Clase 5: Modelado AC

Gestión de Energía en Cl Gabriel Gabian

Universidad de Buenos Aires Facultad de Ingeniería 1er Cuatrimestre 2025

Introducción

- Objetivo: mantener v(t) constante a V
- Perturbaciones:
 - en $v_g(t)$
 - en R
- Incertidumbres
 - En el valor de elementos
 - En $v_g(t)$
 - En *R*

Entradas y Objetivo de Control

Objetivos

Desarrollar herramientas para el análisis, modelado y diseño de sistemas de control para conversores de potencia

Necesitamos modelo dinámico de conversores

¿Cómo afectan las perturbaciones en $v_g(t)$, R o d(t) a la tensión de salida?

¿Cuál es la función transferencia de pequeña señal de un conversor?

- Extender lo visto en Capítulos 3 y 4 (conversores en equilibrio) para incluir la dinámica de los conversores (Capítulo 7)
- Construir transferencia de pequeña señal (Capítulo 8)
- Diseñar sistema de control (Capítulo 9)

Espectro PWM

time [µsec]

40

50

20

Omitiendo el ripple por conmutación

Supongamos un ciclo de trabajo modulado senoidalmente

$$d(t) = D + D_m \cos \omega_m t$$

donde D y D_m son constantes, $|D_m| \ll D$, y la frecuencia de modulación ω_m es mucho menor que la frecuencia de conmutación ω_s

Variaciones en señal de gate y tensión de salida del conversor

Fundamentals of Power Electronics

Chapter 7: AC equivalent circuit modeling

Espectro de la Tensión de Salida

Contiene componentes en:

- frecuencia de modulación y sus harmónicos
- frecuencia de conmutación y sus harmónicos
- bandas laterales de la frecuencia de conmutación

Con ripple pequeño de conmutación, las componentes de alta frecuencia (harmónicos y bandas laterales), son despreciables.

Si se omite el ripple, las únicas componentes que prevalecen son de baja frecuencia (modulación y harmónicos).

Objetivos de Modelado AC

- Predecir cómo variaciones de baja frecuencia en el ciclo de trabajo producen variaciones en tensiones y corrientes
- Ignorar ripple de conmutación
- Ignorar harmónicos y bandas laterales de conmutación
 Estrategia:
- Eliminar harmónicos de conmutación mediante el promediado de las formas de onda sobre un período de conmutación

Promediado

Promediar sobre un período de conmutación para eliminar ripple de conmutación

$$L \frac{d\langle i_L(t) \rangle_{T_s}}{dt} = \langle v_L(t) \rangle_{T_s}$$
$$C \frac{d\langle v_C(t) \rangle_{T_s}}{dt} = \langle i_C(t) \rangle_{T_s}$$

donde

$$\langle x(t) \rangle_{T_s} = \frac{1}{T_s} \int_t^{t+T_s} x(\tau) d\tau$$

Notar que, en estado estacionario,

$$\left\langle v_L(t) \right\rangle_{T_s} = 0$$
$$\left\langle i_C(t) \right\rangle_{T_s} = 0$$

por balance volt-segundo en inductor y balance de carga en el capacitor

Promediado en Estado Estacionario

Promediado en Estado Transitorio

Promediado: Predicción Correcta

El cambio neto en la corriente del inductor sobre un período de conmutación es igual al período T_s multiplicado por $< v_L >_{T_s} / L$.

Promediado: Discusión

Modelado de Pequeña Señal: Linearización

(1) Perturbar y Linearizar

(2) Expansión en Series de Taylor de 1^{er} Orden

Modelado de Circuito Equivalente: Boost

Linearización

Modelo Circuito Equivalente

Modelo de Boost Promediado, AC, Lineal

Modelado de PWM

PWM convierte la señal $v_c(t)$ en el ciclo de trabajo d(t).

¿Cuál es la relación entre $v_c(t)$ y d(t)?

Modelo Funcional PWM

Ecuaciones del Modelo PWM

Para una forma de onda diente de sierra:

$$d(t) = \frac{v_c(t)}{V_M} \quad \text{for } 0 \le v_c(t) \le V_M$$

d(t) es una función lineal de $v_c(t)$

Modelo Perturbado de PWM

Ecuación PWM:

$$d(t) = \frac{v_c(t)}{V_M} \quad \text{for } 0 \le v_c(t) \le V_M$$

Perturbar:

$$v_c(t) = V_c + \hat{v}_c(t)$$
$$d(t) = D + \hat{d}(t)$$

Resultado:

$$D + \hat{d}(t) = \frac{V_c + \hat{v}_c(t)}{V_M}$$

Diagrama en bloque:

Relaciones AC y DC:

$$D = \frac{V_c}{V_M}$$
$$\hat{d}(t) = \frac{\hat{v}_c(t)}{V_M}$$

PWM: Muestreo

Modelo Circuito Promediado

- Permite estudiar las caracteristicas del conversor (respuesta en frecuencia, impedancia de salida, etc) manteniendo el circuito original y solo cambiando las llaves
- Permite simular .tran, .dc y .ac
- Funciona tanto en CCM como en DCM
- Se realiza el promedio del circuito y no de ecuaciones

Modelo de Llave Promediado

- 1. Separar la red conmutada (llaves) del resto del circuito
- 2. Definir los puertos de la llave
- 3. Promediar las formas de onda de los puertos

Derivación Llave Promedio - Boost

Llave Promediada Genérica

 $v_1(t)$

 $\langle v_1(t) \rangle_{T_t}$

 $i_1(t) \uparrow \ i_{L1} + i_{L2}$

0 4

 dT_s

 dT_{s}

Solución DC Usando Llave Promediada

Solución DC SEPIC

Solución AC Usando Llave Promediada

Perturbar y Linearizar

$$d(t) = D + \hat{d}(t)$$

$$\langle v_1(t)\rangle_{T_s}=V_1+\hat{v}_1(t)$$

$$\langle i_1(t)\rangle_{T_s}=I_1+\hat{i}_1(t)$$

$$\langle v_2(t)\rangle_{T_S} = V_2 + \hat{v}_2(t)$$

$$\langle i_2(t)\rangle_{T_s} = I_2 + \hat{i}_2(t)$$

Llave Promediada CCM para DC y AC

Solución AC Usando Llave Promediada

Simulación

Comparación de Modelos

Modelo Completo Conmutado

Promediado, no Lineal

Modelo Promediado DC

Modelo Promediado AC

