

Inhaltsverzeichnis

Abkürzungsverzeichnis 3						
1	Ein	leitung	4			
2	Stand der Technik & technische Grundlagen					
	2.1	Drucktechniken	6			
		2.1.1 Schmelzschichtverfahren	6			
		2.1.2 Stereolithographie	6			
		2.1.3 Sintern	7			
		2.1.4 Binder-Verfahren	7			
		2.1.5 Schicht-Laminat-Verfahren	7			
	2.2	Materialien	8			
		2.2.1 Metalle und deren Legierungen	8			
		2.2.2 Monomere	8			
		2.2.3 Thermoplaste	8			
	2.3	Stabilitätsanalyse	9			
		2.3.1 Schmelzschichtverfahren	9			
		2.3.2 Stereolithographie	9			
		2.3.3 Elektronenstrahlschmelzen	9			
		2.3.4 Lasersintering	9			
		2.3.5 Binder-Verfahren	9			
			10			
	2.4	Computer-Aided Design (CAD)	10			
			10			
			10			
		~	11			
			11			
			11			
			12			
		1	12			
			12			
			13			
	2.5		13			
	2.6	1	14			
9	Tr 4	wieldung eines technischen Obielts	1 -			
3		v	15			
	3.1	V	16 17			
	3.2	1	17			
	3.3		17			
	3.4	o	19			
	3.5	Aufgetretene Fehler	19			

Stand: 3. Juni 2016

7	Lite	eraturverzeichnis	33
6	Zus	ammenfassung und Ausblick	30
	5.22	mutwillige Zerstörung durch andere Leute	29
	5.21	Verbranntes Material in Düse	29
	5.20	Drcuktemperatur	29
		Falsche Parameter, falsche Supportstruktur	
		Bollen an Heizblock (total destruction)	
		verschmutzte Düse(außen und innen)	
		Knoten im Filament	
		Anpressdruck im Feeder	
		Spannung Feeder	
		untersch. Filamente, untersch. Eigenschaften	
		keine Haftung der Linien auf anderen Linien	
		gebogene Heizplatte	
	5.9	untersch Druckergebnisse je nach Druckposition	
	5.8	Reibung in Bowdenzug	
	5.7	tempsensor	
	5.6	grinding	
	5.5	zu wenig Material	
	5.4	PTFE	
	5.3	Stringing	25
	5.2	Druckplatte nicht haftend	24
	5.1	Olsson	24
5	Feh	ler beim Drucken mit dem Ultimaker 2	24
	4.4	Fazit: Eignung für organische Objekte	23
	4.3	Druck des Objekts	
	4.2	Entwurf	
	4.1	Konzept	
4	Ent	wicklung eines organischen Objekts	2 1
		3.6.3 Höhe	20
		3.6.2 Liniendicke	
		3.6.1 Material	
	3.6	Fazit: Eignung für technische Objekte	

Abkürzungsverzeichnis

3D dreidimensional

ABS Acrylnitril-Butadien-Styrol

CAD Computer-Aided Design

DHBW Duale Hochschule Baden-Württemberg

PLA Polyactid

SMD Surface Mounted Device

STL Stereolithography

USB Universal Serial Bus

UV Ultraviolett

zb zum BSP

Stand: 3. Juni 2016 Seite 3 von 33

1 Einleitung

Bei herkömmlichen Verfahren, um Objekte aus Grundstoffen wie beispielsweise Metallen, Kunststoffen oder Harzen anzufertigen, werden diese oft subtraktiv aus einem großen Block des Grundstoff herausgearbeitet. Dies kann beispielsweise durch Fräsen erfolgen.

Neben diesen Verfahren gibt es auch die sogenannten additiven Verfahren, bei denen ein Objekt nach und nach (meist schichtweise) aus dem Grundstoff hergestellt wird. Die Vorteile dieser Verfahren sind unter anderem, dass weniger Material verbraucht wird und auch komplexere Formen relativ einfach realisiert werden können.

Einige dieser Verfahren werden in der Industrie bereits verwendet, beispielsweise um medizinische Implantate herzustellen.

Ein großes Anwendungsgebiet liegt im Bereich des Rapid Prototyping. Dabei geht es darum, möglichst schnell Prototypen herzustellen, beispielsweise um die Eignung eines Designs für das spätere Serienprodukt zu erforschen. Da hier nur geringe Stückzahlen benötigt werden und möglichst keine komplizierten Serienwerkzeuge hergestellt werden sollen, eignen sich additive Verfahren gut für diese Anwendung.

In den letzten Jahren wird zunehmend auch der Endkundenmarkt erschlossen. Sogenannte 3D-Drucker, die in der Regel auf dem Extrusionsverfahren basieren, werden inzwischen zu erschwinglichen Preisen angeboten.

Im letzten Jahr hat die Duale Hochschule Baden-Württemberg (DHBW) einen solchen 3D-Drucker, den Ultimaker 2, angeschafft. In einer vorigen Studienarbeit wurde dieser in Betrieb genommen und erste Objekte gedruckt.

Diese Studienarbeit befasst sich mit dem Designen von Objekten und dem anschließenden Drucken mit dem Ultimaker 2.

Das Ziel dieser Studienarbeit ist es, mithilfe verschiedener Programme ein technisches und ein organisches Objekt zu erstellen. Anschließend sollen diese mit dem Ultimaker 2 gedruckt werden. Die dabei gewonnenen Erkenntnisse sollen auf einer bereits existierenden Website über den 3D-Drucker dokumentiert werden.

Dieser Bericht wird zunächst einen Überblick über verschiedene verbreitete additive Verfahren geben. Anschließend werden der Ultimaker 2, die dazugehörige Toolchain sowie die verwendeten CAD-Programme näher erläutert.

Stand: 3. Juni 2016 Seite 4 von 33

Basierend auf diesen Grundlagen wird dann im Hauptteil des Berichts die Erstellung des technischen und organischen Objekts näher beschrieben.

Stand: 3. Juni 2016 Seite 5 von 33

2 Stand der Technik & technische Grundlagen

2.1 Drucktechniken

Dreidimensionale Objekte können mit verschiedenen Verfahren gedruckt werden. Viele werden bereits seit Langem eingesetzt. Die Technologie war folglich schon verfügbar. In den letzten Jahre erreichen die Drucker den Endkundenmarkt. Grund dafür sind eine Vielzahl von günstigen Druckern, die au dem Markt erhältlich sind. Im Folgenden sind verschiedene Druckverfahren erläutert.

2.1.1 Schmelzschichtverfahren

Das verflüssigte Material wird durch eine Düse, den Extruder, auf eine Druckfläche gepresst. Dort härtet es aus. Durch Bewegen des Druckkopfes über die Druckfläche lässt sich Schicht für Schicht ein Objekt auftragen.

2.1.2 Stereolithographie

Das dreidimensionale Äquivalent zum Rasterdruck baut Objekte aus Schichten von Rasterpunkten auf.

Manche organischen Verbindungen können mittels Ultraviolett (UV)- Licht polymerisiert werden. Dadurch wird aus einem flüssigen Grundstoff ein fester Körper. Dieser Vorgang wird als Photopolymerisation bezeichnet und dient als Grundlage für verschiedene 3D- Druckverfahren.

Für jede Schicht kann eine Photomaske erzeugt werden. Der flüssige Grundstoff wird durch die Maske hindurch von einer UV- Quelle angestrahlt. Dadurch härtet eine Schicht des Grundmaterials entsprechend der Photomaske aus. Die erste Schicht wird auf eine Bodenplatte gedruckt. Diese wird nach Abschließen jeder Schicht weiter in die Flüssigkeit abgesenkt. Dadurch wird die nächste Schicht auf die darunterliegende gedruckt.

Alternativ zur Photomaske mit gleichmäßiger Quelle kann auch ein UV- Laser ver-

Stand: 3. Juni 2016 Seite 6 von 33

wendet werden, der über Spiegel an die auszuhärtenden Rasterpunkte gelenkt wird.

Das erzeugte Objekt wird im Druckverfahren nicht vollständig ausgehärtet. Daher muss es im Anschluss mit UV- Licht nachbehandelt werden. [4, S.3]

2.1.3 Sintern

Sintern beschreibt den Prozess des Verdichtens pulverförmiger Ausgangsstoffe zu einem festen Material. Hierzu kann das Material über den Schmelzpunkt erhitzt werden oder durch hohe Drücke dazu verleitet werden, dass sich die Oberflächen der einzelnen Pulverkörner verbinden. Für den 3D- Druck relevant sind Verfahren, die ein selektives Verbinden der Körner ermöglichen. [2, Bd.20, S.7037]

Ein Verfahren, das dies ermöglicht, ist das Elektronenstrahlschmelzen. Hierbei wird schichtweise das Pulver des Ausgangsmaterials selektiv mit einem Elektronenstrahl geschmolzen. Nach Fertigstellung einer Schicht wird eine weitere Schicht Pulver aufgetragen, die erneut selektiv geschmolzen werden kann. Dadurch können 3D Objekte erzeugt werden. Momentan sind Objekte aus mehreren Titanlegierungen mit diesem Verfahren möglich. Zudem wird an der Eignung von Stahl, verschiedenen Metallen und deren Legierungen geforscht. [6]

Alternativ zum Elektronenstrahl kann auch ein Laser zum Verschweißen des Pulvers eingesetzt werden. Mit diesem Verfahren können auch Kunststoffe verarbeitet werden. [3]

2.1.4 Binder-Verfahren

Im Binderverfahren wird ein Bindemittel in ein pulverförmiges Ausgangsmaterial eingespritzt. Durch selektives Einbringen des Binders können die gewünschten Strukturen erzeugt werden. [4, S.11]

2.1.5 Schicht-Laminat-Verfahren

In jeder Schicht wird ein Metallblech mit einem Laser in Form geschnitten. Die fertigen Schichten werden verpresst, verklebt oder versintert. Dadurch entsteht ein geschichtetes Objekt, dessen Eigenschaften sich in Faserrichtung von denen gegen Faserrichtung unterscheiden.

Stand: 3. Juni 2016 Seite 7 von 33

2.2 Materialien

Die verschiedenen Druckverfahren erfordern unterschiedliche Grundstoffe für das Drucken. Dieser Abschnitt stellt verschiedene Materialien vor.

2.2.1 Metalle und deren Legierungen

Pulver verschiedener Metalle und Legierungen lassen sich sintern. Bleche können im Schicht-Lamitat-Verfahren 2.1.5 zu einem festen Objekt geformt werden. Im Allgemeinen lassen sich aus Metall per 3D- Druck mechanisch und thermisch belastbare Prototypen erstellen.

2.2.2 Monomere

Im Stereolithographie-Verfahren 2.1.2 werden Monomere selektiv polymerisiert. Monomere sind Moleküle, die mit gleichartigen Molekülen zu größeren Molekülen verschmelzen können. Durch Polymerisation entsteht ein fester Körper aus langkettigen Molekülen. [1]

2.2.3 Thermoplaste

Bereits polymerisierte Kunststoffe unterscheiden sich in der Reaktion auf hohe Temperaturen. Eine dieser Gruppen von Polymeren sind die Thermoplaste. Diese Kunststoffe verflüssigen sich bei Temperatureinwirkung und erstarren beim anschließenden Auskühlen in einer neuen Form. Wenn die Temperatur zu hoch ist, verschmoren Thermoplaste. Daher muss beim Drucken eine Temperatur gefunden werden, die das Material in eine verwendbare Liquidität versetzt, allerdings das Material nicht beschädigt. Bekannte Thermoplaste sind Polyactid (PLA) und Acrylnitril-Butadien-Styrol (ABS). Ebenfalls lässt sich Schokolade drucken, die ebenfalls zu den Thermoplasten zugeordnet werden kann. Beim Drucken mit ABS entstehen giftige Dämpfe. Die Menge an ausgeschiedenem Gas ist bei korrekter Druckertemperatur-Einstellung unbedenklich, allerdings sollte der Druckraum trotzdem gut ventiliert werden.

Im Gegensatz zu den Thermoplasten verflüssigen sich Duroplaste nicht; sie verschmoren direkt, wenn die Temperatur zu hoch wird. Dadurch eignen sie sich nicht für das Extrusionsverfahren.

Stand: 3. Juni 2016 Seite 8 von 33

2.3 Stabilitätsanalyse

In diesem Kapitel wird betrachtet, wie stabil die Objekte sind, die mit den in 2.1 vorgestellten Verfahren hergestellt werden.

2.3.1 Schmelzschichtverfahren

Im Extrusionsverfahren hergestellte Objekte sind mechanisch und thermisch belastbarer als Objekte, die mit Stereolithografie erstellt wurden. [4, S.10]

Es kann allerdings vorkommen, dass manche Bereiche eines Objekts weniger stabil sind als andere Bereiche. [5]

2.3.2 Stereolithographie

Objekte, die mit Stereolithografie hergestellt werden, sind mechanisch und thermisch weniger belastbar als Objekte, die beispielsweise mit Lasersintern oder im Extrusionsverfahren hergestellt wurden. [4, S.4]

Zudem ist unklar, ob diese Objekte stabil genug für einen Dauereinsatz sind. [5]

2.3.3 Elektronenstrahlschmelzen

2.3.4 Lasersintering

Mit diesem Verfahren können sowohl Metalle als auch Kunststoffe verarbeitet werden. Die dabei produzierten Teile können ähnliche Eigenschaften wie mit herkömmlichen Methoden produzierte Teile aufweisen.

Allerdings sind gesinterte Teile porös, was jedoch bei manchen Anwendungsfällen erwünscht sein kann. Die Porosität kann abgeschwächt werden, indem das Pulver mit anderen Materialien versetzt wird. [5]

2.3.5 Binder-Verfahren

Bei diesem Verfahren ist es schwer, eine Aussage über die Eigenschaften des entstehenden Materials zu treffen, da es sich aus Pulver, Bindemittel und dem zur Nachbehandlung genutzten Harz zusammensetzt.

Sofern als Pulver kein Metall, sondern Gips oder Stärke verwendet werden, hält das Objekt

Stand: 3. Juni 2016 Seite 9 von 33

keinen starken Belastungen stand. [4, S.12]

2.3.6 Schicht-Laminat-Verfahren

Da bei diesem Verfahren die Objekte aus verschiedenen Schichten aufgebaut sind, die miteinander verpresst oder verklebt wurden, weisen diese Objekte richtungsabhängig verschiedene Eigenschaften auf. [4, S.8]

Zudem wird bei diesem Verfahren oft Papier als Material verwendet. Naturgemäß ist Papier nicht lange haltbar. [5, S.35]

2.4 Computer-Aided Design (CAD)

Der 3D-Druck basiert zum großen Teil auf dem computergestützten Design von Objekten. CAD-Tools helfen beim Entwerfen. Anschließend werden die Objektdateien mithilfe von Slicern in maschinenlesbaren Code umgewandelt. Die Unterkapitel stellen die verwendeten Programme vor.

2.4.1 CAD-Programme

Für das Design von 3D-Dateien gibt es vielerlei Programme. Auf kostenloser Basis wurden in dieser Arbeit Solid Edge und blender verwendet.

Solid Edge

Abbildung 2.1: Screenshot des Programms blender

der entwickelten Objekte.

Solid Edge von Siemens eignet sich für das Entwerfen von technischen Objekten. Hierbei bietet das Programm eine Vielzahl von Funktionen für die Erstellung von 2D-und 3D-Formen. Für einfache Objekte kann eine 2D-Grundform gezeichnet und anschließend zu einem 3D-Objekt extrahiert werden. Zusätzliche Funktionen von Solid Edge unterstützen bei der Stabilitätsanalyse

Stand: 3. Juni 2016 Seite 10 von 33

Die Entwicklung der Objekte kann entweder auf sequenzieller Basis oder auf paralleler Basis geschehen. Die sequenzielle Entwicklung erfordert ein hohes Maß an Programmkenntnis, da die einzelnen Schritte der Objekterstellung nur in einem definierten Ablauf stattfinden kann. Der parallele Entwicklungsstack erleichtert die nachträgliche Veränderung von Arbeitsschritten wie zum Beispiel die Maße, die während einer Extraktion angegeben wurden. Zusätzlich können bei paralleler Entwicklung die Renderzeiten bei Maßänderungen deutlich reduziert werden. Das zahlt sich bei umfangreichen Objekten aus.

Für die Arbeit wurde die akademische Lizenz verwendet. Objekte, die mit dieser Lizenz erstellt wurden, können nicht mit einer anderen Lizenz geöffnet werden.

blender

Abbildung 2.2: Screenshot des Programms blender

Blender ist ein Open Source Programm, das eine Vielzahl von Computergrafik-Anwendungen bietet. Diese reichen von der Erstellung von Objekten bis hin zum Filmschnitt.

Die CAD-Funktionen zielen vor allem auf die Animation einzelner Objekte ab. Zum Beispiel kann die Beweglichkeit der Finger mit Regeln definiert werden. Das Objekt-Design unterliegt der Manipulati-

on von Basis-Objekten, die dann anschließend zu einem Objekt vereinigt werden.

2.4.2 Slicing

Das Slicing ist der Prozess zur Umwandlung eines 3D-Objekts in für den Drucker eindeutige Befehle. Da jeder Drucker unterschiedliche Randbedingungen bietet, empfielt der jeweilige Hersteller ein für den Drucker geeignetes Programm zum Slicen.

Der 3D-Drucker Ultimaker 2 erhält seine Dateien vom Ultimaker eigenen Programm Cura. Alternativ kann das Programm Repertierhost verwendet werden.

Cura

Stand: 3. Juni 2016 Seite 11 von 33

Abbildung 2.3: Screenshot des Programms blender

Mit Cura kann man aus Objektdateien im STL-Format G-code für den Ultimaker erstellen. Das Programm erlaubt die Variation zahlreicher Parameter, die den Druck beeinflussen. Die verwendete Programmversion beeinflusst die Ergebnisse des Slicens deutlich. Viele Druckoptionen sind erst mit neueren Versionen möglich. Eine wichtige fehlende Funktion von Cura ist eine

Einstellmöglichkeit der Drucktemperatur. Der Befehl ist im G-code vorgesehen, allerdings nicht beeinflussbar.

Repetierhost

Abbildung 2.4: Screenshot des Programms blender

Repetierhost ist ein alternatives Programm zur Fernsteuerung von 3D-Druckern. Es visualisiert Druckdateien im STL- und im G-code-Format. Zudem enthält es einen Slicer, mit dem man selbigen erzeugen kann.

Cura liefert mitunter fehlerhaften Gcode, in dem Löcher klaffen oder Schichten fehlen. Mithilfe des Repetierhosts können diese Fehler entdeckt werden.

2.4.3 Dateiformate

Für die Darstellung von 3D-Objekten können verschiedene Datentypen verwendet werden. Essenziell für den 3D-Druck mit dem Ultimaker sind die Dateitypen STL und der G-code.

Stereolithography (STL)

Eine STL-Datei ist eine Oberflächendefinition für ein 3D-Objekt. Hierfür werden die dreieckigen orientierten Facetten über ihre Eckpunkte in einem kartesischen Koordinatensystem abgespeichert. Die Dimensionierung(z.B. Zentimeter oder Inch) wird nicht mit

Stand: 3. Juni 2016 Seite 12 von 33

abgespeichert und muss vom lesenden Programm eingestellt werden.

Da das STL-Format eine einfache Objektbeschreibung ist, kann es als universelle Schnittstelle zwischen CAD-Designprogrammen und Slicern verwendet werden. Allerdings gehen Zusatzinformationen wie unterschiedlich eingestellte Drucktemperaturen oder Druckfarben verloren. Daher eignet sich das Format nur zur Übergabe von einfachen Formeigenschaften.

G-code

Aus der Welt der Fräsen kommend ist der G-code eine Sprache, mit der Maschinen Positionierungs- und Arbeitsanweisungen erhalten können.

Derivate dieser Sprache wurden um die Funktionen zur Steuerung eines 3D-Druckers erweitert. Mithilfe der neuen Befehle können zum Beispiel die Drucktemperatur oder die Lüfter angesteuert werden.

2.5 ZTemperaturtestdrcuk

Abbildung 2.5: Temperaturtestdruck

bfuesg

Stand: 3. Juni 2016 Seite 13 von 33

busp

Abbildung 2.6: asdf

buepsgb bsueb

2.6 Der 3D-Drucker Ultimaker 2

•

. . .

Stand: 3. Juni 2016

3 Entwicklung eines technischen Objekts

Dieses Kapitel handelt vom Entwurf und Druck eines technischen Objekts. Ein technisches Objekt wird dabei als ein Objekt definiert, das entwickelt wurde, um einen bestimmten technischen Zweck zu erfüllen und in erster Linie funktional sein soll. Eine ansprechende oder dekorative Optik des Objekts ist deshalb unwichtig oder zumindest zweitrangig. Wichtig ist es hingegen, dass ein solches Objekt möglichst einfach zu produzieren ist. Solche Objekte besitzen beispielsweise meist glatte Oberflächen, da diese wesentlich einfacher und genauer zu produzieren sind als gewölbte Oberflächen. Zudem muss das Objekt fest definierte Maße haben.

Bei der Produktion eines technischen Objekts ist es wichtig, dass diese Maße mit möglichst geringen Toleranzen eingehalten werden. Wird mehrfach dasselbe Objekt mit denselben Werkzeugen und Prozessen hergestellt, sollten die Ergebnisse vergleichbar sein.

Für die Studienarbeit wird als technisches Objekt exemplarisch ein Aufbewahrungssystem für einen Raspberry Pi gekoppelt mit einem Universal Serial Bus (USB)- Hub und einer externen Festplatte entworfen. Dieses System soll möglichst kompakt und als ein Block transportierbar sein.

Diese Arbeit bezieht sich häufig auf den Ultimaker 2, der im vorhergehenden Kapitel 2.6 vorgestellt wird. In der Arbeit mit einem anderen Drucker können sich Vorgehensweise und Ergebnis deutlich unterscheiden.

Zuerst wird die Analyse der bestehenden Verwahrung beschrieben. Anschließend folgt eine Beschreibung des umzusetzenden Konzepts für das neue Aufbewahrungssystem, das während der Studienarbeit gedruckt werden soll. Folgend wird ein Entwurf des Systems mit einem CAD-Programm und der Druck des Objekts beschrieben. Der darauffolgende Abschnitt beschäftigt sich mit während dem Druck aufgetretenen Fehlern. Zuletzt folgt ein Fazit über die Eignung des Ultimaker 2 zum Drucken von technischen Objekten.

Stand: 3. Juni 2016 Seite 15 von 33

(a) Bemaßung des Raspberry (b) Bemaßung des USB- (c) Bemaßung der externen Pis Hubs Festplatte

Abbildung 3.2: Bemaßung der einzufassenden Objekte

3.1 Ist-Analyse

Zu entwerfen ist eine Verwahrung für einen Heimserver auf einem Raspberry Pi(folgend als Pi bezeichnet) mit angeschlossener externer Festplatte. Der Pi selbst liefert an seinen USB-Ports nicht genug Leistung zum Betreiben der Festplatte, weshalb ein zusätzlicher powered USB-Hub nötig ist.

Zu Beginn der Entwicklung wurde das System durch zu einem Käfig verschraubten Lochblechen zusammengehalten, die Festplatte und Hub umfassten. Abbildung 3.1 Insbesondere der Pi war im alten System nur unzureichend fixiert, da er nur auf den Käfig aufgesetzt war. Eine Hauptanforderung an das neue System soll das sichere Lagern aller Komponenten sein.

Abbildung 3.1: Ursprüngliches Stapelsystem

Die zweite Anforderung ist die Portabilität des Systems. Um den Server sicher und einfach bewegen zu können, soll das System als Ganzes stabil zu einer Einheit verbindbar sein. Das bisherige System sollte die Portabilität ermöglichen, war jedoch aufgrund der oben genannten Instabilität nicht dazu in der Lage.

Die Ausmaße der zu verstauenden Objekte sind folgend aufgeführt.

Stand: 3. Juni 2016 Seite 16 von 33

Zusätzlich zu diesen Maßen kommen beim Pi noch die Positionen der Schraub-Bohrungen und die Höhe der unter dem Pi herausragenden Lötpunkte und Surface Mounted Device (SMD)-Bauteile hinzu. Die frei zugänglichen Leiterbahnen müssen in der Verwahrung genug Abstand zu anderen Bauteilen haben, da sie sonst beschädigt werden könnten.

Eine Eigenschaft des bisherigen Systems mit den Lochblechen soll für das neue Verwahrungs-System soll übernommen werden. Die Platzierung der Komponenten übereinander ist sehr platzsparend. Zudem kann das System dadurch gut transportiert werden.

3.2 Konzept: Modulare Boxen

Als Ersatz für den oben beschriebenen Rahmen soll ein modulares Stapelsystem dienen. Auf einer massiven Grundplatte werden Boxen gestapelt. Jede Box beinhaltet eine Komponente (Box, Hub oder Festplatte). Die Außenmaße der Grundflächen der Boxen sind in Breite und Länge immer gleich. Die Grundfläche wird durch die größte zu befestigende Komponente, hier also die Festplatte, bestimmt. Der Innenraum einer Box ist an die jeweilige Komponente angepasst. Abhängig von der Komponente sind verschiedene Aussparungen in den Seitenwänden der Boxen, durch die Kabel geführt werden können. Im Aufbewahrungssystem werden die Boxen auf der Grundplatte gestapelt.

Zwischen die Boxen werden Rahmen gelegt, die die Box zwischen Gewindestangen fixieren. Diese sind in der Grundplatte festgeschraubt. Dadurch ist das Stapelsystem im Ganzen stabilisiert und kann problemlos transportiert werden.

Das System ist zudem einfach um neue Komponenten erweiterbar, sofern diese von der Grundfläche her nicht größer sind als die Grundfläche der Boxen. Für neue Komponenten kann eine eigene Box mit den passenden Außenmaßen und angepasstem Innenraum und Höhe entwickelt werden. Diese Box kann dann wie beschrieben mit Rahmen am System befestigt werden.

3.3 Entwurf

Das Konzept soll für die vorhandenen Komponenten umgesetzt werden. Die zu druckenden Objekte werden mit dem CAD-System Solid Edge entworfen.

Stand: 3. Juni 2016 Seite 17 von 33

Als erster Schritt wurden die Maße von Festplatte, USB-Hub und Raspberry Pi genommen.

Die Maße definieren die Innengestaltung der jeweiligen Box. Die Grundfläche ist durch die größte Box definiert, während die Höhe der einzelnen Boxen pro Komponente festlegbar ist. Folgend werden die Designs der einzelnen Komponenten vorgestellt.

Die Festplatten-Box als einfachste und größte Komponente des Systems definiert die Außenmaße und Form der quaderförmigen Boxen. An der Position der Schnittstelle ist ein Ausschnitt in Größe der Steckverbindung aus der Wand geschnitten. Da die Box einem großen Gewicht standhalten muss, wurde eine Wandstärke von 3mm gewählt.

Da der USB-Hub kleiner ist als die Festplatte, muss er auf der Grundfläche der Box in Breite und Tiefe fixiert werden. Hierfür werden seitlich und hinter den Hub Blöcke gesetzt, die den Hub an der gewünschten Position fixieren. Die Wand der Box ist wie bei der Festplattenbox auf Höhe der Schnittstellen eingeschnitten. Zusätzlich hat die Box einen Ausschnitt auf der Rückseite der Box, durch die Stromzufuhr und Anschlusskabel für den Raspberry Pi hinausgeführt werden können.

Eine Box für den Raspberry Pi fordert einen größeren Design-Aufwand als die vorhergehenden. Auf der Unterseite benötigt der Pi Abstand zum Boden aufgrund seiner Lötpunkte und SMD-Bauteile. Daher wird er auf Säulen gesetzt, die den Pi in seinen Schraub-Bohrungen fixieren. Die zusätzliche Höhe, die hierbei entsteht, muss bei den Ausschnitten der Schnittstellen miteinbezogen werden. Damit alle Schnittstellen erreichbar sind, ist der Pi in die Ecke der Box platziert.

Um die Boxen gegen Verrutschen zu sichern, sind zwischen ihnen Rahmen platziert, die Einschnitte in Größe der Box-Grundfläche haben. Zusätzlich sind an jedem Rahmen vier runde Durchführungen angebracht, mit denen sie auf einer Gewindestange eingefädelt werden können. Das vollständige System kann dann durch vier M4-Muttern fixiert werden. Die Rahmen sind in der Fläche nicht gefüllt; die Stabilität ist schon durch die eingeschossenen Boxen gegeben.

Die Bodenplatte bietet ein Grundgerüst des Systems. Da die Gewindestangen außerhalb der Boxen durch die Durchführungen der Rahmen verlaufen, ist sie um die Größe der Durchführungen breiter und länger als die Boxen. An selber Position wie diese Durchgänge hat auch die Bodenplatte Durchführungen. Zusätzlich sind auf der Unterseite Einschnitte für M4-Muttern. Dadurch können die Gewindestangen durch die Bodenplatte geführt und an der Unterseite der Bodenplatte festgeschraubt werden.

Stand: 3. Juni 2016 Seite 18 von 33

3.4 Druck des Objekts

Beim Drucken der Komponenten ergab sich, dass manche Maße zu gering gewählt waren. Beispielsweise die Spaltmaße zwischen Deckel und Box mussten angepasst und neu gedruckt werden. Zusätzlich entstanden dank fehlerhaftem Verhalten des Druckers viele Fehldrucke, was wiederum Wartungen erzwang.

An den ersten zwei Schichten ließ sich ein fehlerhafter Druck meist frühzeitig erkennen. Die zu beobachtenden Fehlverhalten sind im Kapitel Fehler aufgeführt.

3.5 Aufgetretene Fehler

3.6 Fazit: Eignung für technische Objekte

Wie bereits eingangs erwähnt, wurde für diese Studienarbeit der Ulitmaker 2 verwendet. Deshalb kann in diesem Fazit auch nur betrachtet werden, inwiefern sich dieser Drucker eignet, um technische Objekte zu erstellen.

3.6.1 Material

Als Plastik wurde PLA verwendet. Bei den Drucken fiel auf, dass die Materialeigenschaften, abhängig von der verwendeten Farbe, teilweise deutlich unterschiedlich waren. Am besten gelangen die Drucke mit rotem Filament. Schwarzes Filament dagegen war sehr spröde. Bei durchsichtigem Filament hielten die verschiedenen Linien nicht so stark zusammen wie beispielsweise bei rotem, was insbesondere bei konzentrischen Mustern zu einer Instabilität führte.

Für das Aufbewahrungssystem wurde deshalb vor allem rotes Filament genutzt. Allgemein sollte man beim Ultimaker 2 also vor dem Druck eines größeren Objekts testen, welche Farbe die besten Eigenschaften aufweist.

Die Boxen des Aufbewahrungssystems wurden mit Wand- und Bodendicken von 3mm

Stand: 3. Juni 2016 Seite 19 von 33

angefertigt, die Bodenplatte des Systems mit einer noch höheren Bodendicke. Dadurch war das System stabil genug, um hochgehalten zu werden.

3.6.2 Liniendicke

Zu dem Zeitpunkt, zu dem das technische Objekt gedruckt wurde, stand nur eine Nozzle der Größe 0.4mm zur Verfügung. Dadurch ist die minimale Breite einer Linie festgelegt. Für das Aufbewahrungssystems mussten keine Strukturen, die feiner als 0.4mm sind, gedruckt werden. Für dieses Objekt war die Genauigkeit also hoch genug. Müssen dagegen Objekte mit feineren Strukturen gedruckt werden, kann es sein, dass der Ultimaker 2 nicht die nötige Genauigkeit besitzt.

Eine Abhilfe stellt der Olsson Block dar. Dabei handelt es sich um ein Upgrade des Heizblocks, das für den Ulitmaker 2 erworben werden kann. Dieses Upgrade ermöglicht es, die Druckdüsen relativ einfach auszutauschen. Im Upgrade sind vier verschieden große Düsen enthalten, die zwischen 0.25 und 0.8mm dick sind. Trotz allem bleibt die minimale Dicke einer Linie also auf 0.25mm begrenzt.

3.6.3 Höhe

Um zu testen, wie präzise der Ultimaker 2 die gewünschte Höhe von Objekten drucken kann, wurde ein einfaches Testobjekt gedruckt. Dieses Testobjekt war ein Quader, dessen Maße 10x10x1mm waren. Nach dem Druck wurde die tatsächliche Höhe des gedruckten Objekts mit einer Schieblehre gemessen. Das gedruckte Objekt war jedoch nur 0.8mm hoch.

Für das Aufbewahrungssystem war diese Genauigkeit ausreichend. Da technische Objekte jedoch mit minimalen Abweichungen angefertigt werden sollten, ist diese Abweichung an sich zu deutlich. Sie zeigt, dass der Ultimaker 2 nicht die notwendige Präzision liefern kann, die für technische Objekte oft notwendig ist.

Stand: 3. Juni 2016 Seite 20 von 33

4 Entwicklung eines organischen Objekts

Das Ziel dieser Studienarbeit ist es, zwei unterschiedliche Objekte zu designen und zu drucken. Im vorherigen Kapitel 3 wird die Entwicklung eines technischen Objekts beschrieben. Bei einem technischen Objekt sind die Ansprüche an genaue Bemaßungen hoch, das Objekt selbst sollte so einfach wie möglich gestaltet sein. Dadurch besteht es oft aus einfachen geometrischen Formen. Allgemein liegt der Fokus auf der Funktionalität des Objekts. Um technische Objekte zu designen, wird in der Regel eine CAD-Software verwendet.

In diesem Kapitel wird eine andere Art eines Objekts beschrieben: Das organische Objekt. Im Gegensatz zu einem technischen Objekt steht hier nicht die reine Funktionalität im Vordergrund. Organische Objekte sind Objekte, die in der Natur vorkommen und nicht künstlich vom Menschen gefertigt wurden, beispielsweise Lebewesen oder Pflanzen. In der Regel besitzen diese Objekte kaum Ecken, Kanten oder gerade Flächen.

Im Folgenden werden das Design und der Druck eines solchen Objekts beschrieben, im Anschluss folgt ein Fazit über die generelle Eignung des Ultimaker 2 für den Druck organischer Objekte. Wie bereits im vorigen Kapitel bezieht sich diese Arbeit häufig auf den Ultimaker 2, der im Kapitel 2.6 vorgestellt wird. In der Arbeit mit einem anderen Drucker können sich Vorgehensweise und Ergebnis deutlich unterscheiden.

4.1 Konzept

Wie zu Beginn des Kapitels beschrieben, soll das organische Objekt runde, gewölbte Flächen aufweisen. Für diese Studienarbeit wurde ein dreidimensionales Strichmännchen als Objekt gewählt. Dieses kann unter Verwendung mehrerer Zylinder und Kugeln modelliert werden und enthält somit einige gewölbte Flächen. Der Kopf des Strichmännchens wird als Kugel modelliert, der restliche Körper besteht aus sieben Zylindern. Einer davon dient als Körper und je ein Zylinder wird verwendet, um ein Bein zu modellieren. Die Arme werden mit je zwei Zylinder modelliert. Dadurch kann ein Ellbogengelenk simuliert werden und abwechslungsreiche Armhaltungen werden möglich.

Stand: 3. Juni 2016 Seite 21 von 33

4.2 Entwurf

Das im vorigen Abschnitt beschriebene dreidimensionale Strichmännchen wurde mithilfe der Software blender modelliert. Zusammengesetzt ist es aus Zylindern für die Arme, Beine und den Rumpf, wie im vorherigen Abschnitt 4.1 beschrieben.

Abbildung 4.1: Design des organischen Objekts

Stand: 3. Juni 2016 Seite 22 von 33

FIGURE NOCH JCIHT DRIN

4.3 Druck des Objekts

Das Objekt wird in zwei verschiedenen Positionen gedruckt. Einmal wird das Männchen liegend auf der Druckplatte positioniert, einmal stehend. Auffällig ist, dass beim liegenden (?) Männchen die Kugel, die den Kopf darstellt, eine starke Kante in der Mitte aufweist. Beim stehenden Männchen gelingt die Kugel besser.

Abbildung 4.2: Liegender Druck des organischen

Abbildung 4.3: Druck des stehenden organischen Objekts

4.4 Fazit: Eignung für organische Objekte

Stand: 3. Juni 2016 Seite 23 von 33

5 Fehler beim Drucken mit dem Ultimaker 2

Dieses Kapitel gibt einen Überblick über Fehler, die beim Drucken mit dem Ultimaker 2 auftreten können. Zudem werden die Fehlerursachen und mögliche Gegenmaßnahmen erläutert.

5.1 Olsson

.

5.2 Druckplatte nicht haftend

Im Idealfall haftet die unterste Schicht des Filaments fest auf der beheizten Druckplatte, um den höheren Schichten einen guten Halt zu geben. Um das zu erreichen, wird die unterste Schicht meistens langsamer gedruckt als höhere Schichten.

Manchmal haftet die untere Schicht jedoch nicht richtig auf der Druckplatte. Das kann einerseits dazu führen, dass der Druck komplett misslingt, da der Druckkopf die nicht haftenden Fäden hinter sich herzieht. Andererseits kann es passieren, dass das Objekt zwar gedruckt wird, sich die Schichten aber mit zunehmender Höhe immer weiter gegeneinander verschieben. Wenn die untere Schicht nicht fest auf der Druckplatte haftet, kann es beim folgenden Druck passieren, dass das Objekt vom Druckkopf leicht verschoben wird. Dadurch sitzen die Schichten nicht exakt aufeinander und das Objekt wird schräg gedruckt.

Dieser Fehler tritt wegen mangelnder Haftung der untersten Filamentschicht auf der Druckplatte auf.

Als Gegenmaßnahme kann die gläserne Druckplatte mit einer dünnen Schicht Klebstoff

Stand: 3. Juni 2016 Seite 24 von 33

bestrichen werden. Dadurch haftet die erste Filamentschicht wieder besser. Zudem bietet Ultimaker inzwischen eine neue Druckplatte an, die speziell beschichtet ist und dadurch eine bessere Haftung ermöglichen soll.

5.3 Stringing

.

5.4 PTFE

In 2.6 wird der Aufbau des Extruders genauer beschrieben. Die Düse ist zwar aus Metall gefertigt, aber das Filament gelangt durch eine **PTFE!** (**PTFE!**)-Kopplung in die Düse. Dadurch, dass die Kopplung in der Nähe des Heizblocks sitzt, wird sie beim Drucken ebenfalls erhitzt. Das führt einerseits dazu, dass die Kopplung sich relativ schnell verformt und andererseits "verbrennt".

Die Verformung führt dazu, dass das Filament nicht mehr ungehindert durch die Kopplung in die Düse gelangen kann. Dadurch wird teilweise zu wenig Filament gefördert und der Druck misslingt.

Deshalb sollte die PTFE!-Kopplung regelmäßig ausgetauscht werden.

5.5 zu wenig Material

.

Stand: 3. Juni 2016 Seite 25 von 33

5.6 grinding

.

5.7 tempsensor

.

5.8 Reibung in Bowdenzug

.

5.9 untersch Druckergebnisse je nach Druckposition

Abhängig von der Position auf der Druckplatte, an der dasselbe Objekt zum Drucken platziert wird, ergeben sich teilweise stark unterschiedliche Ergebnisse. An manchen Positionen gelingt der Druck gut, während an anderen Fehler auftreten. Je nach Position haftet das Objekt unterschiedlich stark an der Druckplatte. Auch die Menge an Filament, die gefördert werden kann, hängt von der Position ab.

Die unterschiedlich starke Haftung kann mehrere Ursachen haben: Da die Glasplatte nicht perfekt auf der Heizplatte aufliegt 5.10, kann es sein, dass verschiedene Positionen unterschiedlich gut erhitzt werden. An manchen Positionen haftet das Objekt somit schlechter, da diese nicht so gut beheizt werden. Eine weitere Ursache kann sein, dass der Klebstoff, der die Haftung des Filaments auf der Druckplatte verbessern soll 5.2, nicht gleichmäßig aufgetragen wurde.

Dass an manchen Positionen zu wenig Filament gefördert wird 5.5 kann daran liegen, dass der Widerstand im Bowdenzug variiert, je nachdem, wie stark der Bowdenzug

Stand: 3. Juni 2016 Seite 26 von 33

gekrümmt ist 5.8.

5.10 gebogene Heizplatte

Die Glasplatte, auf der die Objekt gedruckt werden, liegt auf einer metallenen Platte auf, über die sie erhitzt wird. Die Glasplatte ist jedoch nicht perfekt gerade gefertigt, sondern ist stellenweise relativ stark durchgebogen. Dadurch liegt sie nicht gleichmäßig auf der Metallplatte auf.

Auffällig ist, dass eine Seite der Glasplatte besser aufliegt als die andere. Wird die Glasplatte mit der schlechter aufliegenden Seite auf die Metallplatte gelegt, wird sie durch den mangelnden Kontakt zur Metallplatte stellenweise deutlich schlechter erhitzt. Dadurch haftet das Objekt an diesen Stellen nicht an der Glasplatte.

5.11 keine Haftung der Linien auf anderen Linien

.

5.12 schlechte Kalibrierung

.

5.13 untersch. Filamente, untersch. Eigenschaften

Stand: 3. Juni 2016 Seite 27 von 33

5.14 Spannung Feeder

.

5.15 Anpressdruck im Feeder

.

5.16 Knoten im Filament

.

5.17 verschmutzte Düse(außen und innen)

Sowohl innerhalb als auch außerhalb der Düse können Filamentrückstände von früheren Drucken verbleiben.

Die Rückstände in der Düse behindern den Materialfluss und können dazu führen, dass zu wenig Filament durch die Düse gelangt. Als Gegenmaßnahme kann man mit einer dünnen Nadel in die aufgeheizte Düse stechen.

An den äußeren Rückständen kann sich das Filament des nächsten Drucks verfangen. Dadurch wird es nicht mehr ordentlich auf der Druckplatte ausgebracht und der Druck misslingt.

Stand: 3. Juni 2016 Seite 28 von 33

5.18 Bollen an Heizblock(total destruction)

.

5.19 Falsche Parameter, falsche Supportstruktur

.

5.20 Drcuktemperatur

.

5.21 Verbranntes Material in Düse

.

5.22 mutwillige Zerstörung durch andere Leute

6 Zusammenfassung und Ausblick

Die Studienarbeit umfasste das Entwerfen und Drucken von Objekten mit dem Ultimaker 2. Ein Großteil der Arbeitszeit verlor sich in der Fehlersuche -Vermeidung. Ein großer Teil der Drucke scheiterte an sich ähnelnden Fehlern - zu wenig gefördertes Material oder zu geringe Haftung am Druckbett. Beides lässt auf Hardware-/Mechanik-Probleme des Druckers schließen.

vermeintlich Design-Problemen des Druckers. Zum Beispiel litt das Werkzeug an notorischer Unterförderung des Materials. Zu untersuchen wäre hierbei die Begründung des Drucker-Herstellers das Upgrade des Ultimakters 2 zum 2+ durchzuführen. In dem Rahmen wurde der Feeder um ein Getriebe erweitert, das das zum Fördern nötige Drehmoment reduziert.

Beim Druck des technischen Objekts war auffallend, dass die in Solid Edge definierten und in Cura noch korrekt dargestellten Maße der Objekte vom Drucker nicht maß-getreu gefertigt wurden. Dies war besonders auffallend bei einem 1cm x 1cm x 1mm - Quader, den wir zum Testen der aktuellen Höhen-Kalibrierung verwendeten. Die Seitenmaße des Quaders maßen anstatt einem Zentimeter nur ca. 8 Millimeter. Bei einer Linienbreite von 0.4mm sind das etwa 4 Linien, die vom Slicer nicht zum Drucken vorgesehen wurden.

Dieses Problem wiederholte sich bei schmalen Strukturen: alle Wände, die nicht über 0.8mm maßen - also eine beidseitige Wand - wurden von Cura ohne Benachrichtigung auf Probleme beseitigt. Mittels Repetierhost kann das Fehlen der Wände aufgezeigt werden. In mancher Situation erzeugte Cura auch Wände, die nicht sein sollten und füllte trotz deaktivierter Funktion klar definierte Hohlräume massiv aus.

Ein weiterer Unterschied zwischen Definition und Druckergebnis sind Spaltmaße. Wenn Objekte später zusammengesetzt werden sollen oder Objekte eingesetzt werden sollen wie bei der Serverhülle der Raspberry Pi, müssen relativ große Toleranzen zwischen den zu kombinierenden Objekten eingeplant werden. Durch die Ungenauigkeiten beim Druck und die in den Boden gedruckte und dadurch breitere Bodenschicht kann der Fall eintreten, dass die Objekte ohne Nachbearbeitung nicht kombinierbar sind.

Beim Erzeugen der STL-Datei ist auf die korrekten Maße zu achten. Bei zu geringer Auflösung der Facetten können Rundungen oder Bohrungen zu stark diskretisiert werden und als Vielecke mit wenigen Kanten übersetzt werden. Insbesondere ist hierbei auf

Stand: 3. Juni 2016 Seite 30 von 33

die Einstellung der Maß-Einheit zu achten. Im STL-Format werden keine Dimensionen abgelegt; diese werden von dem öffnenden Programm gewählt.

Für den Privatgebrauch lohnt sich ein 3D-Drucker des heutigen Entwicklungsstands kaum. Die Drucktechnologie ist nicht ausgereift genug, um wartungsarm betrieben zu werden. Die langen Druckzeiten und die nötigen Vorbereitungen bis zum Druck, ein Objekt zu suchen oder zu designen, die geringen Baugrößen der heutigen kostengünstigen Drucker und die Notwendigkeit von gedruckten Objekten degradieren den Drucker im Heimgebrauch zum Werkzeug für Tüftler, die auch gerne Zeit in die Fehlerbehebung investieren. Falls nicht das Drucken als Hobby im Vordergrund steht, können Drucke in nächster Zukunft auch in den vielzähligen Druck-Shops beauftragt werden.

Da der Ansatz des privaten 3D-Druckers erst allmählich in die Massentauglichkeit übergeht, werden in naher Zukunft möglicherweise Anwendungsfälle für die private Anschaffung entstehen. Zukünftige Entwicklungen der additiven Fertigung werden diese Möglichkeiten aufzeigen.

Für professionelle Entwicklungen sind additive Fertigungsverfahren schon heute schwer wegzudenken. Entwicklungsabteilungen können mit Druckern erste Prototypen entwerfen, die im Verhältnis zu herkömmlichen Fertigungsverfahren deutlich weniger Arbeitszeit erfordern. Mittlerweile können mit Sinter-Verfahren auch belastbare Prototypen aus Metall erstellt werden.

Additive Herstellungsverfahren bieten zudem bisher unmögliche Konstruktionen. Beispielsweise wurde ein neuartiger Greifarm entwickelt, der in verschiedene Raumrichtungen geneigt werden kann und in diesen mit seiner Klaue Objekte fixieren kann. Die interne Kammerstruktur, die Neigungen ermöglicht, kann nur in einem additiven Verfahren erzeugt werden.

Der Sprung vom Prototypenbau hin zur Serienfertigung mit additiven Verfahren ist vor allem eine Frage der Druckgeschwindigkeit. Momentane Systeme benötigen mehrere Stunden pro Objekt. Kleinserien sind in dieser Geschwindigkeit denkbar, jedoch ist eine Massenproduktion schwer realisierbar. Ein Grund zum Einsatz für Serienproduktionen ist die individuelle Fertigung auf Kundenwunsch. Anstatt mehrere Varianten auf Vorrat zu fertigen, könnten automatisierte Drucksysteme die Individualisierungen direkt im Fertigungsprozess berücksichtigen.

Der 3D-Druck als additives Fertigungsverfahren steckt momentan noch in den Kinderschuhen. Momentane Systeme benötigen einen hohen Zeit- und Wartungsaufwand.

Stand: 3. Juni 2016 Seite 31 von 33

Außerhalb des Entwicklungssektors ist der Einsatz noch fraglich, da nur wenige sinnvolle Anwendungen verfügbar sind. Im Privatgebrauch ist ein 3D-Drucker im Moment nur als Hobby anzusehen. Aufgaben, für die der Drucker im eigenen Haus undenkbar wäre, gibt es im Moment nicht. In den nächsten Jahren wird die Technologie möglicherweise weit genug entwickelt sein um sinnvolle Anwendungen zu bieten. In diesem Falle wird möglicherweise auch in unseren Kellern bald ein Drucker zu finden sein.

Stand: 3. Juni 2016 Seite 32 von 33

7 Literaturverzeichnis

Literaturverzeichnis

- [1] ABTS, G.: Polymere Werkstoffe. Version: 2014.
 http://dx.doi.org/10.3139/9783446439290.002. In: Kunststoff-Wissen für Einsteiger. Carl Hanser Verlag GmbH & Co. KG, 2014. DOI 10.3139/9783446439290.002. ISBN 978-3-446-43925-2, S. 65-99
- [2] Anette Zwahr U.A.: Meyers großes Taschenlexikon. 2006
- [3] DOMINIK RIETZEL, FLORIAN KÜHNLEIN, DIETMAR DRUMMER: Selektives Lasersintern von teilkristallinen Thermoplasten. https://www.rtejournal.de/ausgabe6/3113/pdfversion.pdf, 2009
- [4] GEBHARDT, A.: Grundlagen des Rapid Prototyping. In: *RTejournal* 1 (2004), Nr. 2004
- [5] Hagl, R.: 3D-Druck-Technologien. In: Das 3D-Druck-Kompendium: Leitfaden für Unternehmer, Berater und Innovationstreiber. Springer-Verlag, 2014, S. 15–35
- [6] KLÖDEN, D. B.: Infoblatt Generative Fertigung-Elektronenstrahlschmelzen. http://www.ifam.fraunhofer.de/content/dam/ifam/de/documents/dd/Infobl% C3%A4tter/generative_fertigung-elektronenstrahlschmelzen_fraunhofer_ ifam_dresden.pdf,

Stand: 3. Juni 2016 Seite 33 von 33