TABLE II: SOME COMMON PROBABILITY DISTRIBUTIONS

	Type	Parameters	Definition	Support	E(X)	$\operatorname{Var}(X)$	mgf
	disc	$0 \le p \le 1$	$p_X(k) = p^k (1-p)^{1-k}$	k = 0, 1	d	p(1-p)	$e^t p + (1-p)$
	disc	$n;0 \le p \le 1$	$n; 0 \le p \le 1$ $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$	$k = 0, 1, \dots, n$	du	np(1-p)	$np(1-p) (e^t p + (1-p))^n$
	disc	$0 \le p \le 1$	$p_X(k) = (1-p)^{k-1}p$	$k=1,2,\dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
	disc	$\alpha > 0$	$p_X(k) = \frac{e^{-\alpha}\alpha^k}{k!}$	$k=0,1,\dots$	α	α	$e^{\alpha(e^t-1)}$
	cont	a < b	$f_X(x) = \frac{1}{b - a}$	$a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
exponential	cont	$\alpha > 0$	$f_X(x) = \alpha e^{-\alpha x}$	$x \ge 0$	<u>α</u>	$\frac{1}{\alpha^2}$	$\frac{\alpha}{\alpha - t}$
	cont	$r \ge 1; \alpha > 0$	1; $\alpha > 0$ $f_X(x) = \frac{\alpha}{\Gamma(r)} (\alpha x)^{r-1} e^{-\alpha x}$	$x \ge 0$	$\frac{r}{\alpha}$	$\frac{r}{\alpha^2}$	$\left(\frac{\alpha}{\alpha - t}\right)^r$
	cont	$\mu;\sigma>0$	$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$\infty < x < \infty$	ή	σ^2	$e^{(t\mu+\sigma^2t^2/2)}$