

ACULTAD DE CIENCIAS NATURALES EXACTAS Y DE LA EDUCACIÓN DEPARTAMENTO DE QUÍMICA ÁREA QUÍMICA ANALÍTICA

Curso de Laboratorio de Química Analítica General Práctica CURVAS DE VALORACIÓN ÁCIDO BASE Guía No: 06 Páginas: 1 a 5

1. INTRODUCCIÓN

Las titulaciones o valoraciones ácido base son utilizadas en casi todos los campos de la química. El primer paso consiste en escribir la ecuación química de la reacción entre el titulante y el analito, luego se utiliza esta ecuación para calcular la composición y el pH después de cada adición del reactivo titulante, posteriormente se grafica la variación del pH en función de la cantidad de titulante adicionado.

Durante la valoración ácido – base (titulación) se distinguen en la curva (logarítmica) tres regiones, las cuales implican tres tipos de cálculos:

- 1.1. Antes del Punto de Equivalencia (formación de una sal con exceso de un reactivo).
- 1.2 En el punto de equivalencia (formación de una sal).
- 1.3 Después del punto de equivalencia (formación de una sal con exceso de un reactivo).

2. OBJETIVOS

- 2.1 Diferenciar las características de las curvas de valoración ácido-base.
- 2.2 Establecer diferencias entre el punto final y el punto de equivalencia.
- 2.3 Ensayar cuatro métodos (gráficos, instrumental y óptico) para determinación del punto final.
- 2.4 Determinar experimentalmente las constantes de equilibrio de disociación para ácidos y bases débiles.

3. CONSULTAS PRELIMINARES

- 3.1 Mencione diferencias entre un ácido fuerte y un ácido débil, una base fuerte y una base débil
- 3.2 Mencione 3 ejemplos de ácidos fuertes, bases fuertes, ácidos débiles y bases débiles.
- 3.3 Cuál es el color de viraje (ácido básico) de los indicadores a utilizar en la práctica
 - 3.4 Consultar las fichas de seguridad y las frases de riesgo y seguridad para la manipulación de los reactivos de la práctica.

Elaborado por:	Revisado Por:	Aprobada por:	Fecha de Aprobación:
MSc Julie A. Quintero G	Jefe Unidad de Área Presidente Comité de Plan	Presidente Comité Técnico Ambiental	Marzo de 2005
MSc José Antonio Gallo C.	Coordinador Comité Desactivación Residuos Químicos	Rector	2

4. MATERIALES

MATERIAL	CANTIDAD
Balón Aforado de 100 mL	2
Vaso de precipitado de 50 mL	2
Vaso de precipitado de 100 mL	2
Pipeta graduada de 2 mL	1
Pipeta volumétrica de 10 mL	1
Pro-pipeta	1
Pesa Sales	3.10
Espátula	1 1
Varilla de Vidrio	1-1-5
Frasco lavador	1
Bureta de 25 mL	2
Pinza para bureta	2

5. REACTIVOS

SUSTANCIAS*	CANTIDAD
Solución estandarizada de Ácido clorhídrico 0.100 M R36/37/38 S26-	30 mL
Solución estandarizada de Hidróxido de sodio 0.100 M R35 S26-37/39-45	30 mL
Solución de ácido acético 0.100 M S26-36/37/39-45	30 mL
Solución de hidróxido de amonio 0.100 M S26-36/37/39-45	30 mL
Solución etanólica de bromocresol 0.1% p/v	0.2 mL
Solución etanólica de Rojo de fenol 0.1% p/v	0.2 mL
Solución etanólica de azul de timol 0.1% p/v = 0,19 cn 100 mL ctanol	0.2 mL
Solución etanólica de fenolftaleína 0.1% p/v	0.2 mL
Agua destilada	
Soluciones para calibrar el pH-metro	. 4 5 -1

^{*}Remitir al manual de protocolo de riesgo/ seguridad y fichas técnicas de seguridad.

6. EQUIPOS

EQUIPOS*	CANTIDAD
Balanza analítica	1
Plancha de calentamiento con agitación	1
Magneto pequeño	
pH-metro con electrodo	1

^{*} Remitir al manual de protocolo de calibración de equipos

7. PROCEDIMIENTO

7.1 CURVA DE VALORACIÓN ÁCIDO FUERTE - BASE FUERTE

- 7.1.1 Coloque en la bureta la solución de hidróxido de sodio 0.100 M estandarizada.
- 7.1.2 Con la pipeta volumétrica mida un volumen de 10.0 mL de ácido clorhídrico 0.100 M, viértalos en un vaso de precipitado de 100 mL, con un gotero adicione 3 gotas del indicador Rojo de fenol. Mida el pH a esta solución y registre el valor en una tabla de volumen adicionado vs pH.
- 7.1.3 A la solución anterior adiciónele 0.50 mL de la solución de hidróxido de sodio que se encuentra en la bureta y mida el pH. Registre el valor en la tabla.

1 ml en 1 ml

0,025g en

- 7.1.4 Continue midiendo el pH después de agregar 0.50 mL de la solución de hidróxido de sodio hasta cambio en el viraje del indicador (de amarillo a púrpura) registrando cada valor en la tabla.
- 7.1.5 Después del viraje del indicador adicione 0.50 mL de la solución de hidróxido de sodio y mida el pH.
- 7.1.6 Repita esta operación hasta completar un exceso de 4.0 mL de la solución de hidróxido de sodio, para cada valor adicionado mida el pH y registrelo en la tabla

7.2 CURVA DE VALORACIÓN ÁCIDO DÉBIL - BASE FUERTE

- 7.2.1 Coloque en la bureta la solución de hidróxido de sodio 0.100 M.
- 7.2.2 Con la pipeta volumétrica mida un volumen de 10.0 mL de ácido acético 0.100 M, viértalos en un vaso de precipitado de 100 mL, con un gotero adicione 3 gotas del indicador azul de timol. Mida el pH a esta solución y registre el valor en la tabla de volumen adicionado vs. pH.
- 7.2.3 A la solución anterior adiciónele 0.50 mL de la solución de hidróxido de sodio que se encuentra en la bureta y mida el pH. Registre el valor en la tabla.
- 7.2.4 Continúe midiendo el pH después de agregar 0.50 mL de la solución de hidróxido de sodio hasta cambio en el viraje del indicador (de amarillo a azul) registrando cada valor en la tabla.
- 7.2.5 Después del viraje del indicador adicione 0.50 mL de la solución de hidróxido de sodio y mida el pH.
- 7.2.6 Repita esta operación hasta completar un exceso de 4.0 mL de la solución de hidróxido de sodio, para cada valor adicionado mida el pH Registre cada valor en la tabla.

7.3 CURVA DE VALORACIÓN ÁCIDO FUERTE - BASE DÉBIL

- 7.3.1 Coloque en la bureta la solución de ácido clorhídrico 0.100 M.
- 7.3.2 Con la pipeta volumétrica mida un volumen de 10.0 mL de hidróxido de amonio 0.100 M, viértalos en un vaso de precipitado de 100 mL, con un gotero adicione 3 gotas del indicador verde de bromocresol. Mida el pH a esta solución y registre el valor en la tabla de volumen adicionado vs. pH.
- 7.3.3 A la solución anterior adiciónele 0.50 mL de la solución de ácido clorhídrico que se encuentra en la bureta y mida el pH. Registre el valor en la tabla.
- 7.3.4 Continue midiendo el pH después de agregar 0.50 mL de la solución de ácido clorhídrico hasta cambio en el viraje del indicador (de azul a amarillo) registrando cada valor en la tabla.
- 7.3.5 Después del viraje del indicador adicione 0.50 mL de la solución de ácido clorhídrico y mida el pH.
- 7.3.6 Repita esta operación hasta que haya completado un exceso de 4.0 mL de la solución de ácido clorhídrico, para cada valor adicionado mida el pH y regístrelo en la tabla.

8. OBSERVACIONES, CÁLCULOS Y RESULTADOS

8.1 Realice para cada curva de valoración ácido base una tabla de pH (eje y) vs. Volumen adicionado (eje x)

- 8.2 Realice una gráfica con los datos del punto anterior para cada curva realizada.
- 8.3 Realice con los datos para cada curva de valoración ácido base una nueva tabla con la primera derivada, estime ΔpH/ΔV (eje y) vs. Volumen adicionado (eje x), grafique los datos obtenidos y determine el punto final en cada curva.
- 8.4 Identifique las diferencias entre cada curva, señale el volumen en el punto final y el volumen en el punto de equivalencia en cada curva.
- 8.5 Determine la concentración de la solución de hidróxido de amonio y de la solución de ácido acético a partir de los datos de las soluciones patrón y los puntos finales de cada valoración
- 8.6 Con la concentración real de las soluciones de hidróxido de amonio y de la solución de ácido acético y el pH al inicio de cada solución calcule las constantes de disociación ácida y básica experimentales y compárelas con las tabuladas en la literatura; determine el error e la determinación de la constante de equilibrio y justifique su respuesta.

9. PREGUNTAS COMPLEMENTARIAS

14

- 9.1 Escriba la ecuación de Henderson y explique la importancia de su utilización.
- 9.2 Establecer las ecuaciones estequiométricas y determinar el pH en el punto final para cada valoración.
- 9.3 Puede ser diferente el volumen en el punto de equivalencia y el volumen en el punto final en una titulación ácido base. Justifique su respuesta.
- 9.4 Justifique el uso de cada indicador y proponga un indicador ácido-base alterno para cada valoración.
- 9.5 Cuales son los límites de exposición que se tienen para cada sustancia utilizada en la práctica
- 9.6 Determine el pH en el punto de equivalencia (volumen de equivalencia) y determine el % error en la valoración.

10. RECUPERACIÓN, DESACTIVACIÓN Y/O ALMACENAMIENTO TEMPORAL DE LOS RESIDUOS QUÍMICOS

10.1 RECUPERACIÓN

Las soluciones sobrantes (no utilizadas) serán entregadas al encargado del almacenamiento de sustancias químicas, estos serán reutilizados en prácticas posteriores.

10.2 DESACTIVACIÓN

Mezcle todos los residuos ácido base del grupo, mida el pH. Ajuste el pH en un rango entre 6 a 9 unidades, agregue agua hasta doblar el volumen y lleve al desagüe.

Las mezclas con los indicadores llévelos al recipiente adecuado.

10.3 ALMACENAMIENTO TEMPORAL

No aplica.