

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

FISIESE WETENSKAPPE: CHEMIE (V2)

FEBRUARIE/MAART 2015

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 17 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- 1. Skryf jou eksamennommer en sentrumnommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- Hierdie vraestel bestaan uit TIEN vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël oop tussen twee subvrae, byvoorbeeld tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 9. Toon ALLE formules en substitusies in ALLE berekeninge.
- 10. Rond jou finale numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 11. Gee kort (bondige) motiverings, besprekings, ensovoorts waar nodig.
- 12. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Vier opsies word as moontlike antwoorde op die volgende vrae gegee. Elke vraag het slegs EEN korrekte antwoord. Skryf slegs die letter (A–D) langs die vraagnommer (1.1–1.10) in die ANTWOORDEBOEK neer, byvoorbeeld 1.11 D.

- 1.1 Watter EEN van die volgende verbindings is 'n aldehied?
 - A Pentanaal
 - B Pentan-2-ol
 - C Pentan-2-oon
 - D Etielpropanoaat (2)
- 1.2 Oorweeg die reaksie voorgestel deur die vergelyking hieronder:

$$CH_3CHCH_2 + H_2 \rightarrow CH_3CH_2CH_3$$

Hierdie reaksie is 'n voorbeeld van ...

- A hidrasie.
- B dehidrasie.
- C substitusie.
- D hidrogenering. (2)
- 1.3 Watter EEN van die volgende is 'n KORREKTE beskrywing vir 'n 0,1 mol·dm⁻³-soutsuuroplossing?
 - A Verdunde sterk suur
 - B Verdunde swak suur
 - C Gekonsentreerde swak suur
 - D Gekonsentreerde sterk suur (2)

1.T Editorinasic statt die volgende stabbe it	1.4	Eutrofikasie	sluit die	volgende	stappe	in:
---	-----	--------------	-----------	----------	--------	-----

- (i) Toename in groei van alge
- (ii) Toename in nitraatkonsentrasie
- (iii) Visvrektes
- (iv) Afname in suurstofkonsentrasie

Watter EEN van die volgende is die KORREKTE voorstelling van die volgorde waarin die stappe voorkom?

- A (i) (ii) (iii) (iv)
- B (i) (ii) (iv) (iii)
- C (ii) (i) (iii) (iv)
- D (ii) (i) (iv) (iii) (2)

1.5 Oorweeg die reaksie voorgestel deur die gebalanseerde vergelyking hieronder:

$$A_2(g) + B_2(g) \rightarrow 2AB(g)$$

Die aktiveringsenergie vir die voorwaartse reaksie is 180 kJ en dié van die terugwaartse reaksie is 200 kJ.

Die reaksiewarmte (ΔH) is ...

- A + 20 kJ.
- B 20 kJ.
- C + 380 kJ.
- D 380 kJ. (2)

(2)

(2)

1.6 Oorweeg die struktuurformule van 'n verbinding hieronder.

Watter EEN van die volgende pare reaktanse kan gebruik word om hierdie verbinding in die laboratorium te berei?

- A Propanoësuur en etanol
- B Propanoësuur en metanol
- C Etanoësuur en propan-1-ol
- D Metanoësuur en propan-1-ol

1.7 Die reaksie van 'n suur-basis-indikator, voorgestel as HIn(aq), met $H_2O(\ell)$ bereik ewewig volgens die volgende gebalanseerde vergelyking:

$$HIn(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + In^-(aq)$$
 $\Delta H > 0$ qeel pers

By ewewig is die kleur van die oplossing pers.

Watter EEN van die volgende sal die kleur van die oplossing van pers na geel verander?

- A Voeg NaOH(aq) by
- B Voeg HCl(aq) by
- C Voeg water by
- D Verhoog die temperatuur

- 1.8 Watter EEN van die volgende metale sal NIE spontaan met swawelsuur reageer NIE?
 - A Zn
 - B Mg
 - C Cu

1.9 'n Leerder wil 'n koperring met nikkel elektroplateer. Hy gebruik die eksperimentele opstelling aangedui in die vereenvoudigde diagram hieronder.

Watter EEN van die volgende is KORREK?

	ANODE	KATODE	ELEKTROLIET
Α	Koperring	Nikkelstaaf	CuSO₄
В	Nikkelstaaf	Koperring	CuSO₄
С	Koperring	Nikkelstaaf	NiSO ₄
D	Nikkelstaaf	Koperring	NiSO ₄

(2)

1.10 Oorweeg die ewewigskonstantes vir dieselfde reaksie by twee verskillende temperature hieronder.

298 K: $K_c = 0.03$

318 K: $K_c = 0,005$

Watter EEN van die volgende is KORREK?

	REAKSIEWARMTE	OPBRENGS VAN PRODUKTE SOOS WAT DIE TEMPERATUUR STYG
Α	ΔH > 0	Verhoog
В	ΔH < 0	Verlaag
С	ΔH > 0	Verlaag
D	ΔH < 0	Bly dieselfde

(2) **[20]**

VRAAG 2 (Begin op 'n nuwe bladsy.)

Die letters **A** tot **F** in die tabel hieronder verteenwoordig ses organiese verbindings.

A	H C H H H H H H H H H H H H H H H H H H	В	2-metielbutanoësuur
С	H H O H H	D	H CH ₃ H CH ₂ CH ₃
E	But-2-een	F	H H C C C H H H N

2.1 Skryf neer die:

- 2.1.1 NAAM van die funksionele groep van verbinding **B** (1)
- 2.1.2 Homoloë reeks waaraan verbinding **C** behoort (1)
- 2.1.3 Tipe polimerisasiereaksie wat verbinding **F** vorm (1)

2.2 Skryf die IUPAC-naam neer van:

- 2.2.1 Die monomeer wat gebruik word om verbinding **F** te berei (1)
- 2.2.2 Verbinding **C** (2)
- 2.2.3 Verbinding **D** (2)
- 2.3 Skryf die NAAM of FORMULE neer van elke produk wat gevorm word gedurende die volledige verbranding van verbinding **D**. (2)

2.4 Skryf die struktuurformule neer van:

2.4.2 'n KETTINGISOMEER van verbinding **A** (2)

(2) **[18]**

2.5 'n Laboratoriumassistent gebruik broomwater om tussen verbinding **D** en **E** te onderskei. Sy voeg broomwater by 'n monster van elk in twee verskillende proefbuise. Sy neem waar dat die een verbinding broomwater onmiddellik ontkleur, terwyl die ander een slegs reageer nadat die proefbuis in direkte sonlig geplaas word.

gevorm word wat verbinding E bevat

Skryf neer die:

2.5.1 Letter (**D** of **E**) van die verbinding wat onmiddellik die broomwater sal ontkleur (1)

2.5.2 Naam van die tipe reaksie wat in die proefbuis wat verbinding **D** bevat, plaasvind (1)

2.5.3 Struktuurformule van die organiese produk wat in die proefbuis

[9]

VRAAG 3 (Begin op 'n nuwe bladsy.)

Leerders gebruik verbinding **A** tot **C**, aangedui in die tabel hieronder, om 'n faktor te ondersoek wat die kookpunt van organiese verbindings beïnvloed.

Α	CH ₃ CH ₂ CH ₂ CH ₃
В	CH ₃ CH ₂ CH ₂ CH ₃
С	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃

- 3.1 Watter EEN van die verbindings (**A**, **B** of **C**) het die hoogste kookpunt? (1)
- 3.2 Vir hierdie ondersoek, skryf neer die:
 - 3.2.1 Onafhanklike veranderlike (1)
 - 3.2.2 Afhanklike veranderlike (1)
- 3.3 Skryf die naam van die tipe Van der Waals-krag neer wat tussen die molekule van verbinding **B** voorkom. (1)
- 3.4 Hoe sal die dampdruk van 2-metielpentaan vergelyk met dit van verbinding **C**? Skryf slegs HOËR AS, LAER AS of GELYK AAN neer. (1)

Die leerders vergelyk nou die kookpunte van verbinding **D** en **E**, aangedui in die tabel hieronder.

D	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH
E	CH ₃ CH ₂ CH ₂ COOH

Hoe vergelyk die kookpunt van verbinding **D** met dit van verbinding **E**? Skryf HOËR AS, LAER AS of GELYK AAN neer. Verduidelik die antwoord volledig. (4)

VRAAG 4 (Begin op 'n nuwe bladsy.)

In die vloeidiagram hieronder word but-1-een as uitgangstof in die bereiding van verbinding **A** gebruik.

- 4.1 Is but-1-een 'n VERSADIGDE of ONVERSADIGDE verbinding? Gee 'n rede vir die antwoord. (2)
- 4.2 Verbinding **A** is die hoofproduk wat in **reaksie 1** gevorm word.

Skryf neer die:

- 4.2.1 Struktuurformule van verbinding **A** (2)
- 4.2.2 Tipe reaksie wat plaasvind (1)
- 4.3 Vir verbinding **B**, skryf neer die:
 - 4.3.1 IUPAC-naam (2)
 - 4.3.2 Struktuurformule van die posisionele isomeer (2)
- 4.4 Vir **reaksie 3**, skryf neer:
 - 4.4.1 TWEE reaksietoestande nodig (2)
 - 4.4.2 Die tipe reaksie wat plaasvind (1)
 - 4.4.3 'n Gebalanseerde vergelyking deur molekulêre formules te gebruik (3) [15]

VRAAG 5 (Begin op 'n nuwe bladsy.)

'n Groep leerders gebruik die reaksie van OORMAAT soutsuur (HCℓ) met sink (Zn) om faktore wat reaksietempo beïnvloed, te ondersoek. Die gebalanseerde vergelyking vir die reaksie is:

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

Hulle gebruik dieselfde volume soutsuur en 1,2 g sink in elk van vyf eksperimente. Die reaksiekondisies en temperatuurlesings voor en na voltooiing van die reaksie in elke eksperiment is in die tabel hieronder opgesom.

	REAKSIETOESTANDE						
Eksperiment	Konsentrasie van	Tempera	tuur (°C)	Toestand van	Tyd		
	HCℓ (mol·dm ⁻³)	Voor	Na	verdeeldheid van die 1,2 g Zn	(s)		
1	0,5	20	34	stukke	50		
2	0,5	20	35	poeier	10		
3	0,8	20	36	poeier	6		
4	0,5	35	50	stukke	8		
5	0,5	20	34	stukke	11		

- 5.1 Is die reaksie tussen soutsuur en sink EKSOTERMIES of ENDOTERMIES?

 Gee 'n rede vir die antwoord deur na die data in die tabel te verwys. (2)
- 5.2 Gee 'n rede vir die verskil in reaksietempo waargeneem vir **Eksperiment 1** en **2**. (1)
- 5.3 Die leerders vergelyk die resultate van **Eksperiment 1** en **3** om 'n gevolgtrekking te maak oor die effek van konsentrasie op reaksietempo. Gee 'n rede waarom dit nie 'n regverdige vergelyking is nie. (1)
- 5.4 Hoe vergelyk die tempo van die reaksie in **Eksperiment 5** met dit in **Eksperiment 1**? Skryf VINNIGER AS, STADIGER AS of GELYK AAN neer.

Skryf die faktor neer wat vir die verskil in reaksietempo verantwoordelik is en verduidelik volledig, met verwysing na die botsingsteorie, hoe hierdie faktor reaksietempo beïnvloed.

5.5 Bereken die tempo waarteen die soutsuur in **Eksperiment 4** reageer in mol·s⁻¹.

[15]

(6)

(5)

VRAAG 6 (Begin op 'n nuwe bladsy.)

Suiwer waterstofjodied, verseël in 'n 2 dm³-houer by 721 K, ontbind volgens die volgende gebalanseerde vergelyking:

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$
 $\Delta H = + 26 \text{ kJ} \cdot \text{mol}^{-1}$

Die grafiek hieronder dui aan hoe reaksietempo met tyd vir hierdie omkeerbare reaksie verander.

- 6.1 Skryf die betekenis neer van die term *omkeerbare reaksie*.
- 6.2 Hoe verander die konsentrasie van die reaktans tussen die 12^{de} en die 15^{de} minuut? Skryf slegs TOENEEM, AFNEEM of GEEN VERANDERING neer. (1)
- 6.3 Die tempo's van beide die voorwaartse en terugwaartse reaksies verander skielik by t = 15 minute.
 - 6.3.1 Gee 'n rede vir die skielike verandering in reaksietempo. (1)
 - 6.3.2 Verduidelik volledig hoe jy by die antwoord op VRAAG 6.3.1 uitgekom het. (3)

Die ewewigskonstante (K_c) vir die voorwaartse reaksie is 0,02 by 721 K.

- By ewewig word gevind dat daar 0,04 mol HI(g) in die houer teenwoordig is. Bereken die konsentrasie van $H_2(g)$ by ewewig. (6)
- 6.5 Bereken die ewewigskonstante vir die terugwaartse reaksie. (1)
- Die temperatuur word nou na 800 K verhoog. Hoe sal die waarde van die ewewigskonstante (K_c) vir die voorwaartse reaksie verander? Skryf slegs TOENEEM, AFNEEM of BLY DIESELFDE neer.

(1) **[14]**

(1)

VRAAG 7 (Begin op 'n nuwe bladsy.)

- 7.1 Swawelsuur is 'n diprotiese suur.
 - 7.1.1 Definieer 'n *suur* in terme van die Lowry-Brønsted-teorie. (2)
 - 7.1.2 Gee 'n rede waarom daar na swawelsuur as 'n *diprotiese suur* verwys word. (1)
- 7.2 Die waterstofkarbonaatioon <u>kan as beide 'n suur en 'n basis optree</u>. Dit reageer met water volgens die volgende gebalanseerde vergelyking:

$$HCO_3^-(aq) + H_2O(\ell) \rightleftharpoons H_2CO_3(aq) + OH^-(aq)$$

- 7.2.1 Skryf EEN woord vir die onderstreepte frase neer. (1)
- 7.2.2 $HCO_3^-(aq)$ tree as 'n basis in die reaksie hierbo op. Skryf die formule van die gekonjugeerde suur van $HCO_3^-(aq)$ neer. (1)
- 7.3 'n Leerder mors per ongeluk 'n bietjie swawelsuur, met konsentrasie 6 mol·dm⁻³, uit 'n fles op die laboratoriumbank. Haar onderwyser vra haar om die suur wat gemors het, te neutraliseer deur natriumwaterstofkarbonaatpoeier daarop te strooi. Die reaksie wat plaasvind, is: (Aanvaar dat die H₂SO₄ volledig ioniseer.)

$$H_2SO_4(aq) + 2NaHCO_3(s) \rightarrow Na_2SO_4(aq) + 2H_2O(\ell) + 2CO_2(g)$$

Die opbruising, as gevolg van die vorming van koolstofdioksied, stop nadat die leerder 27 g natriumwaterstofkarbonaat by die gemorste suur gevoeg het.

7.3.1 Bereken die volume van die swawelsuur wat gemors is. Aanvaar dat al die natriumwaterstofkarbonaat met al die suur reageer. (6)

Die leerder verdun nou 'n bietjie van die 6 mol·dm⁻³-swawelsuuroplossing in die fles tot 0,1 mol·dm⁻³.

7.3.2 Bereken die volume van die 6 mol·dm⁻³-swawelsuuroplossing wat nodig is om 1 dm³ van die verdunde suur te berei. (2)

Gedurende 'n titrasie word 25 cm³ van die 0,1 mol·dm⁻³-swawelsuuroplossing in 'n Erlenmeyer-fles geplaas en met 'n 0,1 mol·dm⁻³-natriumhidroksied-oplossing getitreer.

- 7.3.3 Die leerder gebruik broomtimolblou as indikator. Wat is die doel van hierdie indikator? (1)
- 7.3.4 Bereken die pH van die oplossing in die fles na die byvoeging van 30 cm³ natriumhidroksied. Die eindpunt van die titrasie is nog nie by hierdie punt bereik nie.

(8) **[22]**

VRAAG 8 (Begin op 'n nuwe bladsy.)

'n Leerder voer twee eksperimente uit om die reaksie tussen koper (Cu) en 'n silwernitraatoplosssing, AgNO₃(aq), te ondersoek.

EKSPERIMENT 1

Die leerder plaas 'n klein hoeveelheid koperpoeier (Cu) in 'n proefbuis wat silwernitraatoplosssing, $AgNO_3(aq)$, bevat. Die oplossing verander na 'n rukkie van kleurloos na blou.

Voor byvoeging van Cu(s) Kleurlose AgNO₃(aq)

- 8.1 Definieer die term *oksideermiddel*.
- 8.2 Verduidelik hoekom die oplossing blou word deur te verwys na die relatiewe sterkte van oksideermiddels. (4)

EKSPERIMENT 2

Die leerder stel nou 'n galvaniese sel op, soos hieronder getoon. Die sel funksioneer onder standaardtoestande.

- 8.3 Skryf die energieomsetting neer wat in hierdie sel plaasvind. (1)
- 8.4 In watter rigting (**A** of **B**) sal die ANIONE in die soutbrug beweeg? (1)
- 8.5 Bereken die emk van die sel hierbo onder standaardtoestande. (4)
- 8.6 Skryf die gebalanseerde vergelyking vir die netto selreaksie neer wat in hierdie sel plaasvind. (3)
- 8.7 Hoe sal die byvoeging van 100 cm³ van 'n 1 mol·dm³-silwernitraatoplossing by die silwerhalfsel, die aanvanklike emk van hierdie sel beïnvloed? Skryf slegs TOENEEM, AFNEEM of BLY DIESELFDE neer.

(1) **[16]**

(2)

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die apparaat hieronder word gebruik om die elektrolise van 'n gekonsentreerde natriumchloriedoplossing te demonstreer. Beide elektrodes is van koolstof gemaak. 'n Paar druppels universele indikator word by die elektroliet gevoeg. Die vergelyking vir die netto selreaksie is:

$$2NaC\ell(aq) + 2H_2O(\ell) \rightarrow C\ell_2(g) + H_2(g) + 2NaOH(aq)$$

Aanvanklik het die oplossing 'n groen kleur. Universele indikator word rooi in suur oplossings en pers in alkaliese oplossings.

(2)

Wanneer die kragbron aangeskakel word, verander die kleur van die elektroliet rondom elektrode **Y** van groen na pers.

- 9.2 Skryf neer die:
 - 9.2.1 Halfreaksie wat by elektrode **Y** plaasvind

(2)

(1)

9.2.2 NAAM of FORMULE van die gas wat by elektrode **X** vrygestel is

9.3 Verwys na die Tabel van Standaard-reduksiepotensiale om te verduidelik hoekom waterstofgas, en nie natrium nie, by die katode van hierdie sel gevorm word.

(2) [**7**]

VRAAG 10 (Begin op 'n nuwe bladsy.)

Reaksie A, B, C en D in die vloeidiagram hieronder stel die vervaardiging van Kunsmis X voor.

- 10.1 Skryf die naam van die industriële bereiding van swawelsuur neer. (1)
- 10.2 Skryf neer die:
 - 10.2.1 NAAM of FORMULE van die katalisator wat in reaksie **A** gebruik is (1)
 - 10.2.2 Gebalanseerde vergelyking vir reaksie **C** (3)
- 10.3 Ammoniak is een van die reaktanse wat in reaksie **D** gebruik word om Kunsmis **X** te maak.

Skryf neer:

- 10.3.1 'n Gebalanseerde vergelyking vir reaksie **D** (3)
- 10.3.2 Die NAAM van Kunsmis **X** (1)
- 10.4 Twee 50 kg-sakke, wat kunsmis **P** en **Q** onderskeidelik bevat, word soos volg gemerk:

Kunsmis **P**: 5:2:3 (25) Kunsmis **Q**: 1:3:4 (20)

- 10.4.1 Wat stel die nommers (25) en (20) op die etikette voor? (1)
- 10.4.2 Gebruik berekeninge om te bepaal watter kunsmis (**P** of **Q**) die groter massa kalium bevat. (4) [14]

150

TOTAAL:

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	$p^{\scriptscriptstyle{ heta}}$	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Tθ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$						
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$						
$ \frac{\mathbf{C_a V_a}}{\mathbf{C_b V_b}} = \frac{\mathbf{n_a}}{\mathbf{n_b}} $	$pH = -log[H_3O^+]$						
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298$	$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$						
$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} \ / E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$							
or/of $E_{cell}^\theta = E_{reduction}^\theta - E_{oxidation}^\theta / E_{sel}^\theta = E_{reduksie}^\theta - E_{oksidasie}^\theta$							
or/of $E_{cell}^{\theta} = E_{oxidisingagent}^{\theta} - E_{reducingagent}^{\theta} / E_{sel}^{\theta}$	$=E^{ heta}_{ ext{oksideermiddel}}-E^{ heta}_{ ext{reduseermiddel}}$						

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (l)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
		1	` ,							Α	tomic n	umber				• •	` ,	` ,	` ,	` ,	
1_	1							KEY/SL	EUTEL		Atoom	getal									2
2,1	Н										1										He
	1										20										4
	3		4	Ī				Flectr	onegati	vitv	29	Sv	mbol			5	6	7	8	9	10
1,0	Li	1,5						Flektro	negativ	viteit →	್ಟ್ Cn		nbool			0,2 B			3,5	6, F	Ne
_		_							megativ	ricore	63,5	5 "	110001							l -	
	7		9								•					11	12	14	16	19	20
	11	~ 1	12						_							13	14	15	16	17	18
6,0	Na	1,2	Mg									e atomic				₹. ∀ €	² Si	L,2 P	S,5	°, C6	Ar
	23		24						Bena	derde r	elatiewe	e atoom	massa			27	28	31	32	35,5	40
	19		20		21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
8,0	K	1,0	Ca	ر ک	Sc	7,5	Ti	۰, V	ي Cr	್ಲ್ Mu	∞. Fe	² _∞ Co	[£] Ni	್ಲ್ Cn	<u>۾</u> Zn	မှ Ga	∞. Ge	°, As	² , Se	[∞] , Br	Kr
0	39	_	40	_	45	_	48	51	52	55	56	59	59	63,5	_	70	73	75	79	80	84
	37		38		39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
∞	_	0		7		4				_		_	_		_			_	_		_
0,8	Rb	1,0	Sr	1,2	Y	4,1	Zr	Nb		್ಲ್ Lc				್ಲ್ Ag		Ç In	ç Sn				Xe
	86		88		89		91	92	96		101	103	106	108	112	115	119	122	128	127	131
	55		56		57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0,7	Cs	6,0	Ba		La	9,	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	% T €	[∞] Pb	್ಲ್ Bi	% Po	4, At	Rn
	133		137		139		179	181	184	186	190	192	195	197	201	204	207	209			
	87		88		89				1										l	1	
2,0	Fr	6,0	Ra		Ac				1	,	1	T	1	1		T	1	1	1	1	
0	1 1	0	226		AC			58	59	60	61	62	63	64	65	66	67	68	69	70	71
			220					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
								140	141	144		150	152	157	159	163	165	167	169	173	175
											00										
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238	_										
									1	<u> </u>	l	<u> </u>				1		1		1	

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

BEL 4A: STANDAARD-REDUKSIEPOTENSIA								
Half-reactions	/Hal	freaksies	E ^Œ (V)					
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87					
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81					
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77					
MnO	=	$Mn^{2+} + 4H_2O$	+ 1,51					
$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36					
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33					
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23					
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23					
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20					
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07					
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	=	$NO(g) + 2H_2O$	+ 0,96					
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85					
Ag ⁺ + e ⁻	=	Ag	+ 0,80					
$NO_{3}^{-} + 2H^{+} + e^{-}$	=	$NO_2(g) + H_2O$	+ 0,80					
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77					
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68					
I ₂ + 2e ⁻	=	2I ⁻	+ 0,54					
Cu ⁺ + e ⁻	=	Cu	+ 0,52					
$SO_2 + 4H^+ + 4e^-$	=	S + 2H ₂ O	+ 0,45					
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40					
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34					
SO ₄ + 4H + 2e	=	$SO_2(g) + 2H_2O$	+ 0,17					
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16					
Sn ⁴⁺ + 2e ⁻	\Rightarrow	Sn ²⁺	+ 0,15					
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14					
2H ⁺ + 2e ⁻		H ₂ (g)	0,00					
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06					
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13					
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	- 0,14					
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27					
Co ²⁺ + 2e ⁻	\rightleftharpoons	Со	- 0,28					
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40					
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41					
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	- 0,44					
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74					
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76					
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83					
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91					
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18					
$Al^{3+} + 3e^{-}$	=	Αℓ	- 1,66					
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36					
Na ⁺ + e ⁻	=	Na	- 2,71					
Ca ²⁺ + 2e ⁻	=	Са	- 2,87					
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89					
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90					
Cs ⁺ + e ⁻	=	Cs	- 2,92					
K ⁺ + e ⁻	\Rightarrow	K	- 2,93					

Li⁺ + e⁻

Li

Increasing reducing ability/Toenemende reduserende vermoë

-3,05

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

DEL 4B. STANDAAND-NEDONSIEF OTENSIA								
Half-reactions	/Hal	freaksies	E ^Œ (V)					
Li ⁺ + e ⁻	=	Li	- 3,05					
$K^+ + e^-$	=	K	- 2,93					
Cs ⁺ + e ⁻	=	Cs	- 2,92					
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90					
Sr ²⁺ + 2e ⁻	\Rightarrow	Sr	- 2,89					
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87					
Na ⁺ + e ⁻	\Rightarrow	Na	– 2,71					
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36					
$Al^{3+} + 3e^{-}$	=	Αℓ	– 1,66					
Mn ²⁺ + 2e ⁻	=	Mn	– 1,18					
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91					
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83					
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76					
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74					
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44					
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41					
$Cd^{2+} + 2e^{-}$	=	Cd	- 0,40					
Co ²⁺ + 2e ⁻ Ni ²⁺ + 2e ⁻	\Rightarrow	Co	- 0,28					
NI + 2e Sn ²⁺ + 2e ⁻	=	Ni Sa	- 0,27					
Sn + 2e Pb ²⁺ + 2e ⁻	=	Sn	- 0,14					
Fe ³⁺ + 3e ⁻	=	Pb	- 0,13					
2H ⁺ + 2e ⁻	=	Fe	- 0,06 0,00					
S + 2H ⁺ + 2e ⁻	#	H₂(g) H₂S(g)	+ 0,14					
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,14					
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,15					
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17					
Cu ²⁺ + 2e ⁻	_	Cu	+ 0,34					
2H ₂ O + O ₂ + 4e ⁻	=	40H ⁻	+ 0,40					
$SO_2 + 4H^+ + 4e^-$	=	S + 2H ₂ O	+ 0,45					
Cu ⁺ + e ⁻	=	Cu	+ 0,52					
l ₂ + 2e ⁻	=	2I ⁻	+ 0,54					
$O_2(g) + 2H^+ + 2e^-$	=	H ₂ O ₂	+ 0,68					
Fe ³⁺ + e ⁻	· ==	Fe ²⁺	+ 0,77					
NO ⁻ ₃ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80					
Ag ⁺ + e ⁻	=	Ag	+ 0,80					
Hg ²⁺ + 2e ⁻	≠	Hg(l)	+ 0,85					
$NO_3^- + 4H^+ + 3e^-$	=	NO(g) + 2H ₂ O	+ 0,96					
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07					
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20					
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23					
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23					
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	$2Cr^{3+} + 7H_2O$	+ 1,33					
$C\ell_2(g) + 2e^-$	=	2C{-	+ 1,36					
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	\Rightarrow	$Mn^{2+} + 4H_2O$	+ 1,51					
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77					
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81					
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87					
·			-					

Increasing reducing ability/Toenemende reduserende vermoë