Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning in Games: First Steps and Challenges

Stefano V. Albrecht, Filippos Christianos, Lukas Schäfer Slides by: Leonard Hinckeldey

The MARL Book

This lecture is based on

Multi-Agent Reinforcement Learning: Foundations and Modern Approaches

by Stefano V. Albrecht, Filippos Christianos and Lukas Schäfer

MIT Press, 2024

Download book, slides, and code at: www.marl-book.com

Lecture Outline

- Learning framework for MARL
- Independent learning
- Central learning
- Modes of learning
- Challenges of MARL

MARL Learning Framework

MARL Learning Process

- The game model defines the learning environment
- Interaction data from joint policy π^z are collected as $\mathcal{D}^z = \{h^{t_e} \mid e=1,\dots,z\}, z\geq 0$
- A learning algorithm updates the joint policy as $\pi^{z+1} = \mathbb{L}(\mathcal{D}^z, \pi^z)$
- The learning goal is a chosen solution concept, e.g. Nash equilibrium

Normal-form games

Normal-form games

Repeated normal-form games

Normal-form games

Stochastic games

Repeated normal-form games

Normal-form games

Repeated normal-form games

Stochastic games

Partially observable stochastic games

Convergence

To evaluate the learning algorithm, we typically assess whether the learnt joint policy has **converged** to an optimal joint policy:

$$\lim_{\mathsf{Z}\to\infty}\pi^{\mathsf{Z}}=\pi^*$$

- Optimal joint policies may differ depending on the solution concept
- There may be many valid solutions \Rightarrow e.g. multiple Nash equilibria
- ullet In practice, we cannot collect infinite data $z o \infty$
 - ⇒ Learning typically stops after a predefined 'budget' (e.g. training steps)

Single-Agent RL Reductions

The simplest way to apply RL algorithms in multi-agent settings is to reduce them to single-agent problems.

Single-Agent RL Reductions

The simplest way to apply RL algorithms in multi-agent settings is to reduce them to single-agent problems.

Central learning:

- Apply one single-agent RL algorithm to control all agents centrally
 - \Rightarrow A central policy is learned over the joint action space

Single-Agent RL Reductions

The simplest way to apply RL algorithms in multi-agent settings is to reduce them to single-agent problems.

Central learning:

- Apply one single-agent RL algorithm to control all agents centrally
 - \Rightarrow A central policy is learned over the joint action space

Independent learning:

- Apply single-agent RL algorithms to each agent independently
 - \Rightarrow Agents do not explicitly consider or represent each other

Central learning: learn a single central policy π_c which receives observations of all agents and selects an action for each agent (i.e. joint action $(a_1, ..., a_n)$).

• Requires transforming the joint reward (r_1, \ldots, r_n) into a single scalar reward r

7

Central learning: learn a single central policy π_c which receives observations of all agents and selects an action for each agent (i.e. joint action $(a_1, ..., a_n)$).

- Requires transforming the joint reward (r_1, \ldots, r_n) into a single scalar reward r
- This can be easy in some settings, e.g. in games with common rewards $r=r_i$, but difficult in zero-sum or general-sum games

Central learning: learn a single central policy π_c which receives observations of all agents and selects an action for each agent (i.e. joint action $(a_1, ..., a_n)$).

- Requires transforming the joint reward (r_1, \ldots, r_n) into a single scalar reward r
- This can be easy in some settings, e.g. in games with common rewards $r=r_i$, but difficult in zero-sum or general-sum games
- Mays not scale well with the number of agents, as the joint action space may grow exponentially with the number of agents

Central learning: learn a single central policy π_c which receives observations of all agents and selects an action for each agent (i.e. joint action $(a_1, ..., a_n)$).

- Requires transforming the joint reward (r_1, \ldots, r_n) into a single scalar reward r
- This can be easy in some settings, e.g. in games with common rewards $r = r_i$, but difficult in zero-sum or general-sum games
- Mays not scale well with the number of agents, as the joint action space may grow exponentially with the number of agents
- May also not be suitable in environments that require agents to act independently based on local observations

Algorithm Central Q-learning

- 1: Initialize: Q(s, a) = 0 for all $s \in S$ and $a \in A = A_1 \times ... \times A_n$
- 2: Repeat for every episode:
- 3: **for** $t = 0, 1, 2, \dots$ **do**
- 4: Observe current state s^t
- 5: With probability ϵ : choose random joint action $a^t \in A$
- 6: Otherwise: choose joint action $a^t \in \arg \max_a Q(s^t, a)$
- 7: Apply joint action a^t , observe rewards r_1^t, \ldots, r_n^t and next state s^{t+1}
- 8: Transform r_1^t, \ldots, r_n^t into scalar reward r^t
- 9: $Q(s^t, a^t) \leftarrow Q(s^t, a^t) + \alpha[r^t + \gamma \max_{a'} Q(s^{t+1}, a') Q(s^t, a^t)]$

Independent Learning

Independent Learning

Independent learning: each agent i learns its policy π_i using only its local history of observations.

• From the perspective of each agent *i*, the environment transition function looks like this:

$$\mathcal{T}_i(s^{t+1}|s^t, a_i) \propto \sum_{a_{-i} \in A_{-i}} \mathcal{T}(s^{t+1}|s^t, \langle a_i, a_{-i} \rangle) \prod_{j \neq i} \pi_j(a_j|s^t)$$

- ullet As each agent j's policies are updated, the action probabilities π_j change
 - \Rightarrow From agent *i*'s perspective, the transition function \mathcal{T}_i appears non-stationary!

Independent Q-learning

Algorithm Independent Q-learning (IQL) for stochastic games

- 1: // Algorithm controls agent i
- 2: Initialize: $Q_i(s, a_i) = 0$ for all $s \in S$, $a_i \in A_i$
- 3: Repeat for every episode:
- 4: **for** $t = 0, 1, 2, \dots$ **do**
- 5: Observe current state s^t
- 6: With probability ϵ : choose random action $a_i^t \in A_i$
- 7: Otherwise: choose action $a_i^t \in \arg \max_{a_i} Q_i(s^t, a_i)$
- 8: (meanwhile, other agents $j \neq i$ choose their actions a_i^t)
- 9: Observe own reward r_i^t and next state s^{t+1}
- 10: $Q_i(s^t, a_i^t) \leftarrow Q_i(s^t, a_i^t) + \alpha[r_i^t + \gamma \max_{a_i'} Q_i(s^{t+1}, a_i') Q_i(s^t, a_i^t)]$

IQL and CQL in Level-Based Foraging

 IQL can learn more quickly, as CQL needs to explore 6² = 36 actions in each state

Modes of Operation in MARL

Modes of Operation in MARL: self-play and mixed-play

Self-play:

- Algorithm self-play: all agents use the same learning algorithm (and parameters)
- Policy self-play: agent's policy is trained directly against itself

Mixed-play

• Agents use different learning algorithms

MARL Challenges

Singe-Agent RL Challenges

- Unknown environment dynamics
- Exploration-exploitation dilemma
- Non-stationarity from bootstrapping
- Temporal credit assignment

MARL Challenges

Singe-Agent RL Challenges

- Unknown environment dynamics
- Exploration-exploitation dilemma
- Non-stationarity from bootstrapping
- Temporal credit assignment

Multi-Agent RL Challenges

- Non-stationarity from multiple learning agents
- Equilibrium selection
- Multi-agent credit assignment
- Scaling tom many agents

A stochastic process $X^{t}_{t \in \mathbb{N}^{0}}$ is stationary if:

- The probability distribution of $X^{t+\tau}$ does not depend on $\tau \in \mathbb{N}^0$, where t and $t+\tau$ are time indices
- This means that the dynamics of the process do not change over time

A stochastic process $X^t_{t \in \mathbb{N}^0}$ is stationary if:

- The probability distribution of $X^{t+\tau}$ does not depend on $\tau \in \mathbb{N}^0$, where t and $t+\tau$ are time indices
- This means that the dynamics of the process do not change over time

Consider: X^t samples the state s^t at each time step t:

• In a MDP, X^t is completely defined by the state transition function $\mathcal{T}(s^t|s^{t-1},a^{t-1})$ and the agent's policy π which selects an action $a \sim \pi(.|s)$

A stochastic process $X^t_{t \in \mathbb{N}^0}$ is stationary if:

- The probability distribution of $X^{t+\tau}$ does not depend on $\tau \in \mathbb{N}^0$, where t and $t+\tau$ are time indices
- This means that the dynamics of the process do not change over time

Consider: X^t samples the state s^t at each time step t:

- In a MDP, X^t is completely defined by the state transition function $\mathcal{T}(s^t|s^{t-1},a^{t-1})$ and the agent's policy π which selects an action $a\sim\pi(.|s)$
- If π does not change, then this process is stationary (i.e. independent of t) because s^t depends only on s^{t-1} , a^{t-1} and a^{t-1} depends only on s^{t-1} via $\pi(.|s^{t-1})$

A stochastic process $X^t_{t \in \mathbb{N}^0}$ is stationary if:

- The probability distribution of $X^{t+\tau}$ does not depend on $\tau \in \mathbb{N}^0$, where t and $t+\tau$ are time indices
- This means that the dynamics of the process do not change over time

Consider: X^t samples the state s^t at each time step t:

- In a MDP, X^t is completely defined by the state transition function $\mathcal{T}(s^t|s^{t-1},a^{t-1})$ and the agent's policy π which selects an action $a\sim\pi(.|s)$
- If π does not change, then this process is stationary (i.e. independent of t) because s^t depends only on s^{t-1} , a^{t-1} and a^{t-1} depends only on s^{t-1} via $\pi(.|s^{t-1})$
- However, in RL the policy does change over time through the learning $\pi^{z+1} = \mathbb{L}(\mathcal{D}^z, \pi^z)$, which leads to **non-stationarity** in X^t

Non-Stationarity in Multi-Agent Settings

In MARL, non-stationarity is exacerbated by multiple agents changing their policies!

- $\pi^{z+1} = \mathbb{L}(\mathcal{D}^z, \pi^z)$ updates an *entire* joint policy $\pi^z = (\pi_1^z, ..., \pi_n^z)$
- Environment is non-stationary from each agent's perspective
- Can cause cyclic learning dynamics where agents co-adapt to each other's changing policies

- Example: Stag Hunt matrix game
- Two hunters choose: cooperate to hunt stag (S) or go solo for hare (H)

	S	Н
S	4,4	0,3
Н	3,0	2,2

- Example: Stag Hunt matrix game
- Two hunters choose: cooperate to hunt stag (S) or go solo for hare (H)
- Nash equilibria: reward-dominant (S,S) maximizes reward, risk-dominant (H,H) minimizes risk

	S	Н
S	4,4	0,3
Н	3,0	2,2

- Example: Stag Hunt matrix game
- Two hunters choose: cooperate to hunt stag (S) or go solo for hare (H)
- Nash equilibria: reward-dominant (S,S) maximizes reward, risk-dominant (H,H) minimizes risk
- (S,S) requires trust; (H,H) offers a safe, lower reward

	S	Н
S	4,4	0,3
Н	3,0	2,2

- Example: Stag Hunt matrix game
- Two hunters choose: cooperate to hunt stag (S) or go solo for hare (H)
- Nash equilibria: reward-dominant (S,S) maximizes reward, risk-dominant (H,H) minimizes risk
- (S,S) requires trust; (H,H) offers a safe, lower reward

	S	Н
S	4,4	0,3
Н	3,0	2,2

- Indep. Q-learning may bias towards (H,H) due to initial action uncertainty
- Early random actions can reinforce
 (H,H) since deviating from H is
 penalized if the other agent chooses H

Multi-Agent Credit Assignment

Multi-agent credit assignment: which agent's actions contributed to receved rewards?

- At time step t all agents perform collect, each receiving reward +1
- Whose actions led to the reward?
- The agent on the left did not contribute
- For a learning agent that only observes s^t, a^t, r^t, s^{t+1}, disentangling the action contributions is difficult

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

Joint actions can help disentangle agent contributions. Consider the RPS game:

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

1. Agents choose actions $(a_1, a_2) = (R, S)$ \Rightarrow agent 1 receives reward +1

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

- 1. Agents choose actions $(a_1, a_2) = (R, S)$ \Rightarrow agent 1 receives reward +1
- 2. Then agents choose $(a_1, a_2) = (R, P)$ \Rightarrow agent 1 receives reward -1

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

- 1. Agents choose actions $(a_1, a_2) = (R, S)$ \Rightarrow agent 1 receives reward +1
- 2. Then agents choose $(a_1, a_2) = (R, P)$ \Rightarrow agent 1 receives reward -1
- 3. Action value $Q(a_1)$ does not model agent 2, value for action R appears to be 0

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

- 1. Agents choose actions $(a_1, a_2) = (R, S)$ \Rightarrow agent 1 receives reward +1
- 2. Then agents choose $(a_1, a_2) = (R, P)$ \Rightarrow agent 1 receives reward -1
- 3. Action value $Q(a_1)$ does not model agent 2, value for action R appears to be 0
- 4. Joint action value model $Q_1(a_1, a_2)$ can represent the effect of agent 2: $Q_1(R, S) = +1$ and $Q_1(R, P) = -1$

Scaling to Many Agents

Problem

• Joint action space can grow exponentially with number of agents:

$$|A| = |A_1| \cdot ... \cdot |A_n|$$

- ullet If agents have associated features in s (e.g. agent position) then |S| also increases exponentially
 - \Rightarrow How to scale efficiently to many agents?

Scaling to Many Agents

Changing number of agents from 3 to 5 increases the number of joint actions from 216 to 7776!

Summary

We covered:

- MARL learning process
- Independent and central learning
- Modes of operation in MARL
- Challenges of MARL

Next we'll cover:

• Foundational algorithms in MARL