1 Typing Rules

 $\Theta; \Delta; \Gamma \vdash e : t$ Typing rules for expressions

$$\begin{split} \frac{\Theta, fc; \Delta; \Gamma \vdash e : t}{\Theta; \Delta; \Gamma \vdash \mathbf{fun} \, fc \to e : \forall fc.t} & \text{Ty_Gen} \\ \frac{\Theta \vdash f \, \mathsf{Cap}}{\Theta; \Delta; \Gamma \vdash e : \forall fc.t} & \frac{\Theta; \Delta; \Gamma \vdash e : \forall fc.t}{\Theta; \Delta; \Gamma \vdash e[f] : t[f/fc]} & \text{Ty_Spc} \\ \frac{\Theta; \Delta, g : t \multimap t'; \cdot, x : t \vdash e : t'}{\Theta; \Delta; \cdot \vdash \mathbf{fix} \, (g, x : t, e : t') : !(t \multimap t')} & \text{Ty_Fix} \end{split}$$

2 Operational Semantics

operational semantics

 $\langle \sigma, e \rangle \to StepsTo$

3 Interpretation

4 Soundness Proof

$$\forall \Theta, \Delta, \Gamma, e, t. \ \Theta; \Delta; \Gamma \vdash e : t \Rightarrow \llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$$

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. Arbitrary $\Theta, \Delta, \Gamma, e, t$ such that $\Theta; \Delta; \Gamma \vdash e : t$.

- 2. Arbitrary $\theta, k, \delta, \gamma, \sigma$ such that:
 - a. $dom(\Theta) = dom(\theta)$
 - b. $(\sigma, \gamma) \in \mathcal{L}_k \llbracket \Gamma \rrbracket \theta$
 - c. $\delta \in \mathcal{I}_k \llbracket \Delta \rrbracket \theta$.
- 3. W.l.o.g., all variables are distinct/dom(Δ) and dom(Γ) are disjoint.
- 4. And so that over expressions $\gamma \circ \delta = \delta \circ \gamma$.
- 5. By construction, $dom(\Delta) = dom(\delta)$ and $dom(\Gamma) = dom(\gamma)$.
- 6. ??? $\mathcal{V}_k \llbracket \theta(t) \rrbracket \subseteq \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- 7. ??? "Stronger heap"/frame rule: $\langle \sigma, e \rangle \to^* = \langle \sigma \star \sigma_r, e \rangle \to^*$.
- 8. ??? $\forall \delta, \gamma, v. \delta(\gamma(v))$ is a value.

PROVE: $(\sigma, \gamma(\delta(e))) \in \mathcal{C}_k[\![\theta(t')]\!].$

Assume: Arbitrary $j \leq k$ and σ_r .

Suffices: Show whole expression either reduces to **err** or takes j steps.

 $\langle 1 \rangle 1$. Case: Ty_Let.

PROVE: $(\sigma, \gamma(\delta(\mathbf{let} x = e \, \mathbf{in} \, e'))) \in \mathcal{C}_k \llbracket \theta(t') \rrbracket$.

SUFFICES: $(\sigma, \mathbf{let} \, x = \gamma(\delta(e)) \, \mathbf{in} \, \gamma(\delta(e'))) \in \mathcal{C}_k \llbracket \theta(t') \rrbracket$.

- $\langle 2 \rangle 1. \ \, \text{By induction, } \, \llbracket \Theta ; \Delta ; \Gamma \vdash e : t \rrbracket \, \, \text{and} \, \, \llbracket \Theta ; \Delta ; \Gamma', x : t \vdash e' : t' \rrbracket.$
- $\langle 2 \rangle 2$. By 2b and induction on Γ' , we know there exist $\sigma_{e'}$, $(\sigma_e, \gamma_e) \in \mathcal{L}_k[\![\Gamma]\!]$, such that $\sigma = \sigma_e \star \sigma_{e'}$.
- $\langle 2 \rangle 3$. So, using them, θ, k, δ , and 3 we have $(\sigma_e, \gamma_e(e)) \in \mathcal{C}_k[\![\theta(t)]\!]$.
- $\langle 2 \rangle 4$. By 3, $(\sigma_e, \gamma(\delta(e))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle$ 5. By definition of $\mathcal{C}_k[\![\cdot]\!]$ and $\langle 2 \rangle$ 2, we instantiate with j and $\sigma_r = \sigma_{e'}$ to conclude that $\langle \sigma, \gamma(\delta(e)) \rangle$ either reduces to **err** or another heap and expression.
- $\langle 2 \rangle$ 6. Case: **err** ??? By Op_Context_Err and 7 with $\sigma_{r'}$, the whole expression reduces to **err** in $j \leq k$ steps. Since $j \leq k$ and σ_r are arbitrary, $(\sigma, \gamma(\delta(\mathbf{let} \ x = e \ \mathbf{in} \ e'))) \in \mathcal{C}_k[\![\theta(t')]\!]$.
- $\langle 2 \rangle$ 7. Case: j steps to another heap and expression. By Op_Context, the whole expression does the same.
- $\langle 2 \rangle 8$. If it is not a value, we are done. If it is $(\sigma_{ef}, v) \in \mathcal{V}_{k-j}[\![\theta(t)]\!]$ by 8. SUFFICES: $(\sigma_{ef} \star \sigma_{e'}, \mathbf{let} \ x = v \mathbf{in} \ \gamma(\delta(e'))) \in \mathcal{C}_{k-j}[\![\theta(t')]\!]$. SUFFICES: $(\sigma_{ef} \star \sigma_{e'}, \gamma(\delta(e'))[x/v]) \in \mathcal{C}_{k-j-1}[\![\theta(t')]\!]$.
- $\langle 2 \rangle 9$. DEFINE: $\gamma_{e'}(y) = v$ if y = x and $\gamma(y)$ if $y \in \text{dom}(\Gamma')$. Thus, $(\sigma_{e'}, \gamma_{e'}) \in \mathcal{L}_k \llbracket \Gamma', x : t \rrbracket \subseteq \mathcal{L}_{k-j-1} \llbracket \Gamma', x : t \rrbracket$.
- $\langle 2 \rangle 10$. Instantiate induction hypothesis $\llbracket \Theta; \Delta; \Gamma', x : t \vdash e' : t' \rrbracket$, with $\theta, k j 1, \delta, \gamma_{e'}, \sigma_{e'}$ to conclude $(\sigma_{e'}, \gamma_{e'}(\delta(e'))) \in \mathcal{C}_{k-j-1} \llbracket \theta(t') \rrbracket$.

- $\langle 2 \rangle$ 11. By 3, we have $\gamma(\delta(e'))[x/v] = \gamma_{e'}(\delta(e'))$ and by 7 we conclude $(\sigma_{ef} \star \sigma_{e'}, \gamma(\delta(e'))[x/v]) \in \mathcal{C}_{k-j-1}\llbracket \theta(t') \rrbracket$
- $\langle 1 \rangle 2$. Case: Ty_Unit_Elim.

PROVE: $(\sigma, \gamma(\delta(\mathbf{let}() = e \mathbf{in} e'))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.

PROOF: Similar to TY_LET but with OP_LET_UNIT.

 $\langle 1 \rangle 3$. Case: Ty_Bool_Elim.

PROVE: $(\sigma, \gamma(\delta(\mathbf{if} e \mathbf{then} e_1 \mathbf{else} e_2))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.

PROOF: Similar to Ty_Let but with Op_If_{True,False}.

 $\langle 1 \rangle 4$. Case: Ty_Pair_Elim.

PROVE: $(\sigma, \gamma(\delta(\mathbf{let}(a, b) = e \, \mathbf{in} \, e'))) \in \mathcal{C}_k[\![\theta(t)]\!].$

PROOF: Similar to TY_LET but with OP_LET_PAIR

 $\langle 1 \rangle$ 5. Case: Ty_Bang_Intro.

PROVE: $(\sigma, \gamma(\delta(\mathbf{Many}\,e))) \in \mathcal{C}_k[\![\theta(!t)]\!].$

SUFFICES: $(\sigma, \mathbf{Many} \gamma(\delta(e))) \in \mathcal{C}_k[\![!\theta(t)]\!]$.

- $\langle 2 \rangle$ 1. By assumption of TY_BANG_INTRO, e = v for some value $v \neq l$, $\Gamma = \emptyset$ and so $\llbracket \Theta; \Delta; \cdot \vdash v : t \rrbracket$ by induction.
- $\langle 2 \rangle 2$. SUFFICES: $(\emptyset, \mathbf{Many} \, \delta(v)) \in \mathcal{C}_k \llbracket ! \theta(t) \rrbracket$ by 3 and 2b.
- $\langle 2 \rangle 3$. Instantiate $[\Theta; \Delta; \cdot \vdash v : t]$ with $\theta, k, \delta, \gamma = [], \sigma = \emptyset$ to obtain $(\emptyset, \delta(v)) \in \mathcal{C}_k[\theta(t)]$.
- $\langle 2 \rangle 4$. Instantiate $(\emptyset, \delta(v)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ with j = 0, and $\sigma_r = \emptyset$, to conclude $(\emptyset, v) \in \mathcal{V}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 5$. ??? By definition of $\mathcal{V}_k \llbracket ! \theta(t) \rrbracket$, 8 and 6 we have $(\emptyset, \mathbf{Many} \, \delta(v)) \in \mathcal{C}_k \llbracket ! \theta(t) \rrbracket$.
- $\langle 1 \rangle 6$. Case: Ty_Bang_Elim.

PROVE: $(\sigma, \gamma(\delta(\mathbf{let} \mathbf{Many} x = e \mathbf{in} e'))) \in \mathcal{C}_k[\![\theta(t)]\!].$

 $\langle 1 \rangle$ 7. Case: Ty_Pair_Intro.

PROVE: $(\sigma, \gamma(\delta((e, e')))) \in \mathcal{C}_k \llbracket \theta(t \otimes t') \rrbracket$.

 $\langle 1 \rangle 8$. Case: Ty_Lambda.

PROVE: $(\sigma, \gamma(\delta(\mathbf{fun}\,x:t'\to e))) \in \mathcal{C}_k[\![\theta(t'\multimap t)]\!].$

 $\langle 1 \rangle 9$. Case: Ty_App.

PROVE: $(\sigma, \gamma(\delta(ee'))) \in \mathcal{C}_k[\![\theta(t)]\!].$

 $\langle 1 \rangle 10$. Case: Ty_Gen.

PROVE: $(\sigma, \gamma(\delta(\mathbf{fun}\ fc \to e))) \in \mathcal{C}_k \llbracket \theta(\forall fc.\ t) \rrbracket$.

 $\langle 1 \rangle 11$. Case: Ty_Spc.

PROVE: $(\sigma, \gamma(\delta(e[f]))) \in \mathcal{C}_k[\![\theta(t[fc/f])]\!].$

 $\langle 1 \rangle 12$. Case: Ty_Fix.

PROVE: $(\sigma, \gamma(\delta(\mathbf{fix}(g, x : t, e : t')))) \in \mathcal{C}_k[\![\theta(!(t \multimap t'))]\!].$

 $\langle 1 \rangle 13$. Case: Ty_Var_Lin.

PROVE: $(\sigma, \gamma(\delta(x))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.

- $\langle 2 \rangle 1$. $\Gamma = \{x : t\}$ by assumption of Ty_VAR_LIN.
- $\langle 2 \rangle 2$. SUFFICES: $(\sigma, \gamma(x)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ by 3.
- $\langle 2 \rangle 3$. By 2b, there exist $(\sigma_x, v_x) \in \mathcal{V}_k[\![\theta(t)]\!]$, such that $\sigma = \sigma_x$ and $\gamma = [x \mapsto v_x]$.
- $\langle 2 \rangle 4$. ??? Hence, $(\sigma_x, v_x) \in \mathcal{C}_k[\![\theta(t)]\!]$, by 6.

 $\langle 1 \rangle 14$. Case: Ty_Var.

PROVE: $(\sigma, \gamma(\delta(x))) \in \mathcal{C}_k[\![\theta(t)]\!].$

- $\langle 2 \rangle 1.$ $x: t \in \Delta$ and $\Gamma = \emptyset$ by assumption of Ty_VAR.
- $\langle 2 \rangle 2$. SUFFICES: $(\emptyset, \delta(x)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ by 3 and 2b.
- $\langle 2 \rangle 3$. By 2c, there exists v_x such that $(\emptyset, v_x) \in \mathcal{V}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 4$. ??? Hence, $(\emptyset, v_x) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$, by 6.
- $\langle 1 \rangle 15$. Case: Ty_Unit_Intro.

PROVE: $(\sigma, \gamma(\delta(()))) \in \mathcal{C}_k[\![\theta(\mathbf{unit})]\!].$

 $\langle 1 \rangle 16.$ Case: Ty_Bool_True, Ty_Bool_False, Ty_Int_Intro, Ty_Elt_Intro. Similar to Ty_Unit_Intro.