1.a Data type of all columns in the "customers" table

```
select column_name,data_type
from target_analysis.INFORMATION_SCHEMA.COLUMNS
where table_name='customers'
```

Row	column_name ▼	data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

1.b Get the time range between which the orders were placed

```
MIN(order_purchase_timestamp) AS mintime,
MAX(order_purchase_timestamp) AS maxtime

FROM
   `target_analysis.orders` AS o

JOIN
   `target_analysis.customers` AS c

ON
   o.customer_id=c.customer_id

WHERE
   o.order_purchase_timestamp BETWEEN "2016-09-04"

AND "2018-10-17"
```


1.c Count the Cities & States of customers who ordered during the given period

```
SELECT
COUNT(DISTINCT C.customer_city) AS NumberOfCities,
COUNT(DISTINCT C.customer_state) AS NumberOfStates
FROM
`target_analysis.customers` AS C

JOIN
`target_analysis.orders` AS O

ON
C.customer_id= 0.customer_id
WHERE
0.order_purchase_timestamp BETWEEN "2016-09-04"
AND "2018-10-17"
```


In-depth Exploration:

2

year

a.ls there a growing trend in the no. of orders placed over the past years

```
EXTRACT(year
FROM
    order_purchase_timestamp) AS year,
    COUNT(*) AS num_of_orders
FROM
    `target_analysis.orders`
GROUP BY
```

Row / ye	ar ▼	num_of_orders ▼
1	2017	45101
2	2018	54011
3	2016	329

- * 2018 have more number of orders among the years
- * orders was increasing compare to past years

b.Can we see some kind of monthly seasonality in terms of the no. of orders being placed

```
SELECT
  EXTRACT(month
  FROM
    order_purchase_timestamp) AS month,
  COUNT(*) AS num_of_orders
FROM
  `target_analysis.orders`
GROUP BY
  month
```

Row /	month ▼	1	num_of_orders ▼
1		11	7544
2		12	5674
3		2	8508
4		4	9343
5		7	10318
6		5	10573
7		10	4959
8		1	8069
9		6	9412
10		9	4305
11		3	9893
12		8	10843

^{*} IN Month August, May, July Have More Number Of Orders Was Placed

^{*} Compare To All Months September Have Less Orders

C.During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs : Dawn

FROM

GROUP BY

ORDER BY

`target_analysis.orders`

OrderTimeCategory

OrderTimeCategory;

7-12 hrs: Mornings

```
O 13-18 hrs: Afternoon
O 19-23 hrs: Night

SELECT
CASE
WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 0 AND 6 THEN
'Dawn'
WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN
'Mornings'
WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN
'Afternoon'
WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 19 AND 23 THEN
'Night'
ELSE 'Other'
END AS OrderTimeCategory,
COUNT(*) AS NumberOfOrders
```

Row	OrderTimeCategory ▼	NumberOfOrders 🔻
1	Afternoon	38135
2	Dawn	5242
3	Mornings	27733
4	Night	28331

* IN Brazil More Number Of Orders Was Placed in Afternoon And Night

3. Evolution of E-commerce orders in the Brazil region:

A. Get the month on month no. of orders placed in each state

```
EXTRACT (month
FROM
    o.order_purchase_timestamp) AS month,
    c.customer_state,
    COUNT(*) AS order_place
FROM
    `target_analysis.orders` AS o
INNER JOIN
    `target_analysis.customers` AS c
ON
    c.customer_id=o.customer_id
GROUP BY
    month,
    C.customer_state
```

Row /	month ▼	customer_state ▼	order_place ▼
1	11	RJ	1048
2	12	RS	283
3	12	SP	2357
4	2	DF	196
5	11	PR	378
6	4	MT	92
7	7	MA	79
8	7	AL	40
9	7	SP	4381
10	7	MT	85
11	7	MG	1111
12	5	MG	1190
13	5	SP	4632
14	5	PE	174
15	10	SP	1908

^{*} SP State Have More Orders Placed

B.How are the customers distributed across all the states

```
SELECT
  customer_state,
  COUNT(DISTINCT customer_id) AS num_of_customers
FROM
  `target_analysis.customers`
GROUP BY
```

Customer_state

Row	customer_state ▼	num_of_customers
1	RN	485
2	CE	1336
3	RS	5466
4	SC	3637
5	SP	41746
6	MG	11635
7	BA	3380
8	RJ	12852
9	GO	2020
10	MA	747
11	PE	1652
12	PB	536
13	ES	2033
14	PR	5045
15	RO	253

* In SP State Have More Customers And RO State Have Less Customers

- 4.Impact on Economy: Analyse the money movement by e-commerce by looking at order prices, freight and others.
 - A. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

```
WITH OrderCosts AS (
    SELECT
        EXTRACT(YEAR FROM o.order_purchase_timestamp) AS OrderYear,
        EXTRACT(MONTH FROM o.order_purchase_timestamp) AS OrderMonth,
        SUM(p.payment_value) AS TotalPayment
    FROM
        `target_analysis.orders` o
    JOIN
        `target_analysis.payments` p ON o.order_id = p.order_id
    WHERE
        EXTRACT(YEAR FROM o.order_purchase_timestamp) IN (2017, 2018)
        AND EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND 8
    GROUP BY
        OrderYear,
        OrderMonth
)
SELECT
    oc1.OrderYear AS Year2017,
    oc1.OrderMonth AS Month,
    oc1.TotalPayment AS Cost2017,
    oc2.TotalPayment AS Cost2018,
    ((oc2.TotalPayment - oc1.TotalPayment) / oc1.TotalPayment) * 100 AS
PercentageIncrease
FROM
    OrderCosts oc1
JOIN
    OrderCosts oc2 ON oc1.OrderMonth = oc2.OrderMonth AND oc1.OrderYear = 2017 AND
oc2.0rderYear = 2018
ORDER BY
```

oc1.OrderMonth;

Row /	Year2017 ▼	Month ▼	Cost2017 ▼	Cost2018 ▼	PercentageIncrease
1	2017	1	138488.0399999	1115004.180000	705.1266954171
2	2017	2	291908.0099999	992463.3400000	239.9918145445
3	2017	3	449863.6000000	1159652.119999	157.7786066709
4	2017	4	417788.0300000	1160785.479999	177.8407701149
5	2017	5	592918.8200000	1153982.149999	94.62734375677
6	2017	6	511276.3800000	1023880.499999	100.2596912456
7	2017	7	592382.9200000	1066540.750000	80.04245463390
8	2017	8	674396.3200000	1022425.320000	51.60600520477

* January Have More Percentage Increased In 2017 and 2018

B.Calculate the Total & Average value of order price for each state

```
SELECT

SUM(price) AS totalprice,
AVG(price) AS avgprice,
c.customer_state

FROM
  `target_analysis.customers` AS c

JOIN
  `target_analysis.orders` AS o

ON
  c.customer_id=o.customer_id

JOIN
  `target_analysis.orders_items` AS ol

ON
  ol.order_id=o.order_id

group by c.customer_state
order by c.customer_state
```

Row	totalprice ▼	avgprice ▼	customer_state ▼
1	15982.94999999	173.7277173913	AC
2	80314.809999999	180.8892117117	AL
3	22356.84000000	135.4959999999	AM
4	13474.299999999	164.3207317073	AP
5	511349.9900000	134.6012082126	BA
6	227254.7099999	153.7582611637	CE
7	302603.9399999	125.7705486284	DF
8	275037.3099999	121.9137012411	ES
9	294591.9499999	126.2717316759	GO
10	119648.2199999	145.2041504854	MA
11	1585308.029999	120.7485741488	MG
12	116812.6399999	142.6283760683	MS
13	156453.5299999	148.2971848341	MT
14	178947.8099999	165.6924166666	PA
15	115268.0799999	191.4752159468	PB

^{*} State MG have High TotalPrice And Less AvgPrice

C.Calculate the Total & Average value of order freight for each state.

```
SELECT

SUM(freight_value) AS totalfreight,

AVG(freight_value) AS avgfreight,

c.customer_state

FROM

`target_analysis.customers` AS c

JOIN

`target_analysis.orders` AS o

ON

c.customer_id=o.customer_id

JOIN

`target_analysis.orders_items` AS ol

ON

ol.order_id=o.order_id

group by c.customer_state

order by c.customer_state
```

^{*} State PB And AL Have High AvgPrice and Less TotalPrice

Row /	totalfreight ▼	avgfreight ▼	customer_state ▼
1	3686.749999999	40.07336956521	AC
2	15914.58999999	35.84367117117	AL
3	5478.889999999	33.20539393939	AM
4	2788.500000000	34.00609756097	AP
5	100156.6799999	26.36395893656	BA
6	48351.58999999	32.71420162381	CE
7	50625.499999999	21.04135494596	DF
8	49764.599999999	22.05877659574	ES
9	53114.97999999	22.76681525932	GO
10	31523.77000000	38.25700242718	MA
11	270853.4600000	20.63016680630	MG
12	19144.03000000	23.37488400488	MS
13	29715.43000000	28.16628436018	MT
14	38699.30000000	35.83268518518	PA
15	25719.72999999	42.72380398671	PB

5. Analysis based on sales, freight and delivery time.

A.Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time_to_deliver = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date

SELECT

```
order_id,
  order_purchase_timestamp,
  order_delivered_customer_date,
  order_estimated_delivery_date,
  DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp,DAY) AS
delivery_time,
  DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date,DAY) AS
diff_estimated_delivery
FROM
  `target_analysis.orders`
WHERE
  order_delivered_customer_date IS NOT NULL
AND order_estimated_delivery_date IS NOT NULL;
```

Row	order_id ▼	order_purchase_timestamp ▼	order_delivered_customer_date	order_estimated_delivery_date 🔻	delivery_time ▼	diff_estimated_delive
1	1950d777989f6a877539f5379	2018-02-19 19:48:52 UTC	2018-03-21 22:03:51 UTC	2018-03-09 00:00:00 UTC	30	-12
2	2c45c33d2f9cb8ff8b1c86cc28	2016-10-09 15:39:56 UTC	2016-11-09 14:53:50 UTC	2016-12-08 00:00:00 UTC	30	28
3	65d1e226dfaeb8cdc42f66542	2016-10-03 21:01:41 UTC	2016-11-08 10:58:34 UTC	2016-11-25 00:00:00 UTC	35	16
4	635c894d068ac37e6e03dc54e	2017-04-15 15:37:38 UTC	2017-05-16 14:49:55 UTC	2017-05-18 00:00:00 UTC	30	1
5	3b97562c3aee8bdedcb5c2e45	2017-04-14 22:21:54 UTC	2017-05-17 10:52:15 UTC	2017-05-18 00:00:00 UTC	32	0
6	68f47f50f04c4cb6774570cfde	2017-04-16 14:56:13 UTC	2017-05-16 09:07:47 UTC	2017-05-18 00:00:00 UTC	29	1
7	276e9ec344d3bf029ff83a161c	2017-04-08 21:20:24 UTC	2017-05-22 14:11:31 UTC	2017-05-18 00:00:00 UTC	43	-4
8	54e1a3c2b97fb0809da548a59	2017-04-11 19:49:45 UTC	2017-05-22 16:18:42 UTC	2017-05-18 00:00:00 UTC	40	-4
9	fd04fa4105ee8045f6a0139ca5	2017-04-12 12:17:08 UTC	2017-05-19 13:44:52 UTC	2017-05-18 00:00:00 UTC	37	-1
10	302bb8109d097a9fc6e9cefc5	2017-04-19 22:52:59 UTC	2017-05-23 14:19:48 UTC	2017-05-18 00:00:00 UTC	33	-5
11	66057d37308e787052a32828	2017-04-15 19:22:06 UTC	2017-05-24 08:11:57 UTC	2017-05-18 00:00:00 UTC	38	-6
12	19135c945c554eebfd7576c73	2017-07-11 14:09:37 UTC	2017-08-16 20:19:32 UTC	2017-08-14 00:00:00 UTC	36	-2
13	4493e45e7ca1084efcd38ddeb	2017-07-11 20:56:34 UTC	2017-08-14 21:37:08 UTC	2017-08-14 00:00:00 UTC	34	0
14	70c77e51e0f179d75a64a6141	2017-07-13 21:03:44 UTC	2017-08-25 19:41:53 UTC	2017-08-14 00:00:00 UTC	42	-11
15	d7918e406132d7c81f1b84527	2017-07-13 17:54:53 UTC	2017-08-17 18:35:38 UTC	2017-08-14 00:00:00 UTC	35	-3

B.Find out the top 5 states with the highest & lowest average freight value

-- Top 5 states with the highest average freight value

```
select c.customer_state,
avg(freight_value) as avg_freight
from `target_analysis.orders` as o
join `target_analysis.customers` as c
on o.customer_id=c.customer_id
join `target_analysis.orders_items` as ol
on o.order_id=ol.order_id
group by c.customer_state
order by avg_freight desc
limit 5
```

Row /	customer_state ▼	avg_freight ▼
1	RR	42.98442307692
2	РВ	42.72380398671
3	RO	41.06971223021
4	AC	40.07336956521
5	PI	39.14797047970

^{*} RR State Have High Average Freight

```
-- Top 5 states with the lowest average freight value select
    c.customer_state,
    avg(freight_value) as avg_freight
    from `target_analysis.orders` as o
    join `target_analysis.customers` as c
    on o.customer_id=c.customer_id
    join `target_analysis.orders_items` as ol
    on o.order_id=ol.order_id
    group by c.customer_state
    order by avg_freight asc
limit 5
```

Row	customer_state ▼	avg_freight ▼
1	SP	15.14727539041
2	PR	20.53165156794
3	MG	20.63016680630
4	RJ	20.96092393168
5	DF	21.04135494596

* SP State Lowest Average Freight

C.Find out the top 5 states with the highest & lowest average delivery time

```
-- Top 5 states with the highest average delivery time

SELECT
    c.customer_state,
    AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)) AS

AverageDeliveryTime

FROM
    `target_analysis.orders` AS o

JOIN
    `target_analysis.customers` AS c

ON
    o.customer_id=c.customer_id

WHERE
    order_delivered_customer_date IS NOT NULL

GROUP BY
    c.customer_state

ORDER BY

AverageDeliveryTime DESC
```

LIMIT

5

Row	customer_state ▼	AverageDeliveryTime
1	RR	28.97560975609
2	AP	26.73134328358
3	AM	25.98620689655
4	AL	24.04030226700
5	PA	23.31606765327

* RR State Have High Average Delivery Time

```
-- Top 5 states with the lowest average delivery time
SELECT
 c.customer_state,
 AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)) AS
AverageDeliveryTime
FROM
  `target_analysis.orders` AS o
  `target_analysis.customers` AS c
ON
 o.customer_id=c.customer_id
WHERE
 order_delivered_customer_date IS NOT NULL
GROUP BY
 c.customer_state
ORDER BY
 AverageDeliveryTime asc
LIMIT
 5
```

Row	customer_state ▼	AverageDeliveryTime
1	SP	8.298061489072
2	PR	11.52671135486
3	MG	11.54381329810
4	DF	12.50913461538
5	SC	14.47956019171

* SP State Have Lowest Average Delivery Time

D.Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

```
WITH DeliveryTimeDifference AS (
    SELECT
        customer_state,
        AVG(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp,DAY))
AS AverageActualDelivery,
        AVG(DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp,DAY))
AS AverageEstimatedDelivery
    FROM
        `target_analysis.orders` as o
        join `target_analysis.customers` as c
        on o.customer_id=c.customer_id
    WHERE
        order_delivered_customer_date IS NOT NULL
        AND order_estimated_delivery_date IS NOT NULL
    GROUP BY
       c.customer_state
)
SELECT
    customer_state,
    AverageActualDelivery,
    AverageEstimatedDelivery,
    AverageActualDelivery - AverageEstimatedDelivery AS DeliveryTimeDifference
FROM
    DeliveryTimeDifference
```

ORDER BY

DeliveryTimeDifference DESC

LIMIT 5;

Row /	customer_state ▼	AverageActualDelive	AverageEstimatedDe	DeliveryTimeDifferen
1	AL	24.04030226700	32.20906801007	-8.16876574307
2	MA	21.11715481171	30.08368200836	-8.96652719665
3	SE	21.02985074626	30.48358208955	-9.45373134328
4	ES	15.33182957393	25.22005012531	-9.88822055137
5	CE	20.817826426896	31.00469116497	-10.1868647380

6. Analysis based on the payments:

A.Find the month on month no. of orders placed using different payment types SELECT

```
EXTRACT(month
FROM

order_purchase_timestamp) AS month,
p.payment_type,
COUNT(*) AS num_of_orders
FROM

`target_analysis.orders` AS o

JOIN

`target_analysis.payments` AS p

ON

o.order_id=p.order_id
GROUP BY
p.payment_type,
month
```

Row /	month ▼	payment_type ▼	num_of_orders ▼
1	5	credit_card	8350
2	4	credit_card	7301
3	1	voucher	477
4	4	voucher	572
5	10	voucher	318
6	9	not_defined	1
7	8	not_defined	2
8	6	voucher	563
9	5	voucher	613
10	3	voucher	591
11	2	credit_card	6609
12	8	credit_card	8269
13	11	credit_card	5897
14	3	credit_card	7707
15	7	voucher	645

^{*} Customers Using More (Payment Type) Credit_Cards

B.Find the no. of orders placed on the basis of the payment instalments that have been paid

```
payment_installments,
  COUNT(*) AS orders
FROM
  `target_analysis.payments`
GROUP BY
  Payment_installments
```

Row	payment_installment	orders ▼
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328
12	11	23
13	12	133
14	13	16
15	14	15

Recommendations:

- 1. Year by Year Orders increasing With High percentage.
- 2.Sp State Has More Orders and More Customers We Have To Focus On Reducing Delivery Time.
- 3.RO state Have Less Customers We Have To Communicate With Customers And Give Offers And Easy Payments Type .