

DEEP SMOKE REMOVAL FROM MINIMALLY INVASIVE SURGERY VIDEOS

Sabri Bolkar, Congcong Wang, Faouzi Alaya Cheikh, Sule Yildirim

Norwegian Colour and Visual Computing Laboratory, Norwegian University of Science and Technology, Norway

INTRODUCTION

- Image quality can be severely degraded by surgical smoke
 - Introduces errors for the image processing algorithms (used in image guided surgery)
 - Reduces the visibility of the observed organs and tissues.
- Smoke removal methods
 - Mechanical solutions
 - Image processing based approaches [1]

Aim:

Automatic and real-time image processing based smoke removal method.

CONTRIBUTIONS

- First known application of CNN based surgical smoke removal.
- Employ synthetic smoke to generate training dataset
- Processing speed reaches 20 fps for 512x512 color videos on a single NVDIA Titan X GPU.

METHOD

Generate smoke by Perlin noise

• Embed the generated smoke to smoke free images

$$I_e^c(x) = I_g^c(x) + 0.8(I_s^c(x) - 1/N \sum_{i=1}^{N} I_s^c(i))$$

• Fine-tune AOD-Net [2]

RESULTS

Performance evaluation on synthetic and real smoke images

Methods	MSE	PSNR	MAD
DCP	1.51±0.89	18.59±3.28	116.48±14.76
DehazeNet	3.09±1.77	15.36±285	125.07±8.82
AOD-Net	1.42±0.40	18.36±2.11	118.52±7.26
EVID	1.07±0.46	19.45±1.66	117.20±7.68
Our	1.00±0.36	19.72±1.57	97.85±8.66

DISCUSSION

- Our proposed method can preserve the color fidelity while eliminating apparent smoke.
- All the methods fail in heterogeneous smoke case.
- Further studies could focus on utilizing a perceptually relevant loss function and including temperal consistency into the network.

REFERENCES

[1] Luo, Xiongbiao, et al. "Vision-based surgical field defogging." *IEEE transactions on medical imaging* 36.10 (2017): 2021-2030.

[2] Li, Boyi, et al. "Aod-net: All-in-one dehazing network." *Proceedings of the IEEE International Conference on Computer Vision*. Vol. 1. No. 4. 2017.