MUMBAI SUBURBAN RAIL STATIONS: BUSINESS OPPORTUNITIES

Kaustubh Chuke

https://github.com/SudoKC/Coursera_Capstone

Introduction

- Mumbai is a megacity housing 1.25 crore residents.
- The transportation networks in the city are well developed and majority of the population relies on public transportation for their daily commuting needs.
- The city has one of the highest rates of public transport share among cities worldwide.
- The suburban railway is the most used with the lines carrying more than 7.5 million passengers daily on its 390km long network with more than 2,300 train services.
- The network has 150 stations spanning over 7 lines. However, the infrastructure and facilities at each of the stations are not uniform or equivalent to the no. of users. Through this study, an attempt will be made to understand station characteristics and

Business problem

Suburban rail stations are the hubs for majority of the citizens of the city. Every passenger is a potential customer. Few of the questions that will be attempted to answer with the study

- 1. Which are the most happening suburban rail stations in Mumbai?
- 2. What are the prime categories of venues around the stations?
- 3. Which stations are worthy to host new passenger-oriented businesses?

Data description

Transit station locations

For the analysis, a selective list of 56 stations which lie within Mumbai district. The data is sourced from Google maps API to get latitudes and longitudes.

1	Latitude	Longitude	Station_Name
2	19.0815223	72.8417565	Santacruz
3	19.0696584	72.8398944	Khar Road
4	19.0168546	72.8591933	Wadala Road
5	18.9963318	72.8308603	Lower Parel
6	18.93448736	72.82730749	Churchgate
7	18.9633549	72.8158261	Grant Road
8	18.9987796	72.8544218	Sewri
9	18.9871866	72.8438965	Cotton Green
10	19.1348992	72.8487874	Jogeshwari
11	19.0316822	72.8577375	King's Circle
12	18.9609243	72.8393719	Sandhurst Road
13	18.9674767	72.8445477	Dockyard Road
14	18.9775506	72.8441011	Reay Road
15	19.0626319	72.9011399	Chembur
16	19.0485178	72.9323356	Mankhurd
17	19.0549792	72.8402203	Bandra
18	18.9766219	72.8327936	Byculla
19	18.9524563	72.8174395	Charni Road
20	19.0177342	72.8437523	Dadar (Central)
21	19.019282	72.8428757	Dadar

Data description

Transit station footfall

Footfall at the stations is a key indicator for the business potential. It is sources from an official survey on Mumbai suburban rail.

Link

Station 🖵	Footfall -				
Airoli	86,155	Goregaon	2,85,204		
Andheri	6,04,244	Govandi	1,32,961		
Bandra	4,91,106	GTB Nagar	1,21,102		
Bhandup	1,75,273	Kalyan	3,60,348		
Bhayandar	2,61,042	Karghar	1,11,793	,	
Boisar	30,924	Karjat	22,040	Palghar	27,831
Borivali	3,92,417	Kasara	17,215	Panvel	1,06,736
Byculla	1,32,319	Kelve Road	9,814	Saphale	14,035
CBD Belapur	1,82,851	Khopoli	14,314	Thane	6,53,928
Chembur	1,73,788	Kurla	3,80,930	Turbe	65,217
Churchgate	5,05,110	Mahim Junction	1,22,939	Umroli	2,395
CSMT	6,36,661	Masjid	2,45,627	Wadala Road	1,60,645
Dadar	2,90,537	Mira Road	1,70,262	Vaitarna	3,690
Dadar West	2,86,960	Mulund	2,55,711	Vangaon	6,702
Dahanu Raod	38,895	Mumbai Central	2,38,231	Vasai Road	2,15,296
Dombivilli	2,83,362	Nala Sopara	3,25,787	Vashi	2,34,769
Ghatkopar	2,68,225	Nerul	1,03,923	Virar	3,95,095

Data description

Venues popular at transit stations

Foursquare API is a great tool to understand popular venues around places. Same is leveraged to get data on popular venues around the rail stations.

Station_venues[Station_venues['Venue Type'] == '0']								
	Station	Station Latitude	Station Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category	Venue Type
14	Santacruz	19.081522	72.841756	Runway	19.083495	72.848124	Outdoors & Recreation	О
20	Santacruz	19.081522	72.841756	Veromoda	19.080433	72.834458	Boutique	0
34	Santacruz	19.081522	72.841756	Khar Subway	19.075423	72.842043	Metro Station	О
41	Santacruz	19.081522	72.841756	Forever New	19.078215	72.834446	Boutique	0
99	Lower Parel	18.996332	72.830860	Indigo Delicatessen	18.994498	72.823760	Deli / Bodega	0
		***			***	***		***
1754	Vikhroli	19.111479	72.928138	Godrej Runway	19.111981	72.926133	Racetrack	0
1759	Vikhroli	19.111479	72.928138	Bombay Pune express way	19.106013	72.932572	Scenic Lookout	0
1771	Kanjurmarg	19.129664	72.928420	Mulund station	19.122387	72.928065	Platform	0
1874	Vidyavihar	19.079251	72.897183	Vidyavihar bus depot	19.080470	72.896151	Bus Station	0
1911	Mumbai Central	18.970341	72.818810	Mumbai Central Platform No. 1	18.971273	72.819066	Platform	0

Mapping data with Folium

Folium allows for easy visualization of data wrangled in Python on Leaflet maps.

```
# create map of Mumbai using latitude and longitude values
Map Mumbai = folium.Map(location=[latitude, longitude], zoom start=11)
# Add station markers to map
for lat, long, Railstation in zip(stations['Latitude'], stations['Longitude'], stations['Station Name']):
    label = '{}'.format(Railstation)
    label = folium.Popup(label, parse_html=True)
    folium.CircleMarker(
        [lat, long],
        radius=5,
        popup=label,
        color='maroon',
        fill=True,
        fill_color='#3186cc',
        fill_opacity=0.7,
        parse html=False).add to(Map Mumbai)
Map Mumbai
```


One Hot Encoding of venues data

One hot encoding prepares categorical variables in the data suitable to be provided to ML algorithms and improves prediction. In the case of k-means clustering algorithm, unique venue categories in foursquare API data are on-hot encoded.

Color		Red	Yellow	Green
Red				
Red		1	0	0
Yellow		1	0	0
Green		0	1	0
Yellow		0	0	1
	•			

```
# one hot encoding
Station_onehot = pd.get_dummies(Station_venues[['Venue Category']], prefix="", prefix_sep="")
# add neighborhood column back to dataframe
Station_onehot['Station'] = Station_venues['Station']
# move neighborhood column to the first column
fixed_columns = [Station_onehot.columns[-1]] + list(Station_onehot.columns[:-1])
Station_onehot = Station_onehot[fixed_columns]
Station_onehot.head()
```

Identifying top 5 venues for each station

The foursquare API provided data with 166 unique categories. To reduce the variation among data, only top 5 venues are filters and fed to k-means clustering algorithm.

```
num_top_venues = 5
indicators = ['st', 'nd', 'rd']

# create columns according to number of top venues
columns = ['Station']
for ind in np.arange(num_top_venues):
    try:
        columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind]))
    except:
        columns.append('{}th Most Common Venue'.format(ind+1))

# create a new dataframe
Station_venues_sorted = pd.DataFrame(columns=columns)
Station_venues_sorted['Station'] = Station_grouped['Station']

for ind in np.arange(Station_grouped.shape[0]):
    Station_venues_sorted.iloc[ind, 1:] = return_most_common_venues(Station_grouped.iloc[ind, :], num_top_venues)
Station_venues_sorted.head()
```

Simplifying the venues data

The foursquare API provided data with 166 unique categories. To reduce the variation among data, only top 5 venues are filters and fed to k-means clustering algorithm. The dimensionality of the venues data was reduced for simplification. This was achieved by grouping similar venue types into venue category column.

```
num top venues = 5
indicators = ['st', 'nd', 'rd']
# create columns according to number of top venues
columns = ['Station']
for ind in np.arange(num_top_venues):
         columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind]))
         columns.append('{}th Most Common Venue'.format(ind+1))
# create a new dataframe
Station venues sorted = pd.DataFrame(columns=columns)
Station venues sorted['Station'] = Station grouped['Station']
for ind in np.arange(Station grouped.shape[0]):
    Station venues sorted.iloc[ind, 1:] = return_most_common_venues(Station_grouped.iloc[ind, :], num_top_venues)
Station venues sorted.head()
# Simplifying venue category
conditions = [
   (Station_venues["Venue Category"].str.contains("Store | Shop | Market | Mall | Venue", na=False)),
    (Station venues["Venue Category"].str.contains("Place|Restaurant|Joint|Cafe|Café|Food|Bakery|Bar|house|Lounge|Pub", na=False)),
   (Station_venues["Venue Category"].str.contains("Theater|Multiplex|Club", na=False)),
   (Station_venues["Venue Category"].str.contains("Office|School|Space", na=False)),
    (Station_venues["Venue Category"].str.contains("Gym|Studio|Sports|Course|Arcade|Court", na=False)),
   (Station_venues["Venue Category"].str.contains("Bank", na=False)),
    (Station venues["Venue Category"].str.contains("ground|Ground|Garden|Park|Track|Trail", na=False)),
    (Station_venues["Venue Category"].str.contains("Hotel", na=False))
values = ['Shopping', 'Food', 'Entertainment','Institutional','Sports','Bank','Recreation','Hotel']
Station_venues['Venue Type'] = np.select(conditions, values)
```

Defining optimal no. of clusters

Silhouette score is a measure of cohesiveness of the clusters based on similarity among the object of the cluster and the values range between +1 to -1. Higher value indicates that the objects in cluster and cohesive and different to the objects of other clusters. The silhouette score is used to identify optimal cluster size ranging from 2 to 20. The value to 5 clusters was chosen at the score showed a sharp drop for subsequent values.

K-means clustering

Visualizing 5 clusters

The simplified venues dataset was clustered using k-means algorithm. Due to the no. of categories being large in no. k-means algorithm was preferred owing to its efficient handling of these tasks.

```
# set number of clusters
kclusters = 5

Station_grouped_clustering = Station_grouped.drop('Station', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(Station_grouped_clustering)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:100]

array([1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 3, 0, 0, 0, 0, 0, 0])

# add clustering labels
Station_venues_sorted.insert(0, 'Cluster Labels3', kmeans.labels_)
Station_merged = stations
```


Results

Discussion & Conclusion

The rich dataset available from Foursquare API is a great way to identify development and business potential at the suburban transit stations. These methods are going to be crucial in the post-pandemic world where business decisions will have to be even more cautious.

- Mumbai with is growing suburbs and metro stations being made in the area, can look at stations with high footfall but low count of popular venues to target them as a business opportunity.
- As the food businesses are the most popular businesses, the stations which do not have them as a popular spot pose an opportunity for entrepreneurs to set up a food business at such stations.

