

NFA与DFA在定义语言能力上是否等价?

> 是否定义了同样的语言?

定义语言L的 DFA只有一个 还是多个?

定义语言L的 NFA只有一个 还是多个?

那么,不管多 少, 定义语言 L的DFA和NFA 都是彼此相互 等价的。

DFA与NFA等价性

- ➤ 定理2.12:语言L为某个DFA接受当且仅当它为某个NFA接受
- > 字母表Σ相同
- 无论w∈Σ是为DFA所接受还是为NFA接受,当且仅当它们都有一条标记为w的、始端为初始状态、末端为接受状态的路径存在。
- > 证明:
 - 当且:构造性证明任一个NFA都能被等价地转换为DFA。
 - 仅当:显然,任一DFA都是NFA特例。

基于状态幂集的构造性证明思路

NFA(Q, Σ , υ , q₀, F) \Longrightarrow DFA

思路:将Q的子集作为DFA的状态,求转移弧(子集构造法)

对于S, T \subseteq Q , 如果 \forall p \in T · \exists q \in S · p \in v(q, a) , 那么T =v'(S, a) , 意味着S, T 是DFA的状态, υ' 是DFA的转移函数。从而, $\upsilon' = \{((S, a), T) \mid S \subseteq Q, a \in \Sigma, T = \bigcup q \in S \cdot \upsilon(q, a)\}$ $F' = \{ S \subseteq Q \mid S \cap F \neq \emptyset \}$ DFA $(2^{Q}, \Sigma, \upsilon', \{q_0\}, F')$ 最后,去除可达性①和②的状态(无用状态)得到Qn。即有, $2^{Q} \Rightarrow Q_{D}$; $v' \Rightarrow v_{D}$; 同时, $F' \Rightarrow F_{D} = \{ S \in Q_{D} \mid S \cap F \neq \phi \}$ 最终构造出: DFA $(Q_D, \Sigma, \upsilon_D, \{q_0\}, F_D)$ 。

NFA⇒DFA子集构造法

> 状态

DFA:

$$\{q_0, q_1\}$$

φ

$$(q_1)$$

$$\left\{q_0, q_2\right\}$$

$$(\{q_0, q_1, q_2\})$$

 $\{q_2\}$

$$(q_1, q_2)$$

对每一个NFA状态的子集DFA都有一个状态与之对应。

NFA⇒DFA子集构造法

> 转移

NFA→DFA子集构造法

含有NFA接受状态的集合作为DFA接受状态。

NFA→DFA子集构造法

最后,删除不可达和不能到接受状态的那些状态。

基于活动状态集的优化构造方法

已读前缀x, 剩余串ay; 当前输入符号a; 当前状态集合T_{i-1}; T_{i-1}=ῦ(q₀,x)

输入串xay

已读前缀xa, 剩余串y; 当前状态集合T_i; T_i=ῦ(q₀,xa)

例:基于活动状态集的NFA转DFA

NFA 到 DFA 的子集构造算法

```
输入: NFA (Q, Σ, υ, q_0, F)
输出: DFA (\mathbb{Q}, Σ, move[], {q_0}, {S∈\mathbb{Q} | S∩F \neq \phi})
\mathbb{Q} = \varphi;
move[] = NULL;
将{q<sub>0</sub>}加入Q且未标记;
while (ℚ 中存在一个未标记元素S) {
       标记S;
       for (a \in \Sigma) {
               T = Uq \in S \cdot v(q, a);
               if (T∉ℚ) 将T 加入ℚ 中且未标记;
               move[S, a] = T
```


子集法示例

	0	1
{0}	{0}	{0,1}
{0,1}	{0,2}	{0,1}
{0,2}	{0}	$\{0,1,3\}$
{0,1,3	} {0,2}	{0,1}

括号中数字i代表状态q_i

子集法示例

子集构造法的正确性

- ▶ <u>定理2.11:</u> 若 DFA D 是从NFA N 通过子集构造法构造而成,则 L(D) = L(N)。
- ightharpoonup 依照w 长度归纳 $\tilde{v}_N(q_0, w) = \tilde{v}_D(\{q_0\}, w)$
 - 基础: 对于 $\mathbf{w} = \mathbf{\epsilon}$, $\tilde{\mathbf{v}}_{N}(\mathbf{q}_{0}, \mathbf{\epsilon}) = \tilde{\mathbf{v}}_{D}(\{\mathbf{q}_{0}\}, \mathbf{\epsilon}) = \{\mathbf{q}_{0}\}$ 。
 - 归纳步: 假定归纳假设 (IH) 是对短于w 的串成立。 令w = xa, 则IH对于x 成立。
 - 那么,令 $\tilde{v}_N(q_0, x) = \tilde{v}_D(\{q_0\}, x) = S$
 - \diamondsuit T = Up \in S $\cdot \upsilon_N$ (p, a)
 - 则根据子集构造法知 $\tilde{\upsilon}_D(\{q_0\}, w) = \upsilon_D(\tilde{\upsilon}_D(\{q_0\}, x), a) = \upsilon_D(S, a) = Up \in S \cdot \upsilon_N(p, a) = T$
 - 同时根据定义知 $\tilde{\upsilon}_N(q_0, w) = \mathsf{Up} \in \tilde{\upsilon}_N(q_0, x) \cdot \upsilon_N(p, a) = \mathsf{T}$
 - 得证。

	0	1
$\{q_0\}$		

	0	1
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$

	0	1
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0\}$ $\{q_0,q_1\}$		

	0	1
$\{q_0\}$	$\left\{ q_{0},q_{1}\right\}$	$\{q_0\}$
$\{q_0\}$ $\{q_0,q_1\}$	$\{q_0,q_1\}$ $\{q_0,q_1,q_2\}$	$\{q_0\}$

	0	1
$\{q_0\}$	$\left\{ q_{0},q_{1}\right\}$	$\{q_0\}$
$\{q_0,q_1\}$	$\{q_0,q_1\}$ $\{q_0,q_1,q_2\}$	$\{q_0\}$
$\{q_0,q_1,q_2\}$		

➤ 识别包含001子串的0-1串,NFA转换为DFA

	0	1
$\{q_0\}$	$\left\{ q_{0},q_{1}\right\}$	$\{q_0\}$
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_0\}$
$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_0,q_3\}$
$\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$	${q_0,q_3}$
$\{q_0,q_1,q_3\}$	$\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_3\}$

2024/3/5

	0	1
->{q ₀ }	$\left\{ q_{0},q_{1}\right\}$	$\{q_0\}$
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_0\}$
$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_0,q_3\}$
$*{q_0,q_3}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_3\}$
$*{q_0,q_1,q_3}$	$\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_3\}$
$*\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_3\}$

➤ 识别包含001子串的0-1串,NFA转换为DFA

	0	1
$->\{q_0\}/p_0$	$\{q_0,q_1\}$	$\{q_0\}$
${q_0,q_1}/{p_1}$	$\{q_0,q_1,q_2\}$	$\{q_0\}$
${q_0,q_1,q_2}/{p_2}$	$\{q_0,q_1,q_2\}$	$\{q_0,q_3\}$
$*{q_0,q_3}/p_3$	$\{q_0,q_1,q_3\}$	$\{q_0,q_3\}$
$*{q_0,q_1,q_3}/p_4$	$\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_3\}$
$*{q_0,q_1,q_2,q_3}/p_5$	$\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_3\}$

2024/3/5

子集法NFA转DFA结果

> 识别包含001子串的0-1串,NFA转换为DFA

Command:

List of States:
State[0] State[1] State[2] State[3] - Final state State[4] - Final state State[5] - Final state
List of Transitions:
State[0]> 0> State[1] State[0]> 1> State[0]
State[1]> 0> State[2] State[1]> 1> State[0]
State[2]> 0> State[2] State[2]> 1> State[3]
State[3]> 0> State[4] State[3]> 1> State[3]
State[4]> 0> State[5]

State[4] --> 1 --> State[3]

	0	1
$\rightarrow p_0$	p_1	p_0
p_1	p_2	p_0
p_2	p_2	p_3
*p ₃	P_4	p_3
*p ₄	p_5	p_3
*p ₅	p_5	p_3

Automata Design

> Input= 0101011	
> Executed Transitions: State[0]> 0> State[1] State[1]> 1> State[0] State[0]> 0> State[1] State[1]> 1> State[0] State[0]> 0> State[1]	
State[1]> 1> State[0] State[0]> 1> State[0] > Results:	
- State[0] is NOT a Final State - Input REJECTED	

ε-转移与ε-NFA

- ε-转移:不消耗输入符号发生状态转移
- \rightarrow 用符号 ϵ 标记 ϵ -转移。含有 ϵ -转移的NFA就是 ϵ -NFA

接受:

a, b, aab, bab, aabab, ...

拒绝:

ε, aa, ba, bb, ...

观察活动状态集变化情况:初始为 $\{q_0, q_1\}$;遇到a或b都转移到 $\{q_2\}$; $\{q_2\}$ 遇到a转移到 $\{q_1\}$ 。

例:十进制定点数

由四部分依次组成:

- (1) +号, -号或空;
- (2) 数字串或空;
- (3) 小数点;
- (4) 数字串或空。

限定(2)和(4)不能同时为空。

精化:

- 1) 无前0、后0
- 2) 可无小数点

例:识别金额和账号的NFA

识别的这个符号串可能是金额,也可能是账号。 类似地:识别这样的0-1符号串,它或者包含偶 数个0或者包含奇数个1

	0	1
$\rightarrow *e_0$	e	e_0
e	e_0	e

	0	1
\rightarrow 0	0	o_1
*o ₁	o_1	0

识别串含有偶数个0或者奇数个1

	0	1	ε
$\rightarrow q_0$	φ	φ	$\{e_0, o\}$
*e ₀	{e}	$\{e_0\}$	φ
e	$\{e_0\}$	{e}	φ
О	{o}	$\{o_1\}$	φ
*o ₁	$\{o_1\}$	{o}	φ

状态的ε-闭包

状态q 的ε-闭包,记为ω(q),指自身以及经过连续ε-转移所能到达的状态的集合(不消耗输入)

2024/3/5

- > ε-NFA中状态q的ε-闭包: ω(q)
- > ε-闭集: 状态集合S为ε-闭集当且仅当S=ω(S)
- > 对任意状态集合S, ω(S)是ε-闭集
- ε-闭集概念扩展了活动状态集 概念用于实现ε-NFA判定性质

	0	1	3
$\rightarrow q_0$	φ	$\{q_1\}$	$\{q_1\}$
q_1	$\{q_0,q$	$ _1$ φ	$\{q_2\}$
*q ₂	φ	φ	φ

给定ε-NFA

S	求ε-闭包ω(S)
φ	φ
$\{q_0\}$	$\{q_0,q_1,q_2\}$
$\{q_1\}$	$\{q_1,q_2\}$
$\{q_2\}$	$\{q_2\}$
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$
$\{q_0,q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_1,q_2\}$	$\{q_1,q_2\}$
q_0,q_1,q	$_{2}$ } { q_{0} , q_{1} , q_{2} }

ε-闭集与ε-NFA判定性质

输入串: ε; 00; 001; 101; 11

	0	1	3
$\rightarrow q_0$	φ	$\{q_1\}$	$\{q_1\}$
q_1	$\{q_0,q$	₁ } φ	$\{q_2\}$
q_2	φ	φ	φ

	ω()
φ	φ
$\{q_0\}$	$\{q_0,q_1,q_2\}$
$\{q_1\}$	$\{q_1,q_2\}$
$\{q_2\}$	$\{q_2\}$
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$
$\{q_0,q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_1,q_2\}$	$\{q_1,q_2\}$
$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$

已读前缀x; 剩余串ay;

当前输入符号a;

当前状态集合 $S = \tilde{v}(q_0,x)$

输入串xay

 $\boxed{S} \xrightarrow{a} \boxed{T}$

已读前缀xa;剩余串y;

转移状态集合:

 $T = \omega(Up \in S \cdot \upsilon(p, a))$

扩展的转移函数

- \triangleright 基础: $\tilde{v}(q, ε) = \omega(q)$
- ▶ 归纳: ῦ(q, xa) = ?
 - \Leftrightarrow : $\tilde{v}(q, x) = S$
 - \Leftrightarrow : $T = Up \in S \cdot \upsilon(p, a)$
 - 则: $\tilde{v}(q, xa) = Up \in T \cdot \omega(p)$, 或者, $\tilde{v}(q, xa) = \omega(T)$
- ▶ ῦ (q, w) 是始端为q,标记为w的路径的末端之集合。

ε-NFA语言:

对于ε-NFA N = (Q, Σ, υ, q₀, F), 其中υ : Q×ΣU{ε} \rightarrow 2^Q,语言为L(N) = {w∈Σ* | \tilde{v} (q₀, w)∩F \neq φ}

扩展转移函数的例子

$$\begin{split} \tilde{\upsilon}(q,\epsilon) &= \omega(q); \\ \tilde{\upsilon}(q,xa) &= \omega(\text{Ur} \in \tilde{\upsilon}(q,x) \cdot \upsilon(r,a)) \end{split}$$

	0	1	3
$\rightarrow *q'_0$	φ	φ	$\{q_0\}$
q_0	$\{q_0,q_1\}$	$\{q_0\}$	$\{q_3\}$
q_1	φ	$\{q_2\}$	φ
*q ₂	φ	φ	φ
q_3	φ	$\{q_2\}$	φ

模拟w =101? 式中ω为求 ε-闭包函数

```
\begin{split} &\tilde{\upsilon}(q_0, 101) = \mathsf{U} x \in \tilde{\upsilon}(q_0, 10) \cdot \omega \upsilon(x, 1) \\ &= \mathsf{U} x \in (\mathsf{U} y \in \tilde{\upsilon}(q_0, 1) \cdot \omega \upsilon(y, 0)) \cdot \omega \upsilon(x, 1) \\ &= \mathsf{U} x \in (\mathsf{U} y \in (\mathsf{U} z \in \tilde{\upsilon}(q_0, 2) \cdot \omega \upsilon(z, 1))) \cdot \omega \upsilon(y, 0)) \cdot \omega \upsilon(x, 1) \\ &= \mathsf{U} x \in (\mathsf{U} y \in (\mathsf{U} z \in \{q_0, q_0, q_3\} \cdot \omega \upsilon(z, 1)) \cdot \omega \upsilon(y, 0)) \cdot \omega \upsilon(x, 1) \\ &= \mathsf{U} x \in (\mathsf{U} y \in \{q_0, q_2, q_3\} \cdot \omega \upsilon(y, 0)) \cdot \omega \upsilon(x, 1) \\ &= \mathsf{U} x \in \{q_0, q_1, q_3\} \cdot \omega \upsilon(x, 1) = \{q_0, q_2, q_3\} \end{split}
```


消除ε-转移(转为NFA)

- \triangleright ε-NFA (Q, Σ, υ, q₀, F) \Rightarrow NFA (Q, Σ, move[], q₀, F)
- \triangleright move[q, a]=ω(Up∈ω(q)·υ(p, a)), q∈Q, a∈Σ
- ➤ 消除NFA中不可达情形①和②即得结果。

	0	1	ε
->q ₀	φ	$\{q_1\}$	$\{q_1\}$
q_1	$\{q_0,q_1\}$	φ	$\{q_2\}$
$ *q_2 $	φ	φ	φ

	0	1
$\rightarrow q_0$	$\{q_0,q_1,q_2\}$	$\{q_1,q_2\}$
q_1	$\{q_0,q_1,q_2\}$	φ
$*q_2$	φ	φ

> 带有ε弧的路径用单一的转移替代

> 经ε弧到达原终结状态的所有状态都是结束状态

ε-NFA 到 DFA 的子集构造法

```
输入: ε-NFA (Q, \Sigma, \upsilon, q_0, F)
输出: DFA (\mathbb{Q}, \Sigma, move [], \omega(q_0), \{S \in \mathbb{Q} \mid S \cap F \neq \phi\})
\mathbb{Q} = \varphi; move [] = \text{NULL};
\omega(\{q_0\})加入\mathbb{Q} 且未标记;
                                                                       \mathbf{0}
                                                                                             3
while Q 中存在一个未标记元素S {
                                                                                  \{q_1\}
                                                                                            \{q_1\}
                                                            \rightarrow q_0
                                                                       φ
          标记S;
                                                                                            \{q_2\}
                                                                       \{q_0,q_1\} \varphi
                                                              q_1
          for (a \in \Sigma) {
                                                            *q_2
                                                                        φ
                                                                                             φ
                     T = \omega(\bigcup q \in S \cdot \upsilon(q, a));
                     if (T∉ ℚ) T加入ℚ 中且未标记;
                     move[S, a] = T
                                                 \rightarrow * | \{q_0, q_1, q_2\} \{q_0, q_1, q_2\} \{q_1, q_2\} 
                                                       \{q_1,q_2\} \{q_0,q_1,q_2\}
```


	0-9	+,-	•
\rightarrow {q ₀ ,q ₁ }	$\{q_1,q_3\}$	$\{q_1\}$	$\{q_2\}$
$\{q_1,q_3\}$	$\{q_1,q_3\}$	φ	$\{q_2,q_4,q_5\}$
$\{q_1\}$	$\{q_1,q_3\}$	φ	$\{q_2\}$
$\{q_2\}$	$\{q_4,q_5\}$	φ	φ
$*{q_2,q_4,q_5}$	$\{q_4,q_5\}$	φ	φ
$*{q_4,q_5}$	$\{q_4,q_5\}$	φ	φ

2024/3/5

子集构造法的正确性

- ▶ <u>定理2.22:</u> 语言L 被某个ε-NFA接受当且<u>仅当</u>L 为某个DFA接受。
- ightharpoonup 依照w 长度归纳 $\tilde{v}_N(q_0, w) = \tilde{v}_D(\omega(\{q_0\}), w)$ 。
 - 基础: 对于 $w=\epsilon$, $\tilde{v}_N(q_0,\epsilon)=\tilde{v}_D(\omega(\{q_0\}),\epsilon)=\omega(\{q_0\})$ 。
 - 归纳: 归纳假设IH对所有短于w 的串成立。 令w = xa,已知IH对于x 成立。令, $\tilde{\upsilon}_N(q_0,x) = \tilde{\upsilon}_D(\omega(\{q_0\}),x) = S$ 。
 - 那么有如下推导:
 - ① 根据定义 $\tilde{v}_N(q_0, xa) = Up \in S \cdot \omega(v_N(p, a)) = \omega(Up \in S \cdot v_N(p, a)), 令为T;$
 - ② 则根据子集构造法有 υ_D(S,a)=Up∈S ·ω(υ_N(p, a))=T;
 - ③ 那么 $\tilde{v}_D(\omega(\{q_0\}), xa) = v_D(\tilde{v}_D(\omega(\{q_0\}), x), a) = v_D(S, a) = T$ $= \tilde{v}_N(q_0, w), \quad 得证.$

小结

- 知识点: NFA (包括ε-NFA) 转DFA的子集构造法、 状态的ε-闭包、状态集合的ε-闭包、 ε-闭集、 扩展转移函数、NFA语言、 NFA三种表示
- ▶ 形式化记号: 转移函数υ()、扩展转移函数ῦ()、ε-闭包ω()、 集合运算Uq∈S·υ(q, a)

➤ 作业: p50-51: 2.5~2.7