图的表示与同构

南京大学计算机科学与技术系

- 图的表示
- 邻接矩阵的运算
- 图的同构

- 邻接矩阵
- 邻接表
- 关联矩阵

- 简单有向图G = (V, E, φ) ,设V={ v_1 , ..., v_n },E={ e_1 , ..., e_m }。
- $A(G)=[a_{ii}]$ 称为G的邻接矩阵 $(n\times n)$ 阶矩阵),其中

$$a_{ij} = \begin{cases} 1 & \text{如果} v_i \text{邻接到} v_j \leq \exists e \in \mathbb{E}. \phi(e) = (v_i, v_j) \\ 0 & \text{否则} \end{cases}$$

举例(邻接矩阵)

简单无向图的邻接矩阵

$$A(G) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

简单无向图的邻接矩阵是对称矩阵

φ是单射

• 若图G = (V, E, φ) <u>没有多重边</u>, 列出这个图的所有 边。对每个顶点, 列出与其邻接的顶点。

顶点	相邻顶点
a	b, c, e
b	a
c	a, d, e
d	c, e
e	a, c, d

φ是单射

• 若图G = (V, E, φ) <u>没有多重边</u>,列出这个图的所有 边。对每个顶点,列出从该顶点邻接到的顶点。

顶点	相邻顶点
a	b, c, d, e
b	<i>b</i> , <i>d</i>
c	a, c, e
d	
e	b, c, d

- 无向图G = (V, E, φ) , 不妨设 $V = \{v_1, ..., v_n\}$, $E = \{e_1, ..., e_m\}$ 。
- $M(G) = [m_{ij}]$ 称为G的关联矩阵 $(n \times m)$ 阶矩阵), 其中

$$m_{ij} = \begin{cases} 1 & \text{如果}e_j 关联v_i & v_i \in \varphi(e_j) \\ 0 & \text{否则} \end{cases}$$

无向图G可以是伪图(含自环或多重边)。

举例(关联矩阵)

并不直接适合于有向图

关于邻接矩阵

- 通常,邻接矩阵中的元素为0和1,称为布尔矩阵。
- 邻接矩阵也可表示包含多重边的图,此时的矩阵不是布尔矩阵。

- 当有向图中的有向边表示关系时,邻接矩阵就是关系矩阵。无向图的邻接矩阵是对称的。
- 图的邻接矩阵表示,顶点的次序并不紧要,行与行、 列与列进行相应交换,可得到另一个矩阵。
 - 两个简单有向图,对应两个邻接矩阵,若对某一矩阵行 与行、列与列之间的相应交换后得到的矩阵与另一矩阵 相同,则这两个图同构。

内容提要

- 图的表示
- 邻接矩阵的运算
- 图的同构

- 顶点的度(以有向图为例)
 - □ 行中1的个数就是行中相应顶点的出度
 - □ 列中1的个数就是列中相应顶点的入度

- 逆图 (转置矩阵)
 - □ 设G的邻接矩阵为A,则G的逆图的邻接矩阵是A的转置矩阵,用 A^T 表示。

$$A = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \quad A^{T} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \end{bmatrix}$$

$$A \times A^{T} = B = [b_{ij}]$$

$$b_{ij} = \sum_{k=1}^{n} a_{ik} \times a_{jk} = a_{i1} \times a_{j1} + a_{i2} \times a_{j2} + \dots + a_{in} \times a_{jn}$$

- □ b_{ii}表示顶点i和顶点j均有边指向的那些顶点的个数;
- 口若i=j,则 b_{ii} 表示顶点i的出度。

$$A^{T} \times A = C = [C_{ij}]$$

$$C_{ij} = \sum_{k=1}^{n} a_{ki} \times a_{kj} = a_{1i} \times a_{1j} + a_{2i} \times a_{2j} + \dots + a_{ni} \times a_{nj}$$

- \square C_{ii} 表示同时有边指向顶点i和顶点j的那些顶点的个数;
- \Box 若i=j,则 C_{ii} 表示顶点i的入度。

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$A \times A^{T} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 3 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad A^{T} \times A = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

$$A^{T} \times A = egin{bmatrix} 2, 1 & 0 & 1 \\ 1 & 2, 0 & 1 \\ 0 & 0 & 1, 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

$$A \times A = A^2 = D = [d_{ii}]$$

$$d_{ij} = \sum_{k=1}^{n} a_{ik} \times a_{kj} = a_{i1} \times a_{1j} + \dots + a_{in} \times a_{nj}$$

- \Box 若 $a_{ik} \times a_{ki} = 1$,则表示有 $i \rightarrow k \rightarrow j$ 长度为2的有向通路;
- $\Box d_{ii}$ 表示i和j之间具有长度为2的通路个数。

$$\mathbf{A} = \begin{cases} 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{cases}$$

$$A^{2} = A \times A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad A^{3} = A^{2} \times A = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^{3} = A^{2} \times A = \begin{cases} 2 & 1 & 0 & 1 \\ \hline 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{cases}$$

 \square 从 $v_2 \rightarrow v_1$,有二条长度为2的通路;有一条长度为3的通路

$$\mathbf{A} = \begin{cases} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{cases}$$

$$B_4 = A^1 + A^2 + A^3 + A^4 = \begin{bmatrix} 3 & 4 & 2 & 3 \\ 5 & 5 & 4 & 6 \\ 7 & 7 & 4 & 7 \\ 3 & 2 & 1 & 2 \end{bmatrix}$$

□ 长度不大于4的通路个数

内容提要

- 图的表示
- 邻接矩阵的运算
- 图的同构

图的同构

- 图同构的定义
 - 设 G_1 =(V_1 , E_1 , $φ_1$)和 G_2 =(V_2 , E_2 , $φ_2$)是两个<u>简单无向图</u>。 若存在双射f: $V_1 \rightarrow V_2$, u 和ν在 G_1 中相邻当且仅当 f(u) 和 f(v)在 G_2 中相邻。此时称f是一个同构函数。
 - 设 $G_1=(V_1, E_1, \varphi_1)$ 和 $G_2=(V_2, E_2, \varphi_2)$ 是两个<u>无向图</u>。若 存在双射 $f: V_1 \rightarrow V_2, g: E_1 \rightarrow E_2,$

 $\forall e \in E_1, \varphi_1(e) = \{u, v\}$ 当且仅当 $g(e) \in E_2, \varphi_2(g(e)) = \{f(u), f(v)\}$

图同构的例子

图同构的例子

检测两个简单图是否同构

- 图同构下保持的性质称为图不变的
 - 顶点数、度序列、...
- 利用图不变的性质(没有保持)来推断出不同构

检测两个简单图是否同构

3度顶点导出子图

检测两个简单图是否同构

- 若图G与H同构,则对于任意自然数k,
 - 在G或H存在k度顶点的前提下,G的k度顶点导出子图与H的k度顶点导出子图同构
- 若对于任意自然数k,在G或H存在k度顶点的前提下, G的k度顶点导出子图与H的k度顶点导出子图同构, G与H是否同构?
 - 肯定的话,请证明之。
 - 否定的话,请举反例。

"图同构"问题

- 尚未证明: 图同构问题是NP-完全的(NP-Complete)
- 尚未找到多项式时间复杂度的算法
- Luks, 1983: $\exp(O(\sqrt{n\log n}))$
- László Babai, 2017: $(\exp((\log n)^{O(1)}))$

quasipolynomial time

"子图同构"问题

- 给定简单图G和H, G是否与H的某个子图同构?
- 已经证明:子图同构问题是NP-完全的。
- 那么,对于一些特殊类型的图G呢?
 - K_m
 - $lue{C}_{m}$

Q&A

欢迎提问