CS 477/577

Lecture Four

Homogenous least squares

Non-homogeneous linear least squares (example two---naïve line fitting)

The error contribution for each point is the vertical distance (illustrated) squared.

We fit the line by tweaking *m* and *b* so that the sum of the contributions is as small as possible.

Line fitting using non-homogeneous linear least squares

• We are minimizing
$$\sum_{i} (y_i - (mx_i + b))^2$$

- Only the vertical deviations count
- Asymmetric with respect to the axis
 - If you switch x and y, you will get a different answer
- Terminology note: This is standard *linear regression*
- Modeling note: The assumption here is that y_i are generated from from x_i , m, b, with added Gaussian noise.

Homogeneous linear least squares

- A more symmetric alternative for line fitting is homogeneous least squares
- We need it for geometric camera calibration, but we will do line fitting first so we can use it in HW3
- For line fitting, the error is will now be the **perpendicular** distance from the data point to line hypothesis
- Terminology note: This is sometimes called *total least* squares (TLS)

Homogeneous linear least squares

A symmetric representation of a line is to draw a perpendicular from the origin to the line.

There are two variables:

- 1) The direction of the perpendicular ($\hat{\mathbf{n}}$)
- 2) The distance from the origin to the line (d)

For a point
$$\overrightarrow{X} = (x, y)$$
 on the line $\hat{\mathbf{n}} \cdot (x, y) = d$, where $d = |\overrightarrow{B}|$

Equivalently,
$$ax + by = d$$
, where $a^2 + b^2 = 1$

Dot product geometry

 \vec{B} is the perpendicular projection of \vec{X} onto the line extending the unit vector $\hat{\mathbf{n}}$.

We derive that $\vec{X} \cdot \hat{\mathbf{n}} = |\vec{B}|$

From trigonometry $\left| \vec{B} \right| = (\cos \theta) \left| \vec{X} \right|$

From the dot product $\vec{X} \cdot \vec{B} = (\cos \theta) |\vec{X}| \vec{B}|$ and $\vec{X} \cdot \hat{\mathbf{n}} = (\cos \theta) |\vec{X}| = |\vec{B}|$ (divide by $|\vec{B}|$)

Homogeneous linear least squares

The error contribution for each point is the perpendicular distance (illustrated) squared.

We fit the line by tweaking a, b, and d so that the sum of the contributions is as small as possible subject to $a^2+b^2=1$.

Nice (symmetric) representation of a line:

$$ax + by = d$$
, where $a^2 + b^2 = 1$

So, for (x_i, y_i) on the line,

$$0 = |ax_i + by_i - d|$$

Key observation: The perpendicular distance from a point to that line is:

$$d_i = \left| ax_i + by_i - d \right|$$

(See upcoming slides for geometry)

Case where line goes between \mathbf{x}_i and the origin

$$d + d_i = \vec{X}_i \cdot \hat{\mathbf{n}}$$

This length is $d_i + d$. If the point was on the other side of the line, we would have $-d_i + d$

Case where line goes between x_i and the origin

$$d + d_i = \vec{X}_i \cdot \hat{\mathbf{n}}$$

or

$$+d_i = \vec{X} \cdot \hat{\mathbf{n}} - d$$

Case where \mathbf{x}_i is between the line and the origin

$$d - d_i = \vec{X} \cdot \hat{\mathbf{n}}$$

or

$$-d_i = \vec{X} \cdot \hat{\mathbf{n}} - d$$

$$E = \sum d_i^2 = \sum (d - ax_i - by_i)^2$$

$$E = \sum d_i^2 = \sum (d - ax_i - by_i)^2$$

$$\frac{\partial E}{\partial d} = 2\sum (d - ax_i - by_i) = 0$$
So, $d = a\overline{x} + b\overline{y}$

Note that this means that the average point is on the line

$$E = \sum d_i^2$$

$$= \sum (d - ax_i - by_i)^2$$

$$= \sum (ax_i + by_i - d)^2 \qquad \text{(reverse for future clarity)}$$

$$= \sum (ax_i - a\overline{x} + by_i - b\overline{y})^2 \qquad (d = a\overline{x} + b\overline{y})$$

$$= \sum ((x_i - \overline{x}, y_i - \overline{y}) \bullet (a,b))^2$$

Homogeneous linear least squares (new origin)

The error contribution for each point is the perpendicular distance (illustrated) squared.

We fit the line by tweaking a, b, and d so that the sum of the contributions is as small as possible subject to $a^2+b^2=1$.

Homogeneous linear least squares (new origin)

The error contribution for each point is the perpendicular distance (illustrated) squared.

We fit the line by tweaking a, b, and d so that the sum of the contributions is as small as possible subject to $a^2+b^2=1$.

$$E = \sum ((x_i - \overline{x}, y_i - \overline{y}) \bullet (a,b))^2$$
$$= |U\mathbf{n}|^2,$$

where
$$U = \begin{pmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \dots & \dots \\ x_n - \overline{x} & y_n - \overline{y} \end{pmatrix}$$

and
$$\mathbf{n} = \begin{pmatrix} a \\ b \end{pmatrix}$$

So, we solve $U\mathbf{n}=0$ in the least squares sense, with the constraint that $|\mathbf{n}| = a^2 + b^2 = 1$. (IE, use homogenous least squares)

Homogeneous linear least squares (new origin)

Does this look familiar (especially if you are a grad student)?

Homogenous linear least squares

Solve
$$U\mathbf{x} \cong \mathbf{0}$$
 subject to $||\mathbf{x}|| = 1$

Again, there is usually no exact solution.

Least squares solution is the value of \mathbf{x} so that the magnitude of $U\mathbf{x}$ is as close zero as possible.

Math aside

Homogenous linear least squares

The least squares problem is thus

Minimize
$$||U\mathbf{x}||$$
 subject to $||\mathbf{x}|| = 1$

This is solved by magic (but I can try to demystify this a little)

Wisdom from tea dipper handle

Math aside

Homogenous linear least squares

The least squares problem is thus

Minimize
$$||U\mathbf{x}||$$
 subject to $||\mathbf{x}|| = 1$

This is solved by magic (but I will can try to demystify this a little)

Important

Specifically, the minimum is reached when \mathbf{x} is set to the eigenvector corresponding to the minimum eigenvalue of $U^{T}U$.

Important

Pragmatic solution of homogenous systems

To solve
$$U\mathbf{x} \cong \mathbf{0}$$
 subject to $||\mathbf{x}|| = 1$

In Matlab, form $Y = U^T U$

Then use eig() to get the eigenvalues and eigenvectors of Y.

x is the eigenvector corresponding to the smallest eigenvalue. In Matlab, the smallest eigenvalue is usually first, but it pays to check.

("proof" --- try 1,000,000 random solutions to see if you can do better)

Optional material.

Justifying homogenous linear least squares (précis)

Solve
$$U\mathbf{x} \cong \mathbf{0}$$
 subject to $||\mathbf{x}|| = 1$
IE, minimize $(U\mathbf{x})^T (U\mathbf{x}) = \mathbf{x}^T U^T U\mathbf{x}$ where $\mathbf{x}^T \mathbf{x} = 1$

$$U^{T}U = VDV^{T}$$
 (Eigenvector decomposition)

D is diagonal, with postive real eigenvalues as elements

V and V^{T} are orthogonal with eigenvector columns/rows

Orthogonal transforms do not change the magnitude of vectors

Review of linear operators

A matrix, e.g., A=U^TU, transforms a vector

Review of Change of Basis

A change of orthonormal basis only rewrites the coordinates, it does not change **X**, and in particular, does not change its length.

Using the Eigenvector Basis for UTU

$$U^TU = VDV^T$$

(Eigenvector decomposition)

Using the Eigenvector Basis for UTU

$$U^{T}U = VDV^{T}$$
(Eigenvector decomposition)

In this coordinate rewrite, we stretch the vector in each dimension according to D that has the eigenvalues for the entries.

Using the Eigenvector Basis for UTU

$$U^T U = V D V^T$$

(Eigenvector decomposition)

In this coordinate rewrite, we stretch the vector in each dimension according to D that has the eigenvalues for the entries.

So, assuming the first eigenvalue is the smallest, (1,0,0) in eigenvector coordinates, gives the minimum.

So X should be \hat{e}_{\min} in the original coordinates

Optional material.

Justifying homogenous linear least squares (précis)

Solve
$$U\mathbf{x} \cong \mathbf{0}$$
 subject to $||\mathbf{x}|| = 1$
IE, minimize $(U\mathbf{x})^T (U\mathbf{x}) = \mathbf{x}^T U^T U\mathbf{x}$ where $\mathbf{x}^T \mathbf{x} = 1$

$$U^{T}U = VDV^{T}$$
 (Eigenvector decomposition)

D is diagonal, with postive real eigenvalues as elements

V and V^{T} are orthogonal with eigenvector columns/rows

Orthogonal transforms do not change the magnitude of vectors

$$(U\mathbf{x})^{T}(U\mathbf{x}) = (V^{T}\mathbf{x})^{T} D(V^{T}\mathbf{x})$$

The effect in the eigenbasis is to stretch components by the (positive) values in D

The best you can do is to put all the weight on the smallest value of D.

This is achieved by the eigenvector corresponding to the minimal eigenvalue in D.

$$(U\mathbf{x})^{T}(U\mathbf{x}) = (V^{T}\mathbf{x})^{T} D(V^{T}\mathbf{x})$$

$$= \left(V^T \mathbf{x}\right)^T \sqrt{D} \sqrt{D} \left(V^T \mathbf{x}\right)$$

$$= \left(\sqrt{D}V^T\mathbf{x}\right) \bullet \left(\sqrt{D}V^T\mathbf{x}\right)$$

$$= \left\| \sqrt{D} V^T \mathbf{x} \right\|^2$$

(from before)

(we *know* that the elements of D are positive)

Additional supplementary material with further details justifying the formula for homogenous least squares (not covered in the asynchronous pre-recorded lecture).

Because we solve Ux=0 as best we can, the error vector is Ux

The squared error is then

$$(U\mathbf{x})^{\mathrm{T}}(U\mathbf{x}) = \mathbf{x}^{\mathrm{T}}(U^{\mathrm{T}}U)\mathbf{x}$$

Since U^TU is positive semidefinite, the eigenvalues are **non – negative**

Recall that a matrix A is positive semidefinite if $\mathbf{x}^T A \mathbf{x}$ is never negative. (Clearly $\mathbf{U}^T \mathbf{U}$ it is positive semidefinite because $\mathbf{x}^T \mathbf{U}^T \mathbf{U} \mathbf{x}$ is $|\mathbf{U} \mathbf{x}|^2$

Further technical comments

If the model is good, then U will **approximate** a matrix of deficient column rank because there should exist a non-zero \mathbf{x} that solves $U\mathbf{x}=\mathbf{0}$.

We force the solution process to embody the assumption that the fact that $U^{T}U$ appears to be of full rank is due to measurement error. This assumption helps separate the part of U that is due to errors from the part that is due to the model.

This why we say that U^TU is **semi**-positive definite, and *not* positive definite. We assume that there may a solution to Ux=0, that is distinctly non-zero.

(A matrix, A, is positive definite if, $\mathbf{x}^T A \mathbf{x}$ is never negative, and $\mathbf{x}^T A \mathbf{x} = \mathbf{0}$ means that $\mathbf{x} = \mathbf{0}$.)

Since U^TU it is positive semidefinite, the eigenvalues are **non – negative**

Recall that a matrix A has an eigenvector, \mathbf{e} , with eigenvalue λ if $A\mathbf{e}=\lambda\mathbf{e}$

Diagonalization:

 $U^{T}U = V\Lambda V^{T}$ where V is an orthonormal basis made of the eigenvectors, \mathbf{e}_{i} , of $U^{T}U$, and Λ is a diagonal matrix of the eigenvalues

Since U^TU it is positive semidefinite, the eigenvalues are **non – negative**

We will write them as $\lambda_i = \sigma_i^2$.

Note: The book (at least my copy) uses λ_i^2 in the equation at the top of page 41 which is confusing. The coefficients, normally denoted, λ_i are in fact equal to the **square** of the "singular values of U", which usually are denoted by σ_i

We can write \mathbf{x} in terms of the eigenvector basis:

$$\mathbf{x} = \sum u_i \mathbf{e}_i$$
 where $\sum u_i^2 = 1$ (why?)

We can write \mathbf{x} in terms of the eigenvector basis:

$$\mathbf{x} = \sum u_i \mathbf{e}_i$$
 where $\sum u_i^2 = 1$ (why?)

(Because
$$\mathbf{x}^{\mathrm{T}}\mathbf{x} = \sum u_{j}\mathbf{e}_{j}^{\mathrm{T}}\sum u_{i}\mathbf{e}_{i} = \sum \sum u_{i}u_{j}\mathbf{e}_{j}^{\mathrm{T}}\mathbf{e}_{i} = \sum u_{i}^{2}$$
)
(and $|\mathbf{x}| = 1$)

(Alternatively, appeal to the fact that the new basis is orthonormal, and so the length of \mathbf{x} does not change).

The error to minimize is
$$\mathbf{x}^{T} (VDV^{T}) \mathbf{x} = (\mathbf{x}^{T}V) D(V^{T}\mathbf{x})$$

Recall that
$$\mathbf{x} = \sum u_i \mathbf{e}_i$$

And that the columns of V are the eigenvectors \mathbf{e}_i

So the elements of $V^T \mathbf{x}$ are ?

The error to minimize is
$$\mathbf{x}^{\mathrm{T}} (VDV^{T}) \mathbf{x} = (\mathbf{x}^{\mathrm{T}}V) D(V^{T}\mathbf{x})$$

Recall that
$$\mathbf{x} = \sum u_i \mathbf{e}_i$$

And that the columns of V are the eigenvectors \mathbf{e}_i

So the elements of $V^T \mathbf{x}$ are u_i

The error to minimize is
$$\mathbf{x}^{\mathsf{T}} (VDV^{\mathsf{T}}) \mathbf{x} = (\mathbf{x}^{\mathsf{T}} V) D(V^{\mathsf{T}} \mathbf{x})$$

And we have noted that the elements of $V^T \mathbf{x}$ are u_i

So the error is ?

The error to minimize is
$$\mathbf{x}^{\mathsf{T}} (VDV^{\mathsf{T}}) \mathbf{x} = (\mathbf{x}^{\mathsf{T}} V) D(V^{\mathsf{T}} \mathbf{x})$$

And we have noted that the elements of $V^T \mathbf{x}$ are u_i

So the error is
$$\sum u_i^2 \lambda_i = \sum u_i^2 \sigma_i^2$$

From the previous slide the error to be minized is $\sum u_i^2 \sigma_i^2$

We are stuck with the values σ_i^2 and $\sum u_i^2 = 1$

To make the error small, what can we do?

From the previous slide the error to be minized is $\sum u_i^2 \sigma_i^2$

We are stuck with the values σ_i^2 and $\sum u_i^2 = 1$

The best we can do is to set $u_i = 1$

for the minimum value of $\lambda_i = \sigma_i^2$ and zero for the others.