<u>20053722</u> Bryan Hoang Student Number Name

2.

(a) Two dice are rolled, one of which is fair and the other is biased. What is the probability that the sum is 7?

Solution:

Let

$$A =$$
the sum is 7
$$I_A = \begin{cases} 1, & \text{if A occurs} \\ 0, & \text{if A does not occur} \end{cases}$$
 $Y =$ the $\#$ the fair die rolls
 $Z =$ the $\#$ the biased die rolls

It follows that $P(A) = E[I_A]$.

Then by the law of total probability,

$$E[I_A] = E[E[I_A|Y]]$$

$$= \sum_{i=1}^{6} E[I_A|Y=i] P(Y=i)$$

$$= \frac{1}{6} \sum_{i=1}^{6} P(Z=i)$$

where $\{Z=i\}$, for $i\in\{1,\ldots,6\}$, forms a partition of the sample space. Hence, we have that $\sum_{i=1}^6 \mathrm{P}(Z=i)=1$. Therefore,

$$P(A) = \frac{1}{6}$$

(b) n dice are rolled, one of which is fair and the rest are biased. What is the probability that the sum of the rolls is even?

Solution:

Let

A = 'the sum of the rolls is even' $I_A = \begin{cases} 1, & \text{if } A \text{ occurs} \\ 0, & \text{if } A \text{ does not occur} \end{cases}$

$$I_A = \begin{cases} 1, & \text{if } A \text{ occurs} \\ 0, & \text{if } A \text{ does not occur} \end{cases}$$

$$Y = \begin{cases} 1, & \text{if the fair die is even} \\ 0, & \text{if the fair die is odd} \end{cases}$$

Z = 'the sum among the biased dice is even.

 $\frac{20053722}{\text{Student Number}}$

Bryan Hoang Name

It follows that $P(A) = E[I_A]$.

Then by the law of total probability,

$$E[I_A] = E[E[I_A|Y]]$$

$$= E[I_A|Y = 0] P(Y = 0) + E[I_A|Y = 1] P(Y = 1)$$

$$= P(Z^{\complement}) \left(\frac{1}{2}\right) + P(Z) \left(\frac{1}{2}\right)$$

$$= \frac{1}{2} (P(Z^{\complement}) + 1 - P(Z^{\complement}))$$

$$\implies P(A) = \frac{1}{2}$$