中山大学计算机学院

编译原理理论

第一次作业

(**2024**学年春季学期) 课程名称:

编译原 理	第一次作业	专业(方 向)	计算机科学与技 术
学号	21307185	姓名	张礼贤
Email	☑ <u>zhanglx78@mail2.sysu.edu.cn</u>	完成日 期	2024.4.20

1. 正则表达式转换为 NFA 与子集构造

给定字母表 $\sum = a,b$ 上的正则表达式 (a+b)*a(a+b)*,请完成以下题目:

1.1 使用 McNaughton-Yamada-Thompson 算法将上述正则表达式转换为 NFA 并绘制出来

1. Thompson算法:

汤姆森算法的基本的构造规则包括:

- 1. 将正则表达式中的每个字符转换为一个NFA片段,每个片段包含一个状态和一个或多个转移边,用于匹配对应的字符。
- 2. **连接操作**: 将两个NFA片段连接起来,形成一个新的NFA,其中第一个片段的接受状态与第二个片段的初始状态通过 ε-转移相连。
- 3. **选择操作**: 将两个NFA片段分别作为选择的两个分支,形成一个新的NFA, 其中新的初始状态通过 ε-转移连接到两个原始片段的初始

状态,而两个原始片段的接受状态分别通过 ϵ -转移连接到新的接受状态。

4. **闭包操作:** 将一个NFA片段进行闭包操作,即在其初始状态和接受状态之间添加 ε-转移边,形成一个新的NFA。

2. 解题过程:

通过Thompson算法,将正则表达式(a+b)*a(a+b)*拆解成如下的几个元结构:

 \circ a

 $\circ a + b$

 $\circ a*$

在上面的图中,椭圆圈起来的结构元可以被其他的结构元替换,1

表示初始状态,2表示接受状态

 $\circ (a+b)*$

将a+b替换为上面的结构元,得到(a+b)*的 NFA

 $\circ (a+b)*a(a+b)*$

将上面的结构元全部连接到一起,得到最终的NFA

1.2 在你的 NFA 的基础上构建 DFA 转移表

NFA STATE	DFA STATE	а	b
{0, 1, 2, 3, 7, 8}	Α	В	С
{0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 17}	В	D	Е
{0, 1, 2, 3, 5, 6, 7, 8}	С	В	С
{0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17}	D	D	Е
{0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17}	E	D	E

转换过程:

当新生成的状态不在DFA状态集中时,标记为新的状态;当新生成的状态在DFA状态集中时,直接标记为对应的状态,并且不再放入 DFA STATE 集合中,在这里标记为 end。

ϵ -closure{0} = {0, 1, 2, 3, 7, 8}

move($\{0, 1, 2, 3, 7, 8\}$, a) = $\{4, 9\}$ ϵ -closure $\{4, 9\}$ = $\{0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 17\}$ $B = <math>\{0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 17\}$

> move($\{0, 1, 2, 3, 7, 8\}$, b) = $\{5\}$ ϵ -closure $\{5\}$ = $\{0, 1, 2, 3, 5, 6, 7, 8\}$ C = $\{0, 1, 2, 3, 5, 6, 7, 8\}$

move($\{0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 17\}$, a) = $\{4, 9, 14\}$ ϵ -closure $\{4, 9, 14\}$ = $\{0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17\}$ D = $\{0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17\}$

 $move(\{0,\,1,\,2,\,3,\,5,\,6,\,7,\,8\},\,a)=\{4,\,9\}$ ϵ -closure $\{4,\,9\}$ = $\{0,\,1,\,2,\,3,\,4,\,6,\,7,\,8,\,9,\,10,\,11,\,12,\,13,\,17\}$ = B end

move($\{0, 1, 2, 3, 5, 6, 7, 8\}$, b) = $\{5\}$ ϵ -closure $\{5\}$ = $\{0, 1, 2, 3, 5, 6, 7, 8\}$ = C end

move({0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 17}, b) = {5, 15} ϵ -closure{5, 15} = {0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17} = E end

1.3 使用你的 DFA 转移表将你的 NFA 转换为 DFA

根据上面创建的转换表,将 NFA 转换为 DFA,包含17的即为终止状态,图如下所示:

2. SLR

给定以下文法:

- (1) $E \rightarrow X = Y$
- (2) $X \rightarrow Xa$
- (3) $X \rightarrow b$
- (4) $Y \rightarrow cY$
- $(5) Y \rightarrow d$

2.1 写出文法 G 的增广文法 G', 并根据该增广语法 G' 构造 LR(0) 解析的有穷自动机。

1. 增广文法 G':

$$E \to X = Y$$

$$X \to Xa$$

2. LR(0) 解析的有穷自动机:

2.2 根据你画出来的有穷自动机构造 LR(0) 解析表

求解 LR(0) 解析表的过程如下:

- 1. Follow 集
 - Follow(E) = {\$}
 - Follow(X) = {=, a}
 - Follow(Y) = {\$}

2. LR(0) 解析表

STATE			ACT	ION				GOTO	
	a	b	С	d	=	\$	E	Х	Y
0		S3					1	2	
1						acc			
2	S5				S4				
3	r3				r3				
4			S7	S8					6
5	r2				r2				
6						r1			
7			S7	S8					9
8						r5			
9						r4			

2.3 列出使用 **G** 的 **LR(0)** 解析表解析输入串 **baa** = **cd** 的过程

STACK	SYMBOL	INPUT	ACTION
0		baa=cd\$	shift to state 4
03	b	aa=cd\$	reduce by $(3)X o b$
02	X	aa=cd\$	shift to state 5
025	Xa	a=cd\$	reduce by $(2)X o Xa$
02	X	a=cd\$	shift to state 5
025	Xa	=cd\$	reduce by $(2)X o Xa$
02	X	=cd\$	shift to state 4
024	X=	cd\$	shift to state 7
0247	X=c	d\$	shift to state 8
02478	X=cd	\$	reduce by $(5)Y o d$
02479	X=cY	\$	reduce by $(4)Y o cY$
0246	X=Y	\$	reduce by $(1)E o X=Y$
01	Е	\$	accept