$$\frac{df}{dx} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

Using Taylor's theorem,

$$f(x+\delta)=f(x)+\deltarac{d}{dx}f(x)+rac{\delta^2}{2}rac{d^2}{dx^2}f(x+\zeta)$$

where ζ belongs to $(0,\delta)$

$$\implies f(x+\delta)-f(x)-rac{\delta^2}{2}rac{d^2}{dx^2}f(\zeta)=\deltarac{d}{dx}f(x)$$

$$\Longrightarrow \left[rac{df}{dx} = rac{f(x+\delta) - f(x)}{\delta} - rac{\delta}{2} rac{d^2}{dx^2} f(\zeta)
ight]$$

where ζ belongs to $(0,\delta)$

Let

$$g(\delta) = rac{f(x+\delta) - f(x)}{\delta}$$

$$E(\delta) = rac{\delta}{2} \mid rac{d^2}{dx^2} f(\zeta)
vert_{max}$$

where ζ belongs to $(0,\delta)$

If we approximate $\frac{df}{dx}$ by $g(\delta)$, error is less than or equal to $E(\delta)$. It can be easily seen that by reducing δ , we reduce $E(\delta)$ because $\frac{\delta}{2}$ decreases and $\frac{d^2}{dx^2}f(\zeta)|_{max}$ decreases. So, upper bound on error decreases with reducing δ . So, accuracy, in general, increases with reducing δ .

Due to finite numerical precision, representation of f is precise only upto finite numer of bits. For large $f(x+\delta)$, this error is very small in comparision to $f(x+\delta)$. So, it can be ignored. But for very small $f(x+\delta)$, this error is comparable to $f(x+\delta)$. So, this numerical precision error bounds the minimum error possible.

$$f(x) = x(x-1)$$

At x=1, f(x)=0. So, error in f(x) at x=1 is 0 since 0 can be precisely stored.

Let c be the number of precision bits. Then precision error in x is about $dx=2^{-c-1}|x|$.

Consider product pq. Then maximum precision error in pq is (|p|dq| + |q|dp|) where dq and dp are precision errors.

So, error in
$$x(x-1)$$
 is $|x(dx)|+|(x-1)dx|=dx(|x|+|x-1|)=2^{-c-1}|x|(|x|+|x-1|)$

For x=1, precision error in x is 2^{-c} . So, error in x(x-1) is 2^{-c}

Then precision error in δ is about $2^{-c-1}\delta$.

Consider a fraction $\frac{p}{q}$.

$$d(rac{p}{q}) = rac{dp - rac{p}{q}dq}{q}$$

This equation represents the sensitivity of $\frac{p}{q}$ small errors in numerator and denominator.

So, maximum precision error in $\frac{p}{q}$ is $\frac{|dp|+\frac{p}{q}|dq|}{q}$

So, maximum precision error in $\frac{f(x+\delta)}{\delta}$ is $\frac{2^{-c}+\$\frac{f(x+\delta)}{\delta}}{\delta}\$2^{-c}\delta$.

Let ϵ be upper bound on error.

$$\epsilon = 2^{-c-1}rac{1+\delta}{\delta} + rac{\delta}{2} \mid rac{d^2}{dx^2}f(\zeta)|_{max}$$

where ζ belongs to $(0,\delta)$

$$f(x) = x(x-1)$$

$$\Rightarrow rac{df}{dx} = 2x - 1$$
 $\Rightarrow rac{d^2f}{dx^2} = 2$
 $\Rightarrow \epsilon = 2^{-c-1} rac{1+\delta}{\delta} + \delta$
 $\Rightarrow \epsilon = 2^{-c-1} + 2^{-c-1} rac{1}{\delta} + \delta$

 ϵ is minimised when

$$\frac{2^{-c-1}}{\delta} = \delta$$

by AM-GM inequality. Also, qualitatively, one should decrease δ as long as numerical precision error is lower than taylor-series truncation error.

 ϵ is minimised when

$$\delta=2^{-(c+1)/2}$$

Putting
$$c=52, \delta=2^{-26.5}pprox 10^{-8}$$

So, $\delta=10^{-8}$ gives most accurate numerical derivative in the performed calculations.