Formal Languages and Compilers

Matteo Secco

 $March\ 3,\ 2021$

Contents

1	Formal Language Theory		
	1.1	Operations on strings	
	1.2	Operations on Languages	
2 Regular Expressions and Languages		gular Expressions and Languages	
	2.1	Algebraic definition	
	2.2	Language Families	

1 Formal Language Theory

Alphabet Σ : any finite set of symbols $\Sigma = \{a_1, a_2, ..., a_k\}$

String: a sequence of alphabeth elements

Language: a set (possibly infinite) of strings

$$\Sigma = \{a, b, c\}$$
 $L_1 = \{ab, ac\}$ $L_2 = \{ab, aab, aaab, aaab, ...\}$

Sentences/Phrases: strings belonging to a language

Language cardinality: number of sentences of the language

$$|L_1| = |\{ab, ab\}| = 2$$
 $|L_2| = |\{ab, aab, aaab, aaab, ...\}| = \infty$

Number of occurrences of a symbol in a string: $|bbc|_b = 2$, $|bbc|_a = 0$

Length of a string: number of its elements

$$|bbc| = 3 \quad |abbc| = 4$$

String equality: two strings $x = a_1 a_2 ... a_h$ and $y = a_1 a_2 ... a_k$ are equal \iff

- have same length: $|x| = |y| \iff h = k$
- elements from left to right coincide: $a_i = b_i \quad \forall i \in \{1..h\}$

1.1 Operations on strings

Concatenation $x = a_1 a_2 ... a_h \land y = b_1 b_2 ... b_k \implies x \cdot y = a_1 a_2 ... a_h b_1 b_2 ... b_k$

- associative: (xy)z = x(yz)
- length: |xy| = |x| + |y|

Empty string ϵ is the neutral element for concatenation: $x\epsilon = \epsilon x = x \ \forall x$.

- length: $|\epsilon| = 0$
- NB: $\epsilon \neq \emptyset$

Substrings: if x = uyv then

- y is a substring of x
- y is a proper substring of $x \iff u \neq \epsilon \lor v \neq \epsilon$
- \bullet *u* is a prefix of *x*
- v is a <u>suffix</u> of y

Reflection: if $x = a_1 a_2 ... a_h$ then $x^R = a_h a_{h-1} ... a_1$

$$\bullet \ (x^R)^R = x$$

•
$$(xy)^R = y^R x^R$$

•
$$\epsilon^R = \epsilon$$

Repetition: $x^m = \underbrace{xxx...x}_{m \text{ times}}$. Inductive definition:

•
$$x^0 = \epsilon$$

•
$$x^m = x^{m-1}x$$
 if $m > 0$

1.2 Operations on Languages

Reflection: $L^R = \{x | \exists y (y \in L \land x = y^R)\}$

Prefixes(L): $\{y|y \neq \epsilon \land \exists x \exists z (x \in L \land z \neq \epsilon \land x = yz)\}$

• Prefix-free language: $L \cap Prefixes(L) = \emptyset$

Concatenation: $L'L'' = \{xy | x \in L' \land y \in L''\}$

Power: inductive definition:

•
$$L^0 = \{\epsilon\}$$

•
$$L^m = L^{m-1}L$$
 for $m > 0$

 \bullet Consequences:

$$\begin{array}{l} - \ \emptyset^0 = \{\epsilon\} \\ - \ L \cdot \emptyset = \emptyset \cdot L = \emptyset \end{array}$$

$$-L \cdot \{\epsilon\} = \{\epsilon\} \cdot L = L$$

Universal language: over alphabet Σ : $L_{\text{universal}} = \Sigma^0 \cup \Sigma^1 \cup ...$

Complement: of L over Σ : $\neg L = L_{\text{universal}} \backslash L$

Star: formally called reflexive and transitive closure or Klenee star

$$L^* = \bigcup_{h=0}^{\infty} L^h = L^0 \cup L^1 \cup \ldots = \epsilon \cup L^1 \cup L^2$$

$$\Sigma^* = L_{\text{universal}}$$

Monotonic: $L \subseteq L^*$

Close under concatenation: $x \in L^* \land y \in L^* \implies xy \in L^*$

Idempotent: $(L^*)^* = L^*$

Commutative with reflection: $(L^*)^R = (L^R)^*$

$$\emptyset^* = \{\epsilon\}$$

$$\{\epsilon\}^* = \{\epsilon\}$$

Cross: $L^+ = L \cdot L^*$

Quotient: $L_1/L_2 = \{y | \exists x \in L_1 \exists z \in L_2(x = yz)\}$

• Not set quotient!

 \bullet Removes from L_1 suffixes contained in L_2

2 Regular Expressions and Languages

Regular languages are the simplest family of laguages.

They can be defined in three ways:

- Algebraically
- Using generative grammars
- Using recognizer automata

2.1 Algebraic definition

Regular expressions are expression on languages that composes languages operations.

Formally

- Is a string r
- Over the alphabet $\Sigma = \{a_1, a_2, ..., a_n\} \cup \{\emptyset, \cup, \cdot, *\}$

Moreover, assuming s and t are regular expressions, then r is a regular expression if any of the following rules applies:

- $r = \emptyset$
- $r = a, \quad a \in \Sigma$
- $r = s \cup t$ (alternative notation is s|t)
- $r = s \cdot t$ (the · can be omitted)
- $r = s^*$

The meaning of a r.e. is a language L_r of alphabet Σ according to the table:

Expression	Language
Ø	Ø
ϵ	$\{\epsilon\}$
$a \in \Sigma$	$\{a\}$
$s \cup t$	$L_s \cup L_t$
$s \cdot t$	$L_s \cdot L_t$
s^*	L^*

Regular Languages are languages denoted by a regular expression

2.2 Language Families

 ${\bf REG}~$ is the collection of all regular languages

 ${f FIN}$ is the collection of all languages with finite cardinality

Every finite language is regular $FIN \subset REG$:

- $L \in FIN \implies L = \bigcup_{i=1}^{k \in \mathbb{N}} x_i \implies L \in FIN$
- $\bullet \ L = a^* \implies L \in REG \land L \not \in FIN$