BEN-GURION UNIVERSITY OF THE NEGEV

DATA STRUCTURES 202.1.1031

Assignment No. 1

 $Responsible\ staff\ members: \\ Michal\ Shemesh (shemeshm@post.bgu.ac.il) Yotam\ Ashkenazi (yotamash@post.bgu.ac.il)$

 $\begin{array}{c} Authors: \\ \text{John Doe (123456789)} \quad \text{Jane Doe (987654321)} \end{array}$

Publication date: March 23rd, 2023 Submission date: April 4th, 2023

1 Complexity Hierarchy

For each of the functions f_i listed below find g(n) s.t. $f_i(n) \in \theta(g(n))$ and place f_i in the table s.t.:

- Functions f_i and f_j will be located on the same line iff $f_i(n) = \theta(f_j(n))$
- For each function f_i in line k and f_j in line k+1, $f_i(n)=O(f_j(n))$

Prove your answer:

- Find the asymptotic order g(n) and prove (using the definition) that $f_i(n) = \theta(g(n))$ for each i.
- For each two functions f_i, f_j placed in the same line prove that $f_i(n) = \theta(f_j(n))$.
- For each two functions f_i in line k and f_j in line k+1 prove that $f_i(n) = O(f_j(n))$.

$$-f_1(n) = 2023$$

$$-f_2(n) = 2^{\sqrt{n}}$$

$$-f_3(n) = 4^{(2^n)}$$

$$-f_4(n) = 2^{64}$$

$$-f_5(n) = n^n$$

$$-f_6(n) = \log(2^n * n^2)$$

$$-f_7(n) = \log(n^{\frac{1}{2}})$$

$$-f_8(n) = \frac{2^n}{7}$$

f_i	Order - $\theta(g(n))$
f_1	$\theta(1)$
f_2	$\theta(2^{\sqrt{n}})$
f_3	$\theta(2^{(2^{n+1})})$
f_4	$\theta(1)$
f_5	$\theta(n^n)$
f_6	$\theta(n)$
f_7	$\theta(\log n)$
f_8	$\theta(n)$

Answer to Question 1:

First section:

in every question we must find C and n_0)

```
1: f_1 = 2023 \in \theta(1)

c_1 = 2024 for every n > 0 2023 <= 2024 so 2023 = o(1)

c_2 = 1 for every n > 0

1*1 < = 2023

therefor 2023 \in \Omega(1)

so 2023 \in \theta(1)
```

$$\begin{array}{l} 2:\\ f_2 = \theta(2^{\sqrt{n}}) \end{array}$$

there is no well known asymptotic behavior for this function so $f_2 \in \theta(f_2)$ (if we chose $n_0 = 1, c_1 = 1, c_2 = 1$)

3:
$$f_3(n)=4^{(2^n)}\in\theta(2^{(2^{n+1})})$$
 in this function also there is no other asymptotic behavior as this one consequently $4^{2n}=2^{2n+1}$ so we can pick $c_1=0.5, n_0=1, c_2=2$ and the equation $c_1*2^{2n+1}<=4^{2n}<=c2*2^{2n+1}$ foe every $n>n_0$

4:
$$f_4(n) = 2^{64} \in \theta(1)$$

from the definition of $\theta(1)$ we can assume that in this case $\theta(1)$ is a rational number d

```
hence we can pick c1 = \frac{1}{d}
n_0 = 1
c_2 = 2^{64} * \frac{1}{d}
and the equation: c_1 * d \le 2^{64} \le c_2 * d
will be true for every n > 0(n_0 = 0)
5:
f_5(n) = n^n \in \theta n^n
the function n^n is well defined in the asymptotic behavior
therefor if we chose c_1 = 1, n_0 = 1, c_2 = 1
the equation: c1 * n^n \le n^n \le c2 * n^n
for every n > 0
6:
f_6(n) = \log\left(2^n * n^2\right) \in \theta(n)
in this question we will use log identities (no need to write them down.. )
\log(2^n * n^2) = \log(2^n) + \log(n^2)
= n \log + 2 \log(n) = n + 2 \log(n)
therefor we must find c_1, c_2, d to solve the equation: c_1 * (n) <= n + 2log(n) <= c_2 * (n)
so we can pick c_1 = 1
the solve the right side of the equation we know for all n > 1 \log(n) < n
therefor we can pick c_1 = 3, n_0 = 1
and the equation will be true
therefor
\log\left(2^n * n^2\right) \in \theta(n)
7:
f_7(n) = \log\left(n^{\frac{1}{2}}\right) \in \theta \log(n)
also here we gonna use log identities
\log\left(n^{\frac{1}{2}}\right) = \frac{1}{2} * \log(n)
    there for if we chose c_1 = \frac{1}{2}, n_0 = 1, c_2 = 2
the equation: c_1 * log(n) \le \log(n^{\frac{1}{2}}) \le c_2 * log(n)
for all n \geq n_0.
8: f_8(n) = \frac{2n}{7} \in \theta(n)
if we chose c_1 = \frac{1}{10}, c_2 = 1, n_0 = 1 the equation: c_1 n \le \frac{2n}{7} \le c_2 * n
is true (for all n \ge n_0)
second section:
we must prove that f(1) \in \theta f(4)
f(1) = 2023
f(2) = (2^{64})
if we chose c_1 = \frac{1}{2^{64}}, n_0 = 1, c_2 = 1
the equation:
c_1 * 2^{\overline{64}} \le 2023 \le c_2 * 2^{64}
(for all n_0 \geq n)
there for : f(1) \in \theta f(4)
2:
f(8) \in \theta(f(6))
in other words: \frac{2n}{7} \in \theta(\log(2^n * n^2))
in the last section we proved that \log(2^n * n^2)
= n + 2log(n)
    also as we know for all n \ge 1
n \ge \log(n)
```

```
therefor if we chose: c_1 = 1,
n_0 = 1,
c_2 = 14
the equation will be true:
c_1 * \frac{2n}{7} \le \log(2^n * n^2) \le c_2 * \frac{2n}{7}
(for all n > n_0)...
third section:
1: we will prove that f(1) \in O(f(7)) and result from transpose symmetry \theta(1) \in O(\log(n))
if we chose c_1 = 2023,
and n_0 = 16
the equation : 2023 \le c_1 * \log(n^{\frac{1}{2}})
is true for all n \geq n_0 (what we wanted to prove)
\log(n^{\frac{1}{2}}) \in O(\log 2^n * n^2)
we have proved in the sections above that O(\log 2^n * n^2) = n + 2\log(n)
and also we have proved that for all n > 0, n > \log(\frac{n}{2})
therefor if we chose c_1 = 1, n_0 = 0
the equation: \log(n^{\frac{1}{2}}) \le 1 * (\log 2^n * n^2)
will be true (for all n \ge n_0)
3:
\frac{2n}{7} \in O(2^{(\sqrt{n})})
if we chose:
c_1 = 1, n_0 = 4
the equation:
\frac{2n}{7} \le c1 * 2^{(\sqrt{n})}
    for all (n > n_0)
2^{(\sqrt{n})} \in O(n^n)
if we chose n_0 = 2, c_1 = 1
the equation : 2^{(\sqrt{n})} \le c_1 * n^n
is true for all (n > n_0)
5:
n^n \in O(4^{2n})
we will prove in this clause that for all n^n \leq (4^{2n})
so we add log for the two sides and we get \log(n^n) \le \log 4^{(2^n)}
\log(n^n) = n \log(n) (\log identity)
\leq 2^n \leq 2^n * \log(n) = log4^{(2^n)} \leq c1 * \log 4^{(2^n)}
    c_1 = 1, n_0 = 1
therefor:
the equation is true:
n^n \in log4^{(2^n)}
```

2 Properties of asymptotic bounds

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

```
1. Transitivity: If f(n) = \theta(g(n)) and g(n) = \theta(h(n)) then f(n) = \theta(h(n))
```

```
2. Reflexivity: f(n) = \theta(f(n))
```

3. Transpose Symmetry:
$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

4.
$$f(n) = \theta(f(\frac{n}{2}))$$

Answer to Question 2: (Write your answers here:)

1. we assume that $f(n) = \theta(g(n)), g(n) = \theta(h(n))$ to prove that $f(n) = \theta(h(n))$ we conclude from the hypothesis that exists c_1, c_2, c_3, c_4 s.t: $c_1 * g(n) <= f(n) <= c_2 * g(n)$, for every $n > n_0$ $c_3 * h(n) <= g(n) <= c_4 * h(n)$, for every $n > n_1$ $c_3 * h(n) <= g(n) \longrightarrow c_1 * c_3 * h(n) <= c_1 * g(n) <= f(n)$ h(n) = O(f(n)) for every $n > n_2, n_2 = max(n_0, n_1)$ $g(n) <= c_4 * h(n) \longrightarrow f(n) <= c_2 * g(n) <= c_2 * c_4 * h(n)$ $h(n) = \Omega(f(n))$ for every $n > n_2, n_2 = max(n_0, n_1)$ $c_1 * c_3 * h(n) <= f(n) <= c_2 * c_4 * h(n) \longrightarrow f(n) <= f(n) <= c_2 * c_4 * h(n) \longrightarrow f(n) <= f($

2. to prove Reflexivity we should find c_1, c_2, n_0 , s.t:

```
c_1 * f(n) <= f(n) <= c_2 * f(n) because of f(n) = f(n), for every n > 0, so we can choose c_1 = \frac{1}{2}, c_2 = 2 we can see that: \frac{1}{2} * f(n) <= f(n) <= 2 * f(n), for every n > 0 so f(n) = \theta(f(n))
```

3. to prove Transpose Symmetry we should divide the proof for two sections:

```
first section:
```

```
we assume that f(n) = O(g(n)), we should prove that g(n) = \Omega(f(n)). f(n) = O(g(n)), so exists c_1, n_1 s.t f(n) <= c_1 * g(n) (for every n > n_1) \frac{1}{c_1} f(n) <= g(n), c_2 = \frac{1}{c_1}, n_2 = n_1 therefor g(n) = \Omega(f(n))
```

second section:

```
we assume that g(n) = \Omega(f(n)), we should prove that f(n) = O(g(n)). g(n) = \Omega(f(n)), so exists c_1, n_1 s.t g(n) >= c_1 * f(n) (for every n > n_1). \frac{1}{c_1} * g(n) >= f(n), so exists c_2 = \frac{1}{c_1}, n_1 = n_0 s.t c_2 * g(n) >= f(n) therefor f(n) = O(g(n))
```

we proved the two sections so we proved that $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$.

4. we will break through a counter example:

we need to show that it does not exist
$$c_1, c_2$$
 s.t: $c_1 * f(\frac{n}{2}) \le f(n) \le c_2 * f(\frac{n}{2})$.

 $f(n) = n^n$, because of c_2 is a constant there is no c_2 maintain that $f(n) <= c_2 * f(\frac{n}{2})$.

3 Recurrence Examples

Find and prove an asymptotic tight bound Θ for T(n) in each of the following recurrences. Assume that T(c) = C (you can choose any 2 numbers for c and $C \in \mathbb{N}$).

1.
$$T(n) = T(\sqrt{n}) + 1$$

2.
$$T(n) = 4T(\frac{n}{2}) + n^3 \log n$$

3.
$$T(n) = T(\frac{2}{5}n) + 1$$

4.
$$T(n) = 6T(\frac{n}{2}) + n$$

Answer to Question 3:

```
1. Guess: T(n) = \log(\log(n))
Base: for n = 2, \log(\log(2)) = 0
Induction hypothesis: we assume that T(m) = \log(\log(m)), for all m < n.
Induction step: T(n) = T(\sqrt{n}) + 1 = \log(\log(\sqrt{n})) + 1 = \log(\log(\sqrt{n})) + \log(\log(4)) = \log(\log(\sqrt{n}) * \log(4)) = \log(\log(\sqrt{n}) * 2) = \log(\log(\sqrt{n})^2) = \log(\log(n))there for T(n) = \Theta(\log(\log(n))
```

2. we will use the Master method: (third case) $a=4, b=2, f(n)=n^3*\log(n)$

condition number 1:
$$(f(n) = O(n^{\log_b a + \epsilon}))$$

 $\epsilon = \frac{1}{2} \longrightarrow n^3 * \log(n) >= n^{2 + \frac{1}{2}}$
therefor $f(n) = \Omega(n^{2 + \frac{1}{2}})$

$$\begin{array}{l} \text{condition number 2: } a*f(\frac{n}{b}) <= c_1*f(n) \\ 4*(\frac{n^3}{8}*\log(\frac{n}{2})) <= c_1*n^3*\log(n) \ , \ c_1 = \frac{1}{2} \\ \frac{n^3}{2}*(\log(n)-1) <= \frac{n^3*\log(n)}{2} \\ \text{therefor } T(n) = \theta(n^3*\log(n)) \\ \end{array}$$

3. we will solve this Withdrawal formula by using the master theorem:

$$a=1, b=\frac{5}{2}$$
 $f(n)=1$
therefore: $n^{\log_{\frac{5}{2}}1}=n^0=1$
therefor $f(n)\in\theta(1)$
(that means the second case)
consequently the answer is : $T(n)\in\theta(\log n)$

4. we will solve this Withdrawal formula by using the master theorem: $a=6,\,b=3,\,f(n)=n,$

$$n^{\log_3 6}$$
 $\log_3 6 = 1.63$ we chose $\epsilon = 0.1$ that mean that we are in the first case.. which means that: $T(n) = \theta(n^{\log_3 6})$

4 Time Complexity

Find the time complexity of the following algorithms in terms of Θ . You are expected to analyze the asymptotic tight bound of each line in the algorithms, as presented in class for the analysis of insertion sort.

Algorithm 1 Selection Sort (array[int])

```
1: for i = 0; i < array.length - 1; i + + do

2: minInd \leftarrow MinIndex(array, i)

3: Swap(array, i, minInd)

4: end for
```

Algorithm 2 MinIndex (array,from)

```
1: minIndex \leftarrow from

2: \mathbf{for}\ i = from + 1;\ i < array.length;\ i + + \mathbf{do}

3: \mathbf{if}\ arr[i] < arr[minIndex]\ \mathbf{then}

4: minIndex \leftarrow i

5: \mathbf{end}\ \mathbf{if}

6: \mathbf{end}\ \mathbf{for}

7: \mathbf{return}\ minIndex
```

Algorithm 3 Swap (array,i, j)

```
1: tmp \leftarrow array[i]
2: array[i] \leftarrow array[j]
3: array[j] \leftarrow tmp
```

Answer to Question 4: (Write your answer in the following tables)

Algorithm 1 line number	Times	Cost
1	n-1	$\theta(n)$
2	n	$\theta(n^2)$
3	n	$\theta(n)$
Total	_	$\theta(n^2)$
Algorithm 2 line number	Times	Cost
1	1	$\theta(1)$
2	n-1	$\theta(n)$
3	n-1	$\theta(n)$
4	n-1	$\theta(n)$
5	n-1	$\theta(0)$
6	1	$\theta(0)$
7	1	$\theta(1)$
Total		$\theta(n)$
Algorithm 3 line number	Times	Cost
1	1	$\theta(1)$
2	1	$\theta(1)$
3	1	$\theta(1)$
Total	_	$\theta(1)$

5 Algorithm Development

Describe in pseudo-code an efficient algorithm for solving the following problem, and analyze its running time and memory usage. The running time should be asymptotically low as possible.

Input: 2 unsorted arrays A and B of size $N \in \mathbb{N}$. The value of each element in the arrays is a natural number in the range [0, 2N].

Output: True iff all the numbers in A are different from all the numbers in B (that is, iff no value exists in both arrays).

Examples:

Input:	A	5	2	14	2	2	7	1
	В	6	9	9	10	13	0	8

Output: True

Input:	A	5	2	14	2	2	7	1	
	В	6	9	9	10	7	13	8	

Output: False

Answer to Question 5: (Write your answer here)

Algorithm description, run-time and memory usage:

Algorithm description: let c to be a new array of size 2N

```
\begin{split} &\text{for (i=0 to n-1) do} \\ &c[A[i]]=1 \end{split} &\text{for (i=0 to n-1)} \\ &\text{if (c[B[i]]=1) do} \\ &\text{return false} \end{split}
```

return true

run time : n which is asymptotic is: $\theta(n)$

memory usage : 2N (the length of the array...)

which is asymptotic is : $\theta(n)$