Learning Linear Classifiers

Quality metric for logistic regression: Maximum likelihood estimation

- Likelihood I(w) Measures the quality of the fit of the model with coefficients w.
- It is a small number, but the number closest to 1 is the best fit.
- Higher the probability of a observation, better is it's likelihood and certainity.
 - Consider a dataset with features -> x1-> #awesome, x2 -> #awful, and y -> sentiment.
 - Need to Find the best coefficients The ones with high probability. The single table is split into two tables -> one table with positive y labels and another with negative y labels.
 - For the respective tables need to capture parameters/coefficients (w-hat) with high positive or negative probabilities. P range [0,1];
 - P(y=+1|xi,w) = 0.0 for y = -1; negative predictions.
 - P(y=-1|xi,w) = 1.0 for y = +1; positive predictions.
 - Practically no w-hat achieves prefect predictions usually like 0 or 1. Therefore the probabilities of coefficients very close to 0 or 1 must be considered.

The "best classifier" maximizes likelihood over all possible w0, w1, w2.

Data likelihood

· Quality metrics: Probability of data.

Case I. Input x1

- x[1] #awesome = 2 | x[2] #awful = 1 | y sentiment = +1
- If the model is good, should predict y-hat1 = +1;
- For the prediction to be possible, Probability y=+1 given xi and w must be maximum.

Case II. Input x2

- x[1] #awesome = 0 | x[2] #awful = 2 | y sentiment = -1
- If the model is good, should predict y-hat2 = -1;

• For the predictions to be possible, Probability y=-1 given xi and w must be maximum.

Maximizing likelihood

- For a given set of obervations, the model must provide a maximum probability that matches the values of the output label in the dataset.
 - if y = +1, then 0.5 < P(y=+1|xi, w) <= 1; Closer the Probability to 1, better the likelihood and certainity that it is negative.
 - if y = -1, then 0 <= P(y=-1|xi, w) <0.5; Closer the probability to 0, better the likelihood and certainity that it is negative.
 - Positive examples y=+1 maximize the probability of y=+1.
 - Negative examples y=-1 maximize the probability of y=-1.

The maximum likelihood of the dataset to obtain 'Single Measure of Quality' it is achieved - by multiplying the individual probabilities since rows are 'independent entities(multiply)'.

Goal is to optimize the likelihood by making the product of probabilities as large as possible.

Finding the best linear classifier with 'Gradient ascent'

ML Algorithm -> Gradient Ascent

- The quality metrics likelihood -> product of the probabilities of the true labels given the input sentence and coefficients.
- The goal is to maximize the likelihood function over all possible parameters.
- · It has no closed-form solution.
- It has only Gradient Ascent.

Gradient Ascent

- It is a concave function and the optimum is reached when the derivative is 0. This occurs at the peak
 of the curve.
- Algorithm: while not converged w(t+1) <- w(t) + η * (dl/dw).
 - (For 2-d space it is the derivative of the likelihood function, for higher dimension space the gradient of the likelihood function must be taken).

Convergence criteria:

- For concave function the optimum occurs at dl/dw = 0 (peak of the curve);
- In practice, the algorithm is stopped at a tolerance point (epsilon ε) since it is difficult to achieve 0.
 dl/dw < ε.

Contour plots

- It is the 2-D representation of the gradient ascent/ descent algorithm. Representation.
- The optimum is achieved when **magnitude of the coefficients/parameters decreases** and the **likelihood function reaches the optimum**.

Derivative of (log-) likelihood

- dl(w) / dwj = Σ(i=1---N) (feature values) * (truth prediction);
 - truth -> Indicator function -> 1 if yi = +1, else 0 when yi = -1.

Derivative of (log-)likelihood

Example - Computing derivative

- Consider the initial coefficients with values
 - w0(t) = 0, w1(t) = 1, w2(t) = -2
- The derivative is individually calculated for each row.
 - example x[1] = 2, x[2] = 1, y = +1, P(y=+1|x, w) = 0.5
 - Contribution to derivative w = feature *(|y=+1| P)
 - feature -x[1] = 2;
 - |y=+1| = 1 (if the y =+1 then 1; if y = -1 then 0)
 - Contribution to derivative w = 2 * (1 0.5) = 1;
 - example x[1] = 4, x[2] = 1, y = +1, P(y=+1|x, w) = 0.88
 - Contribution to derivative w = 4(1 0.88) = 0.48
- Total derivative = sum of all individual derivatives = 0.5 + 0.48 = 0.98
- Algorithm: $w1(t+1) <- w1(t) + \eta (dl/dw) = 1 + 0.1 \cdot 0.98 = 1.098; (\eta = 0.1);$
- updating a particular parameter w1. Therefore the feature 1 was considered.

$$\frac{\partial \ell(\mathbf{w}^{(t)})}{\partial \mathbf{w}_{j}} = \sum_{i=1}^{N} h_{j}(\mathbf{x}_{i}) \left(\mathbf{1}[y_{i} = +1] - P(y = +1 \mid \mathbf{x}_{i}, \mathbf{w}^{(t)}) \right)$$

$$\mathbf{w}^{(t)}_{0} = \mathbf{0}$$

$$\mathbf{w}^{(t)}_{0} = \mathbf{1}$$

$$\mathbf{w}^{(t)}_{0} = \mathbf{1}$$

$$\mathbf{x}^{(t)}_{0} = \mathbf{1}$$

$$\mathbf{x$$

Interpretation of the Derivative of (log-) likelihood

Consider the derivative of likelihood equation. Assume feature value (hj(xi) = 1)

- In case the labelled output y and prediction are the same, then the difference between the truth and prediction = 0.
 - yi = +1 & P(y=+1|xi, w) = 1, remains the same.
 - yi = -1 & P(y=+1|xi, w) = 0, remains the same.
- In case the **labelled output y** and **prediction** are different, the there is a difference term that leads to an increase or decrease in the next iteration parameters value.
 - yi = +1 & P(y=+1|xi, w) = 0, [truth prediction] = 1 0 = 1;
 - therefore the wj must increase. Score(xi) must be larger.
 - ∘ P(y=+1|xi, w)-> increases.
 - yi = -1 & P(y=+1|xi, w) = 1, [truth prediction] = 0 1 = -1;
 - therefore the wj must decrease. Score(xi) must be smaller.
 - P(y=+1|xi, w)-> decreases.

Gradient Ascent - Logistic Regression

Choosing step-size n

- Picking the step-size requires a lot of trail and error.
- Try several values that are exponentially spaced -> 10^-5, 10^-4, etc. Plot learning curves to see the convergence.
 - find one η that is too small (smooth but moving too slowly).
 - find one η that is too large (oscillations and divergence).
- Try values in between to find the 'best' η.
- Advanced tip -> can try 'step-sizes' that decrease with iterations...

Choosing $\eta: \eta(t) = \eta(0) / t$;

- η(0) -> constant step size derived from desired optimum function.
- t -> number of iterations.
- $\eta 1 = \eta 0/1,, \eta 10 = \eta 0/10,...$

Deriving gradient of logistic regression (Advanced)

• Goal - choose coefficients w maximizing likelihood.

$$\ell(\mathbf{w}) = \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

• Math is simplified by using log-likelihood - taking the natural log -ln/log-e.

- In log the product becomes sum and divison becomed subtraction.
- Log doesn't change the maximum. Since the goal is to maximize the likelihood. w-hat = In(w-hat).

Quiz

1.

(True/False) A linear classifier can only learn positive coefficients.

True

False

2

(True/False) In order to train a logistic regression model, we find the weights that maximize the likelihood of the model.

True

False

3.

(True/False) The data likelihood is the product of the probability of the inputs ${\bf x}$ given the weights ${\bf w}$ and response y.

True

False

Given a particular weights vector, a training observation, and its true label, the logistic regression model specifies a probability $P(y_{\rm pred}=y_{\rm true}\mid {\bf w},{\bf x})$. We want to maximize all of these probabilities. The likelihood is the product of these probabilities.

4

Questions 4 and 5 refer to the following scenario.

Consider the setting where our inputs are 1-dimensional. We have data

x	y
2.5	+1
0.3	-1
2.8	+1
0.5	+1

and the current estimates of the weights are $w_0=0$ and $w_1=1$. (w_0 : the intercept, w_1 : the weight for x).

Calculate the likelihood of this data. Round your answer to 2 decimal places.

0.23

$$\begin{split} &P(y_1=+1|x_1,w)P(y_2=-1|x_2,w)P(y_3=+1|x_3,w)P(y_4=+1|x_4,w)\\ &=\frac{1}{1+e^{-2.5}}\frac{e^{-0.3}}{1+e^{-0.3}}\frac{1}{1+e^{-2.8}}\frac{1}{1+e^{-0.5}}\\ &=0.230765\cdots \end{split}$$

In [1]:

```
import numpy as np
dummy_feature_matrix = np.array([[1.,2.5], [1.,0.3], [1.,2.8], [1.,0.5]])
dummy_coefficients = np.array([0., 1.])
sentiment = np.array([1., -1., 1., 1.])
def predict_probability(feature_matrix, coefficients):
    # Take dot product of feature_matrix and coefficients
    # YOUR CODE HERE
    scores = np.dot(feature matrix, coefficients)
    # Compute P(y_i = +1 \mid x_i, w) using the link function
    # YOUR CODE HERE
    predictions = 1. / (1 + np.exp(-scores))
    # return predictions
    return predictions
def compute_data_likelihood(sentiment, probability):
    indicator = (sentiment==+1)
    print "Indicator: ", indicator
    print "Probability of +1: ", probability
    # probability of (-1)= (1 - probability of +1)
    probability[~indicator] = 1 - probability[~indicator]
    print "Maximum likelihood: ", probability
    return np.prod(probability)
probability = predict_probability(dummy_feature_matrix, dummy_coefficients)
print probability
data likelihood = compute data likelihood(sentiment, probability)
print data likelihood
[ 0.92414182  0.57444252  0.94267582  0.62245933]
Indicator: [ True False True True]
Probability of +1: [ 0.92414182 0.57444252 0.94267582 0.62245933]
Maximum likelihood: [ 0.92414182  0.42555748  0.94267582  0.62245933]
0.230765141474
               Refer to the scenario given in Question 4 to answer the following:
```

Calculate the derivative of the log likelihood with respect to w_1 . Round your answer to 2 decimal places.

0.37

$$\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_1} = \sum_{i=1}^4 h_1(\mathbf{x}_i) \left(\mathbf{1}[y_i = +1] - P(y_i = +1|\mathbf{x}_i, \mathbf{w}) \right)
= 2.5 \left(1 - \frac{1}{1 + e^{-2.5}} \right) + 0.3 \left(0 - \frac{1}{1 + e^{-0.3}} \right)
+ 2.8 \left(1 - \frac{1}{1 + e^{-2.8}} \right) + 0.5 \left(1 - \frac{1}{1 + e^{-0.5}} \right)
= 0.366591 \cdots$$

In [2]:

```
def compute_derivative_log_likelihood(feature_vector, sentiment, probability):
    """ Compute derivative of feature vector
    - In this case, the feature vector with respect to w1
    indicator = (sentiment==+1)
    print "Indicator: ", indicator
    # Contribution to derivative for w1
    contribution = feature_vector * (indicator - probability)
    print "Contribution: ", contribution
    return np.sum(contribution)
probability = predict_probability(dummy_feature_matrix, dummy_coefficients)
print probability
# In this case, the feature vector (dummy_feature_matrix[:, 1]) with respect to w1
compute_derivative_log_likelihood(dummy_feature_matrix[:, 1], sentiment, probability)
[ 0.92414182  0.57444252  0.94267582  0.62245933]
Indicator: [ True False True True]
Contribution: [ 0.18964545 -0.17233276  0.16050769  0.18877033]
Out[2]:
0.36659072192551606
                      6
                      Which of the following is true about gradient ascent? Select all that apply.
                          It is an iterative algorithm
                           It only updates a few of the parameters, not all of them
                          It finds the maximum by "hill climbing"
In [ ]:
```