Algebraic Structures

Ikhan Choi

July 9, 2023

Contents

I	Groups	3
1	Groups 1.1 Definition of groups	5 5 5
2	Examples of groups 2.1 Cyclic groups	6
3	Group actions 3.1 Representations	7 7 7 7
II	Rings	9
4	Ideals4.1 Definitions of rings and ideals4.2 Maximal and prime ideals4.3 Operations on ideals	10 10 10 10
5	Integral domains5.1 Unique factorization domains5.2 Principal ideal domains5.3 Noetherian rings	11 11 11
6	Polynomial rings 6.1 Irreducible polynomials	12 12 12
II	I Modules	13
7	Modules	14

	7.2 Algebras	14				
	7.3 Free modules	15				
	7.4 Tensor products	15				
8	Exact sequences	16				
	8.1	16				
9	Modules over principal ideal domains	17				
	9.1 Structure theorem of finitely generated modules	17				
π,	77. 77					
LV	Vector spaces	18				
10	Duality	19				
	10.1 Linear functionals	19				
	10.2 Bilinear and sesquilinear forms	19				
	10.3 Adjoint	19				
11 Normal forms						
	11.1 Rational canonical form	20				
	11.2 Jordan normal form	20				
	11.3 Conjugation action					
	11.4 Spectral theorems					
12	Tensor algebras	22				
	12.1 Graded and filtered algebras	22				
	12.2 Exterior algebras	22				
	12.3 Symmetric algebras	22				

Part I

Groups

Groups

1.1 Definition of groups

- **1.1** (Binary operation). Let *A* be a set. A *binary operation* on *A* is a function $\cdot : A \times A \to A$. A binary operation on *A* is called to satisfy
 - (i) the associativity if for every $a, b, c \in A$ we have

$$(a \cdot b) \cdot c = a \cdot (b \cdot c),$$

(ii) the existence of identity if there exists $e \in A$ such that for every $a \in A$ we have

$$a \cdot e = e \cdot a = a$$
,

(iii) the existence of inverses if satisfies (ii) and for every $a \in A$ there is $x \in A$ such that

$$a \cdot x = x \cdot a = e$$

(iv) the *commutativity* if for every $a, b \in A$ we have

$$a \cdot b = b \cdot a$$
.

A *monoid*, *group*, and *abelian group* is an ordered pair (A, \cdot) of a set A and a binary operation $\cdot : A \times A \rightarrow A$ satisfying the first two, three, and four of the above conditions, respectively. An accompanying binary operation is called a *group structure* if it defines a group, that is, it satisfies (i), (ii), and (iii).

- (a) $(\mathbb{N}, +)$ is not a monoid, and (\mathbb{N}, \times) is a monoid.
- (b) $(\mathbb{Z}, +)$ is a group, and (\mathbb{Z}, \times) is a monoid.
- (c) $(\mathbb{Q}, +)$ is a group, and $(\mathbb{Q} \setminus \{0\}, \times)$ is also a group.
- (d) The set of all invertible 2×2 real matrices forms a group with multiplication, which is not abelian.
- **1.2** (Properties of a group structure). We say a group is *additive* if we use the symbol + for the group structure, and *multiplicative* if we use the symbol \cdot or omit the symbol for the group structure.
 - (a) For $g_1, \dots, g_n \in G$, the value of $g_1 \dots g_n$ is well-defined independently of how the expression is bracketed.
 - (b) The identity of G and the inverses of each element $g \in G$ are unique.
 - (c) $(g^{-1})^{-1}$ and $(gh)^{-1} = h^{-1}g^{-1}$ for all $g, h \in G$.
 - (d) The left and right ancellation laws.
- 1.3 (Group table).

1.2 Homomorphisms

homomorphisms, image, kernel, preimage isomorphism

1.3 Subgroups

- 1.4 (Subgroups).
- 1.5 (Lagrange theorem). cosets, index
- **1.6** (Subgroup lattice).

generators

1.4 Quotient groups

- 1.7 (Normal subgroups).
- 1.8 (Isomorphism theorems).

Exercises

- 1.9 (Direct sum and direct product).
- 1.10 (Automorphism groups).

Examples of groups

2.1 Cyclic groups

2.1 (Orders). cyclic groups

2.2 Dihedral and Dicyclic groups

2.2 (Dihedral groups).

2.3 (Dicyclic groups).

2.4 (Quoternion group).

2.3 Symmetric and alternating groups

sign homomorphism generators, transpositions cycle type

2.4 Matrix groups

general, special

Group actions

3.1 Representations

3.2 Orbits and stabilizers

Invariants on orbit space.

- 3.1 (Orbit-stabilizer theorem). The size of orbits. The number of orbits. The class equation.
- **3.2** (Transitive actions). (a) Stabilizers are all isomorphic.
- **3.3** (Free actions). no fixed point, trivial stabilizer for any point, every orbit has 1-1 correspondence to group

3.3 Action by left multiplication

3.4 Action by conjugation

- 3.4 (Centralizers and normalizers).
- 3.5 (Conjugacy classes of elements).
- 3.6 (Conjugacy classes of subgroups).

 $\label{eq:hamiltonian} H \ has \ index \ n: \ G \ can \ act \ on \ Sym(G/H): left \ mul \ K \ normalizes \ H: K -> NG(H) -> NG(H)/H \ with \ ker = KnH \ K \ normalizes \ H: K -> NG(H) -> Aut(H) \ with \ ker = CG(H)$

Exercises

Problems

- 1. Show that a group of order 2p for a prime p has exactly two isomorphic types.
- 2. Let *G* be a finite group of order *n* and *p* the smallest prime divisor of *n*. Show that a subgroup of *G* of index *p* is normal in *G*.
- 3. Show that a finite group *G* satisfying $\sum_{g \in G} \operatorname{ord}(g) \leq 2n$ is abelian.
- 4. Find all homomorphic images of A_4 up to isomorphism.

- 5. For a prime p, find the number of subgroups of $Z_{p^2} \times Z_{p^3}$ of order p^2 .
- 6. Let G be a finite group. If G/Z(G) is cylic, then G is abelian.
- 7. Let *G* be a finite group. If the cube map $x \mapsto x^3$ is a surjective endomorhpism, then *G* is abelian.
- 8. Show that if $|G| = p^2$ for a prime p, then a group G is abelian.
- 9. Show that the order of a group with only on automorphism is at most two.

Part II

Rings

Ideals

4.1 Definitions of rings and ideals

4.1 (Definition of rings). A *ring* is an abelian group R = (R, +) together with a *multiplication* \times : $R \times R \to R$ which satisfies the associativity law, such that the following compatibility condition holds: the *distributive laws*:

$$r \times (s+t) = (r \times s) + (r \times t), \qquad (s+t) \times r = (s \times r) + (t \times r), \qquad r, s, t \in \mathbb{R}.$$

We usually omit the cross symbol to write $r \times s$ as rs.

We are usually concerned with *commutative unital* rings, that is, rings whose multiplication is commutative and admits a multiplicative identity. The additive and multiplicative identities are usually denoted by 0 and 1 and called the *zero* and the *unity* respectively.

- **4.2** (Definition of ideals). Let *R* be a commutative unital ring.
- 4.3 (Quotient rings).
- 4.4 (Isomorphism theorems).

4.2 Maximal and prime ideals

fields and integral domains existence by Zorn's lemma

4.3 Operations on ideals

Exercises

size of units, the number of ideals

Integral domains

5.1 Unique factorization domains

5.2 Principal ideal domains

5.1. In PID *R*,

(a) every irreducible element is prime,	(Euclid's lemma)
(b) every two elements has greatest common divisor,	(existence of gcd)
(c) the gcd is given as a R-linear combination,	(Bźout's identity)
(d) factorization into primes is unique up to permutation,	(UFD)
(e) every prime ideal is maximal.	(Krull dimension 1)

5.3 Noetherian rings

Exercises

Problems

- 1. Show that a finite integral domain is a field.
- 2. Show that every ring of order p^2 for a prime p is commutative.
- 3. Show that a semiring with multiplicative identity and cancellative addition has commutative addition.
- 4. Show that the complement of a saturated monoid in a commutative ring is a union of prime ideals

Exercises

5.2 (Primitive roots). We find all n such that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic.

Polynomial rings

6.1 Irreducible polynomials

relation to maximal ideals Irreducibles over several fields

- 6.1 (Gauss lemma).
- **6.2** (Eisenstein criterion).

6.2 Polynomial rings over a field

- **6.3** (Euclidean algorithm for polynoimals).
- **6.4** (Polynomial rings over UFD).
- **6.5** (Hilbert's basis theorem).

maximal ideals and monic irreducibles

Part III

Modules

Modules

7.1 Modules

7.1 (Definition of modules). Let R be a possibly non-commutative unital ring. A *left* R-module is an abelian group (M,+) together with a unital ring homomorphism $\alpha: R \to \operatorname{End}_{\mathbb{Z}}(M)$, where $\operatorname{End}_{\mathbb{Z}}(M)$ denotes the group endomorphisms on M. The homomorphism α is called the *left action* and the operation $\cdot: R \times M \to M$ defined by $r \cdot m := \alpha(r)(m)$ is called the *scalar multiplication*. We usually omit the dot to denote it by rm.

(a) If R is commutative, then

submodules quotient modules isomorphism theorems

7.2 Algebras

7.2 (Definition of algebras). Let R be a commutative unital ring. An associative R-algebra is a possibly non-commutative and possibly non-unital ring A together with a unital ring homomorphism $\alpha: R \to (Z(A), \mathrm{id}_A)$, where Z(A) denotes the center of A, which is considered as a subring of $\mathrm{End}_{\mathbb{Z}}(A)$ so that an R-algebra is an R-module. Although there are some important examples of *non-associative* algebras in which the associativity of multiplication is dropped, in most cases we will assume that an R-algebra is associative.

- (a) The set of matrices $M_n(R)$ over a ring R is a unital R-algebra.
- (b) The set of quaternions \mathbb{H} is an \mathbb{R} -algebra.

7.3 (Algebras as non-commutative rings). The term algebra is commonly used when we have to consider either non-commutative or non-unital of rings. Let R be a ring. An R-algebra also can be defined as a non-commutative and non-unital ring $(A, +, \times)$ together with a ring homomorphism $\eta: R \to Z(A)$, where

$$Z(A) := \{ a \in A : ab = ba \text{ for all } b \in A \},$$

which is called the *center*. The homomorphism η defines a scalar multiplication via

$$: R \times A \rightarrow A : (r, a) \mapsto \eta(r)a.$$

- (a) A non-commutative and non-unital ring R is a Z(R)-algebra.
- (b) The "module-with-multiplication definition" is equivalent to the "ring-with-scalar-multiplication definition".

7.3 Free modules

generators, cyclic direct sum free modules

7.4 Tensor products

Exact sequences

8.1

injective modules projective modules flat modules endomorphism algebra Tor and Ext

Modules over principal ideal domains

9.1 Structure theorem of finitely generated modules

invariant factors and elementary divisors

9.1 (Structure theorem of finitely generated modules). Let R be a principal ideal domain and let M be a finitely generated module.

If we know the ideal structure of a PID R, then we can classify all finitely generated modules over R.

- 9.2 (Fundamental theorem of abelian groups).
- 9.3 (Cyclic decomposition).

Part IV Vector spaces

Duality

10.1 Linear functionals

10.1 (Double dual space).

10.2 Bilinear and sesquilinear forms

10.2 (Polarization identity). (a) Let F be a field of characteristic not 2. If $\langle -, - \rangle$ is a symmetric bilinear form, then

$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2).$$

(b) Let $F = \mathbb{C}$. If $\langle -, - \rangle$ is a sesquilinear form, then

$$\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2}.$$

(c) isometry check

10.3 (Cauchy-Schwarz inequality). (a) Let $F=\mathbb{R}$. If $\langle -,- \rangle$ is a positive semi-definite symmetric bilinear form, then

(b) Let $F=\mathbb{C}$. If $\langle -,- \rangle$ is a positive semi-definite Hermitian form, then

10.4 (Dual space identification). Let $\langle -, - \rangle$ be a non-degenerate bilinear form

10.3 Adjoint

10.5 (Adjoint linear transforms).

Normal forms

11.1 Rational canonical form

11.1 (Finitely generated F[x]-modules). Let F be a field. Then, the map

$$V \mapsto (V, x)$$

defines a one-to-one correspondence

$$\left\{\begin{array}{c} \text{finitely generated} \\ F[x]\text{-modules} \end{array}\right\} \rightarrow \left\{(V,T)\;;\;\; \begin{array}{c} V \text{ is a finite-dimensional vector spaces over } F, \\ T:V\to V \text{ is a linear transform} \end{array}\right\}.$$

11.2 (Cyclic subspaces).

11.2 Jordan normal form

11.3 Conjugation action

11.3 (Similar matrices).

11.4 (Commuting matrices).

11.4 Spectral theorems

Exercises

11.5 (Conjugacy classes of $GL_2(\mathbb{F}_p)$). The conjugacy classes are classified by the Jordan normal forms. There are four cases: for some a and b in \mathbb{F}_p ,

(a)
$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
: $\binom{p-1}{2} = \frac{(q-1)(q-2)}{2}$ classes of size $\frac{|G|}{(q-1)^2} = q(q+1)$.

(b)
$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$
: $q-1$ classes of size 1.

(c)
$$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$$
: $q-1$ classes of size $\frac{|G|}{q(q-1)} = q^2 - 1$.

(d) otherwise, the eigenvalues are in $\mathbb{F}_{p^2}\setminus\mathbb{F}_p$. In this case, the number of conjugacy classes is same as the number of monic irreducible qudratic polynomials over \mathbb{F}_p ; $\frac{|\mathbb{F}_{p^2}|-|\mathbb{F}_p|}{2}=\frac{p(p-1)}{2}$ classes. Their size is $\frac{p(p-1)}{2}$.

Tensor algebras

- 12.1 Graded and filtered algebras
- 12.2 Exterior algebras
- 12.1 (Determinants).
- 12.3 Symmetric algebras