11-442 / 11-642 / 11-742: Search Engines

Feature-Based Retrieval

Jamie Callan and Chenyan Xiong Carnegie Mellon University callan@cs.cmu.edu

1

Introduction

We have covered many different approaches to retrieval

- Retrieval models: Vector space, BM25, language models, ...
- Representations: Title, body, url, inlink, ...
- Query templates: Sequential dependency models, ...
- Query-independent evidence: PageRank, url depth, ...

Different approaches can be combined to improve accuracy

• We have seen combinations that were created manually

Manually exploring the space of combinations is impractical

- Too many combinations and too many parameters
- Use machine learning instead...

2

A brief introduction to machine learning

• Use <u>training data</u> $X \rightarrow Y$ X: examples (feature vectors)

Y: labels (desired values)

to learn a $\underline{\text{model}}\ h$ of how labels are assigned to examples

$$Y = h(X; \mathbf{w})$$
 w: feature weights

• For a <u>new (unlabeled)</u> example x, predict the label y

$$y = h(x; w)$$

Issues that must be addressed to apply this approach to search

- How are examples encoded as feature vectors?
- What are the examples and labels?

3

© 2021 Jamie Callan

3

Introduction

"Learning to rank (LeToR or LTR or L2R)"

- Feature: Evidence about how well query q matches document d
- <u>Learn</u> a model that combines many types of evidence

Example features

 $f_1: \ BM25_{Title}\left(q,\,d\right) \qquad \qquad f_7: \ \ VSM_{Title}\left(q,\,d\right)$

 f_2 : $BM25_{Body}(q, d)$ f_8 : $VSM_{Body}(q, d)$

 $f_3 : \; Indri_{Title} \left(q, \, d \right) \qquad \qquad f_9 : \; \; PageRank \left(d \right)$

 $f_{4}\text{: }Indri_{Body}\left(q,\,d\right) \qquad \qquad f_{10}\text{: }Length_{URL}\left(d\right) \\$

 f_5 : Indri_SDM_{Body} (q, d) f_{11} : Length_{Terms} (q)

 f_6 : RankedBoolean_{Body} (q, d) : :

© 2021 Jamie Ca

"Learning to rank (LeToR or LTR or L2R)"

- Feature: Information about q, d, or the pair (q, d)
 - E.g., BM25_{Bodv} (q, d) or ContainsCityName (q) or PageRank (d)
- Feature vector: A list of features
- Label: {Relevant, Not Relevant} or {0, 1, 2, 3, 4} or ...
 - Sometimes the label is <u>known</u> (*training*)
 - Sometimes the label is <u>predicted</u> using the model (*testing*)
- Model: A method of combining evidence to predict a label

© 2021 Jamie Call:

5

Introduction

LeToR is a type of supervised learning

Familiar supervised learning tasks

- Classify an example into a discrete category
 - Find h: X → Y; $Y \in \{cat, dog, mouse, ...\}$
 - E.g. Naïve Bayes, SVM
- Map each example to a numeric score
 - Find h: X → Y; $Y \in R$
 - E.g. Linear regression, logistic regression

6

© 2021 Jamie Callan

LeToR is a type of supervised learning

Ranking task

- Produce the best <u>ranking</u> of given documents
- Usually done by finding <u>ranking scores</u> for (q,d)
 - $-h: x \rightarrow y; y \in R$
 - x: A feature vector that describes how well q matches d
 - » y: The predicted label (a ranking score)
 - Note: We only care about the ranking order, not the scores
- Predict scores of d₁, d₂, d₃, d₄, ... for query q
- Sort documents by their scores to produce a ranking

7

© 2021 Jamie Calla

7

Introduction

We start with linear models, which are easy

$$Similarity(q,d) = \begin{matrix} w_1 \times f_1(q,d) + \\ w_2 \times f_2(q,d) + \\ \vdots \\ w_n \times f_n(q,d) + \end{matrix} = \sum w_i f_i(q,d) = h(\mathbf{x}, \mathbf{w})$$

f_i: A feature measuring how well q matches d (e.g., BM25_{Body})

w_i: A weight indicating the importance of feature f_i

h: The model

x: A feature vector (i.e., f_1 , f_2 , ... f_n)

w A weight vector (i.e., $w_1, w_2, \dots w_n$)

© 2021 Jamie Callan

8

If you care about efficiency, you may be worrying about costs

- $Similarity(q, d) = \sum w_i \times f_i(q, d)$
 - Each f_i is a function that may be expensive
 - » E.g., BM25, Indri, SDM, ...
 - There may be many features
 - » E.g., 20-100

Won't this be incredibly slow?

9

© 2021 Jamie Callan

9

Introduction

Where does learning to rank fit in a large search engine?

First, query classification to determine the type of query

• Make decisions about how the query will be evaluated

Then retrieval is done by a <u>sequence of retrieval models</u>

One example (there are many variations)

• Exact-match Boolean: Form a set of documents

• Best-match retrieval: Rank the set, select the top n_1

- E.g., Indri, BM25

• Learned models: Re-rank the top n_1 , select the top n_2

- Note: LeToR does not <u>find</u> documents, it just <u>scores</u> them

10

LeToR methods are described along three main dimensions

- The document representation (the features)
- The type (or style) of training data
- The machine learning algorithm

Our focus is the first two (this is not a machine learning class) ... but we will discuss some example learning algorithms, too

• 11-641, *Machine Learning for Text Mining* provides more in-depth coverage of the learning algorithms

13 © 2021 Jamie Callar

13

Introduction

For a query q, model document d as $\vec{x} = \Phi(d, q)$

- Φ extracts features for (d, q). Think of it as a feature factory.
- It produces a feature vector \vec{x} or \vec{x}

Use training data to learn a model $h(\vec{x})$ or $h(\mathbf{x})$

• $h(\vec{x})$ generates a real-valued score that is used to rank d for q

Note: This notation makes q and d implicit in the feature values

- It is consistent with a typical machine learning presentation
- Think only of feature vectors \vec{x} and learned models $h(\vec{x})$
 - Each feature vector \vec{x} describes a (d, q) pair

© 2021 Jamie Cal

Introduction: Example Features

An initial set of features

• $x_{\text{CoordinationMatch}}$ Number of query terms that match document d • x_{VSM} Vector space score for query q and document d

(or a field in document d)

• x_{BM25} BM25 score for query q and document d

(BM25 features have been in Bing since ~2006)

• x_{Indri} Indri score for query q and document d

• x_{PageRank} PageRank score for document d • x_{Spam} Spam score for document d

• x_{Spam} Spam score for document d • x_{UrlDepth} Depth of document d in a website

• ...

© 2021 Jamie Cal

15

Introduction: Example Features

15

More features...

- Content length
- Query term density
- Number of inlinks
- Number of referring domains
- Number of referring IPs
- Time on site
- Pages per session
- Bounce rate
- Website security (https)

16

Introduction: Learning to Rank Framework

17

Introduction

Machine learning algorithms are designed to predict labels

What are the labels for (q, d)?

• Relevant and not relevant?

Easy to get, hard prediction problem

• Relevance grades (e.g., 0, 1, 2, 3, 4)?

Easy to get, hard prediction problem

• A score in the range [0.0 ... 1.0]?

Hard to get, easier prediction problem

• Position in an ideal ranking?

Hard to get, easier prediction problem

• ...?

Methods differ in how they address this issue

© 2021 Jamie Callan

Today we cover three approaches to learning to rank

How are they similar?

- Each uses a trained model h to estimate the score of \mathbf{x}
 - $-\mathbf{x}$ describes how well document d matches query q
- Documents are ranked by the score $h(\mathbf{x})$

How are they different?

- Three different approaches to training the model h
 - Different types of training data

© 2021 Jamie Callar

19

Outline

19

Introduction to feature-based methods

Three approaches to training learning algorithms

- Pointwise
- Pairwise
- Listwise

Benchmark datasets

Sample results

20

Pointwise Approaches

Approach: Train a model using individual documents

- Training data: $x \rightarrow label$ (q, d, relevance)
- Learned model: $h(x) \rightarrow label$ (q, d, ?)
- (Remember, $\mathbf{x} = \Phi(\mathbf{d}_i, q)$)

The type of label depends on the learning algorithm

- 1. Classification (e.g., SVM): Predict a relevance <u>category</u>
 - $-h(\mathbf{x}) = \text{relevant}$
- 2. Regression (e.g., linear regression): Predict a relevance score
 - -h(x) = 0.53

1 © 2021 Jamie Calla

21

Pointwise Approaches

LeToR Procedure

- Offline: Use Cranfield evaluation data to train a model
 - Queries, documents, relevance assessments
- Online: Given a new query q
 - Run a ranker (e.g., BM25) to get initial documents
 - » E.g., the top 100 returned by BM25
 - For each initial document
 - » Generate a feature vector $\mathbf{x}_i = \Phi(\mathbf{d}_i, q)$
 - » Use the model to generate a reranking label $h(x_i)$ for d_i
 - Rerank the initial documents

© 2021 Jami

22

Pointwise Approaches: Classification

Classification (e.g., SVM): Predict a relevance category

$$\mathbf{x}_1 = \Phi(\mathbf{d}_1, q), \quad \mathbf{y}_1 = \text{NRel} \quad \text{(not relevant)} \qquad \mathbf{doc}_1$$

 $\mathbf{x}_2 = \Phi(\mathbf{d}_2, q), \quad \mathbf{y}_2 = \text{HRel} \quad \text{(highly relevant)} \qquad \mathbf{doc}_2$

Loss function: Typically, 0 if the label is correct, otherwise 1

• The goal is to minimize the number of misclassified examples

Training data is (relatively) easy to get

- Use the Cranfield methodology
- Hire relevance assessors to assign documents to categories
 - E.g., { not relevant, relevant, highly relevant }

© 2021 Jamie Calla

23

Pointwise Approaches: Problems with Classification

23

Categories are ordinal (ordered), which most algorithms ignore

- Some errors are more serious than others
- Consider two trained models...

C_1	Label	Predicted		C_2	Label	Predicted	
d_1	HRel	Rel	×	d_1	HRel	NRel	×
d_2	Rel	HRel	×	d_2	Rel	Rel	✓
d_3	NRel	NRel	✓	d_3	NRel	NRel	✓
		Logge 2			Logge 1		

- $-C_1$ is the better ranker, but C_2 has lower loss
- What is the relative importance of different types of errors?
 - There isn't good theory to guide us

24

Pointwise Approaches: Regression

Regression (e.g., linear regression): Predict a relevance score

$$x_1 = \Phi(d_1, q), \quad y_1 = -1$$
 doc_1
 $x_2 = \Phi(d_2, q), \quad y_2 = 3$ doc_2

Loss function: Squared error

• The goal is to avoid large errors

Training data is difficult to get

 What is the desired score of d₂₁ for q? (see next slide)

25 © 2021 Jamie Calle

25

Pointwise Approaches: Problems with Regression

Predicting numeric labels is difficult because <u>numeric labels are arbitrary</u>

- During <u>training</u>, different mappings from relevance categories to numeric values cause the learning algorithm to learn different models
 - { NRel, Rel, HRel } \rightarrow { 0, 1, 2 } <u>Equal</u> differences among categories
 - { NRel, Rel, HRel } \rightarrow { 1, 4, 9 } Prefer HRel correct
 - { NRel, Rel, HRel } \rightarrow { 1, 16, 81 } $\underline{\text{Must}}$ get HRel correct
- What is the relative importance of different types of errors?
 - What are the right numbers to assign for Nrel, Rel, and HRel?
 - There isn't good theory to guide us
 - Thus, pointwise training data is inherently noisy

© 2021 Jamie Cal

26

Pointwise Approaches: Problems

Pointwise methods focus on making good predictions for individual documents

- E.g., minimize the number of misclassified examples
- E.g., minimize the sizes of classification errors

Search metrics care about the order in a set of documents

• E.g., NDCG@k, MAP@k

Pointwise methods tend to be less accurate than other methods

- Noise is inherent in the training data
- The loss functions don't model the task well
- The model focuses on the wrong goal (predict scores, not ranks)

27

© 2021 Jamie Callan

27

Outline

Introduction to feature-based methods

Three approaches to training learning algorithms

- Pointwise
- Pairwise
- Listwise

Benchmark datasets

Sample results

28

Pairwise Approaches

Approach: Train a model using pairs of documents

Training data: prefer (x₁, x₂)
Learned model: h (x₁) > h (x₂)

What is the pair value?

• Binary assessments $\{x_1 > x_2, x_1 < x_2\}$

Loss function

• 0 if a pair is ordered correctly, otherwise 1

Minimize the number of misclassified document pairs

• Focus on preference, not specific scores or labels

29

© 2021 Jamie Callan

29

Pairwise Approaches

How is training data produced?

Relevance Data Training Data_q $\mathbf{x}_1 = \Phi(\mathbf{d}_1, q) > \mathbf{x}_2 = \Phi(\mathbf{d}_2, q)$ d₁, relevant d₂, not relevant $x_2 < x_1$ Each preference is d₃, not relevant $x_1 > x_3$ one example d₄, relevant $x_3 < x_1$ (one instance d₅, not relevant of training data) d₆, relevant $x_4 > x_2$ d_7 , not relevant $x_2 < x_4$: : :

30 © 2021 Jamie Callan

Pairwise Approaches

How is preference data used to train a linear classifier?

- Training data: prefer (d₁, d₂)
- Extract feature vectors: $\overrightarrow{x_1} = \Phi(d_1, q)$ $\overrightarrow{x_2} = \Phi(d_2, q)$
- Assume a linear model: $h(\overrightarrow{x_i}) = w^T \overrightarrow{x_i}$ prefer $(d_i, d_i) \rightarrow h(\overrightarrow{x_i}) > h(\overrightarrow{x_i})$

prefer
$$(d_i, d_j)$$
 $\rightarrow h(x_i) > h(x_j)$
 $\rightarrow w^T \overline{x_i} > w^T \overline{x_j}$
 $\rightarrow w^T \overline{x_i} - w^T \overline{x_j} > 0$
 $\rightarrow w^T (\overline{x_i} - \overline{x_j}) > 0$
 $\rightarrow h(\overline{x_i} - \overline{x_i}) > 0$

- Now it is a standard two-class learning problem: $h(\overrightarrow{x_j} \overrightarrow{x_i}) < 0$
- $h(\overrightarrow{x_i} \overrightarrow{x_i}) > 0$

– Use your favorite algorithm (e.g., regression, SVM)

© 2021 Jamie Callan

31

Example: Ranking SVM

Goal: Minimize the number of misclassified document pairs

minimize: $\frac{1}{2}\vec{w}\cdot\vec{w} + C\sum \xi_{i,j,k}$

complexity accuracy (on training data)

subject to:

 $\forall i \ \forall j \ \forall k : \ \xi_{i,j,k} \geq 0$

 $\forall \left(d_i,d_j\right) \in r_1 : \overrightarrow{w} \cdot \overrightarrow{x_i} > \overrightarrow{w} \cdot \overrightarrow{x_j} + 1 - \xi_{i,j,k}$

• • •

 $\forall (d_i, d_j) \in r_n : \overrightarrow{w} \cdot \overrightarrow{x_i} > \overrightarrow{w} \cdot \overrightarrow{x_j} + 1 - \xi_{i,j,k}$

Preference pairs as constraints

- C: Controls model complexity (small C) and training error (large C)
- ξ: Slack variable
- r_n: k training pairs from the nth ranking (query)

(Croft, et al., 2010)

Example: Ranking SVM

Properties of Ranking SVM

- Generalizes well
- Kernels can be used to improve accuracy
 - But linear kernels often work well
- Inherits desirable properties of SVM
 - Many open source tools
 - Much research effort on optimization → fast training
 - Theoretical guarantees (in learning)

© 2021 Jamie Callan

33

Pairwise Approaches

LeToR Procedure

- Offline: Use Cranfield evaluation data to train a model
 - Queries, documents, relevance assessments
- Online: Given a new query q
 - Run a ranker (e.g., BM25) to get initial documents
 - For each initial document
 - » Generate a feature vector $\mathbf{x_i} = \Phi(\mathbf{d_i}, q)$
 - » Use the model to generate a reranking label $h(x_i)$
 - Rerank the initial documents

© 2021 Jamie Call

34

Pairwise Approaches

There have been many pairwise approaches

- RankNet (Burges, et al., 2005)
- Frank (Tsai, et al., 2007)
- RankBoost (Freund, et al., 2003)
- Ranking SVM (Herbrich, et al., 2000; Joachims, 2002)
- MHR
- IR-SVM
- ...

(Liu, 2011)

© 2021 Jamie Callan

35

Problems with Pairwise Approaches

35

Queries with an <u>even balance</u> of relevant and non-relevant documents dominate the training data

- Number of pairs = $|R| \times |NR|$
 - $-q_1$: 5 relevant, 5 not relevant: 5 R × 5 NR = 25 pairs
 - $-q_2$: 2 relevant, 8 not relevant: 2 R × 8 NR = 16 pairs
 - $-q_3$: 9 relevant, 1 not relevant: 9 R × 1 NR = 9 pairs

The pairwise approach is more sensitive to noisy labels

• One noisy label generates many training instances

Usually the ranking position is ignored

• As with the pointwise approaches

© 2021 Jamie Ca

36

Outline

Introduction to feature-based methods

Three approaches to training learning algorithms

- Pointwise
- Pairwise
- Listwise

Benchmark datasets

Sample results

37 © 2021 Jamie Calle

37

Listwise Approaches

Approach: Train a model using a list of documents

• Training data: $x_1 > x_2 > ... > x_n$

• Learned model: $h(x_1) > h(x_2) > ...$

What is the value of a particular ranking?

- Some metric over the ranking
 - E.g., NDCG@n, with n=1, 3, 5, 10, \dots
 - $-\operatorname{E.g.,}\operatorname{MAP}@n$

The goal is to maximize the value of the metric

• Directly align the model with the ranking target

38

Listwise Approaches

How is training data produced?

Binary Relevance	Multi-Valued Relevance						
d ₁ , relevant d ₄ , relevant	d_4 , perfect d_1 , excellent	Order documents					
d ₆ , relevant	d ₆ , very good	by their relevance					
d ₂ , not relevant d ₃ , not relevant	d ₂ , poor d ₃ , poor	scores					
d ₅ , not relevant	d_3 , poor d_5 , poor	(best to worst)					
d_7 , not relevant	d ₇ , poor						

The training algorithm generates and scores rankings

© 2021 Jamie Callar

39

Listwise Approaches: Challenges

39

Directly optimizing some metrics is hard

- Popular metrics (e.g., NDCG@n) are not continuous, nor convex
 - Very hard for optimization algorithms

Two common strategies in listwise approaches:

- 1. Find another metric that is intuitive and easy to optimize.
 - E.g. likelihood of 'best' rankings in training data
- 2. Directly optimize ranking evaluation metrics, with approximation

© 2021 Jamie Ca

40

Listwise Approach: ListMLE Listwise Maximum Likelihood Estimation

General Idea

- Construct the probability of a ranking $p(x_1, x_2, ..., x_n)$
- Find the model h(x) that maximizes the probability (likelihood) of best rankings in the training data
- Use h(x) in ranking

The key step is constructing $p(x_1, x_2, ..., x_n)$

- It is impossible to define $p(x_1, x_2, ..., x_n)$ directly
 - The sample space is all possible ranks: n!
- ListMLE defines a generative process with much smaller space
 - With the help of independence assumptions

(Xia, et al., 2008)

41

Listwise Approach: ListMLE Listwise Maximum Likelihood Estimation

ListMLE's generative definition of the ranking process

- The ranking is assembled iteratively from candidate documents
- Given a set of unranked candidate documents $S_i = \{d_1, ..., d_n\}$

- Pick the best candidate
$$d_i$$
 from S_i to appear at rank i
$$p(d_i|S_i;w) = \frac{\exp(w^T x_i)}{\sum_{x_j \in S_i} \exp(w^T x_j)}$$

- Remove d_i from the set of unranked documents: $S_{i+1} = S_i \setminus d_i$
- Repeat until all candidate documents are ranked
- Assumption: $p(d_i|S_i,w)$ is independent of other documents

Thus, the learning task is to learn $\exp(w^Tx)$

(Xia, et al., 2008)

Listwise Approaches: ListMLE

The likelihood of ranking r_k

$$l(r_k; w) = p(x_1, x_2, ..., x_n; w) = \prod_{i=1}^n p(d_i|S_i; w)$$

Use Maximum Likelihood Estimation to find parameters

$$w^* = \operatorname{argmax}_w \operatorname{l}(r_k; w)$$

• Solved by typical gradient methods

For new query, documents are ranked by:

$$h(x) = \exp(w^T x)$$

Note: Different learning process, but familiar type of learned model

(Xia, et al., 2008)

43

43

ListWise Approaches: ListMLE

LeToR Procedure

- Offline: Use Cranfield evaluation data to train a model
 - Queries, documents, relevance assessments
- Online: Given a new query q
 - Run a ranker (e.g., BM25) to get initial documents
 - For each initial document
 - » Generate a feature vector $\mathbf{x_i} = \Phi(\mathbf{d_i}, q)$
 - » Use the model to generate a reranking label $h(x_i)$
 - Rerank the initial documents

44

Three Approaches to Training: Summary

Pointwise

- Training data is a document category or score
- Accurate category or score ≠ accurate ranking
- Position information ignored

Pairwise

- Training data is a preference among a pair of documents
- Accurate preference \neq accurate ranking
- Position information ignored

Listwise

- Training data is a ranking of documents
- Hard to directly optimize ranking metrics

© 2021 Ja

45

Three Approaches to Training: Summary

45

Pointwise is the weakest of the three approaches

Pairwise and listwise are about equally useful

- Pairwise has an imperfect learning target, but is easy to achieve
 - Minimizes pairwise errors, but we want the best ranking
 - A simpler learning problem with theoretical guarantees
- Listwise has a perfect learning target, but is harder to achieve
 - Learning target is exactly the same as what we want
 - A harder learning problem

Which do you prefer?

46

Outline

Introduction to feature-based methods

Three approaches to training learning algorithms

- Pointwise
- Pairwise
- Listwise

Benchmark datasets

Sample results

47

© 2021 Jamie Callar

47

Benchmark Datasets

Three popular LeToR benchmark datasets

- 1. The LeToR collection (Microsoft) (2007)
- 2. Yahoo! Challenge datasets (2010)
- 3. Microsoft Learning to Rank datasets (2010)

48

© 2021 Jamie Callan

Benchmark Dataset #1: The LeToR Collections

Created by Microsoft using existing publicly-available data

- The .gov corpus
 - 1M .gov web documents from 2002
 - 350 queries (topic, homepage, named page)
 - Top 1000 documents per query returned by BM25
 - 64 features
- The OHSUMED corpus
 - 350K PubMed abstracts from 1987-1991
 - 106 queries (informational)
 - All judged documents
 - -40 features

(http://research.microsoft.com/en-us/projects/mslr/feature.aspx)

(Qin, et al., 2010)

49

© 2021 Jamie Callar

49

Benchmark Dataset #1: The LeToR Collections

Field-specific features (title, anchor, url, whole) for (d, q)

• Tf: Sum over all query terms: $\sum_{q_{i \in q}} t f_{q_i}$

• Idf: Sum over all query terms: $\sum_{q_{i \in q}} idf_{q_i}$

• Tf × Idf: Sum over all query terms: $\sum_{q_{i \in q}} t f_{q_i} \times i d f_{q_i}$

- Field length
- Retrieval model scores
 - $-\,Boolean,\,VSM,\,BM25,\,LM_{Abs},\,LM_{Dirichlet},\,LM_{JM}$
- Hyperlink-based features, HITS, Topic-specific PageRank, ...

(Qin, et al., 2010)

© 2021 Jamie Callan

Benchmark Dataset #1: The LeToR Collection

Document-level features for (d, q)

- PageRank, number of inlinks
- Url: Number of '/', length
- Number of child pages

Note that q is irrelevant to these features

• These features prefer certain types of pages

(Qin, et al., 2010)

© 2021 Jamie Callan

51

Benchmark Dataset #2: The Yahoo Challenge! Datasets

51

Created by Yahoo using proprietary data

- Set 1
 - 710K feature vectors
 - 30K queries
 - 519 features (not described)
 - Relevance scale with 5 values
- Set 2
 - 173K feature vectors
 - 6K queries
 - 596 features (not described)
 - Relevance scale with 5 values

(Liu, 2011)

© 2021 Jamie Callan

Benchmark Dataset #3: Microsoft Learning to Rank Dataset

Created by Microsoft using proprietary data

- 3.7M web documents
- 30K queries
- 136 features
- Relevance scale with 5 values

Example data

```
0 qid:1 1:3 2:0 3:2 4:2 ... 135:0 136:0 2 qid:1 1:3 2:3 3:0 4:0 ... 135:0 136:0 relevance query features id
```

(http://research.microsoft.com/en-us/projects/mslr/)

© 2021 Jamie Callan

53

Benchmark Dataset #3: Microsoft Learning to Rank Dataset

53

Field-specific features (title, anchor, body, url, whole) for (d, q)

- Covered query term number, covered query term ratio
 - Terms in query q that appear in d
- Field length, field length normalized in various ways
- Idf
- Tf: Min, Max, Sum, Mean, Variance
 - "apple pie recipe": $Min (tf_{apple} tf_{pie} tf_{recipe})$
- Tf × idf: Min, Max, Sum, Mean, Variance
- Retrieval model scores: Boolean, VSM, BM25, LM_{Dirichlet}, LM_{JM}

(http://research.microsoft.com/en-us/projects/mslr/feature.aspx)

54

Benchmark Dataset #3: Microsoft Learning to Rank Dataset

Document-level features for (d, q)

- Url: Number of '/', length
- Number of inlinks and outlinks
- PageRank, SiteRank, url click count, url dwell time
- Two quality scores
- Query-url click count

Note that q is irrelevant to these features

• These features prefer certain types of pages

(http://research.microsoft.com/en-us/projects/mslr/feature.aspx)

55

© 2021 Jamie Callar

55

Outline

Introduction to feature-based methods

Three approaches to training learning algorithms

- Pointwise
- Pairwise
- Listwise

Benchmark datasets

Sample results

56

Sample Experimental Results

LeToR Benchmark (.gov dataset, topic distillation (TD) queries)

		NDCG@			P@			
	Algorithm	1	3	10	1	3	10	MAP
Point -	Regression	0.320	0.307	0.326	0.320	0.260	0.178	0.241
, L	RankSVM	0.320	0.344	0.346	0.320	0.293	0.188	0.263
Pair -	RankBoost	0.280	0.325	0.312	0.280	0.280	0.170	0.227
L	FRank	0.300	0.267	0.269	0.300	0.233	0.152	0.203
Γ	ListNet	0.400	0.337	0.348	0.400	0.293	0.200	0.275
List -	AdaRank	0.260	0.307	0.306	0.260	0.260	0.158	0.228
L	SVM ^{Map}	0.320	0.320	0.328	0.320	0.253	0.170	0.245

RankSVM is similar to ListNet except at rank 1

(Liu, 2011)

© 2021 Jamie Callan

57

Sample Experimental Results

LeToR Benchmark (.gov dataset, named page (NP) queries)

		NDCG@		P@				
	Algorithm	1	3	10	1	3	10	MAP
Point -	Regression	0.447	0.614	0.665	0.447	0.220	0.081	0.564
r	RankSVM	0.580	0.765	0.800	0.580	0.271	0.092	0.696
Pair -	RankBoost	0.600	0.764	0.807	0.600	0.269	0.094	0.707
L	FRank	0.540	0.726	0.776	0.540	0.253	0.090	0.664
Γ	ListNet	0.567	0.758	0.801	0.567	0.267	0.092	0.690
List -	AdaRank	0.580	0.729	0.764	0.580	0.251	0.086	0.678
	SVM ^{Map}	0.560	0.767	0.798	0.560	0.269	0.089	0.687

RankSVM, and RankBoost are best

(Liu, 2011)

© 2021 Jamie Callan

58

Lessons Learned

Observations about the effectiveness of different algorithms

- Many learning algorithms perform relatively well
- Relative effectiveness: Listwise ≈ Pairwise > Pointwise
 - As expected

Many ML algorithms work with pointwise & pairwise LeToR

• Easy to develop, reasonably effective

Listwise algorithms may be more effective

- But, there are fewer off-the-shelf solutions
- Still an open research topic

59

© 2021 Jamie Callan

59

Lessons Learned

Much of the LeToR literature uses lots of training data

- Research is driven by web companies that have a lot of data
- But ... you may not have a lot of data
 - Their conclusions may not apply to your situation

60

0 2021 Jamie Callan

Lessons Learned

Observation from academic research

- 100-200 labeled queries can support 50-100 features
 - Surprising compared to other classification/regression tasks, which need a higher ratio of examples to features
- The theory behind LeToR is still an open research topic

Use large numbers of features cautiously

- Start with a small set of high-quality features, then grow it
- Design features carefully

© 2021 Jamie Callar

61

Lessons Learned

Much research is driven by machine learning researchers ...their focus is on machine learning algorithms

The features used in most systems are surprisingly simple

- Simple statistics (e.g., tf, idf, tf × idf, field length)
- Obvious variations of existing ranking algorithms
- A few page quality metrics

Better understanding of <u>search</u> can produce better features ... and better search accuracy

• A nice opportunity for future improvement

(Liu, 2011)

© 2021 Jamie Calla

62

Outline

Introduction to feature-based methods

Three approaches to training learning algorithms

- Pointwise
- Pairwise
- Listwise

Benchmark datasets

Sample results

63

For More Information

63

- B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Retrieval in Practice. Addison Wesdley. 2010.
- T.-Y. Liu. Learning to Rank for Information Retrieval. Springer. 2011.
- T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A Benchmark Collection for Research on Learning to Rank for Information Retrieval. *Information Retrieval Journal*. 2010.
- F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to rank Theory and algorithm. In Proceedings
 of the 25th International Conference on Machine Learning. 2008.

64

© 2021 Jamie Callan