Python Computer
Simulation

Pythonコンピュータシミュレーション入門

人文・自然・社会科学の

数理モデル

マルコフ連鎖

確率微分方程式

感染症モデル

フラクタル

在庫管理

ベイズ推定

噂の拡散

遺伝的アルゴリズム

ライフゲーム

囚人のジレンマ

強化学習

意思決定

橋本洋志+牧野浩二(共著) Hashimoto Hiroshi+Makino Koji

Chapter 5 Natural science Model

- **5.1 Population preditction**
- **5.2 Epidemic**
- 5.3 Predator-prey relationship
- 5.4 Fractal
- 5.5 Chaos
- 5.6 Sound and frequency

5.1 Population preditction

- MOTIVATION: Predict future population with a mathmatical model
- APPROACH: Ideas of Population Model

$$\circ \; rac{dP(t)}{dt} = \gamma P(t) (rac{P\infty - P(t)}{P\infty}) \, exttt{#1} \, | \, P(t) ext{: population}$$

- The population growth rate in a given year is proportional to the population in that year.
- Population growth has a upper limit
- The population growth rate decreases as the population gets close to the upper limitation
- Analitical solution of Equation #1

$$\circ~P(t)=rac{P\infty}{1+(rac{P\infty}{P0}-1)e^-\gamma t}$$
 #2

- The solution is a logistic function
- **EXERCISE**: Parameter estimation
 - \circ Determine $P0, P\infty$, and γ with real data

5.2 Epidemic

- MOTIVATION: Predict and analyze processes of epidemics with a mathmatical model
- APPROACH: Ideas of SIR Model
 - $\circ \; rac{dS(t)}{dt} = -eta S(t) I(t)$ #3 | S(t): Susceptibles
 - $\circ \; rac{dI(t)}{dt} = eta S(t) I(t) \gamma I(t)$ #4 | I(t): Infectives
 - $\circ \; rac{dR(t)}{dt} = \gamma I(t) \, ext{\#5} \mid R(t) ext{: Recovered}$
 - \circ β stands for infection rate and γ stands for recovery rate
 - $\circ~S(t)*I(t)$ represents contacts between the susceptibles and the infectives
 - New infetives are proportional to Infection rate
 - Variation of the infectives is the difference between new infectives and new people who recovered
 - $\circ~$ New people who recovered are propotional to I(t)
- **EXERCISE**: Simulation and analysis focusing on S(0)
 - \circ SIR Model behaves in a different way depending on the initial value of S(t)

$$\circ \ S(0) <= rac{\gamma}{eta} \ {
m or} \ S(0) > rac{\gamma}{eta} ?$$

5.3 Predator-prey relationship

- MOTIVATION: Expalain population variation of organisms with a mathmatical model
- APPROACH: Ideas of Predator-prey Model
 - $\circ \; rac{dx(t)}{dt} = ax(t) bx(t)y(t)$ #6 | x(t): Preys
 - $\circ \; rac{dy(t)}{dt} = -cy(t) + dx(t)y(t)$ #7 | y(t): Predators
 - Regarding Equation #6, the Preys increase exponentially without the predators
 - Regarding Equation #6, the preys decrease depending on the numbers of chances to encounter the predators
 - Regarding Equation #7, the predators exponentially decrease without the preys
 - Regarding Equation #7, the predators increase depending on the numbers of chances to encounter the preys
- **EXERCISE**: Conduct simulations
 - Check the trend on the numbers of the predators and preys
 - What if both of the predators and preys are overfished simultaneously?
 - What if both of the predators and preys are not fished so much simultaneously?

5.4 Fractal #1

- Fractals are geometric shapes which have similar structure at a given scale (self similarity)
- **EXERCISE #1**: Generate Mandelbrot Set
 - Mandelbrot Set is a fractal resulted from calculation for the divergence condition for a complex sequence
 - Check the details of the figure at a given scale
 - Find self similarity

5.4 Fractal #2

- **MOTIVATION**: Depict complex fern leaves (シダの葉) with a few simple rules
- APPROACH: Repetition and randomization
 - prepare four specific affine tranformations to get the values of x and y for the next step
 - 1. f1 is for stems
 - 2. f2 is for continuous smaller leaves
 - 3. f3 is for larger leaves on left
 - 4. f4 is for larger leaves on right
 - Set probabilities for each transformation
- **EXERCISE #2**: Depict fern leaves on computer
 - Generate Barnsley Fern
 - Focus on self similarity
 - Can you depict different types of fern leaves with different parameters?

5.5 Chaos

- Chaos is complex system which is deterministic but hard to its predict future behavior due to sensitive dependence on the initial conditions (初期值鋭敏性)
- EXERCISE #1: Depict Lorenz attractor

$$\circ \,\,rac{dx(t)}{dt} = s(y-x)$$
 #8

$$\circ rac{dy(t)}{dt} = rx - y - xz$$
 #9

$$\circ rac{dz(t)}{dt} = xy - bz$$
 #10

- \circ A famous set of values (s,r,b) is (10,28,8/3)
- Change the initial values by just a bit (e.g. x(0)=0 -> x(0)=0.0001)
- EXERCISE #2: Depict chaos of logistic equation

$$x(n+1) = ax(n)(1-x(n)), (n=0,1,2,...)$$
 #11

- \circ Check different types of behavior for the value of x(n), with different a
- Change the initial value of x(0) to check sensitive dependence on the initial conditions (e.g. x(0)=0.01 -> x(0)=0.010001)
- \circ Generate figures for the values of a and x(n) (logistic maps)

5.6 Sound and frequency

- Twelve equal temperament is a musical note system deviding sounds into twelve notes
- When a note gets a one round, the frequency of the note doubles
- ullet When the frequency of a note is f, that of the next note is $\sqrt[12]{2}f$
- **EXERCISE**: Calculate frequency of notes
 - What is the frequency for the next Do?
 - What is the frequency for the Ti on the table?
 - Hint: You can find **La#** between La and Ti

Note	Do	Re	Mi	Fa	So	La	Ti
Frequency (Hz)	262	294	330	349	392	440	???