

Machine Learning 9 – Classification

SS 2018

Gunther Heidemann

- 1. Definition of the classification problem
- 2. Bayesian classification
- 3. Important properties of classifiers
- 4. Overview of standard types of classifiers
- 5. Support vector machine (overview)
- 6. Random Forest

For details on the SVM, see, e.g.,

Vladimir Cherkassky, Filip Mulier: Learning from Data, IEEE Press

Classification

Classification:

- Assigns a discrete class to an object, fact, person, event etc. based on attributes.
- Classification results might be, e.g., {dry, wet}, {good customer, bad customer}, {go, stop, left, right}, {spoon, fork, knife}.
- Attributes might be color, length, age, income, voltage ...
- Technically,
 - attributes are represented by a feature vector $\vec{\chi} \in \mathbb{R}^d$,
 - output are natural numbers $c(\vec{x}) \in C \subset \mathbb{N}$ assigned to the |C| different classes,
 - alternatively, there are |C| real valued functions $c_1(\vec{x}) \dots c_{|C|}(\vec{x})$, each of which is the "confidence" that belongs to the class. The c_i are called discriminant functions. The output is

$$c(\vec{x}) = \arg\max_{i} c_{i}(\vec{x}), \qquad c(\vec{x}) \in C.$$

Bayes classifier

Idea of the Bayes classifier:

Classify an input \vec{x} such that the expected cost is minimized!

That is, choose output class *c* such that

$$P(c|\vec{x}) = N \cdot P(\vec{x}|c) \cdot P(c),$$

is maximized, where

 $P(\vec{x}|c)$ is the probability density that class c has features \vec{x} ,

P(c) is the a priori probability of class c, and

N is the normalization factor.

Representing classes as probabilities,

- overlapping classes can be represented,
- a unique class assignment is not possible.

UNIVERSITÄT OSNABRÜCK

Bayes classifier

Problems of the Bayes classifier:

In

$$P(c|\vec{x}) = N \cdot P(\vec{x}|c) \cdot P(c),$$

the probability densities $P(\vec{x}|c)$, and sometimes also P(c), are not known explicitly but need to be estimated from the data.

Two strategies:

- 1. Estimate $P(\vec{x}|c)$ and if necessary P(c) from the data, then apply original Bayes classifier. May require a lot of effort and more information than necessary to obtain the classifier (because a classifier needs information to derive decision boundaries, not necessarily the complete densities.
- Construct an approximation to the Bayes classifier directly from the data.

Bayes classifier

Complete knowledge of $P(\vec{x}|c)$ may be unnecessary to find a separatrix

... or necessary:

[H]

Types of classifiers

We will review basic types of classifiers.

These are relevant criteria:

General issues:

- What assumptions are made about the data distribution?
- What is the bias?

Technical issues:

- Representation:
 - How are separatrices represented (implicitly, explicitly)?
 - Type of separatrices?
 - Generalization properties?
 - Sensitivity to errors and noise?

Types of classifiers

Locality:

- Is the influence of a single example on the separatrices local or global?
- How is locality controlled by parameters?

Parameters:

- Parameters for knowledge representation, e.g., architecture, flexibility of separatrices, smoothness?
- Adaptation parameters, e.g., step size?
- Do the parameters have an intuitive interpretation?
- How much depends the outcome on the choice of the parameters?

Speed:

- Training phase
- Application phase

Types of classifiers

The following, we compare standard classifiers according to the criteria.

We assume

- the input data have been transformed to zero mean,
- there are only two classes, c^+ and c^- . \overrightarrow{x}^+ , \overrightarrow{x}^- denote feature vectors of the classes.

The classifier c is based on a discriminant function $R(\vec{x})$ such that

$$c(\vec{x}) = \begin{cases} c^+ & \text{if } R(\vec{x}) \ge 0, \\ c^- & \text{if } R(\vec{x}) < 0. \end{cases}$$

UNIVERSITÄT OSNABRÜCK

Euclidean classifier

Discriminant is found from the centers of mass of the classes:

$$R(\vec{x}) = \vec{w} \cdot \vec{x}$$

with

$$\overrightarrow{W} = \langle \overrightarrow{X}^+ \rangle - \langle \overrightarrow{X}^- \rangle$$

- Linear separatrix, explicit representation.
- Not local.
- Very fast "training".
- No parameters.
- Sensitive to far outliers.

Linear discriminant analysis (LDA)

Assumptions:

- Classes have identical a priori probability.
- Both classes exhibit a Gaussian distribution with means $\langle \vec{x}^+ \rangle$, $\langle \vec{x}^- \rangle$ and covariance matrices Λ^+ , Λ^- .
- Covariances are assumed to be identical for both classes $\Lambda = \Lambda^{+} = \Lambda^{-}$.
- Same properties as Euclidean classifier (qualitatively).

$$R(\vec{x}) = \vec{w} \cdot \vec{x}$$

with
 $\vec{w} = \Lambda^{-1} (\langle \vec{x}^+ \rangle - \langle \vec{x}^- \rangle),$
 $\Lambda = \langle \vec{x} \vec{x}^\top \rangle.$

Quadratic classifier

Discriminant is quadratic

$$R(\vec{x}) = \vec{x}^{T} A \vec{x} + \vec{b}^{T} \vec{x} + c,$$

$$A \in \mathbb{R}^{d \times d}, \ \vec{b}, \vec{x} \in \mathbb{R}^{d}, \ c \in \mathbb{R}.$$

- A, b, c are found, e.g., by quadratic discriminant analysis (QDA).
- Separatrix is a conic section, i.e., a
 - hyperbola,
 - parabola,
 - ellipsis (special case: circle),
 - line.
- Effect of \vec{A} , \vec{b} , \vec{c} is not local.
- Fast "training".
- No parameters.

Polynom classifier

Polynomial discriminant function:

$$R(\vec{x}) = \text{Polynom}(\vec{x}).$$

- Separatrix of almost arbitrary complexity (like MLP).
- Generalization can be controlled by degree of polynom,
- ... but the effect of the degree as a parameter is difficult to foresee in high dimensions.
- Not local.
- "Training" is relatively efficient.
- Well established technique, e.g., in NLP.

Nearest neighbor classifier

- Separatrix is implicitly defined by neighbors.
- Local.
- No generalization (as far as classification boundary is concerned).
- No parameters.
- No training time but may have considerable memory consumption.
- Application time depends on size.

Support vector machine (SVM) is one of the most popular classifiers.

Principle:

- SVM computes a hyperplane (linear separatrix)
 - based on the examples (support vectors) close to the class boundary,
 - such that the margin is maximized.
 - Slack variables allow to deal with outliers to avoid overfitting.
- 2. To solve nonlinear problems, the *kernel trick* is used:
 - Project data into a space of higher dimension.
 - For sufficiently high dimension, every problem becomes (linearly) separable by a hyperplane.
 - The projection of this hyperplane back to the original data space is a nonlinear separatrix.

Binary classification problem $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots\}, \vec{x}_i \in \mathbb{R}^d, y_i \in [-1, 1].$

SVM represents a hyperplane

$$\overrightarrow{w} \cdot \overrightarrow{x} - b = 0,$$

where \vec{w} is the normal to the hyperplane and $b / |\vec{w}|$ is its offset from the origin.

For a linearly separable problem, the SVM selects \vec{w} and \vec{b} such that the separatrix is in the middle of the margin.

An extension provides a way to deal with outliers that disturb linear separability.

To apply the SVM to not linearly separable problems, map the data from the original input space $(\vec{x} \in \mathbb{R}^d)$ to a higher dimensional space H where it becomes linearly separable.

Remember solving the XOR problem with a simple perceptron in a space of higher dimension:

If this is insufficient for a problem, the 2d input vectors $(x_1,x_2)^T$ might be mapped, e.g., using polynomials to

$$(x_1, x_2, x_1^2, x_2^2, x_1 \cdot x_2, x_1^3, x_2^3, x_1^2 \cdot x_2, x_1 \cdot x_2^2)^T$$

Problem of mapping to a space of higher dimension:

- For more input dimensions, the mapping $\mathbb{R}^d \to H$ using, e.g., polynomials becomes huge.
- Mapping causes high effort.

Solution by the kernel trick:

- Fortunately, the SVM procedure to find the optimal hyperplane within the margin only requires the inner product of vectors $\vec{x}_a \cdot \vec{x}_b$, not the vectors themselves.
- Thus, only the inner products need to be computed in H.
- This can be done without actually computing the representation of $\vec{x}_a \cdot \vec{x}_b$ in H.
- Instead, the inner product of \vec{x}_a and \vec{x}_b in H can be computed directly in the original input space using a *kernel function* K as $K(\vec{x}_a, \vec{x}_b)$.

- The kernel trick allows the very efficient implicit computation of a hyperplane in H and thus a nonlinear separatrix in \mathbb{R}^d .
- The kernel function should satisfy Mercer's condition, but in practice useful results can be achieved also with other kernel functions.
- Suitable mapping functions with a kernel that satisfies Mercer's condition are, e.g., polynomials / splines, radial basis functions or Fourier expansions.

UNIVERSITÄT OSNABRÜCK

Random Forests

Motivation:

- Decision trees are easy to build and easy to use.
- Drawback: Overfitting, often due to
 - ill chosen examples (noise, outliers),
 - 2. ill chosen features (at least for some of the examples).
- Idea: "Average out" overfitting by
 - a "bag of trees" = "forest" approach,
 - 2. a "bag of features" approach.
- Averaging is over the models, not the data.
- Thus the variance of classification is reduced.

University of Osnabrück, Institute of Cognitive Science

Random Forests

Creating a random forest

- A random forest is a (large) collection of uncorrelated decision trees.
- How can we get different, uncorrelated decision trees out of the same set of training data $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ...\}, \vec{x}_i \in \mathbb{R}^d, y_i \in \mathbb{N}$?
- Create random subsets, e.g.,

$$D_0 = \{(\vec{x}_4, y_4), (\vec{x}_{22}, y_{22}), \dots (\vec{x}_{316}, y_{316})\}, \\ D_1 = \{(\vec{x}_{17}, y_{17}), (\vec{x}_{22}, y_{22}), \dots (\vec{x}_{976}, y_{976})\}, \\$$

- ...
- Subsets may overlap.
- From D_0 , D_1 ..., create the forest of decision trees T_0 , T_1
- The forest is random insofar as the training sets are random.

Random Forests

- So far: Bagging of trees.
- Improvement: Bagging of features.

Random Forests

Remember how a decision tree is built:

- A ← the "best" decision feature for next node, chosen out of all features.
- 2. Assign A as decision attribute for node.
- 3. For each value of A, create new descendant of node.
- Sort training examples to leaf nodes.
- If the training examples are perfectly classified then STOP else iterate over new leaf nodes.

Random Forests

Feature bagging:

- A ← the "best" decision feature for next node, chosen out of a random subset of all features.
- 2. Assign A as decision feature for node.
- 3. For each value of A, create new descendant of node.
- Sort training examples to leaf nodes.
- If the training examples are perfectly classified then STOP else iterate over new leaf nodes.

Main advantage of feature bagging:

Influence of features with extreme predictive power is reduced.

Random Forests

Applying a random forest for classificatiton

- Input: Feature vector \vec{x} of unknown class.
- Each tree yields a classification $T_0(\vec{x})$, $T_1(\vec{x})$
- The class the majority of trees votes for is the output of the forest.

Random Forests

Properties:

- Very simple algorithm.
- Very small number of parameters.
- Both training and application are well suited for parallelization.
- Very popular for applications.
- Concerning performance, random forests are said to be the second best to deep learning.

Summary

- Classification is one of the most important ML tasks.
- Classifiers differ with respect to many criteria, the most important of which is the shape, "flexibility" and representation of the separatrices.
- SVMs are popular classifiers, along with (deep) MLPs. Numerous implementations exist.
- Currently, Deep Learning approaches dominate competitions. In practice, Random Forests appear to be superior as they are simple and easy to use.
- Success of classification depends very much on the choice of suitable features from the problem. As a rule of thumb, features are more important than the classifier.

Image sources

- [M] Online material available at www.cs.cmu.edu/~tom/mlbook.html for the textbook: Tom M. Mitchell: Machine Learning, McGraw-Hill
- [H] Gunther Heidemann, 2012.