ICCT Final Interview

Colton Lapp February 16, 2023

Overview

- 1. Explanation of statistical method: linear regression
- 2. Deployment demo: how to implement the model

Goals of talk:

• Demonstrate:

- Technical communication abilities
- Knowledge of Python syntax and statistics

Modeling the relationship between two variables

Q: How can we model the relationship between these variables?

The simple linear model

Relationship Between Gas Prices and Vehicle Miles Traveled

In this example, the population data is simulated from a linear model:

$$Y = \beta_0 + \beta_1 X + u$$
$$\beta_0 = 30, \beta_1 = -5$$

Data is "sampled" from a "population"

Goal: Estimate coefficients for model

Relationship Between Gas Prices and Vehicle Miles Traveled

$$Y = \beta_0 + \beta_1 X + u$$

Goal: Estimate coefficients for model

Relationship Between Gas Prices and Vehicle Miles Traveled

$$Y = \beta_0 + \beta_1 X + u$$

Goal: Estimate coefficients for model

$$Y = \beta_0 + \beta_1 X + u$$

Can accomplish two things:

- Prediction
- Causal Inference

How do we estimate the coefficients?

How do we estimate the coefficients?

$$Y = \beta_0 + \beta_1 X + u$$

How do we estimate the coefficients?

4.5

5.0

3.5

4.0

Gas Prices

3.0

2.5

Preferred method: Minimize the "Sum of Squared Errors"

$$(\widehat{\beta}_0, \widehat{\beta}_1) = \operatorname*{arg\,min}_{b_0, b_1} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2$$

- Can achieve this using:
 - Analytical solution (calculus)
 - Optimization algorithms (i.e. gradient descent)

How accurate are the parameter estimates compared to the "true" model?

How accurate are the parameter estimates compared to the "true" model?

Pseudo Code:

For sim in range (0,500):

- -Sample 30 observations from population
- -Estimate parameters
- -Save parameter estimates

Under Gauss-Markov assumptions, parameter estimates are statistically well defined

$$Y = \beta_0 + \beta_1 X + u$$

One might conclude that high gas prices "cause" people to drive less

Estimated model:

VMT = 55.3 - **7.1*****Prices**

In reality...

Rural areas have lower gas prices
- and Rural areas have higher amounts of VMT

If omitted variables aren't correlated with explanatory variables, however, this isn't an issue!

True model:

VMT = 15 + 15* Rural + **2*Prices**

Estimated model:

VMT = 21.4 + 2.5*Prices

If our goal is only prediction, however, gas prices are still a good proxy for VMT

Brainstorming a Real World Application

Outline:

Goal: Predict reduction in VMT in response to fuel tax

Outline:

Goal: Predict reduction in VMT in response to fuel tax

- Data:
 - Relational Database of daily driving logs
- Regression model:
 - Linear regression with control variables
- Python setup:
 - Creating custom classes to streamline modeling

Database: ERD schematic

Assume we have daily driving logs on a individual level

Database: ERD schematic

Assume we have daily driving logs on a individual level

Select Data from DC between 2015-2020:

SELECT *

FROM people p

JOIN driving_logs dl USING (Vehicle_ID)

JOIN vehicles USING(Make_ID)

JOIN gas_prices gp

ON p.MSA_code = gp.MSA_code

AND dl.date = gp.date

WHERE dl.date

BETWEEN '2015-01-01'

AND '2020-01-01'

AND pl.MSA_code = 1;

Linear Regression Model: adding controls

Options:

- Specific models for
 - Location
 - Vehicle Type
 - o Etc
- Or:
 - Only use control variables

$$VMT_{i,t} = eta_0 + eta_1 \mathrm{Price}_{i,t} + \sum_{p=2}^{p'} eta_p X_p + u_{i,t}$$

$$i \in \{city_1, city_2, \ldots, city_i\} \ t \in \{day_1, day_2, \ldots, day_t\}$$

 X_p could be: Demographic data, Vehicle Data, Date data, etc...

Python implementation: UML notation

Could use Python classes to:

- Query database
- Create model
- Use model to predict changes in VMT after changes in fuel prices

Questions?

References

- 1. https://scholar.princeton.edu/sites/default/files/bstewart/files/lecture5slides.pdf
- 2. https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html
- 3. https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12_toc.pdf