

EDA/CAD para Nanoelectrónica 2º Relatório prático ref. ano 2015-2016

Docente: Professora Doutora Helena Fino

18

Elaborado pelos alunos de MIEEC:

António João Marques de Andrade Pereira Filipe Miguel Aleixo Perestrelo Silvana Regina Ferreira de Oliveira Costa

39971 39656

30159

Índices

Objectivos:	3
Introdução Teórica:	6
Modelo EKV	
Especificações do Modelo EKV:	
Implementação Prática	
Fases do Projecto:	
Fase 1 - alínea a: Determinação da Corrente Is (Corrente Específica)	
Fase 1 - alínea b: Determinação da tensão de Pinch-off, Vp	12
Fase 1 - alínea c: Determinação da Tensão de Threshold ($V_{t\ OU}\ V_{t0}$):	
Fase 1 - alínea d: Determinação dos parâmetros γ e Φ:	
Fase 1 - alínea e: Determinação de n(Vg):Fase 1 - alínea f: Determinação do parametro K₀:	
Fase 1: Comentários:	
Fase 2:	
Fase 2: Comparação de resultados analisados do modelo	
Fase 3:	
Fase 3: Repetir as fases 1 e 2 para um transistor P com as mesmas dimensões. Fase 3 - Parte1 - alínea a: Determinação da Corrente Is (Corrente Específica)	
Fase 3 - Parte1 - alínea b: Determinação da tensão de Pinch-off, Vp	
Fase 3 - Parte1 - alínea c: Determinação da Tensão de Threshold (V _t ou V _{t0}):	
Fase 3 - Parte1 - alínea d: Determinação dos parâmetros γ e Φ:	32
Fase 3 – Parte 1 - alínea e: Determinação de n(Vg):	
Fase 3 - Parte1 - alínea f: Determinação do parametro K _p :	
Fase 3 – Parte 2:Fase 3 – Parte 2: Comparação de resultados analisados do modelo	
• •	
Conclusão:	
Referências:	
Anexos:	44
Índice de Tabelas	
Tabela 1. Parâmetros do modelo EKV2.6	3
Tabela 2. Características dos transístores utilizados na fase 2 Tabela 3: Equações de ID conforme as zonas de inversão [Fonte: ver ref. (1)]	5
Tabela 3: Equações de ID conforme as zonas de inversão [Fonte: ver ref. (1)]	7
Tabela 4. Características dos transístores P utilizados Tabela 5. Valores obtidos dos parâmetros para o transistores P utilizados	_ 27 28
Tabela 6. Valores obtidos dos parametros para o transistores P utilizados Tabela 6. Valores obtidos dos parâmetros para o transistores P utilizados	_ 20 32
Tabela 7. Valores obtidos dos parâmetros para o transistores P utilizados.	_ 36
Índice de Figuras	
Figura 1: Transístor MOS utilizado no modelo EKV [Fonte: Ref. (1)]	6
Figura 2: Grafico log(ID) onde se demonstram as inversões fraca,moderada e forte do transísto	
[Fonte: Ref. (1)]	
Figura 3 : Esquemático do circuito desenvolvido no software Cadence	8

2º trabalho de EDA/CAD para Nanoelectrónica 2015-2016

Figura 4: Curve Fitting utilizado para determinação da corrente específica	
Figura 5: Característica ID (Vs) de um transístor com W=4u e L=2u e Vd fixo em 1.2V	.11
Figura 6: Característica ID (Vs) de um transístor com W=1u e L=0.5u e Vd fixo em 1.2V	.11
Figura 7: Montagem para determinação de Vp	.12
Figura 8: Característica Vp(Vg) de um transístor com W=4u e L=2u	.13
Figura 9: Característica Vp(Vg) de um transístor com W=1u e L=0.5uEigura 9: Característica Vp(Vg) de um transístor com W=1u e L=0.5u	.13
Figura 10: Curve Fitting da característica Vp(Vg) de um transístor com W=4u e L=2u	.14
Figura 11: Curve Fitting da característica Vp(Vg) de um transístor com W=1u e L=0.5u	.15
Figura 12: Curve Fitting Vs(Vg) de um transístor com W=4u e L=2u	.17
Figura 13: Curve Fitting Vs(Vg) de um transístor com W=1u e L=0.5u	.17
Figura 14: Característica n(Vg) de um transístor com W=4u e L=2u	.18
Figura 15: Característica n(Vg) de um transístor com W=1u e L=0.5u	.18
Figura 16: Característica I₂(Vg) de um transístor com W=4u e L=2u	.19
Figura 17: Característica I₂(Vg) de um transístor com W=1u e L=0.5uEl	.19
Figura 18: Curve fitting de $I_s(V_p)$ de um transístor com W=4u e L=2u	.20
Figura 19: Curve fitting de $I_s(V_p)$ de um transístor com W=1 u e L=0.5 u	.20
Figura 20: Característica $I_{ extstyle D}(V_{gs})$ de um transístor com W=4u e L=2uValue $I_{ extstyle D}(V_{gs})$.23
Figura 21: Característica $I_D(V_{gs})$ de um transístor com W=1u e L=0.5u	.23
Figura 22: Característica $I_D(V_{DS})$ de um transístor com W=4u e L=2u	.24
Figura 23: Característica $I_D(V_{DS})$ de um transístor com W =1 u e L =0.5 u	.24
Figura 22: Erro relativo entre $I_D(V_{DS})$ simulado e obtido através do modelo EKV de um transístor	
com W=4u e L=2u	.25
Figura 23: Erro relativo entre $I_D(V_{DS})$ simulado e obtido através do modelo EKV de um transístor	
com W=1u e L=0.5u	.25
Figura 24: Erro relativo entre $I_D(V_{GS})$ simulado e obtido através do modelo EKV de um transístor	
com W=4u e L=2u	.26
Figura 25: Erro relativo entre $I_D(V_{GS})$ simulado e obtido através do modelo EKV de um transístor	
com W=1u e L=0.5u	.26
Figura 22: Curve Fitting utilizado para determinação da corrente específica	.27
Figura 23: Característica ID (Vs) de um transístor com W=4u e L=2u e Vd fixo em 1.2V	.28
Figura 24: Característica ID (Vs) de um transístor com W=1u e L=0.5u e Vd fixo em 1.2V	
Figura 25: Montagem para determinação de Vp	.29
Figura 26: Característica Vp(Vg) de um transístor com W=4u e L=2u	.30
Figura 27: Característica Vp(Vg) de um transístor com W=1u e L=0.5u	.30
Figura 28: Curve Fitting da característica Vp(Vg) de um transístor com W=4u e L=2u	.31
Figura 29: Curve Fitting da característica Vp(Vg) de um transístor com W=1u e L=0.5u	.31
Figura 30: Curve Fitting Vs(Vg) de um transístor com W=4u e L=2u	
Figura 31: Curve Fitting Vs(Vg) de um transístor com W=1u e L=0.5u	
Figura 32: Característica n(Vg) de um transístor com W=4u e L=2u	
Figura 33: Característica n(Vg) de um transístor com W=1u e L=0.5u	
Figura 34: Característica $I_{\mathcal{D}}(Vg)$ de um transístor com W=4u e L=2u	.34
Figura 35: Característica $I_{\mathcal{D}}(Vg)$ de um transístor com W=1u e L=0.5ueL=0.5u	
Figura 36: Curve fitting de $I_s(V_p)$ de um transístor com W=4u e L=2u	
Figura 37: Curve fitting de $I_s(V_p)$ de um transístor com W=1u e L=0.5u	
Figura 38: Característica $I_D(V_{GS})$ de um transístor PMOS com W=4u e L=2u	
Figura 39: Característica $I_D(V_{GS})$ de um transístor PMOS com W=1u e L=0.5u	
Figura 40: Característica $I_{\mathcal{D}}(V_g)$ de um transístor PMOS com W=4u e L=2u	
Figura 41: Característica $I_D(V_g)$ de um transístor PMOS com W=4u e L=2u	
Figura 48: Erro relativo entre $I_D(V_{DS})$ simulado e obtido através do modelo EKV de um transístor	
PMOS com W=4u e L=2u	.40
Figura 49: Erro relativo entre $I_D(V_{DS})$ simulado e obtido através do modelo EKV de um transístor	
PMOS com W=1u e L=0.5u	.40
Figura 50: Erro relativo entre $I_D(V_{GS})$ simulado e obtido através do modelo EKV de um transístor	-
PMOS com W=4u e L=2u	.41
Figura 51: Erro relativo entre $I_D(V_{GS})$ simulado e obtido através do modelo EKV de um transístor	
PMOS com W=1u e L=0.5u	.41

Objectivos:

Este trabalho tem como objectivo a determinação dos parâmetros do modelo EKV para transístores NMOS da tecnologia UMC065. Serão apenas considerados transístores de canal longo. Assim como o trabalho anterior, este também contará com o auxilio de ferramentas importantes como o software Cadence para dimensionamento e simulação, E o software Matlab para determinação e cálculos dos parâmetros.

O modelo EKV2.6 é caracterizado pelos seguintes parâmetros:

Tabela 1. Parâmetros do modelo EKV2.6

NOME	Descrição	Unidades
Cox	Capacidade do óxido	F/m
\mathbf{V}_{T0}	Tensão limiar de condução	V
Gama	Fator de efeito de corpo	V^0.5
Phi	Potencial de Fermi (2x)	V
Кр	Transcondutância	A/V^2
Theta	Coeficiente de redução de mobilidade	1/V
Ucrit		V/m
XJ	Profundidade de junção	m
DL	Correção de comprimento de canal	m
DW	Correção de largura de canal	m
Lambda	Coeficiente de depleção	-
LETA	Coeficiente de canal curto	-
WETA	Coeficiente de canal estreito	-

Dos parâmetros acima do modelo EKV 2.6, não foram considerados todos, apenas foram obtidos os relativos a transístores de canal longo.

Este trabalho é constituído por 3 fases que serão descritas a seguir:

Fase 1: Determinação dos parâmetros do Modelo EKV para um transístor Nmos1 com W = 4μ e L = 2μ :

Nesta fase são determinados os seis parâmetros seguintes deste modelo, tendo por base características de funcionamento dos dispositivos obtidas por simulação:

- Corrente I_s;
- Tensão de *Pinch-off,Vp;*
- Tensão V_t
- γ e Φ;
- n(V_{g)};
- K_{p.}

Estes parâmetros são obtidos com recurso ao software denominado Matlab

Fase 2: Implementar, em Matlab, um script que permite gerar características $I_D(V_{GS})$ e $I_D(V_{DS})$ utilizando o modelo EKV.

Nesta fase é sugerido o desenvolvimento de um script contendo as seguintes funções:

- Função get_V_p: Que devolve valor de V_P em função da tensão V_G;
- Função get Is: Que devolve valor de Is em função de V_G:
- Função get_i_{fr}: Que devolve valor de corrente $i_{f(r)}$ em função de V_G e de $V_{S(D)}$

Uma vez obtidos os valores de todos os parâmetros do modelo, são traçadas as curvas características a partir das funções acima mencionadas e é feita graficamente uma comparação destas curvas com as curvas obtidas por simulação tanto para o transístor Nmos1 como para o Nmos2.

2º trabalho de EDA/CAD para Nanoelectrónica 2015-2016

As dimensões

As <u>características</u> dos transístores usados podem ser consultadas na seguinte tabela 2 apresentada:

Tabela 2. Características dos transístores utilizados na fase 2.

TRANSÍSTOR	MODELO	W	L
NMOS1	N 12 11hvt	4 µ	2 µ
NMOS2	N_12_1111VL	1 μ	0.5 μ

Fase 3: Repetir as fases 1 e 2 para um transistor P com as mesmas dimensões.

Introdução Teórica:

Modelo EKV

As suas origens remontam aos primeiros desenvolvimentos de relógios electrónicos em *CEH* (sigla em francês para relojoeiros do Centro Electrónico) na Suíça.

O consumo total de energia teve que ser extremamente baixa, inferior a 1µW, para garantir alguns anos de vida para a bateria. Após as primeiras versões baseadas em transístores bipolares, a tecnologia CMOS logo foi identificada como a melhor abordagem para implementar os circuitos electrónicos digitais.

Logo, o modelo EKV é uma evolução dos primeiros modelos de transístores de inversão fraca dos anos 70. Este foi desenvolvido na época de 90 por Christian Enz, François Krummenacher e Eric Vittoz, cujas iniciais do nome do modelo tem sua origem.

Existem duas versões para este modelo com diferentes graus de simplicidade. A versão mais complexa é o EKV3.0 e a mais simples, denominada de modelo EKV2.6, é a versão usada neste trabalho e apresenta algumas limitações para canais muito curtos.

Este é um modelo físico dedicado à análise de circuitos de baixa tensão e baixa corrente, construído sob propriedades físicas fundamentais da estrutura dos transístores e que permite a continuidade de pequenos e grandes sinais desde a inversão fraca até a forte.

Portanto, a criação desde modelo veio permitir uma reprodução mais fiel das novas características de funcionamento dos transístores em todas a zonas de inversão. (2)

Especificações do Modelo EKV:

Este modelo tem 13 (treze) parâmetros que descrevem o comportamento do transistor em todas as regiões de operação. Os parâmetros do modelo EKV estão resumidos na tabela 1 anteriormente apresentada.

Também preserva a simetria intrínseca do transístor referindo todas as tensões ao Bulk mantendo-se a simetria do dispositivo, como pode ser visto na Figura 1 abaixo:.

Figura 1: Transístor MOS utilizado no modelo EKV [Fonte: Ref. (1)]

As zonas de operação do transístor são descritas através do que é definido como o potencial eletrostático na superfície do material semicondutor.

Figura 2: Grafico log(ID) onde se demonstram as inversões fraca,moderada e forte do transístor – [Fonte: Ref. (1)]

Observando a figura 2, na zona de inversão fraca, ou *subtreshold*, o canal é ligeiramente invertido, esta zona é usada em aplicações de baixo consumo de potência e baixa frequência. Na inversão moderada, o erro resultante não é muito significativo. E por ultimo, na zona de inversão forte, existe a possibilidade de medição da tensão em que o transístor entra em saturação (tensão de *pinch-off*).

As equações variam muitas vezes conforme a zona de inversão forte ou fraca. Tradicionalmente não se considera equações gerais para inversão moderada¹. Na tabela seguinte (tabela 3) temos:

Tabela 3: Equações de ID conforme as zonas de inversão [Fonte: ver ref. (1)]

	I_D (assumes V_{BS} =0)	g_m
Weak Inversion	$I_D = 2n\mu C_{cx} \left(\frac{W_L}{L} \right) U_T^2 \exp \left(\frac{V_{CS} - V_{TO}}{n U_T} \right)$	$g_m = \frac{I_D}{nU_T}$
Strong Inversion	$I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} (V_{CS} - V_{TO})^2$	$g_m = \sqrt{2\mu C_{ox} (W_L) I_D}$

Portanto, no modelo EKV acaba por se considerar uma única equação em todos os níveis de inversão.

Implementação Prática

Através do *software Cadence*, desenvolveu-se o seguinte esquemático do circuito:

Figura 3: Esquemático do circuito desenvolvido no software Cadence

Após a simulação, Os dados foram exportados para o Matlab onde obteve-se os seguintes gráficos das curvas características I_D(V_S):

Fases do Projecto:

Fase 1

Fase 1 - alínea a: Determinação da Corrente Is (Corrente Específica)

A corrente de dreno I_D , é decomposta em corrente directa e inversa conforme a expressão:

$$I_D = I_S(i_F - i_R) \tag{1}$$

Em que,

$$I_S = 2\mu C_{ox} U_t^2 \left(\frac{W}{L}\right) \tag{2}$$

$$i_F = \left[\ln\left(1 + \exp(\frac{V_{p-}V_S}{2U_t})\right)\right]^2$$
 (3)

$$i_R = \left[\ln\left(1 + \exp(\frac{V_{p-}V_D}{2U_t})\right)\right]^2$$
 (4)

Uma vez que, quando um transístor encontra-se em inversão forte, com $e^{\left(\frac{V_{p}-V_{D}}{2U_{t}}\right)}\gg 1$ e i_{R} é desprezável. Tem-se:

$$i_f = \left(\frac{V_{p-V_S}}{2U_t}\right)^2 \tag{5}$$

Logo, a corrente de dreno é dada por:

$$I_D \approx I_S * \left(\frac{V_P - V_S}{2U_T}\right)^2 \leftrightarrow \sqrt{I_D} \approx \sqrt{I_S} * \left(\frac{V_P - V_S}{2U_T}\right) \leftrightarrow \sqrt{I_D} \approx \left[-\left(\frac{\sqrt{I_S}}{2U_T}\right) * V_S\right] + \left[\left(\frac{\sqrt{I_S}}{2U_T}\right) * V_P\right]$$
(6)

Pelo que a característica $\sqrt{I_D}$ (V_S) é uma recta com:

Declive:
$$m = -\left(\frac{\sqrt{I_S}}{2U_T}\right)$$
 (7)

e com ordenada na origem:
$$b = \left[\left(\frac{\sqrt{I_S}}{2U_T} \right) * V_P \right]$$
 (8)

Através da simulação efectuada utilizando o *software Cadence*, considerando o transístor em inversão forte, obteve-se a característica $\sqrt{I_D} \ (V_S)$.De seguida utilizou-se o método de *curve fitting* para determinar m e b.

O curve fitting pode ser visualizado na figura abaixo (figura 4):

Figura 4: Curve Fitting utilizado para determinação da corrente específica

E os valores obtidos foram:

$$m = -\left(\frac{\sqrt{I_S}}{2U_T}\right) \leftrightarrow \qquad m = -0.0182 \tag{9}$$

$$b = \left[\left(\frac{\sqrt{I_S}}{2U_T} \right) * V_P \right] \leftrightarrow \quad b = \quad 0.0092$$
 (10)

Uma vez determinados m e b. Através de m, Torna-se possível o calculo da corrente Is Uma vez que:

$$I_S = (2m + U_t)^2 (11)$$

Tendo em conta que:

Valor teórico !!!
$$U_t=0.025$$
 (Valor definido pela docente) $m=-0.0182$ (Valor obtido acima)

Então:

е

$$0.0182 = -\left(\frac{\sqrt{I_S}}{2*0.025}\right) \leftrightarrow I_S = 82.439\mu A \tag{12}$$

Dos dados exportados para o Matlab, também obteve-se os seguintes gráficos das curvas características I_D(V_S):

Características $I_D(V_S) com V_D = 1.2V$

➤ Para o transístor NMOS1 com W=4u e L=2u:

Figura 5: Característica ID (Vs) de um transístor com W=4u e L=2u e Vd fixo em 1.2V

Figura 6: Característica ID (Vs) de um transístor com W=1u e L=0.5u e Vd fixo em 1.2V

Fase 1 - alínea b: Determinação da tensão de Pinch-off, Vp

A tensão de pinch-off é definida como a tensão do canal para o qual a inversão de carga é zero sob efeito da inversão forte⁽⁴⁾ . Esta fornece um método eficiente de determinação dos principais parâmetros do modelo tais como a tensão de threshold e outros parâmetros relativos à concentração de portadores no canal⁽⁴⁾

A determinação da tensão de pinch-off consiste em usar uma corrente de polarização constante, tipicamente igual a da corrente . Para medir a característica varia-se todos os valores da tensão da porta e mede-se a tensão da fonte .

Para a determinação da tensão *Pinch-off, Vp,* considerou-se a seguinte equação:

$$I_{D} = I_{S} * \left[ln \left(1 + e^{\frac{V_{D} - V_{S}}{2U_{T}}} \right) \right]^{2} \stackrel{V_{P} \approx V_{S}}{\Longleftrightarrow} I_{D} = I_{S} * [ln(2)]^{2} \leftrightarrow I_{D} = I_{S} * 0.48$$
 (13)

Através do seguinte esquemático desenvolvido:

Figura 7: Montagem para determinação de Vp

Obtida a equação e simulando no *Cadence* o circuito da figura 7, obteve-se a recta $V_P(V_G)$ representada na figura 8:

Para o transístor NMOS1 com W=4u e L=2u:

Figura 8: Característica Vp(Vg) de um transístor com W=4u e L=2u

Figura 9: Característica Vp(Vg) de um transístor com W=1u e L=0.5u

Fase 1 - alínea c: Determinação da Tensão de Threshold (V_t ou V_{t0}):

A partir da característica $V_P(V_G)$ determinou-se o valor de V_t considerando as seguintes equações:

$$V_P \approx \frac{V_G - V_T}{r} \leftrightarrow V_P = (m_2 * V_G + b_2) \tag{14}$$

Onde $m_2 e b_2$ são novos valores de declive e ordenada de origem obtidos da característica $V_P(V_G)$.

A tensão de threshold é definida como sendo a tensão da gate, denominada V_{G} , para a qual, a inversão de carga no canal no equilíbrio é zero, ou seja, quando V_{P} = 0, logo:

$$V_P = (m_2 * V_G + b_2) \stackrel{V_P=0}{\iff} V_{T0} = V_G = \left(\frac{-b_2}{m_2}\right)$$
 (15)

Para determinar o valor de $m_2\,e\,b_2$, fez-se um curve fitting às características $V_P(V_G)$ que podem ser observadas das figuras 10 e 11 seguintes.

Figura 10: Curve Fitting da característica Vp(Vg) de um transístor com W=4u e L=2u

Para o transístor NMOS2 com W=1u e L=0.5u:

Figura 11: Curve Fitting da característica Vp(Vg) de um transístor com W=1u e L=0.5u

Através das curvas acima, obteve-se os seguintes valores:

➤ Para o transístor NMOS1 com W=4u e L=2u:

$$m_2 = -0.0182$$

$$b_2 = 0.0092$$

➤ Para o transístor NMOS2 com W=1u e L=0.5u:

$$m_2 = -0.0116$$

$$b_2 = 0.0070$$

Logo, obteve-se também os seguintes valores para cada Vto:

> Para o transístor NMOS1 com W=4u e L=2u:

$$V_{t0} = 0.5209 \text{ [V]}.$$

$$V_{t0} = 0.5390[V].$$

Fase 1 - alínea d: Determinação dos parâmetros γ e Φ :

A tensão de *pinch-off* no modelo EKV em função da tensão da *gate* V_G é dada por:

$$V_P = V_{G}' - \phi - \left[\gamma' * \left(\sqrt{V_{G}' + (0.5 \gamma')^2} - 0.5 \gamma' \right) \right]$$
 (16)

Onde γ' é denominado por *coeficiente de corpo ou factor de substracto*, e é dado por:

$$\gamma' = \left[\frac{\sqrt{2q\varepsilon_{si}N_{sub}}}{Cox} \right] \tag{17}$$

E ϕ é uma aproximação do potencial da região em inversão forte e a tensão da $gate\ V_G{}'$ é dada por:

$$V_{G}' = V_{G} - V_{t0} + \phi - (\gamma * \sqrt{\phi})$$
 (18)

em que V_{t0} é a tensão de *threshold*.

Para transístores de canal longo, a aproximação $\gamma' = \gamma$ é válida, caso o efeito de corpo γ' tem de ser tido em conta.

Uma vez obtido V_G através de simulação, realizando um *fitting* à equação da tensão de *pinch-off* (Vp), obteve-se os valores pretendidos neste ponto, ou seja, dos parâmetros γ e Φ :

▶ Para o transístor NMOS1 com W=4u e L=2u:

$$\phi = 0.9650$$

$$\gamma = 0.4320$$

$$\phi = 0.9320$$

$$\gamma = 0.4000$$

Para o transístor NMOS1 com W=4u e L=2u:

Figura 12: Curve Fitting Vs(Vg) de um transístor com W=4u e L=2u

Figura 13: Curve Fitting Vs(Vg) de um transístor com W=1u e L=0.5u

Fase 1 - alínea e: Determinação de n(Vg):

Uma vez que o declive na zona de inversão fraca, é dado por:

$$n = \left[1 + \frac{\gamma}{2^2 \sqrt{V_P + \phi}}\right] \tag{19}$$

Substituindo γ , Φ e Vp pelos valores anteriormente determinados, obteve-se as características n(Vg), conforme representado nas figuras 14 e 15 abaixo :

Para o transístor NMOS1 com W=4u e L=2u:

Figura 14: Característica n(Vg) de um transístor com W=4u e L=2u

Figura 15: Característica n(Vg) de um transístor com W=1u e L=0.5u

Fase 1 - alínea f: Determinação do parametro K_p:

O factor de ganho de transcondutância (K_p) , é extraído a partir da curva do $I_D(V_G)$ do transístor. Assim, simulando o circuito com $V_D = 1.2 \text{ V}$ e variando o V_G , obteve-se as seguintes características abaixo conforme as figuras 16 e 17:

> Para o transístor NMOS1 com W=4u e L=2u:

Figura 16: Característica I_D(Vg) de um transístor com W=4u e L=2u

Figura 17: Característica I_D(Vg) de um transístor com W=1u e L=0.5u

Obtidas as características, sabe-se que,

$$I_S = 2 * U_t^2 * n * \left(\frac{K_P}{1 + \theta * V_P}\right)$$
 (20)

em que:

$$K_P = \beta * \left(\frac{W}{L}\right) \tag{21}$$

Assim, tendo por base a equação da corrente I_S realizou-se um *fitting* em cada transistor obtendo- se os valores de K_P e θ para cada.

Os resultados do fitting's podem serem vistos nas figuras 18 e 19:

Para o transístor NMOS1 com W=4u e L=2u:

Figura 18: Curve fitting de I_s(V_p) de um transístor com W=4u e L=2u

Figura 19: Curve fitting de I_s(V_p) de um transístor com W=1u e L=0.5u

E os seus respectivos valores obtidos foram:

> Para o transístor NMOS1 com W=4u e L=2u:

$$K_P = 2.9495e-04$$

$$\theta = -0.5353$$

➤ Para o transístor NMOS2 com W=1u e L=0.5u:

$$K_P = 2.0008e-04$$

$$\theta = -0.7240$$

Obteve-se também os seguintes valores para cada parâmetro β : Tendo em conta que:

$$\beta = \frac{K_P}{\left(\frac{W}{L}\right)} \tag{22}$$

Logo:

➤ Para o transístor NMOS1 com W=4u e L=2u:

$$\beta = 1.4747e-04$$

$$\beta = 1.0004e-04$$

Fase 1: Comentários:

Fase 2:

Fase 2: Comparação de resultados analisados do modelo

Conforme sugerido, procedeu-se ao desenvolvimento de funções para gerar as características $I_D(V_{GS})$ e $I_D(V_{DS})$. Uma vez obtidos todos os parâmetros do modelo, possibilitando desta forma compará-las com as mesmas características simuladas no *Cadence*.

As funções estão determinadas, conforme mencionadas nos objectivos deste trabalho, e tem seus conteúdos expostos na parte denominada por anexo, descrito no final deste documento.

Estas características foram feitas para os dois transístores conforme se apresentam na tabela 2 de forma a demonstrar qual a influência deste modelo em transístores com dimensões diferentes.

Os resultados para as características $I_D(V_{GS})$ podem ser conferidos nas figuras 20 e 21 a seguir:

Para o transístor NMOS1 com W=4u e L=2u:

Figura 20: Característica I_D(V_{gs}) de um transístor com W=4u e L=2u

Figura 21: Característica $I_D(V_{gs})$ de um transístor com W=1u e L=0.5u

Os resultados para as características $I_D(V_{DS})$ podem ser conferidos nas figuras 22 e 23 a seguir:

Para o transístor NMOS1 com W=4u e L=2u:

Figura 22: Característica I_D(V_{DS}) de um transístor com W=4u e L=2u

Figura 23: Característica $I_D(V_{DS})$ de um transístor com W=1u e L=0.5u

Os erros relativos entre os valores Id(Vds) podem ser conferidos nas figuras 22 e 23 a seguir:

Para o transístor NMOS1 com W=4u e L=2u:

Figura 24: Erro relativo entre I_D(V_{DS}) simulado e obtido através do modelo EKV de um transístor com W=4u e L=2u

Figura 25: Erro relativo entre I_D(V_{DS}) simulado e obtido através do modelo EKV de um transístor com W=1u e L=0.5u

Da mesma forma, para os erros relativos entre os valores Id(Vgs) podem ser conferidos nas figuras 24 e 25 a seguir:

▶ Para o transístor NMOS1 com W=4u e L=2u:

Figura 26: Erro relativo entre I_D(V_{GS}) simulado e obtido através do modelo EKV de um transístor com W=4u e L=2u

Porque fizeram módulo do erro ?

Figura 27: Erro relativo entre I_D(V_{GS}) simulado e obtido através do modelo EKV de um transístor com W=1u e L=0.5u

Fase 3:

Fase 3: Repetir as fases 1 e 2 para um transistor P com as mesmas dimensões.

Nesta fase, subdividida por partes, utilizou-se os mesmos procedimentos desenvolvidos para os transístores do tipo *N* das fases 1 e 2.

As características dos transístores do tipo *P* utilizadas podem ser consultadas na seguinte tabela 4 apresentada:

Tabela 4. Características dos transístores P utilizados.

TRANSÍSTOR	MODELO	W	L
PMOS1	P 12 11hvt	4 µ	2 µ
PMOS2	F_12_1111VL	1 µ	0.5 µ

Fase 3 - Parte1 - alínea a: Determinação da Corrente Is (Corrente Específica)

Da mesma forma obtida para os transístores do tipo NMOS e através da simulação efectuada utilizando o *software Cadence*, considerando o transístor em inversão forte, obteve-se a característica $\sqrt{I_D} \, (V_S)$. De seguida utilizou-se o método de *curve fitting* para determinar m e b.

O curve fitting pode ser visualizado na figura abaixo (figura 22):

Figura 28: Curve Fitting utilizado para determinação da corrente específica

Dado que os parâmetros foram calculados conforme as equações para os transístores NMOS descritos anteriormente, os valores obtidos se apresentam conforme a tabela 5 abaixo:

Tabela 5. Valores obtidos dos parâmetros para o transistores P u
--

	m	b	Is [A]	Ut [V]
PMOS1	-0.0099	0.0053	2.4377e-07	0.025
PMOS2	-0.0101	0.0053	2.5629e-07	0.025

Dos dados exportados para o Matlab, também obteve-se os seguintes gráficos das curvas características I_D(V_S):

Características $I_D(V_S)$ com $V_D = 1.2V$

▶ Para o transístor PMOS1 com W=4u e L=2u:

Figura 29: Característica ID (Vs) de um transístor com W=4u e L=2u e Vd fixo em 1.2V

➤ Para o transístor PMOS2 com W=1u e L=0.5u:

Figura 30: Característica ID (Vs) de um transístor com W=1u e L=0.5u e Vd fixo em 1.2V

Fase 3 - Parte1 - alínea b: Determinação da tensão de Pinch-off, Vp

Através do seguinte esquemático desenvolvido:

Figura 31: Montagem para determinação de Vp

Obtida a equação e simulando no *Cadence* o circuito da figura 25, obteve-se a recta $V_P(V_G)$ representadas nas figuras 26 e 27:

Para o transístor PMOS1 com W=4u e L=2u:

Figura 32: Característica Vp(Vg) de um transístor com W=4u e L=2u

Figura 33: Característica Vp(Vg) de um transístor com W=1u e L=0.5u

Fase 3 - Parte1 - alínea c: Determinação da Tensão de Threshold (V_t ou V_{t0}):

A partir da característica $V_P(V_G)$ determinou-se o valor de V_b considerando as mesmas equações utilizadas no NMOS:

$$V_P \approx \frac{V_G - V_T}{r} \leftrightarrow V_P = (m_2 * V_G + b_2) \tag{23}$$

 $V_P \approx \frac{V_G - V_T}{n} \leftrightarrow V_P = (m_2 * V_G + b_2) \tag{23}$ Onde $m_2 e b_2$ são novos valores de declive e ordenada de origem obtidos da característica $V_P(V_G)$.

Da mesma forma para o NMOS, para determinar os valores de $m_2\ e\ b_2$, fez-se um curve fitting às características $V_P(V_G)$ que podem ser observadas das figuras 28 e 29 seguintes.

▶ Para o transístor PMOS1 com W=4u e L=2u:

Figura 34: Curve Fitting da característica Vp(Vg) de um transístor com W=4u e L=2u

Figura 35: Curve Fitting da característica Vp(Vg) de um transístor com W=1u e L=0.5u

Através das curvas acima, obteve-se os valores conforme a tabela 6 apresentada na fase 3, alínea *d* mais adiante.

Fase 3 - Parte1 - alínea d: Determinação dos parâmetros γ e Φ :

Uma vez obtido V_G através de simulação, realizando um *fitting* à equação da tensão de *pinch-off* (Vp), obteve-se os valores pretendidos neste ponto, ou seja, dos parâmetros γ e Φ :

	V _{t0} [V]	ф	γ
PMOS1	0.5061	0.2240	0.3498
PMOS2	0.5060	0.2336	0.3449

Tabela 6. Valores obtidos dos parâmetros para o transístores P utilizados.

Logo, pode se observar as respectivas características através das figuras 30 e 31:

Figura 36: Curve Fitting Vs(Vg) de um transístor com W=4u e L=2u

Para o transístor PMOS2 com W=1u e L=0.5u:

Figura 37: Curve Fitting Vs(Vg) de um transístor com W=1u e L=0.5u

Fase 3 – Parte 1 - alínea e: Determinação de n(Vg):

Substituindo γ , Φ e Vp pelos valores anteriormente determinados, obteve-se as características n(Vg), conforme representado nas figuras 32 e 33 abaixo :

> Para o transístor PMOS1 com W=4u e L=2u:

Figura 38: Característica n(Vg) de um transístor com W=4u e L=2u

Para o transístor PMOS2 com W=1u e L=0.5u:

Figura 39: Característica n(Vg) de um transístor com W=1u e L=0.5u

Fase 3 - Parte1 - alínea f: Determinação do parametro Kp:

O factor de ganho de transcondutância (K_p) , é extraído a partir da curva do $I_D(V_G)$ do transístor. Assim, simulando o circuito com $V_D = 1.2 \text{ V}$ e variando o V_{G_i} obteve-se as seguintes características abaixo conforme as figuras 34 e 35:

▶ Para o transístor PMOS1 com W=4u e L=2u:

Figura 40: Característica I_D(Vg) de um transístor com W=4u e L=2u

Para o transístor PMOS2 com W=1u e L=0.5u:

Figura 41: Característica I_D(Vg) de um transístor com W=1u e L=0.5u

Obtidas as características, assim, tendo por base a equação da corrente I_S descrita para os transístores NMOS, da mesma forma, realizou-se um *fitting* em cada transistor obtendo- se os valores de K_P e θ para cada um.

Os resultados do *fitting's* podem serem vistos nas figuras 36 e 37:

Para o transístor PMOS1 com W=4u e L=2u:

Figura 42: Curve fitting de I_s(V_p) de um transístor com W=4u e L=2u

0.4 | Is(Vp) | * Simulação quadrate | Quadra

▶ Para o transístor PMOS2 com W=1u e L=0.5u:

Figura 43: Curve fitting de I_s(V_p) de um transístor com W=1u e L=0.5u

E os seus respectivos valores obtidos, são apresentados conforme a tabela 7 a seguir:

Tabela 7. Valores obtidos dos parâmetros para o transístores P utilizados.

	Kp	θ	β
PMOS1	1.5639e-04	-0.0369	7.8193e-05
PMOS2	1.5963e-04	-0.0203	7.9815e-05

Fase 3 – Parte2:
Fase 3 – Parte 2: Comparação de resultados analisados do modelo
Assim como para os transístores tipo N, procedeu-se ao desenvolvimento de funções para gerar as características $I_D(V_{GS})$ e $I_D(V_{DS})$.
Uma vez obtidos todos os parâmetros do modelo, possibilitou-se desta forma compará-las com as mesmas características simuladas no <i>Cadence</i> .

Estas características foram feitas para os dois transístores conforme

Os resultados para as características $I_D(V_{GS})$ podem ser conferidos

nas figuras 38 e 39 a seguir:

se apresentam na tabela 4 de forma a demonstrar qual a influência deste modelo em transístores com dimensões diferentes.

Para o transístor PMOS1 com W=4u e L=2u:

Figura 44: Característica I_D(V_{GS}) de um transístor PMOS com W=4u e L=2u

Figura 45: Característica $I_D(V_{GS})$ de um transístor PMOS com W=1u e L=0.5u

Os resultados para as características $I_D(V_{DS})$ podem ser conferidos nas figuras 40 e 41 a seguir:

➤ Para o transístor PMOS1 com W=4u e L=2u:

Figura 46: Característica I_D(V_g) de um transístor PMOS com W=4u e L=2u

Figura 47: Característica $I_D(V_g)$ de um transístor PMOS com W=4u e L=2u

Os erros relativos entre os valores Id(Vds) podem ser conferidos nas figuras 48 e 49 a seguir:

Para o transístor PMOS1 com W=4u e L=2u:

Figura 48: Erro relativo entre I_D(V_{DS}) simulado e obtido através do modelo EKV de um transístor PMOS com W=4u e L=2u

Figura 49: Erro relativo entre I_D(V_{DS}) simulado e obtido através do modelo EKV de um transístor PMOS com W=1u e L=0.5u

Da mesma forma, para os erros relativos entre os valores Id(Vgs) podem ser conferidos nas figuras 50 e 51 a seguir:

➤ Para o transístor PMOS1 com W=4u e L=2u:

Figura 50: Erro relativo entre I_D(V_{GS}) simulado e obtido através do modelo EKV de um transístor PMOS com W=4u e L=2u

Figura 51: Erro relativo entre $I_D(V_{GS})$ simulado e obtido através do modelo EKV de um transístor PMOS com W=1u e L=0.5u

Conclusão:

Os resultados obtidos para os 4 ensaios, 2 para duas dimensões do PMOS e 2 para duas dimensões do NMOS, confirmam a precisão do modelo EKV para sinais em inversão moderada/forte, contudo, para inversão fraca não apresenta a mesma precisão, tendo-se registado neste trabalho uma grande discrepância entre os valores do modelo e os valores obtidos a partir de simulação para sinais nesta zona.

As características dos erros relativos entre as curvas para os NMOS simuladas e obtidas pelo modelo EKV revelam boas aproximações, por exemplo, para id(Vgs) apresentam um erro nunca superior a 10% e as curvas id(Vds) apresentam erros abaixo de 50%.

Já as características dos erros relativos entre as curvas para os PMOS simuladas e obtidas pelo modelo EKV, para id(Vgs) denotamse boas marcas para os erros, nunca superiores a 5%, contudo, para id(Vds) existe uma discrepância grande entre estas curvas para Vgs=0.2, possivelmente explicadas por um erro na obtenção da curva por simulação.

Não é devido à curva obtida por simulação mas por que o modelo não é adequado para funcionamento em tensões inferiores a vo

Referências:

- 1. Acetatos da disciplina em: http://moodle.fct.unl.pt.
- 2. http://web.eecs.utk.edu/~bblalock/ece532/ece532_pres_ekv_bsim.pdf.
- 3. Book: Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz 2006 John Wiley & Sons, Ltd.
- 4. http://ekv.epfl.ch/files/content/sites/ekv/files/workshop/2011/Enz_NanoTera_2011.pdf
- 5. https://nsti.org/publications/Nanotech/2007/pdf/897.pdf
- Artigo disponibilizado pela docente da disciplina: http://moodle.fct.unl.pt/pluginfile.php/292366/mod_label/intro/ieee_icmts96_bucher_v p_extraction_method.pdf

Anexos:

```
pl=plot(Vd, -Id_vect(i,1), 'ro', Vd, -Id_vect(i,2), 'rr', Vd, -Id_vect(i,3), 'ro', Vd, -Id_vect(i,4), 'ro', Vd, -Id_vect(i,5), 'ro', -Id_vect(
```

Figura 52: Obtenção das curvas de erro para os PMOS e NMOS

```
Is = ID./(If-Ir);
n = 1 + (gamma./2*sqrt(Vp+fi+(4*Ut)));
figure
plot(ID,n,'b');
title('n(Vg) obtido a partir do modelo EKV');
xlabel('Vg[V]');
ylabel('n');
Ix = Is./(2.*n.*(Ut^2))
theta = beta = fitting_theta_beta_PMOS(Vp,Ix,w,1);
theta = theta_e_beta(2)
beta = theta_e_beta(1)
Kp = beta*(w/1)
```

Figura 53: Obtenção de teta e beta por meio de curve fitting

```
plot(Ve(:,1), Ve(:,2));
title('Ve('Vg) obtido em simulação');
xlabel('Vg');
ylabel('Ve');
grid on;
coefficients = polyfit(Va(:,1), Va(:,2), 1);

VtD = -(Va(1,2)/coefficients(1))
fi = gamma = fitting fi gamma PMOS(Va(:,1),Va(:,2),VcB, W, 1);
fi = fi = gamma(2)

Id_Vg = csvread(filename3);
figure
plot(Id_Vg(:,1),Id_Vg(:,2));
title('In(Vg) bbtido em simulação');
grid on;
xlabel('Vg(V');
ylabel('Id[A]');
ID = Id_Ve(*S5:end:2);
```

Figura 54: Obtenção de gamma e phi por meio de curve fitting

2º trabalho de EDA/CAD para Nanoelectrónica 2015-2016

Figura 55: Obtenção de id a partir do declive característica Id(Vs)