SOLVING LINEAR RECURRENCE RELATION

PROF. DR. SHAILENDRA BANDEWAR

LINEAR HOMOGENEOUS RECURRENCE RELATION

Definition: A linear homogeneous recurrence relation of degree k with constant coefficient is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

Where $c_1, c_2, ... c_k$ are real numbers and $c_k \neq 0$.

Determine which of the following are linear homogeneous recurrence relation with constant coefficients. Also find the degree of those that are.

a.
$$a_n = a_{n-1} + 2a_{n-2}$$

b.
$$a_n = a_{n-1}^2 + 2a_{n-2}$$

c.
$$a_n = a_{n-1} + 2a_{n-3} + n - 2$$

d.
$$a_n = 4a_{n-1} + 2a_{n-4} + 6a_{n-7}$$

SOLUTION OF LINEAR HOMOGENEOUS RECURRENCE RELATION WITH CONSTANT COEFFICIENT

Consider,
$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

Let $a_n = r^n$ be the solution

$$\therefore r^n = c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k}$$

Assuming $r^n \neq 0$, we get

$$r^k - c_1 r^{k-1} - c_2 r^{k-2} + \dots + c_k = 0$$

Called as characteristic equation of the recurrence relation. The solution of this equation are called as characteristic roots.

THEOREM: REAL DISTINCT ROOTS

Let $c_1, c_2, \dots c_k$ be real numbers. Suppose the characteristic equation

$$r^k - c_1 r^{k-1} - c_2 r^{k-2} + \dots + c_k = 0$$

has k distinct roots $r_1, r_2, ..., r_k$. Then solution of recurrence relation is

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_k r_k^n$$
 for $n = 0,1,2,3,\dots$

Where $\alpha_1, \alpha_2, \dots, \alpha_k$ are constants.

REAL REPEATED ROOTS

If the roots are real and repeated,

For example: If the root r is repeated 2 times then the general solution will be of the form

$$a_n = (c_1 + c_2 n)r^n$$

If the root r is repeated 3 times then the general solution will be of the form

$$a_n = (c_1 + c_2 n + c_3 n^2)r^n$$

If the root r is repeated k times then the general solution will be of the form

$$a_n = (c_1 + c_2 n + c_3 n^2 + \dots + c_k n^{k-1})r^n$$

•

COMPLEX PAIR OF ROOTS

If roots of characteristic equations are complex i. e. say

$$\alpha + i\beta$$
 and $\alpha - i\beta$,

Then solution corresponding to these roots is of the form

$$a_n = r^n(c_1 cosn\theta + c_2 sinn\theta)$$

where
$$r = \sqrt{\alpha^2 + \beta^2}$$
 and $\theta = \tan^{-1} \left(\frac{y}{x}\right)$.

Solve the recurrence relation using given initial conditions

a.
$$a_n = a_{n-1} + 6a_{n-2}$$
, for $n \ge 2$, $a_0 = 3$, $a_1 = 6$.

b.
$$a_n = 7a_{n-1} - 10a_{n-2}$$
, for $n \ge 2$, $a_0 = 2$, $a_1 = 1$.

c.
$$a_n = 6a_{n-1} - 8a_{n-2}$$
, for $n \ge 2$, $a_0 = 4$, $a_1 = 10$.

d.
$$a_n = -6a_{n-1} - 9a_{n-2}$$
, for $n \ge 2$, $a_0 = 3$, $a_1 = -3$.

EXERCISE

Solve the recurrence relation using given initial conditions

a.
$$a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3}$$
, $a_0 = -5$, $a_1 = 4$, $a_2 = 88$.

b.
$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$
, $a_0 = 5$, $a_1 = -9$, $a_2 = 15$.

SOLUTION OF NON HOMOGENEOUS RECURRENCE RELATION

A recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F_n$$

Where $c_1, c_2, ... c_k$ are real numbers and $c_k \neq 0$. is called non-homogeneous recurrence relation.

Its solution is of the form $a_n = a_n^{(h)} + a_n^{(p)}$, where $a_n^{(h)}$ is a solution of

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$
 and $a_n^{(p)}$ is a solution of

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F_n$$
 called as particular solution

METHOD OF FINDING PARTICULAR SOLUTION

If F_n is one of the following, then its particular solution can easily obtained

- a. Polynomial in n.
- b. Powers of constant.

S. No.	$\boldsymbol{F_n}$	Assumed $a_n^{(p)}$
1	A constant C	A constant d
2	$c_0 + c_1 n$	$d_0 + d_1 n$
3	$c_0 + c_1 n + c_2 n^2$	$d_0 + d_1 n + d_2 n^2$
4	A polynomial of degree n	A polynomial of degree n
5	r^n	
Case I	When r is not the root of characteristic equation	Ar^n
Case II	When r is m times repeated root of characteristic equation	An^mr^n
6	$(c_0 + c_1 n + c_2 n^2)r^n$	$(d_0+d_1n+d_2n^2)r^n$ When r is not the root of characteristic equation
		$n^m(d_0+d_1n+d_2n^2)r^n$ When r is m times repeated root of characteristic equation

- a. Consider the nonhomogeneous recurrence relation $a_n = 3a_{n-1} + 2^n$
 - i. Show that $a_n = n2^n$ is the solution of this recurrence relation.
 - ii. Find all the solution of this recurrence relation.
 - iii. Find the solution with $a_o = 1$.

b. Consider the nonhomogeneous recurrence relation

$$a_n = 2a_{n-1} + 2^n$$

- i. Show that $a_n = n2^n$ is the solution of this recurrence relation.
- ii. Find all the solution of this recurrence relation.
- iii. Find the solution with $a_o = 1$.

What is the general solution of

$$a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3} + F(n)$$
, where

- a. $F(n) = n^2$
- **b.** $F(n) = 2^n$
- c. $F(n) = n2^n$

d. d. $F(n) = (-2)^n$

e.
$$F(n) = n^2 2^n$$

f.
$$F(n) = n^2(-2)^n$$

g.
$$F(n) = 3$$