

HINV L Tudleyers with me

L-1[F(S)]=F(t)

 $\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] = \frac{1}{2} \sinh t$

8) L-1 [5] - cosht

 $\frac{1-\left[(s-q)^{n}\right]-e^{q+t^{n-1}}}{(n-1)!}$

10) 1-1 = 1 = a 5

$$A = A + B = 0$$

$$A = A + B =$$

Page No.			
Date			

$$\frac{7(5)}{(5^{2}+1)(5+1)} = \frac{5^{2}+8-5+2}{(5^{2}+1)(5+1)}$$

$$= \frac{5^{2}+8-5+2}{(5^{2}+1)(5+1)}$$

$$= \frac{15^{2}+2}{(5^{2}+1)(5+1)}$$

$$g \pi(s) - g + s+2 - s+2$$

 $g(s+1) + s(s+1) - s(s+1)$

$$5(5) = \frac{5+2}{5(5+1)} + \frac{1}{5^2+1} + \frac{5+2}{5(5^2+1)(5^2+1)}$$

Now take inverse LT of both.