

ACOU BILL HONY LOTE

FIGURE 7

•

FIGURE 16

Weeks after initial Rx

weeks after initial treatment

Figure 19 AGP-3 Peptibody Sequence

MLPGCKWDLL	IKQWVCDPLG	SGSATGGSGS	TASSGSGSAT	HMLPGCKWDL
LIKQWVCDPL	GGGGGVDKTH	TCPPCPAPEL	LGGPSVFLFP	PKPKDTLMIS
RTPEVTCVVV	DVSHEDPEVK	FNWYVDGVEV	HNAKTKPREE	QYNSTYRVVS
VLTVLHQDWL	NGKEYKCKVS	NKALPAPIEK	TISKAKGQPR	EPQVYTLPPS
RDELTKNQVS	LTCLVKGFYP	SDIAVEWESN	GQPENNYKTT	PPVLDSDGSF
FLYSKLTVDK	SRWQQGNVFS	CSVMHEALHN	HYTQKSLSLS	PGK (SEQ ID NO. 1)

BEST AVALUATE OUTY

Figure 20 CTLA4 amino acid sequence

MHVAQPAVV LASSRGIASF VCEYASPGKA TEVRVTVLRQ ADSQVTEVCA

ATYMMGNELT FLDDSICTGT SSGNQVNLTI QGLRAMDTGL YICKVELMYP

PPYYLGIGNG TQIYVIDPEP CPDSDFLLWI LAAVSSGLFF YSFLLTAVSL

SKMLKKRSPL TTGVYVKMPP TEPECEKQFQ PYFIPIN (SEQ ID NO. 2)

FIGURE 21 KIN2 Sequence

-																		GGA	.CGT	TAAC	
1						R												D	v		60
61	CF																			GAAC	
		K	Т	F	Y	L	R	N	N	Q	L	V	A	G	Y	L	Q	G	P	N	
121																				GGGT	
	V	N	L	E	E	K	, I	D	V	V	P	I	E	P	Н	A	L.	F	L	G	100
181																				GCAG	
101						M														+ Q	240
241	CI	GGA	AGC			CAI														CGCA	
241	L	E	A			I					•			•							300
301	TT	'CAT	'CCG	CTC																TTGG	260
301	F	I	R	s	D	s	G	P	Т	T	S	F	Ε	s	A	A	C	P	G	W W	360
361	TT	CCT	GTG	CAC	TGC	TAT	GGA	AGC	TGA	.CCA	.GCC	GGT	'AAG	CCT	GAC	CAA	CAT	GCC	GGA	CGAA	420
						M															420
421	GG 	CGT	GAT	'GGT	'AAC	CAA	TTA.	CTA	.CTT	CCA	.GGA	AGA	.CGA	AGC	TGC	AGC	TGA	ACC.	AAA	ATCT	480
	G	V	M	V	T	K	F	Y	F	Q	E	D	E	A	A	A	E	P	K	s	400
481	TC	CGA	.CAA	AAC	TCA	CAC	ATG	ccc	ACC	GTG	CCC	AGC	ACC	TGA	ACT	CCT	GGG	GGG.	ACC	GTCA	540
	s	D	K	T	H	T	C	P	P	С	P	A	P	Ē	L	L	G	G	P		240
541	GT	CTT	CCT	'CTT	'CCC	:CCC	AAA! +	ACC	CAA	.GGA	CAC	CCT	CAT	GAT	CTC	CCG	GAC	CCC'	TGA	GGTC	600
	V	F	L	F	P	P	K	P	K	D	T	L	M	Ī	s	R	T	P	E	V	000
501	AC	ATG	CGT	GGT	GGT	'GGA	.CGT	GAG	CCA	.CGA	AGA	.ccc	TGA	GGT	CAA	GTT	CAA	CTG	GTA	CGTG	
001	T	С	V	v	V	D	V	s	H	E	D	P	E	V	ĸ	F	N	W	Y	v	660
561	GA	CGG	CGT	GGA	GGT	GCA	TAA	TGC	CAA	GAC	AAA	GCC	GCG	GGA	GGA	GCA	GTA	CAA	CAG	CACG	720
	D	G	V	Ė	V	Н	N	A	K	T	K	P	R	E	Е	Q	Y	N	s	T	120
721	TA	CCG	TGT	GGT	CAG	CGT	CCT	CAC	CGT	CCT	GCA	CCA	GGA	CTG	GCT	GAA'	TGG	CAA	GGA(GTAC	700
_						7.7						_	_	r	_		- -	·		- +	780

FIGURE 21 (cont.)

781			CAA										_	_						AGCC	0.4.0
701		С	K	V	s	N		A		P	A	P	I	E		Т			K	•	840
841	AA 																		_	GACC	000
011	K														s						900
901																				CGTG	960
		N		V	s	L	T				K		F						A		200
961	GA 	GTG	GGA	GAG	CAA	TGG													_	GGAC	1020
	E	W	E	S	N	G									T				L		1020
1021																				GCAG	1080
															K						1000
1081																				GAAG	1140
	G	N	V	F	S	С	S	V	M	Н	E	A	L	Н	N	Н	Y	Т	Q	K	
141			CTC										EQ	ID	NO.	5)					
	S	L	S	L	S	P	G	K	*			(S	ΕQ	ID	NO.	3)					

Figure 22 sTNF-RI Sequence 2.6D/N105

5 '	-CA	TAT	GGA	CAG	CGI	TTG	CCC	CCA					AAA	TAA	TTC	'GAT	TTG	C-
	M	D	s	V	С	P	Q	G		I		+ Q	N	s	+ I	C	C	- -
																	.GGA	T-
		K						•				•	P		•		T	- -
	-AC	GGA											AAA	CCA	.CCT	'CAG	ACA	C-
	D	C	R	- - +	C	E	s			-		+ E	H	L L	+ R	H	С	-
	-TG	CCT	CAG	CTG	CTC	CAA	ATG						GAT	CTC	TTC	'TTG	CAC.	A-
	L	s	C	s	K	C	R	-		•		+ E	s	s	 C	т	v	- -
	-GT	GGA	CCG	GGA	CAC											GAG	TGA	A -
	D D	R	D	+ Т	v	С	G		R			+ R				E	N	- -
	-AA	CCT'	TTT	CCA	GTG	CTT	CAA					-		. 6)			
	+- L	F	Q	+ C	 F	N	*	+		 -+-		+ SEQ		 . 4	+			-

Figure 23 IL-1 RECEPTOR AMINO ACID SEQUENCE

1	${\tt mkvllrlicf}$	iallisslea	dkckereeki	ilvssaneid	vrpcplnpne	hkgtitwykd
61	dsktpvsteq	asrihqhkek	lwfvpakved	sghyycvvrn	ssyclrikis	akfvenepnl
121	cynaqaifkq	klpvagdggl	vcpymeffkn	ennelpklqw	ykdckpllld	nihfsgvkdr
181	livmnvaekh	rgnytchasy	tylgkqypit	rviefitlee	nkptrpvivs	panetmevdl
	gsqiqlicnv					
301	iesrfykhpf	tcfaknthgi	daayiqliyp	vtnfqkhmig	icvtltviiv	csvfiykifk
	idivlwyrds					
	yklfiygrdd					
	dgikvvllel					wknvryhmpv
541	qrrspsskhq	llspatkekl	qreahvplg	(SEQ ID 1	NO. 7)	

Figure 24 TNF RECEPTOR TYPE I AMINO ACID SEQUENCE

1	mglstvpdll	lplvllellv	giypsgvigl	vphlgdrekr	dsvcpqgkyi	hpqnnsicct
61	kchkgtylyn	dcpgpgqdtd	crecesgsft	asenhlrhcl	scskcrkemg	qveissctvd
121	rdtvcgcrkn	qyrhywsenl	fqcfncslcl	ngtvhlscqe	kqntvctcha	gfflrenecv
181	scsnckksle	ctklclpqie	nvkgtedsgt	tvllplviff	glcllsllfi	glmyrygrwk
241	sklysivcgk	stpekegele	gtttkplapn	psfsptpgft	ptlgfspvps	stftssstyt
301	pgdcpnfaap	rrevappyqg	adpilatala	sdpipnplqk	wedsahkpqs	ldtddpatly
361	avvenvpplr	wkefvrrlgl	sdheidrlel	qngrclreaq	ysmlatwrrr	tprreatlel
421	lgrvlrdmdl	lgcledieea	lcqpaalppa	psllr (SI	EO ID NO. 8)	+

FIGURE 25 TNF RECEPTOR TYPE II AMINO ACID SEQUENCE

1	mapvavwaal	avglelwaaa	halpaqvaft	pyapepgstc	rlreyydgta	qmccskcspg
	qhakvfctkt					
121	rpgwycalsk	qegcrlcapl	rkcrpgfgva	rpgtetsdvv	ckpcapgtfs	nttsstdicr
181	phqicnvvai	pgnasmdavc	tstsptrsma	pgavhlpqpv	strsqhtqpt	pepstapsts
241	fllpmgpspp	aegstgdfal	pvglivgvta	lglliigvvn	cvimtqvkkk	plclqreakv
301	phlpadkarg	tqgpeqqhll	itapssssss	lessasaldr	raptrnqpqa	pgveasgage
361	arastgssds	spgghgtqvn	vtcivnvcss	sdhssqcssq	asstmgdtds	spsespkdeq
421	vpfskeecaf	rsgletpetl	lgsteekplp	lgvpdagmkp	s (SEO II	NO. 9)

FIGURE 26 CD40 AMINO ACID SEQUENCE

61	pcgesefldt	wnrethchqh	kycdpnlglr	vqqkgtsetd	cqpgqklvsd tictceegwh chpwtscetk	ctseacescv
181	ktdvvcgpqd	rlralvvipi	ifgilfaill	vlvfikkvak	kptnkaphpk (SEQ ID NO.	qepqeinfpd

FIGURE 27 CD30 AMINO ACID SEQUENCE

1	mrvllaalgl	lflgalrafp	qdrpfedtch	gnpshyydka	vrrccyrcpm	glfptqqcpq
61	rptdcrkqce	pdyyldeadr	ctacvtcsrd	dlvektpcaw	nssrvcecrp	qmfcstsavn
121	scarcffhsv	cpagmivkfp	gtaqkntvce	paspgvspac	aspenckeps	sqtipqakpt
181	pvspatssas	tmpvrggtrl	aqeaaskltr	apdspssvgr	pssdpglspt	apcpeasadc
241	rkqcepdyyl	deagrctacv	scsrddlvek	tpcawnssrt	cecrpgmica	tsatnscarc
301	vpypicaaet	vtkpqdmaek	dttfeapplg	tqpdcnptpe	ngeapastsp	tgsllvdsga
361	sktlpiptsa	pvalsstgkp	vldagpvlfw	vilvlvvvvg	ssafllchrr	acrkrirgkl
421	hlcypvqtsq	pklelvdsrp	rrsstqlrsg	asvtepvaee	rglmsqplme	tchsvgaavl
		aggpssprdl				
		eleadhtphy				
	(SEQ ID NO.				5 I -F	J

FIGURE 28 ICOS AMINO ACID SEQUENCE

1 mksglwyffl fclrikvltg eingsanyem fifhnggvqi lckypdivqq fkmqllkggq 61 ilcdltktkg sgntvsiksl kfchsqlsnn svsfflynld hshanyyfcn lsifdpppfk 121 vtltggylhi yesqlccqlk fwlpigcaaf vvvcilgcil icwltkkkys ssvhdpngey 181 mfmravntak ksrltdvtl (SEQ ID NO. 12)

FIGURE 29 CD28 AMINO ACID SEQUENCE

- 1 mlrlllalnl fpsiqvtgnk ilvkqspmlv aydnavnlsc kysynlfsre fraslhkgld
- 61 savevcvvyg nysqqlqvys ktgfncdgkl gnesvtfylq nlyvnqtdiy fckievmypp
- 121 pyldneksng tiihvkgkhl cpsplfpgps kpfwvlvvvg gvlacysllv tvafiifwvr
- 181 skrsrllhsd ymnmtprrpg ptrkhyqpya pprdfaayrs (SEQ ID NO. 13)

FIGURE 30 OX40 AMINO ACID SEQUENCE

1 mcvgarrlgr gpcaallllg lglstvtglh cvgdtypsnd rcchecrpgn gmvsrcsrsq 61 ntvcrpcgpg fyndvvsskp ckpctwcnlr sgserkqlct atqdtvcrcr agtqpldsyk 121 pgvdcapcpp ghfspgdnqa ckpwtnctla gkhtlqpasn ssdaicedrd ppatqpqetq 181 gpparpitvq pteawprtsq gpstrpvevp ggravaailg lglvlgllgp laillalyll 241 rrdqrlppda hkppgggsfr tpiqeeqada hstlaki (SEQ ID NO. 14)

Figure 31 4-1-BB Amino Acid Sequence

- 1 mgnscyniva tlllvlnfer trslqdpcsn cpagtfcdnn rnqicspcpp nsfssaggqr 61 tcdicrqckg vfrtrkecss tsnaecdctp gfhclgagcs mceqdckqgq eltkkgckdc
- 121 cfgtfndqkr gicrpwtncs ldgksvlvng tkerdvvcgp spadlspgas svtppapare
- 181 pghspqiisf flaltstall fllffltlrf svvkrgrkkl lyifkqpfmr pvqttqeedg
- 241 cscrfpeeee ggcel (SEQ ID NO. 15)

FIGURE 32 CD27 AMINO ACID SEQUENCE

1 marphpwwlc vlgtlvglsa tpapkscper hywaqgklcc qmcepgtflv kdcdqhrkaa 61 qcdpcipgvs fspdhhtrph cescrhcnsg llvrnctita naecacrngw qcrdkectec 121 dplpnpslta rssqalsphp qpthlpyvse mleartaghm qtladfrqlp artlsthwpp 181 qrslcssdfi rilvifsgmf lvftlagalf lhqrrkyrsn kgespvepae pcryscpree 241 egstipiqed yrkpepacsp (SEQ ID NO. 16)

FIGURE 33 IL-18 RECEPTOR AMINO ACID SEQUENCE

1	mncrelpltl	wvlisvstae	sctsrphitv	vegepfylkh	cscslaheie	tttkswykss
61	gsqehvelnp	rsssrialhd	cvlefwpvel	ndtgsyffqm	knytqkwkln	virrnkhscf
121	terqvtskiv	evkkffqitc	ensyyqtlvn	stslyknckk	lllennknpt	ikknaefedg
181	gyyscvhflh	hngklfnitk	tfnitivedr	snivpvllgp	klnhvavelg	knvrlncsal
241	lneedviywm	fgeengsdpn	iheekemrim	tpegkwhask	vlrieniges	nlnvlynctv
301	astggtdtks	filvrkadma	dipghvftrg	miiavlilva	vvclvtvcvi	yrvdlvlfyr
361	hltrrdetlt	dgktydafvs	ylkecrpeng	eehtfaveil	prvlekhfgy	klciferdvv
	pggavvdeih					
481	dftflpqslk	llkshrvlkw	kadkslsyns	rfwknllylm	paktvkpgrd	epevlpvlse
541	s (SEO ID	NO. 17)				-

FIGURE 34 PD-1 AMINO ACID SEQUENCE

1	mqipqapwpv	vwavlqlgwr	pgwfldspdr	pwnpptfspa	llvvtegdna	tftcsfsnts
61	${\tt esfvlnwyrm}$	spsnqtdkla	afpedrsqpg	qdcrfrvtql	pngrdfhmsv	vrarrndsgt
121	ylcgaislap	kaqikeslra	elrvterrae	vptahpspsp	rsagqfqtlv	vgvvggllgs
181	lvllvwvlav	icsraargti	garrtgqplk	edpsavpvfs	vdygeldfqw	rektpeppvp
241	cymeatevat	ivfnsamats	sparrasada	preamlrne	dahaguml (SI	IOT ON AT OF

FIGURE 35 RAT TNF RECEPTOR 1 AMINO ACID SEQUENCE

1	mglpivpgll	lslvllallm	gihpsgvtgl	vpslgdrekr	dnlcpqgkya	hpknnsicct
61	kchkgtylvs	dcpspgqetv	cevcdkgtft	asqnhvrqcl	scktcrkemf	qveispckad
121	mdtvcgckkn	qfqrylseth	fqcvdcspcf	ngtvtipcke	kqntvcncha	gfflsgnect
						sllcrypgwr
241	prvysiicrd	sapvkevege	givtkpltpa	sipafspnpg	fnptlgfstt	prfshpvsst
301	pispvfgpsn	whnfvppvre	vvptqgadpl	lygslnpvpi	papvrkwedv	vaaqpqrldt
361	adpamlyavv	dgvpptrwke	fmrllglseh	eierlelqng	rclreahysm	leawrrrtpr
421	heatldvvgr	vlcdmnlrgc	leniretles	pahsstthlp	r (SEO ID	NO. 21)

FIGURE 36 MURINE CTLA4 AMINO ACID SEQUENCE

1	maclglrryk	aqlqlpsrtw	pfvalltllf	ipvfseaiqv	tqpsvvlass	hgvasfpcey
61	spshntdevr	vtvlrqtndq	mtevcattft	ekntvgfldy	pfcsgtfnes	rvnltigglr
121	avdtglylck	velmypppyf	vgmgngtqiy	vidpepcpds	dfllwilvav	slglffysfl
181	vsavslskml	kkrsplttgv	yvkmpptepe	cekqfqpyfi	pin (SEQ	ID NO. 19)

)) FIGURE 37 TACI AMINO ACID SEQUENCE

- 1 msglgrsrrg grsrvdqeer fpqglwtgva mrscpeeqyw dpllgtcmsc kticnhqsqr
- 61 tcaafcrsls crkeqgkfyd hllrdcisca sicgqhpkqc ayfcenklrs pvnlppelrr
- 121 qrsgevenns dnsgryqgle hrgseaspal pglklsadqv alvystlglc lcavlccflv 181 avacflkkrg dpcscqprsr prqspakssq dhameagspv stspepvetc sfcfpecrap
- 241 tqesavtpgt pdptcagrwg chtrttvlqp cphipdsglg ivcvpaqegg pga
 (SEQ ID NO. 27)