Fast Matrix Normalization for bilinear pooling using Rank-1 Update

Alsu Vakhitova

Skoltech, DS Alsu.Vakhitova@skoltech.ru

Dogaru Skoltech, DS Andreea.Dogaru@skoltech.ru

Timotei Ardelean Skoltech, DS Timotei.Ardelean@skoltech.ru

Overview

- Background
- Problem statement
- Rank-1 Update Normalization (RUN)
- Experiments & Results
- Conclusion

Background: Bilinear CNN

- Used in Fine-Grained Visual Recognition
- FGVR is more challenging because the intra-category differences are small and other factors can be overwhelming

Background: Matrix Normalization

- Output of Bilinear Pooling Bilinear Matrix
- Singular values of BM must be <u>normalized</u>
- Previous normalization methods:
 - SVD bad on GPU, O(D³), no CBP support
 - Newton-Schulz (NS) iteration good on GPU, O(D³), no
 CBP support

Background: Compact Bilinear Pooling

- Bilinear Matrix is vectorized before the classification layer
- The vector is very large memory-intensive
- Efficient alternative is Compact Bilinear Pooling:
 - Approximates the Bilinear Matrix
 - Reduces the dimensionality by two orders of magnitude
 - Little-to-no performance loss
 - Tensor Sketch and Random Maclaurin

Problem statement

- Implement a better method (RUN) for normalizing the bilinear matrix, featuring:
 - Good complexity and efficient computation on GPU
 - Compatibility with Compact Bilinear Pooling
 - Based on power method

Rank-1 Update Normalization (RUN)

Algorithm 1: Rank-1 Update Normalization (RUN).

Input: Local features $\mathbf{F} \in \mathbb{R}^{N \times D}, \eta, K$.

Output: Normalized local features \mathbf{F}_K .

- 1 Generate $\mathbf{v_0} = [v_1, \dots, v_D] \in \mathbb{R}^D$, where $\{v_i\}_{i=1}^D$ are i.i.d. normal distribution.
- **2** for $k \in [1, K]$ do
- $\mathbf{v}_k = \mathbf{F}^ op \mathbf{F} \mathbf{v}_{k-1}$
- $\mathbf{4} \ \mathbf{F}_K = \mathbf{F} \eta \frac{\mathbf{F} \mathbf{v}_K \mathbf{v}_K^{\top}}{\|\mathbf{v}_K\|_2^2}$
- 5 return F_K

Rank-1 Update Normalization (RUN)

- Only two matrix-by-vector multiplications per iteration → O(KDN)
 - K # iterations, D depth
 - N=WH, W width, H height
 - All predecessors had complexity O(D³)
 - \blacksquare D>>W,H,K \rightarrow O(KDN) < O(D³)
- Applied directly on feature map → compatible with CBP

Experiments: Setup

- Scaled input: 448×448×3
- Feature extractor: second-to-last layer of a pretrained VGG16
- Last convolutional feature map: 28 × 28 × 512

Experiments: Tasks and Datasets

Fine-grained Recognition

Caltech-UCSD Birds 200
200 bird species

Texture Recognition

Describable Textures Dataset
47 texture attributes

Scene Recognition

MIT Indoor Scenes
67 indoor scenarios

Results: Accuracy

Dataset	BCNN	iBCNN (NS)	RUN
CUB-200	84.45	84.92	85.47
DTD	70.85	72.45	71.01
MIT	77.76	78.88	80.30

Results: Time

Dataset	BCNN	iBCNN (NS)	RUN
CUB-200	5.678	100.605	9.579
DTD	2.42	143.62	5.693
MIT	4.613	100.640	9.707

- Time for matrix normalization, ms
- Measured during inference on the test dataset

Discussion of results

- We managed to reproduce the results leading to and including the development of RUN.
- Proper normalization of the Bilinear matrix proved to be indeed important in FGVR.
- RUN is significantly faster than iBCNN with NS while leading to similar or even superior accuracy.
- We found out that RUN works <u>better with uniform</u> <u>distribution initialization</u>, rather than normal

Conclusions

- Investigated BCNN and various matrix normalization approaches
- Implemented RUN algorithm as well as all other parts of the NN
- Reproduced most important parts of the paper
- Obtained expected results

