The Generalised Linear Model (2) PSM 2

Bennett Kleinberg 22 Jan 2019

Welcome

Probability, Statistics & Modeling II

Lecture 3

GLM 2

What question do you have?

Today

- Recap linear regression
- Why the GLM?
- Extended cases: logistic regression
- How good is the model?
- How does one model compare to another?

Recap linear regression Ingredients?

Recap linear regression Core idea?

Recap linear regression Types of effects?

Recap linear regression Residuals?

```
x1 = 1:10
y = x1 + rep(c(-1, 1))
df = data.frame(x1, y)
plot(x1, y)
```



```
lm_1 = lm(y ~ x1, data=df)
{plot(x1, y, ylim=c(-2, 10))
   abline(lm_1)}
```


Continuation from last week How to find the "optimal" terms for my model?

Maybe we can optimise this?

What if you don't know what the 'ideal' model is?

Especially neat for predictive modelling

Back to the shooting data:

```
load('./data/mass_shootings_detailed.RData')
smsd = smsd[smsd$school_related != 'Killed', ]
smsd = droplevels(smsd)
names(smsd)
```

```
## [1] "caseid" "n_fatal" "n_injured" "date"
## [5] "day" "age" "gender" "n_guns"
## [9] "school_related" "mental_illness"
```

Automated variable selection

1. Specify the complete model

```
complete_model = lm(n_fatal ~ n_guns*mental_illness*school_related, data
```

2. Specify the null model

```
null_model = lm(n_fatal ~ 1, data = smsd)
```

3. Run model selection ...

3 predictor variables: how many terms in the model?

- 1 intercept
- 3 main effects
- 3 2-way interactions
- 13-way interaction

Model selection

summary(complete_model)

```
##
## Call:
## lm(formula = n fatal ~ n guns * mental illness * school related,
##
      data = smsd)
## Residuals:
             10 Median
                              30
      Min
                                     Max
## -6.9592 -2.1233 -0.6777 1.2421 26.2074
## Coefficients:
##
                                           Estimate Std. Error t value
## (Intercept)
                                                       0.93210 2.468
                                            2.30041
## n guns
                                            0.86436
                                                      0.39577 2.18
                                            1.47991 1.28991 1.14
## mental illnessYes
## school relatedYes
                                           -0.01274 1.70127 -0.00
## n guns:mental illnessYes
                                            0.03300 0.49495
                                                                0.06
## n quns:school relatedYes
                                                       0.77367
                                                               -1.33
                                           -1.02874
                                            3 41734
## mental illnessVes•school relatedVes
                                                       2 24208
```

Model selection

summary(null_model)

Model selection: backward

```
step(complete_model, direction = 'backward')
```

```
##
## Call:
## lm(formula = n fatal ~ n guns * mental illness * school related,
##
       data = smsd)
##
## Coefficients:
##
                                    (Intercept)
##
                                        2.30041
##
                                         n quns
##
                                        0.86436
                             mental illnessYes
##
                                        1.47991
##
                             school relatedYes
##
                                       -0.01274
                      n guns:mental illnessYes
                                        0.03300
                      n guns:school relatedYes
                                        1 02874
```

Model selection: forward

```
step(null_model, direction = 'forward'
, scope=list(lower=null_model, upper=complete_model))
```

```
## Start: AIC=544.78
## n fatal ~ 1
##
##
          Df Sum of Sq RSS AIC
## + n guns 1 535.46 3095.7 517.91
## + mental illness 1 174.44 3456.7 537.87
## + school_related 1 55.94 3575.2 543.97
## <none>
                             3631.1 544.78
## Step: AIC=517.91
## n fatal ~ n quns
##
                 Df Sum of Sq RSS AIC
## + mental illness 1 95.460 3000.2 514.24
## + school_related 1 57.394 3038.3 516.52
## <none>
                             3095.7 517.91
```

Limitations of linear regression?

```
set.seed(123)
a = rnorm(1000, 30, 10)
b = a + rnorm(1000, 2, 8)
plot(a, b, main = round(cor(a, b), 4))
```



```
a_scaled = scale(a)
b_scaled = scale(b)
{plot(a_scaled, b_scaled)
abline(lm(a_scaled ~ b_scaled))}
```



```
lm(a_scaled ~ b_scaled - 1)
```

```
##
## Call:
## lm(formula = a_scaled ~ b_scaled - 1)
##
## Coefficients:
## b_scaled
## 0.7969
```

Limitations of linear regression?

- Correlation != causation
- Continuous outcome variable

Generalising the model The Generalised Linear Model

GLM in general

- framework to deal with different outcome variables
- uses the same "linearity in parameters" idea
- key feature: linking the outcome to the predictor(s)

The GLM in R

```
##
## Call:
## glm(formula = n fatal ~ n guns * mental illness * school related,
      family = gaussian, data = smsd)
##
##
## Deviance Residuals:
##
      Min 10 Median 30
                                        Max
## -6.9592 -2.1233 -0.6777 1.2421 26.2074
##
## Coefficients:
                                           Estimate Std. Error t value
## (Intercept)
                                            2.30041 0.93210 2.468
                                            0.86436 0.39577 2.184
## n guns
## mental illnessYes
                                           1.47991 1.28991 1.14
## school relatedYes
                                           -0.01274 1.70127 -0.00
                                            0.03300
## n guns:mental illnessYes
                                                      0.49495 0.06
## n guns:school relatedYes
                                           -1.02874
                                                      0.77367 - 1.330
## montal illnoccVoc.cahool rolatodVoc
```

Compared to 1m

```
##
## Call:
## lm(formula = n fatal ~ n guns * mental illness * school related,
##
      data = smsd)
## Residuals:
   Min 10 Median 30
                                    Max
## -6.9592 -2.1233 -0.6777 1.2421 26.2074
##
## Coefficients:
##
                                           Estimate Std. Error t value
## (Intercept)
                                           2.30041 0.93210 2.468
                                           0.86436 0.39577 2.18
## n guns
## mental illnessYes
                                           1.47991 1.28991 1.14
                                           -0.01274 1.70127 -0.00
## school relatedYes
                                           0.03300 0.49495 0.06
## n quns:mental illnessYes
## n guns:school relatedYes
                                           -1.02874
                                                      0.77367
                                                              -1.33
```

GLM vs LM

The LM is a GLM with the Gaussian link function.

- link function 'links' the linear predictor to the mean of the distribution of the outcome variable
- e.g. if outcome variable from normal distribution -> "normal" link function (Gaussian)
- e.g. if outcome variable from poisson distribution -> "Poisson" link (Log)
- e.g. if outcome variable from binomial distributiob -> "Binomial" link (Logit)

Why bother with this?

Compare:

```
b1 = 1:100 + rnorm(100, 5, 3)
df1 = data.frame(a1 = 1:100, b1)
{plot(b1)
  abline(lm(b1 ~a1, data=df1))}
```


m1 = lm(b1 ~a1, data=df1)
hist(m1\$residuals)

Why bother with this?

Compare:

```
b2 = rep(c(1,0), each=50)
df2 = data.frame(a2 = 1:100, b2)
{plot(b2)
  abline(lm(b2 ~a2, data=df2))}
```


m2 = lm(b2 ~a2, data=df2)
hist(m2\$residuals)

What to do?

We need a representation of the outcome variable...

- that is linear to the predictor
- i.e. transforms the data to so that Y has a linear relationship to the predictors

But which function does this?

The link function

Answer: for binary outcomes, the **logit** function

- transforms the outcome to a continuous probability
- and uses the log-odds to model a linear relationship between X and Y

The logit function

- maps 0,1 values to -Inf : Inf
- assumes a probability of P(Y == 1)
- probability is expressed as the odds
- linearity through the log of the odds

```
prob = 0.40
odds = prob/(1-prob)
odds

## [1] 0.6666667

log(odds)

## [1] -0.4054651
```

Intermezzo: odds

	Smoker	Nonsmoker
Dead	30	20
Alive	70	80
	100	100

```
#Odds of smoker dead: (30/100)/(70/100)
```

```
## [1] 0.4285714
```

```
# equal to 30/70
```

Odds = event_present/event_not_present

->

odds = P/(1-P)

	Smoker	Nonsmoker
Dead	30	20
Alive	70	80
	100	100

Odds of nonsmoker alive?

	Smoker	Nonsmoker
Dead	30	20
Alive	70	80
	100	100

```
#Odds of nonsmoker alive:
80/20
```

	Smoker	Nonsmoker
Dead	30	20
Alive	70	80
	100	100

Odds of nonsmoker alive dead?

	Smoker	Nonsmoker
Dead	30	20
Alive	70	80
	100	100

Odds of nonsmoker alive dead?

20/80

[1] 0**.**25

1/(80/20)

[1] 0**.**25

	Smoker	Nonsmoker
Dead Alive	30	20
	70	80
	100	100

Odds ratio: association between both factors.

```
OR = (30/70)/(20/80)
OR
```

The logit function

Models the binary outcome through the log odds of the predictors.

.001 .01 .15 .2	odds .001001 .010101 .1764706 .25	logodds -6.906755 -4.59512 -1.734601 -1.386294 -1.098612
.3	.4285714	8472978
.35	.5384616	6190392
.4	.6666667	4054651
.45	.8181818	2006707
• 55	1.222222	.2006707
• 6	1.5	.4054651
• 65	1.857143	.6190392
• 7	2.333333	.8472978

Implication: transformation of the coefficients

Remeber: we model the log of the odds ratio.

The logit function

Implication: transformation of the coefficients

Remeber: we model the log of the odds ratio.

So we need to 'unlog' the coefficients to get the odds.

Case today: Parole data

Dataset from Kaggle.

```
load('./data/parole_data.RData')
parole_data
```

```
##
             sex
                     race granted
           MALE
                    WHITE
           MALE HISPANIC
           MALE
                    BLACK
           MALE
                    BLACK
           MALE HISPANIC
           MALE HISPANIC
           MALE
                    BLACK
           MALE
                    WHITE
           MALE
                    WHITE
           MALE HISPANIC
           MALE
                    WHITE
           MALE
                    BLACK
## 13
           MALE
                    BLACK
           MALE HISPANIC
## 15
           MALE
                    WHITE
## 16
           MALE
                    BLACK
```

Suppose we model the success of parole hearings...

```
##
## Call: glm(formula = granted ~ sex, family = "binomial", data = parole
##
## Coefficients:
## (Intercept) sexMALE
## 2.392 -1.363
##
## Degrees of Freedom: 41534 Total (i.e. Null); 41533 Residual
## Null Deviance: 46850
## Residual Deviance: 46320 AIC: 46320
```

summary(parole success)

```
##
## Call:
## glm(formula = granted ~ sex, family = "binomial", data = parole data)
##
## Deviance Residuals:
##
      Min 10 Median 30 Max
## -2.2268 -1.6337 0.7818 0.7818 0.7818
##
## Coefficients:
##
        Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.39190 0.06916 34.58 <2e-16 ***
## sexMALE -1.36305 0.07011 -19.44 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 46854 on 41534 degrees of freedom
```

What does this mean?

```
coefficients(parole_success)
```

```
## (Intercept) sexMALE
## 2.391896 -1.363046
```

What would the lm interpretation be?

Coefficient interpretation

Remember what the logit function does?

Y ~ log_odds_ratio(X)

 \dots So the coefficient \mathbf{x} needs to be transformed.

Coefficient interpretation

Transforming the coefficient:

log odds to probability

- **log** -> un-log
 - natural logarithm reverse
 - e -> exp() in R

Coefficient interpretation

Let's use the output and transform:

```
coefficients(parole_success)

## (Intercept) sexMALE
## 2.391896 -1.363046

exp(-1.36)
```

[1] 0.2566608

Understanding the odds

```
table(parole_data$granted, parole_data$sex)
```

```
##
## FEMALE MALE
## 0 228 10220
## 1 2493 28594
```

Odds by hand

	Female	Male
0	228	10220
1	2493	28594
	2721	38814

Odds of male granted:

```
(28594/38814)/(10220/38814)
```

```
## [1] 2.797847
```

#Note: equivalent to 28594/10220

Odds of female granted:

2493/228

[1] 10**.**93421

Odds ratio male to female granted

```
2.7978/10.9342
   [1] 0.2558761
                                 Proof:
log(0.2558)
## [1] -1.363359
coefficients(parole_success)
   (Intercept)
                   sexMALE
      2.391896
                 -1.363046
```

Interpretation

Conversely: Female to male odds ration...

10.9342/2.7978

[1] 3.908142

The odds of being granted parole as a female are 3.90 times the odds of being granted parole as a male.

Add additional factor?

```
tapply(parole_data$granted, list(parole_data$race), mean)
```

```
## BLACK HISPANIC WHITE ## 0.6965374 0.7137377 0.8355549
```

Extend the model

```
##
## Call:
## glm(formula = granted ~ sex + race, family = "binomial", data = parole
##
## Deviance Residuals:
##
      Min 10 Median 30
                                       Max
## -2.3921 -1.5223 0.6224 0.8680 0.8680
##
## Coefficients:
           Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.04089 0.07057 28.920 < 2e-16 ***
## sexMALE -1.25900 0.07054 -17.848 < 2e-16 ***
## raceHISPANIC 0.09646 0.02909 3.317 0.000911 ***
## raceWHITE 0.76131 0.02763 27.557 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
             narameter for hinomial family taken to be
```

Interpretation

```
coefficients(parole_success_2)
```

```
## (Intercept) sexMALE raceHISPANIC raceWHITE ## 2.04089495 -1.25900315 0.09646174 0.76131449
```

???

-> Key: odds ratio to reference group

Interpretation

```
# --> sex: MALE to FEMALE
\exp(-1.259)
## [1] 0.2839378
# --> race: HISPANIC to BLACK
exp(0.096)
## [1] 1.100759
# --> race: WHITE to BLACK
exp(0.7613)
## [1] 2.141058
```

Adding more...

interaction.plot(parole_data\$sex, parole_data\$race, parole_data\$granted)

Interactions?

tapply(parole_data\$granted, list(parole_data\$sex, parole_data\$race), mean

```
## BLACK HISPANIC WHITE
## FEMALE 0.8870804 0.8757764 0.9456215
## MALE 0.6859737 0.7072319 0.8236240
```

Extend the model further

```
##
## Call: glm(formula = granted ~ sex * race, family = "binomial", data
## Coefficients:
##
           (Intercept)
                                   sexMALE
                                                     raceHISPANIC
               2.06126
                                   -1.27990
                                                         -0.10823
            raceWHITE sexMALE:raceHISPANIC
                                                sexMALE:raceWHITE
               0.79461
                                    0.20885
                                                         -0.03488
  Degrees of Freedom: 41534 Total (i.e. Null); 41529 Residual
## Null Deviance:
                       46850
## Residual Deviance: 45470 AIC: 45480
```

Interpretation

```
coefficients(parole_success_3)
```

```
## (Intercept) sexMALE raceHISPANIC

## 2.06125922 -1.27989659 -0.10823161

## raceWHITE sexMALE:raceHISPANIC sexMALE:raceWHITE

## 0.79461370 0.20884686 -0.03488046
```

Have a look at this Stackexchange answer.

Interpretation

```
exp(coefficients(parole_success_3))
```

```
## (Intercept) sexMALE raceHISPANIC

## 7.8558559 0.2780661 0.8974197

## raceWHITE sexMALE:raceHISPANIC sexMALE:raceWHITE

## 2.2135857 1.2322563 0.9657208
```

Odds ratios!

For males the OR of BLACK to HISPANIC is 1.23 the OR of females

```
exp(coefficients(parole success 3))
```

```
## (Intercept) sexMALE raceHISPANIC

## 7.8558559 0.2780661 0.8974197

## raceWHITE sexMALE:raceHISPANIC sexMALE:raceWHITE

## 2.2135857 1.2322563 0.9657208
```

Odds ratios!

For males the OR of BLACK to WHITE is 0.97 the OR of females

```
exp(coefficients(parole_success_3))
```

```
## (Intercept) sexMALE raceHISPANIC

## 7.8558559 0.2780661 0.8974197

## raceWHITE sexMALE:raceHISPANIC sexMALE:raceWHITE

## 2.2135857 1.2322563 0.9657208
```

Odds ratios!

For males the OR of granted parole is 0.27 the OR of females

##	(Intercept)	sexMALE	raceHISPANIC	
##	7.8558559	0.2780661	0.8974197	
##	raceWHITE	sexMALE:raceHISPANIC	sexMALE:raceWHITE	
##	2.2135857	1.2322563	0.9657208	

Odds ratios!

For WHITE defendants the OR of granted parole is 2.21 the OR of BLACK defendants

Connections to machine learning

- Regression the best starting point
- Core difference: explanatory modelling vs predictive modelling
- More care against overfitting in predictive modelling
- Split the data

Goodness-of-fit of a model Assessing how good a model is

Model fit

Model fit

Explained variance: R-squared (multiple vs adjusted)

```
summary(complete_model)
```

```
##
## Call:
## lm(formula = n fatal ~ n guns * mental illness * school related,
##
      data = smsd)
## Residuals:
##
      Min 10 Median
                              30
                                     Max
## -6.9592 -2.1233 -0.6777 1.2421 26.2074
## Coefficients:
                                            Estimate Std. Error t value
## (Intercept)
                                             2.30041 0.93210 2.468
## n guns
                                             0.86436 0.39577 2.184
                                             1.47991 1.28991 1.14
## mental illnessYes
## school relatedYes
                                            -0.01274 1.70127
                                                                -0.00
## n quns:mental illnessYes
                                                       0.49495
                                             0.03300
                                                                 0.06
## n guns:school relatedYes
                                                       0.77367
                                            -1.02874
                                                                -1.330
  mental illnessVes.school relatedVes
```

Model fit Mean squared error

mean(complete_model\$residuals^2)

[1] 15.41751

Model fit Root mean square error

sqrt(mean(complete_model\$residuals^2))

[1] 3**.**92<u>6514</u>

Model fit Mean absolute error

mean(abs(complete_model\$residuals))

[1] 2.519573

Model fit Mean percentage error

mean(complete_model\$residuals/(complete_model\$model\$n_fatal+1)*100)

[1] -50.7433

Model fit

Mean absolute percentage error

mean(abs(complete_model\$residuals/(complete_model\$model\$n_fatal+1))*100)

[1] 75.17279

When to choose one model over the other?

Idea: 2 models compete

Requirement: the two models are nested

Nested models

```
model_1 = lm(n_fatal ~ mental_illness, data = smsd)
model_2 = lm(n_fatal ~ mental_illness+school_related, data = smsd)
model_3 = lm(n_fatal ~ mental_illness*school_related, data = smsd)
```

Rough model evaluation

```
sqrt(mean(model_1$residuals^2))
## [1] 4.370098
sqrt(mean(model_2$residuals^2))
## [1] 4.311128
sqrt(mean(model_3$residuals^2))
## [1] 4.306262
```

But you want to be precise...

Model comparison test

```
anova(model_1, model_2)
```

```
## Analysis of Variance Table
##
## Model 1: n_fatal ~ mental_illness
## Model 2: n_fatal ~ mental_illness + school_related
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 179 3456.7
## 2 178 3364.0 1 92.66 4.9029 0.02808 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
anova(model 2, model 3)
```

```
## Analysis of Variance Table
##
## Model 1: n_fatal ~ mental_illness + school_related
## Model 2: n_fatal ~ mental_illness * school_related
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 178 3364.0
## 2 177 3356.4 1 7.589 0.4002 0.5278
```

```
anova(model 1, model 3)
```

```
## Analysis of Variance Table
##
## Model 1: n_fatal ~ mental_illness
## Model 2: n_fatal ~ mental_illness * school_related
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 179 3456.7
## 2 177 3356.4 2 100.25 2.6433 0.07393 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```


- only if additional parameters improve the model significantly
- vice versa: you only reject your model if it's significantly worse than a more complicated model

RECAP

- model selection
- logistic regression
- coefficient interpretation
- model selection

Outlook

Next week

- Hypothesis testing beyond t-tests
- GLM as ANOVA

Homework

Advanced regression modelling in R

END