Performing Differentiation More on Regression

What to do when the number of features is 3 or more for Linear Regression?

Logistic Regression

What can we do after learning NumPy?

- The arithmetic calculations which we usually do by hand, can be done via code using NumPy.
- Some intelligent tasks like grouping and averaging all the points belonging to the same cluster can be easily done using NumPy.

But, can we use NumPy to perform differentiation?

- We can perform differentiation by hand.
- $L = w^2$
- Determine $\frac{dL}{dw}$ by hand.
- What will be the value of $\frac{dL}{dw}$ for w=4?
- Now the question is, can this be done using NumPy?

Introducing TensorFlow

- Want to build Machine Learning/ Deep Learning model from scratch?
- TensorFlow can be your solution (for the differentiation based models.)
- Now, let's use TensorFlow to perform some differentiations.

TensorFlow and Differentiation

Have you done this by hand yet?

- $L = w^2$
- Determine $\frac{dL}{dw}$ by hand.
- What will be the value of $\frac{dL}{dw}$ for w=4?

TensorFlow and Differentiation

Have you done this by hand yet?

- $L = w^2$
- Determine $\frac{dL}{dw}$ by hand.
- What will be the value of $\frac{dL}{dw}$ for w=4?

```
import tensorflow as tf

w = tf.Variable(4.0)

with tf.GradientTape() as tape:
    L = w**2

grad = tape.gradient(L, w)

print(f"The value of dL/dw when w=4 is: {grad.numpy()}")

The value of dL/dw when w=4 is: 8.0
```

Another One

•
$$z = 3 + 10x$$

•
$$a = \frac{1}{1 + e^{-z}}$$

•
$$\frac{da}{dx} = ?$$

• What is the value of $\frac{da}{dx}$ for x=2?

Another One

•
$$z = 3 + 10x$$

$$\bullet \ a = \frac{1}{1 + e^{-z}}$$

•
$$\frac{da}{dx} = ?$$

• What is the value of $\frac{da}{dx}$ for x=5?

```
import tensorflow as tf
    x = tf.Variable([5.0], dtype=tf.float32)
    with tf.GradientTape(persistent=True) as tape:
        z = 3 + 10 * x
        a = 1 / (1 + tf.exp(-z))
    da by dx = tape.gradient(a, x)
    result= da by dx.numpy()
    print("Gradient da/dx:", da_by_dx.numpy())
→ Gradient da/dx: [9.60268e-23]
```

Linear Regression Again

- Previously we could perform linear regression with up to 2 features.
- But now we are going to use 3 or more.

SN	No of Rooms	Area	In DOHS?	Rent
1	3	1100	0(No)	6,000
2	5	1300	0	8,000
3	2	1200	1	7,500
4	4	2200	1	20,000

Visual Representation of Linear Regression

Ok so how do we find the w's?

- Yes! By using differentiation.
- But differentiate w.r.t. what?

The Loss Function

The Loss Function

• It is the measure of how much the predicted output varies from the actual output

SN	No of Rooms	Area	In DOHS?	Rent
1	3	1100	0(No)	6,000
2	5	1300	0	8,000
3	2	1200	1	7,500
4	4	2200	1	20,000

The Loss Function

• It is the measure of how much the predicted output varies from the actual output

SN	No of Rooms	Area	In DOHS?	Rent
1	3	1100	0(No)	6,000
2	5	1300	0	8,000
3	2	1200	1	7,500
4	4	2200	1	20,000

The Algorithm – for linear regression

Initialize Parameters:

- Set initial weights
- Define learning rate.
- •Define number of epochs.

For i = 1 to epochs:

- 1.Start a gradient tracking tape
- 2.Make predictions:
 - •Calculate Y=X·W+b
 - •Compute the loss(Y,Ypred):
 - 3. Compute gradients
 - Calculate dL/dw and dL/db

4. Update the weights and bias:

$$\bullet W = W + Ir*dL/dW$$

$$\bullet$$
b = b + lr*dL/db

Thank You