THE MICROBIAL INTERACTION DATABASE

Dileep Kishore

INTRODUCTION

- A comprehensive database of microbial interactions from different data sources
- A platform for users to compare, analyze and visualize their data
- Data population has started with associations derived from 16S data and literature

TERMINOLOGY

- Operational Taxonomic Units: Clusters of micro-organisms grouped by DNA sequence similarity in the 16S region
- Co-occurrence Networks: Networks obtained from the associations inferred in 16S rDNA samples from various environments
- Exact Sequence Variants: Amplicon sequence variants (ASVs) that are resolved exactly, down to the level of single-nucleotide differences over the sequenced gene region.

GOALS

GOALS

• Data collection:

- Collect 16S rDNA sequence data
- Human Microbiome Project, American Gut, etc...

User data processing

- Provide access to a pipeline for 16S data analysis
- Data stored in the database is processed using the same standardized pipeline and parameters

Data exploration

- Disease vs. Healthy microbiome
- Identify core or differential microbiota
- Query microbial interactions by taxa level or based on environment or across
- Allow the user to compare his network with networks with matching metadata

Demonstration

Sequencing method

- 454 vs. illumina
- Different sequencing depths
- Different pre-processing
- Different quality filtering

Clustering method

OTU1

GATACAGAGATGCAT
GATACAGAGAGATGGCAT
GATACAGAGATGGCAT

OTU2

TACCAGATTTACATAG TACCAGATTTACATAG TACCAGATTTACATT TACAAGATTTACATT

OTU3

CAGGTAGGGGCCATT CAGGTAGGGGC CAGGTAGGGGAA

- Closed reference
- Open reference
- De novo reference
- Error modeling

Alignment method

- Greengenes
- Silva
- RDP

Processing method

Original Abundance			Rarefied Abundance					
	А	В		Α	В			
OTU1	62	500	OTU1	62	50			
OTU2	38	500	OTU2	38	50			
Total	100	1000		100	100			
Standard Tests for Difference								

P-value	chi-2	Prop	Fisher
Original	0.0290	0.0290	0.0272
Rarefied	0.1171	0.1171	0.1169

- Normalization
- Rarefying
- Mixture models
- Removing sparse data

Calculating associations

- Compositionality
- Sparsity
- Pairwise associations
 - Pearson
 - Spearman
 - SparCC
- Direct associations
 - SpiecEasi
 - CCLasso
 - \circ mLDM

PIPELINE

- Develop a standard pipeline identify tools and good parameters
- This pipeline would be used to process all the data to be stored in the database
- Create a set of guidelines using a decision tree
- A consensus network created using a weighted voting scheme

COMPARISON METRICS

- Diversity
- Abundances
- Degree distributions
- Motifs or connected components in the network
- Metabolic models

MAIN FIGURE/IDEA

Total variance across the pipeline

DISTANCE METRICS

- Between abundances in OTU tables
- Between assigned taxonomies in OTU tables
- Between associations in networks

OTHER FIGURES

- Rank abundance comparison
- Correlation between sequence similarity and abundance similarity
- Sequence mismatch and taxonomy mismatch
- A 2D embedding of the networks

NETWORKS

Saliva Network

Stool Network

NETWORK INFERENCE METHODS

DIVERSITY

NETWORK PROPERTIES

L1 distance

NETWORK PROPERTIES

NETWORK PROPERTIES

Edge Overlap

Thank you!