

Computação Gráfica

Aula 08 (parte 2) - View

Prof. Jean R. Ponciano

Pipeline de transformações

Coordenadas iniciais dos vértices (objetos)

Pipeline de transformações

Transformações geométricas

Pipeline de transformações

Transformação para visualizar os objetos a partir da câmera

P' = Projection x View x Model x P

Espaço Mundo → Espaço Visão (ou espaço da câmera)

Espaço local Espaço mundo Espaço visão

Espaço Mundo → Espaço Visão (ou espaço da câmera)

Espaço Mundo → Espaço Visão (ou espaço da câmera)

Espaço Mundo → Espaço Visão (ou espaço da câmera)

 Transferência de objetos do sistema de coordenadas do mundo para o sistema de coordenadas da câmera

Espaço Mundo → Espaço Visão (ou espaço da câmera)

 Transferência de objetos do sistema de coordenadas do mundo para o sistema de coordenadas da câmera

Mas como é o sistema de coordenadas da câmera???

Espaço Mundo → Espaço Visão (ou espaço da câmera)

 Transferência de objetos do sistema de coordenadas do mundo para o sistema de coordenadas da câmera

Vamos lembrar do nosso objetivo:

Criação de objetos 3D e cenas

Efetuar sua apresentação

Fazer a apresentação envolve:

- Definição dos parâmetros da câmera
- Mudança do sistema de coordenadas do mundo para o sistema da câmera (view matrix)
- Transformações de Projeção (projection matrix)
- Recorte/Eliminação de partes não visíveis da cena
- Aplicação de iluminação/tonalização

Fazer a apresentação envolve:

- Definição dos parâmetros da câmera
- Mudança do sistema de coordenadas do mundo para o sistema da câmera (view matrix)
- Transformações de Projeção (projection matrix)
- Recorte/Eliminação de partes não visíveis da cena
- Aplicação de iluminação/tonalização

Essa sequência de passos define o pipeline de observação (viewing pipeline)

Fazer a apresentação envolve:

- Definição dos parâmetros da câmera
- Mudança do sistema de coordenadas do mundo para o sistema da câmera (view matrix)
- Transformações de Projeção (projection matrix)
- Recorte/Eliminação de partes não visíveis da cena
- Aplicação de iluminação/tonalização

Essa sequência de passos define o pipeline de observação (viewing pipeline)

O observador vê a cena através das lentes de uma câmera virtual

A câmera pode ser posicionada de forma a obter a imagem desejada da cena

(posição, orientação e ponto focal)

Onde a câmera está

Plano de imagem posicionado no ponto focal e, tipicamente, perpendicular ao vetor direção de projeção

Parâmetros de observação

Parâmetros de observação

Planos de recorte definem o que entra na projeção da cena. Veremos mais detalhes ao estudar a **projection matrix**.

Orientação controlada pela **posição**, **ponto focal** e um vetor chamado \overrightarrow{UP} .

Esses três parâmetros definem completamente a câmera

- O ponto Pos = (p_x, p_y, p_z) , que representa a posição dela no espaço mundo
 - Ele é a origem do sistema de coordenadas da câmera

• O ponto ponto_focal = (l_x, l_y, l_z) , que representa o local que é o foco de observação

• 0 vetor \overrightarrow{UP} = (up_x, up_y, up_z) , que indica o "lado de cima" da câmera

 Podemos caminhar na cena e fotografar de qualquer ângulo, de várias distâncias e com diferentes orientações da câmera.

A escolha dos parâmetros da câmera afetará o que será exibido

 Podemos caminhar na cena e fotografar de qualquer ângulo, de várias distâncias e com diferentes orientações da câmera.

A escolha dos parâmetros da câmera afetará o que será exibido

- O ponto Pos = (p_x, p_y, p_z) , que representa a posição dela no espaço mundo
 - Ele é a origem do sistema de coordenadas da câmera

• O ponto ponto_focal = (l_x, l_y, l_z) , que representa o local que é o foco de observação

• 0 vetor \overrightarrow{UP} = (up_x, up_y, up_z) , que indica o "lado de cima" da câmera

• Com os pontos Pos e Ponto_focal, e com o vetor \overrightarrow{UP} , podemos definir o sistema.

 Para isso, vamos obter os três vetores unitários que representam a base ortonormal do sistema.

• Com os pontos Pos e Ponto_focal, e com o vetor \overrightarrow{UP} , podemos definir o sistema.

 Para isso, vamos obter os três vetores unitários que representam a base ortonormal do sistema.

Chamarei os vetores unitários de $\overrightarrow{X_c}$, $\overrightarrow{Y_c}$, $\overrightarrow{Z_c}$ para deixar mais intuitivo.

Na literatura, vocês poderão ver esses vetores sendo chamados de \vec{u} , \vec{v} , \vec{n}

- Primeiro, o vetor unitário $\overrightarrow{Z_c}$, que representa o eixo Z do sistema da câmera
 - Regra da mão direita (vetores apontam na direção contrária de onde a câmera está olhando)

- Primeiro, o vetor unitário $\overrightarrow{Z_c}$, que representa o eixo Z do sistema da câmera
 - Regra da mão direita (vetores apontam na direção contrária de onde a câmera está olhando)

$$\overrightarrow{LP} = Pos - Ponto_focal$$

$$\overrightarrow{Z_c} = \frac{\overrightarrow{LP}}{|\overrightarrow{LP}|}$$
 (vetor normalizado)

- Agora o vetor unitário $\overrightarrow{X_c}$, que representa o eixo X da câmera
 - Perpendicular a \overrightarrow{UP} e $\overrightarrow{Z_c}$ simultaneamente

$$\overrightarrow{X_c} = \frac{\overrightarrow{UP} \times \overrightarrow{Z_c}}{|\overrightarrow{UP} \times \overrightarrow{Z_c}|}$$

- Agora o vetor unitário $\overrightarrow{X_c}$, que representa o eixo X da câmera
 - Perpendicular a \overrightarrow{UP} e $\overrightarrow{Z_c}$ simultaneamente

$$\overrightarrow{X_c} = \frac{\overrightarrow{UP} \times \overrightarrow{Z_c}}{|\overrightarrow{UP} \times \overrightarrow{Z_c}|}$$

• Finalmente, o vetor $\overrightarrow{Y_c}$ (perpendicular a $\overrightarrow{Z_c}$ e $\overrightarrow{X_c}$ ao mesmo tempo)

$$\overrightarrow{Y_c} = \overrightarrow{Z_c} \times \overrightarrow{X_c}$$

 Com o sistema de coordenadas da câmera especificado, podemos fazer a mudança do sistema de coordenadas do mundo (X_wY_wZ_w) para o sistema de coordenadas da câmera (X_vY_vZ_v)

 Com o sistema de coordenadas da câmera especificado, podemos fazer a mudança do sistema de coordenadas do mundo (X_wY_wZ_w) para o sistema de coordenadas da câmera (X_vY_vZ_v)

 Com o sistema de coordenadas da câmera especificado, podemos fazer a mudança do sistema de coordenadas do mundo (X_wY_wZ_w) para o sistema de coordenadas da câmera (X_vY_vZ_v)

E agora? Como mudar de um sistema para o outro?

Mudança de sistemas de coordenadas

Mudança de sistemas de coordenadas (2D)

Mudar de um sistema (cartesiano) xy para outro sistema (cartesiano) x'y'

Mudança de sistemas de coordenadas (2D)

• Mudar de um sistema (cartesiano) xy para outro sistema (cartesiano) x'y'

Mudança de sistemas de coordenadas (2D)

Mudar de um sistema (cartesiano) xy para outro sistema (cartesiano) x'y'

Translação para coincidir as duas origens

$$T(-x_0, -y_0)$$

Mudar de um sistema (cartesiano) xy para outro sistema (cartesiano) x'y'

Translação para coincidir as duas origens

$$T(-x_0, -y_0)$$

Rotação para coincidir o eixo x' com o x

 $R(-\alpha)$

- Definindo a matriz de rotação sem depender do ângulo lpha
 - Usando a orientação final desejada
 - Precisamos obter os vetores unitários u e v que dizem a direção do eixo x' e do eixo y'

- Definindo a matriz de rotação sem depender do ângulo lpha
 - Usando a orientação final desejada
 - Precisamos obter os vetores unitários u e v que dizem a direção do eixo x' e do eixo y'

Vetor v paralelo a y' passando pela origem de xy

- Definindo a matriz de rotação sem depender do ângulo lpha
 - Usando a orientação final desejada
 - Precisamos obter os vetores unitários u e v que dizem a direção do eixo x' e do eixo y'

$$v = \frac{V}{|V|} = (v_x, v_y)$$

Vetor v paralelo a y' passando pela origem de xy

- Definindo a matriz de rotação sem depender do ângulo lpha
 - Usando a orientação final desejada
 - Precisamos obter os vetores unitários u e v que dizem a direção do eixo x' e do eixo y'

Vetor v paralelo a y' passando pela origem de xy

$$v = \frac{V}{|V|} = (v_x, v_y)$$

$$u = (v_y, -v_x) = (u_x, u_y)$$

Por quê?

- Definindo a matriz de rotação sem depender do ângulo lpha
 - Usando a orientação final desejada
 - Precisamos obter os vetores unitários u e v que dizem a direção do eixo x' e do eixo y'

$$v = \frac{V}{|V|} = (v_x, v_y)$$

$$u = (v_y, -v_x) = (u_x, u_y)$$

Por quê?

- Definindo a matriz de rotação sem depender do ângulo lpha
 - Usando a orientação final desejada
 - Precisamos obter os vetores unitários u e v que dizem a direção do eixo x' e do eixo y'

Vetor v paralelo a y' passando pela origem de xy

$$v = rac{V}{|V|} = (v_x, v_y)$$

$$u = (v_y, -v_x) = (u_x, u_y)$$

$$R = \begin{bmatrix} u_{x} & u_{y} & 0 \\ v_{x} & v_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Detalhes aqui (seções 4.2 a 4.4)

- Definindo a matriz de rotação sem depender do ângulo lpha
 - Usando a orientação final desejada
 - Precisamos obter os vetores unitários u e v que dizem a direção do eixo x' e do eixo y'

Vetor v paralelo a y' passando pela origem de xy

$$v = rac{V}{|V|} = (v_x, v_y)$$

$$u = (v_y, -v_x) = (u_x, u_y)$$

$$R = \begin{bmatrix} u_x & u_y & 0 \\ v_x & v_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Vocês se lembram o porquê disso?

- Processo análogo ao 2D.
- Vamos mudar do sistema X_wY_wZ_w para o X_vY_vZ_v

- Processo análogo ao 2D.
- Vamos mudar do sistema X_wY_wZ_w para o X_vY_vZ_v

1º passo = translação

- Processo análogo ao 2D.
- Vamos mudar do sistema X_wY_wZ_w para o X_vY_vZ_v

1º passo = translação

Assumindo a origem do sistema $X_vY_vZ_v$ sendo o ponto (x_0,y_0,z_0) :

$$T = \begin{bmatrix} 1 & 0 & 0 & -x_0 \\ 0 & 1 & 0 & -y_0 \\ 0 & 0 & 1 & -z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Processo análogo ao 2D.
- Vamos mudar do sistema X_wY_wZ_w para o X_vY_vZ_v

2º passo = rotações

$$R = \begin{bmatrix} i_{xv} & j_{xv} & k_{xv} & 0 \\ i_{yv} & j_{yv} & k_{yv} & 0 \\ i_{zv} & j_{zv} & k_{zv} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

, onde cada linha contém o vetor unitário de um eixo.

- Processo análogo ao 2D.
- Vamos mudar do sistema X_wY_wZ_w para o X_vY_vZ_v

Para mudar de um sistema para o outro, faz-se $R \cdot T$

De volta ao problema da câmera...

 Com o sistema de coordenadas da câmera especificado, podemos fazer a mudança do sistema de coordenadas do mundo (X_wY_wZ_w) para o sistema de coordenadas da câmera (X_vY_vZ_v)

Agora já sabemos fazer essa mudança! =)

Com o sistema de coordenadas da câmera especificado, podemos fazer a mudança.

$$T = \begin{bmatrix} 1 & 0 & 0 & -p_x \\ 0 & 1 & 0 & -p_y \\ 0 & 0 & 1 & -p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Com o sistema de coordenadas da câmera especificado, podemos fazer a mudança.

$$R = \begin{bmatrix} i_{xc} & j_{xc} & k_{xc} & 0 \\ i_{yc} & j_{yc} & k_{yc} & 0 \\ i_{zc} & j_{zc} & k_{zc} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \frac{\overrightarrow{X_c}}{\overrightarrow{Y_c}} = (i_{xc}, j_{xc}, k_{xc})$$

$$\overrightarrow{Y_c} = (i_{yc}, j_{yc}, k_{yc})$$

$$\overrightarrow{Z_c} = (i_{zc}, j_{zc}, k_{zc})$$

$$\overrightarrow{X_c} = (i_{xc,} j_{xc,} k_{xc})$$

$$\overrightarrow{Y_c} = (i_{yc,} j_{yc,} k_{yc})$$

$$\overrightarrow{Z_c} = (i_{zc,} j_{zc,} k_{zc})$$

Transformação realizada!

Transformação de Visualização - View matrix

- Multiplicando as matrizes de translação e rotação, chegamos na matriz conhecida por view matrix, responsável pela transformação de visualização.
- Para fazer a mudança do sistema do mundo para o sistema da câmera, basta multiplicar as coordenadas de cada vértice de cada objeto por essa matriz.

Vetor coluna à direita da matriz

$$\text{Mview} = R \cdot T = \begin{bmatrix} i_{xc} & j_{xc} & k_{xc} & -\text{Pos} \cdot \text{Xc} \\ i_{yc} & j_{yc} & k_{yc} & -\text{Pos} \cdot \text{Yc} \\ i_{zc} & j_{zc} & k_{zc} & -\text{Pos} \cdot \text{Zc} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\overrightarrow{X_c} = (i_{xc}, j_{xc}, k_{xc})$$

$$\overrightarrow{Y_c} = (i_{yc}, j_{yc}, k_{yc})$$

$$\overrightarrow{Z_c} = (i_{zc}, j_{zc}, k_{zc})$$

$$\overrightarrow{Pos} = (p_x, p_y, p_z)$$

$$\overrightarrow{X_c} = (i_{xc,} j_{xc,} k_{xc})$$

$$\overrightarrow{Y_c} = (i_{yc,} j_{yc,} k_{yc})$$

$$\overrightarrow{Z_c} = (i_{zc,} j_{zc,} k_{zc})$$
Pos = (p_x, p_y, p_z)

Transformação de Visualização - View matrix

View matrix

Jupyter Notebooks:

Aula08.Ex03

"Carregando Modelos" (mesmo exemplo visto na aula "Model")

ModelView matrix

 Uma outra matriz, super importante para o pipeline gráfico, pode ser derivada agora: a modelview matrix

• Dada a model matrix M e a view matrix V, a modelview matrix ModelView é definida como:

Bibliografia

- Essa aula foi baseada no seguinte material:
- https://www.brunodorta.com.br/cg/glspaces (Acessado em 23/08/2024)
- Computação Gráfica, Slides de Ricardo Marcacini, Maria Cristina, Alaor Cervati. ICMC/USP.
- Hughes, J. F., Van Dam, A., Foley, J. D., McGuire, M., Feiner, S. K., & Sklar, D. F. (2014). Computer graphics:
 principles and practice. Terceira Edição. Pearson Education.
- 4º edição do livro "Computer Graphics with OpenGL" (Hearn; Baker; Carithers, 2011)
 - Capítulo 10