JEE MAIN (2023-24) Mock Test Series

Paper - 05

DURATION: 180 Minutes

M. MARKS: 300

ANSWER KEY

PHYSICS 1. **(2)** 2. **(1)**

- •	(1)
3.	(2)
4.	(4)
5.	(3)
6.	(2)
7.	(2)
8.	(2)
9.	(3)
10.	(3)
11.	(2)
12.	(1)
13.	(2)
14.	(2)
15.	(2)
16.	(2)
17.	(2)
18.	(3)
19.	(1)
20.	(4)
21.	(6)
22.	(20)
23.	(24)
24.	(8)
25.	(15)
26.	(70)
27.	(12)
28.	(4)
29.	(40)
30.	(5)

CHEMISTRY		
31.	(4)	
32.	(1)	
33.	(1)	
34.	(3)	
35.	(4)	
36.	(3)	
37.	(3)	
38.	(4)	
39.	(2)	
40.	(1)	
41.	(1)	
42.	(4)	
43.	(1)	
44.	(4)	
45.	(1)	
46.	(1)	
47.	(3)	
48.	(2)	
49.	(4)	
50.	(4)	
51.	(5)	
52.	(2)	
53.	(6)	
54.	(1)	
55.	(2)	
56.	(7)	
57.	(4)	
58.	(3)	
59.	(7)	
60.	(6)	

MATHEMATICS 61. (3) 62. (2) 63. (4) 64. (4) **65. (3) 66. (1) 67.** (1) **68. (2) 69.** (3) **70.** (1) **71. (3) 72.** (3) **73. (3) 74.** (1) **75.** (2) **76. (1)** 77. (4) **78.** (1) **79.** (2) 80. (4) **81.** (2) 82. (43) 83. **(9)** 84. (5) **85. (6) 86.** (9) **87.** (208) 88. (49) **89. (3)** 90. **(1)**

SECTION-I (PHYSICS)

1. (2)

When the block just reaches the top of the wedge then the velocity of block with respect to wedge at the top of the wedge is zero. Let v be the horizontal velocity of both at this instant. By Law of conservation of Linear Momentum, we have (2m + m) v = mu

$$\Rightarrow v = \frac{u}{3}$$

By law of conservation of of Mechanical energy, we get

$$\frac{1}{2}mu^2 = \frac{1}{2}(3m)v^2 + mgh$$

$$\Rightarrow u^2 = 3\left(\frac{u^2}{9}\right) + 2gh$$

$$\Rightarrow \frac{2}{3}u^2 = 2gh$$

$$\Rightarrow u = \sqrt{3gh}$$

2. (1)

$$f = \frac{1}{2\ell} \sqrt{\frac{\mathbf{T}}{m}};$$

 $ln air: T = mg = \rho Vg$

$$\therefore f = \frac{1}{2\ell} \sqrt{\frac{\rho Vg}{m}} \qquad \dots (1)$$

In water : T = mg – upthrust

$$=V\rho g - \frac{V}{2}\rho_{\omega}g = \frac{Vg}{2}(2\rho - \rho_{\omega})$$

$$\therefore f' = \frac{1}{2\ell} \sqrt{\frac{\frac{Vg}{2} (2\rho - \rho_{\omega})}{m}}$$

$$= \frac{1}{2\ell} \sqrt{\frac{Vg\rho}{m}} \sqrt{\frac{(2\rho - \rho_{\omega})}{2\rho}}$$

$$\frac{f'}{f} = \sqrt{\frac{2\rho - \rho_{\omega}}{2\rho}}$$

$$f' = f \left(\frac{2\rho - \rho_{\omega}}{2\rho}\right)^{1/2}$$

$$300 \left(\frac{2\rho - 1}{2\rho}\right)^{1/2} Hz$$

3. (2)

Since, we know that areal velocity of planet is constant. So, we have

 $\frac{\text{Area of Ellipse}}{\text{Period of Revolution}} = \frac{\text{Area } SAB}{t_{AB}}$

$$\Rightarrow t_{AB} = \frac{T\left(\frac{\pi ab}{4} - \frac{1}{2}(b)(ea)\right)}{\pi ab}$$

$$\Rightarrow t_{AB} = T\left(\frac{1}{4} - \frac{e}{2\pi}\right)$$

4. (4)

In electromagnetic wave, the electric field vector is given as

$$E = (E_1 \hat{i} + E_2 \hat{j}) \cos(kz - \omega t)$$

In electromagnetic wave, the associated magnetic field vector.

$$B = \frac{E}{c} = \frac{(E_1\hat{i} + E_2\hat{j})}{c}\cos(kz - \omega t)$$

As, E and B are perpendicular to each other and the propagation of electromagnetic wave is perpendicular to E as well as B, so the given electromagnetic wave is plane polarised.

5. (3)

At extreme position A, since the ball is at rest so, net acceleration is equal to the tangential acceleration.

$$\Rightarrow a_A = g\sin\theta$$

At lowermost position B, net acceleration is centripetal acceleration, i.e.,

$$a_B = \frac{v^2}{L}$$
 where $v = \sqrt{2gL(1-\cos\theta)}$

$$\Rightarrow a_B = 2g(1-\cos\theta)$$

Since,
$$a_A = a_B$$

$$\Rightarrow g\sin\theta = 2g(1-\cos\theta)$$

$$\Rightarrow 2g\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) = 2g\left(1 - \left(1 - 2\sin^2\frac{\theta}{2}\right)\right)$$
Since $\sin\theta = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$ and
$$1 - \cos\theta = 2\sin^2\left(\frac{\theta}{2}\right)$$

$$\Rightarrow 2g\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) = 2g \times 2\sin^2\left(\frac{\theta}{2}\right)$$

$$\Rightarrow \tan\frac{\theta}{2} = \frac{1}{2}$$

$$\Rightarrow \frac{\theta}{2} = 26.5^\circ$$

$$\Rightarrow \theta = 53^\circ$$

6. (2)
$$X_{C} = \frac{1}{\omega C}; \quad I_{rms} = \frac{E_{0}}{\sqrt{2} X_{C}}$$

$$X_{C} = \frac{1}{\omega C} = \frac{1}{100 \times 10^{-6}} = 10^{4} \Omega$$

$$i_{max} = \frac{200\sqrt{2}}{10^{4}} = 20\sqrt{2} \text{ mA}$$

$$\Rightarrow \text{ Reading of AC ammeter}$$

$$= l_{\text{rms}} = \frac{20\sqrt{2}}{\sqrt{2}} \text{ mA}$$
$$= 20 \text{ mA}$$

7. (2)
$$V = \frac{\rho}{6\varepsilon_0} \left(3R^2 - r^2 \right)$$

$$V = \frac{\rho 3R^2}{6\varepsilon_0} - \frac{\rho}{6\varepsilon_0} \left[3 \left[\left(\frac{R}{2} \right)^2 \right] - \left(\frac{R}{2} \right)^2 \right]$$

$$= \frac{\rho R^2}{2\varepsilon_0} - \frac{\rho}{6\varepsilon_0} \left[2 \cdot \frac{R^2}{4} \right]$$

$$= \frac{\rho R^2}{2\varepsilon_0} - \frac{\rho R^2}{12\varepsilon_0} = \frac{5\rho R^2}{12\varepsilon_0}$$

8. (2)
$$R = \sqrt{\frac{L}{C}} \Rightarrow RC = \frac{L}{R}$$

$$\Rightarrow \text{ Time constant of both circuits are equal}$$

$$l_L = i_C$$

$$\frac{V}{R} \left(1 - e^{-\frac{t}{\tau}} \right) = \frac{V}{R} e^{-\frac{t}{\tau}}$$

$$\Rightarrow t = \tau \ln(2) = RC \ln(2)$$

9. (3) Length of air column on both side is 45 cm when one side at 0°C and the other is at 273°C. The pressure must be same on both sides. Hence $\frac{l_1}{T_1} = \frac{l_2}{T_2} \Rightarrow \frac{l_1}{273} = \frac{l_2}{(273 + 273)} \Rightarrow l_1 = \frac{l_2}{2}$

Applying gas equation to the side at 0° C, we get $\frac{P_1 l_2}{T_1} = \frac{P l}{T} \Rightarrow \frac{P_1 \times 30}{273} = \frac{76 \times 45}{(273 + 81)} \Rightarrow P_1 = 88.16$

10. (3)

$$\frac{1}{2}K(A')^{2} = \frac{1}{2}KA^{2} + \frac{1}{2}m\omega^{2}A^{2}$$
K.E. = $\frac{1}{2}m\omega^{2}(A^{2} - x^{2})$
= $\frac{1}{2}m\omega^{2}(A^{2} - \frac{3}{4}A^{2})$
= $\frac{1}{8}m\omega^{2}A^{2}$

If kinetic energy increased by $\frac{1}{2}m\omega^2A^2$ at position $\frac{\sqrt{3}A}{2}$, then new kinetic energy at that

K.E.
$$= \frac{1}{8}m\omega^2 A^2 + \frac{1}{2}m\omega^2 A^2$$
$$= \frac{1}{2}m\omega^2 \left(A'^2 - \left(\frac{\sqrt{3}A}{2}\right)^2\right)$$
$$\Rightarrow A' = \sqrt{2}A$$

11. (2)
Current in R_1 is $I_1 = \frac{5}{500} = 10 \times 10^{-3} A = 10 \text{ mA}$ Current in R_2 is $I_2 = \frac{10}{1500} A = \frac{20}{3} \text{ mA}$ Current through Zener diode is $I_z = I_1 - I_2 = \left(10 - \frac{20}{3}\right) \text{mA} = \frac{10}{3} \text{mA} \approx 3.3 \text{ mA}$

12. (1)
$$\frac{dt}{dx} = (2\alpha x + \beta)$$

For floating,
$$W = U$$

$$\Rightarrow W_{\text{sphere}} + W_{\text{chain}} = U$$

$$W = mg + (\lambda h)g$$
Now $U = V_{\text{sphere}} \rho_{\text{water}} g + V_{\text{chain}} \rho_{\text{water}} g$

$$\Rightarrow U = V_{\text{sphere}} \left(3\rho_{\text{sphere}} \right) g + V_{\text{chain}} \left(\frac{\rho_{\text{chain}}}{7} \right) g$$

$$\Rightarrow U = 3mg + \frac{1}{7} (m_{\text{chain}} g)$$

$$\Rightarrow U = 3mg + \frac{\lambda hg}{7}$$
Since $W = U$

$$\Rightarrow mg + \lambda hg = 3mg + \frac{\lambda hg}{7}$$

$$\Rightarrow 2mg = \frac{6\lambda hg}{7}$$

14. (2)

 $\Rightarrow h = \frac{7m}{3\lambda}$

For equilibrium of sphere net torque on it due to its weight and that due to magnetic forces must balance about bottom point of contact which is given as

$$\tau_{mg} = \tau_{B}$$

$$\Rightarrow mgR \sin \theta = \pi R^{2} iB \sin \theta$$

$$\Rightarrow B = \frac{mg}{\pi iR}$$

15. (2)

Path difference between the waves reaching *O* will be $\Delta x = 2d \sin \alpha$

For dark fringe at O, we have

$$2d \sin \alpha = \frac{\lambda}{2}$$

$$\Rightarrow \sin \alpha = \frac{\lambda}{4d}$$

$$\Rightarrow \alpha = \sin^{-1} \left(\frac{\lambda}{4d}\right)$$

16. (2)

For perfectly absorbing, $F_n = \frac{P}{c}$ For perfectly reflecting, $F_n = \frac{2P}{c}$ For the given situation, $F_n = \frac{P}{c} + \frac{2}{5} \frac{P}{c}$ $\Rightarrow F_n = \frac{7}{5} \frac{P}{c} = 1.4 \frac{P}{c}$

17. (2)

$$\vec{\tau}_{Hinge} = I \alpha$$

$$\frac{\sigma QL}{2\varepsilon_0} = \frac{ML^2}{3} \alpha$$

$$\alpha = \frac{3\sigma Q}{2ML\varepsilon_0}$$

18. (3)

$$F = T$$

Also, $3T = 40$
 $\Rightarrow T = \frac{40}{3}$ N

19. (1) About point *O* ring is in pure rotation.

20. (4)

$$F = F_R + F_M$$

$$F_R = \frac{Mg}{2}$$

$$F_M = \frac{\Delta P}{\Delta t} = Mg$$

$$F = \frac{3}{2}Mg$$

21. (6)

 $\frac{\text{Total angular momentum about cm}}{\text{Angular momentum of B about cm}} = \frac{L}{L_B}$

$$\Rightarrow \frac{L}{L_{B}} = \frac{(2.2M_{S})\left(\frac{5\omega d}{6}\right)\left(\frac{5d}{6}\right) + (11M_{S})\left(\frac{\omega d}{6}\right)\left(\frac{d}{6}\right)}{(11M_{S})\left(\frac{\omega d}{6}\right)\left(\frac{d}{6}\right)}$$

$$\Rightarrow \frac{L}{L_{D}} = 6$$

22. (20)

Just after the thread is burnt, the forces acting on the rod are as shown in Figure.

Torque due to forces about O is

$$\tau = (20)(0.1) + (6)(0.6) = 5.6 \text{ N}$$

Angular acceleration about O is given by

$$\alpha = \frac{\tau}{I} = \frac{5.6}{\left(\frac{(2)(1)^2}{12} + (2)(0.1)^2\right)}$$

 $\Rightarrow \alpha \cong 30 \text{ rads}^{-2}$

Now, $a_c = r\alpha = (0.1)\alpha$

$$\Rightarrow a_c = 3 \text{ ms}^{-2}$$
 {downwards}

Since $W + kx - F = ma_C$

$$\Rightarrow F = W + kx - ma_C$$

$$\Rightarrow F = 20 + 6 - (2)(3)$$

$$\Rightarrow F = 20 \text{ N}$$

23. (24)

$$C = \frac{K \in_0 A}{d} = a \text{ constant}$$

For A to be minimum, d must be minimum. The separation between the plates is limited by the breakdown strength of the dielectric.

For air capacitor

$$\frac{V}{d_{\min}} = E_{\text{air}} = \text{Breakdown field for air}$$

$$\therefore d_{\min} = \frac{V}{E_{\min}}$$

Now
$$\frac{\epsilon_0 A_{\min}}{d_{\min}} = C$$

$$\Rightarrow A_{\min} = \frac{C}{\epsilon_0} \frac{V}{E_{\text{air}}}$$

$$\therefore A_1 = \frac{CV}{\in_0 E_{\text{air}}}$$

With dielectric, similar calculation gives

$$A_2 = \frac{CV}{K \in_0 E_{\text{dielec}}}$$

$$\therefore \frac{A_1}{A_2} = \frac{KE_{\text{dielec}}}{K_{\text{air}}} = 3 \times 8 = 24$$

$$a = \frac{v^2}{r} = \frac{Z^2}{n^2} \times \frac{Z}{n^2}$$

$$\Rightarrow a \propto Z^3$$

$$\Rightarrow \frac{a_{\text{He}^+}}{a_{\text{H}}} = \frac{Z_{\text{He}}^3}{Z_{\text{H}}^3} = \frac{2^3}{1^3} = \frac{8}{1}$$

25.

Restoring torque, $\tau = -kl^2\theta - k\frac{l^2}{4}\theta = -\frac{5}{4}kl^2\theta$

$$\Rightarrow \left(\frac{ml^2}{3}\right)\alpha = -\frac{5}{4}kl^2\theta$$

$$\Rightarrow f = \frac{1}{2\pi} \sqrt{\frac{\alpha}{\theta}} = \frac{1}{2\pi} \sqrt{\frac{15k}{4m}}$$

26.

qE = 30 N, vertical component of electric force

 $=30\sin 30^{\circ} = 15 \text{ N}$ and horizontal component of electric force = $30\cos 30^{\circ} = 15\sqrt{3} \text{ N}$

$$a_y = \frac{mg - 15}{m} = \frac{30 - 15}{3} = 5 \text{ m/s}^2 \text{ (downwards)}$$

$$a_x = \frac{15\sqrt{3}}{3} = 5\sqrt{3} \text{ m/s}^2$$

$$T_1 = \frac{2u_y}{a_y} = \frac{2 \times 20 \sin 30^\circ}{5} = 4 \text{ s}$$

$$T_2 = eT_1 = 2 \text{ s}$$

Horizontal velocity after first drop

$$= \left(20\cos 30^{\circ}\right) + a_x T_1$$

$$=(10\sqrt{3})+(5\sqrt{3})4$$

$$=30\sqrt{3} \text{ m/s}$$

: Horizontal distance travelled between first drop and second drop

$$= \left(30\sqrt{3}\right)T_2 + \frac{1}{2}a_x T_2^2$$

$$= \left(30\sqrt{3}\right)\left(2\right) + \frac{1}{2}\left(5\sqrt{3}\right)(2)^2$$

$$=70\sqrt{3} \text{ m}$$

27. (12)

$$F = mg \sin\theta + (\eta)(a^2) \frac{v_0}{t}$$

$$3mg = (mg) \times \frac{3}{5} + \eta a^2 \frac{v_0}{t}$$

$$\Rightarrow \eta = \frac{12mgt}{5v_0a^2}$$

Wavelength of the emitted photon is

$$\frac{1}{\lambda} = Z^2 R \left[\frac{1}{n_i^2} - \frac{1}{n_f^2} \right]$$

$$\therefore v = \frac{5}{36}Rc \quad \therefore \qquad n = 4$$

$$W_T = \Delta KE$$

$$\Rightarrow W_F + W_{2F} = k_f$$

$$\Rightarrow -20 + (20)4 = k_f \Rightarrow k_f = 60 \text{ J}$$

$$\Rightarrow k_T + k_R = 60 \text{ also } \frac{k_T}{k_R} = 2$$

$$\Rightarrow k_T = \frac{2}{3} \times 60 = 40 \text{ J}$$

$$(T)_{\text{mid point}} = \frac{F}{2}$$

$$E = \frac{F}{2AY}$$

SECTION-II (CHEMISTRY)

Energy of 1 mole photon
$$E = \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{4 \times 10^{-7}} \times 6.022 \times 10^{23}$$

 $\approx 297 \text{ kJ/mole}$

Percentage of energy converted to KE

$$=\frac{297-246.5}{297}\times100=17\%$$

32. **(1)**

Let the equivalents of Na₂CO₃ is X Equivalents of NaHCO₃ is Y

Phenolphthalein indicator

$$\frac{X}{2} = 2.5 \times 0.1 \times 2 \times 10^{-3}$$

$$X = 1 \times 10^{-3} \text{ in } 10 \text{ mL}$$

In one litre = 1×10^{-1}

Mass of $Na_2CO_3 = 5.3gm$

Methyl orange indicator

$$\frac{X}{2}$$
 + Y = 2.5×0.2×2×10⁻³

 $Y = 1 \times 10^{-3} - 0.5 \times 10^{-3} = 0.5 \times 10^{-3} \text{ in } 10 \text{ mL}$

Equivalents of NaHCO₃ in 1 litre = 0.05Mass of NaHCO₃ = 0.05×84 = 4.2 gm

$$\Delta U = q + w$$

or
$$-q = w (\Delta U = 0)$$

$$-5 = (w_{AB} + w_{BC} + w_{CA})$$

-5 = (-10 + 0 + w_{CA})
\Rightarrow w_{CA} = +5J

34. **(3)**

Its equilibrium constant

$$\begin{split} K_{eq} &= \frac{K_a \times K_b}{K_w} = \frac{3.24 \times 10^{-10}}{10^{-14}} \\ &= 1.8 \times 1.8 \times 10^4 \end{split}$$

$$\begin{split} Mg(OH)_2(s) &\rightleftharpoons Mg^{2+}(aq) + 2OH^-(aq.) \\ [Mg^{2+}] \ [OH^-]^2 &= 1.2 \times 10^{-11} \\ [OH^-]^2 &= 1.2 \times 10^{-10} \\ [OH^-] &= 1.1 \times 10^{-5} \\ pOH &= -log \ 1.1 \times 10^{-5} \\ pH &= 14 - 4.96 = 9.04 \end{split}$$

36. **(3)**

As in (III) the correct order of increasing first ionization enthalpy is B < C < O < N.

37.

Number of ions increases considerably only for weak electrolytes.

$$(I) < (II) = (IV) < (III)$$

$$O_2$$
 14 e^-

B.O. =
$$2.0$$

B.O. = 2.5

$$NO^+$$

$$B.O. = 3.0$$

$$O_2^+$$

$$B.O. = 2.5$$

39. (2)

Basic strength: III > I > IV > II

Acidic strength of conjugate acids:

$$(II) > (IV) > (I) > (III)$$

40. (1)

- NO_2 is a meta-directing group. As it is also a deactivating group so no chance of introduction of second-Br atom

41. (1)

CO, NO and N2O are neutral oxides.

42. (4)

XeF₂–sp³ d– linear (3 lone pairs)

XeF₄-sp³ d²- square planar (2 lone pairs)

XeF₆–sp³ d³– distorted octahedral (one lone pair)

43. (1)

$$\sqrt{n(n+2)} = 5.92$$

n = 5

44. (4)

Theoretical

45. (1)

$$Pka = 15 \quad Pka = 20 \qquad Pka = 23$$

46. (1)

Equal volumes of both will consume and hence,

$$[CH_3COONa] = \frac{0.01}{2} = 0.005 \text{ M}$$

Now,
$$P^{H} = 7 + \frac{1}{2} (P^{K_a} + \log C)$$

$$=7+\frac{1}{2}(4.7+\log(0.005))=8.2$$

47.

(3)
$$Cl \qquad Cl \qquad (i) CH_3CHO$$

$$Br \qquad Et_2O \qquad MgBr \qquad (ii) aq. NH_4Cl$$

$$\begin{array}{c|c}
Cl & Cl \\
CH - CH_3 & CH - CH_2 \\
OMgBr & OH \\
(X)
\end{array}$$

48. (2)

Chromyl chloride test \rightarrow Confirmatory test for Cl^-

Brown ring test \rightarrow Confirmatory test for NO $_3^-$ Smell of vinegar \rightarrow indicatory test for CH $_3$ COO $^-$ Smell of rotten eggs \rightarrow indicates S $^{2-}$

49. (4)

 SF_6 is thermodynamically very stable due to high S-F bond strength.

50. (4)

51. (5)

All of the reagents can be used for this purpose.

52. (2)

Degrees of unsaturation = 2.

53. (6)

Possible number of tripeptide $= !3 = 3 \times 2 \times 1 = 6$

54. (1)

Mol. wt. of X and Y are identical.

$$CH_3 - C = N$$

$$CH_3 - C = N$$

$$OHO$$

$$N = C - CH_3$$

56. (7)

 $C_6H_{12}O \Rightarrow Degree of unsaturation = 1$

(3)
$$CH_3 - CH_2 - \overset{*}{C}H - \overset{*}{C} - CH_3$$

(4)
$$CH_3$$
 CH_3 CH_2 CH_3 $CH_$

*5*7.

$$\Delta T_{\rm f} = K_{\rm f} \cdot m \Rightarrow 0.29 = 1.86 \times \frac{1.04/267}{100/1000} \times n$$

$$\Rightarrow n \approx 4$$

58.

Only primary amines undergo carbylamine reaction.

59. (7)

 $H_4P_2O_5$

HO H H HO OH HO OH HAP2O6

HO HO OH OH HAP2O6

$$X = 5$$
 $Y = 2$
 $X + Y = 7$

$$\begin{array}{ccc} 3A_2(g) & \rightleftharpoons & A_6(g), & K_{P1} = 1.6 \\ & atm^{-2} \end{array}$$

0

Initial $2P_0$

partial

pressure

Equilibrium 2P₀ –

Partial 3a-b

pressure

$$\begin{array}{ccccc} A_2(g) & + & C(g) & \Longrightarrow & A_2C(g) & K_{P2} = \\ & & & & x & \\ & & atm^{-1} & & \end{array}$$

Initial partial 2P₀ 0 P_0

pressure

 $2P_{0}$ – P_0 – Equilibrium b

Partial 3a-b

pressure

From question, a = 0.2,

$$\frac{P_{A_6}}{P_{A_2}^3} = 1.6 \Rightarrow \frac{0.2}{P_{A_2}^3} = 1.6$$

$$\Rightarrow P_{A_2} = 0.5 = 2P_0 - 3a - b$$

and
$$(2P_0 - 3a - b) + a + (P_0 - b) + b = 1.4$$

$$\Rightarrow$$
 P₀ = 0.7 and b = 0.3

Now,

$$K_{P_2} = \frac{b}{(2P_0 - 3a - b)(P_0 - b)} = \frac{0.3}{0.5 \times 0.4} = 1.5 \text{ atm}^{-1}$$

SECTION-III (MATHEMATICS)

61. (3)

$$PQ = 3(AB) = 7\sqrt{2}$$

$$C(2,1); r = \sqrt{5+C}$$

$$M\left(\frac{3}{2}, \frac{3}{2}\right); CM = \frac{1}{\sqrt{2}}$$

$$\therefore 7\sqrt{2} = 2\sqrt{5+c-\frac{1}{2}} \Rightarrow C = 20$$

$$\therefore r = 5$$

62. (2)

$$A^{2} = A \cdot A$$

$$= (AB) (AB) = A (BA) B = (AB)B = AB = A$$
Similarly $B^{2} = B$

$$\therefore A = A^{2} = A^{3} = \dots B = B^{2} = B^{3} = \dots$$

$$(A^{2021} + B^{2021})^{2022} = (A + B)^{2022}$$

$$(A + B)^{2} = (A + B) (A + B) = A^{2} + AB + BA + B^{2}$$

$$= A^{2} + A + B + B^{2} = 2 (A + B)$$

$$(A + B)^{3} = 2^{2} (A + B)$$

$$\therefore (A + B)^{2022} = 2^{2021} (A + B)$$

63. (4)
$$y = \frac{x}{x - c_1} + \frac{c_2 x}{(x - c_1)(x - c_2)} + \frac{c_3 x^2}{(x - c_1)(x - c_2)(x - c_3)}$$

$$= \frac{x^2}{(x - c_1)(x - c_2)} + \frac{c_3 x^2}{(x - c_1)(x - c_2)(x - c_3)}$$

$$= \frac{x^3}{(x - c_1)(x - c_2)(x - c_3)}$$

$$\therefore \ln y = \ln x^3 - \ln(x - c_1) - \ln(x - c_2) - \ln(x - c_3)$$

$$\therefore \ln y = 3 \ln x - (x - c_1) - \ln(x - c_2) - \ln(x - c_3)$$

$$\frac{y'}{y} = \frac{3}{x} - \frac{1}{x - c_1} - \frac{1}{x - c_2} - \frac{1}{x - c_3}$$

$$y' = \frac{y}{x} \left[3 - \frac{x}{x - c_1} - \frac{x}{x - c_2} - \frac{x}{x - c_3} \right]$$

$$= \frac{y}{x} \left[\frac{c_1}{c_1 - x} + \frac{c_2}{c_2 - x} + \frac{c_3}{c_3 - x} \right]$$

64. (4)
$$I_2 = \int_0^1 \left(\frac{x}{5+x}\right)^{\frac{7}{2}} \cdot \left(\frac{1-x}{5+x}\right)^{\frac{9}{2}} \cdot \frac{dx}{\left(5+x\right)^2}$$

Put
$$\frac{x}{5+x} = t \frac{5}{(5+x)^2} dx = dt$$

 $\Rightarrow \frac{dx}{(5+x)^2} = \frac{1}{5} dt$
 $\therefore I_2 = \int_0^{\frac{1}{6}} (t)^{\frac{7}{2}} (1-6t)^{\frac{9}{2}} \frac{dt}{(5)^{11/2}}$; Now Put $6t = \mu$
and simplify we get $I_2 = \frac{1}{5^{9/2} \times 6^{7/2}} I_1$ we conclude $a = 30$

65. (3)

$$\frac{m}{s} = \sin^2 \theta; \frac{n}{t} = \cos^2 \theta$$

$$\Rightarrow s = m\csc^2 \theta \qquad t = n \sec^2 \theta$$

$$s + t = m \csc^2 \theta + n \sec^2 \theta$$

$$= m + n + n \cot^2 \theta + n \tan^2 \theta$$

$$= 3 + \underbrace{m\cot^2 \theta + n + n + n \tan^2 \theta}_{Use \ Am \ge Gm}$$

$$\geq 3 + 2\sqrt{mn}$$

$$\therefore mn = 2 \qquad m + n = 3$$

$$\therefore m = 1$$

$$n = 2 \ (\therefore m < n) \ Point is (1, 2)$$

$$T = S_7$$

66. (1)
$$\int_0^x 2023 \sqrt{\cos x} dx = 0$$

66.

67. (1)

$$x^2 - 3y^2 = 3$$

Fouse of ellipse = $(\pm ae, 0) = (\pm \sqrt{3}, 0)$
So, the hyperbola passes through $(\pm \sqrt{3}, 0)$
 $\Rightarrow \frac{3}{a^2} = 1$
Or $a = \sqrt{3}$
So, by equation (1), we get $b = 1$
So, the equation of hyperbola is
$$\frac{x^2}{3} - \frac{y^2}{1} = 1$$
Or, $x^2 - 3y^2 = 3$
Focus of hyperbola = $(\pm ae, 0) = (\pm 2, 0)$

68. (2)

$$\Rightarrow \sum x_i = 2500$$
Correct $\sum x_i = 2500 - 99 = 2401$
Correct $\overline{x} = \frac{2401}{49} = 49$

$$\sigma^2 = \frac{\sum x_i^2}{n} - \overline{x}^2$$

Correct
$$\Rightarrow 100 = \frac{\sum x_i^2}{50} - 2500$$

 $\Rightarrow \sum x_i^2 = 130000$

Correct
$$\sum x_i^2 = 130000 - 99^2 = 120199$$

Correct
$$\sigma^2 = \frac{\sum x_i^2}{n} - \overline{x}^2$$

$$= \frac{120199}{49} - (49)^2$$

$$= 2453 - 2401$$

$$= 52.04$$

69. (3)
$$e^{x} f(x) + c \text{ (where c is integration constant) so}$$

$$f(0) \text{ is.}$$

$$\int e^{x} \left(f + f' - f' - f'' \right) dx = e^{x} \left(f - f' \right) + c$$

$$\int e^{x} \left(f + f' - f' - f'' \right) dx = e^{x} \left(f - f' \right) + c$$

$$f = \frac{1}{\sqrt{1 + x^{2}}} \text{ and } \frac{x^{4} + 2x^{2} + 1 - 2x^{2} + 1}{\left(x^{2} + 1\right)^{5/2}}$$

$$f(x) = \frac{1}{\sqrt{1 + x^{2}}} + \frac{1 - 2x^{2}}{\left(x^{2} + 1\right)^{5/2}} - \frac{x}{\left(1 + x^{2}\right)^{\frac{3}{2}}}$$

70. (1)
00108.00

$$\vec{a} + \vec{b} + \vec{c} = 0$$

 $\Rightarrow |\vec{a} + \vec{b}| = |\vec{c}|$
 $\Rightarrow 36 + |\vec{b}|^2 + 60 = 196 \Rightarrow |\vec{b}| = 10$
 $|\vec{a} \times \vec{b} + \vec{b} \times \vec{c}| = |\vec{b} \times (\vec{c} - \vec{a})| = *(\vec{a} + \vec{c}) \times (\vec{c} - \vec{a})| = 2 |\vec{a} \times \vec{c}^*|$
 $|\vec{a} + \vec{c}| = |\vec{b}| \Rightarrow 36 + 196 + 2(\vec{a} \cdot \vec{c}) = 100 \Rightarrow \vec{a} \cdot \vec{c} = -66$
 $\therefore |\vec{a}| |\vec{c}| \cos \theta = -66 \Rightarrow \cos \theta = -\frac{11}{14}$

$$|\vec{a} \times \vec{b} + \vec{b} \times \vec{c}|^2 = 4 |\vec{a} \times \vec{c}|^2 = 4 \times 36 \times 196 \times \frac{75}{196} = 10800$$

71. (3)
$$a_{r} = \left(cis \frac{2\pi}{9}\right)^{r} \text{ or } e^{i\frac{2\pi r}{9}} \qquad r = 1, 2, 3 \dots$$

$$\therefore \quad a_{1}, a_{2}, \dots \text{ are in GP}$$

$$\begin{vmatrix} a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{1}^{2} & a_{1}^{3} \\ a_{1}^{4} & a_{1}^{5} & a_{1}^{6} \\ a_{1}^{7} & a_{1}^{8} & a_{1}^{9} \end{vmatrix}$$

$$= a_{1} \cdot a_{1}^{4} \cdot a_{1}^{7} \begin{vmatrix} 1 & a_{1} & a_{1}^{2} \\ 1 & a_{1} & a_{1}^{2} \\ 1 & a_{1} & a_{1}^{2} \end{vmatrix}$$

$$\text{Now } a_{1}a_{9} = a_{3}a_{7} = a_{1}^{10} - a_{1}^{10} = 0$$

72. (3)
Now
$$a_1a_9 - a_3a_7 = a_1 - a_1 = 0$$

$$f(x) = \begin{cases} (x-3)(x+1) & e^{(3x-2)^2} & x \in (3,\infty) \\ -(x-3)(x+1) & e^{(3x-2)^2} & x \in [-1,3] \\ (x-3)(x+1) & e^{(3x-2)^2} & x \in (-\infty,-1) \end{cases}$$

Clearly non differentiable of x = -1 & 3

73. (3)

$$|2\overline{a} + 3\overline{b}| = |3\overline{a} + \overline{b}|$$
S.O.B.S

$$4\overline{a}^2 + 9\overline{b}^2 + 12\overline{a} \cdot \overline{b} = 9\overline{a}^2 + \overline{b}^2 + 6\overline{a} \cdot \overline{b}$$

$$5\overline{a}^2 - 6\overline{a} \cdot \overline{b} = 8|\overline{b}|^2$$

$$5\overline{a}^2 - 6 \cdot 8 \cdot |\overline{b}| \cos 60^\circ = 8|\overline{b}|^2 \cdot \frac{1}{8}|\overline{a}| = 1$$

$$40 - 3|\overline{b}| = |\overline{b}|^2$$

$$|\overline{b}|^2 + 3|\overline{b}| - 40 = 0$$

$$(|\overline{b}| + 8)(|\overline{b}| - 5) = 0$$

$$\therefore |\overline{b}| = 5$$

74. (1)
Note that
$$\sin\left(\frac{\pi}{6} - \frac{\pi}{18}\right) = \sin\frac{\pi}{9},$$

Therefore
$$\frac{\cos\frac{\pi}{18}}{4\cos\frac{\pi}{18} + \sqrt{3}} = \sin\frac{\pi}{18}$$

Thus

$$\cos^2 \frac{\pi}{18} + \frac{\cos^2 \frac{\pi}{18}}{\left(4\cos \frac{\pi}{18} + \sqrt{3}\right)} = \cos^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{18} = 1.$$

75. (2)

$$|z+5| \le 4$$

 $(x+5)^2 + y^2 \le 16$

So, points (x, y) lie inside or on the circle whose center is (-5, 0) and radius is 4.

Comparing thes with $\alpha + \beta \sqrt{2}$, we get

$$\alpha = 32, \beta = 16$$

 $\therefore \alpha + \beta = 48$

Here,
$$\frac{(16)^{1/x}}{(2^{x+3})} > 1$$

 $\Rightarrow \frac{2^{4/x}}{2^{x+3}} > 1 \text{ or } 2^{\frac{4}{x}-x-3} > 1 \text{ i.e. } 2^{\frac{4}{x}-x-3} > 2^{\circ}$
 $\Rightarrow \frac{4}{x} - x - 3 > 0 \Rightarrow \frac{(x^2 + 3x - 4)}{x} > 0 \text{ or } \frac{-(x+4)(x-1)}{x} > 0$

Using number line rule,

$$\Rightarrow x \in (-\infty, -4) \cup (0,1)$$

Hence, Options (1) is correct.

77. (4)

$$||x + 2| - 3| = 1$$

But rejected all *x* values

$$m_{PQ} = \frac{a^2 - b^2}{a + b} = a - b$$

Equation of *PQ*

$$y-a^2 = \frac{a^2-b^2}{a+b}(x-a)$$

$$y-a^2 = \frac{a^2-b^2}{a+b}(x-a)$$

or
$$y-a^2 = (a-b)(x-a)$$

$$y = a^2 + x(a-b) - a^2 + ab$$

$$y = (a-b)x + ab$$

$$S_1 = \int_{-b}^{a} (a-b)x + ab + x^2 dx$$

Which simplifies to $\frac{(a+b)^3}{6}$

Also,

$$S_2 = \frac{1}{2} \begin{vmatrix} a & a^2 & 1 \\ -b & b^2 & 1 \\ 0 & 0 & 1 \end{vmatrix} = \frac{1}{2} \left[ab^2 + a^2b \right] = \frac{1}{2} ab(a+b)$$

$$\therefore \frac{S_1}{S_2} = \frac{(a+b)^3}{6} \cdot \frac{2}{ab(a+b)} = \frac{(a+b)^2}{3ab} = \frac{1}{3} \left[\frac{a}{b} + \frac{b}{a} + 2 \right]$$

$$\therefore \frac{S_1}{S_2} \Big|_{\cdot \cdot} = \frac{4}{3}$$

79. (2)

The given expression is the coefficient of
$$x^4$$
 in
$${}^4C_0(1+x)^{404} - {}^4C_1(1+x)^{303} + {}^4C_2(1+x)^{202}$$

$$- {}^4C_3(1+x)^{101} + {}^4C_4$$
= Coefficient of x^4 in $\left[(1+x)^{101} - 1 \right]^4$
= Coefficient of x^4 in $\left[{}^{101}C_1x + {}^{101}C_2x^2 + \cdots \right]^4$
= $(101)^4$

80. (4)

$$y\sin 2x - \cos x + \left(1 + \sin^2 x\right) \frac{dy}{dx} = 0 \text{ where}$$

$$y = f(x)$$

$$\frac{dy}{dx} + \left(\frac{\sin 2x}{1 + \sin^2 x}\right) y = \frac{\cos x}{1 + \sin^2 x}$$

I.F.
$$= e^{\int \frac{\sin 2x}{1+\sin^2 x} dx} = e^{\int \frac{dt}{t}} = e^{\ln(1+\sin^2 x)} = 1 + \sin^2 x$$
(by putting $1 + \sin^2 x = t$)
$$y(1+\sin^2 x) = \int \cos x dx$$

$$y(1+\sin^2 x) = \sin x + C; \{y(0) = 0\} \Rightarrow C = 0$$
Hence,
$$y = \frac{\sin x}{1+\sin^2 x}$$

$$y\left(\frac{\pi}{6}\right) = \frac{2}{5}$$

81. (2)
Let
$$x_i - 5 = y_i$$

$$\sum_{i=1}^{9} (x_i - 5) = 9 \text{ and } \sum_{i=1}^{9} (x_i - 5)^2 = 45$$

So, required standard deviation is

$$\sigma = \sqrt{\sum_{i=1}^{9} y_i^2 - \left(\frac{\sum_{i=1}^{9} y_i}{9}\right)} = \sqrt{\frac{45}{9} - \left(\frac{9}{9}\right)^2} = 2$$

82. (43)

$$A_{1}.A_{3}.A_{5}.A_{7} = \frac{1}{1296}$$

$$\Rightarrow (A_{4})^{4} = \frac{1}{1296} \Rightarrow A_{4} = \frac{1}{6}$$

$$A_{2} + A_{4} = \frac{7}{36} \Rightarrow A_{2} = \frac{1}{36}$$

$$\Rightarrow A_{6} = 1, A_{8} = 6 \text{ and } A_{10} = 36$$

$$\Rightarrow A_{6} + A_{8} + A_{10} = 43$$

83. (9)
General term in the expansion
$$= \frac{10!}{\alpha!\beta!\gamma!} \alpha^{\alpha} (2b)^{\beta} \cdot (4ab)^{\gamma}$$
For term containing $a^7 b^8$, we have $\alpha + \gamma = 7$
 $\beta + \gamma = 8$
 $\alpha + \beta + \gamma = 10$
Solving we get and $\gamma = 5$, $\alpha = 2$ and $\beta = 3$

So, coefficient =
$$\frac{10!}{2!3!5!}2^3 \cdot 2^{10}$$

= $315 \times 2^{16} \Rightarrow K = 315$

84. (5)

$$= \int_{-1}^{1} \left(\sqrt{5 - x^2} - (1 - x)\right) dx + \int_{1}^{2} \left(\sqrt{5 - x^2} - (1 - x)\right) dx$$

$$= 2\left[1 + \frac{5}{2}\sin^{-1}\frac{1}{\sqrt{5}}\right] - 2 + \left[1 + \frac{5}{2}\sin^{-1}\frac{2}{\sqrt{5}} - 1 - \frac{5}{2}\sin^{-1}\frac{1}{\sqrt{5}}\right]$$

$$= \frac{5}{2}\left[\tan^{-1}\frac{1}{2} + \tan^{-1}2\right] - \frac{1}{2}$$

$$= \frac{5\pi}{4} - \frac{1}{2}$$

85. (6)

$$\alpha = \max_{x \in R} \left\{ 8^{2\sin 3x} . 4^{4\cos 3x} \right\}$$

$$= \max \left\{ 2^{6\sin 3x + 8\cos 3x} \right\} = 2^{10}$$

$$\beta = \max(2^{6\sin 3x + 8\cos 3x}) = 2^{-10}$$

$$\alpha^{1/5} = 2^2, \beta^{1/5} = 2^{-2}$$

$$\therefore b = -34 \text{ and } c = 8$$
So, $c - b = 42$

86. (9) Required Probability = $\frac{{}^{3}C_{1} \cdot {}^{3}C_{2}}{{}^{7}C_{4}} = \frac{9}{35}$

87. (208) Let $I = \int_0^1 \frac{207}{C_7} \cdot x^{200} \cdot \frac{(1-x)^7}{I} dx$ $I = \frac{207}{C_7} \left[\frac{(1-x)^7}{201} \cdot \frac{x^{201}}{201} \right]_0^1 + \frac{7}{201} \int_0^1 (1-x)^6 \cdot x^{201} dx$ $= \frac{207}{C_7} \cdot \frac{7}{201} \int_0^1 (1-x)^6 \cdot x^{201} dx$ $= \frac{(207)!}{7!(200)!} \cdot \frac{7!}{201 \cdot 202 \dots 207} \cdot \frac{1}{208}$ $= \frac{(207)!}{(207)!7!} \cdot \frac{7!}{208} = \frac{1}{208} = \frac{1}{k}$ **88**. **(49)**

$$D \le 0$$

$$4(p+q-7)^2 - 8pq \le 0$$

 \Rightarrow $(p-7)^2 + (q-7)^2 \le 72$ interior & circumference of this represents an circle with centre (7,7) & radius 7

 \therefore Area = 49π .

89. (3)

Let
$$f(x) = \sin(\sin(\sin(\sin(x))))$$

$$f'(0)=1>\frac{1}{3}$$
. Therefore, $f(x)>\frac{x}{3}$ is some neighbourhood of 0

So, there are 3 solutions

90. (1)

$$\sum_{r=1}^{3} \cos(2\theta_r) = 1$$

$$\Rightarrow \sum_{r=1}^{3} \frac{1 - t_1^2}{1 + t_1^2} = 1 \text{ where } t_1^2 = \tan^2 \theta_1$$

$$\Rightarrow \frac{1-t_1^2}{1+t_1^2} + \frac{1-t_2^2}{1+t_2^2} + \frac{1-t_3^2}{1+t_3^2} = 1$$

$$\Rightarrow \sum_{r=1}^{3} t_1^2 \cdot t_2^2 + 2 \prod_{r=1}^{3} t_1^2 = 1$$