見 录

— .	课程介绍	2
	1. 课程大纲	2
	2. 课程时间地点	
<u> </u>	课程实践	
	1.实践题目	
	2.实践基本要求	
	3.数据集	
	3.1 数据集的标签类别	
	3.2 采集数据集安排	
	3.3 数据采集的其他方式	
	3.4 数据集标注	7
	3.4 数据集上传至 FTP 服务器	
	三. 课程评分	
	1. 答辩	9
	2. PPT 内容	
	3. 评分	

一. 课程介绍

1. 课程大纲

中国科学技术大学 2019 年秋季课程《深度学习实践》,本课程内容包括:深度学习基础知识;深度学习应用场景(端侧与云侧);深度学习网络模型特性分析;深度学习模型训练方法介绍;深度学习应用案例剖析;深度学习实践应用(基于CPU/GPU/FPGA/ASIC 平台)。

2. 课程时间地点

12-19 周_周四_下午(6, 7, 8) 明德楼 C240 12-19 周 周五 上午(4, 5) 明德楼 C240

二. 课程实践

1.实践题目

此次深度学习实践题目为:《<mark>电梯内的电动车识别</mark>》。 助教会提供 500 张标注样例的数据集,同学可以在助教提供的模拟环境下自己采 集图片进行标注,也可以上网爬数据标注。

2.实践基本要求

- A. 深度学习模型:模型不限。
- B. 平台: 最后要移植到 1H8 嵌入式平台上运行,后续评分也是基于 1H8 运行的结果。

3.数据集

3.1 数据集的标签类别

助教提供的数据集标注样例图片共 500 张,类别有 8 类如下: emotor、bicycle、person、babycarriage(包括轮椅)、bag、box、trunk(拉的物体)、handbag(手中提的袋状的物品,例如手提包,垃圾袋)。

要尽量多的采集各种角度的图片,以自行车、电动车为例,图中射线为物体摆放方向。

采集示例图片如下:

emotor

bicycle

person:不需要单独采集

babycarriage

bag

handbag

box

trunk

3.2 采集数据集安排

助教提供采集电梯内图片的模拟场景,后面以小组为单位可以进行数据集的采集。时间地点信息见图像采集排班表.xlsx

备注:数据采集使用说明(笔记本由助教提供)

1、使用网线连接摄像头,输入以下命令登录、配置环境变量和挂载操作。(此步骤执行一次即可,后续采集图片的小组无需执行)

telnet 172.19.24.241

source customer/export.sh

./customer/nfs.sh

```
work@work:~$ telnet 172.19.24.241
Trying 172.19.24.241...
Connected to 172.19.24.241.
Escape character is '^]'.
/ # source customer/export.sh
/ # ./customer/nfs.sh
/ # #
```

2、使用 cd 命令进入/mnt/run 路径下,输入./run.sh 命令,点击回车即可运行图像采集程序。

3、采集完成后使用 Ctrl+C 暂停程序, 进入/work/motobike/run 目录下, 将 capture 文件夹复制到自己的 U 盘中。

4、回到终端操作界面,运行 rm -r capture 命令删除 capture 文件夹,返回 /work/motobike/run 目录下确认 capture 文件夹被删除后下一组可直接输入./run.sh 点击回车开始数据采集。

```
^C^X
/mnt/run # rm -r capture
/mnt/run #
```

3.3 数据采集的其他方式

- A. 可以通过爬虫得到电梯内数据集,然后按照标准的标注方式标注。
- B. 可以通过图像增强的方式来强化数据集。
- C. 可以通过 GAN 网络生成数据集
- D. 助教提供了 10 类标签,后面评分只看电动车的单类 AP 值,因此,对于容易和电动车混淆的目标,同学可以在训练和预测的时候自己增加此类目标,来提高电动车单类 AP 值。

3.4 数据集标注

小组在完成数据增强后,使用标签标注工具"labelImg"进行标注 (https://pypi.org/project/labelImg/),要求标注后的标签格式为 Yolo 格式如下:

```
0 0.613159 0.841431 0.020264 0.019775
2 0.410767 0.853882 0.027588 0.022705
0 0.787842 0.881592 0.014160 0.014160
```

LabelImg 使用简单教程:

要求图片和标签放置目录结构为:

image	2019/9/23 12:01	文件夹
label	2019/9/23 12:02	文件夹

Label 目录内需要生成相应的标签文本:

classes.txt	2019/9/9 16:29	Text 源文件	1 KB
predefined_classes.txt	2019/9/2 21:31	Text 源文件	1 KB
1.txt	2019/9/9 16:26	Text 源文件	3 KB
2.txt	2019/9/9 16:26	Text 源文件	3 KB
3.txt	2019/9/9 16:26	Text 源文件	3 KB
4.txt	2019/9/9 16:26	Text 源文件	3 KB

其中 1-4 是对应相应图片的标签, classes.txt 和 predefined classes.txt 是类别。

classes.txt 和 predefined classes.txt 两个文件内容一样:

emotor
bicycle
person
babycarriage
bag
box
trunk
handbag

在该目录运行 powershell,输入以下命令:

labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE] labelImg.exe ./image/ --predefined ./label/predefined classes.txt

然后出现以下界面,则可以开始标注,需要将标签格式选择为 YOLO:

3.4 数据集上传至 FTP 服务器

尽量使用 windows 系统的 pc 登录,对 MacOS 支持不好,读写有问题。直接在 windows 打开我的电脑,在地址栏输入 ftp://222.92.214.130:19021,用账号密码进行访问,成功登录后每个小组对应一个文件夹,所有的数据集上传到自己小组的目录中。

账号密码请各小组组长联系助教 3 获取,如果出现登录问题也联系助教 3

上传后的数据集目录结构如下,Origin 表示清洗后的原始数据,Augmentation 表示增强后的数据

三. 课程评分

1. 答辩

- A. 答辩形式: 以组为单位, PPT 汇报+现场结果演示+提问
- B. 时间要求: 10分钟一组, PPT 汇报时间为7分钟; 提问时间为3分钟

2. PPT 内容

- A. 组内成员分工,以及组内工作量排名(组内成员商定,不能并列)
- B. 亮点展示(比如:数据增强的方式、网络的改进等)

3. 评分

技术要点	评判指标	分数
代码能在开发板上成功	模型可以输出目标识别	50
运行,完成"目标识别功	的结果	
能"		
实现数据集采集(重点)、	数据集的标准质量、格式	20
标准、增强	规范	
课上的课堂实验		10
模型运行的电动车单类		20
AP		