

Données de base

- Vitesse cible : 5 m/s
- Diamètre de roue : 16 cm → rayon = 0,08 m
- Nombre de roues motrices : 4
- Poids total visé (avec charge) : 15 kg
- Rapport de transmission : 1:1 (réduction envisagée)

Calculs: vitesse de rotation & couple

Vitesse de rotation nécessaire (RPM)

RPM =
$$(V \times 60) / (2 \times \pi \times R)$$

= $(5 \times 60) / (2 \times 3.14 \times 0.08) \approx 600 \text{ RPM}$

Couple minimal par moteur

Force totale = masse \times accélération = 15 kg \times 1 m/s² = 15 N Force par roue = 15 N / 4 \approx 3,75 N

Couple minimal = Force \times rayon = 3,75 N \times 0,08 m \approx 0,3 Nm Avec un coefficient de sécurité (\times 2-3) \rightarrow 0,6 à 1,0 Nm recommandé

Calculs: puissance nécessaire

Puissance par moteur

 $P = Couple \times vitesse angulaire$

Vitesse angulaire $\omega = (RPM \times 2\pi) / 60$

Pour 600 RPM $\rightarrow \omega \approx$ 62,8 rad/s

 $P = 0.8 \text{ Nm} \times 62.8 \approx 50.2 \text{ W}$

Avec marge: 60-80 W par moteur

Puissance totale (4 moteurs): 240-320 W

Résumé des besoins initiaux

Élément	Valeur
Vitesse cible	5 m/s
Diamètre de roue	16 cm (rayon 0,08 m)
RPM nécessaire	~600 RPM
Couple minimal par moteur	~0,3 Nm
Couple recommandé	0,6-1,0 Nm
Puissance par moteur	60-80 W