# Kubikk rotasymptotikk

Jonas Moss

December 15, 2015



#### Hva er kubikkrotasympotikk?

- $n^{\frac{1}{3}}(\widehat{\theta} \theta_0) \stackrel{d}{\rightarrow} Z$ .
- Vanlig rate:  $n^{\frac{1}{2}}(\widehat{\theta} \theta_0) \stackrel{d}{\to} Z$ . Kubikkrotasymptotikk er ineffisient. (Variansen er  $\frac{\sigma^2}{n^{\frac{2}{3}}}$  istedenfor  $\frac{\sigma^2}{n}$ .)
- Outline av presentasjonen:
  - M-estimering
  - Eksempler og egenskaper ved kubikkrotasymptotikk
  - Irregulære histogrammer

#### Hva er kubikkrotasympotikk?

- $n^{\frac{1}{3}}(\widehat{\theta}-\theta_0)\stackrel{d}{\rightarrow} Z$ .
- Vanlig rate:  $n^{\frac{1}{2}}(\widehat{\theta} \theta_0) \stackrel{d}{\to} Z$ . Kubikkrotasymptotikk er
- Outline av presentasjonen:

- Hva er kubikkrotasympotikk?
  - $n^{\frac{1}{3}}(\widehat{\theta}-\theta_0)\stackrel{d}{\rightarrow} Z$ .
  - Vanlig rate:  $n^{\frac{1}{2}}(\widehat{\theta} \theta_0) \stackrel{d}{\to} Z$ . Kubikkrotasymptotikk er ineffisient. (Variansen er  $\frac{\sigma^2}{n^{\frac{2}{3}}}$  istedenfor  $\frac{\sigma^2}{n}$ .)
- Outline av presentasjonen:
  - M-estimering
  - Eksempler og egenskaper ved kubikkrotasymptotikk
  - Irregulære histogrammer

- Hva er kubikkrotasympotikk?
  - $n^{\frac{1}{3}}(\widehat{\theta}-\theta_0)\stackrel{d}{\rightarrow} Z$ .
  - Vanlig rate:  $n^{\frac{1}{2}}(\widehat{\theta} \theta_0) \stackrel{d}{\to} Z$ . Kubikkrotasymptotikk er ineffisient. (Variansen er  $\frac{\sigma^2}{n^{\frac{2}{3}}}$  istedenfor  $\frac{\sigma^2}{n}$ .)
- Outline av presentasjonen:
  - M-estimering
  - Eksempler og egenskaper ved kubikkrotasymptotikk
  - Irregulære histogrammer

- Hva er kubikkrotasympotikk?
  - $n^{\frac{1}{3}}(\widehat{\theta}-\theta_0)\stackrel{d}{\rightarrow} Z$ .
  - Vanlig rate:  $n^{\frac{1}{2}}(\widehat{\theta} \theta_0) \stackrel{d}{\to} Z$ . Kubikkrotasymptotikk er ineffisient. (Variansen er  $\frac{\sigma^2}{n^3}$  istedenfor  $\frac{\sigma^2}{n}$ .)
- Outline av presentasjonen:
  - M-estimering
  - Eksempler og egenskaper ved kubikkrotasymptotikk
  - Irregulære histogrammer

- Hva er kubikkrotasympotikk?
  - $n^{\frac{1}{3}}(\widehat{\theta}-\theta_0)\stackrel{d}{\rightarrow} Z$ .
  - Vanlig rate:  $n^{\frac{1}{2}}(\widehat{\theta} \theta_0) \stackrel{d}{\to} Z$ . Kubikkrotasymptotikk er ineffisient. (Variansen er  $\frac{\sigma^2}{n^3}$  istedenfor  $\frac{\sigma^2}{n}$ .)
- Outline av presentasjonen:
  - M-estimering
  - Eksempler og egenskaper ved kubikkrotasymptotikk
    - Irregulære histogrammer

- Hva er kubikkrotasympotikk?
  - $n^{\frac{1}{3}}(\widehat{\theta}-\theta_0)\stackrel{d}{\rightarrow} Z$ .
  - Vanlig rate:  $n^{\frac{1}{2}}(\widehat{\theta} \theta_0) \stackrel{d}{\to} Z$ . Kubikkrotasymptotikk er ineffisient. (Variansen er  $\frac{\sigma^2}{n^{\frac{2}{3}}}$  istedenfor  $\frac{\sigma^2}{n}$ .)
- Outline av presentasjonen:
  - M-estimering
  - Eksempler og egenskaper ved kubikkrotasymptotikk
  - Irregulære histogrammer

La  $m: \Omega \times \Theta \to \mathbb{R}$ .

- Kalles  $m_{\theta}$ , "objektfunksjon"
- Eksempel:  $m_{\theta}(X_i) = \log f_{\theta}(X_i)$

- $Pm_{\theta} = \int m_{\theta}(x) dP(x)$
- Når  $X_i \sim P$  er iid stokastiske variabler, $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
- Følgelig:  $P_n m_\theta = \frac{1}{n} \sum_{i=1}^n m_\theta(X_i)$

La  $m: \Omega \times \Theta \to \mathbb{R}$ .

- Kalles  $m_{\theta}$ , "objektfunksjon"
- Eksempel:  $m_{\theta}(X_i) = \log f_{\theta}(X_i)$

- $Pm_{\theta} = \int m_{\theta}(x) dP(x)$
- Når  $X_i \sim P$  er iid stokastiske variabler, $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
- Følgelig:  $P_n m_\theta = \frac{1}{n} \sum_{i=1}^n m_\theta(X_i)$

La  $m: \Omega \times \Theta \to \mathbb{R}$ .

- Kalles  $m_{\theta}$ , "objektfunksjon"
- Eksempel:  $m_{\theta}(X_i) = \log f_{\theta}(X_i)$

- $Pm_{\theta} = \int m_{\theta}(x) dP(x)$
- Når  $X_i \sim P$  er iid stokastiske variabler, $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
- Følgelig:  $P_n m_\theta = \frac{1}{n} \sum_{i=1}^n m_\theta(X_i)$

La  $m: \Omega \times \Theta \to \mathbb{R}$ .

- Kalles  $m_{\theta}$ , "objektfunksjon"
- Eksempel:  $m_{\theta}(X_i) = \log f_{\theta}(X_i)$

- $Pm_{\theta} = \int m_{\theta}(x) dP(x)$
- Når  $X_i \sim P$  er iid stokastiske variabler, $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
- Følgelig:  $P_n m_\theta = \frac{1}{n} \sum_{i=1}^n m_\theta(X_i)$

La  $m: \Omega \times \Theta \to \mathbb{R}$ .

- Kalles  $m_{\theta}$ , "objektfunksjon"
- Eksempel:  $m_{\theta}(X_i) = \log f_{\theta}(X_i)$

- $Pm_{\theta} = \int m_{\theta}(x) dP(x)$
- Når  $X_i \sim P$  er iid stokastiske variabler, $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
- Følgelig:  $P_n m_\theta = \frac{1}{n} \sum_{i=1}^n m_\theta(X_i)$

# Definisjon av M-estimatorer

## M-estimatorer har formen $\widehat{\theta} = \operatorname{argmax}_{\theta} P_n m_{\theta}$ .

- $m_{\theta}(x) = \log f_{\theta}(x)$  gir maximum likelihood
- Kjent fra robust statistikk. (Huber, 1964). Veldig stor klasse av estimatorer.
- $m_{\theta}(x) = -|x \theta|$  (median),  $m_{\theta}(x) = -(x \theta)^2$  (snitt)

Vil  $\widehat{\theta} \xrightarrow{P} \operatorname{argmax}_{\theta} Pm_{\theta} = \theta_0$ ? Trenger kontinuitet av argmaxfunksjonalen.

•  $||P_n m_\theta - P m_\theta||_K \stackrel{p}{\to} 0$  for alle kompakte  $K \subseteq \Theta$ . En Glivenko-Cantelli betingelse. (STL:  $P_n m_\theta \stackrel{p}{\to} P m_\theta$  punktvis  $\theta$ .)

# Definisjon av M-estimatorer

## M-estimatorer har formen $\widehat{\theta} = \operatorname{argmax}_{\theta} P_n m_{\theta}$ .

- $m_{\theta}(x) = \log f_{\theta}(x)$  gir maximum likelihood
- Kjent fra robust statistikk. (Huber, 1964). Veldig stor klasse av estimatorer.
- $m_{\theta}(x) = -|x \theta|$  (median),  $m_{\theta}(x) = -(x \theta)^2$  (snitt)

Vil  $\widehat{\theta} \xrightarrow{P} \operatorname{argmax}_{\theta} Pm_{\theta} = \theta_0$ ? Trenger kontinuitet av argmaxfunksjonalen.

•  $||P_n m_\theta - P m_\theta||_K \stackrel{P}{\to} 0$  for alle kompakte  $K \subseteq \Theta$ . En Glivenko-Cantelli betingelse. (STL:  $P_n m_\theta \stackrel{P}{\to} P m_\theta$  punktvis  $\theta$ .)

M-estimatorer har formen  $\widehat{\theta} = \operatorname{argmax}_{\theta} P_n m_{\theta}$ .

- $m_{\theta}(x) = \log f_{\theta}(x)$  gir maximum likelihood
- Kjent fra robust statistikk. (Huber, 1964). Veldig stor klasse av estimatorer.

• 
$$m_{\theta}(x) = -|x - \theta|$$
 (median),  $m_{\theta}(x) = -(x - \theta)^2$  (snitt)

•  $||P_n m_{\theta} - P m_{\theta}||_K \stackrel{p}{\to} 0$  for alle kompakte  $K \subseteq \Theta$ . En

Oppsummering

# M-estimatorer har formen $\widehat{\theta} = \operatorname{argmax}_{\theta} P_n m_{\theta}$ .

- $m_{\theta}(x) = \log f_{\theta}(x)$  gir maximum likelihood
- Kjent fra robust statistikk. (Huber, 1964). Veldig stor klasse av estimatorer.
- $m_{\theta}(x) = -|x \theta|$  (median),  $m_{\theta}(x) = -(x \theta)^2$  (snitt)

•  $||P_n m_{\theta} - P m_{\theta}||_K \stackrel{p}{\to} 0$  for alle kompakte  $K \subseteq \Theta$ . En

## Definisjon av M-estimatorer

M-estimatorer har formen  $\widehat{\theta} = \operatorname{argmax}_{\theta} P_n m_{\theta}$ .

- $m_{\theta}(x) = \log f_{\theta}(x)$  gir maximum likelihood
- Kjent fra robust statistikk. (Huber, 1964). Veldig stor klasse av estimatorer.
- $m_{\theta}(x) = -|x \theta|$  (median),  $m_{\theta}(x) = -(x \theta)^2$  (snitt)

Vil  $\widehat{\theta} \xrightarrow{p} \operatorname{argmax}_{\theta} Pm_{\theta} = \theta_0$ ? Trenger kontinuitet av argmaxfunksjonalen.

•  $||P_n m_\theta - P m_\theta||_K \stackrel{p}{\to} 0$  for alle kompakte  $K \subseteq \Theta$ . En Glivenko-Cantelli betingelse. (STL:  $P_n m_\theta \stackrel{p}{\to} P m_\theta$  punktvis  $\theta$ .)

## Definisjon av M-estimatorer

M-estimatorer har formen  $\widehat{\theta} = \operatorname{argmax}_{\theta} P_n m_{\theta}$ .

- $m_{\theta}(x) = \log f_{\theta}(x)$  gir maximum likelihood
- Kjent fra robust statistikk. (Huber, 1964). Veldig stor klasse av estimatorer.
- $m_{\theta}(x) = -|x \theta|$  (median),  $m_{\theta}(x) = -(x \theta)^2$  (snitt)

Vil  $\widehat{\theta} \xrightarrow{p} \operatorname{argmax}_{\theta} Pm_{\theta} = \theta_0$ ? Trenger kontinuitet av argmaxfunksjonalen.

•  $||P_n m_\theta - P m_\theta||_K \xrightarrow{p} 0$  for alle kompakte  $K \subseteq \Theta$ . En Glivenko-Cantelli betingelse. (STL:  $P_n m_\theta \xrightarrow{p} P m_\theta$  punktvis i  $\theta$ .)

## Konvergensrate

Rateteoremet er et generelt verktøy for å finne grensefordelinger, fra "Weak convergence" van der Vaart and Wellner (1996, teorem, 3.2.10).

#### **Theorem**

Anta

$$\lim_{\delta \searrow 0} \frac{P(m_{\theta_0 + \delta g} m_{\theta_0 + \delta h})}{\delta} = K(g, h), \tag{1}$$

for en Gaussisk prosess G med kovarianskjerne K. Sett  $V=rac{d^2}{d\theta^2}Pm_{\theta}\mid_{\theta=\theta_0}$ . Da vil

$$n^{\frac{1}{3}}(\widehat{\theta} - \theta_0) \stackrel{d}{\rightarrow} argmax_h \left[ G(h) + \frac{1}{2}h^T Vh \right]$$

Om  $\delta^2$  istedenfor  $\delta$  i nevneren i (1) får vi  $\sqrt{n}$ -konvergens.

## Konvergensrate

Rateteoremet er et generelt verktøy for å finne grensefordelinger, fra "Weak convergence" van der Vaart and Wellner (1996, teorem, 3.2.10).

#### **Theorem**

Anta

$$\lim_{\delta \searrow 0} \frac{P(m_{\theta_0 + \delta g} m_{\theta_0 + \delta h})}{\delta} = K(g, h), \tag{1}$$

for en Gaussisk prosess G med kovarianskjerne K. Sett  $V=rac{d^2}{d\theta^2}Pm_\theta\mid_{\theta=\theta_0}$ . Da vil

$$n^{\frac{1}{3}}(\widehat{\theta} - \theta_0) \stackrel{d}{\rightarrow} argmax_h \left[ G(h) + \frac{1}{2}h^T Vh \right].$$

Om  $\delta^2$  istedenfor  $\delta$  i nevneren i (1) får vi  $\sqrt{n}$ -konvergens.

- Chernoffs (1964) estimator for topppunktet :  $\operatorname{argmax}_{\theta} P_n[\theta-1,\theta+1]$
- (Rousseeuw, 1984) Lineær regresjon. Minste median av kvadrater:  $\operatorname{argmin}_{\beta} \operatorname{median}(y_i X_i^T \beta)^2$ .
  - Veldig robust: Breakdown point på 0.5.
- Histogrammer og histogramregresjon (Banerjee and McKeague, 2007).
- Manskis (1975) maximum score estimator.  $X_i \sim f$  og  $Y_i = 1_{[X_i^T \beta + \varepsilon_i \geq 0]}$ .  $\widehat{\theta} = \operatorname{argmax}_{\beta} \sum_{i=1}^n (Y_i \frac{1}{2}) 1_{X_i^T \beta \geq 0}$  (Grensefordeling: Kim and Pollard (1990))

- Chernoffs (1964) estimator for topppunktet :  $\operatorname{argmax}_{\theta} P_n[\theta-1,\theta+1]$
- (Rousseeuw, 1984) Lineær regresjon. Minste median av kvadrater:  $\operatorname{argmin}_{\beta} \operatorname{median}(y_i X_i^T \beta)^2$ .
  - Veldig robust: Breakdown point på 0.5.
- Histogrammer og histogramregresjon (Banerjee and McKeague, 2007).
- Manskis (1975) maximum score estimator.  $X_i \sim f$  og  $Y_i = 1_{[X_i^T \beta + \varepsilon_i \ge 0]}$ .  $\widehat{\theta} = \operatorname{argmax}_{\beta} \sum_{i=1}^n (Y_i \frac{1}{2}) 1_{X_i^T \beta \ge 0}$  (Grensefordeling: Kim and Pollard (1990))

- Chernoffs (1964) estimator for topppunktet :  $\operatorname{argmax}_{\theta} P_n[\theta-1,\theta+1]$
- (Rousseeuw, 1984) Lineær regresjon. Minste median av kvadrater:  $\operatorname{argmin}_{\beta} \operatorname{median}(y_i X_i^T \beta)^2$ .
  - Veldig robust: Breakdown point på 0.5.
- Histogrammer og histogramregresjon (Banerjee and McKeague, 2007).
- Manskis (1975) maximum score estimator.  $X_i \sim f$  og  $Y_i = 1_{[X_i^T \beta + \varepsilon_i \ge 0]}$ .  $\widehat{\theta} = \operatorname{argmax}_{\beta} \sum_{i=1}^n (Y_i \frac{1}{2}) 1_{X_i^T \beta \ge 0}$  (Grensefordeling: Kim and Pollard (1990))

- Chernoffs (1964) estimator for topppunktet :  $\operatorname{argmax}_{\theta} P_n[\theta-1,\theta+1]$
- (Rousseeuw, 1984) Lineær regresjon. Minste median av kvadrater:  $\operatorname{argmin}_{\beta} \operatorname{median}(y_i X_i^T \beta)^2$ .
  - Veldig robust: Breakdown point på 0.5.
- Histogrammer og histogramregresjon (Banerjee and McKeague, 2007).
- Manskis (1975) maximum score estimator.  $X_i \sim f$  og  $Y_i = 1_{[X_i^T \beta + \varepsilon_i \ge 0]}$ .  $\widehat{\theta} = \operatorname{argmax}_{\beta} \sum_{i=1}^n (Y_i \frac{1}{2}) 1_{X_i^T \beta \ge 0}$  (Grensefordeling: Kim and Pollard (1990))

- Chernoffs (1964) estimator for topppunktet :  $\operatorname{argmax}_{\theta} P_n[\theta-1,\theta+1]$
- (Rousseeuw, 1984) Lineær regresjon. Minste median av kvadrater:  $\operatorname{argmin}_{\beta} \operatorname{median}(y_i X_i^T \beta)^2$ .
  - Veldig robust: Breakdown point på 0.5.
- Histogrammer og histogramregresjon (Banerjee and McKeague, 2007).
- Manskis (1975) maximum score estimator.  $X_i \sim f$  og  $Y_i = 1_{[X_i^T \beta + \varepsilon_i \geq 0]}$ .  $\widehat{\theta} = \operatorname{argmax}_{\beta} \sum_{i=1}^n (Y_i \frac{1}{2}) 1_{X_i^T \beta \geq 0}$  (Grensefordeling: Kim and Pollard (1990))

- Både  $P_n m_\theta$  og  $Pm_\theta$  er to ganger kontinuerlig deriverbar i  $\theta$ . "Lokalt kvadratisk".
- Grensefordelingen er normal,  $\sqrt{n}(\widehat{\theta} \theta) \rightarrow N(0, J^{-1}KJ^{-1})$ .
- Kan beregnes via Newton-Raphson etc. Noen ganger analytisk.
- Bootstrap funger fint, grensefordelinga kan enkelt beregnes og konvergensen er rask.
- Enkelt å identifisere grensefordelinga via "klassisk" teori.

- Både  $P_n m_\theta$  og  $Pm_\theta$  er to ganger kontinuerlig deriverbar i  $\theta$ . "Lokalt kvadratisk".
- Grensefordelingen er normal,  $\sqrt{n}(\widehat{\theta} \theta) \rightarrow N(0, J^{-1}KJ^{-1})$ .
- Kan beregnes via Newton-Raphson etc. Noen ganger analytisk.
- Bootstrap funger fint, grensefordelinga kan enkelt beregnes og konvergensen er rask.
- Enkelt å identifisere grensefordelinga via "klassisk" teori.

- Både  $P_n m_\theta$  og  $Pm_\theta$  er to ganger kontinuerlig deriverbar i  $\theta$ . "Lokalt kvadratisk".
- Grensefordelingen er normal,  $\sqrt{n}(\widehat{\theta}-\theta) \to N(0,J^{-1}KJ^{-1})$ .
- Kan beregnes via Newton-Raphson etc. Noen ganger analytisk.
- Bootstrap funger fint, grensefordelinga kan enkelt beregnes og konvergensen er rask.
- Enkelt å identifisere grensefordelinga via "klassisk" teori.

- Både  $P_n m_\theta$  og  $Pm_\theta$  er to ganger kontinuerlig deriverbar i  $\theta$ . "Lokalt kvadratisk".
- Grensefordelingen er normal,  $\sqrt{n}(\widehat{\theta} \theta) \to N(0, J^{-1}KJ^{-1})$ .
- Kan beregnes via Newton-Raphson etc. Noen ganger analytisk.
- Bootstrap funger fint, grensefordelinga kan enkelt beregnes og konvergensen er rask.
- Enkelt å identifisere grensefordelinga via "klassisk" teori.

- Både  $P_n m_\theta$  og  $Pm_\theta$  er to ganger kontinuerlig deriverbar i  $\theta$ . "Lokalt kvadratisk".
- Grensefordelingen er normal,  $\sqrt{n}(\widehat{\theta} \theta) \to N(0, J^{-1}KJ^{-1})$ .
- Kan beregnes via Newton-Raphson etc. Noen ganger analytisk.
- Bootstrap funger fint, grensefordelinga kan enkelt beregnes og konvergensen er rask.
- Enkelt å identifisere grensefordelinga via "klassisk" teori.

- Både  $P_n m_\theta$  og  $Pm_\theta$  er to ganger kontinuerlig deriverbar i  $\theta$ . "Lokalt kvadratisk".
- Grensefordelingen er normal,  $\sqrt{n}(\widehat{\theta} \theta) \to N(0, J^{-1}KJ^{-1})$ .
- Kan beregnes via Newton-Raphson etc. Noen ganger analytisk.
- Bootstrap funger fint, grensefordelinga kan enkelt beregnes og konvergensen er rask.
- Enkelt å identifisere grensefordelinga via "klassisk" teori.

- $P_n m_{\theta}$  er ikke deriverbar, men  $P m_{\theta}$  er to ganger kontinuerlig deriverbar.
  - $m_{\theta}$  er diskontinuerlig i  $\theta$ , mens  $Pm_{\theta}$  ikke er det. "Integration smoothens business."
- Grenseprosessen er *ikke* normal. argmax<sub>s</sub>  $\left[\frac{1}{2}s^TVs + \sum_{i=1}^k \alpha_i W_i(s)\right]$  istedenfor.
- Må bruke kombinatorisk optimering. (NP-hard).
- Inkonsistent bootstrap, problematisk grensefordeling med treg konvergens.
- En jobb å finne grensefordelinga. Klassisk teori fungerer ikke.

- $P_n m_{\theta}$  er ikke deriverbar, men  $P m_{\theta}$  er to ganger kontinuerlig deriverbar.
  - $m_{\theta}$  er diskontinuerlig i  $\theta$ , mens  $Pm_{\theta}$  ikke er det. "Integration smoothens business."
- Grenseprosessen er *ikke* normal. argmax<sub>s</sub>  $\left[\frac{1}{2}s^TVs + \sum_{i=1}^k \alpha_i W_i(s)\right]$  istedenfor.
- Må bruke kombinatorisk optimering. (NP-hard).
- Inkonsistent bootstrap, problematisk grensefordeling med treg konvergens.
- En jobb å finne grensefordelinga. Klassisk teori fungerer ikke.



- $P_n m_\theta$  er ikke deriverbar, men  $Pm_\theta$  er to ganger kontinuerlig deriverbar.
  - $m_{\theta}$  er diskontinuerlig i  $\theta$ , mens  $Pm_{\theta}$  ikke er det. "Integration smoothens business."
- Grenseprosessen er *ikke* normal. argmax<sub>s</sub>  $\left[\frac{1}{2}s^TVs + \sum_{i=1}^k \alpha_i W_i(s)\right]$  istedenfor.
- Må bruke kombinatorisk optimering. (NP-hard).
- Inkonsistent bootstrap, problematisk grensefordeling med treg konvergens.
- En jobb å finne grensefordelinga. Klassisk teori fungerer ikke.

- $P_n m_{\theta}$  er ikke deriverbar, men  $P m_{\theta}$  er to ganger kontinuerlig deriverbar.
  - $m_{\theta}$  er diskontinuerlig i  $\theta$ , mens  $Pm_{\theta}$  ikke er det. "Integration smoothens business."
- Grenseprosessen er *ikke* normal. argmax<sub>s</sub>  $\left[\frac{1}{2}s^T V s + \sum_{i=1}^k \alpha_i W_i(s)\right]$  istedenfor.
- Må bruke kombinatorisk optimering. (NP-hard).
- Inkonsistent bootstrap, problematisk grensefordeling med treg konvergens.
- En jobb å finne grensefordelinga. Klassisk teori fungerer ikke.



### Kubikkrøtter

### Egenskaper ved kubikkrotasymptikk.

- $P_n m_\theta$  er ikke deriverbar, men  $Pm_\theta$  er to ganger kontinuerlig deriverbar.
  - $m_{\theta}$  er diskontinuerlig i  $\theta$ , mens  $Pm_{\theta}$  ikke er det. "Integration smoothens business."
- Grenseprosessen er *ikke* normal. argmax<sub>s</sub>  $\left[\frac{1}{2}s^T V s + \sum_{i=1}^k \alpha_i W_i(s)\right]$  istedenfor.
- Må bruke kombinatorisk optimering. (NP-hard).
- Inkonsistent bootstrap, problematisk grensefordeling med treg konvergens.
- En jobb å finne grensefordelinga. Klassisk teori fungerer ikke.



### Kubikkrøtter

### Egenskaper ved kubikkrotasymptikk.

- $P_n m_\theta$  er ikke deriverbar, men  $Pm_\theta$  er to ganger kontinuerlig deriverbar.
  - $m_{\theta}$  er diskontinuerlig i  $\theta$ , mens  $Pm_{\theta}$  ikke er det. "Integration smoothens business."
- Grenseprosessen er *ikke* normal. argmax<sub>s</sub>  $\left[\frac{1}{2}s^T Vs + \sum_{i=1}^k \alpha_i W_i(s)\right]$  istedenfor.
- Må bruke kombinatorisk optimering. (NP-hard).
- Inkonsistent bootstrap, problematisk grensefordeling med treg konvergens.
- En jobb å finne grensefordelinga. Klassisk teori fungerer ikke.

### Definition (Histogrammer)

Histogramtettheter på [0,1] er  $h \ll \lambda$  på formen

$$h(x) = \sum_{i=1}^{k} \frac{w_i}{a_i - a_{i-1}} 1_{[a_{i-1}, a_i)}(x),$$

- Udefinert i høyre endepunkt.
- Definer  $\mathcal{H}_k = \{h \mid h \text{ er et histogram med } k \text{ blokker}\}$
- $\mathcal{H}_k$  er en "diskontinuerlig" modell for tettheter på [0,1] (i sup-norm).
- Elementer i  $\mathcal{H}_k$  kalles  $h_k$



### Definition (Histogrammer)

Histogramtettheter på [0,1] er  $h \ll \lambda$  på formen

$$h(x) = \sum_{i=1}^{k} \frac{w_i}{a_i - a_{i-1}} 1_{[a_{i-1}, a_i)}(x),$$

- Udefinert i høyre endepunkt.
- Definer  $\mathcal{H}_k = \{h \mid h \text{ er et histogram med } k \text{ blokker}\}$
- $\mathcal{H}_k$  er en "diskontinuerlig" modell for tettheter på [0,1] (i sup-norm).
- Elementer i  $\mathcal{H}_k$  kalles  $h_k$

### Definition (Histogrammer)

Histogramtettheter på [0,1] er  $h \ll \lambda$  på formen

$$h(x) = \sum_{i=1}^{k} \frac{w_i}{a_i - a_{i-1}} 1_{[a_{i-1}, a_i)}(x),$$

- Udefinert i høyre endepunkt.
- Definer  $\mathcal{H}_k = \{h \mid h \text{ er et histogram med } k \text{ blokker}\}$
- $\mathcal{H}_k$  er en "diskontinuerlig" modell for tettheter på [0,1] (i sup-norm).
- Elementer i  $\mathcal{H}_k$  kalles  $h_k$



### Definition (Histogrammer)

Histogramtettheter på [0,1] er  $h \ll \lambda$  på formen

$$h(x) = \sum_{i=1}^{k} \frac{w_i}{a_i - a_{i-1}} 1_{[a_{i-1}, a_i)}(x),$$

- Udefinert i høyre endepunkt.
- Definer  $\mathcal{H}_k = \{h \mid h \text{ er et histogram med } k \text{ blokker}\}$
- $\mathcal{H}_k$  er en "diskontinuerlig" modell for tettheter på [0,1] (i sup-norm).
- Elementer i  $\mathcal{H}_k$  kalles  $h_k$



### Definition (Histogrammer)

Histogramtettheter på [0,1] er  $h \ll \lambda$  på formen

$$h(x) = \sum_{i=1}^{k} \frac{w_i}{a_i - a_{i-1}} 1_{[a_{i-1}, a_i)}(x),$$

- Udefinert i høyre endepunkt.
- Definer  $\mathcal{H}_k = \{h \mid h \text{ er et histogram med } k \text{ blokker}\}$
- $\mathcal{H}_k$  er en "diskontinuerlig" *modell* for tettheter på [0,1] (i sup-norm).
- Elementer i  $\mathcal{H}_k$  kalles  $h_k$



Oppsummering

- Mål: Approksimer en sannsynlighet P med tetthet f på [0,1] med et histogram  $h_k$ .
- Metode: Velg  $h_k$  ved minimering av statistiske divergenser.
- Eksempler: Kullback-Leibler  $(d_{KL}), L_p$

$$\operatorname{argmin}_{h_k \in \mathscr{H}_k} d_{KL}(f, h_k) = \operatorname{argmin}_{(a, w)} Pm_{(a, w)} = (a^0, w^0)$$

- Mål: Approksimer en sannsynlighet P med tetthet f på [0,1] med et histogram  $h_k$ .
- Metode: Velg  $h_k$  ved minimering av statistiske divergenser.
- **Eksempler:** Kullback-Leibler ( $d_{KL}$ ),  $L_p$ , Kolmogorovavstanden, BHHJ, *etc.*

Identifiserer  $h_k$  med (w, a). Da er

$$\operatorname{argmin}_{h_k \in \mathscr{H}_k} d_{KL}(f, h_k) = \operatorname{argmin}_{(a, w)} Pm_{(a, w)} = (a^0, w^0)$$

hvor  $m_{(a,w)} = \sum_{i=1}^{k} \log \frac{w_i}{a_i - a_{i-1}} 1_{[a_{i-1},a_i)}$ . Lett å vise at  $w_i^0 = P[a_{i-1}^0, a_i^0)$ .

- Mål: Approksimer en sannsynlighet P med tetthet f på [0,1] med et histogram  $h_k$ .
- Metode: Velg  $h_k$  ved minimering av statistiske divergenser.
- Eksempler: Kullback-Leibler (d<sub>KL</sub>), L<sub>p</sub>,
   Kolmogorovavstanden, BHHJ, etc.

Identifiserer  $h_k$  med (w, a). Da er

$$\operatorname{argmin}_{h_k \in \mathscr{H}_k} d_{KL}(f, h_k) = \operatorname{argmin}_{(a, w)} Pm_{(a, w)} = (a^0, w^0)$$

hvor  $m_{(a,w)} = \sum_{i=1}^{k} \log \frac{w_i}{a_i - a_{i-1}} 1_{[a_{i-1},a_i)}$ . Lett å vise at  $w_i^0 = P[a_{i-1}^0, a_i^0)$ .

- Mål: Approksimer en sannsynlighet P med tetthet f på [0,1] med et histogram  $h_k$ .
- Metode: Velg  $h_k$  ved minimering av statistiske divergenser.
- Eksempler: Kullback-Leibler (d<sub>KL</sub>), L<sub>p</sub>,
   Kolmogorovavstanden, BHHJ, etc.

Identifiserer  $h_k \mod (w, a)$ . Da er

$$\operatorname{argmin}_{h_k \in \mathscr{H}_k} d_{KL}(f, h_k) = \operatorname{argmin}_{(a,w)} Pm_{(a,w)} = (a^0, w^0),$$

hvor 
$$m_{(a,w)} = \sum_{i=1}^k \log \frac{w_i}{a_i - a_{i-1}} 1_{[a_{i-1},a_i)}$$
. Lett å vise at  $w_i^0 = P[a_{i-1}^0, a_i^0)$ .

• Vil approksimere  $(a^0, w^0)$  med  $\operatorname{argmin}_{(a,w)} P_n m_{(a,w)}$ .

Kan vises at

$$\operatorname{argmin}_{(a,w)} P_n m_{(a,w)} \stackrel{P}{\to} (a^0, w^0),$$

via enten Vapnik-Chervonenkisteori eller bracketing entropy. Også mulig å se på delmengder av  $\mathcal{H}_k$ :

- Om a er konstant: Regulære histogrammer med  $(\sqrt{n}$ -konvergens!)
- Om w er konstant: Irregulære "kvantilhistogrammer"  $(n^{\frac{1}{3}}$ -konvergens)

• Vil approksimere  $(a^0, w^0)$  med  $\operatorname{argmin}_{(a,w)} P_n m_{(a,w)}$ .

#### Kan vises at

$$\operatorname{argmin}_{(a,w)} P_n m_{(a,w)} \stackrel{p}{\to} (a^0, w^0),$$

via enten Vapnik-Chervonenkisteori eller bracketing entropy.

Også mulig å se på delmengder av  $\mathscr{H}_k$ 

- Om a er konstant: Regulære histogrammer med  $(\sqrt{n}$ -konvergens!)
- Om w er konstant: Irregulære "kvantilhistogrammer"  $(n^{\frac{1}{3}}$ -konvergens)

• Vil approksimere  $(a^0, w^0)$  med  $\operatorname{argmin}_{(a,w)} P_n m_{(a,w)}$ .

Kan vises at

$$\operatorname{argmin}_{(a,w)} P_n m_{(a,w)} \stackrel{p}{\to} (a^0, w^0),$$

via enten Vapnik-Chervonenkisteori eller bracketing entropy. Også mulig å se på delmengder av  $\mathscr{H}_k$ :

- Om a er konstant: Regulære histogrammer med  $(\sqrt{n}$ -konvergens!)
- Om w er konstant: Irregulære "kvantilhistogrammer" (n<sup>1/3</sup>-konvergens)

## Et histogram

Kullback-Leibler approksimering av Beta(2,7) med k=7 blokker.



### Antakelser om f er veldig viktige. Vi skiller mellom to tilfeller:

- f er en glatt tetthet: modellen  $\mathscr{H}_k$  inneholder ikke f for noen k. Gir kubikkrotasymptotikk.
- f er en stykkvis konstant tetthet:  $f \in \mathcal{H}_k$  for en k. Gir n-asymptotikkk på brekkpunktene (for den k-en!)

#### **Theorem**

La k>1 være antall blokker, f være glatt, og  $V=\frac{d^2}{d(a,w)^2}Pm_{(a,w)}|_{(a,w)=(a^0,w^0)}$ . La  $W_i$  være uavhengige tosidige Wienerprosesser som starter i 0. Da vil

$$n^{\frac{1}{3}}(\widehat{(a,w)}-(a^0,w^0))\stackrel{d}{
ightarrow} argmax_h\left[\frac{1}{2}h^TVh+G(h)\right],\ hvor$$

$$G(h) = \sum_{i=1}^{k-1} f(a_i^0)^{\frac{1}{2}} \left| \log \frac{w_{i+1}^0}{a_{i+1}^0 - a_i^0} - \log \frac{w_i^0}{a_{i-1}^0 - a_{i-1}^0} \right| W_i(h_i).$$

Antakelser om f er veldig viktige. Vi skiller mellom to tilfeller:

- f er en glatt tetthet: modellen  $\mathscr{H}_k$  inneholder ikke f for noen k. Gir kubikkrotasymptotikk.
- f er en stykkvis konstant tetthet:  $f \in \mathcal{H}_k$  for en k. Gir n-asymptotikkk på brekkpunktene (for den k-en!)

#### Theorem

La k>1 være antall blokker, f være glatt, og  $V=rac{d^2}{d(a,w)^2}Pm_{(a,w)}\mid_{(a,w)=(a^0,w^0)}.$  La  $W_i$  være uavhengige tosidige Wienerprosesser som starter i 0. Da vil

$$n^{\frac{1}{3}}(\widehat{(a,w)}-(a^0,w^0))\stackrel{d}{
ightarrow} argmax_h\left[\frac{1}{2}h^TVh+G(h)\right],\ hvor$$

$$G(h) = \sum_{i=1}^{k-1} f(a_i^0)^{\frac{1}{2}} \left| \log \frac{w_{i+1}^0}{a_{i+1}^0 - a_i^0} - \log \frac{w_i^0}{a_i^0 - a_{i-1}^0} \right| W_i(h_i).$$

Antakelser om f er veldig viktige. Vi skiller mellom to tilfeller:

- f er en glatt tetthet: modellen  $\mathscr{H}_k$  inneholder ikke f for noen k. Gir kubikkrotasymptotikk.
- f er en stykkvis konstant tetthet:  $f \in \mathcal{H}_k$  for en k. Gir n-asymptotikkk på brekkpunktene (for den k-en!)

#### Theorem

La k > 1 være antall blokker, f være glatt, og  $V = \frac{d^2}{d(a,w)^2} Pm_{(a,w)}|_{(a,w)=(a^0,w^0)}$ . La  $W_i$  være uavhengige tosidige Wienerprosesser som starter i 0. Da vil

$$n^{\frac{1}{3}}(\widehat{(a,w)}-(a^0,w^0))\stackrel{d}{
ightarrow} argmax_h\left[\frac{1}{2}h^TVh+G(h)\right],\ hvor$$

$$G(h) = \sum_{i=1}^{k-1} f(a_i^0)^{\frac{1}{2}} \left| \log \frac{w_{i+1}^0}{a_{i+1}^0 - a_i^0} - \log \frac{w_i^0}{a_i^0 - a_{i-1}^0} \right| W_i(h_i).$$

Antakelser om f er veldig viktige. Vi skiller mellom to tilfeller:

- f er en glatt tetthet: modellen \( \mathcal{H}\_k \) inneholder ikke f for noen k. Gir kubikkrotasymptotikk.
- f er en stykkvis konstant tetthet:  $f \in \mathcal{H}_k$  for en k. Gir *n*-asymptotikkk på brekkpunktene (for den *k*-en!)

### Theorem

La k > 1 være antall blokker, f være glatt, og  $V = \frac{d^2}{d(a,w)^2} Pm_{(a,w)}|_{(a,w)=(a^0,w^0)}$ . La  $W_i$  være uavhengige tosidige Wienerprosesser som starter i 0. Da vil  $n^{\frac{1}{3}}(\widehat{(a,w)}-(a^0,w^0))\stackrel{d}{\rightarrow} argmax_h \left[\frac{1}{2}h^TVh+G(h)\right], hvor$ 

$$G(h) = \sum_{i=1}^{k-1} f(a_i^0)^{\frac{1}{2}} \left| \log \frac{w_{i+1}^0}{a_{i+1}^0 - a_i^0} - \log \frac{w_i^0}{a_{i-1}^0 - a_{i-1}^0} \right| W_i(h_i).$$

- Når k = 2 blir G(h) = cW(h) for én Wienerprosess.
   Grensefordelinga kan beskrives via Chernoffs fordeling, som er godt studert. (Dukker ofte opp i kubikkrotasymptotikk.)
- Fordelinga for k > 2 er horribel å jobbe med teoretisk, og vanskelig å simulere fra.
- En kan bruke subsampling for å lage konfidensintervaller osv. Kanskje også "smoothed bootstrap".
- Lignende grensefordeling i "histogramregresjon".

- Når k = 2 blir G(h) = cW(h) for én Wienerprosess. Grensefordelinga kan beskrives via Chernoffs fordeling, som er godt studert. (Dukker ofte opp i kubikkrotasymptotikk.)
- Fordelinga for k > 2 er horribel å jobbe med teoretisk, og vanskelig å simulere fra.
- En kan bruke subsampling for å lage konfidensintervaller osv. Kanskje også "smoothed bootstrap".
- Lignende grensefordeling i "histogramregresjon".

- Når k = 2 blir G(h) = cW(h) for én Wienerprosess. Grensefordelinga kan beskrives via Chernoffs fordeling, som er godt studert. (Dukker ofte opp i kubikkrotasymptotikk.)
- Fordelinga for k > 2 er horribel å jobbe med teoretisk, og vanskelig å simulere fra.
- En kan bruke subsampling for å lage konfidensintervaller osv.
   Kanskje også "smoothed bootstrap".
- Lignende grensefordeling i "histogramregresjon".

- Når k = 2 blir G(h) = cW(h) for én Wienerprosess. Grensefordelinga kan beskrives via Chernoffs fordeling, som er godt studert. (Dukker ofte opp i kubikkrotasymptotikk.)
- Fordelinga for k > 2 er horribel å jobbe med teoretisk, og vanskelig å simulere fra.
- En kan bruke subsampling for å lage konfidensintervaller osv.
   Kanskje også "smoothed bootstrap".
- Lignende grensefordeling i "histogramregresjon".

- AIC:  $2nP_n\log f_{\widehat{\theta}}-2p$ . Oppstår fordi vi ønsker å minimere  $d_{KL}(f_{\theta},f)$ . Ekvivalent med å minimere  $P\log f_{\widehat{\theta}}$ , som kan estimeres forventningsrett med  $P_n\log f_{\widehat{\theta}}-n^{-1}p$ , hvor  $n^{-1}p$  er biasen.  $(n^{-1}\mathrm{Tr}(J^{-1}K))$  mer generelt.)
- Riktig bias for histogrammer:  $n^{-\frac{2}{3}} \sum_{i=1}^{k-1} f(a_i)^{\frac{1}{2}} \left| \log \left( \frac{w_{i+1}}{a_{i+1} a_i} \right) \log \left( \frac{w_i}{a_i a_{i-1}} \right) \right| E(W_i(h_i)), \text{ hvo h maksimerer } \frac{1}{2} \mathbf{h}^T V \mathbf{h} + G(\mathbf{h})$
- Veldig vanskelig å regne ut. Men subsampling med blokkstørrelse b = 0.5 funker.
- Tentativt: Bedre ytelse (via Hellinger avtand) enn andre metoder. For beregningsintensiv til å bruke i praksis.

- AIC:  $2nP_n\log f_{\widehat{\theta}}-2p$ . Oppstår fordi vi ønsker å minimere  $d_{KL}(f_{\theta},f)$ . Ekvivalent med å minimere  $P\log f_{\widehat{\theta}}$ , som kan estimeres forventningsrett med  $P_n\log f_{\widehat{\theta}}-n^{-1}p$ , hvor  $n^{-1}p$  er biasen.  $(n^{-1}\mathrm{Tr}(J^{-1}K))$  mer generelt.)
- Riktig bias for histogrammer:  $n^{-\frac{2}{3}} \sum_{i=1}^{k-1} f(a_i)^{\frac{1}{2}} \left| \log \left( \frac{w_{i+1}}{a_{i+1} a_i} \right) \log \left( \frac{w_i}{a_i a_{i-1}} \right) \right| E(W_i(h_i)), \text{ hvor } h \text{ maksimerer } \frac{1}{2} \mathbf{h}^T V \mathbf{h} + G(\mathbf{h})$
- Veldig vanskelig å regne ut. Men subsampling med blokkstørrelse b = 0.5 funker.
- Tentativt: Bedre ytelse (via Hellinger avtand) enn andre metoder. For beregningsintensiv til å bruke i praksis.

- AIC:  $2nP_n\log f_{\widehat{\theta}}-2p$ . Oppstår fordi vi ønsker å minimere  $d_{KL}(f_{\theta},f)$ . Ekvivalent med å minimere  $P\log f_{\widehat{\theta}}$ , som kan estimeres forventningsrett med  $P_n\log f_{\widehat{\theta}}-n^{-1}p$ , hvor  $n^{-1}p$  er biasen.  $(n^{-1}\mathrm{Tr}(J^{-1}K))$  mer generelt.)
- Riktig bias for histogrammer:  $n^{-\frac{2}{3}} \sum_{i=1}^{k-1} f(a_i)^{\frac{1}{2}} \left| \log \left( \frac{w_{i+1}}{a_{i+1} a_i} \right) \log \left( \frac{w_i}{a_i a_{i-1}} \right) \right| E(W_i(h_i)), \text{ hvor }$ h maksimerer  $\frac{1}{2} \mathbf{h}^T V \mathbf{h} + G(\mathbf{h})$
- Veldig vanskelig å regne ut. Men subsampling med blokkstørrelse b = 0.5 funker.
- Tentativt: Bedre ytelse (via Hellinger avtand) enn andre metoder. For beregningsintensiv til å bruke i praksis.

- AIC:  $2nP_n\log f_{\widehat{\theta}}-2p$ . Oppstår fordi vi ønsker å minimere  $d_{KL}(f_{\theta},f)$ . Ekvivalent med å minimere  $P\log f_{\widehat{\theta}}$ , som kan estimeres forventningsrett med  $P_n\log f_{\widehat{\theta}}-n^{-1}p$ , hvor  $n^{-1}p$  er biasen.  $(n^{-1}\mathrm{Tr}(J^{-1}K))$  mer generelt.)
- Riktig bias for histogrammer:  $n^{-\frac{2}{3}} \sum_{i=1}^{k-1} f(a_i)^{\frac{1}{2}} \left| \log \left( \frac{w_{i+1}}{a_{i+1} a_i} \right) \log \left( \frac{w_i}{a_i a_{i-1}} \right) \right| E(W_i(h_i)), \text{ hvor }$ h maksimerer  $\frac{1}{2} \mathbf{h}^T V \mathbf{h} + G(\mathbf{h})$
- Veldig vanskelig å regne ut. Men subsampling med blokkstørrelse b = 0.5 funker.
- Tentativt: Bedre ytelse (via Hellinger avtand) enn andre metoder. For beregningsintensiv til å bruke i praksis.

- AIC:  $2nP_n\log f_{\widehat{\theta}}-2p$ . Oppstår fordi vi ønsker å minimere  $d_{KL}(f_{\theta},f)$ . Ekvivalent med å minimere  $P\log f_{\widehat{\theta}}$ , som kan estimeres forventningsrett med  $P_n\log f_{\widehat{\theta}}-n^{-1}p$ , hvor  $n^{-1}p$  er biasen.  $(n^{-1}\mathrm{Tr}(J^{-1}K))$  mer generelt.)
- Riktig bias for histogrammer:  $n^{-\frac{2}{3}} \sum_{i=1}^{k-1} f(a_i)^{\frac{1}{2}} \left| \log \left( \frac{w_{i+1}}{a_{i+1} a_i} \right) \log \left( \frac{w_i}{a_i a_{i-1}} \right) \right| E(W_i(h_i)), \text{ hvor }$ h maksimerer  $\frac{1}{2} \mathbf{h}^T V \mathbf{h} + G(\mathbf{h})$
- Veldig vanskelig å regne ut. Men subsampling med blokkstørrelse b = 0.5 funker.
- Tentativt: Bedre ytelse (via Hellinger avtand) enn andre metoder. For beregningsintensiv til å bruke i praksis.

Oppsummering

- ( $L_1$ ) Finnes en  $k_n$  s.a.  $\int |\widehat{h}_{k_n}(x) f(x)| dx \to 0$  i sannsynlighet eller med sannsynlighet 1?
- Korollar av resultatene i Lugosi and Nobel (1996): Ja, forutsatt at sannsynligheten på hver blokk går mot 0 og  $k^{-1}n \to \infty$  etter som  $n \to \infty$ ,  $k \to \infty$ .
- Uvisst om det er sant for alle tettheter såfremt  $k^{-1}n \to \infty$ , men virker rimelig.

Oppsummering

- $(L_1)$  Finnes en  $k_n$  s.a.  $\int |\widehat{h}_{k_n}(x) f(x)| dx \to 0$  i sannsynlighet eller med sannsynlighet 1?
- Korollar av resultatene i Lugosi and Nobel (1996): Ja,
- Uvisst om det er sant for alle tettheter såfremt  $k^{-1}n \to \infty$ .

### Konsistens

- $(L_1)$  Finnes en  $k_n$  s.a.  $\int |\widehat{h}_{k_n}(x) f(x)| dx \to 0$  i sannsynlighet eller med sannsynlighet 1?
- Korollar av resultatene i Lugosi and Nobel (1996): Ja, forutsatt at sannsynligheten på hver blokk går mot 0 og  $k^{-1}n \to \infty$  etter som  $n \to \infty$ ,  $k \to \infty$ .
- Uvisst om det er sant for alle tettheter såfremt  $k^{-1}n \to \infty$ .

### Konsistens

- ( $L_1$ ) Finnes en  $k_n$  s.a.  $\int |\widehat{h}_{k_n}(x) f(x)| dx \to 0$  i sannsynlighet eller med sannsynlighet 1?
- Korollar av resultatene i Lugosi and Nobel (1996): Ja, forutsatt at sannsynligheten på hver blokk går mot 0 og  $k^{-1}n \to \infty$  etter som  $n \to \infty$ ,  $k \to \infty$ .
- Uvisst om det er sant for alle tettheter såfremt  $k^{-1}n \to \infty$ , men virker rimelig.

# **Oppsummering**

- Teorien om kubikkrotasymptotikk bygger på en komplisert, generell teori om M-estimering. Kubikkrotasympotikk er ille på flere måter enn lav effisiens.
- Bruddpunktene i irregulære histogrammer konvergerer med kubikkrotrate når den underliggende tettheten er tilstrekkelig glatt. Histogrammene er konsistente under svake ekstrabetingelser. CIC, en variant av AIC, er god til å velge antall blokker, men vanskelig å beregne.

# **Oppsummering**

- Teorien om kubikkrotasymptotikk bygger på en komplisert, generell teori om M-estimering. Kubikkrotasympotikk er ille på flere måter enn lav effisiens.
- Bruddpunktene i irregulære histogrammer konvergerer med kubikkrotrate når den underliggende tettheten er tilstrekkelig glatt. Histogrammene er konsistente under svake ekstrabetingelser. CIC, en variant av AIC, er god til å velge antall blokker, men vanskelig å beregne.

- Banerjee, M. and McKeague, I. W. (2007), 'Confidence sets for split points in decision trees', *The Annals of Statistics* **35**(2), 543–574.
- Chernoff, H. (1964), 'Estimation of the mode', *Annals of the Institute of Statistical Mathematics* **16**(1), 31–41.
- Kim, J. and Pollard, D. (1990), 'Cube root asymptotics', *The Annals of Statistics* pp. 191–219.
- Lugosi, G. and Nobel, A. (1996), 'Consistency of data-driven histogram methods for density estimation and classification', *The Annals of Statistics* **24**(2), 687–706.
- Manski, C. F. (1975), 'Maximum score estimation of the stochastic utility model of choice', *Journal of econometrics* **3**(3), 205–228.
- Rousseeuw, P. J. (1984), 'Least median of squares regression', Journal of the American statistical association **79**(388), 871–880.
- van der Vaart, A. W. and Wellner, J. A. (1996), Weak Convergence, Springer.

