1 Properties of binary relations: reflexivity, symmetricity, transitivity, antisymmetricity. Definition and characterization of these properties

Определение

Пусть $r \subseteq A^2$ - бинарное отношение на множестве A. Тогда

- r называется **рефлексивным**, тогда и только тогда, когда $id_A \subseteq r$
- r называется **симметричным**, тогда и только тогда, когда $r=r^{-1}$, т.е. оно совпадает со своим обратным отношением
- r называется **транзитивным**, тогда и только тогда, когда $r \circ r \subseteq r$
- r называется **антисимметричным**, тогда и только тогда, когда $r\cap r^{-1}\subseteq id_A$

Пример

Рассмотрим множество действительных чисел \mathbb{R} .

- отношение \leq рефлексивно, транзитивно и антисимметрично,
- \bullet отношение \sim , определённое как: $a\sim b\Leftrightarrow [a]=[b],$ рефлексивно, транзитивно и симметрично

Характеризация рефлексивных отношений

Предложение

Бинарное отношение $r\subseteq A^2$ рефлексивно \Leftrightarrow для любого $a\in A$ пара (a,a) лежит в r, т.е. $(a,a)\in r$

Доказательство

Следует из определения диагонали: $id_A = \{(a, a) | a \in A\}$

Характеризация симметричных отношений

Предложение

Бинарное отношение $r \subseteq A^2$ симметрично \Leftrightarrow для любого $a,b \in A, (a,b) \in r \Leftrightarrow (b,a) \in r.$

Доказательство

Покажем следствие \Leftarrow . Пусть $r=r^{-1}$ и $(a,b)\in r$. Тогда $(b,a)\in r^{-1}$, так как $r=r^{-1}$, $(b,a)\in r$. Обратное следствие \Rightarrow . Известно, что для любого $a,b\in A$ верно, что $(a,b)\in r\Leftrightarrow (b,a)\in r$. Нам нужно показать, что $r=r^{-1}$. Покажем два включения: $r\subseteq r^{-1}$ и $r^{-1}\subseteq r$. Первое: если $(a,b)\in r$, то $(b,a)\in r$, тогда по определению обратного отношения, $(a,b)\in r^{-1}$. Второе включение доказывается аналогично.

Характеризация транзитивных отношений

Предложение

Бинарное отношение $r\subseteq A^2$ транзитивно \Leftrightarrow для любого $a,b,c\in A$ из $(a,b)\in r$ и $(b,c)\in r$ следует, что $(a,c)\in r$.

Доказательство

Покажем следствие \Leftarrow . Пусть $r \circ r \subseteq r$, и $(a,b) \in r$ и $(b,c) \in r$. Тогда по определению композиции $(a,c) \in r \circ r$, следовательно, $(a,c) \in r$, Ч.Т.Д. Обратное следствие \Rightarrow . Нужно показать, что $r \circ r \subseteq r$. Пусть $(a,c) \in r \circ r$. Значит, существует такой $b \in A$, что $(a,b) \in r$ и $(b,c) \in r$. Следовательно, $(a,c) \in r$ - Ч.Т.Д.

Характеризация антисимметричных отношений

Предложение

Бинарное отношение $r\subseteq A^2$ антисимметрично \Leftrightarrow для любых $a,b\in A$ из $(a,b)\in r$ и $(b,a)\in r$ следует, что a=b.

Доказательство

Покажем следствие \Leftarrow . Пусть $r \cap r^{-1} \subseteq id_A$, $(a,b) \in r$ и $(b,a) \in r$. Тогда $(a,b) \in r^{-1}$, поэтому $(a,b) \in r \cap r^{-1} \subseteq id_A$, тогда $(a,b) \subseteq id_A$. Следовательно, a=b. Обратное следствие \Rightarrow - аналогично.

2 Reductions in λ -calculus: η -reduction

 η -редукция правило переписывания:

$$\lambda x.(f x) \Rightarrow_n f$$

может применяться, когда $x \notin FV(f)$.

 η -редукция - это еще один элементарный шаг вычисления, при котором абстракция сокращается, когда в ней нет необходимости. Терм вида $\lambda x.(f\ x)$ называется η -редексом, а результат редукции f называется η -сокращением.

3 Congruence on the structure of signature σ

Определение

Пусть $\mathcal{M}=(M,\sigma)$ - структура. Отношение эквивалентности \sim_{θ} на множестве M называется конгруэнцией, тогда и только тогда, когда для любого функционального символа $f^n\in\sigma$ и для любой пары кортежей $\bar{a},\bar{b}\in M^n$

$$((a_1 \sim_{\theta} b_1) \land \dots \land (a_n \sim_{\theta} b_n)) \Rightarrow f(\bar{a}) \sim_{\theta} f(\bar{b})$$

пример

Рассмотрим структуру $\mathbb{Z}=(Z,\sigma_{\mathbb{Z}})$ - кольцо целых чисел, где $\sigma_{\mathbb{Z}}=\{+^2,\cdot^2,0,1\}$. Пусть $n\in\omega\setminus\{0\}$ - положительное натуральное число. Тогда отношение

$$m_1 \sim_n m_2 \stackrel{def}{\Leftrightarrow} rest(m_1, n) = rest(m_2, n)$$

- это конгруэнция на **Z**.