5

Eigenvalues and Eigenvectors

5.1

- **Definition:** An **eigenvector** of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an *eigenvector corresponding to* λ .
- λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)\mathbf{x} = 0 \tag{3}$$

has a nontrivial solution.

The set of *all* solutions of (3) is just the null space of the matrix $A - \lambda I$.

- So this set is a *subspace* of \mathbb{R}^n and is called the **eigenspace** of A corresponding to λ .
- The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ .
- **Example 3:** Show that 7 is an eigenvalue of matrix

$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
 and find the corresponding eigenvectors.

• **Solution:** The scalar 7 is an eigenvalue of A if and only if the equation

$$A\mathbf{x} = 7\mathbf{x} \tag{1}$$

has a nontrivial solution.

But (1) is equivalent to Ax - 7x = 0, or (A - 7I)x = 0 (2)

To solve this homogeneous equation, form the matrix

$$A - 7I = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix}$$

- The columns of A-7I are obviously linearly dependent, so (2) has nontrivial solutions.
- To find the corresponding eigenvectors, use row operations:

$$\begin{bmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
• The general solution has the form $x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- Each vector of this form with $x_2 \neq 0$ is an eigenvector corresponding to $\lambda = 7$.

■ Example 4: Let
$$A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
. An eigenvalue of

A is 2. Find a basis for the corresponding eigenspace.

• **Solution:** Form

$$A - 2I = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix}$$

and row reduce the augmented matrix for (A-2I)x = 0.

$$\begin{bmatrix} 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- At this point, it is clear that 2 is indeed an eigenvalue of A because the equation (A-2I)x = 0 has free variables.
- The general solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}, x_2 \text{ and } x_3 \text{ free.}$$

• The eigenspace, shown in the following figure, is a two-dimensional subspace of \mathbb{R}^3 . A basis is

A acts as a dilation on the eigenspace.

- Theorem 1: The eigenvalues of a triangular matrix are the entries on its main diagonal.
- **Proof:** For simplicity, consider the 3×3 case.
- If A is upper triangular, the $A \lambda I$ has the form

$$A - \lambda I = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ 0 & a_{22} - \lambda & a_{23} \\ 0 & 0 & a_{33} - \lambda \end{bmatrix}$$

- The scalar λ is an eigenvalue of A if and only if the equation $(A \lambda I)x = 0$ has a nontrivial solution, that is, if and only if the equation has a free variable.
- Because of the zero entries in $A \lambda I$, it is easy to see that $(A \lambda I)x = 0$ has a free variable if and only if at least one of the entries on the diagonal of $A \lambda I$ is zero.
- This happens if and only if λ equals one of the entries a_{11} , a_{22} , a_{33} in A.

- Theorem 2: If $\mathbf{v}_1, ..., \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, ..., \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, ..., \mathbf{v}_r\}$ is linearly independent.
- **Proof:** Suppose $\{\mathbf{v}_1, ..., \mathbf{v}_r\}$ is linearly dependent.
- Since \mathbf{v}_1 is nonzero, Theorem 7 in Section 1.7 says that one of the vectors in the set is a linear combination of the preceding vectors.
- Let p be the least index such that V_{p+1} is a linear combination of the preceding (linearly independent) vectors.

• Then there exist scalars $c_1, ..., c_p$ such that

(5)
$$c_1 \mathbf{V}_1 + \dots + c_p \mathbf{V}_p = \mathbf{V}_{p+1}$$

• Multiplying both sides of (5) by A and using the fact that $Av_k = \Lambda_k v_k$ for each k, we obtain

$$c_1 A \mathbf{v}_1 + \dots + c_p A \mathbf{v}_p = A \mathbf{v}_{p+1}$$

$$c_1 \lambda_1 \mathbf{v}_1 + \dots + c_p \lambda_p \mathbf{v}_p = \lambda_{p+1} \mathbf{v}_{p+1}$$
 (6)

• Multiplying both sides of (5) by λ_{p+1} and subtracting the result from (6), we have

$$c_1(\lambda_1 - \lambda_{p+1})\mathbf{v}_1 + \dots + c_p(\lambda_p - \lambda_{p+1})\mathbf{v}_p = 0$$
 (7)

- Since $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ is linearly independent, the weights in (7) are all zero.
- But none of the factors $\lambda_i \lambda_{p+1}$ are zero, because the eigenvalues are distinct.
- Hence $c_i = 0$ for i = 1, ..., p.
- But then (5) says that $V_{p+1} = 0$, which is impossible.

EIGENVECTORS AND DIFFERENCE EQUATIONS

• Hence $\{\mathbf{v}_1, ..., \mathbf{v}_r\}$ cannot be linearly dependent and therefore must be linearly independent.

• If A is an $n \times n$ matrix, then (8) is a recursive description of a sequence $\{x_k\}$ in \mathbb{R}^n .

$$X_{k+1} = AX_k$$
 $(k = 0, 1, 2...)$ (8)

• A **solution** of (8) is an explicit description of $\{x_k\}$ whose formula for each x_k does not depend directly on A or on the preceding terms in the sequence other than the initial term \mathbf{x}_0 .

EIGENVECTORS AND DIFFERENCE EQUATIONS

• The simplest way to build a solution of (8) is to take an eigenvector \mathbf{x}_0 and its corresponding eigenvalue λ and let

$$\mathbf{x}_{k} = \lambda^{k} \mathbf{x}_{0} \quad (k = 1, 2, \dots) \tag{9}$$

This sequence is a solution because

$$A\mathbf{x}_{k} = A(\lambda^{k}\mathbf{x}_{0}) = \lambda^{k}(A\mathbf{x}_{0}) = \lambda^{k}(\lambda\mathbf{x}_{0}) = \lambda^{k+1}\mathbf{x}_{0} = \mathbf{x}_{k+1}$$