Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW. Penalize over-rounding only once in paper, except qu 8(ii).

Total 2i	$\frac{1 - (\sqrt[3]{_{10}} + \sqrt[1]{_5} + \sqrt[2]{_5})}{\sqrt[1]{_{10}}}$ $\frac{\sqrt[3]{_{10}} + 2 x \sqrt[1]{_5} + 3 x \sqrt[2]{_5}}{\sqrt[19]{_{10}} \text{ oe}}$	M1 A1 M1 A1	2	or $({}^{3}/_{10} + {}^{1}/_{5} + {}^{2}/_{5}) + p = 1$ $\div 4 \text{ or } 6 \implies M0A0$
Total 2i	$^{19}/_{10}$ oe			$-4 \text{ or } 6 \Rightarrow M0A0$
Total 2i		4 2 2	2	. 1010 1110/10
2i		4	1	
:	$\Box x = 20; \Box y = 11; \Box x^2 = 96; \Box y^2 = 31; \Box xy$			
1	=52)	B1		
l i	$S_{xx} = 16$ or 3.2	Bl		
	$S_{yy} = 6.8$ or 1.36	B1		
	$S_{xy} = 8$ or 1.6	M1		$dep - 1 \le r \le 1$
,	$r = \frac{8}{(16.60)}$ or $\frac{1.6}{(2.21.26)}$		_	ft their S's $(S_{xy} & S_{yy} + ve)$ for M1 only
	/(16x6.8) $/(3.2x1.36)$	A1	5	
	= 0.767 (3 sfs) Small sample oe	Blf	1	
	Sman sample oc	6		
Total	120		1	not just 51
	120	B1	1	not just 5!
1	$3 \times 4!$ or 72 (÷ 5!)	MI	2	72 /
	$\frac{3}{5}$ oe	Al	_2_	<u> </u>
·	Starts 1 or 21 (both)	M1 M1		12,13,14,15, (≥ 2) of these incl 21, or allow 1 extra) can be implied by wking or $5 \times 3!$ or $4! + 3!$ $(\div 5!)$
	$\frac{1}{5} + \frac{1}{5} \times \frac{1}{4}$ = $\frac{1}{4}$ oe	A1	3	
	/ ₄ 0e	6		complement, fun equity steps for tvis
Total		B1	1	
4ia	W & Y oe	ы	l	
b		B1	1	
	X oe			
ii	Geo probs always decrease	B1	1	Geo not fixed no. of values
l I	or Geo has no upper limit to x or $x \neq 0$			diags have fixed no of trials
	••			not Geo has +ve skew
iii		BI		indep
	W	Bldep		allow Bin probs rise then fall
	Bin probs cannot fall then rise	2		
1	or bimodal			
Total		5		
5i	2685 - 140×106.8 or 2685 -			
	x 0. <u>2000</u>	M1		Correct sub in any correct formula for b
	$\frac{3500 - \frac{140^2}{8}}{3500 - \frac{140^2}{8}} = \frac{8 \times 17.5 \times 13.35}{3500 - \frac{140^2}{8}}$			(incl. $(x - \overline{x})$ etc)
	· ·			
	$= \frac{136}{175}$ or 0.777 (3 sfs)	A1		
	$y - \frac{106.8}{8} = 0.777(x - \frac{140}{8})$	M1		or $a = {}^{106.8}/_8 - 0.777x^{140}/_8$ ft b for M1
	$y = 0.78x - 0.25$ or better or $y = \frac{136}{175}x^{-1}/4$	A1	4	≥ 2 sfs sufficient for coeffs
 	$0.78 \times 12 - 0.25$	M1		M1: ft their equn
()	= 9.1 (2 sfs)		2	A1: dep const term in equn
	Reliable	B1		Just "reliable" for both: B1
1	Unreliable because extrapolating oe	BI	2	
Total		8		

6i	$Geo(^2/_3)$ stated	MI	or implied by $(^1/_3)'' \times ^2/_3$
	$(^{1}/_{3})^{3} \mathbf{x}^{2}/_{3}$	M1	
	$= \frac{2}{81}$ or 0.0247 (3 sfs)	A1 3	

7/32				
ii	$(1/3)^3$	M1		or $^{2}/_{3}+^{1}/_{3}x^{2}/_{3}+(^{1}/_{3})^{2}x^{2}/_{3}$: M2
	$(1 - (1/3)^3)$	M1		one term omitted or extra or wrong: M1
				$1 - (\frac{1}{3})^4$ or $1 - (\frac{2}{3} + \frac{1}{3}x^2/_3 + (\frac{1}{3})^2x^2/_3)$:M1
	$\frac{26}{27}$ or 0.963 (3 sfs)	A1	3	
iii	1 / 2/3	M1		
	= 3/2 oe	A1	2	
Total		8		
7i	$\frac{2}{9}$ or $\frac{7}{9}$ oe seen	B1		
	$\frac{3}{9}$ or $\frac{6}{9}$ oe seen	B1		
	$\frac{1}{8}$ or $\frac{7}{8}$ oe seen	B1		
	Correct structure	B1		ie 8 correct branches only,
		D.	_	ignore probs & values
	All correct	B1	5	including probs and values,
	$\frac{1}{3} \frac{3}{10} \times \frac{7}{9} + \frac{7}{10} \times \frac{3}{9} + \frac{7}{10} \times \frac{6}{9}$			but headings not req'd
ii	$\frac{1}{10}$ X $\frac{1}{9}$ + $\frac{1}{10}$ X $\frac{1}{9}$ + $\frac{1}{10}$ X $\frac{1}{9}$	M2		or $\frac{3}{10}x^{7/9} + \frac{7}{10}$ or $1 - \frac{3}{10}x^{2/9}$
	14/ 0.022	A1	3	M1: one correct prod or any prod + $\frac{1}{10}$ or $\frac{3}{10}$ x $\frac{2}{9}$
iii	$ \frac{\frac{14}{15} \text{ or } 0.933 \text{ oe}}{\frac{3}{10} \times \frac{2}{9} \times \frac{7}{8} + \frac{7}{10} \times \frac{6}{9}} $	M2	3	M1: one correct prod
111	$\frac{10 \times 9 \times 8}{10 \times 9}$	1012		Wit. one correct prod
	$\frac{21}{40}$ or 0.525 oe	A1	3	cao
	No ft from diag except: with replacement:			re: B1 (ii) $^{91}/_{100}$: B2 (iii) 0.553: B2
Total	110 it from dag except. With replacement.	11		(ii) /100. B2 (iii) 0.355. B2
8i	Med = 2	B1		cao
	LQ = 1 or $UQ = 4$	M1		or if treat as cont data:
				read cf curve or interp at 25 & 75
	IQR = 3	A1	3	cao
ii	Assume last value = 7 (or eg 7.5 or 8 or 8.5)	В1		stated, & not contradicted in wking
				eg 7-9 or 7,8, 9 Not just in wking
	$\Box xf$ attempted ≥ 5 terms	M1		allow "midpts" in $\Box xf$ or $\Box x^2f$
	2.6 or 3 sf ans that rounds to 2.6	Al		
	$\Box x^2 f$ or $\Box x - m)^2 f \ge 5$ terms	M1		
	$/(\Box x^2 f/100 - m^2)$ or			
	$/(\Box x-m)^2 f$)/100 fully correct but ft m	MI		
	1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7	Al		dep M3
			6	penalize > 3 sfs only once
iii	Median less affected by extremes or	B1	1	or median is an integer or mean not int.
	outliers etc (NOT anomalies)			or not affected by open-ended interval
		ļ		general comment acceptable
iv	Small change in var'n leads to lge change in IQR			
	UQ for W only just 4, hence IQR exaggerated orig data shows variations are similar	D1	1	for Old Moat LQ only just 1 & UQ only just 3
		Bl	1	oe specific comment essential
V	OM % (or y) decr (as x incr) oe	B1	2	ranks reversed in OM or not rev in W
T-4-1	Old Moat	B1	2	NIS
Total		13)	

9i	$^{11}C_5 \times (^{1}/_{4})^6 \times (^{3}/_{4})^5$	M1		or $462 \times (^{1}/_{4})^{6} \times (^{3}/_{4})^{5}$
	0.0268 (3 sfs)	A1	2	
ii	$q^{11} = 0.05$ or $(1-p)^{11} = 0.05$	M1		(any letter except p) ¹¹ = 0.05 oe
	₩0.05	M1		oe or invlog $(\frac{\log 0.05}{11})$
	q = 0.762 or 0.7616	A1		11
	p = 0.238 (3 sfs)	Alf	4	ft dep M2
iii	$11 \times p \times (1-p) = 1.76$ oe	M1		not $11pq = 1.76$
	$11p - 11p^2 = 1.76$ or $p - p^2 = 0.16$	A1		any correct equn after mult out
	$11p^2 - 11p + 1.76 = 0$ or $p^2 - p + 0.16 = 0$	A1		or equiv with = 0
	$(25p^2 - 25p + 4 = 0)$			
	(5p-1)(5p-4) = 0			or correct fact'n or subst'n for their quad
	or $p = 11 - /(11^2 - 4x11x1.76)$	M1		equ'n eg $p = \frac{1 \pm /(1-4x0.16)}{1}$
	2 x 11			2
	p = 0.2 or 0.8	A1	5	
Total		11		
	Total 72 marks			