Introduction to Cryptography

Introduction

- The word Cryptography is Greek
 - Crypto: Secret + Graphy: Writing
- Basic goal is Secure communication
 - Send messages that no one but the expected recipient can read
 - Has so many other applications, though!

Terminology

- Cryptography
 - Method to send secret messages using a key

- Cryptanalysis
 - Trying to break the key and read those messages

Terminology

- Plaintext: A message in its original form
- Ciphertext: A message in encrypted form
- Encryption: Transforming PT to CT
- Decryption: Transforming CT to PT
- Encryption Algorithm / Cipher: The method used for encryption

Is It Secure?

- How do we know if a cryptographic technique is "secure"?
 - We let lots of really smart people try to break it (cryptanalysis)
 - If they can't, we assume it is secure

Problem: We might be wrong

Simple Ciphers

- Originally, cryptography was performed by hand
- Goal was to protect messages sent by couriers
 - From people who might intercept the courier
 - From the courier himself
- War was a popular time to use them

Caesar Cipher

- Earliest documented cipher was used by Caesar in 50BC!
- Each letter in a message is substituted by another that is 3 letters away.
 - A becomes D, P becomes S, etc.

Caesar Cipher: Example

Α	В	С	D	E	F	G	Ι		J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z
0	1	2	ധ	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

ATTACK AT DAWN

Shift Cipher

Generic version of Caesar cipher

- Each letter is shifted by N.
 - In Caesar, N=3

Shift Cipher: Example

Α	В	С	D	Е	F	G	H		J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Let's do one for N=10...

ATTACK AT DAWN

Shift Cipher: Cryptanalysis

- How do we break this?
- Brute-force: Try all possible values for N
 - There are only 26
- Feasibility?
 - Easy by hand
 - Trivial by computer

Substitution Cipher

Α	В	C	D	Е	F	G	Ή	ı	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	X	Υ	Z
Q	R	Α	8	G	Ν	U	X	Μ	В	>	Ш	Z	D	S	J	Τ	Е	K	Υ	Щ	כ	—	Р	0	Н

- Generate a random set of substitutions for each letter
 - Always a 1:1 correspondence

Substitution Cipher: Example

Α	В	С	D	ш	F	G	Н	ı	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
Q	R	Α	W	G	Z	С	Х	Μ	В	<	L	Z	D	S	J	Т	Е	K	Υ	Ŧ	C		Р	0	Н

ATTACK AT DAWN

13

Substitution Cipher: Cryptanalysis

Brute-force: Try all possible letter combinations

There are (26!)

 Not going to do that by hand...

Substitution Cipher: Cryptanalysis

QYYQAV QY WQID

- Key observation: In a substitution cipher, basic language features are preserved
 - You can tell how often a letter occurs in the message
 - You can see when letters repeat
 - Etc.

Use a technique called frequency analysis

Frequency Analysis

- A cryptanalysis technique discovered by Al-Kindi in Iraq
- Not all letters in a language occur with the same frequency
- In English
 - E is most common

http://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html

- Vowels are about 40%
- Vowels tend to be separated by consonants
- Q tends to be followed by U
- Etc.

Vigenère Cipher

- Poly-alphabetic cipher
 - One plaintext letter can become different ciphertext letters
- Uses a text based key and modulo arithmetic to perform the encryption
- Frequency analysis is possible, but much more difficult

Vigenère Cipher: Example

Α	В	С	D	Е	F	G	Ι	1	J	K	L	М	N	O	Р	Q	R	S	Т	U	V	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	В	С	D	Ε	F	G	Н	ı	J	К	L	М	N	О	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
26	27	28	29	30	31	32	33	34	35	36	37	38	39	40						46	47	48	49	50	51

Let's choose a key of "MONKEY"

ATTACK AT DAWN

MONKEY MO NKEY

18

One-Time Pad

- Vigenère cipher with a randomly chosen key as long as the message
- Key needs to be shared between parties beforehand
- Key can never be re-used
- Provable unbreakable without the key
- This is the only perfect cryptography

One-Time Pad: Example

Α	В	С	D	Е	F	G	Ή	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	В	С	D	Ε	F	G	Н	ı	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
26	27	28	29	30	31	32	33	34	35	36									45	46	47	48	49	50	51

Our random key is "FOWIFOZMQOAF"

ATTACK AT DAWN

FOWIFO ZM QOAF

Quick Note: Crypto Components

- All of the previous techniques have two basic components:
 - Algorithm (What you do to the message)
 - Key (The secret that you need in order to encrypt/decrypt properly)

- When using these algorithms, the key is secret
- The algorithm is not

Summing Up

- We trust a cryptographic algorithm if lots of smart people can't break it
- We looked at three types of simple ciphers:
 - Shift Cipher
 - Substitution Cipher
 - Vigenère Cipher
- They each have an algorithm and a key