
               204.1740
                            119.9530
                                        -11.66900
                                                                          CARD E7D
  77.24643
                                        -21.24050
                                                                          CARD E7D
   80.09302
               195.8620
                            95.93260
                            121.3410
                                        -12.06520
                                                                          CARD E7D
               225.0060
   84.04031
   89.62075
               288.6960
                            176.4290
                                         6.454900
                                                                          CARD E7D
                                                                          CARD E7D
                            176.1420
                                         10.21010
   89.27122
               258.4990
               272,0920
                            163.5090
                                         5.066480
                                                                          CARD E7D
   91.21090
                                         11.67850
               356.2500
                            217.7140
                                                                          CARD E7D
   82.40853
                            258.3800
                                         21.20680
                                                                          CARD E7D
               326.3510
   65.93372
       RIGHT HIP JOINT
                                                                          CARD E7A
                                                                          CARD E7B
                                                                          CARD E7C
   -4
         12
                            676.1950
                                      -0.2866720
                                                                          CARD E7D
   63.84941
               826.2141
               826.2141
                            676.1950
                                      -0.2866720
                                                                          CARD E7D
   58.28361
                            676.1950
                                      -0.2866720
                                                                          CARD E7D
   38.89900
               826.2141
                            676.1950
                                                                          CARD E7D
   36.16820
               826.2141
                                       -0.2866720
                                                                          CARD E7D
                            676.1950
   39.74170
               826.2141
                                       -0.2866720
                            676.1950
                                       -0.2866720
                                                                          CARD E7D
   50.85709
               826.2141
                            676.1950
   63.36500
               826.2141
                                       -0.2866720
                                                                          CARD E7D
                                                                          CARD E7D
                            676.1950
   47.66820
               826.2141
                                      -0.2866720
   37.63620
               826.2141
                            676.1950
                                       -0.2866720
                                                                          CARD E7D
```

-4 12 63.84941 54.14160 38.24630 34.85600 37.63620 47.66820 63.36500 50.85709 39.74170 36.16820 38.89900 58.28361	826.2141 826.2141 826.2141 HIP JOINT 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141	676.1950 676.1950 676.1950 676.1950 676.1950 676.1950 676.1950 676.1950 676.1950 676.1950	-0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720		CARD E7D CARD E7D CARD E7A CARD E7A CARD E7C CARD E7C CARD E7D
-5 2 30.00000 34.00000 9 LEFT	90.30700 60.39060 ELBOW JOINT	271.4830 131.6870		45.72250 -44.79070	CARD E7C CARD E7D CARD E7D CARD E7A CARD E7B
-5 2 30.00000 34.00000 10 RIGHT	90.30700 60.39060 KNEE JOINT	271.4830 131.6870	218.8050 19.23500	45.72250 -44.79070	CARD E7C CARD E7D CARD E7D CARD E7A CARD E7B
-4 2 23.00000 34.00000 11 LEFT	52.19941 153.8690 KNEE JOINT	441.0020 408.4461			CARD E7C CARD E7D CARD E7D CARD E7A CARD E7B
-4 2 23.00000 34.00000 12 RIGHT	52.19941 153.8690 ANKLE JOINT	441.0020 408.4461	176.3340 250.5860		CARD E7C CARD E7D CARD E7D CARD E7A CARD E7B
-4 2 4.000000 4.000000 15 LEFT	179.0880 167.7160 ANKLE JOINT	67.88540 -12.13370			CARD E7C CARD E7D CARD E7D CARD E7A CARD E7B
-4 2 4.000000 4.000000	179.0880 167.7160	67.88540 -12.13370	133.8270 132.9940		CARD E7C CARD E7D CARD E7D
999 3 5 2 1 16 1 1 16 6 1 16 9 2 16 1 2 16 2 2 16 3 2 16 13 2 16 15 3 16 8 3 16 11 4 16 5 10 16 8 10 16 11 0 0 0	1 0 0 1 13 -20 6 13 -20 9 13 -20 1 13 -20 2 13 -20 3 13 -20 13 13 -22 15 13 -22 8 13 -22 11 13 -22 8 13 -22 11 13 -22 11 13 -22 0 0 2	-21 0 14 -21 0 14	2 0 0 1 1 1 1 1 1 1 1 1 1 -1 -1 1 1 1 1 1	1 0 0	CARD E7A CARD F1B

```
13
                               19
                                                                      CARD F3B
6
    6
       13
                3
                    0
                        7
                            0
                                19
                                                                      CARD F3B
    6
        9
            9
                                                                      CARD F3B
                               19
    7
        10
            10
                               19
                                                                      CARD F3B
    7
        11
           11
                                                                      CARD F3B
                               19
                                                                      CARD F3B
                3
                     0
10
   10
                     0
                         7
                               19
                                                                      CARD F3B
            8
                3
11
   11
         8
                             0
                                19
                                                                      CARD F3B
13
   13
        15
            15
                     0
                                                                      CARD F4A
                                         0
                                             0
                                                    0
    0
         0
             0
                 0
                     0
                         0
                            0
                                0
                                     0
                                                 0
                                                                      CARD F8A
                                                                      CARD F8B
   18
       18
                    -0.200000
                                        0
                                                                      CARD F8C
                0
                                0
                                     O
29
    0
        0
             0
                                                                         F8D1
    n
                0
                    0
                         0
                           0
                                0
                                      7.000000
                                                 -8.000000
                                                             -8.500000
16
        1
             1
             0.000000
                          0.000000
                                      2.400000
                                                 22.000000
                                                             -0.300000
                                                                         F8D2
 0.000000
                                                 -5.650000
                                                             -0.381000
                                                                         F8D1
                                      2.570000
             0
                0
                    0
                         0 0 33
1
    1
        0
             0.000000
                          0.000000
                                      0.000000
                                                 0.000000
                                                             0.000000
                                                                         F8D2
 0.000000
                          0 33
                                      3.689000
                                                 -3.594000
                                                             -1.249000
                                                                         F8D1
             0 0
                    0
1 1 0
                                                                         F8D2
              0.000000
                          0.000000
                                      0.000000
                                                 0.000000
                                                             0.000000
 0.000000
             0 0 0
                         0 0 33
                                      3.812415
                                                 -2.658020
                                                             -1.588378
                                                                         F8D1
1
   1 0
 0.000000
             0.000000
                          0.000000
                                      0.000000
                                                 0.000000
                                                             0.000000
                                                                         F8D2
                                      3.900000
                                                 0.000000
                                                             -2.335000
                                                                         F8D1
1 1 0
             0 0 0
                         0 0 0
              0.000000
                          0.000000
                                      0.000000
                                                 1.000000
                                                             0.000000
                                                                         F8D2
 0.000000
1 1 0
             0 0 0
                           0 33
                                      3.812415
                                                 2.658020
                                                            -1.588378
                                                                         F8D1
              0.000000
                          0.000000
                                                  0.000000
                                                             0.000000
                                                                         F8D2
                                      0.000000
 0.000000
   1 0
             0 0 0
                         0
                           0 33
                                      3.698000
                                                  3.594000
                                                             -1.249000
                                                                         F8D1
                          0.000000
                                                  0.000000
                                                             0.000000
                                                                         F8D2
 0.000000
              0.000000
                                      0.000000
             0 0 0
                         0 0 33
                                      2.570000
                                                  5.650000
                                                             -0.381000
                                                                         F8D1
   1 0
 0.000000
             0.000000
                          0.000000
                                      0.000000
                                                  0.000000
                                                             0.000000
                                                                         F8D2
                         0 0 0
                                      7.000000
                                                 8.000000
                                                            -8.500000
                                                                         F8D1
             1 0
                    0
16
  0
              0.000000
 0.000000
                          0.000000
                                      2.400000
                                                 22.000000
                                                             -0.300000
                                                                         F8D2
   0 0
            0 0 -0.100000 0
                                                                     CARD F8C
                                     0 0
31
                0
                                                            -32.000000
                         0 0 0
                                     -1.500000
                                                  0.000140
                                                                         F8D1
                    0
16
    0
              0.00000
                          0.000000
                                      0.500000
                                                  0.000000
                                                             0.500000
                                                                         F8D2
 0.000000
                          0 34
                                     -0.592107
                                                 -3.229789
                                                             -6.406097
                                                                         F8D1
3 3 0
             0 0 0
                          0.000000
                                                 0.000000
                                                             0.000000
                                                                         F8D2
                                      0.000000
              0.000000
 0.000000
             0 0 0
                         0 0 34
                                      0.197222
                                                 -3.220030
                                                             -6.313524
                                                                          F8D1
   3 0
                                                             0.000000
              0.000000
                          0.000000
                                      0.000000
                                                  0.000000
                                                                         F8D2
 0.000000
                                                             -6.200000
                                                                         F8D1
                         0 0 34
                                      1.000000
                                                 -3.210000
 3
   3 0
             0 0 0
              0.000000
                          0.000000
                                      0.000000
                                                 0.000000
                                                             0.000000
                                                                         F8D2
 0.00000
                                                             -5.903608
                                                                         F8D1
                                                 -3.200000
             0 0 0
                         0
                          0 34
                                      1.729085
   3 0
              0.00000
 0.000000
                          0.000000
                                      0.000000
                                                 0.000000
                                                             0.000000
                                                                         F8D2
                         0 0 34
                                      2.829251
                                                 -3.125510
                                                             -5.483449
                                                                         F8D1
 3 3 0
             0 0 0
              0.000000
                          0.000000
                                      0.000000
                                                 0.000000
                                                             0.000000
                                                                         F8D2
 0.000000
             0 0 0
                         0 0 34
                                      3.455790
                                                 -3.042912
                                                             -4.528134
                                                                          F8D1
 3 3 0
                          0.000000
                                                 0.000000
                                                             0.000000
                                                                         F8D2
 0.000000
              0.000000
                                      0.000000
                                      3.947432
                                                 -2.836730
                                                             -3.472554
                                                                          F8D1
                           0 34
   3 0
             0 0 0
                         0
              0.000000
                          0.000000
                                      0.000000
                                                  0.000000
                                                              0.000000
                                                                          F8D2
 0.000000
                                                             -2.675975
                                                                         F8D1
                         0 0 34
                                      4.343934
                                                 -2.664911
   3 0
             0
               0 0
              0.000000
                                                                          F8D2
 0.000000
                          0.000000
                                      0.000000
                                                  0.000000
                                                             0.000000
                                                                          F8D1
 3
   3 0
             0 0 0
                          0 34
                                      4.623846
                                                 -2.493092
                                                             -1.803066
              0.000000
                                      0.000000
                                                 0.000000
                                                             0.000000
                                                                          F8D2
                          0.000000
  0.000000
 3 3 0
             0 0 0
                         0 0 34
                                      4.721993
                                                 -2.286909
                                                             -0.962208
                                                                          F8D1
                          0.000000
                                                  0.000000
                                                             0.000000
                                                                          F8D2
  0.000000
              0.000000
                                      0.000000
                         0 0 34
                                      4.705504
                                                 -2.149454
                                                             -0.480676
                                                                          F8D1
             0 0 0
 3 3 0
                          0.000000
                                      0.000000
                                                  0.000000
                                                              0.000000
                                                                          F8D2
  0.000000
              0.000000
                                      4.706552
                                                 -1.875891
                                                              0.730580
                                                                          F8D1
             0 0 0
                           0 34
 3 3 0
              0.000000
                                                                          F8D2
                          0.000000
                                      0.000000
                                                  0.000000
                                                              0.000000
  0.000000
                            0 34
                                      4.597802
                                                 -1.756925
                                                              1.387208
                                                                          F8D1
   3 0
             0 0
                   0
                                                              0.000000
                          0.000000
                                      0.000000
                                                  0.000000
                                                                          F8D2
  0.000000
              0.000000
                         0 0 34
                                      4.127623
                                                 -0.451147
                                                             -0.532688
                                                                          F8D1
             0 0 0
   2
         O
              0.000000
                          0.000000
                                      0.000000
                                                 0.000000
                                                              0.000000
                                                                          F8D2
  0.000000
                         0 0 34
                                                              0.203587
                                                                          F8D1
             0 0 0
                                      4.297456
                                                 -0.332015
   2
         0
  0.000000
              0.000000
                          0.000000
                                      0.000000
                                                 0.000000
                                                              0.000000
                                                                          F8D2
                                                                          F8D1
                0 0
                         0 0 34
                                      4.098295
                                                 -0.213856
                                                              0.861432
```

```
0.000000
                                                0.000000
                                                            0.000000
                                                                        F8D2
             0.000000
                                     0.000000
  0.000000
                                     3.900000
                                                0.000000
                                                           -2.335000
                                                                        F8D1
            1 0 0
                        0 0 0
 1 1 1
                                                           -2.000000
             0.000000
                         0.000000
                                     0.000000
                                                1.000000
                                                                        F8D2
  0.000000
            \begin{smallmatrix} 0 & 0 & -0.100000 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{smallmatrix}
                                                                    CARD F8C
   0
                                    0 0
31
        0
                                    -1.500000
                                                0.000140
                                                          -32.000000
                                                                        F8D1
16
        1
                                                0.000000
                         0.000000
                                                           0.500000
                                                                        F8D2
  0.000000
             0.000000
                                    0.500000
            0 0 0
                        0 0 34
                                    -0.592107
                                                3.229789
                                                           -6.406097
                                                                        F8D1
3
   3 0
                        0.000000
                                     0.000000
                                                0.000000
                                                           0.000000
                                                                        F8D2
 0.000000
             0.000000
                        0 0 34
                                                           -6.313524
                                                                        F8D1
 3 3 0
            0 0 0
                                     0.197222
                                                3.220030
             0.000000
                        0.000000
                                                           0.000000
  0.00000
                                     0.000000
                                                0.000000
                                                                        F8D2
                                                           -6.200000
 3 3 0
            0 0 0
                        0 0 34
                                     1.000000
                                                3.210000
                                                                        F8D1
                         0.000000
                                                0.000000
                                                           0.000000
                                                                        F8D2
                                     0.000000
             0.000000
  0.000000
            0 0 0
                        0 0 34
                                     1.729085
                                                3.200000
                                                           -5.903608
                                                                        F8D1
 3 3 0
             0.000000
                         0.000000
                                     0.000000
                                                0.000000
                                                            0.000000
                                                                        F8D2
 0.000000
                        0 0 34
                                                3.125510
                                                           -5.483449
                                                                        F8D1
                                     2.829251
   3 0
            0 0 0
                                                           0.000000
             0.000000
                        0.000000
                                     0.000000
                                                0.000000
 0.000000
                        0 0 34
                                     3.455790
                                                3.042912
                                                           -4.528134
                                                                        F8D1
            0 0 0
3 3 0
                         0.000000
                                                0.000000
                                                           0.000000
                                                                        F8D2
             0.000000
                                     0.000000
 0.000000
            0 0 0
                        0 0 34
                                                           -3.472554
                                     3.947432
                                                2.836730
                                                                        F8D1
3 3 0
 0.000000
                         0.000000
                                     0.000000
                                                0.000000
                                                            0.000000
                                                                        F8D2
             0.000000
                        0 0 34
                                                2.664911
                                                           -2.675975
                                                                        FRD1
3 3 0
            0 0 0
                                     4.343934
                         0.000000
                                                0.000000
                                                            0.000000
                                                                        F8D
             0.000000
                                     0.000000
  0.000000
            0 0 0
                        0 0 34
                                     4.623846
                                                2.493092
                                                           -1.803066
                                                                        F8D1
3 3 0
                                                                        F8D2
                                                0.000000
                                                           0.000000
 0.000000
             0.000000
                         0.000000
                                     0.000000
                                     4.721993
                                                2.286909
                                                           -0.962208
                                                                        F8D1
            0 0 0
                        0 0 34
 3 3 0
                         0.000000
                                                            0.000000
                                                                        F8D2
  0.000000
             0.000000
                                     0.000000
                                                0.000000
                                     4.705504
                                                2.149454
                                                           -0.480676
                                                                        F8D1
3 3 0
            0 0 0
                        0 0 34
                                                           0.000000
                         0.000000
                                     0.000000
                                                0.000000
                                                                        F8D2
 0.000000
             0.000000
                                                1.875891
                                                            0.730580
                                                                        F8D1
                        0 0 34
                                     4.706552
            0 0 0
3
   3 0
             0.000000
                         0.000000
                                     0.000000
                                                0.000000
                                                            0.000000
                                                                        F8D2
 0.000000
                                     4.597802
                                                1.756925
                                                            1.387208
                                                                        F8D1
            0 0 0
                        0 0 34
3 3 0
 0.000000
                        0.000000
                                     0.000000
                                                0.000000
                                                            0.000000
                                                                        F8D2
             0.000000
                                                           -0.532688
                                                                        F8D1
                        0 0 34
                                                0.451147
2 2 0
            0 0 0
                                     4.127623
                                                            0.000000
                                                                        F8D2
             0.000000
                        0.000000
                                     0.000000
                                                0.000000
 0.000000
                        0 0 34
                                                            0.203587
                                                                        F8D1
2 2 0
            0 0 0
                                     4.297456
                                                0.332015
                         0.000000
                                                0.000000
                                                            0.000000
                                                                        F8D2
                                     0.000000
             0.000000
  0.000000
                                     4.098295
                                                0.213856
                                                            0.861432
                                                                        F8D1
            0 0 0
                        0 0 34
   2 0
                         0.000000
                                    0.000000
                                                0.000000
                                                            0.000000
                                                                        F8D2
 0.000000
             0.000000
                                    3.900000
                                                0.000000
                                                           -2.335000
                                                                        F8D1
                        0 0 0
   1 1
            1 0 0
                                                           -2.000000
             0.000000
                         0.000000
                                    0.000000
                                                1.000000
                                                                        F8D2
 0.00000
                                    0 0
                                                                    CARD F8C
            0 0 -0.100000 0
31 0 0
            1 0 0
                        0 0
                                               -0.000137
                                                           -2.716074
                               0
                                   18.966637
                                                                        F8D1
  n
       1
                                                            1.000000 .
                                                                        FSD2
                         0.000000
                                    -1.000000
                                                0.000000
 0.000000
             0.000000
                        0 0 33
                                                0.000000
                                                            0.868376
                                    4.478610
1 1 0
            0 0 0
                                                            0.000000
             0.000000
                        0.000000
                                     0.000000
                                                0.000000
                                                                        F8D2
 0.000000
                                               -0.000026
                                                           -0.831519
                                                                        F8D1
                                     4.497387
1 1 0
            0 0 0
                        0 0 33
             0.000000
                                                0.000000
                                                            0.000000
                                                                        F8D2
                        0.000000
                                     0.000000
 0.000000
                                                                        FSD1
                                                0.000000
                                                           -2.335000
1 1 1
            1 0 0
                        0 0 0
                                     3.900000
                        0.000000
                                                            1.000000
                                     0.000000
                                                0.000000
                                                                        F8D2
             0.000000
  0.000000
                                                                    CARD G1A
    0.0
              0.0
                        0.0 0 0
                                      0 0 0
13.88821.000010414 -15.12504 0.000000 0.000000
                                                0.000000
                                                                    CARD G2
0.000000 13.00000 0.000000
                            0.000000
                                      0.000000
                                                0.000000
                                                                   OCARD G3A
                                                                1 OCARD G3A
0.000000
         12.00000 0.000000
                             0.000000 0.000000
                                                0.000000
                                                          3
         10.00000 0.000000 0.000000
                                                0.000000
                                                                   OCARD G3A
                                      0.000000
0.000000
                                                                   OCARD G3A
                                                0.000000
                                                                1
         5.000000 0.000000 0.000000
                                      0.000000
0.000000
                                                0.000000
                                                          3
                                                             2
                                                                1
                                                                   OCARD G3A
         3.000000 0.000000 0.000000 0.000000
0.000000
                                      0.000000
                                                0.000000
                                                                   OCARD G3A
         91.24997 0.000000 0.000000
                                                          3
                                                             2
                                                                1
4.000000
                                                                   OCARD G3A
                                                0.000000
                                                          3
                                                             2
                                                                1
         53.40000 0.000000
                             0.000000
                                      0.000000
0.000000
                                                                   OCARD G3A
                   0.000000
                             0.000000
                                      0.000000
                                                0.000000
                                                          3
                                                             2
0.000000
         128.8000
                                                0.000000
                                                                   OCARD G3A
                             0.000000
                                      0.000000
356.0000
         91.25000
                   0.000000
                   0.000000
                                      0.000000
                                                0.000000
                                                          3
                                                             2
                                                                1
                                                                   OCARD G3A
         53.40000
                             0.000000
0.000000
                                                          3
                                                                   OCARD G3A
                                                0.000000
                                                             2
                                                                1
         128.8000
                                      0.000000
0.000000
                   0.000000
                             0.000000
         12.00000 0.000000
                             0.000000
                                      0.000000
                                                0.000000
                                                          3
                                                             2
                                                                1
                                                                   OCARD G3A
0.000000
                                      0.000000 0.000000 3 2 1 12CARD G3A
         70.00000 0.000000
                             0.000000
0.000000
```

```
0.000000 12.00000 0.000000 0.000000 0.000000 3 2 1 0CARD G3A 0.000000 70.00000 0.000000 0.000000 0.000000 3 2 1 14CARD G3A
   2 0 -5
            6.200000
                         0.000000
                                     3.218000 0
                                                                         CARD H1A
                                                                         CARD H1B
      0 -3
              4.738000
                           0.000000
                                       0.000000
                                       3.218000
      0 5
             6.200000
                          0.000000
                                                                         CARD H2A
      0 3
              4.738000
                           0.000000
                                       0.000000
                                                                         CARD H2B
                          0.000000
                                       3.218000 0
                                                                         CARD H3A
      0 5
              6.200000
              4.738000
                           0.000000
                                       0.000000
                                                                         CARD H3B
      0 3
   2
      3 12 12 13 0
                                                                         CARD H4
                                                                         CARD H5
      3 12 12 13
                  0
   2
      3 12 12 13
                                                                        CARD H6
                  0
                              0 7 0 10 0 11 0 13 0 12 0 14 0
  14
      0 5 0 8
                 0
                    6
                       0
                                                                       1CARD H7
                        0
                                                                        CARD H7
      0
         2
            0
               3
                  0
                      4
                                                                         CARD H8
   0
      1 6 6 7 3 12 12 13 0
                                                                         CARD H9
   4
                                                                        CARD H10
   0
                                                                         CARD H12
 0
    0
```

Portion of Example.aou File

Example.aou is the primary output file (Unit 6) of the sled test simulation. Because of its large size, only a portion of the file (results up to 10 msec) is presented here. The first part of the file contains the input data with all the variables clearly labeled. The second part of the file contains the simulation results at predetermined time intervals.

DEVELOPED BY CALSPAN CORP., P.O. BOX 400, BUFFALO NY 14225 AND BY J&J TECHNOLOGIES INC., ORCHARD PARK, NY 14127

FOR THE ARMSTRONG AEROSPACE MEDICAL RESEARCH LABORATORY WRIGHT PATTERSON AIR FORCE BASE UNDER CONTRACTS F33615-75C-5002,-78C-0516 AND -80C-05117

AND FOR THE NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, U.S. DEPARTMENT OF TRANSPORTATION, UNDER CONTRACTS FH-11-7592, HS-053-2-485, HS-6-01300 AND HS-6-01410,

MODIFIED BY GESAC, INC. TO INCORPORATE WATER FORCES,

AND FINITE ELEMENT MODEL OF DEFORMABLE SEGMENT

PROGRAM DOCUMENTATION: NHTSA REPORT NOS. DOT-HS-801-507 THROUGH 510 (FORMERLY CALSPAN REPORT NO. ZQ-5180-L-1), AVAILABLE FROM NTIS (ACCESSION NOS. PB-241692,3,4 AND 5), APPENDIXES A-J TO THE ABOVE (AVAILABLE FROM CALSPAN), AND REPORT NOS. AMRL-TR-75-14 (NTIS NO. AD-A014 816), AFAMRL-TR-80-14 (NTIS NO. AD-A088 029), AND AFAMRL-TR-83-073 (NTIS NO. AD-B079 184).

THE MOST RECENT DOCUMENTATION IS IN REPORT NOS.
AAMRL-TR-88-007 (NTIS NO. AD-A197 940),
AAMRL-TR-88-009 (NTIS NO. AD-A198 726),
AAMRL-TR-88-043 (NTIS NO. AD-A203 566).

PROGRAM ATBV.1, (LATEST REVISION 08/01/97)

EXECUTED ON THE DEC 5000/200PXG WORKSTATION AT AL/CFBV, WRIGHT-PATTERSON AFB, OHIO.

21 FEB 1997 IRSIN= 0 IRSOUT= 0 RSTIME = 0.0000

SIMULATION OF THE HUMAN VOLUNTEER SLED TEST USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS

CARD A2 CARD A2

CARDS A

				GE 2	B.1	В.2	(DEG)	ROLL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-6.10	0.00	0.00	6.10	00.0	0.00	0.00	0.00
386.0880				PAGE	CARD B.1	CARDS B.2	PRINCIPAL AXES	PITCH	00.00	0.00	14.40	0.00	36.00	0.00	0.00	8.40	0.00	0.00	8.40	0.00	0.00	00.0	00.00
G = 386		35 36	0 1				PRINCI	XAW	0.00	00.0	00.0	0.00	00.0	00.0	0.00	-4.00	0.00	0.00	4.00	00.0	0.00	0.00	00.0
6.0880)	HMIN =0.000063	32 33 34	0 0 0				<u>:</u>	2	0.837	0.095	-0.108	1.171	000.0	0.509	0.872	0.000	0.509	0.872	0.000	-0.549	1.151	-0.549	1.151
0.0000, 386.0880)	HMIN	9 30 31	0 0 0			OID	CENTER (IN.)	×	0.000	0.000	000.0	000.0	000.0	-0.321	-1.110	-0.627	0.321	1.110	0.627	-0.223	0.611	0.223	-0.611
0.0000, 0.	HMAX =0.001000	6 27 28 2	1 0 0			SEGMENT CONTACT ELLIPSOID	CEN	×	-0.462	-1.430	0.000	-0.475	-1.115	0.000	0.919	-0.023	000.0	0.919	-0.023	000.0	000.0	0.000	0.000
0.0	HMAX =0	3 24 25 2	- 0 0 0			ENT CONTA	N.)	2	4.253	3.303	7.097	4.370	5.661	11.623	10.188	5.287	11.623	10.188	5.287	6.535	9.195	6.535	9.195
GRAVITY VECTOR = (00200	21 22 2	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0			SEGM	SEMIAXES (IN.	>	6.850	5.971	6.358	2.376	3.061	3.001	2.297	1.909	3.001	2.297	1.909	1.939	1.742	1.939	1.742
GRAVITY	но =0.000500	18 19 20	0 1 0	14 JOINTS			SEMI	×	4.617	4.291	4.738	2.376	3.901	3.001	2.297	1.383	3.001	2.297	1.383	1.939	1.742	1.939	1.742
UNITT = SEC.	DT =0.002000	4 15 16 17	0 0 0	15 SEGMENTS		TE OF INERTIA	IN.)	23	0.9773	0.2009	2.5242	0.0216	0.1328	0.0144	0.0569	0.0069	0.0144	0.0569	0.0069	0.0216	0.0144	0.0216	0.0144
UNITH	DT ==0	12	0			MOMENTS O	(LBSEC.**2- IN.)	×	0.7740	0.0737	2.9962	0.0175	0.2049	0.2555	0.5001	0.0364	0.2555	0.5001	0.0364	0.1131	0.2555	0.1131	0.2555
UNITM = LB.	NSTEPS = 150	8 9 10 11	0 0 0	MALE HUMAN 167 LB		PRINCIPAL MOMEN	(LB	×	0.8459	0.1336	4.0773	0.0145	0.1797	0.2568	0.4927	0.0384	0.2568	0.4927	0.0384	0.1068	0.2568	0.1068	0.2568
	NSTEI	5 6 7	0	MALE HI		-	WEIGHT	(LB.)	23.597	4.872	50.591	2.179	9.236	20.313	8.008	2.010	20.313	8.008	2.010	4.018	3.914	4.018	3.914
IN.	4		0	MI,				F.															
UNITL =	NDINT =	2 3	ស	ASH VICTIM			EGMENT	SYM PLOT	-	7	۳	4	S									JA E	
S	ON F	-	2	WASH			SEGM	SY	H	ຽ	U	Z	Ħ	RU	R	RF	13	1	ጟ	R	R	LUA	H

NDINT = 0 NPRT ARRAY

SEGMENT I SYM PLOT

TNIOP			LOCATION(IN.) -	IN.) -	SEG (JNT)	LOCATION(IN.) - SEG(J+1)	IN.) -	SEG(J+1)	Š	INT AXIS	JOINT AXIS(DEG) - SEG(JNT)	SEG (JNT)		OINT AXIS	CARDS B.3 JOINT AXIS(DEG) - SEG(J+1	B.3 G(J+1)
J SYM PLOT	TNL	PIN	×	*		×	×	13	ID1	YAW ID2	YAW ID2 PITCH II	ID3 ROLL	Η	YAW ID5	IDS PITCH ID6 ROLL	ROLL
1 P	∺	0	-1.400	0.000	-2.230	-2.340	0.000	2.210	٣	0.00 2	0.00 1	0.00	٣	0.00 2	5.00 1	0.00
2 W	7	0	-1.680	000.0	-0.830	-0.270	000.0	6.990	٣	0.00 2	0.00	0.00	٣	0.00 2	5.00 1	0.00
3 NP	m	0	-0.220	0.00	-7.210	-0.880	000.0	1.490	٣	0.00 2	0.00	0.00	٣	0.00 2	10.00	00.0
4 HP	4	0	0.980	000.0	-2.500	-0.820	000.0	1.960	٣	0.00 2	0.00	0.00	٣	0.00 2	10.00	00.0
5 RH	⊣	0	-0.540	2.110	1.480	-0.410	-1.920	-7.500	т	14.00 2	48.00 1	0.00	m,	0.00 2	0.00	-7.00
6 RK	9	1	-0.240	0.360	9.700	0.630	-0.550	-6.890	ო	0.00 2	-66.00 1	0.00	٣	0.00 2	0.00	00.0
7 RA	7	0	0.390	-0.750	9.670	1.360	-0.310	-2.740	3	0.00	65.00 1	0.00	٣	0.00 2	0.00 1	00.0
8 LH	Н	0	-0.540	-2.110	1.480	-0.410	1.920	-7.500	ო	-14.00 2	48.00 1	0.00	М	0.00 2	0.00	7.00
9 LK	6	ᆏ	-0.240	-0.360	9.700	0.630	0.550	-6.890	က	~	-66.00 1	0.00	က	0.00 2	0.00	0.00
10 LA	10	0	0.390	0.750	9.670	1.360	0.310	-2.740	٣	0.00 2	65.00 1	0.00	m	0.00 2	0.00	00.0
11 RS	m	0	-0.930	6.520	-4.240	0.510	-0.220	-5.150	ო	59.29 2	79.08 1	0.00	က	0.00 2	0.00	00.0
12 RE	12	7	-0.650	-0.390	5.020	-0.500	0.310	-7.080	т	-15.002	65.00 1	0.00	'n	-15.002	0.00	00.0
13 LS	3	0	-0.930	-6.520	-4.240	0.510	0.220	-5.150	<u>ب</u>	-59.29 2	79.08 1	0.00	٣	0.00 2	0.00 1	00.0
14 LE	14	~	-0.650	0.390	5.020	-0.500	-0.310	-7.080	٣	15.00 2	65.00 1	0.00	m	15.00 2	0.00 1	00.0
1 JOINT TORQUE CHARA	ROE CH	ΰ	PERISTICS												PAGE	Е 3
															CARDS B.4	B.4
					1 1 1 1 1 1 1 1 1 1	1					1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1			

£ ~	00000000000	в.5	IMPULSE RESTITUTION COEFFICIENT	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
JOINT ON STOP (DEG)	5.000 35.000 35.000 10.000 0.000 0.000 4.000 4.000 25.000 0.000	CARDS B.5	IMP RESTI COEFF	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 PAGE CARDS B.6 ATIONS *2) REL.
ENERGY DISSIPATION COEF.	0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700		ANG. VELOCITY JNLOCKED JOINT (RAD/SEC.)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.01 / SEC.**2) REL REST. RERO REST. RERO 100 0.00 100 0.00 100 0.00 100 0.00 100 0.00
/DEG**J) CUBIC (J=3)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		MIN. ANG. VELOCITY FOR UNLOCKED JOINT (RAD/SEC.)	LINEZ KARG.
SPRING COEF. (IN. LB./DEG**J) LINEAR QUADRATIC CUBIC (J=1) (J=2) (J=3)	10.000 10.000 10.000 0.200 0.000 0.000 0.056 0.056 0.075 0.000	IDITIONS	MIN TORQUE FOR UNLOCKED JOINT (IN. LB.)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
PRING COEF. LINEAR QU (J=1)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	JNLOCK CON	MIN TOF UNLOCKE	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TEST REL REL TEST ERRO TEST ERRO
SPR] LIN (J:		AND LOCK-	MAX TORQUE FOR A LOCKED JOINT (IN. LB.)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
JOINT N STOP (DEG)	20.000 20.000 35.000 0.000 0.000 0.000 0.000 0.000 0.000	ERISTICS	MAX TO A LOC (II	PUT TIES) REL. ERROR
ENERGY DISSIPATION COEF.	0.700 0.700 0.700 0.000 0.000 0.000 0.000 0.000	JOINT VISCOUS CHARACTERISTICS AND LOCK-UNLOCK CONDITIONS	FULL FRICTION ANGULAR VELOCITY (DEG/SEC.)	30.00 30.00
EG**J) CUBIC (J=3)	000000000000000000000000000000000000000	OINT VISC		CONVER MA TE
SPRING COEF. (IN. LB./DEG**J) LINEAR QUADRATIC CUBIC (J=1) (J=2) (J=3)	10.000 10.000 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	5	COULOMB FRICTION COEF (IN. LB.)	0 0.00 0 0 0 0.00 0 0 0 0
IG COEF.	0.000 0.000 0.000 1.000 12.000 15.000 15.000 15.000 15.000 15.000 15.000			.500 0.0 .500 0.0 .600 0.0 .300 0.0
SPRING LINEAR (J=1)	0.000 0.000 0.000 0.000 1.12.000 1.13.000 1.1000 1.1000 1.000 1.000 1.000 1.000 1.000		VISCOUS COEFFICIENT (IN. LB.SEC./DEG)	0.500 0.500 0.600 0.300 0.300 0.300 0.300 0.300 0.400 0.300 0.300 0.400 0.300 0.300 0.300 0.300
JOINT	P N N N N N N N N N N N N N N N N N N N		JOINT (1 P W W W W W W W W W W W W W W W W W W
	1 2 2 2 2 2 3 2 2 3 2 3 2 4 3 2 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		61	11111111111111111111111111111111111111

	ស	MSEG 0																					
000000000000000000000000000000000000000	PAGE CARDS C	ADT I1 I3																					
000000000000000000000000000000000000000	•	ATO F																					
		NATAB 57 0.																			,		
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000))) 1	x0(z) 0.000	POSITION (IN.)	-24.92547	-26.35169 -27.78412	-29.21935	-30.65767	-32.09907															
0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	CARD C1	x0(x) 0.000	VELOCITY IN./SEC.)	-355.3802	-357.5293 -358.4846	-359.1627	-360.0295	-360.7917															
0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	CAR	x0(x) 0.000	ACC VE (G) (IN		0.99 -35 0.26 -35		0.51 -36																
								00															
		VTIME 0.000	TIME (MSEC)	200.00000	204.00000	212.00000	216.00000	224.00000															
		VIPS 0.000 ES	POSITION (IN.)	0.00000	-0.00023	-0.00178	-0.00279	-0.00511	-0.00672	-0.01021	-0.01202	-0.01539	-0.01870	-0.02193	-0.02630	-0.05331	-0.08543	-0.13489	-0.20705	-0.30784	-0.44343	-0.84216	1
0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100		ROLL 0.000 TION TABL	VELOCITY IN./SEC.)	0.0000	-0.1143 -0.2099	-0.2370	-0.2641 -0.2791	-0.3665	-0.4259	-0.4462	-0.4608	-0.5227	-0.6919	-0.9508	-1.4336	-5.1165	-10.0075	-14.9639	-21.3567	-29.2945	-30.7010 -49.6095	-61.8374	
0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010		CH 00 1.E POSI	VEL (IN.	0 (7 0	9 '	ף ק	9	9 9	9	9 (1 1	0	0		יו ו	-10	-14	-23	2.2	24.	-61	
0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	ELERATION	PITCH 0.000 NAL VEHICLE	ACC (G)	0.03	0.10	0.03	0.00	0.10	0.00	0.0	0.03	0.03	0.12	0.22	0.55	2.22	2.75	3.67	4.61	5.65	7.46	8.38	
2 CT 3 UT 4 N 5 H 6 RUL 7 RIL 8 RF 9 LUL 10 LIL 11 LF 11 RUA 13 RLA 14 LUA	VEH	YAW PITCH ROLL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	TIME (MSEC)	0.00000	8.00000	12.00000	16.00000	24.00000	28.00000	36.00000	40.00000	44.00000	52.00000	56.00000	60.00000	68.00000	72.00000	76.00000	80.00000	84.00000	92.00000	96.00000	1 1 1 1 1 1 1 1

딍	
Ă	

THE GROUND (INERTIAL) SEGMENT IS REPRESENTED HERE BY A 0.

THE COORD CATEGORY REFERS TO THE COORDINATE SYSTEM IN WHICH THE VEHICLE DATA ARE SPECIFIED.

A NEGATIVE VALUE FOR COORD INDICATES THAT THE DATA REPRESENT ACCELEROMETER DATA.

-22.11097 -23.51034

-341.9751 -347.5005 -351.9999

188.00000 192.00000

196.00000

-328.0830

5.14 4.47

176.00000 180.00000 184.00000

172:00000

168.00000

-2.78033 -3.34053 -3.95756 -4.63108

-132.9259 -147.1435 -103.9962 -118.5217

112.00000 116.00000 120.00000

108.00000

-5.36024 -6.14383 -6.98092 -7.87123 -8.81446

-175.3925-202.6092 -229.2166 -255.1274-267.4176

9.40 9.42 9.25 9.25 9.18 8.98 8.82 8.62 8.62 8.57

124.00000 128.00000 132.00000 136.00000

-161.3426 -189.1407-215.9316-242.3399

-1.83235 -2.27738 -10.85478

-11.94810 -13.08718 -14.26951-16.75304 -18.04889-19.37641-20.73171

-290.2850

7.41 7.00 6.57

160.00000

-279.1482

-300.7690 -310.5503 -319.6789-335.5171

-15.49236

-9.80950

8.40 8.14 7.78

148.00000 152.00000

156.00000

144.00000

140.00000

NQ NSD NHRNSS NWINDF NJNTFOLD NFORCE 0 0 1 0 0 0 -10.0000 -10.0000 -10.0000 -10.0000	
D NHRNSS NWINDE	
D NHRNSS	
00	
NSD 0 0 .0000 .8900 .0000	
0-10 - 60	-48.9700
GROUND 0 0 0 0 111 - 116	•
VEHICLE PATH TO GROUND GRND NBAG NELP NQ 0 0 0 SEAT CUSHION Y 0000 8.0000 -10 0100 8.0000 -10 SEAT BACK Y 0000 -8.0000 -10 SEAT BACK Y 0000 9.0000 -10	-9.0000
VEHICLE GRND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0000
2 H	r•
VEH COORD VEH GRND 16 0 1 12 12 0 PLANE INPUTS 0 PLANE NO. PLANE NO. POINT 1 POINT 2 POINT 3 0 PLANE NO.	INT 3
0 10 0 10 10 10 10 10 10 10 10 10 10 10	Ŏ

FLOOR

PLANE NO.

0

CARD D.1a CARDS D.2 PAGE

NEXTCD 0

NWATER 0

9

63

VEHICLE PATHS TO GROUND

z -1.3000 -1.3000 -1.3000	z -45.9936 -35.2836 -45.9936	Z -11.8900 -4.4000 -11.8900 DEGR	Z -48.9700 -10.0000 -48.9700	Z -25.0000 -25.0000 -0.7500	N. Z -6.6600 -14.7300 -6.6400	z -6.6600 -6.6400 -14.7300	z -1.4235 -3.5621 -1.4235
Y 12.0000 12.0000 -12.0000 PAD	Y 7.4998 7.4998 -7.5002 FRONT PANEL.	Y 8.0000 8.0000 -8.0000 PANEL2. 13 DI	Y 9.0000 9.0000 -9.0000	Y 12.0000 -12.0000 12.0000	r SIDE 8 8	Y -8.1000 -8.1000 -8.1000 ER PEDALS.	Y 8.9999 8.9999 -9.0001 SIDE PANEL.
x 0.0000 60.0000 0.0000	X 2.8917 5.3717 2.8917 5 SEAT	X 28.0100 26.6600 28.0100 6 BACK	X 1.0000 10.0000 1.0000 7 FIREWALL	X 60.0000 60.0000 60.0000	X 8.4 8.7	X 8.4100 30.5800 8.7000 10 RUDDER	X 44.9912 48.2719 44.9912 11 LEFT
1 2 3 NO.	1 2 3 NO.	1 2 3 NO.	1 2 3 NO.	1 2 3 INPUTS	NO.	NO.	1 2 3 NO.
POINT POINT POINT PLANE	POINT POINT POINT PLANE	POINT POINT POINT PLANE	POINT POINT POINT PLANE	POINT POINT POINT PLANE	PLANE POINT POINT	PLANE POINT POINT POINT POINT	POINT POINT POINT PLANE
0	0	0	0	Н	0	0 0	0
				64			

		15 0	3) = 1	D4 1.0000			7) = 19	D4 0.0000		(3) = 24	D4 1.0000	
		11 12 13 14 0 0 0 0) ITN	D3 0.0000	TS		NTI(7)	D3 0.0000		NTI (13)	D3 0.0000	T.S.
-48.9700 -6.1000 -46.9500	Z -48.9700 -46.9500 -6.1000	7 8 9 10 0 0 0 0	IT FCN.	D2 0.0000	6 TABULAR POINTS			D2 0.7000	0.700000	70	D2 0.0000	8 TABULAR POINTS
000 -9.0000 000 -9.0000 700 -9.0000 RIGHT SIDE PANEL.	Y 000 9.0000 700 9.0000 9.0000 2TRY INPUT	3 4 5 6 0 0 0	SEGMENT-SEGMENT FCN.	D1 -5.0000	FUNCTION -	F(D) 0.0000 470.0000 889.9999 1220.0000 1470.0000	R FACTOR.	D1 0.0000	CONSTANT 0.70	STIFF SURFACES	D1 -4.0000	FUNCTION -
POINT 1 1.0000 POINT 2 10.9000 POINT 3 -7.7700	X 1.0000 POINT 2 -7.7700 POINT 3 10.9000 BODY SEGMENT SYMMETRY	SEG NO. 1 2 NSYM(J) 0 0	FUNCTION NO. 3	D0 0.0000	FIRST PART OF FUNCTION	D.000000 1.000000 2.000000 3.000000 4.000000 5.000000	FUNCTION NO. 7	00000	FUNCTION IS	FUNCTION NO. 13	DO 0.0000	FIRST PART OF FUNCTION

PAGE CARDS E

CARD D.7

PAGE 10 CARDS E

CARDS E

CARDS E		೧೯ ಕನ್ನಡ	CARDS E				CARDS E				PAGE 1. CARDS E
										A5 0.00000	
NTI(14) = 46	D4 2.0000		NTI(19) = 51	D4 0.0000			NTI (20) = 56	D4 1.0000		A4 0.000000	NTI(21) = 67
ITN	D3		NTI	D3 0.0000			LTN	D3 0.0000	MIAL	A3 0.000000	LTN
	D2 2.0000	00000	.25	D2 0.2500	0.250000		. C=100	D2 0.0000	H DEGREE POLYNO	A2 0.000000	ដ
FRICTION FUNC.	D1 0.0000	CONSTANT 2.00000	CF=.25, CREST=.25	D1 0.0000			DAMPING COEFF. C=100	D1 1.0000	FIRST PART OF FUNCTION - 5TH DEGREE POLYNOMIAL	A1 1000.000000	RATE OF DEFLEC.
FUNCTION NO. 14	D0 0.0000	FUNCTION IS CONSTANT	FUNCTION NO. 19	D0 0.0000	FUNCTION IS CONSTANT		FUNCTION NO. 20	0000000	FIRST PART C	A0 0.00000	1 FUNCTION NO. 21
				66							

F(D) 0.0000 5.0000 20.0000 40.0000 60.0000 560.0001 1200.0000

D 0.000000 0.100000 0.200000 0.300000 0.400000 1.000000 3.000000

				A5 0.00000	
D4 1.0000			NTI(22) = 115 D4 1.0000	A4 0.00000	NTI(29) = 126 D4 1.0000
D3 0.0000	STN		NA D3 0.0000	WOMIAL A3 0.00000	NT D3 0.0000
D2 0.0000	21 TABULAR POINTS		FF. C=35 D2 0.0000	5TH DEGREE POLYNOMIAL A2 0.000000 0	BELT. D2 0.0000
D1 -150.0000	OF FUNCTION -	F(D) 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.9650 0.9280 0.9280 0.4750 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600 0.2600	DAMPING COEFF. C=35 D1 1.0000 0	OF FUNCTION - : A1 35.00000	VERY STIFF BELT D1 -4.0000
D0 -40.0000	FIRST PART OF	20.00000 -30.00000 -20.00000 0.00000 0.00000 5.00000 30.00000 40.00000 50.00000 60.00000 70.00000 90.00000 110.00000 120.00000 110.00000 110.00000 110.00000 110.00000	FUNCTION NO. 22 DO 0.0000	FIRST PART A0 0.000000	1 FUNCTION NO. 29 DO 0.0000
		O1			

PAGE 13 CARDS E

CARDS E

POINTS
TABULAR
. 12
ı
UNCTION
14
OF F
[z,

F(D)	0.000	4000.0000	0000.0009	7500.0000	11640.0000	14700.0000	18210,0000	21600.0000	25320.0000	30000.0000	33720.0000	225000.0000
Ω	0.00000	0.250000	0.333330	0.416670	0.500000	0.583330	0.666700	0.750000	0.833330	0.916670	1.000000	4.000000

NTI(31) = 156FUNCTION NO. 31 HARNESS N-G STRAP

D1 10.0000

DO 0.0000

D3 0.0000 D2 0.0000

D4 0.0000

CARDS E

A3 0.000000

A2 0.000000

A0 A1 0.000000 2500.000000

A5 0.000000

A4 0.000000

14

PAGE CARDS E

NTI(33) = 167

D4 0.2000 D3 0.0000

FUNCTION IS CONSTANT 0.900000

HARNESS FRICTION FUNCTION NO. 34

<u>13</u>

DS

DI

20

D4

CARDS E

68

FIRST PART OF FUNCTION - 5TH DEGREE POLYNOMIAL

FUNCTION NO. 33 BELT FRICTION D0 0.0000

D1 0.0000

D2 0.9000

NTI(34) = 172

1.9900
0.000
1.9900
0000.0
0.000

NTI(1) = 177	REF. SEGMENT 0.0000
OINT	D3 0.0000
1.990000 RIGHT SHOULDER JOINT	D2 0.0000
	D1 0.0000
FUNCTION IS CONSTANT 1 JOINT FORCE FUNCTION NO.	D0 0.0000

PAGE 1 CARDS E.7

O FUNCTION IS COEFFICIENTS OF 3 ORDER POLYNOMIALS IN (THETA-THETAO) FOR 12 VALUES OF PHI.

N = 3	12.03720	11.67850	5.066480	10.21010	6.454900	-12.06520	-21.24050	-11.66900	-5.125761	-10.24110	-6.466969	NTI(2) = 232
COEFFICIENTS OF (THETA-THETAO)**N $N = 1$ $N = 2$	212.3940	217.7140	163.5090	176.1420	176.4290	121.3410	95.93260	119.9530	117.3500	75.28892	117.3850	SHOULDER JOINT
COEFFICIENTS OF N = 1	233.6540	356.2500	272.0920	258.4990	288.6960	225.0060	195.8620	204.1740	189.2130	188.2180	225.4650	2 LEFT
THETA0	60.071	82.409	91.211	89.271	89.621	84.040	80.093	77.246	80.603	99.293	84.870	JOINT FORCE FUNCTION NO.
IHA	-180.00	-120.00	-90.00	-60.00	-30.00	00.0	30.00	00.09	00.06	2 120.00	150.00	1 JOINT FOR

O FUNCTION IS COEFFICIENTS OF 3 ORDER POLYNOMIALS IN (THETA-THETAO) FOR 12 VALUES OF PHI.

REF. SEGMENT 0.0000

D3 0.0000

D2 0.0000

D1 0.0000

D0 0.0000

N = 3	720	696	110	761	006	050	520	900	010	480	850
Z	12.03	-6.466	-10.24	-5.125	-11.66900	-21.24	-12.06	6.454	10.21	5.066	11.67
N = 1 N = 2	212.3940	117.3850	75.28892	117.3500	119.9530	95.93260	121.3410	176.4290	176.1420	163.5090	217,7140
N :: 1	233.6540	225.4650	188.2180	189.2130	204.1740	195.8620	225.0060	288.6960	258.4990	272.0920	356.2500
THETA0	60.071	84.870	99.293	80.603	77.246	80.093	84.040	89.621	89.271	91.211	82.409
PHI	-180.00	-150.00	-120.00	-90.00	-60.00	-30.00	0.00	30.00	60.00	90.00	120 00

H	
PAGE 1	DS R. 7
	AR

21.20680 NTI(4) = 287	REF. SEGMENT 0.0000
258.3800 JOINT	D3 0.0000
сит нір	D2 0.0000
32	D1 0.0000
150.00 65.934	D0 0.0000

O FUNCTION IS COEFFICIENTS OF 3 ORDER POLYNOMIALS IN (THETA-THETAO) FOR 12 VALUES OF PHI.

N = 3	-0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720 -0.2866720	REF. SEGMENT 0.0000
COEFFICIENTS OF (THETA-THETAO)**N N = 1 N = 2	676.1950 676.1950 676.1950 676.1950 676.1950 676.1950 676.1950 676.1950 676.1950 676.1950 676.1950	D3 0000 0.0000
COEFFICIENTS OF N = 1	826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141 826.2141	D1 D2 0.0000 0.0000
THETAO	-180.00 63.849 -150.00 58.284 -120.00 38.899 -90.00 36.168 -60.00 39.742 -30.00 63.365 30.00 63.365 30.00 37.668 60.00 34.866 120.00 38.246 150.00 54.142 JOINT FORCE FUNCTION	D0 0.0000
IHA	-180.00 -150.00 -120.00 -90.00 -50.00 -30.00 30.00 60.00 120.00 150.00	0

PAGE 18 CARDS E.7

0 FUNCTION IS COEFFICIENTS OF 3 ORDER POLYNOMIALS IN (THETA-THETAO) FOR 12 VALUES OF PHI.

N :: 3	-0.2866720	-0.2866720	-0.2866720	-0.2866720	-0.2866720	-0.2866720	-0.2866720	-0.2866720	-0.2866720	-0.2866720	-0.2866720	-0.2866720	NTI(8) = 397
COEFFICIENTS OF (THETA-THETA0)**N N = 1 N = 2	676.1950	676.1950	676.1950	676.1950	676.1950	676.1950	676.1950	676.1950	676.1950	676.1950	676.1950	676.1950	ELBOW JOINT
COEFFICIENTS OF N = 1	826.2141	826.2141	826.2141	826.2141	826.2141	826.2141	826.2141	826.2141	826.2141	826.2141	826.2141	826.2141	8 RIGHT
THETA0	63.849	54.142	38.246	34.856	37.636	47.668	63.365	50.857	39.742	36.168	38.899	58.284	JOINT FORCE FUNCTION NO.
IHd	-180.00	-150.00	-120.00	-90.00	-60.00	-30.00	00.0	30.00	00.09	90.00	120.00	150.00	1 JOINT FOR

PAGE 19 CARDS E.7

	PHI.	N = 4	45.72250 -44.79070		PHI.	N = 4	45.72250 -44.79070		PHI.				PHI.	-
REF. SEGMENT 0.0000	HETAO) FOR 2 VALUES OF PHI.	N H	218.8050 19.23500 NTI(9) = 414	REF. SEGMENT 0.0000	HETAO) FOR 2 VALUES OF PHI	N 3	218.8050 19.23500 NTI(10) = 431	REF. SEGMENT 0.0000	FOR 2 VALUES OF	E	176.3340 250.5860 NTI(11) = 446	REF. SEGMENT 0.0000	HETAO) FOR 2 VALUES OF PHI.	N = 3
D3 0.0000	4 ORDER POLYNOMIALS IN (THETA-THETAO) FOR	COEFFICIENTS OF (THETA-THETAO) **N N = 1 N = 2	271.4830 131.6870 INT	D3 0.0000	4 ORDER POLYNOMIALS IN (THETA-THETA0) FOR	COEFFICIENTS OF (THETA-THETA0)**N N = 1 N = 2	271.4830 131.6870 INT	D3 0.0000	ORDER POLYNOMIALS IN (THETA-THETAO)	COEFFICIENTS OF (THETA-THETAO)**N N = 1 N = 2	441.0020 408.4461 NT	D3 0.0000	ORDER POLYNOMIALS IN (THETA-THETAO) FOR	(THETA-THETAO)**N $N = 2$
D2 0.0000	DER POLYNOMI.	ENTS OF (THE	EFT ELBOW JO	D2 0.0000	DER POLYNOMI	ENTS OF (THE	0 271 0 131 RIGHT KNEE JOINT	D2 0.0000	(DER POLYNOMI	ENTS OF (THE	1 0 LEFT KNEE JOINT	D2 0.0000	NDER POLYNOMI	ents of
D1 0.0000		COEFFICI N = 1	90.3070 60.3906 9	D1 0.0000		COEFFICI: N = 1	90.3070 60.3906 10	D1 0.0000	m	COEFFICE N = 1	52.1994 153.869 11	D1 0.0000	c	COEFFICE N = 1
D0 0.0000	LIS COEFFICIENTS OF	THETA0	30.000 34.000 RCE FUNCTION NO.	DO 0.0000	I IS COEFFICIENTS OF	THETAO	30.000 34.000 RCE FUNCTION	D0 0.0000	IS COEFFICIENTS OF	THETAO	23.000 34.000 SRCE FUNCTION NO.	D0 0.0000	N IS COEFFICIENTS OF	THETAO
	0 FUNCTION I	PHI	-180.00 0.00 1 JOINT FORC	0	0 FUNCTION I	THA	-180.00 30.000 0.00 34.000 1.1 JOINT FORCE FUNCTION NO.	J	0 FUNCTION	PHI	-180.00 0.00 1 JOINT FORC	S	0 FUNCTION I	IHd

PAGE 20 CARDS E.7 PAGE 22 CARDS E.7

	PAGE 24 CARDS E.7			FRICTION COEF. OPT 14 1	FRICTION FUNC.	FRICTION FUNC.	FRICTION FUNC.	FRICTION FUNC.	14 1 FRICTION FUNC.	FRICTION FUNC.	FRICTION FUNC. 1	FRICTION FUNC. 14 FRICTION FINC.	FALCITOM FUNC.
				G FACTOR 0	0	0	· c	>	0 (> c	o o	0	
U.0000 MIALS IN (THETA-THETAO) HETA-THETAO)**N N = 2	88540 13 13370 11 NTI (1 D3 REF.	<pre>OMIALS IN (THETA-THETA0) FOR 2 VALUES OF PHI. THETA-THETA0)**N</pre>	-12.13370 132.9940		DAMFING COEFF. C=100 RAIE OF DEFLECT. -20	C=100 RATE	COEFF. C=100 RATE	COEFF. C=100 RATE	COEFF. C=100 RATE	COEFF. C=100 RATE	COEFF. C=35 RATE	DAMPING COEFF. C=35 RATE OF DEFLEC22 DAMPING COEFF. C=35 RATE OF DEFLEC.	
OEFFICIENTS OF 3 ORDER DEPARTS COEFFICIENTS ETAO N = 1	.000 179.088 .000 167.716 JNCTION NO. 15 D1 D1	N IS COEFFICIENTS OF 3 ORDER COEFFICIENTS THETA0 A.000 179.0880	ALLOWED CONTACTS A	PLANE 1- 16	CUSHION LT. 1-16 6- 6	SEAT CUSHION RUL STIFF 1-16 9-9	SEAT CUSHION LUL STIFF	SEAT BACK LT STIFF	2- 16 2- 2 SEAT BACK CT STIFF	2- 16 3- 3 SEAT BACK UT STIFF 2-16 13-13	SEAT BACK RLA STIFF 2-16 15-15	SEAT BACK LILA STIFF SURFACES 0 3-16 8-8 13 FLOOR. RP STIFF SURPACES	JV.
	0 0.000 0.0000 0.0000 0.0000 0.0000 3 ORDER POLYNOMIALS IN (THETA-THETA0) FOR EFFICIENTS OF (THETA-THETA0) **N N = 1 N = 2 N = 2	3 ORDER POLYNOMIALS IN (THETA-THETAO) FOR 2 VALUES OF PHI. EFFICIENTS OF (THETA-THETAO)**N N = 1 N = 1 N = 2 9.0880 67.88540 -12.13370 7.7160 -12.13370 NTI(15) = 476 CARDS E.7 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	3 ORDER POLYNOMIALS IN (THETA-THETAO) FOR 2 VALUES OF PHI. EFFICIENTS OF (THETA-THETAO)**N N = 1 N = 1 N = 2 9.0880 67.88540 133.8270 7.7160 -12.13370 132.9940 5 LEFT ANKLE JOINT D2 D3 REF. SEGMENT 0 0.0000 0.0000 0.0000 133.8270 7.7160 133.8270 133.8270 8 PAGE CARDS E.7 EFFICIENTS OF THETA-THETAO) FOR 2 VALUES OF PHI. EFFICIENTS OF (THETA-THETAO) **N N = 1 N = 2 N = 3 N = 3 N = 3 N = 3 N = 3 N = 3 N = 3	0 FUNCTION IS COEFTICIENTS OF 3 ORDER POLYNOMIALS IN (THETA-THETAO) FOR 2 VALUES OF PHI. PHI THETAO	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 179.0880 67.88540 133.2940 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NT[15] = 476 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 FUNCTION IS CORFTICIENTS OF THETA-THETAO) **N N = 3 PHI THETAO N = 1 N = 1 N THETA-THETAO) **N N = 3 -180.00 4.000 179.0880 67.88540 133.8270 0 4.000 4.000 179.0880 67.88540 133.8270 0 1 ALLOWED COMPACETORS OF THETA-THETAO) **N N = 3 -180.00 4.000 179.0880 67.88540 133.8270 0 0 1.000 4.000 179.0880 67.88540 133.8270 0 0 1.000 1.000 1.000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000	0 FUNCTION IS COREFICIENTS OF 3 ORDER POLYNOMIALS IN (THETA-THETAO) FOR 2 VALUES OF PHI. PHI THETAO COREFICIENTS OF (THETA-THETAO)**N N = 3 -180.00 4.000 179.0880 67.88540 133.9370 0.000 4.000 0.0000 0.0000 0.0000 0.0000 0.0000 DI COREFICIENTS OF (THETA-THETAO)**N NTI(15) = 476 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NTI(15) = 476 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NTI(15) = 476 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NTI(15) = 476 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NTI(15) = 476 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NTI(15) = 476 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NTI(15) = 476 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NTI(15) = 476 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NTI(15) = 476 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NTI(15) = 476 1 JOINT FORCE FUNCTION NO. 15 LEFT ANKLE JOINT NTIL SPIKE NEW PACTOR OF PHI. PHI THETAO 179.0880 67.88540 133.8370 1 JOINT FORCE DEFLECTION NO. 120.3940 1 JOINT FORCE DEFLECTION NO. 120.3940 1 JOINT THETAO 1 JOINT NTILL SPIKE NEW PROPERM NO. 14.000 1 JOINT FORCE DEFLECTION NO. 120.000 0.0000 1 JOINT THETAO 1 JOINT STIFF STREAMEN DAMPHIAL SPIKE NEW PROPERM NO. 14.000 1 JOINT STIFF STREAMEN DAMPHIAL SPIKE NEW PROPERMENT NO. 14.000 1 JOINT STIFF STREAMEN DAMPHIAL SPIKE NEW PROPERMENT NO. 14.000 1 JOINT STATUS NORTH NORTH NORTH NORTH NO. 14.000 1 JOINT STATUS NORTH NO	0 FUNCTION IS COEFFICIENTS OF 3 ORDER POLYNOMIALS IN (THETA-THETAO) **N = 3 PHI THETAO	0 FUNCTION IS CORPTICIENTS OF 3 ORDER POLYMONIALES IN (THETA-THETAAO) FOR 2 VALUES OF PHI. PHI THETAAO N = 1 OLOGO 179 ORBO 67.0000 0.0000 0.0000 0.0000 1 JOINT FORCE FUNCTION NO. 15 LEPT ANKLE JOINT NTIL13) 94.06 1 JOINT FORCE FUNCTION NO. 15 LEPT ANKLE JOINT NTIL13) 94.06 1 PHI THETAO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 PHI THETAO 179.0880 67.88540 133.8270 1 OLOGO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 PHI THETA 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1 PHI THETA 0.000 1.0000 0.000	PHI THETAO 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000	Decention Competition Co	0 FUNCTION IS COREPICIENTS OF 3 OKDER POLYMONIALS IN (THETA-THETAO) FOR 2 VALUES OF PHI. COREPICIENTS OF (THETA-THETAO)************************************	PHI THETAO 0.00000 0.00000 0.00000 0.00000 0.0000 0.00000000	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.000

PLONE 1-16 11-11 11-11 11-11 1-16 11-11	-1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 26 8.D
11 11 11 11 11 11 11 1	FUNC. FUNC. CARDS F. CARDS F. ION COEF. REST=.25 REST=.25 REST=.25 REST=.25 REST=.25	REST=.25 REST=.25 PAGE PAGE CARDS F CARDS F -0.300 0.000 0.000
The color	PRICTION 14 FRICTION 14 FRICTION 14 FRICTION FRICT 19 CF=.25,C CF=.25,C	CF=.25, CF=.25, CF=.25, OFF=.25, OFF=.2
Part	TOR	D IN. PREFERREI X 2.400 0.000
Part	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	z z 0.00
Column C	ပ္ပံ့ ပွဲ ပွဲ နွ	
Paril		FACTOR 7 FACTOR 0 X X X 0.00 0.00 0.00 0.06 0.06 0.06 0
Name	C=35 C=35 C=35 IKE	4 0 0 33 33 33 33 33 33 33 33 33 33 33 33
NO 1	-22 -22 PING COEF! -22 PPING COEF! -22 IPING COEF! 0 0 0 0 0	18 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
The color The		CCN. CCN. CCN. CO. CO. CO. CO. CO
NO NO NO NO NO NO NO NO	13 13 13 13 13 13 13 13 13 13 14 15 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	ENT-SEGMENT 3 3 3 4 4 INTS PER BE NCTION NOS NDR 0 0 0 0 0 0 0 1 1 1 N.) Z Z Z S S S S S S S S S S S S S S S S
FLOOR.	11-11 LE STIFF 5-5 H STIFF 8-8 RE STIFF 11-11 LE STIFF 11-13 RLA SEGM 10-10 LLL SEGM 11-11 LF SEGM 11-11 LF SEGM 11-11 LF SEGM 11-11 LF SEGM 8-8 RF SEGM	RF SEGM INPUT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		T SYSTEM IESSES = S PER HA I BELT KE 0 1 1 1 1 1 1 1 2 8 R X X X X X 3 6 8 3 6 8 3 6 8 3 6 8 7 7 8 8 3 6 8 8 8 8 8 8
	3- 16 PAD 10- 16 ER PEDAL; 10- 16 ER PEDAL; 10- 16 C	LF 13- 13 RLA NESS-BEI OF HARN OF BELTI CHARNESS NO. K KS K
	0 HEAD 0 RUDDI 0 0 0 0 0 0 0 0 0	

	.8.D	
0.000 0.000 0.000 0.000 0.000	CARDS F.8.D	Z Z O O O O O O O O O O O O O O O O O O
0.000 1.000 0.000 0.000 0.000		PREFERRED DIRECTION X Y 0.500 0.000
0.000 0.000 0.000 0.000 0.000 2.400 IN.		PREFERRED X X X X X 0.000 0.00
0.837 0.837 0.837 0.837 0.000		2 2 0.000 0.000 0.000 0.008 0.108 0.108 0.108 0.0108 0.095 0.095 0.095
.462 0.000 .462 0.000 .462 0.000 .462 0.000 .000 0.000		OFFSET (IN.) X Y Y .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000 .1430 0.000 .4430 0.000 .4430 0.000 .4430 0.000 .4430 0.000 .4430 0.000 .4430 0.000 .4430 0.000 .4430 0.000 .4430 0.000 .4430 0.000 .4430 0.000
-0.462 -0.462 -0.462 -0.462 -0.462 0.000		A OFF 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000
-1.611 -2.318 -1.611 -1.247 -0.381 -8.500		0 0 34 0 34 0 34 0 34 0 34 0 34 0 34 0
-2.696 0.000 2.696 3.589 5.655 0	NOS.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.867 3.871 3.867 3.692 2.572 7.000 7.31	FUNCTION NOS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1.588 -2.335 -1.588 -1.249 -0.381 -8.500	NPD NDR	11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2.658 0.000 2.658 3.594 5.650 8.000 NO. 2	IN TN	93 99 99 99 99 99 99 99 99 99 99 99 99 9
3.812 3.900 3.812 3.698 2.570 7.000	S KE	33 3 3 4 4 7 2 2 9 7 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
4 5 6 7 8 9 9 HARNESS NO	K KS	10 16 11 11 11 11 11 11 11 11 11 11 11 11
0	0	74

0																					0				7																0	0					0	,
×	28	29	30	; ,	1 6	7 (ۍ د د	34	35	36	37	80	30	3 5	2 -	T#.	42	43	44	45		×	28	59	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	HARNES	×	46	47	48	49		×
KS	16	m	· (*)	~ ،	י נ	י ר	ກ (7	m	٣	(**	· 67	٠, ٠	י ר	י ר	~ (7	7	7		щ		-1	0-	0	7	1	(4	ניו	(*)	7	7	5	77	4	4	7	7	7	**1	S NO.	KS	16	-	· ~	н	-41	
KE	0	m	· (**	~	n ~	י ר	7 (m	m	٣	· (**)		~	י ר	,	n (~	7	7		SE	×	1.500	.592	.197	•	1.729	•	•	e.	1.344	1.624	1.722	4.706	•	'n	٠	?	4.098	3.900	œ	KE	0	Н	· 	1	BASE RI	ı
Ţ	307	313	319	325	32,	1 1 1	33/	343	349	355	361	367	373	27.0	700	000	391	397	403	409	REFERENCE	¥	0.000	3.230	3.220	3.210	3.200	3.126	3.043	.83	99.	. 49	7.	. 14	1.876	۲.	₹.	r.	~	0.000	ELT NO.	IM	421	427	433	439	REFERENCE	×
NPD	н	0	0	C	· c	> <	> 0	0	0	0	0	0	· c	• •	> <	> 0	Э,	0	0	~ 1	H			,	,	,	•	٠		•	•									-2	4 FUN	NPD	~	0	0	1	NI) E	
NDR	н	0	0	c	· c	> <	> 0	0	0	0	0	0				۰ د	> •	0	0	. ⊣	۲.)	. 23	000.	6.406	.314	.200	-5.904	.483	.528	.473	929.	. 803	-0.962	.481	0.731	.387	. 533	7	.86	.335	FUNCTION NOS	NDR	Н	0	0	1	<u>:</u>	
FUN	0	0	0	· c	· c		> 0	>	0	0	0	0	· c		, c	> 0	5	0	0	0	ADJ	•	-1	9	0	0	-	2	m	m	4	4	₽'	4.	4.	4	4	4	4	e	NOS.	FUN	0	0	0	0	ADJ	
FUNCTION NOS.	0	0	0	c			> •	•	0	0	0	0	c	· c	> <	> 0	o (0	0	0	USTED	×	-1.500	-0.568	0.193	.970	. 665	.588	.197	. 709	.036	.273	.421	.476	.520	4/4	.219	.276	.137	∞.	31	FUNCTION NOS	0	0	0	0	USTED	>
vos.	0	0	0	c	· c	> <	> 0	0	0	0	0	0	0	, (> <	> 0	-	0	0	0	ADJUSTED REFERENCE	×	000.0	3.096	3.143	3.114	3.081	2.859	2.815	2.665	2.476	2.304	2.141	2.045	1.801	1.709	0.461	0.330	0.216	0.000	0	Nos.	0	0	0	0	ADJUSTED REFERENCE	>
	0	0	0	c	· c	•	-	0	0	0	0	0	0	• <	0	.	۰ د	0	0	0	_		ı																	•	0		0	0	0	0	(E)	
	0	34	34	3.4	3.4	# V	# ·	34	34	34	34	34	34	7 6	* 6	# *	34	34	34	0	.N.	2	-32.000	-6.140	-6.162	-6.014	-5.685	-5.016	-4.190	-3.263	-2.486	-1.666	-0.901	-0.457	0.702	1.350	0.545	0.203	0.870	2.318	0		0	33	33	0	IN.)	6
								٠														×	000.0	0.000	0.000	0.000	0.000	000.0	000.0	0.000	0.000	0.000	0.000	0.000	0.000	000.0	-1.430	-1.430	-1.430	-0.462	0 REF						•	>
																					OFFSET (X	00000 0																	2 0.000	REFERENCE SLACK						OFFSET (>
																					IN.)															ı					LACK =						IN:	
																					ı	2	0.000	-0.108	-0.108	-0.108	-0.108	-0.108	-0.108	-0.108	-0.108	-0.108	-0.108	-0.108	-0.108	-0.108	0.095	0.095	0.095	0.837	-0.100							t
																					PREFERRED DIRECTION	×	0.500	0.000	0.000	0.000	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	000.0	IN.						PREFERRED DIRECTION	Þ
																					DIRECTIO	≻ 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	000.0	0.000	1.000							DIRECTION	
CARDS F.8																					_	7	0.500	0.000	000.0	0.000	0.000	0.000	0.000	0.000	000.0	0000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	-2.000		CARDS F.8					(IN.)	

1.000 0.000 0.000 1.000 PAGE CARD G.1	CARDS																e																		
0.000						•											CARDS G.3																		
-1.000 0.00 0.000 0.000			IREF4	>	o c	. 0	0	0	0 0	>			0	0	0	0				IYPR	⊣,	2 1 17		ı 	2 1 17	Н	~	٦,	2 1 1/	- ۱	2 1 12	-	2 1 14	CLE CLE	
0.000 0.837 0.837 0.837	0		IREF2	-	- -	0	0	0	0 0	>	o c	0	0	0	0	0					m i	. .	n ~	'n	m	m	m	m i	w 64	יי רי	, m	ť	n	IMARY VEHICLE 0. THE LINEAR	
0.00 0.00 0.00 0.00	1.00 3c.)		2	0.0000	0.0000	0.00000	0.0000.0	0.0000.0	0.0000	0.0000	0.0000	0.00000	0.00000	0.0000.0	0.0000.0	00000.0		gc.)		2	000000	0.0000	00000	0,0000	0.0000.0	0.0000.0	0.0000.0	0.00000	0.0000	00000	0.00000	0.00000	0.0000	F THE PRIN	:
0.0 -0.4 -0.4 -0.4	0 10.00 6.00 LINEAR VELOCITY (IN./SEC.)	(INERTIAL)	Y	0.0000	0.0000	0.00000	0.0000.0	0.0000	0.0000	0.0000	00000	0.0000	0.0000	0.0000.0	0.0000.0	0.0000.0		OCITY (DEG/SEC.)	(LOCAL)	~	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000.0	0.0000	0.0000	0.0000	0,0000	0.00000	0.0000	0.0000	VELOCITIES OF	
000 -2.7 000 0.8 000 -0.8 000 -2.3		i)	×	0,0000	00000	0.0000	0.0000	0.0000	0.0000	0,0000	00000	0.0000	0.0000	0.0000.0	0.0000.0	0.0000.0		ANGULAR VELOCITY		×	000000	0.0000	00000	0.0000	0.0000.0	0.0000	0.00000	0.00000	0.0000	00000	0.00000	0.0000	0.0000	TO THE INITIAL VELOCITIES OF THE FOR NONVEHICLE SEGMENTS WITH IREE2	OF IREF2.
18.967 4.518 4.527 3.871	0 0 0 0 IN.)		2	-15.12504	-19.6311/ -27.02444	-35.64772	-40.22385	-14.13501	-9.49290	-4.69/50	-14.13301	-4.69751	-25.89503	-20.35938	-25.89503	-20.35938		(DEG)		ROLL	0.0000	0.0000	00000	0.0000	0.0000	0.0000	0.00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	UAI	BY THE VALUES
2.71 0.86 0.83 2.33	_	(IREF4 REFERENCE)	Υ.	0.00001	0.00001	0.00001	0.00001	4.54776	6.13372	5.693/2	-4.34//4	-5.69370	6.74001	6.04001	-6.73999	-6.03999	AND VELOCITY	ANGULAR ROTATION (D	(IYPR4 REFERENCE)	PITCH	13.00000	12.00000	2 00000	3.00000	91.24997	53.40000	128.80000	91.25000	53.40000	12.00000	70.00000	12,00000	70.00000		E DETERMINE
18.967 0.000 - 4.479 0.000 4.497 0.000 - 3.900 0.000 - INITAL INPUT ZPLT(X) ZPLT(Z)	. 3	(IREF4	×	13.88821	11.08807	10.36620	11.84088	21.03207	35.84204	46.82538	35 84204	46.82538	10.00782	17.49643	10.00782	17.49643	INITIAL ANGULAR ROTATION AND VELOCITY	ANGULAR		YAW	0.00000	0.00000	0,0000	0.0000	4.00000			356.00000	0.0000		0.0000	0.0000	00000	O LINEAR AND ANGULAR VELOCITIES HAVE FOR ALL NONVEHICLE RODY SEGMENTS WIT	AND ANGULAR VELOCITIES WERE DETERMINED BY THE VALUES OF IREF2.
46 18.967 47 4.479 48 4.497 49 3.900 1 SUBROUTINE INITAL ZPLT(X) ZPLT(X)	0.0 0 INITIAL POSITIONS SEGMENT		NO. SEG	. E	3 E	4 4 5 N			7 RLL	8 KF			12			15 LLA	O INITIAL ANG	SEGMENT		NO. SEG	1 LT	7 CI			6 RUL				10 LLL 11 TE					O LINEAR AND	AND ANGULAR

27	2.616	45	2.616	٠											PAGE	. **2) Z	-0.000144 0.000455 0.000061 -0.000321 0.000012
25		43														(RAD/SEC.**2)	-0 0 0 -0 -0 45
8	7.490	0	7.490														380 659 271 397 128 924
22	1.181	40	1.181													(LOCAL) LERATION Y	-108.367380 -93.073659 -4.591271 -33.621397 0.627128
21	0.456	39	0.456											•		(LOCAL) ANGULAR ACCELERATION X	
20	0.794	38	0.794													ANGUI X	0.000754 0.001515 0.000324 -0.000718 0.000021
19	0.868 (37	0.868			3LE.											00000
9 109 18		36	.861 0			G ACCELEROMETER OPTION IS NOT AVAILABLE										SEC.)	0.00000 0.00000 0.00000 0.00000 0.00000
8 11.409 17	0.861	35	0			TON S.										(RAD/SEC.)	000000
2.491	1.066	301	1.066	415		TION 1										(LOCAL) ANGULAR VELOCITY X	0.00000 0.00000 0.00000 0.00000 0.00000
9 7 .974 15	1.024	15 34	1.024	4		TER 01										AR VE	000000
1 1 6 772 0 1 2		33		4		LEROME	ION.					С	-			ANGUI X	0.00000 0.00000 0.00000 0.00000 0.00000
5 2.75 14	1.158	32	1.158	Н		ACCE!	G OPTION					1 2	>		ပ္ထ		
,NPTS NT= 4 2.772 9 2.772 ,NPTS NT= 13	0.767	,NPTS NT= 31 3	0.767	, NPTS NT= 49 9	NTS	THE 0 G	TED 1					2 14	> >		0.000 MSEC	G) ROLL	0.0000
, NPT 4 9 , NPT 13	0		0	49 49 509	IETERS OR JOINTS	7.3, T	CORREC					13))		0.0	ŒQ)	000000
3 0.97%	0.79	NH, N 30	0.79	., NH, NB 48 1.60	PARAN ENTS (ION IV	THE					10))		ME=	TAL) ATION CH	3.0000 2.0000 0.0000 5.0000 1.2500
0.000 MSEC. NH,NB 2 3 09 2.485 0.97 0.000 MSEC. NH,NB 11 12	0.759	0.000 MSEC. NH,NB 29 30	0.759	0.000 MSEC. NH,NB 47 48 98 1.702 1.60	NTROL SEGM	3 VERS	USES					6	>	13	12 POR TI	(INERTIAL) AR ROTATIO PITCH	13.0000 12.0000 10.0000 5.0000 3.0000 91.2500
0.000 2 109 0.000		0.000	11.388	0.000 47 11.598	STORY CONTROL PARAME SELECTED SEGMENTS OR	O TH ATE	OUTPUT 3	o ^m (13	2 13	2 13	æ	o o	_	6 3 12 FIONS FOR	MGUL	0.0000 0.0000 0.0000 0.0000 4.0000
$ \begin{array}{ccc} & & & & & & & & & \\ & & & & & & & \\ & & & &$	11.388	28	11.3	= 46 11.5	HIST SE	0 0 NG WITH	ETER (10		$\frac{3}{12}$ $\frac{12}{13}$	$\frac{3}{12}$ $\frac{12}{13}$	~ ~	0		1 FUNCT	AL	0.0000 0.0000 0.0000 0.0000
					TABULAR TIME HISTORY CONTROL PARAMETERS TYPE KSG SELECTED SEGMENTS OR JOIN	REF 0 0 0 NOTE: BEGINNING WITH ATB VERSION IV.	ALL ACCELEROMETER OUTPUT USES THE CORRECTED 1 H. 2 $$ 2 $$ 5 $$ 3	REF 3 2	KEF 2	REF 5 2	REF 6 2	REF 7 14	REF 8 0	REF 9 4	REF 1 6 3 12 MAIN3D FUNCTIONS FOR TIME=		
0 HBPLAY TIME NL(1) = BB = 0 HBPLAY TIME NL(1) =	BB =	O HBPLAY TIME NL(1)=	BB ==	0 HBPLAY TIME NL(1)= BB =	ABULAR TYPE	TE: BI	L ACCI	H. 3	H. 4	RE H. S	RE H. 6	RE H. 7	H. 8	H. 9	Z Z	SEGMENT	E C C C C C C C C C C C C C C C C C C C
	Д	H O	Д	O	H	NO	AL	77							н	SE	11 0 E 4 E 0

		- -		
27.599957 -1065.714628 -45.614259 -27.593035 1065.732546 79.911805 13.138360 -79.911541 -13.137803	(G'S) Z 1.386971 1.304295 0.855277 0.902845 0.967723	-1.159668 1.307914 0.802402 -1.159480 1.308005 0.791106 0.863426 0.791095 0.863422 0.000000 PAGE 29	TOTAL	0.000000000000000000000000000000000000
81.606398 -631.201096 -1 38.953972 81.601117 -631.174786 12.653925 12.653925 10.653945 0.000000	(INERTIAL) LINEAR ACCELERATIONS (Y 6284 -0.000021 6402 -0.000005 22472 0.000003 22552 0.000005 8514 0.000000	-1.254587 2.033920 0.216655 1.254601 -2.033937 0.024380 1.472720 -0.024385 -1.472721	KINETIC ENERGY (LBIN.) ANGULAR	0.000000000000000000000000000000000000
38.832788 -56.158233 -6 -13.730344 -38.830495 56.147371 -6 -9.741656 -80.827039 0.000000	LINEAR AC X X -1.776284 -0.616402 -0.422472 -0.202552 0.018514	-1.096815 0.592990 -2.184604 -1.096856 0.592820 0.016380 0.924714 0.016380	KII	0.000000+000 0.000000+00 0.000000+00 0.000000+00 0.000000+00 0.000000+00 0.000000+00 0.000000+00 0.000000+00 0.000000+00
000000000000000000000000000000000000000	EC.) 2 0.00000 0.00000 0.00000) ATIONS Z	0.20346D-02 0.20044D-04 0.73089D-04 0.00000D+00 0.00000D+00 0.53217D+03 -0.36763D+02 -0.20356D+04 0.53215D+03 0.6763D+02
0.0000000000000000000000000000000000000	(INEATIAL) LINEAR VELOCITY (IN./SEC.) X Y 00000 00000 00000 00000 00000 00000 0000	000000000000000000000000000000000000000	(LOCAL) U2 ARRAY (RAD/SEC.**2) EXTERNAL ANGULAR ACCELERATIONS X X	3 -0.36441D+03 5 -0.71275D+01 3 -0.22452D+02 0.00000D+00 0.00000D+00 0.30986D+03 2 0.37934D+02 3 -0.12507D+04 0 0.30984D+03 3 -0.12506D+03 3 -0.12506D+03
0.0000000000000000000000000000000000000	LINEAR VE X 0.00000 0.00000 0.00000 0.00000	000000000000000000000000000000000000000	U2 ARR? EXTERNAL ? X	0.60491D-03 -0.26380D-05 0.37046D-03 0.00000D+00 0.0000D+00 0.21506D+00 0.30520D+02 -0.50873D+03 -0.21503D+00 -0.30520D+02
0.0000 0.0000 0.0000 0.0000 0.0000 48.7040 0.0000 -48.7040	(IN.) Z -15.1250 -19.6312 -27.0244 -35.6477 -40.2239	-9.4929 -4.6975 -14.1350 -9.4929 -4.6975 -25.8950 -20.1355 -25.8950	EC.**2) ELERATIONS Z	0.3672D+03 0.4104D+03 0.5282D+03 0.3861D+03 0.3861D+03 -0.6877D+02 0.3861D+03 -0.6954D+03 -0.6954D+03 -0.6954D+03
53.4000 128.8000 91.2500 53.4000 128.8000 12.0000 74.3765 12.0000 74.3765	(INERTIAL) X Y 8882 0.0000 -15.8518 0.0000 -19.0881 3662 0.0000 -35.88409 0.0000 -35.	6.4920 6.6116 -4.5477 -6.4920 6.7400 4.4308 -6.7400 -4.4308	(INERTIAL) U1 ARRAY (IN./SEC.**2) EXTERNAL LINEAR ACCELERATIONS X Y Z	-0.6008D-02 0.9974D-04 0.1602D-02 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
4.0000 0.0000 -4.0000 0.0000 0.0000 35.6419 0.0000	LINEA X X 13.8882 13.8518 11.0881 10.362 11.8409	35.7911 46.8073 21.0321 35.7911 46.8073 10.0078 17.2186 0.0000	U1 AR EXTERNAI X	-0.2351D+04 -0.9171D+02 -0.1011D+03 0.0000D+00 0.0000D+00 -0.4773D+02 0.0000D+00 0.8530D-13 -0.4773D+02 0.0000D+00
7 RLL 8 RF 9 LUL 10 LLL 11 LF 12 RUA 13 RLA 14 LUA 15 LLA 16 VEH	SEGMENT 1 LT 2 CT 3 UT 4 N 5 H	Þ	SEGMENT	1 LT 2 CT 3 UT 4 N 5 H 6 RUL 7 RLL 9 LUL 10 LLL

					30											
0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 ENERGY 0.00000D+00					PAGE											
0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 BODY KINETIC 0.00000D+00	AR EC.)	000000	0000	00000												
0.00000D+00 0.0000D+00 0.0000D+00 0.0000D+00 TOTAL	RELATIVE ANGULAR VELOCITY (RAD/SEC.)	000.0	0.000 0.000 0.000	0.00. 0.00. 0.00. 0.00. 0.00.												
0.27499D+04 0.00000D+00 -0.27499D+04 0.00000D+00	2	0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00	· ·	0.1332D+02 0.7494D+02 0.6673D+02 -0.7494D+02												
0.41957D+03 0 0.00000D+00 0 0.41957D+03 -0	(INERTIAL) ORQUES (IN. LB.) Y		9909	-0.1943D+02 0.4745D+02 0.5526D+01 0.4745D+02 0.5526D+01												
-0.75849D+03 0.0.00000D+00 0.0.75849D+03 0.0.0000D+00 0.	(INERTI JOINT TORQUES X	0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00	-0.2176D+01 -0.5945D+01 0.0000D+00	0.5945D+01 -0.6689D+02 -0.6899D+01 0.6689D+02 0.6899D+02												
0.3861D+03 -0. 0.3861D+03 0. 0.3861D+03 0. 0.3861D+03 0.	LB.) Z	04 -0.292D+02 04 -0.292D+02 05 -0.510D+00 05 -0.298D+00 02 0.887D+01	1 1	01 0.625D+01 01 -0.137D+01 01 -0.535D+00 01 -0.137D+01 01 -0.535D+00		80 80	53	80 53 92	27	46	27	27 27	27	27 27	27	00
	(INERTIAL) F FORCES (-0.731D-04 -0.497D-04 0.965D-05 -0.159D-05	-0.596D+07 0.409D+07 0.104D+07 0.596D+07	-0.409D+0 0.586D+0 0.576D+0 -0.586D+0	SECONDS *	. w . w	2 2 5	w 0, 5	1.2	16.4	1.2	1.2	1.2	1.2	17.7	100.0
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00	(INERTIAL JOINT FORCES	-0.288D+01 -0 -0.103D+01 -0 -0.270D+00 0.171D+00 -0		0.119D+01 -0 0.369D+01 0 0.362D+01 0 0.369D+01 -0	0.79 S	m m	7 7	E 27	11 6	13	o —		Н	ન ન	. 	T 4
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00	×	-0.2 -0.10 -0.2 -0.1.0	-0.17 -0.17		j TIME = CALLS	ਜਜ	0 0	ਜਜਜ	1 - 1 -	13	0 ↔	ਜ ਜ	1	ਜਜ	· ← ←	4
RUA RLA LUA LLA	JOINT IPIN	P 0 W 0 NP 0 HP 0		LA 0 RE 1 LS 0 LE 1	ELAPSED CPÜ SUB	MAIN3D INPUT	CHAIN EJOINT	DINTG	SETUP1	PLELP	SEGSEG	VISPR SETUP2	DAUX11	DAUX12 DAUX22	FSMSOL	OUTPUT TAL
12 113 14 15	J0]	12647	9870	10 13 13 14	ਜ	Z II	១៨	<u>Ω</u> <u>द</u> 2	5 73 5	្គដ	ďΞ	S	Ď	מֿ מֿ	E 6	OUT OTOTAL
				7	9											

	ENTOG	ENTOG	HILLIAND I WANDER	THOMA 1	BELT STRAIN	(LOCAL	(LOCAL OR ELLIPSOID)	SOID)	6	(INERTIAL)	-	PENETRATION
	FOINI	LOTIO	SEGMENT	HENGIN .	ENERGI LOSS	NEF ENEN	CE FOINT	(TIV)			1.6.	ENERGY LOSS
	NO.	INDEX	NO.	(. N.	(IN. LB.)	×	₩	10	×	>	2	(IN. LB.)
0	BELT NO.	1 OF 1	HARNESS 1	NO. 1								
	н	П	16	0.000	000.0	7.000	-8.000	-8.500	71.498	18.532	-52.601	00000
	7	7	₽	11.409	0000	2.572	-5.655	-0.381	-39.103	56.235	12.816	0.000
	٣	٣	ᆏ	2.485	0000	3.689	-3.594	-1.249	-23.920	7.942	3.594	00000
	4	4	1	0.979	0.000	3.867	-2.696	-1.611	-13.519	5.007	13.765	000.0
	S	ស	H	2.772	0000	3.871	0.000	-2.318	10.088	0.000	44.852	0000
	9	9	н	2.772	0000	3.867	2.696	-1.611	-13.228	-5.105	14.056	000.0
	7	7	П	0.974	0.000	3.692	3.589	-1.247	-24.271	-7.802	3.175	00000
	8	æ	1	2.491	0.000	2.572	5.655	-0.381	-39.042	-56.276	12.944	000.0
	6	6	16	11.409	0.000	7.000	8.000	-8.500	71.498	-18.532	-52.601	000.0
0	TOTAL BELT		ENERGY LOSS		000.0							000.0
0	BELT NO.		OF HARNESS	NO. 1								
	10	10	16	000.0	0.000	-1.500	000.0	-32,000	7.671	-2.170	-0.757	000.0
	11	11	m	11.388	0.000	-0.568	-3.098	-6.139	0.156	1.674	-0.860	000.0
	12	12	m	•	0.000	0.193	-3.143	-6.162	0.174	0.790	1.725	000.0
	13	13	m	0.790	0.000	0.970	-3.114	-6.014	-0.288	0.045	2.014	00000
	14	14	m	0.767	0.000	1.665	-3.081	-5.685	-0.647	1.195	1.316	0.000
	15	15	٣	1.158	0.000	2.588	-2.859	-5.016	-1.272	-1.195	2.077	0000
	16	16	٣	1.024	0.000	3.197	-2.815	-4.190	-0.816	0.784	0.654	000.0
^	17	17	m	1.066	0.000	3.709	-2.665	-3.263	-0.745	0.634	0.396	0.000
	18	18	n	0.861	0.000	4.036	-2.476	-2.486	-0.774	-0.177	0.481	000.0
	19	19	e	0.868	0.000	4.273	-2.304	-1.666	-0.668	0.061	0.277	000.0
	20	20	က	0.794	000.0	4.421	-2.141	-0.901	-0.490	0.046	0.158	000.0
	21	21	n	0.456	0.000	4.476	-2.045	-0.457	-0.653	-0.044	0.180	0000
	22	22	e	1.181	0.000	4.520	-1.801	0.702	-0.526	-0.076	0.110	0.000
	23	25	77	•	0.000	4.276	-0.330	0.203	-0.579	-0.559	0.153	000.0
	24	27	~	2.616	0.000	3.871	000.0	-2.318	-0.546	-1.008	-7.926	0.000
0	TOTAL BELT		ENERGY LOSS	. .	000.0							0.000
0	BELT NO.		OF HARNESS	NO. 1								
	25	28	16	0.000	0.000	-1.500	0.000	-32.000	7.671	2.170	-0.757	000.0
	26	29	m	11.388	0.000	-0.568	3.098	-6.139	0.156	-1.674	-0.860	0.000
		30	n	0.759	0.000	0.193	3.143	-6.162	0.174	-0.790	1.725	0.000
	28	31	m	0.790	0.000	0.970	3.114	-6.014	-0.288	-0.045	2.014	0.000
	29	32	m	0.767	0.000	1.665	3.081	-5.685	-0.647	-1.195	1.316	0.000
	30		m	1.158	0.000	2.588	2.859	-5.016	-1.272	1.195	2.077	0.000
	31		æ	1.024	000.0	3.197	2.815	-4.190	-0.816	-0.784	0.654	000.0
		35	ю	1.066	000.0	3.709	2.665	-3.263	-0.745	-0.634	0.396	000.0
	33	36	٣	0.861	000.0	4.036	2.476	-2.486	-0.774	0.177	0.481	000.0
		37	٣	•	000.0	4.273	2.304	-1.666	-0.668	-0.061	0.277	000.0
	35	38	m	0.794	000.0	4.421	2.141	-0.901	-0.490	-0.046	0.158	0.000
		39	٣	0.456	000.0	4.476	2.045	-0.457	-0.653	0.044	0.180	0.000
	37	40	ю	1.181	000.0	4.520	1.801	0.702	-0.526	0.076	0.110	0.000
	38	43	7	7.490	0.000	4.276	0.330	0.203	-0.579	0.559	0.153	000.0
	39	45	1	2.616	000.0	3.871	000.0	-2.318	-0.546	1.008	-7.926	000.0

31				
0.000 0.000 0.000 0.000 0.000 0.000	(RAD/SEC.**2)	-0.054337 -0.027780 0.004136 -1.345135 0.076134 8.022157 8.063712 16.393280 -8.664325		-0.007697 -0.075835 0.021777 0.142680 0.289055 -0.090855 -0.266596 -0.291679 -0.291679 -0.293328 0.026353 0.398414 0.398396
-16.735 0.377 2.945 13.414		-2.545141 11.806965 17.020402 -28.432648 -47.540171 6.114598 3.014925 -5.774660	2107 3.032020 -8. 2925 -6.067241 -16. 8921 34.958353 20. 4875 -13.235123 -25. 9585 34.951803 -20. 2767 -13.233645 25. 0000 0.000000 0.	0.004427 0.000038 -0.000056 -0.000186 0.068660 0.076406 -0.032132 -0.078205 0.033785 0.342129 1.240863 -0.342186
0.000 0.000 0.001	(LOCAL) ANGULAR ACCELERATION X	-0.693343 -0.072060 -0.000715 0.654779 -0.047731 -2.797903 2.686471 -0.141073 3.213156	0000000	-0.014885 -0.083525 -0.403162 -0.599891 -0.164646 -0.052462 -0.036786 -0.054422 -0.054422 -0.054422 -0.044745 0.464745
-1.064 -2.625 -6.375 10.064	EC.)	-0.00012 0.00004 0.00038 -0.00011 0.21961 0.19924 -0.67797	-0.19924 0.67855 0.30658 -0.21000 0.21000 0.00000	0.58041 1.11185 0.97230 1.42284 1.96705 0.18116 0.18145 -1.45453 0.17958 -1.45453 0.17958 2.24247 2.24247
0.000 -2.716 0.000 0.876 0.000 -0.837 0.000 -2.318	(LOCAL) ANGULAR VELOCITY (RAD/SEC.) X Y Z	,	1600 9691 9654 9655 0754 0758 0000 IAL)	-0.00089 -0.00034 0.00030 0.00031 0.00018 0.39411 -0.00457 -0.39523 -0.00446 -1.07554 -1.16861 5.10064 -5.10032
18.967 0. 4.518 0. 4.527 0. 3.871 0.	ANGULAR VE X	-0.00004 0.00018 0.00004 -0.00020 0.00000 -0.04197 0.10146 -0.35091	-0.10153 0.35128 -0.25651 0.25651 0.45902 0.45903 0.00000	-1.14668 -1.08602 -1.75160 -1.87619 -0.18458 -1.06878 -0.07436 -1.06926 -1.06926 -1.06926 -0.07519 1.46995 -1.06926 -0.21352 2.56162 2.56162
0.000 0.000 0.000 0.000 0.000 0.000 10.000 MSEC	(DEG) ROLL	0.0000 0.0000 0.0000 0.0000 -3.7299 0.1416 0.3147	-0. -0. -0. 48. 0. -48. 0.	2 -15.1199 -19.6212 -27.0167 -35.6380 -40.2117 -14.1324 -9.5039 -4.7041 -25.8881 -25.8881 -25.8881
SS NO. 1 0.000 11.598 1.702 1.609 OSS OSS	(INERTIAL) ANGULAR ROTATION M PITCH	13.0696 11.9192 10.0178 4.8831 2.9281 91.2952 53.4868 128.4412 91.2952	1231 53.4868 6122 128.4412 1066 12.1147 4580 74.4006 1066 12.1147 4580 0.0000 0.0000 (INERTIAL)	0.0000 0.0000 0.0000 0.0000 0.0000 4.5498 6.4902 6.6205 -4.5497 -6.6205 6.7453 4.4569 -6.7453
TOTAL BELT ENERGY LOSS BELT NO. 4 OF HARNESS NO. 40 46 16 0.00 41 47 1 11.59 42 48 1 1.70 43 49 1 1.60 TOTAL BELT ENERGY LOSS TOTAL HARNESS ENERGY LOSS MAIN3D FUNCTIONS FOR TIME=	ANGUL	0.0000 0.0000 0.0000 0.0000 0.2804 4.1231 0.6122	-4.1231 -0.6122 0.1066 35.4580 -0.1066 -35.4580 0.0000	X 13.8792 13.8443 11.0790 10.3581 11.8406 21.0241 35.7903 46.8173 46.8173 46.8173 10.0074 17.2328
0 TOTAL BE 0 BELT NO. 40 41 42 43 43 0 TOTAL BE 0 TOTAL HARNE 1 MAIN3I	SEGMENT		10 LLL 11 LF 12 RUA 13 RLA 14 LUA 15 LLA 16 VEH	SEGMENT 1 LT 2 CT 3 UT 4 N 5 H 6 RUL 7 RLL 10 LLL 11 LF 12 RUA 13 RLA 14 LUA

32			33
0.000000 PAGE	TOTAL	0.59796D-01 0.15881D-01 0.27943D+00 0.17012D-01 0.58353D-01 0.3729D-01 0.50492D-01 0.26981D-01 0.2699D-01 0.24731D-01 0.24731D-01 0.21947D+00 0.21947D+00 0.21945D+00 0.21945D+00 0.21945D+00 0.21945D+00 0.21945D+00 0.21945D+00	PAGE
0.000000	KINETIC ENERGY (LBIN.) ANGULAR	01 0.93193D-02 01 0.6398BD-03 00 0.16480D-01 01 0.13655D-02 01 0.13655D-02 01 0.12845D-01 01 0.2239D-02 01 0.12845D-01 01 0.22370D-02 01 0.12845D-01 01 0.2848D-01 01 0.28848D-01 01 0.288	
-0.019550	KIN (LINEAR	0.50476D-01 0.9 0.15241D-01 0.6 0.26295D+00 0.1 0.15646D-01 0.1 0.34999D-01 0.2 0.35148D-01 0.1 0.35148D-01 0.1 0.3524D-01 0.2 0.35285D-01 0.1 0.11310D-01 0.1 0.11310D-01 0.1 0.11302D-01 0.1 0.19060D+00 0.2 0.19060D+00 0.2 1001302D-01 0.1 0.19060D+00 0.2 1001302D-01 0.1 0.19060D+00 0.2 1.325 0.237	
0.0000) LATIONS Z	23110D+00 27230D-01 12466D+01 88961D-01 39239D+03 .63916D+02 .50352D+03 .50312D+03 .50311D+02 .17587D+04 .44563D-02 .17587D+04 .44563D-02 .17587D+04 .44563D-02 .03091D-02 .0336D-04 .01395D-01 .0.1395D-01 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2681D+02 .0.2678D+02 .0.2678D+02 .0.2678D+02 .0.2678D+02	
0.0000	(LOCAL) U2 ARRAY (RAD/SEC.**2) EXTERNAL ANGULAR ACCELERATIONS X Y Z	0-400 -0.31792D+03 -0. 0-01	
-0.21880	U2 ARRA EXTERNAL A X	0.930771 0.796051 0.796051 0.253391 0.170401 0.550651 0.93643 0.936943 0.93694	
0.0000	.**2) SRATIONS Z	01 -0.1721D+04 -0 03 0.3123D+03 -0 02 0.5373D+03 -0 00 0.3861D+03 -0 00 0.	
0.000	(INERTIAL) U1 ARRAY (IN./SEC.**2) EXTERNAL LINEAR ACCELERATIONS X Y Z	0.2856D+01 0.7354D-03 0.02199D-02 0.0000D+00 0.1882D+02 0.0000D+00 0.4526D+03 -0.4529D+03 0.0000D+00 0.0000D+0	0 🖼
-0.0013	U1 AR EXTERNAL X	-0.7746D+03 -0.5962D+02 -0.1369D+03 0.0000D+00 0.3316D+03 0.0000D+00 0.7042D+03 0.0000D+00 0.7046D+03 0.0000D+00 0.0000D+	CPU TIME = CALLS
16 VEH 1	SEGMENT	1 LTT 2 CTT 3 UTT 4 W N N N N N N N N N N N N N N N N N N	LAF
		82	

PAGE

	PAGE PENETRATION ENERGY LOSS	(IN. LB.) 0.000 0.000 0.000 0.000	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000
) (LB.)	2 -47.132 9.480 13.373 44.840	13.663 1.454 9.600 -47.137	-0.754 -2.056 2.915 2.014 1.316 2.078 0.655 0.396
•	(INERTIAL) BELT FORCES (Y 16.611 54.078 11.088 5.938	-6.031 -10.945 -54.126 -16.613	-2.260 2.114 0.440 0.045 1.195 -1.195 0.784
	изав	X 64.034 -33.451 -22.247 -13.407	-13.120 -22.596 -33.396 64.041	7.884 3.763 -3.644 -0.287 -0.646 -1.271 -0.816 -0.745
	(CIOSCID)	2 -8.500 -0.381 -1.249 -1.611	-1.611 -1.247 -0.381 -8.500	-32.000 -6.112 -6.162 -6.014 -5.685 -5.016 -4.190 -3.263
	(LOCAL OR ELLIPSOID) REFERENCE POINT (IN.)	-8.000 -5.655 -3.594 -2.696	2.696 3.589 5.655 8.000	0.000 -3.138 -3.143 -3.114 -3.081 -2.859 -2.815 -2.665
	(LOCAL REFERENC	X 7.000 2.572 3.689 3.867	3.867 3.692 2.572 7.000	-1.500 -0.575 0.193 0.970 1.665 2.588 3.197 3.709 4.036
0.24 11.40 11.40 11.40 11.33 11.33 11.33 11.33 11.33 11.33 11.33	0.65 0.97 1.34 100.00 = 10.000 MSEC. BELT STRAIN H ENERGY LOSS	(IN. LB.) 0.000 0.000 0.000 0.000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
9 52 52 52 1137 114 51 663 1 663 1 63 51 51 51 51 51	24 36 50 3720 ULTS FOR TIME = SEGMENT LENGTH	(IN.) NO. 1 0.000 11.408 2.486 0.979	, , ,	11.383 0.765 0.765 0.767 1.158 1.024 1.066
	12 24 12 36 50 50 3720 BELT RESULTS FOR TIME POINT SEGMENT LENGT!	DEX NO. OF HARNESS 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 0 3 1 2 3 1 2 9 16 11 ENERGY LOSS OF HARNESS NO.	16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18
1 522 521 511 511 663 663 671 671 671 671 671 671 671 671 671 671		1 OF 1 OF 2 3 4 4 5 5		
MAIN3D INPUT CHAIN EJOINT DINTG PDAUX DAUX DAUX SETUP1 CONTCT PLELP SEGSEG HBELT VISPR SETUP2 DAUX11 DAUX12 DAUX12 DAUX12 DAUX22 FSMSOL	UPDATE HPTURB DZP OTOTAL 1 HARNESS	NO. BELT NO. 2 2 3 4	6 6 7 7 9 8 9 9 9 1 TOTAL BELT REIT NO. 2	
	5 ਜ 83		00	•

0.868 0.794 0.456 1.181	0.000 0.000 0.000 0.000 0.000	4.273 -2.304 4.421 -2.141 4.476 -2.045 4.520 -1.801		-1.666 -0.901 -0.457 0.702	-0.667 -0.490 -0.652 -0.542	0.061 0.046 -0.044 -0.098	0.277 0.158 0.180 0.009	0.000
7.500 0 2.606 0				318	-0.872 -0.239	-1.092 -0.453	-4.123 -3.547	0.000
OF HARNESS NO. 1 8 16 0.000 0.0			•	000	7.884	2.260	-0.754	000.0
1.382 0.0 0.765 0.0				.112 .162	3.762 -3.643	-2.114 -0.440	-2.056 2.915	0.000
0.790 0.00 0.767 0.00				.014	-0.287	-0.045 -1.195	2.014 1.316	0.000
1.158 0.00 1.024 0.00				.016	-1.271	1.195	2.078	0.000
1.066 0.000 0.861 0.000		3.709 2.665 4.036 2.476		-3.263 -2.486	-0.745	-0.634	0.396	00000
0.868 0.000 0.794 0.000				.666	-0.667	-0.061	0.277	000000
				.457	-0.652	0.044	0.180	000.0
1.181 0.000 7.500 0.000				.702	-0.542	0.098	0.009	0.000
				.318	-0.239	0.453	-3.548	000.0
ENERGY LOSS 0.00C	_							000.0
000.0				.716	-1.082	0.000	-16.858	0000
11.598 0.000				.876	-2.627	000.0	0.504	000.0
1.702 0.000		4.527 0.000		-0.837	-6.371	0.001	2.952	0.000
1.609 0.000				.318	10.080	0.000	13.402	000.0
0.000	0							0.000

Example Time History Files

Time history files are those files with output logical units greater than 21. The data in time history files are arranged in columns. These column data can be easily ported to any spreadsheet or graphics software for further result analysis. There are a total of 33 time history files, from example.t21 up to example.t53, being generated by using example.ain as the ATB input file. In this section, only one file for each type of time history output is presented. The included files are:

- 1. Example.t21: Point linear accelerations.
- 2. Example.t22: Point linear velocities.
- 3. Example.t23: Point linear positions.
- 4. Example.t24: Point angular accelerations.
- 5. Example.t25: Point angular velocities.
- 6. Example.t26: Point angular positions.
- 7. Example.t27: Joint parameters.
- 8. Example.t37: Joint forces and torques.
- 9. Example.t38: Plane/segment contacts.
- 10. Example.t45: Harness belt contacts.
- 11. Example.t47: Ellipsoid/ellipsoid contacts.

Each file's output unit is shown by the highlighted file page number.

21 FEB 1995
SIMULATION OF THE HUMAN VOLUNTEER SLED TEST
USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS
SLED ACCELERATION
MALE HUMAN 167 LB

CARD A2
CARD A2 PAGE: 21.00
CARD C1

VEHICLE DECELERATION: CRASH VICTIM:

POINT TOTAL ACCELERATION (G'S)

X RES X Y Y Y Y Y Y Y Y Y X X	ä	POINT ((6.20, 0.00, SEGMENT NO5	٠,٠	3.22) ON H	POINT ((4.74, 0.00, SEGMENT NO3	, 1	0.00) ON UT
0.025 0.000 -0.041 0.049 -0.391 0.000 -0.085 0.000 -0.039 0.094 -0.407 0.000 -0.276 0.000 0.046 0.280 -0.274 0.000 -0.493 0.000 0.094 0.528 -0.274 0.000 -0.493 0.000 0.044 0.528 -0.279 0.000 -0.526 0.002 0.044 0.528 -0.210 0.000 -0.535 0.001 -0.191 0.538 -0.210 0.000 -0.535 0.000 -0.191 0.559 -0.179 0.000 -0.513 0.001 -0.191 0.559 -0.179 0.000 -0.513 0.001 -0.511 0.707 -0.166 0.000 -0.107 0.001 -0.511 0.707 -0.051 0.000 -0.107 0.001 -0.511 0.707 0.057 0.000 -0.107 0.000 -1.042 1.047 0.057	(MSEC)	×	ACCELERO Y			×	ACCEDENO		RES
-0.085 0.000 -0.039 0.094 -0.407 0.000 -0.276 0.000 0.046 0.280 -0.320 0.000 -0.493 0.000 0.094 0.528 -0.274 0.000 -0.493 0.000 0.094 0.528 -0.210 0.000 -0.526 0.001 -0.018 0.528 -0.210 0.000 -0.538 0.000 -0.191 0.538 -0.210 0.000 -0.525 0.000 -0.191 0.559 -0.179 0.000 -0.539 0.001 -0.272 0.581 -0.166 0.000 -0.513 0.001 -0.531 0.001 0.000 -0.518 0.001 -0.531 0.001 0.000 -0.107 0.000 -0.866 0.887 0.001 -0.107 0.000 -1.046 1.047 0.001 -0.018 0.000 -1.046 1.047 0.001 -0.029 0.000 -1.048	0.000	0.025	0.000	-0.041	0.049	-0.391	0.000	-0.160	0.422
-0.276 0.000 0.046 0.280 -0.320 0.000 -0.415 0.000 0.098 0.427 -0.274 0.000 -0.435 0.002 0.044 0.528 -0.224 0.000 -0.526 0.002 0.044 0.528 -0.210 0.000 -0.536 0.000 -0.026 0.546 -0.179 0.000 -0.537 0.001 -0.109 0.546 -0.179 0.000 -0.537 0.001 -0.127 0.581 -0.179 0.000 -0.357 0.002 -0.551 0.656 -0.061 0.000 -0.357 0.002 -0.551 0.656 -0.061 0.000 -0.107 0.001 -0.831 0.077 -0.051 0.000 -0.107 0.001 -0.970 0.976 0.001 0.000 -0.057 0.000 -1.053 1.047 0.085 0.000 -0.053 0.000 -1.053 1.044 0.000	2.000	-0.085	000.0	-0.039	0.094	-0.407	000.0	-0.646	0.764
-0.415 0.000 0.098 0.427 -0.274 0.000 -0.436 0.000 0.094 0.502 -0.249 0.000 -0.538 0.000 -0.026 0.528 -0.217 0.000 -0.538 0.000 -0.191 0.559 -0.179 0.000 -0.537 0.000 -0.191 0.559 -0.179 0.000 -0.357 0.002 -0.551 0.666 -0.061 0.000 -0.357 0.002 -0.551 0.656 -0.061 0.000 -0.319 0.001 -0.631 0.001 -0.061 0.000 -0.319 0.001 -0.631 0.001 0.001 -0.018 0.000 -0.031 0.000 0.002 -0.018 0.000 -1.022 1.024 0.000 -0.046 0.000 -1.042 1.047 0.001 -0.039 0.000 -1.042 1.047 0.002 -0.046 0.000 -1.042	4.000	-0.276	0.000	0.046	0.280	-0.320	000.0	-1.025	1.074
-0.493 0.000 0.094 0.502 -0.249 0.000 -0.526 0.000 -0.026 0.528 -0.227 0.000 -0.536 0.000 -0.026 0.538 -0.120 0.000 -0.535 0.001 -0.191 0.559 -0.179 0.000 -0.513 0.001 -0.272 0.581 -0.166 0.000 -0.357 0.002 -0.551 0.556 -0.061 0.000 -0.188 0.000 -0.866 0.887 0.061 0.000 -0.188 0.000 -1.022 0.556 0.001 -0.057 0.000 -1.022 0.556 0.000 -0.067 0.000 -1.022 0.057 0.000 -0.039 0.000 -1.047 0.095 0.000 -0.040 0.000 -1.071 1.071 0.037 -0.039 0.000 -1.078 1.073 0.107 -0.039 0.000 -1.071 0.104	000.9	-0.415	000.0	0.098	0.427	-0.274	0.000	-1,175	1.207
-0.526 0.002 0.044 0.528 -0.227 0.000 -0.538 0.000 -0.109 0.538 -0.210 0.000 -0.535 0.000 -0.109 0.546 -0.194 0.000 -0.513 0.001 -0.127 0.581 -0.104 0.000 -0.513 0.001 -0.272 0.581 -0.166 0.000 -0.357 0.002 -0.551 0.656 -0.061 0.000 -0.138 0.001 -0.570 0.976 0.001 0.000 -0.067 0.000 -1.022 1.024 0.067 0.000 -0.067 0.000 -1.022 1.024 0.087 0.000 -0.067 0.000 -1.046 1.047 0.087 0.000 -0.039 0.000 -1.046 1.047 0.087 0.000 -0.039 0.000 -1.048 1.063 0.000 0.000 -0.002 0.000 -1.062 1.062 0.146	8.000	-0.493	0.000	0.094	0.502	-0.249	000.0	-1.221	1.246
-0.538 0.000 -0.026 0.538 -0.104 0.000 -0.535 0.001 -0.109 0.546 -0.194 0.000 -0.535 0.001 -0.131 0.559 -0.179 0.000 -0.317 0.002 -0.551 0.656 -0.061 0.000 -0.319 0.001 -0.651 0.656 -0.061 0.000 -0.319 0.001 -0.651 0.067 0.000 -0.188 0.001 -0.866 0.887 0.065 0.000 -0.046 0.000 -1.022 1.024 0.065 0.000 -0.046 0.000 -1.046 1.047 0.095 0.000 -0.039 0.000 -1.046 1.047 0.097 0.000 -0.046 0.000 -1.053 1.071 0.132 0.000 -0.005 0.000 -1.071 1.091 0.146 0.000 -0.006 0.000 -1.078 1.062 0.146 0.000 <	10.000	-0.526	0.002	0.044	0.528	-0.227	0.000	-1.242	1.263
-0.535 0.001 -0.109 0.546 -0.194 0.000 -0.525 0.000 -0.191 0.559 -0.179 0.000 -0.513 0.0001 -0.527 0.559 -0.179 0.000 -0.319 0.001 -0.531 0.707 -0.061 0.000 -0.319 0.000 -0.866 0.887 0.065 0.000 -0.107 0.000 -0.970 0.976 0.005 0.000 -0.046 0.000 -1.022 1.024 0.087 0.000 -0.039 0.000 -1.044 0.097 0.000 -0.039 0.000 -1.053 1.053 0.107 -0.039 0.000 -1.063 1.063 0.000 -0.005 0.000 -1.068 1.068 0.145 0.000 -0.006 0.000 -1.068 1.065 0.125 0.000 -0.006 0.000 -1.068 1.064 0.145 0.000 -0.006	12.000	-0.538	0.000	-0.026	0.538	-0.210	0.000	-1.241	1.259
-0.525 0.000 -0.191 0.559 -0.179 0.000 -0.513 0.001 -0.272 0.581 -0.166 0.000 -0.357 0.002 -0.551 0.656 -0.061 0.000 -0.319 0.001 -0.631 0.707 -0.051 0.000 -0.188 0.000 -0.866 0.887 0.055 0.000 -0.007 0.001 -0.970 0.976 0.005 0.000 -0.005 0.000 -1.022 1.024 0.085 0.000 -0.039 0.000 -1.046 1.047 0.087 0.000 -0.039 0.000 -1.043 1.047 0.097 0.000 -0.039 0.000 -1.041 1.041 0.000 0.000 -0.005 0.000 -1.088 1.088 0.142 0.000 -0.005 0.000 -1.064 1.064 0.014 0.000 -0.006 0.000 -1.064 1.064 0.000 </td <td>14.000</td> <td>-0.535</td> <td>0.001</td> <td>-0.109</td> <td>0.546</td> <td>-0.194</td> <td>000.0</td> <td>-1,233</td> <td>1.248</td>	14.000	-0.535	0.001	-0.109	0.546	-0.194	000.0	-1,233	1.248
-0.513 0.001 -0.272 0.581 -0.166 0.000 -0.357 0.002 -0.551 0.656 -0.061 0.000 -0.184 0.000 -0.866 0.887 0.055 0.000 -0.187 0.000 -0.866 0.887 0.057 0.000 -0.067 0.000 -1.022 1.024 0.085 0.000 -0.046 0.000 -1.046 1.047 0.085 0.000 -0.039 0.000 -1.046 1.047 0.085 0.000 -0.039 0.000 -1.046 1.047 0.085 0.000 -0.039 0.000 -1.048 1.088 0.142 0.000 -0.003 0.000 -1.088 1.088 0.142 0.000 -0.004 0.000 -1.068 1.068 0.146 0.000 -0.005 0.000 -1.068 1.066 0.146 0.000 -0.006 0.000 -1.068 1.066 0.18 <	16.000	-0.525	0.000	-0.191	0.559	-0.179	0.000	-1.215	1.228
-0.357 0.002 -0.551 0.656 -0.061 0.000 -0.319 0.001 -0.631 0.707 -0.051 0.000 -0.188 0.000 -0.866 0.887 0.055 0.000 -0.067 0.000 -1.022 1.024 0.087 0.000 -0.046 0.000 -1.046 1.047 0.097 0.000 -0.039 0.000 -1.053 1.053 0.107 0.000 -0.039 0.000 -1.071 1.071 0.122 0.000 -0.039 0.000 -1.091 1.091 0.107 0.000 -0.039 0.000 -1.068 1.063 0.146 0.000 -0.005 0.000 -1.061 1.062 0.146 0.000 -0.006 0.000 -1.068 1.068 0.189 0.000 -0.006 0.000 -1.068 1.062 0.144 0.000 -0.006 0.000 -1.064 1.064 0.184	18.000	-0.513	0.001	-0.272	0.581	-0.166	0.000	-1.205	1.216
-0.319 0.001 -0.631 0.707 -0.051 0.000 -0.188 0.000 -0.866 0.887 0.055 0.000 -0.107 0.001 -0.970 0.976 0.005 0.000 -0.046 0.000 -1.022 1.024 0.085 0.000 -0.046 0.000 -1.046 1.047 0.097 0.000 -0.039 0.000 -1.071 1.071 0.097 0.000 -0.039 0.000 -1.091 1.091 0.122 0.000 -0.005 0.000 -1.091 1.091 0.138 0.000 -0.005 0.000 -1.088 1.088 0.146 0.000 -0.006 0.000 -1.062 1.062 0.146 0.000 -0.006 0.000 -1.064 1.062 0.189 0.000 -0.006 0.000 -1.062 1.062 0.189 0.000 0.002 0.000 -1.064 1.076 0.184 <t< td=""><td>20.000</td><td>-0.357</td><td>0.002</td><td>-0.551</td><td>0.656</td><td>-0.061</td><td>0.000</td><td>-1.120</td><td>1.121</td></t<>	20.000	-0.357	0.002	-0.551	0.656	-0.061	0.000	-1.120	1.121
-0.188 0.000 -0.866 0.887 0.055 0.000 -0.107 0.001 -0.970 0.0976 0.067 0.000 -0.067 0.000 -1.022 1.024 0.085 0.000 -0.046 0.000 -1.046 1.047 0.097 0.000 -0.039 0.000 -1.053 1.053 0.107 0.000 -0.055 0.000 -1.091 1.071 0.122 0.000 -0.003 0.000 -1.091 1.091 0.132 0.000 -0.003 0.000 -1.091 1.078 0.142 0.000 -0.003 0.000 -1.062 1.078 0.146 0.000 -0.005 0.000 -1.062 1.062 0.146 0.000 -0.006 0.000 -1.064 1.064 0.146 0.000 0.007 0.000 -1.064 1.064 0.184 0.000 0.008 0.000 -1.064 1.064 0.184 <td< td=""><td>22.000</td><td>-0.319</td><td>0.001</td><td>-0.631</td><td>0.707</td><td>-0.051</td><td>0.000</td><td>-1.115</td><td>1.116</td></td<>	22.000	-0.319	0.001	-0.631	0.707	-0.051	0.000	-1.115	1.116
-0.107 0.001 -0.970 0.976 0.067 0.000 -0.067 0.000 -1.022 1.024 0.085 0.000 -0.046 0.000 -1.046 1.047 0.097 0.000 -0.039 0.000 -1.053 1.053 0.000 0.000 -0.023 0.000 -1.071 1.071 0.122 0.000 -0.005 0.000 -1.071 1.071 0.132 0.000 -0.005 0.000 -1.088 1.088 0.142 0.000 -0.005 0.000 -1.068 1.068 0.146 0.000 -0.005 0.000 -1.064 1.068 0.146 0.000 -0.006 0.000 -1.064 1.064 0.189 0.000 0.007 0.000 -1.064 1.064 0.189 0.000 0.008 0.000 -1.064 1.064 0.184 0.000 0.009 0.000 -1.073 1.073 0.20 0.	24.000	-0.188	0.000	-0.866	0.887	0.055	0.000	-1.008	1.010
-0.067 0.000 -1.022 1.024 0.085 0.000 -0.046 0.000 -1.046 1.047 0.097 0.000 -0.039 0.000 -1.053 1.053 0.000 -0.023 0.000 -1.071 1.071 0.122 0.000 -0.005 0.000 -1.081 1.081 0.138 0.000 -0.003 0.000 -1.088 1.088 0.142 0.000 -0.005 0.000 -1.068 1.068 0.145 0.000 -0.005 0.000 -1.068 1.068 0.145 0.000 -0.006 0.000 -1.062 1.062 0.175 0.000 -0.006 0.000 -1.064 1.062 0.175 0.000 0.007 0.000 -1.064 1.064 0.184 0.000 0.009 0.000 -1.064 1.073 0.184 0.000 0.009 0.000 -1.073 1.073 0.20 0.00 <	26.000	-0.107	0.001	-0.970	0.976	0.067	0.000	-1.014	1.016
-0.046 0.000 -1.046 1.047 0.097 0.000 -0.039 0.000 -1.053 1.053 0.107 0.000 -0.023 0.000 -1.071 1.071 0.122 0.000 -0.005 0.000 -1.088 1.088 0.142 0.000 -0.003 0.000 -1.078 1.078 0.146 0.000 -0.005 0.000 -1.068 1.068 0.146 0.000 -0.006 0.000 -1.068 1.068 0.146 0.000 -0.006 0.000 -1.068 1.062 0.159 0.000 -0.007 0.000 -1.061 1.062 0.175 0.000 0.002 0.000 -1.066 1.062 0.187 0.000 0.003 0.000 -1.073 1.073 0.200 0.000 0.011 0.000 -1.038 1.038 0.181 0.000 0.027 0.000 -1.160 1.162 0.214 0.	28.000	-0.067	0.000	-1.022	1.024	0.085	0.000	-1.013	1.017
-0.039 0.000 -1.053 1.053 0.107 0.000 -0.023 0.000 -1.071 1.071 0.122 0.000 -0.005 0.000 -1.091 1.091 0.138 0.000 -0.003 0.000 -1.088 1.088 0.142 0.000 -0.005 0.000 -1.068 1.068 0.146 0.000 -0.006 0.000 -1.068 1.068 0.146 0.000 -0.006 0.000 -1.062 1.062 0.175 0.000 -0.004 0.000 -1.061 1.061 0.187 0.000 0.009 -1.066 1.066 0.187 0.000 0.016 0.000 -1.073 1.073 0.200 0.000 0.016 0.000 -1.018 1.018 0.189 0.000 0.027 0.000 -1.018 1.018 0.214 0.000 0.057 0.000 -1.160 1.162 0.214 0.000 <	30.000	-0.046	0.000	-1.046	1.047	0.097	000.0	-1.020	1.025
-0.023 0.000 -1.071 1.071 0.122 0.000 -0.005 0.000 -1.091 1.091 0.138 0.000 -0.005 0.000 -1.088 1.088 0.142 0.000 -0.005 0.000 -1.068 1.068 0.159 0.000 -0.005 0.000 -1.062 1.062 0.175 0.000 -0.004 0.000 -1.061 1.061 0.187 0.000 0.002 0.000 -1.066 1.066 0.184 0.000 0.009 0.000 -1.073 1.073 0.200 0.000 0.016 0.000 -1.076 1.076 0.201 0.000 0.016 0.000 -1.038 1.038 0.189 0.000 0.016 0.000 -1.038 1.038 0.189 0.000 0.027 0.000 -1.148 1.162 0.214 0.000 0.138 0.000 -1.148 1.368 0.235 0.000	32.000	-0.039	0.000	-1.053	1.053	0.107	0.000	-1.015	1.021
-0.005 0.000 -1.091 1.091 0.138 0.000 -0.000 0.000 -1.088 1.088 0.145 0.000 -0.005 0.000 -1.068 1.068 0.159 0.000 -0.006 0.000 -1.062 1.062 0.159 0.000 -0.004 0.000 -1.062 1.062 0.187 0.000 0.002 0.000 -1.064 1.064 0.187 0.000 0.009 0.000 -1.073 1.073 0.200 0.000 0.016 0.000 -1.076 1.076 0.201 0.000 0.016 0.000 -1.078 1.076 0.201 0.000 0.016 0.000 -1.018 1.038 0.189 0.000 0.017 0.000 -1.018 1.018 0.189 0.000 0.027 0.000 -1.140 1.152 0.214 0.000 0.138 0.000 -1.134 1.368 0.129 0.000<	34.000	-0.023	0.000	-1.071	1.071	0.122	0.000	-1.001	1.008
0.000 0.000 -1.088 1.088 0.142 0.000 -0.003 0.000 -1.078 1.078 0.146 0.000 -0.006 0.000 -1.062 1.062 0.159 0.000 -0.004 0.000 -1.061 1.061 0.187 0.000 0.002 0.000 -1.066 1.066 0.194 0.000 0.009 0.000 -1.073 1.073 0.200 0.000 0.016 0.000 -1.076 1.076 0.201 0.000 0.05 0.000 -1.078 1.078 0.201 0.000 0.05 0.000 -1.018 1.038 0.189 0.000 0.057 0.000 -1.160 1.162 0.214 0.000 0.138 0.000 -1.140 1.162 0.214 0.000 0.202 0.000 -1.140 1.142 0.201 0.000 0.203 0.000 -1.286 1.293 0.220 0.000	36.000	-0.005	0.000	-1.091	1.091	0.138	0.000	-0.998	1.007
-0.003 0.000 -1.078 1.078 0.146 0.000 -0.005 0.000 -1.068 1.068 0.159 0.000 -0.004 0.000 -1.061 1.062 0.159 0.000 0.002 0.000 -1.066 1.066 0.194 0.000 0.002 0.000 -1.073 1.073 0.200 0.000 0.016 0.000 -1.076 1.076 0.201 0.000 0.005 0.000 -1.078 1.078 0.189 0.000 0.005 0.000 -1.018 1.018 0.189 0.000 0.057 0.000 -1.160 1.162 0.214 0.000 0.138 0.000 -1.160 1.162 0.214 0.000 0.202 0.000 -1.286 1.293 0.235 0.000 0.230 0.000 -1.347 1.368 0.129 0.000 0.257 0.000 -1.348 1.329 -0.010 0.000 </td <td>38.000</td> <td>0.000</td> <td>0.000</td> <td>-1.088</td> <td>1.088</td> <td>0.142</td> <td>0.000</td> <td>-1.006</td> <td>1.016</td>	38.000	0.000	0.000	-1.088	1.088	0.142	0.000	-1.006	1.016
-0.005 0.000 -1.068 1.068 0.159 0.000 -0.006 0.000 -1.062 1.062 0.175 0.000 -0.004 0.000 -1.064 1.064 0.000 0.002 0.000 -1.066 1.066 0.194 0.000 0.009 0.000 -1.073 1.073 0.200 0.000 0.005 0.000 -1.076 1.078 0.200 0.000 0.005 0.000 -1.018 1.018 0.181 0.000 0.057 0.000 -1.160 1.162 0.214 0.000 0.057 0.000 -1.186 1.293 0.235 0.000 0.138 0.000 -1.286 1.293 0.220 0.000 0.230 0.000 -1.347 1.362 0.020 0.000 0.195 0.000 -1.278 1.292 -0.010 0.000 0.267 0.000 -1.368 1.326 -0.052 0.000	40.000	-0.003	0.000	-1.078	1.078	0.146	0.000	-1.002	1.013
-0.006 0.000 -1.062 1.062 0.175 0.000 -0.004 0.000 -1.061 1.061 0.187 0.000 0.002 0.000 -1.066 1.066 0.194 0.000 0.009 0.000 -1.076 1.073 0.200 0.000 0.016 0.000 -1.038 1.038 0.189 0.000 -0.011 0.000 -1.018 1.018 0.181 0.000 0.057 0.000 -1.160 1.162 0.214 0.000 0.138 0.000 -1.286 1.293 0.235 0.000 0.230 0.000 -1.347 1.362 0.220 0.000 0.230 0.000 -1.348 1.358 0.129 0.000 0.155 0.000 -1.278 1.292 -0.012 0.000 0.257 0.000 -1.352 1.378 -0.052 0.000 0.324 0.000 -1.352 1.378 -0.174 -0.00	42.000	-0.005	0.000	-1.068	1.068	0.159	0.00	-1.001	1.014
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.000	900.0-	0.000	-1.062	1.062	0.175	0.000	-1.002	1.017
0.002 0.000 -1.066 1.066 0.194 0.000 0.009 0.000 -1.073 1.073 0.200 0.000 0.016 0.000 -1.076 1.076 0.201 0.000 0.005 0.000 -1.018 1.018 0.181 0.000 0.057 0.000 -1.160 1.162 0.214 0.000 0.138 0.000 -1.246 1.293 0.235 0.000 0.202 0.000 -1.347 1.362 0.220 0.000 0.195 0.000 -1.278 1.293 0.129 0.000 0.195 0.000 -1.278 1.362 -0.010 0.000 0.218 0.000 -1.278 1.326 -0.012 0.000 0.257 0.000 -1.352 1.378 -0.052 0.000 0.257 0.000 -1.352 1.378 -0.174 -0.001 0.324 0.000 -1.387 1.424 -0.174 -0.00	46.000	-0.004	0.000	-1.061	1.061	0.187	0.00	-1.001	1.018
0.009 0.000 -1.073 1.073 0.200 0.000 0.016 0.000 -1.076 1.076 0.201 0.000 0.005 0.000 -1.038 1.038 0.189 0.000 0.057 0.000 -1.160 1.162 0.214 0.000 0.138 0.000 -1.286 1.293 0.235 0.000 0.202 0.000 -1.347 1.362 0.220 0.000 0.239 0.000 -1.278 1.292 -0.010 0.000 0.195 0.000 -1.278 1.326 -0.052 0.000 0.218 0.000 -1.378 1.326 -0.010 0.000 0.267 0.000 -1.352 1.378 -0.174 -0.001 0.324 0.000 -1.387 1.424 -0.174 -0.001 0.379 0.000 -1.458 1.512 -0.221 0.001 0.477 0.000 -1.517 1.591 -0.288 0.	48.000	0.002	0.000	-1.066	1.066	0.194	0000	-0.996	1.015
0.016 0.000 -1.076 1.076 0.201 0.000 0.005 0.000 -1.038 1.038 0.189 0.000 -0.011 0.000 -1.018 1.018 0.181 0.000 0.057 0.000 -1.160 1.162 0.214 0.000 0.138 0.000 -1.286 1.293 0.235 0.000 0.202 0.000 -1.347 1.362 0.220 0.000 0.239 0.000 -1.278 1.292 -0.010 0.000 0.218 0.000 -1.278 1.326 -0.010 0.000 0.267 0.000 -1.352 1.378 -0.107 0.000 0.324 0.000 -1.352 1.378 -0.107 0.000 0.329 0.000 -1.352 1.378 -0.174 -0.001 0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	50.000	0.009	0.000	-1.073	1.073	0.200	0.000	-0.992	1.012
0.005 0.000 -1.038 1.038 0.189 0.000 -0.011 0.000 -1.018 1.018 0.181 0.000 0.057 0.000 -1.160 1.162 0.214 0.000 0.138 0.000 -1.286 1.293 0.235 0.000 0.202 0.000 -1.347 1.362 0.220 0.000 0.230 0.000 -1.278 1.292 0.129 0.000 0.18 0.000 -1.278 1.292 -0.010 0.000 0.267 0.000 -1.352 1.378 -0.107 0.000 0.324 0.000 -1.387 1.424 -0.174 -0.001 0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	52.000	0.016	0.000	-1.076	1.076	0.201	0.000	-0.977	0.998
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54.000	0.005	0.000	-1.038	1.038	0.189	0.000	-0.954	0.973
0.057 0.000 -1.160 1.162 0.214 0.000 0.138 0.000 -1.286 1.293 0.235 0.000 0.202 0.000 -1.347 1.362 0.220 0.000 0.230 0.000 -1.278 1.292 -0.012 0.000 0.18 0.000 -1.378 1.292 -0.010 0.000 0.267 0.000 -1.352 1.378 -0.107 0.000 0.324 0.000 -1.387 1.424 -0.174 -0.001 0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	56.000	-0.011	0.000	-1.018	1.018	0.181	0.000	-1.006	1.022
0.138 0.000 -1.286 1.293 0.235 0.000 0.202 0.000 -1.347 1.362 0.220 0.000 0.230 0.000 -1.248 1.368 -0.129 0.000 0.195 0.000 -1.278 1.292 -0.010 0.000 0.218 0.000 -1.348 1.326 -0.052 0.000 0.257 0.000 -1.352 1.378 -0.107 0.000 0.324 0.000 -1.387 1.424 -0.174 -0.001 0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	58.000	0.057	000.0	-1.160	1.162	0.214	000.0	-1.003	1.026
0.202 0.000 -1.347 1.362 0.220 0.000 0.230 0.000 -1.348 1.368 0.129 0.000 0.195 0.000 -1.278 1.292 -0.010 0.000 0.218 0.000 -1.308 1.326 -0.052 0.000 0.267 0.000 -1.352 1.378 -0.107 0.000 0.324 0.000 -1.387 1.424 -0.174 -0.001 0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	60.000	0.138	0.000	-1.286	1.293	0.235	0.000	-0.975	1.003
0.230 0.000 -1.348 1.368 0.129 0.000 0.195 0.000 -1.278 1.292 -0.010 0.000 0.218 0.000 -1.308 1.326 -0.052 0.000 0.267 0.000 -1.352 1.378 -0.107 0.000 0.324 0.000 -1.387 1.424 -0.174 -0.001 0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	62.000	0.202	0.000	-1.347	1.362	0.220	0.000	-0.916	0.942
0.195 0.000 -1.278 1.292 -0.010 0.000 0.218 0.000 -1.308 1.326 -0.052 0.000 0.267 0.000 -1.352 1.378 -0.107 0.000 0.324 0.000 -1.387 1.424 -0.174 -0.001 0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	64.000	0.230	0.000	-1.348	1.368	0.129	0.000	-0.904	0.913
0.218 0.000 -1.308 1.326 -0.052 0.000 0.267 0.000 -1.352 1.378 -0.107 0.000 0.324 0.000 -1.387 1.424 -0.174 -0.001 0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	66.000	0.195	0.000	-1.278	1.292	-0.010	0.00	-0.933	0.933
0.267 0.000 -1.352 1.378 -0.107 0.000 0.324 0.000 -1.387 1.424 -0.174 -0.001 0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	68.000	0.218	0.000	-1.308	1.326	-0.052	0.00	-0.890	0.892
0.324 0.000 -1.387 1.424 -0.174 -0.001 0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	70.000	0.267	0.000	-1.352	1.378	-0.107	0.000	-0.837	0.843
0.399 0.000 -1.458 1.512 -0.221 0.000 0.477 0.000 -1.517 1.591 -0.288 0.001	72.000	0.324	000.0	-1.387	1.424	-0.174	-0.001	-0.743	0.763
.000 0.477 0.000 -1.517 1.591 -0.288 0.001	74.000	0.399	000.0	-1.458	1.512	-0.221	000.0	-0.752	0.784
		0.477	0.000	-1.517	1.591	-0.288	0.001	-0.686	0.744

CARD A2
CARD A2 PAGE: 22.00
CARD C1

21 FEB 1995
SIMULATION OF THE HUMAN VOLUNTEER SLED TEST
USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS
SLED ACCELERATION
MALE HUMAN 167 LB DATE: RUN DESCRIPTION:

VEHICLE DECELERATION: CRASH VICTIM:

IN./SEC.)
VELOCITY (
REL.
POINT

0.00) ON UT	RES	0.000	0.713	1.017	1.205	1.424	1.690	1.964	2.246	2.538	2.832	3.022	3.193	3.285	3.329	3.401	3.471	3.527	3.566	3.602	3.630	3.649	3.647	3.626	3.595	3.566	3.521	3.435	3.309	3.167	2.980	2.649	2.008	0.940	0.512	1.931	3.555	5.357	7.381	9.765
.00,	REFERENCE Z	0.000	0.638	0.790	0.742	0.623	0.483	0.335	0.190	0.053	-0.076	-0.138	-0.213	-0.251	-0.257	-0.268	-0.280	-0.296	-0.304	-0.307	-0.314	-0.323	-0.331	-0.341	-0.354	-0.366	-0.376	-0.380	-0.362	-0.348	-0.367	-0.377	-0.347	-0.285	-0.232	-0.150	-0.019	0.167	0.439	0.718
. ~	IN VEH R	0.000	000.0	0.000	0.000	-0.001	000.0	000.0	0.000	0.000	0.00	0.00	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.005	0.004	0.005	000.0	0.003	-0.007	-0.016
POINT S	×	000.0	-0.318	-0.640	-0.949	-1.281	-1.619	-1.935	-2.238	-2.538	-2.831	-3.019	-3.186	-3.275	-3.319	-3.390	-3.459	-3.515	-3.553	-3.589	-3.617	-3.635	-3.632	-3.610	-3.578	-3.547	-3.501	-3.414	-3.289	-3.148	-2.957	-2.622	-1.977	-0.895	0.457	1.925	3.555	5.354	7.368	9.739
3.22) ON H	RES	0.000	0.781	1.560	2.414	3.313	4.219	5.089	5.909	9.676	7.387	7.888	8.284	8.557	8.648	8.684	8.683	8.672	8.646	8.602	8.546	8.496	8.445	8.397	8.350	8.304	8.246	8.164	8.080	8.013	7.880	7.578	7.109	6.585	6.332	6.567	7.360	8.733	10.688	13.257
.00,	REFERENCE Z	0.000	0.781	1.559	2.400	3.264	4.112	4.911	5.651	6.327	6.938	7.356	7.684	7.908	7.970	7.973	7.941	7.905	7.858	7.794	7.721	7.658	7.602	7.552	7.505	7.456	7.402	7.343	7.300	7.284	7.218	7.044	6.801	6.531	6.286	6.058	5.800	5.505	5.205	4.824
ν, ~	IN VEH R	0.000	0.000	0.000	000.0	-0.001	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	000.0	0.003	-0.007	-0.016
POINT (×	0.000	0.013	-0.057	-0.251	-0.564	-0.943	-1.333	-1.727	-2.131	-2.535	-2.847	-3.096	-3.269	-3.357	-3.442	-3.512	-3.567	-3.606	-3.641	-3.664	-3.679	-3.679	-3.670	-3.661	-3.656	-3.634	-3.567	-3.465	-3,338	-3.161	-2.794	-2.072	-0.841	0.762	2.534	4.531	6.779	9.335	12.348
	TIME (MSEC)	0.000	2.000	4.000	000.9	8.000	10.000	12.000	14.000	16.000	18.000	20.000	22.000	24.000	26.000	28.000	30.000	32.000	34.000	36.000	38.000	40.000	42.000	44.000	46.000	48.000	50.000	52.000	54.000	56.000	58.000	000.09	62.000	64.000	66.000	68.000	70.000	72.000	74.000	76.000

DATE: 21 FEB 1995
RUN DESCRIPTION: SIMULATION OF THE HUMAN V

: SIMULATION OF THE HUMAN VOLUNTEER SLED TEST USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS

CARD A2
CARD A2 PAGE: 23.00
CARD C1

31.955 31.952 31.950 31.938 31.964 31.947 31.972 31.970 31.932 31.92931.985 31.983 31.980 31.958 31.926 31.921 31.935 31.924 31.919 31.917 31.915 31.914 31.914 31.916 31.941 31.975 31.967 31.961 POINT (4.74, 0.00, 0.00) ON SEGMENT NO. 3 - UT POINT REL. LINEAR DISPLACEMENT (IN.) IN VEH REFERENCE -27.844 -27.845 -27.846 -27.846 -27.847 -27.848 -27.849 -27.850 -27.850 -27.839 -27.840 -27.840 -27.842 -27.843 -27.843 -27.844 -27.852 -27.853 -27.841 -27.840 -27.840 -27.854 -27.854 -27.854 -27.855 -27.839-27.841-27.841-27.842-27.8402 0.000 15.754 15.754 15.751 15.751 15.749 15.743 15.738 15.738 15.722 15.720 15.703 15.696 15.696 15.696 15.696 15.696 15.697 15.697 15.647 15.639 15.632 15.625 15.618 15.611 15.604 15.598 15.592 15.586 15.581 15.579 15.578 15.580 15.586 × 41.070 41.535 41.534 41.528 41.523 41.516 41.496 41.469 41.454 41.438 41.387 41.369 41.352 41.335 41.233 41.063 41.300 41.151 41.091 41.080 41.483 41.421 41.404 41.266 41.249 41.199 41.135 41.119 41.105 41.317 41.283 41.183 41.167 POINT (6.20, 0.00, 3.22) ON SEGMENT NO. 5 -- H IN VEH REFERENCE SLED ACCELERATION MALE HUMAN 167 LB -37.084 -37.053 -36.924 -36.911 -37.225 -37.193 -36.980 -36.865 -37.009 -36.951 -36.898 -37.335 -37.334-37.145-37.130-37.114-37.099-37.068-37.024-36.994-36.965 -36.937-36.887 -37.255 -37.240-37.328 -37.315-37.306 -37.295-37.283-37.270-37.161-37.332-37.3222 0.000 000.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 VEHICLE DECELERATION: CRASH VICTIM: 18.035 18.201 18.201 18.201 18.200 18.200 18.198 18.184 18.179 18.160 18.153 18.146 18.139 18.132 18.125 18.117 18.110 18.103 18.095 18.088 18.081 18.073 18.066 18.059 18.046 18.040 18.032 18.193 18,189 18.167 18,035 18.042 18.052 18.032 18.069 18.173 × 54.000 56.000 58.000 60.000 44.000 46.000 48.000 62.000 64.000 66.000 68.000 0.000 2.000 4.000 6.000 110.000 112.000 118.000 22.000 22.000 22.000 22.000 332.000 34.000 38.000 40.000 50.000 52.000

CARD A2
CARD A2 PAGE: 24.00
CARD C1

21 FEB 1995
SIMULATION OF THE HUMAN VOLUNTEER SLED TEST
USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS
SLED ACCELERATION
MALE HUMAN 167 LB DATE: RUN DESCRIPTION:

VEHICLE DECELERATION: CRASH VICTIM:

SEGMENT ANGULAR ACCELERATION (REV/SEC.**2)

RLA CE	RES	-	7 8.361	3 8.432											4	4					3.664			7 3.142							_				7.115	6.800	6 6.498	.4 6.107	3 6.167	
SEGMENT NO. 13 - 1 IN RUA REFERENCE	72	-	5.137	4.493	3.997												2.196													1				3.675		2.453		1.814	1.603	,
SEGMENT IN RUA	*	-0.897	-1.571	-2.430	-2.510	-2.266	-1.986	-1.706	-1.461	-1.218														Ī			•					·	-6.734	-6.383	-6.207	-6.060	-5.885		-5.741	
	×	-3.189	-6.407	-6.709	-6.711	-6.566	-6.372	-6.140	-5.891	-5.625	-5.371	-4.905	-4.686	-4.201	-4.026	-3.832	-3.660	-3.473	-3.270	-3.086	-2.940	-2.777	-2.607	-2.442	-2.287	-2.141	-2.000	-1.148	5.617	8.382	4.396	-0.595	-1.416	-1.667	-1.914	-1.869	-1.790	-1.655	-1.582	,
RUA	RES	13.834	9.487	9.136	8.691	8.230	7.799	7.377	6.970	6.580	6.229	5.378	5.108			4.123	3.932	3.750	3.578	3.416	3.248							2.139	7.507		0.348	Ľ	4.685	3.685	3.042	2.446	2.016	1.765	1.694	
NO. 12 - REFERENCE	2	12.765	5.279	4.635	4.136	3.743	3.426	3.173	2.968	2.799	2.653	2.671			2.434			2.076		1.911	1.810	1.728	1.656	1.588	1.523	1.461	1.403	0.417	-6.613	-6.874	0.012	5.072				2.343		1.733	1.533	•
SEGMENT NO. 12 - IN UT REFERENC	>	5.218	6.802	6.719	6.388	5.970	5.560	5.136	4.719	4.311	3,959	2.597	2.351	0.944	0.778	0.569	0.452	0.315	0.113	-0.049	-0.059	-0.114	-0.194	-0.271	-0.342	-0.405	-0.462	-0.660	-1.592	-1.283	-0.129	0.876	0.634	0.777	1.226	0.700	0.235	-0.267	-0.690	
	×	-1.106	-3.983	-4.105	-4.199	-4.252	-4.264	-4.239	-4.185	-4.108	-4.012	-3.879	-3.767	-3.614	-3.496	-3.369	-3.240	-3.107	-2.970	-2.831	-2.696	-2.561	-2.428	-2.296	-2.166	-2.036	-1.908	-1.991	-3.176	-2,558	-0.324	1.056	0.746	0.374	0.130	-0.020	-0.124	-0.206	-0.208	
TIME	(MSEC)	0000	2.000	4.000	6.000	8.000	10.000	12.000	14.000	16.000	18,000	20.000	22.000	24.000	26.000	28.000	30.000	32.000	34.000	36.000	38.000	40.000	42.000	44.000	46.000	48.000	50.000	52.000	54.000	56.000	58.000	60.000	62.000	64.000	66.000	68.000	70.000	72.000	74.000	

21 FEB 1995
SIMULATION OF THE HUMAN VOLUNTEER SLED TEST
USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS
SLED ACCELERATION
MALE HUMAN 167 LB

VEHICLE DECELERATION: CRASH VICTIM:

CARD A2 CARD A2 **PAGE: 25.00** CARD C1

SEGMENT REL. ANGULAR VELOCITY (REV/SEC.)

SEGMENT NO. 13 - RLA IN RUA REFERENCE	Z RES					0.000 0.069	0.000					0.000 0.153			0.000 0.163 0.000 0.167		·		·	·	·	·	·	•	·	·		·	·	•				•	•
Z X						-0.067 0.000						-0.148 0.000																							
;	×					-0.018						-0.040			-0.043 -																				
ы	RES	000.0	0.022	0.039	0.053	0.066	610.0	0.030	0.112	0.122	0.132	0.141	0.150	0 167		0.175	0.175 0.182	0.175 0.182 0.189	0.175 0.182 0.189 0.195	0.175 0.182 0.189 0.195	0.175 0.182 0.189 0.195 0.202	0.175 0.182 0.189 0.202 0.208	0.175 0.189 0.189 0.202 0.208 0.213	0.175 0.189 0.189 0.202 0.208 0.213 0.218	0.175 0.189 0.189 0.202 0.208 0.213 0.223 0.223	0.175 0.189 0.189 0.202 0.208 0.213 0.223 0.223 0.238	0.175 0.189 0.189 0.202 0.208 0.213 0.223 0.238 0.236	0.115 0.1175 0.1189 0.202 0.203 0.218 0.223 0.236 0.236	0.115 0.1189 0.1189 0.202 0.208 0.213 0.223 0.238 0.236 0.236	0.115 0.1189 0.1189 0.202 0.203 0.223 0.232 0.235 0.235	0.115 0.1189 0.1189 0.202 0.203 0.223 0.223 0.235 0.235 0.235	0.115 0.1189 0.1189 0.202 0.203 0.223 0.223 0.235 0.235 0.237 0.237 0.239	0.175 0.182 0.182 0.182 0.202 0.223 0.228 0.235 0.235 0.237 0.243	0.175 0.182 0.182 0.185 0.202 0.223 0.228 0.235 0.235 0.237 0.237 0.243	0.115 0.1189 0.1189 0.202 0.203 0.228 0.235 0.235 0.235 0.243 0.255
REFERENCE	2	0.000	0.017	0.026	0.035	0.043	0.00	0.03	0.069	0.074	0.079	0.085	0.00 Rec. 0	0.099		0.104	0.104	0.104 0.108 0.112	0.104 0.108 0.112 0.116	0.104 0.108 0.112 0.116	0.104 0.108 0.112 0.116 0.119	0.104 0.108 0.112 0.115 0.123	0.104 0.108 0.112 0.115 0.123 0.123	0.104 0.108 0.112 0.115 0.123 0.123 0.126 0.135	0.104 0.108 0.112 0.115 0.123 0.123 0.126 0.132 0.132	0.104 0.108 0.112 0.115 0.123 0.123 0.125 0.135 0.135	0.104 0.108 0.112 0.113 0.123 0.123 0.123 0.135 0.135 0.131 0.131	0.108 0.108 0.112 0.112 0.123 0.123 0.132 0.133 0.133	0.108 0.108 0.112 0.113 0.123 0.123 0.133 0.131 0.131 0.133	0.108 0.108 0.112 0.113 0.123 0.123 0.129 0.133 0.131 0.111	0.104 0.108 0.112 0.113 0.123 0.123 0.129 0.133 0.131 0.133 0.119	0.104 0.108 0.110 0.110 0.113 0.123 0.133 0.133 0.133 0.133 0.110 0.111	0.104 0.108 0.110 0.110 0.110 0.123 0.123 0.135 0.135 0.111 0.111	0.104 0.108 0.116 0.118 0.119 0.123 0.123 0.135 0.135 0.131 0.111 0.111 0.127	0.108 0.108 0.110 0.112 0.113 0.123 0.123 0.138 0.138 0.138 0.111 0.114 0.117 0.127 0.135
; ;	¥	0.000	0.013	0.024	0.033	0.040	0.040	0.052	0.061	0.064	0.068	0.071	0.075	7.00		0.079	0.079	0.079 0.080 0.081	0.079 0.080 0.081 0.082	0.079 0.080 0.081 0.082	0.079 0.080 0.081 0.082 0.082	0.082 0.082 0.082 0.082	0.079 0.080 0.081 0.082 0.082 0.082 0.082	0.082 0.082 0.082 0.082 0.082 0.082 0.082	0.082 0.082 0.082 0.082 0.082 0.082 0.081	0.082 0.082 0.082 0.082 0.082 0.082 0.081 0.080	0.082 0.082 0.082 0.082 0.082 0.082 0.081 0.080	0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.080	0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.080 0.073	0.082 0.082 0.082 0.082 0.082 0.082 0.080 0.073 0.073	0.082 0.082 0.082 0.082 0.082 0.082 0.083 0.073 0.073	0.082 0.082 0.082 0.082 0.082 0.082 0.080 0.075 0.073	0.080 0.082 0.082 0.082 0.082 0.082 0.080 0.075 0.075	0.082 0.082 0.082 0.082 0.082 0.082 0.080 0.075 0.075 0.093	0.082 0.082 0.082 0.082 0.082 0.082 0.080 0.075 0.075 0.086 0.093 0.102
7 H	×	0.000	-0.006	-0.014	-0.022	-0.031	60.01	950.0-	-0.064	-0.073	-0.080	-0.088	10.036	-0.110) i	-0.116	-0.116 -0.123	-0.116 -0.123 -0.129	-0.116 -0.123 -0.129 -0.135	-0.116 -0.123 -0.129 -0.135	-0.116 -0.123 -0.129 -0.140 -0.146	-0.116 -0.123 -0.129 -0.140 -0.146	-0.116 -0.123 -0.123 -0.135 -0.146 -0.151	-0.129 -0.129 -0.129 -0.140 -0.151 -0.155 -0.164	-0.116 -0.123 -0.123 -0.135 -0.140 -0.151 -0.164	-0.116 -0.123 -0.123 -0.135 -0.146 -0.151 -0.164 -0.164	-0.123 -0.123 -0.123 -0.123 -0.146 -0.151 -0.164 -0.164	-0.116 -0.123 -0.123 -0.123 -0.146 -0.151 -0.168 -0.172	-0.123 -0.123 -0.123 -0.123 -0.140 -0.151 -0.168 -0.178 -0.184	-0.123 -0.123 -0.123 -0.123 -0.124 -0.155 -0.156 -0.168 -0.178 -0.186		-0.123 -0.123 -0.123 -0.123 -0.146 -0.151 -0.168 -0.178 -0.184 -0.184 -0.184			
TIME	(MSEC)	0.000	2.000	4.000	6.000	8.000	10.000	14 000	16.000	18.000	20.000	22.000	26.000	28.000		30.000	30.000 32.000	30.000 32.000 34.000	30.000 32.000 34.000 36.000	30.000 32.000 34.000 36.000	30.000 32.000 34.000 36.000 38.000	30.000 32.000 34.000 36.000 38.000 40.000	30.000 32.000 34.000 36.000 440.000 42.000 45.000	30.000 32.000 34.000 36.000 44.000 44.000 46.000	30.000 32.000 34.000 36.000 40.000 42.000 44.000 50.000	33.0000 33.000 33.000 34.000 44.000 44.000 44.000 50.000	30.000 32.000 34.000 34.000 44.000 44.000 52.000	33.0000 33.4.000 33.4.000 44.4.000 44.000 50.000 50.000 51.000	33.0.000 33.4.000 33.4.000 44.4.000 46.000 56.000 57.000 57.000	33.0.000 33.4.000 4.4.000 4.4.000 4.4.000 4.4.000 5.2.000 5.3.000 5.3.000 6.000	33.0.000 34.000 34.000 34.000 34.000 34.000 36.000 36.000 36.000 36.000 36.000	330.000 332.000 334.000 444.000 445.000 446.000 550.000 661.000 662.000	330.000 334.000 334.000 336.000 444.000 445.000 550.000 551.000 661.000 662.000	33.000 33.000 33.000 33.000 33.000 33.000 44.000 46.000 55.000 56.000 66.000 66.000	330.000 332.000 334.000 48.000 48.000 48.000 550.000 550.000 661.000 661.000 661.000

21 FEB 1995
SIMULATION OF THE HUMAN VOLUNTEER SLED TEST
USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS
SLED ACCELERATION
MALE HUMAN 167 LB

CARD A2
CARD A2 PAGE: 26.00
CARD C1

VEHICLE DECELERATION: CRASH VICTIM:

SEGMENT REL. ANGULAR DISPLACEMENT (DEG)

																		·																						
RLA	RES	68.145	68.140	68.124	68.094	68.050	67.994	67.927	67.850	67.763	67.667	67.565	67.458	67.345	67.229	67.110	66.988	66.864	66.737	609.99	66.479	66.348	66.215	66.081	65.946	65.810	65.673	65.535	65.407	65.323	65.293	65.290	65.282	65.263	65.234	65.194	65.144	65.086	65.019	64.944
' S	ROLL	32.834	32.828	32.806	32.767	32.710	32.636	32.549	32.448	32,335	32.213	32.082	31.945	31.803	31.657	31.508	31.357	31.204	31.050	30.894	30.738	30.581	30.423	30.266	30.107	29.949	29.791	29.634	29.488	29.393	29.359	29.356	29.347	29.326	29.293	29.248	29.193	29.127	29.053	28.970
SEGMENT NO. 13 IN RUA REFERE	<u>'</u> .	63.702	63.698	63.685	63.661	63.625	63.580	63.525	63.462	63.391	63,313	63.230	63.142	63.049	62.954	62.856	62.755	62.653	62.548	62.442	62.334	62.225	62.115	62.003	61.890	61.777	61.662	61.546	61.439	61.368	61.343	61.340	61.333	61.318	61.293	61.259	61.217	61.168	61.111	61.048
S	YAW	20.746	20.741	20.721	20.686	20.635	20.569	20.490	20.400	20.300	20.190	20.073	19.951	19.824	19.694	19.562	19.427	19.292	19.155	19.017	18.878	18.739	18.600	18.460	18.321	18.181	18.042	17.903	17.776	17.692	17.663	17.659	17.651	17.633	17.604	17.565	17.516	17.459	17.394	17.322
JA	RES	2.000	2.005	2.019	2.040	2.067	2.101	2.139	2.184	2.233	2.288	2.349	2.415	2.486	2.563	2.646	2.735	2.829	2.928	3.033	3.143	3.258	3.378	3.502	3.630	3.763	3.899	4.039	4.182	4.323	4.462	4.604	4.752	4.906	. 5.067	5.235	5.410	5.592	5.781	5.978
O. 12 - RUA REFERENCE	ROLL	0.000	-0.002	-0.009	-0.022	-0.041	-0.066	-0.097	-0.134	-0.177	-0.227	-0.282	-0.342	-0.408	-0.479	-0.555	-0.636	-0.721	-0.811	-0.905	-1.004	-1.106	-1.211	-1.321	-1.433	-1.548	-1.667	-1.788	-1.912	-2.041	-2.173	-2.306	-2.437	-2.567	-2.696	-2.825	-2.953	-3.081	-3.209	-3.337
SEGMENT NO. 12 -	TTCH	2.000	2.005	2.019	2.039	2.066	2.097	2.132	2.172	2.214	2.259	2.307	2.357	2.409	2.463	2.519	2.576	2.634	2.693	2.753	2.814	2.875	2.936	2.997	3.059	3.120	3.180	3.240	3.300	3.357	3.413	3.470	3.530	3.594	3.663	3.738	3.820	3.910	4.008	4.116
ß	YAW	0.000	0.007	0.022	0.044	0.072	0.104	0.142	0.183	0.229	0.278	0.331	0.388	0.448	0.511	0.578	0.647	0.720	0.795	0.872	0.952	1.034	1.119	1.205	1.293	1.384	1.475	1.569	1.662	1.745	1.819	1.892	1.972	2.059	2.150	2.245	2.344	2.445	2.549	2.654
TIME	(MSEC)	0.000	2.000	4.000	000.9	8.000	10.000	12.000	14.000	16.000	18.000	20.000	22.000	24.000	26.000	28.000	30.000	32.000	34.000	36.000	38.000	40.000	42.000	44.000	46.000	48.000	50.000	52.000	54.000	26.000	58.000	000.09	62.000	64.000	000.99	68.000	70.000	72.000	74.000	76.000

21 FEB 1995
SIMULATION OF THE HUMAN VOLUNTEER SLED TEST
USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS
SLED ACCELERATION
MALE HUMAN 167 LB

VEHICLE DECELERATION: CRASH VICTIM:

CARD A2
CARD A2 PAGE: 27.00
CARD C1

JOINT PARAMETERS

LB.) RES.	0.000	2.543	3.012	3.401	3.725	3.955	4.113	4.230	4.394	4.558	4.767	5.041	5.441	950.9	6.837	7.514	8.101	8.624	9.115	9.544	9.905	10.204	10.466	10.711	10.934	11.090	11.656	12.618	13.329	12.825	11.409	9.454	7.278	5.245	3.765	3.559	4.404	5.852
LH TOTAL TORQUE (IN. SPRING VISCOUS	0.000	2.543	3.012	3.401	3.725	3.955	4.113	4.230	4.394	4.558	4.767	5.041	5.441	9:0.9	6.837	7.514	8.101	8.624	9.115	9.544	9.905	10.204	10.466	10.711	10.934	11.090	11.656	12.618	13.329	12.825	11.409	9.454	7.278	5.245	3.765	3.559	4.404	5.852
- LH TOTAL TORQUE (SPRING VISCOUS	00000	00000	0.000	0.000	000.0	000.0	000.0	000.0	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000
JOINT NO. 8 S (DEG) H TORSION	3.652	3.634	3.618	3.597	3.574	3.549	3.522	3.494	3.464	3.434	3.402	3.368	3.332	3.293	3.249	3.199	3.146	3.088	3.027	2.963	2.896	2.827	2.756	2.684	2.609	2.534	2.457	2.374	2.285	2.195	2.111	2.039	1.981	1.940	1.915	1.903	1.903	1.911
JOI JOINT ANGLES (URE AZIMUTH	5.345	5.344	5.340	5.333	5,325	5.316	5.305	5.294	5.282	5.269	5.256	5.243	5.229	5.215	5.199	5.181	5.162	5.141	5.119	5.096	5.071	5.046	5.020	4.993	4.965	4.937	4.908	4.877	4.842	4.806	4.773	4.744	4.722	4.706	4.696	4.693	4.695	4.701
JOINT FLEXURE	30.579	30.568	30.559	30.550	30.542	30.535	30.529	30.523	30.519	30.514	30.511	30.508	30.505	30.502	30.498	30.495	30.492	30.488	30.483	30.478	30.473	30.467	30.461	30.453	30.445	30.436	30.426	30.414	30.403	30.394	30.388	30.386	30.391	30.403	30.419	30.439	30.465	30.498
STATE	000		٥.	٥.	٥.			٥.		٥.	٥.							0.		0		٥.	0.					0					٠.				٥.	0.
LB.) RES.	0.000	2.544	3.014	3.400	3.729	3.968	4.150	4.307	4.461	4.623	4.810	5.061	5.436	6.050	6.826	7.501	8.085	8.613	9.092	9.515	9.868	10.158	10.415	10.657	10.879	11.036	11.622	12.619	13.348	12.856	11.457	9.518	7.338	5.299	3.800	3.529	4.407	5.826
RH TOTAL TORQUE (IN. SPRING VISCOUS	0.000	2.544	3.014	3.400	3.729	3.968	4.150	4.307	4.461	4.623	4.810	5.061	5.436	6.050	6.826	7.501	8.085	8.613	9.092	9.515												9.518	7.338	5.299	3.800	3.529	4.407	5.826
- RH TOTAL TO SPRING	0.000	000.0	000.0	000.0	000.0	000.0	000.0	000.0	000.0	0.000	0.000	0.000	0.00	0.000	0.000	0.000	0.000	0.000	000.0	000.0	0.000	0.000	0.000	000.0	000.0	0.000	0.000	0.000	0.000	000.0	000.0	000.0	000.0	000.0	0.000	000.0	0.000	00000
JOINT NO. 5 S (DEG) H · TORSION	-3.652	-3.634	-3.617	-3.597	-3.574	-3.549	-3.521	-3.493	-3.463	-3.432	-3.399	-3.366	-3.330	-3.290	-3.246	-3.197	-3.143	-3.086	-3.025	-2.961	-2.894	-2.826	-2.755	-2.683	-2.609	-2.534	-2.457	-2.375	-2.285	-2.195	-2.111	-2.038	٧:	٧:	-1.913	•	-1.900	-1.908
JOINT N JOINT ANGLES (DEG) URE AZIMUTH TORS	-5.345		-5.340	-5.333	-5.325	-5.315	-5.305	-5.293	-5.281	-5.268	-5.255	-5.242	-5.228	-5.213	-5.197	-5.179	-5.160	-5.140	-5.118	-5.094	-5.070	-5.045	-5.019	-4.993	-4.966	-4.938	-4.910	-4.879	-4.844	-4.809	-4.776	-4.747	-4.724	-4.708	-4.698	-4.694	-4.695	-4.700
JOINT ANGLES FLEXURE AZIMUTH	30.579	30.568	30.559	30.550	30.542	30,535	30.529	30.523	30.519	30.515	30.511	30.508	30.505	30.502	30.499	30.495	30.492	30.488	30.484	30.479	30.474	30.468	30.462	30.454	30.446	30.437	30.428	30.416	30.404	30.396	30.389	30.388	30.393	30.404	30.420	30.441	30.467	30.500
STATE IPIN	0 0		•																									0		0.	0	0	0	0	0		0	
TIME (MSEC)	0.000	4.000	6.000	8.000	10.000	12.000	14.000	16.000	18.000	20.000	22.000	24.000	26.000	28.000	30.000	32.000	34.000	36.000	38.000	40.000	42.000	44.000	46.000	48.000	50.000	52.000	54.000	56.000	58.000	60.000	62.000	64.000	66.000	68.000	70.000	72.000	•	76.000

21 FEB 1995 SIMULATION OF THE HUMAN VOLUNTEER SLED TEST USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS SLED ACCELERATION MALE HUMAN 167 LB VEHICLE DECELERATION: CRASH VICTIM:

CARD A2 CARD A2 **PAGE: 37.00** CARD C1

LS JOINT FORCES & TORQUES ON LUA IN RUA REFERENCE

JOINT TORQUE (IN LB. 10**2) X Z	0.810D+00 0.475D+00 -0.594D+00	0.421D+00	0.402D+00	.737D+00 0.385D+00	.716D+00 0.370D+00	.695D+00 0.357D+00	.673D+00 0.345D+00	.651D+00 0.334D+00	.630D+00 0.324D+00	0.608D+00 0.315D+00 -0.309D+00 0.587D+00 0.305D+00 -0.295D+00	.566D+00 0.298D+00	.545D+00 0.291D+00	.524D+00 0.284D+00	.504D+00 0.278D+00	.484D+00 0.273D+00	0.268D+00	.445D+00 0.263D+00	.426D+00 0.259D+00	0.255D+00	0.252D+00	372D+00 0.250D+00	355D+00 0.248D+00	0.338D+00 0.246D+00 -0.157D+00	0.24450+00	0.246D+00	269D+00 0.252D+00	0.253D+00	0.242D+00	0.227D+00	237D+00 0.210D+00	229D+00 0.190D+00 -0	.220D+00 0.167D+00	210D+00 0.142D+00	0.114D+00 -0	0.836D-01	0.505D-01	0.163D+00 0.140D-01 -0.676D-01
10**2) Z	-0.006	-0.027	-0.051	-0.055	-0.059	-0.061	-0.063	-0.065	-0.067	-0.070	-0.073	-0.074	-0.075	-0.076	-0.076	-0.076	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	//0.0-	-0.102	-0.104	-0.082	-0.062	-0.061	-0.065	-0.071	-0.075	-0.080	-0.082	-0.089	•	-0.101
JOINT FORCE (LB.	-0.059	-0.065	-0.064	-0.063	-0.062	-0.061	-0.060	-0.058	-0.057	-0.055	-0.051	-0.049	-0.047	-0.046	-0.044	-0.042	-0.040	-0.038	-0.036	-0.034	-0.033	-0.031	-0.029	770.0-	-0.025	-0.021	-0.014	-0.011	-0.012	-0.012	-0.012	-0.011	-0.010	-0.009	-0.008	-0.007	-0.005
JOINT FO	0.039	0.035	0.031			0.023		0.019	0.017	0.018		0.017	0.017	0.016	0.015	0.015	0.014			0.013	0.013		0.012	0.012	0.019	0.027	•	•	0.030	•		•	0.016	0.012	0.009	0.005	0.001
TIME (MSEC)	00000	4.000	6.000	8.000	10.000	12.000	14.000	16.000	18.000	20.000	24.000	26.000	28.000	30.000	32.000	34.000	36.000	38.000	40.000	42.000	44.000	46.000	48.000	50.000	54.000	56.000	58.000	60.000	62.000	64.000	000.99	68.000	70.000	72.000	74.000	76.000	78.000

21 FEB 1995
SIMULATION OF THE HUMAN VOLUNTEER SLED TEST
USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS
SLED ACCELERATION
MALE HUMAN 167 LB
CONTACT FORCES - SEGMENT PANELS VS. SEGMENTS

CARD A2
CARD A2 PAGE: 38.00
CARD C1

VEHICLE DECELERATION: CRASH VICTIM:

9 ~

9	N.		Ŋ	ιÓ	4	4	4	m	m	m	m	2	2	2	2	2	2	1	든	1	드	õ	0	õ	6	6	8	8	7.	9	526	525	24	523	522	11	521	520	20	67	6 7
Ę.	۽ -	22	1.53	1.535	1.534	1.53	1.53	1.53	1.53	1.533	1.533	1.532	1.532	1.532	1.532	1.532	-11.532	1.531	-11.531	-11.531	1.531	1.530	-11.530	1.530	1.529	1.529	1.528	-11.528	-11.527	-11.526	-11.52	-11.52	-11.524	-11.52	-11.52	-11.521			1.5	1.5	1.51
函	TOL		-1	-11	-11	-1) -11	1 -11	2 11	3 -11	5 -11	5 -11	7 -11	9 -11	1-1			5 -11			1 -11			9 11	2 -11	4 -11											5 -11	5 -11	5 -1	4 -1	3 -1
(RUL)	CONTACT LOCATION	Y	4.459	4.459	4.459	4.460	4.460	4.461	4.462	4.463	4.465	4.466	4.467	4.469	4.470	4.472	4.473	4.475	4.477	4.479	4.481	4.484	4.486	4.489	4.492	4.494	4.497	4.500	4.503	4.506	4.509	4.512	4.515	4.519	4.521	4.523	4.525	4.525	4.525	4.52	4.52
9	NTACT	×	627	979	522	619	515	512	609	, 909	604	602	009	599	597	296	594	592	590	288	586	583	580	929	572	267	562	557	551	545	24.537	24.528	24.519	24.511	24.504	24.497	24.491	24.485	481	24.477	474
Ø			24.	24.626	24.622	24.619	24.615	24.612	24.609	24.606	24.604	24.602	24.600	24.599	24.	24.	24.594	24.592	24.	24.588	24.	24.	24.	24.	24.	24.567	24.	24.	24.	24.	24.	24.	24.	24.	24.	24.	24.	24.	24.481	24.	24.
SA (SULTANT	(LB.)	90.1	31.01	32.18	32.12	31.82	31.16	30	29.51	28.83	3.11	7.35	26.52	99.5	5.18	24.89	24.52	24.05	23.66	23.47	3.27	23.02	22.80	22.74	22.78	22.89	22.79	22.56	23.07	33.38	38.57	34.43	1.76	35.58	48.11	62.21	76.38	90.77	105.04	122.39
	RESULTANT FORCE		24	'n	33	ĕ	3.	Ä	ĕ	7	5	8	7	7	7	7	7	7	7	7	7	2	2	2	7	7	7	2	7	2	3	m	9	9	n	4	9	7	6	10	12
NO.	ICTION	(LB.)	0.00	9.02	21.37	21.30	20.93	20.07	18.92	17.91	17.10	16.25	15.35	14.35	13.27	12.91	12.95	12.86	12.60	12.51	12.65	12.73	12.71	12.69	12.95	13.34	13.79	13.85	13.66	14.60	21.35	21.93	16.47	9.64	3.60	20.71	36.18	51.10	66.53	83.69	2.47
CUSHION	FRICTION		Ŭ	ä	2	7	7	3	ĩ	H	H	ä	ä	À	i-i	ਜੋ	H	H	H	H	H	-	1	H	H	-	1	Т	٦		2	2	1			7	m	S	9	8	102
E	AL T] :	90.	24.47	24.06	4.03	3.96	3.84	3.67	23.46	23.21	22.94	22.63	22.31	21.97	21.62	21.26	20.88	20.49	20.09	19.77	3.48	19.20	3.94	3.69	18.47	18.27	18.10	17.95	17.86	25.67	31.72	30.24	30.26	35.40	43.42	50.61	56.77	61.75	63.48	6.93
1 (SEAT	NORMAL	(LB.)	24	24	24	24	23	23	23	2	5	22	22	22	2	2	2	7(7	7	ï	19	ä	18	18	ĩ	ä	Ä	;	H	7	m	ñ	m	m	4	Ñ	Ū	9	9	9
PANEL	DEFL-	(IN.)	0.220	0.220	0.220	220	220	0.219	0.218	0.217	0.216	0.215	.213	0.212	0.210	208	.206	0.204	.202	0.200	0.198	.197	0.195	0.193	0.191	0.190	0.188	0.187	0.186	0.186	0.186	0.187	0.187	0.188	0.189	0.190	.192	0.193	0.196	0.198	200
		;		0	Ö	o.	0	ö	0	<i>.</i>	<i>。</i>	o.	·	Ö	o.	Ö	o.	Ö	Ö	Ö	o.	Ö	o	Ö	Ö	o	Ö	o	Ö	o	0	0	0	0	0	0	0	0	0	0	
II.	N	13	414	414	413	413	413	413	413	412	412	412	412	412	412	411	411	411	411	411	410	410	410	410	410	409	409	409	409	409	409	408	408	408	408	408	409	409	409	409	410
ELLIP	NO NO	2	-10.41	-10.414	-10.413	-10.413	-10.413	-10.413	-10.413	-10.412	-10.412	-10.412	-10.412	-10.412	-10.412	-10.411	-10.411	-10.411	-10.411	-10.411	-10.410	-10.410	-10.410	-10.410	-10.410	-10.409	-10.409	-10.409	-10.409	-10.409	-10.409	-10.408	-10.408	-10.408	-10.408	-10.408	-10.409	-10.409	-10.409	-10.	-10.
T)	LOCATION PEFEPENCE	X	0.000			000	000	000	000	000	0.000	000	0.000	000.0	0.000	000	0.000	0.000	0.000	000.0	000.0	000.	000.0	000.	000.	000.	000.	000	000	.000	000	000	000.	000	000	000	000	000	000	000	000
177	T LO		0	0	ö	Ö	·	0	0	0	0	Ö	ö	<u>.</u>	•	Ö	0	ö	ö	Ö	Ö	<u>.</u>	Ö	ં	<u>.</u>	0	<u>.</u>	Ö	Ö	<u>.</u>	·	<u>.</u>	Ö	Ö	0	Ö	Ö	Ö	Ö	o	Ö
SEG 1	CONTACT LOCATION (×	942	3.941	13.939	.938	.936	.934	.932	.930	.928	.927	.925	.923		.919	.918	.916	.914	.912	.910	.909	3.907	.905	.3.903	3.902	3.900	3.898	13.897	13,895	3.894	3.893	.3.892	.3.891	.3.891	3.892	3.893	13.895	13.897	•	.902
S			_	-	13	13	13	13	13	13	13	13	13	13	13	13	13		7	П	Н	-			_	-	П		_	-	_				_	-			3 13	13	13
^	RESULTANT	(LB.)	105.43	3.55	169.89	176.75	178.40	178.03	176.91	175.42	174.24	173.04	171.99	170.27	168.67	167.78	165.52	162.87	159.94	157.82	155.69	33.51	151.35	149.62	18.03	146.64	145.51	144.37	144.06	145.78	148.17	151.52	149.83	149.56	156.98	166.39	171.76	174.76	178.18	184.14	190.64
	RESU	2, –	10	15	16	17	17	17	17	17	17	17	17	17																										ã	ři
ION	ICTION	(LB.)	0.00	64.51	72.41	75.40	77.01	76.96	75.99	74.79	74.41	73.52	71.97	69.97	67.43	66.84	66.10	64.86	62.69	61.14	9.48	57.49	5.07	2.40	9.94	47.92	46.37	43.63	40.48	37.42	26.28	17.52	10.34	0.25	12.48	11.17	9.35	6.56	2.08	1.56	.0.73
1 (SEAT CUSHION	FRICTION	30		ø	7	7	7	7	7	7	7	7	7	9	9	9	9	9	9	9	S	Ŋ						4	4	c	7	-	П		_	-					-
F		? ?	.43	.34	153.68	159.86	160.93	160.54	9.16	158.68	157.55	156.64	156.21	155.24	154.61	153.90	151.74	149.40	147.14	145.50	143.88	142.34	140.97	0.15	9.35	138.59	137.93	137.62	138.26	140.89	145.82	150.50	49.47	149.56	156.49	166.01	171.51	174.64	8.17	-	0.33
1 (8	NORMAL	(LB.)	105	139.3	153	159	160	160	159	158	157	126	126	15	15	15.	15	149	14.	14	14.	14.	14(14(13	13	13,	13,	13	14	14	12	14	14	1.5	16	17	17	178	184	190
PANEL	DEFL-	(IN.)	455	455	456	457	.458	459	460	461	0.462	463	464	465	466	467	468	468	469	0.470	470	471	471	472	472	472	473	0.473	0.473	0.474	474	0.475	0.476	476	0.477	0.478	.478	479	481	482	483
PA	E CE	Į, T		ö	Ö	0	o.	Ö	ò	0	Ö	0	0	ö	o.	0	ö	Ö	0	•	。	Ö	o.	Ö	o.	Ö	Ö	Ö	o	Ö	Ö	Ö	Ó	o	0	Ó	o	0	0	0	0
	5	(C)	0.000	2.000	4.000	6.000	000.	10.000	.2.000	000.	16.000	18.000	000	22.000	000	26.000	28.000	000	000	34.000	000	000	40.000	42.000	44.000	46.000	48.000	000	52.000	000	56.000	58.000	000.09	62.000	64.000	000.99	68.000	70.000	72.000	74.000	000
	TME	(MSEC)		2	4.	ø.	œ	10.	12.	14.	16.	18.	20.	22.	24.	26.	28.	30.	32.	34.	36.	38.	40.	42.	44.	46.	48.	50.	52.	54.	56.	58.	.09	62.	64.	99	68.	70.	72.	74.	76.

	45.00				ı	POINT NO.	z	(NT
CARD A2	CARD A2 PAGE: 45.00	CARD C1			BELT NO. 4 OF HARNESS NO. 1	POI	STRAIN	(NT / NT)
					NO. 4	46	FORCE	(I.B.)
					BELT	POINT NO. 46	STRAIN	TN: / TN:)
EER SLED TEST	INT CHARACTERISTICS			ORCES		. 45	FORCE	(T.B.)
21 FEB 1995 SIMULATION OF THE HUMAN VOLUNTEER SLED TEST	USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS	WATION	167 LB	HARNESS SYSTEM BELT ENDPOINT FORCES	BELT NO. 3 OF HARNESS NO. 1	POINT NO.	STRAIN	(IN / IN)
21 FEB 1995 SIMULATION (JSING NEWLY	SLED ACCELERATION	MALE HUMAN 167 LB	IARNESS SYS	NO. 3 01	NO. 28	FORCE	(I.B.)
DATE: 2 RUN DESCRIPTION: S	ר	ICLE DECELERATION: S	CRASH VICTIM: N	<u>r</u> i	BELT	POINT NO.	STRAIN	(TN / TN)
RUN		ICLE					ME	(C)

		OSTING NEWLI DEVEL	SELOFED HOMEN COL	NI CHARACLERISIT	TTCS	CA	AND AS FACE: 43.00	
VEHICLE L	DECELERATION:	MALE HIMAN 167 LB	NO.			CAP	CARD CI	
•		HARNESS SYSTEM	SYSTEM BELT ENDPOINT FORCES	RCES				
	BE	BELT NO. 3 OF HA	3 OF HARNESS NO. 1		BELT	NO. 4	OF HARNESS NO. 1	
	POINT NO	0. 28	POINT NO.	45	POINT NO.	46	POINT NO.	49
TIME	STRAIN	FORCE	STRAIN	FORCE	STRAIN	FORCE	STRAIN	FORCE
(WSEC)	(IN. / IN.)	(LB.)	(IN. / IN.)	(IB.)	(IN. / IN.)	(LB.)	(IN. / IN.)	(LB.)
000.0	0.003203	8.01	0.003203	8.01	0.006708	16.77	0.006708	16.77
2.000	0.003380	8.45	0.002732	6.83	0.006696	16.74	0.006708	16.77
4.000	0.003435	8.59	0.002016	5.04	0.006705	16.76	0.006708	16.77
6.000	0.003440	8.60	0.001676	4.19	0.006718	16.79	0.006708	16.77
8.000	0.003394	•	0.001508	3.77	0.006735	16.84	0.006708	16.77
10.000	0.003294	•	0.001434	3.58	0.006757	16.89	0.006708	16.77
12.000	0.003147	•	0.001421	3.55	0.006783	16.96	0.006708	16.77
14.000	0.002962	•	0.001444	3.61	0.006810	17.02	0.006708	16.77
16.000	0.002749	6.87	0.001496	3.74	0.006839	17.10	0.006708	16.77
18.000	0.002520	•	0.001583	3.96	0.006870	17.18	0.006708	16.77
20.000	0.001875	4.69	0.001712	4.28	0.006904	17.26	0.006708	16.77
22.000	0.001471	3.68	0.001863	4.66	0.006940	17.35	0.006708	16.77
24.000	0.000826		0.002020	5.05	0.006976	17.44	0.006708	16.77
26.000	0.000218		0.002184	5.46	0.007015	17.54	0.006708	16.77
28.000	0.00000		0.002329	5.82	0.007060	17.65	0.006708	16.77
30.000	0.00000		0.002478	6.19	0.007112	17.78	0.006708	16.77
32.000	0.00000	00.0	0.002631	6.58	0.007171	17.93	0.006708	16.77
34.000	0.00000	-	0.002785	96.9	0.007234	18.08	0.006708	16.77
36.000	0.00000		0.002931	7.33	0.007300	18.25	0.006708	16.77
38.000	0.00000		0.003073	7.68	0.007370	18.42	0.006708	16.77
40.000	0.00000	•	0.003208	8.02	0.007442	18.61	0.006708	16.77
42.000	0.00000	•	0.003346	8.37	0.007515	18.79	0.006708	16.77
44.000	0.00000	00.0	0.003200	8.75	0.007587	18.97	0.006744	16.86
46.000	0.00000		0.003635	9.09	0.007658	19.14	0.006791	16.98
48.000	0000000	•	0.003737	9.34	0.007729	19.32	0.006845	17.11
20.000	0.00000	•	0.003818	9.54	0.007799	19.50	0.006903	17.26
52.000	0.00000		0.003896	9.74	0.007866	19.66	0.006963	17.41
54.000	0.00000	•	0.003959	9.90	0.007924	19.81	0.007023	17.56
56.000	0.00000	-	0.004016	10.04	0.007967	19.92	0.007079	17.70
58.000	0.00000	•	0.004211	10.53	0.007985	19.96	0.007129	17.82
60.000	0.00000	•	0.004450	11.13	0.007993	19.98	0.007167	17.92
62.000	0.000000	•	0.004582	11.45	0.007989	19.97	0.007193	17.98
64.000	0.00000		0.004521	11.30	0.007944	19.86	0.007207	18.02
000.99	0.00000	00.0	0.004129	10.32	0.007827	19.57	0.007211	18.03
68.000	0.00000		0.003533	8.83	0.007646	19.12	0.007212	18.03
70.000	0.00000	0.00	0.002891	7.23	0.007418	18.55	0.007212	18.03
72.000	0.00000	0.00	0.002126	5.32	0.007159	17.90	0.007208	18.02
74.000	0.00000	0.00	0.001236	3.09	0.006872	17.18	0.007208	18.02
76.000	0.00000	0.00	0.000237	0.59	0.006533	16.33	0.007208	18.02
78.000	0.00000	0.00	0.00000	0.00	0.006137	15.34	0.007208	18.02

DATE: 21 FEB 1995
RUN DESCRIPTION: SIMULATION OF THE HUMAN

0

CARD A2
CARD A2 PAGE: 47.00
CARD C1 CONTACT LOCATION (IN.) 0.000 0.000 0.000 0.000 000.0 0.000 0.000 000.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9 (LUL) 0.000 6 (RUL) VS. SEGMENT NO. 0.000 USING NEWLY DEVELOPED HUMAN JOINT CHARACTERISTICS 6 LOCAL REFERENCE SIMULATION OF THE HUMAN VOLUNTEER SLED TEST 0.000 CONTACT FORCES - SEGMENT NO. 0.000 SEG. FRICTION RESULTANT (LB.) FORCE MALE HUMAN 167 LB SLED ACCELERATION (LB.) FORCE (IB.) NORMAL FORCE VEHICLE DECELERATION: CRASH VICTIM: ECTION (IN.) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 DEFL-0.000 30.000 32.000 34.000 36.000 38.000 40.000 44.000 46.000 48.000 50.000 52.000 62.000 64.000 66.000 54.000 58.000 68.000 0.000 2.000 4.000 6.000 8.000 112.000 14.000 16.000 18.000 22.000 24.000 26.000 70.000 20.000 28.000

APPENDIX B

Developing New Deformable Segment Models

There are three steps to creating a deformable body model for the ATB:

- 1) Develop a finite element model of the segment and perform modal analysis to determine the first two natural frequencies and their corresponding mode shapes.
- 2) Write an ASCII file containing the nodal positions, nodal masses, frequencies, and mode shapes. The user must make sure that this file has the format described in section B.2.
- 3) Modify the ATB input file according to the ATB Input Description.

B. 1 Segment Finite Element Model

A finite element model of the segment must be created and modal analysis must be performed to determine its natural frequencies and mode shapes. The required information are number modes, number of nodes, nodal positions, nodal masses, frequencies, and mode shapes.

B.2 Deformable Body Input Data File

The finite element modal analysis information must be written in an unformatted ASCII file in the following order:

1) number of nodes (NNOD) and number of modes (NMOD); No. of data = 2

2) nodal positions with respect to the body reference frame; No. of data = 3*NNOD

3) nodal masses;
No. of data = NNOD

No. of data = NMOD

4) natural frequencies in Hz;
No. of data = NMOD

5) mode shapes (eigenvectors); No. of data = 6*NNOD*NMOD

This procedure has been simplified when ANSYS® or ALGOR® is used. A FORTRAN program named "atbalgor.for" has been written which creates the required ASCII file and assigns the name "filename.dat" using the "filename.l" & "filename.frq" files produced by ALGOR. Another FORTRAN program named "atbansys.for" has also been written for ANSYS which also creates the same ASCII file. These programs are included with the ATB model.