Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Репозиторий на Github

Содержание

0.1 Несобственные интегралы от знакопеременных функций

Изучм вопросы сходимости несобственных интегралов от функций ни в какой функции точки b.

Лемма 0.1. Пусть f,g — локально интегрируемы на [a,b) и $\int_a^b g(x)dx$ — абсолютно сходится. Тогда несобственные интегралы

$$\int_{a}^{b} (f(x) + g(x))dx, \int_{a}^{b} f(x)dx$$

Либо одинаково расходятся, либо одновременно сходятся условно, либо одновременно сходятся абсолютно.

Доказательство. Абсолютная сходимость влечет сходимость, поэтому $\int_a^b g(x)dx$ сходится. Тогда по линейности

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} (f(x) + g(x))dx - \int_{a}^{b} g(x)dx$$

И заключаем, что интегралы $\int_a^b (f(x)+g(x))dx, \int_a^b f(x)dx$ сходятся одновременно. При этом,

$$|f + g| \le |f| + |g|, |f| \le |f + g| + |g|$$

Тогда по критерию сравнения, получаем, что $\int_a^b |f(x)+g(x)|dx$, $\int_a^b |f(x)|dx$ сходятся одновременно, т.е. $\int_a^b (f(x)+g(x))dx$, $\int_a^b f(x)dx$ абсолютно сходятся одновременно.

Теорема 0.1 (Признак Дирихле). Пусть f, g локально интегрируемы на [a,b), причем

- 1. $F(x) = \int_a^x f(t)dt$ ограничена на [a,b)
- $2. \ g(x)$ монотонна
- 3. $g \to 0$ $npu \ x \to b-0$

Тогда $\int_a^b f(x)g(x)dx$ сходится.

Доказательство. Существует такая константа $M:|F|\leqslant M$. Тогда $\forall \xi\in[a,b)$ имеем $\left|\int_{\xi}^{x}f(t)g(t)dt\right|=|F(x)-F(\xi)|<2M$. Пусть $\varepsilon>0$. Тогда $\exists b'\in[a,b)\forall x\in(b',b)\left(|g(x)|\leqslant\frac{\varepsilon}{2M}\right)$. По лемме Абеля, для интервалов $\forall [\xi,\eta]\subset(b',b)$ выполнено $\left|\int_{\xi}^{\eta}f(x)g(x)dx\right|<2\cdot 2M(|g(\xi)|+|g(\eta)|)<\varepsilon$. Далее применяем свойство Коши.

Замечание. Условия 1, 2 выолинены если f непрерывна и имеет ограниченную первообразную на [a,b), а g дифференцируема и g' сохраняет знак на [a,b).

Пример. Исследуем сходимость и абсолютную сходимость интеграла

$$I(\alpha) = \int_{1}^{+\infty} \frac{\sin kx}{x^{\alpha}} dx, \alpha \in \mathbb{R}(k > 0)$$

Делаем замену t = kx и получаем следующее:

$$I(\alpha) = \int_{1}^{+\infty} \frac{\sin t}{t^{\alpha}} dt$$

1. $\alpha > 1$.

$$\left| \frac{\sin t}{t^{\alpha}} \right| \leqslant \frac{1}{t^{\alpha}} \Rightarrow \int_{1}^{+\infty} \frac{|\sin t|}{t^{\alpha}} dt$$
 — сходится

To есть $I(\alpha)$ сходится абсолютно

2. $\alpha \leqslant 0$. Проверим расходимость при помощи Коши.

$$\exists \varepsilon_0 = \forall \Delta > 1 \\ \exists \xi = 2\pi n > \Delta, \\ \eta = 2\pi n + \pi > \Delta$$

$$\left| \int_{\xi}^{\eta} \frac{\sin t}{t^{\alpha}} dt \right| = \int_{\xi}^{\eta} t^{-\alpha} \sin t dt \geqslant (2\pi n)^{-\alpha} \int_{2\pi n}^{2\pi n + \pi} \sin t dt = (2\pi n)^{-\alpha} \cdot 2 \geqslant 2$$

Тогда по критерию Коши, $I(\alpha)$ расходится.

3. $\alpha \in (0,1]$.

$$f(x) = \sin t, g(t) = \frac{1}{t^{\alpha}}, F(t) = \int_{1}^{t} \sin s \ ds$$
 — ограничена на $1, +\infty$

Тогда $I(\alpha)$ сходится по признаку Дирихле. Теперь проверим абсолютную сходимость:

$$\left| \frac{\sin x}{x^{\alpha}} \right| \geqslant \frac{\sin^2 x}{x^{\alpha}} = \frac{1}{2} \left(\frac{1}{x^{\alpha}} - \frac{\cos 2x}{x^{\alpha}} \right) \geqslant 0$$

При этом $\int \frac{1}{x^{\alpha}}$ — расходится, а $\int \frac{\cos 2x}{x^{\alpha}}$ — сходится. Тогда их разность расходится.

Тогда $I(\alpha)$ сходится при $\alpha>0$ и абсолютно сходится при $\alpha>1$