COEN 21 Lab5

- Find one pair of X and Y inputs (with C0=0) that would result in the following:
 - C4 = 0 and V = 0: X = 1 and Y = 0
 - C4 = 0 and V = 1: X = 4 and Y = 4
 - C4 = 1 and V = 0: X = 9 and Y = 7
 - C4 = 1 and V = 1: X = C and Y = A
- If you had to make an 8-bit adder, show how would you do it using only instances of the 4-bit module you have built in this lab? Specifically, show how you would create the C8 output and the V output.
 - To make an 8-bit adder, we would use two 4-bit modules. C4 would connect to the CIN of the second 4-bit module, and that second 4-bit module's COUT would be C8. X[3:0] and Y[3:0] would go into the first 4-bit module and X[7:4] and Y[7:4] would go into the second 4-bit module. V would equal technically be C[7] ^ C8 but will be assigned in the second 4-bit adder.
- Did the initial testing of your circuit go smoothly or did you encounter incorrect results? If the latter, describe how you determined what was wrong.
 - In our initial testing, we did have incorrect results. Our problem was that
 we messed up the variable (input/output) order in the Verilog code,
 switching the S and the CIN. We determined it was wrong by looking over
 our code again and noticing from the results that the COUT S was wrong.
- If the circuit were completely correct except that X[1] and Y[1] were interchanged in a full adder input, would you be able to detect this based on observing outputs during testing? Why or why not?
 - You would not be able to detect that X[1] and Y[1] were interchanged because they would both be added together to get a sum that would be the same even if the order was different.

- Your TA will make available to you a waveform showing an adder circuit that is not behaving correctly; there is some incorrect wiring inside the adder.
 - Identify exactly where it's misbehaving, i.e., where it showing incorrect results.
 - Column 3 and 4 have the wrong sum. (240 ns 480 ns)
 - Also the lat 4 columns have the wrong sums (600 ns 1000 ns)
 - Make a guess (a hypothesis) about what might be wrong, which would explain the incorrect behavior.
 - Our hypothesis is that the carry_in and carry_out between the full adders is wrong.
 - Identify another test (i.e., a set of input stimulus) that might help prove or disprove your hypothesis.
 - We can test this hypothesis by checking each carry_in and carry_out of each smaller adder is working properly by checking them one at a time. We would set our input to stimulate one carry out and carry in connection while the others are set to zero.

Inputs			Outputs Observed		
4-bit inputs (in hex)			4-bit sum	Extra outputs	
X	Y	C0	S	V	C4
0	0	0	0	O	_ 1
0	0	1	1	0	0
1	0	0	1	Q	0
0	1	0		V	O
2	0	0	_ ' <u>¬</u> _	-0	n
4	3	0	7 -	0	0
4	4	0	R		D
9	6	0	15	Ď	0
9	7	0	0	D	
С	A	0	6_		i i
Е	A	0	20	D	1
Е	A	1	a		