# Šviesos sukurti abeliniai ir neabeliniai kalibruotiniai potencialai labai šaltų atomų dujose

#### Julius Ruseckas

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Lietuva

Fachbereich Physik der Technischen Universität Kaiserslautern, Vokietija

Sausio 04, 2006

#### **Planas**

- Motyvacija
- Kai kurie adiabatinės aproksimacijos aspektai
- Abeliniai efektyvieji potencialai Λ-tipo atomams
  - naudojant šviesos pluoštus su orbitiniu judesio keikio momentu
  - naudojant priešpriešais sklindančius šviesos pluoštus
- 4 Neabeliniai efektyvieji potencialai tripodo konfigūracijoje

## Kam reikia efektyviojo magnetinio lauko atomams?

#### Atomo fizika ← Kietojo kūno fizika:

- Išsigimusios Fermi dujos ⇐⇒ Elektronai kristaluose
- Atomai optinėse gardelėse

## Šaltų atomų dujų pranašumai ir trūkumai

- Pranašumas: Lengvai keičiami sistemos parametrai, kuriuos kietojo kūno fizikoje ne visada galima pakeisti.
- Trūkumas: Atomai yra elektriškai neutralios dalelės. Nėra tiesioginės analogijos su elektronų kristaluose magnetinėmis savybėmis.

## Efektyviojo magnetinio lauko šaltiems atomams sukūrimo būdai

- Sukimas įprastas metodas efektyviajam magnetiniam laukui sukurti
  - Pastovus efektyvusis magnetinis laukas  $B_{\rm eff} \sim \Omega$
  - Gaudyklės dažnis  $\omega_{\mathrm{eff}} = \omega \Omega$
  - Efektyvusis magnetinis laukas veikia visus atomus vienodai
- Optinės gardelės turinčios atomų šuolių tarp mazgų asimetriją
  - D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003)
  - E. Mueller, Phys. Rev. A 70, 04163(R) (2004)
  - A. S. Sørenson, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 94, 086803 (2005)
- Neabeliniai efektyvieji kalibruotiniai potencialai optinėse gardelėse
  - K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, Phys. Rev. Lett. 95, 010403 (2005)

## Mūsų darbas: dar vienas efektyviųjų potencialų sukūrimo metodas

Efektyvieji kalibruotiniai potencialai gali būti sukurti naudojant šviesos pluoštus su santykiniu orbitiniu judesio kiekio momentu elektromagnetiškai sukelto praskaidrėjimo (EIT) konfigūracijoje.

#### Privalumai

- Nereikia sukti gaudyklės
- Nereikia optinės gardelės
- G. Juzeliūnas and P. Öhberg, Phys. Rev. Lett. 93, 033602 (2004)
- G. Juzeliūnas, P. Öhberg, J. Ruseckas, and A. Klein Phys. Rev. A 71, 053614 (2005)
- J. Ruseckas, G. Juzeliūnas, P. Öhberg, and M. Fleischhauer Phys. Rev. Lett. 95, 010404 (2005)
- P. Öhberg, G. Juzeliūnas, J. Ruseckas, and M. Fleischhauer, Phys. Rev. A 72, 053632 (2005).
- G. Juzeliūnas, J. Ruseckas, and P. Öhberg, J. Phys. B: At. Mol. Opt. Phys. 38, 4171 (2005).

Pilnas atominis hamiltonianas

$$\hat{H} = rac{\hat{p}^2}{2M} + \hat{V}(\mathbf{r}) + \hat{H}_0(\mathbf{r},t).$$

- $H_0(\mathbf{r},t)$  elektroninių (greitų) laisvės laipsnių hamiltonianas,
- $\hat{p}^2/2M+\hat{V}(\mathbf{r})$  masės centro laisvės laipsnių (lėtų) hamiltonianas
- V(r) gaudyklės potencialas.
- $\hat{H}_0(\mathbf{r},t)$  turi tikrines funkcijas  $|\chi_n(\mathbf{r},t)\rangle$  su tikrinėmis vertėmis  $\varepsilon(\mathbf{r},t)$ .
- Pilna atominė banginė funkcija

$$|\Phi\rangle = \sum_{n} \Psi_{n}(\mathbf{r},t) |\chi_{n}(\mathbf{r},t)\rangle.$$



Įstačius į Schrödinger'io lygtį  $i\hbar\partial/\partial t|\Phi\rangle=\hat{H}|\Phi\rangle$ , lygtis koeficientams  $\Psi_n({\bf r},t)$  gali būti užrašyta pavidalu

$$\label{eq:psi} i\hbar\frac{\partial}{\partial t}\Psi = \left[\frac{1}{2M}(-i\hbar\nabla - \boldsymbol{A})^2 + V + \dot{\beta}\right]\Psi,$$

kur

$$\Psi = \begin{pmatrix} \Psi_{1} \\ \cdots \\ \Psi_{n} \end{pmatrix},$$

$$\mathbf{A}_{n,n'} = i\hbar \langle \chi_{n}(\mathbf{r},t) | \nabla \chi_{n'}(\mathbf{r},t) \rangle,$$

$$V_{n,n'} = \varepsilon(\mathbf{r},t) \delta_{n,n'} + \langle \chi_{n}(\mathbf{r},t) | \hat{V}(\mathbf{r}) | \chi_{n'}(\mathbf{r},t) \rangle,$$

$$\beta_{n,n'} = -i\hbar \int dt \langle \chi_{n}(\mathbf{r},t) | \frac{\partial}{\partial t} \chi_{n'}(\mathbf{r},t) \rangle.$$

#### Neišsigimusios būsenos

Pirmoji būsena yra gerai atskirta nuo likusių. Nediagonalinių elementų galima nepaisyti.

$$i\hbar \frac{\partial}{\partial t} \Psi_1 = \left[ \frac{1}{2M} (-i\hbar \nabla - \mathbf{A})^2 + V + \phi \right] \Psi_1,$$

kur

$$\begin{aligned} \mathbf{A} &= \mathbf{A}_{1,1}, \\ V &= V_{1,1}, \\ \phi &= \frac{1}{2M} \sum_{n \neq 1} \mathbf{A}_{1,n} \cdot \mathbf{A}_{n,1} + \dot{\beta}_{1,1}. \end{aligned}$$

#### Išsigimusios būsenos

Pirmosios q adiabatinės būsenos yra išsigimusios, jas atitinkantys energijos lygmenys yra gerai atskirti nuo likusių N-q

$$i\hbar rac{\partial}{\partial t} \tilde{\Psi} = \left[ rac{1}{2M} (-i\hbar 
abla - \mathbf{A})^2 + V + \phi 
ight] \tilde{\Psi},$$

kur **A** ir V yra  $q \times q$  matricos,

$$\phi_{n,n'} = \frac{1}{2M} \sum_{m=q+1}^{N} \mathbf{A}_{n,m} \cdot \mathbf{A}_{m,n'} + \dot{\beta}_{n,n'}.$$

Efektyvusis vektorinis potencialas **A** yra vadinamas Berry sietimi (Berry connection).



## Kalibruotinės transformacijos

#### Neišsigimusios būsenos

Turime laisvę pasirenkant adiabatinės būsenos fazę

$$|\chi_n(\mathbf{r},t)\rangle \to \mathrm{e}^{-\frac{i}{\hbar}u_n(\mathbf{r},t)}|\chi_n(\mathbf{r},t)\rangle.$$

Potencialų transformacija

$$\begin{split} \textbf{A} &\rightarrow \textbf{A} + \nabla u_1, \\ \phi &\rightarrow \phi - \frac{\partial}{\partial t} u_1. \end{split}$$

## Kalibruotinės transformacijos

#### Išsigimusios būsenos

Adiabatinė bazė gali būti pakeista lokalia unitarine transformacija  $U(\mathbf{r},t)$ 

$$\tilde{\Psi} \rightarrow U(\mathbf{r},t)\tilde{\Psi}$$
.

Potencialų transformacija

$$\mathbf{A} 
ightarrow U \mathbf{A} U^\dagger - i\hbar (\nabla U) U^\dagger, \ \phi 
ightarrow U \phi U^\dagger + i\hbar rac{\partial U}{\partial t} U^\dagger.$$

Berry sietis A yra susijusi su kreiviu (curvature) B lygybėmis

$$B_i = \frac{1}{2} \epsilon_{ikl} F_{kl}, \qquad F_{kl} = \partial_k A_l - \partial_l A_k - \frac{i}{\hbar} [A_k, A_l].$$

## Λ-tipo atomai



#### Tamsi būsena

$$| extstyle D
angle \sim \Omega_c | extstyle 1
angle - \Omega_p | extstyle 2
angle$$

Destruktyvi interferencija, išnyksta sugertis — EIT

Zonduojantis (probe) pluoštas:

$$\Omega_p = \mu_{13} E_p$$

Kontrolinis (control) pluoštas:

$$\Omega_c = \mu_{23} E_c$$



## Šviesos sūkuriai



## Šviesos sūkurys

Šviesos sūkurys — šviesos pluoštas su faze

$$e^{ikz+il\varphi}$$
,

 $\mbox{kur } \varphi \mbox{ yra azimutinis kampas, } \mbox{\it I} - \mbox{\it winding number}.$ 

Šviesos sūkuriai turi orbitinį judesio kiekio momentą (OAM) išilgai sklidimo krypties  $M_7 = \hbar I$ .

## Efektyvusis magnetinis laukas

$$\mathbf{A} = -\hbar \frac{|\zeta|^2}{1 + |\zeta|^2} \nabla S, \qquad \mathbf{B} = \hbar \frac{\nabla S \times \nabla |\zeta|^2}{(1 + |\zeta|^2)^2},$$
$$\phi = \frac{\hbar^2}{2M} \frac{(\nabla |\zeta|)^2 + |\zeta|^2 (\nabla S)^2}{(1 + |\zeta|^2)^2},$$

kur

$$\zeta = \frac{\Omega_p}{\Omega_c} = |\zeta| e^{iS}, \qquad S = I\varphi.$$

- Šviesos pluoštai su orbitiniu judesio kiekio momentu gali sukuri efektyvųjį magnetinį lauką veikiantį elektriškai neutralius atomus.
- Vektorinis potencialas A yra nulemiamas:
  - zonduojančio pluošto fazės gradiento,
  - kontrolinio ir zonduojančio pluoštų intensyvumų santykio.



## Pastovus efektyvusis magnetinis laukas



Efektyvusis gaudyklės potencialas  $V_{\rm eff} = V + \phi$  atitinkantis pastovaus efektyviojo magnetinio lauko **B** atveji.



## Magnetinis monopolis?

$$\mathbf{A} = -\frac{\hbar I}{2} \frac{1 - \cos \theta}{r \sin \theta} \mathbf{e}_{\varphi}, \qquad \mathbf{B} = -\frac{\hbar I}{2r^2} \mathbf{e}_r, \qquad \phi = \frac{\hbar^2}{2M} \frac{I^2 + 1}{4r^2}.$$

Rabi dažniai turi tenkinti lygybes:

$$|\Omega_{\rho}|^2 = f(\mathbf{r})(1-\cos\theta), \qquad |\Omega_c|^2 = f(\mathbf{r})(1+\cos\theta).$$

- Efektyvusis laukas būtinai skirsis nuo monopolio lauko neigiamos (arba teigiamos) z ašies dalies aplinkoje.
- Magnetinio monopolio laukas negali būti sukurtas visoje erdvėje.

## Priešpriešais sklindantys šviesos pluoštai



Fazė:  $S = (k_p + k_c)y$ 

## Priešpriešais sklindantys gausiniai pluoštai



Efektyvusis gaudyklės potencialas  $V_{\rm eff}$  ir efektyvusis magnetinis laukas  $B_{\rm eff}$  sukuriti priešpriešais sklindančių gausinių pluoštų. Charakteringas plotis  $a=\sigma^2/4\Delta$ 

## Tripodo konfigūracija



- Dvi išsigimusios tamsios būsenos
- Neabeliniai kalibruotiniai potencialai

## Tripodo konfigūracija



## Tripodo konfigūracija

Dvi išsigimusios tamsios būsenos:

$$\begin{split} |D_1\rangle &= \sin\phi e^{iS_{31}}|1\rangle - \cos\phi e^{iS_{32}}|2\rangle, \\ |D_2\rangle &= \cos\theta\cos\phi e^{iS_{31}}|1\rangle + \cos\theta\sin\phi e^{iS_{32}}|2\rangle - \sin\theta|3\rangle, \end{split}$$

kur

$$\Omega_1 = \Omega \sin \theta \cos \phi \, e^{iS_1}, \quad \Omega_2 = \Omega \sin \theta \sin \phi \, e^{iS_2}, \quad \Omega_3 = \Omega \cos \theta \, e^{iS_3}.$$

Vektorinis kalibruotinis potencialas:

$$\begin{split} \mathbf{A}_{11} &= \hbar \left( \cos^2 \phi \nabla S_{23} + \sin^2 \phi \nabla S_{13} \right) \,, \\ \mathbf{A}_{12} &= \hbar \cos \theta \left( \frac{1}{2} \sin(2\phi) \nabla S_{12} - i \nabla \phi \right) \,, \\ \mathbf{A}_{22} &= \hbar \cos^2 \theta \left( \cos^2 \phi \nabla S_{13} + \sin^2 \phi \nabla S_{23} \right) . \end{split}$$

## Magnetinis monopolis

Lazerių laukai:

$$\Omega_{1,2} = \Omega_0 \frac{\rho}{R} \, \mathrm{e}^{\mathrm{i} (k \mathrm{z} \mp \varphi)}, \qquad \Omega_3 = \Omega_0 \frac{\mathrm{z}}{R} \, \mathrm{e}^{\mathrm{i} k' \mathrm{x}}.$$

Efektyvusis magnetinis laukas

$$\mathbf{B} = \frac{\hbar}{r^2} \mathbf{e}_r \left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) + \cdots.$$

#### Išvados

- Šviesos pluoštai su santykiniu orbitiniu judesio kiekio momentu gali sukurti efektyvųjį magnetinį lauką veikiantį elektriškai neutralius atomus.
- Efektyviojo magnetinio lauko konfigūracija gali būti keičiama parenkant kontrolinį ir zonduojantį pluoštus.
- Metodas gali būti išplėstas neabeliniams kalibruotiniams potencialams.
- Dirbtiniai magnetiniai reiškiniai labai šaltų atomų dujose.

## Ačiū už dėmesį!