

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE MATHEMATICS

H

Higher Tier

Paper 3 Calculator

Tuesday 12 June 2018

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- · mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.

Advice

• In all calculations, show clearly how you work out your answer.

Answer all questions in the spaces provided

1 Circle the decimal that is closest in value to $\frac{11}{20}$

[1 mark]

- 0.56
- 0.6
- 0.525
- 0.5

2 Circle the list of **all** the integers that satisfy $-2 < x \le 4$

[1 mark]

-2, -1, 0, 1, 2, 3

- -2, -1, 0, 1, 2, 3, 4
- -1, 0, 1, 2, 3, 4

3 Circle the largest number.

[1 mark]

- 3.27
- 3.27
- 3.277
- 3.207

4	What is the size of an exterior angle of a regular decagon? Circle your answer. [1 mark]					
		18°	36°	144°	162°	
5	a is a commo	on factor of 72 and	i 120			
	b is a commo	on multiple of 6 an	d 9			
	Work out the	highest possible	value of $\frac{a}{b}$			
			D			[4 marks]
		Answer				
		Turn ov	er for the next que	estion		

6	A and B	are simila	ar shapes.

B is an enlargement of A with scale factor 1.5

Α

В

Not drawn accurately

Work out the values of x, h and w.

[3 marks]

x =	degrees

$$h =$$
 cm

$$w =$$
______ cm

Investment A	Save £150 per month for 2 years. 2.5% interest is added to the total amount saved.	
Investment B	Invest £3500 Compound interest is added at 3% per year.	
After 2 years, how	v much more is investment B worth than investment A?	[4 marks]
,	Answer £	

Turn over for the next question

1

8	(a)	Show that the lines $y = 3x + 7$ and $2y - 6x = 8$ are parallel. Do not use a graphical method.	[3 marks]
8	(b)	Is the point (–5, –6) above, below or on the line $y = 3x + 7$? Tick one box. Above Below On the line You must show your working. Do not use a graphical method.	[2 marks]

Work out the original cost.	[3 mar
Answer £	
The <i>n</i> th term of a sequence is $12n - 5$	
Work out the numbers in the sequence that	
have two digits	
and	
4 •	
are not prime.	[3 mar
Answer	

[2 marks]

11	$\mathbf{a} = \begin{pmatrix} 6 \\ -10 \end{pmatrix}$	$\mathbf{b} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$	$\mathbf{c} = \begin{pmatrix} -4 \\ 7 \end{pmatrix}$	
11 (a)	Work out	a + b + c		

Answer

11 (b)) :	Show that	a + 2c	is parallel to b	[2 marks]

	Do not writ outside the box
(s]	
rk]	

12	pressure = $\frac{\text{force}}{\text{area}}$	
	A force of 40 Newtons is applied to an area of 3.2 square metres.	
	Work out the pressure.	
	Give the units of your answer.	[2 marks]
	Answer	
13	Tick all the statements that are true for any rhombus.	[1 mark]
	The diagonals are lines of symmetry	
	The diagonals bisect each other	
	The diagonals are perpendicular	
	The diagonals are equal in length	
	Turn over for the next question	

Draw the graph of $y = 0.8^x$ for values of x from 0 to 6

[3 marks]

x	0	1	2	3	4	5	6
y							

15 Amy has x beads.

Billy has three more beads than Amy.

Carly has four times as many beads as Billy.

Circle the expression for the number of beads that Carly has.

[1 mark]

$$4x + 3$$

$$4x + 3$$
 $3x + 4$

$$4(x + 3)$$
 $x + 12$

$$x + 12$$

16 Two straight lines intersect at point A.

Not drawn accurately

Circle the coordinates of A.

[1 mark]

$$(-\frac{3}{4},3)$$
 (-4,3) (-12,3)

$$(-\frac{4}{3}, 3)$$

Method A For the first two digits use an odd number between 30 and 100 For the last two digits use a multiple of 11	
Method B Use four digits in the order even odd even odd Do not use the digit zero	
	[3 marks]
Answer	
Codes can	For the first two digits use an odd number between 30 and 100 For the last two digits use a multiple of 11 Method B Use four digits in the order even odd even odd Do not use the digit zero Which method gives the greater number of possible codes? You must show your working.

Show that, for $x \neq 0$

$$\frac{x+4}{3x}-\frac{5}{2x}$$

can be written in the form $\frac{ax+b}{cx}$ where a, b and c are integers.

[3 marks]

Answer _____

19 The equation of a straight line is 3x + 2y = 24

Circle the point where the line crosses the \emph{x} -axis.

[1 mark]

(0, 8)

(12, 0)

(0, 12)

(8, 0)

7

20 All dimensions are in centimetres.

Use Pythagoras' theorem to work out the exact value of $\frac{x}{y}$

[3 marks]

Answer

	П
	П
	П
	П
	П
 · ··-··,	 -

				Do not w
21		The mass of an ornament is m grams.		box
		The height of the ornament is h centimetres.		
		m is directly proportional to the cube of h .		
		m = 1600 when h = 8		
24	(a)	Work out an equation connecting m and h		
4 1	(a)	Work out an equation connecting m and h .	[3 marks]	
		Answer		
21	(b)	Work out the mass of an ornament of height 12 centimetres.		
	` ,		[2 marks]	
		Answer	grams	
			. 9	
		Turn over for the next question		
		iam order for the max quotion		

A, B and C are points on a circle.

DCB is a straight line.

PAQ is a tangent to the circle.

Sam is trying to work out the size of angle m.

Here is his working.

angle $ACB = 56^{\circ}$ angles in the same segment are equal

 $m = 180^{\circ} - 56^{\circ}$ angles at a point on a straight line add up to 180°

 $m = 124^{\circ}$

Make a criticism of his working.

[1 mark]

23 A sequence of numbers is formed by the iterative process

$$u_{n+1} = \frac{3}{u_n + 1}, \qquad u_1 = 4$$

Work out the values of u_2 and u_3

[2 marks]

u₂ =

 u_3 =

Turn over for the next question

3

The speed-time graph shows 20 seconds of a car journey.

Harry wants to estimate the distance the car travels in this time.

He uses a triangle and a trapezium, as shown, to estimate the area under the graph.

24 (a)	Complete Harry's method to estimate the distance the car travels.	[3 marks]
	Answer m	

24	(b)	For this journey, which of these is true for Harry's method?	Do not w outside t box	
		Tick one box. [1	l mark]	
		It works out an overestimate of the distance		
		It works out an underestimate of the distance		
		It could work out an overestimate or an underestimate of the dista	nce	
		Turn over for the next question		
				7

Do not write outside the box

25 ABCDEF is a triangular prism which represents part of a hill.

ABCF is the horizontal rectangular base.

D is vertically above C.

[2 marks]	Work out the height <i>CD</i> .	25 (a)

Answer _____

ı			
ı			
ı			
ı			
ı			
ı			
-	 ``	 ~-··	

m

Do not write outside the box

25 (b) Jamil walks in a straight line from *A* to *D*.

Work out the size of angle DAC.

Answer

You must show your working.	[4 marks]

6

Turn over ▶

degrees

The histogram shows information about the speed of cars as they pass a checkpoint.

The scale on the frequency density axis is missing.

The histogram shows information about 480 cars.

26 (a)	How many cars does the first bar represent?	[4 marks]
	Answer	

23
Cars with a speed greater than 40 mph are over the speed limit.
Use the histogram to estimate the number of cars that are over the speed limit. [2 marks]
Answer
Turn over for the next question

6

Do not v	/rit
outside	the
box	

A hag contains 20 diags
A bag contains 30 discs. 10 are red and 20 are blue.
One disc is taken out at random and replaced by two of the other colour. Another disc is then taken out at random and replaced by two of the other colour. Another disc is then taken out at random.
Work out the probability that all three discs taken out are red . [3 marks
Answer

Do not write outside the box

P is a point on the circle with equation

P has *x*-coordinate 4 and is below the *x*-axis.

Work out the equation of the tangent to the circle at P.

Not drawn accurately

 $x^2 + y^2 = 80$

•			[5 marks]

Answer _____

END OF QUESTIONS

8

2 8

GCSE **Mathematics**

8300/3H – Paper 3 Higher Tier Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments		
	0.56	B1			
1	Additional Guidance				
	-1, 0, 1, 2, 3, 4	B1			
2	Additional Guidance				
	3.27	B1			
3	Additional Guidance				
	36°	B1			
4		Additional G	Suidance		
		,			

Question	Answer	Mark	Comments		
	At least two common factors of 72 and 120 from 2, 3, 4, 6, 8, 12, 24 or $72 = 2 (x) 2 (x) 2 (x) 3 (x) 3$ or $120 = 2 (x) 2 (x) 2 (x) 3 (x) 5$	M1	May be seen on a diagrar	m, eg factor tree	
	At least two common multiples of 6 and 9 from 18, 36, 54	M1			
5	(HCF =) 24 selected from factors or $a = 24$ or (LCM =) 18 selected from multiples or $b = 18$	M1	oe eg HCF = 2 (x) 2 (x) 2 (x) 3 24 can be implied from their numerator oe eg LCM = 2 (x) 3 (x) 3 18 can be implied from their denominator oe eg $\frac{2 \times 2 \times 2 \times 3}{2 \times 3 \times 3}$		
	$1\frac{1}{3}$ or $\frac{4}{3}$ or 1.33	A1	oe Accept $\frac{24}{18}$ Ignore further incorrect ca	ancelling	
	Additional Guidance				
	HCF = 24 and LCM = 18			M1M1M1	
	HCF = 24			M1M0M1	
	LCM = 18		M0M1M1		

Question	Answer	Mark	Comments	
	54	B1	May be on diagram	
	7.5 6	B2	May be on diagram B1 for 1 correct or for answers transpose	d
	Additional Guidance If answers are in wrong position on answer lines, check working and diagram for clear indication of possible transcription errors			
0				
	eg $w = 9 \div 1.5 = 6$ in working, 9 on answer line		B1	
	$9 \div 1.5 = 6$ in working, 9 on answer line			В0
	Answer line takes precedence over diagram eg $x = 54$ on diagram and $x = 81$ on answer line			В0

Question	Answer	Mark	Comments	
	$2 \times 12 \times 150 \times 1.025$ or $24 \times 150 \times 1.025$ or 3690 or $2 \times 12 \times 150 \times 0.025$ or $24 \times 150 \times 0.025$ or 90	M1	Investment A oe	
	1.03 × 3500 or 3605	M1	Investment B oe eg 0.03 × 3500 + 3500 or 105 + 3500 May be implied from 1.03 ² × 3500	
7	1.03 ² × 3500 or 1.03 × their 3605 or 1.0609 × 3500 or 3713(.15) or 0.03 × their 3605 or 108(.15)	M1dep	oe Dependent on 2nd M1	
	23.15	A1	Condone £23.15p	
	Additional Guidance			
	If build up methods are used they mu	st be com	plete	
	1% = 35 3% = 95 (error without showing method) 95 + 3500 or 3595			МО
	1% = 35 $3\% = 35 \times 3 = 95$ (error but correct method shown) 95 + 3500 or 3595			M1
	1.03 ³ × 3500 (full method incorrect but	ut implies	1.03 × 3500)	M0M1M0

Question	Answer	Mark	Comments		
	Alternative method 1 – Using gradients				
	Gradient of $y = 3x + 7$ is 3		May come from using points on line eg using (0, 7) and (1, 10)		
			and $\frac{10-7}{1-0} = 3$		
	and $y = 3x + 4$		or correct calculation for gradient from points on line $2y - 6x = 8$		
	and		eg using (0, 4) and (1, 7) and $\frac{7-4}{1-0} = 3$		
	gradient of $2y - 6x = 8$ is 3 or $6 \div 2$		B2 for $y = 3x + 4$ and lines have same gradient		
		В3			
			or $y = 3x + 4$		
			and gradient of $2y - 6x = 8$ is 3 or $6 \div 2$		
8(a)			or gradient of $y = 3x + 7$ is 3		
			and $y = 3x + 4$		
			B1 for gradient of $y = 3x + 7$ is 3		
			or $y = 3x + 4$		
			or gradient of $2y - 6x = 8$ is 3 or $6 \div 2$		
	Alternative method 2 – Using coordi	nates and	l distances		
	Chooses a value for x and correctly evaluates the y value for both lines	M1	eg (0, 7) and (0, 4)		
	Chooses a different value for x and correctly evaluates the y value for both lines	M1dep	eg (1, 10) and (1, 7)		
	States that y values are a constant distance apart so parallel	A1	oe		

	Alternative method 3 – Using simultaneous equations			
	y = 3x + 4 or $y - 3x = 4$	M1	oe Equates coefficients in an	y form
	or $2y = 6x + 14$ or $2y - 6x = 14$			
	Any attempt to eliminate both variables from their equations	M1dep		
	States simultaneous equations have no (real) solution and concludes parallel	A1		
	Ade			
	To award A mark on Alternative method 2, the working must be seen			
8(a)	y = 3x + 4 and lines have gradient of $3x$			B2
cont	y = 3x + 4 and $3x$ identified in both equations			B2
	Both lines have gradient 3x	B1		
	y = 3x + 7, gradient 3 and $y = 3x + 8$, gradient 3 (error in rearrangement)			B1
	y = 3x + 8, gradient 3 (error in rearrangement)			В0
	Parallel as both have same gradient			В0
	2(3x + 7) - 6x = 8			M1
	6x + 14 - 6x = 8 $14 = 8$			M1
	$y = 3x + 7$ and $y = \frac{8 + 6x}{2}$ are equated coefficients,			M1
	Alternative method 3			

Question	Answer	Mark	Commer	nts	
8/h\	$3 \times -5 + 7$ or $-15 + 7$ or -8 or $(-5, -8)$ or $(-6 - 7) \div 3$ or -4.33 or $y = 3x + 9$	M1	Use a point on $y = 3x + 7$ compare gradient to 3 eg Gradient from $(-5, -6)$		
8(b)	Above and -8 or Above and -4.33 or Above and $y = 3x + 9$	A1	oe Above and eg Gradient fr (0, 7) is 2.6	om (–5, –6) to	
	Additional Guidance				
	Do not ignore incorrect statements eg –6 is less than –8 so above			M1A0	
	(0, 7), (-1, 4), (-2, 1), (-3, -2), (-4, -5), (-5, -8) and ticks below			M1A0	
	1.1 seen or 110% = 19.25 seen or 19.25 ÷ 110	M1	oe eg 10% = 1.75 1% = 0.175		
9	19.25 ÷ 1.1 or 0.175 × 100 or 17.5	M1dep	ое		
	17.50	A1	correct money notation		
	Ad	ditional G	Guidance		
	Condone £17.50p			M1M1A1	
	Answer £17.5			M1M1A0	

Question	Answer	Mark	Commer	nts	
	55 and 91	В3	B2 for (7), 19, 31, 43, 55, 67, 79, 91 or 55 identified with 0 or 1 incorrect answer or 91 identified with 0 or 1 incorrect answer or 55 and 91 identified with 1 incorrect answer		
	Additional Guidance				
10	The correct sequence is (7), 19, 31		67, 79, 91		
	Ignore further working unless contract	lictory			
	55 and 91 identified and 5 th and 8 th te	rms state	d (ignore fw)	В3	
	55 and 91 identified and answer 2 (or	there are	e 2) (ignore fw)	В3	
	55 identified and 5 th stated (ignore fw	55 identified and 5 th stated (ignore fw)			
	Condone 5 or 5^{th} as final answer provided there is a clear link to 55 eg $12 \times 5 = 60 - 5 = 55$ $55 \div 11 = 5$ 5 on answer line			B2	
	Condone 8 or 8^{th} as final answer prov 12 × 8 = 96 – 5 = 91 8 on answer line		e is a clear link to 91 eg	B2	

		B2	B1 for 1 correct value in c	orrect position
11(a)	Additio	onal G	uidance	

Question	Answer	Mark	Commer	nts
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen	M1		
	Valid reason	A1	eg $\begin{pmatrix} -2\\4 \end{pmatrix} = 2 \times \begin{pmatrix} -1\\2 \end{pmatrix}$ $\begin{pmatrix} -2\\4 \end{pmatrix} = 2\mathbf{b}$ $\begin{pmatrix} -2\\4 \end{pmatrix}$ is a multiple of $\begin{pmatrix} -1\\2 \end{pmatrix}$ $\mathbf{a} + 2\mathbf{c}$ is a multiple of \mathbf{b} $2\mathbf{b} = \mathbf{a} + 2\mathbf{c}$	
	Ad	ditional G	Guidance	
	Condone vectors written as coordinate	tes, eg (-	1, 2) is half of (-2, 4)	
	Must see $\begin{pmatrix} -2\\4 \end{pmatrix}$ or $(-2, 4)$ to award the			
11(b)	Condone missing brackets and / or d	ivisor line	S	
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and both gradient -2			M1A1
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and double so parallel			M1A1
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and half so parallel			M1A1
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and a + 2 c is 2 b			M1A1
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and $\mathbf{b} = \frac{1}{2}\mathbf{a} + 2\mathbf{c}$			M1A0
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and both have same ratio)		M1A0
	$\frac{-2}{4}$ and $\frac{-1}{2}$ both equal -0.5			M1A0

Question	Answer	Mark	Commer	nts	
	12.5 or $12\frac{1}{2}$ or $\frac{25}{2}$	B1			
12	N/m ² or newtons per square metre or Nm ⁻² or pascals or Pa	B1	oe		
	Additional Guidance				
	m ² /N or P			В0	
	The diagonals are lines of symmetry				
	The diagonals bisect each other	B1			
13	The diagonals are perpendicular ✓				
	The diagonals are equal in length				
	Add	Guidance			

Question	Answer	Mark	Commer	nts
14	At least 4 of $(x = 0) \ y = 1$ $(x = 1) \ y = 0.8 \text{ or } \frac{4}{5}$ $(x = 2) \ y = 0.64 \text{ or } \frac{16}{25}$ $(x = 3) \ y = [0.51, 0.512] \text{ or } \frac{64}{125}$ $(x = 4) \ y = [0.40, 0.41] \text{ or } \frac{256}{625}$ $(x = 5) \ y = [0.32, 0.33] \text{ or } \frac{1024}{3125}$ $(x = 6) \ y = [0.26, 0.262144] \text{ or } \frac{4096}{15625}$	M1	oe May be seen in the table implied from their graph	e or a list or
	6 or 7 correct points plotted	A1	tolerance of $\pm \frac{1}{2}$ small so	quare
	Fully correct smooth curve through all seven correct points	A1	tolerance of $\pm \frac{1}{2}$ small so	quare
	Add	ditional G	Guidance	
	Ignore extra points plotted			
	Ignore any curve drawn for $x < 0$ or x	> 6		
	Curve passing through all correct poi	nts within	tolerance	M1A1A1
	Ruled straight lines			A0

Question	Answer	Mark	Commer	nts	
	4(<i>x</i> + 3)	B1			
15	Ad	Guidance			
	$(-\frac{3}{4}, 3)$	B1			
16	Ad	ditional G	Guidance		
	7 × 5 (× 9) or (100 – 30) ÷ 2 (× 9)		First two digits of Method	d A	
	or 35 (× 9)				
	or 99 ÷ 11 or 9	M1	Last two digits of Method	iΑ	
	or 4 × 5 × 4 × 5		Complete for Method B		
17	315 or 400	A1			
17	315 and 400 with Method B identified	A1	Method B can be implied by choosing 400		
	Additional Guidance				
	315 and 400 and B with no working			M1A1A1	
	315 and 400 with 400 circled		M1A1A1		
	Beware $40 \times 10 = 400$ (for Method A)	is incorre	ct working		

Question	Answer	Mark	Comments
	Alternative method 1		
	$\frac{2(x+4)}{6x}$ or $(-)\frac{15}{6x}$		oe
	or $\frac{2x+8}{6x}$ or $(-)\frac{15}{6x}$		A correct fraction using a common denominator for one of the given fractions
			Accept for this mark only
	2x(x+4) , $15x$	M1	eg $2(3x)$ for $6x$
	or $\frac{2x(x+4)}{6x^2}$ or $(-)\frac{15x}{6x^2}$		3(5) for 15
	or $\frac{2x^2 + 8x}{6x^2}$ or $(-)\frac{15x}{6x^2}$		$(2x)(3x)$ for $6x^2$
	$6x^2 \qquad 6x^2 \qquad 6x^2$		First fraction can be written as separate
			fractions eg $\frac{2x}{2(3x)} + \frac{8}{2(3x)}$
	$\frac{2(x+4)}{6x}$ and $(-)\frac{15}{6x}$		oe
18	or $\frac{2x+8}{6x}$ and $(-)\frac{15}{6x}$		A correct fraction using a common denominator for both of the given fractions
	6 <i>x</i> 6 <i>x</i>	0.4	First fraction can be written as separate fractions eg $\frac{2x}{6x} + \frac{8}{6x}$
	or $\frac{2x(x+4)}{6x^2}$ and $(-)\frac{15x}{6x^2}$	A1	6x $6x$
	or $\frac{2x^2 + 8x}{6x^2}$ and $(-)\frac{15x}{6x^2}$		
	$\frac{2x-7}{6x}$		Accept eg $\frac{2x + -7}{6x}$
	or $\frac{2kx-7k}{6kx}$,	A1	Do not ignore further working
	where k is a constant value		

	Alternative method 2			
	$\frac{2(x+4)}{6x} \text{ or } (-)\frac{15}{6x}$ or $\frac{2x+8}{6x}$ or $(-)\frac{15}{6x}$ or $\frac{2x(x+4)}{6x^2}$ or $(-)\frac{15x}{6x^2}$ or $\frac{2x^2+8x}{6x^2}$ or $(-)\frac{15x}{6x^2}$	M1	oe A correct fraction using a denominator for one of the Accept for this mark only eg $2(3x)$ for $6x$ $3(5)$ for 15 $(2x)(3x)$ for $6x^2$ First fraction can be writted fractions eg $\frac{2x}{2(3x)} + \frac{8}{2(3x)}$	e given fractions
18 cont	$\frac{2x+8-15}{6x}$ or $\frac{2x-7}{6x}$ or $\frac{2kx-7k}{6kx}$, where k is a constant value	A1	Allow one error in numerator Accept eg $\frac{2x + -7}{6x}$ Must be $6x$ or a multiple of $6x$	
	$\frac{2x-7}{6x}$ or $\frac{2kx-7k}{6kx}$, where k is a constant value	A1	Accept eg $\frac{2x + -7}{6x}$ Do not ignore further wor	king
	Add	ditional G	Guidance	
	Use the method that gives the greater	mark		
	$\frac{2x^2-7x}{6x^2}$			M1A1
	$\frac{2x-7}{6x} = \frac{-5}{6x}$			M1A1A0
	$\frac{15x}{6x^2} - \frac{2x^2 + 8x}{6x^2}$ (order of fractions rev	/ersed)		M1A0A0

Question	Answer	Mark	Comments	
	(8, 0)	B1		
19	Ad	ditional G	Guidance	
	$x^{2} + (7x)^{2} = (10y)^{2}$ or $x^{2} + 49x^{2} = 100y^{2}$	M1	oe	
	$50x^2 = 100y^2$ or 1.41()	A1	oe equation with terms collected eg $\frac{x^2}{y^2} = \frac{100}{50}$ or $x^2 = 2y^2$ or $x = 1$	1.41 <i>y</i>
20	$\sqrt{2}$ or $\frac{2}{\sqrt{2}}$	A1	Do not accept further working	
	Ad	ditional G	Guidance	
	$x^2 + 7x^2 = 10y^2$		MO	
	$\sqrt{2} = 1.41$		M1A1	A0
	$x^2 + (7x)^2 = (10y)^2$		M1	
	$x^2 + 14x^2 = 20y^2$		A0	

Question	Answer	Mark	Commen	ts
	$m \alpha h^3$ or $m = k \times h^3$ or $1600 = k \times 8^3$ or $c \times m = h^3$ or $c \times 1600 = 8^3$	M1	oe eg $h = km^{1/3}$	
21(a)	$(k =) 1600 \div 8^3 \text{ or } 3.125$ or $(c =) 8^3 \div 1600 \text{ or } 0.32$	M1dep	oe eg $\frac{1600}{512}$ or $\frac{25}{8}$ $\frac{512}{1600}$ or $\frac{8}{25}$	
	$m = 3.125 \times h^3$ or $0.32 \times m = h^3$	A1	oe equation	
	Ade	uidance		
	$m \propto 3.125 \times h^3 \text{ or } 0.32m \approx h^3$			M1M1A0
	(k =) 3.125 or (c =) 0.32			M1M1
	$3.125h^3$ or $0.32h^3$			M1M1

Question	Answer	Mark	Comme	nts
	their 3.125×12^3 their 3.125×1728 or $1600 \times \left(\frac{12}{8}\right)^3$ or $12^3 \div \text{their } 0.32$ or $1728 \div 0.32$ or $1600 \div \left(\frac{8}{12}\right)^3$	M1	oe	
	5400	A1ft	oe ft their 3.125 provided u $3.125 \times h^3$	sing $m =$ their
	Additional Guidance			
21(b)	Must use \times 12 ³ or \times 1728 or $\times \left(\frac{12}{8}\right)^3$	for M1		
	If in part (a) $m = k \times h$ $1600 = k \times 8$			M0 part (a)
	m = 200h and in part (b) $m = 200 \times 12, m = 2400$			M0 part (b)
	If in part (a) $m = k \times h$ $1600 = k \times 8$			M0 part (a)
	m = 200h and in part (b) $m = 200 \times 12^3$, $m = 345 600$			M1A1ft part (b)

Question	Answer	Mark	Comme	nts
	Alternate segment or Reason on first line of working is incorrect	B1	oe Any incorrect statement	В0
	Ad	ditional G	Guidance	
	Incorrect theorem stated in first line			B1
	First line is incorrect. It should say alt segment			B1
	Angles not in same segment			B1
22	Angles in same segment are not equal			В0
	Opposite segments (are not equal)			В0
	First line is incorrect. It should say opposite segment			В0
	The angle between the chord and the tangent is equal to the angle in the opposite segment			В0
	Angle ACB is not in the same segment, it is alternate			В0
	Angles are not in the same segment, they are alternate			В0
	3		oe	

23	$u_2 = 0.6 \text{ or } \frac{3}{5}$ $u_3 = 1.875 \text{ or } \frac{15}{8}$	B2	oe B1 for 1 correct or for u_2 incorrect but the correctly follows through truncated to 4 dp	
	Additional Guidance			
	$u_1 = 0.6, \ u_2 = 1.875, \ u_3 = 1.0434 \text{ or}$	$u_3 = 1.04$	135	B1

Question	Answer	Mark	Commer	nts	
	Alternative method 1				
	$\frac{1}{2} \times 10 \times 20$ or 100	M1	oe Area of triangle on left		
	$\frac{1}{2}$ × (20 + 30) × 10 or 250 or 20 × 10 or 200 and $\frac{1}{2}$ × 10 × 10 or 50	M1	oe Area of trapezium on right		
	350	A1			
	Alternative method 2				
24(a)	$\frac{1}{2} \times 10 \times 10$ or 50	M1	oe Area of triangle on top rig	ght	
	$\frac{1}{2}$ × (20 + 10) × 20 or 300 or 10 × 20 or 200 and $\frac{1}{2}$ × 10 × 20 or 100	M1	oe Area of trapezium across	bottom	
	350	A1			
	Additional Guidance				
	$\frac{1}{2} \times (0 + 2 \times 20 + 30) \times 10 \text{ (using Trapezium rule)}$			M1M1	
	Beware of 300 from incorrect working	ng			
	Beware $(30 - 20) \times (20 - 10) = 100$	is incorrec	t working		

Question	Answer	Mark	Comments
24(b)	It works out an overestimate of the distance It works out an underestimate of the distance It could be an overestimate or an underestimate or an underestimate of the distance	B1	
	Ade	Guidance	
	$\tan 6 = \frac{CD}{500}$ or $500 \times \tan 6$	M1	oe any letter $\frac{CD}{\sin 6} = \frac{500}{\sin 84}$
25(a)	[52.5, 52.6] or 53	A1	May be on diagram
	Additional Guidance		
	Check diagram for angle		

Question	Answer	Mark	Comments	
	Alternative method 1			
	$500^2 + 400^2$ or $250000 + 160000$ or 410000	M1	oe	
	$\sqrt{\text{their } 410000} \text{ or } \sqrt{500^2 + 400^2}$ or 640.(3)	M1dep	AC	
	$\tan x = \frac{[52.5, 52.6] \text{ or } 53}{\text{their } 640.(3)}$	M1dep	oe any letter	
	[4.6, 4.75] from correct working	A1	accept 5 with correct working seen	
25(b)	Alternative method 2			
	$\frac{500}{\cos 6}$ or [502.7, 502.8]	M1	oe BD	
	$\sqrt{\left(\frac{500}{\cos 6}\right)^2 + 400^2}$	M1dep	AD	
	or [642.4, 642.5]		oe	
	$\sin x = \frac{[52.5, 52.6] \text{ or } 53}{\text{their } [642.4, 642.5]}$	M1dep	any letter	
	[4.6, 4.75] from correct working	A1	accept 5 with correct working seen	

	Alternative method 3			
	$500^2 + 400^2$ or $250000 + 160000$ or 410000 or $\frac{500}{\cos 6}$	M1	oe	
	or [502.7, 502.8]		BD	
25(b)	$\sqrt{\text{their } 410000} \text{ or } \sqrt{500^2 + 400^2}$ or 640.(3) or $\sqrt{\left(\frac{500}{\cos 6}\right)^2 + 400^2}$	M1dep	AC	
cont	or [642.4, 642.5]		AD	
	$\cos x = \frac{\text{their 640.(3)}}{\text{their [642.4, 642.5]}}$	M1dep	oe any letter	
	[4.6, 4.75] from correct working	A1	accept 5 with correct wo	rking seen
	Additional Guidance			
	Check diagram for lengths			
	Beware $\sin x = \frac{52.6}{640.(3)}$ leads to [4.	6, 4.75]		M1M1M0A0

Question	Answer	Mark	Comments		
	Alternative method 1 – Counting squares				
	15 or 6.6 or 2.4 (cm squares)	M1	375 or 165 or 60 (small squares)		
	their 15 + their 6.6 + their 2.4 or 24 (total cm squares)	M1dep	allow one error their 375 + their 165 + their 60 or 600 (total small squares)		
	$\frac{\text{their 15}}{\text{their 24}} \text{ or } \frac{\text{their 375}}{\text{their 600}} \text{ or 0.625}$ or $\frac{480}{\text{or 0.8}} \text{ or 0.8}$		oe their 600 or 1.25		
	their 600 (cars per small square) or $\frac{480}{\text{their } 24}$ or 20	M1dep	$ \begin{array}{r} 480 \\ \text{(small squares per car)} \\ \underline{\text{their 24}} \\ 480 \\ \end{array} $ or 0.05		
	(cars per cm square)		(cm square per car)		
26(a)	300	A1			
20(a)	Alternative method 2 – Using f.d. scale of x per unit				
	$5x \times 15 \text{ or } 75x$ or $6.6x \times 5 \text{ or } 33x$ or $0.8x \times 15 \text{ or } 12x$ (x per cm)	M1	$25x \times 15 \text{ or } 375x$ or $33x \times 5 \text{ or } 165x$ or $4x \times 15 \text{ or } 60x$ (x per small square)		
	$5x \times 15 + 6.6x \times 5 + 0.8x \times 15$ or $75x + 33x + 12x$ or $120x$ (x per cm)	M1dep	allow one error $25x \times 15 + 33x \times 5 + 4x \times 15$ or $375x + 165x + 60x$ or $600x$ (x per small square)		
	their $120x = 480$ or $x = 4$	M1dep	oe $\frac{480}{\text{their } 120}$ or 4		
	300	A1			

	Alternative method 3 – Using a number scale of f.d. axis				
	5 × 15 or 75 or 6.6 × 5 or 33 or 0.8 × 15 or 12	M1	25 × 15 or 375 or 33 × 5 or 165 or 4 × 15 or 60		
26(a) cont	5 x 15 + 6.6 x 5 + 0.8 x 15 or 75 + 33 + 12 or 120 (1 per cm)	M1dep	allow one error 25 × 15 + 33 × 5 + 4 × 19 or 375 + 165 + 60 or 600 (1 per small square)	5	
	$\frac{\text{their 15}}{\text{their 24}} \text{or} \frac{\text{their 375}}{\text{their 600}} \text{or 0.625}$ $\text{or} \frac{480}{\text{their 600}} \text{or 0.8}$ $(\text{cars per small square})$ $\text{or} \frac{480}{\text{their 24}} \text{or 20}$ $(\text{cars per cm square})$	M1dep	oe $\frac{\text{their } 600}{480} \text{ or } 1.25$ (small squares per car) $\frac{\text{their } 24}{480} \text{ or } 0.05$ (cm square per car)		
	300	A1			
	Additional Guidance				
	Check diagram for working				
	Alternative method 1 Total squares must be the sum of three numbers				
	Alternative method 2 Must be the sum of three expressions				
	The correct f.d. labels for the heights of the bars are 20, 26.4 and 3.2				
	A correct frequency density scale using 1 cm = 4 units eg 4 seen on vertical scale at 1 cm 20 seen on vertical scale at 5 cm			M1M1M1 M1M1M1	

Question	Answer	Mark	Comme	nts
26(b)	$\frac{2}{3} \times 2.4 \text{ or } 1.6$ or $\frac{2}{3} \times 60 \text{ or } 40$ or $\frac{2}{3} \times 48$ or $10 \times 0.8 \times 4$	M1	oe	
	32	A1		
	Ad	ditional G	uidance	
	$\frac{10}{30}$ and $\frac{9}{31}$ seen or $\frac{1}{3}$ and $\frac{9}{31}$ seen	M1	oe accept 0.33 and 0.29.	
	$\frac{10}{30} \times \frac{9}{31} \times \frac{8}{32}$ or $\frac{1}{3} \times \frac{9}{31} \times \frac{1}{4}$	M1dep	oe accept 0.33 and 0.29.	and 0.25
27	$\frac{3}{124}$ or [0.0239, 0.0242]	A1	oe eg $\frac{720}{29760}$	
	Additional Guidance			
	Fractions do not have to be in simple	est form		
	$\frac{10}{30} \times \frac{9}{31} \times \frac{8}{32} \times \frac{7}{33}$			M1M0
	$\frac{10}{30} + \frac{9}{31} + \frac{8}{32}$			M1M0

Question	Answer	Mark	Comme	nts
	$4^2 + y^2 = 80$ or $y = \sqrt{64}$	M1	oe May be implied from 8 on diagram	
	<i>y</i> = −8	A1	Accept (4, -8)	
	$\frac{\text{their} - 8}{4}$ or -2	M1	oe gradient of radius <i>OP</i>	
	$-1 \div \text{their } -2 \text{ or } \frac{1}{2}$ or $-1 \div \text{their gradient}$	M1	gradient of tangent at P	
	$y = \frac{1}{2}x - 10$ or $y + 8 = \frac{1}{2}(x - 4)$	A1	oe Ignore further working	
28	Additional Guidance			
	$y + 8 = \frac{1}{2}(x - 4)$ followed by error expanding and/or collecting terms			M1A1M1M1A1
	$y = \frac{1}{2}x - 10 \text{ in working and } \frac{1}{2}x - 10 \text{ or}$	M1A1M1M1A1		
	$\frac{1}{2}x - 10$			M1A1M1M1A0
	$(y = \sqrt{64})$			M1
	y = 8			A0
	Gradient <i>OP</i> = 2			M1
	Perpendicular gradient = $-\frac{1}{2}$			M1 A0