Lecture 3 Utility Maximizations

ECON201D

Luke Zhao

Based on: Microeconomics: An Intuitive Approach with Calculus, 2nd Edition, by Thomas Nechyba

The Consumer's Problem

The consumer's problem is modelled as a constrained optimization problem:

 \max Happiness through purchasing \Rightarrow The utility function subject to Exogenous economic circumstances \Rightarrow The budget set.

Formally, let p_i be the prices, I be the income, the consumer solves

$$\max \quad u(x_1,x_2,\cdots,x_n),$$
 subject to
$$p_1x_1+p_2x_2+\cdots+p_nx_n=I.$$

Derivatives

The *derivative* of the function $f: \mathbb{R} \to \mathbb{R}$ at $x = x_0$, denoted by $f'(x_0)$, is

$$f'(x_0) = \frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=x_0} = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}.$$

In words, this derivative measures how much the value f(x) of the function changes as the variable x changes around x_0 .

- $f'(x_0) > 0$: f increases at x_0 .
- $f'(x_0) < 0$: f decreases at x_0 .

The first order conditions still hold when we have more variables. If $\mathbf{x}^* = (x_1^*, \cdots, x_n^*)$ is a maximum or minimum point, then

$$\frac{\partial f}{\partial x_i} = 0, \quad \text{for } i = 1, \cdots, n.$$

The first order conditions still hold when we have more variables. If $\mathbf{x}^* = (x_1^*, \cdots, x_n^*)$ is a maximum or minimum point, then

$$\frac{\partial f}{\partial x_i} = 0, \quad \text{ for } i = 1, \cdots, n.$$

To show this, let's consider the maximum point and suppose the conclusion is not true. That is, suppose for some x_i , $\partial f/\partial x_i|_{\mathbf{x}=(x_1^\star,\cdots,x_n^\star)}\neq 0$.

- If $\partial f/\partial x_i|_{\mathbf{x}=(x_1^{\star},\cdots,x_n^{\star})}>0$, one can keep all other $x_j=x_j^{\star}$ and slightly increase x_i to increase f.
- If $\partial f/\partial x_i|_{\mathbf{x}=(x_1^\star,\cdots,x_n^\star)}<0$, one can keep all other $x_j=x_j^\star$ and slightly decrease x_i to increase f.

The first order conditions still hold when we have more variables. If $\mathbf{x}^{\star}=(x_1^{\star},\cdots,x_n^{\star})$ is a maximum or minimum point, then

$$\frac{\partial f}{\partial x_i} = 0, \quad \text{ for } i = 1, \cdots, n.$$

First order conditions may not hold if:

- The domain of the function is restricted. For example, in terms of utility functions, x_1 and x_2 cannot be negative.
- The function (overall or at some points) is not differentiable.

First order conditions are not *sufficient* conditions unless the function has some nice properties.

Differentiable Utilities

The Lagrange Method

• For now, let's suppose that the utility functions are differentiable.

$$\max \quad u(x_1,\cdots,x_n),$$
 subject to
$$p_1x_1+\cdots+p_nx_n=I.$$

The Lagrange Method

• For now, let's suppose that the utility functions are differentiable.

$$\max \quad u(x_1, \cdots, x_n),$$
 subject to
$$p_1x_1 + \cdots + p_nx_n = I.$$

The Lagrangian is

$$\mathcal{L}(x_1,\dots,x_n,\lambda)=u(x_1,\dots,x_n)+\lambda(I-p_1x_1-\dots-p_nx_n).$$

 λ is called a *Lagrange multiplier*.

The Lagrange Method

For now, let's suppose that the utility functions are differentiable.

$$\max \quad u(x_1,\cdots,x_n),$$
 subject to
$$p_1x_1+\cdots+p_nx_n=I.$$

The Lagrangian is

$$\mathcal{L}(x_1,\dots,x_n,\lambda)=u(x_1,\dots,x_n)+\lambda(I-p_1x_1-\dots-p_nx_n).$$

 λ is called a *Lagrange multiplier*.

The first order conditions (FOCs) are

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{\partial u}{\partial x_i} - \lambda p_i = 0, \qquad i = 1, \dots, n.$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = I - p_1 x_1 - \dots - p_n x_n = 0.$$

The first order conditions (FOCs) are

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{\partial u}{\partial x_i} - \lambda p_i = 0, \qquad i = 1, \dots, n.$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = I - p_1 x_1 - \dots - p_n x_n = 0.$$

• FOCs are a set of (n+1) equations, with (n+1) unknowns.

The first order conditions (FOCs) are

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{\partial u}{\partial x_i} - \lambda p_i = 0, \qquad i = 1, \dots, n.$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = I - p_1 x_1 - \dots - p_n x_n = 0.$$

- FOCs are a set of (n+1) equations, with (n+1) unknowns.
- Take ratios of FOCs with respect to x_i and x_j :

$$|MRS(x_i, x_j)| = \frac{\partial u/\partial x_i}{\partial u/\partial x_j} = \frac{p_i}{p_j}$$

The first order conditions (FOCs) are

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{\partial u}{\partial x_i} - \lambda p_i = 0, \qquad i = 1, \dots, n.$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = I - p_1 x_1 - \dots - p_n x_n = 0.$$

- FOCs are a set of (n+1) equations, with (n+1) unknowns.
- Take ratios of FOCs with respect to x_i and x_j :

$$|MRS(x_i, x_j)| = \frac{\partial u/\partial x_i}{\partial u/\partial x_j} = \frac{p_i}{p_j}$$

Consumer's substitution relation coincide with the market substitution relation.

Facing a given budget set...

Facing a given budget set...

 The consumer wants to be on a higher indifference curve.

Facing a given budget set...

- The consumer wants to be on a higher indifference curve.
- But not too high since the consumer cannot afford anymore.

Facing a given budget set...

- The consumer wants to be on a higher indifference curve.
- But not too high since the consumer cannot afford anymore.

The consumer should choose the indifference curve that "just touch" the budget line – tangent if possble.

Facing a given budget set...

- The consumer wants to be on a higher indifference curve.
- But not too high since the consumer cannot afford anymore.

The consumer should choose the indifference curve that "just touch" the budget line – tangent if possble.

 Slope of the budget line = Slope of the indifference curve:

$$|MRS(x_1, x_2)| = \frac{p_1}{p_2}.$$

A utility function (with two goods) is called a Cobb-Douglas utility function if

$$u(x_1, x_2) = x_1^{\alpha} x_2^{\beta},$$

where $\alpha, \beta > 0$. Use the Lagrange method to solve for the consumer's optimal bundle.

A utility function (with two goods) is called a Cobb-Douglas utility function if

$$u(x_1, x_2) = x_1^{\alpha} x_2^{\beta},$$

where $\alpha, \beta > 0$. Use the Lagrange method to solve for the consumer's optimal bundle. First write down the Lagrangian

$$\mathcal{L}(x_1, x_2, \lambda) = x_1^{\alpha} x_2^{\beta} + \lambda (I - p_1 x_1 - p_2 x_2).$$

A utility function (with two goods) is called a Cobb-Douglas utility function if

$$u(x_1, x_2) = x_1^{\alpha} x_2^{\beta},$$

where $\alpha, \beta > 0$. Use the Lagrange method to solve for the consumer's optimal bundle. First write down the Lagrangian

$$\mathcal{L}(x_1, x_2, \lambda) = x_1^{\alpha} x_2^{\beta} + \lambda (I - p_1 x_1 - p_2 x_2).$$

Then get the FOCs

$$\frac{\partial \mathcal{L}}{\partial x_1} = \alpha x_1^{\alpha - 1} x_2^{\beta} - \lambda p_1 = 0$$

$$\frac{\partial \mathcal{L}}{\partial x_2} = \beta x_1^{\alpha} x_2^{\beta - 1} - \lambda p_2 = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = I - p_1 x_1 - p_2 x_2 = 0.$$

From the FOCs,

$$\alpha x_1^{\alpha - 1} x_2^{\beta} - \lambda p_1 = 0 \quad \Rightarrow \quad \alpha x_1^{\alpha - 1} x_2^{\beta} = \lambda p_1,$$
$$\beta x_1^{\alpha} x_2^{\beta - 1} - \lambda p_2 = 0 \quad \Rightarrow \quad \beta x_1^{\alpha} x_2^{\beta - 1} = \lambda p_2.$$

From the FOCs,

$$\alpha x_1^{\alpha - 1} x_2^{\beta} - \lambda p_1 = 0 \quad \Rightarrow \quad \alpha x_1^{\alpha - 1} x_2^{\beta} = \lambda p_1,$$
$$\beta x_1^{\alpha} x_2^{\beta - 1} - \lambda p_2 = 0 \quad \Rightarrow \quad \beta x_1^{\alpha} x_2^{\beta - 1} = \lambda p_2.$$

Take the ratio of the two on both sides to get a x_1 – x_2 relationship,

$$\frac{\alpha x_1^{\alpha - 1} x_2^{\beta}}{\beta x_1^{\alpha} x_2^{\beta - 1}} = \frac{\lambda p_1}{\lambda p_2} \quad \Rightarrow \quad \frac{\alpha x_2}{\beta x_1} = \frac{p_1}{p_2} \quad \Rightarrow \quad x_2 = \frac{\beta p_1}{\alpha p_2} x_1.$$

From the FOCs,

$$\alpha x_1^{\alpha - 1} x_2^{\beta} - \lambda p_1 = 0 \quad \Rightarrow \quad \alpha x_1^{\alpha - 1} x_2^{\beta} = \lambda p_1,$$
$$\beta x_1^{\alpha} x_2^{\beta - 1} - \lambda p_2 = 0 \quad \Rightarrow \quad \beta x_1^{\alpha} x_2^{\beta - 1} = \lambda p_2.$$

Take the ratio of the two on both sides to get a x_1 - x_2 relationship,

$$\frac{\alpha x_1^{\alpha - 1} x_2^{\beta}}{\beta x_1^{\alpha} x_2^{\beta - 1}} = \frac{\lambda p_1}{\lambda p_2} \quad \Rightarrow \quad \frac{\alpha x_2}{\beta x_1} = \frac{p_1}{p_2} \quad \Rightarrow \quad x_2 = \frac{\beta p_1}{\alpha p_2} x_1.$$

Substitute this relationship back to the budget constraint

$$p_1 x_1 + p_2 \frac{\beta p_1}{\alpha p_2} x_1 = I \quad \Rightarrow \quad x_1 = \frac{\alpha I}{(\alpha + \beta) p_1} \quad \Rightarrow \quad x_2 = \frac{\beta I}{(\alpha + \beta) p_2}.$$

A demand function $x_i^*(p_1, \dots, p_i, \dots, p_n, I)$ of good x_i is the consumer's choice of x_i in the optimized bundle, given the prices of all goods and the income.

A demand function $x_i^*(p_1, \dots, p_i, \dots, p_n, I)$ of good x_i is the consumer's choice of x_i in the optimized bundle, given the prices of all goods and the income.

For example, for Cobb-Douglas preferences,

$$x_1^{\star}(p_1,p_2,I) = \frac{\alpha I}{(\alpha+\beta)p_1} \quad \text{ and } \quad x_2^{\star}(p_1,p_2,I) = \frac{\beta I}{(\alpha+\beta)p_2}.$$

A demand function $x_i^*(p_1, \dots, p_i, \dots, p_n, I)$ of good x_i is the consumer's choice of x_i in the optimized bundle, given the prices of all goods and the income.

For example, for Cobb-Douglas preferences,

$$x_1^{\star}(p_1,p_2,I) = \frac{\alpha I}{(\alpha+\beta)p_1} \quad \text{ and } \quad x_2^{\star}(p_1,p_2,I) = \frac{\beta I}{(\alpha+\beta)p_2}.$$

Properties of Cobb-Douglas Demand Functions. Observe that

- The demand of x_i^* does not depend on the prices of other goods.
- The consumer always use a *fixed proportion* of the income to purchase a good.

A demand function $x_i^{\star}(p_1, \dots, p_i, \dots, p_n, I)$ of good x_i is the consumer's choice of x_i in the optimized bundle, given the prices of all goods and the income.

For example, for Cobb-Douglas preferences,

$$x_1^{\star}(p_1,p_2,I) = \frac{\alpha I}{(\alpha+\beta)p_1} \quad \text{ and } \quad x_2^{\star}(p_1,p_2,I) = \frac{\beta I}{(\alpha+\beta)p_2}.$$

Properties of Cobb-Douglas Demand Functions. Observe that

- The demand of x_i^* does not depend on the prices of other goods.
- The consumer always use a *fixed proportion* of the income to purchase a good.

Of course, these are not always the cases for other preferences / utility functions.

CES Utility Functions

The following utility function is called a *CES utility function* for $\rho < 1$. Solve the consumer's utility maximization problem with respect to this utility function.

$$u(x_1, x_2) = (x_1^{\rho} + x_2^{\rho})^{\frac{1}{\rho}}.$$

Hint: use a proper positive monotone transformation first.

Homothetic Preferences

Notice that

$$MRS^{\mathrm{CD}}(x_1,x_2) = -rac{lpha x_2}{eta x_1} \quad ext{ and } \quad MRS^{\mathrm{CES}}(x_1,x_2) = -\left(rac{x_1}{x_2}
ight)^{
ho-1},$$

i.e., the MRS in both case only depends on the *ratio* x_1/x_2 , not the values of x_1 or x_2 . The preferences can be represented by utility functions with such properties are called *homothetic preferences*.

How about the indifference curves?

Homothetic Preferences

$$x_2/x_1 = k \quad \Rightarrow \quad x_2 = kx_1.$$

 x₂/x₁ is fixed on a ray passing through the origin.

Since:

- MRS is the slope of the indifference curves;
- MRS only depends on the ratio x_1/x_2 ;

The slopes of the indifference curves are the same along a ray from the origin.

Corner Solutions

A preference relation between x_1 and x_2 is called *quasilinear in* x_1 if it can be represented by a utility function

$$u(x_1, x_2) = v(x_1) + x_2,$$

where $v(\cdot)$ is a function of x_1 only.

A preference relation between x_1 and x_2 is called *quasilinear in* x_1 if it can be represented by a utility function

$$u(x_1, x_2) = v(x_1) + x_2,$$

where $v(\cdot)$ is a function of x_1 only.

MRS of a Quasilinear Preferences. Notice that

$$MRS(x_1, x_2) = -\frac{\partial u/\partial x_1}{\partial u/\partial x_2} = -\frac{\partial u/\partial x_1}{1} = -\frac{\mathrm{d}v}{\mathrm{d}x_1}.$$

A preference relation between x_1 and x_2 is called *quasilinear in* x_1 if it can be represented by a utility function

$$u(x_1, x_2) = v(x_1) + x_2,$$

where $v(\cdot)$ is a function of x_1 only.

MRS of a Quasilinear Preferences. Notice that

$$MRS(x_1, x_2) = -\frac{\partial u/\partial x_1}{\partial u/\partial x_2} = -\frac{\partial u/\partial x_1}{1} = -\frac{\mathrm{d}v}{\mathrm{d}x_1}.$$

The MRS does not depend on x_2 if the preference is quasilinear in x_1 .

What does this mean for the shape of indifference curves? Consider the example:

$$u = \sqrt{x_1} + x_2.$$

What are the MRS at $x_1 = 1$ for different u's?

What does this mean for the shape of indifference curves? Consider the example:

$$u = \sqrt{x_1} + x_2.$$

What are the MRS at $x_1 = 1$ for different u's?

What does this mean for the shape of indifference curves? Consider the example:

$$u = \sqrt{x_1} + x_2.$$

What are the MRS at $x_1 = 1$ for different u's?

Along the vertical ray (in which x_1 in unchanged), the MRS is the same across all indifference curves.

Solve the utility maximization problem under the following utility function:

$$u(x_1, x_2) = \ln x_1 + x_2.$$

Hint: $d \ln(x) / d x = 1/x$.

Solve the utility maximization problem under the following utility function:

$$u(x_1, x_2) = \ln x_1 + x_2.$$

Hint: $d \ln(x) / d x = 1/x$. The Lagrangian is

$$\mathcal{L}(x_1, x_2, \lambda) = \ln x_1 + x_2 + \lambda (I - p_1 x_1 - p_2 x_2).$$

And the first order conditions are

$$\frac{1}{x_1} - \lambda p_1 = 0, \\ 1 - \lambda p_2 = 0. \qquad \Rightarrow \qquad \frac{1}{x_1} = \frac{p_1}{p_2} \quad \Rightarrow \quad x_1^* = \frac{p_2}{p_1} \quad \Rightarrow \quad x_2^* = \frac{I - p_2}{p_2}.$$

Solve the utility maximization problem under the following utility function:

$$u(x_1, x_2) = \ln x_1 + x_2.$$

Hint: $d \ln(x) / d x = 1/x$. The Lagrangian is

$$\mathcal{L}(x_1, x_2, \lambda) = \ln x_1 + x_2 + \lambda (I - p_1 x_1 - p_2 x_2).$$

And the first order conditions are

$$\frac{1}{x_1} - \lambda p_1 = 0, \\ 1 - \lambda p_2 = 0. \qquad \Rightarrow \qquad \frac{1}{x_1} = \frac{p_1}{p_2} \quad \Rightarrow \quad x_1^* = \frac{p_2}{p_1} \quad \Rightarrow \quad x_2^* = \frac{I - p_2}{p_2}.$$

Do you spot a problem?

Since $x_1, x_2 \geqslant 0$, the result

$$x_1^{\star} = \frac{p_2}{p_1}$$
 and $x_2^{\star} = \frac{I - p_2}{p_2}$.

only works if $p_2 \leqslant I$.

What happens when $p_2 > I$?

Since $x_1, x_2 \geqslant 0$, the result

$$x_1^\star = \frac{p_2}{p_1} \quad \text{and} \quad x_2^\star = \frac{I-p_2}{p_2}.$$

only works if $p_2 \leqslant I$.

What happens when $p_2 > I$?

- At the tangency point, $x_2 < 0$.
- The consumer would like to "purchase" $x_2 < 0$.
- But that is impossible choose
 x₂ = 0 instead.

Why $x_2 < 0$ at the tangency point? For the utility function $u(x_1, x_2) = \ln x_1 + x_2$:

- Suppose the consumer is currently at some (\hat{x}_1, \hat{x}_2) and wants to decide what to do if she has one additional dollar.
- Spending one additional dollar on x_1 or x_2 gains utility approximately

$$\frac{1}{p_1}\frac{\partial u}{\partial x_1} = \frac{1}{p_1}\frac{1}{\hat{x}_1} \quad \text{or} \quad \frac{1}{p_2}\frac{\partial u}{\partial x_2} = \frac{1}{p_2},$$

respectively.

- When \hat{x}_1 is really small, $1/\hat{x}_1$ is really large, so that the gain from purchasing x_1 is much larger than the gain from purchasing x_2 . The consumer gains utility if she repurposes a dollar used on x_2 to purchase x_1 .
- $x_2 < 0$ at the tangency point implies the consumer wants to continue the repurposing operation even when all income is used on x_1 .

Perfect Substitutions

Consider the following utility function:

$$u(x_1, x_2) = x_1 + x_2.$$

That is, increasing x_1 or x_2 increases the utilities in the same way. We call x_1 and x_2 are *perfect substitutes*.

Can you draw the indifference curves?

x

Perfect Substitutions

Consider the following utility function:

$$u(x_1, x_2) = x_1 + x_2.$$

That is, increasing x_1 or x_2 increases the utilities in the same way. We call x_1 and x_2 are *perfect substitutes*.

Can you draw the indifference curves?

Perfect Substitutions

Consider the following utility function:

$$u(x_1, x_2) = x_1 + x_2.$$

- Is this preference continuous?
- Is this preference monotone?
 Strictly monotone?
- Is this preference convex?
 Strictly convex?

The MRS under Perfect Substitutions

Given $u(x_1, x_2) = x_1 + x_2$, what is the MRS?

$$|MRS(x_1, x_2)| = \frac{\partial u/\partial x_1}{\partial u/\partial x_2} = \frac{1}{1} = 1.$$

- The MRS does not depend on x₁ or x₂. (Very natural, given the indifference curve is a straight line.)
- $|MRS(x_1, x_2)| = 1$: one unit of x_1 can be substituted exactly by one unit of x_2 . Hence the name, perfect substitutions.
- A special case: the perfect substitution preference is both homothetic and quasilinear.

Given $|MRS(x_1, x_2) = 1|$, and abs. of the slope of the budget line is p_1/p_2 :

 If p₁ < p₂, the budget line is flatter than the indifference curves.

Given $|MRS(x_1, x_2) = 1|$, and abs. of the slope of the budget line is p_1/p_2 :

 If p₁ < p₂, the budget line is flatter than the indifference curves.
 Spend all income on x₁ only.

Given $|MRS(x_1, x_2) = 1|$, and abs. of the slope of the budget line is p_1/p_2 :

- If p₁ < p₂, the budget line is flatter than the indifference curves.
 Spend all income on x₁ only.
- If p₁ > p₂, the budget line is steeper than the indifference curves.
 Spend all income on x₂ only.

Given $|MRS(x_1, x_2) = 1|$, and abs. of the slope of the budget line is p_1/p_2 :

- If p₁ < p₂, the budget line is flatter than the indifference curves.
 Spend all income on x₁ only.
- If p₁ > p₂, the budget line is steeper than the indifference curves.
 Spend all income on x₂ only.
- If p₁ = p₂, the budget line is parallel to the indifference curves and coincides with exactly one piece.
 Optimal everywhere on the budget line.

The demand "function" of x_1 :

$$x_1^{\star}(p_1,p_2,I) = \begin{cases} I/p_1, & \text{if } p_1 < p_2, \\ [0,I/p_1], & \text{if } p_1 = p_2, \\ 0 & \text{if } p_1 > p_2. \end{cases}$$

- The consumer views x_1 and x_2 equivalently and purchases the cheaper one.
- $|MRS(x_1, x_2)| = p_1/p_2$ when $p_1 = p_2$. Otherwise, the consumer's optimal bundle is a corner solution.

Try to formulate a "one additional dollar" argument yourself.

Utility Maximizations without Derivatives

Perfect Complements

Consider the following utility function:

$$u(x_1, x_2) = \min\{x_1, x_2\}.$$

That is, increasing x_1 only, or x_2 only does not increase the utilities. Instead, the two goods must be consumed in pairs to increase utilities. We call x_1 and x_2 are *perfect complements*.

Can you draw the indifference curves?

Perfect Complements

Consider the following utility function:

$$u(x_1, x_2) = \min\{x_1, x_2\}.$$

That is, increasing x_1 only, or x_2 only does not increase the utilities. Instead, the two goods must be consumed in pairs to increase utilities. We call x_1 and x_2 are *perfect complements*.

Can you draw the indifference curves?

Perfect Complements

Consider the following utility function:

$$u(x_1, x_2) = \min\{x_1, x_2\}.$$

- Is this preference continuous?
- Is this preference monotone?
 Strictly monotone?
- Is this preference convex?
 Strictly convex?

- If $x_1 > x_2$:
- If $x_1 < x_2$:

- If $x_1 > x_2$: Slightly reducing x_1 does not really change the utility level. No need to add x_2 to compensate reducing x_1 .
- If $x_1 < x_2$:

- If $x_1 > x_2$: Slightly reducing x_1 does not really change the utility level. No need to add x_2 to compensate reducing x_1 . $|MRS(x_1, x_2)| = 0$.
- If $x_1 < x_2$:

- If $x_1 > x_2$: Slightly reducing x_1 does not really change the utility level. No need to add x_2 to compensate reducing x_1 . $|MRS(x_1, x_2)| = 0$.
- If $x_1 < x_2$: Slightly reducing x_1 will reduce the utility level in the same scale, which cannot be compensated regardless how many units of x_2 are consumed.

- If $x_1 > x_2$: Slightly reducing x_1 does not really change the utility level. No need to add x_2 to compensate reducing x_1 . $|MRS(x_1, x_2)| = 0$.
- If $x_1 < x_2$: Slightly reducing x_1 will reduce the utility level in the same scale, which cannot be compensated regardless how many units of x_2 are consumed. $|MRS(x_1, x_2)| = \infty$.

 $u(x_1,x_2)=\min\{x_1,x_2\}$ is obviously not differentiable. Try the definition: in order to keep the utility level unchanged, how many units of x_2 is needed to substitute 1 unit of x_1 ?

- If $x_1 > x_2$: Slightly reducing x_1 does not really change the utility level. No need to add x_2 to compensate reducing x_1 . $|MRS(x_1, x_2)| = 0$.
- If $x_1 < x_2$: Slightly reducing x_1 will reduce the utility level in the same scale, which cannot be compensated regardless how many units of x_2 are consumed. $|MRS(x_1,x_2)|=\infty$.

One cannot really substitute x_1 with x_2 , vice versa. In other words, ideally, x_1 and x_2 should be consumed on pairs.

- Coffee and cream, left shoe and right shoe...
- Hence the name, perfect complements.

Utility Maximizations under Perfect Complements

 The optimal bundle is always at the "kink" where x₁ and x₂ are purchased in pairs.

Utility Maximizations under Perfect Complements

- The optimal bundle is always at the "kink" where x₁ and x₂ are purchased in pairs.
- Demand functions:

$$x_1^{\star}(p_1, p_2, I) = x_2^{\star}(p_1, p_2, I) = \frac{I}{p_1 + p_2}.$$

Summary of Lecture 3

For differentiable utilities, first consider Lagrange method:

$$\mathcal{L}(x_1,\dots,x_n,I,\lambda)=u(x_1,\dots,x_n)+\lambda(I-p_1x_1-\dots-p_nx_n),$$

which gives the utility maximization condition

$$|MRS(x_i, x_j)| = \frac{\partial u/\partial x_i}{\partial u/\partial x_j} = \frac{p_i}{p_j}.$$

- One may end up with corner solutions, where the condition above may not hold.
- Some utilities are not differentiable the graphical method may help.
- Features of preferences: homotheticity, quasilinearity.
- Special types of preferences: perfect substitutes, perfect complements.
- Special utility functions: Cobb-Douglas, CES.