# Malignant Lymphoma Classification Graduation Project (2021/2022)

#### Supervised by Dr. Amin Allam Dr. Heba Zaki TA. Nora Abd El Hamed

| Student ID | Student Name        |
|------------|---------------------|
| 20188006   | Akram Gamal Mostafa |
| 20188067   | Mohamed Ahmed Sayed |
| 20188068   | Mohamed Raafat      |
| 20188047   | Marwan Ahmed Shbeeb |
| 20188060   | Yousef Mohamed Said |

#### Main topics

- Problem definition
- Objective
- Motivation
- Types of Non-Hodgkin's lymphoma
- Data preprocessing
- Dataset
- Project stages
- Time plan
- Classifier accuracies
- SVM
- Observations
- Conclusions
- References

#### **Problem Definition**

- Lymphoma is a <u>cancer</u> that begins in infection-fighting cells of the <u>immune system</u>, called lymphocytes.
- Only the most expert pathologists specializing in these types of lymphomas are able to consistently and accurately classify its subtypes.
- There are two main types of lymphoma: Non-Hodgkin and Hodgkin.

## Objective

- Classify the Non-Hodgkin subtypes of Lymphoma in order to determine the most suitable diagnoses.
- Find the best accuracy for the classification.

#### Motivation

- Cancer diseases diverse in many body organs.
- Things will be easier by classifying the sample images.
- Trying to use new techniques to help the medical field.
- Using the benefit of the advanced machine learning techniques.
- Trying to help find a cure for Cancer.

# Non-Hodgkin's Lymphoma

- A type of cancer that develops in the lymphatic system.
- The exact cause of non-Hodgkin lymphoma is unknown.
- The most common symptom of it, is a painless swelling in a lymph node.
- The only way to confirm a diagnosis of it, is by carrying out a biopsy.
- The main treatments used for non-Hodgkin lymphoma are:
  - Chemotherapy
  - Radiotherapy

# **Types**

- Focusing on classifying the Non-Hodgkin lymphoma's three types based on CT scans of patients
  - 1. CLL (Chronic Lymphocytic Leukemia)
  - 2. FL (Follicular Lymphoma)
  - 3. MCL (Mantle Cell Lymphoma)

#### CLL (Chronic Lymphocytic Leukemia)

Blood and bone Marrow cancer



2

# FL (Follicular Lymphoma)

Derived from white blood cells



MCL (Mantle Cell Lymphoma)

B-cell lymphoma that develops from malignant B-lymphocytes



# **Data Preprocessing**

- Acquiring good dataset to work on.
- Import all the crucial libraries.
- Data Cleaning to ignore noisy images.
- Data normalization (Feature Scaling)
- Splitting the data into training set 80% and testing set 20%.
- Resizing images to 224x224 to be able to process them in our machine learning classifiers.

#### **Dataset**

- The used dataset is provided by National Institute of Ageing (NIA).
- It includes images of three types of lymphoma: FL, CLL and MCL.
- The data was collected from various sites to introduce a high variation to the dataset.
- This dataset is **374** images.
- Resolution: 1388 X 1040 px.
- 112 images belong to CLL, 140 to FL and remaining 124 to MCL.

# Project stages (Phase 1)



## Time Plan

|    |    |   |                        |    | <u>/</u> |         |    |    |         |    |    |    |    |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |
|----|----|---|------------------------|----|----------|---------|----|----|---------|----|----|----|----|----|----|----|---------|----|----|----|---------|----|----|----|---------|----|----|----|---------|----|----|----|
|    | ID |   | : Name                 |    |          | Aug, 21 |    |    | Sep, 21 |    |    |    |    | 21 |    | No | Nov, 21 |    |    |    | Dec, 21 |    |    |    | Jan, 22 |    |    |    | Feb, 22 |    |    |    |
|    | 10 | • | Nume                   | 01 | 08       | 15      | 22 | 29 | 05      | 12 | 19 | 26 | 03 | 10 | 17 | 24 | 31      | 07 | 14 | 21 | 28      | 05 | 12 | 19 | 26      | 02 | 09 | 16 | 23      | 30 | 06 | 13 |
| II | 1  |   | Searching              |    |          |         |    |    |         |    |    |    |    |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |
|    | 2  |   | Data Collection        |    |          |         |    |    |         |    |    |    |    |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |
|    | 3  |   | Data Pre-Processing    |    |          |         |    |    |         |    |    |    |    |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |
| II | 4  |   | Data Classification    |    |          |         |    |    |         |    |    |    |    |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |
| II | 5  |   | Classifier Comparision |    |          |         |    |    |         |    |    |    |    |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |
|    | 6  |   | Data Augmentation      |    |          |         |    |    |         |    |    |    |    |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |
| H  | 7  |   | Using Deep Learning    |    |          |         |    |    |         |    |    |    |    |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |
|    | 8  |   | User Application       |    |          |         |    |    |         |    |    |    |    |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |
|    |    |   |                        |    |          |         |    |    |         |    |    |    |    |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |         |    |    |    |

#### Classifiers Accuracies

| ML Classifier       | Accuracy |
|---------------------|----------|
| SVM                 | 55%      |
| Decision Tree       | 40%      |
| Logistic Regression | 50%      |
| KNN                 | 40%      |

#### Classifiers Accuracies



#### SVM

- SVM is a very helpful method that we use when we don't have much idea about the data or it's not regularly distributed and have unknown distribution.

  Multi-class classification
- SVM has a nature of Convex Optimization.
- Kernel's trick can solve any complex problem.
- Space of the decision boundary separating the three classes.



#### Observations

- The number of images is insufficient.
- Some methods gave low accuracies we can't depend on.
- SVM gives the best accuracy among the different methods (KNN, Logistic Regression, Decision Tree)
- Among different accuracies we got 55% before Augmentation.

#### Conclusion

- Classifying with traditional machine learning techniques isn't good enough
- We decided some decisions which are :
  - 1. Using data augmentation to increase the number of images.
  - 2. We are excluding these traditional methods.
  - Using deep learning instead for better accuracy.
  - 4. Making our project easy to use by publishing a web App.
- Start working on phase two.

#### References

- Malignant Lymphoma Classification | Kaggle
- NHL Pathological Image Classification Based on Hierarchical Local Information and GoogLeNet-Based
   Representations (nih.gov)
- <a href="https://mdpi-res.com/d\_attachment/cancers/cancers-13-02419/article\_deploy/cancers-13-02419.pdf">https://mdpi-res.com/d\_attachment/cancers/cancers-13-02419/article\_deploy/cancers-13-02419.pdf</a>
- Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images (nih.gov)
- Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images PubMed (nih.gov)

# Thank You!