Learning Decision-Focused Uncertainty Sets for Robust Optimization

Bartolomeo Stellato

Department of Operations Research and Financial Engineering

Department of Electrical and Computer Engineering

Department of Computer Science

AAAI Workshop on Learnable Optimization — Feb 26 2024

Joint work with

Irina Wang
Princeton ORFE

Bart Van Parys MIT

Amit Solomon
Princeton OIT

Cole Becker MIT

Annie Liang
Princeton ORFE

self-driving taxis

self-driving taxis

energy grids

self-driving taxis

finance

energy grids

self-driving taxis

finance

energy grids

robotics

Warm-up example

objective

$$-u^T x + \lambda \|x - x^{\text{prev}}\|_1$$

robust problem reformulation

minimize
$$t+\lambda\|x-x^{\text{prev}}\|_1$$
 subject to $-u^Tx\leq t \quad \forall u\in\mathcal{U}(\theta)$ $\mathbf{1}^Tx=1,\quad x\geq 0$

robust problem reformulation

minimize
$$t+\lambda\|x-x^{\mathsf{prev}}\|_1$$
 uncertainty set subject to $-u^Tx \leq t \quad \forall u \in \mathcal{U}(\theta)$ $\mathbf{1}^Tx=1, \quad x \geq 0$

robust problem reformulation

minimize
$$t+\lambda\|x-x^{\mathsf{prev}}\|_1$$
 uncertainty set subject to $-u^Tx \leq t \quad \forall u \in \mathcal{U}(\theta)$ $\mathbf{1}^Tx=1, \quad x \geq 0$

how do we pick the uncertainty set?

parameters

$$\theta = (A, b)$$

parameters

$$\theta = (A, b)$$

mean-variance set

$$\mathcal{U}^{\mathrm{mv}}(\theta)=\{u=\hat{\mu}+\hat{\Sigma}^{1/2}z\mid \|z\|_2\leq \rho\}=\{b^{\mathrm{mv}}+A^{\mathrm{mv}}z\mid \|z\|_2\leq \rho\}$$
 empirical mean and covariance

parameters

$$\theta = (A, b)$$

mean-variance set

$$\mathcal{U}^{\mathrm{mv}}(\theta) = \{u = \hat{\mu} + \hat{\Sigma}^{1/2}z \mid \|z\|_2 \leq \rho\} = \{b^{\mathrm{mv}} + A^{\mathrm{mv}}z \mid \|z\|_2 \leq \rho\}$$
 empirical

mean and covariance

reshaped uncertainty set

$$\mathcal{U}^{\text{re}}(\theta) = \{ u = b^{\text{re}} + A^{\text{re}}z \mid ||z||_2 \le \rho \}$$

parameters

$$\theta = (A, b)$$

mean-variance set

$$\mathcal{U}^{\text{mv}}(\theta) = \{ u = \hat{\mu} + \hat{\Sigma}^{1/2} z \mid ||z||_2 \le \rho \} = \{ b^{\text{mv}} + A^{\text{mv}} z \mid ||z||_2 \le \rho \}$$

empirical /

mean and covariance

reshaped uncertainty set

$$\mathcal{U}^{\text{re}}(\theta) = \{ u = b^{\text{re}} + A^{\text{re}}z \mid ||z||_2 \le \rho \}$$

can the reshaped set do better?

Reshaped set performs much better

Reshaped set performs much better

 u_1

 u_1

Reshaped set performs much better

 u_1

 u_1

Problem setup

parametric robust optimization

$$x(\theta,y) \in \text{argmin}$$
 $f(x,y)$ subject to $g(x,u,y) \leq 0$ $\forall u \in \mathcal{U}(\theta)$

parametric robust optimization

$$x(\theta,y) \in \text{ argmin } f(x,y)$$

$$\text{subject to } g(x,u,y) \leq 0 \quad \forall u \in \mathcal{U}(\theta)$$

$$\text{decisions}$$

parametric robust optimization

probabilistic guarantees

$$\mathbf{P}_{(\boldsymbol{u},\boldsymbol{y})}\big(g(\boldsymbol{x}(\theta,\boldsymbol{y}),\boldsymbol{u},\boldsymbol{y}) \le 0\big) \ge 1 - \eta$$

probabilistic guarantees

$$\mathbf{P}_{(\boldsymbol{u},\boldsymbol{y})}\big(g(\boldsymbol{x}(\theta,\boldsymbol{y}),\boldsymbol{u},\boldsymbol{y}) \le 0\big) \ge 1 - \eta$$

Can we construct a set that ensures the probabilistic guarantees?

Picking the uncertainty set is difficult

Worst-case approach

support

X Very conservative

Picking the uncertainty set is difficult

Worst-case approach

support

Probabilistic approach

Picking the uncertainty set is difficult

Worst-case approach

support

Probabilistic approach

Data-driven approach

Can we use data to construct uncertainty sets?

X Very conservative

Hypothesis testing

D. Bertsimas, V. Gupta, and N. Kallus (2014)

Hypothesis testing

D. Bertsimas, V. Gupta, and N. Kallus (2014)

Quantile estimation

L. Jeff Hong, Z. Huang, and H. Lam (2021)

Hypothesis testing

D. Bertsimas, V. Gupta, and N. Kallus (2014)

Quantile estimation

L. Jeff Hong, Z. Huang, and H. Lam (2021)

Wasserstein Distributionally Robust Optimization

P. M. Esfahani and D. Kuhn. (2018).

D. Bertsimas, S. Shtern, B. Sturt (2022)

I. Wang, C. Becker, B. Van Parys, and B. Stellato (2023)

Hypothesis testing

D. Bertsimas, V. Gupta, and N. Kallus (2014)

Quantile estimation

L. Jeff Hong, Z. Huang, and H. Lam (2021)

Wasserstein Distributionally Robust Optimization

P. M. Esfahani and D. Kuhn. (2018).

D. Bertsimas, S. Shtern, B. Sturt (2022)

I. Wang, C. Becker, B. Van Parys, and B. Stellato (2023)

Deep Learning

M. Goerigk, J. Kurtz (2023)

Data-driven methods for robust optimization

Hypothesis testing

D. Bertsimas, V. Gupta, and N. Kallus (2014)

Quantile estimation

L. Jeff Hong, Z. Huang, and H. Lam (2021)

Wasserstein Distributionally Robust Optimization

P. M. Esfahani and D. Kuhn. (2018).

D. Bertsimas, S. Shtern, B. Sturt (2022)

I. Wang, C. Becker, B. Van Parys, and B. Stellato (2023)

Deep Learning

M. Goerigk, J. Kurtz (2023)

Most approaches decouple

Uncertainty set construction

Downstream optimization task

high coverage requirement

$$\mathbf{P}(u \in \mathcal{U}) \ge 1 - \epsilon$$

Leveraging the solution to tune the uncertainty sets

Leveraging the solution to tune the uncertainty sets

Main idea

Use differentiable optimization to automatically learn shape and size

Connections with Contextual Optimization

Contextual Optimization

$$x(y) \in \underset{x}{\operatorname{argmin}} \mathbf{E}_{\mathbf{P}(u|y)}(f(x,u))$$

[D. Bertsimas and N. Kallus (2020)], [Elmachtoub and Grigas (2022)], [H. Rahimian, B. Pagnoncelli (2022)]

"A Survey of Contextual Optimization Methods for Decision Making under Uncertainty", U. Sadana, A. Chenreddy, E. Delage, A. Forel, E. Frejinger, T. Vidal (2023)

Connections with Contextual Optimization

Contextual Optimization

$$x(y) \in \underset{x}{\operatorname{argmin}} \mathbf{E}_{\mathbf{P}(u|y)}(f(x,u))$$

[D. Bertsimas and N. Kallus (2020)], [Elmachtoub and Grigas (2022)], [H. Rahimian, B. Pagnoncelli (2022)]

"A Survey of Contextual Optimization Methods for Decision Making under Uncertainty", U. Sadana, A. Chenreddy, E. Delage, A. Forel, E. Frejinger, T. Vidal (2023)

Conditional Robust Optimization

$$x(y) \in \operatorname*{argmin}_{x} \max_{u \in \mathcal{U}(y)} f(x,u)$$

Connections with Contextual Optimization

Contextual Optimization

$$x(y) \in \underset{x}{\operatorname{argmin}} \mathbf{E}_{\mathbf{P}(u|y)}(f(x,u))$$

[D. Bertsimas and N. Kallus (2020)], [Elmachtoub and Grigas (2022)], [H. Rahimian, B. Pagnoncelli (2022)]

"A Survey of Contextual Optimization Methods for Decision Making under Uncertainty", U. Sadana, A. Chenreddy, E. Delage, A. Forel, E. Frejinger, T. Vidal (2023)

Conditional Robust Optimization

$$x(y) \in \operatorname*{argmin}_{x} \max_{u \in \mathcal{U}(y)} f(x,u)$$

Differences from our work

- Distribution/uncertainty set depends on \boldsymbol{y}
- High coverage requirements $\mathbf{P}(u \in \mathcal{U}(y)) \ge 1 \epsilon$
- Limited focus on uncertain constraints

Learning problem formulation

probabilistic guarantees

$$\mathbf{P}_{(\boldsymbol{u},\boldsymbol{y})}\big(g(x(\theta,\boldsymbol{y}),\boldsymbol{u},\boldsymbol{y}) \le 0\big) \ge 1 - \eta$$

same as $VaR(g(...), \eta) \leq 0$

probabilistic guarantees

$$\mathbf{P}_{(\boldsymbol{u},\boldsymbol{y})}\big(g(x(\theta,\boldsymbol{y}),\boldsymbol{u},\boldsymbol{y}) \le 0\big) \ge 1 - \eta$$

tractable approximation

$$\mathbf{CVaR}(g(x(\theta, y), u, y), \eta) \leq 0$$

same as $VaR(g(...), \eta) \leq 0$

probabilistic guarantees

$$\mathbf{P}_{(\boldsymbol{u},\boldsymbol{y})}\big(g(x(\theta,\boldsymbol{y}),\boldsymbol{u},\boldsymbol{y}) \le 0\big) \ge 1 - \eta$$

tractable approximation

$$\mathbf{CVaR}(g(x(\theta, y), u, y), \eta) \leq 0$$

same as $VaR(g(...), \eta) \leq 0$

turn into constraint

$$\mathbf{E}_{(\boldsymbol{u},\boldsymbol{y})} \left(\frac{(g(x(\theta,\boldsymbol{y}),\boldsymbol{u},\boldsymbol{y}) - \alpha)_{+}}{\eta} + \alpha \right) \leq 0$$

probabilistic guarantees

$$\mathbf{P}_{(\boldsymbol{u},\boldsymbol{y})}\big(g(x(\theta,\boldsymbol{y}),\boldsymbol{u},\boldsymbol{y})\leq 0\big)\geq 1-\eta$$

tractable approximation

$$\mathbf{CVaR}(g(x(\theta, y), u, y), \eta) \leq 0$$

turn into constraint

$$\mathbf{E}_{(\boldsymbol{u},\boldsymbol{y})}\left(\frac{(g(x(\theta,\boldsymbol{y}),\boldsymbol{u},\boldsymbol{y})-\alpha)_{+}}{\eta}+\alpha\right)\leq0\xrightarrow{\quad w=(u,y)\quad}\mathbf{E}_{w}\left(h(\alpha,\theta,w)\right)\leq\kappa$$

Stochastic bilevel optimization to learn the uncertainty set

loss

$$\ell(\theta, w) = f(x(\theta, y), y)$$

training problem

minimize
$$\mathbf{E}_w[\ell(\theta,w)]$$

$$\mathbf{E}_w[h(\alpha,\theta,w)] \leq \kappa$$

CVaR constraint

$$\begin{array}{ll} \text{decision} & \text{random} \\ \text{variables} & \text{variables} \\ \theta, \alpha & w = (u, y) \end{array}$$

Stochastic bilevel optimization to learn the uncertainty set

loss

$$\ell(\theta, w) = f(\mathbf{x}(\theta, y), y)$$

training problem

minimize $\mathbf{E}_w[\ell(\theta, w)]$

CVaR constraint

decision random variables variables w = (u, y)

inner robust problem

$$x(\theta,y) \in \text{argmin}$$
 $f(x,y)$ subject to $g(x,u,y) \leq 0$ $\forall u \in \mathcal{U}(\theta)$

we must reformulate the infinite dimensional constraints

minimize
$$f(x,y)$$
 subject to $g(x,u,y) \leq 0 \quad \forall u \in \mathcal{U}(\theta)$

minimize
$$f(x,y)$$
 subject to $g(x,u,y) \leq 0 \quad \forall u \in \mathcal{U}(\theta) \longleftarrow$ learned parameters

minimize
$$f(x,y)$$
 subject to $g(x,u,y) \leq 0 \quad \forall u \in \mathcal{U}(\theta) \longleftarrow$ learned parameters

Example: ellipsoidal set
$$\mathcal{U}(\theta) = \{u = b + Az \mid \|z\|_2 \leq 1\}$$

minimize
$$f(x,y)$$
 subject to $g(x,u,y) \leq 0 \quad \forall u \in \mathcal{U}(\theta) \longleftarrow$ learned parameters

Example: ellipsoidal set
$$\mathcal{U}(\theta) = \{u = b + Az \mid ||z||_2 \leq 1\}$$

$$\theta = (A,b)$$

minimize
$$f(x,y)$$
 subject to $g(x,u,y) \leq 0 \quad \forall u \in \mathcal{U}(\theta) \longleftarrow$ learned parameters

Example: ellipsoidal set

$$\mathcal{U}(\theta) = \{u = b + Az \mid ||z||_2 \le 1\}$$

$$\theta = (A, b)$$

linear constraint

$$g(x, u, y) = (y + Pu)^T x \le 0, \quad \forall u \in \mathcal{U}(\theta)$$

$$\begin{array}{ll} \text{minimize} & f(x,y) \\ \text{subject to} & g(x,u,y) \leq 0 \quad \forall u \in \mathcal{U}(\theta) \longleftarrow \begin{array}{l} \text{learned} \\ \text{parameters} \end{array}$$

Example: ellipsoidal set

$$\mathcal{U}(\theta) = \{u = b + Az \mid ||z||_2 \le 1\}$$

$$\theta = (A, b)$$

linear constraint

$$g(x, u, y) = (y + Pu)^T x \le 0, \quad \forall u \in \mathcal{U}(\theta)$$

robust counterpart

$$y^T x + b^T P x + ||A^T P^T x||_2 \le 0$$

Solution algorithm

Constrained learning problem

Constrained learning problem

reformulated training problem

$$\text{augmented Lagrangian} \\ L(\alpha, \theta, s, \textcolor{red}{\lambda}, \mu) = F(\theta) + \textcolor{red}{\lambda}(H(\alpha, \theta) + s - \kappa) + \frac{\mu}{2} \|H(\alpha, \theta) + s - \kappa\|^2 \\ \text{multiplier}$$

$$\begin{aligned} & \text{for } k = 1, \dots, k_{\text{max}} \text{ do} \\ & G^k \leftarrow \hat{\nabla} L(\alpha^k, \theta^k, s^k, \lambda^k, \mu^k) \text{ implicit differentiation} \\ & (\theta^{k+1}, \alpha^{k+1}, s^{k+1}) \leftarrow (\theta^k, \alpha^k, s^k) - tG^k \\ & s^{k+1} \leftarrow (s^{k+1})_+ \\ & \text{if } \|H(\alpha^{k+1}, \theta^{k+1}) + s^{k+1} - \kappa\|_2 \leq \tau H_{\text{best}} \text{ then} \\ & \lambda^{k+1} \leftarrow \lambda^k + \mu^k (H(\alpha^{k+1}, \theta^{k+1}) + s^{k+1} - \kappa) \\ & \mu^{k+1} \leftarrow \mu^k \\ & H_{\text{best}} \leftarrow \|H(\alpha^{k+1}, \theta^{k+1}) + s^{k+1} - \kappa\|_2 \end{aligned}$$
 else
$$\begin{aligned} & \text{Choose } \mu^{k+1} > \mu^k \\ & \lambda^{k+1} \leftarrow \lambda^k \end{aligned}$$

$$\text{augmented Lagrangian} \\ L(\alpha, \theta, s, \textcolor{red}{\lambda}, \mu) = F(\theta) + \textcolor{red}{\lambda}(H(\alpha, \theta) + s - \kappa) + \frac{\mu}{2} \|H(\alpha, \theta) + s - \kappa\|^2 \\ \text{multiplier}$$

$$\begin{aligned} & \text{for } k=1,\dots,k_{\text{max}} \text{ do} \\ & G^k \leftarrow \hat{\nabla}L(\alpha^k,\theta^k,s^k,\lambda^k,\mu^k) \text{ implicit differentiation} \\ & (\theta^{k+1},\alpha^{k+1},s^{k+1}) \leftarrow (\theta^k,\alpha^k,s^k) - tG^k \\ & s^{k+1} \leftarrow (s^{k+1})_+ & \longleftarrow \text{ update primal variables} \\ & \text{if } \|H(\alpha^{k+1},\theta^{k+1}) + s^{k+1} - \kappa\|_2 \leq \tau H_{\text{best}} \text{ then} \\ & \lambda^{k+1} \leftarrow \lambda^k + \mu^k (H(\alpha^{k+1},\theta^{k+1}) + s^{k+1} - \kappa) \\ & \mu^{k+1} \leftarrow \mu^k \\ & H_{\text{best}} \leftarrow \|H(\alpha^{k+1},\theta^{k+1}) + s^{k+1} - \kappa\|_2 \\ & \text{else} \\ & \text{Choose } \mu^{k+1} > \mu^k \\ & \lambda^{k+1} \leftarrow \lambda^k \end{aligned}$$

$$\text{augmented Lagrangian} \\ L(\alpha, \theta, s, \textcolor{red}{\lambda}, \mu) = F(\theta) + \textcolor{red}{\lambda}(H(\alpha, \theta) + s - \kappa) + \frac{\mu}{2} \|H(\alpha, \theta) + s - \kappa\|^2 \\ \text{multiplier}$$

$$\begin{aligned} & \text{for } k=1,\ldots,k_{\max} \text{ do} \\ & G^k \leftarrow \hat{\nabla}L(\alpha^k,\theta^k,s^k,\lambda^k,\mu^k) \text{ implicit differentiation} \\ & (\theta^{k+1},\alpha^{k+1},s^{k+1}) \leftarrow (\theta^k,\alpha^k,s^k) - tG^k \\ & s^{k+1} \leftarrow (s^{k+1})_+ & & & \text{update primal variables} \\ & \text{if } \|H(\alpha^{k+1},\theta^{k+1}) + s^{k+1} - \kappa\|_2 \leq \tau H_{\text{best}} \text{ then} \\ & \lambda^{k+1} \leftarrow \lambda^k + \mu^k (H(\alpha^{k+1},\theta^{k+1}) + s^{k+1} - \kappa) \\ & \mu^{k+1} \leftarrow \mu^k \\ & H_{\text{best}} \leftarrow \|H(\alpha^{k+1},\theta^{k+1}) + s^{k+1} - \kappa\|_2 & & \text{update multiplier tighten tolerance} \\ & \text{else} & \text{Choose } \mu^{k+1} > \mu^k \\ & \lambda^{k+1} \leftarrow \lambda^k \end{aligned}$$

$$\text{augmented Lagrangian} \\ L(\alpha, \theta, s, \textcolor{red}{\lambda}, \mu) = F(\theta) + \textcolor{red}{\lambda}(H(\alpha, \theta) + s - \kappa) + \frac{\mu}{2} \|H(\alpha, \theta) + s - \kappa\|^2 \\ \text{multiplier}$$

$$\begin{array}{l} \text{for } k=1,\ldots,k_{\max} \text{ do} \\ G^k \leftarrow \hat{\nabla}L(\alpha^k,\theta^k,s^k,\lambda^k,\mu^k) \text{ implicit differentiation} \\ (\theta^{k+1},\alpha^{k+1},s^{k+1}) \leftarrow (\theta^k,\alpha^k,s^k) - tG^k \\ s^{k+1} \leftarrow (s^{k+1})_+ & \qquad \qquad \text{update primal variables} \\ \text{if } \|H(\alpha^{k+1},\theta^{k+1}) + s^{k+1} - \kappa\|_2 \leq \tau H_{\text{best}} \text{ then} \\ \lambda^{k+1} \leftarrow \lambda^k + \mu^k (H(\alpha^{k+1},\theta^{k+1}) + s^{k+1} - \kappa) \\ \mu^{k+1} \leftarrow \mu^k \\ H_{\text{best}} \leftarrow \|H(\alpha^{k+1},\theta^{k+1}) + s^{k+1} - \kappa\|_2 & \text{update multiplier tighten tolerance} \\ \text{else} \\ \text{Choose } \mu^{k+1} > \mu^k \\ \lambda^{k+1} \leftarrow \lambda^k & \qquad \text{update penalty} \end{array}$$

Stochastic gradients rely on KKT differentiation

Stochastic gradients rely on KKT differentiation

Implicit differentiation

$$\hat{
abla}_{ heta}L$$
 depends on jacobian $J_x(heta)$

Stochastic gradients rely on KKT differentiation

Implicit differentiation

 $\hat{
abla}_{ heta}L$ depends on jacobian

(obtained by differentiating through the KKT optimality conditions)

[&]quot;Differentiable Convex Optimization Layers", A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Zico Kolter (2019) "Differentiating Through a Conic Program", A. Agrawal, S. Barratt, S. Boyd, E. Busseti, W. M. Moursi (2019)

(informal)

(informal)

Theorem (chain rule works)

if inner robust problem

- convex and conic
- has unique solution

——

 $x(\theta,y)$ is path-differentiable with conservative jacobian $J_x(\theta) \neq \emptyset$

L is path-differentiable

(informal)

Theorem (chain rule works)

if inner robust problem

- convex and conic
- has unique solution

 $x(\theta, y)$ is path-differentiable with conservative jacobian $J_x(\theta) \neq \emptyset$

L is path-differentiable

Theorem (locally optimal solutions)

if sequence of penalty parameters μ^k is bounded

the algorithm converges almost surely to a feasible solution $(\alpha^*, \theta^*, s^*)$

(informal)

Theorem (chain rule works)

if inner robust problem

- convex and conic
- has unique solution

——

 $x(\theta,y)$ is path-differentiable with conservative jacobian $J_x(\theta) \neq \emptyset$

L is path-differentiable

Theorem (locally optimal solutions)

if sequence of penalty parameters μ^k is bounded

the algorithm converges almost surely to a feasible solution $(\alpha^*, \theta^*, s^*)$

in addition, if $(\alpha^*, \theta^*, s^*)$ satisfies:

- LICQ
- second-order optimality conditions

it is a locally optimal solution

Finite-sample probabilistic guarantees via threshold

Finite-sample probabilistic guarantees via threshold

threshold constraint

$$\mathbf{E}_w[h(\alpha^{\star}, \theta^{\star}, w)] \leq \kappa$$

Finite-sample probabilistic guarantees via threshold

threshold constraint

Ingredients

- Tail bounds
- CVaR > VaR

Finite-sample probabilistic guarantee

$$\mathbf{P}^{N\times J}\left(\mathbf{P}_{(u,y)}(g(\mathbf{x},u,y)\leq 0)\geq 1-\eta\quad\forall\mathbf{x}\in\mathcal{X}\right)\geq 1-\beta$$

Finite-sample probabilistic guarantees via threshold

threshold constraint

Ingredients

- Tail bounds
- CVaR > VaR

Finite-sample probabilistic guarantee

$$\mathbf{P}^{N\times J}\left(\mathbf{P}_{(u,y)}(g(\mathbf{x},u,y)\leq 0)\geq 1-\eta\quad\forall\mathbf{x}\in\mathcal{X}\right)\geq 1-\beta$$

 \Rightarrow it holds also for $x(\theta^{\star}, y)$

Numerical examples

minimize $t+\lambda\|x-x^{\mathsf{prev}}\|_1$ subject to $-u^Tx \leq t \quad \forall u \in \mathcal{U}(\theta)$ $\mathbf{1}^Tx=1, \quad x\geq 0$

Mean-Var and Reshaped sets

Mean-Var and Reshaped sets

$$y=x^{\text{prev}}$$
 previous holdings minimize
$$t+\lambda\|x-x^{\text{prev}}\|_1$$
 subject to
$$-u^Tx\leq t\quad\forall u\in\mathcal{U}(\theta)$$

$$\mathbf{1}^Tx=1,\quad x\geq 0$$

Mean-Var and Reshaped sets

 u_1

constraint level curves

$$-u^T x(\theta, y) - t(\theta, y) = 0$$

n retail points

two-stage decisions stocking decisions $s \in \mathbf{R}^n$ sales decisions $w(d) \in \mathbf{R}^n$

two-stage decisions stocking decisions $s \in \mathbf{R}^n$ sales decisions $w(d) \in \mathbf{R}^n$

$$\begin{array}{lll} \text{minimize} & \tau \\ \text{subject to} & (t+h)^Ts - y^Tw(u) \leq \tau, \quad \forall u \in \mathcal{U}(\theta) \\ & w(u) \leq s, \quad \forall u \in \mathcal{U}(\theta) \\ & w(u) \leq \bar{d} + Qu, \quad \forall u \in \mathcal{U}(\theta) \\ & \mathbf{1}^Ts = C \\ & 0 \leq s \leq c \end{array}$$

n retail points uncertain demand $d=\bar{d}+Q\mathbf{u}$ uncertain market factors $u \in \mathbf{R}^m$

two-stage decisions stocking decisions $s \in \mathbf{R}^n$ sales decisions $w(d) \in \mathbf{R}^n$

transportation and holding costs

minimize au

minimize
$$\tau$$
 \downarrow subject to $(t+h)^Ts - y^Tw(u) \leq \tau$, $\forall u \in \mathcal{U}(\theta)$ $w(u) \leq s$, $\forall u \in \mathcal{U}(\theta)$ $w(u) \leq \bar{d} + Qu$, $\forall u \in \mathcal{U}(\theta)$ $\mathbf{1}^Ts = C$ $0 \leq s \leq c$

two-stage decisions stocking decisions $s \in \mathbf{R}^n$ sales decisions $w(d) \in \mathbf{R}^n$

two-stage decisions stocking decisions $s \in \mathbf{R}^n$ sales decisions $w(d) \in \mathbf{R}^n$

(minimize worst-case costs)

two-stage decisions stocking decisions $s \in \mathbf{R}^n$ sales decisions $w(d) \in \mathbf{R}^n$

(minimize worst-case costs)

(sell less than stocked items)

two-stage decisions stocking decisions $s \in \mathbf{R}^n$ sales decisions $w(d) \in \mathbf{R}^n$

(minimize worst-case costs)
(sell less than stocked items)

(sell less than demand)

two-stage decisions stocking decisions $s \in \mathbf{R}^n$ sales decisions $w(d) \in \mathbf{R}^n$

(minimize worst-case costs)

(sell less than stocked items)

(sell less than demand)

(total units of product available)

two-stage decisions stocking decisions $s \in \mathbf{R}^n$ sales decisions $w(d) \in \mathbf{R}^n$

(minimize worst-case costs)
(sell less than stocked items)
(sell less than demand)
(total units of product available)
(maximum stock volume)

Inventory management results

u size				m=4			
Method	LROPT	$LRO-T_{0.03}$	$LRO-T_{0.05}$	$MV-RO_{0.03}$	$MV-RO_{0.05}$	W-DRO _{0.03}	$W ext{-}DRO_{0.05}$
Obj.	-451.67	-452.99	-453.31	-452.44	-452.70	-452.54	-452.77
$\hat{\eta}$	0.002	0.0278	0.0471	0.0277	0.0476	0.0252	0.0451
\hat{eta}	0	0.2	0.3	0.3	0.25	0	0.1
t	0.00203	0.00212	0.00206	0.00201	0.00209	0.336	0.315
u size				m = 8			
Obj.	-459.49	-461.27	-462.06	-460.62	-461.18	-459.49	-460.62
$\hat{\eta}$	0.0068	0.0257	0.0458	0.0257	0.0477	0.0195	0.0390
\hat{eta}	0	0	0	0	0.06	0.2	0.2
t	0.00623	0.00630	0.00613	0.00634	0.00619	0.910	0.932

Inventory management results

u size				m=4			
Method	LROPT	$LRO-T_{0.03}$	$LRO-T_{0.05}$	$MV-RO_{0.03}$	$MV-RO_{0.05}$	W-DRO _{0.03}	$W-DRO_{0.05}$
$egin{array}{c} egin{array}{c} \operatorname{Obj.} \ \hat{\eta} \ \hat{eta} \end{array}$	-451.67 0.002	-452.99 0.0278 0.2	-453.31 0.0471 0.3	-452.44 0.0277 0.3	-452.70 0.0476 0.25	-452.54 0.0252 0	-452.77 0.0451 0.1
t	0.00203	0.00212	0.00206	0.00201	0.00209	0.336	0.315
u size				m = 8			
$\begin{array}{c} \overline{\rm Obj.} \\ \hat{\eta} \end{array}$	-459.49 0.0068	-461.27 0.0257	-462.06 0.0458	-460.62 0.0257	-461.18 0.0477	-459.49 0.0195	-460.62 0.0390
\hat{eta} t	$0 \\ 0.00623$	0.00630	0.00613	0.00634	$0.06 \\ 0.00619$	$0.2 \\ 0.910$	$0.2 \\ 0.932$

better trade-off
between
objective and probability
of constraint violation

Inventory management results

u size				m=4			
Method	LROPT	$LRO-T_{0.03}$	$LRO-T_{0.05}$	$MV-RO_{0.03}$	$MV-RO_{0.05}$	W-DRO _{0.03}	$W-DRO_{0.05}$
$egin{array}{c} egin{array}{c} \operatorname{Obj.} \ \hat{\eta} \ \hat{eta} \ t \end{array}$	-451.67 0.002 0 0.00203	$-452.99 \\ 0.0278 \\ 0.2 \\ 0.00212$	$ \begin{array}{r} -453.31 \\ 0.0471 \\ 0.3 \\ 0.00206 \end{array} $	$-452.44 \\ 0.0277 \\ 0.3 \\ 0.00201$	$-452.70 \\ 0.0476 \\ 0.25 \\ 0.00209$	-452.54 0.0252 0 0.336	$ \begin{array}{r} -452.77 \\ 0.0451 \\ 0.1 \\ 0.315 \end{array} $
u size				m = 8			
$egin{array}{c} egin{array}{c} \operatorname{Obj.} \ \hat{\eta} \ \hat{ec{arphi}} \end{array}$	-459.49 0.0068	-461.27 0.0257	-462.06 0.0458	-460.62 0.0257	-461.18 0.0477	-459.49 0.0195	-460.62 0.0390
$egin{array}{c} \hat{eta} \ t \end{array}$	0.00623	0.00630	0.00613	0.00634	0.06 0.00619	$0.2 \\ 0.910$	$\begin{array}{c} 0.2 \\ 0.932 \end{array}$

better trade-off
between
objective and probability
of constraint violation

faster computation times than Wassertstein DRO

- Optimize shape and size of uncertainty sets
- Bi-level optimization formulation
 - CVaR constraint
 - Differentiable optimization to compute derivatives
 - Probabilistic guarantees
- Improvements over RO and DRO formulations

- Optimize shape and size of uncertainty sets
- Bi-level optimization formulation
 - CVaR constraint

- Differentiable optimization to compute derivatives
- Probabilistic guarantees
- Improvements over RO and DRO formulations

- Optimize shape and size of uncertainty sets
- Bi-level optimization formulation
 - CVaR constraint
 - Differentiable optimization to compute derivatives
 - Probabilistic guarantees
- Improvements over RO and DRO formulations

- Optimize shape and size of uncertainty sets
- Bi-level optimization formulation
 - CVaR constraint

Probabilistic guarantees

Improvements over RO and DRO formulations

- Optimize shape and size of uncertainty sets
- Bi-level optimization formulation
 - CVaR constraint
 - Differentiable optimization to compute derivatives
 - Probabilistic guarantees

Improvements over RO and DRO formulations

https://github.com/stellatogrp/lropt

I. Wang, C. Becker, B. Van Parys, and B. Stellato arxiv.org: 2305.19225, 2023

LROPT software package (WIP)

It can be *hard to dualize* robust optimization problems

...not to mention finding the right uncertainty set!

LROPT software package (WIP)

It can be *hard to dualize* robust optimization problems

...not to mention finding the right uncertainty set!

LROPT package

github.com/stellatogrp/lropt

- 1. Easily formulate and dualize robust optimization problems
- 2. Automatically tune uncertainty sets (using cvxpylayers)

LROPT software package (WIP)

It can be *hard to dualize* robust optimization problems

...not to mention finding the right uncertainty set!

LROPT package

github.com/stellatogrp/lropt

1. Easily formulate and dualize robust optimization problems

2. Automatically tune uncertainty sets (using cvxpylayers)

```
minimize x^T P x + y^T x subject to (a + B u)^T x \leq d, \quad \forall u \in \mathcal{U}
```

$$\mathcal{U} = \{ u = b + Az \mid ||z||_2 \le 1 \}$$

Jun 27–28, 2024, Princeton University

Princeton Workshop on

Optimization, Learning, and Control

The Princeton Workshop on Optimization, Learning, and Control is a single-track workshop highlighting the latest research advances across these disciplines. Its main goal is to foster new interactions and lay the groundwork for new collaborations. The workshop will include a poster session for junior researchers.

optimization

Important dates

- March 3: Deadline for poster abstract submission and travel support application
- May 1: Registration opens
- •June 1: Registration deadline

Contacts

- •Website: stellato.io/olc
- •Organizer: Bartolomeo Stellato, Princeton University — <u>stellato.io</u>
- Questions: olc24@princeton.edu

Supported by

Confirmed speakers

Shipra Agrawal Columbia University

Anuradha Annaswamy MIT

Francesco Borrelli UC Berkeley

Sarah Dean Cornell University

Paul Goulart University of Oxford

Elad Hazan Princeton University

Andrea Lodi Cornell Tech

Robert Luce Gurobi Optimization

Melanie Zeilinger ETH Zurich

Anirudha Majumdar Princeton University

Conclusion

Machine Learning tools can help us formulate optimization problems

Conclusion

Machine Learning tools can help us formulate optimization problems

We should think
building robust optimization models
as an (automated)
training/validation procedure

Conclusion

Machine Learning tools can help us formulate optimization problems

We should think
building robust optimization models
as an (automated)
training/validation procedure

