Finding a dewarp and orientation solution for LMIRCam/NOMIC

This procedure was followed to produce a dewarp solution and orientation determination for LMIRCam in Dec 2016. Feel free to adapt this procedure as you like. I recommend starting by making the following directory tree to include raw FITS files, and ones that are written out at intermediary steps:

/asterism/ (data for finding the plate scale and orientation)
/pinhole/ (data for finding the dewarp solution)

Further down, make

/asterism/rawData/
/asterism/processedData/
/pinhole/rawData/
/pinhole/darkSubtBadPixCorrect/

and, since the asterism data takes a few more intermediary steps,

/asterism/processedData/step01_darkSubtBadPixCorrect/ /asterism/processedData/step02_dewarped/ /asterism/processedData/step03_derotate/ /asterism/processedData/step04_ditherMedians/

Put the raw readouts into /pinhole/rawData/ or /asterism/rawData/. Use your own custom dark-subtract and bad-pixel correction code and put those frames into the *darkSubtBadPixCorrect/ directories. Naturally, as we walk through the code, be sure to check that all pathnames are right (n.b. the __init__ file).

1 Dewarp solution: find_dewarp_solution.py

Requirements: You will need a detector image of a collection of well-sampled points, such as from a pinhole grid (Fig. 1).

1.1 The idea

We want to find the polynomial coefficients that map between empirical pinhole locations and an idealized grid. We use a direct transliteration of IDL's

Figure 1: An example of what a pinhole-grid-illuminated LMIRCam readout should look like. Make sure not to saturate the pinholes, so as to facilitate centroiding.

polywarp procedure, which finds the coefficients $K_x^{(i,j)}$ and $K_y^{(i,j)}$ in the following polynomial mapping among (x,y) coordinates between the warped and ideal readouts:

$$x_i = \sum_{i=0}^{N} \sum_{j=0}^{N} K_x^{(i,j)} x_o^{(j)} y_o^{(i)}$$
(1)

$$\underbrace{y_i}_{\text{warped}} = \sum_{i=0}^{N} \sum_{j=0}^{N} K_y^{(i,j)} \underbrace{x_o^{(j)} y_o^{(i)}}_{\text{dewarped}}$$
(2)

Note which sides of the mapping represent the 'warped' and 'dewarped' coordinates in this application, which may be opposite to what one may expect intuitively, or from the IDL documentation on polywarp. Let's see why we do it this way by plunging into the functions called within the find_dewarp_solution.py script.

1.2 make_dewarp_coords()

Within the script find_dewarp_solution.py, you will see some functions and arrays appear in the first section of the code that you may have to run through a couple times so that you can tweak the function inputs to values that are optimal for your data. (See comments in the code for details.) It's also probably good to mask pinholes in the heavily vignetted region of the array (Fig. 2).

Once that's done, run the script again so that it runs past the function make_dewarp_coords(). This finds the aforementioned coefficients by solving a least-squares problem via

Figure 2: The actual pinhole image I used, with regions with vignetting and partially cut-off pinholes set to a constant.

Moore-Penrose pseudoinverse matrices. (I find J. Stone's condensed description of this to be helpful.) Schematically, what is being done is shown in cartoon form in Fig. 3.

Figure 3: The idea behind make_dewarp_coords().

1.3 dewarp_with_precomputed_coords()

The next function takes the raw image, pastes the warped coordinates onto it, and then smooths everything out by resampling the image point-by-point over the entire image space, interpolating as needed when the coordinates are not at integer values (Fig. 4).

As a check, closely compare the pinhole grid images before and after (Fig. 5).

1.4 Dewarp science images

This step in the code is self-explanatory. Just make sure the pathname-associated strings are correct.

Figure 4: The idea behind dewarp_with_precomputed_coords().

Figure 5: Pinholes before the dewarping (left) and afterwards (right). Color scale is arbitrary.

1.5 Barb (quiver) plot

The last part of the script makes a lovely barb plot, putting evenly-spaced vectors over the array to show the directions that points on the readouts have to be stretched in order to dewarp it (Fig. 6).

Orientation: find_asterism_star_locations.py, find_asterism_star_locations.py

Requirements: Images of a well-characterized stellar field, such as the Trapezium Cluster, at a number of dither positions. Images must already be dewarped and parallactic-angle-derotated.

2.1 The idea

We find star positions in pixel space, and use baselines between every possible pair of stars to find their separations and angles relative to north at PA=0. The separations are divided by their corresponding values in arcseconds from

Figure 6: The barb plot. The doughnut shape is real, but is likely stamped into the optical beam by an optical element, not the array. Note also that this image includes rotation information off to the side, which I added in after determining the orientation (see below).

previously-constrained 'true' astrometric values to find the plate scale, and the angles are compared with their 'true' counterparts to find the residual angular offset of the detector. Note that in one frame of N_s stars, the total number of baselines among stellar pairs is " N_s choose 2":

$$N_b = \binom{N_s}{2} \equiv \frac{N_s!}{2!(N_s - 2)!} = \frac{N_s(N_s - 1)}{2}$$
 (3)

2.2 Find stars in pixel space: find_asterism_star_locations.py

The pre-requisite dewarping of images is performed in find_dewarp_solution.py. But you also need to derotate them based on their parallactic angle. For this I used a quick IDL script that read the headers and used the IDL function rot. (I included a FYI copy of my script derotate_trapezium_data_ut_2016_11_12.pro.) However you do it, take the dewarped FITS files (which are now residing in /step02_dewarped/, derotate them, and write out the results to the directory /step03_derotate/.

Now take the median of each dither position. Dump these medians into /step04_ditherMedians/. (Since calibration-related images are often taken during mediocre conditions, it is important to take many images at a given dither position.) Overlay the resultant dither medians (Adobe Photoshop is very useful for this), mark any visible

stars, and then cross-check them with a known astrometric source. In the case of the Trapezium Cluster, one can use the images and Table 1 in Close+ 2012 ApJ 749:180. In Fig. 7, I labeled stars using the conventions in Close+ 2012, and used my own Greek lettering if they were without label.

Figure 7: A mosaic of images, each representing a different dither position, using different transparencies so as to overlay the stars as closely as possible. The images here have not been derotated, but they were all taken near transit within about 10 degrees of each other. The point here is just to have a handy visual for cross-checking the stars. ('D1/2' should actually just be 'D1').

The script find_asterism_star_locations.py takes the intermediary step of determining star locations in pixel space, and printing locations in pixel space to the screen. Check each centroid manually in the plot, to see if it's a real star or not (Fig. 8). Copy the true positive locations in pixel space that are returned in the Terminal, and populate the dictionaries in the script find_plate_scale_and_orientation.py.

2.3 Find plate scale, angle offset: find_plate_scale_and_orientation.py

This standalone script contains a long, unwieldy series of dictionaries, which you need to painstakingly populate as mentioned above. Once this is done, it will print the angular differences and plate scales corresponding to every possible

Figure 8: An example image returned by find_asterism_star_locations.py to allow the user to check found centroids, and pick the true positives printed in the Terminal.

baseline between a pair of stars, and finish off with the net detector plate scale and angular offset, which will be printed to the screen with 1-sigma boundaries, and will appear in a plot (Fig. 12).

2.4 Barb plot with arbitrary K_x , K_y inputs: make_barb_plot_kxky_coeffs.py

This script is available for making a separate barb plot from the mapping coefficients only, such as those available in Maire+ 2015~A&A~576~A133 (Fig. 13).

Figure 9: An image from Close+ 2012, used for cross-checking the stars in our mosaic. (At least one of the labels is wrong. Find it!)

Figure 10: Another relevant image from Close+ 2012.

						Table 1				
		Astrometry and Narrowband Photometry of the Trapezium Cluster, October 16 2011, LBT								
	R.A. ^a J2000	Decl. ^a J2000	X pixel ^b	y pixel ^b	Bry (mag)	Phot Error	(Fe II) (mag)	Phot Error	(Fe II)-Bry Color	Comm.
	15.2934	23:23.1241	1973.024	1338,378	15,326	0.016	0	0	na -	No [Fe II] image
	15.3534	23:24.0418	1926,703	1290,952	16,102	0.012	0	0	na	No [Fe II] image
	15.5336	23:15.6412	1787,666	1725,089	16,035	0.015	17,715	0.024	1.68	The formal annual a
	15.5517	23:29.5216	1773.713	1007,755	16.859	0.015	0	0	na	No [Fe II] image
	15.594	22:58.832	1741.035	2593.750	14.702	0.017	15.664	0.025	0.962	
-	15.6306	22:56.385	1712.828	2720.215	10.676	0.012	11.945	0.009	1.269	
8	15.7255	23:22.4347	1639.552	1374.004	11.743	0.007	12.970	0.032	1.227	
El	15.7673	23:9.82764	1607.314	2025.533	9.3918	0.016	9.447	0.020	0.0552	E1 single
€	15.7879	23:26.5168	1591.355	1163.044	12.641	0.009	13.895	0.032	1.254	$Br\gamma$ tail away from C1
	15.8018	23:11.8906	1580.662	1918.921	14.409	0.041	14.971	0.033	0.562	
AL	15.8202	23:14.2891	1566.428	1794.966	8.862	0.040	8.784	0.036	-0.078	A1 see Table 2
G	15.8217	23:14.0972	1565.298	1804.883	10.322	0.037	10.392	0.033	0.07	A2 see Table 2
<u></u>	15.8337	23:22.4207	1556.059	1374.727	11.521	0.005	12.827	0.031	1.306	
82 81	15,8408	23:25,5078	1550.599 1533.468	1215.191	13.268	0.011	14.388	0.047		 Brγ tail away from C1
	15,8739	23:10.7606	1524,986	2435.234	12.637		15.485	0.041	1.074	
	15,9654	23:22.6589	1454.430	1362,420	16,199	0.014	13.553	0.031	0.916	
	16.0635	23:24.2937	1378,699	1277.933	15.907	0.017	17.120	0.025	0.921 1.679	
	16.064	23:7,05258	1378.302	2168.947	12.067	0.063	11.919	0.082	-0.148	Bry tail away from C1 B3 see Table 2
	16.069	23:6.96452	1374.429	2173,498	10.025	0.010	10.845	0.019	-0.148 0.82	B3 see Table 2 B2 see Table 2
	16.0715	23:27.7444	1372,539	1099.602	15.928	0.027	17.152	0.062	1.224	Bry tail away from C1
	16.0717	22:54.2677	1372.339	2829.663	14.591	0.027	18,480	0.049	3,889	-0°259 binary 1B Table 3
	16.0795	22:54.036	1366.341	2841.632	14.215	0.017	16.958	0.021	2.743	-binary 1A see Table 3
	16.0928	23:23,0106	1356.092	1344.243	16.379	0.021	20.27	0.15	3.891	very red Brown dwarf?
	16.0942	23:6.41047	1355.015	2202.131	13.552	0.024	13.825	0.029	0.273	B4 see Table 2
	16.1006	23:14.1407	1350.043	1802.635	13.950	0.010	15.228	0.040	1.278	-07187 binary 2A, Table 3
	16.1014	23:14.2772	1349.480	1795.580	17.643	0.077	19.004	0.197	1.361	-binary 2B, Table 3
	16,1299	23:6.71895	1327.477	2186.189	8.787	0.001	8.842	0.002	0.055	B1 SB see Table 2
9	16.1396	22:55.249	1319.930	2778.926	14.945	0.016	16.152	0.023	1.207	
	16.2263	23:19.0612	1253.022	1548.345	15.072	0.014	15.861	0.089	0.789	
	16.283	23:16.512	1209.290	1680.088	12.199	0.010	13.298	0.058	1.099	Astrometric zero point ^c
	16.3206	23:22.5317	1180.291	1368.992	15.185	0.029	16.261	0.029	1.076	27115 proj. sep. to C1
	16.3241	23:25.2679	1177.537	1227.588	15.709	0.024	16.219	0.058	0.51	
	16.3997	23:11.2870	1119.16	1950.11	17.12	0.2	19.196	0.070	2.076	Brown dwarf?
	16.4602	23:22.8832	1072,497	1350.827	8	1.0	8	1.0	0	C1 binary (saturated)
	16.4619	23:22.8443	1071.207	1352.838	7	1.0	7	1.0	0	C2 0''046 to C1
	16.6148	23:16.0836	953.204	1702.226	12.762	0.012	14.106	0.062	1.344	
-	16.6529	23:28.8309	923.797	1043.453	14.928	0.011	16.050	0.058	1.122	
-	16.7236 16.7469	23:25.1688	869.219	1232.707	11.705	0.012	11.573	0.072	-0.132	
2	16.7469	23:16.3777 23:28.0209	851.247 839.571	1687.030 1085.313	11.721	0.009	13.529	0.061	1.808	Bry tail away from C1
	16.7621	23:28.0209	790.355	1085.313	13.838	0.016	14.254	0.067	0.416	0700011
	16.8409	23:26.2297	778.753	1177.879	15.656	0.045	16.831	0.075	1.143	-0. 396 binary 3B, Table 3
	16.8633	23:7.03118	761,435	2170.053	15.402	0.109	16.107	0.091	0.705	−Bry bow-shock bin 3A
	17.0595	23:33.9787	610.024	777,417	11.020	0.008	11.264	0.066	0.705	
	17.1675	23:17.0013	526.70	1654.80	0.0	0.030	15,465	0.107	0.244 na	D2 1"401 proj. sep. to D1
	17.2558	23:16.5298	458.479	1679.17	0.0	0.0	8,658	0.107	na	DI no Bry image

Figure 11: Origin of the 'true' coordinates: Table 1 from Close+ 2012.

Figure 12: Histograms returned by find_plate_scale_and_orientation.py. Dashed vertical lines indicate 1-sigma bounds.

Figure 13: A distortion map made from 2014-vintage mapping coefficients.