Quenched topological susceptibility.

Jaime Fabián Nieto Castellanos

May 11, 2021

We show results of χ_T^q obtained by using the HMC algorithm and C. Lang's program for pure gauge theory. We used a square lattice of dimensions $L \times L$. We also compare the values with χ_T^q computed in ref. [1] and with the analytic result by Seiler [2], which states that in infinite volume

$$\chi_T^q = \frac{g^2}{4\pi^2} = \frac{1}{4\beta\pi^2}. (1)$$

 F_{π} for different β was calculated with the Witten-Veneziano formula

$$m_{\eta'}^2 = \frac{2N_f}{F_{\pi}^2} \chi_T^q, \quad m_{\eta'}^2 = \frac{N_f g^2}{\pi}, \quad N_f = 2.$$
 (2)

Lang program's result. $\langle F_{\pi} \rangle = 0.4928(5)$

(c) $\chi_T^q \beta$ vs. L, obtained with the HMC algorithm. $\langle \chi_T \beta \rangle = 0.0390(4)$

(d) F_{π} vs. L, obtained with the WV formula by using the HMC algorithm's result $\langle F_{\pi} \rangle = 0.495(1)$.

Figure 1: Quenched topological susceptibility and F_{π} computed with the WV formula for $\beta = 2$. With C. Lang's program, 10^5 measurements were performed. With the HMC algorithm, 10⁴ measurements separated by 10 sweeps were performed.

	χ_T
C. Lang's program	0.0192(1)
HMC algorithm	0.0189(2)
Ref. [1] results	0.0196(6)
Analytic value for infinite volume (eq. (1))	0.01266

Table 1: $\beta = 2$. Different values of χ_T quenched.

Figure 2: Quenched topological susceptibility and F_{π} computed with the WV formula for $\beta = 3$. With C. Lang's program, 10^5 measurements were performed. With the HMC algorithm, 10^4 measurements separated by 10 sweeps were performed.

	χ_T
C. Lang's program	0.01100(6)
HMC algorithm	0.0114(5)
Ref. [1] results	0.0110(3)
Analytic value for infinite volume (eq. (1))	0.0084

Table 2: $\beta = 3$. Different values of χ_T quenched.

(c) $\chi_T^q \beta$ vs. L, obtained with the HMC algorithm. $\langle \chi_T \beta \rangle = 0.0304(6)$

(d) F_{π} vs. L, obtained with the WV formula by using the HMC algorithm's result $\langle F_{\pi} \rangle = 0.437(4)$.

Figure 3: Quenched topological susceptibility and F_{π} computed with the WV formula for $\beta = 4$. With C. Lang's program, 10^5 measurements were performed. With the HMC algorithm, 10^4 measurements separated by 10 sweeps were performed.

	χ_T
C. Lang's program	0.00774(3)
HMC algorithm	0.0076(2)
Ref. [1] results	0.0075(2)
Analytic value for infinite volume (eq. (1))	0.0063

Table 3: $\beta = 4$. Different values of χ_T quenched.

With the extrapolation that was performed in the limit $m \to \infty$ by using the old results for χ_T , we had obtained

$$\chi_T^q = 0.0073(3) \quad \text{for } \beta = 4,$$
 (3)

which is compatible with the values of Table 3. In figure 4 we show χ_T^q for different β .

Figure 4: χ_T^q vs. β . We used the data from Tables 1, 2 and 3.

References

- [1] I. Bautista, W. Bietenholz, A. Dromard, U. Gerber, L. Gonglach, C. P. Hofmann, H. Mejía, and M.Wagner, *Phys. Rev. D* **92** (2015)
- [2] E. Seiler, Phys. Lett. B **525** (2002).