离散数学第二次作业答案

王元叙

2024年10月20日

1 作业答案

Problem 1

- 1. 略。
- 2. 第二次迭代起 a>b ,每次迭代 $(a,b)\mapsto (b,a\bmod b)$, 两次迭代后 $(a,b)\mapsto (a\bmod b,b\bmod (a\bmod b))$ 。 有 $a\bmod b<bul>
 b 由 <math>a\bmod b+b\leq a$ 从而 $a\bmod b<\frac{n}{2}$ 。 则可以得到结论。

Problem 2

- 1. 由裴蜀定理,(a,n) = 1 推出 $\exists b, t \in \mathbb{Z}$ 使得 ab + tn = 1 。进而 $ab \equiv 1 \pmod n$ 。 若存在 $b \neq b' \in [n]$ 同时满足条件则 n|a(b-b') 。由于 (a,n) = 1 可得 n|b-b' ,得出矛盾,于是这样的 b 是唯一的。
- 2. 不妨设 s, t > 0, 若 $x \ge 0$ 则 $a^{sx} \equiv (a^s)^x \equiv 1 \pmod{n}$ 。 若 x < 0 则由 $a^{-sx} \equiv 1 \pmod{n}$ 可得 $a^{sx} \equiv b^{-sx} \equiv b^{-sx} \cdot a^{-sx} \equiv 1^{-sx} \equiv 1 \pmod{n}$ 。 同理有 $a^{ty} \equiv 1 \pmod{n}$, 从而 $a^{sx+ty} \equiv 1 \pmod{n}$ 。
- 3. 若 $d \mid m$ 则存在 t 使得 m = dt ,由第二小题可得 $a^m \equiv 1 \pmod n$ 若 $a^m \equiv 1 \pmod n$ 且 $d \nmid m$ 则 (d, m) = d' < d 由第二小题结论及裴蜀定理存在 $x, y \in \mathbb{Z}$ 使得 d' = dx + my ,有 $a^{d'} \equiv 1 \pmod n$,这 与 d 最小性矛盾。从而 $d \mid m$ 。

1 作业答案 2

Problem 3

 \Longrightarrow : 由于 p 是素数, $p \nmid n$ 则 (p,n) = 1

$$\varphi(pn) = \varphi(p)\varphi(n) = (p-1)\varphi(n)$$

$$\varphi(pn) = \varphi(p^{k+1})\varphi(m) = (p-1)p^k\varphi(m)$$
$$(p-1)\varphi(n) = (p-1)\varphi(p^k)\varphi(m) = (p-1)^2p^{k-1}\varphi(m)$$

比较可知结论 $\varphi(pn) = (p-1)\varphi(n)$ 不成立。

Problem 4

由 (p,q)=1 以及欧拉函数的积性 $\varphi(n)=\varphi(p)\varphi(q)=(p-1)(q-1)$, 于是

$$a^{\varphi(n)/d} = a^{(p-1)\frac{q-1}{d}} \equiv 1^{\frac{q-1}{d}} \pmod{p}$$

$$a^{\varphi(n)/d} = a^{(q-1)\frac{p-1}{d}} \equiv 1^{\frac{p-1}{d}} \pmod{q}$$

中国剩余定理给出

$$a^{\varphi(n)/d} \equiv 1 \pmod{n}$$

Problem 5

计算得到 $\varphi(18) = 6$,从而由欧拉定理 $5^6 \equiv 1 \pmod{18}$

$$5^{2023} \equiv 5 \times (5^6)^{337} \equiv 5 \pmod{18}$$

Problem 6

- 1. 依次验证环的各项定义,略。
- 2. 构造映射 $N: \mathbb{Z}[\sqrt{-1}] \to \mathbb{N}$ 使得 $a + b\sqrt{-1} \mapsto a^2 + b^2$ 可以验证该映射具有的性质: N(1) = 1, N(xy) = N(x)N(Y) 根据单位的定义,若 x 是单位则存在 y 使得 xy = 1 从而 N(x)N(y) = 1

从而 N(x) = 1 即 $x = \pm 1, \pm \sqrt{-1}$ 。另一方面,可以验证这四个 x 都是单位,从而给出了 $\mathbb{Z}[\sqrt{-1}]$ 的单位群。

1 作业答案 3

3. 素元一定不可约,只需验证 $1 + \sqrt{-1}$ 是素元。首先观察得到 $1 + \sqrt{-1} \mid m + n\sqrt{-1}$ 当且仅当 m, n 同奇偶。

若 $1+\sqrt{-1}\mid xy$, $x=a+b\sqrt{-1},y=c+d\sqrt{-1}$ 。从而由前述观察,ac-bd,ad+bc 同奇偶。若 $a\not\equiv b,c\not\equiv d\pmod{2}$ 则可以推得矛盾。

- 4. 素元一定不可约,只需验证 2 不是不可约元。而 $2 = (1 + \sqrt{-1})(1 \sqrt{-1})$ 。
- 5. 结论对所有满足不可约元都是素元的整环成立,下面记整环 R 满足这样的性质。

考虑
$$p_1$$
 , 有: $p_1 | p_1 \cdots p_r = q_1 \cdots q_s$

由 p_1 不可约, p_1 是素元,根据素元性质可知 $\exists j, 1 \leq j \leq s$,使得 $p_1 \mid q_i$

不妨假设 $p_1 \mid q_1$,使得 $q_1 = u_1 p_1, u_1 \in R$ 。有 q_1, p_1 不可约,所以 $u_1 \in U(R)$,所以 $p_1 \sim q_1$ 。由整环的乘法消去律可得 $a = p_2 \cdots p_r = u_1 q_2 \cdots q_s \in R$,再考虑 p_2 。

对 p_2 做同样的论证,又得 $\exists u_2 \in U(R)$,使得 $a = p_3 \cdots p_r = u_1 u_2 q_3 \cdots q_s$,如果 r < s,则到某一步时有 $1 = u_1 u_2 \cdots u_r q_{r+1} \cdots q_s$,故 $q_{r+1} \cdots q_s \in U(R)$,这与 q_{r+1}, \cdots, q_s 不可约矛盾,若 r > s,则到某一步就得到 $p_{s+1} \cdots p_r = u_1 \cdots u_s$,又矛盾。

Problem 7

若 (m,n)=1 根据欧拉定理 $m^{\varphi(n)}\equiv 1 \pmod{n}$ 从而

$$(m^e)^d = m^{k\varphi(n)+1} \equiv m \pmod{n}$$

若 $(m,n) \neq 1$ 不妨假设 p|n ,设 $m = tp(0 \leq t < q)$

由 m < n 可以得到 (m,q) = 1 , 从而

$$m^{q-1} \equiv 1 \pmod{q}$$

$$m^{k\varphi(n)} \equiv 1 \pmod{q}$$

设 $m^{k\varphi(n)} - 1 = hq$ 则

$$m^{k\varphi(n)+1} = tphq + tp \equiv m \pmod{n}$$

Problem 8

1. 仿照第 6 题的方法构造映射 $N: \mathbb{Z}[\sqrt{5}] \to \mathbb{Z}$ 使得 $a+b\sqrt{5} \mapsto a^2-5b^2$ 并验证 N(xy)=N(x)N(y)

可以得到 $\pm 2 \pm \sqrt{5}$ 都是单位。

1 作业答案 4

2. 存在。2 就是 $\mathbb{Z}[\sqrt{5}]$ 一个不可约元。

设 $2 = (a + b\sqrt{5})(c + d\sqrt{5})$ 则 $4 = (a^2 - 5b^2)(c^2 - 5d^2)$ 由于 $x^2 \equiv 0, 1, 4 \pmod{5}$,可得 $(a^2 - 5b^2) = \pm 1$ 或 $(c^2 - 5d^2) = \pm 1$ 从而 $(a + b\sqrt{5})$ 或 $(c + d\sqrt{5})$ 是单位。

- 3. 存在。 $\sqrt{5}$ 就是 $\mathbb{Z}[\sqrt{5}]$ 的一个素元。若 $\sqrt{5} \mid (a+b\sqrt{5})(c+d\sqrt{5})$ 有 $\sqrt{5} \mid ac$ 从而 $5 \mid ac$ 。 由素数性质 $5 \mid a$ 或 $5 \mid c$ 从而 $\sqrt{5} \mid (a+b\sqrt{5})$ 或 $\sqrt{5} \mid (c+d\sqrt{5})$ 还有更多 $\mathbb{Z}[\sqrt{5}]$ 的素元,同学们可以尝试验证 $4+\sqrt{5},3+2\sqrt{5}$ 也是素元。
- 4. 不存在。 $4=2\times 2=(\sqrt{5}-1)\times(\sqrt{5}+1)$,可以验证 $\sqrt{5}\pm 1$ 同样是不可约元。