

ACTIVE AND ASSISTED LIVING

2022 Winter Semester

MATLAB Toolbox Installation

Image Processing Stages

- Image processing stage
 - 1. Acquisition
 - 2. Pre-processing
 - 3. Feature extraction and classification(recognition)

Image Processing Stages

- Image processing stage
 - 1. Acquisition
 - 2. Pre-processing
 - 3. Feature extraction and classification(recognition)

1. Image Acquisition

Different types of cameras and images

- Place of installation outdoors, indoors
- Mechanical capacities bullet-type or pan-tilt-zoom cameras
- In-built features such as motion detection or night vision
- Omnidirectional cameras increased field of view

Bullet-type camera

Pan-tilt-zoom camera

Image from a night vision camera

Image from an omnidirectional camera

Immersive Media's Dodeca 2360 camera

1. Image Acquisition

- Limitation of fixed cameras
 - Limited field of view
 - Occlusions difficulties to keep all body parts visible
 - -> wearable cameras : e.g. GoPro or Google Glass

Image from a wearable camera

Additional to RGB cameras

- Depth cameras, based either on time-of-flight (TOF) or structured light
 - Markerless human body pose estimation

1. Image Acquisition

Marker-based motion capture system

https://simtkconfluence.stanford.edu/display/OpenSim/Collecting+Experimental+Data

Additional to RGB cameras

Depth cameras, based either on time-of-flight (TOF) or structured light

- Markerless human body pose estimation
- Thermal camera
 - Infrared radiation of the scene
 - Person segmentation and pose estimation

MATLAB Functions

imread

Read image from graphics file

gif, png, tiff, jpg, bmp, etc.

BMP — Windows Bitmap	JPEG — Joint Photographic Experts Group	PNG — Portable Network Graphics
CUR — Cursor File	JPEG 2000 — Joint Photographic Experts Group 2000	PPM — Portable Pixmap
GIF — Graphics Interchange Format	PBM — Portable Bitmap	RAS — Sun Raster
HDF4 — Hierarchical Data Format	PCX — Windows Paintbrush	TIFF — Tagged Image File Format
ICO — Icon File	PGM — Portable Graymap	XWD — X Window Dump

image

Display image from array

imshow

Display image

How to Obtain and Display Images/Wide MANAGEMENT CENTER

Graphics File – local storage

Acquire Images from Webcams

Remote Cameras

Graphics File

C:\Program Files\MATLAB\R2021b\toolbox\images\imdata

Acquire Images from Webcams

Remote Cameras

Display Images

A = imread('D:\Lecture\AAL\MATLAB\test_image.png');

How to Obtain and Display Images/Widensbruck MANAGEMENT CENTER MANAG

Graphics File – local storage

Acquire Images from Webcams

Remote Cameras

How to Obtain and Display Images/Vide MANAGEMENT CENTE

Acquire Images from Webcams

>> webcamlist

Error using webcamlist (line 20)

MATLAB Support Package for USB Webcams has not been installed. Open Add-On Explorer to install the Webcam Support Package.

MATLAB Support Package for USB Webcams

by MathWorks Image Acquisition Toolbox Team STAFF

Acquire images and video from UVC compliant webcams.

Install ▼

A Hardware Support

Webcam Image Acquisition

Acquire images from webcams

Functions

webcamlist	List of webcams connected to your system
webcam	Connection to a webcam
preview	Preview live video data from webcam
snapshot	Acquire single image frame from a webcam
closePreview	Close webcam preview window

preview

Preview live video data from webcam

WebCam

>> webcamlist OR >> cam = webcam(1) cam = webcam('NEC HD WebCam') ans = cam = 1×1 cell array webcam with properties: {'NEC HD WebCam'} Name: 'NEC HD WebCam' AvailableResolutions: {'1280x720' '640x480' '640x360' '320x240'} Resolution: '1280x720' WhiteBalanceMode: 'auto' Sharpness: 50 Hue: 0 Brightness: 0 BacklightCompensation: 0 Gamma: 300 WhiteBalance: 4600 Saturation: 64

Contrast: 50

>> preview(cam);

WebCam

snapshot

Acquire single image frame from a webcam

cam=webcam('HD Pro Webcam C920')

```
>> img=snapshot(cam);
>> image(img)
```

Multiple snapshots

```
>> for i = 1:3
    img = snapshot(cam);
    figure
    image(img);
end
```


clear cam

Capturing a Video from a Webcam

VideoWriter

Create object to write video files

open

Open file in appropriate application

writeVideo

Write video data to file

```
video_out = VideoWriter('test_video.avi');
open(video_out);

for index = 1:30
    % Acquire frame for processing
    img = snapshot(cam);
    % Write frame to video
    writeVideo(video_out,img);
end

close(video_out);
clear cam
```


Graphics File – local storage

Acquire Images from Webcams

Remote Cameras

How to Obtain Images/Video

Android

IP Webcam App

iPhone

IP Cam

How to Obtain Images/Video

http://192.168.0.94:8080/video

Image Processing Stages

- Image processing stage
 - 1. Acquisition
 - 2. Pre-processing
 - 3. Feature extraction and classification(recognition)

2. Image Pre-processing

- Main focus: recording persons, detect human silhouette the region of interest (ROI)
- 1) Separating the ROI (motion segmentation) from the background (static)
- 2) Processing: normalizing pixels, dimension reduction to apply pattern recognition techniques or machine learning algorithms

2. Image Pre-processing

- Dimension reduction to ensure stable real-time execution
 - Downsampled (e.g. 15 fps)
 - Conversion to 8-bit greyscale images
- Applying filters (e.g. Gaussian, Median, Mean, Erosion filter)
 - To reduce noise

Human silhouettes corresponding to different activities.

2. Image Pre-processing

e.g.) Erosion filter

https://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm

Erosion Filter in MATLAB

```
i= imread('tester2.png'); % load an image
figure(1); imshow(i); % display original image

igray= rgb2gray(i);
figure(2); imshow(igray); % display gray scale image

ib = im2bw(igray,0.5); % converts the grayscale image to binary image
figure(3); imshow(ib); % display binary image

mask = strel('diamond',7); % flat morphological structuring element - line, square, disk ie = imerode(ib,mask); % Erode image
figure(3); imshow(ie); % display the result image
clear
```

Erosion Filter

Image Processing Stages

- Image processing stage
 - 1. Acquisition
 - 2. Pre-processing
 - 3. Feature extraction and classification(recognition)

- Visual features whole image or on the detected ROIs
 - To obtain the characteristic information.
- Feature extraction methods
 - HOGs, SIFT(Scale Invariant Feature Trans form), Haar
- Histograms of oriented gradients (HOGs)
 - Very popular feature for human detection

3. Image Pre-processing Feature Extraction

Gradient

Gradient Magnitude(G) =
$$\sqrt{F_x^2 + F_y^2}$$

$$Angle(\theta) = tan^{-1} \frac{F_y}{F_x}$$

3. Image Pre-processing Feature Extractive in and Recognition

Histograms of oriented gradients (HOGs)

<u>Real-Time Rotation Estimation Using Histograms of Oriented Gradients</u>Blaž Bratanič, Franjo Pernuš, Boštjan Likar, Dejan Tomaževič 2014, PLoS ONE - Article

3. Image Pre-processing Feature Extraction

Feature detection

Vs.

Hogs

Histograms of Oriented Gradients (HOGS NANAGEMENT CENTER NSBRUCK

Input image

Histogram of Oriented Gradients

Input image

Histogram of Oriented Gradients

Histograms of Oriented Gradients (HOGs MANAGEMENT CENTING THE CONTINUE OF T

```
img = imread('gantrycrane.png');
[hog1,hogVisualization] = extractHOGFeatures(img,'CellSize',[32 32]);
subplot(1,2,1);
imshow(img);
subplot(1,2,2);
plot(hogVisualization);
```


3. Feature Extraction and Recognition

Recognition

Motion History Images (HMI)

else if
$$MHI_{t-1} \neq 0$$

 $MHI_t(x,y) := MHI_{t-1}(x,y) - 1$

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch14/ch14_motion_representation.htm

Image Processing

```
clear all; clc;
 cam = webcam('HD Pro Webcam C920')
 C= snapshot(cam);
 figure(1);
 hC = imshow(C)
 G=rgb2gray(C);
 figure(2);
 hG = imshow(edge(G))
- while 1
 C = snapshot(cam);
 G = rgb2gray(C);
 set (hC, 'CData', C); % set graphic object properties
 set(hG, 'CData', edge(G));
 drawnow;
 end
```


Displaying Images in the Graph

flipud

Flip array up to down

= 10×1	B = 10×1
1	10
2	9
3	8
4	7
5	6
6	5
7	4
8	3
9	2
10	1

flip

Flip order of elements

flipdim

Flip array along specified dimension

Displaying Images in the Graph

```
clear all; clc;
cam = webcam('HD Pro Webcam C920')

C= snapshot(cam);
figure(1);
hC=imagesc([0 4], [0 3], flipdim(C,1));
% plot up to here first
% Image scale

set(gca, 'YDir', 'normal'); grid on;
```


gca

Current axes or chart

Color Tracking

- 10 x 10 region
- red_region.m

```
Editor - red_region.m
      red_region.m 💢
2
3
      function [x y] =red region(C)
 4
5
       R = C(:,:,1); G = C(:,:,2); B = C(:,:,3);
 6
       D1=min(R-G, R-B);
7 -
       D = D1 -min(min(D)); %normalize
8 -
                                             Modify if the
       s=zeros(48,64);% 10 x 10 region
9 -
                                             resolution of your
10
                                             webcam is different
11 -
      for h=1:48
12
13 -
       i=1+(h-1)*10;
14 -
       j=1+9;
15
16 -
        sr=D(i:j,:);
17 -
       s(h,:)=sum(reshape(sr,[],64));
18 -
        end
19
        [sMaxl sIdxl] = max(s, [],1);
20 -
21
22 -
        [sMax2 sIdx2] = max(sMax1);
23 -
        i=sIdx2;
24 -
        j=49-sIdx1(sIdx1);
25
26 -
       x=i*10;
27 -
      └ y=j*10;
28
```

Color Tracking

```
clear all; clc;
 cam = webcam('HD Pro Webcam C920')
 C= snapshot(cam);
 H=size(C,1);
 W=size(C,2);
 figure(1); % plot up to here first
 hC=imagesc([0 4], [0 3], flipdim(C,1));
 set(gca, 'YDir', 'normal'); grid on;
 t = 0:0.1:2*pi;
 x=cos(t); y=sin(t);
- while 1
 C=snapshot(cam);
 set(hC, 'CData', flipdim(C,1));
 [rx ry] =red_region(C);
 x pos = 4*rx/W + 0.05*x;
 y pos = 3*ry/H + 0.05*y;
 hold on;
 plot(x pos,y pos,'r');
 hold off;
 previous_y_pos = y_pos;
 pause (0.001);
```

```
a sakai.mci4me.at/portal/site/Course-ID-SLVA-39514/tool/36901f24-0407-4f26-8784-a083057fd0f4?par

MANAGEME INNSBRUCK

ipants

□ Practical sessions

fo
□ □ colorTracking.txt
```



```
>> t = 0:0.1:2*pi;
x=cos(t); y=sin(t);
x_pos = 0.05*x;
y_pos = 0.05*y;
>> plot(x_pos,y_pos)
```


end

Drawing a Circle


```
>> t = 0:0.1:2*pi;

x=cos(t); y=sin(t);

x_pos = 0.05*x;

y_pos = 0.05*y;

>> plot(x_pos,y_pos)
```


Color Tracking Center Point Display


```
clear all; clc;
  cam = webcam('HD Pro Webcam C920')
  C= snapshot(cam);
  figure(1);
 hC=imagesc([0 4], [0 3], flipdim(C,1));
 set(gca, 'YDir', 'normal'); hold on;
 hT3=text(0.1,2.8,'X');
 hT4=text(0.7,2.8,'Y');
  set(hT3,'Color', [0 1 0]);
  set(hT3, 'FontSize', 20);
  set(hT4, 'Color', [1 0 0]);
  set(hT4, 'FontSize', 20);
- while 1
 C=snapshot(cam);
  set(hC, 'CData', flipdim(C,1));
  [rx ry] =red region(C);
 set(hT3,'String', num2str(rx));
  set(hT4, 'String', num2str(ry));
  drawnow;
 pause (0.01);
```


Fall Detection Alarm

Vision + Buzzer

RC522 RFID Reader/Writer module

Various types of RFID tags

fritzing

RFID

- RFID library download
- https://github.com/miguelbalboa/rfid

How to Add Library

1)

or

2) Unzip and place it at the following folder

Read RFID


```
#include <SPI.h>
#include <MFRC522.h>
```

#define SS_PIN 9
#define RST_PIN 10

byte nuidPICC[4];

MFRC522::MIFARE Key key;

#define SS_PIN 53
#define RST_PIN 5

MFRC522 rfid(SS_PIN, RST_PIN); // Instance of the cla

// Init array that will store new NUID

ReadNUID

* Typical pin layout used:

* * * Signal	MFRC522	Arduino	Arduino	Arduino	Arduino
	Reader/PCD	Uno/101	Mega	Nano v3	Leonardo/M
	Pin	Pin	Pin	Pin	Pin
* RST/Reset * SPI SS * SPI MOSI * SPI MISO * SPI SCK	RST	9	5	D9	RESET/ICSF
	SDA(SS)	10	53	D10	10
	MOSI	11 / ICSP-4	51	D11	ICSP-4
	MISO	12 / ICSP-1	50	D12	ICSP-1
	SCK	13 / ICSP-3	52	D13	ICSP-3

Read RFID

Try to read your student ID (* do not write any data*)

Write personal data

C:\Program Files (x86)\Arduino\libraries\rfid-master\examples\rfid_write_personal_data

Read personal data

C:\Program Files (x86)\Arduino\libraries\rfid-master\examples\rfid_read_personal_data

```
rfid_read_personal_data
byte buffer1[18];
                              COM6 (Arduino/Genuino Uno)
block = 4;
len = 18:
                             Read personal data on a MIFARE PICC:
                             **Card Detected:**
                             Card UID: 8B 73 75 1C
status = mfrc522.PCD Authen
                             Card SAK: 08
if (status != MFRC522::STAT
                             PICC type: MIFARE 1KB
  Serial.print(F("Authenti
                            Name: Yeongmi Kim
  Serial.println(mfrc522.G
                             **End Reading**
  return;
```


1) Getting data (UID)

C:\Program Files (x86)\Arduino\libraries\rfid-master\examples\DumpInfo

2) change UID

C:\Program Files (x86)\Arduino\libraries\rfid-master\examples\ChangeUID

C:\Program Files (x86)\Arduino\libraries\rfid-master\examples\RFID-Cloner

```
Card did not respond to 0x40 after HALT command. Are you sure it is a UID changeable one?
```

MANAGEMENT CENTER INNSBRUCK

RFID Exercise

- Multiple tags
- RFID ring -https://www.youtube.com/watch?v=_Sj17Lb38e0
- https://www.adafruit.com/product/2800?utm_source=youtube&utm_medi um=videodescrip&utm_campaign=3dprinting

if(rfid.uid.uidByte[0] == 0x2A && rfid.uid.uidByte[1] == <math>0x22 && rfid.uid.uidByte[2] == 0xC1 && rfid.uid.uidByte[3] == <math>0x23)