Honours Thesis Title

Emily Hackett

Supervisors: Dr Brendan Kennedy and Dr Lixin Chin Honours Thesis submitted as part of the B.Phil. (Honours) degree in the School of Physics, University of Western Australia

Date of submission: 04/11/17

Acknowledgments

Paragraphs thanking people.

Abstract

Overview of thesis goes here

Contents

1	Geometry				1
	1.1	Riema	annian Geometry		1
		1.1.1	Isometries		1
		1.1.2	Refs		1
2	\mathbf{Titl}	le			2
	2.1	Sectio	on		2
		2.1.1	Subsection		2
3	Titl				3
	3.1	Sectio	on		3
		3.1.1	Subsection		3
References					4
\mathbf{A}	A Riemannian Geometry				5
В	B Selected Proofs				

Chapter 1

Geometry

1.1 Riemannian Geometry

1.1.1 Isometries

A transformation that preserves the shape of a space called an *isometry*.

Definition 1.1.1. (Isometry)

An *Isometry* of a Riemannian manifold (M,g) is a diffeomorphism $f:M\to M$ that preserves the metric (?). eg, if f(z)=z' is an isometry then

$$g_p(X,Y) = f^*g_p(X,Y) = g_{f(p)}(f_*X, f_*Y)$$

In coordinates this becomes

$$g_{kl}(z)dx^kdx^l = g_{ij}(z')\frac{\partial z'^i}{\partial z^k}dx^k\frac{\partial z'^j}{\partial z^l}dx^l$$

1.1.2 Refs

Testing of references: Bagger and Xiong (1). Hitchin (2).

Chapter 2

Title

- 2.1 Section
- 2.1.1 Subsection

Chapter 3

Title

- 3.1 Section
- 3.1.1 Subsection

References

- [1] Jonathan Bagger and Chi Xiong. N=2 Nonlinear Sigma Models in N=1 Superspace: Four and Five dimensions. 2006.
- [2] N. J. Hitchin, A. Karlhede, Ulf Lindström, and M. Roćek. Hyperkähler Metrics and Supersymmetry. *Commun. Math. Phys.*, 108:535–589, 1987.

Appendix A Riemannian Geometry

Appendix B

Selected Proofs