#### Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2023-24

#### Ιεραρχίες Μνήμης (ΙΙ)

(οργάνωση, λειτουργία και απόδοση κρυφής μνήμης)

http://mixstef.github.io/courses/comparch/



Μ. Στεφανιδάκης

### Σκοπός της Ιεραρχίας Μνήμης

- Προσέγγιση της ιδανικής μνήμης
  - Ο επεξεργαστής να βλέπει "μνήμη"
  - Με την ταχύτητα του υψηλότερου επιπέδου
  - Και το μέγεθος του χαμηλότερου επιπέδου
- · Η ιεραρχία μνήμης εκμεταλλεύεται την αρχή της τοπικότητας



#### Μπλοκ (γραμμές) κρυφής μνήμης

- •Για την εκμετάλλευση της χωρικής τοπικότητας
- •Όταν πρέπει να μεταφερθεί μια λέξη, μεταφέρεται το μπλοκ που την περιέχει
- •Το σύστημα κύριας μνήμης έχει βελτιστοποιηθεί αρχιτεκτονικά για μεταφορές μπλοκ
- •Οι σημερινοί επεξεργαστές διαθέτουν κρυφές μνήμες με μέγεθος μπλοκ ίσο με 64 bytes



## Τοποθέτηση ενός μπλοκ

- Η κύρια μνήμη περιέχει πολύ περισσότερα «μπλοκ» από όσα χωρούν στην κρυφή μνήμη
  - Συνεπώς, στην ίδια θέση της κρυφής μνήμης πρέπει να τοποθετηθούν διαφορετικά μπλοκ από την κύρια μνήμη (προφανώς όχι ταυτόχρονα!)
    - Σύγκρουση μπλοκ
- Πώς αποφασίζεται η θέση ενός μπλοκ στην κρυφή μνήμη;
  - Η απλή λύση: άμεση απεικόνιση (direct mapped cache)
  - Κάθε μπλοκ πηγαίνει σε μία μόνο θέση
     (αριθμός μπλοκ) mod (θέσεις στην κρυφή μνήμη)
  - Υπολογίζεται πολύ εύκολα αν οι θέσεις είναι δύναμη του 2

## Μέρη διεύθυνσης στην άμεση απεικόνιση

• Η μονάδα επεξεργασίας κάνει αιτήσεις ανάγνωσης/εγγραφής από/σε διεύθυνση μνήμης

tag index byte offset

- Με τη μέθοδο της άμεσης απεικόνισης η διεύθυνση χωρίζεται σε
   3 μέρη
  - byte offset: σε ποιο byte μέσα στο μπλοκ αρχίζει η ζητούμενη λέξη
    - Για μπλοκ με c bytes, το byte offset είναι  $\log_2(c)$  bits
  - index: σε ποια θέση της κρυφής μνήμης θα πάει το μπλοκ
    - Σε κρυφή μνήμη με k θέσεις, το index είναι  $\log_2(k)$  bits
  - tag: τα υπόλοιπα bits της διεύθυνσης
    - Τη χρησιμότητα του tag (ετικέτας) θα δούμε σε λίγο

### Παράδειγμα άμεσης απεικόνισης



- Σε κρυφή μνήμη με 16 bytes/μπλοκ, 32 θέσεις για μπλοκ, βρείτε τη θέση όπου τοποθετούνται τα μπλοκ που περιέχουν τις διευθύνσεις 226 (hex), 7E9 (hex) και 821 (hex)
  - block offset = 4 bits ( $log_216$ ), index = 5 bits ( $log_232$ )

#### Ποιο μπλοκ βρίσκεται τώρα σε κάθε θέση;



#### Ανάγνωση: Cache Hit



#### Ανάγνωση: Cache Miss (1)



#### Ανάγνωση: Cache Miss (2)



#### Ανάγνωση: Cache Miss (3)



#### Ανάγνωση: Cache Miss (4)



## Εγγραφή στην κρυφή μνήμη

#### Write Hit

- Η νέα τιμή ενημερώνεται μόνο στην κρυφή μνήμη (write-back)
  - Η τιμή στην κύρια μνήμη ενημερώνεται όταν το μπλοκ εκτοπίζεται από την κρυφή μνήμη
  - Η εναλλακτική πολιτική write-through ενημερώνει και την κύρια μνήμη αλλά είναι πολύ πιο αργή
- Απαιτείται επιπλέον λογική (hardware) για τον έλεγχο της συνοχής των δεδομένων
  - Όλοι οι πυρήνες (διαφορετικές κρυφές μνήμες) πρέπει να βλέπουν τα ίδια δεδομένα

#### Write Miss

Το μπλοκ έρχεται πρώτα στην κρυφή μνήμη από την κύρια μνήμη (write-allocate)

#### Εγγραφή: Cache Hit



#### Εγγραφή: Cache Miss (1)



#### Εγγραφή: Cache Miss (2)



#### Εγγραφή: Cache Miss (3)



### **Εγγραφή: Cache Miss (4)**



#### Χαρακτηριστικά απόδοσης κρυφής μνήμης

#### Hit Rate

Ποσοστό προσπελάσεων μνήμης, όπου τα δεδομένα βρίσκονται στην κρυφή μνήμη

#### Miss Rate

- Ποσοστό προσπελάσεων μνήμης, όπου τα δεδομένα δεν βρίσκονται στην κρυφή μνήμη
  - (1-hit rate)

#### • Hit Time

Ο χρόνος για την προσπέλαση δεδομένων σε hit

#### Miss Penalty

 Ο χρόνος για την προσπέλαση, μεταφορά και τοποθέτηση των δεδομένων miss από την κύρια στην κρυφή μνήμη και στην ΚΜΕ

## Τι δημιουργεί cache misses;

- Η πρώτη φορά προσπέλασης ενός μπλοκ
  - Όταν ζητούνται από τη μονάδα επεξεργασίας μπλοκ που δεν βρέθηκαν ποτέ μέχρι τώρα στην κρυφή μνήμη
- Λόγω της πεπερασμένης χωρητικότητας της κρυφής μνήμης
  - Η κρυφή μνήμη δεν χωράει όλα τα μπλοκ ταυτόχρονα
  - Μπλοκ που τοποθετούνται στην ίδια θέση στην κρυφή μνήμη,
     συναγωνίζονται για τη θέση αυτή
    - Ένα νέο μπλοκ όταν τοποθετηθεί στην κρυφή μνήμη εκτοπίζει ένα προηγούμενο διαφορετικό μπλοκ που βρισκόταν στην ίδια θέση

### Το κόστος των cache misses

- Χαμένοι κύκλοι ρολογιού
  - Σε αναμονή για προσπέλαση κύριας μνήμης

Κύκλοι Αναμονής =

Προσπελάσεις μνήμης \* Miss Rate \* Miss Penalty

- Είναι απλουστευμένο μοντέλο γιατί στην πραγματικότητα:
  - Διαφορετικό Miss Rate ανά κατηγορίες εντολών
  - Διαφορετικό Miss Rate για ανάγνωση-εγγραφή
    - Δυσκολεύουν τον υπολογισμό ενός ακριβούς miss rate
  - Σύνθετη ανάλυση για εκτέλεση εκτός σειράς
    - Ο επεξεργαστής "κρύβει" την καθυστέρηση εκτελώντας κάτι άλλο
    - Δυσκολεύει τον υπολογισμό ενός ακριβούς miss penalty

- Σύστημα έχει ιδανικό CPI = 1
  - Όταν έχουμε cache hits
- 40% των εντολών διαβάζουν ή γράφουν δεδομένα από/στη μνήμη
- Miss rate = 2%
- Miss penalty = 20 κύκλοι ρολογιού
  - Πόσες προσπελάσεις μνήμης ανά εντολή;
  - Πόσα misses ανά εντολή;
  - Ποιο το πραγματικό CPI αν λάβουμε υπόψη και τα misses;

- Σύστημα έχει ιδανικό CPI = 1
  - Όταν έχουμε cache hits
- 40% των εντολών διαβάζουν ή γράφουν δεδομένα από/στη μνήμη
- Miss rate = 2%
- Miss penalty = 20 κύκλοι ρολογιού
  - Πόσες προσπελάσεις μνήμης ανά εντολή;
- 1 (ανάκληση εντολής) + 0.4 x 1 (ανάγνωση/εγγραφή δεδομένων) = 1.4 προσπ./εντολή
  - Πόσα misses ανά εντολή;
  - Ποιο το πραγματικό CPI αν λάβουμε υπόψη και τα misses;

- Σύστημα έχει ιδανικό CPI = 1
  - Όταν έχουμε cache hits
- 40% των εντολών διαβάζουν ή γράφουν δεδομένα από/στη μνήμη
- Miss rate = 2%
- Miss penalty = 20 κύκλοι ρολογιού
  - Πόσες προσπελάσεις μνήμης ανά εντολή;
- 1 (ανάκληση εντολής) + 0,4 x 1 (ανάγνωση/εγγραφή δεδομένων) = 1,4 προσπ./εντολή
  - Πόσα misses ανά εντολή;
- 1,4 προσπελάσεις/εντολή x 0,02 = 0,028 misses/εντολή
  - Ποιο το πραγματικό CPI αν λάβουμε υπόψη και τα misses;

- Σύστημα έχει ιδανικό CPI = 1
  - Όταν έχουμε cache hits
- 40% των εντολών διαβάζουν ή γράφουν δεδομένα από/στη μνήμη
- Miss rate = 2%
- Miss penalty = 20 κύκλοι ρολογιού
  - Πόσες προσπελάσεις μνήμης ανά εντολή;
- 1 (ανάκληση εντολής) + 0,4 x 1 (ανάγνωση/εγγραφή δεδομένων) = 1,4 προσπ./εντολή
  - Πόσα misses ανά εντολή;
- 1,4 προσπελάσεις/εντολή x 0,02 = 0,028 misses/εντολή
- Ποιο το πραγματικό CPI αν λάβουμε υπόψη και τα misses;
- 1 κύκλος (ιδανικό CPI) + 0,028 misses x 20 cycles (κύκλοι αναμονής) = 1 + 0,56 = 1,56

### Μειώνοντας το κόστος των cache misses

• Βελτίωση της απόδοσης

```
Κύκλοι Αναμονής =
Προσπελάσεις μνήμης * Miss Rate * Miss Penalty
```

- Μείωση του miss rate
- Μείωση του miss penalty

## Τεχνικές μείωσης miss rate

- Αντιμετώπιση αιτιών που προκαλούν misses
- Αύξηση χωρητικότητας κρυφής μνήμης
  - Αλλά: μια μεγάλη κρυφή μνήμη μπορεί να είναι πιο αργή (αύξηση hit time)
- Αύξηση του μεγέθους του μπλοκ
  - Προσπάθεια εκμετάλλευσης της χωρικής τοπικότητας
  - Αλλά: αυξάνει το miss penalty
  - Πιθανόν να αυξάνει τελικά το miss rate, λόγω των λιγότερων μπλοκ στην κρυφή μνήμη
- Ευέλικτες τεχνικές τοποθέτησης των μπλοκ
  - Ωστε να παραμένουν περισσότερο στην κρυφή μνήμη

## Το πρόβλημα με την άμεση απεικόνιση

- Η τοποθέτηση των μπλοκ στις θέσεις της κρυφής μνήμης με τη μέθοδο της άμεσης απεικόνισης
  - Είναι γρήγορη και απαιτεί απλούστερο κύκλωμα
  - Κατάλληλη για τις κρυφές μνήμες κοντά στη μονάδα επεξεργασίας
     (1<sup>ου</sup> επιπέδου, L1)
- Επειδή όμως κάθε μπλοκ τοποθετείται ανελαστικά σε μια και μόνο θέση
  - Μπορεί να προκαλέσει αυξημένες συγκρούσεις μπλοκ μέσα στο ίδιο εκτελούμενο πρόγραμμα
  - Με αποτέλεσμα τη συνεχή αντικατάσταση μπλοκ που έτυχε να απεικονιστούν στην ίδια θέση της κρυφής μνήμης
    - Ακόμα κι αν υπάρχουν άλλες θέσεις που δεν χρησιμοποιούνται τη στιγμή εκείνη

## Παράδειγμα

```
for (i=0;i<N;i++) {
    a[i] = b[i]+c[i];
}</pre>
```

• Τι θα συμβεί αν οι πίνακες a,b,c, βρίσκονται στη μνήμη σε τέτοιες διευθύνσεις ώστε τα μπλοκ που περιέχουν τα a[i], b[i], c[i] να τοποθετούνται στην ίδια θέση της κρυφής μνήμης;

#### Ευέλικτες τεχνικές τοποθέτησης μπλοκ



#### Παράδειγμα: 4-way set associativity



- Επεξεργαστής έχει 48 bits διεύθυνσης
- 32KB κρυφή μνήμη 1ου επιπέδου (L1)
  - 8-way set associative
  - Μέγεθος μπλοκ = 64 bytes
- Πόσες θέσεις για μπλοκ συνολικά;
- Πόσα sets;
- Ποια τα μέρη της διεύθυνσης και το εύρος τους σε bits;
  - Πώς θα ήταν τα παραπάνω μεγέθη αν είχαμε απλή άμεση απεικόνιση;

- Επεξεργαστής έχει 48 bits διεύθυνσης
- 32KB κρυφή μνήμη 1ου επιπέδου (L1)
  - 8-way set associative
  - Μέγεθος μπλοκ = 64 bytes
- Πόσες θέσεις για μπλοκ συνολικά;  $32KB/64 = 2^{15} / 2^6 = 2^9 = 512 \theta \epsilon \sigma \epsilon i \varsigma$
- Πόσα sets;
- Ποια τα μέρη της διεύθυνσης και το εύρος τους σε bits;
  - Πώς θα ήταν τα παραπάνω μεγέθη αν είχαμε απλή άμεση απεικόνιση;

- Επεξεργαστής έχει 48 bits διεύθυνσης
- 32KB κρυφή μνήμη 1°υ επιπέδου (L1)
  - 8-way set associative
  - Μέγεθος μπλοκ = 64 bytes
- Πόσες θέσεις για μπλοκ συνολικά;
   32KB/64 = 2<sup>15</sup> / 2<sup>6</sup> = 2<sup>9</sup> = 512 θέσεις
- $\Pi \acute{o} \sigma \alpha$  sets; 512/8 = 29 / 23 = 26 = 64 sets
- Ποια τα μέρη της διεύθυνσης και το εύρος τους σε bits;
  - Πώς θα ήταν τα παραπάνω μεγέθη αν είχαμε απλή άμεση απεικόνιση;

- Επεξεργαστής έχει 48 bits διεύθυνσης
- 32KB κρυφή μνήμη 1ου επιπέδου (L1)
  - 8-way set associative
  - Μέγεθος μπλοκ = 64 bytes
- Πόσες θέσεις για μπλοκ συνολικά;  $32KB/64 = 2^{15} / 2^6 = 2^9 = 512 θέσεις$
- $\Pi \acute{o} \sigma \alpha$  sets; 512/8 = 29 / 23 = 26 = 64 sets
- Ποια τα μέρη της διεύθυνσης και το εύρος τους σε bits; byte offset = 6 bits, (set) index = 6 bits, tag = 48 6 6 = 36 bits
  - Πώς θα ήταν τα παραπάνω μεγέθη αν είχαμε απλή άμεση απεικόνιση;

- Επεξεργαστής έχει 48 bits διεύθυνσης
- 32KB κρυφή μνήμη 1ου επιπέδου (L1)
  - 8-way set associative
  - Μέγεθος μπλοκ = 64 bytes
- Πόσες θέσεις για μπλοκ συνολικά;  $32KB/64 = 2^{15} / 2^6 = 2^9 = 512 θέσεις$
- $\Pi \acute{o} \sigma \alpha$  sets; 512/8 = 29 / 23 = 26 = 64 sets
- Ποια τα μέρη της διεύθυνσης και το εύρος τους σε bits; byte offset = 6 bits, (set) index = 6 bits, tag = 48 6 6 = 36 bits
  - Πώς θα ήταν τα παραπάνω μεγέθη αν είχαμε απλή άμεση απεικόνιση;

byte offset = 6 bits, index = 9 bits, tag = 48 - 6 - 9 = 33 bits

- Επεξεργαστής έχει 32 bits διεύθυνσης
- 4KB κρυφή μνήμη δεδομένων 1<sup>ου</sup> επιπέδου
  - 64-way set associative
  - Μέγεθος μπλοκ = 16 bytes

- Πόσες θέσεις για μπλοκ συνολικά;
- Πόσα sets;
- Ποια τα μέρη της διεύθυνσης και το εύρος τους σε bits;
  - Πώς θα ήταν τα παραπάνω μεγέθη αν είχαμε απλή άμεση απεικόνιση;

- Επεξεργαστής έχει 32 bits διεύθυνσης
- 4KB κρυφή μνήμη δεδομένων 1°υ επιπέδου
  - 64-way set associative
  - Μέγεθος μπλοκ = 16 bytes

- Πόσες θέσεις για μπλοκ συνολικά;  $4KB/16 = 2^{12} / 2^4 = 2^8 = 256 θέσεις$
- $\Pi \acute{o} \sigma \alpha$  sets; 256/64 = 28 / 26 = 22 = 4 sets
- Ποια τα μέρη της διεύθυνσης και το εύρος τους σε bits; byte offset = 4 bits, (set) index = 2 bits, tag = 32 4 2 = 26 bits
  - Πώς θα ήταν τα παραπάνω μεγέθη αν είχαμε απλή άμεση απεικόνιση;

byte offset = 4 bits, index = 8 bits, tag = 32 - 4 - 8 = 20 bits

## Τεχνικές μείωσης miss penalty

- Μείωση των χρόνων μεταφοράς μπλοκ
  - Βελτιστοποιήσεις στην επικοινωνία με την κύρια μνήμη
    - Έτσι ώστε ένα ολόκληρο μπλοκ να μεταφέρεται με τη μικρότερη δυνατή καθυστέρηση (bursts)
- Πολυεπίπεδες ιεραρχίες κρυφής μνήμης
  - Μείωση miss penalty πρώτου επιπέδου (L1)
  - L1: μικρότερο μέγεθος, μεγαλύτερη ταχύτητα
    - Μεγαλύτερο miss rate αλλά miss penalty μικρότερο
  - L2: μεγαλύτερο μέγεθος, μικρότερη ταχύτητα
    - Αργότερη αλλά δεν επηρεάζει hit time επεξεργαστή
  - L3: κοινή για ομάδες πυρήνων

Οι σύγχρονοι επεξεργαστές έχουν L1, L2 και L3 caches (ίσως και 4ο επίπεδο, ως cache «τελευταίας ευκαιρίας»)

## Στην εποχή των multicore συστημάτων

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση
   κρυφής μνήμης

| Τύπος       | Μέγεθος          | Χρόνος<br>προσπέλασης | Ρυθμός<br>μεταφοράς |
|-------------|------------------|-----------------------|---------------------|
| L1          | 32KB<br>8-way    | 4-6 cycles            | 192b/cycle          |
| L2<br>(MLC) | 1MB<br>16-way    | 14 cycles             | 64b/cycle           |
| L3<br>(LLC) | 1.375MB<br>/core | 50-70 cycles          | 32b/cycle           |

- Παράδειγμα: Intel Xeon Scalable Processors
  - max 28 cores
  - L1 και L2 caches: κάθε πυρήνας έχει τις δικές του
  - L3: κοινή για όλους τους πυρήνες
    - δεν περιέχει υποχρεωτικά ότι υπάρχει σε L1, L2

## Βελτιστοποίηση απόδοσης κρυφής μνήμης

#### • Αρχιτεκτονικές βελτιώσεις

- Pipelining
  - Διάσπαση σε βαθμίδες, π.χ. σύγκριση tags, ανάγνωση data κ.ο.κ
- Non-blocking εξυπηρέτηση πολλαπλών αιτήσεων
  - Ένα miss δεν καθυστερεί επόμενα hits
- Πολλαπλά επίπεδα κρυφής μνήμης στο chip του επεξεργαστή
- Ο ρόλος του λογισμικού (μεταγλωττιστές)
  - Αναδιοργάνωση προγραμμάτων για αύξηση της τοπικότητας
     (κυρίως στους βρόχους επανάληψης)
  - Prefetching: μετακίνηση δεδομένων στην κρυφή μνήμη πριν αυτά χρειαστούν στον επεξεργαστή

## Η απόδοση της κρυφής μνήμης συνοπτικά

- Καθοριστική για τα σύγχρονα υπολογιστικά συστήματα
- Μείωση του miss rate ή του miss penalty
  - Όμως: η συμπεριφορά της ιεραρχίας μνήμης επηρεάζεται από πολλούς παράγοντες
- Η πραγματική συμπεριφορά
  - Είναι σύνθετη απαιτούνται εξομοιώσεις πριν τη σχεδίαση νέων συστημάτων
  - Είναι διαφορετική ανά εφαρμογή δεν υπάρχει ένα μόνο αντιπροσωπευτικό πρόγραμμα
  - Είναι διαφορετική ανά υπολογιστικό σύστημα desktop,
     server ή embedded