IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE PLICATION OF: Tetsuro SUZUKI, et al.

GAU:

1756

SERIAL NO: 10/804,030

FILED:

March 19, 2004

FOR:

ELECTROPHOTOGRAPHIC PHOTOCONDUCTOR, AND IMAGE FORMING PROCESS, IMAGE FORMING APPARATUS AND PROCESS CARTRIDGE FOR AN IMAGE FORMING APPARATUS

USING THE SAME

REQUEST FOR PRIORITY

COMMISSIONER FOR PATENTS ALEXANDRIA, VIRGINIA 22313

α	-	n	
•		ĸ	

☐ Full benefit of the filing date of U.S. Application Serial Number	, filed	, is claimed pursuant to the
provisions of 35 U.S.C. §120.		
Trull hangest of the filing date(s) of LLC Descriptional Application(s)	بيم المحمدة الم	manage to the manufacture of 25 TI C

☐ Full benefit of the filing date(s) of U.S. Provisional Application(s) is claimed pursuant to the provisions of 35 U.S.C. §119(e): <u>Application No.</u> <u>Date Filed</u>

Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

 COUNTRY
 APPLICATION NUMBER
 MONTH/DAY/YEAR

 Japan
 2003-077303
 March 20, 2003

 Japan
 2003-077333
 March 20, 2003

Certified copies of the corresponding Convention Application(s)

- are submitted herewith
- □ will be submitted prior to payment of the Final Fee
- were filed in prior application Serial No. filed
- were submitted to the International Bureau in PCT Application Number

 Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.
- ☐ (A) Application Serial No.(s) were filed in prior application Serial No.

filed; and

- ☐ (B) Application Serial No.(s)
 - are submitted herewith
 - will be submitted prior to payment of the Final Fee

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Norman F. Oblon

Richard L. Treanor

Registration No. 36,379

Customer Number

22850

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 05/03)

Frederick D. Vastine Registration No. 27,013

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed ith this Office.

出願年月日 Date of Application:

2003年 3月20日

出願番号 Application Number:

特願2003-077303

ST. 10/C]:

[JP2003-077303]

願 人 plicant(s**)**:

株式会社リコー

特許庁長官 Commissioner, Japan Patent Office 2003年12月15日

今井康

【書類名】

特許願

【整理番号】

0208272

【提出日】

平成15年 3月20日

【あて先】

特許庁長官殿

【国際特許分類】

G03G 5/147

G03G 5/06

【発明の名称】

電子写真感光体、それを用いた画像形成方法、画像形成

装置及び画像形成装置用プロセスカートリッジ

【請求項の数】

17

【発明者】

【住所又は居所】

東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】

鈴木 哲郎

【発明者】

【住所又は居所】

東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】

田村 宏

【発明者】

【住所又は居所】

東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】

生野 弘

【発明者】

【住所又は居所】

東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】

永井 一清

【発明者】

【住所又は居所】

東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】

李 洪国

【特許出願人】

【識別番号】

000006747

【氏名又は名称】 株式会社リコー

【代表者】

桜井 正光

【代理人】

【識別番号】

100105681

【弁理士】

【氏名又は名称】

武井 秀彦

【手数料の表示】

【納付方法】

予納

【予納台帳番号】

039653

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9808993

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 電子写真感光体、それを用いた画像形成方法、画像形成装置及 び画像形成装置用プロセスカートリッジ

【特許請求の範囲】

【請求項1】 導電性支持体上に少なくとも感光層を有する電子写真感光体において、該感光層の表面層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化した架橋層からなり、該架橋表面層の表面粗さRzが1.3μm以下であることを特徴とする電子写真感光体。

【請求項2】 前記架橋表面層の表面粗さ R z が 1. 0 μ m以下であることを特徴とする請求項 1 に記載の電子写真感光体。

【請求項3】 前記表面層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの官能基が、アクリロイルオキシ基及び/又はメタクリロイルオキシ基であることを特徴とする請求項1又は2に記載の電子写真感光体。

【請求項4】 前記表面層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)が、250以下であることを特徴とする請求項1乃至3のいずれかに記載の電子写真感光体。

【請求項5】 前記表面層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の官能基が、アクリロイルオキシ基又はメタクリロイルオキシ基であることを特徴とする請求項1乃至4のいずれかに記載の電子写真感光体

【請求項6】 前記最表面層に用いられる1官能の電荷輸送性構造を有する ラジカル重合性化合物の電荷輸送構造が、トリアリールアミン構造であることを 特徴とする請求項1乃至5のいずれかに記載の電子写真感光体。

【請求項7】 前記表面層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(1)又は(2)の一種以上であることを特徴とする請求項1乃至6のいずれかに記載の電子写真感光体。

【化1】

一般式(1)

$$R_1 O Ar_3$$

 $CH_2 = CO - (Z)_m - Ar_1 - X - Ar_2 - N$
 Ar_4

【化2】

一般式(2)

$$CH_2 = \overset{R_1}{C} - \overset{O}{C}O - (Z)_n - Ar_2 - \overset{Ar_3}{N}$$

(式中、R₁は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、一COOR₇(R₇は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基と、置換基を有してもよいアリール基と、のR₈R₉(R₈及びR₉は水素原子、ハロゲン化カルボニル基若しくはCONR₈R₉(R₈及びR₉は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、A₁A₂は置換もしくは未置換のアリーレン基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレン工ーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換もしくは無置換のアルキレン工ーテル基、置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル基、で、nは0~3の整数を表わす。)

【請求項8】 前記表面層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(3)の一種以上であることを特徴とする請求項1乃至7のいずれかに記載の電子写真感光体。

【化3】

一般式(3)

(式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1~6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0~3の整数を表わす。Zaは単結合、メチレン基、エチレン基、

【化4】

$$-CH_2CH_2O-$$
 , $-CHCH_2O \nearrow$ $-CH_2CH_2 -CH_2CH_2-$

を表わす。)

【請求項9】 前記表面層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合が、架橋表面層全量に対し30~70重量%であることを特徴とする請求項1乃至8のいずれかに記載の電子写真感光体。

【請求項10】 前記表面層に用いられる1官能の電荷輸送性構造を有する ラジカル重合性化合物の成分割合が、架橋表面層全量に対し30~70重量%で あることを特徴とする請求項1乃至9のいずれかに記載の電子写真感光体。

【請求項11】 前記感光層が支持体側から電荷発生層、電荷輸送層、架橋表面層の積層構成であることを特徴とする請求項1乃至10のいずれかに記載の電子写真感光体。

【請求項12】 前記感光層の電荷輸送層が高分子電荷輸送物質を含有する ことを特徴とする請求項11に記載の電子写真感光体。

【請求項13】 前記高分子電荷輸送物質がトリアリールアミン構造を主鎖

又は側鎖に有するポリカーボネートであることを特徴とする請求項12に記載の 電子写真感光体。

【請求項14】 前記表面層の硬化手段が加熱又は光エネルギー照射手段であることを特徴とする請求項1乃至13のいずれかに記載の電子写真感光体。

【請求項15】 請求項1乃至14のいずれかに記載の電子写真感光体を用いて、少なくとも帯電、画像露光、現像、転写を繰り返し行なうことを特徴とする画像形成方法。

【請求項16】 請求項1乃至1.4のいずれかに記載の電子写真感光体を有することを特徴とする画像形成装置。

【請求項17】 請求項1乃至14のいずれかに記載の電子写真感光体と、 帯電手段、現像手段、転写手段、クリーニング手段および除電手段よりなる群か ら選ばれた少なくとも一つの手段を有するものであって、画像形成装置本体に着 脱可能としたことを特徴とする画像形成装置用プロセスカートリッジ。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1\]$

【発明の属する技術分野】

本発明は、耐摩耗性が高く、平滑な表面性を有し、且つ電気的特性が良好な感 光層を用いることにより、高耐久性を有し、かつ長期間にわたり高画質化を実現 した電子写真感光体に関する。また、それらの長寿命、高性能感光体を使用した 画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジに関する

[0002]

【従来の技術】

近年、有機感光体(OPC)は良好な性能、様々な利点から、無機感光体に換わり複写機、ファクシミリ、レーザープリンタ及びこれらの複合機に多く用いられている。この理由としては、例えば①光吸収波長域の広さ及び吸収量の大きさ等の光学特性、②高感度、安定な帯電特性等の電気的特性、③材料の選択範囲の広さ、④製造の容易さ、⑤低コスト、⑥無毒性、等が挙げられる。

一方、最近画像形成装置の小型化から感光体の小径化が進み、機械の高速化や

ページ: 5/

メンテナンスフリーの動きも加わり感光体の高耐久化が切望されるようになって きた。この観点からみると、有機感光体は、表面層が低分子電荷輸送材料と不活 性高分子を主成分としているため一般に柔らかく、電子写真プロセスにおいて繰 り返し使用された場合、現像システムやクリーニングシステムによる機械的な負 荷により摩耗が発生しやすいという欠点を有している。加えて高画質化の要求か らトナー粒子の小粒径化に伴いクリーニング性を挙げる目的でクリーニングブレ ードのゴム硬度の上昇と当接圧力の上昇が余儀なくされ、このことも感光体の摩 耗を促進する要因となっている。この様な感光体の摩耗は、感度の劣化、帯電性 の低下などの電気的特性を劣化させ、画像濃度低下、地肌汚れ等の異常画像の原 因となる。また摩耗が局所的に発生した傷は、クリーニング不良によるスジ状汚 れ画像をもたらす。現状では感光体の寿命はこの摩耗や傷が律速となり、交換に 至っている。

$[0\ 0\ 0\ 3\]$

したがって、有機感光体の高耐久化においては前述の摩耗量を低減することが 不可欠であり、これが当分野でもっとも解決が迫られている課題である。

感光層の耐摩耗性を改良する技術としては、①表面層に硬化性バインダーを用 いたもの(例えば、特許文献 1 参照。)、②高分子型電荷輸送物質を用いたもの (例えば、特許文献2参照。)、③表面層に無機フィラーを分散させたもの(例 えば、特許文献3参照。)等が挙げられる。これらの技術の内、①の硬化性バイ ンダーを用いたものは、電荷輸送物質との相溶性が悪いためや重合開始剤、未反 応残基などの不純物により残留電位が上昇し画像濃度低下が発生し易い傾向があ る。また、②の高分子型電荷輸送物質を用いたものは、ある程度の耐摩耗性向上 が可能であるものの、有機感光体に求められている耐久性を十二分に満足させる までには至っていない。また、高分子型電荷輸送物質は材料の重合、精製が難し く高純度なものが得にくいため材料間の電気的特性が安定しにくい。更に塗工液 が高粘度となる等の製造上の問題を起こす場合もある。③の無機フィラーを分散 させたものは、通常の低分子電荷輸送物質を不活性高分子に分散させた感光体に 比べ高い耐摩耗性が発揮されるが、無機フィラー表面に存在するトラップにより 残留電位が上昇し、画像濃度低下が発生し易い傾向にある。また、感光体表面の

無機フィラーとバインター樹脂の凹凸が大きい場合には、クリーニング不良が発生し、トナーフィルミングや画像流れの原因となることがある。これら①、②、③の技術では、有機感光体に求められる電気的な耐久性、機械的な耐久性をも含めた総合的な耐久性を十二分に満足するには至っていない。

更に、①の耐摩耗性と耐傷性を改良するために多官能のアクリレートモノマー硬化物を含有させた感光体も知られている(特許文献 4 参照)。しかし、この感光体においては、感光層上に設けた保護層にこの多官能のアクリレートモノマー硬化物を含有させる旨の記載があるものの、この保護層においては電荷輸送物質を含有せしめてもよいことが記載されているのみで具体的な記載はなく、しかも、単に表面層に低分子の電荷輸送物を含有させた場合には、上記硬化物との相溶性の問題があり、これにより、低分子電荷輸送物質の析出、白濁現象が起こり、機械強度も低下してしまうことがあった。

さらに、この感光体は、具体的には高分子バインダーを含有した状態でモノマーを反応させるため、硬化が充分に進行しないことや、硬化物とバインダー樹脂との相溶性の問題があり、硬化時に相分離による表面凹凸が生じクリーニング不良を引き起こす傾向が見られた。

[0004]

これらに換わる感光層の耐摩耗技術として、炭素一炭素二重結合を有するモノマーと、炭素一炭素二重結合を有する電荷輸送材及びバインダー樹脂からなる塗工液を用いて形成した電荷輸送層を設けることが知られており(例えば、特許文献 5 参照。)、このバインダー樹脂には、炭素一炭素二重結合を有し、上記電荷輸送剤に対して反応性を有するものと、上記二重結合を有せず反応性を有しないものが含まれる。この感光体は耐摩耗性と良好な電気的特性を両立しており注目されるが、バインダー樹脂として反応性を有しないものを使用した場合においては、バインダー樹脂と、上記モノマーと電荷輸送剤との反応により生成した硬化物との相溶性が悪く、層分離から架橋時に表面凹凸が生じ、クリーニング不良を引き起こす傾向が見られた。また、上記したように、この場合バインダー樹脂がモノマーの硬化を妨げるほか、この感光体において使用される上記モノマーとして具体的に記載されているものは2官能性のものであり、この2官能性モノマー

では官能基数が少なく充分な架橋密度が得られず、これらの点で耐摩耗性の点で は未だ満足するには至らなかった。また、反応性を有するバインダーを使用した 場合においても、上記モノマーおよび上記したバインダー樹脂に含有される官能 基数の低さから、上記電荷輸送物質の結合量と架橋密度との両立は難しく、電気 特性及び耐摩耗性も充分とは言えないものであった。

[0005]

また、同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物を 硬化した化合物を含有する感光層も知られている(例えば、特許文献6参照。)

しかし、この感光層は嵩高い正孔輸送性化合物が二つ以上の連鎖重合性官能基 を有するため硬化物中に歪みが発生し内部応力が高くなり、表面層の荒れや経時 におけるクラックが発生しやすい場合がある。

これら従来技術における電荷輸送性構造を化学結合させた架橋感光層を有する 感光体においても、現状では充分な総合特性を有しているとは言えない。

[0006]

【特許文献1】

特開昭 5 6 - 4 8 6 3 7 号公報

【特許文献2】

特開昭64-1728号公報

【特許文献3】

特開平4-281461号公報

【特許文献4】

特許第3262488号公報

【特許文献5】

特許第3194392号公報

【特許文献6】

特開2000-66425号公報

[0007]

【発明が解決しようとする課題】

本発明の課題は、耐摩耗性が高く、且つ電気的特性が良好であるほか、特に表 面平滑性に優れた感光層を形成することにより、クリーニング特性が良好で、高 耐久性を有し、かつ長期間にわたり高画質化を実現した電子写真感光体を提供す ることであり、また、それらの長寿命、高性能感光体を使用した画像形成方法、 画像形成装置及び画像形成装置用プロセスカートリッジを提供することである。

[0008]

【課題を解決するための手段】

本発明者らは鋭意検討を重ねた結果、感光層の表面層が少なくとも電荷輸送性 構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造 を有するラジカル重合性化合物を硬化した架橋層からなり、該架橋表面層の表面 粗さRzを1.3μm以下にすることにより、前記目的が達成できることを発見 して本発明を成すに至った。

[0009]

すなわち、上記課題は、本発明の(1)「導電性支持体上に少なくとも感光層 を有する電子写真感光体において、該感光層の表面層が少なくとも電荷輸送性構 造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を 有するラジカル重合性化合物を硬化した架橋層からなり、該架橋表面層の表面粗 2Rzが1. 3μ m以下であることを特徴とする電子写真感光体」、(2) 「前 記架橋表面層の表面粗さRzが1.0μm以下であることを特徴とする前記第(1)項に記載の電子写真感光体」、(3)「前記表面層に用いられる電荷輸送性 構造を有しない3官能以上のラジカル重合性モノマーの官能基が、アクリロイル オキシ基及び/又はメタクリロイルオキシ基であることを特徴とする前記第(1)項又は第(2)項に記載の電子写真感光体」、(4)「前記表面層に用いられ る電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能 基数に対する分子量の割合(分子量/官能基数)が、250以下であることを特 徴とする前記第(1)項乃至第(3)項のいずれかに記載の電子写真感光体」、

(5)「前記表面層に用いられる1官能の電荷輸送性構造を有するラジカル重合 性化合物の官能基が、アクリロイルオキシ基又はメタクリロイルオキシ基である ことを特徴とする前記第(1)項乃至第(4)項のいずれかに記載の電子写真感 光体」、(6) 「前記最表面層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の電荷輸送構造が、トリアリールアミン構造であることを特徴とする前記第(1)項乃至第(5)項のいずれかに記載の電子写真感光体」、

(7) 「前記表面層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(1)又は(2)の一種以上であることを特徴とする前記第(1)項乃至第(6)項のいずれかに記載の電子写真感光体;

[0010]

【化5】

一般式 (1)

$$CH_2 = \overset{R_1}{C} - \overset{O}{C}O - (Z)_m - Ar_1 - X - Ar_2 - \overset{Ar_3}{N}$$

 $[0\ 0\ 1\ 1]$

【化6】

一般式(2)

$$CH_2 = \overset{R_1}{C} - \overset{O}{C}O - (Z)_n - Ar_2 - N\overset{Ar_3}{\underset{Ar_4}{(Ar_4)}}$$

(式中、R₁は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、一COOR₇(R₇は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基)、ハロゲン化カルボニル基若しくはCONR₈R₉(R₈及びR₉は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、A₁、A₂は置換もしくは未置換のアリーレン基を表わし、同一であっても異なってもよい。A₄は置換もしくは未置換のアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアル

キレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、 ビニレン基を表わす。 Z は置換もしくは無置換のアルキレン基、置換もしくは無 置換のアルキレンエーテル基、アルキレンオキシカルボニル基を表わす。 m、 n は0~3の整数を表わす。)」、(8)「前記表面層に用いられる1官能の電荷 輸送性構造を有するラジカル重合性化合物が、下記一般式(3)の一種以上であ ることを特徴とする前記第(1)項乃至第(7)項のいずれかに記載の電子写真 感光体;

[0012]

【化7】

一般式(3)

(式中、o、p、q はそれぞれ0又は1の整数、R a は水素原子、メチル基を表わし、R b、R c は水素原子以外の置換基で炭素数 $1\sim6$ のアルキル基を表わし、複数の場合は異なっても良い。s、t は $0\sim3$ の整数を表わす。Z a は単結合、メチレン基、エチレン基;

[0013]

【化8】

$$-$$
СН $_2$ СН $_2$ О $-$ 、 $-$ СНСН $_2$ О $Д $$ $$$ СН $_2$ СН $_2$ — СН $_2$ СН $_3$$$

を表わす。)」、(9)「前記表面層に用いられる電荷輸送性構造を有しない3 官能以上のラジカル重合性モノマーの成分割合が、架橋表面層全量に対し30~ 70重量%であることを特徴とする前記第(1)項乃至第(8)項のいずれかに 記載の電子写真感光体」、(10)「前記表面層に用いられる1官能の電荷輸送 性構造を有するラジカル重合性化合物の成分割合が、架橋表面層全量に対し30 ~70重量%であることを特徴とする前記第(1)項乃至第(9)項のいずれかに記載の電子写真感光体」、(11)「前記感光層が支持体側から電荷発生層、電荷輸送層、架橋表面層の積層構成であることを特徴とする前記第(1)項乃至第(10)項のいずれかに記載の電子写真感光体」、(12)「前記感光層の電荷輸送層が高分子電荷輸送物質を含有することを特徴とする前記第(11)項に記載の電子写真感光体」、(13)「前記高分子電荷輸送物質がトリアリールアミン構造を主鎖又は側鎖に有するポリカーボネートであることを特徴とする前記第(12)項に記載の電子写真感光体」、(14)「前記表面層の硬化手段が加熱又は光エネルギー照射手段であることを特徴とする前記第(1)項乃至第(13)項のいずれかに記載の電子写真感光体」により解決される。

[0014]

また、上記課題は、本発明の(15)「前記第(1)項乃至第(14)項のいずれかに記載の電子写真感光体を用いて、少なくとも帯電、画像露光、現像、転写を繰り返し行なうことを特徴とする画像形成方法」により解決される。

[0015]

また、上記課題は、本発明の(16)「前記第(1)項乃至第(14)項のいずれかに記載の電子写真感光体を有することを特徴とする画像形成装置」により解決される。

[0016]

以下、本発明について詳細に説明する。

本発明は、感光層の表面層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化した架橋層からなり、該架橋表面層の表面粗さRz を1.3 μ m以下にすることにより、高耐久性を有し、かつ長期間にわたり高画質化を実現する電子写真感光体が達成されるものである。

この理由としては以下の要因が挙げられる。

本発明の感光体の最表面層の形成においては、3官能以上のラジカル重合性モノマーを用いるものであり、これにより3次元の網目構造が発達し、架橋度が非常に高い高硬度表面層が得られ、高い耐摩耗性が達成される。これに対し、1官

能及び2官能のラジカル重合性モノマーのみを用いた場合は、架橋表面層中の架 橋結合が希薄となり飛躍的な耐塵耗性向上が達成されない。架橋表面層に高分子 材料が含有されている場合、3次元網目構造の発達が阻害され架橋度の低下が起 こり、本発明に比べ充分な耐摩耗性が得られない。更に、含有される高分子材料 とラジカル重合性組成物(ラジカル重合性モノマーや電荷輸送性構造を有するラ ジカル重合性化合物)の反応より生じた硬化物との相溶性が悪く、相分離から局 部的な摩耗が生じ、表面の傷となって現れる。また、本発明の最表面相の形成に おいては、上記3官能性ラジカル重合性モノマーに加え、さらに1官能の電荷輸 送性構造を有するラジカル重合性化合物を含有しており、これが上記3官能以上 のラジカル重合性モノマー硬化時に架橋結合中に取り込まれる。これに対し、官 能基を有しない低分子電荷輸送物質を架橋表面層中に含有させた場合、その相溶 性の低さから低分子電荷輸送物質の析出や白濁現象が起こり、架橋表面層の機械 的強度も低下する。一方、2官能以上の電荷輸送性化合物を主成分として用いた 場合は複数の結合で架橋構造中に固定されるが、電荷輸送性構造が非常に嵩高い ため硬化樹脂中に歪みが発生し架橋表面層の内部応力が高くなり、キャリア付着 等でクラックや傷の発生が頻発する。

[0017]

更に、本発明の感光体は良好な電気的特性を有し、このため長期間にわたり高 画質化が実現される。これは1官能の電荷輸送性構造を有するラジカル重合性化 合物を用い、架橋結合間にペンダント状に固定化したことに起因する。上記のよ うに官能基を有しない電荷輸送物質は析出、白濁現象が起こり、感度の低下、残 留電位の上昇等繰り返し使用における劣化が著しい。2官能以上の電荷輸送性化 合物を主成分として用いた場合は複数の結合で架橋構造中に固定されるため、電 荷輸送時の中間体構造(カチオンラジカル)が安定して保てず、電荷のトラップ による感度の低下、残留電位の上昇が起こる。これらの電気的特性の劣化は、画 像濃度低下、文字の細り等の画像として現れる。

[0018]

更に、本発明の上記感光体形成材料によれば、表面平滑性高い感光体を得ることが可能であるが、特に、架橋表面層の表面粗さR z が 1.3 μ m以下のときに

先に示した効果が充分に発揮される。表面粗さがRzが 1.3μ mを上回る場合、クリーニングブレードにおいて微小なトナーのすり抜けが発生しやすくなり、地肌汚れ、スジ状画像の原因となる。また、膜の強度が高いことで摩耗が少なく、凹部に付着した紙粉、帯電器から発生した酸化性ガス及び感光体表面の劣化物の除去が充分に行なえない。このため高湿環境で画像流れ、文字太りが起こりやすくなる。

[0019]

次に、本発明の最表面層塗布液の構成材料について説明する。

本発明に用いられる電荷輸送性を有しない3官能以上のラジカル重合性モノマーとは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しておらず、且つラジカル重合性官能基を3個以上有するモノマーを指す。このラジカル重合性官能基とは、炭素-炭素2重結合を有し、ラジカル重合可能な基であれば何れでもよい。

これらラジカル重合性官能基としては、例えば、下記に示す1-置換エチレン 官能基、1,1-置換エチレン官能基が挙げられる。

①1-置換エチレン官能基としては、例えば以下の式で表わされる官能基が挙げられる。

【数1】

 $CH_2 = CH - X_1 - \cdots$ \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore 10

(ただし、式中、 X_1 は、置換基を有していてもよいフェニレン基、ナフチレン基等のアリーレン基、置換基を有していてもよいアルケニレン基、-CO-基、-COO-基、 $-CON(R_{10})-基(R_{10}$ は、水素、メチル基、エチル基等のアルキル基、ベンジル基、ナフチルメチル基、フェネチル基等のアラルキル基、フェニル基、ナフチル基等のアリール基を表す。)、または-S-基を表わす。)

これらの置換基を具体的に例示すると、ビニル基、スチリル基、2-メチルー 1、3-ブタジエニル基、ビニルカルボニル基、アクリロイルオキシ基、アクリ ロイルアミノ基、ビニルチオエーテル基等が挙げられる。

②1, 1-置換エチレン官能基としては、例えば以下の式で表わされる官能基が 挙げられる。

【数2】

 $CH_2 = CH(Y) - X_2 - \cdots + 311$

(ただし、式中、Yは、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、ハロゲン原子、シアノ基、ニトロ基、メトキシ基あるいはエトキシ基等のアルコキシ基、一COOR11基(R11は、水素原子、置換基を有していてもよいベンジル、フェネチル基等のアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、または一CONR12R13(R12およびR13は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル基、エチル基等のアルキル基、置換基を有していてもよいベンジル基、ナフチルメチル基、あるいはフェネチル基等のアラルキル基、または置換基を有していてもよいフェニル基、ナフチル基等のアリール基を表わし、互いに同一または異なっていてもよい。)、また、X2は上記式10のX1と同一の置換基及び単結合、アルキレン基を表わす。ただし、Y、X2の少なくとも何れか一方がオキシカルボニル基、シアノ基、アルケニレン基、及び芳香族環である。)

これらの置換基を具体的に例示すると、 α - 塩化アクリロイルオキシ基、メタクリロイルオキシ基、 α - シアノエチレン基、 α - シアノアクリロイルオキシ基、 α - シアノフェニレン基、メタクリロイルアミノ基等が挙げられる。

なお、これら X_1 , X_2 、Yについての置換基にさらに置換される置換基としては、例えばハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。

これらのラジカル重合性官能基の中では、特にアクリロイルオキシ基、メタク リロイルオキシ基が有用であり、3個以上のアクリロイルオキシ基を有する化合 物は、例えば水酸基がその分子中に3個以上ある化合物とアクリル酸(塩)、アクリル酸ハライド、アクリル酸エステルを用い、エステル反応あるいはエステル交換反応させることにより得ることができる。また、3個以上のメタクリロイルオキシ基を有する化合物も同様にして得ることができる。また、ラジカル重合性官能基を3個以上有する単量体中のラジカル重合性官能基は、同一でも異なっても良い。

[0020]

電荷輸送性構造を有しない3官能以上の具体的なラジカル重合性モノマーとしては、以下のものが例示されるが、これらの化合物に限定されるものではない。

すなわち、本発明において使用する上記ラジカル重合性モノマーとしては、例 えば、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロー ルプロパントリメタクリレート、HPA変性トリメチロールプロパントリアクリ レート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチ ロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパン トリアクリレート、HPA変性トリメチロールプロパントリメタクリレート、ペ ンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレー ト(PETTA)、グリセロールトリアクリレート、ECH変性グリセロールト リアクリレート、EO変性グリセロールトリアクリレート、PO変性グリセロー ルトリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペン タエリスリトールヘキサアクリレート(DPHA)、カプロラクトン変性ジペン タエリスリトールヘキサアクリレート、ジペンタエリスリトールヒドロキシペン タアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート、ア ルキル変性ジペンタエリスリトールテトラアクリレート、アルキル変性ジペンタ エリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート(DTMPTA)、ペンタエリスリトールエトキシテトラアクリレート、EO変性 リン酸トリアクリレート、2,2,5,5,一テトラヒドロキシメチルシクロペ ンタノンテトラアクリレートなどが挙げられ、これらは、単独又は2種類以上を 併用しても差し支えない。

[0021]

また、本発明に用いられる電荷輸送性構造を有しない3官能以上のラジカル重 合性モノマーとしては、架橋表面層中に緻密な架橋結合を形成するために、該モ ノマー中の官能基数に対する分子量の割合(分子量/官能基数)は250以下が 望ましい。また、この割合が250より大きい場合、架橋表面層は柔らかく耐塵 耗性が幾分低下するため、上記例示したモノマー等中、HPA、EO、PO等の 変性基を有するモノマーにおいては、極端に長い変性基を有するものを単独で使 用することは好ましくはない。また、表面層に用いられる電荷輸送性構造を有し ない3官能以上のラジカル重合性モノマーの成分割合は、架橋表面層全量に対し 20~80重量%、好ましくは30~70重量%であり、実質的には塗工液固形 分中の3官能以上のラジカル重合性モノマーの割合に依存する。モノマー成分が 20重量%未満では架橋表面層の3次元架橋結合密度が少なく、従来の熱可塑性 バインダー樹脂を用いた場合に比べ飛躍的な耐摩耗性向上が達成されない。また 、80重量%を超えると電荷輸送性化合物の含有量が低下し、電気的特性の劣化 が生じる。使用されるプロセスによって要求される耐摩耗性や電気特性が異なる ため一概には言えないが、両特性のバランスを考慮すると30~70重量%の範 囲が最も好ましい。

$[0\ 0\ 2\ 2]$

本発明に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物とは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しており、且つ1個のラジカル重合性官能基を有する化合物を指す。このラジカル重合性官能基としては、上記式10又は式11で示される官能基が挙げられる。さらに具体的には、先のラジカル重合性モノマーで示したものが挙げられ、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用である。また、電荷輸送性構造としてはトリアリールアミン構造が効果が高く、中でも下記一般式(1)又は(2)の構造で示される化合物を用いた場合、感度、残留電位等の電気的特性が良好に持続される。

[0023]

【化9】

一般式(1)

$$R_1 O Ar_3$$

 $CH_2 = CO - (Z)_m - Ar_1 - X - Ar_2 - N$

[0024]

【化10】

一般式(2)

$$CH_2 = \overset{R_1}{C} - \overset{O}{C}O - (Z)_n - Ar_2 - \overset{Ar_3}{N}$$

[0025]

以下に、一般式(1)、(2)の具体例を示す。

前記一般式(1)、(2)において、 R_1 の置換基中、アルキル基としては、

例えばメチル基、エチル基、プロピル基、ブチル基等、アリール基としては、フェニル基、ナフチル基等が、アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基が、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられ、これらは、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等により置換されていても良い。

R₁の置換基のうち、特に好ましいものは水素原子、メチル基である。

置換もしくは未置換のAr₃、Ar₄はアリール基であり、アリール基としては縮合多環式炭化水素基、非縮合環式炭化水素基及び複素環基が挙げられる。

該縮合多環式炭化水素基としては、好ましくは環を形成する炭素数が18個以下のもの、例えば、ペンタニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、asーインダセニル基、sーインダセニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレル基、ピレニル基、クリセニル基、及びナフタセニル基等が挙げられる。

[0026]

該非縮合環式炭化水素基としては、ベンゼン、ジフェニルエーテル、ポリエチレンジフェニルエーテル、ジフェニルチオエーテル及びジフェニルスルホン等の単環式炭化水素化合物の1価基、あるいはビフェニル、ポリフェニル、ジフェニルアルカン、ジフェニルアルケン、ジフェニルアルキン、トリフェニルメタン、ジスチリルベンゼン、1、1ージフェニルシクロアルカン、ポリフェニルアルカン、及びポリフェニルアルケン等の非縮合多環式炭化水素化合物の1価基、あるいは9、9ージフェニルフルオレン等の環集合炭化水素化合物の1価基が挙げられる。

[0027]

複素環基としては、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、オ

キサジアゾール、及びチアジアゾール等の1価基が挙げられる。

また、前記A r $_3$ 、A r $_4$ で表わされるアリール基は例えば以下に示すような置換基を有してもよい。

- (1) ハロゲン原子、シアノ基、ニトロ基等。
- (2) アルキル基、好ましくは、 $C_1 \sim C_{12}$ とりわけ $C_1 \sim C_{8}$ 、さらに好ましくは $C_1 \sim C_4$ の直鎖または分岐鎖のアルキル基であり、これらのアルキル基にはさらにフッ素原子、水酸基、シアノ基、 $C_1 \sim C_4$ のアルコキシ基、フェニル基又はハロゲン原子、 $C_1 \sim C_4$ のアルキル基もしくは $C_1 \sim C_4$ のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチル基、エチル基、n-ブチル基、i-プロピル基、t-ブチル基、s-ブチル基、n-プロピル基、t-ブチル基、t-ブチル基、t-プロピル基、t-プロピル基、t-ブチル基、t-プロピル基、t-プロピル基、t-プロピル基、t-プロピル基、t-
- (3)アルコキシ基($-OR_2$)であり、 R_2 は(2)で定義したアルキル基を表わす。具体的には、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、t-ブトキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、2-ヒドロキシエトキシ基、ベンジルオキシ基、トリフルオロメトキシ基等が挙げられる。
- (4) アリールオキシ基であり、アリール基としてはフェニル基、ナフチル基が挙げられる。これは、 $C_1 \sim C_4$ のアルコキシ基、 $C_1 \sim C_4$ のアルキル基またはハロゲン原子を置換基として含有してもよい。具体的には、フェノキシ基、1ーナフチルオキシ基、2ーナフチルオキシ基、4ーメトキシフェノキシ基、4ーメチルフェノキシ基等が挙げられる。
- (5) アルキルメルカプト基またはアリールメルカプト基であり、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p-メチルフェニルチオ基等が挙げられる。

(6)

[0028]

【化11】

(式中、R₃及びR₄は各々独立に水素原子、前記(2)で定義したアルキル基、またはアリール基を表わす。アリール基としては、例えばフェニル基、ビフェニル基又はナフチル基が挙げられ、これらはC₁ \sim C₄のアルコキシ基、C₁ \sim C₄のアルキル基またはハロゲン原子を置換基として含有してもよい。R₃及びR₄は共同で環を形成してもよい)

具体的には、アミノ基、ジエチルアミノ基、N-メチル-N-フェニルアミノ 基、N, N-ジフェニルアミノ基、N, N-ジ(トリール)アミノ基、ジベンジ ルアミノ基、ピペリジノ基、モルホリノ基、ピロリジノ基等が挙げられる。

- (7) メチレンジオキシ基、又はメチレンジチオ基等のアルキレンジオキシ基又はアルキレンジチオ基等が挙げられる。
- (8) 置換又は無置換のスチリル基、置換又は無置換のβ-フェニルスチリル基 、ジフェニルアミノフェニル基、ジトリルアミノフェニル基等。

[0029]

前記A r 1 、A r 2 で表わされるアリーレン基としては、前記A r 3 、A r 4 で表されるアリール基から誘導される 2 価基である。

[0030]

前記Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換の シクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、 硫黄原子、ビニレン基を表わす。

置換もしくは無置換のアルキレン基としては、 $C_1 \sim C_{12}$ 、好ましくは $C_1 \sim C_8$ 、さらに好ましくは $C_1 \sim C_4$ の直鎖または分岐鎖のアルキレン基であり、これらのアルキレン基にはさらにフッ素原子、水酸基、シアノ基、 $C_1 \sim C_4$ のアルコキシ基、フェニル基又はハロゲン原子、 $C_1 \sim C_4$ のアルキル基もしくは $C_1 \sim C_4$ のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチレン基、エチレン基、n-ブチレン基、i-プロピレン基、t-ブチ

レン基、s-ブチレン基、n-プロピレン基、トリフルオロメチレン基、2-ヒドロキエチレン基、2-エトキシエチレン基、2-シアノエチレン基、2-メトキシエチレン基、ベンジリデン基、フェニルエチレン基、4-クロロフェニルエチレン基、4-メチルフェニルエチレン基、4-ビフェニルエチレン基等が挙げられる。

置換もしくは無置換のシクロアルキレン基としては、 $C_5 \sim C_7$ の環状アルキレン基であり、これらの環状アルキレン基にはフッ素原子、水酸基、 $C_1 \sim C_4$ のアルキル基、 $C_1 \sim C_4$ のアルコキシ基を有していても良い。具体的にはシクロヘキシリデン基、シクロヘキシレン基、3, 3 – ジメチルシクロヘキシリデン基等が挙げられる。

置換もしくは無置換のアルキレンエーテル基としては、エチレンオキシ、プロピレンオキシ、エチレングリコール、プロピレングリコール、ジエチレングリコール、テトラエチレングリコール、トリプロピレングリコールを表わし、アルキレンエーテル基アルキレン基はヒドロキシル基、メチル基、エチル基等の置換基を有してもよい。

ビニレン基は、

【化12】

$$\begin{pmatrix} R_5 \\ C = CH \end{pmatrix}_a$$

または

$$--C = CH - \left(CH = CH \right)_{b}$$

で表わされ、

 R_5 は水素、アルキル基(前記(2)で定義されるアルキル基と同じ)、アリール基(前記 Ar_3 、 Ar_4 で表わされるアリール基と同じ)、aは1または2、bは1~3を表わす。

[0032]

前記 Z は置換もしくは未置換のアルキレン基、置換もしくは無置換のアルキレンエーテル基、アルキレンオキシカルボニル基を表わす。

置換もしくは未置換のアルキレン基としは、前記Xのアルキレン基と同様なものが挙げられる。

置換もしくは無置換のアルキレンエーテル基としては、前記Xのアルキレンエーテル基が挙げられる。

アルキレンオキシカルボニル基としては、カプロラクトン変性基が挙げられる

[0033]

また、本発明の1官能の電荷輸送構造を有するラジカル重合性化合物として更に好ましくは、下記一般式(3)の構造の化合物が挙げられる。

[0034]

【化13】

一般式(3)

(式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1~6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0~3の整数を表わす。Zaは単結合、メチレン基、エチレン基、

[0035]

【化14】

$$-CH_2CH_2O-$$
 , $-CHCH_2O Zit$ $-CH_2CH_2 CH_2CH_2-$

を表わす。)

上記一般式で表わされる化合物としては、Rb、Rcの置換基として、特にメチル基、エチル基である化合物が好ましい。

本発明で用いる上記一般式(1)及び(2)特に(3)の1官能性の電荷輸送 構造を有するラジカル重合性化合物は、炭素-炭素間の二重結合が両側に開放さ れて重合するため、末端構造とはならず、連鎖重合体中に組み込まれ、3官能以 上のラジカル重合性モノマーとの重合で架橋形成された重合体中では、高分子の 主鎖中に存在し、かつ主鎖-主鎖間の架橋鎖中に存在(この架橋鎖には1つの高 分子と他の高分子間の分子間架橋鎖と、1つの高分子内で折り畳まれた状態の主 鎖のある部位と主鎖中でこれから離れた位置に重合したモノマー由来の他の部位 とが架橋される分子内架橋鎖とがある)するが、主鎖中に存在する場合であって もまた架橋鎖中に存在する場合であっても、鎖部分から懸下するトリアリールア ミン構造は、窒素原子から放射状方向に配置する少なくとも3つのアリール基を 有し、バルキーであるが、鎖部分に直接結合しておらず鎖部分からカルボニル基 等を介して懸下しているため立体的位置取りに融通性ある状態で固定されている ので、これらトリアリールアミン構造は重合体中で相互に程よく隣接する空間配 置が可能であるため、分子内の構造的歪みが少なく、また、電子写真感光体の表 面層とされた場合に、電荷輸送経路の断絶を比較的免れた分子内構造を採りうる ものと推測される。

本発明の1官能の電荷輸送性構造を有するラジカル重合性化合物の具体例を以下に示すが、これらの構造の化合物に限定されるものではない。

[0036]

【表1-1】

[0037]

【表1-2】

[0038]

出証特2003-3103725

【表1-3】

[0039]

【表1-4】

[0040]

【表1-5】

No. 67

No. 66

[0041]

【表1-6】

[0042]

【表1-7】

[0043]

【表1-8】

[0044]

【表1-9】

[0045]

【表1-10】

 $N\ o\ .\ 1\ 3\ 2$

No. 135

[0046]

【表1-11】

No. 137

No. 138

No. 139

No. 140

No. 141

No. 142

No. 143

CH=CH₂

No. 144

No. 145

No. 147

No. 148

N o . 1 4 9

CH=CH₂

CH₃

CH₃

CH₃

CH₃

[0047]

【表1-12】

[0048]

また、本発明に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物は、架橋表面層の電荷輸送性能を付与するために重要で、この成分は架橋表面層全量に対し20~80重量%、好ましくは30~70重量%である。この成分が20重量%未満では架橋表面層の電荷輸送性能が充分に保てず、繰り返しの使用で感度低下、残留電位上昇などの電気特性の劣化が現れる。また、80重量%を超えると電荷輸送構造を有しない3官能モノマーの含有量が低下し、架橋結合密度の低下を招き高い耐摩耗性が発揮されない。使用されるプロセスによって要求される電気特性や耐摩耗性が異なるため一概には言えないが、両特性のバランスを考慮すると30~70重量%の範囲が最も好ましい。

[0049]

本発明の表面層は、少なくとも電荷輸送性構造を有しない3官能以上のラジカ

ル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであるが、これ以外に塗工時の粘度調整、架橋表面層の応力緩和、低表面エネルギー化や摩擦係数低減などの機能付与の目的で1官能及び2官能のラジカル重合性モノマー及びラジカル重合性オリゴマーを併用することができる。これらのラジカル重合性モノマー、オリゴマーとしては、公知のものが利用できる。

1官能のラジカルモノマーとしては、例えば、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2-エチルヘキシルカルビトールアクリレート、3-メトキシブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマーなどが挙げられる。

2官能のラジカル重合性モノマーとしては、例えば、1,3ーブタンジオールジアクリレート、1,4ーブタンジオールジアクリレート、1,4ーブタンジオールジメタクリレート、1,6ーへキサンジオールジアクリレート、1,6ーへキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、EO変性ビスフェノールAジアクリレート、EO変性ビスフェノールFジアクリレート、ネオペンチルグリコールジアクリレートなどが挙げられる。

機能性モノマーとしては、例えば、オクタフルオロペンチルアクリレート、2ーパーフルオロオクチルエチルアクリレート、2ーパーフルオロオクチルエチルメタクリレート、2ーパーフルオロイソノニルエチルアクリレートなどのフッ素原子を置換したもの、特公平5-60503号公報、特公平6-45770号公報記載のシロキサン繰り返し単位:20~70のアクリロイルポリジメチルシロキサンエチル、メタクリロイルポリジメチルシロキサンエチル、アクリロイルポリジメチルシロキサンブチル、ブクリロイルポリジメチルシロキサンブチル、ジアクリロイルポリジメチルシロキサンジエチルなどのポリシロキサン基を有す

るビニルモノマー、アクリレート及びメタクリレートが挙げられる。

ラジカル重合性オリゴマーとしては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエステルアクリレート系オリゴマーが挙げられる。但し、1官能及び2官能のラジカル重合性モノマーやラジカル重合性オリゴマーを多量に含有させると架橋表面層の3次元架橋結合密度が実質的に低下し、耐摩耗性の低下を招く。このためこれらのモノマーやオリゴマーの含有量は、3官能以上のラジカル重合性モノマー100重量部に対し50重量部以下、好ましくは30重量部以下に制限される。

また、本発明の表面層は少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであるが、必要に応じてこの架橋反応を効率よく進行させるために表面層中に重合開始剤を使用してもよい。

[0050]

熱重合開始剤としては、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(パーオキシベンゾイル)ヘキシン-3、ジーt-ブチルベルオキサイド、t-ブチルヒドロベルオキサイド、クメンヒドロベルオキサイド、ラウロイルパーオキサイドなどの過酸化物系開始剤、アゾビスイソブチルニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル、アゾビスイソブチルアミジン塩酸塩、4,4'-アゾビス-4-シアノ吉草酸などのアゾ系開始剤が挙げられる。

[0051]

光重合開始剤としては、ジエトキシアセトフェノン、2,2ージメトキシー1,2ージフェニルエタンー1ーオン、1-ヒドロキシーシクロヘキシルーフェニルーケトン、4-(2ーヒドロキシエトキシ)フェニルー(2ーヒドロキシー2ープロピル)ケトン、2-ベンジルー2-ジメチルアミノー1-(4ーモルフォリノフェニル)ブタノンー1、2-ヒドロキシー2-メチルー1-フェニルプロパン1-オン、1-フェニルー1、2-プロパンジオン1-2-(0-エトキロパン1-3-1)

シカルボニル)オキシム、などのアセトフェノン系またはケタール系光重合開始 剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベン ゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、などのベンゾイ ンエーテル系光重合開始剤、ベンゾフェノン、4-ヒドロキシベンゾフェノン、 o-ベンゾイル安息香酸メチル、2-ベンゾイルナフタレン、4-ベンゾイルビ フェニル、4-ベンゾイルフェニールエーテル、アクリル化ベンゾフェノン、1 ,4-ベンゾイルベンゼン、などのベンゾフェノン系光重合開始剤、2-イソプ ロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサ ントン、2.4-ジエチルチオキサントン、2.4-ジクロロチオキサントン、 などのチオキサントン系光重合開始剤、その他の光重合開始剤としては、エチル アントラキノン、2.4.6-トリメチルベンゾイルジフェニルホスフィンオキ サイド、2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキサ イド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイ ド、ビス(2,4-ジメトキシベンゾイル)-2,4,4-トリメチルペンチル ホスフィンオキサイド、メチルフェニルグリオキシエステル、9、10-フェナ ントレン、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物、 が挙げられる。また、光重合促進効果を有するものを単独または上記光重合開始 剤と併用して用いることもできる。例えば、トリエタノールアミン、メチルジエ タノールアミン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息 香酸イソアミル、安息香酸(2-ジメチルアミノ)エチル、4,4'-ジメチル アミノベンゾフェノン、などが挙げられる。

これらの重合開始剤は1種又は2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100重量部に対し、0.5~40重量部、好ましくは1~20重量部である。

[0052]

更に、本発明の塗工液は必要に応じて各種可塑剤(応力緩和や接着性向上の目的)、レベリング剤、ラジカル反応性を有しない低分子電荷輸送物質などの添加剤が含有できる。これらの添加剤は公知のものが使用可能であり、可塑剤としてはジブチルフタレート、ジオクチルフタレート等の一般の樹脂に使用されている

ものが利用可能で、その使用量は塗工液の総固形分に対し20重量%以下、好ましくは10%以下に抑えられる。また、レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが利用でき、その使用量は塗工液の総固形分に対し3重量%以下が適当である。

[0053]

本発明の架橋表面層は、少なくとも電荷輸送構造を有しない3官能以上のラジ カル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を 含有する塗工液を塗布、硬化することにより形成される。かかる塗工液はラジカ ル重合性モノマーが液体である場合、これに他の成分を溶解して途布することも 可能であるが、必要に応じて溶媒により希釈して塗布される。このとき用いられ る溶媒としては、メタノール、エタノール、プロパノール、ブタノールなどのア ルコール系、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロ ヘキサノンなどのケトン系、酢酸エチル、酢酸ブチルなどのエステル系、テトラ ヒドロフラン、ジオキサン、プロピルエーテルなどのエーテル系、ジクロロメタ ン、ジクロロエタン、トリクロロエタン、クロロベンゼンなどのハロゲン系、ベ ンゼン、トルエン、キシレンなどの芳香族系、メチルセロソルブ、エチルセロソ ルブ、セロソルブアセテートなどのセロソルブ系などが挙げられる。これらの溶 媒は単独または2種以上を混合して用いてもよい。溶媒による希釈率は組成物の 溶解性、塗工法、目的とする膜厚により変わり、任意である。塗布は、浸漬塗工 法やスプレーコート、ビードコート、リングコート法などを用いて行なうことが できる。

[0054]

本発明においては、かかる塗工液を塗布後、外部からエネルギーを与え硬化させ、架橋表面層を形成するものであるが、このとき用いられる外部エネルギーとしては熱、光、放射線がある。熱のエネルギーを加える方法としては、空気、窒素などの気体、蒸気、あるいは各種熱媒体、赤外線、電磁波を用い塗工表面側あるいは支持体側から加熱することによって行なわれる。加熱温度は100℃以上、170℃以下が好ましく、100℃未満では反応速度が遅く、完全に反応が終

了しない。170℃より高温では反応が不均一に進行し架橋表面層中に大きな歪みが発生する。硬化反応を均一に進めるために、100℃未満の比較的低温で加熱後、更に100℃以上に加温し反応を完結させる方法も有効である。光のエネルギーとしては主に紫外光に発光波長をもつ高圧水銀灯やメタルハライドランプなどのUV照射光源が利用できるが、ラジカル重合性含有物や光重合開始剤の吸収波長に合わせ可視光光源の選択も可能である。照射光量は50mW/cm²以上、1000mW/cm²以下が好ましく、50mW/cm²未満では硬化反応に時間を要する。1000mW/cm²より強いと反応の進行が不均一となり、架橋表面層の荒れが激しくなる。放射線のエネルギーとしては電子線を用いるものが挙げられる。これらのエネルギーの中で、反応速度制御の容易さ、装置の簡便さから熱及び光のエネルギーを用いたものが有用である。

[0055]

本発明の架橋表面層の膜厚は、架橋表面層が用いられる感光体の層構造によって異なるため、層構造とともに以降に記載する。

本発明は更に架橋表面層の表面粗さRzが1.3 μ m以下、好ましくは1.0 μ m以下であることを特徴としている。

本発明の架橋表面層の表面粗さRzは、JIS B0601-1994規格に準じて測定された十点平均粗さであり、本発明ではサーフコム1400D(東京精密製)を用いて測定しているが、これと同等の性能を有するいかなる装置で測定された値でもよい。

先に述べたように、架橋表面層の表面粗さRzが 1.3μ mを上回る場合、クリーニング不良による地肌汚れ、スジ状画像や高湿環境で画像流れ、文字太りが起こりやすくなることが見出された。本発明の架橋表面層における表面粗さは、様々な条件が相互に関係しているため、表面粗さRzが 1.3μ m以下にするための方向性は一様ではないが、①架橋表面層用塗工液に含有される組成物、それらの含有割合、②塗工液の希釈溶媒、固形分濃度、③塗工方法、④硬化手段、条件、⑤下層の溶解性、などによって影響を受け、以下のような傾向がみられる

[0056]

表面層塗工液に含有される組成物においては、2官能以上の電荷輸送性構造を有するラジカル重合性化合物、あるいはバインダー樹脂を含有させることも感光体表面の平滑性、電気特性、あるいは耐久性を損なわない範囲であれば可能である。しかし、2官能以上の電荷輸送性構造を有するラジカル重合性化合物を含有すると、電荷輸送性構造の嵩高さから硬化反応時に内部応力が発生し表面に凹凸が発生しやすくなる。また、塗工液にバインダー樹脂などの高分子材料を含有させると、ラジカル重合性組成物(ラジカル重合性モノマー及び電荷輸送性構造を有するラジカル重合性化合物)の硬化反応より生成した高分子との相溶性の悪さから相分離が生じ、架橋層表面の凹凸が激しくなる。したがって、2官能以上の電荷輸送性構造を有するラジカル重合性化合物、あるいはバインダー樹脂は使用しない方が好ましい。

[0057]

塗工液の希釈溶媒については、下層を容易に溶解する溶媒を多量に用いると下層の樹脂バインダーや低分子電荷輸送物質などの組成物が最表面層に混入し、硬化反応の妨げになるばかりでなく、塗工液中に予め非硬化材料を多量に含有させた場合と同様な状態となり架橋表面の乱れの原因となる。逆に、下層を全く溶解しない溶媒を使用した場合、架橋表面層と下層の接着性が低下し、硬化反応時の体積収縮から架橋表面層にクレーター状のはじきが現れ表面粗さが激しくなる。これらの対策としては、混合溶媒を使用し下層の溶解性をコントロールする、液組成や塗工法により塗工最表面層に含有される溶媒量を低減する、下層に高分子電荷輸送物質などを用い下層成分の混入を抑える、下層と架橋表面層の間に溶解性の低い中間層や良好な接着性の中間層を設ける、などが挙げられる。

[0058]

本発明の架橋表面層においては、電気的特性を維持するため嵩高い電荷輸送性 構造を含有させ、且つ高強度化のため架橋結合密度を高める必要がある。この様 な表面層塗工後の硬化にあたっては、非常に高いエネルギーを外部から加え急激 に反応を進めると、硬化が不均一に進行し架橋膜表面の凹凸が激しくなる。この ため加熱条件、光の照射強度、重合開始剤量により反応速度制御が可能な熱や光 の外部エネルギーを用いたものが好ましい。

[0059]

本発明の架橋表面層形成材料を用いた場合において、表面粗さRzが1.3μm以下にするための手法について例示すると、例えば、塗工液として、3つのアクリロイルオキシ基を有するアクリレートモノマーと、一つのアクリロイルオキシ基を有するトリアリールアミン化合物を使用する場合、これらの使用割合は7:3から3:7であり、また、重合開始剤をこれらアクリレート化合物全量に対し3~20重量%添加し、さらに溶媒を加えて塗工液を調製する。例えば、架橋表面層の下層となる電荷輸送層において、電荷輸送物質としてトリアリールアミン系ドナー、及びバインダー樹脂として、ポリカーボネートを使用し、表面層をスプレー塗工により形成する場合、上記塗工液の溶媒としては、テトラヒドロフラン、2-ブタノン、酢酸エチル等が好ましく、その使用割合は、アクリレート化合物全量に対し3倍量~10倍量である。

次いで、例えば、アルミシリンダー等の支持体上に、下引き層、電荷発生層、 上記電荷輸送層を順次積層した感光体上に、上記調製した塗工液をスプレー等に より塗布する。その後、比較的低温で短時間乾燥し(25~80℃、1~10分 間)、UV照射あるいは加熱して硬化させる。

UV照射の場合、メタルハライドランプ等を用いるが、照度は50mW/cm²以上、1000mW/cm²以下が好ましく、例えば500mW/cm²のUV光を照射する場合、例えば硬化に際し、ドラムを回転して全ての面を均一に20秒程度照射すればよい。このときドラム温度は50℃を越えないように制御する。

熱硬化の場合、加熱温度は $100\sim170$ ℃が好ましく、例えば加熱手段として送風型オーブンを用い、加熱温度を150 ℃に設定した場合、加熱時間は20 分 ~3 時間である。

硬化終了後は、残留溶媒低減のため100~150℃で10分~30分加熱して、本発明の感光体を得る。

[0060]

以下、本発明をその層構造に従い説明する。

<電子写真感光体の層構造について>

本発明に用いられる電子写真感光体を図面に基づいて説明する。

図1は、本発明の電子写真感光体を表わす断面図であり、導電性支持体(31)上に、電荷発生機能と電荷輸送機能を同時に有する感光層(33)が設けられた単層構造の感光体である。架橋表面層が感光層全体の場合を示したのが図1-Aであり、架橋表面層が感光層の表面部分である場合を示したのが図1-Bである。

図2は、導電性支持体(31)上に、電荷発生機能を有する電荷発生層(35)と、電荷輸送物機能を有する電荷輸送層(37)とが積層された積層構造の感光体である。架橋表面層が電荷輸送層全体の場合を示すのが図2-Aであり、架橋表面層が電荷輸送層の表面部分である場合を示すのが図2-Bである。

[0061]

<導電性支持体について>

導電性支持体(31)としては、体積抵抗10¹⁰Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいはアルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理を施した管などを使用することができる。また、特開昭52-36016号公報に開示されたエンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体(31)として用いることができる。

この他、上記支持体上に導電性粉体を適当な結着樹脂に分散して塗工したものについても、本発明の導電性支持体(31)として用いることができる。

[0062]

この導電性粉体としては、カーボンブラック、アセチレンブラック、また、アルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化スズ、ITOなどの金属酸化物粉体などが挙げられる。また、同時に用いられる結着樹脂には、ポリスチレン、スチレンーアクリロニトリル共重合体、スチレンーブタジエン共重合体、スチレンー無水マレイン酸共重合体、ポリエス

テル、ポリ塩化ビニル、塩化ビニルー酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリーNービニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などの熱可塑性、熱硬化性樹脂または光硬化性樹脂が挙げられる。このような導電性層は、これらの導電性粉体と結着樹脂を適当な溶剤、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分散して塗布することにより設けることができる。

[0063]

さらに、適当な円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、ポリテトラフロロエチレン系フッ素樹脂などの素材に前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けてなるものも、本発明の導電性支持体(31)として良好に用いることができる。

[0064]

<感光層について>

次に感光層について説明する。感光層は積層構造でも単層構造でもよい。

積層構造の場合には、感光層は電荷発生機能を有する電荷発生層と電荷輸送機能を有する電荷輸送層とから構成される。また、単層構造の場合には、感光層は電荷発生機能と電荷輸送機能を同時に有する層である。

以下、積層構造の感光層及び単層構造の感光層のそれぞれについて述べる。

[0065]

<感光層が電荷発生層と電荷輸送層からなるもの>

(電荷発生層)

電荷発生層 (35) は、電荷発生機能を有する電荷発生物質を主成分とする層で、必要に応じてバインダー樹脂を併用することもできる。電荷発生物質としては、無機系材料と有機系材料を用いることができる。

無機系材料には、結晶セレン、アモルファス・セレン、セレンーテルル、セレ

ンーテルルーハロゲン、セレンーヒ素化合物や、アモルファス・シリコン等が挙 げられる。アモルファス・シリコンにおいては、ダングリングボンドを水素原子 、ハロゲン原子でターミネートしたものや、ホウ素原子、リン原子等をドープし たものが良好に用いられる。

一方、有機系材料としては、公知の材料を用いることができる。例えば、金属フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾール骨格を有するアゾ顔料、トリフェニルアミン骨格を有するアゾ顔料、ジフェニルアミン骨格を有するアゾ顔料、ジベンゾチオフェン骨格を有するアゾ顔料、フルオレノン骨格を有するアゾ顔料、ボキサジアゾール骨格を有するアゾ顔料、ビススチルベン骨格を有するアゾ顔料、ジスチリルオキサジアゾール骨格を有するアゾ顔料、ジスチリルカルバゾール骨格を有するアゾ顔料、ペリレン系顔料、アントラキノン系または多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾール系顔料などが挙げられる。これらの電荷発生物質は、単独または2種以上の混合物として用いることができる。

[0066]

電荷発生層(35)に必要に応じて用いられるバインダー樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリーNービニルカルバゾール、ポリアクリルアミドなどが挙げられる。これらのバインダー樹脂は、単独または2種以上の混合物として用いることができる。また、電荷発生層のバインダー樹脂として上述のバインダー樹脂の他に、電荷輸送機能を有する高分子電荷輸送物質、例えば、アリールアミン骨格やベンジジン骨格やヒドラゾン骨格やカルバゾール骨格やスチルベン骨格やピラゾリン骨格等を有するポリカーボネート、ポリエステル、ポリウレタン、ポリエーテル、ポリシロキサン、アクリル樹脂等の高分子材料やポリシラン骨格を有する高分子材料等を用いることができる。

[0067]

また、後者の具体例としては、例えば特開昭63-285552号公報、特開平05-19497号公報、特開平05-70595号公報、特開平10-7394号公報等に記載のポリシリレン重合体が例示される。

[0068]

また、電荷発生層(35)には低分子電荷輸送物質を含有させることができる

電荷発生層(35)に併用できる低分子電荷輸送物質には、正孔輸送物質と電

子輸送物質とがある。

電子輸送物質としては、たとえばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7ートリニトロー9ーフルオレノン、2,4,5,7ーテトラニトロー9ーフルオレノン、2,4,5,7ーテトラニトロキサントン、2,4,8ートリニトロチオキサントン、2,6,8ートリニトロー4Hーインデノ〔1,2ーb〕チオフェンー4ーオン、1,3,7ートリニトロジベンゾチオフェンー5,5ージオキサイド、ジフェノキノン誘導体などの電子受容性物質が挙げられる。これらの電子輸送物質は、単独または2種以上の混合物として用いることができる。

[0069]

正孔輸送物質としては、以下に表わされる電子供与性物質が挙げられ、良好に用いられる。正孔輸送物質としては、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、αーフェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、タースチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジェン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等、その他公知の材料が挙げられる。これらの正孔輸送物質は、単独または2種以上の混合物として用いることができる

[0070]

0

電荷発生層(35)を形成する方法には、真空薄膜作製法と溶液分散系からの キャスティング法とが大きく挙げられる。

前者の方法には、真空蒸着法、グロー放電分解法、イオンプレーティング法、スパッタリング法、反応性スパッタリング法、CVD法等が用いられ、上述した無機系材料、有機系材料が良好に形成できる。

また、後述のキャスティング法によって電荷発生層を設けるには、上述した無 機系もしくは有機系電荷発生物質を必要ならばバインダー樹脂と共にテトラヒド ロフラン、ジオキサン、ジオキソラン、トルエン、ジクロロメタン、モノクロロ ベンゼン、ジクロロエタン、シクロヘキサノン、シクロペンタノン、アニソール、キシレン、メチルエチルケトン、アセトン、酢酸エチル、酢酸ブチル等の溶媒を用いてボールミル、アトライター、サンドミル、ビーズミル等により分散し、分散液を適度に希釈して塗布することにより、形成できる。また、必要に応じて、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のレベリング剤を添加することができる。塗布は、浸漬塗工法やスプレーコート、ビードコート、リングコート法などを用いて行なうことができる。

以上のようにして設けられる電荷発生層の膜厚は、 $0.01\sim5~\mu$ m程度が適当であり、好ましくは $0.05\sim2~\mu$ mである。

[0071]

(電荷輸送層について)

電荷輸送層(37)は電荷輸送機能を有する層で、本発明の電荷輸送性構造を有する架橋表面層は電荷輸送層として有用に用いられる。架橋表面層が電荷輸送層(37)の全体である場合、前述の架橋表面層作製方法に記載したように電荷発生層(35)上に本発明のラジカル重合性組成物(電荷輸送性構造を有しないラジカル重合性モノマー及び1官能の電荷輸送性構造を有するラジカル重合性化合物;以下同じ)を含有する塗工液を塗布、必要に応じて乾燥後、外部エネルギーにより硬化反応を開始させ、架橋表面層が形成される。このとき、架橋表面層の膜厚は、 $10\sim30\mu$ m、好ましくは $10\sim25\mu$ mである。 10μ mより薄いと充分な帯電電位が維持できず、 30μ mより厚いと硬化時の体積収縮により下層との剥離が生じやすくなる。

また、架橋表面層が電荷輸送層(37)の表面部分に形成され、電荷輸送層(37)が積層構造である場合、電荷輸送層の下層部分は電荷輸送機能を有する電荷輸送物質および結着樹脂を適当な溶剤に溶解ないし分散し、これを電荷発生層(35)上に塗布、乾燥することにより形成し、この上に上記本発明のラジカル重合性組成物を含有する塗工液を塗布し、外部エネルギーにより架橋硬化させる

電荷輸送物質としては、前記電荷発生層(35)で記載した電子輸送物質、正 孔輸送物質及び高分子電荷輸送物質を用いることができる。前述したように高分 子電荷輸送物質を用いることにより、表面層塗工時の下層の溶解性を低減でき、 とりわけ有用である。

[0072]

結着樹脂としては、ポリスチレン、スチレンーアクリロニトリル共重合体、スチレンーブタジエン共重合体、スチレンー無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニルー酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリーNービニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。

電荷輸送物質の量は結着樹脂100重量部に対し、20~300重量部、好ましくは40~150重量部が適当である。但し、高分子電荷輸送物質を用いる場合は、単独でも結着樹脂との併用も可能である。

電荷輸送層の下層部分の塗工に用いられる溶媒としては前記電荷発生層と同様なものが使用できるが、電荷輸送物質及び結着樹脂を良好に溶解するものが適している。これらの溶剤は単独で使用しても2種以上混合して使用しても良い。また、電荷輸送層の下層部分の形成には電荷発生層(35)と同様な塗工法が可能である。

[0073]

また、必要により可塑剤、レベリング剤を添加することもできる。

電荷輸送層の下層部分に併用できる可塑剤としては、ジブチルフタレート、ジオクチルフタレート等の一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、結着樹脂100重量部に対して0~30重量部程度が適当である。

電荷輸送層の下層部分に併用できるレベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが使用され、その使用量は、結着樹脂100重量部に対して0~1重量部程度が適当である。

電荷輸送層の下層部分の膜厚は、 $5\sim40~\mu$ m程度が適当であり、好ましくは $1~0\sim3~0~\mu$ m程度が適当である。

[0074]

架橋表面層が電荷輸送層(37)の表面部分である場合、前述の架橋表面層作製方法に記載したように、かかる電荷輸送層の下層部分上に本発明のラジカル重合性組成物を含有する塗工液を塗布、必要に応じて乾燥後、熱や光の外部エネルギーにより硬化反応を開始させ、架橋表面層が形成される。このとき、架橋表面層の膜厚は、 $1\sim20\,\mu$ m、好ましくは $2\sim10\,\mu$ mである。 $1\,\mu$ mより薄いと膜厚ムラによって耐久性がバラツキ、 $20\,\mu$ mより厚いと電荷輸送層全体の膜厚が厚くなり電荷の拡散から画像の再現性が低下する。

[0075]

<感光層が単層のもの>

単層構造の感光層は電荷発生機能と電荷輸送機能を同時に有する層で、本発明の電荷輸送性構造を有する架橋表面層は電荷発生機能を有する電荷発生物質を含有させることにより、単層構造の感光層として有用に用いられる。上記の電荷発生層のキャスティング形成方法に記載したように、電荷発生物質をラジカル重合性組成物を含有する塗工液と共に分散し、電荷発生層(35)上に塗布、必要に応じて乾燥後、外部エネルギーにより硬化反応を開始させ、架橋表面層が形成される。なお、電荷発生物質はあらかじめ溶媒と共に分散した液を本架橋表面層用塗工液に加えてもよい。このとき、架橋表面層の膜厚は、10~30μm、好ましくは10~25μmである。10μmより薄いと充分な帯電電位が維持できず、30μmより厚いと硬化時の体積収縮により導電性基体または下引き層との剥離が生じやすくなる。

[0076]

また、架橋表面層が単層構造の感光層の表面部分である場合、感光層の下層部 分は電荷発生機能を有する電荷発生物質と電荷輸送機能を有する電荷輸送物質と 結着樹脂を適当な溶媒に溶解ないし分散し、これを塗布、乾燥することによって 形成できる。また、必要により可塑剤やレベリング剤等を添加することもできる 。電荷発生物質の分散方法、それぞれ電荷発生物質、電荷輸送物質、可塑剤、レ ベリング剤は前記電荷発生層(35)、電荷輸送層(37)において既に述べたものと同様なものが使用できる。結着樹脂としては、先に電荷輸送層(37)の項で挙げた結着樹脂のほかに、電荷発生層(35)で挙げたバインダー樹脂を混合して用いてもよい。また、先に挙げた高分子電荷輸送物質も使用可能で、架橋表面層への下層感光層組成物の混入を低減できる点で有用である。かかる感光層の下層部分の膜厚は、 $5\sim30~\mu$ m程度が適当であり、好ましくは $10\sim25~\mu$ m程度が適当である。

[0077]

架橋表面層が単層構造の感光層の表面部分である場合、前述のようにかかる感光層の下層部分上に本発明のラジカル重合性組成物と電荷発生物質を含有する塗工液を塗布、必要に応じて乾燥後、熱や光の外部エネルギーにより硬化し、架橋表面層を形成する。このとき、架橋表面層の膜厚は、 $1\sim20\,\mu\,\mathrm{m}$ 、好ましくは $2\sim10\,\mu\,\mathrm{m}$ である。 $1\,\mu\,\mathrm{m}$ より薄いと膜厚ムラによって耐久性のバラツキが生じる。

[0078]

単層構造の感光層中に含有される電荷発生物質は感光層全量に対し1~30重量%が好ましく、感光層の下層部分に含有される結着樹脂は全量の20~80重量%、電荷輸送物質は10~70重量部が良好に用いられる。

[0079]

<中間層について>

本発明の感光体においては、架橋表面層が感光層の表面部分となる場合、架橋表面層への下層成分混入を抑える又は下層との接着性を改善する目的で中間層を設けることが可能である。この中間層はラジカル重合性組成物を含有する最表面層中に下部感光層組成物の混入により生ずる、硬化反応の阻害や架橋表面層の凹凸を防止する。また、下層の感光層と表面架橋層の接着性を向上させることも可能である。

中間層には、一般にバインダー樹脂を主成分として用いる。これら樹脂としては、ポリアミド、アルコール可溶性ナイロン、水溶性ポリビニルブチラール、ポリビニルブチラール、ポリビニルアルコールなどが挙げられる。中間層の形成法

としては、前述のごとく一般に用いられる塗工法が採用される。なお、中間層の厚さは $0.05 \sim 2 \mu m$ 程度が適当である。

[0080]

<下引き層について>

本発明の感光体においては、導電性支持体(3 1)と感光層との間に下引き層を設けることができる。下引き層は一般には樹脂を主成分とするが、これらの樹脂はその上に感光層を溶剤で塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが望ましい。このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、フェノール樹脂、アルキッドーメラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。また、下引き層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末顔料を加えてもよい。

これらの下引き層は、前述の感光層の如く適当な溶媒及び塗工法を用いて形成することができる。更に本発明の下引き層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用することもできる。この他、本発明の下引き層には、 Al_2O_3 を陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物や SiO_2 、 SnO_2 、 TiO_2 、ITO、 CeO_2 等の無機物を真空薄膜作成法にて設けたものも良好に使用できる。このほかにも公知のものを用いることができる。下引き層の膜厚は $O\sim5~\mu$ mが適当である。

[0081]

<各層への酸化防止剤の添加について>

また、本発明においては、耐環境性の改善のため、とりわけ、感度低下、残留 電位の上昇を防止する目的で、表面架橋層、感光層、電荷発生層、電荷輸送層、 下引き層、中間層等の各層に酸化防止剤を添加することができる。

[0082]

本発明に用いることができる酸化防止剤として、下記のものが挙げられる。 (フェノール系化合物)

2, 6-i0ー t-i7チルーp-i0レゾール、ブチル化ヒドロキシアニソール、2, 6-i0ー t-i7チルー4-i1ーエチルフェノール、ステアリルー β 0ー (3, 5-i1 i1ーブチルー40ーヒドロキシフェニル)プロピオネート、i2, i2 i1ーメチレンービスー(i1ーズチルーi2ー i1ーブチルフェノール)、i2, i2 i1ーズチレンービスー(i4ーエチルーi6ー i1ーブチルフェノール)、i4, i3ーメチルーi6ー i1ーブチルフェノール)、i4, i3ーブチリデンビスー(i3ーメチルーi6ー i1ーブチルフェノール)、i1, i3ートリスー(i2ーメチルーi4ーヒドロキシーi5ー i7ーブチルフェニル)ブタン、i7, i3, i7ードリス(i4, i7ーブチルーi7ーヒドロキシベンジル)ベンゼン、テトラキスー i7ーズチレンーi7ーズチルーi7ーヒドロキシフェニル)プロピオネート i1ーズチルーi1ーズチルーi1ービドロキシフェニル)プロピオネート i1ーズチルフェニル)ブチリックアッシド i1ープエステル、トコフェロール類など。

[0083]

(パラフェニレンジアミン類)

N-7 x=2 y=2 y=2

[0084]

(ハイドロキノン類)

[0085]

(有機硫黄化合物類)

ジラウリルー3, 3'ーチオジプロピオネート、ジステアリルー3, 3'ーチオジプロピオネート、ジテトラデシルー3, 3'ーチオジプロピオネートなど。

[0086]

(有機燐化合物類)

トリフェニルホスフィン、トリ (ノニルフェニル) ホスフィン、トリ (ジノニルフェニル) ホスフィン、トリクレジルホスフィン、トリ (2,4-ジブチルフェノキシ) ホスフィンなど。

これら化合物は、ゴム、プラスチック、油脂類などの酸化防止剤として知られており、市販品を容易に入手できる。

本発明における酸化防止剤の添加量は、添加する層の総重量に対して 0.01 ~10重量%である。

[0087]

<画像形成方法及び装置について>

次に図面に基づいて本発明の画像形成方法ならびに画像形成装置を詳しく説明 する。

本発明の画像形成方法ならびに画像形成装置とは、本発明は平滑な電荷輸送性 表面架橋層を有する感光体を用い、例えば少なくとも感光体に帯電、画像露光、 現像の過程を経た後、画像保持体(転写紙)へのトナー画像の転写、定着及び感 光体表面のクリーニングというプロセスよりなる画像形成方法ならびに画像形成 装置である。

場合により、静電潜像を直接転写体に転写し現像する画像形成方法等では、感 光体に配した上記プロセスを必ずしも有するものではない。

[0088]

図3は、画像形成装置の一例を示す概略図である。感光体を平均的に帯電させる手段として、帯電チャージャ(3)が用いられる。この帯電手段としては、コロトロンデバイス、スコロトロンデバイス、固体放電素子、針電極デバイス、ローラー帯電デバイス、導電性ブラシデバイス等が用いられ、公知の方式が使用可能である。

特に本発明の構成は、接触帯電方式又は非接触近接配置帯電方式のような帯電手段からの近接放電により感光体組成物が分解する様な帯電手段を用いた場合に有効である。ここで言う接触帯電方式とは、感光体に帯電ローラ、帯電ブラシ、帯電ブレード等が直接接触する帯電方式である。一方の近接帯電方式とは、例えば帯電ローラーが感光体表面と帯電手段との間に 200μ m以下の空隙を有するように非接触状態で近接配置したタイプのものである。この空隙は、大きすぎた場合には帯電が不安定になりやすく、また、小さすぎた場合には、感光体に残留したトナーが存在する場合に、帯電部材表面が汚染されてしまう可能性がある。したがって、空隙は $10\sim200\mu$ m、好ましくは $10\sim100\mu$ mの範囲が適当である。

次に、均一に帯電された感光体(1)上に静電潜像を形成するために画像露光部(5)が用いられる。この光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。

次に、感光体(1)上に形成された静電潜像を可視化するために現像ユニット(6)が用いられる。現像方式としては、乾式トナーを用いた一成分現像法、二成分現像法、湿式トナーを用いた湿式現像法がある。感光体に正(負)帯電を施し、画像露光を行なうと、感光体表面上には正(負)の静電潜像が形成される。これを負(正)極性のトナー(検電微粒子)で現像すれば、ポジ画像が得られるし、また正(負)極性のトナーで現像すれば、ネガ画像が得られる。

次に、感光体上で可視化されたトナー像を転写体(9)上に転写するために転写チャージャ(10)が用いられる。また、転写をより良好に行なうために転写前チャージャ(7)を用いてもよい。これらの転写手段としては、転写チャージャ、バイアスローラーを用いる静電転写方式、粘着転写法、圧力転写法等の機械転写方式、磁気転写方式が利用可能である。静電転写方式としては、前記帯電手

段が利用可能である。

次に、転写体(9)を感光体(1)より分離する手段として分離チャージャ(11)、分離爪(12)が用いられる。その他分離手段としては、静電吸着誘導分離、側端ベルト分離、先端グリップ搬送、曲率分離等が用いられる。分離チャージャ(11)としては、前記帯電手段が利用可能である。

次に、転写後感光体上に残されたトナーをクリーニングするためにファーブラシ (14)、クリーニングブレード (15)が用いられる。また、クリーニングをより効率的に行なうためにクリーニング前チャージャ (13)を用いてもよい。その他クリーニング手段としては、ウェブ方式、マグネットブラシ方式等があるが、それぞれ単独又は複数の方式を一緒に用いてもよい。

次に、必要に応じて感光体上の潜像を取り除く目的で除電手段が用いられる。 除電手段としては除電ランプ(2)、除電チャージャが用いられ、それぞれ前記 露光光源、帯電手段が利用できる。

その他、感光体に近接していない原稿読み取り、給紙、定着、排紙等のプロセスは公知のものが使用できる。

[0089]

本発明は、このような画像形成手段に本発明に係る電子写真感光体を用いる画像形成方法及び画像形成装置である。

この画像形成手段は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、プロセスカートリッジの形態でそれら装置内に組み込まれ、着脱自在としたものであってもよい。プロセスカートリッジの一例を図4に示す。

画像形成装置用プロセスカートリッジとは、感光体(101)を内蔵し、他に 帯電手段(102)、現像手段(104)、転写手段(106)、クリーニング 手段(107)、除電手段(図示せず)の少なくとも一つを具備し、画像形成装 置本体に着脱可能とした装置(部品)である。

図4に例示される装置による画像形成プロセスについて示すと、感光体(101)は、矢印方向に回転しながら、帯電手段(102)による帯電、露光手段(103)による露光により、その表面に露光像に対応する静電潜像が形成され、

この静電潜像は、現像手段(104)でトナー現像され、該トナー現像は転写手段(106)により、転写体(105)に転写され、プリントアウトされる。次いで、像転写後の感光体表面は、クリーニング手段(107)によりクリーニングされ、さらに除電手段(図示せず)により除電されて、再び以上の操作を繰り返すものである。

本発明は、平滑な電荷輸送性表面架橋層を有する感光体と帯電、現像、転写、 クリーニング、除電手段の少なくとも一つを一体化した画像形成装置用プロセス カートリッジを提供するものである。

以上の説明から明らかなように、本発明の電子写真感光体は電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、液晶プリンター及びレーザー製版等の電子写真応用分野にも広く用いることができるものである。

[0090]

<1官能の電荷輸送性構造を有する化合物の合成例>

本発明における1官能の電荷輸送性構造を有する化合物は、例えば特許第31 64426号公報記載の方法にて合成される。また、下記にこの一例を示す。

①ヒドロキシ基置換トリアリールアミン化合物(下記構造式B) の合成

融点:64.0~66.0℃

[0091]

【表2】

元素分析值(%)

	С	Н	N
実測値	85.06	6.41	3. 73
計算値	85.44	6.34	3. 83

[0092]

【化15】

構造式A

[0093]

【化16】

構造式B

[0094]

②トリアリールアミノ基置換アクリレート化合物 (表1中の例示化合物No.54)

上記①で得られたヒドロキシ基置換トリアリールアミン化合物(構造式B)8 2.9g(0.227mol)をテトラヒドロフラン400mlに溶解し、窒素気流中で水酸化ナトリウム水溶液(NaOH:12.4g,水:100ml)を滴下した。この溶液を5℃に冷却し、アクリル酸クロライド25.2g(0.272mol)を40分かけて滴下した。その後、5℃で3時間撹拌し反応を終了させた。この反応液を水に注ぎ、トルエンにて抽出した。この抽出液を炭酸水素ナトリウム水溶液と水で繰り返し洗浄した。その後、このトルエン溶液から溶媒を除去し、カラムクロマト処理(吸着媒体:シリカゲル、展開溶媒:トルエン)にて精製した。得られた無色のオイルにn-へキサンを加え、結晶を析出させた。この様にして例示化合物No.54の白色結晶80.73g(収率=84.8%)を得た。

融点:117.5~119.0℃

[0095]

【表3】

元素分析值(%)

	С	Н	N
実測値	83.13	6.01	3. 16
計算値	83.02	6.00	3. 33

[0096]

【実施例】

次に、実施例によって本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中において使用する「部」は、すべて重量部を表わす。

<実施例1>

φ30mmのアルミニウムシリンダー上に、下記組成の下引き層用塗工液、電荷発生層用塗工液、電荷輸送層用塗工液を順次、塗布、乾燥することにより、3

. 5μ mの下引き層、 0.2μ mの電荷発生層、 18μ mの電荷輸送層を形成した。この電荷輸送層上に下記組成の架橋表面層用塗工液をスプレー塗工し、メタルハライドランプ:160 W/c m、照射距離:120 mm、照射強度:500 mW/c m²、照射時間:30 秒の条件で光照射を行ない、更に130 ℃で 20 分乾燥を加え 4μ mの表面架橋層を設け、本発明の電子写真感光体を得た。

〔下引き層用塗工液〕

アルキッド樹脂

6部

(ベッコゾール 1 3 0 7 - 6 0 - E L、大日本インキ化学工業製)

メラミン樹脂

4 部

(スーパーベッカミン G-821-60、大日本インキ化学工業製)

酸化チタン

4.0部

メチルエチルケトン

50部

〔電荷発生層用塗工液〕

下記構造式(I)のビスアゾ顔料顔料

2.5部

ポリビニルブチラール (XYHL、UCC製)

0.5部

シクロヘキサノン

200部

メチルエチルケトン

80部

[0097]

【化17】

構造式(I)

[電荷輸送層用塗工液]

ビスフェノール乙ポリカーボネート

10部

(パンライトTS-2050、帝人化成製)

下記構造式 (II) の低分子電荷輸送物質 (D-1)

7部

テトラヒドロフラン

100部

1%シリコーンオイルのテトラヒドロフラン溶液

0.2部

(KF50-100CS、信越化学工業製)

[0098]

【化18】

構造式(II)

$$C=CH-O-N$$
 CH_3
 CH_3

[架橋表面層用塗工液]

電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部 トリメチロールプロパントリアクリレート

(KAYARAD TMPTA、日本化薬製)

分子量:296、官能基数:3官能、分子量/官能基数=99

1官能の電荷輸送性構造を有するラジカル重合性化合物 10部

(例示化合物 No. 54)

光重合開始剤 2部

1-ヒドロキシーシクロヘキシルーフェニルーケトン

(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)

テトラヒドロフラン

100部

[0099]

<実施例2>

実施例1の架橋表面層用塗工液に含有される電荷輸送性構造を有さない3官能 以上のラジカル重合性モノマーを下記のモノマーに換えた以外は実施例1と同様 に電子写真感光体を作製した。

電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部

ジトリメチロールプロパンテトラアクリレート

(SR-355、化薬サートマー製)

分子量:466、官能基数:4官能、分子量/官能基数=117

[0100]

<実施例3>

実施例1の架橋表面層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のモノマーに、光重合開始剤を下記化合物に換えた以外は実施例1と同様に電子写真感光体を作製した。

電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部 ペンタエリスリトールテトラアクリレート

(SR-295、化薬サートマー製)

分子量:352、官能基数:4官能、分子量/官能基数=88

光重合開始剤

2 部

2, 2-ジメトキシ-1, 2-ジフェニルエタン-1-オン(イルガキュア651、チバ・スペシャルティ・ケミカルズ製)

[0101]

<実施例4>

実施例1の架橋表面層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記の2種混合モノマーに換えた以外は実施例1と同様に電子写真感光体を作製した。

電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 5部 ジペンタエリスリトールへキサアクリレート

(KAYARAD DPHA、日本化薬製)

分子量:536、官能基数:5.5官能、分子量/官能基数=97 電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 5部

カプロラクトン変性ジペンタエリスリトールヘキサアクリレート

(KAYARAD DPCA-60、日本化薬製)

分子量:1263、官能基数:6官能、分子量/官能基数=211

[0102]

<実施例5>

実施例1の架橋表面層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のモノマーに換えた以外は実施例1と同様に電子写真感光体を作製した。

電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部 カプロラクトン変性ジペンタエリスリトールへキサアクリレート

(KAYARAD DPCA-60、日本化薬製)

分子量:1263、官能基数:6官能、分子量/官能基数=211

[0103]

<実施例6>

実施例1の架橋表面層用塗工液に含有される電荷輸送性構造を有さない3官能 以上のラジカル重合性モノマーを下記のモノマーに換えた以外は実施例1と同様 に電子写真感光体を作製した。

電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部 カプロラクトン変性ジペンタエリスリトールへキサアクリレート

(KAYARAD DPCA-120、日本化薬製)

分子量:1947、官能基数:6官能、分子量/官能基数=325

[0104]

<実施例7>

実施例1の架橋表面層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記の2種混合モノマーに換えた以外は実施例1と同様に電子写真感光体を作製した。

電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 5部 ジペンタエリスリトールへキサアクリレート

(KAYARAD DPHA、日本化薬製)

平均分子量: 5 3 6、官能基数: 5. 5 官能、分子量/官能基数= 9 7 電荷輸送性構造を有さない 3 官能以上のラジカル重合性モノマー 5 部

PO変性グリセロールトリアクリレート

(KAYARAD FM-280、日本化薬製)

分子量: 4 6 3、官能基数: 3 官能、分子量/官能基数= 1 5 4 【0 1 0 5】

<実施例8>

実施例1の架橋表面層用塗工液に含有される1官能の電荷輸送性構造を有する ラジカル重合性化合物を例示化合物No.127、10部に換えた以外は実施例 1と同様に電子写真感光体を作製した。

[0106]

<実施例9>

実施例1の架橋表面層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のモノマーに換え、1官能の電荷輸送性構造を有するラジカル重合性化合物を例示化合物No.138、10部に換えた以外は実施例1と同様に電子写真感光体を作製した。

電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部 ジペンタエリスリトールヘキサアクリレート

(KAYARAD DPHA、日本化薬製)

平均分子量:536、官能基数:5.5官能、分子量/官能基数=97

[0107]

<実施例10>

実施例1の架橋表面層用塗工液に含有される1官能の電荷輸送性構造を有する ラジカル重合性化合物を例示化合物No.94、10部に換え、光重合開始剤を 下記熱重合開始剤に換え電荷輸送層上に同様に塗工後、送風型オーブンを用い7 0℃で30分加熱、更に150℃で1時間加熱し、4μmの架橋表面層を設け本 発明の感光体を得た。

熱重合開始剤

1部

2, 2-ビス (4, 4-ジーt-ブチルパーオキシシクロヘキシ) プロパン (パーカドックス 12-EB20、化薬アクゾ製)

[0108]

<実施例11>

実施例10の架橋表面層用塗工液に含有される1官能の電荷輸送性構造を有す

るラジカル重合性化合物を例示化合物No.138、10部に換えた以外は実施例10と同様に電子写真感光体を作製した。

[0109]

<実施例12>

実施例1の架橋表面層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー量を6部、1官能の電荷輸送性構造を有するラジカル重合性化合物量を14部に換えた以外は実施例1と同様に電子写真感光体を作製した。

[0110]

<実施例13>

実施例1の最表面層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー量を14部、1官能の電荷輸送性構造を有するラジカル重合性化合物量を6部に換えた以外は実施例1と同様に電子写真感光体を作製した。

[0111]

<実施例14>

実施例1の電荷輸送層用塗工液として下記組成の高分子電荷輸送物質 (PD-1)を含有した液を用い、同様な電荷発生層上に塗布、乾燥して18μmの電荷輸送層を形成した。この電荷輸送層上に実施例1と同様にして表面架橋層を設け電子写真感光体を作製した。

[電荷輸送層用塗工液]

下記構造式の高分子電荷輸送物質 (PD-1)

15部

 $[0\ 1\ 1\ 2\]$

【化19】

(PD-1)

k=0.42, j=0.58 Mw=160000 (ポリスチレン換算)

テトラヒドロフラン

100部

1%シリコーンオイルのテトラヒドロフラン溶液

0.3部

(KF50-100CS、信越化学工業製)

[0113]

<実施例15>

実施例1の電荷発生層上に、下記組成の架橋表面層用塗工液をスプレー塗工し 、光照射時間を40秒とした以外は実施例1と同様にして22μmの架橋表面層 を設け本発明の感光体を作製した。

[架橋表面層用塗工液]

電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部 カプロラクトン変性ジペンタエリスリトールヘキサアクリレート

(KAYARAD DPCA-60、日本化薬製)

分子量:1263、官能基数:6官能、分子量/官能基数=211

1 官能の電荷輸送性構造を有するラジカル重合性化合物

10部

(例示化合物 No. 54)

光重合開始剤 2部

1-ヒドロキシーシクロヘキシルーフェニルーケトン

(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)

テトラヒドロフラン

6 0 部

ページ: 67/

シクロヘキサノン

20部

1%シリコーンオイルのテトラヒドロフラン溶液

0.2部

(KF50-100CS、信越化学工業製)

[0114]

<比較例1>

実施例1の架橋表面層用塗工液を下記組成に変更した以外は実施例1と同様に 電子写真感光体を作製した。

[架橋表面層用塗工液]

電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 8部

トリメチロールプロパントリアクリレート

(KAYARAD TMPTA、日本化薬製)

分子量:296、官能基数:3官能、分子量/官能基数=99

高分子材料 2 部

ビスフェノールAポリカーボネート(パンライトC1400、帝人化成製)

1官能の電荷輸送性構造を有するラジカル重合性化合物 10部

(例示化合物 No. 54)

光重合開始剤 2部

1-ヒドロキシーシクロヘキシルーフェニルーケトン

(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)

テトラヒドロフラン

100部

[0115]

<比較例2>

実施例1の架橋表面層用塗工液に含有される1官能の電荷輸送性構造を有する ラジカル重合性化合物を下記構造式の2官能の電荷輸送性構造を有するラジカル 重合性化合物10部に換えた以外は実施例1と同様に電子写真感光体を作製した

2 官能の電荷輸送性構造を有するラジカル重合性化合物

10部

[0116]

【化20】

[0117]

<比較例3>

実施例1の架橋表面層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記構造式の電荷輸送性構造を有さない2官能のラジカル重合性モノマー10部に換えた以外は実施例1と同様に電子写真感光体を作製した。

電荷輸送性構造を有さない2官能のラジカル重合性モノマー 10部

1,6-ヘキサンジオールジアクリレート(和光純薬製)

分子量:226、官能基数:2官能、分子量/官能基数=113

[0118]

<比較例4>

実施例1の架橋表面層用塗工液の組成物である電荷輸送性構造を有さない3官 能以上のラジカル重合性モノマーを含有させず、1官能の電荷輸送性構造を有す るラジカル重合性化合物量を20部に換えた以外は実施例1と同様に電子写真感 光体を作製した。

[0119]

<比較例5>

実施例1の架橋表面層用塗工液の組成物である1官能の電荷輸送性構造を有するラジカル重合性化合物を含有させず、電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー量を20部に換えた以外は実施例1と同様に電子写真感光体を作製した。

[0120]

<比較例6>

実施例1の架橋表面層用塗工液の組成物である1官能の電荷輸送性構造を有するラジカル重合性化合物を含有させず、この換わりに電荷輸送層用塗工液に用いられている構造式(II)の低分子電荷輸送物質(D-1)10部を含有させた以外は実施例1と同様に電子写真感光体を作製した。

[0121]

<比較例7>

実施例8の架橋表面層用塗工液に含有される溶媒テトラヒドロフランをブタノ ール80部に換えた以外は実施例1と同様に電子写真感光体を作製した。

[0122]

<比較例8>

実施例1の表面層における硬化条件を、実施例1と同様な光源を用い照射強度 1500mW/cm²、照射時間:5秒の条件に換えた以外は実施例1と同様に して4μmの架橋表面層を設け電子写真感光体を作製した。

[0123]

<比較例9>

実施例10の表面層における硬化条件を、180℃で1時間加熱した以外は実施例8と同様にして4μmの架橋表面層を設け電子写真感光体を作製した。

[0124]

<比較例10>

実施例1の架橋表面層を設けず、電荷輸送層の厚みを22μmとした以外は実施例1と同様に電子写真感光体を作製した。

[0125]

以上のように作製した実施例1~15、比較例1~10の電子写真感光体について、サーフコム1400D(東京精密製)を用い、表面粗さRz(十点平均粗さ、JIS B0601-1994規格)を評価長さ2.5mm、基準長さ0.5mmに対し測定した。測定箇所は軸方向のドラムの両端から50mmとドラム中央の3点、周方向90度の4通り、合計12点を測定しその平均値をドラムの

表面粗さRzとした。その結果を表4に示す。

また、同様に作製した実施例1~15、比較例1~10の電子写真感光体について、A4サイズ3万枚の通紙試験を実施した。まず、前記感光体を電子写真装置用プロセスカートリッジに装着し、画像露光光源として655nmの半導体レーザーを用いたリコー製imagio Neo 270改造機にて初期暗部電位を-700Vに設定した。その後通紙試験を開始し、初期及び5000枚毎の画像評価、初期と3万枚複写後の暗部及び露光部電位、3万枚複写後の膜厚減少量の測定を行なった。その結果を表4に示す。なお、初期から画像不良が著しい感光体は通紙試験を中止した。

[0126]

【表4】

	表面組入のプ			旧	面像評価結單				單巨減小量	初期電	雷位(-V)	3万枚後	雷位(-V)
	(m m)	初期	5000校	10000校	15000校	20000枚	25000枚	30000枚	(m m)	暗部	露光部	暗部	露光部
東南海1	0.38	0	0	0	0	0	0	0	0.6	700	40	710	90
実施例2	0.45	0	0	0	0	0	0	0	0.7	700	40	700	65
实施例3	0.66	0	0	0	0	0	0	0	0.5	700	40	700	70
政格例4	09.0	0	0	0	0	0	0	0	0.6	700	40	720	65
東施例5	0.33	0	0	0	0	0	0	0	1.0	700	40	069	55
寅施例6	0.25	0	0	0	0	0	0	Α	1.6	700	35	680	55
実施例7	0.96	0	0	0	0	0	0	8	0.9	700	40	710	70
東施例8		0	0	0	0	0	0	0	9.0	200	50	710	70
吸補倒9	0.81	0	0	0	0	0	0	0	0.9	200	50	720	75
東施例10	1.09	0	0	0	0	0	0	A, B	1.3	700	20	710	75
東帝倒11	1.21	0	0	0	0	0	0	A. B	1.1	200	20	720	75
東施例12	1.14	0	0	0	0	0	0	۷	1.5	700	30	670	45
東施例13	0.40	0	0	0	0	0	۵	۵	0.3	700	22	720	135
東施例14	0.24	0	0	0	0	0	0	0	0.4	200	45	710	75
東施例15	1.23	0	0	0	0	0	B,D	8.0	1.3	700	9	710	150
比較例1	-	0	m	m	88	88	BB, C	8B, C	1.5~4.2	700	40	660	55
比較例2	1.91	æ	മ	m	88	BB, C	BB.C	8B, C	3.0	200	20	670	110
北較愈3	0.30	0	0	0	٧	٧	AA	AA	3.7	200	40	670	90
比較倒4	2.52	A, BB							一中 中	200	60		
比較例5		۵	۵۵	DD	QQ	aa	QQ	aa	0.2	700	160	740	280
比較例6	1.76	. V	٨	AA, D	AA, D	AA, D	AA, D	AA. D	1.3~3.6	700	50	720	170
比較例7	3.19	AA, BB							中止	700	40		
比較例8	2.66	A. BB							井타	700	70		
比較鱼9	2.35	A. BB							中止	700	9		
比較例10	<0.1	0	0	0	0	٧	A	AA	3.5	700	30	660	45
画像評価	〇: 凤好	# ## - 3:	10	* Light BID :	44. 站門 计分类 人名丁克	新二百 年							
	て、過ぎたものが、一些光月のようが非常を大一世報を	7. 平地社	_ +	こので、おのは	はなって、またままれた。	CC. おがい34cが. 中国でおり BB・25ま形とが全面に多年							
	これであった。現る中から	いる命下	4	CC:腐物,	4/6年老しく	京下京							
	0: 画像濃度がわか 低下	でもあし		00:画像が濃度著しく低下	が濃度著し	人無下							

比較例1、6は測定位置による膜厚減少量の差が非常に大きい。比較例4は表

面層が硬化していない。

表4の通紙試験結果より、実施例1~15で示される本発明の架橋表面層を有する感光体は耐摩耗性が高く、且つ良好な電気的特性を有し、経時において良好な画像が得られる。一方、比較例1、7~9の架橋表面層成分組成や硬化条件により架橋表面層の表面粗さRzが1.3μm以上の感光体は、初期または経時で画像不良を発生する。また、比較例2~6のラジカル重合性組成物が本発明と異なる感光体は、表面の均一性、耐摩耗性または電気的特性が劣り、いずれも耐久性が低い。比較例10の電荷輸送層に従来の熱可塑性バインダー樹脂を用いた感光体は、本発明の感光体に比べ耐摩耗性が低く、耐久性が劣る。

[0127]

<実施例16>

実施例1と同様に作製した感光体をリコー製 imagio MF200改造機(書き込みLD波長:655nm、AC重畳帯電:振幅2KV、周波数1KHz、DC電圧-750V)を用い、温度22℃、湿度55%環境で画像面積1%のA4横チャートを連続2000枚複写した。その後、この感光体及び複写機を温度30℃、相対湿度90%の環境に移し、画像出力を行い初期画像との比較を実施した。その結果、初期画像と同等な解像度低下、文字太りがない良好な画像が得られた。

[0128]

<比較例11>

比較例1と同様に作製した感光体を実施例16と同様に試験し、温度30℃、湿度90%の画像と初期画像を比較した。 その結果、初期画像に比べ温度30℃、湿度90%の画像は解像度の極端な低下とハーフトーン画像の濃度低下が認められた。

[0129]

実施例16の本発明の架橋表面層を有する感光体は、比較例11の架橋表面の 凹凸が激しい感光体に比べ、帯電器から発生した酸化性ガスや感光体表面の劣化 物を取り除き架橋表面を高抵抗に維持することができ、高湿環境においても良好 な画像が安定して得られる。

[0130]

したがって、本発明の感光層の最表面層が電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を含有する塗工液を塗布、硬化した架橋層からなり、該架橋表面層の表面粗さRzを1.3μm以下にすることにより、環境変動を受けず、良好な画像を長期間維持できる長寿命で且つ高性能な感光体を提供できることが判明した。また併せて、本発明の感光体を用いた画像形成プロセス、画像形成装置及び画像形成装置用プロセスカートリッジが高性能、高信頼性を有していることが判明した

[0131]

О

【発明の効果】

以上、詳細且つ具体的な説明より明らかなように、本発明によれば、電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであって、且つ表面荒さRzが 1. 3μ m以下の平滑な架橋表面層を有する感光層により、耐摩耗性が高く、高湿環境においても解像度の低下が起こりにくく、合わせて良好な電気特性およびクリーニング特性を有する、高耐久、高性能な感光体が得られる。したがって、この感光体を用いることにより良好な画像を長期にわたり提供できる高性能で且つ信頼性の高い画像形成プロセス、画像形成装置及び画像形成装置用プロセスカートリッジが提供できる。

【図面の簡単な説明】

【図1】

本発明の電子写真感光体の断面図の一例である。

図2】

本発明の電子写真感光体の断面図の他の例である。

【図3】

本発明の画像形成装置の一例を示す概略図である。

【図4】

本発明の画像形成装置用プロセスカートリッジの一例を示す概略図である。

【符号の説明】

- 1 感光体
- 2 除電ランプ
- 3 帯電チャージャ
- 4 イレーサ
- 5 画像露光部
- 6 現像ユニット
- 7 転写前チャージャ
- 8 レジストローラ
- 9 転写紙
- 10 転写チャージャ
- 11 分離チャージャ
- 12 分離爪
- 13 クリーニング前チャージャ
- 14 ファーブラシ
- 15 クリーニングブレード
- 3 1 導電性支持体
- 3 3 感光層
- 35 電荷発生層
- 37 電荷輸送層
- 101 感光ドラム
- 102 帯電装置
- 103 露光
- 104 現像装置
- 105 転写体
- 106 転写装置
- 107 クリーニングブレード

【図1】

【図2】

架橋表面層

【図3】

【図4】

【書類名】 要約書

【要約】

【課題】 耐摩耗性が高く、且つ電気的特性が良好であるほか、特に表面平滑性に優れた感光層を形成することにより、クリーニング特性が良好で、高耐久性を有し、かつ長期間にわたり高画質化を実現した電子写真感光体を提供することであり、また、それらの長寿命、高性能感光体を使用した画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジを提供すること。

【解決手段】 導電性支持体上に少なくとも感光層を有する電子写真感光体において、該感光層の表面層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化した架橋層からなり、該架橋表面層の表面粗さRzが1.3μm以下であることを特徴とする電子写真感光体。

【選択図】 図2

特願2003-077303

出願人履歴情報

識別番号

[000006747]

1. 変更年月日 [変更理由]

住所氏名

2002年 5月17日

住所変更

東京都大田区中馬込1丁目3番6号

株式会社リコー