Matching

• Matching in G ist Menge M E, sodass jeder Knoten höchstens eine Kante von M berührt

falls M on Matching in G 74 & {1, y}=[1, y]=[M, Jan X R1 mit y gematcht (ungkelot and)

- Matching ist perfekt, wenn jeder Knoten gematcht ist
 - $|M| = \frac{|V|}{2}$
 - größtmögliches Matching

Satz von Hall

• bipartite Graph G

- G hat Matching, wenn $N(S) \geq |S|$ für $\forall S \subseteq A$

- Pfad $P=(x_0,e_1,x_1,e_2,x_2,...,e_n,x_n)$ alternierend bzgl. M, wenn
 - x_0 ungematcht:
 - $*\ e_i \in M$ für gerade i
 - $oldsymbol{*}\ e_i \notin M$ für ungerade i
- P ist augmentierend bzgl. M, wenn
 - alternierend
 - letzte Knoten $x_k n$ ungematcht
 - $M'=M \bigtriangleup E(P)=(M/E(P)) \cup (E(P)/M)$ symmetrische Differenz
 - * Matching mit einer Kante mehr als M

- falls M nicht größtmöglich ==> augmentierender Pfad existiert
 - nicht größtmöglich solange |M| < |A| mit $|A| \leq |B|$

Bipartite Matching

- Input: $G = (A \cup B, E)$ bipartite Graph mit $|A| \leq |B|$
- Output: größtmögliche Matching in G
- erstelle M (aus augmentierter Pfad P) mit Kante mehr bis größtmöglich
- Verfahren:
 - sei $M=\emptyset$
 - wiederhole bis |M| = |A|
 - * P=Augmenting-Path(G,M)
 - * $M = M \triangle E(P)$
 - return M

Augmenting-Path

- Input: $G = (A \cup B, E)$ bipartite Graph, Matching M
- Output: augmentierender Pfad P bzgl. M
- Verfahren:
 - Skriptum

Vorgehensweise: Wir beginnen mit $M=\emptyset$ und vergrößern M rekursiv durch verbessernde Pfade, bis M größtmöglich ist.

Hierfür verwenden wir eine Variante von Algorithmus $3.5~(\mathrm{BFS})$ mit den folgenden zwei Unterschieden:

(1) Die gereihte Liste der abzuarbeitenden Knoten besteht am Anfang nicht nur aus einem Knoten, sondern aus allen ungematchten Knoten in A (in beliebiger Reihenfolge).

*

- (2) Liegt der aktuell erste Knoten x der Liste in B, dann
 - beenden wir den Algorithmus, falls x ungematcht ist;
 - ansonsten fügen wir den Knoten y, mit dem x gematcht ist, an das Ende der Liste hinzu, setzen v(y) = x und entfernen x aus der Liste.

*

Solange M noch nicht größtmöglich ist, findet dieser Algorithmus einen ungematchten Knoten $x \in B$. Zusammen mit allen seinen Vorgängern (und den Kanten zwischen ihnen) bildet x einen verbessernden Pfad P.

Wir ersetzen M durch $M\triangle E(P)$ und wiederholen die obige BFS-Variante.

Der Algorithmus endet, sobald die BFS-Variante keinen ungematchten Knoten in B findet. Dann ist M größtmöglich.

- Tafel:

[[Graphentheorie]]