PATENT 2091-0240P

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant:

Fumito TAKEMOTO

Conf.:

8383

Appl. No.:

09/842,908

Group:

Filed:

April 27, 2001

Examiner:

For QE JUNE

IMAGE PROCESSING METHOD, IMAGE PROCESSING APPARATUS AND RECORDING MEDIUM STORING PROGRAM THEREFOR

LETTER

Assistant Commissioner for Patents Washington, DC 20231

August 21, 2001

Sir:

Under the provisions of 35 U.S.C. § 119 and 37 C.F.R. § 1.55(a), the applicant(s) hereby claim(s) the right of priority based on the following application(s):

Country	Application No.	Filed
JAPAN	2000-130526	April 28, 2000
JAPAN	2000-130600	April 28, 2000
JAPAN	2000-130601	April 28, 2000
JAPAN	2001-078312	March 19, 2001
JAPAN	2001-078366	March 19, 2001

A certified copy of the above-noted application(s) is(are) attached hereto.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fee required under 37 C.F.R. §§ 1.16 or 1.17; particularly, extension of time fees.

Respectfully submitted

BIRCH, STEWARZ

CH & BIRCH, LLP

By

Michael K. Mutter, #29,680

P.O. Box 747

Falls Church, VA 22040-0747

(703) 205-8000

MKM/jdj 2091-0240P Attachment

(Rev. 01/22/01)

日本国特許庁 PATENT OFFICE JAPANESE GOVERNMENT 2091-02408 09/842,908 4/27/01 Fumito TAKEHOTO BSKB 703-205-8000

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 額 年 月 日 Date of Application:

2000年 4月28日

出 願 番 号 Application Number:

特願2000-130526

出 願 Applicant (s):

富士写真フイルム株式会社

人

CERTIFIED COPY OF PRIORITY DOCUMENT

2001年 3月 9日

特許庁長官 Commissioner, Patent Office

特2000-130526

【書類名】 特許顯

【整理番号】 P25210J

【あて先】 特許庁長官 近藤 隆彦 殿

【国際特許分類】 G06T 5/20

H04N 5/325

H03M 7/30

【発明者】

【住所又は居所】 神奈川県足柄上郡開成町宮台798番地 富士写真フィ

ルム株式会社内

【氏名】 竹本 文人

【特許出願人】

【識別番号】 000005201

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】 100073184

【弁理士】

【氏名又は名称】 柳田 征史

【選任した代理人】

【識別番号】 100090468

【弁理士】

【氏名又は名称】 佐久間 剛

【手数料の表示】

【予納台帳番号】 008969

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9814441

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 画像処理方法および装置並びにそのためのプログラムを記

録した記録媒体

【特許請求の範囲】

【請求項1】 デジタルカメラにより取得された画像データに対して階調変 更処理を施して処理済み画像データを得る画像処理方法において、

前記画像データを取得したデジタルカメラの機種に応じて、該機種のデジタルカメラの機種階調特性プロファイルを用いて、前記画像データに対して前記機種のデジタルカメラの機種階調特性を吸収する前処理を施し、該前処理後の画像データに対して、オート露出制御処理および/またはオートホワイトバランス調整処理を行った後、前記階調変更処理を行なうことを特徴とする画像処理方法。

【請求項2】 前記デジタルカメラの機種を表す情報が、該デジタルカメラにより取得された画像データに付随されていることを特徴とする請求項1記載の画像処理方法。

【請求項3】 前記デジタルカメラの機種を表す情報が、マニュアル入力されることを特徴とする請求項1記載の画像処理方法。

【請求項4】 前記階調変更処理を施す画像データが、前記デジタルカメラにより取得されたオリジナル画像データに対して、縮小処理を施して得た画像データであることを特徴とする請求項1から3のいずれか1項記載の画像処理方法

【請求項5】 デジタルカメラにより取得された画像データに対して階調変 更処理を施して処理済み画像データを得る画像処理装置であって、

デジタルカメラの機種毎の機種階調特性プロファイルを記憶する記憶手段と、前記画像データを取得したデジタルカメラの機種を表す情報を入力する入力手段と、該入力手段により入力されたデジタルカメラの機種に応じて前記記憶手段から該機種に対応する機種階調特性プロファイルを選択し、該プロファイルを用いて、前記画像データに対して、デジタルカメラの機種階調特性を吸収する前処理を施す機種階調特性吸収手段と、前記前処理を施された画像データに対して、オート露出制御処理および/またはオートホワイトバランス調整処理を行う露光量お

よび/またはホワイトバランス補正手段と、前記露光量および/またはホワイトバランス補正手段により得た画像データに対して、階調変更処理を行なう階調補正手段とを備えてなることを特徴とする画像処理装置。

【請求項6】 前記デジタルカメラの機種を表す情報が、前記デジタルカメラにより取得された画像データに付随されており、前記入力手段が該画像データに付随されたデジタルカメラの機種を読み取る手段であることを特徴とする請求項5記載の画像処理装置。

【請求項7】 前記入力手段が、前記デジタルカメラの機種を表す情報をマニュアル入力する手段であることを特徴とする請求項5記載の画像処理装置。

【請求項8】 前記階調変更処理を施す画像データが前記デジタルカメラにより取得されたオリジナル画像データに対して、縮小処理を施して得た画像データであることを特徴とする請求項5から7のいずれか1項記載の画像処理装置。

【請求項9】 デジタルカメラにより取得された画像データに対して階調変 更処理を施して処理済み画像データを得る画像処理方法をコンピュータに実行さ せるためのプログラムを記録したコンピュータ読取り可能な記録媒体において、 前記プログラムが、前記画像データを取得したデジタルカメラの機種に応じて、 該機種のデジタルカメラの機種階調特性プロファイルを用いて、前記画像データ に対して、前記機種のデジタルカメラの機種階調特性を吸収する前処理を施し、 該前処理により得た画像データに対して、オート露出制御処理および/またはホ ワイトバランス調整処理を行った後、前記階調変更処理を行い、処理済み画像データを得る手順を有することを特徴とするコンピュータ読取り可能な記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明はデジタルカメラにより取得された画像データに対して階調を変更する 処理を施す画像処理方法および装置並びに画像処理方法をコンピュータに実行さ せるためのプログラムを記録したコンピュータ読取り可能な記録媒体に関するも のである。

[0002]

【従来の技術】

デジタルカメラにおいて、撮像により取得した画像を、デジタル画像データとしてデジタルカメラ内部に設けられた内部メモリやICカードなどの記録媒体に記録し、記録されたデジタル画像データに基づいて、プリンタやモニタに撮像により取得した画像を表示することができる。このように、デジタルカメラにより取得した画像をプリントする場合においては、ネガフイルムからプリントされた写真と同様の高品位な画質を有するものとすることが期待されている。

[0003]

また、デジタルカメラは光学系(絞り、シャッター、ストロボ)、撮像系(CCD、信号処理系)、制御系(AE、AWB、AF)、記録/再生系(圧縮/伸長、メモリ制御、表示)などの要素から構成されている。そして、これらの要素のうち再生される画像の画質に影響を与える要因としては、ストロボ光の色温度、AE(オート露出制御)処理、AWB(オートホワイトバランス調整)処理、CCD色分解カラーフィルタ、画素数、階調変換、輝度/色差信号を得るマトリクス演算処理などが挙げられ、デジタルカメラにおいてはこれらの要因を制御して高画質な再生画像となるようなデジタル画像データを取得するようにしている。

[0004]

このため、デジタルカメラにおいては、AE機能、AWB機能、さらに階調変換などの画像処理機能を有し、これにより取得されたデジタル画像データには、上述のように既に画像処理が施されているため、そのまま複写装置に入力して画像を再生することができる。しかしながら、通常デジタルカメラにおいては、画像データをモニタに再生することを前提としてAE処理、AWB処理されてなるものであるし、AE、AWB機能が付加されていない場合もある。さらに、実際のデジタルカメラでは、露出オーバーや露出アンダー、ストロボ調光ミスなど、適切でない露出により画像データが形成さてたものも多いため、プリンタに出力する際には、階調の補正およびプリントに適したAE処理およびAWB処理を再度行う必要がある。ここでは、デジタルカメラ内部に実装されているAE、AWB機能と区別するため、プリンタ出力時のAE、AWB処理を"プリンタAE/AWB処理"と呼ぶ。

[0005]

そのため、たとえば、特開平11-220619に記載されたように、デジタルカメラからの画像データを構成するRGB各色信号毎に平均値を求め、この平均値がプリントに適した目標値となるように修正値を求め、この修正値に基づいて露光量およびホワイトバランスを補正する方法が提案されている。

[0006]

一方、前述したように、デジタルカメラにおいて再生画像の画質に影響を与える要因としては、ストロボ光の色温度、AE(オート露出制御)処理、AWB(オートホワイトバランス調整)処理、CCD色分解カラーフィルタ、画素数、階調変換、輝度/色差信号を得るマトリクス演算処理などが挙げられ、これらの要因が、デジタルカメラの製造メーカや機種などに応じて異なり、中でも、階調変換がプリンタAE/AWB処理と深く関係するものである。上述方法においては、プリンタAE/AWB処理に使用される画像データは、たとえば、デジタルカメラからのオリジナル画像データを真数へ変換した画像であったり、あるいは更に濃度変換した画像データであって、いずれもデジタルカメラの機種に依存する階調特性を有する画像データをプリンタAE/AWB処理の解析対象としている。

[0007]

そのため、AE処理およびAWB処理を行う際には、解析対象となる画像データが デジタルカメラの機種に依存するものであるため、プリントに適した修正値を求 めることが困難となり、プリンタにより一旦プリントして試行錯誤の修正を行う 必要があるため、非常に効率の悪いものとなっている。

[0008]

そこで、デジタルカメラの機種に応じて画像処理を行う方法として、たとえば、特開平11-220687号にあるように、デジタルカメラにより取得された画像データに対して画像処理を施す際に、デジタルカメラの機種に応じて、前述の画像データに対して異なる画像処理条件を決め、その画像処理条件により画像処理を行うシステムが提案されている。

[0009]

【発明が解決しようとする課題】

しかしながら、上記システムにおいては、デジタルカメラの機種に応じてプリ

ンタAE/AWB処理を行う記述がない。また、該システムにおいては、画像データに対して階調変更を行う時には、デジタルカメラの機種別に応じて階調変更処理条件を決定するようにし、デジタルカメラの機種別階調補正とプリントに適した階調補正を前述階調変更処理条件により同時に行っている。そのため、階調変換された画像データに対してプリンタAE/AWB処理を行なおうことはできず、必然的に対象とする画像データは、デジタルカメラのオリジナル画像データしかない。このため、適切に修正値を求めることができず、安定したプリンタAE/AWB処理の効果も得られないため、結果的には高画質の再生画像を取得できない。

[0010]

本発明は、上記事情に鑑みなされたものであり、デジタルカメラの機種に拘わらず取得された画像データに対して効率よく高画質の再生画像が得られるように 階調を変更する処理を行なうことができる画像処理方法および装置並びにそのた めのプログラムを記録した記録媒体を提供することを目的とするものである。

[0011]

【課題を解決するための手段】

本発明による画像処理方法は、デジタルカメラにより取得された画像データに対して階調変更処理を施して処理済み画像データを得る画像処理方法において、前記画像データを取得したデジタルカメラの機種に応じて、該機種のデジタルカメラの機種階調特性プロファイルを用いて、前記画像データに対して前記機種のデジタルカメラの機種階調特性を吸収する前処理を施し、該前処理後の画像データに対して、オート露出制御処理および/またはオートホワイトバランス調整処理を行った後、前記階調変更処理を行うことを特徴とするものである。

[0012]

ここで、「機種階調特性プロファイル」とは、各々の機種を持つ階調特性を補 正するための変換データであり、デジタルカメラで撮像して取得した画像データ のRGB濃度値とRGB対数露光量を夫々縦軸、横軸にして表される関数であってもい いし、前記階調特性曲線にある値を入力信号と出力信号を対応させたテーブルで 表したルックアップテーブル(LUT)であっても勿論よい。

[0013]

また、前記機種階調特性プロファイルを用いて、「前記機種のデジタルカメラの機種階調特性を吸収する前処理」とは、前記デジタルカメラにより取得された 画像データを前記機種階調特性プロファイルにより修正することにより、機種の 階調特性に依存しない画像データを得る処理である。

[0014]

また、前記デジタルカメラの機種を表す情報を、該デジタルカメラにより取得 された画像データに付随させて入力するようにしてもよく、マニュアル入力する ようにしてもよい。

[0015]

さらに、前記デジタルカメラにより取得したオリジナル画像データに対して、 縮小処理を施して得た画像データを前記階調変更処理を施す画像データとするこ とが好ましい。

[0016]

本発明による画像処理装置は、デジタルカメラにより取得された画像データに対して階調変更処理を施して処理済み画像データを得る画像処理装置であって、デジタルカメラの機種毎の機種階調特性プロファイルを記憶する記憶手段と、前記画像データを取得したデジタルカメラの機種を入力する入力手段と、該入力手段により入力されたデジタルカメラの機種に応じて前記記憶手段から機種階調特性プロファイルを用いて、前記画像データに対して、デジタルカメラの機種階調特性を吸収する前処理を施す機種階調特性吸収手段と、前記機種階調特性処理手段により得た前記デジタルカメラの機種に依存しない階調特性を有する画像データに対して、オート露出制御処理および/またはオートホワイトバランス調整処理を行う露光量およびホワイトバランス補正手段と、前記露光量および/またはホワイトバランス補正手段により得た画像データに対して、階調変更処理を行なう階調補正手段とを備えてなることを特徴とするものである。

[0017]

また、前記デジタルカメラの機種を表す情報を前記デジタルカメラにより取得された画像データに付随させて、前記入力手段により該画像データに付随された

デジタルカメラの機種情報を読み取るようにしてもよく、前記入力手段からマニュアル入力するようにしてもよい。

[0018]

さらに、本発明の画像処理装置においては、前記デジタルカメラにより取得されたオリジナル画像データに対して、縮小処理を施して得た画像データを前記機 種階調特性吸収手段の対象となる画像データとすることが好ましい。

[0019]

なお、本発明による画像処理方法をコンピュータに実行させるためのプログラムとして、コンピュータ読取り可能な記録媒体に記録して提供してもよい。

[0020]

上記方法および装置並びにそのためのプログラムにおいては、デジタルカメラにより取得された画像データに対して、デジタルカメラの機種階調特性を吸収する処理を施し、プリンタAE/AWB処理を行なって、プリンタなどの画像再生装置に適したように階調変更処理を行なう手順を有すれば良く、たとえば、上述の手順通りに段階毎に処理を行なうようにしてもよいが、上記処理の各段階においては、実際に処理を行なわず、各段階の処理の条件を決め、すなわち、機種階調特性吸収処理段階、プリンタAE/AWB処理段階、階調変更処理段階において、夫々の段階に対応した機種階調特性吸収処理条件、プリンタAEおよび/またはプリンタAWB処理条件、階調変更処理条件を決定し、それらの条件を総合した処理条件に基づいて画像処理を行うようにしても勿論よい。

[0021]

【発明の効果】

本発明によれば、画像データを取得するデジタルカメラの機種に応じて、まず、機種の階調特性を吸収する前処理を行なうようにしたため、プリンタAE/AWB 処理は、デジタルカメラの機種に依存しない階調特性を有する画像データに対して解析を行うことができるので、プリンタAE/AWBの性能アップが図られ、もって、デジタルカメラの機種に拘わらず高画質の再生画像を得ることが可能となる

[0022]

また、デジタルカメラの機種階調特性を吸収してから、プリンタAE/AWB処理を行い、所望により、たとえば、特定なシーン毎にプリントに適した階調変更を行なうようにしたため、デジタルカメラの機種に関わらず高画質の再生画像を得ることが可能となる。

[0023]

【発明の実施の形態】

以下、図面を参照しながら、本発明の実施形態について説明する。

[0024]

図1には本発明の第1の実施形態による画像処理装置の構成図を示す概略プロック図である。図1に示すように、本実施形態による画像処理装置1は、デジタルカメラにより被写体を撮像することにより取得されたオリジナル画像データD0を記憶したメモリカード2から色データR0、G0、B0からなる画像データD0を読み出す読出手段3と、画像データD0を対数変換して画像データD1を得る対数変換手段4と、後述する階調変更手段8に種々の入力を行う入力手段5およびDCMYキー6と、複数の階調補正曲線を記憶したメモリ7と、対数変換された画像データD1に対して階調変更処理を施して画像データD2を得る階調変更手段8と、画像データD2を逆対数変換して色データR3、G3、B3からなる画像データD3を得る逆対数変換手段9と、画像データD3に対して、所望に応じて色補正などの画像処理10を施す他の処理手段10と、他の処理手段10により得た画像データD4に対して、sRGB変換などモニタ表示用処理を施し、モニタ13に表示用の画像データD5を得るモニタ表示用処理手段11と、画像データD5を表示するモニタ13と、画像データD6をプリント出力するプリンタ14とを備える。

[0025]

読出手段 3 は、メモリカード 2 から画像データ D 0 を読み出すカードリーダなどからなる。またメモリカードから読み出した画像データは通常圧縮されているため、これを解凍して画像データ D 0 とするものである。また、画像データ D 0 には撮影を行なったデジタルカメラの機種を表す情報(以下、カメラ種情報とする)がタグ情報として付与されているため、このカメラ種情報も同時に読み出され

る。ここで、カメラ種情報をタグ情報として記録する規格としてたとえばExifファイルの非圧縮ファイルとして採用されている「Baseline TIFF Rev.6.0RGB Full Color Image」が挙げられる。なお、タグ情報には撮影時にストロボを使用した場合にストロボを使用して撮影を行なった旨を表す情報(以下ストロボ情報とする)も記録される。

[0026]

入力手段5は、階調変更手段8に対して種々の入力をするキーボード、マウスなどからなるものである。ここで、入力手段5からは、後述する階調補正処理部8-Cにより階調を補正時の基準となる階調(以下基準階調とする)の種類が入力される。たとえば標準的な階調、曇天用の階調、近接ストロボシーン用の階調が選択可能とされており、入力手段5から選択された基準階調を入力することにより、選択された基準階調を表す階調曲線がメモリ7から呼び出され、階調補正処理部8-Cに使用される。また、所望とする階調が得られるように階調曲線を修正したい場合があるが、その場合は階調曲線をモニタ13に表示して、入力手段5を用いて階調曲線を修正することもできる。

[0027]

DCMYキー6は、画像全体の濃度D及びC(シアン)、M(マゼンタ)、Y(イエロ)の各色の濃度を補正するための4つのキーからなり、キーを押下した回数に応じて画像全体全体および各色の濃度が変更される。なお、入力手段5から入力された階調曲線の修正およびDCMYキー6から入力された濃度の変更は、リアルタイムでモニタ13に表示される。

[0028]

メモリ7には、標準的な階調曲線、曇天用の階調曲線、逆光用の階調曲線および近接ストロボシーン用の階調曲線からなる基準階調曲線、およびカメラ機種に応じた複数の階調曲線が記憶されている。

[0029]

階調変更手段8においては、図2に示す手順で対数変換されたデータD1に対して、階調変更処理を施す。図2の第1象限、第2象限、第3および第4象限は 夫々図2の機種階調特性吸収部8-a、AE/AWB処理部8-b、階調補正処理部8 -cの処理に対応し、画像データD1を構成する色データR1、G1、B1に対して、 階調変換を施し、画像データD2を構成する色データR2、G2、B2を得るものであ る。

[0030]

まず、読出手段3により読み出されたデジタルカメラの機種情報に基づいて、機種階調特性吸収処理部8-aは、メモリ7からそのデジタルカメラの機種に応じた階調曲線C1を読み出す。図2の第1象限に示すように、この階調曲線C1により、色データR1、G1、B1が変換され、対数露光量を表すデータとなる。前述したように、デジタルカメラにおいては、デジタルカメラの製造メーカや、機種などに応じて、再生画像の画質が異なるものである。したがって、この階調曲線C1は、カメラの機種に拘わらず高品質の画像を得るために、個々のデジタルカメラの階調特性を吸収するようにカメラの機種毎に作成されてなるものである。この処理により得た画像データは、デジタルカメラの機種に依存しないものとなる。

[0031]

図2の第2象限は、露光量補正(ホワイトバランスを含む)、すなわち、プリンタAE/AWB処理部8-bによる処理を示すものである。デジタルカメラのAE/AWBは撮像画像をプリントに再現するために最適化されたものではないため、ここで、プリントに最適な撮像時の露光量を補正する。この露光量およびホワイトバランスを補正する直線C2は基本的に原点を通る直線であるが、プリンタAE/AWB処理部8-bは、機種階調特性吸収処理部により得た画像データを構成するRGB色信号毎にプリントに最適な露光量およびホワイトバランスを補正するために必要な補正量を推定し、この補正量に基づいて、補正直線C2を矢印A方向に平行させて、露光量およびホワイトバランスを補正する。このプロセスによって、露光量補正済みデータが得られることとなる。

[0032]

プリンタAE/AWBの補正量の求め方としては、たとえば、前述した特開平11-220 619号に記載されたように、画像データを構成するRGB各色信号毎に平均値を求め、この平均値がプリントに適した目標値となるように修正値、すなわち、補正量を求めるようにすればよい。なお、本発明においては、プリンタAE/AWBの解析に

使用される画像データは、デジタルカメラの機種階調特性が吸収された、デジタルカメラの機種に依存しないデータであるため、プリンタAE/AWBの解析の性能が安定し、前述補正量がよりプリンタに適した正確な値となる。結果的には高画質の処理済み画像データが得られることとなる。

階調補正処理部8-cにおいては、まず、図2の第3象限に示したように、基準階調曲線C3による補正を行う。基準階調としては、たとえば標準的な階調、曇天用の階調、逆光用の階調、近接ストロボシーン用の階調が選択可能とされているため、階調補正手段8-cは入力手段5から選択された基準階調を表す階調曲線C3をメモリ7から呼び出して、階調補正を行う。プリントする場合には、一般に階調を硬調化させて見えを良くするため、ここで使用される標準階調曲線C3はS字状の曲線になっており、中間部は7=1.6に相当するものとなっている。なお、本実施形態においては階調曲線C3による変換を7変換と称する。

[0033]

また、所望とする階調が得られるように階調曲線C3を修正したい場合があるが、その場合には前述の標準階調曲線をモニタ13に表示し、入力手段5を用いて階調曲線を修正して、所望とする階調曲線C3を得ることもできる。

[0034]

さらに、通常、プリントは濃度の再現域が狭いため、画像のハイライト部に飛びが、シャドー部に潰れが生じやすい状態にあるため、階調補正処理部8-cは、たとえば、特開平11-331596号に記載された方法により、プリンタAE/AWB処理によりプリントの濃度が大きくなるような場合には、ハイライト側の階調を硬調化させると共に、シャドー側の階調を軟調化させ、逆にプリントの濃度が小さくなるような場合には、ハイライト側の濃度を軟調化させると共にシャドー側の階調を硬調化させるように、階調のハイライト部とシャドー部を非線形に修正し、γ変換曲線C3によりガンマ変換された画像データに対して階調の変更処理を施す。この処理は図3の第4象限の補正曲線C4に基づいて行われる。

[0035]

階調変更手段8により得た画像データに対して、所望によりプリント出力のための濃度調整を行う場合は、DCMYキー6の押下によって、画像全体の濃度および

C、M、Yの各色濃度を変えることができる。R、G、Bの変更量がこのC、M、Yの濃度変更量に相応して変更される。具体的には、図2の第2象限の直線C2をDCMYキー6の押下の回数に応じて矢印A方向に平行移動させることにより、画像データのR、G、Bの濃度が変更される。このDCMYキー6により濃度調整することによって、所望のプリント濃度を得ることができる。

[0036]

これらの処理によって、階調変更処理が施された画像データD2を構成する色 データR2、G2、B2を得ることができる。

[0037]

そして、逆対数変換手段9により、画像データD2が色データR3、G3、B3からなる画像データD3に変換される。画像データD3が色補正などの所望による他の処理手段10を経て、さらにsRGB変換などのモニタ表示用処理によりモニタ13に出力用画像データD5に変換されると共に、シャープネスなどのプリント用処理によりプリンタ15に出力用画像データD6に変換される。

[0038]

次いで、本実施形態における階調変更部分の動作について説明する。図3は本実施形態における階調変更処理の動作を示すフローチャートである。まず、デジタルカメラにより得られた画像データD0が記憶されたメモリカード2からデジタルカメラの機種情報と共に読出手段3により読み出されて(S1)、対数変換手段4において画像データD1に変換される(S2)。機種階調特性吸収手段4はデジタルカメラの機種情報に応じた機種階調曲線C1をメモリ7から読み出し、画像データD1に対して、デジタルカメラの機種階調特性を吸収する処理を施す(S3)。機種階調特性が吸収された画像データが露光量補正のプリンタAE/AWB処理を経て(S4)、入力手段5により選ばれた基準階調曲線C3とハイライト部およびシャドー部非線形のための補正曲線C4によって階調補正処理を施される(S5)。ステップ5(S5)により階調変更処理を施されたデータに対して、プリントのための濃度補正および/または階調補正が必要な場合には(S6:Yes)、DCMYキー6により濃度を修正し(S7)た後に、階調補正処理部8-cにおいて、階調を補正して(S5)画像データD2を得る。画像データD2が逆対数変更手段9により色デー

etaR3、G3、B3からなる画像データetaD3に変換され、所望による色補正などの他の処理に出力される(S6:No、S8)。

[0039]

このように、本実施形態においては、プリンタAE/AWB処理および階調補正処理の対象となる画像データが、機種階調特性吸収部8-aにより機種の階調特性を吸収する前処理が施されたデータであるため、プリンタAE/AWB処理および階調補正処理の解析性能が安定し、より高画質の画像データを得ることが可能となる。

[0040]

また、本実施形態においては、デジタルカメラの機種階調特性を吸収してから、プリンタAE/AWB処理を行った後に、特定なシーン毎にプリントに適したように階調変更を行なうようにしたため、デジタルカメラの機種に関わらず、より高画質の画像データを得ることが可能となる。

[0041]

本実施形態においては、画像データを取得したデジタルカメラの機種がタグ情報として画像データに付随されており、機種階調特性吸収手段はそのタグ情報に示したデジタルカメラの機種に応じて自動的に階調曲線C1を読み出すことができる。

[0042]

図4は、本発明による第2の実施形態の構成を示す概略ブロック図である。本 実施形態においては、モニタに出力用とプリント用に画像処理を2つのルートに 分け、モニタ出力用の画像処理ルートにおいては、デジタルカメラにより取得し た画像データをインデックス画像として表示すると共に、プリント用の画像処理 のための階調変更処理などの処理条件を求める、一方、プリント用の画像処理ルートにおいては、モニタ出力用ルートにおいて求められた画像処理条件に基づい て階調変更などの画像処理を行って、プリンタに出力する。

[0043]

図4に示したように、本実施形態による画像処理装置100は、デジタルカメラににより被写体を撮像することにより取得された画像データD0を記憶したメモリカード2から色データR0、G0、B0からなる画像データD0を読み出す読出手

段3と、画像データDOを縮小してインデックス画像を表すインデックス画像デー タD20を作成するインデックス画像作成手段20と、画像データD0を解析して後 述する階調変換テーブルTOを設定するのに必要な階調の設定情報HOを生成する設 定情報生成手段21と、画像データDOをプリント出力する際に画像データDOに対 して階調変更処理および色補正など他の所望に応じた処理を施すための3次元ル ックアップテーブル(以下3DLUTとする)を作成すると共に、インデックス画像 データD20に対して階調変換処理を施す3DLUT作成手段22と、階調変換処理が施 されたインデックス画像データD20'をインデックス画像として表示するモニタ1 3と、3DLUT作成手段22に種々の入力を行う入力手段5と、濃度を変更するDCM Yキー6と、3DLUT作成手段22において作成された3DLUTを用いて画像データDO を変換して変換画像データD21を得る処理手段24と、画像データDOの画素数が プリントの画素数よりも多い場合に画像データDOを縮小して縮小画像データDO' を得る縮小手段23と、画像データDOの画素数がプリントの画素数よりも少ない 場合に変換画像データD21を拡大して画像データD21'を得る拡大手段25と、変 換画像データD21または拡大画像D21'に対して、シャープネス処理などプリント 出力用処理を行うプリント出力用処理手段26と、処理済み画像データD5をプリ ント出力するプリンタ14を備える。

[0044]

本発明による第1の実施形態による画像処理装置1と同じように、読出手段3は、メモリカード2から画像データD0を読み出すカードリーダなどからなる。またメモリカードから読み出した画像データは通常圧縮されているため、これを解凍して画像データD0とするものである。また、画像データD0には撮影を行なったデジタルカメラの機種を表す情報(以下、カメラ種情報とする)がタグ情報として付与されているため、このカメラ種情報も同時に読み出される。ここで、カメラ種情報をタグ情報として記録する規格としてたとえばExifファイルの非圧縮ファイルとして採用されている「Baseline TIFF Rev.6.0RGB Full Color Image」が挙げられる。なお、タグ情報には撮影時にストロボを使用した場合にストロボを使用した場合にストロボを使用して撮影を行なった旨を表す情報(以下ストロボ情報とする)も記録される。

[0045]

インデックス画像作成手段20は、画像データDOを間引くなどして縮小してインデックス画像データD20を作成する。

[0046]

設定情報生成手段21は前述の画像処理装置と同様に、プリンタAE/AWB処理の補正量を求め、この補正量を設定情報HOに含めて入力する。また、設定情報生成手段21においては、プリントの狭い濃度再現域を生かすために、階調のハイライトとシャドー部に対する非線形修正の修正量も求め、設定情報HOに含める。さらに、設定情報生成手段21においては、画像データDOのタグ情報が読み出され、タグ情報のカメラ機種情報が設定情報HOに含まれる。なお、タグ情報にストロボ情報が含まれている場合は、これも設定情報HOに含まれる。

[0047]

モニタ13にはインデックス画像データD20'により表されるインデックス画像が表示される。また、後述する階調曲線の修正時には、インデックス画像と共に階調曲線も表示される。なお、本実施形態においては6枚のインデックス画像が同時に表示されるものとする。

[0048]

入力手段5は、3DLUT作成手段22に対して種々の入力をするキーボード、マウスなどからなるものである。ここで、入力手段5からは、3DLUT作成時に基準となる階調(以下基準階調とする)の種類が入力される。ここで、基準階調としては、たとえば標準的な階調、曇天用の階調、逆光用の階調、近接ストロボシーン用の階調が選択可能とされており、入力手段5から選択された基準階調を入力することにより、選択された基準階調を表す階調曲線が3DLUT作成手段22において設定される。また、所望とする階調が得られるように階調曲線を修正したい場合があるが、その場合は階調曲線をモニタ13に表示して、入力手段5を用いて階調曲線を修正することもできる。

[0049]

DCMYキー6は、前述したように画像全体の濃度DおよびC、M、Y各色の濃度を補正するための4つのキーからなり、キーを押下した回数に応じて、3DLUT作成手

段22において画像全体の濃度および各色の濃度が変更される。なお、入力手段 5から入力された階調曲線の修正およびDCMYキー6から入力された濃度の変更は 、リアルタイムでモニタ13に表示されたインデックス画像に反映される。

[0050]

3DLUT作成手段 2 2 は以下のように3DLUTを作成する。図 5 は3DLUT作成手段 2 2 の構成を示す概略ブロック図である。なお、画像データDOがRGB各色 8 ビットのデータである場合、全てのデータを変換する3DLUTを作成しようとすると、256 3のデータが必要となり、3DLUTの作成に長時間を要するものとなる。したがって、本実施形態においては、各色データRO、GO、BOのビット数を低減して0,7,15,…247,255の各色33のデータからなる33 の3DLUTを作成するものとする。

[0051]

図5に示すように、3DLUT作成手段22は、画像データDO(ビット数が低減されたもの)を対数変換して画像データD1を得る対数変換手段4と、対数変換された画像データD1に対して階調を変換する処理を施して画像データD2を得る階調変換手段30と、階調変換手段30における階調変換に用いられる階調変換テーブルT0を設定する階調設定手段31と、複数の階調曲線を記憶したメモリ7と、画像データD2を逆対数変換して色データR3、G3、B3からなる画像データD3を得る逆対数変換手段9と、画像データD3に対して、所望に応じた色補正など他の処理を施して画像データD4を得るほかの処理手段10と、画像データD4をモニタ用の色空間であるsRGB色空間に変換して色データR4、G4、B4、に変換して画像データD4、を得るsRGB変換手段32と、画像データD4、をプリンタ用の色空間に変換してプリンタ用画像データD7を得るプリンタ変換手段33と、プリンタ用画像データD7と画像データD0とに基づいて3DLUTを作成するLUT作成手段34とを備える。

[0052]

階調設定手段31においては、図2に示した各補正曲線C1、C2、C3、C4を求め、これらの曲線の内容を階調変換テーブルに反映する。図2の各象限における補正曲線の内容は前述と同様であるため、ここでは説明を省略する。階調変換テーブルT0により、階調変換手段30は画像データD1を変換して、画像データD2を得る。この画像データD2が逆対数変換手段9により、色データR3、G3、B3からなる

画像データD3に変換される。

[0053]

なお、対数変換手段4、階調変換手段30、および逆対数変換手段9では、RG B色空間にて全ての処理が行われるものである。

[0054]

画像データD3が、所望に応じて色補正など階調変換以外の処理を行う他の処理 手段10により画像データD4に変換される。この画像データD4が、sRGB変換手段 32によりモニタ用の色空間であるsRGB色空間に変換され、画像データD4'とな る。プリンタ変換手段33は色データR4'、G4'、B4'からなる画像データD4'をプ リンタ用の色空間に変換して、プリンタ用画像データD7を得、この画像データD7 と画像データD0に基づいて、LUT作成手段は3DLUTを作成する。

[0055]

すなわち、LUT作成手段34は、前述階調変換手段30および所望による色補正など他の処理手段10、sRGB変換手段32、プリンタ変換手段33の処理を行うための処理条件をLUTにまとめるものであり、より詳細には、画像データDOを構成する色データRO、GO、BOとプリンタ用画像データD7を構成する色データR7、G7、B7との対応関係を各色毎に求め、これを33³の3次元のルックアップテーブル(3DLUT)とするものである。

[0056]

図4に戻り、3DLUT作成手段22において作成された3DLUTは処理手段24に入力される。そして画像データDOが3DLUTに基づいて変換されて、変換画像データD21が得られる。この際、3DLUTは33³のデータにより作成されているため、変換画像データD21を構成する色データは、たとえば、特開平2-87192号に記載されたように、3DLUTを体積補間あるいは面積補間することにより求められる。

[0057]

ところで、画像データDOを取得したデジタルカメラの画素数は種々のものがあり、プリントに必要な画素数に満たないものあるいはプリントに必要な画素数以上の画素数を有するものがある。このため、画像データDOがプリントに必要な画素数以上の画素数を有する場合、処理手段24の前段において縮小手段23によ

り画像データD0を縮小して縮小画像データD0'を得、縮小画像データD0'を3DLUTにより変換して変換画像データD21を得る。一方、画像データD0がプリントに必要な画素数に満たない場合、処理手段24の後段において処理手段24において得られた変換画像データD21を拡大手段25により拡大して拡大画像データD21'を得る。画像データD21またはD21'は、さらにシャープネス処理などプリント出力用処理を経て、プリンタ14に印刷出力される。

[0058]

本実施形態における画像処理装置100においては、階調変換処理を行う際には、各段階の処理の条件を決め、すなわち、機種階調特性吸収処理段階、AEおよびAWB処理段階、画像再生装置に適した階調変更処理段階において、夫々の段階に対応した機種階調特性吸収処理条件、プリンタAE/AWB処理条件、画像再生装置に適した階調変更処理条件を求め、それらの条件を総合した処理条件に基づいて画像処理を行うようにしても、画像処理装置100と同じように、安定したプリンタAE/AWBの性能、もって高画質の画像データを得ることを可能とする。

[0059]

また、本実施形態の画像処理装置100においては、画像処理をモニタ表示および処理条件を決定するルートとプリンタ出力用処理ルートに分けたため、モニタ表示ルートにおいては、オリジナル画像データDOを縮小してインデックス画像として表示できるようにしたため、オペレータが複数枚の画像を同時に見ることができるため、編集をしやすくなる。また、色補正など他の処理が必要な時には、モニタ表示ルートにおいては、モニタ表示用のインデックス画像に対して階調変換処理のみが施されるが、プリンタ出力ルートにおいては、画像データDOが階調変換処理および色補正などの他の処理を施す3DLUTにより変換される。したがって、画像データDOをモニタに高速表示しながら、プリンタには、他の処理も含めた高画質の画像を出力することができる。そのため、時間の短縮ができ、画像処理の効率が良くなる。

【図面の簡単な説明】

【図1】

本発明の第1の実施形態による画像処理装置1の構成を示す概略ブロック図

【図2】

本発明による階調変換処理の詳細を説明するための図

【図3】

本発明の第1の実施形態の処理動作を示すフローチャート

【図4】

本発明の第2の実施形態による画像処理装置100の構成を示す概略ブロック 図

【図5】

本発明の第2の実施形態に使用される3DLUT作成手段の構成を示す概略ブロック図

【符号の説明】

- 1 本発明の第1の実施形態による画像処理装置 1
- 2 メモリカード
- 3 読出手段
- 4 対数変換手段
- 5 入力手段
- 6 DCMYキー
- 7 メモリ
- 8 階調変更処理手段
- 8-a 機種階調特性吸収処理部
- 8-b AE/AWB処理部
- 8-c 階調補正処理部
- 9 逆対数変換手段
- 10 他の処理手段
- 11 モニタ表示用処理部
- 12,26 プリント出力用処理部
- 13 モニタ
- 14 プリンタ
- 20 インデックス画像作成手段

特2000-130526

- 21 設定情報生成手段
- 22 3DLUT作成手段
- 23 縮小手段
- 24 処理手段
- 25 拡大手段
- 30 階調変換手段
- 3 1 階調設定手段
- 32 s RGB変換手段
- 33 プリンタ変換手段
- 34 LUT作成手段

【図2】

【図3】

【図4】

【図5】

特2000-130526

【書類名】

要約書

【要約】

【課題】 デジタルカメラにより取得された画像データに対して、デジタルカメラの機種毎の階調特性による影響を除去し、より高画質の処理済み画像を得る

【解決手段】 画像データDOに対して、まず機種階調特性吸収処理部8-aにおいて機種毎の階調補正曲線C1によりデジタルカメラの機種階調特性を吸収し、デジタルカメラの機種に依存しない画像データを得る。この画像データに対して、AE/AWB処理部8-bにて露光量補正を行い、階調補正処理部8-cにてプリント用の階調補正を行う。これにより、AE/AWBの解析性能が安定するため、高画質の処理済み画像が得られる。

【選択図】

図 1

認定・付加情報

特許出願の番号 特願2000-130526

受付番号 50000547516

書類名特許願

担当官 第八担当上席 0097

作成日 平成12年 5月 1日

<認定情報・付加情報>

【提出日】 平成12年 4月28日

【特許出願人】

【識別番号】 000005201

【住所又は居所】 神奈川県南足柄市中沼210番地

【氏名又は名称】 富士写真フイルム株式会社

【代理人】 申請人

【識別番号】 100073184

【住所又は居所】 神奈川県横浜市港北区新横浜3-18-20 B

ENEX S-1 7階 柳田国際特許事務所

【氏名又は名称】 柳田 征史

【選任した代理人】

【識別番号】 100090468

【住所又は居所】 神奈川県横浜市港北区新横浜3-18-20 B

ENEX S-1 7階 柳田国際特許事務所

【氏名又は名称】 佐久間 剛

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 1990年 8月14日

[変更理由]

新規登録

住 所

神奈川県南足柄市中沼210番地

氏 名 富士写真フイルム株式会社