Discrete Mathematics: Homework 9

Name ID: Number

2020.5.7

- 1. Suppose that a language has 38 letters in its alphabet \mathcal{A} . Suppose that $A, B \in \mathcal{A}$. The length of a word is the number of letters it has.
 - (a) How may words have length 7, having A as the third letter?
 - (b) How many words of length 4 such that the letter B appears exacly twice?
 - **Solution:** (a) For the rest of 6 numbers, each digit has 38 possibilities. And for the third digit, it has only one possibility 'A'.

So the answer is, 38^6

(b) For 4 digits, there has 2 digits which can be 'B', so the possibility is C_4^2 , for the rest 2, each digit has 37 possibilities. (Because they can't be 'B')

So the answer is $C_4^2 \cdot 37^2$

- 2. A manager selects a football team from a squad of 20 players. The squad has 17 outfield players and 3 goalkeepers. The team should have 1 goalkeeper and 10 outfieldplayers.
 - (a) How many selections are possible? (the selection does NOT include shirt number, the position of outfield players, etc...)

Solution:

 $C_{17}^{10} \cdot C_3^1$

- 3. Suppose we have a bowl with red marbles, green marbles, yellow marbles, purplemarbles and blue marbles in it (the number of marbles of a given colour can be 0). Marbles of the same colour are indistinguishable.
 - (a) If the bowl has ten marbles, how many possibilities are there?
 - (b) If the bowl has 13 marbles and the bowl does not contain marbles of all 5 colours, how many possibilities are there?
 - each '|' has 14 slot, so the answer is

$$C_{14}^4 = 1001$$

(b) The answer is all possibilities without 5

$$C_{17}^4 - C_{12}^4 = 1885$$

4. Prove that for any positive integer n, there exists infinitely many positive integers k, such that kn has only 0 and 7 in its decimal expansion (for example: 70700077). Explain your answer with as much detail as possible

by pigeonhole principle.

The same holds for $\underbrace{777\dots777}_{n+2}\cdots\underbrace{777\dots777}_{2n+2}$ and $\underbrace{777\dots777}_{2n+3}\cdots\underbrace{777\dots777}_{3n+3}$ and \dots So we can find infinite $a,b\in\{77\cdots77\}$ such that $n \bmod a$ and $n \bmod b$

we also have $n \mod |a-b|$ and $|a-b| \in \{7 \dots 0 \dots 7\}$

So there are infinite k