Pourquoi les voisinages dans la définition de la continuité?

Jean Pierre Mansour

30 décembre 2022

Il s'agit dans ce document de dévoiler quelques notions sous-jacentes dans la définition de la continuité d'une fonction sur un espace topologique dans un autre. Soyez patients, on y va!

Définition. Soit (E, \mathscr{T}_E) et (F, \mathscr{T}_F) deux espaces topologiques. et $f: E \to F$ une application.

f est continue en $a \in E \iff \forall V \in \mathcal{V}(f(a)), \exists O \in \mathscr{T}_E \ / \ a \in O \subset f^{-1}(V)$

Il faut être courant de quelques remarques: Pour tout point a dans E, il est possible de trouver un ouvert contenant a. Si jamais, $E \in \mathscr{T}_E$ et $a \in E$

De plus, il se peut que pour certaines topologies, l'ouvert contenant un point soit le singleton lui-même.

Donc, on utilise un voisinage pour éviter les singletons et les topologies bizarres. La définition nous assure que pour un voisinage V fixé à priori, $f^{-1}(V)$ ne se limite pas à {a} et on peut injecter un ouvert de E dans $f^{-1}(V)$

En d'autres termes, $\{a\} \subsetneq \{x \in E / f(x) \in V\}.$