Сложности вычислений, теорема Ароры и Евклидова TSP в \mathbb{R}^2 Мешков Владислав Б05-151б

Постановка

Пусть на плоскости даны n точек: V, и пусть $\|n\|_2$ - Евклидова метрика, нужно найти гамильтонов путь на графе $G=(V,V^2,c)$, где $c(u,v)=\|u-v\|_2$ $\forall u,v\in V$ (веса ребер - это расстояние между инциедентными ему вершинами)

Основные определения и утверждения

Будем считать, что:

- координаты вершин целые
- расстояния между вершинами не менее 8

Будем на данных вершинах рассматривать покрывающий их квадрат со стороной L и его рекурсивное разбиение:

Каждый квадрат (начиная с исходного) делим на 4 части, и храним в виде дерева с выходной степенью каждой не листовой вершины равной 4 (т.е. 4ричное корневое дерево)

Закончим разбиение на моменте, когда размер квадрата станет меньше 1 и он содержит не более 1 вершины

Кол-во листовых квадратов $= O(L^2)$, а значит глубина дерева O(log L)

Данное разбиение квадрата на более мелкие назовем рассечение исходного квадрата

Также назовем ОРТ - длину максимального пути

Определение

Пусть $a,b \in [0,L)$, (a,b)-смещение рассечения, определяемое как смещение x,y координат всех линий на a,b соответственно, и взяие результата по модулю L

Определение

Пусть m, r - положительные целые числа

(m,r)-регулярное множество порталов для смещения (a,b) - это множество точек на сторонах

квадратов в них.

Каждый квадрат имеет портал в угле и m других порталов равноудаленных друг от друга на сторонах

Замечание Будем считать, что наш путь искомый проходит через входные вершины и некоторые порталы, при этом порталы можно посещать несколько раз

Определение: путь назовем (m,r)-простым, относительно смещения (a,b), если пересекает каждое ребро каждого квадрата не более r раз и всегда через портал

Опредление : Пусть между вершинами u, v, проходит через порталы $P_1, P_2, ..., P_k$, т.е. имеет вид $u - P_1 - ... - P_k - v$

Говорим, что ребро (u,v) изогнуто в точках $P_1,...,P_k$

Замечание: Предполагаем, что вершины не лежат на границах областей в рассечении, чтобы добиться этого, масштабированием расстояния между вершинами, и полагая, что вершины имеют нечетные координаты, а линии рассечения - четные.

Замечание : В будущем получим алгоритм, со стоимостью $(1+\epsilon)OPT$, с изогнутыми ребрами - их по надобности можно выровнять

Структурная Теорема

Теорема

Пусть c > 0. Пусть минимальное расстояние между вершинами не менее 8

Пусть L - размер ограничивающего их квадрата. Пусть также $(a,b) \in [0,L]$ - случайные числа из данного отрезка. Тогда с вероятностью не менее $\frac{1}{2}$, тогда есть решение данной задачи, стоимостью не более $(1+\frac{1}{c})OPT$ и он является (m,r)-простым со смещением (a,b, тут m=O(clogL), r=O(c)

Шаги алгоритма:

Преобразуем координаты

Пусть L_0 - размер стороны квадрата, ограничивающего точки V

И пусть OPT - размер оптимального Гамильтонова цикла в графе

Разобьем данный квадрат на подквадраты размера $\frac{L_0}{8c}$ (т.е. сделаем точность сетки равную $\frac{L_0}{8c}$

Теперь переместим каждую вершину в ближайшитй узел данной сетки

Заметим, что сейчас, стоимость любого пути между вершинами, отличается от такого же пусти в исходном графе (такого же по порядку прохода вершин) не более чем в $2n\frac{L_0}{8nc} = \frac{L_0}{4c} \leqslant \frac{OPT}{4c}$

А значит аппрокимация сеткой меняет оптимальное расстоние не более чем в $\frac{OPT}{4c}$ раз

Теперь делим расстояния на $\frac{L_0}{64c}$, то координаты в сетке становятся целыми с минимальным расстонием между в-ми не менее 8

Также постановим, что L = O(nc) - размер ограничивающего квадрата(стороны)

Теперь осталось найти $(1+\frac{3}{4}c)$ -аппрокимацию вместо $(1+\frac{1}{c})$ -аппрокимации

Чтобы не тащить константу, и будем исать $1+\frac{1}{c}$ -аппрокимацию чтобы прийти к $\frac{3}{4}$ достаточно применить рассуждения для $c'=\frac{3}{4}c$

Строим смещенное дерево квадратов

Получаем смещение (a,b) случайно

Считаем дерево с этим смещением

L = O(n) - рзмер покрывающего квадрата, высота смещенного дерева O(logn)

Число квадратов: $O(nlogn) = O(n)log(n^2)$ (в дереве квадрантов, в отличии от нашего, кол-во листьев O(n)

DP

Пусть m = O(clonn), r = O(c)

 ${\bf C}$ помощью динамического программирования будем искать оптимальный (m,r)-простой путь ${\bf c}$

поощью смещенного дерева квадрантов

Пусть S - квадрат нашего дерева и лучший (m,r)-простой пусть, переекающий границу $2p \leqslant 4r$ раз. Также пусть $a_1, ..., a_{2p}$ -п-ть порталов, которые он прошел в соотв. порядке

И пусть путь проходит через все вершины из S, и путь (составленный из $a_1, ..., a_{2p}$) - (m, r)-простой Вход:

- Непустой квадрат смещенного дерева
- мультимножество порталов размера не более r порталов на каждом из 4 сторон квадрата, причем муммарный размер: $2p \leqslant 4r$
- Пары $(a_1, a_2), ..., (a_{2p-1}, a_{2p})$ на данных порталах

Вместе пути соединяют все вершины из квадрата

Строим DP, в которой на (k_m,k_r) -м месте записан оптимальный (k_m,k_r) -простой путь Тогда на (m,r) записан ответ на нашу задачу в корне при p=0

Число элементов таблицы очевидно равно числу разных случаев, т.е. $O(T(m+4)^{4r}(4r)!)$, где T-число число непустых квадратов

Инициализируем в листах, т.е. там где есть хоть 1 вершина и там же не более O(r) порталов, решается за O(r) (перебираем все O(r) возможностей разместить узел)

Предположим, что алгоритм верно решил задачу для (m,r) для квадратов глубины >i, и пусть S - это квадраты глубины i

$$S_1, S_2, S_3, S_4$$
-дети S

Алгоритм перебирает все варианты, когда (m,r)-простой путь пересечет стороны S_1, S_2, S_3, S_4 Стороны S_1, S_2, S_3, S_4

Итак перебираем:

- мультимножество из $\leq r$ порталов на 3 внутренних ребрах S_i -х (про них все знаем т.к. уже считали): $O((m+4)^r)^4$
- порядок в котором порталы из пред пнкта посещались оптимальным (m,r)-протым путем $O((4r)^{4r}(4r)!)$

Замечание: множитель в 2 части $((4r)^{4r})$ возник как оценка на вариантов выбора для каждого порала (один из $\leq 4r$ порталов, через которые он идет)

Все перебраные варианты пользуются какими-либо решениями задачи на детях Проверив все варианты алгоритм скажет ответ: оптимальный путь

Таким образом время работы: $O(T(m+4)^{8r}(4r)^{4r}(4r)!) = O(n(logn)^{O(c)})$

Замечание:

Для наших квадратов с округлением все даже проще (ко-во вариантов меньше)