# Trinity Centre for High Performance Computing



# MSc in HPC course 5635b

Donal Gallagher Darach Golden Roland Lichters

January 19, 2017

## An Introduction to Mathematical Finance (5635b)

D. Gallagher D. Golden R. Lichters

## Course Outline

- Introduction
- 2 Assumptions
- Binomial Model
- 4 European Stock Option: Binomial Model
- 5 Conditional Expected Values on a Tree

## Introduction

- My name is Darach Golden
- Email address: darach@tchpc.tcd.ie
- Extension: 4123
- Room 205 Lloyd building, college

# Course Details

- I will be covering (primarily) Stochastic Calculus over 3-4 weeks.
- $\bullet$  Donal Gallagher and then Roland Lichters will finish off the course.
- For my part of the course I will hand out one or more exercise sheets which will form part of the assessment for the course
- $\bullet$  Rough solutions will be posted after the due date for the exercises

## References / Acknowledgements

# One Step Binomial Model (OSBM)

- ullet Consider the value of one share of a stock at just two times, t=0 and t = 1
- Has value  $S_0$  at t=0
- At t = 1 takes one of *only two*, positive, possible values:
  - $S_1(H)$  with probability p > 0
  - $S_1(T)$  with probability q > 0
- may be viewed as a weighted coin toss resulting in heads (H), or tails (T)
- We take  $S_1(H) = uS_0$  and  $S_1(T) = dS_0$ , where 0 < d < u
- if  $S_1(H) = S_1(T)$  there is no uncertainty at t = 1



Much (not all) of the material in these slides was taken or adapted from

Stochastic Calculus for Finance I: The Binomial Asset Pricing Model (Springer Finance). Springer, 1 edition, June 2005.

Steven E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models (Springer Finance). Springer, 1st ed. 2004. corr. 2nd printing edition, June 2004.

These authors are not responsible for any errors in this course

# Expected Value of $S_1$

$$\mathbb{E}[S_1] = pS_1(H) + qS_1(T).$$



# Assumptions

- No taxes, transaction costs, margin costs
- stocks can be shorted at no additional cost
- shares or fractions of shares may be purchased without affecting price of share

# Arbitrage

- In addition to the existence of the stock, there is also a money market
- Money may be invested or borrowed from the money market
- An amount X invested at time t = 0 yields (1 + r)X at time t = 1
- An amount X borrowed at t = 0 results in a debt of (1 + r)X at t = 1
- ullet The rate r is usually assumed to be greater than 0, but is required only to be greater than -1

### Definition (Arbitrage)

Arbitrage may be defined as a trading strategy which begins with no money which has a zero probability of losing money and a positive probability of making money at some later time

Steven E. Shreve.

Stochastic Calculus for Finance I: The Binomial Asset Pricing Model (Springer Finance). Springer, 1 edition, June 2005.

# No Arbitrage Condition for Binomial Model d < 1 + r < u



# Suppose $d \ge 1 + r$

### t = 0

- Borrow  $S_0$  from money market
- Buy stock for  $S_0$

### t = 1

- Owe  $(1+r)S_0$
- Price of stock either  $S_1(H)$  or  $S_1(T)$
- But  $S_1(H), S_1(T) \ge (1+r)S_0$
- Since  $u > d \ge 1 + r$ , there is a positive probability of profit
- So there is an arbitrage



### Derivatives in OSBM

### t = 0

- Short the stock for  $S_0$
- Invest cash  $S_0$  in money market

### t = 1

- Receive  $(1+r)S_0$
- Price of stock either  $S_1(H)$  or  $S_1(T)$
- But  $S_1(H), S_1(T) \leq (1+r)S_0$
- Since  $1 + r \ge u > d$ , there is a positive probability of profit
- So there is an arbitrage



- ullet Consider contracts which have payoffs at t=1 which are contingent on the value of the stock
- So their value *derives* from the value of the *underlying* stock
- Examples
  - European call option
  - European put option
  - Forward contract

# European Call Option in OSBM

### Definition (European Call Option)

A contract entered into at time t=0 which gives the holder the right but not the obligation to purchase the stock at time t=1 for *strike price* K.

- Value at t = 1 is  $S_1 = S_1(H)$  or  $S_1(T)$
- Assume that  $S_1(T) < K < S_1(H)$
- Value at time t = 1 known:  $(S_1 K)^+$
- What, if anything, is a fair value at t = 0?





## General Derivative in OSBM

- Value at t = 0 is  $V_0$
- Value at t = 1 is  $V_1 = V_1(H)$  or  $V_1(T)$
- Payoff at time t=1 is known in terms of  $S_1$  uncertainty occurs due to uncertainty as to which value  $S_1$  will take
- What is  $V_0$ ?





# General Derivative in OSBM Replicate the Option

## ullet Create a "portfolio" of the stock and money market investment at t=0

ullet Tune the relative amounts of stock and money market investment such that at t=1 the portfolio takes the value of the derivative no matter which value the stock takes t=1

## Replicate the Option (ctd)

### t = 0

- Start with cash  $X_0$  at t=0
- Purchase  $\Delta_0$  shares of the stock
- The cash position<sup>a</sup> is  $(X_0 \Delta_0 S_0)$

<sup>a</sup>If this is positive then  $(1+r)(X_0-\Delta_0S_0)$  will be obtained at t=1. If it is negative, then the same amount will be owed at t=1

### t = 1

- The cash position is  $\Delta_0 S_1 + (1+r)(X_0 \Delta_0 S_0)$
- As usual  $S_1 = S_1(H)$  or  $S_1(T)$ , so

$$\Delta_0 S_1(H) + (1+r)(X_0 - \Delta_0 S_0),$$
  
 $\Delta_0 S_1(T) + (1+r)(X_0 - \Delta_0 S_0)$ 

. . .

# Replicate the Option (ctd)

### t = 1

So, in order that the portfolio replicates the value of the derivative at t=1, set

$$\Delta_0 S_1(H) + (1+r)(X_0 - \Delta_0 S_0) = V_1(H),$$
  
$$\Delta_0 S_1(T) + (1+r)(X_0 - \Delta_0 S_0) = V_1(T);$$

two equations in two unknowns  $(X_0, \Delta_0)$ . Solving gives

$$X_0 = rac{1}{1+r} \left[ \tilde{p} V_1(H) + \tilde{q} V_1(T) 
ight] \, ,$$

and

$$\Delta_0 = rac{V_1(H) - V_1(T)}{S_1(H) - S_1(T)} \,.$$

# Replicate the Option (ctd) $\tilde{q}$ and $\tilde{p}$

where

$$\tilde{p} = \frac{1+r-d}{u-d},$$

$$\tilde{q} = \frac{u-(1+r)}{u-d},$$

$$\tilde{p}+\tilde{q}=1$$
.

and

 $\tilde{p}, \tilde{q} > 0$  by assumption of no arbitrage – check this

# Example: European Call Option

### Example

Suppose  $S_0=4$ , and  $u=\frac{1}{d}=2$ . Also suppose  $r=\frac{1}{4}$ . Then  $S_1(H)=8$  and  $S_1(T)=2$ .

Then

$$\frac{1}{1+r} = \frac{1}{1+\frac{1}{4}} = \frac{4}{5},$$

SC

$$\tilde{p} = \frac{1+r-d}{u-d} = \frac{1}{2},$$
 $\tilde{q} = \frac{u-(1+r)}{u-d} = \frac{1}{2}.$ 

Consider a European call option expiring at t=1 with strike price K=5. At t=1, possible payoffs are:

$$V_1(H) = (S_1(H) - K)^+ = (8 - 5)^+ = 3,$$
  
 $V_1(T) = (S_1(T) - K)^+ = (2 - 5)^+ = 0.$ 

## Example (ctd)

### Example

So

$$X_0 = \frac{1}{1+r} \left[ \tilde{p} V_1(H) + \tilde{q} V_1(T) \right] ,$$

$$= \frac{4}{5} \left[ \frac{1}{2} \cdot 3 + \frac{1}{2} \cdot 0 \right] ,$$

$$= \frac{6}{5} = 1.20 .$$

Also,

$$\Delta_o = \frac{V_1(H) - V_1(T)}{S_0(u - d)},$$

$$= \frac{3 - 0}{4 \cdot \frac{3}{2}},$$

$$= \frac{3}{6} = \frac{1}{2}.$$

## Example (ctd)

Replication Process for writer of call option

### t = 0

- Start with  $X_0 = 1.2$
- purchase  $\Delta_0 = \frac{1}{2}$  units of underlying asset for  $\frac{1}{2} \cdot 4 = 2$  euro
- ullet In order to do this, must borrow 2-1.2=0.8 euro
- ullet value of portfolio at t=0 is

$$X_0 - \Delta_0 S_0 = 1.2 - 2 = -0.8$$

### t = 1

- Owe  $(1+r) \cdot 0.8 = \frac{5}{4} \cdot 0.8 = 1$  euro
- Value of portfolio

H: 
$$\frac{1}{2} \cdot 8 + \frac{5}{4} (1.2 - \frac{1}{2} \cdot 4) = 3$$
,  
T:  $\frac{1}{2} \cdot 2 + \frac{5}{4} (1.2 - \frac{1}{2} \cdot 4) = 0$ ,

ullet Payoff of derivative contract replicated by portfolio at t=1 whether a head or a tail is tossed

# No-Arbitrage Price?

- The "price"  $X_0=1.2$  is the starting capital required by the seller to create a portfolio to hedge the payoff of the call option regardless of whether a head or a tail is tossed at t=1
- It is also a no-arbitrage price:
  - $\bullet$  Suppose the option seller could sell for a greater price, e.g., C=1.21.
  - $\bullet$  Then the seller could take the 0.01 cents and invest in a separate money market account at t=0
  - Then the seller could use to remaining 1.20 to hedge the option as before
  - $\bullet$  At t=1 the portfolio created starting from  $X_0=1.2$  would cover the option payoff no matter what
  - And there would be an additional (1+r)(0.01) for the seller
  - So, positive probability of gain, and no possibility of loss arbitrage

Suppose the seller was selling for 1.19 euro

### t = 0

- Then the buyer could buy for 1.19
- Reverse the portfolio strategy of the seller:
  - Sell short  $\Delta_0 = \frac{1}{2}$  of the stock  $(\frac{1}{2} \cdot 4 = 2)$
  - Use 1.19 of the 2 euro to buy the option
  - Invest 0.8 euro in one money market account
  - Invest remaining 0.01 euro in a separate money market account

### t = 1

- Must purchase  $\Delta_0 = \frac{1}{2}$  stock on open market after selling short at t=0
- If value of stock is  $S_1(H) = 8$ , then  $\frac{1}{2}S_1 = 4$ 
  - receive  $(1+r) \cdot 0.8 = \frac{5}{4} \cdot 0.8 = 1$  euro from investment
  - Use call option to purchase asset for 5 euro
  - Sell half asset for 4 euro (so, cost is 1 euro).
  - But this matches the gain from the investment of 0.8 euro at t=0
  - so break even
- If value of stock is  $S_1(T) = 2$ , then  $\frac{1}{2}S_1 = 1$ 
  - Receive one euro from investment of 0.8 at t=0
  - Call option worthless
  - But  $\frac{1}{2} \cdot S_1(T) = 1$ , which is the amount available
  - so break even

Separate from all of the above at t=1 the investment of 0.01 returns (1+r)(0.01); implies arbitrage So in this case  $X_0=1.2$  is a no arbitrage price

# Two Step Binomial

We assume now that the stock evolves in two steps from today to option expiry, taking three possible values at expiry,  $S_2(HH) = S_0u^2$ ,  $S_2(HT) = S_2(TH) = S_0ud$  and  $S_2(TT) = S_0d^2$ , and two possible values after step one,  $S_1(H) = S_0u$  and  $S_1(T) = S_0d$ . Following the arguments of the single step case, we have therefore the two possible option values after step one,

$$V_1(H) = \frac{1}{1+r} \{ \tilde{p} \ V_2(HH) + (1-\tilde{p}) \ V_2(HT) \}$$

$$V_1(T) = \frac{1}{1+r} \{ \tilde{p} \ V_2(TH) + (1-\tilde{p}) \ V_2(TT) \}$$

where  $V_2(HH)$ ,  $V_2(TH) = V_2(HT)$  and  $V_2(TT)$  at expiry are known and determined by the underlying stock values at expiry. Now, given  $V_1(H)$  and  $V_1(T)$  we can determine the current option value using

$$X_0 = rac{1}{(1+r)^2} \left\{ ilde{p}^2 \ V_2(HH) + 2 ilde{p} (1- ilde{p}) \ V_2(HT) + (1- ilde{p})^2 V_2(TT) 
ight\} \ ,$$

where, for a European call option,  $V_2(HH) = \max(S_0 u^2 - K, 0)$  etc.

## 15 step tree

You can keep going...



# Many Step Binomial for European Call Option

We can now generalize the previous section's result for a European Call option to n binomial steps, where the stock evolves over n steps from today to option expiry, forming a recombining binomial tree so that the stock assumes values between  $S_0u^n$  and  $S_0d^n$ . The call (put) option value C(P) is then given by:

$$X_{0} = C = \frac{1}{(1+r)^{n}} \sum_{i=0}^{n} \binom{n}{i} \tilde{p}^{i} (1-\tilde{p})^{n-i} \max \left\{ S_{0} u^{i} d^{n-i} - K, 0 \right\},$$

$$P = \frac{1}{(1+r)^{n}} \sum_{i=0}^{n} \binom{n}{i} \tilde{p}^{i} (1-\tilde{p})^{n-i} \max \left\{ K - S_{0} u^{i} d^{n-i}, 0 \right\}.$$

The expected value of  $S_0$  after n steps is

$$\tilde{\mu}_{n} = S_{0} \sum_{i=0}^{n} \binom{n}{i} \tilde{p}^{i} (1 - \tilde{p})^{n-i} u^{i} d^{n-i}$$

$$= S_{0} (\tilde{p} u + (1 - \tilde{p}) d)^{n}$$

$$= S_{0} (1 + r)^{n}$$

## Replication in Multi step Binomomial model

Consider an N-step binomial model with

$$\tilde{p} = \frac{1+r-d}{u-d}, \qquad \tilde{q} = \frac{u-(1+r)}{u-d}.$$

Let  $V_N$  represent the payoff of a derivative contract at step N.  $V_N$  is dependent on the first N coin tosses,  $\omega_1\omega_2\cdots\omega_N$ . Define random variables  $V_{N-1},\ V_{N-2},\ \cdots,\ V_0$  recursivly:

$$V_n(\omega_1\omega_2\cdots\omega_n)=\frac{1}{1+r}[\tilde{\rho}V_{n+1}(\omega_1\omega_2\cdots\omega_nH)+\tilde{q}V_{n+1}(\omega_1\omega_2\cdots\omega_nT)],$$

where  $n = N - 1, N - 2, \dots, 0$ . Each  $V_n$  depends on the first n coin tosses.

Steven E. Shreve. Stochastic Calculus for Finance I: The Binomial Asset Pricing Model (Springer Finance).

## Replication in Multi step Binomomial model

- Henceforth we'll write  $V_{n+1}(\omega_1\omega_2\cdots\omega_nH)=V_{n+1}(H)$  and similarly for  $V_{n+1}(T)$ .
- The same style of notation will be used for the asset prices:  $S_{n+1}(H)$ ,  $S_{n+1}(T)$ .
- Define

$$\Delta_n = rac{V_{n+1}(H) - V_{n+1}(T)}{S_{n+1}(H) - S_{n+1}(T)},$$

where  $n = 0, 1, \dots, N - 1$ .

• Finally define a portfolio value process  $X_0, X_1, \cdots, X_N$  by

$$X_{n+1} = \Delta_n S_{n+1} + (1+r)(X_n - \Delta_n S_n).$$

If  $X_0 = V_0$ , then

$$X_n(\omega_1\omega_2\cdots\omega_n)=V_n(\omega_1\omega_2\cdots\omega_n),$$

for 0 < n < N.

## Replication in Multi step Binomomial model

Proof by induction. Let  $X_0 = V_0$ . Assume  $X_n = V_n$ . What is situation for n + 1?

H: If a head is tossed for step n+1, then

$$X_{n+1}(H) = \Delta_n u S_n + (1+r)(X_n - \Delta_n S_n).$$

Substiting for  $\Delta_n$  gives

$$X_{n+1}(H) = \frac{V_{n+1}(H) - V_{n+1}(T)}{S_{n+1}(H) - S_{n+1}(T)} u S_n + (1+r) \left( X_n - \frac{V_{n+1}(H) - V_{n+1}(T)}{S_{n+1}(H) - S_{n+1}(T)} S_n \right).$$

$$S_{n+1}(H) - S_{n+1}(T) = uS_n - dS_n = (u-d)S_n$$
, so

$$X_{n+1}(H) = \frac{V_{n+1}(H) - V_{n+1}(T)}{u - d}u + (1+r)\left(X_n - \frac{V_{n+1}(H) - V_{n+1}(T)}{u - d}\right).$$

By induction,  $X_n = V_n$ , and by the formula some slides above

$$V_n = \frac{1}{1+r} [\tilde{p} V_{n+1}(H) + \tilde{q} V_{n+1}(T)].$$

So

$$\begin{split} X_{n+1}(H) &= \frac{V_{n+1}(H) - V_{n+1}(T)}{u - d} u \\ &+ (1+r)V_n - (1+r) \frac{V_{n+1}(H) - V_{n+1}(T)}{u - d} , \\ &= \frac{V_{n+1}(H) - V_{n+1}(T)}{u - d} u + \underbrace{\tilde{p}V_{n+1}(H) + \tilde{q}V_{n+1}(T)}_{\text{substituted for } (1+r)V_n} \\ &- (1+r) \frac{V_{n+1}(H) - V_{n+1}(T)}{u - d} , \\ &= \frac{1}{u - d} V_{n+1}(H) \left[ u + 1 + r - d - 1 - r \right] \\ &+ \frac{1}{u - d} V_{n+1}(T) \left[ -u + u - 1 - r + 1 + r \right] , \\ &= V_{n+1}(H) . \end{split}$$

Similarly, in the case that a tail is tossed at step n+1,  $X_{n+1}(T)=V_{n+1}(T)$ .

# Hedging a European call option

### Example (Hedging a European call option)

From the previous slide

$$\tilde{p} = \frac{1+r-d}{u-d} = \frac{1+0.1-\frac{1}{2}}{2-\frac{1}{2}} = 0.4$$

$$\tilde{q} = \frac{u-1-r}{u-d} = \frac{2-1-0.1}{2-\frac{1}{2}} = 0.6$$

# Hedging a European call option Mechanics of Hedging an Option

### Example (Hedging a European call option)

- ullet Suppose a European call option is sold at t=0
- The value of the underlying asset at t = 0 is  $S_0 = 10$
- The parameters of the tree are:  $u = \frac{1}{d} = 2$
- The risk free interest rate between t=0 and t=1 is r=10%
- The strike price of the option is K=11



The question is: If you are the seller of this European call option, how do you hedge your position so that you will suffer no loss regardless of the outcome at time t=1

# Hedging a European call option

### Example (Hedging a European call option)

Use the formula already derived to value V at t=0:

$$V = X_0 = \frac{1}{1+r} \left[ \tilde{p} V_1(H) + \tilde{q} V_1(T) \right]$$
$$= \frac{1}{1.1} \left[ (0.4)(9) + (0.6)(0) \right]$$
$$= 3.2727$$

The call option is sold at t = 0 for this amount

### Example (Hedging a European call option)

- Having sold the call option, the seller is now exposed to variations in the price of the underlying asset in the next time step
- The derivation of the formula for the value of the call option indicates how the seller can hedge the option

### Example (Hedging a European call option)

At t = 0

- Sell option for V = 3.2727
- $\bullet$  Calculate  $\Delta$  based on the formula

$$\Delta = \frac{V_1(H) - V_1(T)}{S_1(H) - S_1(T)} = \frac{9 - 0}{20 - 5} = 0.6$$

- purchase 0.6 shares of underlying asset at 10 euros per share
- This requires 10 \* 0.6 = 6 euros. However have only charged 3.2727 euros for call option, so must borrow 6 - 3.2727 = 2.7273 euros at r = 0.1
- Thus at t = 0
  - have portfolio of 0.6 units of underlying
  - have sold 2.7273 of bonds maturing at t=1

# Hedging a European call option

### Example (Hedging a European call option)

At t = 1:

If 
$$S_1 = 20$$

- If  $S_1 = 20$  The strike price of the option is 11 which is less than the current value, so the option will be exercised
  - Therefore the option seller is obliged to sell 1 unit of underlying for price K = 11
  - The value of the existing holding in underlying asset is now (0.6)(20) = 12
  - Owe 2.7273 \* 1.1 = 3.0 euro
  - Take payment from option holder of 11 euro
  - Must purchase 0.4 units of underlying in order to have 1 unit of asset to deliver to option holder. This has cost (0.4)(20) = 8 euro
  - Purchase 0.4 units; deliver 1 unit to holder. This leaves 11 - 8 = 3 euro remaining, which serves to pay off the loan amount

# Hedging a European call option

### Example (Hedging a European call option)

At t = 1:

If 
$$S_1 = F$$

- If  $S_1 = 5$  The strike price of the option is 11 which is more than the current value of the underlying, so the option will not be exercised
  - The value of the existing holding in underlying asset is now (0.6)(5) = 3 euro
  - Owe 2.7273 \* 1.1 = 3.0 euro
  - Sell the holding of the underlying and pay off the loan

# A k-Step Binomial Model k > n

# Conditional Expected Values on a k-step Tree

- In a k-step model we could have n coin tosses  $\omega_1, \dots \omega_n$  where k > n and,  $w_i = H$  or T
- At step n we will have  $S_n(\omega_1 \cdots \omega_n)$ , where the value of  $S_n$  will depend on the first n coin tosses
- And at step n+1 we will have  $S_{n+1}(\omega_1 \cdots \omega_n H)$  (with probability p) or  $S_{n+1}(\omega_1 \cdots \omega_n T)$  (with probability q)
- where

$$S_{n+1}(\omega_1\cdots\omega_nH)=uS_n$$
,

$$S_{n+1}(\omega_1\cdots\omega_nT)=dS_n$$
,

# 3 step binomial model



# Conditional Expectation of $S_{n+1}$ Between step n and n+1

We call

$$\mathbb{E}_n[S_{n+1}] = [pS_{n+1}(H) + qS_{n+1}(T)],$$

the conditional expectation of  $S_{n+1}$  based on the information available at step (time) n.

Since r is constant here, we also have

$$\mathbb{E}_n\left[\frac{S_{n+1}}{1+r}\right] = \frac{1}{1+r}[pS_{n+1}(H) + qS_{n+1}(T)].$$

# Examples For $p = q = \frac{1}{2}$

### Example

Expected value of  $S_2$  given that  $S_1$  is a head

$$\mathbb{E}_1[S_2](H) = \frac{1}{2} \cdot 16 + \frac{1}{2} \cdot 4 = 10$$

Expected value of  $S_2$  given that  $S_1$  is a tail

$$\mathbb{E}_1[S_2](T) = \frac{1}{2} \cdot 4 + \frac{1}{2} \cdot 1 = \frac{5}{2},$$



# $\mathbb{E}_n[X](\omega_1\cdots\omega_n)$

So far we've defined a conditional expectation between two consecutive steps. It can also be defined for steps separated by a larger gap. Let  $0 \le n \le N$ . Let X be a random variable depending on the first N coin tosses.

### Definition $(\mathbb{E}_n(X)(\omega_1\cdots\omega_n))$

Let  $0 \le n \le N$  and  $\omega_1 \cdots \omega_n$  be a given sequence of coin tosses (assume we are at step n). There are  $2^{N-n}$  possible sequences of coin tosses  $\omega_{n+1} \cdots \omega_N$  between step n and step N. Let  $\#H(\omega_{n+1} \cdots \omega_N)$  denote the number of heads in the sequences  $\omega_{n+1} \cdots \omega_N$  and let  $\#T(\omega_{n+1} \cdots \omega_N)$  denote the number of tails. Then we have the expected value of X (at step N) based on the information available at step n.

$$\mathbb{E}_n[X](\omega_1\cdots\omega_n)=\sum_{\omega_{n+1}\cdots\omega_N}p^{\#H(\omega_{n+1}\cdots\omega_N)}q^{\#T(\omega_{n+1}\cdots\omega_N)}X(\omega_1\cdots\omega_n\cdots\omega_N)$$

Steven E. Shreve.
Stochastic Calculus for Finance I: The Binomial Asset Pricing Model (Springer Finance).
Springer, 1 edition, June 2005.

# $\mathbb{E}_n[X](\omega_1\cdots\omega_n)$ Special Cases

For a random variable  $X(\omega_1 \cdots \omega_N)$  dependent on N > n coin tosses

$$\mathbb{E}_0[X] = \mathbb{E}[X],$$

$$\mathbb{E}_N[X] = X$$
.

# Examples For $p = q = \frac{1}{2}$

### Example

Expected value of  $S_3$  based on information available at step 1; i.e., given that  $S_1$  is H

$$\mathbb{E}_1[S_3](H) = \left(\frac{1}{2}\right)^2 \cdot 32 + 2\left(\frac{1}{2}\right)^2 \cdot 8 + \left(\frac{1}{2}\right)^2 \cdot 2 = 12.5,$$



What is the value of  $\mathbb{E}_1[S_3](T)$ ?

# $\mathbb{E}_1[S_3]$ as a random variable

Note that  $\mathbb{E}_1[S_3]$  can take two different values  $(\mathbb{E}_1[S_3](H))$  or  $\mathbb{E}_1[S_3](T))$  depending on whether a  $S_1$  took the value H or T at step one. So  $\mathbb{E}_1[S_3]$  is itself a random variable

# Properties of Conditional Expectations Discrete case

As before let  $0 \le n \le N$  and let X, Y be random variables which are dependent on the first N coin tosses. Suppose that we know the first n coin tosses  $\omega_1 \cdots \omega_n$ , but not the remaining tosses  $\omega_{n+1} \cdots \omega_N$ . Then

Linearity of conditional expectations For constants  $c_1$ ,  $c_2$ 

$$\mathbb{E}_n(c_1X+c_2Y)=c_1\mathbb{E}_n(X)+c_2\mathbb{E}_n(Y).$$

Taking out what is known If X only depends on the first n tosses (known),

$$\mathbb{E}_n(XY) = X \cdot \mathbb{E}_n(Y).$$

Iterated conditioning if 0 < n < m < N,

$$\mathbb{E}_n(\mathbb{E}_m(X)) = \mathbb{E}_n(X)$$
.

This means in particular that  $\mathbb{E}(\mathbb{E}_m(X)) = \mathbb{E}_0(\mathbb{E}_m(X)) = \mathbb{E}_0(X) = \mathbb{E}(X)$ .

Independence If X depends only on coin tosses  $n+1, \dots, N$ , then

$$\mathbb{E}_n(X) = \mathbb{E}(X)$$
.

Steven E. Shreve

Stochastic Calculus for Finance I: The Binomial Asset Pricing Model (Springer Finance). Springer, 1 edition, June 2005.

### Stochastic Process

## Definition (Stochastic Process)

A stochastic process is a sequence of random variables indexed by time

In the context of a binomial model, the random variables of a stochastic process take values at each time step  $(0,1,\cdots)$ .

### Example

The stock process on a binomial tree is a stochastic process

# Adapted Stochastic Process

### Definition

Consider a binomial tree model. Let  $M_0$ ,  $M_1$ ,  $\cdots$ ,  $M_N$  be a sequence of random variables indexed by time step on the tree. The sequence  $M_i$  forms a stochastic process.

Suppose in addition that at each step n,  $M_n$  depends only on the first n coin tosses. Then this sequence is called an *adapted* stochastic process

### Example

The stock process on a binomial tree is an adapted stochastic process because at each step n, the value of  $S_n$  is based on the first n coin tosses

### Definition (Martingale)

Let  $M_0$ ,  $M_1$ ,  $\cdots$ ,  $M_n$ ,  $\cdots$ ,  $M_N$  be an adapted stochastic process (each  $M_n$  is a random variable which is dependent on the first n coin tosses)

• If, for each *n* 

$$M_n = \mathbb{E}_n[M_{n+1}], \quad 0, 1, \dots, N-1$$

then this stochastic process is a martingale

 $\bigcirc$  If, for each n

$$M_n \leq \mathbb{E}_n[M_{n+1}], \quad 0, 1, \cdots, N-1$$

then this stochastic process is a *submartingale* (tendancy to increase)

 $\bigcirc$  If, for each n

$$M_n \geq \mathbb{E}_n[M_{n+1}], \quad 0, 1, \cdots, N-1$$

then this stochastic process is a *supermartingale* (tendancy to decrease)

We will be interested here in martingales only

Let a stochastic process  $\{M_i\}$  be a martingale. So  $M_n = \mathbb{E}_n[M_{n+1}], n = 0, 1, \dots, N-1$ . This means that

$$M_n = \mathbb{E}_n[M_{n+1}] = \mathbb{E}_n[\mathbb{E}_{n+1}[M_{n+2}]] = \underbrace{\mathbb{E}_n[M_{n+2}]}_{\text{by iterated condition}}$$

Extending this, we have for m > n,  $M_n = \mathbb{E}_n[M_m]$ .

# Results following from Martingale definition

From the definition of a martingale

$$M_n = \mathbb{E}_n[M_{n+1}]$$
.

Take  $\mathbb{E}$  of both sides:

$$\mathbb{E} M_n = \mathbb{E}_0 M_n = \mathbb{E}_0 [\mathbb{E}_n [M_{n+1}]] = \underbrace{\mathbb{E}_0 M_{n+1}}_{\text{iterated conditioning}} = \mathbb{E} [M_{n+1}],$$

which becomes

$$\mathbb{E}M_0=\mathbb{E}M_1=\mathbb{E}M_2=\cdots,$$

but  $\mathbb{E}M_0 = M_0$ , so

$$M_0 = \mathbb{E}M_1 = \mathbb{E}M_2 = \cdots = \mathbb{E}M_N$$
.

$$M_0 = \mathbb{E}M_n$$
,  $n = 0, 1, \dots, N$ 

# Conditional Expectations in continuous time

$$\mathbb{E}_s[M_t] \approx \mathbb{E}[M(t)|\mathcal{F}(s)] \ (0 < s < t < T)$$

## Properties of Conditional Expectations

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space and let  $\mathcal{G}$  be a sub  $\sigma$ -algebra of  $\mathcal{F}$ . Let X and Y be random variables.

Linearity Let  $c_1$  and  $c_2$  be constants. Then

$$\mathbb{E}[c_1X + c_2Y|\mathcal{G}] = c_1\mathbb{E}[X|\mathcal{G}] + c_2\mathbb{E}[Y|\mathcal{G}].$$

Taking out what is known Let X be  $\mathcal{G}$ -measurable, so X may be ascertained based on the information contained in  $\mathcal{G}$ . Then

$$\mathbb{E}[XY|\mathcal{G}] = X\mathbb{E}[Y|\mathcal{G}].$$

Iterated conditioning If  $\mathcal H$  is a sub- $\sigma$ -algebra of  $\mathcal G$  (i.e.,  $\mathcal H$  contains less information than  $\mathcal G$ ). Then,

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}].$$

Independence Let X be independent of information available in  $\mathcal{G}$ . Then

$$\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X].$$

Steven E. Shreve.
Stochastic Calculus for Finance II: Continuous-Time Models (Springer Finance).
Springer, 1st ed. 2004. corr. 2nd printing edition, June 2004.

### Binomial

Linearity For constants  $c_1$ ,  $c_2$ 

$$\mathbb{E}_n(c_1X+c_2Y)=c_1\mathbb{E}_n(X)+c_2\mathbb{E}_n(Y)$$

Taking out what is known If X only depends on the first n tosses (known),

$$\mathbb{E}_n(XY) = X \cdot \mathbb{E}_n(Y) .$$

Iterated conditioning if  $0 \le n \le m \le N$ ,

$$\mathbb{E}_n(\mathbb{E}_m(X)) = \mathbb{E}_n(X)$$

Independence If X depends *only* on coin tosses n+1,  $\cdots$ , N, then

$$\mathbb{E}_n(X) = \mathbb{E}(X)$$

#### Measure Theoretic

Linearity Let c1 and c2 be constants. Then

$$\mathbb{E}[c_1X+c_2Y|\mathcal{G}] =$$

$$c_1\mathbb{E}[X|\mathcal{G}]+c_2\mathbb{E}[Y|\mathcal{G}]$$

Taking out what is known Let X be  $\mathcal{G}$ -measurable, so X may be ascertained based on the information contained in  $\mathcal{G}$ . Then

$$\mathbb{E}[XY|\mathcal{G}] = X\mathbb{E}[Y|\mathcal{G}].$$

 $\begin{array}{ll} \textbf{Iterated conditioning} & \textbf{If} \ \mathcal{H} \ \text{is a sub-}\sigma\text{-algebra of} \ \mathcal{G} \ (i.e., \ H \\ & \text{contains less information than} \ \mathcal{G}). \end{array}$ 

nen,

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}] \; .$$

Independence Let X be independent of information available in  $\mathcal{G}$ . Then

$$\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$$
.

# Martingales Again

We've already had one definition of a martingale for a stochastic process  $M_n$  defined on a binomial tree using conditional expectations.

$$\mathbb{E}_n[M_{n+1}]=M_n.$$

An analgous definition using the measure theoretic conditional expectations that we have just encountered is

### Definition

Let M(t) be a stochastic process which is adapted to a filtration  $\mathcal{F}(t)$ . Then for  $0 \le s \le t \le T$ , M(t) is a martingale if

$$\mathbb{E}[M(t)|\mathcal{F}(s)] = M(s).$$

# Discounted Asset Price

Let  $\omega_1, \omega_2, \cdots, \omega_n$  be the first n coin tosses. So

$$S_n = S_n(\omega_1, \omega_2, \cdots, \omega_n)$$

$$\tilde{\mathbb{E}}_n\left[\frac{S_{n+1}}{(1+r)^{n+1}}\right] =$$

$$\tilde{p} = \frac{1+r-d}{u-d},$$

$$\tilde{q} = \frac{u-(1+r)}{u-d}$$
,

$$\begin{split} \tilde{\mathbb{E}}_n \Big[ \frac{S_{n+1}}{(1+r)^{n+1}} \Big] &= \frac{1}{(1+r)^{n+1}} \Big[ \tilde{p} S_{n+1}(\omega_1, \omega_2, \cdots, \omega_n H) + \tilde{q} S_{n+1}(\omega_1, \omega_2, \cdots, \omega_n T) \Big] \\ &= \frac{1}{(1+r)^{n+1}} \Big[ \tilde{p} u S_n(\omega_1, \omega_2, \cdots, \omega_n) + \tilde{q} d S_n(\omega_1, \omega_2, \cdots, \omega_n) \Big] \\ &= \frac{S_n(\omega_1, \omega_2, \cdots, \omega_n)}{(1+r)^{n+1}} \Big[ \tilde{p} u + \tilde{q} d \Big] \\ &= \frac{S_n(\omega_1, \omega_2, \cdots, \omega_n)}{(1+r)^n} \Big[ \frac{\tilde{p} u + \tilde{q} d}{1+r} \Big] \\ &= \frac{S_n(\omega_1, \omega_2, \cdots, \omega_n)}{(1+r)^n} \quad \Longrightarrow \quad \text{martingale} \, . \end{split}$$

Therefore the discounted asset price process is a martingale under the risk-neutral measure

### Discounted Portfolio Value Risk-Neutral Measure

From earlier on, the portfolio value process is defined by

$$X_{n+1}(H) = \Delta_n S_{n+1} + (1+r)(X_n - \Delta_n S_n),$$

- where  $\Delta_n$  is the amount of asset to be held on step n,
- where  $\Delta_n$  is the almost of asset to be need on step n, the value  $S_{n+1}$  is one of two values  $S_{n+1}(\omega_1\omega_2\cdots\omega_n H)$  or  $S_{n+1}(\omega_1\omega_2\cdots\omega_n T)$ . These two values are written as  $S_{n+1}(H)$ ,  $S_{n+1}(T)$ .

Then

$$\begin{split} \tilde{\mathbb{E}}_n \Big[ \frac{X_{n+1}}{(1+r)^{n+1}} \Big] &= \frac{1}{(1+r)^{n+1}} \tilde{\mathbb{E}}_n \Big[ \Delta_n S_{n+1} + (1+r)(X_n - \Delta_n S_n) \Big] \,, \\ &= \frac{1}{(1+r)^{n+1}} \tilde{\mathbb{E}}_n \Big[ \Delta_n S_{n+1} \Big] + \frac{1}{(1+r)^n} \tilde{\mathbb{E}}_n \Big[ (X_n - \Delta_n S_n) \Big] \,, \\ &\text{linearity of conditional expectations} \\ &= \frac{1}{(1+r)^{n+1}} \Delta_n \tilde{\mathbb{E}}_n \Big[ S_{n+1} \Big] + \frac{1}{(1+r)^n} (X_n - \Delta_n S_n) \,, \\ &\text{taking out what is known at step } n \\ &= \Delta_n \tilde{\mathbb{E}}_n \Big[ \frac{S_{n+1}}{(1+r)^{n+1}} \Big] + \frac{1}{(1+r)^n} (X_n - \Delta_n S_n) \,, \\ &= \Delta_n \underbrace{\frac{S_n}{(1+r)^n}}_{\text{$(1+r)^n$ is a martingale}} + \frac{1}{(1+r)^n} (X_n - \Delta_n S_n) \,, \end{split}$$

Symmetric Random Walk

# Symmetric Random Walk

- Start with a "fair" coin
- Result of a coin toss can be a head (H) or a tail (T)
- Since the coin is fair,

$$P(H) = p = \frac{1}{2},$$
  
 $P(T) = q = 1 - p = \frac{1}{2}.$ 

- Take a sequence of coin tosses  $\omega = \omega_1 \omega_2 \omega_3 \omega_4$ , where each  $\omega_i$  is a coin toss
- Each coin toss is independent of the others
- Stochastic Calculus for Finance II: Continuous-Time Models (Springer Finance). Springer, 1st ed. 2004. corr. 2nd printing edition, June 2004

# Symmetric Random Walk

Define a random variable  $X_i$ 

$$X_i = \left\{ \begin{array}{ll} +1, & \omega_i = H \\ -1, & \omega_i = T \end{array} \right.$$

$$\mathbb{E}[X_i] = p \cdot 1 + q \cdot (-1) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (-1) = 0,$$

$$\mathsf{Var}[X_i] = \mathbb{E}[X_i^2] = p \cdot 1 + q \cdot (1) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (1) = 1,$$

where  $Var[X_i] = \mathbb{E}[X_i^2]$  because  $\mathbb{E}[X_i] = 0$ 

Let  $0 = k_0 < k_1 < k_2 < \cdots < k_m$  be a set of integers

### Example

$$0 = k_0 < 5(k_1) < 9(k_2) < 15(k_3) < \cdots < 38(k_m).$$

Then the increment

$$egin{array}{lcl} M_{k_{i+1}} - M_{k_i} & = & \displaystyle\sum_{j=1}^{k_{i+1}} X_j - \displaystyle\sum_{j=1}^{k_i} X_j \,, \ & = & \left( X_1 + X_2 + \cdots + X_{k_{i+1}} 
ight) - \left( X_1 + X_2 + \cdots X_{k_i} 
ight) \,, \ & = & \displaystyle X_{k_i+1} + X_{k_i+2} + \cdots + X_{k_{i+1}} \,, \ & = & \displaystyle\sum_{j=k_i+1}^{k_{i+1}} X_j \,. \end{array}$$

Define a process  $M_k$ , where  $M_0 = 0$  and

$$M_k = \sum_{i=0}^k X_i \,.$$

The process  $M_0, M_1, M_2, \cdots$  is called a (symmetric) random walk

# Properties of the Random Walk Increments

### Example

Letting 
$$0 = k_0 < 5(k_1) < 9(k_2) < 15(k_3) < \cdots < 38(k_m)$$
,

$$M_{k_2} - M_{k_1} = M_9 - M_5 = \sum_{j=1}^{9} X_j - \sum_{j=1}^{5} X_j,$$

$$= (X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9)$$

$$- (X_1 + X_2 + X_3 + X_4 + X_5),$$

$$= (X_6 + X_7 + X_8 + X_9),$$

$$= \sum_{j=6}^{9} X_j = \sum_{j=5+1}^{9} X_j = \sum_{j=k_1+1}^{k_2} X_j.$$

# Independence of Increments

For  $0 = k_0 < k_1 < k_2 < \cdots < k_m$ , the increments

$$M_{k_1} - M_{k_0}, M_{k_2} - M_{k_1}, M_{k_3} - M_{k_2}, \cdots,$$

are independent of each other.

$$\sum_{j=k_0+1}^{k_1} X_j, \sum_{j=k_1+1}^{k_2} X_j, \sum_{j=k_2+1}^{k_3} X_j, \cdots$$

This is because each increment is based on different groups of coin tosses and all the coin tosses are independent of each other

### Example

Letting  $0 = k_0 < 5(k_1) < 9(k_2) < 15(k_3) < \dots < 38(k_m)$ ,

Then

$$M_{k_2} - M_{k_1} = M_9 - M_5 = X_6 + X_7 + X_8 + X_9$$

and

$$M_{k_3} - M_{k_2} = M_{15} - M_9 = X_{10} + X_{11} + X_{12} + X_{13} + X_{14} + X_{15}$$

Since all the coin tosses are independent of each other, the increments are independent of each other

## Expectation and Variance

$$\mathbb{E}(M_{k_{i+1}}-M_{k_i}) = \sum_{j=1}^{k_{i+1}} \mathbb{E}X_j - \sum_{j=1}^{k_i} \mathbb{E}X_j,$$

$$ext{Var}ig(M_{k_{i+1}} - M_{k_i}ig) = ext{Var}ig(\sum_{j=1}^{k_{i+1}} X_j - \sum_{j=1}^{k_i} X_jig),$$

$$= ext{Var}ig(\sum_{j=k_i+1}^{k_{i+1}} X_jig),$$

$$= ext{} \sum_{j=k_i+1}^{k_{i+1}} ext{Var}(X_j),$$

$$= ext{} \sum_{i=k_i+1}^{k_{i+1}} 1 = k_{i+1} - k_i ext{ (because } \sum_{i=1}^n 1 = n)$$

# Expectation and Variance

### Example

Letting 
$$0 = k_0 < 5(k_1) < 9(k_2) < 15(k_3) < \cdots < 38(k_m)$$
, Then

$$Var(M_{k_2} - M_{k_1}) = Var(M_9 - M_5),$$

$$= Var(X_6 + X_7 + X_8 + X_9),$$

$$= (1 + 1 + 1 + 1),$$

$$= 4 = 9 - 5 = k_2 - k_1.$$

# Martingale Property for symmetric random walk

Let  $0 \le k < l$  be integers (times). Then

$$\mathbb{E}_{k}[M_{l}] = \mathbb{E}_{k}[M_{l} - M_{k} + M_{k}],$$
  
=  $\mathbb{E}_{k}[M_{l} - M_{k}] + \mathbb{E}_{k}[M_{k}],$ 

At step k  $M_k$  is known, so  $\mathbb{E}_k[M_k] = M_k$ .

Also, the quantity  $M_l - M_k$  is based only on coin tosses greater than k, so is independent of all coin tosses up to and including step k. So  $\mathbb{E}_k[M_l - M_k] = \mathbb{E}[M_l - M_k]$ .

 $\mathbb{E}_k[M_l - M_k] = \mathbb{E}[M_l]$ 

Therefore,

$$\mathbb{E}_{k}[M_{l}] = \mathbb{E}_{k}[M_{l} - M_{k}] + \mathbb{E}_{k}[M_{k}],$$

$$= \mathbb{E}[M_{l} - M_{k}] + M_{k},$$

$$= 0 + M_{k},$$

$$= M_{k}.$$

So the symmetric random walk is a Martingale.

# Martingale Property for symmetric random walk Same calculation, Different notation

Let  $0 \le k < l$  be integers (times). Then

$$\mathbb{E}[M_{l}|\mathcal{F}_{k}] = \mathbb{E}[M_{l} - M_{k} + M_{k}|\mathcal{F}_{k}],$$

$$= \mathbb{E}[M_{l} - M_{k}|\mathcal{F}_{k}] + \mathbb{E}[M_{k}|\mathcal{F}_{k}],$$

$$= \mathbb{E}[M_{l} - M_{k}|\mathcal{F}_{k}] + M_{k},$$

$$= \mathbb{E}[M_{l} - M_{k}] + M_{k},$$

$$= 0 + M_{k},$$

$$= M_{k}.$$

So the symmetric random walk is a Martingale.

## Scaled Random Walk

# Limiting Behaviour

- With the random walk defined in the previous slides there is no useful idea of limiting
- There is only one variable to limit: k, in  $M_k$
- Will now define a scaled random walk

# Scaled (Symmetric) Random Walk Symmetric if $p=1-q=\frac{1}{2}$

Define

$$W^{(n)}(t)=rac{1}{\sqrt{n}}M_{nt}$$
 .

- $W^{(n)}(t)$  is defined for n, t where nt is an integer
- For n = 100 and t = 0.25, nt = 25; an integer
- ullet For n = 100 and t = 0.00000001, nt = 0.000001, not an integer
- Each unit interval in [0, t] split into n parts of length  $\frac{1}{n}$

# Scaled (Symmetric) Random Walk

# Independence of Increments of $W^{(n)}(t)$

$$W^{(n)}(t) = rac{1}{\sqrt{n}} M_{nt} = \sum_{j=1}^{nt} rac{1}{\sqrt{n}} X_j$$

For each  $X_i$  term,

$$\frac{1}{\sqrt{n}}X_i = \left\{ \begin{array}{ll} +\frac{1}{\sqrt{n}}, & \omega_i = H \\ -\frac{1}{\sqrt{n}}, & \omega_i = T \end{array} \right.$$

So the step size is smaller as n gets larger

 $W^{(n)}(t)=rac{1}{\sqrt{n}}M_{nt}$  is defined as a random walk, so its increments are independent from previous slides

# Expectation and Variance of $\frac{1}{\sqrt{n}}X_j$

# Expectation and Variance $W^{(n)}(t) - W^{(n)}(s)$

$$\mathbb{E}\left(rac{1}{\sqrt{n}}X_j
ight)=0$$
  $\operatorname{Var}\left(rac{1}{\sqrt{n}}X_j
ight)=\mathbb{E}\left[\left(rac{1}{\sqrt{n}}X_j
ight)^2
ight],$ 

since  $\mathbb{E}\left(\frac{1}{\sqrt{n}}X_j\right)=0$ .

$$\mathbb{E}\left[\left(\frac{1}{\sqrt{n}}X_j\right)^2\right] = \frac{1}{n}\mathbb{E}\left(X_j^2\right),$$
$$= \frac{1}{n}\cdot 1 = \frac{1}{n}.$$

By definition of  $W^{(n)}(t)$  as a symmetric random walk,

$$\mathbb{E}\big[W^{(n)}(t)-W^{(n)}(s)\big]=0$$

and

$$\operatorname{Var}\left[W^{(n)}(t) - W^{(n)}(s)\right] = \operatorname{Var}\left[\frac{1}{\sqrt{n}}(M_{nt} - M_{ns})\right],$$

$$= \frac{1}{n}\operatorname{Var}\left[M_{nt} - M_{ns}\right],$$

$$= \frac{1}{n}(nt - ns) \quad \text{(from earlier slides)},$$

$$= t - s.$$

# Limit of Scaled Symmetric Random Walk

In the limit as  $n \to \infty$ ,  $W^{(n)}(t)$  limits to Brownian Motion, W(t).

# Review of Course Topics

- 1 Introduction
- Assumptions
- 3 Binomial Model
- 4 European Stock Option: Binomial Model
- 5 Conditional Expected Values on a Tree

# Limit of Scaled Symmetric Random Walk to Normal distribution



Figure: Histogram of values at t=1 of 10000 scaled random walks, each of length 5000. Red curve; density function of normal distribution N(0,1). (Sample mean:  $\mu=-0.00182$ ; sample variance:  $\sigma=1.00222$ )