Parámetro	Opciones	¿Para qué sirve?	¿Cuándo elegirlo?
bids_filter	JSON	Seleccionar un subconjunto específico de datos (anatómicos o funcionales) según criterios BIDS.	Cuando quieras analizar sólo ciertos tipos de imágenes o condiciones específicas.
bold_only	true, false	Realiza el procesamiento sólo con imágenes funcionales (EPI).	Cuando no dispongas de imágenes estructurales y quieras realizar un análisis rápido usando únicamente imágenes funcionales.
anat_autobox	true, false	Recorta automáticamente espacio adicional en las imágenes anatómicas.	Cuando haya demasiado espacio vacío alrededor del cerebro y quieras optimizar el tiempo de procesamiento y almacenamiento.
bold_autobox	true, false	Recorta automáticamente espacio adicional en las imágenes funcionales (EPI).	Idem al anterior, pero aplicado a imágenes funcionales.
oblique2card	none, affine, 3dWarp	Corrige coordenadas oblicuas en imágenes estructurales y funcionales.	Usa sólo si las imágenes tienen coordenadas oblicuas (no cardinales). affine corrige matriz, 3dWarp resamplea. none recomendado por defecto.

apply_despiking	true, false	Aplica un filtro de "despiking" para	Útil para imágenes con artefactos puntuales o ruido transitorio.
		eliminar picos de	
		intensidad extrema en	
		la señal.	
HMC_option	intraSubjectBOLD, 0, 1, 2, 3, optim	Define estrategia	optim (por defecto) es personalizado
		preestablecida de	para precisión. Otras opciones
		realineación para	preestablecidas según necesidades
		corrección de	particulares (ver documentación de
		movimiento.	ANTs).
isotropic_HMC	true, false	Resamplea la imagen a	Útil en imágenes con baja resolución
		resolución isotrópica	o problemas de calidad en la
		para mejor estimación	estimación de movimiento. Aumenta
		de movimientos.	el tiempo de procesamiento.
voxelwise_motion	true, false	Genera mapas voxel	Para inspección detallada y análisis
		por voxel del	avanzado de movimiento cerebral en
		desplazamiento	cada voxel.
		absoluto y relativo.	
apply_slice_mc	true, false	Corrige movimientos	Para movimientos rápidos intra-TR
		específicos por cada	que producen desalineación entre
		rebanada (slice-	rebanadas, aumenta precisión con
		specific).	mayor tiempo de procesamiento.
detect_dummy	true, false	Detecta y elimina	Útil si la adquisición incluyó
		volúmenes iniciales	volúmenes iniciales no válidos (sin
		("dummy") del EPI.	estabilizar la señal).

data_type	int16, int32, float32, float64	Define formato numérico de salida, afectando tamaño del archivo.	Usa float32 (por defecto) para equilibrio entre precisión y tamaño. Opciones enteras reducen tamaño pero bajan precisión.
anat_inho_cor bold_inho_cor	method: Rigid, Affine, SyN, no_reg, N4_reg, disableotsu_thresh: 0– 4multiotsu: true, false	Corrige inhomogeneidades de intensidad en imágenes anatómicas y funcionales.	Usa método SyN para máxima precisión (por defecto anatómico), método más simple (Rigid o Affine) si necesitas rapidez o la imagen tiene calidad limitada. otsu_thresh=2 es valor balanceado predeterminado. Usa multiotsu=true en casos difíciles con fuertes gradientes de intensidad.
anat_robust_inho_cor- bold_robust_inho_cor	apply: true, falsemasking: true, falsebrain_extraction: true, falsekeep_mask_after_extract: true, falsetemplate_registration: Rigid, Affine, SyN, no_reg	Corrección robusta de inhomogeneidad usando plantilla generada del dataset.	Activa apply=true para mejorar la calidad en datasets difíciles, masking=true y brain_extraction=true para mejor precisión si las máscaras cerebrales son fiables. Usa registro SyN para mejor calidad.
commonspace_reg	Igual a parámetros anteriores + fast_commonspace: true, false	Controla alineación al espacio común (registro a plantilla externa).	Usa SyN (por defecto) para máxima precisión. fast_commonspace=true para registro rápido directo (menor precisión). Usa máscaras si la calidad de estas es alta.
inherit_unbiased_template	Ruta a carpeta anterior de resultados RABIES	Reutiliza plantilla generada previamente (unbiased template)	Cuando re-procesas el mismo conjunto o uno similar, para evitar regenerar plantillas.

		para nuevo procesamiento.	
bold2anat_coreg	masking: true, falsebrain_extraction: true, falseregistration: Rigid, Affine, SyN, no_reg	Corrección no-lineal de distorsiones de susceptibilidad alineando EPI a anatómica.	SyN recomendado por defecto para máxima calidad. Usa máscaras y extracción cerebral si estas son precisas, para mejorar aún más la corrección.
nativespace_resampling commonspace_resampling anatomical_resampling	Dimensiones (dim1xdim2xdim3), inputs_defined	Especifica resolución voxel (en mm) del resultado tras el resampling.	Usa inputs_defined para conservar resolución original, define dimensiones específicas para estandarizar o reducir tamaño archivos. A menor dimensión, mayor precisión y tamaño.
apply_STC	true, false	Aplica corrección por tiempos de adquisición de slices (Slice Timing Correction).	Útil cuando TR largo, importante para estudios dinámicos con sincronización temporal precisa.
TR	Número en segundos, o auto	Tiempo de repetición (TR).	Define manualmente el TR en segundos si no está correctamente especificado en el archivo NIfTI.
tpattern	alt-z, alt-z2, seq-z, alt+z, alt+z2, seq+z	Especifica patrón de adquisición de rebanadas para corrección temporal.	Depende del protocolo del escáner; la documentación del escáner indica el tipo exacto (interleaved/secuencial y dirección). Por defecto: alt-z.

stc_axis	X, Y, Z	Eje anatómico sobre el que se aplica STC.	Usualmente Y (por defecto, eje anterior-posterior). Usa otro eje si adquisición es diferente.
interp_method	linear, cubic, quintic, heptic, wsinc5, wsinc9, fourier	Método de interpolación para corrección temporal.	fourier (por defecto) recomendado para no introducir autocorrelaciones artificiales. Usa interpolación polinómica (linear, cubic) para rapidez (con mayor autocorrelación).
anat_templatebrain_mask- -WM_maskCSF_mask vascular_masklabels	Ruta a archivos NIfTI	Especifica atlas anatómico, máscaras de tejidos cerebrales y etiquetas anatómicas para registro y análisis.	Por defecto usa DSURQE (ratón), cámbialos si trabajas con otro atlas específico o especie distinta (ej. ratas).

Para ver toda esta información utiliza el comando --help. Por ejemplo, en Powershell en Windows utilizando Docker sólo hay que escribir:

docker run --rm --privileged `ghcr.io/cobralab/rabies:latest `preprocess `--help

Documentación obtenida al usar el comando `preprocess` --help

```
docker run --rm --privileged `ghcr.io/cobralab/rabies:latest `preprocess `--help
usage: rabies preprocess [-h] [--bids_filter BIDS_FILTER] [--bold_only]
          [--anat_autobox] [--bold_autobox]
          [--oblique2card {none,affine,3dWarp}]
          [--apply_despiking]
          [--HMC_option {intraSubjectBOLD,0,1,2,3,optim}]
          [--isotropic_HMC] [--voxelwise_motion]
          [--apply_slice_mc] [--detect_dummy]
          [--data_type {int16,int32,float32,float64}]
          [--anat_inho_cor ANAT_INHO_COR]
          [--anat_robust_inho_cor ANAT_ROBUST_INHO_COR]
          [--bold_inho_cor BOLD_INHO_COR]
          [--bold_robust_inho_cor BOLD_ROBUST_INHO_COR]
          [--commonspace_reg COMMONSPACE_REG]
          [--inherit_unbiased_template INHERIT_UNBIASED_TEMPLATE]
          [--bold2anat_coreg BOLD2ANAT_COREG]
          [--nativespace_resampling NATIVESPACE_RESAMPLING]
          [--commonspace_resampling COMMONSPACE_RESAMPLING]
```

```
[--anatomical_resampling ANATOMICAL_RESAMPLING]
[--apply_STC] [--TR TR]

[--tpattern {alt-z,alt-z2,seq-z,alt+z,alt+z2,seq+z}]

[--stc_axis {X,Y,Z}]

[--interp_method {linear,cubic,quintic,heptic,wsinc5,wsinc9,fourier}]

[--anat_template ANAT_TEMPLATE]

[--brain_mask BRAIN_MASK] [--WM_mask WM_MASK]

[--CSF_mask CSF_MASK] [--vascular_mask VASCULAR_MASK]

[--labels LABELS]

bids_dir output_dir
```

positional arguments:

bids_dir The root folder of the BIDS-formated input data directory.

output_dir the output path to drop outputs from major preprocessing steps.

optional arguments:

-h, --help show this help message and exit

--bids_filter BIDS_FILTER

Allows to provide additional BIDS specifications (found within the input BIDS directory) for selected a subset of functional and/or anatomical images. Takes as input a JSON file containing the set of parameters for functional image under 'func' and under 'anat' for the anatomical image. See online documentation for an example.

(default: {'func': {'suffix': ['bold', 'cbv']}, 'anat': {'suffix': ['T1w', 'T2w']}})

--bold_only Apply preprocessing with only EPI scans. Commonspace registration is executed directly using
the corrected EPI 3D reference images. The commonspace registration simultaneously applies
distortion correction, this option will produce only commonspace outputs.
(default: False)

--anat_autobox Crops out extra space around the brain on the structural image using AFNI's 3dAutobox https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dAutobox.html.

(default: False)

--bold_autobox Crops out extra space around the brain on the EPI image using AFNI's 3dAutobox https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dAutobox.html. (default: False)

--oblique2card {none,affine,3dWarp}

Correct for oblique coordinates on all structural and functional data.

WARNING: these corrections are suboptimal, and may alter the data. Only apply if necessary.

affine: only the affine matrix is changed to cardinal axes.

3dWarp: Applies AFNI's 3dWarp -oblique2card. This involves resampling the data on a new isotropic grid.

(default: none)

--apply_despiking Applies AFNI's 3dDespike https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dDespike.html. (default: False)

--HMC_option {intraSubjectBOLD,0,1,2,3,optim}

Select a pre-built option for registration during head motion realignment. 'optim' was customized as documented in https://github.com/CoBrALab/RABIES/discussions/259. Other options were taken from https://github.com/ANTsX/ANTsR/blob/master/R/ants_motion_estimation.R. (default: optim)

--isotropic_HMC Whether to resample the EPI to isotropic resolution (taking the size of the axis with highest resolution) for the estimation of motion parameters. This should greatly mitigating registration

'noise' which arise from partial volume effects, or poor image resolution (see online post on this topic https://github.com/CoBrALab/RABIES/discussions/288). This option will increase computational time, given the higher image resolution.

(default: False)

--voxelwise_motion Whether to output estimates of absolute displacement and framewise displacement at each voxel.

This will generate 4D nifti files representing motion timeseries derived from the 6 motion parameters. This is handled by antsMotionCorrStats.

(default: False)

--apply_slice_mc Whether to apply a slice-specific motion correction after initial volumetric HMC. This can correct for interslice misalignment resulting from within-TR motion. With this option, motion corrections and the subsequent resampling from registration are applied sequentially since the 2D slice registrations cannot be concatenate with 3D transforms.

(default: False)

--detect_dummy Detect and remove initial dummy volumes from the EPI, and generate a reference EPI based on these volumes if detected. Dummy volumes will be removed from the output preprocessed EPI.

(default: False)

--data_type {int16,int32,float32,float64}

Specify data format outputs to control for file size.

(default: float32)

Registration Options:

Customize registration operations and troubleshoot registration failures.

--anat_inho_cor ANAT_INHO_COR

Select options for the inhomogeneity correction of the structural image.

- * method: specify which registration strategy is employed for providing a brain mask.
- *** Rigid: conducts only rigid registration.
- *** Affine: conducts Rigid then Affine registration.
- *** SyN: conducts Rigid, Affine then non-linear registration.
- *** no_reg: skip registration.
- *** N4_reg: previous correction script prior to version 0.3.1.
- *** disable: disables the inhomogeneity correction.
- * otsu_thresh: The inhomogeneity correction script necessitates an initial correction with a Otsu masking strategy (prior to registration of an anatomical mask). This option sets the Otsu threshold level to capture the right intensity distribution.

- *** Specify an integer among [0,1,2,3,4].
- * multiotsu: Select this option to perform a staged inhomogeneity correction, where only lower intensities are initially corrected, then higher intensities are iteratively included to eventually correct the whole image. This technique may help with images with particularly strong inhomogeneity gradients and very low intensities.

*** Specify 'true' or 'false'.

(default: method=SyN,otsu_thresh=2,multiotsu=false)

--anat_robust_inho_cor ANAT_ROBUST_INHO_COR

When selecting this option, inhomogeneity correction is executed twice to optimize outcomes. After completing an initial inhomogeneity correction step, the corrected outputs are co-registered to generate an unbiased template, using the same method as the commonspace registration. This template is then masked, and is used as a new target for masking during a second iteration of inhomogeneity correction. Using this dataset-specific template should improve the robustness of masking for inhomogeneity correction.

- * apply: select 'true' to apply this option.
- *** Specify 'true' or 'false'.
- * masking: Combine masks derived from the inhomogeneity correction step to support registration during the generation of the unbiased template, and then during template registration.

- *** Specify 'true' or 'false'.
- * brain_extraction: conducts brain extraction prior to template registration based on the combined masks from inhomogeneity correction. This will enhance brain edge-matching, but requires good quality masks. This must be selected along the 'masking' option.
- *** Specify 'true' or 'false'.
- * template_registration: Specify a registration script for the alignment of the dataset-generated unbiased template to a reference template for masking.
- *** Rigid: conducts only rigid registration.
- *** Affine: conducts Rigid then Affine registration.
- *** SyN: conducts Rigid, Affine then non-linear registration.
- *** no_reg: skip registration.

 $(default: apply=false, masking=false, brain_extraction=false, template_registration=SyN)\\$

--bold_inho_cor BOLD_INHO_COR

Same as --anat_inho_cor, but for the EPI images.

(default: method=Rigid,otsu_thresh=2,multiotsu=false)

 $\hbox{--bold_robust_inho_cor}\ BOLD_ROBUST_INHO_COR$

Same as --anat_robust_inho_cor, but for the EPI images.

(default: apply=false,masking=false,brain_extraction=false,template_registration=SyN)

--commonspace_reg COMMONSPACE_REG

Specify registration options for the commonspace registration.

- * masking: Combine masks derived from the inhomogeneity correction step to support registration during the generation of the unbiased template, and then during template registration.
- *** Specify 'true' or 'false'.
- * brain_extraction: conducts brain extraction prior to template registration based on the combined masks from inhomogeneity correction. This will enhance brain edge-matching, but requires good quality masks. This must be selected along the 'masking' option.
- *** Specify 'true' or 'false'.
- * template_registration: Specify a registration script for the alignment of the dataset-generated unbiased template to the commonspace atlas.
- *** Rigid: conducts only rigid registration.
- *** Affine: conducts Rigid then Affine registration.
- *** SyN: conducts Rigid, Affine then non-linear registration.
- *** no_reg: skip registration.
- * fast_commonspace: Skip the generation of a dataset-generated unbiased template, and instead, register each scan independently directly onto the commonspace atlas, using the template_registration. This option can be faster, but may decrease the quality of

alignment between subjects.

*** Specify 'true' or 'false'.

(default: masking=false,brain_extraction=false,template_registration=SyN,fast_commonspace=false)

--inherit_unbiased_template INHERIT_UNBIASED_TEMPLATE

Provide a path to a previous RABIES preprocessing output folder to inherit the unbiased template generated in that previous run, as well as the registration to the external atlas. In place of conducting unbiased template generation, each scan is registered to this pre-generated template with registration parameters that are consistent with that of the previous run. The atlas registration is also inherited, and won't be conducted again.

By selecting this option, the following preprocessing parameters will be overriden to enforce consistency with the previous run: --anatomical_resampling, --commonspace_reg, --anat_template, --brain_mask, --WM_mask, --CSF_mask, --vascular_mask, --labels (default: none)

--bold2anat_coreg BOLD2ANAT_COREG

Specify the registration script for cross-modal alignment between the EPI and structural images. This operation is responsible for correcting EPI susceptibility distortions.

* masking: With this option, the brain masks obtained from the EPI inhomogeneity correction step are used to support registration.

*** Specify 'true' or 'false'.

* brain_extraction: conducts brain extraction prior to registration using the EPI masks from inhomogeneity correction. This will enhance brain edge-matching, but requires good quality masks. This must be selected along the 'masking' option.

*** Specify 'true' or 'false'.

* registration: Specify a registration script.

*** Rigid: conducts only rigid registration.

*** Affine: conducts Rigid then Affine registration.

*** SyN: conducts Rigid, Affine then non-linear registration.

*** no_reg: skip registration.

(default: masking=false,brain_extraction=false,registration=SyN)

Resampling Options:

The following options allow to resample the voxel dimensions for the preprocessed EPIs or for the anatomical images during registration.

The resampling syntax must be 'dim1xdim2xdim3' (in mm), follwing the RAS axis convention (dim1=Right-Left, dim2=Anterior-Posterior, dim3=Superior-Inferior). If 'inputs_defined' is provided instead of axis dimensions, the original dimensions are preserved.

--nativespace_resampling NATIVESPACE_RESAMPLING

Can specify a resampling dimension for the nativespace fMRI outputs.

(default: inputs_defined)

--commonspace_resampling COMMONSPACE_RESAMPLING

Can specify a resampling dimension for the commonspace fMRI outputs.

(default: inputs_defined)

--anatomical_resampling ANATOMICAL_RESAMPLING

This specifies resampling dimensions for the anatomical registration targets. By default, images are resampled to isotropic resolution based on the smallest dimension among the provided anatomical images (EPI images instead if --bold_only is True). Increasing voxel resampling size will increase registration speed at the cost of accuracy.

(default: inputs_defined)

STC Options:

Specify Slice Timing Correction (STC) info that is fed to AFNI's 3dTshift

(https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTshift.html). The STC is applied in the anterior-posterior orientation, and thus RABIES assumes slices were acquired in this direction.

--apply_STC Select this option to apply the STC step.

(default: False)

--TR TR Specify repetition time (TR) in seconds. (e.g. --TR 1.2). 'auto' will read the TR from the nifti header.

(default: auto)

 $\hbox{\it --tpattern \{alt-z,alt-z2,seq-z,alt+z,alt+z2,seq+z\}}$

Specify if interleaved ('alt') or sequential ('seq') acquisition, and specify in which direction (- or +) to apply the correction. If slices were acquired from front to back, the correction should be in the negative (-) direction. If slices were collected in an interleaved order starting with the second or (second-to-last) slice, use 'alt+z2' or 'alt-z2'. Refer to this discussion on the topic for more information https://github.com/CoBrALab/RABIES/discussions/217. (default: alt-z)

--stc_axis {X,Y,Z} Can specify over which axis of the image the STC must be applied. Generally, the correction

should be over the Y axis, which corresponds to the anteroposterior axis in RAS convention. (default: Y)

--interp_method {linear,cubic,quintic,heptic,wsinc5,wsinc9,fourier}

Can specify the interpolation method used for STC. Polynomial methods (e.g., linear, cubic, etc.) will introduce greater autocorrelation to the interpolated timeseries, while wsinc and fourier methods will introduce less (or none). Refer to this discussion on the topic for more information https://github.com/CoBrALab/RABIES/discussions/267. (default: fourier)

Template Files:

Specify commonspace template and associated mask/label files. By default, RABIES provides the mouse DSURQE atlas https://wiki.mouseimaging.ca/display/MICePub/Mouse+Brain+Atlases.

--anat_template ANAT_TEMPLATE

Anatomical file for the commonspace atlas.

(default: /home/mambauser/.local/share/rabies/DSURQE_40micron_average.nii.gz)

--brain_mask BRAIN_MASK

Brain mask aligned with the template.

(default: /home/mambauser/.local/share/rabies/DSURQE_40micron_mask.nii.gz)

--WM_mask WM_MASK White matter mask aligned with the template.

(default: /home/mambauser/.local/share/rabies/DSURQE_40micron_eroded_WM_mask.nii.gz)

--CSF_mask CSF_MASK CSF mask aligned with the template.

(default: /home/mambauser/.local/share/rabies/DSURQE_40micron_eroded_CSF_mask.nii.gz)

--vascular_mask VASCULAR_MASK

Can provide a mask of major blood vessels to compute associated nuisance timeseries.

The default mask was generated by applying MELODIC ICA and selecting the resulting component mapping onto major brain vessels.

(default: /home/mambauser/.local/share/rabies/vascular_mask.nii.gz)

--labels LABELS Labels file providing the atlas anatomical annotations.

(default: /home/mambauser/.local/share/rabies/DSURQE_40micron_labels.nii.gz)