Leveraging Pre-training Models for Speech Processing

Research Group @ JSALT 2022

Speaker: Fabian Ritter Gutierrez, National University of Singapore

Goal

- More efficient
- Better generalization
- Visually enhanced

How to better use SSL models

Enhance SSL models

Push SSL models to more tasks

Toolkit

Hung-yi Lee (NTU)

Yu Zhang (Google)

Kuan Po Huang (NTU)

Fabian Ritter (NUS)

Generalization Capability of Pre-trained Model

Different domains: speech distortions, speaking styles (read vs. spontaneous), accents/dialects, languages

Can self-supervised models maintain good performance?

2 weeks ago...

- We realized DistilHuBERT has poor domain generalization.
- Our goal:
 - To reduce model size while having domain generalization.

	Intent Clas	sification 1	Emotion Re	cognition ↑	Keyword Spotting ↑		
Testing Data	clean	noisy	clean	noisy	clean	noisy	
HuBERT	99.47	96.94	63.96	57.33	97.14	93.87	
DistilHuBERT	94.78	66.41	63.87	53.92	96.04	89.84	

	Speaker Ide	ntification ↑	ASR (V	VER)↓
Testing Data	clean	noisy	clean	m+g+r
HuBERT	84.97	65.51	4.88	7.94
DistilHuBERT	73.02	40.42	13.77	37.59

How problems are being tackled?

- Noise robustness:
 - Adding pre-defined distortions on pre-training
 - Additive noises, reverberation, timefrequency masks, speaking rate variation.

Model Size: Knowledge Distillation.

Robust DistilHuBERT Setup 1

Robust DistilHuBERT Setup 2 (same)

• For setup2, we also experimented on the case where the teacher and student model take the same distorted speech as input.

Robust DistilHuBERT Setup 2 (different)

• For setup2, the student learns representations of the same speech utterance but with different distortions.

Results

				Keyword Spotting			Intent Classification			Emotion Recognition					
					KS (A	cc% †)			IC (Ad	cc% ↑)			ER (Ad	cc% †)	
		cont.	para.	clean	2-dist	fsd	dns	clean	2-dist	fsd	dns	clean	2-dist	fsd	dns
(T1)	HuBERT [2]	X	95M	96.30	89.81	90.94	77.60	98.34	89.09	91.93	74.11	64.92	56.72	60.05	52.08
(T1')	HuBERT	V	95M	96.53	94.77	94.00	82.83	98.37	96.20	96.78	85.00	65.88	62.82	63.89	56.70
(S1)	DH [4]	X	23M	95.98	87.57	88.70	75.07	94.99	70.29	72.50	48.30	63.13	55.09	57.05	49.76
(S1')	DH	V	23M	96.14	86.86	90.56	76.47	95.65	77.99	81.73	57.50	64.01	58.89	59.06	53.14
(S2)	DH setun1	X	23M	95 52	92.92	93 44	76 66	94 17	89 53	89 61	72.11	63 51	58 11	60 17	50.66
(S2')	DH setup1	V	23M	96.17	93.61	94.09	77.44	95.57	86.11	89.03	71.26	63.72	59.62	61.42	53.69
(S3)	DH setup2 (same)	X	23M	96.11	89.84	91.69	78.42	94.62	75.40	80.33	57.92	61.87	55.72	59.41	50.27
(S3')	DH setup2 (same)	V	23M	96.33	92.57	93.48	80.04	95.68	85.16	86.84	64.46	64.25	59.62	60.93	51.78
(S4)	DH setup2	X	23M	96.27	92.99	93.96	77.47	95.91	90.72	90.77	73.87	63.77	59.89	61.62	51.25
(S4')	DH setup2	V	23M	96.53	93.61	94.38	79.10	96.57	92.25	92.67	78.41	63.08	60.38	60.89	53.38

DH: DistilHuBERT, cont. stands for continually trained teacher model.

Visualization Experiments

 We want to have a sense on how the models are affected when they receive: clean speech and noisy speech.

 Hence we plot the last layer of the SSL representations into a low dimensional space.

Visualizations were done using test-clean partition of Librispeech.

The final 100 points portray the last layer representation averages for test-clean, and perturbed versions of musan noise, Gaussian noise and reverberation.

HuBERT

DistilHuBERT

WavLM Base+

Hubert_base_robust_mgr

Model corresponds to A continually trained HuBERT on musan noise, gaussian noise and reverberation.

Preliminary results have been accepted by INTERSPEECH 2022.

https://arxiv.org/abs/2203.16104

Robust DistilHubert setup1 (S2)

This plot correspond to the last model, but by grouping the labels by embedding ID. This plot shows that same speech IDs but with distortions lies in the same space. Thus, features are noise invariant!

Cosine Similarities between clean and noisy embeddings

 Aiming at having a concrete objective number to assess how invariant the feature representations are, here we show the cosine similarities between the clean embeddings and its noisy variants for each of the previous models. Bigger similarity means more robustness.

Conclusion

- Our proposed method proves to be robust while keeping a low number of parameters.
- Visualization corroborates noise invariant characteristics of our model.

JSALT Progress Report 20 July 2022

Leveraging Pre-training Models for Speech Processing

Speech Prompt

Shang-Wen
(Daniel) Li
(Meta)

Kai-Wei Chang

(NTU)

Zih-Ching Chen

(NTU)

Chin-Lun Fu

(NTU)

Fabian Ritter

Hua Shen

(NUS)

(PennState)

Presenter: Kai-Wei Chang, National Taiwan University

Motivation

Motivation Pre-train, Fine-tune Paradigm output output CTC loss Cross-entropy loss Head Head Pre-trained Pre-trained Model Model **Keyword Spotting**

Motivation

Method

Background - GSLM

Generative Spoken Language Model

- SSL Model: HuBERT, CPC, ...
- Quantizer: K-Means
- uLM: generative unit Language Model

[GSLM] Lakhotia et.al., Generative Spoken Language Modeling from Raw Audio

Background - GSLM

Generative Spoken Language Model

- First generative speech LM pre-trained on a large corpus (LibriLight- 6000hrs)
- Autoregressive LM (flexible output length)

• [GSLM] Lakhotia et.al., Generative Spoken Language Modeling from Raw Audio

Prompting for GSLM: Framework

- Prompt: a small set of trainable parameters for each task
- uLM: generate units conditioned on the prompts
- Verbalizer: map the units back to task labels.

Prompting on Unit LM (uLM)

Speech Recognition (ASR)

Unit ID	Character
1	"m"
2	"c"
3	"a"
4	"g"
31	"t"

label mapping (Verbalizer)

Experiments

Experiment Results - Speech Classification

- PT: Prompt Tuning
- FT: Fine-Tuning

- KS: Keyword Spotting Single-label Cls.
- IC: Intent Classification Multi-label Cls.

Soonarios	K	S	IC	
Scenarios	ACC↑	# param.	ACC↑	# param.
HuBERT-PT	95.16	0.08M	98.40	0.15M
HuBERT-FT	96.30	0.2M	98.34	0.2M

Experiment Results - Speech Classification

PT: Prompt Tuning

KS: Keyword Spotting - Single-label Cls.

FT: Fine-Tuning

IC: Intent Classification - Multi-label Cls.

Cooperios	K	S	IC		
Scenarios	ACC↑	# param.	ACC↑	# param.	
CPC-PT	93.54	0.05M	97.57	0.05M	
CPC-FT	91.88	0.07M	64.09	0.07M	

Experiment Results - Sequence Generation

PT: Prompt Tuning

• FT: Fine-Tuning

ASR: Automatic Speech Recognition

SF: Slot Filling

Conorios	AS	SR	SF		
Scenarios	WER↓	# param.	F1↑	# param.	
HuBERT-PT	34.17	4.5M	66.90	4.5M	
HuBERT-FT	6.42	43M	88.53	43M	

Analysis - The Curse of Long Sequences

Task	Туре	Avg. label length
KS	CLS	1
IC	CLS	3
ASR	SG	173
SF	SG	54

The performance suffers from long sequences severely!

Future Works

Future works

For sequence generation task, the performance suffers from "long sequences"

Sequence compression technique

For now, we're using a heuristic verbalizer

Learnable verbalizer (a small neural network)

Conclusion

Conclusion

- 1. The first exploration of prompting for speech processing tasks
- 2. It shows high efficiency on speech classification tasks
- We're trying different methods to improve the performance on sequence generation tasks

SpeechPrompt: An Exploration of Prompt Tuning on Generative Spoken Language Model for Speech Processing Tasks

Kai-Wei Chang¹, Wei-Cheng Tseng¹, Shang-Wen Li², Hung-yi Lee¹

¹Graduate Institute of Communication Engineering, National Taiwan University, Taiwan
²Amazon AI, USA

kaiwei.chang.tw@gmail.com, r09942094@ntu.edu.tw, swdanielli@gmail.com, hungyilee@ntu.edu.tw

Accepted at Interspeech 2022

https://arxiv.org/abs/2203.16773

Q&A