Control Systems Engineering (EYAG-1005): **Unit 03**

Luis I. Reyes-Castro

Escuela Superior Politécnica del Litoral (ESPOL)

Guayaquil - Ecuador

Semester: 2017-T1

Bode Plots

- **Bode Plots**
 - Introduction
 - Elementary Systems

- **Bode Plots**
 - Introduction
 - Elementary Systems

Consider a stable system with transfer function G(s).

- Suppose the input r(t) is a sinusoid with frequency ω and unit amplitude.
- Then the steady-state output $c_{ss}(t)$ must be a a sinusoid with the same frequency ω but with a particular amplitude M and phase ϕ which depend on the transfer function G(s) and on the input frequency ω .

- Given G(s) and a frequency ω we can evaluate the amplitude and phase of the steady-state output by computing the phasor $G(j\omega)$. In particular:
 - The phasor's magnitude yields the amplitude $M(\omega)$.
 - The phasor's angle with $+\mathbb{R}$ yields the phase $\phi(\omega)$.

■ We can also estimate $M(\omega)$ and $\phi(\omega)$ experimentally:

- Furthermore, notice that:
 - Amplitude *M* is always positive.
 - If $M \in (0,1)$ we get attenuation.
 - If M = 1 we get amplitude matching.
 - If M > 1 we get amplification.
 - Phase may be negative, zero or postive.
 - If ϕ < 0 then the output lags the input.
 - If $\phi = 0$ then the output matches the input.
 - If $\phi > 0$ then the output leads the input.

Bode Plots are diagrams of $M(\omega)$ and $\phi(\omega)$. More precisely, they consist of the following two plots:

- Magnitude Plot: Amplitude $M(\omega)$ versus frequency ω .
 - The x-axis is frequency ω in decades, i.e., $x = \log_{10}(\omega)$.
 - The y-axis is amplitude $M(\omega)$ in decibels, i.e., $y = 20 \cdot \log(M(\omega))$.
- **Phase Plot**: Phase $\phi(\omega)$ versus frequency ω .
 - The *x*-axis is frequency ω in decades, *i.e.*, $x = \log_{10}(\omega)$.
 - The *y*-axis is phase in degrees, *i.e.*, $y = \phi(\omega)$.

Notice that when sketching Bode Plots by hand, we usually don't draw exactly the functions $M(\omega)$ and $\phi(\omega)$ but instead sketch asymptotic approximations.

- **Bode Plots**
 - Introduction
 - Elementary Systems

Bode plot for a simple amplifier: G(s) = K

- Magnitude plot is constant at $y = 20 \cdot \log_{10}(K)$ decibels.
- Phase plot is constant at y = 0 degree.

Bode plot for an integrator: $G(s) = \frac{1}{s}$

 \blacksquare Phasor as a function of ω :

$$G(j\omega) = \frac{1}{j\omega} = -\frac{j}{\omega} \implies M(\omega) = \frac{1}{\omega} \& \phi(\omega) = -90^{\circ}$$

- Magnitude plot is $y = -20 \cdot \log_{10}(\omega)$ decibels, *i.e.*, it is a line with slope of -20 decibels per decade which hits zero decibels at $\omega = 1$ rad/s.
- Phase plot is constant at y = -90 degree.

Bode plot for a differentiator: G(s) = s

■ Phasor as a function of ω :

$$G(j\omega) = j\omega \implies M(\omega) = \omega \& \phi(\omega) = +90^{\circ}$$

- Magnitude plot is $y = +20 \cdot \log_{10}(\omega)$ decibels, *i.e.*, it is a line with slope of +20 decibels per decade which hits zero decibels at $\omega = 1$ rad/s.
- Phase plot is constant at y = +90 degree.