MNIST database

It is a dataset of 60,000 small square 28×28 pixel grayscale images of handwritten single digits between 0 and 9.

The task is to classify a given image of a handwritten digit into one of 10 classes representing integer values from 0 to 9, inclusively.

MNIST challenge is to develop a machine learning algorithm that can classify these images into 10 classes (0 to 9).

For classification of these images into class of 10 we are using XGBoost Classification algorithm.

Methodology

- 1)Import libraries required and import dataset from keras.
- 2) Visualize data.
- 3) Train the model on dataset and predict for the testing data.
- 4)Evaluate the model.

Importing necessary Libraries

```
In [42]:
```

```
import matplotlib.pyplot as plt
from keras.datasets import mnist
import xgboost as xgb
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score, classification_report
```

Importing and splitting MNIST dataset

```
In [43]:
```

```
# load dataset
(trainX, trainy), (testX, testy) = mnist.load_data()
# summarize loaded dataset
print('Train: X=%s, y=%s' % (trainX.shape, trainy.shape))
print('Test: X=%s, y=%s' % (testX.shape, testy.shape))

Train: X=(60000, 28, 28), y=(60000,)
Test: X=(10000, 28, 28), y=(10000,)
```

Plotting few images

```
In [44]:
```

```
# plot first few images
for i in range(9):
    # define subplot

pyplot.subplot(330 + 1 + i)
    # plot raw pixel data

pyplot.imshow(trainX[i])
# show the figure
pyplot.show()
```


In [45]:

print(trainX.shape) #shows that it is a collection of 60,000 images and each image is 28
X28 pixel image implies there are 28x28=784 input values in each image.
print(trainX[0]) #matrix of how the image looks like .It is basically a bunch of numb
er where each number show pixel intensity range from 0 to a maximum value of 253 .
print(trainy.shape)
print(testX.shape)
print(testy.shape)

(60 [[000), 28 0	3, 2 0	8)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LL	0	0	0	0	0	0	0	0	0	0]		O	O	O	O	O	O	O
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	0	0	0	0	0	0	0	0	0	0]		0	0	0	0	0	0	0
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ	0	0	0	0	0	0	0	0	0	0]	0	0	0	0	0	0	0	0
L	0	0	0	0	0	0	0	0	0	0]		O	O	O	O	O	O	O
[0	0	0	0	0	0	0	0	0	0	0	0	3	18	18	18	126	136
1	.75	26	166	255	247	127	0	0	0	0]								
[0	0	0	0	0	0	0	0	30	36		154	170	253	253	253	253	253
2	25	172	253	242	195	64	0	0	0	0]								
[0	0	0	0	0	0	0	49	238			253	253	253	253	253	253	251
г	93	82	82	56	39	0	0	0	0	0]		252	252	2 5 2	1 0 0	100	247	0.41
[0	0	0	0	0	0	0	18	219	253 0]		253	253	253	198	182	24/	241
ſ	0	0	0	0	0	0	0	0	80			253	253	205	11	0	43	154
L	0	0	0	0	0	0	0	0	0	0]		233	200	200		O	13	151
[0	0	0	0	0	0	0	0	0	14		154	253	90	0	0	0	0
	0	0	0	0	0	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	0	0	0	139	253	190	2	0	0	0
	0	0	0	0	0	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	0	0	0	11	190	253	70	0	0	0
г	0	0	0	0	0	0	0	0	0	0]		0	2.5	0.41	205	1.00	1 0 0	1
[0	0	0	0	0	0	0	0	0	0	0	0	35	241	225	100	108	1
Γ	0	0	0	0	0	0	0	0	0	0	0	0	0	81	240	253	253	119
L	25	0	0	0	0	0	0	0	0	01		O	O	01	240	200	255	117
Γ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45	186	253	253
1	.50	27	0	0	0	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	93	252
2	253	187	0	0	0	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	249
	253		64	0	0	0	0	0	0	0]		0	0	0	1.0	1 2 0	100	252
	0	0 207	0 2	0	0	0	0	0	0	0 0]	0	0	0	0	46	130	183	253
	0		0	0	0	0	0	0	0			0	39	148	229	253	253	253
_		182	0		0	0	0	0		0]		O	55	110	223	200	200	200
	0	0	0	0	0	0	0	0		0		114	221	253	253	253	253	201
-	78	0	0	0	0	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	23			253	253	253	253	198	81	2
	0	0	0		0			0										
[0	0	0		0	0				253		253	253	195	80	9	0	0
г	0	0	0	0	0	172	0	0	0	0]		011	1 2 2	11	^	^	0	^
L	0	0	0	0	55	172	226	253	253	253		∠44	133	ΤТ	0	0	0	0

```
U
                U
                   U
                      U
  0
          0 136 253 253 253 212 135 132
     0 0 0 0
                0 0
[ 0
                                 0
                                                  0
    0 0 0 0 0 0 0
  0
                          01
    0 0 0 0 0 0 0 0
  0
                              0
                                   0
                                      0
                                         0
                                            0
                                               0
                                                  0
[
                                 0
     0 0 0 0 0 0 0 0 0]
  0
     0 0 0 0 0 0 0 0
                             0
                                 0
                                   0
                                         0
                                            0
                                               0
                                                  0
  0
                                      0
     0 0 0 0 0 0 0 0 0]]
  0
(60000,)
(10000, 28, 28)
(10000,)
```

Reshaping trainX and testX

```
In [46]:
trainX= trainX.reshape(60000,784)
testX = testX.reshape(10000,784)
```

XGBoost classification

Evaluation

```
In [55]:

XG.score(testX, testy)

Out[55]:
0.9793
```

Prediction

```
In [64]:
y_pred = XG.predict(testX)
```

There are four ways to check if the predictions are right or wrong:

TN / True Negative: the case was negative and predicted negative

TP / True Positive: the case was positive and predicted positive

FN / False Negative: the case was positive but predicted negative

FP / False Positive: the case was negative but predicted positive

- 1) Precision = TP/(TP + FP)
- 2) Recall = TP/(TP+FN)
- 3) F1 Score = 2 (Recall Precision) / (Recall + Precision)

In [65]:

	precision	recall	f1-score	support
0	0.98	0.99	0.98	980
1	0.99	0.99	0.99	1135
2	0.97	0.97	0.97	1032
3	0.98	0.98	0.98	1010
4	0.99	0.98	0.98	982
5	0.99	0.98	0.98	892
6	0.98	0.98	0.98	958
7	0.98	0.97	0.97	1028
8	0.97	0.98	0.97	974
9	0.97	0.97	0.97	1009
accuracy			0.98	10000
macro avg	0.98	0.98	0.98	10000
weighted avg	0.98	0.98	0.98	10000