抽象代数笔记

rogeryoungh

2023年12月13日

目录

第一章	初等数论	1
1.1	整除	1
	1.1.1 整数公理	1
	1.1.2 公因数与公倍数	3
	1.1.3 带余除法	3
第二章	群	5
2.1	置换	5

第一章 初等数论

注意我们的理论基础是整数,尽量通过分类讨论的方式得到结论。而且也要把握脉络,抓住重点,不 要迷失于无谓的细节中。

自然数 \mathbb{N} 、正整数 \mathbb{N}^+ 和整数 \mathbb{Z} 我们是熟知的。

1.1 整除

1.1.1 整数公理

整数的公理

我们熟知一些整数的代数算律

结合律: $(a+b)+c=(a+b)+c_{\circ}$

交換律: $a+b=b+a_{\circ}$

消去律:

定义 1.1.1

对于整数 a,b, 其中 $a \neq 0$, 若存在整数 c, 它使得

$$b = ac$$

则 b 叫做 a 的倍数, a 叫做 b 的因数, 记作 $a \mid b$ 。

有时也称作 a 能整除 b, 或 b 能被 a 整除, 或 a 能除尽 b, 或 b 能被 a 除尽。若 a 不能整除 b, 我们就记作 $a \nmid b$ 。

引理 1.1.2

如果对于整数 a, b 满足 $a \mid b$, 则有

$$(-a) \mid b, \quad a \mid (-b), \quad (-a) \mid (-b), \quad |a| \mid |b|$$

这个比较显然,由定义知存在 c 使得 b = ac,再构造验证即可。

引理 1.1.3

对于整数 a,b,c 有 $a \mid b,b \mid c$, 则有 $a \mid c$ 。

证明 因为 $a \mid b, b \mid c$, 故存在整数 d, e 使得 b = ad, c = be。

因此存在整数 f = de 使得 c = af = ade, 故 $a \mid c$ 。

引理 1.1.4

对于整数 a, b 有 |a| | |b|,若 |a| < |b| 则有 a = 0。

证明 因为 $|a| \mid |b|$,则存在整数 c 使得 |a| = |b|c。那么有

$$0 \leqslant |a| = |b|c < |b|$$

即 $0 \le c < 1$,又 c 为整数,故 c = a = 0。

定理 1.1.5

对于整数 a,b, 若 $b \neq 0$ 则一定存在唯一一对 q,r 使得

$$a = bq + r$$
, $0 \le r < |b|$

证明 先证明存在性。

- (1) 若恰 $b \mid a$, 则必存在 c 使得 a = bc, 此时有 q = c, r = 0。
- (2) 否则一定存在 n 使得 n|b| < a < (n+1)|b|,即存在 0 < r < |b| 使得 a = |b|n + r。 当 b > 0 时,令 q = n;当 b < 0 时,令 q = -n 则有

$$a = bq + r$$
, $0 \le r < |b|$

再证明唯一性。设存在两对 q_1, r_1 和 q_2, r_2 使得

$$a = bq_1 + r_1 = bq_2 + r_2, \quad 0 \leqslant r_1, r_2 < |b|$$

相减有

$$a - a = b(q_1 - q_2) + r_1 - r_2 = 0$$

即 $r_1-r_2=-b(q_1-q_2)$,因此有 $b\mid (r_1-r_2)$ 。而 $|r_1-r_2|<|b|$,又引理知有 $|r_1-r_2|=0$ 。故

$$r_1 = r_2, q_1 = r_2$$

即两对相同。

定义 1.1.6 ◊ 素数

设整数 $p \neq 0, \pm 1$, 若它除了 $\pm 1, \pm p$ 外没有其他的因数, 则称 p 是素数; 否则称 p 是合数。

我们讲到素数时,一般指正的。把素数的集合记作 ℙ。

定理 1.1.7

若 a 是合数,则必存在素数 p 使得 $p \mid a$ 。

此时称该素数为a的素因数。

定理 1.1.8

设整数 $a \ge 2$,那么 a 一定可以分解为素数的乘积,即

$$a = p_1 p_2 \cdots p_s$$

其中 $p_i \in \mathbb{P}$ 。

OI 中,经常会求符合命题 P(k) 的数 k 有多少个,此时我们有记号 [P(k)],当命题成立时其值为 1,命题为假时值为 0。

1.1.2 公因数与公倍数

定义 1.1.9 ◊ 公因数

设 a_1, a_2 是两个整数,若 $d \mid a_1$ 且 $d \mid a_2$,则称 d 是 a_1, a_2 的公因数。一般的,若对于一组整数 a_1, \dots, a_k ,有 $d \mid a_i$,则称 d 是 a_1, \dots, a_k 的公因数。

把 a_1, a_2 的正的公因数中最大的,称作最大公因数,记作 (a_1, a_2) 或 $gcd(a_1, a_2)$ 。由定义易知,若 $(a_1, a_2) = d$,则 $(a_1/d, a_2/d) = 1$ 。

定义 1.1.10 ◊ 互素

若 $(a_1, a_2) = 1$,则称 a_1, a_2 是互素的。

类似的,对于多个数也类似的有最大公因数和互素等概念。

定义 1.1.11 ◊ 公倍数

设 a_1, a_2 是两个整数,多 $a_1 \mid l$ 且 $a_2 \mid l$,则称 l 是 a_1, a_2 的公倍数。一般的,若对于一组整数 a_1, \dots, a_k ,有 $a_j \mid l$,则称 l 是 a_1, \dots, a_k 的公倍数。

把 a_1, a_2 的正的公倍数中最小的,称作最小公因数,记作 $[a_1, a_2]$ 或 $lcm(a_1, a_2)$ 。由定义易知,对于 m > 0 有 $[ma_1, ma_2] = m[a_1, a_2]$ 。

1.1.3 帯余除法

定理 1.1.12

设整数 a,b 且 $a \neq 0$,则一定存在唯一的一对整数 q,r 使得

$$b = qa + r, 0 \leqslant r < |a|$$

更一般的,对于任意的 d 总存在一对 q,r 使得

$$b=qa+r, d\leqslant r<|a|+d$$

当 d=0 时,称 r 为最小非负余数, d=1 时称 r 为最小正余数。计算机一般是 d=0。

引理 1.1.13

设 a>0,则任意整数被 a 除后所得的最小非负余数只可能是 $0,\cdots,a-1$ 中的一个。

于是我们可以按余数对整数进行分类。

第二章 群

2.1 置换

为方便起见,本节简记集合 $\{1, \dots, n\}$ 为 \mathbb{N}_n^+ 。

定义 2.1.1

设 X 是一个集合,则 X 中的一个表是指函数 $f: \mathbb{N}_n^+ \to X$ 。若 X 中的表 f 是双射,则称 f 为 X 的一个排列。

因此,X 的排列是 X 的所有元素组成的一个无重复的 n 元组。显然 n 元集恰有 n^n 个表和 n! 个排列。

定义 2.1.2 ◊ 置换

设 X 是一个集合 (可能是无限集), X 的一个置换是指双射 $\alpha: X \to X$ 。

给定一个有限集 X, |X| = n, 设 $\phi: \mathbb{N}_n^+ \to X$ 是一个排列,若 $f: \mathbb{N}_n^+ \to X$ 是 X 的一个排列,则 $f \circ \phi^{-1}: X \to X$ 是 X 的一个置换。反之,若 $\alpha: X \to X$ 是 X 的一个置换,则 $\alpha \circ \phi: \mathbb{N}_n^+ \to X$ 是 X 的一个排列。

即排列和置换只是描述同一事物的两种不同方法,使用置换而不是排列,其好处是置换可做合成运算。 若 $X = \mathbb{N}_n^+$,则我们可以使用一个二行记号来表示置换 α :

$$\alpha = \begin{pmatrix} 1 & 2 & \cdots & j & \cdots & n \\ \alpha(1) & \alpha(2) & \cdots & \alpha(j) & \cdots & \alpha(n) \end{pmatrix}$$

其底行是排列 $\alpha(1), \alpha(2), \cdots, \alpha(n)$ 。

定义 2.1.3 ◊ 对称群

集合 X 的所有置换构成的族,记为 S_X ,称为 X 上的对称群。当 $X=\mathbb{N}_n^+$ 时, S_X 通常记为 S_n ,并称为 n 次对称群。

注意到, 有些置换是交换的, 有些置换又不是交换的。