Évolution décennale des paramètres climatiques et biogéochimiques en Méditerranée

Mégane Ballin

Frédéric Gazeau, Steeve Comeau, Samir Alliouane, Emmanuelle Uher, Laure Mousseau, Carla Larvor, Nuria Teixido, Jean-Michel Grisoni, Jean-Pierre Gattuso, Laurent Coppola

Les séries de données de Villefranche-sur-Mer

Série basse-fréquence au Point B

Série commencée en 2007

Fréquence : 1 mesure / semaine (mardi matin à 09h)

Mesures à 1 et 50m

Paramètres mesurés : température, salinité (depuis 1993), silicates et phosphates, pH mesuré par spectrophotométrie (depuis 2014) Sonde multiparamétrique (CTD)

Disponibilité données : somlit.fr

Série haute-fréquence à EOL

Série commencée en 2013 Fréquence: 1 mesure / heure Mesures uniquement en surface

Paramètres mesurés : température, salinité et oxygène dissous (depuis 2017)

CTD Sea-bird (SBE37 SMP-ODO)

Disponibilité données : seanoe.org

Correction/validation données haute-fréquence

Comparaison température au Point B vs température à EOL

Ly Température : pas de correction nécessaire

L Salinité : données corrigées par période de déploiement (vs cast CTD SOMLIT à 1 m)

Ly Oxygène : données corrigées avec les données discrètes par méthode Winkler

Chimie des carbonates

Prélèvements A_T et C_T (Point B) envoyés au SNAPO

Service national d'analyses des paramètres océanographiques du CO₂

SERVICE LABELLISÉ D'ANALYSE ÉCHANTILLONS EAU DE MER

Analyse des échantillons d'eau de mer (alcalinité et carbone inorganique dissous)

Comparaison pH calculé (basé sur A_T et C_T) vs pH mesuré (spectrophotométrie)

Données de température (°C) + salinité + A_T et CT (µmol/kg)

Package R Seacarb 3.1 (Gattuso et al. 2016)
L calcul des paramètres du système carbonate : pH calculé + pH normalisé (18 ou 25 °C) CO_2, pCO_2 HCO_3^-, CO_3^{2-}

LOV

Série basse-fréquence au Point B

Série basse-fréquence au Point B – étude température sur 30 ans

→ Méthode de calcul des anomalies : Bates et al. (2014)

Janvier 1993 à décembre 2002 :

+ 0.066 °C par an

Janvier 2003 à décembre 2012 :

- 0.0003 °C par an

Janvier 2013 à décembre 2022 :

+ 0.083 °C par an

Interpolation linéaire

NA occurences by year for temperature time series (2007-2022)

Temperature (2007-2022)

Time Series with highlighted missing regions

Point B - Temperature time series (°C) - period 2007-2022

Visualization of missing value replacements

EOL temperature time series (°C) 2013-2022

EOL salinity time series (2013-2022)

Alliouane Samir, Grisoni Jean-Michel, Gazeau Frédéric (2022). **Environmental Observatory of the Littoral (EOL) biogeochemical data from the Northwestern Mediterranean sea.** SEANOE. https://doi.org/10.17882/91965

Série haute-fréquence à EOL – analyse des tendances

Evolution de la température et de la salinité en surface sur 6 ans

Bates et al. (2014)

Séries haute-fréquence : côte vs large

Bouée Azur:

Données de température de surface (°C)

Fréquence : 30 min (depuis septembre 2011)

Disponibilité données : mistrals.sedoo.fr

À venir : calcul de tendance pour données du large Difficultés avec les data manquantes Calcul du r adjust ?

Legend

Coast temp. (EOL)

Pelagic temp. (Azur)

Série basse-fréquence au Point B – analyse des tendances

Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea

Lydia Kapsenberg¹, Samir Alliouane¹, Frédéric Gazeau¹, Laure Mousseau¹, and Jean-Pierre Gattuso^{1,2}

→ Méthode de calcul des anomalies : Bates et al. (2014)

2007-2015

Depth (m)	Variable	$Slope \pm SE$
1	S	-0.0017 ± 0.0044
*	<i>T</i> (°C)	0.072 ± 0.022
*	$C_{\rm T}$ (µmol kg ⁻¹)	2.97 ± 0.20
*	$A_{\rm T}$ (µmol kg ⁻¹)	2.08 ± 0.19
	pH_T	-0.0028 ± 0.0003
	pH_{T25}	-0.0017 ± 0.0002
	pCO ₂ (µatm)	3.53 ± 0.39
50 *	S	0.0063 ± 0.0020
*	<i>T</i> (°C)	0.088 ± 0.019
*	$C_{\rm T}$ (µmol kg ⁻¹)	2.16 ± 0.21
*	$A_{\rm T}$ (µmol kg ⁻¹)	1.59 ± 0.15
	pH_T	-0.0026 ± 0.0002
	pH_{T25}	-0.0013 ± 0.0003
	pCO_2 (µatm)	2.79 ± 0.25

2007-2022

017
007
007
0.09
0.08
002
001
).21
008
007
007
007 0.10
007).10).08

¹Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS-INSU, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer. France

²Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, 75007 Paris, France

Série basse-fréquence au Point B - pH 12

Kapsenberg et al. (2017) Bates et al. (2014)

2007-2015

De	epth (m)	Variable	Slope \pm SE
1		S	-0.0017 ± 0.0044
		T ($^{\circ}$ C)	0.072 ± 0.022
		$C_{\rm T}$ (µmol kg ⁻¹)	2.97 ± 0.20
		A_{T} (µmol kg ⁻¹)	2.08 ± 0.19
	*	pH_T	-0.0028 ± 0.0003
	*	pH_{T25}	-0.0017 ± 0.0002
	*	pCO ₂ (µatm)	3.53 ± 0.39
50		S	0.0063 ± 0.0020
		<i>T</i> (°C)	0.088 ± 0.019
		$C_{\rm T}$ (µmol kg ⁻¹)	2.16 ± 0.21
		$A_{\rm T}$ (umol kg ⁻¹)	1.59 ± 0.15
	*	pH_T	-0.0026 ± 0.0002
	*	pH _{T25}	-0.0013 ± 0.0003

2007-2022

1 S 0.002	
0.002	.0 ± 0.0017
T (°C) 0.0)47 ± 0.007
$C_{\rm T}$ (µmol kg $^-$	1.71 ± 0.09
$A_{\rm T}$ (µmol kg $^-$ - 0.	.008 ± 0.08
* pH _T - 0.004	10 ± 0.0002
* pi1125	32 ± 0.0001
* pCO ₂ (µatm)	5.09 ± 0.21
50 S 0.009	96 ± 0.0008
T (°C) 0.0	026 ± 0.007
$C_{\rm T}$ (µmol kg ⁻¹	2.25 ± 0.10
$A_{\rm T}$ (µmol kg ⁻¹	0.53 ± 0.08
* pH _T - 0.003	35 ± 0.0001
* pH _{T25} - 0.003	30 ± 0.0002
* <i>p</i> CO ₂ (μatm)	3.50 ± 0.12

Surface

50 m

Flux de CO₂ interface air-océan

Carbonate Chemistry and Air-Sea CO₂ Flux in a NW Mediterranean Bay Over a Four-Year Period: 2007–2011

Eric Heinen De Carlo · Laure Mousseau · Ornella Passafiume · Patrick S. Drupp · Jean-Pierre Gattuso

Paramètres:

Vitesse du vent à 10 m (m/s)

β pCO₂ atmosphérique (μatm)

 \downarrow pCO₂ océanique (µatm)

Formule:
$$F = K\alpha\Delta pCO_2$$

$$K$$
 vitesse de transfert du gaz α solubilité du gaz ΔpCO_2 $pCO_{2(sw)} - pCO_{2(air)}$

$$k = K_{(600)} \times (Sc/600)^{-1/2}$$

$$K_{(600)} = 0.266 \times (U_{10})^2$$

Série de pCO₂ atmosphérique

Série de *p*CO₂ océanique

Données atmosphériques : fortes valeurs les hivers Données océaniques : fortes valeurs les étés

Représentation annuelle des données de pCO₂ océaniques

socillations saisonnières

 $NpCO_2$ = normalisation de la pCO_2 à température moyenne (18.8)

- synchronisation NpCO₂ et pCO₂ atmosphérique
- Lycycle saisonnier production primaire

LOV

Variations pCO₂ océanique

Variations de pCO_2 au Point B = combinaison de processus physiques et biologiques

- \downarrow variations expliquées uniquement par les fluctuations de température : $\Delta p CO_2(T)$
- $\c L$ variations expliquées par la contribution des activités biologiques : $\Delta p CO_2$ (bio)

Δp CO₂(bio):

max : + 126 μatm en hiver

min : - 103 μatm en été

229 μatm

 $\frac{1}{3}$ pCO₂ variation

Données de vitesse de vent

Disponibilité données : mistrals.sedoo.fr

Bouée Azur, fréquence : par heure

Période vents EOL: janvier 2009 – décembre 2022

Modélisation Météo France

Flux de CO₂ interface air-océan

Carbonate Chemistry and Air-Sea CO₂ Flux in a NW Mediterranean Bay Over a Four-Year Period: 2007–2011

Eric Heinen De Carlo · Laure Mousseau · Ornella Passafiume · Patrick S. Drupp · Jean-Pierre Gattuso

→ Calcul flux: Wanninkhof (1992 and 2014), Ho et al. (2006)

Formule: $F = K\alpha\Delta pCO_2$

K vitesse de transfert du gaz α solubilité du gaz ΔpCO_2 pCO_{2(sw)} – pCO_{2(air)}

CO2 fluxes between ocean and atmosphere at Point B (2009-2022)

Oxygène dissous

Données haute fréquence sur 5 ans Tendances Variations journalières (importance biologie)

Comparaison autres sites méditerranéens

Comparaison des tendances

Autres méthodes d'analyses statistiques

Autocorrélation Transformée de Fourier

Apports de la mesure à haute-fréquence

Temps nécessaire à la détection de tendances

Fischer et al. (2021) Effects of Measuring Devices and Sampling Strategies on the Interpretation of Monitoring Data for Long-Term Trend Analysis

MFRCI

