CHAPTER

3

डिजिटल पद्धति (DIGITAL SYSTEMS)

Types of number system	आधार /रेडिक्स	Range
	Base/Radix	
1. Binary Number System	2	0, 1
(द्विआधारी संख्या पद्धति)		
2. Octal Number System	8	0, 1, 2, 3, 4, 5, 6, 7
3. Decimal Number System	10	0, 1, 2, 3, 4, 5, 6,
(दशमलव संख्या पद्धति)		8, 9
4. Hexadecimal Number	16	0, 1, 2, 3, 4, 5, 6,
System		7, 8, 9
		A, B, C, D, E, F

- Binary (द्विआधारी) System से Decimal (दशमलव) System में:
- (1001.101)₂ को Decimal Number में बदलें— Binary No.

$$\Rightarrow (1 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1).$$

$$(1 \times 0.5 + 0 \times 0.25 + 1 \times 0.125)$$

$$(8 + 0 + 0 + 1). (0.5 + 0 + 0.125)$$

$$(9). (0.625)$$

$$= (9.625)_{10}$$

$$(1001.101)_{2} = (9.625)_{10}$$

• (1101)₂ को Decimal Number में बदलें—

 $(1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1)$ = $(8 + 4 + 0 + 1) = (13)_{10}$

• $(.110)_2$ का मान दशमलव पद्धित में बदलें

$$\rightarrow \qquad 1 \times \frac{1}{2} + 1 \times \frac{1}{4} + 0 \times \frac{1}{8}$$

$$\rightarrow \frac{1}{2} + \frac{1}{4} + 0 = \frac{2+1}{4} = \frac{3}{4} = (.75)_{10}$$

- दशमलव पद्धति (Decimal Number System) से द्विआधारी (Binary) में :
- (105.25) को द्विआधारी में बदलें—

MSB (Most significant Bit)

$$\begin{array}{c}
.25 \\
\times 2 \\
\hline
0.50 \\
.50 \\
\times 2 \\
\hline
1.00 \\
- (110100101)
\end{array}$$
MSB

 $(105.25)_{10} = (1101001.01)_2$ $(1101001.0100)_2$

• 0.85 का द्विआधारी मान ज्ञांत करें—

or,

$$\begin{array}{c}
0.85 \\
\times 2 \\
\hline
1.70 \longrightarrow 1
\end{array}$$

$$\begin{array}{c}
0.70 \\
\times 2 \\
\hline
1.40 \longrightarrow 1
\end{array}$$

$$\begin{array}{c}
0.40 \\
\times 2 \\
\hline
0.80 \\
\times 2 \\
\hline
1.60 \longrightarrow 1
\end{array}$$
LSB

 $(0.85)_{10} = (.1101)_2$ or, $(0.1101)_2$

- Octal Number से Decimal Number में :
 - (731) $_{8}$ से Decimal में बदलें—
 Octal No. 7 3 1
 Octal weight (8) 2 (8) 1 (8) 0 Decimal value 64 8 1 \rightarrow (64 \times 7 + 8 \times 3 + 1 \times 1)
 = 448 + 24 + 1 = (473) $_{10}$

- (0.361)₈ को Decimal Number में बदलें— Octal No. 8-2 8-1 8-3 1 1 1 8 64 512 0.125 0.0156 0.00195 $3 \times 0.125 + 6 \times 0.0156 + 1 \times 0.00195$ = .375 + 0.0936 + 0.00195 $= (0.47055)_{10}$
- Hexadecimal से Decimal में बदलना है:
- (ABC)₁₆ को Decimal Number में बदलें-Hexadecimal No. 12 10 11 C В $(16)^2$ 16^{0} Hexadecimal weight $(16)^{1}$ 256 16 1 $(ABC)_{16} = (256 \times 10 + 16 \times 11 + 1 \times 12)$ = 2560 + 176 + 12 $= (2748)_{10}$
- (.A01)₁₆ को Decimal में बदलें— Hexadecimal No. A 0 1 Hexadecimal weight 16⁻¹ 16⁻² 16⁻³ $\frac{1}{16} \frac{1}{256} \frac{1}{4096}$ 0.0625 0.0039 0.0002

 $(0.A01)_{16} = (10 \times 0.0625 + 0 \times 0.0039 + 1 \times 0.0002)$ = 0.625 + 0.0002= $(0.6252)_{10}$

- Decimal Number से Octal Number में :
- (1470.12)₁₀ से Octal No. में बदलें—

MSD (Most Significant Digit)

 $(1470.12)_{10} = (2676.0753)_8$

- Decimal Number से Hexadecimal Number में :
- (157.625)₁₀ से Hexadecimal Number में बदलें—

• (0.19)₁₀ से Hexadecimal Number में बदलें—

 $(0.19)_{10} = (0.30A3)_{16}$

- Binary से Octal Number में :
- Binary (01011.0011)2 के समतुल्य Octal संख्या क्या होगा ? Binary से Octal बनाने के लिए भिन्न (fraction/point/दशमलव/1.1) के पहले भाग में right से 3-3 bit का समूह बनाए जाते हैं। और अंतिम समूह (group) पूरा करने के लिए left में 0 जोड़ दिया जाता है। Binary भिन्न (Point के बाद वाले भाग) को Octal बनाने के लिए left से 3-3 bit का जोड़ा बनाएँगे और अंतिम समूह पूरा करने के लिए right में 0 add कर देंगे।

- Octal Number से Binary Number System में :
- Octal से Binary बनाने के लिए Octal के प्रत्येक digit के लिए उसका समतुल्य 3 bit binary लिखा जाता है।
- (507.23)₈ को Binary में बदलें— 5 0 7 . 2 3 101 000 111 010 011 = (101000111.010011)₂
- Binary Number से Hexadecimal Number में :
- Binary से Hexadecimal बनाने के लिए दशमलव के पहले वाले भाग में right से 4-4 bit का group बनाते हैं और 4-bit का group पूरा करने के लिए left में 0 add करते हैं। बाइनरी भिन्न (fraction) को Hexadecimal बनाने के लिए left से 4-4 bit का group बनाया जाता है और 4-bit का group पूरा करने के लिए right में 0 add किया जाता है।

• (110101.111101)₂ को Hexadecimal में बदलें—

■ Hexadecimal Number से Binary Number :

- Hexadecimal से Binary बनाने के लिए Hexadecimal के प्रत्येक संख्या के लिए 4-not binary लिखा जाता है।
- (3 A D)₁₆ को Binary में बदलें—

$$\begin{array}{cccc} \frac{3}{\downarrow} & \frac{A}{\downarrow} & \frac{D}{\downarrow} \\ 0011 & 1010 & 1101 \\ (3AD)_{16} = (001110101101)_2 \end{array}$$

■ Octal से Hexadecimal Number में :

- Octal से Hexadecimal बनाने के लिए पहले Octal से Binary, उसके बाद binary से Hexadecimal Number बनाया जाता है।
- Hexadecimal से Octal Number में :
- Hexadecimal से Octal बनाने के लिए पहले Hexadecimal से Binary, उसके बाद binary से Octal Number बनाया जाता है।
- Binary Addition (द्विआधारी संख्या पद्धित का जोड़ नियम):

2-bit addition

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$ with carry 1
3-bit addition
 $0 + 0 + 0 = 0$
 $0 + 0 + 1 = 1$
 $0 + 1 + 0 = 1$
 $0 + 1 + 1 = 0$ with carry 1
 $1 + 0 + 0 = 1$
 $1 + 0 + 1 = 0$ with carry 1

1 + 1 + 0 = 0 ,, ,, • 1010 + 1010 का binary addition क्या होगा ?

10 10	10				
10 10	10				
10100	20				
1010 का decimal v	alue — 8	4	2	1	
	1	0	1	0	
	= 8	+ 2 =	10		
10100 का decimal	value — 16	8	4	2	1
	1	0	1	0	0
	= 16	5 + 4 =	= 20		

- addition rule में 1 + 1 = 0 होता है with carry 1 लेकिन OR gate के case में दोनों Input 1 (high) रहने पर output जोड़ के 1 आता है क्योंकि gate में 1 means ON तथा 0 means OFF होता है।
- घटाव का नियम :

$$0-0=0$$

 $1-0=1$
 $0-1=0$ with borrow 1
 $1-1=0$

- 1's complement करने के लिए 0 को 1 तथा 1 को 0 में बदलते हैं।
 example: 1 0 0 1 0 का 1's complement → 0 1 1 0 1
- 2's complement करने के लिए 1's complement करके result में 1 जोड दिया जाता है।

example: 10010 का 2's complement

 $01101 \longrightarrow 1$'s complement

 $01110 \longrightarrow 2$'s complement

- BCD code is Binary coded decimal.
- BCD code 4 bit binary code होता है, इसका range 0 से 9 तक valid (मान्य) होता है।
- BCD code प्रत्येक decimal digit के लिए 4-bit binary code होता है।

Ex. : (16)₁₀ का BCD code

0001 0110 = (0 0 0 1 0 1 1 0)_{BCD} BCD Code 1 से 9 तक binary no. के समान ही होता है, 9 से ज्यादा होने पर यह binary के समान नहीं होता है।

$$16$$
 का binary -10000 होता है।
iviq 16 का BCD -00010110 होता है।
 9 का binary -1001 होता है।
 9 का BCD -1001 होता है।

Decimal	Hexadecimal	Octal	Binary	BCD
0	0	0	0000	0 से
1	1	1	0001	9
2	2	2	0010	तक का
3	3	3	0011	Binary
4 5	4	4 5	0100	और
	5		0101	BCD
6	6	6	0110	एक ही
7	7	7	0111	समान
8	8	10	1000	होता
9	9	11	1001	है।
10	A	12	1010	00010000
11	В	13	1011	00010001
12	C	14	1100	00010010
13	D	15	1101	00010011
14	Е	16	1110	00010100
15	F	17	1111	0001010

- द्विआधारी संख्या पद्धित में केवल दो अंक उपयोग किया जाता है—0 और 1
- 0 और 1 के उपयोग करके सभी अंक बनाया (दर्शाया) जा सकता है।
- द्विआधारी संख्या पद्धित में केवल दो स्थित (state) होते हैं। ON/1 और OFF/0
- द्विआधारी का signal graph में भी दो स्थिति दर्शाया जाता है। ON या OFF, यह Continuous/sine wave नहीं होता है।

Objective Questions

एक बाइट (byte) में कितने बिट होते हैं? (A) 2 (B) 4 (C) 8 (D) 16 निम्न में से कौन-सी बाइनरी संख्या, डेसीमल संख्या 20 के बराबर है ? 2. (A) 10100 (B) 1001 (C) 1000010 (D) 11111 बाइनरी प्रणाली का रैडिक्स होता है— 3. (B) 10 (A) 2 (C) 16 (D) 18 बाइनरी संख्या प्रणाली में डिजिट्स की संख्या होती है-4. (A) 10 (B) 2 (C) 4 (D) 6 एक बाइट (byte) लम्बी सबसे बडी (maximum) बाइनरी संख्या **5**. का डेसीमल तुल्यांक— (A) 8 (B) 64 (C) 255 (D) 256 एक निबल (nibble) में बिट्स (bits) की संख्या होती है— 6. (A) 2 (B) 4 (C) 6 (D) 8 **7**. ऑक्टल संख्या (567)₈ का डेसीमल तुल्यांक है— (A) 567₁₀ (B) 887₁₀ (C) 375₁₀ (D) 501₁₀ डेसीमल संख्या प्रणाली का रैडिक्स है— 8. (A) 10 (B) 12 (C) 8 (D) 16 हैक्साडेसिमल संख्या प्रणाली का रैडिक्स है— 9. (A) 6 (B) 8 (C) 16 (D) 10 हैक्सा डेसीमल संख्या BC का बाइनरी तुल्यांक है-**10**. (A) 1010 1011 (B) 10111101 (C) 10111100 (D) 1100 1011 बाइनरी संख्या 1010, डेसीमल प्रणाली में किस संख्या के तुल्य है ? 11. (A) 25 (B) 10 (D) 32 (C) 21 डेसीमल संख्या 15 किस बाइनरी संख्या के तुल्य है ? **12**. (A) 11 (B) 111 (D) 1000 पॉजिटिव लॉजिक में डिजिटल सिग्नल का 'high' वोल्टेज लेविल है— **13**. (A) Zero (B) 1 (D) उपरोक्त में कोई नहीं (C) 2 डेसीमल संख्या को बाइनरी में कन्वर्ट करने के लिए डेसीमल संख्या को लगातार से भाग दिया जाता है। (A) 10 (B) 2

(D) 16

13	
15.	$(101101)_2 = (?)_8$ (A) 45 (B) 35 (C) 55 (D) 75
16.	$(43)_{10} = (?)_2$ (A) 101011 (B) 1100 10 (C) 100010 (D) 0110 11
17 .	निम्न में कौन–सा योग (addition) सही है—
	(A) $\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(B) 0 1 0 1
	1 1 1 1
	$\overline{1 0 1 0 0}$
	(C) 0 1 0 1
	1 1 1 1
	$\overline{1}$ $\overline{1}$ $\overline{0}$ $\overline{0}$ $\overline{1}$
	(D) 0 1 0 1
	1 1 1 1
	$\overline{1 0 1 1 1}$
18.	बाइनरी कोडेड डेसीमल संख्यायें (BCD), प्रत्येक डेसीमल डिजिट को प्रदर्शित करती है।– (A) BCD संख्याओं में (B) निबल BCD संख्याओं में (C) उपरोक्त (A) तथा (B) दोनों (D) उपरोक्त में कोई नहीं
19.	डेसीमल संख्या 10 के लिए BCD कोड है— (A) 0001 0000 (B) 1000 0000 (C) 0010 0000 (D) 0000 0001
20.	
	(C) 4 (D) 33
21.	बाइनरी संख्या 1101 का 1's कम्पलीमेण्ट है— (A) 1101 (B) 0010
00	(C) 0000 (D) 0011
22.	डेसीमल संख्या 16 के तुल्य बाइनरी संख्या में कितने बिट्स होंगे ? (A) 6 (B) 5

(C) 8

23.

(C) 4

(A) 0.010101₂

(C) 0.10101₂

(D) 3

(B) 0.101₂

(D) 0.10111₂

डेसीमल संख्या (0.68)₁₀ बाइनरी में तुल्य है—

ELECTRONICS ➤ CHAPTER -3: DIGITAL SYSTEMS

- हैक्सा डेसीमल संख्या A0 का डेसीमल मान है— 24.
 - (A) 80
- (B) 256
- (C) 100
- (D) 160
- बाइनरी संख्या 0110 का 2's कम्पलीमेन्ट है— 25.
 - (A) 1001
- (B) 1000
- (C) 1010
- (D) उपरोक्त में कोई नहीं
- BCD संख्या 1001 0011 का डेसीमल तुल्यांक है— **26**.
 - (A) 147
- (B) 143
- (C) 93
- (D) 39
- बाइनरी संख्या 110.101 के भिन्नात्मक मान का डेसीमल मान है— **27**.
 - (A) 0.125
- (B) 0.625
- (C) 0.825
- (D) 0.50
- BCD कोड में 125 का डेसीमल क्या होगा— 28.
 - (A) 1111101
- (B) 0001 0010 0101
- (C) 7D
- (D) FF2
- 29. डेसीमल संख्या 149 को आक्टल कोड में लिखा जायेगा—
 - (A) 154
- (B) 178
- (C) 254
- (D) 225
- एक n डिजिट्स की बाइनरी संख्या का मान जिसमें प्रत्येक डिजिट **30**. 1 है, _____ होगा।
 - (A) $n^{2} 1$
- (B) 2^n
- (C) $2^{(n-1)}$
- (D) $2^n 1$
- डेसीमल संख्या 13.8125, डिजिटल फॉर्म में के तुल्य है। 31.
 - (A) 1101.1011
- (B) 1011.1111
- (C) 1101.1101
- (D) 1011.1010
- डेसीमल संख्या 17 को बाइनरी में लिखने के लिए आवश्यक डिजिट्स **32**. की संख्या है—
 - (A) 4
- (B) 6
- (C) 7
- (D) 5
- एक 8-bit LED डिसप्ले, LED, ऑन होने पर बाइनरी 1 तथा ऑफ **33**. होने पर बाइनरी 0 प्रदर्शित करता है। यदि डिसप्ले निम्न प्रकार का है तब डिसप्ले की गयी बाइनरी संख्या का डेसीमल तुल्यांक क्या होगा ?

- (A) 100
- (B) 121
- (C) 144
- (D) 172
- 34. डेसीमल संख्या 39, बाइनरी में है—
 - (A) 1000111
- (B) 100111
- (C) 101011
- (D) 100101
- डेसीमल संख्या 175, ऑक्टल प्रणाली में होगी-35.
 - (A) 257
- (B) 752
- (C) 527
- (D) इनमें से कोई नहीं
- 36. बाइनरी संख्या प्रणाली में प्रयुक्त अंक हैं—
 - (A) 0, 0
- (B) 0, 1
- (C) 1.2
- (D) 2, 2
- निम्न बाइनरी संख्या में कितने बाइट हैं-**37**. 1010 1100 0101 1101 1110
 - (A) 2

- (D) $3\frac{1}{2}$
- स्टैन्डर्ड BCD संख्या 0110 0001 1001 का डेसीमल तुल्यांक है— 38.
 - (A) 615
- (B) 916
- (C) 619
- (D) 919
- 39. BCD संख्यायें प्राप्त करने के लिए—
 - (A) डेसीमल संख्याओं को ऑक्टल में कनवर्ट किया जाता है
 - (B) डेसीमल संख्याओं को ऑक्टल में कनवर्ट किया जाता है
 - (C) प्रत्येक डेसीमल डिजिट को 4-बिट बाइनरी में प्रदर्शित किया जाता है
 - (D) बाइनरी को डेसीमल में कनवर्ट किया जाता है
- **40**. बाइनरी भिन्न 0.0111 का डेसीमल तुल्यांक है—
 - (A) 0.4375
- (B) 0.6225
- (C) 0.8325
- (D) 0.1105
- हैक्साडेसीमल संख्या C3 का बाइनरी तुल्यांक है— 41.
 - (A) 1111
- (B) 110011
- (C) 1111100
- (D) 11000011

ANSWERS KEY									
1. (C)	2 . (A)	3 . (A)	4 . (B)	5 . (C)	6. (B)	7 . (C)	8. (A)	9 . (C)	10 . (C)
11. (B)	12 . (C)	13 . (B)	14 . (B)	15 . (C)	16 . (A)	17 . (B)	18 . (B)	19 . (A)	20 . (A)
21 . (B)	22 . (B)	23 . (C)	24 . (D)	25 . (C)	26 . (C)	27 . (B)	28 . (B)	29 . (D)	30 . (D)
31 . (C)	32 . (D)	33 . (D)	34 . (B)	35 . (A)	36 . (B)	37 . (C)	38. (C)	39 . (C)	40 . (A)
41 . (D)									

