Quantum Computing

Chao Liang

School of Computer Science Wuhan University

Lecture 11: Course Review

1

Review

- Introduction & Complex Number
- Complex Vector Space
- The Leap from Classic to Quantum
- Basic Quantum Theory
- Composite System
- Quantum Gates
- Quantum Algorithm
- Quantum Cryptography
- Quantum Information Retrieval

Outline

Math

Physics

Computer

2024/6/12

《Quantum Computing》

Lecture 1: Introduction and Complex Number

- Introduction to quantum computing
 - History
 - Particle-wave duality
 - Superposition
 - Quantum computer vs. classic computer

Lecture 1: Introduction and Complex Number

- Complex number
 - Motivation and definition
 - The algebra property
 - Ordered pair representation
 - Addition and multiplication
 - > Commutativity, associativity and distributive law
 - Subtraction and division
 - Modulus
 - Conjugate
 - The Geometry property
 - Cartesian and polar representation
 - Benefits of polar representation
 - Cartesian-to-polar and polar-to-Cartesian representation

Lecture 2: Complex Vector Space

- Complex number
 - Transpose, conjugate, adjoint
 - Matrix multiplication
 - Linear map
- Basis and dimension
 - Change of basis
- Inner product and Hilbert space
 - Inner product, norm and distance

Lecture 2: Complex Vector Space

Hermitian matrix

- Properties and physical meaning
 - $ightharpoonup \langle \mathbf{A} \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{A} \mathbf{w} \rangle$
 - For a Hermitian matrix, its all eigenvalues are real
 - For a Hermitian matrix, distinct eigenvectors that have distinct eigenvalues are orthogonal
 - Every self-adjoint operator can be represented as a diagonal matrix

Lecture 2: Complex Vector Space

Unitary matrix

- Properties and physical meaning
 - ightharpoonup Unitary matrices preserve inner products $\langle \mathbf{U} oldsymbol{v}, \mathbf{U} oldsymbol{w} \rangle = \langle oldsymbol{v}, oldsymbol{w} \rangle$
 - ightharpoonup Unitary matrices preserve norm $|\mathbf{U}oldsymbol{v}|=|oldsymbol{v}|$
 - ightharpoonup Unitary matrices preserve distance $d(\mathbf{U}v, \mathbf{U}w) = d(v, w)$
 - The modulus of eigenvalues of unitary matrix is 1
 - Unitary matrix is the transition matrix from a orthonormal basis to another orthonormal basis

Lecture 3: The Leap from Classic to Quantum

- Classic deterministic systems
 - Deterministic state
 - Deterministic dynamic: Boolean adjacency matrix
- Probabilistic systems
 - Probabilistic state
 - Stochastic dynamics: (doubly) stochastic matrix
 - Example 1: the stochastic billiard ball
 - Example 2: probabilistic double-slit

Lecture 3: The Leap from Classic to Quantum

- Quantum systems
 - Interference
 - Quantum state
 - Quantum dynamics: unitary matrix
 - Example 1: the quantum billiard ball
 - Example 2: double-slit experiment
 - Particle-wave duality
 - Superposition and measurement

Lecture 3: The Leap from Classic to Quantum

Comparisons of three systems

		Classical Deterministic system	Probabilistic System	Quantum System
Sta	ate	$oldsymbol{x} = [x_1, x_2, x_3]^{T}$	$oldsymbol{x} = \left[p_1, p_2, p_3 ight]^{T}$	$oldsymbol{x} = [c_1, c_2, c_3]^{\scriptscriptstyle T}$
		$x_i\!\in\!\mathbb{N}$	$p_i \! \in [0,1], \; \sum_i p_i \! = \! 1$	$c_i\!\in\!\mathbb{C},\;\sum_i c_i ^{2}\!=\!1$
Dynamics	Graph	exactly one arrow leaving each vertex	several arrows shooting out of each vertex with probabilistic weights	several arrows shooting out of each vertex with complex weights
Dyna	Matrix	Boolean adjacency matrix	Doubly stochastic matrix	Unitary matrix whose modulus squares is a doubly stochastic matrix

Lecture 4: Basic Quantum Theory

- Quantum states
 - Quantum superposition states
 - Case 1: position on a line
 - Case 2: single-particle spin system (source: QMTM)
 - Stern-Gerlach experiment
 - Two SG apparatus (Flipped 180º, 90º, arbitrary angle)
 - Representing spin states (along z-, x-, and y-axis)
 - Complex/probability/transition amplitudes

Lecture 4: Basic Quantum Theory

- Observables & measuring
 - Observable & Measuring
 - Classic physics vs. quantum physics
 - The principles (source: QMTM)
 - \succ The observable or measurable quantities of quantum mechanics are represented by linear operators Ω .
 - > The possible results of a measurement are the eigenvalues of the operator that represents the observable
 - Unambiguously distinguishable states are represented by orthogonal vectors
 - ▶ If $|\psi\rangle$ is the state-vector of a system, and the observable **Ω** is measured, the probability to observe value λ_i is $p(\lambda_i) = |\langle \lambda_i | \psi \rangle|^2 = \langle \psi | \lambda_i \rangle \langle \lambda_i | \psi \rangle$

Lecture 4: B

- Observables & measuring (cont.)
 - Expected value of observing
 - Multiple step observing
- Dynamics
 - The principle (cont.)
 - The evolution of a quantum system (that is not a measurement) is given by a unitary operator or transformation
 - Features of quantum dynamics
 - Preview of quantum computation
 - Schrödinger equation

Lecture 5: Composite System

- Tensor product of vector space
 - Definition
 - Properties
 - Tensor product allows "parallel action" :

```
(\mathbf{A} \times \mathbf{v}) \otimes (\mathbf{B} \times \mathbf{w}) = (\mathbf{A} \otimes \mathbf{B}) \times (\mathbf{v} \otimes \mathbf{w})
```

- Assembling systems
 - Assembling classical probabilistic system
 - Tensor product of state vectors
 - Operator matrices

Lecture 5: Composite System

- Assembling quantum system
 - The principle
 - two independent quantum systems \mathcal{Q} and \mathcal{Q}' , represented respectively by the vector spaces \mathbb{V} and \mathbb{V}' . The quantum system obtained by merging \mathcal{Q} and \mathcal{Q}' will have the tensor product $\mathbb{V} \otimes \mathbb{V}'$ as a state space.
 - Entanglement and entangled states
- 世纪之争
 - EPR佯谬
 - Bell不等式: $|P_{xz}-P_{zy}| \leq 1+P_{xy}$

Lecture 6: Quantum Gates

- Bits and qubits
 - Definitions: bit and qubit
 - Relation between bit and qubit
 - Definitions: byte and qubyte
 - Vector representation of qubits
- Classical gates
 - NOT gate, AND gate, OR gate, NAND gate
 - 功能完备与通用门
 - Sequential and Parallel Operations

Lecture 6: Quantum Gates

- Reversible Gates
 - Motivation
 - Controlled-NOT gate, Toffoli gate, Fredkin gate
- Quantum Gates
 - Definition
 - Geometric representation
 - Phase shift gate, Controlled-U gate, Deutsch gate
 - No-Clone Theorem

Lecture 7: Quantum Algorithm

- Deutsch's algorithm
 - The Deutsch oracle problem
 - Reversible and irreversible operators
 - Deutsch's algorithm
 - Discussion
 - Why efficient? Superposition
 - Why effective? Within/between differences
- Deutsch-Jozsa algorithm

Lecture 8: Quantum Cryptography

- Classic cryptography
 - Basic concepts
 - Symmetric cryptography
 - Diffie-Hellman Key distribution
 - Asymmetric cryptography
- Quantum key exchange
 - The BB84 protocol
 - The B92 protocol
 - The EPR protocol

Lecture 8: Quantum Cryptography

- Quantum teleportation
 - Definition
 - Bell basis and its quantum circuit
 - Quantum teleportation protocol
 - 超光速通讯不可行

Review

■ 课程结构

表 1 量子计算课程结构

方向	次序	主题	定位	
Mile Mr.	第1讲	绪论与复数	理论基础	
数 学	第2讲	复向量空间		
	第3讲	从经典系统到量子系统		
物 理	第4讲	基础量子理论		
	第5讲	组合系统		
	第6讲	量子门电路		
	第7讲	量子算法		
计算机	第8讲	量子加密		
り 昇が	第9讲	量子信息	专题应用	
	第10讲	量子编程语言		
	第11讲	量子计算机		

表格来源:梁超、王浩冰、张寒子逸,面向计算机专业的量子计算课程教学探索, 计算机教育,第1期,130-138页,2022.

Remind

- Course project
 - Time sensitive (strict DDL)
 - Contribution/novelty
 - Properly use ChatGPT
- Teaching evaluation
 - True opinions & suggestions
 - > Teaching, TA, homework, project, rules,

Reward List of QC 2024

Source: https://docs.qq.com/sheet/DYk9pWUVVVVdHcFVT?tab=BB08J2&_t=1718123775117

Remind

- 最后考核
 - DDL: 2 weeks from now
 - 竞赛/纠错途径: Word
 - 报告途径: Word + video (B站)

■ 请帮忙评教! (5%)

Thanks

- Thanks to ...
 - My TAs
 - Every student

■ Contact

- Phone: 151-0278-2502
- E-mail: cliang@whu.edu.cn
- Office: South 606, Undergraduate building