Q1. Chapter 2, Section 2.4, Question 3 (pp. 74-75 43 of your textbook).

```
1 public void trash (int x) 15 public int takeOut (int a, int b)
                           16 {
2 {
                           17 int d, e;
3
    int m, n;
4
                           18
                           19 d = 42*a;
5 m = 0;
6 if (x > 0)
                           20 if (a > 0)
                                 e = 2*b+d:
7
      m = 4:
                           21
8 if (x > 5)
                           22 else
  n = 3*m:
                                 e = b+d:
                          23
9
    else
                          24
                               return (e);
10
                          25 }
    n = 4*m:
11
12 int o = takeOut (m, n);
    System.out.println ("o is: " + o);
13
14 }
```

(a) Call sites: line 12. trash() -> takeOut()

(b) All pairs of last-def and first-uses:

	Last-def	First-uses
1	(trash(),m,5)	(takeOut(),a,19)
2	(trash(),m,7)	(takeOut(),a,19)
3	(trash(),n,9)	(takeOut(),b,21)
4	(trash(),n,9)	(takeOut(),b,23)
5	(trash(),n,11)	(takeOut(),b,21)
6	(trash(),n,11)	(takeOut(),b,23)
7	(takeOut(),e,21)	(trash(),o,13)
8	(takeOut(),e,23)	(trash(),o,13)

(c) Test input x <=0 (for example, x=0)satisfies TR 1, 6, 8.
 Test input x > 5 (for example, x=6) satisfies TR 2, 3, 7.
 Test input 1<=x <=5 (for example=3) satisfies TR 2,5,7.

TR 4 can not be satisfied because if x>5, m=4 and n=12, calling takeout(4,12), making a in takeOut always >0 – forcing line 23 to never be called for last-def ((trash(),n,9)).

Q2. Chapter 2, Section 2.5, Question 2 (page 87 of your textbook).

(a) 4 states:

 $A = \{Wake, Low\}$

 $B = \{Wake, High\}$

 $C = \{Sleep, Low\}$

 $D = \{Sleep, High\}$

(b)

(c)

Edge coverage TR =

1	(A,A)	5	(B,D)	9	(C,D)
2	(A,B)	6	(D,B)	10	(C,C)
3	(B,A)	7	(D,D)	11	(C,A)
4	(B,B)	8	(D,C)	12	(A,C)

Test case = $\{2,4,5,7,6,3,1,12,9,8,10,11\}$ satisfies edge coverage on the FSM. The sequence of calls from state A (Wake, Low) is

 $\begin{array}{l} up() \rightarrow up() \rightarrow advance() \rightarrow up() \rightarrow advance() \rightarrow down() \rightarrow down() \rightarrow advance() \rightarrow up() \\ \rightarrow down() \rightarrow down() \rightarrow advance() \ . \end{array}$

This sequence of calls ensure that the thermostat returns to the same state (before the test) after the test sequence ends.

Q3. Chapter 3, Section 3.2; do parts (a)-(h) for the predicate in Question 7 (page 119 of your textbook).

```
p = (a \lor b) \land (c \lor d)
```

- a) Clauses: a, b, c, d
- b) $p_a = p_{a=true} \oplus p_{a=false}$
 - = (true $\lor b$) \land ($c \lor d$) \oplus (false $\lor b$) \land ($c \lor d$)
 - = (true) \land ($c \lor d$) \oplus (b) \land ($c \lor d$)
 - $= (c \lor d) \oplus (b) \land (c \lor d)$
 - $= \neg b \land (c \lor d)$

$$p_b = p_{b=true} \oplus p_{b=false}$$

- $= (a \lor true) \land (c \lor d) \oplus (a \lor false) \land (c \lor d)$
- = (true) \land ($c \lor d$) \oplus (a) \land ($c \lor d$)
- $= (c \lor d) \oplus (a) \land (c \lor d)$
- $= \neg a \land (c \lor d)$

$$p_c = p_{c=true} \oplus p_{c=false}$$

- = (a \vee b) \wedge (true \vee d) \oplus (a \vee b) \wedge (false \vee d)
- = (a \vee b) \wedge (true) \oplus (a \vee b) \wedge (d)
- $= (a \lor b) \oplus (a \lor b) \land (d)$
- $= \neg d \land (a \lor b)$

$p_d = p_{d=true} \oplus p_{d=false}$

- = (a \vee b) \wedge (c \vee true) \oplus (a \vee b) \wedge (c \vee false)
- = (a \vee b) \wedge (true) \oplus (a \vee b) \wedge (c)
- $= (a \lor b) \oplus (a \lor b) \land (c)$
- $= \neg c \land (a \lor b)$

c)	Truth	Table:

	a	b	c	d	$p_a = -b \wedge (c \vee d)$	$p_b = -a \wedge (c \vee d)$	$p_c = \neg d \wedge (a \vee b)$	$p_d = \neg c \land (a \lor b)$	$p = (a \lor b) \land (c \lor$
									d)
1	T	T	T	T	F	F	F	F	T
2	T	T	T	F	F	F	T	F	T
3	T	T	F	T	F	F	F	T	T
4	T	T	F	F	F	F	T	T	F
5	T	F	T	T	T	F	F	F	T
6	T	F	T	F	T	F	T	F	T
7	T	F	F	T	T	F	F	T	T
8	T	F	F	F	F	F	T	T	F
9	F	T	T	T	F	T	F	F	T
10	F	T	T	F	F	T	T	F	T
11	F	T	F	T	F	T	F	T	T
12	F	T	F	F	F	F	T	T	F
13	F	F	T	T	T	T	F	F	F
14	F	F	T	F	T	T	F	F	F
15	F	F	F	T	T	T	F	F	F
16	F	F	F	F	F	F	F	F	F

- d) With respect to clause a, GACC pairs are = $\{5,6,7\}x\{13,14,15\}$ With respect to clause b, GACC pairs are = $\{9,10,11\}x\{13,14,15\}$ With respect to clause c, GACC pairs are = $\{2,6,10\}x\{4,8,12\}$ With respect to clause d, GACC pairs are = $\{3,7,11\}x\{4,8,12\}$
- e) With respect to clause a, CACC pairs are = $\{5,6,7\}x\{13,14,15\}$ With respect to clause b, CACC pairs are = $\{9,10,11\}x\{13,14,15\}$ With respect to clause c, CACC pairs are = $\{2,6,10\}x\{4,8,12\}$ With respect to clause d, CACC pairs are = $\{3,7,11\}x\{4,8,12\}$
- f) With respect to clause a, RACC pairs are = (5,13),(6,14),(7,15) With respect to clause b, RACC pairs are = (9,13),(10,14),(11,15) With respect to clause c, RACC pairs are = (2,4),(6,8),(10,12) With respect to clause d, RACC pairs are = (3,4),(7,8),(11,12)
- g) With respect to clause A, GICC 4-tuples are = $\{1,2,3\}x\{9,10,11\}x\{4,8\}x\{12,16\}$ With respect to clause B, GICC 4-tuples are = $\{1,2,3\}x\{5,6,7\}x\{4,12\}x\{8,16\}$ With respect to clause C, GICC 4-tuples are = $\{1,5,9\}x\{3,7,11\}x\{13,14\}x\{15,16\}$ With respect to clause D, GICC 4-tuples are = $\{1,5,9\}x\{2,6,10\}x\{13,15\}x\{14,16\}$

Shaikh Shawon Arefin Shimon A4

h) With respect to clause A, RICC 4-tuples are = $\{(1,9),(2,10),(3,11)\}\mathbf{x}\{(4,12),(8,16)\}$ With respect to clause B, RICC 4-tuples are = $\{(1,5),(2,6),(3,7)\}\mathbf{x}\{(4,8),(12,16)\}$ With respect to clause C, RICC 4-tuples are = $\{(1,3),(5,7),(9,11)\}\mathbf{x}\{(13,15),(15,16)\}$ With respect to clause D, RICC 4-tuples are = $\{(1,2),(5,6),(9,10)\}\mathbf{x}\{(13,14),(15,16)\}$