2d CFT

邹海涛

ID: 17210180015

Week 1

Exercise 0.0.1. The first order transitions and second order transitions show in the diagram

Exercise 0.0.2. By the homogeneous relation

$$f(t,h) = b^{-d} f(b^{y_t} t, b^{y_h} h)$$

we have

$$f(t,h) = t^{\frac{d}{y_t}}g(\alpha)$$

where $g(\alpha) = f(1, \alpha)$ and $\alpha = t^{-\frac{y_h}{y_t}}h$. It is easy to see that α is invariance under scaling transformation $x \to x/b$. Hence we have

$$C(t,0) = -T \frac{\partial^2 f}{\partial T^2} \Big|_{h=0} = -\frac{1}{T_c} t^{\frac{d}{y_t} - 2} g''(0)$$

$$M(t,0) = -\frac{\partial f}{\partial B} \Big|_{h=0} = t^{\frac{d - y_h}{y_t}} g'(0)$$

$$\chi(t,0) = \frac{\partial^2 f}{\partial B^2} \Big|_{h=0} = t^{(d - 2y_h)/y_t} g''(0)$$

As function with single variable h, $\lim_{t\to 0} M(t,h) \sim h^{\frac{1}{\delta}}$, which implies that $g'(\alpha) \sim \alpha^{\frac{1}{\delta}}$ since α is linear function of h. Hence we have

$$\lim_{t\to 0} M = \lim_{t\to 0} t^{(d-y_n-\frac{y_n}{\delta})} h^{1/\delta}$$

since it is non-zero, we have $d - y_n - y_n \frac{1}{\delta} = 0$. Hence we have

$$\delta = \frac{y_h}{d - y_h}$$

Exercise 0.0.3. We have following relation

$$G_{\sigma}(\mathbf{r};t,h) = t^{-2x_{\sigma}}G_{\sigma}(\frac{\mathbf{r}}{b};b^{y_{t}}t,b^{y_{h}}h)$$
(1)

Let $h = 0, K = b^{y_t}t$,

$$G_{\sigma}(\mathbf{r};t,0) = t^{2x_{\sigma}/y_t}G_{\sigma}(\frac{\mathbf{r}}{Kt^{-1/y_t}};K,0)$$

Since $G_{\sigma}(\mathbf{r}) \sim r^{-\tau} e^{-\frac{r}{\xi}}$, we have $\xi \sim t^{-1/y_t}$. It implies $\nu = 1/y_t$. With relation 1, we have

$$\chi(t,h) = \frac{1}{T} \int d^d \mathbf{r} G_{\sigma}(\mathbf{r};t,h) = t^{d-2x_{\sigma}} \chi(b^{y_t}t,b^{y_h}h)$$

So $\gamma = (d-2x_{\sigma})/y_t$. But we have $\eta = 2x_{\sigma} + 2 - d$ for finite limit of G(r) when $t \to 0$ and h = 0. Therefore, we get

$$\gamma = \nu(2 - \eta)$$

With scaling relations

$$\alpha + 2\beta + \gamma = 2$$
$$\alpha + \beta(1 + \delta) = 2$$

and $\alpha = 2 - d\nu$, we have

$$\beta = \frac{d\nu - 2\nu + \nu\eta}{2}$$
$$\delta = \frac{d - \eta + 2}{d + \eta - 2}$$

Exercise 0.0.4. By listed commutation relations, we have, for r, s > 0,

$$[D, J_{rs}] = [D, L_{rs}] = \frac{i}{2} [D, [K_r, P_s]]$$

$$= -\frac{i}{2} ([P_s, [D, K_r]] + [K_r, [P_s, D]])$$

$$= \frac{1}{2} [P_s, K_r] - \frac{1}{2} [K_r, P_s]$$

$$= 0$$

For r = -1, s = 0, $[D, J_{rs}] = [D, D] = 0$. For $r = -1, s \neq 0$, $[D, J_{-1,s}] = [D, \frac{1}{2}(P_s - K_s)] = \frac{i}{2}(P_s + K_s)$. For r = 0, $[D, J_{0s}] = \frac{i}{2}(P_s - K_s)$. Hence (2,25) is satisfied when (m, n) = (-1, 0). If (m, n) = (-1, n), then we have

$$[J_{mn}, J_{rs}] = \frac{1}{2}[P_n, J_{rs}] - \frac{1}{2}[K_n, J_{rs}]$$

With listed commutation relations, we can easily check it coincides with (2,25) respectively. Similarly check in the case of (m,n)=(0,n).

2d CFT

邹海涛

ID: 17210180015

1 $SL_2(\mathbb{C})$

Exercise 1.0.1. We have det $X = t^2 - (x^2 + y^2 + z^2)$. Since points in $\mathbb{R}^{1,3}$ can be written with Pauli matrix as base. Elements in SO(1,3) can be viewed as action on $M_2(\mathbb{C})$ with form $P \mapsto PXP^*$, which preserve det of X. We have exact sequence of groups as follows:

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow SL_2(\mathbb{C}) \xrightarrow{sp} SO(1,3) \longrightarrow 1$$

where sp is map $P \mapsto (X \mapsto PXP^*)$. Since for $P \in SL_2(\mathbb{C})$, $\det(PXP^*) = \det(X) = t^2 - (x^2 + y^2 + z^2)$, sp is well-defined. Hence $SO(1,3) \cong SL_2(\mathbb{C})/\mathbb{Z}_2$.

Exercise 1.0.2.

$$z \mapsto \frac{(z_2 - z_3)(z - z_1)}{(z_2 - z_1)(z - z_3)}$$

• We have

$$(w_1 - w_3) = \frac{(az_1 + b)(cz_3 + d) - (az_2 + b)(cz_4 + d)}{(cz_1 + d)(cz_3 + d)}$$
$$= \frac{z_1 - z_3}{(cz_1 + d)(cz_3 + d)}$$

Hence we have $[z_1, z_2, z_3, z_4] = [w_1, w_2, w_3, w_4]$

2 Three-point function

Exercise 2.0.1. Let $\langle \phi_1(z_1)\phi_2(z_2)\phi_3(z_3)\rangle = f(z_{12},z_{23},z_{13})$. Under scalar transformation $z_i \mapsto \lambda z_i$, we have

$$f(z_{12}, z_{23}, z_{13}) = \lambda^{h_1 + h_2 + h_3} f(\lambda z_{12}, \lambda z_{23}, \lambda z_{13})$$

Therefore, f is with form

$$f(z_{12}, z_{23}, z_{13}) = \frac{C_{123}}{z_{12}^a z_{23}^b z_{13}^c}$$

where $a+b+c=h_1+h_2+h_3$. Then under comformal transformation $z_i\mapsto \frac{1}{z_i}$, we have

$$z_1^{-2h_1}z_2^{-2h_2}z_3^{-2h_3}\frac{(z_1z_2)^a(z_2z_3)^b(z_1z_3)^c}{z_{12}^a z_{23}^b z_{13}^c} = \frac{1}{z_{12}^a z_{23}^b z_{13}^c}$$

Hence $a = h_1 + h_2 - h_3$, $b = h_2 + h_3 - h_1$, $c = h_1 + h_3 - h_2$.

3 Energy-momentum tensor

Exercise 3.0.1.

$$T^{\mu\nu} = -\eta^{\mu\nu}\partial_k\varphi\partial^k\varphi + 2\partial^\mu\varphi\partial^\nu\varphi$$

• We have

$$\delta\sqrt{g} = -\frac{1}{2}\sqrt{g}g_{\mu\nu}\delta g^{\mu\nu}$$

Therefore,

$$\begin{split} \tilde{T}^{\mu\nu} &= \frac{2}{\sqrt{g}} \frac{\delta S}{\delta g^{\mu\nu}} \\ &= \frac{1}{2} (-\delta_{\mu\nu} + 2) \partial_{\mu} \varphi \partial_{\nu} \varphi \end{split}$$

2d CFT

4 Derivations

4.1 Energy-momentum tensor in complex coordinate

Since

$$\partial_0 \Phi = \partial_z \Phi + \partial_{\bar{z}} \Phi$$
$$\partial_1 \Phi = i \partial_z \Phi - i \partial_{\bar{z}} \Phi$$

we have

$$\begin{split} \partial_z \Phi &= \frac{1}{2} \partial_0 \Phi - \frac{i}{2} \partial_1 \Phi \\ \partial_{\bar{z}} \Phi &= \frac{1}{2} \partial_0 \Phi + \frac{i}{2} \partial_1 \Phi \end{split}$$

Also, since there are metric tensors in complex coordinates

$$g^{\alpha\beta} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \quad g_{\alpha\beta} \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$$

, we have $\partial^z \Phi = 2\partial_{\bar{z}}$ and $\partial^{\bar{z}} \Phi = 2\partial_{\bar{z}} \Phi$. Therefore, from definition of energy-momentum tensor

$$T_{\alpha\beta} = -g_{\alpha\beta}\mathcal{L} + \frac{\partial \mathcal{L}}{\partial(\partial^{\alpha}\Phi)}\partial_{\beta}\Phi$$

we get expression of them in complex coordinates

$$T_{zz} = \frac{1}{4} \left(\frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_0 \Phi - i \frac{\partial}{\partial_1 \Phi} \partial_0 \Phi - i \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_1 \Phi - \frac{\partial \mathcal{L}}{\partial_1 \Phi} \partial_1 \Phi \right)$$

$$T_{\bar{z}\bar{z}} = \frac{1}{4} \left(\frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_0 \Phi + i \frac{\partial}{\partial_1 \Phi} \partial_0 \Phi + i \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_1 \Phi - \frac{\partial \mathcal{L}}{\partial_1 \Phi} \partial_1 \Phi \right)$$

$$T_{z\bar{z}} = -\frac{1}{2} \mathcal{L} + \frac{1}{4} \left(\frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_0 \Phi - i \frac{\partial}{\partial_1 \Phi} \partial_0 \Phi + i \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_1 \Phi + \frac{\partial \mathcal{L}}{\partial_1 \Phi} \partial_1 \Phi \right)$$

$$T_{z\bar{z}} = -\frac{1}{2} \mathcal{L} + \frac{1}{4} \left(\frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_0 \Phi + i \frac{\partial}{\partial_1 \Phi} \partial_0 \Phi - i \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_1 \Phi + \frac{\partial \mathcal{L}}{\partial_1 \Phi} \partial_1 \Phi \right)$$

Hence

$$T_{zz} = \frac{1}{4}(T_{00} - 2iT_{10} - T_{11})$$

$$T_{\bar{z}\bar{z}} = \frac{1}{4}(T_{00} + 2iT_{10} - T_{11})$$

$$T_{z\bar{z}} = T_{\bar{z}z} = \frac{1}{4}(T_{00} + T_{11})$$

4.2 Schwarzian derivative

$$\tilde{T}(z+\epsilon(z)) = (1+\partial_z \epsilon(z))^{-2} \left[T(z) - \frac{c}{12} \left(\frac{\partial_z^3 \epsilon(z)}{1+\partial_z \epsilon(z)} - \frac{2}{3} \frac{\partial_z^2 \epsilon(z)}{1+\partial_z \epsilon(z)} \right) \right]$$

Since

$$\frac{1}{1 + \partial_z \epsilon(z)} = 1 - \partial_z \epsilon(z) + (\partial_z \epsilon)^2 + \cdots$$

we have

$$\tilde{T}(z+\epsilon(z)) \approx T(z)(1-2\partial_z \epsilon(z)) - \frac{c}{12}(\partial_z^3 \epsilon(z) - \frac{2}{3}\partial_z^2 \epsilon(z))$$
$$\approx T(z) - 2\partial_z \epsilon(z)T(z) - \frac{c}{12}\partial_z^3 \epsilon(z)$$

Hence

$$\tilde{T}(z+\epsilon(z)) - \left[\epsilon(z)\partial_z T(z) + T(Z)\right] \approx -\frac{c}{12}\partial_z^3 \epsilon(z) - 2\partial_z \epsilon(z)T(z) - \epsilon(z)\partial_z T(z)$$

It implies that $\delta_{\epsilon}(T(z)) = -\frac{c}{12}\partial_z^3 \epsilon(z) - 2\partial_z \epsilon(z)T(z) - \epsilon(z)\partial_z T(z)$.

4.3 Virasoro algebra

The Larrent expansion of z^{n+1} around ω is

$$z^{n+1} = (z - \omega)^{n+1} + \binom{n+1}{1} \omega (z - \omega)^n + \dots + \binom{n+1}{i} \omega^i (z - \omega)^{n+1-i} + \dots + \omega^{n+1}$$

Hence we have following residues:

$$\operatorname{Res}_{\omega} \frac{z^{n+1}}{(z-\omega)^4} = 2\pi i \frac{(n+1)n(n-1)}{6} \omega^{n-2}$$

$$\operatorname{Res}_{\omega} \frac{z^{n+1}}{(z-\omega)^2} = 2\pi i (n+1)\omega^n$$

$$\operatorname{Res}_{\omega} \frac{z^{n+1}}{z-\omega} = 2\pi i \omega^{n+1}$$

Hence we have

$$\begin{split} &[L_n,L_m] = \frac{1}{(2\pi i)^2} \oint_0 d\omega \ \omega^{m+1} \oint_\omega dz \ z^{n+1} \left(\frac{c}{2(z-\omega)^4} + \frac{2T(\omega)}{(z-\omega)^2} + \frac{\partial_\omega T(\omega)}{(z-\omega)} + \text{regular part} \right) \\ &= \frac{1}{2\pi i} \oint_0 d\omega \ \omega^{m+1} \left(\frac{c}{12} (n+1)n(n-1)\omega^{n-2} + 2(n+1)\omega^n T(\omega) + \omega^{n+1} \partial_\omega T(\omega) \right) \\ &= \frac{1}{2\pi i} \left\{ \oint_0 d\omega \ \left(\frac{c(n+1)n(n-1)}{12} \omega^{m+n-1} \right) - (m-n) \oint_0 d\omega \omega^{m+n+1} T(\omega) \right\} \\ &= \frac{c}{12} n(n^2 - 1) \delta_{n+m,0} - (m-n) L_{n+m} \end{split}$$

4.4 Commutation relations in free boson

We have

$$\varphi = \varphi_0 + \frac{4\pi}{l}\pi t + i\sum_{n\neq 0} \frac{1}{n} \left(a_n e^{-2\pi i n(t-x)/l} + \bar{a}_n e^{-2\pi n(t+x)/l} \right)$$

on cylinder.

$$\Pi = \frac{\pi_0}{l} + \frac{1}{2l} \sum_{n \neq 0} \left(a_n e^{-2\pi i n(t-x)/l} + \bar{a}_n e^{-2\pi i n(t+x)/l} \right)$$

With $[\Pi, \Pi] = 0$, we can get $[\pi_0, a_n] = 0$ and $[\pi_0, \bar{a}_n] = 0$. Furthermore, since $[\varphi, \varphi] = 0$, we have $[\varphi_0, a_n] = [\varphi_0, \bar{a}_n] = 0$.

$$i\delta(x-y) = [\varphi(x,t),\Pi(y,t)] = \frac{1}{l}[\varphi_0,\pi_0] + \frac{i}{2l} \sum_{n\neq 0,m\neq 0} \frac{1}{n} \Big([a_n,\bar{a}_m] \exp(-2\pi i [(n+m)t - nx + my]/l) + [\bar{a}_n,a_m] \exp(-2\pi i [(n+m)t + nx - my]/l) + [\bar{a}_n,a_m] \exp(-2\pi i [(n+m)t - nx - my]/l) + [\bar{a}_n,\bar{a}_m] \exp(-2\pi i [(n+m)t + nx + my]/l) \Big)$$

Since t can be arbitrary, $[a_n, \bar{a}_m] = [\bar{a}_n, a_m] = 0$ when $n + m \neq 0$. Then let t = 0, we get

$$\begin{split} i\delta(x-y) &= [\varphi(x,0),\Pi(y,0)] \\ &= \frac{1}{l}[\varphi_0,\pi_0] + \frac{i}{2l}\sum_{n\neq 0}\frac{1}{n}\Big([a_n,\bar{a}_{-n}]e^{-2\pi i(-nx-ny)/l} + [\bar{a}_n,a_{-n}]e^{-2\pi i(nx+ny)/l} + \text{other terms}\Big) \\ &= \frac{1}{l}[\varphi_0,\pi_0] + \frac{i}{l}\sum_{n\neq 0}\Big(\frac{2[a_n,\bar{a}_{-n}]}{n}\Big)e^{2\pi i(n(x+y))/l} + \text{other terms} \end{split}$$

Since $e^{2\pi i(n(x+y))/l}$ is independent of x-y, then its coefficient is zero. Hence $[a_n, \bar{a}_{-n}] = 0$. Take integral of both left and right side, we can get $[\varphi_0, \pi_0] = i$ and $[a_n, a_{-n}] = [\bar{a}_n, \bar{a}_{-n}] = 1$.

4.5 Hamitonian in free boson

4.6 Action of free fermion

$$S = \frac{1}{4\pi} \int d^2x \psi^{\dagger} \gamma^0 (\gamma^0 \partial_0 \psi + \gamma^1 \partial_1 \psi)$$

But

$$\gamma^0(\gamma^0 + \gamma^1)\psi = \begin{pmatrix} \partial_0 + i\partial_1 & 0 \\ 0 & \partial_0 - i\partial_1 \end{pmatrix} \psi$$

Write ψ as $\begin{pmatrix} \varphi \\ \bar{\varphi} \end{pmatrix}$, then we have

$$\gamma^0(\gamma^0 + \gamma^1)\psi = \begin{pmatrix} 2\partial_{\bar{z}}\varphi\\ 2\partial_z\bar{\varphi} \end{pmatrix}$$

Hence

$$S = \frac{1}{2\pi} \int d^2x (\bar{\varphi} \partial_z \bar{\varphi} + \varphi \partial_{\bar{z}} \varphi)$$

4.7 TT OPE in free fermion

By derivative, we get

$$\langle \psi(z), \partial_{\omega} \psi(\omega) \rangle \sim \frac{1}{(z-\omega)^2}$$

 $\langle \partial_z \psi, \partial_{\omega} \psi \rangle \sim \frac{-2}{(z-\omega)^3}$

Hence

$$T(z)\partial_{\omega}\psi(\omega) = \frac{1}{2} : \psi(z)\partial_{z}\psi(z) : \partial_{\omega}\psi(\omega)$$
$$\sim -\frac{\psi(\omega)}{(z-\omega)^{3}} - \frac{1}{2}\frac{\partial_{\omega}\psi(\omega)}{(z-\omega)^{2}}$$

and

$$T(z)T(\omega) = \frac{1}{4} : \psi(z)\partial_z\psi(z) :: \psi(\omega)\partial_\omega\psi(\omega)$$

$$\sim \frac{1}{4} \left\{ -\frac{\partial_z\psi(z)\partial_\omega\psi(\omega)}{z-\omega} + \frac{2 : \psi(z)\psi(\omega) :}{(z-\omega)^3} - \frac{\partial_z\psi(z)\partial_\omega\psi(\omega) + \partial_z\psi(z)\psi(\omega) :}{(z-\omega)^2} + \frac{1}{(z-\omega)^4} \right\}$$

$$\sim \frac{1}{4} \left\{ \frac{2\partial_\omega T(\omega)}{z-\omega} + \frac{4T(\omega)}{(z-\omega)^2} + \frac{1}{(z-\omega)^4} \right\}$$

5 Vertex operator and OPE

If we write $\varphi(z,\bar{z})$ into laurent series since φ is free boson, then we can find $\exp(ik\varphi)$ is product of infinite exponential components which are commutative. Hence the normal ordering has taylor expansion form

$$: \exp(ik\varphi(z,\bar{z})) := \sum_{n=0}^{\infty} \frac{(ik)^n}{n!} : \varphi(z,\bar{z})^n :$$

To justify that : $\exp(ik\varphi)$: is primary field, we calculate its OPE

$$T(z) : \exp ik\varphi(\omega, \bar{\omega}) := -\frac{1}{2} \sum_{n=0}^{\infty} : \partial \varphi(z) \partial \varphi(z) :: \varphi(\omega, \bar{\omega})^{n}$$

$$\sim -\sum_{n=1}^{\infty} \frac{(ik)^{n}}{n!} n : \partial \varphi(z) \overbrace{\partial \varphi(z) \varphi(\omega, \bar{\omega})} \varphi(\omega, \bar{\omega})^{n-1} :$$

$$-\frac{1}{2} \sum_{n=2}^{\infty} \frac{(ik)^{n}}{n!} n(n-1) : \overbrace{\partial \varphi(z) \overbrace{\partial \varphi(z) \varphi(\omega, \bar{\omega})} \varphi(\omega, \bar{\omega})} \varphi(\omega, \bar{\omega})^{n-2} :$$

$$\sim \frac{ik\partial_{\omega}\varphi(\omega)}{z-\omega} : \exp(ik\varphi) : +\frac{k^{2}}{2(z-\omega)^{2}} : \exp(ik\varphi) :$$

This form implies that : $\exp(ik\varphi)$: is primary field with conformal dimension $\frac{k^2}{2}$.

6 bc ghost system

$$T(z)b(\omega) = (-2:b(z)\partial c(z):+:c(z)\partial b(z):)b(\omega)$$
$$2\frac{b(z)}{(z-\omega)^2} - \frac{\partial_z b(z)}{z-\omega}$$

Take Taylor expansion of b(z) and $\partial_z b(z)$ around ω , we have

$$T(z)b(w) \sim 2\frac{b(\omega)}{(z-\omega)^2} + \frac{\partial_{\omega}b(\omega)}{z-\omega}$$

Hence the conformal dimension of b is 2.

Similarly, we have

$$T(z)c(\omega) = (-2:b(z)\partial c(z):+:c(z)\partial b(z):)c(\omega)$$

$$\sim -\frac{c(z)}{(z-\omega)^2} + 2\frac{\partial_z c(z)}{z-\omega}$$

$$\sim -\frac{c(\omega)}{(z-\omega)^2} + \frac{\partial_\omega c(\omega)}{z-\omega}$$

Hence conformal dimension of c is -1.

$$T(z)T(\omega) = 4 : b(z)\partial c(\omega) :: b(\omega)\partial c(\omega) :$$

$$-2 : c(z)\partial b(z) :: b(\omega)\partial c(\omega) : -2 : b(z)\partial c(z) :: c(\omega)\partial b(\omega) :$$

$$+c(z)\partial b(z) :: c(\omega)\partial b(\omega) :$$

We will calculate it term by term

$$4:b(z)\partial c(z)::b(\omega)\partial c(\omega):$$

$$\sim 4\Big(:\overleftarrow{b(z)\partial c(z)b(\omega)\partial c(\omega)}:+b(z)\overleftarrow{\partial c(z)b(\omega)}\partial c(\omega)+:\overleftarrow{b(z)\overleftarrow{\partial c(z)b(\omega)}\partial c(\omega)}:\Big)$$

$$\sim \frac{4(-:\partial_z c(z)b(\omega):+:b(z)\partial_\omega c(\omega):)}{(z-\omega)^2}-\frac{4}{(z-\omega)^4}$$

$$\sim -\frac{4}{(z-\omega)^4} + \frac{8b(\omega)\partial_{\omega}c(\omega)}{(z-\omega)^2} + \frac{-4:\partial_{\omega}^2c(\omega)b(\omega):+4\partial_{\omega}b(z)\partial_{\omega}c(\omega)}{z-\omega}$$

and

$$2:c(z)\partial b(z)::b(\omega)\partial c(\omega):$$

$$\sim 2 \left(- : c(z) \partial b(z) b(\omega) \partial c(\omega) - : c(z) \partial b(z) b(\omega) \partial c(\omega) \right) - : \partial b(z) c(z) b(\omega) \partial c(\omega) \right)$$

$$\sim \frac{4}{(z-\omega)^4} + \frac{4 : c(z) b(\omega) :}{(z-\omega)^3} - \frac{2 : \partial b(z) \partial c(\omega)}{(z-\omega)}$$

$$\sim \frac{4}{(z-\omega)^4} + \frac{4 : c(\omega) b(\omega) :}{(z-\omega)^3} + \frac{4 : \partial_\omega c(\omega) b(\omega) :}{(z-\omega)^2} + \frac{2 : \partial_\omega^2 c(\omega) b(\omega) : -2 : \partial_\omega b(\omega) \partial_\omega c(\omega) :}{z-\omega}$$

and symmetrically

$$2:b(z)\partial c(z)::c(\omega)\partial b(\omega) \\ \sim \frac{4}{(z-\omega)^4} + \frac{4:b(\omega)c(\omega):}{(z-\omega)^3} + \frac{4:\partial_{\omega}b(\omega)c(\omega):}{(z-\omega)^2} + \frac{2:\partial_{\omega}^2b(\omega)c(\omega):-2:\partial_{\omega}c(\omega)\partial_{\omega}b(\omega):}{z-\omega}$$

and

$$c(z)\partial b(z) :: c(\omega)\partial b(\omega) :$$

$$\sim \frac{2 : c(\omega)\partial_{\omega}b(\omega)}{(z-\omega)^2} + \frac{-\partial_{\omega}^2b(\omega)c(\omega) + \partial_{\omega}c(\omega)\partial_{\omega}b(\omega)}{z-\omega} - \frac{1}{(z-\omega)^4}$$

Hence we have

$$T(z)T(\omega) \sim -\frac{13}{(z-\omega)^4} + \frac{2T(\omega)}{(z-\omega)^2} + \frac{\partial T(\omega)}{z-\omega}$$