ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 03

WANG YUNLEI

Definition 1. Let \mathfrak{a} be an ideal in a ring R. The radical of \mathfrak{a} is

$$\sqrt{\mathfrak{a}} = \{ r \in R | \exists n > 0, r^n \in \mathfrak{a} \}.$$

 $\sqrt{\mathfrak{a}}$ is an ideal in R. \mathfrak{a} is called radical ideal if $\mathfrak{a} = \sqrt{\mathfrak{a}}$.

Remark. If $X \subset \mathbb{A}^n$ is an affine algebraic set, then I(X) is a radical ideal.

Theorem 1 (Nullstallensatz). Let $\mathfrak{a} \subset k[x_1,\ldots,x_n]$, then $I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}}$.

Definition 2. R is an integral domain, the quotient field Q(R) is the set of equivalent classes of pairs $(f,g), f,g \in R, g \neq 0$, which satisfy the equivalent relation

$$(f,g) \cong (f',g') \Leftrightarrow fg' - f'g = 0.$$

We denote it by $\frac{f}{g}$.

Remark. Q(R) is a field. We always identify $r \in R$ with $\frac{r}{1} \in Q(R)$, then we can say R is the subring of $Q(R).Q(k[x_1,\ldots,x_n]) := k(x_1,\ldots,x_n)$ is called field of rational functions in x_1,x_2,\ldots,x_n .

Now we prove the Nullstellensatz:

Proof of Nullstellensatz. Let $\mathfrak{a} = \langle f_1, \dots, f_r \rangle, f_i \in \mathfrak{a}$. Then $I(Z(\mathfrak{a}))$ is a radical ideal containing \mathfrak{a} , so we get

$$I(Z(\mathfrak{a})) \supset \sqrt{\mathfrak{a}}.$$

Let $f \in I(Z(\mathfrak{a}))$. To show $\exists N > 0$, s.t. $f^N \in \mathfrak{a}$, we use the weak Nullstellensatz in $k[x_1, \ldots, x_n]$.

Let

$$(0.1) \mathfrak{b} := \langle f_1, \dots, f_r, f \cdot t - 1 \rangle \subset k[x_1, \dots, x_n, t]$$

Let $(p, a) \in \mathbb{A}^{n+1}, p \in \mathbb{A}^n, a \in k$.

$$(p,a) \in Z(\mathfrak{b}) \Leftrightarrow f_1(p) = \cdots = f_r(p) = 0 \text{ and } f(p) \cdot a = 1.$$

But f(p)=0, so we know $Z(\mathfrak{b})=\emptyset$. By the weak Nullstellensatz, $1\in\mathfrak{b}$, we can write

(0.2)
$$1 = g_0 \cdot (ft - 1) + \sum_{i=1}^{r} g_i \cdot f_i$$

Back to $k[x_1, \ldots, x_n]$ in $k(x_1, \ldots, x_n)$, define homomorphism:

$$\begin{array}{ccc} \varphi: k[x_1,\ldots,x_n,t] & \to k(x_1,\ldots,x_n) \\ g(x_1,\ldots,x_n,t) & \to g(x_1,\ldots,x_n,\frac{1}{f}) \end{array}$$

Date: June 19, 2017.

Use φ to equation 0.2 we get

$$(0.3) 1 = \sum_{i=1}^{r} \varphi(g_i) \cdot f_i$$

where $\varphi(g_i) = \frac{G_i}{f^{n_i}}$, $G_i \in k[x_1, \dots, x_n]$. Let $N := \max_{1 \le i \le r} n_i$, multiply equation 0.3 by f^N :

$$(0.4) f^N = \sum_{i=1}^r G_i f^{N-n_i} \cdot f_i \in \mathfrak{a}$$

Corollary 1. (1) If $\mathfrak{a} \subset k[x_1, \dots, x_n]$ is a prime ideal, then $Z(\mathfrak{a})$ is irreducible; (2) If $f \in k[x_1, \dots, x_n]$ is irreducible, then Z(f) is irreducible.

Proof. (1) Set $X = Z(\mathfrak{a})$. Prime ideals are radical, so we get $I(X) = \mathfrak{a}$ and \mathfrak{a} is prime, use proposition 2 we know that X is irreducible.

(2) Since $k[x_1, \ldots, x_n]$ is a UFD, we get

 $f \in k[x_1, \ldots, x_n]$ is irreducible $\Rightarrow \langle f \rangle$ is a prime ideal.

So
$$Z(f) = Z(\langle f \rangle)$$
 is irreducible.

1. Projective Varieties

Definition 3. Define an equivalence relation \sim in $k^{n+1}\setminus\{0\}$:

$$(a_0,\ldots,a_n) \sim (b_0,\ldots,b_n) \Leftrightarrow \exists \lambda \in k \setminus \{0\} \text{ s.t.} (a_0,\ldots,a_n) = (\lambda b_0,\ldots,\lambda b_n).$$

Then we call $k^{n+1}\setminus\{0\}$ with this relation the projective *n*-space and write it as $(k^{n+1}\setminus\{0\})/\sim=\mathbb{P}^n$.

Definition 4. Let $U_i := \{[a_0, \ldots, a_n] \in \mathbb{P}^n | a_i \neq 0\}$. $\varphi_i : U_i \to \mathbb{A}^n$, $[a_0, \ldots, a_n] \to (\frac{a_0}{a_i}, \ldots, \frac{\hat{a_i}}{a_i}, \ldots, \frac{\hat{a_n}}{a_i})$ is a projection, write inverse $u_i : \mathbb{A}^n \to U_i$, $(b_0, \ldots, \hat{b_i}, \ldots, b_n) \to [b_0, \ldots, 1, \ldots, b_n]$.

Usually we fix i = 0, view \mathbb{A}^n as a subset of \mathbb{P}^n by identify the point $(a_1, \dots, a_n) \in \mathbb{A}^n$ with $[1, a_1, \dots, a_n] \in \mathbb{P}^n$. With this identification we have

$$(1.1) \mathbb{P}^n = \mathbb{A}^n \cup H_{\infty}$$

where $H_{\infty} := \{[a_0, \dots, a_n] \in \mathbb{P}^n | a_0 = 0\}$ is called hyperplane at infinity.

Remark. Define projective algebraic sets are zero sets of polynomials in $k[x_0, \ldots, x_n]$, but $f \in k[x_0, \ldots, x_n]$ does not define a function on \mathbb{P}^n :

$$(1.2) f(a_0, \dots, a_n) \neq f(\lambda a_0, \dots, \lambda a_n).$$

However if f is homogeneous we can still see whether $p \in \mathbb{P}^n$ is a zero point of f or not. f is homogeneous if

(1.3)
$$f(\lambda a_0, \dots, \lambda a_n) = \lambda^d f(a_0, \dots, a_n).$$

Thus whether f = 0 is decided only on $[a_0, \ldots, a_n]$.

Definition 5. Let $g \in k[x_0, \ldots, x_n]$ be homogeneous, a point $p = [a_0, \ldots, a_n]$ is a zero point of g if $g(a_0, \ldots, a_n) = 0$. Let $S \subset k[x_0, \ldots, x_n]$,

(1.4)
$$Z(S) := \{ p \in \mathbb{P}^n | f(p) = 0 \forall f \in S \}.$$

A subset of \mathbb{P}^n of the form Z(S) is called a projective algebraic set.

Example 1. (1) $\emptyset = Z(1), \mathbb{P}^n = Z(\emptyset);$

(2) Any point $p = [a_0, \dots, a_n] \in \mathbb{P}^n$ is a projective algebraic set

$$\{p\} = Z(a_1x_0 - a_0x_1, a_2x_0 - a_0x_2, \dots, a_nx_0 - a_0x_n, a_2x_1 - a_1x_2, \dots, a_nx_1 - a_1x_n, \dots).$$

Definition 6. A polynomial $f \in k[x_0, ..., x_n]$ cab be written uniquely as $f = f^{(0)} + f^{(1)} + \cdots + f^{(d)}$, with $f^{(i)}$ homoegeneous of degree i. $f^{(i)}$ is called homogeneous component if f.

An ideal $\mathfrak{a} \subset k[x_0,\ldots,x_n]$ is called homogeneous if for every $f \in \mathfrak{a}$ all homogeneous components $f^{(i)}$ are in \mathfrak{a} .

Proposition 1. An ideal $\mathfrak{a} \subset k[x_0, \ldots, x_n]$ is homogeneous \Leftrightarrow It is generated by the homogeneous polynomials.

Proof. \Rightarrow : Assume I homogeneous, let $(f_{\alpha})_{\alpha}$ be a set of generators, then $(f_{\alpha}^{(i)})_{\alpha,i}$ is a set of homogeneous generators.

 \Leftarrow : Let $\mathfrak{a} = \langle g_i \rangle$ and g_i be homogeneous. Let $f \in \mathfrak{a}$, then we can write

$$(1.5) f = \sum_{i} a_i g_i.$$

Note g_i is homogeneous, thus the homogeneous part of a_ig_i of degree d is just $a_i^{(d-deg(g_i))}g_i$, so

(1.6)
$$f^{(d)} = \sum_{i} a_i^{(d-deg(g_i))} g_i.$$

Since $g_i \in \mathfrak{a}$ we get $f^{(d)} \in \mathfrak{a}$.

Definition 7. Let $\mathfrak{a} \subset k[x_0,\ldots,x_n]$ be a homogeneous ideal, the zero set of \mathfrak{a} is written as

(1.7) $Z(\mathfrak{a}) := \{ p \in \mathbb{P}^n | f(p) = 0 \text{ for all homogeneous elements } f \in \mathfrak{a} \}.$

For a subset $X \subset \mathbb{P}^n$, the homogeneous ideal of X is

(1.8)
$$I(X) := \text{ ideal generated by } \{f \in k[x_0, \dots, x_n] | f$$
 be homogeneous and $f(p) = 0 \forall p \in X\}$

By definition this is a homogeneous ideal.

Remark. If $f \in k[x_0, ..., x_n]$ is not homogeneous, we can define

(1.9) $Z(f) := \{ p \in \mathbb{P}^n | f(a_0, \dots, a_n) = 0 \text{ for all representative } (a_0, \dots, a_n) \text{ of } p \}$ In fact, if $f = f^{(0)} + f^{(1)} \cdots + f^{(d)}$, then we have

(1.10)
$$Z(f) = \bigcap_{i=0}^{d} Z(f^{(i)})$$

With this property, if $\mathfrak{a} \subset k[x_0, \dots, x_n]$ is a homogeneous ideal then formula 1.7 can be written as

(1.11)
$$Z(\mathfrak{a}) = \{ p \in \mathbb{P}^n | f(p) = 0 \forall f \in \mathfrak{a} \}$$

and formula 1.8 can be written as

$$(1.12) I(X) = \{ f \in k[x_0, \dots, x_n] | f(p) = 0 \forall p \in X \}$$

2. Conclusions We Need From Previous Lectures

In lecture 02:

Proposition 2. $X \subset \mathbb{A}^n$ is an affine algebraic set. Then we have the following equivalent relations:

- (1) X is irreducible;
- (2) I(X) is a prime ideal.

 $E ext{-}mail\ address: wcghdpwyl@126.com}$