ACH2053 – Introdução à Estatística

Aula 09a: Estimadores

Valdinei Freire

valdinei.freire@usp.br

http://www.each.usp.br/valdinei

Escola de Artes, Ciências e Humanidades - USP

2025

Exemplo 1: considere a seguinte amostra: $\mathbf{x} = (0,1,0,1,0,1,0,1,1,0)$. Se essa mostra vem de uma distribuição de Bernoulli, quais são os parâmetros dessa distribuição?

Exemplo 2: considere a seguinte amostra: $\mathbf{x} = (-1.7, 4.7, 2.7, 4.1, 0.3, 5.2, 2.7, -4.1, -2.8, 1.9)$. Se essa mostra vem de uma distribuição normal, quais são os parâmetros dessa distribuição?

Exemplo 3: considere a seguinte amostra: $\mathbf{x}=(0.76,2.20,0.23,2.09,0.90,0.97,1.92,1.67,3.10,1.87)$. Se essa mostra vem de uma distribuição uniforme contínua entre 0 e θ , quais são os parâmetros dessa distribuição?

Estimação de Ponto

Assuma que a c.d.f. F_{θ} é conhecida a menos do parâmetro θ , que é desconhecido. Seja $\mathbf{x}=(x_1,\ldots,x_n)$ amostras independentes da variável aleatória cuja distribuição de probabilidade é descrita por F_{θ} , isto é, $\mathbf{X}\sim F_{\theta}$.

Estime o valor θ que gerou as amostras $\mathbf{x} = (x_1, \dots, x_n)$.

Estatística e Estimadores

Seja ${\bf x}$ uma amostra aleatória de F_{θ} . Uma **estatística** é uma função r que mapeia ${\bf x}$ em \mathbb{R}^d , $r:\mathbb{R}^n\to\mathbb{R}^d$, mas não depende de θ .

Exemplos típicos de estatística: média da amostra, desvio padrão da amostra, mediana da amostra, valor máximo da amostra, etc.

Seja um modelo paramétrico F_{θ} com espaço de parâmetros $\Omega \subseteq \mathbb{R}^d$ e seja $\mathbf{X} = (X_1, \dots, X_n) \sim F_{\theta_0}$ para algum $\theta_0 \in \Omega$. Um **estimador pontual** $\hat{\theta}$ de θ_0 é uma estatística $r: \mathbb{R}^n \to \Omega$, com o propósito de estimar θ_0 .

Quais estimadores foram criados para: distribuição de Bernoulli, distribuição normal e distribuição uniforme?

Bias e M.S.E.

O estimador $\hat{\theta}$ em si é uma variável aleatória. O **viés (bias)** de um estimador $\hat{\theta}$ de $\theta \in \Omega$ é definido como

$$\mathsf{bias}(\hat{\theta}) = \mathsf{E}(\hat{\theta}) - \theta.$$

Um estimador $\hat{\theta}$ de $\theta \in \Omega$ é sem viés (unbiased) se $\mathsf{E}(\hat{\theta}) = \theta$, isto é, $\mathsf{bias}(\hat{\theta}) = 0$.

O erro quadrático médio (Mean Square Error – MSE) de um estimador $\hat{\theta}$ de $\theta \in \Omega \subseteq \mathbb{R}$ é definido como:

$$MSE(\hat{\theta}) = \mathsf{E}[(\hat{\theta} - \theta)^2].$$

O M.S.E. pode ser decomposto como:

$$MSE(\hat{\theta}) = \mathsf{Var}(\hat{\theta}) + [\mathsf{bias}(\hat{\theta})]^2$$

Consistência

Uma sequência Z_1, Z_2, \ldots de variáveis aleatórias converge para b em probabilidade, denotado por $Z_n \stackrel{p}{\to} b$, se para todo número $\varepsilon > 0$,

$$\lim_{n\to\infty} \Pr(|Z_n - b| < \varepsilon) = 1.$$

Uma sequência de estimadores $\{\hat{\theta}_n\}$ de $\theta\in\Omega$ é chamado de **consistente** se:

$$\hat{\theta}_n \xrightarrow{p} \theta$$
.

Exemplos

Exemplo 1: considere o estimador de média $\hat{\mu} = \frac{\sum_{i=1}^n x_i}{n}$ e o estimador de variância $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (x_i - \hat{\mu})^2}{n}$. Calcule o bias $(\hat{\mu})$, Var $(\hat{\mu})$ e bias $(\hat{\sigma}^2)$. Estes estimadores são consistentes?

Exemplo 2: considere uma distribuição uniforme entre 0 e θ . Avalie os seguintes estimadores:

- 1. $\hat{\theta} = \max_{i \in \{1, ..., n\}} x_i$
- 2. $\hat{\theta} = \max_{i \in \{1,...,n\}} x_i + \min_{i \in \{1,...,n\}} x_i$
- 3. $\hat{\theta} = 2 \frac{\sum_{i=1}^{n} x_i}{n}$