STANDARD CODE LIBRARY OF HUST Affiliated Kindergarten

Verson 1.1

EDITED BY

SDDYZJH
DRAGOONKILLER
DREACTOR

Huazhong University of Science and Technology

目录

数		2
	第用公式	2
	性函数	2
	巨比乌斯反演	2
	第用等式	2
杂		3
	速	3
	長入挂	3
	有用概念	3
	喇	3
	茵演	3
	图	3
	i边形数	3
	重心	3
	三类 Bernoulli number	3
	atalan 数	4
	tirling 数	4
	- - - - - - - - - - - - - - - - - - -	4

数学

常用公式

积性函数

$$\sigma_k(n)=\Sigma_{d|n}d^k$$
 表示 n 的约数的 k 次幂和
$$\sigma_k(n)=\Pi_{i=1}^k\frac{(p_i^{a_i+1})^k-1}{p_i^k-1}$$
 $\varphi(n)=\Sigma_{i=1}^n[(n,i)=1]=\Pi_{i=1}^k(1-\frac{1}{p_i})$ $\varphi(p^k)=(p-1)p^{k-1}$ $\Sigma_{d|n}\varphi(n)=n\to\varphi(n)=n-\Sigma_{d|n,d< n}$ $n\geq 2$ 时 $\varphi(n)$ 为偶数
$$\mu(n)=\begin{cases} 0 & \text{有平方因子} \\ (-1)^t & n=\Pi_{i=1}^tp_i \\ [n=1]=\Sigma_{d|n}\mu(d)$$
 排列组合后二项式定理转换即可证明 $n=\Sigma_{d|n}\varphi(d)$ 将 $\frac{i}{n}(1\leq i\leq n)$ 化为最简分数统计个数即可证明

莫比乌斯反演

$$\begin{split} F(n) &= \sum_{d|n} f(d) \Rightarrow f(n) = \sum_{d|n} \mu(d) * F(\frac{n}{d}) \\ F(n) &= \sum_{n|d} f(d) \Rightarrow f(n) = \sum_{n|d} \mu(\frac{n}{d}) * F(d) \\ f(n) &= \sum_{d|n} \phi(d) \Rightarrow \phi(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \mu(d) \frac{n}{d} \end{split}$$

常用等式

不知道有什么用

$$\begin{split} \sum_{d|N} \phi(d) &= N \\ \sum_{i \leq N} i * [(i,N) = 1] = \frac{N*\phi(N)}{2} \\ \sum_{d|N} \frac{\mu(d)}{d} &= \frac{\phi(N)}{N} \\ \\ \mathbf{常用代换} \\ \sum_{d|N} \mu(d) &= [N = 1] \\ \\ \mathbf{考虑每个数的贡献} \\ \sum_{i \leq N} \lfloor \frac{N}{i} \rfloor &= \sum_{i \leq N} d(i) \end{split}$$

杂项

测速

读入挂

常用概念

映射

[injective] or [one-to-one] 函数值不重复
[surjective] or [onto] 值域都被取到
[bijective] or [one-to-one correspondence] ——对应

反演

反演中心 O, 反演半径 r, 点 p 的反演点 p' 满足 $|OP||OP'|=r^2$ 不经过反演中心的直线,反形为经过反演中心的圆,不经过反演中心的圆,反形为圆,反演中心为这两个互为反形的圆的位似中心

弦图

设 next(v) 表示 N(v) 中最前的点. 令 w* 表示所有满足 $A \in B$ 的 w 中最后的一个点, 判断 $v \cup N(v)$ 是否为极大团, 只需判断是否存在一个 $w \in w*$, 满足 Next(w) = v 且 $|N(v)| + 1 \le |N(w)|$ 即可.

五边形数

$$\prod_{n=1}^{\infty} (1-x^n) = \sum_{n=0}^{\infty} (-1)^n (1-x^{2n+1}) x^{n(3n+1)/2}$$

重心

半径为 r ,圆心角为 θ 的扇形重心与圆心的距离为 $\frac{4r\sin(\theta/2)}{3\theta}$ 半径为 r ,圆心角为 θ 的圆弧重心与圆心的距离为 $\frac{4r\sin^3(\theta/2)}{3(\theta-\sin(\theta))}$

第二类 Bernoulli number

$$B_m = 1 - \sum_{k=0}^{m-1} {m \choose k} \frac{B_k}{m-k+1}$$

$$S_m(n) = \sum_{k=1}^n k^m = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose k} B_k n^{m+1-k}$$

Catalan 数

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$$

前 20 项:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190

Stirling 数

$$s(n,k)=(-1)^{n+k}|s(n,k)|$$
 $|s(n,0)|=0$ $|s(1,1)|=1$ $|s(n,k)|=|s(n-1,k-1)|+(n-1)*|s(n-1,k)|$ 第二类:n 个元素的集定义 k 个等价类的方法数 $S(n,1)=S(n,n)=1$ $S(n,k)=S(n-1,k-1)+k*S(n-1,k)$

三角公式

$$\begin{split} &\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b \\ &\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b \\ &\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \tan(b)} \\ &\tan(a) \pm \tan(b) = \frac{\sin(a \pm b)}{\cos(a) \cos(b)} \\ &\sin(a) + \sin(b) = 2 \sin(\frac{a + b}{2}) \cos(\frac{a - b}{2}) \\ &\sin(a) - \sin(b) = 2 \cos(\frac{a + b}{2}) \sin(\frac{a - b}{2}) \\ &\cos(a) + \cos(b) = 2 \cos(\frac{a + b}{2}) \cos(\frac{a - b}{2}) \\ &\cos(a) + \cos(b) = -2 \sin(\frac{a + b}{2}) \sin(\frac{a - b}{2}) \\ &\sin(na) = n \cos^{n-1} a \sin a - \binom{n}{3} \cos^{n-3} a \sin^3 a + \binom{n}{5} \cos^{n-5} a \sin^5 a - \dots \\ &\cos(na) = \cos^n a - \binom{n}{2} \cos^{n-2} a \sin^2 a + \binom{n}{4} \cos^{n-4} a \sin^4 a - \dots \end{split}$$