Cheat sheet Computer Netwerken III

OSPF: Open Shortest Path First

Commando	Betekenis
show ip ospf neighbor	Toon de OSPF buren
show ip ospf interface	Toon de OSPF interfaces
ip ospf cost	De kost instellen

OSPF opzetten:

Stappen om OSPF op te zetten:

- 1. Start OSPF proces met een router ID
- 2. Definieer de netwerken die OSPF moeten gebruiken
- 3. Stel de OSPF kost in indien nodig
- 4. Controleer de OSPF buren en interfaces
- 5. Controleer de OSPF routing tabel

De wildcard kan je betpalen aan de hand van de subnetten die zijn aangesloten op de router. De wildcard is het omgekeerde van het subnetmasker.

CIDR (Prefix)	Subnetmasker	Wildcardmasker (inverse)
/8	255.0.0.0	0.255.255.255
/16	255.255.0.0	0.0.255.255
/24	255.255.255.0	0.0.0.255
/25	255.255.255.128	0.0.0.127
/26	255.255.255.192	0.0.0.63
/27	255.255.255.224	0.0.0.31
/28	255.255.255.240	0.0.0.15
/29	255.255.255.248	0.0.0.7
/30	255.255.255.252	0.0.0.3
/31	255.255.255.254	0.0.0.1
/32	255.255.255.255	0.0.0.0
Commando		Ret

Commando	Ветекепіѕ
router ospf 10	Start OSPF proces 10
router-id 6.6.6.6	Stel de router ID in

Commando	Betekenis
network 10.0.0.0 0.0.0.3 area 0	Stel de inverse maskers in voor alle aangesloten subnetten
interface GigabitEthernet0/0/0	Ga naar de interface configuratie modus voor GigabitEthernet0/0/0
ip ospf 10 area 0	Activeer OSPF op de interfaces
passive-interface GigabitEthernet0/0/0	Maak interface passief (geen routing updates naar netwerken waar ze niet nodig zijn)
BC-1(config-if)#ip ospf priority 255	De prioriteit van een interface instellen (in dit voorbeeld op het max)
BC-1(config)#ip route 0.0.0.0 0.0.0.0 Serial0/1/1	Default route naar de ISP cloud
BC-1(config)#router ospf 10 BC-1(config- router)#default-information originate	Automatisch de default route naar alle routers in het netwerk verdelen
P2P-1(config)#router ospf 10 P2P-1(config-router)#auto-cost reference-bandwidth 1000	Automatisch de kost instellen afhankelijk van het type verbinding (Fe of Ge)
ip ospf cost 50	Kost voor een interface instellen
ip ospf hello-interval 20	Hello op standaard waarde zetten
ip ospf dead-interval 80	Dead op standaard waarde zetten

ACL Cheat Sheet (Cisco IOS)

ACL Soorten

Type	Beschrijving
Standard	Filtert op bron-IP
Extended	Filtert op bron + bestemming + protocol + poorten

Syntax

Standard ACL

access-list <nummer 1-99> permit|deny <bron-ip> <wildcard-mask>

Voorbeeld:

access-list 10 deny 192.168.1.0 0.0.0.255 access-list 10 permit any

Blokkeert verkeer van 192.168.1.0/24, laat de rest toe.

Extended ACL

Voorbeeld:

```
access-list 110 permit tcp 192.168.1.0 0.0.0.255 any eq 80
```

Laat HTTP-verkeer toe van 192.168.1.0/24 naar alle bestemmingen.

Toepassen van ACL

← Ingress (incoming verkeer)

```
interface g0/0
ip access-group 10 in
```

→ Egress (outgoing verkeer)

```
interface g0/1
ip access-group 110 out
```

Commando	Betekenis
access-list 100 permit tcp 172.22.34.64 0.0.0.31 host 172.22.34.62 eq ftp	Toestaan van FTP verkeer van een subnet naar een host
R1(config)# access-list 100 permit icmp 172.22.34.64 0.0.0.31 host 172.22.34.62	Toestaan van ICMP verkeer van een subnet naar een host
R1(config)# access-list 100 deny ip any any	Blokkeer al het andere verkeer
R1(config)# interface FastEthernet0/0	Ga naar de interface configuratie modus
R1(config-if)#ip access-group 100 in	Pas de ACL toe op de interface voor inkomend verkeer
R1(config-if)#ip access-group 100 out	Pas de ACL toe op de interface voor uitgaand verkeer

Commando Betekenis

show access-lists

Toon alle huidige ACLs

Part 1: Configure and Apply a Named Standard ACL

Step 1: Verify connectivity before the ACL is configured and applied.

All three workstations should be able to ping both the Web Server and File Server.

Step 2: Configure a named standard ACL.

a. Configure the following named ACL on R1.

```
R1(config) # ip access-list standard File_Server_Restrictions
R1(config-std-nacl) # permit host 192.168.20.4
R1(config-std-nacl) # permit host 192.168.100.100
R1(config-std-nacl) # deny any
```

Note: For scoring purposes, the ACL name is case-sensitive, and the statements must be in the

b. Use the show access-lists command to verify the contents of the access list before applyi

```
R1# show access-lists
Standard IP access list File_Server_Restrictions
10 permit host 192.168.20.4
20 permit host 192.168.100.100
30 deny any
```

Step 3: Apply the named ACL.

a. Apply the ACL outbound on the Fast Ethernet 0/1 interface.

Note: In an actual operational network, applying an access list to an active interface is not a good practice and should be avoided if possible.

R1(config-if) # ip access-group File Server Restrictions out

b. Save the configuration.

NAT configureren voor IPv4:

ACL configureren zodat vertaling kan gebeuren:

```
R2(config)#ip access-list standard R2NAT
R2(config-std-nacl)#permit 192.168.10.0 0.0.0.255
R2(config-std-nacl)#permit 192.168.20.0 0.0.0.255
R2(config-std-nacl)#permit 192.168.30.0 0.0.0.255
```

Een NAT pool configureren:

```
R2(config)#ip nat pool R2POOL 209.165.202.129 209.165.202.129 netmask 255.255.255.252
```

Nat configureren met de pool en ACL:

R2(config)#ip nat inside source list R2NAT pool R2POOL overload

De statische NAT map configureren voor de local.pka server

```
R2(config)#ip nat inside source static 192.168.20.254 209.165.202.130
```

NAT configureren op de interfaces:

```
R2(config)#interface FastEthernet0/0
R2(config-if)#ip nat inside
R2(config-if)#interface Serial0/0/0
R2(config-if)#ip nat inside
R2(config-if)#interface Serial0/0/1
R2(config-if)#ip nat inside
R2(config-if)#interface Serial0/1/0
R2(config-if)#ip nat outside
```

Ip nat inside is voor de interne interfaces, ip nat outside voor de externe interfaces.

Enkele belangrijke commandos om te onthouden

Commando	Betekenis
show ip route	Toon de routing tabel
hostname Router	Stel de hostnaam van de router in
ip domain-name jouwdomein.be	Stel de domeinnaam in voor de router
crypto key generate rsa general-keys modulus 1024	Genereer RSA-sleutels voor SSH (1024 bits)
username admin password cisco	Maak een gebruiker 'admin' met wachtwoord 'cisco'
line vty 0 4	Ga naar de VTY-lijnen (voor remote toegang)
transport input ssh	Sta alleen SSH toe voor remote toegang
login local	Gebruik lokale gebruikersdatabase voor login

Belangrijke show commando's

Doel	Commando
NAT-translatie tonen	show ip nat translations
ACL-matches tonen	show access-lists
OSPF interfaces en neighbors	show ip ospf interface show ip ospf neighbor
Routing tabel tonen	show ip route
	5/9

Doel	Commando
IP-instellingen	show ip interface brief
Gebruikers op VTY	show users
NAT statistieken	show ip nat statistics
Op welke waarde staan dead en hello interval	show ip ospf interface

Oefenexamen packet tracer

Doe al deze stappen op alle routers die nodig zijn om OSPF te configureren:

1. Activeer OSPF:

```
BD-1(config)#router ospf 10
BD-1(config-router)#exit
BD-1(config)#
BD-1(config)#interface g0/0/0
BD-1(config-if)#ip ospf 10 area 0
BD-1(config-if)#interface s0/1/0
BD-1(config-if)#ip ospf 10 area 0
BD-1(config-if)#exit
```

2. Activeer OSPF met netwerk en wildcard:

```
PP-1(config)#router ospf 10
PP-1(config-router)#network 10.10.0.240 0.0.0.3 area 0
PP-1(config-router)#network 10.10.0.236 0.0.0.3 area 0
PP-1(config-router)#network 10.10.0.248 0.0.0.3 area 0
PP-1(config-router)#exit
```

3. Configureer de router ID:

```
BD-1(config)#router ospf 10
BD-1(config-router)#router-id 9.9.9.9
BD-1(config-router)#exit
```

4. Extra OSPF configuraties:

Verander de OSPF prioriteit van een interface: Voor de hoogste prioriteit (255) en de laagste (0):

```
BD-1(config)#interface g0/0/0
BD-1(config-if)#ip ospf priority 10
BD-1(config-if)#exit
```

Een default route naar de ISP cloud:

```
BD-1(config)#ip route 0.0.0.0 0.0.0.0 s0/1/1
```

De default route naar alle routers in het netwerk verdelen:

```
BD-1(config)#router ospf 10
BD-1(config-router)#default-information originate
BD-1(config-router)#exit
```

De hello en dead interval op de standaard waarde zetten:

```
BD-1(config)#interface g0/0/0
BD-1(config-if)#ip ospf hello-interval 10
BD-1(config-if)#ip ospf dead-interval 40
BD-1(config-if)#exit
```

De default kost instellen afhankelijk van het type verbinding (FastEthernet of GigabitEthernet):

```
BD-1(config)#router ospf 10
BD-1(config-router)#auto-cost reference-bandwidth 10000
BD-1(config-router)#exit
```

OSPF instellen zodat router updates niet naar netwerken worden gestuurd waar ze niet nodig zijn:

```
BD-1(config)#router ospf 10
BD-1(config-router)#passive-interface s0/1/1
BD-1(config-router)#exit
```

5. Static NAT configureren:

Configure static NAT to translate the address of the Internal Server on LAN-1 to the public address of 192.0.2.115. Verify that the translations are occurring.

```
BD-1(config)#ip nat inside source static 192.168.11.100 192.0.2.115
BD-1(config)#int s0/1/1
BD-1(config-if)#ip nat outside
BD-1(config-if)#int g0/0/0
BD-1(config-if)#ip nat inside
BD-1(config-if)#exit
```

6. Dynamische PAT configureren:

```
BD-1(config)#access-list 1 permit 192.168.0.0 0.0.255.255
BD-1(config)#ip nat pool POOL-1 192.0.2.116 192.0.2.118 netmask 255.255.255.248
BD-1(config)#ip nat inside source list 1 pool POOL-1 overload
BD-1(config)#int s0/1/0
BD-1(config-if)#ip nat inside
BD-1(config-if)#exit
```

7. ACLs configureren: ACL voor de telnet lijnen om alleen toegang toe te staan van het netwerk

```
BD-1(config)#ip access-list standard VTY-BLOCK
BD-1(config-std-nacl)#permit 192.168.0.0 0.0.255.255
BD-1(config-std-nacl)#deny any
BD-1(config-std-nacl)#exit
BD-1(config)#line vty 0 4
BD-1(config-line)#access-class VTY-BLOCK in
BD-1(config-line)#exit
BD-1(config)#ip access-list extended BLOCK-SSH
```

ACL om ervoor te zorgen dat er van LAN1 naar LAN 2 geen verkeer mogelijk is:

```
BD-3(config)#access-list 10 deny 192.168.11.0 0.0.0.255
BD-3(config)#access-list 10 permit any
BD-3(config)#int g0/0/1
BD-3(config-if)#ip access-group 10 in
BD-3(config-if)#exit
```

Bepalen van het Netwerkadres op basis van IP en Subnet

Het netwerkadres is het **eerste adres** in een subnet. Het identificeert het subnet zelf. Alle apparaten in dat subnet delen dit netwerkadres.

Stappenplan

Voorbeeld

• IP-adres: 192.168.12.34

• Subnetmasker: 255.255.255.0 (oftewel /24)

Stap 1: Zet IP en subnetmasker om naar binair

IP-adres:

192 .168 .12 .34 11000000.10101000.00001100.00100010

Subnetmasker (255.255.255.0):

11111111.11111111111111111111000000000

Stap 2: Voer een bitwise AND-operatie uit

(1 AND 1 = 1, alles anders = 0)

Stap 3: Zet het resultaat terug naar decimale notatie

11000000 = 192 10101000 = 168 00001100 = 12 00000000 = 0

Netwerkadres = 192.168.12.0

Alternatief: Met CIDR-notatie (/)

Voorbeeld: 10.0.5.129/20

- 1. /20 betekent: de eerste 20 bits zijn voor het netwerk
- 2. Subnetmasker = 255.255.240.0
- 3. Subnetblokken zijn van 16 in het derde octet (240 = 11110000)
- 4. Zoek dichtste veelvoud van 16 kleiner dan 5 → dat is **0**

Netwerkadres = 10.0.0.0/20