

PCT / U S 0 3 / 3 5 0 5 5

RECEIVED
19 JAN 2004

WIPO PCT

P1 1114494

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

**UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office**

January 14, 2004

**THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE.**

APPLICATION NUMBER: 60/429,041

FILING DATE: November 22, 2002

RELATED PCT APPLICATION NUMBER: PCT/US03/35055

**By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS**

**M. K. HAWKINS
Certifying Officer**

**PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)**

11-26-02 *App/loc*
Modified PTO/SB/16 (6-95)

Approved for use through 04/11/98. OMB 0651-0037
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53 (c)

Docket Number	P-15440	Type a plus sign (+) inside this box -->	+
---------------	---------	--	---

11/22/02	INVENTOR(s)/APPLICANT(s)			
	LAST NAME	FIRST NAME	MIDDLE NAME	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)
	BUNEL	EMILIO	ENRIQUE	CARMEL, INDIANA
	GAJEWSKI	ROBERT	PETER	INDIANAPOLIS, INDIANA
JONES	CHARLES	DAVID	INDIANAPOLIS, INDIANA	

TITLE OF THE INVENTION (280 characters max)

VITAMIN D RECEPTOR MODULATORS

CORRESPONDENCE ADDRESS			
Eli Lilly and Company Patent Division P.O. Box 6288 Indianapolis, Indiana 46206-6288		JC997 U.S. PTO 60/429041 11/22/02	
STATE	IN	ZIP CODE	46206-6288
COUNTRY USA			

25885
PATENT TRADEMARK OFFICE

ENCLOSED APPLICATION PARTS (check all that apply)					
<input checked="" type="checkbox"/>	Specification	Number of pages	180	<input type="checkbox"/>	Small Entity Statement
<input type="checkbox"/>	Drawing(s)	Number of Sheets	<input type="checkbox"/>	<input type="checkbox"/>	Other (Specify) <input type="text"/>

METHOD OF PAYMENT (check one)

<input type="checkbox"/>	A check or money order is enclosed to cover the Provisional filing fees	PROVISIONAL	
<input checked="" type="checkbox"/>	The Assistant Commissioner is hereby authorized to charge filing fees and credit Deposit Account Number: <input type="text"/> 05-0840	FILING FEE AMOUNT (\$)	\$160.00

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

<input checked="" type="checkbox"/>	No.	<input checked="" type="checkbox"/>	EXPRESS ABANDONMENT AFTER A FILING DATE IS ACCORDED. The applicant hereby expressly abandons this provisional application on the next business day after the Office determines that this application has been accorded a regular national filing date in the United States. This abandonment is intended to leave no rights outstanding in the abandoned application, but is not a waiver of the right in any subsequent application to assert the benefit or priority of the filing date of this application to the extent permitted under the Paris Convention, 35 U.S.C., or otherwise.
<input type="checkbox"/>	Yes, the name of the U.S. Government agency and the Government contract number are:		

Respectfully submitted,
SIGNATURE

TYPED or PRINTED NAME ROGER S. BENJAMIN

Date 11 / 22 / 02

REGISTRATION NO.
(if appropriate)

27,025

Additional inventors are being named on separately numbered sheets attached hereto

PROVISIONAL APPLICATION FOR PATENT FILING ONLY

"Express Mail" mailing label number EL 832894015 US Date of Deposit 11/22/2002
I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Arlington, VA, 22202. Roger S. Benjamin

Printed Name

Signature

Modified PTO/SB/16 (6-95)

(CONTINUED)**PROVISIONAL APPLICATION FOR PATENT COVER SHEET**

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53 (c)

DOCKET NUMBER P-15440**INVENTOR(s)/APPLICANT(s)**

LAST NAME	FIRST NAME	MIDDLE NAME	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)
LU	JIANLIANG		FISHERS, INDIANA
NAGPAL	SUNIL		CARMEL, INDIANA
MA	TIANWEI		CARMEL, INDIANA
YEE	YING	KWONG	CARMEL, INDIANA

P-15440

VITAMIN D RECEPTOR MODULATORS

BACKGROUND OF THE INVENTION

5 Vitamin D₃ Receptor (VDR) is a ligand dependent transcription factor that belongs to the superfamily of nuclear hormone receptors. The VDR protein is 427 amino acids, with a molecular weight of ~50 kDa. The VDR ligand, 1 α ,25-dihydroxyvitamin D₃ (the hormonally active form of Vitamin D) has its action mediated by its interaction with the nuclear receptor known as Vitamin D receptor ("VDR"). The VDR ligand, 1 α ,25-dihydroxyvitamin D₃ ($1\alpha,25(OH)_2D_3$) acts upon a wide variety of tissues and cells both related to and unrelated to calcium and phosphate homeostasis.

The activity 1α ,25-dihydroxyvitamin D₃ in various systems suggests wide clinical applications. However, use of conventional VDR ligands is hampered by their associated toxicity, namely hypercalcemia (elevated serum calcium). Currently, 1α ,25(OH)₂D₃, 15 marketed as Rocaltrol® pharmaceutical agent (product of Hoffmann-La Roche), is administered to kidney failure patients undergoing chronic kidney dialysis to treat hypocalcemia and the resultant metabolic bone disease. Other therapeutic agents, such as Calcipotriol® (synthetic analog of 1α ,25(OH)₂D₃) show increased separation of binding affinity on VDR from hypercalcemic activity.

Recently, chemical modifications of $1\alpha,25(\text{OH})_2\text{D}_3$ have yielded analogs with attenuated calcium mobilization effects (R. Bouillon et. al., Endocrine Rev. 1995, 16, 200-257). One such analog, Dovonex ® pharmaceutical agent (product of Bristol-Meyers Squibb Co.), is currently used in Europe and the United States as a topical treatment for mild to moderate psoriasis (K. Kragballe et. al., Br. J. Dermatol. 1988, 119, 223-230).

25 Other Vitamin D₃ mimics have been described in the publication, Vitamin D Analogs: Mechanism of Action of Therapeutic Applications, by Nagpal, S.; Lu, J.; Boehm, M. F., Curr. Med. Chem. 2001, 8, 1661-1679.

"Express Mail" mailing label number EL 832894015 US

Date of Report: Nov. 22, 2017

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to the Assistant Commissioner for

Patents, Washington, D.C. 20231
BUCEN Home
(Typed or printed name of person mailing paper)

-2-

Although some degree of separation between the beneficial action and calcium raising (calcemic) effects has been achieved with these VDR ligands, to date the separation has been insufficient to allow for oral administration to treat conditions such as
5 osteoporosis, cancers, leukemias, and severe psoriasis.

One example of a major class of disorder that could benefit from VDR mediated biological efficacy in the absence of hypercalcemia is osteoporosis. Osteoporosis is a systemic disorder characterized by decreased bone mass and microarchitectural deterioration of bone tissue leading to bone fragility and increased susceptibility to
10 fractures of the hip, spine, and wrist (World Health Organization WHO 1994). Osteoporosis affects an estimated 75 million people in the United States, Europe, and Japan.

Within the past few years, several antiresorptive therapies have been introduced. These include bisphosphonates, hormone replacement therapy (HRT), a selective estrogen
15 receptor modulator (SERM), and calcitonins. These treatments reduce bone resorption, bone formation, and increase bone density. However, none of these treatments increase true bone volume nor can they restore lost bone architecture.

Synthetic VDR ligands with reduced calcemic potential have been synthesized. For example, a class of bis-phenyl compounds stated to mimic 1α , 25-dihydroxyvitamin
20 D₃ is described in US Patent No. 6,218,430 and the article; "Novel nonsecosteroidal vitamin D mimics exert VDR-modulating activities with less calcium mobilization than 1α , 25-Dihydroxyvitamin D₃" by Marcus F. Boehm, et. al., Chemistry & Biology 1999,
Vol 6, No. 5, pgs. 265-275.

Synthetic VDR ligands having an aryl-thiophene nucleus are described in United
25 States provisional patent application SN 60/384151, filed 29 May 2002.

There remains a need for improved treatments using alternative or improved pharmaceutical agents that mimic 1α , 25-dihydroxyvitamin D₃ to stimulate bone formation, restore bone quality, and treat other diseases without the attendant disadvantage of hypercalcemia.

-3-

SUMMARY OF THE INVENTION

Novel compounds having a nucleus of formula "(A)" have been found effective as
 5 Vitamin D Receptor (VDR) modulators:

The compounds of the invention with VDR modulating activities are represented by formula (I)

wherein the variables R, R', R₁, R₂, Z_B, and Z_C are as hereinafter defined. It is a discovery of this invention that compounds described herein display the desirable cell differentiation and antiproliferative effects of 1,25(OH)₂D₃ with reduced calcium mobilization (calcemic) effects if substituent Z_C possesses a carbon atom linked group 15 that is directly connected (i.e., with no intervening non-carbon atom) to the aryl nucleus.

In another aspect, the present invention is directed towards pharmaceutical compositions containing pharmaceutically effective amounts of compounds of formulae I or a pharmaceutically acceptable salt or prodrug thereof, either singly or in combination, together with pharmaceutically acceptable carriers and/or auxiliary agents.

Another aspect of the invention is a pharmaceutical formulation for treatment or prevention of osteoporosis containing pharmaceutically effective amounts of the vitamin D receptor modulator compound of formula (I) together with pharmaceutically effective amounts of co-agents conventionally used for the treatment of osteoporosis.

Another aspect of the invention is a pharmaceutical formulation for treatment or

-4-

prevention of psoriasis containing pharmaceutically effective amounts of the vitamin D receptor modulator compound of formula (I) together with pharmaceutically effective amounts of co-agents conventionally used for the treatment of psoriasis.

Another aspect of the invention is to use the compounds of the invention to treat
5 disease states responsive to Vitamin D receptor ligands.

Another aspect of the invention is the prevention and treatment of acne, actinic
keratosis, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone fracture
healing, breast cancer, Crohn's disease, prostate cancer, colon cancer, Type I diabetes,
host-graft rejection, hypercalcemia, Type II diabetes, leukemia, multiple sclerosis,
10 insufficient sebum secretion, osteomalacia, osteoporosis, insufficient dermal firmness,
insufficient dermal hydration, myelodysplastic syndrome, psoriatic arthritis, psoriasis,
renal osteodystrophy, rheumatoid arthritis, scleroderma, seborrheic dermatitis, skin
cancer, systemic lupus erythematosis, ulcerative colitis and wrinkles; by administering to
a mammal in need thereof a pharmaceutically effective amount of a compound of
15 Formula I.

20

DETAILED DESCRIPTION OF THE INVENTION

Definitions:

25 The term "branched C₃-C₅ alkyl" is an alkyl group selected from 1-methylethyl;
1-methylpropyl; 2-methylpropyl; 1,1-dimethylethyl; 1,1-dimethylpropyl; 1,2-
dimethylpropyl; or 2,2-dimethylpropyl. Preferred branched C₃-C₅ alkyl groups are 2-
methylpropyl and 1,1-dimethylethyl, with the 1,1-dimethylethyl group being most
preferred.

30 The term, "branched alkyl terminated group" is used to identify the substituent Z_B
of Formula I of the Invention. The defining characteristic of the branched alkyl

-5-

terminated group is that its terminal group is a branched C₃-C₅ alkyl, as previously defined. For example, in the structural formula (B);

5 the arrow identifies the terminal branched C₃-C₅ alkyl substituent of the group Z_B.

The term, "carbon atom linked group" is used to identify the chemical substituent Z_C in the Formula I definition of compounds of the invention. Its defining characteristic is a carbon atom as the first atom and point of attachment to the aryl ring to which it is attached. For example in the structural formula (C):

10

the arrow identifies the carbon atom linked directly to the aryl nucleus of formula (I). All compounds of the invention contain a carbon atom linked group as the Z_C substituent.

15 The term "alkenyl" refers to aliphatic groups wherein the point of attachment is a carbon-carbon double bond, for example vinyl, 1-propenyl, and 1-cyclohexenyl. Alkenyl groups may be straight-chain, branched-chain, cyclic, or combinations thereof, and may be optionally substituted. Suitable alkenyl groups have from 2 to about 20 carbon atoms.

20 The term "C₁-C₅ alkyl" refers to saturated aliphatic groups including straight-chain, branched-chain, and cyclic groups and any combinations thereof. Alkyl groups may further be divided into "primary", "secondary", and "tertiary" alkyl groups. In primary alkyl groups, the carbon atom of attachment is substituted with zero (methyl) or one organic radical. In secondary alkyl groups, the carbon atom of attachment is substituted with two organic radicals. In tertiary alkyl groups, the carbon atom of attachment is

-6-

substituted with three organic radicals. Examples of C₁-C₅ alkyl groups are methyl, ethyl, n-propyl, from 1-methylethyl; n-butyl, 1-methylpropyl; 2-methylpropyl; 1,1-dimethylethyl; n-amyl, 1,1-dimethylpropyl; 1,2-dimethylpropyl; and 2,2-dimethylpropyl.

5 The term "cycloalkyl" includes organic radicals such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term, "cycloalkenyl" includes organic radicals such as cyclopropenyl, cyclobutenyl, cyclopentenyl and cyclohexenyl.

The term, "C₁-C₅ fluoroalkyl" is an alkyl group containing fluorine and includes organic radicals such as -CF₃, -CHF₂, -CH₂F, -CF₂CF₃, -CHFCF₃, -CH₂CF₃, -

10 CH₂CHF₂, and -CH₂CH₂F, with -CF₃ being preferred.

The abbreviation, "Me" means methyl.

The abbreviation, "Et" means ethyl.

The abbreviation, "iPr" means 1-methylethyl.

The abbreviation, "tBu" means 1,1-dimethylethyl.

15 The symbol, "-CH₂-C(O)-N-pyrrolidine" refers to the radical represented by the formula:

The symbol, "-CH₂-N-pyrrolidin-2-one" refers to the radical represented by the formula:

20

The symbol, "-CH₂-(1-methylpyrrolidin-2-one-3-yl)" is the organic radical represented by the structural formula:

P-15440

-7-

The symbol, "1,3,4-oxadiazolin-2-one-5-yl" is the organic radical represented by the formula:

The symbol, "1,3,4-oxadiazolin-2-thione-5-yl" is the organic radical represented by
5 by the formula:

The symbol, "imidazolidine-2,4-dione-5-yl" is the organic radical represented by the formula:

10

The symbol, "isoxazol-3-ol-5-yl" is the organic radical represented by the formula:

The dotted line symbol crossing a solid line representing a bond

15

-8-

means that the bond so marked is the bond attached to the nucleus of formula (I) of the parent molecule or to a divalent linking group that is attached to the nucleus of the parent molecule. For example, the group;

5

is attached to the parent diaryl nucleus to provide a compound of the invention as shown;

10 The term, "mammal" includes humans.

The term "ester" refers to compounds of the general formula; RO-C(O)R', prepared for example, where a hydroxy group of an acid is replaced with an alkoxide group. For example, a carboxylic ester is one in which the hydroxy group of a carboxylic acid is replaced with an alkoxide. Esters may derive from any acid comprising one or more hydroxy groups: for example, carbonic acid, carbamic acids, phosphonic acids, and sulfonic acids.

The term "halo" refer to fluorine, chlorine, bromine, and iodine.

Compounds of the Invention:

20 The compounds of the invention with vitamin receptor modulating (VDRM) activities are represented by formula (I) or a pharmaceutically acceptable salt or a prodrug derivative thereof:

-9-

wherein;

R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 5 3 to 8 carbon atoms;

R₁ and R₂ are independently selected from the group consisting of hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ alkyl, -O-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, and C₃-C₅ cycloalkenyl;

10 Z_B is a branched alkyl terminated group represented by the formula:

wherein

15 -(L₁)- and -(L₂)- and -(L₃)- are divalent linking groups independently selected from the group consisting of

a bond

-10-

-11-

where m is 0, 1 or 2, X₁ is oxygen or sulfur, and each R40 is independently hydrogen or C₁-C₅ alkyl or C₁-C₅ fluoroalkyl;

R_B is a branched C₃-C₅ alkyl; and

- 5 Z_C is selected from CO₂Me, CO₂H, C(O)NH₂, C(O)NMe₂, 5-tetrazolyl, C(O)-NH-5-tetrazolyl, C(O)NHCH₂SO₂Me, C(O)NHCH₂S(O)Me, C(O)NHCH₂CH₂SO₂Me, C(O)NHCH₂CH₂S(O)Me, C(O)NHSO₂Me, C(O)NHS(O)Me, C(O)NHSO₂Et, C(O)NHS(O)Et, C(O)NHSO₂iPr, C(O)NHS(O)iPr, C(O)NHSO₂tBu, C(O)NHS(O)tBu, CH₂NHSO₂Me, CH₂NHS(O)Me, CH₂NHSO₂Et, CH₂NHS(O)Et,
- 10 CH₂NHSO₂iPr, CH₂NHS(O)iPr, CH₂NHSO₂tBu, CH₂NHS(O)tBu, CH₂-N-pyrrolidin-2-one, CH₂-(1-methylpyrrolidin-2-one-3-yl), CH₂CO₂Me, CH₂CO₂H, CH₂C(O)NH₂, CH₂C(O)NMe₂, CH₂C(O)-N-pyrrolidine, CH₂-5-tetrazolyl, C(O)C(O)OH, CH(OH)C(O)OH, C(O)C(O)NH₂, CH(OH)C(O)NH₂, C(O)C(O)NMe₂, CH(OH)C(O)NMe₂, CH₂CH₂CO₂H, CH₂CH₂C(O)NH₂, CH₂CH₂C(O)NMe₂,
- 15 CH₂CH₂-5-tetrazolyl, CH₂S(O)₂Me, CH₂S(O)Me, CH₂CH₂S(O)₂Me, CH₂CH₂S(O)Me, CH₂CH₂CH₂S(O)₂Me, CH₂CH₂CH₂S(O)Me, CH₂S(O)₂Et, CH₂S(O)Et, CH₂CH₂S(O)₂Et, CH₂CH₂S(O)Et, CH₂CH₂CH₂S(O)₂Et, CH₂CH₂CH₂S(O)Et, CH₂S(O)₂iPr, CH₂S(O)iPr, CH₂CH₂S(O)₂iPr, CH₂CH₂S(O)iPr, CH₂S(O)₂tBu, CH₂S(O)tBu, CH₂CH₂S(O)₂tBu, CH₂CH₂S(O)tBu,
- 20 CH₂CH₂S(O)₂NH₂, CH₂CH₂S(O)NH₂, CH₂CH₂S(O)₂NMe₂, CH₂CH₂S(O)NMe₂, C(O)CH₂S(O)₂Me, C(O)CH₂S(O)Me, C(O)CH₂CH₂S(O)₂Me, C(O)CH₂CH₂S(O)Me, C(O)CH₂CH₂S(O)₂Me, C(O)CH₂CH₂S(O)Me, -CH₂NHCH₂CH₂SO₂CH₃, 1,3,4-oxadiazolin-2-one-yl, imidazolidine-2,4-dione-yl, isoxazol-3-ol-yl, or 1,3,4-oxadiazolin-2-thione-yl.

25

In the preceding formula I the divalent linking groups -(L1)- and -(L2)- and -(L3)- are understood (in the case of those having more than one substituent) to be oriented in either direction, for example, where divalent linker (L1) has the identity

-12-

$-(CH_2)_m-O-$, it may be configured:

or

5

Preferred compounds of the invention with VDR modulating activities are represented by formula (I) or a pharmaceutically acceptable salt or a prodrug derivative thereof:

10

wherein;

R and R' are independently methyl, ethyl, propyl, 1-methylethyl, 1-methylpropyl, 2-methylpropyl, or 1,1-dimethylethyl;

15 R₁ and R₂ are independently selected from the group consisting of hydrogen, fluoro, -Cl, -CF₃, -CH₂F, -CHF₂, methoxy, ethoxy, vinyl, methyl, ethyl, propyl, 1-methylethyl, 1,1-dimethylethyl, butyl, 1-methylpropyl, 2-methylpropyl, or cyclopropyl;

Z_B is a branched alkyl terminated group represented by the formula:

20 wherein (L₁) and (L₂) and (L₃) are divalent linking groups where

-13-

L₁ is -O- or -CH₂- ;

L₂ is -CH₂- or -CH(Me)- ;

L₃ is -C(O)-, -CHOH-, or -C(Me)OH- ;

R_B is a branched C₃-C₅ alkyl; and

5 Z_C is selected from CO₂Me, CO₂H, C(O)NH₂, C(O)NMe₂, 5-tetrazolyl, C(O)-NH-5-tetrazolyl, C(O)NHCH₂SO₂Me, C(O)NHCH₂S(O)Me, C(O)NHCH₂CH₂SO₂Me, C(O)NHCH₂CH₂S(O)Me, C(O)NHSO₂Me, C(O)NHS(O)Me, C(O)NHSO₂Et, C(O)NHS(O)Et, C(O)NHSO₂iPr, C(O)NHS(O)iPr, C(O)NHSO₂tBu, C(O)NHS(O)tBu, CH₂NHSO₂Me, CH₂NHS(O)Me, CH₂NHSO₂Et, CH₂NHS(O)Et,

10 CH₂NHSO₂iPr, CH₂NHS(O)iPr, CH₂NHSO₂tBu, CH₂NHS(O)tBu, CH₂-N-pyrrolidin-2-one, CH₂-(1-methylpyrrolidin-2-one-3-yl), CH₂CO₂Me, CH₂CO₂H, CH₂C(O)NH₂, CH₂C(O)NMe₂, CH₂C(O)-N-pyrrolidine, CH₂-5-tetrazolyl, C(O)C(O)OH, CH(OH)C(O)OH, C(O)C(O)NH₂, CH(OH)C(O)NH₂, C(O)C(O)NMe₂, CH(OH)C(O)NMe₂, CH₂CH₂CO₂H, CH₂CH₂C(O)NH₂, CH₂CH₂C(O)NMe₂,

15 CH₂CH₂-5-tetrazolyl, CH₂S(O)₂Me, CH₂S(O)Me, CH₂CH₂S(O)₂Me, CH₂CH₂S(O)Me, CH₂S(O)₂Et, CH₂S(O)Et, CH₂CH₂S(O)₂Et, CH₂CH₂S(O)Et, CH₂CH₂CH₂S(O)Et, CH₂S(O)₂iPr, CH₂S(O)iPr, CH₂CH₂S(O)₂iPr, CH₂CH₂S(O)iPr, CH₂S(O)₂tBu, CH₂S(O)tBu, CH₂CH₂S(O)₂tBu, CH₂CH₂S(O)tBu,

20 CH₂CH₂S(O)₂NH₂, CH₂CH₂S(O)NH₂, CH₂CH₂S(O)₂NMe₂, CH₂CH₂S(O)NMe₂, C(O)CH₂S(O)₂Me, C(O)CH₂S(O)Me, C(O)CH₂CH₂S(O)₂Me, C(O)CH₂CH₂S(O)Me, C(O)CH₂CH₂S(O)₂Me, C(O)CH₂CH₂S(O)Me, -CH₂NHCH₂CH₂SO₂CH₃, 1,3,4-oxadiazolin-2-one-yl, imidazolidine-2,4-dione-yl, isoxazol-3-ol-yl, or 1,3,4-oxadiazolin-2-thione-yl.

25

Other preferred compounds of the invention are those represented by formula I or a pharmaceutically acceptable salt or a prodrug derivative thereof:

P-15440

-14-

wherein;

R and R' are independently methyl or ethyl;

R₁ and R₂ are independently selected from the group consisting of hydrogen,
 5 fluoro, -Cl, -CF₃, -CH₂F, -CHF₂, methoxy, ethoxy, vinyl, methyl, or cyclopropyl;
 Z_B is a branched alkyl terminated group represented by the formula:

10 Z_C is selected from

- (CH₂)₂ - C(O) - Et,
- C(O) - O - Me,
- (CH₂)₂ - C(O) - OH,
- (CH₂)₂ - C(O) - N(Me)₂,
- C(O) - OH,

15

P-15440

-15-

- CH=CH-C(O)-N(Me)₂,
- C(O)-NH-S(O)₂-Me,
- (CH₂)-S(O)₂-Me,
- C(O)-NH-(CH₂)-(CH₂)-OH,
- 5 -C(O)-NH-(CH₂)-(CH₂)-S(O)₂-Me,
- C(O)-NH-(CH₂)-(CH₂)-OH,
- (CH₂)-NH-(CH₂)-(CH₂)-S(O)₂-Me,
- C(O)-O-(CH₂)-C(O)-N(Me)₂,
- (CH₂)-NH-(CH₂)-C(O)-O-Me,
- 10 -C(O)-NH-(CH₂)-C(O)-OH,
- CH₂NHCH₂CH₂SO₂CH₃

15 , or

Particularly preferred are compounds or a pharmaceutically acceptable salt or prodrug derivative thereof selected from (AA) to(CJ) and mixtures thereroft, as follows:

20

AA)

P-15440

-16-

AB)

AC)

5

AD)

-17-

AE)

AF)

AG)

P-15440

-18-

AH)

AI)

P-15440

-19-

AK)

AL)

5

AM)

P-15440

-20-

AP)

AQ)

5

AR)

P-15440

Chemical Abstracts Service • 2000-2001 Editions

-21-

AR2)

AS)

5

AT)

P-15440

-22-

AU)

5

AV)

AW)

P-15440

© 1941-2007 U.S. & Int'l. Reg'd.

-23-

AX)

AY)

5

AZ)

P-15440

-24-

BA)

BB)

5

BC)

P-15440

-25-

BD)

BE)

5

BF)

P-15440

-26-

BG)

BH)

5

BI)

-27-

BJ)

BK)

BL)

-28-

BM)

BN)

P-15440

-29-

BP)

BQ)

5

BR)

P-15440

-30-

BS)

BT)

5

BU)

P-15440

-31-

BV)

BW)

5

BX)

-32-

BY)

BZ)

5

CA)

P-15440

-33-

CB)

CC)

5

CD)

P-15440

-34-

CF)

5

CI)

P-15440

SEARCHED
SERIALIZED
INDEXED
FILED

-35-

CL)

CM)

5

CN)

P-15440

-36-

CO)

, or

5 Most preferred are the individual enantiomers or a mixture of enantiomers represented by the formulae:

-37-

and

5 For all of the above compounds of the invention defined by Formula (I) the preferred prodrug derivative is a methyl ester, ethyl ester N,N-diethylglycolamido ester or morpholinylethyl ester. In addition, for all of the above compounds of the invention the preferred salt is sodium or potassium.

10 Other specific compounds that are preferred embodiments of this invention and are preferred for practicing the method of treatment of the invention are set out in the following two Tables. All numbers in the Tables cells reciting chemical species are to be understood as subscripts in chemical formulae, for example, in row, Code 11, Column, W_A, the symbol, "CO₂H" is to be understood as the conventional chemical nomenclature, -- CO₂H --. Each row of Tables 1 and 2 is a single compound having an identifying 15 "Code" (e.g., "99", "206A") defining the specific substituents in the structural formula displayed above the Tables, as follows:

5

Table 1

	R_B	L_3	L_2	L_1	R_C
1	tBu	C(O)	CH2	O	CO2Me
2	tBu	CHOH	CH2	O	CO2Me
3	tBu	C(Me)OH	CH2	O	CO2Me
4	tBu	C(O)	CH(Me)	O	CO2Me
5	tBu	CHOH	CH(Me)	O	CO2Me
6	tBu	C(Me)OH	CH(Me)	O	CO2Me
7	tBu	C(O)	CH2	O	CO2H
8	tBu	CHOH	CH2	O	CO2H
9	tBu	C(Me)OH	CH2	O	CO2H
10	tBu	C(O)	CH(Me)	O	CO2H
11	tBu	CHOH	CH(Me)	O	CO2H
12	tBu	C(Me)OH	CH(Me)	O	CO2H
13	tBu	C(O)	CH2	O	C(O)NH2
14	tBu	CHOH	CH2	O	C(O)NH2
15	tBu	C(Me)OH	CH2	O	C(O)NH2
16	tBu	C(O)	CH(Me)	O	C(O)NH2
17	tBu	CHOH	CH(Me)	O	C(O)NH2
18	tBu	C(Me)OH	CH(Me)	O	C(O)NH2
19	tBu	C(O)	CH2	O	C(O)NMe2

20	tBu	CHOH	CH2	O	C(O)NMe2
21	tBu	C(Me)OH	CH2	O	C(O)NMe2
22	tBu	C(O)	CH(Me)	O	C(O)NMe2
23	tBu	CHOH	CH(Me)	O	C(O)NMe2
24	tBu	C(Me)OH	CH(Me)	O	C(O)NMe2
25	tBu	C(O)	CH2	O	5-tetrazolyl
26	tBu	CHOH	CH2	O	5-tetrazolyl
27	tBu	C(Me)OH	CH2	O	5-tetrazolyl
28	tBu	C(O)	CH(Me)	O	5-tetrazolyl
29	tBu	CHOH	CH(Me)	O	5-tetrazolyl
30	tBu	C(Me)OH	CH(Me)	O	5-tetrazolyl
31	tBu	C(O)	CH2	O	C(O)-NH-5-tetrazolyl
32	tBu	CHOH	CH2	O	C(O)-NH-5-tetrazolyl
33	tBu	C(Me)OH	CH2	O	C(O)-NH-5-tetrazolyl
34	tBu	C(O)	CH(Me)	O	C(O)-NH-5-tetrazolyl
35	tBu	CHOH	CH(Me)	O	C(O)-NH-5-tetrazolyl
36	tBu	C(Me)OH	CH(Me)	O	C(O)-NH-5-tetrazolyl
37	tBu	C(O)	CH2	O	C(O)NHCH2SO2Me
38	tBu	CHOH	CH2	O	C(O)NHCH2SO2Me
39	tBu	C(Me)OH	CH2	O	C(O)NHCH2SO2Me
40	tBu	C(O)	CH(Me)	O	C(O)NHCH2SO2Me
41	tBu	CHOH	CH(Me)	O	C(O)NHCH2SO2Me
42	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2SO2Me
43	tBu	C(O)	CH2	O	C(O)NHCH2S(O)Me
44	tBu	CHOH	CH2	O	C(O)NHCH2S(O)Me
45	tBu	C(Me)OH	CH2	O	C(O)NHCH2S(O)Me
46	tBu	C(O)	CH(Me)	O	C(O)NHCH2S(O)Me
47	tBu	CHOH	CH(Me)	O	C(O)NHCH2S(O)Me
48	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2S(O)Me
49	tBu	C(O)	CH2	O	C(O)NHCH2CH2SO2Me
50	tBu	CHOH	CH2	O	C(O)NHCH2CH2SO2Me

-40-

51	tBu	C(Me)OH	CH2	O	C(O)NHCH2CH2SO2Me
52	tBu	C(O)	CH(Me)	O	C(O)NHCH2CH2SO2Me
53	tBu	CHOH	CH(Me)	O	C(O)NHCH2CH2SO2Me
54	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2CH2SO2Me
55	tBu	C(O)	CH2	O	C(O)NHCH2CH2S(O)Me
56	tBu	CHOH	CH2	O	C(O)NHCH2CH2S(O)Me
57	tBu	C(Me)OH	CH2	O	C(O)NHCH2CH2S(O)Me
58	tBu	C(O)	CH(Me)	O	C(O)NHCH2CH2S(O)Me
59	tBu	CHOH	CH(Me)	O	C(O)NHCH2CH2S(O)Me
60	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2CH2S(O)Me
61	tBu	C(O)	CH2	O	C(O)NHSO2Me
62	tBu	CHOH	CH2	O	C(O)NHSO2Me
63	tBu	C(Me)OH	CH2	O	C(O)NHSO2Me
64	tBu	C(O)	CH(Me)	O	C(O)NHSO2Me
65	tBu	CHOH	CH(Me)	O	C(O)NHSO2Me
66	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2Me
67	tBu	C(O)	CH2	O	C(O)NHS(O)Me
68	tBu	CHOH	CH2	O	C(O)NHS(O)Me
69	tBu	C(Me)OH	CH2	O	C(O)NHS(O)Me
70	tBu	C(O)	CH(Me)	O	C(O)NHS(O)Me
71	tBu	CHOH	CH(Me)	O	C(O)NHS(O)Me
72	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)Me
73	tBu	C(O)	CH2	O	C(O)NHSO2Et
74	tBu	CHOH	CH2	O	C(O)NHSO2Et
75	tBu	C(Me)OH	CH2	O	C(O)NHSO2Et
76	tBu	C(O)	CH(Me)	O	C(O)NHSO2Et
77	tBu	CHOH	CH(Me)	O	C(O)NHSO2Et
78	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2Et
79	tBu	C(O)	CH2	O	C(O)NHS(O)Et
80	tBu	CHOH	CH2	O	C(O)NHS(O)Et
81	tBu	C(Me)OH	CH2	O	C(O)NHS(O)Et

-41-

82	tBu	C(O)	CH(Me)	O	C(O)NHS(O)Et
83	tBu	CHOH	CH(Me)	O	C(O)NHS(O)Et
84	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)Et
85	tBu	C(O)	CH2	O	C(O)NHSO2iPr
86	tBu	CHOH	CH2	O	C(O)NHSO2iPr
87	tBu	C(Me)OH	CH2	O	C(O)NHSO2iPr
88	tBu	C(O)	CH(Me)	O	C(O)NHSO2iPr
89	tBu	CHOH	CH(Me)	O	C(O)NHSO2iPr
90	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2iPr
91	tBu	C(O)	CH2	O	C(O)NHS(O)iPr
92	tBu	CHOH	CH2	O	C(O)NHS(O)iPr
93	tBu	C(Me)OH	CH2	O	C(O)NHS(O)iPr
94	tBu	C(O)	CH(Me)	O	C(O)NHS(O)iPr
95	tBu	CHOH	CH(Me)	O	C(O)NHS(O)iPr
96	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)iPr
97	tBu	C(O)	CH2	O	C(O)NHSO2tBu
98	tBu	CHOH	CH2	O	C(O)NHSO2tBu
99	tBu	C(Me)OH	CH2	O	C(O)NHSO2tBu
100	tBu	C(O)	CH(Me)	O	C(O)NHSO2tBu
101	tBu	CHOH	CH(Me)	O	C(O)NHSO2tBu
102	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2tBu
103	tBu	C(O)	CH2	O	C(O)NHS(O)tBu
104	tBu	CHOH	CH2	O	C(O)NHS(O)tBu
105	tBu	C(Me)OH	CH2	O	C(O)NHS(O)tBu
106	tBu	C(O)	CH(Me)	O	C(O)NHS(O)tBu
107	tBu	CHOH	CH(Me)	O	C(O)NHS(O)tBu
108	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)tBu
109	tBu	C(O)	CH2	O	CH2NHSO2Me
110	tBu	CHOH	CH2	O	CH2NHSO2Me
111	tBu	C(Me)OH	CH2	O	CH2NHSO2Me
112	tBu	C(O)	CH(Me)	O	CH2NHSO2Me

P-15440

-42-

113	tBu	CHOH	CH(Me)	O	CH2NHSO2Me
114	tBu	C(Me)OH	CH(Me)	O	CH2NHSO2Me
115	tBu	C(O)	CH2	O	CH2NHS(O)Me
116	tBu	CHOH	CH2	O	CH2NHS(O)Me
117	tBu	C(Me)OH	CH2	O	CH2NHS(O)Me
118	tBu	C(O)	CH(Me)	O	CH2NHS(O)Me
119	tBu	CHOH	CH(Me)	O	CH2NHS(O)Me
120	tBu	C(Me)OH	CH(Me)	O	CH2NHS(O)Me
121	tBu	C(O)	CH2	O	CH2NHSO2Et
122	tBu	CHOH	CH2	O	CH2NHSO2Et
123	tBu	C(Me)OH	CH2	O	CH2NHSO2Et
124	tBu	C(O)	CH(Me)	O	CH2NHSO2Et
125	tBu	CHOH	CH(Me)	O	CH2NHSO2Et
126	tBu	C(Me)OH	CH(Me)	O	CH2NHSO2Et
127	tBu	C(O)	CH2	O	CH2NHS(O)Et
128	tBu	CHOH	CH2	O	CH2NHS(O)Et
129	tBu	C(Me)OH	CH2	O	CH2NHS(O)Et
130	tBu	C(O)	CH(Me)	O	CH2NHS(O)Et
131	tBu	CHOH	CH(Me)	O	CH2NHS(O)Et
132	tBu	C(Me)OH	CH(Me)	O	CH2NHS(O)Et
133	tBu	C(O)	CH2	O	CH2NHSO2iPr
134	tBu	CHOH	CH2	O	CH2NHSO2iPr
135	tBu	C(Me)OH	CH2	O	CH2NHSO2iPr
136	tBu	C(O)	CH(Me)	O	CH2NHSO2iPr
137	tBu	CHOH	CH(Me)	O	CH2NHSO2iPr
138	tBu	C(Me)OH	CH(Me)	O	CH2NHSO2iPr
139	tBu	C(O)	CH2	O	CH2NHS(O)iPr
140	tBu	CHOH	CH2	O	CH2NHS(O)iPr
141	tBu	C(Me)OH	CH2	O	CH2NHS(O)iPr
142	tBu	C(O)	CH(Me)	O	CH2NHS(O)iPr
143	tBu	CHOH	CH(Me)	O	CH2NHS(O)iPr

-43-

144	tBu	C(Me)OH	CH(Me)	O	CH2NHS(O)iPr
145	tBu	C(O)	CH2	O	CH2NHSO2tBu
146	tBu	CHOH	CH2	O	CH2NHSO2tBu
147	tBu	C(Me)OH	CH2	O	CH2NHSO2tBu
148	tBu	C(O)	CH(Me)	O	CH2NHSO2tBu
149	tBu	CHOH	CH(Me)	O	CH2NHSO2tBu
150	tBu	C(Me)OH	CH(Me)	O	CH2NHSO2tBu
151	tBu	C(O)	CH2	O	CH2NHS(O)tBu
152	tBu	CHOH	CH2	O	CH2NHS(O)tBu
153	tBu	C(Me)OH	CH2	O	CH2NHS(O)tBu
154	tBu	C(O)	CH(Me)	O	CH2NHS(O)tBu
155	tBu	CHOH	CH(Me)	O	CH2NHS(O)tBu
156	tBu	C(Me)OH	CH(Me)	O	CH2NHS(O)tBu
157	tBu	C(O)	CH2	O	CH2-N-pyrrolidin-2-one
158	tBu	CHOH	CH2	O	CH2-N-pyrrolidin-2-one
159	tBu	C(Me)OH	CH2	O	CH2-N-pyrrolidin-2-one
160	tBu	C(O)	CH(Me)	O	CH2-N-pyrrolidin-2-one
161	tBu	CHOH	CH(Me)	O	CH2-N-pyrrolidin-2-one
162	tBu	C(Me)OH	CH(Me)	O	CH2-N-pyrrolidin-2-one
163	tBu	C(O)	CH2	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
164	tBu	CHOH	CH2	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
165	tBu	C(Me)OH	CH2	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
166	tBu	C(O)	CH(Me)	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
167	tBu	CHOH	CH(Me)	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
168	tBu	C(Me)OH	CH(Me)	O	CH2-(1-methylpyrrolidin-2-one-3-yl)

169	tBu	C(O)	CH2	O	CH2CO2Me
170	tBu	CHOH	CH2	O	CH2CO2Me
171	tBu	C(Me)OH	CH2	O	CH2CO2Me
172	tBu	C(O)	CH(Me)	O	CH2CO2Me
173	tBu	CHOH	CH(Me)	O	CH2CO2Me
174	tBu	C(Me)OH	CH(Me)	O	CH2CO2Me
175	tBu	C(O)	CH2	O	CH2CO2H
176	tBu	CHOH	CH2	O	CH2CO2H
177	tBu	C(Me)OH	CH2	O	CH2CO2H
178	tBu	C(O)	CH(Me)	O	CH2CO2H
179	tBu	CHOH	CH(Me)	O	CH2CO2H
180	tBu	C(Me)OH	CH(Me)	O	CH2CO2H
181	tBu	C(O)	CH2	O	CH2C(O)NH2
182	tBu	CHOH	CH2	O	CH2C(O)NH2
183	tBu	C(Me)OH	CH2	O	CH2C(O)NH2
184	tBu	C(O)	CH(Me)	O	CH2C(O)NH2
185	tBu	CHOH	CH(Me)	O	CH2C(O)NH2
186	tBu	C(Me)OH	CH(Me)	O	CH2C(O)NH2
187	tBu	C(O)	CH2	O	CH2C(O)NMe2
188	tBu	CHOH	CH2	O	CH2C(O)NMe2
189	tBu	C(Me)OH	CH2	O	CH2C(O)NMe2
190	tBu	C(O)	CH(Me)	O	CH2C(O)NMe2
191	tBu	CHOH	CH(Me)	O	CH2C(O)NMe2
192	tBu	C(Me)OH	CH(Me)	O	CH2C(O)NMe2
193	tBu	C(O)	CH2	O	CH2C(O)-N-pyrrolidine
194	tBu	CHOH	CH2	O	CH2C(O)-N-pyrrolidine
195	tBu	C(Me)OH	CH2	O	CH2C(O)-N-pyrrolidine
196	tBu	C(O)	CH(Me)	O	CH2C(O)-N-pyrrolidine
197	tBu	CHOH	CH(Me)	O	CH2C(O)-N-pyrrolidine
198	tBu	C(Me)OH	CH(Me)	O	CH2C(O)-N-pyrrolidine
199	tBu	C(O)	CH2	O	CH2-5-tetrazolyl

200	tBu	CHOH	CH2	O	CH2-5-tetrazolyl
201	tBu	C(Me)OH	CH2	O	CH2-5-tetrazolyl
202	tBu	C(O)	CH(Me)	O	CH2-5-tetrazolyl
203	tBu	CHOH	CH(Me)	O	CH2-5-tetrazolyl
204	tBu	C(Me)OH	CH(Me)	O	CH2-5-tetrazolyl
205	tBu	C(O)	CH2	O	C(O)C(O)OH
206	tBu	CHOH	CH2	O	C(O)C(O)OH
207	tBu	C(Me)OH	CH2	O	C(O)C(O)OH
208	tBu	C(O)	CH(Me)	O	C(O)C(O)OH
209	tBu	CHOH	CH(Me)	O	C(O)C(O)OH
210	tBu	C(Me)OH	CH(Me)	O	C(O)C(O)OH
211	tBu	C(O)	CH2	O	CH(OH)C(O)OH
212	tBu	CHOH	CH2	O	CH(OH)C(O)OH
213	tBu	C(Me)OH	CH2	O	CH(OH)C(O)OH
214	tBu	C(O)	CH(Me)	O	CH(OH)C(O)OH
215	tBu	CHOH	CH(Me)	O	CH(OH)C(O)OH
216	tBu	C(Me)OH	CH(Me)	O	CH(OH)C(O)OH
217	tBu	C(O)	CH2	O	C(O)C(O)NH2
218	tBu	CHOH	CH2	O	C(O)C(O)NH2
219	tBu	C(Me)OH	CH2	O	C(O)C(O)NH2
220	tBu	C(O)	CH(Me)	O	C(O)C(O)NH2
221	tBu	CHOH	CH(Me)	O	C(O)C(O)NH2
222	tBu	C(Me)OH	CH(Me)	O	C(O)C(O)NH2
223	tBu	C(O)	CH2	O	CH(OH)C(O)NH2
224	tBu	CHOH	CH2	O	CH(OH)C(O)NH2
225	tBu	C(Me)OH	CH2	O	CH(OH)C(O)NH2
226	tBu	C(O)	CH(Me)	O	CH(OH)C(O)NH2
227	tBu	CHOH	CH(Me)	O	CH(OH)C(O)NH2
228	tBu	C(Me)OH	CH(Me)	O	CH(OH)C(O)NH2
229	tBu	C(O)	CH2	O	C(O)C(O)NMe2
230	tBu	CHOH	CH2	O	C(O)C(O)NMe2

231	tBu	C(Me)OH	CH2	O	C(O)C(O)NMe2
232	tBu	C(O)	CH(Me)	O	C(O)C(O)NMe2
233	tBu	CHOH	CH(Me)	O	C(O)C(O)NMe2
234	tBu	C(Me)OH	CH(Me)	O	C(O)C(O)NMe2
235	tBu	C(O)	CH2	O	CH(OH)C(O)NMe2
236	tBu	CHOH	CH2	O	CH(OH)C(O)NMe2
237	tBu	C(Me)OH	CH2	O	CH(OH)C(O)NMe2
238	tBu	C(O)	CH(Me)	O	CH(OH)C(O)NMe2
239	tBu	CHOH	CH(Me)	O	CH(OH)C(O)NMe2
240	tBu	C(Me)OH	CH(Me)	O	CH(OH)C(O)NMe2
241	tBu	C(O)	CH2	O	CH2CH2CO2H
242	tBu	CHOH	CH2	O	CH2CH2CO2H
243	tBu	C(Me)OH	CH2	O	CH2CH2CO2H
244	tBu	C(O)	CH(Me)	O	CH2CH2CO2H
245	tBu	CHOH	CH(Me)	O	CH2CH2CO2H
246	tBu	C(Me)OH	CH(Me)	O	CH2CH2CO2H
247	tBu	C(O)	CH2	O	CH2CH2C(O)NH2
248	tBu	CHOH	CH2	O	CH2CH2C(O)NH2
249	tBu	C(Me)OH	CH2	O	CH2CH2C(O)NH2
250	tBu	C(O)	CH(Me)	O	CH2CH2C(O)NH2
251	tBu	CHOH	CH(Me)	O	CH2CH2C(O)NH2
252	tBu	C(Me)OH	CH(Me)	O	CH2CH2C(O)NH2
253	tBu	C(O)	CH2	O	CH2CH2C(O)NMe2
254	tBu	CHOH	CH2	O	CH2CH2C(O)NMe2
255	tBu	C(Me)OH	CH2	O	CH2CH2C(O)NMe2
256	tBu	C(O)	CH(Me)	O	CH2CH2C(O)NMe2
257	tBu	CHOH	CH(Me)	O	CH2CH2C(O)NMe2
258	tBu	C(Me)OH	CH(Me)	O	CH2CH2C(O)NMe2
259	tBu	C(O)	CH2	O	CH2CH2-5-tetrazolyl
260	tBu	CHOH	CH2	O	CH2CH2-5-tetrazolyl
261	tBu	C(Me)OH	CH2	O	CH2CH2-5-tetrazolyl

-47-

262	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ -5-tetrazolyl
263	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ -5-tetrazolyl
264	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ -5-tetrazolyl
265	tBu	C(O)	CH ₂	O	CH ₂ S(O)2Me
266	tBu	CHOH	CH ₂	O	CH ₂ S(O)2Me
267	tBu	C(Me)OH	CH ₂	O	CH ₂ S(O)2Me
268	tBu	C(O)	CH(Me)	O	CH ₂ S(O)2Me
269	tBu	CHOH	CH(Me)	O	CH ₂ S(O)2Me
270	tBu	C(Me)OH	CH(Me)	O	CH ₂ S(O)2Me
271	tBu	C(O)	CH ₂	O	CH ₂ S(O)Me
272	tBu	CHOH	CH ₂	O	CH ₂ S(O ₂)Me
273	tBu	C(Me)OH	CH ₂	O	CH ₂ S(O)Me
274	tBu	C(O)	CH(Me)	O	CH ₂ S(O)Me
275	tBu	CHOH	CH(Me)	O	CH ₂ S(O)Me
276	tBu	C(Me)OH	CH(Me)	O	CH ₂ S(O)Me
277	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)2Me
278	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ S(O)2Me
279	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ S(O)2Me
280	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ S(O)2Me
281	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ S(O)2Me
282	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)2Me
283	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)Me
284	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ S(O)Me
285	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ S(O)Me
286	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ S(O)Me
287	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ S(O)Me
288	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)Me
289	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)2Me
290	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)2Me
291	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)2Me
292	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)2Me

-48-

293	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)2Me
294	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)2Me
295	tBu	C(O)	CH2	O	CH2CH2CH2S(O)Me
296	tBu	CHOH	CH2	O	CH2CH2CH2S(O)Me
297	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)Me
298	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)Me
299	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)Me
300	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)Me
301	tBu	C(O)	CH2	O	CH2S(O)2Et
302	tBu	CHOH	CH2	O	CH2S(O)2Et
303	tBu	C(Me)OH	CH2	O	CH2S(O)2Et
304	tBu	C(O)	CH(Me)	O	CH2S(O)2Et
305	tBu	CHOH	CH(Me)	O	CH2S(O)2Et
306	tBu	C(Me)OH	CH(Me)	O	CH2S(O)2Et
307	tBu	C(O)	CH2	O	CH2S(O)Et
308	tBu	CHOH	CH2	O	CH2S(O)Et
309	tBu	C(Me)OH	CH2	O	CH2S(O)Et
310	tBu	C(O)	CH(Me)	O	CH2S(O)Et
311	tBu	CHOH	CH(Me)	O	CH2S(O)Et
312	tBu	C(Me)OH	CH(Me)	O	CH2S(O)Et
313	tBu	C(O)	CH2	O	CH2CH2S(O)2Et
314	tBu	CHOH	CH2	O	CH2CH2S(O)2Et
315	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2Et
316	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2Et
317	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2Et
318	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2Et
319	tBu	C(O)	CH2	O	CH2CH2S(O)Et
320	tBu	CHOH	CH2	O	CH2CH2S(O)Et
321	tBu	C(Me)OH	CH2	O	CH2CH2S(O)Et
322	tBu	C(O)	CH(Me)	O	CH2CH2S(O)Et
323	tBu	CHOH	CH(Me)	O	CH2CH2S(O)Et

324	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)Et
325	tBu	C(O)	CH2	O	CH2CH2CH2S(O)2Et
326	tBu	CHOH	CH2	O	CH2CH2CH2S(O)2Et
327	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)2Et
328	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)2Et
329	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)2Et
330	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)2Et
331	tBu	C(O)	CH2	O	CH2CH2CH2S(O)Et
332	tBu	CHOH	CH2	O	CH2CH2CH2S(O)Et
333	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)Et
334	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)Et
335	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)Et
336	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)Et
337	tBu	C(O)	CH2	O	CH2S(O)2iPr
338	tBu	CHOH	CH2	O	CH2S(O)2iPr
339	tBu	C(Me)OH	CH2	O	CH2S(O)2iPr
340	tBu	C(O)	CH(Me)	O	CH2S(O)2iPr
341	tBu	CHOH	CH(Me)	O	CH2S(O)2iPr
342	tBu	C(Me)OH	CH(Me)	O	CH2S(O)2iPr
343	tBu	C(O)	CH2	O	CH2S(O)iPr
344	tBu	CHOH	CH2	O	CH2S(O)iPr
345	tBu	C(Me)OH	CH2	O	CH2S(O)iPr
346	tBu	C(O)	CH(Me)	O	CH2S(O)iPr
347	tBu	CHOH	CH(Me)	O	CH2S(O)iPr
348	tBu	C(Me)OH	CH(Me)	O	CH2S(O)iPr
349	tBu	C(O)	CH2	O	CH2CH2S(O)2iPr
350	tBu	CHOH	CH2	O	CH2CH2S(O)2iPr
351	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2iPr
352	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2iPr
353	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2iPr
354	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2iPr

-50-

355	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)iPr
356	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ S(O)iPr
357	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ S(O)iPr
358	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ S(O)iPr
359	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ S(O)iPr
360	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)iPr
361	tBu	C(O)	CH ₂	O	CH ₂ S(O)2tBu
362	tBu	CHOH	CH ₂	O	CH ₂ S(O)2tBu
363	tBu	C(Me)OH	CH ₂	O	CH ₂ S(O)2tBu
364	tBu	C(O)	CH(Me)	O	CH ₂ S(O)2tBu
365	tBu	CHOH	CH(Me)	O	CH ₂ S(O)2tBu
366	tBu	C(Me)OH	CH(Me)	O	CH ₂ S(O)2tBu
367	tBu	C(O)	CH ₂	O	CH ₂ S(O)tBu
368	tBu	CHOH	CH ₂	O	CH ₂ S(O)tBu
369	tBu	C(Me)OH	CH ₂	O	CH ₂ S(O)tBu
370	tBu	C(O)	CH(Me)	O	CH ₂ S(O)tBu
371	tBu	CHOH	CH(Me)	O	CH ₂ S(O)tBu
372	tBu	C(Me)OH	CH(Me)	O	CH ₂ S(O)tBu
373	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)2tBu
374	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ S(O)2tBu
375	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ S(O)2tBu
376	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ S(O)2tBu
377	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ S(O)2tBu
378	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)2tBu
379	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)tBu
380	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ S(O)tBu
381	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ S(O)tBu
382	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ S(O)tBu
383	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ S(O)tBu
384	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)tBu
385	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)2NH ₂

-51-

386	tBu	CHOH	CH2	O	CH2CH2S(O)2NH2
387	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2NH2
388	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2NH2
389	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2NH2
390	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2NH2
391	tBu	C(O)	CH2	O	CH2CH2S(O)NH2
392	tBu	CHOH	CH2	O	CH2CH2S(O)NH2
393	tBu	C(Me)OH	CH2	O	CH2CH2S(O)NH2
394	tBu	C(O)	CH(Me)	O	CH2CH2S(O)NH2
395	tBu	CHOH	CH(Me)	O	CH2CH2S(O)NH2
396	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)NH2
397	tBu	C(O)	CH2	O	CH2CH2S(O)2NMe2
398	tBu	CHOH	CH2	O	CH2CH2S(O)2NMe2
399	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2NMe2
400	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2NMe2
401	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2NMe2
402	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2NMe2
403	tBu	C(O)	CH2	O	CH2CH2S(O)NMe2
404	tBu	CHOH	CH2	O	CH2CH2S(O)NMe2
405	tBu	C(Me)OH	CH2	O	CH2CH2S(O)NMe2
406	tBu	C(O)	CH(Me)	O	CH2CH2S(O)NMe2
407	tBu	CHOH	CH(Me)	O	CH2CH2S(O)NMe2
408	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)NMe2
409	tBu	C(O)	CH2	O	C(O)CH2S(O)2Me
410	tBu	CHOH	CH2	O	C(O)CH2S(O)2Me
411	tBu	C(Me)OH	CH2	O	C(O)CH2S(O)2Me
412	tBu	C(O)	CH(Me)	O	C(O)CH2S(O)2Me
413	tBu	CHOH	CH(Me)	O	C(O)CH2S(O)2Me
414	tBu	C(Me)OH	CH(Me)	O	C(O)CH2S(O)2Me
415	tBu	C(O)	CH2	O	C(O)CH2S(O)Me
416	tBu	CHOH	CH2	O	C(O)CH2S(O)Me

417	tBu	C(Me)OH	CH2	O	C(O)CH2S(O)Me
418	tBu	C(O)	CH(Me)	O	C(O)CH2S(O)Me
419	tBu	CHOH	CH(Me)	O	C(O)CH2S(O)Me
420	tBu	C(Me)OH	CH(Me)	O	C(O)CH2S(O)Me
421	tBu	C(O)	CH2	O	C(O)CH2CH2S(O)2Me
422	tBu	CHOH	CH2	O	C(O)CH2CH2S(O)2Me
423	tBu	C(Me)OH	CH2	O	C(O)CH2CH2S(O)2Me
424	tBu	C(O)	CH(Me)	O	C(O)CH2CH2S(O)2Me
425	tBu	CHOH	CH(Me)	O	C(O)CH2CH2S(O)2Me
426	tBu	C(Me)OH	CH(Me)	O	C(O)CH2CH2S(O)2Me
427	tBu	C(O)	CH2	O	C(O)CH2CH2S(O)Me
428	tBu	CHOH	CH2	O	C(O)CH2CH2S(O)Me
429	tBu	C(Me)OH	CH2	O	C(O)CH2CH2S(O)Me
430	tBu	C(O)	CH(Me)	O	C(O)CH2CH2S(O)Me
431	tBu	CHOH	CH(Me)	O	C(O)CH2CH2S(O)Me
432	tBu	C(Me)OH	CH(Me)	O	C(O)CH2CH2S(O)Me
433	tBu	C(O)	CH2	O	CH2CH2CH2S(O)2NH2
434	tBu	CHOH	CH2	O	CH2CH2CH2S(O)2NH2
435	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)2NH2
436	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)2NH2
437	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)2NH2
438	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)2NH2
439	tBu	C(O)	CH2	O	CH2CH2CH2S(O)NH2
440	tBu	CHOH	CH2	O	CH2CH2CH2S(O)NH2
441	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)NH2
442	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)NH2
443	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)NH2
444	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)NH2
445	tBu	C(O)	CH2	O	1,3,4-oxadiazolin-2-one-5-yl
446	tBu	CHOH	CH2	O	1,3,4-oxadiazolin-2-one-5-yl
447	tBu	C(Me)OH	CH2	O	1,3,4-oxadiazolin-2-one-5-yl

-53-

448	tBu	C(O)	CH(Me)	O	1,3,4-oxadiazolin-2-one-5-yl
449	tBu	CHOH	CH(Me)	O	1,3,4-oxadiazolin-2-one-5-yl
450	tBu	C(Me)OH	CH(Me)	O	1,3,4-oxadiazolin-2-one-5-yl
451	tBu	C(O)	CH2	O	1,3,4-oxadiazolin-2-thione-5-yl
452	tBu	CHOH	CH2	O	1,3,4-oxadiazolin-2-thione-5-yl
453	tBu	C(Me)OH	CH2	O	1,3,4-oxadiazolin-2-thione-5-yl
454	tBu	C(O)	CH(Me)	O	1,3,4-oxadiazolin-2-thione-5-yl
455	tBu	CHOH	CH(Me)	O	1,3,4-oxadiazolin-2-thione-5-yl
456	tBu	C(Me)OH	CH(Me)	O	1,3,4-oxadiazolin-2-thione-5-yl
457	tBu	C(O)	CH2	O	imidazolidine-2,4-dione-5-yl
458	tBu	CHOH	CH2	O	imidazolidine-2,4-dione-5-yl
459	tBu	C(Me)OH	CH2	O	imidazolidine-2,4-dione-5-yl
460	tBu	C(O)	CH(Me)	O	imidazolidine-2,4-dione-5-yl
461	tBu	CHOH	CH(Me)	O	imidazolidine-2,4-dione-5-yl
462	tBu	C(Me)OH	CH(Me)	O	imidazolidine-2,4-dione-5-yl
463	tBu	C(O)	CH2	O	isoxazol-3-ol-5-yl
464	tBu	CHOH	CH2	O	isoxazol-3-ol-5-yl
465	tBu	C(Me)OH	CH2	O	isoxazol-3-ol-5-yl
466	tBu	C(O)	CH(Me)	O	isoxazol-3-ol-5-yl
467	tBu	CHOH	CH(Me)	O	isoxazol-3-ol-5-yl
468	tBu	C(Me)OH	CH(Me)	O	isoxazol-3-ol-5-yl

Table 2

	R _B	L ₃	L ₂	L ₁	R _C
1A	tBu	C(O)	CH ₂	CH ₂	CO ₂ Me
2A	tBu	CHOH	CH ₂	CH ₂	CO ₂ Me
3A	tBu	C(Me)OH	CH ₂	CH ₂	CO ₂ Me
4A	tBu	C(O)	CH(Me)	CH ₂	CO ₂ Me
5A	tBu	CHOH	CH(Me)	CH ₂	CO ₂ Me
6A	tBu	C(Me)OH	CH(Me)	CH ₂	CO ₂ Me
7A	tBu	C(O)	CH ₂	CH ₂	CO ₂ H
8A	tBu	CHOH	CH ₂	CH ₂	CO ₂ H
9A	tBu	C(Me)OH	CH ₂	CH ₂	CO ₂ H
10A	tBu	C(O)	CH(Me)	CH ₂	CO ₂ H
11A	tBu	CHOH	CH(Me)	CH ₂	CO ₂ H
12A	tBu	C(Me)OH	CH(Me)	CH ₂	CO ₂ H
13A	tBu	C(O)	CH ₂	CH ₂	C(O)NH ₂
14A	tBu	CHOH	CH ₂	CH ₂	C(O)NH ₂
15A	tBu	C(Me)OH	CH ₂	CH ₂	C(O)NH ₂
16A	tBu	C(O)	CH(Me)	CH ₂	C(O)NH ₂
17A	tBu	CHOH	CH(Me)	CH ₂	C(O)NH ₂
18A	tBu	C(Me)OH	CH(Me)	CH ₂	C(O)NH ₂

19A	tBu	C(O)	CH2	CH2	C(O)NMe2
20A	tBu	CHOH	CH2	CH2	C(O)NMe2
21A	tBu	C(Me)OH	CH2	CH2	C(O)NMe2
22A	tBu	C(O)	CH(Me)	CH2	C(O)NMe2
23A	tBu	CHOH	CH(Me)	CH2	C(O)NMe2
24A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NMe2
25A	tBu	C(O)	CH2	CH2	5-tetrazolyl
26A	tBu	CHOH	CH2	CH2	5-tetrazolyl
27A	tBu	C(Me)OH	CH2	CH2	5-tetrazolyl
28A	tBu	C(O)	CH(Me)	CH2	5-tetrazolyl
29A	tBu	CHOH	CH(Me)	CH2	5-tetrazolyl
30A	tBu	C(Me)OH	CH(Me)	CH2	5-tetrazolyl
31A	tBu	C(O)	CH2	CH2	C(O)-NH-5-tetrazolyl
32A	tBu	CHOH	CH2	CH2	C(O)-NH-5-tetrazolyl
33A	tBu	C(Me)OH	CH2	CH2	C(O)-NH-5-tetrazolyl
34A	tBu	C(O)	CH(Me)	CH2	C(O)-NH-5-tetrazolyl
35A	tBu	CHOH	CH(Me)	CH2	C(O)-NH-5-tetrazolyl
36A	tBu	C(Me)OH	CH(Me)	CH2	C(O)-NH-5-tetrazolyl
37A	tBu	C(O)	CH2	CH2	C(O)NHCH2SO2Me
38A	tBu	CHOH	CH2	CH2	C(O)NHCH2SO2Me
39A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2SO2Me
40A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2SO2Me
41A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2SO2Me
42A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2SO2Me
43A	tBu	C(O)	CH2	CH2	C(O)NHCH2S(O)Me
44A	tBu	CHOH	CH2	CH2	C(O)NHCH2S(O)Me
45A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2S(O)Me
46A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2S(O)Me
47A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2S(O)Me
48A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2S(O)Me
49A	tBu	C(O)	CH2	CH2	C(O)NHCH2CH2SO2Me

-56-

50A	tBu	CHOH	CH2	CH2	C(O)NHCH2CH2SO2Me
51A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2CH2SO2Me
52A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
53A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
54A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
55A	tBu	C(O)	CH2	CH2	C(O)NHCH2CH2S(O)Me
56A	tBu	CHOH	CH2	CH2	C(O)NHCH2CH2S(O)Me
57A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2CH2S(O)Me
58A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
59A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
60A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
61A	tBu	C(O)	CH2	CH2	C(O)NHSO2Me
62A	tBu	CHOH	CH2	CH2	C(O)NHSO2Me
63A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2Me
64A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2Me
65A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2Me
66A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2Me
67A	tBu	C(O)	CH2	CH2	C(O)NHS(O)Me
68A	tBu	CHOH	CH2	CH2	C(O)NHS(O)Me
69A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)Me
70A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)Me
71A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)Me
72A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)Me
73A	tBu	C(O)	CH2	CH2	C(O)NHSO2Et
74A	tBu	CHOH	CH2	CH2	C(O)NHSO2Et
75A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2Et
76A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2Et
77A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2Et
78A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2Et
79A	tBu	C(O)	CH2	CH2	C(O)NHS(O)Et
80A	tBu	CHOH	CH2	CH2	C(O)NHS(O)Et

-57-

81A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)Et
82A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)Et
83A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)Et
84A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)Et
85A	tBu	C(O)	CH2	CH2	C(O)NHSO2iPr
86A	tBu	CHOH	CH2	CH2	C(O)NHSO2iPr
87A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2iPr
88A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2iPr
89A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2iPr
90A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2iPr
91A	tBu	C(O)	CH2	CH2	C(O)NHS(O)iPr
92A	tBu	CHOH	CH2	CH2	C(O)NHS(O)iPr
93A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)iPr
94A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)iPr
95A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)iPr
96A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)iPr
97A	tBu	C(O)	CH2	CH2	C(O)NHSO2tBu
98A	tBu	CHOH	CH2	CH2	C(O)NHSO2tBu
99A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2tBu
100A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2tBu
101A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2tBu
102A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2tBu
103A	tBu	C(O)	CH2	CH2	C(O)NHS(O)tBu
104A	tBu	CHOH	CH2	CH2	C(O)NHS(O)tBu
105A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)tBu
106A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)tBu
107A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)tBu
108A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)tBu
109A	tBu	C(O)	CH2	CH2	CH2NHSO2Me
110A	tBu	CHOH	CH2	CH2	CH2NHSO2Me
111A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2Me

112A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2Me
113A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2Me
114A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2Me
115A	tBu	C(O)	CH2	CH2	CH2NHS(O)Me
116A	tBu	CHOH	CH2	CH2	CH2NHS(O)Me
117A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)Me
118A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)Me
119A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)Me
120A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)Me
121A	tBu	C(O)	CH2	CH2	CH2NHSO2Et
122A	tBu	CHOH	CH2	CH2	CH2NHSO2Et
123A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2Et
124A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2Et
125A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2Et
126A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2Et
127A	tBu	C(O)	CH2	CH2	CH2NHS(O)Et
128A	tBu	CHOH	CH2	CH2	CH2NHS(O)Et
129A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)Et
130A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)Et
131A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)Et
132A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)Et
133A	tBu	C(O)	CH2	CH2	CH2NHSO2iPr
134A	tBu	CHOH	CH2	CH2	CH2NHSO2iPr
135A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2iPr
136A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2iPr
137A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2iPr
138A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2iPr
139A	tBu	C(O)	CH2	CH2	CH2NHS(O)iPr
140A	tBu	CHOH	CH2	CH2	CH2NHS(O)iPr
141A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)iPr
142A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)iPr

143A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)iPr
144A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)iPr
145A	tBu	C(O)	CH2	CH2	CH2NSO2tBu
146A	tBu	CHOH	CH2	CH2	CH2NSO2tBu
147A	tBu	C(Me)OH	CH2	CH2	CH2NSO2tBu
148A	tBu	C(O)	CH(Me)	CH2	CH2NSO2tBu
149A	tBu	CHOH	CH(Me)	CH2	CH2NSO2tBu
150A	tBu	C(Me)OH	CH(Me)	CH2	CH2NSO2tBu
151A	tBu	C(O)	CH2	CH2	CH2NHS(O)tBu
152A	tBu	CHOH	CH2	CH2	CH2NHS(O)tBu
153A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)tBu
154A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)tBu
155A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)tBu
156A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)tBu
157A	tBu	C(O)	CH2	CH2	CH2-N-pyrrolidin-2-one
158A	tBu	CHOH	CH2	CH2	CH2-N-pyrrolidin-2-one
159A	tBu	C(Me)OH	CH2	CH2	CH2-N-pyrrolidin-2-one
160A	tBu	C(O)	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
161A	tBu	CHOH	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
162A	tBu	C(Me)OH	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
163A	tBu	C(O)	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
164A	tBu	CHOH	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
165A	tBu	C(Me)OH	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
166A	tBu	C(O)	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
167A	tBu	CHOH	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
168A	tBu	C(Me)OH	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)

					yl)
169A	tBu	C(O)	CH2	CH2	CH2CO2Me
170A	tBu	CHOH	CH2	CH2	CH2CO2Me
171A	tBu	C(Me)OH	CH2	CH2	CH2CO2Me
172A	tBu	C(O)	CH(Me)	CH2	CH2CO2Me
173A	tBu	CHOH	CH(Me)	CH2	CH2CO2Me
174A	tBu	C(Me)OH	CH(Me)	CH2	CH2CO2Me
175A	tBu	C(O)	CH2	CH2	CH2CO2H
176A	tBu	CHOH	CH2	CH2	CH2CO2H
177A	tBu	C(Me)OH	CH2	CH2	CH2CO2H
178A	tBu	C(O)	CH(Me)	CH2	CH2CO2H
179A	tBu	CHOH	CH(Me)	CH2	CH2CO2H
180A	tBu	C(Me)OH	CH(Me)	CH2	CH2CO2H
181A	tBu	C(O)	CH2	CH2	CH2C(O)NH2
182A	tBu	CHOH	CH2	CH2	CH2C(O)NH2
183A	tBu	C(Me)OH	CH2	CH2	CH2C(O)NH2
184A	tBu	C(O)	CH(Me)	CH2	CH2C(O)NH2
185A	tBu	CHOH	CH(Me)	CH2	CH2C(O)NH2
186A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)NH2
187A	tBu	C(O)	CH2	CH2	CH2C(O)NMe2
188A	tBu	CHOH	CH2	CH2	CH2C(O)NMe2
189A	tBu	C(Me)OH	CH2	CH2	CH2C(O)NMe2
190A	tBu	C(O)	CH(Me)	CH2	CH2C(O)NMe2
191A	tBu	CHOH	CH(Me)	CH2	CH2C(O)NMe2
192A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)NMe2
193A	tBu	C(O)	CH2	CH2	CH2C(O)-N-pyrrolidine
194A	tBu	CHOH	CH2	CH2	CH2C(O)-N-pyrrolidine
195A	tBu	C(Me)OH	CH2	CH2	CH2C(O)-N-pyrrolidine
196A	tBu	C(O)	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
197A	tBu	CHOH	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
198A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)-N-pyrrolidine

199A	tBu	C(O)	CH2	CH2	CH2-5-tetrazolyl
200A	tBu	CHOH	CH2	CH2	CH2-5-tetrazolyl
201A	tBu	C(Me)OH	CH2	CH2	CH2-5-tetrazolyl
202A	tBu	C(O)	CH(Me)	CH2	CH2-5-tetrazolyl
203A	tBu	CHOH	CH(Me)	CH2	CH2-5-tetrazolyl
204A	tBu	C(Me)OH	CH(Me)	CH2	CH2-5-tetrazolyl
205A	tBu	C(O)	CH2	CH2	C(O)C(O)OH
206A	tBu	CHOH	CH2	CH2	C(O)C(O)OH
207A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)OH
208A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)OH
209A	tBu	CHOH	CH(Me)	CH2	C(O)C(O)OH
210A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)OH
211A	tBu	C(O)	CH2	CH2	CH(OH)C(O)OH
212A	tBu	CHOH	CH2	CH2	CH(OH)C(O)OH
213A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)OH
214A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)OH
215A	tBu	CHOH	CH(Me)	CH2	CH(OH)C(O)OH
216A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)OH
217A	tBu	C(O)	CH2	CH2	C(O)C(O)NH2
218A	tBu	CHOH	CH2	CH2	C(O)C(O)NH2
219A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)NH2
220A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)NH2
221A	tBu	CHOH	CH(Me)	CH2	C(O)C(O)NH2
222A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)NH2
223A	tBu	C(O)	CH2	CH2	CH(OH)C(O)NH2
224A	tBu	CHOH	CH2	CH2	CH(OH)C(O)NH2
225A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)NH2
226A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)NH2
227A	tBu	CHOH	CH(Me)	CH2	CH(OH)C(O)NH2
228A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)NH2
229A	tBu	C(O)	CH2	CH2	C(O)C(O)NMe2

-62-

230A	tBu	CHOH	CH2	CH2	C(O)C(O)NMe2
231A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)NMe2
232A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)NMe2
233A	tBu	CHOH	CH(Me)	CH2	C(O)C(O)NMe2
234A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)NMe2
235A	tBu	C(O)	CH2	CH2	CH(OH)C(O)NMe2
236A	tBu	CHOH	CH2	CH2	CH(OH)C(O)NMe2
237A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)NMe2
238A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)NMe2
239A	tBu	CHOH	CH(Me)	CH2	CH(OH)C(O)NMe2
240A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)NMe2
241A	tBu	C(O)	CH2	CH2	CH2CH2CO2H
242A	tBu	CHOH	CH2	CH2	CH2CH2CO2H
243A	tBu	C(Me)OH	CH2	CH2	CH2CH2CO2H
244A	tBu	C(O)	CH(Me)	CH2	CH2CH2CO2H
245A	tBu	CHOH	CH(Me)	CH2	CH2CH2CO2H
246A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CO2H
247A	tBu	C(O)	CH2	CH2	CH2CH2C(O)NH2
248A	tBu	CHOH	CH2	CH2	CH2CH2C(O)NH2
249A	tBu	C(Me)OH	CH2	CH2	CH2CH2C(O)NH2
250A	tBu	C(O)	CH(Me)	CH2	CH2CH2C(O)NH2
251A	tBu	CHOH	CH(Me)	CH2	CH2CH2C(O)NH2
252A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2C(O)NH2
253A	tBu	C(O)	CH2	CH2	CH2CH2C(O)NMe2
254A	tBu	CHOH	CH2	CH2	CH2CH2C(O)NMe2
255A	tBu	C(Me)OH	CH2	CH2	CH2CH2C(O)NMe2
256A	tBu	C(O)	CH(Me)	CH2	CH2CH2C(O)NMe2
257A	tBu	CHOH	CH(Me)	CH2	CH2CH2C(O)NMe2
258A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2C(O)NMe2
259A	tBu	C(O)	CH2	CH2	CH2CH2-5-tetrazolyl
260A	tBu	CHOH	CH2	CH2	CH2CH2-5-tetrazolyl

-63-

261A	tBu	C(Me)OH	CH2	CH2	CH2CH2-5-tetrazolyl
262A	tBu	C(O)	CH(Me)	CH2	CH2CH2-5-tetrazolyl
263A	tBu	CHOH	CH(Me)	CH2	CH2CH2-5-tetrazolyl
264A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2-5-tetrazolyl
265A	tBu	C(O)	CH2	CH2	CH2S(O)2Me
266A	tBu	CHOH	CH2	CH2	CH2S(O)2Me
267A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2Me
268A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2Me
269A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2Me
270A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2Me
271A	tBu	C(O)	CH2	CH2	CH2S(O)Me
272A	tBu	CHOH	CH2	CH2	CH2S(O2)Me
273A	tBu	C(Me)OH	CH2	CH2	CH2S(O)Me
274A	tBu	C(O)	CH(Me)	CH2	CH2S(O)Me
275A	tBu	CHOH	CH(Me)	CH2	CH2S(O)Me
276A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)Me
277A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2Me
278A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2Me
279A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2Me
280A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2Me
281A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2Me
282A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2Me
283A	tBu	C(O)	CH2	CH2	CH2CH2S(O)Me
284A	tBu	CHOH	CH2	CH2	CH2CH2S(O)Me
285A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)Me
286A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)Me
287A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)Me
288A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)Me
289A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2Me
290A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)2Me
291A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2Me

-64-

292A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2Me
293A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)2Me
294A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2Me
295A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)Me
296A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)Me
297A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)Me
298A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)Me
299A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)Me
300A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)Me
301A	tBu	C(O)	CH2	CH2	CH2S(O)2Et
302A	tBu	CHOH	CH2	CH2	CH2S(O)2Et
303A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2Et
304A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2Et
305A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2Et
306A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2Et
307A	tBu	C(O)	CH2	CH2	CH2S(O)Et
308A	tBu	CHOH	CH2	CH2	CH2S(O)Et
309A	tBu	C(Me)OH	CH2	CH2	CH2S(O)Et
310A	tBu	C(O)	CH(Me)	CH2	CH2S(O)Et
311A	tBu	CHOH	CH(Me)	CH2	CH2S(O)Et
312A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)Et
313A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2Et
314A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2Et
315A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2Et
316A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2Et
317A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2Et
318A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2Et
319A	tBu	C(O)	CH2	CH2	CH2CH2S(O)Et
320A	tBu	CHOH	CH2	CH2	CH2CH2S(O)Et
321A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)Et
322A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)Et

323A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)Et
324A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)Et
325A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2Et
326A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)2Et
327A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2Et
328A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2Et
329A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)2Et
330A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2Et
331A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)Et
332A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)Et
333A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)Et
334A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)Et
335A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)Et
336A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)Et
337A	tBu	C(O)	CH2	CH2	CH2S(O)2iPr
338A	tBu	CHOH	CH2	CH2	CH2S(O)2iPr
339A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2iPr
340A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2iPr
341A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2iPr
342A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2iPr
343A	tBu	C(O)	CH2	CH2	CH2S(O)iPr
344A	tBu	CHOH	CH2	CH2	CH2S(O)iPr
345A	tBu	C(Me)OH	CH2	CH2	CH2S(O)iPr
346A	tBu	C(O)	CH(Me)	CH2	CH2S(O)iPr
347A	tBu	CHOH	CH(Me)	CH2	CH2S(O)iPr
348A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)iPr
349A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2iPr
350A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2iPr
351A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2iPr
352A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2iPr
353A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2iPr

-66-

354A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2iPr
355A	tBu	C(O)	CH2	CH2	CH2CH2S(O)iPr
356A	tBu	CHOH	CH2	CH2	CH2CH2S(O)iPr
357A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)iPr
358A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)iPr
359A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)iPr
360A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)iPr
361A	tBu	C(O)	CH2	CH2	CH2S(O)2tBu
362A	tBu	CHOH	CH2	CH2	CH2S(O)2tBu
363A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2tBu
364A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2tBu
365A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2tBu
366A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2tBu
367A	tBu	C(O)	CH2	CH2	CH2S(O)tBu
368A	tBu	CHOH	CH2	CH2	CH2S(O)tBu
369A	tBu	C(Me)OH	CH2	CH2	CH2S(O)tBu
370A	tBu	C(O)	CH(Me)	CH2	CH2S(O)tBu
371A	tBu	CHOH	CH(Me)	CH2	CH2S(O)tBu
372A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)tBu
373A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2tBu
374A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2tBu
375A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2tBu
376A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2tBu
377A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2tBu
378A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2tBu
379A	tBu	C(O)	CH2	CH2	CH2CH2S(O)tBu
380A	tBu	CHOH	CH2	CH2	CH2CH2S(O)tBu
381A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)tBu
382A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)tBu
383A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)tBu
384A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)tBu

385A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2NH2
386A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2NH2
387A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2NH2
388A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2NH2
389A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2NH2
390A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2NH2
391A	tBu	C(O)	CH2	CH2	CH2CH2S(O)NH2
392A	tBu	CHOH	CH2	CH2	CH2CH2S(O)NH2
393A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)NH2
394A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)NH2
395A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)NH2
396A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)NH2
397A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2NMe2
398A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2NMe2
399A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2NMe2
400A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2NMe2
401A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2NMe2
402A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2NMe2
403A	tBu	C(O)	CH2	CH2	CH2CH2S(O)NMe2
404A	tBu	CHOH	CH2	CH2	CH2CH2S(O)NMe2
405A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)NMe2
406A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)NMe2
407A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)NMe2
408A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)NMe2
409A	tBu	C(O)	CH2	CH2	C(O)CH2S(O)2Me
410A	tBu	CHOH	CH2	CH2	C(O)CH2S(O)2Me
411A	tBu	C(Me)OH	CH2	CH2	C(O)CH2S(O)2Me
412A	tBu	C(O)	CH(Me)	CH2	C(O)CH2S(O)2Me
413A	tBu	CHOH	CH(Me)	CH2	C(O)CH2S(O)2Me
414A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2S(O)2Me
415A	tBu	C(O)	CH2	CH2	C(O)CH2S(O)Me

416A	tBu	CHOH	CH2	CH2	C(O)CH2S(O)Me
417A	tBu	C(Me)OH	CH2	CH2	C(O)CH2S(O)Me
418A	tBu	C(O)	CH(Me)	CH2	C(O)CH2S(O)Me
419A	tBu	CHOH	CH(Me)	CH2	C(O)CH2S(O)Me
420A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2S(O)Me
421A	tBu	C(O)	CH2	CH2	C(O)CH2CH2S(O)2Me
422A	tBu	CHOH	CH2	CH2	C(O)CH2CH2S(O)2Me
423A	tBu	C(Me)OH	CH2	CH2	C(O)CH2CH2S(O)2Me
424A	tBu	C(O)	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
425A	tBu	CHOH	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
426A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
427A	tBu	C(O)	CH2	CH2	C(O)CH2CH2S(O)Me
428A	tBu	CHOH	CH2	CH2	C(O)CH2CH2S(O)Me
429A	tBu	C(Me)OH	CH2	CH2	C(O)CH2CH2S(O)Me
430A	tBu	C(O)	CH(Me)	CH2	C(O)CH2CH2S(O)Me
431A	tBu	CHOH	CH(Me)	CH2	C(O)CH2CH2S(O)Me
432A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2CH2S(O)Me
433A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2NH2
434A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)2NH2
435A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2NH2
436A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
437A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
438A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
439A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)NH2
440A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)NH2
441A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)NH2
442A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)NH2
443A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)NH2
444A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)NH2
445A	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
446A	tBu	CHOH	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl

447A	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
448A	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
449A	tBu	CHOH	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
450A	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
451A	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
452A	tBu	CHOH	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
453A	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
454A	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
455A	tBu	CHOH	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
456A	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
457A	tBu	C(O)	CH2	CH2	imidazolidine-2,4-dione-5-yl
458A	tBu	CHOH	CH2	CH2	imidazolidine-2,4-dione-5-yl
459A	tBu	C(Me)OH	CH2	CH2	imidazolidine-2,4-dione-5-yl
460A	tBu	C(O)	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
461A	tBu	CHOH	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
462A	tBu	C(Me)OH	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
463A	tBu	C(O)	CH2	CH2	isoxazol-3-ol-5-yl
464A	tBu	CHOH	CH2	CH2	isoxazol-3-ol-5-yl
465A	tBu	C(Me)OH	CH2	CH2	isoxazol-3-ol-5-yl
466A	tBu	C(O)	CH(Me)	CH2	isoxazol-3-ol-5-yl
467A	tBu	CHOH	CH(Me)	CH2	isoxazol-3-ol-5-yl
468A	tBu	C(Me)OH	CH(Me)	CH2	isoxazol-3-ol-5-yl

Method of Making the Compounds of the Invention:

Compounds of the invention represented by formula (I) may be prepared by the methods set out below. It will be understood by one skilled in the chemical arts that the reactants 5 may be varied to analogous molecules to provide desired substitutions in the final reaction product.

Definitions of symbols used in the Schemes:

(PhO)₂P(O)N₃ – diphenyl phosphorus azideBBr₃ – boron tribromideBF₃-OEt₂ – boron trifluoride etherate

-70-

BnBr – benzyl bromide
CH₃CN – acetonitrile
DMAP - 4-(dimethylamino)pyridine
DMF – N,N-dimethylformamide
5 DMSO – dimethylsulfoxide
DPPF – dichloro[1,1'-bis(diphenylphosphino)ferrocene]
DPPB – 1,4-bis(diphenylphosphino)butane
EDCI – 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide hydrochloride
Et₃N – triethylamine
10 EtOH – ethanol
H₂NCH₂CO₂Me – methyl glycinate
HN(OMe)Me – N-methyl-O-methyl hydroxylamine
HNMe₂ – dimethyl amine
K₂CO₃ – potassium carbonate
15 KOH – potassium hydroxide
LAH – lithium aluminum hydride
LiHMDS – lithium hexamethyldisilazide
mCPBA – meta-chloroperbenzoic acid
MeI – methyl iodide
20 MeOH – methanol
NaBH₄ – sodium borohydride
NaH – sodium hydride
NaI – sodium iodide
NMP - N-methylpyrrolidin-2-one
25 Na-S-R₃ – sodium alkylmercaptide
PBr₃ – phosphorus tribromide
Pd(OAc)₂ – palladium (II) acetate
Pd-C – palladium on carbon
pTSA – para-toluenesulfonic acid
30 Pyr - pyridine
R₂MgBr – alkyl magnesium bromide
R₃MgBr – alkyl magnesium bromide

R₅MgBr – alkyl magnesium bromide

R₂S(O)₂NH₂ – alkylsulfonamide

tBuC(O)CH₂Br – 2-bromopinacolone

Tf₂O – triflic anhydride

5 TFA – trifluoroacetic acid

THF – tetrahydrofuran

Description of the Schemes:

Preparation of diphenyl acid and diphenyl acylaminotetrazole (Scheme 1).

10 A mixture of 3-substituted-4-hydroxy benzoic acid 1a and methanol is treated with HCl (gas) to yield methyl benzoate ester 1. Methyl benzoate ester 1 is reacted with excess alkyl magnesium bromide to produce tertiary alcohol 2. Tertiary alcohol 2 is converted to phenol 4 by reaction with O-benzyl-2-substituted phenol 3a and BF₃-Et₂O. O-benzyl-2-substituted phenol 3a is derived from reaction of 2-substituted phenol 3 with

benzylbromide and NaH. Phenol 4 is reacted with triflic anhydride/pyridine to give triflate 5 which is subjected to methoxycarbonylation with Pd(OAc)₂, DPPF or DPPB, CO (100-1000 psi = 689 to 6895 kilopascals), methanol and triethylamine in either DMF or DMSO at 80-100 °C to yield methyl ester 6. Methyl ester 6 is subjected to palladium catalyzed hydrogenolysis and alkylated with NaH/pinacolone bromide to give ketone 7.

20 Ketone 7 is sequentially reacted with sodium borohydride/MeOH and potassium hydroxide/EtOH/ 80 °C to produce acid 8. Acid 8 is coupled with EDCI, DMAP and 5-aminotetrazole to give acylamino tetrazole 9. Acid 8 is also coupled with EDCI, DMAP and alkylsulfonamide to give acylsulfonamide 9a.

25 Preparation of functionalized sidechain analogs (Scheme 2).

Ester 6 is reduced with LAH to give benzyl alcohol 10. Benzyl alcohol 10 is converted to benzylic bromide 11 with PBr₃ and alkylated with the enolate of pinacolone to afford ketone 12. Ketone 12 is transformed into keto-ester 14 via Pd-C catalyzed hydrogenolysis, triflate formation with triflic anhydride/pyridine and palladium catalyzed methoxycarbonylation. Keto-ester 14 is subjected to sodium borohydride reduction and potassium hydroxide hydrolysis to produce alcohol-acid 15.

-72-

Preparation of alkylated pinacolol sidechain (Scheme 3).

Ketone 7 is alkylated with LiHMDS/MeI and reduced with sodium borohydride to give alcohol 16. Alcohol 16 is hydrolyzed with potassium hydroxide to afford alcohol-acid 17.

5 Preparation of alkylsulfonylmethyl sidechain analogs (Scheme 4).

Benzyllic bromide 11 is reacted with sodium alkylmercaptide and oxidized with mCPBA to give sulfone 18. Sulfone 18 is hydrogenolyzed with Pd-C/H₂ and alkylated with pinacolone chloride, potassium carbonate and sodium iodide to produce ketone sulfone 19. Ketone sulfone 19 is reduced with sodium borohydride to afford alcohol sulfone 20.

10

Preparation of unsymmetrical central link diphenyl scaffold (Scheme 5).

3-Substituted-4-hydroxybenzoic acid is coupled with EDCI/N-methy-N-methoxyamine/DMAP and alkylated with benzyl bromide to give amide 21. Amide 21 is sequentially reacted with R₂MgBr and R₃MgBr Grignard reagents to afford tertiary alcohol 23. Alcohol 23 is reacted with 2-substituted phenol 3 and BF₃-OEt₂ to produce diphenylalkane 24. Diphenylalkane 24 is reacted with triflic anhydride/pyridine and methoxycarbonylated with Pd(OAc)₂, DPPF or DPPB, carbon monoxide, MeOH, and Et₃N to give ester 26. Ester 26 is hydrogenolyzed with Pd-C/H₂ and alkylated with pinacolone bromide to yield ketone ester 27. Ketone ester 27 is reduced with sodium borohydride and hydrolyzed with potassium hydroxide to afford alcohol acid 28.

15

Preparation of tertiary alcohol sidechain analog (Scheme 6).

Phenol 4 is alkylated with pinacolone bromide and reacted with MeMgBr or EtMgBr to give alcohol 29. Alcohol 29 is hydrogenolyzed with Pd-C/H₂, reacted with triflic anhydride/pyridine and methoxycarbonylated to afford ester 30. Ester 30 is hydrolyzed with potassium hydroxide, coupled with methyl glycinate, and hydrolyzed to produce alcohol amide-acid 31.

20

Preparation of direct linked tetrazole (Scheme 7).

Acid 8 is reacted with formamide and sodium methoxide to give primary amide 32.

Primary amide 32 is treated with trifluoroacetic acid and methylene chloride followed by 2-chloro-1,3-dimethyl-2-imidazolinium hexafluorophosphate to give nitrile 33. Nitrile 33

is reacted with sodium azide and triethylammonium hydrochloride in N-methylpyrrolidin-2-one to afford tetrazole 34.

5

Preparation of amide (Scheme 8).

Acid 8 is reacted with diphenyl phosphorus azide and triethylamine followed by treatment with dimethylamine and 4-(dimethylamino)pyridine to yield amide 35.

10 Preparation of esters (Scheme 9).

Acid 8 is treated with sodium iodide and N,N-dimethyl-2-chloroacetamide to give ester 36. Acid 8 is treated with sodium iodide and N-morpholinocarbonylmethyl chloride to give ester 37.

15 Alternative Synthesis of Diphenylalkyl Scaffold (Scheme 10).

Phenol 2 is heated with pTSA to give olefin 38. Olefin 38 is alkylated with 2-chloropinacolone and reacted with a 2-substituted phenol/BF₃-OEt₂ to yield phenol 40.

Phenol 40 is converted to the corresponding phenolic triflate and reduced to alcohol 41.

Alcohol 41 is methoxycarbonylated to afford ester 42. Ester 42 is hydrolyzed to produce acid 8.

Scheme 1
Synthesis of Diphenyl Scaffold

-75-

Scheme 2
Synthesis of Functionalized Sidechain Analogs

-76-

Scheme 3
Synthesis of Alkyl Pinacolol Sidechain

Scheme 4
Synthesis of Alkylsulfonylmethyl Sidechain Analogs

-77-

Scheme 5
Synthesis of Unsymmetrical Central Link Diphenyl Scaffold

-78-

Scheme 6
Synthesis of Tertiary Alcohol Sidechain

-79-

Scheme 7
Synthesis of Direct Linked Tetrazole

Scheme 8
Synthesis of Amide

Scheme 9
Synthesis of Esters

-80-

Scheme 10
Alternative Synthesis of Diphenyl
Alkyl Scaffold

EXAMPLES

Abbreviations:

The following examples use several standard abbreviations, for example;

5 “RT” is room temperature, “R_t” or t_{ret} are symbols for retention time, and “Hex” refers to hexanes

Concentration is performed by evaporation from RT to about 70°C under vacuum (1-10mm)

-81-

Example 1

Preparation of 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(2-(ethoxycarbonyl)ethyl)-3-methylphenyl]pentane.

5 A. 3,3-Bis[4-hydroxy-3-methylphenyl]pentane.

(JB5-H6Q-107-1)

To a mixture of o-cresol (196 g, 1.81 mol) and 3-pentanone (60 ml, 0.57 mol) is added methanesulfonic acid (45 ml, 0.69 mol) with stirring for 3 days. The reaction 10 is carefully basified to pH 8 with satd Na₂CO₃ followed by extraction with EtOAc. The organic layer is washed with water (6 X 500 ml), Na₂SO₄ dried, concentrated, chromatographed (2 kg SiO₂, hex to 80% EtOAc/hex), and triturated with hex (hexane) to give the title compound as a white solid (100 g, 61%).

NMR

15 High Res. EI-MS: 284.1794; calc. for C₁₉H₂₄O₂: 284.1776

B. 3'-(4-Benzylxy-3-methylphenyl)-3'-(4-hydroxy-3-methylphenyl)pentane.

20 To a solution of 3,3-bis[4-hydroxy-3-methylphenyl]pentane (10 g, 35.2 mmol) (see, Chem. Biol 1999 p.265) and DMF (180 ml) is added 60% NaH disp (1.4 g, 35.2

-82-

mmol). After stirring for 30 m (minutes), benzyl bromide (4.2 ml, 35.2 mmol) is added to the reaction. The mixture is stirred for 14 h (hours) and concentrated in vacuo. The residue is partitioned between Et₂O/water. The organic layer is washed with 1N HCl, water, brine, Na₂SO₄ dried, concentrated, and chromatographed (MeCl₂) to give the title compound as an oil (6.5 g, 49%).

NMR

High Res. FAB-MS: 374.2237; calc. for C₂₆H₃₀O₂: 374.2246

C. 3'-[4-Benzylxy-3-methylphenyl]-3'-[4-trifluoromethylsulfonyloxy-3-methylphenyl]pentane.

To a 0 °C solution of 3'-(4-benzylxy-3-methylphenyl)-3'-(4-hydroxy-3-methylphenyl)pentane (17.4 g, 46.4 mmol), pyridine (45 ml) is added Tf₂O (8.6 ml, 51.04 mmol). The mixture is warmed to RT (room temperature) and stirred 14 h. The reaction is concentrated in-vacuo. The residue is partitioned between Et₂O/1N HCl. The organic layer is washed with water, brine, Na₂SO₄ dried, concentrated, and chromatographed (hex to 10% EtOAc/hex) to give the title compound as an oil (26.3 g, 98%).

NMR

High Res. FAB-MS: 506.1743; calc. for C₂₇H₂₉F₃O₄S: 506.1739

20

D. 3'-(4-Benzylxy-3-methylphenyl)-3'-(4-(2-ethoxycarbonylethyl)-3-methylphenyl)pentane.

P-15440

-83-

To a mixture of 3'-[4-benzyloxy-3-methylphenyl]-3'-[4-trifluoromethylsulfonyloxy-3-methylphenyl]pentane (5.3 g, 10.5 mmol) and THF (5 ml) is sequentially added Pd(dppf)Cl₂ (860 mg, 1.05 mmol), LiCl (1.78 g, 42 mmol), and 0.5 M BrZnCH₂CH₂CO₂Et in THF (63 ml, 31.4 mmol). The mixture is heated to 60 °C for 18 h.

5 After cooling to RT, the mixture is concentrated in-vacuo, partitioned between Et₂O/EtOAc/1N HCl. The organic layer is washed with 1N HCl, water, Na₂SO₄ dried, concentrated, and chromatographed (hex to 10% EtOAc/hex) to give the title compound (2.5 g, 52%).

NMR

10 High Res. ES-MS: 476.3178; calc. for C₃₁H₃₈O₃+NH₄: 476.3165

E. 3'-[4-Hydroxy-3-methylphenyl]-3'-[4-(2-ethoxycarbonylethyl)-3-methylphenyl]pentane

15 A mixture of 3'-[4-benzyloxy-3-methylphenyl]-3'-[4-(2-ethoxycarbonylethyl)-3-methylphenyl]pentane (2.4 g, 5.45 mmol), EtOH (20 ml), and 10% Pd/C (250 mg) is hydrogenated at atmospheric pressure for 18 h. The reaction is filtered through diatomaceous earth with EtOAc wash. The filtrate is concentrated to give the title compound (2 g, quant).

20 NMR

High Res. ES-MS: 391.2218; calc. for C₂₄H₃₂O₃+Na: 391.2249

F. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(2-ethoxycarbonyl)ethyl]-3-methylphenyl]pentane

25

Using a procedure analogous to Example 1B, 3'-[4-hydroxy-3-methylphenyl]-3'-[4-(2-ethoxycarbonylethyl)-3-methylphenyl]pentane and 1-bromo-3,3-dimethyl-2-butanone give the title compound (2.1 g, 83%).

-84-

NMR

High Res. ES-MS: 489.2990; calc. for C₃₀H₄₂O₄+Na: 489.2981

Example 2

5 Preparation of 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(2-carboxylethyl)-3-methylphenyl]pentane.

A mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-ethoxycarbonylethyl)-3-methylphenyl)pentane (2.0 g, 4.3 mmol), EtOH (25 ml), water (25 ml) is added KOH (1.2 g, 22 mmol) and heated to 60 °C for 1 h. The reaction is concentrated with a stream of nitrogen and the residue is partitioned between Et₂O/1N HCl. The organic layer is washed with water, Na₂SO₄ dried, concentrated, and chromatographed (MeCl₂) to give the title compound (1.8 g, 95%).

NMR

15 High Res. ES-MS: 461.2669; calc. for C₂₈H₃₈O₄+Na: 461.2668

Example 3

Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-dimethylcarbamoylethyl)-3-methylphenyl)pentane.

20

To a 0 °C mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-carboxylethyl)-3-methylphenyl)pentane (500 mg, 1.14 mmol), pyridine (101 ul, 1.25 mmol), DMF (4.4 ul, 0.057 mmol) and MeCl₂ (4 ml) is added oxalyl chloride

-85-

(104 μ l, 1.2 mmol). After stirring for 10 m, to the mixture is added 2M $\text{Me}_2\text{NH}/\text{THF}$ (2.3 ml, 4.56 mmol). To the reaction then is added MeCl_2 (4 ml) and stirred at RT for 2 h. The mixture is concentrated and partitioned between $\text{Et}_2\text{O}/1\text{N HCl}$. The organic layer is washed with water, Na_2SO_4 dried, concentrated, and chromatographed (hex to CH_2Cl_2 to 15% $\text{EtOAc}/\text{MeCl}_2$) to give the title compound as a solid (85 mg, 16%).

5 NMR
ES-MS: 466.2 ($\text{M}+\text{H}$)

Example 4

10 Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-dimethylcarbamoylethyl)-3-methylphenyl)pentane.

To a 0 °C mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-[4-(2-dimethylcarbamoylethyl)-3-methylphenyl]pentane (65 mg, 0.139 mmol) and MeOH (0.7 ml) is added NaBH_4 (8 mg, 0.209 mol) and stirred at RT for 2 h. The reaction is concentrated and partitioned between $\text{Et}_2\text{O}/1\text{N HCl}$. The organic layer is washed with water, Na_2SO_4 dried, and concentrated to give the title compound as a white glassy solid 65 mg, quant).

15 NMR
20 High Res. ES-MS: 490.3301; calc. for $\text{C}_{30}\text{H}_{45}\text{NO}_3+\text{Na}$: 490.3297

-86-

Example 5

Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-(2-dimethylcarbamoyl-t-ethylidene)-3-methylphenyl]pentane

5 A. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-hydroxy-3-methylphenyl]pentane (JB5-H6O-248-2).

To a mixture of 60% NaH disp (8.0 g, 200 mmol) and DMF (600 ml) is added 3,3-bis[4-hydroxy-3-methylphenyl]pentane, (56.88 g, 200 mmol)) and stirred for 2 h

To the reaction is added 3,3-dimethyl-1-bromo-2-butanone (26.93 ml, 200 mmol) dropwise and stirred overnight. The solvent is removed in-vacuo. To the resulting residue is added EtOAc/water (800 ml/200 ml), acidified to pH 3 with 5N HCl, and partitioned. The organic layer is washed with water (2X), brine, Na_2SO_4 dried, concentrated, and chromatographed (3 kg SiO_2 , hex to 15% EtOAc/hex) to give the title compound as a white solid (35 g, 46%).

NMR

ES-MS: 400(M+NH₄)

B. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-trifluoromethylsulfonyloxy-3-methylphenyl)pentane.

-87-

Using a procedure analogous Example 1C, 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-hydroxy-3-methylphenyl)pentane gives the title compound as an oil (26.3 g, 98%).

5 NMR

ES-MS: 532.5 ($M+NH_4$).

C. 3'-(4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-trifluoromethylsulfonyloxy-3-methylphenyl)pentane

10

Using a procedure analogous to Example 2, 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-trifluoromethylsulfonyloxy-3-methylphenyl)pentane gives the title compound as an oil (26 g, quant).

NMR

15 High Res. EI-MS, m/e: 516.2171; calc. for $C_{26}H_{35}F_3O_5S$: 516.2157

D. 3'-(4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-dimethylcarbamoyl-t-ethylidene)-3-methylphenyl)pentane.

To a mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-trifluoromethylsulfonyloxy-3-methylphenyl)pentane (640 mg, 1.24 mmol), Pd(OAc)₂ (14 mg, 0.062), DPPP (51 mg, 0.124 mmol), and DMF (2.5 ml) is added Et₃N (0.69 ml, 4.96 mmol). The mixture is purged with N₂ and N,N-dimethylacrylamide (0.39 ml, 3.71 mmol) is added. The reaction is heated to 80 °C

-88-

for 14 h and then cooled. The mixture is partitioned between EtOAc/water. The organic layer is washed with 1N HCl, water, brine, Na_2SO_4 dried, concentrated, and chromatographed (MeCl_2 to 60% EtOAc/ MeCl_2) to give the title compound as a white foam (90 mg, 16%).

5 NMR

High Res. ES-MS: 466.3328; calc. for $\text{C}_{30}\text{H}_{44}\text{NO}_3 + \text{H}$: 466.3321

Example 5A

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(2-methoxycarbonyl)-3-methylphenyl]pentane

A mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-trifluoromethylsulfonyloxy-3-methylphenyl)pentane (27 g, 52.2 mmol), $\text{Pd}(\text{OAc})_2$ (1.2 g, 5.22 mmol), Dppf (5.8 g, 10.4 mmol), MeOH (21 ml, 522 mmol), Et_3N (22 ml, 157 mmol), and DMF (100 ml) is pressurized with carbon monoxide (at 6895 KPa, 1000 psi) and heated to 110 °C for 48 h. After cooling, the reaction is filtered through diatomaceous earth with EtOAc wash. The filtrate is diluted with 1:1 Et_2O :EtOAc, washed with 1N HCl, and filtered through diatomaceous earth, Na_2SO_4 dried, concentrated, and chromatographed (hex to 10% EtOAc/hex) to give the title compound (14 g, 63%).

20 NMR

High Res. FAB-MS: 462.2750; calc. for $\text{C}_{27}\text{H}_{38}\text{O}_4$: 426.2770

-89-

Example

Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-carboxyl)-3-methylphenyl)pentane

5

Using a procedure analogous to Example 1G, 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane gives the title compound as a white foam (7.85 g, 98%).

NMR

10 High Res. ES-MS: 435.2498; calc. for C₂₆H₃₆O₄+Na: 435.2511

Example 7AA

15

Preparation of enantiomer 1 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-carboxyl-3-methylphenyl))pentane from enantiomer 1 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-methoxycarbonyl-3-methylphenyl))pentane.

20

Using a procedure analogous to Example 1G, enantiomer 1 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-methoxycarbonyl-3-methylphenyl))pentane gives the title compound as a glassy solid (1.3 g, quant).

Enantiomer 1, Example 6A

-90-

HPLC: ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m (flow rate); Rt = 7.0 m

NMR

High Res. ES-MS: 435.2533; calc. for C₂₆H₃₆O₄S+Na: 435.2511

5 HPLC correlation of Example 7A (derived from chiral HPLC of 6) and 7A (derived from the hydrolysis of 8A):

A mixture of Example 7A (1 mg) (derived from chiral HPLC of 6) and 7A (1 mg)(derived from the hydrolysis of 8A) is dissolved in TFA/20% IPA/80% and analyzed by HPLC;

ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m (flow rate); to

10 give a single peak with Rt = 7.0 m.

Example 7BB

Preparation of enantiomer 2 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-

3'-[4-(2-carboxyl-3-methylphenyl)]pentane from enantiomer 2 of 3'-[4-(2-hydroxy-3,3-

15 dimethylbutoxy)-3-methylphenyl]-3'-[4-(2-methoxycarbonyl-3-methylphenyl)]pentane.

Using a procedure analogous to Example 1G, enantiomer 2 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(2-methoxycarbonyl-3-methylphenyl)]pentane gives the title compound as a glassy solid (1.3 g, quant).

20 Enantiomer 2, Example 7B

HPLC: ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m (flow rate); Rt = 8.0 m

NMR

High Res. ES-MS: 435.2536; calc. for C₂₆H₃₆O₄+Na: 435.2511

25 HPLC correlation of Example 7B (derived from chiral HPLC of 6) and 7B (derived from the hydrolysis of 8B):

A mixture of Example 7B (1 mg) (derived from chiral HPLC of 6) and 7B (1 mg)(derived from the hydrolysis of 8B) is dissolved in TFA/20% IPA/80% and analyzed by HPLC;

-91-

ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m (flow rate); to give a single peak with Rt = 8.16 m.

Example 8A and 8B

5 Preparation of enantiomers of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-methoxycarbonyl-3-methylphenyl)]pentane.

A mixture of racemic 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-methoxycarbonyl-3-methylphenyl)]pentane is chromatographed with a ChiralPak

10 AD column to give enantiomer 1, Example 8A (1.72 g, 49%) and enantiomer 2, Example 8B 1.72 mg, 49%).

Enantiomer 1, Example 8A

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/80% heptane; 1 ml/m (flow rate); Rt = 5.4 m

15 **NMR**

High Res. ES-MS: 444.3130; calc. for C₂₇H₃₈O₄+NH₄: 444.3114

Enantiomer 2, Example 8B

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/80% heptane; 1 ml/m (flow rate); Rt = 8.0 m

20 **NMR**

High Res. ES-MS: 444.3134; calc. for C₂₇H₃₈O₄+NH₄: 444.3114

Example 9

Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-

25 methylsulfonylaminocarbonyl-3-methylphenyl)]pentane

To a mixture of methane sulfonamide (92 mg, 0.97 mmol), EDCI (186 mg, 0.97 mmol), DMAP (118 mg, 0.97 mmol) and CH_2Cl_2 (7 ml) is added 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-carboxyl-3-methylphenyl))pentane (400 mg, 0.97 mmol) and stirred overnight. The reaction is diluted with CH_2Cl_2 , washed with 1N HCl (4 X 20 ml), Na_2SO_4 dried, concentrated, and chromatographed (gradient CHCl_3 to 10% $\text{CH}_3\text{CN}/\text{CHCl}_3$) to give the title compound as a solid (240 mg, 51%).

NMR

High Res. ES-MS: 490.2633; calc. for C₂₇H₃₀NO₅S+H: 490.2627

10 UV max (solvent) 000 nm (Σ 00)

IR (method) 0000-cm⁻¹

NMR (solvent) 0.0 (s,0)

Anal. Calcd for C₉₉H₉₉N₉₉: C, 00.00; H, 0.00; N, 0.00

Found: C, 00.00; H, 0.00; N, 0.00

15 Compounds of the Invention – Salts, Stereoisomers & Prodrugs:

Salts of the compounds represented by formulae (I) are an additional aspect of the invention. The skilled artisan will also appreciate that the family of compounds of formulae I include acidic and basic members and that the present invention includes pharmaceutically acceptable salts thereof.

20 In those instances where the compounds of the invention possess acidic or basic functional groups various salts may be formed which are more water soluble and physiologically suitable than the parent compound. Representative pharmaceutically acceptable salts, include but are not limited to, the alkali and alkaline earth salts such as lithium, sodium, potassium, ammonium, calcium, magnesium, aluminum, zinc, and the like. Salts are conveniently prepared from the free acid by treating the acid in solution with a base or by exposing the acid to an ion exchange resin. For example, a carboxylic acid substituent on the compound of Formula I may be selected as -CO₂H and salts may be formed by reaction with appropriate bases (e.g., NaOH, KOH) to yield the corresponding sodium and potassium salt.

CHIRALPAK AD, CHIRALPAK AS, CHIRALPAK OD, CHIRALPAK OJ,
CHIRALPAK OA, CHIRALPAK OB, CHIRALPAK OC, CHIRALPAK OF,
CHIRALPAK OG, CHIRALPAK OK, and
CHIRALPAK CA-1.

5 By another conventional method, a racemic mixture may be reacted with a single enantiomer of some other compound. This changes the racemic form into a mixture of diastereomers. These diastereomers, because they have different melting points, different boiling points, and different solubilities can be separated by conventional means, such as crystallization.

10 The present invention is also embodied in mixtures of compounds of formulae I. Prodrugs are derivatives of the compounds of the invention which have chemically or metabolically cleavable groups and become by solvolysis or under physiological conditions the compounds of the invention which are pharmaceutically active *in vivo*. Derivatives of the compounds of this invention have activity in both their acid and base 15 derivative forms, but the acid derivative form often offers advantages of solubility, tissue compatibility, or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the 20 parent acid compound with a suitable amine. Simple aliphatic or aromatic esters derived from acidic groups pendent on the compounds of this invention are preferred prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy) alkyl esters or ((alkoxycarbonyl)oxy)alkyl esters. Particularly preferred esters to use as prodrugs are; methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, 25 morpholinoethyl, and N,N-diethylglycolamido.

N,N-diethylglycolamido ester prodrugs may be prepared by reaction of the sodium salt of a compound of Formula (I) (in a medium such as dimethylformamide) with 2-chloro-N,N-diethylacetamide (available from Aldrich Chemical Co., Milwaukee, Wisconsin USA; Item No.25,099-6).

30 Morpholinylethyl ester prodrugs may be prepared by reaction of the sodium salt of a compound of Formula (I) (in a medium such as dimethylformamide) 4-(2-

-95-

chloroethyl)morpholine hydrochloride (available from Aldrich Chemical Co., Milwaukee, Wisconsin USA, Item No. C5,220-3).

Prodrugs, for example, may be prepared by reaction of the sodium salt for a compound of Formula I with;

5

and sodium iodide

to provide an ester prodrug pendent group such as;

Pharmaceutical Formulations containing the Novel Compounds of the Invention:

10 Pharmaceutical formulations of the invention are prepared by combining (e.g., mixing) a therapeutically effective amount of the compound of the invention (compounds of Formula I) together with a pharmaceutically acceptable carrier or diluent. The present pharmaceutical formulations are prepared by known procedures using well-known and readily available ingredients.

15 In making the compositions of the present invention, the compounds of Formula I will usually be admixed with a carrier, or diluted by a carrier, or enclosed within a carrier which may be in the form of a capsule, sachet, paper or other container. When the carrier serves as a diluent, it may be a solid, semi-solid or liquid material which acts as a vehicle, or can be in the form of tablets, pills, powders, lozenges, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), or ointment, containing, for example, up to 10% by weight of the compound. The compounds of the present invention are preferably formulated prior to administration.

20 The compounds of the invention may also be delivered by suitable formulations contained in a transderm patch. Alternatively, the compounds of the invention may be delivered to a patient by sublingual administration.

For the pharmaceutical formulations any suitable carrier known in the art can be used. In such a formulation, the carrier may be a solid, liquid, or mixture of a solid and a

liquid. Solid form formulations include powders, tablets and capsules. A solid carrier can be one or more substances which may also act as flavoring agents, lubricants, solubilisers, suspending agents, binders, tablet disintegrating agents and encapsulating material.

5 Tablets for oral administration may contain suitable excipients such as calcium carbonate, sodium carbonate, lactose, calcium phosphate, together with disintegrating agents, such as maize, starch, or alginic acid, and/or binding agents, for example, gelatin or acacia, and lubricating agents such as magnesium stearate, stearic acid, or talc.

10 In powders the carrier is a finely divided solid which is in admixture with the finely divided Active ingredient. In tablets the compound of Formula I is mixed with a carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain from about 1 to about 99 weight percent of the compound which is the novel compound of this invention.
15 Suitable solid carriers are magnesium carbonate, magnesium stearate, talc, sugar lactose, pectin, dextrin, starch, gelatin, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, low melting waxes, and cocoa butter.

 Sterile liquid form formulations include suspensions, emulsions, syrups and elixirs.

20 The compounds of the invention may be dissolved or suspended in a pharmaceutically acceptable carrier, such as sterile water, sterile organic solvent or a mixture of both. The compounds can often be dissolved in a suitable organic solvent, for instance aqueous propylene glycol. Other compositions can be made by dispersing the finely divided compounds of the invention in aqueous starch or sodium carboxymethyl cellulose solution or in a suitable oil.
25

Methods of Using the Compounds of the Invention:

Generic disease states benefited by treatment with the compounds of Formula I include, but are not limited to:

30 disease states characterized by abnormal calcium regulation
 disease states characterized by abnormal cell proliferation
 disease states characterized by abnormal cell differentiation

-97-

disease states characterized by abnormal immune response
disease states characterized by abnormal dermatological conditions
disease states characterized by neurodegenerative condition
disease states characterized by inflammation
5 disease states characterized by vitamin D sensitivity
disease states characterized by hyperproliferative disorders.

Specific disease states benefited by treatment of the compounds of Formula I and II include, but are not limited to:

10 Acne
Actinic keratosis
Alopecia
Alzheimer's disease
Bone maintenance in zero gravity
15 Bone fracture healing
Breast cancer
Skin cancer
Crohn's disease
Colon cancer
20 Type I diabetes
Host-graft rejection
Hypercalcemia
Type II diabetes
Leukemia
25 Multiple sclerosis
Myelodysplastic syndrome
Insufficient sebum secretion
Osteomalacia
Osteoporosis
30 Insufficient dermal firmness
Insufficient dermal hydration
Psoriatic arthritis

-98-

Prostate cancer
Psoriasis
Renal osteodystrophy
Rheumatoid arthritis
Scleroderma
Systemic lupus erythematosus
Ulcerative colitis
Vitiligo
Wrinkles

10 Particularly preferred is the treatment of psoriasis and osteoporosis by administration to a mammal (including a human) of a therapeutically effective amount of compounds of Formulae I. By "pharmaceutically effective amount" it is meant that quantity of pharmaceutical agent corresponding to formulae I which prevents, removes or reduces the deleterious effects of a disease state in mammals, including humans.

15 The specific dose of a compound administered according to this invention to obtain therapeutic or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration and the condition being treated. Typical daily doses will contain a pharmaceutically effective amount typically in the range of from about 0.0001
20 mg/kg/day to about 50 mg/kg/day of body weight of an active compound of this invention. Preferably the dose of compounds of the invention will be from 0.0001 to 5 mg/kg/day of body weight.

25 Preferably compounds of the invention (e.g., per Formula I) or pharmaceutical formulations containing these compounds are in unit dosage form for administration to a mammal. The unit dosage form can be a capsule or tablet itself, or the appropriate number of any of these. The quantity of Active ingredient in a unit dose of composition may be varied or adjusted from about 0.0001 to about 1000 milligrams or more according to the particular treatment involved. It may be appreciated that it is necessary to make routine variations to the dosage depending on the age and condition
30 of the patient. Dosage will also depend on the route of administration. The compounds of the invention may be administered by a variety of routes including oral, aerosol, rectal, transdermal, sublingual, subcutaneous, intravenous, intramuscular, and

-99-

intranasal. Particularly preferred is the treatment of psoriasis with an ointment type formulation containing the compounds of the invention. The ointment formulation may be applied as needed, typically from one to 6 times daily.

Treatment of psoriasis is preferably done with topical application by a
5 formulation in the form of a cream, oil, emulsion, paste or ointment containing a therapeutically effective amount of a compound defined by Formula (I), and in particular those compounds set out in Tables 1 or 2 or those compounds identified as "AA" to "BQ", supra. The formulation for topical treatment contains from 0.5 to 0.00005 weight percent, preferably from .05 to 0.0005 weight percent, and most
10 preferably from 0.025 to 0.001 of a compound defined by formula (I).

For example, two semisolid topical preparations useful as vehicles for VDR modulators in treatment and prevention of psoriasis are as follows:

Polyethylene Glycol Ointment USP (p. 2495)

Prepare Polyethylene Glycol Ointment as follows:

15 Polyethylene Glycol 3350 400 g.
 Polyethylene Glycol 400 600 g.
 To make 1000 g.

Heat the two ingredients on a water bath to 65C. Allow to cool, and stir until congealed. If a firmer preparation is desired, replace up to 100 g of
20 the polyethylene glycol 400 with an equal amount of polyethylene glycol 3350.

Hydrophilic Ointment USP (p. 1216)

Prepare Hydrophilic Ointment as follows:

25 Methylparaben 0.25 g.
 Propylparaben 0.15 g.
 Sodium Lauryl Sulfate 10 g.
 Propylene Glycol 120 g.
 Stearyl Alcohol 250 g.
 White Petrolatum 250 g.
30 Purified Water 370 g.
 To make about 1000 g.

The Stearyl Alcohol and White Petrolatum are melted on a steam bath, and

-100-

warmed to about 75C. The other ingredients, previously dissolved in the water are added, warmed to 75C, and the mixture stirred until it congeals.

For each of the above formulations the compound of formula (I) is added during the heating step in an amount that is from 0.5 to 0.00005 weight percent, preferably from 5 .05 to 0.0005 weight percent, and most preferably from 0.025 to 0.001 weight percent of the total ointment weight. (Source: - United States Pharmacopoeia 24, United States Pharmacopeial Convention, 1999)

Conventional therapy for osteoporosis includes; (i) estrogens, (ii) androgens, (iii) calcium supplements, (iv) vitamin D metabolites, (v) thiazide diuretics, (vi) calcitonin, (vii) bisphosphonates, (viii) SERMS, and (ix) fluorides (see, Harrison's Principles of Internal Medicine, 13th edition, 1994, published by McGraw Hill Publ., ISBN 0-07-032370-4, pgs.2172-77; the disclosure of which is incorporated herein by reference.). Any one or combination of these conventional therapies may be used in combination with 10 the method of treatment using compounds of Formulae I as taught herein. For example, in a method of treating osteoporosis, the vitamin D receptor modulator compounds of the invention (e.g., as defined by formula I) may be administered separately or simultaneously with a conventional therapy. Alternatively, the vitamin D receptor modulator compounds of the invention may be combined with conventional therapeutic agents in a formulation 15 for treatment of osteoporosis such as set out below:

A formulation for treating osteoporosis comprising:

Ingredient (A1): a vitamin D receptor modulator represented by formula (I), or a pharmaceutically acceptable salt or aliphatic ester prodrug derivative thereof;

25 Ingredient (B1):

one or more co-agents that are conventional for treatment of osteoporosis selected from the group consisting of:

- a. estrogens,
- b. androgens,
- c. calcium supplements,
- d. vitamin D metabolites,
- e. thiazide diuretics,

-101-

- f. calcitonin,
- g. bisphosphonates,
- h. SERMS, and
- i. fluorides.

5 Ingredient (C1): optionally, a carrier or diluent.

Typically useful formulations are those wherein the weight ratio of (A1) to (B1) is from 10:1 to 1:1000 and preferably from 1:1 to 1:100.

Combination Therapy for Psoriasis:

10 Conventional therapy for psoriasis includes topical glucocorticoids, salicylic acid, crude coal tar, ultraviolet light, and methotrexate (see, Harrison's Principles of Internal Medicine, 13th edition, 1994, published by McGraw Hill Publ., ISBN 0-07-032370-4, pgs.2172-77). Any one or combination of these conventional therapies may be used in combination with the method of treatment using compounds of Formulae I as taught
15 herein. For example, in a method of treating osteoporosis, the vitamin D receptor modulator compounds of the invention (e.g., as defined by formula I) may be topically administered separately or simultaneously with a conventional therapy. Alternatively, the vitamin D receptor modulator compounds of the invention may be combined with conventional therapeutic agents in a topically applied formulation for treatment of
20 osteoporosis such as set out below:

A formulation for treating osteoporosis comprising:

Ingredient (A2): a vitamin D receptor modulator represented by formula (I), or a pharmaceutically acceptable salt or aliphatic ester prodrug derivative thereof;

25 Ingredient (B2):

one or more co-agents that are conventional for treatment of osteoporosis selected from the group consisting of:

- a. topical glucocorticoids ,
- b. salicylic acid, or
- c. crude coal tar.

30

Ingredient (C2): optionally, a carrier or diluent.

-102-

Typically useful formulations are those wherein the weight ratio of (A2) to (B2) is from 1:10 to 1:100000 and preferably from 1:100 to 1:10000.

Assays and Test Results:

Table 3

5

Summary of Experimental Results

est Cmpd. ¹	RXR-VDR heterodimer ² EC ₅₀ (nM)	VDR EC ₅₀ (nM) (Caco-2 cells) ³	OCN Promoter ⁴ EC ₅₀ (nM)	Mouse Hypercal ⁵ μg/Kg/d	Rat OVX ⁶ μg/Kg/d
Ex. 1		587	0.2	<300	
Ex. 2		159	0.3	10	
Ex. 3	1	63	5	100	
Ex. 7AA	10	2039	12.8	1000	3200
Ex. 7BB		4700	57	3000	6406
Ex. 9	10				
AG		2039	12.8	1000	3200
AH		4700	57	3000	6406
AP		132	2	<300	
AQ		355	7	~500	
AR		688	92	300	

-103-

AS			35	>5000	
AT		>1000	46	1000	
AU	276		5.4	3000	
AV	22		49	3000	
AW/AX			29	1000	
BA/BB			12	1000	
BD	3	951	1.1	300	
BE	572		17	>>3000	
BF/BG	381		50	3000	
BH	396		99	>3000	
BI	4	608	0.3	300	
BJ	4		54	1000	
BK	43		99	3000	
BL	9	412	0.27	<<300	
BM	101	1527	1	300	
BR	186	1169	6.8	3000	

P-15440

-104-

BS	562	1288	20	3000	
BT	78	937	3.5	6000	
BU	93	958	1.6	3000	2151
BV	101	698	1.4	1000	
BW	33	410	0.34	3000	
BX	7	408	0.81	1000	
BY	23	481	3.3	1000	
BZ	283	805	13	3000	
CA	285	825	17	>1000	
CB	376	1481	55	>3000	
CC/CD	306		114	1000	
CE/CF	172	732	204	<<2000	
CI	150	898	24	9000	
	353		16	<1000	
CL	453		26	<<1000	

AA	12	16	5	0.06	0.03
BB		225	11	20	3
CC		710000	10000	>30000	5000

Table 4
Summary of Experimental Results

Test Cmpd. ¹	Kera. Prolif. IC ₅₀ (nM)	IL-10 IC ₅₀ (nM)
AE	18	
AP	2.6	
AQ	54	
AU	70	
AS	177	
BC/BD	4	
BJ	20	
BL		6.1
BM	26	119
BN/BO		25
BP/BQ		315
BU	14	96

-106-

BV	20	
BZ	21	
CA	254	
CB	165	
CC/CD	42	

Explanation of Table 3 and 4 column numerical superscripts:

1. Test Compound coded with Example numbers correspond to the products of the same numbered example in the specification. Alphabetical symbols (e.g., "AA", "BZ") correspond to the chemical species identified by the same symbol in the specification.

5 "AA" = 1 α ,25-dihydroxyvitamin D₃
 "BB" = 3-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-

propyl}-2-methyl-phenoxy)-propane-1,2-diol

10 "CC" = 1-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-cyclohexyl}-

2. The RXR-VDR heterodimer assay is described in the "Assay" section of the Description, infra.

3. The VDR CTF (Caco-2 cells) test is described in the "Assay" section of the Description, infra.

-107-

4. The OCN Promoter test is described in the "Assay" section of the Description, infra.
5. The Mouse Hypercalcemia test is described in the "Assay" section of the Description, infra.
5. The keratinocyte proliferation assay is described in the "Assay" section of the Description, infra.

Assay Methods

Use of the Assay Methods:

10 The evaluation of the novel compounds of the invention for osteoporosis and other related diseases is done using a plurality of test results. The use of multiple assays is necessary since the combined properties of (i) high activity for the vitamin D receptor, and (ii) prevention of hypercalcemia must be achieved to have utility for the methods of treating osteoporosis related diseases, which are also, aspects of this invention. Some of
15 the tests described below measure related properties of the compounds of the invention. Since these compounds are suitable for a variety of diseases, a compound may be considered to have utility in the practice of the invention if it meets most, if not all, of the acceptance criteria for the described tests.

20 The evaluation of the novel compounds of the invention for psoriasis is done using the Keratinocyte Proliferation Assay in combination with other assays that measure Inhibition of IL-2 production and stimulation of IL-10 production in peripheral blood mononuclear cells (PBMCs).

Brief Description, Utility and Acceptance Criteria for the Assay Methods:

25 1. The RXR-VDR heterodimer Assay:

This assay provides the VDR activity of a test compound. It is desirable to have low EC50 values, since the lower the EC50 value, the more active the compound will be as a VDR agonist. This assay provides the VDR activity of a test compound. It is desirable to have low EC50 values for a compound in this assay. The lower the EC50
30 value, the more active the compound will be as a VDR agonist. Desired assay results are EC50 values less than or equal to 500 nM. Preferred assay results are less than 250 nM, and most preferably less than 150 nM.

-108-

2. The Caco-2 cell Co-transfection Assay:

The Caco-2 cell assay is an indicator for the undesirable condition of hypercalcemia. This co-transfection assay is a surrogate assay for in vivo calcemic activity of VDR ligands. It is desirable to have high EC50 values for a test compound in this assay. The higher the EC50 values for a compound the less calcemic it will be in vivo. Desired assay results are EC50 greater than or equal to 300 nM. Preferred assay results are greater than 1000 nM.

10 3. The OCN (osteocalcin) Promoter Assay

The OCN Promoter Assay is an indicator and marker for osteoporosis. It is desirable to have lower EC50 value in this assay since lower the EC50 of a compound, the better agonist it will be in bone. However, a non-VDR ligand may also induce osteocalcin promoter expression by acting on other promoter elements. If a compound is active in RXR-VDR heterodimerization assay and also in osteocalcin promoter assay this means that the VDR ligand is capable of inducing VDRE dependent gene expression in the target cell type. Desired assay results are EC50 less than or equal to 250 nM. Preferred assay results are less than 50 nM.

-109-

4. The Mouse Hypercalcemia Assay

The Mouse Hypercalcemia Assay is a six day hypercalcemia test for toxicity and selectivity. Acceptable test results are levels greater than or equal to 300
5 µg/kg/day. Preferred assay results are levels greater than 1000 µg/kg/day.

5. The Keratinocyte Proliferation Assay

This Assay is indicative for the treatment of psoriasis. An acceptable test result is IC50 value of less than 200 nM. Preferred assay results are IC50 values of less than
10 100 nM.

6. The IL-10 induction Assay

This is an in vitro efficacy assay for psoriasis. Psoriasis involves both keratinocytes and immune cells. IL-10 is a unique cytokine because it is anti-inflammatory and
15 immunosuppressive This assay tells us whether a VDRM is able to function as an agonist in PBMCs (primary blood mononuclear cells) or not. A lower EC50 value is desirable in this assay since a compound with a lower EC50 value will be a better agonist in PBMCs. An acceptable test result is an EC50 value of less than 200 nM. Preferred assay results are EC50 values of less than 100 nM.
20

Details of the Assay Methods:

(1) Materials and Method for RXR-VDR Heterodimerization Assay:

Transfection Method:

25 • FUGENE 6 Transfection Reagent (Roche Cat # 1 814 443)

Growth Media:

- D-MEM High Glucose (Gibco BRL Cat # 11054-020), 10% FBS, 1% antibiotic-antimycotic (Ab-Am)

FBS heat inactivated (Gibco BRL Cat # 10092-147)

30 • Ab-Am (Gibco BRL Cat # 15240-062)

Cells:

- Grow SaOs-2 cells in T-152 cm² culture flasks in *growth media*.

-110-

- Keep the density at $5-6 \times 10^5$ cells/ml
- Passage cells 1:3 twice a week
- Add Trypsin EDTA (Gibco BRL Cat # 25300-020) and incubate
- Resuspend cells in plating media and transfer into growth media.

5 Wash Media:

- HBSS Low Glucose Without Phenol Red (Gibco BRL Cat # 14175-095), 1% Ab-Am

Plating Media:

- D-MEM Low Glucose Without Phenol Red (Gibco BRL Cat # 11054-020), 1% Ab-Am
D-MEM

10 Stripped FBS (Hyclone Cat# SH30068.03 Lot # AHM9371)

Ab-Am

Transfection / Treatment Media:

- D-MEM Low Glucose Without Phenol Red only

T-152 cm² culture flask:

15 • Use Corning Coastar T-152 cm² culture flask (Cat # 430825) to grow the cells

Flat well Plates:

- Use well plate to plate cells
- Use Deep well plate sterile to make up treatment media.

20 Luciferase Assay Reagent:

- Use Steady-Glo Luciferase Reagent from Promega (Cat # E2550) Consists of:

a. E2533 Assay Substrate, lyophilized product and

b. E2543 Assay Buffer.

- Thaw at room temperature

25 • Store

Cell Harvesting

Aspirate media from culture flask, rinse cells with HBSS and aspirate.

Add trypsin and incubate.

When cells appear detached, resuspend cells in *growth media*.

30 Transfer into a new flask with fresh *growth media* for passaging the cells.

Plate well plates and two extra plates

-111-

A. Cell Count

Mix the cell suspension using pipette

Use *Hematocytometer* to count the cells

Load cell suspension onto the hemocytometer chamber

5 Count cells.

Plate seeding:

Use plating media 10 % Stripped FBS in D-MEM Low Glucose, Without Phenol Red, 1% Ab-Am

Plate 14 plates @ 165 µl / well.

10 In sterile flask add cell suspension
to *plating media*.

Mix .

Add cells / well.

Place the cells in the incubator.

15 Cells should be about 75 % confluent prior to transfection.

Step 1: DNA and Media

Add plain DMEM media to tubes for mixing the DNA

Add the Reporter gene pFR-LUC

20 Add the Gal4-RXR-DEF and VP16-VDR-LBD

Step 2: FuGENE and Media

Prepare plain DMEM media in a tubes for mixing FuGENE

Add *FuGENE 6 Transfection Reagent*

25 Incubate

Step 3: FuGENE , DNA and Media Complex

Add FuGENE Media complex from step 2 to DNA Media complex from step 1

Incubate

30

Step 4: FuGENE , DNA and Media Complex to-well plate

Add FuGENE-DNA-Media complex from step 3 to each plate

-112-

Incubate.

DAY 3: Dosing

Treatment preparation

5 Allow for transfection time

Make a stock solution of the compounds in DMSO

Vortex until all the compounds has been dissolved.

Further dilute in D-MEM (Low Glucose – With out Phenol Red)

Add compounds in quadruplicate to give final volume

10 Incubate.

DAY 4: Luciferase Assay

Read the plates after drug treatment

Remove part of media from all the wells and leave remainder

15 Add Steady-Glo Luciferase Reagent mixture / wells

Incubate

Count each well using a Luminescence counter, Top Count NXT by Packard

Set a delay between plates to reduce the background

20 **(2) Materials and Method for The Caco-2 Cell Assay:**

Caco-2 cells, grown in phenol red free, DMEM (Invitrogen, Carlsbad, CA) containing 10 % charcoal-stripped FCS (Hyclone, Logan, UT), are transfected with Fugene 6 reagent (Roche Diagnostics, Indianapolis, IN). Cells (5000/well) are plated 18 h before transfection in a 96 well plate. The Cells are transfected with Gal4-responsive reporter pFRLuc (150 ng, Stratagene, La Jolla CA) and the receptor expression vector pGal4-VDR-LBD (10 ng), along with Fugene 6 reagent (0.2 μ l/well). The DNA-Fugene complex is formed by incubating the mixture for 30 min at room temperature. The cells are transfected in triplicate for 5 h, and treated with various concentrations of VDR ligands (form 0.01 nM to 10,000 nM concentration range) 18h post-transfection. The luciferase activity is quantified using Steady-Glo reagent kit (Promega, Madison, WI) as per manufacturer's specifications.

(3) Materials and Method for The OCN Promoter Assay:

The activation of osteocalcin by VDR ligands is evaluated in a rat osteoblast-like cell line RG-15 (ROS 17/2.8) stably expressing rat osteocalcin promoter fused with luciferase reporter gene. The stable cell lines are established as reported before (Activation of Osteocalcin Transcription involves interaction of protein kinase A- and Protein kinase C-dependent pathways. Boguslawski, G., Hale, L. V., Yu, X.-P., Miles, R. R., Onyia, J. E., Santerre R. F., Chandrasekhar, S. J Biol. Chem. 275, 999-1006, 2000). Confluent RG-15 cells are maintained in DMEM/F-12 medium (3:1) containing 5% FBS, 300 µg/ml G418 and at 37°C under 5% CO₂/95% air atmosphere and are trypsinized (0.25% trypsin) and plated into white opaque 96-well cell culture plates (25000 cells/well). After 24 hr, cells (in DMEM/F-12 medium + 2% FBS) are treated with various concentrations of compounds, dissolved in DMSO. The final DMSO concentration remains at 0.01% (v/v). After 48 hr treatment, the medium is removed, cells are lysed with 50 µl of lysis buffer (From Luciferase reporter assay system, Roche Diagnostics, Indianapolis, IN) and assayed for luciferase activity using the Luciferase Reporter Gene Assay kit from Boehringer Mannheim as per manufacturer's specifications.

20

(4) Materials and Method for The Mouse Hypercalcemia Assay:

Weanling, virus -antibody-free, five to six weeks old female DBF mice (Harlan, Indianapolis, IN) are used for all the studies. Animals are allowed to acclimate to local vivarium conditions for 2 days. Mice are maintained on a 12 hr light/dark cycle at 22°C with ad lib access to food (TD 5001 with 1.2% Ca and 0.9%P, Teklad, Madison, WI) and water. The animals then are divided into groups with 4-5 mice per group. Different doses of test compounds prepared in 10% Ethanol and 90% sesame oil are administered to mice orally via gavage for 6 days. 1α-25(OH)₂D₃ 0.5µg/kg/d was also given to one group of mice as the positive control. Serum ionized calcium is evaluated at 6 hours after the last dosing under isoflurane anesthesia by Ciba-Corning Ca++/PH Analyzer, (Model 634, Chiron Diagnostics Corp., East Walpole, MA). Raw data of group differences is assessed

-114-

by analysis of variance (ANOVA) using Fisher's protected least significant difference (PLSD) where the significance level was $P < 0.05$.

(5) The Keratinocyte Proliferation Assay:

5 KERTr cells (Human skin keratinocyte transformed with a retrovirus vector, obtained from ATCC) are plated in 96-well flat-bottomed plates (3000 cells/well) in 100 μ l keratinocyte serum free medium supplemented with bovine pituitary extract in the absence of EGF (Life Technologies, Rockville, MD) and incubated at 37°C for two days. The cells are treated with various concentrations of VDR ligands (ten-fold serial dilution
10 from 10,000 nM to 0.1 nM in triplicate), dissolved in 100 μ l keratinocyte serum free medium supplemented with bovine pituitary extract in the absence of EGF and incubated at 37°C for 72hr. BrdU (5-bromo-2'-deoxyuridine) incorporation is analyzed as a measure of DNA replication (Cell proliferation ELISA kit, Roche Diagnostics, Indianapolis, IN) and absorbance is measured at 405 nm. Potency values (IC_{50}) values are determined as the
15 concentration (nM) of compound that elicited a half-maximal response.

7. Materials and Method for human IL-10 Induction Assay:

Isolation of peripheral blood mononuclear cells (PBMCs):

A. Collect 50 ml of human blood and dilute with media, RPMI-1640.
20 B. Prepare sterile tubes with ficoll.
C. Add diluted blood to tubes.
D. Centrifuge.
E. Discard the top layer and collect the cells from middle layer.
F. Divide all cells into four tubes and add media.
25 G. Centrifuge.
H. Aspirate off media and resuspend.
I. Collect all cells
J. Centrifuge. at 1200 rpm for 10 minutes.
K. Resuspend in RPMI-1640 with 2% FBS and count cells
30 Stimulation of PBMC:
L. Prepare TPA in DMSO.
M. Dissolve PHA in water .

-115-

N. Plate TPA/PHA treated PBMCs in well plates.

O. Incubate.

Treatment:

P. Prepare all compound dilutions in plain RPMI- 1640 media.

5 Q. Add diluted compound.

R. Incubate.

Sample Collection and assay:

S. Remove all the cells by centrifugation and assay the supernatant for IL-10 by immunoassay.

10 T. Perform IL-10 assay using anti-human IL-10 antibody coated beads, as described by the manufacturer (Linco Research Inc., St. Charles, MO)

WE CLAIM:

1. A compound represented by formula I or a pharmaceutically acceptable salt
 5 or a prodrug derivative thereof:

wherein;

R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 10 3 to 8 carbon atoms;

R₁ and R₂ are independently selected from the group consisting of hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ alkyl, -O-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, and C₃-C₅ cycloalkenyl;

15 Z_B is a branched alkyl terminated group represented by the formula:

wherein

-(L₁)- and -(L₂)- and -(L₃)- are divalent linking groups independently selected 20 from the group consisting of

-117-

a bond

-118-

5 where m is 0, 1 or 2, X_1 is oxygen or sulfur, and each R40 is independently hydrogen or C₁-C₅ alkyl or C₁-C₅ fluoroalkyl, R_B is a branched C₃-C₅ alkyl; and

Z_C is selected from CO_2Me , CO_2H , $\text{C}(\text{O})\text{NH}_2$, $\text{C}(\text{O})\text{NMe}_2$, 5-tetrazolyl,
 $\text{C}(\text{O})\text{-NH-5-tetrazolyl}$, $\text{C}(\text{O})\text{NHCH}_2\text{SO}_2\text{Me}$, $\text{C}(\text{O})\text{NHCH}_2\text{S(O)Me}$,
 $\text{C}(\text{O})\text{NHCH}_2\text{CH}_2\text{SO}_2\text{Me}$, $\text{C}(\text{O})\text{NHCH}_2\text{CH}_2\text{S(O)Me}$, $\text{C}(\text{O})\text{NSO}_2\text{Me}$, $\text{C}(\text{O})\text{NHS(O)Me}$,
 $\text{C}(\text{O})\text{NSO}_2\text{Et}$, $\text{C}(\text{O})\text{NHS(O)Et}$, $\text{C}(\text{O})\text{NSO}_2\text{iPr}$, $\text{C}(\text{O})\text{NHS(O)iPr}$, $\text{C}(\text{O})\text{NSO}_2\text{tBu}$,
5 $\text{C}(\text{O})\text{NHS(O)tBu}$, $\text{CH}_2\text{NSO}_2\text{Me}$, $\text{CH}_2\text{NHS(O)Me}$, $\text{CH}_2\text{NSO}_2\text{Et}$, $\text{CH}_2\text{NHS(O)Et}$,
 $\text{CH}_2\text{NSO}_2\text{iPr}$, $\text{CH}_2\text{NHS(O)iPr}$, $\text{CH}_2\text{NSO}_2\text{tBu}$, $\text{CH}_2\text{NHS(O)tBu}$,
 $\text{CH}_2\text{-N-pyrrolidin-2-one}$, $\text{CH}_2\text{-}(1\text{-methylpyrrolidin-2-one-3-yl)}$, $\text{CH}_2\text{CO}_2\text{Me}$,
 $\text{CH}_2\text{CO}_2\text{H}$, $\text{CH}_2\text{C}(\text{O})\text{NH}_2$, $\text{CH}_2\text{C}(\text{O})\text{NMe}_2$, $\text{CH}_2\text{C}(\text{O})\text{-N-pyrrolidine}$, $\text{CH}_2\text{-5-tetrazolyl}$,
 $\text{C}(\text{O})\text{C}(\text{O})\text{OH}$, $\text{CH}(\text{OH})\text{C}(\text{O})\text{OH}$, $\text{C}(\text{O})\text{C}(\text{O})\text{NH}_2$, $\text{CH}(\text{OH})\text{C}(\text{O})\text{NH}_2$, $\text{C}(\text{O})\text{C}(\text{O})\text{NMe}_2$,
10 $\text{CH}(\text{OH})\text{C}(\text{O})\text{NMe}_2$, $\text{CH}_2\text{CH}_2\text{CO}_2\text{H}$, $\text{CH}_2\text{CH}_2\text{C}(\text{O})\text{NH}_2$, $\text{CH}_2\text{CH}_2\text{C}(\text{O})\text{NMe}_2$,
 $\text{CH}_2\text{CH}_2\text{-5-tetrazolyl}$, $\text{CH}_2\text{S(O)2Me}$, $\text{CH}_2\text{S(O)Me}$, $\text{CH}_2\text{CH}_2\text{S(O)2Me}$,
 $\text{CH}_2\text{CH}_2\text{S(O)Me}$, $\text{CH}_2\text{CH}_2\text{CH}_2\text{S(O)2Me}$, $\text{CH}_2\text{CH}_2\text{CH}_2\text{S(O)Me}$,
 $\text{CH}_2\text{S(O)2Et}$, $\text{CH}_2\text{S(O)Et}$, $\text{CH}_2\text{CH}_2\text{S(O)2Et}$, $\text{CH}_2\text{CH}_2\text{S(O)Et}$, $\text{CH}_2\text{CH}_2\text{CH}_2\text{S(O)2Et}$,
 $\text{CH}_2\text{CH}_2\text{CH}_2\text{S(O)Et}$, $\text{CH}_2\text{S(O)2iPr}$, $\text{CH}_2\text{S(O)iPr}$, $\text{CH}_2\text{CH}_2\text{S(O)2iPr}$, $\text{CH}_2\text{CH}_2\text{S(O)iPr}$,
15 $\text{CH}_2\text{S(O)2tBu}$, $\text{CH}_2\text{S(O)tBu}$, $\text{CH}_2\text{CH}_2\text{S(O)2tBu}$, $\text{CH}_2\text{CH}_2\text{S(O)tBu}$,
 $\text{CH}_2\text{CH}_2\text{S(O)2NH}_2$, $\text{CH}_2\text{CH}_2\text{S(O)NH}_2$, $\text{CH}_2\text{CH}_2\text{S(O)2NMe}_2$, $\text{CH}_2\text{CH}_2\text{S(O)NMe}_2$,
 $\text{C}(\text{O})\text{CH}_2\text{S(O)2Me}$, $\text{C}(\text{O})\text{CH}_2\text{S(O)Me}$, $\text{C}(\text{O})\text{CH}_2\text{CH}_2\text{S(O)2Me}$, $\text{C}(\text{O})\text{CH}_2\text{CH}_2\text{S(O)Me}$,
 $\text{C}(\text{O})\text{CH}_2\text{CH}_2\text{S(O)2Me}$, $\text{C}(\text{O})\text{CH}_2\text{CH}_2\text{S(O)Me}$, $-\text{CH}_2\text{NHCH}_2\text{CH}_2\text{SO}_2\text{CH}_3$, 1,3,4-
.oxadiazolin-2-one-yl, imidazolidine-2,4-dione-yl, isoxazol-3-ol-yl, or 1,3,4-oxadiazolin-
20 2-thione-yl..

2. A compound represented by formula I or a pharmaceutically acceptable salt or a prodrug derivative thereof:

25 wherein;

R and R' are independently methyl, ethyl, propyl, 1-methylethyl, 1-methylpropyl, 2-methylpropyl, or 1,1-dimethylethyl;

R_1 and R_2 are independently selected from the group consisting of hydrogen, fluoro, -Cl, -CF₃, -CH₂F, -CHF₂, methoxy, ethoxy, vinyl, methyl, ethyl, propyl, 1-methylethyl, 1,1-dimethylethyl, butyl, 1-methylpropyl, 2-methylpropyl, or cyclopropyl;

Z_B is a branched alkyl terminated group represented by the formula:

5

wherein (L₁) and (L₂) and (L₃) are divalent linking groups where

L₁ is -O- or -CH₂-;

L₂ is -CH₂- or -CH(Me)-;

10 L₃ is -C(O)-, -CHOH-, or -C(Me)OH-;

R_B is a branched C₃-C₅ alkyl; and

Z_C is selected from CO₂Me, CO₂H, C(O)NH₂, C(O)NMe₂, 5-tetrazolyl, C(O)-NH-5-tetrazolyl, C(O)NHCH₂SO₂Me, C(O)NHCH₂S(O)Me, C(O)NHCH₂CH₂SO₂Me, C(O)NHCH₂CH₂S(O)Me, C(O)NHSO₂Me, C(O)NHS(O)Me, C(O)NHSO₂Et, C(O)NHS(O)Et, C(O)NHSO₂iPr, C(O)NHS(O)iPr, C(O)NHSO₂tBu, C(O)NHS(O)tBu, CH₂NHSO₂Me, CH₂NHS(O)Me, CH₂NHSO₂Et, CH₂NHS(O)Et, CH₂NHSO₂iPr, CH₂NHS(O)iPr, CH₂NHSO₂tBu, CH₂NHS(O)tBu, CH₂-N-pyrrolidin-2-one, CH₂-(1-methylpyrrolidin-2-one-3-yl), CH₂CO₂Me, CH₂CO₂H, CH₂C(O)NH₂, CH₂C(O)NMe₂, CH₂C(O)-N-pyrrolidine, CH₂-5-tetrazolyl, C(O)C(O)OH, CH(OH)C(O)OH, C(O)C(O)NH₂, CH(OH)C(O)NH₂, C(O)C(O)NMe₂, CH(OH)C(O)NMe₂, CH₂CH₂CO₂H, CH₂CH₂C(O)NH₂, CH₂CH₂C(O)NMe₂, CH₂CH₂-5-tetrazolyl, CH₂S(O)₂Me, CH₂S(O)Me, CH₂CH₂S(O)₂Me, CH₂CH₂S(O)Me, CH₂S(O)₂Et, CH₂S(O)Et, CH₂CH₂S(O)₂Et, CH₂CH₂S(O)Et, CH₂CH₂S(O)₂Et, CH₂CH₂S(O)Et, CH₂S(O)₂iPr, CH₂S(O)iPr, CH₂CH₂S(O)₂iPr, CH₂CH₂S(O)iPr, CH₂S(O)₂tBu, CH₂S(O)tBu, CH₂CH₂S(O)₂tBu, CH₂CH₂S(O)tBu, CH₂CH₂S(O)NH₂, CH₂CH₂S(O)NH₂, CH₂CH₂S(O)₂NMe₂, CH₂CH₂S(O)NMe₂, C(O)CH₂S(O)₂Me, C(O)CH₂S(O)Me, C(O)CH₂CH₂S(O)₂Me, C(O)CH₂CH₂S(O)Me, C(O)CH₂CH₂S(O)₂Me, C(O)CH₂CH₂S(O)Me, -CH₂NHCH₂CH₂SO₂CH₃, 1,3,4-oxadiazolin-2-one-yl, imidazolidine-2,4-dione-yl, isoxazol-3-ol-yl, or 1,3,4-oxadiazolin-2-thione-yl.

-121-

3. A compound represented by formula I or a pharmaceutically acceptable salt or a prodrug derivative thereof:

5 wherein;

R and R' are independently methyl or ethyl;

R₁ and R₂ are independently selected from the group consisting of hydrogen, fluoro, -Cl, -CF₃, -CH₂F, -CHF₂, methoxy, ethoxy, vinyl, methyl, or cyclopropyl;

Z_B is a branched alkyl terminated group represented by the formula:

10

Z_C is selected from

Z_C is selected from

15

-(CH₂)-(CH₂)-C(O)-Et,

-122-

-C(O)-O-Me,

-(CH₂)-(CH₂)-C(O)-OH,

-(CH₂)-(CH₂)-C(O)-N(Me)₂,

-C(O)-OH,

5 -CH=CH-C(O)-N(Me)₂,

-C(O)-NH-S(O)₂-Me,

-(CH₂)-S(O)₂-Me,

-C(O)-NH-(CH₂)-(CH₂)-OH,

-C(O)-NH-(CH₂)-(CH₂)-S(O)₂-Me,

10 -C(O)-NH-(CH₂)-(CH₂)-OH,

-(CH₂)-NH-(CH₂)-(CH₂)-S(O)₂-Me,

-C(O)-O-(CH₂)-C(O)-N(Me)₂,

-(CH₂)-NH-(CH₂)-C(O)-O-Me,

-C(O)-NH-(CH₂)-C(O)-OH,

15 -CH₂NHCH₂CH₂SO₂CH₃

20

4. A compound represented by the formula:

wherein;

said compound is selected from a compound code numbered 1 thru 295, with each
 5 compound having the specific selection of substituents R_B, R_C, L₁, L₂, and L₃ shown
 in the horizontal line following the compound code number, as set out in the following
 Table 1 :

10

Table 1

	R _B	L ₃	L ₂	L ₁	R _C
1	tBu	C(O)	CH2	O	CO2Me
2	tBu	CHOH	CH2	O	CO2Me
3	tBu	C(Me)OH	CH2	O	CO2Me
4	tBu	C(O)	CH(Me)	O	CO2Me
5	tBu	CHOH	CH(Me)	O	CO2Me
6	tBu	C(Me)OH	CH(Me)	O	CO2Me
7	tBu	C(O)	CH2	O	CO2H
8	tBu	CHOH	CH2	O	CO2H
9	tBu	C(Me)OH	CH2	O	CO2H
10	tBu	C(O)	CH(Me)	O	CO2H
11	tBu	CHOH	CH(Me)	O	CO2H
12	tBu	C(Me)OH	CH(Me)	O	CO2H
13	tBu	C(O)	CH2	O	C(O)NH2
14	tBu	CHOH	CH2	O	C(O)NH2
15	tBu	C(Me)OH	CH2	O	C(O)NH2

P-15440

-124-

16	tBu	C(O)	CH(Me)	O	C(O)NH2
17	tBu	CHOH	CH(Me)	O	C(O)NH2
18	tBu	C(Me)OH	CH(Me)	O	C(O)NH2
19	tBu	C(O)	CH2	O	C(O)NMe2
20	tBu	CHOH	CH2	O	C(O)NMe2
21	tBu	C(Me)OH	CH2	O	C(O)NMe2
22	tBu	C(O)	CH(Me)	O	C(O)NMe2
23	tBu	CHOH	CH(Me)	O	C(O)NMe2
24	tBu	C(Me)OH	CH(Me)	O	C(O)NMe2
25	tBu	C(O)	CH2	O	5-tetrazolyl
26	tBu	CHOH	CH2	O	5-tetrazolyl
27	tBu	C(Me)OH	CH2	O	5-tetrazolyl
28	tBu	C(O)	CH(Me)	O	5-tetrazolyl
29	tBu	CHOH	CH(Me)	O	5-tetrazolyl
30	tBu	C(Me)OH	CH(Me)	O	5-tetrazolyl
31	tBu	C(O)	CH2	O	C(O)-NH-5-tetrazolyl
32	tBu	CHOH	CH2	O	C(O)-NH-5-tetrazolyl
33	tBu	C(Me)OH	CH2	O	C(O)-NH-5-tetrazolyl
34	tBu	C(O)	CH(Me)	O	C(O)-NH-5-tetrazolyl
35	tBu	CHOH	CH(Me)	O	C(O)-NH-5-tetrazolyl
36	tBu	C(Me)OH	CH(Me)	O	C(O)-NH-5-tetrazolyl
37	tBu	C(O)	CH2	O	C(O)NHCH2SO2Me
38	tBu	CHOH	CH2	O	C(O)NHCH2SO2Me
39	tBu	C(Me)OH	CH2	O	C(O)NHCH2SO2Me
40	tBu	C(O)	CH(Me)	O	C(O)NHCH2SO2Me
41	tBu	CHOH	CH(Me)	O	C(O)NHCH2SO2Me
42	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2SO2Me
43	tBu	C(O)	CH2	O	C(O)NHCH2S(O)Me
44	tBu	CHOH	CH2	O	C(O)NHCH2S(O)Me
45	tBu	C(Me)OH	CH2	O	C(O)NHCH2S(O)Me
46	tBu	C(O)	CH(Me)	O	C(O)NHCH2S(O)Me

-125-

47	tBu	CHOH	CH(Me)	O	C(O)NHCH2S(O)Me
48	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2S(O)Me
49	tBu	C(O)	CH2	O	C(O)NHCH2CH2SO2Me
50	tBu	CHOH	CH2	O	C(O)NHCH2CH2SO2Me
51	tBu	C(Me)OH	CH2	O	C(O)NHCH2CH2SO2Me
52	tBu	C(O)	CH(Me)	O	C(O)NHCH2CH2SO2Me
53	tBu	CHOH	CH(Me)	O	C(O)NHCH2CH2SO2Me
54	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2CH2SO2Me
55	tBu	C(O)	CH2	O	C(O)NHCH2CH2S(O)Me
56	tBu	CHOH	CH2	O	C(O)NHCH2CH2S(O)Me
57	tBu	C(Me)OH	CH2	O	C(O)NHCH2CH2S(O)Me
58	tBu	C(O)	CH(Me)	O	C(O)NHCH2CH2S(O)Me
59	tBu	CHOH	CH(Me)	O	C(O)NHCH2CH2S(O)Me
60	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2CH2S(O)Me
61	tBu	C(O)	CH2	O	C(O)NHSO2Me
62	tBu	CHOH	CH2	O	C(O)NHSO2Me
63	tBu	C(Me)OH	CH2	O	C(O)NHSO2Me
64	tBu	C(O)	CH(Me)	O	C(O)NHSO2Me
65	tBu	CHOH	CH(Me)	O	C(O)NHSO2Me
66	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2Me
67	tBu	C(O)	CH2	O	C(O)NHS(O)Me
68	tBu	CHOH	CH2	O	C(O)NHS(O)Me
69	tBu	C(Me)OH	CH2	O	C(O)NHS(O)Me
70	tBu	C(O)	CH(Me)	O	C(O)NHS(O)Me
71	tBu	CHOH	CH(Me)	O	C(O)NHS(O)Me
72	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)Me
73	tBu	C(O)	CH2	O	C(O)NHSO2Et
74	tBu	CHOH	CH2	O	C(O)NHSO2Et
75	tBu	C(Me)OH	CH2	O	C(O)NHSO2Et
76	tBu	C(O)	CH(Me)	O	C(O)NHSO2Et
77	tBu	CHOH	CH(Me)	O	C(O)NHSO2Et

78	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2Et
79	tBu	C(O)	CH2	O	C(O)NHS(O)Et
80	tBu	CHOH	CH2	O	C(O)NHS(O)Et
81	tBu	C(Me)OH	CH2	O	C(O)NHS(O)Et
82	tBu	C(O)	CH(Me)	O	C(O)NHS(O)Et
83	tBu	CHOH	CH(Me)	O	C(O)NHS(O)Et
84	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)Et
85	tBu	C(O)	CH2	O	C(O)NHSO2iPr
86	tBu	CHOH	CH2	O	C(O)NHSO2iPr
87	tBu	C(Me)OH	CH2	O	C(O)NHSO2iPr
88	tBu	C(O)	CH(Me)	O	C(O)NHSO2iPr
89	tBu	CHOH	CH(Me)	O	C(O)NHSO2iPr
90	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2iPr
91	tBu	C(O)	CH2	O	C(O)NHS(O)iPr
92	tBu	CHOH	CH2	O	C(O)NHS(O)iPr
93	tBu	C(Me)OH	CH2	O	C(O)NHS(O)iPr
94	tBu	C(O)	CH(Me)	O	C(O)NHS(O)iPr
95	tBu	CHOH	CH(Me)	O	C(O)NHS(O)iPr
96	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)iPr
97	tBu	C(O)	CH2	O	C(O)NHSO2tBu
98	tBu	CHOH	CH2	O	C(O)NHSO2tBu
99	tBu	C(Me)OH	CH2	O	C(O)NHSO2tBu
100	tBu	C(O)	CH(Me)	O	C(O)NHSO2tBu
101	tBu	CHOH	CH(Me)	O	C(O)NHSO2tBu
102	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2tBu
103	tBu	C(O)	CH2	O	C(O)NHS(O)tBu
104	tBu	CHOH	CH2	O	C(O)NHS(O)tBu
105	tBu	C(Me)OH	CH2	O	C(O)NHS(O)tBu
106	tBu	C(O)	CH(Me)	O	C(O)NHS(O)tBu
107	tBu	CHOH	CH(Me)	O	C(O)NHS(O)tBu
108	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)tBu

-127-

109	tBu	C(O)	CH ₂	O	CH ₂ NHSO ₂ Me
110	tBu	CHOH	CH ₂	O	CH ₂ NHSO ₂ Me
111	tBu	C(Me)OH	CH ₂	O	CH ₂ NHSO ₂ Me
112	tBu	C(O)	CH(Me)	O	CH ₂ NHSO ₂ Me
113	tBu	CHOH	CH(Me)	O	CH ₂ NHSO ₂ Me
114	tBu	C(Me)OH	CH(Me)	O	CH ₂ NHSO ₂ Me
115	tBu	C(O)	CH ₂	O	CH ₂ NHS(O)Me
116	tBu	CHOH	CH ₂	O	CH ₂ NHS(O)Me
117	tBu	C(Me)OH	CH ₂	O	CH ₂ NHS(O)Me
118	tBu	C(O)	CH(Me)	O	CH ₂ NHS(O)Me
119	tBu	CHOH	CH(Me)	O	CH ₂ NHS(O)Me
120	tBu	C(Me)OH	CH(Me)	O	CH ₂ NHS(O)Me
121	tBu	C(O)	CH ₂	O	CH ₂ NHSO ₂ Et
122	tBu	CHOH	CH ₂	O	CH ₂ NHSO ₂ Et
123	tBu	C(Me)OH	CH ₂	O	CH ₂ NHSO ₂ Et
124	tBu	C(O)	CH(Me)	O	CH ₂ NHSO ₂ Et
125	tBu	CHOH	CH(Me)	O	CH ₂ NHSO ₂ Et
126	tBu	C(Me)OH	CH(Me)	O	CH ₂ NHSO ₂ Et
127	tBu	C(O)	CH ₂	O	CH ₂ NHS(O)Et
128	tBu	CHOH	CH ₂	O	CH ₂ NHS(O)Et
129	tBu	C(Me)OH	CH ₂	O	CH ₂ NHS(O)Et
130	tBu	C(O)	CH(Me)	O	CH ₂ NHS(O)Et
131	tBu	CHOH	CH(Me)	O	CH ₂ NHS(O)Et
132	tBu	C(Me)OH	CH(Me)	O	CH ₂ NHS(O)Et
133	tBu	C(O)	CH ₂	O	CH ₂ NHSO ₂ iPr
134	tBu	CHOH	CH ₂	O	CH ₂ NHSO ₂ iPr
135	tBu	C(Me)OH	CH ₂	O	CH ₂ NHSO ₂ iPr
136	tBu	C(O)	CH(Me)	O	CH ₂ NHSO ₂ iPr
137	tBu	CHOH	CH(Me)	O	CH ₂ NHSO ₂ iPr
138	tBu	C(Me)OH	CH(Me)	O	CH ₂ NHSO ₂ iPr
139	tBu	C(O)	CH ₂	O	CH ₂ NHS(O)iPr

-128-

140	tBu	CHOH	CH2	O	CH2NHS(O)iPr
141	tBu	C(Me)OH	CH2	O	CH2NHS(O)iPr
142	tBu	C(O)	CH(Me)	O	CH2NHS(O)iPr
143	tBu	CHOH	CH(Me)	O	CH2NHS(O)iPr
144	tBu	C(Me)OH	CH(Me)	O	CH2NHS(O)iPr
145	tBu	C(O)	CH2	O	CH2NHSO2tBu
146	tBu	CHOH	CH2	O	CH2NHSO2tBu
147	tBu	C(Me)OH	CH2	O	CH2NHSO2tBu
148	tBu	C(O)	CH(Me)	O	CH2NHSO2tBu
149	tBu	CHOH	CH(Me)	O	CH2NHSO2tBu
150	tBu	C(Me)OH	CH(Me)	O	CH2NHSO2tBu
151	tBu	C(O)	CH2	O	CH2NHS(O)tBu
152	tBu	CHOH	CH2	O	CH2NHS(O)tBu
153	tBu	C(Me)OH	CH2	O	CH2NHS(O)tBu
154	tBu	C(O)	CH(Me)	O	CH2NHS(O)tBu
155	tBu	CHOH	CH(Me)	O	CH2NHS(O)tBu
156	tBu	C(Me)OH	CH(Me)	O	CH2NHS(O)tBu
157	tBu	C(O)	CH2	O	CH2-N-pyrrolidin-2-one
158	tBu	CHOH	CH2	O	CH2-N-pyrrolidin-2-one
159	tBu	C(Me)OH	CH2	O	CH2-N-pyrrolidin-2-one
160	tBu	C(O)	CH(Me)	O	CH2-N-pyrrolidin-2-one
161	tBu	CHOH	CH(Me)	O	CH2-N-pyrrolidin-2-one
162	tBu	C(Me)OH	CH(Me)	O	CH2-N-pyrrolidin-2-one
163	tBu	C(O)	CH2	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
164	tBu	CHOH	CH2	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
165	tBu	C(Me)OH	CH2	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
166	tBu	C(O)	CH(Me)	O	CH2-(1-methylpyrrolidin-2-one-3-yl)

-129-

167	tBu	CHOH	CH(Me)	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
168	tBu	C(Me)OH	CH(Me)	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
169	tBu	C(O)	CH2	O	CH2CO2Me
170	tBu	CHOH	CH2	O	CH2CO2Me
171	tBu	C(Me)OH	CH2	O	CH2CO2Me
172	tBu	C(O)	CH(Me)	O	CH2CO2Me
173	tBu	CHOH	CH(Me)	O	CH2CO2Me
174	tBu	C(Me)OH	CH(Me)	O	CH2CO2Me
175	tBu	C(O)	CH2	O	CH2CO2H
176	tBu	CHOH	CH2	O	CH2CO2H
177	tBu	C(Me)OH	CH2	O	CH2CO2H
178	tBu	C(O)	CH(Me)	O	CH2CO2H
179	tBu	CHOH	CH(Me)	O	CH2CO2H
180	tBu	C(Me)OH	CH(Me)	O	CH2CO2H
181	tBu	C(O)	CH2	O	CH2C(O)NH2
182	tBu	CHOH	CH2	O	CH2C(O)NH2
183	tBu	C(Me)OH	CH2	O	CH2C(O)NH2
184	tBu	C(O)	CH(Me)	O	CH2C(O)NH2
185	tBu	CHOH	CH(Me)	O	CH2C(O)NH2
186	tBu	C(Me)OH	CH(Me)	O	CH2C(O)NH2
187	tBu	C(O)	CH2	O	CH2C(O)NMe2
188	tBu	CHOH	CH2	O	CH2C(O)NMe2
189	tBu	C(Me)OH	CH2	O	CH2C(O)NMe2
190	tBu	C(O)	CH(Me)	O	CH2C(O)NMe2
191	tBu	CHOH	CH(Me)	O	CH2C(O)NMe2
192	tBu	C(Me)OH	CH(Me)	O	CH2C(O)NMe2
193	tBu	C(O)	CH2	O	CH2C(O)-N-pyrrolidine
194	tBu	CHOH	CH2	O	CH2C(O)-N-pyrrolidine
195	tBu	C(Me)OH	CH2	O	CH2C(O)-N-pyrrolidine

-130-

196	tBu	C(O)	CH(Me)	O	CH2C(O)-N-pyrrolidine
197	tBu	CHOH	CH(Me)	O	CH2C(O)-N-pyrrolidine
198	tBu	C(Me)OH	CH(Me)	O	CH2C(O)-N-pyrrolidine
199	tBu	C(O)	CH2	O	CH2-5-tetrazolyl
200	tBu	CHOH	CH2	O	CH2-5-tetrazolyl
201	tBu	C(Me)OH	CH2	O	CH2-5-tetrazolyl
202	tBu	C(O)	CH(Me)	O	CH2-5-tetrazolyl
203	tBu	CHOH	CH(Me)	O	CH2-5-tetrazolyl
204	tBu	C(Me)OH	CH(Me)	O	CH2-5-tetrazolyl
205	tBu	C(O)	CH2	O	C(O)C(O)OH
206	tBu	CHOH	CH2	O	C(O)C(O)OH
207	tBu	C(Me)OH	CH2	O	C(O)C(O)OH
208	tBu	C(O)	CH(Me)	O	C(O)C(O)OH
209	tBu	CHOH	CH(Me)	O	C(O)C(O)OH
210	tBu	C(Me)OH	CH(Me)	O	C(O)C(O)OH
211	tBu	C(O)	CH2	O	CH(OH)C(O)OH
212	tBu	CHOH	CH2	O	CH(OH)C(O)OH
213	tBu	C(Me)OH	CH2	O	CH(OH)C(O)OH
214	tBu	C(O)	CH(Me)	O	CH(OH)C(O)OH
215	tBu	CHOH	CH(Me)	O	CH(OH)C(O)OH
216	tBu	C(Me)OH	CH(Me)	O	CH(OH)C(O)OH
217	tBu	C(O)	CH2	O	C(O)C(O)NH2
218	tBu	CHOH	CH2	O	C(O)C(O)NH2
219	tBu	C(Me)OH	CH2	O	C(O)C(O)NH2
220	tBu	C(O)	CH(Me)	O	C(O)C(O)NH2
221	tBu	CHOH	CH(Me)	O	C(O)C(O)NH2
222	tBu	C(Me)OH	CH(Me)	O	C(O)C(O)NH2
223	tBu	C(O)	CH2	O	CH(OH)C(O)NH2
224	tBu	CHOH	CH2	O	CH(OH)C(O)NH2
225	tBu	C(Me)OH	CH2	O	CH(OH)C(O)NH2
226	tBu	C(O)	CH(Me)	O	CH(OH)C(O)NH2

-131-

227	tBu	CHOH	CH(Me)	O	CH(OH)C(O)NH2
228	tBu	C(Me)OH	CH(Me)	O	CH(OH)C(O)NH2
229	tBu	C(O)	CH2	O	C(O)C(O)NMe2
230	tBu	CHOH	CH2	O	C(O)C(O)NMe2
231	tBu	C(Me)OH	CH2	O	C(O)C(O)NMe2
232	tBu	C(O)	CH(Me)	O	C(O)C(O)NMe2
233	tBu	CHOH	CH(Me)	O	C(O)C(O)NMe2
234	tBu	C(Me)OH	CH(Me)	O	C(O)C(O)NMe2
235	tBu	C(O)	CH2	O	CH(OH)C(O)NMe2
236	tBu	CHOH	CH2	O	CH(OH)C(O)NMe2
237	tBu	C(Me)OH	CH2	O	CH(OH)C(O)NMe2
238	tBu	C(O)	CH(Me)	O	CH(OH)C(O)NMe2
239	tBu	CHOH	CH(Me)	O	CH(OH)C(O)NMe2
240	tBu	C(Me)OH	CH(Me)	O	CH(OH)C(O)NMe2
241	tBu	C(O)	CH2	O	CH2CH2CO2H
242	tBu	CHOH	CH2	O	CH2CH2CO2H
243	tBu	C(Me)OH	CH2	O	CH2CH2CO2H
244	tBu	C(O)	CH(Me)	O	CH2CH2CO2H
245	tBu	CHOH	CH(Me)	O	CH2CH2CO2H
246	tBu	C(Me)OH	CH(Me)	O	CH2CH2CO2H
247	tBu	C(O)	CH2	O	CH2CH2C(O)NH2
248	tBu	CHOH	CH2	O	CH2CH2C(O)NH2
249	tBu	C(Me)OH	CH2	O	CH2CH2C(O)NH2
250	tBu	C(O)	CH(Me)	O	CH2CH2C(O)NH2
251	tBu	CHOH	CH(Me)	O	CH2CH2C(O)NH2
252	tBu	C(Me)OH	CH(Me)	O	CH2CH2C(O)NH2
253	tBu	C(O)	CH2	O	CH2CH2C(O)NMe2
254	tBu	CHOH	CH2	O	CH2CH2C(O)NMe2
255	tBu	C(Me)OH	CH2	O	CH2CH2C(O)NMe2
256	tBu	C(O)	CH(Me)	O	CH2CH2C(O)NMe2
257	tBu	CHOH	CH(Me)	O	CH2CH2C(O)NMe2

-132-

258	tBu	C(Me)OH	CH(Me)	O	CH2CH2C(O)NMe2
259	tBu	C(O)	CH2	O	CH2CH2-5-tetrazolyl
260	tBu	CHOH	CH2	O	CH2CH2-5-tetrazolyl
261	tBu	C(Me)OH	CH2	O	CH2CH2-5-tetrazolyl
262	tBu	C(O)	CH(Me)	O	CH2CH2-5-tetrazolyl
263	tBu	CHOH	CH(Me)	O	CH2CH2-5-tetrazolyl
264	tBu	C(Me)OH	CH(Me)	O	CH2CH2-5-tetrazolyl
265	tBu	C(O)	CH2	O	CH2S(O)2Me
266	tBu	CHOH	CH2	O	CH2S(O)2Me
267	tBu	C(Me)OH	CH2	O	CH2S(O)2Me
268	tBu	C(O)	CH(Me)	O	CH2S(O)2Me
269	tBu	CHOH	CH(Me)	O	CH2S(O)2Me
270	tBu	C(Me)OH	CH(Me)	O	CH2S(O)2Me
271	tBu	C(O)	CH2	O	CH2S(O)Me
272	tBu	CHOH	CH2	O	CH2S(O2Me)
273	tBu	C(Me)OH	CH2	O	CH2S(O)Me
274	tBu	C(O)	CH(Me)	O	CH2S(O)Me
275	tBu	CHOH	CH(Me)	O	CH2S(O)Me
276	tBu	C(Me)OH	CH(Me)	O	CH2S(O)Me
277	tBu	C(O)	CH2	O	CH2CH2S(O)2Me
278	tBu	CHOH	CH2	O	CH2CH2S(O)2Me
279	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2Me
280	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2Me
281	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2Me
282	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2Me
283	tBu	C(O)	CH2	O	CH2CH2S(O)Me
284	tBu	CHOH	CH2	O	CH2CH2S(O)Me
285	tBu	C(Me)OH	CH2	O	CH2CH2S(O)Me
286	tBu	C(O)	CH(Me)	O	CH2CH2S(O)Me
287	tBu	CHOH	CH(Me)	O	CH2CH2S(O)Me
288	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)Me

-133-

289	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)2Me
290	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)2Me
291	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)2Me
292	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)2Me
293	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)2Me
294	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)2Me
295	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)Me
296	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)Me
297	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)Me
298	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)Me
299	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)Me
300	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)Me
301	tBu	C(O)	CH ₂	O	CH ₂ S(O)2Et
302	tBu	CHOH	CH ₂	O	CH ₂ S(O)2Et
303	tBu	C(Me)OH	CH ₂	O	CH ₂ S(O)2Et
304	tBu	C(O)	CH(Me)	O	CH ₂ S(O)2Et
305	tBu	CHOH	CH(Me)	O	CH ₂ S(O)2Et
306	tBu	C(Me)OH	CH(Me)	O	CH ₂ S(O)2Et
307	tBu	C(O)	CH ₂	O	CH ₂ S(O)Et
308	tBu	CHOH	CH ₂	O	CH ₂ S(O)Et
309	tBu	C(Me)OH	CH ₂	O	CH ₂ S(O)Et
310	tBu	C(O)	CH(Me)	O	CH ₂ S(O)Et
311	tBu	CHOH	CH(Me)	O	CH ₂ S(O)Et
312	tBu	C(Me)OH	CH(Me)	O	CH ₂ S(O)Et
313	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)2Et
314	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ S(O)2Et
315	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ S(O)2Et
316	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ S(O)2Et
317	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ S(O)2Et
318	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)2Et
319	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)Et

320	tBu	CHOH	CH2	O	CH2CH2S(O)Et
321	tBu	C(Me)OH	CH2	O	CH2CH2S(O)Et
322	tBu	C(O)	CH(Me)	O	CH2CH2S(O)Et
323	tBu	CHOH	CH(Me)	O	CH2CH2S(O)Et
324	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)Et
325	tBu	C(O)	CH2	O	CH2CH2CH2S(O)2Et
326	tBu	CHOH	CH2	O	CH2CH2CH2S(O)2Et
327	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)2Et
328	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)2Et
329	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)2Et
330	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)2Et
331	tBu	C(O)	CH2	O	CH2CH2CH2S(O)Et
332	tBu	CHOH	CH2	O	CH2CH2CH2S(O)Et
333	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)Et
334	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)Et
335	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)Et
336	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)Et
337	tBu	C(O)	CH2	O	CH2S(O)2iPr
338	tBu	CHOH	CH2	O	CH2S(O)2iPr
339	tBu	C(Me)OH	CH2	O	CH2S(O)2iPr
340	tBu	C(O)	CH(Me)	O	CH2S(O)2iPr
341	tBu	CHOH	CH(Me)	O	CH2S(O)2iPr
342	tBu	C(Me)OH	CH(Me)	O	CH2S(O)2iPr
343	tBu	C(O)	CH2	O	CH2S(O)iPr
344	tBu	CHOH	CH2	O	CH2S(O)iPr
345	tBu	C(Me)OH	CH2	O	CH2S(O)iPr
346	tBu	C(O)	CH(Me)	O	CH2S(O)iPr
347	tBu	CHOH	CH(Me)	O	CH2S(O)iPr
348	tBu	C(Me)OH	CH(Me)	O	CH2S(O)iPr
349	tBu	C(O)	CH2	O	CH2CH2S(O)2iPr
350	tBu	CHOH	CH2	O	CH2CH2S(O)2iPr

351	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2iPr
352	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2iPr
353	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2iPr
354	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2iPr
355	tBu	C(O)	CH2	O	CH2CH2S(O)iPr
356	tBu	CHOH	CH2	O	CH2CH2S(O)iPr
357	tBu	C(Me)OH	CH2	O	CH2CH2S(O)iPr
358	tBu	C(O)	CH(Me)	O	CH2CH2S(O)iPr
359	tBu	CHOH	CH(Me)	O	CH2CH2S(O)iPr
360	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)iPr
361	tBu	C(O)	CH2	O	CH2S(O)2tBu
362	tBu	CHOH	CH2	O	CH2S(O)2tBu
363	tBu	C(Me)OH	CH2	O	CH2S(O)2tBu
364	tBu	C(O)	CH(Me)	O	CH2S(O)2tBu
365	tBu	CHOH	CH(Me)	O	CH2S(O)2tBu
366	tBu	C(Me)OH	CH(Me)	O	CH2S(O)2tBu
367	tBu	C(O)	CH2	O	CH2S(O)tBu
368	tBu	CHOH	CH2	O	CH2S(O)tBu
369	tBu	C(Me)OH	CH2	O	CH2S(O)tBu
370	tBu	C(O)	CH(Me)	O	CH2S(O)tBu
371	tBu	CHOH	CH(Me)	O	CH2S(O)tBu
372	tBu	C(Me)OH	CH(Me)	O	CH2S(O)tBu
373	tBu	C(O)	CH2	O	CH2CH2S(O)2tBu
374	tBu	CHOH	CH2	O	CH2CH2S(O)2tBu
375	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2tBu
376	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2tBu
377	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2tBu
378	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2tBu
379	tBu	C(O)	CH2	O	CH2CH2S(O)tBu
380	tBu	CHOH	CH2	O	CH2CH2S(O)tBu
381	tBu	C(Me)OH	CH2	O	CH2CH2S(O)tBu

-136-

382	tBu	C(O)	CH(Me)	O	CH2CH2S(O)tBu
383	tBu	CHOH	CH(Me)	O	CH2CH2S(O)tBu
384	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)tBu
385	tBu	C(O)	CH2	O	CH2CH2S(O)2NH2
386	tBu	CHOH	CH2	O	CH2CH2S(O)2NH2
387	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2NH2
388	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2NH2
389	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2NH2
390	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2NH2
391	tBu	C(O)	CH2	O	CH2CH2S(O)NH2
392	tBu	CHOH	CH2	O	CH2CH2S(O)NH2
393	tBu	C(Me)OH	CH2	O	CH2CH2S(O)NH2
394	tBu	C(O)	CH(Me)	O	CH2CH2S(O)NH2
395	tBu	CHOH	CH(Me)	O	CH2CH2S(O)NH2
396	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)NH2
397	tBu	C(O)	CH2	O	CH2CH2S(O)2NMe2
398	tBu	CHOH	CH2	O	CH2CH2S(O)2NMe2
399	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2NMe2
400	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2NMe2
401	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2NMe2
402	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2NMe2
403	tBu	C(O)	CH2	O	CH2CH2S(O)NMe2
404	tBu	CHOH	CH2	O	CH2CH2S(O)NMe2
405	tBu	C(Me)OH	CH2	O	CH2CH2S(O)NMe2
406	tBu	C(O)	CH(Me)	O	CH2CH2S(O)NMe2
407	tBu	CHOH	CH(Me)	O	CH2CH2S(O)NMe2
408	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)NMe2
409	tBu	C(O)	CH2	O	C(O)CH2S(O)2Me
410	tBu	CHOH	CH2	O	C(O)CH2S(O)2Me
411	tBu	C(Me)OH	CH2	O	C(O)CH2S(O)2Me
412	tBu	C(O)	CH(Me)	O	C(O)CH2S(O)2Me

413	tBu	CHOH	CH(Me)	O	C(O)CH ₂ S(O)2Me
414	tBu	C(Me)OH	CH(Me)	O	C(O)CH ₂ S(O)2Me
415	tBu	C(O)	CH ₂	O	C(O)CH ₂ S(O)Me
416	tBu	CHOH	CH ₂	O	C(O)CH ₂ S(O)Me
417	tBu	C(Me)OH	CH ₂	O	C(O)CH ₂ S(O)Me
418	tBu	C(O)	CH(Me)	O	C(O)CH ₂ S(O)Me
419	tBu	CHOH	CH(Me)	O	C(O)CH ₂ S(O)Me
420	tBu	C(Me)OH	CH(Me)	O	C(O)CH ₂ S(O)Me
421	tBu	C(O)	CH ₂	O	C(O)CH ₂ CH ₂ S(O)2Me
422	tBu	CHOH	CH ₂	O	C(O)CH ₂ CH ₂ S(O)2Me
423	tBu	C(Me)OH	CH ₂	O	C(O)CH ₂ CH ₂ S(O)2Me
424	tBu	C(O)	CH(Me)	O	C(O)CH ₂ CH ₂ S(O)2Me
425	tBu	CHOH	CH(Me)	O	C(O)CH ₂ CH ₂ S(O)2Me
426	tBu	C(Me)OH	CH(Me)	O	C(O)CH ₂ CH ₂ S(O)2Me
427	tBu	C(O)	CH ₂	O	C(O)CH ₂ CH ₂ S(O)Me
428	tBu	CHOH	CH ₂	O	C(O)CH ₂ CH ₂ S(O)Me
429	tBu	C(Me)OH	CH ₂	O	C(O)CH ₂ CH ₂ S(O)Me
430	tBu	C(O)	CH(Me)	O	C(O)CH ₂ CH ₂ S(O)Me
431	tBu	CHOH	CH(Me)	O	C(O)CH ₂ CH ₂ S(O)Me
432	tBu	C(Me)OH	CH(Me)	O	C(O)CH ₂ CH ₂ S(O)Me
433	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)2NH ₂
434	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)2NH ₂
435	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)2NH ₂
436	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)2NH ₂
437	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)2NH ₂
438	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)2NH ₂
439	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)NH ₂
440	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)NH ₂
441	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ CH ₂ S(O)NH ₂
442	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)NH ₂
443	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)NH ₂

-138-

444	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ CH ₂ S(O)NH ₂
445	tBu	C(O)	CH ₂	CH ₂	1,3,4-oxadiazolin-2-one-5-yl
446	tBu	CHOH	CH ₂	CH ₂	1,3,4-oxadiazolin-2-one-5-yl
447	tBu	C(Me)OH	CH ₂	CH ₂	1,3,4-oxadiazolin-2-one-5-yl
448	tBu	C(O)	CH(Me)	CH ₂	1,3,4-oxadiazolin-2-one-5-yl
449	tBu	CHOH	CH(Me)	CH ₂	1,3,4-oxadiazolin-2-one-5-yl
450	tBu	C(Me)OH	CH(Me)	CH ₂	1,3,4-oxadiazolin-2-one-5-yl
451	tBu	C(O)	CH ₂	CH ₂	1,3,4-oxadiazolin-2-thione-5-yl
452	tBu	CHOH	CH ₂	CH ₂	1,3,4-oxadiazolin-2-thione-5-yl
453	tBu	C(Me)OH	CH ₂	CH ₂	1,3,4-oxadiazolin-2-thione-5-yl
454	tBu	C(O)	CH(Me)	CH ₂	1,3,4-oxadiazolin-2-thione-5-yl
455	tBu	CHOH	CH(Me)	CH ₂	1,3,4-oxadiazolin-2-thione-5-yl
456	tBu	C(Me)OH	CH(Me)	CH ₂	1,3,4-oxadiazolin-2-thione-5-yl
457	tBu	C(O)	CH ₂	CH ₂	imidazolidine-2,4-dione-5-yl
458	tBu	CHOH	CH ₂	CH ₂	imidazolidine-2,4-dione-5-yl
459	tBu	C(Me)OH	CH ₂	CH ₂	imidazolidine-2,4-dione-5-yl
460	tBu	C(O)	CH(Me)	CH ₂	imidazolidine-2,4-dione-5-yl
461	tBu	CHOH	CH(Me)	CH ₂	imidazolidine-2,4-dione-5-yl
462	tBu	C(Me)OH	CH(Me)	CH ₂	imidazolidine-2,4-dione-5-yl
463	tBu	C(O)	CH ₂	CH ₂	isoxazol-3-ol-5-yl
464	tBu	CHOH	CH ₂	CH ₂	isoxazol-3-ol-5-yl
465	tBu	C(Me)OH	CH ₂	CH ₂	isoxazol-3-ol-5-yl
466	tBu	C(O)	CH(Me)	CH ₂	isoxazol-3-ol-5-yl
467	tBu	CHOH	CH(Me)	CH ₂	isoxazol-3-ol-5-yl
468	tBu	C(Me)OH	CH(Me)	CH ₂	isoxazol-3-ol-5-yl

5. A compound represented by the formula:

-139-

wherein;

said compound is selected from a compound code numbered 1A thru 295A, with each
 5 compound having the specific selection of substituents R_B , R_C , L_1 , L_2 , and L_3 shown
 in the horizontal line following the compound code number, as set out in the following
 Table 2 :

Table 2

	R_B	L_3	L_2	L_1	R_C
1A	tBu	C(O)	CH2	CH2	CO2Me
2A	tBu	CHOH	CH2	CH2	CO2Me
3A	tBu	C(Me)OH	CH2	CH2	CO2Me
4A	tBu	C(O)	CH(Me)	CH2	CO2Me
5A	tBu	CHOH	CH(Me)	CH2	CO2Me
6A	tBu	C(Me)OH	CH(Me)	CH2	CO2Me
7A	tBu	C(O)	CH2	CH2	CO2H
8A	tBu	CHOH	CH2	CH2	CO2H
9A	tBu	C(Me)OH	CH2	CH2	CO2H
10A	tBu	C(O)	CH(Me)	CH2	CO2H
11A	tBu	CHOH	CH(Me)	CH2	CO2H
12A	tBu	C(Me)OH	CH(Me)	CH2	CO2H
13A	tBu	C(O)	CH2	CH2	C(O)NH2

-140-

14A	tBu	CHOH	CH ₂	CH ₂	C(O)NH ₂
15A	tBu	C(Me)OH	CH ₂	CH ₂	C(O)NH ₂
16A	tBu	C(O)	CH(Me)	CH ₂	C(O)NH ₂
17A	tBu	CHOH	CH(Me)	CH ₂	C(O)NH ₂
18A	tBu	C(Me)OH	CH(Me)	CH ₂	C(O)NH ₂
19A	tBu	C(O)	CH ₂	CH ₂	C(O)NMe ₂
20A	tBu	CHOH	CH ₂	CH ₂	C(O)NMe ₂
21A	tBu	C(Me)OH	CH ₂	CH ₂	C(O)NMe ₂
22A	tBu	C(O)	CH(Me)	CH ₂	C(O)NMe ₂
23A	tBu	CHOH	CH(Me)	CH ₂	C(O)NMe ₂
24A	tBu	C(Me)OH	CH(Me)	CH ₂	C(O)NMe ₂
25A	tBu	C(O)	CH ₂	CH ₂	5-tetrazolyl
26A	tBu	CHOH	CH ₂	CH ₂	5-tetrazolyl
27A	tBu	C(Me)OH	CH ₂	CH ₂	5-tetrazolyl
28A	tBu	C(O)	CH(Me)	CH ₂	5-tetrazolyl
29A	tBu	CHOH	CH(Me)	CH ₂	5-tetrazolyl
30A	tBu	C(Me)OH	CH(Me)	CH ₂	5-tetrazolyl
31A	tBu	C(O)	CH ₂	CH ₂	C(O)-NH-5-tetrazolyl
32A	tBu	CHOH	CH ₂	CH ₂	C(O)-NH-5-tetrazolyl
33A	tBu	C(Me)OH	CH ₂	CH ₂	C(O)-NH-5-tetrazolyl
34A	tBu	C(O)	CH(Me)	CH ₂	C(O)-NH-5-tetrazolyl
35A	tBu	CHOH	CH(Me)	CH ₂	C(O)-NH-5-tetrazolyl
36A	tBu	C(Me)OH	CH(Me)	CH ₂	C(O)-NH-5-tetrazolyl
37A	tBu	C(O)	CH ₂	CH ₂	C(O)NHCH ₂ SO ₂ Me
38A	tBu	CHOH	CH ₂	CH ₂	C(O)NHCH ₂ SO ₂ Me
39A	tBu	C(Me)OH	CH ₂	CH ₂	C(O)NHCH ₂ SO ₂ Me
40A	tBu	C(O)	CH(Me)	CH ₂	C(O)NHCH ₂ SO ₂ Me
41A	tBu	CHOH	CH(Me)	CH ₂	C(O)NHCH ₂ SO ₂ Me
42A	tBu	C(Me)OH	CH(Me)	CH ₂	C(O)NHCH ₂ SO ₂ Me
43A	tBu	C(O)	CH ₂	CH ₂	C(O)NHCH ₂ S(O)Me
44A	tBu	CHOH	CH ₂	CH ₂	C(O)NHCH ₂ S(O)Me

-141-

45A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2S(O)Me
46A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2S(O)Me
47A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2S(O)Me
48A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2S(O)Me
49A	tBu	C(O)	CH2	CH2	C(O)NHCH2CH2SO2Me
50A	tBu	CHOH	CH2	CH2	C(O)NHCH2CH2SO2Me
51A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2CH2SO2Me
52A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
53A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
54A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
55A	tBu	C(O)	CH2	CH2	C(O)NHCH2CH2S(O)Me
56A	tBu	CHOH	CH2	CH2	C(O)NHCH2CH2S(O)Me
57A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2CH2S(O)Me
58A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
59A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
60A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
61A	tBu	C(O)	CH2	CH2	C(O)NHSO2Me
62A	tBu	CHOH	CH2	CH2	C(O)NHSO2Me
63A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2Me
64A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2Me
65A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2Me
66A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2Me
67A	tBu	C(O)	CH2	CH2	C(O)NHS(O)Me
68A	tBu	CHOH	CH2	CH2	C(O)NHS(O)Me
69A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)Me
70A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)Me
71A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)Me
72A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)Me
73A	tBu	C(O)	CH2	CH2	C(O)NHSO2Et
74A	tBu	CHOH	CH2	CH2	C(O)NHSO2Et
75A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2Et

-142-

76A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2Et
77A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2Et
78A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2Et
79A	tBu	C(O)	CH2	CH2	C(O)NHS(O)Et
80A	tBu	CHOH	CH2	CH2	C(O)NHS(O)Et
81A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)Et
82A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)Et
83A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)Et
84A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)Et
85A	tBu	C(O)	CH2	CH2	C(O)NHSO2iPr
86A	tBu	CHOH	CH2	CH2	C(O)NHSO2iPr
87A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2iPr
88A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2iPr
89A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2iPr
90A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2iPr
91A	tBu	C(O)	CH2	CH2	C(O)NHS(O)iPr
92A	tBu	CHOH	CH2	CH2	C(O)NHS(O)iPr
93A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)iPr
94A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)iPr
95A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)iPr
96A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)iPr
97A	tBu	C(O)	CH2	CH2	C(O)NHSO2tBu
98A	tBu	CHOH	CH2	CH2	C(O)NHSO2tBu
99A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2tBu
100A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2tBu
101A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2tBu
102A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2tBu
103A	tBu	C(O)	CH2	CH2	C(O)NHS(O)tBu
104A	tBu	CHOH	CH2	CH2	C(O)NHS(O)tBu
105A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)tBu
106A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)tBu

-143-

107A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)tBu
108A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)tBu
109A	tBu	C(O)	CH2	CH2	CH2NHSO2Me
110A	tBu	CHOH	CH2	CH2	CH2NHSO2Me
111A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2Me
112A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2Me
113A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2Me
114A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2Me
115A	tBu	C(O)	CH2	CH2	CH2NHS(O)Me
116A	tBu	CHOH	CH2	CH2	CH2NHS(O)Me
117A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)Me
118A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)Me
119A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)Me
120A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)Me
121A	tBu	C(O)	CH2	CH2	CH2NHSO2Et
122A	tBu	CHOH	CH2	CH2	CH2NHSO2Et
123A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2Et
124A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2Et
125A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2Et
126A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2Et
127A	tBu	C(O)	CH2	CH2	CH2NHS(O)Et
128A	tBu	CHOH	CH2	CH2	CH2NHS(O)Et
129A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)Et
130A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)Et
131A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)Et
132A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)Et
133A	tBu	C(O)	CH2	CH2	CH2NHSO2iPr
134A	tBu	CHOH	CH2	CH2	CH2NHSO2iPr
135A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2iPr
136A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2iPr
137A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2iPr

-144-

138A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2iPr
139A	tBu	C(O)	CH2	CH2	CH2NHS(O)iPr
140A	tBu	CHOH	CH2	CH2	CH2NHS(O)iPr
141A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)iPr
142A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)iPr
143A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)iPr
144A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)iPr
145A	tBu	C(O)	CH2	CH2	CH2NHSO2tBu
146A	tBu	CHOH	CH2	CH2	CH2NHSO2tBu
147A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2tBu
148A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2tBu
149A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2tBu
150A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2tBu
151A	tBu	C(O)	CH2	CH2	CH2NHS(O)tBu
152A	tBu	CHOH	CH2	CH2	CH2NHS(O)tBu
153A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)tBu
154A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)tBu
155A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)tBu
156A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)tBu
157A	tBu	C(O)	CH2	CH2	CH2-N-pyrrolidin-2-one
158A	tBu	CHOH	CH2	CH2	CH2-N-pyrrolidin-2-one
159A	tBu	C(Me)OH	CH2	CH2	CH2-N-pyrrolidin-2-one
160A	tBu	C(O)	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
161A	tBu	CHOH	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
162A	tBu	C(Me)OH	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
163A	tBu	C(O)	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
164A	tBu	CHOH	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
165A	tBu	C(Me)OH	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)

-145-

166A	tBu	C(O)	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
167A	tBu	CHOH	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
168A	tBu	C(Me)OH	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
169A	tBu	C(O)	CH2	CH2	CH2CO2Me
170A	tBu	CHOH	CH2	CH2	CH2CO2Me
171A	tBu	C(Me)OH	CH2	CH2	CH2CO2Me
172A	tBu	C(O)	CH(Me)	CH2	CH2CO2Me
173A	tBu	CHOH	CH(Me)	CH2	CH2CO2Me
174A	tBu	C(Me)OH	CH(Me)	CH2	CH2CO2Me
175A	tBu	C(O)	CH2	CH2	CH2CO2H
176A	tBu	CHOH	CH2	CH2	CH2CO2H
177A	tBu	C(Me)OH	CH2	CH2	CH2CO2H
178A	tBu	C(O)	CH(Me)	CH2	CH2CO2H
179A	tBu	CHOH	CH(Me)	CH2	CH2CO2H
180A	tBu	C(Me)OH	CH(Me)	CH2	CH2CO2H
181A	tBu	C(O)	CH2	CH2	CH2C(O)NH2
182A	tBu	CHOH	CH2	CH2	CH2C(O)NH2
183A	tBu	C(Me)OH	CH2	CH2	CH2C(O)NH2
184A	tBu	C(O)	CH(Me)	CH2	CH2C(O)NH2
185A	tBu	CHOH	CH(Me)	CH2	CH2C(O)NH2
186A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)NH2
187A	tBu	C(O)	CH2	CH2	CH2C(O)NMe2
188A	tBu	CHOH	CH2	CH2	CH2C(O)NMe2
189A	tBu	C(Me)OH	CH2	CH2	CH2C(O)NMe2
190A	tBu	C(O)	CH(Me)	CH2	CH2C(O)NMe2
191A	tBu	CHOH	CH(Me)	CH2	CH2C(O)NMe2
192A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)NMe2
193A	tBu	C(O)	CH2	CH2	CH2C(O)-N-pyrrolidine

-146-

194A	tBu	CHOH	CH2	CH2	CH2C(O)-N-pyrrolidine
195A	tBu	C(Me)OH	CH2	CH2	CH2C(O)-N-pyrrolidine
196A	tBu	C(O)	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
197A	tBu	CHOH	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
198A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
199A	tBu	C(O)	CH2	CH2	CH2-5-tetrazolyl
200A	tBu	CHOH	CH2	CH2	CH2-5-tetrazolyl
201A	tBu	C(Me)OH	CH2	CH2	CH2-5-tetrazolyl
202A	tBu	C(O)	CH(Me)	CH2	CH2-5-tetrazolyl
203A	tBu	CHOH	CH(Me)	CH2	CH2-5-tetrazolyl
204A	tBu	C(Me)OH	CH(Me)	CH2	CH2-5-tetrazolyl
205A	tBu	C(O)	CH2	CH2	C(O)C(O)OH
206A	tBu	CHOH	CH2	CH2	C(O)C(O)OH
207A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)OH
208A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)OH
209A	tBu	CHOH	CH(Me)	CH2	C(O)C(O)OH
210A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)OH
211A	tBu	C(O)	CH2	CH2	CH(OH)C(O)OH
212A	tBu	CHOH	CH2	CH2	CH(OH)C(O)OH
213A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)OH
214A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)OH
215A	tBu	CHOH	CH(Me)	CH2	CH(OH)C(O)OH
216A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)OH
217A	tBu	C(O)	CH2	CH2	C(O)C(O)NH2
218A	tBu	CHOH	CH2	CH2	C(O)C(O)NH2
219A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)NH2
220A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)NH2
221A	tBu	CHOH	CH(Me)	CH2	C(O)C(O)NH2
222A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)NH2
223A	tBu	C(O)	CH2	CH2	CH(OH)C(O)NH2
224A	tBu	CHOH	CH2	CH2	CH(OH)C(O)NH2

-147-

225A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)NH2
226A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)NH2
227A	tBu	CHOH	CH(Me)	CH2	CH(OH)C(O)NH2
228A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)NH2
229A	tBu	C(O)	CH2	CH2	C(O)C(O)NMe2
230A	tBu	CHOH	CH2	CH2	C(O)C(O)NMe2
231A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)NMe2
232A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)NMe2
233A	tBu	CHOH	CH(Me)	CH2	C(O)C(O)NMe2
234A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)NMe2
235A	tBu	C(O)	CH2	CH2	CH(OH)C(O)NMe2
236A	tBu	CHOH	CH2	CH2	CH(OH)C(O)NMe2
237A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)NMe2
238A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)NMe2
239A	tBu	CHOH	CH(Me)	CH2	CH(OH)C(O)NMe2
240A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)NMe2
241A	tBu	C(O)	CH2	CH2	CH2CH2CO2H
242A	tBu	CHOH	CH2	CH2	CH2CH2CO2H
243A	tBu	C(Me)OH	CH2	CH2	CH2CH2CO2H
244A	tBu	C(O)	CH(Me)	CH2	CH2CH2CO2H
245A	tBu	CHOH	CH(Me)	CH2	CH2CH2CO2H
246A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CO2H
247A	tBu	C(O)	CH2	CH2	CH2CH2C(O)NH2
248A	tBu	CHOH	CH2	CH2	CH2CH2C(O)NH2
249A	tBu	C(Me)OH	CH2	CH2	CH2CH2C(O)NH2
250A	tBu	C(O)	CH(Me)	CH2	CH2CH2C(O)NH2
251A	tBu	CHOH	CH(Me)	CH2	CH2CH2C(O)NH2
252A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2C(O)NH2
253A	tBu	C(O)	CH2	CH2	CH2CH2C(O)NMe2
254A	tBu	CHOH	CH2	CH2	CH2CH2C(O)NMe2
255A	tBu	C(Me)OH	CH2	CH2	CH2CH2C(O)NMe2

-148-

256A	tBu	C(O)	CH(Me)	CH2	CH2CH2C(O)NMe2
257A	tBu	CHOH	CH(Me)	CH2	CH2CH2C(O)NMe2
258A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2C(O)NMe2
259A	tBu	C(O)	CH2	CH2	CH2CH2-5-tetrazolyl
260A	tBu	CHOH	CH2	CH2	CH2CH2-5-tetrazolyl
261A	tBu	C(Me)OH	CH2	CH2	CH2CH2-5-tetrazolyl
262A	tBu	C(O)	CH(Me)	CH2	CH2CH2-5-tetrazolyl
263A	tBu	CHOH	CH(Me)	CH2	CH2CH2-5-tetrazolyl
264A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2-5-tetrazolyl
265A	tBu	C(O)	CH2	CH2	CH2S(O)2Me
266A	tBu	CHOH	CH2	CH2	CH2S(O)2Me
267A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2Me
268A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2Me
269A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2Me
270A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2Me
271A	tBu	C(O)	CH2	CH2	CH2S(O)Me
272A	tBu	CHOH	CH2	CH2	CH2S(O2Me)
273A	tBu	C(Me)OH	CH2	CH2	CH2S(O)Me
274A	tBu	C(O)	CH(Me)	CH2	CH2S(O)Me
275A	tBu	CHOH	CH(Me)	CH2	CH2S(O)Me
276A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)Me
277A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2Me
278A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2Me
279A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2Me
280A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2Me
281A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2Me
282A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2Me
283A	tBu	C(O)	CH2	CH2	CH2CH2S(O)Me
284A	tBu	CHOH	CH2	CH2	CH2CH2S(O)Me
285A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)Me
286A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)Me

-149-

287A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)Me
288A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)Me
289A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2Me
290A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)2Me
291A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2Me
292A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2Me
293A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)2Me
294A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2Me
295A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)Me
296A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)Me
297A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)Me
298A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)Me
299A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)Me
300A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)Me
301A	tBu	C(O)	CH2	CH2	CH2S(O)2Et
302A	tBu	CHOH	CH2	CH2	CH2S(O)2Et
303A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2Et
304A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2Et
305A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2Et
306A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2Et
307A	tBu	C(O)	CH2	CH2	CH2S(O)Et
308A	tBu	CHOH	CH2	CH2	CH2S(O)Et
309A	tBu	C(Me)OH	CH2	CH2	CH2S(O)Et
310A	tBu	C(O)	CH(Me)	CH2	CH2S(O)Et
311A	tBu	CHOH	CH(Me)	CH2	CH2S(O)Et
312A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)Et
313A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2Et
314A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2Et
315A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2Et
316A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2Et
317A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2Et

-150-

318A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2Et
319A	tBu	C(O)	CH2	CH2	CH2CH2S(O)Et
320A	tBu	CHOH	CH2	CH2	CH2CH2S(O)Et
321A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)Et
322A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)Et
323A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)Et
324A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)Et
325A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2Et
326A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)2Et
327A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2Et
328A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2Et
329A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)2Et
330A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2Et
331A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)Et
332A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)Et
333A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)Et
334A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)Et
335A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)Et
336A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)Et
337A	tBu	C(O)	CH2	CH2	CH2S(O)2iPr
338A	tBu	CHOH	CH2	CH2	CH2S(O)2iPr
339A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2iPr
340A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2iPr
341A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2iPr
342A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2iPr
343A	tBu	C(O)	CH2	CH2	CH2S(O)iPr
344A	tBu	CHOH	CH2	CH2	CH2S(O)iPr
345A	tBu	C(Me)OH	CH2	CH2	CH2S(O)iPr
346A	tBu	C(O)	CH(Me)	CH2	CH2S(O)iPr
347A	tBu	CHOH	CH(Me)	CH2	CH2S(O)iPr
348A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)iPr

-151-

349A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2iPr
350A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2iPr
351A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2iPr
352A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2iPr
353A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2iPr
354A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2iPr
355A	tBu	C(O)	CH2	CH2	CH2CH2S(O)iPr
356A	tBu	CHOH	CH2	CH2	CH2CH2S(O)iPr
357A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)iPr
358A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)iPr
359A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)iPr
360A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)iPr
361A	tBu	C(O)	CH2	CH2	CH2S(O)2tBu
362A	tBu	CHOH	CH2	CH2	CH2S(O)2tBu
363A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2tBu
364A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2tBu
365A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2tBu
366A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2tBu
367A	tBu	C(O)	CH2	CH2	CH2S(O)tBu
368A	tBu	CHOH	CH2	CH2	CH2S(O)tBu
369A	tBu	C(Me)OH	CH2	CH2	CH2S(O)tBu
370A	tBu	C(O)	CH(Me)	CH2	CH2S(O)tBu
371A	tBu	CHOH	CH(Me)	CH2	CH2S(O)tBu
372A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)tBu
373A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2tBu
374A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2tBu
375A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2tBu
376A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2tBu
377A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2tBu
378A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2tBu
379A	tBu	C(O)	CH2	CH2	CH2CH2S(O)tBu

-152-

380A	tBu	CHOH	CH ₂	CH ₂	CH ₂ CH ₂ S(O)tBu
381A	tBu	C(Me)OH	CH ₂	CH ₂	CH ₂ CH ₂ S(O)tBu
382A	tBu	C(O)	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)tBu
383A	tBu	CHOH	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)tBu
384A	tBu	C(Me)OH	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)tBu
385A	tBu	C(O)	CH ₂	CH ₂	CH ₂ CH ₂ S(O)2NH ₂
386A	tBu	CHOH	CH ₂	CH ₂	CH ₂ CH ₂ S(O)2NH ₂
387A	tBu	C(Me)OH	CH ₂	CH ₂	CH ₂ CH ₂ S(O)2NH ₂
388A	tBu	C(O)	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)2NH ₂
389A	tBu	CHOH	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)2NH ₂
390A	tBu	C(Me)OH	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)2NH ₂
391A	tBu	C(O)	CH ₂	CH ₂	CH ₂ CH ₂ S(O)NH ₂
392A	tBu	CHOH	CH ₂	CH ₂	CH ₂ CH ₂ S(O)NH ₂
393A	tBu	C(Me)OH	CH ₂	CH ₂	CH ₂ CH ₂ S(O)NH ₂
394A	tBu	C(O)	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)NH ₂
395A	tBu	CHOH	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)NH ₂
396A	tBu	C(Me)OH	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)NH ₂
397A	tBu	C(O)	CH ₂	CH ₂	CH ₂ CH ₂ S(O)2NMe ₂
398A	tBu	CHOH	CH ₂	CH ₂	CH ₂ CH ₂ S(O)2NMe ₂
399A	tBu	C(Me)OH	CH ₂	CH ₂	CH ₂ CH ₂ S(O)2NMe ₂
400A	tBu	C(O)	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)2NMe ₂
401A	tBu	CHOH	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)2NMe ₂
402A	tBu	C(Me)OH	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)2NMe ₂
403A	tBu	C(O)	CH ₂	CH ₂	CH ₂ CH ₂ S(O)NMe ₂
404A	tBu	CHOH	CH ₂	CH ₂	CH ₂ CH ₂ S(O)NMe ₂
405A	tBu	C(Me)OH	CH ₂	CH ₂	CH ₂ CH ₂ S(O)NMe ₂
406A	tBu	C(O)	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)NMe ₂
407A	tBu	CHOH	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)NMe ₂
408A	tBu	C(Me)OH	CH(Me)	CH ₂	CH ₂ CH ₂ S(O)NMe ₂
409A	tBu	C(O)	CH ₂	CH ₂	C(O)CH ₂ S(O)2Me
410A	tBu	CHOH	CH ₂	CH ₂	C(O)CH ₂ S(O)2Me

-153-

411A	tBu	C(Me)OH	CH2	CH2	C(O)CH2S(O)2Me
412A	tBu	C(O)	CH(Me)	CH2	C(O)CH2S(O)2Me
413A	tBu	CHOH	CH(Me)	CH2	C(O)CH2S(O)2Me
414A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2S(O)2Me
415A	tBu	C(O)	CH2	CH2	C(O)CH2S(O)Me
416A	tBu	CHOH	CH2	CH2	C(O)CH2S(O)Me
417A	tBu	C(Me)OH	CH2	CH2	C(O)CH2S(O)Me
418A	tBu	C(O)	CH(Me)	CH2	C(O)CH2S(O)Me
419A	tBu	CHOH	CH(Me)	CH2	C(O)CH2S(O)Me
420A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2S(O)Me
421A	tBu	C(O)	CH2	CH2	C(O)CH2CH2S(O)2Me
422A	tBu	CHOH	CH2	CH2	C(O)CH2CH2S(O)2Me
423A	tBu	C(Me)OH	CH2	CH2	C(O)CH2CH2S(O)2Me
424A	tBu	C(O)	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
425A	tBu	CHOH	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
426A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
427A	tBu	C(O)	CH2	CH2	C(O)CH2CH2S(O)Me
428A	tBu	CHOH	CH2	CH2	C(O)CH2CH2S(O)Me
429A	tBu	C(Me)OH	CH2	CH2	C(O)CH2CH2S(O)Me
430A	tBu	C(O)	CH(Me)	CH2	C(O)CH2CH2S(O)Me
431A	tBu	CHOH	CH(Me)	CH2	C(O)CH2CH2S(O)Me
432A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2CH2S(O)Me
433A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2NH2
434A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)2NH2
435A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2NH2
436A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
437A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
438A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
439A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)NH2
440A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)NH2
441A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)NH2

-154-

442A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)NH2
443A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)NH2
444A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)NH2
445A	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
446A	tBu	CHOH	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
447A	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
448A	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
449A	tBu	CHOH	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
450A	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
451A	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
452A	tBu	CHOH	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
453A	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
454A	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
455A	tBu	CHOH	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
456A	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
457A	tBu	C(O)	CH2	CH2	imidazolidine-2,4-dione-5-yl
458A	tBu	CHOH	CH2	CH2	imidazolidine-2,4-dione-5-yl
459A	tBu	C(Me)OH	CH2	CH2	imidazolidine-2,4-dione-5-yl
460A	tBu	C(O)	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
461A	tBu	CHOH	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
462A	tBu	C(Me)OH	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
463A	tBu	C(O)	CH2	CH2	isoxazol-3-ol-5-yl
464A	tBu	CHOH	CH2	CH2	isoxazol-3-ol-5-yl
465A	tBu	C(Me)OH	CH2	CH2	isoxazol-3-ol-5-yl
466A	tBu	C(O)	CH(Me)	CH2	isoxazol-3-ol-5-yl
467A	tBu	CHOH	CH(Me)	CH2	isoxazol-3-ol-5-yl
468A	tBu	C(Me)OH	CH(Me)	CH2	isoxazol-3-ol-5-yl

6. A compound or a pharmaceutically acceptable salt or prodrug derivative thereof selected from:

P-15440

-155-

AA)

AB)

5

AC)

AD)

P-15440

-156-

AE)

AF)

5

AG)

P-15440

-157-

AH)

AI)

AJ)

P-15440

-158-

AK)

AL)

5

AM)

P-15440

-159-

AP)

AQ)

P-15440

-160-

AR2)

AS)

5

AT)

P-15440

65 70 11 72 50 00 14 21 , 3, 3 72 22 00 22

-161-

AU)

5

AV)

AW)

P-15440

-162-

AX)

AY)

5

AZ)

P-15440

-163-

BA)

BB)

5

BC)

-164-

BD)

BE)

P-15440

-165-

BG)

BH)

5

BI)

P-15440

-166-

BJ)

BK)

5

BL)

P-15440

-167-

BM)

BN)

5

BO)

P-15440

-168-

BP)

BQ)

5

BR)

P-15440

-169-

BS)

BT)

P-15440

-170-

BV)

BW)

5

BX)

P-15440

-171-

BY)

BZ)

CA)

P-15440

-172-

CB)

CC)

5

CD)

P-15440

-173-

CE)

CF)

CI)

P-15440

-174-

CL)

5

CM)

CN)

P-15440

-175-

, or

CO)

5

7. The compound represented by the formula:

P-15440

-176-

8. A compound selected from the group consisting of compounds represented by the formulae:

5

and

9. The prodrug derivative of a compound of claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 wherein the prodrug is a methyl ester, ethyl ester N,N-diethylglycolamido ester or
10 morpholinylethyl ester.

10. The salt derivative of a compound of claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 wherein the salt is sodium or potassium.

P-15440

-177-

11. A pharmaceutical formulation comprising a compound of claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 together with a pharmaceutically acceptable carrier or diluent.

5 12. A formulation for treating osteoporosis comprising:
Ingredient (A1): a vitamin D receptor modulator represented by
 formula (I);

10 Ingredient (B1):
 one or more co-agents selected from the group consisting of:

15 a. estrogens,
 b. androgens,
 c. calcium supplements,
 d. vitamin D metabolites,
 e. thiazide diuretics,
 f. calcitonin,
 g. bisphosphonates,
 h. SERMS, and
 i. fluorides; and

20 Ingredient (C1): optionally, a carrier or diluent.

13. The formulation of claim 20 wherein the weight ratio of (A1) to (B1) is from 10:1 to 1:1000.

14. A formulation for treating osteoporosis comprising:

25 Ingredient (A2): a vitamin D receptor modulator of claim 1
 represented by formula (I);

 Ingredient (B2):

 one or more co-agents that are conventional for treatment
 osteoporosis selected from the group consisting of:

30 a. topical glucocorticoids ,
 b. salicylic acid,
 c. crude coal tar; and

-178-

Ingredient (C2): optionally, a carrier or diluent.

15. The formulation of claim 14 wherein the weight ratio of (A2) to (B2) is from 1:10 to 1:100000.

5

16. A method of treating a mammal to prevent or alleviate the pathological effects of acne, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone fracture healing, breast cancer, prostate cancer, colon cancer, diabetes, Type I, host-graft rejection, humoral hypercalcemia , induced diabetes, leukemia, lupus, multiple sclerosis, 10 insufficient sebum secretion, osteomalacia, osteoporosis, insufficient dermal firmness, insufficient dermal hydration, phoriatic arthritis, psoriasis, renal failure, renal osteodystrophy, rheumatoid arthritis, scleroderma, systemic lupus erythematosus, and wrinkles; wherein the method comprises administering a pharmaceutically effective amount of at least one compound of claim 1 or 2 or 3 or 4 or 5 or 6 or 7or 8 or 12 or 14.

15

17. The method of claim 12 for the treatment of psoriasis.

18. The method of claim 12 for the treatment of osteoporosis.

20

19. A method of treating or preventing disease states mediated by the Vitamin D receptor, wherein a mammal in need thereof is administered a pharmaceutically effective amount of a compound of Claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 12 or 14.

25

20. A compound as claimed in any one of Claims 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 12 or 14 for use in treating a mammal to prevent or alleviate the pathological effects of acne, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone maintenance in zero gravity, bone fracture healing, breast cancer, prostate cancer, colon cancer, diabetes, Type I, host-graft rejection, humoral hypercalcemia , induced diabetes, leukemia, lupus, multiple sclerosis, insufficient sebum secretion, osteomalacia, 30 osteoporosis, insufficient dermal firmness, insufficient dermal hydration, phoriatic arthritis, psoriasis, renal failure, renal osteodystrophy, rheumatoid arthritis, scleroderma, systemic lupus erythematosus, and wrinkles.

P-15440

-179-

21. A compound as claimed in any one of Claims 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 12 or 14 for use in treating or preventing disease states mediated by the Vitamin D receptor.

5

22. A compound as claimed in Claim 1 substantially as hereinbefore described with reference to any of the Examples.

10 23. A process for preparing a compound as claimed in claim 1 substantially as hereinbefore described with reference to any of the Examples.

24. The use of a compound as claimed in claim 1 substantially as herein described with reference to any of the Assays and Tables for mediating the Vitamin D receptor.

P-15440

-180-

ABSTRACT

The present invention relates to novel, non-secosteroidal, diaryl compounds with vitamin D receptor (VDR) modulating activity that are less hypercalcemic than $1\alpha,25$ dihydroxy vitamin D3. These compounds are useful for treating bone disease and psoriasis.