QUESTION/VRAAG 1

	VO (DESCRIPTORS/ BESKRYWERS		
1.1	$60 \le x < 80$			✓ answer/antwoord
1.2				(1)
1.2				✓ All correct
	INTERVAL OF TEST MARKS/ INTERVAL VAN TOETSPUNTE	NUMBER OF LEARNERS/ AANTAL LEERDERS	X.f	values/Alle korrekte waardes
	$0 \le x < 20$	4	40	
	$20 \le x < 40$	5	150	
	$40 \le x < 60$	9	450	
	$60 \le x < 80$	13	910	
	$80 \le x < 100$	10	900	(2.150
	Totals/ <i>Totale</i>	41	$\sum 2450$	✓ 2450
1.3	$\bar{x} = \frac{\sum Xf}{n} = \frac{2450}{41} = 5$			
	INTERVAL OF TEST MARKS/ INTERVAL VAN TOETSPUNTE	NUMBER OF LEARNERS/ AANTAL LEERDERS	CUMULATIVE FREQUENCY/ KUMULATIEWE- FREKWENSIE	✓✓ ALL correct values in the table/ ALLE korrekte waardes in die tabel
	$0 \le x < 20$	4	4	
	$20 \le x < 40$	5	9	_
	$40 \le x < 60$	9	18	_
	$60 \le x < 80$	13	31	- (2)
	$80 \le x < 100$	10	41	
		r 3 correct values i in 1/2 vir 3 korrekte	n the table/ e waardes in die tabel	

- ✓ using the cumulative frequency/gebruik die kumulatiewefrekwensie
- ✓ smooth curve/gladde kurwe
- ✓ using upper limits/gebruik boonste limiete

1.5
$$IQR = Q_3 - Q1$$

= $68 - 33$
= 35

ACCEPT/AANVAAR:

- 32 **OR/OF** 34 lower quartile/*laer kwartiel*
- 67 **OR/OF** 69 upper quartile/boonste kwartiel

✓LQ ✓UQ ✓*IQR*

(3)

(3)

[12]

1 4 1	y = 12,01 + 0,88x	✓ value of a/waarde		
2.1	y = 12,01 + 0,00x	van a		
		✓ value of b/waarde		
		van b		
		✓ equation /		
		1 -		
1	y = 12,01 + 0,88(46)	vergelyking (3) ✓ sub. 46 into the		
2.2	y = 12,01 + 0,88(40) = 52%			
	= 3270	equation / vervang 46		
,		in die vergelyking		
		✓ answer / antwoord		
1	No the government of the last to the last	(2)		
2.3	No, the preparatory exam mark is the independent	✓answer / antwoord		
	variable. Hence we cannot determine the prep. exam	✓ reason /rede		
	marks using the final exam./Nee,die voorbereidende	(2)		
	eksamenpunt is die onafhanklike veranderlike. Dus kan			
	ons nie die voorbereidende eksamenpunt met behulp			
	van die finale eksmenpunt bepaal nie.			
2.4	x = 60,58	$\sqrt{x} = 60,58$		
	y = 65,33	$\sqrt{y} = 65,33$		
	LHS/ $ILK = y = 65,33$	✓sub. into RHS /		
	RHS/RK = 12,01 + 0,88(60,58) = 65,32	vervang in RK		
	LHS/ILK = RHS/RK			
	(x; y) lies on the regression line	✓ LHS = RHS and		
		conclusion / $LK = RK$		
		en gevolgtrekking		
		(4)		
2.5	r = 0.98	✓ value of r/waarde		
		van r (1)		
2.6	There is a very strong positive correlation between	✓ very strong / baie		
	prep. marks and final marks./	sterk		
	Daar is'n sterk positiewe korrelasie tussen die	✓ positive / positief		
	voorbereidende punte en die finale punte.	(2)		
		[14]		

3.1	$QR = \sqrt{(5+3)^2 + (3+3)^2}$ $= \sqrt{64+36}$	✓ substitution/ vervang
	$= \sqrt{100}$ $= 10$	√10 (2)

3.2	$M(\frac{5-3}{2};\frac{3-3}{2})$	✓ x-value/waarde
	$\left(\frac{1}{2},\frac{1}{2}\right)$	\sqrt{y} -value /waarde (2)
	= M(1;0)	
3.3	P(-5;3) and M(1;0): $m = \frac{0-3}{1+5}$	✓ m
	$=\frac{-1}{2}$	/1-4-61
	$y - 0 = -\frac{1}{2}(x - 1)$	√subst of m and point/ vervang m en punt
	$y = -\frac{1}{2}x + \frac{1}{2}$	
		√equation/vergelyking (3)
3.4	r = 5; centre (1;0):	\checkmark r = 5 and/ en (1;0)
	$(x-1)^2 + y^2 = 25$	✓ LHS/ <i>LK</i>
		√RHS/ <i>RK</i>
2.5		(3)
3.5	$PM = \sqrt{(1+5)^2 + (-3)^2}$	$\checkmark PM = \sqrt{45}$
	$=\sqrt{45}$	\checkmark > $\sqrt{25}$
	$>\sqrt{25}$	√conclusion/gevolgtrekking
	.: P lies OUTSIDE the circle.	(3)
3.6	S(3;9)	✓ x-value/waarde
		\sqrt{y} -value/waarde (2)
3.7	$m_{PQ} = \frac{3+3}{-5+3} = -3$	$\checkmark m_{PQ} = -3$
	$\tan \theta = -3$	$\checkmark \tan \theta = -3$
	$\theta = 180^{\circ} - 71,57^{\circ}$	$ \checkmark \tan \theta = -3 $ $ \checkmark \theta = 108,43^{\circ} $ $ \checkmark \beta = 71,57^{\circ} $
	$0 = 180^{\circ} = 71,57$ = 108,43°	✓ β = 71,57°
	$\beta = 71,57^{\circ}$ co-interior angles, PR x-axis.	(4)
	$p = 71,57$ co interior ungles, i it $\parallel x \parallel x$ uxis.	[19]
		[17]

4.5	6 = 2x + 1	\checkmark 6 = 2x + 1	1		
7.5		5	1		
	$x=\frac{5}{2}$	$\checkmark x = \frac{5}{2}$			
	2	2			
	$U\left(\frac{5}{2};6\right)$				
	$\left(\begin{array}{c} \left(\frac{1}{2},0\right) \end{array}\right)$				(2)
4.6	11-6				(-)
	$m_{\rm AU} = \frac{1}{5}$				
	$m_{\rm AU} = \frac{11 - 6}{0 - \frac{5}{2}}$				
	=-2		✓	$m_{\rm AU} = -2$	
	_			AU	
	$m_{\rm AD} = \frac{6-11}{-10-0}$			1	
	$^{\prime\prime\prime}_{AD}$ $-10-0$		\checkmark	$m_{\rm AD} = \frac{1}{2}$	
	1			2	
	$=\frac{1}{2}$				
	_ 1				
	$m_{\rm AU} \times m_{\rm DA} = -2 \times \frac{1}{2}$./	m vm - 1	
	=-1		•	$m_{\rm AU} \times m_{\rm DA} = -1$	
	•				
	∴ AU ⊥ DA			•	
	$\therefore \hat{A} = 90^{\circ}$		\checkmark	$\hat{A} = 90^{\circ}$	
	$\hat{DQU} = 90^{\circ} [tangent \perp radius] / [raaklyn \perp radius]$	idius]	✓	$D\hat{Q}U = 90^{\circ}$	
	\therefore QUAD is a cyclic quad.[opp. \angle ^s add up to 18		✓		
			-	10	(6)
<u> </u>	QUAD is 'n koordevierhoek [teenoorst. \angle^e se s	om is 180°]			(6)
					[20]

5.1.1	$y^{2} = 1^{2} - (\sqrt{1 - k^{2}})^{2}$ $= 1 - 1 + k^{2}$ $= k^{2}$	1 k	✓ diagram and/en Pythagoras
	$y = k$ $\sin 25^\circ = k$	$\sqrt{25^{\circ}}$ $\sqrt{1-k^2}$	$\checkmark \sin 25^\circ = k \tag{2}$
5.1.2	$\sin 50^\circ = 2\sin 25^\circ \cos 25^\circ$ $= 2k\sqrt{1-k^2}$		✓ double angle expansion/ Brei dubbelhoek uit ✓ substitution/vervang (2)

5.2.1	sin(180° – 70°), tan 60°	✓ sin70°
annount facilities	$\cos 180^{\circ}$. $\tan(180^{\circ} + 70^{\circ})$. $\sin 20^{\circ}$	✓ cos180°
	sin 70°. tan 60°	✓ tan70°
	(-1) tan 70°.sin 20°	✓ sin20°
	$\frac{\sin 70^{\circ}.\sqrt{3}}{\sin 70^{\circ}}$	$\frac{\sin 70^{\circ}}{\cos 70^{\circ}}$
	$(-1).\frac{\sin 70^{\circ}}{\cos 70^{\circ}}.\cos 70^{\circ}$	$\sqrt{\sin 20^\circ = \cos 70^\circ}$
	$=-\sqrt{3}$	√-√3
		(7)
5.2.2	1-2sin ² 22,5°	√1-2 sin² 22,5°
	cos 2(22,5°)	
	cos 45°	✓ cos 2(22,5°)
	$=\frac{1}{\sqrt{2}}$	✓ cos 45°
	$=\frac{1}{\sqrt{2}}$ $=\frac{\sqrt{2}}{2}$	$\sqrt{\frac{1}{\sqrt{2}}}$
		(4)

5.3 LHS =
$$\frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x}$$
 RHS = $2 \tan 2x$

= $\frac{(\cos x + \sin x)^2 - (\cos x - \sin x)^2}{(\cos x - \sin x)(\cos x + \sin x)}$

= $\frac{\cos^2 x + 2 \sin x \cos x + \sin^2 x - \cos^2 x + 2 \sin x \cos x - \sin^2 x}{\cos^2 x - \sin^2 x}$

= $\frac{2(2 \sin x \cos x)}{\cos^2 x - \sin^2 x}$

= $\frac{2 \sin 2x}{\cos 2x}$

= $2 \tan 2x$

= $2 \tan 2x$

= $2 \tan 2x$

= $2 \tan 2x$

= $\frac{1}{\cos x + \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x}$ RHS = $2 \tan 2x$

= $\frac{(\cos x + \sin x)}{(\cos x - \sin x)} - \frac{\cos x - \sin x}{\cos x + \sin x}$ RHS = $2 \tan 2x$

= $\frac{(\cos x + \sin x)}{(\cos x - \sin x)} - \frac{\cos x - \sin x}{\cos^2 x - \sin^2 x}$

= $\frac{(\cos x + \sin x) - \cos x - \sin x}{(\cos x + \sin x)}$ (5)

= $\frac{(\cos x + \sin x) - \cos x - \sin x}{(\cos x + \sin x)}$ (5)

= $\frac{(\cos x + \sin x) - \cos x - \sin x}{(\cos x - \sin x)}$ (5)

= $\frac{(\cos x + \sin x) - \cos x - \sin x}{(\cos x - \sin x)}$ (5)

= $\frac{(\cos x + \sin x) - \cos x - \sin x}{(\cos x - \sin x)}$ (7)

= $\frac{(\cos x + \sin x) - \cos x - \sin x}{(\cos x - \sin x)}$ (8)

= $\frac{(\cos x + \sin x) - \cos x - \sin x}{(\cos x - \sin x)}$ (9)

= $\frac{(\cos x + \sin x) - \cos x - \sin x}{(\cos x - \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x - \sin x}{\cos^2 x - \sin^2 x}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{\cos^2 x - \sin^2 x}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{\cos^2 x - \sin^2 x}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x - \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x - \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) - \cos x}{(\cos x + \sin x)}$ (10)

= $\frac{(\cos x + \sin x) -$

5.4
$$\sin\theta \sin\frac{3\theta}{2} + \cos\frac{3\theta}{2}\cos\theta = -\frac{\sqrt{3}}{2}$$

$$\cos\frac{3\theta}{2}\cos\theta + \sin\frac{3\theta}{2}\sin\theta = -\frac{\sqrt{3}}{2}$$

$$\cos\left(\frac{3\theta}{2} - \theta\right) = -\frac{\sqrt{3}}{2}$$

$$\cos\left(\frac{\theta}{2}\right) = -\frac{\sqrt{3}}{2}$$

$$\cos\left(\frac{\theta}{2}\right) = -\frac{\sqrt{3}}{2}$$

$$\frac{\theta}{2} = 150^{\circ} + k.360^{\circ} \ k \in \mathbb{Z}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ k \in \mathbb{Z}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ k \in \mathbb{Z}$$

$$\theta = 300^{\circ} + k.360^{\circ} \ or \ / \ of \ \frac{\theta}{2} = 180^{\circ} + 30^{\circ} + k.360^{\circ} \ k \in \mathbb{Z}$$

$$\theta = 300^{\circ} + k.360^{\circ} \ or \ / \ of \ \frac{\theta}{2} = 180^{\circ} + 30^{\circ} + k.360^{\circ} \ ; k \in \mathbb{Z}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ \theta = 420^{\circ} + k.720^{\circ}$$

$$\theta = 300^{\circ} + k.720^{\circ} \ or \ / \ of \ /$$

[26]

6.1	a = 1 $b = 2$ $c = 2$ $d = 1$	$ \begin{array}{l} \checkmark & a = 1 \\ \checkmark & b = 2 \\ \checkmark & c = 2 \\ \checkmark & d = 1 \end{array} $ (4)
6.2	P(21,44°; 0,73)	✓ correct substitution (2)
6.3.1	$x = 90^{\circ}$	✓ 90° (1)
6.3.2	$x \in [45^{\circ};135^{\circ}]$ OR $45^{\circ} \le x \le 135^{\circ}$	✓ 45° and 135° ✓ Notation (2)
		[9]

7.1	n ΔPQR :	
	$\hat{Q}_1 = x \qquad (PR = QR)$	$A\widehat{\sqrt{Q}_1} = x$ $A\widehat{\sqrt{R}} = 180^\circ - 2x$
	$\hat{R} = 180^{\circ} - 2x \qquad (sum \ of \ \angle \ \Delta PQR)$	$A\widehat{\sqrt{R}} = 180^{\circ} - 2x$
	Area of $\triangle PQR = \frac{1}{2}pq \sin \hat{R}$ = $\frac{1}{2}m. m \sin(180^\circ - 2x)$	A√Subst. into Area rule
	$=\frac{1}{2}m^2\sin 2x$	A√sin2x A√answer
		(5)

7.2	$\therefore \frac{PQ}{\sin(180^\circ - 2x)} = \frac{m}{\sin x}$	A√Use of sine rule
	$\therefore PQ = \frac{m \cdot \sin(180^\circ - 2x)}{\sin x}$	A√subst into sine Rule
	$\therefore PQ = \frac{m \cdot \sin 2x}{\sin x}$	$A \checkmark \sin 2x$
	$\therefore PQ = \frac{m \cdot 2 \sin x \cdot \cos x}{\sin x}$ $\therefore PQ = 2m \cos x$	$A \checkmark 2 \sin x \cos x$ (4)
	In ΔSPQ:	
7.3	$\tan y = \frac{SP}{PQ}$	$A\checkmark\tan y = \frac{SP}{PQ}$
	$\therefore SP = PQ \tan y$ $\therefore SP = 2m \cos x \tan y$	$\mathbf{A} \checkmark \mathbf{SP} = \mathbf{PQ} \tan y \tag{2}$
		(2)

[11]

8.1.1	90°	(1)
8.1.2	Supplementary	(1)

8.2	0 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
8.2.1	(a)	$\widehat{A}_1 = 35^{\circ}$ [tan- chord thm/ raakl-koordstelling]	✓ S ✓ I	R	(2)	K
,	(b)	$\widehat{O}_3 = 70^{\circ}$ [\angle at centre = 2 \angle at circumf/ middelpts \angle = 2 omtr. \angle	✓ S ✓ I	R	(2)	K
	(c)	$\widehat{P}_3 = 55^{\circ}$ [\sum interior/ binne \angle of/ van (isosceles/gelykbenige) Δ]	✓ S ✓ I	R	(2)	K
	(d)	$\widehat{BOM} = 90^{\circ} [adjacent/\ aanligg - suppl.]$ And/\(\end{and} \) $OBM = 55^{\circ} \circ [\Sigma \angle s \ of/\ van \ (isosceles/gelykbenige) \Delta]$ $OR/\ OF [\angle s \ opposite = radii/\ sides/\ \angle e \ teenoor = radiusse/\ sye]$ $OR/\ OF \ OBS = 90^{\circ} [tan/\ raakl.\bot \ radius]$ $\therefore \widehat{M}_1 = 35^{\circ} [\Sigma \angle s \ of/\ van \Delta]$ OR/OF $\widehat{APB} = 90^{\circ} [\angle in \ semi \ circle/\ \angle in \ halwe \ sirkel]$ $\therefore \widehat{P}_1 = 90^{\circ} [adj./\ aanligg./\ suppl]$ $= \widehat{O}_1$ AMPO is cycl quad/\(is 'n \ kvh \ [conv.\\ \alpha \ Subt \ by \ same \ chord/\(omg.\\ \alpha = \ ondersp.\) \(deur \ selfde \ koord $\therefore \widehat{M}_1 = \widehat{A}_1 = 35^{\circ} [\angle s \ Subt \ by \ same \ chord/\ \alpha = ondersp.\) \(deur \ selfde \ koord$	dersp.	✓ S/R ✓ S/R ✓ S S	(3)	K
8.2.2	(a)	$\widehat{APB} = 90^{\circ}$ [\angle in semi-circle/ \angle in halwe sirkel] = \widehat{O}_1 [Given/ Gegee] \therefore OLPB is a cycl. quad/ is 'n kvh [ext \angle =opp. int \angle / buite \angle =teenoorst. binn		S ✓ R R	(3)	R
	(b)	OBS = 90° [tan/ raakl. ⊥ radius] = \widehat{O}_1 [Given/ Gegee] ∴ BS // OM [corresp. ∠s =/ ooreenk. ∠e =] OR/ OF OBS = 90° [tan/ raaklradius] = BOM [Proved/ Bewys] ∴ BS // OM [co-int. ∠s suppl. / ko-binne ∠e suppl.] OR/ OF $\widehat{M}_1 = 35^\circ$ [Proved/ Bewys] = MBS [Given/ Gegee] ∴ BS // OM [alt. ∠s =/ verw. ∠e =]	✓ S/R ✓ R ✓ S/R ✓ S/R ✓ R ✓ S		(2)	R
	(c)	$\widehat{P}_2 = \widehat{A}_1 = 35^\circ$ [\angle s opposite = sides/radii/ \angle e teenoor = sye/radiusse] = \widehat{M}_1 OP is a tangent to the circle through P, L and M [converse tanchord thm/omgekeerde raakl-koordstelling]	✓ S ✓ ✓ R	R	(3)	R

QUESTION/ VRAAG 9

#	Suggested answer(s)/ Voorgestelde antwoord(e)	Descriptors/ Beskrywers	Mai Pu	
	$\begin{array}{c} D \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			
9.1	$\widehat{EFH} = x$ [alt. $\angle s$; $\widehat{DE}//\widehat{FH}/verw$. $\angle e$; $DE//FH$]	✓ S ✓ R		
	$\widehat{G} = x$ [tan- chord thm/ raakl-koordstelling]	✓ S ✓ R	3	K
	$\widehat{FEG} = \widehat{G} = x [\angle s \text{ opposite} = \text{sides} / \angle e \text{ teenoor} = \text{sye}]$	✓ S ✓ R		_
9.2.1	$\frac{EH}{HG} = \frac{DF}{FG} [FH//DE \text{ or line } // 1 \text{ side of } \Delta / lyn // 1 \text{ sy van } \Delta]$	✓ S ✓ R		T
	$= \frac{DF}{DE}$ [FG = DE; given/ Gegee] = y	✓ S	(2)	D
			(3)	R
9.2.2	In $\triangle DEF$: $\widehat{D} = \frac{180^{\circ} - x}{2}$ $[\Sigma \angle s \text{ of/ } van \text{ (isosceles/gelykbenige) } \Delta]$ In $\triangle DEG$: $\widehat{D} = 180^{\circ} - 3x$ $[\Sigma \angle s \text{ of/ } van \Delta]$	✓ S ✓ R ✓ S		Γ
	$\therefore \frac{180^\circ - x}{2} = 180^\circ - 3x$	✓ (equating/ gelyk stel)		
	$180^{\circ} - x = 360^{\circ} - 6x$ $15x = 180^{\circ}$	✓ Simplify/ Vereenvoudig		
	$\therefore x = 36^{\circ}$	✓ value of/ waarde van x		
	$\therefore \widehat{D} = \frac{180^\circ - 36^\circ}{2} = 72^\circ$	raide of manue ran x	(5)	С
	2			

9.2.3	<u>In ΔDGE and/ en ΔDEF:</u> ¹			
	1. \widehat{D} is common/ gemeen 2. $\widehat{G} = D\widehat{E}F = x$ [proved/ bewys] 3. $\therefore D\widehat{E}G = D\widehat{F}E$ [$3^{rd}/3^{de} \angle$] $\therefore \Delta DGE \parallel \Delta DEF$ [\angle , \angle , \angle]	✓ S ✓ S ✓ S OR/ OF ✓ R (∠, ∠, ∠) (Can also work with 72° etc)	(3)	R
9.2.4	$\therefore \frac{\mathbf{DG}}{\mathbf{DE}} = \frac{\mathbf{GE}}{\mathbf{EF}} = \frac{\mathbf{DE}}{\mathbf{DF}} \text{from/ vanaf } 9.2.3 \text{OR/ OF } \Delta \text{DGE } \parallel \Delta \text{DEF}$	✓ S ✓ R		
	DE EF DF HOM Vanay 7.2.3 OR OF ADOL ADDI	Can only give needed 2 ratios		
	\Rightarrow DE ² = DF.DG	ratios	(2)	K
9.2.5	$\frac{\mathrm{DE}}{\mathrm{DF}} = \frac{\mathrm{DG}}{\mathrm{DE}}$	✓ S Correct Proportion/ Korrekte Eweredigheid		
	$\frac{1}{y} = \frac{DF + FG}{DE}$	$\checkmark \frac{DE}{DF} = \frac{1}{y}$		
	$= \frac{\mathrm{DF}}{\mathrm{DE}} + \frac{\mathrm{FG}}{\mathrm{DE}}$	$\frac{\sqrt{\frac{DG}{DE}}}{\frac{1}{y}} = \frac{\frac{DF + FG}{DE}}{\frac{FG}{DE}}$		
	= y + 1	y DE DE		
	$\therefore y^2 + y = 1$	$\frac{FG}{DE} = 1$	(5)	P