

Test report No.

Page **Issued date** : 11084189H-A-R1 : 1 of 60

: February 17, 2016 : March 10, 2016

Revised date FCC ID

: 2AHCI-TM4969

RADIO TEST REPORT

Test Report No.: 11084189H-A-R1

Applicant

TOYOTA TECHNICAL DEVELOPMENT

CORPORATION

Type of Equipment

Realtime radio module

Model No.

TM4969

FCC ID

2AHCI-TM4969

Test regulation

FCC Part 15 Subpart C: 2015

Test Result

Complied

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the above regulation.
- The test results in this report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- This report is a revised version of 11084189H-A. 11084189H-A is replaced with this report.

Date of test:

December 21, 2015 to January 20, 2016

Representative test engineer:

Shinichi Miyazono

Engineer

Consumer Technology Division

Approved by:

Takayuki Shimada

Engineer

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page

: 2 of 60 : February 17, 2016 Issued date : March 10, 2016 Revised date FCC ID : 2AHCI-TM4969

: 11084189H-A-R1

REVISION HISTORY

Original Test Report No.: 11084189H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11084189H-A	February 17, 2016	-	-
1	11084189H-A-R1	March 10, 2016	P.9	Correction of Configuration and peripherals
1	11084189H-A-R1	March 10, 2016	P.25 to 41	Correction of Calculation

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page

Issued date Revised date FCC ID : 11084189H-A-R1 : 3 of 60

: February 17, 2016 : March 10, 2016 : 2AHCI-TM4969

CONTENTS PAGE Customer information......4 **SECTION 1: SECTION 2: SECTION 3: SECTION 4:** Operation of E.U.T. during testing8 **SECTION 5:** Conducted Emission......11 **SECTION 6:** Radiated Spurious Emission ________12 **SECTION 7:** 6dB Bandwidth 21 Average Output Power 23 **APPENDIX 2: APPENDIX 3:**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 60

Issued date : February 17, 2016
Revised date : March 10, 2016
FCC ID : 2AHCI-TM4969

SECTION 1: Customer information

[Applicant]

Company Name : TOYOTA TECHNICAL DEVELOPMENT CORPORATION Address : 1-9 Imae, Hanamoto-cho, Toyota, Aichi 470-0334, Japan

Telephone Number : +81-565-50-6447 Facsimile Number : +81-565-50-6700 Contact Person : Yasuyuki Moriyama

[Manufacturer]

Company Name : KEITSU ELECTRONIC CO., LTD.

Address : 3-7-14, AKUTAGAWA-CHO TAKATSUKI-CITY, OSAKA 569-1123

JAPAN

Telephone Number : +81-72-685-8847 Facsimile Number : +81-72-685-8847 Contact Person : KUNIO TANAKA

*Remarks:

TOYOTA TECHNICAL DEVELOPMENT CORPORATION designates KEITSU ELECTRONIC CO., LTD. as manufacturer of the product (Realtime radio module).

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Realtime radio module

Model No. : TM4969

Serial No. : Refer to Section 4, Clause 4.2
Rating : DC 2.0 V - DC 3.6V (DC 3.3 V typ.)

Receipt Date of Sample : December 24, 2016

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: TM4969 (referred to as the EUT in this report) is a Realtime radio module.

General Specification

Clock frequency(ies) in the system : 32 MHz

Radio Specification

Radio Type : Transceiver

Frequency of Operation : 2402 MHz to 2479 MHz

Modulation : GFSK
Operating voltage (inner) : DC 3.3 V

Antenna type : Chip antenna, Patch antenna

Antenna Gain : Chip antenna : 0.5 dBi

Patch antenna (PA2409S) with 3.0 m Cable : 8.1 dBi Patch antenna (PAT209S-24) with 3.0 m Cable : 8.1 dBi

Number of channel : 78 Channel spacing : 1 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2015, final revised on November 23, 2015

*Some parts are effective on and after December 17, 2015 or December 23, 2015. The revision does not affect the test specification applied to the EUT.

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	QP 15.3 dB, 0.21800 MHz, N AV 8.5 dB, 0.71080 MHz, L	Complied	
6dB Bandwidth	FCC: KDB 558074 D01 DTS Meas Guidance v03r04 IC: -	FCC: Section 15.247(a)(2) IC: RSS-247 5.2(1)		Complied	Conducted
Maximum Peak Output Power	FCC: KDB 558074 D01 DTS Meas Guidance v03r04 IC: RSS-Gen 6.12	FCC: Section 15.247(b)(3) IC: RSS-247 5.4(4)	See data.	Complied	Conducted
Power Density	FCC: KDB 558074 D01 DTS Meas Guidance v03r04 IC: -	FCC: Section 15.247(e) IC: RSS-247 5.2(2)		Complied	Conducted
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 DTS Meas Guidance v03r04 IC: RSS-Gen 6.13	FCC: Section15.247(d) IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	0.2 dB 4804.000 MHz, AV, Vertical 4880.000 MHz, AV, Vertical	Complied	Conducted (below 30 MHz)/ Radiated (above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 DTS Meas Guidance v03r04 12.2.7.

FCC Part 15.31 (e)

This EUT provides stable voltage (DC 3.3 V) constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

[Chip antenna]

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

[Patch antenna]

The EUT has an external antenna connector, but it is installed by the professionals.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

: 11084189H-A-R1 Test report No.

Page : 6 of 60

Issued date : February 17, 2016 : March 10, 2016 Revised date FCC ID : 2AHCI-TM4969

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2. Ise EMC Lab.

Antenna terminal test Uncertainty (+/-)							
Po	Power meter Conducted emission and Power density Conducted emission					Channel	
Below	Above	Below	1 GHz	3 GHz	18 GHz	26.5 GHz	
1 GHz	1 GHz	1 GHz	-3 GHz	-18 GHz	-26.5 GHz	-40 GHz	power
0.9 dB	1.0 dB	1.4 dB	1.7 dB	2.8 dB	2.8 dB	2.9 dB	2.6 dB

	Conducted emission
Frequency range	using AMN(LISN)
	(<u>+</u> dB)
0.009 –	3.5 dB
0.15MHz	3.3 QB
0.15 – 30MHz	2.9 dB

	Radiated emission
Test distance	(<u>+</u> dB)
	9 kHz - 30 MHz
3m	3.8 dB
10m	3.7 dB

	Radiated emission (Below 1GHz)					
Polarity	(3 m*)(<u>+</u> dE	(10 m*)(<u>+</u> dB)				
Totalty	30 – 300 MHz	300 –	30 – 300	300 –		
		1000MHz	MHz	1000MHz		
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB		
Vertical	4.5 dB	5.9 dB	4.8 dB	5.1 dB		

Radiated emission						
(3 m*)(<u>+</u> dB)		(1 m*)(<u>+</u> dB)	(0.5 m*)(<u>+</u> dB)	(10 m*)(<u>+</u> dB)		
1 – 6GHz	6 – 18GHz	10 – 26.5 GHz	26.5 – 40GHz	1 -18 GHz		
5.1 dB	5.3 dB	5.1 dB	5.1 dB	5.3 dB		

^{*}Measurement distance

<u>Conducted Emission test</u>
The data listed in this test report has enough margin, more than the site margin.

Radiated emission test
The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 60

Issued date : February 17, 2016
Revised date : March 10, 2016
FCC ID : 2AHCI-TM4969

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 m x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Mode	Tested Frequency
Transmitting mode (Tx mode)	2402 MHz
	2440 MHz
	2479 MHz

*Power of the EUT was set by the software as follows;

Power settings: E5(hex) - 00H(hex)

Software: continuous emission test: NA_RMT(test)

hopping emission test: NA_RMT(Hoptest) communication operation test: NAANT303

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 9 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

4.2 Configuration and peripherals

[Chip antenna]

: Standard Ferrite Core

Description of EUT

Descr	Assemption of ECT						
No.	Item	Model number	Serial number	Manufacturer	Remarks		
A	Module	TM4969	001	KEITSU	EUT		
				ELECTRONIC CO.,			
				LTD.			
В	Jig	-	-	KEITSU	-		
				ELECTRONIC CO.,			
				LTD.			
C	Jig	-	-	KEITSU	-		
				ELECTRONIC CO.,			
				LTD.			
D	Laptop PC	DF-W5	7HKSA86870	Panasonic	-		
Е	AC Adapter	CF-AA6282A	6282AM107619146A	Panasonic	_		

List of cables used

List of	t cabics useu		•		
No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB Cable	1.5	Shielded	Shielded	-
2	DC Cable	1.4	Unshielded	Unshielded	-
3	AC Cable	1.8	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test report No. : 11084189H-A-R1 Page : 10 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

[Patch antenna]

: Standard Ferrite Core

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Patch antenna	PA2409S	001	NATEC CO., LTD.	EUT
		PAT209S-24	002		
В	Module	TM4969	002	KEITSU ELECTRONIC CO., LTD.	EUT
С	Jig	-	-	KEITSU ELECTRONIC CO., LTD.	-
D	Jig	-	-	KEITSU ELECTRONIC CO., LTD.	-
Е	Laptop PC	DF-W5	7HKSA86870	Panasonic	-
F	AC Adapter	CF-AA6282A	6282AM107619146A	Panasonic	-

List of cables used

No.	Name	Length (m)	Shie	ld	Remarks
			Cable	Connector	
1	Antenna Cable	3.0 *1)	Shielded	Shielded	-
2	USB Cable	1.5	Shielded	Shielded	-
3	DC Cable	1.4	Unshielded	Unshielded	-
4	AC Cable	1.8	Unshielded	Unshielded	-

^{*1)} The worst antenna cable was selected by comparing the length.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test report No. : 11084189H-A-R1 Page : 11 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

1) For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz – 30 MHz

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1
Page : 12 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "11.0 Emissions in non-restricted frequency bands" of "558074 D01 DTS Meas Guidance v03r04".

[For below 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 300 MHz	300 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	rzer	Spectrum Analyzer
Detector	QP	PK	AV *3)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	Average Power Method:	RBW: 100 kHz
		VBW: 3 MHz	12.2.5.2	VBW: 300kHz
			RBW: 1 MHz	
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			Duty factor was added to	
			the results.	
Test Distance	3m	3 m (below 1 Gl	Hz),	3 m (below 1 GHz),
		3 m *1) (1 GHz	-10 GHz),	3 m *1) (1 GHz - 10 GHz),
		1 m *2) (10 GH	z - 26.5 GHz)	1 m *2) (10 GHz - 26.5 GHz)

^{*1)} Distance Factor: 20 x log (4.5 m / 3.0 m) = 3.5 dB (Chip Antenna) Distance Factor: 20 x log (4.4 m / 3.0 m) = 3.3 dB (Patch antenna)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

^{*3)} Average Power Measurement was performed based on 6.0 & 12.2.5 of "KDB 558074 D01 DTS Meas Guidance v03r04"

Test report No. : 11084189H-A-R1 Page : 13 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of module and antenna to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 M - 26.5 GHz Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 14 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
				time			
6dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 10.2 Method PKPSD (peak PSD) of "KDB 558074 D01 DTS Meas Guidance v03r04".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)

: 11084189H-A-R1 Test report No. Page : 15 of 60

Issued date : February 17, 2016 : March 10, 2016 Revised date FCC ID : 2AHCI-TM4969

APPENDIX 1: Test data

Conducted Emission (Chip Antenna)

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Ise EMC Lab. No.2 Semi Anechoic Chamber Date : 2016/01/21

Report No. : 11084189H

: 22deg. C / 34% RH : Hiroyuki Furutaka Temp./Humi. Engineer

Mode / Remarks : Tx 2402MHz

LIMIT : FCC15. 207 QP FCC15. 207 AV

Г	Reading	Level	Corr.	Resu	ılts	Lin	nit	Mar	gin		
requency	QP	A۷	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15000	21.8	3. 1	13. 2	35.0	16. 3	66. 0	56. 0	31.0	39. 7	N	
0. 15000	22. 8	5. 2	13. 2	36.0	18. 4	66. 0	56. 0	30.0	37. 6	L	
0. 21800	34. 4	20.3	13. 2	47. 6	33. 5	62. 9	52. 9	15. 3	19. 4	N	
0. 22620	32. 8	22. 3	13. 2	46.0	35. 5	62. 6	52. 6	16.6	17. 1	L	
0.34040	20. 6	15.0	13. 2	33.8	28. 2	59. 2	49. 2	25. 4	21.0	L	
0.35690	21. 2	13.9	13. 2	34. 4	27. 1	58. 8	48. 8	24. 4	21. 7	N	
0.69180	24. 7	23.6	13.3	38. 0	36. 9	56.0	46. 0	18. 0	9. 1	L	
0.71040	21.3	21.0	13.3	34. 6	34. 3	56.0	46. 0	21. 4	11.7	N	
0.89780	14. 5	13. 1	13.3	27. 8	26. 4	56. 0	46. 0	28. 2	19.6	N	
0.90080	18.0	16.4	13.3	31.3	29. 7	56.0	46. 0	24. 7	16.3	L	
6. 54200	23. 3	15.8	13.9	37. 2	29. 7	60.0	50.0	22. 8	20. 3	L	
6. 58700	17. 2	11.1	13.9	31. 1	25. 0	60.0	50.0	28. 9	25. 0	N	

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 16 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Conducted Emission (Chip Antenna)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11084189H
Date January 21, 2016
Temperature / Humidity 22 deg. C / 34 % RH
Engineer Hiroyuki Furutaka

Mode Tx

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11084189H-A-R1 Test report No. Page : 17 of 60

Issued date : February 17, 2016 : March 10, 2016 Revised date FCC ID : 2AHCI-TM4969

Conducted Emission (Patch antenna: PA2409S)

DATA OF CONDUCTED EMISSION TEST

. Japan, Inc. Ise EMC Lab. No. 2 Semi Anechoic Chamber Date : 2016/01/21

: 11084189H Report No.

Temp./Humi. Engineer : 22deg. C / 34% RH : Hiroyuki Furutaka

Mode / Remarks : Tx 2402MHz

_	Reading	Level	Corr.	Resu	ılts	Lim	nit	Mar	gin		
Frequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15000	22. 0	3.4	13. 2	35. 2	16. 6	66. 0	56. 0	30.8	39. 4	N	
0. 15000	22. 1	4. 9	13. 2	35. 3	18. 1	66.0	56.0	30. 7	37. 9	L	
0. 17880	33. 5	21. 1	13. 2	46. 7	34. 3	64. 5	54. 5	17. 8	20. 2	L	
0. 18250	33.8	18. 7	13. 2	47. 0	31.9	64. 4	54. 4	17. 4	22. 5	N	
0. 19820	29. 7	13.5	13. 2	42. 9	26. 7	63. 7	53. 7	20. 8	27. 0	N	
0. 20010	29. 5	17. 4	13. 2	42. 7	30. 6	63. 6	53. 6	20. 9	23. 0	L	
0. 26850	24. 2	17.7	13. 2	37. 4	30. 9	61. 2	51. 2	23. 8	20. 3	L	
0. 26860	25. 6	13.7	13. 2	38. 8	26. 9	61. 2	51. 2	22. 4	24. 3	N	
0. 71100	21.3	20.8	13.3	34. 6	34. 1	56.0	46. 0	21. 4	11.9	N	
0. 71118	24. 6	24. 0	13.3	37. 9	37. 3	56.0	46. 0	18. 1	8. 7	L	
6. 49600	23. 3	15. 9	13.9	37. 2	29. 8	60.0	50.0	22. 8	20. 2	L	
6. 58860	17.0	10.8	13.9	30. 9	24. 7	60.0	50.0	29. 1	25. 3	N	
	1										
	İ										
	İ				İ						
	1				ı						

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 18 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Conducted Emission (Patch antenna: PA2409S)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11084189H
Date January 21, 2016
Temperature / Humidity 22 deg. C / 34 % RH
Engineer Hiroyuki Furutaka

Mode Tx

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 19 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

<u>Conducted Emission</u> (Patch antenna: PAT209S-24)

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Ise EMC Lab. No.2 Semi Anechoic Chamber Date: 2016/01/21

Report No. : 11084189H

Temp./Humi. : 22deg. C / 34% RH Engineer : Hiroyuki Furutaka

Mode / Remarks : Tx 2402MHz LIMIT : FCC15.207 QP FCC15.207 AV

-	Reading	Level	Corr.	Resu	ılts	Lir	nit	Mar	gin	
Frequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]	
0. 15000	21.8	3. 6	13. 2	35. 0	16.8	66.0	56. 0	31.0	39. 2	N
0. 15000	23. 2	15. 8	13. 2	36. 4	29.0	66.0	56. 0	29.6	27. 0	L
0. 18250	33. 1	0.0	13. 2	46. 3	13. 2	64. 4	54. 4	18. 1	41. 2	N
0. 18260	34. 5	22. 0	13. 2	47. 7	35. 2	64. 4	54. 4	16.7	19. 2	L
0. 20015	32.9	16. 6	13. 2	46. 1	29.8	63.6	53. 6	17. 5	23. 8	N
0. 20017	34. 1	23. 4	13. 2	47. 3	36.6	63.6	53. 6	16.3	17. 0	L
0. 26760	26. 3	18. 0	13. 2	39. 5	31.2	61.2	51. 2	21.7	20. 0	L
0. 26860	25. 2	13. 4	13. 2	38. 4	26. 6	61.2	51. 2	22.8	24. 6	N
0.71080	24. 7	24. 2	13.3	38. 0	37. 5	56.0	46. 0	18.0	8. 5	L
0. 71150	21.0	20. 8	13. 3	34. 3	34. 1	56.0	46. 0	21.7	11.9	N
6. 58400	16.8	10. 9	13. 9	30. 7	24. 8	60.0	50.0	29.3	25. 2	N
6. 66800	21.4	14. 6	13. 9	35. 3	28. 5	60.0	50.0	24. 7	21.5	L

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 20 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

<u>Conducted Emission</u> (Patch antenna: PAT209S-24)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11084189H
Date January 21, 2016
Temperature / Humidity 22 deg. C / 34 % RH
Engineer Hiroyuki Furutaka

Mode Tx

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 21 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

6dB Bandwidth

Test place Ise EMC Lab. No.11 and 6 Measurement Room

Report No. 11084189H

DateDecember 21, 2015January 20, 2016Temperature / Humidity21 deg. C / 32 % RH25 deg. C / 41 % RHEngineerShinya WatanabeKoji Yamamoto

Mode Tx

Frequency	6dB Bandwidth	Limit
[MHz]	[MHz]	[kHz]
2402	1.122	> 500
2440	1.155	> 500
2479	1.121	> 500

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 22 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11084189H

DateJanuary 20, 2016January 21, 2016Temperature / Humidity23 deg. C / 39 % RH23 deg. C / 30 % RHEngineerKoji YamamotoMasafumi Niwa

Mode Tx

Maximum output power settings

	iammam carpar po wer seemings									
Freq.	Reading	Cable	Atten.	Re	sult	Liı	mit	Margin		
		Loss	Loss							
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dBm]	[mW]	[dB]		
2402	-5.19	0.00	10.06	4.87	3.07	27.90	616.59	23.03		
2440	-5.38	0.00	10.06	4.68	2.94	27.90	616.59	23.22		
2479	-5.63	0.00	10.06	4.43	2.77	27.90 616.59		23.47		

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Minimum output power settings

-									
	Freq.	Reading	Cable	Atten.	Res	sult	Li	mit	Margin
			Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
	2402	-22.84	1.36	0.00	-21.48	0.01	27.90	616.59	49.38
	2440	-23.13	1.36	0.00	-21.77	0.01	27.90	616.59	49.67
	2479	-23.53	1.36	0.00	-22.17	0.01	27.90	616.59	50.07

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

This limit was reduced by the amount in dB that the antenna gain of the antenna exceeds 6dBi.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Page : 23 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11084189H

DateJanuary 20, 2016January 21, 2016Temperature / Humidity23 deg. C / 39 % RH23 deg. C / 30 % RHEngineerKoji YamamotoMasafumi Niwa

Mode Tx

Maximum output power settings

111411111111	output po	yar power serings							
Freq.	Reading	Cable	Atten.	Re	Result		Re	sult	
		Loss	Loss	(Frame	(Frame power)		(Burst	power)	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]	
2402	-8.43	0.00	10.06	1.63	1.46	2.63	4.26	2.67	
2440	-8.66	0.00	10.06	1.40	1.38	2.63	4.03	2.53	
2479	-8.92	0.00	10.06	1.14	1.30	2.63	3.77	2.38	

Sample Calculation:

Result (Frame power) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Result (Burst power) = Frame power + Duty factor

Minimum output power settings

F	req.	Reading	Cable	Atten.	Res	sult	Duty	Re	sult
	-		Loss	Loss	(Frame power)		factor	(Burst	power)
[N	/IHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[dBm]	[mW]
24	402	-26.51	1.36	0.00	-25.15	0.00	2.63	-22.52	0.006
24	440	-26.89	1.37	0.00	-25.52	0.00	2.63	-22.89	0.005
24	479	-27.36	1.38	0.00	-25.98	0.00	2.63	-23.35	0.005

Sample Calculation:

Result (Frame power) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Result (Burst power) = Frame power + Duty factor

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 11084189H-A-R1 Page : 24 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Burst rate confirmation

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11084189H
Date December 21, 2015
Temperature / Humidity Engineer Shinya Watanabe

Mode Tx

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11084189H-A-R1 Test report No. Page : 25 of 60

Issued date : February 17, 2016 **Revised date** : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Chip Antenna)

Ise EMC Lab. Test place Report No. 11084189H

Semi Anechoic Camber No.1 No.3 No.1 No.4

January 19, 2016 January 20, 2016 January 14, 2016 January 15, 2016 Date Temperature / Humidity 22 deg. C / 31 % RH 23 deg. C / 32 % RH 22 deg. C / 30 % RH 22 deg. C / 30 % RH Shinichi Miyazono Engineer Shinichi Miyazono Shinichi Miyazono Shinichi Miyazono (1 GHz - 10 GHz) (1 GHz - 10 GHz) (30 MHz - 1000 MHz) (10 GHz - 26.5 GHz)

Mode Tx 2402 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
- 1	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	79.798	QP	51.0	6.6	8.1	38.8	-	26.9	40.0	13.1	
Hori	271.481	QP	42.2	18.7	10.3	38.9	-	32.3	46.0	13.7	
Hori	390.930	QP	38.3	17.4	11.2	38.6	-	28.3	46.0	17.7	
Hori	431.999	QP	41.1	17.8	11.5	38.5	-	31.9	46.0	14.1	
Hori	508.276	QP	39.5	18.2	12.0	38.2	-	31.5	46.0	14.5	
Hori	532.220	QP	33.8	18.5	12.2	38.1	-	26.4	46.0	19.6	
Hori	701.338	QP	38.4	20.4	13.2	38.2	-	33.8	46.0	12.2	
Hori	2369.620	PK	54.1	26.8	5.8	36.1	-	50.6	73.9	23.3	
Hori	2390.000	PK	49.4	26.8	5.8	36.1	-	45.9	73.9	28.0	
Hori	4804.000	PK	44.6	31.8	9.0	31.3	-	54.1	73.9	19.8	
Hori	4806.000	PK	47.4	31.8	9.0	31.3	-	56.9	73.9	17.0	
Hori	7206.000	PK	44.6	36.1	9.2	35.6	-	54.3	-	-	Floor Noise
Hori	9608.000	PK	44.5	38.6	10.2	36.3	-	57.0	-	-	Floor Noise
Hori	12010.000	PK	41.5	39.9	-1.1	33.2	-	47.1	73.9	26.8	
Hori	2369.620	AV	47.1	26.8	5.8	36.1	2.6	46.2	53.9	7.7	
Hori	2390.000	AV	40.3	26.8	5.8	36.1	2.6	39.4	53.9	14.5	*1)
Hori	4804.000	AV	35.6	31.8	9.0	31.3	2.6	47.7	53.9	6.2	
Hori	4806.000	AV	43.6	31.8	9.0	31.3	-	53.1	53.9	0.8	Not Duty Cycle
Hori	7206.000	AV	34.9	36.1	9.2	35.6	-	44.6	-	-	Floor Noise
Hori	9608.000	AV	35.3	38.6	10.2	36.3	-	47.8	-	-	Floor Noise
Hori	12010.000	AV	34.3	39.9	-1.1	33.2	2.6	42.5	53.9	11.4	
Vert	79.578	QP	54.7	6.6	8.1	38.8	-	30.6	40.0	9.4	
Vert	268.200	QP	41.1	18.6	10.3	38.9	-	31.1	46.0	14.9	
Vert	390.930	QP	40.4	17.4	11.2	38.6	-	30.4	46.0	15.6	
Vert	432.966	QP	39.2	17.8	11.5	38.5	-	30.0	46.0	16.0	
Vert	508.277	QP	36.5	18.2	12.0	38.2	-	28.5	46.0	17.5	
Vert	532.498	QP	37.5	18.5	12.2	38.1	-	30.1	46.0	15.9	
Vert	701.320	QP	35.7	20.4	13.2	38.2	-	31.1	46.0	14.9	
Vert	2369.620	PK	48.9	26.9	6.7	32.1	-	50.4	73.9	23.5	
Vert	2390.000	PK	34.9	26.9	6.8	32.0	-	36.6	73.9	37.3	
Vert	4804.000	PK	43.1	31.8	9.0	31.3	-	52.6	73.9	21.3	
Vert	4806.000	PK	47.3	31.8	9.0	31.3	-	56.8	73.9	17.1	
Vert	7206.000	PK	42.8	36.0	10.2	32.0	-	57.0	-	-	Floor Noise
Vert	9608.000	PK	43.9	38.2	11.0	32.4	-	60.7	-	-	Floor Noise
Vert	12010.000	PK	47.0	39.9	-1.9	33.2	-	51.8	73.9	22.1	
Vert	2369.620	AV	41.8	26.9	6.7	32.1	2.6	45.9	53.9	8.0	
Vert	2390.000	AV	44.2	26.9	6.8	32.0	2.6	48.5	53.9	5.4	*1)
Vert	4804.000	AV	34.6	31.8	9.0	31.3	2.6	46.7	53.9	7.2	
Vert	4806.000	AV	43.0	31.8	9.0	31.3	-	52.5	53.9	1.4	Not Duty Cycle
Vert	7206.000	AV	34.1	36.0	10.2	32.0	-	48.3	-	-	Floor Noise
Vert	9608.000	AV	34.3	38.2	11.0	32.4	-	51.1	-	-	Floor Noise
Vert	12010.000	AV	38.7	39.9	-1.9	33.2	2.6	46.1	53.9	7.8	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Duty factor (Amplifier) +

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

1 GHz - 10 GHz $20\log (4.5 \text{ m} / 3.0 \text{ m}) = 3.5 \text{ dB}$ 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB Distance factor:

*1) Not Out of Band emission(Leakage Power)

20dRc Data Shoot

200BC Da	20dBc Data Sneet													
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark				
				Factor										
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]					
Hori	2402.000	PK	98.9	26.9	6.8	32.0	100.6	-	-	Carrier				
	2400.000	PK	73.1	26.8	5.8	36.1	69.6	80.6	11.0					
Vert	2402.000	PK	97.0	26.9	6.8	32.0	98.7	-	-	Carrier				
	2400.000	PK	65.9	26.9	6.8	32.0	67.6	78.7	11.1					

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 26 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Chip Antenna) (Reference Plot for band-edge)

Test place Ise EMC Lab. No.1 and No.3 Semi Anechoic Chamber

Report No. 11084189H

Date January 14, 2016 January 15, 2016
Temperature / Humidity 22 deg. C / 31 % RH
Engineer Shinichi Miyazono (1 GHz - 10 GHz) January 15, 2016
23 deg. C / 32 % RH
Shinichi Miyazono (1 GHz - 10 GHz)

Mode Tx 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1
Page : 27 of 60
Issued date : February 17, 2016
Revised date : March 10, 2016
FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Chip Antenna) (Plot data, Worst case)

Test place Ise EMC Lab. Report No. 11084189H Semi Anechoic Chamber No.1

Semi Anechoic Chamber No.1 No.3 No.1 No.4

Date January 14, 2016 January 15, 2016 January 19, 2016 January 20, 2016

The state of the state

 Temperature / Humidity
 22 deg. C / 31 % RH
 23 deg. C / 32 % RH
 22 deg. C / 30 % RH
 22 deg. C / 30 % RH

 Engineer
 Shinichi Miyazono
 Shinichi Miyazono
 Shinichi Miyazono
 Shinichi Miyazono

 (1 GHz - 10 GHz)
 (1 GHz - 10 GHz)
 (30 MHz - 1000 MHz)
 (10 GHz - 26.5 GHz)

(1 GHz - 10 GHz) (1 GHz - 10 GHz) (30 MHz - 1000 MHz) (10 GHz - 26.5 GHz)
Mode Tx 2402 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 28 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Chip Antenna)

Test place Ise EMC Lab. Report No. 11084189H

Semi Anechoic Chamber No.3 No.1 No.4

 Date
 January 15, 2016
 January 19, 2016
 January 20, 2016

 Temperature / Humidity
 23 deg. C / 32 % RH
 22 deg. C / 30 % RH
 22 deg. C / 30 % RH

 Engineer
 Shinichi Miyazono
 Shinichi Miyazono
 Shinichi Miyazono

 (1 GHz - 10 GHz)
 (30 MHz - 1000 MHz)
 (10 GHz - 26.5 GHz)

Mode Tx 2440 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	79.688	QP	51.1	6.6	8.1	38.8	-	27.0	40.0	13.0	
Hori	268.123	QP	41.2	18.6	10.3	38.9	-	31.2	46.0	14.8	
Hori	390.899	QP	38.4	17.4	11.2	38.6	-	28.4	46.0	17.6	
Hori	432.003	QP	41.3	17.8	11.5	38.5	-	32.1	46.0	13.9	
Hori	508.270	QP	39.6	18.2	12.0	38.2	-	31.6	46.0	14.4	
Hori	532.223	QP	33.9	18.5	12.2	38.1	-	26.5	46.0	19.5	
Hori	701.329	QP	38.3	20.4	13.2	38.2	-	33.7	46.0	12.3	
Hori	4880.000	PK	44.1	31.9	9.0	31.3	-	53.7	73.9	20.2	
Hori	4882.000	PK	48.8	31.9	9.0	31.3	-	58.4	73.9	15.5	
Hori	7320.000	PK	42.6	36.0	10.3	32.0	-	56.9	-	-	Floor Noise
Hori	9760.000	PK	42.7	38.2	11.0	32.5	-	59.4	-	-	Floor Noise
Hori	12200.000	PK	43.4	39.9	-1.0	33.0	-	49.3	73.9	24.6	
Hori	4880.000	AV	34.7	31.9	9.0	31.3	2.6	46.9	53.9	7.0	
Hori	4882.000	AV	43.9	31.9	9.0	31.3	-	53.5	53.9	0.4	Not Duty Cycle
Hori	7320.000	AV	34.0	36.0	10.3	32.0	-	48.3	-	-	Floor Noise
Hori	9760.000	AV	33.9	38.2	11.0	32.5	-	50.6	-	-	Floor Noise
Hori	12200.000	AV	35.9	39.9	-1.0	33.0	2.6	44.4	53.9	9.5	
Vert	79.611	QP	54.6	6.6	8.1	38.8	-	30.5	40.0	9.5	
Vert	269.112	QP	41.3	18.7	10.3	38.9	-	31.4	46.0	14.6	
Vert	390.940	QP	40.6	17.4	11.2	38.6	-	30.6	46.0	15.4	
Vert	432.967	QP	39.2	17.8	11.5	38.5	-	30.0	46.0	16.0	
Vert	508.279	QP	36.3	18.2	12.0	38.2	-	28.3	46.0	17.7	
Vert	532.435	QP	37.7	18.5	12.2	38.1	-	30.3	46.0	15.7	
Vert	701.321	QP	35.7	20.4	13.2	38.2	-	31.1	46.0	14.9	
Vert	4880.000	PK	43.6	31.9	9.0	31.3	-	53.2	73.9	20.7	
Vert	4882.000	PK	47.2	31.9	9.0	31.3	-	56.8	73.9	17.1	
Vert	7320.000	PK	42.9	36.0	10.3	32.0	-	57.2	-	-	Floor Noise
Vert	9760.000	PK	42.8	38.2	11.0	32.5	-	59.5	-	-	Floor Noise
Vert	12200.000	PK	49.9	39.9	-1.0	33.0	-	55.8	73.9	18.1	
Vert	4880.000	AV	34.6	31.9	9.0	31.3	2.6	46.8	53.9	7.1	
Vert	4882.000	AV	43.7	31.9	9.0	31.3	-	53.3	53.9	0.6	Not Duty Cycle
Vert	7320.000	AV	34.1	36.0	10.3	32.0	-	48.4	-	-	Floor Noise
Vert	9760.000	AV	34.0	38.2	11.0	32.5	-	50.7	-	-	Floor Noise
Vert	12200.000	AV	41.7	39.9	-1.0	33.0	2.6	50.2	53.9	3.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.5 \text{ dB}$ Distance factor: 10 GHz - 26.5 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*1) Not Out of Band emission(Leakage Power)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 29 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Chip Antenna)

Test place Ise EMC Lab. Report No. 11084189H

Semi Anechoic Chamber No.1 No.1 No.4

Mode Tx 2479 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	79.602	QP	51.0	6.6	8.1	38.8	-	26.9	40.0	13.1	
Hori	269.004	QP	41.1	18.6	10.3	38.9	-	31.1	46.0	14.9	
Hori	390.945	QP	38.5	17.4	11.2	38.6	-	28.5	46.0	17.5	
Hori	432.012	QP	41.5	17.8	11.5	38.5	-	32.3	46.0	13.7	
Hori	508.255	QP	39.8	18.2	12.0	38.2	-	31.8	46.0	14.2	
Hori	532.119	QP	33.6	18.5	12.2	38.1	-	26.2	46.0	19.8	
Hori	701.324	QP	38.4	20.4	13.2	38.2	-	33.8	46.0	12.2	
Hori	2483.500	PK	53.1	26.9	5.8	36.1	-	49.7	73.9	24.2	
Hori	4956.062	PK	50.3	32.1	8.2	35.6	-	55.0	73.9	18.9	
Hori	4958.000	PK	47.7	32.1	8.2	35.6	-	52.4	73.9	21.5	
Hori	7437.000	PK	43.4	36.1	9.2	35.6	-	53.1	-	-	Floor Noise
Hori	9916.000	PK	44.0	38.6	10.3	36.4	-	56.5	-	-	Floor Noise
Hori	12395.000	PK	44.8	39.8	-0.9	32.9	-	50.8	73.9	23.1	
Hori	2483.500	AV	40.9	26.9	5.8	36.1	2.6	40.1	53.9	13.8	*1)
Hori	4956.062	AV	47.0	32.1	8.2	35.6	-	51.7	53.9	2.2	Not Duty Cycle
Hori	4958.000	AV	36.6	32.1	8.2	35.6	2.6	43.9	53.9	10.0	
Hori	7437.000	AV	33.4	36.1	9.2	35.6	-	43.1	-	-	Floor Noise
Hori	9916.000	AV	34.0	38.6	10.3	36.4	-	46.5	-	-	Floor Noise
Hori	12395.000	AV	36.3	39.8	-0.9	32.9	2.6	44.9	53.9	9.0	
Vert	79.611	QP	54.7	6.6	8.1	38.8	-	30.6	40.0	9.4	
Vert	269.101	QP	41.3	18.7	10.3	38.9	-	31.4	46.0	14.6	
Vert	390.941	QP	40.3	17.4	11.2	38.6	-	30.3	46.0	15.7	
Vert	432.667	QP	39.0	17.8	11.5	38.5	-	29.8	46.0	16.2	
Vert	508.301	QP	36.1	18.2	12.0	38.2	-	28.1	46.0	17.9	
Vert	532.335	QP	37.5	18.5	12.2	38.1	-	30.1	46.0	15.9	
Vert	701.311	QP	35.5	20.4	13.2	38.2	-	30.9	46.0	15.1	
Vert	2483.500	PK	53.4	26.9	5.8	36.1	-	50.0	73.9	23.9	
Vert	4956.067	PK	51.5	32.1	8.2	35.6	-	56.2	73.9	17.7	
Vert	4958.000	PK	47.9	32.1	8.2	35.6	-	52.6	73.9	21.3	
Vert	7437.000	PK	43.6	36.1	9.2	35.6	-	53.3	-	-	Floor Noise
Vert	9916.000	PK	44.3	38.6	10.3	36.4	-	56.8	-	-	Floor Noise
Vert	12395.000	PK	51.7	39.8	-1.7	32.9	-	56.9	73.9	17.0	
Vert	2483.500	AV	41.1	26.9	5.8	36.1	2.6	40.3	53.9	13.6	*1)
Vert	4956.067	AV	48.3	32.1	8.2	35.6	-	53.0	53.9		Not Duty Cycle
Vert	4958.000	AV	37.2	32.1	8.2	35.6	2.6	44.5	53.9	9.4	
Vert		AV	33.4	36.1	9.2	35.6	-	43.1	-	-	Floor Noise
Vert	9916.000		34.2	38.6	10.3	36.4	-	46.7	-	-	Floor Noise
Vert	12395.000	AV	42.4	39.8	-0.9	32.9	2.6	51.0	53.9	2.9	

 $Result = Reading + Ant \ Factor + \overline{Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + Duty \ factor - \overline{Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + \overline{Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + \overline{Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + \overline{Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + \overline{Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + \overline{Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + \overline{Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + \overline{Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + \overline{Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + \overline{Loss \ (Cable + Attenuator + Distance \ factor (above \ 1 \ GHz))} - \overline{Gain (Amplifier)} + \overline$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: $1 \text{ GHz} - 10 \text{ GHz} \quad 20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.5 \text{ dB}$ Distance factor: $10 \text{ GHz} - 26.5 \text{ GHz} \cdot 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*1) Not Out of Band emission(Leakage Power)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1
Page : 30 of 60
Issued date : February 17, 2016

Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Chip Antenna) (Reference Plot for band-edge)

Test place Ise EMC Lab.No.1 Semi Anechoic Chamber

Report No. 11084189H
Date January 18, 2016
Temperature / Humidity 22 deg. C / 41 % RH
Engineer Shinichi Miyazono (1 GHz - 10 GHz)

Mode Tx 2479 MHz

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 31 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PA2409S)

Test place Ise EMC Lab. Report No. 11084189H

Semi Anechoic Chamber No.1 No.4 No.4

 Date
 January 19, 2016
 January 20, 2016
 January 20, 2016

 Temperature / Humidity
 22 deg. C / 30 % RH
 22 deg. C / 30 % RH
 22 deg. C / 30 % RH

 Engineer
 Shinichi Miyazono
 Shinichi Miyazono
 Shinichi Miyazono

 (30 MHz - 1000 MHz)
 (1 GHz - 10 GHz)
 (10 GHz - 26.5 GHz)

Mode Tx 2402 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	52.996	QP	41.1	9.6	7.7	38.8	-	19.6	40.0	20.4	
Hori	271.442	QP	42.3	18.7	10.3	38.9	-	32.4	46.0	13.6	
Hori	390.940	QP	38.5	17.4	11.2	38.6	-	28.5	46.0	17.5	
Hori	432.005	QP	41.4	17.8	11.5	38.5	-	32.2	46.0	13.8	
Hori	508.280	QP	39.3	18.2	12.0	38.2	-	31.3	46.0	14.7	
Hori	532.311	QP	33.6	18.5	12.2	38.1	-	26.2	46.0	19.8	
Hori	701.367	QP	38.6	20.4	13.2	38.2	-	34.0	46.0	12.0	
Hori	2369.545	PK	55.0	27.9	6.6	32.1	-	57.4	73.9	16.5	
Hori	2390.000	PK	49.2	27.9	6.6	32.1	-	51.6	73.9	22.3	
Hori	4804.000	PK	48.2	32.8	9.0	31.3	-	58.7	73.9	15.2	
Hori	4806.042	PK	46.1	32.8	9.0	31.3	-	56.6	73.9	17.3	
Hori	7206.000	PK	42.0	36.8	10.2	32.6	-	56.4	-	-	Floor Noise
Hori	9608.000	PK	42.3	38.1	10.9	32.6	-	58.7	-	-	Floor Noise
Hori	12010.000	PK	41.9	39.9	-1.1	33.2	-	47.5	-	-	Floor Noise
Hori	2369.545	AV	40.4	27.9	6.6	32.1	2.6	45.4	53.9	8.5	
Hori	2390.000	AV	36.1	27.9	6.6	32.1	2.6	41.1	53.9	12.8	*1)
Hori	4804.000	AV	40.3	32.8	9.0	31.3	2.6	53.4	53.9	0.5	
Hori	4806.042	AV	41.0	32.8	9.0	31.3	-	51.5	53.9	2.4	Not Duty Cycle
Hori	7206.000	AV	33.1	36.8	10.2	32.6	-	47.5	-	-	Floor Noise
Hori	9608.000	AV	33.5	38.1	10.9	32.6	-	49.9	-	-	Floor Noise
Hori	12010.000	AV	33.9	39.9	-1.1	33.2	-	39.5	-	-	Floor Noise
Vert	53.387	QP	53.3	9.5	7.7	38.8	-	31.7	40.0	8.3	
Vert	271.443	QP	41.9	18.7	10.3	38.9	-	32.0	46.0	14.0	
Vert	390.948	QP	40.5	17.4	11.2	38.6	-	30.5	46.0	15.5	
Vert	432.971	QP	39.1	17.8	11.5	38.5	-	29.9	46.0	16.1	
Vert	508.255	QP	36.4	18.2	12.0	38.2	-	28.4	46.0	17.6	
Vert	532.422	QP	37.6	18.5	12.2	38.1	-	30.2	46.0	15.8	
Vert	701.356	QP	35.8	20.4	13.2	38.2	-	31.2	46.0	14.8	
Vert	2369.588	PK	53.5	27.9	6.6	32.1	-	55.9	73.9	18.0	
Vert	2390.000	PK	48.6	27.9	6.6	32.1	-	51.0	73.9	22.9	
Vert	4804.000	PK	48.6	32.8	9.0	31.3	-	59.1	73.9	14.8	
Vert	4806.058	PK	45.3	32.8	9.0	31.3	-	55.8	73.9	18.1	
Vert	7206.000	PK	41.9	36.8	10.2	32.6	-	56.3	-	-	Floor Noise
Vert	9608.000	PK	42.2	38.1	10.9	32.6	-	58.6	-	-	Floor Noise
Vert	12010.000	PK	42.0	39.9	-1.1	33.2	-	47.6	-	-	Floor Noise
Vert	2369.588	AV	40.0	27.9	6.6	32.1	2.6	45.0	53.9	8.9	
Vert	2390.000	AV	35.1	27.9	6.6	32.1	2.6	40.1	53.9	13.8	*1)
Vert	4804.000	AV	40.6	32.8	9.0	31.3	2.6	53.7	53.9	0.2	
Vert	4806.058	AV	40.1	32.8	9.0	31.3	-	50.6	53.9	3.3	Not Duty Cycle
Vert	7206.000	AV	33.1	36.8	10.2	32.6	-	47.5	-	-	Floor Noise
Vert	9608.000	AV	33.6	38.1	10.9	32.6	-	50.0	-	-	Floor Noise
Vert	12010.000	AV	33.9	39.9	-1.1	33.2	-	39.5	-	-	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). Distance factor: $1~\text{GHz} - 10~\text{GHz} \qquad 20\log\left(4.4~\text{m}\,/\,3.0~\text{m}\right) = 3.3~\text{dB}$

Distance factor: $1 \text{ GHz} - 10 \text{ GHz} \quad 20 \log (4.4 \text{ m} / 3.0 \text{ m}) = 3.3 \text{ dB}$ Distance factor: $10 \text{ GHz} - 26.5 \text{ GHz} \cdot 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*1) Not Out of Band emission(Leakage Power)

20dBc Data Sheet

20ubt Da	20the Data Sileet													
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark				
				Factor										
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]					
Hori	2402.000	PK	106.0	28.0	6.6	32.1	108.5	-	-	Carrier				
Hori	2400.000	PK	74.2	28.0	6.6	32.1	76.7	88.5	11.8					
Vert	2402.000	PK	105.1	28.0	6.6	32.1	107.6	-	-	Carrier				
Vert	2400.000	PK	73.8	28.0	6.6	32.1	76.3	87.6	11.3					

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1
Page : 32 of 60
Issued date : February 17, 2016

Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PA2409S) (Reference Plot for band-edge)

Test place Ise EMC Lab.No.4 Semi Anechoic Chamber

Report No. 11084189H
Date January 20, 2016
Temperature / Humidity Engineer Shinchi Miyazono

 $\begin{array}{cc} \text{(1 GHz - 10 GHz)} \\ \text{Mode} & \text{Tx 2402 MHz} \end{array}$

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 33 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PA2409S) (Plot data, Worst case)

Test place Ise EMC Lab.
Report No. 11084189H
Sami Anachaic Chambar No. 1

Semi Anechoic Chamber No.1 No.4 No.4

 Date
 January 19, 2016
 January 20, 2016
 January 20, 2016

 Temperature / Humidity
 22 deg. C / 30 % RH
 22 deg. C / 30 % RH
 22 deg. C / 30 % RH

 Engineer
 Shinichi Miyazono
 Shinichi Miyazono
 Shinichi Miyazono

 (30 MHz - 1000 MHz)
 (1 GHz - 10 GHz)
 (10 GHz - 26.5 GHz)

Mode Tx 2402 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 34 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PA2409S)

Test place Ise EMC Lab. Report No. 11084189H

Semi Anechoic Chamber No.1 No.4 No.4

 Date
 January 19, 2016
 January 20, 2016
 January 20, 2016

 Temperature / Humidity
 22 deg. C / 30 % RH
 22 deg. C / 30 % RH
 22 deg. C / 30 % RH

 Engineer
 Shinichi Miyazono
 Shinichi Miyazono
 Shinichi Miyazono

 (30 MHz - 1000 MHz)
 (1 GHz - 10 GHz)
 (10 GHz - 26.5 GHz)

Mode Tx 2440 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	52.990	QP	41.2	9.7	7.7	38.8	-	19.8	40.0	20.2	
Hori	271.411	QP	42.1	18.7	10.3	38.9	-	32.2	46.0	13.8	
Hori	390.951	QP	38.4	17.4	11.2	38.6	-	28.4	46.0	17.6	
Hori	432.012	QP	41.5	17.8	11.5	38.5	-	32.3	46.0	13.7	
Hori	508.265	QP	39.5	18.2	12.0	38.2	-	31.5	46.0	14.5	
Hori	532.402	QP	33.4	18.5	12.2	38.1	-	26.0	46.0	20.0	
Hori	701.337	QP	38.5	20.4	13.2	38.2	-	33.9	46.0	12.1	
Hori	4880.000	PK	47.3	33.1	9.1	31.3	-	58.2	73.9	15.7	
Hori	4882.042	PK	44.2	33.1	9.1	31.3	-	55.1	73.9	18.8	
Hori	7320.000	PK	42.1	36.8	10.2	32.6	-	56.5	-	-	Floor Noise
Hori	9760.000	PK	42.4	38.2	11.0	32.7	-	58.9	-	-	Floor Noise
Hori	12200.000	PK	42.1	39.9	-1.0	33.0	-	48.0	-	-	Floor Noise
Hori	4880.000	AV	39.9	33.1	9.1	31.3	2.6	53.4	53.9	0.5	
Hori	4882.042	AV	41.0	33.1	9.1	31.3	-	51.9	53.9	2.0	Not Duty Cycle
Hori	7320.000	AV	33.2	36.8	10.2	32.6	-	47.6	-	-	Floor Noise
Hori	9760.000	AV	33.6	38.2	11.0	32.7	-	50.1	-	-	Floor Noise
Hori	12200.000	AV	33.8	39.9	-1.0	33.0	-	39.7	-	-	Floor Noise
Vert	53.390	QP	53.4	9.5	7.7	38.8	-	31.8	40.0	8.2	
Vert	271.423	QP	41.8	18.7	10.3	38.9	-	31.9	46.0	14.1	
Vert	390.946	`	40.4	17.4	11.2	38.6	-	30.4	46.0	15.6	
Vert	432.857	QP	39.2	17.8	11.5	38.5	-	30.0	46.0	16.0	
Vert	508.249	QP	36.5	18.2	12.0	38.2	-	28.5	46.0	17.5	
Vert	532.419	QP	37.5	18.5	12.2	38.1	-	30.1	46.0	15.9	
Vert	701.341	QP	35.9	20.4	13.2	38.2	-	31.3	46.0	14.7	
Vert	4880.000	PK	48.0	33.1	9.1	31.3	-	58.9	73.9	15.0	
Vert	4882.092	PK	43.5	33.1	9.1	31.3	-	54.4	73.9	19.5	
Vert	7320.000	PK	42.0	36.8	10.2	32.6	-	56.4	-	-	Floor Noise
Vert	9760.000	PK	42.3	38.2	11.0	32.7	-	58.8	-	-	Floor Noise
Vert	12200.000	PK	42.3	39.9	-1.0	33.0	-	48.2	-	-	Floor Noise
Vert	4880.000	AV	40.2	33.1	9.1	31.3	2.6	53.7	53.9	0.2	
Vert	4882.092	AV	38.8	33.1	9.1	31.3	-	49.7	53.9	4.2	Not Duty Cycle
Vert	7320.000	AV	33.0	36.8	10.2	32.6	-	47.4	-	-	Floor Noise
Vert	9760.000	AV	33.5	38.2	11.0	32.7	-	50.0	-	-	Floor Noise
Vert	12200.000	AV	33.9	39.9	-1.0	33.0	-	39.8	-	-	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (4.4 \text{ m} / 3.0 \text{ m}) = 3.3 \text{ dB}$ Distance factor: 10 GHz - 26.5 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*1) Not Out of Band emission(Leakage Power)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 35 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PA2409S)

Test place Ise EMC Lab. Report No. 11084189H

Semi Anechoic Chamber No.1 No.1 No.4 No.4

DateJanuary 18, 2016January 19, 2016January 20, 2016January 20, 2016Temperature / Humidity22 deg. C / 30 % RH22 deg. C / 30 % RH22 deg. C / 30 % RH22 deg. C / 30 % RHEngineerShinichi MiyazonoShinichi MiyazonoShinichi MiyazonoShinichi Miyazono

(1 GHz - 10 GHz) (30 MHz - 1000 MHz) (1 GHz - 10 GHz) (10 GHz - 26.5 GHz) Mode Tx 2479 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Totality	[MHz]	Detector	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Kemark
Hori	52.991	QP	41.2	9.7	7.7	38.8	[4D]	19.8	40.0	20.2	
Hori	269.433	QP .	41.9	18.7	10.3	38.9	_	32.0	46.0	14.0	
Hori	390.951	QP .	38.3	17.4	11.2	38.6	-	28.3	46.0	17.7	
Hori	431.998	QP .	41.2	17.8	11.5	38.5	-	32.0	46.0	14.0	
Hori	508.266	QP	39.2	18.2	12.0	38.2	_	31.2	46.0	14.8	
Hori	532.301	QP .	33.3	18.5	12.2	38.1	-	25.9	46.0	20.1	
Hori	701.350	QP .	38.5	20.4	13.2	38.2	-	33.9	46.0	12.1	
Hori	2483.500	PK	61.2	26.9	5.6	36.1	-	57.6	73.9	16.3	
Hori	4956.072	PK	51.0	32.1	8.0	35.6	-	55.5	73.9	18.4	
Hori	4958.000	PK	52.0	32.1	8.0	35.6	-	56.5	73.9	17.4	
Hori	7437.000	PK	43.9	36.1	9.0	35.6	-	53.4	-	-	Floor Noise
Hori	9916.000	PK	45.3	38.6	10.1	36.4	-	57.6	-	-	Floor Noise
Hori	12395.000	PK	42.6	39.8	-0.9	32.9	-	48.6	-	-	Floor Noise
Hori	2483.500	AV	52.7	26.9	5.6	36.1	2.6	51.7	53.9	2.2	*1)
Hori	4956.072	AV	46.7	32.1	8.0	35.6	-	51.2	53.9	2.7	Not Duty Cycle
Hori	4958.000	AV	41.0	32.1	8.0	35.6	2.6	48.1	53.9	5.8	
Hori	7437.000	AV	33.3	36.1	9.0	35.6	-	42.8	-	-	Floor Noise
Hori	9916.000	AV	33.7	38.6	10.1	36.4	-	46.0	-	-	Floor Noise
Hori	12395.000	AV	33.8	39.8	-0.9	32.9	-	39.8	-	-	Floor Noise
Vert	53.390	QP	53.1	9.5	7.7	38.8	-	31.5	40.0	8.5	
Vert	271.449	QP	41.8	18.7	10.3	38.9	-	31.9	46.0	14.1	
Vert	390.953	QP	40.3	17.4	11.2	38.6	-	30.3	46.0	15.7	
Vert	432.776	QP	39.0	17.8	11.5	38.5	-	29.8	46.0	16.2	
Vert	508.249	QP	36.5	18.2	12.0	38.2	-	28.5	46.0	17.5	
Vert	532.389	QP	37.5	18.5	12.2	38.1	-	30.1	46.0	15.9	
Vert	701.331	QP	35.6	20.4	13.2	38.2	-	31.0	46.0	15.0	
Vert	2483.500	PK	61.1	26.9	5.6	36.1	-	57.5	73.9	16.4	
Vert	4956.047	PK	51.6	32.1	8.0	35.6	-	56.1	73.9	17.8	
Vert	4958.000	PK	49.3	32.1	8.0	35.6	-	53.8	73.9	20.1	
Vert	7437.000	PK	43.2	36.1	9.0	35.6	-	52.7	-	-	Floor Noise
Vert	9916.000	PK	43.8	38.6	10.1	36.4	-	56.1	-	-	Floor Noise
Vert	12395.000	PK	42.6	39.8	-0.9	32.9	-	48.6	-	-	Floor Noise
Vert	2483.500	AV	45.6	26.9	5.6	36.1	2.6	44.6	53.9	9.3	*1)
Vert	4956.047	AV	48.5	32.1	8.0	35.6	-	53.0	53.9	0.9	Not Duty Cycle
Vert	4958.000	AV	38.0	32.1	8.0	35.6	2.6	45.1	53.9	8.8	
Vert	7437.000	AV	33.3	36.1	9.0	35.6	-	42.8	-	-	Floor Noise
Vert	9916.000	AV	34.1	38.6	10.1	36.4	-	46.4	-	-	Floor Noise
Vert	12395.000	AV	33.9	39.8	-0.9	32.9	-	39.9	-	-	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

 $\begin{array}{ll} \mbox{Distance factor:} & 1 \mbox{ GHz} - 10 \mbox{ GHz} & 20 \mbox{log } (4.4 \mbox{ m } / \mbox{ 3.0 m}) = 3.3 \mbox{ dB} \\ \mbox{Distance factor:} & 10 \mbox{ GHz} - 26.5 \mbox{ GHz} & 20 \mbox{log } (1.0 \mbox{ m } / \mbox{ 3.0 m}) = -9.5 \mbox{ dB} \\ \mbox{} \end{array}$

*1) Not Out of Band emission(Leakage Power)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1
Page : 36 of 60
Issued date : February 17, 2016

Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PA2409S) (Reference Plot for band-edge)

Test place Ise EMC Lab.No.1 Semi Anechoic Chamber

Report No. 11084189H
Date January 18, 2016
Temperature / Humidity 22 deg. C / 41 % RH
Engineer Shinichi Miyazono
(1 GHz - 10 GHz)

Mode Tx 2479 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11084189H-A-R1 Test report No. Page : 37 of 60

Issued date : February 17, 2016 : March 10, 2016 Revised date FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PAT209S-24)

Test place Ise EMC Lab. Report No. 11084189H

Semi Anechoic Chamber No.1 No.4 No.4

January 19, 2016 January 20, 2016 January 20, 2016 Date Temperature / Humidity 22 deg. C / 30 % RH 22 deg. C / 30 % RH 22 deg. C / 30 % RH Shinichi Miyazono Shinichi Miyazono Engineer Shinichi Miyazono (30 MHz - 1000 MHz) (1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 2402 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	52.978	QP	41.4	9.7	7.7	38.8	-	20.0	40.0	20.0	
Hori	269.401	QP	42.0	18.7	10.3	38.9	-	32.1	46.0	13.9	
Hori	390.947	QP	38.6	17.4	11.2	38.6	-	28.6	46.0	17.4	
Hori	431.989	QP	41.4	17.8	11.5	38.5	-	32.2	46.0	13.8	
Hori	508.263	QP	39.1	18.2	12.0	38.2	-	31.1	46.0	14.9	
Hori	532.351	QP	33.5	18.5	12.2	38.1	-	26.1	46.0	19.9	
Hori	701.344	QP	38.7	20.4	13.2	38.2	-	34.1	46.0	11.9	
Hori	2369.510	PK	53.6	27.9	6.6	32.1	-	56.0	73.9	17.9	
Hori	2390.000	PK	51.1	27.9	6.6	32.1	-	53.5	73.9	20.4	
Hori	4804.000	PK	45.5	32.8	9.0	31.3	-	56.0	73.9	17.9	
Hori	4806.075	PK	45.1	32.8	9.0	31.3	-	55.6	73.9	18.3	
Hori	7206.000	PK	42.1	36.8	10.2	32.6	-	56.5	-	-	Floor Noise
Hori	9608.000	PK	42.5	38.1	10.9	32.6	-	58.9	-	-	Floor Noise
Hori	12010.000	PK	41.5	39.9	-1.1	33.2	-	47.1	-	-	Floor Noise
Hori	2369.510	AV	40.4	27.9	6.6	32.1	2.6	45.4	53.9	8.5	
Hori	2390.000	AV	36.6	27.9	6.6	32.1	2.6	41.6	53.9	12.3	*1)
Hori	4804.000	AV	39.1	32.8	9.0	31.3	2.6	52.2	53.9	1.7	
Hori	4806.075	AV	40.8	32.8	9.0	31.3	-	51.3	53.9	2.6	Not Duty Cycle
Hori	7206.000	AV	33.0	36.8	10.2	32.6	-	47.4	-	-	Floor Noise
Hori	9608.000	AV	33.4	38.1	10.9	32.6	-	49.8	-	-	Floor Noise
Hori	12010.000	AV	34.3	39.9	-1.1	33.2	-	39.9	-	-	Floor Noise
Vert	53.291	QP	53.3	9.5	7.7	38.8	-	31.7	40.0	8.3	
Vert	271.457	QP	41.8	18.7	10.3	38.9	-	31.9	46.0	14.1	
Vert	390.958	QP	40.4	17.4	11.2	38.6	-	30.4	46.0	15.6	
Vert	432.785	QP	39.1	17.8	11.5	38.5	-	29.9	46.0	16.1	
Vert	508.261	QP	36.4	18.2	12.0	38.2	-	28.4	46.0	17.6	
Vert	532.369	QP	37.6	18.5	12.2	38.1	-	30.2	46.0	15.8	
Vert	701.351	QP	35.8	20.4	13.2	38.2	-	31.2	46.0	14.8	
Vert	2369.520	PK	54.0	27.9	6.6	32.1	-	56.4	73.9	17.5	
Vert	2390.000	PK	50.1	27.9	6.6	32.1	-	52.5	73.9	21.4	
Vert	4804.000	PK	47.5	32.8	9.0	31.3	-	58.0	73.9	15.9	
Vert	4806.050	PK	45.2	32.8	9.0	31.3	-	55.7	73.9	18.2	
Vert	7206.000	PK	42.0	36.8	10.2	32.6	-	56.4	-	-	Floor Noise
Vert	9608.000	PK	42.4	38.1	10.9	32.6	-	58.8	-	-	Floor Noise
Vert	12010.000	PK	47.0	39.9	-1.1	33.2	-	52.6	-		Floor Noise
Vert	2369.520	AV	40.9	27.9	6.6	32.1	2.6	45.9	53.9	8.0	
Vert	2390.000	AV	37.1	27.9	6.6	32.1	2.6	42.1	53.9	11.8	*1)
Vert	4804.000	AV	40.4	32.8	9.0	31.3	2.6	53.5	53.9	0.4	
Vert	4806.050	AV	39.8	32.8	9.0	31.3	-	50.3	53.9	3.6	Not Duty Cycle
Vert	7206.000	AV	33.2	36.8	10.2	32.6	-	47.6	-	-	Floor Noise
Vert	9608.000	AV	33.5	38.1	10.9	32.6	-	49.9	-	-	Floor Noise
Vert	12010.000	AV	38.7	39.9	-1.1	33.2	-	44.3		-	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). Distance factor: $1~GHz-10~GHz \qquad 20log~(4.4~m/3.0~m)=3.3~dB$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*1) Not Out of Band emission(Leakage Power) 20dRc Data Shee

200DC Da	20th Data Sheet											
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark		
				Factor								
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]			
Hori	2402.000	PK	106.0	28.0	6.6	32.1	108.5	-	-	Carrier		
Hori	2400.000	PK	75.0	28.0	6.6	32.1	77.5	88.5	11.0			
Vert	2402.000	PK	105.8	28.0	6.6	32.1	108.3	-	-	Carrier		
Vert	2400.000	PK	75.0	28.0	6.6	32.1	77.5	88.3	10.8			

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amprifier)$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 38 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PAT209S-24) (Reference Plot for band-edge)

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Report No. 11084189H
Date January 20, 2016
Temperature / Humidity 22 deg. C / 30 % RH
Engineer Shinichi Miyazono

 $\begin{array}{cc} \text{(1 GHz - 10 GHz)} \\ \text{Mode} & \text{Tx 2402 MHz} \end{array}$

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 39 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PAT209S-24) (Plot data, Worst case)

Test place Ise EMC Lab.
Report No. 11084189H
Sami Apachoic Chamber No. 1

Semi Anechoic Chamber No.1 No.4 No.4

 Date
 January 19, 2016
 January 20, 2016
 January 20, 2016

 Temperature / Humidity
 22 deg. C / 30 % RH
 22 deg. C / 30 % RH
 22 deg. C / 30 % RH

 Engineer
 Shinichi Miyazono
 Shinichi Miyazono
 Shinichi Miyazono

 (30 MHz - 1000 MHz)
 (1 GHz - 10 GHz)
 (10 GHz - 26.5 GHz)

Mode Tx 2402 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11084189H-A-R1 Test report No.

Page : 40 of 60

Issued date : February 17, 2016 : March 10, 2016 Revised date FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PAT209S-24)

Test place Ise EMC Lab. Report No. 11084189H

Semi Anechoic Chamber No.1 No.4 No.4 January 20, 2016

January 19, 2016 Date January 20, 2016

Temperature / Humidity 22 deg. C / 30 % RH 22 deg. C / 30 % RH 22 deg. C / 30 % RH Shinichi Miyazono Shinichi Miyazono Engineer Shinichi Miyazono (10 GHz - 26.5 GHz) (30 MHz - 1000 MHz) (1 GHz - 10 GHz)

Mode Tx 2440 MHz

	7		n 1:				D . D .	n .			
Polarity	Frequency	Detector			Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]	o n	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[]	[dB]	
Hori	52.988	QP	41.0	9.7	7.7	38.8	-	19.6	40.0	20.4	
Hori	269.422	`	41.8	18.7	10.3	38.9	-	31.9	46.0	14.1	
Hori		QP	38.5	17.4	11.2	38.6	-	28.5	46.0	17.5	
Hori	431.995	`	41.1	17.8	11.5	38.5	-	31.9	46.0	14.1	
Hori		QP	39.0	18.2	12.0	38.2	-	31.0	46.0	15.0	
Hori		QP	33.4	18.5	12.2	38.1	-	26.0	46.0	20.0	
Hori	701.340		38.5	20.4	13.2	38.2	-	33.9	46.0	12.1	
Hori	4880.000		48.3	33.1	9.1	31.3	-	59.2	73.9	14.7	
Hori	4882.067		45.8	33.1	9.1	31.3	-	56.7	73.9	17.2	
Hori	7320.000	PK	42.1	36.8	10.2	32.6	-	56.5	-	-	Floor Noise
Hori	9760.000	PK	42.5	38.2	11.0	32.7	-	59.0	-	-	Floor Noise
Hori	12200.000	PK	42.0	39.9	-1.0	33.0	-	47.9	-	-	Floor Noise
Hori	4880.000	AV	40.2	33.1	9.1	31.3	2.6	53.7	53.9	0.2	
Hori	4882.067	AV	41.7	33.1	9.1	31.3	-	52.6	53.9	1.3	Not Duty Cycle
Hori	7320.000	AV	33.1	36.8	10.2	32.6	-	47.5	-	-	Floor Noise
Hori	9760.000	AV	33.5	38.2	11.0	32.7	-	50.0	-	-	Floor Noise
Hori	12200.000	AV	33.9	39.9	-1.0	33.0	-	39.8	-	-	Floor Noise
Vert	53.290	QP	53.1	9.6	7.7	38.8	-	31.6	40.0	8.4	
Vert	271.439	QP	41.6	18.7	10.3	38.9	-	31.7	46.0	14.3	
Vert	390.962	QP	40.1	17.4	11.2	38.6	-	30.1	46.0	15.9	
Vert	432.811	QP	39.0	17.8	11.5	38.5	-	29.8	46.0	16.2	
Vert	508.265	QP	36.5	18.2	12.0	38.2	-	28.5	46.0	17.5	
Vert	532.371	QP	37.5	18.5	12.2	38.1	-	30.1	46.0	15.9	
Vert	701.350	QP	35.6	20.4	13.2	38.2	-	31.0	46.0	15.0	
Vert	4880.000	PK	48.9	33.1	9.1	31.3	-	59.8	73.9	14.1	
Vert	4882.067	PK	43.6	33.1	9.1	31.3	-	54.5	73.9	19.4	
Vert	7320.000	PK	42.0	36.8	10.2	32.6	-	56.4	-	-	Floor Noise
Vert	9760.000	PK	42.5	38.2	11.0	32.7	-	59.0	_	-	Floor Noise
Vert	12200.000	PK	42.1	39.9	-1.0	33.0	-	48.0	-	-	Floor Noise
Vert	4880.000	AV	40.2	33.1	9.1	31.3	2.6	53.7	53.9	0.2	
Vert	4882.067	AV	38.9	33.1	9.1	31.3	-	49.8	53.9	4.1	Not Duty Cycle
Vert	7320.000	AV	33.0	36.8	10.2	32.6	_	47.4	_	_	Floor Noise
Vert	9760.000		33.5	38.2	11.0	32.7	_	50.0	_	_	Floor Noise
Vert	12200.000		33.8	39.9	-1.0	33.0	_	39.7	_	_	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20\log (4.4 \text{ m}/3.0 \text{ m}) = 3.3 \text{ dB}$ Distance factor: $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*1) Not Out of Band emission(Leakage Power)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 41 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

<u>Radiated Spurious Emission</u> (Patch antenna: PAT209S-24)

Test place Ise EMC Lab.
Report No. 11084189H

Semi Anechoic Chamber No.1 No.1 No.4 No.4

(1 GHz - 10 GHz) (30 MHz - 1000 MHz) (1 GHz - 10 GHz) (10 GHz - 26.5 GHz) Mode Tx 2479 MHz

D-1it-	E	Detector	Reading	A 4 E	T	C-i-	Duty Factor	D14	T imit	Manain	Dl-
Polarity	Frequency [MHz]	Detector	[dBuV]	Ant.Fac. [dB/m]	Loss [dB]	Gain [dB]	[dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Remark
Hori	52.991	QP	41.2	9.7	7.7	38.8	[ub]	19.8	40.0	20.2	
Hori	269.453	QP QP	41.2	18.7	10.3	38.9	-	32.0	46.0	14.0	
Hori	390.931	QP QP	38.5	17.4	11.2	38.6	-	28.5	46.0	17.5	
Hori	431.991	QP QP	41.2	17.4	11.5	38.5	-	32.0	46.0	14.0	
Hori	508.276	`	39.0	18.2	12.0	38.2	-	31.0	46.0	15.0	
Hori	532.338	QP	33.4	18.5	12.0	38.1	-	26.0	46.0	20.0	
Hori		QP		20.4	13.2	38.2	-			12.1	
Hori	701.362 2483.500	QP PK	38.5 53.1	26.9		36.1	-	33.9 49.7	46.0 73.9	24.2	
Hori		PK PK		32.1	5.8	35.6	-			18.9	
			50.3		8.2		-	55.0	73.9		
Hori		PK	47.7	32.1	8.2	35.6	-	52.4	73.9	21.5	TI N.
Hori	7437.000	PK	43.4	36.1	9.2	35.6	-	53.1	-	-	Floor Noise
Hori	9916.000	PK	44.0	38.6	10.3	36.4	-	56.5	-	-	Floor Noise
Hori	12395.000	PK	42.2	39.8	-0.9	32.9	-	48.2		12.0	Floor Noise
Hori	2483.500	AV	40.9	26.9	5.8	36.1	2.6	40.1	53.9	13.8	*1)
Hori	4956.062	AV	47.0	32.1	8.2	35.6	-	51.7	53.9		Not Duty Cycle
Hori	4958.000	AV	36.6	32.1	8.2	35.6	2.6	43.9	53.9	10.0	
Hori	7437.000	AV	33.4	36.1	9.2	35.6	-	43.1	-	-	Floor Noise
Hori	9916.000	AV	34.0	38.6	10.3	36.4	-	46.5	-	-	Floor Noise
Hori	12395.000	AV	33.9	39.8	-0.9	32.9	-	39.9	-	-	Floor Noise
Vert	53.312	QP	53.4	9.5	7.7	38.8	-	31.8	40.0	8.2	
Vert	271.463	QP	41.9	18.7	10.3	38.9	-	32.0	46.0	14.0	
Vert	390.942	QP	40.3	17.4	11.2	38.6	-	30.3	46.0	15.7	
Vert	432.778	QP	39.1	17.8	11.5	38.5	-	29.9	46.0	16.1	
Vert	508.254	QP	36.5	18.2	12.0	38.2	-	28.5	46.0	17.5	
Vert	532.351	QP	37.5	18.5	12.2	38.1	-	30.1	46.0	15.9	
Vert	701.378	QP	35.7	20.4	13.2	38.2	-	31.1	46.0	14.9	
Vert	2483.500	PK	53.4	26.9	5.8	36.1	-	50.0	73.9	23.9	
Vert	4956.067	PK	51.5	32.1	8.2	35.6	-	56.2	73.9	17.7	
Vert	4958.000	PK	47.9	32.1	8.2	35.6	-	52.6	73.9	21.3	
Vert	7437.000	PK	43.6	36.1	9.2	35.6	-	53.3	-	-	Floor Noise
Vert	9916.000	PK	44.3	38.6	10.3	36.4	-	56.8	-	-	Floor Noise
Vert	12395.000	PK	42.3	39.8	-0.9	32.9	-	48.3	-	-	Floor Noise
Vert	2483.500	AV	41.1	26.9	5.8	36.1	2.6	40.3	53.9	13.6	*1)
Vert	4956.067	AV	48.3	32.1	8.2	35.6	-	53.0	53.9	0.9	Not Duty Cycle
Vert	4958.000	AV	37.2	32.1	8.2	35.6	2.6	44.5	53.9	9.4	
Vert	7437.000	AV	33.4	36.1	9.2	35.6	-	43.1	-	-	Floor Noise
Vert	9916.000	AV	34.2	38.6	10.3	36.4	-	46.7	-	-	Floor Noise
Vert	12395.000	AV	34.0	39.8	-0.9	32.9	-	40.0	-	-	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

 $\begin{array}{ll} \mbox{Distance factor:} & 1 \mbox{ GHz} - 10 \mbox{ GHz} & 20 \mbox{log } (4.4 \mbox{ m } / \mbox{ 3.0 m}) = 3.3 \mbox{ dB} \\ \mbox{Distance factor:} & 10 \mbox{ GHz} - 26.5 \mbox{ GHz} \mbox{ 20 \mbox{log }} (1.0 \mbox{ m } / \mbox{ 3.0 m}) = -9.5 \mbox{ dB} \\ \end{array}$

*1) Not Out of Band emission(Leakage Power)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1
Page : 42 of 60
Issued date : February 17, 2016

Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Radiated Spurious Emission (Patch antenna: PAT209S-24) (Reference Plot for band-edge)

Test place Ise EMC Lab. No.1 Semi Anechoic Chamber

Report No. 11084189H
Date January 18, 2016
Temperature / Humidity Engineer Shinichi Miyazono (1 GHz - 10 GHz)

Mode Tx 2479 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 43 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11084189H
Date January 20, 2016
Temperature / Humidity 23 deg. C / 39 % RH
Engineer Koji Yamamoto
Mode Tx 2402 MHz

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.24	-95.6	0.00	9.8	8.1	1	-77.7	300	6.0	-16.4	48.2	64.6	
150.00	-87.2	0.00	9.8	8.1	1	-69.2	300	6.0	-8.0	24.0	32.0	

 $E = EIRP - 20 \log (D) + Ground bounce + 104.8 [dBuV/m]$

EIRP = Reading + Cable Loss + Attenator Loss + Antenna Gain + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11084189H-A-R1 Test report No. Page : 44 of 60

: February 17, 2016 **Issued date** : March 10, 2016 Revised date : 2AHCI-TM4969

FCC ID

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11084189H Date January 20, 2016 23 deg. C / 39 % RH Temperature / Humidity Engineer Koji Yamamoto Tx 2440 MHz Mode

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.70	-96.5	0.00	9.8	8.1	1	-78.6	300	6.0	-17.3	47.8	65.1	
150.00	-88.3	0.00	9.8	8.1	1	-70.4	300	6.0	-9.1	24.0	33.1	

E = EIRP - 20 log (D) + Ground bounce + 104.8 [dBuV/m]

EIRP = Reading + Cable Loss + Attenator Loss + Antenna Gain + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 45 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11084189H
Date January 20, 2016
Temperature / Humidity 23 deg. C / 39 % RH
Engineer Koji Yamamoto
Mode Tx 2479 MHz

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.12	-95.9	0.00	9.8	8.1	1	-78.0	300	6.0	-16.7	48.4	65.1	
175.00	-87.5	0.00	9.8	8.1	1	-69.6	300	6.0	-8.3	22.7	31.0	

 $E = EIRP - 20 \log (D) + Ground bounce + 104.8 [dBuV/m]$

EIRP = Reading + Cable Loss + Attenator Loss + Antenna Gain + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 46 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Power Density

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11084189H Date January 20, 2016 Temperature / Humidity 23 deg. C / 39 % RH Engineer Koji Yamamoto

Mode Tx

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2402.00	-17.91	0.87	10.06	-6.98	8.00	14.98
2440.00	-17.94	0.87	10.06	-7.01	8.00	15.01
2479.00	-18.19	0.88	10.06	-7.25	8.00	15.25

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1
Page : 47 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Power Density

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11084189H-A-R1 Page : 48 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

99%Occupied Bandwidth

Test place Ise EMC Lab. No.11 and 6 Measurement Room

Report No. 11084189H

Date December 21, 2015 January 20, 2016
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Shinya Watanabe Koji Yamamoto

Mode T2

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11084189H-A-R1 Test report No. Page : 49 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

APPENDIX 2: Test instruments

Cest equipmo Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	CE	2015/07/01 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	CE	2015/01/13 * 12
MJM-14	Measure	KOMELON	KMC-36	-	CE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	CE/RE	
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	CE	2015/11/06 * 12
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	CE	2015/10/11 * 12
MLS-23	LISN(AMN)	Schwarzbeck	NSLK8127	8127-729	CE(EUT)	2015/07/10 * 12
MCC-13	Coaxial Cable	Fujikura	3D-2W(12m)/5D-2 W(5m)/5D-2W(0.8 m)/5D-2W(1m)	-	CE	2015/02/06 * 12
MAT-65	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	CE	2016/01/14 * 12
MMM-01	Digital Tester	Fluke	FLUKE 26-3	78030611	CE	2015/08/19 * 12
MAEC-01	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	RE	2015/09/19 * 12
MOS-27	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q26	RE	2015/01/13 * 12
MJM-25	Measure	KOMELON	KMC-36	-	RE	-
MTR-09	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	RE	2015/06/08 * 12
KBA-05	Biconical Antenna	Schwarzbeck	BBA9106	2513	RE	2015/11/02 * 12
KLA-04	Logperiodic Antenna	Schwarzbeck	USLP9143	361	RE	2015/11/03 * 12
MAT-08	Attenuator(6dB)	Weinschel Corp	2	BK7971	RE	2015/11/10 * 12
MCC-02	Coaxial Cable	Suhner/storm/Agilent/ TSJ	-	-	RE	2015/09/29 * 12
MPA-19	Pre Amplifier	MITEQ	MLA-10K01-B01-3 5	1237616	RE	2015/02/03 * 12
MMM-03	Digital Tester	Fluke	FLUKE 26-3	78030621	RE	2015/08/19 * 12
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2015/10/02 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	1501	RE	2015/01/13 * 12
MJM-26	Measure	KOMELON	KMC-36	-	RE	-
MRENT-126	Spectrum Analyzer	KEYSIGHT	E4440A	MY46185516	RE	2015/07/31 * 12
MHA-21	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	9120D-557	RE	2015/08/10 * 12
MCC-141	Microwave Cable	Junkosha	MWX221	1305S002R(1m) / 1405S146(5m)	RE	2015/06/22 * 12
MPA-12	MicroWave System Amplifier	Agilent	83017A	00650	RE	2015/10/01 * 12
MHA-17	Horn Antenna 15-40GHz	Schwarzbeck	BBHA9170	BBHA9170307	RE	2015/06/06 * 12
MSA-16	Spectrum Analyzer	Agilent	E4440A	MY46186390	AT/RE	2015/02/16 * 12

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 50 of 60

Issued date : February 17, 2016 Revised date : March 10, 2016 FCC ID : 2AHCI-TM4969

Test equipment (2/2)

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MOS-19	Thermo-Hygrometer	Custom	CTH-201	0001	AT	2015/12/08 * 12
MOS-14	Thermo-Hygrometer	Custom	CTH-201	1401	AT	2015/01/13 * 12
MAT-91	Attenuator	Weinschel Associates	WA56-10	56100307	AT	2015/06/01 * 12
MAT-20	Attenuator(10dB)(above1 GHz)	HIROSE ELECTRIC CO.,LTD.	AT-110	-	AT	2016/01/08 * 12
MAT-10	Attenuator(10dB)	Weinschel Corp	2	BL1173	AT	2015/11/10 * 12
MSA-14	Spectrum Analyzer	Agilent	E4440A	MY48250080	AT	2015/10/07 * 12
MCC-171	Microwave Cable	Junkosha	MWX221	1409S494	AT	2015/03/04 * 12
MCC-38	Coaxial Cable	UL Japan	-	-	AT	2015/12/07 * 12
MPM-09	Power Meter	Anritsu	ML2495A	6K00003348	AT	2015/10/19 * 12
MPSE-12	Power sensor	Anritsu	MA2411B	011598	AT	2015/10/19 * 12
MMM-12	DIGITAL HITESTER	Hioki	3805	060500120	AT	2015/02/05 * 12
MPM-01	Power Meter	Agilent	E4417A	GB41290639	AT	2015/04/22 * 12
MPSE-03	Power sensor	Agilent	E9327A	US40440576	AT	2015/04/24 * 12
MCC-137	Microwave cable	HUBER+SUHNER	SUCOFLEX 102	37954/2	AT	2015/10/08 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN