Some solutions to Kreyszig's Introductory Functional Analysis with Applications, chapter 2

2.1.6

Show that in an *n*-dimensional vector space X, the representation of any x as a linear combination of given basis vectors e_1, \ldots, e_n is unique.

Suppose we have two representations for x:

$$x = \alpha_1 e_1 + \dots + \alpha_n e_n$$

and
$$x = \beta_1 e_1 + \dots + \beta_n e_n$$

$$\iff 0 = x - x = (\alpha_1 - \beta_1) e_1 + \dots + (\alpha_n - \beta_n) e_n$$

Since the basis vectors must be linearly independent, this means that each $(\alpha_i - \beta_i) = 0$, i.e. $\alpha_i = \beta_i$.

2.1.10

If Y and Z are subspaces of a vector space X, show that $Y \cap Z$ is a subspace of X, but $Y \cup Z$ need not be one. Give examples.

For $Y \cap Z$, we show that this set is closed under scalar multiplication and addition. Given $x \in Y \cap Z$, we know $\alpha x \in Y$ since Y is a vector space, and $\alpha x \in Z$ since Z is a vector space, hence $\alpha x \in Y \cap Z$. Similarly, given any x and y in $Y \cap Z$, $x + y \in Y$ by definition of subspace for Y and $x + y \in Z$ by definition of subspace for Z, hence $x + y \in Y \cap Z$.

For $Y \cup Z$, we can use \mathbf{R}^2 as a counterexample. Let the "x-axis" or span $\{(1,0)\}$ act as Z and the "y-axis" or span $\{(0,1)\}$ act as Y. The union $Y \cup Z$ is not closed under vector addition (note that $(0,1) \in Y$ and $(1,0) \in Z$):

$$(1,0) + (0,1) = (1,1) \notin Y \cup Z$$

Clearly the intersection of these two sets, the zero vector, is a subspace.

2.2.11

A subset A of a vector space X is said to be convex if $x, y \in A$ implies

$$M = \{z \in X : z = \alpha x + (1 - \alpha)y, 0 < \alpha < 1\} \subset A$$

M is called a closed segment with boundary points x and y; any other $z \in M$ is called an interior point of M. Show that the closed unit ball

$$\tilde{B}(0;1) = \{x \in X : ||x|| \le 1\}$$

in a normed space X is convex.

We take any two points x and y in the unit ball $\tilde{B}(0;1)$ and show that any point in the segment joining x and y is also in $\tilde{B}(0;1)$. Let $z \in M$, the line segment. Then there exists $\alpha \in [0,1]$ such that

$$z = \alpha x + (1 - \alpha)y$$
 so $\|z\| = \|\alpha x + (1 - \alpha)y\|$ triangle inequality: $\leq \|\alpha x\| + \|(1 - \alpha)y\|$ scalar invariance of norm: $= |\alpha|\|x\| + |(1 - \alpha)|\|y\|$ $\|x\|, \|y\| \leq 1$: $\leq |\alpha| + |1 - \alpha|$ $0 \leq \alpha \leq 1$: $= \alpha + 1 - \alpha = 1$

So $||z|| \le 1$ so it must be in the unit ball $\tilde{B}(0;1)$.

This is easy enough to see for \mathbb{R}^2 but what about for more exotic spaces like C[0,1]? This means that if we combine any two continuous functions with a common bound in the manner above for z, the result will have the same bound. See jupyter notebook lineoffunctions.ipynb for an illustrating animation.

2.3.2 Show that c_0 , the space of all sequences of scalars converging to zero, is a closed subspace of l^{∞} .

We want to show that the complement of c_0 is open. That is, every element in the set of all non-convergent sequences has a neighborhood of only non-convergent sequences. First write what it means for an $x = \{x_1, x_2, \dots\} \in c_0^C$ not to converge to zero: there is an $\epsilon > 0$ such that for all N, there is an n > N such that $|x_n - 0| \ge \epsilon$. Now let an $x' = \{x'_1, x'_2, \dots\} \in B(x, \epsilon/2)$ for the same ϵ , so we have from the metric on l^{∞} that $\sup |x_i - x'_i| < \epsilon/2$. Now we want to show that x' does not converge. From non-convergence of x,

$$\epsilon \leq |x_n| = |x_n - x_n' + x_n'|$$
 triangle inequality:
$$\leq |x_n - x_n'| + |x_n'|$$
 by construction of x' :
$$< \epsilon/2 + |x_n'|$$
 subtract $\epsilon/2$ from first and last expression:
$$\epsilon/2 < |x_n'|$$

hence there is an $\epsilon' = \epsilon/2$ so that $\forall N$ there is an n > N so that $|x'_n - 0| \ge \epsilon'$, which means that x' does not converge to zero. Since x' was an arbitrary element of an open ball of x, and $x \in c_0^C$ is arbitrary, c_0^C is open, which means c_0 is closed.

I had a crisis of faith. For some reason I thought that the monomials formed a Cauchy sequence. But their limit is discontinuous and not a polynomial. The limiting function equals zero on [0,1) and 1 at t=1. Since we showed that C[a,b] is complete, this is a contradiction, so it must not be Cauchy. Let's prove this directly just for fun.

Let $\epsilon = 1/2$ and take any positive integer N. We want to show that there exist n, m > N with $\sup |t^n - t^m| \ge \epsilon$. It's sufficient to show that there exists $t \in [0,1]$ such that $|t^n - t^m| \ge \epsilon$. For all n > 1, t^n takes all values in [0,1) for $t \in [0,1)$. Let n = N+1 and t_0 denote the input such that $t_0^n = 3/4$. Now we know that the monomials converge to zero pointwise on [0,1) so for $\epsilon' = 1/4$ there exists N' such that m' > N' implies $|t_0^{m'}| < \epsilon'$. Let $m = \max\{N, N'\} + 1$ so we still have $|t_0^{m}| < \epsilon'$. Hence

$$|t_0^m - t_0^n| = t_0^n - t_0^m = 3/4 - t_0^m > 3/4 - 1/4 = 1/2$$

So for some positive ϵ , for arbitrary N there exists n, m > N with $\sup |t^m - t^n| \ge \epsilon$, which means $\{t^n\}$ is not Cauchy under $\sup |t^n - t^m|$.

Alternative proof of Corollary 2.7-10 (b)

The text shows that the null space of a bounded linear operator is closed by showing that the closure of the null space is the same set. I would like a proof using the definition of a closed set, i.e. that the complement is open.

Let $x \in N(T)^C$, the complement of the null space. We want a neighborhood of x fully contained in $N(T)^C$. First, since T is bounded, it is also continuous. Hence for $\epsilon = ||Tx||/2$, there exists a δ such that any x' satisfying $||x - x'|| < \delta$ (i.e. $x' \in B(x, \delta)$) also has $||Tx - Tx'|| < \epsilon$. Now take an arbitrary such x' and suppose it is in the null space (in order to show a contradiction), i.e. Tx = 0. We have

$$\frac{\|Tx\|}{2} < \|Tx\|$$

$$= \|Tx - Tx'|$$
 and by continuity of T :
$$< \frac{\|Tx\|}{2}$$

a contradiction.