CSC373S: Algorithm Design, Analysis & Complexity

Lecture 16

Friday February 10, 2017

based on notes by Denis Pankratov

Graph Algorithms (continued)

All-pairs Shortest Path (continued)

Input: G = (V, E) (directed or undirected)

 $C: E \to \mathbb{R}$

Output: $dist[][], \forall u, v \in V, dist[u][v] = d(u, v)$

Floyd-Warshall solves this in $\mathcal{O}(|V|^3)$.

Can do better for sparse graphs (i.e. $|E| \ll |V|^2$)!

We would like to run Dijkstra, but we have negative edges.

Johnson's algorithm is based on this idea:

- 1. Revewighting procedure that makes all edge weights positive & preserves shortest paths. Can be done in $\mathcal{O}(|V||E|)$
- 2. Run Dijkstra |V| times. Takes $\mathcal{O}((|V|^2 + |V||E|)\log |V|)$ using binary heaps

In particular, if $|E| = \mathcal{O}(|V|)$, runtime $\mathcal{O}(|V|^2 \log |V|)$.

Exercise: Subtracting most negative weight from every weight of edges does *not* preserve shortest paths.

Find an example.

General reweighting procedure

$$G = (V, E), c : E \to \mathbb{R}$$

 $h : V \to \mathbb{R}$

Figure 1: Example

$$\tilde{c}(u,v) = c(u,v) + h(v) - h(u)$$

Claim: (v_0, v_1, \dots, v_k) is a shortest path with respect to (w.r.t.) $c \Leftrightarrow it$ is a short path w.r.t \tilde{c}

Proof:

$$\tilde{c}(v_0, ..., v_k) = \sum_{i=1}^k \tilde{c}(v_{i-1}, v_i)$$

$$= \sum_{i=1}^k c(v_{i-1}, v_i) + h(v_i) - h(v_{i-1})$$

$$= c(v_0, ..., v_k) + h(h_k) - h(v_0)$$

Since $h(v_k)$ & $h(v_0)$ are independent of the actual path, this completes the proof.

<u>Claim:</u> $v_0, v_1, \ldots, v_k = v_0$, negative cycle w.r.t $c \Leftrightarrow v_0, \ldots, v_k = v_0$, negative cycle w.r.t \tilde{c}

Proof: $\tilde{c}(v_0,..,v_k) = c(v_0,..,v_k) + h(v_k) - h(v_0) = c(v_0,..,v_k)$ Need to construct h so that $\tilde{c} \ge 0$

Augment G = (V, E)Pick a new node $s \notin V$ Add s to VAdd edges (s, u) to E for every $u \in V$ Set weight of (s, u) to 0

Figure 2: Visualization

$$G' = (V', E'), c'$$

$$V' = V \cup \{s\}$$

$$(u, v) \in E' \Leftrightarrow (u, v) \in E \text{ or } u = s$$

$$C'(u,v) = \begin{cases} c(u,v), & (u,v) \in E \\ 0, & \text{if } u = s \end{cases}$$

Run Bellman-Ford on G' from s.

- If negative cycle is detected, report it & terminate
- Otherwise, $h(u) = d(s, u) \le 0$

Correction: $\tilde{c}(v,v) = c(u,v) + h(u) - h(v)$

Proof: Let $(u, v) \in E$. By optimal substructure, $d(s, v) \leq d(s, u) + c(u, v)$ $\Rightarrow c(u, v) + d(s, u) - d(s, v) \geq 0$, where the whole thing is $\tilde{c}(u, v)$ since d(s, u) = h(u), d(s, v) = h(v)

Summary

Problem	Algorithm	Runtime
Single source $c = 1$	BFS	$\mathcal{O}(V + E)$
Single-source $c \geq 0$	Dijkstra	$\mathcal{O}((V + E)\log V)$
Single-source c arbitrary	$Bellman ext{-}Ford$	$\mathcal{O}(V E)$
All-pairs c arbitrary	$Floyd ext{-}Warshall$	$\mathcal{O}(V ^3)$
All-pairs c arbitrary	Johnson's $Algorithm$	$\mathcal{O}((V ^2 + V E)\log V)^*$

^{*} using binary heaps

Network Flows

Input: G = (V, E) directed graphs $c: E \to \mathbb{R}_{>0}$ capacities $s, t \in V, s$ - source, t - sink/terminal

No backward edges:

$$(u,v) \in E \Rightarrow (v,u) \notin E$$

No edges into sNo edges out of t

<u>Definition:</u> A flow $f: E \to \mathbb{R}$ so that:

1. $\forall (u, v) \in E, 0 \le f(u, v) \le c(u, v)$

2.
$$\forall v \in E, f^{out}(v) = f^{in}(v)$$
$$f^{out}(v) = \sum_{u:(v,u)\in E} f(v,u)$$
$$f^{in}(v) = \sum_{u:(u,v)\in E} f(u,v)$$

Figure 3: Visualization

<u>Definition</u>: Value of flow f:

$$|f| := f^{out}(s)$$

Figure 4: *Example*: |f| = 9 + 5 = 14

Notation (borrowed from CLRS): 9/10, where 9 is the flow and 10 is the capacity

Goal: Design an algorithm to find maximum flow. (Note: No known Greedy/DP algorithms)

New algorithm paradigm: local search

- Start with some feasible solution
- Perform local changes to get a better solution

In the setting of network flows, Ford-Fulkerson is algorithm method, since it skips some steps.

- Start with the all 0 flow $(\forall (u, v) \in E, f(u, v) = 0)$
- Find augmenting s to t path in the residual graph, push more flow along the path