

Fig. 3

REMOVE MEAN SPECTRAL MAGNITUDE DETERMINE ALL FREQ. POSITION (P.) INHOSE MAGNITUDES ARE MAXIMA OVER A WINDOW CENTERED AROUND P. IN LIST OF PEAKS, ADO FIRST (v=1) and LAST (i=128) FREQ. POSITIONS. THEIR MAGNITUDES ARESET TO MEAN OF PIRST AND LAST M. N MAGNITUDES REMOVE THE MEAN OF THE PEAK MAGNITUDES FROM EACH PEAK MAGNITUDE IF THE LARGEST RESULTING PEAK MAGNITUDE EXCEEDS ~ 5 MAX_ dB DN, NORMALIZE ALL PEAKS SOLARGEST MAX_ dB_ DN. INVERSE FILTERING H(i), (i=1-.128) 18 MAXIMUM OF THE NORMALIZED PEAK and OdB REMOVE INVERSE FILTER FROM ORIGINAL SPECTRAM IN LOCARITHMIC DOMAIN U(i) = S(i) H (i)

Fig. 4

TI-35988

