Cofactor expansion for determinants:

· along now i:

$$A = \begin{bmatrix} x & a_{i1} & x \\ \vdots & x \\ a_{i2} & a_{i3} & a_{in} \\ \vdots & x \\ a_{in} & x \end{bmatrix}$$

cofactor expansion along row ? E_{x} $A = \begin{bmatrix} 7 & 0 & 3 & -1 \\ 0 & 4 & 3 & 0 \\ 2 & 0 & 0 & 1 \\ -0 & 2 & 0 & 1 \end{bmatrix}$ $\det A = 0 \cdot C_{21} + 4 \cdot C_{22} + 3 \cdot C_{23} + 0 \cdot C_{24} = 4 \cdot (-6) + 3.18$ $\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \end{array} = \begin{array}{c} 7 \\ 2 \\ 0 \\ 1 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \end{array} = \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \end{array} = \begin{array}{c} 2 \\$ $M_{22} = \begin{bmatrix} 7 & 3 & -1 \\ 2 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $C_{22} = (-1)^{2+2} \text{ dit } M_{22} = 3 \cdot (-1) \text{ det } \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = -3 \cdot (2\cdot 1 - 0\cdot 1)$ let's compute $C_{22} = -6$ $C_{23} = 18$ this by cofactor exp along column 2

→ if A is non-singular => det A ≠0 Av = b $n \times n$ $n \times l$ then $v = A^{-1} b$ The determinant of A features in the formula for A det $A = a_{ii} C_{ij} + \dots + a_{in} C_{in} = a_{ii} \times_{ii} + \dots + a_{in} \times_{ni}$ also $O = a_{ii} C_{ji} + \dots + a_{in} C_{jn} = a_{ii} \times_{ij} + \dots + a_{in} \times_{nj}$ for all $j \neq i$ $A \cdot X = \begin{cases} \det A & \bigcirc \\ - \det A & \boxed{} \end{cases}$ $\det A \cdot X = \begin{cases} \det A & \bigcirc \\ - \det A & \boxed{} \end{cases}$ consider the matrix X with entries $\Re ij = Cji$ "transposed colactor matrix"

A :
$$\frac{X}{dvt A} = I$$
 => $A^{-1} = \frac{X}{dvt A}$

duide overy

entry of X by $vt A$ = $\frac{C_{dv}}{dvt A}$ = $\frac{C_{dv}}{dvt A}$

Ex: $A = [vt] = vt$
 $A^{-1} = \frac{V}{dvt A} = \frac{C_{dv}}{dvt A}$

Ex: $A = [vt] = vt$
 $A^{-1} = \frac{1}{dvt A} = \frac{C_{dv}}{dvt A}$
 $A^{-1} = \frac{1}{dvt A} = \frac{1}{dvt A}$

det A ×0 for A to be invertible $=> \left(A^{-1} = \frac{1}{dt} A \left[-c \alpha \right] \right)$ $C_{\parallel} = (-1)^{1+1} \cdot \det [d] = d$ (12 = (-1) det [c] = -c $C_{21} = (-1)^{2+1}$ det [b] = -b $C_{22} = (-1)^{2+2}$ det [a] = a

~ matrix of \[d - c \] with \[d - b \] cofactors is \[- b \] a \] manspose \[- c \] a \]

$$A v = b \implies v = A^{-1}b$$

for all
$$i$$
 from i to n , consider the matrix $B_i = A$ with the i -th column replaced by b

$$- v_i = \frac{C_{1i}}{\det A} \cdot b_1 + \dots + \frac{C_{ni}}{\det A} \cdot b_n$$

the RHS of there two formula are equal by cofactor exp on i-th adumn of Bi

Cramer's rule

Upshat: the solution is
$$v = \begin{bmatrix} v_1 \\ v_n \end{bmatrix}$$
 where $v_1 = \frac{\det B_1}{\det A}$ $v_n = \frac{\det B_n}{\det A}$

$$3 \times 3$$
 determinants give you a formula for the cross-product

 $V = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$, $w = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$ $\sim \sim v \times w = \begin{bmatrix} ?_1 \\ ?_2 \\ ?_3 \end{bmatrix}$
 $i = e_1 = \begin{bmatrix} i \\ 0 \end{bmatrix}$
 $v \times w = \det \begin{bmatrix} i & v_1 & w_1 \\ j & v_2 & w_2 \\ k & v_3 & w_3 \end{bmatrix} = along first column$
 $k = e_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$K = \ell_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \underbrace{i \cdot (-1) \det \begin{bmatrix} v_{2} w_{2} \\ v_{3} w_{3} \end{bmatrix} + \underbrace{i \cdot (-1) \det \begin{bmatrix} v_{1} w_{1} \\ v_{3} w_{3} \end{bmatrix} + \underbrace{k \cdot (-1) \det \begin{bmatrix} v_{1} w_{1} \\ v_{2} w_{2} \end{bmatrix}}_{v_{3} w_{4} - v_{1} w_{3}} = \underbrace{i \cdot (v_{2} w_{3} - v_{3} w_{2}) + \underbrace{i \cdot (v_{3} w_{1} - v_{1} w_{3}) + \underbrace{k \cdot (-1) \det \begin{bmatrix} v_{1} w_{1} \\ v_{2} w_{2} \end{bmatrix}}_{v_{1} w_{2} - v_{2} w_{1}} = \underbrace{i \cdot (v_{2} w_{3} - v_{3} w_{2}) + \underbrace{i \cdot (v_{3} w_{1} - v_{1} w_{3}) + \underbrace{k \cdot (-1) \det \begin{bmatrix} v_{1} w_{1} \\ v_{2} w_{2} \end{bmatrix}}_{v_{1} w_{2} - v_{2} w_{1}}$$