IV B.Tech II Semester Regular/Supplementary Examinations, April/May - 2019 ELECTRONIC MEASUREMENTS & INSTRUMENTATION

(Electronics and Communications Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

		PART-A (22 Marks)	
1.	a)	A set of independent current measurements were recorded as 10.03, 10.10, 10.11 and 10.08 A calculate the range of an error.	[4]
	b)	Mention the different types of distortion.	[3]
	c)	What will happen when sweep signal is applied to horizontal plates of CRO?	[4]
	d)	Obtain an expression for series Q meter circuit.	[4]
	e)	What is a Transducer? Give the classification of transducers.	[3]
	f)	Draw the block diagram of Digital Data Acquisition System.	[4]
		$\underline{\mathbf{PART-B}}\left(3x16=48\ Marks\right)$	
2.	a)	What are the dynamic characteristics of measurement systems? Explain.	[8]
	b)	Draw the Thermocouple type RF ammeter and explain its operation.	[8]
3.	a)	Describe briefly about Harmonic distortion analyzer.	[8]
	b)	What are the various applications of Digital Fourier Analyzers?	[8]
4.	a)	Explain digital storage oscilloscope with schematic block diagram and state its Applications.	[8]
	b)	Illustrate why is triggering circuit provided in a CRO?	[8]
5.	a)	Draw the Wien Bridge and derive the expression for the frequency of excitation	F01
	b)	Signal at balance. A 1000 Hz bridge has the following constants:	[8]
	U)	Arm AB: $R=1 \text{ k}\Omega$ in parallel with $C=0.25 \mu\text{F}$	
		Arm BC: R=1 k Ω in series with C=0.25 μ F	
		Arm CB: L=50 mH in series with R=200 Ω	
		Arm DA: Unknown	
		Find the constants of arm DA to balance the bridge. Express the result as a pure	
		R in series with a pure C or L, and as a pure R in parallel with a pure C or L.	[8]
6.	a)	Explain the working of Electrical Resistance Thermometer. Also explain four	
•	ĺ	lead method of measuring resistance.	[8]
	b)	Explain how the piezoelectric transducer can be used to measure force and pressure.	[8]
		pressure.	[၀]
7.	a)	With neat sketch explain the measurements of proximity.	[8]
	b)	With neat sketch explain the measurements of humidity and moisture.	[8]

Code No: **RT42042**

Set No. 2

IV B.Tech II Semester Regular/Supplementary Examinations, April/May - 2019 ELECTRONIC MEASUREMENTS & INSTRUMENTATION

(Electronics and Communications Engineering)

Time: 3 hours Max. M				
		Question paper consists of Part-A and Part-B		
		Answer ALL sub questions from Part-A		
		Answer any THREE questions from Part-B		

1	(۵	PART-A (22 Marks)	F.43	
1.	a) b)	Define the terms Precision and Resolution of an instrument.	[4]	
	U)	Deduce the difference between a wave analyzer and a harmonic distortion analyzer.	[3]	
	c)	What is the comparison between analog and digital storage oscilloscope?	[4]	
	d)	Distinguish between AC Bridges and DC Bridges.	[4]	
	e)	Discuss about Piezo-electric sensors.	[3]	
	f)	Write short notes on interfacing of transducers with DAS.	[4]	
2	`	$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$		
2.	a)	Define the following (i) Response (ii) Fidelity (iii) Lag (iv) Dynamic error	[8]	
	b)	Draw the circuit diagram of Ohmmeters series type, and shunt type and explain	[O]	
	0)	its operation in detail.	[8]	
			L-1	
3.	a)	Describe the circuits and working of wave analyzers used for audio frequency		
		and megahertz range.	[8]	
	b)	Describe briefly about Total harmonic distortion.	[8]	
		•		
4.	a)	Draw the circuit diagram of delay line circuit and explain its operation.	[8]	
	b)	Develop an expression for deflection D in CRO, which is the deflection of the		
	٠,	electron beam.	[8]	
5.	a)	Analyze Q meter? Explain about its application.	[8]	
	b)	A circuit having an effective capacitance of 160pF is tuned to a frequency of	L°.	
	σ,	1.2MHz. In this the current falls to 70.7% of its resonant value when the		
		frequency of an emf of constant magnitude injected in series with the circuit		
		deviates from the resonant frequency by 6KHz. Calculate the Q factor and		
		effective resistance by 6KHz.	[8]	
6.	a)	Explain the operation of LVDT. Explain it's merits demerits and applications.	[8]	
	b)	An ac LVDT has the following data:		
		Input = 6.3 V , Output = 5.2 V , range $\pm 0.5 \text{ in}$. Determine		
		(i) Calculate the output voltage vs Core position for a core moment going		
		from $+ 0.45$ in. to $- 0.30$ in. (ii) The output voltage when the core is -0.25 in. from the centre	[8]	
		(11) The output voltage when the core is -0.25 in. Holli the centre	[0]	
7.	a)	With neat sketch explain the measurement of Velocity.	[8]	
	b)	Explain the measurement of force using photoelectric Transducer.	[8]	

R13

Code No: **RT42042**

Set No. 3

IV B.Tech II Semester Regular/Supplementary Examinations, April/May - 2019 **ELECTRONIC MEASUREMENTS & INSTRUMENTATION**

(Electronics and Communications Engineering)

Time: 3 hours Max. Max. Max. Max. Max. Max. Max. Max.				
		Question paper consists of Part-A and Part-B		
		Answer ALL sub questions from Part-A		
		Answer any THREE questions from Part-B		

		PART-A (22 Marks)		
1.	a)	What are the different types of Digital Voltmeter?	[4]	
	b)	Formulate an equation for the measured value of total harmonic distortion.	[3]	
	c)	What are the standard specifications of CRO?	[4]	
	d)	What precautions are required in using bridges?	[4]	
	e)	Explain the construction of thermocouple.	[3]	
	f)	Differentiate between a sensor and a Transducer.	[4]	
		$\underline{\mathbf{PART-B}}(3x16 = 48 Marks)$		
2.	a)	What are the different types of errors in measurement? Explain.	[8]	
	b)	Describe the working of a series thermos couple type ammeter with schematic		
		block Diagram.	[8]	
3.	a)	Define waveform analyzer and explain in detail about frequency selective type		
	/	wave analyzer with block diagram.	[8]	
	b)	What are the applications of a Spectrum analyzer?	[8]	
	0)	what are the appreciations of a spectrum unaryzer.	[O]	
4.	a)	Draw the internal structure of CRT and list its functions.	[8]	
	b)	Explain the frequency and phase measurement using Lissajous figures.	[8]	
5.	a)	Discuss in detail about the principle of Q meter.	[8]	
	b)	In the case of a Schering Bridge, arm AC has R=4.7 k Ω ; Arm CD has unknown	r - 1	
		elements. Arm BD has C=0.1 μ F; Arm AB=4.7 $k\Omega$ is shunt with 1μ F. Determine		
		values of components is the arm CD.	[8]	
6	a)	Explain about Thermistors and Sensistors for the measurement of Temperature.	[8]	
0.		A Thermistor has a temperature coefficient of resistance of -0.04 over a	[0]	
	- /	temperature range of 20°C to 60°C. Find the resistance of the thermistor at 35°C		
		if the resistance of the thermistor at 25°C is 100 ohm.	[8]	
7.	a)	Briefly explain the working principles and measurement of force.	[8]	
	b)	Explain the working of a Multi channel DAS with block diagram.	[8]	

IV B.Tech II Semester Regular/Supplementary Examinations, April/May - 2019 ELECTRONIC MEASUREMENTS & INSTRUMENTATION

(Electronics and Communications Engineering)

Max. Marks: 70 Time: 3 hours Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B PART-A (22 Marks) 1. a) Compare static and dynamic characteristics of measurement systems. [4] b) How does a wave analyzer functionally differ from a spectrum analyzer? [3] What are the features of CRT? c) [4] d) List the factors that cause error in Q meter. [4] Explain the characteristics of Thermistors. [3] Explain the characteristics of DAS. f) [4] PART-B (3x16 = 48 Marks)2. a) Define the following terms: (i) Linearity (ii) Sensitivity (iii) Repeatability (iv) Accuracy [8] b) A basic D' Arsonval moment with a full scale deflection of 50 µA and an internal resistance of 1800 Ω is available. It is to be converted into a 0-1 V, 0-5 V, 0-25 V and 0-225 V multi range voltmeter using individual multipliers for each range. Calculate the values of the individual resistors. [8] 3. a) Discuss the frequency range of different types of signal analyzers. [8] [8] b) Sketch and explain in detail about the Spectrum analyzer. 4. a) With block diagram and various waveforms at each block, Explain the operation [8] of sampling oscilloscope b) List the principle of secondary emission ratio. [8] 5. a) Explain Anderson bridge with vector diagram and also derives balance Equation. [8] b) How the unknown frequency is measured using Wein's method? [8] Explain how the piezoelectric transducer can be used to measure force and 6. a) pressure. [8] b) Explain the working of bonded strain gauge for the measurement of force. [8] 7. a) With neat sketch explain the principle of operation of Displacement measurement. [8] A capacitive Transducer has a plate separation of 0.01mm. It's capacitance under static condition is 10pF.If the change in capacitance as displacement Transducer is accurately measured to be +1pF, Evaluate the displacement. [8]