

Performance

Übungen Computerarchitektur

1 | Prozessor Benchmark & Leistung

1.1	Welche der folgenden Aussagen sind richtig?	
	 Die wall-clock-time ist die insgesamt verstrichene Zeit, einschliesslich E/A Overhead usw. Multi-threading verbessert den Durchsatz eines Prozesses Die CPU Zeit beinhaltet nicht die E/A-Zeit Multi-threading verbessert die Ausführungszeit eines Prozesses 	, Betriebssystem-
1.2		per/benchmark-01
	 Leistung pro Watt (die Anzahl der FLOPS pro Watt) Rate der Verarbeitungsarbeit (n Aufträge/Sekunde) die Zeit zwischen Beginn und Abschluss eines Ereignisses/Aufgabe/Programder Prozentsatz der Zeit, in der ein System in Betrieb ist und läuft 	ms (n Sekunden) per/benchmark-02
1.3	Was ist der SPEC?	per, venemum 02

0	ist ein Benchmark-Katalog, der entwickelt wurde, um die Leistung auf der Grundlage der
	neuesten Java-Anwendungsfunktion zu messen
	ist ein Benchmark, der die Energie- und Leistungsmerkmale von Computern der Volume-
	Server-Klasse bewertet
	ist der weltweite Standard für die Messung der Grafikleistung auf der Grundlage professio-
	neller Anwendungen
	ist eine Benchmark-Katalog, die Leistungsmessungen liefert, die zum Vergleich computerin-
\cup	tensiver Arbeitslasten auf verschiedenen Computersystemen verwendet werden können.

per/benchmark-03

1.4 Was ist das Ziel der EEMBC-Benchmark?

HEI-Vs / ZaS, AmA / 2024

	O zur Bewei	rtung der Leistung v	on eingebetteten Mikroprozessoren
		e	on Ganzzahlberechnungen
		0	enz verschiedener Computersysteme
		rtung der Gleitkomn	
			per/benchmark-04
1.5	Welche der	folgenden Ken	nzahlen ist eine Energieeffizienzkennzahl?
	flops		
	☐ MIPS		
	Leistung j	pro Watt	
	Leistungs	aufnahme	
			per/benchmark-05
16	Rai ainam a	oingahattatan Cr	votem sind servebl der Stromverbreusch als auch
		-	ystem sind sowohl der Stromverbrauch als auch
die	Leistung pro	Watt wichtig.	
	0 11/1		
	O Wahr		
	Falsch		
			per/benchmark-06
1.7	Prozessorle	eistung	
	C		leitkomma- und 25′000 Ganzzahlbefehlen. Prozessor A hat eine nanweisungen benötigen 7 Zyklen und Ganzzahlanweisungen 1
	•	oraucht dieser Prozes	ssor, um das Programm auszuführen?
	b) Was ist der	durchschnittliche CI	PI für diesen Prozessor für das gegebene Programm?
		· ·	us, das aus 100'000 Gleitkomma- und 50'000 Ganzzahl-Befehlen schnittliche CPI für dieses Programm?
	d) Prozessor B	hat einen durchsch	nittlichen CPI für Programm 2 von 3.5. Seine Taktrate beträgt er für die Ausführung des Programms?
		-	und um wie viel schneller?
	Prozessor _	ist	mal schneller als Prozessor
			per/performance-01
1 0	D., 1		
ıx	Prozessorle	PISTINO	

Betrachten Sie die folgenden zwei Maschinenkonzepte mit ihren jeweiligen CPI's für verschiedene Befehlstypen. Computer A und Computer B haben den gleichen Befehlssatz:

Instruction Type	CPI_A	CPI_B	Compiler 1 Mix
Data Manipulation	1.5	1.0	25%
Arithmetic	1.0	1.5	30%
Shifting	1.0	1.2	10%
Branching	4.0	2.0	25%
Multiply	20	12	10%

- a) Wie hoch ist die durchschnittliche CPI für jeden der Computer, die dieses Programm verwenden?
- b) Computer A hat eine Clock-Zykluszeit von 0, 5ns. Computer B läuft mit 1, 8GHz. Schreiben Sie eine quantitative Aussage zum Vergleich der beiden Computer.
- c) Wie hoch müsste die Taktrate des langsameren Computers sein, um die Leistung des schnelleren Computers zu erreichen?

per/performance-02

1.9 Prozessorleistung

Eine CPU läuft mit einer Basisfrequenz von 2GHz. Er führt ein Programm mit 5 Millionen Anweisungen mit der angegebenen Anweisungsmischung aus. newline Wie lange ist die Ausführungszeit des Programms?

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	50%	3
Load	20%	5
Store	10%	4
Branch	20%	3

per/performance-03

1.10 Prozessorleistung

Eine CPU ist für eine optimale Leistung bei einem bestimmten Programm mit den folgenden Merkmalen ausgelegt. 25% aller Anweisungen sind Gleitkommaanweisungen mit einem durchschnittlichen CPI von 4.0, ausserdem enthält das Programm 2% FPSQR Anweisungen mit einem durchschnittlichen CPI von 20. Alle anderen Anweisungen haben einen durchschnittlichen CPI von 1.33. Es gibt zwei Konzeptalternativen:

- 1. Senkung des CPI von FPSQR -Anweisungen auf 2.0
- 2. Senkung des durchschnittlichen CPI aller Gleitkommaanweisungen auf 2.5

Welche Wahl ist die bessere?

per/performance-04

1.11 Prozessorleistung

Wir wollen einen neuen Computer kaufen. Darauf sollen hauptsächlich die Programme P_1 und P_2 laufen.

Welches Gewicht \boldsymbol{w}_{p_1} und \boldsymbol{w}_{p_2} müssen die Programme haben, damit:

- a) CPU A der beste Kauf ist?
- b) CPU B der beste Kauf ist?
- c) CPU C der beste Kauf ist?

Program	CPU_A	CPU_B	CPU_C
Program P_1 (sec)	1	10	100
Program P_2 (sec)	100	10	1

per/performance-05

1.12 Prozessorleistung

Benutzen Sie das geometrische Mittel, um zu berechnen, welcher Computer der schnellste ist, wenn Sie die folgende Leistung von zwei Programmen auf drei CPU's betrachten:

- a) CPU A ist der Schnellste!
- b) CPU B ist der Schnellste!
- c) CPU C ist der Schnellste!

Program	CPU_A	CPU_B	CPU_C
P_1 (sec)	40	15	20
P_2 (sec)	40	1000	150

per/performance-06

1.13 Prozessorleistung

Berechnen Sie den durchschnittlichen CPI für 5 Millionen Anweisungen mit den folgenden Befehlshäufigkeiten:

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	40%	4
Load	30%	6
Store	5%	5
Branch	25%	4

Die Clockfrequenz des CPU beträgt 2 GHz

per/performance-07

1.14 Welches ist die beste Messgröße für einen Leistungsvergleich?

arithmetisches Mittel

HEI-Vs / ZaS, AmA / 2024

0	geometrisches Mittel
0	median
0	maximale Leistung
0	harmonisches Mittel

per/performance-08

1.15 Prozessorleistung

Berechnen Sie die Ausführungszeit in ms, unter der Annahme, dass der CPU mit den folgenden Befehlshäufigkeiten arbeitet:

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	45%	5
Load	25%	6
Store	10%	5
Branch	20%	3

Für 2 Millionen Befehle und eine CPU Frequenz von 3 GHz.

per/performance-09

1.16 Amdahlsches Gesetz

Durch eine Verbesserung der Fliesskomma-Ausführungseinheit wurden 2x schnellere Fliesskomma-Befehle erzeugt. Im Durchschnitt sind 10% aller Befehle bei diesem Prozessor Fliesskomma-Befehle.

Wie hoch ist der Geschwindigkeitszuwachs insgesamt?

per/amdahls-law-01

1.17 Amdahlsches Gesetz

Wir wollen eine Gesamtbeschleunigung von 2 und können die Gleitkommaanweisungen um das Vierfache beschleunigen.

Wie hoch sollte der Anteil der Fliesskommaanweisungen sein?

per/amdahls-law-02

1.18 Amdahlsches Gesetz

Ein Program besteht aus 2 verschiedenen Elementen. Teil A hat eine Dauer von 15 und Teil B eine Dauer 5 Zeiteinheiten. Es gibt zwei Optimierungsvarianten:

- 1. Optimierung des A Teiles um das zweifache
- 2. Optimierung des B Teiles um das fünffache

Welche Optimierung ist vorteilhafter? Was sind die Implikationen?

HEI-Vs / ZaS, AmA / 2024

per/amdahls-law-03