Lecture Notes for **Machine Learning in Python**

Professor Eric Larson An Ongoing History of Convolutional Networks

Class logistics and Agenda

- Wide/Deep Lab due soon!
- Agenda:
 - CNN Demo
 - History of CNNs
 - with Modern CNN Architectures
- Next Time:
 - More Advanced CNN Demo

Class Overview, by topic

Last Time:

Structure of Each Tensor: Channels x Rows x Columns

TensorFlow and Basic CNNs

Last Time!

If needed:

Finish Demo

Convolutional Neural Networks

in TensorFlow with Keras

with Sequential API!

11. Convolutional Neural Networks.ipynb

History of Convolutional Neural THAT WAS SURPRISINGLY IF YOU LOOK TO NETWORKS ROBOTIC UPRISING USED HISTORICAL DATA, SPEAZG AND POCKS

Thanks to machine-learning algorithms, the robot apccalypse was short-lived.

Types of CNN, 1988-1998

Heads Facebook Al Team

- **LeNet-1** (1988)
 - ~2600 params, not many layers
- **LeNet-5** (1998)
 - 7 layers, gets excellent MNIST performance

tanh or sigmoid

Major contribution, general structure:

avg

conv=>pool=>non-linearity=> ...=>MLP

C3: f. maps 16@10x10 C1: feature maps \$4: f. maps 16@5x5 INPUT 6@28x28 32x32 S2: f. maps C5: layer F6: layer OUTPUT 6@14x14 Full connection Gaussian connections Subsampling Subsampling Full connection Convalutions Convolutions

CNN History

 List of major breakthroughs from 1998 through 2010 in convolutional networks:

• 2010

Al Researcher IDSA, Switzerland

Ciresan Net

- Publishes code for running CNN via GPU
 - Subsequently wins 5 international competitions
 - from stop signs => cancer detection
- Major contribution: NVIDIA parallelized training algorithms

Figure 2: Forward propagation: a) mapping of kernel 1 grid onto the padded weight matrix; b) mapping the kernel 2 grid onto the partial dot products matrix; c) output of forward propagation.

ImageNet Competition (2010-2016)

https://www.researchgate.net/figure/Winner-results-of-the-ImageNet-large-scale-visual-recognition-challenge-LSVRC-of-the_fig7_324476862

https://www.slideshare.net/nmhkahn/case-study-of-convolutional-neural-network-61556303

Google

• **AlexNet**, Hinton is mentor

- wins ImageNet competition
- Major contributions:
 - dropout for regularization
 - systematic use of ReLU
 - data expansion
 - overlapping max pool

AlexNet

FC 1000

FC 4096 / ReLU

FC 4096 / ReLU

Max Pool 3x3s2

Conv 3x3s1, 256 / ReLU

Conv 3x3s1, 384 / ReLU

Conv 3x3s1, 384 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 5x5s1, 256 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 11x11s4, 96 / ReLU

Warning

- Oxford VGG Net (Visual Geometry Group)
- Major contributions:
 - small cascaded kernels
 - way more layers (19 versus ~7)
 - "emulates" biology "better"
 - trained on NVIDIA GPUs for 2-3 weeks

ConvNet Configuration										
A										
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight					
layers	layers	layers	layers	layers	layers					
layers				_	s layers					
input (224 × 224 RGB image)										
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64					
	LRN	conv3-64	conv3-64	conv3-64	conv3-64					
maxpool										
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128					
		conv3-128	conv3-128	conv3-128	conv3-128					
maxpool										
conv3-256	conv3-256	comv3-256	conv3-256	comv3-256	conv3-256					
conv3-256	conv3-256	com/3-256	conv3-256	conv3-256	conv3-256					
			conv1-256	conv3-256	conv3-256					
					conv3-256					
		max	pool							
conv3-512	conv3-512	comv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
maxpool										
conv3-512	conv3-512	comv3-512	comv3-512	comv3-512	conv3-512					
conv3-512	conv3-512	comv3-512	comv3-512	comv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
		max	pcol							
FC-4096										
FC-4096										
FC-1000										
soft-max										
ORACL PARTY										

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

Network In Network

- Network in Network NiN
 - · or MLPConv

(a) Linear convolution layer

Min Lin^{1,2}, Qiang Chen², Shuicheng Yan²

¹Graduate School for Integrative Sciences and Engineering

²Department of Electronic & Computer Engineering

National University of Singapore, Singapore

{linmin, chengiang, eleyans}&nus.edu.sg

(b) Mlpconv layer

Network in Network

NiN, expanded view

Structure of Each Tensor: Channels x Rows x Columns

- GoogLeNet
 - or Inception V1
- Major contribution:
 - bottleneck layering
 - parallel NiN

515 convolutions

1x1 convolutions

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Fitar eansatenation

3x3 convolutions

1x1 convolutions

Previous layer

Figure 2: Inception module

https://arxiv.org/pdf/1409.4842.pdf

fx1 convolutions

3x3 max pooling

fxt convolutions

Types of CNN, 2015 February and December

- Inception V2, Inception V1 with batch normalization
- Inception V3:
 - replace 5x5 with multiple 3x3

Types of CNN, 2015 December

Research

- Major Contributions:
 - "ensembles" not strictly sequential
 - "bio-plausible" with feedback

ResNet

Parametric ReLU PReLU: adaptive trained slope

NiN: triple bypass layer similar to bottelneck

Residual Connection, expanded view

Back Propagation: Two paths, including one without ANY operations that cause the gradient to vanish...

Xception

- Major Contributions:
 - combining branching / residual blocks
 - separable convolutions

Francois Chollet Google

Professor Eric C. Larson

Separable Convolution Primer

SqueezeNet (2018)

- Idea: squeeze and expand in each layer
 - Use mostly 1x1 filters,
 - downsample later in network,
 - reduce channels before 3x3 filters

SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50x FEWER PARAMETERS AND <0.5MB MODEL SIZE

Forrest N. Iandola¹, Song Han², Matthew W. Mockewicz¹, Khalid Ashraf¹, William J. Dally², Kurt Keutzer¹

DeepScale* & UC Berkeley ²Stanford University

{forresti, noskewcz, kashraf, keutzer}@eecs.berkeley.edu

[songhan, dally]@stanford.edu

Efficient Net (2019)

How big are these networks?

How big are these networks?

Professor Eric C.

Self Test

- We have seen a lot of different networks.
- The most important concept to understand in using convolutional neural networks is:
 - A. Use proper initialization of layers
 - B. Have plenty of data or use expansion
 - C. Set aside time for training
 - D. Use batch normalization