Optimization for Machine Learning

Lecture 9: Finite Sum Optimization Variance-reduced Stochastic Methods

Sebastian Stich

```
CISPA - https://cms.cispa.saarland/optml24/
June 18, 2024
```

Course Outlook

course format: mini-survey

course project: on plan? questions?

Group Project Timeline

- ► Group registration between May 28 June 4 (register on CMS)
 - ▶ groups of 2–3
- before June 18: get in touch with the contact person and schedule a meeting!
 - read the related literature
 - prepare a list of research goals and tasks
- before June 25: meet with your contact person
 - zoom meeting, 30-60min, can also be in-person
 - discuss your research plan
 - ask questions about things you do not understand
- ▶ July 16: Poster presentation (& suggested report submission)
 - ▶ (note that the **poster printing deadline** is a bit earlier, TBA!)
- July 26: last possible date to submit the report

There will be no exercise sheets in the weeks of June 25/July 2 — you can also discuss the project in the exercise session with your contact person.

Recap

We formulated (& simplified) federated learning as a finite sum optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \quad F(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$
 (FS)

- We observed optimization difficulties in the heterogeneous setting: $f_i(\mathbf{x}^*) \neq f_j(\mathbf{x}^*)$.
- ▶ Specialized methods, like SCAFFOLD can mitigate "drift". In this lecture, we will see that drift correction can be seen as a special case of variance reduction.

SGD vs. GD for Finite Sum Problem

$$\min_{\mathbf{x} \in \mathbb{R}^d} \quad F(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

Table: Complexity for smooth and strongly convex problems: $\kappa = L/\mu$

	iteration complexity	per-iteration cost	total cost
GD			
SGD			

- ► GD converges faster but with expensive iteration cost
- ► SGD converges slowly but with cheap iteration cost
- ▶ SGD is more appealing for large n and moderate accuracy ϵ .

Can we achieve both worlds?

- ▶ GD: deterministic, linear rate, O(n) iteration cost, fixed stepsize.
- \triangleright SGD: stochastic, sublinear rate, O(1) iteration cost, diminishing stepsize.

Figure from Bach's NeurIPS 2016 tutorial

Observation: reducing variance is the key

$$\mathbb{E}[\|\nabla f_{i_t}(\mathbf{x}_t) - \nabla F(\mathbf{x}_t)\|_2^2] \le \sigma^2$$

A high variance slows down the convergence when seeking high accuracy:

$$\mathcal{O}\left(\kappa\log\frac{1}{\epsilon} + \frac{\sigma^2}{\mu\epsilon}\right)$$

Q: Can we design gradient estimators with reduced variance?

Stochastic Varianced-reduced Methods

Stochastic variance-reduced methods are as cheap to update as SGD, but have as fast convergence as full gradient descent.

Popular algorithms:

- ► SAG (stochastic average gradient) [Le Roux et al., 2012]
- ▶ SVRG (stochastic variance-reduced gradient) [Johnson and Zhang, 2013]
- ▶ SDCA (stochastic dual coordinate ascent) [Shalev-Shwartz and Zhang, 2013]
- ► SAGA (stochastic average gradient amélioré) [Defazio et al., 2014]
- Many many others: MISO, Finito, Catalyst-SVRG, S2GD, etc.
- Recent variants for nonconvex setting: SPIDER, SARAH, STORM, PAGE, etc.

Preview of VR Methods

Algorithm	# of Iterations	Per-iteration Cost
GD	$O\left(\kappa\lograc{1}{\epsilon} ight)$	O(n)
SGD	$O\left(rac{\kappa}{\epsilon} ight)$	O(1)
VR	$O\left((n+\kappa)\log\frac{1}{\epsilon}\right)$	O(1)

Table: Complexity of strongly convex and smooth finite-sum optimization

Preview of VR Methods

Figure: Logistic regression on mushrooms dataset with n=8124 [Gow20]

Lecture Outline

Variance Reduction Techniques

Stochastic Variance-reduced Methods

SAG/SAGA

SVRG

Classical Variance Reduction Techniques

$$\min_{\mathbf{x} \in \mathbb{R}^d} \quad F(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

▶ Mini-batching: Use the average of gradients from a random subset

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma_t \frac{1}{|B_t|} \sum_{i \in B_t} \nabla f_i(\mathbf{x}_t)$$

NB: Variance reduction comes at a computational cost.

► Momentum: add momentum to the gradient step

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma_t \hat{\mathbf{m}}_t, \text{ where } \hat{\mathbf{m}}_t = c \cdot \sum_{\tau=1}^t \alpha^{t-\tau} \nabla f_{i_\tau}(\mathbf{x}_\tau)$$

NB: Here \mathbf{m}_t is the weighted average of the past stochastic gradients.

A Modern Variance Reduction Technique

Suppose we want to estimate $\theta = \mathbb{E}[X]$, X is a random variable. Consider the **point estimator** for θ :

$$\hat{\Theta} := X - Y$$

- $lackbox{}{\mathbb{E}}[X-Y]= heta$ if and only if $\mathbb{E}[Y]=0$
- $ightharpoonup \mathbb{V}[X-Y]$ is less than $\mathbb{V}[X]$ if Y is highly positively correlated with X.

A Modern Variance Reduction Technique

Suppose X is positively correlated with Y and we can compute $\mathbb{E}[Y]$.

Point Estimator:

$$\hat{\Theta}_{\alpha} = \alpha(X - Y) + \mathbb{E}[Y], \quad (0 \le \alpha \le 1).$$

$$\mathbb{E}[\hat{\Theta}_{\alpha}] = \alpha \mathbb{E}[X] + (1 - \alpha) \mathbb{E}[Y]$$

$$\mathbb{V}[\hat{\Theta}_{\alpha}] = \alpha^{2}(\mathbb{V}[X] + \mathbb{V}[Y] - 2\text{Cov}[X, Y])$$

▶ If covariance is sufficiently large, then $V[\hat{\Theta}_{\alpha}] \leq V[X]$.

Motivation

Q: Can we design cheap gradient estimators with reduced variance?

Key Idea: if x_t is not too far away from previous iterates, then we can leverage previous gradient information to construct positively correlated control variates.

- ▶ SGD: estimate $\nabla F(\mathbf{x}_t)$ by $\nabla f_{i_t}(\mathbf{x}_t)$
- lacksquare VR: estimate $abla F(\mathbf{x}_t)$ by $\mathbf{g}_t := lpha(
 abla f_{i_t}(\mathbf{x}_t) Y) + \mathbb{E}[Y]$ such that

$$\mathbb{E}[\|\mathbf{g}_t - \nabla F(\mathbf{x}_t)\|^2] \to 0$$
, as $t \to \infty$. (VR property)

So how to design Y?

Design Ideas

Goal: Construct Y that is positively correlated to $X = \nabla f_{i_t}(\mathbf{x}_t)$:

Choice I: $Y = \nabla f_{i_t}(\mathbf{x}^*)$, where \mathbf{x}^* is the optimal solution

 $ightharpoonup \mathbb{E}[Y] = 0$, unrealistic but conceptually useful

Choice II: $Y = \nabla f_{i_t}(\bar{\mathbf{x}}_{i_t})$, where $\bar{\mathbf{x}}_i$ is the last point for which we evaluated $\nabla f_i(\bar{\mathbf{x}}_i)$

lacksquare $\mathbb{E}[Y] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\bar{\mathbf{x}}_i)$, requires storage of $\{\bar{\mathbf{x}}_i\}_{i=1}^n$ or $\{\nabla f_i(\bar{\mathbf{x}}_i)\}_{i=1}^n$

Choice III: $Y = \nabla f_{i_t}(\tilde{\mathbf{x}})$, where $\tilde{\mathbf{x}}$ is some fixed reference point

 $ightharpoonup \mathbb{E}[Y] = rac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\mathbf{x}})$, requires computing the full gradient at $\tilde{\mathbf{x}}$

Lecture Outline

Variance Reduction Techniques

Stochastic Variance-reduced Methods

SAG/SAGA

SVRG

Variance Reduction Techniques for Finite Sum Problems

Goal: estimate
$$\theta = \nabla F(\mathbf{x}_t)$$
, $X = \nabla f_{i_t}(\mathbf{x}_t)$

$$ightharpoonup SGD: \mathbf{g}_t = \nabla f_{i_t}(\mathbf{x}_t)$$

$$[\alpha = 1, Y = 0]$$

► SAG:
$$\mathbf{g}_t = \frac{1}{n} (\nabla f_{i_t}(\mathbf{x}_t) - \mathbf{v}_{i_t}) + \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i$$

$$[\alpha = \frac{1}{n}, Y = \mathbf{v}_{i_t}]$$

$$ightharpoonup$$
 SAGA: $\mathbf{g}_t = (\nabla f_{i_t}(\mathbf{x}_t) - \mathbf{v}_{i_t}) + \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i$

$$[\alpha = 1, Y = \mathbf{v}_{i_t}]$$

Here $\{\mathbf v_i, i=1,\ldots,n\}$ are the past stored gradients for each component.

► SVRG:
$$\mathbf{g}_t = \nabla f_{i_t}(\mathbf{x}_t) - \nabla f_{i_t}(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})$$

$$[\alpha = 1, Y = \nabla f_{i_t}(\tilde{\mathbf{x}})]$$

Stochastic Average Gradient (SAG)

Idea: keep track of the average of \mathbf{v}_i as an estimate of the full gradient

$$\mathbf{g}_t = \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i^t \qquad \approx \qquad \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}_t) = \nabla F(\mathbf{x}_t)$$

► The past gradients are updated as:

$$\mathbf{v}_i^t = \begin{cases} \nabla f_{i_t}(\mathbf{x}_t), & \text{if } i = i_t, \\ \mathbf{v}_i^{t-1}, & \text{if } i \neq i_t. \end{cases}$$

Equivalently, we have

$$\mathbf{g}_t = \mathbf{g}_{t-1} - \frac{1}{n} \mathbf{v}_{i_t}^{t-1} + \frac{1}{n} \nabla f_{i_t}(\mathbf{x}_t)$$

Stochastic Average Gradient (SAG, continued)

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{\gamma}{n} \sum_{i=1}^n \mathbf{v}_i^t, \text{ where } \mathbf{v}_i^t = \begin{cases} \nabla f_{i_t}(\mathbf{x}_t), & \text{if } i = i_t \\ \mathbf{v}_i^{t-1}, & \text{otherwise} \end{cases}$$

Algorithm SAG (Le Roux et al., 2012)

- 1: Initialize $\mathbf{v}_i = 0, i = 1, \dots, n$
- 2: **for** t = 1, 2, ..., T **do**
- 3: Randomly pick $i_t \in \{1, 2, \dots, n\}$
- 4: $\mathbf{g}_t = \mathbf{g}_{t-1} \frac{1}{n} \mathbf{v}_{i_t}$
- 5: $\mathbf{v}_{i_t} = \nabla f_{i_t}(\mathbf{x}_t)$
- 6: $\mathbf{g}_t = \mathbf{g}_t + \frac{1}{n} \mathbf{v}_{i_t}$
- 7: $\mathbf{x}_{t+1} = \mathbf{x}_t \gamma \mathbf{g}_t$
- 8: end for

- Biased gradient
- Cheap iteration cost
- ightharpoonup O(nd) memory cost
- Hard to analyze

Stochastic Average Gradient (SAG, continued)

▶ **Linear convergence:** The first stochastic methods to enjoy linear rate using a constant stepsize for strongly-convex and smooth objectives.

If F is μ -strongly convex and each f_i is L_i -smooth and convex, setting $\gamma = 1/(16L_{\rm max})$, one can show that

$$\mathbb{E}[F(\mathbf{x}_t) - F(\mathbf{x}^*)] \le C \cdot \left(1 - \min\{\frac{1}{8n}, \frac{\mu}{16L_{\max}}\}\right)^t.$$

Here $L_{\max} := \max\{L_1, \ldots, L_n\}$.

- ▶ **Memory cost:** O(n) times higher than SGD/SVRG
- ▶ Per-iteration cost: one gradient evaluation
- ▶ Total complexity: $O\left((n + \kappa_{\max})\log(\frac{1}{\epsilon})\right)$.

SAGA

SAGA (Defazio, Bach, Lacoste-Julien, 2016):

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma \left[(\nabla f_{i_t}(\mathbf{x}_t) - \mathbf{v}_{i_t}^{t-1}) + \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i^{t-1} \right]$$

- Unbiased update, while SAG is biased
- ightharpoonup Same O(nd) memory cost as SAG
- ▶ Similar linear convergence rate as SAG, but has a much simpler proof

Stochastic Variance Reduced Gradient (SVRG)

Key idea: Build covariates based on fixed reference point; balance the frequency of reference point update and the variance reduction.

Algorithm Stochastic Variance Reduced Gradient (Johnson & Zhang '13)

```
1: for s = 1, 2, \dots do
           Set \tilde{\mathbf{x}} = \tilde{\mathbf{x}}^{s-1} and compute \nabla F(\tilde{\mathbf{x}}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{\mathbf{x}})
                                                                                                                                   (update snapshot)
3:
            Initialize \mathbf{x}_0 = \tilde{\mathbf{x}}
          for t = 0, 1, ..., m - 1 do
4:
                   Randomly pick i_t \in \{1, 2, \dots, n\} and update
5:
                         \mathbf{x}_{t+1} = \mathbf{x}_t - \eta \left( \nabla f_{i_t}(\mathbf{x}_t) - \nabla f_{i_t}(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}}) \right)
                                                                                                                                              (cheap cost)
6:
            end for
7:
            Update \tilde{\mathbf{x}}^s = \frac{1}{m} \sum_{t=0}^{m-1} \mathbf{x}_t
9: end for
```

SVRG: Key Features

Intuition: the closer $\tilde{\mathbf{x}}$ is to \mathbf{x}_t , the smaller the variance of the gradient estimator

$$\mathbb{E}[\|\mathbf{g}_t - \nabla F(\mathbf{x}_t)\|^2] \le \mathbb{E}[\|\nabla f_{i_t}(\mathbf{x}_t) - \nabla f_{i_t}(\tilde{\mathbf{x}})\|^2] \le L_{\max}^2 \|\mathbf{x}_t - \tilde{\mathbf{x}}\|^2$$

Two-loop structure:

- lacktriangle Outer loop: update reference point and compute its full gradient at O(n) cost
- lacktriangle Inner loop: update iterates with variance-reduced gradient for m steps
- lacktriangle Total of O(n+2m) component gradient evaluations at each epoch

Compare to SAG/SAGA

- (+) Cheap memory cost, no need to store past gradients or past iterates
- (-) More parameter tuning, two gradient computation per iteration

Convergence of SVRG

Theorem 9.1 (Johnson & Zhang, 2013)

Assume each $f_i(\mathbf{x})$ is convex and L_i -smooth, $F(\mathbf{x})$ is μ -strongly convex. Assume m is sufficiently large and $\eta < \frac{1}{2L_{max}}$ such that $\rho = \frac{1}{\mu\eta(1-2\eta L_{max})m} + \frac{2\eta L_{max}}{1-2\eta L_{max}} < 1, \text{ then}$

$$\mathbb{E}[F(\tilde{\mathbf{x}}^s) - F(\mathbf{x}^*)] \le \rho^s [F(\tilde{\mathbf{x}}^0) - F(\mathbf{x}^*)].$$

- ▶ Linear convergence: choose $m=O(\frac{L_{\max}}{\mu}), \eta=O(\frac{1}{L_{\max}})$ such that $\rho\in(0,\frac{1}{2}).$
- Total complexity:

$$O\left((2m+n)\log\frac{1}{\epsilon}\right) = O\left(\left(n + \frac{L_{\max}}{\mu}\right)\log\frac{1}{\epsilon}\right).$$

SVRG vs. SAG/SAGA

Table: Comparisons between SVRG and SAG/SAGA

	SVRG	SAG/SAGA
memory cost	O(d)	O(nd)
epoch-based	yes	no
# gradients per step	at least 2	1
parameters	stepsize & epoch length	stepsize
unbiasedness	yes	yes/no
total complexity	$O\left((n + \kappa_{\max})\log\frac{1}{\epsilon}\right)$	$O\left((n+\kappa_{\max})\log\frac{1}{\epsilon}\right)$

Loopless-SVRG: [Hofmann et al., 2015]

Numerical Illustration

Figure: Numerical illustration among GD, SGD, SVRG on logistic regression.

Convergence Analysis of SVRG: Key Lemma

Lemma 9.2 (Exercise, property of smoothness)

$$\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{x}^*)\|_2^2 \le 2L_{max}(F(\mathbf{x}) - F(\mathbf{x}^*))$$

Lemma 9.3 (Bound of variance)

Denote
$$\mathbf{g}_t = \nabla f_{i_t}(\mathbf{x}^t) - \nabla f_{i_t}(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})$$
. We have

$$\mathbb{E}[\|\mathbf{g}_t\|_2^2] \le 4L_{max}[F(\mathbf{x}_t) - F(\mathbf{x}^*) + F(\tilde{\mathbf{x}}) - F(\mathbf{x}^*)].$$

Convergence Analysis of SVRG: Proof

For notation simplicity, denote $L=L_{
m max}.$ From Lemma 9.3, we have

$$\mathbb{E}\left[\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|_{2}^{2}\right]$$

$$= \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|_{2}^{2} - 2\eta(\mathbf{x}_{t} - \mathbf{x}^{\star})^{\top}\mathbb{E}\left[\mathbf{g}_{t}\right] + \eta^{2}\mathbb{E}\left[\|\mathbf{g}_{t}\|_{2}^{2}\right]$$

$$\leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|_{2}^{2} - 2\eta(1 - 2L\eta)(F(\mathbf{x}_{t}) - F(\mathbf{x}^{\star})) + 4L\eta^{2}\left[F(\tilde{\mathbf{x}}) - F(\mathbf{x}^{\star})\right]$$

We can then establish the contraction after telescoping the sum and invoking the definition for $\tilde{\mathbf{x}}$.

Convergence Analysis of SVRG: Proof (continued)

It follows that

$$\begin{split} &\mathbb{E}\left[\|\mathbf{x}_{m}-\mathbf{x}_{\star}\|^{2}\right]+2\eta(1-2L\eta)m\mathbb{E}\left[f(\tilde{\mathbf{x}}^{s})-f(\mathbf{x}^{\star})\right]\\ \leq&\,\mathbb{E}\left[\|\mathbf{x}_{m}-\mathbf{x}_{\star}\|^{2}\right]+2\eta(1-2L\eta)\sum_{t=0}^{m-1}\mathbb{E}\left[f(\mathbf{x}_{t})-f(\mathbf{x}^{\star})\right] & \text{(by convexity)}\\ \leq&\,\mathbb{E}\left[\|\mathbf{x}_{0}-\mathbf{x}^{\star}\|^{2}\right]+4Lm\eta^{2}\mathbb{E}\left[f(\tilde{\mathbf{x}}^{s-1})-f(\mathbf{x}^{\star})\right] & \text{(by telescoping)}\\ \leq&\,\mathbb{E}\left[\|\tilde{\mathbf{x}}^{s-1}-\mathbf{x}^{\star}\|^{2}\right]+4Lm\eta^{2}\mathbb{E}\left[f(\tilde{\mathbf{x}}^{s-1})-f(\mathbf{x}^{\star})\right] & \text{(by definition of }\mathbf{x}_{0})\\ \leq&\,\frac{2}{\mu}\mathbb{E}\left[f(\tilde{\mathbf{x}}^{s-1})-f(\mathbf{x}^{\star})\right]+4Lm\eta^{2}\mathbb{E}\left[f(\tilde{\mathbf{x}}^{s-1})-f(\mathbf{x}^{\star})\right] & \text{(by }\mu \text{ strongly convexity)} \end{split}$$

This further implies

$$\mathbb{E}\left[f(\tilde{\mathbf{x}}^s) - f(\mathbf{x}^\star)\right] \le \left[\frac{1}{\mu \eta (1 - 2L\eta)m} + \frac{2L\eta}{1 - 2L\eta}\right] \mathbb{E}\left[f(\tilde{\mathbf{x}}^{s-1}) - f(\mathbf{x}^\star)\right].$$

Summary: Finite Sum Optimization

$$\min_{\mathbf{x} \in \mathbb{R}^d} \quad F(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

(f_i is L_i -smooth and convex, F is L-smooth and μ -strongly convex)

Algorithm	# of Iterations	Per-iteration Cost
GD	$O\left(\kappa\log\frac{1}{\epsilon}\right)$	O(n)
SGD	$O\left(\frac{\kappa_{\max}}{\epsilon}\right)$	O(1)
SAG/SAGA/SVRG	$O\left((n+\kappa_{\max})\log\frac{1}{\epsilon}\right)$	O(1)

Table: Complexity of finite-sum optimization, $\kappa=\frac{L}{\mu}$, $\kappa_{\max}=\frac{L_{\max}}{\mu}$

Remarks

- ▶ Variance reduction technique is crucial for finite sum problems.
- ▶ In general, $L \le L_{\text{max}} \le nL$. VR methods are always superior in terms of total runtime than GD.
- If $L_i = L, \forall i$, then $\kappa = \kappa_{\max}$, VR methods are much faster than GD especially when $\kappa = O(n)$.
- ▶ SGD has much worse dependency on ϵ than VR methods, which explain its poor performance when ϵ is small.

Can we further improve the VR methods?

 $lackbox{ Non-uniform sampling: improve to } O\left((n+\kappa_{ ext{avg}})\log rac{1}{\epsilon}
ight)$

$$P(i_t = i) = \frac{L_i}{\sum_{i=1}^n L_i}$$

- ▶ Incorporating acceleration: can improve to $O\left((n + \sqrt{n\kappa_{\max}})\log\frac{1}{\epsilon}\right)$.
- Lower complexity bound: $O\left((n+\sqrt{n\kappa_{\max}})\log\frac{1}{\epsilon}\right)$ for the strongly-convex and smooth finite-sum problems considered (Woodworth and Srebro, 2016; Lan and Zhou, 2018)

Limitations?

- ► Challenges with practical implementations: learning rate and sampling
- Less advantage beyond smooth or strongly convex objectives or finite-sum setting
- VR may be ineffective for training neural networks [Defazio and Bottou, 2019].

Lecture 9 Recap

- ► Finite-sum problems allow for variance reduction
 - reason: it is possible to query the stochastic oracle twice!
- ▶ Discussed several variance reduction techniques, with pros & cons

Bibliography

R. M. Gower, M. Schmidt, F. Bach, P. Richtarik Variance-reduced methods for machine learning. Proceedings of the IEEE, 108(11), 1968-1983, 2022.

T. Hofmann, A. Lucchi, S. Lacoste-Julien, B. McWilliams Variance Reduced Stochastic Gradient Descent with Neighbors. NeurIPS, 2015.