# Report8

PB20020480 王润泽

## 1 Question

用 Monte Carlo 方法计算如下定积分,并讨论有效数字位数。

$$I_1 = \int f_1(x) dx = \int_0^5 dx \sqrt{x^2 + 2\sqrt{x}}$$
 
$$I_2 = \int f_2(x,y,z,u,v) dx dy dz du dv = \int_0^{7/10} dx \int_0^{4/7} dy \int_0^{9/10} dz \int_0^2 du \int_0^{13/11} dv (5 + x^2 - y^2 + 3xy - z^2 + u^3 - v^3)$$

# 2 Algorithm

### 2.1 积分 $I_1$ ——重要抽样法

采取 **重要抽样方法**,选择的  $p(x) = (x-2.5) + f_1(2.5) = 0.567944 + x$ 

被积函数  $f_1(x)$ 与p(x) 如下图所示



图1: f(x)与g(x)图像

这样将积分转化为:  $\int_0^5 f(x)dx = \int_0^5 rac{f(x)}{q(x)}g(x)dx$ 

为了方便积分,对g(x)进行归一化处理

$$p(x) = \frac{g(x)}{\int_0^5 g(x)dx} = \frac{g(x)}{15.3397}$$

#### 那么算法如下:

- 1. 随机生成N个以p(x)分布的采样点(舍选法)
- 2. 计算对应的  $\{y_i\}$ ,  $y_i = f(x_i)/p(x_i)$
- 3. 求得数值积分表达式  $I(N)=\frac{\sum y_i}{N}=\langle y\rangle$  4. 对  $N\in\{2^k\}_{k=5}^{20}$ 的不同取值,计算积分误差

$$e_k = |I(N_k) - I_2| \approx |I(N_k) - 15.4390107|$$

$$e_k = |I(N_k) - I_1| pprox 5rac{\sqrt{\left\langle y^2 
angle - \left\langle y 
ight
angle^2}}{\sqrt{N_k}}$$

注:大数定理适用于N较大情况,所以对于N较小的情况(N<50)没有考虑

#### 2.2 积分 $I_2$ ——简单抽样法

#### 采取平均值法积分, 算法如下:

- 1. 分别在 [0,7/10]上的均匀分布的抽样值 $\{x_i\}$ ,[0,4/7]上均匀分布的抽样值 $\{y_i\}$ , [0,9/10]上均匀分布的抽样值 $\{z_i\}$ ,[0,2]上均匀分布的抽样值  $\{u_i\}$  ,[0,13/11]上均匀分布的抽样值  $\{v_i\}$ 生成 N个随机值
- 2. 计算  $f_i=5+x^2-y^2+3xy-z^2+u^3-v^3=5+(x+\frac{3}{2}y)^2-\frac{13}{4}y^2-z^2+u^3-v^3$ 3. 求数值积分  $I(N)=\frac{7}{10}*\frac{4}{7}*\frac{9}{10}*2*\frac{13}{11}\frac{\sum f_i}{N}=\frac{234}{275}\langle f\rangle$
- 4. 对  $N \in \{2^k\}_{k=5}^{20}$ 的不同取值,计算积分误差

$$e_k = |I(N_k) - I_2| \approx |I(N_k) - 5.67712092|$$

$$e_k = |I(N_k) - I_2| pprox rac{234}{275} rac{\sqrt{\left\langle f^2 
ight
angle - \left\langle f 
ight
angle^2}}{\sqrt{N_k}}$$

## 3. Experiment

### 3.1 积分 $I_1$ 结果

对于一维积分,实验中采取了带权抽样方法,使得图像更为平缓



实验结果如下图所示,可以看到**在N>5000后,有效位有4位** 

| N       | Integral                                                                                                               | Error                                                                                                                                                                                                                                                                      |
|---------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32      | 15.273568                                                                                                              | 0.165442                                                                                                                                                                                                                                                                   |
| 64      | 15.358333                                                                                                              | 0.080677                                                                                                                                                                                                                                                                   |
| 128     | 15.414951                                                                                                              | 0.024060                                                                                                                                                                                                                                                                   |
| 256     | 15.448563                                                                                                              | 0.009552                                                                                                                                                                                                                                                                   |
| 512     | 15.475459                                                                                                              | 0.036448                                                                                                                                                                                                                                                                   |
| 1024    | 15.465627                                                                                                              | 0.026616                                                                                                                                                                                                                                                                   |
| 2048    | 15.444711                                                                                                              | 0.005700                                                                                                                                                                                                                                                                   |
| 4096    | 15.438930                                                                                                              | 0.000081                                                                                                                                                                                                                                                                   |
| 8192    | 15.439199                                                                                                              | 0.000188                                                                                                                                                                                                                                                                   |
| 16384   | 15.431946                                                                                                              | 0.007064                                                                                                                                                                                                                                                                   |
| 32768   | 15.433612                                                                                                              | 0.005399                                                                                                                                                                                                                                                                   |
| 65536   | 15.434912                                                                                                              | 0.004099                                                                                                                                                                                                                                                                   |
| 131072  | 15.438890                                                                                                              | 0.000121                                                                                                                                                                                                                                                                   |
| 262144  | 15.435927                                                                                                              | 0.003084                                                                                                                                                                                                                                                                   |
| 524288  | 15.437086                                                                                                              | 0.001925                                                                                                                                                                                                                                                                   |
| 1048576 | 15.438141                                                                                                              | 0.000870                                                                                                                                                                                                                                                                   |
|         | 32<br>64<br>128<br>256<br>512<br>1024<br>2048<br>4096<br>8192<br>16384<br>32768<br>65536<br>131072<br>262144<br>524288 | 32 15.273568<br>64 15.358333<br>128 15.414951<br>256 15.448563<br>512 15.475459<br>1024 15.465627<br>2048 15.444711<br>4096 15.438930<br>8192 15.439199<br>16384 15.431946<br>32768 15.43612<br>65536 15.434912<br>131072 15.43890<br>262144 15.435927<br>524288 15.437086 |

图3

为了验证积分结果的有效位数精度的变化趋势, 有下图

#### The error trend in Monte Carlo Method



图4: Monte Carlo方法的误差趋势

可见确实符合  $O(1/\sqrt{N})$ 的趋势,从另一方面佐证了实验的可靠性。

但同样在实验中会发现,在N较小时,误差会有较大波动性。



图5: 不稳定的结果

可能是由于一开始误差就降到0.05以内,导致后续存在了一些波动。在N足够大(N>10000)时,仍然会趋于稳定。 这也间接的说明了Monte Carlo方法可以用较少的点,就可以快速逼近精确值。

# 3.2 积分 $I_2$ 结果

实验结果如下,在N>20000后,至少有2位的有效位数

```
N Integral
                         Error
0
             6.148894 0.471773
        32
             5.518763 0.158358
        64
2
        128 5.906892 0.229771
3
        256
             5.638065 0.039056
             5.596683 0.080438
       1024
             5.661956 0.015165
6
      2048
            5.747969 0.070848
      4096 5.643786 0.033335
             5.707617 0.030496
8
      8192
             5.700841 0.023720
9
      16384
            5.668749 0.008372
5.683853 0.006732
10
     32768
     65536
11
12
    131072
             5.678244 0.001123
            5.680170 0.003049
13
     262144
14
    524288
            5.673709 0.003412
15 1048576 5.676346 0.000775
```

图6

#### 误差变化趋势如下



积分误差符合  $O(1/\sqrt{N})$ 的趋势,在数值N<1000时,会存在一些波动,但当N较大时,仍然会趋于稳定。

## 4.Summary

本次实验中利用 Monte Carlo 方法获得了两个定积分的近似解,估计了计算结果的有效位数。

最后验证了积分误差和抽样点的个数满足正比于  $1/\sqrt{N}$  的 关系,并验证了在N较大时,Monte Carlo方法具有精确性、稳定性。