Classification Tree

- A data set containing sales of child car seats at 400 different stores.
- A data set with 400 observations on the following 11 variables.
- The variables are as follows:
- 1. Sales: Unit sales (in thousands) at each location.
- 2. CompPrice: Price charged by competitor at each location
- 3. Income: Community income level (in thousands of dollars)
- 4. Advertising: Local advertising budget for company at each location (in thousands of dollars)
- 5. Population: Population size in region (in thousands)

- 6. Price: Price company charges for car seats at each site
- 7. ShelveLoc: A factor with levels "Bad", "Medium" and "Good" indicating the quality of the shelving location.
- 8. Age: Average Age of the local population
- 9. Education: Education level at each location
- 10. Urban: A factor with levels "No" and "Yes" to indicate whether the store is in an urban or rural location
- 11. US: A factor with levels "No" and "Yes" to indicate whether the store is in the US or not.

- We now recode "Sales" as binary variable.
- We create a dummy variable "High", which takes on a value "Yes" if the sales exceed 8 (in thousands of units) and "No" otherwise.
- We will model "High" with the help of ten predictors.

Classification Tree

- A classification tree is very similar to a regression tree except that we try to make a prediction for a categorical response rather than continuous one.
- In a regression tree, the predicted response for an observation is given by the average response of the training observations that belong to the same terminal node.
- In a classification tree, we predict that each observation belongs to the most commonly occurring class of the training observations in the region to which it belongs.

Classification Tree

- The tree is grown in exactly the same manner as with a regression tree
- However in classification tree, minimizing MSE no longer makes sense.
- A natural alternative is classification error rate.
- The classification error rate is simply the fraction of the training observations in that region that do not belong to the most common class.
- There are several other different criteria available as well, such as the "gini index" and "cross-entropy".

- We split the observations into a training data set and a test data set.
- Both the training set and the test set contain 200 observations.
- We next build a tree using the training set, and then evaluate its performance based on the test data.

Carseats Data Set: Unpruned Tree

Confusion Matrix based on Test Data

	True High status			
Predicted High Status		No	Yes	Total
	No	88	28	116
	Yes	28	56	84
	Total	116	84	200

Sensitivity =
$$\frac{56}{84}$$
 = 66.67%
Specificity = $\frac{88}{116}$ = 75.86%
Total Error Rate = $\frac{56}{200}$ = 28%

Cross Validation

- We now consider whether pruning the tree leads to a better performance.
- We decide the optimal level of tree complexity using cross-validation.

Cross Validation

We select a tree with 9 terminal nodes.

Pruned Tree

Confusion Matrix based on Test Data for Pruned Tree

	True High status				
Predicted High Status		No	Yes	Total	
	No	94	24	118	
	Yes	22	60	82	
	Total	116	84	200	

Sensitivity =
$$\frac{60}{84}$$
 = 71.43%
Specificity = $\frac{94}{116}$ = 81.03%
Total Error Rate = $\frac{46}{200}$ = 23%

Trees vs. Linear Models

- Which model is better?
 - If the relationship between the predictors and response is linear, then classical linear models such as linear regression would outperform regression trees.
 - On the other hand, if the relationship between the predictors is non-linear, then decision trees would outperform classical approaches.

Trees vs. Linear Model: Classification Example

- Top row: The true decision boundary is linear
 - Left: linear model (Better)
 - Right: decision tree

- Bottom row: The true decision boundary is non-linear
 - Left: linear model
 - Right: decision tree (Better)

Advantages and Disadvantages of Decision Trees

Advantages:

- Trees are very easy to explain to people (even easier than linear regression).
- Trees can be plotted graphically, and hence can be easily communicated even to a non-expert.
- They work fine for both classification and regression problems.

Disadvantages:

• Trees don't have the same prediction accuracy as some of the more flexible approaches available in practice.