Applications of Clustering

- Market research
- Pattern recognition
- Data analysis
- Image processing
- Taxonomy generation
- Gene expression analysis
- Event detection
- ***** . . .

- Outlier detection:
 - Network security (intrusions)
 - Credit card fraud detection
- Preprocessing:
 - ♦ Retrieval
 - ♦ Feature selection
 - Approximation & summarization
 - ♦ Classification

Common Similarity Measures

- Interval-scaled vectors:
 - ♦ Euclidean distance.

$$d(x, y) = ||x - y||_2 = \sqrt{\sum_{j=1}^{n} (x_j - y_j)^2}$$

→ Manhattan (L₁) distance.

$$d(x, y) = ||x - y||_1 = \sum_{j=1}^{n} |x_j - y_j|$$

- Interval-scaled vectors (continued):
 - Cosine measure (not a metric!). document clustering

$$s(x, y) = \frac{x \cdot y}{\|x\| \|y\|} = \frac{\sum_{j=1}^{n} x_{j} y_{j}}{\sqrt{\sum_{j=1}^{n} x_{j}^{2}} \sqrt{\sum_{j=1}^{n} y_{j}^{2}}}$$

Clustering Strategies

Partitional (Centroid Based) clustering:

- ♦ Given: target number of clusters k.
- ♦ Goal: partition data set into exactly k clusters.
- ♦ Each object must appear in exactly one cluster.

(Connectivity Based) Hierarchical clustering:

- Clustering formed by composition or decomposition.
- History of composition / decomposition operations forms a hierarchical relationship.

Agglomerative (bottom-up) approach:

- Larger clusters formed by merging smaller clusters.
- Usually terminates when all clusters merged (but earlier termination is possible).

Divisive (top-down) approach:

- Smaller clusters formed by splitting larger clusters.
- ♦ Often terminates when leaf clusters contain exactly one element (but earlier termination is possible).

Clustering Strategies

Density-based clustering:

- Clusters grow into regions of high density.
- Density usually computed over neighbourhoods of fixed size.
- Connectivity constraints can be similar to those of agglomerative clustering.
- ightharpoonup Local criteria for growth ightharpoonup non-spherical clusters.
- ightharpoonup Minimum density criterion ightharpoonup noise & outlier elimination.

(Distribution) Model-based clustering:

- Guess a model explaining the data distribution.
- ♦ Find the best fit of data to clusters as explained by the model.
- Can lead to automatic determination of number of clusters.
- Determination of noise & outliers according to the model.
- Sometimes confused with classification when the model is learned from a training set.

Hierarchical Methods

Agglomerative vs Divisive

Agglomerative (bottom-up) approach:

- Basic method: AGNES (AGlomerative NEsting), Kaufman & Rousseeuw, 1990.
- Initially, each object in its own cluster.
- At each step, two clusters are merged.
- Choice of clusters according to distance criterion.

Divisive (top-down) approach:

- Basic method: DIANA (DIvisive ANAlysis), Kaufman & Rousseeuw, 1990.
- ♦ Initially, all objects in a single cluster.
- ♦ At each step, a cluster is split into two.
- Choice of cluster according to a distance criterion between the two clusters generated by the split.

Dendrogram

Dendrogram:

- Tree structure describing merge / split history.
- This example: split / merge according to closest pair of cluster members.
- "Single-linkage" strategy.

d(*,*)	Α	В	С	D	Е
Α	0	0.1	0.8	0.7	1.0
В	0.1	0	0.5	0.6	0.9
С	0.8	0.5	0	0.3	0.4
D	0.7	0.6	0.3	0	0.2
Е	1.0	0.9	0.4	0.2	0

Inter-Cluster Distance

Common measures:

- Minimum distance (single linkage).
- Maximum distance (complete linkage).
- ♦ Average distance.

$$d_{\min}(A, B) = \min_{a \in A; b \in B} d(a, b)$$

$$d_{\max}(A, B) = \max_{a \in A; b \in B} d(a, b)$$

$$d_{\text{avg}}(A,B) = \frac{1}{|A| \cdot |B|} \sum_{a \in A} \sum_{b \in B} d(a,b)$$

 $d_{\min}(A,B) = \min_{a \in A; b \in B} d(a,b)$

Single Linkage:

- ♦ Also called Nearest Neighbour.
- ♦ Mininum-distance measure.
- Links determined by only two closest objects.
- Repeated merges can lead to chaining.
- Excessive chaining can produce incoherent clusters.

 $d_{\min}(A,B) = \min_{a \in A; b \in B} d(a,b)$

Single Linkage:

- ♦ Also called Nearest Neighbour.
- ♦ Mininum-distance measure.
- Links determined by only two closest objects.
- Repeated merges can lead to chaining.
- Excessive chaining can produce incoherent clusters.

 $d_{\max}(A,B) = \max_{a \in A; b \in B} d(a,b)$

Complete Linkage:

- Also called Farthest Neighbour.
- ♦ Maximum-distance measure.
- Links determined by only two farthest objects.
- Merge order highly influenced by noise.
- Clusters produced are more rounded, compact.

 $d_{\max}(A,B) = \max_{a \in A; b \in B} d(a,b)$

Complete Linkage:

- Also called Farthest Neighbour.
- ♦ Maximum-distance measure.
- Links determined by only two farthest objects.
- Merge order highly influenced by noise.
- Clusters produced are more rounded, compact.

Average Linkage:

- Compromise between minimum and maximum distance.
- Quadratic number of distances computed.
- Less affected by noise.

Less affected by noise.

Less prone to chaining problems.
$$d_{\text{avg}}(A,B) = \frac{1}{|A| \cdot |B|} \sum_{a \in A} \sum_{b \in B} d(a,b)$$

Using the single linkage method

	A	В	С	D	E						
A	0	0.1	0.8	0.7	1.0	d(*,*)	Α	В	С	D	Е
В	0.1	0	0.5	0.6	0.9	Α	0	0.1	0.8	0.7	1.0
D		U	0.5		0.9	В	0.1	0	0.5	0.6	0.9
С	0.8	0.5	0	0.3	0.4	С	0.8	0.5	0	0.3	0.4
D	0.7	0.6	0.3	0	0.2	D	0.7	0.6	0.3	0	0.2
E	1.0	0.9	0.4	0.2	0	Е	1.0	0.9	0.4	0.2	0

Using the single linkage method

	X		Y	
P1	0.4	0	0.53	
P2	0.2	2/	0.38	BA
P3	0.3	5	0.32	
P4	0.2	6	0.19	
P5	0.0	8	0.41	
P6	0.4	5	0.30	

Create the distance matrix, in this example we use the Euclidean distance as measure of distance.

	P1	P2	Р3	P4	P5	Р6
P1	0	0.23	0.22	0.37	0.34	0.23
P2	0.23	0	0.15	0.20	0.14	0.25
Р3	0.22	0.15	0	0.15	0.28	0.11
P4	0.37	0.20	0.15	0	0.29	0.22
P5	0.34	0.14	0.28	0.29	0	0.39
P6	0.23	0.25	0.11	0.22	0.39	0

Create the distance matrix, in this example we use the Euclidean distance as measure of distance.

