Shading

Computer Graphics Instructor: Sungkil Lee

Today

- Overview
- Light source and materials
- Phong illumination model
- Blinn-Phong illumination model
- Polygonal shading

Shading

Shading:

 is a process of altering the color of an object/surface/polygon in a 3D scene, based on how lights and materials interact.

Light-Material Interaction

Light-material interactions

- cause each point to have a different color or shade.
- Light reaching surfaces are partially absorbed, and some reflected.

• The color (or brightness) of an object

- The amounts of reflected lights
- For example, a surface appears red under white light, because the red component of the light is reflected and the rest absorbed.

Light Sources and Materials

Elements of Light-Material Interaction

Four elements on which light reflection depends:

- Light sources
- Surface materials (e.g., smoothness) of the object surfaces
 - Material indicates actually an internal atomic/molecular structure.
- Surface orientation: indicated by normal vectors
- Location of viewer: eye/camera position in our viewing

Abstract Modeling

Abstract modeling

- Light sources and surface materials are modeled as abstract forms.
- Location of viewer and surface orientation are used as they are.

• Example: general lights

- are hard to work with, because we must integrate light coming from all points on the source.
- Instead, we consider simpler models, which effectively abstracts general light sources.

Three simplified light source models

- Point light source
- Distant (or directional) light source
- Ambient light

Point light source

- Model with position and color.
- The light source position is a point.
- We may apply distance attenuation, inversely scaling with the square of distances from a light source to surface points.

Distant (directional) light source

- Infinite distance away (e.g., parallel sunlight)
- The light source has only a direction vector.
 - In case of HC (i.e., vec4), the last element w is 0.

Ambient light

- Same amount of light everywhere in a scene, like a shading offset
- Can model contribution of many sources and indirect reflections.

Direct

Indirect

Direct + Indirect

Ambient light

- Same amount of light everywhere in a scene, like a shading offset
- Can model contribution of many sources and indirect reflections.
- This, however, is significant approximation, and limited in practice.

Direct

Ambient

Direct + Ambient

Surface Materials

Microfacet model

- Surface are composed of many very tiny facets, each of which is a perfect specular reflector (i.e., mirror).
- The distribution of the microfacets or their normals determine the characteristics of surface reflection.

Types of Surface Materials

Specular/glossy surfaces

- Smooth surfaces show specular highlights.
- The smoother a surface is, the more reflected light is concentrated into the direction of a perfect mirror reflection.

Types of Surface Materials

Diffuse reflector

- A very rough surface scatters light equally in all directions.
- Amount of light reflected is proportional to the vertical component of incoming light.
- Ideal (or perfect) diffuse surfaces are called "Lambertian" surfaces.

Surface Materials

The types of surface materials

- Most surfaces are neither ideally rough or perfectly smooth.
- Hence, we decompose light source and surface materials, and combine them for the final shading.
- Phong illumination model implements this idea.

Phong Illumination Model

Phong Illumination Model

A simple empirical model that

- can be computed rapidly in the pipeline approach.
- the form does not have perfect physical justification.

• Three illumination components:

Ambient, diffuse, and specular

Phong Illumination Model

Uses four vectors

- To light source: I (a vector not from light source but to light source)
- To viewer: v
- Normal vector: n (will be discussed later in more details)
- Ideal perfect reflector: r

Perfect Reflector r

• While I and ${\bf n}$ are given, ${\bf r}$ needs to be computed

- Angle of incidence (θ_i) = angle of reflection (θ_r)
- The three vectors must be coplanar.
- The reflector is given as:

$$\mathbf{r} = 2(\mathbf{l} \cdot \mathbf{n})\mathbf{n} - \mathbf{l}$$

• Note: projection of l onto n is $(\mathbf{l} \cdot \mathbf{n})\mathbf{n}$

Ambient Reflections

Ambient reflections

- Amounts of reflected lights depend on both the color of the lights and the material properties (i.e., reflectance; \mathbf{k}_a) of the object.
- This is a coarse approximation to the secondary (indirect) reflections among the surfaces.

$$\mathbf{I}_{ra} = \mathbf{k}_a \mathbf{I}_a$$

Diffuse Reflections

Diffuse reflections

Similar to ambient reflection, but the angular attenuation is included here:

$$\mathbf{I}_{rd} = \max((\mathbf{l} \cdot \mathbf{n}) \mathbf{k}_d \mathbf{I}_d, 0)$$

- Angular attenuation (l · n):
 - amount of incoming light scales with the angle of incoming light.
 - reflected light $\approx \cos \theta_i = \mathbf{l} \cdot \mathbf{n}$

Diffuse Reflections

We can further incorporate distance attenuation,

$$\mathbf{I}_{rd} = \operatorname{att}(d) \cdot \max(\mathbf{k}_d(\mathbf{l} \cdot \mathbf{n})\mathbf{I}_d, 0)$$

Distant attenuation

• The light from a point source that reaches a surface is inversely proportional to the square of the distance (d)

$$\operatorname{att}(d) = \frac{1}{a + bd + cd^2} ,$$

- a, b, c are user-defined coefficients.
- The constant and linear terms (*a* and *b*) soften the effect of the point source

Specular Reflections

• Specular reflections (with distance attenuation):

$$\mathbf{I}_{rs} = \operatorname{att}(\mathbf{d}) \cdot \max(\mathbf{k}_{s} \mathbf{I}_{s} (\mathbf{r} \cdot \mathbf{v})^{\alpha}, 0)$$

- The ideal reflector r closer to the viewer direction v shines more.
- Hence, the angle between \mathbf{v} the \mathbf{r} can be a drop-off term.

$$\cos^{\alpha}\phi = (\mathbf{r} \cdot \mathbf{v})^{\alpha}$$

Putting them altogether

- For each light source and each color component,
 - the Phong model can be written (without distance terms) as:

$$\mathbf{I}_r = \mathbf{I}_{ra} + \mathbf{I}_{rd} + \mathbf{I}_{rs}$$

$$= \mathbf{k}_a \mathbf{I}_a + \max(\mathbf{k}_d (\mathbf{l} \cdot \mathbf{n}) \mathbf{I}_d, 0) + \max(\mathbf{k}_s (\mathbf{r} \cdot \mathbf{v})^{\alpha} \mathbf{I}_s, 0)$$

You can also include distance attenuation term to the model, if necessary.

Blinn-Phong Model: Efficient approximation to Phong Model

Modified Phong Model

The specular term in Phong model

calculates r and v for each vertex

$$\mathbf{k}_{S}(\mathbf{r}\cdot\mathbf{v})^{\alpha}\mathbf{I}_{S}$$

- recall that $\mathbf{r} = 2(\mathbf{l} \cdot \mathbf{n})\mathbf{n} \mathbf{l}$
- Blinn suggested an efficient approximation using the halfway vector.

The Halfway Vector

• The halfway vector h:

- A normalized vector halfway between I and v.
- When **v** is coplanar with **l**, **n**, and, **r**, we can show that $2\psi = \phi$.

$$\mathbf{h} = \frac{\mathbf{l} + \mathbf{v}}{|\mathbf{l} + \mathbf{v}|}$$

Blinn-Phong Model

The Blinn-Phong model can be written:

$$\mathbf{I'}_r = \mathbf{I}_{ra} + \mathbf{I}_{rd} + \mathbf{I'}_{rs}$$

$$= \mathbf{k}_a \mathbf{I}_a + \max(\mathbf{k}_d (\mathbf{l} \cdot \mathbf{n}) \mathbf{I}_d, 0) + \max(\mathbf{k}_s (\mathbf{n} \cdot \mathbf{h})^{\beta} \mathbf{I}_s, 0)$$

- Replace $(\boldsymbol{v} \cdot \boldsymbol{r})^{\alpha}$ with $(\boldsymbol{n} \cdot \boldsymbol{h})^{\beta}$
- β is chosen to match shininess α .
- This model has been a standard in the old-style OpenGL.

Polygonal Shading: Effects of Normal Vectors

Per-Face Normals

- Normal vectors usually indicate face (or per-face) normals.
 - Given 3 vertices, \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 , the *surface normal* is given as:

$$\mathbf{n} = (\mathbf{p}_1 - \mathbf{p}_0) \times (\mathbf{p}_2 - \mathbf{p}_0)$$

Discontinuity with Face Normals

- However, polygonal meshes is composed of discrete polygons (or triangles).
 - The discontinuity of per-face normals causes the discontinuity of shadings around the face boundaries. For example,

- So, it is better to use different normals:
 - which can be interpolated
 - either of per-vertex normals or per-fragment normals

(Per-) Vertex Normals

A vertex normal is the average of adjacent face normals.

- Physically, this does not make sense, but provides smoother shading by interpolating the normals of adjacent vertices.
- Hence, this is the default choice for normals in CG.
 - Saying just "normals" means vertex normals in practice in CG.

Three Polygonal Shading Methods

Shading implementation relies on:

- normals: either per-face or per-vertex normals
- interpolation: either colors or normals

There are three techniques

- Flat shading
- Gouraud shading
- Phong shading

Three Polygonal Shading Methods

Where shading is applied for each method with normals:

- Only Phong shading computes in FS, while the others in VS.
- Now, we see why we call vertex "shader."
 - Gouraud shading is computed in vertex shader.
 - It was a standard for fixed OpenGL pipeline (in old-style OpenGL).

Method	Input normals	Vertex shader	Interpolation in Rasterizer		Fragment shader
			from	to	
Flat	face normals	shading			
Gouraud	vertex normals	shading	vertex colors	fragment colors	
Phong	vertex normals		vertex normals	fragment normals	renormalizefragment normalsshading withrenormalized normals

Normals in Phong Shading

- Phong shading requires to re-normalize per-fragment normals.
 - Per-fragment normals are linearly interpolated by rasterizer, instead of spherical interpolation.
 - So, we need to make them have unit lengths.

Gouraud vs. Phong Shading

- Phong shading better preserves details, and much smoother than Gouraud shading.
 - This difference becomes larger with sharper specular reflections.

Gouraud vs. Phong Shading

- Phong shading better preserves details, and much smoother than Gouraud shading.
 - If highlights reside inside triangles (see the figure below), that would be missing in Gouraud shading.
 - Example: Blue highlight will be missing in shading of vertices.
 - On the other hand, Phong shading interpolates normals, and the perfragment highlights are captured well.

Phong Shading vs. Phong Illumination Model

- Phong shading and Phong illumination model are different.
 - Phong shading: shading using per-fragment normals
 - Phong illumination model: shading model with ambient, diffuse, specular components.