Dynamical Tadpoles, Stringy Cobordism and the SM from Spontaneous Compactification

Ginevra Buratti

GB, M. Delgado, A. Uranga [arXiv:2104.02091]

Seminar Series on String Phenomenology, 27th April 2021

Plan of the talk

Introduction and motivation

Dynamical tadpoles and the swampland cobordism conjecture

■ Two tadpole lessons from string theory examples

Conifold

3-form flux models

Magnetized branes

non susy 10d USp(32) theory

SM from spontaneous compactification

Conclusions

Dynamical tadpoles

- theories sitting on the **slope** of some scalar potential
 - ⇒ dynamical tadpoles (as opposed to topological tadpoles)
- properties of the resulting spacetime-dependent solutions?

Cobordism defects

■ n-dim manifold can/cannot be the boundary of (n+1)-dim manifold

 \mathbf{S}^1 is trivial

Point is non-trivial

cobordism charge can be removed by localized sources

 S^2 with a U(I) F_2 flux can't just shrink

Flux removed by monopole

Cobordism defects

swampland cobordism conjecture

[McNamara Vafa]

 $\Omega_{QG}=0$ related to no global symmetries

examples

Type IIB on S¹
With -I SL(2,Z) WL

Etc...
Half T²/Z₂

not all defects are known

Two lessons

Finite Distance:

The running solution extends at most a distance Δ scaling as

$$\Delta^{-n} \sim \mathcal{T}$$

with the strength of the tadpole \mathcal{T} .

Dynamical Cobordism:

Spacetime is cut off at this distance by the cobordism defect of the swampland cobordism conjecture.

$AdS_5 \times T^{1,1}$

- AdS₅ × T^{1,1} with **N** units of RR 5-form flux near horizon limit of N D3's at conifold singularity $T^{1,1} = S^2 \times S^3 \text{ is 5d base of 6d cone}$
- lacktriangle Add lacktriangle units of RR 3-form flux on S^3 [Klebanov Tseytlin] running $T^{1,1}$ geometry and singularity at finite distance r_0
- $lue{S}$ Smooth out the singularity by finite size S^3

[Klebanov Strassler]

[Klebanov Witten]

$AdS_5 \times T^{1,1}$

- \blacksquare dilaton tadpole $V(\phi)\sim M^2e^\phi$ $\nabla^2\phi=-e^{-6q-\phi}(\partial\Phi)^2+e^{-14q+\phi}M^2$
- solved by running NSNS axion $\Phi = 3g_s M \log(r/r_0)$

Finite Distance $\Delta^{-1} \sim M^2 e^\phi \sim \mathcal{T}$

Dynamical Cobordism

3-form flux models

- type IIB on T₅ with RR 3-form flux $F_3 = Ndx^1dx^2dx^3$
- dilaton tadpole $\nabla^2\phi\sim e^\phi(F_3)^2-e^{-\phi}(H_3)^2$ solved by $H_3=Ndy^1dy^2dy$ \Rightarrow $\Phi\sim Ny$

Finite Distance

$$\begin{split} ds_{10}^2 &= Z^{-\frac{1}{2}}ds_4^2 + Z^{\frac{1}{2}}R^2 \left(dz^1 d\overline{z}^1 + dz^2 d\overline{z}^2 + dz^3 d\overline{z}^3 \right) \\ \text{with } &-\tilde{\nabla}^2 Z = \frac{g_s}{6} \left(F_3 \right)^2 \quad \Rightarrow \quad Z = 1 - \frac{g_s}{12} (F_3)^2 y^2 \\ \text{singularities at } y^{-2} &= \frac{1}{12} g_s (F_3)^2 \quad \Rightarrow \quad \Delta^{-2} \sim \mathcal{T} \end{split}$$

singularities removed by O3's (possibly with D3's)

Magnetized branes

- \blacksquare type IIB on $\mathsf{T}^2_{(1)}\,\times\mathsf{T}^2_{(2)}$ with O7's and D7's transverse to $\mathsf{T}^2_{(1)}$
- Add **M** units of D7 worldvolume magnetic flux on $T_{(2)}^2$ susy breaking and tadpole for dilaton and $T_{(2)}^2$ Kähler modulus
- Solve by magnetic field $F_2 = F(dz_2d\overline{z}_2 dz_3d\overline{z}_3)$

Finite Distance

lift to F-theory $G_4 \sim F_2 \wedge \omega_2$ singular warp factor $\Delta^{-2} \sim (F_2)^2 \sim \mathcal{T}$

Dynamical Cobordism

compactification on extra $\mathsf{T}_2/\mathsf{Z}_2$ with additional O7's and D7's

10d non susy USp(32) string

 \blacksquare orientifold of IIB with $O9^+$ and 32 $\overline{D9}\mbox{'s}$

[Sugimoto]

dilaton tadpole

$$S_E = \frac{1}{2\kappa^2} \int d^{10}x \sqrt{-G} \left[R - \frac{1}{2} (\partial \phi)^2 \right] - T_9^E \int d^{10}x \sqrt{-G} \, 64 \, e^{\frac{3\phi}{2}}$$

■ running solution $\phi = \frac{3}{4}\alpha_E y^2 + \frac{2}{3}\log|\sqrt{\alpha_E}y| + \phi_0$ [Dudas Mourad] $ds_E^2 = |\sqrt{\alpha_E}y|^{\frac{1}{9}} e^{-\frac{\alpha_E y^2}{8}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + |\sqrt{\alpha_E}y|^{-1} e^{-\frac{3\phi_0}{2}} e^{-\frac{9\alpha_E y^2}{8}} dy^2$

singularities at $y = 0, \infty$ separated by

Finite Distance
$$\Delta \sim \int_0^\infty \sqrt{g_{yy}} \, dy \sim e^{-\frac{3\phi_0}{4}} \alpha_E^{-\frac{1}{2}} \Rightarrow \Delta^{-2} \sim \mathcal{T}$$

10d non susy USp(32) string

Dynamical Cobordism

strong coupling defect, that is able to gap chiral non anomalous content

■ Solve by magnetization: $\mathsf{T}^6/(\mathsf{Z}^2{\times}\mathsf{Z}^2)$ with $\mathsf{O9}^+$ and $\mathsf{8}$ $\mathsf{O5}^-_i$

obj.	N_{α}	$(n_{\alpha}^1, m_{\alpha}^1)$	(n_α^2,m_α^2)	$(n_{\alpha}^3, m_{\alpha}^3)$
O9 ⁺	32	(1,0)	(1,0)	(1,0)
O5 ₁	-32	(1,0)	(0,1)	(0, -1)
$O5_{2}^{-}$	-32	(0,1)	(1,0)	(0, -1)
$O5_{3}^{-}$	-32	(0,1)	(0, -1)	(1,0)
D9	16	(-1,1)	(-1,1)	(-1,1)
D9'	16	(-1, -1)	(-1, -1)	(-1, -1)

 n_{α}^{i} wrapping on T_{i}^{2} $m_{\alpha}^{i} \text{ magnetic flux}$ on T_{i}^{2}

SM from spontaneous compactification

■ type I on $(T^2 \times T^2)/Z^2$ with 32 magnetized D9's and O9, O5's

N_{α}	$(n^1_{\alpha}, m^1_{\alpha})$	$(n_{\alpha}^2, m_{\alpha}^2)$
$N_{a+d} = 6 + 2$	(1,3)	(1, -3)
$N_{h_1} = 4$	(1, -3)	(1, -4)
$N_{h_2} = 4$	(1, -4)	(1, -3)
40	(0,1)	(0, -1)

 n_{lpha}^{i} wrapping on T_{i}^{2} m_{lpha}^{i} magnetic flux on T_{i}^{2}

T dual to intersecting D7's

RR tadpoles
$$\sum_{\alpha}N_{\alpha}n_{\alpha}^{2}n_{\alpha}^{3}=16$$
 $\sum_{\alpha}N_{\alpha}m_{\alpha}^{2}m_{\alpha}^{3}=-16$

non susy \Rightarrow dynamical tadpoles for inverse areas of T^2 's

SM from spontaneous compactification

Solve by magnetization along two of the 6d spacetime dimensions

$$\Rightarrow~(\mathsf{T}^2{\times}\mathsf{T}^2{\times}\mathsf{T}^2)/(\mathsf{Z}^2{\times}\mathsf{Z}^2)$$
 with extra O5's, D5's

N_{α}	$(n^1_{\alpha}, m^1_{\alpha})$	$(n_{\alpha}^2, m_{\alpha}^2)$	$(n_{\alpha}^3, m_{\alpha}^3)$
$N_{a+d} = 6 + 2$	(1,3)	(1, -3)	(1,0)
$N_b = 2$	(0,1)	(1,0)	(0,1)
$N_c = 2$	(-1,0)	(0, -1)	(0,1)
$N_{h_1} = 2$	(1, -3)	(1, -4)	(2,-1)
$N_{h_2} = 2$	(1, -4)	(1, -3)	(2,-1)
40	(0,1)	(0, -1)	(0,1)

RR tadpoles

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} = 16$$

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} m_{\alpha}^{2} m_{\alpha}^{3} = 16$$

$$\sum_{\alpha} N_{\alpha} m_{\alpha}^{1} n_{\alpha}^{2} m_{\alpha}^{3} = 16$$

$$\sum_{\alpha} N_{\alpha} m_{\alpha}^{1} m_{\alpha}^{2} n_{\alpha}^{3} = -16$$

susy
$$\chi_1=\chi_2$$
 $\chi_3=\frac{14\chi_1}{1-12\chi_1^2}$ \Rightarrow no dynamical tadpoles

SM from spontaneous compactification

3-family MSSM-like spectrum

[Marchesano Shiu]

Note that all MSSM but gluons/inos arise from cobordism branes

Conclusions

- We have studied the properties of space-dependent solutions in theories with dynamical tadpoles
- Two lessons: Finite Distance and Dynamical Cobordism

Many open questions

Time-dependent backgrounds

More non susy examples

Links to other swampland conjectures

. . .