Introduction

CENG 355

Microprocessor-Based Systems

Daler N. Rakhmatov

daler@ece.uvic.ca

Fall 2016

UVic - CENG 355 - Introduction

Welcome to CENG 355...

- Reading
 - Hamacher/Vranesic/Zaky/Manjikian, Computer Organization and Embedded Systems, 6/E © 2011 McGraw-Hill
 - CENG 355 lecture notes and lab materials
 - On-line references (see course website)
- Course website
 - www.ece.uvic.ca/~daler/courses/ceng355
 - Notes, assignments, solutions, links, etc...
- You are responsible for all the announcements made in class!

UVic - CENG 355 - Introduction

CENG 355 Topics

- Embedded systems
 - Applications, technologies, trends
- Computer organization
 - Microprocessors
 - Memory hierarchy
 - I/O interfacing and control
 - Internal and external communication
- Embedded software
 - C programming
 - System and application software

Welcome to CENG 355...

- Course administration
 - Office hours:

11:30 - 13:00 EOW 327 W

Lectures:

• MTh 10:00 - 11:20 HSD A240

I abs:

 M 15:30 - 18:20 **ELW B328** (B01, B02) W 13:30 - 16:20 **ELW B328** (B03, B04) \// 17:00 - 19:50 **ELW B328** (B05, B06) M 18:30 - 21:20 **ELW B328** (B07)

Grading

 Homework 5%

Lab 30%

20% Midterm October 27 45%

Final

UVic - CENG 355 - Introduction

CENG 355 Objectives

- Develop a general understanding of the operation, design, application, and programming of typical microprocessor-based systems
 - Hardware-software interplay and tradeoffs
 - System integration and interfacing issues
- Learn specific details using the 32-bit Cortex-M0® architecture as a demonstration platform
 - Hardware-software interfacing
 - I/O programming
- Ultimate goal:
 - Be able to apply studied concepts to any advanced embedded system

UVic - CENG 355 - Introduction

Acknowledgements

■ Lecture notes are modified educational materials originally developed by:

Textbook authors Queen's and Toronto

David Patterson **UC-Berkeley**

Stanford John Hennessy

Randal Bryant CMU

S.P. Dandamudi Carleton

Frank Vahid **UC-Riverside**

James Armstrong Virginia Tech

Ronald Hoelzeman Pittsburgh

Charles Kime Wisconsin

Donald Givone SUNY-Buffalo

Vincent Heuring Colorado

Etc...

UVic - CENG 355 - Introduction

Fall 2016

UVic - CENG 355 - Introduction

Instruction Set Architecture (ISA)

C Program: hello.c

General-Purpose Computer

Reading Input

Loading Executable

Execution, Writing Output

I/O Devices

- "Computer without I/O like a car without wheels great technology, but won't get you anywhere"
- Typical I/O devices:

Device	Behavior	Partner	Rate (Mbit/s)
Keyboard	Innut	Human	0.0001
•	Input		
Mouse	Input	Human	0.0038
Printer	Output	Machine	3.2000
Optical Disk	Storage	Machine	80.0000
Network/LAN	In/Out	Machine	100-1000
Display	Output	Human	800-8000

Fall 2016 UVic - CENG 355 - Introduction

Microprocessor Evolution (Intel)

i7 (2008): 45 nm, 3.3 GHz, 130 W, 731 MTx

UVic - CENG 355 - Introduction

Telecom ES Example

Historical Perspective

Year	Name	Size (cu. ft.)	Power (watts)	Performance (adds/sec)	Memory (KB)	Price	Price/ performance vs. UNIVAC	Adjusted price (2003 \$)	Adjusted price/ performance vs. UNIVAC
1951	UNIVAC I	1,000	125,000	2,000	48	\$1,000,000	1	\$6,107,600	1
1964	IBM S/360 model 50	60	10,000	500,000	64	\$1,000,000	263	\$4,792,300	318
1965	PDP-8	8	500	330,000	- 4	\$16,000	10,855	\$75,390	13,135
1976	Cray-1	58	60,000	166,000,000	32,000	\$4,000,000	21,842	\$10,756,800	51,604
1981	IBM PC	1	150	240,000	256	\$3,000	42,105	\$5,461	154,673
1991	HP 9000/ model 750	2	500	50,000,000	16,384	\$7,400	3,556,188	\$9,401	16,122,356
1996	Intel PPro PC (200 MHz)	2	500	400,000,000	16,384	\$4,400	47,846,890	\$4,945	239,078,908
2003	Intel Pentium 4 PC (3.0 GHz)	2	500	6,000,000,000	262,144	\$1,600	1,875,000,000	\$1,600	11,452,000,000

UVic - CENG 355 - Introduction

Embedded Systems (ES)

- Consumer electronics
- Industrial automation
- Telecommunications
- Automotive/avionics
- Medical equipment

- Tightly constrained
- Tightly integrated
- Function-specific
- Real-time
- Reactive

Feature	Desktop	Server	Embedded
Price of system	\$1000-\$10,000	\$10,000-\$10,000,000	\$10-\$100,000 (including network routers at the high end)
Price of microprocessor module	\$100-\$1000	\$200-\$2000 (per processor)	\$0.20-\$200 (per processor)
Microprocessors sold per year (estimates for 2000)	150,000,000	4,000,000	300,000,000 (32-bit and 64-bit processors only)
Critical system design issues	Price-performance, graphics performance	Throughput, availability, scalability	Price, power consumption, application-specific performance

Consumer ES Example

Optimizing Design Criteria

- Challenge: simultaneously optimize multiple (often conflicting) design criteria, while constructing a correct implementation with desired functionality
 - Design criterion: measurable feature of a system's implementation
 - Unit cost: monetary cost of manufacturing each copy of the system, excluding Non-Recurring Engineering (NRE) cost
 - NRE cost: one-time monetary cost of designing the system
 - · Size, performance, power
 - · Time-to-market, time-in-market
 - Other important criteria:
 - · Flexibility: ability to change system's functionality without incurring heavy NRE costs
 - · Maintainability, safety, etc...

Fall 2016

UVic - CENG 355 - Introduction

Processor Technology I

- General-purpose processors (GPP)
 - Programmable "microprocessor" used in a variety of applications
 - Features
 - · Program memory
 - Program Counter (PC) and Instruction Register (IR)
 - General datapath with large register file and Functional Unit (FU)
 - - · Fast time-to-market, low NRE cost, high flexibility

Fall 2016

UVic - CENG 355 - Introduction

Processor Technology III

- Application-specific instruction processor (ASIP)
 - Programmable processor optimized for a particular class of applications having common characteristics
 - · Compromise between GPP and SPP
 - Features
 - Program memory
 - · Optimized datapath
 - · Custom (specialized) FU
 - Benefits

Fall 2016

· Good flexibility, performance, size, power

UVic - CENG 355 - Introduction

ES Technologies

- Technology
 - A manner of accomplishing a task, using technical processes, methods, or knowledge
- Three key technologies for embedded systems
 - Processor technology
 - The architecture of the computational engine used to implement a system's desired functionality
 - IC technology
 - The manner in which an implementation is realized as an integrated circuit (IC)
 - Design technology
 - The manner in which we perform a mapping of our desired system functionality to an implementation

Fall 2016

UVic - CENG 355 - Introduction

Processor Technology II

- Single-purpose processor (SPP)
 - Dedicated digital circuit designed to execute exactly one application
 - Features
 - · Contains only the components needed to execute a single program
 - No program memory
 - Benefits
 - · High performance, low power, small

UVic - CENG 355 - Introduction

IC Technology

- Full-custom
 - All layers optimized for a particular implementation
 - · Designers can control transistor sizing/placement, wire routing
 - · Benefits: high performance, small size, low power
- Semi-custom
 - Some layers are only partially designed
 - · Designers can control only wire routing, maybe block placement
 - · Benefits: good performance, size, power
- PLD (Programmable Logic Device):
 - All layers already pre-fabricated
 - · Designers can purchase a reconfigurable IC (e.g., FPGA) and program its internal connections and logic functions
 - · Benefits: low NRE cost, reconfigurability

Fall 2016 LIVic - CENG 355 - Introduction

Processor and IC Technologies

- Basic tradeoff: general vs custom
- Processor and IC technologies are independent

Example: Efficiency Criteria

- High **performance** (speed) is one of the most important design criteria
 - Higher performance usually implies higher power dissipation and higher energy consumption
 - Higher performance usually requires larger silicon area (e.g., to enable parallel execution)

Energy Efficiency

- = (Useful Computations) / (Energy Required)
- = (Number of Operations) / nanoJoule = OP/nJ
- = (Million OP/Sec) / (mJ/sec) = MOPS/mW
- = Power Efficiency

Area Efficiency

- = (Useful Computations/Sec) / (Silicon Area)
- = (Million OP/Sec) / mm² = MOPS/mm²

UVic - CENG 355 - Introduction

Design Technology

There is no fundamental difference between what hardware or software can implement.

Selecting a **hardware** or a **software** implementation is merely a tradeoff among various design criteria: e.g., cost, size, power, performance, etc.

- Expertise with both **software** and **hardware** is needed to optimize multiple design criteria
 - System designers must apply various technologies in order to find the best mapping for a given application and constraints

UVic - CENG 355 - Introduction

Microprocessor Example

This is the only circuitry which supports "useful computations" (all the rest is the overhead to support application flexibility)

- 84 mm² area
- 2 OP per clock cycle
- 450 MHz clock frequency

Performance = 900 MOPS Power = 7000 mW

900 / 7000 = 0.13 MOPS/mW900 / 84 = 10.7 MOPS/mm²

UVic - CENG 355 - Introduction

Dedicated Hardware Example

Dedicated adaptive correlator circuit (no application flexibility)

- 5.4 mm² area
- 96 OP per clock cycle
- 25 MHz clock frequency

Performance = 2400 MOPS Power = 12 mW

2400 / 12 = 200 MOPS/mW 2400 / 5.4 = 444.4 MOPS/mm²

Digital Signal Processor Example

It is similar to a microprocessor, but exploits more parallelism and specialized computations (less application flexibility)

- 84.8 mm² area
- 16 OP per clock cycle
- 50 MHz clock frequency

Performance = 800 MOPS Power = 110 mW

800 / 110 = **7.3** MOPS/mW $800 / 84.5 = 9.5 \text{ MOPS/mm}^2$

Fall 2016 UVic - CENG 355 - Introduction

Fall 2016

UVic - CENG 355 - Introduction

Why Microprocessors?

- The **performance/power/area** advantages of custom hardware over general microprocessors are so big that there are no technical reasons to use microprocessors to do useful computations
 - However, risk/time/cost of implementing dedicated hardware solutions can be prohibitive
- There are economic reasons (e.g., MOPS/\$) that demand flexibility (hence, microprocessors)
 - One design for many customers more sales
 - Customers able to provide added value and uniqueness
 - Uncertain specifications soft design decisions
 - Engineers able to make changes quickly and cheaply
 - Challenge: maintainability and reusability of softwarebased products

E-II 2040

UVic - CENG 355 - Introduction

3.

Amdahl's Law

- Speedup = $1/(1 f_{enhanced} + f_{enhanced}/S_{enhanced})$
 - S_{enhanced} ideal speedup achievable due to enhancement
 - f_{enhanced} fraction of computational time improved due to enhancement
 - Fraction of computational time NOT improved: 1 fenhanced
- Enhancement: 1 processor → P processors
 - Assume: **f** = <u>parallelizable</u> fraction of computation
 - Speedup = 1/(1 f + f/P) = P/(P f(P 1))
- Example:
 - P = 16, f = 0.7, Speedup = 2.91
 - **P** = 64, **f** = 0.7, **Speedup** = 3.22
 - Marginal improvement from 2.91 to 3.22 ← **f** is very important!

Fall 2016

UVic - CENG 355 - Introduction

Many Cores → High Performance

Design Productivity Trends

