Day 1

Marking Scheme for Problem 1 Day 1

• Prove that f(0) = 0 or 2 1 mark

Case f(0) = 0.

• Prove that $f(x^2) = 0$ or $(f(x))^2 = x(f(1))^2$ 1 mark

• Prove that $f(x) = 0 \forall x$. **1 mark**

Case f(0) = 2.

• Prove that $f(x^2) = 2$. 1 mark

• Prove that $f(x) = \pm 2$ 1 mark

• Prove that $f(x) = \begin{cases} 2 & \text{if x is a square} \\ \pm 2 & \text{otherwise} \end{cases}$ 1 mark

• Check or prove all solutions. 1 mark

Remark: If the contestant finds that there is a Cauchy functional equation either in one or both cases, he gets 1 mark.

Marking Scheme for Problem 2 Day 1

• Prove that the total number of matches if $\binom{3n}{2}$ **1 mark**

• Prove that boys winnings is $\frac{7}{16} \binom{3n}{2}$ 1 mark

• Prove that girls winnings between them is $\binom{2n}{2} = n(2n-1)$ 1 mark

• Prove that $n \le 11$ 1 mark

• Prove that n = 11 either by

- Checking that the only possible value is 11 1 mark

- Justifying that the number of boys winnings is an integer $\boxed{ 1 \text{ mark} }$

or by

– Checking that $32 \mid 21n(3n-1)$ **1 mark**

- Finding that $n \ge 11$. **1 mark**

The last mark is not attained if the conclusion n=11 is not explicitly written.

• Conclusion: 33 players 1 mark

Alternatives We set m to be the number of times a girl wins against a boy

- Prove that girls winnings are n(2n-1)+m 1 mark
- Prove that boys winnings are $\binom{n}{2} + 2n^2 m$ 1 mark
- Find the equation $n(2n-1) + m = \frac{7}{9} \left(\frac{n(n-1)}{2} + 2n^2 m \right)$ **1 mark**
- Conclude that $11n \ge n^2$ 1 mark
- Prove that n = 11 as above **2 marks**
- Conclusion: 33 players 1 mark

Marking Scheme for Problem 3 Day 1

• Remark that if $\exists r \in \mathbb{N}$ such that $x_{m_r} = 2^r$ then

$$x_{m_r+i} = 2^{r-i}(2i+1)$$
 $i \in \{1, \dots, r\}$ **1 mark**

and
$$x_{m_r+r+1} = 2^{r+1}$$
 1 mark

- Conclude that every natural number appears at least once 1 mark
- Prove that $m_{r+1} = m_r + r + 1$ 1 mark
- Prove that $x_{(r+1)(r+2)} = 2r + 1$ or something like **1 mark**
- Find the value of n 1 mark
- Prove somewhere that n is unique $\boxed{\mathbf{1} \text{ mark}}$

Day 2

Marking Scheme for Problem 4 Day 2

- \implies one direction $\boxed{\mathbf{3} \text{ marks}}$
- ullet no \Longrightarrow or \Longleftrightarrow but works both ways $\boxed{\mathbf{5} \text{ marks}}$
- with \iff or iff or ssi $\boxed{6 \text{ marks}}$
- ullet for each relevant angle equality $oxed{1 \text{ mark}}$ maximum $oxed{2 \text{ marks}}$

Alternatives

- DAPB cyclic $\implies DB$ diameter $\boxed{1 \text{ mark}}$
- BC perpendicular to radius $\implies BC$ tangent 1 mark
- $\angle CBP = \angle BAP$ (tan-chord) **1 mark**
- Conversely if $\angle CBP = \angle BAP \implies BC$ is tangent to circumcircle of ABP 1 mark
- $\implies DB$ passes through centre (\perp to tangent) **1 mark**
- Since $\angle DAB = 90^{\circ}$, D is diametrically opposite B so D is on the circle **2 marks**

Marking Scheme for Problem 5 Day 2

- Prove that (a+c)(b+d)=4ac or $\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}}{2}\geq \sqrt[4]{1}$ 1 mark
- Prove that (a+c)(b+d) > 4ac = (a+c)(b+d) which is a contradiction or checking that equality occurs iff all terms are equal meaning that b=d, contradiction again $\boxed{\mathbf{1} \ \mathbf{mark}}$
- Prove that $A = \frac{(a+c)^2 + (b+d)^2}{ac} 4$ **2 marks**
- Prove that $(a+c)^2 + (b+d)^2 \ge 2|a+c||b+d|$ 1 mark
- Prove that $\frac{(a+c)^2+(b+d)^2}{ac} \le \frac{2|a+c||b+d|}{ac} = -8$ **1 mark**
- ullet Providing the example of equality ${f 1 \ mark}$

Alternatives

- Show that $4 = \frac{d}{c} + \frac{a}{d} + \frac{b}{a} + \frac{c}{b}$. 1 mark
- State that x_i are pairwise different 1 mark
- Show that x_1, x_2, x_3, x_4 are roots of $x^4 4x^3 + (A+2)x^2 4x + 1$ **1 mark**
- Show that $x_i + \frac{1}{x_i}$ are roots of $t^2 4t + A$ 1 mark
- Show that $x_i + \frac{1}{x_i} = 2 \pm \sqrt{4 A}$, negative root occurs, and $\sqrt{4 A} > 0$
- Show that $A \leq -12$ 1 mark
- Providing the example of equality 1 mark

Marking Scheme for Problem 6 Day 2

- Remark that the process ends once we have 1s everywhere 1 mark
- Case 3 | n: set s_w, s_r, s_b and check that $s_w = \frac{n}{3} 1$, $s_r = \frac{n}{3}$, $s_b = \frac{n}{3}$ 1 mark
- Conclude a contradiction 1 mark

Case n = 3k + 1:

- Transform configuration 110111...1111 to 000000...0001 | 1 mark
- Divide into blocks of three and perform k steps | 1 mark

Case n = 3k + 2:

- Transform configuration 110111...1111 to 000000...0110 **1 mark**
- Divide into blocks of three and perform k steps **1 mark**