Package 'arqas'

September 16, 2015

Type Package
Title Application in R for Queueing Analysis and Simulation
Version 1.3
Date 2015-09-06
Author Borja Varela
Maintainer Borja Varela <borja.varela.brea@gmail.com></borja.varela.brea@gmail.com>
Depends R (>= 1.8.0), distr, ggplot2
Imports methods, reshape, iterators, doParallel, foreach, fitdistrplus, grid, gridExtra
Description Provides functions to compute the main characteristics of following queueing models: M/M/1, M/M/s, M/M/1/k, M/M/s/k, M/s/Inf/H, M/M/s/Inf/H with Y replacements, M/M/Inf, Open Jac

Description Provides functions to compute the main characteristics of the following queueing models: M/M/1, M/M/s, M/M/1/k, M/M/s/k, M/M/1/Inf/H, M/M/s/Inf/H, M/M/s/Inf/H, with Y replacements, M/M/Inf, Open Jackson Networks and Closed Jackson Networks. Moreover, it is also possible to simulate similar queueing models with any type of arrival or service distribution: G/G/1, G/G/s, G/G/1/k, G/G/s/k, G/G/1/Inf/H, G/G/s/Inf/H, G/G/s/Inf/H with Y replacements, Open Networks and Closed Networks. Finally, contains functions for fit data to a statistic distribution.

License GPL (>= 2) LazyData yes

R topics documented:

cdfcompggplot2	1
ClosedJacksonNetwork	2
ClosedNetwork	3
combineSimulations	5
denscompggplot2	5
fitData	6
FW	6
$FWq \ \dots $	7
goodnessFit	8
G_G_1	9
G_G_1_INF_H	
G_G_1_K	11
G_G_INF	12
G_G_S	13

2 cdfcompggplot2

G_G_S_INF_H	. 14
G_G_S_INF_H_Y	. 15
G_G_S_K	. 16
MarkovianModel	. 17
maxCustomers	. 18
M_M_1	. 18
M_M_1_INF_H	. 19
M_M_1_K	. 20
M_M_INF	. 21
M_M_S	. 22
M_M_S_INF_H	. 23
M_M_S_INF_H_Y	. 24
M_M_S_K	
no_distr	
OpenJacksonNetwork	
OpenNetwork	
P0i	
Pi	
plot.MarkovianModel	
plot.SimulatedModel	
Pn	
Qn	
qqcompggplot2	
summary.SimulatedModel	
summaryFit	. 36

cdfcompggplot2

Cumulative Density plot using the package ggplot2

Description

Cumulative Density plot using the package ggplot2

Usage

cdfcompggplot2(lfitdata)

Arguments

lfitdata a list of fitted data

See Also

 $\label{thm:compggplot2} Other Distribution Analysis: \verb|denscompggplot2|; fitData|; goodnessFit|; qqcompggplot2|; summaryFit|$

ClosedJacksonNetwork 3

ClosedJacksonNetwork

Obtains the main characteristics of a Closed Jackson Network model

Description

Obtains the main characteristics of a Closed Jackson Network model

Usage

```
ClosedJacksonNetwork (mu = c(5, 5, 10, 15), s = c(2, 2, 1, 1), p = matrix(c(0.25, 0.15, 0.2, 0.4, 0.15, 0.35, 0.2, 0.3, 0.5, 0.25, 0.15, 0.1, 0.4, 0.3, 0.25, 0.05), 4, byrow = TRUE), <math>n = 3)
```

Arguments

mu	Vector of mean service rates
S	Vector of servers at each node
р	Routing matrix, where p_{ij} is the routing probability from node i to node j
n	Number of customers in the network

Value

Returns the next information of a Closed Jackson Network model:

```
rho Traffic intensity: \rho

1 Number of customers in the system: L

1q Number of customers in the queue: L_q

w Waiting time in the system: W

wq Waiting time in the queue: W_q

eff System efficiency: Eff = W/(W-W_q)
```

See Also

```
Other AnaliticalModels: M_M_1_INF_H; M_M_1_K; M_M_1; M_M_INF; M_M_S_INF_H_Y; M_M_S_INF_H; M_M_S_K; M_M_S; OpenJacksonNetwork
```

```
# A system is composed of 4 workstations #interconnected. The monitoring of the #system is carried out by three programs #in continuous execution in some of the #workstations. Once each program ends, #it creates a copy of itself and sends this #copy to be executed in any of the #workstations, taking into account the #following probabilities:

# Origin-destiny 1 2 3 4
```

4 ClosedNetwork

```
0.25
                          0.15 0.20 0.40
#
                   0.15
                          0.35 0.20 0.30
                          0.25 0.15 0.10
#
       3
                   0.50
                          0.30 0.25 0.05
                   0.40
#The servers 1 and 2 have two processors and
#each of one has a processing time following an
#exponential distribution and capacity of 5
#tasks per minute.
#The servers 3 and 4 have a single processor
#and they can serve 10 and 15 task per minute
#respectively.
ClosedJacksonNetwork (mu=c(5,5,10,15),
                     s=c(2,2,1,1),
                     p=matrix(c(0.25, 0.15, 0.20, 0.40,
                                0.15, 0.35, 0.20, 0.30,
                                0.50, 0.25, 0.15, 0.10,
                                0.40, 0.30, 0.25, 0.05), 4, byrow = TRUE),
                     n = 3)
```

Description

ClosedNetwork

Obtains the main characteristics of a Closed Network model by simulation

lation

Usage

```
ClosedNetwork (serviceDistribution = c(Exp(5), Exp(5), Exp(10), Exp(15)), s = c(2, 2, 1, 1), p = array(c(0.25, 0.15, 0.5, 0.4, 0.15, 0.35, 0.25, 0.3, 0.2, 0.2, 0.15, 0.25, 0.4, 0.3, 0.1, 0.05), dim = c(4, 4), staClients = 100, nClients = 3, transitions = 1000, historic = FALSE, nsim = 10, nproc = 1)
```

Obtains the main characteristics of a Closed Network model by simu-

Arguments

```
serviceDistribution
                  Service distributions for the nodes of the network (Each element must be an
                  object of S4-class distr defined in distr package)
                  Vector of servers at each node
S
                  Routing matrix, where p_{ij} is the routing probability from node i to node j
р
                  Number of customers used in the stabilization stage
staClients
nClients
                  Number of customers in the system
                  Number of transitions between nodes used in the simulation stage
transitions
                  Parameter to activate/deactivate the historic information
historic
nsim
                  Number of simulations
                  Processors used in the simulation.
nproc
```

combineSimulations 5

Value

Returns the next information of a Closed Network model:

pn	Vector of empirical steady-state probabilities of having n customers in the system: P_n (Only the probabilities bigger than 0 are included)
1	Vector of empirical number of customers in the nodes: L
lq	Vector of empirical number of customers in the queues of the nodes: \mathcal{L}_q
lqt	Empirical number of customers in the all the queues: L_{qTotal}
W	Vector of empirical waiting times in the nodes: W
wq	Vector of empirical waiting times in the queues of the nodes: \mathcal{W}_q
eff	Empirical system efficiency: $Eff = W/(W-W_q)$
rho	Empirical traffic intensity: ρ
historic	Optional parameter that stores the evolution of L , L_q , W and W_q , Customers in the system, Rho and Elapsed time during the simulation.

See Also

```
Other SimulatedModels: G_G_1_INF_H; G_G_1_K; G_G_1; G_G_INF; G_G_S_INF_H_Y; G_G_S_INF_H; G_G_S_K; G_G_S; OpenNetwork
```

Examples

combineSimulations Combines a list of independent simulations of a queueing model, computing the mean and variance of each characteristic of interest

Description

Combines a list of independent simulations of a queueing model, computing the mean and variance of each characteristic of interest

Usage

```
combineSimulations(listsims)
```

Arguments

listsims A list of independent simulations

6 fitData

Value

an object with the mean and estimated precision of estimated parameters L, Lq, W, Wq, Rho and Eff.

Examples

```
combineSimulations(G_G_1 (nsim=5))
```

denscompggplot2

Density histogram Plot using the package ggplot2

Description

Density histogram Plot using the package ggplot2

Usage

```
denscompggplot2(lfitdata)
```

Arguments

lfitdata a list of fitted data

See Also

 $\label{thm:continuity:continuit$

fitData

Computes the estimated parameters of the distributions for the input data

Description

Computes the estimated parameters of the distributions for the input data

Usage

```
fitData(data, ldistr = c("exp", "norm", "weibull", "unif", "lnorm", "gamma",
    "beta"))
```

Arguments

data data to estimate parameters

ldistr A list of distributions

Value

A list of estimated parameters for each distribution

FW 7

See Also

 $\label{thm:compggplot2} Other \ Distribution Analysis: \ \texttt{cdfcompggplot2}; \ \texttt{denscompggplot2}; \ \texttt{goodnessFit}; \ \texttt{qqcompggplot2}; \ \texttt{summaryFit}$

Examples

```
mydata <- rnorm(100, 10, 0.5)
fitData(mydata)</pre>
```

FW

Distribution function of the waiting time in the system

Description

Returns the value of the cumulative distribution function of the waiting time in the system for a queueing model

$$W(x) = P(W \le x)$$

Usage

FW(qm, x)

Arguments

qm Queueing model

x Time

Value

W(x)

Methods (by class)

- MarkovianModel: Implements the default method (generates a message)
- M_M_1: Implements the method for a M/M/1 queueing model
- M_M_S: Implements the method for a M/M/S queueing model
- M_M_1_K: Implements the method for a M/M/1/K queueing model
- M_M_S_K: Implements the method for a M/M/S/K queueing model
- M_M_1_INF_H: Implements the method for a M/M/1/ ∞ /H queueing model
- M_M_S_INF_H: Implements the method for a M/M/s/∞/H queueing model
- M_M_S_INF_H_Y: Implements the method for a M/M/s/∞/H with Y replacements queueing model
- M_M_INF: Implements the method for a M/M/∞ queueing model

FWq

Examples

```
#Cumulative probability of waiting 1 units
#of time in the system
FW(M_M_1(), 1)
FW(M_M_S_K(), 1)

#You can also get multiple probabilities
#at once
FW(M_M_1_INF_H(), c(0, 0.25, 0.8))
FW(M_M_INF(), c(0, 0.25, 0.8))
```

FWq

Distribution function of the waiting time in the queue

Description

Returns the value of the cumulative distribution function of the waiting time in the queue

$$W_q = P(W_q \le x)$$

Usage

```
FWq(qm, x)
```

Arguments

qm Queueing model x Time

Value

 $W_q(x)$

Methods (by class)

- MarkovianModel: Implements the default method (generates a message)
- M_M_1: Implements the method for a M/M/1 queueing model
- M_M_S: Implements the method for a M/M/S queueing model
- M_M_1_K: Implements the method for a M/M/1/K queueing model
- M_M_S_K: Implements the method for a M/M/S/K queueing model
- M_M_1_INF_H: Implements the method for a M/M/1/∞/H queueing model
- M_M_S_INF_H: Implements the method for a M/M/s/ ∞ /H queueing model
- M_M_S_INF_H_Y: Implements the method for a M/M/s/\infty/H with Y replacements queueing model
- M_M_INF: Implements the method for a M/M/∞ queueing model

goodnessFit 9

Examples

```
#Cumulative probability of waiting 1 unit
#of time in the system
FWq(M_M_1(), 1)
FWq(M_M_S_K(), 1)

#You can also get multiple probabilities
#at once
FWq(M_M_1_INF_H(), c(0, 0.25, 0.8))
FWq(M_M_INF(), c(0, 0.25, 0.8))
```

goodnessFit

Computes the p-value of the chi-square test and Kolmogorov-Smirnov test

Description

Computes the p-value of the chi-square test and Kolmogorov-Smirnov test

Usage

```
goodnessFit(lfitdata)
```

Arguments

lfitdata a list of fitted data

Value

the p-values and the values of the statistics in the chi-square test and Kolmogorov-Smirnov test

See Also

```
mydata <- rnorm(100, 10, 0.5)
goodnessFit(fitData(mydata))</pre>
```

 $G_{-}G_{-}10$

G_G_1

Obtains the main characteristics of a G/G/1 model by simulation

Description

Obtains the main characteristics of a G/G/1 model by simulation

Usage

```
G_G_1(arrivalDistribution = Exp(3), serviceDistribution = Exp(6),
    staClients = 100, nClients = 1000, historic = FALSE, nsim = 10,
    nproc = 1)
```

Arguments

arrivalDistribution

Arrival distribution (object of S4-class distr defined in **distr** package)

serviceDistribution

Service distribution (object of S4-class distr defined in **distr** package)

staClients Number of customers used in the stabilization stage nClients Number of customers used in the simulation stage

historic Parameter used to activate/deactivate the historic information

nsim Number of simulations

nproc Processors used in the simulation.

Value

Returns the next information of a G/G/1 model:

pn	Stores all the empirical steady-state probabilities of having n customers, with n from 0 to staClients+nClients: P_n (Only the probabilities bigger than 0 are included)
1	Empirical number of customers in the system: L
lq	Empirical number of customers in the queue: L_q
W	Empirical waiting time in the system: W
wq	Empirical waiting time in the queue: W_q
eff	Empirical system efficiency: $Eff = W/(W - W_q)$
rho	Empirical traffic intensity: ρ
historic	Optional parameter that stores the evolution of L , L_q , W and W_q , $Customers$ in the system, Rho and $Elapsed$ time during the simulation

See Also

```
\label{lem:other-simulated-models: ClosedNetwork; G_G_1_INF_H; G_G_1_K; G_G_INF; G_G_S_INF_H_Y; G_G_S_INF_H; G_G_S_K; G_G_S; OpenNetwork
```

```
G_G_1(Norm(10, 0.5), Unif(5,6), staClients=10, nClients=100, nsim=10)
```

 $G_G_1_INF_H$

G_G_1_INF_H	Obtains the main characteristics of a G/G/1/ ∞ /H model by simulation
-------------	--

Description

Obtains the main characteristics of a G/G/1/∞/H model by simulation

Usage

```
G_G_1_INF_H(arrivalDistribution = Exp(3), serviceDistribution = Exp(6), H = 5, staClients = 100, IR_1R_2R_3 nSim = 10, IR_2R_3 nProc = 1)
```

Arguments

arrivalDistribution

Arrival distribution (object of S4-class distr defined in distr package)

 ${\tt serviceDistribution}$

Service distribution (object of S4-class distr defined in **distr** package)

H Population size

staClients Number of customers used in the stabilization stage

nClients Number of customers used in the simulation stage

historic Parameter to activate/deactivate the historic information

nsim Number of simulations

nproc Processors used in the simulation.

Value

Returns the next information of a G/G/1/ ∞ /H model:

pn	Vector of empirical steady-state probabilities of having n customers in the system: P_n (Only the probabilities bigger than 0 are included)
1	Empirical number of customers in the system: L
lq	Empirical number of customers in the queue: L_q
W	Empirical waiting time in the system: W
мd	Empirical waiting time in the queue: W_q
eff	Empirical system efficiency: $Eff = W/(W-W_q)$
rho	Empirical traffic intensity: ρ
historic	Optional parameter that stores the evolution of L, L_q, W and W_q , Customers in the system, Rho and Elapsed time during the simulation

See Also

```
Other SimulatedModels: ClosedNetwork; G_G_1_K; G_G_1; G_G_INF; G_G_S_INF_H_Y; G_G_S_INF_H; G_G_S_K; G_G_S; OpenNetwork
```

```
 \texttt{G\_G\_1\_INF\_H} \, (\texttt{Norm} \, (10,\ 0.5) \, , \ \texttt{Unif} \, (5,6) \, , \ 10, \ \texttt{staClients=10}, \ \texttt{nClients=100}, \ \texttt{nsim=10} )
```

 $G_{-}G_{-}I_{-}K$

G	G	1	K

Obtains the main characteristics of a G/G/1/K model by simulation

Description

Obtains the main characteristics of a G/G/1/K model by simulation

Usage

```
G_G_1_K(arrivalDistribution = Exp(3), serviceDistribution = Exp(6), K = 2,
    staClients = 100, nClients = 1000, historic = FALSE, nsim = 10,
    nproc = 1)
```

Arguments

arrivalDistribution

Arrival distribution (object of S4-class distr defined in distr package)

 ${\tt serviceDistribution}$

Service distribution (object of S4-class distr defined in **distr** package)

K Maximun size of the queue

staClients Number of customers used in the stabilization stage

nClients Number of customers used in the simulation stage

historic Parameter to activate/deactivate the historic information

nsim Number of simulations

nproc Processors used in the simulation.

Value

Returns the next information of a G/G/1/K model:

pn	Vector of empirical steady-state probabilities of having n customers in the system: P_n (Only the probabilities bigger than 0 are included)
1	Empirical number of customers in the system: L
lq	Empirical number of customers in the queue: L_q
W	Empirical waiting time in the system: W
wd	Empirical waiting time in the queue: W_q
eff	Empirical system efficiency: $Eff = W/(W - W_q)$
rho	Empirical traffic intensity: ρ
historic	Optional parameter that stores the evolution of L , L_q , W and W_q , Customers in the system, Rho and Elapsed time during the simulation.

See Also

```
Other Simulated Models: Closed Network; G_G_1_INF_H; G_G_1; G_G_INF; G_G_S_INF_H_Y; G_G_S_INF_H; G_G_S_K; G_G_S; OpenNetwork
```

```
 \texttt{G\_G\_1\_K(Norm(10, 0.5), Unif(5,6), 5, staClients=10, nClients=100, nsim=10)} \\
```

 G_G_INF 13

G_G_INF	Obtains the main characteristics of a G/G/ ∞ model by simulation

Description

Obtains the main characteristics of a $G/G/\infty$ model by simulation

Usage

```
G_G_{INF} (arrivalDistribution = Exp(3), serviceDistribution = Exp(6),
  staClients = 100, nClients = 1000, historic = FALSE, nsim = 10,
  nproc = 1)
```

Arguments

arrivalDistribution

Arrival distribution (object of S4-class distr defined in **distr** package)

serviceDistribution

Service distribution (object of S4-class distr defined in **distr** package)

Number of customers used in stabilization stage staClients nClients Number of customers used in the simulation stage historic Parameter to activate/deactivate the historic information Number of simulations nsim

Processors used in the simulation. nproc

Value

Returns the next information of a $G/G/\infty$ model:

pn	Vector of empirical steady-state probabilities of having n customers in the system: P_n (Only the probabilities bigger than 0 are included)
1	Empirical number of customers in the system: L
lq	Empirical number of customers in the queue: L_q
W	Empirical waiting time in the system: W
wq	Empirical waiting time in the queue: W_q
eff	Empirical system efficiency: $Eff = W/(W - W_q)$
rho	Empirical traffic intensity: ρ
historic	Optional parameter that stores the evolution of L, L_q, W and W_q , Customers in the system, Rho and Elapsed time during the simulation

See Also

```
Other Simulated Models: Closed Network; G_G_1_INF_H; G_G_1_K; G_G_1; G_G_S_INF_H_Y;
\label{eq:G_G_S_INF_H; G_G_S_K; G_G_S; OpenNetwork} G\_G\_S\_INF\_H; G\_G\_S\_K; G\_G\_S; OpenNetwork
```

```
G_G_{INF}(Norm(10, 0.5), Unif(2,4), staClients=50, nClients=100, nsim=10)
```

 $G_{-}G_{-}S_{-}$

G_G_S

Obtains the main characteristics of a G/G/s model by simulation

Description

Obtains the main characteristics of a G/G/s model by simulation

Usage

```
G_G_S(arrivalDistribution = Exp(3), serviceDistribution = Exp(6), s = 2, staClients = 100, nClients = 1000, historic = FALSE, nsim = 10, nproc = 1)
```

Arguments

arrivalDistribution

Arrival distribution (object of S4-class distr defined in distr package)

 ${\tt serviceDistribution}$

Service distribution (object of S4-class distr defined in **distr** package)

s Number of servers

 $\begin{array}{ll} {\tt staClients} & {\tt Number\ of\ customers\ used\ in\ the\ stabilization\ stage} \\ {\tt nClients} & {\tt Number\ of\ customers\ used\ in\ the\ simulation\ stage} \\ \end{array}$

historic Parameter used to activate/deactivate the historic information

nsim Number of simulations

nproc Processors used in the simulation.

Value

Returns the next information of a G/G/S model:

pn	vector of empirical steady-state probabilities of having n customers in the system: P_n (Only the probabilities bigger than 0 are included)
1	Empirical number of customers in the system: L
lq	Empirical number of customers in the queue: L_q
W	Empirical waiting time in the system: W
мd	Empirical waiting time in the queue: W_q
eff	Empirical system efficiency: $Eff = W/(W - W_q)$
rho	Empirical Traffic intensity: ρ
historic	Optional parameter that stores the evolution of L , L_q , W and W_q , Customers in the system, Rho and Elapsed time during the simulation

See Also

```
Other SimulatedModels: ClosedNetwork; G_G_1_INF_H; G_G_1_K; G_G_1; G_G_INF; G_G_S_INF_H_Y; G_G_S_INF_H; G_G_S_K; OpenNetwork
```

```
 \texttt{G\_G\_S} \; (\texttt{Norm} \; (\texttt{10, 0.5}) \;, \; \; \texttt{Unif} \; (\texttt{5, 6}) \;, \; \; \texttt{2, staClients=10, nClients=100, nsim=10)}
```

 $G_G_S_INF_H$ 15

G_G_S_INF_H	Obtains the main characteristics of a G/G/S/ ∞ /H model by simulation
-------------	--

Description

Obtains the main characteristics of a G/G/S/ ∞ /H model by simulation

Usage

```
G_G_S_INF_H(arrivalDistribution = Exp(3), serviceDistribution = Exp(6), s = 3, H = 5, staClients = 100, nClients = 1000, historic = FALSE, nsim = 10, nproc = 1)
```

Arguments

```
arrivalDistribution
                 Arrival distribution (object of S4-class distr defined in distr package)
serviceDistribution
                 Service distribution (object of S4-class distr defined in distr package)
                 Number of servers
S
                 Population size
Η
staClients
                 Number of customers used in the stabilization stage
nClients
                 Number of customers used in the simulation stage
                 Parameter to activate/deactivate the historic information
historic
nsim
                 Number of simulations
nproc
                 Processors used in the simulation.
```

Value

Returns the next information of a G/G/S/∞/H model

pn	Vector of empirical steady-state probabilities of having n customers in the system: P_n (Only the probabilities bigger than 0 are included)
1	Empirical number of customers in the system: L
lq	Empirical number of customers in the queue: L_q
W	Empirical waiting time in the system: W
wq	Empirical waiting time in the queue: W_q
eff	Empirical system efficiency: $Eff = W/(W - W_q)$
rho	Empirical traffic intensity: ρ
historic	Optional parameter that stores the evolution of L , L_q , W and W_q , Customers in the system, Rho and Elapsed time during the simulation

See Also

```
Other SimulatedModels: ClosedNetwork; G_G_1_INF_H; G_G_1_K; G_G_1; G_G_INF; G_G_S_INF_H_Y; G_G_S_K; G_G_S; OpenNetwork
```

```
G_G_S_INF_H(Norm(10, 0.5), Unif(5,6), 3, 10, staClients=10, nClients=100, nsim=10)
```

 $G_G_S_INF_H_Y$

G_G_S_INF_H_Y	Obtains the main characteristics of a G/G/S/ ∞ /H with Y replacements model by simulation
	model of simulation

Description

Obtains the main characteristics of a G/G/S/\infty/H with Y replacements model by simulation

Usage

```
G_G_S_INF_H_Y (arrivalDistribution = Exp(3), serviceDistribution = Exp(6), s = 3, H = 5, Y = 3, staClients = 100, nClients = 1000, historic = FALSE, nsim = 10, nproc = 1)
```

Arguments

arrivalDistribution

Arrival distribution (object of S4-class distr defined in **distr** package)

serviceDistribution

Service distribution (object of S4-class distr defined in **distr** package)

Number of serversPopulation size

Y Number of replacements

staClients Number of customers used in the stabilization stage

nClients Number of customers used in the simulation stage

historic Parameter to activate/deactivate the historic information

nsim Number of simulations

nproc Processors used in the simulation.

Value

Returns the next information of a G/G/1/S/∞/H/Y model:

pn	Vector of empirical steady-state probabilities of having n customers in the system: P_n (Only the probabilities bigger than 0 are included)
1	Empirical number of customers in the system: L
lq	Empirical number of customers in the queue: L_q
W	Empirical waiting time in the system: W
wq	Empirical waiting time in the queue: W_q
eff	Empirical system efficiency: $Eff = W/(W - W_q)$
rho	Empirical traffic intensity: ρ
historic	Optional parameter that stores the evolution of L , L_q , W and W_q , Customers in the system, Rho and Elapsed time during the simulation

```
Other SimulatedModels: ClosedNetwork; G_G_1_INF_H; G_G_1_K; G_G_1; G_G_INF; G_G_S_INF_H; G_G_S_K; G_G_S; OpenNetwork
```

 $G_G_S_K$

Examples

```
 \texttt{G\_G\_S\_INF\_H\_Y} \ (\texttt{Norm} \ (10,\ 0.5) \ , \ \texttt{Unif} \ (5,6) \ , \ 3,\ 10,\ 2,\ \texttt{staClients=10},\ \texttt{nClients=100},\ \texttt{nsim=10})
```

G_G_S_K

Obtains the main characteristics of a G/G/s/K model by simulation

Description

Obtains the main characteristics of a G/G/s/K model by simulation

Usage

```
G_G_S_K(arrivalDistribution = Exp(3), serviceDistribution = Exp(6), s = 2,
  K = 3, staClients = 100, nClients = 1000, historic = FALSE,
  nsim = 10, nproc = 1)
```

Arguments

arrivalDistribution

Arrival distribution (object of S4-class distr defined in distr package)

serviceDistribution

Service distribution (object of S4-class distr defined in **distr** package)

s Number of servers

K Maximun size of the queue

staClients Number of customers used in the stabilization stage

nClients Number of customers used in the simulation stage

historic Parameter to activate/deactivate the historic information

nsim Number of simulations

nproc Processors used in the simulation.

Value

Returns the next information of a G/G/S/K model:

pn	Vector of empirical steady-state probabilities of having n customers in the system: P_n (Only the probabilities bigger than 0 are included)
1	Empirical number of customers in the system: L
lq	Empirical number of customers in the queue: L_q
W	Empirical waiting time in the system: \boldsymbol{W}
wq	Empirical waiting time in the queue: W_q
eff	Empirical system efficiency: $Eff = W/(W-W_q)$
rho	Empirical traffic intensity: ρ
historic	Optional parameter that stores the evolution of L, L_q, W and W_q , Customers in the system, Rho and Elapsed time during the simulation

18 maxCustomers

See Also

```
Other SimulatedModels: ClosedNetwork; G_G_1_INF_H; G_G_1_K; G_G_1; G_G_INF; G_G_S_INF_H_Y; G_G_S_INF_H; G_G_S; OpenNetwork
```

Examples

```
G_G_S_K(Norm(10, 0.5), Unif(5,6), 2, 5, staClients=10, nClients=100, nsim=10)
```

MarkovianModel

Defines a queueing model

Description

Constructor for Markovian Model class.

Usage

```
MarkovianModel(arrivalDistribution = Exp(1), serviceDistribution = Exp(1))
```

Arguments

arrivalDistribution

Arrival distribution (object of S4-class distr defined in **distr** package)

serviceDistribution

Service distribution (object of S4-class distr defined in **distr** package)

Value

An object of class MarkovianModel, a list with the following components:

arrivalDistribution

Arrival distribution (object of S4-class distr defined in **distr** package)

serviceDistribution

Service distribution (object of S4-class distr defined in **distr** package)

maxCustomers

Returns the maximun value of n that satisfies the condition $P_n > 0$

Description

Returns the maximum value of n that satisfies the condition $P_n > 0$

Usage

```
maxCustomers(qm)
## S3 method for class 'M_M_S_INF_H'
maxCustomers(qm)
```

M_M_1

Arguments

qm object MarkovianModel

Details

<code>maxCustomers.M_M_S_INF_H</code> implements the method for a $M/M/s/\infty/H$ queueing model

Methods (by class)

- MarkovianModel: implements the default method. Returns infinite.
- M_M_1_K: Implements the method for a M/M/1/K queueing model
- M_M_S_K: Implements the method for a M/M/S/K queueing model
- M_M_1_INF_H: Implements the method for a M/M/1/∞/H queueing model
- M_M_S_INF_H_Y: Implements the method for a M/M/s/\infty/H/Y queueing model

Examples

```
maxCustomers(M_M_1_K())
maxCustomers(M_M_S_INF_H_Y())
maxCustomers(M_M_S_INF_H(lambda=1/2, mu=60/5, s=2, h=5))
```

 M_{M_1}

Obtains the main characteristics of a M/M/1 queueing model

Description

Obtains the main characteristics of a M/M/1 queueing model

Usage

```
M_M_1 (lambda = 3, mu = 6)
```

Arguments

lambda Mean arrival ratemu Mean service rate

Value

Returns the next information of a M/M/1 model:

rho	Traffic intensity: ρ
cn	Coefficients used in the computation of P_n : C_n
p0	Probability of empty system: P_0
1	Number of customers in the system: L
lq	Number of customers in the queue: L_q
W	Waiting time in the system: W
wq	Waiting time in the queue: W_q
eff	System efficiency: $Eff = W/(W - W_q)$

20 M_M_1_INF_H

See Also

```
Other Analitical Models: Closed Jackson Network; M_M_1_INF_H; M_M_1_K; M_M_INF; M_M_S_INF_H_Y; M_M_S_INF_H; M_M_S_K; M_M_S; Open Jackson Network
```

Examples

```
#A workstation with a single processor
#runs programs with CPU time following
#an exponential distribution with mean 3 minutes.
#The programs arrive to the workstation following
#a Poisson process with an intensity of 15
#programs per hour.

M_M_1(lambda=15, mu=60/3)
```

M_M_1_INF_H

Obtains the main characteristics of a M/M/1/\infty/H queueing model

Description

Obtains the main characteristics of a M/M/1/∞/H queueing model

Usage

```
M_M_1_INF_H(lambda = 1/2, mu = 60/5, h = 5)
```

Arguments

1 ambda Mean arrival ratemu Mean service rateh Population size

Value

Returns the next information of a M/M/1/∞/H model :

rho	Constant: λ/μ
barrho	Traffic intensity: $\bar{\rho}$
barlambda	Mean effective arrival rate: $\bar{\rho}$
cn	Coefficients used in the computation of P_n : C_n
р0	Probability of empty system: P_0
1	Number of customers in the system: L
lq	Number of customers in the queue: L_q
W	Waiting time in the system: W
wq	Waiting time in the queue: W_q
eff	System Efficiency: $Eff = W/(W-W_q)$

M_M_1_K 21

See Also

 $\label{lem:other-analitical-Models: Closed-JacksonNetwork; M_M_1_K; M_M_1; M_M_INF; M_M_S_INF_H_Y; M_M_S_INF_H; M_M_S_K; M_M_S; Open-JacksonNetwork$

Examples

```
# A computer system with five workstations must
# make a back- up from time to time, preventing
# users from using the system.
# The time between ending a back -up until the
# next begins is random and follows an
# exponential distribution with mean 2 hours.
# The duration of the backup is also random and
# follows an exponential distribution with mean
# 5 minutes.
# There exists a single tape drive to perform the
# back-up process and the station will wait if it is
# busy.

M_M_1_INF_H(lambda =1/2, mu=60/5, h=5)
```

M_M_1_K

Obtains the main characteristics of a M/M/1/K queueing model

Description

Obtains the main characteristics of a M/M/1/K queueing model

Usage

```
M_M_1_K(lambda = 3, mu = 6, k = 2)
```

Arguments

lambda Mean arrival ratemu Mean service rate

k Maximun size of the queue

Value

Returns the next information of a M/M/1/K model:

Constant coefficient: λ/ρ
Traffic intensity: $\bar{\rho}$
Effective arrival rate: $\bar{\lambda}$
Mean number of customers in the system: ${\cal L}$
Mean number of customers in the queue: \mathcal{L}_q
Waiting time in the system: W
Waiting time in the queue: W_q
Efficiency: $Eff = W/(W - W_q)$

22 M_MINF

See Also

```
Other\ Analitical Models: \verb|ClosedJacksonNetwork|; M_M_1_INF_H; M_M_1; M_M_INF; M_M_S_INF_H_Y; \\
M_M_S_INF_H; M_M_S_K; M_M_S; OpenJacksonNetwork
```

Examples

```
#A workstation with a single processor
#runs programs with CPU time following
#an exponential distribution with mean 3 minutes.
#The programs arrive to the workstation following
#a Poisson process with an intensity of 15
#programs per hour.
#The workstation has a limited memory and only
#one program is allowed to wait if the processor
#is busy.
M_M_1_K(lambda=15, mu=60/3, k=1)
```

 M_M_INF

Obtains the main characteristics of a M/M/∞ queueing model

Description

Obtains the main characteristics of a $M/M/\infty$ queueing model

Usage

```
M_M_{INF} (lambda = 3, mu = 6)
```

Arguments

lambda	Mean arrival rate
mu	Mean service rate

Value

Returns the next information of a $M/M/\infty$ model:

rho	Constant coefficient: λ/μ
barrho	Traffic intensity: $\bar{\rho}$
p0	Probability of empty system: P_0
1	Number of customers in the system: L
lq	Number of customers in the queue: L_q ($L_q = 0$ in this model)
W	Waiting time in the system: W
wq	Waiting time in the queue: W_q ($W_q = 0$ in this model)
eff	System efficiency: $Eff = W/(W - W_q)$

```
Other Analitical Models: Closed Jackson Network; M_M_1_INF_H; M_M_1_K; M_M_1; M_M_S_INF_H_Y;
{\tt M\_M\_S\_INF\_H; M\_M\_S\_K; M\_M\_S; OpenJacksonNetwork}
```

M_M_S 23

Examples

```
#The number of people turning on their television sets #on Saturday evening during prime time can be described #rather well by a Poisson distribution with a mean of #100000/hr.
#There are five major TV stations, and a given person #chooses among them essentially at random.
#Surveys have also shown that the average person tunes #in for 90 min and that viewing times are approximately #exponentially distributed.
M_M_INF(lambda=100000/5, mu=60/90)
```

 M_M_S

Obtains the main characteristics of a M/M/s queueing model

Description

Obtains the main characteristics of a M/M/s queueing model

Usage

```
M_M_S(lambda = 3, mu = 6, s = 2)
```

Arguments

lambda	Mean arrival rate
mu	Mean service rate
S	Number of servers

Value

Returns the next information of a M/M/s model:

rho	Traffic intensity: ρ
cn	Coefficients used in the computation of P_n : C_n
p0	Probability of empty system: P_0
1	Number of customers in the system: L
lq	Number of customers in the queue: L_q
W	Waiting time in the system: \boldsymbol{W}
wq	Waiting time in the queue: W_q
eff	System efficiency: $Eff = W/(W - W_q)$

```
\label{lem:other-analitical-Models: Closed-JacksonNetwork; M_M_1_INF_H; M_M_1_K; M_M_1; M_M_INF; M_M_S_INF_H_Y; M_M_S_INF_H; M_M_S_K; Open-JacksonNetwork
```

 $M_M_S_INF_H$

Examples

```
#A workstation with three processors
#runs programs with CPU time following
#an exponential distribution with mean 3 minutes.
#The programs arrives to the workstation following
#a Poisson process with an intensity of 15
#programs per hour.

M_M_S(lambda=15, mu=60/3, s=3)
```

M_M_S_INF_H

Obtains the main characteristics of a M/M/s/∞/H queueing model

Description

Obtains the main characteristics of a M/M/s/∞/H queueing model

Usage

```
M_M_S_INF_H(lambda = 1/2, mu = 60/5, s = 2, h = 5)
```

Arguments

lambda	Mean arrival rate
mu	Mean service rate
S	Number of servers
h	Population size

Value

Returns the next information of a M/M/s/∞/H model:

rho	Constant coefficient: λ/μ
barrho	Traffic intensity: $\bar{\rho}$
barlambda	Mean effective arrival rate: $\bar{\rho}$
cn	Coefficients used in the computation of P_n : C_n
р0	Probability of empty system: P_0
1	Number of customers in the system: L
lq	Number of customers in the queue: L_q
W	Waiting time in the system: W
wq	Waiting time in the queue: W_q
eff	System efficiency: $Eff = W/(W - W_q)$

```
\label{lem:other-analitical-Models: Closed-JacksonNetwork; M_M_1_INF_H; M_M_1_K; M_M_1; M_M_INF; M_M_S_INF_H_Y; M_M_S_K; M_M_S; Open-JacksonNetwork
```

 $M_M_S_INF_H_Y$ 25

Examples

```
# A computer system with five workstations must
# make a back- up from time to time, preventing
# users from using the system.
# The time between ending a back -up until the
# next begins is random and follows an
# exponential distribution with mean 2 hours.
# The duration of the backup is also random and
# follows an exponential distribution with mean
# 5 minutes.
# There are 2 tape drives to perform the
# back-up process, the station remained on hold
# if both were occupied.

M_M_S_INF_H(lambda=1/2, mu=60/5, s=2, h=5)
```

M_M_S_INF_H_Y

Obtains the main characteristics of a M/M/s/ ∞ /H with Y replacements queueing model

Description

Obtains the main characteristics of a M/M/s/ ∞ /H with Y replacements queueing model

Usage

```
M_M_S_INF_H_Y(lambda = 3, mu = 6, s = 3, h = 5, y = 3)
```

Arguments

lambda	Mean arrival rate
mu	Mean service rate
S	Number of servers
h	Population size
У	Number of replacements

Value

Returns the next information of a M/M/s/ ∞ /H/Y model:

$: C_{i}$

 $M_M_S_K$

See Also

```
\label{lem:other-analitical-Models:Closed-JacksonNetwork; M_M_1_INF_H; M_M_1_K; M_M_1; M_M_INF; M_M_S_INF_H; M_M_S_K; M_M_S; OpenJacksonNetwork
```

Examples

```
#A bank has 5 ATMs. Occasionally one of them is #damaged until one of the two hired technicians #repairs it. It is known that the mean time to repair #each ATM follows an exponential distribution with mean #10 minutes, while the distribution of time an ATM #works is also exponential #with mean 2 hours. The bank has an ATM extra to #replace a damaged one.

M_M_S_INF_H_Y(lambda=1/2, mu=60/10, s=2, h=5, y=1)
```

 $M_M_S_K$

Obtains the main characteristics of a M/M/S/k queueing model

Description

Obtains the main characteristics of a M/M/S/k queueing model

Usage

```
M_M_S_K(lambda = 3, mu = 6, s = 2, k = 3)
```

Arguments

lambda	Mean arrival rate
mu	Mean service rate
S	Number of servers
k	Maximun size of the queue

Value

Returns the next information of a M/M/S/K model:

rho	Constant coefficient: λ/ρ
barrho	Traffic intensity: $\bar{\rho}$
barlambda	Effective arrival rate: $\bar{\lambda}$
cn	Coefficients used in the computation of P_n : C_n
pks	Probability of having $K + s$ customers in the system: P_{K+s}
р0	Probability of empty system: P_0
1	Number of customers in the system: L
lq	Number of customers in the queue: L_q
W	Waiting time in the system: W
мd	Waiting time in the queue: W_q
eff	System efficiency: $Eff = W/(W - W_q)$

no_distr 27

See Also

```
\label{lem:other-analitical-Models:ClosedJacksonNetwork; M_M_1_INF_H; M_M_1_K; M_M_1; M_M_INF; M_M_S_INF_H_Y; M_M_S_INF_H; M_M_S; OpenJacksonNetwork
```

Examples

```
#A workstation with three processors
#runs programs with CPU time following
#an exponential distribution with mean 3 minutes.
#The programs arrive to the workstation following
#a Poisson process with an intensity of 15
#programs per hour.
#The workstation has a limited memory and only
#one program is allowed to wait if the processor
#is busy.

M_M_S_K(lambda=15, mu=60/3, s=3, k=1)
```

no_distr

Defines an empty object representing the inexistence of a distribution.

Description

Defines an empty object representing the inexistence of a distribution.

Usage

```
no_distr()
```

OpenJacksonNetwork Obtains the main characteristics of an Open Jackson network model

Description

Obtains the main characteristics of an Open Jackson network model

Usage

```
OpenJacksonNetwork(lambda = c(20, 30), mu = c(100, 25), s = c(1, 2), p = matrix(c(0.2, 0.25, 0.1, 0), nrow = 2, ncol = 2))
```

Arguments

lambda	Vector of arrival rates at each node
mu	Vector of mean service rates
s	Vector with the number of servers at each node
р	Routing matrix, where p_{ij} is the routing probability from node i to node j

28 OpenNetwork

Value

Returns the next information of an Open Jackson network model:

rho	Traffic intensity: ρ
1	Vector with the number of customers in the nodes: L
lq	Vector with the number of customers in the queue at each node: L_q
W	Vector with the waiting time in each node: \boldsymbol{W}
wq	Vector with the waiting time in the queue at each node: $\boldsymbol{W_q}$
lt	Number of customers in the network: L_{Total}
lqt	Number of customers in all the queues: L_{qTotal}
wt	Total waiting time in the network: W_{Total}
wqt	Total waiting time in all the queues: W_{qTotal}
eff	System efficiency: $Eff = W/(W - W_q)$

See Also

```
\label{loss} Other Analitical Models: {\tt ClosedJacksonNetwork}; {\tt M\_M\_1\_INF\_H}; {\tt M\_M\_1\_K}; {\tt M\_M\_1\_K}; {\tt M\_M\_S\_INF\_H}; {\tt M\_M\_S\_INF\_H}; {\tt M\_M\_S\_K}; {\tt M\_M\_S}
```

Examples

```
#Two servers receive a number of tasks per minute;
#20 tasks per minute in the case of the first
#server and 30 tasks per minute in the second one.
#The unique processsor in the first server can manage
#100 tasks per minute, while the two processors in the
#second server only can manage 25 task per minute.
#When a task is finishing in the server 2, it creates
#a new task in the server 1 with a probability of 25%,
#the task ends in the other case.
#The task that ends in the server 1 creates a new one
#in the same server the 20% of the times and creates
#a new one in the server 2 the 10% of the times, ending
#in other case.
OpenJacksonNetwork(lambda=c(20, 30),
                   mu=c(100, 25),
                   s=c(1,2),
                   p=matrix(c(0.2,0.1,
                              0.25,0), 2, byrow = TRUE))
```

OpenNetwork Obtains the main characteristics of an Open Network model by simulation

Description

Obtains the main characteristics of an Open Network model by simulation

OpenNetwork 29

Usage

```
OpenNetwork (arrivalDistribution = c(Exp(20), Exp(30)), serviceDistribution = c(Exp(100), Exp(25)), s = c(1, 2), p = matrix(c(0.2, 0.25, 0.1, 0), nrow = 2, ncol = 2), staClients = 100, transitions = 1000, historic = FALSE, nsim = 10, nproc = 1)
```

Arguments

arrivalDistribution

Vector indicating the arrival distribution at each node (Each element must be an object of S4-class distr defined in **distr** package or the no_distr() object)

serviceDistribution

Vector indicating the service distribution at each node (Each element must be an

object of S4-class distr defined in **distr** package)

s Vector of servers in each node

Routing matrix, where p_{ij} is the routing probability from node i to node j

staClients Number of customers used in the stabilization stage

transitions Number of transitions between nodes used in the simulation stage

historic Parameter to activate/deactivate the historic information

nsim Number of simulations

nproc Processors used in the simulation.

Value

Returns the next information of an Open network model:

pn	Vector of steady-state probabilities of having n customers in the system: P_n
1	Vector of expected number of customers in the nodes: L
lq	Vector of expected number of customers in the queues of the nodes: L_q
lqt	Expected number of customers in all the queues: L_{qTotal}
W	Vector of expected waiting times in the nodes: W
wq	Vector of expected waiting time in the queues of the nodes: W_q
eff	System efficiency: $Eff = W/(W - W_q)$
rho	Traffic intensity: ρ
historic	Optional parameter that stores the evolution of L , L_q , W and W_q , Customers in the system, Rho and Elapsed time during the simulation.

See Also

```
Other SimulatedModels: ClosedNetwork; G_G_1_INF_H; G_G_1_K; G_G_1; G_G_INF; G_G_S_INF_H_Y; G_G_S_INF_H; G_G_S_K; G_G_S
```

```
OpenNetwork (arrivalDistribution = c(Exp(20), no\_distr()), serviceDistribution = c(Exp(100), Exp(25)), s = c(1,2), p = matrix(c(0.2, 0.25, 0.1, 0), nrow=2, ncol=2), staClients = 10, transitions = 100, nsim = 100
```

30 Pi

POi

Steady-state probability of 0 customers in the system on the node i of an Open Jackson Network.

Description

Returns the value of the probability of having 0 customers at node i of an Open Jackson Network.

Usage

```
P0i(net, i)
## S3 method for class 'OpenJackson'
P0i(net, i)
```

Arguments

net Network
i Node. Index starts in 1.

Details

P0i.OpenJackson implements the method for an Open Jackson Network model

Value

 $P_{0,i}$

Examples

```
\#Probability of having 0 customers on the node 2 P0i(OpenJacksonNetwork(), 2)
```

Ρi

Steady-state probability of n customers at node i of a network.

Description

Returns the value $P_i(n)$ in the node i of a Closed Jackson Network

Usage

```
Pi(net, n, node)
## S3 method for class 'ClosedJackson'
Pi(net, n, node)
## S3 method for class 'SimulatedNetwork'
Pi(net, n, node)
```

plot.MarkovianModel 31

Arguments

net	Closed Jackson Network
net	CIUSCU JACKSUII INCLWULK

n Customers node Node

Details

Pi.ClosedJackson implements the method for a Closed Jackson Network model Pi.SimulatedNetwork implements the method for a SimulatedNetwork model

Value

 P_n in the selected node

Examples

```
#Probability of having 0 customers on node 2
Pi(ClosedJacksonNetwork(), 0, 2)

#It is possible obtain multiple probabilities
#for a node at once.
Pi(ClosedJacksonNetwork(), 0:2, 2)
```

```
plot.MarkovianModel
```

Shows the main graphics of the parameters of a Markovian Model

Description

Shows the main graphics of the parameters of a Markovian Model

Usage

```
## S3 method for class 'MarkovianModel'
plot(x, t = list(range = seq(x$out$w, x$out$w * 3,
   length.out = 100)), n = c(0:5), only = NULL, graphics = "ggplot2", ...)
```

Arguments

X	Markovian Model
t	range for drawing the waiting plots
n	range for drawing the probabilities plot
only	Allow to only show the waiting plots or the probabilites plots. Must be NULL, "t" or "n"
graphics	library used to draw the plots
	Further arguments

Details

plot.MarkovianModel implements the function for an object of class MarkovianModel.

32 plot.SimulatedModel

```
plot.SimulatedModel
```

#Shows a plot of the evolution of a variable during the simulation ##

Description

#Shows a plot of the evolution of a variable during the simulation ##

Usage

```
## S3 method for class 'SimulatedModel'
plot(x, minrange = 1, maxrange, var = "L",
    graphics = "ggplot2", depth = maxrange - minrange, ...)

## S3 method for class 'SimulatedNetwork'
plot(x, minrange = 1, maxrange, var = "L",
    graphics = "ggplot2", depth = maxrange - minrange, nSimulation = NULL,
    ...)

## S3 method for class 'list'
plot(x, minrange = 1, maxrange, var = "L",
    graphics = "ggplot2", depth = maxrange - minrange + 1, nSimulation = 1,
    showMean = TRUE, showValues = TRUE, ...)
```

Arguments

х	Simulated Model #
minrange	Number of customers needed to establish the start of the plot #
maxrange	Number of customers needed to establish the end of the plot #
var	This variable indicates the parameter of the queue to show in graphic (L, Lq, W, Wq, Clients, Intensity) $\#$
graphics	Type of graphics: "graphics" use the basic R plot and "ggplot2" the library ggplot2 $\#$
depth	Number of points printed in the plot #
	Further arguments passed to or from other methods. #
nSimulation	Only used when the var param is equal to "Clients". Selects one of the multiple simulations to show the evolution of the Clients. #
showMean	Shows the mean of all the simulations
showValues	Shows the values of all the simulations

Details

```
plot.SimulatedModel implements the function for an object of class SimulatedModel. plot.SimulatedNetwork implements the function for an object of class SimulatedNetwork. plot.list implements the function for an object of class list
```

Pn 33

Рn

Steady-state probability of having n customers in the system

Description

Returns the probability of having n customers in the given queueing model

Usage

```
Pn(qm, n)
```

Arguments

qm Queueing model

Number of customers. With OpenJacksonNetwork objects must be a vector with same length as nodes. With ClosedJacksonNetwork objects also the sum the vector must be equal to the number of customers in the network.

Value

 P_n

Methods (by class)

- MarkovianModel: Implements the method for a Markovian model
- M_M_1: Implements the method for a M/M/1 queueing model
- M_M_S: Implements the method for a M/M/s queueing model
- M_M_1_K: Implements the method for a M/M/1/K queueing model
- M_M_S_K: Implements the method for a M/M/s/K queueing model
- M_M_1_INF_H: implements the method for a M/M/1/∞/H queueing model
- M_M_S_INF_H: Implements the method for a M/M/s/∞/H queueing model
 M_M_S_INF_H_Y: Implements the method for a M/M/s/∞/H/Y queueing model
- M_M_INF: Implements the method for a M_M_INF queueing model
- OpenJackson: Implements the method for a Open Jackson Network model
- ClosedJackson: Implements the method for a Closed Jackson Network model
- SimulatedModel: Implements the method for a Simulated model

```
#Probability of having one customer in the
#system
Pn(M_M_S(), 1)
Pn(M_M_INF(), 1)

#You can also get multiple probabilities
#at once
Pn(M_M_1_INF_H(), 0:5)
Pn(M_M_S_K(), 1:3)
```

34 Qn

```
#With networks must be a vector with
#same length as nodes

#Probability of having 0 customers in
#the node 1, and 2 customers in node 2
Pn(OpenJacksonNetwork(), c(0, 2))

#Probability of having 1,2,0, and 0
#customers in nodes 1,2,3 and 4 respectively
Pn(ClosedJacksonNetwork(), c(1,2,0,0))
```

Qn

Steady-state probability of finding n customers in the system when a new customer arrives

Description

Returns the probability of having n customers in the system at the moment of the arrival of a customer.

Usage

```
Qn(qm, n)
```

Arguments

qm Queueing model
n Customers

Value

 Q_n

Methods (by class)

- MarkovianModel: Implements the default method (generates a message)
- M_M_1_K: Implements the method for a M/M/1/K queueing model
- M_M_S_K: Implements the method for a M/M/S/K queueing model
- M_M_1_INF_H: Implements the method for a M/M/1/∞/H queueing model
- M_M_S_INF_H: Implements the method for a M/M/s/ ∞ /H queueing model
- M_M_S_INF_H_Y: Implements the method for a M/M/s/∞/H with Y replacements queueing model

qqcompggplot2 35

Examples

```
#Probability of having one customer in the
#queue
Qn(M_M_1_K(), 1)
Qn(M_M_S_INF_H(), 1)

#You can also get multiple probabilities
#at once
Qn(M_M_1_INF_H(), 0:5)
Qn(M_M_S_K(), 1:3)
```

qqcompggplot2

Q-Q Plot using the package ggplot2

Description

Q-Q Plot using the package ggplot2

Usage

```
qqcompggplot2(lfitdata)
```

Arguments

lfitdata a list of fitted data

See Also

 $\label{thm:compggplot2} Other\ Distribution Analysis: \verb|cdfcompggplot2|; denscompggplot2|; fitData; goodnessFit; summaryFit \\$

```
summary.SimulatedModel
```

Shows basic statistical information of the variable

Description

Shows basic statistical information of the variable

Usage

```
## S3 method for class 'SimulatedModel'
summary(object, var = "l", ...)
```

Arguments

object	SimulatedModel
var	Main characteristic of an queue model
	Further argumets

36 summaryFit

Details

 $\verb|summary.Simulated Model| implements the function for an object of class Simulated Model.$

summaryFit	Shows three plots: The histogram and theoretical densities, the empir-
	ical and theoretical CDF's and the Q-Q plot

Description

Shows three plots: The histogram and theoretical densities, the empirical and theoretical CDF's and the Q-Q plot

Usage

```
summaryFit(lfitdata, graphics = "ggplot2", show = "all")
```

Arguments

lfitdata a list of fitted data

graphics Type of graphics: "graphics" uses the basic R plot and "ggplot2" the library

ggplot 2

show Select what plots to show. Can be: "all", "dens" for the histogram, "cdf" for the

CDF's or "qq" for the Q-Q-plot

See Also

 $\label{thm:compggplot2} Other \ Distribution Analysis: \ \texttt{cdfcompggplot2}; \ \texttt{denscompggplot2}; \ \texttt{fitData}; \ \texttt{goodnessFit}; \ \texttt{qqcompggplot2}$