Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření

PROTOKOL O MĚŘENÍ

Název úlohy Číslo úlohy

Měření operačního zesilovače

102 - 3R

Zadání

- 1. Změřte a nakreslete závislost v invertujícím zapojení při stejnosměrném vstupu:
 - a) Změřte a nakreslete závislost výstupního napětí U_2 invertujícího zesilovače s OZ ne zpětnovazebním odporu R_2 při stejnosměrném vstupním napětí U_1 = 4 V a vstupním odporu R_1 = 20 k Ω .
 - b) Pro předchozí měření vypočítejte teoretické hodnoty výstupního napětí U₂. Naměřené a vypočítané hodnoty srovnejte a vypočítejte jejich absolutní odchylku.
- 2. Měření operačního zesilovače v invertujícím zapojení při střídavém vstupu:
 - a) Měřením ověřte činnost OZ pracujícího jako invertující zesilovač harmonického vstupního napětí $U_{1,PP}$ = 4 V, $U_{1,AVG}$ = 2 V, f = 100 Hz, při zpětnovazebním odporu R_2 = 80 k Ω .
 - b) Pro vstupní harmonické napětí (z bodu 2a) a napěťový přenos zesilovače a_U = 6 dB změřte a zakreslete časové průběhy vstupního a výstupního napětí zesilovače.

Poř. č.	Příjmení a jméno			Třída	Skupina	Školní rok		
7	Askold Horčička			3.B	1.	2021/22		
Datum měření Datum odevzdání		Datum odevzdání	Počet listů	u.e	Klasifikace			
				příprava	měření	protokol	obhajoba	
8.3.								
Protokol	Protokol o měření obsahuje:		Teoretický úvod		Tabulky naměřených a vypočtených hodnot			
		Sch	Schéma		Vzor výpočtu			
			Tabulka použitých přístrojů		Grafy			
		Post	Postup měření		Závěr			

1. Teoretický úvod

Operační zesilovač (OZ) je univerzální zesilovací analogový elektronický obvod, který je základním prvkem analogových elektronických systémů. Operační zesilovač je často v praxi pro výpočty nahrazován ideálním operačním zesilovačem. Vlastnosti ideálního operačního zesilovače jsou nekonečně velké zesílení, nekonečně velký vstupní odpor, nulový výstupní odpor, nekonečně široké zesilované kmitočtové pásmo a nulový vlastní šum a zkreslení. Základní OZ má následující vývody → kladný (neinvertující) vstup, záporný (invertující) vstup, výstup a dva napájecí vývody (ty se často ve schématech nekreslí, já je tam mám).

2. Měření OZ v invertujícím zapojení při stejnosměrném vstupu

a) Schéma zapojení

Schéma č. 1

b) Tabulka použitých přístrojů – Tab. č. 1

Označení v zapojení	Přístroj	Тур	Inventární číslo	Poznámka
V	Voltmetr	MY64	0655	-
R_1	Odporová dekáda	RLC-D1000	10-1370/11	-
R_2	Odporová dekáda	RLC-D1000	10-1370/05	-
OZ	Operační zesilovač	MAA741	20-0049/01	-
Z	Zdroj U1	-	stůl 7	-

c) Postup měření

- 1. Sestavíme zapojení podle schématu.
- 2. Nastavíme zdroje napětí ve stole na požadované hodnoty.
- 3. Nastavíme odporové dekády na požadované hodnoty.
- 4. Změříme napětí na výstupu OZ.
- 5. Nastavíme odporovou dekádu R₂ na následující hodnotu.
- 6. Opakujeme body 4 a 5 dokud nezměříme hodnoty U₂ pro všechny požadované hodnoty odporové dekády R₂

d) Vzorce pro výpočty hodnot

- 1. Napěťový přenos pro invertující OZ $\rightarrow A_U = -(\frac{R_2}{R_1})$
- 2. Očekávané výstupní napětí $\rightarrow U_{2O\check{C}EK\acute{A}VAN\acute{E}} = A_u * U_1$
- 3. Absolutní odchylka $\rightarrow \Delta U_2 = U_{2M \check{E} \check{R} E N \acute{E}} U_{2O \check{C} E K \acute{A} V A N \acute{E}}$

e) Tabulka naměřených a očekávaných hodnot – Tab. č. 2

U _{cc} [V]	± 15							
R_1 [k Ω]	20							
$R_2 [k\Omega]$	5	10	20	40	60	80	100	
U ₁ [V]	4							
U _{2,MĚŘENÉ}	-1,08	-2,08	-4,12	-8,21	-12,28	-14,49	-14,50	
U _{2,OČEKÁVANÉ}	-1	-2	-4	-8	-12	-16	-20	
Δ U ₂ [V]	0,08	0,08	0,12	0,21	0,28	1,51	5,5	

f) Graf závislosti měřeného výstupního napětí U2 na zpětnovazebném odporu

Graf č. 1

3. Měření OZ v invertujícím zapojení při střídavém vstupu

a) Schéma zapojení

Schéma č. 2

b) Tabulka použitých součástek – Tab. č. 3

Označení v zapojení	Přístroj	Тур	Inventární číslo	Poznámka
R_1	Odporová dekáda	RLC-D1000	10-1370/11	-
R_2	Odporová dekáda	RLC-D1000	10-1370/05	-
OZ	Operační zesilovač	MAA741	20-0049/01	-
GEN	Generátor	-	Stůl 7	-
Osc	Osciloskop	-	stůl 7	-

c) Postup měření

- 1. Sestavíme zapojení podle schématu.
- 2. Nastavíme generátor na požadované hodnoty napětí U_{pp} a periody T.
- 3. Nastavíme odporové dekády na požadované veličiny.
- 4. Měříme požadované hodnoty na osciloskopu.
- 5. Nastavíme odporovou dekádu R₂ na následující hodnotu.
- 6. Opakujeme body 4 a 5 dokud nezměříme všechny veličiny pro všechny požadované hodnoty odporové dekády R_2

d) Výpočet Au očekávané a Auzměřené

$$A_U = \frac{U_{\text{\tiny 2PP}}}{U_{\text{\tiny 1PP}}} = -(\frac{R_2}{R_1}) \quad \rightarrow \quad A_{\text{\tiny UOČEKÁVANÉ}} = -(\frac{R_2}{R_1}) \quad \textbf{a} \quad A_{\text{\tiny UZMĚŘENÉ}} = \frac{U_{\text{\tiny 2PP}}}{U_{\text{\tiny 1PP}}}$$

e) Tabulka naměřených a očekávaných hodnot – Tab. č. 4

$R_1[k\Omega]$	5	10	20	40	60	80	100	
$R_2[k\Omega]$				80				
f [Hz]	100							
A _{U OČEKÁVANÉ} [-]	16	8	4	2	1,5	1	0,8	
A _{U ZMĚŘENÉ} [-]	6,8	6.75	4.1	2.05	1,4	1.05	0.85	
U _{1 PP} [V]	4							
U _{2 PP} [V]	27,2	27	16,4	8,2	5,6	4,2	3,4	

f) Výpočet rezistoru R₁ pro zesílení 6 dB

Zadané hodnoty \rightarrow a_U = 6 dB, R₂ = 80 k Ω

$$a_u = 20 * \log A_U \rightarrow a_u = 20 * \log \frac{R_2}{R_1} \rightarrow R_1 = \frac{R_2}{10^{\frac{a_u}{20}}} \rightarrow R_1 = \frac{80000}{10^{\frac{6}{20}}} \rightarrow R_1 \simeq 40000\Omega$$

g) Časový průběh vstupního a výstupního napětí pro $a_U = 6 \text{ dB}$

4. Závěr

Chyby měření, odchylky od měřených hodnot a očekávaných budou v našem zapojení OZ způsobeny nedokonalostí OZ, chyby měření přístrojů a osciloskopu budou až zanedbatelné. Napěťové zesílení OZ se dá jednoduše ovládat změnou rezistorů, v našem případě odporových dekád. Dál popíši jednotlivá zapojení podle druhu vstupního signálu.

- a) V prvním zapojení se stejnosměrným zdrojem signálu do OZ jsme zjistili, že se zvyšujícím se napěťovým zesílením A_U je zvyšuje i absolutní odchylka U_{2 MĚŘENÉ} a U_{2 OČEKÁVANÉ}. Také z tabulky č. 2 můžeme říct, že zesílení 4x je velice nepřesné a zesílení nad 4x už nedává smysl (náš OZ jednoduše nedokáže zesílit na vyšší hodnotu napětí U₂), vyššího zesílení by jsme mohli dosáhnout zmenšením napětí U₁ což ale samozřejmě nedává smysl realizovat.
- b) V druhém zapojení se střídavým sinusovým signálem z generátoru a do OZ můžeme nejlépe na grafu č. 2 pozorovat obrácenou fázi výstupního sinusového průběhu vůči tomu vstupnímu, díky tomu víme, že zapojení doopravdy invertuje. Také můžeme vidět, že 6 dB napěťového zesílení odpovídá zesílení výstupního napětí 2x. Z tabulky č. 4 můžeme říct, že oproti vstupu stejnosměrného signálu, je zapojení se střídavým vstupem více nepřesné, co se týče napěťového rozptylu U_{PP}.