Characterizations of weak reverse Hölder inequalities on metric spaces

Emma-Karoliina Kurki

Aalto University

AGENT Forum, 27 October 2021

The whole story

J. Kinnunen, E.-K. K. and C. Mudarra (2021): Characterizations of weak reverse Hölder inequalities on metric measure spaces, available at https://arxiv.org/abs/2107.05022

Warm-up: (Strong) RHI and Muckenhoupt A_{∞} weights

 (X,d,μ) complete metric space, where μ is doubling: $\mu(2B) \leq C_d \mu(B)$. w is a weight, i. e. nonnegative locally integrable function on open sets $\Omega \subset X$.

w satisfies the reverse Hölder inequality (RHI), if there exist p>1 and C such that for every ball B with $B \in \Omega$

$$\left(\int_{\mathcal{B}} w^{p} \,\mathrm{d}\mu\right)^{\frac{1}{p}} \le C \int_{\mathcal{B}} w \,\mathrm{d}\mu. \tag{RHI}$$

Assuming (X,d,μ) satisfies the so-called annular decay property (Kinnunen–Shukla 2014), RHI is equivalent to $w \in A_{\infty}(\Omega)$: there exist $0 < \varepsilon, \eta < 1$ such that for any $B \subset \Omega$ and measurable set $A \subset B$,

$$\mu(A) \le \varepsilon \mu(B) \implies w(A) \le \eta w(B)$$

... and a number of other characterizations.

Weak RHI and "weak A_{∞} " weights

w satisfies the weak reverse Hölder inequality (WRHI; Giaquinta–Modica 1979), if there exist p>1 and C such that for every ball B with $2B \in \Omega$

$$\left(\int_{B} w^{p} d\mu\right)^{\frac{1}{p}} \leq C \int_{2B} w d\mu. \tag{WRHI}$$

Proposition

(WRHI) \Leftrightarrow There exist $0 < \varepsilon, \eta$ with $\eta < C_d^{-5}$, such that for any B with $2B \in \Omega$ and measurable set $F \subset B$,

$$\mu(F) \le \varepsilon \mu(B) \implies w(F) \le \eta w(2B)$$

... and a number of other characterizations (we show 10 in total: likely not exhaustive).

Weak A_{∞} is not A_{∞}

- No extra assumptions on the space
- Allows for nondoubling weights
- Weights may vanish on a set of positive measure (i. e. truly nonnegative)
- The upper bound for η cannot be removed (example!)
- Not all conditions for A_{∞} apply to the weak case (examples!)

Weak A_{∞} is not A_{∞} : example on the Hölder side

Example

Let $w(x)=e^x$ in $\mathbb R$ with the Lebesgue measure. Then $w\in WRH_p(\mathbb R)$ (in fact, for every p>1). To see this, let B=(a-r,a+r) be an interval. Then

$$\frac{\left(\int_{B} w^{p}\right)^{\frac{1}{p}}}{\int_{2B} w} \leq \frac{4re^{3r}}{e^{4r}-1},$$

which is a bounded function of r > 0.

However, $w \notin RH_p(\mathbb{R})$ for any p > 1 (consider intervals (-r, r) as $r \to \infty$).

6 / 12

Main theorem

Theorem

 (X, d, μ) is a metric measure space with a doubling measure μ , $\Omega \subset X$ an open set, and w a weight on Ω . The following assertions are equivalent.

- (a) For every $\eta > 0$ there exists $\varepsilon > 0$ such that if B is a ball with $2B \in \Omega$ and $F \subset B$ is a measurable set, then $\mu(F) \leq \varepsilon \mu(B)$ implies that $w(F) \leq \eta w(2B)$.
- (b) There exist $\eta, \varepsilon > 0$ with $\eta < C_d^{-5}$ such that if B is a ball with $2B \in \Omega$ and $F \subset B$ is a measurable set, then $\mu(F) \leq \varepsilon \mu(B)$ implies that $w(F) \leq \eta w(2B)$.
- (c) (Weak reverse Hölder inequality) There exist p>1 and a constant C>0 such that for every ball B with $2B \in \Omega$, it holds that

$$\int_{B} w^{p} d\mu \leq C \left(\int_{2B} w d\mu \right)^{p}.$$

* (a) \Leftrightarrow (c) shown by Spadaro (2012) in \mathbb{R}^n .

Theorem (continued)

(d) (Quantitative nondoubling A_{∞}) There exist constants $C, \alpha > 0$ such that for every ball B with $2B \in \Omega$ and every measurable set $F \subset B$, it holds that

$$w(F) \leq C \left(\frac{\mu(F)}{\mu(B)}\right)^{\alpha} w(2B).$$

(e) (Fujii–Wilson condition; Anderson–Hytönen–Tapiola 2017) There exists a constant C>0 such that for every ball B with $2B \in \Omega$

$$\int_{B} M(w\mathcal{X}_{B}) \,\mathrm{d}\mu \leq Cw(2B).$$

(f) There exist $\alpha, \beta > 0$ with $\beta < C_d^{-5}$ such that for every ball B with $2B \in \Omega$

$$w(B \cap \{w \geq \alpha w_{2B}\}) \leq \beta w(2B).$$

(g) There exists C > 0 such that for every ball B with $2B \in \Omega$

$$\int_{B} w \log^{+} \left(\frac{w}{w_{2B}} \right) d\mu \le Cw(2B).$$

E-K Kurki

Theorem (end)

(h) (Sawyer 1981, in \mathbb{R}^n) There exists a nondecreasing $\phi:(0,\infty)\to(0,\infty)$ with $\phi(0^+)=0$ such that for every ball $B\subset X$ with $2B\Subset\Omega$ and every $F\subset B$ measurable,

$$w(F) \le \phi\left(\frac{\mu(F)}{\mu(B)}\right) w(2B).$$

(i) (Sawyer 1981, in \mathbb{R}^n) There exists a C>0 such that for every ball B with $11B \in \Omega$ and every $f \in \mathrm{BMO}(\Omega)$ with $\|f\|_{\mathrm{BMO}(\Omega)} \leq 1$,

$$\int_{B} |f - f_B| \, w \, \mathrm{d}\mu \le Cw(2B).$$

(j) There exist C > 0 and a nondecreasing $\phi : (1, \infty) \to (0, \infty)$ with $\phi(\infty) = \infty$ such that for every ball B with $2B \in \Omega$

$$\int_{B \cap \{w > w_{0B}\}} w \, \phi\left(\frac{w}{w_{2B}}\right) \, \mathrm{d}\mu \leq Cw(2B).$$

 $\text{ } \text{ } \text{ } \text{ } \text{ } \text{ } f \in L^1_{\text{loc}} \in \text{BMO iff sup}_{B \subset \Omega} \text{ } f_B \left| f - f_B \right| \text{ } \text{ } \text{d} \mu < \infty; \text{ also } \text{BMO} = \underset{\square}{\alpha} \log(A_p), p > 1, \underset{\square}{\alpha} \geq 0.$

E-K Kurki WRH on metric spaces

Weak A_{∞} is not A_{∞} : case of the constant η

Example (Sawyer 1981, n = 2)

Let $X = \mathbb{R}^n$ with the Lebesgue measure, and $w = \mathcal{X}_S$, where $S = \{(x_1, \dots, x_n) \in \mathbb{R}^n : 0 \le x_n \le 1\}$. If $Q \subset \mathbb{R}^n$ is a cube with $|Q \cap S| > 0$, then

$$\frac{w(Q)}{w(2Q)} = \frac{|Q\cap S|}{|2Q\cap S|} \leq \frac{1}{2^{n-1}}.$$

Thus for a measurable subset $F \subset Q$ we have $w(F) \leq 2^{1-n}w(2Q)$. However, $w \notin WRH_p(\mathbb{R}^n)$ for any p > 1. To see this, let Q be centered at the origin with side length $I(Q) \geq 2$, and $F = Q \cap S$:

$$\mu(F) = w(F) = |Q \cap S| = I(Q)^{n-1}$$
 and $w(2Q) = (2I(Q))^{n-1}$.

The quantitative nondoubling A_{∞} condition would give constants $c, \alpha > 0$ such that for every $I(Q) \geq 2$

$$\frac{1}{2^{n-1}} = \frac{w(F)}{w(2Q)} \le c \left(\frac{|F|}{|Q|}\right)^{\alpha} = \frac{c}{l(Q)^{\alpha}}.$$

E-K Kurki

Weak A_{∞} is not A_{∞} : Characterizations that fail (1/2)

Claim

There exists a C>0 such that for every B with $2B \in \Omega$

$$\label{eq:bound_equation} \oint_{B} w \, \mathrm{d} \mu \leq \mathit{C} \exp \left(\oint_{2B} \log w \, \mathrm{d} \mu \right).$$

Let $w(x) = e^x$ on \mathbb{R} , shown to satisfy (WRHI). Assume that there exist C > 0, $\alpha \in \mathbb{R}$ such that for every interval $B \subset \mathbb{R}$,

$$\int_{B} w \, \mathrm{d}x \le C \exp\left(\alpha \int_{2B} \log w \, \mathrm{d}x\right).$$

Consider intervals B = (-r, r) with r > 0 Then

$$\int_{B} w \, dx = \frac{e^{r} - e^{-r}}{2r}, \quad \int_{2B} \log w \, dx = \frac{1}{4r} \int_{-2r}^{2r} x \, dx = 0.$$

This would mean $(e^r - e^{-r})(2r)^{-1} \le C \exp(0) = C$ for every r > 0, while the left-hand side is an unbounded function of r.

E-K Kurki WRH on metric spaces

Weak A_{∞} is not A_{∞} : Characterizations that fail (2/2)

Claim

There exist $0 < \alpha, \beta < 1$ such that for every B with $2B \in \Omega$

$$\mu(B \cap \{w \leq \beta w_{2B}\}) \leq \alpha \mu(B).$$

Again let $w(x) = e^x$ on \mathbb{R} . Assume that there exist $0 < \alpha, \beta < 1$ such that the above is true. We have

$$\beta \oint_{2B} w \, \mathrm{d}x = \frac{\beta}{4r} \left(e^{2r} - e^{-2r} \right)$$

which is an unbounded function of r, so as $r \to \infty$ the claim becomes

$$|B \cap \{w \le \beta w_{2B}\}| = |B| \le \alpha |B| < |B|.$$