	Utech
Name :	
Roll No.:	O Daniel of Sambles and Excitors
Invigilator's Signature :	

CS/B.TECH/CSE/SEM-8/CS-801D/2013 2013 VLSI DESIGN

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct answers for the following: $10 \times 1 = 10$
 - i) NMOS Transistor in linear region can be modelled as
 - a) Resistance
 - b) Current Source
 - c) Open Circuit
 - d) None of these.

8205 [Turn over

CS/B.TECH/CSE/SEM-8/CS-801D/2013

ii)

	a)	increases	b)	decreases	
	c)	remains same	d)	none of these.	
iii)		nimum number ABC + DE is	of transis	stors in CMOS logic	
	1 -	ADC + DE IS			
	a)	12	b)	6	
	c)	14	d)	10.	
iv)	The output of Physical Design is				
	a)	Logical Netlist	b)	Circuit Diagram	
	c)	Layout	d)	RTL.	
v)	Stic	ek Diagram represe	ents		
	a)	Logic	b)	Circuit	
	c)	Layout	d)	Architecture.	
8205			2		

With decrease of Vdd, the delay of an CMOS inverter

vi)	Valu	ie of "Lambda" in 0.5 iii	т Те	chnologyte		
VIJ	Value of "Lambda" in 0·5 um Technology is					
	a)	0·5 um	b)	1 um		
	c)	0·25 um	d)	2 um.		
vii)	BDI) is used in				
	a)	High Level Synthesis	b)	Logic Synthesis		
	c)	Layout Floor Plan	d)	Routing.		
viii)	Mos	Most popular interconnect material is				
	a)	Gold	b)	Silver		
	c)	Aluminium	d)	Silicon dioxide.		
ix)	For a standard Cell Layout					
	a)	height is fixed				
	b)	width is fixed				
	c) both height and width are fixed					

none of these.

d)

Draw circuit diagram of 2-input XOR gate using CMOS

3

8205 4

Transmission Gate (TG).

2.

3.

b)

- 4. Draw layout of CMOS inverter using Standard Cell Layout Topology and show all the layers.
- 5. Write VHDL code of Behavioural Modelling of a D-Flip-flop.
- 6. Draw flow diagram of High Level Synthesis.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Draw flow diagram of Logic synthesis.
- 5

b) Draw BDD Diagram for function

$$f = abc + ab^lc + a^lbc^l + a^lb^lc^l$$
 using

ordering of $a \le b \le c$.

5

- c) Create ROBDD Diagram of same function and corresponding optimized Boolean expression.5
- 8. a) What is the difference between "Micron based Design Rule" and "Lambda based Design Rule" ?

8205 5 [Turn over

CS/B.TECH/CSE/SEM-8/CS-801D/2013

- b) What are the differences between Full Custom Design and Standard-Cell based Semi custom Design?
- c) Explain Euler path solution of a CMOS gate which represents function $f = (\overline{A + B + CD})$.
- d) Draw Stick Diagram of the same CMOS gate based onEuler path solution.5
- 9. a) Draw Flow Diagram of Physical Layout Automation 3
 - b) For the following Channel Routing Problem, draw
 Horizontal Constraint Graph (HCG) and Vertical
 Constraint Graph (VCG):

Terminal connection is as follows:

11122563040 Upper Boundary

25055330604 Lower Boundary

0 means no connection.

Assume HV Layer (V = Metal 1, H = Metal 2)

c) Provide Optimum Channel Routing Solution for abovecase using Left Edge Algorithm.6

8205

- 10. a) For Floor planning problem, what are inputs, outputs and objective (cost) function?
 - b) Write problem formulation of Global Routing using Steiner Tree. 5
 - c) Explain Maze Routing. 5
- 11. Write short notes on any *three* of the following : 3×5
 - a) Various Power Dissipations in CMOS digital gate
 - b) *n*-well CMOS Fabrication Process
 - c) VLSI interconnect
 - d) FPGA
 - e) Stuck at fault modelling for *si* testing.

8205 7 [Turn over