511-2018-10-19-action-II

Rick Gilmore 2018-10-19 10:53:44

Prelude

https://www.youtube.com/embed/L0CVoFsUhC4

Prelude

https://www.youtube.com/embed/XaI5IRuS2aE

Today's Topics

- · The neuroscience of action
- · Quiz 2 now available; due next Friday

Muscle classes

- Axial
 - Trunk, neck, hips
- Proximal
 - Shoulder/elbow, pelvis/knee
- Distal
 - Hands/fingers, feet/toes

Muscles

http://mypages.valdosta.edu/dodrobin/2651/Muscles/Muscles.jpg

Muscle types

- · Smooth
 - Arteries, hair follicles, uterus, intestines
 - Regulated by ANS (involuntary)
- Striated (striped)
 - Skeletal
 - Voluntary control, mostly connected to tendons and bones
- Cardiac

Muscle types

@ ADAM, Inc.

http://graphics8.nytimes.com/images/2007/08/01/health/adam/19917.jpg

How skeletal muscles contract

- Motoneuron (ventral horn of spinal cord)
- Neuromuscular junction
 - Releases ACh

From spinal cord to muscle

How skeletal muscles contract

- Motor endplate
 - Nicotinic ACh receptor
- Excitatory endplate potential
 - Muscle fibers depolarize
 - Depolarization spreads along fibers like an action potential
 - Sarcomeres are segments of fibers
 - Intramuscular stores release Ca++

Motor endplate

How skeletal muscles contract

- Myofibrils (w/in sarcomere)
 - Actin & mysosin proteins
 - "Molecular gears"
- · Bind, move, unbind in presence of Ca++, ATP

Anatomy of muscle fibers

Anatomy of motor endplate

Muscle contraction

Agonist/antagonist muscle pairs

http://2.bp.blogspot.com/-TpOC4my_NBc/T0J-MhEv29I/AAAAAAAAAF88/dYLv7QzFwmg/s1600/Hamstring-Quad4.jpg

Meat preference?

Muscle fiber types

- Fast twitch/fatiguing
 - Type II
 - White meat
- Slow twitch/fatiguing
 - Type I
 - Red meat

Muscles are sensory organs, too!

Can Stock Photo

Two muscle fiber types

e 2001 Sinaver Associates, Inc.

Two muscle fiber types

- Intrafusal fibers
 - Sense length/tension
 - Contain muscle spindles linked to la afferents
 - ennervated by gamma (γ) motor neurons
- Extrafusal fibers
 - Generate force
 - ennervated by alpha (α) motor neurons

Monosynaptic stretch (myotatic) reflex

- Muscle stretched (length increases)
- Muscle spindle in intrafusal fiber activates
- Ia afferent sends signal to spinal cord
 - Activates alpha (α) motor neuron
- Muscle contracts, shortens length

Monosynaptic stetch (myotatic) reflex

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Figure 11.9 (Part 3) © 2004 Sinsuer Associates, Inc.

• Gamma (γ) motor neuron fires to take up intrafusal fiber slack

Monosynaptic stretch (myotatic) reflex

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Figure 11.10 (Part 1) © 2004 Sinauer Associates, Inc.

Why doesn't antagonist muscle respond?

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Figure 11.10 (Part 1) © 2004 Sinauer Associates, Inc.

Why doesn't antagonist muscle respond?

- Polysynaptic inhibition of antagonist muscle
- · Prevents/dampens tremor

Brain gets fast(est) sensory info from spindles

TABLE 8.2 Fibers That Link Receptors to the CNS

Sensory function(s)	Receptor type(s)	Axon type	Diameter (μm)	Conduction speed (m/s)
Proprioception (see Chapter 11)	Muscle spindle	Αα	13–20	80–120
Touch (see Figures 8.12 and 8.13)	Pacinian corpuscle, Ruffini's ending, Merkel's disc, Meissner's corpuscle	Αβ	6–12	35–75
Pain, temperature	Free nerve endings; VRL1	Αδ	1–5	5–30
Temperature, pain, itch	Free nerve endings; VR1, CMR1	С	0.02-1.5	0.5–2

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Table 8.2 © Sinauer Associates, Inc.

How the brain controls the muscles

- Pyramidal tracts
 - Pyramidal cells (Cerebral Cortex Layer 5) in primary motor cortex (M1)
 - Corticobulbar (cortex -> brainstem) tract
 - Corticospinal (cortex -> spinal cord) tract
- · Crossover (decussate) in medulla
 - L side of brain ennervates R side of body

Corticospinal tract

https://commons.wikimedia.org/wiki/File:Gray764.png#/media/File:Gray764.png

How the brain controls the muscles

- Extrapyramidal system
 - Tectospinal tract
 - Vestibulospinal tract
 - Reticulospinal tract
- Involuntary movements
 - Posture, balance, arousal

This figure shows that the descending motor pathways in red on the right have their own spatial organization depending on where they originate in the brain.

Disorders

- Parkinson's
- · Huntington's

The Faces of Parkinson's

Parkinson's

- Slow, absent movement, resting tremor
- Cognitive deficits, depression
- DA Neurons in substantia nigra degenerate
- Treatments
 - DA agonists
 - DA agonists linked to impulse control disorders in ~1/7 patients (Ramirez-Zamora, Gee, Boyd, & Biller, 2016)
 - Levodopa (L-Dopa), DA precursor

Awakenings

Huntington's

http://cp91279.biography.com/1000509261001/1000509261001_17338247 guthrie-centennial-1.jpg

Huntington's

- Formerly Huntington's Chorea
 - "Chorea" from Greek for "dance"
 - "Dance-like" pattern of involuntary movements
- Cognitive decline
- Genetic + environmental influences
- · Disturbance in striatum
- · No effective treatment

Huntington's

Remember

- Control of movement determined by multiple sources
- · Cerebral cortex + basal ganglia + cerebellum + spinal circuits

Multiple, parallel controllers

BIOLOGICAL PSYCHOLOGY, Faurth Edition, Figure 11.4 © 2004 Strauer Associates, Inc.

Cerebellum as predictor of future sensory states? (Ito, 2008)

http://venturebeat.com/wp-content/uploads/2009/10/star-trek-holodeck.jpg

The Real Reason for Brains

What does motor cortex activity encode?

Shenoy et al., 2013

Cortical Control of Arm Movements: A Dynamical Systems Perspective

Annual Review of Neuroscience

Vol. 36:337-359 (Volume publication date July 2013)
First published online as a Review in Advance on May 29, 2013
https://doi.org/10.1146/annurev-neuro-062111-150509

Dynamic systems perspective

- Dynamics of
 - World events, \dot{W}
 - Extero- and interoceptive sensory systems, \dot{S}
 - Nervous system states, \dot{N}
 - Muscle states, \dot{M}
 - Body states, \dot{B}
 - Effects of muscles on world, $\dot{W} = f(\dot{M})$

Next time...

· Language

References

Ito, M. (2008). Control of mental activities by internal models in the cerebellum. *Nat. Rev. Neurosci.*, *9*(4), 304–313. https://doi.org/10.1038/nrn2332

Ramirez-Zamora, A., Gee, L., Boyd, J., & Biller, J. (2016). Treatment of impulse control disorders in parkinson's disease: Practical considerations and future directions. *Expert Rev. Neurother.*, *16*(4), 389–399. https://doi.org/10.1586/14737175.2016.1158103