

Factors Influencing Whether an Individual Earns More Than \$50K Per Year

Group 28: Chu Chu, Junhui Bai, Chaoyu Han, Yufei Luan, Zening Wang

Aims of Analysis

 Understand income determinants using 1994 U.S. Census data, focusing on whether individuals earn more than \$50,000 per year.

- Compare models: Generalized Linear Model (GLM) vs. machine learning models (e.g., Random Forest) in terms of predictive performance and interpretability.
- Key research objectives:
 - 1. Feature Identification Find significant features that affect income levels.
 - 2. Income Classification Predict if an individual earns >\$50K (binary classification).
 - 3. Practical Implications Interpret results to inform social & economic policy.

Missing values were identified by treating '?,' as NA and subsequently removed using na.omit().

Data Type Checking and Conversion.

Summary of Statistics by Variable.

Statistic	Age	Hours_PW
Min.	17.00	3.00
1 st Qu.	28.00	40.00
Median	37.00	40.00
Mean	38.53	41.26
3 rd Qu.	48.00	46.00
Max.	90.00	99.00

Check for Multi-Collinearity issues.

There is no serious multicollinearity problem.

Data Visualization -- Categorical Variable.

Nationality vs Income

Education Level vs Income

Occupation vs Income

Income

<=50K >50K

Count 500

Nationality

Partner vs Income

Sex vs Income

Data Visualization -- Numerical Variable.

Hours Per Week vs Income

Age vs Income

- Check Sample Balance.
- Data Splitting: Training Set (80%) and Test Set (20%).

Dataset Income Category	Count	Proportion
≤50K	1030	75.24%
>50K	339	24.76%

Training data Income Category	Count	Proportion
≤50K	824	75.18%
>50K	272	24.82%

Test data Income Category	Count	Proportion
≤50K	206	75.46%
>50K	67	24.54%

- GLM

Model Construction

Build Main Effects Model

- Created dummy variables for categorical predictors
- Built GLM with all main effect variables
- Stepwise AIC selection → Resulted in a simpler and interpretable base model

Add Interaction Terms

- Added :
 - Education Level × Occupation Hours Worked × Occupation
- Chi-square test (p = 0.0019) → Model fit improved

Finalize Optimized Model

- Removed insignificant interactions (p > 0.05)
- Kept : Hours Worked × Service & Labor Jobs
- Checked multicollinearity (VIF < 1.4)
 - → Stable & strong final model

- GLM

Base Model Summary

Variable	Coefficient	Effect Direction	p-value
Age	+0.0262	Positive	<0.001***
Hours_PW	+0.0384	Positive	<0.001***
Has_partner_Yes	+2.5359	Strong Positive	<0.001***
Education_level_Lower	-2.6628	Negative	<0.001***
Education_level_Medium	-1.3376	Negative	<0.001***
Nationality_US_mainland	+0.8734	Positive	0.012*
Occupation_High_skilled_jobs	+0.7780	Positive	0.0016***
Occupation_Service_Labor_jobs	-0.6674	Negative	0.0375*
Occupation_Office_Sales_jobs	-0.3869	Not Significant	0.1564

- Most variables are statistically significant (p < 0.05), but **OccupationOffice_Sales_jobs** is not.
- Model performance (AIC = 793.01; Residual Deviance = 773.01) indicates room for improvement.
 - → Optimization needed to improve model fit and eliminate non-significant predictors.

- GLM

Final Model Summary

Variable	Coefficient	Effect Direction	p-value
Age	+0.0265	Positive	<0.001***
Hours_PW	+0.0429	Positive	<0.001***
Has_partner_Yes	+2.5551	Strong Positive	<0.001***
Education_level_Lower	-2.5287	Negative	<0.001***
Education_level_Medium	-1.2623	Negative	<0.001***
Nationality_US_mainland	+0.8843	Positive	0.011*
Occupation_High_skilled_jobs	+0.9145	Positive	<0.001***
Hours_PW × Occupation_Service_Labor_jobs	+0.0186	Negative Interaction	0.005**

Coefficients indicate the effect on the log-odds of earning >\$50K.

All shown variables are statistically significant (p < 0.05).

- GLM

Final Model Equation

$$\begin{split} \log \left(\frac{P(\text{Income} = 1)}{1 - P(\text{Income} = 1)} \right) = & -5.786 + 0.027 \cdot \text{Age} + 0.043 \cdot \text{Hours_PW} \\ & + 0.914 \cdot \text{Occupation}_{\text{High_skilled_jobs}} \\ & + 0.884 \cdot \text{Nationality}_{\text{US_mainland}} \\ & - 2.529 \cdot \text{Education}_{\text{Lower}} \\ & - 1.262 \cdot \text{Education}_{\text{Medium}} \\ & + 2.555 \cdot \text{Has_partner}_{\text{Yes}} \\ & - 0.019 \cdot \left(\text{Hours_PW} \times \text{Occupation}_{\text{Service_Labor_jobs}} \right) \end{split}$$

This final model includes the most influential main effects and one significant interaction term.

All coefficients are statistically significant (p < 0.05), and the model shows strong predictive performance.

- GLM

Model Performance

- AUC = 0.8892
- → Indicates strong classification performance
- AIC = 787.58
- → Improved from base model (793.01), indicating better model fit
- Residual Deviance = 769.58
 - → Suggests improved goodness of fit
- All VIF values < 1.4
 - → Confirms absence of multicollinearity

- GLM

Model Summary

- Final model includes 8 key predictors, all statistically significant (p < 0.05).
- Has Partner and Education Level show strongest effects.
- Significant interaction:
 - → Longer working hours have reduced impact in labor-intensive jobs.
- Model is interpretable, stable, and shows strong classification performance.
- Results highlight key drivers of income inequality.

- Random Forest

Model Construction

Build Random Forest Model

- Trained with ntree=500 and mtry= \sqrt{p} , where p is the number of predictors
- Enabled variable importance and proximity calculations

Extract Model Info

- Printed model summary
- Extracted one decision tree (getTree())
- Collected Out-of-Bag (OOB) error estimates

Visualize & Evaluate

- Plotted OOB Error Curve
- Created Variable Importance Plot
- Prepared model for prediction on test set

Model Performance

- Key Metrics (Test Set Evaluation):

Accuracy: 80.59%

AUC (Area Under Curve): 0.8632

OOB Error Estimate: 17.06%

- Class-specific Performance:

Sensitivity (≤\$50K): 89.32%

Specificity (>\$50K): 53.73%

Balanced Accuracy: 71.53%

Class Error (>50K): 40.89%

- Random Forest

- Random Forest

Variable Importance

Variable	MDA
Has_partner	58.31
Education_level	33.29
Age	32.26
Occupation	25.83
Hours_PW	21.49

(MDA: Mean Decrease Accuracy)

The **top five** predictors showed the **highest contributions** to classification accuracy based on Mean Decrease Accuracy.

- Model Comparison

Metric	GLM Model	Random Forest Model
AUC	0.8892	0.8632
Interpretability	Strong	Low (Black Box)
Interaction Modeling	Explicitly Modeled	Implicitly Included
Model Suitability	Interpretation & Inference	High-Dimensional, Nonlinear
Class Balance Sensitivity	Adjustable via Weighting	Relatively High

- Both models show strong AUC performance (GLM: 0.8892 > RF: 0.8632).
- GLM outperforms in interpretability and policy relevance.
- GLM explicitly models interactions and shows clearer effect directions.
- RF is better suited for complex, high-dimensional data but lacks transparency.

Overall, GLM is more appropriate for explaining income inequality in this study.

Conclusions

What determines whether an individual earns over \$50K/year?

- Education Level
- Working Hours (Hours_PW)
- Marital Status (Has Partner)
- Age
- Occupation Type
- Nationality

Among these, education and marital status showed the strongest effects.

Significant interaction: Longer working hours yield less income benefit in labor-intensive jobs.

Policy Implications

Expand Access to Education → Education is key to income mobility.

Improve Labor Policies → Especially in physical jobs where long hours bring limited returns.

Support Social Stability → Marital status shows strong financial relevance.

Address Regional Inequality → Income advantages differ by nationality.

Future Work

1. Address Class Imbalance

→ Apply resampling techniques (e.g. SMOTE, undersampling) to improve prediction for high-income group.

2. Improve Minority Class Prediction

→ Explore model adjustments that reduce bias towards the majority class (≤\$50K).

3. Extend Data Coverage

→ Consider gathering more balanced or diverse datasets for future analysis.

Thank You!