

13. I-HANK

Adv. Macro: Heterogenous Agent Models

Jeppe Druedahl

2023

International HANK

- Baseline RANK model: Gali and Monacelli (2005)
- Exchange rate shocks:

Auclert, Rognlie, Souchier and Straub (2021), »Exchange Rates and Monetary Policy with Heterogeneous Agents: Sizing up the Real Income Channel α

• Foreign demand shocks:

Druedahl, Ravn, Sunder-Plassmann, Sundram, Waldstrøm (2023), »The Transmission of Foreign Demand Shocks«

I-HANK 1/

Overview of model

- Small-open-economy ⇒ trading partner is exogenous
- Goods: Home and foreign
- Households: Standard + CES demand
 (initially households only hold domestic stocks ⇒ no reevaluation effects)
- ullet Production of home goods: Flexible prices with mark-up μ
 - 1. Production: $Y_t = Z_t N_t$
 - 2. Wage from FOC: $W_t = \frac{1}{\mu} P_{H,t} Z_t$
 - 3. Dividends: $D_t = P_{H,t}Y_t W_tN_t$
- Unions: Sticky wages ⇒ NKWPC
- Financial markets: Floating exchange rate + UIP condition
- Central bank: Constant real rate rule

I-HANK 2 /

Household problem

- Nominal exchange rate: E_t (domestic per foreign currency)
- Real exchange rate: $Q_t = E_t \frac{P_t^*}{P_t}$ (depreciation $\equiv Q_t \uparrow$)
- Domestic CES demand:

$$C_{H,t} = (1 - \alpha) \left(\frac{P_{H,t}}{P_t}\right)^{-\eta} C^{hh} \left(\mathbf{Y}^{hh}\right)$$

$$C_{F,t} = \alpha \left(\frac{E_t P_t^*}{P_t}\right)^{-\eta} C^{hh} \left(\mathbf{Y}^{hh}\right)$$

$$P_t = \left[\alpha \left(E_t P_t^*\right)^{1-\eta} + (1 - \alpha) P_{H,t}^{1-\eta}\right]^{\frac{1}{1-\eta}}$$

Real income:

$$Y_t^{hh} = \frac{W_t N_t + D_t}{P_t} = \frac{P_{H,t} Y_t}{P_t} \Rightarrow$$

$$dY_t^{hh} = dY_t - (dP_t - dP_{H,t}) = dY_t - \frac{\alpha}{1 - \alpha} dQ_t$$

I-HANK 3

Foreign economy and market clearing

Armington demand for home goods:

$$C_{H,t}^* = \alpha \left(\frac{P_{H,t}}{E_t P_t^*}\right)^{-\gamma} C_t^*$$

Market clearing:

$$Y_{t} = C_{H,t} + C_{H,t}^{*} \Rightarrow$$

$$dY_{t} = (1 - \alpha)dC_{t} + \alpha dC_{t}^{*} + \frac{\alpha}{1 - \alpha} \chi dQ_{t}$$

Composite trade elasticity: $\chi \equiv \eta(1-\alpha) + \gamma$

Real exchange rate shock

- Real exchange rate shock: dQ_t
- Consumption satisfies:

$$d\mathbf{C} = \underbrace{\mathbf{M}d\mathbf{Y}}_{\text{multiplier}} - \underbrace{\frac{\alpha}{1-\alpha}\mathbf{M}d\mathbf{Q}}_{\text{real income}}$$

Intertemporal Keynesian Cross:

$$\begin{split} d\textbf{\textit{Y}} &= \underbrace{\frac{\alpha}{1-\alpha}d\textbf{\textit{Q}}}_{\text{expenditure switching}} - \underbrace{\alpha \textbf{\textit{M}} d\textbf{\textit{Q}}}_{\text{real income}} + \underbrace{\left(1-\alpha\right) \textbf{\textit{M}} d\textbf{\textit{Y}}}_{\text{multiplier}} \\ &= \mathcal{M}\left(\frac{\alpha}{1-\alpha}\chi d\textbf{\textit{Q}} - \alpha \textbf{\textit{M}} d\textbf{\textit{Q}}\right) \end{split}$$

• Expansion: For high χ

• Contraction: For low χ

I-HANK 5,

Contractionary depreciation

Figure 2: Effect of exchange rate shocks on output for various χ 's

Note: impulse response in all three models to the shock to i_t^* displayed in Figure 1. χ is the trade elasticity (the sum of the import and export elasticity to the exchange rate). The HA model generates a contraction on impact for $\chi < \chi^* = 0.37$.

I-HANK 6 / 11

Equivalence and decomposition

Figure 3: Exchange rate shock when $\chi=1$ and its transmission channels

Note: impulse response in all three models to the shock to i_i^* displayed in Figure 1, with decomposition from proposition 2.

I-HANK 7 / 11

Quantitative model

NFA Output Consumption Net exports 0.3 Taylor rule 0.0 0.2 Real rate rule Real rate rule + $\chi = 0.1$ 0.1 -0.2 -0.1 -0.2-0.4-0.3-0.3-0.1-0.6 -0.2 -0.4-0.3-0.3 -0.80.4 -0.4 10 20 20 Real wage income Dividends Real exchange rate Real interest rate 0.0 0.04 0.000 -0.2 0.03 -0.002 -0.4 ğ 0.02 -0.0040.4 -0.006 0.01 -0.008 -0.8 10 20 Quarters Quarters Quarters

Figure 9: Contractionary depreciations

Note: impulse response in the quantitative model to the shock to i_i^* displayed in Figure 1. The model with Taylor rule is our quantitative model; the one with real rate rule is our quantitative model without a Taylor rule; the model with real rate and $\chi=0.1$ drops delayed substitution and allows households to immediately adjust their consumption baskets across countries.

Add-ons: Non-homothethic preferences, sticky prices , imperfect exchange rate pass-through, delayed substitution, dollar currency pricing, UIP deviations

I-HANK 8 / 11

Foreign demand shocks

The Transmission of Foreign Demand Shocks

Jeppe Druedahl Søren Hove Ravn Laura Sunder-Plassmann Jacob Marott Sundram Nicolai Waldstrøm

September, 2023

I-HANK 9 /

Regional Keynesian Cross

THE REGIONAL KEYNESIAN CROSS

PROPOSITION

The first-order response of employment dL_j to a monetary shock dr_j and tradable goods demand shock dC^T solves

$$dL_{j} = \underbrace{\rho_{j}\left(\textbf{\textit{M}}_{j}^{\prime}dr_{j} + \textbf{\textit{M}}_{j}dL_{j}\right)}_{\textit{Regional exposure}} + \underbrace{\left(1-\rho_{j}\right)dC^{T}}_{\textit{National exposure}} - \underbrace{\frac{\nu}{\eta}(1-\rho_{j})\left(dL_{j} - dC^{T}\right)}_{\textit{Expenditure switching}}$$

 ν : elasticity of subs. between c^{NT} & c^T

 η : elasticity of subs. between ℓ^{NT} & ℓ^T

Source: Bellifemine, Couturier, and Jamilov (2023),

»The Regional Keynesian Cross«

I-HANK 10 / 11

Regional employment effects of MP

Figure 1: Regional Heterogeneity in the Effects of U.S. Monetary Policy

Note: This figure plots the 3-year ahead county-specific cumulative employment responses to a 1 standard deviation expansionary monetary policy shock $\beta_{j,j,6}$, estimated from the panel local projection (1). The coefficients are in percentage points and represent deviations from the (population weighted) areage response.

I-HANK 11 / 11