PROJECT REPORT TEMPLATE

INDIAS AGRICULTURAL CROP PRODUCTION ANALYSIS (1997-2004)

TEAM LEADER : P. RAJESHWARI

TEAM MEMBERS : R. SUMITHRA

T. SANTHIYA

K. RAJALAKSHMI

V.POTHUMPONNU

1. INTRODUCTION

1.1 OVERVIEW

Weather plays an important role in agriculture production. Thus there is no aspect of crop culture that is immune of weather. Weather factor contribute to optimal crop growth, development and yield. For rainfall variability needs to be expressed in terms of precentage so that minimum assured rainfall amounts at a certain leavel of probability. For optimel productivity at a given location crops must be such that their weather requirements match the temporal match of relevant weather elements. Soil fertility refers to the inherent capacity of soil to supply nutrients is adequat amount and in suitable proportion for crop growth and crop yield.

1.2 PURPOSE

For the purpose of this policy, the team FORMER will refer to a person actively engaged in the economic and\or livelihood activity of growing crops and producing other primary agricultural commodities and will include all agricultural operational holders, cultivators, agricultural labourers, sharecroppers, tenants, poultry and livestock rearers, fishers, beekeepers, gardeners, pastoralists, non croporate planters and planting labourers, as well as persons engaged in various farmingrelated occupations such as sericulture, vermiculture, and agroforestry.

2.PROBLEM DEFINITION & DESIGN THINKING

2.1 EMPATHY MAP

2.2BRAINSTORM MAP

RESULT

DASHBOARD 01

Statewise Agricultural Land

Area Vs Production

	_
Uttar Pradesh	
Madhya Pradesh	824,851,676
Rajasthan	
Maharashtra	
Karnataka	63,772,797,345
Andhra Pradesh	
West Bengal	8,941,179,120
Gujarat	
Bihar	544,953,533
Punjab	
	Production
	Rajasthan Maharashtra Karnataka Andhra Pradesh West Bengal Gujarat Bihar

DASHBOARD 02

Yield by Season

Crop Plantation by Area

Jowar
Maize
Bajra

Gram

Wheat
18.98%

Rice
28.44%

Crops(Plantation by count)

DASHBOARD 03

Season Wise Production

Major Crops

Season Based Cultivation Area

Rice 84.14%

STORY

Story 1

Yield by Season

Crop Plantation by Area

Crops(Plantation by count)

Season Wise Production

Season Based Cultivation Area

ADVANTAGES & DISADVANTAGES

ADVANTAGES

- * Crop production analysis aids in efficient allocation of resources like water, fertilizers, and pesticides based on the specific needs of different crops, increasing productivity and reducing wastage.
- * Analyzing production helps ensure a steady supply of food crops, contributing to food security in the country.

DISADAVATANGES

- * Adoption of modern technologies for data collection and analysis might be limited in certain regions, hampering the accuracy and efficiency of crop production analysis.
- * India has diverse agro-climatic zones, and crop production analysis should consider

these regional variations. Limited regional data availability might hinder accurate analysis and planning.

APPLICATIONS

- * Analyzing crop production data helps in market forecasting, enabling farmers and stakeholders to make informed decisions about crop cultivation, pricing, storage, and marketing. It assists in aligning production with market demand, avoiding supply-demand imbalances, and optimizing market opportunities.
- * Crop production analysis helps in effective agricultural planning by identifying suitable crops for different regions based on soil conditions, climate, and water availability. It guide a policymakers and farmers in making informed decisions regarding crop selection and cultivating practices.

CONCLUSIONS

Agriculture crop production analysis plays a crucial role in India's agricultural sector. It provides valuable insights and data that aid in effective planning, resource management, risk mitigation, market forecasting, policy formulation, research and development, and ensuring food security. While there may be challenges such as data availability, limited technology adoption, and complex factors influencing crop production, the benefits outweigh the disadvantages.

FUTURE SCOPE

- * Predict appropriate crop and maximum yield in the climate change.
- * IOT application in agriculture, automation in production line and man free agriculture which is the future of the world, this is the first step.
- * Find the percentage yield to happen from the match given percentage in terms of % error.