유방암의 임파선 전이 예측 AI 경진대회

aivle team 김시연, 이동비, 조진호, 엄유정

목차

- 1. 분석결과 요약
- 2. 데이터 전처리
- 3. 모델링
- 4. 시도사항
- 5. 정확도

1. 분석결과 요약

분석결과 정확도

- XGBoost : 0.80766212 (public)
- XGBoost + CNN : 0.8235578125 (public)

분석 흐름도

- 각 데이터에 대한 분석, 전처리 과정후 XGBoost, CNN 모델링
- 이미지와 결측치에 대한 다양한 처리 방법 시도

임상항목 데이터 모델링 **XGB** 모델 모델 모델 제출 제출

> 변 수 사 용

유방암 병리 데이터

이미지 전처리 모델링 시도 CNN 모델 고도화

2. 데이터 전처리 - 임상 항목(정형) 데이터 결측치 처리

중요 변수 추출 후 KNN IMPUTER 적용

암의 장경 NG HG ER_Allred_score PR_Allred_score KI-67_LI_percent HER2_SISH_ratio 수술연월일 -> 년,월,일 분리 중요도 낮은 컬럼을 제거 남은 변수 **0**으로 채우기

2. 데이터 전처리 - 유방암 병리 슬라이드 영상 이미지

- -여러 실험과정을 통해 가장 정확도가 높은 이미지 추출방식 적용-
- 1. 이미지를 grayscale 변환
- 2. 0,0위치부터 오른쪽으로 차례로 탐색
- 3. 픽셀 값이 200이 넘는 지점이 나오면, 그 지점으로부터 100x100 크기로 이미지 캡처
- 4. 캡처 후 오른쪽, 아래로 100 이동후 3 반복
- 5. 캡처된 이미지가 16장이 되었을 경우 400x400이미지로 결합

3. 모델링

4. 시도사항

XGBoost

문제점: 데이터가 낯설어서 처음 데이터를 분석할 때 전처리를 접근 방법이 어려웠음

시도 1: 결측치 컬럼 전부 0으로 채우기 -> 0.779

시도 2: 중요도 낮은 컬럼 제거, 남은 결측치 변수들 0으로 채우기 -> 0.807

시도 3: 중요도 높은 컬럼에 KNN IMPUTER 적용, 중요도 낮은 컬럼 제거, 남은 결측치 변수들 **0**으로 채우기 -> **0**.829

CNN

문제점: 학습 이미지 크기가 매우 크고 달라서 학습환경에서 메모리 부족 문제가 발생

시도1:이미지를 reshape시켜서 **400x400**크기로 조정

=> 학습 정확도가 0.5 수준으로 학습 불가능

시도2:이미지의 세포부분만 400x400크기로 캡처해서 학습

=>전체 이미지중 아주 일부분만 가져와 학습하게 되어 학습 정확도가 0.53수준으로 매우 떨어짐

시도3:전체이미지를 골고루 100x100사이즈로 16장 캡처하여 이어붙인 후 학습

=> 정확도가 0.7으로 높은 정확도를 가져 해당 방식을 채택

캡처 이미지수를 더 많이 할수록 높은 정확도 예상되나 메모리 문제로 시도 하지 못하였음

5. 정확도

Q-

XGBoost 모델: 0.80766212 (public score 기준)

CNN 변수 추가 XGBoost 모델 : 0.8235578125 (public score 기준)

ID img_path mask_path	나이	수술연월일	진단명	암의 위	치 암의	개수 암의	장경 NG	HG	H	G_score_ HG	score HG	score_Do	IS_or_L DC	IS_or_L T_	categor ER	ER	Allred_ PR	PR	Allred_KI	-67_LI_F HER	2 HER	R2_IHC HE	R2_SISH H	ER2_SISH B	RCA_mur N_catego	CNN
BC_01_00 _/train_img -	6	3 2015-10-23		1	2	1	19	2	1	2	2	1	2		1	1	8	1	6	12	0	1				2.38E-32
BC_01_00 _/train_img -	5	1 2015-10-28		1	1	1	22	3	3	3	3	3	0		2	0		0		70	0	0				0.72539
BC_01_00 _/train_img -	3	7 2015-10-29		1	2	1		2					1	2	0	1	7	1	4	7	0	1			0 (0.68973
BC_01_00 _/train_img -	5	4 2016-03-08		1	2	1	0	3	3	3	3	2	1	2	0	0		0		1	1	3				0.5759
BC_01_00 _/train_img -	5	7 2015-10-30		1	2	1	8	2	2	3	2	1	2		1	1	8	0		8	1	2	1	5.44		0.59463

CNN 결과 변수로 추가

감사합니다