Евгений Борисов

О задаче классификации

разделение данных на части (классы)

```
О задаче классификации
```

```
разделение данных на части (классы)
```

Учебный набор: [объект, ответ]

Задача: классификатор

объект → вектор-признак → результат

О задаче классификации

```
разделение данных на части (классы)
```

```
Учебный набор: [ объект, ответ ]
```

Задача: классификатор

объект → вектор-признак → результат

Обучение: минимизация ошибки

ошибка = результат - правильный ответ

Критерий остановки:

достигнут порог значения ошибки, и/или порог количества циклов

О задаче классификации

разделения объектов на части (классы)

$$X \subset \mathbb{R}^n$$
 - объекты

$$Y \in \{0,1\}$$
 - метки классов

О задаче классификации

разделения объектов на части (классы)

$$X \subset \mathbb{R}^n$$
 - объекты

$$Y \in \{0,1\}$$
 - метки классов

$$p \in [0,1]$$
 - оценка

 $a: X \rightarrow p$ - считаем оценку

$$y = \begin{cases} 0 \text{, } p < b \text{ - если оценка выше порога} \\ 1 \text{, } p \geq b \end{cases}$$
 то объект принадлежит «первому» классу

метрики качества

- погрешность (accuracy)
- матрица ошибок (confusion matrix)
- точность (precision)
- полнота (recall)
- F-мера
- ROC/AUC

погрешность (accuracy)

правильные ответы / всего примеров

погрешность (accuracy)

правильные ответы / всего примеров

Accuracy это оценка только для сбалансированного датасета, т.е. когда количество примеров в классах почти одинаковое

погрешность (accuracy)

правильные ответы / всего примеров

Accuracy это оценка только для сбалансированного датасета, т.е. когда количество примеров в классах почти одинаковое

Пример: имеем датасет из 203 объектов

1. сбалансированный

100 позитивных 103 негативных

90 правильно предсказанных позитивных

10 ложно-негативных предсказаний 103 правильно предсказанных негативных

193 правильных ответов

193/203 = .95 accuracy

погрешность (accuracy)

правильные ответы / всего примеров

Accuracy это оценка только для сбалансированного датасета, т.е. когда количество примеров в классах почти одинаковое

Пример: имеем датасет из 203 объектов

1. сбалансированный

100 позитивных 103 негативных

90 правильно предсказанных позитивных

10 ложно-негативных предсказаний 103 правильно предсказанных негативных

193 правильных ответов

193/203 = .95 accuracy

2. несбалансированный

6 позитивных 197 негативных

0 правильно предсказанных позитивных

6 ложно-негативных предсказаний 197 правильно предсказанных негативных

197 правильных ответов

197/203 = .97 accuracy

матрица ошибок (confusion matrix)

два класса — четыре группы

- ТР истинно положительные
- TN истинно отрицательные
- FP ложно положительные
- FN ложно отрицательные

точность (precision)

TP/(TP + FP)

доля истинно позитивных относительно всех объектов, которые классификатор определил как позитивные

точность (precision)

доля истинно позитивных относительно всех объектов, которые классификатор определил как позитивные

полнота (recall)

TP/(TP + FP) TP/(TP + FN)

доля истинно позитивных, найденных классификатором, относительно всех истинно позитивных

точность (precision)

TP/(TP + FP)

доля истинно позитивных относительно всех объектов, которые классификатор определил как позитивные

полнота (recall)

TP/(TP + FN)

доля истинно позитивных, найденных классификатором, относительно всех истинно позитивных

С ростом полноты точность может снижаться

высокая точность positive

большая полнота positive

Пример classification_report				
pr	ecision	recall	f1-score	support
0 1	0.90 0.91	0.90 0.90	0.90 0.91	2835 2927
avg / total	0.90	0.90	0.90	5762

F-мера

(precision*recall) / (precision+recall) усреднение точности и полноты

ROC - receiver operating characteristic, рабочая характеристика приёмника

ROC - зависимость полноты (TPR) от доли ложно-негативных (FPR)

TPR=TP/(TP+FN) полнота(recall), доля позитивных, найденных классификатором, относительно всех позитивных

FPR=FP/(FP+TN) доля негативных предсказанных неверно

AUC - area under ROC curve, площадь под ROC-кривой характеристика качества классификации

способ построения ROC

Таб.1 результаты классификатора

id	оценка	класс
1	0.5	0
2	0.1	0
3	0.2	0
4	0.6	1
5	0.2	1
6	0.3	1
7	0.0	0

Табл. 1

способ построения ROC

Таб.1 результаты классификатора

id	оценка	класс
1	0.5	0
2	0.1	0
3	0.2	0
4	0.6	1
5	0.2	1
6	0.3	1
7	0.0	0

Табл. 1

упорядочим строки табл. 1 по убыванию ответов алгоритма

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

Табл. 2

способ построения ROC

Таб.1 результаты классификатора

id	оценка	класс
1	0.5	0
2	0.1	0
3	0.2	0
4	0.6	1
5	0.2	1
6	0.3	1
7	0.0	0

Табл. 1

упорядочим строки табл. 1 по убыванию ответов алгоритма

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

Табл. 2

единичный квадрат на координатной плоскости,

разбить на m равных частей горизонтальными линиями, m - число 1 (m=3),

и на n – вертикальными, n – число нулей (n=4). получаем сетку на $m \times n$ блоков.

способ построения ROC

Таб.1 результаты классификатора

id	оценка	класс
1	0.5	0
2	0.1	0
3	0.2	0
4	0.6	1
5	0.2	1
6	0.3	1
7	0.0	0

Табл. 1

упорядочим строки табл. 1 по убыванию ответов алгоритма

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

Табл. 2

единичный квадрат на координатной плоскости,

разбить на m равных частей горизонтальными линиями, m - число 1 (m=3),

и на n – вертикальными, n – число нулей (n=4). получаем сетку на $m \times n$ блоков.

идем по строкам табл. 2 сверху вниз и прорисовывать на сетке линию из точки (0,0).

если метка класса 1, то делаем шаг вверх; если 0, то делаем шаг вправо.

если оценки равны, то мы делаем шаг в точку, которая на а блоков выше и b блоков правее, где а – число единиц в группе, b – число нулей в ней.

разделяем набор данных

- учебный
- тестовый

разделяем набор данных

- учебный
- тестовый

недообучение (underfitting) большая ошибка на учебном наборе

переобучение (overfitting) малая ошибка на учебном наборе большая ошибка на тестовом наборе

оценка и выбор моделей

формируем 3 набора: учебный / контрольный / тестовый

обучаем на учебном проверяем на контрольном итоговый тест на тестовом

оценка и выбор моделей

кроссвалидация (CV)

скользящий контроль - Leave One Out (LOO CV)

$$\mathsf{LOO}(\mu, X^L) = \frac{1}{L} \sum_{i=1}^L Q_{\mu}(X^L \setminus \{x_i\}, \{x_i\})$$

вынимаем пример из учебной выборки обучаем модель без него проверяем ошибку на этом примере

LOO CV это долго

повторяем для всех объектов выборки результат суммируем

оценка и выбор моделей

кроссвалидация (CV)

q-fold CV

аналогично LOO, но будем вместо одного объекта использовать подмножество из q объектов

$$\mathsf{CV}_q(\mu, X^L) = rac{1}{q} \sum_{n=1}^q Q_\mu ig(X^L ackslash X_n^{\ell_n}, X_n^{\ell_n} ig)$$

оценка зависит от разбиения на подмножества примеров

оценка и выбор моделей

кроссвалидация (CV)

t x q-fold CV

t раз выполняем q-fold CV, учебный набор t раз случайно разбиваем на q блоков

$$\mathsf{CV}_{t \times q}(\mu, X^L) = \frac{1}{t} \sum_{s=1}^t \frac{1}{q} \sum_{n=1}^q Q_\mu \big(X^L \setminus X_{sn}^{\ell_n}, X_{sn}^{\ell_n} \big).$$

git clone https://github.com/mechanoid5/ml_lectorium.git
Александр Дьяконов AUC ROC (площадь под кривой ошибок)
Кривая ошибок http://www.machinelearning.ru