

TC8 Conformance Testing of Automotive Ethernet Networks

Vector Testing Symposium 7.5.2019 | Heiner Hild

Communication Networks in Domain Centric E/E Architectures

Communication Networks in Domain Centric E/E Architectures

Access to Automotive Bus Systems

Agenda

Overview + Motivation

Automotive Ethernet Testing

OPEN Alliance SIG

Examplary Ethernet Test System

Summary

Outlook VT System

Link Partners in Automotive Ethernet Networks

- ▶ All links in Automotive Ethernet networks are Point-To-Point connections → No Bus!
- ► Full Duplex transmission
- ▶ More than 2 signal states (e.g. PAM3 at 100BASE-T1)
- ► Each link requires one PHY per link partner → multiple PHYs in switches

MDI Media Dependent Interface

MII Media Independent Interface

Access to Automotive Ethernet Networks

Ethernet Link TAPping

Agenda

Overview + Motivation

Automotive Ethernet Testing

► OPEN Alliance SIG

Examplary Ethernet Test System

Summary

Outlook VT System

Standardisation: OPEN Alliance Special Interest Group (SIG)

Standardisation: OPEN Alliance Special Interest Group (SIG)

- ▶ Shares requirements on Automotive Ethernet ECU testing of Conformance + Interoperability
- ▶ **Defines specifications** applicable to all ECUs in an Automotive Ethernet network based on these shared requirements.
- ▶ Defines test process and supports the establishment of test houses that can perform the ECU tests
- ► Establishes regular audits of the test specification and the partner requirements to increase the communication quality of the Ethernet ECUs and network in an automotive system

Target: Testing on ECU level as early as possible in the devlopment phase

Automotive ISO/OSI Layer Model – Application Areas and TC8 Test Scopes

TC8 ECU Test Test Scope§SO/OSI Layer			Command / Control communication	Diagnostics and Flash Update	Measurement and Calibration	Audio/Video Time Sync		
Automotive Protocols	Application	765	SOME/IP	DoIP	XCP	AVB / TSN		
TCP/IP Prot Family	Transport	4	TCP/UDP					
	Network	3						
Automotive Ethernet	Data Link	2	IEEE Ethernet MAC + VLAN					
	Physical	1	Ethernet PHY (IEEE 100BASE-T1, IEEE100BASE-Tx, IEEE1000BASE-T)					

Test Groups in the TC8 Tests

TC8 ECU Test Test Scopes

ISO/OSI Layer

Agenda

Overview + Motivation

Automotive Ethernet Testing

OPEN Alliance SIG

Examplary Ethernet Test System

Summary

Outlook VT System

Test System CANoe + vTESTstudio + VT System

Target

One Test System for all ISO/OSI layers

TC8 Test Implementation

- ▶ Implementation in vTESTstudio
- ► Test configuration
 - One global parameter file (general settings for the DUT, e.g. IP address)
 - ▶ One specific parameter file for each Test Group

TC8 Test Execution

- Specific Test Code on ECU
- Specific Stub Functions to prepare ECU for test (typically CAPL)
- ► E.g. ARP-Test:
 Stub Function
 "Clear ARP Table"
 ensures
 cleaned MAC address table
 before test execution
- ▶ Simulated Reference DUT ("Golden Sample") in CANoe to run TC8 Tests fail free

TC8 Test Spec Example OABR_CABLE_01: Cable diagnostics for near and far end open

Test Goal

Ensure that the DUT's cable diagnostic reliably detects an open of one or both of the bus lines

Source: OPEN Alliance TC8 Automotive Ethernet ECU Test Specification v2.0

Test Steps

- 1. The DUT cable diagnostic feature is triggered. The DUT cable diagnostics has to be executed within t_{error}
- 2. The test system creates a cable error for a defined time t_{error}
- 3. After the wait time t the test system reads out all identified cable errors QC from the DUT
- 4. Repeat step 1 to 3 for all error combinations (alternately MDI+ and/or MDI- are open)

VT6306 Ethernet Interface

- 6 Automotive Ethernet channels on separate piggy board
- ▶ 2x 100BASE-TX/1000BASE-T channels on main board
- ▶ High precision time stamps for Ethernet frames
- Synchronization with multiple bus interfaces
- Hardware sync (1 μs accuracy)
- Ethernet Monitoring between two nodes
- Media conversion between 100BASE-TX/1000BASE-T and Automotive Ethernet channels
- ▶ Flexible, hardware based monitor filter
- Multiple, configurable Test Access Points (TAPs)
 - Monitoring TAP: test mode with constant and very low latency with direct PHY connection
 - Stimulation TAP: channel connection an MAC level. This allows transmission of additional packets
- Configurable layer2-switch operation mode
- Further Ethernet Interfaces available

Automotive Ethernet Interfaces

	VN5610A	VN5640	VT6306 + piggy	VN5620	VN5430
User Ports					
100/1000BASE-T1	2x 100BASE-T1	12x	6x	4x	6x
10BASE-T/100BASE-Tx/ 1000BASE-T	2x	4x	2x		
CAN / CAN FD	2x	2x		2x	
I/O Channels	1x digital	1x analog 5x digital	Arbitrary number from VT System	1x digital	
Fault Injection on physical layer	no	no	yes	no	no
Host Connection	USB2.0	USB3.0	PCI Express	USB3.1 Ethernet	Ethernet
Powering	USB / External	External	via VT System	USB / External	External

TC8 Testing - Summary

- Automotive Ethernet
 - Occurrence in modern EE architectures
 - Difference to classical Bus Protocols
 - Link Access with TAPs
- OPEN Alliance SIG
 - Structure
 - ► TC8 Tests with Test Scopes for all ISO/OSI layers
- Exemplary TC8 Test System
 - ▶ Test implementation in vTESTstudio: Parameter files to adapt to specific ECU
 - ▶ Test execution with CANoe: Stub Functions acting on specific test code + Golden Sample
 - ▶ DUT interfacing with VT System / various ETH interfaces

Agenda

Overview + Motivation

Automotive Ethernet Testing

OPEN Alliance SIG

Examplary Ethernet Test System

Summary

Outlook VT System

VT System Concept

ECU / IO **Charatecristics System** Function Blocks **Characteristics** Fault Injection Simple IO Break Out Test System Many channels Sim / Ori switch Test System or ECU Status LED **Existing Existing** Gaps Gaps VT2816 Switch Matrix VT1004A 48V grids VT2820 VT2004A High Current VT2848 VT2516A High Speed VT7001A • **Characteristics Characteristics** Basis modules Function Blocks No direct SUT connection Fault Injection Break Out **Existing** Gaps Status LED VT6000 PC Power VT8006A High Speed **Existing** Gaps VT8012A Network VT6104A Gbit Ethernet Housings channels VT6204 Further serial Power Image VT2710 busses **Supplies** Processing **Infrastructure Network**

VT2832 - Switch Matrix Module

Motivation

- Switching of higher currents
- ▶ PWM switching / bouncing contact simulation
- Many switching cycles (endurance tests)

Main Features

- Size of switch matrix: 8 columns x 4 rows
- Current carrying capability per switched path: max. 16A
- Coupling of channels for higher currents possible
- Switched voltage up to 60V
- ▶ Modular Design → aggregation to bigger switch matrices possible
- ▶ Solid State Relay (SSR) technology → wear-free switching for endurance tests
- ▶ Fast switching with min. 10 kHz possible e.g. for bouncing contact simulation

VT2832 - Switch Matrix Module

Use Cases

- Current switching + measurement
- PWM switching / bouncing contact simulation
- Endurance Tests

Configuration

- Each switched path is given a unique colour
- Connected paths are given the same color
- Each column can be switched independently with PWM or bitstream
- PWM and bitstream configuration is identical to other VT System modules

Inter Board Communication (IBC) between User FPGA Modules

Use Cases

- Highly synchronized output of analog and/or digital signals
- Fast data exchange between User FPGA modules

Realisation

Ring architecture between User FPGA processor boards

Simultaneous flashing of multiple VT System User FPGA module is now possible in VT System FPGA Manager

48V – Vehicle Power Support

Motivation

- ▶ Hybrid 48V / 12V electrical systems are becoming more important
- ▶ Testing of 48V EE systems requires measurement / stimulation > 54V

48V/12V electical system

Main Features

- 60V capability
- Solid State Relay (SRR) based solution
- Solutions for
 - ► ECU outputs: VT1104 (60V-Variant of VT1004A
 - ► ECU Power Supply: VT7101 (60V-Variant of VT7001A)
 - ▶ Configuration concept is maintained
- ▶ Internal Power Supply of VT7101 up to 60V / 0.5A

	VT110	VT710
DC measurement	•	•
DC output		•
Arbitrary curves		•
Fault injection / switching	•	•

VT2808 Current Measurement Module

Motivation

- Current measurement on ECU I/Os is often required as a separate task
- ▶ Limitations of available VT System options for current measurement
 - ▶ VT2816
 - ▶ 8 channels up to 5A
 - cost per channel = ok / range + accuracy sometimes too small
 - ▶ VT7001A
 - ▶ 2 channels up to 100A
 - range = ok / cost per channel relatively high due to further functions

Main Features

- 8 current measurement channels
- Measurement range: 1 mA ... 16A onboard
- Switch to external shunts (off-board) for increased measurement range
- Voltage measurement up to 60V against external potential
- Detection + indication of current flow direction
- Determination of conducted power per channel

VT60xx Next Gen RT Module (Concept)

Motivation

- Number of bus channels with VT6051A is limited to 16
- Some applications e.g. realtime simulations require higher computing power
- More Ethernet connectors e.g. for LXI measurement devices or PC coupling
- Connector system for host uplink PCIe (x1) over cable is discontinued

Main Requirements

- Processor minimum intel Core i7 Gen.7 / QuadCore
- Minimum 32 bus channels can be operated via VT System Network Interface
- Minimum 2 additional Gbit/s general purpose Ethernet ports (min. 4x overall)
- Minimum 2 USB3.0 ports
- Space consumption: 2 slots in VT System Housing

For more information about Vector and our products please visit

www.vector.com

Thanks for your attendance

Author: Hild, Heiner Vector Germany