# 第七章 指令系统

- 7.1 机器指令
- 7.2 操作数类型和操作类型
- 7.3 寻址方式
- 7.4 指令格式举例
- 7.5 RISC 技术

# 7.1 机器指令

一、指令的一般格式

操作码字段 地址码字段

- 1. 操作码 反映机器做什么操作
  - (1) 长度固定

用于指令字长较长的情况,RISC 如 IBM 370 操作码 8 位

(2) 长度可变

操作码分散在指令字的不同字段中

# (3) 扩展操作码技术

7.1

#### 操作码的位数随地址数的减少而增加



### 2. 地址码

(1) 四地址

$$\begin{array}{|c|c|c|c|c|c|c|} \hline 8 & 6 & 6 & 6 & 6 \\ \hline OP & A_1 & A_2 & A_3 & A_4 \\ \hline \end{array}$$

A<sub>1</sub>第一操作数地址

A<sub>2</sub>第二操作数地址

A3 结果的地址

A<sub>4</sub>下一条指令地址

 $(A_1) OP (A_2) \longrightarrow A_3$ 

#### (2) 三地址

 $(A_1) OP (A_2) \longrightarrow A_3$ 

设指令字长为 32 位

操作码固定为8位

#### 4 次访存

寻址范围  $2^6 = 64$ 

若 PC 代替 A<sub>4</sub>

#### 4 次访存

寻址范围 28 = 256

若 A<sub>3</sub>用 A<sub>1</sub>或 A<sub>2</sub>代替

(3) 二地址 7.1 12 8 12

**OP**  $\mathbf{A_1}$ A<sub>2</sub>

 $(A_1) OP (A_2) \longrightarrow A_1$ 或

 $(A_1) OP (A_2) \longrightarrow A_2$ 

若结果存于 ACC 3次访存 若ACC 代替 A<sub>1</sub>(或A<sub>2</sub>)

4 次访存

寻址范围 2<sup>12</sup> = 4 K

(4) 一地址

24

**OP**  $\mathbf{A}_1$ 

 $(ACC) OP (A_1) \longrightarrow ACC$ 

2次访存

寻址范围 2<sup>24</sup> = 16 M

(5) 零地址 无地址码

### 二、指令字长

操作码的长度 指令字长决定于〈操作数地址的长度 操作数地址的个数

1. 指令字长 固定

指令字长 = 存储字长

2. 指令字长 可变

按字节的倍数变化

小结 7.1

- 〉当用一些硬件资源代替指令字中的地址码字段后
  - 可扩大指令的寻址范围
  - 可缩短指令字长
  - 可减少访存次数
- > 当指令的地址字段为寄存器时

三地址 OP  $R_1$ ,  $R_2$ ,  $R_3$ 

二地址 OP R<sub>1</sub>, R<sub>2</sub>

- 一地址 OP R<sub>1</sub>
- 可缩短指令字长
- 指令执行阶段不访存

# 7.2 操作数类型和操作种类

#### 一、操作数类型

地址 无符号整数

数字 定点数、浮点数、十进制数

字符 ASCII

逻辑数 逻辑运算

### 二、数据在存储器中的存放方式

字地址低字节0321047654

字地址 为 低字节 地址

 字地址
 低字节

 0
 0
 1
 2
 3

 4
 4
 5
 6
 7

字地址 为 高字节 地址

# 存储器中的数据存放(存储字长为32位) 7.2

边界对准

地址 (十进制)

| 字 (地址 0)              |         |            |          | 0        |
|-----------------------|---------|------------|----------|----------|
| 字 (地址 4)              |         |            |          |          |
| 字节(地址11) 字            | 方(地址10) | 字节(地址9)    | 字节(地址8)  | 8        |
| 字节(地址15) 字            | 方(地址14) | 字节(地址13)   | 字节(地址12) | 12       |
| 半字(地址18) 🗸 半字(地址16) 🗸 |         |            | (地址16) 🗸 | 16       |
| 半字(地                  | 址22)✓   | 半字(地址20) 🗸 |          | 20<br>24 |
| 双字(地址24)▲             |         |            |          |          |
| 双字                    |         |            |          |          |
| 双字(地址32)▲             |         |            |          | 32 36    |
| 双字                    |         |            |          |          |

#### 边界未对准

地址 (十进制)

| 字( 地     | 过址2)    | 半字(地址0) |  |  |
|----------|---------|---------|--|--|
| 字节(地址7)  | 字节(地址6) | 字(地址4)  |  |  |
| 半字(地址10) |         | 半字(地址8) |  |  |

0

4

8

## 三、操作类型

#### 1. 数据传送

| 源       | 寄存器                                          | 寄存器   | 存储器  | 存储器  |
|---------|----------------------------------------------|-------|------|------|
| 目的      | 寄存器                                          | 存储器   | 寄存器  | 存储器  |
| 例如      | MOVE                                         | STORE | LOAD | MOVE |
|         |                                              | MOVE  | MOVE |      |
| <b></b> | <b>3 *</b> * * * * * * * * * * * * * * * * * | PUSH  | POP  |      |

#### 2. 算术逻辑操作

直"1",清"0"

加、减、乘、除、增1、减1、求补、浮点运算、十进制运算与、或、非、异或、位操作、位测试、位清除、位求反

如 8086 ADD SUB MUL DIV INC DEC CMP NEG AAA AAS AAM AAD AND OR NOT XOR TEST

### 3. 移位操作

算术移位 逻辑移位 循环移位(带进位和不带进位)

### 4. 转移

- (1) 无条件转移 JMP
- (2) 条件转移

```
    结果为零转
    (Z=1) JZ
    如
    完成触发器

    结果溢出转
    (O=1) JO
    :
    300
    :

    结果有进位转
    (C=1) JC
    305
    SKP DZ D=0 则跳

    跳过一条指令
    SKP
    307
```



# (4) 陷阱(Trap)与陷阱指令 意外事故的中断

- 一般不提供给用户直接使用 在出现事故时,由 CPU 自动产生并执行(隐指令)
- 设置供用户使用的陷阱指令 如 8086 INT TYPE 软中断 提供给用户使用的陷阱指令,完成系统调用

#### 5. 输入输出

 入
 端口地址
 → CPU 的寄存器

 如
 IN AK, m
 IN AK, DX

 出
 CPU 的寄存器
 端口地址

 如
 OUT n, AK
 OUT DX, AK

# 7.3 寻址方式

寻址方式 确定本条指令的操作数地址 下一条欲执行指令的指令地址

指令寻址

寻址方式

数据寻址

# 7.3 寻址方式

#### 指令寻址

指令地址 指令 LDA 1000 0 **ADD** 1001 2 DEC 1200 3 JMP LDA 2000 5 **SUB** 2001 6 INC 7 **STA 2500** 8

9

LDA

1100

指令地址寻址方式

顺序寻址 顺序寻址 顺序寻址

跳跃寻址 顺序寻址

### 二、数据寻址

操作码 寻址特征 形式地址 A

形式地址 指令字中的地址

有效地址操作数的真实地址

约定 指令字长 = 存储字长 = 机器字长

### 1. 立即寻址

形式地址A就是操作数



可正可负 补码

- 指令执行阶段不访存
- · A 的位数限制了立即数的范围

EA=A 有效地址由形式地址直接给出



- 执行阶段访问一次存储器
- A 的位数决定了该指令操作数的寻址范围
- •操作数的地址不易修改(必须修改A)

# 3. 隐含寻址

#### 操作数地址隐含在操作码中



MUL 指令 被乘数隐含在 AX (16位) 或 AL (8位) 中MOVS 指令 源操作数的地址隐含在 SI 中目的操作数的地址隐含在 DI 中

• 指令字中少了一个地址字段,可缩短指令字长

#### EA = (A) 有效地址由形式地址间接提供



• 便于编制程序

多次访存



### 5. 寄存器寻址

EA=R<sub>i</sub> 有效地址即为寄存器编号



- 执行阶段不访存,只访问寄存器,执行速度快
- 寄存器个数有限,可缩短指令字长

 $EA = (R_i)$ 

有效地址在寄存器中



- 有效地址在寄存器中, 操作数在存储器中,执行阶段访存
- 便于编制循环程序

(1) 采用专用寄存器作基址寄存器

EA = (BR) + A

BR 为基址寄存器



- 便于程序搬家
- · BR 内容由操作系统或管理程序确定
- ·在程序的执行过程中 BR 内容不变,形式地址 A 可变

### (2) 采用通用寄存器作基址寄存器



- 由用户指定哪个通用寄存器作为基址寄存器
- 基址寄存器的内容由操作系统确定
- 在程序的执行过程中  $R_0$  内容不变,形式地址 A 可变

EA = (IX) + A

IX为变址寄存器(专用)

通用寄存器也可以作为变址寄存器



- 可扩大寻址范围
- IX 的内容由用户给定
- 在程序的执行过程中 IX 内容可变,形式地址 A 不变
- 便于处理数组问题

# 例 设数据块首地址为 D,求 N 个数的平均值 7.3

#### 直接寻址 变址寻址 LDA LDA # 0 # 0 LDX X为变址寄存器 **ADD** D+1D为形式地址 **ADD** X, D ightarrow MADD D+2INX $(X)+1 \longrightarrow X$ **CPX** #N(X) 和 #N 比较 $\mathbf{D} + (N-1)$ BNE **ADD** M 结果不为零则转 DIV #NDIV #NANS STA ANS STA 共N+2条指令 共8条指令

EA = (PC) + A

A 是相对于当前指令的位移量(可正可负,补码)



- A 的位数决定操作数的寻址范围
- •程序浮动
- •广泛用于转移指令

(1) 相对寻址举例 7.3

```
LDA
             #0
            # 0
      LDX
      ADD
             X, D
M+1
      INX
      CPX
M+2
            \#N
                         ★ 相对寻址特征
                   → * − 3
M+3
      BNE
      DIV
            \#N
      STA
            ANS
```

M 随程序所在存储空间的位置不同而不同

### (2) 按字节寻址的相对寻址举例



设 当前指令地址 PC = 2000H 转移后的目的地址为 2008H 因为 取出 JMP \* + 8 后 PC = 2002H 故 JMP \* + 8 指令 的第二字节为 2008H - 2002H = 6H

(1) 堆栈的特点

先进后出(一个入出口) 栈顶地址 由 SP 指出

进栈 (SP) - 1 → SP 出栈 (SP) + 1 → SP





# (3) SP 的修改与主存编址方法有关 7.3

①按字编址

②按字节编址

存储字长 16 位 进栈 (SP) - 2 → SP

出栈 (SP) +2 → SP

存储字长 32 位 进栈 (SP) -4 → SP

出栈 (SP) +4 → SP

# 7.4 指令格式举例

- 一、设计指令格式时应考虑的各种因素
  - 1. 指令系统的兼容性 (向上兼容)
  - 2. 其他因素

操作类型

包括指令个数及操作的难易程度

数据类型

指令格式

指令字长、操作码位数

寻址方式、是否采用扩展操作码

地址码位数、地址个数

寻址方式

寄存器个数

### 二、指令格式举例

1. PDP-8 指令字长固定 12 位



#### 2. PDP – 11

7.4

指令字长有16位、32位、48位三种

OP - CODE

零地址 (16位)

16

扩展操作码技术

OP - CODE 目的地址

一地址 (16位)

10

6

目的地址 源地址

> 6 6

二地址 R - R (16位)

OP

10

目的地址

存储器地址

16

6

源地址

目的地址

存储器地址1

存储器地址2

4

6

6

16

16

二地址 M - M (48位)

二地址 R - M (32位)

### 3. IBM 360

| OP | R <sub>1</sub>   | R <sub>2</sub>                                                             |                                                                                                                                                                                     | 地址 R 一R                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | 4                | 4                                                                          |                                                                                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OP | $\mathbf{R}_{1}$ | X                                                                          | В                                                                                                                                                                                   | D                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                            | 地址 R —M                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8  | 4                | 4                                                                          | 4                                                                                                                                                                                   | 12                                                                                                                                                                                                                    | 基                                                                                                                                                                                                                                                                                                                                                                          | 址加变址寻址                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OP | $R_1$            | R <sub>3</sub>                                                             | В                                                                                                                                                                                   | D                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                            | 地址R-M                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8  | 4                | 4                                                                          | 4                                                                                                                                                                                   | 12                                                                                                                                                                                                                    | 基                                                                                                                                                                                                                                                                                                                                                                          | <b>址寻址</b>                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OP |                  | [                                                                          | В                                                                                                                                                                                   | D                                                                                                                                                                                                                     | 立                                                                                                                                                                                                                                                                                                                                                                          | 即数一M                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8  |                  | 8                                                                          | 4                                                                                                                                                                                   | 12                                                                                                                                                                                                                    | 基                                                                                                                                                                                                                                                                                                                                                                          | 址寻址                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OP | I                | <u>,                                      </u>                             | B <sub>1</sub>                                                                                                                                                                      | $\mathbf{D_1}$                                                                                                                                                                                                        | B <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                             | $\mathbf{D_2}$                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                  |                                                                            |                                                                                                                                                                                     | _                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                  |                                                                            | 二地址 M-M 基址寻址                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | 8 OP 8 OP 8 OP   | 8 4 OP R <sub>1</sub> 8 4 OP R <sub>1</sub> 8 4 OP R <sub>1</sub> 8 4 OP I | 8       4       4         OP       R <sub>1</sub> X         8       4       4         OP       R <sub>1</sub> R <sub>3</sub> 8       4       4         OP       I         8       8 | OP       R1       X       B         8       4       4       4         OP       R1       R3       B         8       4       4       4         OP       I       B         8       8       4         OP       L       B1 | 8       4       4         OP       R <sub>1</sub> X       B       D         8       4       4       4       12         OP       R <sub>1</sub> R <sub>3</sub> B       D         8       4       4       4       12         OP       I       B       D         8       8       4       12         OP       L       B <sub>1</sub> D <sub>1</sub> 8       8       4       12 | 8       4       4         OP       R <sub>1</sub> X       B       D         8       4       4       4       12         OP       R <sub>1</sub> R <sub>3</sub> B       D       E         8       4       4       4       12       E         OP       I       B       D       D       D         8       8       4       12       E         OP       L       B <sub>1</sub> D <sub>1</sub> B <sub>2</sub> 8       8       4       12       4 |

#### 4. Intel 8086

(1) 指令字长 1~6个字节

INC AX 1字节

MOV WORD PTR[0204], 0138H 6字节

(2) 地址格式

零地址 NOP 1字节

一地址 CALL 段间调用 5字节

CALL 段内调用 3字节

二地址 ADD AX, BX 2字节 寄存器 — 寄存器

ADD AX, 3048H 3 字节 寄存器 — 立即数

ADD AX, [3048H] 4字节 寄存器 — 存储器

# 7.5 RISC 技术

一、RISC 的产生和发展

RISC (Reduced Instruction Set Computer)

CISC (Complex Instruction Set Computer)

80 — 20 规律

—— RISC技术

- >典型程序中 80% 的语句仅仅使 用处理机中 20% 的指令
- ▶执行频度高的简单指令,因复杂指令的存在,执行速度无法提高
- ? 能否用 20% 的简单指令组合不常用的 80% 的指令功能

### 二、RISC的主要特征

- 选用使用频率较高的一些简单指令 复杂指令的功能由简单指令来组合
- ▶ 指令长度固定
- > 只有 LOAD / STORE 指令访存
- > 流水技术 一个时钟周期 内完成一条指令
- > 组合逻辑 实现控制器
- > 多个通用寄存器
- > 采用 优化 的 编译 程序