This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 March 2001 (22.03.2001)

PCT

(10) International Publication Number WO 01/20002 A1

- (51) International Patent Classification7: C12N 15/53. 15/10, 9/02
- (21) International Application Number: PCT/US99/30925
- (22) International Filing Date:

22 December 1999 (22.12.1999)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/396,154

15 September 1999 (15.09.1999)

- (71) Applicant: PROMEGA CORPORATION [US/US]: 2800 Woods Hollow Road, Madison, WI 53711 (US).
- (72) Inventors: WOOD, Keith, V.; 902 Kottke Drive, #5, Madison, WI 53719 (US). HALL, Mary, P.; 6305 Dylyn Drive, Madison, WI 53719 (US). GRUBER, Monika; 1312 Drake Street, Madison, WI 53715 (US).

- (74) Agent: VIKSNINS, Ann, S.; Schwegman, Lundberg, Woessner & Kluth, P.O. Box 2938, Minneapolis, Minnesota 55402 (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL. IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: THERMOSTABLE LUCIFERASES FROM PHOTURIS PENNSYLVANICA AND PYROPHORUS PLAGIOPHTHA-LAMUS AND METHODS OF PRODUCTION

(57) Abstract: Luciferase enzymes with greatly increased thermostability, e.g., at least half lives of 2 hours at 50 °C, cDNAs encoding the novel luciferases, and hosts transformed to express the luciferases, are disclosed. Methods of producing the luciferases include recursive mutagenesis. The luciferases are used in conventional methods, some employing kits.

THERMOSTABLE LUCIFERASES FROM PHOTURIS PENNSYLVANICA AND PYROPHORUS PLAGIOPHTHALAMUS AND METHODS OF PRODUCTION

Statement of Government Rights

5

10

20

25

30

The invention was made with grants from the Government of the United States of America (grants 1R43 GM506 23-01 and 2R44 GM506 23-02 from the National Institutes of Health and grants ISI-9160613 and III-9301865 from the National Science Foundation). The Government may have certain rights to the invention.

Field of the Invention

The invention is directed to mutant luciferase enzymes having greatly increased thermostability compared to natural luciferases or to luciferases from which they are derived as measured, e.g., by half-lives of at least 2 hours at 50°C in aqueous solution. The invention includes mutant luciferase enzymes that are resistant to inhibition by a substrate inhibitor, e.g., a substrate analog. The invention is also drawn to polynucleotides encoding the novel luciferases, and to hosts transformed to express the luciferases. The invention is further drawn to methods of producing luciferases with increased thermostability and the use of these luciferases in any method in which previously known luciferases are conventionally employed. Some of the uses employ kits. The invention also provides a method of producing a polynucleotide sequence encoding an enzyme that is resistant to inhibition by an inhibitor, and a method which yields a polynucleotide sequence encoding an enzyme having enhanced enzymological properties.

Background of the Invention

Luciferases are defined by their ability to produce luminescence. Beetle luciferases form a distinct class with unique evolutionary origins and chemical mechanisms (Wood, 1995).

Although the enzymes known as beetle luciferases are widely recognized for their use in highly sensitive luminescent assays, their general utility has been limited due to low thermostability. Beetle luciferases having amino acid sequences encoded by cDNA sequences cloned from luminous beetles are not stable even at moderate temperatures. For example, even the most stable of the

luciferases, Luc*Ppe2*, obtained from a firefly has very little stability at the moderate temperature of 37°C. Firefly luciferases are a sub-group of the beetle luciferases. Historically, the term "firefly luciferase" referred to the enzyme Luc*Ppy* from a single species *Photinus pyralis* (Luc + is a mutant version of LucPpy, see U.S. Patent No. 5,670,356).

Attempts have been reported to mutate natural cDNA sequences encoding luciferase and to select mutants for improved thermostability (White et al., 1994; from *P. pyralis*, and Kajiyama and Nekano, 1993; from *Luciola lateralis*.) However, there is still a need to improve the characteristics and versatility of this important class of enzymes.

Summary of the Invention

10

The invention is drawn to novel and remarkably thermostable luciferases, including luciferase enzymes with half-lives of at least 2 hours at 50°C, or at least 5 hours at 50°C, in an aqueous solution. As described hereinbelow, after 2 15 hours at 50°C in an aqueous solution, a thermostable luciferase of the invention lost less than 5% luminescence activity. The mutant luciferases of the present invention display remarkable and heretofore unrealized thermostability at 22°C in an aqueous solution and at temperatures at least as high as 60°C in an aqueous solution. For example, the luciferases of the invention are thermostable for at least 10 hours at 50°C; for at least 2 hours, preferably at least 5 hours, more preferably at least 10 hours, and even more preferably at least 24 hours, at 60°C; and/or for at least 100 days, preferably at least 200 days, more preferably at least 500 days, and even more preferably at least 800 days, at 22°C, in aqueous solution. For example, after 30 days at 22°C in an aqueous solution, a 25 thermostable luciferase of the invention lost less than 5% luminescence activity. Preferably, the thermostable luciferases of the invention have enhanced luminescence intensity, enhanced signal stability, enhanced substrate utilization, and/or decreased Km, relative to a reference, e.g., a native wild-type, luciferase. The invention is further directed to the mutant luciferase genes (e.g., cDNA or RNA) which encode the novel luciferase enzymes. The terminology used herein 30 is, e.g., for the mutants isolated in experiment 90, plate number 1, well B5, the E. coli strain is 90-1B5, the mutant gene is luc90-1B5, and the mutated luciferase is Luc90-1B5.

3

As defined herein, a "thermostable" enzyme, e.g., a luciferase, or an enzyme which has "thermostability", is an enzyme which under certain conditions, e.g., at certain temperature, in aqueous solution and/or for certain periods of time, has an increased retention of activity relative to a reference enzyme. For example, for a thermostable luciferase, a reference luciferase may be native wild-type luciferase or recombinant wild-type luciferase. Preferably, for beetle luciferases, the activity is luminescence under conditions of saturation with luciferin and ATP. One measure of thermostability of an enzyme is the half-life of the enzyme in an aqueous solution (the time over which 50% of the activity is lost) at a stated temperature.

The invention further encompasses expression vectors and other genetic constructs containing the mutant luciferases, as well as hosts, bacterial and otherwise, transformed to express the mutant luciferases. The invention is also drawn to compositions and kits which contain the novel luciferases, and use of these luciferases in any methodology where luciferases are employed.

10

15

20

25

30

Various means of random mutagenesis were applied to a luciferase gene (nucleotide sequence), most particularly gene synthesis using an error-prone polymerase, to create libraries of modified luciferase genes. This library was expressed in colonies of *E. coli* and visually screened for efficient luminescence to select a subset library of modified luciferases. Lysates of these *E. coli* strains were then made, and quantitatively measured for luciferase activity and thermostability. From this, a smaller subset of modified luciferases was chosen, and the selected mutations were combined to make composite modified luciferases by random mutagenesis and the process was repeated. The luciferases with the best overall performance were selected after several cycles of this process.

Methods of producing improved luciferases include directed evolution using a polynucleotide sequence encoding a first beetle luciferase as a starting (parent) sequence, to produce a polynucleotide sequence encoding a second luciferase with increased thermostability, compared to the first luciferase, while maintaining other characteristics of the enzymes. A cDNA designated *lucPpe2* encodes a firefly luciferase derived from *Photuris pennsylvanica* that displays increased thermostability as compared to the widely utilized luciferase

4

designated LucPpy from Photinus pyralis. The cDNA encoding LucPpe2 was isolated, sequenced and cloned (see Leach et al., 1997). A mutant of this gene encodes a first luciferase LucPpe2 [T249M]. However, the methods of the invention are not limited to use with a polynucleotide sequence encoding a beetle luciferase, i.e., the methods of the invention may be employed with a polynucleotide sequence encoding other enzymes.

In an embodiment of a mutant luciferase, the amino acid sequence is that of Luc*Ppe2* shown in Figure 45 with the exception that at residue 249 there is a M (designated T249M) rather than the T reported by Leach et al. The underlined residue (249) shows mutation from T to M. This enzyme produced approximately 5-fold more light *in vivo* when expressed in *E. coli*.

Diluted extracts of recombinant *E. coli* that expressed mutant luciferases made by the methods of the invention were simultaneously screened for a plurality of characteristics including light intensity, signal stability, substrate utilization (K_m), and thermostability. A fully automated robotic system was used to screen large numbers of mutants in each generation of the evolution. After several cycles of mutagenesis and screening, thereby creating mutant libraries of luciferases, an increased thermostability compared to Luc*Ppe2* [T249M] of about 35°C was achieved for clone Luc90-1B5 which also essentially maintained enzymatic activity (there was only negligible loss in activity of 5%) when kept in aqueous solution over 2 hours at 50°C, 5 hours at 65°C, or over 6 weeks at 22°C.

20

25

30

Mutant luciferases of the present invention display increased thermostability for at least 2 hours at 50°C, preferably at least 5 hours at 50°C, and in the range of at least 2 hours, preferably at least 24 hours, and more preferably at least 50 hours, at temperatures including 50°C, 60°C, and/or at temperatures up to 65°C. In particular, the present invention comprises thermostable mutant luciferases which, when solubilized in a suitable aqueous solution, have a thermostability greater than about 2 hours at about 50°C, more preferably greater than about 10 hours at 50°C, and more preferably still greater than 5 hours at 50°C. The present invention also comprises mutant luciferases which, when solubilized in a suitable aqueous solution, have a thermostability greater than about 2 hours, more preferably at least 5 hours, even more preferably greater than about 10 hours, and even more preferably still greater

than about 24 hours, at about 60°C. The present invention further comprises mutant luciferases which when solubilized in a suitable aqueous solution have a thermostability greater than about 3 months at about 22°C, and more preferably a thermostability of at least 6 months at 22°C. An embodiment of the invention is a luciferase mutant having thermostability at 65°C, wherein a loss of activity of about 5-6% was found after 6 hours (equivalent to a half-life of 2 days). The half-lives of enzymes from the most stable clones of the present invention, extrapolated from data showing small relative changes, is greater than 2 days at 65°C (corresponding to 6% loss over 6 hours), and about 2 years at 22°C (corresponding to 5% loss over 9 weeks).

10

15

20

25

30

In particular, the invention comprises luciferase enzymes with embodiments of amino acid sequences disclosed herein (e.g., mutant luciferases designated Luc49-7C6, Luc78-0B10; Luc90-1B5, Luc133-1B2, and Luc146-1H2, as well as all other beetle luciferases that have thermostability as measured in half-lives of at least 2 hours at 50°C. The invention also comprises mutated polynucleotide sequences encoding luciferase enzymes containing any single mutation or any combination of mutations of the type which convert an amino acid of the reference beetle luciferase into a consensus amino acid. Conserved amino acids are defined as those that occur at a particular position in all sequences in a given set of related enzymes. Consensus amino acids are defined as those that occur at a particular position in more than 50% of the sequences in a given set of enzymes. An example is the set of beetle luciferase sequences shown in Figure 19, excluding Luc*Ppe2*.

Nucleotide sequences encoding beetle luciferases are aligned in Figure 19. Eleven sequences found in nature in various genera, and species within genera, are aligned, including *lucPpe2*. There are at least three mutations present in each mutant luciferase that show increased thermostability. In general, mutations are not of a conserved amino acid residue. The mutations in the mutant luciferases are indicated in Figures 22-47 by underlining.

The invention also provides methods to prepare enzymes having one or more desired properties, e.g., resistance to inhibition by a substrate analog of the enzyme or enhanced enzymological properties. The method comprises selecting at least one isolated polynucleotide sequence encoding an enzyme with the

30

desired property, e.g., an enzymological property, from a first population of mutated polynucleotide sequences. The selected, isolated polynucleotide sequence is then mutated to yield a second population of mutated polynucleotide sequences. Preferably, a mixture of selected isolated polynucleotide sequences are mutated to yield a second population of mutated polynucleotide sequences. The process may be repeated until a further polynucleotide sequence is obtained, e.g., selected and/or isolated, which further polynucleotide sequence encodes an enzyme which has at least one of the desired properties. As used herein, the terms "isolated and/or "purified" refer to in vitro isolation of a RNA, DNA or polypeptide molecule from its natural cellular environment, and from association with other components of the cell, such as nucleic acid or polypeptide, e.g., so that it can be sequenced, replicated, and/or expressed.

Brief Description of the Drawings

Figure 1 is a graphical representation of thermostability at 37°C of

LucPpe2[T249M]; Luc39-5B10; and Luc49-7C6, normalized to t = 0 [the X-axis is time in minutes; the Y-axis is % remaining activity; and "t" is time].

Figure 2 is a graphical representation of the remaining activity of Luc49-7C6 and Luc78-0B10 at 50°C normalized to a t = 0 reading [the X-axis is time in hours; the Y-axis is % remaining activity; and t is time].

Figure 3 is a graphical representation of the luminescence produced by Luc49-7C6 and Luc78-0B10 at 60°C normalized to t = 0 [the X-axis is time in hours; the Y-axis is % remaining activity; and t is time].

Figure 4 is a graphical representation of thermostability of luciferases, Luc*Ppe2*[T249M]; Luc49-7C6; and Luc78-0B10 thermostability at 22°C [the X-axis is time in days; the Y-axis is normalized light units].

Figure 5 is a graphical representation of the observed log luminescence produced by (Y) Luc78-0B10 compared to log luminescence predicted by the regression equation Y = 0.0043X + 10.91; the half life of the enzyme is calculated as 144 hours (6 days) [the X-axis is time in hours; the Y-axis is log luminescence].

Figure 6 is a graphical representation of the observed log luminescence produced by Luc78-0B10 at 60° C compared to the log luminescence calculated by the regression equation Y = 0.154X + 10.86; the half life of the enzyme is

20

25

30

calculated as 38 hours (1.58 days) [the X-axis is time in hours; the Y-axis is log luminescence].

Figure 7 is a graphical representation of the observed log luminescence produced by Luc49-7C6 at 50° C compared to log luminescence predicted by the regression equation Y = -0.0059X + 8.757; the half-life of the enzyme is calculated as 100.5 hours (4.2 days) [the X-axis is time in hours; the Y-axis is log luminescence].

Figure 8 is a graphical representation of the observed log luminescence produced by Luc49-7C6 at 60°C compared to the log luminescence calculated by the regression equation Y = -0.169X + 8.647; the calculated half-life of the enzymes is 2.9 hours (the X-axis is time in hours; the Y-axis is log luminescence).

Figure 9 is a graphical representation of the observed log luminescence produced by Luc78-0B10 at 22°C compared to a predicted log luminescence, the half-life of the enzyme is 109 days [the X-axis is time in days; the Y-axis is log luminescence].

Figure 10 is a graphical representation of the observed luciferase log luminescence produced by Luc49-7C6 at 22°C compared to a predicted log luminescence; the half-life of the enzyme is 64 days [the X-axis is time in days; the Y-axis is log luminescence].

Figure 11 is a graphical representation of the observed log luminescence produced by luciferase Luc49-7C6 at 37°C compared to predicted log luminescence [the X-axis is time in minutes; the Y-axis is log luminescence].

Figure 12 is a graphical representation of the observed log luminescence produced by luciferase Luc*Ppe2* [T249M] at 22°C compared to predicted log luminescence [the X-axis is time in days; the Y-axis is log luminescence].

Figure 13 is a graphical representation of the observed log luminescence produced by luciferase Luc*Ppe2* [T249M] at 37°C compared to predicted log luminescence [X-axis is time in minutes; Y-axis is log luminescence].

Figure 14 is a flow chart showing steps for an assay of *in vivo* and *in* vitro luciferase luminescence (Li); enzyme stability (τ) ; assay kinetics (S); and substrate binding (Km).

Figure 15 is a schematic representation of a table top layout robot.

Figure 16A is a graphical representation of luciferase mutant Luc90-1B5 luminescence measured at 65°C, pH 6.5 (the X-axis is time in hours; the Y-axis is % luminescence).

Figure 16B is a graphical representation of luciferase mutant Luc90-1B5 luminescence at 22°C, pH 6.5 (the X-axis is time in days; the Y-axis is % luminescence).

Figure 17 is a diagram showing the evolutionary relationships among beetle luciferases based on amino acid sequences.

Figure 18A is a representation of the secondary structures of beetle

luciferase enzymes (helices are symbolized by cylinders, sheets by collections of arrows, loops connect helices with sheets).

Figure 18B shows the amino acids (tertiary structures) of the Luc*Ppe2* luciferase, wherein small spirals correspond to cylinders of Figure 18A.

Figure 18C shows that the general beetle architecture matches (is superimposed on) that of Luc90-1B5.

Figure 19A presents alignment of the amino acid sequence (SEQ ID Nos:27-37) for luciferases from various beetle species (Lcr, Lla, Lmi, Pmi, Ppy, Lno, Ppe1, Phg, GR, YG, Ppe2, respectively) and luciferases of the present invention (Luc49-7C6; Luc78-0B10; Luc90-1B5, Luc133-1B2; and Luc146-1H2, SEQ ID Nos. 14, 19, 24, 44, and 45, respectively); the sequences are aligned, spaces where sequences cannot be aligned are shown by dots (e.g.,...); only amino acids that differ in the luciferases of the present invention from those of some beetle species are shown, not the full sequences. "Cons" is a sequence showing conserved amino acids by single letters, and indicates non-conserved amino acids by "-".

Figure 19B presents alignment of the amino acid sequence (SEQ ID Nos:27-37) for luciferases from various beetle species (Lcr, Lla, Lmi, Pmi, Ppy, Lno, Ppe1, Phg, GR, YG, Ppe2) and luciferases of the present invention (Luc30-4B02 and Luc81-6G01, SEQ ID Nos. 47 and 26, respectively); the sequences are aligned, spaces where sequences cannot be aligned are shown by dots (e.g.,...); amino acids that differ in the luciferases of the present invention from those of some beetle species are shown in bold.

20

25

30

Figure 19C presents alignment of the amino acid sequence (SEQ ID NOs:27-34 and 36-37) for luciferases from various beetle species (Lcr, Lla, Lmi, Pmi, Ppy, Lno, Ppe1, Phg, YG, Ppe2, Ppl); the sequences are aligned, spaces where sequences cannot be aligned are shown by dots (e.g.,...); in the line beneath YG, X indicates positions in YG where mutations could yield a consensus amino acid; O indicates positions in YG where mutations could not yield a consensus amino acid.

Figure 20 is the 7216 bp *Ppe2* vector map in a pRAM backbone.

Figure 21 is a bar graph comparing luminescence as expressed in

recombinant colonies of *E. coli*; the colonies differ in the identity of the luciferase encoding vector (Luc+; Luc90-1B5; Luc78-1B10; Luc49-7C6; Luc*Ppe2* [T249M] and Luc*Ppe2*); in the recombinant colony shown in the Y-axis [the X-axis is normalized light units].

Figure 22 is a nucleotide (DNA) sequence (SEQ ID NO:1) encoding mutant luciferase enzyme Luc49-7C6; mutations are indicated by underlining.

Figure 23 is a nucleotide (DNA) sequence (SEQ ID NO:2) encoding mutant luciferase enzyme Luc49-6C10, mutations are indicated by underlining.

Figure 24 is a nucleotide (DNA) sequence (SEQ ID NO:3) encoding a mutant luciferase enzyme Luc49-0G12; mutations are indicated by underlining.

Figure 25 is a nucleotide (DNA) sequence (SEQ ID NO:4) encoding a mutant luciferase enzyme Luc49-7A5; mutations are indicated by underlining.

Figure 26 is a nucleotide (DNA) sequence (SEQ ID NO:5) encoding a mutant luciferase enzyme Luc49-4G11; mutations are indicated by underlining.

Figure 27 is an amino acid sequence (SEQ ID NO:14) of the mutant luciferase designated Luc49-7C6; mutations are indicated by underlining.

Figure 28 is an amino acid sequence (SEQ ID NO:15) of mutant luciferase enzyme Luc49-6C10; mutations are indicated by underlining.

Figure 29 is an amino acid sequence (SEQ ID NO:16) of mutant luciferase enzyme Luc49-0G12; mutations are indicated by underlining.

Figure 30 is an amino acid sequence (SEQ ID NO:17) of mutant luciferase enzyme Luc49-7A5; mutations are indicated by underlining.

Figure 31 is an amino acid sequence (SEQ ID NO:18) of mutant luciferase enzyme Luc49-4G11; mutations are indicated by underlining.

15

25

30

Figure 32 is a nucleotide (DNA) sequence (SEQ ID NO:6) encoding mutant luciferase enzyme Luc78-0B10; mutations are indicated by underlining.

Figure 33 is a nucleotide (DNA) sequence (SEQ ID NO:7) encoding mutant luciferase enzyme Luc78-0G8; mutations are indicated by underlining; X's signify unknown identities of nucleotides at certain positions.

Figure 34 is a nucleotide (DNA) sequence (SEQ ID NO:8) encoding mutant luciferase enzyme Luc78-1E1; mutations are by underlining; X's signify that the identity of a nucleotide at a position is unknown.

Figure 35 is a nucleotide (DNA) sequence (SEQ ID NO:9) encoding a mutant luciferase Luc78-2B4; underlined nucleotides are mutations; X's signify unknown identities of nucleotides at certain positions.

Figure 36 is an amino acid sequence (SEQ ID NO:19) of the mutant luciferase Luc78-0B10; underlined amino acids are mutations.

Figure 37 is an amino acid sequence (SEQ ID NO:20) of the mutant luciferase enzyme Luc78-0G8; underlined amino acids are mutations; X's signify unknown amino acids at a position.

Figure 38 is an amino acid sequence (SEQ ID NO:21) for mutant luciferase enzyme Luc78-1E1; underlined amino acids are mutations; X's signify an unknown amino acid at a position.

Figure 39 is an amino acid sequence (SEQ ID NO:22) for mutant luciferase enzyme Luc78-2B4; underlined amino acids are mutations; X's signify an unknown amino acid at a position.

Figure 40 is a nucleotide (DNA) sequence (SEQ ID NO:10) for encoding a mutant luciferase enzyme Luc85-4F12; underlined nucleotides are mutations; X's signify an unknown amino acid at that position.

Figure 41 is an amino acid listing (SEQ ID NO:23) for a mutant luciferase enzyme Luc85-4F12; underlined amino acids are mutations; X's signify an unknown amino acid at that position.

Figure 42 is a nucleotide (DNA) sequence (SEQ ID NO:11) encoding mutant luciferase enzyme Luc90-1B5; underlined nucleotides are mutations.

Figure 43 is an amino acid sequence (SEQ ID NO:24) for the mutant luciferase designated Luc90-1B5; underlined amino acids are mutated positions.

Figure 44 is a nucleotide (DNA) sequence (SEQ ID NO:12) encoding luciferase enzyme Luc*Ppe2* [T249M].

Figure 45 is an amino acid sequence (SEQ ID NO:25) for Luc*Ppe2* [T249M]; the underlined amino acid is a mutation from Thr to Met at residue 249.

Figure 46 is an amino acid sequence (SEQ ID NO:26) for luciferase enzyme Luc*Pp1*81-6G1; underlined amino acids are mutations from a starting sequence; X shows ambiguity.

Figure 47 is a nucleotide (DNA) sequence (SEQ ID NO:13) encoding luciferase enzyme Luc81-6G1; underlined nucleotides are mutations.

Figure 48 is a graphical representation of mutant luciferases Luc49-7C6 and Luc78-0B10 luminescence at 60°C normalized to t = 0 [the X-axis is time in hours, the Y-axis is log normalized luminescence].

Figure 49 is a graphical representation of luciferases Luc*Ppe2* [T249M],

Luc49-7C6, and Luc78-0B10, thermostability at 4°C, normalized to initial values [the X-axis is time in days; Y is log normalized light units].

Figure 50 is a graphical representation of mutant luciferases Luc49-7C6 and Luc78-0B10 luminescence at 50° C normalized to t = 0 [the X-axis is time in hours; the Y-axis is log luminescence].

Figure 51 is a graphical representation of mutant luciferases Luc49-7C6 and Luc78-0B10 luminescence at 50°C normalized at t = 0.

Figure 52 is a graphical representation of mutant luciferases Luc49-7C6 and Luc78-0B10 luminescence at 60° C normalized to t = 0 [the X-axis is time in hours; the Y-axis is luminescence].

Figure 53 is a graphical representation of luciferases LucPpe2 [T249M], Luc49-7C6, and Luc78-0B10 thermostability at 22°C [the X-axis is time in days; the Y-axis is log luminescence].

Figure 54A is a graphical representation of luminescence of Luc90-1B5; Luc133-1B2; and Luc146-1H2, at pH 4.5 and 48°C, normalized to t = 0.

Figure 54B is a graphical representation of the half-life of Luc90-1B5; Luc133-1B2; and Luc146-1H2, at pH 4.5 and 48°C. The half-life of Luc90-1B5 under these conditions is about 3 minutes, Luc133-1B2 about 20 minutes, and Luc146-1H2 about 62 minutes.

25

Figure 55 is a nucleotide (DNA) sequence (SEQ ID NO:42) encoding a luciferase enzyme Luc133-1B2; mutations are indicated by underlining.

Figure 56 is a nucleotide (DNA) sequence (SEQ ID NO:43) encoding a luciferase enzyme Luc146-1H2; mutations are indicated by underlining.

Figure 57 is an amino acid sequence (SEQ ID NO:44) of mutant luciferase Luc133-1B2; mutations are indicated by underlining.

Figure 58 is an amino acid sequence (SEQ ID NO:45) of mutant luciferase Luc146-1H2; mutations are indicated by underlining.

Figure 59 is a graphical representation of the signal kinetics of clones

Luc49-7C6; Luc78-0B10; Luc90-1B5; Luc133-1B2; and Luc146-1H2 at pH 7.8

at room temperature.

Figure 60 is a graphical representation of the normalized luminescence at 50° C pH 7.8 of Luc49-7C6; Luc78-0B10; Luc90-1B5; Luc133-1B2; and Luc146-1H2; from t = 0 to about 8 hours.

15 Figure 61 is a graphical representation of the resistance of selected luciferases to a substrate inhibitor. The data is presented as the log of the luminescence versus time for Luc90-1B5; Luc133-1B5; and Luc146-1H2.

Figure 62 is a graphical representation of the log of luminescence over time at 22°C, pH 6.5 for Luc90-1B5 and LucPpe2[T249M].

Figure 63 is a graphical representation of thermostability of selected mutant luciferases and Luc*PplYG* at room temperature in aqueous solution containing 1% Triton X-100.

Figures 64 is a graphical representations of the sustained luminescence activity (expressed as luminescence/O.D.) over time for certain luciferases.

Figure 65 is a nucleotide (DNA) sequence (SEQ ID NO:46) encoding a luciferase enzyme Luc81-0B11; mutations are indicated by underlining.

Figure 66 is an amino acid sequence of mutant luciferase Luc81-0B11; mutations are indicated by underlining.

20

25

30

Detailed Description of the Invention

The invention relates to enzymes, e.g., beetle luciferases, that are created by mutations made in the encoding genes, generally by recursive mutagenesis, which mutated enzymes have one or more desired properties, for example. increases thermostability, increased resistance to inhibitors, and/or enhanced enzymological properties, relative to a reference enzyme, e.g., the wild-type enzyme. The polynucleotide sequence which encodes an enzyme of the invention comprises mutations that encode a plurality of amino acid substitutions relative to the polynucleotide sequence encoding the enzyme from which the enzyme of the invention was derived. For example, the invention relates to enzymes, e.g., luciferases, that are thermostable. The increased thermostability allows storage of enzymes such as luciferases without altering its activity, and improves reproducibility and accuracy of assays using the mutated luciferases. Thus, one embodiment of the invention comprises isolated polynucleotide sequences (cDNAs) which encode mutant luciferases with increased thermostability, vectors containing the polynucleotide sequences, and hosts transformed to express the polynucleotide sequences. Table 1 shows results of about 250 clones and characteristics of the luciferases from the clones including thermostability. The invention also encompasses the use of the mutant luciferases in any application where luciferases are conventionally utilized, and kits useful for some of the applications.

Unexpectedly, beetle luciferases with the sought after improved thermostability were achieved in the present invention through a process of recursive mutagenesis and selection (sometimes referred to as "directed evolution"). A strategy of recursive mutagenesis and selection is an aspect of the present invention, in particular the use of multi-parameter automated screens. Thus, instead of screening for only a single attribute such as thermostability, simultaneous screening was done for additional characteristics of enzyme activity and efficiency. By this method, one property is less likely to "evolve" at the expense of another, resulting in increased thermostability, but decreased activity, for example.

Table 1 presents examples of parameter values (Li, Tau, K_m and S, see below) derived from experiments using different luciferases as starting (parent)

14

sequences. The subtitles refer to designations of the temperature at which the enzyme stability was measured and the starting luciferase, e.g., Luc39-5B10 at 51°C and so forth. All parameters in each experiment are recorded as relative values to the respective starting sequence, e.g., the parameter values for the starting sequence in any experiment equals "1." (See Example 2 herein for definitions.)

Thermostability has evolved in nature for various enzymes, as evidenced by thermostable isozymes found in thermophilic bacteria. Natural evolution works by a process of random mutagenesis (base substitutions, gene deletions, gene insertions), followed by selection of those mutants with improved characteristics. The process is recursive over time. Although the existence of thermostable enzymes in nature suggests that thermostability can be achieved through mutagenesis on an evolutionary scale, the feasibility of achieving a given level of thermostability for a particular class of enzymes by using short term laboratory methods was unpredictable. The natural process of evolution, which generally involves extremely large populations and many millions of generations and genes, by mutation and selection cannot be used to predict the capabilities of a modern laboratory to produce improved genes by directed evolution until such mutants are produced.

10

20

25

After such success, because the overall three-dimensional structure of all beetle luciferases are quite similar, having shown it possible for one member of this class makes it predictable that high thermostability can be achieved for other beetle luciferases by similar methods. Figure 17 shows an evolutionary relationship among beetles luciferases, all of which have a similar overall architecture. The structural class to which the beetle luciferases belong is determined by the secondary structure (e.g. helices are symbolized by cylinders, sheets by collections of arrows, loops connect helices with sheets (Figure 18A). Figure 18B shows the amino acids of the Luc*Ppe2* luciferase wherein small spirals correspond to cylinders of Figure 18A; Figure 18C shows that the general beetle architecture matches (is superimposed on) that of Luc*Ppe2*. This is support for the expectation that the methods of the present invention can be generalized to all beetles luciferases.

30

Enzymes belong to different structural classes based on the three-dimensional arrangement of secondary elements such as helices, sheets, and loops. Thermostability is determined by how efficiently the secondary elements are packed together into a three-dimensional structure. For each structural class, there also exists a theoretical limit for thermostability. All beetle luciferases belong to a common structural class as evident by their common ancestry (Figure 17), homologous amino acid sequences, and common catalytic mechanisms.

The application of a limited number of amino acid substitutions by mutagenesis is unlikely to significantly affect the overall three-dimensional architecture (i.e., the structural class for mutant luciferases is not expected to change.) Because the theoretical limit for thermostability for any structural class is not known, the potential thermostability of beetle luciferases was not known until demonstrations of the present invention.

A priori difficulties in achieving the goals of the present invention

15 included:

1. The types of mutations which can be made by laboratory methods are limited.

- i) By random point mutation (e.g. by error-prone PCR), more than one base change per codon is rare. Thus, most potential amino acid changes are rare.
- Other types of random genetic changes are difficult to achieve for areas greater than 100 bp (e.g., random gene deletions or insertions).
 - 2. The number of possible luciferase mutants that can be screened is limited.
- 25 i) Based on sequence comparisons of natural luciferases, ignoring deletions and insertions, more than 10¹⁸⁹ functional enzyme sequences may be possible.
 - ii) If 100,000 clones could be screened per day, it would require more than 10¹⁷⁹ centuries to screen all possible mutants assuming same mutant was never screened twice (actual screening rate for the present invention was less than 5000 per day).

3. The probability of finding functional improvement requiring cooperative mutations is rare (the probability of finding a specific cooperative pair is 1 out of 10⁸ clones).

Thus, even if the theoretical limits of thermostability were known,

because only a very small number of the possible luciferase mutants can be screened, the *a priori* probability of finding such a thermostable enzyme was low.

However, the present invention now shows that it is possible and feasible to create novel beetle luciferases having high thermostability.

10

a) The approximately 250 mutants produced by methods of the present invention wherein the initial sequence was from *lucPpe2* or *lucPplYG* demonstrate that it is possible and feasible for at least one member of this enzyme class to achieve high thermostability.

15

b) Any beetle luciferase can be improved by similar means because the luciferases belong to the same structural class.

20

class, they also share in the same pool of potentially stabilizing mutations (this conclusion is supported by observation that a high percentage of the stabilizing mutations found in the clones of the present invention were conversions to "consensus amino acids" in other beetle luciferases that is, amino acids that appear in the majority of beetle luciferase sequences (see Figure 19).

25

ii) Similar results were achieved using beetle luciferase, consisting largely of a different amino acid sequence, from the luminous beetle *Pyrophorus plagiophthalamus* (Luc*PpIYG*). The wild-type *lucPpIYG* has 48% nucleotide sequence identity to the wild type *lucPpe2*. The Luc*PpIYG* mutants were subjected to fewer cycles of directed evolution than the Luc*Ppe2* mutants described herein. Also, in some instances, mutants were selected with less emphasis placed on their relative thermostability.

17

The most stable clone resulting from this evolution (Luc80-5E5) has a half-life of roughly 3.8 hours at 50°C in solution.

To compensate for a statistical effect caused by the large number of

deleterious random mutations expected relative to the beneficial mutations,
methods were employed to maximize assay precision and to re-screen previously
selected mutations in new permutations. Among the methods for maximizing
assay precision were closely controlling culture conditions by using specialized
media, reducing growth rates, controlling heat transfer, and analyzing parameters
from mid-logarithmic phase growth of the culture. The robotic processes
maximized for precision include controlling mixing, heat transfers, and
evaporation of samples in the robotic screening process; and normalizing data to
spatially distributed control samples. New permutations of the selected
mutations were created by a method of DNA shuffling using proof-reading
polymerases.

The difficulty in predicting the outcome of the recursive process is exemplified by the variable success with the other characteristics of luciferase that were also selected for. Although the primary focus was on the enzyme thermostability, selection for mutants producing brighter luminescence, with more efficient substrate utilization, and an extended luminescence signal was also attempted. The definitions are given by equations herewith. The selection process was determined by changes relative to the parent clones for each iteration of the recursive process. The amount of the change was whatever was observed during the screening process. The expression of luciferase in *E. coli* was relatively inefficient, for Luc*Ppe2*, compared to Luc +. Other luciferases varied (see Figure 21).

20

25

30

To improve the overall efficiency of substrate utilization, reduction in the composite apparent utilization constant (i.e., Km[ATP+luciferin]) for both luciferin and ATP was sought. Although there was an unexpected systematic change in each utilization constant (Km[ATP], Km[luciferin]), there was little overall change. Finally, the luminescence signal could only be moderately affected without substantially reducing enzyme efficiency. Thus, although the

18

enzyme thermostability was greatly increased by methods of the present invention, other characteristics of the enzyme were much less affected.

Figures 1-13, 16, 48-53, 60 and 62 present measurements of thermostability of mutant luciferases. Figures 48-53 present other results of the mutant luciferases. Compositions of the invention include luciferases having greater than the natural level of thermostability. Each mutant luciferase is novel, because its individual characteristics have not been reported. Specific luciferases are known by both their protein and gene sequences. Many other luciferases were isolated that have increased, high thermostability, but whose sequences are not known. These luciferases were identified during the directed evolution process, and were recognized as distinct by their enzymological characteristics. The mutant luciferases of the present invention, e.g., Luc90-1B5, can display remarkable and heretofore unrealized thermostability at temperatures ranging from 22°C to at least as high as 60°C.

15

20

25

30

Other aspects of the invention include methods that incorporate the thermostable luciferases, specifically beetle luciferases having high thermostability, as well as methods to prepare an enzyme, including a luciferase, having one or more desired properties, e.g., resistance to inhibition by a substrate inhibitor, or enhanced enzymological properties. Thus, the invention also provides a method to prepare an enzyme which has at least one enhanced enzymological property. From a population of polynucleotide sequences encoding the enzyme which is derived from a first polynucleotide sequence encoding the enzyme which is subject to mutation, at least one polynucleotide sequence encoding an enzyme which has the enhanced enzymological activity is selected and isolated. In one embodiment, oligonucleotide-mediated mutagenesis is then employed to introduce at least one codon which encodes a consensus amino acid to at least one of the selected, isolated polynucleotide sequences encoding the enzymes to yield a further polynucleotide sequence encoding the enzyme and having the codon which encodes the consensus amino acid, wherein the codon which is introduced is not present in the first polynucleotide sequence.

Production of Luciferases of the Present Invention

The method of making luciferases with increased thermostability is recursive mutagenesis followed by selection. Embodiments of the highly thermostable mutant luciferases of the invention were generated by a reiterative process of random point mutations beginning with a source nucleotide sequence, e.g., the *lucPpe2* [T249M] cDNA. Recombination mutagenesis is a part of the mutagenesis process, along with point mutagenesis. Both recombination mutagenesis and point mutagenesis are performed recursively. Because the mutation process causes recombination of individual mutants in a fashion similar to the recombination of genetic elements during sexual reproduction, the process is sometimes referred to as the sexual polymerase chain reaction (sPCR). See, for instance, Stemmer, U.S. Patent No. 5,605,793, issued February 25, 1997.

Taking the *lucPpe2* cDNA sequence as a starting point, the gene was mutated to yield mutant luciferases which are far more thermostable. A single point mutation to the *lucPpe2* sequence yielded the luciferase whose sequence is depicted as T249M. This mutant is approximately 5 times brighter *in vivo* than that of *lucPpe2*, it was utilized as a template for further mutation. It was also used a baseline for measuring the thermostability of the other mutant luciferases described herein.

20 Embodiments Of Sequences Of Luciferases Of The Present Invention

15

30

Figure 45 shows the amino acid sequence of the LucPpe2 luciferase (T249M). The sequence contains a single mutation at position 249 from T to M (underlined) which distinguishes it from the sequence reported by Leach et al. (1997). This luciferase has a spectral maximum of 552 nm, which is yellow shifted from that of the luciferase of Leach et al. This mutant was selected for use as an original template in some of the Examples because it is approximately 5 times brighter *in vivo*, than the form reported by Leach et al. which allowed for more efficient screening by the assay. These sequences show changes from the starting sequence (T249M) by underlining. Note that "x" in the sequence denotes an ambiguity in the sequence.

20

Directed Evolution. A Recursive Process

10

15

20

25

30

Directed evolution is a recursive process of creating diversity through mutagenesis and screening for desired changes. For enzymological properties that result from the cumulative action of multiple amino acids, directed evolution provides a means to alter these properties. Each step of the process typically produces small changes in enzyme function, but the cumulative effect of many rounds of this process can lead to substantial overall change.

The characteristic, "thermostability" is a candidate for directed evolution because it is determined by the combined action of many of the amino acids making up the enzyme structure. Luminescence output and efficiency of substrate binding of the modified luciferase were also screened. This was to ensure that changes in thermostability did not also produce undesirable changes in other important enzymological properties.

Because the frequency of deleterious mutations is much greater than useful mutations, it is likely that undesirable clones are selected in each screen within the precision limits of the present invention. To compensate for this, the screening strategy incorporated multiple re-screens of the initially selected mutations. However, before re-screening, the selected mutations were "shuffled" to create a library of random intragenetic recombinations. This process allows beneficial mutations among different clones to be recombined together into fewer common coding sequences, and unlinks deleterious mutations to be segregated and omitted. Thus, although essentially the same set of selected mutations was screened again, they were screened under different permutations as a result of the recombination or shuffling.

Although results of each step of the evolutionary process were assayed by quantitative measurements, these measurements were mutually made in cell lysates rather than in purified enzymes. Furthermore, each step only measured changes in enzyme performance relative to the prior step, so global changes in enzyme function were difficult to judge.

Table 1 summarizes the characteristics of various clones obtained using the methods of the invention.

21

Table 1

	Control is	Luc39-5B	10 at 51°C			
	Experiment		Luminescence	Enzyme		Signal
		ID	(Li)	stability	binding	stability
5	40	0a7	1.04	(tau)	(Km)	(S)
J	40			4.5	0.78	1
		5h4	1.29	1.61	1.16	0.953
	40	0c2	1.13	1.54	0.91	0.998
	40	5g4	1	1.4	0.85	1
10	40	6d3	1.02	1.37	0.79	1
10	40	1g4	1.06	1.28	0.77	0.985
	40	ld4	1.69	1.23	0.73	1
	40	0h9	1.26	1.21	0.63	0.998
	40	2f6	3	1.07	0.49	0.981
	40	7d6	3.09	1.058	1.09	1.013
15	40	5a7	4.3	1.025	0.93	1.008
	40	4c8	1	1	0.33	1.004
	Experiment	Clone ID	Li	tau	Km	S
	41	7h7	0.73	2.4	2.1	0.995
20	41	5a5	0.77	1.93	2.7	1.002
	41	2c12	1.06	1.7	0.91	1.003
	41	6e5-	1.16	1.62	1.53	0.997
	41	4e5-	1.08	1.37	1.4	1.004
	. 41	6g7	1.3	1.27	1.39	0.999
25	41	lh4	1.36	1.24	0.56	0.994
	41	0c11	4.1	1.23	1.24	0.996
	41	· 2h9	5.3	1.01	0.83	0.986
	42	6b10	0.97	3.6	0.97	0.997
	42	1c3	0.91	2.1	0.6	0.998
30	42	7h9	0.8	1.8	0.8	0.982
	42	6b2	0.77	1.72	0.8	0.978
	42	6d6	0.83	1.7	0.733	0.975
	42	4e10-	0.77	1.63	1.8	0.954
	42	1b5	0.83	1.41	1.05	0.955
35	42	6e6-	0.71	1.16	0.89	0.955

42	3a9	0.85	1.3	0.86	0.997
42	6b6	2.7	1.3	0.91	1.02
42	6e9-	1.5	1.27	0.98	. 1.01
42	3h11	1.73	1.21	0.63	0.985
42	1a2	1.11	1.17	0.77	1.005
42	3f7	0.49	1.16	1.13	0.944
42	la4	2	1.01	0.76	0.996

Control	ie I	mc40.	.0A7	at 54°C	7
Common	1 15 1		~~ /	al 34 L	

Experiment	Clone ID	Li	tau	Km	S
46	2h3	0.86	6.4	0.37	0.96
46	4a9	0.67	5.7	0.66	0.997
46	2g4	0.65	5.3	0.78	0.96
46	5d12	0.94	4.9	0.94	1.002
46	1h11	1.02	4.8	0.84	0.998
46	5a10	1.23	4.4	0.81	0.9842
46	0a8	1.35	4.3	0.89	1
46	4d3	0.51	3.6	0.65	0.975
46	2a3	1.17	2.9	0.57	0.988
46	3b11	1.39	2.5	0.63	1.02
46	7g12	1.49	2.5	0.91	1.02
46	0g9	1.86	2.25	0.5	0.998
46	7h8	1.07	1.36	0.52	0.99
46	1g8	0.3	1.31	0.72	0.92
46	1d3	1.74	1.13	1.02	1.001
46	0c3	1.68	1.01	0.74	1.01
46	5c11	0.82	1.01	0.6	0.95

Control is Luc46-2H3 at 54°C

Experiment	Clone ID	Li	tau	Km	S
49	6c10	0.57	2.2	0.98	1
49	7c6	1.12	1.9	0.93	1.01
49	0g12	1	1.58	0.69	1.08
49	7a5	1.08	1.44	1.1	0.99

49	1 f6	0.66	1.13	1.04	1.006
49	0b5	0.76	1.07	1.03	0.98
49	4a3	0.94	1.06	0.77	1

Contro	1	:-	T	0 1	706	-	5600
Commo		15	Luca	7-	/ CO	aı	JU C

Experiment	Clone ID	Li	tau	Km	S
56	2d12	0.97	2.9	0.29	1.006
56	5g10	1.01	2.77	0.64	1.007
56	3d5	1.32	2.25	1.85	1.0

Experiment	Clone	Li	tau	Km	S
,	ID				
. 57	3d1	1.06	2.9	1.05	1.02
57	6g12	1	2.7	0.87	1.004
57	4c1	0.79	2.6	0.93	1.014
57	5f10	0.72	1.9	0.64	1.03
57	1e6-	0.84	1.49	0.984	0.9871
57	1h2	0.94	1.43	0.68	0.991
57	2a6	1.08	1.08	0.89	0.9976

Experiment	Clone ID	Li	tau	Ķm	S
58	1 g 6	1.57	8.9	1.78	1.02
58	0a5	1.53	8.5	1.56	1.05
58	lbl	0.84	8.5	[,] 0.6	1.04
. 58	3g1	1	7.34	0.62	1.006
58	0f3	1.31	6.9	0.57	0.98
58	3e12-	1.06	6.3	0.47	0.996
58	0c7	1.9	4	0.64	1.06
58	0 d1	1.03	3.76	0.49	1.03
58	3c7	1.49	3.4	0.55	1.04
58	2a2	1.4	2.2	0.5	1.05
58	2a8	3.2	. 2	0.81	1.05
58	0f2	2.2	1.92	0.45	1.04

58	1b4	5.1	1.87	1.08	1.09
58	2b3	2.7	1.55	0.57	1.04
58	4g1	4.9	1.2	0.72	1.06

Control	ic	Tuc58	.Λ Δ 5	at	58°C
Connor	13	Lucjo-	יעתטי	aι	JU C

Experiment	Clone ID	Li	tau	Km	S
61	4e9-	1.03	1.84	0.76	1.01
61	lfl	1.02	1.43	0.7	1
61	2e12-	1.56	1.34	0.48	1.003
61	2f2	1.5	1.3	0.32	1.01
61	6b4	1.2	1.26	0.88	0.98
61	4c10	1.46	1.12	1.06	0.99
61	4g11	1.31	1.03	. 1.43	1.03
61	2fl	1.41	1.02	0.79	0.995
61	2g1	1.3	1	1.17	1

	Experiment	Clone ID	Li	tau	Km	S
20	65	6g12	0.87	2.3	0.73	0.9605
	65	1h6	0.84	2.2	1.62	0.9598
	65	7f5	1.2	1.56	2.07	1.0087
	65	5g5	2.3	1.49	0.45	0.9985
	65	7h2	1.56	1.27	0.91	1.0658
25	65	7ь2	1.98	1.16	0.6	0.9289
	65	0g9	1.36	1.09	1.46	0.9927
	65	6c7	1.48	1.06	0.86	0.9967
	65	1e12-	1.59	1.05	1.03	0.9582
	65	4e2-	1.21	1.05	1.11	0.943
30	65	6a10	1.7	1.04	0.93	0.992
	65	4b9	1.48	1.04	1.61	1.0009
	65	6c1	1.36	1.02	0.72	0.9978

35	Experiment	Clone	Li	tau	Km	S
		TD.				

_					
68	2g6	1.39	3.9	1.17	0.9955
68	4g3	2	2.5	0.27	0.9927
68	5a3	1.04	1.64	0.65	0.8984
68	2b7	1.04	1.64	5.2	0.9237
68	5d10	2.75	1.36	0.73	1.0078
68	7d12	1.85	1.32	0.66	1.0084
68	7b9	1.8	1.19	0.56	1.0052
68	7b3	1.2	1.16	0.55	0.9951
68	1g10	1.48	1.05	1.22	1.0025

Experiment	Clone ID	Li	tau	Km	S
70	2a7	1.94	4.6	0.7	1.0015
70	3d6	3.5	4.2	0.18	1.03
70	4f8	1.87	4.2	0.69	0.9979
70	7h5	2.4	2.6	0.18	1
70	5h6	3.1	2.3	0.6	0.999
70	7d6	3	2.2	2.29	0.9989
70	5a3	3.1	1.5	0.18	1.0058
70	7d2	2.5	1.4	0.66	1.0126
70	3h7	3.2	1.22	0.23	1.002
70	0h5	2.5	1.15	0.36	0.9992
70	0d7	1.86	1	1.83	0.993
70	1g12	2.42	1	0.26	0.965

Experiment	Clone ID	Li	tau	Km	S
71	1d10	1.6	4.5	1.06	1.0065
71	6f11	1.8	4.3	0.98	0.953
71	7h4	3.4	3.6	0.56	1.0045
71	4h3	3.1	3.1	0.42	1.0171
71	1h5	1.31	3.01	1.31	0.9421
71	5e4-	5.4	2.3	0.35	0.994
71	5c1	2.2	2.3	0.89	0.9746
71	0h7	3.6	1.8	0.59	1.0197

71	6h9	23.7	1.71	0.91	1.0064
71	7e3-	5.3	1.7	0.7	1.0028
71	5d4	11.1	1.48	0.35	1.0213
71	2e3-	4	1.47	0.45	0.9654
71	6h11	17.7	1.15	2.8	1.0064
71	2e10-	3	1.1	0.66	0.9588
71	2g2	4.4	1.01	0.44	1.0046

10 Control is Luc71-5D4 at 60°C

Experiment	Clone ID	Li	tau	Km	S
72	2g6	0.38	3.1	1.58	1.0052
72	5f12	0.81	1.53	1.02	0.9678
72	0d7	0.76	1.44	1.4	0.9838
72	5c12	0.87	1.43	1.04	0.9718
. 72	lel-	1.04	1.41	1.15	0.9956
72	5b12	0.83	1.41	1.02	0.9731
72	0 ь 7	1.11	1.04	0.91	1.0049
72	3b4	0.49	1.03	2.2	0.9581

Experiment	Clone ID	Li	tau	Km	S
73	2h8	0.85	1.9	1.08	1.0123
73	4e6-	0.95	1.76	0.94	0.9939
73	3g8	0.86	1.53	1.04	1
73	1g3	1.7	1.14	0.97	0.9921

Experiment	Clone ID	Li	tau	Km	S
74	2a9	0.96	1.77	0.86	0.999
74	4e10-	0.8	1.36	1.33	0.09897
74	0d5	1.69	1.28	0.61	0.9927
74	6g7	1.75	1.07	1.33	1.0022
74	5d8	0.46	1.06	0.95	0.899
74	5e7-	1.22	1.05	0.87	0.9977

27

	74	6e1-	1.19	1.02	0.96	0.999
	Experiment	Clone ID	Li	tau	Km	S
5	76	6c3	2.3	6.4	1.2	0.9865
	76	2a9	0.93	4.7	1.08	0.999
	76	3h9	1.26	2.6	1.02	0.9973
	76	0b10	1.52	2.4	1.4	0.992
	76	0h9	1.71	1.44	1.05	1.018
10	76	2e9-	0.44	1.15	1.2	0.9318
	76	0e10-	1.67	1.1	1.02	1.014
	76	0c10	1.13	1.05	1	0.9974
	76	3e8-	1.35	1.03	1.1	0.9894
	76	0d12	0.69	1	0.92	0.932
15	76	0f10	0.62	1	1.2	0.9478

Experiment Clone Li Km S tau ID78 lel-0.54 8.9 1.15 0.9877 20 78 1.4 0h7 0.97 1.014 5 78 0a6 4.3 0.9967 1.5 78 1.93 0b10 2 0.9926 1 78 0.91 0f11 0.9905 1.6 2 78 1.7 3f1 0.9936 2.4 1.09 25 78 2b4 1.97 1.0094 1.36 0.98 78 5b3 3.2 1.19 0.9735 1.03 78 2g12 2.5 1.03 1.0134 0h2 1.6 1.15 1.0168

30

Control is Luc78-0B10 at 62°C

Experiment	Clone ID	Li	tau	Km	S
82	2g12	0.9811	2.09	0.8851	0.9939
82	4b9	1.0845	1.8419	0.8439	1.0078
82	041	0.7622	1 5171	1 11	0 9998

82	3g1	0.8805	1.504	0.9629	0.9927
82	1d1	0.9741	1.4497	0.8936	0.9986
82	1e8-	0.8206	1.4433	0.9876	0.9968
82	0h9	1.1355	1.3626	0.9171	1.0094
82	2c6	1.0931	1.3402	0.9482	1.0022
82	3g9	1.0364	1.251	0.968	1.0009
82	4h8	0.8816	1.1667	0.9165	1.0045
82	0a10	1.0535	1.1128	1.0413	1
82	4gl	1.4305	1.0862	1.1734	1.0059

.

Experiment	ID		tau	Km	2
84(121)	6h7	0.3755	29.3639	2.3636	0.8905
84(121)	2h9	0.4264	28.7958	1.819	0.904
84(121)	3f7	0.4161	25.3058	1.8079	0.8988
84(121)	2h10	0.9667	14.4658	0.8073	0.9947
84(121)	3a2	0.3329	12.6	2.5444	0.855
84(121)	3a6	1.2299	7.2384	0.7866	1.0046
84(121)	5b12	1:0535	6.0315	0.7824	1.0056
84(121)	5a7	1.0413	4.9054	0.8864	1.0071
84(121)	3d2	0.2032	4.8	2.4623	0.7973
84(121)	2a9	1.0847	4.7486	0.7746	1.0051
84(121)	5ell-	1.1918	4.0988	0.872	1.008
84(121)	7h2	0.9115	3.9929	0.909	1.0077
84(121)	3b5	1.2014	3.8251	0.7509	1.0086
84(121)	1 f8	1.07	3.06	0.8276	1.0093
84(121)	2e2-	1.4356	1.9315	0.7863	1.0175

Control is	Luc84-3A6	at 64°C			
Experimer	t Clone ID	Li	tau	Km	S
85(86) 2a2	0.2266	12.9013	3.326	0.8705
85(86) 4f12	1.1167	4.7851	0.7439	1.0092
85(86) 4e9-	1.0869	4.4953	0.8539	1.0068
85(86) lfl1	0.6994	4.0976	0.842	1.0124

85(86)	5a4	1.2273	4.09	0.9683	1.0098
85(86)	3e10-	0.8902	3.5342	0.8106	1.0069
85(86)	3e12-	1.0512	3.4883	0.853	1.0054
85(86)	5e4-	0.9562	3.3886	1.0328	1.0069
85(86)	0e6-	0.1494	3.0145	3.6293	0.8269
85(86)	6b1	0.7615	2.5712	0.8695	1.0055
85(86)	6h7	1.0285	2.5401	0.8963	1.0057
85(86)	4b11	0.9816	2.3899	0.7927	1.0063
85(86)	6d7	1.1087	2.0607	0.9042	1.0088
85(86)	2e10-	0.3028	2.0603	1.9649	0.8738
85(86)	2a9	1.448	1.1819	0.9722	1.0046

Control is Luc85-4F12 at 65°C

5

10

20

25

15	Experiment	Clone ID	Li	tau	Km	S
	88	3c1	1.4439	2.0938	0.9874	0.9976
	88	6g1	1.0184	1.2665	1.2184	1.0019
	88	3e4-	1.331	1.0996	1.0669	0.9983

Experiment Clone S Li tau Km ID 1.2565 2.4796 1.0338 0.997 89 1a4 89 3b1 0.7337 1.9976 0.9628 1.0001 1.0505 89 2b12 1.8496 1.0069 1.0012 0b5 1.5671 89 1.0912 0.9995 1.1362 89 1.1018 0.9804 0.996 1fl 1.378 89 1.4637 1.0894 0.9189 2fl 0.9992

30	Experiment	Clone ID	Li	tau	Km	S
	90	0fl	1.4081	1.3632	1.027	0.9987
	90	1b5	1.4743	1.1154	1.0812	1.0011
	90	6g5	1.2756	1.0605	1.0462	1.0012
	90	5e6-	1.0556	1.0569	1.1037	1.0011
35	90	4e3-	1.2934	1.0291	1.0733	1.0002

To evaluate the impact of directed evolution on enzyme function, clones from the beginning, middle and end of the process (Table 2) were purified and analyzed. The clones selected for this analysis were Luc[T249M], Luc49-7C6, and Luc78-0B10. Another clone, Luc90-1B5, created by a subsequent strategy of oligonucleotide-directed mutagenesis and screening was also purified for analysis.

Table 2: Thermostability Of Luciferase Activity At Different Temperatures (Half-Life In Hours)

·	Room Temperature*	37°C	50°C	60°C
Luc[T249M]	110	0.59	0.01	
Luc49-7C6	430	68	31	6.3
Luc78-0B10	3000	220	47	15

15 * about 25°C

10

The effect of directed evolution on thermostability was dramatic. At high temperatures, where the parent clone was inactivated almost instantaneously, the mutant enzymes from the related clones showed thermostability over several hours (see also Table 1, and Figures 1-3, 5-8, 11, 13, 50-52 and 60). Even at 20 room temperature, these mutants are several fold more thermostable than the parent enzyme (see also Figures 4, 9-10, 12, 53, and 62). Subsequent analysis of Luc90-1B5 showed this enzyme to be even more thermostable, having a half-life of 27 hours at 65°C when tested under the same buffer conditions (Figure 16A). 25 With some optimization of buffer conditions, this enzyme showed very little activity loss at 65°C over several hours (citrate buffer at pH 6.5; Figure 16A). This luciferase was stable at 22°C over several weeks when incubated at pH 6.5 (Figure 16B). At times over 100 days at 4°C, the mutant enzymes had increased thermostability. At times of less than 15 days at 4°C, the thermostabilities of the 30 mutants Luc49-7C6 and Luc78-0B10 were not distinguishable from the parent enzyme (Figure 49).

Kajiyama and Nakamo (1993) showed that a single amino acid substitution of A at position 217; to either I, L, or V, in the firefly luciferase from Luciola

lateralis, resulted in a luciferase having increased thermostability. Substitution with leucine produced a luciferase that maintained 70% of its activity after incubation for 1 hour at 50°C. All of the enzymes of the present invention created through directed evolution, are much more stable than this *L. lateralis* mutant. One clone, Luc90-1B5, maintains 75% activity after 120 hours (5 days) incubation under similar conditions (50°C, 25 mol/L citrate pH 6.5, 150 mmol/L NaCl, 1 mg/mL BSA, 0.1 mmol/L EDTA, 5% glycerol). Interestingly, the Luc*Ppe2* reported by Leach et al. already contains isoleucine at the homologous position described for the *L. lateralis* mutant.

Although thermostability was the characteristic of interest, clones were selected based on the other enzymological parameters in the screens. By selecting clones having greater luminescence expression, mutants were found that yielded greater luminescence intensity in colonies of *E. coli*. However, the process showed little ability to alter the kinetic profile of luminescence by the enzymes. This failure suggests that the ability to support steady-state luminescence is integral to the catalytic mechanism, and is not readily influenced by a cumulative effect of many amino acids.

10

15

Substrate binding was screened by measuring an apparent composite K_m (see Example 2) for luciferin and ATP. Although the apparent composite K_m remained relatively constant, later analysis showed that the individual K_m 's systematically changed. The K_m for luciferin rose while the K_m for ATP declined (Table 3). The reason for this change is unknown, although it can be speculated that more efficient release of oxyluciferin or luciferin inhibitors could lead to more rapid enzyme turnover.

Each point mutation, on its own, increases (to a greater or lesser extent) the thermostability of the mutant enzyme relative to the wild-type luciferase.

The cumulative effect of combining individual point mutations yields mutant luciferases whose thermostability is greatly increased from the wild-type, often on the order of a magnitude or more.

Table 3: Michaelis-Menten Constants for Mutants Created by Directed Evolution

		K _m -luciferin	K_m -ATP
	Luc[T249M]	0.32 μΜ	18 µM
5	Luc49-7C6	0.99 μΜ	14 μM
	Luc78-0B10	1.6 μ M	3.4 μM
	Luc90-1B5	2.2 μΜ	3.0 µM

The following examples illustrate the methods and compositions of the present invention and their embodiments.

EXAMPLE 1

Producing Thermostable Luciferases Of The Present Invention Mutagenesis Method.

An illustrative mutagenesis strategy is as follows: From the "best" wildtype luciferase clone, that is a clone with increased thermostability and not
appreciably diminished values for other parameters, random mutagenesis was
performed by three variations of error-prone PCR. From each cycle of random
mutagenesis, 18 of the best clones were selected. DNA was prepared from these
clones yielding a total of 54 clones. These clones represent new genetic
diversity.

These 54 clones were combined and recombination mutagenesis was performed. The 18 best clones from this population were selected.

These 18 clones were combined with the 18 clones of the previous

25 population and recombination mutagenesis was performed. From this screening,
a new luciferase population of 18 clones was selected representing 6 groups of
functional properties.

In this screening the new mutations of the selected 54 clones, either in their original sequence configurations or in recombinants thereof, were screened a second time. Each mutation was analyzed on the average about 10 times. Of the 90 clones used in the recombination mutagenesis, it was likely that at least 10 were functionally equivalent to the best clone. Thus, the best clone or recombinants thereof should be screened at least 100 times. Since this was greater than the number of clones used in the recombination, there was

significant likelihood of finding productive recombination of the best clone with other clones.

Robotic Processing Methods.

Heat transfers were controlled in the robot process by using thick aluminum at many positions where the 96-well plates were placed by the robotic arm. For example, all shelves in the incubators or refrigerator were constructed from ¼ inch aluminum. One position in particular, located at room temperature, was constructed from a block of aluminum of dimensions 4.5 x 7 x 6.5 inches. When any 96-well plate was moved from a high temperature (e.g., incubators) or 10 low temperature (e.g., refrigerator) to a device at room temperature, it was first placed on the large aluminum block for temperature equilibration. By this means, the entire plate would rapidly reach the new temperature, thus minimizing unequal evaporation for the various wells in the plate due to temperature differences. Heat transfers in a stack of 96-well plates placed in an 15 incubator (e.g., for overnight growth of E. coli) were controlled by placing 1 mm thick sheets of aluminum between the plates. This allowed for more efficient heat transfer from the edges of the stack to the center. Mixing in the robotic process was controlled by having the plate placed on a shaker for several second after each reagent addition.

Please refer to Figure 14 for a schematic of the order in which the plates are analyzed and to Figure 15 for a robotic apparatus which can be programmed to perform the following functions:

1. Culture Dilution Method.

20

A plate with lid (Falcon 3075) containing cells (*E. coli* JM109) is placed on a shaker and mixed for 3-5 minutes.

A plate (with lid) is obtained from a carousel and placed in the reagent dispenser. 180 μ l of media (M9 minimal media) is added after removing the lid and placing on the locator near the pipetter. The plate is then placed in the pipetter.

The plate on the shaker is placed in the pipetter, and the lid removed and placed on the locator. Cells are transferred to the new plate using pipetting procedure (see "Dilution of Cells into New Cell Plate").

34

The lids are replaced onto both plates. The new plate is placed in the refrigerator and the old plate is returned to the carousel.

2. Luminescence Assay Method.

10

A plate containing cells is retrieved from the carousel and placed on the shaker for 3-5 minutes to fully mix the cells. The cells tend to settle from solution upon standing.

To measure Optical Density (O.D.), the plate is moved from the shaker to the locator near the luminometer; the lid is removed and the plate placed into the luminometer. The O.D. is measured using a 620 nm filter.

When it is finished, the plate is then placed in the refrigerator for storage.

The above steps are completed for all plates before proceeding with subsequent processing.

To prepare a cell lysate, the plate of cells is first retrieved from the refrigerator and mixed on the shaker to resuspend the cells. A new plate from the carousel without a lid is placed in the reagent dispenser and 20 μ l of Buffer A is added to each well. This is placed in the pipetting station.

The plate of cells in the shaker is placed in the pipetting station. A daughter plate is prepared using pipetting procedure (see "Pipetting Cells into the Lysis Plate") to prepare a daughter plate of cells.

After pipetting, the new daughter plate is placed on the shaker for mixing.

After mixing, the Lysate Plate is placed into a solid CO₂ freezing station to freeze the samples. The plate is then moved to the thaw block to thaw for 10 minutes.

The plate is then moved to the reagent dispenser to add 175 μl of Buffer B, and then mixed on the shaker for about 15 minutes or more. The combination of the freeze/thaw and Buffer B will cause the cells to lyse.

A new plate with a lid from the carousel is used to prepare the dilution plate from which all assays will be derived. The plate is placed in the reagent dispenser and the lid removed to the locator near the pipetter. 285 μ l of Buffer C is added to each well with the reagent dispenser, then the plate is placed in the pipetting station.

10

15

25

The Lysate Plate in the shaker is moved to the pipetting station and pipetting procedure (see "Dilution from Lysis Plate to Incubation Plate") is used. After pipetting, the new daughter plate is placed on the shaker for mixing. The Lysate Plate is discarded.

Two white assay plates (Labsystems #9502887) are obtained from the plate feeder and placed in the pipetter. The incubation plate from the shaker is placed in the pipetter, and the lid removed and placed on the nearby locator. Two daughter plates are made using the pipetting procedure (see "Create Pair of Daughter Plates from Incubation Plate"). Afterwards, the lid is replaced on the parent plate, and the plate is placed in a high temperature incubator. [ranging from 31°C to about 65°C depending on the clone.]

One daughter plate is placed in the luminometer and the 1X assay method is used. After the assay, the plate is placed in the ambient incubator, and the second daughter plate is placed in the luminometer. For the second plate, the 0.02X assay method is used. This plate is discarded, and the first plate is returned from the incubator to the luminometer. The repeat assay method is used (i.e., no reagent is injected). Afterwards, the plate is again returned to the ambient incubator.

The above steps are completed for all plates before proceeding with 20 processing.

To begin the second set of measurements, the plate from the high temperature incubator is placed in the shaker to mix.

The plate in the ambient incubator is returned to the luminometer and the repeat assay method is again used. The plate is returned afterwards to the ambient incubator.

Two white assay plates again are obtained from the plate feeder and placed in the pipetter. The plate on the shaker is placed in the pipetter, and the lid removed and placed on the nearby locator. Two daughter plates are again made using the pipetting procedure (see "Create Pair of Daughter Plates from Incubation Plate"). Afterwards, the lid is replaced on the parent plate, and the plate is returned to the high temperature incubator.

One daughter plate is placed in the luminometer and the 1X assay method is again used. The plate is discarded after the assay. The second daughter plate is

then placed in the luminometer and the 0.06X assay method is used. This plate is also discarded.

The above steps are completed for all plates before proceeding with processing.

In the final set of measurements, the plate from the high temperature incubator is again placed in the shaker to mix.

The plate in the ambient incubator is returned to the luminometer and the repeat assay method is again used. The plate is discarded afterwards.

One white assay plate is taken from the plate feeder and placed in the pipetter. The plate from the shaker is placed in the pipetter, and the lid removed and placed on the nearby locator. One daughter plate is made using the pipetting procedure (see "Create Single Daughter Plate from Incubation Plate"). The lid is replaced on the parent plate and the plate is discarded.

The daughter plate is placed in the luminometer and the 1X assay method is used. The plate is discarded after the assay.

Buffers and Assay Reagents

Buffer A: 325 mM K₂HPO₂; 6.5 mM CDTA; 0.1% Triton X-100

Buffer B: 1X CCLR (Promega E153A); 1.25 mg/ml lysozyme; 0.04%

20 gelatin

Buffer C: 10 mM HEPES; 150 mM NaCl; 1 mg/ml BSA; 5% glycerol;

0.1 mM EDTA

1X Assay reagent: 5 μM Luciferin; 175 μM ATP; 20 mM Tricine, pH

8.0; 0.1 mM EDTA

25 0.02X Assay reagent: 1:50 dilution of 1X Assay reagent

0.06X Assay reagent: 1:16.7 dilution of 1X Assay reagent

Pipetting Procedures

A. Pipetting Cells Into the Lysis Plate

30 Non-aseptic procedure using fixed tips

On the pipetter deck:

-place a plate containing approximately 200 μ l JM109 cells per well without lid

-Lysate Plate containing 20 µl of Buffer A

Procedure:

- 1. Move the tips to the washing station and wash with 1 ml.
- 2. Move to the cell plate and withdraw 60 µl.
- 5 3. Move to the Lysate Plate and dispense 45 μl.
 - 4. Repeat steps 1-3 for all 96 samples.
 - 5. At the conclusion of the procedure, step 1 is repeated to clean the tips.

Post-procedure:

- Place Lysate Plate onto the shaker.
- Place lid on plate with cells and place on carousel.
 - Place Lysate Plate into the CO₂ freezer.

B. Dilution From Lysis Plate to Incubation Plate

On the pipetter deck:

- Lysate Plate containing 240 μl of lysate
 - Incubation Plate without lid containing 285 µl of Buffer C

Procedure:

- 1. Move the tips to the washing station and wash with 0.5 ml.
- 2. Move to the Lysate Plate and withdraw 30 µl.
- 3. Move to the Incubation Plate and dispense 15 μl by direct contact with the buffer solution.
 - 4. Repeat steps 1-3 for all 96 samples.
 - 5. At the conclusion of the procedure, step 1 is repeated to clean the tips.

Post-procedure:

- Place Incubation Plate on shaker.
 - Discard Lysate Plate.

C. Create Pair of Daughter Plates From Incubation Plate

This procedure is done twice

- 30 On the pipetter deck:
 - Incubation Plate containing 100-300 µl of solution without lid
 - Two empty Assay Plates (white)

Procedure:

- 1. Move the tips to the washing station and wash with 0.5 ml.
- 2. Move to the Incubation Plate and withdraw 50 μl.
- 3. Move to the first Assay Plate and dispense 20 µl.
- Move to the second Assay Plate and dispense 20 μl.
 - 5. Repeat steps 1-4 for all 96 samples.
 - 6. At the conclusion of the procedure, step 1 is repeated to clean the tips.

Post-procedure:

- 1. Replace lid on Incubation Plate.
- 10 2. Place Incubation Plate in incubator.
 - 3. Place first Assay Plate in luminometer.
 - 4. Place second Assay Plate on carousel.

D. Create Single Daughter Plate From Incubation Plate

- On the pipetter deck:
 - Place incubation Plate containing 100-300 µl of solution without lid and
 - Empty Assay Plate (white)

Procedure:

- 1. Move the tips to the washing station and wash with 0.5 ml.
- 20 2. Move to the Incubation Plate and withdraw 40 μ l.
 - 3. Move to the Assay Plate and dispense 20 µl.
 - 4. Repeat steps 1-3 for all 96 samples.
 - 5. At the conclusion of the procedure, step 1 is repeated to clean the tips.

Post-procedure:

- Discard Incubation Plate and lid on Incubation Plate.
 - Place Assay Plate in luminometer.

E. Dilution of Cells Into New Cell Plate

Aseptic procedure using fixed tips

- 30 On the pipetter deck:
 - plate containing approximately 200 µl of cells without lid
 - new cell plate containing 180 µl of Growth Medium without lid

Procedure:

- 1. Move to the cell plate and withdraw 45 μl.
- 2. Move to the Cell Plate and dispense 20 μ l volume by direct liquid-to-liquid transfer.
- 5 3. Move to waste reservoir and expel excess cells.
 - 4. Move to isopropanol wash station aspirate isopropanol to sterilize tips.
 - 5. Move to wash station, expel isopropanol and wash tips.
 - 6. Repeat steps 1-4 for all 96 samples.

Post-procedure:

- Replace lid on original plate of cells and place onto carousel.
 - Replace lid on new cell plate and place into refrigerator.

Notes:

This procedure is used to prepare the cell plates used in the main analysis procedure. 180 µl of M9 minimal growth medium is added by the reagent dispenser to each of the new cell plates just prior to initiating the pipetting procedure. The dispenser is flushed with 75% isopropanol before priming with medium. The medium also contains selective antibiotics to reduce potential contamination.

20 Luminometer Procedures

- A. 1X Assay Method
 - 1. Place plate into luminometer.
 - 2. Inject 100 µl of 1X Assay reagent.
 - 3. Measure luminescence for 1 to 3 seconds.
- 25 4. Repeat for next well.
 - 5. Continue until all wells are measured.

B. <u>0.02X Assay Method</u>

- 1. Place plate into luminometer.
- 30 2. Inject 100 μl of 0.02X Assay reagent.
 - 3. Measure luminescence for 1 to 3 seconds.
 - 4. Repeat for next well.
 - 5. Continue until all wells are measured.

40

C. 0.06X Assay Method

- 1. Place plate into luminometer.
- 2. Inject 100 µl of 0.06X Assay reagent.
- 3. Measure luminescence for 1 to 3 seconds.
- 5 4. Repeat for next well.
 - 5. Continue until all wells are measured.

D. Repeat Assay

- 1. Place plate into luminometer.
- 10 2. Measure luminescence for 1 to 3 seconds.
 - 3. Repeat for next well.
 - 4. Continue until all wells are measured.

In Vivo Selection Method

15 Five to seven nitrocellulose disks having 200-500 colonies per disk (1000-3500 colonies total) are screened per 2 microplates (176 clones) (Wood and DeLuca, 1987). The clones are screened at high temperatures using standard screening conditions.

Eight positions in each microplate are reserved from a reference clone using the "best" luciferase (the parent clone for random mutagenesis and codon mutagenesis). The positions of the reserved wells is shown as "X" below.

The reference clones are made by placing colonies from DNA transformed from the parent clone into the reference wells. To identify these

25

wells prior to inoculation of the microplate, the wells are marked with a black marking pen on the bottom of each well.

Screening Selection Criteria

The following criteria were used for screening purposes. The temperature chosen for the enzyme stability parameter was such that the parent enzyme would decay 100 to 1000 fold over 10 hours (see Table 1). Criteria 1 is achieved manually; data for criteria 2-6 is generated by robotic analysis. For all criteria, the maximum value as described is selected.

- 1. In vivo screen. The brightest clones are selected at a given temperature.
 - Expression/specific activity. The value for normalized luminescence is calculated as the ratio of luminescence to optical density. The value is reported as the ratio with the reference value.
- Enzyme stability. Measurements of normalized luminescence of the incubated samples (3 taken over about 15 hours) are fitted to ln(L) = ln(L₀)-(t/τ), where L is normalized luminescence and t is time. τ is a measure of the enzyme stability. The value is reported as the ratio with the reference value, and the correlation coefficients are calculated.
 - 4. Substrate binding. Measurements of normalized luminescence with 1X and 0.02X are taken at the initial reading set, and 1X and 0.06X are taken at the 5 hour set. The ratio of the 0.02X:1X and 0.06X:1X gives the relative luminescence at 0.02X and 0.06X concentrations. These values, along with the relative luminescence at 1X (i.e., 1), are fitted to a Lineweaver-Burk plot to yield the Km:app,total for the substrates ATP, luciferin, and CoA. The values are reported as the inverse ratio with the reference value, and the correlation coefficients are calculated.
- 30 Signal stability. The luminescence of the initial 1X luminescent reactions are re-measured 3 additional times over about 15 hours. These values are fitted to $ln(L) = ln(L_0) (t/\tau)$ and the integral over

t (15 hours) is calculated. Signal stability is then calculated as S = (1-

 $int(L)/L_0t)^2$. The values are reported as the inverse ratio with the reference value, and the correlation coefficients are calculated.

6. Composite fitness. The values of criteria 2 through 5 are combined into a single composite value of fitness (or commercial utility). This value is based on a judgment of the relative importance of the other criteria. This judgment is given below:

10	Criteria	Relative Value
	Enzyme Stability	5
	Signal Stability	2
	Substrate Binding	2
	Expression/Activity	1

15

5

The composite, $C = Sum(criteria\ 2-5\ weighted\ by\ relative\ value,\ e.g.,$ more weight is on stability because that was a major goal).

EXAMPLE 2

20

Software

Organize data into SOL database

Each file created by a luminometer (96 well, Anthos, Austria) represents the data from one microplate. These files are stored in the computer controlling the luminometer, and connected to the database computer by a network link.

From each microplate of samples, nine microplates are read by the luminometer (the original microplate for optical density and eight daughter microplates for luminescence).

Ninety files are created in total; each containing data sets for 96 samples. Each data set contains the sample number, time of each measurement relative to the first measurement of the plate, luminometer reading, and background corrected luminometer reading. Other file header information is also given. The time that each microplate is read is also needed for analysis. This can be obtained from the robot log or the file creation time. A naming convention for

15

20

25

the files is used by the robot during file creation that can be recognized by SQL (e.g. YYMMDDPR.DAT where YY is the year, MM is the month, DD is the day, P is the initial plate [0-9], and R is the reading [0-8]).

5 Data Reduction and Organization

Normalize luminescence data: For each measurement of luminescence in the eight daughter plates, the normalized luminescence is calculated by dividing the relative light units by the optical density of the original plate. If any value of normalized luminescence is less than zero, assign the value of 0.1 sL where sL is the standard deviation for measurements of normalized luminescence.

Calculate relative measurement time: For each normalized luminescence measurement, the time of the measurement is calculated relative to the first measurement of the sample. For example, the times of all luminescence measurements of sample B6 in plate 7 (i.e., 7:B06) are calculated relative to the first reading of 7:B06. This time calculation involves both the time when the plate is read and the relative time of when the sample is read in the plate.

Calculate enzyme stability (τ) : For each sample, use linear regression to fit $\ln(L_{1x}) = \ln(L_0)$ - (t/τ) using the three luminescence measurements with 1X substrate concentrations (Plates 1, 5, 8). Also calculate the regression coefficient.

Calculate substrate binding ($K_{m:app,total}$): Using microplates from the first set of readings (Plates 1 and 2), calculate the $L_{0.2x,rel}$ by dividing measurements made with substrate concentrations of 0.02X by those of 1X. Similarly, calculate the $L_{0.06x,rel}$ using microplates of the second set of readings (Plates 5 and 6), by dividing measurements made with substrate concentrations of 0.06X by those of 1X.

For each sample, use linear regression to fit $1/L = (K_{m:app,total}/L_{max:app})$ (1/[S])+(1/ $L_{max:app}$) using

20

25

30

 $K_{m:app,total}$ is calculated as the slope/intercept. Also calculate the regression coefficient.

Calculate signal stability (S): For each sample, use linear regression to fit $\ln(L) = \ln(L_0)$ - (t/τ) using the four luminescence measurements of the initial microplate with 1X substrate concentrations (Plates 1, 3, 4, and 7). Also calculate the regression coefficient. From the calculated values of τ and L_0 , calculate the integral of luminescence by $\inf(L) = \tau L_0 (1-\exp(-t/\tau))$, where t_i is the average time of the last measurement (e.g., 15 hours). The signal stability is calculated as $S = (1-\inf(L)/L_i t_i)^2$, where L_i is the initial measurement of normalized luminescence with 1x substrate concentration (Plate 1).

[Note: To correct for evaporation, an equation $S = (1+K-int(L)/L_it_j)^2$, may be used where 1/K = 2 (relative change of liquid volume at t_i).]

Calculate the reference value surfaces: A three dimensional coordinate system can be defined by using the grid positions of the samples within a microplate as the horizontal coordinates, and the calculated values for the samples (L_i , τ , $K_{m:app,total}$, or S) as the vertical coordinates. This three dimensional system is referred to as a "plate map". A smooth surface in the plate maps representing a reference level can be determined by least squares fit of the values determined for the 8 reference clones in each microplate. For each of the 10 initial microplates of samples, respective reference surfaces are determined for the criteria parameters L_i , τ $K_{m:app,total}$, and S (40 surfaces total).

In the least squares fit, the vertical coordinates (i.e., the criteria parameters) are the dependent variables, the horizontal coordinates are the independent variables. A first order surface (i.e., z = ax+by+c) is fitted to the values of the reference clones. After the surface is calculated, the residuals to each reference clone are calculated. If any of these residuals is outside of a given cutoff range, the reference surface is recalculated with omission of the aberrant reference clone.

If a first order surface does not sufficiently represent the values of the reference clones, a restricted second order surface is used (i.e., $z = a(x^2+ky^2)+bx+cy+d$, where k is a constant).

Calculate the reference-normalized values: For the criteria parameter of each sample, a reference-normalized value is determined by calculating the ratio

or inverse ratio with the respective reference value. The reference-normalized values are L_i/L_{ir} , τ/τ_r , $K_{mr}/K_{m:app,total}$, and S_r/S , where reference values are calculated from the equations of the appropriate reference surface.

Calculate the composite scores: For each sample, calculate

5
$$C = 5(\tau/\tau_r) + 2(S_r/S) + 2(K_{mr}/K_{m:app,total}) + (L_i/L_{ir}).$$

Determine subgroupings: For the criteria parameters L_i , τ , $K_{\text{m:app,total}}$, S, and C, delimiting values (i.e., bin sizes) for subgroupings are defined as gL, $g\tau$, gKm, gS, and gC. Starting with the highest values for L_i , τ , or C, or the lowest values of $K_{\text{m:app,total}}$ or S, the samples are assigned to bins for each criteria parameter (the first bin being #1, and so on).

Display sorted table of reference-normalized values: Present a table of data for each sample showing in each row the following data:

- sample identification number (e.g., 7:B06)
- composite score (C)
- reference-normalized enzyme stability (τ/τ_r)
 - correlation coefficient for enzyme stability
 - bin number for enzyme stability
 - reference-normalized signal stability (S, /S)
 - correlation coefficient for signal stability
- 20 bin number for signal stability
 - reference-normalized substrate binding (K_{mr} /K_{m:app lotal})
 - correlation coefficient for substrate binding
 - bin number for substrate binding
 - reference-normalized expression/specific activity (L_i/L_i)
- 25 bin number for expression/specific activity

The table is sorted by the composite score (C).

Present sorted table of criteria parameters.

Present a table of data for each sample showing in each row the following data:

- sample identification number
 - composite score (C)
 - enzyme stability (τ)
 - correlation coefficient for enzyme stability

- bin number for enzyme stability
- signal stability (S)
- correlation coefficient for signal stability
- bin number for signal stability
- 5 substrate binding (K_{m:ann,total})
 - correlation coefficient for substrate binding
 - bin number for substrate binding
 - expression/specific activity (L_i)
 - bin number for expression/specific activity
- The table is sorted by the composite score (C); the reference clones are excluded from the table. Same entry coding by standard deviation as described above.

Present sorted table of reference-normalized values

This is the same procedure as the final step of the data reduction

- 15 procedure. The table will show:
 - sample identification number
 - composite score (C)
 - reference-normalized enzyme stability (τ/τ_r)
 - correlation coefficient for enzyme stability
- 20 bin number for enzyme stability
 - reference-normalized signal stability (S, /S)
 - correlation coefficient for signal stability
 - bin number for signal stability
 - reference-normalized substrate binding (K_{mr} /K_{m:app.total})
- correlation coefficient for substrate binding
 - bin number for substrate binding
 - reference-normalized expression/specific activity (L_i/L_{ir})
 - bin number for expression/specific activity

The table is sorted by the composite score (C); the reference clones are excluded from the table. Same entry coding by standard deviation as described above.

Present sorted table of criteria parameters for reference clones

This is the same procedure as described above for criteria parameters, except for only the reference clones. The table will show:

- sample identification number
- 5 composite score (C)
 - enzyme stability (τ)
 - correlation coefficient for enzyme stability
 - bin number for enzyme stability
 - signal stability (S)
- correlation coefficient for signal stability
 - bin number for signal stability
 - substrate binding (K_{m:app,total})
 - correlation coefficient for substrate binding
 - bin number for substrate binding
- expression/specific activity (L_i)
 - bin number for expression/specific activity

The table is sorted by the composite score (C). Same entry coding by standard deviation as described above.

Present sorted table of reference-normalized values

- This is the same procedure as described above for reference-normalized values, except for only the reference clones. The table will show:
 - sample identification number
 - composite score (C)
 - reference-normalized enzyme stability (τ/τ)
- 25 correlation coefficient for enzyme stability
 - bin number for enzyme stability
 - reference-normalized signal stability (S./S)
 - correlation coefficient for signal stability
 - bin number for signal stability
- reference-normalized substrate binding (K_{mr} /K_{m:app,total})
 - correlation coefficient for substrate binding
 - bin number for substrate binding
 - reference-normalized expression/specific activity (L_i/L_{ir})

- bin number for expression/specific activity

The table is sorted by the composite score (C). Same entry coding by standard deviation as described above.

Sort table

5 Any table may be sorted by any entries as primary and secondary key.

Display histogram of table

For any table, a histogram of criteria parameter vs. bin number may be displayed for any criteria parameter.

Display plate map

- For any plate, a plate map may be displayed showing a choice of:
 - any luminescence or optical density measurement
 - Li
 - L. reference surface
 - $-L_i/L_{ir}$
- 15 τ
 - τ reference surface
 - τ/τ,
 - correlation coefficient of τ
 - S
- 20 S reference surface
 - S, /S
 - correlation coefficient of S
 - K_{m:app,total}
 - K reference surface
- 25 K_{mr} /K_{m:app,total}
 - correlation coefficient for $K_{m:app,total}$
 - composite score (C)

The plate maps are displayed as a three dimensional bar chart. Preferably, the bars representing the reference clones are indicated by color or some other

30 means.

Display drill-down summary of each entry

For L_i , τ , $K_{\text{m:app,total}}$, and S, any entry value in a table may be selected to display the luminescence and optical density reading underlying the value

calculation, and a graphical representation of the curve fit where appropriate.

Preferably the equations involved and the final result and correlation coefficient will also be displayed.

L_i.or L_i./L_r. Display the optical density and luminescence value from the chosen sample in Plate 0 and Plate 1.

 τ or τ/τ . Display the optical density and luminescence value from the chosen sample in Plate 0, Plate 1, Plate 5, and Plate 8. Display graph of $\ln(L1X)$ vs. t, showing data points and best line.

Sor S./S. Display the optical density and luminescence value from the chosen sample in Plate 0, Plate 1, Plate 3, Plate 4, and Plate 7. Display graph of ln(L) vs. t, showing data points and best line.

 $K_{\text{m:app,total}}$ or $K_{\text{mr}}/K_{\text{m:app,total}}$. Display the optical density and luminescence value from the chosen sample in Plate 0, Plate 1, Plate 2, Plate 5, and Plate 6. Display graph of 1/L vs. 1/[S], showing data points and best line.

15

20

25

EXAMPLE 3

Preparation Of Novel Luciferases

The gene shown in Figure 45 contains a single base pair mutation which encodes an amino acid substitution at position 249, T to M. This clone has a spectral maximum of 552 nm which is yellow shifted from the sequence of Luc. This mutant was selected as an original template because it produces about 5 times brighter luminosity *in vivo* which allowed for more efficient screening. C-terminus mutagenesis

To eliminate the peroxisome targeting signal (SKL), the L was mutated to a STOP codon and the 3 codons immediately upstream were randomized according to the oligonucleotide mutagenesis procedure described herein. The mutagenic oligonucleotide designed to accomplish this also introduces a unique SpeI site to allow mutant identification without sequencing. The mutants were screened *in vivo* and 13 colonies picked, 12 of which contained the SpeI site.

N-terminus mutagenesis

To test if expression could be improved, the 3 codons immediately downstream from the initiation Met were randomized as described herein. The mutagenic oligo designed to accomplish this also introduces a unique ApaI site

to allow mutant identification without sequencing. Seven clones were selected, and six of the isolated plasmids were confirmed to be mutants.

Shuffling of C- and N-terminus mutants

15

20

25

The C- and N-terminus mutagenesis were performed side-by-side. To

combine the N- and C-terminus mutations, selected clones from each
mutagenesis experiment were combined with the use of recombination
mutagenesis according to the recombination mutagenesis protocol described
herein. The shuffled mutants were subcloned into amp^S pRAM backbone and
screened in DH5 F'IQ (BRL; Hanahan, 1985). A total of 24 clones were picked,
only 4 contained both the N- and C- terminus mutations. These 4 clones were
used as templates for randomization of the cysteine positions in the gene.
Mutagenesis to randomize cysteine positions/Random mutagenesis and
recombination mutagenesis in the Luc gene

There are 7 cysteine positions in LucPpe2. It is known that these positions are susceptible to oxidation which could cause destabilization of the protein. Seven oligonucleotides were ordered to randomize the cysteine positions.

The oligonucleotides were organized into two groups based upon the conservation of cysteine in other luciferase genes from different families. Group 1 randomizes the conserved cysteine positions C-60, C-80, and C-162. Group 2 randomizes cysteines that are not strictly conserved at positions C-38, C-127, C-221, and C-257.

The four selected templates from the N- and C-terminus mutagenesis were sub-cloned into an ampicillin-sensitive backbone and single-stranded DNA was prepared for each of the templates. These templates were combined in equal amounts and oligonucleotide mutagenesis was completed as described herein. It was determined by plating an aliquot of the mutS transformation prior to overnight incubation that each of the 2 groups contained 2 x 10⁴ independent transformants. MutS-DNA was prepared for the 2 groups and was then transformed into JM109 cells for screening. Mutants from group 1 were screened *in vivo* and picks were made for a full robotic run. Five clones were selected that had improved characteristics. Mutants from group 2 were screened *in vivo* and picks were made for a full robotic run. The temperature incubator on

WO 01/20002

5

10

15

20

25

30

the robot was set at 33°C for this set of experiments. Ten clones were selected that had improved characteristics. The fifteen best picks from both groups of the cysteine mutagenesis experiments were shuffled together as described herein and 18 of the best clones were selected after robotic processing.

The "best" clone from the above experiment (Luc31-1G8) was selected as a template for subsequent rounds of mutagenesis. (The high temperature robot incubator temperature was set to 42°C.) Another complete round of mutagenesis was completed.

The 18 best clones from the above mutagenesis were picked and clone (Luc39-5B10) was selected as the best clone and was used as a template for another round of mutagenesis. (The high temperature robot incubator temperature was set at 49°C).

After this cycle, 6 of the best clones were selected for sequencing (the nucleotide sequence and inferred amino acid sequence of five of the clones is shown in Figures 22-26 and 27-31, respectively). Based upon the sequence data, nine positions were selected for randomization and seven oligos were designed to cover these positions. Based upon data generated from the robot, it was determined that the best clone from the group of six clones that were sequenced was clone (Luc49-7C6, Figures 22 and 27). The luciferase gene from this clone was sub-cloned into an ampicillin-sensitive pRAM backbone and single stranded DNA was prepared. The randomization of the selected positions was completed according to the oligonucleotide mutagenesis procedure listed herein.

The randomization oligonucleotides were divided into 4 groups, and transformants from these experiments were picked and two robotic runs were completed. Ten clones were selected from the two experiments. (The high temperature robot incubator temperature on robot was set at 56°C).

The best 10 picks from the above two experiments, and the best 18 picks from the previous population of clones were shuffled together (recombination mutagenesis protocol).

The 18 best clones were selected and clone Luc58-0A5 was determined to be the best clone. This clone was then used as a template for another round of mutagenesis. The high temperature robot incubator temperature was set at 58°C.

Clone Luc71-504 was selected as a new lead clone and another round of mutagenesis was completed. Incubator set at 60°C.

The best 18 picks were selected. The nucleotide sequence and inferred amino acid sequence of 4 clones from experiment 78 are shown in Figures 32-35 and 36-39, respectively, and the best clone from this group was determined to be clone Luc78-0B10. The thermostability of clones at various temperatures is presented in the Figures.

EXAMPLE 4

Mutagenesis Strategy from Clone Luc78-0B10 to Luc90-1B5

Twenty-three oligonucleotides were prepared to change 28 positions to consensus. All of the oligonucleotides were tested individually using oligonucleotide directed mutagenesis with single stranded DNA from clone *luc78-0B10* as a template to determine which oligonucleotides gave an improvement in thermostability. Table 4 lists the mutagenic oligonucleotides.

15

53

Table 4

	Description	OLIGO SYNTHESIS NUMBER	SEQ ID NO.
	A17 to T	6215	48
	M25 to L	6216	49
5	S36 to P; remove Nsi I site	6217	50
	A101 to V, S105 to N	6218	51
	I125 to V	6219	52
	K139 to Q	6220	53
	V145 to I	6221	54
10	V194 to I	6222	55
	V203 to L, S204 to P	6231	56
	A216 to V	6232	57
	A229 to Q	6233	58
	M249 to T (reversion)	6234*	59
15	T266 to R, K270 to E	6235	60
	E301 to D	6236	61
	N333 to P, F334 to G	6237	62
	R356 to K	6238	63
	I363 to V	6246	· 64
20	A393 to P	6247	65
	R417 to H	6248	66
	G482 to V	6249	67
	N492 to T	6250	68
	F499 to Y, S501 to A	6251	69
25	L517 to V	6252	70
	F537 to L	6253	71

^{*}Note that oligonucleotide #6234 does not change a consensus position. This oligonucleotide causes a reversion of position 249 to the wild-type Ppe-2 codon.

30 Although reversion of this position was shown to increase thermostability at 62°C, reversion of this position decreased light output.

Three oligonucleotide-directed mutagenesis experiments with clone luc78-0B10 as a template were completed. The oligonucleotides for these experiments were divided in the following manner:

a. 6215, 6234, 6236, 6248 (found to give increased thermostability)

b. 6215, 6217, 6218, 6219, 6220, 6221, 6222, 6231, 6233, 6234, 6236, 6238, 6247, 6248, 6249, 6251, 6253 (found to be neutral or have increased thermostability).

c. All 23 oligonucleotides.

Selections from the three experiments listed above were screened with the robotic screening procedure (experiment 84, see Table 1) using *luc78-0B10* as a control. Selections from experiment 84 were recombined using the recombination mutagenesis procedure and then screened with the robotic screening procedure (experiment 85).

Single stranded DNA was prepared from three clones, *luc85-3E12*, *luc85-4F12*, *luc85-5A4*. The nucleotide sequence and inferred amino acid sequence of *luc85-4F12* are shown in Figures 40 and 41, respectively. These clones were used as templates for oligonucleotide-directed mutagenesis to improve codon usage. Positions were selected based upon a codon usage table published in Nucleic Acids Research, vol. 18 (supplement) 1990, page 2402. The table below lists oligonucleotides that were used to improve codon usage in *E. coli*.

55

Table 5

	Description	Oligo Synthesis #	SEQ ID NO.
	L7(tta-ctg), remove Apa I site	6258	72
	L29(tta-ctg)	6259	73
5	T42(aca-acc)	6260	74
	L51, L56(tta-ctg), L58(ttg-ctg)	6261	75
	L71(tta-ctg)	6262	76
	L85(ttg-ctg)	6263	77
	L95(ttg-ctg), L97(ctt-ctg)	6273	78
10	L113, L117(tta-ctg)	6274	79
	L151, L153(tta-ctg)	6275	80
	L163(ctc-ctg)	6276	81
	R187(cga-cgt)	6277	82
	L237(tta-ctg)	6279	83
15	R260(cga-cgc)	6280	84
	L285, L290(tta-ctg), L286(ctt-ctg)	6281	85
	L308(tta-ctg)	6282	86
	L318(tta-ctg)	6283	· 87
	L341(tta-ctg), T342(aca-acc)	6284	88
20	L380(ttg-ctg)	6285	89
	L439(tta-ctg)	6286	90
	L456(ctc-ctg), L457(tta-ctg)	6293	91
	T506(aca-acc), L510(cta-ctg)	6305	92
	R530(aga-cgt)	6306	93

25

In the first experiment, the three templates listed above from experiment 85 were combined and used as a templates for oligonucleotide-directed mutagenesis. All of the oligonucleotides were combined in one experiment and clones resulting from oligonucleotide-directed mutagenesis were screened using 30 the robotic screening procedure as experiment 88. There were a low percentage of luminescent colonies that resulted from this experiment, so another oligonucleotide-directed mutagenesis experiment was completed in which the oligonucleotides were combined in the following groups:

a. 6258, 6273, 6280, 6286

³⁵ b. 6259, 6274, 6281, 6293

c. 6260, 6275, 6282, 6294

56

- d. 6261, 6276, 6283, 6305
- e. 6262, 6277, 6284, 9306
- f. 6263, 6279, 6285

It was discovered that samples from group b had a low number of luminescent colonies, and it was hypothesized that one of the oligonucleotides in group b was causing problems. Selections were made from all of the experiments with the exception of experiment b. Samples were then run through the robotic screening procedure (experiment 89). Selections from experiments 88 and 89 were shuffled together with the recombination mutagenesis protocol and were then screened with the robotic screening procedure (experiment 90).

Materials and Methods

A. Mutagenesis Protocol

- The mutant luciferases disclosed herein were produced via random mutagenesis with subsequent *in vivo* screening of the mutated genes for a plurality of characteristics including light output and thermostability of the encoded luciferase gene product. The mutagenesis was achieved by generally following a three-step method:
- Creating genetic diversity through random mutagenesis. Here, errorprone PCR of a starting sequence was used to create point mutations in the nucleotide sequence. Because error-prone PCR yields almost exclusively single point mutations in a DNA sequence, a theoretical maximum of 7 amino acid changes are possible per nucleotide mutation.
 In practice, however, approximately 6.1 amino acid changes per
 - In practice, however, approximately 6.1 amino acid changes per nucleotide is achievable. For the 550 amino acids in luciferase, approximately 3300 mutants are possible through point mutagenesis.
- Consolidating single point mutations through recombination
 mutagenesis. The genetic diversity created by the initial mutagenesis is
 recombined into a smaller number of clones by sPCR. This process not
 only reduces the number of mutant clones, but because the rate of
 mutagenesis is high, the probability of linkage to negative mutations is
 significant. Recombination mutagenesis unlinks positive mutations from

negative mutations. The mutations are "re-linked" into new genes by recombination mutagenesis to yield the new permutations. Then, after re-screening the recombination mutants, the genetic permutations that have the "negative mutations" are eliminated by not being selected. Recombination mutagenesis also serves as a secondary screen of the

- Recombination mutagenesis also serves as a secondary screen of the initial mutants prepared by error-prone PCR.
- 3. Broadening genetic diversity through random mutagenesis of selected codons. Because random point mutagenesis can only achieve a limited number of amino acid substitutions, complete randomization of selected codons is achieved by oligonucleotides mutagenesis. The codons to be mutated are selected from the results of the preceding mutagenesis processes on the assumption that for any given beneficial substitution, other alternative amino acid substitutions at the same positions may produce even greater benefits. The positions to be mutated are identified by DNA sequencing of selected clones.

B. <u>Initial mutagenesis experiments</u>

20

25

Both the N-terminus and the C-terminus of the starting sequence were modified by oligonucleotide-directed mutagenesis to optimize expression and remove the peroxisomal targeting sequence. At the N-terminus, nine bases downstream of the initiation codon were randomized. At the C-terminus, nine bases upstream of the termination codon were randomized. Mutants were analyzed using an *in vivo* screen, resulting in no significant change in expression.

Six clones from this screen were pooled, and used to mutate the codons for seven cysteines. These codons were randomized using oligonucleotide-directed mutagenesis, and the mutants were screened using the robotic screening procedure. From this screen, fifteen clones were selected for directed evolution.

C. Generating and Testing Clones

Several very powerful and widely known protocols are used to generate and test the clones of the present invention. Unless noted otherwise, these laboratory procedures are well known to one of skill in the art. Particularly noted as being well known to the skilled practitioner is the polymerase chain

20

30

reaction (PCR) devised by Mullis and various modifications to the standard PCR protocol (error-prone PCR, sPCR, and the like), DNA sequencing by any method (Sanger or Maxxam & Gilbert's methodology), amino acid sequencing by any method (e.g., the Edman degradation), and electrophoretic separation of polynucleotides and polypeptides/proteins.

D. <u>Vector Design</u>

A preferred vector (pRAM) (see Figure 20) used for the mutagenesis procedure contains several unique features that allow for the mutagenesis strategy to work efficiently:

The pRAM vector contains a filamentous phage origin, f1, which is necessary for the production of single-stranded DNA.

Two SfiI sites flank the gene. These sites were designed by so that the gene to be subcloned can only be inserted in the proper orientation.

15 The vector contains a *tac* promoter.

Templates to be used for oligonucleotide mutagenesis contain a 4 base-pair deletion in the *bla* gene which makes the vector ampicillin-sensitive. The oligonucleotide mutagenesis procedure uses a mutant oligonucleotide as well as an ampicillin repair oligonucleotide that restores function to the *bla* gene. This allows for the selection of a high percentage of mutants. (If selection is not used, it is difficult to obtain a high percentage of mutants.)

E. Uses of Luciferases

The mutant luciferases of the present invention are suitable for use in any application for which previously known luciferases were used, including the following:

ATP Assays. The greater enzyme stability means that reagents designed for detection of ATP have a greater shelf-life and operational-life at higher temperatures (e.g., room temperature). Therefore, a method of detecting ATP using luciferases with increased thermostability is novel and useful.

Luminescent labels for nucleic acids, proteins, or other molecules.

Analogous to advantages of the luciferases of the present invention for ATP assays, their greater shelf-life and operational-life is a benefit to the reliability

59

and reproducibility of luminescent labels. This is particularly advantageous for labeling nucleic acids in hybridization procedures where hybridization temperatures can be relatively high (e.g., greater than 40°C). Therefore, a method of labeling nucleic acids, proteins, or other molecules using luciferases of the present invention is novel and useful.

Genetic reporter. In the widespread application of luciferase as a genetic reporter, where detection of the reporter is used to infer the presence of another gene or process of interest, the increased thermostability of the luciferases provides less temperature dependence of its expression in living cells and in cell-free translations and transcription/translation systems. Therefore, a method using the luciferases of the present invention as genetic reporters is novel and useful.

Enzyme immobilization. Enzymes in close proximity to physical surfaces can be denatured by their interaction with that surface. The high density immobilization of luciferases onto a surface to provide strong localized luminescence is improved by using thermostable luciferases. Therefore, a method of immobilizing luciferases onto a solid surface using luciferases of the present invention is novel and useful.

15

25

Hybrid proteins. Hybrid proteins made by genetic fusion genes encoding luciferases and of other genes, or through a chemical coupling process, benefit by having a greater shelf-life and operational-life. Therefore, a method of producing hybrid proteins through genetic means or chemical coupling using the luciferases of the present invention is novel and useful.

High temperature reactions. The light intensity of a luciferase reaction increases with temperature until the luciferase begins to denature. Because the use of thermostable luciferases allows for use at greater reaction temperatures, the luciferases of the present invention are novel and useful for performing high temperature reactions.

Luminescent solutions. Luminescence has many general uses, including

educational, demonstrational, and entertainment purposes. These applications
benefit from having enzymes with greater shelf-life and operational-life.

Therefore, a method of making luminescent solutions using the luciferases of the present invention is novel and useful.

60

F. Firefly luciferase

The firefly luciferase gene chosen for directed evolution was Luc*Ppe2* isolated from *Photuris pennsylvanica*. The luciferase was cloned from fireflies collected in Maryland by Wood et al. and later was independently cloned by Dr.

Leach using fireflies collected in Oklahoma (Ye et al., 1997). A mutant of this luciferase (T249M) was made by Wood et al. and used in the present invention because it produced approximately 5-fold more light when expressed in colonies of *E. coli*.

Overview of Evolution Process: Directed evolution was achieved through a recursive process, each step consisting of multiple cycles of 1) creating mutational libraries of firefly luciferase followed by 2) screening the libraries to identify new mutant clones having a plurality of desired enzymological characteristics.

15 prone PCR (Fromant et al., 1995). Each library was screened first by visual evaluation of luminescence in colonies of E. coli (Wood and De Luca, 1987), and then by quantitative measurements of enzymological properties in E. coli cell lysates. Approximately 10,000 colonies were examined in the visual screen, from which 704 were selected for quantitative analysis. From each quantitative screen 18 clones were selected. The three sets of 18 clones each were pooled together, and a new mutational library was created using DNA shuffling to generate intragenetic recombinations (sPCR; Stemmer, 1994). The results were screened to yield another set of 18 clones. The entire process was completed by combining this set of 18 clones with 18 clones from the previous round of evolution, creating another mutational library by DNA shuffling, and screening as before.

Screening method: In the qualitative visual screen, colonies were selected only for their ability to sustain relatively bright luminescence. The thermal stability of the luciferase within the colonies of E. coli was progressively challenged in successive rounds of evolution by increasing the temperature of the screen. The selected colonies were inoculated into wells of 96-well plates each containing 200 μ l of growth medium.

In the quantitative screens, lysates of the *E. coli* cultures were measured for 1) luminescence activity, 2) enzyme stability, 3) sustained enzymatic turnover, and 4) substrate binding.

"Luminescence activity" was measured as the ratio of luminescence intensity to the optical density of the cell culture.

5

15

20

25

30

"Enzyme stability" was determined by the rate of activity loss from cell lysates over 10 hours. In successive rounds of evolution the incubation temperature of the lysates was increased.

"Sustained enzymatic turnover" was determined by the rate of luminescence loss of a signal enzymatic reaction over 10 hours at room temperature.

"Substrate binding" was determined by the relative activity of the lysate when assayed with diluted substrate mixtures. Of these four parameters, the highest priority for selection was placed on thermostability.

Robotic Automation: Robotic automation was used in the quantitative screens to accurately perform the large number of required quantitative assays on the cultured cells. Overnight cultures were first diluted into fresh medium and grown for 3 hours to produce cultures in mid-log phase growth. The optical densities of each culture was then measured, and aliquots of the cultures were lysed by freeze/thaw and lysozyme. The resulting lysates were further diluted before analysis and incubated at elevated temperatures. Luminescence was measured from aliquots of the diluted lysates, taken at various times, and measured under various conditions as prescribed by the analytical method (see Example 2). Computer analysis of this data yielded the quantitative selection criteria described herein.

Summary of evolutionary progression: After mutagenesis of the N- and C-termini, and randomization of the cysteine codons, a pool of 15 clones was subjected to two rounds of directed evolution as described herein. Five of the 18 clones resulting from this process were sequenced to identify mutations. One of these clones designated, Luc49-7C6, was chosen for more detailed analysis and further mutagenesis. This clone contained 14 new amino acid substitutions compared to the luciferase Luc[T249M].

15

20

25

To assess the potential for other amino acid replacements at the sites of these substitutions, oligonucleotide-directed mutagenesis was used to randomize these codons. The resulting clones were screened as described herein, and 18 selected clones were used to initiate two new rounds of directed evolution. Of the 18 clones resulting from this second set of rounds, the clone designated Luc78-0B10 was chosen for additional study and mutagenesis. This clone encoded a luciferase that contained 23 new amino acid substitutions compared to Luc[T249M].

Using oligonucleotide directed mutagenesis with Luc78-0B10 as the template, codons were selected for substitution to consensus amino acids previously known among beetle luciferases. Selections from this mutagenesis experiment were shuffled together and three clones, determined to be the most stable were then used as templates for oligonucleotide mutagenesis to improve codon usage in *E. coli*. A clone designated Luc90-1B5 selected from this experiment, contained 34 amino acid substitutions relative to Luc[T249M] (see Figures 42 and 43 for the nucleotide sequence and inferred amino acid sequence of *luc90-1B5*, and Figures 44 and 45 for the nucleotide sequence encoding and the inferred amino acid sequence of Luc[T249M]). Out of 25 codons selected for change to consensus amino acids, 11 were replaced in the clone designated Luc90-1B5. Only five out of the 30 positions that were selected for improved codon usage were substituted and had little effect on enzyme expression.

Protein purification: Four mutants that are described herein (Luc[T249M], Luc49-7C6, Luc78-0B10, and Luc90-1B5) were purified using a previously published procedure (Hastings et al., 1996).

Enzymological characterization: Purified proteins were diluted in 25 mmol/L HEPES pH 7.8, 150 mmol/L NaCl, 0.1 mmol/L EDTA, 1 mg/ml BSA. Enzyme stability was determined from diluted proteins incubated at different temperatures, and aliquots were removed at different time points. A linear regression of the natural log of the luminescence and time was calculated. Half-life was calculated as the 1n(0.5)/slope of the regression.

35

PCR Mutagenesis Protocol (Random Mutagenesis) G.

PCR mutagenesis reactions

- 1. Prepare plasmid DNA from a vector containing the gene of interest, estimate DNA concentration from a gel.
- 5 2. Set up two 50 µl reactions per group:

There are three groups of mutagenic conditions using different skewed nucleotide concentrations.

The conditions listed herein yield in the range of from 8-10% wild-type Luc colonies after subcloning phenotypic for each generated parent clone. The rate of mutagenesis is estimated by the number of luminescent colonies that are 10 present after mutagenesis. Based upon results of clones mutated in the range of 8-10%, it was determined that this level of mutagenesis produces on average approximately 2-3 amino acid changes per gene. If the mutagenesis rate is selected so that on average there is one amino acid change per gene, then on average 50% of the clones will have no mutations. (Bowie et al., 1990).

For the master mix: add all components (see Table 6) except polymerase, vortex, spin briefly, add polymerase, and mix gently.

Table 6

20	Component	A to T/T to A	A to C/T to G	G to A/C to T
	dATP	0.3 mM	0.1 mM	0.25 mM
	dCTP	2.75 mM	4 mM	1 mM
	dGTP	0.06 mM	0.02 mM	0.05 mM
	dTTP	0.625 mM	0.3 mM	0.6 mM
25	[↔] pRAMtailUP	0.4 pmol/μl	0.4 pmol/μl	0.4 pmol/μl
	⁺⁺ pRAMtailDN	0.4 pmol/μl	0.4 pmol/μl	0.4 pmol/μl
	*Taq Polymerase	1 U/μl	1 U/μl	1 U/μl
	°MgCl ₂	6.77 mM	5.12 mM	2.7 mM
	°MnCl ₂	0.5 mM	0.5 mM	0.3 mM
30	DNA	50 ng total	50 ng total	50 ng total
	10X PCR buffer	1X	1X	1X
	Autoclaved	Το 50 μΙ	Το 50 μ1	To 50 μl
	nanopure water			

- * Taq Polymerase is purchased from Perkin Elmer (N808-0101).
- o MnCl₂ and MgCl₂ are made fresh from 1 M stocks. The stocks are filter sterilized and mixed with sterile water to make the 10 mM and 25 mM stocks which are then stored in Polystyrene Nalgene containers at 4°C.

** pRAMtailUP: 5'-gtactgagacgacgacgacgacgactgagctgagtg-3' (SEQ ID NO:38); pRAMtailDN: 5'-ggcatgagcgtgaactgactgaactagcggccgag-3'(SEQ ID NO:39)

- 5 10X PCR polymerase buffer:
 - 100 mM Tris-HCl pH 8.4 from 1 M stock
 - 500 mM Kcl
 - Primers are diluted from a 1 nmol/µl stock to a 20 pmol/µl working stock.
- 10 Cycle in thermal cycler: 94°C for 1 minute (94°C for 1 minute, 72°C for 10 minutes) 10X
 - 3. Purify reaction products with Wizard PCR purification kit (Promega Corporation, Madison, Wisconsin, part#A718c):
 - transfer PCR reaction into a new tube containing Promega 100 µl Direct Purification buffer (Promega part#A724a)
 - add 1 ml of Wizard PCR Purification Resin (Promega part#A718c) Promega and incubate at room temperature for 1 minute
 - pull resin though Wizard minicolumn
- wash with 80% ethanol
 - spin in microcentrifuge to remove excess ethanol
 - elute into 50 μl sterile nanopure water (allow water to remain on column for at least 1 minute)

Amplification Of Mutagenesis Reaction

1. Set up five 50 µl reactions (see Table 7) per group.

Table 7

	Components	Concentration	Amount in 50 µl	Final concentration
5	dATP	10 mM	1 μ1	0.2 mM
	dCTP	10 mM	1 μl	0.2 mM
	dGTP	10 mM	1 μ1	0.2 mM
	dTTP	10 mM	1 μ1	0.2 mM
	+pRAM18UP	20 pmol/μl	1 μ1	0.4 pmol/μl
10	+pRAM19DN	20 pmol/μl	l μl	0.4 pmol/μ1
	Pfu polymerase	2 U/ul	1 μ1	0.04 μ/μL
	°10X buffer	10X	5 μ1	1X
	DNA		10 μl	
	Water		24.6 μ1	
1.5				

15

25

- To master mix: add all components, except polymerase, vortex, spin briefly, add polymerase, mix gently.
- ° 10X reaction buffer for Native Pfu polymerase contains 20 mM MgCl₂, so no additional MgCl₂ needs to be added

20 + primers:

pRAM18UP -5'-gtactgagacgacgccag-3' (SEQ ID NO:40) pRAM19DN -5'-ggcatgagcgtgaactgac-3' (SEQ ID

NO:41)

Cycling conditions: 94°C for 30 seconds (94°C for 20 seconds, 65°C for 1 minute, 72°C for 3 minutes) 25X

(Perkin-Elmer Gene Amp® PCR System 2400)

2. Load 1 µl on a gel to check amplification products

This amplification step with Pfu polymerase was incorporated for 2 reasons: (a) To increase DNA yields for the production of large numbers of transformants. (b) To reduce the amount of template DNA that is carried over from the mutagenic PCR reaction: (Primers for the second amplification reaction are nested within the mutagenic primers. The mutagenic primers were designed with non-specific tails of 11 and 12 bases respectively for the upstream and downstream primers. The nested primers will amplify DNA that was previously amplified with the mutagenic primers, but cannot amplify pRAM template DNA.)

20

- 3. Purify amplification reaction products with Wizard PCR purification kit (Promega Corporation, part#A718c):
 transfer PCR reaction into a new tube containing 100 μl Direct
 - transfer PCR reaction into a new tube containing 100 μl Direct Purification buffer (Promega, Part#A724a)
 - add 1 ml of Wizard PCR Purification Resin (Promega Part#A718c) and incubate at room temperature for 1 min
 - pull resin though Wizard minicolumn
 - wash with 80% Ethanol
 - spin in microcentrifuge to remove excess Ethanol
- elute with 88 μl sterile nanopure water (allow water to remain on column for at least 1 min)

Subcloning of amplified PCR mutagenesis products

- 1. Digest the DNA with Sfi I as follows:
 - 2 µl Sfi I (Promega Part #R639a)
- 10 μl 10X buffer B (Promega Part #R002a)
 - 88 μl of DNA from Wizard PCR prep (see step 3 above)
 - mix components and overlay with 2 drops of mineral oil; incubate at 50°C for 1 hour
 - 2. Remove salts and Sfi I ends with Wizard PCR purification as described herein, and elute into 50 µl sterile nanopure water
 - 3. Ligation into pRAM (+/r) backbone (set up 4 ligations per group):
 - 0.025 pmol pRAM backbone
 - 0.05 pmol insert (usually in the range of 6 to 12 μl of insert)
 - 1 μl of T4 DNA Ligase (Promega part M180a)
- 25 2 μl of 10X ligase buffer (Promega part C126b, divide into 25 μl aliquots, do not freeze/thaw more than twice)
 - water to 20 µl
 - ligate for 2 hours at room temperature
 - heat reactions for 15 minutes at 70°C to inactivate ligase

30 Transformation and plating

1. Butanol precipitate samples to remove excess salts (n-Butanol from Sigma, St. Louis, Missouri, part #BT-105):

		(if ethanol precipitation is used instead of butanol, a wash with
		70% ethanol as needed. Excess salt will cause arcing
		during the electroporation which causes the reaction to
		fail.)
5		- add water to 50 μl
		- add 500 μl of n-butanol
		- mix until butanol/ligation mix is clear and then spin for 20 min
		at room temperature
		- drain butanol into waste container in fume hood
10		- resuspend in 12 μl water, spin 30 sec at full speed
	2.	Preparation of cell/DNA mix (set up 4 transformations plus one
		with reference clone DNA):
		- while DNA is precipitating, place electroporation cuvettes on ice
		- fill 15 ml Falcon snap-cap tubes with 3 ml S.O.C. medium and
15		place on ice
		- thaw JM109 electrocompetent cells on ice (50 μl per ligation
		reaction)
		- pipette 10 μ l of the bottom layer from step 1 (or 0.5 μ l ref.clone
		DNA) into competent cells
20		(small amounts of butanol carry-over do not adversely effect the
		transformation efficiency)
		- place cell/DNA mix on ice
	3.	Electroporation:
		- carry tubes, cuvettes, and cell/DNA mix on ice to
25		electroporation device
		- pipette cell-DNA mix into a cuvette and zap. Instrument
	settings:	
		Cuvette gap: 0.2 cm
•		Voltage: 2.5 kV
30		Capacitance: 25 μF
		Resistance: 200 Ohms
		Time constant: 4.5 msec

 pipette 1 ml SOC (contains KCl; media prep #KCLM) into cuvette, quickly pour into recovery tube (transformation efficiency is reduced if cells are allowed to sit in cuvette)

- place the recovery tube on ice until all samples are processed
- allow the cells to recover at 37°C for 30-60 minutes
- plate on LB + amp plates with nitrocellulose filters
 (# of colonies is about 20% higher if cells recover 60 minutes,
 possibly due to cell replication.)
 (Best colony density for screening is 500 per plate. For the

current batch of cells plate about 500 to 750 μl)

H. Recombination Mutagenesis Protocol or DNA shuffling

DNase I digestion of plasmid DNA

5

15

20

25

30

35

- 1. Prepare 2% low melting point gel
- use 0.8 g agarose in 40 ml (NuSieve #50082)
 - use large prep comb
 - make sure it is solidified prior to digesting
 - 2. Prepare 4 µg of pooled plasmid DNA for digest
 - 3. Prepare 1 U/µl DNase dilution on ice according to the table below:

Table 8

 DNase I⁺
 0.74 μl

 10X DnaseI buffer
 10 μl

 1% gelatin*
 10 μl

 Water to 100 μl
 10 μl

⁺ DNase I from Sigma (D5791)

Gelatin was added to keep the DNase I from sticking to the walls of the tubes.

This dilution can be kept on ice for at least 30 min without loss in activity.

Digest (set up at room temperature):
 prepare two digests with 1.0 U and 1.5 U DNase I per 100 μl reaction:

		- 10 μl of 10X DNase I buffer (500 mM Tris, 10 mM MgCl ₂ pH
	7.8)	
		- x μl DNA (2 μg of pooled plasmid DNA from step 2)
		- 1 or 1.5 μl of the 1 U/μl enzyme dilution
5		- sterile nanopure water to 100 μl
		- incubate at room temperature for 10 minutes
		- stop reaction by addition of 1 μl of 100 mM CDTA
	Purification J	from agarose gel
	1.	Run DNase digested fragments on gel
10		- add 10 μl of 10X loading buffer to each DNase I digest
		- load all on a 2% Low melting point agarose gel
		- run about 30 min at 120-150 V
		- load pGEM DNA marker in middle lane
	2.	Isolate fragments
15		- cut out agarose slice containing fragments in the size range of
		600-1000 bp using a razor blade
		- cut into pieces that weigh about 0.3 g
		- melt the gel slices at 70°C
		- add 300 µl of Phenol (NaCl/Tris equilibrated) to the melted
20		agarose, vortex for about 1 minute at max speed
		- spin for 10 min at 4°C
		- remove the top layer into a tube containing an equal volume of
		Phenol/Chloroform/Isoamyl (saturated with 300 mM NaCl
		/100 mM Tris pH 8.0), vortex and centrifuge for 5 minutes
25		at RT
		- remove the top layer into a tube containing chloroform and
		vortex and centrifuge.
		- remove the top layer into a tube with 2 vol. of 95% cold
		Ethanol; place in -70°C freezer for 10 min (no additional
30		salts are needed because of the High Salt Phenol)
		- spin at 4°C for 15 minutes.
		- wash with 70% Ethanol, drain and air dry for \sim 10 min
		- resuspend in 25 to 50 μl of sterile nanopure water

70

- store at -70°C until ready for use

Assembly reaction

Set up 4 reactions (see Table 9) and pool when completed.

5

Table 9

•	Component	Concentration	Amount in µl	Final
				concentration
	dATP	10 mM	1	200 μΜ
	dCTP	10 mM	1	200 μΜ
	dGTP	10 mM	1	200 μΜ
10	dTTP	10 mM	1	200 μΜ
	DNA*	1-10 ng	5	
	Tli	3 U/μl	0.4	0.24 U/μ1
	10X Thermo buffer	10X	5	1X
	MgCl ₂	25 mM	4	2 mM
15	gelatin	1%	5	0.1%
	water		Το 50 μ1	

* Because the DNA used for this reaction has been fragmented, it is difficult to estimate a concentration. The easiest way is to load 5 μl of the DNaseI digested DNA to an agarose gel and run the gel until the dye enters the wells (1-2 min). Fragments from a typical 2 μg DNA digest which were resuspended in 100 μl of water give a DNA concentration of about 1 to 10 ng/μl.

Cycling conditions: 94°C for 30 seconds (94°C for 20 seconds, 65°C for 2 minute, 72°C for 2 minutes) 25X

Amplification of assembly

Usually 5 amplification reactions (see Table 10) will produce enough DNA for a full 8 plate robotic run.

30

71

Table 10

	Component	Concentration	Amount in µl	Final
				concentration
5	dATP	10 mM	1	200 μΜ
	dCTP	10 mM	1	200 μΜ
	dGTP	10 mM	1	200 μΜ
	dTTP	10 mM	1	200 μΜ
	pRAMtailUP*	20 pmol/μl	2	0.8 pmol/μ1
10	pRAMtailDN*	20 pmol/μl	2	0.8 pmol/μ1
	Pfu native polymerase ⁺	2 U/μl	1	0.04 U/μl
	10X native Pfu buffer°	1X	5	1X
	DNA	1-10 ng	5	
	water		water to 50 µl	

- * Note that the concentration of primers is twice as high as in a typical amplification reaction.
 - ° The Pfu 10X buffer contains 20 mM MgCl₂, so it is not necessary to add MgCl₂.
 - + Pfu polymerase is ordered from Stratagene part #600135. Cycling conditions: 94°C for 30 seconds (94°C for 20 seconds, 65°C for 1 minute, 72°C for 3 minutes) 25x

Subcloning of assembly amplification

Purify amplification products with Wizard PCR purification:

- pool 5 amplification reactions
- 25

20

- transfer into a new tube that contains 100 μ l of Direct Purification buffer
- add 1 ml of Wizard PCR Purification Resin, incubate at RT for 1 minute
- pull Resin though Wizard minicolumn

30

- wash with 80% ethanol and spin in microcentrifuge to remove excess ethanol
- elute with 88 μ l of sterile nanopure water (allow water to remain on column for at least 1 minute)
- 2. Digest with Sfi I:

35

- 2 μl *Sfi* Ι
- 10 µl 10X buffer B
- $88 \mu l$ of DNA from Wizard PCR prep

- mix components and overlay with 2 drops of mineral oil; incubate at 50°C for 1 hour

3. Band isolation:

Sometimes after amplification of the assembly reaction a band that is smaller than the gene-sized fragment is produced.

This small fragment has been shown to subclone about 10-fold more frequently than the gene sized fragment if the sample is not band isolated. When this contaminating band is present, it is necessary to band isolate after Sfi I digestion.

10

15

30

5

- load the DNA to a 0.7% agarose gel
- band isolate and purify with the Gene Clean kit from Bio 101
- elute DNA with 50 μl sterile nanopure water, check
 concentration on gel (This type of purification with
 standard agarose produced the highest number of
 transformants after subcloning. Other methods tried: Low
 melt with Phenol chloroform, Gene clean with low melt,
 Wizard PCR resin with standard agarose, Pierce Xtreme
 spin column with Low melt (did not work with standard
 agarose)).

4. Ligate into pRAM [+/r] backbone: (See ligation and transformation protocol above)

Large scale preparation of pRAM backbone

- Streak an LB amp plate with pRAMMCS [+/r] (This vector contains a synthetic insert with a Sac II site in place of a gene.
 This vector contains the new ribosome binding site, but it will be cut out when the vector is digested with Sfi I.
 - 2. Prepare a 10 ml overnight culture in LB supplemented with amp.
 - 3. The next day inoculate 1 L of LB supplemented with amp and grow for 16-20 hours.
 - 4. Purify the DNA with the Wizard Maxi Prep kit. (Promega #A7270) (use 4 preps for 1 L of cells)

WO 01/20002

5

10

15

20

25

- 5. Digest the Plasmid with Sfi I. (Use 5 U per microgram) Overlay with mineral oil and digest for at least two hours.
- 6. Ethanol precipitate to remove salts. Resuspend in water.
- 7. Digest with Sac II for 2 hours. (Keep digest volume to 2 ml or less). It is possible that part of the plasmid could be partially digested. If the vector is cut with an enzyme that is internal to the two Sfi I sites, it will keep the partially digested fragments from joining in a ligation reaction.
- 8. Load entire digest onto a column (see 9). The volume of the sample load should not be more than 2 ml. If it is it will be necessary to ethanol precipitate.
- 9. The column contains Sephacryl S-1000 and is stored with 20% ethanol to prevent bacterial contamination. Prior to loading the sample the column must be equilibrated with cold running buffer for at least 24 hours. If the column has been sitting more than a couple of months it may be necessary to empty the column, equilibrate the resin 3-4 washes in cold running buffer, and then re-pour the column. After the column is poured it should be equilibrated overnight so that the resin is completely packed.
- 10. Collect fractions of about 0.5 ml. Typically the DNA comes off between fractions 25 and 50. Load a 5 μl aliquot from a range of fractions to determine which fractions contain the backbone fragment. The small insert fragment will start to come off the column before all of the backbone is eluted, so it will be necessary to be conservative when fractions are pooled. For this reason typically 40-60% of the DNA is lost at this step.
 - 11. Pool the fractions that contain the backbone.
 - 12. Ethanol precipitate the samples. Resuspend in a volume that produces about 10-50 ng/ μ l.

74

13. Store at -70°C.

Column running buffer: (store at 4°C)

5 mM EDTA

5 100 mM NaCl

50 mM Tris-HCL pH 8.0

10 μg/ml tRNA (R-8759, Sigma)

I. Oligonucleotide Mutagenesis

Prepare Ampicillin-sensitive single stranded DNA of the template to be mutated. Design a mutagenic primer that will randomly generate all possible amino acid codons.

Mutagenesis reaction:

15

Table 11

Component	Final concentration	
Single Stranded Template	0.05 pmol	
Mutagenic Oligonucleotide	1.25 pmol	
Ampicillin Repair Oligo (Promega q631a)	0.25 pmol	
10X annealing buffer*	1X	
Water to 20 μl		

20

*10X Annealing buffer:

- -200 mM Tris-HCl, pH 7.5
- 25 -100 mM MgCl2
 - -500 mM NaCl

WO 01/20002 PCT/US99/30925

75

Heat reaction at 60°C for 15 minutes and then immediately place on ice. Synthesis reaction:

Table 12

Component

Water

5 μl

10X synthesis buffer*

74 DNA Polymerase (Promega m421a)

T4 DNA Ligase (Promega 180a)

1 μl (10 Units)

1 μl (3 Units)

10 *10X Synthesis buffer

5

100 mM Tris-HCl, pH 7.5

5 mM dNTPs

10 mM ATP

20 mM DTT

15 Incubate at 37°C for 90 minutes.

Transform into Mut-S strain BMH 71-18 (Promega strain Q6321)

- -Place Synthesis reaction in a 17X100 mm tube.
- -Add BMH 71-18 competent cells that have been thawed on ice to synthesis reaction.
- 20 -Incubate on ice for 30 min
 - -Heat Shock cells at 42°C for 90 seconds.
 - -Add 4 ml of LB medium and grow cells at 37°C for 1 hour. Add

 Ampicillin to a final concentration of 1.25 ug/ml and then grow overnight at 37°C.
- 25 Isolate DNA with Wizard Plus Purification system (Promega a7100)
 Transform isolated DNA into JM109 electrocompetent cells and transform onto LB Ampicillin plates.

J. Screening procedure

JM109 clones (from a transformation reaction) are plated onto nitrocellulose filters placed on LB amp plates at a screening density of about 500 colonies per plate.

5

10

As listed in the Random Mutagenesis procedure, approximately 10% of the clones to be selected will have to be as stable as the same sequenced or better than source. Or stated another way, about 50 colonies per plate will be suitable for selection. There are 704 wells available for a full eight plate robotic run, so at least 15 LB amp plates will be needed for a full robotic run.

After overnight growth at 37°C the plates containing the transformants are removed from the incubator and placed at room temperature.

The nitrocellulose filter is lifted on one side and 500 μ l of 10 mM IPTG is added to each of the plates. The filter is then placed back onto the plate to allow diffusion of the IPTG into the colonies containing the different mutant luciferase genes. The plates are then incubated for about 4 hours at room temperature.

One (1) ml of a solution contains 1 mM luciferin and 100 mM sodium citrate is pipetted onto a slide warmer that is set at 50°C. A nitrocellulose filter that contains mutant luciferase colonies and has been treated with IPTG is then placed on top of the luciferin solution. After several minutes, the brightest colonies are picked with tooth picks which are used to inoculate wells in a microtiter plate that contain M9- minimal media with 1% gelatin.

After enough colonies are picked to 8 microtiter plates, the plates are placed in an incubator at 350 rpm at 30°C incubation and are grown overnight.

In the morning the overnight plates are loaded onto the robot and the cell dilution procedure is run. (This procedure dilutes the cultures 1:10 into induction medium). The new plates are grown for 3 hours at 350 rpm at 30°C.

After growth, the plates are loaded to the robot for the main assay procedure.

Minimal Media:

25

30

6 g/Liter Na₂HPO₄
3 g/Liter KH₂PO₄
0.5 g/Liter NaCl
1 g/Liter NH₄Cl
2 mM MgSO₄
0.1 mM
1 mM Thiamine-HCl

0.2% glucose

12 μg/ml tetracycline

100 μg/ml ampicillin

- 5 *Overnight media contains 1% gelatin
 - *Induction media contains 1 mM IPTG and no gelatin.

S.O.C. Media:

- -10 mM NaCl
- -2.5 mM KC1
- 10 -20 mM MgCl₂
 - -20 mM glucose
 - -2% bactotryptone
 - -0.5% yeast extract

15 Summary of Exemplary Evolutionary Progression

- 1. Start with LucPpe2[T249M]
- 2. Mutate 3 amino acids at N- and C-termini
- 3. Mutate 7 cysteines
- 4. Perform two iterations of evolution \rightarrow Luc49-7C6
- 5. Mutagenesis of altered codons (9)
 - 6. Two iterations of evolution \rightarrow Luc78-0B10
 - 7. Mutagenesis of consensus codons (28)
 - 8. Mutagenesis of codon usage (24) → Luc90-1B5

25 One Iteration of Recursive Process

- 1. 1 clone → 3 libraries using error-prone PCR
 - 3 x Visual screen (about 10,000 clones each)
 - 3 x Quantitative screen (704) clones each)
- 2. 3 x 18 clones → library using sPCR
- Visual screen (about 10,000 clones)
 - Quantitative screen (704 clones)
 - 3. $18 + 18 \rightarrow \text{library using sPCR}$
 - Visual screen (about 10,000 clones)

WO 01/20002 PCT/US99/30925

78

- Quantitative screen (704 clones)
- 4. Output: 18 clones

5 **EXAMPLE 5**

15

. 20

25

Mutagenesis Strategy from Clone Luc90-1B5 to Luc133-1B2 and Luc146-1H2

Upon storage, luciferin degrades and the degradation products inhibit luciferase. The production of inhibitors causes an apparent instability in the reagent containing both luciferase and luciferin. There are two ways to reduce this problem: 1) Store the luciferin and luciferase at pH 5.5-6.0 to reduce the rate of luciferin degradation, and/or 2) Evolve an enzyme that is resistant to the luciferin degradation products.

LucPpe2 mutants that were evolved after clone Luc90-1B5 were evolved to be more stable at low pH and have resistance to luciferin degradation products. These mutant enzymes are useful, for example, in an ATP detection kit. One embodiment of such a kit comprises a mixture of luciferin and luciferase. A luminescent reaction occurs when a sample comprising ATP is added to the mixture.

Three populations of random mutants were produced using clone Luc90-1B5 as a template. These three populations were screened on the robot as experiments 114, 115, and 117. Robotic screens for experiments 114, 115, 116, 117, 118,1 19, and 122 were completed as described previously except that buffer C was prepared with citrate buffer pH 4.5 instead of HEPES buffer pH 7.8, and the assay reagent was prepared with HEPES pH 7.1 with 10 µM ATP instead of Tricine pH 8.0 and 175 µM ATP. These screening conditions were biased to select clones that have increased retention of luminescence activity over time at pH 4.5 at 48°C and increased luminescence activity when assayed at pH 7.1 with 10 µM ATP. Seventeen clones from experiment 114, seven clones from experiment 115, and ten clones from experiment 116 were shuffled together using sPCR and selected mutants from this screen were run on the robot as experiment 117. Eighteen clones were selected from experiment 117.

10

15

20

25

The clone that was determined to have the most improved characteristics (increased retention of luminescence activity over time at pH 4.5 and 48°C and increased luminescence activity when assayed at pH 7.1 with 10 μ M ATP) was clone Luc117-3C1 and it was selected as a template for random mutagenesis.

Two populations of random mutants were screened and then run on the robot as experiments 118 and 119. Seven clones from experiment 118 and five clones from experiment 119 were saved.

Clones from experiments 114, 115, 116, 117, 118, and 119 were selected based upon the following characteristics: brighter luminescence than Luc90-1B5, and increased retention of luminescence activity over time at pH 4.5. These select clones were shuffled together and were run on the robot as experiment 122. Eleven clones from this experiment were saved.

Three populations of random mutants were prepared from clone Luc122-4D5 and run on the robot as experiments 125, 126, and 127. Thirteen clones from experiment 125, four clones form experiment 126, and three clones from experiment 127 were shuffled together and run on the robot as experiment 128. For experiments 125, 126, 127 and 128 the screen for K_m was altered to select for clones that are more resistant to luciferin degradation products. The clones were also screened for retention of luminescence over time at pH 4.5.

Instead of screening for substrate utilization, a screen for resistance to inhibitor was conducted. In place of the 0.06X dilution of substrates, a 75:25 mix of D to L luciferin in 1X assay buffer was used and designated as "0.75X". In place of the 0.02X dilution of substrates, a 50:50 mix of D to L luciferin in 1X assay buffer and was designated as "0.5X". The 1X assay buffer in these experiments contained the following: 10 μ M ATP, 50 mM HEPES pH 7.8, 8 mM MgSO₄, and 0.1 mM EDTA. The 0.75X sample contained 75 μ M D-luciferin and 25 μ M L-luciferin. The 0.5X sample contained 50 μ M D-luciferin and 50 μ M L-luciferin. The 1X sample contained 250 μ M D-luciferin. A K_m regression was used as before and a K_m value was calculated. Normalized values of greater than 1 indicate more resistance to inhibitor. Clones from these experiments that were shown to have greater resistance to L-luciferin were also more resistant to luciferin degradation products.

To more easily measure resistance to inhibitor on the robotic system, a new variable "Q" was designated. The "Q" variable replaces the K_m variable used previously. The luminescence ratio is calculated the same as in the K_m measurement, then the natural log (ln) of each luminescence ratio is calculated (Y-axis). The X-axis is an arbitrary time that is entered by the user. The first time point is zero and the samples are measured with 1X assay buffer that contains

250 μM D-luciferin. The next two time points have the same time value (i.e., 4 hours to simulate incubation of luciferin) and samples are measured with 1X
10 assay buffer that contains a 50:50 mixture (as described above) of D-luciferin to L-luciferin. A linear regression correlating ln(lum ratio) to time is calculated. Q is calculated as the ln(0.5)/slope. Normalized values of "Q" greater than 1 indicate more resistance to inhibitor. Experiments 133 and higher were run using this program.

15 Sixteen clones from experiment 128 were shuffled with clones from experiment 122 and run on the robot as experiment 133. Two samples, Luc133-1B2 and Luc133-0D11, were selected as templates for random mutagenesis and run on the robot as experiments 145 and 146, respectively. The clone that showed an increased retention of luminescence over time at pH 4.5 and the most resistance to inhibitor was clone Luc146-1H2. Moreover, at pH 4.5 and 48°C. Luc133-1B2 and Luc146-1H2 had increased thermostability relative to Luc90-1B5, and increased resistance to inhibitor (Figures 54-61). A comparison of the luminescence signal for Luc49-7C6, Luc78-0B10, Luc90-1B5, Luc133-1B2, and Luc146-1H2 is shown in Figure 59. A comparison of the thermostability at 25 50°C for clones for Luc49-7C6, Luc78-0B10, Luc90-1B5, Luc133-1B2, and Luc146-1H2 is shown in Figure 60. Figures 55-58 show the nucleotide sequence encoding and the inferred amino acid sequence of Luc133-1B2 and Luc146-1H2. Materials and Methods

Assay to detect resistance to luciferase inhibitor

A 10 mM stock solution of luciferin is incubated at 50°C in 50 mM HEPES, pH 7.8, to accelerate the production of luciferin breakdown products. At different time points an aliquot is removed and then placed at -20°C. After incubation is complete, assay reagent (100 µM Luciferin, 1 µM ATP, 50 mM

5

10

15

20

HEPES, pH 7.8 and 8 mM MgSO₄) is prepared with luciferin from each of the different time points and a diluted lysate is then assayed with each assay reagent.

The lysate is prepared as follows. Overnight cultures of clones to be tested are prepared in LB supplemented with 100 μ g/ml AMP. The cultures are diluted 1:10 in M-9 minimal media supplemented with 1 mM IPTG, 100 μ g/ml AMP and grown for 3 hours at 30°C. Forty-five μ l of cells is mixed with 20 μ l of Buffer A and frozen. The mixture is thawed, 175 μ l of Buffer B added, and the resulting mixture diluted 1:10 in Buffer C. A regression of luminescence versus time of luciferin incubation is then calculated, and from this graph half-life is extrapolated. A longer half-life means that the mutant being tested is more resistant to luciferin breakdown products.

EXAMPLE 6

Mutagenesis Strategy from LucPplYG to Clone Luc81-6G01

The luciferases from the luminous beetle, *Pyrophorus plagiophthalamus*, had been shown previously to generate different colors of luminescence (Luc*Ppl*). Analysis of these luciferases revealed that the different colors were caused by discreet amino acid substitutions to their protein sequences. This allowed the possibility to make a pair of genetic reporters capable of emitting a multiplexed luminescent signal, thus enabling quantitation of two biomolecular events simultaneously from within the same living system.

Amino acid substituted Luc*Ppl* were prepared which have the following properties:

Physical stability of the luciferases

Although the luminescence activity of LucPpl within colonies of E. coli appeared to be thermostable to above 60°C, in lysates these luciferases had relatively low stability. They were particularly unstable in the presence of Triton X-100 detergent. When lysates are prepared containing the commonly used firefly luciferase, the enzyme retains greater than 90% activity over 5 hours at room temperature. In contrast, the activity of the LucPpl luciferases would decrease several fold over the same period.

The thermostabilities of the Luc*Ppl* luciferases are also near the physiological temperature of mammalian cells. The green-emitting luciferase

(LucPpIGR) and red-emitting luciferase (LucPpIRD) have different thermostabilities which may cause differences in the behaviors as genetic reporters within cells. The influence of temperature should be greatest near the point of denaturation for the enzymes, where small changes in temperature will have the greatest effect on protein structure. In contrast, temperature will have much less affect on protein structure when it is much below the denaturation point. Thus, the differential effect on two enzymes having slightly different denaturation temperatures will be less at relatively lower temperatures. It might therefore be preferable to have the denaturation temperature of the reporter enzyme significantly above the growth temperature of mammalian cells.

Spectral overlap between the luciferases

10

Although a method was developed to quantify each luciferase in a mixture by using colored filters, the ability to discriminate between the luciferases is limited by their spectral overlap. This overlap reduces the ability to accurately measure both luciferases if their luminescence intensities differ by more than 10 fold. If the intensities differ by more than 50 fold, the luminescence signal of the dimmer luciferase is obscured by the other. Thus, it would be preferable to further separate the luminescence spectra of the two luciferases.

Many different mutations were identified which shifted the luminescence spectrum towards the red. But the limit for red luminescence appears to be about 620 nm. Further effort at shifting the spectrum of the red-emitting luciferase into still longer wavelengths might have some benefit. It was found that greenshifting mutations were rare, however, an extensive analysis was not conducted.

Measurements from native luciferases show some examples of luminescence below 530 nm, about 15 nm less than the green-emitting prototype enzyme.

Differential physical and enzymological characteristics

Ideally the two luciferase reporters would be identical in all characteristics except for the color of luminescence. However, as noted above, the physical stability of the luciferases was not identical. It was also found that mutations resulting in red-shifted luminescence also caused an increase in the K_M for luciferin. Although some of these differences may be unavoidable, it is not clear whether the properties are fundamentally associated. For instance,

luciferases from different beetle species sometimes have significantly differing K_M even though their luminescence spectra are similar. It may be that much of the differences associated with development of the red-emitting luciferase are due to concomitant perturbations to the integrity of the enzyme structure, as the thermostability of a prototype of the red-emitting luciferase was increased without significantly altering the luminescence spectrum.

Stable luminescence signals

When firefly luciferase was first described as a genetic reporter, the luminescent signal was a relatively brief flash initiated upon injection of the reaction substrates. Subsequent development of the luminescent chemistry made the assay more convenient by enabling a stable signal for several minutes. Presently, such stabilized assays are standard for general laboratory applications. However, to allow high throughput screening in pharmaceutical research, the luminescence signal was further stabilized to extend for over an hour. This was necessary to allow sufficient time to assay several thousand samples in a batch. Although the luminescent signal of the new multiplexed luciferases was stable for minutes, they did not provide the extended signal stability needed for high throughput screening. It would be preferable if the signal stability could be further increased while optimizing other properties.

20 Methods to Optimize Luciferase Performance

30

To prepare luciferases having certain performance, a method for *in vitro* evolution of enzyme function, as described above, was employed. Briefly described, the method is a recursive process of generating random mutations and screening for desirable properties. It was originally developed primarily to increase the thermostability of luciferases, although other enzymological characteristics are also subject to optimization by the screening criteria. A slightly different strategy was used to achieve the properties described above since two related luciferases needed to be optimized concomitantly.

Initially, a single prototype enzyme is subjected to *in vitro* evolution to optimize physical stability and the luminescence signal. In the process, the mutant libraries are also screened for any new mutations causing changes in color. Particular emphasis is placed on isolating green shifted mutants. After initial optimization of a common prototype, a green- and red-emitting form of

the enzymes is created, and these are further optimized separately to harmonize their physical and chemical properties. Particular attention is given to matching their physical stabilities and their substrate binding constants, especially for luciferin.

The choice for the initial prototype for optimization was the wild-type yellow-green-emitting luciferase isolated from the luminous beetles (LucPplYG). Of the luciferases originally cloned from P. plagiophthalamus, this one produced the brightest luminescence when expressed in E. coli.

Furthermore, there was concern that the lack of green-shifting mutation resulted because the prior mutagenesis studies were done using a luciferase that already had the greenest luminescence. It was possible that if additional green-shifting mutations existed, they might be more evident when screened in a red-shifted background. The mutagenesis was performed as follows:

Remove peroxisomal targeting sequence

The translocation signal at the C-terminus of the luciferases was removed. This was done using oligonucleotide-directed mutagenesis to convert the normal -KSKL to -XXX* (where X represents any amino acid, and * represents a termination codon). Several colonies yielding bright luminescence were selected and used as templates for the next stage of mutagenesis.

20 Removal of sensitive cysteines

15

30

The luciferases from *P. plagiophthalamus* have 13 cysteines, which are potentially sensitive to oxidation. This is in contrast to the commonly used firefly luciferase, which has only 4 cysteines. To remove any cysteines that may limit enzyme stability, oligonucleotide-directed mutagenesis was used to randomize the cysteine codons. Three sets of oligonucleotides were used: non-conserved cysteines in regions of low sequence homology (positions 69, 114, 160, 194, 335, and 460), non-conserved cysteines in regions of higher sequence homology (positions 127, 213, 310, and 311), and highly conserved cysteines (positions 60, 80, and 388). The best clones from each of these screens were isolated, and a new mutant library made by sPCR and screened again. At the screening temperature of 29°C, the activity of the wild-type yellow-greenemitting luciferase decreased about 500-fold over 10 hours. The activity of the most stable mutant (Luc20-4C10) was more stable, decreasing only about 2 fold.

First cycle of random mutagenesis

Using the procedure developed previously, three mutant libraries were generated using error-prone PCR and screened. The best mutants from these were recombined into a new library by sPCR and screened again. Finally, the best clones of this screen were recombined with the best clones from the previous oligonucleotide-directed mutagenesis by sPCR, and screened again. At 41°C, the activity of the best mutant from this process (Luc30-4B02) decreased 63 fold over 10 hours, whereas the activity of the parent mutant (Luc20-4C10) decreased greater than 100,000 fold.

10 Sequence analysis

Six of the best mutants from the last screen were isolated and sequenced. This revealed that the amino acids at 16 positions had been changed among the six clones. Thirteen positions had been changed in the preferred mutant, Luc30-4B02. Four of the changes were at the C-terminus in all the isolated mutants, where oligonucleotide mutagenesis had changed the wild-type sequence of -KSKL to -AGG*. Only two of the cysteines had been changed by the previous oligonucleotide mutagenesis; one highly conserved cysteine at position 60 was changed to valine and one moderately conserved cysteine at position 127 was changed to threonine. The remaining amino acid changes were all due to point mutations in the DNA, consistent with error-prone PCR. Interestingly, three of these changed the amino acid into that found in the wild-type green-emitting luciferase (two in mutant Luc30-4B02). Four of the remaining changes brought the mutant sequences closer to the consensus amino acid among other cloned beetle luciferases (two in mutant Luc30-4B02) (Figure 19B). An additional 4 codons were changed without affecting the amino acid sequence.

Site-directed mutagenesis

30

To further explore the potential of the mutations identified in the sequenced mutants, additional mutagenesis experiments were performed using oligonucleotides. Eight of the codons mutated by the error-prone PCR were randomized or partially randomized using oligonucleotide-directed mutagenesis. Four of the remaining cysteine codons were randomized; two highly conserved cysteines (positions 80 and 388) and two cysteines in a region of sequence homology (positions 310 and 311). One leucine was mutated to a

leucine/proline; proline is the consensus amino acid among other beetle luciferases.

The mutagenesis was performed with four sets of oligonucleotides (Table 13), and the best clones from each set were selected. These were recombined by sPCR together with the selected clones from the previous random mutagenesis and screened again. The activity of the best clone from this process (Luc47-7A11) decreased 2.3 fold at 42°C; the activity of the parent clone (Luc30-4B02) decreased greater than 2000 fold.

10

15

20

30

Table 13

Experiment	Mutations	
Set A	$C_{80}-X + K_{84}-X + I_{91}-(F, L, I, M, V, S, P, T, I)$, A)
Set B	I_{288} -(F, L, I, M, V, S, P, T, A)	$C_{yy} \rightarrow X + C_{yy} \rightarrow X$
Set C	G_{351} -(I, M, V, T, A, N, K, D, E, S, R, G) + L S_{356} -P + L_{359} -(F, L, I, M, V, S, P, T, A)	₃₅₀ - (L, P) +
Set D	$C_{388} - X + V_{389} - (NYN)$	K ₄₅₇ -X

Second cycle of random mutagenesis

The random mutagenesis process using error-prone PCR was applied again to the best clone from the oligonucleotide-directed mutagenesis (Luc47-7A11). Three libraries were again created and screened, and selected mutants were recombined by sPCR and screened again. Following recombination, the activity of the best mutant (Luc53-0G01) decreased 1.2 fold at 43°C. The parent clone (Luc47-7A11) decreased 150 fold. After recombining the best of these new mutants with the best mutants from the previous oligonucleotide-directed mutagenesis, the activity of the new best mutant (Luc55-2E09) decreased 31 fold at 47°C, compared to 80 fold for the parent (Luc53-0G01).

Third cycle of random mutagenesis

The random mutagenesis process was repeated using the best clone from the previous cycle of mutagenesis (Luc53-0G01). After recombining the selected mutants with the mutants from the second cycle of mutagenesis, the activity of the best clone (Luc81-6G01) decreased 100-fold at 47°C, compared with 750 fold for the parent (Luc53-0G01). The discrepancy in measured activity of Luc53-0G01 in this cycle of mutagenesis compared to the previous

cycle may be due to changes in the assay procedure and recalibration of the incubator temperature. It should be noted that the recorded thermostabilities from each stage of mutagenesis are calculated from robotic data using abbreviated assay procedures. The data are intended to indicate the relative stabilities of enzyme mutants when assayed in the same screen, rather than providing an accurate quantitation of thermostability.

Luminescence

10

15

Before making a final selection of the best clone from which to create the green- and red-emitting luciferases, further analysis was done on the best clones from the final screen. Three clones in particular were strong candidates as the final choice: Luc81-0B11, Luc81-5F01, and Luc81-6G01. The luminescence properties of these three mutant enzymes were compared among one another. They were also compared to the wild-type yellow-green-emitting luciferase to gauge the effect of the *in vitro* evolution process.

From colonies of *E. coli* expressing the luciferases, Luc81-5F01 and Luc81-6G01 produced luminescence most rapidly at room temperature upon addition of luciferin. The luminescence was more rapid and brighter than colonies expressing the wild-type green- and yellow-green-emitting luciferases. The luminescence from all the selected colonies appeared green-shifted compared to the yellow-green parent clone. When the colonies are heated to 65°C, the yellow-green clone looses most luminescence and the green clone becomes dimmer. Some of the mutant clones loose their luminescence at 65°C, but the three preferred clones remain bright above 70°C. No spectral changes upon heating the colonies were evident until above 70°C, where those clones still retaining activity began to red-shift slightly (sometime, the initial phases of enzyme denaturation are accompanied by a red shift in the luminescence). The luminescence characteristics of the three preferred mutants are quite similar.

The thermostability of the mutant luciferases in cell lysates was compared at room temperature (Figure 63). Dilute lysates were buffered at pH 7.5 and contained 1% Triton X-100; typical conditions for lysates of mammalian cells. The luminescence activity of all three mutant enzyme showed no decrease

WO 01/20002 PCT/US99/30925

88

over 20 hours, whereas the activity of the wild-type yellow-green-emitting luciferase decreased substantially.

For luminescence assays requiring only a few second, the wild-type yellow-green-emitting luciferase produces a very stable signal (the initial rise in the signal evident in the first 2 seconds is due to the response time of the luminometer, not the kinetics of the luminescence reaction) (Figure 64A). However, the signal intensity was reduced about 30% by the presence of 1% Triton X-100 in the lysate (diluted 1:5 with the addition of assay reagent). In contrast, the luminescence intensity of the mutant luciferases was unaffected by the presence of Triton X-100. Under these conditions, the most stable signal was produced by Luc81-6G01, although the signal intensity was somewhat brighter for Luc81-5F01. However, the data are not corrected for the efficiency of enzyme expression in *E. coli*. Thus, differences in luminescence intensity may not correlate to changes in enzyme specific activity, nor is the expression efficiency in *E. coli* necessarily relevant to expression in mammalian cells.

15

25

30

For batches of assays requiring more than an hour to process, the signal stability of the yellow-green-emitting luciferase is inadequate under the conditions tested. The luminescence intensity decreases several fold per hour (Figure 64B). Attempts to correct this by the *in vitro* evolution yielded mixed results. The signal stability of all three mutant enzymes was generally much improved over the parent yellow-green enzyme for three hours after substrate addition. However, this was accompanied by a greater initial decrease in luminescence during the first half-hour. This initial decrease would be more acceptable if it had occurred more rapidly, so that batch processing of samples would not be delayed by 30 minutes in waiting for the signal to stabilize. It may be possible to improve this kinetic behavior by adjusting the assay conditions.

From these results, the mutant Luc81-6G01 was chosen as the best clone from which to subsequently create the green- and red-emitting luciferases. The sequence of Luc81-6G01 (Figures 46-47) and Luc81-0B11 was determined and compared with the sequences of Luc30-4B02 from earlier in the *in vitro* evolution process, and the wild-type yellow-green-emitting luciferase used as the initial parent clone (Figure 19B). Relative to Luc30-4B02, the Luc81-6G01 mutant acquired new mutations in 9 codons, of which 8 caused changes in the

WO 01/20002 PCT/US99/30925

amino acid sequence. Four of these 8 amino acid changes were probably acquired through recombination with clones generated prior to isolation of Luc30-4B02. Two are identical to mutations found in the other clones sequenced along with Luc30-4B02, and two are reversions to the wild-type parent sequence. The remaining four are novel in the sequence of Luc81-6G01. Two of the novel mutations change the amino acid to the consensus amino acid among other cloned luciferases.

Interestingly, in either the sequences of Luc81-6G01 or Luc81-0B11. there is no evidence that the prior oligonucleotide-directed mutagenesis had any beneficial effect. No novel nucleotide sequences appear at any of the targeted codons. The improved enzyme performance following the oligonucleotidedirected mutagenesis apparently was due to recombination of previously acquired mutations. All of the novel amino acid changes in Luc81-6G01 and Luc81-0B11 are at sites not targeted by the oligonucleotides and are due to single-base modifications of the codons, consistent with error-prone PCR. Even though the novel mutations in Luc81-6G01 were not found in the earlier sequence data, it is not certain when they were generated in the process. Most likely they were produced in the second and third cycles of random mutagenesis; however, they may have been present among other selected mutants prior to 20 Luc30-4B02. Relative to the initial yellow-green-emitting luciferase, the Luc81-6G01 mutant has acquired 17 amino acid changes and 3 codon mutations not affecting the amino acid sequence.

The observation that the onset of luminescence within colonies of *E. coli* is faster for the new mutants, and that the luminescence is brighter at higher temperatures, is probably not due to differences in protein expression.

Immunoblot analysis of cell expressing the different luciferases showed no significant differences in the amount of polypeptide present. As noted above, the greater light intensity at higher temperatures is due to the increased thermostability of the mutant luciferases. The apparent K_M's for ATP and luciferin have also changed during the course of the *in vitro* evolution (Table 14). To estimate the K_M values, the mutant luciferases were partially purified from lysates of *E. coli* by differential precipitation using ammonium sulfate (40-

65% saturation fraction). The results show that the K_M 's for both ATP and luciferase are more than 10-fold lower.

When luciferin is added to an $E.\ coli$ colony expressing luciferase, the intracellular concentration of luciferin slowly increases as it diffuses across the cell membrane. Thus, the intracellular concentration of luciferin reaches saturation sooner for those luciferases having the lowest K_M 's. Hence, the mutant luciferases appear brighter sooner than the wild-type parent clone. This also explains why the luminescence of the red-emitting prototype clone appears in $E.\ coli$ colonies much more slowly than the green-emitting luciferase.

Analysis of K_M shows that the mutations causing the red luminescence also substantially increase the K_M for luciferin.

Table 14

	Luciferase	K _M for ATP (μM)	K _M for luciferin (μM)
15	YG w.t.	140	21
	Luc30-4B02	12	7.8
	Luc81-6G01	8.0	1.9

From the analysis of luminescence signal *in vitro*, the luminescence from the mutant luciferases might be expected to fade more quickly than the wild-type luciferase during the first 30 minutes. Following this, the luminescence should be most stable in the mutants. However, this has not been noticed in the colonies of *E. coli*, and it may be that the kinetics of luminescence are different within cells compared to diluted enzyme in buffer.

25 References

Bowie, J.U., Reindhaar-Olsen, J.F., Lim, W.A., and Sauer, R.T., *Science*, (1990) 247:1306-1310.

Fromant, M., Blanquet, S., Plateau, P., Analytical-Biochemistry (1995) 224:347-53.

30 Hanahan, D. (1985) in *DNA Cloning*, v. 1, ed. Glover, D.W. (IRL Press, Oxford) pp. 109-135.

Hastings, J.W., Kricka, L.J., Stanley, P.E., (eds.) Bioluminescence and Chemiluminescence, Molecular reporting with Photons. Chichester: John Wiley & Sons (1996) 248-52.

Kajiyama, N., Nakano, E., Biosci. Biotech. (1994) 58(6):1170-1171.

Kajiyama, N., Nakano, E., Biochemistry (1993) 32:13795-13799.

Leach, et al., Biochimica, et Biophysica Acta, (1997) 1339(1):39-52.

Saiki, R.K., Gefand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Mullis,

5 K.B., Erlich, H.A., Science (1988) 239:487-91.

Stemmer, W.P., DNA (1994) 91:10747-51.

Stemmer, W.P., Proc. Natl. Acad. Sci. U.S.A. (1994) 91:10747-51.

Stemmer, U.S. Pat. No. 5,605,793.

White, P.J. et al. (eds.), Bioluminescence and Chemiluminescence,

10 Fundamentals and Applied Aspects. Chichester: John Wiley & Sons (1994) 419-422.

Wood, K. V., Photochemistry and Photobiology (1995) 62:662-673.

Wood, K.V., DeLuca, M., Analytical Biochemistry (1987) 161:501-7.

Ye, L., Buck, L.M., Schaeffer, H.J., Leach, F.R., Biochimica et

15 Biophysica Acta (1997) 1339:39-52.

All publications, patents and patent applications are incorporated herein by reference. While in the foregoing specification, this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details herein may be varied considerably without departing from the basic principles of the invention.

WHAT IS CLAIMED IS:

- 1. A second luciferase that has enhanced resistance to an inhibitor of the luciferase relative to a first reference beetle luciferase.
- 2. The second luciferase of claim 1 which retains at least 50% more activity in the presence of the inhibitor relative to the reference beetle luciferase.
- 3. The second luciferase of claim 1 which retains at least 100% more activity in the presence of the inhibitor relative to the reference beetle luciferase.
- 4. The second luciferase of claim 1 which comprises a plurality of amino acid substitutions relative to the reference beetle luciferase.
- 5. The second luciferase of claim 4 wherein the reference luciferase is native beetle luciferase.
- 6. The second luciferase of claim 5 wherein the reference beetle luciferase is Luc*Ppl*.
- 7. The second luciferase of claim 5 wherein the reference beetle luciferase is Luc*Ppe2*.
- 8. The second luciferase of claim 4 wherein the substitutions are to a consensus amino acid.
- A luciferase which comprises SEQ ID NO:14, SEQ ID NO:19, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:47, or an enzymologically active portion thereof.
- 10. An isolated and purified nucleic acid molecule comprising a nucleic acid segment encoding the luciferase of claim 9 or the complement thereof.

- 11. The isolated and purified nucleic acid molecule of claim 10 comprising a nucleic acid segment comprising SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:42, SEQ ID NO:43 or SEQ ID NO:46.
- 12. An isolated and purified nucleic acid molecule comprising a nucleic acid segment encoding the second luciferase of claim 1 or the complement thereof.
- 13. A vector containing the nucleic acid molecule of claim 10.
- 14. A vector containing the nucleic acid molecule of claim 12.
- 15. A host cell, the genome of which is augmented with the nucleic acid molecule of claim 10.
- 16. A host cell, the genome of which is augmented with the nucleic acid molecule of claim 12.
- 17. A solid substrate comprising the second luciferase of claim 1.
- 18. A solid substrate comprising the luciferase of claim 9.
- 19. A fusion protein comprising the second luciferase of claim 1.
- 20. A fusion protein comprising the luciferase of claim 9.
- 21. An isolated and purified nucleic acid molecule comprising a nucleic acid segment encoding the fusion protein of claim 19.
- 22. An isolated and purified nucleic acid molecule comprising a nucleic acid segment encoding the fusion protein of claim 20.

- 23. A method of using a luciferase, comprising: linking an agent with the second luciferase of claim 1 so as to yield a labeled agent.
- 24. The use of the second luciferase of claim 1 for detecting ATP, for labeling a molecule, as a genetic reporter, for immobilization onto a solid surface, to produce hybrid proteins, for high temperature reactions, or for creating luminescent solutions.
- 25. A method of using a luciferase, comprising: linking an agent with the luciferase of claim 9 so as to yield a labeled agent.
- 26. The use of the luciferase of claim 9 for detecting ATP, for labeling a molecule, as a genetic reporter, for immobilization onto a solid surface, to produce hybrid proteins, for high temperature reactions, or for creating luminescent solutions.
- 27. A method of using a vector encoding a luciferase, comprising:
 - a) introducing the vector of claim 13 into a host cell; and
 - b) detecting or determining the presence of luciferase in the host cell.
- 28. A method of using a vector encoding a luciferase, comprising:
 - a) introducing the vector of claim 14 into a host cell; and
 - b) detecting or determining the presence of luciferase in the host cell.
- 29. A kit comprising: a container comprising the second luciferase of claim 1.
- 30. The kit of claim 29 wherein the container comprises an aqueous mixture comprising the luciferase.
- 31. The kit of claim 29 wherein the container comprises lyophilized luciferase.

- 32. The kit of claim 29 further comprising a container comprising luciferin.
- 33. The kit of claim 29 wherein the container further comprises luciferin.
- 34. The kit of claim 31 wherein the container further comprises lyophilized luciferin.
- 35. The kit of claim 34 wherein the container which comprises luciferin comprises lyophilized luciferin.
- 36. The kit of claim 29 further comprising packaging material enclosing, separately packaged, the container and instruction means directing the user to correlate the luciferase activity in a sample suspected of having ATP with the level of ATP in the sample.
- 37. The kit of claim 29 further comprising packaging material enclosing, separately packaged, the container and instruction means directing the user to correlate the luciferase activity in a sample suspected of having an infectious agent that produces ATP with the level or presence of the agent in the sample.
- 38. A kit comprising: a container comprising the luciferase of claim 9.
- 39. The kit of claim 38 wherein the container comprises an aqueous mixture comprising the luciferase.
- 40. The kit of claim 38 wherein the container comprises lyophilized luciferase.
- 41. The kit of claim 38 further comprising a container comprising luciferin.
- 42. The kit of claim 38 wherein the container further comprises luciferin.

- 43. The kit of claim 40 wherein the container further comprises lyophilized luciferin.
- 44. The kit of claim 41 wherein the container which comprises luciferin comprises lyophilized luciferin.
- 45. The kit of claim 38 further comprising packaging material enclosing, separately packaged, the container and instruction means directing the user to correlate the luciferase activity in a sample suspected of having ATP with the level of ATP in the sample.
- 46. The kit of claim 38 further comprising packaging material enclosing, separately packaged, the container and instruction means directing the user to correlate the luciferase activity in a sample suspected of having an infectious agent that produces ATP with the level or presence of the agent in the sample.
- A method to prepare an enzyme which is not a beetle luciferase and which has enhanced enzymological properties, comprising:
 a) selecting one or more isolated polynucleotide sequences encoding an enzyme which is not a luciferase and which has at least one enhanced enzymological property from a first population of polynucleotide sequences obtained from a first isolated polynucleotide sequence encoding an enzyme which is not a luciferase, wherein the first isolated polynucleotide sequence is subjected to conditions that yield nucleotide mutations, wherein the enzyme encoded by the one or more selected isolated polynucleotide sequences has at least one enhanced enzymological property relative to the enzyme encoded by the first isolated polynucleotide sequence;
 - b) mutating the selected isolated polynucleotide sequence to yield a second population of polynucleotide sequences, wherein the selected isolated polynucleotide sequence is subjected to oligonucleotide mediated mutagenesis with a plurality of oligonucleotides each

comprising at least one codon that encodes a consensus amino acid which is not present in the first polynucleotide sequence; and c) repeating step a) and step b) so as to yield a further polynucleotide sequence encoding an enzyme which is not a luciferase having at least one enhanced enzymological property and comprising a plurality of amino acid substitutions relative to the enzyme encoded by the first polynucleotide sequence.

- 48. The method of claim 47 further comprising isolating the further polynucleotide sequence.
- 49. The method of claim 47 wherein in step b) a mixture of the selected isolated polynucleotide sequences of step a) are mutated.
- 50. The method of claim 47 wherein the property is specific activity, enzyme activity, catalytic turnover, Km or substrate utilization.
- 51. The method of claim 47 wherein the enzyme is DNA polymerase or RNA polymerase.
- 52. The method of claim 47 where the enzyme is detectable in crude cellular lysates or cells.
- 53. The method of claim 52 wherein the enzyme is chloramphenicol acetyltransferase, beta-glucuronidase or beta-galactosidase.
- 54. The method of claim 47 wherein the first polynucleotide sequence is subjected to recombination mutagenesis.
- 55. The method of claim 47 wherein the first polynucleotide sequence is subjected to point mutagenesis.

WO 01/20002

PCT/US99/30925

56. The method of claim 47 wherein the selection is an automated multiparameter process.

98

- 57. A polynucleotide sequence which is obtained by the method of claim 47.
- 58. A method to prepare an enzyme that is resistant to an inhibitor, comprising:
 - a) selecting one or more isolated polynucleotide sequences encoding an enzyme which is resistant to an inhibitor from a first population of polynucleotide sequences obtained from a first isolated polynucleotide sequence encoding an enzyme subjected to conditions that yield nucleotide mutations, wherein the enzyme encoded by the one or more selected isolated polynucleotide sequences has increased resistance to an inhibitor relative to the enzyme encoded by the first isolated polynucleotide sequence;
 - b) mutating the selected isolated polynucleotide sequence to yield a second population of polynucleotide sequences; and
 - c) repeating step a) and step b) so as to yield a further polynucleotide sequence encoding an enzyme that is resistant to an inhibitor and comprises a plurality of amino acid substitutions relative to the enzyme encoded by the first polynucleotide sequence.
- 59. The method of claim 58 further comprising isolating the further polynucleotide sequence.
- 60. The method of claim 58 wherein in step b) a mixture of the selected isolated polynucleotide sequences of step a) are mutated.
- 61. The method of claim 58 wherein the further polynucleotide sequence encodes an enzyme that has increased thermostability relative to the first polynucleotide sequence.

- 62. The method of claim 58 wherein the enzyme is DNA polymerase or RNA polymerase.
- 63. The method of claim 58 wherein the enzyme is resistant to inhibition by a substrate analog of the enzyme.
- 64. The method of claim 58 wherein the mutating employs oligonucleotides having at least one codon encoding a consensus amino acid.
- 65. The method of claim 58 wherein the enzyme is a luciferase.
- 66. The method of claim 65 wherein the luciferase is a beetle luciferase.
- 67. The method of claim 66 wherein the first polynucleotide sequence encodes Luc*Ppe2*.
- 68. The method of claim 66 wherein the first polynucleotide sequence encodes LucPpl.
- 69. The method of claim 58 wherein a plurality of amino acid substitutions are to a consensus amino acid.
- 70. The method of claim 58 wherein the first polynucleotide sequence is subjected to recombination mutagenesis.
- 71. The method of claim 58 wherein the first polynucleotide sequence is subjected to point mutagenesis.
- 72. The method of claim 58 wherein the selection is an automated multiparameter process.
- 73. The method of claim 65 wherein the luciferase has increased luminescence intensity, increased signal stability or decreased Km.

WO 01/20002 PCT/US99/30925

100

- 74. A polynucleotide sequence which is obtained by the method of claim 58.
- 75. An enzyme which is encoded by the polynucleotide sequence of claim 57.
- 76. An enzyme which is encoded by the polynucleotide sequence of claim76.

FIG. 1

FIG. 2

SUBSTRUTE SHEET (BULE 25)

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

SUBSTITUTE SHEET (RULE 26)

FIG. 16A

FIG. 16B SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)


```
LCT MENMENDE.N IVVGPKPPYP IEEGSAGTQL RKYMERYAKL .GAIAFTNAV
 Lla MENNENDE.N IVYGPEPFYP IEEGSAGAQL RKYNDRYAKL .GAIAFTNAL
  LMI ME.MEKEB.N VVYGPLPFYP IEBGSAGIQL HKYMHQYAKL .GAIAFSNAL
  Pmi ... MEDDSKH INHGHRHSIL WEDGTAGEQL HKANKRYAQV PGTIAFTDAH
  PPY ...MED.AKN IKKGPAPFYP LEDGTAGEQL HKANKRYALV PGTIAPTDAH
 Lno ... MED. AKN INHGPAPFYP LEDGTAGEQL HKANKRYAQV PGTIAFTDAH
 Ppe1 ...MSI.ENN ILIGPPPYYP LEEGTAGEQL HRAISRYAAV PGTLAYTDVH
  Phg MIKME..EEH VMPGAMPRDL LFEGTAGQQL HRALYKHSYF PE..AIVDSH
      ...MMKREKN VVYGPEPLHP LEDLTAGEML FRALRKESHL PQ..ALVDVY
YG ...MMKREKN VIYGPEPLHP LEDLTAGEML FRALKHSHL PQ..ALVDVF
Ppe2 ...MED..KN ILYGPEPFYP LADGTAGEQM FYALSRYADI SGCIALTNAH
49-7C6
78-0B10
          A
90-1B5
                             E
                                        D
                                                  P
133-1B2
                             B
                                        D
146-1H2
         A
                             B
Cons ---M------AG-----AG---
 LCT TGVDYSYAEY LEKSCCLGKA LQNYGLVVDG RIALCSENCE EFFIPVIAGL
 Lla TGVDYTYABY LEKECCLGBA LKNYGLVVDG RIALCSENCE EFFIPVLAGL
 Lmi TOVDISYQEY FDITCRLARA MENFONEPEE HIALCSENCE EFFIPVLAGL
 Pmi AEVNITYSEY FENSCRLAET MKRYGLGLQH HIAVCSETSL QFPMPVCGAL
 PPY IEVNITYABY FEMSVRLABA MKRYGLATNE RIVVCSENSL QFFMPVLGAL
 LDO AEVNITYSEY FEMACRLAET MKRYGLGLQH HIAVCSENSL QFFMPVCGAL
Ppel TELEVTYKEF LDVTCRLAEA MKNYGLGLQH TIBVCSENCV QFFMPICAAL
 Phg Theiisyaki LDMSCRLAVS FQKYGLTQNN IIGICSENNL NFFNPVIAAF
      GEEWISYKEF FETTCLLAGS LHNCGYKMSD VVSICAENNK RFFVPIIAAW
 YG GDESLSYKEF FEATCLLAGS LHNCGYKMND VVSICAENNK RFFIPIIAAW
Ppe2 TKENVLYEEF LKLSCRLAES FKKYGLKOND TIAVCSENGL QPPLPLIASL
49-7C6
78-0B10
90-1B5
                                                       v
133-1B2
                                                       v
                                               S
146-1H2
                                                       v
Cons
       ----Y--- -FF-P----
  LCT FIGVGVAPTN BIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI
  Lla PIGVGVAPIN EIYTLRELVE SLGISKPTIV PSSKKGLDKV ITVQKTVATI
  Lmi Yigvavaptn biytlrelne slgiaoptiv Fssrkglpkv levoktytci
  Pmi Pigygyaptn Diynerelyn Slpisoptiv Fcskraloki Lgygkklpvi
  Ppy figvavapan diynerelln smnisqptvv fvskkglqki lmvqkkliiii
  Lmo figygyastn diynerklyn slsisoptiv scskraloki lgvokklpii
 Ppel YVGVATAPIN DIYNERELYN SLSISQPTVV FTSRNSLQKI LGVQSRLPII
  Phg YLGITVATVN DTYTDRELSE TLNITKPQML PCSKQSLPIV MKTMKIMPYV
  GR YIGNIVAPVN EGYIPDELCK VMGIERPQLV PCTKNILKKV LEVQSRTDFI
      YIGMIVAPVN ESYIPDELCK VMGISKPQIV FCTKNILNKV LEVOSRINFI
 Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQKV LNVKSKLKYV
49-7C6
78-0B10
90-1B5
           V
               N
                                                          SI
133-1B2
               N
         v
146-1H2
              N
```

FIG. 19A

Cons --G---A--- --Y---EL-- ---I--P---

Cons

16/70

```
LCT KTIVILDSKV DYRGYQCLDT FIKRNTPPGF QASSPKTVEV .DRKEQVALI
 Lla KTIVILDSKV DYRGYQSNDN PIKKNTPQGF KGSSFKTVBV .NRKEQVALI
 Lmi KKIVILDSKV NFGGEDCNET PIKKHVELGF QPSSFVPIDV KNRKOHVALL
 Pmi OKIVILDSRE DYNGKQSNYS FIESHLPAGF NEYDYIPDSF .DRETATALI
 PDY OKIIINDSKT DYQGFQSMYT FVTSHLPPGF MEYDFVPESF .DRDKTIALI
 Lino QKIVILDSRE DYMGKQSMYS FIESHLPAGF NEYDYIPDSF .DRETATALI
Ppel KKIIILDGKK DYLGYQSMQS FMKEHVPANF NVSAFKPLSF .DLDR.VACI
 Phg QKLLIIDSMQ DIGGIECVHS FVSRYTDEHF DPLKFVPLDF .DPREQVALI
      KRIIILDAVE NIHGCESLPN FISRYSDGNI A..NFKPLHY .DPVEQVAAI
 ΥG
      KRIIILDTVE NIHGCESLPN FISRYSDONI A..NFKPLHY .DPVEQVAAI
Ppe2 ETIIILDINE DIGGYQCINN FISQNSDINL DVKKFKPNSF .NRDDQVALV
49-7C6
78-0B10
90-1B5
                                   S
                D
133-1B2
                                   S
                                              Υ
                                                           Ι
146-1H2
                                   S
                                                          SI
       ----I-D--- F-----
      201
 LCT MNSSGSTGLP KGVQLTHENT VTRF6HARDP IYGNQVSPGT AVLTVVPFHH
      MNSSGSTGLP KGVQLTHENA VTRFSHARDP IYONQVSPGT AILTVVPFHH
      MNSSGSTGLP KOVRITHEGA VTRFSHAKDP IYONQVSPGT AILTVVPFHH
 Pmi MNSSGSTGLP KGVDL/THROW CVRPSECRDP VFGNQIIPDT AILTVIPFHH
 Ppy MNESGSTGLP KGVALPHRTA CVRFSHARDP IFGNQIIPDT AILSVVPFHH
 Lino MISSGSTGLP KGVELTHONV CVRFSECRDP VFGNQIIPDT AILTVIPPHH
Ppel MNSSGSTGLP KGVPISHRNT IYRFSECRDP VFGNQIIPDT TILCAVPFHH
 Phg MTSSGTTGLP KGVMLTHRNI CVRFVHSRDP LFGTRFIPET SILSLVPFHH
      LCSSGTTGLP KGVMQTHRNV CVRLIHALDP RVGTQLIPGV TVLVYLPFFE
      LCSSGTTGLP KGVMQTHQNI CVRLIHALDP RAGTQLIPGV TVLVYLPFFH
Ppe2 MFSSGTTGVS KGVMLTHKNI VARPSECKDP TFGNAINPTT AILTVIPFHH
49-7C6
                                 LA
78-0B10
                                 LA
90-1B5
               LP
133-1B2
               LP
                                  IA
              LP
                                  IA
 Cons -- SSG-TG-- KGV---H--- -- R--H--DP -- G----P-- -- L---PF-H
 LCT GFGMFTTLGY LICGFRVVML TKFDBETFLK TLQDYKCTSV ILVPTLFAIL
  Lla GFGMFTTLGY LTCGFRIVNL TKFDEETFLK TLQDYKCSSV ILVPTLPAIL
  Lmi GFGMFTTLGY FACGYRVVML TKFDEELFLR TLQDYKCTSV ILVPTLFAIL
  Pmi VFQMFTTLGY LTCGFRIVLM YRFERELFLR SLQDYKIQSA LLVPTLFSFF
  PPY GFGMFTTLGY LICGFRVVLM YRFERELFLR SLQDYKIQSA LLVPTLFSFF
  Lao
      GFORFTTLGY LICGFRIVLM YRPEKELFLR SLQDYKIQSA LLVPTLFSFF
 Ppel AFGTFINLGY LICGFEVVLM YRFNEELFLQ TLQDYKCQSA LLVPTVLAFL
  Phg APGNETTLSY FIVGLKIVMM KREDGELFLK TIQNYKIPTI VIAPPVNVPL
       AFGFSINLGY FAVGLRVINL RRFDQEAFLK AIQDYEVRSV INVPAILLFL
  YG
       AFGFSINLGY PHVGLRVINL RRPDQEAFLK AIQDYEVRSV INVPAILLFL
 Ppe2 GPGMTTTLGY FTCGFRVALM HTFEEKLFLQ SLQDYKVEST LLVPTLMAFF
49-7C6
                         V
78-0B10
                                                            ī.
90-1B5
                         V
                                                            L
                         v
133-1B2
146-1H2
                         v
```

FIG. 19A (Continued)

-F----L-Y ---G----- --F----FL- --Q-Y----- ---P-----

```
301.
  LCT NKBELLNKYD LENLVEIASG GAPLSKEVGE AVARRENLPG VRQGYGLTET
 Lla NRSELLDKYD LSNLVELASG GAPLSKEIGE AVARRPNLPG VRQGYGLTET
 Lai NKEELIDKFD LENLTEIAEG GAPLAKEVGE AVARRENLPG VRQGYGLTET
  Pmi AKSTLVDKYD LSNLHBIASG GAPLAKEVGE AVAKRPKLPG IROGYGLTET
  Ppy AKSTLIDKYD LSNLHBIASG GAPLSKEVGE AVAKRFELPG IROGYGLTET
  Lno AKSTLVDKYD LSNLHBIAGG GAPLAKEVGE AVAKRFKLPG IRQGYGLTBT
 Ppel AKNPLVDKYD LSNLHBIASG GAPLSKBISE IAAKRFKLPG IRQGYGLTET
  Phg AKEHLVDKYD LSSIKEIATG GAPLGPALAN AVAKRLKLGG IIOGYGLTET
      SKEPLVDKYD LSSLRELCCG AAPLAKEVAE IAVKRLNLPG IRCGPGLTES
      SKSPLVDKYD LSSLRELCCG AAPLAKEVAE VAVKRLNLPG IRCGFGLTES
 YG
PDe2 AKSALVEKYD LSHLKEIASG GAPLSKEIGE MVKKRFKLNF VRQGYGLTET
49-7C6
78-0B10
90-1B5
133-1B2
146-1H2
      ----L--K-D LS---B---G -APL----- ---R--L-- ---G-GLTR-
      351
 Lcr
      TSAIIITPEG DDKPGASGKV VPLFKAKVID LDTKKSLGPN RRGEVCVKGP
      TSAIIITPEG DDKPGASGKV VPLFKAKVID LDTKKTLGPN RRGEVCVKGP
 Lmi TSAPIITPEG DDKPGASGKV VPLPKVKVID LDTKKTLGVN RRGEICVKGP
 Pmi TBAIIITPBG DDKPGACGKV VPFFTAKIVD LDTGKTLGVN QRGELCVKGP
 Ppy TSAILITPEG DDKPGAVGKV VPFFEAKVVD LDTGKTLGVN QRGELCVRGP
      TEATITITEG DDKPGACGKV VPFFSAKIVD LDTGKTLGVN QRGELCVKGP
 Ppel TCAIVITAEG EFKLGAVGKV VPFYSLKVLD LNTGKKLGPN ERGEICFKGP
 Phg CCAVLITPHN KIKTGSTGQV LPYVTAKIVD TKTGKNLGPN QTGKLCFKED
      TSANIHSLRD EFKEGSLGRV TPLMAAKIAD RETGKALGPN QVGELCIKGP
      TEANIHSLOD EFKEGSLORV TPLMAAKIAD RETOKALOPN QVGELCVKGP
Ppe2 TSAVLITPDT DVRPGSTGKI VPFHAVKVVD PTTGKILGPN ETGELYFKGD
49-7C6
            NN
78-0B10
              KG A
              KG AK
90-1B5
                                                           P
              KG AK
133-1B2
                                                           P
146-1R2
              KG AK
                              L
Cons --A-----G--G---P---K-D --T-K-LG-N --GE-----
 LCT MLMKGYVNNP BATKELIDEE GWLHTGDIGY YDEEKHFFIV DRLKSLIKYK
 LIA MLMKGYVDNP EATREIIDEE GWLHTGDIGY YDEEKHPFIV DRLKELIKYK
 Lmi SLMLGYSNNP EATRETIDEE GWLHTGDIGY YDEDEHFFIV DRLKELIKYK
 Pmi MIMKGYVNNP EATNALIDKD GWLHEGDIAY YDKDGHFFIV DRLKELIKYK
 Ppy MIMSGYVNNP BATNALIDKD GWLHSGDIAY WDEDEHFFIV DRLKELIKYK
 LMO MINKGYVNNP BATSALIDKD GWLHSGDIAY YDKDGHPPIV DRLKSLIKYK
 Ppel MINKGYINNP BATRELIDEE GWIHSGDIGY FDEDGHVYIV DRLKSLIKYK
 Phg IIMKGYYQNE EFTRLVIDKD GWLHSGDIGY YDTDGNFHIV DRLKELIKYK
      MVSKGYVNNV EATKEAIDDD GWLHSGDFGY YDRDEHFYVV DRYKELIKYK
      MVSKGYVNNV EATKBAIDDD GWLHSGDFGY YDEDEHFYVV DRYKELIKYK
Ppe2 MINKEYYNNE EATKAIINKO GWLREGDIAY YDNDGHFYIV DRLKELIKYK
49-7C6
78-0B10
          G
                        DN
90-1B5
          G
                        DN
133-1B2
          G
                        DN
146-1H2
          G
                        DN
 Cons ----Y-N- E-T---I--- GW---GD--Y -D------V DR-K-LIKYK
```

FIG. 19A (Continued)

```
451
 LCT GYQVPPARLE SVLLQHPSIF DAGVAGVPDP VAGELPGAVV VLESGRENTE
 Lla GYQVPPAELE SVLLQHPNIF DAGVAGVPDP IAGELPGAVV VLEKGKENTE
  Lmi GYQVPPAELE SVLLQHPHIF DAGVAGVPDP DAGELPGAVV VNEKGKTNTE
  Pmi GYQVPPARLE SILLQHPFIF DAGVAGIPDP DAGELPAAVV VLEEGKMATE
  PPY GYQVAPARLE SILLQHPNIF DAGVAGLPDD DAGRLPAAVV VLRHGKTMTE
  LIIO GYQVPPARLE SILLQHPFIF DAGVAGIPDP DAGKLPAAVV VLEEGKTMTE
 Ppel GYQVPPARLE ALLLQHPFIE DAGVAGVPDE VAGDLPGAVV VLKEGKEITE
  Phg AYQVAPABLE ALLLQHPYIA DAGVTGIPDE BAGBLPAACV VLEPGKTMTE
      GSQVAPABLE BILLKNPCIR DVAVVGIPDL BAGBLPSAFV VIQPGKBITA
      GSQVAPABLE BILLKNPCIR DVAVVGIPDL BAGBLPSAFV VKQPGKBITA
 Ppe2 GYQVAPABIB GILLQHPYIV DAGVTGIPDE AAGBLPAAGV VVQTGKYLNE
49-7C6
78-0B10
90-1B5
133-1B2
146-1H2
Cons
      --QV-PAR-R --LL--P-I- D--V-G-PD- -AG-LP-A-V V---GK----
 LCT KEVNDYVASQ VSNAKRLRGG VRFVDEVPKG LTGKIDGRA. IREILKKPV.
 LIA KEVMDYVASQ VSNAKRLEGG VEFVDEVPKG LTGKIDGKA. IREILKKPV.
 Lai KEIVDYVNSQ VVNHKRLRGG VRFVDEVPKG LTGKIDAKV. IRBILKKPQ.
 Pmi QEVNDYVAGQ VTASKRLRGG VKFVDEVPKG LTGKIDSRK. IRBILITMGQK
 PPY KEIVDYVASQ VTTAKKLEGG VVFVDEVPKG LTGKLDARK. IREILIKAKK
      QEVMDYVAGQ VTASKRLRGG VKFVDEVPKG LTGKIDGRK. IREILAMGKK
 Ppel KEIQDYVAGQ VTSSKKLRGG VEFVKEVPKG FTGKIDTRK. IKEILIKAQK
 Phg KEVMDYIAER VTPTKRLRGG VLFVNNIPKG ATGKLVRTE. LRRLLTQRA.
      KEVYDYLAER VSHTKYLRGG VRFVDSIPRN VTGKITRKEL LKOLLEKS..
      KEVYDYLAER VSHTKYLRGG VRFVDSIPRN VTGKITRKEL LKQLLEKS..
 YG
Ppe2 QIVQNFVSSQ VSTAKWLRGG VKFLDEIPKG STGKIDRKV. LRQMFEKH...
49-7C6
78-0B10
          D
90-1B5
         DY A
133-1B2
         DY A
                             Ι
                                                     L
146-1H2 DY A
                                                     L
 Cons ----- V---K-LRGG V-F----P-- -TGK-----
      551
 Lcr .....AKM
      .....ARM
 Lla
 Lmi
      .....AXM
      .....skl
  Pmi
  Ppy G...GKEKL
  Lno .....SKL
 Ppe1
      GKEKEKAKL
  Phq
      .....AKL
  GR
      .....SKL
 YG
      .....skt
 Ppe2 ....KSKL
49-7C6
78-0B10
90-1B5
           TNG*
133-1B2
           TNG*
146-1H2
           TNG*
```

FIG. 19A (Continued)

Lcr: Luciola cruciata Phg: Phengodes sp. Lla: Luciola lateralis Lmi : Luciola mingrelica

Gr: Pyrophorus plagiophthalamus (green)

Pyrophorus plagiophthalamus (yellow green) YG:

Pmi: Pyrocoelia miyako Ppy: Photinus pyralis

Lno: Lampyris noctiluca

Ppe-2: Photuris pennsylvanica (2) Ppe-1: Photuris pennsylvanica (1)

Cons: Sites which are strictly conserved

FIG. 19A (Continued)

	1				50	
Lcr	MBNMENDE.N	IVVGPKPFYP	IEEGSAGTOL	RKYMERYAKL	GATAPTNAV	
Lla	MENMENDE . N	IVYGPEPFYP	IRRGSAGAOL	RKYMDRYAKL	GATARTNAL	
Lmi	ME.MEKBB.N	VVYGPLPPYP	IRRGSAGIOL	HKYMHQYAKL	GATAPCNAL	
Pmi	MEDDSKH	INHGHRHSTI	WEDGTAGEOL	HKAMKRYAQV	POTTAPTOAU	
Ppy	MED. AKN	IKKGPAPFYP	I.RDGTAGROL	HKAMKRYALV	DOTTAPTOAU	
Lno	MED.AKN	IMHGPAPPYD	LEDGTAGEGI.	HKAMKRYAQV	POTTAPIDAN	
Ppe1	MST ENN	TITGPPDVVD	LEPOTAGEOL.	HRAISRYAAV	POUT A VIDAR	
Ppe2				FYALSRYADI		
Phq				HRALYKHSYF		
GR				FRALRKHSHL		
YG	MMKPRKN	VIVOPEPILIP	T DDI TROPPI	FRALRKHSHL	PQALVUVY	
30-4B02						
81-6G01	MARKETAN	VIIGPEPLMP	PEDILLAGEME	FRALRKHSHL	PQALVDVV	
				PRALRKHSHL		
Cons	M	G	AG		A	
	£4			•		
***************************************	51				100	
Lcr	TOVDYSYABY	LEKSCCLGKA	LÖNYGLVVDG	RIALCSENCE	BFFIPVIAGL	
Lla	TGVDYTYABY	LEKECCLGEA	LKNYGLVVDG	RIALCSENCE	EFFIPVLAGL	
Lmi	TGVDISYQBY	PDITCRLABA	MKNFGMKPEE	HIALCSENCE	EFFIPVLAGL	
Pmi	ABVNITYSBY	FENSCRLABT	MKRYGLGLQH	HIAVCEETEL	OPPMPVCGAL	
₽py	IEVNITYABY	PBMSVRLABA	MKRYGLNTNH	RIVVCSENSL	QPPMPVLGAL	
Lno	abvnitysey	PEMACRLART	MICRYGLGLQH	HIAVCSENSL	OFFMPVCGAL	
Ppe1	TELEVTYKEF	LDVTCRLAEA	MICHYGLGLQH	TISVCSENCV	OFFMPICAAL	
Ppe2	TKENVLYEEF	LKLSCRLABS	PKKYGLKOND	TIAVCSENGL	OFFLPLIASL	
Phg	THEIISYAKI	LDMSCRLAVS	PORYGLTONN	IIGICSENNL	NFFNPVIAAF	
GR	GEEWISYKEF	FETTCLLAQS	LHNCGYKMSD	VVSICAENNK	RFFVPIIAAW	
YG	GDESLSYKEP	PRATCLLAQS	LHNCGYKMND	VVSICAENNK	RFFIPIIAAW	
30-4B02	GDESLSYKEF					
81-6G01		FRATVLLAGS	LHNCGYKMND	VVSTCARNAT	DPPTDUTANU	
Содв				C-E		
Cons			G	¢-8	-FF-P	
	101				1.54	
-			<u> </u>		150	
Ler		BIYTLRELVH	SLGISKPTIV	Peskkoldky	ITVQKTVTTI	
	PIGVGVAPTN	BIYTLRELVH	SLGISKPTIV	PSSKKGLDKV	ITVQKTVATI	
Lmi	YIGVAVAPTN	BIYTLRELNH	SLGIAQPTIV	PSSRKGLPKV	FRAÖKLALCI	
Pmi	FIGVOVAPTN	DIYNERELYN	SLFISQPTIV	PCSKRALQKI	LGVQKK LPVI	
Ppy	FIGVAVAPAN	DIYNERELLN	SMNISQPTVV	FVSKKGLQKI	LNVQKKLPII	
Lno	PIGVGVASTN	DIYNERELYN	SLSISQPTIV	SCSKRALQKI	LGVQKKLPII	
	YVGVATAPTN					
Ppe2	YLGIIAAPVS					
Phg				PCSKQSLPIV		
GR	YIGHIVAPVN	EGYIPDELCK	VMGISRPQLV	PCTKNILNKV	Levosrtdfi	
YG				PCTKNILNKV		
30-4B02	YIGMIVAPVN	ESYIPDELCK	VMGISKPQIV	PTTKNILNKV	LEVOSRTNFI	
81-6G01	VICHTURDIN	POVEDDETON	MATEVOATU	DIFFERENT LATERAL		
	TIGHTANPAN	POTTEDPPCK	AUGIBUDGIA	LITERATION	PRACESTALI	
Cons				LILBITURY		

FIG. 19B

	151				200	
Lcr	KTIVILDSKV	DYRGYQCLDT	PIKRNTPPGP	QASSPKTVBV		
Lla	KTIVILDSKV	DYRGYQSMDN	FINONTPOGF	KGSSPKTVRV	. NRKEQVALI	
Lmi	KKIVILDSKV	NEGHIDCHET	FIKKHVBLGF	QPSSFVPIDV	KNRKOHVALI	
Pmi	OKIVILDSRE	DYMCKOSMYS	PIRSHLPAGE	NBYDYIPDSF	DEPTATALT	
Ppy	OKILIMDSKT	DYOGPOSMYT	PVTSHLPPGP	NEYDFVPBSF	DEDINIALI	
Lno	OKIVILDSRE	DYMGKOSMYS	FIRSHT PAGE	NEYDYIPDSF	DDDTATALI	
Ppe1	KKIIILDGKK	DYLGYOSMOS	FMKRHVDANR	NVSAPKPLSF	DI DR VACT	
Ppe2	BTIILDLNR	DIAGYOCIAN	PISONSDINI.	UARKERDNOS MACHE CEDOS	.NRDDQVALV	
Phg	OKLLIIDSMO	DIGGIRCVHS	FACOVODIVE	DPLKFVPLDF	· NKDDQVALV	
GR	KRIIILDAVE	NIHGCESLEN	FISPYSDANT	A NFKPLHY	*DEKROVALI	
YG	KRIIILDTVR	NTHGCRSL.DN	FICEVERANT	A NFKPLHY	DPVEQVAAI	
30-4802						
81-6G01	KKITITIDIAD	MINGCESLPN	FISKYSDGNI	A NPKPLHY	.DPVEQVAAI	
				A NPKPLHP		
Cons	I-D	G	F		A	
	201				250	
Lcr	MNSSGSTGLP	KGVQLTHENT	VTRFSHARDP	IYGNOVSPGT	AVLTVVPPHH	
Lla	MNSSGSTGLP	KGVQLTHRNA	VTRFSHARDP	IYGNQVSPGT	ATLTVVDRDU	
Lmi	MNSSGSTGLP	KGVRITHEGA	VTRFSHAKDP	IYGNQVSPGT	ATT. TUVDPUU	
Pmi	MNSSGSTGLP	KGVDLTHMNV	CVRFSHCRDP	VPGNQIIPDT	ATLTUTOPHU	
Ppy	MNSSGSTGLP	KGVALPHRTA	CVRFSHARDP	IFGNQIIPDT	ATI.CVVDDUU	
Lno	MNSSGSTGLP	KGVELTHONV	CVRPSHCRDP	VPGNQIIPDT	ATLIBVOPPEN	
Ppel	MNSSGSTGLP	KGVPISHRNT	IVERSHORD	VFGNQIIPDT	WILLIAM TENT	•
Ppe2	MFSSGTTGVS	KGVMLTHKNI	VARPSHCKOP	TEGNAINPTT	ATIMITHEM	
Phq	MTSSGTTGLP	KGVMLTHRNT	CABRARCEDE	LFGTRFIPET	WIDIAISEMU	
GR.	LCSSGTTGLP	KGVMOTHRNV	CALITATION OF	RVGTQLIPGV	SITTOTALL	
YG	LCSSGTTGLP	KGVMOTHONT	CVILITUAL DE	RAGTQLIPGV	TADAIDLEN	
	LCSSGTTGLP	KGVMQTHQNI	CVRLIHALDP	RAGTQLIPGV	TVLVYLPFFH	
91-9001	LCSSGTTGLP					
Cons	<i>SSG-T</i> G	KGVH	RHDP	GP	LPF-H	
	251		•		300	
Lcr	GFGMFTTLGY	LICGFRVVML	TKFDEBTFLK	TLODYKCTEV	ILVPTLFAIL	
Lla	GPGMFTTLGY	LTCGFRIVML	TKFDEBTFLK	TLODYKCSSV	ILVPTLFAIL	
Lmi	GFGMFTTLGY	PACGYRVVML	TKPDEELFLR	TLODYKCTEV	ILVPTI.PATI.	
Pmi	VFQMFTTLGY	LTCGFRIVLM	YRFBEELFLR	SLODYKIOSA	LLVPTLEREP	
Ppy	GFGMFTTLGY	LICGFRVVIM	YRFREELFLD	SLODYKTOGA	LLVPIT.PCPP	
Lno	GFGMFTTLGY	LTCGFRIVLM	YRFRERLFLR	SLODYKTOSA	LLVPTLESER	
Ppe1	AFGTFTNLGY	LICGPHVVLM	YRPNRHLFIA	TLODYKOOSA	I.I.VDTVI.API:	
Ppe2	GPGMTTTLGY	PTCGPRVALM	HTFREKTIPIA	SI'ODAKABEA	I.I.VDTILLI	
Phq	AFGMFTTLSY	PIVGLKIVMM	KRFDGRI.FI.K	TIONYXTOTT	UT A DOUMNET	
GR	APGPSINLGY	PMVGLRVIMI.	RRFDORAFT.Y	ATODYRUDGU	THUDATTIES	
YG	AFGPSINLGY	PMVGLRVIMI.	RRFDORARI.Y	ATODYRUDEU	INVDATTIO	
30-4B02	AFGPSINLGY					
	AFGPSITLGY	EMACH'EMACHE	KKIUUEAFUK	WIGNIEAKRA	INVPAIILFL	
CODB	-FL-Y	G	FFT	O-Y	D	

FIG. 19B (Continued)

	301				350	
Lcr	NKSBLLNKYD	LSNLVEIAGG	GAPLSKEVGE	AVARRENLPG	VRQGYGLTET	
Lla				AVARRENLPG		
Lmi	NKSBLIDKFD	LENLTELASG	GAPLAKEVGE	AVARRENLPG	VROGYGLTET	
Pmi				AVAKRPKLPG		
Ppy	AKSTLIDKYD	LSNLHBIAGG	GAPLSKRVGB	AVARREHLPG	IPOGYGLTET	
Lno	AKSTLVDKYD	LSNLHETASG	GAPLAKRVGR	AVAKRPKLPG	TROGVOLTET	
Ppe1				LAAKRFKLPG		
Ppe2	AKSALVRKYD	LSHLKRIASO	CADICEPTOR	MVKKRPKLNP	TWOOLGETEL	
Phq	AKSHLVDKYD	LOSIKETATO	CADICOALAN	AVAKRLKLGG	TICCYCLEC	
GR				IAVKRLNLPG		
Ϋ́G				VAVKRLNLPG		
	SKSPLVDKYD					
81-6G01						
Cons	LK-D	LSBG	-APL	RL	G-GLTB-	
	351				400	
Lcr	TSAILITPEG	DDKPGASGKV	VPLFKAKVID	LDTKKSLGPN	RRGRVCVKGP	
Lla						
Lmi	TSAFIITPEG					
Pmi	TSAIIITPEG					
Ppy						
Lno	TSAIIITPEG	DDKPGACGKV	VDPPCAKTUD	I DYNGKTI AVNI	ORGETICANGE	
Ppel		BEKT UNVOKA	VPPVCI.FUT.D	PDIGKINGAK	SECRET CANCE	
Ppe2	TCAUT.TTDDT	DVDDGGTGKT	ALLISHVAND	PTTGKILGPN	ENGBICENGE	
Phq						
GR				RETGRALGPN		
YG						
				RETGKALGPN		
30-4B02	TSANIHSLRD	EFKSGSIGRV	TPLMAAKIAD	retgkalgpn	QVGELCIKGP	
81-6G01	TSANIHSLED	EFKSGSLGRV	TPLMAAKIAD	RETGKALGPN	QVGBLCIKGP	
Cons	A	GG	-PKD	T-K-LG-N	GB	-
				•		
	401				450	
Ler	MIMKGYVNNP	RATKELIDER	GWLHTGDIGY	YDRRKHPPTV	DRIKSLIKYK	
Lla						
Lmi	SLMLGYSNNP	RATRETIDER	GMLHTGDTGV	ADSDSHABLA	DDI.KGI.TEAN	
Pmi	NIMKGYVNND	RATWALTOWN	CWINSHIMS	YDKDGHFFIV	DDI'KGI'IAAA	
Ppy					DRLKSLIKYK	
Lno	MIMKGYVNND	RATSAT.TOKO	WI.HEDELIND	YDKDGEFFIV	DELYCITEVE	
Ppe1	MINKGYINNP	RATERITATION	CHILLOUDIAL	PUDDOMINATA	PULLETANT	
Ppe2				YDNDGHFYIV		
Phq				YDTDGNFHIV		
GR				YDEDEHFYVV		
YG	WACKGAAMMA	EVAKES THUS	CHIPPODEGI CHIPPODEGI	YDEDEHFYVV	PRINEFILLY	
30-4B02	MVSKGYVNNV					
81-6001				YDEDEHFYVV		
Cons	YN-	B-TI	GWGDY	-DV	DR-K-LIKYK	

FIG. 19B (Continued)

SUBSTITUTE SHEET (RULE 26)

1	451				500	
Lcr	GYQVPPABLE	SVLLQHPSIF	DAGVAGVPDP	VAGBLPGAVV	VLBSGKNNTE	
Lla	GYQVPPABLE	SVLLQHPNIP	DAGVAGVPDP	IAGBLPGAVV	VLBKGKSMTE	
Lmi				DAGBLPGAVV		
Pmi				DAGBLPAAVV		
Ppy				DAGBLPAAVV		
Lno				DAGBLPAAVV		
Ppe1				VAGDLPGAVV		
Ppe2				AAGELPAAGV		
Phg	AYOVAPABLE	ALLLOHPYIA	DAGVIGIPDE	EAGELPAACV	VI.RDGKTMTE	
GR	GSOVAPARLE	BILLKNPCIR	DVAVVGIPDI.	BAGBLPSAFV	VIODOKRITA	
YG	GSOVAPARLE	BILLKNOCIR	DVAVVGI PDI.	BAGELPSAFV	ATGEORGITA	
30-4B02				BAGBLPSAFV		
81-6G01				BAGBLPSAPV		
Cons	QV-PAB-E	LLP-I-	DV-G-PD-	-AG-LP-A-V	VGK	
	501		,			
		11001110011100			550	
Lcr				LTGKIDGRA.		
Lla	KRAMDAAVEG	VENAKRLRGG	VRFVDEVPKG	LTCKIDCKA.	IRBILKKPV.	
Lmi	KRIVDYVNSQ	VVNHKRLRGG	VRFVDBVPKG	LTGKIDAKV.	ireilkkpo.	
Pmi				LTGKIDSRK.		
₽ p y				LTGKLDARK.		
Lno				LTGKIDGRK.		
Ppel				FTGKIDTRK.		
Ppe2				STGKIDRKV.		
Phg				ATGKLVRTE.		
GR				VTGKITRKEL		
YG	KEVYDYLAER	VSHTKYLRGG	VRFVDSIPRN	VTGKITRKEL	LKQLLEKS	
30-4B02	KEVYDYLAER	VSHTKYLRGG	VRFVDSIPRN	VTGKITRKEL	LKOLLEK	_
81-6G01				VIGKITRKEL		
Cons				-TGK		
					•	
·	551		·			
Lcr	ARM	_			· -	
Lla	MXA					
Lmi	AKM					
Pmi	skt.					
Ppy	GGKEKL					
Lno	skl					
Ppe1	gkskskakl	•				
Ppe2	Kskl					
Phg	AKL					
GR	skl					
YG	skt					
30-4B02	AGG*	-	-			
81-6G01	AGG*					
Cons	K-					

FIG. 19B (Continued)

SUBSTITUTE SHEET (RULE 26)

LCT MENMENDE.E IVVGPEPFFP IEEGSAGTQL REYMERYAKL .GAIAFTNAV L1a MENMENDE.E IVVGPEPFFP IEEGSAGTQL REYMERYAKL .GAIAFTNAV Lmi ME. Mere e. VVVGPEPFFP IEEGSAGTQL EKYMEGYAKL .GAIAFTNAL PmiMEDJSKI INHGERHSIL WEDGTAGEQL EKAMKRYAQV PGTIAFTDAE PmiMED.AKE IKKGPAPFFP LEDGTAGEQL EKAMKRYAQV PGTIAFTDAE LnoMED.AKE ILKGPAPFFP LEDGTAGEQL EKAMKRYAQV PGTIAFTDAE PpelMEDKI ILJGPPFYP LEDGTAGEQL EKAMKRYAQV PGTIAFTDAE PpelMEDKI ILJGPPFYP LEDGTAGEQL EKAMKRYAQV PGTIAFTDAE PpelMEDKI ILJGPEPFFP LEDGTAGEQL ERALSKYAV PGTIAFTDAE Phg MIKME.EEN VMPGAMPROL LFEGTAGQQL ERALSKYAV PGTIAFTDAE LCT TGVDYSYAET LEKSCCLGKA LQNTGLVVDG RIALCSERCE EFFIPVLAGL L1a TGVDISTQET PDITCRIAEA MENFGMEPE HIALCSERCE EFFIPVLAGL Lmi TGVDISTQET PDITCRIAEA MENFGMEPE HIALCSERSE QFFMPVCGAL Ppel TENNITYSET PEMGCRIAET MERTGLICH HIAVCSETSL QFFMPVCGAL PPOL TELEVYTKEF LDVTCRIAEA MENTGLICH HIAVCSERSL QFFMPVCGAL PPOL TELEVYTKEF LLISCALASS FEKTGLIKNIN TIAVCSERSL QFFMPVCGAL PPOL TELEVYTKEF LLISCALASS FEKTGLIKNIN TIAVCSERSL QFFMPVCGAL PPG TERRILISTARI LDMSCRIAVS FORTGLTONN LIGICSERNIN NFFMPVIAAF TG GDESLSYKEF FEATGLIAQS LENCGYMNID VOSICAENNIK RFFIPILAM ECC FFGVGVAPTE ELYTLRELVE SLGISKPTIV FSSEKGLDEV LTVQETVTCI L1a FIGVGVAPTE ELYTLRELVE SLGISKPTIV FSSEKGLDEV LTVQETVTCI PM1 FIGVGVAPTE BLYTLRELWH SLGISRPTIV FSSEKGLDEV LTVQETVTCI PP1 FIGVGVAPTE DIYMERELIN SHISGPPTV FSSEKGLEV LLVQEKPUT PP1 FIGVGVAPTE DIYMERELYN SLSISGPPTV FSSEKGLEV LLVQEKPUT PP1 FIGVGVAPTE DIYMERELYN SLSISGPPTV FSSEKGLEV LLVQEKLPUT PP1 FIGVGVAPTE DIYMERELYN SLSISGPPTV FSSEKGLEV LLVQEKPUT PP1 FIGVGVAPTE DIYMERELYN SLSISGPPTV FSSEKGLEV LLVVGKLPUT PP1 FIGVGVAPTE DIYMERELYN SLSISGPPTV FTSSENGLGE LGVQCKLPUT PP1 FIGVGVAPTE DIYMERELYN SLSISGPPTV FTSSENGLE LGVGCK		1				50	
ME. MEKEE. M VVYGPLPFIP IEEGSAGIQL HKYMHQTAKL GALAFSNAL PMI MEDDSKH IMHGHRHSIL WEDGTAGEQL HKAMKRYAQV POTLAFTDAH C MED. AKM IKKGPAPPIP LEDGTAGEQL HKAMKRYAQV POTLAFTDAH LNC MED. AKM IMHGPAPPIP LEDGTAGEQL HKAMKRYAQV POTLAFTDAH PP91 MED. AKM IMHGPAPPIP LEDGTAGEQL HKAMKRYAQV POTLAFTDAH PP92 MED. KM ILIGPPPYIP LEDGTAGEQL HKAMKRYAQV POTLAFTDAH PP94 MINE. BEH VNPGAMPRDL LFEGTAGQL HRALKHSYL PGTLAYDVH PP92 MED. KM ILIGPPPYIP LEDGTAGEQM FYALSKAAU SGCIALTNAH PM MINE. BEH VNPGAMPRDL LFEGTAGQL HRALKHSYL PQ. ALVDVF XXOCOCO XOO-OOOXXO OOXXO-OXO XOOXOXXOO OXOO-XXOXX 51 100 LCT TGVDYSTARY LEKSCCLGKA LQNYGLVVDG RIALCSENCE HFFIFVLAGL L1a TGVDYTARY LEKSCCLGKA LKNYGLVVDG RIALCSENCE HFFIFVLAGL L1a TGVDISTQH FDITCRLARA MKNFGNKPHH HIALCSENCE HFFIFVLAGL PP1 ARVNITTSEY FENGCRLART MKRYGLIQH HIAVCSENEL QFFMPVCGAL PP2 THENITYMEF LEVSCRLARA MKNFGLIQH HIAVCSENEL QFFMPVCGAL PP2 THELBYTKEF LDVTCRLARA MKNYGLIQH TISVCSENEL QFFMPVCGAL PP2 THENITYMEF LEVSCRLARS FKXTGLIGHH TISVCSENEL QFFMPVCGAL PP3 THELSTAKI LDMSCRLANS FQXTGLTONN TIGICSENIL QFFMPVCGAL PP4 THEISTAKI LDMSCRLANS FQXTGLTONN TIGICSENIL NFFMPVLAF YG GDESLSYKEF FRATCLLAQS LHNCGYRMID VVSICAENIN RFFIPILAM XOXOXXX XOOXOXOX- XXOX-XOOO OXXO-X-OOX XO-XOOOX LCT FIGWGVAPTH HITTERLYH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI L1a FIGWGVAPTH BITTLRELYH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI L1 FIGWGVAPTH BITTLRELYH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI L1 FIGWGVAPTH DITMERELYN SLFISGPTIV FSSKKGLDKV LEVQKTVCCI PP1 FIGWGVAPTH DITMERELYN SLFISGPTIV FSSKKGLDKV LEVQKTVCCI PP1 FIGWGVAPTH DITMERELYN SLSISGPTIV FSSKKGLDKI LGYGKKLPII PP0 FIGWGVAPTH DITMERELYN SLSISGPTIV FSSKKGLQKI LGYGKKLPII PP0 FIGWGVAPTH DITMERELYN SLSISGPTIV FSSKKGLQKI LGYGKKLPII PP0 FIGWGVAPTH DITMERELYN SLSISGPTIV FSSKKGLQKI LGYGKKLPII PP0 FIGWGVAPTH DITMERELYN SLSISGPTIV FSSKKGLOKY LUVKKKLKYV PMG YLGIIVAPVE BSYLPDELCK VMGISKPQUV FCTKNILNEV LEVQSKTNFI	Lcr	MENMENDE . N	IVVGPKPFYP	IREGSAGTQL	RKYMBRYAKL	.GAIAFTNAV	
PMIMEDDSKH IMHGHRHSIL WEDGTAGEQL HKAMKRYAQV PGTIAFTDAH PPYMED.AKM IKKGPAPFYP LEDGTAGEQL HKAMKRYAQV PGTIAFTDAH LNOMED.AKM IMHGPAPFYP LEDGTAGEQL HKAMKRYAQV PGTIAFTDAH PPE1MSI.ENN ILLGPPYYP LEDGTAGEQL HKAMKRYAQV PGTIAFTDAH PPE2MED.KN ILYGPEPFYP LEDGTAGEQL HKAMKRYAQV PGTIAFTDAH PPE2MED.KN ILYGPEPFYP LEDGTAGEQL HKAMKRYAQV PGTIAFTDAH PM MIKME.EH VMPGAMPDL LFEGTAGQQL HKALKHSYAV PGTIATTDVH PPG2MKRKKN VIYGPEPLHP LEDLTAGEML FRALKKHSHL PQ.ALVDVFXXOCOOO XOO-OOOXXO OOXXO-OXO XOOXXXXOO OXXO-XXOXX 51	Lla	MENMENDE.N	IVYGPEPFYP	IEEGSAGAQL	RKYMDRYAKL	. GAIAFTNAL	•
PpyMED.AKN IKKGPAPFIP LEDGTAGEQL HRAMCRYALV PGTIAFTDAE LnoMED.AKN IMHGPAPFIP LEDGTAGEQL HRAMCRYACV PGTIAFTDAE PpelMED.KN ILIGPPPYPY LEGGTAGEQL HRAMCRYACV PGTIAFTDAE PpelMED.KN ILIGPPPYPY LEGGTAGEQL HRAMCRYACV PGTIAFTDAE PpelMED.KN ILIGPPPYPY LEGGTAGEQL HRAMCRYACV PGTIAFTDAE Phg MIKME.EH VMPGAMPROL LFEGTAGQQL HRALYKHSYF PE.AIVDSH 'XXOCOOO XOO-OOOXXO OOXXO-OXO XOOXXXXOO OXOO-XXOXX 51	Lmi	ME.MEKEE.N	VVYGPLPFYP	IEEGSAGIQL	HKYMHQYAKL	. Galapsnal	
LinoMED.AKH IMHGPAPPYP LEDGTAGEQL HEAMKRYAQV PGTIAFTDAH PpelMSI.ENN ILIGPPPYPYP LEDGTAGEQL HEALSRYAAV PGTLAYTDUE PpelMED.KN ILYGPEPYPY LEDGTAGEQU FYALSRYADI SGCIALTNAH Phg MIKME.EEH VAPGAMPROL LFEGTAGQQL HEALYKHSYF PE.AIVDSE YGMMKREKN VIYGPEPLHP LEDLTAGENL FRALKHSHL PQ.ALVDVF XXOOCOO XOO-COOXXO OOXXOOXO XOOXOXXXOO OXCO-XXOXX 51	Pmi	MEDDSKH	INHGHRHSIL	WEDGTAGEQL	HKAMKRYAQV	PGTIAFTDAH	
Ppe1MSI.ENN ILIGPPPYYP LEEGTAGEQL ERAISRYAAV PGTLAYTOVE Ppe2MEDEN ILYGPEPFYP LADGTAGEGM FYALSRYADI SGCIALTNAR Phg MIKME.EEH VMPGAMPRDL LFEGTAGQQL ERALYKHSYF PEAIVDSE YGMKREKN VIYGPEPLHP LEDLTAGEML FRALKHSHL PQALVDVF XXOOOOO XOO-OOOXXO OOXXOOXO XOOXOXXXOO OXOO-XXOXX 51 100 LCT TGVDYSYAEY LEKSCCLGKA LQNYGLVVDG RIALGEENCE EFFIFVIAGL L1a TGVDYTYAEY LEKSCCLGEA LKNYGLVVDG RIALGEENCE EFFIFVIAGL L1a TGVDISYQEY FOITCELARA MENFGREPEE HALGEENCE EFFIFVIAGL L1a TGVDISYQEY PENSCRLAET MERTGLGLQH HIAVGEETSL QFFMFVGGAL PPH IEVNITYAEY FENSVRLAEA MERTGLINTHE RIVVCSERSEL QFFMFVGGAL L1a AEVNITYSEY FENSVRLAEA MERTGLGLQH HIAVGEETSL QFFMFVGGAL PPP I TELEVTYKEF LDVTCELARA MENTGLGLQH TIEVCSERSCV QFFMPVGGAL PPP TELEVTYKEF LAUSCRLAES FEXTGLKQND TIAVCSERSL QFFMPVGGAL PPG THEIISYAKI LONSCRLAES FEXTGLKQND TIAVCSERSL QFFMPVGAL PHG THEIISYAKI LONSCRLAVS FQXGLTQNN IIGIGESENN MFFMFVIAAF YG GDESLSYKEF FERTGLLAGS LHNCGYKMND VVSICAENNK RFFIPIIAAM XOXOXXX XOOXOXOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX 101 150 LCT FIGVGVAPTH EITTLRELVH SLGISKPTIV FSSEKGLDKV ITVQKTVATI Lia FIGVGVAPTH EITTLRELWH SLGISKPTIV FSSEKGLDKV ITVQKTVATI PPH FIGVGVAPTH DITMERELYN SLSISGPTIV FSSEKGLDKV LGVQKKLDVI PPY FIGVAVAPAN DITMERELYN SLSISGPTIV FSSEKGLDKV LGVQKKLDVI PPY FIGVAVAPAN DITMERELYN SLSISGPTIV FSSEKGLDKV LGVQKKLDVI LDO FIGVGVAPTH DITMERELYN SLSISGPTIV FSSEKGLDKV LGVQKKLDVI PPP YUGVATAPTH DITMERELYN SLSISGPTIV FSSEKGLE LGVQKKLDVI LDO FIGVGVAPTH DITMERELYN SLSISGPTIV FSSEKGLE LGVQKKLDVI PPP YUGVATAPTH DITMERELYN SLSISGPTIV FURNDAGEL LGVQKKLDVI PPP YUGVATAPTH DITMERELYN SLSISGPTIV FURNDAGEL LGVQ	Ppy	MED.AKN	IKKGPAPFYP	LEDGTAGEQL	HEAMKRYALV	PGTIAFTDAH	
Ppe2MEDKN ILYGPEPFYP LADGTAGEQM FYALSRYADI SGCIALTNAH Phg MIKMEEEH VMPGAMPROL LFEGTAGQQL HRALYKHSYF PEAIVDSE YGMCKREKN VYYGPEPLHP LEDLTAGEML FRALKKISHL PQALVDVF XXOCOCO XOO-OCOXXO OCXXOOXO XOOXOXXXOO OXOO-XXOXX 51 100 LCT TGVDYSYAEY LEKSCCLGKA LQNYGLVVDG RIALGSENCE EFFIPVIAGL LIA TGVDYTYAEY LEKSCCLGEA LKNYGLVVDG RIALGSENCE EFFIPVIAGL LIA TGVDISYQEY PDITCRLAEA MKNYGNKPEE HIALGSENCE EFFIPVIAGL PMI ABVNITYSEY FENSCRLAET MKRYGLGLGH HIAVCSENSL QFFMPVOGAL PPO1 ISVNITYAEY FENSCRLAET MKRYGLGLGH HIAVCSENSL QFFMPVOGAL PP01 TKLEVTYKEF LDVTCRLAEA MKNYGLGLGH HIAVCSENSL QFFMPVOGAL PP02 TKKSNVLYSEF LKLECRLAES FKKYGLKOMD TLAVCSENSL QFFMPVOGAL PP02 TKKSNVLYSEF LKLECRLAES FKKYGLKOMD TLAVCSENSL QFFMPVOGAL PP03 THEISYAKI LONSCRLAVS FQKYGLTQNN INGICSENNL NFFNPVLAAP YG GDESLSYKEF FEATCLLAQS LHNCGYMND VVSICAENNK RFFIPILAAM XOXOXXX XOOXOXOCX- XXOX-XOOCO OXXO-X-OOX XO-XCOOX 101 150 LCT FIGVGVAPTH EITTLEELVH SLGISKPTIV FSSKKGLDKV ITVQKTVATI LIA FIGVGVAPTH EITTLEELVH SLGISKPTIV FSSKKGLDKV ITVQKTVATI PMI FIGVGVAPTH BITTLERINH SLGIAQPTIV FSSKKGLDKV LGVQKKLPVI PPY FIGGVAVAPAR DINNERSLIN SMNISGPTVV FVSKKGLQKI LGVQKKLPVI PPY FIGVGVAPTH DINNERSLIN SMNISGPTVV FVSKKGLQKI LGVQKKLPVI LIAO FIGVGVAPTH DINNERSLIN SMNISGPTVV FVSKKGLQKI LGVQKKLPVI PP02 YLGIINAPVS DKYHERELIN SLSISGPTVV FTSNRSLQKI LGVQKKLPVI PP04 YLGIIVATVU DTTTDRELSE TLNITKPQNL FCSKNSLDKI LGVQKKLPVI PP05 YLGIIVATVU DTTTDRELSE TLNITKPQNL FCSKNSLDKI LKVVKKLKYV Phg YLGIIVATVU DTTTDRELSE TLNITKPQNL FCSKNSLDKI LKVVKKKLKYV PNG YLGIIVATVU DTTTDRELSE TLNITKPQNL FCSKNSLDKI LKVVKKLKIVV	Lno	MED.AKM	IMHGPAPFYP	LEDGTAGEQL	HEAMKRYAQV	PGTIAFTDAH	
Phg MIRME.EEH VMPGAMPROL LFEGTAGQQL ERALYKHSYF PE.AIVDSH 3MMKREKN VIYGFEPLHF LEDLTAGEML FRALRKHSHL PQ.ALVDVF XXOOOOO XOO-OOOXXO OOXXOOXO XOOXOXXXOO OXOO-XXOXX 51 100 Lor TGVDYSTABY LEKECCLGKA LQNYGLVVDG RIALCSENCE EFFIPVLAGL Lai TGVDISTQEF PDITCRLARA MKNFGKPER HIALCSENCE EFFIPVLAGL Pmi ABVNITTSEY PEMSCRLAET MKRYGLGLGH HIAVCSENSL QFFMPVCGAL Ppy IBVNITYABY FEMSCRLAET MKRYGLGLGH HIAVCSENSL QFFMPVCGAL ABVNITTSEY FEMSCRLAET MKRYGLGLGH HIAVCSENSL QFFMPVCGAL LOO ABVNITTSEY FEMSCRLAET MKRYGLGLGH HIAVCSENSL QFFMPVCGAL Ppe1 TELEVTYKEF LDVTCRLARA MKNYGLGLGH HIAVCSENSL QFFMPVCGAL Ppe2 TKENVLYEEF LAUSCRLAES FKXTGLKOND TIAVCSENSL QFFMPVCGAL Phg THEIISYAKI LDMSCRLAVS FQXYGLTONN IIGICSENNL MFFMPVLAAP TG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPILAAW XOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX 1Q1 150 LCT FIGWGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lia YIGWAVAPTE EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Ppi FIGWGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Ppy FIGWAVAPH DIYMERELYN SLFISGPTIV FCSKRALQKI LGVQKKLPU Ppy FIGWAVAPH DIYMERELYN SLFISGPTIV FCSKRALQKI LGVQKKLPU Ppy FIGWAVAPH DIYMERELYN SLSISGPTIV FCSKRALQKI LGVQKKLPU Ppo2 YLGIIAAPVS DKYIRRELHH SLGIVYRRII FCSKNTFQKV LNVKKKLKVV Phg YLGITVATVE DTYTDRELSE TLNITKPQML FCSKQSLPIV MKTMKIMPYV YG XIGMIVAPVE ESYIPDELCK VMGISKPQIV FCTKNILNEV LEVQSRTNFI	Ppe1	MSI.ENN	ILIGPPPYYP	LEEGTAGEQL	HRAISRYAAV	PGTLAYTDVH	
Phg MIRME.EEH VMPGAMPROL LFEGTAGQQL ERALYKHSYF PE.AIVDSH 3MMKREKN VIYGFEPLHF LEDLTAGEML FRALRKHSHL PQ.ALVDVF XXOOOOO XOO-OOOXXO OOXXOOXO XOOXOXXXOO OXOO-XXOXX 51 100 Lor TGVDYSTABY LEKECCLGKA LQNYGLVVDG RIALCSENCE EFFIPVLAGL Lai TGVDISTQEF PDITCRLARA MKNFGKPER HIALCSENCE EFFIPVLAGL Pmi ABVNITTSEY PEMSCRLAET MKRYGLGLGH HIAVCSENSL QFFMPVCGAL Ppy IBVNITYABY FEMSCRLAET MKRYGLGLGH HIAVCSENSL QFFMPVCGAL ABVNITTSEY FEMSCRLAET MKRYGLGLGH HIAVCSENSL QFFMPVCGAL LOO ABVNITTSEY FEMSCRLAET MKRYGLGLGH HIAVCSENSL QFFMPVCGAL Ppe1 TELEVTYKEF LDVTCRLARA MKNYGLGLGH HIAVCSENSL QFFMPVCGAL Ppe2 TKENVLYEEF LAUSCRLAES FKXTGLKOND TIAVCSENSL QFFMPVCGAL Phg THEIISYAKI LDMSCRLAVS FQXYGLTONN IIGICSENNL MFFMPVLAAP TG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPILAAW XOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX 1Q1 150 LCT FIGWGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lia YIGWAVAPTE EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Ppi FIGWGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Ppy FIGWAVAPH DIYMERELYN SLFISGPTIV FCSKRALQKI LGVQKKLPU Ppy FIGWAVAPH DIYMERELYN SLFISGPTIV FCSKRALQKI LGVQKKLPU Ppy FIGWAVAPH DIYMERELYN SLSISGPTIV FCSKRALQKI LGVQKKLPU Ppo2 YLGIIAAPVS DKYIRRELHH SLGIVYRRII FCSKNTFQKV LNVKKKLKVV Phg YLGITVATVE DTYTDRELSE TLNITKPQML FCSKQSLPIV MKTMKIMPYV YG XIGMIVAPVE ESYIPDELCK VMGISKPQIV FCTKNILNEV LEVQSRTNFI	Ppe2	MEDKN	ILYGPEPFYP	LADGTAGEOM	FYALSRYADI	SGCIALTNAH	
XXOOOOO XOO-OOOXXO OOXXO-OXO XOOXXXXOO OXOO-XXOXX 51 LCT TGVDYSYARY LEKSCCLGKA LQNYGLVVDG RIALCSERCE EFFIFVLAGL LIA TGVDYYIARY LEKSCCLGRA LKNYGLVVDG RIALCSERCE EFFIFVLAGL LMI TGVDLSYQEY FDITCRLARA MKNFGNKPEE HIALCSERCE EFFIFVLAGL PMI ARVNITISEY FENSCRLART MKRYGLGLQH HIAVCSERSL QFFMPVLGAL LMO AEVNITYSEY FENSCRLART MKRYGLGLQH HIAVCSERSL QFFMPVLGAL LMO AEVNITYSEY FENACRLARA MKNYGLNTHN RIVVCSERSL QFFMPVLGAL PPO1 TRLEVYIKEF LDVYCRLARA MKNYGLGLQH HIAVCSERSL QFFMPVLGAL PPO2 TKENVLYEEF LKLSCRLARS FKKYGLKQND TIAVCSERSL QFFLPLLASL PMG TEBILSYAKI LDMSCRLAVS FQKYGLTQNN IIGICSERNL NFFNPVLAAF YG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPILAAW XOXOXXX XOOXOXOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX LCT FIGVGVAPTH EITTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI LMI YIGVAVAPTH EITTLRELWH SLGISKPTIV FSSKKGLDKV LEVQKTVTCI PMI FIGVGVAPTH DIYMERELYN SLSISQPTIV FCSKRALQKI LGVQKKLPVI PPY FIGVGVASTH DIYMERELYN SLSISQPTIV FCSKRALQKI LGVQKKLPVI LDO FIGVGVASTH DIYMERELYN SLSISQPTIV FCSKRALQKI LGVQKKLPVI PPO2 YVGVATAPTH DIYMERELYN SLSISQPTIV FCSKRALQKI LGVQKKLPVI PPO2 YVGVATAPTH DIYMERELYN SLSISQPTIV FCSKRALQKI LGVQKKLPVI PPO2 YLGIIAAPVS DKYIRRELIH SLGIVKPRII FCSKNTTQKV LNVKSKLKYV Phg YLGIIVATVE DTYTDRELSE TLNITKPQML FCSKQSLPIV MKXMKIMPYV	Phg	MIKME BEH	VMPGAMPRDL	LFEGTAGQQL	HRALYKHSYF	PEAIVDSE	
LCT TGVDYSYAEY LEKSCCIGKA LQNYGLVVDG RIALCSENCE EFFIFVIAGL L1a TGVDYTIAET LEKSCCIGEA LKNYGLVVDG RIALCSENCE EFFIFVIAGL Lmi TGVDISYQET FDITCRLAEA MENFORKPEE HIALCSENCE EFFIFVIAGL Pmi AEVNITYSEY FEMSCRLAET MERTGLGLQH HIAVCSETSL QFFMPVCGAL Ppy IEVNITYAET FEMSURLAEA MERTGLINTHE RIVVCSENSL QFFMPVCGAL Lno AEVNITYSET FEMSCRLAET MERTGLGLQH HIAVCSENSL QFFMPVCGAL Ppe1 TELEVTYKEF LDVTCRLAEA MENTGLGLQH TISVCSENCV QFFMPVCGAL Ppe2 TKENVLYEEF LKLSCRLAES FKKYGLKQND TIAVCSENSL QFFMPVCGAL Ppg THEIISYAKI LDNSCRLAVS FQKYGLTQNN IIGICSENNL NFFNPVLAAF YG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPILAAW **NOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX LCT FIGVGVAPTH EITTLELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI L1a FIGVGVAPTH EITTLELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lmi YIGVAVAPTE EITTLELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Pmi FIGVGVAPTH DIYMERELYN SLFISQPTIV FSSKKGLDKI LGVQKKLPVI Ppy FIGVGVAPTH DIYMERELYN SLSISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVGVAPTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppe1 YVGVATAPTH DIYMERELYN SLSISQPTVV FTSRNSLQKI LGVQKKLPII Ppe2 YLGIIAAPVS DKYIERELIH SLGIVQPRII FCSKNTFQKV LNVKSKLKYV Phg YLGITVATVE DTYTDRELSE TLNITKPQML FCSKQSLPIV MKYMKIMPYV **YGGNIVAPVE ESYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI	YG	MMKREKN	VIYGPEPLHP	LEDLTAGEML	FRALRKHSHL	PQALVDVF	
LCT TGVDYSYAET LEKECCLGKA LQNYGLVVDG RIALGEBRCE EFFIPVIAGL L12 TGVDYTYAET LEKECCLGEA LKNYGLVVDG RIALGEBRCE EFFIPVIAGL Lmi TGVDISYQET FDITCRLAEA MKNYGRKPEE HYALGEBRCE EFFIPVIAGL Pmi ABVNITYSEY FEMSCRLAET MKRYGLGLQH HIAVCSETSL QFFMPVCGAL Ppy IEVNITYAET FEMSVRLAEA MKRYGLNTNH RIVVCSENSL QFFMPVCGAL Lmo ABVNITYSET FEMACRIAET MKRYGLGLQH HIAVCSENSL QFFMPVCGAL Ppe1 TELEVTYKEF LDVTCRLAEA MKNYGLGLQH TISVCSENCU QFFMPVCGAL Ppe2 TKENVLYEEF LDVTCRLAEA MKNYGLGLQH TIAVCSENSL QFFMPVCGAL Ppg THEIISYAKI LDMSCRLAVS FQKYGLTQNN IIGICSENNL NFFMPVIAAF YG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPIIAAW NOXOXXX NOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX L01 150 LCY FIGUGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lmi YIGVAVAPTH BIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lmi YIGVAVAPTH BIYTLRELNH SLGIAQPTIV FSSKKGLDKV LEVQKTVTCI Ppi FIGUGVAPTH DIYMERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAM DIYMERELYN SLSISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPVI Ppe1 YVGVATAPTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPVI Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQXV LNVKSKLKYV Phg YLGITVATVH DTYTDRELSE TLNITKPQNL FCSKQSLPIV MKTMKIMPYV YGGNIVAPVE BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI		XX00000	X00-000XX0	OOXXOOXO	XOOXXXXOO	OXOO-XXOXX	
LCT TGVDYSYAET LEKECCLGKA LQNYGLVVDG RIALGEBRCE EFFIPVIAGL L12 TGVDYTYAET LEKECCLGEA LKNYGLVVDG RIALGEBRCE EFFIPVIAGL Lmi TGVDISYQET FDITCRLAEA MKNYGRKPEE HYALGEBRCE EFFIPVIAGL Pmi ABVNITYSEY FEMSCRLAET MKRYGLGLQH HIAVCSETSL QFFMPVCGAL Ppy IEVNITYAET FEMSVRLAEA MKRYGLNTNH RIVVCSENSL QFFMPVCGAL Lmo ABVNITYSET FEMACRIAET MKRYGLGLQH HIAVCSENSL QFFMPVCGAL Ppe1 TELEVTYKEF LDVTCRLAEA MKNYGLGLQH TISVCSENCU QFFMPVCGAL Ppe2 TKENVLYEEF LDVTCRLAEA MKNYGLGLQH TIAVCSENSL QFFMPVCGAL Ppg THEIISYAKI LDMSCRLAVS FQKYGLTQNN IIGICSENNL NFFMPVIAAF YG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPIIAAW NOXOXXX NOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX L01 150 LCY FIGUGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lmi YIGVAVAPTH BIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lmi YIGVAVAPTH BIYTLRELNH SLGIAQPTIV FSSKKGLDKV LEVQKTVTCI Ppi FIGUGVAPTH DIYMERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAM DIYMERELYN SLSISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPVI Ppe1 YVGVATAPTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPVI Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQXV LNVKSKLKYV Phg YLGITVATVH DTYTDRELSE TLNITKPQNL FCSKQSLPIV MKTMKIMPYV YGGNIVAPVE BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI							
LCT TGVDYSYAET LEKECCLGKA LQNYGLVVDG RIALGEBRCE EFFIPVIAGL L12 TGVDYTYAET LEKECCLGEA LKNYGLVVDG RIALGEBRCE EFFIPVIAGL Lmi TGVDISYQET FDITCRLAEA MKNYGRKPEE HYALGEBRCE EFFIPVIAGL Pmi ABVNITYSEY FEMSCRLAET MKRYGLGLQH HIAVCSETSL QFFMPVCGAL Ppy IEVNITYAET FEMSVRLAEA MKRYGLNTNH RIVVCSENSL QFFMPVCGAL Lmo ABVNITYSET FEMACRIAET MKRYGLGLQH HIAVCSENSL QFFMPVCGAL Ppe1 TELEVTYKEF LDVTCRLAEA MKNYGLGLQH TISVCSENCU QFFMPVCGAL Ppe2 TKENVLYEEF LDVTCRLAEA MKNYGLGLQH TIAVCSENSL QFFMPVCGAL Ppg THEIISYAKI LDMSCRLAVS FQKYGLTQNN IIGICSENNL NFFMPVIAAF YG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPIIAAW NOXOXXX NOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX L01 150 LCY FIGUGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lmi YIGVAVAPTH BIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lmi YIGVAVAPTH BIYTLRELNH SLGIAQPTIV FSSKKGLDKV LEVQKTVTCI Ppi FIGUGVAPTH DIYMERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAM DIYMERELYN SLSISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPVI Ppe1 YVGVATAPTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPVI Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQXV LNVKSKLKYV Phg YLGITVATVH DTYTDRELSE TLNITKPQNL FCSKQSLPIV MKTMKIMPYV YGGNIVAPVE BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI							
Lia TGVDYTYABY LEKSCCIGEA LKNYGLVVDG RIALCSENCE BYFIFVLAGL Lmi TGVDISYQBY FDITCRLARA MENFGREPBE HIALCSENCE BFFIFVLAGL Pmi ABVNITYSEY PEMSCRLABT MERYGLGLQH HIAVCSETSL QFFMPVCGAL Ppy IEVNITYABY FERSVRLABA MERYGLGLQH HIAVCSENSL QFFMPVCGAL Lno ABVNITYSEY PEMACRLABT MERYGLGLQH HIAVCSENSL QFFMPVCGAL Ppe1 TELEVTYKEF LDVTCRLABA MENYGLGLQH TISVCSENCV QFFMPVCGAL Ppe2 TKENVLYEEF LKLSCRLABS FKKYGLKQND TIAVCSENGL QFFLPLIASL Phg THBIISYAKI LDMSCRLAVS FQXYGUTQNN IIGICSENNL MFFNPVLAAF YG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPIIAAW **XOXOXXX XOOXOXOOX- XXOX-XOOOO CXXO-X-OOX XO-XOOOX LCT FIGVGVAPTH BITTLRELVH SLGISKPTIV FSSKKGLDXV ITVQKTVTTI Lia FIGVGVAPTH BITTLRELVH SLGISKPTIV FSSKKGLDXV ITVQKTVTTI Lmi YIGVAVAPTH BITTLRELVH SLGISKPTIV FSSKKGLDXV ITVQKTVTTI Pmi FIGUGVAPTH DIYMERBLYN SLGISKPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAN DIYMERBLLN SMNISQPTIV FVSKKGLQKI LINVQKKLPVI Ppy FIGVAVAPTH DIYMERBLYN SLSISQPTVV FVSKKGLQKI LGVQKKLPVI Ppe1 YVGVATAPTN DIYMERBLYN SLSISQPTVV FTSRNSLQKI LGVQKKLPVI Ppe2 YLGIIAAPVS DKYIERBLIH SLGIVKPRII FCSKNTFQKV LNVKSKLKYV Phg YLGIVATVN DTYTDRELSE TLNITKPONL FCSKQSLPIV MKTMKIMPYV **IGMIVAPVE BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI							
Lmi TGVDISTQET FDITCRLARA MENFGMEREE HIALCSENCE EFFIEVLAGL Pmi AEVNITYSEY PEMSCRLAET MERTGLGLQH HIAVCSETSL QFFMPVCGAL Lno AEVNITYSEY FEMSCRLAET MERTGLGLQH HIAVCSENSL QFFMPVCGAL Lno AEVNITYSEY FEMACRLAET MERTGLGLQH HIAVCSENSL QFFMPVCGAL Ppel TELBVTYKEF LDVTCRLAEA MENTGLGLQH TISVCSENCV QFFMPVCGAL Ppel TKENVLYEEF LKLSCRLAES FEKYGLKOND TIAVCSENGL QFFMPVCGAL Phg THBIISYAKI LDMSCRLAVS FQKYGLTQNN IIGICSENNL NFFNFVLAAF YG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPILAAW XOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX Lcr FIGVGVAPTH EITTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lla FIGVGVAPTH EITTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lmi YIGVAVAPTH EITTLRELNH SLGIAQPTIV FSSKKGLDKV ITVQKTVTCI Pmi FIGVGVAPTH DINNERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAK DINNERELYN SLSISQPTVV FVSKKGLQKI LNVQKKLPVI Ppel YUGVATAPTH DINNERELYN SLSISQPTVV FVSKKGLQKI LNVQKKLPII Ppel YUGVATAPTH DINNERELYN SLSISQPTVV FTSRNSLQKI LGVQKKLPII Ppel YUGVATAPTH DINNERELYN SLSISQPTVV FTSRNSLQKI LGVQKKLPVI Ppel YUGVATAPTH DINNERELYN SLSISQPTVV FTSRNSLQKI LGVQKKLFVV Phg YLGIIVATVE DITTDRELSE TLNITKPONL FCSKQSLPIV MKTMKIMPYV TG YIGMIVAPVE ESXIPDBLCK VMGISKPQIV FCTKNILNKY LEVQSRTNFI							
Pmi ABVNITISEY PEMSCRIABT MKRYGIGIQH HIAVCSETSL QFFMPVCGAL Ppy IBVNITYABY FEMSVRIARA MKRYGINTHH RIVVCSENSL QFFMPVCGAL Lno ABVNITYSEY FEMACRIABY MKRYGIGIQH HIAVCSENSL QFFMPVCGAL Ppe1 TELEVTYKEF LDVTCRIARA MKNYGIGIQH TISVCSENCV QFFMPVCGAL Ppe2 TKENVLYEEF LKLSCRIARS FKKYGIKQND TIAVCSENGL QFFLPLIASL Phg THEIISYAKI LDMSCRIAVS FQKYGITQNN HIGICSENNL NFFNPVIAAP YG GDESLSYKEF PEATCLIAQS LHNCGYKMND VVSICAENNK RFFIPIIAAW XOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX LCT FIGVGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV HIVQKTVTTI Lla FIGVGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV HIVQKTVATI Lmi YIGVAVAPTH EIYTLRELNH SLGIAQPTIV FSSKKGLDKV LEVQKTVTCI Pmi FIGVGVAPTH DIYMERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAH DIYMERELIN SMNISQPTVV FVSKKGLQKI LNVQKKLPII Lno FIGVGVASTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppe1 YVGVATAPTH DIYMERELYN SLSISQPTVV FTSRNSLQKI LGVQKKLPII Ppe2 YLGIIAAPVS DKYIERELH SLGIVKPRII FCSKNTFQKV LNVKKKLKYV Phg YLGITVATVE DTYTDRELSE TLNITKPONL FCSKQSLPIV MKYMKIMPYV TG YIGMIVAPVE ESXIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI							
Ppy IBVNITYABY FEMSURLARA MKRYGLNYNE RIVVCSENSL QFFMPVCJAL Lno ABVNITYSEY FEMACRLARY MKRYGLGLQE HLAVCSENSL QFFMPVCJAL Ppe1 TELEVYYKEF LDVTCRLARA MKNYGLGLQE TISVCSENCV QFFMPVCJAL Ppe2 TKENVLYEEF LKLSCRLARS FKKYGLKQND TIAVCSENGL QFFLPLIASL Phg THEIISYAKI LDMSCRLAVS FQKYGLTQNN IIGICSENNL NPFNPVLAAF YG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPIIAAW ***XOXXXX***XOOXOXOX-***XOX-XOOOO OXXO-X-OOX XO-XOOOX LCT FIGVGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI L1a FIGVGVAPTH EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVATI Lmi YIGVAVAPTH EIYTLRELNH SLGIAQPTIV FSSKKGLDKV LEVQRTVTCI Pmi FIGVGVAPTH DIYNERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAH DIYNERELIN SMNISQPTVV FVSKKGLQKI LNVQKKLPII Lno FIGVGVASTH DIYNERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppe1 YVGVATAPTH DIYNERELYN SLSISQPTVV FTSRNSLQKI LGVQKKLPII Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQKV LNVKSKLKYV Phg YLGITVATVE DTYTDRELSE TLNITKPQNL FCSKQSLPIV MKTMKIMPYV **TG YLGMIVAPVE ESYIPDELCK VMGISKPQLV FCTKNILNKV LEVQSRTNFI		_					
Lno Abvnitset Fenacelaet Meriglique Hlavcbersl Offmpvcgal Ppel Televitkef Ldvicelaea Meniglique Tievcbercv Offmpicaal Ppel Televitkef Ldvicelaea Meniglique Tievcbercv Offmpicaal Ppel Teleistaki Ldnecelaes Fekiglkond Tiavcbergl Officiael Phg Teleistaki Ldnecelavs Fokiglionn ligicbernl Nffnpvlaap **TG GDESLSTKEF FEATCLLAQS LENCGYRMND VV61CAENNK RFFIPILAAW **NOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX Lcr Figvgvapin Elitleelve Slgiskpiiv Feekgldkv Itvoktvati Lla Figvgvapin Elitleelve Slgiskpiiv Feekgldkv Itvoktvati Lmi Yigvavapin Elitleelne Slgiskpiiv Feekgldkv Levoktvici Pmi Figvgvapin Dinnerelyn Slfisopiiv Feekgloki Lgvokklpvi Ppy Figvavapak Dinnerelln Smnisopivv Fvekkgloki Lnvokklpii Lno Figvgvasin Dinnerelyn Sleisopiiv Scekraloki Lgvokklpii Ppel Yvgvatapin Dinnerelyn Sleisopiv Fibrnsloki Lgvokklpii Ppel Yvgvatapin Dinnerelyn Sleisopiv Fibrnsloki Lgvokklpii Ppel Yvgvatapin Dinnerelyn Sleisopiv Fibrnsloki Lgvokklpii Ppel Yugilaapve Dkylerelie Slgivkprii Fcekoslpiv Mkimkimpyv **TG Yighivarve Diitdrelse Tlnitkoonl Fcekoslpiv Mkimkimpyv **TG Yighivarve Besylpbelck Vmgiskpolv Fciknilnkv Levoskimpi **TG Yighivarve Besylpbelck Vmgiskpolv Fciknilnkv Levoskimpi **TG Yighivarve Diitdrelse Tlnitkoonl Fcekoslpiv Mkimkimpyv **T							
Ppel TELEVTYKEF LDVTCRLAEA MENTGLGLOH TIEVCSENCV OFFNPICAAL Ppe2 TKENVLYEEF LKLECRLAES FKKYGLKOND TIAVCSENGL OFFLPLIASL Phg THEIISYAKI LDMSCRLAVS FORYGLTONN IIGICSENNL NFFNPVIAAF TG GDESLSYKEF FEATCLLAOS LHNCGYKMND VVSICAENNK RFFIPIIAAW ***XOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX 101 150 Lcr FIGVGVAPTH EITTLRELVH SLGISKPTIV FSSKKGLDKV ITVOKTVTTI Lla FIGVGVAPTH EITTLRELVH SLGISKPTIV FSSKKGLDKV ITVOKTVATI Lmi YIGVAVAPTE BITTLRELNH SLGIAOPTIV FSSKKGLDKV LEVOKTVTCI Pmi FIGVGVAPTH DIYMERELYN SLFISOPTIV FCSKRALOKI LGVOKKLPVI Ppy FIGVAVAPAE DIYMERELYN SLSISOPTIV SCSKRALOKI LNVOKKLPII Lno FIGVGVASTE DIYMERELYN SLSISOPTIV SCSKRALOKI LGVOKKLPII Ppel YVGVATAPTH DIYMERELYN SLSISOPTIV FTSRNSLOKI LGVOKKLPII Ppel YVGVATAPTH DIYMERELYN SLSISOPTVV FTSRNSLOKI LGVOKKLPII Ppel YVGVATAPTH DIYMERELYN SLSISOPTVV FTSRNSLOKI LGVOKKLKYV Phg YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQEV LNVKKKLKYV Phg YLGIIVATVH DTTTDRELSE TLNITKPONL FCSKOSLPIV MKTMKIMPYV TG YIGMIVAPVH BSYIPDELCK VMGISKPQIV YCTKNILNKV LEVOSRTNFI	• •					_	
Ppe2 TKENVLYEEF LKLECRLAES FKKYGLKOND TIAVCSENGL QFFLPLIASL Phg THEIISYAKI LDMSCRLAVS FQKYGLTONN IIGICSENNL NFFNPVIAAF YG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFFIPIIAAW ***XOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX** 1Q1 150 Lcr FIGVGVAPTM EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVTTI Lla FIGVGVAPTM EIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVATI Lmi YIGVAVAPTE BIYTLRELNH SLGIAQPTIV FSSKKGLDKV LEVQKTVTCI Pmi FIGVGVAPTM DIYMERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAE DIYMERELYN SLFISQPTIV FVSKKGLQKI LNVQKKLPII Lno FIGVGVASTE DIYMERELYN SLSISQPTVV FVSKKGLQKI LGVQKKLPII Ppe1 YVGVATAPTM DIYMERELYN SLSISQPTVV FTSRNSLQKI LGVQKKLPII Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQKV LNVKSKLKYV Phg YLGIIVATVM DIYTDRELSE TLNITKFQNL FCSKQSLPIV MKTMKIMPYV YG YIGMIVAPVM BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI							
THEISYAKI LDMSCRLAVS FORYGLTONN LIGICSENNL NFFNFVIAAF TG GDESLSYKEF FEATCLLAQS LHNCGYKMND VVSICAENNK RFF1P11AAW XOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX 1Q1 150 Lcr Figvgvaptm Eittlrelvh Slgiskptiv Fsskkgldkv Itvoktvtti Lla Figvgvaptm Eittlrelvh Slgiskptiv Fsskkgldkv Itvoktvati Lmi Yigvavaptm Eittlrelnh Slgiapptiv Fsskkgldkv Itvoktvati Pmi Figvgvaptm Diymerelyn Slfisoptiv Fsskkgldkv Levoktvtci Ppi Figvgvaptm Diymerelyn Slfisoptiv Fcskraloki Lgvokklpvi Ppy Figvavapam Diymerelyn Slsisoptiv Scskraloki Lgvokklpvi Lno Figvgvastm Diymerelyn Slsisoptiv Scskraloki Lgvokklpii Ppel Yvgvataptm Diymerelyn Slsisoptiv Ftsrnsloki Lgvokklpii Ppel Yvgvataptm Diymerelyn Slsisoptvv Ftsrnsloki Lgvokklpii Ppel Ylgiiaapvs Dkylerelih Slgivkprii Fcskotfokv Lnvksklkyv Phg Ylgiivatvm Diytorelse Tlnitkponl Fcskoslpiv Mkimkimpyv TG Yigmivapvm Esyipdelck Vmgiskpqiv Fctknilnkv Levosrtnfi	-						•
TG GDESLSYKEF FEATCLIAQS LHNCGYKMND VVSICAENNK RFFIPIIAAW ***XOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX 1Q1	-						
IOXOXXX XOOXOXOOX- XXOX-XOOOO OXXO-X-OOX XO-XOOOX 1Q1 Lcr Figvgvapth Eittlrelvh Slgiskptiv Fsskkgldkv ItvQktvtti Lla Figvgvapth Eittlrelwh Slgiskptiv Fsskkgldkv ItvQktvati Lmi Yigvavapth Eittlrelwh Slgiaqptiv Fsskkgldkv ItvQktvati Pmi Figvgvapth Dinnerelwh Slfisqptiv Fcskralqki LgvQkklpvi Ppy Figvavapah Dinnerelwh Smnisqptvv Fvskkglqki LnvQkklpvi Lno Figvgvasth Dinnerelyh Slsisqptiv Scskralqki LgvQkklpvi Ppel Yvgvatapth Dinnerelyh Slsisqptiv Scskralqki LgvQkklpvi Ppel Yvgvatapth Dinnerelyh Slsisqptvv Ftsrnslqki LgvQsklpvi Ppe2 Ylgiiaapvs Dkylerelih Slgivkprii Fcskotfqkv Lnvksklkyv Phg Ylgitvatvh Dittdrelse TlnitkpQnl FcskQslpvv Mkimkimpyv IG YIGMIVAPVE BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI		THEIISYAKI	LDNSCRLAVS	POKYGLTONN	IIGICSENNL	NFFNPVLAAP	
LCT FIGVGYAPTH BITTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVITI Lla FIGVGYAPTH BITTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVATI Lmi YIGVAVAPTH BITTLRELNH SLGIAQPTIV FSSKKGLDKV LEVQKTVTCI Pmi FIGVGYAPTH DIYMERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAH DIYMERELLN SMNISQPTVV FVSKKGLQKI LNVQKKLPVI Lmo FIGVGYASTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppel YVGVATAPTH DIYMERELYN SLSISQPTVV FTSRNSLQKI LGVQSKLPII Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTPQKV LNVKSKLKYV Phg YLGIIVATVH DITTDRELSE TLNITKPQML FCSKQSLPIV MKTMKIMPYV TG YIGMIVAPVH BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI	X.C	GDESLSYKEF	FEATCLLA QS	LHNCGYKMND	VVSICABNINK	RFFIPILAAW	
LCT FIGUGYAPTH EITTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVITI Lia FIGUGYAPTH EITTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVATI Lmi YIGVAYAPTH EITTLRELNH SLGIAQPTIV FSSKKGLDKV LEVQKTVTCI Pmi FIGUGYAPTH DIYMERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAYAPAH DIYMERELYN SLSISQPTVV FVSKKGLQKI LNVQKKLPII Lmo FIGUGYASTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppel YVGVATAPTH DIYMERELYN SLSISQPTVV FTSRNSLQKI LGVQSKLPII Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTPQKV LNVKSKLKYV Phg YLGIIVATVH DITTDRELSE TLNITKPQML FCSKQSLPIV MKTMKIMPYV TG YIGMIVAPVH BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI		XOXOXXX	XOOXOXOOX-	XX0X-X0000	OXXO-X-OOX	X0-X000X	
LCT FIGUGYAPTH EITTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVITI Lia FIGUGYAPTH EITTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVATI Lmi YIGVAYAPTH EITTLRELNH SLGIAQPTIV FSSKKGLDKV LEVQKTVTCI Pmi FIGUGYAPTH DIYMERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAYAPAH DIYMERELYN SLSISQPTVV FVSKKGLQKI LNVQKKLPII Lmo FIGUGYASTH DIYMERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppel YVGVATAPTH DIYMERELYN SLSISQPTVV FTSRNSLQKI LGVQSKLPII Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTPQKV LNVKSKLKYV Phg YLGIIVATVH DITTDRELSE TLNITKPQML FCSKQSLPIV MKTMKIMPYV TG YIGMIVAPVH BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI							
Lla FIGVGVAPTM BIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVATI Lmi YIGVAVAPTM BIYTLRELMH SLGIAQPTIV FSSKKGLDKV LEVQKTVTCI Pmi FIGVGVAPTM DIYMERBLYM SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAM DIYMERBLYM SLSISQPTIV SCSKRALQKI LMVQKKLPII Lmo FIGVGVASTM DIYMERBLYM SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppel YVGVATAPTM DIYMERBLYM SLSISQPTVV FTSRMSLQKI LGVQKKLPII Ppe2 YLGIIAAPVS DKYIERBLIH SLGIVKPRII FCSKMTFQKV LMVKSKLKYV Phg YLGIIVATVM DTYTDRELSE TLMITKPQML FCSKQSLPIV MKTMKIMPYV TG YIGMIVAPVM BSYIPDBLCK VMGISKPQIV FCTKNILMKV LEVQSRTMFI		101				150	
Lla FIGVGVAPTM BIYTLRELVH SLGISKPTIV FSSKKGLDKV ITVQKTVATI Lmi YIGVAVAPTM BIYTLRELMH SLGIAQPTIV FSSKKGLDKV LEVQKTVTCI Pmi FIGVGVAPTM DIYMERBLYM SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAM DIYMERBLYM SLSISQPTIV SCSKRALQKI LMVQKKLPII Lmo FIGVGVASTM DIYMERBLYM SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppel YVGVATAPTM DIYMERBLYM SLSISQPTVV FTSRMSLQKI LGVQKKLPII Ppe2 YLGIIAAPVS DKYIERBLIH SLGIVKPRII FCSKMTFQKV LMVKSKLKYV Phg YLGIIVATVM DTYTDRELSE TLMITKPQML FCSKQSLPIV MKTMKIMPYV TG YIGMIVAPVM BSYIPDBLCK VMGISKPQIV FCTKNILMKV LEVQSRTMFI	Lcr	FIGYGYAPTN	RITTURRELVH	SLGISKPTIV	PSSKKGLDKV		
Lmi YIGVAVAPTH BITTLRBLNH SLGIAQPTIV FSSRKGLPKV LEVQKTVTCI Pmi FIGVGVAPTH DIYMERBLYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAH DIYMERBLYN SMISQPTVV FVSKKGLQKI LNVQKKLPII Lno FIGVGVASTH DIYMERBLYN SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppe1 YVGVATAPTH DIYMERBLYN SLSISQPTVV FTSRNSLQKI LGVQSRLPII Ppe2 YLGIIAAPVS DKYIERBLIH SLGIVKPRII FCSKNTPQKV LNVKSKLKYV Phg YLGIIVATVH DTYTDRBLSE TLNITKPQML FCSKQSLPIV MKTMKIMPYV IG YIGMIVAPVH BSYIPDBLCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI		_					
Pmi FIGVGYAPIN DIINERELYN SLFISQPTIV FCSKRALQKI LGVQKKLPVI Ppy FIGVAVAPAN DIINERELLN SMNISQPTVV FVSKKGLQKI LNVQKKLPII Lno FIGVGVASIN DIYNERELYN SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppel YVGVATAPIN DIYNERELYN SLSISQPTVV FTSRNSLQKI LGVQSRLPII Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQKV LNVKSKLKYV Phg YLGIIVATVN DIYTDRELSE TLNITKPQML FCSKQSLPIV MKTMKIMPYV IG YIGMIVAPVN BSYIPDBLCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI							
Ppy FIGVAVAPAN DIYMERELLM SMMISQPTVV FVSKKGLQKI LMVQKKLPII Lmo FIGVGVASTN DIYMERELYM SLSISQPTIV SCSKRALQKI LGVQKKLPII Ppe1 YVGVATAPTN DIYMERELYM SLSISQPTVV FTSRMSLQKI LGVQSRLPII Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKMTFQKV LMVKSKLKYV Phg YLGIIVATVN DTYTDRELSE TLMITKPQML FCSKQSLPIV MKTMKIMPYV TG YIGMIVAPVN BSYIPDBLCK VMGISKPQIV FCTKNILMKV LEVQSRTNFI							
Lno YIGVGVASTN DIYMERELYN SLSISOPTIV SCSKRALQKI LGVQKKLPII PPe1 YVGVATAPIN DIYMERELYN SLSISOPTVV FISRNSLQKI LGVQSRLPII PPe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQKV LNVKSKLKYV Phg YLGIIVATVN DIYTDRELSE TLNITKPQNL FCSKQSLPIV MKIMKIMPYV TG YIGMIVAPVE BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI	Ppy						
Ppel YVGVATAPTH DIYMERELYN SLSISQPTVV FTSRNSLQRI LGVQSRLPII Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQKV LNVKSKLKYV Phg YLGITVATVH DTYTDRELSE TLNITKPQNL FCSKQSLPIV MKTMKIMPYV TG YIGMIVAPVH BSYIPDELCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI							
Ppe2 YLGIIAAPVS DKYIERELIH SLGIVKPRII FCSKNTFQKV LNVKSKLKYV Phg YLGITVATVH DTYTDRELSE TLNITKPQNL FCSKQSLPIV MKTMKIMPYV TG YIGMIVAPVH BSYIPDBLCK VMGISKPQIV FCTKNILNKV LEVQSRTNFI							
Phg YLGITVATVE DTYTDRELSE TLNITKPOML FCSKOSLPIV MKTMKIMPYV TG YIGMIVAPVE ESYIPDELCK VMGISKPOIV FCTKNILNKV LEVOSRTNFI		•	•	_	_		
TG YIGHIVAPVE BSYIPDELCK VMGIBKPQIV FCTKNILNKV LEVQSRTNFI							

FIG. 19C

	151				200	
Lcr	KTIVILDSKV	DYRGYQCLDT	FIKRNTPPGF	QASSPKTVBV	.DRKEQVALI	
Lla	KTIVILDSKV	DYRGYQSMON	PIKKNTPQGF	KG8SFKTVEV	. NRKEQVALI	
Lmi	KKIVILDSKV	NEGGHDOMET	PIKKEVELGP	QPSSFVPIDV	KNRKQHVALL	
Pmi	QKIVILDS RB	DYMCKQSMYS	Pieshlpagy	NEXDAIADEA	. DRETATALI	
Ppy	QKIIIMDSKT	DYQGPQSMYT	FVTSHLPPGF	NEYDFVPESF	.DRDKTIALI	
Lno				NEYDYIPDSF		
Ppel				nvsafkplef		
Ppe2	etilildlne	DLGGYQCLNN	Pisquedinl	DVKKPKPN8F	. NRDDQVALV	
Phg				DPLKFVPLDF		
. AG	KRIIILDTVE	NIHGCESLPN	FISRYSDGNI	ANFKPLHY	. DPVEQVAAI	
	OXXX-O-XXO	XXO-OXOXOO	-000X0X0XX	000000XX	-0X0000-X0	
	201				250	
Ler	MISSGSTGLP	KOVOT-THEOT	VTPPGWADAD	TVGNOVEDOT		
Lla	MESGETGLP					
Lmi	MISSGSTGLP					
Pmi	MISSGSTGLP					
Ppy						
Lno	MISSGSTGLP					
Ppel	MNSSGSTGLP					
Ppe2	MPSSGTTGVS					
Phq	MISSGITGLP					
¥G				RAGTQLIPGV		
	XXX00	020-000	00-xx-0x	OX-XOXO-OX	xx-xxxx-	
	251				300	
						
Lcr				TLODYKCTSV		
Lla				TLODYKCSSV		
Lmi				TLODYKCTSV		
Pmi				SLQDYKIQSA		
Рру				SLQDYKIQSA		
Lno				SLQDYKIQSA		
Ppe1				TLQDYKCQSA		
Ppe2				SLODYKVEST		
Phg				TIQNYKIPTI		
YG				AIQDYEVREV		
	x-oxxxx-o-	XXXXXXX	00-0X0X0	XX-0-X0000	XX0-XXXX	

FIG. 19C (Continued)

SUBSTITUTE SHEET (RULE 26)

_		301				350	
	Lcr	NKBELLNEYD	LENLVEIAGG	GAPLEKEVGE	AVARRENLEG	VROGYGLTET	
	Lla	nrbblidkad	LENLVEIASC	GAPLEKEIGE	AVARRENLEG	VROGYGLTET	
	Lmi	nkselidkfd	LENLTBIASG	GAPLAKEVGE	AVARRENLPG	VRQGYGLTET	
	Pmi	akstlydkyd	LENLHEIASG	GAPLAKEVGE	AVAKRPKLPG	IRQGYGLTET	
	Рру	AKSTLIDKYD.	LENLHEIASG	GAPLEKEVGE	AVAKRIHLIPG	IRQGYGLTET	
	Lno				AVAKRFKLPG		
	Ppel	aknplydkyd	LENLHEIASG	GAPLEKEISE	LAAKRFKLPG	IRQGYGLTET	
	Ppe2	y keataekad	LSHLKEIASG	GAPLEKEIGE	MVKKRPKLNF	VRQGYGLTET	
	Phg	AKEHLVDKYD	LESIKELATG	GAPL GPALAN	AVAKRLKLGG	IIQGYGLTET	
	YG	SKBPLVDKYD	LESLRELCCG	AAPLAKEVAE	VAVERLNLPG	IRCGFGLTES	
		X000-00-0-	XXX-00XX-	XX000X0	XXX0-XX-00	00X-XX	
		351					
_						400	
	Lcr				LDTKKSLGPN		
	Lla	TEALLITPEG	DDKPGASGKV	Abrekykaid	ldtketlgpn	RRGEVCVKGP	
	Lmi	TSAPIITPEG	DDKPGASGKV	ABTEKAKAID	LDTKKTLGVN	RRGEICVKGP	
	Pmi	TEALLITPEG	DDKPGACGKY	VPFFTAKIVD	LDTGKTLGVN	QRGELCVKGP	
	Ppy						
	Lno				LDTGKTLGVN		
	Ppel	TCAIVITAEG	EFELGAVGEV	Abla Rapp	LNTGKKLGPN	Broeicfkgp	
	Ppe2				PTTGKILGPN		
	Phg						
_	Y G				RETGKALGPN		
		00-XOXXXXX	XXOX-XO-XO	X-XX00-XX-	XX-0-X0-	OX000000	
				•	•		
		401				4	
_	Ler		DAMPET TROS	an mant are	100 110 110 110	450	
	Lla	MLMKGYVNNP MLMKGYVDNP					
	Lmi						
	Pmi	SLMLGYSNNP	PARTATIONS	GUTTGDIGI	THENERALIA	DELECTIVIK	
	Ppy	MIMKGYVNNP MIMSGYVNNP	PARMATTER	CATHOGRADIA	IDVDGHLEIA	DKTKETIKAK	
	Lno	MIMKGYVNNP	ERACKTION.	CALEGODIA	MURDRETTAIL	DEFERENCE	
	Ppel	MINKGYINNP					
	Ppe2	MINKSYYNNE					
	Phq				YDTDGNFHIV		
	TG	MASKGAANIA					
-	- 14	WAODOL AUDIA	PUTVPUTUDO	GUTTERATION	INRUKHLIAA	DKAKETIKAK	

FIG. 19C (Continued)

OXXOO-OO-X -0-OOX-OXO --OO-OXOOXX- --X-X----

	451				500	
Lcr	GYQVPPAELE	SVLLQHPSIF	DAGVAGVPDP	VAGELPGAVV	VLESGENMTE	
Lla	GYQVPPAELE	SVLLQHPNIF	DAGVAGVPDP	IAGELPGAVV	VLEKOKSMTE	
Lmi	GYQVPPARLE	Bartygebail	DAGVAGVPDP	DAGELPGAVV	VMEKGETMTE	
Pmi	GYQVPPARLE	BILLQHPPIP	DAGVAGIPDP	DAGELPAAVV	VLEEGEMMTE	
Ppy	GYQVAPAELE	SILLQHPNIF	DAGVAGLPDD	DAGELPAAVV	VLEHGETMTE	
Lno	GYQVPPAELE	SILLQHPFIF	DAGVAGIPDP	DAGELPAAVV	VLREGETMTE	
Ppel	GYQVPPAELE	ALLLQHPFIE	DAGVAGVPDE	VAGDLPGAVV	VLKEGKSITE	
Ppe2	GYQVAPABIB	GILLQHPYIV	DAGVIGIPDE	AAGELPAAGV	AAOLGKATME	
Phg	AYQVAPARLE	ALLIQHPYIA	DAGVTGIPDB	EAGELPAACV	VLEPGKTMTE	
YG	GSQVAPABLE	EILLKNPCIR	DVAVVGIPDL	BAGELPSAPV	VKQPGKEITA	
				00X-X-		
	501					
	501				550	
Lcr	KEANDAAYRÖ	Venakrlrgg	VRFVDEVPKG	LTGKIDGRA.	IREILKKPV.	
Lla						
Lmi						
Pmi	GEANDAAYG	VTASKRLRGG	AKLADBALKG	LTCKIDSRK.	IREILIMGQK	
Рру				LTGKLDARK.		
Lno				LTGKIDGRK.		
Ppe1				PTGKIDTRK.		
Ppe2				STEKIDRKV.		
Phg				ATGKLVRTE.		
¥G.				VTGKITRKEL		_
	00000000000	-000-X	-0-00XX-XX	XOXOXOO	XXXX000000	• •
	551					
Ler	AKM			~~~ ~		
Lla	AXM			•		
Lmi	AKM	•				
Pmi	SKL					
Ppy	GGKSKL					
Lno	SKL					
Ppe1	gkskskarl		•			
Ppe2	KSKL					
Phq						
	ARL					

FIG. 19C (Continued)

000000X-0

SUBSTITUTE SHEET (RULE 26)

Lcr	Luciola cruciata
Lla	Luciola lateralis
Lmi	Luciola mingrelica
Pmi	Pyrocoelia miyako
Ppy	Photinus pyralis
Lno	Lampyris noctiluca
Ppc1	Photuris pennsylvanica (1)
Ppc2	Photuris pennsylvanica (2)
Phg	Phengodes sp.
YG	Pyrophorus plagiophthalamus - yellow-green luminescence

FIG. 19D

SUBSTITUTE SHEET (RULE 26)

FIG. 21

luc49-7C6 (SEQ ID NO:1)

GGATCCAATG	GCAGATAAAA	ATATTTTATA	TGGGCCCGAA	CCATTTTATC	CCTTGGCTGA	60
TOGGACGGCT	GGAGAACAGA	TGTTTTACGC	ATTATCTCGT	TATGCAGATA	TTTCAGGATG	120
CATAGCATTG	ACAAATGCTC	ATACAAAAGA	AAATGTTTTA	TATGAAGAGT	TTTTAAAATT	100
GTCGTGTCGT	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
GGTGTGTAGC	GAAAATGGTT	TGCAATTTTT	CCTTCCTATA	ATTGCATCAT	TGTATCTTGG	300
AATAATTGCA	GCACCTGTTA	GTGATAAATA	CATTGAACGT	GAATTAATAC	ACAGTYCTYCC	360
TATTOTAAAA	CCACGCATAA	TITITIGCIC	CAAGAATACT	TTTCAAAAAG	TACTGAATOT	420
AAAATCTAAA	TTAAAATATG	TAGAAACTAT	TATTATATTA	CACTTARATE	AAGACTTAGG	480
AGGTTATCAA	TGCCTCAACA	ACTITATITC	TCAAAATTCC	GATATTAATC	TGGACGTAAA	540
AAAATTTAAA	CCATATTCTT	TTAATCGAGA	CGATCAGGTT	GCGTTGGTAA	ICHIALITA PARA	600
TOOTACAACT	GGTGTTTCGA	AGGGAGTCAT	GCTAACTCAC	DTTATAADAA	TIGCACGATT	660
TTCTCTTGCA	AAAGATCCTA	CTTTTGGTAA	CGCAATTAAT	CCAACGACAG	CAATTTTAAC	720
GGTAATACCT	TTCCACCATG	GTTTTGGTAT	GATGACCACA	TTAGGATACT	TTACTTGTGG	780
ATTCCGAGTT	GITCTAATGC	ACACGTTTGA	AGAAAAACTA	TTTCTACAAT	CATTACAAGA	840
DTDAAATATT	GAAAGTACTT	TACTTGTACC	AACATTAATG	GCATTTCTTG	CARARAGTGC	900
ATTAGTTGAA	AAGTACGATT	TATCGCACTT	TTAAADAAATT	GCATCTGGTG	GCGCACCTTT	960
atcaaaagaa	ATTGGGGAGA	TGGTGAAAAA	ACGGTTTAAA	TTAAACTTTG	TCAGGCAAGG	1020
GTATGGATTA	ACAGAAACCA	CTTCGGCTGT	TTTAATTACA	CCGAACAATG	ACGTCAGACC	1080
GGGATCAACT	GGTAAAATAG	TACCATTTCA	CGCTGTTAAA	GITGTCGATC	CTACAACAGG	1140
DTTTTAAAAA	GGGCCAAATG	AACCTGGAGA	ATTGTATTTT	AAAGGCGACA	TGATAATGAA	1200
AQGITATTAT	AATAATGAAG	AAGCTACTAA	AGCAATTATT	AACAAAGACG	GATGGTTGCG	1260
CTCTGGTGAT	ATTGCTTATT	ATGACAATGA	TGGCCATTTT	TATATTGTGG	ACAGGCTGAA	1320
GTCATTAATT	aaatataaag	GTTATCAGGT	TGCACCTGCT	DDADTTAAAD	GAATACTCTT	1380
ACAACATCCG	TATATIGITG	ATGCCGGCGT	TACTGGTATA	CCGGATGAAG	CCGCGGGGGA	1440
GCTTCCAGCT	GCAGGTGTTG	TAGTACAGAC	TGGAAAATAT	CTAAACGAAC	AAATCGTACA	1500
AAATTTTGTT	TCCAGTCAAG	TTTCAACAGC	CARATGGCTA	CGTGGTGGGG	TGAAATTTTT	1560
GGATGAAATT	CCCAAAGGAT	CAACTGGAAA	AATTGACAGA	AAAGTGTTAA	GACAAATGTT	1620
TGAAAAACAC	ACCAATGGG					1639

FIG. 22

luc49-6C10 (SEQ ID NO:2)

GGATCCAATG	GAAGATAAAA	ATATTTTATA	TGGACCTGAA	CCATTTTATC	CCTTGGCTGA	60
TGGGACGGCT	GGAGAACAGA	TGTTTTACGC	ATTATCTCGT	TATGCAGATA	TTTCAGGATG	120
CATAGCATTG	ACAAATGCTC	ATACAAAAGC	CCCTGTTTTA	TATGAAGAGT	TTAAAATTOT	180
GTCGTGTCGT	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
GGTGTGTAGC	GAAAATGGTT	TGCAATTTTT	CCTTCCTATA	ATTGCATCAT	TGTATCTTGG	300
AATAATTGCA	GCACCTGTTA	GTGATAAATA	CATTGAACGT	GAATTAATAC	ACAGTCTTGG	360
				TTTCAAAAAG		420
				GACTTAAATG		480
AGGTTATCAA	TGCCTCAACA	ACTITATITIC	TCAAAATTCC	GATATTAATC	TOGACOTAAA	540
				GCGTTGGTAA		600
TOGTACAACT	GGTGTTTCGA	AGGGAGTCAT	GCTAACTCAC	DTTATAADAA	TTGCACGATT	660
				CCAACGACAG		720
GGTAATACCT	TTCCACCATG	GTTTTGGTAT	GATGACCACA	TTAGGATACT	TTACTTGTGG	780
	_			TTTCTACAAT		840
TTATAAAGTG	GAAAGTACTT	TACTTGTACC	AACATTAATG	GCATTTTTTG	CAAAAAGTGC	900
				GCATCTGGTG		960
				TTAAACTTTG		1020
GTATGGATTA	ACAGAAACCA	CTTCGGCTGT	TTTAATTACA	CCGAACAATG	ACGTCAGACC	1080
				GTTGTCGATC		
DTTTTAAAAA	GGGCCAAATG	AAACTGGAGA	ATTGTATTTT	AAAGGCGACA	TGATAATGAA	1200
				AACAAAGACG		
CTCTGGTGAT	ATTGCTTATT	ATGACAATGA	TGGCCATTTT	TATATTGTGG	ACAGGCTGAA	1320
				GAAATTGAGG		
				CCGGATGAAG		
				CTAAACGAAC		
				CGTGGTGGGG		
		CAACTGGAAA	AATTGACAGA	AAAGTGTTAA	GACAAATGTT	1620
TGAAAAACAC	A <u>CCAA</u> TGGG					1639

FIG. 23

luc49-0G12 (8EQ ID NO:3)

		•				
				CCATTTTATC		60
TGGGACGGCT	GGAGAACAGA	TGTTTTACGC	ATTATCTCGT	TATGCAGATA	TTTCAGGATG	120
CATAGCATTG	ACAAATGCTC	ATACAAAAGC	CCCTGTTTTA	TDADAADTAT	TTTAAAATT	180
GTCGTGTCGT	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
GGTGTGTAGC	GAAAATGGTT	TGCAATTTTT	CCTTCCTATA	ATTGCATCAT	TGTATCTTGG	300
				GAATTAATAC		360
TATTGTAAAA	CCACGCATAA	TTTTTTTGCTC	CAAGAATACT	TTTCAAAAAG	TACTGAATGT	420
AAAATCTAAA	TTAAAATATG	TAGAAACTAT	TATTATATTA	GACTTAAATG	AAGACTTAGG	480
AGGTTATCAA	TGCCTCAACA	ACTITATITC	TCAAAATTCC	GATATTAATC	TTGACGTAAA	540
AAAATTTAAA	CCATATTCTT	TTAATCGAGA	CGATCAGGTT	GCGTTGGTAA	TGTTTTCTTC	600
TOGTACAACT	GGTGTTTCGA	AGGGAGTCAT	GCTAACTCAC	AAGAATATTG	TTGTACGATT	660
TTCTTATGCA	AAAGATCCTA	CTTTTGGTAA	CGCAATTAAT	CCAACGACAG	CAATTITAAC	720
GGTAATACCT	TTCCACCATG	GTTTTGGTAT	GATGACCACA	TTAGGATACT	TTACTTGTGG	780
ATTCCGAGTT	GITCTAATGC	ACACGTTTGA	AGAAAAACTA	TTTCTACAAT	CATTACAAGA	840
TTATAAAGTG	GAAAGTACTT	TACTTGTACC	AACATTAATG	GCATTICTIG	CAAAAAGTGC	900
ATTAGTTGAA	AAGTACGATT	TATOGCACTT	AAAAGAAATT	GCATCTGGTG	GCGCACCTTT	960
ATCAAAAGAA	ATTGGGGAGA	TGGTGAAAAA	ACGGTTTAAA	TTARACTTTG	TCAGGCAAGG	1020
GTATGGATTA	ACAGAAACCA	CTTCGGCTGT	TTTAATTACA	CCGBACAATG	ACGTCAGACC	1080
GGGATCAACT	GGTAAAATAG	TACCATTTCA	CGCTGTTAAA	GTTGTCGATC	CTACAACAGG	1140
AAAAATTTTG	GGGCCAAATG	AAACTGGAGA	ATTGTATTTT	AAAGGCGACA	TGATAATGAA	1200
AGGTTATTAT	DAADTAATAA	AAGCTACTAA	AGCAATTATT	AACAAAGACG	GATGGTTGCG	1260
CTCTGGTGAT	ATTGCTTATT	ATGACAATGA	TGGCCATTTT	TATATTGTGG	ACAGGCTGAA	1320
GTCATTAATT	AAATATAAAG	GTTATCAGGT	TGCACCTGCT	GAAATTGAGG	GAATACTCTT	1380
ACAACATCCG	TATATTGTTG	ATGCCGGCGT	TACTGGTATA	CCGGATGAAG	CCGCGGGGGA	1440
GCTTCCAGCT	GCAGGTGTTG	TAGTACAGAC	TGGAAAATAT	CTAAACGAAC	AAATOGTACA	1500
AAATTTTGTT	TCCAGTCAAG	TTTCAACAGC	CAAATGGCTA	CGTGGTGGGG	TGAAATTTTT	1560
GGATGAAATT	CCCAAAGGAT	CAACTGGAAA	AATTGACAGA	AAAGTGTTAA	GACAAATGTT	1620
TGAAAAACAC	ACCAATGGG					1639

FIG. 24

luc49-7A5 (SEQ ID NO:4)

GGATCCAATG	GAAGATAAAA	ATATTTTATA	TGGACCTGAA	CCATTTTATC	CCTTGGCTGA	60
TGGGACGGCT	GGAGAACAGA	TGTTTTACGC	ATTATCTCGT	TATGCAGATA	TTTCAGGATG	120
CATAGCATTG	ACAAATGCTC	ATACAAAAGC	CCCTGTTTTA	TATGAAGAGT	TTTTAAAATT	180
GTCGTGTCGT	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
GGTGTGTAGC	GAAAATGGTT	TGCAATTTTT	CCTTCCTATA	ATTGCATCAT	TGTATCTTGG	300
AATAATTGCA	GCACCTGTTA	GTGATAAATA	CATTGAACGT	GAATTAATAC	ACAGTCTTGG	360
TATTGTAAAA	CCACGCATAA	TTTTTTTCCTC	CAAGAATACT	TTTCAAAAAG	TACTGAATGT	420
AAAATCTAAA	DTATAAAATT	TAGAAACTAT	TATTATATTA	GACTTAAATG	AAGACTTAGG	480
AGGTTATCAA	TGCCTCAACA	ACTITATITC	TCAAAATTCC	GATATTAATC	TTGACGTAAA	540
AAAATTTAAA	CCATATTCTT	TTAATCGAGA	CGATCAGGTT	GCGTTGGTAA	TGTTTTCTTC	600
TGGTACAACT	GGTGTTTCGA	AGGGAGTCAT	GCTAACTCAC	AAGAATATTG	TTGCACGATT	660
TTCTATTGCA	AAAGATCCTA	CTTTTGGTAA	CGCAATTAAT	CCAACGACAG	CAATTTTAAC	720
COTAATACCT	TTCCACCATG	GTTTTGGTAT	GATGACCACA	TTAGGATACT	TEACTTGTGG	780
ATTCCGAGTT						840
TTATAAAGTG	GAAAGTACTT	TACTTGTACC	AACATTAATG	GCATTTTTTG	CAAAAAGTGC	900
AADTTDAITA						960
ATCAAAAGAA	ATTGGGGAGA	TGGTGAAAAA	ACGGTTTAAA	TTAAACTTTG	TCAGGCAAGG	1020
GTATGGATTA	ACAGAAACCA	CTTCGGCTGT	TTTAATTACA	CCGAACAATG	ACGTCAGACC	1080
GGGATCAACT	GGTAAAATAG	TACCATTTCA	CGCTGTTAAA	GTTGTCGATC	CTACAACAGG	1140
DTTTTAAAAA	GGGCCAAATG	AAACTGGAGA	ATTGTATTTT	AAAGGCGACA	AADTAATADT	1200
AGGTTATTAT	AATAATGAAG	AAGCTACTAA	AGCAATTATT	AACAAAGACG	GATGGTTGCG	1260
CTCTGGTGAT						
GTCATTAATT	DAATATAAAG	GTTATCAGGT	TGCACCTGCT	GAAATTGAGG	GAATACTCTT	1380
ACAACATCCG	DITENTALAT	ATGCCGGCGT	TACTGGTATA	CCGGATGAAG	CCGCGGGGCGA	1440
GCTTCCAGCT						
AAATTTTGTT						
GGATGAAATT	CCCAAAGGAT	CAACTGGAAA	AATTGACAGA	AAAGTGTTAA	GACAAATGTT	1620
TGAAAAACAC	ACCAATGGG					1639

FIG. 25

luc49-4G11 (SEQ ID NO:5)

GGATCCAATG	GAAGATAAAA	ATATTTTATA	TGGACCTGAA	CCATTTTATC	CCTTGGCTGA	60
TGGGACGGCT	GGAGAACAGA	TGTTTGACGC	ATTATCTCGT	TATGCAGATA	TTTCAGGATG	120
CATAGCATTG	ACAAATGCTC	ATACAAAAGC	CCCTGTTTTA	TATGAAGAGT	TOTTAAAATT	180
GTCGTGTCGT	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
GGTGTGTAGC	GAAAATGGTT	TGCAATTTTT	CCTTCCTATA	ATTGCATCAT	TGTATCTTGG	300
AATAATTGCA	GCACCTGTTA	GTGATAAATA	CATTGAACGT	GAATTAATAC	ACAGTCTTGG	360
TATTGTAAAA	CCACGCATAA	TTTTTTTGCTC	CAAGAATACT	TTTCAAAAAG	TACTGAATGT	420
AAAATCTAAA	DTATAAAATT	TAGAAACTAT	TATTATATTA	GACTTAAATG	AAGACTTAGG	480
AGGTTATCAA	TGCCTCAACA	ACTITATITC	TCAAAATTCC	GATATTAATC	TTGACGTAAA	540
AAATTTAAA	CCATATTCTT	TTAATCGAGA	CGATCAGGTT	GCGTTGGTAA	TOTTTTCTTC	600
TOGTACAACT	GGTGTTTCGA	AGGGAGTCAT	GCTAACTCAC	AAGAATATTG	TTGCACGATT	660
TTCTCATGCA	AAAGATCCTA	CTTTTGGTAA	CGCAATTAAT	CCAACGACAG	CAATTTTAAC	720
GGTAATACCT	TTCCACCATG	GTTTTGGTAT	GATGACCACA	TTAGGATACT	TTACTTGTGG	780
ATTCCGAGTT	GITCTAATGC	ACACGTTTGA	AGAAAAACTA	TTTCTACAAT	CATTACAAGA	840
TTATAAAGTG	GAAAGTACTT	TACTTGTACC	AACATTAATG	GCATTTTTTG	CAAAAAGTGC	900
ATTAGTTGAA	AAGTACGATT	TATCGCACTT	TTAAADAAATT	GCATCTGGTG	GCGCACCTTT	960
ATCAAAAGAA	ATTGGGGAGA	TGGTGAAAAA	ACGGTTTAAA	TTAAACTTTG	TCAGGCAAGG	1020
GTATGGATTA	ACAGAAACCA	CTTCGGCTGT	TTTAATTACA	CCGBACAATG	ACGTCAGACC	1080
GGGATCAACT	GGTAAAATAG	TACCATTTCA	CGCTGTTAAA	GTTGTCGATC	CTACAACAGG	1140
DITTIAAAAA	GGGCCAAATG	AAACTGGAGA	ATTGTATTTT	ARAGGCGACA	TGATAATGAA	1200
				AACAAAGACG		
				TATATTGTGG		
				GAAATTGAGG		
ACAACATCCG	TATATTGTTG	ATGCCGGCGT	TACTGGTATA	CCGGATGAAG	CCGCGGGGGGA	1440
GCTTCCAGCT	GCAGGTGTTG	TAGTACAGAC	TGGAAAATAT	CTAAACGAAC	AAATOGTACA	1500
				CGTGGTGGGG		1560
				AAAGTGTTAA		1620
TGAAAAACAC	ACCAATGGG					1639

FIG. 26

luc49-7C6 (SEQ ID NO:14)

Y G P E Y 20 G T S R Y C 40 60 C 80 C B I 100 D B 120 I K R I ĸ S 160 G Y C ₽ K 200 G T T G 8 S D P T I F ₽ Ħ H T C P R V D 280 Y V E T S 300 L V E Y P L 320 8 K E I R Q G 340 G T B T R 360 S T G Ι D 380 K I L G P N G B K G D 400 Y N B T N K D 420 G D I A D N D G Ħ S L I ĸ G Y Q v A ₽ Ħ Y P I G V T G I 480 P T G K Y 500 F S ε T A K W L R G ĸ F L 520 E I P K G I D R K V Q М 540 K H I N G 546

FIG. 27

Luc49-6C10 (SEQ ID NO:15)

```
MEDKNILYGPEPFYPLAD
G T A G E Q M F Y A L S R Y A D I S G C
IALTNAHTKENVLYEELLKL
SCRLAESFKKYGLKQNDTIA
V C S E N G L Q F F L P I I A S L Y L G 100
IIAAPVSDKYIERELIHSLG 120
IVKPRIIFCSKNTFQKVLNV 140
KSKLKYVETIIILDLNEDLG 160
GYQCLNNFISQNSDINLDVK 180
KFKPYSFNRDDQVALVMFSS200
GTTGVSKGVMLTHKNIVARF220
SHAKDPTFGNAINPTTAILT240
VIPFHHGFGMMTTLGYFTCG260
FRV<u>V</u>LMHTFEEKLFLQSLQD280
Y K V E S T L L V P T L M A F F A K S A 300
LVEKYDLSHLKEIASGGAPL 320
SKEIGEMVKKRFKLNFVRQG340
YGLTETTSAVLITP<u>N</u>NDVRP360
G S T G K I V P F H A V K V V D P T T G 380
KILGPNETGELYFKGDMIMK400
GYYNNEEATKAIINKDGWLR 420
SGDIAYYDNDGHFYIVDRLK440
SLIKYKGYQVAPAEIEGILL460
Q H P Y I V D A G V T G I P D E A A G E 480
LPAAGVVVQTGKYLNEQIVQ500
N F V S S Q V S T A K W L R G G V K F L 520
DEIPKGSTGKIDRKVLRQMF540
EKHTNG
                           546
```

FIG. 28

Luc49-0G12 (SEQ ID NO:16)

```
MEDKNILYGPEPFYPLAD
GTAGEQMFYALSRYADISGC
IALTNAHTKENVLYEEFLKL
SCRLAESFKKYGLKQNDTIA
V C S E N G L Q F F L P I I A S L Y L G 100
IIAAPVSDKYIERELIHSLG 120
IVKPRIIFCSKNTFQKVLNV 140
KSKLKYVETIIILDLNEDLG 160
GYQCLNNFISQNSDINLDVK 180
KFKPYSFNRDDQVALVMFSS200
GTTGVSKGVMLTHKNIVYRF220
S L A K D P T F G N A I N P T T A I L T 240
VIPFHHGFGMMTTLGYFTCG 260
FRVYLMHTFEEKLFLQSLQD 280
Y K V E S T L L V P T L M A F F A K S A 300
LVEKYDLSHLKEIASGGAPL 320
SKEIGEMVKKRFKLNFVRQG340
YGLTETTSAVLITP<u>N</u>NDVRP360
GSTGKIVPFHAVKVVDPTTG380
KILGPNETGELYFKGDMIMK 400
GYYNNEEATKAII<u>T</u>KDGWLR 420
SGDIAYYDNDGHFYIVDRLK440
SLIKYKGYQVAPAEIEGILL460
QHPYIVDAGVTGIPDEAAGE480
LPAAGVVVQTGKYLNEQIVQ500
N F V S S Q V S T A K W L R G G V K F L 520
DEIPKGSTGKIDRKVLRQMF540
EKHTNG
                         546
```

FIG. 29

Luc49-7A5 (SEQ ID NO:17)

MEDKNILYGPEPFYPLAD G T A G E Q M F Y A L S R Y A D I S G C IALTNAHTKENVLYEEFLKL SCRLAESFKKYGLKQNDTIA V C S E N G L Q F F L P I I A S L Y L G 100 I I A A P V S D K Y I E R E L I H S L G 120 IVKPRIIFCSKNTFQKVLNV 140 KSKLKYVETIIILDLNEDLG 160 GYQCLNNFISQNSDINLDVK 180 KFKPYSFNRDDQVALVMFSS200 GTTGVSKGVMLTHKNIVARF220 S I A K D P T F G N A I N P T T A I L T 240 VIPFHHGFGMMTTLGYFTCG 260 FRVYLMHTFEEKLFLQSLQD 280 YKVESTLLVPTLMAFLAKSA 300 LVEKYDLSHLKEIASGGAPL 320 S K E I G E M V K K R F K L N F V R Q G 340 YGLTETTSAVLITP<u>N</u>NDVRP360 GSTGKIVPFHAVKVVDPTTG380 KILGPNETGELYFKGDMIMK 400 GYYNNEEATKAIINKDGWLR 420 SGDIAYYDNDGHFYIVDRLK440 S L I K Y K G Y Q V A P A E I E G I L L 460 Q H P Y I V D A G V T G I P D E A A G E 480 LPAAGVVVQTGKYLNEQIVQ 500 N F V S S Q V S T A K W L R G G V K F L 520 DEIPKGSTGKIDRKVLRQMF540 EKHING 546

FIG. 30

Luc49-4G11 (SEQ ID NO:18)

```
MEDKNILYGPEPFYPLAD
                          20
GTAGEQMFDALSRYADISGC
IALTNAHTKENVLYEEFLKL
SCRLAESFKKYGLKQNDTIA
V C S E N G L Q F F L P I I A S L Y L G 100
IIAAPVSDKYIERELIHSLG 120
IVKPRIIFCSKNTFQKVLNV 140
KSKLKYVETIIILDLNEDLG 160
GYQCLNNFISQNSDINLDVK 180
KFKPYSFNRDDQVALVMFSS200
GTTGVSKGVMLTHKNIVARF220
SHAKDPTFGNAINPTTAILT 240
VIPFHHGFGMMTTLGYFTCG 260
FRVVLMHTFEEKLFLQSLQD 280
Y K V E S T L L V P T L M A F F A K S A 300
LVEKYDLSHLKEIASGGAPL 320
SKEIGEMVKKRFKLNFVRQG340
YGLTETTSAVLITPNNDVRP360
G S T G K I V P F H A V K V V D P T T G 380
KILGPNETGELYFKGDMIMK400
GYYNNEEATKAIINKDGWLR 420
SGDIAYYDNDGHFYIVDRLK440
SLIKYKGYQVAPAEIEGILL 460
QHPYIVDAGVTGIPDEAAGE 480
LPAAGVVVQTGKYLNEQIVQ500
N F V S S Q V S T A K W L R G G V K F L 520
DEIPKGSTGKIDRKVLRQMF540
EKHTNG
```

FIG. 31

luc78-0B10 (SEQ ID NO:6)

GGATCCAATG	<u>GC</u> AGATAA <u>G</u> A	ATATTTTATA	TGGGCCCGAA	CCATTTTATC	CCTTGGCTGA	60
TGGGACGGCT	GGAGAACAGA	TGTTTGACGC	ATTATCTCGT	TATGCAGATA	TTTCCGGATG	120
CATAGCATTG	ACAAATGCTC	ATACAAAAGA	AAATGTTTTA	TATGAAGAGT	TTTAAAATT	180
GTCGTGTCGT	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
GGTGTGTAGC	GAAAATGGTT	TGCAATTTTT	CCTTCCTGTA	ATTGCATCAT	TGTATCTTGG	300
AATAATTGCA	GCACCTGTTA	GTGATAAATA	CATTGAACGT	GAATTAATAC	ACAGTCTTGG	360
TATTGTAAAA	CCACGCATAA	TTTTTTTCCTC	CAAGAATACT	TTTCAAAAAG	TACTGAATGT	420
AAAATCTAAA	DIZTAAAATT	TAGAAACTAT	TATTATATTA	GACTTAAATG	AAGACTTAGG	480
AGGTTATCAA	TGCCTCAACA	ACTITATITC	TCAAAATTCC	GATAGTAATC	TGGACGTAAA	540
AAATTTAAA	CCATATICTT	TTAATCGAGA	CGATCAGGTT	GCGTTGGTAA	TGITTITCTTC	600
TOGTACAACT	GGTGTTCCGA	AGGGAGTCAT	GCTAACTCAC	AAGAATATTG	TTGCACGATT	660
TTCTCTTGCA	AAAGATCCTA	CTTTTGGTAA	CGCAATTAAT	CCCACGACAG	CAATTITAAC	720
GGTAATACCT	TTCCACCATG	GITTITGGTAT	GATGACCACA	TTAGGATACT	TTACTTGTGG	780
ATTCCGAGTT	GITCTAATGC	ACACGTTTGA	AGAAAAACTA	TTTCTACAAT	CATTACAAGA	840
TTATAAAGTG	GAAAGTACTT	TACTTGTACC	AACATTAATG	GCATTTCTTG	CAAAAAGTGC	900
ATTAGTTGAA	TTADDATDAA	TATCGCACTT	AAAAGAAATT	GCATCTGGTG	GCGCACCTTT	960
ATCAAAAGAA	ATTGGGGAGA	TGGTGAAAAA	ACGGTTTAAA	TTAAACTTTG	TCAGGCAAGG	1020
GTATGGATTA	ACAGAAACCA	CTTCGGCTGT	TITAATTACA	CCGAAAGGTG	ACGCCAGACC	1080
GGGATCAACT	ggtaaaatag	TACCATTICA	CGCTGTTAAA	GTTGTCGATC	CTACAACAGG	1140
AAAAATTTTG	GGGCCAAATG	AACCTGGAGA	ATTGTATTTT	AAAGGCGCCA	TGATAATGAA	1200
<u>GG</u> GTTATTAT	AATAATGAAG	AAGCTACTAA	AGCAATTATT	GATAATGACG	GATGGTTGCG	1260
CTCTGGTGAT	ATTGCTTATT	ATGACAATGA	TGGCCATTTT	TATATTGTGG	ACAGGCTGAA	1320
GTCATTAATT	DAATATAAAG	GTTATCAGGT	TGCACCTGCT	GAAATTGAGG	GAATACTCTT	1380
ACAACATCCG	TATATTGTTG	ATGCCGGCGT	TACTGGTATA	CCGGATGAAG	CCGCGGGCGA	1440
GCTTCCAGCT	GCAGGTGTTG	TAGTACAGAC	TGGAAAATAT	CTAAACGAAC	AAATCGTACA	1500
AGATTTTGTT	TCCAGTCAAG	TTTCAACAGC	CAAATGGCTA	CGTGGTGGGG	TGAAATTTTT	1560
GGATGAAATT	CCCAAAGGAT	CAACTGGAAA	AATTGACAGA	AAAGTGTTAA	GACAAATGTT	1620
TGAAAAACAC	ACCAATGGG					1639

FIG. 32

luc78-0G8 (SEQ ID NO:7)

GGATCCAATG	GCAGATAAAA	ATATTTTATA	TGGGCCCGAA	CCATTTTATC	CCTTGGCTGA	60
	GGAGAACAGA					120
CATAGCATTG	ACAAATGCTC	ATACAAAAGC	CCCTGTTTTA	TATGAAGAGT	TTTTAAAATT	180
GTCGTGTCGT	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
GGTGTGTAGC	GAAAATGGTT	TGCAATTTTT	CCTTCCTGTA	ATTGCATCAT	TGTATCTTGG	300
AATAATTGCA	GCACCTGTTA	GTGATAAATA	CATTGAACGT	GAATTAATAC	ACAGTCTTGG	360
TATTOTAAAA	CCACGCATAA	TTTTTTGCTC	CAAGAATACT	TTTCAAAAAG	TACTGAATGT	420
AAAATCTAAA	TTAAAATATG	TAGAAACTAT	TATTATATTA	GACTTAAATG	AAGACTTAGG	480
AGGTTATCAA	TGCCTCAACA	ACTITATITC	TCAAAATTCC	GATATTAATC	TTGACGTAAA	540
AAAATTTAAA	CCATATTCTT	TTAATCGAGA	CGATCAGGTT	GCGTTGGTAA	TGTTTTCTTC	600
	GGTGTTCCGA					660
TTCTCTTGCA	ARAGRICCIA	CTTTTGGTAA	CGCAATTAAT	CCAACGACAG	CAATTTTAAC	720
GGTAATACCT	TTCCACCATG	GTTTTGGTAT	GATGACCACA	TTAGGATACT	TTACTTGTGG	780
ATTCCGAGTT	GTTCTAATGC	ACACGTTTGA	AGAAAAACTA	TTTCTACAAT	CATTACAAGA	840
TTATAAAGTG	GAAAGTACTT	TACTIGEACC	AACATTAATG	GCATTTCTTG	CAAAAAGTGC	900
ATTAGTTGAA	AAGTACGATT	TATOGCACTT	TTAAAGAAAAT	GCATCTGGTG	GCGCACCTTT	960
ATCARAGAA	ATTGGGGAGA	TGGTGAAAAA	ACCIOTTTAAA	TTAAACTTTG	TCAGGCAAGG	1020
GTATGGATTA	ACAGAAACCA	CTTCGGCTGT	TTTAATTACA	CCGAAADOOCK	XXGTCAGACC	1080
GGGATCAACT	GGTAAAATAG	TACCATTTCA	CGCTGTTAAA	GTTGTCGATC	CTACAACAGG	1140
AAAAATTTTG	GGGCCAAATG	AACCTGGAGA	ATTGTATTTT	AAAGGCGACA	TGATAATGAA	1200
AGGTTATTAT	AATAATGAAG	AAGCTACTAA	AGCARTTATT	GATAAAGACG	GATGGTTGCG	1260
CTCTGGTGAT	ATTGCTTATT	ATGACAATGA	TGGCCATTTT	TATATTGTGG	ACAGGCTGAA	1320
GTCATTAATT	AAATATAAA G	GTTATCAGGT	TGCACCTGCT	GAAATTGAGG	GAATACTCTT	1380
ACAACATCCG	TATATTGTTG	ATGCCGGCGT	TACTGGTATA	CCGGATGAAG	CCGCGGGCGA	1440
	GCAGGTGTTG					
	TCCAGTCAAG					
	CCCAAAGGAT					
TGAAAAACAC	ACCAATGGG					1639

FIG. 33

luc78-181 (SEQ ID NO:8)

GGATCCAATG	GCAGATAAAA	ATATTTTATA	TGGGCCCGAA	CCATTTTATC	CCTTGGCTGA	60
			ATTATCTCGT			120
CATAGCATTG	ACAAATGCTC	ATACAAAAGC	CCCTGTTTTA	TATGAAGAGT	TTAAAATT	180
GTCGTGTCGT	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
			CCTTCCTGTA			300
AATAATTGCA	GCACCTGTTA	GTGATAAATA	CATTGAACGT	GAATTAATAC	ACAGTCTTGG	360
			CAAGAATACT			420
AAAATCTAAA	DTATAAAATT	TAGAAACTAT	TATTATATTA	GACTTAAATG	AAGACTTAGG	480
AGGTTATCAA	TGCCTCAACA	ACTITATITC	TCAAAATTCC	GATATTAATC	TTGACGTAAA	540
AAATTTAAA	CCATATTCTT	TTAATCGAGA	CGATCAGGTT	GCGTTGGTAA	TGTTTTCTTC	600
			GCTAACTCAC			660
			CGCAATTAAT			720
			GATGACCACA			780
			AGAAAAACTA			840
			AACATTAATG			900
			TTAAABAAAAT			960
			ACGGTTTAAA			1020
GTATGGATTA	ACAGAAACCA	CTTCGGCTGT	TTTAATTACA	CCGAAAxxxx	2000 CAGACC	1080
			CGCTGTTAAA			1140
			ATTGTATTTT			
			AGCAATTATT			
			TGGCCATTIT			1320
			TGCACCTGCT			1380
			TACTGGTATA			
			TGGAAAATAT			
			CAAATGGCTA			
		CAACTGGAAA	AATTGACAGA	AAAGTGTTAA	GACAAATGTT	
TGAAAAACAC	ACCAATGGG					1639

FIG. 34

luc78-284 (SEQ ID NO:9)

					,	
GGATCCAATG	GCAGATAAAA	ATATTTTATA	TGGGCCCGAA	CCATTTTATC	CCTTGGCTGA	60
TGGGACGGCT	GGAGAACAGA	TGTTTGACGC	ATTATCTCGT	TATGCAGATA	TTTCAGGATG	120
CATAGCATIG	ACAAATGCTC	ATACAAAAGC	CCCTGTTTTA	TATGAAGAGT	TYPETALANT	180
GICGIGICGI	AAADDDDATT	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
GGTGTGTAGC	TTDDTAAAAD	TGCAATTTTT	CCTTCCTGTA	ATTGCATCAT	TOTATVIVI	300
aataattgca	GCACCTGTTA	GTGATAAATA	CGTTGAACGT	GAATTAATAC	ACAGIVTIVIO	360
TATTGTAAAA	CCACGCATAA	TITITIGCTC	CAAGAATACT	TTTCAAAAAG	TACTUALATION	420
AAAATCTAAA	TTAAAATATG	TAGAAACTAT	TATTATATTA	GACTTAAATG	PUCTORATOL	480
AGGITATCAA	TGCCTCAACA	ACTITATITC	TCAAAATTCC	GATAGTAATC	TYZCZ CYCTA B A	540
AAATTTAAA	CCAAATTCTT	TTAATCGAGA	CGATCAGGTT	GCGTTGGTAA	TOUCG LANGE	
TGGTACAACT	GGTGTTTCGA	AGGGAGTCAT	GCTAACTCAC	AAGAATATIG	TIME	600
TTCTCTTGCA	AAAGATCCTA	CTTTTGGTAA	CGCAATTAAT	CCAACGACAG	CAATOMICALT	660
GGTAATACCT	TTCCACCATG	GTTTTGGTAT	GATGACCACA	TTAGGATACT	CONTITIARC	720
ATTCCGAGTT	GTTCTAATGC	ACACGTTTGA	AGRAGAGA	TITCTACAAT		780
TTATAAAGTG	GAAAGTACTT	TACTIVITACY	ARCATTANKA	GCATTTCTTG	CATTACAAGA	840
ATTAGTTGAA	AAGTACGATT	TATY CACACTOR	ARREARING	GCATCTGGTG	CAAAAAGIGC	900
ATCABABGAA	ATTOGGGAGA	TOTOTALLI	MANAGEMENT	TTAAACTTTG	GCGCACCTTT	960
GTATIGATEA	ACAGAAAGCA	TOOTONOM	ACCOUNT ACTION	TTAAACTTTG	TCAGGCAAGG	1020
CCCATCAACT	COTATATAC	CIICOGCIGI	TTTAATTACA	CCGAACICICX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	T080
PARTICIPAL T	COCCOSARS	1ACCRITICA	COCTOTTAAA	GTTGTCGATC	CIACAACAGG	1140
CCCTTATATA	PAGE PAGE P	AACCTOGAGA	ATTGTATTTT	AAAGGCG <u>C</u> CA	TGATAATGAA	1200
2201TVITVI	AMIANIGANG	AAGCTACTAA	AGCAATTATT	DOADAAATAD	GATGGTTGCG	1260
CICIOGIGAI	ATTGCTTATT	ATGACAATGA	TGGCCATTTT	TATATTGTGG	ACAGGCTGAA	1320
GICKITAKIT	AAATATAAAG	GITATCAGGT	TGCACCTGCT	GAAATTGAGG	GAATACTCTT	1380
ACAACAICOS	TATATTGTTG	ATGCCGGCGT	TACTGGTATA	CCGGATGAAG	CCGCGGGGGA.	1440
GCTTCCAGCT	GCAGGTGTTG	TAGTACAGAC	TGGAAAATAT	CTAAACGAAC	AAATCGTACA	1500
AAATTTTGTT	TCCAGTCAAG	TTTCAACAGC	CAAATGGCTA	CGTGGTGGGG	TGAAATTTTT	1560
GGATGAAATT	CCCAAAGGAT	CAACTGGAAA	AATTGACAGA	AAAGTGTTAA	GACAAATGTT	1620
TGAAAAACAC	A <u>CCAA</u> TGGG					1639

FIG. 35

luc78-0B10 (SEQ ID NO:19)

Ι L Y G P E 20 ₽ Y 40 Y I K N D 160 180 F 200 H 220 I I 240 T T 260 ĸ L F 280 T 300 K I 320 K B K R N R 340 Y I P 360 G H P 380 Y K G I 400 g I D a v 8 460 Q 480 G K Y L T I 500 D T A K W L R G G V K F 520 P K G TGKIDRKV 540 K H I N 546

FIG. 36

45/70

Luc78-0G8 (SEQ ID NO:20)

MADKNILYGPEPFYPLAD GTAGEQMFYALSRYADISGC IALTNAHTKENVLYEEFLKL SCRLAESFKKYGLKQNDTIA V C S E N G L Q F F L P Y I A S L Y L G 100 IIAAPVSDKYIERELIHSLG 120 IVKPRIIFCSKNTFQKVLNV 140 KSKLKYVETIIILDLNEDLG 160 GYQCLNNFISQNSDINLDVK 180 K F K P Y S F N R D D Q V A L V M F S S 200 GTTGVPKGVMLTHKNIVARF 220 S L A K D P T F G N A I N P T T A I L T 240 VIPFHHGFGMMTTLGYFTCG 260 FRVYLMHTFEEKLFLQSLQD280 YKVESTLLVPTLMAFLAKSA 300 LVEKYDLSHLKEIASGGAPL 320 SKEIGEMVKKRFKLNFVRQG 340 YGLTETTSAVLITPKXXVRP360 GSTGKIVPFHAVKVVDPTTG380 KILGPNEPGELYFKGDMIMK400 GYYNNEEATKAIIDKDGWLR 420 SGDIAYYDNDGHFYIVDRLK440 SLIKYKGYQVAPAEIEGILL460 Q H P Y I V D A G V T G I P D E A A G E 480 LPAAGVVVQTGKYLNEQIVQ500 N F V S S Q V S T A K W L R G G V K F L 520 DEIPKGSTGKIDRKVLRQMF540 EKHTNG

FIG. 37

Luc78-1E1 (SEQ ID NO:21)

```
MADKNILYGPEPFYPLAD
                         20
GTAGEQMF<u>D</u>ALSRYADI<u>P</u>GC
IALTNAHTKENVLYEEFLKL
                         60
SCRLAESFKKYGLKQNDTIA
V C S E N G L Q Y F L P V I A S L Y L G 100
IIAAPVSDKYIERELIHSLG 120
IVKPRIIFCSKNTFQKVLNV140
KSKLKYVETIIILDLNEDLG 160
GYQCLNNFISQNSDINLDVK 180
KFKPNSFNRDDQVALVMFSS200
GTTGVPKGVMLTHKNIVARF220
SIAKDPTFGNAINPTTAILT 240
VIPFHHGFGMMTTLGYFTCG260
FRVYLMHTFEEKLFLQSLQD280
Y K V E S T L L V P T L M A F L A K S A 300
LVEKYDLSHLKEIASGGAPL 320
SKEIGEMVKKRFKLNFVRQG340
YGLTETTSAVLITPKXXARP360
GSTGKIVPFHAVKVVDPTTG380
KILGPNEPGELYFKGAMIMK400
GYYNNEEATKAIIDKDGWLR 420
SGDIAYYDNDGHFYIVDRLK440
SLIKYKGYQVAPAEIEGILL 460
QHPYIVDAGVTGIPDEAAGE 480
LPAAGVVVQTGKYLNEQIVQ500
N F V S S Q V S T A K W L R G G V K F L 520
DEIPKGSTGKIDRKVLRQMF540
EKHTNG
                         546
```

FIG. 38

Luc78-2B4 (SEQ ID NO:22)

```
MADKNILYGPEPFYPLAD
                          20
G T A G E Q M F D A L S R Y A D I P G C
IALTNAHTKENVLYEEFLKL
SCRLAESFKKYGLKQNDTIA
V C S E N G L Q F F L P Y I A S L Y L G 100
IIAAPVSDKYYERELIHSLG 120
IVKPRIIFCSKNTFQKVLNV140
KSKLKYVETIIILDLNEDLG 160
GYOCLNNFISQNSDSNLDVK 180
K F K P N S F N R D D Q V A L V M F S S 200
GTTGVPKGVMLTHKNIVARF220
SLAKDPTFGNAINPTTAILT 240
VIPFHHGFGMMTTLGYFTCG260
FRVVLMHTFEEKLFLQSLQD280
YKVESTLLVPTLMAFLAKSA 300
LVEKYDLSHLKEIASGGAPL320
SKEIGEMVKKRFKLNFVRQG340
YGLTETTSAVLITPKXXARP360
GSTGKIVPFHAVKVVDPTTG380
KILGPNETGELYFKGAMIMK400
GYYNNEEATKAIIDKDGWLR420
SGDIAYYDNDGHFYIVDRLK440
SLIKYKGYQVAPAEIEGILL460
Q H P Y I V D A G V T G I P D E A A G E 480
LPAAGVVVQTGKYLNEQIVQ500
N F V S S Q V S T A K W L R G G V K F L 520
DEIPKGSTGKIDRKVLRQMF-540
EKHTNG
                          546
```

FIG. 39

luc85-4F12 (SEQ ID NO:10)

GGATCCAATG	GCAGATAAAA	ATATTTTATA	TGGGCCCGAA	CCATTTTATC	CCTTTCCCTTC	
rocourceact	GONGARCAGA	TUTTITACGC	ATTATYTYY	するかなかなかるか す	MMOOGA CO.	
CULTURCULLIA	WCWWWIGCIC	ATACAAAAGC	CCCARGIALATA	TROVIREGE	-	
Greenstere	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	ARRORRANCO	30303305	-00
GGTGTGTAGC	GAAAATGGTT	TGCAATTTT	CCTTYCTY	ATTGCATCAT	ACACAATAGC	
AATAATTGTG	GCACCTGTTA	ACGATAAATA	CATTGAACGT	GAATTAATAC	IGIATCITGG	300
TATTGTAAAA	CCACGCATAG	TTTTTGCTC	CARGRATACT	TTTCAAAAAG	ACAGICITGG	360
AAAATCTAAA	TTAAAATCTG	TAGARACTAT	TATTATATA	GACTTAAATG	TACTGAATGT	
AGGTTATCAA	TGCCTCAACA	ACTITATITY	TO LANGUAGE	GATATTAATC	AAGACTTAGG	
AAAATTTAAA	CCATATTCTT	TTARTYGAGA	COMMITTEE	GCGTTGATTA	TIGACOTAAA	540
TOGTACAACT	GGTCTGCCGA	AGGGAGTCAT	CONTINUENT	OCTIADITA DITATAADAA	TOTTTTCTTC	
TTCTCTTGCA	AAAGATOCTA	CTTTTCCTA	OCCUPACION.	CCCACGACAG	TIGCACGATT	660
GGTAATACCT	TICCACCATG	Chanal Consult	CHANT	CCCACGACAG	CAATTTTAAC	720
ATTCCGAGTT	GTTCTAATCC	BCBCCCOUNTS.	GATGACCACA	TTAGGATACT	TTACTTGTGG	780
TTATAAAGTG	GAAAGTACTT	AN CAMMON CO	MARARACTA	TTTCTACAAT	CATTACAAGA	840
ATTAGTTGAA	AAGTAGGATT	TATOGOLOGO	MACATTAATG	GCATTTCTTG	CANANAGIGC	900
ATCAAAAGAA	ATTGGGGAGA	TOTOGRADA	AAAAGAAATT	GCATCIGGIG	GCGCACCTTT	960
GTATGGATTA	ACAGAAACCA	CERCOCORON	ACGGITTAAA	TTAAACTTTG	TCAGGCAAGG	1020
GTATGGATTA GGGATCAACT	GTABBATTAG	TROUGHT.	TTTAATTACA	CCGAAADOOCK	CAGACACC	1080
GGGATCAACT	CCCCCAAATC	ARCCALLICA	CGCTGTTAAA	GITGICGATC	CTACAACAGG	1140
AAAAATTTTG GGGTTATTAT	DESCRIPTION	ANGCIOGAGA	ATTGTATTTT	AAAGGC <u>CCG</u> A	TGATAATGAA	1200
GGGTTATTAT CICIGGTGAT	TALK TALES TALES	AMOCIACIAA	AGCAATTATT	GATAATGACG	GATGGTTGCG	1260
CTCTGGTGAT	DARKTEREE	ATUACAATUA	TGGCCATTTT	TATATTGTGG	ACAGGCTGAA	1320
GTCATTAATT ACAACATCCG	TATALITATION	ATTOCCOO	TGCACCTGCT	GAAATTGAGG	GAATACTCTT	1380
ACAACATCCG GCTTCCAGCT	CCFCCACCANA	WIGCORDOLL.	TACIGGTATT	CCGGATGAAG	CCGCGGGGGGA	1440
GCTTCCAGCT	ACCOUNTS OF	TAUTACAGAC	TUGAAAATAT	CTAAACGAAC	AAATCGTACA	1500
AAATTTTGTT	CCCARACCARG	CLICARCAGC	CAAATGGCTA	CGTGGTGGGG	TGAAATTTTT	1560
GGATGAAATT TGAAAAACAC	CCCMMIGGAT	CAACIGGAAA	AATTGACAGA	Aagtgttaa	GACAAATGTT	1620
	UPPANT TAGG					1639

FIG. 40

Luc85-4F12 (SEQ ID NO:23)

```
MADKNILYGPEPFYPLAD
                        20
G T A G E Q M F D A L S R Y A D I P G C
IALTNAHTKENVLYEEFLKL
SCRLAESFKKYGLKQNDTIA
V C S E N G L Q F F L P Y I A S L Y L G 100
IIYAPVNDKYIERELIHSLG 120
IVKPRIIFCSKNTFQKVLNV140
KSKLKSVETIIILDLNEDLG 160
GYQCLNNFISQNSDINLDVK 180
KFKPYSFNRDDQVALIMFSS200
GTTGLPKGVMLTHKNIVARF 220
SLAKDPTFGNAINPTTAILT240
VIPFHHGFGMMTTLGYFTCG260
FRVVLMHTFEEKLFLQSLQD280
YKVESTLLVPTLMAFLAKSA300
LVEKYDLSHLKEIASGGAPL320
SKEIGEMVKKRFKLNFVROG340
YGLTETTSAVLITPKXXARP360
GSTGKIVPFHAVKVVDPTTG380
KILGPNEPGELYFKGPMIMK400
GYYNNEEATKAIIDNDGWLR420
SGDIAYYDNDGHFYIVDRLK440
SLIKYKGYQVAPAEIEGILL 460
QHPYIVDAGVTGIPDEAAGE 480
LPAAGVVVQTGKYLNEQIVQ500
DFVSSQVSTAKWLRGGVKFL 520
DEIPKGSTGKIDRKVLRQMF540
EKHTNG
                       546
```

FIG. 41

Luc90-1B5 (SEQ ID NO:11)

GGATCCAATG	G <u>C</u> AGATAA <u>G</u> A	ATATTTTATA	TGGGCCCGAA	CCATTTTATC	CCTTGGAAGA	60
TUGGACGGCT	GGAGAACAGA	TGTTTGACGC	ATTATCTCGT	TATGCAGATA	TTYYYGGGG	120
CATAGCATTG	ACAAATGCTC	ATACAAAAGA	AAATGTTTTA	TATGAAGAGT	TTYTYTAAAA	•
GICGIGICGT	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATACC	180
GGTGTGTAGC	GAAAATGGTC	TGCAATTTTT	CCTTCCTGTA	ATTGCATCAT	Many Manager	240
AATAATTG <u>TG</u>	GCACCTGTTA	ACGATAAATA	CATTGAACGT	GAATTAATAC	ACACTOTICS.	300
TATTGTAAAA	CCACGCATAG	TTTTTTGCTC	CAAGAATACT	TTTCAAAAAG	TACMILLIGG	360
AAAATCTAAA	TTAAAATCTA	TTGAAACTAT	TATTATATTA	GACTTAAATG	TACIGNATOL	420
AGGTTATCAA	TGCCTCAACA	ACTITATITE	TCAAAATTCC	GATAGTAATC	TOTAL	480
AAAATTTAAA	CCATATTCTT	TTAATOGAGA	CGATCAGGTT	GOGTAGATTA	TOUCULANA.	540
TOGTACAACT	GGTCTGCCGA	AGGGAGTCAT	GCTAACTCAC	AAGAATATTG	TOTTTCTTC	600
TTCTCTTGCA	AAAGATCCTA	CTTTTGGTAA	CCCAATTAAT	CCCACGACAG	CARMONATT	660
GGTAATACCT	TTCCACCATG	GTTTTGGTAT	GATGACCACA	TTAGGATACT	CARTITIAAC	720
ATTCCGAGTT	GTTCTAATGC	ACACGTTTGA	AGRARAGOTA	TTTCTACAAT	CIRCITUIG	780
TTATAAAGTG	GAAAGTACTT	TACTIGTACC	ABCATTABTO	GCATTTCTTG	CATTACAAGA	840
ATTAGTTGAA	AAGTACGATT	TATYGCACTT	THE SERVERS	GCATCTGGTG	CAAAAAGIGC	900
ATCAAAAGAA	ATTGGGGAGA	TGGTGAAAAA	POSCELLE PAR P	TTAAACTTTG	GCGCACCTTT	960
GTATGGATTA	ACAGAAACCA	CTTCGGCTGT	TTTTARTACA	CCGAAAGGTG	TCAGGCAAGG	1020
GGGATCAACT	GGTAAAATAG	TACCATTTCA	CCCTV2TTR & &	GTTGTCGATC	ACGCCABACC	1080
DITTTAAAAA	GGGCCAAATG	AACCTGGAGA	COCTOT TWW	AAAGGC <u>CCG</u> A	CTACAACAGG	1140
GGGTTATTAT	DAADTAATGAAG	AMCTACTA	VIIGIVIIII	GATAATGACG	TGATAATGAA	1200
CTCTGGTGAT	ATTYCTTATT	ATGACAATGA	TOCOCARTINIT	DATATATTGTGG	GATGGTTGCG	1260
GTCACTGATT	DEECTATEEA	CTTATCACCT	TOCCATITI	GAAATTGAGG	ACAGGCTGAA	1320
ACAACATCCG	TATATTYZTYZ	ATTOMOGE	TO CACCIOCI	COGGATGAAG	GAATACTCTT	1380
GCTTCCAGCT	CLCGTGTTG	TAGTACAGAG	TACIGGIAIA	CTAAACGAAC	CCGCGGGCGA	1440
AGATTATGTT	CCACTCAAC	THYDRACACO	TOGAMAMINI.	CITATACGAAC	AAATCGTACA	1500
GGATGAAATT	CCABBCCAT	CARCINGCAR	CAMAIGGCIA	CUTUGTGGGG	TGAAATTTTT	1560
TGAAAAACAC	ACCARTICO	CHACTGONAA	MATTGACAGA	AAAGTGTTAA	GACAAATGTT	1620
	<u> </u>					1639

FIG. 42

Luc90-1B5 (SEQ ID NO:24) D A K N Y B Y 20 G T B G Q Ð D P G C 40 I Α L T N H T В N $\cdot \textbf{K}$ 60 s С R L A B S F K D T 80 C S R N G F Q F 100 I I ¥ A P v N D K Y I B I 120 1 V K P R I Y F C S K N T Q K N 140 K s K L K I В <u>\$</u> T I I I D D G 160 G Q C L N N F I S Q N S D D K 180 ĸ P K P Y 8 F N R D D Q 200 G T T G L P K G M L T H I 220 S K P T F G N I N T I T 240 ٧ F Ħ H G F Y T 260 P R V Y M H T P L 8 280 Y V B S T L L V 300 B ĸ Y D L ε H I S G G P 320 S K I G B ٧ ĸ K N F V R Q G 340 Y T T T S T D P 360 G I V G P P H D P T T G 380 K I G N E P G G P M I K 400 g N N B B A T ĸ Ð N G W L R 420 Y Y D N D R K 440 ε L K G Y Q 460 Q H P Y V D A G G D B 480 P V G V V T Q G Y L N E 500 Q D X 8 V S T A K W L R G G K F 520 D E I P K G S R Q М 540 ĸ H ·I Q 546

FIG. 43

lucPpe2 [T249M] (SEQ ID NO:12)

GGATCCAATG	GAAGATAAAA	ATATTTTATA	TGGACCTGAA	CCATTTTATC	CCTTGGCTGA	60
TGGGACGGCT	GGAGAACAGA	TGTTTTACGC	ATTATCTCGT	TATGCAGATA	TTTCAGGATG	120
CATAGCATTG	ACAAATGCTC	ATACAAAAGA	AAATGTTTTA	TATGAAGAGT	TTTTAAAATT	180
GTCGTGTCGT	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
GGTGTGTAGC	GAAAATGGTT	TGCAATTTTT	CCTTCCTTTA	ATTGCATCAT	TGTATCTTGG	300
AATAATTGCA	GCACCTGTTA	GTGATAAATA	CATTGAACGT	GAATTAATAC	ACAGTCTTGG	360
TATTGTAAAA	CCACGCATAA	TTTTTTGTTC	CAAGAATACT	TTTCAAAAAG	TACTGAATGT	420
AAAATCTAAA	TTAAAATATG	TAGAAACTAT	TATTATATTA	GACTTAAATG	AAGACTTAGG	480
AGGTTATCAA	TGCCTCAACA	ACTITATITC	TCAAAATTCC	GATATTAATC	TTGACGTAAA	540
AAAATTTAAA	CCAAATTCTT	TTAATCGAGA	CGATCAGGTT	GCGTTGGTAA	TGTTTTCTTC	600
TGGTACAACT	GGTGTTTCGA	AGGGAGTCAT	GCTAACTCAC	AAGAATATTG	TTGCACGATT	660
TTCTCATTGC	AAAGATCCTA	CTTTTGGTAA	CGCAATTAAT	CCAACGACAG	CAATTITAAC	720
GGTAATACCT	TTCCACCATG	GTTTTGGTAT	GATGACCACA	TTAGGATACT	TTACTTGTGG	780
ATTCCGAGTT	GCTCTAATGC	ACACGTTTGA	AGAAAAACTA	TTTCTACAAT	CATTACAAGA	840
TTATAAAGTG	GAAAGTACTT	TACTTGTACC	AACATTAATG	GCATTTTTTG	CAAAAAGTGC	900
ATTAGTTGAA	AAGTACGATT	TATCGCACTT	AAAAGAAATT	GCATCTGGTG	GCGCACCTTT	960
ATCAAAAGAA	ATTGGGGAGA	TGGTGAAAAA	ACGGTTTAAA	TTAAACTTTG	TCAGGCAAGG	1020
GTATGGATTA	ACAGAAACCA	CTTCGGCTGT	TTTAATTACA	CCGGACACTG	ACGTCAGACC	1080
GGGATCAACT	GGTAAAATAG	TACCATTTCA	CGCTGTTAAA	GTTGTCGATC	CTACAACAGG	1140
AAAAATTTTG	GGGCCAAATG	AAACTGGAGA	ATTGTATTTT	AAAGGCGACA	TGATAATGAA	1200
AAGTTATTAT	AATAATGAAG	AAGCTACTAA	AGCAATTATT	AACAAAGACG	GATGGTTGCG	1260
CTCTGGTGAT	ATTGCTTATT	ATGACAATGA	TGGCCATTTT	TATATTGTGG	ACAGGCTGAA	1320
GTCATTAATT	AAATATAAAG	GTTATCAGGT	TGCACCTGCT	GAAATTGAGG	GAATACTCTT	1380
ACAACATCCG	TATATTGTTG	ATGCCGGCGT	TACTGGTATA	CCGGATGAAG	CCGCGGGCGA	1440
GCTTCCAGCT	GCAGGTGTTG	TAGTACAGAC	TGGAAAATAT	CTAAACGAAC	AAATCGTACA	1500
AAATTTTGTT	TCCAGTCAAG	TTTCAACAGC	CAAATGGCTA	CGTGGTGGGG	TGAAATTTTT	1560
GGATGAAATT	CCCAAAGGAT	CAACTGGAAA	AATTGACAGA	AAAGTGTTAA	GACAAATGTT	1620
TGAAAAACAC	AAATCTAAGC	TG				1642

FIG. 44

LucPpe2 [T249M] (SEQ ID NO:25)

```
MEDKNILYGPEPFYPLAD
GTAGEQMFYALSRYADISGC
IALTNAHTKENVLYEEFLKL
SCRLAESFKKYGLKQNDTIA
V C S E N G L Q F F L P L I A S L Y L G 100
IIAAPVSDKYIERELIHSLG 120
IVKPRIIFCSKNTFQKVLNV 140
KSKLKYVETIIILDLNEDLG 160
GYQCLNNFISQNSDINLDVK 180
K F K P N S F N R D D Q V A L V M F S S 200
GTTGVSKGVMLTHKNIVARF 220
SHCKDPTFGNAINPTTAILT 240
VIPFHHGFGMMTTLGYFTCG 260
FRVALMHTFEEKLFLQSLQD 280
Y K V E S T L L V P T L M A F F A K S A 300
LVEKYDLSHLKEIASGGAPL 320
SKEIGEMVKKRFKLNFVRQG340
YGLTETTSAVLITPDTDVRP360
GSTGKIVPFHAVKVVDPTTG380
KILGPNETGELYPKGDMIMK 400
GYYNNEEATKAIINKDGWLR 420
S G D I A Y Y D N D G H F Y I V D R L K 440
S L I K Y K G Y Q V A P A E I E G I L L 460
Q H P Y I V D A G V T G I P D E A A G E 480
LPAAGVVVQTGKYLNEQIVQ 500
N F V S S Q V S T A K W L R G G V K F L 520
DEIPKGSTGKIDRKVLRQMF540
EKHKSKL
```

FIG. 45

Luc PpL 81-6G1 (SEQ ID NO:26)

```
MMKREKNVIYGPEPLHPLED
                         20
LTAGEMLFRALRKHSHLPQA
LVDV<u>V</u>GDESLSYKEFFEAT<u>V</u>
LLAQSLHNCGYKMNDVVSIC
AENNTRFFIPYIAAWYIGMI 100
VAPVNESYIPDELCKVMGIS120
KPQIVF<u>T</u>TKNILNKVLEVQS 140
RTNFIKRIIILDTVENIHGC 160
ESLPNGISRYSDGNIANFKP 180
LHEDPVEQVAAILCSSGTTG200
LPKGVMQTHQNICVRLIHAL 220
DPRAGTQLIPGVTVLVYLPF240
FHAFGFSITLGYFMVGLRVI260
MFRRFDQEAFLKAIQDYEVR 280
S V I N V P S V I L F L S K S P L V D K 300
YDLSSLRELCCGAAPLAKEV320
AEVAAKRLNLPGIRCGFGLT340
ESTSANIHSLRDEFKSGSLG360
RVTPLMAAKIADRETGKALG380
PNQVGELCIKGPMVSKGYVN400
NVEATKEAIDDDGWLHSGDF420
GYYDEDEHFYVVDRYKELIK 440
YKGSQVAPAELEEILLKNPC 460
IRDVAVVGIPDLEAGELPSA480
FVVKQPGKEITAKEVYDYLA 500
ERVSHTKYLRGGVRFVDSIP520
RNVTGKITRKELLKQLLEKA 540
\mathbf{G}
                         542
```

FIG. 46

LucPpl 81-6G1

ATGATGAAGC GAGAGAAAAA TGTTATATAT GGACCCGAAC CCCTACACCC CTTGGAAGAC TTAACAGCTG GAGAAATGCT CTTCCGTGCC CTTCGAAAAC ATTCTCATTT ACCGCAGGCT TTAGTAGATG TGGTTGGCGA CGAATCGCTT TCCTATAAAG AGTTTTTTGA AGCGACAGTC CTCCTAGCGC AAAGTCTCCA CAATTGTGGA TACAAGATGA ATGATGTAGT GTCGATCTGC GCCGAGAATA ATACAAGATT TTTTATTCCC GTTATTGCAG CTTGGTATAT TGGTATGATT GTAGCACCTG TTAATGAAAG TTACATCCCA GATGAACTCT GTAAGGTGAT GGGTATATCG AAACCACAAA TAGTTTTTAC QACAAAGAAC ATTTTAAATA AGGTATTGGA GGTACAGAGC AGAACTAATT TCATAAAAAG GATCATCATA CTTGATACTG TAGAAAACAT ACACGGTTGT GARAGICITC CCARTITIAT TICTOGITAT TCGGATGGAR ATATIGCCAR CITCARACCI TTACATTICG ATCCTGTTGA GCAAGTGGCA GCTATCTTAT GTTCGTCAGG CACTACTGGA TTACOGAAAG GTGTAATGCA AACTCACCAA AATATTTGTG TCCGACTTAT ACATGCTTTA GACCCCAGGG CAGGAACGCA ACTTATTCCT GGTGTGACAG TCTTAGTATA TCTGCCTTTT TTCCATGCTT TTGGGTTCTC TATAACCTTG GGATACTTCA TGGTGGGTCT TCGTGTTATC ATGITCAGAC GATITGATCA AGAAGCATIT CTAAAAGCTA TTCAGGATTA TGAAGITCGA AGTGTAATTA ACGTTCCATC AGTAATATTG TTCTTATCGA AAAGTCCTTT GGTTGACAAA GCTGAGGTTG CAGCAAAACG ATTAAACTTG CCAGGAATTC GCTGTGGATT TGGTTTGACA GAATCTACTT CAGCTAATAT ACACAGTCTT AGGGATGAAT TTAAATCAGG ATCACTTGGA AGAGITACTC CTITAATGGC AGCTAAAATA GCAGATAGGG AAACTGGTAA AGCATTGGGA CCAAATCAAG TTGGTGAATT ATGCATTAAA GGTCCCATGG TATCGAAAGG TTACGTGAAC AATGTAGAAG CTACCAAAGA AGCTATTGAT GATGATGGTT GGCTTCACTC TGGAGACTTT GGATACTATG ATGAGGATGA GCATTTCTAT GTGGTGGACC GTTACAAGGA ATTGATTAAA TATAAGGGCT CTCAGGTAGC ACCTGCAGAA CTAGAAGAGA TTTTATTGAA AAATCCATGT ATCAGAGATG TIGCTGTGGT TGGTATTCCT GATCTAGAAG CTGGAGAACT GCCATCTGCG TTTGTGGTTA AACAGCCCGG AAAGGAGATT ACAGCTAAAG AAGTGTACGA TTATCTTGCC GAGAGGGTCT CCCATACAAA GTATTTGCGT GGAGGGGTTC GATTCGTTGA TAGCATACCA AGGAATGITA CAGGTAAAAT TACAAGAAAG GAACTTCTGA AGCAGTTGCT GGAGAAGGCG GGAGGT

FIG. 47

FIG. 48

FIG: 49
SUBSTITUTE SHEET (RULE 26)

FIG. 50

FIG. 51 SUBSTITUTE SHEET (RULE 26)

FIG. 52

FIG. 53
SUBSTITUTE SHEET (RULE 26)

FIG. 54A

FIG. 54B SUBSTITUTE SHEET (RULE 26)

Luc133-1B2 (SEQ ID NO:42)

				•		
AGATCCAATG	GCAGATAAGA	ATATTTTATA	TGGGCCCGAA	CCATTTTATC	CCTTGGAAGA	60
TOGGACGGCT	GGAGAACAGA	TGTTTGACGC	ATTATCTCGT	TATGCAGATA	TYCCGGGCTC	120
CATAGCATTG	ACAAATGCTC	ATACAAAAGA	AAATGTTTTA	TATGAAGAGT	TICIGAAACT	180
GICGIGICGI.	TTAGCGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAACG	ACACAATAGC	240
GGTGTGTAGC	GAAAATAGTC	TGCAATTTTT	CCTTCCTGTA	ATTGCATCAT	TGTATCTTGG	300
AATAATTG <u>TG</u>	GCACCTGTTA	<u>AC</u> GATAAATA	CATTGAACGT	GAATTAATAC	ACAGTCTTGG	360
TATTGTAXAA	CCACGCATAG	TTTTTTTGCTC	CAAGAATACT	TTTCAAAAAG	TACTGAATGT	420
AAAATCTAAA	TTAAAATCTA	TTGAAACTAT	TATTATATTA	GACTTAAATG	ATGACTTAGG	480
AGGITATCAA	TGCCTCAACA	ACTITATITC	TCAAAATTCC	GATAGTAATC	TGGACGTAAA	540
AAATTTAAA	CCATATTCTT	ADADOTAATT	CGATCAGGTT	GCGTTGATTA	TOTTTCTTC	600
TOGTACAACT	GGTCTGCCGA	AGGGAGTCAT	GCTAACTCAC	AAGAATATTG	TTGCACGATT	660
TTCTATTGCA	AAAGATCCTA	CTTTTGGTAA	CGCAATTAAT	CCCACGTCAG	CAATTTTAAC	720
OGTAATACCT	TTCCACCATG	GITTTGGTAT	GATGACCACA	TTAGGATACT	TTACTTYTY	780
ATTCCGAGTT	GITCIAATGC	ACACGTTTGA	AGAAAAACTA	TTTCTACAAT	CATTACAAGA	840
TTATALAGTG	GAAAGTACTT	TACTTGTACC	AACATTAATG	GCATTTCTTG	CARABARTIC	900
ATTAGTTGAA	AAGTACGATT	TATCGCACTT	TTAAAGAAAAT	GCATCTGGTG	GCGCACCTTT	960
ATCAAAAGAA	ADADDDDTTA	TOGTGAAAAA	ACGGITTAAA	TTAAACTTTG	TCAGGCAAGG	1020
GEATGGATTA	ACAGAAACCA	CTTCGGCTGT	TTTAATTACA	CCGAAAGGTG	ACCCARACC	1080
GGGATCAACT	GGTAAAATAG	TACCATTTCA	CGCTGTTAAA	GTTGTCGATC	CTACAACAGG	1140
AAAAATTTTG	GGGCCAAATG	AACCTGGAGA	ATTGTATTTT	AAAGGCCCGA	ARTERATARY	1200
<u>GO</u> GITATTAT	DAADTAATAA	AAGCTACTAA	AGCAATTATT	GATAATGACG	GATGGTTGCC	1260
CICIOGIGAT	ATTGCTTATT	ATGACAATGA	TGGCCATTTT	TATATTGTGG	ACAGGCTGAA	1320
GTCACTGATT	DAAATATAAA	GTTATCAGGT	TGCACCTGCT	GAAATTGAGG	GPTATA CALCALA	1380
ACAACATCOG	TATATIGITG	ATGCCGGCGT	TACTGGTATA	CCGGATGAAG	CCGCGGGGGA	1440
GCTTCCAGCT	GCAGGTGTTG	TAGTACAGAC	TGGAAAATAT	CTARACGARC	AAATYYTTACA	1500
AGATTATGTT	GCCAGTCAAG	TTTCAACAGC	CAAATGGCTA	CGTGGTGGGG	TAINTE TAINT	1560
GGATGAAATT	CCCAAAGGAT	CAACTGGAAA	AATTGACAGA	AAAGTGTTAA	GACAAATGTT	1620
AGAAAAACAC	A <u>CCAA</u> T <u>GG</u> G					1639

FIG. 55

Luc146-1H2 (SEQ ID NO:43)

GGATCCAATG	GCAGATAAGA	ATATTTTATA	TGGGCCCGAA	CCATTTTATC	CCTTGGAAGA	60
TOGGACGGCT	GGAGAACAGA	TGTTTGACGC	ATTATCTYGT	TATGCAGCTA	TTOO	100
CATAGCATIG	ACAAATGCTC	ATACAAAAGA	AAATGTTTTA	TATGLAGAGAT	THENDRADO	300
GIGGIGICGI	TTAGOGGAAA	GTTTTAAAAA	GTATGGATTA	AAACAAAA	ACACAATACC	240
GGIGIGIAGC	CAAAATAGTC	TGCAATTTTT	CCTTCCTGTA	ATTGCATCAT	TYZTI N TYCHINIC	300
AATAATIGIG	GCACCIGITA	ACGATAAATA	CATTGAACGT	GARTTARTAC	A CROMONMOO	3.50
TATTUTAAAA	CCACGCATAG	TTTTTTTCCTC	CAAGAATACT	TTTCABABAC	TACTOR STOOM	400
MANATCIANA	TTAAAATCTA	TIGAAACTAT	TATTATATTA	GACTED & ATYC	3 3 C 3 CODO 3 C C	
AGGITATCAA	TUCCTCAACA	ACTITATITC	TCAAAATTCC	OT A STEATED	TOGROOMAN	540
WWWITIWWW	CCCTATTCTT	TTAATCGAGA	CGATCAGGTT	GCCTCCC ATTEN	TOTAL PROPERTY.	600
TGGTACAACT	GGTCTGCCGA	AGGGAGTCAT	GCTAACTCAC	EVETATABAA	TTYPESCAR	660
TICIATIOCA	AAAGATCCTA	CTTTTGGTAA	CGCAATTAAT	CCCACGTCAG	CA A TETETER & C	720
GGTAATACET	TICCACCATG	GTTTTGGTAT	GATGACCACA	TTAGGATACT	TTR CITYONG	780
ATTCCGAGTT	GITCIAATGC	ACACGITIGA	AGAAAAACTA	TTTCTACAAT	CATTRACALCA	840
TTATAAAGTG	GAAAGTACTT	TACTTGTACC	AACATTAATG	GCATTETY TENA	CARARAGEO	900
ATTAUTTGAA	AAGTACGATT	TATCGCACTT	AAAAGAAATT	GCATYTY2/2TY2	acces comm	960
AICAAAAGAA	ATTOGGGAGA	TGGTGAAAAA	ACCOUNTERANT	TYPE A CEPTURE	TYPROGONAGO	1000
GLATGUATTA	ACAGAAACCA	CTTCGGCTGT	TTTAATTACA	COGRARGOTO	ACCCCARACC	1000
GOOVICANCI.	GGTAAAATAG	TACCATTACA	CGCTGTTAAA	CTTCTCTCTT	CTA CTA CTA CTA	
AAAAATTTU	GGGCCAAATG	AACCTGGAGA	ATTGTATTTT	AAAGGCCCCC	TO A TO A STORE A	
WGITATTAT	DAADTAATGAAG	AAGCTACTAA	AGCAATTATT	GATARTGROY	GATICOTION OF	3060
CICIOGIGAT	ATTICTTATT	ATGACAATGA	TGGCCATTTT	TATATTOTO	ACAGGGTGA A	1220
GICACIGATT	AAATATAAAG	GTEATCAGGT	TGCACCTGCT	CONTRACED	GA ATTA CHICANO	1200
ACAACATCCG	DITETALAL	ATGCCGGCGT	TACTGGTATA	CCGGATGAAG	CCCCCCCCC	3440
GCTTCCAGCT	GCAGGIGITG	TAGTACAGAC	TGGAAAATAT	CTABACGAAC	AAATTOOTACA	1500
AGATTATOTT	GCCAGTCAAG	TTTCAACAGC	CARATGGCTA	CGTGGTGGGG	TYDE A STREET	1560
GGATGAAATT	CCCAAAGGAT	CAACTGGAAA	AATTGACAGA	AAAGTGTTAA	GECSSACORE	1500
AGAAAAACAC	ACCAATGGG				OUCHWIGHT.	
						1639

FIG. 56

Luc133-1B2 (SEQ ID NO:44) Y G B Y B D A S 40 T N E 60 80 N F I 100 I D K Y I B И 120 I K C P K R I N 140 ĸ 8 K T I I L B I N G 160 G Y C I S Q ٧ L N N K 180 K K F D P X S N R D S 200 G T T G L £ K G М H I R 220 F S I K D T G N I T 240 P H H G G M T C 260 Y T В K Q 8 L Q D 280 v 8 T P T L K 8 A 300 B S H ĸ G ₽ 320 K B I B v K R P K 8 G Q G 340 Y G L T B T T 8 V L I T 360 G S T I V P F Ħ V K V D G A 380 Y ĸ I G B E L F K G P 400 <u>g</u> Y Y N N B T K A I I N D G 420 ¥ V G I Y Y D N Ð G H P D R D A L 440 8 L I Y K G Y Q V A ₽ A E I B G K 460 G P v V T I Q H ₽ Y I D G D B B 480 v V T K Y G Q G N E I V Q 500 F D v 8 8 T A K W L R G G v X Q 520 G K I D R K V D. B I ₽ K G R K Ħ I N G

FIG. 57

Luc146-1H2 (SEQ ID NO:45)

Y G 20 L C 40 B N 60 80 100 N K Y I В 120 K N T N I D G 160 Q N S D N K S F G ĸ K T H N ٧ 220 s V D K T P P T £ I H H P T L G Y F T C ¥ H T F L Q s Q Y T Ŀ K 8 L V E H G G P 8 K B I V R Q G Y G L T 8 I D 360 G T g H ĸ G 380 K I G P B Y ĸ P 400 g Y Y N T K I I 8 D D G H 8 P E I 460 Q H Y Ť. I 480 L T G K Y L 500 D K W L R G G 520 В I P K G G K I D R K V R 540 H I N

FIG. 58

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 61

SUBSTITUTE SHEET (RULE 26)

FIG. 63

FIG. 64
SUBSTITUTE SHEET (RULE 26)

LucPpl81-0	B11					
GGATCCCATG	DAD <u>O</u> DAADTA	AGAAAAATGT	TATATATGGA	CCCGAACCCC	TACACCCCTT	60
GGAAGACTTA	ACAGCTGGAG	AAATGCTCTT	CCGTGCCCTT	CGAAAACATT	CTCATTTACC	120
GCAGGCTTTA	ODTECTABLE	TTGGCGACGA	ATCGCTTTCC	TATAAAGAGT	TTTTTGAAGC	180
QACAQTCCTC	CTAGCGCAAA	GTCTCCACAA	TTGTGGATAC	DTAADTADAA	ATGTAGTGTC	240
GATCTGCGCC	GAGAATAATA	CAAGATTTTT	TATTCCCGTT	ATTGCAGCTT	GGTATATTGG	300
ATOTTADTAT	GCACCTGTTA	ATGAAAGTTA	CATCCCAGAT	GAACTCTGTA	AGGTCATGGG	360
TATATCGAAA	CCACAAATAG	TTTTTACGAC	AAAGAACATT	DDAATAAATT	TATTGGAGGT	420.
ACAGAGCAGA	ACTAATTTCA	TAAAAAGGAT	CATCGTACTT	GATACTGTAG	AAAACATACA	480
COGTTGTGAA	AGTCTTCCCA	ATTTTATTTC	TCGTTATTCG	GATGGAAATA	TTGCCAACTT	540
CAAACCTTTA	CATTTCGATC	CTGTAGAGCA	AGTGGCAGCT	ATCTTATGTT	CGTCAGGCAC	600
TACTGGATTA	CCGAAAGGTG	TAATGCAAAC	TCACCAAAAT	ATTTGTGTCC	GACTTATACA	660
TGCTTTAGAC	CCCAGGGCAG	GAACGCAACT	TATTCCTGGT	GTGACAGTCT	TAGTATATCT	720
GCCTTTTTTC	CATGCTTTTG	GGTTCTCTAT	AACCTTGGGA	TACTTCATGG	TGGGTCTTCG	780
TOTTATCATG	TCAAGACGAT	TTGATCCAGA	AGCATTTCTA	AAAGCTATTC	AGGATTATGA	840
AGTTCGAAGT	GTAATTAACG	TTCCATCAGT	AATATTGTTC	TTATCGAAAA	GTCCTTTGGT	900
TGACAAATAC	GATTTATCAA	GTTTAAGGGA	ATTGTGTTGC	GGTGCGGCAC	CATTAGCAAA	960
AGAAGTTGCT	GAGGTTGCAG	CAAAACGATT	AAACTTGCCA	GGAATTCGCT	GTGGATTTGG	1020
TTTGACAGAA	TCTACTTCAG	CTAATATACA	CAGTCTTAGG	GATGAATTTA	AACCAGGATC	1080
ACTTOGRAGA	GTTACTCCTT	TAATGGCAGC	TAAAATAGCA	GATAGGGAAA	CTGGTAAAGC	1140
ATTOGGACCA	AATCAAGTTG	OTGANTTATG	CATTAAAGGT	CCCATGGTAT	CGAAAGGTTA	1200
CGTGAACAAT	GTAGAAGCTA	CCAAAGAAGC	TADTADTTAT	GATGGTTGGC	TTCACTCTGG	1260
AGACTTTGGA	TACTATGATG	AGGATGAGCA	TITCTATGTG	GTGGACCGTT	ACAAGGAATT	1320
GATTAAATAT	AAGGGCTCTC	AGGTAGCACC	TGCAGAACTA	GAAGAGATTT	TATTGAAAAA	1380
TCCATGTATC	DTTDTADADA	CTGTGGTTGG	TATTCCTGAT	CTAGAAGCTG	GAGAACTGCC	1440
ATCTGCGTTT	GTGGTTAAAC	AGCCCGGAAA	GGAGATTACA	GCTAAAGAAG	TGTACGATTA	1500
TCTTGCCGAG	AGGGTCTCCC	ATACAAAGTA	TTTGCGTGGA	GGGGTTCGAT	TCGTTGATAG	1560
CATACCACGG	AATGTTACAG	GTAAAATTAC	AAGAAAGGAA	CTTCTGAAGC	AGTTGCTGGA	1620
GAAGGCGGGA	GGT					

FIG. 65

LucPpl 81-0811

R P L H L 18 8 H P 38 Y S 78 N Y I I C G 118 S K P N I K S Q R T L D ٧ B C E S Y R 8 D G I N ₽ L H E A I A L C S G T L P G M T H Q N I C V R D P R A I ₽ G v T V v F F H F G I L G Y F М V G I М <u>s</u> R R P D P E A P L K A I Q D Y R 8 V N I R R P <u>\$</u> L F 8 K ₽ 8 Y D 8 L S R L C C G A ₽ A E V A A K R L N L G I C G G 338 L T 8 T 8 A N I H S L R K P L P T L M A K I D A R G L G Q G B L C I K G ₽ N A T K B A D D I D G D F D B D B H F Y v V D I ĸ 8 Q V P A E B B I P C I A G I P D 8 Q G ĸ E I T K V L E R V H T K Y L R G V G R V I P R N R K B B 538 g 542

FIG. 66

SEQUENCE LISTING

<110> Promega Corporation

<120> Thermostable luciferases and methods of production.

<130> 341.012WO1

<150> US 09/396,154

<151> 1999-09-15

<150> US 09/156,946

<151> 1998-09-18

<150> PCT/US98/19494

<151> 1998-09-18

<150> US 60/059,379

<151> 1997-09-19

<160> 93

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 1639

<212> DNA

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 1

ggatccaatg gcagataaaa atattttata tgggcccgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgttttacgc attatctcgt tatgcagata tttcaggatg 120 catagcattg acaaatgctc atacaaaaga aaatgtttta tatgaagagt ttttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaattttt ccttcctata attgcatcat tgtatcttgg 300 aataattgca gcacctgtta gtgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcataa ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480

WO 01/20002 PCT/US99/30925

2

aggttatcaa tgcctcaaca actttatttc tcaaaattcc gatattaatc tggacgtaaa 540 aaaatttaaa ccatattett ttaategaga egateaggtt gegttggtaa tgttttette 600 tggtacaact ggtgtttcga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctcttgca aaagatccta cttttggtaa cgcaattaat ccaacgacag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 atteegagtt gttetaatge acaegtttga agaaaaaeta tttetacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcatttcttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 🦠 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaacaatg acgtcagacc 1080 gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg 1140 aaaaattttg gggccaaatg aacctggaga attgtatttt aaaggcgaca tgataatgaa 1200 aggttattat aataatgaag aagctactaa agcaattatt aacaaagacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacatccg tatattgttg atgccggcgt tactggtata ccgggatgaag ccgcgggcga 1440 gettecaget geaggtgttg tagtacagae tggaaaatat etaaaegaae aaategtaca 1500 aaattttgtt tocagtcaag tttcaacagc caaatggcta cgtggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 tgaaaaacac accaatggg 1639

<210> 2

<211> 1639

<212> DNA

<213> Artificial Sequence

<220>

<223> note = "mutant luciferase"

<400> 2

ggatccaatg gaagataaaa atattttata tggacctgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgttttacgc attatctcgt tatgcagata tttcaggatg 120 catagcattg acaaatgctc atacaaaagc ccctgtttta tatgaagagt tgttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaattttt ccttcctata attgcatcat tgtatcttgg 300 aataattgca gcacctgtta gtgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcataa ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480 aggttatcaa tgcctcaaca actttatttc tcaaaattcc gatattaatc tggacgtaaa 540 aaaatttaaa ccatattett ttaategaga egateaggtt gegttggtaa tgttttette 600 tggtacaact ggtgtttcga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 tteteatgea aaagateeta ettttggtaa egeaattaat eeaaegaeag eaattttaae 720

WO 01/20002 PCT/US99/30925

3

ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attccgagtt gttctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcattttttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaacaatg acgtcagacc 1080 gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg 1140 aaaaattttg gggccaaatg aaactggaga attgtatttt aaaggcgaca tgataatgaa . 1200 aggttattat aataatgaag aagctactaa agcaattatt aacaaagacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacatccg tatattgttg atgccggcgt tactggtata ccggatgaag ccgcgggcga 1440 gcttccagct gcaggtgttg tagtacagac tggaaaatat ctaaacgaac aaatcgtaca 1500 aaattttgtt tccagtcaag tttcaacagc caaatggcta cgtggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 tgaaaaacac accaatggg 1639

<210> 3

<211> 1639

<212> DNA

<213> Artificial Sequence

<220>

<223> note = "mutant luciferase"

<400> 3

ggatccaatg gaagataaaa atattttata tggacctgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgttttacgc attatctcgt tatgcagata tttcaggatg 120 catagcattg acaaatgctc atacaaaagc ccctgtttta tatgaagagt ttttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaattttt ccttcctata attgcatcat tgtatcttgg 300 aataattgca gcacctgtta gtgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcataa ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480 aggttatcaa tgcctcaaca actttatttc tcaaaattcc gatattaatc ttgacgtaaa 540 aaaatttaaa ccatattett ttaategaga egateaggtt gegttggtaa tgttttette 600 tggtacaact ggtgtttcga agggagtcat gctaactcac aagaatattg ttgtacgatt 660 ttcttatgca aaagatccta cttttggtaa cgcaattaat ccaacgacag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attccgagtt gttctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcatttcttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960

4

atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 1080 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaacaatg acgtcagacc gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg 1140 1200 aaaaattttg gggccaaatg aaactggaga attgtatttt aaaggcgaca tgataatgaa aggttattat aataatgaag aagctactaa agcaattatt aacaaagacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 1380 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt acaacatccg tatattgttg atgccggcgt tactggtata ccggatgaag ccgcgggcga . 1440 1500 gettecaget geaggtgttg tagtacagae tggaaaatat etaaaegaae aaategtaca aaattttgtt tecagteaag ttteaacage caaatggeta egtggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 tgaaaaacac accaatggg 1639

<210> 4

<211> 1639

<212> DNA

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 4

ggatccaatg gaagataaaa atattttata tggacctgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgttttacgc attatctcgt tatgcagata tttcaggatg 120 catagoattg acaaatgotc atacaaaagc coctgtttta tatgaagagt ttttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaattttt ccttcctata attgcatcat tgtatcttgg 300 aataattgca gcacctgtta gtgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcataa ttttttgctc caagaatact tttcaaaaaag tactgaatgt 420 480 aggttatcaa tgcctcaaca actttatttc tcaaaattcc gatattaatc ttgacgtaaa 540 aaaatttaaa ccatattett ttaategaga egateaggtt gegttggtaa tgttttette 600 tggtacaact ggtgtttcga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctattgca aaagatccta cttttggtaa cgcaattaat ccaacgacag caattttaac 720 780 ggtaatacet ttecaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg attecgagtt gttetaatge acaegtttga agaaaaacta tttetacaat cattacaaga 840 900 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcattttttg caaaaagtgc attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 1020 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg gtatggatta acagaaacca cttcggctgt tttaattaca ccgaacaatg acgtcagacc 1080 gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg 1140 aaaaattttg gggccaaatg aaactggaga attgtatttt aaaggcgaca tgataatgaa 1200 WO 01/20002 PCT/US99/30925

5

aggttattat aataatgaag aagctactaa agcaattatt aacaaagacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacatccg tatattgttg atgccggcgt tactggtata ccggatgaag ccgcgggcga 1440 gcttccagct gcaggtgttg tagtacagac tggaaaatat ctaaacgaac aaatcgtaca 1500 aaattitgtt tocagtoaag tttcaacago caaatggota cgtggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 tgaaaaacac accaatggg 1639

<210> 5

<211> 1639

<212> DNA

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 5

ggatccaatg gaagataaaa atattttata tggacctgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgtttgacgc attatctcgt tatgcagata tttcaggatg 120 catagcattg acaaatgctc atacaaaagc ccctgtttta tatgaagagt tgttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaattttt ccttcctata attgcatcat tgtatcttgg 300 aataattgca gcacctgtta gtgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcataa ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480 aggitaticaa tgcctcaaca actitatitic tcaaaattcc gatattaatc tigacgiaaa 540 aaaatttaaa ccatattott ttaatogaga ogatoaggtt gogttggtaa tgttttotto 600 tggtacaact ggtgtttcga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctcatgca aaagatccta cttttggtaa cgcaattaat ccaacgacag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attccgagtt gttctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcattttttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaacaatg acgtcagacc 1080 gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg 1140 aaaaattttg gggccaaatg aaactggaga attgtatttt aaaggcgaca tgataatgaa 1200 aggttattat aataatgaag aagctactaa agcaattatt aacaaagacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacateeg tatattgttg atgeeggegt taetggtata eeggatgaag eegegggega 1440

gcttccagct gcaggtgttg tagtacagac tggaaaatat ctaaacgaac aaatcgtaca 1500
aaattttgtt tccagtcaag tttcaacagc caaatggcta cgtggtgggg tgaaattttt 1560
ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620
tgaaaaacac accaatggg

<210> 6

<211> 1639

<212> DNA

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 6

ggatccaatg gcagataaga atattttata tgggcccgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgtttgacgc attatctcgt tatgcagata tttccggatg 120 catagcattg acaaatgctc atacaaaaga aaatgtttta tatgaagagt ttttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaattttt ccttcctgta attgcatcat tgtatcttgg 300 aataattgca gcacctgtta gtgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcataa ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480 aggttatcaa tgcctcaaca actttatttc tcaaaattcc gatagtaatc tggacgtaaa 540 aaaatttaaa ccatattett ttaategaga egateaggtt gegttggtaa tgttttette 600 tggtacaact ggtgttccga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctcttgca aaagatccta cttttggtaa cgcaattaat cccacgacag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attccgagtt gttctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcatttcttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaaaggtg acgccagacc 1080 gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg 1140 aaaaattttg gggccaaatg aacctggaga attgtatttt aaaggcgcca tgataatgaa 1200 gggttattat aataatgaag aagctactaa agcaattatt gataatgacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacateeg tatattgttg atgeeggegt taetggtata eeggatgaag eegegggega 1440 gcttccagct gcaggtgttg tagtacagac tggaaaatat ctaaacgaac aaatcgtaca 1500 agattttgtt tccagtcaag tttcaacagc caaatggcta cgtggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 tgaaaaacac accaatggg 1639

7

<210> 7
<211> 1639

<212> DNA

<213> Artificial Sequence

·<220>

<221> unsure

<222> (1067)...(1072)

<223> /note = "unknown nucleotides"

<223> /note = "mutant luciferase"

<400> 7

ggatccaatg gcagataaaa atattttata tgggcccgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgttttacgc attatctcgt tatgcagata tttcaggatg 120 catagoattg acaaatgotc atacaaaagc coctgtttta tatgaagagt ttttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaattttt ccttcctgta attgcatcat tgtatcttgg 300 aataattgca gcacctgtta gtgataaata cattgaacgt gaattaatac acaqtcttqq 360 tattgtaaaa ccacgcataa ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480 aggttatcaa tgcctcaaca actttatttc tcaaaattcc gatattaatc ttgacgtaaa 540 aaaatttaaa ccatattott ttaatogaga cgatcaggtt gogttggtaa tgttttotto 600 tggtacaact ggtgttccga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctcttgca aaagatccta cttttggtaa cgcaattaat ccaacgacag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attccgagtt gttctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcatttcttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaaannnn nngtcagacc 1080 gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacaqq 1140 aaaaattttg gggccaaatg aacctggaga attgtatttt aaaggcgaca tgataatgaa 1200 aggttattat aataatgaag aagctactaa agcaattatt gataaagacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacatccg tatattgttg atgccggcgt tactggtata ccggatgaag ccgcgggcga 1440 gettecaget geaggtgttg tagtacagae tggaaaatat etaaaegaae aaategtaca 1500 aaattttgtt tccagtcaag tttcaacagc caaatggcta cggggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 tgaaaaacac accaatggg 1639

<210> 8

<211> 1639

<212> DNA

<213> Artificial Sequence

<220>

<221> unsure

<222> (1067)...(1072)

<223> /note = "unknown nucleotides"

<223> note = " Mutant luciferase

<400> 8

ggatccaatg gcagataaaa atattttata tgggcccgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgttttacgc attatctcgt tatgcagata tttcaggatg 120 catagoattg acaaatgoto atacaaaago cootgtttta tatgaagagt tgttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaatattt ccttcctgta attgcatcat tgtatcttgg 300 aataattgca gcacctgtta gtgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcataa ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480 aggitateaa tgcctcaaca actitatite teaaaattee gatattaate tigaegtaaa 540 aaaatttaaa ccatattott ttaatogaga cgatcaggtt gcgttggtaa tgttttotto 600 tggtacaact ggtgttccga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctattgca aaagatccta cttttggtaa cgcaattaat ccaacgacag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attccgagtt gttctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcatttcttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaaannnn nngccagacc 1080 gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg 1140 aaaaattttg gggccaaatg aacctggaga attgtatttt aaaggcgcca tgataatgaa 1200 gggttattat aataatgaag aagctactaa agcaattatt aacaaagacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacatccg tatattgttg atgccggcgt tactggtata ccggatgaag ccgcgggcga 1440 gettecaget geaggtgttg tagtacagae tggaaaatat etaaacgaae aaategtaca 1500 aaattttgtt tccagtcaag tttcaacagc caaatggcta cgtggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 tgaaaaacac accaatggg 1639

<210> 9
<211> 1639
<212> DNA
<213> Artificial Sequence

<220>
<221> unsure
<222> (1067)...(1072)
<223> /note = "unknown nucleotides"

<223> note = "Mutant luciferase"

<400> 9

ggatccaatg gcagataaaa atattttata tgggcccgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgtttgacgc attatctcgt tatgcagata tttcaggatg 120 catagcattg acaaatgctc atacaaaagc ccctgtttta tatgaagagt tgttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaattttt ccttcctgta attgcatcat tgtatcttgg 300 aataattgca gcacctgtta gtgataaata cgttgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcataa ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480 aggttatcaa tgcctcaaca actttatttc tcaaaattcc gatagtaatc tggacgtaaa 540 aaaatttaaa ccaaattctt ttaatcgaga cgatcaggtt gcgttggtaa tgttttcttc 600 tggtacaact ggtgtttcga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctcttgca aaagatccta cttttggtaa cgcaattaat ccaacgacag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attccgagtt gttctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcatttcttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaacnnnn nngccagacc 1080 gggatcaact ggtaaaatag taccatttca cgctqttaaa qttqtcqatc ctacaacaqq 1140 aaaaattttg gggccaaatg aacctggaga attgtatttt aaaggcgcca tgataatgaa 1200 gggttattat aataatgaag aagctactaa agcaattatt gataaagacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacatccg tatattgttg atgccggcgt tactggtata ccggatgaag ccgcgggcga 1440 gcttccagct gcaggtgttg tagtacagac tggaaaatat ctaaacgaac aaatcgtaca 1500 aaattttgtt tccagtcaag tttcaacagc caaatggcta cgtggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa qacaaatgtt 1620 tgaaaaacac accaatggg 1639

10

<210> 10
<211> 1639
<212> DNA
<213> Artificial Sequence

<220>
<221> unsure
<222> (1067)...(1072)
<223> /note = "unknown nucleotides"

<223> note = " Mutant luciferase

<400> 10

ggatccaatg gcagataaaa atattttata tgggcccgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgttttacgc attatctcgt tatgcagata ttccgggctg 120 catagcattg acaaatgctc atacaaaagc ccctgtttta tatgaagagt ttttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaattttt ccttcctgta attgcatcat tgtatcttgq 300 aataattgtg gcacctgtta acgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcatag ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480 aggttatcaa tgcctcaaca actttatttc tcaaaattcc gatattaatc ttgacgtaaa 540 aaaatttaaa ccatattott ttaatogaga ogatoaggtt gogttgatta tgttttotto 600 tggtacaact ggtctgccga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctcttgca aaagatccta cttttggtaa cgcaattaat cccacgacag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attecgagtt gttctaatge acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcatttcttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaaannnn nngccagacc 1080 gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg 1140 aaaaattttg gggccaaatg aacctggaga attgtatttt aaaggcccga tgataatgaa 1200 gggttattat aataatgaag aagctactaa agcaattatt gataatgacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacatccg tatattgttg atgccggcgt tactggtatt ccggatgaag ccgcgggcga 1440 gcttccagct gcaggtgttg tagtacagac tggaaaatat ctaaacgaac aaatcgtaca 1500 aaattttgtt tccagtcaag tttcaacagc caaatggcta cgtggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 tgaaaaacac accaatggg 1639

<210> 11
<211> 1639
<212> DNA
<213> Artificial Sequence
<220>
<223> /note = "mutant luciferase"

<400> 11

ggatccaatg gcagataaga atattttata tgggcccgaa ccattttatc ccttggaaga 60 tgggacggct ggagaacaga tgtttgacgc attatctcgt tatgcagata ttccgggctg 120 catagcattg acaaatgctc atacaaaaga aaatgtttta tatgaagagt ttctgaaact 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtc tgcaattttt ccttcctgta attgcatcat tgtatcttgg 300 aataattgtg gcacctgtta acgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcatag ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480 aggttatcaa tgcctcaaca actttatttc tcaaaattcc gatagtaatc tggacgtaaa 540 aaaatttaaa ccatattott ttaatogaga ogatoaggtt gogttgatta tgttttotto 600 tggtacaact ggtctgccga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctcttgca aaagatccta cttttggtaa cgcaattaat cccacgacag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attccgagtt gttctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcatttcttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaaaggtg acgccaaacc 1080 gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg 1140 aaaaattttg gggccaaatg aacctggaga attgtatttt aaaggcccga tgataatgaa 1200 gggttattat aataatgaag aagctactaa agcaattatt gataatgacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcactgatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacatccg tatattgttg atgccggcgt tactggtata ccggatgaag ccgcgggcga 1440 gcttccagct gcaggtgttg tagtacagac tggaaaatat ctaaacgaac aaatcgtaca 1500 agattatgtt gccagtcaag tttcaacagc caaatggcta cgtggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 tgaaaaacac accaatggg 1639

<210> 12

<211> 1642

<212> DNA

<213> Artificial Sequence

<220>
<223> /note = "mutant luciferase"

<400> 12

ggatccaatg gaagataaaa atattttata tggacctgaa ccattttatc ccttggctga 60 tgggacggct ggagaacaga tgttttacgc attatctcgt tatgcagata tttcaggatg 120 catagcattg acaaatgctc atacaaaaga aaatgtttta tatgaagagt ttttaaaatt 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatggtt tgcaattttt ccttccttta attgcatcat tgtatcttgg 300 aataattgca gcacctgtta gtgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcataa ttttttgttc caagaatact tttcaaaaag tactgaatgt 420 480 aggitateaa tgeeteaaca actitatite teaaaattee qatattaate tiqaeqtaaa 540 aaaatttaaa ccaaattctt ttaatcgaga cgatcaggtt gcgttggtaa tgttttcttc 600 tggtacaact ggtgtttcga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctcattgc aaagatccta cttttggtaa cgcaattaat ccaacgacag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attccgagtt gctctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcattttttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccggacactg acgtcaqacc 1080 gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg 1140 aaaaattttg gggccaaatg aaactggaga attgtatttt aaaggcgaca tgataatgaa 1200 aagttattat aataatgaag aagctactaa agcaattatt aacaaagacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcattaatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacatccg tatattgttg atgccggcgt tactggtata ccggatgaag ccgcgggcga 1440 gcttccagct gcaggtgttg tagtacagac tggaaaatat ctaaacgaac aaatcgtaca 1500 aaattttgtt tccagtcaag tttcaacagc caaatggcta cgtggtgggg tgaaattttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 tgaaaaacac aaatctaagc tg 1642

<210> 13

<211> 1626

<212> DNA

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 13

```
atgatgaagc gagagaaaaa tgttatatat ggacccgaac ccctacaccc cttgqaaqac
                                                                     60
ttaacagctg gagaaatgct cttccgtgcc cttcgaaaac attctcattt accgcagqct
                                                                    120
ttagtagatg tggttggcga cgaatcgctt tcctataaag agttttttga agcgacagtc
                                                                    180
ctcctagcgc aaagtctcca caattgtgga tacaagatga atgatgtagt gtcgatctgc
                                                                    240
gccgagaata atacaagatt ttttattccc gttattgcag cttggtatat tggtatgatt
                                                                    300
gtagcacctg ttaatgaaag ttacatccca gatgaactct gtaaggtgat gggtatatcg
                                                                    360
aaaccacaaa tagtttttac gacaaagaac attttaaata aggtattgga ggtacagagc
                                                                    420
agaactaatt tcataaaaag gatcatcata cttgatactg tagaaaacat acacggttgt
                                                                    480
gaaagtotto ccaattttat ttotogttat toggatggaa atattgocaa ottoaaacot
                                                                    540
ttacatttcg atcctgttga gcaagtggca gctatcttat gttcgtcagg cactactgga
                                                                    600
ttaccgaaag gtgtaatgca aactcaccaa aatatttgtg tccgacttat acatgcttta
                                                                    660
gaccccaggg caggaacgca acttattcct ggtgtgacag tcttagtata tctgcctttt
                                                                    720
ttccatgctt ttgggttctc tataaccttg ggatacttca tggtgggtct tcgtgttatc
                                                                    780
atgttcagac gatttgatca agaagcattt ctaaaagcta ttcaggatta tgaagttcga
                                                                    840
agtgtaatta acgttccatc agtaatattg ttcttatcga aaagtccttt ggttgacaaa
                                                                    900
960
gctgaggttg cagcaaaacg attaaacttg ccaggaattc gctgtggatt tggtttgaca
                                                                   1020
gaatctactt cagctaatat acacagtctt agggatgaat ttaaatcagg atcacttgga
                                                                   1080
agagttactc ctttaatggc agctaaaata gcagataggg aaactggtaa agcattggga
                                                                   1140
ccaaatcaag ttggtgaatt atgcattaaa ggtcccatgg tatcgaaagg ttacgtgaac
                                                                   1200
aatgtagaag ctaccaaaga agctattgat gatgatggtt ggcttcactc tggagacttt
                                                                   1260
ggatactatg atgaggatga gcatttctat gtggtggacc gttacaagga.attgattaaa
                                                                   1320
tataagggct ctcaggtagc acctgcagaa ctagaagaga ttttattgaa aaatccatgt
                                                                   1380
atcagagatg ttgctgtggt tggtattcct gatctagaag ctggagaact gccatctgcg
                                                                   1440
tttgtggtta aacagcccgg aaaggagatt acagctaaag aagtgtacga ttatcttgcc
                                                                   1500
gagagggtct cccatacaaa gtatttgcgt ggaggggttc gattcgttga tagcatacca
                                                                   1560
aggaatgtta caggtaaaat tacaagaaag gaacttctga agcagttgct ggagaaggcg
                                                                   1620
ggaggt
                                                                   1626
```

<210> 14

<211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 14

Met Ala Asp Lys Asn Ile Leu Tyr Gly Pro Glu Pro Phe Tyr Pro Leu

1 5 10 15

Ala Asp Gly Thr Ala Gly Glu Gln Met Phe Tyr Ala Leu Ser Arg Tyr
20 25 30

Ala	Asp	Ile	Ser	Gly	САв	Ile	Ala	Leu	Thr	Asn	Ala	His	Thr	Lys	Glu
		35	•				40					45			
Asn	Val	Leu	Tyr	Glu	Glu	Phe	Leu	Lys	Leu	Ser	Сув	Arg	Leu	Ala	Glu
	50					55					60				
Ser	Phe	Ĺув	Lys	Tyr	Gly	Leu	Lys	Gln	Asn	Asp	Thr	Ile	Ala	Val	Сув
65					70					75					80
Ser	Glu	Asn	Gly	Leu	Gln	Phe	Phe	Leu	Pro	Ile	Ile	Ala	Ser	Leu	Tyr
				85					90					95	
Leu	Gly	Ile	Ile	Ala	Ala	Pro	Val	Ser	Asp	Lys	Tyr	Ile	Glu	Arg	Glu
			100					105					110		
Leu	Ile	His	Ser	Leu	Gly	Ile	Val	Lys	Pro	Arg	Ile	Ile	Phe	Cys	Ser
		115					120					125			
Lys	Asn	Thr	Phe	Gln	Lys	Val	Leu	Asn	Val	Lys	Ser	Lys	Leu	Lys	Tyr
	130	•				135					140				
Val	Glu	Thr	Ile	Ile	Ile	Leu	Asp	Leu	Asn	Glu	Asp	Leu	Gly	Gly	Tyr
145					150					155					160
Gln	Cys	Leu	Asn	Asn	Phe	Ile	Ser	Gln	Asn	Ser	Asp	Ile	Asn	Leu	Asp
				165					170					175	
Val	Lys	Lys	Phe	Lys	Pro	Tyr	Ser	Phe	Asn	Arg	Asp	Asp	Gln	Val	Ala
			180					185					190		
Leu	Val	Met	Phe	Ser	Ser	Gly	Thr	Thr	Gly	Val	Ser	Lys	Gly	Val	Met
		195					200					205			
Leu	Thr	His	Lys	Asn	Ile	Val	Ala	Arg	Phe	Ser	Leu	Ala	Lys	Asp	Pro
	210					215					220				
Thr	Phe	Gly	Asn	Ala	Ile	Asn	Pro	Thr	Thr	Ala	Ile	Leu	Thr	Val	Ile
225					230					235					240
Pro	Phe	His	His	Gly	Phe	Gly	Met	Met	Thr	Thr	Leu	Gly	Tyr	Phe	Thr
				245				•	250					255	
Cys	Gly	Phe	Arg	Val	Val	Leu	Met	His	Thr	Phe	Glu	Glu	Lys	Leu	Phe
			260					265					270		
Leu	Gln	Ser	Leu	Gln	qaA	Tyr	Lys	Val	Glu	Ser	Thr	Leu	Leu	Val	Pro
		275					280					285			
Thr	Leu	Met	Ala	Phe	Leu	Ala	Lys	Ser	Ala	Leu	Val	Glu	Lys	Tyr	qaA
	290					295					300				
Leu	Ser	His	Leu	Lys	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys
305					310					315					320
Glu	Ile	Gly	Glu	Met	Val	ras	Lys	Arg	Phe	Lys	Leu	Asn	Phe	Val	Arg
				325					330					335	
Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Val	Leu	Ile	Thr	Pro
			340					345					350		
Asn	Asn	Asp	Val	Arg	Pro	Gly	Ser	Thr	Gly	Lys	Ile	Val	Pro	Phe	His
		355					360					365			

15

Ala Val Lys Val Val Asp Pro Thr Thr Gly Lys Ile Leu Gly Pro Asn 375 Glu Pro Gly Glu Leu Tyr Phe Lys Gly Asp Met Ile Met Lys Gly Tyr 390 395 Tyr Asn Asn Glu Glu Ala Thr Lys Ala Ile Ile Asn Lys Asp Gly Trp 405 410 Leu Arg Ser Gly Asp Ile Ala Tyr Tyr Asp Asn Asp Gly His Phe Tyr 420 425 Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val 440 Ala Pro Ala Glu Ile Glu Gly Ile Leu Leu Gln His Pro Tyr Ile Val .--455 Asp Ala Gly Val Thr Gly Ile Pro Asp Glu Ala Ala Gly Glu Leu Pro 470 475 Ala Ala Gly Val Val Val Gln Thr Gly Lys Tyr Leu Asn Glu Gln Ile 485 490 Val Gln Asn Phe Val Ser Ser Gln Val Ser Thr Ala Lys Trp Leu Arg 505 Gly Gly Val Lys Phe Leu Asp Glu Ile Pro Lys Gly Ser Thr Gly Lys 520 Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Thr Asn Gly 530 535 540

<210> 15

<211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

70

<400> 15

65

Ser	Glu	Asn	Gly	Leu	Gln	Phe	Phe	Leu	Pro	Ile	Ile	Ala	Ser	Leu	Туг
			•	85					90					95	
Leu	Gly	Ile	Ile	Ala	Ala	Pro	Val	Ser	Asp	Lys	Tyr	Ile	Glu	Arg	Glu
			100					105					110		
Leu	Ile	His	Ser	Leu	Gly	Ile	Val	Lys	Pro	Arg	Ile	Ile	Phe	Cys	Ser
		115					120					125			
Lys	Asn	Thr	Phe	Gln	Lys	Val	Leu	Asn	Val	Lys	Ser	Lys	Leu	Lys	Tyr
	130					135					140				
Val	Glu	Thr	Ile	Ile	Ile	Leu	Asp	Leu	Asn	Glu	Asp	Leu	Gly	Gly	Tyr
145					150					155					160
Gln	Сув	Leu	Asn	Asn	Phe	Ile	Ser	Gln	Asn	Ser	Asp	Ile	Asn	Leu	Asp
				165					170					175	•
Val	Lys	Lys	Phe	Lys	Pro	Tyr	Ser	Phe	Asn	Arg	Asp	Asp	Gln	Val	Ala
			180					185					190		
Leu	Val		Phe	Ser	Ser	Gly	Thr	Thr	Gly	Val	Ser	Lys	Gly	Val	Met
_		195					200					205			
Leu		His	Lys	Asn	Ile			Arg	Phe	Ser	His	Ala	ГÀа	Asp	Pro
	210		_			215					220				
	Phe	GIY	Asn	Ala		Asn	Pro	Thr	Thr		Ile	Leu	Thr	Val	Ile
225	5 1				230					235					240
PIO	Pne	HIS	HIS		Pne	GIY	Met	Met		Thr	Leu	Gly	Tyr		Thr
~	~ 1	Db -	3	245	17- 7			 .	250	_1			_	255	
Cys	GIY	Pne		vaı	vai	Leu	met		Thr	Pne	GIU	GIu	Lys	Leu	Phe
T an	Cln	Ca=	260	~1 ~	2		T	265	01	0		• •	270	•	_
Deu	GIII	275	пеп	GIII	Asp	TYE		vaı	GIU	ser	rnr		Leu	Val	Pro
Thr	T.Au		ת ו ת	Dha	Dho	A 1 n	280	C	21.	•	**- 1	285	•		_
1111	290	Mec	MIG	FIIC	FILE	295	пλя	ser.	Ala	Leu		GIU	Lys	lyr	Asp
T.e.u		Hia	T.em	T.va	al.,		λ 1-	202	~1	61.	300	D	Leu	0	•
305	001		200	270	310		vra	361	GIY		MIG			ser	-
	Ile	Glv	Glu	Met			I.VR	Δτα	Dhe				Phe		
		1		325		-,-	-,0		330	טעם	DCu	תסוו	FIIC	335	Arg
Gln	Glv	Tvr	Glv		Thr	Glu	Thr	Thr		Δla	Val	ī.en	Ile		Dro
	2	-1-	340					345	001	****	• • • • • • • • • • • • • • • • • • • •	Deu	350	1111	FIO
Asn	Asn	Asp		Arq	Pro	Glv	Ser		Glv	Lvs	Ile	Val	Pro	Phe	His
		355				•	360		1	-1-		365			
Ala	Val	Lys	Val	Val	Asp	Pro		Thr	Glv	Lvs	Ile		Gly	Pro	Asn
	370	•			•	375			1	_,_	380		1		
Glu		Gly	Glu	Leu	Tyr		Lys	Glv	Asp	Met		Met	Lys	Glv	Tvr
385		•			390		• -			395			-1-	,	400
Tyr	Asn	Asn	Glu	Glu	Ala	Thr	Lys	Ala	Ile		Asn	Lys	Asp	Glv	
-				405			-		410					416	

17

Leu Arg Ser Gly Asp Ile Ala Tyr Tyr Asp Asn Asp Gly His Phe Tyr Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val 440 Ala Pro Ala Glu Ile Glu Gly Ile Leu Leu Gln His Pro Tyr Ile Val 455 460 Asp Ala Gly Val Thr Gly Ile Pro Asp Glu Ala Ala Gly Glu Leu Pro 470 475 Ala Ala Gly Val Val Val Gln Thr Gly Lys Tyr Leu Asn Glu Gln Ile 485 490 Val Gln Asn Phe Val Ser Ser Gln Val Ser Thr Ala Lys Trp Leu Arg 500 505 Gly Gly Val Lys Phe Leu Asp Glu Ile Pro Lys Gly Ser Thr Gly Lys

.515 520 525
Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Thr Asn Gly

Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Thr Asn Gly 530 535 540

<210> 16

<211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 16

Met Glu Asp Lys Asn Ile Leu Tyr Gly Pro Glu Pro Phe Tyr Pro Leu

1 5 10 15

Ala Asp Gly Thr Ala Gly Glu Gln Met Phe Tyr Ala Leu Ser Arg Tyr
20 25 30

Ala Asp Ile Ser Gly Cys Ile Ala Leu Thr Asn Ala His Thr Lys Glu
35 40 45

Asn Val Leu Tyr Glu Glu Phe Leu Lys Leu Ser Cys Arg Leu Ala Glu 50 55 60

Ser Phe Lys Lys Tyr Gly Leu Lys Gln Asn Asp Thr Ile Ala Val Cys
65 70 75 80

Ser Glu Asn Gly Leu Gln Phe Phe Leu Pro Ile Ile Ala Ser Leu Tyr

Leu Gly Ile Ile Ala Ala Pro Val Ser Asp Lys Tyr Ile Glu Arg Glu 100 105 110

Leu Ile His Ser Leu Gly Ile Val Lys Pro Arg Ile Ile Phe Cys Ser 115 120 125

Lys	Asn	Thr	Phe	Gln	Lys	Val	Leu	Asn	Val	Lys	Ser	Lys	Lęu	ГЛS	Туг
	130		•			135					140				
Val	Glu	Thr	Ile	Ile	Ile	Leu	Asp	Leu	Asn	Glu	Asp	Leu	Gly	Gly	Тут
145					150					155					160
Gln	Cys	Leu	Asn	Asn	Phe	Ile	Ser	Gln	Asn	Ser	Asp	Ile	Asn	Leu	Asp
				165					170					175	
Val	Lys	Lys	Phe	Lys	Pro	Tyr	Ser	Phe	Asn	Arg	Asp	Asp	Gln	Val	Ala
			180					185					190		
Leu	Val	Met	Phe	Ser	Ser	Gly	Thr	Thr	Gly	Val	Ser	Lys	Gly	Val	Met
		195					200					205			
Leu	Thr	His	Lys	Asn	Ile	Val	Val	Arg	Phe	Ser	Leu	Ala	Lys	Asp	Pro
	210					215					220				
Thr	Phe	Gly	Asn	Ala	Ile	Asn	Pro	Thr	Thr	Ala	Ile	Leu	Thr	Val	Ile
225					230					235					240
Pro	Phe	His	His	Gly	Phe	Gly	Met	Met	Thr	Thr	Leu	Gly	Tyr	Phe	Thr
				245					250					255	
Cys	Gly	Phe	Arg	Val	Val	Leu	Met	His	Thr	Phe	Glu	Glu	Lys	Leu	Phe
			260					265					270		
Leu	Gln	Ser	Leu	Gln	Asp	Tyr	Lys	Val	Glu	Ser	Thr	Leu	Leu	Val	Pro
		275					280					285			
Thr	Leu	Met	Ala	Phe	Phe	Ala	Lys	Ser	Ala	Leu	Val	Glu	Lys	Tyr	Asp
	290					295					300				
Leu	Ser	His	Leu	Lys	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys
305					310					315					320
Glu	Ile	Gly	Glu	Met	Val	Lys	Lys	Arg	Phe	Lys	Leu	Asn	Phe	Val	Arg
				325					330					335	
Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Val	Leu	Ile	Thr	Pro
			340					345					350		
Asn	Asn	Asp	Val	Arg	Pro	Gly	Ser	Thr	Gly	Lys	Ile	Val	Pro	Phe	His
		355					360					365			
Ala	Val	ГÀв	Val	Val	Asp	Pro	Thr	Thr	Gly	Lys	Ile	Leu	Gly	Pro	Asn
	370					375					380				
	Thr	Gly	Glu	Leu	Tyr	Phe	Lys	Gly	Asp	Met	Ile	Met	Lys	Gly	Tyr
385					390					395					400
Tyr	Asn	Asn	Glu	Glu	Ala	Thr	,Lys	Ala	Ile	Ile	Thr	Lys	Asp	Gly	Trp
				405					410					415	
Leu	Arg	Ser	Gly	Asp	Ile	Ala	Tyr	Tyr	Asp	Asn	Asp	Gly	His	Phe	Tyr
			420					425					430		
Ile	Val		Arg	Leu	Lys	Ser	Leu	Ile	Lys	Tyr	Lys	Gly	Tyr	Gln	Val
		435					440					445			•
Ala		Ala	Glu	Ile	Glu	Gly	Ile	Leu	Leu	Gln	His	Pro	Tyr	Ile	Val
	450					455					460				

19

WO 01/20002 PCT/US99/30925

<210> 17

<211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

150

165

<400> 17 Met Glu Asp Lys Asn Ile Leu Tyr Gly Pro Glu Pro Phe Tyr Pro Leu Ala Asp Gly Thr Ala Gly Glu Gln Met Phe Tyr Ala Leu Ser Arg Tyr 20 25 Ala Asp Ile Ser Gly Cys Ile Ala Leu Thr Asn Ala His Thr Lys Glu 40 Asn Val Leu Tyr Glu Glu Phe Leu Lys Leu Ser Cys Arg Leu Ala Glu Ser Phe Lys Lys Tyr Gly Leu Lys Gln Asn Asp Thr Ile Ala Val Cys 70 75 Ser Glu Asn Gly Leu Gln Phe Phe Leu Pro Ile Ile Ala Ser Leu Tyr 90 Leu Gly Ile Ile Ala Ala Pro Val Ser Asp Lys Tyr Ile Glu Arg Glu 100 105 Leu Ile His Ser Leu Gly Ile Val Lys Pro Arg Ile Ile Phe Cys Ser 120 Lys Asn Thr Phe Gln Lys Val Leu Asn Val Lys Ser Lys Leu Lys Tyr 130 Val Glu Thr Ile Ile Ile Leu Asp Leu Asn Glu Asp Leu Gly Gly Tyr

Gln Cys Leu Asn Asn Phe Ile Ser Gln Asn Ser Asp Ile Asn Leu Asp

155

175

Val	Lys	Lys	Phe	Lys	Pro	Tyr	Ser	Phe	Asn	Arg	Asp	Asp	Gln	Val	Ala
			180					185					190		
Leu	Val	Met	Phe	Ser	Ser	Gly	Thr	Thr	Gly	Val	Ser	Lys	Gly	Val	Met
		195					200					205			
Leu	Thr	His	Lys	Asn	Ile	Val	Ala	Arg	Phe	Ser	Ile	Ala	Lys	Asp	Pro
	210					215					220				
Thr	Phe	Gly	Asn	Ala	Ile	Asn	Pro	Thr	Thr	Ala	Ile	Leu	Thr	Val	Ile
225					230					235					240
Pro	Phe	His	His	Gly	Phe	Gly	Met	Met	Thr	Thr	Leu	Gly	Tyr	Phe	Thi
				245					250					255	
Cys	Gly	Phe	Arg	Val	Val	Leu	Met	His	Thr	Phe	Glu	Glu	Lys	Leu	Phe
			260					265					270		
Leu	Gln	Ser	Leu	Gln	Asp	Tyr	Lys	Val	Glu	Ser	Thr	Leu	Leu	Val	Pro
		275					280					285			
Thr	Leu	Met	Ala	Phe	Leu	Ala	Lys	Ser	Ala	Leu	Val	Glu	Lys	Tyr	Asp
	290					295					300			•	
Leu	Ser	His	Leu	Lys	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys
305					310					315					320
Glu	Ile	Gly	Glu	Met	Val	Lys	Lys	Arg	Phe	Lys	Leu	Asn	Phe	Val	Arç
				325					330					335	
Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Val	Leu	Ile	Thr	Pro
			340					345					350		
Asn	Asn	Asp	Val	Arg	Pro	Gly	Ser	Thr	Gly	Lys	Ile	Val	Pro	Phe	His
		355					360					365			
Ala	Val	Lys	Val	Val	Asp	Pro	Thr	Thr	Gly	Lys	Ile	Leu	Gly	Pro	Asr
	370					375					380				
Glu	Thr	Gly	Glu	Leu	Tyr	Phe	Lys	Gly	Asp	Met	Ile	Met	Lys	Gly	Tyr
385					390					395					400
Tyr	Asn	Asn	Glu	Glu	Ala	Thr	Lys	Ala	Ile	Ile	Asn	Lys	Ąsp	Gly	Trp
				405					410					415	
Leu	Arg	Ser	Gly	Asp	Ile	Ala	Tyr	Tyr	Asp	Asn	Asp	Gly	His	Phe	Tyr
			420					425					430		
Ile	Val		Arg	Leu	Lys	Ser		Ile	Lys	Tyr	Lys	Gly	Tyr	Gln	Val
		435	_	_			440					445			
Ala		Ala	Glu	Ile	Glu		Ile	Leu	Leu	Gln		Pro	Tyr	Ile	Val
	450					455					460				
	Ala	Gly	Val	Thr		Ile	Pro	Asp	Glu		Ala	Gly	Glu	Leu	Pro
465	_ •				470	_		_		475					480
Ala	Ala	Gly	Val		Val	Gln	Thr	Gly		Tyr	Leu	Asn	Glu		Ile
				485					490					495	
Val	Gln	Asn	Phe												
			500					505					510		

Gly Gly Val Lys Phe Leu Asp Glu Ile Pro Lys Gly Ser Thr Gly Lys 515 520 Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Thr Asn Gly 540 <210> 18

<211> 544

<212> PRT

180

210

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 18 Met Glu Asp Lys Asn Ile Leu Tyr Gly Pro Glu Pro Phe Tyr Pro Leu 1 Ala Asp Gly Thr Ala Gly Glu Gln Met Phe Asp Ala Leu Ser Arg Tyr 25 Ala Asp Ile Ser Gly Cys Ile Ala Leu Thr Asn Ala His Thr Lys Glu 40 Asn Val Leu Tyr Glu Glu Phe Leu Lys Leu Ser Cys Arg Leu Ala Glu 60 Ser Phe Lys Lys Tyr Gly Leu Lys Gln Asn Asp Thr Ile Ala Val Cys 70 75 Ser Glu Asn Gly Leu Gln Phe Phe Leu Pro Ile Ile Ala Ser Leu Tyr 90 Leu Gly Ile Ile Ala Ala Pro Val Ser Asp Lys Tyr Ile Glu Arg Glu 105 Leu Ile His Ser Leu Gly Ile Val Lys Pro Arg Ile Ile Phe Cys Ser 115 120 125 Lys Asn Thr Phe Gln Lys Val Leu Asn Val Lys Ser Lys Leu Lys Tyr 135 Val Glu Thr Ile Ile Leu Asp Leu Asn Glu Asp Leu Gly Gly Tyr 145 155 160 Gln Cys Leu Asn Asn Phe Ile Ser Gln Asn Ser Asp Ile Asn Leu Asp 165 170 Val Lys Lys Phe Lys Pro Tyr Ser Phe Asn Arg Asp Asp Gln Val Ala

185 Leu Val Met Phe Ser Ser Gly Thr Thr Gly Val Ser Lys Gly Val Met 200 Leu Thr His Lys Asn Ile Val Ala Arg Phe Ser His Ala Lys Asp Pro

220

Thr	Phe	Gly	Asn	Ala	Ile	Asn	Pro	Thr	Thr	Ala	Ile	Leu	Thr	Val	Ile
225			•		230					235					240
Pro	Phe	His	His	Gly	Phe	Gly	Met	Met	Thr	Thr	Leu	Gly	Tyr	Phe	Thr
				245	•				250					255	
Cys	Gly	Phe	Arg	Val	Val	Leu	Met	His	Thr	Phe	Glu	Glu	Lys	Leu	Phe
			260					265					270		
Leu	Gln	Ser	Leu	Gln	Asp	Tyr	Lys	Val	Glu	Ser	Thr	Leu	Leu	Val	Pro
		275					280					285			
Thr	Leu	Met	Ala	Phe	Phe	Ala	Lys	Ser	Ala	Leu	Val	Glu	Lys	Tyr	Asp
	290					295					300				
Leu	Ser	His	Leu	Lys	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys
305					310					315					320
Glu	Ile	Gly	Glu	Met	Val	Lys	Lys	Arg	Phe	Lys	Leu	Asn	Phe	Val	Arg
				325					330					335	
Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Val	Lėu	Ile	Thr	Pro
			340					345					350		
Asn	Asn	Asp	Val	Arg	Pro	Gly	Ser	Thr	Gly	Lys	Ile	Val	Pro	Phe	His
		355					360					365			
Ala	Val	Lys	Val	Val	Asp	Pro	Thr	Thr	Gly	Lys	Ile	Leu	Gly	Pro	Asn
	370					375					380				
Glu	Thr	Gly	Glu	Leu	Tyr	Phe	Lys	Gly	Asp	Met	Ile	Met	Lys	Gly	Tyr
385					390					395					400
Tyr	Asn	Asn	Glu	Glu	Ala	Thr	Lys	Ala	Ile	Ile	Asn	Lys	Asp	Gly	Trp
				405					410					415	
Leu	Arg	Ser	Gly	Asp	Ile	Ala	Tyr	Tyr	Asp	Asn	Asp	Gly	His	Phe	Tyr
			420					425					430		
Ile	Val	Asp	Arg	Leu	Lys	Ser	Leu	Ile	Lys	Tyr	Lys	Gly	Tyr	Gln	Val
		435					440	•				445			
Ala	Pro	Ala	Glu	Ile	Glu	Gly	Ile	Leu	Leu	Gln	His	Pro	Tyr	Ile	Val
	450										460				
	Ala	Gly	Val	Thr	Gly	Ile	Pro	Asp	Glu	Ala	Ala	Gly	Glu	Leu	Pro
465					470					475					480
Ala	Ala	Gly	Val	Val	Val	Gln	Thr	Gly	Lys	Tyr	Leu	Asn	Glu	Gln	Ile
				485					490					495	
Val	Gln	Asn	Phe	Val	Ser	Ser	Gln	Val	Ser	Thr	Ala	Lys	Trp	Leu	Arg
			500					505					510		
Gly	Gly		Lys	Phe	Leu	Asp	Glu	Ile	Pro	Lys	Gly	Ser	Thr	Gly	Lys
		515					520					525			
Ile	Asp	Arg	Lys	Val	Leu	Arg	Gln	Met	Phe	Glu	Lys	His	Thr	Asn	Gly
	530					535					540				

23

<211> 544

<212> PŘT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 19

Met Ala Asp Lys Asn Ile Leu Tyr Gly Pro Glu Pro Phe Tyr Pro Leu 10 Ala Asp Gly Thr Ala Gly Glu Gln Met Phe Asp Ala Leu Ser Arg Tyr 25 Ala Asp Ile Ser Gly Cys Ile Ala Leu Thr Asn Ala His Thr Lys Glu 40 Asn Val Leu Tyr Glu Glu Phe Leu Lys Leu Ser Cys Arg Leu Ala Glu 50 Ser Phe Lys Lys Tyr Gly Leu Lys Gln Asn Asp Thr Ile Ala Val Cys 70 75 Ser Glu Asn Gly Leu Gln Phe Phe Leu Pro Val Ile Ala Ser Leu Tyr Leu Gly Ile Ile Ala Ala Pro Val Ser Asp Lys Tyr Ile Glu Arg Glu 105 Leu Ile His Ser Leu Gly Ile Val Lys Pro Arg Ile Ile Phe Cys Ser 120 Lys Asn Thr Phe Gln Lys Val Leu Asn Val Lys Ser Lys Leu Lys Ser 135 140 Val Glu Thr Ile Ile Ile Leu Asp Leu Asn Glu Asp Leu Gly Gly Tyr 155 Gln Cys Leu Asn Asn Phe Ile Ser Gln Asn Ser Asp Ser Asn Leu Asp 165 170 Val Lys Lys Phe Lys Pro Tyr Ser Phe Asn Arg Asp Asp Gln Val Ala 185 Leu Val Met Phe Ser Ser Gly Thr Thr Gly Val Pro Lys Gly Val Met 195 200 205 Leu Thr His Lys Asn Ile Val Ala Arg Phe Ser Leu Ala Lys Asp Pro 215 Thr Phe Gly Asn Ala Ile Asn Pro Thr Thr Ala Ile Leu Thr Val Ile 225 230 235 Pro Phe His His Gly Phe Gly Met Met Thr Thr Leu Gly Tyr Phe Thr 250

Cys Gly Phe Arg Val Val Leu Met His Thr Phe Glu Glu Lys Leu Phe

265

270

Leu Gln Ser Leu Gln Asp Tyr Lys Val Glu Ser Thr Leu Leu Val Pro 280 Thr Leu Met Ala Phe Leu Ala Lys Ser Ala Leu Val Glu Lys Tyr Asp 295 Leu Ser His Leu Lys Glu Ile Ala Ser Gly Gly Ala Pro Leu Ser Lys 310 315 Glu Ile Gly Glu Met Val Lys Lys Arg Phe Lys Leu Asn Phe Val Arg 325 330 Gln Gly Tyr Gly Leu Thr Glu Thr Thr Ser Ala Val Leu Ile Thr Pro 345 Lys Gly Asp Ala Arg Pro Gly Ser Thr Gly Lys Ile Val Pro Phe His 360 365 Ala Val Lys Val Val Asp Pro Thr Thr Gly Lys Ile Leu Gly Pro Asn 375 Glu Pro Gly Glu Leu Tyr Phe Lys Gly Ala Met Ile Met Lys Gly Tyr 385 390 395 Tyr Asn Asn Glu Glu Ala Thr Lys Ala Ile Ile Asp Asn Asp Gly Trp 405 410 Leu Arg Ser Gly Asp Ile Ala Tyr Tyr Asp Asn Asp Gly His Phe Tyr 420 425 Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val Ala Pro Ala Glu Ile Glu Gly Ile Leu Leu Gln His Pro Tyr Ile Val 450 455 Asp Ala Gly Val Thr Gly Ile Pro Asp Glu Ala Ala Gly Glu Leu Pro 475 Ala Ala Gly Val Val Val Gln Thr Gly Lys Tyr Leu Asn Glu Gln Ile 485 490 Val Gln Asp Phe Val Ser Ser Gln Val Ser Thr Ala Lys Trp Leu Arg 505 Gly Gly Val Lys Phe Leu Asp Glu Ile Pro Lys Gly Ser Thr Gly Lys 520 Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Thr Asn Gly 530 535 540

<210> 20

<211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<221> unsure

<222> (354) ... (355)

<223> /note = "unknown amino acids"

<400> 20

Met Ala Asp Lys Asn Ile Leu Tyr Gly Pro Glu Pro Phe Tyr Pro Leu 10 Ala Asp Gly Thr Ala Gly Glu Gln Met Phe Tyr Ala Leu Ser Arg Tyr 25 Ala Asp Ile Ser Gly Cys Ile Ala Leu Thr Asn Ala His Thr Lys Glu 40 Asn Val Leu Tyr Glu Glu Phe Leu Lys Leu Ser Cys Arg Leu Ala Glu 60 Ser Phe Lys Lys Tyr Gly Leu Lys Gln Asn Asp Thr Ile Ala Val Cys 70 75 Ser Glu Asn Gly Leu Gln Phe Phe Leu Pro Val Ile Ala Ser Leu Tyr 90 Leu Gly Ile Ile Ala Ala Pro Val Ser Asp Lys Tyr Ile Glu Arg Glu 105 Leu Ile His Ser Leu Gly Ile Val Lys Pro Arg Ile Ile Phe Cys Ser 120 Lys Asn Thr Phe Gln Lys Val Leu Asn Val Lys Ser Lys Leu Lys Tyr 130 135 140 Val Glu Thr Ile Ile Ile Leu Asp Leu Asn Glu Asp Leu Gly Gly Tyr 150 Gln Cys Leu Asn Asn Phe Ile Ser Gln Asn Ser Asp Ile Asn Leu Asp 165 170 175 Val Lys Lys Phe Lys Pro Tyr Ser Phe Asn Arg Asp Asp Gln Val Ala 185 Leu Val Met Phe Ser Ser Gly Thr Thr Gly Val Pro Lys Gly Val Met 195 200 Leu Thr His Lys Asn Ile Val Ala Arg Phe Ser Leu Ala Lys Asp Pro 215 Thr Phe Gly Asn Ala Ile Asn Pro Thr Thr Ala Ile Leu Thr Val Ile 225 230 235 Pro Phe His His Gly Phe Gly Met Met Thr Thr Leu Gly Tyr Phe Thr 250 Cys Gly Phe Arg Val Val Leu Met His Thr Phe Glu Glu Lys Leu Phe 265 Leu Gln Ser Leu Gln Asp Tyr Lys Val Glu Ser Thr Leu Leu Val Pro 280

Thr Leu Met Ala Phe Leu Ala Lys Ser Ala Leu Val Glu Lys Tyr Asp

	290					295					300				
Leu	Ser	His	Léu	Lys	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys
305					310					315					320
Glu	Ile	Gly	Glu	Met	Val	Lys	Lys	Arg	Phe	Lys	Leu	Asn	Phe	Val	Arg
•				325					330					335	
Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Val	Leu	Ile	Thr	Pro
			340					345					350		
Lys	Xaa	Xaa	Val	Arg	Pro	Gly	Ser	Thr	Gly	Lys	Ile	Val	Pro	Phe	His
		355					360					365			
Ala	Val	Lys	Val	Val	Asp	Pro	Thr	Thr	Gly	Lys	Ile	Leu	Gly	Pro	Asn
	370					375					380				
Glu	Pro	Gly	Glu	Leu	Tyr	Phe	Lys	Gly	Asp	Met	Ile	Met	Lys	Gly	Tyr
385					390					395					400
Tyr	Asn	Asn	Glu	Glu	Ala	Thr	Lys	Ala	Ile	Ile	Asp	Lys	Asp	Gly	Trp
				405					410					415	
Leu	Arg	Ser	Gly	Asp	Ile	Ala	Tyr	Tyr	Asp	Asn	Asp	Gly	His	Phe	Tyr
			420					425					430		
Ile	Val	Asp	Arg	Leu	Lys	Ser	Leu	Ile	Lys	Tyr	Lys	Gly	Tyr	Gln	Val
		435					440					445			
Ala	Pro	Ala	Glu	Ile	Glu	Gly	Ile	Leu	Leu	Gln	His	Pro	Tyr	Ile	Val
	450					455					460			•	
Asp	Ala	Gly	Val	Thr	Gly	Ile	Pro	Asp	Glu	Ala	Ala	Gly	Glu	Leu	Pro
465					470					475					480
Ala	Ala	Gly	Val	Val	Val	Gln	Thr	Gly	Lys	Tyr	Leu	Asn	Glu	Gln	Ile
				485					490					495	
Val	Gln	Asn	Phe	Val	Ser	Ser	Gln	Val	Ser	Thr	Ala	Lys	Trp	Leu	Arg
			500					505					510		
Gly	Gly	Vaļ	Lys	Phe	Leu	Asp	Glu	Ile	Pro	Lys	Gly	Ser	Thr	Gly	Lys
		515					520					525			
Ile		Arg	Lys	Val	Leu	Arg	Gln	Met	Phe	Glu	Lys	His	Thr	Asn	Gly
	530					535					540				

<210> 21

<211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<221> unsure

<222> (354)...(355)

<223> /note = "unknown amino acids"

	<	400>	21												
Met	Ala	Asp	Lys	Asn	Ile	Leu	Tyr	Gly	Pro	Glu	Pro	Phe	Tyr	Pro	Leu
1				` 5					10					15	
Ala	Asp	Gly	Thr	Ala	Gly	Glu	Gln	Met	Phe	Asp	Ala	Leu	Ser	Arg	Tyr
			20					25					30		
Ala	Asp	Ile	Pro	Gly	Cys	Ile	Ala	Leu	Thr	Asn	Ala	His	Thr	Lys	Glu
		35					40					45			
Asn	Val	Leu	Tyr	Glu	Glu	Phe	Leu	Lys	Leu	Ser	Сув	Arg	Leu	Ala	Glu
	50					55					60				
Ser	Phe	Lys	Lys	Tyr	Gly	Leu	Lys	Gln	Asn	Asp	Thr	Ile	Ala	Val	Суз
65					70					75					80
Ser	Glu	Asn	Gly	Leu	Gln	Tyr	Phe	Leu	Pro	Val	Ile	Ala	Ser	Leu	Tyr
				85					90					95	
Leu	Gly	Ile	Ile	Ala	Ala	Pro	Val	Ser	Asp	Lys	Tyr	Ile	Glu	Arg	Glu
			100					105					110		
Leu	Ile	His	Ser	Leu	Gly	Ile	Val	Lys	Pro	Arg	Ile	Ile	Phe	Сув	Ser
		115					120					125			
Lys		Thr	Phe	Gln	Lys		Leu	Asn	Val	Г'nв	Ser	Lys	Leu	Lys	Tyr
	130			_	_	135					140				
	Glu	Thr	Ile	Ile		Leu	qaA	Leu	Asn	•	Asp	Leu	Gly	Gly	_
145	_	_			150				_	155					160
GIn	Сув	Leu	Asn		Pne	He	Ser	Gln		Ser	Asp	Ile	Asn		Asp
	•	•	5 1	165			_	_,	170		_	_		175	
vai	гув	Lys		гÀв	PIO	ASN	ser		Asn	Arg	Asp	Asp		vaı	Ala
Lau	Wa I	Met	180	Car	Cor	C3	Th-	185	01	1701	D	T	190	17-1	Wat
Deu	Val	195	FIIC	SEL	361	GIY	200	1111	Gry	val	PIO	205	GIY	vaı	Met
T.eu	Thr	His	Lva	Asn	Tle	Val		Ara	Dhe	Ser	Tle		Lve	Acn	Pro
	210		_,_			215	****	y		001	220	nzu	Dy S	nop	110
Thr		Gly	Asn	Ala	Ile		Pro	Thr	Thr	Ala		Leu	Thr	Val	Ile
225		•			230					235					240
Pro	Phe	His	His	Gly	Phe	Gly	Met	Met	Thr	Thr	Leu	Gly	Tyr	Phe	
				245		-			250			•	•	255	
Сув	Gly	Phe	Arg	Val	Val	Leu	Met	His	Thr	Phe	Glu	Glu	Lys	Leu	Phe
			260					265					270		
Leu	Gln	Ser	Leu	Gln	Asp	Tyr	Lys	Val	Glu	Ser	Thr	Leu	Leu	Val	Pro
		275					280					285			
Thr	Leu	Met	Ala	Phe	Leu	Ala	Lys	Ser	Ala	Leu	Val	Glu	Lys	Tyr	Asp
	290					295					300				
Leu	Ser	His	Leu	Lys	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys

310 315 320 305 Glu Ile Gly Glu Met Val Lys Lys Arg Phe Lys Leu Asn Phe Val Arg 330 Gln Gly Tyr Gly Leu Thr Glu Thr Thr Ser Ala Val Leu Ile Thr Pro 340 345 Lys Xaa Xaa Ala Arg Pro Gly Ser Thr Gly Lys Ile Val Pro Phe His Ala Val Lys Val Val Asp Pro Thr Thr Gly Lys Ile Leu Gly Pro Asn 370 375 380 Glu Pro Gly Glu Leu Tyr Phe Lys Gly Ala Met Ile Met Lys Gly Tyr 395 Tyr Asn Asn Glu Glu Ala Thr Lys Ala Ile Ile Asp Lys Asp Gly Trp 405 410 Leu Arg Ser Gly Asp Ile Ala Tyr Tyr Asp Asn Asp Gly His Phe Tyr 425 Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val 440 Ala Pro Ala Glu Ile Glu Gly Ile Leu Leu Gln His Pro Tyr Ile Val 455 460 Asp Ala Gly Val Thr Gly Ile Pro Asp Glu Ala Ala Gly Glu Leu Pro 475 470 Ala Ala Gly Val Val Val Gln Thr Gly Lys Tyr Leu Asn Glu Gln Ile 485 490 Val Gln Asn Phe Val Ser Ser Gln Val Ser Thr Ala Lys Trp Leu Arg 500 505 Gly Gly Val Lys Phe Leu Asp Glu Ile Pro Lys Gly Ser Thr Gly Lys 515 520 Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Thr Asn Gly 535

<210> 22

<211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<221> unsure

<222> (354)...(355)

<223> /note = "unknown amino acids"

<400> 22

Met	Ala	Asp	Lýs	Asn	Ile	Leu	Tyr	Gly	Pro	Glu	Pro	Phe	Tyr	Pro	Le
1				5					10					15	
Ala	Asp	Gly	Thr	Ala	Gly	Glu	Gln	Met	Phe	Asp	Ala	Leu	Ser	Arg	Ty:
			20					25					30		
Ala	Asp	Ile	Pro	Gly	Сув	Ile	Ala	Leu	Thr	Asn	Ala	His	Thr	Lys	Gli
		35					40					45			
Asn	Val	Leu	Tyr	Glu	Glu	Phe	Leu	Lys	Leu	Ser	Cys	Arg	Leu	Ala	Glı
	50					55				•	60				
Ser	Phe	Lys	Lys	Tyr	Gly	Leu	Lys	Gln	Asn	Asp	Thr	Ile	Ala	Val	Cys
65					70					75					80
Ser	Glu	Asn	Gly	Leu	Gln	Phe	Phe	Leu	Pro	Val	Ile	Ala	Ser	Leu	Ту
				85					90		•			95	
Leu	Gly	Ile	Ile	Ala	Ala	Pro	Val	Ser	Asp	Lys	Tyr	Val	Glu	Arg	Glu
			100					105					110		
Leu	Ile	His	Ser	Leu	Gly	Ile	Val	Lys	Pro	Arg	Ile	Ile	Phe	Сув	Sea
		115					120					125			
Lys	Asn	Thr	Phe	Gln	Lys	Val	Leu	Asn	Val	Lys	Ser	Lys	Leu	Lys	Туз
	130					135					140				
Val	Glu	Thr	Ile	Ile	Ile	Leu	Asp	Leu	Asn	Glu	qaA	Leu	Gly	Gly	Туз
145					150					155					160
Gln	Cys	Leu	Asn	Asn	Phe	Ile	Ser	Gln	Asn	Ser	Asp	Ser	Asn	Leu	Asp
				165					170					175	
Val	Lys	Lys	Phe	Lys	Pro	Asn	Ser	Phe	Asn	Arg	Asp	Asp	Gln	Val	Ala
			180					185					190		
Leu	Val	Met	Phe	Ser	Ser	Gly	Thr	Thr	Gly	Val	Pro	Lys	Gly	Val	Met
		195					200					205			
Leu	Thr	His	Lys	Asn	Ile	Val	Ala	Arg	Phe	Ser	Leu	Ala	Lys	Asp	Pro
	210					215					220				
Thr	Phe	Gly	Asn	Ala	Ile	Asn	Pro	Thr	Thr	Ala	Ile	Leu	Thr	Val	Ile
225					230					235					240
Pro	Phe	His	His	Gly	Phe	Gly	Met	Met	Thr	Thr	Leu	Gly	Tyr	Phe	Thr
				245					250					255	
Сув	Gly	Phe	Arg	Val	Val	Leu	Met	His	Thr	Phe	Glu	Glu	Lys	Leu	Phe
			260					265					270		
Leu	Gln	Ser	Leu	Gln	Asp	Tyr	Lys	Val	Glu	Ser	Thr	Leu	Leu	Val	Pro
		275					280					285			
Thr	Leu	Met	Ala	Phe	Leu	Ala	Lys	Ser	Ala	Leu	Val	Glu	Lys	Tyr	Asp
	290					295					300				
Leu	Ser	His	Leu	Lys	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys
305					310					315					320
Glu	Tle	Glv	Glu	Met	Val	Taye	Larg	Ara	Dhe	Tare	T all	Acn	Dha	Wa I	R

325 330 Gln Gly Tyr Gly Leu Thr Glu Thr Thr Ser Ala Val Leu Ile Thr Pro 345 Lys Xaa Xaa Ala Arg Pro Gly Ser Thr Gly Lys Ile Val Pro Phe His 360 Ala Val Lys Val Val Asp Pro Thr Thr Gly Lys Ile Leu Gly Pro Asn 375 Glu Thr Gly Glu Leu Tyr Phe Lys Gly Ala Met Ile Met Lys Gly Tyr 385 390 395 Tyr Asn Asn Glu Glu Ala Thr Lys Ala Ile Ile Asp Lys Asp Gly Trp 405 410 Leu Arg Ser Gly Asp Ile Ala Tyr Tyr Asp Asn Asp Gly His Phe Tyr 420 425 Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val 440 Ala Pro Ala Glu Ile Glu Gly Ile Leu Leu Gln His Pro Tyr Ile Val Asp Ala Gly Val Thr Gly Ile Pro Asp Glu Ala Ala Gly Glu Leu Pro 470 475 Ala Ala Gly Val Val Gln Thr Gly Lys Tyr Leu Asn Glu Gln Ile 490 Val Gln Asn Phe Val Ser Ser Gln Val Ser Thr Ala Lys Trp Leu Arg 500 505 510 Gly Gly Val Lys Phe Leu Asp Glu Ile Pro Lys Gly Ser Thr Gly Lys 520 Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Thr Asn Gly 530 535

<210> 23

<211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<221> unsure

<222> (354) ... (355)

<223> /note = "unknown amino acids"

<400> 23

Met Ala Asp Lys Asn Ile Leu Tyr Gly Pro Glu Pro Phe Tyr Pro Leu

1				5					10					15	
Ala	Asp	Gly	Thr	Ala	Gly	Glu	Gln	Met	Phe	Asp	Ala	Leu	Ser	Arg	Tyr
			20					25					30		
Ala	Asp	Ile	Pro	Gly	Cys	Ile	Ala	Leu	Thr	Asn	Ala	His	Thr	Lys	Glu
		35					40					45			
Asn	Val	Leu	Tyr	Glu	Glu	Phe	Leu	Lys	Leu	Ser	Cys	Arg	Leu	Ala	Glu
	50					55					60				
Ser	Phe	Lys	Lys	Tyr	Gly	Leu	Lys	Gln	Asn	Asp	Thr	Ile	Ala	Val	Cys
65					70					75					80
Ser	Glu	Asn	Gly	Leu	Gln	Phe	Phe	Leu	Pro	Val	Ile	Ala	Ser	Leu	Tyr
				85					90					95	
Leu	Gly	Ile	Ile	Val	Ala	Pro	Val	Asn	Asp	Lys	Tyr	Ile	Glu	Arg	Glu
			100					105					110		
Leu	Ile	His	Ser	Leu	Gly	Ile	Val	Lys	Pro	Arg	Ile	Ile	Phe	Cys	Ser
		115					120					125			
Lys		Thr	Phe	Gln	Lys	Val	Leu	Asn	Val	Lys	Ser	Lys	Leu	Lys	Ser
	130					135					140				
	Glu	Thr	Ile	Ile		Leu	Asp	Leu	Asn	Glu	Asp	Leu	Gly	Gly	Tyr
145	_		_		150					155					160
Gln	Сув	Leu	Asn		Phe	Ile	Ser	Gln		Ser	Asp	Ile	Asn	Leu	Asp
	_	_	_,	165	_	_			170					175	
Val	Lys	Lys		Lys	Pro	Tyr	Ser		Asn	Arg	Asp	Asp	Gln	Val	Ala
•	-1 -		180	_	_			185					190		
Leu	iie		Pne	ser	ser	GIĄ		Thr	GIY	Leu	Pro		Gly	Val	Met
Leu	Thr	195	Tue	Non.	710	wa 1	200	B	Dh.a	0	• • • •	205	•	•	_
neu	210	UIB	гув	ABII	116		Ala	Arg	Pne	Ser		Ala	Lys	Asp	Pro
Th >		G1v	Non.	7 l -	T10	215	D	mh in	mh	31-	220	•		1	
225	FIIC	Gly	VOII	AIG	230	Abii	PIO	Int	Int	Ala	116	Leu	Inr	vai	
	Dhe	Hia	Wie	Glv		Gly	Mat	Mot	The	235 Thr	T 011	~1··	T	Dh.o	240
				245		Cly	Mer	Mec	250	1111	neu	Giy	IYI	255	Int
Cvs	Glv	Phe	Ara		Val	Leu	Met	His		Phe	Glu	Glu	Lva		Dhe
-1-	,		260					265			014	014	270	Deu	FIIC
Leu	Gln	Ser		Gln	Asp	Tvr	Lvs		Glu	Ser	Thr	Len		Val	Pro
		275				- 7 -	280					285		•	110
Thr	Leu	Met	Ala	Phe	Leu	Ala		Ser	Ala	Leu	Val		Lvs	Tvr	Asp
	290					295	•				300		-1-	-1-	
Leu	Ser	His	Leu	Lys	Glu		Ala	Ser	Gly	Gly		Pro	Leu	Ser	Lvs
305				•	310	-			- 4	315					320
Glu	Ile	Gly	Glu	Met	Val	Lys	Lys	Arg	Phe	Lys	Leu	Asn	Phe	Val	
				325		-	-	•	330	-			-	335	٠.
Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr		Ala	Val	Leu	Ile		Pro

32

340 345 Lys Xaa Xaa Ala Arg Pro Gly Ser Thr Gly Lys Ile Val Pro Phe His 360 Ala Val Lys Val Val Asp Pro Thr Thr Gly Lys Ile Leu Gly Pro Asn 370 375 Glu Pro Gly Glu Leu Tyr Phe Lys Gly Pro Met Ile Met Lys Gly Tyr 390 395 Tyr Asn Asn Glu Glu Ala Thr Lys Ala Ile Ile Asp Asn Asp Gly Trp 405 410 Leu Arg Ser Gly Asp Ile Ala Tyr Tyr Asp Asn Asp Gly His Phe Tyr 425 Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val 435 440 Ala Pro Ala Glu Ile Glu Gly Ile Leu Leu Gln His Pro Tyr Ile Val 455 Asp Ala Gly Val Thr Gly Ile Pro Asp Glu Ala Ala Gly Glu Leu Pro 470 475 Ala Ala Gly Val Val Val Gln Thr Gly Lys Tyr Leu Asn Glu Gln Ile 490 Val Gln Asp Phe Val Ser Ser Gln Val Ser Thr Ala Lys Trp Leu Arg 500 505 Gly Gly Val Lys Phe Leu Asp Glu Ile Pro Lys Gly Ser Thr Gly Lys 520 Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Thr Asn Gly 530 535 540 <210> 24 <211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 24

 Met Ala Asp Lys Asn Ile Leu Tyr Gly Pro Glu Pro Phe Tyr Pro Leu

 1
 5
 10
 15

 Glu Asp Gly Thr Ala Gly Glu Gln Met Phe Asp Ala Leu Ser Arg Tyr
 20
 25
 30

 Ala Asp Ile Pro Gly Cys Ile Ala Leu Thr Asn Ala His Thr Lys Glu
 35
 40
 45

 Asn Val Leu Tyr Glu Glu Phe Leu Lys Leu Ser Cys Arg Leu Ala Glu

	50					55					60				
Ser	Phe	Lys	Lýs	Tyr	Gly	Leu	Lys	Gln	Asn	Asp	Thr	Ile	Ala	Val	Су
65					70					75					80
Ser	Glu	Asn	Gly	Leu	Gln	Phe	Phe	Leu	Pro	Val	Ile	Ala	Ser	Leu	Ту
				85					90					95	
Leu	Gly	Ile	Ile	Val	Ala	Pro	Val	Asn	Asp	Lys	Tyr	Ile	Glu	Arg	Gl
			100					105					110		
Leu	Ile	His	Ser	Leu	Gly	Ile	Val	Lys	Pro	Arg	Ile	Val	Phe	Cys	Se
		115					120					125			
Lys	Asn	Thr	Phe	Gln	Lys	Val	Leu	Asn	Val	Lys	Ser	Lys	Leu	Lys	Se
	130					135					140				
Ile	Glu	Thr	Ile	Ile	Ile	Leu	Asp	Leu	Asn	Glu	Asp	Leu	Gly	Gly	Ty:
145					150					155					16
Gln	Сув	Leu	Asn	Asn	Phe	Ile	Ser	Gln	Asn	Ser	Asp	Ser	Asn	Leu	As
				165					170					175	
Val	Lys	Lys	Phe	Lys	Pro	Tyr	Ser	Phe	Asn	Arg	Asp	Asp	Gln	Val	Ala
			180					185					190		
Leu	Ile	Met	Phe	Ser	Ser	Gly	Thr	Thr	Gly	Leu	Pro	Lys	Gly	Val	Me
		195					200					205			
Leu	Thr	His	Lys	Asn	Ile	Val	Ala	Arg	Phe	Ser	Leu	Ala	Lys	Asp	Pro
	210					215					220				
Thr	Phe	Gly	Asn	Ala	Ile	Asn	Pro	Thr	Thr	Ala	Ile	Leu	Thr	Val	Ile
225					230					235					240
Pro	Phe	His	His	Gly	Phe	Gly	Met	Met	Thr	Thr	Leu	Gly	Tyr	Phe	Th
				245					250					255	
Сув	Gly	Phe		Val	Val	Leu	Met	His	Thr	Phe	Glu	Glu	Lys	Leu	Phe
			260	_			•	265					270		
Leu	Gln		Leu	Gln	Asp	Tyr	_	Val	Glu	Ser	Thr		Leu	Val	Pro
	_	275		<u></u>			280		_			285			
Thr		Met	Ala	Phe	Leu		Lys	Ser	Ala	Leu		Glu	Lys	Tyr	Ası
_	290	1	_	_		295		_			300	_			
	Ser	H18	Leu	Lys		Ile	Ala	Ser			Ala	Pro	Leu	Ser	_
305		~-	-1		310	_	_	_		315	_			_	320
GIU	îīe	GIÅ	GIU		Val	Lys	Lys	Arg		Lys	Leu	Asn	Phe		Arg
01 -	61		01	325	mb	71	m L	m 1	330			•		335	_
GIN	GIY	TYE		Leu	Thr	GIU	Thr		ser	Ala	vaı	Leu	Ile	Tnr	Pro
T	~1	3	340	T	D	01	0	345	01	•	-1-	**- 1	350	- 1-	
ոչո	GIÅ		wig	пув	Pro	GIÅ		inr	σīλ	гÀ8	116		Pro	rne	Hlf
- [ת	17-1	355	W -1	Wall	N	D~-	360	TL	~ 1	T	77-	365	~1	D	3 -
WTG		пλя	vai	val	мар		inr	inr	GIÀ	гåа		Pen	Gly	PIQ	ABI
G1	370 Bro	al.	G1	Len	T	375	Tue	03.	Dro	We t	380	Moż	Lvs	01	~
JIU	FEO	GIV	914	니던데	IVE	rile	LVH	UIV	PIO	mer	116	me T	LVE	UIV	IVI

385 390 395 400

Tyr Asn Asn Glu Glu Ala Thr Lys Ala Ile Ile Asp Asn Asp Gly Trp
405 410 415

Leu Arg Ser Gly Asp Ile Ala Tyr Tyr Asp Asn Asp Gly His Phe Tyr
420 425 430

Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val 435 440 445

Ala Pro Ala Glu Ile Glu Gly Ile Leu Leu Gln His Pro Tyr Ile Val 450 455 460

Asp Ala Gly Val Thr Gly Ile Pro Asp Glu Ala Ala Gly Glu Leu Pro 465 470 475 480

Ala Ala Gly Val Val Gln Thr Gly Lys Tyr Leu Asn Glu Gln Ile
485 490 495

Val Gln Asp Tyr Val Ala Ser Gln Val Ser Thr Ala Lys Trp Leu Arg
500 505 510

Gly Gly Val Lys Phe Leu Asp Glu Ile Pro Lys Gly Ser Thr Gly Lys 515 520 525

Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Thr Asn Gly 530 535 540

<210> 25

<211> 545

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 25

Met Glu Asp Lys Asn Ile Leu Tyr Gly Pro Glu Pro Phe Tyr Pro Leu

1 5 10 15

Ala Asp Gly Thr Ala Gly Glu Gln Met Phe Tyr Ala Leu Ser Arg Tyr
20 25 30

Ala Asp Ile Ser Gly Cys Ile Ala Leu Thr Asn Ala His Thr Lys Glu

35 40 45

Asn Val Leu Tyr Glu Glu Phe Leu Lys Leu Ser Cys Arg Leu Ala Glu 50 55 60

Ser Phe Lys Lys Tyr Gly Leu Lys Gln Asn Asp Thr Ile Ala Val Cys 65 70 75 80

Ser Glu Asn Gly Leu Gln Phe Phe Leu Pro Leu Ile Ala Ser Leu Tyr

Leu Gly Ile Ile Ala Ala Pro Val Ser Asp Lys Tyr Ile Glu Arg Glu

PCT/US99/30925 WO 01/20002 35

			100					105					110		
Leu	Ile	His	Ser	Leu	Gly	Ile	Val	Lys	Pro	Arg	Ile	Ile	Phe	Cys	Ser
		115					120					125			
Lys	Asn	Thr	Phe	Gln	Lys	Val	Leu	Asn	Val	Lys	Ser	Lys	Leu	rys	Туз
	130					135					140				
Val	Glu	Thr	Ile	Ile	Ile	Leu	Asp	Leu	Asn	Glu	Asp	Leu	Gly	Gly	Туг
145					150					155					160
Gln	Cys	Leu	Asn	Asn	Phe	Ile	Ser	Gln	Asn	Ser	Asp	Ile	Asn	Leu	Asp
				165					170					175	
Val	Lys	Lys	Phe	Lys	Pro	Asn	Ser	Phe	Asn	Arg	Asp	Asp	Gln	Val	Ala
			180					185					190		
Leu	Val	Met	Phe	Ser	Ser	Gly	Thr	Thr	Gly	Val	Ser	Lys	Gly	Val	Met
		195					200					205			
Leu	Thr	His	Lys	Asn	Ile	Val	Ala	Arg	Phe	Ser	His	Cys	Lys	Asp	Pro
	210					215					220				
Thr	Phe	Gly	Asn	Ala	Ile	Asn	Pro	Thr	Thr	Ala	Ile	Leu	Thr	Val	Ile
225					230					235					240
Pro	Phe	His	His	Gly	Phe	Gly	Met	Met	Thr	Thr	Leu	Gly	Tyr	Phe	Thi
				245					250		•			255	
Сув	Gly	Phe	Arg	Val	Ala	Leu	Met	His	Thr	Phe	Glu	Glu	Lys	Leu	Phe
			260					265					270		
Leu	Gln	Ser	Leu	Gln	Asp	Tyr	Lys	Val	Glu	Ser	Thr	Leu	Leu	Val	Pro
		275					280					285			
Thr	Leu	Met	Ala	Phe	Phe	Ala	Lys	Ser	Ala	Leu	Val	Glu	Lys	Tyr	Asp
	290					295					300				
Leu	Ser	His	Leu	Lys	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys
305					310					315					320
Glu	Ile	Gly	Glu	Met	Val	Lys	ГÀв	Arg	Phe	Lys	Leu	Asn	Phe	Val	Arg
				325					330					335	
Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Val	Leu	Ile	Thr	Pro
			340					345					350		
Asp	Thr	Asp	Val	Arg	Pro	Gly		Thr	Gly	Lys	Ile		Pro	Phe	His
		355					360					365			
Ala		Lys	Val	Val	Asp		Thr	Thr	Gly	Lys		Leu	Gly	Pro	Asr
	370			•		375					380				
	Thr	Gly	Glu	Leu		Phe	Lys	Gly	Asp		Ile	Met	Lys	Gly	
385					390					395		_			400
Tyr	Asn	Asn	Glu		Ala	Thr	Lys	Ala		Ile	Asn	Lys	Asp	-	Trţ
		_		405					410					415	_
Leu	Arg	Ser	-	Asp	Ile	Ala	Tyr	_	Asp	Asn	Asp	Gly		Phe	Ту
			420		_	_	_	425	_	_	_		430		
T1 ~	17.07	B	7	T ~	T		T	T1 ^	T	TT	T	~1·-	TT	71.	17-7

435 440 Ala Pro Ala Glu Ile Glu Gly Ile Leu Leu Gln His Pro Tyr Ile Val 455 Asp Ala Gly Val Thr Gly Ile Pro Asp Glu Ala Ala Gly Glu Leu Pro 470 475 Ala Ala Gly Val Val Val Gln Thr Gly Lys Tyr Leu Asn Glu Gln Ile 485 490 Val Gln Asn Phe Val Ser Ser Gln Val Ser Thr Ala Lys Trp Leu Arg 500 505 510 Gly Gly Val Lys Phe Leu Asp Glu Ile Pro Lys Gly Ser Thr Gly Lys 520 Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Lys Ser Lys 530 535 540 Leu 545 <210> 26 <211> 542 <212> PRT <213> Artificial Sequence <220> <223> note = "mutant luciferase" Met Met Lys Arg Glu Lys Asn Val Ile Tyr Gly Pro Glu Pro Leu His 1 5 Pro Leu Glu Asp Leu Thr Ala Gly Glu Met Leu Phe Arg Ala Leu Arg 25 Lys His Ser His Leu Pro Gln Ala Leu Val Asp Val Val Gly Asp Glu 35 40 Ser Leu Ser Tyr Lys Glu Phe Phe Glu Ala Thr Val Leu Leu Ala Gln 55 Ser Leu His Asn Cys Gly Tyr Lys Met Asn Asp Val Val Ser Ile Cys 70 75 Ala Glu Asn Asn Thr Arg Phe Phe Ile Pro Val Ile Ala Ala Trp Tyr 85 90 Ile Gly Met Ile Val Ala Pro Val Asn Glu Ser Tyr Ile Pro Asp Glu 105 Leu Cys Lys Val Met Gly Ile Ser Lys Pro Gln Ile Val Phe Thr Thr 115 120

Lys Asn Ile Leu Asn Lys Val Leu Glu Val Gln Ser Arg Thr Asn Phe

37

130 135 Ile Lys Arg Ile Ile Ile Leu Asp Thr Val Glu Asn Ile His Gly Cys 150 155 Glu Ser Leu Pro Asn Gly Ile Ser Arg Tyr Ser Asp Gly Asn Ile Ala 170 165 Asn Phe Lys Pro Leu His Phe Asp Pro Val Glu Gln Val Ala Ala Ile 185 Leu Cys Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val Met Gln Thr 195 200 His Gln Asn Ile Cys Val Arg Leu Ile His Ala Leu Asp Pro Arg Ala 215 Gly Thr Gln Leu Ile Pro Gly Val Thr Val Leu Val Tyr Leu Pro Phe 230 235 Phe His Ala Phe Gly Phe Ser Ile Thr Leu Gly Tyr Phe Met Val Gly 245 250 Leu Arg Val Ile Met Phe Arg Arg Phe Asp Gln Glu Ala Phe Leu Lys Ala Ile Gln Asp Tyr Glu Val Arg Ser Val Ile Asn Val Pro Ser Val 280 Ile Leu Phe Leu Ser Lys Ser Pro Leu Val Asp Lys Tyr Asp Leu Ser Ser Leu Arg Glu Leu Cys Cys Gly Ala Ala Pro Leu Ala Lys Glu Val 305 310 315 Ala Glu Val Ala Ala Lys Arg Leu Asn Leu Pro Gly Ile Arg Cys Gly Phe Gly Leu Thr Glu Ser Thr Ser Ala Asn Ile His Ser Leu Arg Asp 340 345 350 Glu Phe Lys Ser Gly Ser Leu Gly Arg Val Thr Pro Leu Met Ala Ala 360 Lys Ile Ala Asp Arg Glu Thr Gly Lys Ala Leu Gly Pro Asn Gln Val 370 375 Gly Glu Leu Cys Ile Lys Gly Pro Met Val Ser Lys Gly Tyr Val Asn 390 395 Asn Val Glu Ala Thr Lys Glu Ala Ile Asp Asp Asp Gly Trp Leu His 405 Ser Gly Asp Phe Gly Tyr Tyr Asp Glu Asp Glu His Phe Tyr Val Val 425 Asp Arg Tyr Lys Glu Leu Ile Lys Tyr Lys Gly Ser Gln Val Ala Pro 440 Ala Glu Leu Glu Glu Ile Leu Leu Lys Asn Pro Cys Ile Arg Asp Val 455 460 Ala Val Val Gly Ile Pro Asp Leu Glu Ala Gly Glu Leu Pro Ser Ala

465 470 475 480

The Well Well Lie Cla Pro Cly Lie Cla The Ale Lie Cla Well Two

Phe Val Val Lys Gln Pro Gly Lys Glu Ile Thr Ala Lys Glu Val Tyr
485 490 495

Asp Tyr Leu Ala Glu Arg Val Ser His Thr Lys Tyr Leu Arg Gly Gly 500 505 510

Val Arg Phe Val Asp Ser Ile Pro Arg Asn Val Thr Gly Lys Ile Thr
515 520 525

Arg Lys Glu Leu Leu Lys Gln Leu Leu Glu Lys Ala Gly Gly
530 535 540

<210> 27 -

<211> 548

<212> PRT

<213> Luciola cruciata

<400> 27

Met Glu Asn Met Glu Asn Asp Glu Asn Ile Val Val Gly Pro Lys Pro

1 5 10 15

Phe Tyr Pro Ile Glu Glu Gly Ser Ala Gly Thr Gln Leu Arg Lys Tyr
20 25 30

Met Glu Arg Tyr Ala Lys Leu Gly Ala Ile Ala Phe Thr Asn Ala Val 35 40 45

Thr Gly Val Asp Tyr Ser Tyr Ala Glu Tyr Leu Glu Lys Ser Cys Cys 50 55 60

Leu Gly Lys Ala Leu Gln Asn Tyr Gly Leu Val Val Asp Gly Arg Ile
65 70 75 80

Ala Leu Cys Ser Glu Asn Cys Glu Glu Phe Phe Ile Pro Val Ile Ala 85 90 95

Gly Leu Phe Ile Gly Val Gly Val Ala Pro Thr Asn Glu Ile Tyr Thr
100 105 110

Leu Arg Glu Leu Val His Ser Leu Gly Ile Ser Lys Pro Thr Ile Val

115 120 125
Phe Ser Ser Lys Lys Gly Leu Asp Lys Val Ile Thr Val Gln Lys Thr

130 135 140

Val Thr Thr Ile Lys Thr Ile Val Ile Leu Asp Ser Lys Val Asp Tyr
145 150 155 160

Arg Gly Tyr Gln Cys Leu Asp Thr Phe Ile Lys Arg Asn Thr Pro Pro 165 170 175

Gly Phe Gln Ala Ser Ser Phe Lys Thr Val Glu Val Asp Arg Lys Glu 180 185 190

Gln Val Ala Leu Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys 195 200 205

Gly	Val	Gln	Leu	Thr	His	Glu	Asn	Thr	Val	Thr	Arg	Phe	Ser	His	Ala
	210		•			215					220				
Arg	Asp	Pro	Ile	Tyr	Gly	Asn	Gln	Val	Ser	Pro	Gly	Thr	Ala	Val	Leu
225					230					235					240
Thr	Val	Val	Pro	Phe	His	His	Gly	Phe	Gly	Met	Phe	Thr	Thr	Leu	Gly
				245					250					255	
Tyr	Leu	Ile	Cys	Gly	Phe	Arg	Val	Val	Met	Leu	Thr	Lys	Phe	Asp	Glu
			260					265					270	-	
Glu	Thr	Phe	Leu	Lys	Thr	Leu	Gln	Asp	Tyr	Lys	Сув	Thr	Ser	Val	Ile
		275					280					285			
Leu	Val	Pro	Thr	Leu	Phe	Ala	Ile	Leu	Asn	Lys	Ser	Glu	Leu	Leu	Asn
	290					295					300				
Lys	Tyr	Asp	Leu	Ser	Asn	Leu	Val	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro
305					310					315					320
Leu	Ser	Lys	Glu	Val	Gly	Glu	Ala	Val	Ala	Arg	Arg	Phe	Asn	Leu	Pro
				325					330					335	
Gly	Val	Arg	Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Ile	Ile
			340					345					350		
Ile	Thr	Pro	Glu	Gly	Asp	Asp	Lys	Pro	Gly	Ala	Ser	Gly	Lys	Val	Val
		355					360					365			
Pro	Leu	Phe	Lys	Ala	Lys	Val	Ile	Asp	Leu	Asp	Thr	Lys	Lys	Ser	Leu
	370					375					380				
Gly	Pro	Asn	Arg	Arg	Gly	Glu	Val	Сув	Val	Lys	Gly	Pro	Met	Leu	Met
385					390					395					400
Lys	Gly	Tyr	Val	Asn	Asn	Pro	Glu	Ala	Thr	Lys	Glu	Leu	Ile	Asp	Glu
				405										415	
Glu			•	403					410						
	Gly	Trp	Leu		Thr	Gly	Asp	Ile		Tyr	туг	Asp	Glu		Lys
	Gly	Trp	Leu 420		Thr	Gly	Asp	Ile 425		Tyr	туг	Asp	Glu 430		Lys
His			420	His	Thr			425	Gly				430	Glu	
His			420	His				425	Gly				430	Glu	
	Phe	Phe	420 Ile	His Val		Arg	Leu 440	425 Lys	Gly Ser	Leu	Ile	Lys 445	430 Tyr	Glu Lys	Gly
	Phe	Phe	420 Ile	His Val	Asp	Arg	Leu 440	425 Lys	Gly Ser	Leu	Ile	Lys 445	430 Tyr	Glu Lys	Gly
туr	Phe Gln 450	Phe 435 Val	420 Ile Pro	His Val Pro	Asp	Arg Glu 455	Leu 440 Leu	425 Lys Glu	Gly Ser Ser	Leu Val	Ile Leu 460	Lys 445 Leu	430 Tyr Gln	Glu Lys His	Gly Pro
туr	Phe Gln 450	Phe 435 Val	420 Ile Pro	His Val Pro	Asp Ala	Arg Glu 455	Leu 440 Leu	425 Lys Glu	Gly Ser Ser	Leu Val	Ile Leu 460	Lys 445 Leu	430 Tyr Gln	Glu Lys His	Gly Pro
Tyr Ser 465	Phe Gln 450 Ile	Phe 435 Val	420 Ile Pro	His Val Pro Ala	Asp Ala Gly	Arg Glu 455 Val	Leu 440 Leu Ala	425 Lys Glu Gly	Ser Ser Val	Leu Val Pro 475	Ile Leu 460 Asp	Lys 445 Leu Pro	430 Tyr Gln Val	Glu Lys His Ala	Gly Pro Gly 480
Tyr Ser 465	Phe Gln 450 Ile	Phe 435 Val	420 Ile Pro	His Val Pro Ala	Asp Ala Gly 470	Arg Glu 455 Val	Leu 440 Leu Ala	425 Lys Glu Gly	Ser Ser Val	Leu Val Pro 475	Ile Leu 460 Asp	Lys 445 Leu Pro	430 Tyr Gln Val	Glu Lys His Ala	Gly Pro Gly 480
Tyr Ser 465 Glu	Phe Gln 450 Ile Leu	Phe 435 Val Phe	420 Ile Pro Asp Gly	Wal Pro Ala Ala 485	Asp Ala Gly 470	Arg Glu 455 Val	Leu 440 Leu Ala Val	425 Lys Glu Gly Leu	Ser Ser Val Glu 490	Leu Val Pro 475 Ser	Ile Leu 460 Asp	Lys 445 Leu Pro	430 Tyr Gln Val	Glu Lys His Ala Met 495	Gly Pro Gly 480 Thr
Tyr Ser 465 Glu	Phe Gln 450 Ile Leu	Phe 435 Val Phe	420 Ile Pro Asp Gly	Wal Pro Ala Ala 485	Asp Ala Gly 470 Val	Arg Glu 455 Val	Leu 440 Leu Ala Val	425 Lys Glu Gly Leu	Ser Ser Val Glu 490	Leu Val Pro 475 Ser	Ile Leu 460 Asp	Lys 445 Leu Pro	430 Tyr Gln Val	Glu Lys His Ala Met 495	Gly Pro Gly 480 Thr
Tyr Ser 465 Glu	Phe Gln 450 Ile Leu	Phe 435 Val Phe Pro Glu	420 Ile Pro Asp Gly Val	Val Pro Ala Ala 485 Met	Asp Ala Gly 470 Val	Arg Glu 455 Val Val	Leu 440 Leu Ala Val	425 Lys Glu Gly Leu Ala 505	Ser Ser Val Glu 490 Ser	Leu Val Pro 475 Ser Gln	Ile Leu 460 Asp Gly Val	Lys 445 Leu Pro Lys Ser	430 Tyr Gln Val Asn Asn 510	Glu Lys His Ala Met 495 Ala	Gly Pro Gly 480 Thr
Tyr Ser 465 Glu	Phe Gln 450 Ile Leu	Phe 435 Val Phe Pro Glu	420 Ile Pro Asp Gly Val	Val Pro Ala Ala 485 Met	Asp Ala Gly 470 Val	Arg Glu 455 Val Val	Leu 440 Leu Ala Val	425 Lys Glu Gly Leu Ala 505	Ser Ser Val Glu 490 Ser	Leu Val Pro 475 Ser Gln	Ile Leu 460 Asp Gly Val	Lys 445 Leu Pro Lys Ser	430 Tyr Gln Val Asn Asn 510	Glu Lys His Ala Met 495 Ala	Gly Pro Gly 480 Thr
Tyr Ser 465 Glu Glu Arg	Phe Gln 450 Ile Leu Lys	Phe 435 Val Phe Pro Glu Arg 515	420 Ile Pro Asp Gly Val 500 Gly	Val Pro Ala Ala 485 Met	Asp Ala Gly 470 Val Asp	Arg Glu 455 Val Val Tyr	Leu 440 Leu Ala Val Val	425 Lys Glu Gly Leu Ala 505 Val	Ser Ser Val Glu 490 Ser Asp	Leu Val Pro 475 Ser Gln Glu	Ile Leu 460 Asp Gly Val	Lys 445 Leu Pro Lys Ser Pro 525	430 Tyr Gln Val Asn Asn 510 Lys	Glu Lys His Ala Met 495 Ala Gly	Gly Pro Gly 480 Thr

Val Ala Lys Met

<210> 28

<211> 548

<212> PRT

<213> Luciola lateralis

<400> 28

Met Glu Asn Met Glu Asn Asp Glu Asn Ile Val Tyr Gly Pro Glu Pro 10 Phe Tyr Pro Ile Glu Glu Gly Ser Ala Gly Ala Gln Leu Arg Lys Tyr 25 20 Met Asp Arg Tyr Ala Lys Leu Gly Ala Ile Ala Phe Thr Asn Ala Leu 40 Thr Gly Val Asp Tyr Thr Tyr Ala Glu Tyr Leu Glu Lys Ser Cys Cys 55 Leu Gly Glu Ala Leu Lys Asn Tyr Gly Leu Val Val Asp Gly Arg Ile 70 75 Ala Leu Cys Ser Glu Asn Cys Glu Glu Phe Phe Ile Pro Val Leu Ala 90 Gly Leu Phe Ile Gly Val Gly Val Ala Pro Thr Asn Glu Ile Tyr Thr 105 Leu Arg Glu Leu Val His Ser Leu Gly Ile Ser Lys Pro Thr Ile Val 120 Phe Ser Ser Lys Lys Gly Leu Asp Lys Val Ile Thr Val Gln Lys Thr 130 Val Ala Thr Ile Lys Thr Ile Val Ile Leu Asp Ser Lys Val Asp Tyr 150 155 Arg Gly Tyr Gln Ser Met Asp Asn Phe Ile Lys Lys Asn Thr Pro Gln 170 165 Gly Phe Lys Gly Ser Ser Phe Lys Thr Val Glu Val Asn Arg Lys Glu 185 Gln Val Ala Leu Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys 200 Gly Val Gln Leu Thr His Glu Asn Ala Val Thr Arg Phe Ser His Ala 215 220 Arg Asp Pro Ile Tyr Gly Asn Gln Val Ser Pro Gly Thr Ala Ile Leu 230 235 Thr Val Val Pro Phe His His Gly Phe Gly Met Phe Thr Thr Leu Gly 250 245

Tyr Leu Thr Cys Gly Phe Arg Ile Val Met Leu Thr Lys Phe Asp Glu

				260					265					270		
G	lu	Thr	Phe	Leu	Lys	Thr	Leu	Gln	Asp	Tyr	Lys	Cys	Ser	Ser	Val	Ile
			275					280					285			
L	eu	Val	Pro	Thr	Leu	Phe	Ala	Ile	Leu	Asn	Arg	Ser	Glu	Leu	Leu	Asp
		290					295					300				
L	ys	Tyr	Asp	Leu	Ser	Asn	Leu	Val	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro
3	05		,			310					315					320
L	eu	Ser	Lys	Glu	Ile	Gly	Glu	Ala	Val	Ala	Arg	Arg	Phe	Asn	Leu	Pro
					325					330					335	
G	ly	Val	Arg	Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Ile	Ile
				340					345					350		
I	le	Thr	Pro	Glu	Gly	Asp	Asp	Lys	Pro	Gly	Ala	Ser	Gly	Lys	Val	Val
			355					360					365			
Pı	ro	Leu	Phe	Lys	Ala	Lys	Val	Ile	Asp	Leu	Asp	Thr	Lys	Lys	Thr	Leu
		370					375					380				
G.	ly	Pro	Asn	Arg	Arg	Gly	Glu	Val	Cys	Val	Lys	Gly	Pro	Met	Leu	Met
38	35					390					395					400
L	/s	Gly	Tyr	Val	Asp	Asn	Pro	Glu	Ala	Thr	Arg	Glu	Ile	Ile	Asp	Glu
					405					410					415	
G]	lu	Gly	Trp	Leu	His	Thr	Gly	Asp	Ile	Gly	Tyr	Tyr	Asp	Glu	Glu	Lys
				420					425					430		
Hi	is	Phe	Phe	Ile	Val	Asp	Arg	Leu	Lys	Ser	Leu	Ile	Lys	Tyr	Lys	Gly
			435					440					445			
T	/r	Gln	Val	Pro	Pro	Ala	Glu	Leu	Glu	Ser	Val	Leu	Leu	Gln	His	Pro
		450					455					460				
Αε	an.	Ile	Phe	Asp	Ala	Gly	Val	Ala	Gly	Val	Pro	Asp	Pro	Ile	Ala	Gly
46	55					470					475					480
G]	lu	Leu	Pro	Gly	Ala	Val	Val	Val	Leu	Glu	Lys	Gly	Lys	Ser	Met	Thr
					485					490					495	
G1	lu	rae	Glu	Val	Met	Asp	Tyr	Val	Ala	Ser	Gln	Val	Ser	Asn	Ala	Lys
				500					505					510		
Aı	g	Leu	Arg	Gly	Gly	Val	Arg	Phe	Val	Авр	Glu	Val	Pro	Lys	Gly	Leu
			515					520					525			
Tì	ır	Gly	Lys	Ile	Asp	Gly	Lys	Ala	Ile	Arg	Glu	Ile	Leu	Lys	Lys	Pro
		530					535					540				
۷a	1	Ala	Lys	Met												
54	5															

<210> 29

<211> 548

<212> PRT

<213> Luciola mingrelica

<400> 29 Met Glu Met GIu Lys Glu Glu Asn Val Val Tyr Gly Pro Leu Pro Phe 5 10 Tyr Pro Ile Glu Glu Gly Ser Ala Gly Ile Gln Leu His Lys Tyr Met His Gln Tyr Ala Lys Leu Gly Ala Ile Ala Phe Ser Asn Ala Leu Thr 40 Gly Val Asp Ile Ser Tyr Gln Glu Tyr Phe Asp Ile Thr Cys Arg Leu Ala Glu Ala Met Lys Asn Phe Gly Met Lys Pro Glu Glu His Ile Ala 70 75 Leu Cys Ser Glu Asn Cys Glu Glu Phe Phe Ile Pro Val Leu Ala Gly 90 Leu Tyr Ile Gly Val Ala Val Ala Pro Thr Asn Glu Ile Tyr Thr Leu 105 Arg Glu Leu Asn His Ser Leu Gly Ile Ala Gln Pro Thr Ile Val Phe 120 Ser Ser Arg Lys Gly Leu Pro Lys Val Leu Glu Val Gln Lys Thr Val 135 Thr Cys Ile Lys Lys Ile Val Ile Leu Asp Ser Lys Val Asn Phe Gly 150 155 Gly His Asp Cys Met Glu Thr Phe Ile Lys Lys His Val Glu Leu Gly 165 170 Phe Gln Pro Ser Ser Phe Val Pro Ile Asp Val Lys Asn Arg Lys Gln 185 His Val Ala Leu Leu Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys 200 Gly Val Arg Ile Thr His Glu Gly Ala Val Thr Arg Phe Ser His Ala 215 Lys Asp Pro Ile Tyr Gly Asn Gln Val Ser Pro Gly Thr Ala Ile Leu 230 235 Thr Val Val Pro Phe His His Gly Phe Gly Met Phe Thr Thr Leu Gly 245 250 Tyr Phe Ala Cys Gly Tyr Arg Val Val Met Leu Thr Lys Phe Asp Glu 265 Glu Leu Phe Leu Arg Thr Leu Gln Asp Tyr Lys Cys Thr Ser Val Ile 275 280 285 Leu Val Pro Thr Leu Phe Ala Ile Leu Asn Lys Ser Glu Leu Ile Asp

295

310

305

Lys Phe Asp Leu Ser Asn Leu Thr Glu Ile Ala Ser Gly Gly Ala Pro

Leu Ala Lys Glu Val Gly Glu Ala Val Ala Arg Arg Phe Asn Leu Pro

300

				325					330					335	
Gly	Val	Arg	Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Phe	Ile
			340					345					350		
Ile	Thr	Pro	Glu	Gly	Asp	Asp	Lys	Pro	Gly	Ala	Ser	Gly	Lys	Val	Val
		355					360					365			
Pro	Leu	Phe	Lys	Val	Lys	Val	Ile	Asp	Leu	Asp	Thr	Lys	Lys	Thr	Leu
	370					375					380				
Gly	Val	Asn	Arg	Arg	Gly	Glu	Ile	Cys	Val	Lys	Gly	Pro	Ser	Leu	Met
385					390					395					400
Leu	Gly	Tyr	Ser	Asn	Asn	Pro	Glu	Ala	Thr	Arg	Glu	Thr	Ile	Asp	Glu
				405					410					415	
Glu	Gly	Trp	Leu	His	Thr	Gly	Asp	Ile	Gly	Tyr	Tyr	Asp	Glu	Asp	Glu
			420					425					430		
His	Phe	Phe	Ile	Val	Asp	Arg	Leu	Lys	Ser	Leu	Ile	Lys	Tyr	Lys	Gly
		435					440					445			
Tyr	Gln	Val	Pro	Pro	Ala	Glu	Leu	Glu	Ser	Val	Leu	Leu	Gln	His	Pro
	450					455					460				
	Ile	Phe	Asp	Ala	Gly	Val	Ala	Gly	Val	Pro	Asp	Pro	Asp	Ala	Gly
465					470					475					480
Glu	Leu	Pro	Gly		Val	Val	Val	Met	Glu	Lys	Gly	Lys	Thr	Met	Thr
				485					490					495	
Glu	Lys	Glu		Val	Asp	Tyr	Val		Ser	Gln	Val	Val	Asn	His	Lys
	_	_	500					505					510		
Arg	Leu		GIY	GIY	Val	Arg		Val	Asp	Glu	Val		Lys	Gly	Leu
mh	01	515	- 3 -			_	520					525			
inr	Gly	гув	TTE	Авр	Ala		Val	Ile	Arg	Glu		Leu	Lys	Lys	Pro
61 -	530	T				535					540				
	Ala	г\я	mec												
545															
		10-	3.0												
<210> <211>					•										
		11>													
	< 2	127	FKI												

<213> Pyrocoelia miyako

<400> 30

 Met
 Glu
 Asp
 Asp
 Ser
 Lys
 His
 His
 Gly
 His
 Arg
 His
 Ser
 Ile

 1
 5
 10
 10
 15
 15
 15

 Leu
 Trp
 Glu
 Asp
 Gly
 Thr
 Ala
 Gly
 Glu
 Glu
 Leu
 His
 Lys
 Ala
 Met
 Lys

 Arg
 Tyr
 Ala
 Gln
 Val
 Pro
 Gly
 Thr
 Ile
 Ala
 Phe
 Thr
 Asp
 Ala
 His
 Ala

 Arg
 Tyr
 Ala
 Gln
 Val
 Pro
 Gly
 Thr
 Ile
 Ala
 Phe
 Thr
 Asp
 Ala
 His
 Ala

 Arg
 Tyr
 Ala
 Gln
 Val
 Pro
 Gly
 Thr
 Ile
 Ala
 Phe
 Thr
 Asp
 Ala
 His
 Ala

 Arg
 Tyr
 Ala
 His
 Ala
 His
 Ala
 His
 Ala
 His
 Ala
 His
 Ala
 His
 Ala
 His

Glu	Val	. Asr	lle	Thr	Tyr	Ser	Glu	Tyr	Phe	Glu	Met	Ser	Сув	Arg	Leu
	50		-			55					60				
Ala	Glu	Thr	Met	Lys	Arg	Туг	Gly	Leu	Gly	Leu	Gln	His	His	Ile	Ala
65					70					75					80
Val	Cys	Ser	Glu	Thr	Ser	Leu	Gln	Phe	Phe	Met	Pro	Val	Cys	Gly	Ala
				85					90					95	
Leu	Phe	Ile	Gly	Val	Gly	Val	Ala	Pro	Thr	Asn	Asp	Ile	Tyr	Asn	Glu
			100					105					110		
Arg	Glu	Leu	Tyr	Asn	Ser	Leu	Phe	Ile	Ser	Gln	Pro	Thr	Ile	Val	Phe
		115					120					125			
Cys	Ser	Lys	Arg	Ala	Leu	Gln	Lys	Ile	Leu	Gly	Val	Gln	Lys	Lys	Leu
	130					135					140				
Pro	Val	Ile	Gln	Lys	Ile	Val	Ile	Leu	Asp	Ser	Arg	Glu	Asp	Tyr	Met
145					150					155					160
Gly	Lys	Gln	Ser	Met	Tyr	Ser	Phe	Ile	Glu	Ser	His	Leu	Pro	Ala	Gly
				165					170					175	
Phe	Asn	Glu	Tyr	Asp	Tyr	Ile	Pro	Asp	Ser	Phe	Asp	Arg	Glu	Thr	Ala
			180					185					190		
Thr	Ala	Leu	Ile	Met	Asn	Ser	Ser	Gly	Ser	Thr	Gly	Leu	Pro	Lys	Gly
		195	•				200					205			
Val	Asp	Leu	Thr	His	Met	Asn	Väl	Cys	Val	Arg	Phe	Ser	His	Сув	Arg
	210					215					220				
qeA	Pro	Val	Phe	Gly	Asn	Gln	Ile	Ile	Pro	Asp	Thr	Ala	Ile	Leu	Thr
225					230					235					240
Val	Ile	Pro	Phe	His	His	Val	Phe	Gln	Met	Phe	Thr	Thr	Leu	Gly	Tyr
		•		245					250					255	
Leu	Thr	Сув	Gly	Phe	Arg	Ile	Val	Leu	Met	Tyr	Arg	Phe	Glu	Glu	Glu
			260					265					270		
Leu	Phe	Leu	Arg	Ser	Leu	Gln	Asp	Tyr	Lys	Ile	Gln	Ser	Ala	Leu	Leu
		275					280					285			
Val	Pro	Thr	Leu	Phe	Ser	Phe	Phe	Ala	Lys	Ser	Thr	Leu	Val	Asp	Lys
	290					295					300				
Tyr	Asp	Leu	Ser	Asn	Leu	His	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu
305					310					315					320
Ala	Lys	Glu	Val	Gly	Glu	Ala	Val	Ala	Lys	Arg	Phe	Lys	Leu	Pro	Gly
				325				•	330					335	
Ile	Arg	Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Ile	Ile	Ile
			340					345					350		
Thr	Pro		Gly	Asp	Asp	Lys	Pro	Gly	Ala	Сув	Gly	Lys	Val	Val	Pro
		355					360					365			
Phe		Thr	Ala	Lys	Ile	Val	Asp	Leu	Asp	Thr	Gly	ГÀв	Thr	Leu	Gly
	370					375					380				

45

WO 01/20002 PCT/US99/30925

Val Asn Gln Arg Gly Glu Leu Cys Val Lys Gly Pro Met Ile Met Lys 390 Gly Tyr Val Asn Asn Pro Glu Ala Thr Asn Ala Leu Ile Asp Lys Asp 405 410 Gly Trp Leu His Ser Gly Asp Ile Ala Tyr Tyr Asp Lys Asp Gly His 420 425 Phe Phe Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr 440 Gln Val Pro Pro Ala Glu Leu Glu Ser Ile Leu Leu Gln His Pro Phe 455 Ile Phe Asp Ala Gly Val Ala Gly Ile Pro Asp Pro Asp Ala Gly Glu 470 475 Leu Pro Ala Ala Val Val Leu Glu Glu Gly Lys Met Met Thr Glu 485 490 Gln Glu Val Met Asp Tyr Val Ala Gly Gln Val Thr Ala Ser Lys Arg 500 505 Leu Arg Gly Gly Val Lys Phe Val Asp Glu Val Pro Lys Gly Leu Thr 520 Gly Lys Ile Asp Ser Arg Lys Ile Arg Glu Ile Leu Thr Met Gly Gln 535 540 Lys Ser Lys Leu 545

<210> 31

<211> 550

<212> PRT

<213> Photinus pyralis

<400> 31

46

			100					105					110		
Glu	Leu	Leu	Asn	Ser	Met	Asn	Ile	Ser	Gln	Pro	Thr	Val	Val	Phe	Val
	•	115					120					125			
Ser	Lys	Lys	Gly	Leu	Gln	Lys	Ile	Leu	Asn	Val	Gln	Lys	Lys	Leu	Pro
	130					135					140				
Ile	Ile	Gln	Lys	Ile	Ile	Ile	Met	Asp	Ser	Lys	Thr	Asp	Tyr	Gln	Gly
145					150					155					160
Phe	Gln	Ser	Met	Tyr	Thr	Phe	Val	Thr	Ser	His	Leu	Pro	Pro	Gly	Phe
				165					170					175	
Asn	Glu	Tyr	Asp	Phe	Val	Pro	Glu	Ser	Phe	Asp	Arg	Asp	Lys	Thr	Ile
			180					185					190		
Ala	Leu	Ile	Met	Asn	Ser	Ser	Gly	Ser	Thr	Gly	Leu	Pro	Lys	Gly	Val
		195					200					205			
Ala	Leu	Pro	His	Arg	Thr	Ala	Cys	Val	Arg	Phe	Ser	His	Ala	Arg	Asp
	210					215					220				
Pro	Ile	Phe	Gly	Asn	Gln	Ile	Ile	Pro	Asp	Thr	Ala	Ile	Leu	Ser	Val
225					230					235					240
Val	Pro	Phe	His	His	Gly	Phe	Gly	Met	Phe	Thr	Thr	Leu	Gly	Tyr	Leu
				245					250					255	
Ile	Cys	Gly	Phe	Arg	Val	Val	Leu	Met	Tyr	Arg	Phe	Glu	Glu	Glu	Leu
_			260					265					270		
Phe	Leu		Ser	Leu	Gln	Asp	Tyr	Lys	Ile	Gln	Ser	Ala	Leu	Leu	Val
	_	275					280					285			
Pro		Leu	Phe	Ser	Phe		Ala	Lys	Ser	Thr		Ile	Asp	Lys	Tyr
_	290	_				295					300				
	Leu	Ser	Asn	Leu		Glu	Ile	Ala	Ser		Gly	Ala	Pro	Leu	
305	9 1	**- 7	01	~ 1	310				_	315					320
гàв	GIU	vaı	Gly		Ата	val	Ala	Lys		Phe	His	Leu	Pro		Ile
N	<i>C</i> 1-	~1	T	325	T	m	~1	-1	330					335	
AIG	GIII	GIY	340	GIY	Leu	Inr	GIU		Thr	ser	Ala	He		He	Thr
Dwo	Cl.	C1		2	*	D-1-2	63	345		-1			350	_	
PIO	Giu	355	Asp	Asp	ьys	PIO		AIA	vaı	GIY	rys		Val	Pro	Phe
Dha	G) u		Lva	Wa I	Val	3.00	360	X	mh	01	T	365	•	a 1	7
FILE	370	ATA	Lys	vai	vaı	375	Leu	Авр	Inr	GIY		Thr	Leu	GIÀ	vaı
Agn		Ara	Gly	Glu	T Au		Val.	7.50	C1	Dwa	380	T1.	Mah	0	a 1
385	J111	9	J-y	J14	390	cyp	AGI	ALY.	GIÀ	395	MEL	116	MET	ser	400
	۷a۱	Agn	Asn	Pro		Ala	Th∽	Nan	Δ 1=		Tla	Δ = ~	Tara	λα	
-1-				405				~211	410	Lu	116	vaħ	πλa	415	GIY
Tro	Leu	His	Ser		Asp	I)e	Ala	Tvr		Δen	Glu	Δan	G) v		Dhe
F			420	1	p			425	1	ռոր	J14	vaħ	430	ura	-116
Phe	Ile	Val		Ara	Leu	Lve	Ser		Tle	Lve	ጥረታ	Lve		Ту/-	aln

47

WO 01/20002 PCT/US99/30925

435 440 Val Ala Pro Ala Glu Leu Glu Ser Ile Leu Leu Gln His Pro Asn Ile 455 460 Phe Asp Ala Gly Val Ala Gly Leu Pro Asp Asp Asp Ala Gly Glu Leu 475 465 470 Pro Ala Ala Val Val Leu Glu His Gly Lys Thr Met Thr Glu Lys 490 Glu Ile Val Asp Tyr Val Ala Ser Gln Val Thr Thr Ala Lys Lys Leu 500 505 Arg Gly Gly Val Val Phe Val Asp Glu Val Pro Lys Gly Leu Thr Gly 520 Lys Leu Asp Ala Arg Lys Ile Arg Glu Ile Leu Ile Lys Ala Lys Lys 530 535 540 Gly Gly Lys Ser Lys Leu 545 550

<210> 32

<211> 547

<212> PRT

<213> Lampyris noctiluca

<400> 32

Met Glu Asp Ala Lys Asn Ile Met His Gly Pro Ala Pro Phe Tyr Pro Leu Glu Asp Gly Thr Ala Gly Glu Gln Leu His Lys Ala Met Lys Arg 25 Tyr Ala Gln Val Pro Gly Thr Ile Ala Phe Thr Asp Ala His Ala Glu 40 Val Asn Ile Thr Tyr Ser Glu Tyr Phe Glu Met Ala Cys Arg Leu Ala 55 Glu Thr Met Lys Arg Tyr Gly Leu Gly Leu Gln His His Ile Ala Val 70 75 Cys Ser Glu Asn Ser Leu Gln Phe Phe Met Pro Val Cys Gly Ala Leu 85 90 Phe Ile Gly Val Gly Val Ala Ser Thr Asn Asp Ile Tyr Asn Glu Arg 105 Glu Leu Tyr Asn Ser Leu Ser Ile Ser Gln Pro Thr Ile Val Ser Cys 120 Ser Lys Arg Ala Leu Gln Lys Ile Leu Gly Val Gln Lys Lys Leu Pro 135 140 Ile Ile Gln Lys Ile Val Ile Leu Asp Ser Arg Glu Asp Tyr Met Gly · 155 150 145

Lys	Gln	Ser	Met	Tyr	Ser	Phe	Ile	Glu	Ser	His	Leu	Pro	Ala	Gly	Phe
			-	165					170					175	
Asn	Glu	Tyr	Asp	Tyr	Ile	Pro	Asp	Ser	Phe	Asp	Arg	Glu	Thr	Ala	Thi
			180					185					190		
Ala	Leu	Ile	Met	Asn	Ser	Ser	Gly	Ser	Thr	Gly	Leu	Pro	Lys	Gly	Va]
		195					200					205			
Glu	Leu	Thr	His	Gln	Asn	Val	Cys	Val	Arg	Phe	Ser	His	Сув	Arg	Asp
	210					215					220				
Pro	Val	Phe	Gly	Asn	Gln	Ile	Ile	Pro	Asp	Thr	Ala	Ile	Leu	Thr	Va]
225					230					235					240
Ile	Pro	Phe	His	His	Gly	Phe	Gly	Met	Phe	Thr	Thr	Leu	Gly	Tyr	Let
				245					250					255	
Thr	Суз	Gly	Phe	Arg	Ile	Val	Leu	Met	Tyr	Arg	Phe	Glu	Glu	Glu	Leu
			260					265					270		
Phe	Leu	Arg	Ser	Leu	Gln	Asp	Tyr	Lys	Ile	Gln	Ser	Ala	Leu	Leu	Va1
		275					280					285			
Pro	Thr	Leu	Phe	Ser	Phe	Phe	Ala	Lys	Ser	Thr	Leu	Val	Asp	Lys	Tyr
	290					295					300				
Asp	Leu	Ser	Asn	Leu	His	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ala
305					310					315					320
Lys	Glu	Val	Gly	Glu	Ala	Val	Ala	Lys	Arg	Phe	Lys	Leu	Pro	Gly	Ile
				325					330		•			335	
Arg	Gln	Gly		Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Ile	Ile	Ile	Thr
	_		340					345					350		
Pro	Glu		Asp	Asp	Lys	Pro		Ala	Cys	Gly	Lys	Val	Val	Pro	Phe
_,		355					360					365			
Phe		Ala	Lys	Ile	Val		Leu	Asp	Thr	Gly		Thr	Leu	Gly	Val
_	370	•			_	375					380	_			
	GIN	arg	GIÀ			Сув	Val	Lys	Gly			Ile	Met	Lys	Gly
385	17-1	3	3		390			•	• • •	395		_		_	400
Tyr	Val	ABII			GIU	AIA	Inr	ser		Leu	He	Asp	Lys		GIY
Trans.	Lau	ui c		405	Nan	71 0	21.	<i>-</i>	410	2	•		01	415	5 1
пр	neu	uta	420	GIY	Авр	116	Ala		TYE	Asp	гув	Asp	Gly	нів	Pne
Dhe	Tla	V=1		λ×~	Lau	Tuo	C0~	425	T1.	T	TT	T	430 Gly		a 1-
FIIC	116	435	Asp	Arg	Leu	гуз	440	neu	116	гåя	Tyr		GIY	Tyr	GIN
Va 1	Pro		Δla	Glu	ī.eu	Glu		Tla	T.Au	Leu	Gl n	445	Pro	Dha	T10
	450		7.14	014	Deu	455	Ser	116	Deu	neu	460	uis	PIO	FIIE	116
Phe		Ala	Glv	Val.	Ala		Ile	Pro	Aan	Pro		Ala	Gly	Glii	T.e.u
465			1		470	1				475		u	- Ly		480
	Ala	Ala	Val	Val		Leu	Glu	Glu	Glv	-	Thr	Met	Thr	Glu	
				485					490	-, -				495	

Glu Val Met Asp Tyr Val Ala Gly Gln Val Thr Ala Ser Lys Arg Leu
500 505 510

Arg Gly Gly Val Lys Phe Val Asp Glu Val Pro Lys Gly Leu Thr Gly
515 520 525

Lys Ile Asp Gly Arg Lys Ile Arg Glu Ile Leu Met Met Gly Lys Lys 530 535 540

Ser Lys Leu

545

<210> 33

<211> 552

<212> PRT

<213> Photuris pennsylvanica

<400> 33

Met Ser Ile Glu Asn Asn Ile Leu Ile Gly Pro Pro Pro Tyr Tyr Pro

Leu Glu Glu Gly Thr Ala Gly Glu Gln Leu His Arg Ala Ile Ser Arg
20 25 30

Tyr Ala Ala Val Pro Gly Thr Leu Ala Tyr Thr Asp Val His Thr Glu

Leu Glu Val Thr Tyr Lys Glu Phe Leu Asp Val Thr Cys Arg Leu Ala

50 55 60

Glu Ala Met Lys Asn Tyr Gly Leu Gly Leu Gln His Thr Ile Ser Val 65 70 75 80

Cys Ser Glu Asn Cys Val Gln Phe Phe Met Pro Ile Cys Ala Ala Leu 85 90 95

Tyr Val Gly Val Ala Thr Ala Pro Thr Asn Asp Ile Tyr Asn Glu Arg
100 105 110

Glu Leu Tyr Asn Ser Leu Ser Ile Ser Gln Pro Thr Val Val Phe Thr 115 120 125

Ser Arg Asn Ser Leu Gln Lys Ile Leu Gly Val Gln Ser Arg Leu Pro

130 135 140

Ile Ile Lys Lys Ile Ile Ile Leu Asp Gly Lys Lys Asp Tyr Leu Gly

145 150 155 160

Tyr Gln Ser Met Gln Ser Phe Met Lys Glu His Val Pro Ala Asn Phe
165 170 175

Asn Val Ser Ala Phe Lys Pro Leu Ser Phe Asp Leu Asp Arg Val Ala 180 185 190

Cys Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys Gly Val Pro

Ile Ser His Arg Asn Thr Ile Tyr Arg Phe Ser His Cys Arg Asp Pro

50

210 215 220 Val Phe Gly Asn Gln Ile Ile Pro Asp Thr Thr Ile Leu Cys Ala Val 230 235 Pro Phe His His Ala Phe Gly Thr Phe Thr Asn Leu Gly Tyr Leu Ile 245 250 Cys Gly Phe His Val Val Leu Met Tyr Arg Phe Asn Glu His Leu Phe 265 Leu Gln Thr Leu Gln Asp Tyr Lys Cys Gln Ser Ala Leu Leu Val Pro 275 280 Thr Val Leu Ala Phe Leu Ala Lys Asn Pro Leu Val Asp Lys Tyr Asp 295 300 Leu Ser Asn Leu His Glu Ile Ala Ser Gly Gly Ala Pro Leu Ser Lys 310 Glu Ile Ser Glu Ile Ala Ala Lys Arg Phe Lys Leu Pro Gly Ile Arg 325 330 Gln Gly Tyr Gly Leu Thr Glu Thr Thr Cys Ala Ile Val Ile Thr Ala 345 Glu Gly Glu Phe Lys Leu Gly Ala Val Gly Lys Val Val Pro Phe Tyr - 360 Ser Leu Lys Val Leu Asp Leu Asn Thr Gly Lys Lys Leu Gly Pro Asn 375 Glu Arg Gly Glu Ile Cys Phe Lys Gly Pro Met Ile Met Lys Gly Tyr 390 395 Ile Asn Asn Pro Glu Ala Thr Arg Glu Leu Ile Asp Glu Glu Gly Trp 410 Ile His Ser Gly Asp Ile Gly Tyr Phe Asp Glu Asp Gly His Val Tyr 420 425 Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln Val 440 Pro Pro Ala Glu Leu Glu Ala Leu Leu Leu Gln His Pro Phe Ile Glu 450 455 Asp Ala Gly Val Ala Gly Val Pro Asp Glu Val Ala Gly Asp Leu Pro 470 475 Gly Ala Val Val Leu Lys Glu Gly Lys Ser Ile Thr Glu Lys Glu 490 Ile Gln Asp Tyr Val Ala Gly Gln Val Thr Ser Ser Lys Lys Leu Arg 505 Gly Gly Val Glu Phe Val Lys Glu Val Pro Lys Gly Phe Thr Gly Lys 520 Ile Asp Thr Arg Lys Ile Lys Glu Ile Leu Ile Lys Ala Gln Lys Gly 530 535 540 Lys Ser Lys Ser Lys Ala Lys Leu

545 550

<210> 34

<211> 546

<212> PRT

<213> Phengodes sp.

<400> 34

260

Met Ile Lys Met Glu Glu His Val Met Pro Gly Ala Met Pro Arg Asp Leu Leu Phe Glu Gly Thr Ala Gly Gln Gln Leu His Arg Ala Leu 25 Tyr Lys His Ser Tyr Phe Pro Glu Ala Ile Val Asp Ser His Thr His Glu Ile Ile Ser Tyr Ala Lys Ile Leu Asp Met Ser Cys Arg Leu Ala 55 60 Val Ser Phe Gln Lys Tyr Gly Leu Thr Gln Asn Asn Ile Ile Gly Ile 70 75 Cys Ser Glu Asn Asn Leu Asn Phe Phe Asn Pro Val Ile Ala Ala Phe 85 90 Tyr Leu Gly Ile Thr Val Ala Thr Val Asn Asp Thr Tyr Thr Asp Arg 105 Glu Leu Ser Glu Thr Leu Asn Ile Thr Lys Pro Gln Met Leu Phe Cys 115 120 Ser Lys Gln Ser Leu Pro Ile Val Met Lys Thr Met Lys Ile Met Pro 135 140 Tyr Val Gln Lys Leu Leu Ile Ile Asp Ser Met Gln Asp Ile Gly Gly 145 150 Ile Glu Cys Val His Ser Phe Val Ser Arg Tyr Thr Asp Glu His Phe 170 Asp Pro Leu Lys Phe Val Pro Leu Asp Phe Asp Pro Arg Glu Gln Val 185 Ala Leu Ile Met Thr Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val 195 200 205 Met Leu Thr His Arg Asn Ile Cys Val Arg Phe Val His Ser Arg Asp Pro Leu Phe Gly Thr Arg Phe Ile Pro Glu Thr Ser Ile Leu Ser Leu 230 235 Val Pro Phe His His Ala Phe Gly Met Phe Thr Thr Leu Ser Tyr Phe 245 250 Ile Val Gly Leu Lys Ile Val Met Met Lys Arg Phe Asp Gly Glu Leu

265

270

Phe Leu Lys Thr Ile Gln Asn Tyr Lys Ile Pro Thr Ile Val Ile Ala 275 280 Pro Pro Val Met Val Phe Leu Ala Lys Ser His Leu Val Asp Lys Tyr 295 Asp Leu Ser Ser Ile Lys Glu Ile Ala Thr Gly Gly Ala Pro Leu Gly 310 315 Pro Ala Leu Ala Asn Ala Val Ala Lys Arg Leu Lys Leu Gly Gly Ile 325 330 Ile Gln Gly Tyr Gly Leu Thr Glu Thr Cys Cys Ala Val Leu Ile Thr 345 Pro His Asn Lys Ile Lys Thr Gly Ser Thr Gly Gln Val Leu Pro Tyr 360 Val Thr Ala Lys Ile Val Asp Thr Lys Thr Gly Lys Asn Leu Gly Pro 375 Asn Gln Thr Gly Glu Leu Cys Phe Lys Ser Asp Ile Ile Met Lys Gly 385 390 395 Tyr Tyr Gln Asn Glu Glu Glu Thr Arg Leu Val Ile Asp Lys Asp Gly 410 Trp Leu His Ser Gly Asp Ile Gly Tyr Tyr Asp Thr Asp Gly Asn Phe 420 425 His Ile Val Asp Arg Leu Lys Glu Leu Ile Lys Tyr Lys Ala Tyr Gln 440 Val Ala Pro Ala Glu Leu Glu Ala Leu Leu Leu Gln His Pro Tyr Ile Ala Asp Ala Gly Val Thr Gly Ile Pro Asp Glu Glu Ala Gly Glu Leu 470 475 Pro Ala Ala Cys Val Val Leu Glu Pro Gly Lys Thr Met Thr Glu Lys 485 Glu Val Met Asp Tyr Ile Ala Glu Arg Val Thr Pro Thr Lys Arg Leu 505 Arg Gly Gly Val Leu Phe Val Asn Asn Ile Pro Lys Gly Ala Thr Gly 520 Lys Leu Val Arg Thr Glu Leu Arg Arg Leu Leu Thr Gln Arg Ala Ala 535 540 Lys Leu 545

<210> 35

<211> 543

<212> PRT

<213> Pyrophorus plagiophthalamus

<400> 35

Met	Met	Lys	Arg	Glu	Lys	Asn	Val	Val	Tyr	Gly	Pro	Glu	Pro	Leu	His
1				5					10					15	
Pro	Leu	Glu	Asp	Leu	Thr	Ala	Gly	Glu	Met	Leu	Phe	Arg	Ala	Leu	Arg
			20					25					30		
Lys	His	Ser	His	Leu	Pro	Gln	Ala	Leu	Val	Asp	Val	Tyr	Gly	Glu	Glu
		35					40					45			
Trp	Ile	Ser	Tyr	Lys	Glu	Phe	Phe	Glu	Thr	Thr	Cys	Leu	Leu	Ala	Gln
	50					55					60				
Ser	Leu	His	Asn	Суз	Gly	Tyr	Lys	Met	Ser	Asp	Val	Val	Ser	Ile	Сув
65					70					75					80
Ala	Glu	Asn	Asn	Lys	Arg	Phe	Phe	Val	Pro	Ile	Ile	Ala	Ala	Trp	Tyr
				85					90					95	
Ile	Gly	Met	Ile	Val	Ala	Pro	Val	Asn	Glu	Gly	Tyr	Ile	Pro	Asp	Glu
			100					105					110		
Leu	Cys	Lys	Val	Met	Gly	Ile	Ser	Arg	Pro	Gln	Leu	Val	Phe	Сув	Thr
		115					120					125			
ГÀв		Ile	Ļeu	Asn	Lys		Leu	Glu	Val	Gln	Ser	Arg	Thr	Àsp	Phe
	130					135					140				
Ile	Lys	Arg	Ile	Ile	Ile	Leu	Asp	Ala	Val	Glu	Asn	Ile	His	Gly	Сув
145					150					155					160
Glu	Ser	Leu	Pro	Asn	Phe	Ile	Ser	Arg	Tyr	Ser	Asp	Gly	Asn	Ile	Ala
				165					170					175	
Asn	Phe	Lys	Pro	Leu	His	Tyr	Asp	Pro	Val	Glu	Gln	Val	Ala	Ala	Ile
			180					185					190		
Leu	Сув	Ser	Ser	Gly	Thr	Thr	Gly	Leu	Pro	Lys	Gly	Val	Met	Gln	Thr
		195					200					205			
His	_	Asn	Val	Cys	Val	_	Leu	Ile	His	Ala	Leu	Asp	Pro	Arg	Val
	210					215					220				
Gly	Thr	Gln	Leu	Ile	Pro	Gly	Val	Thr	Val	Leu	Val	Tyr	Leu	Pro	Phe
225			_	_	230					235					240
Phe	His	Ala	Phe		Phe	Ser	Ile	Asn		Gly	Tyr	Phe	Met		Gly
				245					250					255	
Leu	Arg	Val	Ile	Met	Leu	Arg	Arg		Asp	Gln	Glu	Ala		Leu	Lys
			260	_			_	265	_				270		
Ala	He		Asp	Tyr	Glu	Val		Ser	Val	Ile	Asn		Pro	Ala	Ile
	_	275	_		_	_	280	_	•	_	_	285		_	_
He		Pne	Leu	ser	гλя		Pro	Leu	Val	Asp	-	туг	Asp	Leu	Ser
_	290			_	_	295				_	300		_		
	Leu	Arg	Glu	Leu		Сув	Gly	Ala	Ala		Leu	Ala	Lys	Glu	
305	63	-1	λla	•••	310	•				315			_	_	320
A 1 3	(4 11	116	A 1.2	vai	1.376	Arc	1.011	700	I 011	Dwo	C111	TIA	7 ~~	1710	C 1 1 1 1

325 330 Phe Gly Leu Thr Glu Ser Thr Ser Ala Asn Ile His Ser Leu Arg Asp 345 Glu Phe Lys Ser Gly Ser Leu Gly Arg Val Thr Pro Leu Met Ala Ala 360 Lys Ile Ala Asp Arg Glu Thr Gly Lys Ala Leu Gly Pro Asn Gln Val 375 Gly Glu Leu Cys Ile Lys Gly Pro Met Val Ser Lys Gly Tyr Val Asn 385 390 395 Asn Val Glu Ala Thr Lys Glu Ala Ile Asp Asp Asp Gly Trp Leu His 405 410 Ser Gly Asp Phe Gly Tyr Tyr Asp Glu Asp Glu His Phe Tyr Val Val 420 425 Asp Arg Tyr Lys Glu Leu Ile Lys Tyr Lys Gly Ser Gln Val Ala Pro 440 Ala Glu Leu Glu Glu Ile Leu Leu Lys Asn Pro Cys Ile Arg Asp Val 455 Ala Val Val Gly Ile Pro Asp Leu Glu Ala Gly Glu Leu Pro Ser Ala 470 475 Phe Val Val Ile Gln Pro Gly Lys Glu Ile Thr Ala Lys Glu Val Tyr 485 490 Asp Tyr Leu Ala Glu Arg Val Ser His Thr Lys Tyr Leu Arg Gly Gly 500 505 Val Arg Phe Val Asp Ser Ile Pro Arg Asn Val Thr Gly Lys Ile Thr 520 Arg Lys Glu Leu Leu Lys Gln Leu Leu Glu Lys Ser Ser Lys Leu 530 535 540 <210> 36 <211> 543

<212> PRT

<213> Pyrophorus plagiophthalamus

<400> 36

Met Met Lys Arg Glu Lys Asn Val Ile Tyr Gly Pro Glu Pro Leu His Pro Leu Glu Asp Leu Thr Ala Gly Glu Met Leu Phe Arg Ala Leu Arg 20 25 30 Lys His Ser His Leu Pro Gln Ala Leu Val Asp Val Phe Gly Asp Glu Ser Leu Ser Tyr Lys Glu Phe Phe Glu Ala Thr Cys Leu Leu Ala Gln 50 55

60

Ser	1,011	Hi-	λ	Circ	G1.	· ~·~		W	N	n	17-7	T - T	0		
65	DC u		Asn	Сув	70	ıyı	. Lys	mec	ABD	75	val	. vai	. sei	. 116	-
	Glu	Asn	Asn	ī.vs		Dhe	Dhe		Dro		. דו			т	80
				85	~~9	7110	. File	116	90	116	116	: Ale	L Alc	95	туг
Ile	Glv	Met	Ile		Ala	Pro	Val	Δen		Sar	Т. г.	· 116	Dro		
	-		100		****		, vai	105		361	IYL	116	110) GIU
Leu	Cvs	Lvs	Val		Glv	Tle	Ser			Gla	Tla	. Val			The
	-,-	115			,		120			0111	. 110	125		Cys	1111
Lys	Asn	Ile	Leu	Asn	Lvs	Val			Val	Gln	Ser			· Δαπ	Dhe
•	130				•	135					140			1131	· FIIC
Ile	Lys	Arg	Ile	Ile	Ile			Thr	Val	Glu			His	Glv	· Cvs
145					150		•			155				017	160
Glu	Ser	Leu	Pro	Asn	Phe	Ile	Ser	Arg	Tyr		Asp	Gly	Asn	Ile	
				165				_	170		•	•		175	
Asn	Phe	Lys	Pro	Leu	His	Tyr	Asp	Pro	Val	Glu	Gln	Val	Ala	Ala	Ile
			180					185					190		
Leu	Сув	Ser	Ser	Gly	Thr	Thr	Gly	Leu	Pro	Lys	Gly	Val	Met	Gln	Thr
		195					200					205			
His	Gln	Asn	Ile	Cys	Val	Arg	Leu	Ile	His	Ala	Leu	Asp	Pro	Arg	Ala
	210	•				215					220				
Gly	Thr	Gln	Leu	Ile	Pro	Gly	Val	Thr	Val	Leu	Val	Tyr	Leu	Pro	Phe
225					230					235					240
Phe	His	Ala	Phe	Gly	Phe	Ser	Ile	Asn	Leu	Gly	Tyr	Phe	Met	Val	Gly
				245					250					255	
Leu	Arg	Val	Ile	Met	Leu	Arg	Arg	Phe	Asp	Gln	Glu	Ala	Phe	Leu	Lys
			260					265					270		
Ala	Ile	Gln	Asp	Tyr	Glu	Val	Arg	Ser	Val	Ile	Asn	Val	Pro	Ala	Ile
		275					280	•				285			
Ile		Phe	Leu	Ser	Lys		Pro	Leu	Val	Asp	Lys	Tyr	Asp	Leu	Ser
_	290	_				295					300			•	
	Leu	Arg	Glu	Leu		Сув	Gly	Ala	Ala		Leu	Ala	Lys	Glu	Val
305	61	17. 1			310		_	_		315					320
MIA	GIU	vai	Ala		гåа	Arg	Leu	Asn		Pro	Gly	Ile	Arg		Gly
Dha	<i>(</i> 111)	T	ም ኤ	325	C	m\			330		•			335	
FIIC	GIY	neu	Thr	GIU	ser	Tnr	Ser		Asn	He	His	Ser		Gly	Asp
21,,	Dhe	Tuo		a 1	C	T	01	345	••- 1	~ 1	_	_	350		
JIU	FIIC	355	Ser	GIY	ser	Leu		Arg	vaı	Thr	Pro		Met	Ala	Ala
l.ve	Tle		Aen	Ara	Glu.	Th~	360	T	21-	*	a 1	365	•	~ 3	
_, _	370	714 C	Asp	ar y	JIU	375	GIÀ	пÀв	WIG	nen		PTO	ASN	GID	val
3lv		Leu	Сув	Val	Lva		Pro	Met	Val	Ser	380	G) v	Т:	17 n 1	7.0-
385			-, -		390	1				395	nya	Gry	TÅT	vdl	400
-															-12 U U

56

Asn Val Glu Ala Thr Lys Glu Ala Ile Asp Asp Asp Gly Trp Leu His 405 410 Ser Gly Asp Phe Gly Tyr Tyr Asp Glu Asp Glu His Phe Tyr Val Val 425 Asp Arg Tyr Lys Glu Leu Ile Lys Tyr Lys Gly Ser Gln Val Ala Pro 440 Ala Glu Leu Glu Glu Ile Leu Leu Lys Asn Pro Cys Ile Arg Asp Val 455 460 Ala Val Val Gly Ile Pro Asp Leu Glu Ala Gly Glu Leu Pro Ser Ala 470 475 Phe Val Val Lys Gln Pro Gly Lys Glu Ile Thr Ala Lys Glu Val Tyr 485 490 Asp Tyr Leu Ala Glu Arg Val Ser His Thr Lys Tyr Leu Arg Gly Gly 500 505 Val Arg Phe Val Asp Ser Ile Pro Arg Asn Val Thr Gly Lys Ile Thr 520 Arg Lys Glu Leu Leu Lys Gln Leu Leu Glu Lys Ser Ser Lys Leu 530 535 540

<210> 37

<211> 545

<212> PRT

<213> Photuris pennsylvanica

<400> 37

Lys Asn Thr Phe Gln Lys Val Leu Asn Val Lys Ser Lys Leu Lys Tyr

	130					135					140			-	
Val	Glu	Thr	Ile	Ile	Ile	Leu	qaA	Leu	Asn	Glu	Asp	Leu	Gly	Gly	Ty:
145					150					155					160
Gln	Cys	Leu	Asn	Asn	Phe	Ile	Ser	Gln	Asn	Ser	Asp	Ile	Asn	Leu	Asj
				165					170					175	
Val	Lys	Lys	Phe	Lys	Pro	Asn	Ser	Phe	Asn	Arg	Asp	Asp	Gln	Val	Ala
			180					185					190		
Leu	Val	Met	Phe	Ser	Ser	Gly	Thr	Thr	Gly	Val	Ser	Lys	Gly	Val	Met
		195					200					205			
Leu	Thr	His	Lys	Asn	Ile	Val	Ala	Arg	Phe	Ser	His	Сув	Lys	Asp	Pro
	210					215					220				
Thr	Phe	Gly	Asn	Ala	Ile	Asn	Pro	Thr	Thr	Ala	Ile	Leu	Thr	Val	Ile
225					230					235					240
Pro	Phe	His	His	Gly	Phe	Gly	Met	Thr	Thr	Thr	Leu	Gly	Tyr	Phe	Thi
				245					250					255	
Сув	Gly	Phe	Arg	Val	Ala	Leu	Met	His	Thr	Phe	Glu	Glu	Lys	Leu	Phe
			260					265					270		
Leu	Gln		Leu	Gln	Asp	Tyr	Lys	Val	Glu	Ser	Thr	Leu	Leu	Val	Pro
		275					280					285			
Thr		Met	Ala	Phe	Phe		Lys	Ser	Ala	Leu	Val	Glu	Lys	Tyr	Asp
	290					295					300				
	Ser	His	Leu	Lys		Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys
305					310					315					320
Glu	He	Gly	Glu		Val	Lys	Lys	Arg		Lys	Leu	Asn	Phe		Arc
-1	~->	_		325					330					335	
GIn	GIY	Tyr		Leu	Thr	Glu	Thr		Ser	Ala	Val	Leu	Ile	Thr	Pro
		•	340			-1	_	345		_			350		
Asp	Thr		vai	Arg	Pro	GIÀ		Thr	Gly	Lys	Ile		Pro	Phe	His
×1.	17-1	355	W- 1	**- 1	3	5	360		-1	_		365			
AId	370	пув	val	val	Asp		Inr	Thr	GIÀ	гÀг		Leu	Gly	Pro	Asn
Glu		Gly	Glu	T av	™ ~~	375	Tue	C1	3 am	Man	380	14-5	Lys		
385	1111	GIY	GIU	Deu	390	PIIE	гур	GIY	Asp	395	116	met	гÀа	ser	
	Δen	Asn	Glu	Glu		Thr	Lva	λla	Tla		200	T	Asp	~1	400
-7-		71011	O14	405	n.a	1111	Бур	YIG	410	116	ASII	nys	Asp	415	111
Leu	Ara	Ser	Glv		Tle	Δla	Tur	Tur		Aan	Agn	Glv	His		Tur
	5		420				-,-	425	nop		ng þ	GLY	430	rnc	ry.
Ile	Val	asp		Leu	Lvs	Ser	Leu		Lvs	Tvr	LVS	Glv	Tyr	Gln	Va l
		435	3		-,-		440		-1-	-1-	~70	445	-1-		.44
Ala	Pro		Glu	Ile	Glu	Glv		Leu	Leu	Gln	Hia		Tyr	Ile	۷a۱
	450					455					460		-1-		
Asp		Gly	Val	Thr	Gly		Pro	Asp	Glu	Ala		Glv	Glu	Leu	Pro

58 465 470 475 480 Ala Ala Gly Val Val Gln Thr Gly Lys Tyr Leu Asn Glu Gln Ile 485 490 Val Gln Asn Phe Val Ser Ser Gln Val Ser Thr Ala Lys Trp Leu Arg 500 505 Gly Gly Val Lys Phe Leu Asp Glu Ile Pro Lys Gly Ser Thr Gly Lys 520 525 Ile Asp Arg Lys Val Leu Arg Gln Met Phe Glu Lys His Lys Ser Lys 530 535 540 Leu 545 <210> 38 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> /note = "a primer" <400> 38 gtactgagac gacgccagcc caagcttagg cctgagtg

38

38

<210> 39 <211> 38 <212> DNA <213> Artificial Sequence

<220>
<223> /note = "a primer"

<400> 39

ggcatgagcg tgaactgact gaactagcgg ccgccgag

<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> /note = "a primer"

<210> 40

1140

```
<400> 40
gtactgagac gacgccag
                                                                     18
      <210> 41
      <211> 19
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 41
ggcatgagcg tgaactgac
                                                                     19
      <210> 42
    <211> 1639
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "mutant luciferase"
      <400> 42
agatccaatg gcagataaga atattttata tgggcccgaa ccattttatc ccttggaaga
                                                                     60
tgggacggct ggagaacaga tgtttgacgc attatctcgt tatgcagata ttccgggctg
                                                                    120
catagcattg acaaatgctc atacaaaaga aaatgtttta tatgaagagt ttctgaaact
                                                                    180
gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc
                                                                    240
ggtgtgtagc gaaaatagtc tgcaattttt ccttcctgta attgcatcat tgtatcttgg
                                                                    300
aataattgtg gcacctgtta acgataaata cattgaacgt gaattaatac acagtcttgg
                                                                    360
tattgtaaaa ccacgcatag ttttttgctc caagaatact tttcaaaaag tactgaatgt
                                                                    420
480
aggttatcaa tgcctcaaca actttatttc tcaaaattcc gatagtaatc tggacgtaaa
                                                                    540
aaaatttaaa ccatattett ttaategaga egateaggtt gegttgatta tgttttette
                                                                    600
tggtacaact ggtctgccga agggagtcat gctaactcac aagaatattg ttgcacgatt
                                                                    660
ttctattgca aaagatccta cttttggtaa cgcaattaat cccacgtcag caattttaac
                                                                    720
ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg
                                                                    780
attccgagtt gttctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga
                                                                    840
ttataaagtg gaaagtactt tacttgtacc aacattaatg gcatttcttg caaaaagtgc
                                                                    900
attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt
                                                                    960
atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg
                                                                   1020
gtatggatta acagaaacca cttcggctgt tttaattaca ccgaaaggtg acgccaaacc
                                                                   1080
```

gggatcaact ggtaaaatag taccatttca cgctgttaaa gttgtcgatc ctacaacagg

60

aaaaattttg gggccaaatg aacctggaga attgtatttt aaaggcccga tgataatgaa 1200 gggttattat aataatgaag aagctactaa agcaattatt gataatgacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcactgatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380 acaacateeg tatattgttg atgeeggegt taetggtata eeggatgaag eegegggega 1440 gettecaget geaggtgttg tagtacagae tggaaaatat etaaaegaae aaategtaca 1500 agattatgtt gccagtcaag tttcaacagc caaatggcta cgtggtgggg tgatatttt 1560 ggatgaaatt cccaaaggat caactggaaa aattgacaga aaagtgttaa gacaaatgtt 1620 agaaaaacac accaatggg 1639

<210> 43

<211> 1639

<212> DNA

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 43

ggatccaatg gcagataaga atattttata tgggcccgaa ccattttatc ccttggaaga 60 tgggacggct ggagaacaga tgtttgacgc attatctcgt tatgcagcta ttccgggctg 120 catagcattg acaaatgctc atacaaaaga aaatgtttta tatgaagagt ttctgaaact 180 gtcgtgtcgt ttagcggaaa gttttaaaaa gtatggatta aaacaaaacg acacaatagc 240 ggtgtgtagc gaaaatagtc tgcaattttt ccttcctgta attgcatcat tgtatcttgg 300 aataattgtg gcacctgtta acgataaata cattgaacgt gaattaatac acagtcttgg 360 tattgtaaaa ccacgcatag ttttttgctc caagaatact tttcaaaaag tactgaatgt 420 480 aggitaticaa tgccicaaca actitatiic tcaaaattcc gatagiaatc tggacgiaaa 540 aaaatttaaa ccctattctt ttaatcgaga cgatcaggtt gcgtcgatta tgttttcttc 600 tggtacaact ggtctgccga agggagtcat gctaactcac aagaatattg ttgcacgatt 660 ttctattgca aaagatccta cttttggtaa cgcaattaat cccacgtcag caattttaac 720 ggtaatacct ttccaccatg gttttggtat gatgaccaca ttaggatact ttacttgtgg 780 attccgagtt gttctaatgc acacgtttga agaaaaacta tttctacaat cattacaaga 840 ttataaagtg gaaagtactt tacttgtacc aacattaatg gcatttcttg caaaaagtgc 900 attagttgaa aagtacgatt tatcgcactt aaaagaaatt gcatctggtg gcgcaccttt 960 atcaaaagaa attggggaga tggtgaaaaa acggtttaaa ttaaactttg tcaggcaagg 1020 gtatggatta acagaaacca cttcggctgt tttaattaca ccgaaaggtg acgccaaacc 1080 gggatcaact ggtaaaatag taccattaca cgctgttaaa gttgtcgatc ctacaacagg 1140 aaaaattttg gggccaaatg aacctggaga attgtatttt aaaggcccga tgataatgaa 1200 gggttattat aataatgaag aagctactaa agcaattatt gataatgacg gatggttgcg 1260 ctctggtgat attgcttatt atgacaatga tggccatttt tatattgtgg acaggctgaa 1320 gtcactgatt aaatataaag gttatcaggt tgcacctgct gaaattgagg gaatactctt 1380

acaacatccg tatat	ttgttg atgccggc	gt tactggtata o	cggatgaag ccgcgggcga
			taaacgaac aaatcgtaca
agattatgtt gccag	gtcaag tttcaaca	gc caaatggcta o	gtggtgggg tgaaattttt
ggatgaaatt cccaa	aaggat caactgga	aa aattgacaga a	aagtgttaa gacaaatgtt
agaaaaacac accaa	atggg		
<210> 44			
<211> 544			
<212> PRT			
<213> Arti	ficial Sequence	•	
<220>			
<223> /not	e = "mutant luc	ciferase"	
<400> 44			
			ro Phe Tyr Pro Leu
1	5	10	15
GIU ASP GIY THY	Ala Gly Glu Glr		la Leu Ser Arg Tyr
	Cl	25	30
35		Leu Thr Asn A	la His Thr Lys Glu
	40 Glu Glu Dhe Leu	T	45
50	55		ys Arg Leu Ala Glu
		6	=
65	70		nr Ile Ala Val Cys
		75	80
	85	90	le Ala Ser Leu Tyr
			95 r Ile Glu Arg Glu
100		105	110
Leu Ile His Ser I	Leu Gly Ile Val		le Val Phe Cys Ser
115	120	-,y 12	125
Lys Asn Thr Phe G	31n Lys Val Leu	Asn Val Lvs Se	er Lys Leu Lys Ser
130	135	14	
Ile Glu Thr Ile I	Ile Ile Leu Asp		p Leu Gly Gly Tyr
145	150	155	160
Gln Cys Leu Asn A	Asn Phe Ile Ser	Gln Asn Ser As	p Ser Asn Leu Asp
	165	170	175
Val Lys Lys Phe L	ys Pro Tyr Ser	Phe Asn Arg As	p Asp Gln Val Ala
180		185	190
Leu Ile Met Phe S	er Ser Gly Thr	Thr Gly Leu Pr	o Lys Gly Val Met
195	200		205
Leu Thr His Lys A	sn Ile Val Ala	Arg Phe Ser Il	e Ala Lys Asp Pro

62

	210					215					220				
Thr	Phe	Gly	Asn	Ala	Ile	Asn	Pro	Thr	Ser	Ala	Ile	Leu	Thr	Val	Ile
225					230					235					24(
Pro	Phe	His	His	Gly	Phe	Gly	Met	Met	Thr	Thr	Leu	Gly	Tyr	Phe	Thi
				245					250					255	
Cys	Gly	Phe	Arg	Val	Val	Leu	Met	His	Thr	Phe	Glu	Glu	Lys	Leu	Phe
			260					265					270		
Leu	Gln	Ser	Leu	Gln	Asp	Tyr	Lys	Val	Glu	Ser	Thr	Leu	Leu	Val	Pro
		275					280					285			
Thr	Leu	Met	Ala	Phe	Leu	Ala	Lys	Ser	Ala	Leu	Val	Glu	Lys	Tyr	Asp
	290					295					300				
Leu	Ser	His	Leu	Lys	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys
305					310					315					320
Glu	Ile	Gly	Glu	Met	Val	Lys	Lys	Arg	Phe	Lys	Leu	Asn	Phe	Val	Arç
				325					330					335	
Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Val	Leu	Ile	Thr	Pro
			340					345					350		
Lys	Gly	Asp	Ala	Lys	Pro	Gly	Ser	Thr	Gly	Lys	Ile	Val	Pro	Phe	His
		355					360					365			
Ala	Val	Lys	Val	Val	Asp	Pro	Thr	Thr	Gly	Lys	Ile	Leu	Gly	Pro	Asr
	370					375					380				
Glu	Pro	Gly	Glu	Leu	Tyr	Phe	Lys	Gly	Pro	Met	Ile	Met	Lys	Gly	Туг
385					390					395					400
Tyr	Asn	Asn	Glu	Glu	Ala	Thr	Lys	Ala	Ile	Ile	Asp	Asn	Asp	Gly	Trp
				405					410					415	
Leu	Arg	Ser	Gly	Asp	Ile	Ala	Tyr	Tyr	Asp	Asn	Asp	Gly	His	Phe	Tyr
_			420					425					430		
Ile	Val		Arg	Leu	Lys	Ser		Ile	Lys	Tyr	Lys		Tyr	Gln	Val
		435					440					445			
Ala		Ala	Glu	Ile	Glu		Ile	Leu	Leu	Gln		Pro	Tyr	Ile	Val
•	450	~ 1	••- •			455	_				460			_	
	Ala	GIY	Val	Thr		He	Pro	Asp	Glu		Ala	Gly	Glu	Leu	
465	.1-	~1	*** 7	**- 3	470	~1	-1	_,	•	475	_				480
Ala	Ala	GIA	Val		Val	Gin	Thr	GIA		Tyr	Leu	Asn	Glu		Ile
V- 1	01 -	3	77 0	485		0	01 -		490			_		495	
vai	GIN	Авр	Tyr	vai	Ala	ser	GIN		ser	Thr	Ala	Lys		Leu	Arg
C1.v	C114	W-1	500	Dho	7	3.00	01	505	D	T	61		510	01	*
Gry	GIÅ	515	Ile	FILE	Leu	чвр	520	TIE	Pro	гÀ8	GIĀ		rnr	GIÀ	гÀЗ
Tle	Agn		Lys	۲a۱	T.e.u	۵ra		Met	Len	G1	Larg	525 uic	Th∽	λc=	G1.
116	530	~- y		* U.I	neu.	535	9111		neu	GIU	Був 540	uis	THE	HEN	GIĀ
											J 72 U				

63

<210> 45

<211> 544

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 45

Met Ala Asp Lys Asn Ile Leu Tyr Gly Pro Glu Pro Phe Tyr Pro Leu

1 5 10 15

Clu Asp Cly Thr Ala Cly Clu Clu Met Phe Asp Ala Leu Sor Arg Tyr

Glu Asp Gly Thr Ala Gly Glu Gln Met Phe Asp Ala Leu Ser Arg Tyr
20 25 30

Ala Ala Ile Pro Gly Cys Ile Ala Leu Thr Asn Ala His Thr Lys Glu 35 40 45

Asn Val Leu Tyr Glu Glu Phe Leu Lys Leu Ser Cys Arg Leu Ala Glu 50 55 60

Ser Phe Lys Lys Tyr Gly Leu Lys Gln Asn Asp Thr Ile Ala Val Cys 65 70 75 80

Ser Glu Asn Ser Leu Gln Phe Phe Leu Pro Val Ile Ala Ser Leu Tyr 85 90 95

Leu Gly Ile Ile Val Ala Pro Val Asn Asp Lys Tyr Ile Glu Arg Glu 100 105 110

Leu Ile His Ser Leu Gly Ile Val Lys Pro Arg Ile Val Phe Cys Ser 115 120 125

Lys Asn Thr Phe Gln Lys Val Leu Asn Val Lys Ser Lys Leu Lys Ser 130 135 140

Ile Glu Thr Ile Ile Ile Leu Asp Leu Asn Glu Asp Leu Gly Gly Tyr

Gln Cys Leu Asn Asn Phe Ile Ser Gln Asn Ser Asp Ser Asn Leu Asp 165 170 175

Val Lys Lys Phe Lys Pro Tyr Ser Phe Asn Arg Asp Asp Gln Val Ala 180 185 190

Ser Ile Met Phe Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val Met

Leu Thr His Lys Asn Ile Val Ala Arg Phe Ser Ile Ala Lys Asp Pro

210 215 220

Thr Phe Gly Asn Ala Ile Asn Pro Thr Ser Ala Ile Leu Thr Val Ile
225 230 235 240

Pro Phe His His Gly Phe Gly Met Met Thr Thr Leu Gly Tyr Phe Thr

Cys Gly Phe Arg Val Val Leu Met His Thr Phe Glu Glu Lys Leu Phe

			260					265					270		
Leu	Gln	Ser	Leu	Gln	Asp	Tyr	Lys	Val	Glu	Ser	Thr	Leu	Leu	Val	Pro
		275					280					285			
Thr	Leu	Met	Ala	Phe	Leu	Ala	Lys	Ser	Ala	Leu	Val	Glu	Lys	Tyr	Asp
	290					295					300				
Leu	Ser	His	Leu	Lys	Glu	Ile	Ala	Ser	Gly	Gly	Ala	Pro	Leu	Ser	Lys
305					310					315					320
Glu	Ile	Gly	Glu	Met	Val	Lys	Lys	Arg	Phe	Ĺys	Leu	Asn	Phe	Val	Arg
				325					330					335	
Gln	Gly	Tyr	Gly	Leu	Thr	Glu	Thr	Thr	Ser	Ala	Val	Leu	Ile	Thr	Pro
			340					345					350		
Lys	Gly	Asp	Ala	Lys	Pro	Gly	Ser	Thr	Gly	Lys	Ile	Val	Pro	Leu	His
		355					360					365			
Ala	Val	Lys	Val	Val	Asp	Pro	Thr	Thr	Gly	Lys	Ile	Leu	Gly	Pro	Asn
	370					375					380				
Glu	Pro	Gly	Glu	Leu	Tyr	Phe	Lys	Gly	Pro	Met	Ile	Met	Lys	Gly	Tyr
385					390					395					400
Tyr	Asn	Asn	Glu	Glu	Ala	Thr	Lys	Ala	Ile	Ile	Asp	Asn	Asp	Gly	Trp
				405					410					415	
Leu	Arg	Ser	Gly	Asp	Ile	Ala	Tyr	Tyr	Asp	Asn	Asp	Gly	His	Phe	Tyr
			420					425					430		
Ile	Val	Asp	Arg	Leu	Lys	Ser	Leu	Ile	Lys	Tyr	Lys	Gly	Tyr	Gln	Val
		435					440					445			
Ala	Pro	Ala	Glu	Ile	Glu	Gly	Ile	Leu	Leu	Gln	His	Pro	Tyr	Ile	Val
	450					455					460				
Asp	Ala	Gly	Val	Thr	Gly	Ile	Pro	Asp	Glu	Ala	Ala	Gly	Glu	Leu	Pro
465					470					475					480
Ala	Ala	Gly	Val	Val	Val	Gln	Thr	Gly	Lys	Tyr	Leu	Asn	Glu	Gln	Ile
				485					490					495	
Val	Gln	Asp	_	Val	Ala	Ser	Gln		Ser	Thr	Ala	Lys	Trp	Leu	Arg
			500					505					510	_	
Gly	Gly		Lys	Phe	Leu	Asp		Ile	Pro	Lys	Gly		Thr	Gly	Lys
	_	515	_		_	_	520		_		_	525		_	
Ile	_	Arg	Lys	Val	Leu			Met	Leu	Glu		His	Thr	Asn	Gly
	530					535		•			540				

<210> 46

<211> 1633

<212> DNA

<213> Artificial Sequence

65

<223> /note = "mutant luciferase"

<400> 46

ggatcccatg atgaagcgag agaaaaatgt tatatatgga cccgaacccc tacaccctt 60 ggaagactta acagctggag aaatgctctt ccgtgccctt cgaaaacatt ctcatttacc 120 gcaggettta gtagatgtgg ttggegacga ategetttee tataaagagt tttttgaage 180 gacagteete etagegeaaa gtetecacaa ttgtggatae aagatgaatg atgtagtgte 240 gatctgcgcc gagaataata caagattttt tattcccgtt attgcagctt ggtatattgg 300 tatgattgta gcacctgtta atgaaagtta catcccagat gaactctgta aggtcatggg 360 tatatcgaaa ccacaaatag tttttacgac aaagaacatt ttaaataagg tattggaggt 420 acagagcaga actaatttca taaaaaggat catcgtactt gatactgtag aaaacataca 480 cggttgtgaa agtcttccca attttatttc tcgttattcg gatggaaata ttgccaactt 540 caaaccttta catttcgatc ctgtagagca agtggcagct atcttatgtt cgtcaggcac 600 tactggatta ccgaaaggtg taatgcaaac tcaccaaaat atttgtgtcc gacttataca 660 tgctttagac cccagggcag gaacgcaact tattcctggt gtgacagtct tagtatatct 720 gccttttttc catgcttttg ggttctctat aaccttggga tacttcatgg tgggtcttcg 780 tgttatcatg tcaagacgat ttgatccaga agcatttcta aaagctattc aggattatga 840 agttcgaagt gtaattaacg ttccatcagt aatattgttc ttatcgaaaa gtcctttggt 900 tgacaaatac gatttatcaa gtttaaggga attgtgttgc ggtgcggcac cattagcaaa 960 agaagttgct gaggttgcag caaaacgatt aaacttgcca ggaattcgct gtggatttgg 1020 tttgacagaa tctacttcag ctaatataca cagtcttagg gatgaattta aaccaggatc 1080 acttggaaga gttactcctt taatggcagc taaaatagca gatagggaaa ctggtaaagc 1140 attgggacca aatcaagttg gtgaattatg cattaaaggt cccatggtat cgaaaggtta 1200 cgtgaacaat gtagaagcta ccaaagaagc tattgatgat gatggttggc ttcactctgg 1260 agactttgga tactatgatg aggatgagca tttctatgtg gtggaccgtt acaaggaatt 1320 gattaaatat aagggetete aggtageace tgeagaacta gaagagattt tattgaaaaa 1380 tccatgtatc agagatgttg ctgtggttgg tattcctgat ctagaagctg gagaactgcc 1440 atctgcgttt gtggttaaac agcccggaaa ggagattaca gctaaagaag tgtacgatta 1500 tettgeegag agggteteee atacaaagta tetgegtgga ggggttegat tegttgatag 1560 cataccacgg aatgttacag gtaaaattac aagaaaggaa cttctgaagc agttgctgga 1620 gaaggcggga ggt 1633

<210> 47

<211> 542

<212> PRT

<213> Artificial Sequence

<220>

<223> /note = "mutant luciferase"

<400> 47

Met Met Lys Arg Glu Lys Asn Val Ile Tyr Gly Pro Glu Pro Leu His

1				5					10					15	
Pro	Lev	ı Glu	ı Asp	Let	ı Thi	: Ala	a Gl	y Glu	ı Mei	t Le	u Pho	e Ar	g Al	a Lei	ı Arg
			20					25					30		3
Lys	His	Se s	His	Leu	ı Pro	Glr	n Ala	a Lei	ı Val	l Ası	va:	l Va	1 G1	/ Ast	Glu
		35					40					45		•	
Ser	Leu	sei	Tyr	Lys	Glu	Phe	Phe	e Glu	ı Ala	Thi	r Val	l Le	ı Leı	ı Ala	a Gln
	50					55					60				
Ser	Leu	His	Asn	Сув	Gly	Туг	: Lys	Met	Asr	a Asp	Va]	l Va:	l Sei	: Ile	cys
65					70					75					80
Ala	Glu	Asn	Asn	Thr	Arg	Phe	Phe	: Ile	Pro	Va]	Ile	ala a	a Ala	Trp	Tyr
				85					90					95	
Ile	Gly	Met	Ile	Val	Ala	Pro	Val	Asn	Glu	Ser	Туг	: Ile	Pro	Asp	Glu
_	_		100					105					110		
Leu	Cys			Met	Gly	Ile	Ser	Lys	Pro	Gln	Ile	· Val	. Phe	Thr	Thr
		115		_	_	_	120					125			
rys			Leu	Asn	Lys			Glu	Val	Gln	Ser	Arg	Thr	Asn	Phe
710	130		T1.	7 1.	*** 1	135					140				
145	гув	Arg	Пе	116		Leu	Asp	Thr	Val			Ile	His	Gly	Cys
	Ser	T.e.u	Pro	λen	150	T1.	Com	N		155					160
-	001	Deu	710	165	PIIC	116	Ser	Arg			Asp	Gly	Asn		Ala
Asn	Phe	Lvs	Pro		His	Dhe	Δen	Pro	170		C1-	*** 1	n1-	175	
		-1-	180			1	usp	185	vai	Giu	GIII	Val		Ата	11e
Leu	Cys	Ser		Gly	Thr	Thr	Glv		Pro	T.vq	Glv	Va 1	190	C1 =	mh
	•	195		•			200			-, -	O ₁	205	Mec	GIII	IIII
His	Gln	Asn	Ile	Cys	Val	Arg		Ile	His	Ala	Leu		Pro	Ara	Δla
	210					215					220			9	
Gly	Thr	Gln	Leu	Ile	Pro	Gly	Val	Thr	Val	Leu	Val	Tyr	Leu	Pro	Phe
225					230					235		_			240
Phe	His	Ala	Phe	Gly	Phe	Ser	Ile	Thr	Leu	Gly	Tyr	Phe	Met	Val	Gly
				245					250					255	
Leu	Arg	Val	Ile	Met	Ser	Arg	Arg	Phe	Asp	Pro	Glu	Ala	Phe	Leu	Lys
			260					265					270		
Ala	Ile		Asp	Tyr	Glu	Val	Arg	Ser	Val	Ile	Asn	Val	Pro	Ser	Val
1	_	275					280					285			
		Phe	Leu	Ser	Lys		Pro	Leu	Val	Asp	Lys	Tyr	Asp	Leu	Ser
	290		a 3			295					300				
	ren	Arg	GIU	Leu	Сув	Cys	Gly	Ala	Ala		Leu	Ala	Lys	Glu	Val
305 Ala	Glii	(/a]	- ומ	አገሩ	310 Lvc	N	T =	1 = :	• .= :	315	۵,		_	_	320
a	Jiu	491		325	Lys	wrg	reu			Pro	GIÀ	IIe	Arg		Gly
Phe	Glv	Len			Ser	Th ∽	S A∽		330	T1.	tr 2 -	0	•	335	
	3			~-~	~~~	~ * * *	JUL	W+0	WD II	11E	ure	ser	ьeu	Arg	ASD

67

345

Glu Phe Lys Pro Gly Ser Leu Gly Arg Val Thr Pro Leu Met Ala Ala

360

350

365 ·

340

355

<211> 22 <212> DNA

<213> Artificial Sequence

Lys	Ile	Ala	Asp	Arg	Glu	Thr	Gly	Lys	Ala	Leu	Gly	Pro	Asn	Gln	Val	
	370					375					380					
Gly	Glu	Leu	Cys	Ile		Gly	Pro	Met	Val	Ser	Lys	Gly	Tyr	Val	Asn	
385					390					395					400	
Asn	Val	Glu	Ala	Thr	Lys	Glu	Ala	Ile	Asp	Asp	Asp	Gly	Trp	Leu	His	
				405					410					415		
Ser	Gly	Asp	Phe	Gly	Tyr	Tyr	Asp	Glu	Asp	Glu	His	Phe	Tyr	Val	Val	
			420					425					430			
Asp	Arg		Lys	Glu	Leu	Ile		Tyr	Lys	Gly	Ser	Gln	Val	Ala	Pro	
		435					440					445				
Ala		Leu	Glu	Glu	Ile	Leu	Leu	Lys	Asn	Pro	Cys	Ile	Arg	Asp	Val	
	450					455					460					
	Val	Val	Gly	Ile		Asp	Leu	Glu	Ala	Gly	Glu	Leu	Pro	Ser	Ala	
465					470					475					480	
Phe	Val	Val	Lys		Pro	Gly	Lys	Glu	Ile	Thr	Ala	Lys	Glu	Val	Tyr	
				485					490					495		
Asp	Tyr	Leu	Ala	Glu	Arg	Val	Ser		Thr	ŗàs	Tyr	Leu	Arg	Gly	Gly	
	_		500	_				505					510			
vai	Arg		Val	Asp	Ser	Ile		Arg	Asn	Val	Thr		Lys	Ile	Thr	
•	_	515		_	_		520					525		•		
arg		GIU	Leu	Leu	Lys		Leu	Leu	Glu	Lys		Gly	Gly			
	530					535					540					
												•				
		210>														
		211>														
		12>				_										
	<2	:13>	Arti	tici	al S	Seque	nce									
	<2	20>														
			/not	e =	"a r	rime	r"									
							-		-							
	<4	00>	48													
ttat	ccct	tg g	aaga	tggg	a cg	ıg										23
														•		
	<2	10>	49													

<212> DNA

```
<220>
      <223> /note = "a primer"
      <400> 49
ctggagaaca gctgtttgac gc
                                                                         22
      <210> 50
      <211> 32
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 50
gttatgcaga tattccgggc tgcatagcat tg
                                                                         32
      <210> 51
      <211> 40
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 51
cttggaataa ttgtggcacc tgttaacgat aaatacattg
                                                                         40
      <210> 52
      <211> 23
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 52
aaccacgcat agttttttgc tcc
                                                                         23
      <210> 53
      <211> 31
```

<210> 57

<213> Artificial Sequence	
<220>	
<223> /note = "a primer"	
<400> 53	
aagtactgaa tgtacagtct aaattaaaat c	31
<210> 54	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> /note = "a primer"	
<400> 54	2.1
ttaaaatcta ttgaaactat tattatatta g	31
<210> 55	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> /note = "a primer"	
· <400> 55	
gttgcgttga ttatgttttc~ttc	23
3003030000 000	
<210> 56	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220> <223> /note = "a primer"	
(223) /Hoce = a brimer.	
<400> 56	
gtacaactgg tetgeegaag ggagte	26
·	

70

```
<211> 29
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = " a primer"
      <400> 57
caagaatatt gttgtgcgat tttctcttg
                                                                       29
      <210> 58
      <211> 29
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 58
ctacttttgg taaccagatt aatcccacg
                                                                       29
      <210> 59
      <211> 32
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 59
ccaccatggc tttggtatga cgaccacatt ag
                                                                       32
     <210> 60
      <211> 43
      <212> DNA
      <213> Artificial Sequence
      <220>
     <223> /note = "a primer"
      <400> 60
ttgttctaat gcaccgcttt gaagaagaac tatttctaca atc
                                                                       43
```

<400> 64

31

28

19

```
<210> 61
      <211> 31
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 61
aagtgcatta gttgataagt acgatttatc g
      <210> 62
      <211> 28
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 62
cggtttaaat taccgggtgt caggcaag
      <210> 63
      <211> 19
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = " a primer"
      <400> 63
aagacgccaa accgggatc
      <210> 64
      <211> 28
      <212> DNA
     <213> Artificial Sequence
     <220>
     <223> /note = "a primer"
```

- accaactggt adagtagtac cattteac	28
<210> 65	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> /note = "a primer"	
<400> 65	
tattttaaag gcccgatgat aatgaagg	28
<210> 66	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> /note = "a primer"	
<400> 66	
ggatggttgc actctggtga tattg	25
210. CZ	
<210> 67 <211> 23	
<212> DNA	
<213> Artificial Sequence	
de la company de	
<220>	
<223> /note = "a primer"	
<400> 67	
cagctgcagt tgttgtagta cag	23
<210> 68	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> /note = "a primer"	

<220>

<400> 68	
gaaaatatot aaccgaacaa atc	2:
<210> 69	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> /note = "a primer"	
<400> 69	
aatcgtacaa gattatgttg ccagtcaagt ttc	. 33
<210> 70	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> /note = "a primer"	
<400> 70	
gggtgaaatt tgtggatgaa attc	24
<210> 71	
<211> 26	
<212> DNA	
<pre><213> Artificial Sequence</pre>	
<220>	
<223> /note = "a primer"	
<400> 71	
ttaagacaaa tgctggaaaa acacac	26
<210> 72	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
incommon dequence	

<211> 28 <212> DNA

<213> Artificial Sequence

74 <223> /note = "a primer" <400> 72 ataaaaatat totgtatggt cocgaacc 28 <210> 73 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> /note = "a primer" <400> 73 atgtttgacg cactgtctcg ttatgcag 28 <210> 74 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> /note = "a primer" <400> 74 atagcattga ccaatgctca tac 23 <210> 75 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> /note = "a primer" <400> 75 aagaaaatgt totgtatgaa gagtttotga aactgtogtg tog 43 <210> 76

<211> 36 <212> DNA

```
<220>
      <223> /note = "a primer"
      <400> 76
taaaaagtat ggactgaaac aaaacgac
                                                                        28
      <210> 77
      <211> 22
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 77
cgaaaatggt ctgcaatttt tc
                                                                        22
      <210> 78
      <211> 29
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 78
aattgcatca ctgtatctgg gaataattg
                                                                        29
      <210> 79
      <211> 39
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 79
ttgaacgtga actgatacac agtctgggta ttgtaaaac
                                                                        39
      <210> 80
```

```
<213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 80
aaactattat tatactggac ctgaatgaag acttag
                                                                        36
      <210> 81
      <211> 28
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 81
gttatcaatg cctgaacaac tttatttc
                                                                       28 .
      <210> 82
      <211> 22
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 82
tcttttaatc gtgacgatca gg
                                                                       22
      <210> 83
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 83
cgacagcaat tctgacggta atacc
                                                                       25
```

<210> 84

```
<211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = " a primer"
      <400> 84
tgtggattcc gcgttgttct aatgc
                                                                        25
      <210> 85
      <211> 39
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 85
tggaaagtac tctgctggta ccaacactga tggcatttc
                                                                        39
      <210> 86
      <211> 30
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 86
cgatttatcg cacctgaaag aaattgcatc
                                                                        30
      <210> 87
      <211> 30
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> /note = "a primer"
      <400> 87
ggtggcgcac ctctgtcaaa agaaattggg
                                                                        30
```

78 <210> 88 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> /note = "a primer" <400> 88 agggtatgga ctgaccgaaa ccacttc . 27 <210> 89 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> /note = "a primer" <400> 89 aggaaaaatt ctggggcc 18 <210> 90 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> /note = "a primer" <400> 90 ggctgaagtc actgattaaa tataaagg 28 <210> 91 <211> 23 <212> DNA <213> Artificial Sequence <220>

<223> /note = "a primer"

<400> 91

agggaatact (gctgcaacat ccg	23
<210>	92	
<211>	38	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	/note = "a primer"	
<400>	· ·	
cagtcaagtt t	caaccgcca aatggctgcg tggtgggg	38
<210>	93	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>	·	
<223>	/note = "a primer"	
<223>	<pre>/note = "a primer"</pre>	

25

gaaaaattga ccgtaaagtg ttaag

Interna I Application No PCT/US 99/30925

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/53 C12N15/10 C12N9/02 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, PAJ, CAB Data, STRAND, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO 99 14336 A (HALL MARY P ; PROMEGA CORP 1-6,8, (US); WOOD KEITH V (US)) 12,14, 25 March 1999 (1999-03-25) 16,17, 19,21, 23,24, 28-37, 47-58, 65,66, 68,73,75 Fig. 46, 47 page 34, line 1 -page 42, line 6; table 6 page 47, line 3 -page 61, line 2 -/--Further documents are listed in the continuation of box C. X X Patent family members are listed in annex. Special categories of cited documents : "I later document published after the international filing date or priority date and not in conflict with the application but eited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention *E* earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication data of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report **1** 4, 08, 00 7 August 2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Hornig, H

Intern at Application No PCT/US 99/30925

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Palmont As alsies At	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
х	EP 0 524 448 A (KIKKOMAN CORP) 27 January 1993 (1993-01-27)	1-5,8, 12,14, 16,17, 19,21, 23,24, 28-37, 58,65, 66,73	
	the whole document	00,73	
X	WO 95 25798 A (SECR DEFENCE BRIT ;LOWE CHRISTOPHER ROBIN (GB); WHITE PETER JOHN () 28 September 1995 (1995-09-28)	1-5,8, 12,14, 16,17, 19,21, 23,24, 28-37, 58,65, 66,73	
	the whole document		
X	WHITE ET AL: "Improved thermostability of the north american firefly luciferase: saturation mutagenesis at position 354" BIOCHEMICAL JOURNAL,GB,PORTLAND PRESS, LONDON, vol. 319, no. 319, 1996, pages 343-350-350, XP002097112 ISSN: 0264-6021 the whole document	1-5,8, 12,14, 16,17, 19,21, 23,24, 28-37, 58,65, 66,73	
X	WO 98 46729 A (MURRAY JAMES AUGUSTUS HENRY ;SECR DEFENCE (GB); LOWE CHRISTOPHER R) 22 October 1998 (1998-10-22)	1-5,8, 12,14, 16,17, 19,21, 23,24, 28-37, 58,65, 66,73	
	the whole document	00,73	
A	K.V. WOOD ET AL.: "Bioluminescent click beetles revisited" J. BIOLUMNIESCENCE AND CHEMILUMINESCENCE, vol. 4, 1989, pages 31-39, XP000906944. JOHN WILEY & SONS, LTD, NEW YORK, US cited in the application the whole document		
A	WO 95 18853 A (PROMEGA CORP) 13 July 1995 (1995-07-13) the whole document		
	-/		

Interns Il Application No PCT/US 99/30925

(Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/05 99/30925
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	K.V. WOOD ET AL.: "Complementary DNA coding click beetle luciferases can elict bioluminescence of different colors" SCIENCE, vol. 244, 12 May 1989 (1989-05-12), pages 700-702, XP002137278 AAAS,WASHINGTON,DC,US cited in the application the whole document	
A	K.V. WOOD ET AL.: "Introduction to beetle luciferases and their applications" J. BIOLUMNIESCENCE AND CHEMILUMINESCENCE, vol. 4, no. 1, July 1989 (1989-07), pages 289-301, XP000906968 JOHN WILEY & SONS, LTD, NEW YORK, US cited in the application the whole document	
A	DEMENTIEVA E I ET AL: "PHYSICOCHEMICAL PROPERTIES OF RECOMBINANT LUCIOLA MINGRELICA LUCIFERASE AND ITS MUTANT FORMS" BIOCHEMISTRY, US, AMERICAN CHEMICAL SOCIETY. EASTON, PA, vol. 1, no. 61, 1 January 1996 (1996-01-01), pages 115-119-119, XP002078631 ISSN: 0006-2960 the whole document	·
A	L. YE ET AL.: "Cloning and sequencing of a cDNA for firefly luciferase from Photuris pennsylvaniva" BIOCHIMICA BIOPHYSICA ACTA, vol. 1339, 1997, pages 39-52, XP000909154 ELSEVIER SCIENCE, AMSTERDAM, NL cited in the application the whole document	
X	US 5 605 793 A (STEMMER WILLEM P C) 25 February 1997 (1997-02-25) cited in the application column 16, line 1 - line 6 column 16, line 50 - line 55	47-60, 70-72, 74,75
x	WO 98 13487 A (MAXYGEN INC) 2 April 1998 (1998-04-02) page 39, line 30 - line 31; claims 1-57; figures 1,3	58-60, 70-72,74

Intern al Application No PCT/US 99/30925

		PC1/US 99/30925
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ZHANG J-H ET AL: "Directed evolution of a fucosidase from galactosidase by DNA shuffling and screening" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, US, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, vol. 94, 1 April 1997 (1997-04-01), pages 4504-4509, XP002087464 ISSN: 0027-8424 the whole document	47-57,75
X	STEMMER W: "DNA shuffling by random fragmentatio and reassembly: In vitro recombination for molecular evolution" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, US, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, vol. 91, 1 October 1994 (1994-10-01), pages 10747-10751, XP002087463 ISSN: 0027-8424 the whole document	47-57,75
Α .	CADWELL R AND JOYCE G ET AL: "Randomization of genes by PCR mutagenesis" PCR METHODS AND APPLICATIONS,US,COLD SPRING HARBOR, NY, vol. 2, 1992, pages 28-33, XP002087462 ISSN: 1054-9803 the whole document	47-57,75
A	FROMANT M ET AL: "DIRECT RANDOM MUTAGENESIS OF GENE-SIZED DNA FRAGMENTS USING POLYMERASE CHAIN REACTION" ANALYTICAL BIOCHEMISTRY, US, ACADEMIC PRESS, SAN DIEGO, CA, vol. 224, no. 1, 1995, pages 347-353, XP000486749 ISSN: 0003-2697 cited in the application the whole document	47-57,75

tional application No. PCT/US 99/30925

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 76 (11-partially) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
In claim 11, SEQ ID Nos. 12 and 13 do not encode any amino acid sequence of claim 9 and 10. Claim 76 refers to itself.
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of Invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

PCT/US 99/30925

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: (1-10,12-46,65-68,73)-complete, (11,58)-partially

A second luciferase that has enhanced resistance to an inhibitor of the luciferase relative to a first reference beetle luciferase; said second luciferase which comprises a plurality of amino acid substitutions relative to the reference beetle luciferase; said second luciferase wherein the reference luciferase is LucpPe-2 (luciferase from Photuris pennsylvanica); luciferases: luc 133-182 and luc146-1H2 which comprise SEQ ID Nos. 44 and 45; an isolated and purified nucleic acid molecule comprising a nucleic acid sequence selected from SEQ ID Nos.42 and 43; a vector comprising said nucleic acid molecule; a host cell comprising said vector; a fusion protein comprising said luciferase; the use of the second luciferase for detecting ATP, for labeling a molecule, as a genetic reporter, for immobilization onto a solid surface, to produce a hybrid molecule, for high temperature reactions, or for creating luminescent solutions; a method for using said vector encoding said luciferase; a kit comprising: a container comprising said second luciferase; method to prepare an luciferase that is resistant to an inhibitor, comprising: a) selecting one or more isolated polynucleotide sequences encoding luciferase which is resistant to an inhibitor from a first population of polynucleotide sequences obtained from a first isolated polynucleotide sequence encoding luciferase subjected to conditions that yield nucleotide mutations, wherein the luciferase encoded by the one or more selected isolated polynucleotide sequences has increased resistance to an inhibitor relative to the luciferase encoded by the first isolated polynucleotide sequence; b) mutating the selected isolated polynucleotide sequence to yield a second population of polynucleotide sequences; and c) repeating step a) and step b) so as to yield a further polynucleotide sequence encoding luciferase that is resistant to an inhibitor and comprises a plurality of amino acid substitutions relative to the enzyme encoded by the first polynucleotide sequence; said method wherein the first polynucleotide sequence encodes Ppe2 and/or Ppl;

1.1. Claims: (1-10,12-46,65-68,73)-complete, (11, 58)-partially

Idem as Invention 1, but limited to luc49-7C6, respectively SEQ ID Nos. 1 and 14, where the reference beetle luciferase is lucPpe-2;

1.2. Claims: (1-10,12-46,65-68,73)-complete, (11, 58)-partially

PCT/US 99/30925

Idem as Invention 1, but limited to luc78-0810, respectively SEQ ID Nos. 6 and 19, where the reference beetle luciferase is lucPpe-2;

1.3. Claims: (1-10,12-46,65-68,73)-complete, (11, 58)-partially

Idem as Invention 1, but limited to luc90-185 respectively SEQ ID Nos. 11 and 24, where the reference beetle luciferase is lucPpe-2;

1.4. Claims: (1-10,12-46,65-68,73)-complete, (11, 58)-partially

Idem as Invention 1, but limited to luc81-6G01 respectively SEQ ID Nos. 13 and 26, where the reference beetle luciferase is lucPpl;

1.5. Claims: (1-10,12-46,65-68,73)-complete, (11, 58)-partially

Idem as Invention 1, but limited to luc81-0B11, respectively SEQ ID Nos. 46 and 47, where the reference beetle luciferase is lucPpl;

1.6. Claims: (1-10,12-46,65-68,73)-complete, (11, 58)-partially

Idem as Invention 1, but limited to lucPpe-2[T249M], respectively SEQ ID No. 12, where the reference beetle luciferase is lucPpe-2;

2. Claims: 47-57,75

A method to prepare an enzyme which is not a beetle luciferase and which has enhanced enzymological properties, comprising: a) selecting one or more isolated polynucleotide sequences encoding an enzyme which is not a luciferase and which has at least one enhanced enzymological property from a first population of polynucleotide sequences obtained from a first isolated polynucleotide sequence encoding an enzyme which is not a luciferase, wherein the first isolated polynucleotide sequence is subjected to conditions that yield nucleotide mutations, wherein the enzyme encoded by the one or more selected isolated polynucleotide sequences has at least one enhanced enzymological property relative to the enzyme encoded by the first isolated polynucleotide sequence; b) mutating the selected isolated polynucleotide sequence to yield a second population of polynucleotide sequences, wherein the selected isolated polynucleotide

PCT/US 99/30925

sequence is subjected to oligonucleotide mediated mutagenesis with a plurality of oligonucleotides each comrising at least one codon that encodes a consensus amino acid which is not present in the first polynucleotide sequence; and c) repeating step a) and step b) so as to yield a further polynucleotide sequence encoding an enzyme which is not a luciferase having at least one enhanced enzymological property and comprising a plurality of amino acid substitutions relative to the enzyme encoded by the first polynucleotide sequence; said method wherein the enzyme is DNA polymerase or RNA polymerase, chloramphenicolacetyltransferase, beta-glucoronidase or beta-galactosidase; an enzyme which is encoded by the polynucleotide sequence of said method;

3. Claims: 58-partially, (59-64,69-72,74)-complete

A method to prepare an enzyme that is resistant to an inhibitor, comprising: a) selecting one or more isolated polynucleotide sequences encoding an enzyme which is resistant to an inhibitor from a first population of polynucleotide sequences obtained from a first isolated polynucleotide sequence encoding an enzyme subjected to conditions that yield nucleotide mutations, wherein the enzyme encoded by the one or more selected isolated polynucleotide sequences has increased resistance to an inhibitor relative to the enzyme encoded by the first isolated polynucleotide sequence; b) mutating the selected isolated polynucleotide sequence to yield a second population of polynucleotide sequences; and c) repeating step a) and step b) so as to yield a further polynucleotide sequence encoding an enzyme that is resistant to an inhibitor and comprises a plurality of amino acid substitutions relative to the enzyme encoded by the first polynucleotide sequence; said method wherein the further polynucleotide sequence encodes an enzyme that has increased thermostability relative to the first polynucleotide sequence, said method wherein said enzyme is DNA or RNA polymerase; a polynucleotide sequence obtained by said m

Please note that all inventions mentioned under item 1, although not necessarily linked by a common inventive concept, could be searched without effort justifying an additional fee.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box 1.2

Claims Nos.: 76 (11-partially)

In claim 11, SEQ ID Nos. 12 and 13 do not encode any amino acid sequence of claim 9 and 10. Claim 76 refers to itself.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Information on patent family members

Interna i Application No PCT/US 99/30925

	ient document in search report		Publication date		tent family ember(s)	Publication date
WO	9914336	Α -	25-03-1999	AU EP	9492198 A 1015601 A	05-04-1999 05-07-2000
EP	0524448	A	27-01-1993	DE DE US JP	69229376 D 69229376 T 5229285 A 5244942 A	15-07-1999 15-06-2000 20-07-1993 24-09-1993
WO	9525798	A	28-09-1995	AU AU BR CA CN EP FI GB JP NO	697883 B 1954595 A 9507140 A 2186144 A 1149318 A 0751996 A 963741 A 2301592 A,B 9510610 T 963983 A	22-10-1998 09-10-1995 30-09-1997 28-09-1995 07-05-1997 08-01-1997 20-11-1996 11-12-1996 28-10-1997 23-09-1996
WO	9846729	A	22-10-1998	AU EP	6929398 A 0973874 A	11-11-1998 26-01-2000
WO	9518853	Α	13-07-1995	AU AU CA EP JP	698424 B 1830395 A 2157476 A 0689587 A 8510387 T	29-10-1998 01-08-1995 13-07-1995 03-01-1996
US	5605793	Α	25-02-1997	AU AU CA CN EP JP WO US	703264 B 2971495 A 2182393 A 1145641 A 0752008 A 0934999 A 10500561 T 9522625 A 5811238 A 5837458 A	25-03-1999 04-09-1995 24-08-1995 19-03-1997 08-01-1997 11-08-1999 20-01-1998 24-08-1995 22-09-1998 17-11-1998
WO	9813487	A	02-04-1998	AU AU EP EP WO	4503797 A 4597197 A 0964922 A 0963434 A 9813485 A	17-04-1998 17-04-1998 22-12-1999 15-12-1999 02-04-1998