Project: Optimising Profit Levels for Superstore

Table of contents

- Introduction
- Data Cleaning
- Exploratory Data Analysis
- Conclusions

Introduction

Dataset Description

Tip: A kaggle's sample superstore dataset, a kind of a simulation where you perform extensive data analysis to deliver insights on how the company can optimize its profit levels.

Question(s) for Analysis

How can Superstore increase its profits while minimizing the losses?

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
% matplotlib inline
```

Matplotlib is building the font cache; this may take a moment. UsageError: Line magic function `%` not found.

Data Cleaning

```
In [5]: #Loading and preview of CSV file
    df=pd.read_csv('SampleSuperstore.csv')
    df.head()
```

Out[5]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub_Category
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage
4									>

In [6]: #checking for null values
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Ship Mode	9994 non-null	object
1	Segment	9994 non-null	object
2	Country	9994 non-null	object
3	City	9994 non-null	object
4	State	9994 non-null	object
5	Postal Code	9994 non-null	int64
6	Region	9994 non-null	object
7	Category	9994 non-null	object
8	Sub_Category	9994 non-null	object
9	Sales	9994 non-null	float64
10	Quantity	9994 non-null	float64
11	Discount	9994 non-null	float64
12	Profit	9994 non-null	float64
dtyp	es: float64(4)	, int64(1), obje	ct(8)

In [7]: #checking for duplicated rows
sum(df.duplicated())

memory usage: 1015.1+ KB

Out[7]: 17

```
In [8]: #drop duplicated rows
df.drop_duplicates(inplace=True)
```

```
In [9]: #confirm there are no duplicated rows
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9977 entries, 0 to 9993
Data columns (total 13 columns):

Data	COTUMNIS (COCA.	L 15 COTUMNS).	
#	Column	Non-Null Count	Dtype
0	Ship Mode	9977 non-null	object
1	Segment	9977 non-null	object
2	Country	9977 non-null	object
3	City	9977 non-null	object
4	State	9977 non-null	object
5	Postal Code	9977 non-null	int64
6	Region	9977 non-null	object
7	Category	9977 non-null	object
8	Sub_Category	9977 non-null	object
9	Sales	9977 non-null	float64
10	Quantity	9977 non-null	float64
11	Discount	9977 non-null	float64
12	Profit	9977 non-null	float64
dtype	es: float64(4)	, int64(1), objec	ct(8)
	1 1.	MD	

memory usage: 1.1+ MB

Exploratory Data Analysis

In [10]: #Get statistical summary to identify possible outliers
df.describe()

Out[10]:

	Postal Code	Sales	Quantity	Discount	Profit
count	9977.000000	9977.000000	9977.000000	9977.000000	9977.000000
mean	55154.964117	230.148924	3.790719	0.156278	28.690207
std	32058.266816	623.721439	2.226657	0.206455	234.457935
min	1040.000000	0.440000	1.000000	0.000000	-6599.980000
25%	23223.000000	17.300000	2.000000	0.000000	1.730000
50%	55901.000000	54.820000	3.000000	0.200000	8.670000
75%	90008.000000	209.970000	5.000000	0.200000	29.370000
max	99301.000000	22638.480000	14.000000	0.800000	8399.980000

In [137]: df.plot.box()
 plt.show()

In [90]: #Finding correlation levels between possible 'relational' factors import seaborn as sns plt.figure(figsize=(6,3)) corr = df.corr() heatmap = sns.heatmap(corr, annot=True)

C:\Users\User\AppData\Local\Temp\ipykernel_4308\1435177719.py:4: FutureWarnin g: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

corr = df.corr()

There is a correlation between Sales and Profit. It is also important for us to consider Quantity considering its correlation level with Sales. Therefore, the basis of comparing other factors will be based on Sales, Quantity and Profit.

Profit

In [98]: #Understanding Categories and Sub_Categories
pd.DataFrame(df.groupby(['Category','Sub_Category'])[['Sales','Profit']].sum()

Sales

Out[98]:

		Guioc	
Category	Sub_Category		
	Bookcases	114880.05	-3472.56
Eurnituro	Chairs	327777.79	26567.11
Furniture	Furnishings	91682.98	13052.83
	Tables	206965.68	-17725.59
	Appliances	107532.14	18138.07
	Art	27107.04	6524.78
	Binders	203409.21	30227.88
	Envelopes	16476.38	6964.10
Office Supplies	Fasteners	3024.25	949.53
	Labels	12444.90	5526.31
	Paper	78224.18	33944.02
	Storage	223843.59	21279.05
	Supplies	46673.52	-1188.99
	Accessories	167380.31	41936.78
Toohnology	Copiers	149528.01	55617.90
Technology	Machines	189238.68	3384.73
	Phones	330007.10	44516.25

In [12]: #Which category has the most sales and profitability?
 df1=pd.DataFrame(df.groupby(['Category'])[['Sales', 'Quantity', 'Profit']].sum
 df1

Profit

Out[12]:

		-	
Category			
Furniture	741306.50	8020.0	18421.79
Office Supplies	718735.21	22861.0	122364.75
Technology	836154.10	6939.0	145455.66

Sales Quantity

```
In [53]: plt.figure(figsize = [16, 5])
    base_color = sns.color_palette()[0]

plt.subplot(1, 2, 1)
    freq=df1.sort_values(by='Sales', ascending=False)
    sales_order=freq.index
    sns.barplot(x=df1.index, y=df1.Sales, color=base_color, ci=None, order=sales_order=df1.sort_values(by='Profit', ascending=False)
    profit_order=freq.index
    sns.barplot(x=df1.index, y=df1.Profit, color=base_color, ci=None, order=profit_order=freq.index
```


Technology is seen as the category with the most Sales and Profit. On the basis of profit only(since this is the focal point), we see how Office Supplies tops Furniture.

In [96]: #What are the best selling and most profitable sub_categories?
 df2=pd.DataFrame(df.groupby(['Sub_Category'])[['Sales','Profit']].sum())
 df2

Out[96]:

	Sales	Profit
Sub_Category		
Accessories	167380.31	41936.78
Appliances	107532.14	18138.07
Art	27107.04	6524.78
Binders	203409.21	30227.88
Bookcases	114880.05	-3472.56
Chairs	327777.79	26567.11
Copiers	149528.01	55617.90
Envelopes	16476.38	6964.10
Fasteners	3024.25	949.53
Furnishings	91682.98	13052.83
Labels	12444.90	5526.31
Machines	189238.68	3384.73
Paper	78224.18	33944.02
Phones	330007.10	44516.25
Storage	223843.59	21279.05
Supplies	46673.52	-1188.99
Tables	206965.68	-17725.59

```
In [97]: plt.figure(figsize=[16,5])

plt.subplot(1,2,1)
freq=df2.sort_values(by='Sales', ascending=False)
sales_order=freq.index
sns.barplot(x=df2.index, y=df2.Sales, color=base_color, ci=None, order=sales_o
plt.xticks(rotation=90);

plt.subplot(1,2,2)
freq=df2.sort_values(by='Profit', ascending=False)
profit_order=freq.index
sns.barplot(x=df2.index, y=df2.Profit, color=base_color, ci=None, order=profit
plt.xticks(rotation=90);
```


Major profit shifts occurred for sub_categories like Copiers(Tech), Accessories(Tech) and Paper(Supplies) considering their level of sales. It will be interesting to see the spread of the sales/profit for these sub_categories among regions/cities.

Tables is the worst performing sub_category in profit terms. This is quite alarming considering its sales level come at 4th position. It may be worth considering either to discontinue its sale or focus on key regions/cities that can help rake in whatever profit there are.

In [16]: #What is the quantity sold for each sub_category?
df3=pd.DataFrame(df.groupby(['Sub_Category'])['Quantity'].sum())
df3

Out[16]:

Quantity

Sub_Category	
Accessories	2976.0
Appliances	1729.0
Art	2996.0
Binders	5971.0
Bookcases	868.0
Chairs	2351.0
Copiers	234.0
Envelopes	906.0
Fasteners	914.0
Furnishings	3560.0
Labels	1396.0
Machines	440.0
Paper	5144.0
Phones	3289.0
Storage	3158.0
Supplies	647.0
Tables	1241.0

```
In [79]: plt.figure(figsize=[5,4])
    freq=df3.sort_values(by='Quantity', ascending=False)
    sales_order=freq.index
    sns.barplot(x=df3.index, y=df3.Quantity, ci=None, order=sales_order, color=base
    plt.xticks(rotation=90);
```


Considering the first 6 items on the Quantity vs Sales, we can deduce that the average prices for Binders, Papers and Furnishing and Art are relatively lower than Phones and Storage.

```
In [121]: #Which is the biggest ship mode and customer segment?
    df4=pd.DataFrame(df.groupby(['Segment','Ship Mode'])['Profit'].count())
    df4=df4.sort_values(by='Profit', ascending=False)
    df4=df4.reset_index()
    df4
```

O	_ [/	1 2	47	
()) T	- 1	1 /		
Out	- -		- 1	

	Segment	Ship Mode	Profit
0	Consumer	Standard Class	3079
1	Corporate	Standard Class	1808
2	Home Office	Standard Class	1068
3	Consumer	Second Class	1019
4	Consumer	First Class	768
5	Corporate	Second Class	608
6	Corporate	First Class	485
7	Consumer	Same Day	317
8	Home Office	Second Class	316
9	Home Office	First Class	284
10	Corporate	Same Day	114
11	Home Office	Same Day	111

The biggest customer segment is the 'Consumer'. Across all segments, we see a huge preference for the 'Standard Class' ship mode. There is a low preference for Same Day ship mode which means that the company should focus on promoting the 'top 3' ship modes during order.

```
In [19]: #The most profitable region
    df5=pd.DataFrame(df.groupby(['Region'])[['Sales', 'Profit']].sum())
    df5.sort_values(by='Profit', ascending=False)
```

Out[19]:

 Region

 West
 725255.74
 108330.15

 East
 678435.32
 91506.37

 South
 391721.90
 46749.71

 Central
 500782.85
 39655.97

Sales

Profit

The most profitable regions are the West and East. A deep-dive into the various regions and sub_categories' performance(sales, quantity and profit) will help us to understand where the business should focus on in order to optimize its profit levels.

```
In [84]: #Region breakdown by sub_categories in sales, profit and quantity
    df6=pd.DataFrame(df.groupby(['Region', 'Sub_Category'])[['Sales', 'Quantity','
    df6.sort_values(by='Sales', ascending=False)
    df6 = df6.reset_index()
    df6
```

Out[84]:

	Region	Sub_Category	Sales	Quantity	Profit
0	Central	Accessories	33956.08	716.0	7251.67
1	Central	Appliances	23581.98	470.0	-2638.61
2	Central	Art	5765.32	678.0	1195.15
3	Central	Binders	56919.70	1470.0	-1037.47
4	Central	Bookcases	24157.16	192.0	-1997.92
63	West	Paper	26536.84	1681.0	12059.93
64	West	Phones	98684.39	1068.0	9111.06
65	West	Storage	70532.84	1039.0	8645.49
66	West	Supplies	18127.12	238.0	626.11
67	West	Tables	84754.60	481.0	1482.54
67	West	Tables	84754.60	481.0	148

68 rows × 5 columns

```
In [134]: g = sns.catplot(x='Sub Category', y='Sales', data=df6,palette='bright',height=
             g.set titles('Region: {col name}')
             g.set xticklabels(rotation=90);
             g = sns.catplot(x='Sub_Category', y='Quantity', data=df6,palette='bright',heigl
             g.set_titles('Region: {col_name}')
             g.set xticklabels(rotation=90);
             g = sns.catplot(x='Sub_Category', y='Profit', data=df6,palette='bright',height
             g.set_titles('Region: {col_name}')
             g.set xticklabels(rotation=90);
                           Region: Central
                                                    Region: East
                                                                             Region: South
                                                                                                      Region: West
                100000
                60000
                40000
                                                    Sub_Category
                                                                             Sub_Category
                           Sub_Category
                                                                                                      Sub_Category
                          Region: Central
                                                    Region: East
                                                                            Region: South
                                                                                                      Region: West
                1500
                           Region: Central
                                                                             Region: South
                                                                                                      Region: West
                20000
                10000
                -10000
                           Sub Category
```

Knowing that the biggest regions are the East and West, we see that the top 4 most sold sub_categories are sitting in these regions- Phones, Chairs, Storage and Tables. Since Phones, Chairs and Storage makes it to the top list of profitable sub_categories and we have established a high correlation between Sales and Profit, Superstore should consider sales promotional strategies to boost its sales for these sub_categories in these 2 regions in order to optimize its profit levels. This does not mean losing sight of other regions e.g the Central which is big on its sales of Chairs and Phones for instance.

Machines are a big deal in the East and the profit level is best in class. The business should focus and push sale for this sub category in this region.

Tables have been highlighted as being the biggest loss to the business as a whole however, we see a ray of hope for this sub_category in the West.

The business needs to sell more of its Accessories, Copiers and Binders across all regions. The profit levels are good enough except for Binders in the Central region.

The South is the weakest link of all regions however, the region has its strength playing to the Phone and Storage sub_categories.

The business should continue selling paper as the profit margins are good when compared to other sub_categories.

Out[123]:

	Region	City	Sub_Category	Sales	Quantity	Profit
0	East	New York City	Machines	37531.21	54.0	14568.83
1	East	New York City	Phones	37959.13	319.0	10765.53
2	Central	Lafayette	Copiers	17499.95	5.0	8399.98
3	East	New York City	Binders	24567.69	562.0	8372.93
4	West	Seattle	Copiers	17449.88	12.0	8290.45
5	East	New York City	Chairs	40149.66	265.0	6187.07
6	Central	Detroit	Binders	12489.18	99.0	6154.98
7	West	Seattle	Binders	17700.15	329.0	5904.31
8	East	New York City	Copiers	16719.84	18.0	5749.96
9	West	Los Angeles	Accessories	18463.05	236.0	5667.28
10	Central	Minneapolis	Binders	11345.35	15.0	5524.03
11	East	Newark	Copiers	10499.97	3.0	5039.99
12	East	New York City	Accessories	17105.91	241.0	5021.23
13	West	Seattle	Tables	21027.17	94.0	4303.84
14	South	Atlanta	Binders	7751.56	18.0	3873.75
15	West	Seattle	Accessories	13087.98	166.0	3715.17
16	West	Los Angeles	Copiers	11599.77	27.0	3704.94
17	East	New York City	Appliances	12294.54	143.0	3491.21
18	East	New York City	Storage	21358.72	294.0	3453.05
19	West	Los Angeles	Binders	9761.19	360.0	3411.77
20	East	New York City	Paper	6827.64	460.0	3248.37
21	West	Los Angeles	Paper	6326.96	451.0	3012.61
22	West	Los Angeles	Storage	18789.82	241.0	2892.72
23	South	Arlington	Machines	8749.95	5.0	2799.98
24	West	Los Angeles	Appliances	8577.33	144.0	2593.18
25	East	Providence	Copiers	5399.91	9.0	2591.96
26	Central	Jackson	Binders	5611.98	18.0	2582.71
27	West	Los Angeles	Phones	29503.04	297.0	2582.23
28	Central	Detroit	Chairs	11644.62	61.0	2580.66
29	Central	Springfield	Copiers	5499.92	8.0	2536.97

The above accounts for about 52% of the total profit made by the business as such, it is a good inference point on what cities(and respective sub_categories) to focus on for which regions.

East- New York City(Machines, Phones, Chairs, Storage, Accessories, Copiers and Binders), Newark and Providence(Copiers)

West- Seattle and Los Angeles (Copiers, Binders, Accessories and Storage), Seattle(Tables)

Central- Lafayette and Springfield(Copiers), Detroit(Chairs and Binders), Minneapolis and Jackson (Binders)

South- Atlanta(Binders)

Out[72]:

	Region	City	Sales	Quantity	Profit
0	East	New York City	256319.00	3413.0	62013.99
1	West	Los Angeles	175831.89	2876.0	30431.61
2	West	Seattle	119460.28	1578.0	29121.72
3	West	San Francisco	112577.17	1920.0	17466.12
4	Central	Detroit	42056.97	438.0	13146.69
5	Central	Lafayette	19630.45	43.0	8976.10
6	South	Atlanta	17197.84	156.0	6993.69
7	Central	Minneapolis	16870.54	80.0	6824.61
8	West	San Diego	47521.05	670.0	6377.24
9	East	Newark	28576.15	362.0	5793.77

The above accounts for about 65% of the total profit the business made. It will be worthy of note in cases whereby the business may want to explore a region and focus on key cities where it gains its most profit. e.g For this business, New York and Newark is key to the Eastern region

In [73]: least10 = df8[-10:]
least10

Out[73]:

	Region	City	Sales	Quantity	Profit
573	South	Jacksonville	44713.18	429.0	-2323.80
574	West	Phoenix	11000.27	224.0	-2790.85
575	Central	Dallas	20131.90	555.0	-2846.55
576	West	Louisville	5070.41	90.0	-3406.18
577	South	Burlington	12681.28	46.0	-5894.53
578	Central	Chicago	48536.03	1129.0	-6648.31
579	Central	San Antonio	21843.54	247.0	-7299.06
580	East	Lancaster	9414.03	156.0	-7318.52
581	Central	Houston	64441.21	1460.0	-10175.10
582	East	Philadelphia	109061.54	1978.0	-13843.27

In [136]: plt.figure(figsize=[4,3])
 sns.barplot(data=top10, x='Profit', y='City', ci=None, color=base_color)
 plt.xticks(rotation=90);


```
In [135]: plt.figure(figsize=[4,3])
    sns.barplot(data=least10, x='Profit', y='City', ci=None, color=base_color)
    plt.xticks(rotation=90);
```


Conclusions

- 1. The dataset was helpful enough to understand how the business can optimize its profit levels.
- 2. It was very clear from the analysis above that sales level is correlated with profit levels. Discount was not correlated with sales.
- 3. In order to optimize its profit, the business will have to focus on improving its sales of Paper, Accessories, Copiers and Binders across all regions.
- 4. 'Laser focus' on key sub_categories already doing well in each region/city to rake in all the possible profits. That way the business does not spread its cost of sales too thin.

East- New York City(Machines, Phones, Chairs, Storage), Newark and Providence

West- Seattle and Los Angeles (Storage), Seattle(Tables)

Central- Lafayette and Springfield, Detroit(Chairs), Minneapolis and Jackson

South- Atlanta

- 5. Sub-categories like Table should focus only on the West like Seattle. The business may be able to sustain/better its profit levels for Tables if it focuses on this region and may take out the discounts- build organic sales(demand) for tables to see how that will impact profit levels. In the long run, how these factors play out will determine whether or not to keep selling the Tables sub_category or discontinue it as a whole.
- 6. For sub_categories like 'Supplies' where sales level are not too low but has a 'slightly negative' profit level, the business can explore taking out discounts and maintaining sales levels. The idea is that the business should be able to achieve break-even in the long run once the discounts