PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-201405

(43)Date of publication of application: 18.07.2003

(51)Int.CI.

CO8L101/00 B32B 27/18 B60J 1/00 B60J 5/04 B60K 15/03 B60R B60R 13/02 B60R 13/04 B60R 19/03 **B60S B60S** B62D 25/06 B62D 25/16 CO8K 9/00

(21)Application number: 2002-188416

(71)Applicant: UNIV NIHON

TAMA TLO KK

NISSAN MOTOR CO LTD

(22)Date of filing:

27.06.2002

(72)Inventor: YANO SHOICHIRO

SAWAGUCHI TAKASHI CHIKASAWA MASATOSHI

TAKEI TAKASHI KIYONO TAKASHI **NAKAJIMA MASAO** ITO TOMOHIRO KAI YASUAKI HANDA KOICHI TORII SHINKICHI SUZUKI KATSUHIKO

UESUGI KENJI

(30)Priority

Priority number: 2001334591

Priority date: 31.10.2001

Priority country: JP

(54) RESIN COMPOSITION, LAMINATE AND VEHICULAR PART USING THE SAME AND METHOD FOR PRODUCING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a transparent resin composition comprising linked fine inorganic particles capable of imparting transparency and uniformly dispersed in a resin and having excellent transparency.

SOLUTION: The composite resin composition comprises the linked fine inorganic particles hydrophobically treated and uniformly dispersed in the resin. The linked fine inorganic particles have a plurality of cylindrical fine inorganic particles linked in the longitudinal direction in a chainlike or netlike form. The resin composition prepared by compounding the linked fine inorganic particles in the chainlike or netlike form with the resin has excellent transparency and rigidity. A thermoplastic resin laminate having excellent appearance quality is obtained by using

the resin composition. The resultant laminate can be used and applied to exterior automotive trim parts.

LEGAL STATUS

[Date of request for examination]

23.06.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-201405 (P2003-201405A)

(43)公開日 平成15年7月18日(2003.7.18)

(Table) (Table)	識別記号	FI	テーマコード(参考)
(51) Int.Cl. ⁷	10 C 10 LUXI	C 0 8 L 101/00	3 D 0 0 3
C 0 8 L 101/00		B 3 2 B 27/18	Z 3D023
B32B 27/18		В 6 0 Ј 1/00	G 3D025
B60J 1/00		5/04	R 3D038
5/04		B60R 1/06.	D 3D053
B60K 15/03	審査請求	未請求 請求項の数47 OL	(全 23 頁) 最終頁に続く
(21)出願番号	特顏2002-188416(P2002-188416)	(71)出願人 899000057 学校法人日本:	大学
(22)出願日	平成14年6月27日(2002.6.27)	•	区九段南四丁目8番24号
(31)優先権主張番号 (32)優先日	特願2001-334591(P2001-334591) 平成13年10月31日(2001.10.31)		ルオー株式会社 市旭町9番1号 八王子スク
(33)優先権主張国	日本(JP)	(71)出願人 000003997 日産自動車株	
· .		神奈川宗領政 (74)代理人 100072349 弁理士 八田	
	X		最終頁に続く

(54) 【発明の名称】 樹脂組成物、それを用いた積層体、自動車用部品およびそれらの製造方法

(57)【要約】

【課題】 透明性を付与し得る無機微粒子連結体と透明性に優れる透明樹脂組成物の提供を目的とする。

【解決手段】 疎水化処理した無機微粒子連結体を樹脂中に均一に分散した複合樹脂組成物であって、該無機微粒子連結体は円柱状の無機微粒子がその長さ方向に複数個連結し、鎖状または網目状を成した形状を有していることを特徴とする樹脂組成物である。これを網目状、または鎖状の無機微粒子連結体を樹脂に配合して得た樹脂組成物は、透明性と剛性とに優れる。該樹脂組成物を用いると、外観品質に優れる熱可塑性樹脂積層体が得られ、これを使用することで車両用外装部品に応用することができる。

【特許請求の範囲】

【請求項1】 疎水化処理した無機微粒子連結体を樹脂中に均一に分散した複合樹脂組成物であって、該無機微粒子連結体は円柱状の無機微粒子がその長さ方向に複数個連結し、鎖状または網目状の形状であることを特徴とする樹脂組成物。

【請求項2】 該無機微粒子連結体の最大長さが380 nm以下であることを特徴とする、請求項1記載の樹脂 組成物。

【請求項3】 該無機微粒子連結体を構成する無機微粒 10 子は、(長さ) / (太さ) が2.5~350であること を特徴とする、請求項1または2記載の樹脂組成物。

【請求項4】 該無機微粒子は、太さが1~20nmであることを特徴とする請求項1~3のいずれかに記載の樹脂組成物。

【請求項5】 該無機微粒子は、長さが7~200nm であることを特徴とする請求項1~4のいずれかに記載 の樹脂組成物。

【請求項6】 該樹脂に対する無機微粒子連結体の配合 率が、1~99質量%であることを特徴とする、請求項 20 1~5のいずれかに記載の樹脂組成物。

【請求項7】 該無機微粒子連結体は、表面にアルキル 基を有することを特徴とする、請求項1~6のいずれか に記載の樹脂組成物。

【請求項8】 該無機微粒子が、酸化ケイ素からなることを特徴とする、請求項1~7のいずれかに記載の樹脂組成物。

【請求項9】 該樹脂は、アクリル系、ポリカーボネート系、ポリスチレン系、ポリオレフィン系樹脂のいずれかの透明有機分子の樹脂であることを特徴とする、請求 30項1~8のいずれかに記載の樹脂組成物。

【請求項10】 請求項1~9のいずれかに記載の樹脂組成物(A)と熱可塑性樹脂(B)とを少なくとも1層づつ積層した熱可塑性樹脂積層体であって、該樹脂組成物(A)と該熱可塑性樹脂(B)とが交互に積層されていることを特徴とする熱可塑性樹脂積層体。

【請求項11】 該透明樹脂組成物(A)の層と該熱可塑性樹脂(B)の層とが熱溶着されていることを特徴とする請求項10記載の熱可塑性樹脂積層体。

【請求項12】 該熱可塑性樹脂(B)が、ポリカーボネート系樹脂であることを特徴とする請求項10または11に記載の熱可塑性樹脂積層体。

【請求項13】 積層数が3層以上の奇数の場合において、該積層体の最上層と最下層とが共に該樹脂組成物

(A) で、または該熱可塑性樹脂(B) で構成されていることを特徴とする請求項10~12のいずれかに記載の熱可塑性樹脂積層体。

【請求項14】 請求項1~13のいずれかに記載の樹脂組成物または熱可塑性樹脂積層体を用いた車両用内外装部品成形体、車両用外板または樹脂ウィンドウ。

【請求項15】 溶剤に分散させた疎水化処理した無機 微粒子連結体と、溶剤に溶解させた樹脂とを混合することを特徴とする、請求項1~9のいずれかに記載の樹脂組成物の製造方法。

【請求項16】 樹脂のモノマーを重合させる過程中に、溶剤に分散させた疎水化処理した無機微粒子連結体を混合することを特徴とする、請求項1~9のいずれかに記載の樹脂組成物の製造方法。

【請求項17】 加熱成形および/または加圧成形により積層することを特徴とする請求項10~13のいずれかに記載の熱可塑性樹脂積層体の製造方法。

【請求項18】 請求項10~13のいずれかに記載の 熱可塑性樹脂積層体を金型に挿入し、射出成形法または 圧縮成形法で充填樹脂と該挿入積層体の外周部とを一体 で成形することを特徴とする、車両用内外装部品成形体 の製造方法。

【請求項19】 請求項1~9記載の樹脂組成物を含んで成ることを特徴とする樹脂製ワイパーシステム。

【請求項20】 請求項1~9記載の樹脂組成物を含んで成ることを特徴とする樹脂製ドアミラーステイ。

【請求項21】 請求項1~9記載の樹脂組成物を含んで成ることを特徴とする樹脂製ビラー。

【請求項22】 透明部と不透明部を有する樹脂成形体において、少なくとも透明部が請求項1~9記載の樹脂組成物を含んで成ることを特徴とする樹脂成形体。

【請求項23】 透明部と不透明部が一体成形されたことを特徴とする請求項22記載の樹脂成形体。

【請求項24】 不透明部が樹脂中に分散した顔料により着色され形成されることを特徴とする請求項22または23記載の樹脂成形体。

【請求項25】 上記樹脂成形部品の不透明部が成形前 あるいは成形後に塗装もしくは印刷され形成されること を特徴とする請求項22または23記載の樹脂成形体。

【請求項26】 上記樹脂成形部品の不透明部が着色シートを用いて形成されることを特徴とする請求項22または23記載の樹脂成形体。

【請求項27】 請求項1〜9記載の樹脂組成物を含んで成ることを特徴とする熱線付き樹脂製ウィンドウ。

【請求項28】 請求項1~9記載の樹脂組成物を含んで成ることを特徴とする樹脂製ミラー。

【請求項29】 請求項1~9記載の樹脂組成物を含んで成ることを特徴とする樹脂製ランプリフレクター。

【請求項30】 請求項1~9記載の樹脂組成物を含んで成ることを特徴とする樹脂製エンジンルーム内カバーおよびケース。

【請求項31】 透明であることを特徴とする請求項3 0記載のエンジンルーム内カバーおよびケース。

【請求項32】 請求項1~9記載の樹脂組成物を含んで成ることを特徴とする樹脂製冷却装置部品。

【請求項33】 請求項1~9記載の樹脂組成物を含ん

で成る、大気と連通した中空構造および/あるいは密閉された中空構造を有することを特徴とする樹脂-体成形体。

【請求項34】 中空構造が、気体または液体または固体あるいはこれらの混合物が充填され封入されていることを特徴とする請求項33記載の樹脂一体成形体。

【請求項35】 一体成形体の最表層が、加飾材で構成されていることを特徴とする請求項33または34記載の樹脂一体成形体。

【請求項36】 樹脂一体成形体は、自動車の外板あるいは内外装部品であることを特徴とする請求項33~3 5記載の樹脂一体成形体。

【請求項37】 請求項1~9記載の樹脂組成物を含んで成る樹脂シート2枚を加熱し、これを開状態の金型に挿入し、シート外周部を押圧し、外周部を溶着する前あるいは溶着後にシート間に加圧流体を注入し、シートを拡張しつつ/または拡張後、金型を閉状態にし、加圧流体圧を保持し中空構造を形成することを特徴とする請求項33~36記載の樹脂一体成形体の製造方法。

【請求項38】 閉状態の金型内に溶融した請求項1~9記載の樹脂組成物を充填しつつ/または充填後、キャビティ容積を拡大しつつ加圧流体を溶融樹脂内に注入し中空構造を形成する請求項33~36記載の樹脂一体成形体の製造方法。

【請求項39】 開状態の金型キャビティ面に請求項1~9記載の樹脂組成物を含んで成る樹脂シートを1枚もしくは2枚インサートし、金型を閉状態で2枚のシート間もしくは1枚のシート背面に溶融樹脂を充填しつつ/または充填後、キャビティ容積を拡大しつつ加圧流体を溶融樹脂内に注入し中空構造を形成する請求項33~36のいずれかに記載の樹脂一体成形体の製造方法。

【請求項40】 請求項1~9記載の樹脂組成物を含んで成る、異なる機能を有する二種類以上の部品を統合し、ひとつの部品に少なくともこれら二種類以上の機能を付与したことを特徴とする一体成形部品。

【請求項41】 請求項1~9記載の樹脂組成物を含んで成ることを特徴とする可動部と非可動部を有する成形体。

【請求項42】 二色成形により可動部と非可動部が一体で得られることを特徴とする請求項41記載の成形体。

【請求項43】 可動部が気体流動を制御する開閉蓋で、非可動部は流動気体を導入する筒状成形品であることを特徴とする請求項41または42記載の成形体。

【請求項44】 請求項1~9記載の樹脂組成物を含んで成ることを特徴とする炭化水素系燃料を収納する部品あるいは容器。

【請求項45】 車両用の一連の燃料系部品であることを特徴とする請求項44記載の炭化水素系燃料収納部品。

【請求項46】 車両用の燃料タンクであることを特徴とする請求項44または45記載の炭化水素系燃料収納部品。

【請求項47】 吹き込み成形法で成形された車両用の 燃料タンクであることを特徴とする請求項46記載の炭 化水素系燃料収納部品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、透明樹脂の光線透過率を低減することなく剛性向上、熱膨張率低減、表面硬度向上を実現しうる無機微粒子連結体を配合した樹脂組成物、それを用いた高剛性で表面硬度を向上し、かつ成形品のソリを抑え外観品質の向上を実現しうる積層体、およびそれらの製造方法に関し、自動車用の窓ガラス、内外装部品等に好適に用いうるものである。

[0002]

【従来の技術】窓ガラスは自動車の外形面積の大部分を 占め、運転上および外観上重要な部品である。各種折曲 ガラスの出現によって形状自由度が大きくなり、使用面 種が増加しており、窓ガラスの軽量化と安全性の向上が 要求されている。そこで、無機ガラスに代わり樹脂製ウィンドウの検討が各種なされているが、無機ガラスに比 べて弾性率が小さいため面積の大きな窓ガラス部品には 適用が困難である。

【0003】また、樹脂製ウィンドウに補強材としてガラス繊維を添加すると、剛性は向上するが、ガラス繊維の径が約 10μ m、長さも約 200μ mもあるため可視光線が透過しないで反射して不透明となる。このため安全上の視界確保に適さず使用が困難である。

【0004】また、樹脂製ウィンドウは、無機ガラスに 比べて表面硬度が小さいため、ワイパーで擦ると傷がつ き車両用フロント窓部品には適用が困難である。これに 対して有機シラン系薬剤で表面硬化処理を行なった例が あるが、この処理でも表面硬度が不足し、長時間使用す ると傷が付き、透明性が不足するので使用が困難であっ た。

【0005】また、樹脂製ウィンドウの剛性向上と表面 硬度確保のために無機ガラスを積層すると、夏に樹脂層 と無機ガラス層との熱膨張差によって界面剥離を生じ視 界確保が不十分となり使用が困難であった。

【0006】また、最近の電子部品の樹脂製記憶デスクの表面硬化と剛性向上を目的にシリカのスパッタリングを行う例があるが、これは、樹脂基盤表面に真空中でシリカ原子を付けるものであり、大きな部品には適用できず、生産性が低い。

【0007】また、樹脂製ウィンドウは強度、剛性が無機ガラスに比べ小さいため、大きな窓ガラスに使用するには、無機ガラスよりも厚さを増すことが必要となり、軽量化の効果が少なくなる。そのため、樹脂製ウィンドウの強度、剛性を向上させることが課題となる。

-3-

6

【0008】これらの課題の解決手段として、特開平11-343349号公報には、透明樹脂に無機のシリカ 微粒子を混合した例が記載されている。しかしこれらの 樹脂材料を製品に適用する場合、無機材料に比べ軽量でかつ成形の自由度が大きいという利点はあるが、一方で 弾性率が小さいため剛性が低く、高温時に成形時の残留 応力が戻りソリが発生し外観品質が低下し、また硬度が低いため表面が傷つき易いという難点がある。このため、何えば透明な樹脂材料は、自動車ではヘッドランプ やサンルーフなどの比較的低剛性でかつ表面処理のしや 10 すい小物部品には採用されているものの、自動車外装のかなりの面積を占める窓ガラスについては所定の機能を 満足するものがまだなく本格的な採用までには至っていない。

【0009】また、窓ガラス以外の自動車外装樹脂部品、あるいは内装樹脂部品では、高温時の残留応力の戻りによるソリや隙間の狭小化等の外観品質の低下、衝撃に対する割れ等の耐衝撃性、燃費の面からの使用部のを全量化など、高剛性、軽量化、耐衝撃性、高温時のの使用の大力をできたが性向上やコストダウン要求が厳ししては、電子では、大力でできたが、年々要求に対しては、が出り、これらを全て満足させることが困難にしてきてが、これらを全て満足させることが困難にしてきてが、これらを全て満足させることが困難をしてきたが積層化による改良が検討されつつある。積層化による方とで目的に適合する機能を複数の樹脂の持つに立ったため積層の商品を生み出すことができるからである。はに、さらに低コスト削減にも対応できる。

【0010】このような積層体における物性向上として、例えば特開平6-316045号公報では、3種の透明樹脂を積層して耐衝撃性を向上しているが、透明性維持のために樹脂中に髙温時の熱膨張を抑制する充填剤等が配合されておらず、夏期の髙温にさらされる自動車の内外装部品に適用するには部品の伸長による凹凸あるいは膨張によるソリ等の外観品質が低下するといった問題がある。

【0011】また、特開平11-343349号公報では透明樹脂に可視光線波長以下の径を有する微細なシリカを配合した樹脂ウィンドウが開示されているが、樹脂内に混合もしくは表層部に塗布し、強度や剛性を向上させているが、単層構造のため外部からの衝撃に対し耐衝撃性が不足し、熱歪みによる成形体のそり等の不具合が発生する。

【0012】また、特開平6-71826号公報には、アクリル樹脂やポリカーボネート系樹脂等を積層した樹脂ウィンドウが開示されているが、特開平6-316045号公報と同様に樹脂の透明性を維持するために、熱膨張を抑制する充填剤の配合はなく、熱膨張を抑えるには限界がある。また透明性を保持するためガラス繊維等

の剛性向上の充填剤の添加ができず、剛性を向上しよう とすると板厚を増すため重量増加を招き軽量化が進まな いといった問題点もある。

[0013]

【発明が解決しようとする課題】本発明はこれら従来の問題点に鑑みてなされたものであり、一層の剛性向上、 熱膨張率の低減を達成できる樹脂組成物を提供すること を目的とする。

【0014】また、有機樹脂は無機材料に比べて剛性が小さいため、例えば自動車の窓ガラス、ドアー、車体外板部等の大型部品に適用する場合は厚みを増す必要があるが、そのような対応では形状の自由度は確保できるものの樹脂化の大きな狙いである軽量化の効果が薄れる。このため、本発明の1つの課題は樹脂材料の厚さを増加せず剛性を向上させ軽量化を図ることである。

【0015】また、樹脂材料は無機材料に比べて高温時に成形時の残留応力が開放され熱変形が大きいため、例えば透明樹脂材料で自動車の窓ガラスのような大型の部品に適用しようとする場合は、外周部の鋼材との熱ひずみを逃がす構造設計をする必要がある。熱変形による伸長を吸収する構造が充分でない時は、樹脂ガラス表面に波打ちが発生したり樹脂ガラスそのものが割れたりする問題が発生する。このため、本発明の2つ目の課題は、樹脂材料の熱変形を低減させることである。

【0016】また、樹脂材料は鋼材に比べ硬さが低く、 自動車の窓ガラス、外板あるいは人が触れる内装材また 建材等で外部にさらされる部位に適用するには、異物接 触による樹脂表面の擦傷性を向上させことが必要であ る。高剛性、低熱膨張、耐擦傷性の特性を有する樹脂材 を設計仕様に合わせ自由に形状加工ができまた低コスト で実現できる樹脂材料およびその製造方法を提供するこ とが要望されている。

[0017]

【課題を解決するための手段】上記目的に鑑みて鋭意検討した結果、無機微粒子連結体を樹脂中に均一に分散した複合樹脂組成物であって、該無機微粒子連結体は円柱状の無機微粒子がその長さ方向に複数個連結し、鎖状または網目状を成した形状を有していることを特徴とする樹脂組成物によって上記課題を解決するに至った。

[0018]

【発明の効果】本発明に係る樹脂組成物およびその製造方法によれば、特定の微小なシリカ化合物を分散させることで、透明性や衝撃強度を犠牲にすることなく剛性の向上を実現し得る樹脂組成物を提供できる。本発明の樹脂組成物は車両用の外装部品や外板の用途、樹脂ウィンドウ用途として有用であり、その他にも建材や電子機器等の筐体にも利用できる。

【0019】本発明は、疎水化処理した無機微粒子連結 体を樹脂中に均一に分散した複合樹脂組成物であって、 50 該無機微粒子連結体は円柱状の無機微粒子がその長さ方

(5)

8

向に複数個連結し、鎖状または網目状の形状であることを特徴とする樹脂組成物であり、樹脂への均一分散が可能であり、配合によって樹脂に高剛性、低熱膨張、耐擦 傷性の特性および透明性を付与し得る。

【0020】本発明は、上記樹脂組成物(A)と熱可塑性樹脂(B)とを少なくとも1層づつ積層した熱可塑性樹脂積層体であって、該樹脂組成物(A)と該熱可塑性樹脂(B)とが交互に積層されていることを特徴とする熱可塑性樹脂積層体であり、上記樹脂組成物(A)を含む積層体とすることで、特に透明性に優れ、かつ高剛性、低熱膨張、耐擦傷性が向上し、高温時にもソリの発生が抑制された積層体となる。

【0021】本発明は、上記熱可塑性樹脂積層体を用いた車両用内外装部品成形体、車両用外板または樹脂ウィンドウであり、透明性、剛性に優れ、高温時にソリなどが抑制された上記樹脂組成物(A)や上記積層体を使用することで、大型かつ剛性に対する要求性の強い車両用途に有効に使用でき、特に視野の確保に強い要求性のある樹脂ウィンドウとしても有効に使用できる。

【0022】また本発明は、溶剤に分散させた疎水化処理した無機微粒子連結体と、溶剤に溶解させた樹脂とを混合することを特徴とする、請求項1~9のいずれかに記載の樹脂組成物の製造方法であり、該方法によれば、特定の無機微粒子連結体が均一に分散した透明性、剛性に優れる樹脂組成物(A)を簡便に製造することができる。

【0023】本発明は、樹脂のモノマーを重合させる過程中に、溶剤に分散させた疎水化処理した無機微粒子連結体を混合することを特徴とする、上記樹脂組成物の製造方法であり、該方法によっても、特定の無機微粒子連 30 結体が均一に分散した透明性、剛性に優れる樹脂組成物(A)を簡便に製造することができる。 ——

【0024】また本発明は、加熱成形および/または加 圧成形により積層することを特徴とする上記熱可塑性樹 脂積層体の製造方法であり、加熱成形および/または加 圧成形によって簡便に積層体を製造することができる。

【0025】上記積層体を金型に挿入し、射出成形法または圧縮成形法で充填樹脂と該挿入積層体の外周部とを一体で成形すると、上記樹脂組成物や上記積層体は成形性に優れるため、金型に挿入し、射出成形法または圧縮 40 成形法で充填樹脂と該挿入積層体の外周部とを一体で成形することができ、不要の工程を増加させることなく自動車用内外装部品成形体が製造できる。

【0026】本発明の樹脂組成物によって樹脂製ワイパーシステム、樹脂製ドアミラーステイ、樹脂製ピラー、熱線付き樹脂製ウィンドウ、樹脂製ミラー、樹脂製ランプリフレクター、樹脂製エンジンルーム内カバーおよびケース、エンジンルーム内カバーおよびケース、樹脂製冷却装置部品を得ることができる。

[0027]

【発明の実施の形態】本発明の第一は、疎水化処理した 無機微粒子連結体を樹脂中に均一に分散した複合樹脂組 成物であって、該無機微粒子連結体は円柱状の無機微粒 子がその長さ方向に複数個連結し、鎖状または網目状の 形状であることを特徴とする樹脂組成物である。樹脂製 ウィンドウの強度、剛性を向上させるためには、樹脂を 構成している高分子の分子構造から考えて高強度で、剛 直な分子を使用することが必要であるが、これは結晶化 し易く、結晶性が高くなると透明性が低下する。このた り透明な樹脂の強度、剛性を改良するのに、透明性を確 保しうる疎水化処理した無機微粒子連結体を樹脂中に均 一に分散混合する手段を用いた。

【0028】該疎水化化処理した無機微粒子連結体に使用する無機微粒子連結体とは、円柱状の無機微粒子がその長さ方向に複数個連結し鎖状または条件によっては網目状の形状となるものである。一般に繊維強化理論によれば、引張り強度、弾性率の向上は、繊維の長さと太さの比が一定値以上で効果が大きいとされ、この効果は応力方向に繊維長さが揃うときに大きいものである。さらに網目状の場合には、あらゆる応力方向に繊維が配列している場合と同等の効果が得られ、強度特性が等方性となる。

【0029】本発明で使用する無機微粒子連結体は、透明性を確保するために可視光線波長である380nm以下の最大長さ有することが望ましく、さらには28~350nmであるとよい。

【0030】この連結体をなす無機微粒子は、円柱状であり強度および弾性率向上のために円柱の(長さ)/ (太さ)が2.5~350であることが好ましく、さらには太さ1~20nmであること、また長さは7~200nmであることが好ましい。本発明で使用する無機微粒子連結体としては、これらの無機微粒子が複数個長さ方向に化学結合したものが好適なものとなる。なお、ここで「太さ」とは連結体を成す円柱状の微粒子の直径を表わし、「長さ」とは該円柱状の微粒子の最も長い部分の寸法を表わす。

【0031】本発明に用いる無機微粒子は、シリカ、チタニア、ジルコニア、アルミナ、チタン酸カリウム、ウイスカー、カーボンナノチューブ、合成マイカ等が好適に使用できるが、特にシリカすなわち酸化ケイ素が最も好適に使用できる。シリカは透明性を有し、低比重で、その表面の改質が容易で樹脂との相互作用を持たせることが可能だからである。このような無機微粒子連結体を製造するには、例えば、ケイ酸ナトリウム(Na2O・SiO2:水ガラス)を原料とし、イオン交換によってナトリウムを除去して、核ゾル(約5nm)を得て、これらの微小粒子を液中で単独で成長させ、10~100nmの鎖状シリカとする。この際、該微粒子の成長過程で網目状シリカも得られる。この溶液を濃縮すれば、網目状または鎖状の無機微粒子連結体のコロイダルシリカ

が得られる。無機微粒子としては市販品を使用することもでき、例えは日産化学(株)のスノーテックスーUP、これをイオン交換でナトリウムを除去したスノーテックスOUPなどの鎖状シリカが好ましく使用できる。図1に鎖状シリカの200,000倍の電子顕微鏡写真を示す。

【0032】本発明では、特に疎水化処理した無機微粒子連結体を使用するが、このような疎水化処理としては、特に限定されず、例えばトリメチルクロロシラン、tーブチルジメチルクロロシランなどのシリコーン化合物で上記無機微粒子連結体をアルキル化する方法などがある。例えば、無機微粒子連結体がシリカからなる場合には、シリカの水酸基をトリメチルクロロシラン、tーブチルジメチルクロロシランなどのシリル化剤で処理してアルキル基を導入する。シリル化剤によって脱塩酸が生じ、反応が進む。この際、アミンを添加すると塩酸を塩酸塩にして反応を促進することもできる。

【0033】このように、疎水化処理によって表面にアルキル基を有する無機微粒子連結体を用いると、樹脂 (例えばポリメチルメタクリレートなど) の官能基との相互作用が良好となり、無機微粒子連結体の分散性に優

れ、得られた樹脂組成物は透明性、剛性等の特性を向上 させることができる。該無機微粒子連結体は、使用する 疎水化処理剤の種類を適宜選択することで、その表面に 至適なアルキル基その他の疎水性基を導入することがで きる。

【0034】本発明において、該疎水化処理した無機微粒子連結体を分散する樹脂としては、アクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂などの透明な有機高分子のオリゴマー、及びポリマー樹脂および共重合樹脂であることが好ましい。これらは透明性が高く、例えば樹脂ウィンドウ用途に好適に用いることができるからである。

【0035】本発明の樹脂組成物は、該樹脂に対する無機微粒子連結体の配合率が、1~99質量%であるとよい。1質量%を下回ると該無機微粒子連結体配合の効果が少なく、その一方、99質量%を越えると無機微粒子連結体が凝集を起こし、得られる樹脂組成物を不透明にする場合がある。

【0036】本発明の樹脂組成物の製造方法としては特 40 に制限はないが、溶剤に分散させた疎水化処理した無機 微粒子連結体と、溶剤に溶解させた樹脂とを混合することで製造することができる。すなわち、本発明の第二 は、溶剤に分散させた疎水化処理した無機微粒子連結体 と、溶剤に溶解させた樹脂とを混合することを特徴とする、前記記載の樹脂組成物の製造方法である。本発明の 樹脂組成物を得る上で、該無機微粒子連結体を粉末のまま溶融した樹脂に混練すると凝集を生じ、得られる樹脂組成物が不透明となってしまう。このため、溶剤分散の 該無機微粒子連結体と溶剤に溶解させた透明な樹脂とを 50

混合して、疑固用溶剤等を添加して両者の混合組成物を 得るのである。

【0037】該無機微粒子連結体を分散する溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン等のパラフィン系炭化水素類;シクロブタン、シクロペンタン、シクロヘキサンなどのシクロパラフィン系炭化水素;メチルエチルケトン、トルエン、キシレン、アセトン、ベンゼンなどの芳香族系炭化水素等がある。該無機微粒子連結体の溶解液中の濃度としては特に制限はないが、混合の均一性や操作性の点から10~45質量%であることが好ましい。

【0038】また、樹脂溶液は、樹脂の種類によって溶解する溶媒を適宜選択することができ、例えば、メチルメタクリレートなどを単量体主成分に含む(メタ)アクリル系高分子材料の場合には、アセトン、アニリン、キシレン、酢酸エチル、酢酸メチル、酢酸ブチル、トルエン、そしてメチルエチルケトンなどの芳香族系やケトン系の有機溶媒を好ましく使用することができる。本発明では、該樹脂溶液と該無機微粒子連結体とを混練後、溶媒を除去することで樹脂組成物を調製することができる。なお、凝固用溶剤としては、エタノール、メタノール、ブタノールなどのアルコール類がある。

【0039】また別の好適な製造方法として、溶剤分散 の該無機微粒子連結体を樹脂の重合過程で混合させ、疑 固用溶剤で該無機微粒子連結体と樹脂の混合組成物を得 る方法がある。すなわち、本発明の第三は、該樹脂のモ ノマーを重合させる過程中に、溶剤に分散させた疎水化 処理した無機微粒子連結体を混合することを特徴とす る、上記記載の樹脂組成物の製造方法である。具体的に は、該無機微粒子連結体を樹脂の重合過程で混合させ、 凝固用溶剤で該無機微粒子連結体と樹脂の混合組成物を 得る。この製法によれば、無機微粒子連結体のアルキル 基等の疎水化部分と樹脂(例えばポリメチルメタクリレ ートなど) の官能基とが相互作用し、無機微粒子連結体 と樹脂とを溶剤中で溶解混合したものに比べて該無機微 粒子連結体の分散性が良好となり、要求される諸特性も より良好となるからである。なお重合反応は、懸濁重 合、溶液重合、乳化重合、塊状重合、および沈殿重合の いずれでもよい。ただし沈殿重合の場合は、溶媒は重合 ポリマーを溶解しないものを選定することが必要であ る。例えば、上記各種製法に用いる溶剤は、該無機微粒 子連結体を分散させ、かつアクリル系樹脂、ポリカーボ ート系樹脂、スチレン系樹脂、ポリオレフィン系樹脂な どの合成原料モノマー、及び又は各ポリマーの溶剤とす る。また、機微粒子連結体の表面がアルキル基を有する 場合は、無機微粒子連結体を良好に分散し、モノマーお よび重合体を溶解する有機溶剤を使用すると、要求諸項 目を満足する良好な樹脂組成物を得ることができる。

【0040】本発明の樹脂組成物には、必要に応じて透明性を阻害しない様々な添加剤、例えば帯電防止剤、酸

化防止剤、熱安定剤、紫外線吸収剤、酸化防止剤、エネルギー消剤、難燃剤、顔料、着色剤等を添加してもよい。

【0041】本発明の第四は、上記記載の樹脂組成物(以下、樹脂組成物(A)とも称する。)と熱可塑性樹脂(B)とを少なくとも1層づつ積層した熱可塑性樹脂積層体であって、該樹脂組成物(A)と該熱可塑性樹脂(B)とが交互に積層されていることを特徴とする熱で接着剤等で接合された場合には、単層の特性は接着層で緩衝または吸収体を積極をして、単層の特性を積層を全体に波及させることができない。しかしながら、単の積層体は、各樹脂層を熱溶着するものであり、単の積層体は、各樹脂層を熱溶着するものであり、単の積層体は、各樹脂層を熱溶着するものであり、単の積層体は、各樹脂層を熱溶着するものであり、単の積層体は、各樹脂層を熱溶着するものであり、単の積層体の関性の上させ、高温時における各層の残留応力によるソリ等を積層体全体で抑制することができる。

【0042】このような積層体においては、樹脂組成物 (A) の上記無機微粒子連結体の配合量を変えた層を組 み合わせることで、該積層体に種々の特性を持たせるこ とができる。例えば、該積層体の最表層に上記無機微粒 子連結体の配合量が高い層を設けることで、耐擦傷性を 髙めることができる。また、最上層と最下層における上 記無機微粒子連結体の配合量を多くすることで、剛性を 髙くし、かつ上層および下層の拘束力を持たせ高温時の 残留応力による熱変形を抑えることもできる。更に、中 間層に上記無機微粒子連結体の配合量を多くすること で、剛性を髙くし、より熱変形抑止力を髙めることもで きる。加えて、上層における無機微粒子連結体の配合量 を多くし、下層には無機微粒子連結体の配合量を少なく 30 して該積層体に無機微粒子連結体の配合量の勾配を設け たことで、剛性分布を変えて熱変形によるソリの方向を 制御することができ、また上層に無機微粒子連結体の配 合量を少なくさせることも可能である。すなわち、上記 樹脂組成物(A)と該熱可塑性樹脂(B)とを熱溶着し て積層体を得ることで、各単層が有している特性を引き 出し積層体の弾性率を高くし剛性向上を図ることがで き、かつ最表層やそれに隣接する層の無機微粒子連結体 配合量を増すことで耐擦傷性を高めることができ、拘束 力を有する層を形成することで熱変形を抑制しソリや変 形による表面の凹凸を解消し、外観品質を向上すること ができる。さらに、上記無機微粒子連結体を配合するこ とで、各樹脂層の熱膨張を低く抑え、積層体自体の低熱 膨張化を達成することができる。各樹脂層の熱溶着がな く接着剤等で接合されていると、単層の特性は、接着層 で緩衝あるいは吸収され隣接樹脂層への影響が低下し単 層の特性を積層体全体に波及させることができない。

【0043】無機微粒子連結体の配合は、積層体各層に 配合することも、また表層あるいは下層のみといった一 部の樹脂層に配合することもできる。積層体の剛性を向 50 上させる観点から各層に配合するのがより好ましい。用途に応じ上層から下層へ配合量の勾配を設けることもできる。いずれにしても、該樹脂組成物(A)と熱可塑性樹脂(B)とを少なくとも1層づつ積層した熱可塑性樹脂積層体であって、該樹脂組成物(A)と熱可塑性樹脂(B)とが交互に積層されていること場合には、高剛性、低熱膨張、耐擦傷性が向上し、高温時にもソリの発生が抑制された積層体となる。

12

【0044】また、熱可塑性樹脂(B)としては、ポリカーボネート系樹脂、スチレン系樹脂、ポリー4ーメチルペンテンー1、熱可塑性ポリウレタン樹脂等を積層することができ、特にポリカーボネート系樹脂を使用することが好ましい。ここにポリカーボネート系樹脂は、ピスフェノールAに代表される二価のフェノール系化合物から誘導される重合体で、ホスゲン法、エステル交換法、あるいは固相重合法のいずれにより製造されたものでもよい。更に、従来からあるポリカーボネート系樹脂の他にエステル交換法で重合したポリカーボネート系樹脂でもよい。

「0045] 該積層体の厚さは、0.5~10mm、より好ましくは1~5mmである。0.5mm未満では無機微粒子連結体の配合量を増しても賦形後に形状維持が困難となる場合がある。また10mmを越すと中間層を拘束できず高温時のソリが発生し外観品質が劣る場合がある。なお、積層体の各樹脂層の厚さは、用途、要求性能により上記範囲内で好適な厚さを選択できる。

【0046】本発明の積層体の製造方法としては特に制限はないが、加熱成形や加圧成形により積層体を製造することが好ましい。すなわち、本発明の第五は、加熱成 形および/または加圧成形により積層することを特徴とする上記積層体の製造方法である。

【0047】-例えばこのような第1の方法として、樹脂組成物 (A) や熱可塑性樹脂 (B) などの種類に応じた押し出し機を用い、これらを加熱溶融した溶融樹脂を共押し出し、積層数に応じたスリットを設けたTダイでシート状に成形し、隣接する各樹脂層を熱溶着させる方法である。押し出し機とTダイの温度をほぼ同じ温度に維持し、各樹脂 (B) または樹脂組成物 (A) からなるシートが合流して積層体を形成する際には各シートの接合面は極く薄い固化膜を形成しているが、合流後に樹脂内部の熱で接合面が再溶融され、接合面に樹脂組成物

(A) と樹脂(B) とが拡散した混合層が形成されることで各層が互いに強固に結合した積層体となる。

【0048】第2の方法は、上記樹脂組成物(A)または上記樹脂(B)の単層シート状物または第1の方法で製造した積層体を、加熱板を有するプレス機を用いて加熱し、次いで圧縮成形して積層体を製造する方法である。該単層シート状物を複数枚積層してから圧縮成形することで、本発明の積層体を製造することができる。第2の方法では、接合面に相当する面に脱着可能なパネル

ヒーターを挿入し、接合面の表面温度を高め表面を溶融 状態にした後、パネルヒーターを取り出し圧縮成形する ことが好ましい。

【0049】第3の方法は、2色射出成形機で金型を前後に移動できキャビティ容積を可変できる金型を使用して、樹脂組成物(A)の単層シートを射出成形後で、できる金型を後退し、後退で形成されたキャビティを間に後退中あるいは後退直後に樹脂(B)を充填する。樹脂組成物(A)の表層にごく薄い固化膜が形成されるが、組成物(A)固化度が充填した溶融樹脂(B)の熱で拡和機物(A)固化膜が充填した溶融樹脂(B)とが拡和機物(A)固化膜が充填した溶融樹脂(B)とが拡和機物(A)固面に樹脂組成物(A)と樹脂(B)とが拡大を操り返しての積層体を形成する。この積層体を形成する。金型とが変により返しての積層は、通常の射出成形より20~50名。積層体のサイズ、積層数等から上記の製造方法を選択できる。積層体のサイズ、積層数等から上記の製造方法を選択できる。

【0050】なお、該積層体を構成する樹脂組成物

(A) や樹脂(B) に必要に応じて透明性を阻害しない様々な添加剤、例えば帯電防止剤、酸化防止剤、熱安定剤、紫外線吸収剤、酸化防止剤、エネルギー消剤、難燃剤等を添加して、これらの特性を有する積層体とすることができ、また積層体の下層を顔料または着色剤を含有する着色層とし、これに透明層を積層させて着色層と透明層とを有する積層体にすることもできる。

【0051】本発明の第六は、上記記載の樹脂組成物または熱可塑性樹脂積層体を用いた車両用内外装部品成形体、車両用外板および樹脂ウィンドウである。

【0052】本発明の樹脂組成物または積層体は、透明性と剛性とに優れ、かつ高温にもソリなどが少ないために、車両用の外装部品や車両用外板の用途に好適である。例えば、図2で示すような、ドアモール1、ドアモール2、ボイールキャップ3、スポイラーのフレーム枠2、ホイールキャップ3、スポイラー4、バンパー5、ウィンカーレンズ6、ピラーガガバー2、バンパー5、ウィンカーレンズ6、ピラーガガバー(図示せず)等の車両用外装部品成形体、図3a、図3bで示すような、フロントフェンダー21、ドアパネル2タリッド25、バックドアパネル24、トランクリッド25、バックドアパネル(図示せず)等の車両のアが表が挙げられる。例えば、図4で示すような、車両のフロントガラス(図示せず)、サイドガラス31、リアガラス32等に適用できる。

【0053】上記したように本発明では、更に、顔料等の着色剤を樹脂組成物(A)に混練したり、上記積層体に着色層を挿入して所望の色調を有する部品を得ることも可能である。また、本発明の積層体は、着色剤を含まない透明な積層体、または透明層と着色層とからなる積層体であってもよい。このため、上記記載の自動車以外でも美観、平滑性、透明感等の外観品質が要求され、か 50

つ高剛性や表面の耐擦傷性を求められる用途、例えば建 造物の外装材、内装材、鉄道車両の内装材等にも使用で まる。

【0054】このような車両用部品や建築用内装材など を含む各種部材の製造方法としては、射出成形、真空圧 空成形等を部品に合わせて適宜選択すればよい。 一般的 なガラス繊維強化樹脂は、せん断応力を繰り返し受ける ことによってガラス繊維が壊れるためにその物性が徐々 に低下しリサイクル性も低いが、本発明の樹脂組成物 (A) は上記無機微粒子連結体を用いているためせん断 10 応力を受けにくく、物性の低下を抑えることができる。 【0055】その他、本発明の積層体を用いて、真空成 形法、真空圧空法、加熱圧縮法、ブロー成形法等の公知 の樹脂成形法によって賦形し、樹脂ガラス、自動車用外 板等の外装部品、あるいは自動車用内装部品を成形する こともできる。また、上記積層体を金型に挿入し、射出 成形法または圧縮成形法で充填樹脂と該挿入積層体の外 周部とを一体で成形して自動車用内外装部品成形体を製 造することもできる。一体成形によれば、複雑な工程を 必要とせずに目的の部材をうる事ができる。

【0056】本発明の第七は、上記樹脂組成物を含んで成ることを特徴とする樹脂製ワイパーシステム、樹脂製ドアミラーステイ、樹脂製ピラーである。本発明の樹脂組成物は、高剛性、高耐熱性であり、熱時/成形時の寸法安定性、透明性にも優れるため、例えばワイパーシステムやピラー等のような視界の向上が要求される部品の用途に好適である。

【0057】従来のワイパーシステムは、黒色途装仕上 げの鋼鉄と黒色のゴムで構成され、低速作動時に視界が 妨げられる場合があった。また、従来のドアミラーステ イは、外板と同色もしくは黒色塗装仕上げの樹脂製であ り、右左折時の視界が妨げられる場合があった。また、... 従来のピラーは鋼鉄製であり、フロントピラー、センタ ーピラーは通常走行時や右左折時、リアピラーは後方移 動時や後方確認時に視界が妨げられる場合があった。こ の場合、これらの部品に透明な樹脂材料を使用すれば視 界は向上するが、髙い剛性や耐熱性、熱時/成形時の寸 法安定性を満たすことは困難で、従来の透明樹脂材料で は上記問題の解決は難しかった。しかしながら本発明の 樹脂組成物は、高剛性、低熱膨張率、低熱収縮率を有す る透明材であり、該樹脂組成物を用いることで上記問題 が解決された。しかも、部品の透明化は、視界向上だけ でなく意匠性の向上にも寄与し得る。

【0058】 一例として図5にワイパーシステムの模式 図を示す。ワイパーシステムはワイパーアーム (41) とワイパーブレード (42) から構成され、ワイパーアーム固定用ナット穴 (45) を中心として半弧を描くように作動する。ワイパーブレード (42) は、一般に弾性を有する支持部分 (43) と軟らかいゴム部分 (4

4) とから構成され、本発明のワイパーシステムにおい

ては、ワイパーアーム、ワイパーブレード、ワイパーブレード支持部分の少なくとも1つに本発明の樹脂組成物を透明材として用いたものである。なお、本発明のワイパーシステムにおいては、該ゴム部分として耐外性の高いシリコンゴム等を用いることとがよしい。また、ワイパーブレードの支持部分として、発明の樹脂組成物に適量のアクリルゴム成分を加えたドの支持部分に適度な弾性を与えることができるからである。このような樹脂組成物としては、例えば、本発明の樹脂組成物100質量部に対して、アクリルゴム(アクリル酸エチル、アクリル酸ブチルやその共重合体等で、例えば日本ゼオン社製NipolAR31がある。)を1~30質量部添加したものがある。

【0059】本発明のドアミラーステイや樹脂製ピラー としては、本発明の樹脂組成物を透明材としてドアミラ ーステイやピラーに成形したものの他、本発明の樹脂組 成物を他の樹脂と積層した多層積層体で構成してもよ い。このような多層積層体は少なくとも本発明の樹脂組 成物から成る層を一層以上含んでいればよく、好ましく は積層体の最表面層と最下層、更に好ましくは中間層に も該樹脂組成物層を設けたものである。多層積層体とす ることで、本発明の樹脂組成物以外の他の付加機能を付 加することができる。多層積層体を用いる場合の各層の 厚さは、最終的な成形品の厚さと積層数から至適な厚さ を選択することができる。このような多層積層体とする 場合の他の樹脂としては、ポリカーボネート、ポリスチ レン、スチレン/メチルメタアクリレート共重合体があ る。なお、該多層積層体として、前記本発明の熱可塑性 樹脂積層体を使用することもできる。本発明の樹脂組成 物や上記多層積層体を用いてドアミラーステイや樹脂製 ピラーを製造する方法は特に限定されない。また、ドア ミラーステイやピラーを単独の部品としても成形する 他、ドアミラーステイやピラーとして使用できるのであ れば、例えば後記する一体成形体の製造方法等によっ て、ドアミラーステイとフロントピラーや各ピラーと樹 脂ルーフパネルとの一体成形体とすることもできる。

【0060】本発明の第八は、透明部と不透明部を有する樹脂成形体であって、少なくとも透明部が上記樹脂組成物を含んで成ることを特徴とする樹脂成形体である。本発明の樹脂組成物は、高剛性、高耐熱性を有し、熱時/成形時の寸法安定性、耐薬品性、透明性にも優れるため、透明部と不透明部とを有し、これらを一体に成形した樹脂成形体の用途にも好適に使用できる。このような樹脂成形体を、自動車部品を例に説明する。

【0061】自動車には、各種ランプ類やカバー、ガラス等の透明な部品と、外板や各種内装部品のような不透明な部品が混在している。これらの部品にはそれぞれ透明性、剛性、耐熱性、低線膨張率、低成形収縮率、耐薬品性等、異なる様々な特性が要求されるため、従来の樹

付所 2003°20190

脂材料ではこれら透明な部品と不透明な部品との一体化 は難しかった。しかし本発明の樹脂組成物は、射出成 形、真空圧空成形などによって容易に成形できるため、 本発明の樹脂組成物を透明材として使用して、高剛性、 高耐熱性、低線膨張率、低成形収縮率、高耐薬品性を確 保しつつ、透明な部分と不透明な部分とを一体成形さ せ、部品点数及び工程数の削減、部品重量を低下させる ことができる。また、透明部と不透明部の一体形成によ り、従来分割されていた外形線が一つの連続するライン で形成できるため、部品外観の向上が図れる。より具体 的には、透明性を必要とするヘッドランプはその周囲に 存在するパンパ、フロントグリル、フェンダ、フードと いった不透明の別の部品と接している。これらを一体成 形すると部品点数の削減が可能となり、一体化された部 品を組み付ければよいため、組み立て時の工程数も削減 できる。特に、本発明の樹脂組成物は耐熱性に優れるたっ め、ランプの熱源が近くて樹脂が溶融するなどの問題も ない。従来のヘッドランプはポリカーボネート樹脂製で できているため耐光性が低く、太陽光に暴露されると黄 20 変するため表層コーティングが必要であった。しかしな がら、本発明の樹脂組成物を用いるとこのような問題も 解決される。

【0062】このような樹脂組成物の製造方法としては 特に制限させるものではない。例えば、透明性が必要と される部品として自動車用ガラスがあり、ドアに付属す るサイドガラス、バックドアガラス、リアフェンダーと ルーフに接着してあるリアクウォーターガラス、リアガ ラス等と称呼されている。サイドガラスやバックドアガ ラスは、ドアアウターとドアインナーとの間にガラスが 配置される構造である。予めドアアウターとドアインナー 一とを用いて内部に中空部を形成させ、該中空部に本発 明の樹脂組成物を流し込むことで、ドアアウター・ドア インナー・ガラスを一体に成形することができる。同様 にして、ピラーガーニッシュとリアクウォーターガラス とを一体化することもできる。本発明の樹脂成形体を図 6 で示すが、上記ピラーガーニッシュとリアクウォータ ーガラスとを一体化した樹脂成形体に限らず、ランプ・ フード・フェンダー一体樹脂成形体(51)、ピラーガ ーニッシュ・ガラスー体樹脂成形体(52)、ルーフ・ フェンダ・ガラス一体樹脂成形体(53)、バックドア ・ガラスー体樹脂成形体(54)、ドア・ガラス一体樹 脂成形体(55)等がある。なお、ドアロックやワイパ ーモーター等は後工程で部品の中空部に設置すればよ V1

【0063】更に、自動車用内装材としてインストルメントパネルの場合には、従来から、計器類、その透明なカバー、クラスターリッドが別部品で作られている。しかしながら本発明の樹脂組成物を用いて透明樹脂部と不透明樹脂部とを一体で成形すると、予めインストルメントパネル(61)と計器類のカバー(62)との一体化

(10)

によってインストルメントパネルに数種の部品を集約させ、部品点数を削減しかつ軽量化を図ることができる。 図7にこのようなインストルメントパネルの模式図を示す

17

【0064】また、本発明の樹脂組成物を使用して、樹脂成形体の一部が透明部であり他の部分が不透明である、高強度・高剛性を保持した部材とすることもできる。例えば、ルーフの一部に本発明の樹脂組成物を用いると該部分を透明にすることができ、ガラス製サンルーフを設けなくとも透明なルーフとすることができる。なお、上記樹脂成形体において、不透明部は着色していてもよい。

【0065】本発明における透明部と不透明部とを有する樹脂成形体において、着色した不透明部の樹脂成形体を得るには、着色した原料樹脂を用いる方法、不透明部に塗装または印刷して着色する方法、または不透明樹脂として着色シートを使用する方法等がある。

【0066】着色した原料樹脂の調製方法としては、原料樹脂に予め顔料を分散させておく方法の他、原料樹脂ペレットと顔料ペレットを同時に溶融・混練させ、射出成形機を用いて金型内に射出して着色樹脂を得る方法がある。該着色樹脂を用いて本発明の樹脂成形体を製造するには、続いて金型を開き、または溶融樹脂通過経路を新たに作り、別のシリンダを用いて金型の空隙部に透明溶融樹脂を射出すればよい。これによって透明部とを有する樹脂成形体を製造することができる。なお、不透明樹脂を先に射出するか透明樹脂を先に射出するかはどちらでも良い。

【0067】 塗装または印刷により着色した不透明部を 形成するには、予め透明樹脂を溶融して目的の樹脂成形 30 体を形成し、その後該樹脂成形体の表面または裏面から 塗装または印刷を施して着色および不透明性を確保する 方法である。溶融樹脂の賦形前に塗装または印刷を施 し、その後に賦形することもできる。

【0068】不透明樹脂として着色シートを使用する場合には、予め着色された不透明シートを予備賦形しておき金型内に配置し、続いて溶融透明樹脂を金型内に注入し、樹脂を冷却固化させ、その後に金型より取り出せば、本発明の樹脂成形体を得ることができる。

【0069】また、上記方法によれば、例えばルーフ・フェンダ・ガラス一体樹脂成形体として、ガラス部が透明部であり、ルーフとフェンダとが不透明である樹脂成形体に限られず、ガラスの上部とルーフの一部が透明部であり、フェンダとガラスおよびルーフの残部が不透明の樹脂成形体とすることもできる。

【0070】更に、本発明の透明部と不透明部とが一体成形された樹脂成形体は、本発明の樹脂組成物と顔料とによって構成できるが、本発明の樹脂組成物と他の樹脂とを積層した多層積層体で構成することも可能である。このような多層積層体は少なくとも本発明の樹脂組成物

から成る層を一層以上含んでいればよく、好ましくは積層体の最表面層と最下層、更に好ましくは中間層にも該樹脂組成物層を設けることができる。多層積層体とすることで本発明の樹脂組成物のみでは発現できないような付加機能をも付与することが可能となる。なお、多層を構成する他の樹脂の種類や各層の厚さは、樹脂成形体の用途に応じて適宜選択することができる。

【0071】本発明の第九は、本発明の樹脂組成物を含んで成ることを特徴とする熱線付き樹脂製ウィンドウ、樹脂製ミラー、樹脂製ランプリフレクター、樹脂製エンジンルーム内カバーおよびケース、樹脂製冷却装置部品である。

【0072】本発明の樹脂組成物は、高剛性、高耐熱性 であり、熱時/成形時の寸法安定性、耐薬品性、透明性 にも優れるため、例えば樹脂製ウィンドウや樹脂製ミラ ー、ランプリフレクター、エンジンルーム内カバーおよ-びケース等の部品の用途に好適であり、部品点数、工程 数、重量の低減が可能になる。更に本発明の樹脂組成物 を透明材として用いることで、透明性が要求される部品 の材料代替が可能になり、防量性や視界の向上が図られ る。例えば、図8に示すリアウィンドウ(73)、ドア ウィンドウ(72)、フロントウィンドウ(71)など の樹脂製ウィンドウは、防暴機能を付与するため成形体 の内部や表面に加熱可能な熱線ヒータを設けることがあ る。従来の透明樹脂材料を用いた場合には、熱線ヒータ による樹脂材料の耐熱性や熱膨張が課題となるが、本発 明の樹脂組成物を用いるとこれらの問題がない。また、 本発明の樹脂組成物は高い剛性を有するので、フロント ウィンドウ (71)、ドアウィンドウ (72)、リヤウ ィンドウ (73) 等の大型部品に応用可能で軽量化する ことができる。尚、熱線ヒータの形成方法としては、例 えばフィルム化された熱線部をインサート成形する方法 や、室内側表面に熱線部を蒸着・塗布・印刷法等により 形成する方法等が挙げられる。また、本発明の透明樹脂 を用いて樹脂製サイドミラー (74) (図8参照)を製 造すると、従来のガラスや透明樹脂を用いた場合に比べ 軽量化ができ、これに熱線ヒータを設ければ防曇機能を 付与することも可能になる。図8に示したサイドミラー 以外にも車室内のルームミラー等にも適用可能である。 【0073】また、図9に自動車ランプの横断面図を示

す。車体側基体 (81) に固定されたアウタ部材 (82) の内部にリフレクター (83) が配置され、該リフレクターにはバルブ (84) と光軸調整器 (85) が連結し、該アウタ部材ははさらにアウタレンズ (86) が 嵌合されている。従来の樹脂材料を用いてリフレクターを構成すると、耐熱性・線膨張率・線膨張異方性に劣る場合があったが、本発明の樹脂組成物を用いるとこれらの問題が解決できる。特に、本発明の樹脂組成物は高い剛性を有するため軽量で高耐熱性が確保でき、かつ寸法安定性と表面平滑性に優れるランプリフレクターとで

き、ヘッドランプ、フォグランブ、リアコンビランプ等 のリフレクター、またはヘッドランプのサブリフレクタ 一等に好適に使用できる。尚、反射部の形成方法として は、例えば該部材を製造する際に反射膜部をインサート 成形する方法や、該部材を射出成形・プレス成形により 成形後に、反射部に蒸着膜を形成させる方法等がある。 【0074】また、本発明の樹脂組成物を使用して、エ ンジンルーム内カバーおよびケースに応用することがで きる。エンジンルーム内を図10および図11に示す。 本発明の樹脂組成物は透明性、耐熱性、耐薬品性、剛性 強度に優れるため、温度条件の厳しいエンジンルーム内 において使用可能で、かつ軽量な部品とすることができ る。このような部品として、例えばラジエーター(9 1)、冷却液リザーブタンク (92)、ウオシャータン クインレット(93)、電気部品ハウジング(94)、 プレーキオイルタンク(95)、シリンダーヘッドカバ ー(96)、エンジンボディー(101)、タイミング チェーン(102)、ガスケット(103)、フロント チェーンケース (104)などがある。しかも、本発明 の樹脂組成物は透明であるため、上記ウオッシャータン クインレット、電気部品ハウジング、ブレーキオイルタ ンク、シリンダーヘッドカバー、タイミングベルトカバ 一等のタンクあるいはカバー内の視認性を向上させるこ とができる。

【0075】本発明の樹脂組成物は、耐熱性、耐薬品 性、剛性強度に優れたより軽量な部品とすることができ ることから、自動車エンジンルーム内で冷却水との接触 下で使用される部品用途に好適に使用される。このよう な樹脂製冷却装置部品を図12、13に示す。例えば、 図12に示すウォーターパイプ(111)、〇ーリング (112)、ウォーターポンプハウジング(113)、 ウォーターポンプインペラ(1 1 4)、ウォーターポン プ(115)、ウォーターポンププーリ(116)、図 13に示すウォーターパイプ(121)、サーモスタッ トハウジング(122)、サーモスタット(123)、 ウォーターインレット(124)等のラジエータータン クのトップおよびベースなどのラジエータータンク部 品、バルブなどの部品が挙げられる。該樹脂組成物を使 用すると軽量化、耐薬品性向上、燃費向上が図られるた め、その実用価値が高い。

【0076】尚、本発明の上記各部品は、本発明の樹脂 組成物のみでも構成できるが、例えば本発明の樹脂組成 物を他の樹脂材料と積層した多層積層体で構成すること も可能である。このような多層積層体は少なくとも本発 明の樹脂組成物から成る層を一層以上含んでいればよ く、好ましくは積層体の最表面層と最下層、更に好まし くは中間層にも該樹脂組成物層を設けることができる。 多層積層体とすることで本発明の樹脂組成物のみでは発 現できないような付加機能をも付与することが可能とな る。なお、各層を構成する他の樹脂の種類や各層の厚さ などは、使用目的に応じて適宜選択することができる。 【〇〇77】本発明の第十は、上記樹脂組成物を含んで 成る、大気と連通した中空構造および/あるいは密閉さ れた中空構造を有することを特徴とする樹脂一体成形体 である。上記のように、本発明の樹脂組成物は、高剛 性、高耐熱性であり、熱時/成形時の寸法安定性にも優 れるため、例えばドアやルーフ、フード等のような中空 構造を有する部品の用途に好適である。自動車の外板お よび内外装部品は、鋼板と樹脂パネルより構成され、か つ部品内部に補機等を装着する中空構造を有している部 品が多い。例えば、側面ドアおよびバックドアは、外側 および内側を鋼板で中空構造を構成し、塗装を経て組み 立て工程で内側鋼板に樹脂パネルを取り付け、中空構造 内に各種補機等を取り付けている。また、ルーフ、フー ド、トランクリッド、バックドア等は、外板および補強 レインホース等を鋼板で構成し、塗装後に内側に樹脂部 品を取り付けている。これらの中空構造を有する部品は 大型であり、剛性や寸法安定性も要求されるため、従来 の樹脂材料では一体成形が難しかった。しかしながら、 高剛性、低熱膨張率、低熱収縮率を有する本発明の樹脂 組成物を使用すると一体成形が可能となり、これらの部 品の部品点数、工程数、重量の低減が可能になる。

【0078】本発明の樹脂一体成形体は、本発明の樹脂組成物のみでも構成できるが、例えば本発明の樹脂組成物を他の樹脂材料と積層した多層積層体で構成することも可能である。このような多層積層体は少なくとも本発明の樹脂組成物から成る層を一層以上含んでいればよく、好ましくは積層体の最表面層と最下層、更に好ましくは中間層にも該樹脂組成物層を設けることができる。多層積層体とすることで本発明の樹脂組成物のみでは発現できないような付加機能をも付与することができる。などは、使用目的に応じて適宜選択することができる。なお、このような多層積層体として、本発明の熱可塑性樹脂積層体を使用することもできる。

【0079】本発明の樹脂一体成形体は、最表面層に表皮材、意匠印刷層等の加飾層を設けることで意匠性、触感、質感を高め商品性を向上することができる。たとえば起毛シート、エンボス紋様シート、レーザー紋様シート、木目調シート等の表皮材を最表面層に設けた成形体は、ルーフ室内側、ピラーガーニッシュ類、インストルメントパネル等に用いることができる。前述の多層積層体を用いた場合には、意匠印刷層はその中間層に設けてもよく、表層を透明材とすることで光沢感、深み感を高めることができる。

【0080】また、本発明の中空構造を有する樹脂一体成形体は、中空部に気体、液体、固体あるいはこれらの混合物を封入することで断熱性能、遮音性能を向上させることができる。封入材としては、透明性が要求される場合は窒素、アルゴン、二酸化炭素、空気等の気体が好

ましく、透明性が要求されない場合は前述の気体の他、 封入時の加熱で液体状を示し封入後の常温では固体状に なるパラフィン、ワックス等が好ましい。上記封入材に より、夏期には車室内から冷熱の逃げ、外気の高熱の侵 入を、冬期には温熱の逃げ、外気の冷熱の侵入を抑制し 快適な車室内環境を維持できる。また二重壁で内に中空 部を有する構造により、外部からの騒音エネルギーを緩 和あるいは吸収し、静粛な車室内環境を確保できる。ま たフードに本構成体を適用すると、エンジンルームから の放射音、放射熱を低減できる。

【0081】本発明の中空構造を有する一体成形体の製造方法は特に限定されず、一般的な真空圧空成形法、射出成形法、プロー成形法、プレス成形法等を用いることができるが、例えば次の方法を好適に用いることができる。

【0082】一つ目の方法では、まず加圧流体導入経路 を備えたホルダーに、本発明の樹脂組成物より成る2枚 の樹脂シートを固定し、公知の方法でホルダーをシール して2枚のシート間に密閉空間を形成する。各シートを 荷重たわみ温度以上に加熱し開放状態の金型にセット し、次いで軟化したシートの外周部を金型で押圧して溶 着する。溶着しつつあるいは溶着後に、2枚のシートの 間の密閉空間に加圧流体を注入し、シートを拡張しつつ /または拡張後、金型を閉状態にして成形体が冷却する まで加圧流体圧を保持し中空構造を形成する。好ましく は真空引き孔を設けた金型を用い、シート拡張時に真空 吸引を併用し金型面とシートの密着を高める。真空引き を用いると成形体の転写性を向上できる。すなわち、本 発明の第十一は、上記樹脂組成物を含んで成る樹脂シー ト2枚を加熱し、これを開状態の金型に挿入し、シート 外周部を押圧し、外周部を溶着する前あるいは溶着後に シート間に加圧流体を注入し、シートを拡張しつつ/ま たは拡張後、金型を閉状態にし、加圧流体圧を保持し中 空構造を形成することを特徴とする樹脂一体成形体の製 造方法である。

【0083】二つ目の方法は、閉状態の金型内に溶融した本発明の樹脂組成物を充填しつつ、あるいは充填後に金型を後退しキャビティ容積を拡大しつつ溶融樹脂内部に加圧流体を注入し中空構造を形成する方法である。

【0084】三つ目の方法は、開状態の金型キャビティ 40面に本発明の樹脂組成物を含んで成る樹脂シートを1枚もしくは2枚インサートし、金型を閉状態で2枚のシート間もしくは1枚のシート背面に溶融樹脂を充填しつつ/または充填後、キャビティ容積を拡大しつつ加圧流体を溶融樹脂内に注入し中空構造を形成する樹脂一体成形体の製造方法である。開状態の金型片面のキャビティ面に、たとえば本発明の樹脂組成物より成る樹脂シートを1枚インサートし、背面に溶融樹脂を充填しつつ、あるいは充填後に金型を後退しキャビティ容積を拡大しつつ溶融樹脂内部に加圧流体を注入し中空構造を形成する方 50

22

法、または2枚の樹脂シートを用い金型両面のキャビティ面にシートをインサートし、シート間に溶融樹脂を充填しキャビティ容積を拡大し加圧流体を注入し中空構造を形成する方法である。使用する充填樹脂としては、本発明の樹脂組成物を含んでなるシートと密着する樹脂であればよく、好ましくは本発明の樹脂組成物と溶解度パラメータ(SP値)が近いものが良い。このような充填樹脂としては、上記熱可塑性樹脂積層体において使用する熱可塑性樹脂(D)のいずれか1種以上を使用することができる。

【0085】本発明の中空構造を有する樹脂一体成形体 の適用部品としては、図14、15に示すように、例え ばフード(131)、ドア(132)、バックドア(1 33)、ルーフ(134)、フェンダー(135)、ウ ィンドウ(136)、トランクリッド(137)、セン ターコンソールボックス (1:41) こ ピラーガーニッシ ュ (142)、インストルメントパネル(143)、へ ッドライニング等を挙げることができる。これらの部品 はインナー/アウターおよび付帯する部品やレインホー ス等を同時にかつ一体で成形でき、部品数の低減および 工程数を短縮することができる。更に中空部に気体、液 体、固体あるいはこれらの混合物を封入することで付加 的な機能を付与することができる。例えばフードではレ インホースとの一体化や遮音・遮熱機能の付与が可能で あり、ルーフではヘッドライニングとの一体化や断熱・ 遮音機能の付与が可能であり、ドアやフェンダーではイ ンナー/アウターの一体化が可能である。

【0086】本発明の第十二は、上記樹脂組成物を含ん で成る、異なる機能を有する二種類以上の部品を統合 し、ひとつの部品に少なくともこれら二種類以上の機能 を付与したことを特徴とする一体成形部品である。ここ に異なる機能とは、例えば、インストルメントパネルの ような表示機能、エアコンダクトなどのような通風機 能、ルーフレール等の固定機能などをいう。本発明の樹 脂組成物は、高剛性、高耐熱性であり、熱時/成形時の 寸法安定性、耐薬品性等の多彩な機能を有するため、種 々の機能の確保が期待される部材に応用することがで き、これらを一体成形することで異なる機能を有する二 種類以上の部品を統合し、ひとつの部品に二種類以上の 機能が付与された一体成形部品とすることができる。こ れによって大型部品の一体化、いわゆるモジュール化や インテグレーション(統合化)に好適であり、高品質を 維持しながら部品点数、工程数、重量の低減が可能にな る。例えば、大型内装部品である図16に示すインスト ルメントパネルは、現在、パネル部(151)とエアコ ンのエアダクトやケース(152)、クロスカービーム (ステアリングクロスメンバー) を別々に作り、これら を車の製造ラインで組み立てている。従来の樹脂材料で パネル部とエアコンのエアダクトやケースを一体成形し ようとすると、大型かつ複雑な形状の部品のため成形収

縮によるヒケや歪み、熱時の膨張などが課題となるが、 本発明の樹脂組成物を用いることでこのような課題が解 決可能となる。また、本発明の樹脂組成物は高い剛性を 有するので、このような一体成形により部品全体を構造 体とすることが可能で、従来スチールが使用されている クロスカービーム (ステアリングクロスメンバー) を廃 することが可能である。また本発明の樹脂組成物を用い ることでスチールでは後付けする必要があったブラケッ ト等も一体成形可能となる。また一体成形時に金型内に 表皮材等の加飾材を投入しインサート成形することによ り、加飾材との一体成形も可能になる。同様の効果は例 えばドアに適用した場合でも得られる。現在のドアイン ナーパネルはスチール製が主で、ここにサイドウィンド ウ用のガイドレールやレギュレータ、ドアロック、スピ 一カ等の各種部品が製造ラインで組み付けられる。本発 明の樹脂組成物を用いることでドアインナーパネル、ガ イドレール、スピーカハウジング等を一体成形すること

【0087】図17に本発明の一体成形部品の他の例を示す。図17に示すように、大型外装部品であるルーフレール(161)を例にすると、前述した本発明の樹脂組成物製のルーフパネル(162)との一体成形が可能となる。ルーフレールは重量がかかり温度的にも厳しい環境で使用されるため、従来の樹脂材料では特に剛性と耐熱性が課題となっていた。しかしながら、本発明の樹脂組成物を用いるとこのような課題が解決可能となる。同様の効果は例えばスポイラーに適用した場合でも得られ、前述した本発明の樹脂組成物製のトランクリッドとの一体成形が可能である。

【0088】図18に大型車体部品であるラジエーター コアを示す。現在フロントエンドモジュールとして樹脂 製のラジエーターコアが世にでつつあるが、本発明の樹 脂組成物を用いると、更に耐熱性、耐薬品性、剛性強度 に優れたより軽量な部品とすることができ、ファンシュ ラウドやブラケット等も一体成形することができる。 特 に、本発明の樹脂組成物を用いると、ラジエーターのリ ザーバタンク、ヘッドランプカバー等の透明部を一体成 形することができ、加えて、従来は別体であったバンパ 補強材の一体化も可能となる。また、エンジンルーム内 部品であるエアクリーナーやスロットルチャンバー等を 例にすると、耐熱性と耐薬品性に優れ低線膨張の本発明 の樹脂組成物を用いることで、これらを一体化すること ができる。従来からこのような一体化は試みられている が、エンジンルーム内は高温かつオイル等の薬品による 厳しい環境であり、従来の樹脂材料ではこの対策が課題 となっているが、本発明の樹脂組成物を用いるとこのよ うな課題が解決可能となる。同様の効果はインテークマ ニホールドやシリンダヘッドカバーに適用した場合でも 得られ、前述の部品とともに一体成形することも可能で ある。

24

【0089】本発明の一体成形部品は、本発明の樹脂組成物のみでも構成できるが、本発明の樹脂組成物を他の樹脂材料と積層した多層積層体で構成することも可能である。このような多層積層体は少なくとも本発明の樹脂組成物から成る層を一層以上含んでいればよく、好ましくは積層体の最表面層と最下層、更に好ましくは中間層にも該樹脂組成物層を設けることができる。多層積層体とすることで本発明の樹脂組成物のみでは発現できないような付加機能をも付与することが可能となる。このような多層積層体として、上記熱可塑性樹脂積層体がある。

【0090】本発明の樹脂組成物は、高剛性、高耐熱性 であり、熱時/成形時の寸法安定性にも優れるため、一 体成形部品とした場合には、例えばスロットルチャンバ 一のような可動部と非可動部を有する部品の用途に好適 である。すなわち、自動車の吸排気系部品やエアコンユ ニット内には、可動部と非可動部を有する部品が多数用 いられている。これらの部品は主に空気などの気体の流 れを制御するものであり、気体を流路となる筒状の部品 と気体の流れを制御する開閉可能な蓋から構成され、例 えばスロットルチャンバーやエアコンユニット内の各ド アが例示できるが、これらの部品では気密性が重要であ る。従来の樹脂材料を用いてこれらの部品の筒状部分と 蓋部分を成形すると、成形収縮率や熱膨張率が大きいた め、寸法精度が上げられず、開閉部分の気密性が課題と なる。また、特にエンジンルーム内の部品に適用する場 合、耐熱性も要求されるため、この点も課題となった。 しかし、低熱膨張率、低熱収縮率、高耐熱性を有する本 発明の樹脂組成物を用いることで、これらの課題が解決 可能となり、気密性に優れた部品とすることができる。 更に本発明の樹脂組成物は高剛性なためこれらの部品の 軽量化とそれによるレスポンスの向上が可能となる。

【0091】本発明の可動部と非可動部を有する成形体は、例えば射出成形法を用いて可動部と非可動部を別々に成形した後、これらを組み立ててもよいが、例えば二色成形法等の方法で可動部と非可動部を一体成形することが好ましい。気密性がより向上し、また工程数や部品数の低減が可能になるためである。図19に示すスロットルチャンバーを例に取ると、例えば次の方法で製造することができる。

【0092】スロットルチャンバーは非可動部である筒状のチャンバー部(181)と可動部である開閉バルブ(182)および開閉バルブ(183)とを有する。まず、二色成形用金型内に、開閉バルブ用金属製シャフトをセットし、次に円筒状のチャンバーを射出成形し、続いて円盤状の開閉バルブを成形するためにスライドコアを後退して円盤状の開閉バルブを射出成形する。このとき金属製シャフトと円盤状の開閉バルブが一体化される。本発明によれば、可動部が気体流動を制御する開閉をであり非可動部は流動気体を導入する筒状成形品に

も、好ましく応用することができる。

【0093】本発明の樹脂組成物は、炭化水素系燃料の 遮断性、ガスバリア性、耐薬品性に優れるため、炭化水 素系燃料を収納する部品または容器、例えば、車両用の 燃料タンク等の一連の燃料系部品、灯油容器等家庭用品 の用途に好適である。図20に、このような部品や容器 である、自動車等の車両における樹脂製燃料タンクを示 す。フィラーチューブ(191)を介して炭化水素系燃 料であるガソリンが燃料タンク(192)に注入・貯蔵 され、ついで当該ガソリンが燃料ポンプ(193)によ りエンジン(194)に圧送される形式の燃料系システ ムとなっている。燃料系部品において本発明の樹脂組成 物が適用できる部品としては、燃料タンク(192)、 フィラーキャップ (195)、ベントチューブ (19 6)、フューエルホース(197)、フューエルカット オフバルブ、デリバリーパイプ、エバポチューブ、リタ ーンチューブ、フューエルセンダーモデュール等が挙げ られる。燃料タンクはこれら車両の燃料系システム部品 の中で最大規模の部品である。近年樹脂化が進み、部品 形状の自由度増の効果により金属製に比べ貯蔵燃料量が 20 約10リットルほど増大、かつ重量も25%程度軽減さ れた。この利点から燃料タンクの樹脂化への期待が一層 高まっている。ここで燃料タンクの樹脂化の現状と課題 について詳述する。

【0094】従来から、母材樹脂としてオレフィン系のHDPE(高密度ポリエチレン)が使用され、その工法として吹き込み法で成形が行われてきた。これらの材料と工法には大きな変化はなかったが、タンクの層構造は大きく変化した。例えば、当初は単層型燃料タンクであったが、炭化水素の蒸散規制法の施行に伴い、炭化水素の透過低減のため燃料タンクの多層化が余儀なくされた。その結果、現在燃料タンクはHDPE/PA(ポリアミド)またはHDPE/EVOH(エチレン酢酸ビニル共重合体)の両端をHDPEで構成する3種5層からなる多層構造タンクが主流となった。この場合の成形は、従来と同じ吹き込成形である。

【0095】上記単層型燃料タンクにおいて、タンクから多くの炭化水素系燃料が透過するのは両者の相溶性が良いことが原因と考えられる。相溶の尺度であるSP値はHDPEが7.9、炭化水素系燃料が6~8であり、両者は同じ領域にある。一方、多層体からなるタンクに用いるPAのSP値は13.6で、炭化水素系燃料とのSP値の開きが大きく、換言すれば相溶性が悪い領域にある。このことから多層体燃料タンクにおけるPA材は、炭化水素系燃料のタンク外への透過を阻止するバリアー層として設置されたのである。しかしながら、該多層体燃料タンクの創出により炭化水素の蒸散規制法を満たす技法が確立されたが、成形工程が頻雑で大幅な価格上昇を招いた。加えて複数の樹脂の積層構造体としたためリサイクルの円滑性が失われ、リサイクル社会という

時代の要請に応えがたい新たな課題を残した。

【0096】これに対し、本発明の樹脂組成物中の改質 シリカ組成物はシラノール基を残しているためSP値は 11を超え、前述のPAやEVOHに相当する炭化水素 系燃料の透過阻止の機能がある。また、本発明の樹脂組 成物の主たる成分は、アクリル等の極性基を有するSP 値が11以上の樹脂が主体であり、炭化水素系燃料とし てのガソリンとは馴染みにくく、換言すれば相溶性が悪 い材料構成となり、燃料タンクとしてより望ましい材料 である。従って、本発明の樹脂組成物を用いれば、単層 型でも炭化水素の蒸散法規制を満たす車両用の燃料タン クを提供することができることが判明した。これによっ て製造コストの低減が図れ、かつリサイクルの社会的要 請に応えることもできるようになった。なお、車両用の 燃料タンク以外にも、本発明の樹脂組成物は灯油容器等 家庭用品に用いることもできる。これにより灯油の大気 への蒸散が軽減され、地球環境の保全に寄与することが できる。

[0097]

7 【実施例】以下、本発明の実施例により具体的に説明する。本発明はこれによって限定されるものではない。なお、実施例および比較例における各種評価は以下の方法により、特記しない場合には、「部」は質量部を、「%」は質量%を示す。

【0098】 (評価方法: 単層透明樹脂組成物)

(1) 全光線透過率は、ヘイズメータ(村上色彩研究所 製 HM-65)で計測した。75%以上を合格とし た

大きく変化した。例えば、当初は単層型燃料タンクであ 【0099】(2)無機微粒子連結体の分散状態は、透ったが、炭化水素の蒸散規制法の施行に伴い、炭化水素 30 過電子顕微鏡(日立製作所(株)製H-800)で観測の透過低速のため燃料タンクの多層化が余儀なくされ した。

- 【0100】(3)曲げ強度・弾性率は、オートグラフ (島津製作所(株)製 DCS-10T)で計測した。 曲げ強度108MPa以上を合格とした。

【0101】(4)線膨張係数は、熱機械測定装置(セイコー電子工業(株)製 TMA120C)で計測した

【0102】 (評価方法:積層体)

(1) 全光線透過率(%): ヘイズメーター(HM-6 5 村上色彩研究所製)で測定した。○:≧90、×: <90 として評価した。

【0 1 0 3】 (2) ロックウエル硬度:ロックウエル硬度計 (Mスケール) で測定した。○: ≧ 9 5、×: < 9 5として評価した。

【0104】 (3) 曲げ弾性率:オートグラフ (DCS -10T 島津製作所製) で測定した。○:≧3500 MPa、×: <3500MPaとして評価した。

【0105】(4) 耐衝撃性:200×200mmの積 層体を180×180mmの枠で全周固定し、JIS-50 R3212の耐衝撃性試験法相当の鋼球を高さを変え自

由落下させ亀裂が発生する高さを測定した。 \bigcirc : ≥ 3 m、 \times : < 3 mとして評価した。

【0106】(5) 層間の剥離有無:作成した積層体を約90度に折り曲げて層間の剥離有無を目視で判断した。○:剥離無し、×:剥離有りとして評価した。

【0107】(6) ソリの有無:積層体より100×50mmの試験片を切り出し、110℃オーブン×2H→ 室温×2H以上放冷のサイクルを10回繰り返した後の ソリの有無を目視で判断した(n=3)。○:ソリ無 し、×:ソリ有りとして評価した。

【0108】(実施例1)ケイ酸ナトリウム(水ガラス)を原料とし、イオン交換によりナトリウムを除去して、核となるゾル(約5nm)を得て、これらの微小粒子を液中で単独で成長させ、太さ5~10nm、長さ90~350nmの鎖状シリカを得た。この鎖状シリカに、シリル化剤で処理してアルキル基を付加し、メチルエチルケトンに溶解してシリカ溶液を得た。

【0109】重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、80℃に加熱し、これに先に調製したシリカ溶液を滴下しながら重合反応させた。約6時間後に疑固用溶剤ヘキサンで沈降させ、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得た。

【0110】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。また球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光 30線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。

【0111】(実施例2)ケイ酸ナトリウム(水ガラス)を原料とし、イオン交換によりナトリウムを除去して、核となるゾル(約5nm)を得て、これらの微小粒子を液中で単独で成長させ、太さ5~10nm、長さ90~350nmの鎖状シリカを得た。この鎖状シリカに、シリル化剤で処理してアルキル基を付加し、メチルエチルケトンに溶解してシリカ溶液を得た。

【0112】重合開始剤AIBNをメタクリル酸メチルモノマー (1モル/リットル)に対し0.5モル%添加、80℃に加熱し、徐々に先に調製したシリカ溶液を滴下しながら重合反応させて、約6時間後に凝固用溶剤ヘキサンで沈降させ、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得た。

【0113】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。さ

らに実施例1の組成物に比べて、線膨張率が小さく、より良好な結果を示した。また、球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。

28

【0114】(実施例3)重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.

5モル%添加、80℃に加熱し、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ5~10nm、長さ30~80nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤へキサンで沈降させ、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得た。▼

【0115】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。しかし、実施例1に示した樹脂組成物に比べて、曲げ強短いからである。しかし、球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。

【0116】(実施例4)重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ5~10nm、長さ350~500nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤エタノールで沈降させ、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得た。

【0117】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、メタクリルに比べ透明性は劣るが良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。しかし実施例1に比べ、曲で強度は優れるが、分散性が劣るため透明性は劣り、硬度もやや劣る。これは、シリカ微粒子連結体の長さが、可視光線波長の長さより大きいためである。しかし球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。

50 【0118】 (実施例5) 重合開始剤AIBNをメタク

リル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、80℃に加熱し、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ1~5 n m, 長さ90~350 n m, シリカ微粒子長さ7~50 n m)を滴下しながら重合反応させて、約6時間後に凝固用溶剤へキサンで
沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得る。

【0119】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。

【0120】(実施例6) 重合開始剤AIBNをメタクリル酸メチルモノマー (1モル/リットル) に対し0.5モル%添加、80℃に加熱し、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体 (太さ10~20nm,長さ90~350nm,シリカ微粒子長さ7~50nm) を滴下しながら重合反応させて、約6時間後に凝固用溶剤へキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得る。

【0121】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。

【0122】(実施例7)重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、80℃に加熱し、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ10~20nm,長さ50~350nm,シリカ微粒子長さ50~100nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤へキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得る。

【0123】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。

【0124】(実施例8)重合開始剤AIBNをメタク リル酸メチルモノマー(1モル/リットル)に対し0. 5モル%添加、80℃に加熱し、徐々にメチルエチルケ トン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ10~20nm,長さ100~350nm,シリカ微粒子長さ50~100nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤ヘキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得る。

【0125】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。

【0126】(実施例9)ポリメタクリル酸メチル100部をメチルエチルケトン溶剤に溶解し、この溶液にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ5~10nm、長さ90~350nm)を滴下しながら混合させて、その後に凝固用溶剤へキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得た。

【0127】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、メタクリルに比べ、透明性は劣るが、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。しかし、シリカ微粒子連結体の分散性が悪いため、実施例1の組成物に比べ、透明性、硬度、曲げ強度、曲げ弾性率は劣る。しかし球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾一性率、線膨張係数の結果を表2に示す。

【0128】 (実施例10) 重合開始剤AIBNをメタクリル酸メチルモノマー (1モル/リットル) に対し0.5モル%添加、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ5~10nm、長さ90~350nm) を滴下しながら重合反応させて、約6時間後に凝固用溶剤ヘキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率10/90の混合組成物を得た。

【0129】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ弾性率向上、線膨張率低下を示した。しかし、実施例1の組成物に比べ、曲げ強度、曲げ弾性率、硬度、および線膨張率の向上は少なかった。これは、シリカ微粒子連結体の配合量が少ないためである。しかし、球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい

31

価を示した。この試験片で得られた全光線透過率、透過 電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ 弾性率、線膨張係数の結果を表 2 に示す。

【0130】(実施例11)重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ5~10nm、長さ90~350nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤ヘキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率70/30の混合組成物を得た。

【0131】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、メタクリルに比べ、透明性曲げ強度は劣るが、表面硬度向上、曲げ弾性率向上、線膨張率低下を示した。

【0132】しかし、実施例1の組成物に比較して、透明性や曲げ強度は劣った。これはシリカ微粒子連結体の配合量が多すぎるため、シリカ微粒子連結体の凝集や欠陥が増加するためである。しかし、球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表2に示す。

【0133】(比較例1)メタクリル酸メチル100部に過酸化ベンゾイル0.5部を混合、90℃に加熱し、徐々にメチルエチルケトン溶剤分散のシリカ微粒子(粒径10~20nm)を滴下しながら重合反応させて、約1時間後に疑固用溶剤エタノールで沈降させると、シリカ微粒子とメタクリル樹脂の組成比率30/70の混合 30組成物を得た。

【0134】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好であるが、実施例1~7の鎖状のシリカ微粒子連結体配合のメタクリル樹脂に比べ、曲げ弾性率が低い値を示した。この試験片で得られた全光線透過率、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表2に示す。

【0135】(比較例2)メタクリル酸メチル100部に過酸化ベンゾイル0.5部を混合、90℃に加熱し、 重合反応させて、約1時間後に凝固用溶剤エタノールで 沈降させると、メタクリル樹脂を得る。

【0136】得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。この試験片で得られた全光線透過率、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表2に示す。

【0137】(実施例12)実施例1の樹脂組成物とポリカーボネート系樹脂(三菱エンジニアリングプラスチックス製のユーピロンE200U)を2台の押し出し機で3つのスリットを持つTダイを使い積層体を調製し

た。上層はシリカ含有アクリル樹脂層(樹脂(A))、中間層はシリカを含まないポリカーボネート系樹脂層(樹脂(B))、下層は上層と同じシリカ含有アクリル樹脂層(樹脂(A))の3層構造で、各層の厚さは1/3/1mmの構成をもつ積層体を得た。評価結果を表3に示す。

【0138】 (実施例13) 無機微粒子連結体の配合量を1質量%にした以外は、実施例12と同じ条件で積層体を得て評価した。評価結果を表3に示す。

【0139】 (実施例14) 無機微粒子連結体の量を1 0質量%にした以外は、実施例12と同じ条件で積層体 を得て評価した。評価結果を表3に示す。

【0140】 (実施例15) 押し出し機の吐量を下げ、またTダイのスリット間隙を調整し、表層の樹脂(A) 厚さをを0.1 mmに、中間層の樹脂(B)を0.3 mに、下層の樹脂(A)を0.1 mmにした以外は実施例12と同じ条件で積層体を得て評価した。

【0141】評価結果を表3に示す。

【0142】 (実施例16) 押し出し機の吐量を増し、 またTダイのスリット間隙を調整して、表層の樹脂

(A)を2mm厚さに、中間層の樹脂(B)を6mm厚さに、下層の樹脂(A)を2mm厚さにした以外は実施例12と同じ条件で積層体を得て評価した。評価結果を表3に示す。

【0143】(実施例17)無機微粒子連結体の長さが200~250nmのものを用い、樹脂への配合量を5質量%にした以外は実施例1と同じ条件で積層体を得て評価した。評価結果を表3に示す。

【0144】(実施例18)押し出し機の吐量を調整し、またTダイを5層の積層が可能なTダイにして樹脂(A)と樹脂(B)が交互に積層された5層の積層体得た。樹脂層構成は、A/B/A/B/Aで各層の厚さは、0.7/1.5/0.6/1.5/0.7mmにした以外は、実施例1と同じ条件で積層体を得て評価した。評価結果を表3に示す。

【0145】(比較例3)無機微粒子連結体を配合しないアクリル樹脂(以下、樹脂(C)と称する)を用いた以外は実施例12と同じ条件で5mm厚さの3層積層体を得て評価した。評価結果を表3に示す。

【0146】(結果) 実施例1~7に係る本発明のシリカ微粒子連結体を配合した樹脂組成物は、可視光線波長よりも小さいシリカ微粒子連結体を凝集することなく、透明な非結晶の樹脂に分散配合することによって、透明樹脂の光線透過率を低減することなく、透明樹脂単独に比べて、剛性向上、熱膨張率低減、表面硬度向上を得ることができた。また、球状のシリカ微粒子を配合したメタクリル樹脂に比べ、本発明に係るシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きかった。

【0147】また、実施例8~14に示す様に本発明の 50 樹脂組成物を積層することにより成形体の耐衝撃性を高

_ -17-

*で仕上げることが必要であるが、射出成形でウィンドウ

め、温度によるソリを抑えることができた。

【0148】このため、この樹脂組成物を用いて、射出成形、押出成形、ブロー成形により上記の特性を持つデザイン自由度の大きい成形品を得ることが可能である。

33

を成形すると、周囲の加工は不必要で生産性が向上す る。

[0149]

【表1】

また、無機ガラスの自動車ウィンドウは周囲を機械加工*

•								
1	実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	実施例7	实施例8
	回分式	回分式	回分式	回分式	回分式	回分式	回分式 重合法	回分式 重合法
製造方法	重合法	重合法	重合法	重合法	重合法	重合法	黑白在	# 014
重合用のモノマー	メチルメタクリレート	メチルメタクリレート	メチルメタクリレート	メテルメタクリレート	メラルメタリレート	メチルメタリレート	メチルメタリレート	メチルメタリレート
無機微粒子連結体太さ(1221)	5~10	5~10	5~10	5~10	1~5	10~20	10~20	10~20
無機微粒子の長さ(nm)	7~50	7~50	7~50	7~50	7~50	7~50	50~100	50~100
無機微粒子連結体長さ(nm)	90~350	90~350	30~80	350~500	90~350	90~350	50~350	100~350
無機微粒子連結体の形態	鎖状	網目状	鎖状	鎖状	鎖状	鎖状	鎖状	鎖状
	アルキル基	アルキル基	アルキル基	アルキル基	アルキル基	PAキル基	アルキル基	別州基
無機微粒子連結体表面官能基		30	30	30	30	30 ·	30	30
無機微粒子連結体配合率(1)	30	92	92	84	92	92	92	92
全光線透過率(%)	92	特良好	特良好	良好	特良好	特良好	特良好	-特良好
透過電顕での分散状態	特良好			105	115	115	115	115
D-y2ウIR硬度(Mスケール)	115	115	115	135	125	.125	120	130
曲げ強度 (MPa)	125	125	120		4.4	4.4	4.4	4.4
曲げ弾性率(GPa)	4.4	4.4	4.4	4.4	4.5×10 ⁻³	4.5×10 ⁻⁵	4.5×10-5	4.5×10
線膨張係数(1/℃)	4.5×10-5	4.3×10 ⁻⁵	4.5×10 ⁻⁵	4.5×10 ⁻⁵	4.5 10	4.5		

[0150]

表 2

P	_	7
1 7	7	1
1	_	•

	実施例9	実施例10	実施例11	比較例1	· 比較例2
	央吧例9	7,50,110			
製造方法	溶剤混合法	回分式重合法	回分式重合法	回分式重合法	回分式重合法
重合用のモノマー	メチルメタクリレート	メチノレメタクリレート	メチルメタクリレート	メチルメタクリレート	メチルクリレート
無機微粒子連結体太さ (nm)	5~10	5~10	5~10	19te 192	-
無機微粒子の長さ(nm)	7~50	7~50	7~50	直径 10~20	
無機微粒子連結体長さ(nm)	90~350	90~350	90~350		ļ -
無機微粒子連結体の形態	鎖状	鎖状	鎖状	球状	
無機微粒子連結体表面官能基	アルキル基	Pルヤル基	アルキル基	アルキル基	
無機微粒子連結体配合率(%)	30	10	70	30	
	85	92	85	92	93
全光線透過率(%)	凝集有	特良好	凝集有	特良好	
透過電顕での分散状態	105	105	120	110	100
Dックウェル硬度 (Mスケール)		115	100	120	110
曲げ強度(MPa)	115	3.6	4.5	3.2	3.1
曲げ弾性率(GPa)	4.3	4.8×10 ⁻⁵	4.5×10 ⁻⁵	4.6×10 ⁻⁵	6.0×10 ⁻⁵
線膨張係数 (1/℃)	4.5×10 ⁻³	4.0710			

[0151]

【表3】

	33								
表	3	etras (D) a n	実施例13	実施例14	実施例15	実施例16	実施例17	実施例18	比較例3
	•	実施例12	吳旭州13	×0000114	7250725	3	3	5	3
供	積層数	3	3		-	+	-	A/B/A/B/A	C/B/C
試	積層構成(*1)	A/B/A	.←	+	<u> </u>		5	5	5
-	積層厚(mm)	5	5	5	0.5	10			
試		30	1	10	30	30	30	30	30
料	無機微粒子量(質量%)								
		_	0	0	0	0	0	0	0_
	全光線透過率	0		0	0	0	0	0	×
評	ロックウェル硬度	0	0			0	0	-0	0
•	曲げ弾性率	0	0	0	0				0
	耐衝撃性	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	×
OU	層間剝離の有無		0	0	0	0	0	0	×
	ツッの有無	0	 -	1	-	 		· ·	
		l		l _ ·				0	0

1: 積層構成のA:アクリル系樹脂+疎水化処理した無機微粒子連結体 積層構成のB:ポリカルボネート樹脂(疎水化処理無機微粒子連結体含有無し) 積層構成のC:アクリル系樹脂(疎水化処理無機微粒子連結体含有無し)

【図面の簡単な説明】

【図1】 図1は、網目状シリカを分散した無機微粒子 連結体の電子顕微鏡で観察した図である。

【図2】 図2は、本発明に係る樹脂組成物(A)の車両用外装部品用途の一例を示す説明図である。

【図3】 図3a、図3bは、本発明に係る樹脂組成物(A)の車両用外板用途の一例を示す説明図である。

【図4】 図4は、本発明に係る樹脂組成物(A)の樹 脂ウィンドウ用途の一例を示す説明図である。

【図5】 図5は、本発明に係る樹脂製ワイパーシステ の模式図である。

【図6】 図6は、本発明に係る樹脂製ドアミラースティの車両用外装部品用途の一例を示す説明図である。

【図7】 図7は、本発明に係る透明樹脂部と不透明樹脂部とを一体で成形したインストルメントパネルを示す図である。

【図8】 図8は、本発明に係る樹脂製ミラー、樹脂製ウィンドウを示す図である。

【図9】 図9は、本発明の樹脂製ランプリフレクター を用いたヘッドランプ部を示す横断面図である。

【図10】 図10は、本発明に係る樹脂組成物を用いたエンジンルーム内部品の一例を示す説明図である。

【図11】 図11は、本発明に係る樹脂組成物を用いたエンジンルーム内部品の一例を示す説明図である。

【図12】 図12は、本発明に係る樹脂組成物を用いた樹脂製冷却装置部品の一例を示す図である。

【図13】 図13は、本発明に係る樹脂組成物を用いた樹脂製冷却装置部品の一例を示す図である。

【図14】 図14は、本発明に係る樹脂組成物を用いた中空構造を有する樹脂一体成形体の一例を示す図である。

【図15】 図15は、本発明に係る樹脂組成物を用いた中空構造を有する樹脂一体成形体の一例を示す図である。

【図16】 図16は、本発明に係る樹脂組成物を用いた一体成形部品の一例を示す説明図である。

【図17】 図17は、本発明に係る樹脂組成物を用いた一体成形部品の一例を示す説明図である。

【図18】 図18は、本発明に係る樹脂組成物を用いた一体成形部品の一例を示す説明図である。

【図19】 図19は、本発明に係る樹脂組成物を用い 20 た可動部と非可動部を有する成形体の一例を示す図であ り、図19Aは該成形体の横断面図、図19Bは該成形 体の上面図である。

【図20】 図20は、本発明に係る樹脂組成物の車両用外装部品用途の一例を示す説明図である。

【符号の説明】

1…ドアモール、2…ドアミラーのフレーム枠、3…ホ イールキャップ、4…スポイラー、5…バンパー、6… ウィンカーレンズ、7…ピラーガーニッシュ、8…リア フィニッシャー、21…フロントフェンダー、22…ド 30 アパネル、23…ルーフパネル、31…サイドガラス、 32…リアガラス、41…ワイパーアーム、42…ワイ パーブレード、43…弾性を有する支持部分、44…軟---らかいゴム部分、45…ワイパーアーム固定用ナット 穴、51…ランプ・フード・フェンダー―体樹脂成形 体、52…ピラーガーニッシュ・ガラス一体樹脂成形 体、53…ルーフ・フェンダ・ガラス一体樹脂成形体、 54…バックドア・ガラス一体樹脂成形体、55…ドア ・ガラスー体樹脂成形体、61…インストルメントパネ ル、62…計器類のカバー、71…フロントウィンド ウ、72…ドアウィンドウ、73…リヤウィンドウ、7 40 4…樹脂製サイドミラー、81…車体側基体、82…ア ウタ部材、83…リフレクター、84…バルブ、85… 光軸調整器、86಼…アウタレンズ、91…ラジエータ 一、92…冷却液リザーブタンク、93…ウオシャータ ンクインレット、94…電気部品ハウジング、95…ブ レーキオイルタンク、96…シリンダーヘッドカバー、 101…エンジンボディー、102…タイミングチェー ン、103…ガスケット、104…フロントチェーンケ ース、111…ウォーターパイプ、112**…**〇ーリン グ、113…ウォーターポンプハウジング、114…ウ

-19-

オーターポンプインペラ、115…ウォーターポンプ、116…ウォーターポンププーリ、121…ウォーターパイプ、122…サーモスタットハウジング、123…サーモスタット、124…ウォーターインレット、131…フード、132…ドア、133…バックドア、134…ルーフ、135…フェンダー、136…ウィンドウ、137…トランクリッド、141…センターコンソールボックス、142…ピラーガーニッシュ、143…

インストルメントパネル、151…パネル部、152… エアコンのエアダクトおよびケース、161…ルーフレール、162…ルーフパネル、181…チャンバー部、182…開閉バルブ、183…開閉バルブ、191…フィラーチューブ、192…燃料タンク、193…燃料ポンプ、194…エンジン、195…フィラーキャップ、196…ベントチューブ、197…フューエルホース、198…空気室。

[図15]

フロントページの続き

(51) Int. Cl.	識別記号		FΙ		テーマコート、(巻	∌考)
B 6 0 R			B 6 0 R	13/02	C 4F10	0
BOOK	13/02			13/04	A 4 J 0 0	2
	13/04			19/03	С	
	19/03		B60S	1/34	Α	
B 6 0 S				1/38	В	
БООЗ	1/38		B62D	25/06	Α	
B62D	,			25/16	Α	
Б02Д	05.440		C08K	9/00		
C 0 8 K			B60K	15/02	Α	
COOK	3,00				•	
(72) 採田安	矢野 彰一郎		(72) 発明者	鳥居 信吉	f	
(12) 50 914	東京都千代田区九段南四丁目8番24号	学	•	神奈川県横	黃浜市神奈川区宝町2番地	日産
•	校法人 日本大学内	³ .		自動車株式	会社内	-
(72) 発明者	澤口 孝志		(72)発明者	鈴木 克彦		
(12))591 5	東京都千代田区九段南四丁目8番24号	学			黃浜市神奈川区宝町2番地	日産
	校法人 日本大学内			自動車株式	、会社内	
(72) 発明者	近澤 正敏		(72)発明者	上杉 憲治		
(,_,,_,,	東京都八王子市南大沢1丁目1番地 東	京			黃浜市神奈川区宝町 2 番地	日産
	都立大学内			自動車株式		
(72) 発明者	44		Fターム(参考) 3D003	AA01 AA02 AA04 BB02 CA	38
	東京都八王子市南大沢1丁目1番地 東	京			CA55 DA14	
-	都立大学内			3D023	AAO1 ABO1 ACO2 ADO2 BA	.01
(72) 発明者	清野 俊			_	BB10 BC01 BD08 BE02	
	神奈川県横浜市神奈川区宝町2番地 日	産			AE05 AE09 AE14	
	自動車株式会社內				CC20	
(72) 発明者	中島 正雄				FF29 GG06 HH10	
	神奈川県横浜市神奈川区宝町2番地 日	産		4F100	AAO1A AAO1C AA2OA AA2O	
,	自動車株式会社内		_		AKO1B AKO1D AKO3A AKO3	
(72) 発明者	伊藤 智啓			•	AK12A AK12C AK25A AK25 AK45A AK45B AK45C AK45	
	神奈川県横浜市神奈川区宝町2番地 日	産	•		BAO4 BAO6 BAO7 BA10A	U
	自動車株式会社内				BA10C BA10D DE10A DE10	ıc.
(72) 発明者	甲斐 康朗				GB32 JB16B JB16D JN01	
	神奈川県横浜市神奈川区宝町2番地 日	産			JNO1A JNO1C YYOOA YYOO	ıc
	自動車株式会社内			4 1000	BG061 FA086 FB086 FD01	
(72) 発明者	半田 浩一			4J002	GGO1 GN00	
	神奈川県横浜市神奈川区宝町2番地 日	産			ado i diloo	
	自動車株式会社内					