III B. Tech I Semester Regular Examinations, October/November - 2018 SIGNALS AND SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer **ALL** the question in **Part-A**
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

1. What is the condition for orthonormality? a)

[2M]

b) If $x(t) \stackrel{F}{\leftrightarrow} X(f)$, then find FT of g(t) = x(2t). [2M] [2M]

What is the minimum sampling rate required to sample the signal c) $x(t) = 5\cos(\pi 500t) + 15\sin(\pi 1000t)$

d) Draw the magnitude response of ideal band stop filter. [3M]

What is the relation between Laplace transform and Fourier transform of a signal? e)

[3M] [2M]

f) Find the z-transform of $x[n] = \left(\frac{1}{4}\right)^n u(-n-1)$?

2. Find the even and odd parts of the signal shown in Figure. a)

[7M]

Show that the unit impulse function is the derivative of unit step function. b)

[7M] [7M]

3. State and prove the time-convolution property of Fourier transform. a)

A periodic signal is defined over one period as b)

[7M]

$$x_p(t) = \sin(\pi t); 0 < t < 1$$

- i) Plot $x_p(t)$
- ii) Obtain Fourier series representation of $x_p(t)$
- 4 State and prove sampling theorem for band-limited signals.

[14M]

5. State and prove Parseval's theorem. a)

[7M]

- Find the convolution of two signals x(t) = u(t-1) u(t+1)b) [7M] $h(t) = e^{-at}u(t), a > 0.$
- Find the Laplace transform of $x(t) = e^{-at}u(t)$, a > 0 and plot its ROC. 6. a)

[7M]

State and prove the convolution property of Laplace transform. b)

[7M]

7. State and prove the final-value theorem of z-transform. a)

[7M]

Find the inverse z-transform of $X(z) = \frac{1}{1+z}$ with ROC |z| < 1. b)

[7M]

Code No: R1631023

SET - 2

III B. Tech I Semester Regular Examinations, October/November - 2018 SIGNALS AND SYSTEMS (Electrical and Electronics Engineering)

T	ime: 3	hours Max. Ma	rks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B	
		<u>PART -A</u>	
1.	a)	If it is periodic, what is the fundamental period of $x(t) = A\cos(2\pi 1000t) + B\sin(2\pi 500t)$?	[2M]
	b)	Find the FT of unit ramp function.	[2M]
	c) d)	What is aliasing effect? Define cross-correlation function.	[2M] [3M]
	e)	Find the initial value of $x(t)$ with $X(s) = \frac{1}{s+1}$.	[3M]
	f)	State final-value theorem of z-transform.	[2M]
		<u>PART -B</u>	
2.	a)	Define the following: i) Energy-type signals ii) Power-type signals	[7M]
	b)	If $x(t) = u(t) - u(t-1)$. Plot $y(t) = x(2t+3)$.	[7M]
3.	a)	State and prove the time-scaling property of Fourier transform.	[7M]
	b)	Explain how the Fourier transform of a periodic signal can be obtained.	[7M]
4.	a)	Define the following: i) Sampling rate ii) Under Sampling iii) Nyquist interval	[7M]
	b)	Determine the conditions on sampling interval T_s , so that the signal $x(t) = cos(2\pi t) + sin(6\pi t)$ is uniquely represented by a discrete-time sequence $x[n] = x(nT_s)$.	[7M]
5.	a)	Explain about stability and causality of an LTI system.	[7M]
	b)	What do you understand by distortedness transmission? Explain.	[7M]
6.	a)	State and prove the initial-value theorem of Laplace transform.	[7M]
	b)	Determine the Laplace transform of the following signals: i) $x_1(t) = \cos(\omega_0 t)$ ii) $x_2(t) = te^{-t}u(t)$	[7M]
7.	a)	State and prove time convolution property of Z-transform.	[7M]
	b)	Determine z-transform, ROC and pole-zero locations of $x[n] = e^{j\Omega_0 n}u[n]$.	[7M]
		ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት	

III B. Tech I Semester Regular Examinations, October/November - 2018 SIGNALS AND SYSTEMS

(Electrical and Electronics Engineering)

Tin	(Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70				
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B			
		<u>PART –A</u>			
1.	a)	Evaluate the integral: $\int_{-\infty}^{\infty} \cos{(200t)} \delta(t-t_o) dt$	[2M]		
	b)	State the time-integration property of FT.	[2M]		
	c)	Define Nyquist interval.	[2M]		
	d)	What is the relation between rise time and bandwidth of a linear system?	[3M]		
	e)	Find the final value of $f(t)$ with $F(s) = \frac{10}{s+10}$.	[3M]		
	f)	Draw the ROC of $X(z)$ if $x[n] = \left(\frac{1}{8}\right)^n u[n]$. PART -B	[2M]		
2.	a)	Define the following and give one example for each:	[7M]		
	b)	i) Random signal ii) Deterministic signal iii) Multi channel signal Determine whether the signal $x(t) = (\cos(2\pi t))^2$ is periodic. If it is periodic, find the fundamental period.	[7M]		
3.	a)	Use differentiation-in-time and differentiation-in-frequency properties to find	[7M]		
		the Fourier transform of the Gaussian pulse, $(t) = \left(\frac{1}{\sqrt{2\pi}}\right)e^{-\frac{t^2}{2}}$.			
	b)	Find the Hilbert transform of the signal $x(t) = \cos(2\pi t)$.	[7M]		
4.	a)	Define the following:	[7M]		
	ŕ	i) Under sampling ii) Over sampling iii) Critical sampling			
	b)	Compare natural sampling and flat top sampling.	[7M]		
5.	a)	A signal is given by $x(t) = u(t) - u(t-1)$. Convolve $x(t)$ with itself and plot the result.	[7M]		
	b)	Draw the ideal filter characteristics. What is the condition for realizability of these filters?	[7M]		
6.	a)	Find the inverse Laplace transform of	[7M]		
		i) $X(s) = \frac{1}{s+2}$ with $ROC Re(s) > -2$			
		ii) $X(s) = \frac{1}{(s+2)(s+3)}$ with ROC Re(s) > -2			
	b)	List the properties of ROC for Laplace transforms	[7M]		
7.	a)	State and prove the convolution property of z-transform.	[7M]		
	b)	State and prove time-advance property of z-transform.	[7M]		

III B. Tech I Semester Regular Examinations, October/November - 2018 SIGNALS AND SYSTEMS (Electrical and Electronics Engineering)

	Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B	
	<u>PART -A</u>	
a)	Plot the signal $x(t) = 5u(2t - 1)$, where $u(t)$ is unit step function.	[2M]
b)	Define Fourier complex spectrum	[2M]
c)	Define band-limited signal.	[2M]
d)	What is the relation between convolution and correlation?	[3M]
e)	State differentiation property of Laplace transforms.	[3M]
f)	Draw the pole-zero plot of $H(z) = \frac{z}{1+z}$	[2M]
	<u>PART -B</u>	
a)	Find the energy and power of the signal $x(t) = 5\cos(\pi t) + \sin(5\pi t)$.	[7M]
b)	Explain how signals can be approximated using orthogonal functions.	[7M]
a)	Find the Fourier transform of signum function and plot its spectrum.	[7M]
b)	Derive the relation between exponential Fourier coefficients and trigonometric Fourier coefficients.	[7M]
a)	Explain how a band-limited signal can be reconstructed from its samples.	[7M]
b)	Write notes on flat-top sampling.	[7M]
a)	Define the following:	[7M]
	i) Signal bandwidth ii) System bandwidth iii) Causality of a filter	
b)	State all the properties of Auto correlation function.	[7M]
a)	State and prove the final-value theorem of Laplace transform.	[7M]
b)	Find the Laplace transform and ROC of $x(t) = sgn(t) + e^{-2t}u(t) + u(t)$.	[7M]
a)	Find the inverse z-transform of $X(z) = \frac{1}{1 + z = 1}$ with ROC $ z < a $	[7M]
b)	State and prove the differentiation in z property of z-transform.	[7M]
	b) c) d) e) f) a) b) a) b) a) b) a) b) b)	 3. Answer any FOUR Questions from Part-B PART -A a) Plot the signal x(t) = 5u(2t - 1), where u(t) is unit step function. b) Define Fourier complex spectrum c) Define band-limited signal. d) What is the relation between convolution and correlation? e) State differentiation property of Laplace transforms. f) Draw the pole-zero plot of H(z) = z/(1+z) PART -B a) Find the energy and power of the signal x(t) = 5 cos(πt) + sin (5πt). b) Explain how signals can be approximated using orthogonal functions. a) Find the Fourier transform of signum function and plot its spectrum. b) Derive the relation between exponential Fourier coefficients and trigonometric Fourier coefficients. a) Explain how a band-limited signal can be reconstructed from its samples. b) Write notes on flat-top sampling. a) Define the following: i) Signal bandwidth ii) System bandwidth iii) Causality of a filter b) State all the properties of Auto correlation function. a) State and prove the final-value theorem of Laplace transform. b) Find the Laplace transform and ROC of x(t) = sgn(t) + e^{-2t}u(t) + u(t).

|"|""||"||"