兰州大学信息科学与工程学院实验报告

实验成绩:		
学生姓名:		杨添宝
学	号:	320170941671
年级	专业:	2017 级计算机基地班
指导老师:		赵继平

实验课程: 计算机组成原理实验 实验题目: 综合实验的调试 1

一、实验目的

- (1) 通过使用软件 LCACPT, 了解程序编译、加载的过程。
- (2) 通过微单步、单拍调试,理解模型机中的数据流向。

二、实验连线

各模块控制信号连接表:(或者使用提供的连接板)

(1) 总线和内存单元:

M21
M21
M22
PLS4
ALU-IN
ALU-OUT
R-IN
R-OUT
RA-IN
RA-OUT
PC-IN
PC-OUT

(2) 微程序控制单元:

MLD	M23
MCK	PLS1
MOCK	PLS3
MD0	VCC
MD1	VCC
MD2	I4
MD3	I5

MD4	I6
MD5	I7
MD6	GND
MD7	GND

(3) 寄存器组单元:

SA	10
SB	I1
RR	M15
WR	M14
RCK	PLS4
X0	M12
X1	M11
ERA	M10
RA-O	M9
RACK	PLS4

(4) 算术逻辑单元:

EDR1	M8
EDR2	M7
ALU-O	M6
CN	M5
M	M4
S3	M3
S2	M2
S1	M1
S0	M0
D2CK	PLS4

D1CK	PLS4
CCK	PLS4
ZD	JZ
CY	JC

(5) 指令寄存器:

EIR1	M20
EIR2	M19
IR1CK	PLS4
IR2CK	PLS4
IR2-O	M18
PC-O	M17
ELP	M16
PCCK	PLS2
JZ	ZD
JC	CY
JS0	I2
JS1	13

(6) 启停单元:

НСК	PLS2
HALT	M13

三、指令系统

指令助记符	指令功能	指令编码	微周期	微操作
取指微指令			Т0:	PC->地址总线->RAM
				RAM->数据总线->IR1
ADD A,R0	(A)+(Ri)->A	0C	Т0:	A->数据总线->DR1
ADD A,R1		0D	T1:	Ri->数据总线->DR2

ADD A,R2		0E	T2:	ALU->数据总线->A、置 CY
ADD A,R3		0F	Т3:	取指微指令
SUB A,R0	(A)-(Ri)->A	1C	то:	A->数据总线->DR1
SUB A,R1		1D	T1:	Ri->数据总线->DR2
SUB A,R2		1E	T2:	ALU->数据总线->A、置 CY
SUB A,R3		1F	Т3:	取指微指令
MOV A,@R0	(Ri)->A	2C	Т0:	Ri->数据总线->IR2
MOV A,@R1		2D	T1:	IR2->地址总线->RAM->A
MOV A,@R2		2E	T2:	取指微指令
MOV A,@R3		2F		
MOV A,R0	(Ri)->A	3C	Т0:	Ri->数据总线->A
MOV A,R1		3D	T1:	取指微指令
MOV A,R2		3E		
MOV A,R3		3F		
MOV R0,A	(A)->Ri	4C	Т0:	A->数据总线->Ri
MOV R1,A		4D	T1:	取指微指令
MOV R2,A		4E		
MOV R3,A		4F		
MOV A,#data	Data->A	5F	T0:	RAM->数据总线->A
			T1:	取指微指令
MOV R0,#data	Data->Ri	6C	Т0:	RAM->数据总线->A
MOV R1,#data		6D	T1:	取指微指令
MOV R2,#data		6E		
MOV R3,#data		6F		
LDA addr	(addr)->A	7F	Т0:	RAM->数据总线->IR2
			T1:	IR2->地址总线,RAM->A
			T2:	取指微指令
STA addr	(A)->addr	8F	Т0:	RAM->数据总线->IR2
L	1	1	i .	ı

			1	<u> </u>
			T1:	IR2->地址总线,A->RAM
			T2:	取指微指令
RLC A	C、A 左移 1 位	9F	Т0:	A<<1、置 CY
			T1:	取指微指令
RRC A	C、A 右移 1 位	AF	то:	A>>1、置 CY
			T1:	取指微指令
JZ addr	A=0 ,	В3	Т0:	条件成立: RAM->PC
	Addr->PC		T1:	取指微指令
JC addr	Су=0,	В7	Т0:	条件成立: RAM->PC
	Addr->PC		T1:	取指微指令
JMP addr	Addr->PC	BF	то:	RAM->PC
			T1:	取指微指令
ORL A,#data	(A)或 data->A	CF	Т0:	A->数据总线->DR1
			T1:	RAM->数据总线->DR2
			T2:	ALU->数据总线->A
			Т3:	取指微指令
ANL A,#data	(A) 与 data->A	DF	Т0:	A->数据总线->DR1
			T1:	RAM->数据总线->DR2
			T2:	ALU->数据总线->A
			T3:	取指微指令
HALT	停机	FF	Т0:	停机

四、微指令表

指令助记符		23	22	21	20	19	18	17	16	15	14	13 12	11	10	9 8	7	6 5 4	3	2	1 ()
	微地址	MLD V	VM]	RM I	EIR1	EIR2 I	R2-O P0	С-О Е	LP	RR '	WR H	ALT X0	X1	ERA RA	A-O EDR1	EDR2 A	LU-O CN M	S3	S2 S	S1 S0	16 进制
	有效值	0	0	0	0	0	0	0	0	0	0	0 *	*	0	0 0	0	0 * *	*	* *	*	
	00H	0	1	0	0	1	1	0	0	1	1	1 1	1	1	1 1	1	1 1 1	1	1	1 1	4DFFFF
取指微指令	01H																				
	02H																				
ADD A,RI	03H	1	1	1	1	1	1	1	1	1	1	1 1	1	1	0 0	1	1 1 1	1	0	0 1	FFFCF9
	04H	1	1	1	1	1	1	1	1	0	1	1 1	1	1	1 1	0	1 1 1	1	0	0 1	FF7F79
	05H	1	1	1	1	1	1	1	1	1	1	1 1	1	0	1 1	. 1	0 1 0	1	0	0 1	FFFBA9
	06H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1 1	1	1 1 1	1	1	1 1	4DFFFF
SUB A,RI	07H	1	1	1	1	1	1	1	1	1	1	1 1	1	1	0 0	1	1 0 1	0	1	1 (FFFCD6
	08H	1	1	1	1	1	1	1	1	0	1	1 1	1	1	1 1	. 0	1 0 1	0	1	1 (FE7F56
	09H	1	1	1	1	1	1	1	1	1	1	1 1	1	0	1 1	1	0 0 0	0	1	1 (FFFB86
	0AH	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1 1	1	1 1 1	1	1	1 1	4DFFFF
MOV A,@RI	0BH	1	1	1	1	0	1	1	1	0	1	1 1	1	1	1 1	1	1 1 1	1	1	1 1	F77FFF
	0CH	1	1	0	1	1	0	1	1	1	1	1 1	1	0	1 1	1	1 1 1	1	1	1 1	DBFBFF
	0DH	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1 1	. 1	1 1 1	1	1	1 1	4DFFFF
	0EH																				
MOV A,RI	0FH	1	1	1	1	1	1	1	1	0	1	1 1	1	0	1 1	1	1 1 1	1	1	1 1	FF7BFF
	10H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1 1	. 1	1 1 1	1	1	1 1	4DFFFF
	11H																				
	12H																				
MOV RI,A	13H	1	1	1	1	1	1	1	1	1	0	1 1	1	1	0 1	. 1	1 1 1	1	1	1 1	7FBDFF
	14H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1 1	. 1	1 1 1	1	1	1 1	4DFFFF
	15H																				
	16H																				

指令助记符		23	22	21	20	19	18	17	16	15	14	13 12	11	10	9	8	7	6	5 4	3	2	1 (
	微地址	MLD V	VM I	RM E	EIR1	EIR2 II	R2-O PC	C-O E	LP	RR V	WR F	HALT X0	X1	ERA RA	A-O EDF	R1 ED	R2 ALU	J -O (CN M	S3	S2	S1 S0	16 进制
	有效值	0	0	0	0	0	0	0	0	0	0	0 *	*	0	0	0	0	0	* *	*	*	* :	*
MOV A,#data	17H	1	1	0	1	1	1	0	1	1	1	1 1	1	0	1	1	1	1	1 1	. 1	1	1	1 DDFBFF
	18H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 4DFFFF
	19H																						
	1AH																						
MOV Ri,#data	1BH	1	1	0	1	1	1	0	1	1	0	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 DDBFFF
	1CH	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 4DFFFF
	1DH																						
	1EH																						
LDA A,addr	1FH	1	1	0	1	0	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	D5FFFF
	20H	1	1	0	1	1	0	1	1	1	1	1 1	1	0	1	1	1	1	1 1	. 1	1	1	DBFBFF
	21H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 4DFFFF
	22H																						
STA addr	23H	1	1	0	1	0	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	D5FFFF
	24H	1	0	1	1	1	0	1	1	1	1	1 1	1	1	0	1	1	1	1 1	. 1	1	1	BBFDFF
	25H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 4DFFFF
	26H																						
RRC	27H	1	1	1	1	1	1	1	1	1	1	1 1	0	0	0	1	1	1	1 (1	1	1	1 FFF1EF
	28H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 4DFFFF
	29H																						
	2AH																						
RLC	2BH	1	1	1	1	1	1	1	1	1	1	1 0	1	0	0	1	1	1	1 (1	1	1	1 FFE9EF
	2CH	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	1	1	1	CDFFFF
	2DH																						
	2EH																						

指令助记符		23	22	21	20	19	18	17	16	15	14	13 1	2 1	1 10	9	8	7	6	5	4 3	2	1	0
, , , , = , ,	微地址	MLD V			EIR1	EIR2 II	R2-O	PC-O F	ELP	RR	WR F			1 ERAR	A-O F	DR1	EDR2 AI						0 16 进制
	有效值	0	0	0	0		0	0	0			0		* 0	0	0		0		* *		*	*
JZ addr	2FH	1	1	0	1	0	1	0	0		1	1		1 1	1	1	1	1	1	1 1	1	1	1 D4FFFF
JC addr	30H	0	1	0	0		1	0	1	1	1	1		1 1	1	1	1	1	1				1 4DFFFF
JMP addr	31H								-	-							-						1,2111
	32H																						
ORL A,#data	33H	1	1	1	1	1	1	1	1	1	1	1		1 1	0	0	1	1	1	1 1	1	1	0 FFFCFE
	34H	1	1	0	1	1	1	0	1	1	1	1		1 1	1	1	0	1	1	1 1	1	1	0 DDFF7E
	35H	1	1	1	1	1	1	1	1	1	1	1		1 0	0	1	1	0	1	1 1	1	1	0 FFFBBE
	36H	0	1	0	0	1	1	0	0	1	1	1		1 1	1	1	1	1	1	1 1	1	1	1 4DFFFF
ANL A,#data	37H	1	1	1	1	1	1	1	1	1	1	1		1 1	0	0	1	1	1	1 1	0	1	1 FFFCFB
	38H	1	1	0	1	1	1	0	1	1	1	1		1 1	1	1	0	1	1	1 1	0	1	1 DDFF7B
	39H	1	1	1	1	1	1	1	1	1	1	1		1 0	0	1	1	0	1	1 1	0	1	1 FFFBBB
	3AH	0	1	0	0	1	1	0	0	1	1	1		1 1	1	1	1	1	1	1 1	1	1	1 4DFFFF
	3BH																						
	3СН																						
	3DH																						
	3ЕН																						
HALT	3FH	1	1	1	1	1	1	1	1	1	1	0		1 1	1	1	1	1	1	1 1	1	1	1 FFDFFF

五、程序调试

实验、实现普通的加、减法指令

在软件 LCACPT 中,输入以下程序,并且编译、加载到实验平台中。

MOV A,#55 RAM->A

MOV R0,#66 RAM->R0

ADD A,R0 (A)+(R0)-A

MOV R1#33 RAM->R1

 $SUB A,R1 \qquad (A)-(R1)->A$

STA 10 A->RAM

HALT 停机

或通过键盘(键盘使用方法见第四章)输入微程序及以下程序:

内存地址	指令助记符	指令码	说明
00Н	MOV A,#55	5FH	立即数 55H->A
01H		55H	
02H	MOV R0,#66	6СН	立即数 66H->寄存器 R0
03Н		66H	
04H	ADD A,R0	0СН	A 内容+R0 内容->A
05H	MOV R1,#33	6DH	立即数 33H->寄存器 R1
06H		33Н	
07H	SUB A,R1	1DH	A 内容-R1 内容->A
08H	STA 10	8FH	将 A 内容写入 RAM 地址 10H
09H		10H	
ОАН	HALT	FFH	停机

运行结果为: RAM 10H 单元中的内容为 88H

运行程序:

通过软件 LCACPT 的微单步功能可观察各个变量的变化。

微单步运行过程显示如下:

微地址	数据流程	数据总线	地址总线	操作寄存器
00Н	取指微指令 RAM->BUS->IR1	5FH	00H	IR1=5FH
MOV A,#5	55			
17H	BUS-> A	55H	01H	A=55H
18H	取指微指令 RAM->BUS->IR1	6СН	02H	IR1=6CH
MOV R0,#	# 66			
1BH	RAM->寄存器 R0	66H	03H	寄存器 R0=66H
1CH	取指微指令 RAM->BUS->IR1	0СН	04H	IR1=0CH
ADD A,R)			
03H	A->锁存器 DR1	55H	无效	DR1=55H
04H	寄存器 R0->锁存器 DR2	66H	无效	DR2=66H
05H	ALU-> A	ввн	无效	A=BBH
06H	取指微指令 RAM->BUS->IR1	6DH	05H	IR1=6DH
MOV R1,#	#33			
1BH	RAM->寄存器 R1	33H	06H	寄存器 R1=33
1CH	取指微指令 RAM->BUS->IR1	1DH	07H	IR1=1DH
SUB A,R1				
07H	A->锁存器 DR1	ввн	无效	DR1=BBH
08H	寄存器 R1->锁存器 DR2	33H	无效	DR2=33H
09H	ALU->A	88H	无效	A=88H
0AH	取指微指令 RAM->BUS->IR1	8FH	08H	IR1=8FH
STA 10				
23H	RAM->BUS->IR2	10H	09H	IR2=10H
24H	A->RAM(10H)	88H	10H	RAM(10)=88H
25H	取指微指令 RAM->BUS->IR1	FFH	0AH	IR1=FFH
HALT				
3FH	置模型机为停止状态	无效	无效	置停止状态

如果在运行微单步时,发现有错误或对微单步中的时序过程不清楚,可用时序单

元中的按钮来手动给出4个节拍。

微周期	数据流程	节拍		数据总线	地址总线	操作寄存器
Т0:	取指微指令	PLS1:	微地址清零	无效	无效	微地址: 00H
	RAM->BUS->IR1	PLS2:	置模型机运行	无效	无效	PC=00H
		PLS3:	取指微指令输出	5FH	00H	锁存微指令
		PLS4:	BUS->IR1	5FH	00H	IR=5FH
MOV A,#55						
Т0:	BUS->A	PLS1:	置微地址	5FH	00H	微地址: 17H
		PLS2:	PC+1	5FH	00H	PC=01H
		PLS3:	微指令输出	55H	01H	锁存微指令
		PLS4:	BUS->A	55H	01H	A=55H
T1:	取指微指令	PLS1:	微地址+1	55H	01H	微地址: 18H
	RAM->BUS->IR1	PLS2:	PC+1	55H	01H	PC=02H
		PLS3:	取指微指令输出	6СН	02H	锁存微指令
		PLS4:	BUS->IR1	6СН	02H	IR1=6CH
MOV R0,#66						
	RAM->寄存器	PLS1:	置微地址	6СН	02H	微地址: 1BH
Т0:	R0	PLS2:	PC+1	6СН	02H	PC=03H
		PLS3:	取指微指令输出	66H	03H	锁存微指令
		PLS4:	BUS->寄存器 R0	66H	03H	寄存器
						R0=66H
T1:	取指微指令	PLS1:	微地址+1	66H	03H	微地址: 1CH
	RAM->BUS->IR1	PLS2:	PC+1	66H	03H	PC=04H
		PLS3:	取指微指令输出	0СН	04H	锁存微指令
		PLS4:	BUS->IR1	0СН	04H	IR1=0CH
ADD A,R0						
Т0:	A->锁存器 DR1	PLS1:	置微地址	0СН	04H	微地址: 03H

		1	-			
		PLS2: PC	C+1	0CH	04H	PC=05H
		PLS3: 取技	指微指令输出	55H	无效	锁存微指令
		PLS4: BU	JS->锁存器	55H	无效	DR1=55H
		DR1				
T1:	寄存器 R0->锁存	PLS1: 微均	地址+1	55H	无效	微地址: 04H
	器 DR2	PLS2: PC	不变	55H	无效	PC=05H
		PLS3: 微i	指令输出	66H	无效	锁存微指令
		PLS4: BU	JS->锁存器	66H	无效	DR2=66H
		DR2				
T2:	ALU->A	PLS1: 微均	地址+1	66H	无效	微地址: 05H
		PLS2: PC	こ不变	66H	无效	PC=05H
		PLS3: 微i	指令输出	ВВН	无效	锁存微指令
		PLS4: BU	JS->A	ввн	无效	A=BBH
Т3:	取指微指令	PLS1: 微均	地址+1	ВВН	无效	微地址: 06H
	RAM->BUS->IR1	PLS2: PC	不变	ВВН	无效	PC=05H
		PLS3: 微扫	指令输出	6DH	05H	锁存微指令
		PLS4: BU	JS->IR1	6DH	05H	IR1=6DH
MOV R1,#33						
	RAM->寄存器	PLS1: 置行	微地址	6DH	05H	微地址: 1BH
то:	R1	PLS2: PC	C+1	6DH	05H	PC=06H
		PLS3: 微i	指令输出	33H	06H	锁存微指令
		PLS4: BU	JS->IR1	33H	06H	寄存器 R1=33
T1:	取指微指令	PLS1: 微均	地址+1	33H	06H	微地址: 1CH
	RAM->BUS->IR1	PLS2: PC	C+1	33Н	06H	PC=07H
		PLS3: 微技	指令输出	1DH	07H	锁存微指令
		PLS4: BU	JS->IR1	1DH	07H	IR1=1DH
SUB A,Ri						
Т0:	A->锁存器 DR1	PLS1: 置行	微地址	1DH	07H	微地址: 07H
		l				

		PLS2: PC+1	1DH	07H	PC=08H
		PLS3: 微指令输出	BBH	无效	锁存微指令
		PLS4: BUS->DR1	BBH	元次 无效	DR1=BBAH
T-1	安去界 11、松左				
T1:	寄存器 R1->锁存	PLS1: 微地址+1	BBH	一 无效	微地址: 08H
	器 DR2	PLS2: PC 不变	BBH	无效 	PC=08H
		PLS3: 微指令输出	33H	无效	锁存微指令
		PLS4: BUS->DR2	33H	无效	DR2=33H
T2:	ALU->A	PLS1: 微地址+1	33H	无效	微地址: 09H
		PLS2: PC 不变	33Н	无效	PC=08H
		PLS3: 微指令输出	88H	无效	锁存微指令
		PLS4: ALU->A	88H	无效	A=88H
T3:	取指微指令	PLS1: 微地址+1	88H	无效	微地址: 0AH
	RAM->BUS->IR1	PLS2: PC 不变	88H	无效	PC=08H
		PLS3: 微指令输出	8FH	08H	锁存微指令
		PLS4: BUS->IR1	8FH	08H	IR1=8FH
STA 10					
T0:	RAM->BUS->IR2	PLS1: 置微地址	8FH	08H	微地址: 23H
		PLS2: PC+1	8FH	08H	PC=09H
		PLS3: 微指令输出	10H	09H	锁存微指令
		PLS4: BUS->IR2	10H	09H	IR2=10H
T1:	A->RAM(10H)	PLS1: 微地址+1	10H	09H	微地址: 24H
		PLS2: PC+1	10H	09H	PC=0AH
		PLS3: 微指令输出	88H	10H	锁存微指令
		PLS4: BUS->RAM	88H	10H	RAM(10)=88H
T2:	取指微指令	PLS1: 微地址+1	88H	10H	微地址: 25H
	RAM->BUS->IR1	PLS2: PC 不变	88H	10H	PC=0AH
		PLS3: 微指令输出	FFH	0AH	锁存微指令
		PLS4: BUS->IR1	FFH	0AH	IR1=FFH

HALT					
Т0:	置模型机为停止	PLS1: 置微地址	FFH	0AH	微地址: 3FH
	状态	PLS2: 停机	无效	无效	PC=0BH
		PLS3: 微指令输出			
		PLS4: BUS->IR2			

六、实验思考

1. 为什么指令 5FH 置入口微地址为 17H。

指令 5FH 对应指令助记符 MOV A,#data,查微指令表可知它的微地址有效值为 17H,查阅下表可得微程序首地址:

按操作码散转												
		指令	操作码			微程序首地址						
MD7、MD6	I7	I6	15	I4	MD1、MD0	MD7~MD0						
0	0	0	0	0	1	003H						
0	0	0	0	1	1	007H						
0	0	0	1	0	1	00BH						
0	0	0	1	1	1	00FH						
0	0	1	0	0	1	013H						
0	0	1	0	1	1	017H						
0	0	1	1	0	1	01BH						
0	0	1	1	1	1	01FH						
0	1	0	0	0	1	023H						
0	1	0	0	1	1	027H						
0	1	0	1	0	1	02BH						
0	1	0	1	1	1	02FH						
0	1	1	0	0	1	033Н						
0	1	1	0	1	1	037H						
0	1	1	1	0	1	03BH						
0	1	1	1	1	1	03FH						

2. 写出对应的微程序并通过键盘输入,记录运行结果。

微程序:

MOV A,#55 RAM->A

MOV R0,#66 RAM->R0

ADD A,R0 (A)+(R0)-A

MOV R1#33 RAM->R1

 $SUB A,R1 \qquad (A)-(R1)->A$

STA 10 A->RAM

HALT 停机

运行结果:

内存地址	指令助记符	指令码	说明
00H	MOV A,#55	5FH	立即数 55H->A
01H		55H	
02H	MOV R0,#66	6СН	立即数 66H->寄存器 R0
03H		66Н	
04H	ADD A,R0	0СН	A 内容+R0 内容->A
05H	MOV R1,#33	6DH	立即数 33H->寄存器 R1
06H		33Н	
07H	SUB A,R1	1DH	A 内容-R1 内容->A
08H	STA 10	8FH	将 A 内容写入 RAM 地址 10H
09H		10H	
0AH	HALT	FFH	停机

3. 记录微单步运行过程。

微单步运行过程显示如下:

微地址	数据流程	数据总线	地址总线	操作寄存器
00H	取指微指令 RAM->BUS->IR1	5FH	00Н	IR1=5FH
MOV A,#5	55			

17H	BUS-> A	55H	01H	A=55H	
18H	取指微指令 RAM->BUS->IR1	6СН	02H	IR1=6CH	
MOV R0,#66					
1BH	RAM->寄存器 R0	66H	03H	寄存器 R0=66H	
1CH	取指微指令 RAM->BUS->IR1	0СН	04H	IR1=0CH	
ADD A,R0					
03H	A->锁存器 DR1	55H	无效	DR1=55H	
04H	寄存器 R0->锁存器 DR2	66H	无效	DR2=66H	
05H	ALU-> A	ВВН	无效	A=BBH	
06H	取指微指令 RAM->BUS->IR1	6DH	05H	IR1=6DH	
MOV R1,#33					
1BH	RAM->寄存器 R1	33H	06H	寄存器 R1=33	
1CH	取指微指令 RAM->BUS->IR1	1DH	07H	IR1=1DH	
SUB A,R1					
07H	A->锁存器 DR1	ввн	无效	DR1=BBH	
08H	寄存器 R1->锁存器 DR2	33H	无效	DR2=33H	
09H	ALU->A	88H	无效	A=88H	
0AH	取指微指令 RAM->BUS->IR1	8FH	08H	IR1=8FH	
STA 10					
23H	RAM->BUS->IR2	10H	09H	IR2=10H	
24H	A->RAM(10H)	88H	10H	RAM(10)=88H	
25H	P.5H 取指微指令 RAM->BUS->IR1		0AH	IR1=FFH	
HALT					
3FH	置模型机为停止状态	无效	无效	置停止状态	

4. 手动控制 4 个节拍,记录运行过程。

用时序单元中的按钮来手动给出4个节拍。

微周期	数据流程	节拍	数据总线	地址总线	操作寄存器
Т0:	取指微指令	PLS1: 微地址清零	无效	无效	微地址: 00H

	RAM->BUS->IR1	PLS2:	置模型机运行	无效	无效	PC=00H
		PLS3:	取指微指令输出	5FH	00H	锁存微指令
		PLS4:	BUS->IR1	5FH	00H	IR=5FH
MOV A,#55	MOV A,#55					
Т0:	BUS->A	PLS1:	置微地址	5FH	00H	微地址: 17H
		PLS2:	PC+1	5FH	00H	PC=01H
		PLS3:	微指令输出	55H	01H	锁存微指令
		PLS4:	BUS->A	55H	01H	A=55H
T1:	取指微指令	PLS1:	微地址+1	55H	01H	微地址: 18H
	RAM->BUS->IR1	PLS2:	PC+1	55H	01H	PC=02H
		PLS3:	取指微指令输出	6СН	02H	锁存微指令
		PLS4:	BUS->IR1	6СН	02H	IR1=6CH
MOV R0,#66						
	RAM->寄存器	PLS1:	置微地址	6СН	02H	微地址: 1BH
Т0:	R0	PLS2:	PC+1	6СН	02H	PC=03H
		PLS3:	取指微指令输出	66H	03H	锁存微指令
		PLS4:	BUS->寄存器 R0	66H	03H	寄存器
						R0=66H
T1:	取指微指令	PLS1:	微地址+1	66H	03H	微地址: 1CH
	RAM->BUS->IR1	PLS2:	PC+1	66H	03H	PC=04H
		PLS3:	取指微指令输出	0СН	04H	锁存微指令
		PLS4:	BUS->IR1	0CH	04H	IR1=0CH
ADD A,R0						
Т0:	A->锁存器 DR1	PLS1:	置微地址	0СН	04H	微地址: 03H
		PLS2:	PC+1	0СН	04H	PC=05H
		PLS3:	取指微指令输出	55H	无效	锁存微指令
		PLS4:	BUS->锁存器	55H	无效	DR1=55H
		DR1				

T1:	寄存器 R0->锁存	PLS1: 微地址+1	55H	无效	微地址: 04H
	器 DR2	PLS2: PC 不变	55H	无效	PC=05H
		PLS3: 微指令输出	66H	无效	锁存微指令
		PLS4: BUS->锁存器	66H	无效	DR2=66H
		DR2			
T2:	ALU->A	PLS1: 微地址+1	66H	无效	微地址: 05H
		PLS2: PC 不变	66H	无效	PC=05H
		PLS3: 微指令输出	ввн	无效	锁存微指令
		PLS4: BUS->A	ввн	无效	A=BBH
T3:	取指微指令	PLS1: 微地址+1	ввн	无效	微地址: 06H
	RAM->BUS->IR1	PLS2: PC 不变	ввн	无效	PC=05H
		PLS3: 微指令输出	6DH	05H	锁存微指令
		PLS4: BUS->IR1	6DH	05H	IR1=6DH
MOV R1,#33					
	RAM->寄存器	PLS1: 置微地址	6DH	05H	微地址: 1BH
Т0:	R1	PLS2: PC+1	6DH	05H	PC=06H
		PLS3: 微指令输出	33H	06H	锁存微指令
		PLS4: BUS->IR1	33H	06H	寄存器 R1=33
T1:	取指微指令	PLS1: 微地址+1	33H	06H	微地址: 1CH
	RAM->BUS->IR1	PLS2: PC+1	33H	06H	PC=07H
		PLS3: 微指令输出	1DH	07H	锁存微指令
		PLS4: BUS->IR1	1DH	07H	IR1=1DH
SUB A,Ri					
Т0:	A->锁存器 DR1	PLS1: 置微地址	1DH	07H	微地址: 07H
		PLS2: PC+1	1DH	07H	PC=08H
		PLS3: 微指令输出	ВВН	无效	锁存微指令
		PLS4: BUS->DR1	ВВН	无效	DR1=BBAH
T1:	寄存器 R1->锁存	PLS1: 微地址+1	ВВН	无效	微地址: 08H
	•	•	•		•

	HH DDC	D7 51	DC	DDII	-	DO COTT
	器 DR2		PC 不变	BBH	无效	PC=08H
		PLS3:	微指令输出	33H	无效	锁存微指令
		PLS4:	BUS->DR2	33H	无效	DR2=33H
T2:	ALU->A	PLS1:	微地址+1	33H	无效	微地址: 09H
		PLS2:	PC 不变	33H	无效	PC=08H
		PLS3:	微指令输出	88H	无效	锁存微指令
		PLS4:	ALU->A	88H	无效	A=88H
T3:	取指微指令	PLS1:	微地址+1	88H	无效	微地址: 0AH
	RAM->BUS->IR1	PLS2:	PC 不变	88H	无效	PC=08H
		PLS3:	微指令输出	8FH	08H	锁存微指令
		PLS4:	BUS->IR1	8FH	08H	IR1=8FH
STA 10						
Т0:	RAM->BUS->IR2	PLS1:	置微地址	8FH	08H	微地址: 23H
		PLS2:	PC+1	8FH	08H	PC=09H
		PLS3:	微指令输出	10H	09H	锁存微指令
		PLS4:	BUS->IR2	10H	09H	IR2=10H
T1:	A->RAM(10H)	PLS1:	微地址+1	10H	09H	微地址: 24H
		PLS2:	PC+1	10H	09H	PC=0AH
		PLS3:	微指令输出	88H	10H	锁存微指令
		PLS4:	BUS->RAM	88H	10H	RAM(10)=88H
T2:	取指微指令	PLS1:	微地址+1	88H	10H	微地址: 25H
	RAM->BUS->IR1	PLS2:	PC 不变	88H	10H	PC=0AH
		PLS3:	微指令输出	FFH	0AH	锁存微指令
		PLS4:	BUS->IR1	FFH	0AH	IR1=FFH
HALT						
то:	置模型机为停止	PLS1:	置微地址	FFH	0AH	微地址: 3FH
	状态	PLS2:	停机	无效	无效	PC=0BH
		PLS3:	微指令输出			

PLS4: BUS->IR2

5. 在模型机逻辑框图中标示正确的数据流并描述。

6. 如何判断使用的指令寄存器是 IR1 还是 IR2 的值。

可将指令寄存器 IR1 或 IR2 的值输出,和输入的指令做对比,使用的指令寄存器即为和输入的指令相同的那一个。

7. 总结微地址、PC 地址、地址总线、数据总线、IR1、IR2、DR1、DR2、A 等值的观察记录方式。

微地址、IR1、IR2、DR1、DR2、A的值可以通过键盘和显示屏的操作进行观察记录,而 PC 地址、地址总线、数据总线的值则通过观察 LED 指示灯来记录。

8. 分析 MD2、MD3、MD4、MD5 与 I4、I5、I6、I7 互连的作用。

在模型机中,用指令操作码的高 4 位作为核心扩展成 8 位的微程序入口地址 MD0~MD7,这种方法称为"按操作码散转"。MD2、MD3、MD4、MD5 与 I4、 I5、I6、I7 互连,通过 I7-I4 进行散转,可以产生下一条指令的微程序入口地址。