Homework 6: Bayesian Networks class in "Machine Learning", Fall 2016/17

Marco Favorito

Master of Science in Engineering in Computer Science Department of Computer, Control, and Management Engineering University of Rome "La Sapienza"

favorito.1609890@studenti.uniroma1.it

5 December 2016

Contents

1	Assignment 1															1										
	1.1	Part 1																								1
	1.2	Part 2																								1
	1.3	Part 3																								1
2	Assignment 2																3									
3	Assi	gnment	3																							3

1 Assignment 1

1.1 Part 1

In the next figure there is the Bayesian network corresponding to the exercise:

1.2 Part 2

The joint probability function is:

$$P(c, r, s, w) = P(c)P(r|c)P(s|c)P(w|r, s)$$

1.3 Part 3

Just use the functionalities of the tool: The probability it rained is 0.12, while the probability the sprinklers were on is 0.99.

2 Assignment 2

In the first figure I show the Bayesian network model for the problem; then I "made observations" and I set two of the toss to true and the other one to false. The most

likely coin is the coin b, with probability 0.47.

3 Assignment 3

The sample problem "Fire Alarm Belief Network" is shown: The joint probability

function is:

$$P(r, l, a, t, f, s) = P(r|l)P(l|a)P(a|t, f)P(s|f)P(t)P(f)$$

For representing the probability that someone will call their mother if the alarm goes off with *only one node* I did in this way: Where the node *call_mother* represent that event. In particular, I observed that the probability of *leaving* given alarm is false is zero. So, I put another node depending on leaving that given leaving false this node is certainly false.

It might seem a little tricky, but let say that, a certain moment, the alarm is off. Then the situation is as in figure 1. Now for sure leaving and call_mother are false.

Figure 1:

Now suppose that alarm is true; the situation is represented in figure 2. We have that with some probability call_mother is true. Now let's consider that, after the alarm is true, leaving is true; The situation is in figure 3: If now the alarm *goes off*, there is a probability that call_mother is true (fig. 4):

Figure 2:

Figure 3:

Figure 4: