Theorem (3.2.19a). Let f be the function defined by $f(n) = (n^2 + 8)(n + 1)$. f(n) is $\mathcal{O}(n^3)$.

Proof. f(n) is the product of functions (f'f'')(n) where $f'(n) = (n^2 + 8)$, and f'' = (n + 1). Since a k^{th} degree polynomial is $\mathcal{O}(x^k)$, it follows that f'(n) is $\mathcal{O}(n^2)$, and f''(n) is $\mathcal{O}(n)$. The upper bound for a product of functions is the product of the bounding functions for each function occurring in the product of functions. Hence, the upper bound for f(n) is $\mathcal{O}(n(n^2))$. This means that f(n) is $\mathcal{O}(n^3)$.