CCDSALG/GDDASGO Term 1, AY 2024 - 2025

Project 2 Documentation - Application of Hash Table Data Structure

DECLARATION OF INTELLECTUAL HONESTY/ORIGINAL WORK

We declare that the project that we are submitting is the product of our own work. No part of our work was copied from any source, and that no part was shared with another person outside of our group. We also declare that each member cooperated and contributed to the project as indicated in the table below.

Section Names and Signatures Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

<S??> <LastName1>, <FirstName1> <S??> <LastName2>, <FirstName2> <S??> <LastName3>, <FirstName3>

Fill-up the table above. For the tasks, put an 'X' or check mark if you have performed the specified task. Please refer to the project specifications for the description of each task. Don't forget to affix your e-signature after your first name.

1. FILE SUBMISSION CHECKLIST: put a check mark as specified in the 3^{rd} column of the table below. Please make sure that you use the same file names and that you encoded the appropriate file contents.

Put a check mark **/** below to indicate that you

FILE	DESCRIPTION	submitted a required file	
hash.h	header file for hash function, etc.		
hash.c	C source file for hash function, etc.		
main.c	main module		
INPUT1.TXT to INPUT5.TXT	5 sample input files (with increasing values of n)		
OUTPUT1.TXT to OUTPUT5.TXT	5 sample corresponding output files	3	

GROUPNUMBER.PDF The PDF file of this document

- 2. Indicate how to compile your source files, and how to RUN your exe files from the COMMAND LINE. Examples are shown below highlighted in yellow. Replace them accordingly. Make sure that all your group members test what you typed below because I will follow them verbatim. I will initially test your solution using a sample input text file that you submitted. Thereafter, I will run it again using my own test data:
 - How to compile from the command line

C:\MCO> gcc - Wall main.c -o main.exe

• How to run from command line

C:\MCO>main

Next, answer the following questions:

1. Is there a compilation (syntax error) in your codes? (YES or NO). _____

WARNING: the project will automatically be graded with a score of **0** if there is syntax error in any of the submitted source code files. Please make sure that your submission does not have a syntax error.

1. Is there any compilation warning in your codes? (YES or NO)

WARNING: there will be a 1 point deduction for every unique compiler warning. Please make sure that your submission does not have a compiler warning.

3. Plea	se indicat	e if you created your own	n original hash function or if y	ou used a hash function from so	me reference material:
If you o	created yo	our own original hash fund	ction: affix your signature on	the given space	
We hor	=	ear that we (the group me	mbers) created our own orig	ginal hash function for MCO2 w	hich is described as
<pre>provi</pre>	ide a con	cise description or code	of the hash function here	>	
Name	and Signa	iture:			
If the h	ash functi	on is from some referenc	e material:		
The ha	sh function	n is described in			
4. Spedouble 5. Disc	cify what hashing)?	DETAIL what is/are NC	que you implemented in you OT working correctly in your	r MCO2 (i.e., it is linear probing solution. Please be honest about the reason why your group was not solution.	ut this. NON-
For exa	ample:				
The fol	llowing are	e NOT working (buggy):			
a.					
b.					
We we	re not abl	le to make them work be	cause:		
a.					
<i>2</i> ^6 =		. Set the values of n such		7. Test for at least 5 different values 2 as exponent. Your last test c	
Table:	Statistic	s For the 5 Test Cases			
Test Case #	n (input size)	# of keys/strings stored in the hash table	# of keys/strings stored in their home addresses	# of keys/ strings NOT stored their home addresses	in Average number of string comparisons
1	2^5 =				
2	64				
3					
4	2^14 =				
5	16384				

NOTE: Make sure that you fill-up the table properly. It contributes 3 out of 15 points for the Documentation.

7. Create a line graph (for example using Excel) based on the Comparison Table that you filled-up above. The x-axis	should be
the values of n and the y axis should be the average number of string comparisons. Copy/paste an image of the gra	ph below

<replace this line with an image of your graph>

NOTE: Make sure that you provide a graph based on your comparison table data above. It contributes 3 out of 15 points for the Documentation.

- 8. Analysis answer the following questions:
- a. Based on the statistics above, is your Search() operation using a hash table slower or faster, on average, compared with linear search on an array? Do not simply answer with "slower" or "faster". You need to provide some explanation to support your answer.
- b. Based on the statistics above, is your Search() operation using a hash table slower or faster, on average, compared with binary search on an array? Do not simply answer with "slower" or "faster". You need to provide some explanation to support your answer.

NOTE: Make sure that you provide cohesive answers to the questions above. This part contributes 3 out of 15 points for the Documentation.

9. Fill-up the table below. Refer to the rubric in the project specs. It is suggested that you do an individual self-assessment first. Thereafter, compute the average evaluation for your group, and encode it below.

AVE. OF SELF-ASSESSMENT

~	
1. Hash function	(max. 30 points)
2. Collision resolution function	(max. 10 points)
3. Search function	(max. 15 points)
4. Main module	(max. 15 points)
5. Input and output text files	(max. 10 points)
5. Documentation	(max. 15 points)
6. Compliance with Instructions	(max. 5 points)
TOTAL SCORE	
	over 100.

NOTE: The evaluation that the instructor will give is not necessarily going to be the same as what you indicated above. The self-assessment serves primarily as a guide.

サルバド-ル・フロランテ

REQUIREMENT