

Keji S, 12th, Road, Hi-tech Industrial Park, Shenzhen, Guangdong, China

Phone:86-755-26748099

Fax:86-755-26748089

Jerone lus yuchao.wang Wemliony

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No....... TRE1306014302 R/C:77515

FCC ID...... 2AAMSMJ97XXX

Compiled by

(position+printed name+signature)..: File administrators Jerome Luo

Supervised by

(position+printed name+signature)..: Test Engineer Yuchao Wang

Approved by

(position+printed name+signature)..: Manager Wenliang Li

Date of issue...... July 18, 2013

Testing Laboratory Name Shenzhen Huatongwei International Inspection Co., Ltd

Address Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China

Applicant's name...... SHENZHEN NST INDUSTRY AND TRADE CO.,LTD

Address 2/F,Bldg B,HongMen Technical Garden II,Jihua Road,.Buji

Town, Longgang District, Shenzhen P.R. China

Test specification:

Standard FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz

Master TRF...... Dated 2006-06

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Tablet PC

Trade Mark ULTRATAB™

Model/Type reference...... MJ97XXX

MX70XXX, MX78XXX,MX80XXX,MJ90XXX, M70XXX,MJ10XXX,

Listed Models MG11XXX, MG13XXX,CMXXXX,M78XXX,M80XXX,

M80XXX,M90XXX,M97XXX, M11XXX, M10XXX

Manufacturer HK YITOA TECHNOLOGY CO., LIMITED

Modulation Type GFSK,8DPSK,π/4DQPSK

Operation Frequency...... From 2402MHz to 2480MHz

Rating DC 5.0V

Result..... Positive

Report No.: TRE1306014302 Page 2 of 76 Issued:2013-07-18

TEST REPORT

Test Report No. :	TRE1306014302	July 18, 2013
	11\L 13000 14302	Date of issue

Equipment under Test : Tablet PC

Model /Type : MJ97XXX

Listed Models : MX70XXX, MX78XXX,MX80XXX,MJ90XXX, M70XXX,

MJ10XXX,MG11XXX, MG13XXX,CMXXXX,M78XXX,

M80XXX, M80XXX, M90XXX, M97XXX, M11XXX,

M10XXX

Applicant : SHENZHEN NST INDUSTRY AND TRADE CO.,LTD

Address : 2/F,Bldg B,HongMen Technical Garden II,Jihua Road, Buji

Town,Longgang District,Shenzhen P.R.China

Manufacturer : HK YITOA TECHNOLOGY CO., LIMITED

Address : UNIT 04, 7/F BRIGHT WAY TOWER NO 33 MONG KOK

RD KL

Test Result according to the standards on page 4:

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: TRE1306014302 Page 3 of 76 Issued:2013-07-18

Contents

TEST STANDARDS	4
CUMM A DV	_
SUMMARY	5
General Remarks	5
Equipment Under Test	5
Short description of the Equipment under Test (EUT)	5
EUT operation mode	5
Block Diagram of Test Setup	6
Related Submittal(s) / Grant (s)	6
Modifications	6
NOTE	6
TEST ENVIRONMENT	7
Address of the test laboratory	7
Test Facility	7
Environmental conditions	8
Test Description	8
Statement of the measurement uncertainty	8
Equipments Used during the Test	9
TEST CONDITIONS AND RESULTS	10
AC Power Conducted Emission	10
Radiated Emission	13
Maximum Peak Output Power	18
20dB Bandwidth	24
Band Edge	30
Frequency Separation	47
Number of hopping frequency	54
Time Of Occupancy(Dwell Time)	57
Pseudorandom Frequency Hopping Sequence	73
Antenna Requirement	74
TEST SETUP PHOTOS OF THE EUT	7 5

Report No.: TRE1306014302 Page 4 of 76 Issued:2013-07-18

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2009</u>: American National Standard for Testing Unlicensed Wireless Devices

Report No.: TRE1306014302 Page 5 of 76 Issued:2013-07-18

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	June 20, 2013
Testing commenced on	:	June 20, 2012
Testing concluded on	:	July 18, 2012

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	•	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		0	Other (specified in blank below))

DC 5.0V

2.3. Short description of the Equipment under Test (EUT)

2.4GHz (MID (M/N:MJ97XXX))

For more details, refer to the user's manual of

the EUT. Serial number: Prototype

2.4. EUT operation mode

The EUT has been tested under typical operating condition. There are EDR (Enhanced Data Rate) and BDR (Basic Data Rate)mode. The Applicant provides communication tools software to control the EUT for staying in continous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	40	2442
1	2403	41	2443
2	2404	42	2444
3	2405	43	2445
4	2406	44	2446
5	2407	45	2447
6	2408	46	2448
7	2409	47	2449
8	2410	48	2450
9	2411	49	2451
10	2412	50	2452
11	2413	51	2453
12	2414	52	2454
13	2415	53	2455
14	2416	54	2456
15	2417	55	2457
16	2418	56	2458
17	2419	57	2459

		·	
18	2420	58	2460
19	2421	59	2461
20	2422	60	2462
21	2423	61	2463
22	2424	62	2464
23	2425	63	2465
24	2426	64	2466
25	2427	65	2467
26	2428	66	2468
27	2429	67	2469
28	2430	68	2470
29	2431	69	2471
30	2432	70	2472
31	2433	71	2473
32	2434	72	2474

Page 6 of 76

Issued:2013-07-18

2.5. Block Diagram of Test Setup

Report No.: TRE1306014302

AC Adapter

MODEL:JY-05200

INPUT:100-240V \sim 50/60Hz 0.3A Max

OUTPUT: 5.0V DC 2.0A Power Cable: 120cm

♦ Shielded
♦ Unshielded

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AAMSMJ97XXX** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

2.8. NOTE

1. The EUT is a 802.11b/g/n Table PC with WLAN and Bluetooth function, The functions of the EUT listed as below:

	Test Standards	Reference Report
WLAN 802.11b/g/n	FCC Part 15 Subpart C	TRE1306014301
Bluetooth	FCC Part 15 Subpart C	TRE1306014302
USB Port	FCC Part 15 Subpart B	TRE1306014303
MPE REPORT	FCC Per 47 CFR 2.1093(d)	TRE1306014304

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850
EUT	\checkmark	_	_	_

Report No.: TRE1306014302 Page 7 of 76 Issued:2013-07-18

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Huatongwei International Inspection Co., Ltd Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone: 86-755-26715686 Fax: 86-755-26748089

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Mar. 01, 2012. Valid time is until Feb 28, 2015.

A2LA-Lab Cert. No. 2243.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until Sept. 30, 2013.

FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date Jun. 01, 2012, valid time is until Jun. 01, 2015.

IC-Registration No.: 5377A

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Jan. 25, 2011, valid time is until Jan. 24, 2014.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

VCCI

The 3m Semi-anechoic chamber $(12.2m\times7.95m\times6.7m)$ and Shielded Room $(8m\times4m\times3m)$ of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2010. Valid time is until Dec. 23, 2013.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups

Report No.: TRE1306014302 Page 8 of 76 Issued:2013-07-18

according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2013.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Test Description

FCC PART 15 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(1)(i)	20dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS
FCC Part 15.247(b)	Pseudorandom Frequency Hopping Sequence	PASS
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency& Time of Occupancy	PASS
FCC Part 15.247(a)(1)	Frequency Separation	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS
FCC Part1.1307 (b)	MPE Evaluation	PASS

Remark: The measurement uncertainty is not included in the test result.

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1306014302 Page 9 of 76 Issued:2013-07-18

3.6. Equipments Used during the Test

$\Lambda \cap D$	AC Power Conducted Emission							
701	AC Fower Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2012/10/27			
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2012/10/27			
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2012/10/27			
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	2012/10/27			

Radia	Radiated Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.		
1	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2012/10/27		
2	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	2012/10/27		
3	EMI TEST OFTWARE	Audix	E3	N/A	2012/10/27		
4	TURNTABLE	ETS	2088	2149	2012/10/27		
5	ANTENNA MAST	ETS	2075	2346	2012/10/27		
6	EMI TEST OFTWARE	Rohde&Schwarz	ESK1	N/A	2012/10/27		
7	HORN ANTENNA	ShwarzBeck	9120D	1011	2012/10/27		
8	Amplifer	Sonoma	310N	E009-13	2012/10/27		
9	JS amplifer	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2012/10/27		
10	High pass filter	Compliance Direction systems	BSU-6	34202	2012/10/27		
11	HORN ANTENNA	ShwarzBeck	9120D	1012	2012/10/27		
12	Amplifer	Compliance Direction systems	PAP1-4060	120	2012/10/27		
13	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2012/10/27		
14	TURNTABLE	MATURO	TT2.0		2012/10/27		
15	ANTENNA MAST	MATURO	TAM-4.0-P		2012/10/27		

Maxin	Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF								
Emiss	Emission / Spurious RF Conducted Emission								
Item	m Test Equipment Manufacturer Model No. Serial No. Last Cal.								
1	Power Sensor	Rohde&Schwarz	NRP-Z21	102638	2012/10/27				
2	Power Sensor Rohde&Schwarz NRP-Z21 102639 2012/10/27								
3	Spectrum Analyzer Rohde&Schwarz FSP 1164.4391.40 2012/10/27								

The Cal.Interval was one year

Report No.: TRE1306014302 Page 10 of 76 Issued:2013-07-18

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2009
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009
- 4 The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Ereculency		Maximum RF Lin	e Voltage (dBµV)	
Frequency (MHz)	CLA	SS A	CLA	SS B
(IVITZ)	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

Note:We tested Conducted Emission of GFSK, π /4 DQPSK and 8DPSK mode from 0.15KHz to 30MHz and We recorded the worst case data at GFSK mode.

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW1307224 fin"

3 9:11	AM						
ency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
8000	43.00	11.9	64	20.7	QP	N	GND
8000	31.00	10.4	56	25.0	QP	N	GND
4000	30.60	10.4	56	25.4	QP	N	GND
4000	33.70	10.5	56	22.3	QP	N	GND
0000	29.10	10.5	56	26.9	QP	N	GND
8000	23.90	10.8	60	36.1	QP	N	GND
	ency MHz 8000 8000 4000 4000	MHz dBμV 8000 43.00 8000 31.00 4000 30.60 4000 33.70 0000 29.10	ency Level dBμV Transd dB 8000 43.00 11.9 8000 31.00 10.4 4000 30.60 10.4 4000 33.70 10.5 0000 29.10 10.5	ency Level dBμV Transd dB dBμV 8000 43.00 11.9 64 8000 31.00 10.4 56 4000 30.60 10.4 56 4000 33.70 10.5 56 0000 29.10 10.5 56	ency Level dBμV Transd dB dBμV Limit dB dBμV Margin dB 8000 43.00 11.9 64 20.7 8000 31.00 10.4 56 25.0 4000 30.60 10.4 56 25.4 4000 33.70 10.5 56 22.3 0000 29.10 10.5 56 26.9	ency Level dBμV Transd dB dBμV Limit dBμV Margin dB Detector dB 8000 43.00 11.9 64 20.7 QP 8000 31.00 10.4 56 25.0 QP 4000 30.60 10.4 56 25.4 QP 4000 33.70 10.5 56 22.3 QP 0000 29.10 10.5 56 26.9 QP	ency Level dBμV Transd dB dBμV Limit dB dBμV Margin dB Detector Line dB dBμV 8000 43.00 11.9 64 20.7 QP N 8000 31.00 10.4 56 25.0 QP N 4000 30.60 10.4 56 25.4 QP N 4000 33.70 10.5 56 22.3 QP N 0000 29.10 10.5 56 26.9 QP N

MEASUREMENT RESULT: "HTW1307224_fin2"

7/16/2013 9: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	32.00	12.7	56	24.0	AV	N	GND
0.198000	27.80	11.9	54	25.9	AV	N	GND
0.646000	15.20	10.4	46	30.8	AV	N	GND
0.706000	15.40	10.4	46	30.6	AV	N	GND
1.570000	15.90	10.5	46	30.1	AV	N	GND
1.634000	14.50	10.5	4.6	31.5	Δ17	N	GND

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW1307223 fin"

7/16/2013 9:0	7AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	49.10	12.7	66	16.9	QP	L1	GND
0.202000	42.10	11.8	64	21.4	QP	L1	GND
1.182000	32.50	10.6	56	23.5	QP	L1	GND
1.594000	37.80	10.5	56	18.2	QP	L1	GND
1.722000	33.70	10.5	56	22.3	QP	L1	GND

MEASUREMENT RESULT: "HTW1307223 fin2"

7/16/2013 9:0 Frequency MHz	O7AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	13.20	12.4	55	41.8	AV	L1	GND
0.178000	18.40	12.2	55	36.2	AV	L1	GND
0.694000	22.90	10.4	46	23.1	AV	L1	GND
1.582000	25.50	10.5	46	20.5	AV	L1	GND
1.638000	23.60	10.5	46	22.4	AV	L1	GND
1 730000	18 60	10.5	4.6	27 4	Z\77	T.1	GND

4.2. Radiated Emission

TEST CONFIGURATION

Radiated Emission Test Set-Up

Frequency range 9KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 223.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The frequency spectrum above 1 GHz for Transmitter was investigated. All emission not reported are much lower than the prescribed limits. Set the RBW=1MHz,VBW=3MHz for Peak Detector while the RBW=1MHz,VBW=10Hz for Average Detector,Readings are both peak and average values. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Note:We measured Radiated Emission at GFSK, π /4 DQPSK and 8DPSK mode from 9KHz to 25GHz and recorded worst case at GFSK mode.

For 9KHz to 30MHz

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result
0.63	47.92	71.21	23.29	QP	PASS
1.62	43.62	63.05	19.43	QP	PASS
16.52	41.54	69.54	28.00	QP	PASS
27.09	42.00	69.54	29.54	QP	PASS

For 30MHz to 1000MHz

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.
30.0 MHz 1.1 GHz MaxPeak Coupled 100 kHz VULB9163

MEASUREMENT RESULT: "HTW130716103_red"

-	7/16/2013 9:5		_ ,						
	Frequency MHz	dBµV/m		Limit dBµV/m	_	Det.	Height Cm	Azımuth deg	Polarization
	31.940000	21.30	-16.3	40.0	18.7	PK	100.0	76.00	VERTICAL
	59.100000	17.90	-15.6	40.0	22.1	PK	100.0	14.00	VERTICAL
	144.460000	27.40	-18.4	43.5	16.1	PK	100.0	14.00	VERTICAL
	204.600000	15.80	-14.7	43.5	27.7	PK	100.0	86.00	VERTICAL
	551.860000	24.00	-5.4	46.0	22.0	PK	100.0	57.00	VERTICAL
	927.250000	34.90	3.1	46.0	11.1	PK	100.0	188.00	VERTICAL

SWEEP TABLE: "test (30M-1G)"
Short Description: Fix
Start Stop Detector Strequency Frequency 30.0 MHz 1.1 GHz MaxPeak Field Strength Detector Meas. IF Transducer Bandw. Time MaxPeak Coupled 100 kHz VULB9163

MEASUREMENT RESULT: "HTW130716103 red"

7/16/2013 9:4 Frequency MHz	18AM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
39.700000	15.20	-15.1	40.0	24.8	PK	300.0	12.00	HORIZONTAL
59.100000	13.80	-15.6	40.0	26.2	PK	300.0	20.00	HORIZONTAL
141.550000	18.50	-18.5	43.5	25.0	PK	300.0	334.00	HORIZONTAL
215.270000	17.60	-15.0	43.5	25.9	PK	100.0	154.00	HORIZONTAL
523.730000	25.20	-6.3	46.0	20.8	PK	100.0	267.00	HORIZONTAL
958.290000	35.50	3.5	46.0	10.5	PK	300.0	360.00	HORIZONTAL

For 1GHz to 25GHz

Low Channel @ Channel 00 @ 2402 MHz

			ANTE	NNA POL	ARITY &	TEST DIS	TANCE: H	IORIZONT	AL AT 3	M		
No.	Frequency (MHz)	Ems: Lev (dBu\	⁄el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
1	4804.00	50.80	PK	54.00	3.20	1.00 H	256	48.72	31.58	7.00	36.5	2.08
2	7206.00	52.34	PK	54.00	1.66	1.00 H	136	41.68	37.06	8.90	35.3	10.66

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M												
	Frequency	Ems	sion	Limit	Margin	Antenna	Table	Raw	Antenna		Pre-	Correction	
No.	(MHz)	Le	/el	(dBuV/m)	(dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor	
	(IVITIZ)	(dBu\	V/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)	
1	4804.00	51.44	PK	54.00	2.56	1.00 V	339	49.36	31.58	7.00	36.5	2.08	
2	7206.00	50.91	PK	54.00	3.09	1.00 V	340	40.25	37.06	8.90	35.3	10.66	

Middle Channel @ Channel 39 @ 2441 MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
No.	Frequency (MHz)	Emss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)		Pre- amplifi er	Correction Factor (dB/m)	
1	4882.00	51.53	PK	54.00	2.47	1.00 H	202	49.39	31.04	7.60	36.5	2.14	
2	7323.00	51.82	PK	54.00	2.18	1.00 H	355	40.68	37.84	8.60	35.3	11.14	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M												
No.	Frequency (MHz)	Emss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)		Pre- amplifi er	Correction Factor (dB/m)	
1	4882.00	52.40	PK	54.00	1.60	1.00 V	97	50.26	31.04	7.60	36.5	2.14	
2	7323.00	52.80	PK	54.00	1.20	1.00 V	288	41.66	37.84	8.60	35.3	11.14	

High Channel @ Channel 78 @ 2480 MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
	Frequency	Emss	sion	Limit	Margin	Antenna	Table	Raw	Antenna		Pre-	Correction	
No.	(MHz)	Lev	⁄el	(dBuV/m)	(dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor	
	(1011 12)	(dBu\	//m)	(ubu v/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)	
1	4960.00	50.04	PK	54.00	3.96	1.00 H	198	47.61	31.63	7.00	36.2	2.43	
2	7340.00	52.08	PK	54.00	1.92	1.00 H	90	40.48	38.40	8.50	35.3	11.60	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M													
	Frequency	Emss	sion	Limit	Margin	Antenna	Table	Raw	Antenna		Pre-	Correction		
No.	(MHz)	Lev	el	(dBuV/m)	(dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor		
	(1711 12)	(dBu\	//m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)		
1	4960.00	53.35	PK	54.00	0.65	1.00 V	96	50.92	31.63	7.00	-36.2	2.43		
2	7340.00	51.80	PK	54.00	2.20	1.00 V	35	40.20	38.40	8.50	-35.3	11.60		

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) -Pre-amplifier Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.

Report No.: TRE1306014302 Page 18 of 76 Issued:2013-07-18

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum.

LIMIT

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

4.3.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Refer to Plot	Limits (dBm)	Verdict
00	2402	4.10	Plot 4.3.1 A	30	PASS
39	2441	5.31	Plot 4.3.1 B	30	PASS
78	2480	6.20	Plot 4.3.1 C	30	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

Date: 16.JUL.2013 20:21:30

Date: 16.JUL.2013 20:22:36

(Plot 4.3.1 B: Channel 39: 2441MHz @ GFSK)

Date: 16.JUL.2013 20:23:13

4.3.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Refer to Plot	Limits (dBm)	Result
00	2402	3.47	Plot 4.3.2 A	30	PASS
39	2441	4.69	Plot 4.3.2 B	30	PASS
78	2480	5.59	Plot 4.3.2 C	30	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

Date: 16.JUL.2013 20:26:10

(Plot 4.3.2 A: Channel 00: 2402MHz @ 8DPSK)

Date: 16.JUL.2013 20:26:32

(Plot 4.3.2 B: Channel 39: 2441MHz @ 8DPSK)

Date: 16.JUL.2013 20:27:01

4.3.3 $\pi/4DQPSKTest Mode$

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Refer to Plot	Limits (dBm)	Result
00	2402	3.33	Plot 4.3.3 A	30	PASS
39	2441	4.49	Plot 4.3.3 B	30	PASS
78	2480	5.42	Plot 4.3.3 C	30	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

Date: 16.JUL.2013 20:24:08

(Plot 4.3.3 A: Channel 00: 2402MHz @ π /4DQPSK)

Date: 16.JUL.2013 20:24:40

(Plot 4.3.3 B: Channel 39: 2441MHz @π/4DQPSK)

Date: 16.JUL.2013 20:25:14

Report No.: TRE1306014302 Page 24 of 76 Issued:2013-07-18

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

4.4.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	0.7080	Plot 4.4.1 A	/	PASS
39	2441	0.7040	Plot 4.4.1 B	/	PASS
78	2480	0.7040	Plot 4.4.1 C	1	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

Date: 16.JUL.2013 20:30:44

(Plot 4.4.1 B: Channel 39: 2441MHz @ GFSK)

Date: 16.JUL.2013 20:31:59

4.4.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.1600	Plot 4.4.2 A	1	PASS
39	2441	1.1640	Plot 4.4.2 B	1	PASS
78	2480	1.1640	Plot 4.4.2 C	1	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

Date: 16.JUL.2013 20:36:50

(Plot 4.4.2 A: Channel 00: 2402MHz @ 8DPSK)

Date: 16.JUL.2013 20:37:30

(Plot 4.4.2 B: Channel 39: 2441MHz @ 8DPSK)

Date: 16.JUL.2013 20:38:01

4.4.3 $\pi/4DQPSKTest Mode$

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.160	Plot 4.4.3 A	1	PASS
39	2441	1.160	Plot 4.4.3 B	1	PASS
78	2480	1.120	Plot 4.4.3 C	1	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

Date: 16.JUL.2013 20:34:25

(Plot 4.4.3 A: Channel 00: 2402MHz @ π/4DQPSK)

Date: 16.JUL.2013 20:35:08

(Plot 4.4.3 B: Channel 39: 2441MHz @π/4DQPSK)

Date: 16.JUL.2013 20:35:53

Report No.: TRE1306014302 Page 30 of 76 Issued:2013-07-18

4.5. Band Edge

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a
 EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low
 Channel and High Channel within its operating range, and make sure the instrument is operated in its
 linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

TEST RESULTS

Remark: we measured all conditions(DH1,DH3,DH5) and recorded worst case at DH5

4.5.1 For Radiated Bandedge Measurement

4.5.1.1 GFSK Test Mode

4.5.1.2 8DPSK Test Mode

4.5.1.3 π/4DQPSK Test Mode

4.5.2 For Radiated Bandedge Measurement

4.5.2.1 GFSK Test Mode

A. Test Verdict

Frequency (MHz)	Delta Peak to Band emission (dBc)	Detector	Limit (dBc)	Refer to Plot	Verdict
2400.00	51.74	Peak	20	Plot 4.5.2.1 A	PASS
2483.50	55.20	Peak	20	Plot 4.5.2.1 B	PASS

Date: 16.JUL.2013 21:25:07

(Plot 4.5.2.1 A: Channel 00: 2402MHz @ GFSK)

Date: 16.JUL.2013 21:27:59

4.5.2.2 8DPSK Test Mode

A. Test Verdict

Frequency (MHz)	Delta Peak to Band emission (dBc)	Detector	Limit (dBc)	Refer to Plot	Verdict
2400.00	52.26	Peak	20	Plot 4.5.2.2 A	PASS
2483.50	55.13	Peak	20	Plot 4.5.2.2 B	PASS

B. Test Plots

Date: 16.JUL.2013 21:35:25

(Plot 4.5.2.2 A: Channel 00: 2402MHz @ 8DPSK)

Date: 16.JUL.2013 21:33:48

(Plot 4.5.2.2 B: Channel 78: 2480MHz @ 8DPSK)

4.5.2.4 π/4DQPSK Test Mode

A. Test Verdict

Frequency (MHz)	Delta Peak to Band emission (dBc)	Detector	Limit (dBc)	Refer to Plot	Verdict
2400.00	52.35	Peak	20	Plot 4.5.2.3 A	PASS
2483.50	54.01	Peak	20	Plot 4.5.2.3 B	PASS

Date: 16.JUL.2013 21:29:58

(Plot 4.5.2.3 A: Channel 00: 2402MHz @ π /4DQPSK)

Date: 16.JUL.2013 21:31:56

Report No.: TRE1306014302 Page 47 of 76 Issued:2013-07-18

4.6. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100KHz VBW.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

4.6.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict	
00	2402	1.004	Plot 4.6.1 A	25KHz or 2/3*20dB	PASS	
01	2403	1.004	1 10t 4.0.1 A	bandwidth	1733	
38	2440	1.004	Plot 4.6.1 B	25KHz or 2/3*20dB	PASS	
39	2441	1.004	F101 4.0.1 B	bandwidth	FASS	
77	2479	1.004	Plot 4.6.1 C	25KHz or 2/3*20dB	PASS	
78	2480	1.004	F101 4.0.1 C	bandwidth	FASS	

Date: 16.JUL.2013 20:40:47

(Plot 4.6.1 A: Channel 00: 2402MHz @ GFSK)

Date: 16.JUL.2013 20:41:32

Date: 16.JUL.2013 20:43:06

(Plot 4.6.1 C: Channel 78: 2480MHz @ GFSK)

4.6.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.004	Plot 4.6.2 A	25KHz or 2/3*20dB	PASS
01	2403			bandwidth	
38	2440	1.004	Plot 4.6.2 B	25KHz or 2/3*20dB	PASS
39	2441	1.004	1 100 4.0.2 D	bandwidth	1 700
77	2479	1.004	Plot 4.6.2 C	25KHz or 2/3*20dB	PASS
78	2480	1.004	F101 4.0.2 C	bandwidth	1 700

Date: 16.JUL.2013 20:48:31

(Plot 4.6.2 A: Channel 00: 2402MHz @ 8DPSK)

Date: 16.JUL.2013 20:49:36

Date: 16.JUL.2013 20:50:28

(Plot 4.6.2 C: Channel 78: 2480MHz @ 8DPSK)

4.6.3 π/4DQPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict	
00	2402	1.004	Plot 4.6.3 A	25KHz or 2/3*20dB	PASS	
01	2403	1.004	F 101 4.0.3 A	bandwidth	1 733	
38	2440	1 004	1.004	Plot 4.6.3 B	25KHz or 2/3*20dB	PASS
39	2441	1.004	F101 4.0.3 B	bandwidth	FASS	
77	2479	1.004	Plot 4.6.3 C	25KHz or 2/3*20dB	PASS	
78	2480	1.004	F101 4.0.3 C	bandwidth	FASS	

Date: 16.JUL.2013 20:44:24

(Plot 4.6.3 A: Channel 00: 2402MHz @ π /4DQPSK)

Date: 16.JUL.2013 20:45:47

Date: 16.JUL.2013 20:47:04

(Plot 4.6.3 C: Channel 78: 2480MHz @ π /4DQPSK)

Report No.: TRE1306014302 Page 54 of 76 Issued:2013-07-18

4.7. Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 30 KHz RBW and 100KHz VBW.

LIMIT

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST RESULTS

4.7.1 GFSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.1 A	≥15	PASS

B. Test Plots

Date: 16.JUL.2013 20:10:50

Report No.: TRE1306014302 Page 55 of 76 Issued:2013-07-18

4.7.2 8DPSKTest Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.2 A	≥15	PASS

B. Test Plots

Date: 16.JUL.2013 20:18:36

(Plot 4.7.2 A: @ 8DPSK)

4.7.3 π/4DQPSKTest Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.3 A	≥15	PASS

Date: 16.JUL.2013 20:13:45

(Plot 4.7.3 A: @ π/4DQPSK)

Report No.: TRE1306014302 Page 57 of 76 Issued:2013-07-18

4.8. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 3MHz VBW,Span 0Hz.

LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

4.8.1 GFSK Test Mode

A. Test Verdict

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
	2402	0.415	0.1328	0.4	Plot 4.8.1 A1	PASS
DH 1	2441	0.410	0.1312	0.4	Plot 4.8.1 A2	PASS
ו חט	2480	0.415	0.1328	0.4	Plot 4.8.1 A3	PASS
	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2 -	÷ 79) ×31.6 Sec	ond	
	2402	1.680	0.2688	0.4	Plot 4.8.1 B1	PASS
DH 3	2441	1.695	0.2712	0.4	Plot 4.8.1 B2	PASS
рн з	2480	1.680	0.2688	0.4	Plot 4.8.1 B3	PASS
	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 4 -	÷ 79) ×31.6 Sec	ond	
	2402	2.960	0.3157	0.4	Plot 4.8.1 C1	PASS
DH 5	2441	2.960	0.3157	0.4	Plot 4.8.1 C2	PASS
ри э	2480	2.930	0.3157	0.4	Plot 4.8.1 C3	PASS
	Note: Dwell tin	ne=Pulse Time (ms) × (1600 ÷ 6	÷ 79) ×31.6 Sec	cond	

Date: 16.JUL.2013 20:53:56

(Plot 4.8.1.A1: Channel 00: 2402MHz @ GFSK @ DH1)

Date: 16.JUL.2013 20:54:45

Date: 16.JUL.2013 20:55:30

(Plot 4.8.1.A3: Channel 78: 2480MHz @ GFSK @ DH1)

Date: 16.JUL.2013 21:03:36

Date: 16.JUL.2013 21:04:17

(Plot 4.8.1.B2: Channel 39: 2441MHz @ GFSK @ DH3)

Date: 16.JUL.2013 21:05:00

Date: 16.JUL.2013 21:10:30

(Plot 4.8.1.C1: Channel 00: 2402MHz @ GFSK @ DH5)

Date: 16.JUL.2013 21:11:05

Date: 16.JUL.2013 21:11:33

(Plot 4.8.1.C3: Channel 78: 2480MHz @ GFSK @ DH5)

4.8.2 8DPSK Test Mode

A. Test Verdict

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
	2402	0.420	0.1344	0.4	Plot 4.8.2 A1	PASS
DH 1	2441	0.420	0.1344	0.4	Plot 4.8.2 A2	PASS
ו חט	2480	0.420	0.1344	0.4	Plot 4.8.2 A3	PASS
	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2 ·	÷ 79) ×31.6 Sec	ond	
	2402	1.680	0.2688	0.4	Plot 4.8.2 B1	PASS
DH 3	2441	1.680	0.2688	0.4	Plot 4.8.2 B2	PASS
DH 3	2480	1.695	0.2712	0.4	Plot 4.8.2 B3	PASS
	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 4 ·	÷ 79) ×31.6 Sec	ond	
	2402	2.960	0.3157	0.4	Plot 4.8.2 C1	PASS
DU E	2441	2.960	0.3157	0.4	Plot 4.8.2 C2	PASS
DH 5	2480	2.960	0.3157	0.4	Plot 4.8.2 C3	PASS
	Note: Dwell tin	ne=Pulse Time (ms) × (1600 ÷ 6	÷ 79) ×31.6 Se	cond	

Date: 16.JUL.2013 21:00:12

(Plot 4.8.2.A1: Channel 00: 2402MHz @ 8DPSK @ DH1)

Date: 16.JUL.2013 21:01:09

Date: 16.JUL.2013 21:02:19

(Plot 4.8.2.A3: Channel 78: 2480MHz @ 8DPSK @ DH1)

Date: 16.JUL.2013 21:07:59

Date: 16.JUL.2013 21:08:39

(Plot 4.8.2.B2: Channel 39: 2441MHz @ 8DPSK @ DH3)

Date: 16.JUL.2013 21:09:17

Date: 16.JUL.2013 21:14:29

(Plot 4.8.2.C1: Channel 00: 2402MHz @ 8DPSK @ DH5)

Date: 16.JUL.2013 21:15:02

Date: 16.JUL.2013 21:15:30

(Plot 4.8.2.C3: Channel 78: 2480MHz @ 8DPSK @ DH5)

4.8.3 $\pi/4DQPSK$ Test Mode

A. Test Verdict

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
	2402	0.415	0.1328	0.4	Plot 4.8.3 A1	PASS
DH 1	2441	0.420	0.1344	0.4	Plot 4.8.3 A2	PASS
ו חט	2480	0.420	0.1344	0.4	Plot 4.8.3 A3	PASS
	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2 ·	÷ 79) ×31.6 Sec	ond	
	2402	1.695	0.2712	0.4	Plot 4.8.3 B1	PASS
DH 3	2441	1.695	0.2712	0.4	Plot 4.8.3 B2	PASS
DH 3	2480	1.695	0.2712	0.4	Plot 4.8.3 B3	PASS
	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 4 ·	÷ 79) ×31.6 Sec	ond	
	2402	2.960	0.3157	0.4	Plot 4.8.3 C1	PASS
DU 5	2441	2.960	0.3157	0.4	Plot 4.8.3 C2	PASS
DH 5	2480	2.960	0.3157	0.4	Plot 4.8.3 C3	PASS
	Note: Dwell tin	ne=Pulse Time (ms) × (1600 ÷ 6	÷ 79) ×31.6 Sec	cond	

Date: 16.JUL.2013 20:56:36

(Plot 4.8.3.A1: Channel 00: 2402MHz @ π/4DQPSK @ DH1)

Date: 16.JUL.2013 20:58:04

Date: 16.JUL.2013 20:59:12

(Plot 4.8.3.A3: Channel 78: 2480MHz @ π/4DQPSK @ DH1)

Date: 16.JUL.2013 21:05:56

Date: 16.JUL.2013 21:06:28

(Plot 4.8.3.B2: Channel 39: 2441MHz @ π/4DQPSK @ DH3)

Date: 16.JUL.2013 21:07:04

Date: 16.JUL.2013 21:12:30

(Plot 4.8.3.C1: Channel 00: 2402MHz @ π/4DQPSK @ DH5)

Date: 16.JUL.2013 21:13:01

Date: 16.JUL.2013 21:13:34

(Plot 4.8.3.C3: Channel 78: 2480MHz @ π /4DQPSK @ DH5)

Report No.: TRE1306014302 Page 73 of 76 Issued:2013-07-18

4.9. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE

For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.10. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The WLAN and Bluetooth were use a same single antenna and the Gain of antenna was 2.0 dBi.

WLAN and BT Antenna

5. Test Setup Photos of the EUT

.....End of Report.....