

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problem Mailbox.**

BUNDESREPUBLIK DEUTSCHLAND

NR 520662

J 11/15/95  
#2



**Bescheinigung**

Die HOECHST AKTIENGESELLSCHAFT in 65926 Frankfurt hat  
eine Patentanmeldung unter der Bezeichnung

"Verfahren zur Herstellung thermostabiler,  
farbneutraler, antimonfreier Polyester und  
die danach herstellbaren Produkte"

am 29. August 1994 beim Deutschen Patentamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue  
Wiedergabe der ursprünglichen Unterlagen dieser Patent-  
anmeldung.

Die Anmeldung hat im Deutschen Patentamt vorläufig die Sym-  
bole C 08 G 63/82, C 08 G 63/85, C 08 G 63/87, C 08 G 63/20  
und C 08 G 63/60 der Internationalen Patentklassifikation  
erhalten.

München, den 10. Juli 1995  
Der Präsident des Deutschen Patentamts

Im Auftrag

**Steck**

Aktenzeichen: P 44 30 634.2

Verfahren zur Herstellung thermoplastischer, farbneutraler, antimonsicher Polyester und die danach herstellbaren Produkte.

5 Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung thermoplastischer, farbneutraler, antimonsicher Polyester unter Verwendung eines Titan-Polykondensationskatalysators, das sehr gut reproduzierbar ist, eine sehr hohe Polykondensationsgeschwindigkeit auch bei sehr geringen Zusätzen des Titan-Polykondensationskatalysators aufweist, und bei dem sich eine erhebliche Verminderung des thermischen Abbaus und der unkontrollierten Vernetzung des gebildeten Polyesters ergibt, sowie die danach herstellbaren Produkte, die sich durch hervorragende Klarheit und Farbneutralität auszeichnen.

10 Polyester haben eine auf sehr vielen Anwendungsgebieten eine sehr große Bedeutung gewonnen. Insbesondere werden gesättigte Polyester für die Herstellung von Fasermaterialien aber auch von andersartigen Formkörpern, wie zum Beispiel von Getränkeflaschen in großem Umfang eingesetzt. Für eine einwandfreie Verarbeitbarkeit dieser Polyester durch Extrusionsverfahren und für die weitere Anwendung der Extrudate z.B. in der Textilindustrie oder Getränkeindustrie werden sehr hohe Anforderungen an die Qualität der Polyester gestellt. Insbesondere wird gefordert, daß die verarbeitungstechnischen und anwendungstechnischen Eigenschaften für bestimmte Verarbeitung eingesetzte Polyester typen innerhalb sehr enger Grenzen stets gleich sind. Für die Verarbeitung durch Extrusionsverfahren, z.B. durch Schmelzspinnen ist es von ausschlaggebender Bedeutung, daß sie ein stets gleichmäßiges Molekulargewicht und eine stets reproduzierbare Molekulargewichtsverteilung aufweisen, frei sind von Gel-Anteilen, und möglichst nicht zur Vergilbung oder zu thermischem Abbau neigen. Für die Weiterverarbeitung und für die Endanwendung ist es besonders wichtig, daß sie weitestgehend frei sind von toxischen Bestandteilen. So sollten sich bei Färbeprozessen möglichst keine Schwermetalle aus dem Fasermaterial herauslösen, da diese durch aufwendige Reinigungsoperationen aus dem Färbereiabwasser entfernt und

15

20

25

30

35

entsorgt werden müssen. Auch bei der Entsorgung oder Wiederverwertung (Recyclisierung) der gebrauchten Polyesterzeugnisse sollten sich keine Schwierigkeiten durch störende Bestandteile ergeben.

5 Die Herstellung von Polyestern erfolgt üblicherweise durch Veresterung aromatischer Dicarbonsäuren oder Umesterung niederer aliphatischer Ester aromatischer Dicarbonsäuren mit aliphatischen Diolen und anschließende Polykondensation bis das für den geplanten Einsatz erforderliche Molekulargewicht erreicht ist.

10 Eine eventuelle Umesterung wird in Gegenwart von Umesterungskatalysatoren ausgeführt, die nach Abschluß der Umesterung durch Zusatz von Komplexbildnern deaktiviert werden müssen. Als Komplexbildner werden meist Phosphorsäure, phosphorige Säure und/oder von Phosphonsäuren oder Derivate derselben eingesetzt.

15 Nach der Veresterung oder der Umesterung erfolgt die Polykondensation zu dem gewünschten Molekulargewicht, die ebenfalls in Gegenwart eines geeigneten Katalysators ausgeführt wird. Als Polykondensationskatalysator haben sich in der Großtechnik Antimonverbindungen, meist Antimontrioxid durchgesetzt.

20 Hierbei kann es vorkommen, daß ein Teil der Antimonverbindung durch reduzierende Agentien zu Antimonmetall reduziert wird, was zu einer Vergrauung des Polyesters führt. Daraus ergibt sich eine mangelhafte Klarheit und ein nicht neutraler Farnton.

25

30

35

z.B. beim Färben freigesetzt werden.

Es sind daher schon Vorschläge gemacht worden, die Nachteile des beschriebenen Herstellungsverfahrens zu beseitigen.

So ist es bekannt, den Farbtont der Polyester durch den Zusatz von Kobaltverbindungen und/oder optischen Aufhellern zu verbessern.

Es ist ferner bekannt, als Polykondensationskatalysator anstelle von Antimonverbindungen Titanverbindungen einzusetzen.

Weiterverarbeitung erheblich beeinträchtigen.  
Damit sind die Vorteile, die das Verfahren an sich bietet, nicht immer realisierbar.

Aus verschiedenen Druckschriften, beispielsweise der US-A-3,962,189, der JP-PS-28006 (1979), der JP-PS-123311 (1976), der JP-PS-43564 (1979), der JP-PS-111985 (1980) oder der JP-PS-280048 (1989) ist ein Verfahren zur Herstellung von Polyestern bekannt, bei dem zur Verbesserung des Farbtones des Polyesters eine Kobaltverbindung zugesetzt wird, die - wie der Umesterungskatalysator - vor Beginn der Polykondensation komplexiert werden muß, und bei dem die Polykondensation in Gegenwart einer Titanverbindung durchgeführt wird. Die Menge des zur Komplexbildung des Kobaltzusatzes eingesetzten Komplexbildners soll nach diesen Druckschriften im Bereich von 0,5 bis 7,5 Mol pro Mol Kobaltverbindung liegen.

So wird in der JP-PS-28006 ein P/Co-Verhältnis von 0,5 bis 1,5, in der JP-PS 111985 von 0,7 bis 3, in der JP-PS-280048 von 0,5 bis 7,5 [mol/mol] angewendet.

Dieses bekannte Verfahren, hat den erheblichen Vorteil, daß alle mit der Verwendung von Antimonverbindungen verbundenen Nachteile entfallen und daß es damit tatsächlich gelingen kann farbneutrale und klare Polyester zu erzeugen, die sich für anspruchsvolle Verarbeitungsverfahren und Anwendungen eignen.

Ein Nachteil dieses bekannten Verfahrens besteht allerdings darin, daß seine Reproduzierbarkeit zu wünschen übrig läßt. So werden gelegentlich nicht die gewünschten Produkte erhalten, sondern es kommt zu Störungen der Polykondensationsreaktion, die erforderlichen Molekulargewichte werden nicht erreicht und bei einer für erforderlich gehaltenen Verlängerung der Polykondensionsdauer kommt es zu Vergilbung des Polyesters, zur Bildung von Gel-Anteilen durch unkontrollierte Vernetzung und zur thermischen Empfindlichkeit der Produkte die die

Es sind daher schon Vorschläge gemacht worden, die Nachteile des beschriebenen Herstellungsverfahrens zu beseitigen.  
So ist es bekannt, den Farbtont der Polyester durch den Zusatz von Kobaltverbindungen und/oder optischen Aufhellern zu verbessern.

Es ist ferner bekannt, als Polykondensationskatalysator anstelle von Antimonverbindungen Titanverbindungen einzusetzen.

5 Es wurde nun gefunden, daß es überraschenderweise gelingt, 10 Diolen und anschließende Polykondensation, wenn eine eventuelle Umesterung in Gegenwart von 20 bis 120 ppm, bezogen auf das Katalysatormetall, eines Umesterungskatalysators, vorzugsweise von Mangan in Form einer Manganverbindung, ausgeführt wird, nach Abschluß der Veresterung oder Umesterung dem Veresterungs- oder Umesterungsansatz 15 100 % der zu dem eingesetzten Umesterungskatalysator äquivalenten Menge und bis zu 99 % der zu dem einzusetzenden Kobaltäquivalenten Menge von Phosphorsäure, phosphoriger Säure und/oder von Phosphonsäuren einem Derivat derselben als Komplexierungsmittel zugefügt wird, dann dem Ansatz 0 bis 80 ppm Kobalt, in Form einer Kobaltverbindung zugefügt werden, und die Polykondensation ohne Antimonzusatz in Gegenwart von 20 bis 10 ppm Titan, das in Form einer Titanverbindung zugesetzt wird, und ggf. in Gegenwart von bis zu 1000 ppm vernetzende Baugruppen liefernden organischen Verbindungen 25 und ggf. bis zu 50 ppm eines optischen Aufhellers ausgeführt wird.

Geeignete Umesterungskatalysatoren sind aus der Literatur bekannt. Beispieleweise eignen sich für das erfundungsgemäße Verfahren Verbindungen von Metallen der Gruppen Ia (z.B. Li, Na, K), IIa (z.B. Mg, Ca) und VIIA (z.B. Mn) des Periodensystems, insbesondere solche, die eine gewisse Löslichkeit in dem Umesterungsansatz haben, wie z.B. Salze organischer Säuren.

35

Bevorzugt sind Salze der Gruppe VIIA, insbesondere des Mangans, mit niederen aliphatischen Karbonsäuren, insbesondere der Essigsäure.

5 Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht daher darin daß eine eventuelle Umesterung in Gegenwart von 20 bis 120 ppm Mangan (gerechnet als Metall), in Form einer Manganverbindung, insbesondere von Manganazetat, ausgeführt wird.

10 Die zur Verbesserung des Farbtöns des Polyesters zugesetzte Kobaltverbindung ist zweckmäßigerweise ebenfalls ein Salz des Kobalts mit einer organischen Säure, beispielsweise mit Essigsäure oder Adipinsäure.

Die Mindestmenge der Kobaltverbindung richtet sich nach dem Ausmaß der Farbverschiebung, die im Einzelfall erforderlich ist, um einen neutralen Farbton zu erreichen. Werden zusätzlich optische Aufheller zu Farbkorrektur eingesetzt, so kann naturgemäß die Menge der Kobaltverbindung reduziert werden.

In der Regel liegt die erforderliche Menge des Kobaltzusatzes, wie oben angegeben, bei maximal 50 ppm (gerechnet als Metall), stets bezogen auf das Gewicht des Polyesters.

Vorzugweise werden dem Ansatz 20 bis 40 ppm Kobalt, in Form einer Kobaltverbindung zugefügt, d.h. es wird eine solche Menge der Kobaltverbindung zugesetzt, die einer Menge von 20 bis 40 ppm freiem Kobalt entspricht.

Wie bei herkömmlichen Verfahren wird auch beim erfindungsgemäßen der Umesterungskatalysator vor Beginn der Polykondensation durch Zusatz eines Komplexbildners inaktiviert, weil andernfalls die Polykondensation behindert wird, d.h. die erforderlichen hohen Molekulargewichte der Polyester nicht erreicht werden können und darüberhinaus der erhältene Polyester eine erhöhte Empfindlichkeit gegen thermische Belastung hat. Vereinzelt sind auch die vor der Polykondensation zugesetzten Kobaltverbindungen komplexiert worden um die thermische Stabilität der hergestellten Polyester zu verbessern.

Für das erfindungsgemäße Verfahren ist es nun wesentlich, das auf keinen Fall die gesamte zugesetzte Menge der Kobaltverbindung inaktiviert werden darf, sondern daß 1 bis 10 % der zugesetzten Kobaltverbindung unkomplexiert bleiben.

5 Die Menge des Komplexbildners wird daher so bemessen daß der Umesterungskatalysator zu 100 % durch Komplexierung deaktiviert wird, aber nur 90 bis 99 % der Kobaltverbindung kompliziert werden.

- 10 Sofern das Komplexierungsvermögen eines Komplexbildners genau bekannt ist, kann man einfach 90 bis 99 % der zu der Kobaltmenge äquivalenten Menge des Komplexbildners einsetzen. In der Regel ist es jedoch zweckmäßiger, die erforderliche Menge des Komplexbildners durch Vorversuche zu ermitteln. Hierzu werden beispielsweise einige Probeansätze des Polykondensationsansatzes, die alle die gleich Zusammensetzung wie ein geplanter Hauptansatz haben, mit von etwa 80% bis 120% der theoretisch erforderlichen Menge des Komplexbildners versetzt und dann unter den gleichen Bedingungen polykondensiert.
- 15 Nach Abschluß der Polykondensationsreaktion wird von allen Ansätzen die erreichte Viskosität (d.h. des erreichte Molekulargewicht) ermittelt. Die Ergebnisse einer solchen Vorversuchsreihe sind in der Figur dargestellt. Dort sind die erreichten Viskositäten gegen das Verhältnis von Komplexbildner zu Kobaltverbindung (z.B. das P/Co-Verhältnis) in einem Koordinatensystem aufgetragen.
- 20 Man erkennt, daß bei einem zu hohen P/Co-Verhältnis nur geringe Viskositäten, d.h. niedrige Molekulargewichte erreicht werden können. unterhalb einer bestimmten Grenze des P/Co-Verhältnisses steigen die erreichten Molekulargewichte an.
- 25 Der Kreuzungspunkt zwischen dem flach verlaufenden und dem ansteigenden Kurvenast kennzeichnet das äquivalente P/Co-Verhältnis.
- 30 Dem Hauptansatz werden dann bis zu 99 % der so ermittelten Menge des Komplexbildners zugesetzt.
- 35 Besonders vorteilhaft ist es, wenn nach Abschluß der Veresterung

oder Umesterung dem Veresterungs- oder Umestuerungsansatz 100 % der zu dem eingesetzten Umestuerungskatalysator äquivalenten Menge und 90 bis 99 % der zu dem einzusetzenden Kobalt äquivalenten Menge von Phosphorsäure, phosphoriger Säure und/oder von Phosphonsäuren einem Derivat derselben als Komplexierungsmittel zugefügt wird.

Die Maßnahme, die zugesetzten Kobaltverbindungen nur teilweise zu desaktivieren, führt überraschenderweise zu einer drastischen Verbesserung der Reproduzierbarkeit des Verfahrens, es ergibt sich eine sehr hohe Polykondensationsgeschwindigkeit auch bei sehr geringen Zusätzen des Titan-Polykondensationskatalysators, eine erhebliche Verminderung des thermischen Abbau und der unkontrollierten Vernetzung des gebildeten Polyesters mit der Konsequenz, daß keine Vergilbung und keine Gelbildung eintritt. Bei der erfindungsgemäßen Reaktionsführung kommt man daher auch mit geringeren Schöhnungszusätzen aus und erreicht eine einwandfrei Verarbeitbarkeit. Die erhaltenen Polyester entsprechen höchsten Qualitätsanforderungen bezüglich Klarheit und Farbneutralität.

Als Komplexbildner eignen sich für das erfindungsgemäße Verfahren grundsätzlich alle als Komplexbildner und Inaktivatoren für Umestuerungskatalysatoren bekannte Verbindungen. Als besonders gut geeignet haben sich phosphorhaltige Verbindungen erwiesen, wie z.B. Phosphorsäure, Polyphosphorsäure, phosphorige Säure und Phosphonsäuren und Derivate derselben. Spezielle Beispiele für Phosphorsäure-Derivate sind die "P(M-Ester", das sind Mischungen von oxalkylierten Alkyl-hydroxyalkyl-phosphorsäureestern der Formel I oder Phosphonsäureester der Formel II.

$O=P(OR_1)_2-PO-R^1-COOE'$  (I),  
worin die Reste R<sup>1</sup> gleiche oder verschiedene Alkyl-, Hydroxylalkyl- oder alkoxylierte Hydroxylalkylreste sind.

(R<sup>2</sup>O)<sub>n</sub>-PO-R<sup>1</sup>-COOK' (II),  
worin R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> Alkylreste sind.

- Als Polykondensationskatalysator werden beim erfindungsgemäßen Verfahren Titanverbindungen eingesetzt. Geeignet sind im Prinzip alle für diesen Zweck bereits beschriebenen Titanverbindungen, insbesondere Kaliumtitanoxalat oder Titaniscopropylat.
- 5 Besonders bevorzugt ist es, die Polykondensation ohne Antimonzusatz in Gegenwart von 1 bis 10 ppm Titan bis zu einer IV, gemessen in Dichloressigsäure bei 25°C, von 0,4 bis 0,9 dl/g, vorzugsweise von 0,5 bis 0,7 dl/g, und bis zu einer Carboxylgruppenkonzentration von 10 bis 50 mmol/kg, vorzugsweise von 10 bis 40 mmol/kg, in der Schmelze, und anschließend bis zu der gewünschten Endviskosität in der Festphase auszuführen.
- 10 Die Endviskosität der erfindungsgemäßen Polyester soll im Bereich von 0,7 bis 2,0 dl/g, vorzugsweise von 0,7 bis 1,5 dl/g, gemessen unter den oben angegebenen Bedingungen, liegen. Die Polykondensionsdauer und die Polykondensationstemperatur werden in bekannter Weise so reguliert, daß die gewünschte Endviskosität erreicht wird.
- 15 In der Regel wird die Polykondensation wie in der Technik der Polyesterherstellung üblich, je nach Art des Polyesters bei einer Temperatur von 260 bis 350 °C, vorzugsweise unter einem indifferenten Gas, beispielsweise unter Stickstoff, und/oder unter verminderter Druck, der im Bereich von 0,2 bis 10 mbar, vorzugsweise von 0,4 bis 5 mbar, liegt, ausgeführt.
- 20 Zur Einstellung bestimmter Polyester Eigenschaften, wie z.B. der Schmelzviskosität, kann es erwünscht sein, einen definierten Grad von Vernetzung herbeizuführen.
- 25 Zu diesem Zweck wird die Polykondensation ohne Antimonzusatz in Gegenwart von 2-8 ppm Titan und in Gegenwart von bis zu 1000 ppm, vorzugsweise von 100 bis 500 ppm, vernetzende Baugruppen liefernden organischen Verbindungen (Vernetzern) ausgeführt.
- 30 35 Als Vernetzer dienen Verbindungen, die mindestens drei funktionelle, zur Esterbildung befähigte Gruppen aufweisen. Zur Esterbildung befähigte funktionelle Gruppen sind die OH-Gruppe,

die Carboxylgruppe, Alkoxykarbonyl, insbesondere Niederalkoxykarbonyl, die Carbonsäureanhydrid-Gruppe, und von diesen abgeleitete reaktive Gruppen. Beispiele für gängige Vernetzer sind Pentaerythrit, Trimethylolpropan, Trimesinsäure, Pyromellithsäure u.dgl.

Zur weiteren Verbesserung des Farbtöns des Polyesters und zur Einsparung eines Teils des Kobalts hat es sich als zweckmäßig erwiesen, die Polykondensation ohne Antimonzusatz in Gegenwart von bis zu 50 ppm, vorzugsweise von 5 bis 25 ppm eines optischen Aufhellers auszuführen.

Selbstverständlich ist die chemische Zusammensetzung der Polyester für deren Eigenschaften von höchster Bedeutung. Zur Herstellung von Polyestern, die für die oben genannten Einsatzzwecke geeignet sind werden unter den für das erfundungsgemäße Verfahren oben genannten Bedingungen

80 bis 100 Mol.-% aromatische Dicarbonsäuren der Formel III  
 $\text{HOOC-X-COOH}$  (III)  
 oder deren niedere aliphatische Ester und  
 0 bis 20 Mol.-% aromatische Hydroxycarbonsäuren der Formel IV  
 $\text{HO-X'-COOH}$  (IV)

oder deren niedere aliphatische Ester  
 mit Diolen der Formel V  
 $\text{HO-Y-OH}$  (V)

verestert oder umgesärtet, wobei X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu mehr als 80 Mol.-% aromatische Reste mit 5 bis 16, vorzugsweise 6 bis 12 C-Atomen und maximal 20 Mol.-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen, X', den p-Phenylenrest,

Y, bezogen auf die Gesamtmenge der um- oder veresterten Diole, zu mindestens 90 Mol.-% Alkylen- oder Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und zu maximal 10 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n für die Zahlen 1 oder 2 steht, bedeutet.

Die aromatischen Reste, für die X und X' stehen, können unsubstituiert sein oder, sofern bestimmte Eigenschaften des

Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und zu maximal 20 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n eine ganze Zahl von 1 bis 40 bedeutet, wobei n = 1 oder 2 für Anteile bis zu 20 Mol.-% bevorzugt sind und Gruppen mit n = 10 bis 40 vorzugsweise nur in Anteilen von unter 5 Mol.-% vorhanden sind.

10 Besonders bevorzugt ist es, die Auswahl der Ausgangsmaterialien so zu treffen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 90 bis 100 Mol.-% p-Phenylenreste, zu 0 bis 7 Mol.-% m-Phenylenreste und zu 0 bis 5 Mol.-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen

X', den p-Phenylenrest, Y, bezogen auf die Gesamtmenge der um- oder veresterten Diole, zu mindestens 90 Mol.-% Alkylen- oder Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und zu maximal 10 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n für die Zahlen 1 oder 2 steht, bedeutet.

Besonders bevorzugt ist es, bei dem erfundungsgemäßen Verfahren keine Hydroxycarbonsäure der Formel IV einzusetzen und die Carbonsäurekomponente der Formel III so zu wählen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 93 bis 99 Mol.-%, vorzugsweise 95 bis 98 Mol.-% p-Phenylenreste, zu 1 bis 7 Mol.-%, vorzugsweise 2 bis 5 Mol.-%, m-Phenylenreste bedeutet.

Die aromatischen Reste, für die X und X' stehen, können unsubstituiert sein oder, sofern bestimmte Eigenschaften des

15 Besonders bevorzugt ist es, die Auswahl der Ausgangsmaterialien so zu treffen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 90 bis 100 Mol.-% p-Phenylenreste, zu 0 bis 7 Mol.-% m-Phenylenreste und zu 0 bis 5 Mol.-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen

X', den p-Phenylenrest, Y, bezogen auf die Gesamtmenge der um- oder veresterten Diole, zu mindestens 90 Mol.-% Alkylen- oder Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und zu maximal 10 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n für die Zahlen 1 oder 2 steht, bedeutet.

Besonders bevorzugt ist es, bei dem erfundungsgemäßen Verfahren keine Hydroxycarbonsäure der Formel IV einzusetzen und die Carbonsäurekomponente der Formel III so zu wählen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 93 bis 99 Mol.-%, vorzugsweise 95 bis 98 Mol.-% p-Phenylenreste, zu 1 bis 7 Mol.-%, vorzugsweise 2 bis 5 Mol.-%, m-Phenylenreste bedeutet.

Die aromatischen Reste, für die X und X' stehen, können unsubstituiert sein oder, sofern bestimmte Eigenschaften des

20 Besonders bevorzugt ist es, die Auswahl der Ausgangsmaterialien so zu treffen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 90 bis 100 Mol.-% p-Phenylenreste, zu 0 bis 7 Mol.-% m-Phenylenreste und zu 0 bis 5 Mol.-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen

X', den p-Phenylenrest, Y, bezogen auf die Gesamtmenge der um- oder veresterten Diole, zu mindestens 90 Mol.-% Alkylen- oder Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und zu maximal 10 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n für die Zahlen 1 oder 2 steht, bedeutet.

Besonders bevorzugt ist es, bei dem erfundungsgemäßen Verfahren keine Hydroxycarbonsäure der Formel IV einzusetzen und die Carbonsäurekomponente der Formel III so zu wählen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 93 bis 99 Mol.-%, vorzugsweise 95 bis 98 Mol.-% p-Phenylenreste, zu 1 bis 7 Mol.-%, vorzugsweise 2 bis 5 Mol.-%, m-Phenylenreste bedeutet.

Die aromatischen Reste, für die X und X' stehen, können unsubstituiert sein oder, sofern bestimmte Eigenschaften des

25 Besonders bevorzugt ist es, die Auswahl der Ausgangsmaterialien so zu treffen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 90 bis 100 Mol.-% p-Phenylenreste, zu 0 bis 7 Mol.-% m-Phenylenreste und zu 0 bis 5 Mol.-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen

X', den p-Phenylenrest, Y, bezogen auf die Gesamtmenge der um- oder veresterten Diole, zu mindestens 90 Mol.-% Alkylen- oder Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und zu maximal 10 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n für die Zahlen 1 oder 2 steht, bedeutet.

Besonders bevorzugt ist es, bei dem erfundungsgemäßen Verfahren keine Hydroxycarbonsäure der Formel IV einzusetzen und die Carbonsäurekomponente der Formel III so zu wählen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 93 bis 99 Mol.-%, vorzugsweise 95 bis 98 Mol.-% p-Phenylenreste, zu 1 bis 7 Mol.-%, vorzugsweise 2 bis 5 Mol.-%, m-Phenylenreste bedeutet.

Die aromatischen Reste, für die X und X' stehen, können unsubstituiert sein oder, sofern bestimmte Eigenschaften des

30 Besonders bevorzugt ist es, die Auswahl der Ausgangsmaterialien so zu treffen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu mehr als 80 Mol.-% aromatische Reste mit 5 bis 16, vorzugsweise 6 bis 12 C-Atomen und maximal 20 Mol.-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen, X', den p-Phenylenrest,

Y, bezogen auf die Gesamtmenge der um- oder veresterten Diole, zu mindestens 90 Mol.-% Alkylen- oder Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und zu maximal 10 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n für die Zahlen 1 oder 2 steht, bedeutet.

Besonders bevorzugt ist es, bei dem erfundungsgemäßen Verfahren keine Hydroxycarbonsäure der Formel IV einzusetzen und die Carbonsäurekomponente der Formel III so zu wählen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 93 bis 99 Mol.-%, vorzugsweise 95 bis 98 Mol.-% p-Phenylenreste, zu 1 bis 7 Mol.-%, vorzugsweise 2 bis 5 Mol.-%, m-Phenylenreste bedeutet.

Die aromatischen Reste, für die X und X' stehen, können unsubstituiert sein oder, sofern bestimmte Eigenschaften des

35 Besonders bevorzugt ist es, die Auswahl der Ausgangsmaterialien so zu treffen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu mehr als 80 Mol.-% aromatische Reste mit 5 bis 16, vorzugsweise 6 bis 12 C-Atomen und maximal 20 Mol.-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen

X', den p-Phenylenrest, Y, bezogen auf die Gesamtmenge der um- oder veresterten Diole, zu mindestens 90 Mol.-% Alkylen- oder Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und zu maximal 10 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n für die Zahlen 1 oder 2 steht, bedeutet.

Besonders bevorzugt ist es, bei dem erfundungsgemäßen Verfahren keine Hydroxycarbonsäure der Formel IV einzusetzen und die Carbonsäurekomponente der Formel III so zu wählen, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 93 bis 99 Mol.-%, vorzugsweise 95 bis 98 Mol.-% p-Phenylenreste, zu 1 bis 7 Mol.-%, vorzugsweise 2 bis 5 Mol.-%, m-Phenylenreste bedeutet.

Die aromatischen Reste, für die X und X' stehen, können unsubstituiert sein oder, sofern bestimmte Eigenschaften des

Polyesters modifiziert werden sollen, einen oder zwei Substituenten tragen.  
Vorzugsweise sind die Reste überwiegend unsubstituiert, d.h. nicht mehr als 10 Mol% der aromatischen Reste tragen 5 Substituenten. Der genaue Anteil substituierter Reste wird festgelegt entsprechend dem zu erzielenden Effekt.  
Als Substituenten kommen vorzugsweise die Methylgruppe und die Sulfonsäuregruppe infrage.

Neben den oben genannten Ausgangsmaterialien können bis zu 10 Mol%, vorzugsweise bis zu 7 Mol% anderer cokondensierbarer Verbindungen in den Polyester einkondensiert werden, wenn bestimmte spezielle Eigenschaften gewünscht werden.  
Beispielsweise können nach dem erfundungsgemäßen Verfahren schwer entflammbare Polyester hergestellt werden, wenn man in den Polyester, bezogen auf die Gesamtheit der einkondensierten Dicarbonsäure und ggf. Hydroxycarbonsäuren, 1 bis 10 Mol% der aus den DE-C-23 46 787 und 24 54 189 bekannten Verbindungen einkondensiert, die Polyesterbaugruppen der Formel VI



liefern, worin

R ein gesättigter offenkettiger oder cyclischer Alkyl-, Arylen- oder Aralkylenrest, vorzugsweise Alkan-diyyl mit 2 bis 6 C-Atomen, Cycloalkan-diyyl mit 6 C-Atomen, Methylen-phenyl oder Phenyl, insbesondere Ethylen, und ein Alkyrest mit bis zu 6 C-Atomen oder ein Aryl- oder Aralkyrest, vorzugsweise Alkyl mit 1 bis 6 C-Atomen, oder Aryl oder Aralkyl mit 6 bis 7 C-Atomen, insbesondere Methyl, Ethyl, Phenyl oder Benzyl bedeuten.

Den Veresterungs-Umesterungs oder Polykondensationsansätzen können bis zu 10 Gew% von Modifizierungszusätzen, Füllmitteln, Pigmenten, Farbstoffen, Antioxydantien, Hydrolyse-, Licht- und

Temperatur-Stabilisatoren und/oder Verarbeitungshilfsmitteln zugefügt werden, soweit diese Zusätze den Titankatalysator nicht inhibieren.  
Bevorzugt ist beim erfundungsgemäßen Verfahren insbesondere der Zusatz von bis zu 10 Gew%, vorzugsweise bis zu 5 Gew.-% Polyesterstabilisatoren, die den Polyesteranteil der Mischung gegen Hydrolyse und thermischen Abbau schützen.

Besonders vorteilhaft als Stabilisatoren sind solche Verbindungen, die mit endständigen Carboxylgruppen des Polyesters zu nichtsauren Endgruppen reagieren können, wie beispielsweise Glycidylether, Ketenimine, Aziridine, Isocyanate. Besonders vorteilhaft als Stabilisatoren sind Carbodiimide und Polycarbodiimide, insbesondere wenn sie in Kombination miteinander eingesetzt werden.

Ein Gegenstand der vorliegenden Erfindung sind auch die nach dem oben beschriebenen Verfahren herstellbaren Polyester auf Basis aromatischer Dicarbonsäuren und aliphatischer Diole, die sich dadurch auszeichnen, daß im unmattierten Zustand ihre Farbzahlkomponenten

a\* im Bereich von -3 bis +3, vorzugsweise von -2 bis +2,  
b\* im Bereich von -6 bis +6, vorzugsweise von -3,5 bis +3,5 und L\* im Bereich von 55 bis 75, vorzugsweise von 60 bis 70 liegen.

Weiterhin ist der erfundungsgemäße Polyester dadurch gekennzeichnet, daß er frei ist von Antimon, 1 bis 10 ppm Titan (gerechnet als Metall), 20 bis 120 ppm eines Umesterungskatalysatormetalls in Form katalytisch unwirksamer Komplexe mit Phosphorsäure, phosphoriger Säure und/oder Phosphonsäuren oder einem Derivat derselben,

und 0 bis 80 ppm Kobalt (gerechnet als Metall), das teilweise in Form katalytisch unwirksamer Komplexe mit Phosphorsäure, phosphoriger Säure und/oder Phosphonsäuren

oder einem Derivat derselben vorliegt, und ggf. bis zu 50 ppm eines optischen Aufhellers enthält.

Vorzugsweise ist der erfindungsgemäße Polyester frei von Antimon, und enthält

5 2 bis 8 ppm Titan (gerechnet als Metall), 50 bis 90 ppm Mangan (gerechnet als Metall) in Form katalytisch unwirksamer Komplexe mit Phosphorsäure, phosphoriger Säure und/oder Phosphonsäuren oder einem Derivat derselben,

10 und 20 bis 40 ppm Kobalt, das teilweise in Form katalytisch unwirksamer Komplexe mit Phosphorsäure, phosphoriger Säure und/oder Phosphonsäuren oder einem Derivat derselben vorliegt, und ggf. bis zu 25 ppm eines optischen Aufhellers.

15 Weiterhin ist es bevorzugt, daß 90 bis 99 % des Kobalts in Form katalytisch unwirksamer Komplexe mit Phosphorsäure, phosphoriger Säure und/oder Phosphonsäuren oder einem Derivat derselben vorliegt und/oder daß er 5 bis 25 ppm eines optischen Aufhellers enthält.

20 Die katalytisch unwirksamen Komplexe des Umesterungskatalysators, vorzugsweise des Mangans, und des Kobalts können im Prinzip alle für die Inaktivierung dieser Metalle bekannten Komplexbildner enthalten. Bevorzugt sind die katalytisch unwirksamen Komplexe des Umesterungskatalysators, insbesondere des Mangans, und Kobalts mit Phosphorsäure, Polyphosphorsäure oder insbesondere phosphoriger Säure oder einem Derivat, insbesondere einem Ester dieser Säuren.

25 Von besonderer Bedeutung für die Gesamtheit der technischen Merkmale ist natürlich auch die Struktur der Polyesterkette. Rein qualitativ ist zu sagen, daß sie aus den in bekannten faserbildenden Polyestern üblichen Baugruppen aufgebaut sind.

Dicarbonsäurebausteine sind die zweiseitigen Reste von Benzoldicarbonsäuren, insbesondere der Terephthalsäure und der Isophthalsäure; gängige Diole haben 2-4 C-Atome, wobei das Ethylenglycol besonders geeignet ist. Vorzugsweise enthalten modifizierte Polyester mindestens 80 Mol-% Ethylenterephthalat-Einheiten. Die restlichen 20 Mol-% bauen sich dann aus Dicarbonsäureeinheiten und Glycoleinheiten auf, die als sogenannte Modifizierungsmittel wirken und die es dem Fachmann gestatten, die physikalischen und chemischen Eigenschaften des aus den Polyestern hergestellten Erzeugnisses, wie z.B. Filamente und Verpackungsmaterialien (z.B. Getränkeflaschen), gezielt zu beeinflussen. Beispiele für solche Dicarbonsäureeinheiten sind Reste der Isophthalsäure oder von aliphatischen Dicarbonsäuren wie z.B. Glutarsäure, Adipinsäure, Sebazinsäure; Beispiele für modifizierend wirkende Diolreste sind solche von längerkettigen Diolen, z.B. von Propandiol oder Butandiol, von Di- oder Triethylenglycol oder, sofern in geringer Menge vorhanden, von Polyglycol mit einem Molgewicht von ca. 500 - 2000.

10 Im einzelnen sind erfundungsgemäße Polyester bevorzugt, deren Polymerketten aus

15 80 bis 100 Mol.-% Baugruppen der Formel VI

20 25

25

30

35

(VI)

(VII)

und 20 bis 0 Mol.-% Baugruppen der Formel VII

aufgebaut sind, worin X zu mehr als 80 Mol.-% aromatische Reste mit 5 bis 16, vorzugsweise 6 bis 12 C-Atomen und maximal 20 Mol.-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen,

Überwiegend, d.h. zu mindestens 80 Mol.-%, bestehen sie aus Bausteinen, die sich von aromatischen Dicarbonsäuren und von aliphatischen Diolen ableiten. Gängige aromatische

- vorzugsweise 6 bis 8 Kohlenstoffatomen,  
X<sup>1</sup> den p-Phenylrest  
Y zu mindestens 80 Mol.-% Alkylen- oder  
Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder  
Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10  
C-Atomen und  
zu maximal 20 Mol.-% geradkettiges oder verzweigtes  
Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder  
Reste der Formel -(C<sub>2</sub>H<sub>4</sub>-O)<sub>n</sub>-C<sub>6</sub>H<sub>4</sub>-, worin n eine ganze Zahl von  
1 bis 40 bedeutet, wobei n = 1 oder 2 für Anteile bis zu 20  
Mol.-% bevorzugt sind und Gruppen mit n = 10 bis 40  
vorzugsweise nur in Anteilen von unter 5 Mol.-% vorhanden  
sind.
- 15 Besonders bevorzugt sind erfindungsgemäße Polyester, die aus  
Baugruppen der Formel IV bestehen worin  
X zu 90 bis 100 Mol-% p-Phenylresten, zu 0 bis 7 Mol-% m-  
Phenylresten und zu 0 bis 5 Mol-% aliphatische Reste mit 4  
bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8  
Kohlenstoffatomen  
Y zu mindestens 90 Mol.-% Alkylen- oder  
Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder  
Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10  
C-Atomen und  
zu maximal 10 Mol.-% geradkettiges oder verzweigtes  
Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder  
Reste der Formel -(C<sub>2</sub>H<sub>4</sub>-O)<sub>n</sub>-C<sub>6</sub>H<sub>4</sub>-, worin n für die Zahlen 1  
oder 2 steht, bedeutet.  
Insbesondere sind solche erfindungsgemäßen Polyester bevorzugt,  
die aus Baugruppen der Formel IV bestehen worin  
X zu 93 bis 99 Mol-% p-Phenylresten, und zu 1 bis 7 Mol-% m-  
Phenylreste bedeutet.
- 25 Häufig ist es zweckmäßig, einen definierten Vernetzungsgrad des  
Polyesters einzustellen. In diesen Fällen ist es bevorzugt, daß  
der Polyester bis zu 1000 ppm der oben angegebenen vernetzenden  
Baugruppen enthält.
- 35 Auch die Reste, für die Y steht, können im Rahmen der gegebenen  
Definition alle gleich sein, oder sie können verschieden sein.  
Insbesondere können die oben genannten, von X repräsentierten

- zweckmäßigerweise haben die erfindungsgemäßigen durch Schmelze-  
polykondensation hergestellten Polyester eine intrinsische  
Viskosität (IV) von 0,600 bis 0,900 gemessen in Dichloressigsäure  
bei 25°C.
- 5 Vorzugsweise enthalten Polyester, die Baugruppen der Formel VII  
aufweisen, 70 bis 100 Mol.-%, insbesondere 85 bis 100 Mol.-%  
Baugruppen der Formel VI und 0 bis 30 Mol.-%, insbesondere 0 bis  
15 Mol.-%, Baugruppen der Formel VII.
- 10 Die aromatischen Reste, für die X steht, können im Rahmen der  
gegebenen Definition alle gleich sein, oder sie können  
verschieden sein.  
Insbesondere können die oben genannten, von X repräsentierten  
Baugruppen, die zu mindestens 80 Mol.-% die Polyesterkette  
bilden, einzeln oder gemischt in der Polyesterkette vorliegen.  
Bevorzugt ist es, wenn die mindestens 80 Mol.-% der  
Polyesterkette von nur einem oder zwei Individuen aus der Gruppe  
der für diese Hauptkomponenten angegebenen Reste gebildet werden.  
Eine eventuell gewünschte weitere Modifizierung der  
Polyesterkette erfolgt dann vorzugsweise durch andere Baugruppen  
im Rahmen der Definition, die für die zu maximal 20 Mol.-%  
vorhandenen, von X repräsentierten Baugruppen gegeben worden ist.
- 15 So können die mindestens 80 Gew.-% aromatischen Reste  
beispielsweise alle 1,4-Phenylresten sein oder sie können sich  
beispielsweise im Molverhältnis von 95:5 bis 99:1 aus 1,4- und  
1,3-Phenylresten oder im Molverhältnis von 4:6 bis 6:4 aus 2,6-  
Naphthylenresten und Biphenyl-4,4'-diyl-Resten zusammensetzen.  
Bevorzugt sind Polyester, in denen X mindestens 95 Mol.-%
- 20 aromatische und maximal 5 Mol.-% aliphatische Reste bedeuten,  
insbesondere aber solche, in denen X ausschließlich für  
aromatische Reste steht.
- 25 Auch die Reste, für die Y steht, können im Rahmen der gegebenen  
Definition alle gleich sein, oder sie können verschieden sein.  
Insbesondere können die oben genannten, von Y repräsentierten

Baugruppen, die zu mindestens 80 Mol.-% die Polyesterkette bilden, einzeln oder gemischt in der Polyesterkette vorliegen. Bevorzugt ist es, wenn die mindestens 80 Mol.-% der Polyesterkette von nur einem oder zwei Individuen aus der Gruppe für diese Hauptkomponenten angegebenen Reste gebildet werden. Eine eventuell gewünschte weitere Modifizierung der Polyesterkette erfolgt dann vorzugsweise durch andere Baugruppen im Rahmen der Definition, die für die zu maximal 20 Mol.-% vorhandenen, von Y repräsentierten Baugruppen gegeben worden ist. So können die mindestens 80 Gew.-% aliphatischen Reste beispielsweise alle Ethylenreste sein oder sie können sich beispielsweise im Molverhältnis von 10:1 bis 1:10 aus Ethylen und 1,4-Dimethylen-cyclohexan-Resten zusammensetzen. Besonders bevorzugt sind Polyester, in denen Y mindestens 95 Mol.-% Ethylen-Reste sind.

Bevorzugte aromatische Reste, für die X sind 1,4- und 1,3-Phenylen. Geeignete Reste sind aber auch 1,4-, 1,5-, 1,8-, 2,6- und 2,7-Naphthylen, 4,4'-Biphenylen, Furylen und Reste der Formel VI



(VI)

worin Z Polymethylen oder Alkylen mit 1 bis 4 Kohlenstoffatomen, -SO<sub>2</sub>-, -COO-, -O- oder -S- bedeutet.

Die aromatischen Reste, für die X steht, können ihrerseits noch einen oder zwei Substituenten tragen. In diesem Fall ist es jedoch bevorzugt, daß nur ein Anteil von bis zu 15 %, insbesondere von bis zu 7 % der vorhandenen aromatischen Reste substituiert ist. Vorzugsweise tragen die substituierten aromatischen Reste jeweils nur einen Substituenten. Besonders geeignete Substituenten sind Alkyl mit 1 bis 4 C-Atomen, Alkoxy mit 1 bis 4 C-Atomen, Chlor und die Sulfogruppe.

Reste, die sich von aliphatischen Dicarbonsäuren ableiten, und

aromatische Reste, die gewinkelte Ketten liefern, beispielsweise Isophthalsäurereste, oder die sperrigere aromatische Kerne, wie den Naphthalinkern aufweisen, sowie die längerkettigen, für Y stehenden Baugruppen werden insbesondere dann in die Polyesterkette eingebaut, wenn eine Modifizierung der Eigenschaften des Polyesters erwünscht ist. Bevorzugt sind Polyester, die weniger als 7 % dieser modifizierend wirkenden Komponenten enthalten.

- 5 Zur Erzielung spezieller Gebrauchseigenschaften dient z.B. der Einbau von Sulfogruppen enthaltenden Bausteinen (z.B. Sulfo-isophthalsäure) in den Polyester, der dadurch eine Affinität zu basischen Farbstoffen erhält oder der Einbau von Baugruppen der oben angegebenen Formel VI, der zu schwer entflammbaren Polyester führt.
- 10 10 Ein Umeisterungsreaktor wird mit 9,75 kg Dimethylterephthalat, 0,25 kg Dimethylisophthalat, 6 kg Ethylen glycol und 3 g Manganacetat + 4 H<sub>2</sub>O (68 ppm Mangan, bezogen auf Polyester) beschickt und die Mischung unter Rühren und unter Stickstoff als Schutzgas auf 140°C erwärmt. Die Reaktionstemperatur wird im Verlauf von 4 Stdn. auf 230°C gesteigert und das abgespaltene

Beispiel 1a

- Ein Umeisterungsreaktor wird mit 9,75 kg Dimethylterephthalat, 0,25 kg Dimethylisophthalat, 6 kg Ethylen glycol und 3 g Manganacetat + 4 H<sub>2</sub>O (68 ppm Mangan, bezogen auf Polyester) beschickt und die Mischung unter Rühren und unter Stickstoff als Schutzgas auf 140°C erwärmt. Die Reaktionstemperatur wird im Komplexbildner, und 1,27 g (127 ppm) Kobaltacetat (entspr. 30 ppm Polykondensationsgefäß überführt, mit 1,65 g (165 ppm) H<sub>3</sub>PO<sub>4</sub>, als Anschließend wird das geschmolzene Reaktionsprodukt in ein Komplexbildner, und 1,27 g (127 ppm) Kobaltacetat (entspr. 30 ppm Co) versetzt und 10 bis 15 Minuten bei 230 °C gerührt. Danach werden 0,27 g (27 ppm) Kaliumtitanylexalat (entspr. 3,6 ppm Ti) zugesetzt und der Ansatz unter Stickstoff bei 240°C gerührt, wobei unter leichtem Vakuum Ethylen glycol abdestilliert wird.

- Dann wird der Innendruck im Verlauf von einer Stunde auf 1,13 mbar gesenkt und dabei die Temperatur der Schmelze von 240 auf 270°C erhöht. Im Verlauf einer weiteren halben Stunde wird dann die Temperatur auf 280 °C gesteigert und dabei solange

weitergeführt, bis eine Probe der Schmelze eine spezifische Lösungsviskosität, gemessen in einer Lösung von 1 g der Schmelze in 100 ml Dichloressigsäure bei 25 °C, von 0,83 aufweist.

Alternativ und bequemer kann die Polykondensation auch bis zu einer bestimmten Schmelzviskosität fortgeführt werden, wenn in Vorversuchen die Schmelzviskosität bei 280 °C ermittelt wurde, die der Lösungsviskosität von 0,83 entspricht.

Die Schmelze wird abgekühlt und in üblicher Weise zu Pellets mit einem Durchmesser von 2 bis 3 mm verarbeitet.

Der so erhaltene Polyester hat folgende Kennzahlen:

Gehalt an Carboxylgruppen [mmol/kg]: 12  
Gehalt an Diethylenglycol [%]: 0,5  
Farbzahlen: L\* = 63,44; a\* = -0,62; b\* = 3,09

Der so hergestellte Polyester kann durch Feststoffkondensation noch weiter kondensiert werden.

Zu diesem Zweck werden die oben hergestellten Pellets in üblicher Weise unter langsamer Durchmischung im Vakuum oder unter Stickstoff 17 Stunden auf 220 °C erhitzt. Man erhält so einen Polyester mit einer, wie oben gemessenen, spezifischen Viskosität von 1,014.

#### Beispiele 1b bis 1l

- Das obige Beispiel wurde mehrfach in der in Beispiel 1a beschriebenen diskontinuierlichen Weise (Beispiele 1j bis 1l) oder analog in kontinuierlichem Betrieb (Beispiele 1b bis 1i) wiederholt, wobei die Menge des Kobaltzusatzes, die Art und Menge des Komplexbildners, sowie Art und Menge des Titan-Katalysators abgeändert wurde und in einigen Fällen zusätzlich ein kommerzieller optischer Aufheller (® HOSTALUX KS der Hoechst AG) oder ein Vernetzer (Pentaerythrit) zugesetzt wurde. Bei der Polykondensation in der Schmelze wurde unter verschiedenen Drucken und mit varierten Reaktionszeiten gearbeitet und bei der Feststoffkondensation wurden Kondensationsdauer und -Temperatur variiert.

Die Zusammensetzung der Ansätze und die Reaktionsbedingungen, soweit sie variiert wurden, die Farbzahlen, sowie die erreichte spezifische Viskosität und der Gehalt der Polyester an Carbonsäuregruppen und Diglycol sind in den folgenden Tabellen 5 und 2 angegeben worden.

|    |                                                                                                                                                                                                                                                                                                                                                                                             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | Die in den Tabellen benutzten Abkürzungen haben folgende Bedeutungen:                                                                                                                                                                                                                                                                                                                       |
| 10 | KTi = Kalium-Titanylexoxalat; Tiip = Isopropyltitannat<br>Co(AcO) <sub>4</sub> ·4 H <sub>2</sub> O = Kobaltacetat-tetrahydrat                                                                                                                                                                                                                                                               |
| 15 | POJ = phosphorige Säure; PO4 = Phosphorsäure;<br>PPA = Polyphosphorsäure; PHM = PHM-Ester<br>HLX = ® HOSTALUX KS; Penta = Pentaerythrit<br>SV = spezifische Viskosität;<br>[COOH] Carboxyl-Endgruppen-Konzentration; DEG = Konzentration von Diethylenglycol                                                                                                                                |
| 20 | Alle ppm-Angaben beziehen sich auf die Menge des bei dem Ansatz theoretisch zu erhaltenden Polyesters. Sofern der Zusatz eine Metallverbindung ist (z.B. Katalysator), bedeutet die Nennung des Verbindungskürzels, daß die ppm-Angabe die Menge der Verbindung bezeichnet, sofern das Metallsymbol angegeben ist, bedeutet die ppm-Angabe die Menge des in dem Zusatz enthaltenen Metalls. |

Tabelle 1

| Nr. | Belispiel             |                  |                     |                 |     |                 |     |
|-----|-----------------------|------------------|---------------------|-----------------|-----|-----------------|-----|
|     | Polykond.-Katalysator | Koaktivverbinder | Komplexbildner      | Wettere Zusätze | Art | Menge [ppm]     | Art |
| 16  | KTI                   | 27               | Co(AC) <sub>2</sub> | 84              | 0   | PO <sub>3</sub> | 150 |
| 17  | KTI                   | 27               | Co(AC) <sub>2</sub> | 84              | 0   | PO <sub>3</sub> | 189 |
| 18  | KTI                   | 27               | Co(AC) <sub>2</sub> | 127             | 0   | PO <sub>3</sub> | 165 |
| 19  | KTI                   | 54               | Co(AC) <sub>2</sub> | 127             | 0   | PO <sub>3</sub> | 165 |
| 20  | KTI                   | 54               | Co(AC) <sub>2</sub> | 169             | 0   | PO <sub>3</sub> | 189 |
| 21  | KTI                   | 27               | Co(AC) <sub>2</sub> | 127             | 0   | PO <sub>3</sub> | 121 |
| 22  | KTI                   | 27               | Co(AC) <sub>2</sub> | 127             | 100 | PO <sub>3</sub> | 121 |
| 23  | KTI                   | 45               | Co(AC) <sub>2</sub> | 135             | 10  | PO <sub>3</sub> | 140 |
| 24  | KTI                   | 395              | -                   | -               | -   | PO <sub>3</sub> | -   |
| 25  | KTI                   | 27               | Co(AC) <sub>2</sub> | 127             | 100 | PO <sub>3</sub> | 200 |
| 26  | KTI                   | 45               | Co(AC) <sub>2</sub> | 135             | 10  | PO <sub>3</sub> | 121 |
| 27  | KTI                   | 27               | Co(AC) <sub>2</sub> | 127             | 100 | PO <sub>3</sub> | -   |
| 28  | KTI                   | 395              | -                   | -               | -   | PO <sub>3</sub> | -   |
| 29  | KTI                   | 27               | Co(AC) <sub>2</sub> | 127             | 100 | PO <sub>3</sub> | -   |
| 30  | KTI                   | 45               | Co(AC) <sub>2</sub> | 135             | 10  | PO <sub>3</sub> | -   |
| 31  | KTI                   | 27               | Co(AC) <sub>2</sub> | 127             | 100 | PO <sub>3</sub> | -   |

Tabelle 2

22

((o))

| Nr. | Belispiel         |                |         |    |                             |       |            |
|-----|-------------------|----------------|---------|----|-----------------------------|-------|------------|
|     | Schmelze-Kondens. |                |         | SV | [COOH]                      | DEG   | Fabzahlein |
|     | Druck<br>[mbar]   | Dauer<br>[Min] | (%)     | SV | Feststoff-Kondensationszeit | SV    | Temp.[°C]  |
| 15  | 0,8               | 141            | 0,832   | 15 | 0,74                        | 62,75 | 0,86       |
| 16  | 1,6               | -              | 0,829   | 13 | 0,55                        | 64,07 | -2,31      |
| 17  | 1,3               | -              | 0,846   | 17 | 0,53                        | 66,28 | -0,03      |
| 18  | 1,0               | -              | 0,840   | 12 | 0,50                        | 64,37 | 0,27       |
| 19  | 1,6               | -              | 0,848   | 12 | 0,55                        | 66,19 | -0,94      |
| 20  | 1,1               | -              | 0,826   | 10 | 0,53                        | 67,30 | 0,12       |
| 21  | 0,8               | -              | 0,835   | 13 | 0,48                        | 64,95 | 0,12       |
| 22  | 0,9               | -              | 0,835   | 15 | 0,48                        | 66,57 | -0,62      |
| 23  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 24  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 25  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 26  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 27  | 1,1               | -              | 0,835   | 13 | 0,48                        | 64,95 | 0,98       |
| 28  | 1,1               | -              | 0,826   | 10 | 0,53                        | 67,30 | 0,77       |
| 29  | 1,6               | -              | 0,848   | 12 | 0,55                        | 66,19 | 0,92       |
| 30  | 1,1               | -              | 0,835   | 13 | 0,48                        | 64,95 | 0,98       |
| 31  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 32  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 33  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 34  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 35  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 36  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 37  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 38  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 39  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 40  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 41  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 42  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 43  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 44  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 45  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 46  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 47  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 48  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 49  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 50  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 51  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 52  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 53  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 54  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 55  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 56  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 57  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 58  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 59  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 60  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 61  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 62  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 63  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 64  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 65  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 66  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 67  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 68  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 69  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 70  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 71  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 72  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 73  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 74  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 75  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 76  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 77  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 78  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 79  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 80  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 81  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 82  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 83  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 84  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 85  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 86  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 87  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 88  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 89  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 90  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 91  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 92  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 93  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 94  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 95  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 96  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 97  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 98  | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 99  | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 100 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 101 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 102 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 103 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 104 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 105 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 106 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 107 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 108 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 109 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 110 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 111 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 112 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 113 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 114 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 115 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 116 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 117 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 118 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 119 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 120 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 121 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 122 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 123 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 124 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 125 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 126 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 127 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 128 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 129 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 130 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 131 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 132 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 133 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 134 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 135 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 136 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 137 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 138 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 139 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 140 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 141 | 1,1               | -              | 0,851   | 11 | 0,47                        | 65,76 | -1,19      |
| 142 | 1,1               | -              | 0,835   | 15 | 0,48                        | 65,76 | -1,19      |
| 143 | 1,1               | -              | 0,851</ |    |                             |       |            |

**Beispiel 2**

Das folgende Ausführungsbeispiel veranschaulicht die Herstellung eines Polyesters durch Direktveresterung:  
Ein Veresterungsreaktor wird mit 8,29 kg Terephthalsäure, 0,124 kg Isophthalsäure und 4,0 kg Ethylenglycol beschickt und die Mischung unter Röhren und unter Stickstoff als Schutzgas unter einem Druck von 3,2 bar so erwärmt, daß das abgespaltene Wasser abdestilliert.

Wenn die Wasserabspaltung beendet ist wird das geschmolzene Reaktionsproduct in ein Polykondensationsgefäß überführt, mit 0,35 g (32 ppm)  $H_3PO_4$  als Komplexbildner, und 1,47 g (135 ppm) Kobaltacetat-tetrahydrat (entspr. 32 ppm Co) versetzt.

Danach werden 0,49 g (45 ppm) Kaliumtitanylexalat (entspr. 6,1 ppm Ti) zugesetzt und der Ansatz unter Stickstoff bei 240°C geführt, wobei unter leichtem Vakuum Ethylenglycol abdestilliert wird.

Dann wird der Innendruck im Verlauf von einer Stunde auf 1,13 mbar gesenkt und dabei die Temperatur der Schmelze von 240 auf 270°C erhöht. Im Verlauf einer weiteren halben Stunde wird dann die Temperatur auf 280 °C gesteigert und dabei solange weitergeführt, bis eine Probe der Schmelze eine spezifische Lösungsviskosität, gemessen in einer Lösung von 1 g der Schmelze in 100 ml Dichlorenigsäure bei 25 °C, von 0,83 aufweist.

Die Schmelze wird abgekühl und in üblicher Weise zu Pellets mit einem Durchmesser von 2 bis 3 mm verarbeitet.

Der so erhaltene Polyester hat folgende Kennzahlen:

Gehalt an Carboxylgruppen [mmol/kg]: 1,3

Gehalt an Diethylenglycol [%]: 1,19

Farbzahlen:  $I^* = 63,6$ ;  $a^* = 1,90$ ;  $b^* = -1,5$

Der so hergestellte Polyester kann durch Feststoffkondensation noch weiter kondensiert werden.  
Hierzu werden die oben hergestellten Pellets unter langsamer Durchmischung unter Stickstoff oder im Vakuum 9,5 Stunden auf 220 °C erhitzt. Man erhält so einen Polyester mit einer, wie oben

gemessenen, spezifischen Viskosität von 1,087

In analoger Weise, mit den aus den Tabellen 3 und 4 ersichtlichen Bedingungen, können weitere Polyester hergestellt werden. Die Produkte haben die aus Tabelle 4 ersichtlichen Merkmale.

5 Ein Veresterungsreaktor wird mit 8,29 kg Terephthalsäure, 0,124 kg Isophthalsäure und 4,0 kg Ethylenglycol beschickt und die Mischung unter Röhren und unter Stickstoff als Schutzgas unter einem Druck von 3,2 bar so erwärmt, daß das abgespaltene Wasser abdestilliert.

10 Wenn die Wasserabspaltung beendet ist wird das geschmolzene Reaktionsproduct in ein Polykondensationsgefäß überführt, mit 0,35 g (32 ppm)  $H_3PO_4$  als Komplexbildner, und 1,47 g (135 ppm) Kobaltacetat-tetrahydrat (entspr. 32 ppm Co) versetzt.

15 Danach werden 0,49 g (45 ppm) Kaliumtitanylexalat (entspr. 6,1 ppm Ti) zugesetzt und der Ansatz unter Stickstoff bei 240°C geführt, wobei unter leichtem Vakuum Ethylenglycol abdestilliert wird.

20 Dann wird der Innendruck im Verlauf von einer Stunde auf 1,13 mbar gesenkt und dabei die Temperatur der Schmelze von 240 auf 270°C erhöht. Im Verlauf einer weiteren halben Stunde wird dann die Temperatur auf 280 °C gesteigert und dabei solange weitergeführt, bis eine Probe der Schmelze eine spezifische Lösungsviskosität, gemessen in einer Lösung von 1 g der Schmelze in 100 ml Dichlorenigsäure bei 25 °C, von 0,83 aufweist.

25 Die Schmelze wird abgekühl und in üblicher Weise zu Pellets mit einem Durchmesser von 2 bis 3 mm verarbeitet.

Der so erhaltene Polyester hat folgende Kennzahlen:

Gehalt an Carboxylgruppen [mmol/kg]: 1,3

Gehalt an Diethylenglycol [%]: 1,19

Farbzahlen:  $I^* = 63,6$ ;  $a^* = 1,90$ ;  $b^* = -1,5$

Der so hergestellte Polyester kann durch Feststoffkondensation noch weiter kondensiert werden.  
Hierzu werden die oben hergestellten Pellets unter langsamer Durchmischung unter Stickstoff oder im Vakuum 9,5 Stunden auf 220 °C erhitzt. Man erhält so einen Polyester mit einer, wie oben

## Patentansprüche.

1. Verfahren zur Herstellung thermostabiler, farbneutraler, antimonfreier Polyester durch Veresterung aromatischer Dicarbonsäuren oder Umesterung niederer aliphatischer Ester aromatischer Dicarbonsäuren mit aliphatischen Diolen und anschließende Polykondensation dadurch gekennzeichnet, daß eine eventuelle Umesterung in Gegenwart von 20 bis 120 ppm, bezogen auf das Katalysatormetall, eines Umestierungskatalysators ausgeführt wird, nach Abschluß der Veresterung oder Umesterung dem Veresterungs- oder Umestierungsansatz 100 % der zu dem eingesetzten Umestierungskatalysator äquivalenten Menge und bis zu 99 % der zu dem einzusetzenden Kobalt äquivalenten Menge von Phosphorsäure, phosphoriger Säure und/oder von Phosphonsäuren einem Derivat derselben als Komplexierungsmittel zugefügt wird, dann dem Ansatz bis zu 80 ppm Kobalt, in Form einer Kobaltverbindung zugefügt werden, und die Polykondensation ohne Antimonzusatz in Gegenwart von 1 bis 10 ppm Titan, das in Form einer Titanverbindung zugesetzt wird, und ggf. in Gegenwart von bis zu 1000 ppm vernetzende Baugruppen liefernden organischen Verbindungen (Pentaerythrit) und ggf. bis zu 50 ppm eines optischen Aufhellers ausgeführt wird.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß nach Abschluß der Veresterung oder Umesterung dem Veresterungs- oder Umestierungsansatz 100 % der zu dem eingesetzten Umestierungskatalysator äquivalenten Menge und 90 bis 99 % der zu dem einzusetzenden Kobalt äquivalenten Menge von Phosphorsäure, phosphoriger Säure und/oder von Phosphonsäuren einem Derivat derselben als Komplexierungsmittel zugefügt wird.
3. Verfahren gemäß mindestens einem der Ansprüche 1 und 2,

Tabelle 4

| Beispiel<br>Nr. | Schmelze-Kond. | Druck [mbar] | SV | COOH<br>[mmol/kg] | DEG<br>[%] | Farbzahlen |     |     |
|-----------------|----------------|--------------|----|-------------------|------------|------------|-----|-----|
|                 |                |              |    |                   |            | L+         | A+  | B+  |
| 2d              | 4,7            | 0,814        | 20 | 1,51              | 62,8       | -1,8       | 5,2 | 0,9 |
| 2c              | 2,75           | 0,812        | 20 | 1,51              | 1,36       | 64,6       | 1,7 | 4,7 |
| 2b              | 2,35           | 0,823        | 12 | 1,49              | 63,6       | 0,5        | 5,2 | 0,9 |

| Beispiel<br>Nr. | Polykond.Katalys.              | Kobaltverbindung | Komplexbildner      |            |        | Zusätze                        |            |
|-----------------|--------------------------------|------------------|---------------------|------------|--------|--------------------------------|------------|
|                 |                                |                  | Art                 | Menge[ppm] | % frei | Art                            | Menge[ppm] |
| 2d              | KTI                            | 45               | Co(Ac) <sub>2</sub> | 84         | 100    | -                              | -          |
| 2c              | KTI                            | 45               | Co(Ac) <sub>2</sub> | -          | -      | H <sub>3</sub> PO <sub>4</sub> | 32         |
| 2b              | Sb <sub>2</sub> O <sub>3</sub> | 298              | -                   | -          | -      | Penta                          | 200        |

dadurch gekennzeichnet, daß die Polykondensation ohne Antimonzusatz in Gegenwart von 1 bis 10 ppm Titan bis zu einer IV, gemessen in Dichloressigsäure bei 25°C, von 0,4 bis 0,9 dl/g und bis einer Carboxylgruppenkonzentration von 10 bis 50 mmol/kg in der Schmelze, und anschließend bis zu der gewünschten Endviskosität in der Festphase ausgeführt wird.

Verfahren gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß dem Ansatz 20 bis 40 ppm Kobalt, in Form einer Kobaltverbindung zugefügt werden.

10 4. Verfahren gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß dem Ansatz 20 bis 40 ppm Kobalt, in Form einer Kobaltverbindung zugefügt werden.

15 5. Verfahren gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Polykondensation ohne Antimonzusatz in Gegenwart von 2-8 ppm Titan und ggf. in Gegenwart von bis zu 1000 ppm vernetzende Baugruppen liefernden organischen Verbindungen ausgetöpfert wird

5. Verfahren gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Polykondensation ohne Antimonzusatz in Gegenwart von 2-8 ppm Tritan und  $\alpha\alpha$ f in Gegenwart

6. Verfahren gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Polykondensation in Gegenwart von 100 bis 500 ppm vernetzende Baugruppen liefernden organischen Verbindungen ausgeführt wird.

7. Verfahren gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Polykondensation ohne Antimonzusatz in Gegenwart von bis zu 25 ppm eines optischen Aufhellers ausgeführt wird.

8. Verfahren gemäß mindestens einem der Ansprüche 1 bis 7,  
durch Veresterung aromatischer Dicarbonsäuren oder  
Hodroxykarbonsäuren oder Umesterung niederer aliphatischer  
Ester aromatischer Dicarbonsäuren oder Hydroxycarbonsäuren

mit aliphatischen Diolen und anschließende Polykondensation dadurch gekennzeichnet, daß 80 bis 100 Mol.-% aromatische Dicarbonsäuren der Formel III oder deren niedere aliphatische Ester und 0 bis 20 Mol.-% aromatische Hydroxycarbonsäuren der Formel IV

oder niedere aliphatische Ester mit Diolen der Formel (V) HO-Y-OH (V) verestert oder umestert, wobei X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu mehr als 80 Mol.-% aromatische Reste mit 5 bis 16, vorzugsweise 6 bis 12 C-Atomen und maximal 20 Mol.-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen,

X<sup>1</sup> , den p-Phenylrest,  
 Y<sup>1</sup> , bezogen auf die Gesamtmenge der um- oder veresterten  
 Diole, zu mindestens 80 Mol.-% Alkylen- oder  
 Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder  
 Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10  
 C-Atomen und  
 zu maximal 20 Mol.-% geradketziges oder verzweigtes  
 Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder  
 Reste der Formel -(C<sub>4</sub>H<sub>4</sub>-O)-C<sub>2</sub>H<sub>4</sub>-, worin n eine ganze Zahl von  
 1 bis 40 bedeutet, wobei n = 1 oder 2 für Anteile bis zu 20  
 Mol.-% bevorzugt sind und Gruppen mit n = 10 bis 40  
 vorzugsweise nur in Anteilen von unter 5 Mol.-% vorhanden  
 sind.

Verfahren gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß X, bezogen auf die Gesamtmenge der Di- und Hydroxycarbonsäuren, zu 90 bis 100 Mol-% Phenylresten, zu

0 bis 7 Mol-% m-Phenylreste und zu 0 bis 5 Mol-% aliphatischer Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen, den p-Phenylrest, bezogen auf die Gesamtmenge der um- oder veresterten Diole, zu mindestens 90 Mol.-% Alkylen- oder Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und zu maximal 10 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{CH}_2-\text{O})_n-\text{C}_m\text{H}_n-$ , worin n für die Zahlen 1 oder 2 steht, bedeutet.

10 Thermostabilier, farbneutraler, antimontfreier Polyester auf Basis aromatischer Dicarbonsäuren und aliphatischer Diole, herstellbar nach dem Verfahren des Anspruchs 1, dadurch gekennzeichnet, daß im unmattierten Zustand seine Farbzahkomponenten

- a\* im Bereich von -3 bis +3,
- b\* im Bereich von -6 bis +6 und
- L\* im Bereich von 55 bis 75 liegen.

15 Thermostabilier, farbneutraler, antimontfreier Polyester auf Basis aromatischer Dicarbonsäuren und aliphatischer Diole, gemäß Anspruch 10, dadurch gekennzeichnet, daß er frei ist von Antimon, 1 bis 10 ppm Titan, 20 bis 120 ppm eines Umesterungskatalysatormetalls in Form

20 katalytisch unwirksamer Komplexe mit Phosphorsäure, phosphoriger Säure und/oder Phosphonsäuren oder einem Derivat derselben

25 Basis aromatischer Dicarbonsäuren und aliphatischer Diole gemäß Anspruch 10, dadurch gekennzeichnet, daß er frei ist von Antimon, 1 bis 10 ppm Titan, 20 bis 120 ppm eines Umesterungskatalysatormetalls in Form katalytisch unwirksamer Komplexe mit Phosphorsäure, phosphoriger Säure und/oder Phosphonsäuren oder einem Derivat derselben vorliegt, und qgf. bis zu 50 ppm eines optischen Aufhellers enthält.

12. Thermostabilier, farbneutraler, antimontfreier Polyester gemäß mindestens einem der Ansprüche 10 und 11, dadurch gekennzeichnet, daß er frei ist von Antimon, 2 bis 8 ppm Titan, 50 bis 90 ppm Mangan (gerechnet als Metall) in Form katalytisch unwirksamer Komplexe mit Phosphorsäure, phosphoriger Säure und/oder Phosphonsäuren oder einem Derivat derselben, und 20 bis 40 ppm Kobalt, das teilweise in Form katalytisch unwirksamer Komplexe mit Phosphorsäure, phosphoriger Säure und/oder Phosphonsäuren oder einem Derivat derselben vorliegt, und ggf. bis zu 25 ppm eines optischen Aufhellers, enthält.
13. Thermostabilier, farbneutraler, antimontfreier Polyester gemäß mindestens einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß im unmattierten Zustand seine Farbzahkomponenten
- a\* im Bereich von -2 bis +2,
  - b\* im Bereich von -3,5 bis +3,5 und
  - L\* im Bereich von 60 bis 70 liegen.
14. Thermostabilier, farbneutraler, antimontfreier Polyester gemäß mindestens einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß 90 bis 99 % des Kobalts in Form katalytisch unwirksamer Komplexe mit Phosphorsäure, phosphoriger Säure und/oder Phosphonsäuren oder einem Derivat derselben vorliegt.
15. Thermostabilier, farbneutraler, antimontfreier Polyester gemäß mindestens einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß er 5 bis 25 ppm eines optischen Aufhellers enthält.
16. Thermostabilier, farbneutraler, antimontfreier Polyester

gemäß mindestens einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, daß seine Polymerketten aus 80 bis 100 Mol.-% Baugruppen der Formel VI



und 20 bis 0 Mol.-% Baugruppen der Formel VII



15 aufgebaut sind, worin X zu mehr als 80 Mol.-% aromatische Reste mit 5 bis 16, vorzugsweise 6 bis 12 C-Atomen und maximal 20 Mol.-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen, X' den p-Phenylrest Y zu mindestens 80 Mol.-% Alkylen- oder Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und

zu maximal 20 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n = 1 oder 2 für Anteile bis zu 20 Mol.-% bevorzugt sind und Gruppen mit n = 10 bis 40 vorzugsweise nur in Anteilen von unter 5 Mol.-% vorhanden sind.

20 zu maximal 20 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n = 1 oder 2 für Anteile bis zu 20 Mol.-% bevorzugt sind und Gruppen mit n = 10 bis 40 vorzugsweise nur in Anteilen von unter 5 Mol.-% vorhanden sind.

25 zu maximal 20 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n = 1 oder 2 für Anteile bis zu 20 Mol.-% bevorzugt sind und Gruppen mit n = 10 bis 40 vorzugsweise nur in Anteilen von unter 5 Mol.-% vorhanden sind.

30 zu 90 bis 100 Mol-% p-Phenylresten, zu 0 bis 7 Mol-% m-X zu 90 bis 100 Mol-% p-Phenylresten, zu 0 bis 7 Mol-% m-

31 H0E 94/F 249

32 H0E 94/F 249

Phenylreste und zu 0 bis 5 Mol-% aliphatische Reste mit 4 bis 10 Kohlenstoffatomen, vorzugsweise 6 bis 8 Kohlenstoffatomen

Y zu mindestens 90 Mol.-% Alkylen- oder Polymethylengruppen mit 2 bis 4 Kohlenstoffatomen oder Cycloalkan- oder Dimethylen-cycloalkangruppen mit 6 bis 10 C-Atomen und

zu maximal 10 Mol.-% geradkettiges oder verzweigtes Alkandiyl mit 4 bis 16, vorzugsweise 4 bis 8, C-Atomen oder Reste der Formel  $-(\text{C}_2\text{H}_4-\text{O})_n-\text{C}_2\text{H}_4-$ , worin n für die Zahlen 1 oder 2 steht, bedeutet.

10 15 20 25 30

18. Thermostabilier, farbneutraler, antimonfreier Polyester gemäß mindestens einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, daß er aus Baugruppen der Formel IV besteht worin X zu 93 bis 99 Mol-% p-Phenylreste, und zu 1 bis 7 Mol-% m-Phenylreste bedeutet.

19. Thermostabilier, farbneutraler, antimonfreier Polyester gemäß mindestens einem der Ansprüche 10 bis 18, dadurch gekennzeichnet, daß die katalytisch unwirksamen Komplexe des Mangans und des Kobalts Komplexe mit phosphoriger Säure oder eines Esters derselben sind.

20. Thermostabilier, farbneutraler, antimonfreier Polyester gemäß mindestens einem der Ansprüche 10 bis 19, dadurch gekennzeichnet, daß er ggf. bis zu 1000 ppm vernetzende Baugruppen enthält.

30

35

## Zusammenfassung

Verfahren zur Herstellung thermostabiler, farbneutraler, antimonfreier Polyester und die danach herstellbaren Produkte.

Beschrieben wird ein Verfahren zur Herstellung thermostabiler, farbneutraler, antimonfreier Polyester durch Veresterung aronatischer Dicarbonsäuren oder Umesterung niederer aliphatischer Ester aromatischer Dicarbonsäuren mit aliphatischen Diolen und anschließende Polykondensation, bei welchem eine eventuelle Umesterung in Gegenwart von 20 bis 120 ppm, bezogen auf das Katalysatormetall, eines Umesterungskatalysators ausgeführt wird, nach Abschluß der Veresterung oder Umesterung dem Veresterungs- oder Umesterungsansatz 100 % der zu dem eingesetzten Umesterungskatalysator äquivalenten Menge und bis zu 99 % der zu dem einzusetzenden Kobalt äquivalenten Menge von Phosphorsäure, phosphoriger Säure und/oder von Phosphonsäuren einem Derivat derselben als Komplexierungsmittel zugefügt wird, dann dem Ansatz bis zu 80 ppm Kobalt, in Form einer Kobaltverbindung zugefügt werden, und die Polykondensation ohne Antimonusatz in Gegenwart von 1 bis 10 ppm Titan, das in Form einer Titanverbindung zugesetzt wird, und ggf. in Gegenwart von bis zu 1000 ppm vernetzende Baugruppen liefernden organischen Verbindungen (Pentaerythrit) und ggf. bis zu 50 ppm eines optischen Aufhellers ausgeführt wird.

Beschrieben wird ferner der nach diesem Verfahren erhältliche Polyester.

