CSA FINAL EXAM Sahil Makwane – sm9127

Q1.

(i) CPI for the benchmark

Assume there are 100 instructions. Then, **30** are load & store, **50** are arithmetic instructions and **20** are all others.

$$CPI = (30 * 6) + (50 * 4) + (20 * 3) = 440 \text{ cycles (per 100 instructions)} = 4.4 \text{ cycles per instruction}$$

CPI = 4.4

(ii) CPU execution time = 11 seconds

MIPS = Clock rate / CPI *
$$10^6$$

MIPS = $200 * 10^6$ / $4.4 * 10^6$
MIPS = **45.4546**

Instruction throughput processor performance is 45.4546

(iii) Clock Rate = 1 / Cycle Time

Cycle Time = 1 / Clock Rate
Cycle Time = 1 /
$$(200 * 10^6) = 5 * 10^{-9}$$

There is a 20% increase in the cycle time.

Thus, New Cycle Time = $1.2 * (5 * 10^{-9}) = 6 * 10^{-9}$

New Clock Rate =
$$1/6 * 10^{-9} = 166.667 * 10^{6}$$

New Clock Rate = **166.6667 MHz**

(iv) We reduce the number of load & store by half, now we have **15** load & store, **50** arithmetic instructions and **20** all others. Total **85** instructions.

Therefore, CPI = [(15 * 6) + (50 * 4) + (20 * 3)] / 85 = 350 cycles / 85 instructions = 4.12 cycles per instruction

CPI = **4.12**

(v) CPU Time = No. of instructions * CPI / Clock Rate

Calculating the number of instructions which execute in 11 seconds, $(45.4546 * 10^6) * 11 = 500 * 10^6$ instructions (in 11 seconds) 30% are load & store, so $30\% \text{ of } 500 * 10^6 = 150 * 10^6 \text{ load } \& \text{ store instructions}$ Since load & store are half, we have only 75 * 10⁶ load & store instructions Also, total instructions are now 425 * 10⁶ Thus, CPU Time = $((425 * 10^6) * 4.12) / (166.6667 * 10^6) = 10.5060$ seconds CPU Time = **10.5060** Q2. (i) 1. add x7, x6, x8There are no dependencies as there is no previous instruction 2. slt x9, x10, x9 There are no dependencies with respect to (1.) 3. beq x9, x0, next RAW on x9 with respect to (2.)

4. lw x6, 80 (x10)
WAR on x6 with respect to (1.) and RAR on x10 with respect to (2.)

(ii)

	cc1	cc2	сс3	cc4	cc5	сс6	сс7	cc8	cc9	cc10
add x7, x6, x8	IF	ID	EX	MEM	WB					
slt x9, x10, x9		IF	ID	EX	MEM	WB				
beq x9, x0, next			IF	ID	EX	MEM	WB			
lw x6, 80(x10)				IF	ID	EX	MEM	WB		

CPI = 8 cycles per 4 instructions = 2 cycles per instruction CPI = **2**

Q3.

- (i) 8 bits identifying the set, thus $2^8 = 256$ sets There are 2 lines per set, thus 2 * 256 = 512 lines
- (ii) 24 bits are there in the address from which 2 are for word id. Thus, 24-2 = 22. So, there are 2^{22} blocks in the memory space.
- (iii) Converting to binary

 $7121C51_6 = 011100010010000111000101_2$

0111000100100001110001012

01 indicates the 2nd column of data 01110001 indicates 4th row from the bottom

 4^{th} row from the bottom contains the matching tag 0111000100100. Thus, the data is in the 2^{nd} column in the 4^{th} row from bottom, which is A5₁₆. Data is in **A5**₁₆.

Q4.

	Compulsory Misses	Conflict Misses	Capacity Misses
Double the associativity	There is NO effect	There is a DECREASE	There is NO effect
	reason – When the associativity is doubled, there is no effect on the cache as it was not already present in the cache	reason – There is a reduction in the conflict misses as doubled associativity means, now there are more places to place the same element	reason – capacity is a constant, thus, no effect on capacity misses
Halve the line size	reason – Halving the line size leads to less number of adjacent elements being brought in with the first access to a line	There is an INCREASE reason – There will be an increase in the total caches line thus enabling more conflict misses	There is an INCREASE reason – There is now an increase in the capacity misses as the capacity has been cut in half
Double the number of sets	reason – When the associativity is halved, there is no effect on the cache as it was not already present in the cache	reason – Halving the associativity leads to increase in conflict misses as now there are less places to place the same element	reason – capacity is a constant, thus, no effect on capacity misses

Q5.

	Hit Time	Miss Rate	Miss Penalty
Double the associativity	There is an INCREASE	There is a DECREASE	There is NO effect
	reason – There is a	reason – There is a	reason – Miss penalty
	decrease in the	decrease in the miss	has no effect as outer
	number of sets, tags become larger. Thus, there is an increase in the hit time since more tags need to be checked	rate as there are less conflict misses	memory hierarchy is responsible for influencing the miss penalty
Halve the line size	There is a DECREASE	There is an INCREASE	There is a DECREASE
	reason – Due to halving the line size the cache is smaller in size now, thus dominating the time to check tag.	reason – There is an increase in the miss rate as smaller capacity leads to lesser ability to utilize the spatial locality in a single cache	reason – There is a decrease in miss penalty as smaller lines can be brought in faster
Double the number of sets	There is a DECREASE reason – There is a decrease in the hit time as there is an increase in the number of sets, thus, the tags become smaller. Thus, less tags need to be checked	There is a INCREASE reason – There is an increase in the miss rate as doubling the number of sets leads to associativity getting halved resulting in more conflict misses.	There is NO effect reason – Miss penalty has no effect as outer memory hierarchy is responsible for influencing the miss penalty