

EPREUVE D'EVALUATION

Date: 29/10/2022

Page : 1/1

Année Universitaire : 2022/2023	Date de l'Examen : 29/10/2022
Nature : ☑ DC ☐ Examen ☐ DR	Durée : ☐ 1h ☑ 1h30min ☐ 2h
Diplôme : ☐ Mastère ☑ Ingénieur	Nombre de pages : 02
Section: GCP GCV GEA GCR GM	Enseignant : Salim ABOUDA
Niveau d'étude : □ 1 êre ☑ 2 ême □ 3 ême année	Documents Autorisés :□ Oui ☑ Non
Matière : Machines à courant alternatif	Remarque : Calculatrice autorisée

On considère un moteur asynchrone de 50 kW, 1350 tr/min, 50 Hz sous 400 V entre phases. Ce moteur entraîne une charge qui impose un couple de 90 Nm sur l'arbre du rotor. Dans tout l'exercice on considère que le moteur travaille à glissement faible et qu'on peut écrire la relation : $C = \frac{3V^2g}{\Omega_g R_r'^2}$ où V est la tension simple d'alimentation, C le couple produit par la machine, g le glissement, Ω_s la vitesse du champ tournant en rad/s et R_r' la résistance équivalente aux conducteurs rotoriques ramenée au stator.

On néglige les pertes au stator ainsi que les pertes mécaniques.

- 1) Quelles sont les valeurs de Ω_s et Ω_{rn} , la vitesse de rotation nominale du rotor ?
- 2) Calculer le glissement nominal et le couple nominal de la machine.
- 3) Calculer alors la valeur de la résistance Rr'.
- 4) Calculer la vitesse de rotation n de la machine lorsqu'elle entraîne sa charge.
- 5) Calculer la valeur de la puissance mécanique développée par le moteur : Pm.
- 6) Calculer également la valeur des pertes Joules au rotor et le rendement en connaissant les pertes à vide : $P_0 = 0.8 \text{ kW}$.
- 7) La machine est en réalité utilisée sur une tension de 230 V entre phases. De plus, l'atmosphère dans lequel elle est placée est particulièrement chaud, ce qui occasionne une valeur de la résistance des conducteurs rotoriques supérieure de 15 % de la valeur calculée précédemment. Calculer dans ces conditions la nouvelle vitesse de rotation de la machine lorsqu'elle entraîne sa charge.
 - 8) Calculer la valeur de la puissance mécanique développée par le moteur.
- 9) Calculer également la valeur des pertes Joules au rotor et le rendement en connaissant les pertes à vide à cette tension : Po = 0,5 kW. Commenter ces résultats.

Bon travail

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

EPREUVE D'EVALUATION

Indice: 3

Date: 12/01/2023

Page: 1/2

Année Universitaire : 2022/2023	Date de l'Examen : 12/01/2023
Nature: DC Examen DR	Durée : □ 1h □ 1h30min ☑ 2h
Diplôme : ☐ Mastère ☑ Ingénieur	Nombre de pages : 02
Section: GCP GCV GEA GCR GM	Enseignant: Salim ABOUDA
Niveau d'étude : □ 1 êre ☑ 2 ême □ 3 ême année	Documents Autorisés :□ Oui ☑ Non
Matière : Machines à courant alternatif	Remarque : Calculatrice autorisée

Exercice1 (10 points):

La plaque signalétique d'un alternateur triphasé donne: S =2MVA ; 2885V/5000V, 50Hz ; 1500 tr/min. La résistance des enroulements statoriques, couplés en étoile, est negligée. Chaque enroulement comporte 500 conducteurs actifs. Le coefficient de Kapp est K=2,25. La résistance du rotor est 10Ω et l'ensemble des pertes fer et mécaniques valent 65kW.

- Un essai à vide à 1500 tr/min donne une caractéristique d'équation E = 100.Ie où E est la f.e.m. induite dans un enroulement et le est l'intensité du courant d'excitation : 0<Ie<50A.
- En charge cet alternateur alimente une installation triphasée équilibrée, inductive, de facteur de puissance 0,80, sous une tension nominale Un = 5000V entre phases. L'intensité du courant en ligne est alors In = 200A et le courant d'excitation Ie = 32A.
 - 1-Déterminer le nombre de pôles de la machine.
 - ²2-Calculer les courants nominaux qui doivent figurer sur la plaque signalétique.
- 3-En fonctionnement à vide, pour une tension entre phases égales à 5000 V, déterminer la valeur de la f.e.m. induite à vide dans un enroulement, le courant d'excitation et la valeur du flux maximal embrassé par une spire.
 - 4-Essai en charge:
- a) Donner le schéma équivalent d'un enroulement et l'équation correspondante. Tracer le diagramme vectoriel et en déduire la réactance synchrone Xs.
- b) Calculer la puissance utile, les différentes pertes, la puissance absorbée totale, le rendement et le moment du couple nécessaire.

Execice2 (10 points):

Les caractéristiques d'un alternateur triphasé raccordé au réseau sont les suivantes :

U_n = 6,6 kV- f = 50Hz; S_n = 3 MVA; n_n = 1000 tr/min; couplage des enroulements statoriques : étoile; La résistance des enroulements statoriques est négligée.

- Essai à vide : pour n = 1000 tr/min, on obtient la relation : $E = 300.I_e$
- avec : E est la tension simple à vide et Ie est l'intensité du courant d'excitation.
- Essai en court-circuit : pour n = 1000 tr/min, on obtient la relation Icc =170.Ie.
- 1. Calculer le nombre de paires de pôles.
- 2. Calculer la valeur efficace de l'intensité nominale.
- 3. Calculer la valeur X de la réactance synchrone d'une phase de l'alternateur.
- 4. L'alternateur doit pouvoir à tout moment, fournir au réseau une puissance réactive Q, telle que tan $\varphi = 0.49$.

Pour une puissance électrique fournie de P = 2,25 MW:

- 4-1. Calculer le facteur de puissance.
- 4-2. Calculer la valeur du courant débité.
- 4-3. Représenter le diagramme de Fresnel des tensions (on pourra prendre une échelle de 250 V par cm).
 - 4-4. La machine est-elle sur-excitée ou sous-excitée ? Justifier.
 - 4-5. Calculer la f.e.m. E et en déduire le courant d'excitation Ie.
 - 4-6. Donner la valeur de l'angle de décalage interne δ.
- 4-7. Calculer le rendement de l'alternateur, sachant que l'ensemble des pertes vaut pr=0,25MW.
 - 4-8. Préciser l'origine de ces pertes.