Princípios de Análise e Projeto de Sistemas com UML

Eduardo Bezerra

2ª edição

Editora Campus/Elsevier

Modelagem de Classes

"O engenheiro de software amador está sempre à procura da mágica, de algum método sensacional ou ferramenta cuja aplicação promete tornar trivial o desenvolvimento de software. É uma característica do engenheiro de software profissional saber que tal panacéia não existe" -Grady Booch

Diagrama de classes

Diagrama de classes Conceito

- Mostra um conjunto de classes e seus relacionamentos.
- É o diagrama central da modelagem orientada a objetos.

Diagrama de classes Notação

- Notação na UML: "caixa" com no máximo três compartimentos exibidos.
- O detalhamento utilizado depende do estágio de desenvolvimento e do nível de abstração desejado.

Nome da Classe

Nome da Classe lista de atributos Nome da Classe lista de operações Nome da Classe lista de atributos lista de operações

Diagrama de classes Exemplo (classe ContaBancária)

ContaBancária

ContaBancária

número saldo dataAbertura

ContaBancária

criar() bloquear() desbloquear() creditar() debitar()

ContaBancária

número

saldo dataAbertura criar() bloquear() desbloquear() creditar() debitar()

ContaBancária

-número : String -saldo : Quantia -dataAbertura : Date +criar()

+criar() +bloquear()

+desbloquear()

+creditar(in valor : Quantia)

+debitar(in valor : Quantia)

Diagrama de classes Atributos

- Representam o conjunto de características dos objetos daquela classe.

- Visibilidade:

+ público: visível em qualquer classe de qualquer pacote

protegido: visível para classes do mesmo pacote

- privado: visível somente para classe

- Exemplo:

+ nome : String

Diagrama de classes Métodos

Representam o conjunto de operações (comportamento)
que a classe fornece.

- Visibilidade:
 - + público: visível em qualquer classe de qualquer pacote
 - # protegido: visível para classes do mesmo pacote
 - privado: visível somente para classe
- Exemplo: getNome() : String

Elementos de um diagrama de classes

- Classes
- Relacionamentos:
 - → Associação: agregação ou composição
 - → Generalização/Especialização

Elementos de um diagrama de classes Relacionamentos

- Os relacionamentos possuem:
 - → Nome: descrição dada ao relacionamento (faz, tem, possui,...)
 - → Sentido de leitura:
 - Navegabilidade: indicada por uma seta no fim do relacionamento
 - Multiplicidade: 0..1, 0..*, 1, 1..*, 2, 3..7
 - Tipo: associação (agregação, composição) e generalização
 - Papéis: desempenhados por classes em um relacionamento

Elementos de um diagrama de classes Relacionamentos

Elementos de um diagrama de classes Relacionamentos/Navegabilidade

Elementos de um diagrama de classes Relacionamentos/Multiplicidade

- Representam a informação dos limites inferior e superior da quantidade de objetos aos quais outro objeto pode se associar.
- Cada associação em um diagrama de classes possui duas multiplicidades, uma em cada extremo da linha de associação.

Nome	Simbologia na UML
Apenas Um	11 (ou 1)
Zero ou Muitos	0* (ou *)
Um ou Muitos	1*
Zero ou Um	01
Intervalo Específico	1 _i 1 _s

Elementos de um diagrama de classes Relacionamentos/Mutiplicidade

- Pode haver um cliente que esteja associado a vários pedidos.
- Pode haver um cliente que n\u00e3o esteja associado a pedido algum.
- Um pedido está associado a um, e somente um, cliente.

- Uma corrida está associada a, no mínimo, dois velocistas
- Uma corrida está associada a, no máximo, seis velocistas.
- Um velocista pode estar associado a várias corridas.

Elementos de um diagrama de classes Relacionamentos/Tipo Associação

- Para representar o fato de que objetos podem se relacionar uns com os outros, utilizamos associações.
- Uma associação representa relacionamentos (ligações) que são formados entre objetos durante a execução do sistema.
- Uma associação é representada por uma linha sólida conectando duas classes.

Elementos de um diagrama de classes Relacionamentos/Tipo Agregação e Composição

Elementos de um diagrama de classes Relacionamentos/Tipo Agregação e Composição

- Agregação: fraca

- Composição: forte

Elementos de um diagrama de classes Relacionamentos Tipo Generalização e Especialização

- É um relacionamento entre itens gerais (superclasses) e itens mais específicos (subclasses)
 - Exemplo: o conceito mamífero é mais genérico que o conceito ser humano.
 - Exemplo: o conceito carro é mais específico que o conceito veículo.
- Esse é o chamado relacionamento de herança.
 - relacionamento de generalização/especialização
 - relacionamento de gen/espec

Elementos de um diagrama de classes Relacionamentos Tipo Generalização e Especialização

Elementos de um diagrama de classes Relacionamentos Tipo Generalização e Especialização

Vei	Veículo Figura Geométrica			
{incompleta}		{incompleta, disjunta}		
Caminhão	Trator	Elipse	Quadrado	Círculo
Inc	divíduo		Atleta	
{compl	eta, disjunta}	{ir	{incompleta, sobreposta}	
Homem	Mulher	Nadador		Corredor

Elementos de um diagrama de classes Classe Associativa

- É uma classe que está ligada a uma associação, em vez de estar ligada a outras classes.
- É normalmente necessária quando duas ou mais classes estão associadas, e é necessário manter informações sobre esta associação.
- Uma classe associativa pode estar ligada a associações de qualquer tipo de conectividade.

Elementos de um diagrama de classes Classe Associativa

- Notação é semelhante à utilizada para classes ordinárias. A diferença é que esta classe é ligada a uma associação por uma linha tracejada.
- Exemplo: para cada par de objetos [pessoa, empresa], há duas informações associadas: salário e data de contratação.

Elementos de um diagrama de classes Associações n-árias

- Define-se o *grau* de uma associação como a quantidade de classes envolvidas na mesma.
- Na notação da UML, as linhas de uma *associação n-ária* se interceptam em um losango.
- Na grande maioria dos casos práticos de modelagem, as associações normalmente são *binárias*.
- Quando o grau de uma associação é igual a três, dizemos que a mesma é *ternária*.

Elementos de um diagrama de classes Exemplo (associação ternária)

- Na notação da UML, as linhas de uma associação n-ária se interceptam em um losango nomeado.
 - → Notação similar ao do Modelo de Entidades e Relacionamentos

Exemplo: Sistema de matrícula

Exemplo: Sistema de matrícula

A Universidade XYZ deseja informatizar seu sistema de matrículas:

- A universidade oferece vários cursos.
- O Coordenador de um curso define as disciplinas que serão oferecidas pelo seu curso num dado semestre.
- Várias disciplinas são oferecidas em um curso.
- Várias turmas podem ser abertas para uma mesma disciplina, porém o número de estudantes inscritos deve ser entre 3 e 10.
- Estudantes selecionam 4 disciplinas.
- Quando um estudante matricula-se para um semestre, o Sistema de Registro Acadêmico (SRA) é notificado.
- Após a matrícula, os estudantes podem, por um certo prazo, utilizar o sistema para adicionar ou remover disciplinas.
- Professores usam o sistema para obter a lista de alunos matriculados em suas disciplinas. O Coordenador também.
- Todos os usuários do sistema devem ser validados.

Sistema de matrícula: diagrama de casos de uso

Sistema de matrícula: descrição de caso de uso

Descrição do Caso de Uso "Matricular em Disciplina"

- 1) Esse caso de uso se inicia quando o Estudante de Curso inicia uma sessão no sistema e apresenta suas credenciais.
- 2) O sistema verifica se a credencial é válida.
- 3) O sistema solicita que o estudante realize sua matrícula, selecionando 4 disciplinas.
- 4) O estudante preenche um formulário eletrônico de matrícula e o submete para uma análise de consistência.
- 5) O sistema analisa as informações contidas no formulário.
- 6) Se as informações são consistentes, o estudante é incluído em turmas abertas de 4 disciplinas, iniciando pelas preferenciais.
- 7) Se as informações não são consistentes, o sistema informa o motivo da inconsistência e solicita que o formulário seja alterado.
- 8) O caso de uso se encerra.

Sistema de matrícula: diagrama de classes

Exercício: associações e cardinalidade

Considere as seguintes premissas de um sistema:

- um curso pode ser formado por uma ou mais disciplinas diferentes;
- uma disciplina poderá fazer de nenhum ou até muitos cursos;
- cada disciplina deverá ser ministrada por apenas um professor, podendo o professor ministrar uma ou muitas disciplinas diferentes;
- um curso não poderá ter mais de 40 alunos, nem menos de 20 alunos matriculados;
- para cada turma de alunos deverá haver uma sala de aula;
- um aluno poderá se matricular em nenhum ou em até muitos cusos.

FIM!!!