EE324 : Controls Lab Lab 1 Report DC Motor Position Control using Arduino

Mitul Wankhede, 20d070051 Mohit, 20d070052 Monu Kumar Yadav, 20d070053

September 4, 2022

Aim:

To design, implement and test a PID system to control the position of a DC Motor using Arduino Mega.

Objectives:

- 1. To rotate the motor by precisely 180 degrees with respect to its current position.
- 2. To model the task to satisfy specific design constraints of Rise time, Settling time and Percent overshoot.

Equipment used:

DC Motor, Arduino Mega board, L293D IC, Wires, Power Supply, Breadboard, Screwdriver, Wire stripper.

Methods:

Basic Block diagram for connections:

Figure 1: Block Diagram

Pin Diagram for L293D IC:

Figure 2: L293D pin diagram

Procedure:

- First the Potentiometer values were measured while rotating the motor by hand. This gave us a map between Angle, Pot values and Arduino variable value.
- The Arduino Board is connected to the PC which will upload the Arduino code.
- The board is in turn, connected to the L293D IC, which controls the Motor.
- Thus, The Control Signals (pin 2 & 7) of L293D are connected to the Arduino Board.
- The Motor pins (pin 3 & 7) are connected to the motor supply.
- The Motor Potentiometer is fed back to the Arduino board, and the voltage-to-angle calibrations are done in the Arduino code itself.
- The Enable and Supply pins of L293D are connected to each other.
- Pin 8 of L293D is given a 12V Supply to match the motor supply.

Arduino Code:

```
float in;
   float initial;
   float fin;
   float kp=0.1;
   float kd=0.05;
   float ki=0.005;
   float current_error;
   float previous_error;
   float difference;
   float integral=0;
   float output;
   void setup() {
     // put your setup code here, to run once:
     Serial.begin(9600);
     pinMode(A0, INPUT);
     pinMode(2, OUTPUT);
     pinMode(7, OUTPUT);
     initial=analogRead(A0);
     if(initial>512){
       fin=initial-512;
     else{
       fin=initial+ 512;
     current_error=fin - initial;
 current_error=fin - initial;
void loop() {
 // put your main code here, to run repeatedly:
 in = analogRead(A0);
 previous_error=current_error;
 current_error = fin - in;
 difference = current_error - previous_error;
 integral+= current_error;
 output = kp*current_error + kd*difference + ki*integral;
 if (current_error>10) {
   analogWrite(2,0);
   analogWrite(7,output);
 else if(current_error<(-10)){</pre>
   analogWrite(2,-output);
   analogWrite(7,0);
   analogWrite(2,0);
   analogWrite(7,0);
 Serial.println(current_error);
```

Figure 3: Code Snippet

Connections:

Observations:

We observe that our setup is successful in rotating the Motor by 180 Degrees to a reasonable margin of error, in both directions.

Now in order to meet the Control Constraints, variables K_p , K_d and K_i will be varied in the code and results will be noted.

The constraints to achieve are:

- Rise Time = 0.5 seconds
- Settling time = 1 seconds
- Percentage Overshoot = 10%

After varying and fine tuning the Control parameters, the following Control Statistics were achieved:

- Rise Time = 0.485 seconds
- Settling time = 0.982 seconds
- Percentage Overshoot = 2.56%

The values of the Control Parameters were:

$$K_p = 0.1, K_i = 0.005, K_d = 0.05$$

Thus, the required Control constraints were achieved.

Figure 4: Position Graph

Problems Faced:

- Arduino Coding was to be learnt from scratch.
- Ground connections of various components were not connected which led to incorrect value.
- The Motor had a 'Nonlinear Region': The Potentiometer values were random in a certain small region. This region was avoided during testing.
- The margin of error was large which led to the motor rotating more or less than 180 degrees.
- \bullet The values of $K_p,\,K_i$ and K_d had to be randomly varied in order to meet the Design Constraints.

Experiment Completion Status:

The experiment has been completed and submitted in 3 Lab sessions.

1	RESULT S Student Name	SHEET	D. H.N.
1	Mohit	0 - 7	Roll No
2	MONU KUMAR NADAV		S200 F00
3	hith wankhede		1070053
	Today Positive Coc		Group No - 16
(Settling time: 0.92	E 1 900	c
			-3
-	Rise time: 0.5335	0.4855	
1	1. Over shoot = 2-35 %	2.56%	
X	IN Z M I K M MAG	= L1 = A	06
*	$p = 0.1, K_i = 0.009$	$5, K_d = 0.$	05
*	$f_p = 0.1, K_i = 0.009$	5, Kd = 0.	05
*	$k_p = 0.1, k_i = 0.009$	5, Kd = 0.	05
*	$k_p = 0.1, k_i = 0.009$	5, Kd = 0.	05
*	$k_p = 0.1, k_i = 0.009$	5, Kd = 0.	05
*	/p = 0.1, Ki = 0.009	5, Kd = 0.	05
*	/p = 0.1, Ki = 0.009	5, Kd = 0.	05
*	/p = 0.1, Ki = 0.009	5, Kd = 0.	05
*	/p = 0.1, K _i = 0.009	5, Ka = 0.	05
*	/p = 0.1, K _i = 0.009	5, Ka = 0.	05
*	/p = 0.1, Ki = 0.009	5, Ka = 0.	05
*			
	TA Name	Date	Signature
1 2			Signature