Module 9: Logistic Regression

Rebecca C. Steorts

Agenda

- ▶ 1986 Challenger explosion
- ► What happened?
- Background
- Logistic regression

Motivation

- ▶ In 1986, the Challenger space shuttle exploded as it took off.
- ► The question of interest was what happened and could it have been prevented?
- To understand this, we need to learn about to concepts:
- "o-rings" and Bayesian logistic regression

What is an "o-ring"

"An O-ring, also known as a packing or a toric joint, is a mechanical gasket in the shape of a torus. It is a loop of elastomer with a round cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, creating a seal at the interface."

-Wikipedia

What is an "o-ring"

- ▶ O-rings are on component of a space shuttle, and we now know that they can fail at low temperatures.
- ▶ We did not know this in 1986 during the Challenger launch.

Notation and Setup

- \triangleright Let p_i be the probability that o-ring i fails.
- ► The corresponding **odds of failure** are

$$\frac{p_i}{1-p_i}$$
.

Notation and Setup

- ▶ The probability of failure p_i is between [0,1]
- ▶ The odds of failure is any real number.

Logistic Regression

The response

$$Y_i \mid p_i \sim \mathsf{Bernoulli}(p_i)$$
 (1)

for i = 1, ldots, n.

The logistic regression model writes that the logit of the probability p_i is a linear function of the predictor variable(s) x_i :

$$logit(p_i) := log(\frac{p_i}{1 - p_i}) = \beta_0 + \beta_1 x_i.$$
 (2)

Interpretation of Co-efficients

- ► The regression co-efficients β_0 , β_1 are directly related to the log odds $log(\frac{p_i}{1-p_i})$ and not p_i .
- ► For example, the intercept β_0 is the $log(\frac{p_i}{1-p_i})$ for observation i when the predictor takes a value of 0.
- The slope β_1 refers to the change in the expected log odds of labor participation of a married woman who has an additional \$1000 family income exclusive of her own income

Exercise

Assume that
$$\log(\frac{p_i}{1-p_i}) = \beta_0 + \beta_1 x_i$$
.

Show that

$$p_i = \frac{e^{\beta_0 + \beta_1 x_i}}{e^{\beta_0 + \beta_1 x_i} + 1}.$$

This shows that logit function guarantees that the probability p_i lives in [0,1].

Bayesian Logistic Regression

Recall that

$$Y_i \mid p_i \sim \mathsf{Bernoulli}(p_i)$$
 (3)

for i = 1, ..., n.

$$logit(p_i) := log(\frac{p_i}{1 - p_i}) = \beta_0 + \beta_1 x_i.$$
 (4)

How can we build minimal Bayesian prior knowledge?