Relativistic Behavior Detection through Electron Acceleration

Henry Shackleton

April 4, 2017

1 / 16

Classical Mechanics

1 / 16

Classical Mechanics

• Formalized by Newton in 1687

1 / 16

Classical Mechanics

- Formalized by Newton in 1687
- No limit to the speed of a particle

Classical Mechanics

- Formalized by Newton in 1687
- No limit to the speed of a particle

Special Relativity

1 / 16

Classical Mechanics

- Formalized by Newton in 1687
- No limit to the speed of a particle

Special Relativity

• Developed by Einstein in 1905

1 / 16

Classical Mechanics

- Formalized by Newton in 1687
- No limit to the speed of a particle

Special Relativity

- Developed by Einstein in 1905
- The speed of light, c, is constant in all reference frames

1 / 16

Classical Mechanics

- Formalized by Newton in 1687
- No limit to the speed of a particle

Special Relativity

- Developed by Einstein in 1905
- The speed of light, c, is constant in all reference frames
- The velocity of any particle is capped at c

1 / 16

Classical and Relativistic Kinetic Energies are Different

Classical Kinetic Energy

$$K=\frac{p^2}{2m}$$

Classical and Relativistic Kinetic Energies are Different

Classical Kinetic Energy

$$K = \frac{p^2}{2m}$$

Relativistic Kinetic Energy

$$K = \sqrt{p^2c^2 + m^2c^4} - mc^2$$

Electrons in Magnetic Fields are Accelerated in Circular Orbits

$$\bullet \ \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = e\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}\right)$$

- Electrons follow a circular orbit with radii proportional to their momentum
- $p = \frac{\rho e}{c} B$

Henry Shackleton

Experimental Setup Constrains Radius of Electron Orbit

Experimental Setup Constrains Radius of Electron Orbit

Experimental Setup Constrains Radius of Electron Orbit

Barium-133 Produces MCA Peaks at Known Energies

MCA Readout for Sr-90/Y-90 Sharply Peaked around Energy Range

Magnetic Field Affects Peak Energy Range

Kinetic Energy Determined through Gaussian Fitting

10 / 16

Gaussian Fits Bring Uncertainty in Kinetic Energy

B_{approx} (G)	K (kEv)	σ_K (kEv)
90	222	.2
100	265	.2
110	312	.4
120	355	.3

11 / 16

Uncertainties in Magnetic Field

Uncertainties in Magnetic Field

Variations during individual runs from coil heating

Uncertainties in Magnetic Field

- Variations during individual runs from coil heating
- Variations between runs

Uncertainties in Magnetic Field

- Variations during individual runs from coil heating
- Variations between runs
- Inhomogeneous magnetic field during individual runs

Uncertainties in Magnetic Field

- Variations during individual runs from coil heating
- Variations between runs
- Inhomogeneous magnetic field during individual runs
- Systematic uncertainty in magnetometer

Inhomogeneity Addressed by Averaging over Multiple Points

- Measured at point C during experimental runs
- Determined correspondance between magnetic field at point C and the average magnetic field over the path of the electron

13 / 16

Data Follows Relativistic Trend

Shapes of Fit Separate at Large Kinetic Energies

$$K = \sqrt{p^2c^2 + m^2c^4} - mc^2$$

$$K = \sqrt{p^{2}c^{2} + m^{2}c^{4}} - mc^{2}$$

$$= \sqrt{m^{2}c^{4}\left(1 + \frac{p^{2}}{m^{2}c^{2}}\right)} - mc^{2}$$

$$K = \sqrt{p^{2}c^{2} + m^{2}c^{4}} - mc^{2}$$

$$= \sqrt{m^{2}c^{4}\left(1 + \frac{p^{2}}{m^{2}c^{2}}\right)} - mc^{2}$$

$$= mc^{2}\sqrt{1 + \frac{p^{2}}{m^{2}c^{2}}} - mc^{2}$$

$$K = \sqrt{p^{2}c^{2} + m^{2}c^{4}} - mc^{2}$$

$$= \sqrt{m^{2}c^{4}\left(1 + \frac{p^{2}}{m^{2}c^{2}}\right)} - mc^{2}$$

$$= mc^{2}\sqrt{1 + \frac{p^{2}}{m^{2}c^{2}}} - mc^{2}$$

$$\approx mc^{2}\left(1 + \frac{p^{2}}{2m^{2}c^{2}}\right) - mc^{2}$$

$$K = \sqrt{p^{2}c^{2} + m^{2}c^{4}} - mc^{2}$$

$$= \sqrt{m^{2}c^{4}\left(1 + \frac{p^{2}}{m^{2}c^{2}}\right)} - mc^{2}$$

$$= mc^{2}\sqrt{1 + \frac{p^{2}}{m^{2}c^{2}}} - mc^{2}$$

$$\approx mc^{2}\left(1 + \frac{p^{2}}{2m^{2}c^{2}}\right) - mc^{2}$$

$$= \frac{p^{2}}{2m}$$