PREMIERE COMPOSITION DE MATHEMATIQUES (4 h)

Dans tout le problème, $\mathbb N$ désigne l'ensemble des entiers positifs ou nuls, $\mathbb R$ le corps des réels, et $\mathscr V$ l'espace vectoriel sur $\mathbb R$ des fonctions numériques réelles définies et indéfiniment dérivables sur $\mathbb R$.

On note par A l'endomorphisme de $\mathscr V$ qui, de tout f de $\mathscr V$, de dérivée f', donne une image Af définie pour tout x réel par

$$Af(x) = f'(x) + 2xf(x)$$

 $A^n = A \circ A \circ \cdots \circ A$ (n facteurs) désigne la n^e itérée de A, $A^1 = A$ et A^0 est l'application identique de $\mathscr V$ (donc $A^0f = f$ pour tout f de $\mathscr V$).

De façon analogue, si g est une fonction numérique réelle définie et différentiable sur \mathbb{R}^2 , on désigne par $A_x g$ et $A_y g$ les fonctions numériques définies en tout point (x, y) de \mathbb{R}^2 par

$$A_x g(x,y) = \frac{\partial g}{\partial x}(x,y) + 2xg(x,y)$$
$$A_y g(x,y) = \frac{\partial g}{\partial y}(x,y) + 2yg(x,y).$$

- (a) Trouver le noyau de A. En donner la dimension et une base.
- (b) Pour f_1 appartenant à \mathcal{V} , calculer l'image par A^n de la fonction

$$x \mapsto e^{-x^2} f_1(x);$$

en déduire le noyau de A^n ; en donner la dimension et une base.

(c) Montrer que, pour tout λ réel, il existe un élément et un seul f_{λ} de \mathcal{V} , qu'on calculera, tel que :

$$Af_{\lambda} = \lambda f_{\lambda}$$
 $f_{\lambda}(0) = 1.$

Montrer qu'il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions de \mathscr{V} vérifiant, pour tout λ réel et pour tout x réel la relation

$$f_{\lambda}(x) = \sum_{n=0}^{+\infty} \lambda^n \varphi_n(x).$$

Déterminer les φ_n , et vérifier les relations

$$\varphi_0(0)=1,\quad A\varphi_0=0$$
 et, pour $n\geqslant 1,\quad \varphi_n(0)=0,\quad A\varphi_n=\varphi_{n-1}$

- 2. Soit \mathcal{H} l'ensemble des fonctions f de \mathcal{V} telles que la suite de terme général $A^n f(x)$ converge uniformément vers zéro sur tout partie bornée de \mathbb{R} .
 - (a) Montrer que \mathscr{H} est un sous-espace vectoriel de \mathscr{V} .
 - (b) On désigne par \mathscr{H}_1 (resp. \mathscr{H}_2) l'ensemble des fonctions f de \mathscr{V} qui sont des combinaisons linéaires à coefficients réels d'une famille finie (variable avec f) de fonctions φ_n ($n \in \mathbb{N}$) (resp. de fonctions f_{λ} avec $|\lambda| < 1$). Montrer que \mathscr{H}_1 et \mathscr{H}_2 sont des sous-espaces vectoriels de \mathscr{H} . Déterminer leur intersection.
 - (c) Montrer que pour toute f de \mathcal{H} , la série de terme général $\varphi_n(y)A^nf(x)$ converge uniformément par rapport à (x,y) dans tout partie bornée du plan \mathbb{R}^2 ; on désigne par F(x,y) la somme de cette série.

Montrer qu'il en est de même des séries obtenues en dérivant la précédente, terme à terme, une fois partiellement par rapport à x ou une fois partiellement par rapport à y.

(d) Établir les relations

$$F(x,0) = f(x), \quad A_x F(x,y) = A_y F(x,y)$$

où $F(x,y) = \sum_{n=0}^{+\infty} \varphi_n(y) A^n f(x)$ est la somme de la série introduite à la question précédente.

Montrer que lorsqu'on fixe y (resp. x) la fonction

$$x \mapsto F(x,y)$$
 [resp. $y \mapsto F(x,y)$]

appartient à \mathcal{H} .

3. Pour tout y réel fixé, on désigne par T^y l'endomorphisme de \mathscr{H} qui donne, de tout f de \mathscr{H} , une image $T^y f$ définie pour tout x réel par :

$$T^{y}f(x) = F(x,y) = \sum_{n=0}^{+\infty} \varphi_n(y)A^n f(x).$$

(a) On admettra (et on ne demande pas de le démontrer) que si les séries numériques (u_n) et (v_n) sont, chacune; absolument convergentes et si la suite de nombres réels (w_n) est bornée, alors est vraie la formule :

$$\sum_{p=0}^{\infty} u_p \left[\sum_{q=0}^{\infty} v_q w_{p+q} \right] = \sum_{r=0}^{\infty} w_r \left[\sum_{p+q=r} u_p v_q \right].$$

En déduire que, pour tous réels y et z on a :

$$T^z \circ T^y = e^{2yz}T^{y+z}$$

(b) On désigne par S^y l'endomorphisme de \mathcal{H} tel que

$$S^y f(x) = e^{y^2} T^y f(x)$$

pour toute f de \mathcal{H} .

Montrer que lorsque y décrit \mathbb{R} , l'ensemble des endomorphismes S^y de \mathscr{H} muni de la composition des applications est un groupe isomorphe au groupe additif de \mathbb{R} .

4. (a) Déterminer l'ensemble des fonctions G définies et différentiables sur \mathbb{R}^2 qui vérifient l'équation aux dérivées partielles

$$A_x G(x,y) = A_y G(x,y)$$

(on pourra utiliser le changement de variables u = x + y, v = x - y).

(b) Parmi les fonctions G précédentes, montrer qu'il en existe une et une seule, qu'on calculera, qui vérifie pour tout x réel l'égalité

$$G(x,0) = f(x)$$

où f est une fonction donnée dérivable sur \mathbb{R} .

(c) En déduire à l'aide de la fonction F de la question 2. (c) l'égalité suivante, valable pour toute f de \mathcal{H} , pour tout x réel et pour tout y réel :

$$e^{2xy}f(x+y) = \sum_{n=0}^{+\infty} e^{-y^2} \frac{y^n}{n!} A^n f(x).$$

5. (a) Exprimer, à l'aide d'une intégrale, les fonctions K définies et différentiables sur \mathbb{R}^2 , qui vérifient l'équation aux dérivées partielles

$$A_y K(x,y) - A_x K(x,y) = h(x,y)$$

où h est une fonction donnée, définie et différentiable sur \mathbb{R}^2 (on pourra utiliser le même changement de variables que dans la question 4. (a)).

- (b) Démontrer que, parmi les fonctions K précédentes, il y en a une et une seule, qu'on notera L, telle que, pour tout x, L(x,0) = 0 et que L(x,y) peut être mis sous forme d'une intégrale.
- (c) On choisit arbitrairement une fonction f de \mathcal{H} ; soit F la fonction qui lui est associée par 2. (c). On définit une fonction H en posant pour tout (x, y) de \mathbb{R}^2

$$H(x,y) = F(x,y) - \sum_{p=0}^{p=n} \varphi_p(y) A^p f(x)$$

 $(n \in \mathbb{N} \text{ étant fixé}).$

Calculer H(x,0) et $A_yH(x,y) - A_xH(x,y)$; en déduire la formule

$$e^{2xy}f(x+y) = \sum_{n=0}^{p=n} e^{-y^2} \frac{y^p}{p!} A^p f(x) + \int_x^{x+y} e^{t^2 - x^2 - y^2} \cdot \frac{(x+y-t)^n}{n!} A^{n+1} f(t) dt.$$