OLUCIÓN EXAMEN - 22 DE JULIO DE 2015. DURACIÓN: 3:30 HORAS

Primera parte: Múltiple Opción

МО	
1	2

Ejercicio 1. Sean n=319 y e=19. Para los datos anteriores sea función de descifrado $D: \mathbb{Z}_n \to \mathbb{Z}_n$ definida por el protocolo RSA. Indicar cuál de las opciones es correcta:

A.
$$D(y) = y^{42} \pmod{n}$$
.

C.
$$D(y) = y^{84} \pmod{n}$$
.

B.
$$D(y) = y^{59} \pmod{n}$$
.

D.
$$D(y) = y^{67} \pmod{n}$$
.

La función de descifrado es $D(y) = y^d \pmod{n}$ donde d es tal que $d \equiv e^{-1} \pmod{\varphi(n)}$. La factorización de n es $319 = 11 \cdot 29$, por lo que $\varphi(11 \cdot 29) = 10 \cdot 28 = 280$. Utilizando el algoritmo extendido de Euclides obtenemos $d \equiv 59 \pmod{280}$.

Ejercicio 2. Sea $0 \le m < 325$ tal que $m \equiv 435^{241} \pmod{325}$. Indicar cuál de las opciones es correcta:

A.
$$m = 65$$
.

B.
$$m = 110$$
.

C.
$$m = 300$$
.

D.
$$m = 175$$
.

Como $435 = 3 \cdot 5 \cdot 29$ no es coprimo con $325 = 5^2 \cdot 13$ no podemos aplicar el Teorema de Euler. Aplicando el Teorema Chino del Resto obtenemos

$$x \equiv 435^{241} \pmod{325} \Leftrightarrow \left\{ \begin{array}{ccc} x & \equiv & 435^{241} \pmod{5^2} \\ x & \equiv & 435^{241} \pmod{13} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ccc} x & \equiv & 5^{241}(3 \cdot 29)^{241} \pmod{5^2} \\ x & \equiv & 6^{241} \pmod{13} \end{array} \right. .$$

Ahora como $5^2 \mid 5^{241}$ entonces $435^{241} \equiv 0 \pmod{5^2}$. Por otro lado $\varphi(13) = 12$ y como 6 y 13 son coprimos, por el teorema de Euler tenemos que $6^{12} \equiv 1 \pmod{13}$, por lo que $6^{241} = 6^{12 \cdot 20 + 1} \equiv 6 \pmod{13}$. Concluímos que

$$x \equiv 435^{241} \pmod{325} \Leftrightarrow \left\{ \begin{array}{ccc} x & \equiv & 0 \pmod{5^2} \\ x & \equiv & 5 \pmod{13} \end{array} \right.,$$

que tiene solución $x \equiv 175 \pmod{325}$. Por lo que m = 175.

Segunda parte: Desarrollo

Ejercicio 3. Dado los siguientes sistemas, investigar si tienen solución, y en caso que tenga encontrar todas sus respectivas soluciones.

$$\mathbf{a}. \left\{ \begin{array}{ll} x & \equiv & 2 \pmod{11} \\ x & \equiv & 5 \pmod{8} \\ x & \equiv & 14 \pmod{15} \end{array} \right..$$

Como 11, 8 y 15 son coprimos dos a dos, por el Teorema Chino de Resto sabemos que existe solución y que es única módulo $11 \cdot 8 \cdot 15 = 1320$; es decir que existe una solución x_0 y todas las soluciones son $x \equiv x_0$ (mód 1320).

Si realizamos el cambio de variable x' = x - 14, el sistema en esta variable nos queda:

$$\left\{ \begin{array}{lll} x' & \equiv & -12 \pmod{11} & \equiv & -1 \pmod{11} \\ x' & \equiv & -9 \pmod{8} & \equiv & -1 \pmod{8} \\ x' & \equiv & 10 \pmod{15} \end{array} \right.$$

que equivale a $\left\{ \begin{array}{ll} x' & \equiv & -1 \pmod{88} \\ x' & \equiv & 10 \pmod{15} \end{array} \right. .$

Es decir x' = -1 + 88k con $k \in \mathbb{Z}$ y $-1 + 88k \equiv 0$ (mód 15). Entonces $13k \equiv 1$ (mód 15) $\Rightarrow -2k \equiv 1$ (mód 15) $\Rightarrow k \equiv 7$ (mód 15). Es decir k = 7 + 15z: $z \in \mathbb{Z}$. Entonces x' = -1 + 88(7 + 15z) = 615 + 1320z y $x = x' + 14 = 629 + 1320z, z \in \mathbb{Z}.$

$$\mathbf{b}. \, \left\{ \begin{array}{ll} x & \equiv & 9 \pmod{20} \\ x & \equiv & 5 \pmod{24} \\ x & \equiv & 35 \pmod{66} \end{array} \right. \, .$$

Por el Teorema Chino del resto, tenemos que $x\equiv 9\pmod{20}$ si y sólo si $\begin{cases} x\equiv 9\pmod{4} &\equiv 1\pmod{4} \\ x\equiv 9\pmod{5} &\equiv 4\pmod{5} \end{cases}$ De forma análoga, tenemos que $x\equiv 5\pmod{24}$ si y sólo si $\begin{cases} x\equiv 5\pmod{8} \\ x\equiv 5\pmod{3} &\equiv 2\pmod{3} \end{cases}$

y que $x \equiv 35 \pmod{66}$ es equivalente a

$$\left\{ \begin{array}{lll} x & \equiv & 35 \pmod{2} & \equiv & 1 \pmod{2} \\ x & \equiv & 35 \pmod{3} & \equiv & 2 \pmod{3} \\ x & \equiv & 35 \pmod{11} & \equiv & 2 \pmod{11} \end{array} \right.$$

Entonces el sistema original es equivalente a

$$\left\{ \begin{array}{ll} x & \equiv & 1 \pmod{4} \\ x & \equiv & 4 \pmod{5} \\ x & \equiv & 5 \pmod{8} \\ x & \equiv & 2 \pmod{3} \\ x & \equiv & 1 \pmod{2} \\ x & \equiv & 2 \pmod{11} \end{array} \right. .$$

Ahora si $x \equiv 5 \pmod{8}$ entonces $x \equiv 5 \pmod{4} \equiv 1 \pmod{4}$ y $x \equiv 1 \pmod{2}$; por lo que la tercer ecuación

implica la primera y la penúltima; y el sistema resulta equivalente a $\begin{cases} x \equiv 4 \pmod{5} \\ x \equiv 5 \pmod{8} \\ x \equiv 2 \pmod{3} \\ x \equiv 2 \pmod{11} \end{cases}$

Y como (por el Teo. Chino del Resto) $\begin{cases} x \equiv 4 \pmod{5} \\ x \equiv 2 \pmod{3} \end{cases}$ equivale a $x \equiv 14 \pmod{15}$; obtenemos que el sistema original es equivalente al sistema $\begin{cases} x \equiv 14 \pmod{5} \\ x \equiv 5 \pmod{8} \\ x \equiv 2 \pmod{11} \end{cases}$, que es el sistema resuelto en la parte anterior.

Ejercicio 4.

- **a.** Definir la funcion $\varphi : \mathbb{N}^+ \to \mathbb{N}$ de Euler. Ver teórico, definición 2.6.1.
- **b.** Probar que si mcd(n, m) = 1 entonces

$$\varphi(nm) = \varphi(n)\varphi(m).$$

Ver teórico Teorema 2.6.3.

c. Calcular:

i)
$$\varphi(125)$$
.
ii) $\varphi(108)$.

$$\varphi(125) = \varphi(5^3) = 5^3 - 5^2 = 100.$$
ii) $\varphi(108)$.

$$\varphi(108) = \varphi(2^2 \cdot 3^3) = \varphi(2^2)\varphi(3^3) = (2^2 - 2)(3^3 - 3^2) = 2 \cdot 18 = 36$$

d. Sabiendo que 2 es raíz primitiva módulo 25 y 125, hallar todos los homomofismos

$$f: U(125) \to U(25)$$
.

Como $U(125) = \langle \bar{2} \rangle$, por la proposición 3.9.9 de teórico, tenemos que todo morfismo $f: U(125) \to K$ es de la forma $f(\bar{2}^x) = f(\bar{2})^x$ con la condición de que $o(f(\bar{2})) \mid o(\bar{2})$. Ahora, como 2 es raíz primitiva módulo 125, el orden de $\bar{2}$ en U(125) es $\varphi(125) = 100$. Entonces cada morfismo está determinado por la elección de $y = f(\bar{2}) \in U(25)$ tal que $o(y) \mid 100$. Ahora por el Corolario 3.8.2, tenemos que $o(y) \mid |U(25)| = \varphi(25) = 20$ para todo $y \in U(25)$. Por lo que $o(y) \mid 100$ para todo $y \in U(25)$.

Entonces, existen tantos morfismos como elementos de U(25). Es decir, hay 20 homomorfismos.

Ejercicio 5.

a. Sea G un grupo finito, y $g \in G$ tal que o(g) = m. Probar que

$$o\left(g^k\right) = \frac{m}{\gcd(k, m)}.$$

Ver teórico (Proposición 3.7.8)

- b. Probar que si existe una raíz primitiva módulo n entonces hay exactamente $\varphi(\varphi(n))$ raíces primitivas módulo n. Ver teórico (proposición 4.1.3)
- c. Sea p un primo y g una raíz primitiva módulo p.

entonces q es raíz primitiva módulo p^2 .

- i) Probar que si n es el orden de g en $U(p^2)$ entonces $p-1 \mid n$. Si n = o(g) en $U(p^2)$, en particular $g^n \equiv 1 \pmod{p^2}$ es decir que $p^2 \mid g^n - 1$ y entonces $p \mid g^n - 1$. Por lo tanto $g^n \equiv 1 \pmod{p}$ y entonces si m es el orden de g en U(p) tenemos que $m \mid n$.
- ii) Probar que g o g+p es raíz primitiva módulo p^2 . Por ser g raíz primitiva módulo p, sabemos que en U(p) el orden de g es p-1. Por la parte anterior, tenemos que si n es el orden de g en $U(p^2)$ entonces $p-1\mid n$. Por otro lado, $n\mid |U(p^2)|=\varphi(p^2)=p(p-1)$. Por lo tanto, $p-1\mid n$ y $n\mid p(p-1)$; al ser p primo tenemos que n=p-1 o n=p(p-1). Si n=p(p-1)

Veamos ahora qué pasa si n=p-1. Llamemos m al orden de g+p en $U(p^2)$. Tenemos entonces que $m\mid p(p-1)$ y como $(g+p)^m\equiv 1\pmod{p^2}\Rightarrow (g+p)^m\equiv 1\pmod{p}\Rightarrow g^m\equiv 1\pmod{p}$ tenemos que $p-1\mid m$. Es decir que m=p-1 o m=p(p-1). Ahora

$$(g+p)^{p-1} = g^{p-1} + (p-1)g^{p-2}p + \sum_{i=2}^{p-1} \binom{p-1}{i} g^{p-1-i}p^i \equiv g^{p-1} + (p-1)g^{p-2}p \pmod{p^2}.$$

Como n=p-1, tenemos que $g^{p-1}\equiv 1\pmod{p^2}$ y entonces $(g+p)^{p-1}\equiv 1+(p-1)g^{p-2}p\pmod{p^2}\equiv 1-g^{p-2}p\pmod{p^2}$. Como g es coprimo con $p,p\nmid g$ y entonces $p^2\nmid g^{p-2}p$; por lo que $g^{p-2}p\not\equiv 0\pmod{p^2}$ y entonces $(g+p)^{p-1}\not\equiv 1\pmod{p^2}$. Concluímos entonces que $m\not\equiv p-1$, y entonces m=p(p-1) de lo que resulta que g+p es raíz primitiva módulo p^2 .

d. Hallar una raíz primitiva módulo 11^2 .

Hallemos primero una raíz primitiva módulo 11. Como $\varphi(11)=10=2\times 5$, tenemos que g es raíz primitiva módulo 11, si y sólo si $\operatorname{mcd}(g,11)=1$ y $g^5\not\equiv 1\pmod {11}$ y $g^2\not\equiv 1\pmod {11}$.

Probando con g=2, tenemos que $2^2=4\not\equiv 1\pmod{11}$ y que $2^5=32\equiv 10\pmod{11}\not\equiv 1\pmod{11}$. Por lo tanto 2 es raíz primitiva módulo 11.

Por la parte anterior, tenemos que 2 o 13 es raíz primitiva módulo 11^2 y que los órdenes de estos elementos en $U(11^2)$ son 10 o $11\cdot 10$. Como $2^{10}=2^72^3=128\cdot 8\equiv 7\cdot 8\pmod{121}\equiv 56\pmod{121}\not\equiv 1\pmod{121}$, concluímos que el orden de 2 en $U(11^2)$ no es 10 y por lo tanto es $11\cdot 10$. Y entonces 2 es raíz primitiva móculo 11^2 .

3