Signaalinkäsittely 1. tentti 17.12.2001

Tentissä ei saa olla mukana mitään kirjallista materiaalia! Laskin on sallittu.

1. Lyhyet väittä	ämät, vastaa tosi (T) tai epätosi (E,F):
a)	Nyqvistin taajuus on kaksi kertaa näytteenottotaajuus F _s ()
b)	Kaikki muistittomat järjestelmät ovat kausaaleja. ()
c)	Nopeaa Fourier muunnosta (FFT) voidaan soveltaa tehokkaaseen ja
	nopeaan konvoluution laskentaan. ()
d)	Jos järjestelmä vaimentaa signaalin amplitudin puoleen (½-
	kertaiseksi), on vaimennus desibeleinä –20 dB. ()
e)	Pienennettäessä näytteenottotaajuutta useassa vaiheessa, kannattaa
	desimointikertoimet sijoittaa nousevaan järjestykseen (esimerkiksi ↓2
	$\downarrow 3, \downarrow 5)$ ()
f)	Periodogrammi on Fourier muunnokseen perustuva menetelmä
	tehospektrin estimoimiseksi signaalista. ()
(väärä vastaus -1 p, oikea 1 p, tyhjä 0 p, yhteensä vähintään 0 p)	
2. Osoita, ettei järjestelmä	
F[x(n)]	$= x(n)^2$
ole lineaarinen	

3. Suorita jonon $x = \{0, 1, 2, 1, 1, 0\}$ Fourier-muunnos (X) matriisimuodossa oheista muunnosmatriisia käyttäen:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \frac{1}{2} - i\frac{\sqrt{3}}{2} & -\frac{1}{2} - i\frac{\sqrt{3}}{2} & -1 & -\frac{1}{2} + i\frac{\sqrt{3}}{2} & \frac{1}{2} + i\frac{\sqrt{3}}{2} \\ 1 & -\frac{1}{2} - i\frac{\sqrt{3}}{2} & -\frac{1}{2} + i\frac{\sqrt{3}}{2} & 1 & -\frac{1}{2} - i\frac{\sqrt{3}}{2} & -\frac{1}{2} + i\frac{\sqrt{3}}{2} \\ 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -\frac{1}{2} + i\frac{\sqrt{3}}{2} & -\frac{1}{2} - i\frac{\sqrt{3}}{2} & 1 & -\frac{1}{2} + i\frac{\sqrt{3}}{2} & -\frac{1}{2} - i\frac{\sqrt{3}}{2} \\ 1 & \frac{1}{2} + i\frac{\sqrt{3}}{2} & -\frac{1}{2} + i\frac{\sqrt{3}}{2} & -1 & -\frac{1}{2} - i\frac{\sqrt{3}}{2} & \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{pmatrix}$$

$$(6 p)$$

4. Järjestelmää kuvaa differenssiyhtälö

$$y(n) = -\frac{1}{2}x(n-1) - y(n-1) - \frac{1}{4}y(n-2)$$

Määritä sitä vastaava siirtofunktio H(z) ja sen impulssivasteen h(n) 5 ensimmäistä arvoa.

(6 p)

5. Hanningin ikkunafunktiolla siirtymäkaistan normalisoitu leveys on 3.1/N. Olkoon näytteenottotaajuus $F_s = 11025$ Hz, päästökaistan rajataajuus $f_p = 4000$ Hz ja estokaistan rajataajuus f_s = 4125 Hz. Määritä tarvittava kertoimien määrä N FIR suodin ikkunamenetelmällä em. suunniteltaessa ikkunafunktiolla. (6 p)