CSC 7700: Scientific Computing

Module A: Basic Skills

Lecture 3: Vector Algebra and Basic Visualization Programming

Dr Frank Löffler

September 23 2010

Vector Algebra

Vectors and vector addition

Unit vectors

Base vectors and vector components

Rectangular coordinates in 2D

Rectangular coordinates in 3D

A vector connecting two points

Vector products

Dot product

Cross product

Basic Visualization Programming

Introduction

OpenGL / GLUT

Simple Example

Optional Coursework

Vector Algebra

Vectors

Scalar: Quantity with magnitude

Vector: Mathematical Object with magnitude and direction

Characterizing properties:

▶ Length

▶ Direction

Typical representation: arrow Possible notations: \vec{A} , \vec{A} , \vec{A}

Magnitude is its length: |A| or A

Vector addition

Addition: laying vectors head to tail in sequence

Rules for vector addition and multiplication with scalar:

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$
 $a\mathbf{A} = \mathbf{A}a$
 $a(\mathbf{A} + \mathbf{B}) = a\mathbf{A} + a\mathbf{B}$

Unit vectors

Unit vector: Vector of unit length

Notation: ê, **ê**, **e**

Property by definition: $|\hat{\mathbf{e}}| \equiv 1$

Almost all vectors can be made into unit vector:

$$\hat{\mathbf{e}} = \frac{\mathbf{u}}{|\mathbf{u}|}$$

Any vector can be fully represented by providing length and unit vector along its direction:

$$\mathbf{u} = u\mathbf{\hat{e}}$$

Base vectors

- ► Set of vectors
- ► Base to represent all other vectors
- ► Possible to construct all vectors from addition of vectors along base directions (and multiplication with scalars)

$$\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3$$

= $u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2 + u_3 \mathbf{e}_3$

$$\mathbf{u} = u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2 + u_3 \mathbf{e}_3$$

 (u_1, u_2, u_3) : components of **u** in base $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$

- ► If base vectors are unit vectors: components represent lengths of the three vectors **u**₁, **u**₂ and **u**₃
- ► If base vectors are mutually orthogonal: base is known as orthonormal, Euclidean or Cartesian base

► Vectors in 2D can be resolved along any two (different) directions in a plane containing it.

Parallelogram rule to construct vectors ${\bf a}$ and ${\bf b}$ that add up to ${\bf c}$:

- ► Vectors in 3D can be resolved along any three non-coplanar lines
- ► First find vector in plane of two base directions
- ▶ Resolve this vector along two directions in plane

Addition of vectors, represented by base vectors and components:

$$\mathbf{A} = A_1 \mathbf{e}_1 + A_2 \mathbf{e}_2 + A_3 \mathbf{e}_3$$

$$\mathbf{B} = B_1 \mathbf{e}_1 + B_2 \mathbf{e}_2 + B_3 \mathbf{e}_3$$

$$\mathbf{R} = (A_1 + B_2) \mathbf{e}_1 + (A_2 + B_3) \mathbf{e}_2 + A_3 \mathbf{e}_3$$

$$\mathbf{A} + \mathbf{B} = (A_1 + B_1)\mathbf{e}_1 + (A_2 + B_2)\mathbf{e}_2 + (A_3 + B_3)\mathbf{e}_3$$

Base vectors of rectangular x-y coordinate system given by unit vectors $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ along the x and y directions respectively:

$$\mathbf{F} = F_{x}\mathbf{\hat{i}} + F_{y}\mathbf{\hat{j}}$$

$$F = \sqrt{F_{x}^{2} + F_{y}^{2}}$$

$$F_{x} = F\cos(\theta)$$

$$F_{y} = F\sin(\theta)$$

$$(\theta) = \frac{F_{y}}{F_{x}}$$

Base vectors of rectangular coordinate system given by set of three mutually orthogonal unit vectors $\hat{\mathbf{i}} \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ along x, y and z coordinate directions, respectively:

Shown: right-handed system

Vector components are projections of vector along x, y and z directions:

$$\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Direction cosines:

$$I = \cos(\alpha)$$

$$m = \cos(\beta)$$

$$n = \cos(\gamma)$$

$$\hat{i}$$

$$I = \cos(\alpha) = \frac{A_x}{A}, \ m = \cos(\beta) = \frac{A_y}{A}, \ n = \cos(\gamma) = \frac{A_z}{A}$$

$$I = \cos(\alpha) = \frac{A_x}{A}, \ m = \cos(\beta) = \frac{A_y}{A}, \ n = \cos(\gamma) = \frac{A_z}{A}$$

Direction cosines not independent:

$$I^2 + m^2 + n^2 = 1$$

Proof:

$$I^{2} + m^{2} + n^{2} = \cos^{2}(\alpha) + \cos^{2}(\beta) + \cos^{2}(\gamma) = \frac{A_{x}^{2}}{A^{2}} + \frac{A_{y}^{2}}{A^{2}} + \frac{A_{z}^{2}}{A^{2}} = \mathbf{1}$$

Construction of unit vector along vector A:

$$\hat{\mathbf{e}} = \frac{\mathbf{A}}{A} = \frac{A_x}{A}\hat{\mathbf{i}} + \frac{A_y}{A}\hat{\mathbf{j}} + \frac{A_z}{A}\hat{\mathbf{k}}$$

$$= \cos(\alpha)\hat{\mathbf{i}} + \cos(\beta)\hat{\mathbf{j}} + \cos(\gamma)\hat{\mathbf{k}}$$

$$= \hbar\hat{\mathbf{i}} + m\hat{\mathbf{j}} + k\hat{\mathbf{k}}$$

Therefore:

$$\mathbf{A} = A\hat{\mathbf{e}} = A\cos(\alpha)\hat{\mathbf{i}} + A\cos(\beta)\hat{\mathbf{j}} + A\cos(\gamma)\hat{\mathbf{k}}$$

A vector connecting two points

Vector connecting point A to point B is given by

$$\mathbf{r} = (x_B - x_A)\hat{\mathbf{i}} + (y_B - y_A)\hat{\mathbf{j}} + (z_B - z_A)\hat{\mathbf{k}}$$

$$= x_B\hat{\mathbf{i}} - x_A\hat{\mathbf{i}} + y_B\hat{\mathbf{j}} - y_A\hat{\mathbf{j}} + z_B\hat{\mathbf{k}} - z_A\hat{\mathbf{k}}$$

$$= (x_B\hat{\mathbf{i}} + y_B\hat{\mathbf{j}} + z_B\hat{\mathbf{k}}) - (x_A\hat{\mathbf{i}} + y_A\hat{\mathbf{j}} + z_A\hat{\mathbf{k}})$$

$$= \mathbf{B} - \mathbf{A}$$

Vector products

There isn't a single product of vectors:

Product	Notation	Result
dot, scalar, inner	A · B	scalar
cross, vector	$\mathbf{A} \times \mathbf{B}$	vector
tensor, outer	$A \otimes B$	matrix

Dot product

$$\mathbf{A} \cdot \mathbf{B} = AB \cos(\theta)$$

 $\theta = 90^{\circ} \rightarrow \mathbf{A} \cdot \mathbf{B} = 0$
 $\theta = 0^{\circ} \rightarrow \mathbf{A} \cdot \mathbf{A} = \mathbf{A}^{2} = A^{2}$

Some properties:

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$

$$\alpha(\mathbf{B} \cdot \mathbf{C}) = (\alpha \mathbf{B}) \cdot \mathbf{C} = \mathbf{B} \cdot (\alpha \mathbf{C})$$

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

Dot product

Special cases:

Scalar product of two unit vectors: angle between vectors

$$\mathbf{\hat{e}}_i \cdot \mathbf{\hat{e}}_j = \cos(\theta)$$

Scalar product of unit vector with arbitrary vector:

Scalar projection: A · ê

Vector projection: $(\mathbf{A} \cdot \hat{\mathbf{e}})\hat{\mathbf{e}}$

Dot product

Rectangular coordinates:

$$\mathbf{A} = A_{x}\hat{\mathbf{i}} + A_{y}\hat{\mathbf{j}} + A_{z}\hat{\mathbf{k}}$$

$$\mathbf{B} = B_{x}\hat{\mathbf{i}} + B_{y}\hat{\mathbf{j}} + B_{z}\hat{\mathbf{k}}$$

$$\downarrow$$

$$\mathbf{A} \cdot \mathbf{B} = A_{x}B_{x} + A_{y}B_{y} + A_{z}B_{z}$$

because

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = 0$$
 $\hat{\mathbf{i}} \cdot \hat{\mathbf{k}} = 0$
 $\hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = 0$

Cross product

Result of vector product of two vectors **a** and **b**: vector

- ▶ perpendicular to both a and b
- ► magnitude: area of paralellogram generated from **a** and **b**

 $\mathbf{a} \times \mathbf{a} = 0$

 $\mathbf{a} \times \mathbf{b} = ab\sin(\theta)\mathbf{n}$

Properties:

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

 $\alpha(\mathbf{b} \times \mathbf{c}) = (\alpha \mathbf{b}) \times \mathbf{c} = \mathbf{b} \times (\alpha \mathbf{c})$
 $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$

Cross product

Rectangular coordinates:

$$\mathbf{a} = a_{x}\hat{\mathbf{i}} + a_{y}\hat{\mathbf{j}} + a_{z}\hat{\mathbf{k}}$$

$$\mathbf{b} = b_{x}\hat{\mathbf{i}} + b_{y}\hat{\mathbf{j}} + b_{z}\hat{\mathbf{k}}$$

$$\downarrow$$

$$\mathbf{a} \times \mathbf{b} = (a_{y}b_{z} - a_{z}b_{y})\hat{\mathbf{i}} - (a_{x}b_{z} - a_{z}b_{x})\hat{\mathbf{j}} + (a_{x}b_{y} - a_{y}b_{x})\hat{\mathbf{k}}$$

Relations between base vectors:

$$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}$$

 $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$
 $\hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}$

Basic Visualization Programming

3D Visualization options

Two main APIs, providing nearly th same level of functionality:

- ► Direct3D
 - Proprietary, Windows OS / Xbox only
 - Updates often coupled with OS updates
 - ► Targeted towards game development
- ▶ OpenGL
 - Open standard, available on most moderns OSs
 - ► General purpose 3D API

Large projects often wrap low-level 3D-API anyway.

OpenGL

- ► API for 2D and 3D computer graphics
- ▶ over 250 different function calls
- Originally developed by SGI
- Widely used in CAD, virtual reality, scientific visualization, information visualization, and flight simulation, video games
- ► Now managed by the non-profit technology consortium Khronos Group

GLUT

The OpenGL Utility Toolkit (GLUT)

- ► Library of utilities for OpenGL programs
- Primarily performs system-level I/O with the host operating system, e.g. window definition, window control, and monitoring of keyboard and mouse input
- ► Routines for drawing a number of geometric primitives

Stated two aims:

- Allow the creation of rather portable code between operating systems
- Make learning OpenGL easier

Upstream development of original GLUT in stagnation, but alternatives exist, e.g.:


```
#include <GL/glut.h>
int main(int argc, char **argv) {
 // Initialize GLUT library
  glutInit(&argc, argv);
  // Set display modes
  glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
  // Define initial window position and size
  glutInitWindowPosition (100,100);
  glutInitWindowSize(320.320):
  // Set some title
  glutCreateWindow("CSC_7700_example");
  // Tell Glut which function does the initial and animation rendering
  glutDisplayFunc(renderScene);
  glutIdleFunc (renderScene):
  // Enable depth testing
  glEnable (GL_DEPTH_TEST);
  // Start Glut main loop. This will call our callbacks
  glutMainLoop():
  return 0;
```



```
// Angle of model rotation
float angle = 0.0;
// This function is called every time the scene is rendered
void renderScene(void) {
  // Clear old buffers
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT):
  // Save the previous settings, in this case save
  // the camera settings.
  glPushMatrix():
  // Perform a rotation around the v axis (0,1,0)
  // by the amount of degrees defined in the variable angle
  glRotatef(angle, 0.0, 1.0, 0.0);
  // Draw triangle
  glColor3f(0.9. 0.9. 0.9):
  glBegin (GL_TRIANGLES);
    g|Vertex3f(-0.5, -0.5, 0.0):
    glVertex3f( 0.5, 0.0, 0.0);
    glVertex3f( 0.0, 0.5, 0.0);
  glEnd();
  // Forget about the current transformation matrix
  glPopMatrix();
  // Swapping the buffers causes the rendering above to be
  // shown
  glutSwapBuffers();
  // Finally increase the angle for the next frame
  angle+=0.1;
```



```
#include <GL/glut.h>
float angle = 0.0;
void renderScene(void) {
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  glPushMatrix():
  glRotatef(angle, 0.0, 1.0, 0.0);
  glColor3f(0.9, 0.9, 0.9);
  glBegin (GL_TRIANGLES);
    gIVertex3f(-0.5, -0.5, 0.0);
    glVertex3f( 0.5, 0.0, 0.0);
    glVertex3f( 0.0, 0.5, 0.0);
  glEnd():
  gIPopMatrix();
  glutSwapBuffers();
  angle+=0.1:
int main(int argc, char **argv) {
  glutInit(&argc, argv);
  glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
  glutInitWindowPosition (100,100);
  glutInitWindowSize (320,320);
  glutCreateWindow("CSC_7700_example");
  glutDisplayFunc(renderScene);
  glutIdleFunc (renderScene):
  glEnable (GL_DEPTH_TEST);
  glutMainLoop();
  return 0:
```


However, this is essentially using OpenGL 2

Current Version: 4.1

- Only small differences between version 3 and 4
- ► Bigger changes between 2 and 3:
 - Move away from procedual interface, more object-oriented
 - OpenGL isn't handling transformation/rotation matrices anymore, using shaders instead
 - ▶ In some sense: more low-level
 - ► However: better performance on modern hardware

Why is example only using OpenGL 2?

- ► Large code-base still using this version
- ► Shallower learning curve (IMHO)

Optional Coursework

Extend simple OpenGL/GLUT example

(https://svn.cct.lsu.edu/repos/sci-comp/public/Module-A/A3_template.cpp)

- ► Replace triangle by water molecule:
 - Three colored spheres
 - ► Correct (explicitly specified) angle between H-molecules
 - ▶ Distances and radii not important, as long as it 'looks ok'
- ► Send source code as attachement to instructors mailing list

Due: Sep 30th

