

TMA4100

Matematikk 1

Høst 2014

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Løsningsforslag — Øving 11

5.7.4 Vi observerer at både $y = \sqrt{2}\cos\left(\frac{\pi x}{4}\right)$ og y = |x| er like funksjoner. Det vil si at arealet til høyre for y-aksen er lik arealet til venstre for y-aksen. Vi ser derfor kun på området $x \ge 0$. For å finne skjæringspunktet til grafene, må vi løse ligningen

$$x = \sqrt{2}\cos\left(\frac{\pi x}{4}\right).$$

For å løse denne bruker vi at $\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$. Vi ser derfor at x = 1 er en løsning. Skjæringspunktet er altså i (x, y) = (1, 1).

Det er også mulig å løse ligningen ved å bruke fikspunktiterasjon. Vi velger da et startpunkt x_0 , og itererer oss frem til løsningen ved hjelp av iterasjonsskjemaet

$$x_{n+1} = \sqrt{2}\cos\left(\frac{\pi x_n}{4}\right).$$

Alternativt kunne vi også ha brukt Newtons metode.

Vi finner nå arealet, A, ved å integrere differansen mellom de to kurvene fra x = 0 til x = 1, og deretter multiplisere med 2 for å få med arealet til venstre for y-aksen.

$$A = 2 \int_0^1 \left(\sqrt{2}\cos\left(\frac{\pi x}{4}\right) - x\right) dx$$
$$= 2\left(\sqrt{2}\frac{4}{\pi}\sin\left(\frac{\pi x}{4}\right) - \frac{1}{2}x^2\right)\Big|_0^1$$
$$= 2\left(\sqrt{2}\frac{4}{\pi}\sin\left(\frac{\pi}{4}\right) - \frac{1}{2}\right)$$
$$= \frac{8\sqrt{2}}{\pi}\frac{1}{\sqrt{2}} - 1 = \frac{8}{\pi} - 1.$$

"Review Exercise 50", side 388

Vi skal evaluere integralet

$$I = \int x \tan^{-1} \left(\frac{x}{3}\right) \mathrm{d}x.$$

Vi prøver med delvis integrasjon, se side 332–333 i boka. Vi følger notasjonen i boka, og setter $U = \tan^{-1}\left(\frac{x}{3}\right)$ og d $V = x \, \mathrm{d}x$. Da er $V = \frac{1}{2}x^2$ og

$$dU = \frac{1}{\left(\frac{x}{3}\right)^2 + 1} \cdot \frac{1}{3} dx = \frac{3}{x^2 + 9} dx.$$

Integralet kan nå uttrykkes som

$$I = UV - \int V dU = \tan^{-1}\left(\frac{x}{3}\right) \cdot \frac{1}{2}x^2 - \int \frac{1}{2}x^2 \frac{3}{x^2 + 9} dx$$
$$= \frac{1}{2}x^2 \tan^{-1}\left(\frac{x}{3}\right) - \frac{3}{2} \int \frac{x^2}{x^2 + 9} dx + C.$$

Vi står igjen med et nytt integral. Her er integranden en rasjonal funksjon der polynomordenen er lik for teller og nevner. Vi bruker derfor polynomdivisjon, og kan uttrykke integralet som

$$\int \frac{x^2}{x^2 + 9} \, \mathrm{d}x = \int \left(1 - \frac{9}{x^2 + 9} \right) \, \mathrm{d}x.$$

Vi husker fra tidligere i oppgaven at

$$\frac{\mathrm{d}}{\mathrm{d}x}\tan^{-1}\left(\frac{x}{3}\right) = \frac{3}{x^2 + 9}.$$

Vi har derfor at

$$\int \frac{9}{x^2 + 9} \, \mathrm{d}x = 3 \int \frac{3}{x^2 + 9} \, \mathrm{d}x = 3 \tan^{-1} \left(\frac{x}{3}\right),$$

slik at

$$\int \frac{x^2}{x^2 + 9} \, \mathrm{d}x = x - 3 \tan^{-1} \left(\frac{x}{3}\right).$$

Vi setter så dette inn i uttrykket for I ovenfor, slik at

$$I = \frac{1}{2}x^{2} \tan^{-1}\left(\frac{x}{3}\right) - \frac{3}{2}\left(x - 3\tan^{-1}\left(\frac{x}{3}\right)\right) + C$$
$$= \frac{1}{2}x^{2} \tan^{-1}\left(\frac{x}{3}\right) + \frac{9}{2}\tan^{-1}\left(\frac{x}{3}\right) - \frac{3}{2}x + C$$
$$= \frac{1}{2}\left(x^{2} + 9\right)\tan^{-1}\left(\frac{x}{3}\right) - \frac{3}{2}x + C.$$

7.6.8 Vi tegner først opp et tverrsnitt av bassenget:

Vi har også tegnet inn et tynt volumelement i grått. Som vist på figuren har dette lengde 10y når $0 \le y \le 2$ og lengde $20\,\mathrm{m}$ når $2 \le y \le 3$. Bredden til bassenget er konstant lik 8 m og høyden til volumelementet er dy. Volumet i m³ til volumelementet blir derfor

$$dV = \begin{cases} 8 \cdot 10y \, dy = 80 \, dy, & 0 \le y \le 2, \\ 8 \cdot 20 \, dy = 160 \, dy, & 2 \le y \le 3. \end{cases}$$

Tyngden er gitt som d $F = \rho g \, dV$. Videre må volumelementet løftes (3 - y) m. Arbeidet som kreves er derfor gitt som

$$dW = (3 - y) dF = (3 - y)\rho g dV = \begin{cases} 80\rho g y (3 - y) dy, & 0 \le y \le 2, \\ 160\rho g (3 - y) dy, & 2 \le y \le 3. \end{cases}$$

Dersom vi setter $\rho = 1000 \, \text{kg/m}^3$ og $g = 9.81 \, \text{m/s}^2$, får vi det totale arbeidet i N·m ved å integrere dW fra y = 0 til y = 3,

$$\begin{split} W &= \int_{y=0}^{y=3} \mathrm{d}W = \int_{0}^{2} 80 \rho g y (3-y) \, \mathrm{d}y + \int_{2}^{3} 160 \rho g (3-y) \, \mathrm{d}y \\ &= 80 \rho g \int_{0}^{2} (3y-y^2) \, \mathrm{d}y + 160 \rho g \int_{2}^{3} (3-y) \, \mathrm{d}y \\ &= 80 \rho g \left(\frac{3}{2} y^2 - \frac{1}{3} y^3\right) \Big|_{0}^{2} + 160 \rho g \left(3y - \frac{1}{2} y^2\right) \Big|_{2}^{3} \\ &= 80 \rho g \left(\frac{3}{2} 2^2 - \frac{1}{3} 2^3\right) + 160 \rho g \left(3 \cdot 3 - \frac{1}{2} 3^2 - \left(3 \cdot 2 - \frac{1}{2} 2^2\right)\right) \\ &= 80 \rho g \frac{10}{3} + 160 \rho g \frac{1}{2} \\ &= \frac{1040}{3} \rho g = \frac{1040}{3} \cdot 1000 \cdot 9,81 \approx 3,4 \cdot 10^6. \end{split}$$

Det kreves altså et arbeid på omlag $3,4\cdot 10^6\,\mathrm{N\cdot m}$ for å løfte alt vannet ut av bassenget.

7.7.2 Antall databrikker som selges per uke er gitt ved $s(t) = te^{-t/10}$. Dette tilsvarer raten som varen blir solgt med. Antall varer T solgt det første året får vi da ved å integrere s(t) fra t = 0 til t = 52.

$$T = \int_0^{52} s(t) dt = \int_0^{52} t e^{-t/10} dt.$$

Dette integralet løser vi ved delvis integrasjon. La U=t og d $V=e^{-t/10}\,\mathrm{d}t$. Da er d $U=\mathrm{d}t$ og $V=-10e^{-t/10},$ slik at

$$\int t e^{-t/10} dt = UV - \int V dU = t \left(-10e^{-t/10} \right) - \int \left(-10e^{-t/10} \right) dt$$

$$= -10t e^{-t/10} + 10 \int e^{-t/10} dt$$

$$= -10t e^{-t/10} + 10 \left(-10e^{-t/10} \right) + C$$

$$= -10(t+10)e^{-t/10} + C.$$

Dette gir

$$T = -10(t+10)e^{-t/10}\Big|_0^{52} = -10 \cdot 62e^{-52/10} - (-10 \cdot 10) \approx 97.$$

Det blir altså solgt 97 databrikker det første året.

7.9.12 Den oppgitte ligningen er en førsteordens lineær differensialligning (se side 450 i boka). Vi bruker først metoden med integrerende faktor. Den integrerende faktoren er gitt som $e^{\mu(x)}$ der $\mu(x)$ er integralet av faktoren foran y-leddet,

$$\mu(x) = \int \frac{2}{x} \, \mathrm{d}x = 2 \ln x.$$

Altså er den integrerende faktoren $e^{2 \ln x} = x^2$. Vi multipliserer begge sider av ligningen med dette uttrykket,

$$\frac{\mathrm{d}y}{\mathrm{d}x}x^2 + 2yx = 1.$$

Vi gjenkjenner så venstre siden som den deriverte av x^2y , slik at

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2y\right) = 1.$$

Vi integrerer begge sider med hensyn på x og får at

$$x^2y = x + C \quad \Rightarrow \quad y = \frac{1}{x} + \frac{C}{x^2}.$$

En annen metode vi kan bruke er å sette $y=k(x)\mathrm{e}^{-\mu(x)},$ der $\mathrm{e}^{-\mu(x)}=x^{-2}$ er løsningen av det homogene ligningssystemet

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2y}{x} = 0.$$

Vi setter så uttryket for y inn i differensialligningen, og prøver å bestemme hva k(x) må være for at $y = k(x)x^{-2}$ skal være en løsning.

$$k'(x)x^{-2} + k(x)(-2)x^{-3} + 2k(x)x^{-3} = \frac{1}{x^2}$$
$$k'(x)x^{-2} = \frac{1}{x^2}$$
$$k'(x) = 1$$
$$k(x) = \int dx = x + C.$$

Dermed er løsningen gitt ved $y = (x + C)x^{-2} = \frac{1}{x} + \frac{C}{x^2}$. Dette er samme svar som når vi brukte den integrerende faktoren.

7.9.22 Vi bruker analysens fundamentalteorem (*The Fundamental Theorem of Calculus*, side 311–312 i boka) og deriverer begge sider av ligningen,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(y(x))^2}{1+x^2}.$$

Dette er en separabel førsteordens differensialligning. Vi skriver om slik at vi får alle ledd avhengig av y på venstre siden og alle ledd avhengig av x på høyre siden. Deretter integrerer vi begge sider.

$$\frac{dy}{y^2} = \frac{dx}{1+x^2}$$

$$\int \frac{dy}{y^2} = \int \frac{dx}{1+x^2}$$

$$-\frac{1}{y} = \tan^{-1}x + C$$

$$y = \frac{-1}{\tan^{-1}x + C}.$$

18.3.2 Vi er gitt initialverdiproblemet

$$y' = x + y, \quad y(1) = 0.$$

La oss først bemerke at dette problemet har eksakt løsning $y_E = -(x+1) + 2e^{x-1}$. Denne løsningen kan finnes blant annet ved hjelp av metoden med integrerende faktor (side 450 i boka). Vi vil bruke denne til å finne feilen som de numeriske metodene gir.

La f(x,y) = x + y. Forbedret Eulers metode (eller Heuns metode; *Improved Euler method* side 1004 i boka) er gitt ved iterasjonsskjemaet

$$\begin{aligned} x_{n+1} &= x_n + h, \\ u_{n+1} &= y_n + hf(x_n, y_n) = y_n + h(x_n + y_n), \\ y_{n+1} &= y_n + h\frac{f(x_n, y_n) + f(x_{n+1}, u_{n+1})}{2} = y_n + h\frac{x_n + y_n + x_{n+1} + u_{n+1}}{2}. \end{aligned}$$

I vårt tilfelle er startverdiene for iterasjonene $x_0 = 1$ og $y_0 = 0$.

a) Med h = 0.2 gir første iterasjon

$$x_1 = x_0 + h = 1 + 0.2 = 1.2,$$

 $u_1 = y_0 + h(x_0 + y_0) = 0 + 0.2(1 + 0) = 0.2,$
 $y_1 = y_0 + h\frac{x_0 + y_0 + x_1 + u_1}{2} = 0 + 0.2\frac{1 + 0 + 1.2 + 0.2}{2} = 0.24.$

De resterende iterasjonene er gjengitt i tabellen under.

n	x_n	u_n	y_n	$y_E - y_n$
0	1,000000	-	0,000000	0,000000
1	1,200000	0,200000	0,240000	0,002806
2	1,400000	$0,\!528000$	$0,\!576800$	0,006849
3	1,600000	0,972160	1,031696	0,012542
4	1,800000	1,558035	1,630669	0,020413
5	2,000000	2,316803	2,405416	0,031147

b) Med h = 0.1 får vi (dette bør gjøres på en pc)

n	x_n	u_n	y_n	$y_E - y_n$
0	1,000000	-	0,000000	0,000000
1	1,100000	0,100000	0,110000	0,000342
2	1,200000	$0,\!231000$	$0,\!242050$	0,000756
3	1,300000	$0,\!386255$	$0,\!398465$	$0,\!001252$
4	1,400000	$0,\!568312$	$0,\!581804$	$0,\!001845$
5	1,500000	0,779985	0,794894	0,002549
6	1,600000	1,024383	1,040857	0,003380
7	1,700000	1,304943	1,323147	0,004358
8	1,800000	1,625462	1,645578	0,005504
9	1,900000	1,990136	2,012364	0,006843
10	2,000000	2,403600	$2,\!428162$	$0,\!008402$

c) Med h = 0.05 får vi

n	x_n	u_n	y_n	$y_E - y_n$
0	1,000000	-	0,000000	0,000000
1	1,050000	$0,\!050000$	$0,\!052500$	0,000042
2	1,100000	$0,\!107625$	$0,\!110253$	0,000089
3	1,150000	$0,\!170766$	$0,\!173529$	0,000140
4	1,200000	$0,\!239705$	$0,\!242609$	0,000196
5	1,250000	$0,\!314740$	$0,\!317793$	0,000258
6	1,300000	$0,\!396183$	$0,\!399393$	0,000325
7	1,350000	$0,\!484362$	$0,\!487736$	0,000399
8	1,400000	$0,\!579623$	$0,\!583170$	0,000479
9	1,450000	$0,\!682329$	0,686058	0,000566
10	1,500000	0,792861	0,796781	0,000662
11	1,550000	0,911620	0,915741	0,000765
12	1,600000	1,039028	1,043360	0,000877
13	1,650000	$1,\!175528$	1,180082	0,000999
14	1,700000	$1,\!321586$	$1,\!326374$	0,001131
15	1,750000	$1,\!477693$	$1,\!482726$	$0,\!001274$
16	1,800000	1,644362	1,649653	0,001429
17	1,850000	1,822136	1,827698	$0,\!001596$
18	1,900000	2,011583	2,017430	0,001777
19	1,950000	$2,\!213301$	$2,\!219448$	0,001971
20	2,000000	$2,\!427920$	$2,\!434382$	$0,\!002182$

Oppsummert ser vi at approksimasjonen av y(2) stadig blir bedre når vi minsker steglengden h. Feilen går som $\mathcal{O}(h^2)$. Det vil si at når vi halverer h vil feilen minske med en faktor omlag $\frac{1}{4}$.

[18.3.16] Vi er gitt en funksjon $\phi(x)$ med følgende egenskaper,

$$\begin{split} \phi(0) &= A \geq 0, \\ \phi'(x) &\geq k \phi(x) \quad \text{på } [0, X], \end{split}$$

der k og Xer positive konstanter. Vi ønsker å vise at $\phi(x) \geq A \mathrm{e}^{kx}$ på [0,X]. Vi

følger hintet og regner ut den deriverte til $\frac{\phi(x)}{e^{kx}},$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\phi(x)}{e^{kx}} \right) = \frac{\phi'(x)e^{kx} - \phi(x)ke^{kx}}{e^{2kx}}$$
$$= \frac{\phi'(x) - k\phi(x)}{e^{kx}}.$$

Vi bruker så den andre betingelsen og får at

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\phi(x)}{e^{kx}} \right) \ge \frac{k\phi(x) - k\phi(x)}{e^{kx}} = 0.$$

Dette betyr at $\frac{\phi(x)}{e^{kx}}$ er ikke-synkende på [0,X]. Altså må

$$\frac{\phi(x)}{e^{kx}} \ge \frac{\phi(0)}{e^0} = \phi(0) = A.$$

for alle $x \in [0, X]$. Ved å gange opp med e^{kx} på begge sider står vi igjen med ulikheten

$$\phi(x) \ge Ae^{kx}$$
,

som var det vi ønsket å vise.