Determinação da Condutividade Térmica de um metal

Francisco Cruz 63409, Pedro Henriques 63452, Sofia Leitão 63403 LCET. IST (16 de Abril 2009)

Neste trabalho foi determinada a constante de conduividade térmica do alumínio através da análise do regime estacionário tendo obtido, para uma tensão V₁, k1= 231 ± 4 Wm^{-1o}C⁻¹. Para uma tensão V₂ obteve-se k2=230± 4 Wm⁻¹°C⁻¹. A análise do regime variável permitiu ainda calcular um valor de k igual a k3= $353\pm99~W/m$ °C.

I- Introdução

A condução de calor é regida pela lei de Fourier. Esta estabelece que a densidade de fluxo de calor \vec{j}_{o} , num ponto do meio, é proporcional ao gradiente de temperatura nesse ponto, isto é:

$$\vec{j}_Q = k \overrightarrow{\nabla T} \tag{1}$$

À constante de proporcionalidade dá-se o nome de condutividade térmica, sendo uma grandeza intrínseca a cada material. Esta traduz a medida da capacidade do material de "conduzir" calor.

Se o fluxo de calor e a temperatura do meio não variarem ao longo do tempo, diz-se que o sistema atinge uma situação de equilíbrio, regime estacionário. Nesta situação, e no caso de um corpo unidimensional, integrando em x, temos:

$$\frac{\partial T}{\partial t} = 0 \Rightarrow \Delta^2 T = 0$$

$$T(\vec{r}, t) = T(x) = c_1 x + c_2$$
(2) e (3)

As constantes c1 e c2 ficam bem definidas uma vez impostas as condições de fronteira.

No sistema a estudar existirá uma fonte quente alimentada por uma resistência cuja potência é dada por:

$$P_1 = V_1 i_1 \tag{4}$$

Existirá também uma fonte fria que consome:
$$P_{FF} = \frac{\Delta mc\Delta T}{\Delta t}$$
 (5)

A diferença entre (6) e (7), será o calor dissipado por trocas de calor entre a barra e o ar, por unidade de tempo, pelo que:

$$k = \frac{P_{FF}}{A_{\sec \zeta \tilde{a}o}} \frac{dT}{dx}$$
 (6).

Para quantificar a variação a temperatura ao longo do corpo unidimensional no caso do regime variável recorre-se ao método de separação de variávais para a resolução da seguinte equação diferencial:

$$\frac{\partial T}{\partial t} = \frac{k}{\rho c} \frac{\partial^2 T}{\partial x^2} \tag{7}$$

conde c é a capacidade calorífica especifica e p é a densidade do material.

Impondo uma distribuidação inicial de temperaturas e novas condições de fronteira tem-se então que a solução da equação do calor é:

$$T(x,t) = T_a + \frac{T_b - T_a}{L} x + \sum_{n=1}^{\infty} a_n \exp\left(-\alpha \frac{n^2 \pi^2}{L^2} t\right) \sin\left(\frac{n\pi}{L} x\right)$$

$$\alpha_n = \begin{cases} \frac{2}{n\pi} (2T_0 - T_a - T_b) & n \text{ impar} \\ \frac{2}{n\pi} (T_b - T_a) & n \text{ par} \end{cases}$$
(8)

Ou seja é composta por uma série infinita de termos convergentes para a solução do regime estacionário. De facto, o valor de $\alpha = K/(\rho c)$ dá-nos uma medida da rapidez com a qual o sistema alcança o mesmo.

A temperatura em cada ponto, pode no entanto ser aproximada por um polinómio do 4º grau:

$$T(\vec{r},t) = T(x) = c_1 x^4 + c_2 x^3 + c_3 x^2 + c_4 x + c_5$$
 (9)

Aproximando também,

$$\left. \frac{\partial T}{\partial t} \approx \frac{\Delta T}{\Delta t} \right|_{x_m} = \frac{T(x_m, t_1 + \Delta t) - T(x_m, t_1 - \Delta t)}{2\Delta t}$$
 (10)

Tem-se, directamente da equação (7), que:

$$k = \frac{\rho c \left[T(x_m, t_1 + \Delta t) - T(x_m, t_1 - \Delta t) \right]}{2\Delta t \frac{\partial^2 T}{\partial x^2} \bigg|_{x}}$$
(11)

II- Procedimento e Montagem

Para a realização deste trabalho utiliza-se uma barra de alumínio de comprimento L=12cm e de secção 4cm². A montagem do sistema é ilustrada pela figura seguinte :

Fig.1- Esquema da Montagem

Existem duas fontes no sistema, uma fonte quente, T1, que é alimentada por uma resistência eléctrica percorrida por um corrente que é conhecida e uma fonte fria T2, arrefecida por um sistema de água circulante. A barra possui ainda sensores cuja posição é conhecida e que estão ligados a um software que regista os pares de tempo e temperatura.

Na primeira parte, para o estudo do regime estacionário, serão efectuadas medições de temperatura de equilíbrio para duas tensões de alimentação diferentes.

Na segunda parte, será estudado o regime variável. Para isso, desligar-se-à a fonte de alimentação do sistema e, de imediato, começarão a ser registados os valores de temperatura ao longo da barra durante um período de cerca de 10 minutos.

III- Resultados e Análise

Foi medido o caudal do fluído de arrefecimento em duas ocasiões distintas e obtive-se a tabela:

	Caudal	(dm³•s ⁻¹)	e _{Caudal} (dm ³ ·s ⁻¹)
1ª Medição	0,00344		
2ª Medição	0,00359	0,003515	0,00005

Tabela 1

Mediu-se também a tensão e a intensidade que actuavam na resistência de cobre para determinar a potência emitida:

V(V)	e _V (V)	I(A)	e _I (A)	P(W)	e _P (W)
14,6	0,1	1,25	0,01	18,25	0,271

Tabela 2

Obteve-se, a partir do software que automaticamente convertia as tensões enviadas pelos diferentes termómetros ao longo da barra, os diferentes valores das temperaturas à saída (T_{H2Oa}) e entrada do fluído (T_{H2Ob}) e ao longo da barra (T_1 a T_5):

	L (cm)	T _a (°C)	T _b (°C)	T _{médio} (°C)	e⊤(°C)
T ₁	1	51,91	51,79	51,85	0,06
T ₂	3,5	48,01	47,9	47,955	0,055
T ₃	6	42,85	42,76	42,805	0,045
T ₄	8,5	37,42	37,33	37,375	0,045
T ₅	11	32,46	32,39	32,425	0,035
T _{H2Oa}	saída H₂O	22,66	22,58	22,62	0,04
T _{H2Ob}	entr. H₂O	22,09	22,04	22,065	0,025

Tabela 3

Com os valores das temperaturas da entrada e saída da água obtive-se o valor da potência recebida:

P(W)	e _P (W)	
8,166153	1,073	

Tabela 4

Ora, este valor é muito inferior à potência emitida $(18,25\pm0,271W)$ pelo que desconfiámos que, mesmo dissipando-se algum calor ao longo da barra, nas juntas do material e na própria fonte quente, o valor é muito diminuto. Pelo que acabámos por concluir que a melhor aproximação à potência útil seria a emitida já que a recebida pela fonte fria tinha os termómetros em contacto com o ar o que fazia com que os valores das temperaturas $T_{\rm H2Oa}$ e $T_{\rm H2Ob}$ não fossem os reais.

Efectuámos o gráfico da temperatura (em °C) em função do comprimento da barra de alumínio (em cm):

O declive da recta é: -1.9757 ± 0.0059 (que corresponde a $\frac{dT}{dx}$) e utilizando o valor da potência emitida obtemos um valor para a constante de condutividade térmica do alumínio: $\mathbf{k1} = 231 \pm 4 \ \mathrm{Wm}^{-1}\mathrm{C}^{-1}$.

Repetiu-se a experiência com outro valor de tensão:

V(V)	e _v (V)	I(A)	e _I (A)	P(W)	e _P (W)
17,1	0,1	1,47	0,01	25,137	0,318

Tabela 5

E obtive-se novamente a tabela de valores para as temperaturas:

peracaras.						
	L (cm)	T _a (°C)	T _b (°C)	T _{médio} (°C)	e _⊤ (°C)	
T ₁	1	62,76	62,57	62,665	0,095	
T ₂	3,5	57,53	57,38	57,455	0,075	
T ₃	6	49,92	49,78	49,85	0,07	
T ₄	8,5	42,27	42,17	42,22	0,05	
T ₅	11	36,51	36,39	36,45	0,06	
T _{H2Oa}	saída H₂O	23,07	22,98	23,025	0,045	
T _{H2Ob}	entr. H₂O	22,29	22,2	22,245	0,045	

Tabela 6

E o gráfico da temperatura (em °C) em função do comprimento da barra (em cm):

O declive da recta é: $-2,7383 \pm 0,0092$ e **k2= 230± 4 Wm**⁻¹°**C**⁻¹

Para o segundo procedimento removeu-se a fonte quente e registou-se o decaimento da temperatura ao longo da barra. Optou-se por analisar as temperaturas num determinado instante (t=90.281s) ao longo do comprimento da barra e obtive-se o seguinte gráfico:

Gráfico 3

Ora fazendo uma interpolação polinomial de quarta ordem, tira-se uma aproximação da segunda derivada da temperatura em ordem ao comprimento x.

Considerou-se agora um x aleatório (x = 6 cm) e obteve-se o valor de T (6,t+ Δ t) e de T(6,t- Δ t) em que Δ t é um intervalo de tempo suficientemente pequeno (não se considerou muito pequeno devido ao ruído).

Para $\Delta t = 10$ s obtivémos um valor para a constante de condutividade térmica do alumínio de k3= 353±99 W/m °C

IV- Conclusão

Os valores obtidos na primeira parte da experiência encontram-se próximos do valor tabelado 237 Wm⁻¹K⁻¹. k1 apresenta um desvio de cerca de 2,6 % e k2 de 3,2%.

No entanto, o valor experimental do k não cobre o valor tabelado porque os erros considerados na experiência são muito pequenos. O desvio à exactidão poderá ser explicado, na sua maioria, pelas trocas de calor com o ar. De facto o sistema não está perfeitamente isolado. Para além disso, como já foi anteriormente mencionado na análise dos

resultados, optou-se por usar o valor da potência da fonte quente como o valor do calor tranferido pela barra por unidade de tempo porque o cálculo da energia consumida pela fonte fria introduzia um grande erro na nossa medida. Verificámos que o último sensor deveria estar colocado mais próximo da fonte fria. Assim, com esta aproximação, o calor dissipado por trocas de calor com o meio envolvente não está a ser considerado no cálculo.

Na segunda parte da actividade experimental explicamos os elevados erros à exactidão devido à aproximação que utilizámos em vez da aproximação pela expressão (8). Além disto achou-se que a escolha do intervalo de tempo Δt poderá ter sido muito pequeno e portanto o ruído terá sido muito relevante e causador de uma grande fonte de erro não considerada no cálculo do k.

A forma mais correcta de calcular k no regime variável seria recorrendo directamente à expressão (8), onde se tomariam os primeiros 3 a 4 termos da série dos senos. No entanto, dado o rigor da actividade experimental e a dificuldade deste cálculo, optámos por calcular k através do raciocínio descrito na introdução teórica. O valor obtido é assim muito pouco exacto, k3 tem um desvio de 49,1%.

Há ainda a apontar uma outra fonte de erro que poderá ser responsável pelo desvio à exactidão dos resultados obtidos: a calibração dos sensores cujo o erro é difícil de estimar. De facto, um pequeno erro de calibração da ordem das décimas num único sensor, alteraria bastante o valor de k obtido.

Claramente, o melhor método para determinar a condutividade de um metal é pela análise da evolução de temperatura ao longo da barra aquando do regime estacionário, uma vez que permite a obtenção de resultados mais exactos.