

Cloud Technologies - Containers

Mohamed Al Solh

alsolh@alsolh.com

Early History That Led to Containers

- 1960s it was common to have terminals connected to mainframes, one user was able to bring the whole server down when he runs an application on the mainframe
- 1979 chroot command introduced to change root directory for a process
- 1990s Bill Cheswick, a computer security and networking researcher have used chroot to study hackers behaviour, which gave the idea to use jail command

Evolution of Container Technology

- Jails were the first implementation in FreeBSD distribution using chroot
- LXC are still widely used and you can store files and install applications inside them, they are based on cgroups and namespaces, you can even run docker inside them
- Each docker container is designed to run a single application/process unlike LXC which can be considered as a lightweight VM but still uses the same kernel of the OS
- Early versions of docker used to use LXC

Brief History of Container Technology

Why to use a container

- Less overhead. Containers require less system resources than traditional or hardware virtual machine
- Increased portability. Applications running in containers can be deployed easily to multiple different operating systems
 - Containers allow a developer to package up an application with all of the artifacts it needs
- Isolating applications through containers
- Containers provide a consistent experience, as developers and system administrators move code from development environments into production in a fast and replicable way

Where containers stand in cloud terms

Cloud Platforms, their interfaces, and the scale of abstraction

Containers vs VMs

VMs	Containers
V 1V13	Containers
Heavyweight	Lightweight
Limited performance	Native performance
Each VM runs in its own OS	All containers share the host OS
Hardware-level virtualization	OS virtualization
Startup time in minutes	Startup time in milliseconds
Allocates required memory	Requires less memory space
Fully isolated and hence more secure	Process-level isolation, possibly less secur

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm https://blog.netapp.com/blogs/containers-vs-vms/

Traditional Deployment

Limitations of a container

- All containers are running inside the host system's kernel and not with a different kernel
- A container is not a full virtualization stack like Xen, KVM or libvirt
- Security depends on the host system

Why docker

- Easy to start with available tools for desktop
- Most github opensource projects have a guide on how to run their project in docker
- Huge repository of ready made images (docker hub) https://hub.docker.com/

Docker Server Installation

- If you are on windows, install docker desktop https://www.docker.com/products/docker-desktop
- Windows home install vmware workstation player and create an ubuntu virtual machine and install docker ce (community edition)
- If linux, follow https://docs.docker.com/engine/install/debian/, change the guide based on your distribution
- Docker run hello-world
- Docker Commands
 - https://dzone.com/articles/docker-images-and-containers
 - Docker log
 - Docker ssh login
 - Docker ps –a
 - -d option

Docker Cheat Sheet

• https://github.com/wsargent/docker-cheat-sheet

Why Kubernetes (k8s)

- You are now able to run a docker image, you will face challenges if you are running a production application, k8s does below:
 - Better management to limit resources for pods
 - Scale up and scale down easily with rules
 - load balancing
 - **Self-healing** Kubernetes restarts containers that fail, replaces containers, kills containers that don't respond to your user-defined health check, and doesn't advertise them to clients until they are ready to serve
 - Secret and configuration management Kubernetes lets you store and manage sensitive information, such as passwords, OAuth tokens, and SSH keys

Install K8s & 1 Sample Scenario

- https://www.techrepublic.com/article/how-to-add-kubernetessupport-to-docker-desktop/
- Scale
 - https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scaleinteractive/

Portainer

- You will use portainer to easily manage your docker containers running on your machine
- Portainer is another docker container running in your docker desktop environment
- Alternatively you can keep using command line but the web UI of portainer is very intuitive for development use
- https://gist.github.com/SeanSobey/344edd228922ffd4266ae7d45142
 1ab6

Dockerfile & Docker Compose

- Dockerfile https://dzone.com/articles/all-about-hibernate-manytomany-association
 - https://dzone.com/articles/understanding-dockerfile
- Docker Compose https://dzone.com/articles/docker-with-spring-boot-and-mysql-docker-compose-p
- Other Guides
 - https://dzone.com/articles/build-package-and-run-spring-boot-apps-with-docker
 - https://www.baeldung.com/dockerizing-spring-boot-application
 - https://dzone.com/articles/a-start-to-finish-guide-to-docker-with-java
 - https://dzone.com/articles/all-about-hibernate-manytomany-association

Home Work

- Install Docker Desktop
- Install Portainer
- Deploy the following docker images
 - CouchDB
 - Mosquitto
- Go through this tutorial to be more familiar with Dockerfile and docker compose as we will use them in upcoming homeworks which build your project
 - https://www.baeldung.com/dockerizing-spring-boot-application

Your Project from homeworks

