Package 'NegBinBetaBinreg'

October 12, 2022

Title Negative Binomial and Beta Binomial Bayesian Regression Models

Type Package

License GPL (>= 2)	
Version 1.0	
Date 2016-11-15	
Author Edilberto Cepeda-Cuervo, Maria Victoria Cifuentes-Amado and Margarita Marin	
Maintainer Edilberto Cepeda <ecepedac@unal.edu.co></ecepedac@unal.edu.co>	
Depends R (>= 3.1.1), mytnorm, Matrix, boot	
Description The Negative Binomial regression with mean and shape modeling and mean and variance modeling and Beta Binomial regression with mean and dispersion modeling.	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2016-11-17 08:27:30	
R topics documented:	
NegBinBetaBinreg-package	2
	2
dpostb	3
· · · · · · · · · · · · · · · · · · ·	4
e	5
	6
	8
	9 0
NegBinBetaBinreg 1 NegBinBetaBinregEst 1	_
print.NegBinBetaBinreg	_
print.summary.NegBinBetaBinreg	
summary.NegBinBetaBinreg	
veros	
Index 2	0

2 criteria

NegBinBetaBinreg-package

NegBinBetaBinreg

Description

Function to estimate a Negative Binomial regression models with mean and shape (or variance) regression structures, and Beta Binomial regression with mean and dispersion regression structures.

Details

Package: NegBinBetaBinreg

Type: Package
Version: 1.0
Date: 2016-10-8
License: GPL-2
LazyLoad: yes

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

criteria

criteria for comparison the Bayesian Negative Binomial regression models with mean and shape (or variance) regression structures, and Beta Binomial regression with mean and dispersion regression structures.

Description

Performs the comparison criterias for the Bayesian Negative Binomial regression models with mean and shape (or variance) regression structures, and Beta Binomial regression with mean and dispersion regression structures.

Usage

criteria(objeto)

Arguments

objeto

object of class NegBinBetaBinreg

dpostb 3

Details

This function calculate the information criteria for a Bayesian Negative Binomial regression with mean and shape modeling and mean and variance modeling and Beta Binomial regression with mean and dispersion modeling.

Value

AIC	the AiC criteria
BIC	the BIC criteria

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

dpostb	Posterior value of beta

Description

Propose a value for posterior distribution of the beta parameter

Usage

```
dpostb(y,x,z,betas,gammas,bpri,Bpri,model,m)
```

Arguments

У	object of class matrix, with the dependent variable
x	object of class matrix, with the variables for modelling the mean
z	object of class matrix, with the variables for modelling the variance
betas	a vector with the previous proposal beta parameters
gammas	a vector with the previous proposal gamma parameters
bpri	a vector with the initial values of beta
Bpri	a matrix with the initial values of the variance of beta
model	it indicates the model that will be used. By default, is the Beta Binomial model (BB), but it could also be the Negative Binomial with mean and shape (NB1) or the Negative Binomial with mean and variance (NB2).
m	It is positive integer that In the Beta Binomial model indicates the number of trials. By default, is the number of data

Details

Generate a proposal for the beta parameter according to the model proposed by Cepeda and Gamerman(2005).

4 dpostg

Value

value a matrix with the proposal for beta

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecephttp://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

dpostg

Posterior value of gamma

Description

Propose a value for posterior distribution of the gamma parameter

Usage

```
dpostg(y,x,z,betas,gammas,gpri,Gpri,model,m)
```

Arguments

У	object of class matrix, with the dependent variable
X	object of class matrix, with the variables for modelling the mean
z	object of class matrix, with the variables for modelling the variance
betas	a vector with the previous proposal beta parameters
gammas	a vector with the previous proposal gamma parameters
gpri	a vector with the initial values of gamma
Gpri	a matrix with the initial values of the variance of gamma
model	it indicates the model that will be used. By default, is the Beta Binomial model (BB), but it could also be the Negative Binomial with mean and shape (NB1) or the Negative Binomial with mean and variance (NB2).
m	It is positive integer that In the Beta Binomial model indicates the number of trials. By default, is the number of data

gammakernel 5

Details

Generate a proposal for the beta parameter according to the model proposed by Cepeda(2001) and Cepeda and Gamerman(2005).

Value

value a integer with the value of the posterior density for gamma

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecephttp://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

gammakernel	the probability of a gamma parameter from the probability density fun-
	cion defined by old parameters

Description

evaluate the probability of a gamma parameter from the probability density function defined by old parameters

Usage

```
gammakernel(y, x, z,betas.ini,gammas.now,gammas.old,gpri,Gpri,model,m,ni)
```

Arguments

У	object of class matrix, with the dependent variable
х	object of class matrix, with the variables for modelling the mean
z	object of class matrix, with the variables for modelling the variance
betas.ini	a vector with the beta that define the old p.d.f
gammas.now	a vector with the gamma parameter - new parameters - to evaluate in the old $p.d.f$

6 gammaproposal

gammas.old a vector with the gamma that define the old p.d.f

gpri a vector with the initial values of gamma

Gpri a matrix with the initial values of the variance of gamma

model it indicates the model that will be used. By default, is the Beta Binomial model

(BB), but it could also be the Negative Binomial with mean and shape (NB1) or

the Negative Binomial with mean and variance (NB2).

m It is positive integer that In the Beta Binomial model indicates the number of

trials. By default, is the number of data

ni It is a vector of positive integer that In the Beta Binomial model indicates the

number of trials to each individual. By default, is a vector of m

Details

Evaluate the probability of a gamma parameter from the probability density function defined by old parameters, according with the model proposed by Cepeda(2001) and Cepeda and Gamerman(2005).

Value

value a vector with the probability for the gamma parameter from the probability den-

sity function defined by old parameters

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecep http://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

gammaproposal A proposal for gamma parameter

Description

Propose a value for the gamma parameter

gammaproposal 7

Usage

```
gammaproposal(y, x, z, betas.ini,gammas.ini,gpri,Gpri,model,m,ni)
```

Arguments

У	object of class matrix, with the dependent variable
x	object of class matrix, with the variables for modelling the mean
z	object of class matrix, with the variables for modelling the variance
betas.ini	a vector with the previous proposal beta parameters
gammas.ini	a vector with the previous proposal gamma parameters
gpri	a vector with the initial values of gamma
Gpri	a matrix with the initial values of the variance of gamma
mode1	it indicates the model that will be used. By default, is the Beta Binomial model (BB), but it could also be the Negative Binomial with mean and shape (NB1) or the Negative Binomial with mean and variance (NB2).
m	It is positive integer that In the Beta Binomial model indicates the number of trials. By default, is the number of data
ni	It is a vector of positive integer that In the Beta Binomial model indicates the number of trials to each individual. By default, is a vector of m

Details

Generate a proposal for the gamma parameter according to the model proposed by Cepeda(2001) and Cepeda and Gamerman(2005).

Value

value a number with the proposal for the gamma parameter

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecephttp://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

8 mukernel

mukernel	the probability of a beta parameter from the probability density function defined by old parameters

Description

evaluate the probability of a beta parameter from the probability density function defined by old parameters

Usage

```
mukernel(y, x, z, betas.now,betas.old,gammas.ini,bpri,Bpri,model,m,ni)
```

Arguments

у	object of class matrix or vector, with the dependent variable.
X	object of class matrix, with the variables for modelling the mean.
Z	object of class matrix, with the variables for modelling the shape, variance or dispersion.
betas.now	a vector with the beta parameter, new parameter, to evaluate in the old p.d.f
betas.old	a vector with the beta that define the old p.d.f
gammas.ini	a vector with the gamma that define the old p.d.f
bpri	a vector with the prior values of beta.
Bpri	a matrix with the prior values of the variance of beta.
model	it indicates the model that will be used. By default, is the Beta Binomial model (BB), but it could also be the Negative Binomial with mean and shape (NB1) or the Negative Binomial with mean and variance (NB2).
m	It is positive integer that In the Beta Binomial model indicates the number of trials. By default, is the number of data
ni	It is a vector of positive integer that In the Beta Binomial model indicates the number of trials to each individual. By default, is a vector of m

Details

Evaluate the probability of a beta parameter from the probability density function defined by old parameters, according with the model proposed by Cepeda(2001) and Cepeda and Gamerman(2005).

Value

value a matrix with the probability for the beta parameter from the probability density function defined by old parameters

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

muproposal 9

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecephttp://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

muproposal	A proposal for beta parameter	

Description

Propose a value for the beta parameter

Usage

```
muproposal(y, x, z, betas.ini,gammas.ini,bpri,Bpri,model,m,ni)
```

Arguments

У	object of class matrix or vector, with the dependent variable.
X	object of class matrix, with the variables for modelling the mean.
Z	object of class matrix, with the variables for modelling the shape, variance or dispersion.
betas.ini	a vector with the beta that define the old p.d.f
gammas.ini	a vector with the gamma that define the old p.d.f
bpri	a vector with the prior values of beta.
Bpri	a matrix with the prior values of the variance of beta.
model	it indicates the model that will be used. By default, is the Beta Binomial model (BB), but it could also be the Negative Binomial with mean and shape (NB1) or the Negative Binomial with mean and variance (NB2).
m	It is positive integer that In the Beta Binomial model indicates the number of trials. By default, is the number of data
ni	It is a vector of positive integer that In the Beta Binomial model indicates the number of trials to each individual. By default, is a vector of m

Details

Generate a proposal for the beta parameter according to the model proposed by Cepeda(2001) and Cepeda and Gamerman(2005).

NegBinBetaBinreg

Value

value a matrix with the proposal for beta

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecephttp://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

NegBinBetaBinreg

NegBinBetaBinreg

Description

Function to estimate a Negative Binomial regression models with mean and shape (or variance) regression structures, and Beta Binomial regression with mean and dispersion regression structures.

Usage

```
NegBinBetaBinreg(y,x,z,nsim,bpri,Bpri,gpri,Gpri,burn,jump,bini,gini,model,m,ni,graph1,graph2)
```

Arguments

У	object of class matrix or vector, with the dependent variable.
x	object of class matrix, with the variables for modelling the mean.
Z	object of class matrix, with the variables for modelling the shape, variance or dispersion.
nsim	a number that indicate the number of iterations.
bpri	a vector with the prior values of beta.
Bpri	a matrix with the prior values of the variance of beta.
gpri	a vector with the prior values of gamma.
Gpri	a matrix with the prior values of the variance of gamma.

11 **NegBinBetaBinreg**

burn	a proportion that indicate the number of iterations to be burn at the beginning of the chain.
jump	a number that indicate the distance between samples of the autocorrelated the chain, to be excluded from the final chain.
bini	a vector with the initial values of beta.
gini	a vector with the initial values of gamma.
model	it indicates the model that will be used. By default, is the Beta Binomial model (BB), but it could also be the Negative Binomial with mean and shape (NB1) or the Negative Binomial with mean and variance (NB2).
m	Is positive integer that In the Beta Binomial model indicates the number of trials. By default, is the number of data
ni	Is a vector of positive integer that In the Beta Binomial model indicates the number of trials to each individual. By default, is a vector of m
graph1	if it is TRUE present the graph of the chains without jump and burn.
graph2	if it is TRUE present the graph of the chains with jump and burn.

Details

The Bayesian Negative Binomial regression allow the joint modelling of mean and shape or variance of a negative binomial distributed variable, as is proposed in Cepeda (2001), with exponential link for the mean and the shape or variance. The Bayesian Beta Binomial regression allow the joint modelling of mean and precision of a beta binomial distributed variable, as is proposed in Cepeda (2001), with logit link for the mean and exponential link for the precision.

Value

object of class NegBinBetaBinreg with:

object of class matrix with the estimated coefficients of beta and gamma. coefficients object of class matrix with the estimated desviations of beta and gamma. desv object of class matrix with the estimated confidence intervals of beta and gamma. interv fitted.values object of class matrix with the fitted values of y. residuals object of class matrix with the residuals of the regression. estresiduals object of class matrix with the standardized residuals of the regression. beta.mcmc object of class matrix with the complete chains for beta. gamma.mcmc object of class matrix with the complete chains for gamma. beta.mcmc.short object of class matrix with the chains for beta after the burned process. gamma.mcmc.short object of class matrix with the chains for gamma after the burned process. object of class integer with the acceptance rate for the beta values. aceptbeta

object of class integer with the acceptance rate for the gamma values. aceptgamma

call Call. 12 NegBinBetaBinreg

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecephttp://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

Examples

```
rm(list=ls(all=TRUE))
Y < -c(6,6,9,13,23,25,32,53,54,5,5,11,17,19,2,8,13,14,20,47,
    48,60,81,6,17,67,0,0,2,7,11,12,0,0,5,5,5,11,17,3,4,22,
    30, 36, 0, 1, 5, 7, 8, 16, 27, 25, 10, 11, 20, 33, 0, 1, 5, 5, 5, 5, 5, 7, 7, 11, 15, 5, 6, 6, 7, 14
y < - Y < - Y[1:68]
x0 < -rep(1, times = 68)
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1
)
x < -cbind(x0, x2, x3)
z0 < -rep(1, times = 68)
z < -cbind(z0, x2)
Bpri=diag(rep(1,3))
bpri=rep(0,3)
Gpri=diag(rep(1,2))
gpri=rep(0,2)
Bini=diag(rep(1,3))
bini=c(3,-1,-0.5)
Gini=diag(rep(1,2))
gini=c(3,-1)
nsim = 300
```

NegBinBetaBinregEst 13

```
burn <- 0.1
jump <- 5
model <- "NB1"
m <- 360
ni <- NULL
re<- NegBinBetaBinregEst (y,x,z,nsim,bpri,
Bpri,gpri,Gpri,burn,jump,bini,gini,
model,m,ni,graph1=FALSE,graph2=FALSE)
summary(re)</pre>
```

NegBinBetaBinregEst

Negative Binomial and Beta Binomial regression

Description

Function to estimate a Negative Binomial regression models with mean and shape (or variance) regression structures, and Beta Binomial regression with mean and dispersion regression structures.

Usage

```
NegBinBetaBinregEst(y,x,z,nsim,bpri,Bpri,
gpri,Gpri,burn,jump,bini,gini,model,m,ni,graph1,graph2)
```

Arguments

У	object of class matrix or vector, with the dependent variable.
X	object of class matrix, with the variables for modelling the mean.
Z	object of class matrix, with the variables for modelling the shape, variance or dispersion.
nsim	a number that indicate the number of iterations.
bpri	a vector with the prior values of beta.
Bpri	a matrix with the prior values of the variance of beta.
gpri	a vector with the prior values of gamma.
Gpri	a matrix with the prior values of the variance of gamma.
burn	a proportion that indicate the number of iterations to be burn at the beginning of the chain.
jump	a number that indicate the distance between samples of the autocorrelated the chain, to be excluded from the final chain.
bini	a vector with the initial values of beta.
gini	a vector with the initial values of gamma.
model	it indicates the model that will be used. By default, is the Beta Binomial model (BB), but it could also be the Negative Binomial with mean and shape (NB1) or the Negative Binomial with mean and variance (NB2).

m Is positive integer that In the Beta Binomial model indicates the number of trials.

By default, is the number of data

ni Is a vector of positive integer that In the Beta Binomial model indicates the

number of trials to each individual. By default, is a vector of m

graph1 if it is TRUE present the graph of the chains without jump and burn.
graph2 if it is TRUE present the graph of the chains with jump and burn.

Details

The Bayesian Negative Binomial regression allow the joint modelling of mean and shape or variance of a negative binomial distributed variable, as is proposed in Cepeda (2001), with exponential link for the mean and the shape or variance. The Bayesian Beta Binomial regression allow the joint modelling of mean and precision of a beta binomial distributed variable, as is proposed in Cepeda (2001), with logit link for the mean and exponential link for the precision.

Value

object of class bayesbetareg with the following:

Bestimado object of class matrix with the estimated coefficients of beta

Gammaest object of class matrix with the estimated coefficients of gamma

X object of class matrix, with the variables for modelling the mean

Z object of class matrix, with the variables for modelling the shape, variance or

dispersion.

DesvBeta object of class matrix with the estimated desviations of beta

DesvGamma object of class matrix with the estimated desviations of gamma

B object of class matrix with the B values of the confidence intervals for beta
G object of class matrix with the G values of the confidence intervals for gamma

yestimado object of class matrix with the fitted values of y

residuales object of class matrix with the residuals of the regression

residuales object of class matrix with the standardized residuals of the regression

beta.mcmc object of class matrix with the complete chains for beta object of class matrix with the complete chains for gamma

beta.mcmc.auto object of class matrix with the chains for beta after the burned process

gamma.mcmc.auto

object of class matrix with the chains for gamma after the burned process

aceptbeta object of class matrix with the acceptance rate for the betas object of class matrix with the acceptance rate for the gammas

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecephttp://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

Description

Print the Negative Binomial regression models with mean and shape (or variance) regression structures, and Beta Binomial regression with mean and dispersion regression structures.

Usage

```
## S3 method for class 'NegBinBetaBinreg'
print(x,...)
```

Arguments

x object of class NegBinBetaBinreg ... not used.

Value

print the Negative Binomial regression with mean and shape modeling and mean and variance modeling and Beta Binomial regression with mean and dispersion modeling

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecephttp://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision

modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

Description

Print the summary for a Negative Binomial regression models with mean and shape (or variance) regression structures, and Beta Binomial regression with mean and dispersion regression structures.

Usage

```
## S3 method for class 'summary.NegBinBetaBinreg'
print(x, ...)
```

Arguments

x object of class NegBinBetaBinreg not used.

Value

Print the summary for a Negative Binomial regression with mean and shape modeling and mean and variance modeling and Beta Binomial regression with mean and dispersion modeling

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecephttp://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

summary.NegBinBetaBinreg
summary.NegBinBetaBinreg

Description

Print the Negative Binomial regression models with mean and shape (or variance) regression structures, and Beta Binomial regression with mean and dispersion regression structures.

Usage

```
## S3 method for class 'NegBinBetaBinreg'
summary(object, ...)
```

Arguments

object an object of class NegBinBetaBinreg
... not used.

Value

call Call
coefficients Coefficients
AIC AIC
BIC BIC

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecep http://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

18 veros

veros Likelihood

Description

calculate the likelihood value for the Negative Binomial regression models with mean and shape (or variance) regression structures, and Beta Binomial regression with mean and dispersion regression structures.

Usage

```
veros(y,x,z,betas,gammas,model,m)
```

Arguments

У	object of class matrix, with the dependent variable
x	object of class matrix, with the variables for modelling the mean
Z	object of class matrix, with the variables for modelling the variance
betas	a vector with the previous proposal beta parameters
gammas	a vector with the previous proposal gamma parameters
model	it indicates the model that will be used. By default, is the Beta Binomial model (BB), but it could also be the Negative Binomial with mean and shape (NB1) or the Negative Binomial with mean and variance (NB2).
m	It is positive integer that In the Beta Binomial model indicates the number of trials. By default, is the number of data

Details

calculate the likelihood value for the Negative Binomial regression with mean and shape modeling and mean and variance modeling and Beta Binomial regression with mean and dispersion modeling.

Value

value a integer with the likelihood

Author(s)

Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>, Maria Victoria Cifuentes-Amado <mvcifuentesa@unal.edu.co>, Margarita Marin <mmarinj@unal.edu.co>

veros 19

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecephttp://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13. // 5.Cepeda-Cuervo, E. and Cifuentes-Amado, V. (2016) Double generalized beta-binomial and negative binomial regression. To appear.

Index

* Bayesian	print.summary.NegBinBetaBinreg, 16
criteria,2	summary.NegBinBetaBinreg, 17
dpostb, 3	veros, 18
dpostg, 4	* Metropolis Hastings
gammakernel, 5	criteria, <mark>2</mark>
gammaproposal, 6	dpostb, 3
mukernel, 8	dpostg, 4
muproposal, 9	gammakernel, 5
NegBinBetaBinreg, 10	gammaproposal, 6
NegBinBetaBinregEst, 13	mukernel, 8
print.NegBinBetaBinreg, 15	muproposal, 9
print.summary.NegBinBetaBinreg, 16	NegBinBetaBinreg, 10
summary.NegBinBetaBinreg,17	NegBinBetaBinregEst, 13
veros, 18	print.NegBinBetaBinreg, 15
* Beta Binomial	print.summary.NegBinBetaBinreg, 16
criteria, 2	summary.NegBinBetaBinreg,17
dpostb, 3	veros, 18
dpostg, 4	* Negative Binomial
gammakernel, 5	criteria, 2
gammaproposal, 6	dpostb, 3
mukernel, 8	dpostg, 4
muproposal, 9	gammakernel, 5
NegBinBetaBinreg, 10	gammaproposal, 6
NegBinBetaBinregEst, 13	mukernel, 8
print.NegBinBetaBinreg, 15	muproposal, 9
print.summary.NegBinBetaBinreg, 16	NegBinBetaBinreg, 10
summary.NegBinBetaBinreg, 17	NegBinBetaBinregEst, 13
veros, 18	print.NegBinBetaBinreg, 15
* Meancovariance modelling	print.summary.NegBinBetaBinreg, 16 summary.NegBinBetaBinreg, 17
criteria,2	veros, 18
dpostb, 3	* package
dpostg, 4	NegBinBetaBinreg-package, 2
gammakernel, 5	Regulibetabilité package, 2
gammaproposal, 6	criteria, 2
mukernel, 8	,
muproposal, 9	dpostb, 3
NegBinBetaBinreg, 10	dpostg, 4
NegBinBetaBinregEst, 13	
print.NegBinBetaBinreg, 15	gammakernel, 5

INDEX 21

```
gammaproposal, 6

mukernel, 8
muproposal, 9

NegBinBetaBinreg, 10
NegBinBetaBinreg-package, 2
NegBinBetaBinregEst, 13

print.NegBinBetaBinreg, 15
print.summary.NegBinBetaBinreg, 16
summary.NegBinBetaBinreg, 17

veros, 18
```