

回溯法 (穷举法)

学习要点

- ✓ 理解回溯法的深度优先搜索策略
- ✓ 掌握用回溯法解题的算法框架
 - (1) 递归回溯
 - (2) 迭代回溯
 - (3) 子集树回溯
 - (4) 排列树回溯

学习要点

- □通过应用范例学习回溯法的设计策略
 - (1) 0-1背包问题;
 - (2) 旅行售货员问题;
 - (3) 装载问题
 - (4) 批处理作业调度;
 - (5) n后问题;
 - (6) 图的m着色问题;

回溯法基础

回溯法

□搜索问题解空间的方法-回溯法

- o可以枚举问题的所有解
- ○通用解题法
- o 在解空间树中,按深度优先策略搜索

□可以解决

- 搜索问题的一个可行解
 - 搜索到第一个可行解则停止搜索
- 搜索问题的最优解
 - 遍历解空间找到最优解

回溯法

- □定义问题的解空间
- □搜索解空间

确定解空间的组织结构后,从开始结点(根节点)出发,以深度优先方式搜索整个解空间。开始结点成为活结点,也是当前的扩展结点。在当前扩展结点处,搜索向纵深方向移动一个结点。新结点成为新的活节点,并成为当前的扩展结点。如果当前扩展结点不能再向纵深方向移动,那么当前结点成为死结点,此时往回移动(回溯)至最近的活结点处,并使这个结点成为当前扩展结点。

回溯法用这种递归的方式搜索整个解空间,直至找到所要求的 解或者解空间中已无活结点为止。

□形式化描述(重量w价值v容量C)

- \circ 输入: $\{< w_1, v_1>, < w_2, v_2>, ..., < w_n, v_n>\}$ 和C
- 输出: $(x_1, x_2, ..., x_n)$, $x_i \in \{0, 1\}$ 满足 $\sum_{i=1}^n w_i x_i \leq C$
- 优化目标: $\max_{i=1}^n v_i x_i$

□实例

- 物品个数为 n=3
- ○背包的容量为 C=30
- 物品的重量分别为 w={16, 15, 15}
- 物品的价值分别为 v={45, 25, 25}

□解空间

- ○(x₁, x₂, x₃)的所有可能取值
- \circ {(0,0,0), (0,1,0), (0,0,1), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1)}
- 可用一颗完全二叉树表示该问题解空间,解空间树

□解空间树

w={16, 15, 15} v={45, 25, 25} 物品重量小于30 最大化物品价值

□搜索解空间(深度优先)

 $x_3=1: W=30$

 $x_2=1: W=15$

 $x_1 = 0$: W=0

 ϕ : W=0

最优解: (1最优解: (0,1,1), V=50

□剪枝策略

- ○回溯法搜索解空间树通常采用两种方法避免无效搜索。
- ○约束函数,剪去不可行的子树(01背包)
- 限界函数,剪去得不到最优解的子树(旅行商)

□子集树

○从n个元素的集合S中找出满足某种性质的子集,相 应的解空间树称为子集树. (01背包问题)

□子集树搜索代价

- ○叶节点数量为2n, 节点总数为2n+1-1
- \circ 遍历解空间需要 $\Omega(2^n)$

□回溯求解方法

递归、迭代

0年商演2就大學

递归算法

迭代算法

```
void IterativeBacktrack( ){
   int t=1;
   for (i=1; i \le n; i++) x[i]=-1;
   while (t>0){
       if (t>n) {输出x; t--; continue;}//找到解
       x[t]++;
       if (x[t]>1) t--;
       else{
           if (已选物品重量小于C) t++; //深一层
           else t--; //回溯
```


□最优解上界

- 不超过一般背包问题的最优解
 - 一般: 每种物品可以只取一部分

$$\max \sum_{i=1}^{n} v_i x_i$$

$$\begin{cases} \sum_{i=1}^{n} w_i x_i \leq C \\ x_i \in [0,1], \ 1 \leq i \leq n \end{cases}$$

- ○一般背包问题的最优解
 - 将物品按照单位重量的价值排序
 - 先装价重比最高的物品,直到背包装满为止
 - 最后一个物品可以只装一部分

背包问题最优解

17

□回溯法改进

- · 将所有物品按照价重比排序
- 设当前背包中所有物品的价值为P, 背包剩余容量为C', 剩余物品为{i, ..., n}
- 那么装入背包的最大价值不会超过bound(i)
 - bound(i)=P+X
 - X是针对输入{i,...,n}和C'的背包问题的最优解

□回溯法改进

obestp保存当前的最优解的价值

□问题描述:

售货员要到若干个城市去推销商品,已知各城市之间的路程(或旅费),他要选定一条从驻地出发,经过每个城市一次,最后返回驻地的路线,使得总的行程(或花费)最少。

□输入

- 完全无向带权图G=(V, E)
 - |V|=n, |E|=m
 - 对于E中的某条边e, 其长度为c(e)

□输出

- ○最短的哈密尔顿回路
 - 经过每个节点一次且仅一次的回路

NP难问题

- □实例
- □解空间
 - [1, 2, 4, 3, 1] [1, 3, 2, 4, 1] [1, 4, 3, 2, 1] [.....]
 - 共(n-1)!个:

解=起始点,除去起始点的其它点的全排列,起始点

□回溯法

最优解: (1,3,2,4,1), 代价=25

□剪枝策略

如果当前搜索节点处的代价超过已找到的最优解代价(限界),剪去其子树

□排列树

○问题的解是n个元素满足某种性质的排列时,解空间树称为排列树

□排列数搜索代价

- ○叶节点n!
- 遍历解空间需要 Ω(n!)

□回溯求解方法

○递归、迭代


```
递归算法
初始时: x = [1, 2, 3, •••, n], 即x[i]=i
void Backtrack(int t){
  if (t>n) 输出x; //找到叶子节点
  else
     for(i=t; i<=n; i++){//对于深度为t的节点,取值有多少个?
        Swap(x[t], x[i]);//x[i]为其取值
        if (现有路径长度小于已得到的最优值)
            Backtrack(t+1); //有潜力, 固定t, 取下一个
        Swap(x[t], x[i]); //交换回来, 准备重新选
```

0年商演2柱大學

迭代算法

```
//y[t]记录x[t]选择了t到n中的哪个元素,初始时y[t]=t
void IterativeBacktrack( ){
  int t=1;
   \mathbf{while}(t>0){
      if(t>n) {输出x; t--; continue;}//找到叶子
       y[t]++; //选择下一个,x[t]=t (不管有没有潜力,都选择下一个)
      if(y[t]>n) {t--; continue; } //x[t]=n, 所有取值都选完了
       swap(x[t], x[y[t]]);
       if(现有路径长度小于已得到的最优值) {
             y[t]=t;//有潜力,固定当前t
       else{
              swap(x[t], x[y[t]]); t--; //没潜力, 反交换, 回溯
```


回溯法算法框架

回溯法搜索子集树

回溯法搜索排列树


```
初始时: x[n]=(1,2,3,•••,n)
void Backtrack(int t){
   if (t>n) 输出x;
   else
      for(i=t; i<=n; i++){
         Swap(x[t], x[i]);
         if (Constraint(t) && Bound(t))
         //如果当前的部分解可行且 可能产生最优解
              Backtrack(t+1);
         Swap(x[t], x[i]);
```

回溯法总结

- □剪枝策略
 - 用约束函数 Constraint(t) 剪去不可行子树
 - 用限界函数 Bound(t) 剪去得不到最优解的子树
- □时间复杂性
 - o 搜索子集树Ω(2n)
 - 搜索排列树Ω(n!)
- □空间复杂性
 - **O**(h(n))
 - h(n)为解空间树的高度

装载问题

装载问题

□输入

- ○n个集装箱,其中集装箱i的重量为w_i
- \circ 载重量分别为 C_1 和 C_2 的轮船

$$\sum_{i=1}^n w_i \le C_1 + C_2$$

□输出

○ (是否有) 合理的装载方案将所有集装箱装上船

NP难问题

当 $\sum_{i=1}^{n} w_{i} = C_{1} + C_{2}$ 时,等价于子集合问题,即 判断 是否存在一个子集和等于一个常数。

装载问题

- □如果有解,可以用以下方法获得
 - o将第一艘轮船尽可能装满
 - o 然后将剩余的集装箱装上第二艘轮船

□问题等价于

$$\max \sum_{i=1}^n w_i x_i$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} w_{i} x_{i} \leq C_{1} \\ x_{i} \in \{0,1\}, \ 1 \leq i \leq n \end{cases}$$

特殊的0-1背包问题: 每种物品的价值等于 重量

装载问题

- □解空间树
 - o子集树

装载问题

□回溯法(搜索子集树)

装载问题

□剪枝

- 约束函数 Constraint(t): $\sum_{i=1}^{t} w_i x_i \leq C_1$
- \circ 限界函数 **Bound**(t): $\sum_{i=1}^{t} w_i x_i + \sum_{i=t+1}^{n} w_i > BestC$

回溯法

时间复杂性: O(2n)

空间复杂性: O(n)

□输入

- *n*个作业{1, ..., *n*}
- ○两台机器(M1和M2)
 - 作业 i 在M1和M2上的处理时间分别为 a[i] 和 b[i]
 - 每个作业必须先由M1处理,再由M2处理

□输出

- 作业调度方案使得*总*等待时间最小
 - 作业 i在M1和M2上的完成时间分别为 A[i] 和 B[i] (从计时开始)
 - 总等待时间为 $\sum_{i=1}^{n} B[i]$

可以证明,存在一种最佳作业调度,使得两个机器上的作业以相同次序完成。

□可能的调度方案

o 123, 132, 213,

231, 312, 321

作业	a[i]	b[i]
Job 1	2	1
Job 2	3	1
Job 3	2	3

□最佳方案是132(总等待时间: 18)

- □ 计算调度 $\{J_1, J_2, ..., J_n\}$ 的等待时间
 - \circ 计算 $B[J_i]$
 - 计算A[J_i]=A[J_{i-1}] + a[J_i]
 - 比较A[J_i]和B[J_{i-1}]
 - B[J_i]=较大者 + b[J_i]

- □解空间树
 - o排列树

□回溯法(搜索排列树)

```
初始时: x[n]=(1,2,3,...,n)
void Backtrack(int t){
                              时间复杂性: O(n!)
  if (t>n) 输出x;
                              空间复杂性: O(n)
   else
      for(i=t; i<=n; i++){
         Swap(x[t], x[i]);
         if (Bound(t))
         //如果当前的部分解可行 且 可能产生最优解
              Backtrack(t+1);
         Swap(x[t], x[i]);
```


□剪枝

 \circ 限界函数 **Bound**(t): $\sum_{i=1}^{t} B[x[i]] < bestT$

当前等待时间和小于当前最优等待时间。

- □输入
 - ○n×n的棋盘
 - on个皇后
- □输出
 - ○n个皇后的放置方案 1 2 3 4 5 6 7 8
 - 任意两个皇后都不在同一行、同一列或同一斜线上(正方形的对角线)

□解空间

- ○每行有且仅有一个皇后
- ○用x[i]表示第i行皇后位于第几列
 - 此皇后的坐标为(i, x[i])
- 问题的解是x[1,...,n],满足
 - 任意两个皇后不在同一列上: x[i]≠x[j]
 - 任意两个皇后不在同一斜线上

 $|\mathbf{i} - \mathbf{j}| \neq |\mathbf{x}[\mathbf{i}] - \mathbf{x}[\mathbf{j}]|$

○ x[1, ..., n]是{1, ..., n}的一个排列

解空间树:排列树

□回溯法

```
初始时: x[n]=(1,2,3,···,n)
void Backtrack(int t){
   if (t>n) 输出x;
   else
       for(i=t; i<=n; i++){
           Swap(x[t], x[i]);
           if ( Constraint(t) )
                 Backtrack(t+1);
           Swap(x[t], x[i]);
```



```
□剪枝
```

约束函数

```
Constraint(t){
    for (i=1; i<t; i++){
        if(|i-t| == |x[i] - x[t]|) return false;
    }
    return true;
}</pre>
```

回溯法

时间复杂性: O(n*n!)

空间复杂性: O(n)

②的m着色问题

图的m着色问题

- □输入
 - ○无向连通图G
 - om种颜色
- □输出
 - ○顶点着色方案
 - 任意两个相邻顶点都有不同颜色

对于一个给定图和m中颜色,判断是否能m着色,如 果能,找出所有的方案。

圖的m着色问题

□解空间

- x[i]表示顶点i的颜色
 - $x[i] \in \{1, ..., m\}$
- ○每个x[i]有m种不同取值
- x[1,...,n]有mⁿ种不同取值

②的m着色问题

- □解空间树(m=3)
 - ○类似于子集树,每个x[i]有m个取值,完全m叉树。

□回溯法

8的m着色问题

□剪枝

约束函数

```
Constraint(t) {
    for (i=1; i<t; i++) {
        if(存在边(i, t)且x[i]==x[t]) return false;
    }
    return true;
}
```

回溯法

时间复杂性: O(n*mn)

空间复杂性: O(n)

□回溯法的效率取决于

- 解空间中解的数量
 - 即满足显约束的x[1,...,n]的值的个数
- 计算约束函数Constraint(t)所需时间
- 计算限界函数Bound(t)所需时间
- ○满足约束函数和限界函数的解的数量
- x[1,...,n]的选取顺序

- □好的约束(限界)函数能显著地减少所生成的结点数。但这样的约束(限界)函数往往计算量较大。因此,在选择约束(限界)函数时通常存在搜索结点数与约束函数计算量之间的折衷。
- □对于许多问题而言,在搜索试探时选取 x[i]的值顺序是任意的。在其它条件相当的前提下,让可取值最少的x[i]优先。

▶ 实例 图中关于同一问题的2棵不同解空间树

▶ 前者的效果明显比后者好

总结

- ✓ 理解回溯法的深度优先搜索策略
- ✓ 掌握用回溯法解题的算法框架
 - (1) 递归回溯最优子结构性质
 - (2) 迭代回溯贪心选择性质
 - (3) 子集树算法框架
 - (4) 排列树算法框架