Reference 4

Partial Translation:

Japanese Patent Application laid open No. H03-284871

Title of the invention: Semiconductor device and Method for

Manufacturing thereof

Application No.: H02-087115

Filing Date : March 30, 1990 Publication Date: December 16, 1991

Inventor : Yoshitaka GOTO et al.,
Applicant : Nippon-Denso Co. Ltd.

As shown in Fig.3, the surface of a single-crystalline silicone substrate 2 is conjunct to an n-channel single-crystalline silicone substrate 3 having <110> crystalline plane (a second single-crystalline silicone). The surface of the single-crystalline silicone substrate 3 is polished to arrange the thickness thereof. Then, a trench 4 having the width of 1.5 micro meters is formed around the element formed area (diaphragm formed area) A of the single-crystalline silicone substrate using trench technique. More specifically, a silicone oxide layer 5 is formed on the surface of the single-crystalline silicone substrate 3, a mask pattern is formed by use of conventional photo-lithograph technique, and the trench 4, the end of which reaches the conjunction surface to the single-crystalline silicone substrate 2, is formed.

3.

19 日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A) 平3-284871

@Int. CI. 5 識別記号 庁内整理番号 ❸公開 平成3年(1991)12月16日 H 01 L 27/06 21/331 27/04 R 7514-4M 29/73 29/84 В 2104-4M 7735-4M H 01 L 27/06 3 2 1 Z 8225-4M 29/72 審査請求 未請求 請求項の数 3 (全7頁)

図発明の名称 半導体装置及びその製造方法

②特 願 平2-87115

⑰発明者後藤 吉孝 愛知県刈谷市昭和町1丁目1番地 日本電装株式会社内⑰発明者藤井 哲夫 愛知県刈谷市昭和町1丁目1番地 日本電装株式会社内

⑦出 願 人 日本電装株式会社 愛知県刈谷市昭和町1丁目1番地

⑩代 理 人 弁理士 恩田 博宜 外1名

明細書

1. 発明の名称

半導体装置及びその製造方法

- 2. 特許請求の範囲
- 1. 基板表面に露出し、第1の素子形成領域となる第1の単結晶シリコン部と、

基板表面に露出し、前記第1の単結晶シリコン部の面方位とは異なる面方位を有し、かつ、第2の素子形成領域となる第2の単結晶シリコン部とを備えてなる半導体装置。

2. 第1の面方位を有する第1の単結晶シリコン基板の平滑面に、この第1の単結晶シリコン基板の平滑面の一部が露出する状態で第2の面方位を有する第2の単結晶シリコン基板を接合する第1 工程と、

前記第1の単結晶シリコン基板の平滑面上にエ ピタキシャル層を形成する第2工程と、

前記エピタキシャル層を所定量除去して、 表面が平滑な状態で、第1の素子形成領域となる前記エピタキシャル層と、第2の素子形成領域となる

前記第2の単結晶シリコン基板とを露出させる第 3工程と

を備えてなる半導体装置の製造方法。

3. 前記第1工程において第2の単結晶シリコン基板の露出部にシリコン酸化膜を形成し、この状態で第2工程のエピクキシャル層を形成してなる請求項2に記載の半導体装置の製造方法。

3. 発明の詳細な説明

[産業上の利用分野]

この発明は、半導体装置に関するものである。[従来技術及び課題]

近年、集積回路装置においては高集積化、インテリジェント化が要求されてきているが、これらの要求を満たすものは現れてきていない。

この発明の目的は、インテリジェント化、高集 積化に優れた半導体装置を提供することにある。

[課題を解決するための手段]

第1の発明は、基板表面に露出し、第1の素子 形成領域となる第1の単結晶シリコン部と、基板 表面に露出し、前記第1の単結晶シリコン部の面 方位とは異なる面方位を有し、かつ、第2の素子 形成領域となる第2の単結晶シリコン部とを備え た半導体装置をその要旨とする。

第2の発明は、第1の面方位を有する第1の単結晶シリコン基板の平滑面に、この第1の影響を有する状態の平滑面の形態は、この第2の形態を有する第2の単結晶シリカを有する第2の単結晶シリオ島シリカを有する第1では、前記第2の単結晶が平分を表面にエピタキシル層を所子を記れているが、第1の異なの単結晶シリオをといりである。第2とを備えた半導体を置いませる。

第3の発明は、第2の発明での第1工程において第2の単結晶シリコン基板の露出部にシリコン 酸化膜を形成し、この状態で第2工程のエピタキシャル層を形成するものである半導体装置の製造 方法をその要旨とする。

シリコン基板とが露出される。その結果、第1の発明の半導体装置が製造される。

第3の発明は、第2の発明での第1工程において第2の単結晶シリコン基板の露出部にシリコン 酸化膜が形成され、この状態で第2工程でのエピタキシャル層が形成されるので、第1の単結晶シリコン基板のみのエピタキシャル層が形成され結晶方位の乱れがない。

[第1実施例]

この発明を半導体圧力センサに具体化した第1 実施例を図面に従って説明する。

第1図には半導体圧力センサを示し、第2図~ 第7図にはその製造方法を示す。

第2図に示すように、<100>面方位を有する単結晶シリコン基板1と、<1112>面方位を有するP型の単結晶シリコン基板2(第1の単結晶シリコン基板2を直接接面がある。そして、単結晶シリコン基板2の表面を鏡面研磨して所定の厚さにする。

[作用]

第1の発明は、第1及び第2の素子に応じた第 1及び第2の単結晶シリコン部の方位面を選択することにより素子特性に優れた半導体装置となる。 即ち、例えば、第1の素子をバイポーラトランジスタとし第2の素子をMOSトランジスタとした場合に、第1の単結晶シリコン部を<111>面とし、又、第1の単結晶シリコン部を<100> 面とすることによりトランジスタ特性に優れた集積回路装置とすることができる。

第2の発明は、第1工程により第1の面方位を有する第1の単結晶シリコン基板の平滑面のに、この第1の単結晶シリコン基板の平滑面の一部が露出する状態で第2の面方位を有する第2の単結晶シリコン基板が接合され、第2工程により前記エピタキシャル層が形成され、第3工程により前記エピタキシャル層が所定量除去され、表面が平滑な状態で第1の素子形成領域となる前記エピタキの素子形成領域となる前記第2の単結晶

次に、第3図に示すように、単結晶シリコする単 を2の表面にN型の<110シ南すが重要を に、第3図に示すように、単結晶シリコな単 に、第2の単結晶シリコン基板3(第2の単結晶シリコン基板3の単結晶シリコを を直接接合する。そして所定厚さにする。引き を表して所定原はする。基板3のままれて にするの表をである。のの表をである。ののでは、単結晶シリコを を変更を がである。ののでは、単結晶シリカムのでは、 をである。ののでは、単結晶シリカムのでは、 をである。ののでは、単結晶シリカムのでは、 に、5μmののでは、のでは、のでは、 のをでは、のをでは、 では、このでは、 では、 では、このでは、 では、このでは、 では、このでは、 では、このでは、 では、このでは、 でいるでは、 でいるでいるでは、 でいるでは、 でいるでは、 でいるでいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでは、 でいるでいるでは、 でいるでは、 でいるでいるでは、 でいるでは、 でいるでいるでは、 でいるでは、 でい

この後、このシリコン酸化膜 5 をマスクとして P型不純物を拡散し、溝 4 に P * の拡散層 6 を設ける。この P * 拡散層 6 により後述するピエゾ抵抗層と周辺素子とが電気的に分離される。

次に、第4図に示すように、無酸化により溝4 内を含む単結晶シリコン基板3の表面に厚さ1μ mのシリコン酸化膜7を形成する。このとき、溝 4の内壁が両側から酸化されるため、無酸化によ り溝 4 内がシリコン酸化膜 7 で満たされる。又、 単結晶シリコン基板 3 の厚さは 5 μmになる。

尚、単結晶シリコン基板2と単結晶シリコン基板3を接合する際、接合界面にシリコン酸化膜を 形成し、このシリコン酸化膜を介して接合させて もよい。この場合には、シリコン酸化膜が露出す ることによっても単結晶シリコン基板3のエッチ ングは停止する。

する。

そして、圧力測定の際には、ダイヤフラムに加わる圧力をピエゾ抵抗層 9 にて電気的に変換して、バイポーラトランジスタ 1 0 . 1 1 を含む周辺回路にて温度補償及び増幅されて取り出される。

このように本実を例の半導体圧力では、く1111を関の単名に本文を有コンを有コンをでは、というに本生をの単れたの単結晶を引きると、というになる。 (第100年間 100年間 10

その結果、基板表面に露出し、バイポーラトランジスタ形成領域となる<1112>面のエピタキ

次に、第6図に示すように、単結晶シリコン基板2上にN型のエピタキシャル層8を厚さ10μ m以上形成する。その後、第7図に示すように、 鏡面研磨によりエピタキシャル層8の表面を所定 量除去して表面が平滑な状態で、シリコン酸化膜7を露出させる。

シャル層 8 (第1の単結晶シリコン部)と、基板表面に露出し、エピタキシャル層 8 の面方位とは異なる < 110 > 面を有し、かつ、ピエゾ抵抗層形成領域となる単結晶シリコン基板 3 (第2の単結晶シリコン部)とを備えてなる半導体圧力センサが製造される。

この装置においては、<110>面の単結晶シリコン基板3にはピエゾ抵抗層9が形成されるとともに、<111>面のエピタキシャル層8にはバイボーラトランジスタ10、11が形成できるとしまれば、サーラトランジスタ10、11がデバイス特性に優れた<111>面に配設できる。

このようにして、ピエソ抵抗層と周辺回路 (パイポーラトランジスタ) の各素子の最高の性能を引き出させることができ、インテリジェント化、高集積化に優れた半導体装置とすることができる。

又、単結晶シリコン基板3の露出部にシリコン 酸化膜7を形成し、この状態でエピタキシャル層 8を形成したので、単結晶シリコン基板2のみのエピタキシャル層8が形成され結晶方位の乱れがない。つまり、シリコン酸化膜7がない場合には、<111>の単結晶シリコン基板2からのエピタキシャル成長の途中において、<110>の単結晶シリコン基板3より成長したエピタキシャル層が混在してしまい結晶の質が悪くなってしまうが、本実施例ではそのようなことが回避される。

さらに、従来、第8図に示すように、異方性エッチングを用いてダイヤフラムを形成する場合、<110>面のエッチングでは制御性よく正方形に形成することができなかったが、本実施例では面方位が<100>の単結晶シリコンなので制御性よくエッチングして正方形にダイヤフラム部を形成することができる。

[第2実施例]

次に、第2実施例を第9図~第16図に図面に 従って説明する。本実施例の半導体圧力センサに おいては、あまり高集積化が要求されないもので あり前記第1実施例での単結晶シリコン基板3の

リコン基板13上にN型のエピタキシャル層16を形成する。その後、第15図に示すように、鏡面研磨によりエピタキシャル層16の表面を所定量除去して表面が平滑な状態で、単結晶シリコン基板15を露出させる。

その後に、第13図に示すように、単結晶シリリンを形して異面側からKOH等のエッチングを行い、単結晶シングを行い、単結形形で異方性エッチングを行いる。単結形形がタイヤフラムを形成をして、単結晶シリコン基板15(グブル番17を4つ形成する。されずの場では、エピタキシスク18、19ようにがは、カーランの場では、エピタキンの場では、からに対して、カーランの場では、単端を形成されて、半導体圧力を、が完成である。

[第3実施例]

次に、第3実施例を第17図~第25図に従って説明する。

まず、第17図に示すように、N型の<110>

露出部を覆うシリコン酸化膜 7 を使用することなく工程の簡略化を図っている。

第9図に示すように、<1111>面方位を有するP型の単結晶シリコン基板13(第1の単結晶シリコン基板)を用意するとともに、第10図に示すように、<100>面方位を有する単結晶シリコン基板14を用意する。そして、第11図に示すように、単結晶シリコン基板13を直接接合する。そして、単結晶シリコン基板13の表面を鏡面研磨して所定の厚さにする。

次に、第12図に示すように、単結晶シリコン基板13の表面にN型の<110>面方位を有する単結晶シリコン基板15(第2の単結晶シリコン基板)を直接接合する。そして、単結晶シリコン基板15の表面を鏡面研磨して所定厚さにする。

引き続き、第13図に示すように、単結晶シリコン基板15の案子形成領域(ダイヤフラム形成領域)を除く単結晶シリコン基板15をエッチングする。次に、第14図に示すように、単結晶シ

面方位を有する単結晶シリコン基板 2 1 を用意し、この表面に所定の深さの凹凸部を形成する。この凹凸部の深さにより半導体圧力センサのダイヤフラムの厚さが決定される。一方、第 1 8 図に示すく100>面方位を有する単結晶シリコン基板 2 2 の表面に、単結晶シリコン基板 2 1 の凹凸面を直接接合する。

次に、第20図に示すように、熱酸化により単結晶シリコン基板22と単結晶シリコン基板21との対向面にシリコン酸化膜23を形成する。そして、第21図に示すように、単結晶シリコン酸化膜23が露出する。次に、第22図に示すように、シリコン酸化膜23を除去した後、単結晶シリコン酸化膜24を形成する。

引き続き、第23図に示すように、単結晶シリコン基板22の上面にN型のエピタキシャル層25を形成する。その後、第24図に示すように、エピタキシャル層25の表面を所定量除去して表

面が平滑な状態で、シリコン酸化膜24を露出させる。その後に、第25図に示すように、ダイヤフラム26、ピエゾ抵抗層27、MOSトランジスタ28,29等よりなる周辺回路を形成する。

このように、本実施例では周辺回路にMOSトランジスタ28,29を備えた半導体圧力センサにおいて、MOSトランジスタ特性上有利である面方位が<100>のエピタキシャル層25を用いることができる。

尚、この発明は上記各実施例に限定されるものではなく、例えば、上記実施例では半導体圧力センサに具体化したが他の半導体装置に具体化してもよい。

[発明の効果]

以上詳述したようにこの発明によれば、インテリジェント化、高集積化に優れた半導体装置とすることができる優れた効果を発揮する。

4. 図面の簡単な説明

第1図は第1実施例の半導体圧力センサの断面図、第2図~第7図はその製造工程を示す図、第

8 図は比較のための半導体圧力センサの断面図、 第9 図~第16 図は第2 実施例の半導体圧力セン サの製造工程を示す図、第17 図~第25 図は第 3 実施例の半導体圧力センサの製造工程を示す図 である。

2 は第1の単結晶シリコン基板としての単結晶シリコン基板、3 は第2の単結晶シリコン基板としての単結晶シリコン基板、7 はシリコン酸化膜、8 はエピタキシャル層。

特許出願人 日本電装 株式会社 代 理 人 弁理士 恩田 博宣(ほか1名)

図面その1

第1 图

第8 図

-385 -

特開平3-284871 (6)

図面その4

