Nebeská cesta

Kenan nakreslil plán budov a nebeských lávek (dále jen lávek) na jedné straně hlavní třídy v Baku. Je tam n budov číslovaných 0 až n-1 a m lávek číslovaných 0 až m-1. Plán je nakreslen v rovině, přičemž budovy jsou svislé a lávky vodorovné úseky.

Pata budovy i $(0 \le i \le n-1)$ je v bodě (x[i], 0) a budova má výšku h[i]. Tudíž jde o úsek spojující body (x[i], 0) a (x[i], h[i]).

Nebeská cesta j $(0 \le j \le m-1)$ začíná budovou l[j] a končí budovou r[j] a má kladnou souřadnici y: y[j]. Jde tudíž o úsek (x[l[j]], y[j]) a (x[r[j]], y[j]).

Lávka a budova **se protínají**, jestliže sdílejí nějaký společný bod. Lávka tedy protíná dvě budovy na koncích lávky a rovněž může protínat další budovy.

Kenan by chtěl najít délku nejkratší cesty od paty budovy s k patě budovy g (za předpokladu, že se smíme pohybovat pouze po budovách a lávkách), nebo zjistit, že žádná taková cesta neexistuje. Všimněte si, že není možné chodit po zemi, tzn. po horizontálním úseku s nulovou souřadnicí y.

Z lávky na budovu a obráceně je možné přecházet na libovolném místě protnutí. Jestliže mají dvě lávky stejné koncové body, je možné mezi těmito lávkami přecházet.

Vaší úlohou je pomoci Kenanovi odpovědět na jeho otázku.

Pokyny k implementaci

Máte za úkol implementovat následující funkci, která bude volána vyhodnocovačem právě jednou pro každý testovací případ.

- x a h: pole celých čísel o délce n
- l, r a y: pole celých čísel o délce m
- s a q: dvě celá čísla
- Funkce musí vrátit délku nejkratší cesty od paty budovy s po patu budovy g, jestliže taková cesta existuje. V opačném případě musí funkce vrátit -1.

Příklady

Příklad 1

Uvažujme následující volání:

```
min_distance([0, 3, 5, 7, 10, 12, 14],
[8, 7, 9, 7, 6, 6, 9],
[0, 0, 0, 2, 2, 3, 4],
[1, 2, 6, 3, 6, 4, 6],
[1, 6, 8, 1, 7, 2, 5],
1, 5)
```

Správná odpověď je 27.

Obrázek níže odpovídá Příkladu 1:

Příklad 2

Správná odpověď je 21.

Omezení

- $1 \le n, m \le 100000$
- $0 \le x[0] < x[1] < \ldots < x[n-1] \le 10^9$
- $1 \le h[i] \le 10^9$ (pro všechna $0 \le i \le n-1$)
- $0 \leq l[j] < r[j] \leq n-1$ (pro všechna $0 \leq j \leq m-1$)

- $1 \leq y[j] \leq \min(h[l[j]], h[r[j]])$ (pro všechna $0 \leq j \leq m-1$)
- $0 \le s, g \le n 1$
- $s \neq g$
- Žádné dvě lávky nemají společný bod s výjimkou bodů koncových.

Podúlohy

- 1. (10 bodů) $n, m \le 50$
- 2. (14 bodů) Každá lávka se protíná nejvýše s 10 budovami.
- 3. (15 bodů) s=0, g=n-1 a všechny budovy mají stejnou výšku.
- 4. (18 bodů) s = 0, g = n 1
- 5. (43 bodů) Žádná další omezení.

Ukázkový vyhodnocovač

Ukázkový vyhodnocovač čte vstup v následujícím formátu:

- řádek 1: n m
- řádek 2+i ($0 \le i \le n-1$): x[i] h[i]
- řádek $n+2+j \ (0 \le j \le m-1)$: $l[j] \ r[j] \ y[j]$
- řádek n+m+2: s g

Ukázkový vyhodnocovač vypíše jeden řádek obsahující hodnotu vrácenou funkcí min_distance.