Privacy in Statistics and Machine Learning Spring 2021 In-class Exercises for Lecture 16 (Synthetic data generation and MW-EM)

March 25/26, 2021

Adam Smith and Jonathan Ullman

Problems with marked with an asterisk (*) are more challenging or open-ended.

- 1. Consider the class of 3-way marginal queries. Suppose data records are d-bit vectors (so $\mathcal{U} = \{0, 1\}^d$). For any three distinct features $a, b, c \in [d]$, the marginal table $t_{a,b,c}(\mathbf{x})$ is an 8-dimensional vector with the frequencies in \mathbf{x} of all $8 = 2^3$ possible combinations of values for features a, b, c. We can think ofthe table as 8 linear queries. The set of 3-way marginal queries contains all possible 3-way marginal tables.
 - (a) What are *m* and *K* for this class of queries?
 - (b) For error α , what is the sample size required by the accuracy bound we proved for simple Gaussian noise, the projection mechanism, and MW-EM?
 - (c) If α is constant, which of these methods provides hte best ℓ_{∞} guarantee? Does the answer change if we are just interested in an ℓ_2 guarantee?
- 2. What is the running time of MW-EM? Assume T is given, and that it takes $\Theta(1)$ time to evaluate $\varphi_i(z)$ for each $i \in [k]$ and each potentia data record z in \mathcal{U} . Assume that real arithmetic operations (exponentiation, summation, etc) take constant time. [If it is easier, you can assume the exponential mechanism is replaced with report-noisy-max.]

Compare the running times of the Gaussian and MW-EM mechanisms on three-way marginal queries.

- 3. What kinds of synthetic data distributions can MW-EM generate?
 - (a) Show that the distributions \mathbf{p}^t generated by the MW updates have the following feature: there exists coefficients $c_1,...,c_k$ (depending on the interaction so far with the DP interface) such that $w^t(z) = \exp\left(c_1\varphi_1(z) + \cdots + c_k\varphi_k(z)\right) = \prod_{i=1}^k e^{c_i\varphi_i(x)}$ for each $z \in \mathcal{U}$.
 - (Side note: You can also show that at most *t* of the coefficients are nonzero.)
 - (b) Fix the data universe to $\mathcal{U} = \{0, 1\}^d$ and consider the class of *one-way marginals*: these simply ask for the frequency of 1's in each of the d binary attributes.
 - Show that running MW-EM for this class of queries can only produce distributions \mathbf{p}^t under which the d attributes are independent.
- 4. What loss of generality is there in producing synthetic data as output for query release? Not much, it turns out. Suppose we have a differentially private algorithm that, for every $\mathbf{x} \in \mathcal{U}^n$, produces as output a ist of k values $\mathbf{a} = (a_1, ..., a_k)$ such that $\|\mathbf{a} \mathbf{F}\mathbf{h}_{\mathbf{x}}\|_{\infty} \le \alpha$.
 - (a) Show that we can post-process the algorithm's outputs to produce a synthetic data distribution $\hat{\mathbf{p}}$ such that $\|\mathbf{F}\hat{\mathbf{p}} \mathbf{F}\mathbf{h}_{\mathbf{x}}\|_{\infty} \le 2\alpha$. [*Hint:* Search over $\Delta([m])$ to find a $\hat{\mathbf{p}}$ for which $\|\mathbf{F}\hat{\mathbf{p}} \mathbf{a}\|_{\infty}$ is as small as possible.]
 - (b) (*) Give a post-processing algorithm that runs in time $poly(m, k, 1/\alpha)$ and produces a $\hat{\mathbf{p}}$ such that $\|\mathbf{F}\hat{\mathbf{p}} \mathbf{F}\mathbf{h}_{\mathbf{x}}\|_{\infty} \le 3\alpha$. [*Hint*: Use mutiplicative weights!]