4. Evalúe cada uno de los determinantes:

(a)
$$\begin{vmatrix} 1 & 0 & -2 \\ 5 & 4 & 1 \\ 2 & 10 & 0 \end{vmatrix}$$

(b)
$$\begin{vmatrix} 0.5 & 1 & -0.8 \\ 0.1 & 1.2 & 1.5 \\ -0.1 & -0.3 & 5 \end{vmatrix}$$

*8. Determine V_1 , V_2 , V_3 y V_4 resolviendo el siguiente conjunto de ecuaciones con una calculadora:

$$16V_1 + 10V_2 - 8V_3 - 3V_4 = 15$$

$$2V_1 + 0V_2 + 5V_3 + 2V_4 = 0$$

$$-7V_1 - 12V_2 + 0V_3 + 0V_4 = 9$$

$$-1V_1 + 20V_2 - 18V_3 + 0V_4 = 10$$

$$x_1 = \frac{165}{292}$$

$$x_2 = \frac{491}{1168}$$

$$x_3 = \frac{-35}{292}$$

$$x_4 = \frac{-155}{584}$$

La solución general:
$$X = \begin{pmatrix} \frac{165}{292} \\ \frac{491}{1168} \\ \frac{-35}{292} \\ \frac{-155}{584} \end{pmatrix}$$

12. Resuelva para cada una de las corrientes de rama ilustradas en la figura 9-26.

16. Escriba el determinante característico para las ecuaciones:

$$0.045I_{A} + 0.130I_{B} + 0.066I_{C} = 0$$

 $0.177I_{A} + 0.0420I_{B} + 0.109I_{C} = 12$
 $0.078I_{A} + 0.196I_{B} + 0.029I_{C} = 3.0$

20. Escriba las ecuaciones de lazo para el circuito de la figura 9-29.

Malla 1:
$$1, 5 = 471A + 10(1A - 1B)$$
 $1, 5 = 571A - 101B$

Malla 2: $-3 = 4,1(2B - 1C) + 272B + 10(2B - 1A)$
 $-3 = -101A + 41,71B - 4,71C$

Malla 3: $3 - 1,5 = 4,7(2C - 1B) + 151C$
 $-4,71B + 14,71C = 1,5$

24. Cuando se conecta un resistor de $10 \text{ k}\Omega$ desde la terminal A hasta la terminal B en la figura 9-30, ¿cuál es la corriente que circula a través de él?

28. Escriba las ecuaciones de voltaje de nodo para la figura 9-29. Use su calculadora para determinar los voltajes de nodo.

Nodo A: II - I2 + I3 = 0	$\frac{1.5 \text{ VA}}{47} = \frac{\text{VA}}{10} + \frac{\text{V} \text{ D} - \text{VA}}{97} = 0$
$I = \frac{y_1}{Q_1} = \frac{y_{S1} - y_A}{Q_1}$	40 s - 270VA - 12 69 VA + 470VB - 470 VA = 0. 1269
$12 = \frac{V_I}{R_3} = \frac{VA}{R_2}$	2009VA - 470 VD = 40 5
$I_3 = \frac{V_3}{R_3} = \frac{VB - VA}{R_3}$	

VB - 1	1A - 3	-VB	VB	1,5	-0			9	0	1	1
2		9,7	19	5							_
13 n . r	10 700	3/01		1. (01			10	11		
4:07.5	VB-705	VA - 12	15 4 40	os VB	4-12	16,41	113 +	19	0, 3	35	0
Alex	-70,9	5VA +6	02,41	B=1	40	5, 33					
							11	O T		e 1	
				VA=	0,	168 V	-				