泛函分析作业

习题 1 考虑空间 C[a,b], 令 $\rho_1(x,y) = \max_{t \in [a,b]} |x(t) - y(t)|$, $\rho_2 = \int_a^b |x(t) - y(t)| dt$. 证明: $(C[a,b], \rho_1)$ 是完备的度量空间, $(C[a,b], \rho_2)$ 不是完备的度量空间.

证明. 先证明 $(C[a,b], \rho_1)$ 是完备的度量空间.

- 1. $\rho_1 \ge 0$, 且 $\rho_1(x,y) = 0 \Leftrightarrow |x(t) y(t)| = 0, \forall t \in [a,b] \Leftrightarrow x = y.\rho_1$ 满足正定性.
- 2. $\rho_1(x,y) = \rho_1(y,x), \rho_1$ 满足对称性.

3.

$$\rho_1(x, z) = \max_{t \in [a, b]} |x(t) - z(t)|$$

$$\leqslant \max_{t \in [a, b]} (|x(t) - y(t)| + |y(t) - z(t)|)$$

$$\leqslant \max_{t \in [a, b]} |x(t) - y(t)| + \max_{t \in [a, b]} |y(t) - z(t)|$$

$$= \rho_1(x, y) + \rho_1(y, z).$$

 ρ_1 满足三角不等式. $(C[a,b],\rho_1)$ 是度量空间.

下面证明 $(C[a,b], \rho_1)$ 完备. 设 $\{x_n(t)\} \subseteq C[a,b]$ 是 Cauchy 列, 那么对任意的 $\varepsilon > 0$, 存在 N, 对任意的 m,n > N, $\rho_1(x_m,x_n) = \max_{t \in [a,b]} |x_m(t) - x_n(t)| < \varepsilon$, 则 $\{x_n(t)\}$ 一致 收敛, 令极限函数是 x(t), 则 $x(t) \in C[a,b]$, 那么 $\rho_1(x_n,x) = \max_{t \in [a,b]} |x_n(t) - x_t(t)| \to 0$, $n \to \infty$. $(C[a,b], \rho_1)$ 完备.

再证明 $(C[a,b],\rho_2)$ 不是完备的度量空间.

- 1. $\rho_2(x,y) \ge 0$, 且因为 x(t), y(t) 连续, $\rho_2(x,y) = \int_a^b |x(t) y(t)| dt = 0 \Leftrightarrow |x(t) y(t)| \equiv 0 \Leftrightarrow x = y.\rho_2$ 满足正定性.
 - 2. $\rho_2(x,y) = \rho_2(y,x), \rho_2$ 满足对称性.

3.

$$\rho_2(x, z) = \int_a^b |x(t) - z(t)| dt$$

$$\leq \int_a^b (|x(t) - y(t)| + |y(t) - z(t)|) dt$$

$$= \rho_2(x, y) + \rho_2(y, z).$$

 ρ_2 满足三角不等式. $(C[a,b],\rho_2)$ 是度量空间.

下面说明 $(C[a,b], \rho_2)$ 不完备. 反例: 不妨令 a=0,b=1, 再令

$$x_n = \begin{cases} -nx + 1 & 0 \leqslant x \leqslant 1/n \\ 0 & 1/n < x \leqslant 1. \end{cases}$$

那么 $x_n \in C[0,1]$, 且 $\rho_2(x_m,x_n) \to 0$, $m,n \to \infty$, 但是令

$$x = \lim_{n \to \infty} x_n = \begin{cases} 1 & x = 0 \\ 0 & 0 < x \leqslant 1, \end{cases}$$

 $x \notin C[0,1]$, 说明这个度量空间不完备.

习题 2 令 $\rho(x,y) = \frac{|x-y|}{1+|x-y|}$, 证明 (\mathbb{R},ρ) 是完备的度量空间.

证明. 1. $\rho(x,y) \ge 0$, 且 $\rho(x,y) = 0 \Leftrightarrow |x-y| = 0 \Leftrightarrow x = y$.

- 2. $\rho(x, y) = \rho(y, x)$.
- 3. 注意到 $\frac{x}{1+x}$ 当 $x \ge 0$ 时是单调递增函数.

$$\begin{split} \rho(x,y) + \rho(y,z) &= \frac{|x-y|}{1+|x-y|} + \frac{|y-z|}{1+|y-z|} \\ &= \frac{|x-y|+|y-z|+2|x-y|\,|y-z|}{1+|x-y|\,|y-z|+|x-y|+|y-z|} \\ &\geqslant \frac{|x-y|+|y-z|+|x-y|\,|y-z|}{1+|x-y|\,|y-z|} \\ &\geqslant \frac{|x-y|+|y-z|}{1+|x-y|+|y-z|} \\ &\geqslant \frac{|x-y|+|y-z|}{1+|x-y|+|y-z|} \\ &\geqslant \frac{|x-z|}{1+|x-z|} = \rho(x,z). \qquad (|x-y|+|y-z|\geqslant |x-z|) \end{split}$$

则 (\mathbb{R}, ρ) 是度量空间.

下面证明它完备.

设 $\{x_n\}$ 是 Cauchy 列, 那么对任意的 ε , 其中 $0 < \varepsilon < 1/2$, 存在 N 对任意的 $m,n > N, \frac{|x_n - x_n|}{1 + |x_m - x_n|} < \varepsilon$, 那么 $|x_m - x_n| < \frac{\varepsilon}{1 - \varepsilon} < 2\varepsilon$, 则存在 $x \in \mathbb{R}, \{x_n\}$ 收敛于 $x, \rho(x_n, x) \leq |x_n - x| \to 0$, $n \to \infty$.

习题 3 S[a,b] 表示 [a,b] 上几乎处处有界的可测函数全体. $\rho(f,g) = \int_a^b \frac{|f-g|}{1+|f-g|} \mathrm{d}\mu$, 证明 $(S[a,b],\rho)$ 是完备的度量空间.

证明. 1. $\rho(f,g) \geqslant 0, \rho(f,g) = 0 \Leftrightarrow \int_a^b \frac{|f-g|}{1+|f-g|} d\mu = 0 \Leftrightarrow f = g \text{ a.e. } x \in [a,b].$ $2.\rho(f,g) = \rho(g,f)$

3. 与题(2)中证明三角不等式的过程类似, 可以得到 $\frac{|f-g|}{1+|f-g|} + \frac{|g-h|}{1+|g-h|} \geqslant \frac{|f-h|}{1+|f-h|}$. 那么 $\rho(f,h) \leqslant \rho(f,g) + \rho(g,h)$. 综上, $(S[a,b],\rho)$ 是度量空间.

下面证明 $(S[a,b],\rho)$ 完备.

设 $\{f_n\}\subseteq S[a,b]$ 是 Cauchy 列, 即 $\rho(f_m,f_n)\to 0$, $m,n\to\infty$, 则 $\mu(|f_m-f_n|>\delta)\to 0$, $m,n\to\infty$, 那么存在 f 可测, $f_n\underset{\mu}{\Rightarrow} f$. 存在子列 $\{f_{n_k}\}$, 使得 $\mu(|f_{n_k}-f|>1)<\frac{1}{2^k}$, 令 $A_k=\{x:|f_{n_k}(x)-f(x)|>1\}$, 则 $\mu(A_k)<\frac{1}{2^k}$, 且 $\mu(\overline{\lim}_{k\to\infty}A_k)=\mu(\bigcap_{m=1}^\infty\bigcup_{k=m}^\infty A_k)\leqslant \frac{1}{2^{m-1}}$, $\forall m\geqslant 1$. 则 $\mu(\overline{\lim}_{k\to\infty}A_k)=0$. 而且存在 k_0 , 使任意的 $x\in[a,b]\setminus\overline{\lim}_{k\to\infty}A_k$ 有 $\left|f_{n_{k_0}}(x)-f(x)\right|\leqslant 1$, 又因为 $f_{n_{k_0}}$ 几乎处处有界,那么 $f\in S[a,b]$.

$$\int_{a}^{b} |f_{n} - f| d\mu = \sum_{k=0}^{\infty} \int_{E_{k}(n)} |f_{n} - f| d\mu$$

$$< \int_{E_{0}(n)} |f_{n} - f| d\mu + \sum_{k=1}^{\infty} \frac{1}{2^{k-1}} \mu(E_{k}(n)).$$

一方面, $\int_{E_0(n)} |f_n - f| d\mu \to 0$ $n \to \infty$, 另一方面, 因为 $\mu(E_K(n)) \leqslant \mu([a, b]) < \infty$, 那么级数 $\sum_{k=1}^{\infty} \frac{1}{2^{k-1}} \mu(E_k(n))$ 一致收敛, $\lim_{n \to \infty} \sum_{k=1}^{\infty} \frac{1}{2^{k-1}} \mu(E_k(n)) = 0$. 即 $\lim_{n \to \infty} \int_a^b |f_n - f| d\mu = 0$. $(S[a, b], \rho)$ 完备.

习题 4 $1 \le p < \infty$, 令 $\rho(f,g) = \left(\int_a^b |f - g|^p \, \mathrm{d}x \right)^{1/p}$, 证明 $(L^p[a,b], \rho)$ 是完备的度量空间.

证明. 1. $\rho(x,y) \geqslant 0$, 当 $1 \leqslant p < \infty$ 时, $\rho(x,y) = 0 \Leftrightarrow \int_a^b |f-g|^p dx = 0 \Leftrightarrow f = g$ a.e. .

- 2. 对任意的 $1 \leq p < \infty, \rho(f, g) = \rho(g, f)$.
- 3. 当 p=1 时显然成立. 当 $1 , 令 <math>\frac{1}{p} + \frac{1}{q} = 1$ 即 $p-1 = \frac{p}{q}$, 那么

$$|f - h|^{p} = |f - g + g - h|^{p}$$

$$= |f - g + g - h| |f - h|^{p/q}$$

$$\leq |f - g| |f - h|^{p/q} + |g - h| |f - h|^{p/q}.$$

则

$$\int_{a}^{b} |f - h|^{p} dx \leq \int_{a}^{b} |f - g| |f - g + g - h|^{p/q} dx + \int_{a}^{b} |g - h| |f - g + g - h|^{p/q} dx
\leq \left(\int_{a}^{b} |f - g|^{p} dx \right)^{1/p} \left(\int_{a}^{b} |f - h|^{p} \right)^{1/q}
+ \left(\int_{a}^{b} |g - h|^{p} dx \right)^{1/p} \left(\int_{a}^{b} |f - h|^{p} \right)^{1/q}
= \left[\left(\int_{a}^{b} |f - g|^{p} dx \right)^{1/p} + \left(\int_{a}^{b} |g - h|^{p} dx \right)^{1/p} \right] \left(\int_{a}^{b} |f - h|^{p} dx \right)^{1/q}.$$

整理可得 $\rho(f-h) \leq \rho(f-g) + \rho(g-h)$.

下面证明它是完备的.

设 $\{f_n\}\subseteq L^p[a,b]$ 是 Cauchy 列. 存在子列 $\{f_{n_k}\}, \rho(f_{n_k},f_{n_{k-1}})<\frac{1}{2^k}$. 因为 $k_{n_k}=f_{n_1}+\sum_{j=2}^k(f_{n_j}-f_{n_{j-1}})$, 那么令

$$|f_{n_k}| \le |f_{n_k}| + \sum_{j=2}^k |f_{n_k} - f_{n_{j-1}}| = g_k(x).$$

根据三角不等式,

$$\left(\int_{a}^{b} |g_{k}(x)|^{p} dx\right)^{1/p} = \left(\int_{a}^{b} \left| |f_{n_{1}}| + \sum_{j=2}^{k} |f_{n_{j}} - f_{n_{j-1}}| \right|^{p} dx\right)^{1/p}$$

$$\leq \left(\int_{a}^{b} |f_{n_{1}}|^{p} dx\right)^{1/p} + \left(\int_{a}^{b} \left| \sum_{j=2}^{k} |f_{n_{j}} - f_{n_{j-1}}| \right|^{p} dx\right)^{1/p}$$

$$\leq \dots \leq \left(\int_{a}^{b} |f_{n_{1}}|^{p} dx\right)^{1/p} + \sum_{j=2}^{k} \left(\int_{a}^{b} |f_{n_{j}} - f_{n_{j-1}}|^{p} dx\right)^{1/p}$$

$$\leq \left(\int_{a}^{b} |f_{n_{1}}|^{p} dx\right)^{1/p} + \sum_{j=2}^{k} \frac{1}{2^{j}}$$

$$< \left(\int_{a}^{b} |f_{n_{1}}|^{p} dx\right)^{1/p} + \frac{1}{2}.$$

令 $g(x) = |f_{n_1}| + \sum_{j=2}^{\infty} |f_{n_j} - f_{n_{j-1}}|, f(x) = f_{n_1} + \sum_{j=2}^{\infty} (f_{n_j} - f_{n_{j-1}}), \{g_k(x)\}$ 单调递增,则 $g(x) \in L^p[a,b]$,又因为 $|f| \leq g$,那么 $f \in L^p[a,b]$.

又

$$\rho(f_n, f) = \left(\int_a^b |f_{n_k} - f|^p \,\mathrm{d}x\right)^{1/p}$$

$$\leqslant \left(\int_a^b |f_{n_k}|^p dx \right)^{1/p} + \left(\int_a^b |f|^p dx \right)^{1/p}
\leqslant 2 \left(\int_a^b |g(x)|^p dx \right)^{1/p}.$$

那么 $\lim_{k\to\infty} \rho(f_{n_k}, f) = \left(\int_a^b \lim_{k\to\infty} |f_{n_k} - f|^p dx\right)^{1/p} = 0$. 则 $\rho(f_n, f) \to 0$ $n \to \infty.(L^p[a, b], \rho)$ 是完备的.

习题 $\mathbf{5}(X,\rho)$ 是度量空间, $A \subset X$, 证明 diam $A = \operatorname{diam} \overline{A}$.

证明. 一方面,diam $A=\sup_{x,y\in A}\rho(x,y)\leqslant \sup_{x,y\in \overline{A}}\rho(x,y)=$ diam \overline{A} . 另一方面, 对任意的 $\varepsilon>0$, 存在 $x_0,y_0\in \overline{A}$, 使得

diam
$$\overline{A} < \rho(x_0, y_0) + \varepsilon$$
.

又因为 $x_0, y_0 \in \overline{A}$, 那么存在 $x_1, y_1 \in A$, 使得 $\rho(x_1, x_0), \rho(y_1, y_0) < \varepsilon$, 那么

$$\rho(x_0, y_0) \leqslant \rho(x_0, x_1) + \rho(x_1 + y_1) + \rho(y_1, y_0)$$

$$< \rho(x_1, y_1) + 2\varepsilon.$$

则

diam
$$\overline{A} < \rho(x_1, y_1) + 3\varepsilon \leq \text{diam } A + 3\varepsilon.$$

根据 ε 的任意性,diam $\overline{A} \leq$ diam A, 综上,diam $\overline{A} =$ diam A.

习题 $\mathbf{6}$ (X, ρ) 是度量空间,设 $E \subset X$,则 E 是疏集 \Leftrightarrow 对任意的 $\overline{B(x, r)}$,必存在开球 $B(x', r') \subset B(x, r)$,使得 $\overline{B(x', r')} \cap E = \emptyset$.

证明. "⇒". 若存在 B(x,r), 使得对任意的 $B(x',r') \subset B(x,r)$, $\overline{B(x',r')} \cap E \neq \emptyset$, 那么 E 在 B(x,r) 稠密, 矛盾.

" \leftarrow ". 对任意的 B(x,r), 都存在 $B(x',r') \subset B(x,r)$, 使 $\overline{B(x',r')} \cap E = \emptyset$, 那么 E 无内点,E 是疏集.