Généralités et concepts de base

Séance 2. Théorie des graphes Enseignant: K.Meslem

U.S.T.H.B, le 14 Octobre 2021

3ème LIC RO Section A

Problème

On souhaite prélever 4 litres de liquide dans un tonneau. Pour cela, nous avons à notre disposition deux récipients non gradués, l'un de 5 litres et l'autre de 3 litres.

• Comment doit-on faire (à l'aide d'un graphe)?

Problème

On souhaite prélever 4 litres de liquide dans un tonneau. Pour cela, nous avons à notre disposition deux récipients non gradués, l'un de 5 litres et l'autre de 3 litres.

- Comment doit-on faire (à l'aide d'un graphe)?
- Les sommets: couples ordonnés (a, b)
 a volume d'eau dans le récipient 5L;
 b volume d'eau dans le récipient 3L
- Les arcs: un arc existe si on peut passer d'un état à un autre état.

Le graphe

Le graphe G = (X, U)

• L'ordre et la taille de *G* ?

Le graphe G = (X, U)

• Pour quelle valeur de p, G est un p-graphe?

Le graphe G = (X, U)

• Les successeurs et les prédécesseurs du sommet (0,3) ?

Le graphe

• Le graphe G contient-il une boucle? des arcs multiples? des arcs parallèles?

Le graphe G = (X, U)

• Existe-il un sommet qui n'a pas de successeurs ou de prédexesseurs?

• Donner le degré de chaque sommet;

Le graphe G = (X, U)

• Peut-on écrire $G = (V, \Gamma^+)$?

$$\checkmark d_{G_1}^+(x_1) = 2 ; d_{G_1}^-(x_1) = 1 \text{ et } d_{G_1}(x_1) = 3.$$

$$\checkmark d_{G_1}^+(x_1) = 2 ; d_{G_1}^-(x_1) = 1 \text{ et } d_{G_1}(x_1) = 3.$$

 $\sqrt{d_{G_1}^+(x_4)} = 3$; $d_{G_1}^-(x_4) = 2$ et $d_{G_1}(x_4) = 5$ car la boucle est comptée deux fois.

$$\checkmark d_{G_1}^+(x_1) = 2 ; d_{G_1}^-(x_1) = 1 \text{ et } d_{G_1}(x_1) = 3.$$

$$\sqrt{d_{G_1}^+(x_4)} = 3$$
; $d_{G_1}^-(x_4) = 2$ et $d_{G_1}(x_4) = 5$ car la boucle est comptée deux fois.

 \checkmark Le sommet x_5 vérifie : $d_{G_1}(x_5) = 0$. Un sommet ayant un degré nul dans G est dit sommet isolé

$$\checkmark d_{G_1}^+(x_1) = 2$$
; $d_{G_1}^-(x_1) = 1$ et $d_{G_1}(x_1) = 3$.

$$\sqrt{d_{G_1}^+(x_4)} = 3$$
; $d_{G_1}^-(x_4) = 2$ et $d_{G_1}(x_4) = 5$ car la boucle est comptée deux fois.

 \checkmark Le sommet x_5 vérifie : $d_{G_1}(x_5) = 0$. Un sommet ayant un degré nul dans G est dit sommet isolé

✓ Le sommet $d_{G_1}(x_6) = 1$. Un sommet qui a un degré unitaire est dit sommet pendant.

Etant donné un graphe G = (X, U) où $X = \{x_1, x_2, ..., x_n\}$

- La suite $d_{G_1}(x_1)$, $d_{G_1}(x_2)$, ..., $d_{G_1}(x_n)$ est dite séquence des degrés des sommets de G
- Le degré minimum dans G, noté $\delta(G)$, est: $\delta(G) = \min_{x \in X} d_G(x)$.
- De même, le degré maximum $\Delta(G)$ est donné comme suit: $\Delta(G) = \max_{x \in X} d_G(x)$
- Un graphe G ayant des sommets de même degré k ($k \in \mathbb{N}$) est dit k-régulier

Etant donné un graphe G = (X, U) où $X = \{x_1, x_2, ..., x_n\}$

- La suite $d_{G_1}(x_1), d_{G_1}(x_2), ..., d_{G_1}(x_n)$ est dite séquence des degrés des sommets de G
- Le degré minimum dans G, noté $\delta(G)$, est: $\delta(G) = \min_{x \in X} d_G(x)$.
- De même, le degré maximum $\Delta(G)$ est donné comme suit: $\Delta(G) = \max_{x \in X} d_G(x)$
- Un graphe G ayant des sommets de même degré k ($k \in \mathbb{N}$) est dit k-régulier

Autrement dit la séquence de ses degrés est *n* fois *k* où *n* est l'ordre de *G*.

Exemples: Voir les graphes étudiés

Théorème Fondamental des Graphes

Soit G = (X, U) graphe avec $X = \{x_1, x_2, ..., x_n\}$ et $U = \{u_1, u_2, ..., u_m\}$. Alors, on a:

Théorème Fondamental des Graphes

Soit G = (X, U) graphe avec $X = \{x_1, x_2, ..., x_n\}$ et $U = \{u_1, u_2, ..., u_m\}$. Alors, on a:

$$\sum_{i=1}^{i=n} d_G(x_i) = 2m$$

Théorème Fondamental des Graphes

Soit G = (X, U) graphe avec $X = \{x_1, x_2, ..., x_n\}$ et $U = \{u_1, u_2, ..., u_m\}$. Alors, on a:

$$\sum_{i=1}^{i=n} d_G(x_i) = 2m$$

Preuve

Chaque arc de G est à la fois incident extérieur à un sommet de G et incident intérieur à un sommet de G.

Théorème Fondamental des Graphes

Soit G = (X, U) graphe avec $X = \{x_1, x_2, ..., x_n\}$ et $U = \{u_1, u_2, ..., u_m\}$. Alors, on a:

$$\sum_{i=1}^{i=n} d_G(x_i) = 2m$$

Preuve

Chaque arc de G est à la fois incident extérieur à un sommet de G et incident intérieur à un sommet de G.

En sommant les degrés qui comptent l'incidence extérieure et intérieure, les arcs seront comptés deux fois.□

Formule des degrés

Lemme

Dans un graphe G = (X, U) d'ordre n et de taille m. On a:

Formule des degrés

Lemme

Dans un graphe G = (X, U) d'ordre n et de taille m. On a:

$$\sum_{i=1}^{i=n} d_G^+(x_i) = \sum_{i=1}^{i=n} d_G^-(x_i) = m$$

Formule des degrés

Lemme

Dans un graphe G = (X, U) d'ordre n et de taille m. On a:

$$\sum_{i=1}^{i=n} d_G^+(x_i) = \sum_{i=1}^{i=n} d_G^-(x_i) = m$$

Preuve

Exercice.

Déterminons la séquence des degrés de ce graphe

Déterminons la séquence des degrés de ce graphe

Combien de sommets sont de degrés impairs?

Lemme

Pour tout graphe G le nombre de sommets de degrés impairs est pair i.e:

Lemme

Pour tout graphe G le nombre de sommets de degrés impairs est pair i.e:

$$|\{x \in X: d_G(x) \equiv 1[2]\}| \equiv 0[2]$$

Lemme

Pour tout graphe G le nombre de sommets de degrés impairs est pair i.e:

$$|\{x \in X: d_G(x) \equiv 1[2]\}| \equiv 0[2]|$$

Preuve

Exercice: (Indi. Par absurde) utiliser la formule des degrés.

Remarque

- Dans l'étude de certaines propriétés des graphes, il arrive que les arcs ne jouent aucun rôle.
 - On s'intéresse simplement à l'existence d'un ou de plusieurs arcs entre deux sommets sans préciser l'ordre.

Remarque

- Dans l'étude de certaines propriétés des graphes, il arrive que les arcs ne jouent aucun rôle.
 - On s'intéresse simplement à l'existence d'un ou de plusieurs arcs entre deux sommets sans préciser l'ordre.
- D'où l'importance des **graphes non orientés** (graphes pris sans orientation)

Graphe non orienté: G = (X, E)

• Les sommets sont reliés à l'aide des arêtes.

Graphe non orienté: G = (X, E)

- Les sommets sont reliés à l'aide des arêtes.
- Une arête e reliant deux sommets e et y dans un graphe non orienté est notée e = xy.

Graphe non orienté: G = (X, E)

- Les sommets sont reliés à l'aide des arêtes.
- Une arête e reliant deux sommets x et y dans un graphe non orienté est notée e = xy.
- L'ensemble des arêtes est noté *E*.

L'exemple des glaces

L'exemple des glaces

L'exemple des glaces

Le graphe G = (X, E) $X = \{A, B, C, D, E, F, N, R, T, V\}$

L'exemple des glaces

Le graphe
$$G = (X, E)$$

 $X = \{A, B, C, D, E, F, N, R, T, V\}$

$$E = \{AF, AN, BR, BV, CN, CT, DF, DV, ER,$$

L'exemple des glaces

Le graphe G = (X, E) $X = \{A, B, C, D, E, F, N, R, T, V\}$

 $E = \{AF, AN, BR, BV, CN, CT, DF, DV, ER,$

La solution donnée en rouge

Figure:

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Soit G = (X, E) un graphe non orienté

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Soit G = (X, E) un graphe non orienté

• |X| = n: ordre de G; |E| = m: taille de G

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Soit G = (X, E) un graphe non orienté

- Deux sommets sont adjacents si ...
- Deux arêtes sont adjacentes si ...

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Soit G = (X, E) un graphe non orienté

• Une arête est incidente à un sommet ... (pas d'incidence ext. ou intérieure)

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Soit G = (X, E) un graphe non orienté

• Deux arêtes sont multiples ou parallèles si elles relient la même paire de sommets

(multiples= parallèles en n. orienté)

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Soit G = (X, E) un graphe non orienté

• Pour tout sommet *x* dans *G*:

Il n'existe ni de $\Gamma^+(x)$ et $\Gamma^-(x)$ ni de $d_G^+(x)$ et $d_G^-(x)$

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Soit G = (X, E) un graphe non orienté

- Pour tout sommet x dans G:
 - Il n'existe ni de $\Gamma^+(x)$ et $\Gamma^-(x)$ ni de $d_G^+(x)$ et $d_G^-(x)$
- Les voisins d'un sommet x est $N_G(x)$ ou $\Gamma_G(x)$ est
- Le degré d'un sommet x dans G est .____

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Soit G = (X, E) un graphe non orienté

• Le degré minimum et le degré maximum sont notés $\delta(G)$ et $\Delta(\dot{G})$ respectivement.

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Soit G = (X, E) un graphe non orienté

• Un graphe est dit *p*-graphe si ..____

Les définitions proposées précédemment s'injectent (pas toutes) dans les graphes non orientés:

Soit G = (X, E) un graphe non orienté

• Un graphe G est dit k-régulier si tous les sommets partagent le même degré k

Quelques classes des graphes orientés

Quelques classes des graphes orientés

• Les graphes symétriques;

Quelques classes des graphes orientés

- Les graphes symétriques;
- Les graphes anti-symétriques;

Quelques classes des graphes orientés

- Les graphes symétriques;
- Les graphes anti-symétriques;
- Les graphes transitifs
- ...

Multiplicité d'une paire de sommet

On appelle **multiplicité de la paire** $\{x,y\}$ dans G, notée $m_G(x,y)$, la somme suivante:

$$m_G(x,y) = m_G^+(x,y) + m_G^-(x,y)$$

où:

$$m_G^+(x,y) = |\{u \in U : I(u) = x; T(u) = y\}|$$

Multiplicité d'une paire de sommet

On appelle **multiplicité de la paire** $\{x,y\}$ dans G, notée $m_G(x,y)$, la somme suivante:

$$m_G(x,y) = m_G^+(x,y) + m_G^-(x,y)$$

où:

$$m_G^+(x,y) = |\{u \in U : I(u) = x; T(u) = y\}| = 2$$
 $m_G^-(x,y) = m_G^+(y,x) = 4$

- Si x ≠ y:
 m_G(x,y): le nombre d'arcs ayant comme extrémités x et y dans G.
- Si x = y:
 m_G(x,y) est égal à deux fois le nombre de boucles attachées au sommet x dans G.

14/22

Classes de graphes

Classes de graphes

• Un graphe G = (X, U) est dit **symétrique** si pour tout $x, y \in X$ on a :

$$m_G^+(x,y) = m_G^-(x,y)$$

Classes de graphes

• Un graphe G = (X, U) est dit symétrique si pour tout $x, y \in X$ on a :

$$m_G^+(x,y) = m_G^-(x,y)$$

Si de plus G est un 1-graphe, G symétrique ssi $(x, y) \in U \Rightarrow (y, x) \in U$

Classes de graphes

Un graphe G = (X, U) est dit anti-symétrique si pour toute paire $x, y \in X$ on a:

$$m_G^+(x,y) + m_G^-(x,y) \le 1$$

Si G anti-symétrique \Leftrightarrow " $(x,y) \in U \Rightarrow (y,x) \notin U$ "

Classes de graphes

Un graphe G = (X, U) est dit anti-symétrique si pour toute paire $x, y \in X$ on a:

$$m_G^+(x,y) + m_G^-(x,y) \le 1$$

Si G anti-symétrique \Leftrightarrow " $(x,y) \in U \Rightarrow (y,x) \notin U$ "

QUESTIONS

Le graphe G = (X, U) avec $X = \{1, 2, 3, 4\}$.

Donner l'ensemble U pour que G:

QUESTIONS

Le graphe G = (X, U) avec $X = \{1, 2, 3, 4\}$.

Donner l'ensemble U pour que G:

1. soit symétrique 2-graphe? Symétrique 1-graphe?

QUESTIONS

Le graphe G = (X, U) avec $X = \{1, 2, 3, 4\}$.

Donner l'ensemble U pour que G:

2. soit anti-symétrique?

Remarque

Ces deux classes des graphes sont exclusivement définies dans les graphes orientés.

Remarque

Ces deux classes des graphes sont exclusivement définies dans les graphes orientés.

Une classe très importante des graphes non orientés emmerge dans de nombreux travaux dans la litterature, à savoir les graphes simples.

Remarque

Ces deux classes des graphes sont exclusivement définies dans les graphes orientés.

Une classe très importante des graphes non orientés emmerge dans de nombreux travaux dans la litterature, à savoir les graphes simples.

Définition

Un graphe G = (X, E) est dit **simple** si G ne contient **aucune boucle** et toute paire de sommets distincts x et y est reliée par **au plus une arête**.

Remarque

Ces deux classes des graphes sont exclusivement définies dans les graphes orientés.

Une classe très importante des graphes non orientés emmerge dans de nombreux travaux dans la litterature, à savoir les graphes simples.

Définition

Un graphe G = (X, E) est dit simple si G ne contient aucune boucle et toute paire de sommets distincts x et y est reliée par au plus une arête.

Autrement dit, G est simple si G est un 1-graphe sans boucles.

QUESTIONS

QUESTIONS

• Le graphe suivant est-il/simple? Justifier

QUESTIONS

• Le graphe modélisant le problème des glaces et des arômes est-il simple?

QUESTIONS

• Considérons ce graphe simple: Quelle est la relation entre le degré d'un sommet et l'ensemble des voisins de ce sommet?

QUESTIONS

• Considérons ce graphe simple: Quelle est la relation entre le degré d'un sommet et l'ensemble des voisins de ce sommet?

• Quelles sont les valeurs que peut prendre le degré d'un sommet dans un graphe simple? D, I, ___ n_ I

Lemme

Soit G = (X, E) un graphe simple. Alors:

- *i*). Pour tout $x \in X$: $d_G(x) = |N_G(x)|$;
- *ii*). Pour tout $x \in X$: $0 \le d_G(x) \le n-1$;
- iii). Il existe $x, y \in X : d_G(x) = d_G(y)$;

Lemme

Soit G = (X, E) un graphe simple. Alors:

- *i*). Pour tout $x \in X$: $d_G(x) = |N_G(x)|$;
- ii). Pour tout $x \in X$: $0 \le d_G(x) \le n 1$;
- iii). Il existe $x, y \in X : d_G(x) = d_G(y)$;

Preuve

- i).
- ii).
- iii). **EX**(🗆

Les graphes complets

Définition

Un graphe G = (X, U) est dit **complet** si:

$$m_G(x,y) = m_G^+(x,y) + m_G^-(x,y) \ge 1$$
 pour tout $x,y \in X$ $x \ne y$

FINI POUR AUJOURD'HUI

- A préparer les premiers exercices pour les séances de TD à venir;
- Soyez plus nombreux aux séances de graphes;
- Bon courage et bon weekend et à Mercredi prochain.

