

Cours CSC_5RO06_TA

Accélérateurs matériels pour l'IA et la robotique

Examen 1H00 tous documents autorisés

14/10/2024

1. Question 1 - Accélérateur matériel - Modélisation HLS - (7 points)

- 1.1 Quelles sont les caractéristiques des applications pour lesquelles les accélérateurs matériels sont-ils plus performants que les implémentations logicielles sur processeurs ?
- 1.2 définitions : donnez les définitions de la latence d'une conception (« design latency ») ? du débit d'une conception (« design throughput ») ?
- 1.3 la comparaison de performances entre différentes conceptions sur la base des métriques « design latency » et « design throughput » est-elle suffisante pour sélectionner la conception la plus performante? justifiez.
- 1.4 Décrire le flot de conception HLS Xilinx disponible pour la conception de systèmes embarqués à base de circuit

Vivado HLS Design Flow

Quel est l'intérêt d'une conception HLS depuis le langage C ou C++? justifiez.

* 1.5 les accélérateurs sont implémentés en qualité de périphériques comme indiqués sur la figure suivante :

The nurdware system architecture of an embedded SoC (amplifica)

Quels sont les facteurs limitatifs aux performances et/ou aux nombres des accélérateurs matériels dans

cette configuration d'architecture ? justifiez.

 1.6 dans le circuit FPGA Xilinx Zynq les accélérateurs matériels sont implémentés sur la partie programmable du circuit.

Relationship of the software system, hardware system, and Zynq architecture

Les fréquences possibles du processeur ARM situé sur la partie PS sont de 667 MHz, 766 MHz et 866 MHz. Ces fréquences ne sont pas atteignables sur la partie PL pour les accélérateurs matériels. D'autre part l'interface PS-PL inclut des interfaces AMBA AXI pour la communication de données.

- · deux 32-bit AXI master interfaces
- · deux 32-bit AXI slave interfaces
- · Quelles sont les recommandations de conception d'accélérateurs matériels faites-vous ? justifiez.
 - 2. Question 2 Circuit FPGA (7 points)
- 2.1 donnez les avantages et inconvénients des circuits FPGA Justifiez (5 lignes max)
- 2.2 les ressources principales des circuits FPGA sont : 1. PLC (programmable logic cells) 2. LUT Look up table 3. Flip-flops 4. BRAM : Block RAM 5. DSP

Table 1: Zynq-7000 and Zynq-7000S All Programmable SoCs (Cont'd)

	Device Name Part Number	Z-7007S XC7Z007S	Z-7012S XC7Z012S	Z-7014S XC7Z014S	Z-7010 XC7Z010	Z-7015 XC7Z015	Z-7020 XC7Z020	Z-7030 XC7Z030	Z-7035 XC7Z035	Z-7045 XC7Z045	Z-7100 XC7Z100
Proc	nx 7 Series grammable Logic ivalent	Artix®-7 FPGA	Arlix-7 FPGA	Arlix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Kintex®-7 FPGA	Kintex-7 FPGA	Kintex-7 FPGA	Kintex-7 FPGA
Prog	grammable Logic s	23K	55K	65K	28K	74K	85K	125K	275K	350K	444K
Look	(-Up Tables (LUTs)	14,400	34,400	40,600	17,600	46,200	53,200	78,600	171,900	218,600	277,400
Flip-	Flops	28,800	68,800	81,200	35,200	92,400	106,400	157,200	343,800	437,200	554,800
	k RAM 5 Kb Blocks)	1.8 Mb (50)	2.5 Mb (72)	3.8 Mb (107)	2.1 Mb (60)	3,3 Mb (95)	4.9 Mb (140)	9.3 Mb (265)	17,6 Mb (500)	19.1 Mb (545)	26.5 Mb (755)
	Slices 25 MACCs)	66	120	170	80	160	220	400	900	900	2,020
	DSP ormance ornetric FIR)	73 GMACs	131 GMACs	187 GMACs	100 GMACs	200 GMACs	276 GMACs	593 GMACs	1,334 GMACs	1,334 GMACs	2,622 GMACs

° 2.3 DSP la macro DSP implémentée sur circuit FPGA est décrite ci-dessous :

Arithmetic capabilities of the DSP48E1 slice

Proposez une fonction simple en C pouvant exploiter cette fonction.

2.4 l'architecture de la partie PL du circuit FPGA Xilinx Zynq place les ressources à des positions particulières sur le circuit.

The logic fabric and its constituent elements

Quel est l'impact de ces positionnements sur la performance des systèmes synchrones ? justifiez.

3. Application IA - Circuit FPGA - (6 points)

L'intelligence artificielle utilise de nombreuses techniques d'apprentissage pour ses applications. Une technique très largement utilisée est celle des réseaux de neurones. Le perceptron est un élément unitaire de calcul dans les réseaux de neurones.

Définition Un perceptron linéaire à seuil prend en entrée n valeurs $x_1, ..., x_n$ et calcule une sortie o. Un perceptron est défini par la donnée de n+1 constantes : les coefficients synaptiques $w_1, ..., w_n$ et le seuil (ou le biais) θ . La sortie o est calculée par la formule :

$$o = \begin{cases} \int_{1}^{1} si \sum_{i} w_{x_{i}} > \theta \\ 0 sinon \end{cases}$$

Le perceptron avec seuil

- **3.1** Ecrire un programme C/C++ qui décrit un perceptron. Ce code est-il synthétisable Quelles ressources du circuit FPGA Zynq présente un intérêt pour implémenter ce code ?
- * 3.2

Quelles sont les ressources du circuit FPGA Xilinx Zynq qui présentent un intérêt prioritaire ? nous souhaitons optimiser la latence et le débit de ce circuit. Proposez des directives le permettant.

Nous souhaiterions implémenter un réseau de neurones ayant au total 2000 neurones. Quelle est votre proposition d'implémentation

