Mouvement de rotation d'un solide autour d'un axe fixe

Situation-problème

Les hélices d'un hélicoptère sont des solides en rotation autour d'un axe fixe .

- Qu'est-ce qu'un mouvement de rotation?
- Quelles sont les caractéristiques de ce mouvement ?
- Quelles sont les caractéristiques du mouvement de rotation uniforme?

Objectifs

- 🍑 Définir le mouvement de rotation d'un solide autour d'axe fixe .
- Savoir repérer un point d'un solide en rotation autour d'un axe fixe par son abscisse angulaire ou par son abscisse curviligne .
- Connaître et savoir déterminer la vitesse angulaire d'un solide en mouvement de rotation autour d'un axe fix .
- Définir le mouvement de rotation uniforme d'un corps solide autour d'axe fixe .
- Savoir déterminer l'équation horaire du mouvement d'un point en mouvement circulaire autour d'un axe fixe .
- Connaître la période et la fréquence du mouvement de rotation uniforme .

		_
Л	_	L
4		
1	П	
_	-	_

Mouvement de rotation d'un solide autour d'un axe fixe

① Activité: Mise en évidence le mouvement de rotation d'un solide autour d'un axe fixe

On considère un corps solide (S) de forme cylindrique en mouvement autour d'un axe fixe (Δ) Soient A, B et M des points du solide (S)

Exploitation

- 1 Identifier la nature du mouvement des points A, B, et M.
- 2 Quelle est la nature du mouvement du solide (S).

2 Définition

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

***** Exemples

4		
•••		• • • • • • • • • • • • • • • • • • • •
• • •	• • • • • • • • • • • • • • • • • • • •	
• • •	• • • • • • • • • • • • • • • • • • • •	
• • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •

П			
K	I	Repérage d'un point d'un solide en rotation autour d'un a	xe fixe
	$\neg \mathbf{v}$		

Pour repérer le mouvement d'un point G d'un corps solide en mouvement de rotation autour d'un axe fixe, on considère un repère $R(0,\vec{\iota},\vec{j})$ confondu avec le plan du mouvement.

On repère la position du point G par son abscisse angulaire ou par son abscisse curviligne

① Abscisse angulaire

2 L'abscisse curviligne

3 La relation entre l'abscisse angulaire et l'abscisse curviligne

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

Application

Un disque de diamètre d=50cm réalise un demi-tour pendant une durée Δt . Le point M se trouve initialement sur l'axe des abscisses.

- 1 Déterminer l'abscisse angulaire d'un point M du périmètre du disque
- **2** Déduire la distance parcourue par ce point pendant la durée Δt .

Notons que le point \mathbf{M} se trouve initialement sur l'axe des abscisses ..

La vitesse angulaire

① Activité

On considère un autoporteur qui peut tourner autour d'un axe fixe (Δ) . On connecte l'autoporteur à un détonateur latéral A (la figure O).

On lance l'autoporteur et on enregistre le mouvement du détonateur A pendant des périodes de temps égales et successives $\tau = 40ms$ (la figure ②)

- Quelle est la nature de la trajectoire du détonateur A?
- ② Calculer la vitesse instantanée du détonateur aux positions A₃ et A₅. Que concluez-vous ?
- **3** Représenter le vecteur vitesse instantanée aux positions A_3 et A_5
- ① On définit la vitesse angulaire instantanée par la relation suivante : $\omega_i = \frac{\theta_{i+1} \theta_{i-1}}{t_{i+1} t_{i-1}}$. Calculer la vitesse angulaire instantanée du détonateur A aux positions A_3 et A_5 .
- **6** Calculer la vitesse angulaire moyenne du détonateur A entre les positions A_1 et A_8 .que remarquez-vous ?
- 6 Calculer le rapport $\frac{v_i}{\omega_i}$ et le comparer avec le rayon de la trajectoire du détonateur A . Que concluez-vous ?

① Activité

On enregistre les positions occupées par un point M d'un solide (S) en mouvement de rotation autour d'un axe fixe (Δ) sur une table à coussin d'air pendant des intervalles de temps égaux à $\tau = 20ms$, on obtient l'enregistrement de la figure ① . Le point M_0 est la position occupée par le point M à l'instant $t_0 = 0s$

💶 En exploitant l'enregistrement de la figure 🛈 compléter le tableau ci-dessous .

Position	M ₀	<i>M</i> ₁	M ₂	<i>M</i> ₃	M ₄
Date t(ms)	0	20	40	60	80
Abscisse angulaire $ heta(rad)$					

② Dresser sur la figure ② la courbe $\theta = f(t)$ qui représente l'évolution de l'abscisse angulaire en fonction de temps en déterminant sa nature.

4 Déterminer la valeur du coefficient directeur de la courbe $\theta = f(t)$ et le comparer avec la valeur de la vitesse angulaire.

5 Déduire l'équation modélisant l'évolution temporelle de l'abscisse curviligne de point M.

6 Déterminer la période et la fréquence du mouvement du solide (S).

