2	(a)	State the principle of conservation of momentum.

(b) Two blocks, A and B, are on a horizontal frictionless surface. The blocks are joined together by a spring, as shown in Fig. 2.1.

Fig. 2.1

Block A has mass 4.0 kg and block B has mass 6.0 kg.

The variation of the tension F with the extension x of the spring is shown in Fig. 2.2.

Fig. 2.2

The	two	blocks are held apart so that the spring has an extension of 8.0 cm.
(i)	Sho	ow that the elastic potential energy of the spring at an extension of 8.0 cm is 0.48 J.
		ופו
(ii)		e blocks are released from rest at the same instant. When the extension of the spring comes zero, block A has speed $v_{\rm A}$ and block B has speed $v_{\rm B}$. the instant when the extension of the spring becomes zero, use conservation of momentum to show that $\frac{\text{kinetic energy of block A}}{\text{kinetic energy of block B}} = 1.5$
		[3]
	2.	use the information in (b)(i) and (b)(ii)1 to determine the kinetic energy of block A. It may be assumed that the spring has negligible kinetic energy and that air resistance is negligible.
		kinetic energy of block A =J [2]

(iii) The blocks are released at time t = 0.

On Fig. 2.3, sketch a graph to show how the momentum of block A varies with time t until the extension of the spring becomes zero.

Numerical values of momentum and time are not required.

Fig. 2.3

[2]

[Total: 11]