Part 2I: Poisson process on the line

Textbook: pp. 56-58

Introduction to Poisson processes • The Poisson process is an important example of a point process. • The number of point over the support is Poisson. Given the number of points, they are i.i.d. according to a given distribution. • In the book the process is defined via its properties. We will go the other way around and prove the properties. At the end of the video we will discuss briefly the homogeneous Poisson process.

The definition of a Poisson process

Given a region D, a density f over D, and a rate Λ :

- The number of points X_i in the region is $N \sim \text{Poisson}(\Lambda)$.
- Given N, the points are i.i.d. with distribution $f: X_i \sim f$.

The Poisson process is the collection $\Pi = \{X_1, X_2, ..., X_N\}$.

Remark: f may correspond to a σ -finite measure.

Simula	tion of a	a <mark>Poisson p</mark>	orocess				
Algorit inpu a a rand	hm 2.36 at: In intensity set $D \subseteq \mathbb{R}$ comness us $V \sim \text{Pois}(\mathbb{R})$ i.d. sample		picess) $\mathbb{R}^d o \mathbb{R}$ $0 < \infty$ where			5)	
a 1: ge 2: Π 3: fo 4: 5: 6: en	sample from the sample from t	from the Poisson $ \sim \text{Pois}(\Lambda(D)) $ $, \dots, N \text{ do} $ $ X_i \sim \frac{1}{\Lambda(D)} \mathbb{1}_D $ $ \bigcup \{X_i\} $))	on D with	intensity 2	λ	
The		$\int_{D} \lambda / \Lambda(D) \text{ in}$ $\int_{D} \frac{\mathbb{1}_{D} \lambda(x)}{\Lambda(D)}$					

Basic properties of the Poisson process

Definition 2.34 A *Poisson process* on a set $D \subseteq \mathbb{R}^d$ with *intensity function* $\lambda \colon \mathbb{R}^d \to [0, \infty)$ is a random set $\Pi \subseteq D$ such that the following two conditions hold:

(a) If $A \subseteq D$, then $|\Pi \cap A| \sim \text{Pois}(\Lambda(A))$ where $|\Pi \cap A|$ is the number of points of Π in A and

$$\Lambda(A) = \int_{A} \lambda(x) \, dx. \tag{2.5}$$

(b) If $A, B \subseteq D$ are disjoint, then $|\Pi \cap A|$ and $|\Pi \cap B|$ are independent.

The homogeneous Poisson process • If X is "distributed" according to the Lesbegue measure on the positive numbers then the process is called homogenuous, or simply a Poisson process. f(x) = 1, 2 < x < 3 One may associate the point process with a counting process, which is also called the *Poisson process*. 0 N(t) ~ Poisson (2t) Independent increment