Homework 5

Course: CO21-320352 March 12th, 2019

Exercise 1

Solution:

Denote the halting language $H = \{ \langle M \rangle; x | M(x) \neq \nearrow \}$.

For any word < N>; x with Code(< N>) and $x \in \Sigma^*$, where $\Sigma = \{0,1,\#\}$, we can construct a TM $K_{< N>;x}$ which for any input $y \in \Sigma^*$ will first write y on its input tape then a separator (can be indicated with some word $w \in \Sigma^*$) and then x. $K_{< N>;x}$ then simulates N(x), which should yield the same y, but on x part of the tape.

If the simulation reaches a halting configuration of N, then $K_{< N>;x}$ enters a subroutine where it checks whether the y and x part are the same, replacing every letter on both sides of the separator with $_$ if there is a match in the letters. If there is no match, then $K_{< N>;x}$ never halts. If $K_{< N>;x}$ reaches \triangleright then it halts.

From this description it is clear that $K_{< N>;x}$ halts on all inputs iff $< N>;x \in H$. The reduction map here maps < N>;x on $K_{< N>;x}$. \square

Exercise 2

Solution:

References: "Models Of Computation Exploring the Power of Computing by John E. Savage"

In order to show that L is not recursively enumerable, we need to prove that a machine accepting such language doesn't exist. Assuming that there is a machine that accepts L, we would create a contradiction by saying that that TM M_L that decides L and that suggesting the existence of another TM M_H that solves the halting problem.

If we were given a code function < M > for a TM M and an input w, the TM M_H writes that w on the tape and when the tape is empty, causes a halt.

The language that is accepted by T(M, w) includes the \emptyset iff M halts on the word w. Thus, that TM is deciding the halting problem, and that is not possible because the TM M_L doesn't exist. \implies L is not recursively enumerable.