### 大学物理实验报告

#### 第一部分(实验目的与原理)

学部 (院) 电子信息等院 姓名 乔洪煜寒 学号 2028410073

专业电科

实验日期 2021.4.

成绩

### 【实验名称】

杨氏棋量的测量

### 【实验目的】

- 1. 用拉伸法测金属丝的杨氏模量。
- 2. 掌握光杠杆放大法测探N长度变化量的原理及其使用方法。
- 3. 学会逐差法处理改城。

#### 【实验原理】

杨氏旗量是描述固体材料抵抗形变能力的物理量,是沿纵向的弹性模量。 根据胡克定律,在物体的弹性限度内,物体的应变与其应力成正比,即与=E头

式中的比例系权巨称物纸弹性模量(简称弹性模量)

安就E、则需求出F.L、S和AL。

外力F.金属丝原长L,截面积5=TTd?/4均易测量。

但是,AL是一个做的变化量,用一般量具难以测准。故而本实验采用光杠杆法进行的接测量。



苏州大学物理实验教学示范中心制

组成:老杠杆区射镜、倾角调节架、杨尺、望远镜

# 充杠杆放大原理:

当金属丝受为后,产生微水伸长,后足尖便随着测量端面一起作微小移动,并使得光杠杆绕前足尖转动一个微小角度,从而带动光杠杆反射镜转动相定的微小角度,这样杯尺的像在光杠杆反射镜和调节反射镜之间反射,便把这一做A角位移放大成较大的线位移。则有:

$$\begin{cases} \frac{\Delta A}{D} = + \alpha \omega \delta \\ \frac{\Delta L}{D} = + \alpha \omega \delta \end{cases} \Rightarrow \Delta L = \frac{\Delta A}{2D} Z \cdot \text{Fig.} E = \frac{8 \text{mgl} D}{7 d^2 \Delta A Z}$$

# 2. D的测量方法:

传统的方法用积大击撞测量,但这样的误是较大,现用长春第一光学仪器厂生产的尺读望远镜,D的测量可用公式:2D=1xx-xx1×100(cm)

THE THE PLANT OF THE PARTY OF T

式中证、不分别为望远镜的上叉丝和下叉丝相应的读版值。100是尺常致,由厂家设计所为。



### 【实验仪器】

杨氏模量测定仪、游杨卡尺、未尺、老杠杆与尺读望远镜、螺旋测微计50分度游杨卡,最小分度值:0.02 mm 螺旋测微计,最小分度值:0.01 mm 钢卷尺,最小分度值:1 mm

### 大学物理实验报告

### 第二部分 (实验记录)

学部 (院) 电子信息学院姓名 乔洪煜寒 学号 2028410073

专业电科

实验日期 \_\_101[.4.]

成绩

### 【原始实验数据及实验现象记录】

| 砝码/kg  | 缩更进程A/m                                            | 成变进程A%cm | 平均 A/cm                                                                                                                                     |  |  |  |
|--------|----------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0.320  | 1-35                                               | 1.29     | 1.32                                                                                                                                        |  |  |  |
| 0.640  | 2.00                                               | 1.90     | 1.95                                                                                                                                        |  |  |  |
| 0.960  | 2.68                                               | 2.56     | 2.62                                                                                                                                        |  |  |  |
| 1. 280 | 3.3                                                | 3.11     | 3,27                                                                                                                                        |  |  |  |
| 1.600  | 3.90                                               | 3.82     | 3.86                                                                                                                                        |  |  |  |
| 1.920  | 4.40                                               | 4.41     | 4.41                                                                                                                                        |  |  |  |
| 2.240  | 5.02                                               | 502      | 5.02                                                                                                                                        |  |  |  |
|        | 0.320<br>0.640<br>0.960<br>1.280<br>1.600<br>1.920 |          | 在码/kg 增速程/ 成域程/ 加速程/ 1.29  0.320  1.35  1.29  0.640  2.00  1.90  0.960  2.68  2.56  1.280  3.31  3.22  1.600  3.90  3.82  1.920  4.40  4.41 |  |  |  |

干分尺初始读数do=-0.010mm

| • | d/mm  |  |  |  |
|---|-------|--|--|--|
| 1 | 0.758 |  |  |  |
|   | 0.760 |  |  |  |
|   | 0.761 |  |  |  |
|   | 0.755 |  |  |  |
|   | 0.762 |  |  |  |

$$D = \frac{175}{25}$$
 em
$$L = \frac{39.60}{86.78}$$
 em
$$Z = \frac{86.78}{25}$$
 mm

# 大学物理实验报告

# 第三部分(实验方法与结果讨论)

| 学部 (院) | 电子信息学院 | 姓名一本洪煜寒 | 学号 2028410073 | 专业电科 |
|--------|--------|---------|---------------|------|
| 实验日期   |        |         | 成绩            |      |

# 【实验方法及步骤】

# 系统调整:

- ① 使仪器架重地面,加初始砝码将线材拉直。
- ①调整光杠杆平面镜使镜面垂直于平台。
- ③调节望远镜简水平且与平面镜等高。
- ④用眼睛恐望远镜上侧缺口,在星瞄准轴镜,并适当左右移动望远镜,直到在铜镜中央能看到初尺的象,此时望远镜——老杠杆小镜——村尺三者成物——镜——像入射与反射关系。
- ⑤稍微调整目镜,使其出现清析叉丝。调物镜聚焦旋钮以出现积尽象。
- ⑥ 做调平面镜的倾斜度和望远镜筒高度旋钮, 便杯尺0刻度线处于中叉丝附近。

# 望远镜读教:

- ①读出望远镜中上又丝和下叉丝的读数,求出D
- ②读出Ai的数据组。逐行加砝码读改相应Ai,再逐个成砝码读出Ai"

# 具体步骤底迹:

- 小调节就杆镜位置
- 四翅短镜调节
- (3)观测伸长变化
- (4)测量光杠杆镜前后脚距离区
- (5)测量钢丝直径d
- (6) 测量钢丝原长上

#### 【实验数据处理及实验结果】

#### (1)钢丝直径d

A美: 
$$Sa = \int \frac{\Sigma(di-\overline{d})^2}{n(n+1)} = 1.24 \times 10^{-3} \text{ mm}$$

B美:  $\delta d = \frac{\Delta d.1 \times}{\sqrt{3}} = \frac{0.004 \text{ mm}}{\sqrt{3}} = 2.31 \times 10^{-3} \text{ mm}$ 
 $U_{C,d} = \int S_{-1}^2 + \delta d = 2.62 \times 10^{-3} \text{ mm}$ 

# (2) 拉伸长度 AA

$$\Delta A_1 = A_1 - A_0$$
,  $\Delta A_2 = A_2 - A_1$ ,  $\Delta A_3 = A_3 - A_2$ .  $\Delta A_4 = A_4 - A_3$ ,  $\Delta A_5 = A_5 - A_4$   
 $\Delta \overline{A} = \frac{1}{4} [(A_5 - A_2) + (A_4 - A_1) + (A_3 - A_0)]$ 

$$B\bar{Z}$$
:  $\delta \Delta A = \Delta \Delta A \Delta X = 0.1 \text{ cm} = 0.0577 \text{ cm}$ 

$$Uc, \Delta A = \sqrt{S_{\Delta X}^2 + S_{\Delta A}^2} = 0.0517 \text{ cm}$$

$$Uc, \Delta A = \sqrt{S_{\Delta X}^2 + S_{\Delta A}^2} = 0.0517 \text{ cm}$$

(3)金属丝卷人、铜镜到杨尺的距离 D、老杠杆前后足距离 Z 都只测一次, 只有 B 美不确度

$$M_{C,L} = \frac{\Delta_{L,fX}}{\sqrt{3}} = \frac{0.3 \text{ mm}}{\sqrt{3}} = 0.173 \text{ mm}$$

$$M_{C,D} = \frac{\Delta_{D,fX}}{\sqrt{3}} = \frac{0.10 \text{ mm}}{\sqrt{3}} = 0.0577 \text{ mm}$$

$$M_{C,Z} = \frac{\Delta_{Z,fX}}{\sqrt{3}} = \frac{0.02 \text{ mm}}{\sqrt{3}} = 0.0115 \text{ mm}$$

# 绍上所述.得

$$\frac{U(E)}{E} = \sqrt{\frac{(Uc.L)^2 + (\frac{Uc.D}{D})^2 + (\frac{Uc.Z}{Z})^2 + (\frac{2Uc.d}{d})^2 + (\frac{Uc.\Delta A}{\Delta A})^2} = 0.011$$

$$U(E) = 4 \times 10^9 \text{W/m}^2$$

$$E = \bar{E} \pm U(E) = (3.227 \times 10^{11} \pm 4.000 \times 10^9) \text{ (N/m}^2$$

## 【问题讨论】

- 1. 用逐程放理数据有什么好处?
- 答:充分利用了测量数据,又保持了多次测量的优点,减少了测量误差
- 2. 在侧量钢丝的伸长量时, 先是逐步增重, 然后又逐步减重, 最后求A, 为什么?
- 答:鉴于金属受外力时存在看弹性滞后效应,即钢丝受到拉伸力作用时,并不能立即伸长到应有的长度,同样,多钢丝受到的拉伸力减小时,也不能马上缩短到应有的长度。因此,为了消除弹性滞后效应引起的系统误差,测量中应包括场加拉伸力以及对应地减少拉伸力这一对私测量过程。因为只要将相应的场、成测量值取平均,就可以消除,滞后量的影响。