Measurements From A QUIC Deployment

The QUIC Transport Protocol: Design and Internet-Scale Deployment

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, Zhongyi Shi *
Google

To appear at ACM SIGCOMM, August 2017

What are we talking about?

		% latency reduction Lower latency				h by percentile Higher latency		
	Mean	1%	5%	10%	50%	90%	95%	99%
Search								
Desktop	8.0	0.4	1.3	1.4	1.5	5.8	10.3	16.7
Mobile	3.6	-0.6	-0.3	0.3	0.5	4.5	8.8	14.3
Video								
Desktop	8.0	1.2	3.1	3.3	4.6	8.4	9.0	10.6
Mobile	5.3	0.0	0.6	0.5	1.2	4.4	5.8	7.5

Table 1: Percent reduction in global Search and Video Latency for users in $QUIC_g$, at the mean and at specific percentiles. A 16.7% reduction at the 99th percentile indicates that the 99th percentile latency for $QUIC_g$ is 16.7% lower than the 99th percentile latency for TCP_g .

Figure 7: Comparison of handshake latency for QUIC_g and TCP_g versus the minimum RTT of the connection. Solid lines indicate the mean handshake latency for all connections, including 0-RTT connections. The dashed line shows the handshake latency for only those QUIC_g connections that did not achieve a 0-RTT handshake. Data shown is for Desktop connections, mobile connections look similar.

		% rebuff Fewer re	by per More rel			
	Mean	< 93%	93%	94 %	95%	99%
Desktop	18.0	*	100.0	70.4	60.0	18.5
Mobile	15.3	*	*	100.0	52.7	8.7

Table 2: Percent reduction in global Video Rebuffer Rate for users in $QUIC_g$ at the mean and at specific percentiles. An 18.5% reduction at the 99th percentile indicates that the 99th percentile rebuffer rate for $QUIC_g$ is 18.5% lower than the 99th percentile rate for TCP_g . An * indicates that neither $QUIC_g$ nor TCP_g have rebuffers at that percentile.

Figure 11: CDF of TCP connections where the server's maximum congestion window was limited by the client's maximum receive window. Data presented is for video playbacks from one week in March 2016.

			% Reduct	ion in Search Latency	% Reduction in Rebuffer Rate	
Country	Mean Min RTT (ms)	Mean TCP Rtx %	Desktop	Mobile	Desktop	Mobile
South Korea	38	1	1.3	1.1	0.0	10.1
USA	50	2	3.4	2.0	4.1	12.9
India	188	8	13.2	5.5	22.1	20.2