Homework #9 Solution

Problem 1)

The **noise_ptsi_fast_routed.rpt** report contains the following worst functional noise bump:

```
noise_region: below_high
pin name (net name) width height slack
------
u_logic/FE_PHC716_n4980/A (u_logic/n4980)
0.2360 0.6138 -0.0269
```

The input pin $u_logic/FE_PHC716_n4980/A$ is driven by the $u_logic/Vmj2z4_reg/QN$ output pin. We can get a detailed list of the aggressors with the $report_noise_calculation$ command as follows:

The most significant aggressor (by area) is u_logic/FE_PHN716_n4980 . Looking in the *NAME_MAP section of the $CORTEXMODS_routed.spef$ file, we see that the victim net $u_logic/n4980$ is mapped to *6703, and the aggressor net u_logic/FE_PHN716_n4980 is mapped to *1510. Looking for the victim net, we find the following connections to the aggressor net:

Therefore, there is a total of 12.3 fF on the victim, 3.74 fF of which is connected to the aggressor (C_C), and 8.6 fF of which is connected to other nodes (C_W). If we assume that the victim and aggressor are both high initially, and that the aggressor is switching low, then by conservation of charge

$$C_W V_1 = (C_W + C_C) V_2$$

$$\frac{V_2}{V_1} = \frac{C_W}{(C_W + C_C)} = \frac{8.6}{12.3} = 0.697$$

Assuming a supply voltage of 1.1 V, this corresponds to a 334 mV below-high bump, which is a bit larger than the 223 mV below-high bump predicted by PrimeTime SI.

Note that if an "Above Low" bump is analyzed, the equation is slightly different. In this case, the charge on both C_C and C_W is initially zero, and the charge on C_C (referenced from the victim node) after the aggressor switches is $(V_2-V_{DD})C_C$.

$$0 = (V_2 - V_{DD})C_C + V_2C_W$$

$$\frac{V_2}{V_{DD}} = \frac{C_C}{(C_W + C_C)}$$

Problem 2)

Global wires should be assumed, since this will give the minimum delay.

$$t_{p1} = 0.69(548)(0.61)(1 + 1.4) = 547 \, fs$$

$$L_{crit} = \sqrt{\frac{547}{0.38(0.18)(3.0)}} = 51.5 \,\mu m$$

$$t_{p,crit} = 2\left(1 + \sqrt{\frac{0.69}{0.38(1+1.4)}}\right)(395) = 2.05 \ ps$$

$$t_{p(1cm)} = \frac{(10000 \ \mu m)}{51.5 \ \mu m} (2.05 \ ps) = 397 \ ps$$

Another way to calculate this value is to use the $t_{p,min}$ equation

$$t_{p,\min(1cm)} = (1.38 + 1.02\sqrt{1 + 1.4})(10000 \ um)$$

 $\times \sqrt{(548 \ \Omega - \mu m)(0.61 \ fF/\mu m)(0.18 \ fF/\mu m)(3.0 \ \Omega/\mu m)} = 397 \ ps$

Problem 3)

The simulated power values are given below.

Fibonacci	Switching	Internal Power	Leakage Power	Total Power
Iterations	Power (µW)	(µW)	(µW)	(µW)
1	74.5	105	614	794
5	74.3	104	614	793
10	72.3	103	614	789