

# Palindromiczny podział

22Pomorzanka01. Dzień 2. Grupa B. Czas 0,3 sek. Pamięć 128 MB.

Podział napisu s jest sekwencją złożoną z jednego lub więcej nienakładających się, niepustych spójnych podciągów s (nazwijmy je  $a_1, a_2, a_3, \ldots, a_d$ ), takich że s jest ich konkatenacją:  $s = a_1 + a_2 + a_3 + \ldots + a_d$ .

Te spójne podciągi nazywamy kawałkami, a długością podziału nazwiemy liczbę jego kawałków d.

Aby wygodnie reprezentować podział napisu, możemy umieścić kolejne jego kawałki w nawiasach. Na przykład: napis "decode" może być podzielony jako (d)(ec)(ode),(d)(e)(c)(od)(e), (decod)(e), (decode), (de)(code) oraz na wiele innych sposobów.

Podział nazwiemy *palindromicznym* jeśli jego kawałki tworzą palindrom, gdy rozważamy każdy kawałek jako pojedynczy obiekt. Na przykład: jedyne palindromiczne podziały napisu "decode" to: (de)(co)(de) oraz (decode). To pokazuje (między innymi), że każdy napis ma trywialny palindromiczny podział długości jeden (czyli składający się z jednego kawałka).

Twoim zadaniem jest obliczyć największą możliwą liczbę kawałków w palindromicznym podziale zadanego napisu.

## Wejście

W wierszu zapisano t ( $1 \le t \le 10$ ) liczbą zestawów testowych. Zapisz t wierszy zawierające napis s, złożonego jedynie z małych liter alfabetu angielskiego o długości n ( $1 \le n \le 10^6$ ).

## Wyjście

Dla każdego zestawu testowego wypisz jedną liczbę: długość (liczbę kawałków) najdłuższego palindromicznego podziału napisu s z wejścia.

### **Przykład**

| Wejście  | Wyjście |
|----------|---------|
| 4        | 3       |
| bonobo   | 5       |
| deleted  | 7       |
| racecar  | 1       |
| racecars |         |

### Punktacja

15 -  $n \le 30$ 

 $20 - n \le 300$ 

 $25 - n < 10^4$ 

 $40 - n < 10^6$