Mass Spring Model with LQR Control

Xinyu Li

July, 2019

Model and Cost Rate 1

Model:

$$X_{n+1} = AX_n + BU_n + Wn$$

Cost rate:

$$J_n(G) = \mathbb{E}[|X_{n+1}|^2 + r|U_n|^2]$$

We are looking for the control in the form of $U_n = GX_n$, where $G = \begin{pmatrix} G_1 & G_2 \end{pmatrix}$, . Therefore, our aim is to find ${\cal G}$ such that the cost rate is minimized in the steady state.

Covariance matrix S of X

• Let S_n be the covariance matrix of X_n , R be the covariance matrix of noise W_n ,

$$S_{n+1} = (A + BG)S_n(A + BG)^T + R (*)$$

• In the steady state, let M = A + BG, we will have

$$S = (A + BG)S(A + BG)^T + R = MSM^T + R$$

ullet As S is a symmetric matrix, we can rewrite the above equation as

$$\begin{pmatrix} S_{11} \\ S_{12} \\ S_{22} \end{pmatrix} = \begin{pmatrix} M_{11}^2 & 2M_{11}M_{12} & M_{12}^2 \\ M_{11}M_{21} & M_{11}M_{22} + M_{12}M_{21} & M_{22}M_{12} \\ M_{21}^2 & 2M_{21}M_{22} & M_{22}^2 \end{pmatrix} \begin{pmatrix} S_{11} \\ S_{12} \\ S_{22} \end{pmatrix} + \begin{pmatrix} R_{11} \\ R_{12} \\ R_{22} \end{pmatrix}$$

• Let
$$\xi_S = \begin{pmatrix} S_{11} \\ S_{12} \\ S_{22} \end{pmatrix}$$
, $D = \begin{pmatrix} M_{11}^2 & 2M_{11}M_{12} & M_{12}^2 \\ M_{11}M_{21} & M_{11}M_{22} + M_{12}M_{21} & M_{22}M_{12} \\ M_{21}^2 & 2M_{21}M_{22} & M_{22}^2 \end{pmatrix}$, $\xi_R = \begin{pmatrix} R_{11} \\ R_{12} \\ R_{22} \end{pmatrix}$, then
$$\xi_S = D\xi_S + \xi_{P_S} (I - D)\xi_S = \xi_P$$

$$\xi_S = D\xi_S + \xi_B, (I - D)\xi_S = \xi_B$$

2.1 Differentiate S w.r.t G

ullet If differentiating S with respect to parameter heta in the steady state, according to chain rule we will get

$$\dot{S} = M\dot{S}M^T + \dot{M}SM^T + MS\dot{M}^T$$

• Let $u = \dot{M}SM^T + MS\dot{M}^T$, then by the similar method above, we will have

$$(I-D)\xi_{\dot{S}} = \xi_u$$

2.2 Use S to represent the cost rate

- $\mathbb{E}[X^T X] = \operatorname{tr}(S)$
- $\mathbb{E}[U^T r U] = \operatorname{tr}(X^T G^T r G X) = \operatorname{tr}(G^T r G X X^T) = \operatorname{tr}(G^T r G S) = \operatorname{tr}(r G S G^T)$ (cyclic propery of trace)
- Then the cost rate can be represented as

$$J_n(G) = \operatorname{tr}(S) + \operatorname{tr}(rGSG^T) \tag{**}$$

• Differentiate J_n w.r.t θ gives

$$\begin{split} 0 &= \frac{\partial J}{\partial \theta} \\ &= \operatorname{tr}(\dot{S}) + \operatorname{tr}(r(\dot{G}SG^T + G\dot{S}G^T + GS\dot{G}^T)) \\ &= \operatorname{tr}(\dot{S}) + \operatorname{tr}(r(2GS\dot{G}^T + G\dot{S}G^T)) \end{split}$$

where θ is G_1 or G_2

Then, we want to use G to represent S and \dot{S} in the above equation:

- $\xi_S = E\xi_R$
- $\xi_{\dot{S}} = E\dot{D}E\xi_R$
- $\operatorname{tr}(\dot{S}) = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} \xi_{\dot{S}} := q \xi_{\dot{S}}$
- $\operatorname{tr}(r(2GS\dot{G}^T + G\dot{S}G^T)) = r(2GS\dot{G}^T + G\dot{S}G^T)$
- $G\dot{S}G^T = \begin{pmatrix} G_1^2 & 2G_1G_2 & G_2^2 \end{pmatrix} \xi_{\dot{S}} := H\xi_{\dot{S}}$
- $\bullet \ \ {\rm Let} \ \xi_G = \begin{pmatrix} G_1 & G_2 & 0 \\ 0 & G_1 & G_2 \end{pmatrix}, \ {\rm then} \ S\dot{G}^T = \xi_{\dot{G}}\xi_S$
- Plugging them in the derivative of cost rate function:

$$0 = q\xi_{\dot{S}} + r(H\xi_{\dot{S}} + 2G\xi_{\dot{G}}\xi_S)$$

• Plugging in the formulas for $\xi_{\dot{S}}$ and ξ_{S} :

$$0 = [qE\dot{D} + r(HE\dot{D} + 2G\xi_{\dot{C}})]E\xi_R$$

The equation is only about G_1 and G_2 , in the form of $f(G_1, G_2) = 0$, so we can use Newton method to find out the value of G_1 and G_2 .

Remark: Equation (*) and (**) are verified in the Python Code.

2.3 Appendix

$$\bullet \frac{\partial D}{\partial G_1} = \begin{pmatrix} 0 & 0 & 0 \\ a_{11} & a_{12} & 0 \\ 2(a_{21} + G_1) & 2(a_{22} + G_2) & 0 \end{pmatrix},
\frac{\partial D}{\partial G_2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & a_{11} & a_{12} \\ 0 & 2(a_{21} + G_1) & 2(a_{22} + G_2) \end{pmatrix}$$

$$\bullet \ D = \begin{pmatrix} M_{11}^2 & 2M_{11}M_{12} & M_{12}^2 \\ M_{11}M_{21} & M_{11}M_{22} + M_{12}M_{21} & M_{22}M_{12} \\ M_{21}^2 & 2M_{21}M_{22} & M_{22}^2 \end{pmatrix}$$
 with $M_{11} = a_{11}, M_{12} = a_{12}, M_{21} = a_{21} + G_1, M_{22} = a_{22} + G_2$

$$\bullet \ \frac{\partial \xi_G}{\partial G_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \frac{\partial \xi_G}{\partial G_2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

3 Find U_n Based on Cost Rate

Consider the general case

$$J_{n} = \mathbb{E}[U_{n}^{T}rU_{n} + X_{n+1}^{T}X_{n+1}]$$

$$= \mathbb{E}[U_{n}^{T}rU_{n} + (AX_{n} + BU_{n} + W_{n})^{T}(AX_{n} + BU_{n} + W_{n})]$$

$$= \mathbb{E}[U_{n}^{T}rU_{n} + X_{n}^{T}A^{T}AX_{n} + X_{n}^{T}A^{T}BU_{n} + U_{n}^{T}B^{T}AX_{n} + U_{n}^{T}B^{T}BU_{n}] + R$$

We want to find U_n which is the optimal control for minimizing J_n . Since J_n is quadratic, we can find U_n by letting $\frac{\partial}{\partial U_n}J_n=0$. Thus,

$$0 = \frac{\partial}{\partial U_n} J_n = \mathbb{E}[2U_n^T r^T + 2X_n^T A^T B + 2U_n^T B^T B]$$

Therefore,

$$U_n = -(r + B^T B)^{-1} B^T A X_n$$

4 Dynamic Programming

4.1 Deterministic LQR

First, let's consider the deterministic model without noise

$$X_{n+1} = AX_n + BU_n$$

Consider the cost-to-go function V_t for t = 0, 1, 2...,

$$V_t(z) = \min_{U_t, ..., U_{N-1}} \left[\sum_{n=t}^{N-1} (X_n^T X_n + U_n^T r U_n) + X_N^T X_N \right]$$

subject to $X_t = z$, and $X_{n+1} = AX_n + BU_n$, for n = t, t+1, ...N. Since V_t is a quadratic function, we can write

$$V_t(z) = z^T S_t z$$

where $S_t = S_t^T$.

Now suppose we know $V_{t+1}(z)$, we want to find optimal U_t . We know that if the cost at time t subject to $U_t = w$, then

$$V_t(z) = \min_{w} \left[z^T z + w^T r w + V_{t+1} (Az + Bw) \right]$$

= $\min_{w} \left[z^T z + w^T r w + (Az + Bw)^T S_{t+1} (Az + Bw) \right]$

We differentiate V_t w.r.t w to solve for optimal w^* :

$$0 = \frac{\partial V_t}{\partial w}$$

= $2w^T r + 2(Az + Bw)^T S_{t+1}$

Therefore, the optimal w^* is

$$w^* = -(r + B^T S_{t+1} B)^{-1} B^T S_{t+1} A z$$

Now, let plug w^* back into V_t :

$$V_{t}(z) = z^{T}z + w^{*T}rw^{*} + (Az + Bw^{*})^{T}S_{t+1}(Az + Bw^{*})$$

$$= z^{T}z + w^{*T}rw^{*} + z^{T}A^{T}SAz + z^{T}A^{T}SBw^{*} + w^{*T}B^{T}SAz + w^{*T}B^{T}SBw^{*}$$

$$= z^{T}(I + A^{T}SA)z + w^{*T}(r + B^{T}SB)w^{*} - 2z^{T}A^{T}SB(r + B^{T}S_{t+1}B)^{-1}B^{T}S_{t+1}Az$$

$$= z^{T}(I + A^{T}SA)z + z^{T}A^{T}SB(r + B^{T}SB)^{-1}(r + B^{T}SB)(r + B^{T}SB)^{-1}B^{T}SAz$$

$$- 2z^{T}A^{T}SB(r + B^{T}S_{t+1}B)^{-1}B^{T}S_{t+1}Az$$

$$= z^{T}[I + A^{T}S_{t+1}A - A^{T}S_{t+1}B(r + B^{T}S_{t+1}B)^{-1}B^{T}S_{t+1}A]z$$

Therefore, we find find the backward relation of S_t :

$$S_t = I + A^T \left[S_{t+1} - S_{t+1} B (r + B^T S_{t+1} B)^{-1} B^T S_{t+1} \right] A$$

4.2 Stochastic LQR

First, let's consider the deterministic model without noise

$$X_{n+1} = AX_n + BU_n + W_n$$

Now consider the cost-to-go function V_t for t = 0, 1, 2... has the form

$$V_t(z) = z^T S_t z + q_t$$

subject to $X_t = z$, and $X_{n+1} = AX_n + BU_n + W_n$, for n = t, t+1, ...N. Now suppose we know $V_{t+1}(z)$, we want to find optimal U_t . We know that if the cost at time t subject to $U_t = w$, then

$$\begin{split} V_t(z) &= \min_{w} \left[z^T z + w^T r w + V_{t+1} (Az + Bw + W_t) \right] \\ &= \min_{w} \left[z^T z + w^T r w + \mathbb{E} (Az + Bw + W_t)^T S_{t+1} (Az + Bw + W_t) + q_{t+1} \right] \\ &= z^T z + \operatorname{tr}(RS_{t+1}) + q_{t+1} + \min_{w} \left[w^T r w + (Az + Bw)^T S_{t+1} (Az + Bw) \right] \end{split}$$

Then,

$$\frac{\partial V_t}{\partial w} = 2w^T r + 2(Az + Bw)^T S_{t+1}$$

which is same to the deterministic case. So the formulas of optimal w and S_n are same as those of deterministic case.