

Unsupervised Learning: Clustering

Things you will learn after this Session

Unsupervised Learning: Clustering

- What is Clustering?
- Use Case of Clustering
- Types of Clustering

What is Clustering?

"Clustering is the process of dividing the datasets into groups, consisting of similar data-points"

- Points in the same group are as similar as possible
- Points in different group are as dissimilar as possible

Example of Clustering

Example 1: Cluster of different colors of FROOT LOOPS

Example 2: Cluster of different colors of Fruits

Example 3: Cluster of different types of Garbage

Use-Case of Clustering

(b). Content Filtering

Where is it used?

amazon

NETFLIX

Exclusive Clustering

Overlapping Clustering

Hierarchical Clustering

Exclusive Clustering

Overlapping Clustering

Hierarchical Clustering

Exclusive Clustering

- Each data object can only exist in one cluster
- For Example: K-Means Clustering

Exclusive Clustering

Overlapping Clustering

Hierarchical Clustering

Overlapping Clustering

- Allows data objects to be grouped in 2 or more clusters
- For Example: Fuzzy/ C-Means Clustering
- In Fuzzy clustering every data object belongs to every cluster

Exclusive Clustering

Overlapping Clustering

Hierarchical Clustering

Hierarchical Clustering

Understanding K – Means Clustering

Things you will learn after this Session

Understanding K – Means Clustering

- What is K Means Clustering?
- Where can you use it?
- Step by step calculation of K-Means Clustering Algorithm

What is K-Means Clustering?

"K-Means is a clustering algorithm which focuses on grouping similar elements or data points into a cluster."

NOTE: 'K' in K-Means represent the number of clusters

What is K-Means Clustering?

Pile of Laundry

Business Application of K-Means

- Behavioural Segmentation
- Inventory Categorization

- Sorting sensor measurements
- Detecting bots or anomalies

Number of Clusters = 3

- Step 1: Select the number of clusters to be identified, i.e select a value for K =3 in this case
- Step 2: Randomly select 3 distinct data point
- Step 3: Measure the distance between the 1st point and selected 3 clusters

Distance from point 1 to the red cluster

Distance from point 1 to the purple cluster

Step 4: Assign the 1st point to nearest cluster (red in this case).

Find to which cluster does point 2 belongs to, how?

Distance of 2nd point to the red cluster

Distance of 2nd point to the purple cluster

Find to which cluster does point 3 belongs to, how?

 Repeat the same procedure but measure the distance from the new red mean

Measure the distance and add the 3rd point to the cluster(red) having the minimum distance

- Measure the distance
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

REPEAT THE STEPS AGAIN...

- Measure the distance
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance from the cluster mean (centroids)
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

REPEAT THE SAME STEPS UNTILL ALL THE CLUSTERS ARE ASSIGNED...

- Measure the distance from the cluster mean (centroids)
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

- Measure the distance from the cluster mean (centroids)
- Assign the point to the nearest cluster
- Calculate the cluster mean using the new point

Original/Expected Result

Total variation within the cluster

According to the K-Means Algorithm it iterates over again and again unless and until the data points within each cluster stops changing

Iteration 2: Again we will start from the scratch. But this time we will select different initial random point (as compared to the 1st iteration)

- Step 1: Select the number of clusters to be identified, i.e. K =3 in this case
- Step 2: Randomly select 3 distinct data point
- Step 3: Measure the distance between the 1st point and selected 3 clusters

Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

Algorithm picks 3 initial clusters and adds the remaining points to the cluster with the nearest mean, and again recalculating the mean each time a new point is added to the cluster

Total variation within the cluster

Iteration 3: Again we will start from the scratch and select different initial random point (as compared to 1st and 2nd iteration)

Pick 3 initial clusters

Cluster the remaining points

Finally sum the variation within each cluster

Total variation within the cluster

3rd Iteration

But how to find the value of 'K'?

How to find the value of 'K'?

In the previous scenario k = 3 was known, but what-if we don't know the exact value of k?

For finding the value of k, you will use hit and trail method, starting from K = 1

K=1 is the worst case scenario, even you cross-verify it with its total variation(all red)

Now try with K = 2

K=2 is still better then K=1 (Total Variation)

K = 1

K = 2

K=3 is still better then K=2 (Total Variation)

```
K = 1
K = 2
K = 3
```


Now try with K = 4

- Every time you increase the cluster the variation decreases
- If no. of clusters = no. of data points then in that case the variation = 0

K=4 is still better then K=3 (Total Variation)

Now what if we have our data plotted on the X and Y axis

X-Axis

We will be using the Euclidean distance (in 2D its same as that of a Pythagorean Theorem)

Finally calculate the centroid (mean of cluster) including the new point

Finally in first iteration you get something like this...again you have to iterate this process to get

Summarizing the K-Means Algorithm

randomly chose k examples as initial centroids while true:
 create k clusters by assigning each
 example to closest centroid
 compute k new centroids by averaging
 examples in each cluster
 if centroids don't change:
 break

K-Means Clustering: Demo

Things you will learn after this Session

K-Means Clustering: Demo

- K Means Clustering using Python
- K Means Clustering using sklearn

Quiz 1

What is the minimum no. of variables/ features required to perform clustering?

Answer 1

What is the minimum no. of variables/ features required to perform clustering?

Quiz 2

In which of the following cases will K-Means clustering fail to give good results?

A Data points with outliers

B Data points with different densities

C Data points with non-convex shapes

D All of the above

Answer 2

In which of the following cases will K-Means clustering fail to give good results?

A Data points with outliers

B Data points with different densities

Data points with non-convex shapes

D All of the above

Quiz 3

Assume, you want to cluster 7 observations into 3 clusters using K-Means clustering algorithm. After first iteration clusters, C1, C2, C3 has following observations:

A C1: (4,4), C2: (2,2), C3: (7,7)

B C1: (6,6), C2: (4,4), C3: (9,9)

C1: (2,2), C2: (0,0), C3: (5,5)

D None of these

C1: {(2,2), (4,4), (6,6)}

C2: {(0,4), (4,0)}

C3: {(5,5), (9,9)}

What will be the cluster centroids if you want to proceed for second iteration?

Answer 3

Assume, you want to cluster 7 observations into 3 clusters using K-Means clustering algorithm. After first iteration clusters, C1, C2, C3 has following observations:

A C1: (4,4), C2: (2,2), C3: (7,7)

B C1: (6,6), C2: (4,4), C3: (9,9)

C1: (2,2), C2: (0,0), C3: (5,5)

D None of these

C1: {(2,2), (4,4), (6,6)}
C2: {(0,4), (4,0)}
C3: {(5,5), (9,9)}
What will be the cluster centroids if you want to proceed for second

iteration?

Quiz 4

Customer segmentation is an example of A Classification В Clustering Association None of the above D

Answer 4

Customer segmentation is an example of A Classification В Clustering Association None of the above D

Quiz 5

In K-Means, K stands for _____

A Data sets

B Number of clusters

C Error function

Answer 5

In K-Means, K stands for ___ A Data sets В Number of clusters **Error function**

www.intellipaat.com

India: +91-7847955955

US: 1-800-216-8930 (TOLL FREE)

sales@intellipaat.com