Tutorial 9:	Student Name	Student id:	

Question 1: Let X=aabbacab and Y=baabcbb. Find the shortest common super-sequence for X and Y. (Backtracking process is required.)

Solution:

	Y j=0	b j=1	a j=2	а	b	С	b	b
X i=0	0	1	2	3	4	5	6	7
a i=1	1	← 2	₹ 2	√3	← 4	← 5	← 6	← 7
a i=2	2	← 3	√3	√3	← 4	← 5	← 6	← 7
b	3	√3	← 4	† 4	<u>\</u> 4	← 5	√ 6	\ 7
b	4	₹ 4	← 5	† 5	₹ 5	← 6	√ 6	\ 7
а	5	† 5	√5	√ 6	† 6	← 7	↑ 7	← 8
С	6	† 6	† 6	← 7	↑ 7	₹ 7	← 8	← 9
а	7	↑ 7	^ 7	^ 7	← 8	† 8	← 9	← 10
b	8	√8	† 8	† 8	√8	← 9	√ 9	√10

Backtracking:

 $b \rightarrow b \rightarrow a \rightarrow c \rightarrow a \rightarrow b \rightarrow b \rightarrow a \rightarrow a \rightarrow b$

Ans: baabbacabb

```
Question 2:
```

Input: An array A[1..n] of n integers (positive or negative).

Task: Use dynamic method to find a non-empty interval [i, j] such that A[i]+A[i+1]+...+A[j] is maximized.

Example: Given an array: -1, 2 -3, 4, 5, -1

The sum of interval [1,1]=-1, [1,2]=-1+2=1, [3, 5]=-3+4+5=6.

Hint: Let d[i] be the cost of the max sum of intervals ending at position i.

That is, d[i]=max {sum[1,i], sum[2, i], ..., sum[I,i]}.

Find recursive equation and use it to design a DP algorithm.

The final solution is the subinterval with the maximal d value.

Answer:

$$d(i) = \begin{cases} A[i] & if \ i = 1 \\ d[i-1] + A[i] & if \ d[i-1] > 0 \\ A[i] & if \ d[i-1] \le 0 \end{cases}$$

```
Alg:
```

Phase 1

d(1):=A[i]

For i=2 to n do:

If d(i-1)>0,

d(i)=d(i-1)+A[i], B[i]=1,

/* containing A[i] and optimal interval ending at i-1.

Otherwise, d(i)=A[i], B[i]=0,

/* the optimal interval ending at i contains only A[i].

//* B for backtracking.

Phase 2: Find j with the maximal d value. (It can also be done in phase 1)

Phase 3: Backtracking:

i=j,

while(i>1 & B(i)=1)

j=j-1,

The optimal interval is [A[i],..., A[j]].