Neo_M580

硬件设计指南

Version 2.1

深圳市有方科技有限公司

有无线, 方精彩

Let's enjoy the wireless life!

版权声明

Copyright © 2008 Neoway Technology 深圳市有方科技有限公司保留所有权利。

NPOWay 有方 是深圳市有方科技有限公司所有商标。

本手册中出现的其他商标,由商标所有者所有。

说明

本指南的使用对象为系统工程师,开发工程师及测试工程师。

由于产品版本升级或其它原因,本手册内容会在不预先通知的情况下进行必要的更新。除非另有约定,本手册中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市有方科技有限公司为客户提供全方位的技术支持,任何垂询请直接联系您的客户经理或发送邮件至以下邮箱:

Sales@neoway.com.cn

Support@neoway.com.cn

公司网址: www.neoway.com.cn

目 录

1.	概述	5
2.	外形	5
3.	设计框图	5
4.	特性	6
5.	管脚定义	7
6.	接口设计参考	8
	电源及复位接口	
	6.1.1. 电源	
	6.1.2. 上电时序	. 12
	6.1.3. ON/OFF 管脚说明	
	6.1.4. 模块的异常恢复	. 14
	6.1.5. VCCIO 管脚说明	
6 2	串 口	. 15
6.3	SIM 卡接口	.18
6.4	. 指示灯	. 19
	. 音频接口设计射频连接器	
	. 射频连接器	
	表配	
	缩略语	26
10	附录— M580的休眠(低功耗)模式使用说明	28

	修	订	记	录	
版本号		更改内]容		生效年月
V1.0	初始版本				201002
V2. 0	能,适合免	计变更说明,音频 提应用的场合。 词距原文档为 1.2			201004
V2. 1	修订版本,完善	设计难点,提供	详细的设计说明		201106
				1	Y

1. 概述

M580 通信模块是一款 Dual Band 的 GSM/GPRS 工业无线模块,提供高品质的语音、短信、数据业务等功能,在各种工业和民用领域得到广泛的应用。

2. 外形

表 1 M580 外形规格

规格	描述		
尺寸	27.6mm*20.8mm*2.5mm(长*宽*高)		
重量	5g		
正视图	NEOWAY M580 CMIIT ID:2009CP3200 IMEI:35851102 153158 1		

3. 设计框图

4. 特性

表 2 M580 主要规格

规格	描述
频段	双频 EGSM900/DCS1800, 可选 GSM850/1900 或者四频
灵敏度	-106dBm
最大发射功率	EGSM900 Class4(2W)
	DCS1800 Class1(1W)
瞬间电流	Max 2A
工作电流	210mA
待机电流 (Idle)	25mA
休眠电流(Sleep)	2. 5mA
工作温度	-40°C∼+80°C
工作电压	3.3V~4.5V(推荐值3.9V)
协议	兼容 GSM/GPRS Phase2/2+,增加 TCP/IP,FTP, UDP 等
AT	GSM07.07
	扩展指令集
连接器	42Pin 焊盘式连接
	Murata (村田) GSC 射频连接器
话音	FR、EFR、HR、AMR 语音编码
短消息	TEXT/PDU
	点对点/小区广播
分组数据	GPRS CLASS 10
	编码方式 CS1, CS2, CS3, CS4
电路交换数据	支持 CSD 数据业务
	支持 USSD
补充业务	来电显示
y'\}	呼叫转移(CFB,CFNA,CFU)
	呼叫等待
	三方通话

5. 管脚定义

表 3 M580 模块管脚定义

管脚	信号名称	I/0	功能描述	备注
1-2	NC			
3	GND	PWR	地	
4	NC			
5	CTS	0	模块允许用户发送数据	A
6	RTS	I	用户向模块请求发送数据	
7, 8	VBAT	PWR	模块主电源输入	3.3V~4.5V
9	GND	PWR	地	1
10-12	NC			4 M L
13	LIGHT	О	工作状态指示	
14	DTR	I	用户电路就绪	休眠控制管脚,默认低
15	RING	0	振铃指示	短信和语音有脉冲提示
16	RXD	I	模块接收数据	最大3.3V
17	TXD	О	模块发送数据	高电平2.85V输出
18	GND	PWR	地	
19	DCD	0	数据载波检测	暂不支持
20	NC			
21	DSR	0	模块就绪	暂不支持
22	EMERGOFF	I/O	紧急关机	模块内部上拉到
				VCCRTC, 外部不能输入
		AC/		超过 2.0V 的高电平。
23	SIMVCC	PWR	SIM卡电源输出	
24	SIMIO	I/O	SIM卡数据	需要外部上拉到
				SIMVCC
25	SIMCLK	О	SIM卡时钟	
26	SIMRST	О	SIM卡复位	
27	GND	PWR	地	
28	ON/OFF	I	开关机控制	高电平 (2.0V) 开机。
				更多说明请参见后面开
				机、复位说明。
29	VCCRTC	I/O	RTC电源	2.0V
30	VCCIO	O	2.85V接口电平输出	IO 参考电平, 负载能力
				<30mA
31	GND	PWR	地	音频信号的参考地
32	MIC2N	I	第二路音频输入负极	

33	MIC2P	О	第二路音频输入正极			
34	MIC1N	I	第一路音频输入负极			
35	MIC1P	I	第一路音频输入正极			
36	EAR1P	О	第一路音频输出正极			
37	EAR1N	О	第一路音频输出负极			
38	NC					
39	EAR2	О	第二路音频输出	单端输出		
40	NC			A.		
41	GND	PWR	地	4		
42	RF_ANT	I/O	射频输入/输出			
其他焊盘	其他焊盘为测试点,主板走线时请注意对应位置不能露铜,防止贴片时短路					

注意:

因为模块采用 2.85V 的 I0 电源系统, 所有 I0 口的最高输入限制电压最大不能超过 3.3V, 否则可能损坏模块 I0 口。3.3V 的电源系统下的 I0 口输出电压, 由于信号完整性设计等方面的不完善, I0 口输出电压很有可能因为过冲现象而导致 I0 输出实际上超过了 3.3V, 有时甚至能达到 3.5V, 这时的 3.3V I0 信号直接连接模块 2.85V 系统的 I0, 很可能就会损坏模块的 I0 管脚。这时需要增加**串电阻**和**并电容**等设计措施,请参考本文 6.2 节。

6. 接口设计参考

6.1. 电源及复位接口

管脚 功能描述 备注 信号名称 I/O 3, 9, 18, GND **PWR** 地 27, 31, 41 7, 8 **VBAT PWR** 模块主电源输入 **VCCRTC** RTC电源输出,2.0V I/O 2.85V 接口电平输出//模 IO 参考电平,负载能 30 VCCIO O 块正常运行状态指示 力<15mA 紧急关机 I/O 22 **EMERGOFF** 低电平, 10uS 开关机控制 28 ON/OFF 高电平, 300ms

表 4 电源及复位接口

6.1.1. 电源

电源部分设计要特别注意,它除了给模块的数字信号和模拟信号供电外,还给射频功放 供电,电源部分的参数,比如负载能力、纹波的大小等等,都会直接影响模块的性能和稳定

性。在电源电路中,必须增加一个大容量的铝电解电容或者稍小容量的钽电解电容,提高电源的瞬间大电流续流能力,此外在靠近模块的管脚还要增加 0.1uF,100pF 和 33pF 的滤波电容,以降低射频干扰的影响。

第 7、8pin 的 VBAT 为模块主电源,电源输入范围为 3.3V-4.5V,推荐值为 3.9V。模块管脚处输入的瞬间最大电流为 2A,请在靠近模块处放置低阻抗大容量的滤波电容,电容的容值越大,要求电源输出的最大电流越低;具体数据请见下图:

C1 推荐使用 1000uF 的低阻抗铝电解电容,如果体积受限,可以改用 470uF 的钽电解。如果是锂电池直接供电,由于锂电池自身的内阻小,瞬间大电流的驱动能力强,C1 可以考虑用 100uF 的钽电容。

最大电流出现在弱信号下的通话或者数据传输过程中,典型的电流、电压曲线如下图:

电源设计要保证在运行过程中,瞬间电压不能低于 3.3 V,否则模块会关机保护。

电源部分在 PCB 中走线要远离射频部分,走线宽度要保证 2A 的电流安全通过而且不能有明显的回路压降。综上, VBAT 主电源走线宽度要求大约为 2mm 左右。电源部分的地平面尽量完整,且多打地孔。

模块每个数字 IO,包括串口信号、LIGTH,以及 SIM 卡信号,内部都集成有 ESD 过压保护,或者输入电平钳位电路,具体电路示意见图 1。使用中需要注意:该电路在模块主电源断电、但 IO 还有信号注入(比如串口接收 3.3V)的情况下,该外加的信号会通过模块内部两个保护二极管串到 VBATT 和其他 IO 上。见图中红色路径,可能会表现出在 VBAT/VCCIO 上出现 2.3V/2.8V 左右的电压。该情况不会对模块造成损坏,但可能导致模块外部的其它 CPU 的 IO 电流过载,以及影响模块的正常开机。

图 1 IO 电流反馈到 VBATT 上或其他 IO 上

该问题解决办法:在模块未加电时,请保证单片机和模块的连接都为低电平或者高阻, 比如将单片机的串口发送设置为低电平或者配置为 IO 输入等。

模块的复位信号处理。第22pin 的 EMERGOFF 为模块紧急关机脚, 功能类似于 MCU 的

硬件复位信号。最小复位脉冲宽度为 1ms。

VCCRTC 为 RTC 电源, 在 VBATT 高于 2.5V 时,VCCRTC 会持续输出 2.0V 电压,不管是开机还是关机、休眠。

注意:

模块主电源电压不能超过 4.8V, 过压会造成产品损坏, 最明显的特征是模块内部电源对 地短路, 请对模块主电源做过压保护处理。

如果低温-40° 运行出现问题,故障率最高的是电源部分,表现为电源纹波增大,负载能力降低。如果电源最低点低于或者接近3.3V,则模块会保护自动关机。低温下,电解电容的活性降低,相对容量下降,ESR增大,滤波作用减弱,建议用低温特性好的电解电容或者高耐压的,或者增大电容容量,并注意电解电容在低温下的特性变化(容量和阻抗)。另外电源如果是DC/DC变化过来的,IC和电感在-40°的特性也会变化很大。所以针对超低温应用设计时,电源电路更需要谨慎。

禁止使用二极管直接降压来给模块供电;二极管在大电流时压降会显著增大,从而造成电源极不稳定,致使模块工作不稳定;

在做静电或者浪涌测试时,应保证电源的稳定性,电源输入端和输出端均要考虑 EMC 抗干扰设计,避免造成电源毛刺、尖峰,建议适当增加滤波电容以保证电源的稳定性,例如,适当增加并联 10uF 或者 4.7uF 左右的陶瓷电容。另外电源的使能控制端也要避免被干扰,否则也会造成电源意外开或者关。

6.1.2. 上电时序

图 2 模块上电时序图

注意:

模块主电源上电不能早于外部 MCU 上电,以防止模块在上电瞬间,MCU 的串口处于不稳定状态,导致模块进入错误的运行模式。所以请务必在设计中保证 MCU 稳定运行后,再控制模块上电,尤其要注意电源模块的使能端的上电默认状态。

6.1.3. ON/OFF 管脚说明

第 28pin 的 ON/OFF 为输入管脚,可由外部控制模块开机和关机,高电平开机。ON/OFF 模块内部有弱下拉。

开机流程: 在模块处于关机状态时, 先给模块的 ON/OFF 脚加 2.0V 的高电平(VCCRTC), 然后再给模块主电源(VBAT)上电,模块上电后,ON/OFF管脚持续保持2.0V高电平300ms 以上(建议为500ms,下同),则模块完成开机。开机时,模块的串口会自动输出"MODEM STARTUP"提示,同时模块的LIGHT会开始1秒的闪烁,VCCIO持续输出2.85V。

关机流程: 在开机状态下, 先将 ON/OFF 置低电平, 然后置高电平并保持 300ms 以上, 则模块会进入关机流程,包括注销网络等,通常 5 秒左右可完成关机流程,此后再将主电源 (VBAT) 关闭。或者使用 AT 指令关机,具体请参考 AT 指令手册。

M580 开关机的高电平是参考 VCCRTC (2.0V),如果没有 2.0V 的控制电平,则需要做 电平转换,建议改成低电平开机。M580推荐的开关机电平转换电路:

M580 需要高电平(参考 VCCRTC 的 2.0V 电平)开机,通过以上电平变换后,用户控 制侧(USER ON)为低电平开机。

ON/OFF 也可以直接和 VCCRTC 短接,这样模块会上电自动开机。

注意:

ON/OFF 管脚控制关机和开机,注意避免重复触发导致开关机混乱。如:用户希望进行 开机时,却给了 ON/OFF 2次 300 ms 的高脉冲,导致模块关机。另外注意若模块 IO 在开机 前有电流反灌时(如图 1 状况,串口接收为高电平),可能会影响模块开机时序,此时若模 块先上电再用 ON/OFF 开机,有可能会开机失败。所以为了保证模块正常开机,可先将 ON/OFF 置于开机电平状态,再给模块上电,等模块开机后,再释放 ON/OFF 控制管脚即可。

ON/OFF 管脚的开关机是通过模块软件控制的,即软开机和软关机,如模块软件未正常运行,则可能开/关机不可控。请参考下面章节关于异常恢复的说明。

6.1.4. 模块的异常恢复

模块由于运行环境复杂,工作时间长,可能出现死机、假连接等异常问题。出现异常时如何自动恢复,在模块的应用设计时必须充分考虑。我们推荐两种方式:

- (1) 控制模块的主电源。出现异常时,关闭主电源,待主电源充分跌落(<2.0V)后,再重新上电。这种方式最彻底、最可靠,无人值守的设备,建议用这种方式。
- (2) 控制 EMERGOFF (紧急关机) 脚为低电平 100ms,可使模块硬关机,类似于处理器硬复位。这种方式一般用于电池供电的手持设备,如果这种方式仍旧无法恢复,则需要手动断电。

请关注:在断电或者复位前,不管模块是否有响应,请先执行关机流程,关机流程结束 后再开始上述操作。因为在硬关机时,如果模块正在执行存储器写操作,有可能造成模块程 序损坏。

EMERGOFF 在模块内部上拉到 VCCRTC (2.0V), 外部不能输入超过 2.0V 的高电平, 否则可能会导致开机异常。EMERGOFF 在模块内部的连接示意见图 1。在上电复位时, EMERGOFF 会输出低电平, 脉冲宽度为 22ms 左右。

紧急关机电路设计建议:

1) 对 EMERGOFF 的控制建议采用 OC 输出,见图 4。

图 4 EMERGOFF OC 控制 (C6、R11 要靠近模块管脚)

- 2) EMERGOFF 有效的脉冲宽度最少 1ms,有效低电平不能高于 0.4V。
- 3) 建议尽可能地少使用此管脚做关机处理,当模块出现异常时可通过断电方式恢复, 若必须使用 EMERGOFF 做控制,则要做好抗干扰处理,见图中 R11,C6。
- 4) 如不使用, EMERGOFF 可以悬空。

6.1.5. VCCIO 管脚说明

第 30pin 的 VCCIO 是模块提供的参考电压,幅值为 2.85V,负载能力为 30mA,建议仅用于接口电平转换,不作它用。关机后, VCCIO 输出关闭。

另外这个管脚可以用作模块运行的指示:正常运行或者休眠时为高电平,关机时为低电平。

注意:

VCCIO 管脚可配合 LIGHT 管脚来对模块进行是否开机确认,若 VCCIO 管脚有 2.85V 电压输出,且 LIGHT 管脚有高低电平变化,则表示模块已开机。若此时出现串口不通等状况,应查找外围电路是否正确,比如串口电平变换电路物料是否焊错焊反向;串口滤波电容是否过大;用示波器测试串口波形是否正常等。

6.2. 串口

表 5 串口接口

管脚	信号名称	I/0	功能描述	备注
21	DSR	О	模块就绪	暂不支持
15	RING	O	振铃指示	
17	TXD	О	模块发送数据	
16	RXD	I	模块接收数据	
5	CTS	О	模块允许用户MCU发送数据	
6	RTS	I	用户MCU向模块请求发送数 据	
14	DTR	I	用户电路就绪	
19	DCD	0	数据载波检测	暂不支持

模块作为 DCE 设备,模块和终端(DTE)设备信号连接如下图:

图 5 DCE 和 DTE 设备信号连接图

M580 模块支持 CTS/RTS 硬件流控,用户可配合 AT 指令集来使用。

模块串口为 2.85V 的 CMOS 电平信号,最高允许 3.3V 输入,支持 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 的波特率,出厂默认速率为 115200 bps。

串口通讯设计时, 若外部 MCU 主电源为 3.3V, 建议串接 200 欧的电阻与模块相连接, 而这个电阻, 要靠近信号的输出源端放置, 参考下图:

图 6, 3.3V MCU 与模块串口通讯推荐电路图

当 MCU 电压为 5V 时,模块接收要进行电平变换(注意,此电平变换电路无法对模块进行软件升级,使用时请根据需要选择方案),参考电路如下:

图 7,5V MCU 与模块串口通讯推荐电路图

图 6、图 7 中 100pF 的滤波电容要靠近模块接收管脚放置,为了提高模块接收的抗干扰能力,电容不能大于 470PF。

请注意: 串口请避免在模块加电瞬间有数据产生,应等模块开机至少 2S 后再给模块发送数据,目的是为了避免模块进入错误的运行模式。

串口通常用于 AT 指令、数据业务、升级模块软件等。特别提醒:目前不提供 DCD/DSR 功能。

IO 输入/输出特性描述								
IO 输入/输出特性	符号	最小值	最大值	单位	条件			
低电平输入范围	VIL	-0.2	0.57	V				
高电平输入范围	VIH	2.0	3.3	V				
低电平输出范围	VOL		0.2	V	负 载 电 流			
高电平输出范围	VOH	2.5	2.85	V	<2mA			

表格 6 数字 IO (不含 SIM 卡) 输入/输出特性

DTR 管脚为低功耗控制管脚,若不使用建议悬空。低功耗使用见 AT 指令集。

RING 信号指示:

1) 语音来电:有语音来电时,输出周期为 5S 脉宽为 30ms 的低脉冲。电话接通后,恢

复成高电平;

2) 来短信:如果短信提示功能打开(通过 AT 指令),则有新短信时,会产生一个 35ms 脉宽的低脉冲提示;

注意:

DTR 管脚与 RING 管脚若不用, 可短接。

串口滤波电容不得大于 470PF, 否则会造成串口波形异常, 从而导致串口不通; 若出现串口不通的状况, 请先将滤波电容去掉来确认串口是否通讯正常; 若通讯正常, 再确认滤波电容的大小。滤波电容建议 100~220PF。

串口与 CPU 之间串联的电阻越大,可适配的串口通讯的波特率越低,设计时请注意此电阻大小。

PCB 走线时,为避免 TXD 与 RXD 互扰,请尽量保证 TXD 与 RXD 的并线走线时的间距,尽量确保走线的中心间距不小于 3 倍线宽,当两线并线走线距离越长,这个间距越重要。或者将 TXD 与 RXD 用地线隔离且周围用地包围,多打接地过孔。

6.3. SIM 卡接口

表 7 SIM卡接口

管脚	信号名称	I/0	功能描述	备注
24	SIMIO	I/O	SIM 卡数据	模块外部需要接上拉电阻(约 10K)到
24	SIMIO	1/0	SIIVI 下数功i	SIMVCC
25	SIMCLK	0	SIM 卡时钟	分布电容(含 ESD 保护器件结电容)
23	SINICLK		SIM PHITT	<100pF
26	SIMRST	0	SIM卡复位	
23	SIMVCC	PWR	SIM卡电源输出	

图 8 SIM 卡接口设计参考

模块支持 3V 和 1.8V 的 SIM 卡, 自适应。

第 23pin 的 SIMVCC 是 SIM 卡供电电源,电压 2.85V,负载能力 30mA。只有对 SIM 有操作时,该电源才有输出。

第 24pin 的 SIMIO,需要外接上拉电阻到 SIMVCC,上拉电阻的大小可以根据 SIM 卡走线情况选择,一般为 10K。

第 25pin 的 SIMCLK 是 SIM 卡时钟线,一般为 3.25MHz,要求 PCB 布线不能分叉,尽量短且包地,远离天线和射频部分,该信号上的分布电容(含 ESD 器件的结电容等)不能超过 100pF。

SIM 卡电路建议在靠近卡座除 SIMVCC 脚用 0.1UF 的电容外,其他管脚并接 27~33pF 的电容(见图 8),该电容要尽量靠近 SIM 卡管脚放置。

注:小的滤波电容主要防止天线距离主板、SIM 卡过近,导致射频辐射相互干扰,造成不能正常读卡或者天线的接收灵敏度变差,使用短胶棒天线或者内置天线尤其要注意。

6.4. 指示灯

表 8 指示灯接口

管脚	信号名称	I/O	功能描述	备注
13	LIGHT	О	工作状态指示	

模块运行时,指示灯就 1 秒亮、1 秒灭地闪烁,没有插卡或者没有信号也是如此,如何改变 LIGHT 的工作状态指示,请参考 AT 指令集。模块进入休眠模式后,LIGHT 闪烁停止。

6.5. 音频接口设计

表 8 音频接口

管脚	信号名称	I/O	功能描述	备注
39	EAR2	0	 第二路音频输出(单端)	耳机输出,空载电压输出
37	EAK2			Vpp=1.85V (typ.)
36	EAR1P	О	第一路音频输出正极	听筒差分输出,空载差分电
37	EAR1N	О	第一路音频输出负极	压输出 Vpp=3.7V(typ.)
35	MIC1P	I	第一路音频(MIC)输入正极	MIC 输入差分信号电压幅
34	MIC1N	I	第一路音频(MIC)输入负极	值要求≤1V
33	MIC2P	I	第二路音频(MIC)输入正极	MIC 输入差分信号电压幅
32	MIC2N	I	第二路音频(MIC)输入负极	值要求≤1V

模块提供 2 路话筒输入和 2 路音频输出。目前只能 MIC1 和 EAR1 (第一路音频)、MIC2 和 EAR2 (第二路音频) 配对使用,模块系统默认的为第一路音频,不同的通道,可以通过 AT 指令切换。

第一路音频为输入输出全差分,模块内部有偏置电压,约为 2V。

第一路暂不支持回声抑制,适合用于手柄或者耳机的通话场合。

第二路为差分输入、单端输出,MIC2的内部偏置电压为 2.6V。由于第二路音频的输出单端,需要加隔直电容,推荐为 10uF。音频信号的地,最好单点接地到模块的 31 脚,防止噪声的引入,PCB 走线时请注意。

第二路支持回声抑制,适合用于免提的场合。

设计时请注意麦克风的正负极不能接反,否则可能出现对端无声或者声音很小。音频尤其是 MIC 输入,如果走线很长或者天线干扰比较强,比如内置天线等,请在音频连接器端增加 EMI 电容,防止 MIC 的放大器被阻塞,导致对端噪声或者无声。见图 9

图 9 M580 加 EMI 电容的音频连接图

注意: 音频走线应尽量远离电源走线。

6.6. 射频连接器

M580 使用的天线接口为 Murata (村田)公司的 GSC 射频连接器,具体型号为 MM9329-2700RA1,外接天线通过射频电缆连接。该连接器封装信息如下图所示。

M580 也支持天线焊盘,射频信号可以在主板上走线,直接连接天线或者射频连接器,不需要电缆。

射频接口的阻抗为 50 Q,模块天线部分应采取必要措施避免有用频段干扰信号,在外部 天线和射频连接之间要有良好的屏蔽,而且,要使外部的射频缆线远离所有的干扰源,特别 是高速数字信号及开关电源等。

模块所用天线按照移动设备标准,驻波比应在 1.1 到 1.5 之间,输入阻抗 50 Ω,使用环境不同,对天线的增益要求也不同,一般情况下,带内增益越大,带外增益越小,天线的性能越好。当使用多端口天线时,各个端口之间的隔离度应大于 30dB。如双极化天线的两个不同极化端口,双频天线的两个不同频段端口之间,以及双频双极化天线的四个端口之间,隔离度应大于 30dB。

6.7. 信号连接器和 PCB 封装

M580 使用的信号连接是由 42Pin 焊盘构成,管脚间距为 1.27mm。 推荐的模块 PCB 封装如图 10 所示。

oo roommonada roo parto.

图 10 M580 模块推荐的 PCB 封装图 (topview)

如果射频焊盘(Pin42)未用,则该焊盘对应的主板表层位置需要挖铜处理。

如果有射频走线,则该走线需要进行50欧姆阻抗控制,且长度尽量短。

对于不能很好控制阻抗的两层板,建议的走线方式为:射频线宽度为 0.8~1.0mm;射频线与铺地的间距为 1~0.8mm;射频线需要完整包地且要多打地孔;射频线对应的底层需要挖地掏空,射频线走线尽量短(不超过 15mm 为宜),尽量圆滑,无突起,比如使用弧线或者泪滴,以防止反射。具体见图 11。图 11 的应用为双面板设计,模块的射频信号通过 PCB

走线连通 SMA 射频连接器, 然后接天线

另外圆形射频测试点周围要有直径大约 2.5mm 的挖铜区域,且周围打满地孔;此挖铜区域与第 42 脚挖铜区域之间要有地做隔离。

模块的第 41 脚要良好接地,接地阻抗小,周围打密集接地过孔,降低接地阻抗。管脚尽量要被地完整包围,不能留有缺口,以免和其他高速信号(比如 SIM 卡信号)形成互扰。

图 11 M580 模块推荐的 PCB Layout 图

若采用馈线方式连接产品,建议取消第42脚射频信号的焊盘,做挖铜处理。参考下图:

注意: 在用户系统中,模块射频位置的布局应注意远离高速电路、开关电源、电源变压器、 大的电感和单片机的时钟电路等。

7. 装配

M580的连接采用邮票孔焊盘的SMD焊接方式,无需其他固定。

8. 包装

因 M580 产品采用贴片方式进行过炉焊接,故为了保证产品从生产到客户使用过程中不会 受潮,从而采用了防潮包装的方式:铝箔袋、干燥剂、湿度指示卡、吸塑托盘、抽真空等处 理方式,以保证产品的干燥,延长其使用时间。

为了方便贴片,产品采用了托盘装载产品,用户只需要将托盘按固定的方向装载到贴片机即可,关于 M580 模块的存储、贴片注意事项,请参考《有方模块贴片回流焊生产建议_V1.0》。

9. 缩略语

ADC	Analog-Digital Converter	模数转换
AFC	Automatic Frequency Control	自动频率控制
AGC	Automatic Gain Control	自动增益控制
AMR	Acknowledged multirate (speech coder)	自适应多速率
CSD	Circuit Switched Data	电路交换数据
CPU	Central Processing Unit	中央处理单元
DAI	Digital Audio interface	数字音频接口
DAC	Digital-to-Analog Converter	数模转换
DCE	Data Communication Equipment	数据通讯设备
DSP	Digital Signal Processor	数字信号处理
DTE	Data Terminal Equipment	数据终端设备
DTMF	Dual Tone Multi-Frequency	双音多频
DTR	Data Terminal Ready	数据终端准备好
EFR	Enhanced Full Rate	增强型全速率
EGSM	Enhanced GSM	增强型 GSM
EMC	Electromagnetic Compatibility	电磁兼容
EMI	Electro Magnetic Interference	电磁干扰
ESD	Electronic Static Discharge	静电放电
ETS	European Telecommunication Standard	欧洲通信标准
FDMA	Frequency Division Multiple Access	频分多址
FR	Full Rate	全速率
GPRS	General Packet Radio Service	通用分组无线业务
GSM	Global Standard for Mobile Communications	全球移动通讯系统
HR	Half Rate	半速率
IC	Integrated Circuit	集成电路
IMEI	International Mobile Equipment Identity	国际移动设备标识
LCD	Liquid Crystal Display	液晶显示器
LED	Light Emitting Diode	发光二极管
MS	Mobile Station	移动台

PCB	Printed Circuit Board	印刷电路板
PCS	Personal Communication System	个人通讯系统
RAM	Random Access Memory	随机访问存储器
RF	Radio Frequency	无线频率
ROM	Read-only Memory	只读存储器
RMS	Root Mean Square	均方根
RTC	Real Time Clock	实时时钟
SIM	Subscriber Identification Module	用户识别卡
SMS	Short Message Service	短消息服务 4
SRAM	Static Random Access Memory	静态随机访问存储器
TA	Terminal adapter	终端适配器
TDMA	Time Division Multiple Access	时分多址
UART	Universal asynchronous receiver-transmitter	通用异步接收/发送器
VSWR	Voltage Standing Wave Ratio	电压驻波比

10. 附录一 M580 的休眠(低功耗)模式使用说明

M580 在通话、数据传输过程中的工作电流约为 220mA, 在非连接状态下的工作电流约为 25mA, 在休眠(低功耗)模式下的平均工作电流约为 2.5~2.8mA。

在休眠模式下,模块会及时响应系统侧的来电、短信和数据业务。在本端,外部 CPU 也可以通过硬件 IO (DTR 管脚)来控制模块退出休眠模式。

控制模块进入休眠模式的基本流程:

- 1) 保持模块的 DTR 管脚输入为高电平,通过 AT 指令将模块设置为允许进入休眠模式,参考指令: at+enpwrsave。该模式下,运行灯也会停止闪烁。
- 2) 将模块的 DTR 管脚输入置低,硬件控制模块进入低功耗状态。通常模块会在 2 秒左 右进入休眠。在休眠模式下,模块的串口是关闭的,没有响应。模块只有在空闲时 才会进入休眠模式,如果当前有数据交互未结束,会等到处理完后再进入休眠。
- 3) 如果本地要发起数据或者呼叫等主叫业务,MCU 可以将 DTR 管脚置高,模块立即退出体眠模式(50ms 以内),进入正常模式,串口打开,可以响应 AT 指令。在主叫业务处理完毕后,MCU 再将 DTR 管脚置低,模块进入休眠模式。
- 4) 在待机状态下,如果模块有被叫业务,比如来电、来短信、服务器来的数据,模块会立刻退出休眠模式,并通过串口输出提示信息,外部 CPU 在检测到串口信息后,建议先将 DTR 管脚置高,再处理来电、数据等。待处理完毕后,将 DTR 管脚置低,使模块重新进入休眠模式。如果来电时,DTR 管脚没有置高,且模块串口没有接收到命令,则模块会在 2 秒左右自动进入休眠模式。
- 5) 在休眠状态下,如果模块串口接收有数据,则模块也会退出休眠模式,接收数据/命令的多少,和休眠深度有关,通常不超过30个字符。

在语音来电时,在振铃过程中,模块的 RING 管脚会持续输出周期性的低电平脉冲信号,低电平脉冲的宽度为 30ms,周期为 5 秒。

在短信来电时,在使用 AT+CNMI 命令设置短信提醒后,在收到短信时,模块的 RING 脚会输出一个 25ms 低脉冲。

在数据业务来电时,RING信号不会发生变化,保持为高电平。

