RISK-STABLE PORTFOLIO OPTIMIZATION

Performance and Evaluation

Risk Stable Portfolio

Target the maximum return for a given level of risk

Advantages

- Risk exposure is constant
- It is unambiguously passive
- Clients know for certain they are not being overexposed to a particular asset or risk and that their risk will not change under different market conditions

Asset Classes

- Equities
- Fixed Income
 - Corporate Bonds
 - US Bonds
- Real Estate
- Commodities
 - Gold, Silver

Asset: property owned by a person or company, regarded as having value and available to meet debts, commitments, or legacies

e.g. Assets have a positive expected value

Asset Class Correlations

	SPY	TLT	LQD	SCHH	IAU	SLV
SPY	1.00	-0.59	-0.11	0.81	0.06	0.21
TLT	-0.59	1.00	0.67	-0.37	0.09	-0.08
LQD	-0.11	0.67	1.00	0.11	0.21	0.10
SCHH	0.81	-0.37	0.11	1.00	0.06	0.18
IAU	0.06	0.09	0.21	0.06	1.00	0.81
SLV	0.21	-0.08	0.10	0.18	0.81	1.00

Capital Flows

Less Risk More Risk

Methodology Part I

- Use the previous 2500 daily observations to estimate the GARCH(1,1) model
- Then use the one step ahead forecast of the GARCH(1,1) model to estimate the portfolio CVaR for each weight combination in 1% increments
- Re-optimize and rebalance every 60 days (Aprox. 1 quarter)

Methodology Part II

- Bound the weights for each asset between 10% and 90%
- Choose from just two assets; VUSTX & The S&P 500
 - 81 possible weight combinations
 - VUSTX is a Vanguard mutual fund that tracks Long-Term Government Debt

Methodology Part III

- Further bound the equity weight to be greater than the GMC (Global-Minimum CVaR) Portfolio to ensure the portfolio is on the efficient frontier
- Choose the portfolio within the weight bounds that most closely matches the desired CVaR, which is 1.0%
- If all portfolios are above the target risk than weight into cash until the target risk is achieved

Why CVaR?

- Better estimate of risk than volatility
- Coherent Risk Measure
 - Normalized
 - Monotonicity
 - Sub-additivity
 - Positive Homogeneity
 - Translation Invariance

Why GARCH(1,1)?

Return Distribution of The S&P 500

Volatility Clustering: Returns of The S&P 500

Growth

Drawdowns

Risk.Stable

Weights

Equity Weight

Box Plots

Return Distribution Comparison

Portfolio Statistics

	Risk Stable	Equal	S&P~500	VUSTX
nobs	4181	4181	4181	4181
Minimum	-2.53	-3.98	-9.04	-3.94
Maximum	2.32	3.65	11.58	4.47
1. Quartile	-0.20	-0.29	-0.57	-0.36
3. Quartile	0.27	0.34	0.62	0.44
Mean	0.02	0.03	0.03	0.03
Median	0.02	0.03	0.07	0.07
Variance	0.00	0.00	0.02	0.00
Stdev	0.40	0.59	1.29	0.69
Skewness	167	031	018	0.01
Kurtosis	2.21	3.84	7.56	2.00
Growth of \$1	\$2.65	\$2.73	\$2.09	\$3.03
Annualized Return	6.05	6.24	4.55	6.91
Annualized Standard Deviation	6.39	9.37	20.40	10.90
Annualized Sharpe Ratio	0.95	0.67	0.22	0.63
Omega ($L = 0\%$)	1.17	1.13	1.06	1.12
Downside Deviation (0%)	0.28	0.41	0.91	0.47
Maximum Drawdown	11.29	27.70	56.78	18.42
Historical ES (95%)	-0.90	-1.31	-3.02	-1.50
Modified ES (95%)	-0.97	-1.41	-2.87	-1.54

Rolling Return

Rolling 1-Year Annulized Return

Rolling Volatility

Rolling 1-Year Standard Deviation

Rolling Sharpe

$$S = \frac{E[R_a - R_b]}{\sigma}$$

Rolling 1-Year Sharpe Ratio

Rolling Omega

$$\Omega(r) = \frac{\int_{r}^{\infty} (1 - F(x)) dx}{\int_{-\infty}^{r} F(x) dx}$$

Rolling 1-Year Omega Ratio

Proof of Concept

- Can be generalized to N assets, but the computational requirement grows exponentially
- Risk-stable portfolios can be actively managed within risk targets by maximizing the portfolio return for the given level of targeted risk

Advantages:

- GARCH Model accounts for volatility clustering
- CVaR estimates are a more mathematically correct definition of risk
- Historical analysis shows outperformance
- The portfolio risk can be actively managed

Portfolio Framework

- 1. Set the risk target band
- 2. Set the level of acceptable risk deviation
- Choose and rank the assets
- 4. Use the ranking function to score the portfolios
- Let the algorithm determine the proper weighting within the risk bands that maximizes the portfolio score
- 6. Repeat periodically

Code

- Github
 - Title: Risk Stable Portfolio Optimization.R
 - URL: https://github.com/codypedro/MarketAnalysis