Fundamentos Matemáticos del Aprendizaje Reforzado: Q-learning

Miguel Ángel Luquín Guerrero

UNIVERSIDAD DE ZARAGOZA GRADO DE MATEMÁTICAS

Junio, 2025

Índice

- Introducción
- 2 Marco Formal y Ecuaciones de Bellman
- 3 Algoritmo de Q-learning
- 4 Deep Q-learning

Aprendizaje Reforzado

El Aprendizaje Reforzado (Reinforcement Learning) es una rama del Machine Learning donde un agente aprende a tomar decisiones en una tarea sin recibir instrucciones explícitas.

¿Cómo aprende el agente?

Interactuando con un entorno, recibe **recompensas** que guían su comportamiento hacia una estrategia óptima.

Ejemplo básico de un entorno en RL

Escenario

Un pingüino quiere llegar desde la casilla de inicio hasta la meta, moviéndose por una cuadrícula.

- El **agente** es el pingüino.
- Cada celda representa un **estado**.
- Puede realizar acciones para moverse (ej. derecha, arriba...).
- A veces se equivoca con probabilidad $\mathbb{P}(\text{error}) = 0.1$.
- Recibe una **recompensa** de +1 al llegar a la meta.

Marco Formal y Ecuaciones de Bellman

Procesos de decisión de Markov

Definición 1.1

Un Proceso de Decisión de Markov (MDP, por sus siglas en inglés) es una tupla (S,A,T,R) donde S y A son conjuntos finitos cuyos elementos son los estados y acciones del proceso respectivamente. Además,

- $T: S \times A \times S \rightarrow [0,1]$ con $T(s,a,s') = \mathbb{P}(s'\mid s,a)$, la función de mide la probabilidad de que la acción a en el estado s conduzca al estado s', y
- $R: S \times A \times S \to \mathbb{R}$ la función de recompensa por pasar del estado s a s' mediante la acción a.

Episodios y políticas

Definición 1.2

Dado un MDP, un episodio es una sucesión de pasos temporales:

$$(s_0, a_0, s_1, r_1, a_1, s_2, r_2, \dots, s_{F-1}, r_{F-1}, a_{F-1}, s_F, r_F).$$

Definición 1.3

Dado un MDP (S, A, T, R), una política determinista es una función $\pi: S \to A$ que a cada estado $s \in S$ le asigna una acción $a \in A$.

Denotamos Π al conjunto de todas las políticas posibles. La función $\pi^* \in \Pi$ que maximice el valor esperado de la recompensa acumulada futura se llama política óptima.

Criterio de optimalidad

Definición 1.4

Dado un MDP (S, A, T, R) y un factor de descuento $\gamma \in (0, 1)$, el criterio de optimalidad usado para modelos con horizonte infinito es

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right].$$

Teorema 1.5

El criterio de optimalidad converge $\forall \gamma \in (0,1)$ si las recompensas del MDP asociado están acotadas.

Demostración

$$\sum_{t=0}^{\infty} \gamma^t r_t \le \sum_{t=0}^{\infty} \gamma^t |r_t| \le \sum_{t=0}^{\infty} \gamma^t M = M \sum_{t=0}^{\infty} \gamma^t = M \frac{1}{1-\gamma} < \infty.$$

Funciones de Valor

Definición 1.6

Dado un MDP (S,A,T,R) y una política cualquiera $\pi \in \Pi$, se define el valor de un estado con el criterio de optimalidad anterior como la función $V^{\pi}: S \to \mathbb{R}$ tal que:

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_k \middle| s_0 = s \right],$$

donde:

$$\mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right] = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \middle| a_{t} = \pi(s_{t}) \right].$$

Además definimos la función $Q^{\pi}: S \times A \to \mathbb{R}$ como

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_k \middle| s_0 = s, a_0 = a \right].$$

Ecuación de Bellman

Idea central

El valor de un estado bajo una política π se puede expresar de forma recursiva: es la recompensa esperada a corto plazo más el valor descontado del siguiente estado.

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \middle| s_0 = s \right]$$

$$= \mathbb{E}_{\pi} \left[r_0 + \gamma V^{\pi}(s_1) \middle| s_0 = s \right]$$

$$= \sum_{s' \in S} T(s, \pi(s), s') \left(R(s, \pi(s), s') + \gamma V^{\pi}(s') \right).$$

Esto es la Ecuación de Bellman para la función de valor estado.

Existencia de política óptima

Teorema 1.7

Dado un MDP (S, A, T, R) con S y A finitos, recompensas acotadas y un factor de descuento $\gamma \in (0,1)$, existe una política óptima $\pi^*: S \to A$ que para cualquier estado inicial $s_0 \in S$ maximiza la recompensa esperada y cuya función de valor V^* verifica la ecuación de optimalidad de Bellman:

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left(R(s, a, s') + \gamma V^*(s') \right), \quad \forall s \in S.$$

Además, la política óptima puede definirse como:

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} T(s, a, s') \left(R(s, a, s') + \gamma V^*(s') \right).$$

Función Q: Acción óptima en cada estado

Definición de la función Q^*

La función de valor estado-acción óptima nos indica el valor esperado de realizar una acción a en un estado s, y luego seguir la política óptima:

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left(R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right)$$

¿Cómo elegir la política óptima?

Basta con seleccionar en cada estado la acción con mayor valor Q:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Si conocemos Q^* , entonces conocer π^* es inmediato.

Actualización de la función Q

Definición 2.1

Sea (S,A,T,R) un MDP y $\gamma \in (0,1)$ un factor de descuento. El algoritmo Q-learning actualiza iterativamente la función de valor acción-estado $Q: S \times A \to \mathbb{R}$ mediante

$$Q(s, a) \leftarrow Q(s, a) + \alpha \Big[r + \gamma \max_{a' \in A} Q(s', a') - Q(s, a) \Big],$$

donde:

- $\alpha \in (0,1]$ es la tasa de aprendizaje,
- r = R(s, a, s') es la recompensa inmediata obtenida,
- $s' \sim T(\cdot|s, a)$ es el siguiente estado.

Actualización de la función Q

$$Q(s, a_2) \leftarrow Q(s, a_2) + \alpha \left[r_2 + \gamma \max_{a' \in \{a_{21}, a_{23}, a_{23}\}} Q(s_1, a') - Q(s, a_2) \right]$$

Solo se modifica el par (estado-acción) que se acaba de visitar.

Aspectos a tener en cuenta

- Estrategia de selección de acciones: ¿Cómo elegir las acciones a tomar durante el entrenamiento?
- 2 Inicialización de la función Q: ¿Cómo se establece el valor inicial de las estimaciones Q?
- **3 Hiperparámetros** α **y** γ : ¿Cómo afectan la tasa de aprendizaje y el factor de descuento al comportamiento del agente?

Exploración vs. Explotación

Exploración: probar acciones desconocidas.

Explotación: elegir la mejor opción conocida.

Estrategia ε -greedy

Objetivo: Balancear exploración y explotación durante el aprendizaje por refuerzo.

La política ε -greedy con $\varepsilon \in [0,1]$ resuelve este dilema mediante:

$$\pi(s) = \begin{cases} \operatorname{argmax}_a Q(s, a), & \text{con probabilidad } 1 - \varepsilon \text{ (explotación)} \\ \operatorname{acción aleatoria}, & \text{con probabilidad } \varepsilon \text{ (exploración)} \end{cases}$$

Ventajas:

- Fácil de implementar.
- Garantiza que todas las acciones sean eventualmente exploradas.

Nota: Comúnmente, ε decrece con el tiempo, favoreciendo la explotación al final del entrenamiento.

Métodos de Inicialización de la Función Q

La forma en que se inicializa la función Q puede influir en el comportamiento del algoritmo, existen varios métodos:

Método	Convergencia	Exploración inicial	Requiere conocimiento
Cero	Lenta	Baja	No
Optimista	Rápida	Alta	Sí $(R_{ m m\acute{a}x})$
Aleatoria	Moderada	Media	No

La estrategia más usada por su simplicidad en la práctica es la inicialización cero.

Hiperparámetros en Q-learning

- Factor de descuento $\gamma \in (0,1)$ Controla cuánto se valoran las recompensas futuras.
- Tasa de aprendizaje $\alpha \in (0,1)$ Determina cuánto se actualiza el valor Q con nueva información. Estrategias comunes:
 - Constante: $\alpha_n = \alpha_0$
 - Lineal: $\alpha_n = \alpha_0 \cdot (1 \frac{n}{N})$
 - Exponencial: $\alpha_n = \alpha_0 \cdot e^{-\lambda n}$
- Interacción γ - α y recomendaciones prácticas
 - \bullet Es clave equilibrar γ y α para mejorar eficiencia.
 - Valores típicos recomendados:
 - $\gamma \in (0.9, 0.99)$
 - $\alpha \in (0.05, 0.25)$

Lago helado con Q-learning

Objetivo

Estudiar la convergencia del algoritmo Q-learning según los valores de γ y α .

Condiciones fijas

- Matriz inicial: $Q_0 = 0$.
- Estrategia ε -greedy con decaimiento: $\varepsilon_{n+1} = \varepsilon_n \cdot 0.999$, con $\varepsilon_0 = 1$.
- Estados S, acciones A, transición T y recompensa R como en la introducción.
- Número de episodios: $N_{episodios} = \{100, 200, ..., 1000\}.$

Agentes y configuración de hiperparámetros

Agentes evaluados

- Agente 1: $\gamma = 0.25$, $\alpha = 0.9$ Valores no recomendados
- Agente 2: $\gamma = 0.95, \alpha = 0.1$ Valores recomendados fijos
- Agente 3: $\gamma = 0.25$, $\alpha_n = 0.1 \cdot \left(1 \frac{n}{N_{\text{episodios}}}\right)$ Mal γ y decaimiento lineal de α
- Agente 4: $\gamma = 0.95$, $\alpha_n = 0.1 \cdot \left(1 \frac{n}{N_{\text{episodios}}}\right)$ Buen γ y decaimiento lineal de α

Resultados: Porcentaje de éxito de los agentes

Fitted Q-learning: Aprendizaje Reforzado Escalable

Problema con Representación Tabular

En espacios de estado y acción de alta dimensión o continuos, la representación tabular de la función de valor-acción Q(s, a) es inviable.

Solución: Fitted Q-learning

Fitted Q-learning emplea un modelo paramétrico $Q(s,a;\theta)$, donde θ son los parámetros de un **aproximador funcional** (usualmente una red neuronal).

Objetivo: Ajustar θ para que $Q(s, a; \theta) \approx Q^*(s, a)$, es decir, aproximar la función óptima de valor-acción.

Deep Q-Network (DQN) y Aproximación Universal

Deep Q-Network (DQN)

DQN integra el **Fitted Q-learning** con redes neuronales profundas, permitiendo resolver tareas de control en entornos con espacios de estado de alta dimensión.

Fundamento teórico: Aproximación Universal

El **Teorema de Aproximación Universal** establece que una red neuronal con una sola capa oculta puede aproximar cualquier función continua con precisión arbitraria.

En el contexto de DQN, esto implica que una red neuronal $Q(s,a;\theta)$ puede aproximar la función de valor óptima $Q^*(s,a)$.

Cart Pole: Un ejemplo imposible para Q-learning tabular

Vamos a mostrar un ejemplo de entrenamiento de un agente que **no sería viable** con Q-learning tabular.

Objetivo: entrenar un agente para balancear un palo moviendo un carrito (*Cart Pole*).

Red neuronal profunda

Entrenamieto y prueba

Videos del entrenamiento y prueba del algoritmo:

▶ Reproducir Video de Entrenamiento

▶ Reproducir Video de Prueba

Resultados

Conclusiones

Partimos de:

Procesos de decisión de Markov y ecuaciones de Bellman.

Hemos llegado a:

Algoritmos de Q-learning tabular y aproximación de la función Q por medio de redes neuronales.

¿Qué más hay?

Se están desarrollando actualmente: Robots móviles, estrategias de trading, gestión de tráfico en redes inalámbricas...

Agradecimientos