Title

D. Zack Garza

Sunday 23rd August, 2020

Contents

1	Frida	lay, August 21	1
	1.1	Intro and Definitions	1

1 Friday, August 21

1.1 Intro and Definitions

Definition 1.0.1 (Affine Variety).

Let $k = \overline{k}$ be algebraically closed (e.g. $k = \mathbb{C}, \overline{\mathbb{F}_p}$). A variety $V \subseteq k^n$ is an affine k-variety iff V is the zero set of a collection of polynomials in $k[x_1, \dots, x_n]$.

Here $\mathbb{A}^n := k^n$ with the Zariski topology, so the closed sets are varieties.

Definition 1.0.2 (Affine Algebraic Group).

An affine algebraic k-group is an affine variety with the structure of a group, where the multiplication and inversion maps

$$\mu:G\times G\longrightarrow G$$

$$\iota:G\longrightarrow G$$

are continuous.

Example 1.1.

 $G = \mathbb{G}_a \subseteq k$ the additive group of k is defined as $\mathbb{G}_a := (k, +)$. We then have a coordinate ring $k[\mathbb{G}_a] = k[x]/I = k[x]$.

Example 1.2.

G = GL(n, k), which has coordinate ring $k[x_{ij}, T] / \langle \det(x_{ij}) \cdot T = 1 \rangle$.

Example 1.3.

Setting n=1 above, we have $\mathbb{G}_m := \mathrm{GL}(1,k) = (k^{\times},\cdot)$. Here the coordinate ring is $k[x,T]/\langle xT=1\rangle$.

Example 1.4.

 $G = \operatorname{SL}(n, k) \leq \operatorname{GL}(n, k)$, which has coordinate ring $k[G] = k[x_{ij}] / \langle \det(x_{ij}) = 1 \rangle$.

Definition 1.0.3 (Irreducible).

A variety V is *irreducible* iff V can not be written as $V = \bigcup_{i=1}^{n} V_i$ with each $V_i \subseteq V$ a proper subvariety.

Figure 1: Reducible vs Irreducible

Proposition 1.1(?).

There exists a unique irreducible component of G containing the identity e. Notation: G^0 .

Proposition 1.2(?).

G is the union of translates of G^0 , i.e. there is a decomposition

$$G = \coprod_{g \in \Gamma} g \cdot G^0.$$

What is Γ ?

Proposition 1.3(?).

One can define solvable and nilpotent algebraic groups in the same way as they are defined for finite groups, i.e. as having a terminating derived or lower central series respectively.

Proposition 1.4(Existence and Uniqueness of Radical).

There is a maximal connected normal solvable subgroup R(G), denoted the *radical of G.