

Proves d'accés a la universitat

Tecnologia industrial

Sèrie 2

Qualificació	TR	
Exercici 1		
Exercici 2		
Exercici 3		
Exercici 4		
Exercici 5		
Exercici 6		
Suma de notes parcials		
Qualificació final		

Etiqueta de l'alumne/a	Ubicació del tribunal Número del tribunal
Etiqueta de qualificació	Etiqueta del corrector/a

Responeu a QUATRE dels sis exercicis següents. Cada exercici val 2,5 punts. En el cas que respongueu a més exercicis, només es valoraran els quatre primers.

Podeu utilitzar les pàgines en blanc (pàgines 14 i 15) per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici si necessiteu més espai. En aquest últim cas, cal que ho indiqueu clarament al final de l'exercici corresponent.

Exercici 1

Indiqueu la resposta correcta de cada qüestió. **Responeu en la taula de la pàgina 3**. En el cas que no indiqueu les respostes a la taula, les qüestions es consideraran no contestades. [2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: –0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

Un motor de quatre temps consumeix 9,5 L/h d'un combustible de densitat 0,85 kg/dm³ i poder calorífic p_c = 44,8 MJ/kg. En el cas que s'analitza, proporciona un parell de 87 N m quan gira a 3 000 min⁻¹. Quin és el rendiment del motor?

- *a*) 16,32 %
- **b**) 27,2 %
- c) 45,33 %
- d) 75,55 %

Qüestió 2

Un motor eleva una barrera de pàrquing homogènia de longitud $l=1,5\,\mathrm{m}$ i massa $m=3\,\mathrm{kg}$, des de la posició horitzontal (barrera tancada) fins a la vertical. L'energia mecànica necessària per a fer aquest moviment

- a) és nul·la.
- **b**) és 22,07 J.
- c) és 44,13 J.
- d) depèn de la velocitat de gir de la barrera.

Qüestió 3

La bomba d'una depuradora de piscina consumeix 1,1 kW quan bombeja un cabal d'aigua de 10 m³/h. La bomba, de rendiment 0,7, està en funcionament 6 hores al dia d'abril a octubre. Si el preu de l'energia és de 0,21578 €/(kW h), quin és el cost econòmic de tenir la bomba funcionant durant aquests 7 mesos?

- *a*) 304,8 €
- *b*) 213,3 €
- *c*) 454,4 €
- *d*) 149,3 €

Qüestió 4

Es vol aixecar una massa $m = 750 \,\mathrm{kg}$ utilitzant una premsa hidràulica. El diàmetre de l'èmbol gros és 900 mm i el de l'èmbol petit, 300 mm. Les resistències passives són negligibles. Si es vol desplaçar 20 mm la càrrega, quin ha de ser el desplaçament de l'èmbol petit?

- *a*) 450 mm
- **b**) 222,2 mm
- c) 180 mm
- **d**) 60 mm

Qüestió 5

El fil de la resistència elèctrica d'un calefactor té una resistivitat $\rho=16\times10^{-9}\,\Omega$ m, un diàmetre de 0,12 mm i una longitud de 30 m. La potència consumida pel calefactor quan es connecta a una tensió de 230 V és

- *a*) 9,919 kW.
- **b**) 4,244 kW.
- *c*) 2,492 kW.
- *d*) 1,246 kW.

Taula de respostes:

Espai de resposta per a l'alumne/a				
Qüestió 1	a 🗌	$b \square$	<i>c</i>	d 🗌
Qüestió 2	a 🗌	<i>b</i> \Box	<i>c</i>	d 🗌
Qüestió 3	a 🗌	b 🗌	<i>c</i>	d 🗌
Qüestió 4	а	<i>b</i> [<i>c</i> _	d 🗌
Qüestió 5	а	<i>b</i> _	с	d \Box

Espai per al corrector/s	a
Puntuació de la qüestió 1	
Puntuació de la qüestió 2	
Puntuació de la qüestió 3	
Puntuació de la qüestió 4	
Puntuació de la qüestió 5	
Total de l'exercici 1	

[2,5 punts en total]

Un hivernacle disposa de quatre sensors: un de temperatura, un de velocitat del vent, un de pressió atmosfèrica i un d'humitat ambiental. Es vol dissenyar un circuit digital que controli el tancament del sostre. El sostre es tanca si es dona, com a mínim, una de les tres condicions següents: si la velocitat del vent supera els 60 km/h; si la temperatura ambient supera els 30 °C amb una humitat ambiental inferior al 40 %, o si es detecta un canvi sobtat de pressió quan la humitat ambiental és superior o igual al 40 %. En altres condicions, el sostre no es tanca. Responeu a les qüestions que hi ha a continuació utilitzant les variables d'estat següents:

temperatura:
$$t = \begin{cases} 1: T_{\rm amb} > 30 \, ^{\circ}{\rm C} \\ 0: T_{\rm amb} \le 30 \, ^{\circ}{\rm C} \end{cases}$$
; humitat: $h = \begin{cases} 1: h_{\rm amb} \ge 40 \, \% \\ 0: h_{\rm amb} < 40 \, \% \end{cases}$; velocitat: $v = \begin{cases} 1: v_{\rm vent} > 60 \, {\rm km/h} \\ 0: v_{\rm vent} \le 60 \, {\rm km/h} \end{cases}$; pressió: $p = \begin{cases} 1: {\rm canvi~sobtat~de~pressió} \\ 0: {\rm sense~canvi~sobtat~de~pressió} \end{cases}$; acció: $a = \begin{cases} 1: {\rm el~sostre~es~tanca} \\ 0: {\rm el~sostre~no~es~tanca} \end{cases}$

Utilitzant les variables d'estat descrites, dissenyeu el sistema digital que permeti determinar quan s'ha de produir el tancament del sostre. Per fer-ho:

a) Elaboreu la taula de veritat del sistema.

<i>b</i>)	Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la [1 punt]
c)	Dibuixeu l'esquema de contactes equivalent. [0,5 punts]

[2,5 punts en total]

Es disposa d'un escalfador d'aigua que funciona amb gas butà i d'un altre que és elèctric. Ambdós subministren un cabal d'aigua $q=10\,\mathrm{L/min}$ i augmenten la temperatura de l'aigua $\Delta T=30\,^{\circ}\mathrm{C}$, que té una calor específica $c_{\mathrm{e}}=4,187\,\mathrm{kJ/(kg\,K)}$. Es vol comparar el cost econòmic i la petjada de diòxid de carboni (CO₂) de tenir en funcionament cadascun dels escalfadors durant $t=5\,\mathrm{h}$.

El poder calorífic del butà és $p_{c_{\text{-butà}}} = 47 \, \text{MJ/kg}$, el preu d'una bombona que en conté $m_{\text{butà}} = 12,5 \, \text{kg}$ és $c_{\text{butà}} = 17,66 \, \in \text{i}$ el seu coeficient d'emissions de CO_2 és $e_{\text{butà}} = 2,960 \, \text{kg}$ CO_2 /kg. L'escalfador que funciona amb aquest combustible té un rendiment $\eta_{\text{butà}} = 0,89$. L'escalfador elèctric té un rendiment $\eta_{\text{elèctr}} = 0,97 \, \text{i}$ el preu de l'electricitat és $c_{\text{elèctr}} = 0,21 \, \in \text{(kW h)}$. Les emissions, tenint en compte el mix elèctric, són de $e_{\text{elèctr}} = 250 \, \text{g}_{\text{CO}_2}/\text{(kW h)}$.

Determineu:

a) La potència consumida per cadascun dels escalfadors $P_{\text{butà}}$ i $P_{\text{elèctr}}$. [0,5 punts]

b) El cabal de gas butà $q_{\text{butà}}$ consumit en kg/h. [0,5 punts]

c) El cost econòmic del consum dels dos escalfadors $ce_{\mathrm{butå}}$ i $ce_{\mathrm{elèctr}}$. [1 punt]

d) La petjada de CO_2 emesa per ambdós escalfadors m_{CO_2 _butà i m_{CO_2 _elèctr} [0,5 punts]

[2,5 punts en total]

Una cadira de rodes elèctrica experimental està sensoritzada per a estudiar-ne els consums elèctrics. Disposa d'una bateria d'ió liti de tensió $U=36\,\mathrm{V}$ i energia $E_{\mathrm{bat}}=240\,\mathrm{W}$ h que alimenta un motor reductor de rendiment $\eta=0,72$.

En les condicions d'estudi, la persona i la cadira tenen una massa conjunta $m=130~\rm kg$ i avancen per una pujada on l'angle que forma el perfil del carrer amb l'horitzontal és $\alpha=8^\circ$. En l'estudi, la cadira puja a dues velocitats diferents, v_1 i v_2 , i les potències consumides pel motor són $P_1=109,5~\rm W$ i $P_2=650,3~\rm W$, respectivament. Determineu:

a) La capacitat de la bateria *c* en A h. [0,5 punts]

b) Les velocitats d'avanç v_1 i v_2 . [1 punt]

c)	El temps màxim que la cadira podrà estar en funcionament en cada cas, t_1 i t_2 , i la
	distància màxima recorreguda, $s_{\text{màx}}$.
	[1 punt]

[2,5 punts en total]

Una cistella de bàsquet de massa $m_c = 45 \, \mathrm{kg}$ és solidària a una barra homogènia OBC de longitud $2l = 4 \, \mathrm{m}$ i massa $m_b = 60 \, \mathrm{kg}$. El punt O està articulat al sostre. L'angle entre el sostre i la barra està comprès entre $15^\circ \le \varphi \le 45^\circ$. Per a plegar i desplegar la cistella s'utilitza un mecanisme de tambor, de diàmetre $d = 250 \, \mathrm{mm}$, en què un motor enrotlla al tambor un cable que hi té l'extrem fixat. El cable passa per una politja situada al sostre al punt P, de diàmetre negligible, i l'altre extrem està fixat al punt mitjà de la barra OBC (punt B). El centre d'inèrcia de la cistella es troba al punt C. En la posició desplegada, $\varphi = 45^\circ$, el taulell es troba al pla vertical i el cable BP és perpendicular a la barra OBC.

a) Dibuixeu el diagrama de cos lliure de la barra OBC. [0,5 punts]

Determineu:

b) La força *T* a la qual està sotmès el cable. [0,5 punts]

c)	Les forces vertical $F_{\rm V}$ i horitzontal $F_{\rm H}$ a l'articulació O. [1 punt]
d)	El parell Γ que hauria de fer el motor per a mantenir la cistella en aquesta configuració [0,5 punts]

[2,5 punts en total]

Cal seleccionar un cilindre hidràulic comercial d'efecte simple per a elevar contenidors. El cilindre s'ha de connectar a una bomba d'oli que subministra un cabal constant $q=3\,\mathrm{m}^3/\mathrm{h}$ i una pressió màxima $p_{\mathrm{max}}=20\,\mathrm{MPa}$. Es demana que, en aquestes condicions, el cilindre sigui capaç de fer una força $F=65\,000\,\mathrm{N}$ en la seva cursa d'avanç (extensió del cilindre). Un fabricant de cilindres hidràulics facilita 10 models amb els valors de diàmetre interior, d_{int} , i diàmetre de tija, d_{tija} , següents:

Model	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M_9	M_{10}
d_{int} (mm)	32	40	50	60	70	80	80	90	100	120
$d_{\scriptscriptstyle tija}(mm)$	20	25	30	30	40	40	50	50	50	70

Determineu:

a) El model més petit que compleix les especificacions. [0,5 punts]

Amb el cilindre escollit, i sabent que el sistema avança a velocitat constant, determineu:

b) La pressió p_0 que haurà de subministrar la bomba. [0,5 punts]

c)	La velocitat de la tija, $\nu_{\rm tija}$, i la potència que desenvolupa el cilindre, $P_{\rm cil}$. [1 punt]

d) La tensió normal a compressió de la tija, σ . [0,5 punts]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici.]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici.]

	1	
	Etiqueta de l'alumne/a	
	. 1	

