

Main page Contents Featured content Current events Random article Donate to Wkipedia Wkipedia store

Interaction

Help About Wikipedia Community portal Recent changes Contact page

Tools

What links here Related changes Upload file Special pages Permanent link Page information Wkidata item Cite this page

Print/export

Create a book Download as PDF Printable version

Languages

Article Talk Read Edit View history Search Q

Line segment intersection

From Wikipedia, the free encyclopedia

In computational geometry, the **line segment intersection problem** supplies a list of line segments in the Euclidean plane and asks whether any two of them intersect, or cross.

Simple algorithms examine each pair of segments. However, if a large number of possibly intersecting segments are to be checked, this becomes increasingly inefficient since most pairs of segments are not close to one another in a typical input sequence. The most common, more efficient way to solve this problem for a high number of segments is to use a sweep line algorithm, where we imagine a line sliding across the line segments and we track which line segments it intersects at each point in time using a dynamic data structure based on binary search trees. The Shamos–Hoey algorithm^[1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.

See also [edit]

• Line-line intersection

References [edit]

- 1. * Shamos, M. I.; Hoey, D. (1976). "17th Annual Symposium on Foundations of Computer Science (sfcs 1976)" [] (PDF). p. 208. doi:10.1109/SFCS.1976.16 & | chapter= ignored (help)
- Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf (2000). *Computational Geometry* (2nd edition ed.). Springer. ISBN 3-540-65620-0. Chapter 2: Line Segment Intersection, pp. 19–44.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms*, Second Edition. MIT Press and McGraw-Hill, 1990. ISBN 0-262-03293-7. Section 33.2: Determining whether any pair of segments intersects, pp. 934–947.
- J. L. Bentley and T. Ottmann., Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput. C28 (1979), 643–647.

External links [edit]

- Intersections of Lines and Planes

 Algorithms and sample code by Dan Sunday
- Robert Pless. Lecture 4 notes ☑. Washington University in St. Louis, CS 506: Computational Geometry.
- Line segment intersection ☑ in CGAL, the Computational Geometry Algorithms Library
- "Line Segment Intersection" | lecture notes by Jeff Erickson.
- Line-Line Intersection Method With C Code Sample ☑ Darel Rex Finley

This algorithms or data structures-related article is a stub. You can help Wikipedia by expanding it.

Categories: Geometric algorithms | Algorithms and data structures stubs | Computer science stubs

This page was last modified on 24 November 2014, at 05:57.

Text is available under the Oreative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Mobile view

