Use of Semantic Web resources for knowledge discovery

Mikel Egaña Aranguren

<mikel.egana@ehu.es>

eman ta zabal zazu

Universidad del País Vasco

Euskal Herriko Unibertsitatea

Contents

- 1. Introduction
- 2. The Cell Cycle Ontology
- 3. BioGateway
- 4. Concluding remarks
- 5. Future prospects

Contents

- 1. Introduction
 - State of affairs
 - Background
- 1. The Cell Cycle Ontology
- 2. BioGateway
- 3. Concluding remarks
- 4. Future prospects

State of affaires

- The amount of data generated in the biological experiments continues to grow exponentially (e.g. NGS)
- The shortage of proper approaches or tools for analysing this data has created a gap between raw data and knowledge
- The lack of a structured documentation of knowledge leaves much of the data extracted from these raw data unused
- Differences in the technical languages used (synonymy and polysemy) have complicated the analysis and interpretation of data
- Many of our tasks (will) require correct and meaningful communication and integration among the project information resources
- So, a major barrier to such interoperability is semantic heterogeneity: different applications, databases, and agents may ascribe disparate meanings to the same terms or use distinct terms to convey the same meaning

Strategy

Steps:

- **1. Problem definition:** test bed case (*e.g.* cell cycle process, forestry, anatomy, ...)
- 2. Data scaffold elements: standards, terminologies and ontologies
- 3. Development of tools
- 4. Data integration and exploitation
- 5. Beyond the domain: e.g. cell cycle → all processes in the Gene Ontology

What is an ontology?

- (Too) many definitions:
 - "The science of categorizing beings (or their existence)" (Aristotle ~350BC)
 - "A formal specification of a conceptualization"
 (Gruber, 1993) -- most cited definition
 - "A formal representation of knowledge domains" (Bard and Rhee, 2004)
- Computer scientist
 - "A specific artefact designed with the purpose of expressing the intended meaning of a (shared) vocabulary"
- Life Sciences / Bio-ontologist
 - "A controlled vocabulary of biological terms and their relations"

Graphical overview *

Extended definition

- "An ontology is a computer-interpretable specification that is used by an agent, application, or other information resource to declare what terms it uses, and what the terms mean."
- Ontologies support the semantic integration of software systems through a shared understanding of the terminology in their respective ontologies.

Why do we need them?

- Share and reuse information (common terminology)
- Data integration
- Other applications (e.g. analysis, annotations)

Multidisciplinary teams: philosophers, computer scientists, domain experts (*e.g.* forester), legal / IP, ...

Good news

- Many efforts:
 - OBO foundry
 - RDF foundry
 - HCLS SIG
 - BioDBCore
 - iPlant
 - **—** ...
- Tools
 - BioPortal
 - OLS
 - ISA-Tools
 - OBO-Edit, Protégé
 - **—** ...

Take-home messages (so far...)

- An ontology is <u>more</u> that just a collection of 'standard' terms
- 2. Ontology building is a multidisciplinary field (*e.g.* computer scientists, foresters, molecular biologists, lawyers, ...); therefore, we need each other...
- 3. An ontology is a "living entity": it is constantly changing/evolving...
- 4. Moreover, we cannot live isolated: community effort; therefore, we should share our terms as well as continue learning from other ontologies
- 5. Therefore, the success of a data integration project will depend on most (if not all) of those "components"!

Semantic Web

- Goal: machine understandable content
- Keyword search will get obsolete
 - I get too many (irrelevant) hits
 - Complex query formulation (desired)
- Still a vision (technology under development)
- Life scientists are very interested
 - Health Care and Life Sciences (HCLS IG W3C)
 - Several meetings, consortia, investments, etc.

Project	Keywords	Technologies	Website
LinkHub	document ranking, text categorisation, query corpus	RDF	http://hub.gersteinlab.org/
Lipid bibliosphere	lipids, metabolites, reasoning	OWL	
Neurocommons	uniform access, package-based distribution	RDF SPARQL	http://neurocommons.org/
RDFScape	systems biology, cytoscape, reasoning	RDF SPARQL	http://www.bioinformatics.org/rdfscape
S3DB	lung cancer, omics	RDF	http://www.s3db.org/
SWAN - AlzPharm	neuromedicine, alzheimer, neurodegenerative disorders	RDF, OWL	http://swan.mindinformatics.org
SEMMAS	web services, intelligent agents	OWL	http://semmas.inf.um.es/prototypes/bioinformatic
SOMWeb	distributed medical communities	RDF, OWL	http://www.cs.chalmers.se/proj/medview/somweb
Thea-online	protein interactions, annotations, pathways	RDF SPARQL	http://bioinfo.unice.fr:8080/thea-online/
yOWL	yeast, phenotypes, interactions	OWL	http://ontology_lymontierlab.com/yowl-hcls

Project	Keywords	Technologies	Website
Bio2RDF	mashup, linked data, global warehouse, complex queries	RDF SPARQL	http://bio2rdf.org/
BioDash	disease, compounds, therapeutic model, pathway	RDF, OWL	http://www.w3.org/2005/04/swls/BioDash/Demo/
BioGateway	semantic systems biology, hypothesis generation	RDF SPARQL	http://www.semantic-systems-biology.org/biogateway/
CardioSHARE	collaborative, distributed knowledgebase, reasoning, web services	RDF SPARQL	http://cardioshare.icapture.ubc.ca/
Cell Cycle Ontology (CCO)	cell cycle, protein-protein interactions, reasoning, ontology patterns	RDF OWL, SPARQL	http://www.cellcycleontology.org/
CViT	cancer, tumor, gene-protein interaction networks	RDF	https://www.cvit.org/
FungalWeb	fungal species, enzyme substrates, enzyme modifications, enzyme retail	OWL	
GenoQuery	genomic warehouse, mixed query, tuberculosis	RDF SPARQL	http://www.lri.fr/~lemoine/GenoQuery/
HCLS W3C	knowledge base, life sciences, prototype	RDF QWL,	http://www.w3.org/TR/hcls-kb/
Kno.e.sis	nicotine dependence, biological pathway	RDF SPARQL, OWL	http://knoesis.wrigh.ed/research/semsci/application_domain/sem_life_sci/bio/research/

Contents

- 1. Introduction
- 2. The Cell Cycle Ontology
- 3. BioGateway
- 4. Concluding remarks
- 5. Future prospects

Contents

- 1. Introduction
- 2. The Cell Cycle Ontology
 - A knowledge base for cell cycle elucidation
 Antezana E. et al. Genome Biology, 2009
 - http://www.cellcycleontology.org
- 1. BioGateway
- 2. Concluding remarks
- 3. Future prospects

The Cell Cycle Ontology in a nutshell

- Capture knowledge of the Cell Cycle process
- "Dynamic" aspects of terms and their interrelations
- Promote sharing, reuse and enable better computational integration with existing resources

ORGANISMS:

Users:

- Molecular biologist
- Bioinformatician / Computational Systems Biologist
- General audience

Antezana E. et al. Lect. Notes Bioinformatics, 2006 Antezana E. et al. Genome Biology, 2009

Knowledge representation in CCO

- Why OBO?
 - "Human readable"
 - Standard
 - Tools (e.g. OBOEdit)
 - http://obo.sourceforge.net
- Why OWL?
 - Web Ontology Language
 - "Computer readable"
 - Reasoning capabilities vs. computational cost ratio
 - Formal foundation (Description Logics)
 - Tools (e.g. Protégé)
- Ontology manipulation:
 - ONTO-PERL (Antezana E. et al. Bioinformatics 2008)
 - ONTO-Toolkit (Antezana E. et al. BMC Bioinformatics 2010)

CCO sources

- Ontologies
 - Gene Ontology (GO)
 - Relationships Ontology (RO)
 - Molecular Interactions (MI)
 - Upper level ontology (ULO/BFO)
- Data sources
 - SWISS-PROT
 - GAF
 - PPI: IntAct
 - Orthology (Decypher)

	Ontology				
Type of proteins	At	Hs	Sc	Sp	CCO
Core cell cycle	l	870		749	
Added from IntAct	70	1067	2542	109	3788
Modified proteins added					
from UniProt	27	4577	8291	486	17985
TOTAL	259	6514	11435	1344	24156

The Open Biomedical Ontologies

	Ontology				
Entity	At		Sc		CCO
Proteins		15742			I
Genes	2100	3919	3474	1246	10739
Orthology types	_		_	_	1653

IntAct Ontology Gene Relationship Ontology Ontology In-house NCBI taxa ontologies Merging core_cco.obo obo2owl DATA INTEGRATION GOA Annotations UniProt Integrating In-house data cco.obo obo2owl LIFE CYCLE In-house NCBI taxa* ontologies* GOA Annotations* UniProt* Maintaining In-house data' IntAct* owl2obo -

RDF File

SET-UP

ОВО

OBO File

CCO Pipeline

- ontology integration (ONTO-PERL)
- format mapping
- data integration
- data annotation
- consistency checking
- maintenance

cco.obo

XML File

obo2owl

GML File

DOT

DOT File

- data annotation
- semantic improvement: OPPL (Egaña M. et al. OWL-ED, 2008)
- ODP (Egaña M. et al. BMC Bioinf. 2008)

Sample piece of information in CCO

Exploring CCO (1/2)

OBO-Edit

protégé 420 000 0 ■ p1:CC0_80004560 p1:CCO_80002240 pt.CCC_B0004560
 Proteins_interacting
 Proteins_interacting_in_alknown_place
 Poteins_interacting_in_the_cytoplasm
 Proteins_interacting_in_the_cytoplasm_and_
 Proteins_interacting_in_the_cytoplasm_and_
 Proteins_interacting_in_the_nucleus of of 0, 0, Proteins_interacting_in_the_cytoplasm_and. Proteins_located_in_a_known_place Proteins_interacting_in_the_cytopl Proteins_Jocated_ins_z_known_place
Proteins_fireraction_in_known_place
Proteins_fireraction_in_kne_cytoplasm
Proteins_fireraction_in_kne_cytoplasm_an
Proteins_fireraction_in_kne_cytoplasm_an
Proteins_foreraction_in_kne_cytoplasm_an
Proteins_ W O Proteins interacting in the nucleus oteins_located_in_the_cytoplasn O Proteins interacting in the cytoplasm and O Proteins located in the mitochondrio of 0, 0, 12 0, - m : : 2 % - 80 to 🚣 🔅 🔸 💋 Moved from pl.CCO_U0000005 to Proteins_literacting_in_the_cytoplasm Moved from pl.CCO_U0000005 to Proteins_literacting_in_the_cytoplasm_av Moved from pl.CCO_U0000005 to Proteins_interacting_in_the_cytoplasm_av Moved from pl.CCO_U0000005 to Proteins_interacting Moved from pl.CCO_U0000005 to Proteins_interacting

Protégé

Cytoscape

Exploring CCO (2/2)

CCO website (SPARQL)

BioPortal

OWLDoc server

Ontology Look up Service

Advanced Querying

- RDF = Resource Description Framework
 - Metadata model: elements = resources

- Subject corresponds to the main entity that needs to be described.
- Predicate denotes a quality or aspect of the relation between the Subject and Object.
- Example: "The protein DEL1 is located in the nucleus"
- It "means" something...

SPARQL*

- Query RDF models (graphs)
- Powerful, flexible
- Its syntax is similar to the one of SQL.
- Virtuoso Open Server**
- Benchmarking ***
- Example (matching two triples):

?protein sp:is_a sp:CCO_B0000000 .

?protein rdfs:label ?protein_label

^{*} http://www.w3.org/TR/rdf-sparql-query/

^{**} http://www.openlinksw.com/

^{***} Mironov V. et al. SWAT4LS, 2010

prot_name	biological_process_name
UBC11_SCHPO	G2%2FM transition of mitotic cell cycle
UBC11_SCHPO	cell cycle
UBC11_SCHPO	mitosis
UBC11_SCHPO	mitotic metaphase%2Fanaphase transition
UBC11_SCHPO	regulation of mitotic cell cycle
UBC11_SCHPO	cyclin catabolic process
SRW1_SCHPO	cell cycle
SRW1_SCHPO	cyclin catabolic process
SRW1_SCHPO	40 activation of anaphase-promoting complex during mitotic cell cycle

http://www.semantic-systems-biology.org/apo/queryingcco/sparql

Reasoning over CCO

- OWL-DL: balance tractability with expressivity
- Consistency checking: no contradictory facts
- Classification: implicit2explicit knowledge
- Tools: Protégé, Reasoners (e.g. RACER, Pellet)
- Sample Query
 - "Which cell cycle related proteins participate in a reported interaction?"

protein and participates_in some interaction

Cellular localization checks

 Query: "If a protein is cell cycle regulated, it must not be located in the chloroplast (IDEM: mitochondria)" (RACER*)

Conclusions

- Adequate knowledge representation:
 - enables automated reasoning (many inconsistencies could be detected)
 - simple biological hypothesis generation
- Data integration based on trade-offs (e.g. multiple inheritance)
- Performance issues (technology limitations)
- (Work in progress → GRAO)

Contents

- 1. Introduction
- 2. The Cell Cycle Ontology

3. BioGateway

- An integrative approach for supporting Semantic Systems Biology
 - Antezana et al. BMC Bioinformatics, 2009
- http://www.SematicSystemsBiology.org
- 1. Concluding remarks
- 2. Future prospects

BioGateway

- From "cell cycle" to the entire set of processes in the Gene Ontology
- CCO: deep downwards (coverage)
- BioGateway: broad coverage
- BioGateway's goal: build "complex" queries over the entire set of organisms annotated by the GAF
- Support a Semantic Systems Biology approach*

Systems Biology

- Yet another definition
- Key term: system
- What is a system?
- System =
 - set of elements,
 - dynamically interrelated,
 - having an activity,
 - to reach an objective (sub-aims),
 - INPUT: energy/matter/data
 - OUTPUT: energy/matter/information

Systems Biology (cont.)

- "A system (and its properties) cannot be described in terms of their terms in isolation; its comprehension emerges when studied globally"
- Systems Biology = Approach to study biological systems.
- Arbitrary borders
- A system within a system

Systems Biology (cont.)

- Types of systems biology:
 - "Standard/Classical" Systems Biology (Kitano, Science 2002. Sauer et al, Science 2007)
 - Translational Systems Biology (Vodovotz, PLoS Comp Biol 2008)
 - Semantic Systems Biology
 (Antezana et al, Brief. in Bioinformatics 2009)

Semantic Systems Biology

- Semantic?
 - New emerging technologies for analyzing data and formalizing knowledge extracted from it
- A new paradigm elements:
 - Knowledge representation
 - Reasoning ==> hypothesis
 - Querying

Bilatheiralticabwiedgle

Consistency checking
New information to model
Querying
Model Refinement
Automated reasoning

Semantic Systems Biology Cycle

Experimentation, Data generation

Dyn<mark>thypio**al esin y bationl**swind hy<mark>bothesiis foundulation</mark>
Experimental design</mark>

BioGateway: a tool to support Semantic Systems Biology

- Automatic data integration pipeline (~1 x Year)
- Quick query results: performance, choice:
 "tuned" RDF (no OWL), 1 graph per resource
- Human "readable" output:
 - labels, no IDs or URI...
- Good practice:
 - Standards (RDF) => orthogonality, ...
 - Representation issues (e.g. n-ary relations)
- Transitive closure:
 - is_a (subsumption relation), part_of (partonomy)

Transitive closure graphs

- If A part_of B, and B part_of C, then A part_of C is also added to the graph/ontology.
- Many interesting queries can be done in a performant way with it, like 'What are the proteins that are located in the cell nucleus or any subpart thereof?'
- The graphs without transitive closure are available for querying as well.

BioGateway pipeline

- 1 Swiss-Prot file, the section of UniProt KB of proteins
- 1 NCBI file with the taxonomy of organisms + closures
- 1 Metaonto file with information about OBO Foundry ontologies
- 2 Metarel files with relation type properties
- 5 CCO files with integrated information about cell cycle proteins
- 84 OBO Foundry files with diverse biomedical information + Transitive Closure
- 51 Transitive Closure files to enhance query abilities
- 1983 GOA files with GO annotations + closures
- 1 OBI
- 1 GALEN

A library of queries*

- The drop-down box contains 35 queries:
 - 23 protein-centric biological queries:
 - The role of proteins in diseases
 - Their interactions
 - Their functions
 - Their locations
 - •

- Browsing abilities in RDF like getting the neighbourhood, the path to the root, the children,...
- Meta-information about the ontologies, graphs, relations
- Queries to show the possibilities of SPARQL on BioGateway, like counting, filtering, combining graphs,...

• ...

* http://www.semantic-systems-biology.org/biogateway/querying

BioGateway graphs

Each RDF-resource in BioGateway has a **URI** of this form: http://www.semantic-systems-biology.org/SSB#resource_id

Each RDF-graph in BioGateway has a **URI** of this form: http://www.semantic-systems-biology.org/graph_name

All the queries are explained in a tutorial*

1. Fig. Get the proteins with a specific function, location and process for all the annotated organisms.

```
#NAME: get_specific_proteins
#PARAMETER: GO_0005216: ion channel activity
                                                                       For every query the name, the
#PARAMETER: GO_0005764: lysosome
#PARAMETER: GO 0006811: ion transport
                                                                      parameters and the function are
# FUNCTION: returns all the proteins with the same function.
                                                                               indicated at the top.
# process and location and the organism in which
# they can be found
BASE <a href="http://www.semantic-systems-biology.org/">http://www.semantic-systems-biology.org/</a>
PREFIX rdfs:<a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#></a>
PREFIX ssb:<a href="http://www.semantic-systems-biology.org/SSB#">http://www.semantic-systems-biology.org/SSB#>
SELECT ?organism ?protein ?protein id
WHERE {
                                                                              The parameters are
 GRAPH ?organism {
                                                                                 indicated in red.
  ?protein_id ssb:has_function ssb:GO_0005216.
  ?protein_id ssb:located_in ssb:GO_0005764.
  ?protein id ssb:participates in ssb:GO 0006811.
  ?protein_id rdfs:label ?protein.
 FILTER(?organism != <SSB> && ?organism != <GOA>).
Click here to select this query in the drop-down box on the query-page and edit it
Click here to see the results
```

^{*} http://www.semantic-systems-biology.org/biogateway/tutorial

The neighbourhood of the human protein 1443F in the RDF-graph

term_as_child o	outward_arrow	head_name	tail_name	inward_arrow	term_as_parent
1433F_HUMAN p	articipates in	intracellular protein transport	The resulting triples (arrows)		
1433F_HUMAN p	•	glucocorticoid catabolic process			
1433F_HUMAN p	articipates in	positive regulation of transcription			
1433F_HUMAN p	articipates in	regulation of synaptic plasticity			
1433F_HUMAN p	articipates in	glucocorticoid receptor signaling pathway			
1433F_HUMAN p	articipates in	regulation of neuron differentiation			
1433F_HUMAN p	articipates in	negative regulation of dendrite morphogenesis			
1433F_HUMAN is	s located in	cytoplasm			
1433F_HUMAN h	nas function	protein binding			
1433F_HUMAN h	nas function	transcription activator activity			
1433F_HUMAN h	nas function	actin binding			
1433F_HUMAN h	nas function	insulin-like growth factor receptor binding	Outgoing arrows		
1433F_HUMAN h		protein domain specific binding			
1433F_HUMAN h		glucocorticoid receptor binding			
1433F_HUMAN h		Homo sapiens			
1433F_HUMAN ii		PARD3_HUMAN			
1433F_HUMAN ii		PFTK1_HUMAN			
1433F_HUMAN ii		RAF1_HUMAN			
1433F_HUMAN ii		GREM1_HUMAN			
1433F_HUMAN ii		MARK4_HUMAN			
1433F_HUMAN ii		PAR6A_HUMAN			
1433F_HUMAN ii		PAR6B_HUMAN			
1433F_HUMAN ii	nteracts with	KPCI_HUMAN			
				1433F_HUMAN	
		PFTK1_HUMAN		1433F_HUMAN	
Incoming arrows			RAF1_HUMAN		1433F_HUMAN
			GREM1_HUMAN		1433F_HUMAN
			PAR6A_HUMAN		1433F_HUMAN
					1433F_HUMAN
			KPCI_HUMAN		1433F_HUMAN
			ADA22_HUMAN	interacts with	1433F_HUMAN

HNRPD HUMAN interacts with 1433F HUMAN

Results

- BioGateway: RDF store for Biosciences (prototype!)
- Data integration pipeline: BioGateway
- Queries and knowledge sources and system design go hand-in-hand (user interaction)
- Enables building relatively "complex" questions
- Existing integration obstacles due to:
 - diversity of data formats
 - lack of formalization approaches
- Semantic Web technologies add a new dimension of knowledge integration to Systems Biology

Contents

- 1. Introduction
- 2. The Cell Cycle Ontology
- 3. BioGateway
- 4. Concluding remarks
- 5. Future prospects

Conclusions

- Categories:
 - Importance of computationally representing biological knowledge
 - Exploitation of such knowledge
- Both gave rise to a new (complementary) form of Systems Biology: Semantic Systems Biology approach
 - Data integration
 - Holistic (systemic) approach
 - Data exploitation (e.g. querying, reasoning)
 - Ultimately, create new hypothesis
- Semantic Web technologies do have the potential to provide a sound framework for biological data integration

Contents

- 1. Introduction
- 2. The Cell Cycle Ontology
- 3. BioGateway
- 4. Concluding remarks
- 5. Future prospects

Future prospects

Linked Data

http://sparqlgraph.i-med.ac.at