Agentes Aprendizes

IIA / FIA 2024/2025

IAFA

Cap.5

Recordando os objectivos

Objectivos

Estudo e construção de entidades artificiais [agentes] situadas num ambiente, com que interagem de forma autónoma e que buscam satisfazer objectivos [internos, externos] com o máximo desempenho.

O que retém um agente das suas interacções?

Aprender

Aprender

Aprendizagem é o processo pelo qual um agente altera de modo automático as suas estruturas internas, de modo a realizar melhor tarefas do seu interesse, nas condições impostas pelo ambiente

Arquitectura

Percepções Acções Aprendizagem Decisão

Arquitectura

Percepções Acções Aprendizagem Decisão

Arquitectura

Percepções Acções Aprendizagem Decisão

Observar – Modelar – Aplicar

Aprendizagem segundo as três metáforas

Aprendizagem a partir de exemplos

Um Problema

Quais as características das células doentes?

Representação

Pares atributo valor

cor = azul escuro caudas = duas núcleos = 2

Classificação

Os conceitos derivam da generalização de instâncias específicas

Instâncias

Ordem

Operacionalização

DADOS:

- INSTÂNCIAS (I)
- CONCEITO ALVO (C)
- EXEMPLOS DE TREINO DO CONCEITO ALVO (E ⊆ I)
- HIPÓTESES (H)
- TEORIA SOBRE O DOMÍNIO EXPLICATIVA DOS EXEMPLOS (T)

DETERMINAR:

 Hipóteses hi ⊆ H para descrever o conceito alvo (C), consistentes com o exemplos de treino (E) e com a teoria sobre o domínio (T)

Objectivo

Idealmente h deve ser:

Completa (Classifica como positivos os positivos)

Discriminante (Classifica como negativos os negativos)

Objectivo

Idealmente h deve ser:

Completa (Classifica como positivos os positivos)

Discriminante (Classifica como negativos os negativos)

Hipótese da Aprendizagem Empírica

Toda a hipótese h que aproxima bem o conceito alvo com base num conjunto suficientemente vasto de exemplos de treino também aproxima bem as instâncias não observadas

Exemplo

DADOS:

INSTÂNCIAS (X):conjunto dos objectos do domínio (dias descritos por atributos tipo céu, temp-ar, temp-água, etc.)

CONCEITO ALVO (c): o que se quer aprender (faço-desporto?: dia --> {0,1}

HIPÓTESES (H): conjunto das hipóteses descritoras do conceito, por exemplo: ((céu= limpo e temp-água = fria))

EXEMPLOS DE TREINO (D):exemplos positivos e negativos do conceito alvo c.

DETERMINAR:

HIPÓTESE h de H tal que h(x) = c(x) para todo o x em X

Faço desporto?

Exemplos Classificados:

#1 = << limpo, quente, normal, forte, quente, mantém>, +>

#3 = << chuva, frio, alta, forte, quente, muda>, ->

Ordem

Instâncias

Hipóteses

i1= i1= inpo,quente,alta,forte,frio,mantém>

i2= i2= impo,quente,alta, fraco,quente, mantém>

h1= h1= limpo,?,?,forte,?,?> h3= limpo,?,?,?,frio,?> h2= limpo,?,?,?,?,?>

Valores possíveis para um atributo

"?": qualquer

"O": nenhum

valor "normal", p. ex. "limpo"

Fazer desporto apenas em dias frios e humidade alta:

Casos extremos

<?,?,?,?,?,>

<0, 0, 0, 0, 0, 0>

Exemplos Positivos

Do mais específico ao mais geral

Algoritmo Find-S

- 1. Inicializar h com a hipótese mais específica de H
- 2. Para cada exemplo de treino positivo x
 - 2.1. Para cada valor de atributo ai em h

Se a_i é satisfeito por x

Então não fazer nada

Senão substituir ai em h pelo próximo valor (mais geral) que é satisfeito por x

3. **Devolve** a hipótese h

```
#1 = <<li>quente, normal, forte, quente, mantém>, +> #2 = <<li>quente, alta, forte, quente, mantém>, +>
```


Exemplos Negativos

Do mais geral ao mais específico

Algoritmo Find-G

- 1. Inicializar h com a hipótese mais geral em H
- 2. Para cada exemplo de treino negativo x
 - 2.1.1.Para cada valor de atributo ai em h

Se ai não é satisfeito por x

Então não fazer nada

Senão substituir ai em h pelo próximo valor mais específico que não é satisfeito por x

3. Devolve a hipótese h

#3 = << chuva, frio, alta, forte, quente, muda, - >

- 2. G:= {<?,?,?,?,?,?,; /*G é o conjunto das hipóteses mais gerais
- 3. **Para cada** instância positiva **x+**
 - 3.1. **Retirar** de G os membros inconsistentes com **x+**
 - 3.2. **Generalizar** os membros de E até ficarem consistentes com **x+**, mas guardá-los apenas se forem mais específicos que G;
 - 3.3. **Retirar** de E os membros que não forem maximamente específicos;
- 4. Para cada instância negativa x-
 - 4.1. **Retirar** de E os membros inconsistentes com **x**-
 - 4.2. **Especializar** os membros de G até ficarem consistentes com **x-**, mas guardá-los apenas se forem mais gerais que E
 - 4.3. **Retirar** de G os membros que não forem minimamente específicos.

Aplicando o Algoritmo

```
#1 = << limpo, quente, normal, forte, quente, mantém>, +>
#2 = << limpo, quente, alta, forte, quente, mantém>, +>
#3 = << chuva, frio, alta, forte, quente, muda, ->
#4 = << limpo, quente, alta, forte, frio, muda>, +>
#5 = << limpo, quente, normal, fraca, quente, mantém>, ->
#6 = << chuva, quente, normal, forte, quente, muda>, +>
```

inicialmente

E₀: {< 0,0,0,0,0,0>}

G₀: {<?,?,?,?,?>}

depois de

#1 = <quente, normal, forte, quente, mantém>, +>

 $G_{0,}G_{1}$: {<?,?,?,?,?,?}

```
#1 = <<li>limpo, quente, normal,forte,quente,mantém>, +>
#2 = <<li>quente, alta, forte, quente, mantém>, +>
```


... o primeiro exemplo negativo

#3 = << chuva, frio, alta, forte, quente, muda, - >

E₂,E₃: {| {| quente, ?,forte, quente, mantém> }

 G_3 : {{quente,?,?,?,?, G_0 , G_1 , G_2 : {<?,?,?,?,?,?}}

Eliminação de Candidatos

```
#4 = <<li>quente, alta, forte, frio, muda>, +>
#5 = <<li>quente, normal, fraca, quente, mantém>, - >
#6 = <<chuva, quente, normal, forte, quente, muda>, +>
```


Se a temperatura do ar for quente **e** o vento forte **Então** praticar desporto

Limitações

Ruído Convergência Disjunções

Árvores de Decisão

Tipos de Problemas

Instâncias representadas por pares atributo/valor

Função alvo toma valores de saída discretos

Exemplos de treino podem conter erros

Exemplos de treino podem ter valores de atributos desconhecidos

Conceito alvo pode ter descrição disjuntiva

Representação

Cada nó interno testa um atributo
Cada ramo corresponde a um valor possível para esse atributo
Cada folha estabelece uma classificação
Cada caminho raíz-folha define uma regra

Algoritmo

Dado:

um conjunto S de exemplos de treino (E+,E-); uma família de conjuntos de atributos e respectivos valores, **A**; um conceito alvo **T**

Determinar:

uma árvore de decisão AD cujas folhas são formadas por elementos todos da mesma classe; o conceito alvo **T** é dado pela disjunção da caracterização da classe positiva.(E+).

- Se todos os exemplos são da mesma classe
 então terminar, com a AD formada por um nó etiquetado pela classe dos elementos de S;
- 2. Caso contrário:
 - 2.1. **Escolher** um atributo $\mathbf{A} = \{A_1,..., A_v\};$
 - 2.2. **Dividir S** em $\{S_1,...,S_v\}$ subconjuntos disjuntos de acordo com os diferentes valores de A;
 - 2.3. **Chamar** recursivamente o algoritmo para cada um dos subconjuntos S_i;
 - 2.4. **Construir** uma AD tendo por raiz o atributo **A** e os ramos etiquetados pelos valores **A**_i ligados às sub-árvores associadas a **S**_i.

Exemplo

Questões

Como construir a árvore? Como escolher o atributo? Como devo proceder para determinar se um elemento pertence a um conjunto minimizando o número de perguntas sim/não?

$$log_2(|S|)$$

... e se souber que está dividido em dois subconjuntos?

$$x em S \Rightarrow p_P log_2(|P|) + p_N log_2(|N|)$$

$$I(p,n) = -p_p \log_2(p_p) - p_n \log_2(p_n)$$

Conteúdo Informativo

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

Ganho

$$G(A) = I(p,n) - E(A)$$

Qual o atributo mais informativo?

Ganho

Impureza/Entropia Mede o nível de impureza de um conjunto de dados

Very impure set

Less impure set

Minimum impurity

Regra de escolha (Quinlan)

escolher o atributo com maior ganho informativo!

Regra de escolha (Quinlan)

Preferência por árvores pequenas

Preferência pelas árvores que colocam os atributos de maior ganho mais próximos da raiz

Exemplo

I(p,n) = 0.97

$$I(21+,2-)=0.426$$

$$I(14+,25-)=0.941$$

$$I(9+,43-)=0.664$$

$$I(16+,20-)=0.991$$

$$E(At_1) = 0.591$$

$$E(At_2) = 0.965$$

$$G(At_1) = 0.379$$

$$G(At_2) = 0.005$$

$$H(-1) = -\frac{30}{75} \log_2(\frac{30}{75}) - \frac{115}{75} \log_2(\frac{45}{75})$$

$$= 0.53 + 0.44$$

$$= 0.97$$

$$H (Y|A_1=V) = -\frac{21}{23} log_2(\frac{21}{23}) - \frac{2}{23} log_2(\frac{2}{23})$$

$$= 0.12 + 0.30$$

$$= 0.42$$

$$1 log_2(\frac{21}{23}) - \frac{2}{23} log_2(\frac{2}{23})$$

$$= 0.42$$

$$\begin{aligned} H & (Y|A_1=F) = -\frac{9}{52} \log_2(\frac{9}{52}) - \frac{43}{52} \log_2(\frac{43}{52}) \\ &= 0.44 + 0.23 \\ &= 0.67 \end{aligned}$$

$$\begin{aligned} H & (Y|A_1=F) = -\frac{9}{52} \log_2(\frac{9}{52}) - \frac{43}{52} \log_2(\frac{43}{52}) \\ &= 0.44 + 0.23 \\ &= 0.67 \end{aligned}$$

$$H(\gamma|A_{e1}) = \left(\frac{23}{75} * 0.42\right) + \left(\frac{52}{75} * 0.62\right) + \left(\frac{52$$

Goin
$$(X, A_{t1}) = H(Y) - H(Y | A_{t1})$$

$$= 0.97 - 0.59$$

$$= 0.38$$

$$= 0.38$$

$$= 0.38$$

$$= 0.38$$

$$= 0.38$$

$$= 0.38$$

$$I(21+,2-)=0.426$$

$$I(9+,43-) = 0.664$$

$$E(At_1) = 0.591$$

 $G(At_1) = 0.379$

I(p,n) = 0.97

$$I(14+,25-)=0.941$$

$$I(16+,20-)=0.991$$

$$E(At_2) = 0.965$$

$$G(At_2) = 0.005$$

ID3

Um exemplo

Exemplos de Treino

Ceu	Temperatura	Humidade	Vento	Desporto
limpo	quente	normal	forte	sim
limpo	quente	alta	forte	sim
chuva	frio	alta	forte	não
limpo	quente	alta	forte	sim
limpo	quente	normal	fraca	não
chuva	quente	normal	forte	sim

As fórmulas

$$G(A) = I(p,n) - E(A)$$

$$I(p,n) = -p_p log_2(p_p) - p_N log_2(p_N)$$

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

Os cálculos:

 $I(p,n) = -4/6 \log 2(4/6) - 2/6 \log 2(2/6) = 0,918296$

$$G(C\acute{e}u) = I(p,n) - E(C\acute{e}u)$$

Valores (Céu)= chuva, limpo

$$E(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

=0,9182-2/6*I(1,1)-4/6*I(3,1)

=0,9182-2/6*1-4/6*0,811

=0,0442

G(Temperatura) = I(p,n) - E(Temperatura)

Valores (Temperatura)= quente, frio

S=[4+,2-] Squente=[4+,1-] Sfrio=[0+,1-]

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

=0,9182-5/6*I(4,1) - 1/6 *I(0,1)

=0,9182-5/6 * 0,72 - 0

=0,3182

G(Humidade) = I(p,n) - E(Humidade)

Valores (Humidade)= normal, alta

S=[4+,2-] Snormal=[2+,1-] Salta=[2+,1-]

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

```
=0,9182-3/6*I(2,1) - 3/6 *I(2,1)
```

=0,9182-1/2 * 0,9182 - 1/2 * 0,9182

=O

G(Vento) = I(p,n) - E(Vento)

Valores (Vento)= forte, fraco

S=[4+,2-] Sforte=[4+,1-] Sfraco=[0+,1-]

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

=0,9182-5/6*I(4,1) - 1/6 *I(0,1)

=0,9182-5/6 * 0,72 - 0

=0,3182

Escolha do Atributo mais Descriminante

G(Céu) = 0,0442 G(Temperatura) = 0,318 G(Humidade) = 0 G(Vento) = 0,318

Repetir...

Repetir o algoritmo para cada um dos ramos onde existem exemplos de ambas classes.

Considerar apenas os exemplos desse ramo

Ceu	Humidade	Vento	Desporto
limpo	normal	forte	sim
limpo	alta	forte	sim
limpo	alta	forte	sim
limpo	normal	fraca	não
chuva	normal	forte	sim

As fórmulas

$$G(A) = I(p,n) - E(A)$$

$$I(p,n) = -p_p log_2(p_p) - p_N log_2(p_N)$$

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

Os cálculos:

 $I(p,n) = -4/5 \log 2(4/5)-1/5 \log 2(1/5) = 0,721928$

 $G(C\acute{e}u) = I(p,n) - E(C\acute{e}u)$

Valores (Céu)= chuva, limpo

S=[4+,1-] Schuva=[1+,0-] Slimpo=[3+,1-]

$$E(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

- = 0,721928 1/5*I(1,0) 4/5*I(3,1)
- = 0,721928 0 4/5*0,811278
- =0,072

G(Humidade) = I(p,n) - E(Humidade)

Valores (Humidade)= normal, alta

S=[4+,1-] Snormal=[2+,1-] Salta=[2+,0-]

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

- = 0.721928 3/5*I(2,1) 2/5*I(2,0)
- = 0,721928 3/5*0,918296 0
- =0,1709

G(Vento) = I(p,n) - E(Vento)

Valores (Vento)= forte, fraco

S=[4+,1-] Sforte=[4+,0-] Sfraco=[0+,1-]

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

- = 0.721928 4/5*I(4,0) 1/5*I(0,1)
- = 0,721928 0 0
- = 0,721928

Escolha do Atributo mais Descriminante

Regras de pertença à classe positiva?

Temperatura = quente ∧ Vento = Forte

Árvores Decisão

• Vantagens:

- A árvores são normalmente fáceis de explicar
- Tem semelhanças com o processo de decisão feito por humanos
- Podem ser representadas de forma gráfica e interpretadas
- Conseguem lidar com valores qualitativos

• Desvantagens:

- Performance inferior a alguns métodos mais sofisticados
- Capacidade de generalização limitada, especialmente em árvores muito grandes

Árvores Decisão

