

TV-CN202 NH1C3

SERVICE MANUAL

COLOR TELEVISION

This Service Manual is the "Revision Publishing" and replaces "Simple Manual" (S/M Code No. 09-995-333-9T1).

SPECIFICATIONS

Weight

Category: Color television
TV Broadcasting System: NTSC-M
Channel Coverage: TV: 2 – 69

TV: 2 – 69 Cable (CATV): 5A, 2 – 13,A-5 – A-1,

Cable (CATV). 5A, 2 – 13,A-5 – A

A-W, W+1 - W+84 (A-8)

Number of Preset Channels 181

Aerial Input 75 ohms, unbalanced Picture Tube 20" (510 mm)

Picture Tube 20" (510 mm)

Screen Size 404 (W) x 303 (I

404 (W) x 303 (H) x mm (16 x 12 in.)

480 mm (diagonal) (19 in.)

Video Input/Output 1 Vp-p, 75 ohms

Audio Input 0.5 Vrms., 33 k ohms more Audio Output 0.5 Vrms., 2.2 k ohms less Speaker 76 mm (3 in.) round: 2
Operating Voltage 110 – 240 V AC, 50/60 Hz

Power Consumption 85 W

Earphone Jack Mini jack Operating Temperature $5^{\circ}\text{C} - 40^{\circ}\text{C}$ Operatin Humidity 35% - 80%

Dimensions 520 (W) x 479.5 (D) x 425 (H) mm

 $(20^{1}/_{2} \times 19 \times 16^{3}/_{4} \text{ in.})$

18 kg (39.6 lbs.)

•Design and specifications are subject to change without notice.

ACCESSORIES LIST

DESCRIPTIONで判断できない物は "REFERENCE NAME LIST" を参照してください。

REF. NO PART NO. KANRI NO.

1 87-JBG-902-010 IB,NH (E) -CN202/142 -M
2 87-JBG-953-010 RC UNIT,RC-7VT02
3 87-B30-136-010 ANT ASSY,TV 5 SEC (NTSC)
4 87-A90-786-010 PLUG,CONVERSION IR46

To make the best use of this equipment, make sure to obey the following items when repairing (or mending).

- Do not damage or melt the tunicate of the leading wire on the AC1 side, including the power supply cord.
- Do not soil or stain the letters on the spec. inscription plates, notice labels, fuse labels, etc.
- 3. When repairing the part extracted from the conducted side of the board pattern, fix it firmly with applying bond to the pattern and the part.
- 4. Restore the following items after repairing.
- Conditions of soldering of the wires (especially, the distance on the AC1 side).
- 2) Conditions of wiring, bundling of wires, etc.
- 3) Types of the wries.
- 4) Attachment conditions of all types of the insulation.
- 5. After repairing, always measure the insulation resistance and perform the voltage-withstand test (See Fig-1).
- 1) The insulation resistance must be 7.0 to 9.5 M Ω when applying 500V per second.
- 2) In the voltage withstand test, apply 3.6 KV for 3 seconds and check that the GO lamp lights.

Fig-1

DISASSEMBLY INSTRUCTIONS

1. HIGH-VOLTAGE CAP (ANODE CAP) REMOVAL

1-1. Cautions before Removing

Discharge the anode voltage

(1) The anode voltage is not discharged completely from the CRT of this unit even after the power is turned off. Be sure to discharge the residual anode voltage before removing the anode cap.

Do not use pliers

(2) Do not use pliers, etc. to remove the anode cap. If you used pliers and bent the hook to remove the cap, the spring characteristics of the hook could be lost, and when reinstalled, the cap would come off from the CRT anode button easily, causing an accident.

Do not turn the anode cap

(3) If the anode cap is turned in the direction of its circumference, the hook is likely to come off.

1-2. Anode Cap Removal

Discharge the anode voltage. (See Figure 1)

- (1) Connect a flat-bladed screwdriver to the CRT GND via an alligator clip.
- (2) Use a tester to check the end of the screwdriver and ground of the TV for continuity.
- (3) Touch the hook with the end of the screwdriver.

Caution: Be careful not to damage the anode cap.

(4) Turn over the anode cap.

Caution: Be careful not to damage the anode cap.

(5) Push the anode cap with your thumb in the direction of arrow ① as shown in the figure, then lift the cap in the direction of arrow ② to release the hook on one side. (See Figure 3)

Fig. 1

Fig. 2

Fig. 3

(6) Turn over the anode cap on the side where the hook was released and pull out the cap in the direction opposite to that on which the cap was pushed. (See Figure 4)

Caution: Do not pull out the anode cap straight up.

: Do not pull the cap forcibly. After removing the cap, check that the hook is not deformed.

Fig. 4

2. ANODE CAP REINSTALLTION

Observe the cautions carefully so that no accident occurs due to a defect in installing the anode cap and so it does not come off.

2-1. Caution before Reinstalling

Never turn the anode cap after installing it

Never re-use the hook when it has been deformed

- (1) If the anode cap is turned after it is installed, it may come off. Therefore, arrange the high-voltage cable before attaching the anode cap. (See Figure 1-1)
- (2) If you have attached the anode cap before arranging the high-voltage cable, arrange the cable carefully so the cap does not turn.

- (1) Use a clean cloth moistened slightly with alcohol to clean the installation section. (See Figure 2)
 - **Caution:** Check that the installation section is free from dust, foreign matter, etc.
- (2) Coat the anode cap installation circumference with an appropriate amount of the specified silicone grease (KS-650N). (See Figure 2)

Caution : Be careful that silicone grease does not enter the anode button.

Fig. 1-1

Fig. 2

(3) Eliminate twisting, etc. of the high-voltage cable and arrange it so that no twisting occurs. (See Figure 3)
 Caution: If the cable is not arranged correctly, the anode cap could turn and cause an

installation defect.

Fig. 3

(4) Turn over the rubber cap symmetrically on the left and right. (See Figure 4)

Caution: Take great care not to damage the anode cap.

- (5) Fit your forefinger over the projection at the center of the cap and hold the cap between your thumb and middle finger. (See Figure 5-1)
- (6) Apply the hook on one side to the anode button as shown on the figure. (See Figure 5-2)

 Caution: Check that the hook is held securely.
- (7) Apply the hook on the other side to the anode button as shown in Figure 5-3.

Fig. 5

Fig. 4

Fig. 5-2

- (8) Pull the anode cap slightly with the rubber cap turned over and visually check that the hook is engaged securely.
- Release your hand from the rubber cap of the anode cap.
- Caution: Cover the anode cap so that it does not lift.

 (10) Hold the skirt of the andoe cap slightly to improve the close contact between the cap and CRT.
- (11) Check that the anode cap is in close contact with the CRT. (See Figure 6)

Fig. 6

3. CASE REMOVAL

3-1. Rear Cabinet Removal (See Figure 1)

(1) Remove four screws ① and three screws ②, then remove the rear cabinet in the direction of the arrow.

Fig. 1

3-2. Neck C.B. (PWB, NK) Removal (See Figure 2)

- (1) Disconnect CN903 (CRT GND).
- (2) Remove the Neck C.B. in the diection of arrow ①.

3-3. Main C.B. (PWB, MAIN) Removal (See Figure 2)

- (1) Remove connector (CN401).
- (2) Remove connector (CN801).
- (3) Pull out the Main C.B. in the direction of the direction of arrow ②.

ELECTRICAL MAIN PARTS LIST

DESCRIPTIONで判断できない物は "REFERENCE NAME LIST" を参照してください。

REF. NO	PART NO.	KANRI NO.	DESCRIPTION	REF. NO	PART NO.	KANR NO.	
IC	87-JBC-629-0 87-A90-297-0 87-A20-612-0 87-A20-611-0	10 RCR 10 IC,	437272M8-131SP UNIT,SBX1981-52 45-10PI 451943BSL-700A	C105 C106 C107 C203 C204	87-016-637-(87-018-134-(87-A10-207-(87-018-134-(87-018-134-()80)80)80	CAP,E 10-50 SSL CAPACITOR,TC-U 0.01-16 CAP,TCS 0.01-50KBUP050 CAPACITOR,TC-U 0.01-16 CAPACITOR,TC-U 0.01-16
	87-A20-364-03 87-A20-364-03 87-A20-734-03 87-002-577-03 87-001-647-04	10 IC,1 10 IC,1 10 IC,1 80 IC,1	LA7676 D KIA7809PI PDA2007A LA7953N UJM78L 12A	C205 C207 C208 C210 C211	87-018-134-0 87-016-632-0 87-018-131-0 87-018-134-0 87-A10-585-0)80)80)80	CAPACITOR,TC-U 0.01-16 CAP,E 0.47-50 SSL CAP, CER 1000P-50V CAPACITOR,TC-U 0.01-16 CAP,CER 18P-50 J CH
	87-002-524-03 87-017-956-03 87-A20-980-03 87-020-881-04	10 IC,1	A7837 BA7611AN BTR-S6707N JJM78L05A	C214 C215 C216 C218 C219	87-018-134-0 87-016-637-0 87-018-134-0 87-016-583-0 87-018-134-0)80)80)80	CAPACITOR,TC-U 0.01-16 CAP,E 10-50 SSL CAPACITOR,TC-U 0.01-16 CAP,E 100-25 SSL CAPACITOR,TC-U 0.01-16
TRANSISTO	87-A30-091-08		.2SJ460	C301 C302 C303 C305	87-016-583-0 87-016-632-0 87-018-134-0 87-016-583-0	080 080	CAP,E 100-25 SSL CAP,E 0.47-50 SSL CAPACITOR,TC-U 0.01-16 CAP,E 100-25 SSL
	89-111-755-08 89-327-854-08 89-337-794-58 87-A30-090-08	80 TR,	2SA1175F 2SC2785F 2SC3779 D/E ,2SK2541	C306 C309 C312 C314	87-018-134-0 87-016-634-0 87-016-637-0 87-018-125-0)80)80	CAPACITOR,TC-U 0.01-16 CAP,E 2.2-50 SSL CAP,E 10-50 SSL CAP, CER 330P-50V
	87-A30-095-03 89-334-674-58 87-A30-041-03 87-A30-005-03	80 TR, 10 TR,	2SD2333LS/C202 2SC3467 D/E SE115N 2SC2688M/L	C315 C316	87-016-632-0 87-016-633-0 87-018-130-0	080 080	CAP, CER 330P-30V CAP,E 0.47-50 SSL CAP,E 1-50 SSL CAP,TC-U 820P-50 B
DIODE	07 070 245 0	00 DTO	NR TW4140	C320 C321 C322 C323	87-016-627-0 87-016-634-0 87-016-633-0 87-016-636-0	080 080	CAP,E 47-16 SSL CAP,E 2.2-50 SSL CAP,E 1-50 SSL CAP,E 4.7-50 SSL
	87-070-345-08 87-070-150-08 87-070-274-08 87-A40-286-08 87-A40-004-08	80 ZEN: 80 DIO: 80 DIO:	DE,IN4148 CR,MTZJ33D DE,1N4003 SEM DE,RGP10JE-5025 CR,MTZJ16A	C325 C326 C327 C328 C329	87-018-134-0 87-018-113-0 87-016-633-0 87-018-115-0 87-016-637-0)80)80)80	CAPACITOR,TC-U 0.01-16 CAP, CER 33P-50V CAP,E 1-50 SSL CAP, CER 47P-50V CAP,E 10-50 SSL
	87-017-654-0 87-A40-450-0 87-A40-354-0 87-A40-440-0	90 DIO	DE,GBU6J DE,RU 1P DE,UF3GL-6251 ER,MTZJ7.5A	C330 C331 C332 C333 C334	87-018-194-(87-018-111-(87-018-134-(87-018-115-(87-018-134-()80)80)80	CAP,TC-U 91P-50 B CAP,TC-U 27P-50 B CAPACITOR,TC-U 0.01-16 CAP,TC-U 47P-50 B CAPACITOR,TC-U 0.01-16
MAIN C.B				C336	87-018-134-0		CAPACITOR,TC-U 0.01-16
BT301 BT403 BT601 C1 C2	87-JBC-625-0: 87-JBC-624-0: 87-JBC-626-0: 87-016-624-0: 87-018-119-0:	10 CON 10 CON 80 CAP	N ASSY,5P V WHT TV-NK N ASSY,9P V JK N ASSY,4P V WHT TV-NK E 10-16 SSL , CER 100P-50V	C337 C401 C403 C405	87-018-134-0 87-016-586-0 87-016-586-0 87-A10-776-0)80)80)80	CAPACITOR,TC-U 0.01-16 CAP,E 470-25 SSL CAP,E 470-25 SSL CAP,E 1000-25 M 105 KMG
C3 C4 C5 C6 C9	87-018-134-08 87-016-633-08 87-016-583-08 87-018-134-08 87-018-128-08	80 CAP 80 CAP 80 CAP	ACITOR,TC-U 0.01-16 .E 1-50 SSL .E 100-25 SSL ACITOR,TC-U 0.01-16 . CERA-SOL SS 560P	C406 C407 C408 C412 C414	87-016-621-0 87-016-621-0 87-016-627-0 87-016-633-0 87-016-637-0)80)80)80	CAP,E 220-10 SSL CAP,E 220-10 SSL CAP,E 47-16 SSL CAP,E 1-50 SSL CAP,E 10-50 SSL
C10 C11 C12 C13 C14	87-018-131-04 87-016-633-04 87-018-209-04 87-018-109-04 87-018-109-04	80 CAP 80 CAP 80 CAP	CER 1000P-50V E 1-50 SSL CER 0.1-50V CER 22P-50V CER 22P-50V	C418 C422 C423 C424 C425	87-016-583-0 87-016-636-0 87-A10-831-0 87-016-632-0 87-016-632-0)80)80)80	CAP,E 100-25 SSL CAP,E 4.7-50 SSL CAP,E 1000-25 M SMG CAP,E 0.47-50 SSL CAP,E 0.47-50 SSL
C15 C16 C17 C18 C19	87-018-109-08 87-018-109-08 87-018-109-08 87-018-109-08 87-018-131-08	80 CAP 80 CAP 80 CAP	CER 22P-50V CER 22P-50V CER 22P-50V CER 22P-50V CER 1000P-50V	C426 C427 C501 C504 C505	87-016-637-(87-016-586-(87-016-583-(87-016-591-(87-016-641-()80)80)80)80	CAP,E 10-50 SSL CAP,E 470-25 SSL CAP,E 100-25 SSL CAP,E 100-35 SSL CAP,E 100-50 SSL
C21 C22 C23 C25 C26	87-016-637-08 87-016-633-08 87-016-637-08 87-016-633-08 87-018-209-08	80 CAP 80 CAP 80 CAP	E 10-50 SSL E 1-50 SSL E 10-50 SSL E 1-50 SSL CER 0.1-50V	C506 C507 C508 C509 C511	87-A10-367-0 87-A10-402-0 87-016-634-0 87-016-587-0 87-018-123-0)80)80)90	CAP,CER 10P-500 J SL CAP,M 0.22-100 J TF TYPE1 CAP,E 2.2-50 SSL CAP,E 1000-25 M SSL CAP, CER 220P-50V
C29 C101 C102 C103	87-018-123-08 87-016-636-08 87-018-134-08 87-016-575-08	80 CAP 80 CAP	CER 220P-50V E 4.7-50 SSL ACITOR,TC-U 0.01-16 E 220-16 SSL	C601 C602 C603 C604 C605	87-016-596-(87-016-635-(87-A10-457-(87-016-597-(87-012-405-()80)80)80	CAP,E 10-160 SSL CAP,E 3.3-50 SSL CAP,E 2.2-160 M SSL CAP,E 22-160 SSL CAP,CER 1800P-2K K BN DE

REF. NO	PART NO.	KANRI NO.	DESCRIPTION	REF. NO	PART NO.	KANI NO	
C606 C607 C609 C610 C611	87-A10-474-090 87-010-974-080 87-016-583-080 87-016-594-090 87-010-976-080	CAP,PP CAP,CER CAP,E 1 CAP,E 1	0.01-1.25K J PHS 220P-500 B 00-25 SSL 000-35 M SSL 1000P-500 B	L301 L303 L304 L305 L306	87-003-051-080 87-003-149-080 87-003-147-080 87-003-295-080 87-003-147-080)))	COIL,470UH COIL,47UH COIL, 22UH COIL,10UH COIL, 22UH
C612 C616 C701 C702 C705	87-010-974-080 87-A10-674-090 87-016-633-080 87-016-637-080 87-016-637-080	CAP,M/P CAP,E 1 CAP,E 1	220P-500 B 0.P-50C0 J -50 SSL 0-50 SSL 0-50 SSL	L501 L603 L802 L803	87-005-608-080 87-A50-040-010 87-A50-170-010 87-005-608-080 87-JB8-650-010)))	COIL,33UH J LAV35 COIL,2.2MH COIL,390UH RCH106 COIL,33UH J LAV35 FLTR,LINE SS24H-K18055
C707 C708 C710 C712 C715	87-016-633-080 87-016-637-080 87-016-622-080 87-016-637-080 87-016-633-080	CAP,E 1 CAP,E 1 CAP,E 4 CAP,E 1 CAP,E 1	-50 SSL 0-50 SSL 70-10 SSL 0-50 SSL -50 SSL	↑P801 ↑P802 ↑PR601 ↑PR801	87-A30-096-010 87-A30-096-010 87-A90-757-080 87-A90-090-080 87-026-681-080))	P-TR,TLP721F P-TR,TLP721F PROTECTOR,0.75A 60V 491 PROTECTOR,1.5A 491SERIES 60V PROTECTOR,5A 60V 491
C716 C801 C802 C803 C804	87-016-634-080 87-A10-688-090 87-A10-688-090 87-012-370-010 87-012-370-010			⚠PR803 R327 R401 R402 <u>↑</u> R406	87-A90-247-080 87-A00-161-090 87-A00-150-090 87-A00-150-090 87-029-158-060)))	RPOTECTOR,0.315A 60V 491 RES,M/F 47-2W J RSF(S) RES,M/F 220-1W J RSF(S) RES,M/F 220-1W J RSF(S) RES,FUSE 1-1W J
C808 C809 C810 C811 C812	87-A10-646-090 87-016-584-080 87-A10-728-080 87-018-131-080 87-A10-645-010	CAP,E 2 CAP,E 2 CAP,E 6 CAP, CE	20-400 SMH (25.4*40) 20-25 SSL 80-10 M LXV R 1000P-50V 0.01-1K J MMH	⚠R407 R503 R507 R603 R605	87-029-158-060 87-025-429-080 87-A00-197-090 87-A00-247-090 87-A00-300-090)))	RES,FUSE 1-1W J RES,M/F 47K-1/6W F RES,M/F 1.2-1W J RSF RES,M/F 100-3W J RSF RES,M/F 2.2-1W J RSF(F)
C813 C814 C815 C816 C817	87-012-372-010 87-A10-832-010 87-012-397-010 87-A10-731-090 87-A10-756-090	CAP,CER CAP,CER CAP,CER CAP,E 2 CAP,E 1	: 1000P-2K : 1000P-1K K R LONG : 1000P-2K BN :20-160 M KMF 00-160 M KMF	R610 R611 R804 R805 R806	87-A00-225-090 87-A00-196-090 87-A00-224-090 87-A00-333-090 87-A00-287-090)))	RES,M/F 2.2K-5W J RSV5 RES,M/F 0.47-1/2W J RSF(S) RES,SD 8.2M-1W J CE RES,M/F 100K-3W J RSS RES,CEM 0.33-5W K RGC5
C819 C821 C822 C823 C824	87-016-576-080 87-016-588-090 87-016-587-090 87-016-627-080 87-016-583-080		30-16 SSL 200-25 SSL 000-25 M SSL 7-16 SSL 00-25 SSL		87-A00-333-090 87-A00-243-090 87-A00-332-090 87-A00-332-090 87-A00-170-090))	RES,M/F 100K-3W J RSS RES,M/F 22-1W J RSF(S) RES,CEM 1-10W J RGC RES,CEM 1-10W J RGC RES,M/F 82K-3W J RSF(S)
C825 CF201 CF202 CN401 CN601	87-A10-469-080 84-LB3-627-010 84-LB3-626-010 87-049-469-010 87-099-675-010	CAP, CER FLTR, SF FLTR, TP CONN, 4P CONN, 5P	2200P-500 K B DD10 SF 4.5MDB SIF S4.5MB2 V V	R815 R816 SF201 SFR201 SFR301	87-A00-199-090 87-A00-223-090 87-A90-694-010 87-024-433-080 87-024-432-080)))	RES,M/F 12K-3W J RSF(S) RES,M/F 47K-2W J RSF(S) FLTR,SAW TSF1239P SFR,10K RH063EC SFR,4.7K RH063EC
!CN801 !CN802 D1 !F801 FB801	87-099-454-010 87-099-674-010 87-070-110-010 87-035-458-010 87-003-320-080	CONN, 2P LED, SLP FUSE, 4A	TV-50 EYLET VA V -181B-51 250V T W/C FBR07HA121NB	SFR302 SFR303 SFR501 SW2 SW3	87-024-434-080 87-024-434-080 87-A90-385-080 87-A90-712-080 87-A90-712-080)))	SFR,22K RH063EC SFR,22K RH063EC SFR,22K H DIA6 EVM SW,TACT EVQ11L07K SW,TACT EVQ11L07K
FB802 FB803 FB804 FB805	87-003-320-080 87-003-320-080 87-003-320-080 87-003-320-080 87-033-213-080	F-BEAD, F-BEAD, F-BEAD,	FBR07HA121NB FBR07HA121NB FBR07HA121NB FBR07HA121NB FUSE	SW4 SW5 SW6 SW7 SW501	87-A90-712-080 87-A90-712-080 87-A90-712-080 87-A90-712-080 87-A90-567-010)))	SW,TACT EVQ11L07K SW,TACT EVQ11L07K SW,TACT EVQ11L07K SW,TACT EVQ11L07K SW,LVR 4-1-3 EVQRAAL10
↑FC802 ↑FR601 ↑FR602 ↑FR604 ↑FR801	87-033-213-080 87-A00-063-060 87-A00-371-090 87-A00-051-060 87-A00-081-090	RES, FUS RES, FUS RES, FUS	FUSE E 2.2-1/2W J R-TYPE E 5.6-1W J R-TYPE E 2.7-1W J R-TYPE E 1-1/2W	↑SW801 ↑T601 T602 ↑T801 TH801	87-A90-364-010 84-LB2-606-010 85-JT2-653-010 87-JBC-627-010 87-A90-830-010))	SW, PUSH SDDLB1-C-D-2 FBT, HFL1530G PT, HDT-TV141-2 PT, SWT 7JB POS-THMS, PTH451C463BF9R0Q270
J401 J701 J702 L1 L2	87-A60-420-010 87-A60-321-010 87-A60-323-010 87-005-614-080 87-005-614-080	JACK,PI JACK,PI COIL 10	5 ST (MSC) N 2P BLK-Y N 4P Y-BLK OUH LAV35 J OUH LAV35 J	TU101 X1 X301 X302	87-A90-660-010 87-030-212-080 87-A70-007-080 87-A70-017-010)	TU UNIT, BTP-AB455 CERA LOCK CST8.0M VIB,XTAL 3.58MHZ AQC-1001 VIB,CER 503KHZ F45
L101 L102 L201 L202 L203	87-005-614-080 87-005-608-080 84-LB2-684-010 87-003-140-080 84-LB2-681-010	COIL,33 COIL,TR CH COIL	OUH LAV35 J UH J LAV35 AP 47.25 SA . 0.82 O 45.75 SA	NK C.B C901 C902	84-LB2-633-110 87-018-129-080 87-018-129-080)	CONN ASSY,1P CRT GND CAP, CER 680P-50V CAP, CER 680P-50V
L204 L205 L206 L207 L208	87-005-604-080 87-003-146-080 84-LB2-682-010 84-LB2-683-010 87-005-485-080	COIL,15 COIL,AF COIL,SI	UH J LAV35 UH LAL02 T 45.75 SA F 4.5M SA OUH J FLR50	C903 <u>A</u> C905 CN901 CN902 CN903	87-018-129-080 87-012-397-010 87-049-469-010 87-009-033-010 87-A60-485-010))	CAP, CER 680P-50V CAP,CER 1000P-2K BN CONN,4P V CONNECTOR, 5P CONN,2P V LV GRA

REF. NO	PART NO.	Kanri No.	DES	SCRIPTION
L901 ↑R904 ↑R905 ↑R906 R907	87-005-615-0 87-A00-165-0 87-A00-165-0 87-A00-165-0 87-025-355-0	90 RES 90 RES 90 RES	3,M/F 15K-	-2W J RSF(S -2W J RSF(S -2W J RSF(S
S901 SFR901 SFR902 SFR903 SFR904	84-LB3-610-0 87-024-519-0 87-024-519-0 87-024-520-0 87-024-520-0	80 SFF 80 SFF 80 SFF	CKET,CRT I R,470 DIA R,470 DIA R,1K DIA R,1K DIA R,1K DIA	5 V NTP 5 V NTP V NTP
SFR905	87-024-520-0	80 SFF	R.1K DIA6	V NTP

TRANSISTOR ILLUSTRATION

2SC3467

S D G 2SK2541 2SJ460

2SC2785 2SA1175

2SC2688

B E C 2SC3779

1 2 3

SE115N

ВСЕ

2SD2333

IC, STR-S6707

IC, TDA2007A

IC, LA7953

17

19

WAVEFORM

Input condition : Tuner 11ch (199.25MHz), $80dB\mu$ input : P = Full Field CB & S = 1kHz (Mono)

 $0.1\mu/div$

200 mV/div

1 IC501 Pin 12

5 IC301 Pin 18

(2) Between X301 & C304

7 IC301 Pin 20 8 IC301 Pin 21

(3) IC301 Pin 25

(9) T601 Pin 1

(4) IC1 Pin 20

11 T601 Pin 8

(12) Q901 Collector

20 μs/div 50 V/div

20 μs/div 50 V/div

(14) Q903 Collector

20 μs/div 50 V/div

15 Q601 Collector

Q602 Collector

 $20~\mu\text{s/div} \\ 500~\text{V/div}$

20 μs/div 50 V/div

- 19 IC301 Pin 22
- 20 IC301 Pin 23

(21) IC301 Pin 20 (22) IC301 Pin 21

23 IC301 Pin 44

20 μs/div 0.5 V/div

(24) IC301 Pin 1

50 μs/div 0.5 V/div

(25) IC1 Pin 17

IC DESCRIPTION

IC, M37272M8-113SP

Pin No.	Pin Name	I/O	Description							
1	HSYNC	I	OSD horizontal synchronised signal input terminal. "L"= active.							
2	VSYNC	I	OSD vertical sync	OSD vertical synchronised signal input terminal. "L"= active.						
3	VOL	О	Volume control or	itput. (V	olume F	WM 8 b	oit.)			
4	CONT	О	Contrast control or	utput. (C	ontrast	PWM 8	bit.)			
5	BRIGHT	О	Brightness control	output.	(Brightı	ness PW	M 8 bit.)			
6	COLOR	О	Color control outp	ut. (Col	or PWM	[8 bit.)				
7	TINT	О	Tint control outpu	t. (Tint I	PWM 8	bit.)				
8	SHARP	О	Sharpness control	output. (Sharpne	ess PWN	1 8 bit.)			
9	STEREO / SAP	I	STEREO / SAP de	etect. (N	ot conne	ected)				
10	RMC	I	Remote control sig	gnal is le	d to this	s pin.				
11	SD	I	Horizontal sync. d		-		-	sampled l	by μ-P to)
12	DGC	_	Not connected.							
13	PON	О	During standby moveltage.	ode, "H"	level is	inserted	to switch off horiz	zontal de	flection	and high
14	AVCC	_	5V supply.							
15	HLF	_	Connected to filter							
16	VHOLD	-	Connected to cond	lensor.						
17	CVIN	I	Video signal input							
18	CNVSS	-	Connected to ground.							
19	XIN	I	8 MHz clock input.							
20	XOUT	О	8 MHz clock output.							
21	VSS	_	Connected to ground.							
22	VCC	-	5 V supply.							
			TUNER SAP				TUNER STERE)		
				Pin 23	Pin 24	Pin 35		Pin 23	Pin 24	Pin 35
			MONO/SAP	L	L	L	STEREO	L	L	L
			MONO	L	Н	L	MONO	L	Н	Н
			SAP	Н	L	L				
23, 24	ST1, ST2	0	TUNER STEREO	/ SAP						
	(NC)			Pin 23	Pin 24	Pin 35				
			MONO/SAP	L	L	L				
			STEREO	L	Н	L				
			SAP	Н	L	L				
			MONO	L	Н	Н	PIN 35 : N	MONO		
25	RST	I	Used to reset the μ	ι-P wher	power	up.				
26	SLDA	I/O	Data bus between μ-P and E ² PROM / tuner.							
27	TONE	_	Not connected.							
28			Synchronizing clock between μ -P and E^2PROM / tuner provided by μ -P through this pin.							
	SLCK	О	pin.							
29	SLCK	O	pin. AFT voltage from	IC301 i	s receive	ed by μ-l	P during channel to	ıning.		

Pin No.	Pin Name	I/O	Description				
31	EEP CS	О	EEP-ROM chip selection.				
32	SUR	О	Surround ON "H", OFF "L".				
33	ENABLE	О	Timing data bus between μ-P and tuner.				
34	AMUTE	О	Used to mute line out sound and picture when no input signal is detected. "H" to mute.				
35	MONO	О	Compel the sound system to monaural. (Not connected)				
36, 37	SEL1, SEL2	0	Selecting tuner receiving band. Pin 36 Pin 37 TUNER L L VIDEO 1 H L VIDEO 2 L H				
38	VMUTE	_	Not connected.				
39	BLK	О	OSD blanking output.				
40	В	О	OSD blue output.				
41	G	О	OSD green output.				
42	R	О	OSD red output.				

A MAIN C.B

MAIN Circuit board (Component side)

B NK C.B

NK Circuit board (Solder side)

SET-UP FOR ADJUSTMENT

Because the video signal output from a pattern generator is used as the adjustment signal input during adjustment, the video signal output from the pattern generator must conform with the specifications. Measure the output waveform across 75 Ω load. Confirm that the synchronizing signal has an amplitude of about 0.3 V, the video signal portion has an amplitude of about 0.7 V and the burst signal has an amplitude of about 0.3 V with flat envelope. Confirm that ratio of the burst signal amplitude and the red signal amplitude is 0.30 : 0.66. If the output signal does not conform with the specifications, calibrate the pattern generator. (Refer to pattern generator operation manual.) Use the LEADER: LCG 404 for the pattern generator.

Color bar signal of a pattern generator

Precautions before starting adjustment

Satisfy the following setting conditions before starting adjustment.

- Allow warm-up of 20 minutes or longer. (Do not turn off during warm-up.)
- Set all picture quality controls of users' setting to initial set-up, unless otherwise specified.
- Picture quality reset
 - 1. Select "Picture" on the screen menu and press enter button.
 - 2. Select "Normal" and press enter button.
 - 3. Select "Reset" and press enter button.
- Set the pattern generator's output level at 1.0Vp-p (across 75Ω load).

1. CRT ADJUSTMENT

1-1. Precautions

- Receive the white raster signal, and then perform edging for at least 20 minutes.
- Demagnetize the area surronding the CRT with a degausser before making adjustments.
- (3) Set the picture quality for each mode to the factory setting.
- (4) Position the front screen facing to the east as much as possible.

1-2. Purpose

(1) Beam landing adjustment (purity magnet)

Set the left/right balance of beam landing. If there is a discrepancy in this adjustment, a color irregularity will occur. After completion of the landing adjustment, it is necessary to perform a convergence adjustment.

Fig. 1-1

(2) Beam convergence adjustment (4-pole magnet)

Align the R beam with the B beam. The G beam does not move with this adjustment.

Align the R beam with the B beam Fig. 1-2 $\,$

(4) The composition of each magnet is as appears in Fig. 1-4.

In making adjustments, rotate the lock ring clockwise (looking from the CRT's back screen) and disengage.

Be careful not to loose the lock ring too much. If the magnet assembly has become shifted during adjustments, secure it to the position in Fig. 1-4.

(3) Beam convergence adjustment (6-pole magnet) With a 4-pole magnet align the G beam with the already aligned R/B beam.

Align the G beam with the R/B beam Fig. 1-3

Fig 1-4

1-3. Beam Landing Adjustment

- (1) Receive the green raster signal through the pattern generator.
- Loosen the magnet lock screw, and shift the magnet assembly backward (toward the neck).
- (3) Loosen the DY lock screw, and shift the DY deflecting yoke backward (toward the neck).
- (4) After opening the two purity magnets to the same angle, adjust the color width of the bands on both sides of the screen so that they are of equal width. (refer to Fig. 1-5 (a)).

As shown in Fig. 1-5 (b), the purity magnet functions in relation to the electron beam.

Fig 1-5 (b)

- (5) Gradually shift the deflecting yoke toward the front (toward the CRT funnel). Stop movement at the point when the screen has become completely green.
- (6) Also, verify the respective monochromatics of red and blue.
- (7) While looking at the screen, adjust the tilt of the deflecting yoke and tighten the DY lock screw.
- (8) Shift the magnet assembly to the front (toward the CRT funnel), stop movement before the adjustment position and then tighten the magnet lock screw.
 At this time, be careful not to shift the position of the purity

magnet.

As there is occurrence of convergence distortion after completing the landing adjustments, be certain to carry out convergence adjustments.

If the color irregularity in the screen's corner section are not improved, correct them with the landing magnet. After using the landing magnet, be sure to demagnetize the CRT with degausser and verify that there is no occurrence of color irregularity. (refer to Fig. 1-6)

Landing magnet: 81-JTI-710-010

(two-sided adhesive tape): 80-XVI-218-010 Cushion

Fig 1-6

1-4. Beam Center Convergence Adjustment

Make adjustments on the convergence with 4-pole and 6-pole magnets. Operate each magnet in relation to the electron beam as shown in Figs. 1-7 and 1-8. When performing this adjustment, verify whether there is distortion in the focus adjustment. If necessary, carry out adjustments again.

Fig 1-7

Fig 1-8

In Fig. 1-7, two 4-pole magnets are stacked together so as to be of the same polarity. Move the B and R beams to their respective direction, by rotating the two 4-pole magnets together. By adjusting the opening of the two magnets, it is possible to adjust the amount of the beam's movement.

In Fig. 1-8, the two 6-pole magnets are stacked together so as to be of the same polarity. Move the B and R beams to their respective direction, by rotating the two 6-pole magnets together. By adjusting the opening of the two magnets, it is possible to adjust the amount of the beam's movement.

- (1) Receive the dot pattern signal through the pattern generator.
- (2) Pay attention to the center of the screen, and perform adjustments with two 4-pole magnets so that the R beam and the B beam perfectly align and become a magenta color. (refer to Fig. 1-2)
- (3) In the same way, pay attention to the screen, and perform adjustments with a 6-pole magnet so that the magenta beam and the G beam align and become a white dot. (refer to Fig. 1-3)
- (4) After adjustments are completed, secure all magnets with the lock link. (Refer to Fig. 1-4)

1-5. The Surrounding Convergence Adjustment

Make this adjustment after completion of adjustment 1-4.

- (1) Shake the deflecting yoke up, down, right and left, and adjust any discrepancies in the screen's surroundings.
- (2) Insert wedges in three locations in the gap between the deflecting yoke and the surface of the CRT funnel in order to secure the deflecting yoke. (refer to Fig. 1-9)

Position of wedge

Fig. 1-9

2. ELECTRICAL ADJUSTMENT

2-1. White Balance Adjustment (NK C.B.)

- (1) Receive a NTSC raster signal (white).
- (2) Set the customer picture controls "bright" and "contrast" to minimum.
- (3) Set the CUT OFF SFR (SFR903, SFR904, SFR905) and DRIVE SFR (SFR901, SFR902) to their mechanical centers.
- (4) Leaves the CUT OFF SFR of the color which is brightest on the screen as it is and use other two CUT OFF SFR to adjust the white balance.
- (5) Set the customer picture controls "brightness" and "contrast" to maximum.
- (6) Turn SFR901 (R DRIVE) fully counterclockwise so the whole screen becomes red.
- (7) Turn SFR901 (R DRIVE) gradually clockwise and stop it where red disappears from the screen.
- (8) Turn SFR902 (B DRIVE) fully counterclockwise so the whole screen becomes blue.
- (9) TurnSFR902 (B DRIVE) gradually clockwise and stop it where blue disappears from the screen.
- (10) Repeat steps (2)-(4) and (5)-(9) until the white balance has been adjusted completey.
- (11) Return the customer picture controls to their original positions.
- (12) Receive a stairstep signal (color bar with chroma off) and check that there is no unnatural color at any bands.
- Perform 2-3 Sub-bright adjustment after completing the white balance adjustment.

2-2. Screen Adjustment

- Short the IC501 Pin2 and Pin5 (or 11) and set the screen in single horizontal line.
- (2) Set the TV to the external input mode (no input).
- Connect an oscilloscope to TP901 (JW901) Pin9 of S901 (on the NK C.B.).
- (4) Adjust SFR302 (Sub-bright) so the voltage at TP901 (JW901)Pin9 of S901 is 170 ± 5VDC. (See Figure 2-1)
- (5) Adjust the SCREEN VR (FBT) so that a horizontal line begins to appear at the center of the screen.
- (6) Release the short-circuit point.

Fig 2-1

* Be sure to perform the next sub-bright adjustment after completing this adjustment.

2-3. Sub-bright Adjustment

- (1) Receive a NTSC stairstep signal (color bar with chroma off).
- (2) Adjust SFR302 so the band next to the right end start to light. (See Figure 2-2)

Two bands on the right are dark and cannot be distinguished.

The band on the right end is not lit and the adjacent band is very dim.

Fig 2-2

2-4. Focus Adjustment

- (1) Receive a NTSC dot pattern signal.
- (2) Adjust the FOCUS SFR (FBT) so the focus of the dots is optimum.

2-5. Horizontal Position Adjustment

- (1) Input the following signals.
 - Monoscope signal of the test tape TTV-06T (connect video)
- (2) As is shown in Fig. 2-3, make adjustments with SFR301 so that the scales on both sides of the screen are the same.

Scale A = Scale B

Fig 2-3

2-6. Vertical Size Adjustment

- Input the monoscopic signal of the test tape TTV-06T. (connect video)
- (2) Make adjustments with SFR501 so that the upper and lower scales on the monoscope screen have the numerical values that appear below. (refer to Fig. 2-4 (a))
- * SW501 is used only for initial setting in the factory. Make sure that the selector of SW501 is positioned at B (center) before adjusting.

Fig 2-4 (a)

(Simple Adjustment Method)

- (1) Using LEADER LCG-404, input the cross hatch signal.
- (2) As is shown in Fig. 2-4 (b), make adjustments with SFR501 so that the number of vertical squares is 13.

Fig. 2-4 (b)

2-7. Sub-tint Adjustment

- (1) Receive an NTSC 3.58 MHz color bar signal.
- (2) Connect an oscilloscope to Q903 Collector (on the NK C.B).
- (3) Adjust SFR303 so the bottom edges of the waveform fall on one line. (See figure 2-5)

3. TUNER ADJUSTMENT

AGC Adjustment 3-1.

(1) Receive a NTSC signal of RF INPUT under the following conditions.

Input level: 58 dBµ

Modulation percentage: 87.5%

Received channel: US TV 10ch (fp = 193.25MHz)

(2) Adjust SFR201 so the voltage at the TU101 Pin1 (TP15 or JW101) is $6.8V \pm 0.2VDC$.

(Simple Adjustment Method)

- (1) Using the LEADER LCG-401 (65dBµ), receive the color bar signal on channel 2.
- With SFR201, make adjustments so that the voltage of TU101 pin1 becomes 3.6VDC.
- Receive a television broadcast, and verify that the screen is

3-2. **VCO** Adjustment

(Rough Adjustment)

Make connections as they appear below.

(2)Connect between Pin52 and GND of IC301 with capacitor.

- (3) Using a DC power supply, add DC3.0V \pm DC0.2V of voltage to the IC301 Pin10 (TP14).
- (4) Make adjustments with L203 so that the waveform's center section (section in the figure below) of the ALIGNMENT SCOPE becomes $45.75 \text{ MHz} \pm 50 \text{ kHz}$.

(5) Remove the capacitor.

3-3. **AFT Adjustment**

(1) Connect the resistance of 1 k Ω between the TU101 Pin11 and the GND.

(2) Input the following signal conditions to the TU101 Pin11. (AM/FM SSG)

CARRIER 45.75 MHz LEVEL 100 dBu OFF

- (3) Make adjustments with L206 so that the voltage of the IC301 Pin47 (TP16) is DC4.5V \pm DC0.2V.
- Remove resistance (1 k Ω).

(Simple Adjustment Method)

MOD

- (1) Using the pattern generator LCG-401, receive the signal for channel 2.
- (2) Adjust L206 so that the voltage at IC301 Pin47 (TP16) becomes $4.5V \pm 0.3VDC$.
- (3) Receive each television broadcasts and vertify that the picture is clear.

3-4. SIF Adjustment

 Input the following signal conditions to the IC301 Pin48 (TP1).

(FM/SG)

CARRIER 4.5MHz LEVEL 90dBμ MOD OFF

(2) Adjust L207 so that the voltage at IC301 Pin1 (TP21) becomes $4.5V\pm0.3VDC.$

(Simple Adjustment Method)

- Connect an oscilloscope to IC301 Pin1 (TP21), then receive a television broadcast.
- Adjust L207 so that the center of audio signal level becomes 4.5V.

3-5. TRAPAdjustment

(1) Make connections as shown in figure below.

<IF DETECTOR>

(2) Adjust L201 so that center section ($\,$ section in the figure below) of the ALIGNMENT SCOPE waveform becomes 60.25 MHz \pm 50 kHz.

1. How To Activate /Release Service Mode

<JIG remote control unit>

JIG remote control unit to operate the service mode should be used with the remote control unit for RC-6VT03 (86-LBR-951-010) or 86-6VT07 (86-LBP-951-010).

Test mode is activated by pressing TEST key (Hidden Key under the label). (Refer to Fig.1).

When the Test Mode is activated, below menu (refer to Fig.2) will be appeared and turn on and off at one second interval.

- Jig Remote Controller
 - (1) Remove label of jig remote controller.
 - (2) Cut label of two hidden keys (Finish and Test) into button size.
 - (3) Place two timer buttons on the two hidden keys.
 - (4) Place label back after above steps.

Fig. 1

AGING AFT OK 0000H

Fig. 2

Test mode is released by pressing TEST KEY again.

2. Content of Service Mode.

Test mode have the following functions.

- 1 Function for releasing Auto Power OFF.
- 2 Display AFT S curb status.
- 3 Display the product Hours of CRT ON.

Fig. 3

Release the function of Auto Power OFF.

It releases the function of Auto Power OFF when no input occurs.

It is used for warming up (Aging) of CRT Adjustment.

Display of AFT S curb.
It displays OK, UP, DN in the status of AFT S curb.
(Observe the Voltage of IC301 Pin47)

Fig. 4

Display the product hours of CRT ON.
It product hours of CRT ON at one hour interval count up by (HEX).

Display is 4 digits in HEX.

The product hours is connected to the decimal scale number from the displayed number.

When it exceeds 7FFF H (32768 hours), it will reflect to 0000 H again.

Precautions to replace EEPROM

When replacing the EEPROM (IC3, AT93C46-10PI), be certain to follow the sequence appearing below to carry out initialization.

- 1. Press "TEST" key (hidden key) on the remote control unit to activate the Service Mode. (Refer to Fig. 1)
- 2. Press "DISPLAY" key on the remote control unit and verify that the screen is the same as in Fig. 2.
- 4. Press "VOLUME + –" key, and display data appears as below.

- 5. With conditions as they are in step 4, press the "DISPLAY" key and then press the "FINISH key (hidden key)". (refer to Fig. 1)
- 6. Following the display of "INITIAL" on the screen for a few seconds, the power will automatically go off.

Fig. 1

35

MECHANICAL MAIN PARTS LIST

DESCRIPTIONで判断できない物は "REFERENCE NAME LIST" を参照してください。

REF. NO	PART NO. KAN		REF. NO		NRI DESCRIPTION IO.
1 2 3 4 5	86-LB4-006-010 86-LB4-005-010	BADGE,AIWA 52.5 PANEL,FR CN202 LENS,LED LENS,RC CABI,FR	16 17 18 A B	86-LB4-002-110 87-JBG-004-010 84-LB3-216-010 87-067-758-010 87-067-680-010	CABI,REAR PLATE,JACK NH HLDR,LED BVT2+3-12 W/O SLOT BVI T3+3-10
6 7 ▲ 8 9 10	86-LBU-201-010 86-LB4-004-010 87-JBC-628-010 86-LB7-202-110 84-LB3-641-010	HLDR,AC CORD BTN,POWER AC CORD SET,NH BLK HLDR,FBT SP,F DIA 7.6	C D E F	86-LBB-206-010 87-067-844-010 87-067-761-010 87-067-579-010	S-SCREW,ASSY TV5-40 W20 BVT2+4-16 BLK TAPPING SCREW, BVT2+3-10 TAPPING SCREW, BVT2+3-8
11 12 13 14 15	87-A90-332-010 87-JBD-605-010 84-LB3-205-010 84-LB2-633-110 87-JBD-625-010	HLDR,SF-2001 HV CABLE CRT,A48JAN44X04(W) SPR-E,EARTH CONN ASSY,1P CRT GND DGC,20 15 OHM			

37

サービス技術ニュース						
番号	連絡内容					
G						
G						
G						

アイワ株式会社 〒110-8710 東京都台東区池之端1-2-11 ☎03(3827)3111 (代表) **AIWA CO.,LTD.** 2-11, IKENOHATA 1-CHOME, TAITO-KU, TOKYO 110-8710, JAPAN TEL:03 (3827) 3111

727105 Printed in Singapore