Energetics at mesoscopic scale

Ken Sekimoto (PCT-ESPCI, MSC-P7) ken.sekimoto@espci.fr

June 8, 2009 CEA

Introduction

A few key papers of theory of fluctuations ...

```
1905 – Einstein's relation (Fluctuation and dissipation)
```

1906 – Smoluchowski (diffusion process)

1908 – Langevin's equation (equation of *stochastic* motion)

1915 – Fokker (diffusion process)

1917 – Planck (diffusion process)

. . .

1940 – Kramers' equation (Brownian motion and chemical reaction)

1951 – Itô; "On stochastic differential equations" (mathematization!)

1960 – Zwanzig's *projection method* (from Liouville eq. to *diffusion*)

1963 – Feyman's ratchet wheel and pawl (mesoscopic heat engine)

1965 – Mori's formula (from Hamiltonian to linear Langevin eq.)

1973 – Kawasaki's identity (non-linear extension of Mori's formula)

. . .

1990's – Jarzynski's equality, Fluctuation Theorems, *StEng*

Introduction

A few key papers of mesoscopic experiments ...

1827 – Robert Brown

1913 – Perrin; *Les Atomes* (experimental proofs)

1960 – Perutz *et al.* (X-ray structure of protein)

1960's – Shimomura (Green Fluorescent Protein; GFP)

1970 – Ashkin (optical tweezer)

1980's – Bennig et al. (STM, AFM)

1984 – Yanagida, et al. (dynamics of single filament)

1993 – Rayment (X-ray structure of *myosin*)

1990's – (single protein probe)

A few key papers of mesoscopic experiments ...

1827 – Robert Brown

1913 – Perrin; Les Atomes (experimental proofs)*

1960 – Perutz *et al.* (X-ray structure of protein)

1960's – Shimomura (Green Fluorescent Protein)*

1970 – Ashkin (optical tweezer)

1980's – Bennig et al. (STM, AFM)

1984 – Yanagida, et al. (dynamics of single filament)

1993 – Rayment (X-ray structure of *myosin*)

1990's – (single protein probe)

Perrin 1913

Introduction

A few key papers of mesoscopic experiments ...

1827 – Robert Brown

1913 – Perrin; *Les Atomes* (experimental proofs)

1960 – Perutz *et al.* (X-ray structure of protein)

1960's – Shimomura (Green Fluorescent Protein)*

1970 – Ashkin (optical tweezer)

1980's – Bennig et al. (STM, AFM)

1984 – Yanagida, et al. (dynamics of single filament)*

1993 – Rayment (X-ray structure of *myosin*)

1990's – (single protein probe)

A few key papers of mesoscopic experiments ...

1827 – Robert Brown

1913 – Perrin; *Les Atomes* (experimental proofs)

1960 – Perutz *et al.* (X-ray structure of protein)

1960's – Shimomura (Green Fluorescent Protein)

1970 – Ashkin (optical tweezer)

1980's – Bennig et al. (STM, AFM)

1984 – Yanagida, et al. (dynamics of single filament)*

1993 – Rayment (X-ray structure of *myosin*)*

1990's – (single protein probe)

Yanagida et al. 1984

A few key papers of mesoscopic experiments ...

1827 – Robert Brown

1913 – Perrin; *Les Atomes* (experimental proofs)

1960 – Perutz *et al.* (X-ray structure of protein)

1960's – Shimomura (Green Fluorescent Protein)

1970 – Ashkin (optical tweezer)

1980's – Bennig et al. (STM, AFM)

1984 – Yanagida, et al. (dynamics of single filament)

1993 – Rayment (X-ray structure of *myosin*)*

1990's – (single protein probe)*

Introduction

A few key papers of mesoscopic experiments ...

1827 – Robert Brown

1913 – Perrin; *Les Atomes* (experimental proofs)

1960 – Perutz *et al.* (X-ray structure of protein)

1960's – Shimomura (Green Fluorescent Protein)

1970 – Ashkin (optical tweezer)

1980's – Bennig et al. (STM, AFM)

1984 – Yanagida, et al. (dynamics of single filament)

1993 – Rayment (X-ray structure of *myosin*)

1990's – (single protein probe)*

Introduction

Short summary

More and more *mesoscopic* phenomena — described by Langevin equations

Reminder: Langevin equation

"Newton's 1st law" → Free Brownian motion without external field

$$0 = -\gamma \frac{dx}{dt} + \sqrt{2\gamma k_{\rm B}T} \,\theta(t), \quad \langle \theta(t) \rangle = 0, \quad \langle \theta(t)\theta(t') \rangle = \delta(t - t') \rangle$$

forces from environment

$$\theta(t)$$
: white Gaussian process $(\int_0^t \theta(s)ds = B_t$: Wiener process)

"Newton's 2nd law" → Brownian motion under external field

$$0 = -\frac{\partial U(x, a)}{\partial x} - \gamma \frac{dx}{dt} + \sqrt{2\gamma k_{\rm B}T} \theta(t)$$

a : control parameter (by an external system)

+ many generalizations *e.g. D*-dim, inertia, memory, manifold,...

What have been *less* disscused?

1. Missing link – energetics absent (cf. QM, hydro, Newton, gen-rel)

cf. Known: steady-state of Langevin eq ←→ canocnical ensemble

Introduction

What have been *less* disscused?

1. Missing link (cf. QM,hydro,Newton,GR) – energetics absent

e.g. Feynman's ratchet wheel and pawl

Modelling by Langevin equation? Efficiency? (ks 1997)

Introduction

What have been *less* disscused?

1. Missing link (cf. QM,hydro,Newton,GR) – energetics absent

e.g. Protein motors

cf

ATPase free energy

 $\textcolor{red}{\sim}70\%: \textit{entropic}$

~30% : energetic

Introduction

What have been *less* disscused?

- 1. Missing link (cf. QM, hydro, Newton, GR) energetics absent
- 2. How do the fluctuations look *at* mesoscale?
 - a) Analyses along a single realisations (cf. ensemble properties)

$$0 = -\frac{\partial U(x, a)}{\partial x} - \gamma \frac{dx}{dt} + \sqrt{2\gamma k_{\rm B}T} \theta(t)$$

b) "Newton's 3rd law" → [force from environment]

= –[force onto environment]

Stochastic Energetics

Energetics at mesoscopic scales

Thermodynamics

Langevin equation (single trajectory)

Stochastic Energetics

Energetics at mesoscopic scales

$$0 = -\frac{\partial U(x, a)}{\partial x} - \gamma \frac{dx}{dt} + \sqrt{2\gamma k_{\rm B}T} \theta(t)$$

Definition of *mesoscopic* **heat**

heat, d'Q: work done by the heat bath through a (true) displacement, dx

$$d'Q \equiv \left(-\gamma \frac{\partial x}{\partial t} + \sqrt{2\gamma k_{\rm B}T} \,\theta(t)\right) \circ dx(t)$$

$$A(t)\circ dx(t)\equiv \frac{A(t+dt)+A(t)}{2}\left[x(t+dt)-x(t)\right]$$
 Stratonovich type product

e.g. Free Brownian motion; d'Q = 0 (for overdamped case).

Stochastic Energetics

Energetics at mesoscopic scales

1st law of stochastic energetics

heat:
$$d'Q \equiv \left(-\gamma \frac{\partial x}{\partial t} + \sqrt{2\gamma k_{\rm B}T} \,\theta(t)\right) \circ dx(t) = \frac{\partial U}{\partial x} \circ dx(t)$$

energy change: $dE = dU(x, a)$

$$0 = -\frac{\partial U(x, a)}{\partial x} - \gamma \frac{dx}{dt} + \sqrt{2\gamma k_{\rm B}T} \theta(t)$$

work by external system : $d'W \equiv \frac{\partial U}{\partial a} \circ da(t)$

$$\rightarrow dE = d'Q + d'W$$

Energy balance (along a single trajectory)

$$dE = dU(x, a)$$

$$d'W$$

$$external system$$

$$d'W \equiv \frac{\partial U}{\partial a} \circ da(t)$$

$$heat bath$$

Stochastic Energetics

Energetics at mesoscopic scales

Experimental demonstrations of *energy balance*

PRL 96, 070603 (2006)

PHYSICAL REVIEW LETTERS

week ending 24 FEBRUARY 2006

Thermodynamics of a Colloidal Particle in a Time-Dependent Nonharmonic Potential

V. Blickle, T. Speck, L. Helden, U. Seifert, and C. Bechinger

z(*t*) : Single-Particle Tracking (SPT)

a: laser force ↑

U(z,a): equilibrium distribution data

Stochastic Energetics

Energetics at mesoscopic scales

Experimental demonstrations of energy balance

stacks.iop.org/JSTAT/2007/P09018

Fluctuation theorems for harmonic oscillators

S Joubaud, N B Garnier and S Ciliberto

 $\theta(t)$: tilt angle

$$I_{\text{eff}} \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \nu \frac{\mathrm{d}\theta}{\mathrm{d}t} + C\theta = M + \sqrt{2k_{\text{B}}T\nu}\eta,$$

$$Q_{\tau} = \Delta U_{\tau} - W_{\tau}$$

$$= -\frac{1}{k_{\text{B}}T} \int_{t_i}^{t_i + \tau} \nu \left[\frac{\mathrm{d}\theta}{\mathrm{d}t}(t')\right]^2 \mathrm{d}t' + \frac{\sqrt{2k_{\text{B}}T\nu}}{k_{\text{B}}T} \int_{t_i}^{t_i + \tau} \eta(t') \frac{\mathrm{d}\theta}{\mathrm{d}t}(t') \, \mathrm{d}t'.$$

Stochastic Energetics

Energetics at mesoscopic scales

Experimental demonstrations of energy balance

PHYSICAL REVIEW E 75, 011122 (2007)

Experimental test of a new equality: Measuring heat dissipation in an optically driven colloidal system

Shoichi Toyabe, 1,* Hong-Ren Jiang, Takenobu Nakamura, Yoshihiro Murayama, and Masaki Sano 1,†

Random Poisson switching

Harada-Sasa* identity: (*PRL '05)

$$\langle J \rangle_0 = \gamma \int_{-\infty}^{\infty} \left[\tilde{C}(\omega) - 2k_{\rm B}T\tilde{R}'(\omega) \right] \frac{d\omega}{2\pi},$$

deviation from equilibrium F-D relation

 $f^{p} : \text{probe force}$ $\gamma \dot{x}(t) = F(x(t), t) + \varepsilon f^{p}(t) + \hat{\xi}(t),$

heat: $\langle J \rangle = \langle F(x(t), t) \circ v(t) \rangle$,

correlation : $C(t) \equiv \langle \dot{x}(t)\dot{x}(0)\rangle_0$.

response:

$$\langle \dot{x}(t) \rangle_{\varepsilon} - v_s = \varepsilon \int_{-\infty}^{t} R(t-s) f^p(s) ds + o(\varepsilon^2),$$

Stochastic Energetics

Energetics at mesoscopic scales

Experimental demonstrations of *energy balance*

PRL 104, 198103 (2010)

PHYSICAL REVIEW LETTERS

week ending 14 MAY 2010

Nonequilibrium Energetics of a Single F₁-ATPase Molecule

Shoichi Toyabe,¹ Tetsuaki Okamoto,¹ Takahiro Watanabe-Nakayama,² Hiroshi Taketani,¹ Seishi Kudo,³ and Eiro Muneyuki^{1,*}

heat: $J \equiv \langle [\Gamma v(t) - \xi(t)] \circ v(t) \rangle = \left\langle \frac{d'Q}{dt} \right\rangle$

Harada-Sasa equality:

$$J = \Gamma v_s^2 + \Gamma \int_{-\infty}^{\infty} df [\tilde{C}(f) - 2T\tilde{R}'(f)],$$

Torque by electric field:

Stochastic Energetics

Energetics at mesoscopic scales

2nd law of stochastic energetics

$$egin{array}{cccc} a(t_0) &=& a_{
m i} \ \downarrow & & & \ a(t_1) &=& a_{
m f} \end{array}$$

Irreversible work:
$$W_{\text{irr}} \equiv W - \Delta F$$

$$= \int_{a_{\text{i}}}^{a_{\text{f}}} \left\{ \frac{\partial U(x(t), a(t))}{\partial a} - \left\langle \frac{\partial U(x, a(t))}{\partial a} \right\rangle_{\text{can}; T} \right\} da(t).$$

$$F: e^{-F/k_{\text{B}}T} = \int e^{-U(x, a)/k_{\text{B}}T} dx$$

Quasi-static limit:
$$W_{\rm irr} \to 0, \quad (prob.1)$$

i.e. $W \rightarrow \Delta F$ without ensemble averages

Jarzynski equality (Jarzynski, PRL97, Crooks, JSP98)

$$1 = \left\langle e^{-\beta W_{\rm irr}} \right\rangle_{\text{eq.at } t=0} \quad \Rightarrow \quad \left\langle W_{\rm irr} \right\rangle_{\text{eq.at } t=0} \ge 0$$

Complementarity:
$$\langle W_{\rm irr} \rangle \Delta t \geq S(a_{\rm i}, a_{\rm f})$$
 $(\Delta t \to \infty)$

(correction: initial condition sensitive)

Stochastic Energetics

Energetics at mesoscopic scales

REMARK: energetics of *open system* can also be formulated.

Base: energy of the open system

Individual particles do *not* carry the chemical potential μ .

Stochastic Energetics

Energetics at mesoscopic scales

Resumé: "thermodynamic structure"

(cf. steady-state thermodyn., Q'm entangling,...)

Stochastic Energetics

Misconceptions

Misconceptions about the fluctuations

Are Langevin equations always irreversible?

"the mesoscopic equations are therefore irreversible" (van Kampen's book "Stochastic Processes in Physics and Chemistry")

<u>Yes & No</u>:

Yes — microscopic viewpoint

The heat bath does not accumulate the memory*.

(*temperature [energy] & mean-flow [momentum])

No — mesoscopic viewpoint

The trajectories can describe quasi-equilibrium process.

cf. thermodynamic adiabatic process of chaotic Hamiltonian system (macro) (micro)

Stochastic Energetics

Misconceptions

Misconceptions about the fluctuations

Numerical convergence of Langevin eq.

$$0 = -\frac{\partial U(x,a)}{\partial x} - \gamma \frac{dx}{dt} + \sqrt{2\gamma k_{\rm B}T}\theta(t) \quad \text{under a given } \theta(t); \ B_t = \int_0^t \theta(s)ds$$

1st **order Euler scheme** for Langevin equation $(t_0 < t < t_1)$:

$$0 = -\frac{\partial U(x_t, a_t)}{\partial x} - \gamma \frac{x_{t+\Delta t} - x_t}{\Delta t} + \sqrt{2\gamma k_B T} \left(B_{t+\Delta t} - B_t \right)$$

convergence at $\mathcal{O}(\Delta t^{\frac{1}{2}})$ solution x(t)

But error of $\mathcal{O}(1)$ for energy balance.

Implication:

Apparent equilibrium state can dissipate heat.

Order $\mathcal{O}(\Delta t)$ convergence required for correct energy balance.

Stochastic Energetics

Misconceptions

Misconceptions about the fluctuations

Can Carnot cycle be reversible?

Yes & No:

Yes — macroscopic [thermodynamic] limit

No — mesoscopic case

(with some exceptions)

Detachment from heat baths

* divergence of relaxation time > Impossibility of quasi-static operations

associated irreversible work: non-extensive & arbitrarily small

Stochastic Energetics

Misconceptions

Misconceptions about the fluctuations

Can Carnot cycle be reversible?

<u>Yes & No</u>:

Yes — macroscopic [thermodynamic] limit

No — mesoscopic case (with some exceptions)

Adiabatic process

* relaxation from **non-gibbs distribution \rightarrow** Irreversible information loss

associated irreversible work: non retrievable otherwise

Stochastic Energetics

Misconceptions

Misconceptions about the fluctuations

Can Feynman's ratchet wheel and pawl attain Carnot efficiency?

"... our device cannot extract more work than this $[(T_1-T_2)/T_1]$, operating reversibly."

— Feynman's lecture 46-3 (1963)

<u>No</u>:

wiggling between the "jumps" Feynman's ratchet

mechanical heat conductor

"stall state" (jump frequency=0) ≠ Carnot efficiency = **null** efficiency

(Parrondo 1996, KS 1997)

Stochastic Energetics

Misconceptions

Misconceptions about the fluctuations

REMARK: mechanical *heat* conductor

→ "random motion" can absorb heat (cf. Joule's law)

cf. "Maxwell's demon"

T'=0 case:

$$\gamma \dot{x}(t) = -K \left[x(t) - \frac{K}{\gamma'} \int_0^\infty e^{-\frac{K}{\gamma'} s} \underline{x(t-s)} ds \right] + \sqrt{2\gamma k_{\rm B} T} \, \theta(t)$$
 feed-back as 0-K bath

Stochastic **Energetics**

Misconceptions

Misconceptions about the fluctuations

Is the over-damped limit $m \to 0$ regular in energetics?

under-damped :
$$\frac{dp}{dt} = -\frac{\partial U(x,a)}{\partial x} - \gamma \frac{dx}{dt} + \sqrt{2\gamma k_{\rm B}T} \theta(t), \qquad \frac{dp}{dt} = \frac{p}{m}$$

time coarse graining
$$\gamma[x(t+\Delta t)-x(t)] = \sqrt{2\gamma k_{\rm B}T(x(t))}[B_{t+\Delta t}-B_t] - \frac{\partial U(x(t),a(t))}{\partial x}\Delta t \\ + k_{\rm B}T'(x(t))\{[B_{t+\Delta t}-B_t]^2 - \Delta t\} + o(\Delta t),$$

over-dumped:
$$0 = -\frac{\partial U(x,a)}{\partial x} - \gamma \frac{dx}{dt} + \sqrt{2\gamma k_B T} \theta(t)$$

Stochastic Energetics

Misconceptions

Misconceptions about the fluctuations

Is the over-damped limit $m \to 0$ regular in energetics?

No, sometimes:

Model:
$$m = 0$$
"Carnot's limit efficiency" $\frac{T' - T}{T'}$
at stalled state ($v=0$).

 $\begin{array}{ll} \text{Model:} & m \to 0 \\ & \text{divergence of heat leak} \propto \frac{1}{\sqrt{m}} \\ & (\Rightarrow \text{zero efficiency}) \end{array}$

Stochastic Energetics

Misconceptions

Misconceptions about the fluctuations

QUESTION:

Relation between mesoscopic heat AND "calorimetric heat" ?

Stochastic Energetics

Misconceptions

What is the heat?

What is the heat?

$$U(x,a) = U_{\text{chain}}(x) + U_{\text{optic}}(x,a)$$

Stochastic Energetics

Misconceptions

What is the heat?

What is the heat?

$$U(x,a) = U_{\text{chain}}(x) + U_{\text{optic}}(x,a)$$

Stochastic Energetics

Misconceptions

What is the heat?

What is the heat?

Is **mesoscopic heat** = "calorimetric heat" $d'Q_m$?

$$d'Q \equiv \left(-\gamma \frac{\partial x}{\partial t} + \sqrt{2\gamma k_{\rm B}T} \,\theta(t)\right) \circ dx(t)$$

$$0 = -\frac{\partial U(x, a)}{\partial x} - \gamma \frac{dx}{dt} + \sqrt{2\gamma k_{\rm B}T} \theta(t)$$

No in general

U(x,a): free energy — entropy renormalized

d'W: scale independent

energy balance for calorimetric heat

relation between **mesoscopic heat** AND "calorimetric heat"

Stochastic Energetics

Misconceptions

What is the heat?

What is the heat?

Is **mesoscopic heat** = "calorimetric heat" $d'Q_m$?

$$d'Q \equiv \left(-\gamma \frac{\partial x}{\partial t} + \sqrt{2\gamma k_{\rm B}T} \,\theta(t)\right) \circ dx(t)$$

$$0 = -\frac{\partial U(x, a)}{\partial x} - \gamma \frac{dx}{dt} + \sqrt{2\gamma k_{\rm B}T} \theta(t)$$

No in general

$$dE - T \frac{\partial U}{\partial T} \mapsto dE_{\mathrm{m}}$$

$$dQ - T\,rac{\partial U}{\partial T}\,\mapsto\,dQ_{
m m}$$

mesoscopic energy balance

$$dE = d'Q + d'W$$

calorimetric energy balance

$$dE_m = d'Q_m + d'W$$

Stochastic Energetics

Misconceptions

What is the heat?

What is the heat?

IMPLICATION: local energy transfer in the environment

No calorimetric heat

Stochastic Energetics

Misconceptions

What is the heat?

What is the heat?

IMPLICATION: scale cascade of heat

(controversy ~2000) does the filament generate a *work* or a *heat*?

Stochastic Energetics

Misconceptions

What is the heat?

What is the heat?

IMPLICATION: scale cascade of heat

(controversy ~2000) does the filament generate a *work* or a *heat*?

Stochastic Energetics

Misconceptions

Different heats

Project

Project

RÉSUMÉ:

stochastic energetics

=> new perspectives of fluctuation phenomena

What can we do with thise perspectives?

- > exploration of structure-function relation of proteins
 - > mesoscopic mechanism of *motor proteins*
 - > modelling common to *myosin* & *kinesin*

— similar / different

Stochastic Energetics

Misconceptions

Different heats

Project

Project

(Vale, J. Cell Biol. '96)

Stochastic Energetics

Misconceptions

Different heats

Project

Project

Identical QM reaction

(Vale, J. Cell Biol. '96)

 $Pi = H_2PO_4$

(cf. protein kinase; γ -Pi is given to Se, which looses a proton)

Stochastic Energetics

Misconceptions

Different heats

Project

Project

(Vale, J. Cell Biol. '96)

Very similar 3D atomic structure

F. J. Kull, R. D. Vale and R. J. Fletterick J. Muscle Research and Cell Motility 19, 877-886 (1998)

Stochastic Energetics

Misconceptions

Different heats

Project

Project

(Vale, J. Cell Biol. '96)

Very similar AA sequences

	Nucleotide Binding Motifs			
	α,β-PO ₄ <u>N-1</u>	γ-PO ₄ <u>N-2</u>	γ-PO ₄ <u>N-3</u>	Purine <u>N-4</u>
G Proteins	GxxGxGKS/T	Т	DxxG	NKxD
Kinesins	GQTxxGKS/T	NxxSSR	DxxGxE	RxRP
Myosins	GESxxGKS/T	NxxSSR	DxxGxE	NP

(Vale, J. Cell Biol. '96)

Stochastic Energetics

Misconceptions

Different heats

Project

Project

(Vale, J. Cell Biol. '96)

Similar folding modules

Conserved β -strands

Kull, Vale Fletterick J.Muscle Res. Cell Motility 1998

Stochastic Energetics

Misconceptions

Different heats

Project

Project

(Vale, J. Cell Biol. '96)

Different chemo-mechanical cycles

kinesin - microtubule

myosin – F-actin

Stochastic Energetics

Misconceptions

Different heats

Project

Project

(Vale, J. Cell Biol. '96, modified)

Different filament binding

Stochastic Energetics

Misconceptions

Different heats

Project

Project

(Vale, J. Cell Biol. '96)

Designing principle:

— common *core mechanism* & different attachments

Stochastic Energetics

Misconceptions

Different heats

Project

Project

Working hypothesis:

— bidirectional control

(Vale, J. Cell Biol. '96)

2 "allosteric" couplings (sensor →gate)

Stochastic Energetics

Misconceptions

Different heats

Project

Project

Working hypothesis:

— bidirectional control

kinesin

myosin

(KS: 2005,2007, work in progress)

Stochastic Energetics

Misconceptions

Different heats

Project

Summary

Welcome
to
fluctuating world
and
stochastic energetics

