

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ «Информатика и системы управления»

КАФЕДРА ИУ-7 «Программное обеспечение эвм и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:

«Классификация известных методов восстановления изображений, искаженных дефокусировкой фотокамеры»

Студент	ИУ7-76Б	 Сироткина П. Ю.
Руководите	ель	 Филиппов М. В.

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

(MII IV MM INOV BUJMUS	
	УТВЕРЖДАЮ
	Заведующий кафедрой ИУ-7 ^(Индекс) И.В.Рудаков
	(И.О.Фамилия) «16» сентября 2022 г.
ЗАДАНИЕ	
на выполнение научно-исследова	ательской работы
по теме	
«Классификация известных методов восстановлен дефокусировкой фотокам	=
Студент группы ИУ7-76Б	
Сироткина Полина Юрь	евна
Направленность НИР	
учебная	
Источник тематики	
НИР кафедры График выполнения НИР: 25% к 6 нед., 50% к 9 нед., 75	% к 12 нед., 100% к 15 нед.
Техническое задание	
Провести обзор существующих методов восстановловов дефокусировкой фотокамеры. Провести анализ предизображений, искаженных дефокусировкой фотокам сравнения методов восстановления изображений фотокамеры. Классифицировать существующие мето искаженных дефокусировкой фотокамеры.	метной области восстановления меры, сформулировать критерии í, искаженных дефокусировкой
Оформление научно-исследовательской работы:	
Расчетно-пояснительная записка на 12-20 листах формата	
Перечень графического (иллюстративного) материала (че Презентация на 6-10 слайдах.	ртежи, плакаты, слайды и т. п.)
Дата выдачи задания «16» сентября 2022 г.	
Руководитель НИР	Филиппов М. В. (И.О.Фамилия)

Студент

(Подпись, дата)

_ Сироткина П. Ю.

(И.О.Фамилия)

РЕФЕРАТ

Расчетно-пояснительная записка 20 с., 4 рис., 1 табл., 15 источн., 1 прил. **Ключевые слова**: восстановление искаженных изображений, дефокусировка фотокамеры, функция размытия точки, операция свертки, теорема о свертке, Фурье – преобразования, классификация.

Объектом исследования является изображение, искаженное дефокусировкой фотокамеры.

В результате был проведен краткий обзор следующий методов восстановления дефокусированных изображений: инверсная фильтрация, фильтр Винера, регуляризация Тихонова, метод Люси — Ричардсона, метод «слепой» деконволюции.

В результате классификации были выделены два класса методов по следующим критериям: по наличию информации об искажающей функции и по области вычислений.

СОДЕРЖАНИЕ

Pl	ЕΦЕ	PAT	3
Bl	вед	ЕНИЕ	5
1	Ана	лиз предметной области	6
	1.1	Фотокамера	6
	1.2	Цифровое изображение	7
	1.3	Причины дефокусировки фотокамеры	10
2	Обз	ор известных методов восстановления изображений, иска-	
	жеі	ных дефокусировкой фотокамеры	12
	2.1	Инверсная фильтрация	12
	2.2	Фильтр Винера	12
	2.3	Регуляризация Тихонова	
	2.4	Метод Люси – Ричардсона	13
	2.5	Метод «слепой» деконволюции	14
3		ассификация известных методов восстановления изображе-	
	ний	, искаженных дефокусировкой фотокамеры	15
3	АКЛ	ЮЧЕНИЕ	17
Cl	ПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	19
П	РИ .Л	ОЖЕНИЕ А	20

ВВЕДЕНИЕ

Среди способов восприятия человеком информации об окружающем мире посредством органов чувств зрение занимает особое место — с помощью глаз в среднем воспринимается до 80 % информации, поступающей из внешней среды. [1] Именно поэтому зрительные образы, часто запечатляемые снимками фотокамеры, играют важнейшую роль в нашей жизни.

Системы фотосъемки могут быть использованы в различных сферах деятельности: криминалистика, кинематография, микроэлектроника, биомедицина, археология, исследования космоса, оборонное производство. [2]

Однако часто полученный снимок фотокамеры оказывается искаженным за счет различных причин: шумы, элементы интерференции и размытие, вызванное дефокусировкой, движением и нелинейностью пленки. [3]

Целью данной научно-исследовательской работы является изучение и классификация известных методов восстановления изображений, искаженных дефокусировкой фотокамеры.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- провести анализ предметной области восстановления изображений, искаженных дефокусировкой фотокамеры;
- провести обзор существующих методов восстановления изображений, искаженных дефокусировкой фотокамеры;
- сформулировать критерии сравнения рассмотренных методов;
- классифицировать рассмотренные методы;
- на основе полученных теоретических сведений сделать выводы.

1 Анализ предметной области

1.1 Фотокамера

Фотокамера (фотоаппарат) — это прибор для получения на фотографическом материале действительного изображения предмета при фотографировании. [4]

Цифровой фотоаппарат — фотоаппарат, в котором для регистрации изображения используется фотоэлектрический принцип. В данной научно-исследовательской работе рассматривается этот тип фотоаппаратов в виду их повсеместного использования и универсальности.

На рисунке 1.1 представлены основные элементы цифрового фотоаппарата.

Рисунок 1.1 – Основные элементы цифрового фотоаппарата

Кратко принцип работы цифрового фотоаппарата можно описать следующим образом: фотон попадает на светочувствительную матрицу, световая энергия преобразуется в электрическую, которая посредством дискретизации и квантования напряжения преобразует энергию в цифровые данные, которые в дальнейшем хранятся в памяти некоторой вычислительной машины с энергонезависимым запоминающим устройством.

В рамках данной работы наибольший интерес представляет фотоматрица— специализированная аналоговая или цифро-аналоговая интегральная микросхема, состоящая из светочувствительных элементов (фотосенсоров).

Матрица предназначена для преобразования спроецированного на нее оптического изображения в аналоговый сигнал (или в набор цифровых данных, если в матрице присутствует аналого-цифровой преобразователь).

1.2 Цифровое изображение

Изображение, получаемое фотокамерой, можно определить как двумерную функцию f(x, y), где x и y — пространственные координаты. Значение функции f в некоторой точке, задаваемой парой координат (x, y), является положительной скалярной величиной, называемой интенсивностью, или яркостью изображения в этой точке. [5]

Для изображений, получаемых $uu\phi posoй$ фотокамерой, величины x,y и f принимают конечное число дискретных значений. Такие изображения называются цифровыми.

Модель процесса получения дефокусированного цифрового изображения в пространственной области может быть представлена в виде выражения (1.1) [6]:

$$g(x, y) = f(x, y) \oplus h(x, y) + \eta(x, y),$$
 (1.1)

где:

- -f(x, y) функция, описывающая исходное изображение (неискаженное);
- -g(x, y) функция, описывающее дефокусированное изображение (искаженное);
- -h(x, y) функция размытия точки (или оптическая передаточная функция), или ядро искажающего оператора [7];
- $-\eta(x, y)$ функция шума;
- символ «⊕» оператор свертки.

Задача восстановления изображения заключается в поиске наилучшего приближения $\hat{f}(x, y)$ исходного изображения.

Свертка (конволюция)

Применительно к обработке цифровых изображений операция свертки может быть интерпретирована следующим образом: на основе некоторого множества пикселей в исходном изображении вычисляется новый пиксель результирующего (искаженного ядром свертки) изображения.

На рисунке 1.4 представлен пример выполнения операции свертки. Для вычисления новых значений используется т. н. ядро свертки: на приведенном рисунке ядром является матрица зеленого цвета размером 3×3 .

Рисунок 1.2 – Пример выполнения операции свертки

В зависимости от выбранного ядра свертки, примененного к изображению, можно получить тот или иной эффект: размытость, повышение резкости, обнаружение контуров, граничное обнаружение и др.

Математически операцию двумерной свертки изображения в пространственной области можно описать в виде выражения (1.2).

$$f(x, y) \oplus h(x, y) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} f(x+i, y+j) \cdot h(x, y),$$
 (1.2)

где
$$a = \frac{M-1}{2}, b = \frac{N-1}{2},$$
 М, N - размеры изображения,.

Получение функций f(x, y) и h(x, y) из выражения (1.2) путем выполнения обратных действий приводит к получению большой системы уравнений, решение которой является нетривиальной и трудоемкой задачей. [8] Упростить ее решение может *теорема о свертке*, согласно которой операция свертки в пространственной области эквивалентна поэлементному умножению в частотной области:

$$f(x, y) \oplus h(x, y) \longleftrightarrow F(u, v) \cdot H(u, v),$$
 (1.3)

где $F(u,\ v),\ H(u,\ v)$ - Фурье – образы (спектры) функций $f(x,\ y)$ и $h(x,\ y)$ соответственно.

Преобразование Фурье некоторой функции f(x) определяется выражением (1.4):

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{+\infty} f(x) \cdot e^{-i \cdot x \cdot \omega} \, dx. \tag{1.4}$$

Преобразование Фурье позволяет разложить исходный цифровой сигнал на гармонические (частотные) составляющие, что потребуется для выделения шумов.

1.3 Причины дефокусировки фотокамеры

На рисунке 1.3 приведена иллюстрация, поясняющая физический принцип получения расфокусированного изображения. [9]

Рисунок 1.3 – Принцип получения расфокусированного изображения

Пусть снимаемый объект, полагаемый плоским из-за его удаленности, и фотопленка (или матрица сенсоров) расположены параллельно тонкой линзе по разные стороны от нее.

Пусть f_1 — расстояние от линзы до объекта, а f_2 — расстояние от линзы до фотопленки (матрицы), установленной в «фокусе», а σ — погрешность фокусировки изображения. Таким образом, реальная фотопленка установлена «не в фокусе».

Как видно из рисунка, лучи из точки A' после их прохождения через линзу отобразятся на реальной фотопленке не в точку, а в некоторое размытое пятно, определяемое т. н. функцией размытия точки, или функцией искажения ядра. [10]

Вывод

Для получения восстановленного изображения необходимо произвести обратные вычисления, однако деконволюция (операция, обратная свертке) математически очень трудоемкая и нетривиальная операция. Вследствие этого были разработаны методы восстановления, решающие поставленную задачу иными способами.

2 Обзор известных методов восстановления изображений, искаженных дефокусировкой фотокамеры

2.1 Инверсная фильтрация

Одним из самых простых методов решения задачи восстановления изображения, искаженного дефокусировкой фотокамеры, является инверсная фильтрация. Использование данного метода предполагает, что искажающая функция заранее известна.

Согласно теореме о свертке, имеем (2.1):

$$G(u, v) = H(u, v) \cdot F(u, v) + N(u, v). \tag{2.1}$$

Было предложено разделить обе части выражения на H(u, v) и получить следующую оценку исходного изображения:

$$\hat{F}(u, v) = \frac{G(u, v)}{H(u, v)} = F(u, v) + \frac{N(u, v)}{H(u, v)}.$$
(2.2)

Если на изображении отсутствует шум, то восстановление происходит достаточно точно. Однако, если шум присутствует, то составляющая $\frac{N(u, v)}{H(u, v)}$ стремится к бесконечности в виду того, что в частотной области функция H(u, v) стремится к нулю, что приводит к получению некачественного результата.

2.2 Фильтр Винера

Усовершенствованием инверсной фильтрации можно считать фильтр Винера. [11] Данный метод, в отличие от предыдущего, учитывает информацию о шуме на изображении.

Метод базируется на рассмотрении функций изображения и шума как случайных процессов и нахождении такой оценки \hat{F} для неискаженного изображения f, чтобы среднеквадратическое отклонение этих величин было минимальным [12]:

$$\hat{F}(u, v) = \frac{1}{H(u, v)} \cdot \frac{|H(u, v)|^2}{|H(u, v)|^2 + \frac{S_{\eta}(u, v)}{S_f(u, v)}} \cdot G(u, v). \tag{2.3}$$

Функцией S обозначают энергетические спектры шума и исходного изображения соответственно. Т. к. эти величины обычно неизвестны, то их заменяют на некоторую константу K, которую можно охарактеризовать как приблизительное соотношение сигнал-шум:

$$\hat{F}(u, v) = \frac{1}{H(u, v)} \cdot \frac{|H(u, v)|^2}{|H(u, v)|^2 + K} \cdot G(u, v). \tag{2.4}$$

Если шум на изображении отсутствует, то фильтр Винера сводится к инверсной фильтрации. Основной недостаток фильтра Винера заключается в наличии краевых эффектов, проявляющихся в виде осциллирующей помехи (ряби или полос).

2.3 Регуляризация Тихонова

Метод также реализовывается в частотной области и предполагает наличие информации об искажающей функции. Этот метод также называют методом минимизации сглаживающего функционала со связью, или методом наименьших квадратов со связью.

Идея заключается в формулировке задачи в матричном виде с дальнейшим решением соответствующей задачи оптимизации. [13] Решение задачи имеет следующий вид:

$$\hat{F}(u, v) = \frac{H'(u, v)}{|H(u, v)|^2 + \gamma |P(u, v)|^2} \cdot G(u, v), \tag{2.5}$$

где γ — параметр регуляризации, P(u, v) — результат Фурье — преобразования оператора Лапласа, H'(u, v) — функция, комплексно сопряженная H(u, v).

Если параметр $\gamma=0,$ то данный метод сводится к инверсной фильтрации.

2.4 Метод Люси – Ричардсона

Этот метод является итерационным, предполагает наличие информации об искажающей функции и, в отличие от предыдущих методов, реализовывается в пространственной области и является нелинейным. [14]

Идея заключается в использовании метода максимального правдоподобия, для которого предполагается, что изображение подчиняется распределе-

нию Пуассона.

Математические выражение для данного метода имеет следующий вид:

$$\hat{f}_{k+1}(x, y) = \hat{f}_k(x, y) \cdot \left(h(-x, -y) \oplus \frac{g(x, y)}{h(x, y) \oplus \hat{f}_k(x, y)} \right),$$
 (2.6)

где \hat{f}_{k+1} — оценка изображения f на k-ом шаге вычислений.

Недостатком этого метода являются краевые эффекты в виде горизонтальных и вертикальных волос на изображении. Также возникает вопрос выбора критерия остановки итерационного алгоритма.

2.5 Метод «слепой» деконволюции

Название данного метода отражает тот факт, что искажающая функция заранее неизвестна, и этот метод относится к другому классу алгоритмов в отличие от ранее рассмотренных. Слепая деконволюция является некорректной задачей — количество неизвестных параметров превышает количество известных.

Как правило, метод состоит из двух этапов обработки:

- 1. Ядро размытия оценивается по входному изображению.
- 2. Используя оценочное ядро, применяется стандартный алгоритм деконволюции для оценки скрытого изображения.

Слепая деконволюция основывается на методе максимального правдоподобия, где целевой функцией является исходное (неискаженное) изображение.

Вывод

Из рассмотренных выше алгоритмов только инверсный фильтр не учитывает шумовую составляющую, что делает его непригодным для реальных задач повышения качества изображений. Наибольшую вычислительную сложность имеют итерационные алгоритмы: метод Люси — Ричардсона и метод «слепой» деконволюции. Таким образом, можно выделить два класса алгоритмов: по наличию информации об искажающей функции и по области вычислений.

3 Классификация известных методов восстановления изображений, искаженных дефокусировкой фотокамеры

На рисунке 3.1 представлены критерии, согласно которым можно классифицировать существующие методы повышения качества изображений, искаженных дефокусировкой фотокамеры. [15]

Рисунок 3.1 – Классификация подходов повышения качества изображения

В таблице 3.1 представлен сравнительный анализ рассмотренных методов.

Таблица 3.1 – Сравнительный анализ рассмотренных методов

Метод	Критерий		
WICTOA	Искажающая функция	Область обработки	
Инверсная фильтрация	Известна	Частотная	
Фильтр Винера	Известна	Частотная	
Регуляризация Тихонова	Известна	Частотная	
Метод Люси – Ричардсона	Известна	Пространственная	
«Слепая» деконволюция	Неизвестна	Частотная	

Вывод

Таким образом, из рассмотренных методов только метод Люси – Ричардсона реализовывается в пространственной области, и только метод слепой деконволюции предполагает, что искажающая функция заранее неизвестна.

Не существует универсального решения поставленной задачи. Алгоритм следует подбирать в зависимости от исходных данных и допущений, основываясь, например, на приведенной выше классификации. В практических задачах наиболее часто используется метод «слепой» деконволюции.

ЗАКЛЮЧЕНИЕ

В результате выполнения научно-исследовательской работы была достигнута поставленная цель: были изученены и классифицированы известные методы восстановления изображений, искаженных дефокусировкой фотокамеры.

Для достижения поставленной цели были выполнены следующие задачи:

- проведен анализ предметной области восстановления изображений, искаженных дефокусировкой фотокамеры;
- приведен обзор существующих методов восстановления изображений, искаженных дефокусировкой фотокамеры;
- сформулированы критерии сравнения рассмотренных методов;
- классифицированы рассмотренные методы;
- на основе полученных теоретических сведений сделаны выводы.

Были рассмотрены следующие методы восстановления дефокусированных изображений: инверсный фильтр, фильтр Винера, метод Люси – Ричардсона, метод «слепой» деконволюции, регуляризация Тихонова.

В результате классификации были выделены два класса по следующим критериям: по наличию информации об искажающей функции и по области обработки.

Очевидно, что методы деконволюции при известной искажающей функции работают лучше, чем «слепые» методы, однако на практике ядро искажающей функции часто является неизвестным, поэтому применение слепых методов более актуально в реальных задачах. Выбор области обработки (пространственная или частотная) цифрового изображения зависит от требований и допущений конкретной решаемой задачи.

В качестве перспектив развития поставленной задачи можно рассмотреть разработку и программную реализацию метода восстановления дефокусированных изображений на основе определенных параметров искажения.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. *Раков Д. Л.* Морфологический анализ и синтез невозможных объектов. Институт машиноведения им. А.А. Благонравова РАН, 2014.
- 2. *Констандогло А. В.* Методы восстановления расфокусированных и смазанных изображений. — МГТУ им. Н.Э. Баумана, 2020.
- 3. *Малыхина Г. Ф.*, *Меркушева А. В.* Сеть с симметричной функцией преобразования нейронов для подавления искажений и восстановления изображений. Журнал «Научное приборостроение», 2008.
- 4. Фотоаппараты и съемочные фотографические объективы. Государственный стандарт союза ССР, 1983.
- 5. *Гонсалес Р.*, *Вудс Р.* Цифровая обработка изображений. Издательство «Техносфера», 2012.
- 6. *Набиев М. А.* Восстановление размытых изображений. Тезисы конференции «Ломоносов», 2018.
- 7. *Браславская О. Б.*, *Гендрина И. Ю.*, *Квач А. С.* Сравнение двух методов расчета функции размытия точки и оптической передаточной функции. Известия высших учебных заведений, 2013.
- 8. *Чурсин М. А.* Восстановление расфокусированных и смазанных изображений. Омский государственный технический университет, 2013.
- 9. *Шемплинер В. В.* Восстановление дефокусированных изображений методом двумерного преобразования Фурье и регуляризации Тихонова. Научно-технический вестник информационных технологий, механики и оптики, 2008.
- 10. Cизиков B. C., Лавров A. B. Устойчивые методы математико-компьютерной обработки изображений и спектров. Университет ИТ-МО, 2018.
- 11. Анализ методов восстановления оптико-электронных изображений, смазанных при движении / А. Ю. Липляпин [и др.]. — Военная академия республики Беларусь, 2018.

- 12. Скурко И. А. Восстановление искаженных изображений в технических системах обработки информации. Белорусский государственный университет информатики и радиоэлектроники, 2019.
- 13. *Кулакович А. Ю.*, *Венцов Н. Н.* Краткий обзор и программная реализация избранных методов для деконволюции изображения. Инженерный вестник Дона, 2017.
- 14. $\mathit{Кислянский}\ \Gamma$. $\mathit{H.}$, $\mathit{Нестругина}\ E$. $\mathit{C.}$ Восстановление расфокусированных и смазанных изображений. Вестник ДонНУ. Серия Γ : Технические науки, 2020.
- 15. *Слесарев Н. С.*, *Скурнович А.* Повышение качества цифровых изображений, искаженных в процессе фотосъемки. Новые информационные технологии в автоматизированных системах, 2018.

приложение а