CS201

MATHEMATICS FOR COMPUTER SCIENCE I

LECTURE 6

Axiom of Choice ⇒ Zorn's Lemma

- W is also an initial segment of both G and H:
 - ▶ Consider $a \in W$ and $b \in G$ such that bRa.
 - ▶ Element a belongs to a set X that is an initial segment of both G and H, therefore $b \in X$.
 - ▶ Since W is union of all such initial segments, $b \in W$.
 - ► Same argument for *H*.
- Clearly, W is the largest initial segment of G and H.

AXIOM OF CHOICE ⇒ ZORN'S LEMMA

- Suppose W is a proper subset of both G and H.
 - ▶ Let $c \in G \setminus W$ and $d \in H \setminus W$ be minimal elements. They exist since both G and H are well-ordered.
 - ▶ Also, since both *G* and *H* are *g*-sets,

$$c=g(W)=d.$$

- ▶ Hence, $W \cup \{g(W)\}$ is an initial segment of both G and H.
- ► This contradicts the fact that *W* is the largest initial segment of both *G* and *H*.
- Therefore, either W = G or W = H implying that either G is an initial segment of H or vice versa.

AXIOM OF CHOICE ⇒ ZORN'S LEMMA

- Let *U* be the union of all *g*-sets.
- U is well-ordered:
 - ► Consider any subset *V* of *U*.
 - V intersects one of the g-sets G making up U.
 - ▶ Since *G* is well-ordered, $G \cap V$ has a minimal element, say m_G .
 - ▶ Suppose there is $m \in V$ such that mRm_G .
 - ▶ If $m \in G$ then $m_G R m$ showing $m = m_G$.
 - ▶ If $m \notin G$, there exists a g-set H such that $m \in H$.
 - ▶ Since $m \in H \setminus G$, G is an initial segment of H implying that $m_G Rm$.
 - ▶ Therefore, $m = m_G$ and so minimal element of V is m_G .

AXIOM OF CHOICE ⇒ ZORN'S LEMMA

- *U* is a *g*-set:
 - ▶ Consider $a \in U$.
 - ▶ Then $a \in G$ for some g-set making up U.
 - ▶ For any $c \in U$ such that cRa, $c \in H$ where H is another g-set making up U.
 - ▶ Since H is an initial segment of G or vice versa, $c \in G$ also.
 - ► Hence,

$$g(\{c \mid cRa \& c \in U \& c \neq a\}) = g(\{c \mid cRa \& c \in G \& c \neq a\})$$

= a.

Axiom of Choice ⇒ Zorn's Lemma

- Since *U* is the union of all *g*-sets, it is the largest *g*-set.
- However, $g(U) \notin U$ and $U \cup \{g(U)\}$ is a larger g-set.
- A contradiction of the initial assumption that there is no maximal element of A.
- This proves Zorn's Lemma.

- We want to show that every set is well-ordered by defining an appropriate well-ordering on it.
- Let A be a set and consider partial orders R_B and subsets B of A such that R_B is a well-order on B.
- In other words, define \mathcal{Z} to be the set

$$\{(B,R_B)\mid B\subseteq A\ \&\ (A,R_B)\ \text{a partial order}\ \&\ (B,R_B)\ \text{a well-ordering}\}.$$

• Set \mathcal{Z} is non-empty since for finite subsets of A, it is straightforward to find well-ordering on them.

8/14

- Element (B, R_B) of \mathcal{Z} is an initial segment of element (C, R_C) if $B \subseteq C$, R_C agrees with R_B on B, and bR_Cc for every $b \in B$ and $c \in C \setminus B$.
- Define a relation \mathcal{R} on \mathcal{Z} with $(B, R_B)\mathcal{R}(C, R_C)$ iff (B, R_B) is an initial segment of (C, R_C) .
- Relation \mathcal{R} is partial order on \mathcal{Z} .
- Let \mathcal{C} be a chain of $(\mathcal{Z}, \mathcal{R})$.

- Define U to be the union of all sets in the chain C.
- Define a relation R_U on U as:
 - ▶ aR_Ub iff aR_Cb for (C, R_C) in the chain C such that $a, b \in C$.
 - ▶ If $a, b \in D$ for (D, R_D) in C then either (C, R_C) is an initial segment of (D, R_D) or vice versa.
 - ▶ In either case, aR_Db too since R_C and R_D agree on $C \cap D$.

- R_U is a well-ordering on U:
 - ▶ Let $V \subseteq U$.
 - ▶ Then $V \cap C \neq \emptyset$ for some (C, R_C) in the chain C.
 - ▶ Since R_C is a well-ordering on C, $V \cap C$ has a minimal element, say m_C .
 - ▶ Consider an $m \in V$ with $mR_U m_C$.
 - ▶ Since $m \in U$, there exists D in the chain C such that $m \in D$.
 - ▶ Suppose (C, R_C) is an initial segment of (D, R_D) . Then, $m_C R_D m$ showing $m_C R_U m$.
 - ▶ Hence, $m = m_C$.

- Hence, $(U, R_U) \in \mathcal{Z}$ and (U, R_U) is an upper bound of the chain \mathcal{C} .
- By Zorn's Lemma, $(\mathcal{Z}, \mathcal{R})$ has a maximal element (M, R_M) .
- If there is an element $a \in A \setminus M$, then define $(M', R_{M'})$ as:
 - $M' = M \cup \{a\}.$
 - ▶ $R_{M'}$ agrees with R_M on M, and $bR_{M'}a$ for every $b \in M$.
- We have $(M', R_{M'}) \in \mathcal{Z}$ contradicting the maximality of (M, R_M) .
- Therefore, M = A.
- And then R_M is a well-ordering on A.

Well-Ordering Principle ⇒ Axiom of Choice

- Let A be a set with its elements being nonempty subsets of set U.
- Use the Well-Ordering Principle to define a well-order R on U.
- Define function f, $f: A \mapsto U$ as:

$$f(X) = \text{minimal element of } (X, R).$$

• Since $X \subseteq U$, and R is a well-ordering of U, f is well-defined.

13 / 14

PROOFS

- A proof is a sequence of statements such that any statement in the sequence following from the previous statements from the sequence.
- Some of the statements in a proof are axioms.
- The last statement in a proof is the one that is proven.
- We have seen several proofs of different types: proof by construction, proof by contradiction, proof by diagonalization.
- Later, we will see other types of proofs: proof by induction, proof by contrapositive, ...

Manindra Agrawal CS201: Lecture 6 14/14