

HDL Verifier DPI Component Generation from MATLAB

Reuse MATLAB functions in Universal Verification Methodology simulation environments

Verification Environment Creation

- System and algorithm verified in MATLAB or Simulink
 - Algorithmic models
 - Full system environment
 - Realistic stimulus
- Specification written, passed to verification
- Verification interprets spec to recreate:
 - Checker model
 - Models external to DUT
 - Stimulus

HDL Verifier

Automatically generate SystemVerilog DPI components

- Reuse MATLAB/Simulink models in verification
 - Available immediately
 - Already verified
 - Easy to update
- Everything is automated
 - Generates code and SystemVerilog interface
 - Generates and runs makefile to build shared library
- Anywhere C code can be generated
 - Digital and analog
 - Broad block and language support

Design Overview

Checker:

- Calculate floating point FFT
- Calculate difference vs. DUT

 normalized rms error = $\frac{rms(error)}{rms(result)}$
- Compare vs. theoretical upper bound

What would it take to write these in SystemVerilog?

Results

Checker:

- 5 lines of MATLAB
- Generated with a single command
- Easily adjusted

Waveform:

- 10-line MATLAB function
- Generated with a single command
- Easily adjusted or replicated

How much work does this save?

HDL Verifier SystemVerilog DPI Component Generation

Reuse MATLAB and Simulink models for verification

- Models available earlier
- Accurately capture algorithm behavior
- Easy to update
- Applicable to broad class of models

