Machine Learning: Natural Language Processing

1 / 133

Speaker Qualifications

- Specialize in next-generation technologies
- Author of O'Reilly Videos on Hypermedia, Linking Data, Security and Encryption
- Author of 'Resource-Oriented Architecture Patterns for Webs of Data'
- Teaches and speaks internationally about REST, Semantic Web, Data Science, Machine Learning, GPU Computing, Security, Visualization, Architecture
- Worked in Defense, Finance, Retail, Hospitality, Video Game, Health Care, Telecommunications and Publishing Industries
- International Pop Recording Artist

Agenda

- IntroductionVector Space Model
- Word2VecNaieve Bayes

Natural Language Processing (NLP) Goals

• Search and Retrieval

5 / 133

Natural Language Processing (NLP) Goals

- Search and Retrieval
- Entity and Relationship Extraction

Natural Language Processing (NLP) Goals

- Search and Retrieval
- Entity and Relationship Extraction
- Linguistic structure

7 / 133

Natural Language Processing (NLP) Goals

- Search and Retrieval
- Entity and Relationship Extraction
- Linguistic structure
- Machine Translation

Natural Language Processing (NLP) Goals

- Search and Retrieval
- Entity and Relationship Extraction
- Linguistic structure
- Machine Translation
- Generative Content

9 / 133

Natural Language Processing (NLP) Goals

- Search and Retrieval
- Entity and Relationship Extraction
- Linguistic structure
- Machine Translation
- Generative Content
- Question Answering

NLP History

• Early successes in the 1950s in automatic translation

11 / 133

NLP History

- Early successes in the 1950s in automatic translation
- SHRDLU

NLP History

- Early successes in the 1950s in automatic translation
- SHRDLU
- ELIZA

13 / 133

NLP History

- Early successes in the 1950s in automatic translation
- SHRDLU
- ELIZA
- Shift to statistical models in the 1980s

15 / 133

NLP Difficulties

• Character encoding

- Character encoding
- Tokenization

17 / 133

NLP Difficulties

- Character encoding
- Tokenization
- Part of Speech labeling

- Character encoding
- Tokenization
- Part of Speech labeling
- Stemming (e.g. "walking", "walked", "walks")

19 / 133

NLP Difficulties

- Character encoding
- Tokenization
- Part of Speech labeling
- Stemming (e.g. "walking", "walked", "walks")
- Lemmatization (e.g. "operating")

- Character encoding
- Tokenization
- Part of Speech labeling
- Stemming (e.g. "walking", "walked", "walks")
- Lemmatization (e.g. "operating")
- Sentence/paragraph detection

21 / 133

NLP Difficulties

- Character encoding
- Tokenization
- Part of Speech labeling
- Stemming (e.g. "walking", "walked", "walks")
- Lemmatization (e.g. "operating")
- Sentence/paragraph detection
- Coreference resolution

Some Open Source NLP Frameworks

API	URL
GATE	http://gate.ac.uk
LingPipe	http://alias-i.com/lingpipe
Apache OpenNLP	http://opennlp.apache.org
UIMA	http://uima.apache.org
Stanford Parser	http://nlp.stanford.edu/software
Mallet	http://mallet.cs.umass.edu

23 / 133

Bag of Words

- (1) John likes to watch movies. Mary likes movies too.(2) John also likes to watch football games.

https://en.wikipedia.org/wiki/Bag-of-words_model

25 / 133

Bag of Words

- (1) John likes to watch movies. Mary likes movies too.(2) John also likes to watch football games.

```
"John",
"likes",
"to",
"watch",
"movies",
"also",
"football",
"games",
"Mary",
"too"
```

https://en.wikipedia.org/wiki/Bag-of-words_model

Bag of Words

(1) John likes to watch movies. Mary likes movies too.(2) John also likes to watch football games.

```
"John",
"likes",
"likes",
"to",
"watch",
"movies",
"also",
"football",
"games",
"Mary",
"too"
```

```
(1) [1, 2, 1, 1, 2, 0, 0, 0, 1, 1]
(2) [1, 1, 1, 1, 0, 1, 1, 1, 0, 0]
```

https://en.wikipedia.org/wiki/Bag-of-words_model

27 / 133

N-gram model

- (1) John likes to watch movies. Mary likes movies too.(2) John also likes to watch football games.

https://en.wikipedia.org/wiki/Bag-of-words_model

N-gram model

(1) John likes to watch movies. Mary likes movies too.(2) John also likes to watch football games.

```
"John likes",
  "likes to",
  "to watch",
  "watch movies",
  "Mary likes",
  "likes movies",
  "movies too",
]
```

https://en.wikipedia.org/wiki/Bag-of-words_model

29 / 133

Vector Space Model

$$d_j = (w_{1,j}, w_{2,j}, \dots w_{t,j})$$

Vector Space Model

$$d_j = (w_{1,j}, w_{2,j}, \dots w_{t,j})$$
$$q = (w_{1,q}, w_{2,q}, \dots w_{t,q})$$

31 / 133

Euclidean Dot Product

$$a \cdot b = ||a|| ||b|| \cos\theta$$

Euclidean Dot Product

$$a \cdot b = ||a|| ||b|| \cos \theta$$
$$\cos \theta = \frac{A \cdot B}{||A|| ||B||}$$

33 / 133

Euclidean Dot Product

$$a \cdot b = ||a|| ||b|| \cos\theta$$

$$\cos\theta = \frac{A \cdot B}{||A|| ||B||}$$

$$= \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

By Riclas - Own work, CC BY 3.0, Link

35 / 133

Cosine Similarity

$$\cos\theta = \frac{d_2 \cdot q}{\|d_2\| \|q\|}$$

Cosine Similarity

$$cos\theta = \frac{d_2 \cdot q}{\|d_2\| \|q\|}$$
$$cos\theta = 1 \implies Identical$$

37 / 133

Cosine Similarity

$$cos\theta = \frac{d_2 \cdot q}{\|d_2\| \|q\|}$$

$$cos\theta = 1 \implies Identical$$

$$cos\theta = 0 \implies Orthogonal$$

Term Frequency

$$tf(t,d) = 1$$

https://en.wikipedia.org/wiki/Tf-idf

39 / 133

Term Frequency

$$tf(t,d) = 1$$

$$tf(t,d) = f_{t,d}$$

Term Frequency

$$tf(t,d) = 1$$

$$tf(t,d) = f_{t,d}$$

$$tf(t,d) = 0.5 + 0.5 \cdot \frac{f_{t,d}}{max\{f_{t',d} : t' \in d\}}$$

https://en.wikipedia.org/wiki/Tf-idf

41 / 133

Inverse Document Frequency

$$idf(t,D) = log \frac{N}{|\{d \in D : t \in d\}|}$$

Term Frequency-Inverse Document Frequency

$$tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$$

https://en.wikipedia.org/wiki/Tf-idf

43 / 133

Document 1

Term	Term Count
this	1
is	1
a	2
sample	1

Document 2

	-
Term	Term Coun
this	1
is	1
another	2
example	3

Term	Term Count
this	1
is	1
a	2
sample	1

Term Frequency

$$tf(" this ", d_1) = \frac{1}{5} = 0.2$$

 $tf(" this ", d_2) = \frac{1}{7} \approx 0.14$

Document 2

Term	Term Count
this	1
is	1
another	2
example	3

45 / 133

Document 1

Term	Term
	Count
this	1
is	1
a	2
sample	1

Term Frequency

$$tf(" this ", d_1) = \frac{1}{5} = 0.2$$

 $tf(" this ", d_2) = \frac{1}{7} \approx 0.14$

Document 2

Term	Term Count
this	1
is	1
another	2
example	3

Inverse Document Frequency

$$idf("this", D) = log\left(\frac{2}{2}\right) = 0$$

Term	Term Count
this	1
is	1
a	2
sample	1

Term Frequency

$$tf(" this ", d_1) = \frac{1}{5} = 0.2$$

 $tf(" this ", d_2) = \frac{1}{7} \approx 0.14$

Document 2

Term	Term Count
this	1
is	1
another	2
example	3

Inverse Document Frequency

$$idf("this", D) = log\left(\frac{2}{2}\right) = 0$$

Term Frequency-Inverse Document Frequency

$$tfidf("this", d_1) = 0.2 \times 0 = 0$$

 $tfidf("this", d_2) = 0.4 \times 0 = 0$

47 / 133

Document 1

Term	Term Count
this	1
is	1
a	2
sample	1

Document 2

	-
Term	Term Count
this	1
is	1
another	2
example	3

Term	Term Count
this	1
is	1
a	2
sample	1

Term Frequency

$$tf("example", d_1) = \frac{0}{5} = 0$$

$$tf("example", d_2) = \frac{3}{7} \approx 0.429$$

Document 2

IΔrm	Term Count
this	1
is	1
another	2
example	3

49 / 133

Document 1

Term	Term Count
this	1
is	1
a	2
sample	1

Term Frequency

$$tf("example", d_1) = \frac{0}{5} = 0$$

$$tf("example", d_2) = \frac{3}{7} \approx 0.429$$

Document 2

Term	Term Count
this	1
is	1
another	2
example	3

Inverse Document Frequency

$$idf("example", D) = log\left(\frac{2}{1}\right) = 0.301$$

Term	Term Count
this	1
is	1
a	2
sample	1

Term Frequency

$$tf("example", d_1) = \frac{0}{5} = 0$$

$$tf("example", d_2) = \frac{3}{7} \approx 0.429$$

Document 2

Term	Term Count
this	1
is	1
another	2
example	3

Inverse Document Frequency

$$idf("example", D) = log\left(\frac{2}{1}\right) = 0.301$$

Term Frequency-Inverse Document Frequency

$$tfidf("example", d_1) = 0 \times 0.301 = 0$$

 $tfidf("example", d_2) = 0.429 \times 0.301 = 0.13$

51 / 133

Lonely Words

• Many NLP systems treated words as isolated indices

Lonely Words

- Many NLP systems treated words as isolated indices
- · Words are connected

53 / 133

Lonely Words

- Many NLP systems treated words as isolated indices
- Words are connected
- Similar words are used similarly

Types of Similarity

• Topical similarity based upon textual regions

55 / 133

Types of Similarity

- Topical similarity based upon textual regions
- Paradigmatic similarity based upon co-occurrence

Types of Similarity

- Topical similarity based upon textual regions
- Paradigmatic similarity based upon co-occurrence
- Syntagmatic similarity by examining the vectors

57 / 133

t-SNE Visualizations of Word Embeddings

http://tinyurl.com/hpf24ox

Advantages of VSM

• Simple models using linear algebra

https://en.wikipedia.org/wiki/Vector_space_model

59 / 133

Advantages of VSM

- Simple models using linear algebra
- Non-binary weights

Advantages of VSM

- Simple models using linear algebra
- Non-binary weights
- Continuous ranges of similarity between documents and queries

https://en.wikipedia.org/wiki/Vector_space_model

61 / 133

Advantages of VSM

- Simple models using linear algebra
- · Non-binary weights
- Continuous ranges of similarity between documents and queries
- Ranking possibilities based on relevance

Advantages of VSM

- Simple models using linear algebra
- Non-binary weights
- Continuous ranges of similarity between documents and queries
- Ranking possibilities based on relevance
- Partial matching

https://en.wikipedia.org/wiki/Vector_space_model

63 / 133

Limitations of VSM

• Long documents are poorly represented

Limitations of VSM

- Long documents are poorly represented
- Search keywords must generally be exact

https://en.wikipedia.org/wiki/Vector_space_model

65 / 133

Limitations of VSM

- Long documents are poorly represented
- Search keywords must generally be exact
- Documents with similar contexts but different vocabularies yield missing results (synonymy)

Limitations of VSM

- Long documents are poorly represented
- Search keywords must generally be exact
- Documents with similar contexts but different vocabularies yield missing results (synonymy)
- Words with different meaning can yield bad results (polysemy)

https://en.wikipedia.org/wiki/Vector_space_model

67 / 133

Limitations of VSM

- Long documents are poorly represented
- Search keywords must generally be exact
- Documents with similar contexts but different vocabularies yield missing results (synonymy)
- Words with different meaning can yield bad results (polysemy)
- · Term ordering is lost

Distributional Semantics

• <u>Distributional hypothesis</u> is based upon the semantic theory of language*.

*https://en.wikipedia.org/wiki/Distributional_semantics

69 / 133

Distributional Semantics

- <u>Distributional hypothesis</u> is based upon the semantic theory of language*.
- "i.e. words that are used and occur in the same contexts tend to purport similar meanings" (Harris, Z.)

Distributional Semantics

- <u>Distributional hypothesis</u> is based upon the semantic theory of language*.
- "i.e. words that are used and occur in the same contexts tend to purport similar meanings" (Harris, Z.)
- "a word is characterized by the company it keeps" (Firth, John R.)

*https://en.wikipedia.org/wiki/Distributional_semantics

71 / 133

Distributional Semantics

- <u>Distributional hypothesis</u> is based upon the semantic theory of language*.
- "i.e. words that are used and occur in the same contexts tend to purport similar meanings" (Harris, Z.)
- "a word is characterized by the company it keeps" (Firth, John R.)
- Uses linear algebra for computational and representational purposes

Distributional Semantics

- <u>Distributional hypothesis</u> is based upon the semantic theory of language*.
- "i.e. words that are used and occur in the same contexts tend to purport similar meanings" (Harris, Z.)
- "a word is characterized by the company it keeps" (Firth, John R.)
- Uses linear algebra for computational and representational purposes
- High-dimensional vectors are built from a corpus

*https://en.wikipedia.org/wiki/Distributional_semantics

73 / 133

Latent Semantic Analysis

Latent Semantic Analysis

• Construct a term-document matrix

75 / 133

Latent Semantic Analysis

- Construct a term-document matrix
- Find a low-rank approximation

Latent Semantic Analysis

- Construct a term-document matrix
- Find a low-rank approximation
 - Matrix is too big

77 / 133

Latent Semantic Analysis

- Construct a term-document matrix
- Find a low-rank approximation
 - Matrix is too big
 - Matrix is too noisy

Latent Semantic Analysis

- Construct a term-document matrix
- Find a low-rank approximation
 - Matrix is too big
 - Matrix is too noisy
 - Matrix is too sparse

79 / 133

LSA Uses

LSA Uses

• Document classification

81 / 133

LSA Uses

- Document classification
- Cross language retrieval

LSA Uses

- Document classification
- Cross language retrieval
- Solutions to synonymy and polysemy

83 / 133

LSA Uses

- Document classification
- Cross language retrieval
- Solutions to synonymy and polysemy
- Convert queries into the low-dimensional matrix to find documents

http://mccormickml.com/assets/word2vec/Alex_Minnaar_Word2Vec_Tutorial_Part_I of-Words_Model.pdf

https://deeplearning4j.org/word2vec.html

87 / 133

NaiveBayes 88/133

https://github.com/dataspelunking/MLwR/

```
# read the sms data into the sms data frame
> sms_raw <- read.csv("sms_spam.csv", stringsAsFactors = FALSE)</pre>
```

```
# read the sms data into the sms data frame
> sms_raw <- read.csv("sms_spam.csv", stringsAsFactors = FALSE)

# examine the structure of the sms data
> str(sms_raw)
'data.frame': 5559 obs. of 2 variables:
$ type: chr "ham" "ham" "spam" ...
$ text: chr "hope you are having a good week. Just checking in"
"K..give back my thanks."
"Am also doing in cbe only. But have to pay."
"complimentary 4 STAR Ibiza Holiday or £10,000 cash needs your URGENT collection. 09066364349 NOW from Landline not to lose out!"
| __truncated__ ...
```

```
# read the sms data into the sms data frame
> sms_raw <- read.csv("sms_spam.csv", stringsAsFactors = FALSE)

# examine the structure of the sms data
> str(sms_raw)
'data.frame': 5559 obs. of 2 variables:
$ type: chr "ham" "ham" "spam" ...
$ text: chr "Hope you are having a good week. Just checking in"
"K..give back my thanks."
"Am also doing in cbe only. But have to pay."
"complimentary 4 STAR Ibiza Holiday or £10,000 cash needs your URGENT collection. 09066364349 NOW from Landline not to lose out!"
| __truncated__ ...
# convert spam/ham to factor.
> sms_raw$type <- factor(sms_raw$type)</pre>
```

```
# read the sms data into the sms data frame
> sms_raw <- read.csv("sms_spam.csv", stringsAsFactors = FALSE)

# examine the structure of the sms data
> str(sms_raw)
'data.frame': 5559 obs. of 2 variables:
$ type: chr "ham" "ham" "spam" ...
$ text: chr "Hope you are having a good week. Just checking in"
    "K..give back my thanks."
    "Am also doing in cbe only. But have to pay."
    "complimentary 4 STAR Ibiza Holiday or £10,000 cash needs your URGENT collection. 09066364349 NOW from Landline not to lose out!"
| __truncated__ ...

# convert spam/ham to factor.
> sms_raw$type <- factor(sms_raw$type)

# examine the type variable more carefully
> str(sms_raw$type)
Factor w/ 2 levels "ham", "spam": 1 1 1 2 2 1 1 1 2 1 ...
> table(sms_raw$type)
ham spam
4812 747
```

```
# build a corpus using the text mining (tm) package
> library(tm)
Loading required package: NLP
```

```
# build a corpus using the text mining (tm) package
> library(tm)
Loading required package: NLP

> sms_corpus <- VCorpus(VectorSource(sms_raw$text))</pre>
```

```
# build a corpus using the text mining (tm) package
> library(tm)
Loading required package: NLP

> sms_corpus <- VCorpus(VectorSource(sms_raw$text))

# examine the sms corpus
> print(sms_corpus)
<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 5559
```

```
# build a corpus using the text mining (tm) package
> library(tm)
Loading required package: NLP
> sms_corpus <- VCorpus(VectorSource(sms_raw$text))</pre>
# examine the sms corpus
> print(sms_corpus)
<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 5559
> inspect(sms_corpus[1:2])
<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 2
[[1]]
<<PlainTextDocument>>
Metadata: 7
Content: chars: 49
[[2]]
<<PlainTextDocument>>
Metadata: 7
Content: chars: 23
```

```
> as.character(sms_corpus[[1]])
[1] "Hope you are having a good week. Just checking in"
```

```
> as.character(sms_corpus[[1]])
[1] "Hope you are having a good week. Just checking in"

> lapply(sms_corpus[1:2], as.character)
$`1`
[1] "Hope you are having a good week. Just checking in"

$`2`
[1] "K..give back my thanks."
```

```
> as.character(sms_corpus[[1]])
[1] "Hope you are having a good week. Just checking in"

> lapply(sms_corpus[1:2], as.character)
$`1`
[1] "Hope you are having a good week. Just checking in"

$`2`
[1] "K..give back my thanks."

> sms_corpus_clean <- tm_map(sms_corpus, content_transformer(tolower))</pre>
```

```
> as.character(sms_corpus[[1]])
[1] "Hope you are having a good week. Just checking in"

> lapply(sms_corpus[1:2], as.character)
$`1`
[1] "Hope you are having a good week. Just checking in"

$`2`
[1] "K..give back my thanks."

> sms_corpus_clean <- tm_map(sms_corpus, content_transformer(tolower))

# show the difference between sms_corpus and corpus_clean
> as.character(sms_corpus[[1]])
[1] "Hope you are having a good week. Just checking in"
> as.character(sms_corpus_clean[[1]])
[1] "hope you are having a good week. just checking in"
```

```
> as.character(sms_corpus[[1]])
[1] "Hope you are having a good week. Just checking in"
> lapply(sms_corpus[1:2], as.character)
[1] "Hope you are having a good week. Just checking in"
[1] "K..give back my thanks."
> sms_corpus_clean <- tm_map(sms_corpus, content_transformer(tolower))</pre>
# show the difference between sms_corpus and corpus_clean
> as.character(sms_corpus[[1]])
[1] "Hope you are having a good week. Just checking in"
> as.character(sms_corpus_clean[[1]])
[1] "hope you are having a good week. just checking in"
# remove numbers
> sms_corpus_clean <- tm_map(sms_corpus_clean, removeNumbers)</pre>
# remove stop words
> sms_corpus_clean <- tm_map(sms_corpus_clean, removeWords, stopwords())</pre>
# remove punctuation
> sms_corpus_clean <- tm_map(sms_corpus_clean, removePunctuation)</pre>
```

```
# tip: create a custom function to replace (rather than remove) punctuation
> removePunctuation("hello...world")
[1] "helloworld"
```

```
# tip: create a custom function to replace (rather than remove) punctuation
> removePunctuation("hello...world")
[1] "helloworld"

> replacePunctuation <- function(x) { gsub("[[:punct:]]+", " ", x) }
> replacePunctuation("hello...world")
[1] "hello world"
```

```
# tip: create a custom function to replace (rather than remove) punctuation
> removePunctuation("hello...world")
[1] "helloworld"

> replacePunctuation <- function(x) { gsub("[[:punct:]]+", " ", x) }
> replacePunctuation("hello...world")
[1] "hello world"

# illustration of word stemming
> library(SnowballC)
> wordStem(c("learn", "learned", "learning", "learns"))
[1] "learn" "learn" "learn" "learn"
```

```
# tip: create a custom function to replace (rather than remove) punctuation
> removePunctuation("hello...world")
[1] "helloworld"

> replacePunctuation <- function(x) { gsub("[[:punct:]]+", " ", x) }
> replacePunctuation("hello...world")
[1] "hello world"

# illustration of word stemming
> library(SnowballC)
> wordStem(c("learn", "learned", "learning", "learns"))
[1] "learn" "learn" "learn"

> sms_corpus_clean <- tm_map(sms_corpus_clean, stemDocument)
# eliminate unneeded whitespace
> sms_corpus_clean <- tm_map(sms_corpus_clean, stripWhitespace)</pre>
```

```
# examine the final clean corpus
> lapply(sms_corpus[1:3], as.character)
$`1`
[1] "Hope you are having a good week. Just checking in"

$`2`
[1] "K..give back my thanks."

$`3`
[1] "Am also doing in cbe only. But have to pay."
```

```
# examine the final clean corpus
> lapply(sms_corpus[1:3], as.character)
$`1`
[1] "Hope you are having a good week. Just checking in"

$`2`
[1] "K..give back my thanks."

$`3`
[1] "Am also doing in cbe only. But have to pay."

> lapply(sms_corpus_clean[1:3], as.character)
$`1`
[1] "hope you are have a good week. just check in"

$`2`
[1] "k..give back my thanks."

$`3`
[1] "am also do in cbe only. but have to pay."
```

```
# create a document-term sparse matrix
> sms_dtm <- DocumentTermMatrix(sms_corpus_clean)
> sms_dtm
<<DocumentTermMatrix (documents: 5559, terms: 10856)>>
Non-/sparse entries: 59144/60289360
Sparsity : 100%
Maximal term length: 48
Weighting : term frequency (tf)
```

```
# create a document-term sparse matrix
> sms_dtm <- DocumentTermMatrix(sms_corpus_clean)
> sms_dtm
<<DocumentTermMatrix (documents: 5559, terms: 10856)>>
Non-/sparse entries: 59144/60289360
Sparsity : 100%
Maximal term length: 48
Weighting : term frequency (tf)

# creating training and test datasets
> sms_dtm_train <- sms_dtm[1:4169, ]
> sms_dtm_test <- sms_dtm[4170:5559, ]</pre>
```

```
# create a document-term sparse matrix
> sms_dtm <- DocumentTermMatrix(sms_corpus_clean)
> sms_dtm
<DocumentTermMatrix (documents: 5559, terms: 10856)>>
Non-/sparse entries: 59144/60289360
Sparsity : 100%
Maximal term length: 48
Weighting : term frequency (tf)

# creating training and test datasets
> sms_dtm_train <- sms_dtm[1:4169, ]
> sms_dtm_test <- sms_dtm[4170:5559, ]

# also save the labels
sms_train_labels <- sms_raw[1:4169, ]$type
sms_test_labels <- sms_raw[4170:5559, ]$type</pre>
```

```
# create a document-term sparse matrix
> sms_dtm <- DocumentTermMatrix(sms_corpus_clean)</pre>
> sms dtm
<<DocumentTermMatrix (documents: 5559, terms: 10856)>> Non-/sparse entries: 59144/60289360
Sparsity : 100%
Maximal term length: 48
Weighting : term frequency (tf)
# creating training and test datasets
> sms_dtm_train <- sms_dtm[1:4169, ]</pre>
> sms_dtm_test <- sms_dtm[4170:5559, ]
# also save the labels
sms_train_labels <- sms_raw[1:4169, ]$type</pre>
sms_test_labels <- sms_raw[4170:5559, ]$type</pre>
# check that the proportion of spam is similar
> prop.table(table(sms_train_labels))
sms_train_labels
     ham
           spam
0.8647158 0.1352842
> prop.table(table(sms_test_labels))
sms_test_labels
     ham
               spam
0.8683453 0.1316547
```

> # word cloud visualization
> library(wordcloud)
Loading required package: RColorBrewer

```
> # word cloud visualization
> library(wordcloud)
Loading required package: RColorBrewer
> wordcloud(sms_corpus_clean, min.freq = 50, random.order = FALSE)
```

```
> # word cloud visualization
> library(wordcloud)
Loading required package: RColorBrewer
```

```
> wordcloud(sms_corpus_clean, min.freq = 50, random.order = FALSE)
```

```
custom year care check can't friend well can't ervice to the work happi affect and the work happing the work happing affect and the work happ
```

```
# subset the training data into spam and ham groups
> spam <- subset(sms_raw, type == "spam")
> ham <- subset(sms_raw, type == "ham")</pre>
```

```
# subset the training data into spam and ham groups
> spam <- subset(sms_raw, type == "spam")
> ham <- subset(sms_raw, type == "ham")
> wordcloud(spam$text, max.words = 40, scale = c(3, 0.5))
```

```
# subset the training data into spam and ham groups
> spam <- subset(sms_raw, type == "spam")
> ham <- subset(sms_raw, type == "ham")
> wordcloud(spam$text, max.words = 40, scale = c(3, 0.5))
```



```
> wordcloud(ham$text, max.words = 40, scale = c(3, 0.5))
```

```
> wordcloud(ham$text, max.words = 40, scale = c(3, 0.5))
```

```
come one
lorknow obutcant Will take od
so going Will take od
day ill well just show
now still need got
hometell you like sorry
want good time today
send good time today
later call dont
get can
```

```
> sms_dtm_freq_train <- removeSparseTerms(sms_dtm_train, 0.999)</pre>
```

```
> sms_dtm_freq_train <- removeSparseTerms(sms_dtm_train, 0.999)

> sms_dtm_freq_train
<<DocumentTermMatrix (documents: 4169, terms: 1306)>>
Non-/sparse entries: 33250/5411464
Sparsity : 99%
Maximal term length: 24
Weighting : term frequency (tf)
```

```
> sms_dtm_freq_train <- removeSparseTerms(sms_dtm_train, 0.999)

> sms_dtm_freq_train
<<DocumentTermMatrix (documents: 4169, terms: 1306)>>
Non-/sparse entries: 33250/5411464
Sparsity : 99%
Maximal term length: 24
Weighting : term frequency (tf)

# save frequently-appearing terms to a character vector
> sms_freq_words <- findFreqTerms(sms_dtm_train, 5)</pre>
```

```
> sms_dtm_freq_train <- removeSparseTerms(sms_dtm_train, 0.999)

> sms_dtm_freq_train
<<DocumentTermMatrix (documents: 4169, terms: 1306)>>
Non-/sparse entries: 33250/5411464
Sparsity : 99%
Maximal term length: 24
Weighting : term frequency (tf)

# save frequently-appearing terms to a character vector
> sms_freq_words <- findFreqTerms(sms_dtm_train, 5)

> str(sms_freq_words)
    chr [1:1332] ":-(" ":-)" "!!!'." "..." "..."
```

```
> sms_dtm_freq_train <- removeSparseTerms(sms_dtm_train, 0.999)

> sms_dtm_freq_train
<<DocumentTermMatrix (documents: 4169, terms: 1306)>>
Non-/sparse entries: 33250/5411464
Sparsity : 99%
Maximal term length: 24
Weighting : term frequency (tf)

# save frequently-appearing terms to a character vector
> sms_freq_words <- findFreqTerms(sms_dtm_train, 5)

> str(sms_freq_words)
    chr [1:1332] ":-(" ":-)" "!!''." "..." "..."
# create DTMs with only the frequent terms
> sms_dtm_freq_train <- sms_dtm_train[ , sms_freq_words]
> sms_dtm_freq_test <- sms_dtm_test[ , sms_freq_words]</pre>
```

```
> library(gmodels)
Cell Contents
          N I
        N / Col Total
Total Observations in Table: 1390
         | actual
  predicted
              ham |
                       spam | Row Total
              1201
                                1232
      ham
             0.995
                      0.169
             -----
                       152
                               158
     spam
             0.005
                      0.831
             _ _ _ _ _ _ _
                      183
Column Total |
             1207 I
                               1390
             0.868
                      0.132
-----|-----
```

