Thực hành kiến trúc máy tính

Báo cáo thực hành

Bài 4. Các lệnh số học và logic

Họ Tên	Lê Thành An
MSSV	20235631

ASSIGNMENT 1

ĐOẠN MÃ :

t1

```
TH1: Không bị tràn số
# Laboratory Exercise 4, Home Assignment 1
# TODO: Thiết lập giá trị cho s1 và s2 với trường hợp khác nhau
li s1, 18
li s2, 26
# Thuật toán xác định tràn số
li t0, 0 \# Mặc định không có tràn số
add s3, s1, s2
                       # s3 = s1 + s2
xor t1, s1, s2
                       # Kiểm tra s1 với s2 có cùng dấu
blt t1, zero, EXIT # N\u00e9u t1 l\u00e0 s\u00e0 \u00e0m, s1 v\u00e0 s2 kh\u00e1c d\u00e0u
blt s1, zero, NEGATIVE # Kiểm tra s1 và s2 là số âm hay không âm
bge s3, s1, EXIT # s1 không âm, kiểm tra s3 nhỏ hơn s1 không
# Nếu s3 >= s1, không tràn số
j OVERFLOW
NEGATIVE:
bge s1, s3, EXIT # s1 âm, kiểm tra s3 có lớn hơn s1 không
\# Nếu s1 >= s3, không tràn số
OVERFLOW:
li t0, 1
                   # The result is overflow
EXIT:
Giá trị các thanh ghi:
                                               0x00000012
s2
                                  18
                                               0x0000001a
t0
                                   5
                                               0x00000000
s3
                                  19
                                              0x0000002c
```

0x00000008

```
TH2: Bị tràn số (âm)
# Laboratory Exercise 4, Home Assignment 1
# TODO: Thiết lập giá trị cho s1 và s2 với trường hợp khác nhau
li s1, -1999999999
li s2, -2147483647
# Thuật toán xác định tràn số
li t0, 0
                       # Mặc định không có tràn số
add s3, s1, s2
                      # s3 = s1 + s2
                      # Kiểm tra s1 với s2 có cùng dấu
xor t1, s1, s2
blt t1, zero, EXIT # Nếu t1 là số âm, s1 và s2 khác dấu
blt s1, zero, NEGATIVE # Kiểm tra s1 và s2 là số âm hay không âm
bge s3, s1, EXIT
                  # s1 không âm, kiểm tra s3 nhỏ hơn s1 không
# Nếu s3 >= s1, không tràn số
j OVERFLOW
NEGATIVE:
bge s1, s3, EXIT # s1 âm, kiểm tra s3 có lớn hơn s1 không
# Nếu s1 >= s3, không tràn số
OVERFLOW:
li t0, 1
                  # The result is overflow
EXIT:
Giá trị các thanh ghi:
s1
                                             0x88ca7000
                                 9
                                            0x88ca6c01
s1
s2
                                18
                                            0x800000000
                                 18
                                             0x80000001
t0
                                             0x00000000
s3
                                19
                                             0x08ca6c02
t1
                                  6
                                             0x08ca6c00
t0
                                  5
                                             0x00000001
TH3: Bi tràn số(dương)
# Laboratory Exercise 4, Home Assignment 1
.text
# TODO: Thiết lập giá tri cho s1 và s2 với trường hợp khác nhau
li s1, 1
li s2, 2147483647
# Thuật toán xác định tràn số
li t0, 0
                   # Mặc định không có tràn số
add s3, s1, s2
                      # s3 = s1 + s2
xor t1, s1, s2
                       # Kiểm tra s1 với s2 có cùng dấu
blt t1, zero, EXIT # Nếu t1 là số âm, s1 và s2 khác dấu
blt s1, zero, NEGATIVE # Kiếm tra s1 và s2 là số âm hay không âm
bge s3, s1, EXIT # s1 không âm, kiểm tra s3 nhỏ hơn s1 không
# Nếu s3 >= s1, không tràn số
j OVERFLOW
NEGATIVE:
bge s1, s3, EXIT # s1 âm, kiểm tra s3 có lớn hơn s1 không
\# Nếu s1 >= s3, không tràn số
```

OVERFLOW:

li t0, 1 # The result is overflow EXIT:

Giá trị của các thanh ghi:

s1	9	0x00000001
s2	18	0x80000000
s2	18	0x7fffffff
t0	5	0x00000000
s3	19	0x80000000
t1	6	0x7ffffffe
t0	5	0x00000001

ASSIGNMENT 2:

TH1:

```
CODE:
```

.text

li s0, 1234567899 srli s1, s0, 24 #MSB cua s0

andi s2, s0, 0xfffffff00 #xoa LSB

ori s3, s0, 0x0000000ff #thiet lap LSB andi s4, s0, 0x00000000 #xoa S0

Giá trị của thanh ghi:

= N	0	0.49960000
30	0	0X43360000

s1	9	0x00000049

s2	18	0x49960200

1	s4	20	0x00000000

ASSIGNMENT 3:

```
.text
```

```
addi s0, s0, 1234
sub s1, zero, s0 \#s1 =-s0
```

add s2, x0, s0
$$\#s2=s0$$

xori s3, s0, -1 $\#s3=not(s0)$
bge s2, s1, LABEL $\#thay the lenh ble bang bge$

LABEL:

Giá trị các thanh ghi:

s 0	8	0x000004d2
s1	9	0xfffffb2e
s 2	18	0x000004d2
s 3	19	0xfffffb2d

ASSIGNMENT 4:

```
.text
li s1, -9999999999
li s2, -1999999999
addi t0, t0, 0
add s3, s1, s2 #s3 = s1 + s2
xor t1, s3, s1 #so sanh dau cua s3 voi s1
xor t2, s3, s2 #so sanh dau cua s3 voi s2
blt t1, zero, OVERFLOW
blt t2, zero, OVERFLOW
j END
OVERFLOW:
addi t0, t0, 1
END:
```

Giá trị các thanh ghi:

s1	9	0xabf42000
s1	9	0xabf41c01
s2	18	0x88ca7000
s2	18	0x88ca6c01
t0	5	0x00000000
s3	19	0x34be8802
t1	6	0 x 9f4a9403
t2	7	0xbc74e403
	1	
t0	5	0x00000001

ASSIGNMENT 5:

```
.text
  addi s0, s0, 5
  addi s1, s1, 4
  addi t0, t0, 0
                  #i=0
  addi t1, t1, 1
                 #step=1
  addi s3, s3, 2
                  #s3=2
loop:
  blt s1, s3, continue
  div s1, s1, s3
  add t1, t1, t2
  j loop
continue:
  sll s3, s0, t1 #s3=s1*s0
Giá trị của các thanh ghi:
```

s0	8	0x00000005
s1	9	0x00000004
t0	5	0x00000000
t1	6	0x00000001
s3	19	0x00000002
s1	9	0x00000002
t1	6	0x00000001
s1	9	0x00000001
t1	6	0x00000001
s 3	19	0x0000000a