TD 12 - Verdre di 20 novembre 2020

ex4.5: P= {n EIN n est premir y CIN
Ma P exhibini.
Par l'alnude, on ruypose que P et fini : P = {\psi_1, pm3},
Pri Pri vi i di
$q = p_1 - p_m + 1$
1- Svit i ({1, - m). Si pi/q, pi/q-p1-pm=1 done pi=1. pos povále. Done pi ta
2- qEN donc il existe pEP telque p/q.] iEE1 sn3
L- qEN donc il existe pEP telque p/q. I i EE1 m3 tq p=pi et pi/q. Or par 1-, c'et per possible.
- Contraction et Pet infini.
- Composition of , and
[Earlide ~ -400 av J.C] autre façon de conclure
exercice 4.6: Soit m 7.2 mm pramier. a, b 7.2. Parex a & t.
exercice 4.6: Soit m 72 num premier. a, b 72. Tar ex a & b. 1. 3 a, b EN, a, b + 1 fg n = ab. donc n = ab > a ²
exercice 4.6: Soit m 72 num premier. a, b 72. Tar ex a & b. 1. 3 a, b EN, a, b + 1 fg n = ab. donc n = ab > a ²
exercice 4.6: Soit m 7.2 non premier. a, b 7.2. Tar ex a & b. 1. 3 a, b EN, a, b + 1 fg n = ab. donc n = ab > a ² Par l'alrude, supposons a > 5m et b 5m. Alors 2 5m > a
exercice 4.6: Soit m 72 num premier. a, b 72. Tar ex a & b. 1. 3 a, b EN, a, b + 1 fg n = ab. donc n = ab > a ²
exercice 4.6: Soit m 7 2 norm premier. a, b 7 2. Tar ex a & t. 1. 3 a, b EN, a, b + 1 fg n = ab. donc n = ab > a ² Par l'alrude, supporons a > 5n et b 5n. Alors 2 5n > a n = ab > 5n x 5n = n alsude. Donc a & 5n on b & 5n.)
exercice 4.6: Soit m 7 2 norm premier. a, b 7 2. Tar ex a & t. 1. 3 a, b EN, a, b + 1 fg n = ab. donc n = ab > a ² Par l'alrude, supporons a > 5n et b 5n. Alors 2 5n > a n = ab > 5n x 5n = n alsude. Donc a & 5n on b & 5n.)
exercice 4.6: Soit m 7 2 norm premier. a, b 7 2. Tar ex a & t. 1. 3 a, b EN, a, b + 1 fg n = ab. donc n = ab > a ² Par l'alrude, supporons a > 5n et b 5n. Alors 2 5n > a n = ab > 5n x 5n = n alsude. Donc a & 5n on b & 5n.)
exercice 4.6: Soit m 7.2 non premier. a, b 7.2. Tar ex a & b. 1. 3 a, b EN, a, b + 1 fg n = ab. donc n = ab > a ² Par l'alrude, supposons a > 5m et b 5m. Alors 2 5m > a
exercice 4.6: Soit m ? 2 mm pranier. a, b ? 2. tar ex a & b. 1. I a, b EN, a, b + 1 by n = ab. donc n = ab > a ² Par l'alrude, supposons a > 5n et b 5n. Alors 2 5n > a n = ab > 5n x 5n = m alsude. Donc a & 5n ou b & 5n.) n > n d- M night de pro-dre un dissem prenier p de m; p/m dinc 2 x p \le m \le \square \sq
exercice 4.6: Soit m ? 2 mm pranier. a, b ? 2. tar ex a & b. 1. I a, b EN, a, b + 1 by n = ab. donc n = ab > a ² Par l'alrude, supposons a > 5n et b 5n. Alors 2 5n > a n = ab > 5n x 5n = m alsude. Donc a & 5n ou b & 5n.) n > n d- M night de pro-dre un dissem prenier p de m; p/m dinc 2 x p \le m \le \square \sq
exercice 4.6: Soit m 7 2 norm premier. a, b 7 2. Tar ex a & t. 1. 3 a, b EN, a, b + 1 fg n = ab. donc n = ab > a ² Par l'alrude, supporons a > 5n et b 5n. Alors 2 5n > a n = ab > 5n x 5n = n alsude. Donc a & 5n on b & 5n.)

```
ex4.7: 1- 2 & n & 48. Sin n'est pas premier il existe p
       fremer, 2<ptsn by p/n (exo46).
                                                           Or, \sqrt{m} < \sqrt{49} = 7 donc 2 \le p < 7 et p premier = 3 p = 2 our 3 our = 5.
                                                  Lone nost divisible par 2,3 ou 5.
                                              card (Ad) = cand { men | 1 kn 648 erd In }
                                                                                                                                = card { kd : 1 < kd < 48 }
                                                                                                                                      = card \frac{2}{2} led: \frac{1}{d} \frac{1}{2} le \frac{48}{d} \frac{1}{2} \frac{1}{2} le \frac{48}{d}
                                                                                                                                       = card & k EN 10< 1 < k < 48 }
                                                                                                                                                 = [48] = pourre entrère de 48 = max { r < n, }
  3- payed (2,3) = 1 done 8in \in \mathbb{N}, 2(n \text{ et } 3/n) = ) 6/n.

Inversement, 6(n) = 2/n \text{ et } 3/n.
                                  A_2 \cap A_3 = A_6.
            4. De Jason analogue, Az nAs = A10
A_{3} \cap A_{5} = A_{45}
A_{2} \cap A_{3} \cap A_{5} = A_{30}.
\frac{2}{3} \stackrel{5}{\circ} \stackrel{5}{\circ} \stackrel{7}{\circ} \stackrel
                                                                                             = card (Az) + card (Az) + card (As) - card (A6) - card (A10)
                                                                                                                                                                                                                        9 < (40 - (ard(A_{15}) + card(A_{30})^{3} < \sqrt{4}
                                                                                                    = \left[\frac{48}{2}\right] + \left[\frac{48}{3}\right] + \left[\frac{48}{5}\right] - \left[\frac{48}{6}\right] - \left[\frac{48}{15}\right] + \left[\frac{48}{30}\right]
                                                                                                                       = 24 + 16 + 2 - 8 - 4 - 3 + 1
```



```
49. d \in \mathbb{Z}. \mathbb{Z}/d\mathbb{Z} = \text{quotient de } \mathbb{Z} \text{ par la vel d'eq}

11  n \times m \in n-m \text{ est din tible par d.}

\{\overline{n}: n \in \mathbb{Z}\} n \times n' \in n-n'
                  \left\{ \overline{0}, \overline{1}, \dots, \overline{d-1} \right\} \quad \text{and } \overline{2}/d\overline{2} = d.
              Z ⊃ m = {m+kd: k ∈ Z}
                 = n+dZ
    On peut constitué sur 2/12 une addition +, multipliation x.
   +: 2/12 × 2/12 ->> 2/12.
Il fant ventier que m'+n' = n+n.
     On a d/n-n' donc (m+n) - (m'+n')

= (m-m') + (n-n')

o/duntle pad.
                  \Delta mc \overline{m+n} = \overline{m'+n'}
        X: 2/12 × 2/12 -> 2/12
              (C, C') \mapsto \overline{nm} \text{ où } n \text{ est by } \overline{n} = C

et m \text{ est by } \overline{m} = C'.
               Il jour vérifier que um ne de pend du choix de n etim.
            Si \quad N = N' = C, \quad \overline{W} = \overline{M'} = C',
              On year my nm = n'm'
          Or, d/n-n', d/m-m' de s'agit de voir que d/nm-n'm'
```

$$nm - n'm' = n(m - m') + nm' - n'm'$$

$$= n(m - m') + m'(n - n').$$
est durable par d donc $nm = n'm'$.

$$(\mathbb{Z}/d\mathbb{Z},+,X)$$
 bonnes propriétés : e.g. $\overline{n}_{X}(\overline{m}+\overline{n})=\overline{n}\overline{m}+\overline{n}\overline{v}$.

no DID et un ouneau

ex 4.9.	I M	5	7	2	<u>)</u> 3	4	
d = 2		10	<u></u>)0	0	10	
	7)	7	2	3	4	
	2	0	2	4	1	3	
	3	0	3	1	4	2	
	4	10	1	3	2	1	

7/67. Pour le 97/M finir 4.9, 4.10, 4.11.