Software Requirements Specification

Doctoral Student Progress Tracker

Version 1.0

Instructors: Anu Mary Chacko, Manjusha K, Joe Cheri Ross

Course: CS4096D Software Engineering Lab

Date: 18 - 02 - 2025

Group-10

P. MAAKHISH SAI B221135CS N.B.S MANHAAS B220780CS N DEERAJ KUMAR B220432CS

Revisions

Version	Primary Author(s)	Description of Version	Date Completed
Initial Draft - 1	Maakhish Sai NBS Manhaas Deeraj	The first version of SRS is prepared.	18-02-2025

Use Case Diagram:

Use Case Descriptions and Steps

Actors:

- 1. Ph.D. Students
- 2. Ph.D. Co-Ordinator

1. Upload Student List (U0)

Description: The **PhD Coordinator** uploads the list of PhD students into the system in excel format. This list is used to verify student enrollment before login.

Steps:

1. **PhD Coordinator selects** a file containing student details (e.g., CSV or Excel format) and uploads it to the system.

2. Verify Student Enrollment (U0A)

Description: Before a student can log in, the system checks if their name exists in the uploaded student list.

Steps:

- 1. A **PhD Student** enters their credentials on the login page.
- 2. The system checks if their name exists in the uploaded student list.
- 3. If the student is found, they proceed to the login process.
- 4. If not found, an error message is displayed, and login is denied leading to another use case meant to deal with this exception.

3. Login (U1)

Description: A **PhD Student** logs into the **Doctoral Tracker System** after enrollment verification.

Steps:

1. The student logs in to the system using NITC Google Mail Address.

4. View Profile (U2)

Description: A **PhD Student** views their personal details, DC members, and other profile-related information.

Steps:

- 1. Students after successful login can view their profile pages.
- 2. It is a generalized use case for U2A, U2B, U2C.

5. View DC Members (U2A)

Description: A student can see the list of Doctoral Committee (DC) members assigned to them.

Steps:

1. Students can view the details of DC Members to the committee they belong to.

6. View Personal Details (U2B)

Description: A student can see their personal details (name, email, registration date, etc.).

Steps:

1. Students can see their "Personal Details".

7. Edit Personal Details (U2C)

Description: A student can update their contact details and other editable fields.

Steps:

- 1. Students can update their personal details.
- 2. After updating they can save it.

8. Manage DC Meetings (U3)

Description: Students and coordinators manage DC meetings, including scheduling and modifications.

Steps:

- 1. Student/coordinator accesses "Manage DC Meetings".
- 2. Views scheduled meetings.
- 3. Can request a **new meeting** (U4) or **modify minutes** (U5A).

9. Request New DC Meeting (U4)

Description: A student submits a request for a new DC meeting.

Steps:

- 1. Students click on "Request New DC Meeting".
- 2. A computer-generated mail is sent to DC Committee Members.

10. Approve/Reject DC Minutes (U5)

Description: The **PhD Coordinator** reviews and approves or rejects DC meeting minutes.

Steps:

- 1. Coordinator reviews meeting minutes.
- 2. Approves or rejects them.

11. Modify DC Minutes (U5A)

Description: Allows **PhD Students** to modify DC meeting minutes before approval.

Steps:

- 1. Student modifies the DC Minutes.
- 2. The student then saves it and sends another request to PhD Co-Ordinator.

12. Announce Exam Date (U6)

Description: The **PhD Coordinator** announces the exam date.

Steps:

- 1. Coordinator selects the date and confirms.
- 2. Students receive notifications.

13. Submit Exam Request (U7)

Description: A student submits a request to appear for an exam.

Steps:

- 1. Student fills out required details.
- 2. Students submit the request.

14. View Exam Results (U8)

Description: Students can check their exam results.

Steps:

1. Students can see their results posted by the PhD Co-Ordinator.

15. Request Re-exam (U9)

Description: If a student fails the comprehensive exam for the first two attempts, they can request a re-exam.

Steps:

- 1. Students view the results.
- 2. Student submits a Re-Examination request to PhD Co-Ordinator.

16. Handle Third Re-exam Request (U9A)

Description: If a student requests to attempt the comprehensive exam third time, then an error message is displayed to student.

Steps:

1. An Error Message is displayed to the student.

17. Track Publications (U10)

Description: A student can track the status of their research publications.

Steps:

1. Students can see their papers and can see their status.

18. Upload Paper (U11)

Description: A student uploads their research paper to the system.

Steps:

1. Student selects a file and uploads it.

19. Update Paper Status (U12)

Description: The student updates the publication status (e.g., "Under Review", "Published").

Steps:

1. Student selects a paper and updates the status of it.

20. View Student Publications (U13)

Description: The **PhD Coordinator** can see the list of all student publications.

Steps:

- 1. Coordinator can access all student's publications.
- 2. Coordinator can then select each student and can see each student's publications.

21. Upload SWAYAM Courses List (U14)

Description: The **PhD Coordinator** uploads a list of available SWAYAM courses as an excel sheet.

Steps:

1. Coordinator uploads SWAYAM courses as a file.

22. View Available SWAYAM Courses (U15)

Description: Students can view a list of available SWAYAM courses.

Steps:

1. Student accesses "View Available SWAYAM Courses".

23. Submit SWAYAM Course Request (U16)

Description: Students request registration for SWAYAM courses.

Steps:

- 1. Students select their courses that align their interest.
- 2. Students then request for approval from the PhD Coordinator.

24. Approve/Reject SWAYAM Requests (U17)

Description: The **PhD Coordinator** approves or rejects SWAYAM course registrations.

Steps:

- 1. Coordinator accesses "Approve/Reject SWAYAM Requests".
- 2. Reviews requests and decides.

Functional requirements

1. User Authentication and Authorization

• Student Login

 The system shall allow students to log in using their NITC Google Mail accounts.

• Co-Ordinator Login

 The system shall allow Ph.D. Coordinators to log in using a secure username and password.

Enrollment Verification

 The system shall verify that a student exists in the pre-uploaded student list before granting access.

2. Profile and DC Committee Management

Profile Viewing:

 The system shall enable students to view their complete profile, including personal details and associated Doctoral Committee (DC) members.

Profile Editing:

 The system shall allow students to update editable fields (e.g., ORCID) while keeping other static information unchanged.

DC Committee Details:

 The system shall allow students to view and, where applicable, update contact details for their assigned DC members.

3. Research Publication Tracking

Publication Upload:

 The system shall allow students to upload research publications in supported formats (e.g., PDF).

Publication Status Update:

 The system shall allow students to update the status of each publication (e.g., Submitted, Under Review, Accepted, Published).

• Publication History for Coordinators:

 The system shall provide Ph.D. Coordinators with access to a detailed history of all student publications.

4. DC Meeting Workflow

Meeting Request and Notification:

 The system shall enable students to request new DC meetings and automatically send email notifications to all DC members upon request.

Meeting Minutes Submission:

 The system shall allow students to submit DC meeting minutes for review.

Minutes Modification:

 The system shall allow students to modify and resubmit meeting minutes if initial submissions are rejected.

Minutes Approval:

 The system shall allow Ph.D. Coordinators to review, approve, or request further edits on submitted meeting minutes.

5. Comprehensive Exam Management

• Exam Scheduling and Notification:

 The system shall display scheduled comprehensive and oral exam dates to students and notify them accordingly.

Result Viewing:

o The system shall allow students to view their exam results.

• Re-Examination Requests:

 The system shall enable students to submit re-exam requests if eligible.

• Third Attempt Restriction:

 The system shall display an error message and block further requests if a student attempts a third exam after two failures.

6. SWAYAM Course Registration

Course Listing:

 The system shall allow students to view a current list of available SWAYAM courses.

• Registration Request:

 The system shall enable students to submit registration requests for courses aligned with their interests.

Approval Process:

 The system shall allow Ph.D. Coordinators to review and approve or reject SWAYAM course requests.

7. Administrative Functions

Data Upload:

 The system shall allow Ph.D. Coordinators to upload and update student lists and SWAYAM course details using supported file formats (e.g., CSV, Excel).

Automated Notifications:

 The system shall automatically send email notifications for critical events, including meeting requests, exam announcements, and course registration outcomes.

Non-Functional Requirements

1. Performance and Efficiency

• Response Time:

 The system shall respond to 95% of user interactions within 2 seconds under normal load conditions.

• Concurrent Users:

• The system shall support at least 1,000 concurrent users without significant performance degradation.

• Optimized Data Access:

 All database queries shall be optimized with proper indexing to ensure quick data retrieval.

2. Scalability

Modular Architecture:

• The system shall adopt a microservices or modular architecture, allowing individual services to scale independently.

• API-First Design:

 The system shall use an API-first approach to facilitate future integrations and expansion.

3. Security

Authentication Protocol:

 The system shall implement OAuth 2.0 for secure user authentication.

• Data Encryption:

o Sensitive data shall be encrypted both in transit and at rest.

Access Control:

 The system shall enforce Role-Based Access Control (RBAC) to ensure that only authorized users can access restricted functions.

Credential Storage:

 All passwords and sensitive credentials shall be securely hashed before storage.

4. Reliability and Availability

• Uptime:

 The system shall achieve 99.9% uptime, excluding scheduled maintenance periods.

• Backup and Recovery:

 The system shall perform regular automated backups and include a recovery process to restore data within one hour in the event of a failure.

• Error Logging:

• The system shall maintain detailed error logs and alert administrators in real time upon critical failures.

5. Usability

User Interface:

 The system shall provide an intuitive, consistent, and accessible user interface that meets modern usability standards.

User Testing:

 The system shall undergo regular usability testing, ensuring that at least 90% of target users can complete core tasks without assistance.

Documentation:

 The system shall include comprehensive user documentation and help resources accessible from within the application.

6. Maintainability

Coding Standards:

 The system's codebase shall adhere to industry coding standards and best practices to facilitate long-term maintenance.

Automated Testing:

 The system shall include automated unit, integration, and system tests, integrated into the continuous integration pipeline.

Technical Documentation:

 The system's architecture and code shall be well-documented to support future enhancements and maintenance efforts.

7. Portability and Compatibility

• Cross-Browser Support:

 The system shall be compatible with the latest versions of major web browsers (e.g., Chrome, Firefox, Safari, Edge).

• Responsive Design:

 The user interface shall be fully responsive and accessible on both desktop and mobile devices.

8. Compliance

Regulatory Adherence:

• The system shall comply with all relevant data protection regulations and industry standards to ensure legal and operational integrity.

Class Diagram

Database Design

