SRM Institute of Science and Technology Department of Mathematics 18MAB101T-Calculus and Linear Algebra

Unit II - Tutorial I (Slot C1)

Part-B

1. If
$$f(x,y) = x^2 \tan^{-1} \left(\frac{y}{x}\right) - y^2 \tan^{-1} \left(\frac{x}{y}\right)$$
, verify $f_{xy} = f_{yx}$.

2. If
$$z = f(x+ct) + \phi(x-ct)$$
, prove that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$.

3. (a) If
$$u = \tan^{-1} \frac{x^3 + y^3}{x - y}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.

(b) If
$$u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$$
, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.

4. Find
$$\frac{dy}{dx}$$
 if $x^y = y^x$.

5. If
$$u = x^2 + y^2$$
, $x = at^2$, $y = 2at$ find $\frac{du}{dt}$.

Part-C

6. If
$$z = f(u, v), u = x^2 - y^2, v = 2xy$$
, show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 4(x^2 + y^2) \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right)$

7. If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}$.

8. If
$$u = f(x - y, y - z, z - x)$$
 prove that $\sum \frac{\partial u}{\partial x} = 0$.

9. Find Taylor's expansion of x^y near (1,1) upto second degree term.

10. (a) Expand
$$xy^2 + 2x - 3y$$
 in powers of $(x+2)$ and $(y-1)$ upto third degree terms.

(b) Find the Maclaurin's series for e^{x+y} upto second degree.