Année 2020/2021

FEUILLE DE TD 1

Dans la série d'exercices qui suit, $(B_t, t \ge 0)$ désigne un mouvement brownien standard (issu de 0).

Exercice 1

1. Calculer:

$$E(B_sB_t), \quad E(\exp\{i\lambda B_s + i\mu B_t\}), \qquad E((\lambda B_s + \mu B_t)^2)$$

avec $s, t \geq 0, \lambda, \mu \in \mathbb{R}$.

- 2. Déterminer la loi de $\lambda B_s + \mu B_t$.
- 3. Montrer que $(B_s, B_t)'$ est un vecteur gaussien.
- 4. Déterminer la densité de $(B_s, B_t)'$ lorsque $s \neq t$.

Exercice 2

Montrer que $(\sqrt{t}B_1, t \ge 0)$ n'est pas un mouvement brownien.

Exercice 3

À la suite de réels $0 \le t_1 \le \cdots \le t_n$ et à $f: \mathbb{R} \to \mathbb{R}$ bornée on associe :

$$I := \sum_{k=1}^{n} f(B_{t_k}) (B_{t_{k+1}} - B_{t_k}).$$

Montrer que I est une v.a. de carré intégrable, centrée et

$$E(I^{2}) = \sum_{k=1}^{n} (t_{k+1} - t_{k}) E(f(B_{t_{k}})^{2}).$$

Exercice 4

Soit $(X_t; t \ge 0)$ est gaussien, centré, continu et fonction de covariance

$$R^X(s,t) := E(X_t X_s) = s \wedge t, \quad s,t > 0.$$

1. Montrer que $X_t \sim \mathcal{N}(0,t)$ pour tout $t \geq 0$.

2. Soient $0 < t_1 < t_2 < t_3 < t_4$, montrer :

$$Cov(X_{t_2} - X_{t_1}, X_{t_4} - X_{t_3}) = 0.$$

En déduire que les accroissements de (X_t) sont indépendants.

3. Montrer que (X_t) est un mouvement brownien.

Exercice 5

Soit a > 0. Montrer que les deux processus

$$(-B_t; t \ge 0), \quad \left(\frac{1}{\sqrt{a}}B_{at}; t \ge 0\right)$$

sont des mouvements browniens standards.

Exercice 6

Pour tout $n \geq 1$, on pose

$$V_n := \sum_{i=1}^n \left(B_{\frac{i}{n}} - B_{\frac{i-1}{n}} \right)^2.$$

- 1. Montrer que $E(V_n) = 1$.
- 2. Montrer que la variance de V_n est égale à 2/n.
- 3. Vérifier l'identité :

$$E[(V_n - 1)^2] = Var(V_n) + (E(V_n))^2 - 2E(V_n) + 1.$$

En déduire que V_n converge en probabilité vers 1, lorsque $n \to \infty$.

- 4. Soit $\varepsilon > 0$ fixé et A_n l'événement : $A_n := \{|V_n 1| \ge \varepsilon\}$.
 - (a) Montrer: $P(A_n) \le \frac{2}{\varepsilon^2} \frac{1}{n}$.
 - (b) On pose $C_n := A_{2^n}$. Déduire de la question précédente : $\sum_{n \geq 1} P(C_n) < \infty$ et

$$P\Big(\bigcup_{k\geq 1}\bigcap_{k\geq n}C_n\Big)=0$$

- (c) Montrer que V_{2^n} converge presque sûrement vers 1. On pourra utiliser le lemme de Borel Cantelli, i.e. $P\left(\bigcup_{k\geq 1}\bigcap_{n\geq k}C_n^c\right)=1$.
- 5. Déduire de ce qui précède que l'on ne peut avoir

$$|B_t - B_s| \le C(\alpha, T)|t - s|^{\alpha}; \quad \forall s, t \in [0, T]$$

avec $\alpha \in]1/2, 1]$. En particulier $t \mapsto B_t$ ne peut pas être de classe C^1 .

Exercice 7

Montrer que l'on a

$$\lim_{n \to \infty} \sum_{i=1}^{2^n} (B_{i2^{-n}} - B_{(i-1)2^{-n}})^2 = 1, \quad \text{p.s.}.$$