Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică - profilul real, Filiera tehnologică - profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.
 Timpul efectiv de lucru este de 3 ore.

A. MECANICĂ Varianta 3

Se consideră accelerația gravitațională g = 10m/s².

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Simbolurile unităților de măsură fiind cele utilizate în S.I., unitatea de măsură pentru puterea mecanică poate fi scrisă sub forma:
- **a.** J·s⁻²

- **d.** $J \cdot s^2$ (3p)
- **2.** Energia cinetică a unui corp de masă m aflat în mişcare de translație cu viteza constantă \vec{v} față de un sistem de referință, are în acel sistem de referință expresia:
- **b.** $E_c = \frac{mv}{2}$

- 3. Ridicarea uniformă a unui corp de greutate $G = 100 \, \text{N}$, pe un plan înclinat de unghi $\alpha = 30^{\circ}$, sub actiunea unei forte F = 125N paralele cu planul înclinat, se face cu randamentul:
- **a.** 20%
- **b.** 40%
- **c.** 60%
- (3p)
- **4.** În graficul alăturat este reprezentată dependența alungirii relative $\varepsilon = \frac{\Delta \ell}{\ell_o}$ a unui fir elastic, supus unei deformări în limitele de valabilitate ale legii lui Hooke, funcție de efortul unitar $\sigma = \frac{F}{S}$. Valoarea modulului de elasticitate Young E al materialului din

care este confecționat firul elastic este:

a. $1,96 \cdot 10^{11} \text{ N} \cdot \text{m}^{-2}$

modulul vitezei corpului:

- **b.** 1.96 · 10⁸ N · m⁻²
- **c.** $1.96 \cdot 10^{-11} \text{ N} \cdot \text{m}^{-2}$
- **d.** $0.51 \cdot 10^{-11} \text{ N} \cdot \text{m}^{-2}$
- (3p) 5. Un corp punctiform se deplasează cu viteza constantă \vec{v} . Simultan, la un moment dat, asupra acestuia se acționează cu două forțe egale ca mărime, pe aceeași direcție, dar în sensuri opuse. Din acest moment
- a. crește
- b. scade
- c. se anulează
- d. rămâne același
- (3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un corp cu masa de 100 g este aruncat pe verticală de jos în sus în câmp gravitațional terestru. Corpul întâmpină din partea aerului o fortă de rezistentă constantă orientată pe directia de miscare a corpului. Graficul alăturat reprezintă dependenta vitezei corpului, functie de timp, pentru portiunea de urcare.

- a. Reprezentati fortele ce actionează asupra corpului în timpul urcării.
- b. Calculati viteza medie de deplasare a corpului în prima secundă de miscare.
- **c.** Determinati acceleratia corpului, în urcare.
- d. Calculati valoarea fortei de rezistentă întâmpinată de corp din partea aerului.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Într-un sport olimpic de iarnă un bloc de piatră cu masa de 19,96 kg este lansat, pe suprafața gheții, cu scopul parcurgerii unei anumite distante până la o tintă. Suprafata ghetii este plană și orizontală și se află la înălțimea h = 100 m față de nivelul mării. Jucătorii perie suprafața gheții din fața blocului de piatră în scopul micsorării frecărilor. Un astfel de bloc, de dimensiuni neglijabile, este lansat către o tintă situată la distanta d = 20 m, de locul lansării. Prin perierea suprafetei ghetii coeficientul de frecare la alunecare dintre blocul de piatră şi suprafața gheții, scade liniar de la valoarea $\mu_1 = 0.06$ în locul de lansare la valoarea $\mu_2 = 0.02$ lângă țintă. Determinați:

- a. greutatea blocului de piatră;
- **b.** lucrul mecanic al fortei de frecare la alunecare, dintre blocul de piatră și suprafata gheții, pe distanța d;
- c. viteza cu care trebuie lansat blocul de piatră pentru a se opri la tintă;
- d. energia mecanică a blocului de piatră aflat în repaus pe suprafața gheții, considerând că energia potentială este nulă la nivelul mării.

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TRADOINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.
 Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Varianta 3

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. O masă dată de gaz ideal se destinde la temperatură constantă. În această transformare gazul:
- a. cedează căldură mediului exterior
- b. primește lucru mecanic
- c. își conservă energia internă
- d. nu schimbă căldură cu mediul exterior.

(3p) Alatia de definitie a căldurii specifice

2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, relația de definiție a căldurii specifice a unei substanțe este:

a.
$$c = \frac{Q}{m \cdot \Delta T}$$
 b. $c = \frac{Q}{\Delta T}$ **c.** $c = \frac{Q}{\mu \cdot \Delta T}$ **d.** $c = \frac{Q}{\nu \cdot \Delta T}$ (3p)

3. Simbolurile mărimilor fizice şi ale unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I a mărimii fizice descrise de produsul $p \cdot \Delta V$ este:

4. O cantitate de gaz ideal monoatomic ($C_V = 1,5R$) primeşte căldura Q într-o transformare în care presiunea gazului rămâne constantă. Variația energiei interne gazului este:

a.
$$\Delta U = Q$$
 b. $\Delta U = 0.6 \cdot Q$ **c.** $\Delta U = 0.4 \cdot Q$ **d.** $\Delta U = 0.2 \cdot Q$ (3p)

5. O masă dată de gaz ideal, aflată inițial în starea A, ajunge într-o stare B prin trei transformări distincte, notate cu 1, 2 și 3 reprezentate în coordonate p-V în figura alăturată. Între căldurile schimbate cu exteriorul în cele trei transformări există relația:

a.
$$Q_1>Q_2>Q_3$$
 b. $Q_1=Q_2=Q_3$ c. $Q_1< Q_2< Q_3$ d. $Q_1=Q_2< Q_3$ II. Rezolvați următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schematic o pompă de compresiune, al cărei corp de pompă are volumul $V_0=1$ L. Pompa este folosită pentru umplerea cu aer a unui balon de volum V=10L până la presiunea $p=1,5\cdot 10^5$ N/m². Inițial, în balon se afla aer la presiunea atmosferică normală $p_0=10^5$ N/m². Pompa preia, la fiecare cursă a pistonului P, aer la presiunea atmosferică normală prin deschiderea supapei S₁, supapa S₂ fiind închisă. Procesul de umplere a balonului cu aer comprimat are loc la temperatura mediului ambiant $t=17^{\circ}$ C, prin închiderea supapei S₁ și deschiderea supapei S₂. Pereții balonului rezistă până la o presiune $p_{\text{max}}=1,7\cdot 10^5$ N/m². Masa molară a aerului $\mu=29\,\text{g}\cdot\text{mol}^{-1}$.

- a. Calculați masa inițială a aerului din balon.
- **b.** Determinați numărul N de curse ce trebuie efectuat de pistonul P pentru a aduce presiunea aerului din balon la valoarea p.

- c. Calculați densitatea aerului din balon la sfârșitul celor N curse ale pistonului.
- **d.** După umplerea balonului cu aer la presiunea p, balonul este închis şi corpul de pompă este decuplat. Calculați valoarea maximă a temperaturii până la care poate fi încălzit balonul fără a se sparge.

III. Rezolvați următoarea problemă:

(15 puncte)

Într-un cilindru cu piston mobil, ce se poate mişca etanş şi fără frecări, se află un mol de gaz ideal la temperatura $T_1 = 300 \, \text{K}$. Gazul este răcit la volum constant, apoi este încălzit la presiune constantă până revine la temperatura inițială T_1 . În acest proces lucrul mecanic efectuat de gaz este de 831J, iar raportul dintre căldura primită şi modulul căldurii cedate este k = 5/3. Se cunoaște ln1,5 \cong 0,4.

- **a.** Reprezentați graficul transformărilor în coordonate *p-T*.
- b. Calculati raportul dintre valoarea maximă si cea minimă a volumului ocupat de gaz în acest proces.
- c. Determinați valoarea căldurii molare la volum constant a gazului.
- **d.** Determinați lucrul mecanic primit de gaz pentru a reveni în starea inițială printr-o transformare la temperatură constantă.

2

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică - profilul real, Filiera tehnologică - profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Varianta 3

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. În graficul din figura alăturată este reprezentată dependența randamentului η , al unui circuit simplu, de rezistența electrică variabilă a circuitului exterior sursei. Valoarea rezistenței interne a sursei ce alimentează acest circuit este:

a. 0.5Ω

b. 1 Ω

c. 2Ω

(3p)

2. Coeficientul de temperatură al rezistivitătii filamentului unui bec electric este α . Dacă temperatura filamentului becului electric este t, variația relativă a rezistenței electrice a filamentului față de temperatura $t_0 = 0^{\circ}$ C este:

a. $1+\alpha \cdot t$

(3p)

3. Sursa de tensiune electromotoare E = 6 V şi rezistență internă $r = 1 \Omega$, este parcursă de un curent electric de intensitate I = 1 A având sensul indicat în figura alăturată. Valoarea tensiunii U_{AB} este :

a. 1 V

c. 6 V

d. 7 V

(3p)

4. Un conductor este străbătut de un curent electric a cărui intensitate variază în timp după legea I = 2t. Dacă intensitatea curentului electric și timpul sunt exprimate în unități de măsură ale S.I., sarcina electrică care trece prin secțiunea conductorului în intervalul de timp cuprins între $t_1 = 0$ s și $t_2 = 2$ s este:

b. 5 C

c. 4 C

5. Știind că simbolurile mărimilor fizice și ale unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură în S.I. a raportului $\frac{R}{}$ este:

a. $\Omega \cdot m$

b. m

c. $\Omega \cdot m^{-1}$

d. m⁻¹

(3p)(15 puncte)

II. Rezolvati următoarea problemă:

Se consideră circuitul electric a cărui schemă este reprezentată în figura alăturată. Se cunosc: $R_1 = 30\,\Omega$, $R_2 = 120\,\Omega$, $R_3 = 20\,\Omega$. Cele două surse sunt identice, rezistența internă a unei surse fiind $r = 2\Omega$. Când întrerupătorul K este închis, intensitatea curentului electric indicată de ampermetrul ideal ($R_A \cong 0$) are valoarea $I_A = 0.25 \,\mathrm{A}$. Rezistența electrică a conductoarelor de legătură se neglijează. Determinați:

- **a.** rezistența echivalentă a grupării formate din rezistoarele R_1 , R_2 , R_3 ;
- **b.** valoarea tensiunii electromotoare a unei surse;
- c. intensitatea curentului electric care trece prin rezistorul R₁ dacă întrerupătorul K este închis;
- d. tensiunea dintre punctele A și B dacă întrerupătorul K este deschis.

III. Rezolvați următoarea problemă:

(15 puncte)

Un elev are la dispoziție o baterie cu tensiunea electromotoare E = 12 V și rezistența internă $r = 1\Omega$ și două rezistoare având rezistențele electrice $R_1 = 1 \Omega$ şi respectiv $R_2 = 10 \Omega$. Elevul conectează la bornele bateriei cele două rezistoare grupate în serie.

- a. Calculați rezistența echivalentă a grupării de rezistoare.
- **b.** Determinați energia consumată de circuitul exterior în timpul $t_1 = 10 \text{ min}$.
- c. Calculati randamentul circuitului electric.
- d. Desenați schema electrică a circuitului pe care elevul trebuie să-l realizeze astfel încât sursa să debiteze puterea maximă pe circuitul exterior și calculați valoarea acestei puteri maxime.

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul National de Evaluare și Examinare

Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.Timpul efectiv de lucru este de 3 ore.

D. OPTICĂ Varianta 3

Se consideră constanta Planck $h = 6.6 \cdot 10^{-34} \, \text{J} \cdot \text{s}$ şi sarcina elelctrică elementară $e = 1.6 \cdot 10^{-19} \, \text{C}$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- **1.** Pe fața superioară a unei lame transparente, cu fețele plane şi paralele, este incident un fascicul paralel de raze monocromatice. Observată prin reflexie, figura de interferență se datorează:
- a. doar razelor reflectate pe fața superioară a lamei;
- **b.** doar razelor refractate prin baza lamei;
- c. razelor reflectate pe fața superioară a lamei și razelor reflectate pe baza lamei;
- d. razelor reflectate și razelor refractate pe fața superioară a lamei.

(3p)

- 2. Un obiect este plasat la 30 cm în fața unei oglinzi plane. Distanța dintre obiect și imaginea sa în oglindă este:
- a. 60 cm
- **b.** 45 cm
- **c.** 30 cm
- **d.** 15 cm

(3n)

- **3.** Simbolurile mărimilor fizice şi ale unităților de măsură fiind cele din manualele de fizică, unitatea de măsură în S.I a mărimii fizice $c \cdot \lambda^{-1}$ este:
- a.J
- **b**. Hz
- **c.** m⁻¹
- d s

(3p)

- **4.** O rază de lumină monocromatică, venind din aer ($n_{aer}=1$), este incidentă sub unghiul $i=60^\circ$ pe suprafața unui mediu transparent având indicele de refracție $n=1,73 \equiv \sqrt{3}$. Unghiul dintre direcția razei reflectate și directia razei refractate este:
- **a.** 30°
- **b.** 45°
- **c.** 60°
- **d.** 90°

(3p)

5. În urma unui experiment pentru studiul efectului fotoelectric extern, s-a trasat graficul din figura alăturată. Considerând că pentru tensiuni mai mici de 10 V graficul poate fi aproximat cu o dreaptă, intensitatea curentului electric I_0 corespunzătoare unei tensiuni electrice nule are valoarea:

- **a.** 0,01 μ A
- **b.** 0,1 μ A
- c. 1 μ A
- **d.** 10 μA

(3p)

II. Rezolvati următoarea problemă:

(15 puncte)

Pe un banc optic se montează o lentilă biconvexă (L_1), considerată subțire, având distanța focală $f_1 = 30 \, \mathrm{cm}$, razele de curbură egale în modul și indicele de refracție n = 1,5. Un obiect liniar este plasat în fața lentilei, perpendicular pe axul optic principal. Pe un ecran, plasat la o distanță adecvată, se observă o imagine clară a obiectului, de două ori mai mare decât obiectul.

- a. Calculați modulul razelor de curbură ale lentilei.
- **b.** Calculați distanța la care se află obiectul față de lentilă.
- **c.** Menținând fixe obiectul și lentila (L_1) , se alipește de lentila biconvexă (L_1) o a doua lentilă (L_2) . Se observă că pe ecranul aflat la distanța de 90 cm de obiect se formează o nouă imagine clară a obiectului. Calculați distanța focală a celei de a doua lentile (L_2) .
- **d.** Se depărtează lentila (L_2) de lentila (L_1) şi se înlătură obiectul. Se constată că pentru o anumită distanță între lentile un fascicul de lumină paralel cu axul optic principal, provenit de la o sursă de lumină laser, incident pe lentila (L_1) părăseşte lentila (L_2) tot paralel cu axul optic principal. Realizați un desen în care să figureze mersul razelor de lumină prin sistemul de lentile în acest caz şi determinați distanța D dintre lentile.

III. Rezolvați următoarea problemă:

(15 puncte)

În graficul din figura alăturată este reprezentată dependența energiei cinetice maxime a fotoelectronilor extrași dintr-un metal prin efect fotoelectric de frecvența radiației incidente.

naţi _____

↑E_c(J)

- a. Determinați, folosind datele din grafic, lucrul mecanic de extracție.
- **b.** Iluminând suprafața catodului cu o radiație de frecvență $v = 8 \cdot 10^{14} \, \text{Hz}$, determinați energia cinetică maximă a fotoelectronilor emişi.
- c. Determinați valoarea absolută a tensiunii de stopare care trebuie aplicată electrozilor pentru a anula curentul de fotelectroni emis sub acțiunea radiației de frecvență $v = 8 \cdot 10^{14} \text{Hz}$.
- **d.** Determinați semnificația fizică a pantei dreptei din grafic ($tg\alpha$).