ESM5205 Learning from Big Data | Oct 30, 2019

Seokho Kang

Feed-forward Neural Networks

An FNN is a stack of fully-connected layers.

how many parameters in a neural network?

what does the input look like?

what if the input is an image of 256x256 pixels

Multidimensional Arrays

- Scalar: a single number, $a \in \mathbb{R}$
 - Integers, real numbers, rational numbers, etc.
- Vector: a 1-D array of numbers, $x \in \mathbb{R}^n$

$$oldsymbol{x} = \left[egin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}
ight]$$

• Matrix: a 2-D array of numbers, $A \in \mathbb{R}^{m \times n}$

$$\mathbf{A} = \left[\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array} \right]$$

Multidimensional Arrays

- Multidimensional Arrays of Numbers
 - Scalar → 0-D Array
 - Vector → 1-D Array
 - Matrix → 2-D Array
 - 3-D Array, 4-D Array, ...

*a multidimensional array is not necessarily a representation of a tensor

• Example: a grayscale image is a 2-D Array / a color image is a 3-D Array

(or, a **2-D Array** with **3 channels**)

Multidimensional Arrays

Example

	Single channel	Multi-channel
1-D	Audio waveform: The axis we	Skeleton animation data: Anima-
	convolve over corresponds to	tions of 3-D computer-rendered
	time. We discretize time and	characters are generated by alter-
	measure the amplitude of the	ing the pose of a "skeleton" over
	waveform once per time step.	time. At each point in time, the
		pose of the character is described
		by a specification of the angles of
		each of the joints in the charac-
		ter's skeleton. Each channel in
		the data we feed to the convolu-
		tional model represents the angle
		about one axis of one joint.
2-D	Audio data that has been prepro-	Color image data: One channel
	cessed with a Fourier transform:	contains the red pixels, one the
	We can transform the audio wave-	green pixels, and one the blue
	form into a 2D tensor with dif-	pixels. The convolution kernel
	ferent rows corresponding to dif-	moves over both the horizontal
	ferent frequencies and different	and vertical axes of the image,
	columns corresponding to differ-	conferring translation equivari-
	ent points in time. Using convolu-	ance in both directions.
	tion in the time makes the model	
	equivariant to shifts in time. Us-	*channels may have
	ing convolution across the fre-	•
	quency axis makes the model	no specific ordering (e.g., RGB)
	equivariant to frequency, so that	
	the same melody played in a dif-	
	ferent octave produces the same	
	representation but at a different	
0.5	height in the network's output.	
3-D	Volumetric data: A common	Color video data: One axis corre-
	source of this kind of data is med-	sponds to time, one to the height
	ical imaging technology, such as	of the video frame, and one to
	CT scans.	the width of the video frame.

Feed-forward Neural Network (input: vector)

Convolutional Neural Network

(input: multidimensional array with spatial locality)

- Convolutional Neural Networks (CNNs)
 - Neural Networks that use convolution in place of general matrix multiplication in at least one of their layers.
 - Main Operations:
 - 1. Convolution
 - 2. Detector
 - 3. Pooling

Convolution with 1-D Array Input

- $kernel = [a,b] \leftarrow parameters$
- input size m=6, kernel size k=2, stride(kernel step size) s=1, output size n= (m-k)/s+1=5

output

kernel

input

x_{I}	x_2	x_3	\mathcal{X}_{4}	x_5	x_6

Convolution with 1-D Array Input

- kernel = [a,b] ← parameters
- input size m=6, kernel size k=2, stride(kernel step size) s=1, output size n= (m-k)/s+1=5

input

what are parameters? what are hyperparameters?

Convolution with 1-D Array Input

- **kernel** = [a,b] ← parameters
- input size m=6, kernel size k=2, stride(kernel step size) s=2, output size n= (m-k)/s+1=3

$$ax_1+bx_2$$

kernel

input

X_1 X_2 X_3 X_4 X_5 X_6	x_I	x_2	x_3	x_4	x_5	x_6
-------------------------------------	-------	-------	-------	-------	-------	-------

input

Convolution with 1-D Array Input

kernel = [a,b] ← parameters

 x_1

 x_2

- input size m=6, kernel size k=2, stride(kernel step size) s=2, output size n= (m-k)/s+1=3

 x_3

 \mathcal{X}_{4}

 x_5

what are parameters? what are hyperparameters?

 x_6

Convolution with 1-D Array Input

- **kernel** = [a,b,c] ← parameters
- input size m=6, kernel size k=3, stride(kernel step size) s=1, output size n= (m-k)/s+1=4

kernel

input

x_1 x_2 x_3 x_4 x_5 x_5

Convolution with 1-D Array Input

- kernel = [a,b,c] ← parameters
- input size m=6, kernel size k=3, stride(kernel step size) s=1, output size n= (m-k)/s+1=4

$$\begin{vmatrix} ax_1 + bx_2 + cx_3 & ax_2 + bx_3 + cx_4 & ax_3 + bx_4 + cx_5 & ax_4 + bx_5 + cx_6 \end{vmatrix} + bias$$

kernel

input

					24
x_1	x_2	x_3	\mathcal{X}_{4}	x_5	x_6

what are parameters? what are hyperparameters?

- Properties
 - Sparse Interactions: Inputs and outputs are not fully connected but have local connectivity
 - **Parameter Sharing:** The same kernel is used repeatedly.
 - Equivariance to transition: convolution(shift(input)) = shift(convolution(input))

Example: If there are *m* inputs and *n* outputs,

Fully-connected layer: (*m*+1) x *n* parameters

Convolution: *k*+1 parameters (k: kernel size)

→ reduced memory usage, computation

Receptive field: Spatial locality

- Each element of the output (feature map) processes only for its receptive field (a local region of the input)
- higher kernel size k → larger receptive field
- Higher-level layers → larger receptive field

Example: a simple CNN with k=3

Receptive field of h_3 in the input layer = $\{x2,x3,x4\}$ Receptive field of g_3 in the input layer = $\{x1,x2,x3,x4,x5\}$

Example: a simple FNN (fully connected) Receptive field of a hidden unit?

Convolution with 2-D Array Input

input size m=(4,3), kernel size k=(2,2),
 stride(kernel step size) s=1, output size n=(m-k)/s+1=(3,2)

what are parameters? what are hyperparameters?

- Example: Edge Detection by Convolution with 2-D Array Input
 - input size \mathbf{m} =(320,280), kernel size \mathbf{k} =(2,1), stride(kernel step size) s=1, output size \mathbf{n} =(\mathbf{m} - \mathbf{k})/s+1=(319,280)

Convolution with 3-D Array Input

what are parameters? what are hyperparameters?

input size m=(32,32,3), kernel size k=(5,5,3),
 stride(kernel step size) s=1, output size n=(m-k)/s+1=(28,28,1)

Multiple Kernels

input size \mathbf{m} =(32,32,3), kernel size \mathbf{k} =(5,5,3), number of kernels=6, stride(kernel step size) s=1, output size \mathbf{n} =(\mathbf{m} - \mathbf{k})/s+1=(28,28,1), number of feature maps=6

Zero Paddings of the Input

- pad the input with zeros around the border.
- e.g., if we want output volume=input volume
 kernel size=k, stride=1, padding size=(k-1)/2

Detector

- Element-wise non-linearity to obtain a transformed feature map
 - Each feature map is run through a non-linear activation function
 - "ReLU" is a popular choice. (or, its variants)

additional parameters?

Pooling

- Summarization of each "transformed feature map"
 - makes the representations smaller and more manageable (downsampling)
 - reduces the computational burden on the next layer
 - helps to make the representation *slightly* invariant to small translations of the input.
 - can handle inputs of varying size
 - Various strategies: max pooling, average pooling, ...

additional parameters?

Example: 2x2 max pooling with stride (step size) 2

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

- A CNN is a stack of convolutional layers (convolution, detector, and pooling) and fully-connected layers
 - Recent Trends:
 - 1. Deeper architectures
 - 2. Only convolutional layers
 - 3. Smaller kernels

- Given a training dataset $D = \{(X_1, y_1), (X_2, y_2), ..., (X_n, y_n)\}$ such that X_i is the i-th input array (often 2-D or 3-D) and y_i is the corresponding label of the output variable.
- The model: $\widehat{y} = f(X)$
- The cost function (to be minimized)

$$J = \frac{1}{n} \sum_{(\boldsymbol{X}_i, \boldsymbol{y}_i) \in D} L(\boldsymbol{y}_i, \widehat{\boldsymbol{y}}_i)$$

For training, any gradient-based optimization algorithms can be used.

Example: Empirical results (Goodfellow et al., 2014)

Figure 6.7: Deeper models tend to perform better. This is not merely because the model is larger. This experiment from Goodfellow et al. (2014d) shows that increasing the number of parameters in layers of convolutional networks without increasing their depth is not nearly as effective at increasing test set performance. The legend indicates the depth of network used to make each curve and whether the curve represents variation in the size of the convolutional or the fully connected layers. We observe that shallow models in this context overfit at around 20 million parameters while deep ones can benefit from having over 60 million. This suggests that using a deep model expresses a useful preference over the space of functions the model can learn. Specifically, it expresses a belief that the function should consist of many simpler functions composed together. This could result either in learning a representation that is composed in turn of simpler representations (e.g., corners defined in terms of edges) or in learning a program with sequentially dependent steps (e.g., first locate a set of objects, then segment them from each other, then recognize them).

Example: Illustration (LeCun et al., 2015)

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4) Convolutions and ReLU Max pooling Convolutions and ReLU Max pooling Convolutions and ReLU Blue Red Green

Example: Illustration (http://cs231n.github.io/convolutional-networks/)

Popular CNN Architectures

- LeNet-5
- AlexNet
- VGGNet
- GoogLeNet (InceptionNet)
- ResNet
- DenseNet

LeNet-5

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11), 2278-2324.

- MNIST dataset (2D images [32x32])
- 5 Layers (2 Convolutional Layers (average pooling) + 3 Fully Connected Layers)
- 21314

No. Parameters = 60k

ILSVRC

ILSVRC (ImageNet Large Scale Visual Recognition Challenge)

: Make 5 guesses about the image label!

http://www.image-net.org/challenges/LSVRC/

AlexNet

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems* (pp. 1097-1105).

- ReLU activation function
- Data Augmentation (left-right flip, random crops of 227x227 from 256x256)
- 8 Layers (5 Convolutional Layers + 3 Fully-connected Layers)
- 62M parameters

VGGNet

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*.

- Deeper architecture with smaller convolution kernels (3x3)
- 19 Layers
- 138M Parameters

GoogLeNet (InceptionNet)

Szegedy, C., et al. (2015). Going deeper with convolutions. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (pp. 1-9).

- "Inception module": parallel paths with different receptive field sizes
- **1x1 convolution:** reducing the number of feature maps
- No fully connected layers
- 22 layers
- 4M parameters

ResNet

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (pp. 770-778).

- "Skip Connections": feature reuse, alleviated vanishing gradient element-wise addition of outputs from two different layers
- Much deeper architecture
- 152 Layers
- 60M parameters

DenseNet

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (pp. 4700-4708).

- "Dense Connections": feature reuse, alleviated vanishing gradient concatenation of outputs from previous layers
- Deeper and deeper...
- 201 Layers
- 20M parameters

CNN for Image Classification

Further Readings

- Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (pp. 1492-1500).
- Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. In *Proceedings of AAAI Conference on Artificial Intelligence*.
- Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (pp. 7132-7141).
- Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (pp. 8697-8710).
- Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In *Proceedings of International Conference on Machine Learning* (pp. 6105-6114).

- ...

What's Next?

Computer Vision Tasks

Image Classification Task

Computer Vision Tasks

Computer Vision Tasks

- Pascal VOC (Visual Object Classes) Challenges
 - http://host.robots.ox.ac.uk:8080/pascal/VOC/

- COCO Challenges
 - http://cocodataset.org/

- Training Dataset
 - Input (X): image
 - **Output (Y):** object category, object box location (*x*, *y*, *w*, *h*)
- Single object → Localization
- Multiple objects → Detection

- Region-based Convolutional Neural Network (R-CNN)
 - Selective search to identify ~2k region proposals
 - Feature extraction from each (resized) region using a CNN (modified AlexNet)
 - Classification of the region with a support vector machine → the category of the object
 - Adjustment of the region (bounding box) with a linear regression model

 \rightarrow offsets of the box coordinates for the object $(\Delta x, \Delta y, \Delta w, \Delta h)$

issues in training & test?

Fast R-CNN

- The concept is similar to the R-CNN
- Main Differences from the R-CNN (which make it faster)
 - Feature extraction from the entire image (not region proposals) using a CNN
 - "Region of Interest (RoI) Pooling" to reshape each region into fixed size
 - Implementation as a single joint neural network multi-task learning

Faster R-CNN

- Much faster than R-CNN and Fast R-CNN
- Main Differences from the Fast R-CNN (which make it faster)
 - No need for selective search
 - Prediction of the region proposals within the network multi-task learning
 - End-to-end training

- Evaluation (Performance Metric)
 - Intersection over Union (IoU) between the prediction (B₁) and the ground-truth (B₂)

Further Readings

- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once (YOLO): Unified, real-time object detection. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (pp. 779-788).
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. In *Proceedings of European Conference on Computer Vision* (pp. 21-37).
- Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (pp. 2921-2929). → training without using object location information

- ...

Instance Segmentation

- Training Dataset for Instance Segmentation (Pixel-Wise Classification)
 - **Input (X):** image, **output (Y):** object category, object pixels

Instance Segmentation

Mask R-CNN

- An extension of Faster R-CNN
- Performs three tasks: the model predicts (1) the object category, (2) bounding box for the object, and (3) pixel-wise mask for the object

Semantic Segmentation

- Training dataset for Semantic Segmentation (Pixel-Wise Classification)
 - **Input (X):** Image, **output (Y):** pixel-level categories
 - input width and height = output width and height (different no. channels)

Instance/Semantic Segmentation

- Encoder-Decoder Architecture
 - Encoder: Convolutional Neural Network (for downsampling)
 - Decoder: Deconvolutional Neural Network (for upsampling)

Instance/Semantic Segmentation

- Deconvolutional network: Convolutional network run in reverse
 - Pooling

 Unpooling (reconstruct feature map, enlarged but sparse)
 - Convolution
 Deconvolution* (densify sparse feature map, enlarged and dense)

* Deconvolution is a bad name.

Better alternatives are

transpose convolution,

upconvolution,

fractionally strided convolution,

backward strided convolution, ...

Instance/Semantic Segmentation

Further Readings

- Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (pp. 3431-3440).
- Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. In *Proceedings of IEEE International Conference on Computer Vision* (pp. 1520-1528).
- Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In *Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention* (pp. 234-241).
- Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder-decoder architecture for image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39(12), 2481-2495.
- Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (pp. 2881-2890).
- Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(4), 834-848.

- ...

