Interpretace výsledků studií

Lubomír Štěpánek

Průběh studie a ovlivnění její reprodukovatelnosti

Návrh studie ovlivněn volbou designu studie

Sběr dat

 ovlivněn bias "tázaného", interviewer bias, dotazníkové bias, volunteer bias

Zpracování dat

- ovlivněno volbou správné metody (CI, test hypotézy)
- role hladiny významnosti (=role náhody)

Interpretce výsledků

- zatížena interpretačním bias
- nutné uvědomit si existenci confounding

Návrh studie

- observační studie
 - vždy zatíženy confounfing = přítomnost skrytých faktorů, které ve skutečnosti hrají roli
 - např. mentolové žvýkačky (~ kouření tabáku)
 - ~ karcinom plic
 - confounding lze odstínit stratifikací
- intervenční studie
 - confounding lze odstínit randomizací, volbou subjektů

Sběr dat

- role bias = "systematická" chyba akcentující, nebo snižující validitu výsledku
- interviewer bias
- volunteer bias
- recall bias
- dotazníkové bias
- a další bias…

Hodnocen 1 faktor různých situacích nebo 2 faktory (závislost)

V

Nezávislé – různé výběry Závislé (př. tíž pacienti v různých situacích) Srovnání s populací, dva nebo více výběrů

D			A Calebra			2 faktory	
Proměnné		1 faktor					
Výběry	NEZAVISLE			ZAVISLE /			
Data	1 výběr	2 výběry	k výběrů	2 výběry	k výběrů		
Metrická	Interval spolehlivosti, u-test	t-test	ANOVA při jednoduchém třídění	Párový t-test	Analýza rozptylu s opakování	Pearsonův	Poloha
	Interval spolehlivosti	F-test	Bartlett	Fergu	sonů∨	korelační koeficient	Variabilita
Ordinální	Kvantilov ý test	Wilcoxon 2√ýběro√ý Mann-Whitney	Kruskal-Wallis (-H test)	Wilcoxon 2výběrový pro závislé	Friedman	Spearmanův korelační	Poloha
	Siegel - Tukey			Shorac		koeficient	Variabilita
Alternativní	Test dobré shody	χ-kvadrát 2*2, Fisher	χ-kvadrát, k*m tabulka	MC Nemar	Q-test	Kontingenční korelační koeficient	Cetnosti výskytu

Data metrická (měřitelná) symetrická ordinální (pořadí) nebo asymetrická alternativní (ano-ne)

Srovnáváme střední hodnoty nebo variability

Hladina významnosti

- kritérium určující statisticky významný rozdíl zkoumané veličiny mezi dvěma porovnávanými soubory, příp. závislost dvou znaků jednoho výběru
- např. efekt léku A u prvního souboru astmatiků a léku B u druhého souboru astmatiků, příp. závislost váhy na výšce pacientů
- značí se p (též p-value, p-level)
- "p = pravděpodobnost chyby prvního typu, přijmeme-li za platný závěr, že se oba soubory signifikantně liší"
- konvenčně přijato: p≤0,05 => zkoumaný znak se mezi oběma soubory signifikantně liší; p>0,05 => zkoumaný znak se mezi oběma soubory signifikantně neliší
- neříká nic o kauzalitě závislosti

Intervaly spolehlivosti

- interval spolehlivosti (confidence interval, CI) je interval, ve kterém leží určitá skutečná hodnota (obvykle střední hodnota míry polohy) s určitou pravděpodobností, obvykle 95 % (někdy 99 %)
- Cl lze použít v podstatě pro odhad každé veličiny (průměr, OR, RR)
- např. je-li 95% CI RR roven (1,25; 2,50), pak skutečné RR (relativní riziko) leží mezi hodnotami 1,25 a 2,50 s pravděpodobností 95%

Intervaly spolehlivosti

• je-li rozložení veličiny X normální, pak lze 95% Cl sestavit z odhadnuté (spočítané) střední hodnoty \hat{X} veličiny, z odhadnuté odchylky s a rozsahu výběru n (X může být průměr, OR, RR):

95% CI:
$$X \in \left\langle \hat{X} - 1,96 \cdot \frac{s}{\sqrt{n}}; \hat{X} + 1,96 \cdot \frac{s}{\sqrt{n}} \right\rangle$$

- konfidenční interval (CI) se zvětšuje:
 - s rostoucí variabilitou ($\uparrow s$) tu moc neovlivníme
 - s rostoucí pravděpodobností (↑ kvantil) 95% kvantil = 1,96;
 99% kvantil = 2,58 atd.
 - s klesajícím rozsahem souboru (↓ n)
- a naopak CI se zmenšuje s $\uparrow n, \downarrow s, \downarrow$ pravděpodobnost

Poměr šancí, relativní riziko

- poměr šancí (odds ratio, OR)
 - užívá se u studií případů a kontrol (casecontrol study)
 - poměr šancí následku v exponované a neexponované skupině
- relativní riziko (relative risk, RR)
 - užívá se u kohortových a intervenčních studií
 - poměr incidencí následku v exponované a neexponované skupině

$$OR = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$

$$RR = \frac{\frac{a}{a+b}}{\frac{c}{c+d}} = \frac{a(c+d)}{c(a+b)}$$

	efekt ano	efekt ne		
expozice ano	а	b	a+b	
expozice ne	c	d	c+d	
	a+c	b+d	<i>a+b+c+d</i>	

Poměr šancí, relativní riziko

- je-li OR nebo RR:
- =1 => expozice nemá na výskyt efektu žádný vliv (pouze náhodný)
- >1 => expozice zvyšuje pravděpodobnost efektu; např. expozice tabákovému kouři zvyšuje riziko/incidenci karcinomu plic
 - typické pro rizikové expozice
- <1 (ale >0) => expozice snižuje pravděpodobnost efektu, např. expozice slunečnímu záření snižuje riziko/incidenci křivice
 - typické pro protektivní expozice (faktory)

Interpretace dat

- zatížena interpretačním bias
- confounding
 - měl by být diskutován (stať Diskuze)
- role náhody (hladina významnosti)
- kritéria kauzality