netGO User's Manual

Contact: Jinhwan Kim kjh0530@unist.ac.kr

2019-08-06

1. Introduction

netGO is an R-Shiny package for network-integrated pathway enrichment analysis. It also provides the conventional Fisher's exact test. Specifically, it provides user-interactive visualization of enrichment analysis results and related networks. The netGO package is available at Github (https://github.com/unistbig/netGO). Currently, netGO provides network and annotation geneset data for four species including human, mouse, yeast, and Arabidopsis thaliana. These data are all available from another repository (https://github.com/unistbig/netGO-Data/)

2. Installation and Example codes

1) Prerequisite R packages can be installed by simply executing the following R codes:

install.packages(c('devtools', 'Rcpp', 'shinyjs', 'DT','doParallel', 'foreach', 'parallel', 'htmlwidgets', 'googleVis', 'V8'))
library(devtools)
install_github('unistbig/shinyCyJS')

2) netGO can be installed and executed as follows:

library(devtools) # load devtools to use 'install_github' function
install_github('unistbig/netGO') # install netGO
library(netGO) # load netGO
DownloadExampleData() # Download and load example datasets
obj = netGO(genes = brca[1:20], genesets = genesets, network = network, genesetV = genesetV) # Executing netGO
netGOVis(obj = obj, genes = brca[1:20], genesets = genesets, R = 50, network = network) # Visualization of the result

3. Data

Human, mouse, yeast and Arabidopsis data are available at https://github.com/unistbig/netGO-Data.

* Tip: Human STRING and MSigDB C2 data are directly loaded using 'DownloadExampleData()' function.

Species	Data Type	File name	Object name
Human	Network	Human/networkString.RData Human/networkHumannet.RData	network
	Gene-set (mSigDB C2)	Human/c2gs.RData	genesets
	Pre-calculated interaction data	1) For STRING,	
		Human/genesetVString1.RData	genesetV1
	NOTE: After downloading *1.RData and	Human/genesetVString2.RData	genesetV2
	*2.RData, genesetV1 and genesetV2	2) For HumanNet,	
	must be joined by a row!	Human/genesetVHumannet1.RData	genesetV1
	genesetV=rbind(genesetV1,genesetV2)	Human/genesetVHumannet2.RData	genesetV2
Mouse	Network	networkMousenet.RData	network
	Gene-set (KEGG)	KEGGmouse.RData	genesets
	Pre-calculated interaction data	genesetVMousenet.RData	genesetV
Yeast	Network	networkYeastnet.RData	network
	Gene-set (KEGG)	KEGGyeast.RData	genesets

Arabidopsis	Network	networkAranet.RData	network
	Gene-set (KEGG)	KEGGara.RData	genesets

Table M1. Network and gene-set data provided in netGO

4. Functions

The two main functions of netGO package are 'netGO' (<u>for enrichment test</u>) and 'netGOVis' (<u>for visualization of the test results</u>).

1) netGO

netGO function takes six arguements: 1) genes, 2) genesets, 3) network, 4) genesetV, 5) alpha (optional) and 6) nperm (optional). It returns the *p*-values of gene-sets (dataframe) derived from netGO and Fisher's exact test. Note that the members in genes (denoted by A, B, C here) should be given in gene symbols when using the default STRING and MSigDB data. Other types of gene names are also acceptable if the corresponding customized data (network and gene-set data) are uploaded. Descriptions of each argument are as follows:

- ① **genes**: A character vector of input genes (e.g., differentially expressed genes).
- @ genesets: A list of gene-sets consisting of groups of genes (e.g., C2 category of MSigDB).
- 3 **network**: A numeric matrix of network data. The range of network score is [0,1].

	Α	В	С
Α	0	0.1	0.76
В	0.1	0	0.324
С	0.76	0.324	0

Figure M1. Example for network data.

@ genesetV: A numeric matrix of pre-calculated interaction data between genes and gene-sets. The matrix dimension becomes [{# of genes} X {# of gene-sets}]. This matrix can be obtained using BuildGenesetV function with the network and gene-set objects as input arguments. Calculating this matrix corresponds to the preprocessing step of netGO.

genesetV = BuildGenesetV(network, genesets)

	GS1	GS2	GS3
A	0.837	1.647	0.074
В	0	1.750	0.113
С	0.464	0.486	0.442

Figure M2. Example for genesetV.

- (5) **alpha** (optional): *A numeric* parameter balancing the weights between the relative and absolute network scores (See (1) in the main text). The value is between 0 and 1 and the default is 0.5.
- 6 **nperm** (optional): *The number* of resampling. Default is 10,000.

2) netGOVis

netGOVis also takes six input arguments: 1) obj, 2) genes, 3) genesets, 4) network, 5) R (optional), 6) Q (optional). This function visualizes the test results on web browser (google chrome is recommended). The resulting network graphs and table are downloadable.

① obj: data frame of the test results obtained from 'netGO' function. It consists of three columns including 1) gene-set name and p-values calculated from 2) netGO (netGOP) and 3) Fisher's exact test (FisherP).

- ② R (optional): Gene-set rank threshold, default is 50 (Top 50 gene-sets in either method will be displayed).
- ③ Q (optional): Gene-set Q-value threshold, default is 1. (Gene-sets with Q-values below this threshold will be displayed)
- ④ genes, genesets, network: the same arguments in the 'netGO' function.

5. Network visualization

netGO visualization page consists of three parts such as Network, Table, and Bubble.

- 1) Network panel displays the input genes, selected gene-set, and the network connections between the two.
 - Sky blue nodes represent input genes (e.g., DE genes)
 - Yellow nodes represent genes in the selected gene-set
 - Green nodes represent the intersection of input genes and the gene-set.
 - The edge width represents the strength of interaction between two nodes.
 - * Nodes without edges are discarded.
 - * The gene-set can be selected by clicking on the gene-set name in the Table on the right side.
 - * The users can download the graph image as SVG format.
- 2) Table contains the names of gene-sets and their p-values evaluated from netGO and Fisher's exact test, respectively. It is downloadable by clicking the 'Download Table' button in the upper right of the table (Figure M3).

	♣ Download Table	
Gene-set name	\$ netGO _ q-value	Fisher's exact test q-value
TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_DUCTAL_NORMAL_DN	0.0422	0.0035
TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_LOBULAR_NORMAL_DN	0.0422	1
TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_DUCTAL_NORMAL_DN	0.0422	1
TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_LOBULAR_NORMAL_UP	0.0422	0.5193
WILCOX_RESPONSE_TO_PROGESTERONE_DN	0.0422	1
WONG_ENDMETRIUM_CANCER_DN	0.0422	1

Figure M3. Table panel that shows the list of significant gene-sets

3) **Bubble** module includes the bubble chart of significant gene-sets. For each gene-set, the overlap (x-axis) and network score (y-axis) are represented where sum of the two scores is the integrated score $P(T \to A)$ as below.

$$P(T \to A) = \frac{|T \cap A|}{|T|} + \frac{1}{|T|} \sum_{x \in T - A} AI(x, A)^{a} \cdot RI(x, A)^{1 - a}$$
Overlap soors

Where

$$AI(x,A) = \frac{1}{|A|} \sum_{y \in A} I(x,y)$$

$$RI(x,A) = \frac{1}{|N(x)|} \sum_{y \in A} I(x,y)$$

T and A are target and annotation gene-sets, respectively; $|\cdot|$ denotes the size of a set; I(x,y) represents the interaction score between x and y genes normalized to unit interval [0,1]; N(x) is the set of all scores of interactions to x and |N(x)| is their summation.

Note that high network score means a dense interaction between input genes and gene-set.

- The size of bubble represents the significance of each gene-set ($-\log_{10}p-value$).
- Colors of bubble indicate the method that detected the gene-set as significant.

Figure M4. netGO interface