Preview

Sequential Activity Database

- A **sequence** is a series of activities, each having a cost.
- The **utility** of a sequence is a binary class.
- Measure the **correlation of** a **pattern** p with the desirable outcome.

Sid	<activity :="" cost=""></activity>	Utility
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	Positive
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	Negative
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	Positive
S ₄	<(a:2)(b:2)(c:1)(f:2)>	Negative

(e.g. cured or died after some medical treatments)

What's new in this work?

- New problem was defined.
- A tighter bound to reduce the search space.
- A new measure to evaluate patterns.
- Two pruning strategies are designed.

Sequential Activity Database

- A sequence is a series of activities, each having a cost.
- The **utility** of a sequence is a positive number.

Sid	<activity :="" cost=""></activity>	Utility
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	40
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	50
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	60
S ₄	<(a:2)(b:2)(c:1)(f:2)>	70

(e.g. score obtained at an exam)

The *support* measure

Sid	<activity :="" cost=""></activity>	Utility
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	•••
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	•••
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	•••
S ₄	<(a:2)(b:2)(c:1)(f:2)>	•••

The **support** of a pattern p:

$$\sup(p) = |S_S|p \subseteq S_S \in DB|$$

(number of sequences containing p)

e.g.
$$sup(\langle ab \rangle) = |\{S_1, S_4\}| = 2 \text{ sequences}$$

This measure is used to remove noise.

The *cost* measure

Sid	<activity :="" cost=""></activity>	•••
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	•••
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	•••
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	•••
S ₄	<(a:2)(b:2)(c:1)(f:2)>	•••

The **cost** of a pattern p:

$$c(p, S_s) = \sum_{v_i \in first(p, S_s)} c(v_i, S_s)$$

$$c(ab, S_1) = 4 + 2 = 6$$

The **average cost** of a pattern p:

$$ac(p) = \frac{\sum_{p \subseteq S_S \in DB} c(p, S_S)}{|\sup(p)|}$$

$$ac(ab) = 6 + 4 / 2 = 5$$

Sequence 1 Sequence 4

The occupancy measure

Sid	<activity :="" cost=""></activity>	•••
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	•••
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	•••
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	•••
S ₄	<(a:2)(b:2)(c:1)(f:2)>	•••

The **occupancy** of a pattern p:

$$occup(p) = \frac{1}{sup(p)} \sum_{p \subseteq S_s \in SEL} \frac{|p|}{|S_s|}$$

occup(
$$ab$$
) = $\frac{1}{2} \cdot \left(\frac{2}{5} + \frac{2}{4}\right) = 0.45$
Sequence 1 Sequence 4

According to the previous experiments, this measure is used to remove patterns that are **short** and **non-representative** of the containing sequences.

Problem 3: Finding all cost-effective patterns in a numeric DB

Sid	<activity :="" cost=""></activity>	Utility
S 1	<(a:4)(b:2)(e:4)(c:4)(d:5)>	40
S2	<(b:3)(c:2)(f:1)(d:1)(e:2)>	50
S3	<(a:2)(f:2)(e:1)(c:3)(d:5)>	60
S4	<(a:2)(b:2)(c:1)(f:2)>	70

A pattern p is cost-effective if:

$$\sup(p) \ge \min \sup$$

$$ac(p) \le \max cost$$

$$occup(p) \ge \min occup$$

Problem 3:

Finding all cost-effective patterns in a **numeric DB**

Sid	<activity :="" cost=""></activity>	Utility
S1	<(a:4)(b:2)(e:4)(c:4)(d:5)>	40
S 2	<(b:3)(c:2)(f:1)(d:1)(e:2)>	50
S 3	<(a:2)(f:2)(e:1)(c:3)(d:5)>	60
S4	<(a:2)(b:2)(c:1)(f:2)>	70

A pattern p is cost-effective if:

$$\sup(p) \ge \min \sup$$

$$ac(p) \le \max cost$$

$$occup(p) \ge \min occup$$

Furthermore, we measure the **trade-off** between the **cost** and **utility** of a **pattern** p:

$$tf(p) = \frac{ac(p)}{u(p)}$$
Average cost
$$\underline{\text{Utility}} \quad u(p) = \frac{\sum_{p \subseteq S_S \in DB} su(S_S)}{|\text{sup}(p)|}$$

More details...

Sid	<activity :="" cost=""></activity>	Utility
S1	<(a:4)(b:2)(e: 4)(c:4)(d:5)>	40
S2	<(b:3)(c:2)(f:1)(d:1)(e:2)>	50
S 3	<(a:2)(f:2)(e:1)(c:3)(d:5)>	60
S4	<(a:2)(b:2)(c:1)(f:2)>	70

Utility of a pattern *p*:

$$u(p) = \frac{\sum_{p \subseteq S_S \in SADB} su(S_S)}{|\sup(p)|}$$

u(ab) = 40 + 70/2 = 55Sequence 1 Sequence 3

Trade-off of a pattern p:

$$tf(p) = \frac{ac(p)}{u(p)}$$

$$tf(ab) = 5/55 = 0.09$$

 $tf(cd) = 6.7/50 = 0.13$

Thus, pattern (*ab*) is more efficient than (*cd*).

How to reduce the search space? (1)

Sid	<activity :="" cost=""></activity>	Utility
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	•••
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	•••
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	•••
S ₄	<(a:2)(b:2)(c:1)(f:2)>	•••

We propose a **tighter lower-bound** on the **average cost**:

$$AMSC(p) = \frac{1}{minsup} \sum_{i=1,2,..,minsup} c(p, S_i)$$

where $c(p,S_i)$ are sorted in ascending order.

e.g. For
$$minsup = 2$$
 $c(bc, S_1) = 6$ $c(bc, S_2) = 5$ $c(bc, S_4) = 3$

$$AMSC(bc) = (3+5) / 2 = 4$$

How to reduce the search space? (2)

We use an upper bound on the occupancy of a pattern p:

$$uo(p) = \frac{1}{sup(p)} \cdot \max_{S_1, \dots, S_{sup(p)}} \sum_{i=1}^{sup(p)} \frac{psl[S_i] + ssl[S_i]}{sl[S_i]}$$

where $psl[S_i]$, $ssl[S_i]$ and $Sl[S_i]$ is p's length in S_i , the length of the subsequence after p in S_i , and S_i 's length, respectively.

e.g.
$$minsup = 2, p = \langle a, b, c \rangle$$

$$psl(S_1) = psl, [S_4] = 3, ssl(S_1) = 1, ssl(S_4) = 1,$$

$$sl[S_1]=5$$
, $sl[S_4]=4$,

$$sl[S_1]=5$$
, $sl[S_4]=4$,
 $uo(p) = \frac{1}{2} \left(\frac{3+1}{5} + \frac{3+1}{4} \right) = 0.9$

Sid	<activity :="" cost=""></activity>	Utility
S_1	<(a:4)(b:2)(e :4)(c:4)(d:5)>	•••
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	•••
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	•••
S ₄	<(a:2)(b:2)(c:1)(f:2)>	•••

Properties of uo

$$uo(p) = \frac{1}{sup(p)} \cdot \max_{S_1, \dots, S_{sup(p)}} \sum_{i=1}^{sup(p)} \frac{psl[S_i] + ssl[S_i]}{sl[S_i]}$$

- **I. Overestimation**: The *uo* of a pattern *p* is greater than or equal to its occupancy, $uo(p) \ge occup(p)$
- **II. Anti-monotonicity**: Let p_x and p_y be two patterns, If $p_x \subset p_y$ then $uo(p_x) \geq uo(p_y)$
- **III.Pruning**: For a pattern p, if uo(p) < minoccup, then pattern p can be eliminated as well as its supersets.

How to reduce the search space? (3)

We use an upper bound on the utility of a pattern p in a numeric DB:

$$upperu = \frac{1}{minsup} \sum_{i=1,2,\dots,n} u(p,S_i)$$

Sid	<activity :="" cost=""></activity>	Utility
S ₁	<(a:4)(b:2)(e:4)(c:4)(d:5)>	40
S ₂	<(b:3)(c:2)(f:1)(d:1)(e:2)>	50
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	60
S ₄	<(a:2)(b:2)(c:1)(f:2)>	70

e.g.
$$minsup = 2$$
 $p = \langle a, b, c \rangle$ $u(p, S_1) = 40$ $u(p, S_4) = 70$ $upperu(p) = \frac{1}{2} (40 + 70) = 55$

Properties of *upperu*:

$$upperu = \frac{1}{minsup} \sum_{i=1,2,\dots,n} u(p,S_i)$$

- **I. Overestimation**: The *upperu* of a pattern p is greater than or equal to its cost, $upperu(p) \ge u(p)$
- II. Anti-monotonicity: Let p_x and p_y be two patterns, If $p_x \subset p_y$ then $upperu(p_x) \ge upperu(p_y)$
- **III.Pruning**: For a pattern p, if upperu(p) < minutility, then pattern p can be eliminated as well as its supersets.

Pattern Growth Algorithms

Sid	<activity :="" cost=""></activity>	Utility
S ₁	<(a:4)(b:2)(e:4)(c:4) (d:5)>	P/40
S ₂	< (b:3)(c:2) (f:1)(d:1)(e:2)>	N/50
S ₃	<(a:2)(f:2)(e:1)(c:3)(d:5)>	P/60
S ₄	<(a:2)(b:2)(c:1) (f:2)>	N/70

P	sup	ac	occup	cor/tf
a	3	2.7	0.22	0.5/
b	3	2.3	0.22	-0.5/

P	$sup \land AMSC \land uo \land upperu(case2 only)$					
а	3	2.67	0.11	56.7		
b	3	2.33	0.11	53.3		

$\sup(p) \ge \min\sup$	٨
$AMSC(p) \leq \max cost$	٨
$uo(p) \ge minoccup$	٨
$upperu(p) \ge minutili$	ity

Case study 2: numeric e-learning DB

Database

- A sequence is the learning activities of a session.
- **Cost**: time to complete an activity.
- **Utility**: the score at the final exam.

Cost-effective patterns found in learning session 6

Utility	Pattern	trade-off	Average Cost	Suppor
1	$\langle Study_Es_6_1, Study_Es_6_1, Study_Es_6_1 \rangle$		57.6	5
2	$\langle Study_Es_6_1, Study_Es_6_1, Study_Es_6_3 \rangle$		33.0	5
4	$\langle Study_Es_6_1, Study_Es_6_2, Study_Es_6_2 \rangle$	7.0	32.8	6
5	$\langle Study_Es_6_1, Study_Es_6_1 \rangle$	5.1	27.6	9
6	$\langle Study_Es_6_1, Study_Es_6_1, Deeds_Es_6_1 \rangle$		40.5	6
7	(Study_Es_6_2, Study_Es_6_2)		20.7	11
8	(Study_Es_6_2, Study_Es_6_2, Deeds_Es_6_2)		31.3	6
9	$\langle Study_Es_6_1 \rangle$		11.0	20
10	$\langle Study_Es_6_1, Deeds_Es_6_2 \rangle$		21	13
11	$\langle Study_Es_6_2, Study_Es_6_3 \rangle$		18.2	16
12	$\langle Study_Es_6_2 \rangle$		8.9	25
13	$\langle Study_Es_6_3 \rangle$		8.52	25
14	$\langle Deeds_Es_6_2 \rangle$		9.1	28
15	$\langle Study_Es_6_2, Deeds_Es_6_2, Study_Es_6_3 \rangle$		27.0	10
16	$\langle FSM_Es_6_1, FSM_Es_6_1, Deeds_Es_6_2, Study_Es_6_3 \rangle$		64.2	5
17	$\langle Deeds_Es_6_2, Study_Es_6_3 \rangle$	0.89	15.6	16
18	(Study_Es_6_3, Study_Es_6_3)		18.8	9
20	(Deeds_Es_6_1, tudy_Es_6_3, Study_Es_6_3)		32.7	7
21	$\langle FSM_Es_6_3, Study_Es_6_3, Study_Es_6_3 \rangle$		94.8	6
23	$\langle Deeds_Es_6_2, Study_Es_6_3, Study_Es_6_3 \rangle$		27.0	6
24	$\langle FSM_Es_6_1, Deeds_Es_6_1, Study_Es_6_3, Study_Es_6_3 \rangle$	3.6	86.3	6
28	(Deeds_Es_6_1, Deeds_Es_6_2, Study_Es_6_3, Study_Es_6_3)	1.35	38.0	5

tr(<Study_Es_6_2> <Deeds _Es_6_2><Study_Es_6 _3>)=**1.74**, **cost / utility**=27 /15

tr(<Deeds_Es_6_1><Deeds_Es_6_2><Study_Es_6_3><Study_Es_6_3>)=**1.35**, **cost / utility**=28 / 21

The smaller the trade-off, the more effective the pattern.

UDML 2019
Utility-Driven Mining
and Learning Workshop
(at ICDM 2019)

Open source Java data mining software, 150 algorithms

http://www.phillippe-fournier-viger.com/spmf/