Las DF son un tipo particular de restricción. Permiten expresar hechos acerca de la realidad que se está modelando con la BD.

Sea R un esquema de relaciones. Un subconjunto K de R es una superclave de R si, en cualquier relación legal r(R),

- $\forall t1,t2 \in r/t1 \neq t2 \rightarrow t1[K] \neq t2[K]$.
- Es decir, dos tuplas en cualquier relación legal r(R) no pueden tener el mismo valor en el conjunto de atributos K.

Sea $\alpha \subseteq R$ y $\beta \subseteq R$. La DF $\alpha \rightarrow \beta$

- se cumple en R si en cualquier relación legal r(R), \forall t1 , t2 \in r / t1[α] = t2 [α] también se cumple que t1[β] = t2 [β].
- Utilizando la notación de la DF, decimos que K es una superclave de R si $K \rightarrow R$.
- Es decir, K es una superclave si siempre que t1[K]=t2[K], también se cumple que t1[R]=t2[R] (es decir, t1 = t2)
- Las DF permiten expresar restricciones que no pueden expresarse con superclaves.
- Llamaremos F al conjunto de DF
- Usaremos las DF de dos formas:
- Para especificar restricciones en el conjunto de relaciones legales. (F se cumple en R). Es decir: una dependencia que se cumple en un esquema.
- Para probar si una relación es legal bajo un conjunto dado de DF . (r satisface a F). Es decir: una relación que satisface una dependencia.
- Sea F un conjunto de DF.
- El cierre de F (F+) es el conjunto de DF que F implica lógicamente.
- α , β , γ ... representan conjuntos de atributos;
- A, B, C ... representan atributos individuales;
- $\alpha \beta$ representa $\alpha \cup \beta$.

Regla de reflexividad: Si α es un conjunto de atributos y $\beta \subseteq \alpha$, entonces se cumple $\alpha \to \beta$ Regla de aumento: Si se cumple $\alpha \to \beta$ y γ es un conjunto de atributos, entonces se cumple y $\alpha \to \gamma$ β

Regla de transitividad: Si se cumple $\alpha \to \beta$, y se cumple $\beta \to \gamma$ entonces se cumple $\alpha \to \gamma$

Reglas adicionales:

Regla de unión:

• Si $\alpha \rightarrow \beta$ y $\alpha \rightarrow \gamma$, entonces se cumple $\alpha \rightarrow \beta$ γ

Regla de descomposición:

• Si $\alpha \rightarrow \beta \gamma$, entonces se cumplen $\alpha \rightarrow \beta \gamma \alpha \rightarrow \gamma$

Regla de pseudotransitividad: Si $\alpha \rightarrow \beta$ y y $\beta \rightarrow \delta$ entonces se cumple α y $\rightarrow \delta$

Sea α un conjunto de atributos. Al conjunto de todos los atributos determinados funcionalmente por α bajo un conjunto F de DF se le llama cierre de α bajo F (α +).

• α es una superclave si α + = R.

 α + = conjunto de atributos determinados funcionalmente por α .

Algoritmo para calcular α+

- Entrada: un conjunto F de DF y el conjunto α de atributos.
- Salida: se almacena en la variable resultado.

```
resultado : = \alpha; while (cambios en resultado) do for each DF \beta \gamma in F do begin if \beta \subseteq resultado then resultado:= resultado U \gamma; end
```

- Dos conjuntos de DF son equivalentes si sus clausuras son iguales.
- E y F son equivalentes \Leftrightarrow E+ = F+

Recubrimiento canónico de F es un conjunto de DF tal que:

- F implica lógicamente a todas las dependencias en Fc, y
- Fc implica lógicamente a todas las dependencias en F.

Además Fc debe cumplir las propiedades:

- Cada DF α β en Fc no contiene atributos extraños a α .
- Los atributos extraños son atributos que pueden eliminarse de α sin cambiar Fc+.
- A es extraño a α si
- $A \in \alpha y$
- Fc implica lógicamente a (Fc { $\alpha \rightarrow \beta$ } U { α -A $\rightarrow \beta$ }).

Cada DF α β en Fc no contiene atributos extraños a β .

- Los atributos extraños son atributos que pueden eliminarse de β sin cambiar Fc+.
- -A es extraño a β si
- $A \in \beta y$
- (Fc { $\alpha \rightarrow \beta$ } U { $\alpha \rightarrow \beta$ A }) implica lógicamente a Fc.