CS 4823: Homework #3

Due on February 9, 2018

 ${\bf Christopher\ Tse}$

Problem 1

Solve $122x \equiv 3 \pmod{343}$. Show step-by-step calculations.

Solution

Finding GCD

Using Euclidean Division Algorithm:

$$343 = 122(2) + 99$$

$$122 = 99(1) + 23$$

$$99 = 23(4) + 7$$

$$23 = 7(3) + 2$$

$$7 = 2(3) + 1$$

Follow with Extended Euclidean Algorithm:

$$1 = 7 + 2(-3)$$

$$= 7 + (23 + 7(-3))(-3) = 7(10) + 23(-3)$$

$$= (99 + 23(-4))(10) + 23(-3) = 99(10) + 23(-43)$$

$$= 99(10) + (122 + 99(-1))(-43) = 99(53) + 122(-43)$$

$$= (343 + 122(-2))(53) + 122(-43)$$

$$1 = 343(53) + 122(-149)$$

In the case of $122x \equiv 1 \pmod{343}$ we have $x = -149 \equiv 194 \pmod{343}$, so for $122x \equiv 3 \pmod{343}$ we have $x = 194 * 3 \pmod{343} = 239$

Problem 2

- a) Is your ID number invertible modulo $m = 2^{64}$?
- ID = 112971666, since $gcd(ID, 2^{64}) = 2$, there is no inverse.
- b) Let a be the least integer that is no less than your ID number and is invertible mod m. Use Sage xgcd to find the inverse of $a \mod m$.

```
sage: a = 112971667
sage: g,x,y = xgcd(a, 2**64)
sage: print(g,x,y)
(1, -3514066771570022757, 21520870)
```

From the above output from Sage, we can see that $1 = a(-3514066771570022757) + 2^{64}(21520870)$. Therefore, inverse of a is -3514066771570022757.

c) In a C++ program, assume that there is a variable x with type "unsigned long int" (64bits), and the product of a and x is 2018, what is x?

```
// main.cpp
#include <iostream>
using namespace std;
int main() {
    unsigned long int a = 112971666;
    cout << a / 2018 << endl;
    return 0;
}

// bash output
$ make main
c++ main.cpp -o main
$ ./main
55981</pre>
```

Problem 3

Determine the unit group and the zero divisors of the ring $\mathbb{Z}/16\mathbb{Z}$.

Unit Group

Unit group is the set of elements in 16 \mathbb{Z} where $a_i \in \mathbb{Z}$ and $gcd(a_i, 16) = 1$. Therefore: $\{1, 3, 5, 7, 9, 11, 13, 15\}$

Zero Divisors

Zero divisors is the set of elements in $16\mathbb{Z}$ where $a_i \in \mathbb{Z}$ and $gcd(a_i, 16) \neq 1$. Therefore: $\{2, 4, 6, 8, 10, 12, 14\}$

Problem 4

Determine the unit group and the zero divisors of the ring $\mathbb{Z}/15\mathbb{Z}$.

Unit Group

Unit group is the set of elements in 15 \mathbb{Z} where $a_i \in \mathbb{Z}$ and $gcd(a_i, 15) = 1$. Therefore: $\{1, 2, 4, 7, 8, 11, 13, 14\}$

Zero Divisors

Zero divisors is the set of elements in 15 \mathbb{Z} where $a_i \in \mathbb{Z}$ and $gcd(a_i, 15) \neq 1$. Therefore: $\{3, 5, 6, 9, 10, 12\}$