

- 1. (40 pts) Considere a função h definida por $h(x) = \arccos(e^{x-1}) + \pi$.
 - (a) Determine o domínio de h, D_h .
 - (b) Estude h quanto à monotonia e existência de extremos locais e globais.
 - (c) Justifique que h é invertível e caracterize a função inversa de h, indicando o domínio, o contradomínio e a expressão analítica que a define.
- 2. (35 pts) Considere a função definida em \mathbb{R} por $g(x) = e^x x 1$.
 - (a) Justifique que a função g tem um único zero e determine-o.
 - (b) Determine o contradomínio da função g.
 - (c) Diga, justificando, se a função g é injetiva.
- 3. (15 pts) Considere a função definida em \mathbb{R}^+ por $s(x) = (1+x^2)^{\frac{1}{x^3}}$. Calcule $\lim_{x \to +\infty} s(x)$.
- 4. (20 pts) Determine, em função do parâmetro $m \in \mathbb{R}$, a correspondente família de primitivas $\int \frac{(\ln x)^m}{x} dx$, com x > 1.
- 5. (30 pts) Considere a função definida em $I = \mathbb{R}^+$ por

$$f(x) = \frac{1}{x(x^2 + 1)}.$$

- (a) Determine $\int f(x) dx$.
- (b) Determine a função F(x) tal que F'(x)=f(x) e que satisfaz a condição $\lim_{x\to +\infty}F(x)=1$.
- 6. (40 pts) Determine os seguintes integrais (simplificando o mais possível o resultado):

(a)
$$\int \left(3x^4 + \frac{1}{2x} + \cos x\sqrt{\sin x}\right) dx$$

- (b) $\int \frac{1}{\sqrt{4+x^2}} dx$ (Sugestão: utilize a mudança de variável dada por $x = 2 \operatorname{tg} t$, indicando um domínio adequado a esta substituição).
- 7. (20 pts) Seja f uma função que admite derivadas contínuas até à ordem dois em \mathbb{R} e tal que f(a) = f(b) = f'(a) = f'(b) = 0 onde $a, b \in \mathbb{R}$ e a < b. Dado $\alpha \in \mathbb{R}$, defina-se $g(x) = e^{\alpha x} f(x)$. Justificando convenientemente as suas respostas, diga qual o número mínimo de zeros distintos que a função g'' tem em]a, b[em cada um dos seguintes casos:
 - (a) se $\alpha = 0$;
 - (b) se $\alpha \in \mathbb{R} \setminus \{0\}$.

Uma ajuda

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{sen} x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\operatorname{tg} x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ND

$$\sec u = \frac{1}{\cos u}; \quad \csc u = \frac{1}{\sin u}; \quad \cot u = \frac{\cos u}{\sin u}$$

$$\cos^2 u = \frac{1 + \cos(2u)}{2}; \quad \sin^2 u = \frac{1 - \cos(2u)}{2};$$

 $1 + \operatorname{tg}^2 u = \sec^2 u; \quad 1 + \operatorname{cotg}^2 u = \operatorname{cosec}^2 u$

$$sen (u + v) = sen u cos v + sen v cos u$$
$$cos (u + v) = cos u cos v - sen u sen v$$

$$\operatorname{sen} u \operatorname{sen} v = \frac{1}{2}(\cos(u-v) - \cos(u+v))$$
$$\cos u \cos v = \frac{1}{2}(\cos(u-v) + \cos(u+v))$$
$$\operatorname{sen} u \cos v = \frac{1}{2}(\operatorname{sen}(u-v) + \operatorname{sen}(u+v))$$

$(e^u)' = u'e^u$	$(\ln u)' = \frac{u'}{u}$	$(u^r)' = r u^{r-1} u'$
$(a^u)' = a^u \ln a u'(a > 0 \text{ e } a \neq 1)$	$(\log_a u)' = \frac{u'}{u \ln a} \ (a > 0 \ e \ a \neq 1)$	$(\operatorname{sen} u)' = u' \cos u$
$(\cos u)' = -u' \operatorname{sen} u$	$(\operatorname{tg} u)' = u' \sec^2 u$	$(\cot g u)' = -u' \csc^2 u$
$(\sec u)' = \sec u \operatorname{tg} u u'$	$(\csc u)' = -\csc u \cot u u'$	$(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$
$(\arccos u)' = -\frac{u'}{\sqrt{1 - u^2}}$	$(\operatorname{arctg} u)' = \frac{u'}{1 + u^2}$	$(\operatorname{arccotg} u)' = -\frac{u'}{1+u^2}$

$$P(u'\sec u) = \ln|\sec u + \operatorname{tg} u| \quad P(u'\csc u) = -\ln|\csc u + \cot u|$$
 P - primitiva

- 1. (40 pts) Considere a função h definida por $h(x) = \arccos(e^{x-1}) + \pi$.
 - (a) Determine o domínio de h, D_h .
 - (b) Estude h quanto à monotonia e existência de extremos locais e globais.
 - (c) Justifique que h é invertível e caracterize a função inversa de h, indicando o domínio, o contradomínio e a expressão analítica que a define.

- 2. (35 pts) Considere a função definida em \mathbb{R} por $g(x) = e^x x 1$.
 - (a) Justifique que a função g tem um único zero e determine-o.
 - (b) Determine o contradomínio da função g.
 - (c) Diga, justificando, se a função g é injetiva.

3. (15 pts) Considere a função definida em \mathbb{R}^+ por $s(x)=(1+x^2)^{\frac{1}{x^3}}$. Calcule $\lim_{x\to +\infty} s(x)$.

5. (30 pts) Considere a função definida em $I = \mathbb{R}^+$ por

$$f(x) = \frac{1}{x(x^2 + 1)}.$$

- (a) Determine $\int f(x) dx$.
- (b) Determine a função F(x) tal que F'(x)=f(x) e que satisfaz a condição $\lim_{x\to +\infty}F(x)=1$.

6. (40 pts) Determine os seguintes integrais (simplificando o mais possível o resultado):

(a)
$$\int \left(3x^4 + \frac{1}{2x} + \cos x\sqrt{\sin x}\right) dx$$

(b) $\int \frac{1}{\sqrt{4+x^2}} dx$ (Sugestão: utilize a mudança de variável dada por $x=2 \lg t$, indicando um domínio adequado a esta substituição).

- 7. **(20 pts)** Seja f uma função que admite derivadas contínuas até à ordem dois em \mathbb{R} e tal que f(a) = f(b) = f'(a) = f'(b) = 0 onde $a, b \in \mathbb{R}$ e a < b. Dado $\alpha \in \mathbb{R}$, defina-se $g(x) = e^{\alpha x} f(x)$. Justificando convenientemente as suas respostas, diga qual o número mínimo de zeros distintos que a função g'' tem em]a, b[em cada um dos seguintes casos:
 - (a) se $\alpha = 0$;
 - (b) se $\alpha \in \mathbb{R} \setminus \{0\}$.