- **9.** Suppose that f and g are continuous on [a,b] and differentiable on (a,b), and that f'(x) > g'(x) for all a < x < b. Show that f(b) g(b) > f(a) g(a).
- 10. Prove the Extended Mean Value Theorem, by applying Rolle's Theorem to the function

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)).$$

- **11.** Show that $e^x \ge 1 + x$ for all x. (*Hint: Consider* $f(x) = e^x x$.)
- **12.** Show that $\ln(1+x) < x$ for all x > 0.
- **13.** Show that $\tan^{-1} x < x$ for all x > 0.

14. Show that for $0 < \alpha \le \beta < \frac{\pi}{2}$,

$$\frac{\beta - \alpha}{\cos^2 \alpha} \le \tan \beta - \tan \alpha \le \frac{\beta - \alpha}{\cos^2 \beta}.$$

15. Show that for $0 < a \le b$,

$$\frac{b-a}{b} \le \ln \frac{b}{a} \le \frac{b-a}{a}$$
.

16. Show that for n > 1 and a > b,

$$nb^{n-1}(a-b) < a^n - b^n < na^{n-1}(a-b)$$
.

C

- **17.** Show that $\sqrt{a^2 + b} < a + \frac{b}{2a}$ for all positive numbers a and b.
- **18.** Show that $f(x) = \cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right) \cos x \cos \left(\frac{\pi}{3} + x\right)$ is a constant function. What is its value?
- **19.** Suppose that f(x) is a differentiable function and that f(0) = 0 and f(1) = 1. Show that $f'(x_0) = 2x_0$ for some x_0 in the interval (0,1).
- **20.** Prove the inequality

$$\left| \frac{x_1 + x_2}{1 + x_1 x_2} \right| < 1$$
 for $-1 < x_1, x_2 < 1$

as follows:

- (a) First prove the special case where $x_1 = x_2$.
- **(b)** For the case $x_1 < x_2$ define

$$f(x) = \frac{x+a}{1+ax}$$

for $-1 \le x \le 1$, where -1 < a < 1. Show that f is increasing on [-1,1], then use $a = x_2$ and $x = x_1$.

Note that proving the case $x_2 < x_1$ is unnecessary (why?).

This inequality is a generalization of the same inequality for $0 \le x_1, x_2 < 1$ in the *relativistic velocity* addition law from the theory of special relativity: if object 1 has velocity v_1 relative to a frame of reference F, and if object 2 has a velocity v_2 relative to object 1, so that $x_1 = v_1/c$ and $x_2 = v_2/c$ represent the fractions of the speed of light c at which the objects are moving, then the fraction of the speed of light at which object 2 is moving with respect to F is $x = (x_1 + x_2)/(1 + x_1x_2)$. So it should be true that $0 \le x < 1$, since nothing can move faster than the speed of light.