Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерных технологий

Лабораторная работа №2 Синтез помехоустойчивого кода Вариант 99

Выполнила:

Павличенко Софья Алексеевна, Р3115

Проверила:

Авксентьева Елена Юрьевна,

к.п.н., доцент факультета ПИиКТ

Санкт-Петербург 2023г.

Оглавление

Обязательные задания	3
Решения	3
Часть 1	3
Часть 2	5
Часть 3	6
Дополнительное задание	7
Решение	7
Заключение	8
Список источников	. 9

Обязательные задания

- 1. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 2. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 3. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 4. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 5. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 6. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 7. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Решения

Часть 1

1) $83 = 1010011_2$

\mathbf{r}_1	r ₂	iı	r ₃	i_2	i ₃	i 4
1	0	1	0	0	1	1

	1	2	3	4	5	6	7	
2 ^k	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i ₂	i ₃	i ₄	S
1	X		X		X		X	s ₁
2		X	X			X	X	S 2
4				X	X	X	X	S 3

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 1 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 1 = 1$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$s(s_1, s_2, s_3) = s(1, 1, 0)$$

Ошибка в бите і₁. Инвертируем его и получаем правильную последовательность 1000011.

2) $13 = 0001101_2$

\mathbf{r}_1	r ₂	i ₁	r ₃	i ₂	i ₃	i 4
0	0	0	1	1	0	1

	1	2	3	4	5	6	7	
2 ^k	\mathbf{r}_1	r ₂	i_1	r ₃	i ₂	i ₃	i 4	S
1	X		X		X		X	s ₁
2		X	X			X	X	S 2
4				X	X	X	X	S 3

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 0$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 1 = 1$$

$$s(s_1, s_2, s_3) = s(0, 1, 1)$$

Ошибка в бите із. Инвертируем его и получаем правильную последовательность 0001111.

3)
$$101 = 1100101_2$$

r ₁	r ₂	\mathbf{i}_1	r ₃	i ₂	i ₃	i 4
1	1	0	0	1	0	1

	1	2	3	4	5	6	7	
2 ^k	\mathbf{r}_1	r_2	i ₁	r ₃	i ₂	i ₃	i 4	S
1	X		X		X		X	S ₁
2		X	X			X	X	S ₂
4				X	X	X	X	S 3

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 0 = 0$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

$$s(s_1, s_2, s_3) = s(1, 0, 0)$$

Ошибка в бите r_1 . Инвертируем его и получаем правильную последовательность 0100101.

4) $95 = 10111111_2$

\mathbf{r}_1	r ₂	iı	r ₃	i ₂	i ₃	i 4
1	0	1	1	1	1	1

	1	2	3	4	5	6	7	
2 ^k	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i 3	i 4	S
1	X		X		X		X	s ₁
2		X	X			X	X	S ₂
4				X	X	X	X	S 3

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 1 \bigoplus 1 = 0$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 1 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 1 \bigoplus 1 = 0$$

$$s(s_1, s_2, s_3) = s(0, 1, 0)$$

Ошибка в бите г₂. Инвертируем его и получаем правильную последовательность 1111111.

Часть 2

97 = 000000001100001

\mathbf{r}_1	r ₂	iı	r ₃	i ₂	i ₃	i 4	r ₄	i ₅	i ₆	i ₇	i ₈	i ₉	i ₁₀	i ₁₁
0	0	0	0	0	0	0	0	1	1	0	0	0	0	1

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^k	rı	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄	r ₄	i ₅	i ₆	i ₇	i ₈	i9	i ₁₀	i ₁₁	S
1	X		X		X		X		X		X		X		X	s_1
2		X	X			X	X			X	X			X	X	s_2
4				X	X	X	X					X	X	X	X	S 3
8								X	X	X	X	X	X	X	X	S4

 $s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0$ $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0$ $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 = 1$ $s_4 = r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 1$

$$s(s_1, s_2, s_3, s_4) = s(0, 0, 1, 1)$$

Ошибка в бите i_8 . Инвертируем его и получаем правильную последовательность 00000001101001.

Часть 3

$$(83 + 13 + 101 + 95 + 97) * 4 = 1556$$

 $2^r \ge r + i + 1$, где i - число информационных разрядов в сообщении = 1556, r - число проверочных разрядов в сообщении

Тогда $2^r \ge r + 1557$. Отсюда минимальное r = 11.

Коэффициент избыточности $r / n = r / (i + r) = 11 / (1556 + 11) \approx 0,00701978$.

Дополнительное задание

Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Решение

Решение дополнительного задания представлено на Рис. 1.

```
message = list(map(int, [i for i in input()]))
order = ['r1', 'r2', 'i1', 'r3', 'i2', 'i3', 'i4']
bits = dict(zip(order, message))

s1 = int(bits['r1'] ^ bits['i1'] ^ bits['i2'] ^ bits['i4'])
s2 = int(bits['r2'] ^ bits['i1'] ^ bits['i3'] ^ bits['i4'])
s3 = int(bits['r3'] ^ bits['i2'] ^ bits['i3'] ^ bits['i4'])

error_i = s1 * 1 + s2 * 2 + s3 * 4 - 1

Dif error_i >= 0:
    error_bit = order[error_i]
    message[error_i] = 1 - message[error_i]
    print('Бит с ошибкой:', error_bit)

print('Правильное сообщение:', str(message[2]) + str(message[4]) + str(message[5]) + str(message[6]))
```

Рис.1

Заключение

В результате выполнения лабораторной работы я ознакомилась с кодом Хэмминга и приобрела навыки работы с ним, которые закрепила на практике.

Список источников

- 1. Википедия URL: https://ru.wikipedia.org/wiki/
- 2. Балакшин П.В., Соснин В.В. Информатика. Методическое пособие URL: https://picloud.pw/media/resources/posts/2018/02/19/Методичка.pdf