1	What kind of roots exist for a polynomial function besides rational root?
2	How many roots exist for a polynomial equation $P(X) = 0$

3 When you find a root using the theorem above, you find a root.

How can you find other roots?

4 Does the theorem above guarantee that we can find all roots using the method described?

irration	nal root, a	nd Imag	ginary roo	t.				

If the first root is
$$s_1$$
, then $P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0 = P(X) = P^{-1}(X)^*(x - s_1)$
where $P^{-1}(X) = (a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + \dots + a_0)$
Repeat the same process for $P^{-1}(X)$ to find a new root.

No, it does not guarantee it. The theorem finds a root only if there is rational root.