Hardware Security

-- Physical Attacks

Cybersecurity Specialization

What Do We Expect to Learn?

- # Understand the vulnerabilities and threats to a system from hardware physical attacks
- #Learn the available countermeasures
- # Security evaluation for the hardware implementation of cryptographic primitives and security protocols
 - FIPS security levels
 - IBM tamper protection levels
- S. Skorobogatov, "Physical Attacks and Tamper Resistance", 2012.

What Are Physical Attacks?

- # Requirements:
 - (direct) access to the chip
 - = connection to signal wires (measurement)
 - equipment, tools, skills, and knowledge (hardware, cryptographic algorithms, data analysis)
- # Two phases:
 - Interaction: the attacker exploits some physical characteristics of the device
 - Exploitation: analyzing the gathered information to recover the secret

Physical Attacks & HW Security

- # Compared to attacks at network level or software level
 - physical attacks have higher requirements
 - Physical access to the system
 - Specialized equipment, tools, and knowledge
 - Physical attacks are harder to launch
- # Building security at hardware
 - Pro: increase the bar of attacking
 - Con: add a new attacking surface

Physical Attacks: Attackers

DG. Abraham et al, "Transaction Security System", IBM System Journal, 1991.

- # Class I: clever outsiders
 - Insufficient knowledge of the system
 - Limited access to equipment and tools
- # Class II: knowledgeable insiders
 - Knowledge of the system
 - * Access to tools and equipment
- # Class III: funded organizations
 - Access to all resources

Physical Attacks: Motivations

- # Direct theft of service or money
 - Smart card, TV set top box, game console
- # Sell/re-sell of products
 - IP piracy, cloning, overbuilding, counterfeiting
- #Interrupt or denial of service
 - Competitor's devices

Physical Attacks: Goal

- # Goal: "breaking" the (crypto)system
 - Learn information without authorization
 - Example: secret key/data (cryptosystem), detailed design info (system/chip/IP).
- # Physical Attacks vs. Cryptanalysis
 - Cryptanalysis: mathematical analysis to find the theoretical weakness
 - Physical attacks: exploit weakness in the implementation of the cryptographic algorithms

Physical Attacks: Classification

- # Invasive attacks
 - Direct access to inside of the chip/device
 - Reversible vs. irreversible
 - Device damaged or tamper evidence left
 - Cost and required skills vary, normally high
- # Non-invasive attacks
 - Interacts with the device/chip via its interface (voltage, current, clock, I/O, etc)
 - Passive vs. active
 - = No device damage, no tamper evidence
 - Most low cost and repeatable

Physical Attacks: Classification

- #Invasive attacks
- # Non-invasive attacks
- # Semi-invasive attacks
 - * Access to the surface of the chip, but will not create contacts with internal wires
 - Normally does not damage the system
 - May or may not leave tamper evidence
 - Moderate cost and some special skills
 - Repeatable

Physical Attacks: Classification

- # Reverse engineering (invasive)
 - = study chip's inner structure and functionality
 - high cost, similar capability of the designer
- # Microprobing (invasive)
 - timectly access the chip surface
 - observe, manipulate, interfere with the chip
- # Fault generation (semi- or non-invasive)
 - = run in abnormal environmental conditions
 - cause chip to malfunction, leak information, give additional access

Physical Attacks: Classification

- # Side-channel attacks (non-invasive)
 - monitor/measure chip's physical characteristics (power, current, timing, EM radiation, etc.) during its normal operation
 - perform data analysis to learn information
- # Software attacks (non-invasive)
 - use normal I/O interface
 - exploit known security vulnerabilities in protocols, algorithms and their software implementation