Attributing Genomic Events to Cancer

Problem	What events lead to cancer?
Intuition	Successful events are selected for in
	tumorigenesis.
Solution	Look for over-represented or mutually
	exclusive events.

Problem	What events differentiate people with
	cancer?
Intuition	Different types of patients should have
	different clinical and molecular
	phenotypes.
Solution	Stratify cohort, look for changes in
	phenotype.

Global Variables are Associated with Survival

Cox Proportional Hazards Model Adjusts Global Covariates

- Non-parametric survival function adjusted with parametric covariates - Assumption of time-independence of covariates

Assumes a proportional increase with increasing values of covariates (linear in log-space)

model = Surv(time, event) ~ covariates + interactions

0.1	0.0 Mutation	a.c.		.ib/	7 7 70	_	0 500 1000 2000 Days to Event
	orleva	0.0002	0.0740	0.0033	0.7071	0.6077	
	hazard	3.10	1.01	29.0	66.0	0.71	
		pathway	age	rate	pathway:age	pathway:rate	

Associating Mutations with Survival

The Case for Pathways

Many Pathways have Survival Associations

Sometimes mutations are very sparse across the pathway but have a common effect.

Conclusion

Selectivity is useful for finding genes that cause cancer, but we are also interested in markers for cancer progression and treatment success. Integration of sparse genetic events over networks and pathways boosts our power to uncover novel targets.

boosts our power to uncover mover targets.
Finding associations with clinical phenotypes allows for annotation of new genes and pathways.