# **Lecture 7 — Vector spaces**

# Dr. D. Bernhard

*In this lecture: vector spaces — linear independence and bases — linear maps — application to finite fields* 

Learning outcomes. After this lecture and revision, you should be able to:

- Define vector spaces.
- Multiply and (where possible) invert matrices, especially over finite fields.
- Interpret polynomial spaces over fields and finite fields as vector spaces and operations on them as linear maps.

# 7 Vector spaces

After the last lecture's very intense computation in finite fields, we close this section of the course with a slightly easier topic that we've actually been using implicitly already, namely vector spaces.

#### 7.1 Definitions

The new thing about vector spaces is that we start with a given structure, a field, and build a vector space over this field. Vector spaces are groups in which you can add vectors but also "scale" vectors by multiplying them with field elements; in general you cannot multiply vectors with each other. The multiplication operation that takes a field element and a vector is sometimes called scalar multiplication.

**Definition 7.1.** Start with any field  $\mathbb{F}$ . A vector space over  $\mathbb{F}$  is a structure  $(V, +, \cdot)$  where  $+: V \times V \to V$  and  $\cdot: \mathbb{F} \times V \to V$  satisfying the following laws:

- 1. (V, +) is an Abelian group.
- 2. Field and scalar multiplication associate: for any field elements f, g and any vector  $\overline{a}$  we have  $(fg) \cdot \overline{a} = f \cdot (g \cdot \overline{a})$ . Here fg is multiplication in  $\mathbb{F}$ .

3. Field multiplication distributes over vector addition: for any vectors  $\overline{a}, \overline{b} \in V$  and any field elements  $f, g \in \mathbb{F}$  we have  $f \cdot (\overline{a} + \overline{b}) = f \cdot \overline{a} + f \cdot \overline{b}$  and  $(f +_{\mathbb{F}} g) \cdot \overline{a} = f \cdot \overline{a} + g \cdot \overline{a}$ . We marked the field addition with  $+_{\mathbb{F}}$  to distinguish it from vector addition here.

We use the convention that we write vectors with a line over them, e.g.  $\overline{a}$  to distinguish them from field elements.

Examples. We have encountered many vector spaces already without mentioning it.

- Any field is automatically a vector space over itself; vector addition and scalar multiplication are just field addition and multiplication.
- The most common notion of a vector is a tuple or sequence of elements. For any field  $\mathbb{F}$ , the vector space  $\mathbb{F}^n$  consists of vectors of length n with componentwise addition and the scalar multiplication  $f \cdot (v_1, \ldots, v_n) := (f v_1, \ldots, f v_n)$ .
- By the same logic, the polynomials over a field form a vector space, as do the polynomials over a field modulo some fixed polynomial. It is thus possible to interpret  $GF(p^n)$  as the n-dimensional vector space  $GF(p)^n$ , "forgetting" about the multiplication of polynomials.

Linear (in)dependence and bases. Where a vector space is, a basis (plural: bases) is not far away. A basis plays a similar role to a set of generators of a group, but the additional field multiplication that turns a group into a vector space gives us much more to work with. Specifically, linear combinations:

**Definition 7.2 (linear combination).** For a finite set  $\{\overline{v}_i\}_i$  of vectors, a linear combination is a sum  $\sum_i c_i \cdot \overline{v}_i$  with coefficients  $c_i$  in the field  $\mathbb{F}$ .

If the index set is something like  $I = \{1, 2, ..., n\}$  then we can write a linear combination as  $c_1 \cdot \overline{v}_1 + ... + c_n \cdot \overline{v}_n$ .

♦ The basic definitions of linear algebra (linear independence, basis etc.) can also be defined for infinite sets, but the exact definition is a bit subtle. We will not need to worry about this too much in this course. A linear combination for an infinite set *V* of vectors is a sum where only a finite number of coefficients are non-zero.

A linear combination of vectors where all coefficients are zero (the neutral element of field addition) is automatically the zero vector (the neutral element of vector addition). A set of vectors is linearly independent if this is the only linear combination that is zero; another way of saying this is that no vector in the set can be written as a linear combination of the others.

**Definition 7.3 (linear (in)dependence).** A set  $\{\overline{v}_i\}_i$  of vectors is linearly independent if no linear combination of the vectors  $\sum_i c_i \cdot \overline{v}_i$  with coefficients in  $\mathbb F$  gives the zero vector (neutral element of vector addition), unless all coefficients are already zero (the neutral element of the field's addition). A set of vectors that is not linearly independent is called linearly dependent.

 $\diamond$  An infinite set V is linearly independent if no finite sum of elements in V with coefficients in  $\mathbb{F}$  gives the zero vector, unless all coefficients are zero. This is equivalent to saying that every finite subset of V is linearly independent.

And finally, a basis is a finite set of linearly independent vectors (in a particular order) that generates the entire space.

**Definition 7.4 (basis).** A basis of a vector space V is a finite list  $(\overline{v}_1, \ldots, \overline{v}_n)$  of vectors that is linearly independent and generates V, i.e.  $V = \langle \overline{v}_1, \ldots, \overline{v}_n \rangle$ .

In other words, every vector  $\overline{w}$  in the space can be written as a linear combination of the basis vectors:  $w = w_1 \overline{v}_1 + \ldots + w_n \overline{v}_n$ . In fact, if a vector space has a basis then any two bases of the space have the same number of elements (which we call the dimension of the space) and for any vector v and any basis in a fixed order, there is exactly one way (one tuple of coefficients) to write W as a linear combination of the basis vectors.

 $\diamond$  An infinite set W of vectors is a basis of a vector space V if (1) it is linearly independent — that is, every finite subset of W is linearly independent in the usual sense and (2) every element in  $v \in V$  can be written as a *finite* linear combination of elements in W. This definition is required to make the theorem "every vector space has a basis" true even in the infinite-dimensional case, assuming the Axiom of Choice.

**Proposition 7.5.** Any two bases of a vector space have the same number of elements. If a vector space has a basis with n elements, we say that the space has dimension n.

And finally, every vector space has a basis. This proposition is only really mathematically interesting to discuss in the infinite case but it is the start of most constructions in linear algebra: given any vector space V, we can simply assume that a basis B is given as well.

**Proposition 7.6.** Every vector space has a basis.

*Linear maps.* A vector space homomorphism is a function  $f: V \rightarrow W$  between two vector spaces over the same field  $\mathbb{F}$  that preserves vector addition and scalar multiplication. We call such a function a linear map.

**Definition 7.7 (linear).** If V and W are two vector spaces over a field  $\mathbb{F}$ , we call a function  $f:V\to W$  linear if for any  $\overline{x},\overline{y}$  in V and any  $a\in \mathbb{F}$  we have

- $f(\overline{v} + \overline{w}) = f(\overline{v}) + f(\overline{w}).$   $f(a \cdot \overline{v}) = a \cdot f(\overline{v}).$

The reader should understand by now which operation symbols refer to V-operations and which ones refer to W-operations.

If V is a vector space with basis  $B=(\overline{b}_1,\ldots,\overline{b}_n)$  then a linear map  $f:V\to W$  can be computed on any vector from its values on the basis alone. Namely, if you know  $f(\overline{b}_1), \ldots, f(\overline{b}_n)$  and want to compute  $f(\overline{v})$  then you can write  $\overline{v}$  in exactly one way as  $v = c_1 \cdot \overline{b}_1 + \ldots + c_n \cdot \overline{b}_n$ , giving  $f(\overline{v}) = c_1 \cdot f(\overline{b}_1) + \ldots + c_n \cdot f(\overline{b}_n)$ .

If we have a basis  $P=(\overline{p}_1,\ldots,\overline{p}_m)$  of W as well, you can compute the coefficients of the images of the basis elements under f: there are unique coefficients  $(a_{1,1}, \ldots, a_{1,m})$ such that  $f(\overline{b}_1) = a_{1,1} \cdot \overline{p}_1 + \ldots + a_{1,m} \cdot \overline{p}_m$  and the same for the other basis elements. In other words, a linear map between a n-dimensional vector space V and a m-dimensional vector space W can be specified as a  $n \cdot m$  rectangle of coefficients in the field  $\mathbb{F}$ :

$$f: V \to W \quad \leftrightarrow \quad \left( \begin{array}{ccc} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{array} \right)$$

We call such a rectangle of coefficients a matrix. Matrices form a vector space which we write  $\mathbb{F}^{m \times n}$  for the space of matrices with m rows and n columns as in the example above. Matrix addition is component-wise; scalar multiplication with a field element just multiplies all matrix components with the field element.

Applying a linear map to a vector becomes matrix-vector multiplication. If we consider linear maps from a space to itself, we can compose them: for  $f, g: V \to V$  we can from the map fg that takes  $\overline{v}$  to  $f(g(\overline{v}))$ . If both f and g are linear, so is fg (exercise). We can use this to define a multiplication operation on square matrices, turning  $\mathbb{F}^{n\times n}$ into a ring (for every positive integer n) — this is just the usual matrix multiplication. Of course we can define matrix multiplication between compatible non-square matrices too but we don't get a ring that way.

## 7.2 Polynomial spaces as vector spaces

We look at the space  $V = GF(p)^n$  constructed by taking a finite field  $GF(p^n) = GF(p)[X]/q(X)$  modulo an irreducible polynomial q of degree  $n \ge 1$  and interpreting it as a vector space. The elements of this space are of the form  $(c_0, c_1, \ldots, c_{n-1})$  which could be written as  $c_0 + c_1X + \ldots + c_{n-1}X^{n-1}$ . Interpreting it as a vector space means forgetting about multiplication of  $GF(p^n)$  elements but adding multiplication with GF(p) elements:  $a \cdot (c_0, \ldots, c_{n-1}) := (a \cdot c_0, \ldots, a \cdot c_{n-1})$ .

One basis of this vector space consists of vectors  $\overline{b}_i$  for i=0 to n-1 where  $\overline{b}_i$  is 1 at position r and 0 elsewhere. Written as polynomials, the i-th basis vector  $\overline{b}_i$  is the monomial  $X^i$ .

The map  $GF(p) \to GF(p^n)$ ,  $a \mapsto (a,0,\ldots,0)$  is a field homomorphism. It is sometimes called the embedding of the base field GF(p) into the extension field  $GF(p^n)$ . This map commutes with field multiplication in the following way: for any element a of GF(p) and any element  $\overline{v}$  of  $GF(p^n)$ , you get the same if you perform the scalar multiplication  $a \cdot \overline{v}$  or if you embed a in  $GF(p^n)$  and then do field multiplication there. We can express this in a diagram.



### 7.3 Automorphisms revisited

An automorphism f of  $GF(p^n)$  can be represented as a  $n \times n$  matrix, since such a f must be linear over the field  $\mathbb{F}$ : if  $a \in \mathbb{F}$  and  $\overline{v} \in V$  then  $f(a\overline{v}) = a \cdot f(\overline{v})$ . However, we know that field automorphisms cannot change degree-0 polynomials:  $f(1,0,\ldots,0) = (1,0,\ldots,0)$ . Writing f out as a matrix, we see

$$\begin{pmatrix} f_{0,0} & f_{0,1} & \cdots & f_{0,n-1} \\ f_{1,0} & f_{1,1} & \cdots & f_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n-1,0} & f_{n-1,1} & \cdots & f_{n-1,n-1} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} f_{0,0} \\ f_{1,0} \\ \vdots \\ f_{n-1,0} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

so the zeroth column of the matrix of a must start with a 1 and be zero everywhere else. Since we also know how to compute  $f(X^2)$  from f(X), this means we know how

to compute f(0, 0, 1, 0, ..., 0) from f(0, 1, 0, ..., 0) and so on — so all the information about f is contained in the first column of the matrix of f and we can always compute the other columns from it.

We look at two examples. The first is  $GF(7^2)$  where for  $p(X) = X^2 + X + 6$ . we found two automorphisms id,  $\phi$  with id(X) = X and  $\phi(X) = 6 + 6X$  (the Frobenius map). As matrices, these are

$$id = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \phi = \begin{pmatrix} 1 & 6 \\ 0 & 6 \end{pmatrix}$$

It is now obvious how to calculate  $\phi$  on an arbitrary field element (a + bX):

$$\phi(a+bX) = \begin{pmatrix} 1 & 6 \\ 0 & 6 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a+6b \\ 6b \end{pmatrix}$$

If we introduce another irreducible polynomial  $q(Y) = Y^2 + 1$ , the isomorphisms we found between these representations last time were  $f_1(a, b) = (a + 3b, 2b)$  and  $f_2(a, b) = (a + 3b, 5b)$ . If we know  $f_1$ , we can calculate  $f_2$  by multiplying from the right with the Frobenius map:

$$f_1\phi = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 6 \\ 0 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 5 \end{pmatrix} = f_2$$

Matrices give us an easy way to find the inverses of isomorphisms, that is the isomorphisms of  $GF(7^2)$  from the representation modulo q(Y) back to the representation modulo p(X). All we need to do is invert the matrices of  $f_1$ ,  $f_2$ :

$$\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}^{(-1)} = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 3 \\ 0 & 5 \end{pmatrix}^{(-1)} = \begin{pmatrix} 1 & 5 \\ 0 & 3 \end{pmatrix}$$

Giving  $f_1^{(-1)}(a+bX) = (a+2b) + 4bX$  and  $f_2^{(-1)}(a+bX) = (a+5b) + 3bX$ .

Our second example is  $GF(2^3)$ , this time with the irreducible polynomial  $p(X) = X^3 + X + 1$ . The Frobenius map sends  $X \mapsto X^2$  and  $X^2 \mapsto [X^4] = X^2 + X$ . As a matrix, we get

$$\phi = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \qquad \phi \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ c \\ b+c \end{pmatrix}$$

from which we read off  $\phi(a + bX + cX^2) = a + cX + (b + c)X^2$ . Finding the other automorphisms is easy too:

$$\phi^2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right) \cdot \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

which maps  $X \mapsto X + X^2$  (middle column) and  $X^2 \mapsto X$  (right column). Multiplying with the column vector (a; b; c) we get  $\phi^2(a + bX + cX^2) = a + (b + c)X + bX^2$ . If we look at the third power

$$\phi \cdot \phi^2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right) \cdot \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

we get the identity map back, as expected. If we take the isomorphism  $f(X) = Y^2 + 1$  into the representation modulo  $q(Y) = Y^3 + Y^2 + 1$ , we find  $f(X^2) = Y^2 + Y$ . The other isomorphisms are

$$f_1\phi = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} = f_2$$

$$f_1\phi^2=f_3$$

from which we read off the columns  $f_2(X) = Y^2 + Y$  and  $f_2(X^2) = 1 + Y$ , giving  $f_2(a+bX+cX^2) = (a+c) + (b+c)Y + bY^2$ . We could read this last formula off the rows of the matrix directly, since we get the last formula by multiplying the matrix of  $f_2$  with the column vector (a; b; c). To invert the isomorphisms, one again just needs to invert the matrices.

**Exercise.** *The rest of the example.* 

- (\*) Compute  $f_3 = f_1 \phi^2$ , then write out the expressions for  $f_3(X)$ ,  $f_3(X^2)$  and  $f_3(a+bX+cX^2)$ .
- (\*\*) Invert the matrix for  $f_1$  to get the inverse isomorphism. Note: matrix inversion is a lot easier in GF(2) as 1+1=0 so you never need to multiply rows through to cancel constants!

**Exercise.** (\*) More finite fields. Consider the field  $GF(3^3)$  with the irreducible polynomials  $p(X) = X^3 + 2X + 1$  and  $q(Y) = Y^3 + 2Y^2 + Y + 1$ .

- 1. Find the Frobenius map  $\phi$  as a 3  $\times$  3 matrix modulo p(X).
- 2. Find the powers of the Frobenius map.
- 3. One isomorphism f between the representations p(X) and q(Y) has  $f(X) = 2X^2 + 2X$ . Find the matrix of f.
- 4. Find the inverse of f by inverting the matrix of f.
- 5. How many isomorphisms are there between the two representations?

- 6. Find the other isomorphisms by matrix multiplication using the matrix of f and the Frobenius map  $\phi$ .
- 7. (\*\*) Here is another way to find the Frobenius map in the representation modulo q(Y). We have the following situation with V = GF(3)[X]/p(X) and W = GF(3)[Y]/q(Y):

$$\begin{array}{c|c}
V & \xrightarrow{f} & W \\
\phi \downarrow & & \downarrow \hat{\phi} \\
V & \xrightarrow{f(-1)} & W
\end{array}$$

From this we see that the Frobenius map in W has matrix  $\hat{\phi} = f \cdot \phi \cdot f^{(-1)}$ . Compute  $\hat{\phi}$  this way.

♦ The conditions for field automorphisms say that  $f(\overline{v} + \overline{w}) = f(\overline{v}) + f(\overline{w})$ ,  $f(\overline{v} \cdot \overline{w}) = f(\overline{v}) \cdot f(\overline{w})$  and  $f(1,0,\ldots,0) = (1,0,\ldots,0)$  since this element is the one of the field. Since the scalar multiplication  $a \cdot \overline{v}$  we get for V as a vector space is equivalent to the vector multiplication  $(a,0,\ldots,0) \cdot \overline{v}$ , a field automorphism must satisfy  $f(a \cdot \overline{v}) = f((a,0,\ldots,0) \cdot \overline{v}) = f(a,0,\ldots,0) \cdot f(\overline{v}) = (a,0,\ldots,0) \cdot f(\overline{v}) = a \cdot f(\overline{v})$ . This explains why in field multiplication we get  $f(a \cdot \overline{v}) = a \cdot f(\overline{v})$  with the a appearing "outside f" whereas the automorphism rule says  $f(\overline{v} \cdot \overline{w}) = f(\overline{v}) \cdot f(\overline{w})$ .