ЛАБОРАТОРНАЯ РАБОТА № 2

Количественный флуоресцентный анализ веществ

Порядок выполнения работы.

Прежде, чем приступать к выполнению практической части работы, следует изучить теорию количественного флуоресцентного анализа, обратив особое внимание на следующие вопросы:

- 1. Основные характеристики люминесценции.
- 2. Основные законы люминесценции. Тушение люминесценции.
- 3. Интенсивность люминесценции.
- 4. Основные элементы люминесцентных установок.
- Применение метода люминесценции для качественного и количественного анализа.

Задание 1. Построить калибровочные графики для анализируемых соединений *А* и *В*.

Отформатировано: русский (Россия)

<u>1.</u> Используют образцы вещества с известными концентрациями готовят 6-8 образцов каждого вещества с известными концентрациями. Для этого используют концентрированный раствор с известной концентрацией (stock solution). Необходимые пробы готовят путем разбавления раствора A в 60-800 раз и вещества B в 40-400 раз.

<u>Пример.</u> Пусть имеется концентрированный раствор вещества, концентрация которого равна $2.5 \cdot 10^4$ моль/л. Для приготовления раствора, имеющего концентрацию $2.5 \cdot 10^{-6}$, в пробирку, содержащую 2.5 мл растворителя добавляют 25 мкл концентрата stock solution.

Таким образом, концентрация приготовленного раствора будет равна $C = \frac{C_0}{n}$,

где C_0 - концентрация stock solution, n - кратность разведения. Кратность разведения равна отношению добавляемого объема stock solution ΔV к общему объему полученного раствора ($\Delta V + V$):

$$n = \frac{\Delta V_0 + V}{\Delta V_0} = 1 + \frac{V}{\Delta V_0}.$$

Если $V >> \Delta V$ (в нашем примере $V/\Delta V = 100$), то для определения кратности разведения можно пользоваться приближенной формулой:

$$n pprox rac{V}{\Delta V_0}$$
 , где V - объем взятого растворителя.

Для приготовления проб и известной концентрацией на штативе располагают необходимое количество пробирок (6-8), в которые вначале добавляют по $2\,\mathrm{mn}$ растворителя.

Удобнее всего добавлять stock solution в пробирки с растворителем одинаковыми порциями, увеличивая содержание вещества в целое число раз (например, в 2, 3, 4 и т.д.).

- $\underline{2.}$ Для набора веществ с известными концентрациями измеряют спектры флуоресценции при $\lambda_{\text{воз6}}\!\!=\!\!380$ нм.
 - 3. Определяют интенсивность флуоресценции в максимуме каждого спектра.

Удалено: .¶

Отформатировано: По левому краю, Отступ: Первая строка: 1.35 см

Отформатировано: русский (Россия)

Удалено: ⁵

4. Строят по полученным данным калибровочные графики для вещества A и В. 5. Определить чувствительность флуоресцентного метода по отношению к веществу A и B. 6. Определить концентрацию веществ A и B при их совместном присутствии в растворе. 6.1. Регистрируют спектр флуоресценции бинарной смеси определяемых веществ A и B, используя для возбуждения ту же длину волны, что и при построении калибровочных графиков ($\lambda_{возб}$ =380 нм). 6.2. Используя программу для анализа и разложения спектров «Picfit». Отформатировано: русский (Россия) убедиться, что спектры флуоресценции вещества А и В описываются лог-Отформатировано: русский нормальным распределением. Для этого используют калибровочные спектры флуоресценции для средних концентраций А и В. 6.3. Определяют основные характеристики спектров флуоресценции А и В при их лог-нормальном представлении: положение максимума и Отформатировано: Шрифт: не курсив полуширину. 6.4. Используя полученные параметры индивидуальных спектров А и В. Отформатировано: Шрифт: не курсив

произвести разложение спектров на две составляющие.

6.5. Используя данные разложения определяют интенсивности отдельных компонент, а затем на основании калибровочных графиков – концентрации анализируемых веществ А и В.

6. 6. Вычислить погрешности измерения концентрации флуоресцентным методом.

Требования к отчету.

Отчет по данной работе должен содержать:

1. <u>Калибровочные</u> графики.

2. Таблицу, содержащую используемые концентрации и значения измеренной интенсивности флуоресценции вещества A и B.

3. Значения определяемых величин, записанных с учетом погрешностей измерений.

4. Расчет погрешностей измерений.

Удалено: Концентрацию неизвестного раствора следует определять по методу калибровочного графика. Для построения калибровочного

воспользоваться данными. полученными при выполнения Определив по графику

графика необходимо

Удалено:

концентрацию, в

Удалено: Калибровочный

Удалено: оптической

плотности

Удалено: - Разрыв страницы-Приложение ¶ Таблица¶ Коэффициенты Стьюдента, t_{пР} "Число испытаний, n

---- Paspыв страницы-----

Приложение

Таблица $Kоэ \phi \phi$ ициенты Стьюдента, t_{nP}

Число	Вероятность, Р			
испытаний,				
n	0,5	0,9	0,95	0,99
2	1,60	6,31	12,7	63,7
3	0,82	2,92	4,30	9,92
4	0,77	2,35	3,18	5,94
5	0,74	2,13	2,78	4,60
6	0,73	2,02	2,57	4,03
7	0,72	1,94	2,45	3,71
8	0,71	1,89	2,36	3,50
9	0,71	1,86	2,31	3,36
10	0,70	1,83	2,26	3,25
15	0,69	1,76	2,14	2,98
20	0,69	1,73	2,09	2,86
∞	0,68	1,65	1,96	2,59