1586 PREDEFINED

5.234 lex_lesseq_allperm

DESCRIPTION LINKS

Origin Inspired by [168]

Constraint lex_lesseq_allperm(VECTOR1, VECTOR2)

Synonym leximin.

Purpose

Arguments VECTOR1 : collection(var-dvar)

VECTOR2 : collection(var-dvar)

 ${\bf Restrictions} \qquad \qquad {\tt required}({\tt VECTOR1}, {\tt var})$

required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

VECTOR1 is lexicographically less than or equal to all permutations of VECTOR2. Given two vectors \vec{V} and \vec{V} of a components \vec{V} and \vec{V} and \vec{V} of a components \vec{V} and \vec{V} and \vec{V} or \vec{V} is

two vectors, \vec{X} and \vec{Y} of n components, $\langle X_0, \dots, X_{n-1} \rangle$ and $\langle Y_0, \dots, Y_{n-1} \rangle$, \vec{X} is lexicographically less than or equal to \vec{Y} if and only if n=0 or $X_0 < Y_0$ or $X_0 = Y_0$

and $\langle X_1, \ldots, X_{n-1} \rangle$ is lexicographically less than or equal to $\langle Y_1, \ldots, Y_{n-1} \rangle$.

Example $(\langle 1, 2, 3 \rangle, \langle 3, 1, 2 \rangle)$

The lex_lesseq_allperm constraint holds since vector $\langle 1,2,3 \rangle$ is lexicographically less than or equal to all the permutations of vector $\langle 3,1,2 \rangle$ (i.e., $\langle 1,2,3 \rangle$, $\langle 1,3,2 \rangle$,

 $\langle 2, 1, 3 \rangle$, $\langle 2, 3, 1 \rangle$, $\langle 3, 1, 2 \rangle$, $\langle 3, 2, 1 \rangle$).

Typical |VECTOR1| > 1

Symmetry All occurrences of two distinct values in VECTOR1.var or VECTOR2.var can be swapped;

all occurrences of a value in VECTOR1.var or VECTOR2.var can be renamed to any unused

value.

Arg. propertiesSuffix-contractible wrt. VECTOR1 and VECTOR2 (remove items from same position).

Remark The lex_lesseq_allperm(VECTOR1, VECTOR2) can be reformulated as the conjunction

 $\verb|sort|(\verb|VECTOR|2, \verb|VECTOR|), \verb|lex_lesseq|(\verb|VECTOR|1, \verb|VECTOR|).$

Systems leximin in Choco.

Used in allperm.

See also common keyword: allperm (matrix symmetry,lexicographic order).

implies: lex_lesseq.

system of constraints: allperm.

20070916 1587

Keywords characteristic of a constraint: vector.

constraint type: predefined constraint, order constraint.
symmetry: symmetry, matrix symmetry, lexicographic order.