Глава 2 Логическое программирование. Основы языка Пролог

PROLOG (programming in logic) - 1972 г., Колмероэ, Марсельский университет.

- Реализации языка Пролог:
- Wisdom Prolog, SWI Prolog, Turbo Prolog, Visual Prolog, Arity Prolog и т.д.
- SWI-Prolog (SWI перевод с гол. социальнонаучная информатика) -1987 г., Ян Вьелемакер, Амстердамский университет.

SWI-Prolog Editor – среда программирования, работает с 32-битными версиями SWI-Prolog.

2.1 Факты и правила

Пример 1: Написать программу, описывающую дерево семейных отношений

Программа на Прологе, описывающая дерево семейных отношений

родитель(пам,боб). родитель(том,боб). родитель(том,лиз). родитель(боб,энн). родитель(боб, пат). родитель(пат,джим).

Запускаем программу: F9 или ико на панели инструментов.
Теперь можно задавать вопросы.

Вопросы

1. Боб является родителем Пат?

На Прологе: родитель(боб,пат).

Ответ Пролога: true.

2. Пат – ребенок Лиз?

На Прологе: родитель(лиз,пат).

Ответ Пролога: false.

3. Кто родители Лиз?

На Прологе: родитель(Х,лиз).

Ответ Пролога: X = том.

4. Кто дети Энн?

На Прологе: родитель(Энн, Х).

Ответ Пролога: false.

5. Кто дети Боба? (заметим, что их детей - двое)

На Прологе: родитель(Боб, Х).

Ответ Пролога: X = энн ;

 $X = \pi a \tau$.

После найденного первого решения Пролог ждет дальнейших указаний: продолжить поиск решений (тогда нажимаем;) или прекратить (тогда нажимаем.)

4. Есть ли дети у Пам?

На Прологе: родитель(пам, _).

Ответ Пролога: true.

Варианты ответов Пролог-системы на заданные вопросы

- true
- false
- перечисление возможных значений переменных в ответе, при которых утверждение истинно. Если решение не единственно, то Пролог ожидает дальнейших указаний по продолжению поиска решений. Точка – остановить поиск, точка с запятой – продолжить поиск.

- Программа на Прологе состоит из фактов и правил.
- <u>Факт</u> безусловное истинное утверждение <имя предиката> $(O_1,O_2,...,O_n)$.
- O_i конкретный объект (константа) или абстрактный объект (переменная).
- Константы начинаются со строчной буквы Переменные начинаются с прописной буквы или подчерка.
- Переменная обозначает объект, а не область памяти! Поэтому не можем менять ее значение (типа X=X+1).

Переменные Свобо́дные Связанные (неконкретизированные) (конкретизированные)

Область действия переменной – одно предложение! Связанная переменная не может изменяться внутри предложения.

Анонимная переменная начинается с символа подчеркивания и предписывает интерпретатору проигнорировать значение этой переменной.

<u>Правило</u> – утверждение, которое истинно при выполнении некоторых условий, позволяет описывать новые отношения.

<голова правила > :- <тело правила>.

Связки в теле правила:

not или \+

Порядок выполнения логических операций можно менять с помощью скобок.

Можно в теле правила использовать разветвление вида:

(<условие>-><действие 1>;<действие 2>)

Пример 2: Добавим одноместное отношение мужчина (факты). Опишем новое двуместное отношение дед в виде правила.

мужчина(том).

мужчина(боб).

мужчина(джим).

дед(X,Y):-мужчина(X), родитель(X,Z),родитель(Z,Y).

Вопрос: Кто дед Джима?

На Прологе: дед(Х, джим).

Ответ Пролога: X = боб;

false.

Вопрос: Кто внуки Тома?

На Прологе: дед(том,Х).

Ответ Пролога: X = энн ;

X = nat;

false.

Пример 3: Опишем новое двуместное отношение предок.

Ү - предок Х, если выполнено одно из двух условий:

- 1. Y родитель X
- х
 родитель
 предок
 ү

предок(X,Y):-родитель(X,Y);

родитель(X,Z),предок(Z,Y).

ИЛИ

DDDDOV(XX)

```
Получаем рекурсивное правило.
предок(X,Y):-родитель(X,Y);
             родитель(X,Z),предок(Z,Y).
ИЛИ
предок(X,Y):-родитель(X,Y).
предок(X,Y):-родитель(X,Z),предок(Z,Y).
Вопрос: Кто предок Джима?
На Прологе: предок(Х, джим).
Ответ Пролога: X = пат;
                 X = \text{пам};
                 X = TOM;
                 X = 606;
                 false.
```

2.2 Поиск решений Пролог-системой

Вопрос к системе – это последовательность, состоящая из одной или нескольких целей.

Факты и правила – аксиомы, вопрос – теорема.

При поиске ответа на поставленный вопрос находится факт или правило для содержащегося в вопросе предиката и выполняет операцию сопоставления (унификации) объектов предиката.

Операция унификации объектов успешна:

- сопоставляются две одинаковые константы;
- сопоставляется свободная переменная с константой (при этом свободная переменная становится означенной);
- сопоставляется связанная переменная с константой, равной значению переменной;
- сопоставляется свободная переменная с другой свободной переменной (переменные не получают значений, но становятся сцепленными, т.е. когда одна из них получит значение, то и вторая получит это же значение).

Процесс унификации похож на использование оператора =.

A=B может интерпретироваться как присваивание слева направо, справа налево, как сравнение.

Для достижения цели используется механизм отката

Выделены точки отката, которые Пролог запоминает для поиска альтернативных путей решения.

Если цель была неуспешна, то происходит откат к ближайшему указателю отката.

Если цель достигнута, но использовались не все указатели отката, то будет продолжен поиск решений.

Трассировка

Включение трассировки: trace. или

660

Отказ от трассировки: notrace. или

•

Слова, появляющиеся в окне трассировки:

Call Далее указывается текущая цель

Exit Указывается цель, которая успешна.

Redo Возврат в отмеченную точку возврата для поиска альтернативного решения.

Fail Указанная цель не была достигнута.

В круглых скобках указывается глубина в дереве поиска, нумерация начинается с 8.

?- предок(том,энн).

2.3 Графический отладчик

guitracer. или 🦀

или через меню Тест - GUI-Tracer.

затем

trace, <предикат>.

Откроется дополнительное окно графического отладчика. Оно разделено на 3 части: верхнее левое окно показывает текущие значения переменных, верхнее правое окно показывает дерево вызовов, а нижнее – текст программы. Для пошагового выполнения следует нажимать значок стрелки, направленной вправо или пробел.

2.4 Некоторые операции в SWI-Prolog

=	Унификация (присваивание значения несвязанной переменной)
<, =<, >=, >	Арифметические (только для чисел) операции сравнения
=:=	Арифметическое равенство
=\=	Арифметическое неравенство
is	Вычисление арифметического выражения
@<, @=<, @>=, @>	Операции сравнения для констант и переменных любого типа (чисел, строк, списков и т.д.)
==	Равенство констант и переменных любого типа
\==	Неравенство констант и переменных любого типа

2.5 Предикаты ввода-вывода

read(A)	Чтение значения с клавиатуры в переменную A
write(A)	Вывод значения А на экран без перевода строки
writeln(A)	Вывод значения А на экран с переводом курсора в начало следующей строки
nl	Перевод курсора в начало следующей строки
format(' <cтрока~w>',X)</cтрока~w>	<строка> <значение X>
format(' <cтрока~w~w>', [X,Y])</cтрока~w~w>	<строка> <значение X> <значение Y>
format(' <cтрока1~w\n< td=""><td><cтрока1> <значение X></cтрока1></td></cтрока1~w\n<>	<cтрока1> <значение X></cтрока1>
строка2~w>',[X,Y])	<cтрока2> <значениеY></cтрока2>

Некоторые полезные сведения

При ожидании ввода выводится приглашение |:

Комментарии заключаются между /* и */ или % комментируется строка.

pwd. – текущая папка ls. – содержимое текущей папки cd('<путь к папке, слэши дублируются'>). – сменить текущую рабочую папку

2.6 Рекурсия

Рекурсия: алгоритмическая или по данным.

Возвращаемое значение – в аргументе.

Передача параметров по значению.

Пример 1:

Определим одноместный предикат, который заданное количество раз выводит на экран строку ********

```
w(0).
w(N):-N>0,writeIn('********'),N1 is N-1,w(N1).
Обращение к предикату: w(5).
               *****
Ответ Пролога:
               *****
               *****
               *****
               *****
               true.
```

Пример 2:

Определим одноместный предикат, вычисляющий n!. Ввод n с клавиатуры и вывод результата будет осуществлять предикат goal.

```
goal:-write('N=?'),read(N),f(N,P),format('~w!=~w',[N,P]). f(0,1). f(N,P):-N1 is N-1,f(N1,P1),P is P1*N.
```

Обращение к предикату: goal.

Ответ Пролога: N=? 6.

6!=720

true.