APPARENT BOUNDARIES

OF

PROJECTIVE VARIETIES

- · ANAND DEOPURKAR
- · EDVARD DURYEV
- A ANAND PATEL

GUESS THE SEQUENCE!

degree ____

1 2 5 14 42 132 · · · Catalans! 2 6 22 42 422 (OEIS ...) S Answer to an enumerative problem in A.G.

THE APPARENT BOUNDARY X CIP smooth proj dim X = r $T_{\Lambda}: X \rightarrow P$ finite RA = Ram. div of (Th) 6 Apparent boundry of X

two from

QUESTIONS

Fix XCP

- · To what extent does Rn determine 12
- · If A moves, must Rr also move?
- · Are there multiple 1 that give the same R1?
- · Which divisors arise as R1?

MOTIVATION:

- 1 Hurwitz spaces of covenings 2 X a curve
- @ Kontsevich spaces of maps
- 3) Stückrad-Vogel cycle (Flenner, Manaresi, Ciliberto, Zak)

Intersection thy

EXAMPLE PLANE CONIC

 $\Delta \longrightarrow R_{\Delta}$ is of deg 1

EXAMPLE - TWISTED CUBIC

QUESTIONS - MADE PRFCISE \times \sim \mathbb{P}^{n} R_{Δ} Gr (1Pn-r-1) P) ----> | Kx (r+1) |
---> | Kx (r+1) |
----> Space Divisor class of RA (Riemann-Hurwitz) $R_{\Delta} \sim K_{x} + (r+i)H$ Is Pinjective 9 susjective 2 finite? des 2 fiber dim 2

DIMENSION COUNT P. Gr --- Kx(TH) dim Gr (P, P) $= (n-1)(\lambda+1)$ Proposition: dim Gr & dim | Kx (r+1)| with equality iff $deg X = n+1-(r) \in dim X$

X is of minimal deg.

EXPECTED ANS WERS P: Gro --- P

DP is finite (generically) onto its image

To X is of min deg, then
P is finite & dominant.

Almost true (not quite).

Focus on 2

VARIETIES OF MINIMAL DEGREE

- 1) Rat normal curve 1P' -> IP
- 2) Quadric hypersurfaces
- 3) Veronese IP in IP
- (4) so S cools

RATIONAL NORMAL CURVES Gr (P^{-2} , P) \longrightarrow $|O(2n-2)| = |P^{-2}|$ des P = [Plücker] (1) P is regular! (2) $\rho^* O(i) = Plücker$ = deg Gr Catalan! $\frac{1}{n} \left(\frac{2n-2}{n-1} \right)$

VARIETIES OF MINIMAL DEGREE

- Rational normal curves
 - 2) Quadric hypersurfaces
 - 3) Veronese IP2 in IP3
 - Gordis !

QUADRIC HYPERSURFACES

$$X = V(Q)$$
 $G_r(P, P) = P' ---- |O_x(I)|$
 $P' ---- |P''|$

Here P is an iso. $(deg 1)$
 $S_r(P, P'') = IP''$
 $IP'' ---- |I|$
 $IP'' ---- |I|$
 $IP'' ---- |I|$
 $IP'' ---- |I|$

VARIETIES OF MINIMAL DEGREE

Rational normal curves -> Catalons

2 Quadric hypersurfaces -> 1

3 Veronese IP in IP

4 Scrolls

VERONESE PL Net of conics - cubic. Net = 2 dim 1-dim singulars P: Net - subic

VERONESE 1P2 dy 3 { Net of conics} -> { cubic } 2-cover des P = # non-triv étale 2 covers $\mathcal{F}_{2}^{2} \qquad \qquad \boxed{3} \qquad \mathcal{F}_{2}(\mathbb{F}_{2})$

VARIETIES OF MINIMAL DEGREE

Rational normal curves

Rational normal curves

Quadric hypersurfaces

Veronese IP in IP

G Scrolls.

SCROLLS - it's complicate	
There exist scrolls for wh	ich
p is not finite	
Gr — 5 P	

same dim

- Fix dim r Thm: - For generic scrolls of deg >> r Pris generially finite. Zai is big Sharper in low dim $|\alpha(-9)| \leq 1$ 7=2 -> always tinife r=3 -> always truite

SCROLLS $P\left(O(1)BO(1)BO(n)\right)$ ---- PWrite down the map in coordinates It is birahmed (deg I) - finite (9(1) BO(2) BO(n-1) m (Fo)

Any thing

GENERAL COMMENT	
Enumerative geo.	GW/DT/PT
2) curves	theory
Thum. gev.	moduli in higher dim
in higher dim	is hard

SKETCH OF PROOF

