

AD-A184 245

INSTRUMENT FOR RADIATION TESTING/SCREENING ELECTRONIC
DEVICES OVER AN EXT. (U) ADVANCED RESEARCH AND
APPLICATIONS CORP SUNNYVALE CA L J PALKUTI ET AL.

1/1

UNCLASSIFIED

19 DEC 86 ARACOR-FR-86-452 DNA-TR-86-423 F/G 9/1

NL

END
9-87
DTIC

MICROSCOPY RESOLUTION TEST CHART

AD-A184 245

BTIC FILE COPY (12)

DNA-TR-86-423

INSTRUMENT FOR RADIATION TESTING/SCREENING ELECTRONIC DEVICES OVER AN EXTENDED TEMPERATURE RANGE

Advanced Research & Applications Corporation (ARACOR)
425 Lakeside Drive
Sunnyvale, CA 94086-4701

19 December 1986

Technical Report

CONTRACT No. DNA 001-85-C-0366

Approved for public release;
distribution is unlimited.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMC CODE B3230854662 RV RA 00093 25904D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, DC 20305-1000

87 9 9 287

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY
ATTN: TITL, WASHINGTON, DC 20305 1000, IF YOUR
ADDRESS IS INCORRECT, IF YOU WISH IT DELETED
FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE
IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

CUT HERE AND RETURN

SIGNATURE: _____

CONTRACTING OFFICER OR REPRESENTATIVE: _____

SPONSORING ORGANIZATION: _____

CERTIFICATION OF NEED-TO-KNOW BY GOVERNMENT SPONSOR (if other than DNA): _____

DNA OR OTHER GOVERNMENT CONTRACT NUMBER: _____

SUBJECT AREA(s) OF INTEREST: _____

TELEPHONE NUMBER: () _____

CURRENT ADDRESS

OLD ADDRESS

ORGANIZATION: _____

NAME: _____

- Change of address.
- Delete the cited organization/individual.
- Add the individual listed to your distribution list.

This mailer is provided to enable DNA to maintain current distribution lists for reports. We would appreciate your providing the requested information.

DISTRIBUTION LIST UPDATE

Director
Defense Nuclear Agency
ATTN: █ TITL
Washington, DC 20305-1000

Director
Defense Nuclear Agency
ATTN: █ TITL
Washington, DC 20305-1000

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

A184245

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS										
2a. SECURITY CLASSIFICATION AUTHORITY N/A since UNCLASSIFIED		3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution is unlimited.										
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A since UNCLASSIFIED		5. MONITORING ORGANIZATION REPORT NUMBER(S) DNA-TR-86-423										
4. PERFORMING ORGANIZATION REPORT NUMBER(S) FR-86-452		7a. NAME OF MONITORING ORGANIZATION Director Defense Nuclear Agency										
6a. NAME OF PERFORMING ORGANIZATION Advanced Research & Applications Corp. (ARACOR)	6b. OFFICE SYMBOL (if applicable) 7N082	7b. ADDRESS (City, State, and ZIP Code) Washington, DC 20305										
6c. ADDRESS (City, State, and ZIP Code) 425 Lakeside Drive Sunnyvale, CA 94086-4701	8. NAME OF FUNDING/SPONSORING ORGANIZATION RAEE/Cohn											
8a. NAME OF FUNDING/SPONSORING ORGANIZATION		8b. OFFICE SYMBOL (if applicable) RAEE/Cohn										
8c. ADDRESS (City, State, and ZIP Code)		9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER DNA 001-85-C-0366										
		10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO 62715H										
		PROJECT NO RV	TASK NO RA									
		WORK UNIT ACCESSION NO DH009077										
11. TITLE (Include Security Classification) INSTRUMENT FOR RADIATION TESTING/SCREENING ELECTRONIC DEVICES OVER AN EXTENDED TEMPERATURE RANGE												
12. PERSONAL AUTHOR(S) Palkuti, L. J. and Pugh, M. A.												
13a. TYPE OF REPORT Technical	13b. TIME COVERED FROM 850815 TO 861130	14. DATE OF REPORT (Year, Month, Day) 861219	15. PAGE COUNT 46									
16. SUPPLEMENTARY NOTATION This work was sponsored by the Defense Nuclear Agency under RDT&E RMC Code B3230854662 RV RA 00093 25904D.												
17. COSATI CODES <table border="1"><tr><th>FIELD</th><th>GROUP</th><th>SUB-GROUP</th></tr><tr><td>9</td><td>1</td><td></td></tr><tr><td>18</td><td>7</td><td></td></tr></table>		FIELD	GROUP	SUB-GROUP	9	1		18	7		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Electronic Devices, Military Systems, Temperature Range, Ionizing Radiation, Radiation Testing, Radiation Screening	
FIELD	GROUP	SUB-GROUP										
9	1											
18	7											
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Many military systems must be able to function over temperature ranges of -55°C to 125°C. Electronic devices within selected military systems must also be able to function in environments of long-term or high-intensity ionizing radiation. This program developed instrumentation and methodology that enables testing of electronic devices in such extreme conditions, using instrumentation compatible with the ARACOR Model 4100 Automatic Semiconductor Irradiation System. Instrumentation was developed to measure the integrated energy transmitted to an IC wafer die by a pulsed Nd:YAG laser beam. High and low temperature testing was found to be best achieved using a precision nitrogen gas forcing system. For Model 4100 Systems used for total-dose measurements, across the full temperature range, a system combining a commercially-available, temperature-controlled chuck with an air stream was found to be best solution. For low temperature, high intensity radiation testing, temperature sensors on the wafer under test were found to be required for accurate temperature control.												
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED										
22a. NAME OF RESPONSIBLE INDIVIDUAL Sandra E. Young		22b. TELEPHONE (Include Area Code) (202) 325-7042	22c. OFFICE SYMBOL DNA/CSTI									

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

18. SUBJECT TERMS (Continued)

ARACOR
Semiconductor
VHSIC
SDI
Wafer Testing
Radiation Measurements
Dosimetry
Pulsed-Laser
X-Ray Radiation Testing
Electron-Hole Pair Production

Accesion For	
NTIS	CRA&I <input checked="" type="checkbox"/>
DTIC	TAB <input type="checkbox"/>
Unannounced <input type="checkbox"/>	
Justification	
By _____	
Distribution /	
Availability Codes	
Dist	A3M and/or A3C
A-1	

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

EXECUTIVE SUMMARY

The DoD has the requirement that electronic devices used in many military systems be able to function over the temperature range of -55°C to 125°C. For selected systems, the electronic devices must also be able to function after being exposed to specified levels of long-term (total dose) or high-intensity (dose-rate/latch-up) ionizing radiation. Generally, however, the radiation testing and screening is only performed at room temperature. Recently, experiments have shown that the response of electronic devices irradiated at extreme temperatures can be quite different from room-temperature results.

ARACOR manufactures the Model 4100 Automatic Semiconductor Irradiation System which has come into wide-scale use for the radiation testing and screening of DoD electronic devices, including VHSIC and SDI parts. At this time, the Model 4100, which enables radiation testing at the wafer level, is only capable of room-temperature irradiations.

The primary goal of this program was to develop instrumentation, compatible with the Model 4100 design, that would enable radiation total-dose, dose-rate and latch-up measurements to be made over the temperature range of -55°C to 125°C. The overall Phase I technical objectives were:

- 1) To develop and calibrate necessary timing and dosimetry circuitry for the pulsed-laser source to permit wafer-level measurements of radiation dose-rate and latch-up effects for both conventional and heavily-doped substrates.
- 2) To evaluate and calibrate the accuracy and stability of a high-temperature system for the precise heating of electronic devices over the range 25°C to 125°C during radiation tests.
- 3) The development, evaluation and calibration of a low-temperature system that can provide precise temperature control over the range of 25°C to -55°C during radiation tests.

Dose-rate dosimetry was performed using a calibrated PIN photodiode and wide-bandwidth oscilloscope. The peak equivalent dose rate achievable at the back surface of a wafer was shown to be in excess of 2×10^{12} rad/sec. A system was designed to measure the integrated energy of the pulsed laser beam transmitted to the wafer. This dosimetry system, which will allow variation and control of the radiation dose rates, includes a Brewster window assembly and a photodiode with associated circuitry to measure the pulse energy. Timing signals, generated by the laser control circuitry, are used for triggering.

At the time the program was initiated, the ability to conduct latch-up tests at high temperatures was of special interest. Latch-up testing on the Model 4100 System, however, requires the use of a transparent (glass) wafer chuck so that the back surface of the wafer can be irradiated with the laser pulse. The use of the glass chuck, which is a dielectric material, made it impossible to directly heat the chuck. Thus, a precision gas-forcing system was selected which can provide either high- or low-temperature streams of dry nitrogen gas. In addition to being compatible with the glass chuck, the use of dry gas to cool the wafer greatly reduces the problem of frost formation during low-temperature irradiations.

High-temperature wafer experiments were conducted using a heated-N₂ stream system installed in an ARACOR Model 4100 System. Measurements were made with silicon wafers on both a standard metallic chuck and a glass chuck. The gas flow, temperature range, and temperature stability of the equipment were adequate for rapid heating of the die under test (DUT) over the required temperature range. The temperature of the DUT was inferred from electrical measurements on a wafer of "thermometer" IC's manufactured by Precision Monolithic, Inc. Although the accuracy and controllability of the gas stream temperature was very good, the die temperature was found to be strongly dependent on wafer-chuck temperature. The thermal properties of the metallic chuck used in the total-dose tests resulted in slow thermal settling time when a large temperature difference between the die and the chuck was implemented. With the glass chuck, thermal time constants were shorter, but even in this setup, the sensitivity of the die temperature to the chuck temperature made accurate chuck calibration difficult. It was concluded that it is not practical to calibrate the temperature of the DUT by sensing the temperature of the gas stream only, and that additional knowledge of the chuck temperature was

required for accurate temperature calibration. Therefore, in order to provide acceptable temperature control, the gas stream must be implemented with direct temperature control of the chuck.

A cooled-N₂ stream system was also purchased and installed and found to work well (gas-flow rate optimization was required). All experiments were performed with the glass wafer chuck and with the same temperature measurement scheme as the high temperature work. A heated-gas stream was directed over the probe card to prevent frosting on the microscope. No environmental chamber was implemented and experiments were preformed at room ambient. With the dry-N₂ stream used to prevent frost formation on the wafer, temperatures to less than -40°C were possible before probe contact was interrupted, indicating that the N₂-stream inhibits the formation of frost over the wafer and other cooled components.

In summary, for both heating and cooling wafers for radiation tests, a knowledge of both the chuck temperature and the air stream temperature was found to be necessary for calibrating the die temperature. For Model 4100 Systems used only for total-dose measurements, a system combining a commercially-available temperature-controlled (metallic) chuck combined with an air stream system is proposed as the best solution for covering the entire -55° to +125° range. If tests are only to be conducted at elevated temperatures, the air stream is not required. To prevent frosting at low temperatures, the chuck temperature would be controlled to perhaps 0° to -20°C and the air stream would be used to lower die temperature to -55°C. A simple coaxial heated-gas stream combined with a semi-sealed environmental chamber should be sufficient to alleviate frosting at the lowest temperature. For low-temperature latch-up/dose-rate measurements, which require the glass chuck, accurate temperature control requires the addition of temperature sensors on the wafer. As an alternative, latch-up experiments over an extended temperature could be implemented by direct electrical measurements of test transistors/diodes on the wafer.

TABLE OF CONTENTS

Section	Page
EXECUTIVE SUMMARY.....	iii
LIST OF ILLUSTRATIONS	vii
1 INTRODUCTION	1
2 DOSIMETRY AND TIMING CIRCUITRY	3
2.1 Dosimetry	3
2.2 Control Circuitry	6
3 HIGH TEMPERATURE TESTING	9
4 LOW TEMPERATURE TESTING	20
5 SUMMARY	23
APPENDIX	25

LIST OF ILLUSTRATIONS

Figure	Page
1 Diode Dosimetry Circuit	4
2 Intensity Control System	7
3 Simplified Schematic, Charge Measurement	8
4 Schematic Thermal-Control Adapter	10
5 Time response 120 ⁰ C gas temperature.....	12
6 Time response, 80 ⁰ C gas temperature.....	13
7 Die stability test using overshoot method (selected 100 ⁰ C).....	15
8 Die stability test using overshoot method (selected 105 ⁰ C).....	16
9 Die stability test using overshoot method (selected 110 ⁰ C).....	17
10 Die stability test using overshoot method (selected 120 ⁰ C).....	18
11 Die stability test using overshoot method (selected 125 ⁰ C).....	19
12 Varying temperature setting die cooling test.....	21
13 One set temperature die cooling test.....	22

SECTION 1

INTRODUCTION

Advanced Research and Applications Corporation (ARACOR) was awarded a Phase I contract by DNA under the 1985 DoD Small Business Innovation Research program. The focus of this contract was on evaluating the feasibility of and developing a breadboard apparatus for providing controlled temperatures over the range of -55°C to 125°C during the radiation testing of electronic devices at the wafer stage of production. The program also resulted in the development of timing and dosimetry circuitry for the pulsed-laser testing of devices for latch-up and dose-rate effects. The circuitry and temperature-control breadboards were designed for integration into the ARACOR Model 4100 Automatic Semiconductor Irradiation System.

Until the development of the Model 4100 System, which is described in the Appendix, radiation-hardness testing required the use of fixed-site facilities, such as linear accelerators (LINACS), flash x-ray sources, and Cobalt-60 sources. These sources are expensive to procure, maintain, and calibrate, and are also usually remote to the device fabrication and testing areas, since they involve the possibility of radiation hazard. In addition, LINACS and suitable flash x-ray sources are only available at a limited number of sites. Thus, radiation testing often imposes considerable inconvenience and cost for travel and set-up at a remote location. The complexity and expense associated with such sources is magnified if testing at precisely-controlled low and high temperatures are required.

The Model 4100 System provides unique advantages for the radiation testing of DoD electronic parts. Total-dose radiation tests are performed at the wafer level during the die probing sequence, using a collimated x-ray source in an interlocked system. A technique for non-destructive dose-rate and latch-up tests is being integrated into the system. This technique employs a pulsed infrared (IR) laser to irradiate the die under test from the backside to create a concentration of electron-hole pairs similar to those produced during LINAC or flash x-ray irradiations. Unlike tests using LINACS and flash x-ray machines, tests with the laser are non-destructive and, thus, 100% of the microcircuits on the wafer can be tested and then still be used.

The development of methods for controlling the wafer temperature during the radiation tests and circuitry to enable transient testing would provide a comprehensive radiation test capability for DoD laboratories and contractors. Since the Model 4100 provides for total-dose tests at high dose rates at the wafer stage of production, this radiation testing approach should have special value for testing VHSI circuits and for SDI-related radiation tests.

Latch-up models and experimental data show that both the susceptibility to latch-up and the latch-up/dose-rate characteristic of devices are influenced by temperature. The wafer chuck used for dose-rate and latch-up measurements must be transparent to IR radiation, therefore must be made of a dielectric material (quartz in the Model 4100) which is a poor thermal conductor. For this reason, direct heating and cooling of the chuck is not practical. After evaluating alternatives, a precision heated-gas stream, temperature-forcing system was selected for this program.

The development of a low-temperature capability (25°C to -55°C) is made complex by the necessity of preventing the development of frost or moisture on the die being tested. To achieve low temperatures, a cooled nitrogen-stream approach was implemented that is similar to that described for elevated temperatures. A reservoir of liquid nitrogen (LN_2) served as the source of gas for cooling the die being tested.

SECTION 2
DOSIMETRY AND TIMING CIRCUITRY

This task had two parts. The first part was to find a method for measuring the dose rate equivalent of the optical intensity at the backside of the wafer. The second part involved designing the circuitry which would allow automated control of the laser intensity at the backside of the wafer. The few timing signals produced by the laser control system were found adequate for synchronization needs.

2.1 DOSIMETRY.

The dose rate from Nd:YAG laser exposures in wafers was determined by measurements using calibrated PIN diodes. These diodes were previously calibrated for x-ray dosimeters as outlined in IEEE Transactions on Nuclear Science (Palkuti, Le Page, Vol. N5-29, No. 6, December 1982). By utilizing a 6-mil diode aperture and the circuit shown in Figure 1, peak photo currents ranging from 0.1 to 100 mA, could be measured above instrument noise and before diode saturation occurred. The diode sensitivity factor, F, determined from x-ray calibration exposures is

$$F = \frac{\dot{D}}{I_d} = \frac{1}{q K_g V_{ol}} = 2.5 \times 10^8 \text{ rad(Si)/s per mA .} \quad (1)$$

where q is the electron charge, K_g is the generation rate, V_{ol} is the sensitive volume of the diode and \dot{D}/I_d is the dose rate absorbed at the diode front surface divided by the diode current.

The dose absorbed at the diode front surface, I_d, as a ratio of the incident laser flux density, I₀, can be determined based on reflections at the two diode surfaces and absorption in the diode bulk as follows:

FIGURE 1. Diode dosimetry circuit.

$$\frac{I_d}{I_0} = \frac{(1-R)(1+A_d^2 R)}{1-A_d^2 R^2} \quad (2)$$

where

$$A_d = \exp(-\alpha_d t_d) \quad (3)$$

and α_d is the absorption coefficient of the diode material, t_d is the diode thickness and R is the reflection coefficient at the diode surfaces. The dose rate at the front surface of a wafer can be determined by a measurement of the incident, I_0 , and transmitted flux, I_t , as measured by the calibrated diode. The ratio of the incident-to-transmitted flux measured on an un-oxidized silicon test wafer can be utilized to determine the absorption coefficient of the wafer as follows:

$$\frac{I_t}{I_0} = \frac{(1-R^2) \exp(-\alpha_w t_w)}{1-R^2 \exp^2(-\alpha_w t_w)} \approx 0.5 \exp(-\alpha_w t_w) \quad (4)$$

Then, the ratio of front-surface dose rate to the diode dose rate can be determined from

$$\frac{I_f}{I_d} = 1.25 \exp(-\alpha_w t_w) \quad (5)$$

where $R = 0.3$ has been utilized for silicon at the Nd:YAG wavelength. Thus, measurement of the incident and transmitted flux with the diode yields the front-surface dose rate as follows:

$$D_f = 2.5 \left(\frac{I_t}{I_0} \right) I_d \cdot F \quad (6)$$

Since the absorption in the wafer depends on the type of wafer doping type, doping density and wafer thickness, it is necessary to determine the ratio (I_t/I_0) as the factor A_w for each type of wafer normally encountered in applications. Some typical values for this factor are listed in Table I for some common wafer types. Since the front surface absorption (proportional to $\alpha_w \exp^{-\alpha_w t_w}$) is not a strong function of α_w , the variations in doping for similar wafers will not necessitate individual wafer calibrations.

Table I. Values of A_w for some typical silicon wafers used in device fabrication.

Wafer Size	$A_w = \exp(-\alpha_w t_w)$			
	n bulk	p bulk	nn ⁺ epitaxial	pp ⁺ epitaxial
3-inch	0.47	0.33	0.33	0.13
100 mm	0.35	0.20	0.20	0.06
125 mm	0.29	0.15	0.15	0.03
150 mm	0.26	0.13	0.13	0.02

2.2 CONTROL CIRCUITRY.

Control of the laser intensity of the Model 4100 occurs in two stages (Figure 2). First, a remotely-controlled rotatable polarizer assembly, called a Beam Attenuator Module (BAM), allows continuous variation of the intensity over two orders of magnitude. On the output side of the BAM, a transparent window set very near the Brewster angle reflects a small portion of the laser beam to a photodiode detector. Additional attenuation of up to four orders of magnitude is provided by a remotely controlled set of calibrated attenuators. Under this program, circuitry was designed to measure the photocharge produced in the photodiode at the output of the BAM, which allows the internal control system of the Model 4100 to set and control the intensity in a closed-loop fashion. Thus, variations in laser output due to time-dependent effects are essentially eliminated and a constant intensity is obtained.

A simplified schematic is shown in Figure 3. The photodiode is reverse biased to prevent photocurrent saturation. A simple RC network stores the charge for several microseconds before a sample and hold circuit, controlled by a signal synchronized to the laser Q-switch, acquires a voltage proportional to the charge. This voltage is sent to an A/D converter in the Model 4100 control system. A one-shot provides a 25 mS signal pulse to the control system processor as an indication that the signal is available for digitization.

FIGURE 2: Intensity control system.

FIGURE 3. Simplified schematic, charge measurement.

SECTION 3

HIGH-TEMPERATURE TESTING

A Thermonics Model T-2100H precision temperature-forcing system (PTFS), combined with a probe-card-mounted thermal-control adaptor, was used to conduct high-temperature tests. This system produces a heated-gas (N_2) stream, which was used to control the temperature of the die under test. To achieve temperature and flow control of the gas stream, the N_2 enters the back of the PTFS and passes through a pressure regulator which controls the flow of gas to the desired level, as set by an appropriate flow knob. After the N_2 exits the pressure regulator, it passes through a venturi which is used to measure the flow of N_2 . The pressure differential created across the venturi is sensed by a solid-state pressure transducer and converted to flow and be displayed on a flow meter.

After the N_2 exits the venturi, it enters the air heater which changes the temperature of the gas to the level specified on the temperature controller. The gas, upon exiting the air heater, is directed to the entrance of the thermal-control adaptor through a flexible hose. The hot gas passes through the thermal-control adaptor and is directed to the die by a series of gas ports located about 3 mm above the wafer surface. At the exit of the gas ports, a series of solid-state temperature transducers sense the gas temperature. If the temperature is below the set level, the temperature controller will turn the heater until the desired temperature is reached. Once the desired temperature is established, the temperature controller will pulse the heater, as required, to maintain the gas temperature to $\pm 1^\circ C$ of the set value.

The thermal-control adaptor was attached above the transparent chuck assembly as shown schematically in Figure 4. To heat or cool the device being tested, a stream of dry gas (i.e., nitrogen) generated by the PTFS was directed through ports in the thermal-control adaptor downward through the radiation collimator onto the portion of the wafer containing the die being tested.

After reviewing methods for measuring the stability and uniformity of the temperature at the location of the die being irradiated, a PMI Ref-02 Precision

FIGURE 4: Schematic thermal-control adapter.

Voltage Reference/Temperature Transducer was selected. Typically, the Ref-02 transducer is purchased as a packaged part. However, for these experiments, ARACOR obtained a four-inch wafer containing many of these reference/temperature transducers. A probe card was used to apply bias to the circuits and to readout the temperature-proportional voltage. The Ref-02 has principal application as a precision voltage reference providing a stable +5V output. However, in a proper circuit, the Ref-02 can be used as an electronic thermometer providing a voltage output that is a direct measurement of temperature. This application uses the predictable 2.1 mV/°C output voltage temperature coefficient, which is a byproduct of a bandgap voltage reference design.

The PTFS, the thermal-control adaptor and the PMI Ref-02 unit were integrated with an ARACOR Model 4100 Automatic Semiconductor Irradiation System and experiments to insure operation over the full temperature range and to evaluate stability and reproducibility were initiated.

The experiments were designed to evaluate the thermal time response and stability of the wafer/chuck/PTFS combination. Measurements were made on a quartz chuck system. The die temperature response showed two components: a fast component attributed to wafer heating, and a slow component attributed to chuck heating. Figures 5 and 6 show the overall time response for a 400-cubic-foot-per-hour (CFH) gas flow at set temperatures of 120°C and 80°C, respectively. The first steep rise of the die temperature indicates that the die reaches an approximate equilibrium between the gas stream and chuck temperature in about 5-6 minutes. After this, the chuck temperature continues to rise at a much slower rate, raising the die temperature approximately 3-to-4°C after 40 minutes.

In order to reach the desired die temperature more quickly, a procedure was developed to "overdrive" the temperature and bring the die/chuck combination to the desired equilibrium temperature. The approximate overdrive temperature for a given equilibrium die temperature was determined empirically by heating experiments. Utilizing this approach, the gas stream is used to quickly heat the

FIGURE 5. Time response 120°C gas temperature.

FIGURE 6. Time response, 80°C gas temperature.

die beyond the set temperature and then to allow the die to cool to the selected equilibrium temperature. In this manner, stable temperature operation was achieved without requiring the long stabilization time for the wafer chuck.

The procedure for achieving a target die temperature in roughly 6 minutes is illustrated by the graphs in Figures 7 through 11. The gas stream temperature is initially set to a high temperature to preheat the chuck quickly; after a preset time interval, the gas stream temperature is lowered and the die stabilizes at the desired temperature.

This procedure was exercised enough to indicate its usefulness for a prototype die temperature controller. However, the initial system temperatures (ambient, chuck, die) affect the end temperature and system drift. This is especially true in going up or down from one elevated temperature to another. Chuck temperature control and/or sensing would be required to accurately set the die temperature.

FIGURE 7. Die stability test using overshoot method (selected 100°C).

FIGURE 8. Die stability test using overshoot method (selected 105°C).

FIGURE 9. Die stability test using overshoot method (selected 110°C).

FIGURE 10. Die stability test using overshoot method (selected 120°C).

FIGURE 11. Die stability test using overshoot method (selected 125°C).

SECTION 4

LOW TEMPERATURE TESTING

A Thermonics Model T-2050 PTFS was procured and used for the low temperature testing. This system is designed to provide both high and low gas stream temperatures. For high temperatures, the system operates like the Model T2100H described above. For low temperatures, a liquid nitrogen (LN_2) source is required. LN_2 enters the system through a pressure relief and shutoff valve and enters a heated vaporizer. Nitrogen exits the vaporizer at a very low temperature (-90°C) and enters a heater where it is brought up to the desired temperature.

The experimental setup was similar to that for the high-temperature testing. The cold nitrogen was directed to the die through the thermal-control adaptor. A stream of room-temperature nitrogen was passed through a heater and directed across the microscope viewing window and probe-card components to prevent frosting. All experiments were conducted in room ambient without the use of environmental chambers or a "dry box". The wafer of PMI Ref-02s and probe card were used to determine the die temperature.

The setup provided a sufficient gas flow at low temperatures to drive the die temperature well below the required -55°C. However, the back pressure of the adaptor gas plenum restricted the flow sufficiently to prevent good regulation of temperature. The result was that the die temperature was always driven below the desired temperature.

Experiments were conducted to evaluate sensitivity to frosting. To achieve frost-free operation with a cooled chuck at a temperature of -55°C requires control of the ambient relative humidity to less than .1%. With the gas-stream, we achieved temperatures of less than -45°C without frosting and with no attempt to control ambient humidity. Data from the experiments are illustrated in Figures 12 and 13. Since the gas stream developed from liquid nitrogen is very dry, the immediate volume around the cooled die is very low in humidity. Some mixing with ambient air still occurs, however, causing frosting at the lowest range of temperatures.

FIGURE 12. Varying temperature setting die cooling test.

FIGURE 13. One set temperature die cooling test.

SECTION 5

SUMMARY

Dosimetry was designed to monitor the laser-pulse energy of the Nd:YAG laser used for dose-rate applications and prototype was built and tested. The design is now incorporated into the Model 4100 dose-rate testing system.

Experiments were conducted to evaluate the use of a heated-gas stream system for heating and controlling die temperature for dose rate and total dose systems. The ability to heat the die to sufficient temperatures (125°C) was demonstrated, using a gas-stream system for a quartz chuck. Experiments with a quartz chuck indicated a strong dependence of die temperature on chuck temperature. For accurate die temperature stabilization, the control of both the chuck- and gas-stream temperatures was required. Therefore, for accurate temperature stabilization, temperature-sensing structures on the die could be used as feedback elements in a temperature-control system. In systems with a metallic chuck, such as a Model 4100 used for total-dose testing, a temperature controlled chuck is a better method for temperature testing.

Experiments were conducted to evaluate the use of a cooled-gas stream system for cooling and controlling die temperature for Model 4100 dose rate applications. The ability to cool a die temperature below the -55°C limit was demonstrated. Good immunity to frosting resulting from the use of the dry gas stream was demonstrated. Since the die temperature is influenced by the chuck temperature, requires the chuck temperature must be controlled to achieve stable die temperatures.

For temperature-stabilized radiation tests involving transient and total-dose irradiations, different methods may be necessary for die temperature control. For dose-rate applications which require a transparent quartz chuck, a hot/cold gas-stream system could be used, using feedback from a temperature-sensing structure on the device under test (DUT) to control the die temperature. For total-dose testing, a combination system using a cooled-gas-stream system and a hot/cold chuck is proposed. For elevated temperatures, the heated chuck is sufficient.

For low temperatures, the chuck would be stabilized at a moderately low temperature (perhaps between 0 and -20°C), and the dry gas stream would be used to decrease the die temperature to the desired temperature. A chamber around the wafer chuck area would be required to decrease mixing of the cold gas stream with ambient air near the DUT.

APPENDIX

Model 4100

AUTOMATIC SEMICONDUCTOR IRRADIATION SYSTEM

ARACOR®

Model 4100 Automatic Semiconductor Irradiation System

Now, for the first time, conduct *total-dose* tests, dose-rate tests, or study *latchup* phenomena of devices or complex ICs at the *wafer level* in your laboratory or testing area. No other radiation sources are required. You can determine if a wafer meets space and DoD total-dose, dose-rate, and latchup criteria in minutes. Think of the economy and convenience associated with fast, accurate wafer-level tests that correlate directly with other approaches to radiation testing. Because the dose-rate and latchup measurements impart no damage, you can test 100% of the die on the wafer.

Comprehensive Radiation Testing.
Transient tests are performed with a tungsten x-ray tube; the primary dose derives from the 10keV L-line x-rays. Dose-rate and latchup tests are made with a Nd:YAG laser pulse through the back of the wafer. Results correlate with cobalt 60 and linear accelerator exposures.

Easy Interface with Modern ATE.

All Model 4100 Systems are designed to interface with either functional or parametric test systems for production-site testing of VLSI devices. Both low-current and high-speed test capabilities are provided by a controlled impedance tester interface.

Saves Time and Reduces Expenses.

On-site, wafer stage testing eliminates the lost production time required for device packaging and the high cost of off-site testing. It also permits the rejection of unsatisfactory wafers, rather than the rejection of completely fabricated production lots.

Evaluate Internal Latchup Margins.
Even if you are not interest in a device's radiation sensitivity or building radiation specifications, you can verify internal latchup margins of complex CMOS VLSI devices. The latchup design allows latchup testing of standard and epitaxial wafers. Just the temperature controller provides the ability to vary the temperature of the wafer up to 125°C.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE	NATIONAL COMMUNICATIONS SYSTEM
ASSISTANT TO THE SECRETARY OF DEFENSE	ATTN: NCS-TS ATTN: NCS-TS D BODSON
ATOMIC ENERGY	
ATTN: EXECUTIVE ASSISTANT	
DEF RSCH & ENGRG	DEPARTMENT OF THE ARMY
ATTN: STRAT & SPACE SYS (OS)	HARRY DIAMOND LABORATORIES
ATTN: STRAT & THTR NUC FOR/F VAJDA	ATTN: SCHLD-NW-P ATTN: SLCHD-NW-EC ATTN: SLCHD-NW-R ATTN: SLCHD-NW-RA ATTN: SLCHD-NW-RC ATTN: SLCHD-NW-RH
DEFENSE ADVANCED RSCH PROJ AGENCY	
ATTN: R REYNOLDS	
DEFENSE ELECTRONIC SUPPLY CENTER	NUCLEAR EFFECTS DIVISION
ATTN: DEFC-EAA	ATTN: R WILLIAMS
DEFENSE INTELLIGENCE AGENCY	U S ARMY BALLISTIC RESEARCH LAB
ATTN: DT-1B	ATTN: SLCBR-VL D RIGOTTI
ATTN: RTS-2B	
DEFENSE LOGISTICS AGENCY	U S ARMY COMMUNICATIONS R&D COMMAND
ATTN: DLA-QEL W T HUDDLESON	ATTN: DRSEL-NL-RO R BROWN
ATTN: DLA-SEE F HARRIS	
DEFENSE NUCLEAR AGENCY	U S ARMY ELECTRONIC TECH DEV LAB
3 CYS ATTN: RAEE (TREE)	ATTN: SLCET-SI (R. ZETO)
4 CYS ATTN: TITL	
DEFENSE TECHNICAL INFORMATION CENTER	U S ARMY ENGINEER DIV HUNTSVILLE
12 CYS ATTN: DD	ATTN: HNDED-ED J HARPER
DNA PACOM LIAISON OFFICE	U S ARMY MATERIAL TECHNOLOGY LABORATORY
ATTN: DNALO	ATTN: DRXMR-B J HOFMANN ATTN: DRXMR-HH J DIGNAM
FIELD COMMAND DEFENSE NUCLEAR AGENCY	U S ARMY MISSILE COMMAND
ATTN: FCPF R ROBINSON	ATTN: AMSMI-LC-FS, G. THURLOW
ATTN: FCTT	3 CYS ATTN: DOCUMENTS, AMSMI-RD-CS-R
ATTN: FCTXE	ATTN: HAWK PROJECT OFFICER
FIELD COMMAND DNA DET 2	
LAWRENCE LIVERMORE NATIONAL LAB	U S ARMY NUCLEAR & CHEMICAL AGENCY
ATTN: FC-1	ATTN: LIBRARY
JOINT DATA SYSTEM SUPPORT CTR	U S ARMY RESEARCH OFFICE
ATTN: C-312 R MASON	ATTN: R GRIFFITH
ATTN: C-330	
JOINT STRAT TGT PLANNING STAFF	U S ARMY STRATEGIC DEFENSE COMMAND
ATTN: JK (ATTN: DNA REP)	ATTN: ATC-O F HOKE
ATTN: JKCS	ATTN: DASD-H-L
ATTN: JPEP	ATTN: DASD-H-SAV
ATTN: JPPFD	
ATTN: JPTM	
	U S ARMY TEST AND EVALUATION COMD
	ATTN: AMSTE
	U S ARMY TRADOC SYS ANALYSIS ACTVY
	ATTN: ATAA-TFC O MILLER

DNA-TR-86-423 (DL CONTINUED)

US ARMY WHITE SANDS MISSILE RANGE
ATTN: STEWS-TE-AN A DE LA PAZ
ATTN: STEWS-TE-AN J MEASON

USAG
ATTN: TECH REF DIV

XM-1 TANK SYSTEM
ATTN: DRCPM-GCM-SW

DEPARTMENT OF THE NAVY

NAVAL AIR SYSTEMS COMMAND
ATTN: AIR 350F
ATTN: AIR 931A

NAVAL AVIONICS CENTER
ATTN: CODE B455 D REPASS

NAVAL ELECTRONICS ENGRG ACTVY, PACIFIC
ATTN: CODE 250 D O'BRYHIM

NAVAL INTELLIGENCE SUPPORT CTR
ATTN: NISC LIBRARY

NAVAL OCEAN SYSTEMS CENTER
ATTN: CODE 9642 (TECH LIB)

NAVAL POSTGRADUATE SCHOOL
ATTN: CODE 1424 LIBRARY

NAVAL RESEARCH LABORATORY
ATTN: CODE 4040 J BORIS
ATTN: CODE 4154 J H ADAMS
ATTN: CODE 4612 D WALKER
ATTN: CODE 4614 L AUGUST
ATTN: CODE 4652 G MUELLER
ATTN: CODE 5813 N SAKS
ATTN: CODE 5813 W JENKINS
ATTN: CODE 5814 D MCCARTHY
ATTN: CODE 5816 E D RICHMOND
ATTN: CODE 5816 R LAMBERT
ATTN: CODE 6816 H HUGHES

NAVAL SURFACE WEAPONS CENTER
ATTN: CODE H21 F WARNOCK
ATTN: CODE H23 R SMITH

NAVAL SURFACE WEAPONS CENTER
ATTN: CODE H-21

NAVAL UNDERWATER SYS CENTER
ATTN: 8092

NAVAL WEAPONS CENTER
ATTN: CODE 343 (FKA6A2) (TECH SVCS)

NAVAL WEAPONS EVALUATION FACILITY
ATTN: CLASSIFIED LIBRARY

NAVAL WEAPONS SUPPORT CENTER
ATTN: CODE 6054 D PLATTETER

OFC OF THE DEP ASST SEC OF THE NAVY
ATTN: L J ABELLA

OFC OF THE DEPUTY CHIEF OF NAVAL OPS
ATTN: NOP 985F

OFFICE OF NAVAL RESEARCH
ATTN: CODE 1114

OPERATIONAL TEST & EVALUATION FORCE
ATTN: CODE 80

SPACE & NAVAL WARFARE SYSTEMS CMD
ATTN: CODE 50451
ATTN: CODE 81341 C SUMAN
ATTN: NAVELEX 51024 C WATKINS
ATTN: PME 117-21

STRATEGIC SYSTEMS PROGRAM OFFICE (PM-1)
ATTN: NSP-2301
ATTN: NSP-2701
ATTN: NSP-27331
ATTN: NSP-27334

DEPARTMENT OF THE AIR FORCE

AERONAUTICAL SYSTEMS DIVISION
ATTN: ASD/ENES (P MARTH)
ATTN: ASD/ENSS

AIR FORCE CTR FOR STUDIES & ANALYSIS
2 CYS ATTN: AFCSA/SAMI (R GRIFFIN)

AIR FORCE INSTITUTE OF TECHNOLOGY/EN
ATTN: AFIT/ENP C BRIDGMAN
ATTN: LIBRARY/AFIT/LDEE

AIR FORCE SYSTEMS COMMAND
ATTN: DLCAM
ATTN: DLW

AIR FORCE WEAPONS LABORATORY, NTAAB
ATTN: NTAAB C BAUM
ATTN: NTC M SCHNEIDER
ATTN: NTCAJ FERRY
ATTN: NTCAJ MULLIS
ATTN: NTCT MAJ HUNT
ATTN: NTCTR CAPT RIENSTRA
ATTN: SUL

AIR FORCE WRIGHT AERONAUTICAL LAB
ATTN: POOC-2 J WISE

AIR FORCE WRIGHT AERONAUTICAL LAB
ATTN: AFWAL/AADE
ATTN: AFWAL/MLTE

DNA-TR-86-423 (DL CONTINUED)

AIR UNIVERSITY LIBRARY
ATTN: AUL-LSE

BALLISTIC MISSILE OFFICE/DAA
ATTN: ENFI
ATTN: ENSE
ATTN: ENSN

ELECTRONIC SYSTEMS DIVISION/IN
ATTN: INDC

FOREIGN TECHNOLOGY DIVISION, AFSC
ATTN: R MAINGER

OFFICE OF SPACE SYSTEMS
ATTN: DIRECTOR

OGDEN AIR LOGISTICS COMMAND
ATTN: OO-ALC/MMEDD/HARD CONTROL
ATTN: OO-ALC/MMGR/DOC CONTROL

OKLAHOMA CITY AIR LOGISTICS CTR
ATTN: DMM/R WALLIS

ROME AIR DEVELOPMENT CENTER, AFSC
ATTN: RBR J BRAUER

ROME AIR DEVELOPMENT CENTER, AFSC
ATTN: ESR J SCHOTT

SPACE DIVISION/AQ
ATTN: ALT

SPACE DIVISION/YA
ATTN: YAS

SPACE DIVISION/YAR
ATTN: YAR CAPT STAPANIAN

SPACE DIVISION/YD
ATTN: YD

SPACE DIVISION/YE
ATTN: YE

SPACE DIVISION/YG
ATTN: YG

SPACE DIVISION/YN
ATTN: YN

STRATEGIC AIR COMMAND/INA
ATTN: INA

STRATEGIC AIR COMMAND/NRI-STINFO
ATTN: NRI/STINFO

STRATEGIC AIR COMMAND/XPFC
ATTN: XPFS

TACTICAL AIR COMMAND/XPJ
ATTN: TAC/XPJ

3416TH TECHNICAL TRAINING SQUADRON (ATC)
ATTN: TTV

DEPARTMENT OF ENERGY

DEPARTMENT OF ENERGY
ATTN: ESHD

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE NATIONAL LAB
ATTN: L-13 D MEEKER
ATTN: L-156 J YEE
ATTN: L-156 R KALIBJIAN
ATTN: L-53 TECH INFO DEPT. LIBRARY
ATTN: L-84 H KRUGER
ATTN: W ORVIS

LOS ALAMOS NATIONAL LABORATORY
ATTN: D LYNN
ATTN: E LEONARD

SANDIA NATIONAL LABORATORIES
ATTN: ORG 2126 J E GOVER
ATTN: ORG 2144 P V DRESSENDORFER
ATTN: ORG 2146 T A DELLIN
ATTN: ORG 5152 J L DUNCAN
ATTN: T F WROBEL 2126

OTHER GOVERNMENT

CENTRAL INTELLIGENCE AGENCY
ATTN: OSWR/NED
ATTN: OSWR/STD/MTB

DEPARTMENT OF TRANSPORTATION
ATTN: ARD-350

NASA
ATTN: CODE 660 J TRAINOR
ATTN: CODE 695 M ACUNA
ATTN: CODE 724.1 M JHABVALA

NASA
ATTN: M BADDOUR

NASA HEADQUARTERS
ATTN: CODE DP B BERNSTEIN

NATIONAL BUREAU OF STANDARDS
ATTN: C WILSON
ATTN: CODE A327 H SCHAFFT
ATTN: CODE A347 J MAYO-WELLS
ATTN: CODE A353 S CHAPPELL
ATTN: CODE C216 J HUMPHREYS
ATTN: T RUSSELL

DEPARTMENT OF DEFENSE CONTRACTORS

ADVANCED RESEARCH & APPLICATIONS CORP
2 CYS ATTN: L PALKUTI

DNA-TR-86-423 (DL CONTINUED)

2 CYS ATTN: M PUGH
ATTN: R ARMISTEAD

AEROJET ELECTRO-SYSTEMS CO
ATTN: D TOOMB
ATTN: P LATHROP

AEROSPACE CORP
ATTN: C E BARNES
ATTN: D FRESH
ATTN: D SCHMUNK
ATTN: G GILLEY
ATTN: I GARFUNKEL
ATTN: J REINHEIMER
ATTN: J STOLL
ATTN: J WIESNER
ATTN: J B BLAKE
ATTN: K T WILSON
ATTN: M DAUGHERTY
ATTN: N SRAMEK
ATTN: P BUCHMAN
ATTN: R SLAUGHTER
ATTN: W CRANE
ATTN: W KOLASINSKI

ALLIED CORP
ATTN: DOCUMENT CONTROL

ALLIED CORP, BENDIX FLIGHT
ATTN: E MEEDER

AMPEX CORP
ATTN: K WRIGHT
ATTN: P PEYROT

ANALYTIC SERVICES, INC (ANSER)
ATTN: A SHOSTAK
ATTN: J OSULLIVAN
ATTN: P SZYMANSKI

AVCO SYSTEMS DIVISION
ATTN: D SHRADER

BDM CORP
ATTN: C M STICKLEY

BDM CORP
ATTN: D WUNSCH

BEERS ASSOCIATES, INC
ATTN: B BEERS

BOEING CO
ATTN: M ANAYA
ATTN: C ROSENBERG
ATTN: A JOHNSTON
ATTN: D EGELKROUT
ATTN: E L SMITH
ATTN: I ARIMURA
ATTN: R CALDWELL

ATTN: H WICKLEIN
ATTN: W DOHERTY
ATTN: O MULKEY
ATTN: C DIXON

CALIFORNIA INSTITUTE OF TECHNOLOGY
ATTN: W PRICE

CALSPAN CORP
ATTN: R THOMPSON

CHARLES STARK DRAPER LAB, INC
ATTN: J BOYLE
ATTN: N TIBBETTS
ATTN: P GREIFF
ATTN: W D CALLENDER

CINCINNATI ELECTRONICS CORP
ATTN: L HAMMOND

CLARKSON COLLEGE OF TECHNOLOGY
ATTN: P J MCNULTY

COMPUTER SCIENCES CORP
ATTN: A SCHIFF

DAVID SARNOFF RESEARCH CENTER, INC
ATTN: R SMELTZER

DENVER COLORADO SEMINARY UNIVERSITY OF
ATTN: SEC OFFICER FOR F VENDITTI

E-SYSTEMS, INC
ATTN: K REIS

E-SYSTEMS, INC
ATTN: DIVISION LIBRARY CBN-38

EATON CORP
ATTN: R BRYANT

ELECTRONIC INDUSTRIES ASSOCIATION
ATTN: J KINN

FORD AEROSPACE & COMMUNICATIONS CORP
ATTN: TECHNICAL INFORMATION SERVICES

GENERAL ELECTRIC CO
ATTN: DOCUMENTS LIBRARY
ATTN: H ODONNELL
ATTN: J ANDREWS
ATTN: R BENEDICT
ATTN: R CASEY

GENERAL ELECTRIC CO
ATTN: B FLAHERTY
ATTN: G BENDER
ATTN: L HAUGE

GENERAL ELECTRIC CO
ATTN: G GATI MD

DNA-TR-86-423 (DL CONTINUED)

GENERAL ELECTRIC CO
ATTN: C HEWISON
ATTN: D COLE

GENERAL ELECTRIC CO
ATTN: J MILLER

GENERAL RESEARCH CORP
ATTN: A HUNT

GEORGE WASHINGTON UNIVERSITY
ATTN: A FRIEDMAN

GRUMMAN AEROSPACE CORP
ATTN: J ROGERS

GTE GOVERNMENT SYSTEMS CORPORATION
ATTN: J A WALDRON

HARRIS CORP
ATTN: E YOST
ATTN: W ABARE

HARRIS CORP
ATTN: J W SWONGER

HONEYWELL, INC
ATTN: D HEROLD
ATTN: D LAMB
ATTN: D NIELSEN
ATTN: R BELT
ATTN: R GUMM

HONEYWELL, INC
ATTN: MS 725-5
ATTN: MS 830-4A

HUGHES AIRCRAFT CO
ATTN: W SCHENET

HUGHES AIRCRAFT CO
ATTN: J HALL

HUGHES AIRCRAFT COMPANY
ATTN: A NAREVSKY
ATTN: E KUBO
ATTN: L DARDA

IBM CORP
ATTN: H MATHERS

IBM CORP
ATTN: J ZIEGLER

IBM CORP
ATTN: A EDENFELD
ATTN: N HADDAD

IIT RESEARCH INSTITUTE
ATTN: A K BUTI
ATTN: I MINDEL

ILLINOIS COMPUTER RESEARCH, INC
ATTN: E S DAVIDSON

INSTITUTE FOR DEFENSE ANALYSES
ATTN: TECH INFO SERVICES

IRT CORP
ATTN: J AZAREWICZ
ATTN: J HARRITY
ATTN: M ROSE
ATTN: MDC
ATTN: R MERTZ

JAYCOR
ATTN: M TREADAWAY
ATTN: R STAHL
ATTN: T FLANAGAN

JAYCOR
ATTN: R SULLIVAN

JAYCOR
ATTN: C ROGERS
ATTN: R POLL

JOHNS HOPKINS UNIVERSITY
ATTN: P PARTRIDGE
ATTN: R MAURER

JOHNS HOPKINS UNIVERSITY
ATTN: G MASSON/DEPT OF ELEC ENGR

KAMAN SCIENCES CORP
ATTN: K S-H LEE

KAMAN SCIENCES CORP
ATTN: C BAKER
ATTN: DIR SCIENCE & TECHNOLOGY DIV
ATTN: J JERSKINE
ATTN: N BEAUCHAMP
ATTN: W RICH

KAMAN SCIENCES CORP
ATTN: E CONRAD

KAMAN SCIENCES CORPORATION
ATTN: D PIRIO

KAMAN TEMPO
ATTN: DASIAC
ATTN: R RUTHERFORD
ATTN: W McNAMARA

KAMAN TEMPO
ATTN: DASIAC

LITTON SYSTEMS INC
ATTN: E L ZIMMERMAN
ATTN: F MOTTER

DNA-TR-86-423 (DL CONTINUED)

LOCKHEED MISSILES & SPACE CO, INC
ATTN: F JUNGA
ATTN: REPORTS LIBRARY

LOCKHEED MISSILES & SPACE CO, INC
ATTN: B KIMURA
ATTN: E HESSEE
ATTN: J C LEE
ATTN: J CAYOT
ATTN: L ROSSI
ATTN: P BENE
ATTN: S TAIMUTY

LTV AEROSPACE & DEFENSE COMPANY
ATTN: A.R. TOMME
ATTN: LIBRARY
ATTN: TECHNICAL DATA CENTER

MAGNAVOX ADVANCED PRODUCTS & SYS CO
ATTN: W HAGEMEIER

MARTIN MARIETTA CORP
ATTN: J TANKE
ATTN: J WARD
ATTN: W BRUCE
ATTN: R GAYNOR
ATTN: TIC/MP-30

MARTIN MARIETTA CORP
ATTN: T DAVIS

MARTIN MARIETTA DENVER AEROSPACE
ATTN: R ANDERSON
ATTN: R KASE
ATTN: RESEARCH LIBRARY

MARYLAND, UNIVERSITY OF
ATTN: H C LIN

MCDONNELL DOUGLAS CORP
ATTN: A P MUNIE
ATTN: D L DOHM
ATTN: M STITCH
ATTN: R L KLOSTER

MCDONNELL DOUGLAS CORP
ATTN: P ALBRECHT

MCDONNELL DOUGLAS CORP
ATTN: TECHNICAL LIBRARY

MISSION RESEARCH CORP
ATTN: C LONGMIRE

MISSION RESEARCH CORP
ATTN: R PEASE

MISSION RESEARCH CORP
ATTN: J LUBELL
ATTN: R CURRY
ATTN: W WARE

MISSION RESEARCH CORP, SAN DIEGO
ATTN: J RAYMOND

MITRE CORPORATION
ATTN: M FITZGERALD

MOTOROLA, INC
ATTN: A CHRISTENSEN

MOTOROLA, INC
ATTN: C LUND
ATTN: L CLARK
ATTN: O EDWARDS

NATIONAL SEMICONDUCTOR CORP
ATTN: F C JONES

NORDEN SYSTEMS, INC
ATTN: N RIEDERMAN
ATTN: TECHNICAL LIBRARY

NORTHROP CORP
ATTN: A BAHRAMAN
ATTN: J SROUR
ATTN: Z SHANFIELD

NORTHROP CORP
ATTN: E KING
ATTN: S STEWART

PACIFIC-SIERRA RESEARCH CORP
ATTN: H BRODE, CHAIRMAN SAGE

PHYSICS INTERNATIONAL CO
ATTN: J SHEA

R & D ASSOCIATES
ATTN: B LAMB
ATTN: M GROVER
ATTN: W KARZAS

RAND CORP
ATTN: C CRAIN
ATTN: P DAVIS

RAND CORP
ATTN: B BENNETT

RAYTHEON CO
ATTN: G JOSHI
ATTN: J CICCIO

RAYTHEON CO
ATTN: A VAN DOREN
ATTN: H FLESCHER

RCA CORP
ATTN: G BRUCKER
ATTN: V MANCINO

DNA-TR-86-423 (DL CONTINUED)

RCA CORP, MICROELECTRONICS CENTER
ATTN: E SCHMITT
ATTN: W ALLEN

RENSSELAER POLYTECHNIC INSTITUTE
ATTN: R GUTMANN

RESEARCH TRIANGLE INSTITUTE
ATTN: M SIMONS

ROCKWELL INTERNATIONAL CORP
ATTN: A ROVELL
ATTN: GA50 TIC/L G GREEN
ATTN: J BELL
ATTN: J BURSON

ROCKWELL INTERNATIONAL CORP
ATTN: TIC 124-203

ROCKWELL INTERNATIONAL CORP
ATTN: T YATES
ATTN: TIC BA08

SCIENCE APPLICATIONS INTL CORP
ATTN: D LONG
ATTN: D MILLWARD
ATTN: D STROBEL
ATTN: R J BEYSTER
ATTN: V ORPHAN
ATTN: V VERBINSKI

SCIENCE APPLICATIONS INTL CORP
ATTN: J SPRATT

SCIENCE APPLICATIONS INTL CORP
ATTN: W CHADSEY

SCIENCE APPLICATIONS INTL CORP
ATTN: P A ZIELIE

SINGER CO
ATTN: R SPIENGEL
ATTN: TECHNICAL INFORMATION CENTER

SPERRY CORP
ATTN: J INDIA

SPERRY CORP
ATTN: P MARROFFINO

SUNDSTRAND CORP
ATTN: C WHITE

SYSTEM DEVELOPMENT CORP
ATTN: PRODUCT EVALUATION LABORATORY

SYSTRON-DONNER CORP
ATTN: J RAY

TELEDYNE BROWN ENGINEERING
ATTN: G R EZELL

TELEDYNE SYSTEMS CO
ATTN: R SUHRKE

TEXAS INSTRUMENTS, INC
ATTN: E JEFFREY
ATTN: F POBLENZ
ATTN: T CHEEK

TRW ELECTRONICS & DEFENSE SECTOR
ATTN: A WITTELES
ATTN: D CLEMENT
ATTN: F FRIEDT
ATTN: H HOLLOWAY
ATTN: M S ASH
2 CYS ATTN: O ADAMS
ATTN: P GUILFOYLE
ATTN: P R REID
2 CYS ATTN: R PLEBUCH
ATTN: R VON HATTEN
ATTN: TECH INFO CTR, DOC ACQ
ATTN: W ROWAN
ATTN: W WILLIS

TRW ELECTRONICS & DEFENSE SECTOR
ATTN: C BLASNEK
ATTN: F FAY
ATTN: J GORMAN

VISIDYNE, INC
ATTN: C H HUMPHREY
ATTN: W P REIDY

WESTINGHOUSE ELECTRIC CORP
ATTN: D GRIMES
ATTN: H KALAPACA
ATTN: R CRICCHI

WESTINGHOUSE ELECTRIC CORP
ATTN: S WOOD

END

9 → 87

DTIC