Mathematical Programming Homework 3

Michael Nelson

Problem 1

Let

$$f(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 3)^2$$

$$g_1(x_1, x_2) = x_1/2 + x_2 - 3/2$$

$$g_2(x_1, x_2) = x_2 - 1$$

Consider the following inequality constrained nonlinear optimization problem (NLP1):

minimize
$$f(x)$$

subject to $g_1(x) \le 0$
 $g_2(x) \le 0$

Problem 1.a

Exercise 1. Find all solutions to the KKT FONC for this NLP1.

Solution 1. A KKT point for this NLP1 is a pair (x, μ) which satisfies the following:

$\nabla f(\mathbf{x}) + \boldsymbol{\mu}^{\top} \nabla \mathbf{g}(\mathbf{x}) = 0$	Stationary
$g(x) \leq 0$	Feasibility
$\mu \geq 0$	Nonnegativity
$\mu^{\top}g(x)=0$	Complementary slackness

Suppose $(x, \mu) = (x_1, x_2, \mu_1, \mu_2)$ is a KKT point. Then from the stationary equations, we have

$$2(x_1 - 2) + \mu_1/2 = 0$$
$$2(x_2 - 3) + \mu_1 + \mu_2 = 0$$

Solving for μ_1 and μ_2 in terms of x_1 and x_2 gives us:

$$\mu_1 = 8 - 4x_1$$

$$\mu_2 = -2 + 4x_1 - 2x_2$$

Observe that $\mu_1 g_1(x) = 0$ and $\mu_2 g_2(x) = 0$ gives us four cases to consider:

Case 1: Suppose $\mu_1 = 0$ and $\mu_2 = 0$. Then

$$0 = 8 - 4x_1$$

$$0 = -2 + 4x_1 - 2x_2,$$

which implies $x_1 = 2$ and $x_2 = 3$. In this case $g_1(2,3) = 5/2$, which violates feasibility. Therefore (2,3,0,0) is not a KKT point.

Case 2: Suppose $\mu_1 = 0$ and $g_2(x) = 0$. Then

$$0 = 8 - 4x_1$$
$$0 = x_2 - 1,$$

1

which implies $x_1 = 2$ and $x_2 = 1$. In this case $\mu_2 = -4$, which violates nongegativity. Therefore (2, 1, 0, -4) is not a KKT point.

Case 3: Suppose $g_1(x) = 0$ and $\mu_2 = 0$. Then

$$0 = x_1/2 + x_2 - 3/2$$

$$0 = -2 + 4x_1 - 2x_2,$$

which implies $x_1 = 1$ and $x_2 = 1$. In this case, $\mu_1 = 4$ and $g_2(1,1) = 0$, and everything is satisfied. Therefore (1,1,4,0) is a KKT point.

Case 4: Suppose $g_1(x) = 0$ and $g_2(x) = 0$. Then

$$0 = x_1/2 + x_2 - 3/2$$

$$0 = x_2 - 1,$$

which implies $x_1 = 1$ and $x_2 = 1$. In this case, $\mu_1 = 4$ and $\mu_2 = 0$. So we obtain the same KKT point (1, 1, 4, 0).

From our calculations above, we see that the only KKT point is $(x, \mu) = (1, 1, 4, 0)$.

Problem 1.b

Exercise 2. Find an optimal solution x^* to this NLP1 and clearly explain why x^* is optimal

Solution 2. Note that f is a convex function since its Hessian

$$H(f)(x) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

is positive semi-definite for all $x \in \mathbb{R}^n$. Simiarly, g_1 and g_2 are convex functions since they are affine. Also f, g_1 , and g_2 are all differentiable as well. Therefore setting $x^* = (1,1)$ and $\mu^* = (4,0)$, then since (x^*, μ^*) is a KKT point, we see that x^* is a global minimum.

Problem 1.c and 1.d

Exercise 3. Without any calculations or geometric arguments, but based only on your answer to part a and b, give an optimal solution x^{**} to the following NLP2:

minimize
$$f(x_1, x_2)$$

subject to $g_1(x_1, x_2) \le 0$

Clearly explain why x^{**} is optimal for NLP2.

Solution 3. Note that the equations which describe a KKT point of NLP2 correspond to setting $\mu_2=0$ in the equations which describe a KKT point of NLP1. In particular, the KKT point $(x^*, \mu^*)=(1,1,4,0)$ for NLP1 corresponds to a KKT point $(x^{**}, \mu^{**})=(1,1,4)$ for NLP2, where $x^{**}=(1,1)$ and $\mu^{**}=4$. Again, since f and g_1 are convex and differentiable, it follows that x^{**} is a global minimum for NLP2.

Problem 2

Let

$$f(x_1, x_2) = x_1 - x_2$$

$$h(x_1, x_2) = x_1^2 + x_2^2 - 1$$

Consider the following equality constrained nonlinear optimization problem (NLP):

minimize
$$f(x)$$
 subject to $h(x) = 0$

Problem 2.a

Exercise 4. Find all solutions to the KKT FONC for this NLP.

Solution 4. A KKT point for this NLP is a pair (x, λ) which satisfies the following:

$$abla f(\mathbf{x}) + \lambda \nabla h(\mathbf{x}) = 0$$
 Stationary $h(\mathbf{x}) = 0$ Feasibility

Suppose $(x, \lambda) = (x_1, x_2, \lambda)$ is a KKT point. Then we have

$$1 + 2\lambda x_1 = 0$$

$$-1 + 2\lambda x_2 = 0$$

$$x_1^2 + x_2^2 - 1 = 0$$

From the first two equations, we obtain $x_1 = -x_2$. Then from the third equation, we obtain $2x_1^2 = 1$. In other words, $x = (\pm \sqrt{2}/2, \pm \sqrt{2}/2)$ and $\lambda = \mp \sqrt{2}/2$. So there are two KKT points for this NLP.

Problem 2.b

Exercise 5. Find all points that satisfy the KKT FOSC for this NLP.

Solution 5. We cannot apply FOSC here because h is not affine.

Problem 2.c

Exercise 6. Regardless of your answer in part b, find an optimal solution x^* to this NLP.

Solution 6. We first note that every point x which is feasible is also regular. Indeed, we have $\nabla h(x) = (2x_1, 2x_2)^{\top} \neq 0$ (since (0,0) is not feasible). Therefore if x is a local minimum of f, then there exists a unique λ such that (x,λ) is a KKT point. There are only two possible cases, namely $x^{\pm} = (\pm \sqrt{2}/2, \pm \sqrt{2}/2)$ and $\lambda^{\pm} = \mp \sqrt{2}/2$. A quick calculation shows that

$$f(\mathbf{x}^+) = 0$$

$$> -\sqrt{2}$$

$$= f(\mathbf{x}^-).$$

Finally note that f being continuous function defined on the compact domain $\{h = 0\}$, we see that f must attain a maximum value and a minimum value. Clearly f attains a maximum value at x^+ and attains a minimum value at x^- .

Problem 3

Let

$$f(x_1, x_2) = x_1 + x_2$$

$$g(x_1, x_2) = x_1^2 + x_2^2 - 4$$

Consider the following inequality constrained nonlinear optimization problem (INLP):

minimize
$$f(x)$$

subject to $g(x) \le 0$
 $-g(x) \le 0$

Note that this NLP is equivalent to the following equality constrained nonlinear optimization problem (ENLP):

minimize
$$f(x)$$
 subject to $g(x) = 0$

Problem 3.a

Exercise 7. Solve this INLP geometrically. Let x^* be an optimal solution you found.

Solution 7. The equation g(x) = 4 describes a circle in the plane which is centered at 0 and has radius 2. Every point on this circle has the form $(2\cos\theta, 2\sin\theta)$ for a unique $\theta \in [0, 2\pi)$. Thus

$$\min_{g(\mathbf{x})=4} f(\mathbf{x}) = \min_{\theta \in [0,2\pi)} 2(\cos \theta + \sin \theta) = \min_{\theta \in [0,2\pi)} h(\theta)$$

where we set $h(\theta) = 2(\cos \theta + \sin \theta)$. For $\theta \in [0, 2\pi)$, observe that

$$h'(\theta) = 0 \iff 2(\cos \theta - \sin \theta) = 0$$

 $\iff \cos \theta = \sin \theta$
 $\iff \theta = \pi/4 \text{ or } \theta = 5\pi/4.$

Thus the only critical points of h (excluding the boundary points) are $\theta = \pi/4$ and $\theta = 5\pi/4$. Furthermore, notice that

$$h(0) = 1$$

 $h(\pi/4) = 2\sqrt{2}$
 $h(5\pi/4) = -2\sqrt{2}$

It follows that h has a global minimum at $\theta = 5\pi/4$. In other words, f has a global minimum at $x^* = (-\sqrt{2}, -\sqrt{2})^{\top}$.

Alternative geometric solution:

Solution 8. Below we've graphed the circle of radius centered at 0 and of radius 2 (that is, the feasible region), together with countours of the objective function f for various values c (in the image below, we drew $\{f = 2\sqrt{2}\}$, $\{f = 1\}$, $\{f = 0\}$, $\{f = -1\}$, and $\{f = -2\sqrt{2}\}$).

Clearly, the function f will be minimized with value c when the contour $\{f=c\}$ intersects the circle $\{g=0\}$ tangentially. To determine which c-value does $\{f=c\}$ intersect $\{g=0\}$ tangentially, we first solve the system of equations below:

$$x^2 + y^2 - 4 = 0$$
$$x + y - c = 0$$

From these two equations, we obtain

$$y^2 - 2cy + c^2 - 4 = 0.$$

The discriminant Δ of $y^2 - 2cy + c^2 - 4$ is

$$\Delta = 4c^2 - 8(c^2 - 4)$$
$$= -4c^2 + 32.$$

We have $\Delta = 0$ if and only if $c = \pm 2\sqrt{2}$. These two *c*-values correspond to the two contour lines which intersect the circle tangentially. The smaller *c*-value is clearly the min and the larger *c*-value is clearly the max.

Problem 3.b

Exercise 8. Check whether x^* is a regular point of the constraints of this ENLP/INLP.

Solution 9. The INLP system has no regular points since $\{\nabla g(x), -\nabla g(x)\}$ is always linearly dependent for all x. On the other hand, x^* is a regular point for the ENLP system. Indeed, we have $\nabla g(x) = (2x_1, 2x_2)^{\top}$ for all x, in particular $\nabla g(x^*) \neq 0$.

Problem 3.c

Exercise 9. Check whether KKT FONC hold at x^* . Explain.

Solution 10. A KKT point for the ENLP is a pair (x, λ) which satisfies the following:

$$abla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = 0$$
 Stationary $g(\mathbf{x}) = 0$ Feasibility

Suppose $(x, \lambda) = (x_1, x_2, \lambda)$ is a KKT point. Then we have

$$1 + 2\lambda x_1 = 0$$
$$1 + 2\lambda x_2 = 0$$
$$x_1^2 + x_2^2 - 4 = 0$$

From the first two equations, we obtain $x_1 = x_2$. Then from the third equation, we obtain $2x_1^2 = 4$. In other words, $x = (\pm \sqrt{2}, \pm \sqrt{2})$ and $\lambda = \mp \sqrt{2}/4$. So there are two KKT points for ENLP. One of the KKT point is (x^*, λ^*) where $x^* = (-\sqrt{2}, -\sqrt{2})^{\top}$ and $\lambda^* = -\sqrt{2}/4$. Therefore KKT FONC hold at x^* .

A KKT point for the INLP is a pair (x, μ) which satisfies the following:

$$abla f(x) + \mu^{ op} \nabla g(x) = 0$$
 Stationary $g(x) \leq 0$ Feasibility $\mu \geq 0$ Nonnegativity $\mu^{ op} g(x) = 0$ Complementary slackness

Suppose $(x, \mu) = (x_1, x_2, \mu_1, \mu_2)$ is a KKT point. Then we have

$$1 + 2\mu_1 x_1 - 2\mu_2 x_1 = 0$$

$$1 + 2\mu_1 x_2 - 2\mu_2 x_2 = 0$$

$$x_1^2 + x_2^2 - 4 = 0$$

From the first two equations, we obtain $x_1 = x_2$. Then from the third equation, we obtain $2x_1^2 = 4$. In other words, $x = (\pm \sqrt{2}, \pm \sqrt{2})$ and $\mu_1 - \mu_2 = \mp \sqrt{2}/4$. There are many KKT points for NLP. One of the KKT points is (x^*, μ^*) where $x^* = (-\sqrt{2}, -\sqrt{2})^{\top}$ and $\mu^* = (0, \sqrt{2}/4)$. Therefore KKT FONC hold at x^* .

Problem 3.d

Exercise 10. Check whether KKT FOSC hold at x^* . Explain

Solution 11. The KKT FOSC do not hold for the INLT because -g(x) is not convex. Similarly, the KKT FOSC does not hold for the ENLT because g(x) is not affine.

Problem 4

Let

$$f(x_1, x_2) = x_1^2/2 + x_2^2/2 + x_1$$

$$g(x_1, x_2) = -x_1$$

Consider the following nonlinear optimization problem (NLP) and the primal problem (PP):

minimize
$$f(x)$$
 subject to $g(x) \le 0$

Problem 4.a

Exercise 11. Find an optimal solution and the optimal objective value to the PP.

Solution 12. Both f and g are convex and differentiable, so it suffices to find a KKT point for PP. A point (x, μ) is a KKT point for PP if

$$abla f(x) + \mu \nabla g(x) = 0$$
 Stationary $g(x) \leq 0$ Feasibility $\mu \geq 0$ Nonnegativity $\mu g(x) = 0$ Complementary slackness

Suppose $(x, \mu) = (x_1, x_2, \mu)$ is a KKT point. Then we have

$$x_1 + 1 - \mu = 0$$
$$x_2 = 0$$
$$-x_1 \le 0$$

If $\mu = 0$, then $x_1 = -1$, which contradicts the fact that $-x_1 \le 0$. Thus we must have $g_1(x) = 0$, which implies $x_1 = 0$, $x_2 = 0$, and $\mu = 1$. Thus a KKT point for PP is given by $(x^*, \mu^*) = (0, 0, 1)$ where $x^* = (0, 0)$ and $\mu = 1$. Hence x^* is a global minimizer for this NLP with optimal value being $f(x^*) = 0$.

Problem 4.b and 4.c

Exercise 12. Derive the Lagrangian Dual Problem (DP) (in dual variables only). Check whether the Strong Duality Theorem holds. Explain why.

Solution 13. The Langrangian is

$$L(x, \mu) = f(x) + \mu g(x) = x_1^2/2 + x_2^2/2 + (1 - \mu)x_1.$$

Observe that $L(x, \mu)$ is a convex and differentiable function with μ fixed. Also observe

$$x^*$$
 is a global minimizer of $L(-,\mu) \iff \nabla_x L(x^*,\mu) = 0$ $\iff \begin{pmatrix} x_1^* + 1 - \mu \\ x_2^* \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\iff x_1^* = \mu - 1 \text{ and } x_2^* = 0.$

Therefore if we define

$$d(\mu) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \mu),$$

then we see that $d(\mu) = -(\mu - 1)^2/2$. The Lagrandian dual of PP then is

$$d^* = \max_{\mu \in \mathbb{R}_{\geq 0}} \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \mu) = \max_{\mu \in \mathbb{R}_{\geq 0}} d(\mu) = 0,$$

where the max is attained at $\mu = 0$. Setting

$$p^* = \min_{g(\mathbf{x}) \le 0} f(\mathbf{x}) = 0.$$

Then we see that the duality gap $p^* - d^* = 0$ is zero. Therefore the strong duality theorem holds.

Problem 4.d

Exercise 13. Identify a saddle point of the Lagrange function.

Solution 14. Since we have strong duality, a saddle point is given by (x^*, μ^*) where $x^* = (0, 0)$ and $\mu^* = 0$.

Problem 5

Let $b \in \mathbb{R}^m$, let $c \in \mathbb{R}^n$, let $f, g_j : \mathbb{R}^n \to \mathbb{R}$ be defined by $f(x) = c^\top x = \sum_{j=1}^n c_j x_j$ and $g_j(x) = -x_j$ for all $1 \le j \le n$, and let A be an $m \times n$ matrix. Consider the following optimization problem referred to as the linear program (LP):

minimize
$$f(x)$$

subject to $g(x) \le 0$
 $Ax = b$

For each $1 \le i \le m$, we define $h_i : \mathbb{R}^n \to \mathbb{R}$ by $h_i(x) = \sum_{j=1}^n a_{ij} x_j$ where

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Thus this LP can be expressed as

minimize
$$f(x)$$

subject to $g_j(x) \le 0$ for all $1 \le j \le n$
 $h_i(x) = b_i$ for all $1 \le i \le m$

Problem 5.a and 5.b

Exercise 14. Apply the theory of nonlinear optimization to this LP and write the complete KKT FONC for optimality for this LP. Are the conditions sufficient? Explain why.

Solution 15. A KKT point for LP is a triple (x, μ, λ) which satisfies the following:

$$abla f(x) + \mu^{ op} \nabla g(x) + \lambda^{ op} \nabla h(x) = 0$$
 Stationary $g(x) \leq 0$ Feasibility $h(x) = 0$ Feasibility $\mu \geq 0$ Nonnegativity $\mu^{ op} g(x) = 0$ Complementary slackness

Suppose that (x, μ, λ) is a KKT point for LP. Then we have

$$c_{1} - \mu_{1} + \lambda_{1}a_{11} + \lambda_{2}a_{21} + \dots + \lambda_{m}a_{m1} = 0$$

$$c_{2} - \mu_{2} + \lambda_{1}a_{12} + \lambda_{2}a_{22} + \dots + \lambda_{m}a_{m2} = 0$$

$$\vdots$$

$$c_{n} - \mu_{n} + \lambda_{1}a_{1n} + \lambda_{2}a_{2n} + \dots + \lambda_{m}a_{mn} = 0$$

Alternatively, in matrix form this says

$$\lambda^{\top} A = \mu^{\top} - c^{\top}.$$

If we apply g(x) = -x to both sides, we obtain

$$-\lambda^{\top} b = -\lambda^{\top} A x$$

$$= -\mu^{\top} x + c^{\top} x$$

$$= c^{\top} x$$

$$= f(x).$$

In particular, if (x, μ, λ) is a KKT point of LP, then since f and the g_j are all convex, differentiable functions, and the h_i are all affine functions, we see that x is optimal with optimal objective value being given by $f(x) = -\lambda^{\top} b$.

Problem 5.b

Exercise 15. Are the conditions you wrote in part a sufficient? Explain why.

Solution 16. Yes, because f and the g_j are all convex, differentiable functions, and the h_i are all affine functions. Therefore KKT FOSC holds.

Problem 5.c

Exercise 16. Treating this LP is a primal problem, relax the equality constraint, and derive the dual problem (in dual variables only!).

Solution 17. The Langrangian is

$$L(x, \mu) = f(x) + \mu^{\top} g(x) = (c - \mu)^{\top} x.$$

Observe that $L(x, \mu)$ is a convex and differentiable function with μ fixed. Also observe

$$x^*$$
 is a global minimizer of $L(-,\mu) \iff \nabla_x L(x^*,\mu) = 0$
$$\iff \begin{pmatrix} c_1 - \mu_1 \\ \vdots \\ c_n - \mu_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\iff c_i = \mu_i \text{ for all } 1 \le i \le n$$

Therefore if we define

$$d(\mu) = \min_{x \in \mathbb{R}^n} L(x, \mu),$$

then we see that

$$d(\mu) = \begin{cases} 0 & \text{if } \mu = c \\ -\infty & \text{else} \end{cases}$$

The Lagrandian dual of PP then is

$$d^* = \max_{\boldsymbol{\mu} \in \mathbb{R}_{\geq 0}} \min_{\boldsymbol{x} \in \mathbb{R}^n} L(\boldsymbol{x}, \boldsymbol{\mu}) = \max_{\boldsymbol{\mu} \in \mathbb{R}_{\geq 0}} \mathrm{d}(\boldsymbol{\mu}) = 0.$$