A SUBFIELD LATTICE ATTACK ON OVERSTRETCHED NTRU ASSUMPTIONS

Martin R. Albrecht
Oxford Lattice School

OUTLINE

Introduction

Preliminaries

Subfield Lattice Attack

Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched NTRU assumptions: Cryptanalysis of some FHE and Graded Encoding Schemes. Cryptology ePrint Archive, Report 2016/127. http://eprint.iacr.org/2016/127. 2016

INTRODUCTION

NTRUENCRYPT

Key Generation $\mathcal{R} = \mathbb{Z}[X]/(X^n + 1)$, modulus q, width parameter σ

- Sample $f \leftarrow D_{\mathcal{R},\sigma}$ (invertible mod q)
- Sample $g \leftarrow D_{\mathcal{R},\sigma}$
- Publish $h = [g/f]_q$

Encrypt $m \in \{0,1\}^n$

- Sample $s, e \leftarrow D_{\mathcal{R},\chi}, D_{\mathcal{R},\chi}$
- Return 2 $(h \cdot s + e) + m$

Decrypt $c \in \mathcal{R}_q$

- $m' = f \cdot c = 2(g \cdot s + f \cdot e) + f \cdot m$
- Return $m' \mod 2 \equiv f \cdot m \mod 2$

The NTRU lattice Λ_h^q

```
sage: K.<zeta> = CyclotomicField(8)
sage: OK = K.ring_of_integers()
sage: h = -36*zeta^3 + 44*zeta^2 + 14*zeta + 28
sage: h
```

$$-36\zeta_8^3 + 44\zeta_8^2 + 14\zeta_8 + 28$$

```
sage: H = h.matrix(); q = 97
sage: block_matrix([[1, H],[0, q]])
```

THE NTRU LATTICE Λ_h^q

- The lattice Λ_h^q defined by an NTRU instance for parameters \mathcal{R}, q, σ has dimension 2n and volume q^n .
- If h were uniformly random, the Gaussian heuristic predicts that the shortest vectors of Λ_h^q have norm $\approx \sqrt{nq}$.
- Whenever

$$||f|| \approx ||g|| \approx \sqrt{n} \, \sigma \ll \sqrt{n \, q},$$

then Λ_h^q has unusually short vectors.

NTRU

Definition (NTRU Assumption)

It is hard to find a short vector in the \mathcal{R} -module

$$\Lambda_h^q = \{(x, y) \in \mathcal{R}^2 \text{ s.t. } hx - y = 0 \text{ mod } q\}$$

with $\mathcal{R} = \mathbb{Z}[X]/(P(X))$ and the promise that a short solution (f,g) — the private key — exists.¹²

¹Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A New High Speed Public Key Cryptosystem. Draft Distributed at Crypto'96, available at

http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf. 1996.

²Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A Ring-Based Public Key Cryptosystem. In: ANTS. 1998, pp. 267–288.

NTRU Applications

The NTRU assumption has been utilised for

- signatures schemes,³
- fully homomorphic encryption,⁴
- candidate constructions for multi-linear maps.⁵

³Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice Signatures and Bimodal Gaussians. In: *CRYPTO 2013, Part I.* ed. by Ran Canetti and Juan A. Garay. Vol. 8042. LNCS. Springer, Heidelberg, Aug. 2013, pp. 40–56. DOI: 10.1007/978-3-642-40041-4_3.

⁴Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: 44th ACM STOC. ed. by Howard J. Karloff and Toniann Pitassi. ACM Press, May 2012, pp. 1219–1234. DOI: 10.1145/2213977.2214086; Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme. In: 14th IMA International Conference on Cryptography and Coding. Ed. by Martijn Stam. Vol. 8308. LNCS. Springer, Heidelberg, Dec. 2013, pp. 45–64. DOI: 10.1007/978-3-642-48239-0_4.

⁵Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate Multilinear Maps from Ideal Lattices. In: *EUROCRYPT 2013*. Ed. by Thomas Johansson and Phong Q. Nguyen. Vol. 7881. LNCS. Springer, Heidelberg, May 2013, pp. 1–17. DOI: 10.1007/978-3-642-38348-9_1.

LATTICE ATTACKS

- Recovering a short enough vector of some target norm τ , potentially longer than (f, g), is sufficient for an attack.⁶
- In particular, finding a vector o(q) would break many applications such as encryption.
- This requires strong lattice reduction and NTRU remains asymptotically secure.⁷⁸

⁶Don Coppersmith and Adi Shamir. Lattice Attacks on NTRU. In: EUROCRYPT'97. Ed. by Walter Fumy. Vol. 1233. LNCS. Springer, Heidelberg, May 1997, pp. 52–61. DOI: 10.1007/3-540-69053-0_5.

⁷Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A Ring-Based Public Key Cryptosystem. In: ANTS. 1998, pp. 267–288.

⁸Jeff Hoffstein et al. Choosing Parameters for NTRUEncrypt. Cryptology ePrint Archive, Report 2015/708. http://eprint.iacr.org/2015/708. 2015.

BEST ATTACKS

Practical combined lattice-reduction and meet-in-the-middle attack⁹ of Howgrave-Graham.¹⁰¹¹

Asymptotic BKW variant, with a heuristic complexity $2^{\Theta(n/\log\log q)}$.¹²

10.1007/978-3-662-47989-6_3.

⁹Jeffrey Hoffstein, Joseph H. Silverman, and William Whyte. Meet-in-the-middle Attack on an NTRU private key. Technical report, NTRU Cryptosystems, July 2006. Report #04, available at http://www.ntru.com. 2006.

¹⁰ Nick Howgrave-Graham. A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU. In: CRYPTO 2007. Ed. by Alfred Menezes. Vol. 4622. LNCS. Springer, Heidelberg, Aug. 2007, pp. 150–169. DOI: 10.1007/978-3-540-74143-5_9.

¹¹Thomas Wunderer. Revisiting the Hybrid Attack: Improved Analysis and Refined Security Estimates. Cryptology ePrint Archive, Report 2016/733. http://eprint.iacr.org/2016/733. 2016.
¹²Paul Kirchner and Pierre-Alain Fouque. An Improved BKW Algorithm for LWE with Applications to Cryptography and Lattices. In: CRYPTO 2015, Part I. ed. by Rosario Gennaro and Matthew J. B. Robshaw. Vol. 9215. LNCS. Springer, Heidelberg, Aug. 2015, pp. 43–62. DOI:

PRELIMINARIES

CYCLOTOMIC NUMBER FIELDS AND SUBFIELDS

- I'll focus on Cyclotomic number rings of degree $n = 2^k$ for ease of exposure, but everything can be made general.
- Let $\mathcal{R} \simeq \mathbb{Z}[X]/(X^n+1)$ be the ring of integers of the Cylotomic number field $\mathbb{K} = \mathbb{Q}(\zeta_m)$ for some $m=2^k$ and n=m/2.
- · Let $\mathbb{L} = \mathbb{Q}(\zeta_{m'})$ with m'|m be a subfield of \mathbb{K} .
- The ring of integers of $\mathbb L$ is $\mathcal R'\simeq \mathbb Z[X]/(X^{n'}+1)$ with n'=m'/2.
- We write the canonical inclusion $\mathcal{R}' \subset \mathcal{R}$ explicitly as $L : \mathcal{R}' \to \mathcal{R}$.
- \cdot The norm $N_{\mathbb{K}/\mathbb{L}}:\mathbb{K}\to\mathbb{L}$ is the multiplicative map defined by

$$N_{\mathbb{K}/\mathbb{L}}: f \mapsto \prod_{\psi \in G'} \psi(f)$$

where G' is the Galois subgroup corresponding to \mathbb{L} .

GEOMETRY

The ring $\ensuremath{\mathcal{R}}$ is viewed as a lattice by endowing it with the inner product

$$\langle a,b\rangle = \sum_{i=0}^{n-1} a_i \cdot b_i.$$

- This defines a Euclidean norm denoted by $\|\cdot\|$.
- We will make use of the operator's norm $|\cdot|$ defined by:

$$|a| = \sup_{x \in \mathbb{K}^*} ||ax||/||x|| = \max |a_i|.$$

• It holds that $||a \cdot b|| \le \sqrt{n} \cdot |a| \cdot ||b||$ and

$$|N_{\mathbb{K}/\mathbb{L}}(a)| \le \sqrt{n}^{r-1}|a|^r \le \sqrt{n}^{r-1}||a||^r.$$

LATTICE REDUCTION

Lattice reduction algorithms produce vectors of length

$$\beta^{\Theta(n/\beta)} \cdot \lambda_1(\Lambda)$$

for a computational cost

$$poly(\lambda) \cdot 2^{\Theta(\beta)}$$
,

with $\lambda_1(\Lambda)$ the length of a shortest vector of Λ .¹³

¹³Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. In: ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073. LNCS. Springer, Heidelberg, Dec. 2011, pp. 1–20. DOI: 10.1007/978-3-642-25385-0_1.

SUBFIELD LATTICE ATTACK

OVERVIEW

1. Norming Down

Define $f' = N_{\mathbb{K}/\mathbb{L}}(f)$, $g' = N_{\mathbb{K}/\mathbb{L}}(g)$, and $h' = N_{\mathbb{K}/\mathbb{L}}(h)$, then (f', g') is a vector of $\Lambda_{h'}^q$ and it may be an unusually short one.

n	log q	r	f	$\sqrt{2/3 \cdot n}$	f'	$\left(\sqrt{2/3\cdot n}\right)^r$
256	300	8	3.70893	3.70752	29.21967	29.66015
256	300	32	3.66546	3.70752	103.69970	118.64060
256	300	64	3.71731	3.70752	210.20853	237.28120

Table 1: Observed norms, after relative norm operation. All norms are logs.

1. Norming Down

We assume that the following lemma holds also for all reasonable distributions considered in cryptographic constructions:

Let f be sampled from spherical Gaussians of variance σ^2 . Then,

$$||f'|| \le \sqrt{n}^{r-1} \cdot ||f||^r$$

2. LATTICE REDUCTION IN THE SUBFIELD

Run lattice reduction with block size β on lattice $\Lambda_{h'}^q$, to obtain a vector $(x', y') \in \Lambda_{h'}^q$ with

THE RIGHT KIND OF (x', y')

(x',y') is a solution in the subfield, how could that be useful?

THE RIGHT KIND OF (x', y')

(x',y') is a solution in the subfield, how could that be useful?

- 1. If (x', y') is short enough, then it is an \mathcal{R}' -multiple of (f', g').
- 2. This will allow us to lift (x', y') to a short vector in Λ_h^q .

$$(x',y')=v\cdot (f',g')$$

Theorem

Let $f',g'\in\mathcal{R}'$ be such that $\langle f'\rangle$ and $\langle g'\rangle$ are coprime ideals and that $h'\cdot f'=g' \text{ mod } q$ for some $h'\in\mathcal{R}'$. If $(x',y')\in\Lambda^q_{h'}$ has length verifying

$$\|(x',y')\|<\frac{q}{\|(f',g')\|},$$

then $(x', y') = v \cdot (f', g')$ for some $v \in \mathcal{R}'$.

3. LIFTING THE SHORT VECTOR

To lift the solution from the sub-ring \mathcal{R}' to \mathcal{R} compute (x,y) as

•
$$x = L(x')$$
 and

•
$$y = L(y') \cdot h/L(h') \mod q$$
,

where L is the canonical inclusion map.

PERFORMANCE

Can solve in time complexity $poly(n) \cdot 2^{\Theta(\beta)}$ when

• Direct lattice attack: $\beta/\log\beta = \Theta(n/\log q)$

PERFORMANCE

Can solve in time complexity $poly(n) \cdot 2^{\Theta(\beta)}$ when

- Direct lattice attack: $\beta/\log\beta = \Theta(n/\log q)$
- Subfield attack: $\beta/\log\beta = \Theta\left(n\log n/\log^2 q\right)$ whenever $r = \Theta(\log q/\log n) > 1$

THANK YOU

