

Sharif university of technology Aerospace department Flight dynamics

HW series 1

Ali BaniAsad 96108378

Spring 2020 99/1/24

سوال اول الف)

در این سوال دو هواپیما Boeing 747-8 و Airbus A380-800 که از آخرین مدل های خود هستند را بررسی و مقایسه می کنیم. مقایسه ابعاد دو هواپیما در figure 1.

Figure 1

مقايسه ظاهر چند هواپيما از جمله Boeing 747-8 و Airbus A380-800

در جدول مشخصات کلی دو هواپیما با یکدیگر مقایسه شده اند(figure 2).

Airbus A380 vs Boeing 747(figure 2).

Variant	747-8	A380-800
Cockpi t crew	Two	Two
Capaci ty	410 in 3-class	555. 22F + 96J + 437Y
Exit limit	605	853
Cargo Volum e	6,225 cu ft (176 m3)	6,190 cu ft (175.2 m3)
Length	250 ft 2 in / 76.3 m	238 ft 7 in / 72.72 m
Height	63 ft 6 in / 19.4 m	79 ft 0 in / 24.09 m
Wings pan	224 ft 7 in / 68.4 m	261 ft 8 in / 79.75 m
Wing	554 m2 (5,960 sq ft), s weep 37.5°, 8.45 AR	845 m2 (9,100 sq ft) , AR 7.53, sweep 33.5°

Cabin width	20 ft (6.1 m)	21 ft 4 in (6.5 m)
MTOW	987,000 lb / 447,700 kg	1,268,000 lb / 575 t
OEW	485,300 lb / 220,128 kg	611,000 lb / 277 t
Max. payloa d	167,700 lb / 76,067 kg	185,000 lb / 84 t
Fuel capacit y	63,034 US gal / 238,610 litres	85,472 US gal / 323,546 litres
	426,109 lb / 193,280 kg	559,937 lb / 253,98 3 kg
Cruise	Mach 0.86 (493 kn; 914 km/h)	Mach 0.85 (903 km/h; 488 kn)
ММо	Mach 0.9 (516 kn; 956 km/h)	Mach 0.89 (945 km/h; 511 kn)
Range	8,000 nmi (15,000 km)	8,000 nmi (14,800 km)
Ceiling	43,100 ft (13,100 m)	13,100 m (43,000 ft)

Engine s (4×)	66,500 lbf (296 kN) GEnx-2B67	332.44–356.81 kN (74,740–80,210 lbf) GP7200 / Trent 900
------------------	----------------------------------	---

نمای داخل این دو هماپیما نیز به این صورت است(figure 3):

Figure 3

به طور مطلق نمی توان گفت که کدام هواپیما بهتر است اما می توان آن را از جنبه های مختلف برسی کرد.

مسافران

به طور قطع برنده این قسمت Airbus A380-800 است. Airbus A380-800 می تواند 250 مسافر بیشتر از Boeing 747-8 جابهجا کند اما این نکته را نیز نباید فراموش کنیم که طراحی Boeing 747-8 برای حدود 40-35 سال پیش از Airbus A380-800 است.

بر اساس جدول بالا مقدار باری که Boeing 747-8 جابهجا می کند بیشتر است پس برنده این قسمت Boeing 747-8 است.

يرد و مصرف سوخت

برد دو هواپیما ثابت است پس ما روی مصرف سوخت تمرکز می کنیم. براي حدود 150 مسافر Airbus A380-800 حدود 20000 گالن بيشتر سوخت مصرف مي كند كه صرفه اقتصادی را پایین می آورد پس در اینجا Boeing 747-8 برنده می شود.

بهینگی مرصرف سوخت

طبق figure 4 برنده این قسمت Boeing 747-8 است.

350

-10 150

200

250

300

Figure 4

Maximum Takeoff Mass [tonnes]

400

Boeing 747-400ER

500

550

600

450

محبوبيت

از سال 1968 شرکت بویینگ برای Boeing 747 حدود 1548 درخواست داشته است. حدود 30 فروند در سال.

از سال 2007 شرکت بویینگ برای 800-Airbus A380 حدود 313 درخواست داشته است. حدود 26 فروند در سال.

پس در این قسمت هم Boeing 747 برنده می شود.

قيمت

قيمت Boeing 747-8 حدود Boeing 747-8 است.

قيمت Airbus A380-800 حدود Airbus A380-800 است.

نتيجه گيري

همانطور که در اول سوال گفته شد به طور قطع نمی توان گفت که کدام همواپیما بهتر است ولی با توجه با دادههای بالا و مقایسه های انجام شده می توان گفت Boeing 747-8 برنده است و می توان یکی دیگر از برتری های این مدل تجربه بیشتر آن نسبت به Airbus A380-800 دارد.

مبع قسمت الف سايت simpleflying.com است.

برای رفتن به صفحه مورد نظر روی لینک کلیک کنید.

سوال اول

ب)

هر دو جنگده F-22 Raptor و F-35 از شاهکارهای ایالات متحده آمریکا هستند و هدف اصلی از ساخت آن ها برتری مطلق ایالات متحده بود.

این دو جنگنده دارای تفاوت های استراتیژیکی زیادی هستد و صرفا نمی توان گفت برتری با کدام است و باید هدف از طراحی و نتایج آن ها بررسی کرد.

Figure 5

در جدول مشخصات کلی دو جنگنده با یکدیگر مقایسه شده اند(figure 6).

See F-22 vs F-35 Specifications(figure 6)

	F-22 Raptor	F-35 Lightning II
Primary Function	Air dominance, multi-role fighter	Multi-role fighter
Contractor	Lockheed Martin, Boeing	Lockheed Martin
Power	Two Pratt & Whitney F119- PW-100 turbofan engines with afterburners & two- dimensional thrust vectoring nozzles.	One Pratt & Whitney F135- PW-100 turbofan engine
Thrust	35,000-pound class (each engine)	43,000-pounds
Wingspan	44 feet, 6 inches (13.6 meters)	35 feet (10.7 meters)
Length	62 feet, 1 inch (18.9 meters)	51 feet (15.7 meters)
Height	16 feet, 8 inches (5.1 meters)	14 feet (4.38 meters)
Maximum Takeoff Weight	83,500 pounds	70,000 pound class
Fuel Capacity	18,000 pounds	18,498 pounds

Speed	Mach 2 with supercruise capability	Mach 1.6
Range	More than 1,850 miles ferry range with two external wing fuel tanks (1,600 nautical miles)	More than 1,350 miles with internal fuel (1,200+ nautical miles), unlimited with aerial refueling
Ceiling	Above 50,000 feet (15 kilometers)	Above 50,000 feet (15 kilometers)
Crew	One	One
Unit Cost	\$334 million (with R+D), \$150 million unit cost	\$91 million

در جدولی دیگر مشخصات کلی دو جنگنده با یکدیگر مقایسه شده اند(figure 7). Overall and BVR ratings(figure 7)

CATEGORY	F-22 RAPTOR	F-35 LIGHTNING 2
BVR Rating	98%	94%
Armament	8.2/10	8.6/10
Technology	10/10	9.5/10
Avionics	9.8/10	9.0/10
Maneuverability	9.4/10 (2D Aerody.)	8.5/10
Rate of Climb	max. 315 m/s - 62k ft/min	max. 230 m/s - 45k ft/min
Thrust/Weight	1.26	1.07
Service Ceiling	20 km – 65k ft	20 km – 65k ft
Speed	2.25 Mach	1.60 Mach
Fuel Economy	0.47 km/l - 1.10 NM/gallon	0.80 km/l - 1.68 NM/gallon
Unit Cost	250.000.000 USD	180.000.000 USD
Overall Rating	excellent	very good

BVR (Beyond Visual Range) Ratings

F-22 RAPTOR	F-35 LIGHTNING 2
AIM-120 AMRAAM	MBDA Meteor
USA	NATO
in 1997	in 2013
4.5	62
75	100
2640	2640
4248	4248
AN/APG-77	AN/APG-81 AESA
excellent	excellent
98%	92%
99%	95%
0.0001-0.4	0.005-0.3
	AIM-120 AMRAAM USA in 1997 45 75 2640 4248 AN/APG-77 excellent 98%

Dogfight (close to medium range) Ratings

CATEGORY	F-22 RAPTOR		F-35 LIGHTNING 2	
Cannon	GAU-22/A		GAU-22/A	
Caliber (mm)	20 mm		20 mm	
Rate of Fire (rpm)	4200 rpm		4200 rpm	
Muzzle Velocity	1000 m/s		1000 m/s	
Size Point 10%-30%	4	20%		20%
Maneuverability	9,4		8,5	
Thrust/Weight Ratio	1,26		1,07	
AAM (first)	AIM-9X		AIM-9X	
Operational range	0.2 – 50 km		0.2 – 50 km	
AAM (second)	AIM-9X		IRIS-T	
Operational range	0.2 – 50 km		0.5 – 30 km	
Dogfight Rating	}	36%		70%

Size Comparison

CATEGORY	F-22 RAPTOR	F-35 LIGHTNING 2
Length	18.9 m – 62.0 ft	15.6 m – 50.0 ft
Wingspan	13.6 m – 45 ft 0 in	10.7 m – 35 ft 0 in
Wing area	78.0 m ² – 840 sq ft	42.0 m ² – 460 sq ft
Height	5.08 m - 16.8 ft	4.33 m – 14.2 ft
Weight	19,700 kg – 43,5k lb	13,200 kg – 30,2k lb
Power	2 x 153 kN – 35k lbf	1 x 190 kN - 43k lbf

به طور مطلق نمی توان گفت که کدام هواپیما بهتر است اما می توان آن را از جنبه های مختلف برسی کرد.

موتور

جنگنده F-22 از موتور F119-PW-100 توربوفن استفاده می کند. این پیشران حدود 3500 پوند تراست تولید می کند. F-22 دارای دو پیشران است پس 65000-65000 پوند تراست تولید می کند. به لطف این پیشران F-22 دارای مانورپذیری بالایی دارد و می تواند در حالت supersonic داری پرواز پایدار و طولانی باشد.F-22 می تواند بدون استفاده از afterburners به supersonic برسد و ادامه بدهد. این کار باعث می شود از دید دیگران راحت تر پیدا شود.

جنگنده F-35 از موتور های F-35-PW-400, F135-PW-600 بسته به مدل سفارش داده شده استفاده می کند.

در این مدل امنیت بر پرواز supersonic پایدار و مانورپذیری اولویت دارد پس هرگز قدرت F-22 را در این حالات ندارد. تراست تولیدی توسط موتور Pratt and Whitney F135 حدود 4500 پوند است.

تسليحات

شعار F-22 این است که :First look, first shot, first kill تسلیحات کمی دارد و هدف آن مانند جنگنده های نسل قبلی به اصطلاح dogfight نیست. برای مخفی شدن بیشتر این جنگنده تمامی سلاح ها درونی هستد و تمامی سطح F-22 صاف است.

مزیت F-35 در اینجا این است که می تواند سلاح های بیشتری حمل کند و با وزن زیاد ناشی از سلاح ها عملکرد خوبی داشته باشد.

قيمت

جنگنده F-22 جنگده گران قیمتی است. هزینه تولید F-22 حدود F-20 است. F-22 است. F-22 قرار بود حدود 700 فروند تولید شود اما فقط 200 فروند تولید شد. با در نظر گرفتن هزینه تحقیقات و توسعه قیمت هر فروند می است. با احتساب هزینه های کلی و نگهداری قیمت هرکدام به 700 million می رسد.

هزینه تولید F-35 حدود $91 \ million$ است که بسیار کمتر از F-35 است. با احتساب هزینه تحقیقات و توسعه و نگهداری قیمت F-35 به حدود F-35 می رسد که باز هم بسیار کمتر از F-25 است.

حداكثر سرعت

حداکثر سرعت F-22 ماخ 2 است اما بدون استفاده از afterburners می تواند بالای ماخ 1 پرواز کند که بسیار کمک می کند که مخفی باشد. حداکثر سرعت F-35 کمتر است و حدود ماخ 1.6 است.

برد پرواز

جنگنده F-22 حداکثر 18000 پوند سوخت می تواند با خود حمل کند که با آن می تواند 1800 miles پرواز کند 75-F با نزدیک همین مقدار سوخت 18500 پوند می تواند 1350 miles پرواز کند.

خريداران

جنگنده F-22 سلاح اختصاصی ایالات متحده آمریکا است و فقط تحت اختیار این کشور است. اما F-35 به کشور های همچون استرالیا، بلژیک، کانادا، دانمارک، ایتالیا، ژاپن و خیلی کشور های دیگر فروخته شده است.

نتيجه گيري

هر دو جنگنده با هم تفاوت هایی داشتند نمی توان گفت کدام بهتر است. هزینه تولید F-22 بسیار زیاد بود و اینکه با شرکت های بزرگی همچون Lockheed Martin که تولید کننده اصلی صنایع هوایی آمریکا بودند باید صلاحی طراحی می کرد که سود شرکت حفظ شود و بتوانند به کشور های دیگر بفروشند. در F-35 به علت جدیدتر بودن آن فناوری های جدیدی می بینم که جالب ترین آن ها کلاه خلبان و قابلیت عمودپروازی آن است.

سوال دوم

آيلران(Aileron)

وسیله ای که بر روی بال هواپیما است و باعث roll یا bank می شود. معمولا هواپیما دارای دو عدد aileron است و به صورت خلاف یکدیگر حرکت می کنند به این صورت اگر یکی پایین برود دیگر بالا می رود. Aileron با تغیر lift بر روی بال ها (افزایش یکی و کاهش دیگری) باعث ایجاد گشتاور می شود و در کل به lonn یا bank هواپیما می انجامد. خلبان با این سطوح کنترلی هواپیما را کنترل می کند. در شکل (figure 8) که از سایت ناسا است این حرکت را نشان می دهد.

 $T = F \times L$

فلپ(Flap)فلپ

فلپ(Flap) وسیله است که با آن می توان مقدار Lift را تغییر داد. Flap باعث می شود شکل و سطح بال تغیر کند که باعث افزایش lift می شود. Flap باعث کاهش سرعت stall می شود. Flap باعث کاهش مسافت takeoff و landing می شود. Flap باعث افزایش Drag می شود پس در حالت عادی بسته هستد. در شکل (figure 9) که از سایت ناسا است این وسیله را نشان می دهد.

XIII of XXXII

اسپويلر(Spoilers)

اسپویلر (Spoilers) برای پایین آوردن سرعت هواپیما یا پایین آوردن هواپیما از آن استفاده می شود. اگر از spoilers در جهت های معکوس از آن استفاده شود می تواند باعث roll شود. وقتی خلبان Spoilers ها رو فعال می کند صفحه ها بالا می روند که باعث کاهش lift و افزایش

وقتی خلبان Spoilers ها رو فعال می کند صفحه ها بالا می روند که باعث کاهش lift و افزایش drag می شود. از spoilers در landing استفاده می شود به این صورت مه باعث کاهش lift می شود و باعث می شود ترمز ها بهتر کار کنند و همانطور که قبلا گفته شد باعث افزایش drag هم می شود. در شکل (figure 10) که از سایت ناسا است این وسیله را نشان می دهد.

Spoilers

Right Spoiler (Deployed)

Drag

Drag

Center of Gravity

Resulting Motion

Figure 10

الويتور(Elevator)

الویتور (Elevator) از سطوح گنترلی هواپیما هستند و معمولا در عقب هواپیما هستند. Elevator ها pich هواپیما را کنترل می کنند که با کنترل می توانند زاویه حمله و lift هواپیما را کنترل بکنند. Elevator ها معمولا به دم هواپیما یا stabilizer متصل می شوند. در شکل (figure 11) که از سایت ناسا است این وسیله را نشان می دهد.

Figure 11

رادر(Rudder)

رادر (Rudder) از سطوح کنترلی اصلی چه در کشتی و چه در هواپیما است. Rudder معمولا در انتهای stabilizer متصل است و yaw را در هواپیما کنترل می کند.

رادر (Rudder) بیشتر باعث چرخش دماغه می شود و برای چرخش هواپیما از aileron و spoilers ها استفاده می شود.

در شکل (figure 12) که از سایت ناسا است این وسیله را نشان می دهد.

Figure 12

مهم ترین دلیل برای داشتن aileron و fall و spoilers ها به صورت inboard و outboard بحث های آیرودیناکی است. در سرعت های بالا سطوح کنترلی به صورت outboard نمی توانند عملکرد خوبی داشته باشند برای همین در سرعت های بالا آنها اکثرا ثابت هستند. برای مثال اگر در سرعت های بالا از aileron استفاده کنیم باعث می شود نوک هواپیما به سمت پایین خم شود. نمی شود این سطوح کنترلی را به علت بحث های آیرودینامیکی و aeroelastic به صورت درست کنترل کرد و باعث خطا های زیادی می شود.

سوال سوم الف)

According to U.S. Standard Atmosphere Air Properties:

 H_1 is in Troposphere:

$$T_0 = 518.67_R^\circ$$

$$P_0 = 2.1162 \times 10_{lb/ft^2}^3$$

$$\rho_0 = 2.3769 \times 10_{slug/ft^2}^{-3}$$

$$\ln 8000_{ft} :$$

$$T_1 = 518.67 - 0.00356616 \times 8000 = 490.1407_R^\circ$$

$$P_1 = 1.5721 \times 10_{lb/ft^2}^3$$

$$\rho_1 = 1.8685 \times 10_{slug/ft^2}^{-3}$$

$$\sigma_1 = \frac{\rho_1}{\rho_1} = \frac{1.8685}{\rho_1} = 0.7861$$

$$\sigma_1 = \frac{\rho_1}{\rho_0} = \frac{1.8685}{2.3769} = 0.7861$$

$$\delta_1 = \frac{P_1}{P_0} = \frac{1.5721}{2.1162} = 0.7429$$

$$\theta_1 = \frac{T_1}{T_0} = \frac{490.1407}{518.67} = 0.9450$$

In
$$54000_{ft}$$
:

$$T_2 = 518.67 - 0.00356616 \times 36000 = 390.2882_R^{\circ}$$

$$P_2 = 2.0119 \times 10_{lb/ft^2}^2$$

$$\rho_2 = 2.9345 \times 10_{slug/ft^2}^{-4}$$

$$\sigma_2 = \frac{\rho_2}{\rho_0} = \frac{2.9345}{23.769} = 0.123$$

$$\delta_2 = \frac{P_2}{P_0} = \frac{2.0119}{21.162} = 0.0951$$

$$\theta_2 = \frac{T_1}{T_0} = \frac{390.2882}{518.67} = 0.7525$$

$$\theta_2 = \frac{T_1}{T_0} = \frac{390.2882}{518.67} = 0.7525$$

(–

$$\sigma = \frac{\rho}{\rho_0} = 0.2462 \rightarrow \rho = 2.3769 \times 10^{-3} \times 0.2462 = 5.8519 \times 10^{-4}_{slug/ft^2}$$

 $a = -0.00356616^{\circ}_{R/ft}$

 $R = 1716.55_{ft^2/sec^2R^{\circ}}$

 $g_0 = 32.17405_{ft'sec^2}$

$$\frac{\rho}{\rho_0} = \frac{T}{T_0}^{-(\frac{g_0}{aR}+1)} \to 0.2462 = \frac{T}{518.67}^{-(\frac{32.17405}{-0.00356616 \times 1716.55}+1)} = \frac{T}{518.67}^{4.256} \to \frac{T}{T_0} = 0.719 \to T = 373.133_R^{\circ}$$

با توجه به جداول داده بدست آمده غلط است چرا که از Troposphere خارج می شویم و معادلات ما فقط برای آن بازه جواب داشت از روی جدول این چگالی برای بین 40000 و 40500 فوت است. از روی درون یابی خطی می توان با تقریب خوبی به جواب رسید.

$$\frac{5.8725 - 5.8519}{40000 - H} = \frac{5.8725 - 5.7338}{40000 - 40500} \rightarrow H = 40072.261_{ft}$$

$$P = \rho RT \rightarrow P = 3.92 \times 10^2_{lb/ft^2} = 18.77134_{KPa}$$

In metric Units:

$$P=22.65 imes exp(1.73-0.00057h)
ightarrow h=12215.58_m=40077.37_{ft}$$
 بر اساس نتایج بالا نتیجه دو جواب بسیار نزدیک به هم هستند.

سوال چهارم الف)

For airfoil without Gurney Flaps:

$$c_{l_{min}} = -0.425$$

$$c_{l_{max}} = 0.575$$

$$c_{l_{\alpha_0}}=0$$

$$\alpha_{l_0} = 0^{\circ}$$

$$\alpha_{max} = 15^{\circ}$$

For airfoil with $1.5_{\it mm}$ Gurney Flaps:

$$c_{l_{min}} = -0.35$$

$$c_{l_{max}} = 0.65$$

$$c_{l_{\alpha_0}} = 0.06$$

$$\alpha_{l_0} = -1^{\circ}$$

$$\alpha_{max} = 15^{\circ}$$

For airfoil with 4_{mm} Gurney Flaps:

$$c_{l_{min}} = -0.0875$$

$$c_{l_{max}} = 0.82$$

$$c_{l_{\alpha_0}} = 0.3$$

$$\alpha_{l_0} = -5.5^{\circ}$$

$$\alpha_{max} = 15^{\circ}$$

Stall degree:

 4_{mm} Gurney Flaps $> 1.5_{mm}$ Gurney Flaps > without Gurney Flaps

ب)

$$c_l = c_{l_{\alpha_0}} + k \times \alpha$$

از روی داده برای lpha برحسب درجه داریم:

k = 0.06

For airfoil without Gurney Flaps:

$$c_l = 0 + 0.06 \times \alpha$$

For airfoil with 1.5_{mm} Gurney Flaps:

$$c_1 = 0.05 + 0.06 \times \alpha$$

For airfoil with 4_{mm} Gurney Flaps:

$$c_l = 0.3 + 0.06 \times \alpha$$

96108378

ج)

For airfoil without Gurney Flaps(figure 13):

i oi aii ioii	Without	adincy in
	CI	Cd
-7	-0.425	0.041
-6	-0.375	0.0375
-5	-0.325	0.03
-4	-0.26	0.025
-3	-0.21	0.02
-2	-0.14	0.015
-1	-0.06	0.01
0	0	0.009
1	0.06	0.01
2	0.135	0.012
3	0.19	0.015
4	0.24	0.015
5	0.3	0.019
6	0.36	0.021
7	0.42	0.024
8	0.47	0.029
9	0.52	0.034
10	0.55	0.041
11	0.565	0.052
12	0.575	0.069
13	0.56	0.09
14	0.54	0.101
15	0.5	0.132

For airfoil with 1.5_{mm} Gurney Flaps(figure 14):

CI	Cd
-0.35	0.041
-0.3	0.0375
-0.26	0.038
-0.19	0.031
-0.125	0.027
-0.06	0.02
0	0.017
0.06	0.013
0.12	0.012
0.2	0.015
0.26	0.015
0.31	0.015
0.38	0.019
0.44	0.021
0.50	0.024
0.57	0.029
0.6	0.034
0.63	0.047
0.65	0.069
0.64	0.095
0.62	0.125
0.59	0.169
0.55	0.238
	-0.35 -0.3 -0.26 -0.19 -0.125 -0.06 0 0.06 0.12 0.2 0.26 0.31 0.38 0.44 0.50 0.57 0.6 0.63 0.65 0.64 0.62

For airfoil with 4_{mm} Gurney Flaps(figure 15):

	11111	-
	CI	Cd
-7	-0.0875	0.062
-6	-0.025	0.058
-5	0.025	0.059
-4	0.075	0.053
-3	0.125	0.047
-2	0.18	0.047
-1	0.24	0.041
0	0.31	0.039
1	0.37	0.037
2	0.45	0.04
3	0.52	0.041
4	0.58	0.045
5	0.66	0.052
6	0.71	0.063
7	0.76	0.079
8	0.79	0.095
9	0.81	0.115
10	0.82	0.138
11	0.79	0.159
12	0.76	0.19
13	0.71	0.23
14	0.65	0.274
15	0.58	0.306

د)

For airfoil without Gurney Flaps:(figure 16)

For airfoil with $1.5_{\it mm}$ Gurney Flaps:(figure 17)

For airfoil with 4_{mm} Gurney Flaps:(figure 18)

All of them in one (figure 19)

$$c_{d} = c_{d_{0}} + kc_{l}^{2}$$

$$y_{i} = c_{d_{0}} + kc_{l_{i}}^{2} \rightarrow r = |c_{d} - y_{i}| = |c_{d} - (c_{d_{0}} + kc_{l_{i}}^{2})| \rightarrow E_{i} = (c_{d} - y_{i})^{2}$$

$$E = \sum_{i=1}^{n} E_{i} = (c_{d} - (c_{d_{0}} + kc_{l_{i}}^{2}))^{2}$$

خطای ما زمانی کمترین است(E=min) که مشتق عبارت فوق برابر با \mathbf{k} باشد. چون تنها متغیر ما \mathbf{k} است پس فقط نسبت به \mathbf{k} مشتق می گیرم.

$$\frac{\partial E}{\partial k} = 0 \to \sum_{i=1}^{n} (-2c_{d_{i}}c_{l_{i}}^{2} + 2kc_{l_{i}}^{4} + 2c_{l_{i}}^{2}c_{d_{0}}) = 0 \to \sum_{i=1}^{n} (-2c_{d_{i}}c_{l_{i}} + 2c_{l_{i}}^{2}c_{d_{0}}) = k \sum_{i=1}^{n} (2c_{l_{i}}^{4})$$

$$nk = \frac{\sum_{i=1}^{n} (c_{d_{i}}c_{l_{i}}^{2} - c_{l_{i}}^{2}c_{d_{0}})}{\sum_{i=1}^{n} (c_{l_{i}}^{4})} = \frac{\sum_{i=1}^{n} (c_{l_{i}}^{2}(c_{d_{i}} - c_{d_{0}}))}{\sum_{i=1}^{n} (c_{l_{i}}^{4})} = \frac{\sum_{i=1}^{n} (c_{d_{i}} - c_{d_{0}})}{\sum_{i=1}^{n} (c_{l_{i}}^{2})}$$

For airfoil without Gurney Flaps:

$$c_{d_0} = 0.009$$

 $k = 0.2314$

در نمودار (figure 20) معادله بدست آمده را با داده ها مقایسه کردم.

airfoil without Gurney Flaps(figure 20)

For airfoil with 1.5_{mm} Gurney Flaps:

$$c_{d_0} = 0.017$$

k = 0.1373

در نمودار (figure 21) معادله بدست آمده را با داده ها مقایسه کردم.

airfoil with 1.5_{mm} Gurney Flaps(figure 21)

For airfoil with 4_{mm} Gurney Flaps:

$$c_{d_0} = 0.0585$$

k = -0.0089

در نمودار (figure 22) معادله بدست آمده را با داده ها مقایسه کردم.

(5

$$\begin{split} c_{d} &= c_{d_{min}} + k(c_{l} - c_{l_{min \, drag}})^{2} \\ y_{i} &= c_{d_{min}} + k(c_{l_{i}} - c_{l_{min \, drag}})^{2} \rightarrow r = |c_{d} - y_{i}| = |c_{d} - (c_{d_{min}} + k(c_{l_{i}} - c_{l_{min \, drag}})^{2})| \rightarrow E_{i} = (c_{d} - y_{i})^{2} \\ E &= \sum_{i=1}^{n} E_{i} = (c_{d} - (c_{d_{min}} + k(c_{l_{i}} - c_{l_{min \, drag}})^{2}))^{2} \end{split}$$

خطای ما زمانی کمترین است(E=min) که مشتق عبارت فوق برابر با \mathbf{k} باشد. چون تنها متغیر ما \mathbf{k} است پس فقط نسبت به \mathbf{k} مشتق می گیرم.

$$nk = \frac{\sum_{i=1}^{n} (-2c_{d_{i}}c_{d_{min}} + 2k(c_{l_{i}} - c_{l_{min\,drag}})^{4} + 2(c_{l_{i}} - c_{l_{min\,drag}})^{2}c_{d_{min}})}{\sum_{i=1}^{n} ((c_{l_{i}} - c_{l_{min\,drag}})^{2})} = \frac{\sum_{i=1}^{n} (-2c_{d_{i}}c_{d_{min}} + 2(c_{l_{i}} - c_{l_{min\,drag}})^{2}c_{d_{min}})}{\sum_{i=1}^{n} ((c_{l_{i}} - c_{l_{min\,drag}})^{2})} = \frac{\sum_{i=1}^{n} ((c_{l_{i}} - c_{l_{min\,drag}})^{2}(c_{d_{i}} - c_{d_{min}}))}{\sum_{i=1}^{n} ((c_{l_{i}} - c_{l_{min\,drag}})^{2})} = \frac{\sum_{i=1}^{n} ((c_{l_{i}} - c_{l_{min\,drag}})^{2}(c_{d_{i}} - c_{d_{min}}))}{\sum_{i=1}^{n} ((c_{l_{i}} - c_{l_{min\,drag}})^{2})} = \frac{\sum_{i=1}^{n} ((c_{l_{i}} - c_{l_{min\,drag}})^{2}(c_{d_{i}} - c_{d_{min}}))}{\sum_{i=1}^{n} ((c_{l_{i}} - c_{l_{min\,drag}})^{2}(c_{d_{i}} - c_{d_{min}}))} = \frac{\sum_{i=1}^{n} (c_{d_{i}} - c_{d_{min}})}{\sum_{i=1}^{n} ((c_{l_{i}} - c_{l_{min\,drag}})^{2}(c_{d_{i}} - c_{d_{min}}))} = \frac{\sum_{i=1}^{n} (c_{d_{i}} - c_{d_{min}})}{\sum_{i=1}^{n} ((c_{l_{i}} - c_{l_{min\,drag}})^{2}(c_{d_{i}} - c_{d_{min}})}$$

For airfoil without Gurney Flaps:

$$c_{d_{min}} = 0.009$$
 $c_{l_{min drag}} = 0.00$
 $k_1 = 0.2314$
 $k_1 = k$

جواب مانند قسمت قبل مى شود k ما ثابت مى ماند (figure 20).

For airfoil with $1.5_{\it mm}$ Gurney Flaps:

$$c_{d_{min}} = 0.012$$

 $c_{l_{min drag}} = 0.12$
 $k = 0.1373$
 $k_1 = 0.2711$

در نمودار (figure 23) معادله بدست آمده را با داده ها مقایسه کردم.

airfoil with 1.5_{mm} Gurney Flaps(figure 23)

XXVI of XXXII

For airfoil with 4_{mm} Gurney Flaps:

$$c_{d_{min}} = 0.037$$

$$c_{l_{\min drag}} = 0.37$$

$$k = -0.0089$$

$$k_1 = 0.7766$$

در نمودار (figure 24) معادله بدست آمده را با داده ها مقایسه کردم.

airfoil with 4_{mm} Gurney Flaps(figure 24)

96108378

(

airfoil without Gurney Flaps(figure 25)

airfoil with $1.5_{\it mm}$ Gurney Flaps(figure 26)

airfoil with 4_{mm} Gurney Flaps(figure 27)

بیشترین بازده در نمودار های بالا (figure 25-27) که برای $\frac{c_l}{c_d}$ بر حسب α است زمانی داری بیشترین بازده است که در بالاترین نقطه خود باشد.

در نمدار های c_d برحسب c_d ا (figure 16-18) فرق می کند. برای بالاترین بودن بازده چندین شرط داریم که:

باید $\dfrac{dc_d}{dc_l}$ بیشترین باشد از طرفی چون خط مماس در نمودار ما برابر با $\dfrac{dc_l}{dc_d}$ پس برای بالاترین

بازده شیب ما باید کمترین مقدار مثبت خود باشد.

از طرفی می دانیم تابع ما پیوسته است و با توجه با شکل مشتق آن از بازه منفی به مثبت تغییر علامت می دهد پس یک نقطه داریم که شیب آن برابر با صفر است که با بررسی نقاطی که شیب آنها برابر با صفر است و ماکسیموم نقاط در نمودار ها (figure 25-27) به این تیجه می رسیم که این نقاط دقیقا یکی هستند.

بیشترین راندمان آیرودینامیکی:

For airfoil without Gurney Flaps max $\frac{c_l}{c_d}$ occur in $\alpha=7^\circ$ For airfoil 1.5_{mm} Gurney Flaps max $\frac{c_l}{c_d}$ occur in $\alpha=6^\circ$ For airfoil 4_{mm} Gurney Flaps max $\frac{c_l}{c_d}$ occur in $\alpha=4^\circ$

سوال چهارم الف)

در نمودار (figure 28) انواع درگ را برای یک aircraft را نشان می دهد.

figure 28

flight velocity

نشان می دهد که در takeoff (چون سرعت کم است) بیشتر درگ را lift induced drag را تشکیل می می دهد. در حالت cruise چون سرعت زیاد است پس بیشتر درگ را parasitic drag تشکیل می دهد.

ب)

مانند بالا در حالت takeoff مانند بالا است و بیشترین مقدار درگ حاصل از takeoff مانند بالا در حالت کروز فرق می کند.

در حالت cruise به علت supersonic بودن بیشتر درگ را wave drag ایجاد می کند.

ج)

چون نمودار به شکل خطی نیست و حالت قطبی پیدا می کند می توانیم به صورت قطبی داده ها را بیان کنیم.

برای مثال در شکل (figure 29) می توان c_l و c_l را به صورت r و θ بیان کرد از این جهت به آن قطبی می گویند برای مثال:

$$c_d = rcos(\theta)$$

$$c_l = rsin(\theta)$$

در شکل زیر این را نشان داده است Figure 30

