Tian Qiu

ECE 369 Homework 2

Mathematical Proofs, Program Proofs

Proof Techniques

Text Exercise 2.1

Problems 51, 55

- 1. For x = 3, $x^2 = 9$, the product of x and x square is 27 which obviously is not even.
- 2. For any integer n,

$$(n-1)^2 \ge 0$$

$$n^2 - 2n + 1 \ge 0$$

$$n^2 + 1 \ge 2n$$

$$n + \frac{1}{n} \ge 2$$

Therefore, for any integer n, $n + \frac{1}{n} \ge 2$ is always true.

Induction

Text Exercise 2.2

Problems 40(b), 53

1. Base case n = 1, $1 + \frac{1}{2} = 2 - \frac{1}{2} = \frac{3}{2}$

Assume
$$P(K) = 1 + \frac{1}{2} + \frac{1}{4} + ... + \frac{1}{2^k} = 2 - \frac{1}{2^k}$$
 is true

Then
$$P(K+1) = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^k} + \frac{1}{2^{k+1}} = 2 - \frac{1}{2^k} + \frac{1}{2^{k+1}} = 2 - \frac{2}{2^{k+1}} + \frac{1}{2^{k+1}} = 2 - \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} = 2 - \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} = 2 - \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} = 2 - \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} + \frac{$$

$$2 - \frac{1}{2^{k+1}}$$
 which K+1 is correct.

Hence
$$P(n) = 1 + \frac{1}{2} + \frac{1}{4} + ... + \frac{1}{2^k} = 2 - \frac{1}{2^n} < 2 \text{ for } n \ge 1$$

2. Base case n = 1, (x-1)/(x-1) = 1

Assume
$$P(K) = \frac{x^{k}-1}{x-1} = a$$
, where a is an integer

Then

$$P(K+1) = \frac{x^{k+1}-1}{x-1} = \frac{x((x-1)*a+1)-1}{x-1} = \frac{((ax^2-ax)+x)-1}{x-1} = \frac{(a*x+1)(x-1)}{x-1} = ax+1 \quad \text{for} \quad x = 1$$

x is not equal to 1, which K+1 is correct.

Hence $x^n - 1$ is divisible by x - 1 for $x \neq 1$

Program Proofs Text Exercise 2.3 Problem 15

1. Base case n = 1, $i_0 = 1$, $j_0 = a[1]$, n = 2, $i_1 = 2$, $j_1 = a[2]$

Assume
$$Q(k): j_k = \max\{a[1], ..., a[k]\}$$
 is true

Then $Q(k+1):=j_{k+1}=\max\{a[1],\dots,a[k+1]\}=\max\{j_k,a[k+1]\}$ which means Q(k+1) is correct.

Hence *Q* is a loop invariant.

At loop termination i = n, $j_k = \max\{a[1], ..., a[n]\}$. The function is correct.

Additional Problems

- A. $(10k+i)^2 = 100k^2 + 20ki + i^2$ whose end is determined only by i^2 where $0 \le i \le 9$
 - a. i=0, $(10k + i)^2$ end with 0
 - b. i=1, $(10k + i)^2$ end with 1
 - c. i=2, $(10k + i)^2$ end with 4
 - d. i=3, $(10k + i)^2$ end with 9
 - e. i=4, $(10k + i)^2$ end with 6
 - f. i=5, $(10k + i)^2$ end with 5
 - g. i=6, $(10k + i)^2$ end with 6
 - h. i=7, $(10k + i)^2$ end with 9
 - i. i=8, $(10k + i)^2$ end with 4
 - j. i=9, $(10k+i)^2$ end with 1

Obviously from above, any square of positive integer end with 0,1,4,5,6, or 9.

- B. Determine which Fibonacci numbers are even and use a form of mathematical induction to prove your hunch.
- 1. Base case F(0) = 0, F(3) = 2

Assume for any positive integer k which can be divided by 3, F(k) is even Then F(K+3) = F(K+2) + F(K+1) = F(K+1) + F(K) + F(K+1) = 2F(K+1) + F(K) which F(K) is even. So F(k+3) is even.

Hence, for any positive integer k which can be divided by 3, F(k) is even.