### **Neural Networks**

# Welcome to YCBS 258: Practical Machine Learning

Nicolas Feller

#### In this Course

#### **Prerequisites**

- Python, python, python
- Some statistics
- Some calculus
- Understanding of Classical Machine Learning

#### What you will learn

- Modern ML approaches
- Keras
- Neural Network Architectures
- Performance Optimization
- Deploy a Neural Network
- Sequence modeling, NLP, Computer vision, Generative Models

### **Outline**

#### Today

- What is deep learning?
- Why should we care about deep learning?
- The history of deep learning

### What is Intelligence?



### Why Neural Networks?



#### Object Recognition and Caption





"man in black shirt is playing quitar."



"construction worker in orange safety vest is working on road."

#### Neural Machine Translation







## Medical Imaging / Diagnostic







Cooling Data Center Optimizing Agriculture yields



### Self-Driving Cars



#### Alpha Go



### Speech and Image Synth



### Enhance! (link)



## Lipreading



## Aside from that... Businesses use DNN's for

#### "Gloried Curve Fitting"

- Judea Pearl

(<u>link</u>)

#### Decision making on similar data

- Decision Making
  - Diagnostics
  - Identifying anomalies
  - Classification: fraud, CRM, Tagging, Text, Responding to events, Marketing, Recommendations, Spam
  - Regression: Valuation, Timing, Correlations, Requirements
- Forecasting trends/events
- System / Process / Parameter optimization

#### A Brief History of Deep Learning

- 1943: Neural networks
- 1957: Perceptron Algorithm
- 1984: Backpropagation, Boltzman Machines, RNN
- 1989: Convolutional Neural Networks
- 1997: Long Short Term Memory Networks
- 2006: Deep Learning, Deep Belief Networks
- 2009: Imagnet
- 2012: Alexnet wins Imagenet, Dropout
- 2014: Generative Adversarial Neural Networks
- 2016: Alpha GO
- 2017: Alpha Zero, Attention Networks
- 2018: BERT

#### A Brief History of Deep Learning Tools

- 1960: Mark 1 Perceptron
- 2002: Torch
- 2007: CUDA
- 2008: Theano
- 2014: Caffe
- 2015: Tensorflow 0.1
- 2015: Keras
- 2017: Pytorch 0.1
- 2017: Tensorflow 1.0
- 2017: Pytorch 1.0
- 2019: Tensorflow 2.0

#### But Why? (oversimplification)



#### So why DL?

- It works for complex unstructured problems like images, videos, audio, time series and games
- 2. Performance with more data
- Auto feature, no/little domain expertise needed



#### A review of the Perceptron



#### The Neuron

#### Biological Neuron



#### Conceptually



#### The dendrites receive an input



#### They inputs are subject to a weight



#### In the weights are initially give some value



#### The inputs are multiplied by the weights



## An Activation Function defines how to combine the inputs\*weights and what will be passed on



## Simple AF: If positive, return 1, otherwise return 0



## Add bias, so even if weights are both 0, we still can obtain a non-zero output



## Simple Formulas, Sum of products and binary activation

$$z = b + \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

#### Perceptron Learning Algorithm

- 1. If the output is correct, leave weights alone
- If the output unit incorrectly outputs a 0, add the input vector to the weight vector
- 3. If the output unit incorrectly outputs a 1, subtract the input vector from the weight vector

```
def learn(self, inputs, outputs):
    if self.forward_pass(inputs) == outputs:
        pass
    elif self.forward_pass(inputs) == 0:
        self.w += inputs
    elif self.forward_pass(inputs) == 1:
        self.w -= inputs
```

#### In code (<u>link</u>)

```
import numpy as np
class Perceptron(object):
 def init (self, input size):
    self.w = np.random.rand(input size)
  def forward pass(self, inputs):
    return self.activation function(np.multiply(inputs, self.w))
  def activation function(self, inp):
    return 1 if np.sum(inp) > 0 else 0
  def learn(self, inputs, outputs):
    if self.forward pass(inputs) == outputs:
      pass
    elif self.forward pass(inputs) == 0:
      self.w += inputs
    elif self.forward pass(inputs) == 1:
      self.w -= inputs
```

### Neural Networks

- Topology
- Activation Functions
- Loss
- Optimizer
- Back-propagation

# Input - Hidden Layers - Output



# Neural Network with one layer and one unit (AKA linear regression)



# Multivariate Linear Regression (Nothing New Here?)



# What About Logistic Regression?

# Just add a sigmoid and now we have Logistic Regression (binary output)



### One Unit



### One Layer



## Multiple Layer



### And so on...



# Each node in each layer is fully connected



Just one big f(x)=y
Takes inputs from a
feature space and maps
onto a target space.
Same as all ML models

- 1. Multiply previous layer output by weights
- 2. Deform them with a nonlinearity
- 3. Pass transformed values along to next layer
- 4. And so on

### **Activation Functions**

Defines the output of the node or neuron. This output is used as input for the next node

It maps the resulting values into the desired range using a simple function

| Name                                                              | Plot | Equation                                                                                          | Derivative                                                                                       |
|-------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Identity                                                          |      | f(x) = x                                                                                          | f'(x) = 1                                                                                        |
| Binary step                                                       |      | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$               | $f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$            |
| Logistic (a.k.a<br>Soft step)                                     |      | $f(x) = \frac{1}{1 + e^{-x}}$                                                                     | f'(x) = f(x)(1 - f(x))                                                                           |
| TanH                                                              |      | $f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$                                                     | $f'(x) = 1 - f(x)^2$                                                                             |
| ArcTan                                                            |      | $f(x) = \tan^{-1}(x)$                                                                             | $f'(x) = \frac{1}{x^2 + 1}$                                                                      |
| Rectified<br>Linear Unit<br>(ReLU)                                |      | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$               | $f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$             |
| Parameteric<br>Rectified<br>Linear Unit<br>(PReLU) <sup>[2]</sup> |      | $f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$        | $f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$        |
| Exponential<br>Linear Unit<br>(ELU) <sup>[3]</sup>                |      | $f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$ | $f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$ |
| SoftPlus                                                          |      | $f(x) = \log_e(1 + e^x)$                                                                          | $f'(x) = \frac{1}{1 + e^{-x}}$                                                                   |

### Which one should we choose?

#### Most popular

- 1. Sigmoid or logistic
- 2. Tanh hyperbolic tangent
- 3. ReLu Rectified Linear Unit

## Sigmoid



It looks like the step function, but allows us to take into account small changes.

#### The original NN cost function

- Vanishing Gradient, (degrading derivative) derivatives are too small
- 2. Requires initialization
- 3. Doesn't work in large networks
- 4. Saturates and kills gradients
- 5. Slow convergence

### ReLu



Rectified Linear Unit

Max(0,x)

Most popular AF

- 1. Very simple and fast to calculate while staying non-linear
- Derivative is fast to calculate and doesn't degrade
- Can sometimes "kill" neurons when always
   0 derivatives

### Tanh



$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

- Similar in most ways to the sigmoid
- But is zero-centered, so easier to optimize
- But still suffers from ...

### Loss/Cost

- How far off we are from the expected value, How wrong is my neural network (or my model in general)?
- What are some examples of loss functions?

## Types of Loss

**Mean Square Error - Regression problems:** 

$$\mathcal{L} = rac{1}{n} \sum_{i=1}^n (y^{(i)} - \hat{y}^{(i)})^2$$

**Categorical Cross Entropy - Classification problems:** 

$$\mathcal{L} = -rac{1}{n} \sum_{i=1}^n \left[ y^{(i)} \log(\hat{y}^{(i)}) + (1-y^{(i)}) \log(1-\hat{y}^{(i)}) 
ight]$$



- Loss function quantifies gap between prediction and ground truth
- For regression:
  - Mean Squared Error (MSE)
- For classification:
  - Cross Entropy Loss

#### Mean Squared Error

$$MSE = rac{1}{N}\sum_{i=1}^{N} (t_i - s_i)^2$$

#### **Cross Entropy Loss**

Classes Prediction 
$$CE = -\sum_{i}^{C} t_{i} log(s_{i})$$
 Ground Truth {0,1}

### Loss Functions

# Optimizer - Backpropagation





### Stochastic Gradient Descent

Stochastic gradient descent (often shortened to SGD), also known as incremental gradient descent, is an <u>iterative</u> method for <u>optimizing</u> a <u>differentiable</u> <u>objective function</u>, a <u>stochastic approximation</u> of <u>gradient descent</u> optimization

### GD in 1 dimension



# Slope of Tangent line and 'descend' along that line



New weight is equal to the old weight subtracted by the slope of the tangent line

$$w = w - \delta f / \delta w$$

# Until we can descent no longer



### Partial Derivatives



\*assume z is the error dimension

The shorted path down is not necessarily along the x or y dimensions, but rather a combination of both - partial derivative

### Chain Rule

# The derivative of the entire neural network with respect to the input



Is equal to..

The derivative of the entire neural net wrt the previous node and the derivative of the previous node wrt the input

$$f = f(g)$$
;  $g = g(x)$   
$$\frac{df}{dx} = \frac{df}{da} \frac{dg}{dx}$$

### How it works



- Forward pass gives you a prediction - and an error
- Backward pass gives you a gradient

## Different Flavors of SGD (link)



#### https://playground.tensorflow.org

# Tensorflow Playground

# Simple Example of NN

http://bit.ly/2TAybmD

# More Advanced Example <a href="http://bit.ly/2XWKic1">http://bit.ly/2XWKic1</a>

### Datacamp

- Intro to python
- Intermediate python for data science
- Object Oriented Programming
- Deep Learning in Python (keras)
- Software Engineering for Data Scientists