Selection for IMC-2023, first olympiad

- 1. (10 points) Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Suppose that f has infinitely many zeros, but there is no $x\in(a,b)$ with f(x)=f'(x)=0.
 - (a) Prove that f(a)f(b) = 0
 - (b) Give an example of such a function on [0, 1]
- 2. (10 points) Let k and n be positive integers. A sequence $(A_1, ..., A_k)$ of $n \times n$ real matrices is preferred by Ivan the Confessor if $A_i^2 \neq 0$ for $1 \leq i \leq k$, but $A_i A_j = 0$ for $1 \leq i, j \leq k$ with $i \neq j$. Show that $k \leq n$ in all preferred sequences, and give an example of a preferred sequence with k = n for each n.
- 3. (10 points) Let n be a positive integer. Also let $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$ be real numbers such that $a_i + b_i > 0$ for i = 1, 2, ..., n. Prove that

$$\sum_{i=1}^{n} \frac{a_i b_i - b_i^2}{a_i + b_i} \le \frac{\sum_{i=1}^{n} a_i \cdot \sum_{i=1}^{n} b_i - \left(\sum_{i=1}^{n} b_i\right)^2}{\sum_{i=1}^{n} \left(a_i + b_i\right)}$$

- 4. (10 points) For a positive integer x, denote its n-th decimal digit by $d_n(x)$, i.e. $d_n(x) \in \{0, 1, ..., 9\}$ and $x = \sum_{n=1}^{\infty} d_n(x) 10^{n-1}$. Suppose that for some sequence $\{a_n\}_{n=1}^{\infty}$, there are only finitely many zeros in the sequence $\{d_n(a_n)\}_{n=1}^{\infty}$. Prove that there are infinitely many positive integers that do not occur in the sequence $\{a_n\}_{n=1}^{\infty}$.
- 5. (10 points) Let $A = (a_{ij})_{i,j=1}^n$ be a symmetric $n \times n$ matrix with real entries, and let $\lambda_1, \lambda_2, ..., \lambda_n$ denote its eigenvalues. Show that

$$\sum_{1 \le i < j \le n} a_{ii} a_{jj} \ge \sum_{1 \le i < j \le n} \lambda_i \lambda_j,$$

and determine all matrices for which equality holds.

6. (10 points) Let $f(x) = \frac{\sin x}{x}$, for x > 0, and let n be a positive integer. Prove that $|f^{(n)}(x)| < \frac{1}{n+1}$, where $f^{(n)}$ denotes the n-th derivative of f.