1.	zeros. However your model did not work well. Your training cost was reasonable, but your testing cost was just not acceptable. What could be a possible reason?	1/1 point			
	The vector representations are sparse and therefore it is much harder for your model to learn anything that could generalize well to the test set.				
	O You probably need to increase your vocabulary size because it seems like you have very little features.				
	O Logistic regression does not work for sentiment analysis, and therefore you should be looking at other models.				
	O Sparse representations require a good amount of training time so you should train your model for longer				
	 ✓ Correct This is correct. 				
2.	Which of the following are examples of text preprocessing?	1/1 point			
	Stemming, or the process of reducing a word to its word stem.				
	 ✓ Correct This is correct. 				
	Lowercasing, which is the process of removing changing all capital letter to lower case.				
	 ✓ Correct This is correct. 				
	Removing stopwords, punctuation, handles and URLs				
	 ✓ Correct This is correct. 				
	Adding new words to make sure all the sentences make sense				
3.	The sigmoid function is defined as $h(x^{(i)}, heta) = rac{1}{1 + e^{- heta^T x^{(i)}}}$. Which of the following is true.	1/1 point			
	O Large positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ closer to 1 and large negative values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ close to -1.				
	$igotimes$ Large positive values of $ heta^T x^{(i)}$ will make $h(x^{(i)}, heta)$ closer to 1 and large negative values of $ heta^T x^{(i)}$ will make $h(x^{(i)}, heta)$ close to 0.				
	Small positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ closer to 1 and large positive values of $\theta^T x^{(i)}$ will				

	O Small positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ closer to 0 and large negative values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ close to -1.	
	 ✓ Correct This is correct. 	
4.	The cost function for logistic regression is defined as $J(\theta) = -\frac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log h\left(x^{(i)}, \theta\right) + \left(1 - y^{(i)}\right) \log \left(1 - h\left(x^{(i)}, \theta\right)\right) \right].$ Which of the following is true about the cost function above. Mark all the correct ones.	1/1 point
	When $y^{(i)}=1$, as $h(x^{(i)}, heta)$ goes close to 0, the cost function approaches ∞ .	
	⊘ Correct This is correct.	
	When $y^{(i)}=1$, as $h(x^{(i)},\theta)$ goes close to 0, the cost function approaches 0 . When $y^{(i)}=0$, as $h(x^{(i)},\theta)$ goes close to 0, the cost function approaches 0 .	
	 ✓ Correct This is correct. 	
	\square When $y^{(i)}=0$, as $h(x^{(i)}, heta)$ goes close to 0, the cost function approaches ∞ .	
5.	For what value of $ heta^T x$ in the sigmoid function does $h(x^{(i)}, heta)=0.5$.	1/1 point
	-0	
6.	Select all that apply. When performing logistic regression for sentiment analysis using the method taught in this week's lecture, you have to:	1/1 point
	Perform data processing.	
	 ✓ Correct This is correct. 	
	Create a dictionary that maps the word and the class that word is found in to the number of times that word is found in the class.	

	0	This is correct.	
	V	Create a dictionary that maps the word and the class that word is found in to the number of times that word is found in the class.	
	0	Correct This is correct.	
		Create a dictionary that maps the word and the class that word is found in to see if that word shows up in the class.	
	V	For each tweet, you have to create a positive feature with the sum of positive counts of each word in that tweet. You also have to create a negative feature with the sum of negative counts of each word in that tweet.	
	0	Correct This is correct.	
7.	Who	en training logistic regression, you have to perform the following operations in the desired order.	1 / 1 poin
	0	Initialize parameters, get gradient, classify/predict, update, get loss, repeat	
	•	Initialize parameters, classify/predict, get gradient, update, get loss, repeat	
	0	Initialize parameters, get gradient, update, classify/predict, get loss, repeat	
	0	Initialize parameters, get gradient, update, get loss, classify/predict, repeat	
	0	Correct This is correct.	
8.		suming we got the classification correct, where $y^{(i)}=1$ for some specific example i. This means that $x^{(i)}, heta)>0.5$. Which of the following has to hold:	1/1 poin
	0	Our prediction, $h(x^{(i)}, \theta)$ for this specific training example is exactly equal to its corresponding label $y^{(i)}$.	
	0	Our prediction, $h(x^{(i)}, heta)$ for this specific training example is less than $(1-y^{(i)})$.	
	0	Our prediction, $h(x^{(i)}, heta)$ for this specific training example is less than $(1 - h(x^{(i)}, heta))$.	
	•	Our prediction, $h(x^{(i)}, heta)$ for this specific training example is greater than $(1 - h(x^{(i)}, heta))$.	
	0	Correct This is correct	

	○ Correct This is correct.	
9.	What is the purpose of gradient descent? Select all that apply.	1/1 point
	✓ Correct This is correct.	
	\square Gradient descent allows us to learn the parameters $ heta$ in logistic regression as to maximize the loss function J.	
	Gradient descent, $\mathit{grad_theta}$ allows us to update the parameters θ by computing $\theta=\theta-lpha*\mathit{grad_theta}$	
	\square Gradient descent, $\mathit{grad_theta}$ allows us to update the parameters θ by computing $\theta=\theta+lpha*\mathit{grad_theta}$	
10.	What is a good metric that allows you to decide when to stop training/trying to get a good model? Select all that apply.	1/1 point
	When your accuracy is good enough on the test set.	
	 ✓ Correct This is correct. 	
	☐ When your accuracy is good enough on the train set.	
	When you plot the cost versus (# of iterations) and you see that your the loss is converging (i.e. no longer changes as much).	
	○ Correct This is correct.	
	\square When $lpha$, your step size is neither too small nor too large.	