THE CALCULUS OF VIRTUAL SPECIES AND IK-SPECIES.

by

Yeong-Nan Yeh

Université du Québec à Montréal*

Introduction

In [3], Joyal introduces the category of species together with several operations such as +, \cdot , \times , \circ and $\dot{}$. In [4], he states the substitution rule for virtual species. In this paper, we develop a method for proving the correctness of this rule; we also further study and extend some aspects of the theory of virtual species. In particular, we will

- (1) Show that the ring of virtual species (resp d-species) is a unique factorization domain (UFD).
- (2) Give a relation between × and •.
- (3) Extend all the identities involving +, \cdot , \times , \circ , \cdot , 0 and 1 to the setting of virtual species and, more generally, \mathbb{K} -species.
- (4) Give some K-species which are analogues of the logarithm and trigonometric functions.

I am grateful to Professor Stephen Schanuel, my thesis advisor, for his encouragement and valuable discussions throughout this work. I would like to thank P. Bouchard, A. Joyal, J. Labelle, G. Labelle, P. Leroux and D. Rawlings for their useful suggestions.

Stagiaire post-doctoral. Avec l'aide financière des subventions d'équipes
 FCAR (Québec EQ -1608) et CRSNG (Canada A5660).

Chapter I: Background

§ I.1. Algebra

In this paper, "ring" always means commutative ring with 1.

Definition I.1.1. (\mathbb{K} , 0, 1, +, ·) is a **half-ring** iff (\mathbb{K} , +) and (\mathbb{K} , ·) are commutative monoids and the two "distributive" laws: (1) (a+b)c = ac + bc; (2) 0c = 0 hold in \mathbb{K} .

If \mathbb{K} is a half-ring and (\mathbb{M},\cdot) is a monoid with the property that for each $m\in \mathbb{M}$, there are only finitely many pairs (m_1,m_2) such that $m=m_1m_2$, then the set of all functions $f\colon \mathbb{M}\to \mathbb{K}$, denoted $\mathbb{K}[[\mathbb{M}]]$, gets a half-ring structure with pointwise addition and multiplication by convolution:

$$(f \cdot g)(m) = \sum_{m=m_1 \cdot m_2} f(m_1) g(m_2).$$

Obviously, $\mathbb{K}[[M]]$ is a ring iff \mathbb{K} is a ring. The map $\mathbb{M} \to \mathbb{K}[[M]]$ sending each m to its characteristic function is an embedding of monoids if $\mathbb{K} \neq 0$, and it is customary to identify \mathbb{M} with its image, and to write $\sum_{m \in \mathbb{M}} f(m)$ m instead of f, when this is convenient.

Let K, H be two groups of permutations of the finite sets F, E respectively. The **wreath product** K\(\text{1}\)H is defined to be the group of permutations t of the set F \times E which are of the form t(f,e) = (\alpha(e)(f), h(e)) where \alpha is a function: E \to K and h \in H. Thus t is determined by an element of H and a function \alpha. So $|K\(\text{1}\)H = |K|^{|E|}|H|$. If G is a group of permutations of a set D, then $(K\(\text{1}\)H)\(\text{1}) = K\(\text{1}\)H(G).$

Example I.1.2. $2\% \times 2\% = D_4$ where D_4 is the dihedral group of order 8.

Definition I.1.3. ([13]) Let $H \subset E_1 \ \times E_2 \ \times \cdots \times E_r \$ and $K_i \subset F_i \$ for $i \leq i \leq r$. The **wreath product** $(K_1, K_2, ..., K_r) \$ H is defined to be the group of permutations t of the set $F_1 \times E_1 + F_2 \times E_2 + \cdots + F_r \times E_r$, which are of the form: For $1 \leq i \leq r$, $t(f_i, e_i) = (\phi_i(e_i)(f_i), h(e_i))$ where ϕ_i is a function $E_i \to K_i$ and $h \in H$. Thus t is determined by an element of H and functions ϕ_i where $1 \leq i \leq r$.

So

$$|(K_1, K_2, ..., K_r) \chi H| = |K_1|^{|E_1|} \cdot |K_2|^{|E_2|} \cdot ... |K_r|^{|E_r|} \cdot |H|$$

Given a finite set E, a partition π of E is a family E_i of non-empty subsets of E such that $E_i \cap E_j = \emptyset$ if $i \neq j$ and $\bigcup E_i = E$. Two partitions are equal iff they have the same elements. Let P[E] denote the set of all partitions of E. Let Σ denote the disjoint union of $E_1, E_2, ..., E_d$ where $\underline{E} = (E_1, E_2, ..., E_d) \in B^d$; We write Σ $\underline{E} = E_1 + E_2 + ... + E_d$.

§ I.2. Commutative algebra.

Definition I.2.1. ([13]). Let \mathbb{R} be a ring. The **length** of any element r in \mathbb{R} , $\ell(r)$, is defined by: (a) $\ell(0) = \infty$; (b) $\ell(r) = 0$ if r is a unit; (c) otherwise, $\ell(r) = \sup\{k \mid r = x_1 : x_2 \cdots x_k \text{ with } x_i \text{ non-zero and non-unit}\}$.

Definition I.2.2. ([13]). Let \mathbb{R} and \mathbb{S} be two rings. A ring homomorphism $f: \mathbb{R} \to \mathbb{S}$ is called **local** if f(r) unit in \mathbb{S} implies r unit in \mathbb{R} and is called **unit-surjective** if r unit in \mathbb{S} implies $\exists r \in \mathbb{R}$ with f(r) = s.

Let $(\mathbb{R}_n)_{n\in \mathbb{N}}$ be a sequence of **UFD**'s and $(\alpha_n)_{n\in \mathbb{N}}$ be a sequence of local, unit-surjective ring homomorphisms where $\alpha_n:\mathbb{R}_{n+1}\to\mathbb{R}_n$, and let $(\mathbb{R},(\phi_n)_{n\in \mathbb{N}})$ be the inverse limit of $((\mathbb{R}_n)_{n\in \mathbb{N}},(\alpha_n)_{n\in \mathbb{N}})$ where ϕ_n is the canonical homomorphism from \mathbb{R} to \mathbb{R}_n . In fact ϕ_n is a local unit-surjective ring homomorphism. We often write r_n instead of $\phi_n(r)$ for all $r\in \mathbb{R}$.

Proposition 1.2.3. The inverse limit \mathbb{R} of a sequence \mathbb{R}_n of UFD's and local, unit-surjective homomorphisms is an UFD.

Proof. Every non-zero and non-unit element r in \mathbb{R} can be factored into a finite product of irreducible elements since $\ell(r) \le \ell(r_n) \ \forall n$. If $r \in \mathbb{R}$ and $\ell(r) = 1$ then $\lim_{n \to \infty} \ell(r_n) = 1$. It can be proved that every irreductible element in \mathbb{R} is a prime. So \mathbb{R} is an **UFD**.

Proposition I.2.4. Let (M, \cdot) be a free commutative monoid and \mathbb{R} be an **UFD** then $\mathbb{R}[M]$ and $\mathbb{R}[M]$ are **UFD**'s.

Chapter II: The concepts of species and K-species

§ II.1. Group Sets

If X is a finite set, a permutation of X is a bijective map $g: X \to X$. Under the operation of composition, the set of all permutations of X forms a group X \S . We have $|X\S| = |X|!$, where we use $|\cdot|$ to denote cardinality. If G is a subgroup of $X\S$, then we shall say that the pair (G,X) is a **group-set**. A subset Y of X is called a **G-invariant** subset if $g(Y) \subset Y$ for any $g \in G$. Let (G,X) be a group-set, U be a finite set containing X, and Y be a G-invariant subset of X. For any $g \in G$, the **extension** of g to U, g^U , is defined by: $g^U(u) = g(u)$ if $u \in X$; $g^U(u) = u$ otherwise. The **restriction** of g to Y, g_Y , is defined by: $g_Y(y) = g(y)$ if $y \in Y$. We denote $G^U = \{g^U | g \in G\}$ and $G_Y = \{g_Y | g \in G\}$.

Under the operation of composition, G^U and G_Y form groups and (G^U, U) , (G_Y, Y) are group-sets. Since Y is a G-invariant subset of X, then X - Y is a G-invariant subset of X and $(G_{X-Y}, X-Y)$ is a group-set.

Definition II.1.1 ([13]). Let (G,X) and (H,Y) be two group-sets. (H,Y) is called a **reducing group-set** of (G,X) if it satisfies the following conditions:

(a) Y is a G-invariant subset of X; (b) $H = G_Y$; (c) $H^X \subset G$.

Definition II.1.2 ([13]). Let (H,Y) and (K,Z) be two group-sets, then

- (a) For any $h \in H$ and $k \in K$, let $h * k \in (Y+Z)\nabla$ be defined by: (h * k)(u) = h(u) if $u \in Y$; (h*k)(u) = k(u) if $u \in Z$.
- (b) Let $H \times K$ denote the subgroup $\{h \times k | h \in H, k \in K\}$ of (Y + Z).
- (c) The group-set (H * K, Y + Z) is called **external product** of the two group-sets (H,Y) and (K,Z) and is denoted: (H * K, Y + Z) = (H,Y) * (K,Z).

From definition I.2, we find the group H^*K is the direct product of H^{Y+Z} and K^{Y+Z} . It is easy to check that the external product, *, satisfies the associative law.

Lemma II.1.3. If (G_{V},Y) is a reducing group-set of (G,X), then

(a) $(G_{X-Y}, X-Y)$ is a reducing group-set of (G,X); (b) $(G,X) = (G_Y,Y) * (G_{X-Y}, X-Y)$.

Lemma II.1.4. Let (G_{γ},Y) , (G_{Z},Z) be two reducing group-sets of (G,X), then so is (G_{γ},Y,Y,Z) .

Lemma II.1.5. If (H,Y) is a reducing group-set of (G,X) and (K,Z) is a reducing group-set of (H,Y), then (K,Z) is reducing group-set of (G,X).

Definition II.1.6. ([13]) A group-set (G,X) is called an **atomic group-set** if $X \neq \emptyset$ and (G,X) has no non-empty proper reducing group-set.

Proposition II.1.7. Every group-set (G,X) can be decomposed uniquely into an external product of atomic group-sets.

Let (G,X) and (H,Y) be two group-sets. We write $(G,X) \sim (H,Y)$ if there exists a bijection $f: Y \to X$ such that $f^{-1}Gf = H$. It is easy to prove that \sim is an equivalence relation. Let g be the set of equivalence classes of group – sets. We have:

Proposition II.1.8. (g. ·) is a free monoid.

§ II.2. Species

Let **Sets** be the category of (small) sets and maps and **B** be the category of finite sets and bijections.

Definition II.2.1 ([3]). A species is a functor S: $B \rightarrow Sets$, and a morphism τ from species S to species T is a natural transformation from functor S to functor T.

If there is an isomorphism τ from species S to species T, then we write S \approx T. (and use the notation S = T when we work "up to an isomorphism"). In what follows, the symbol S will be used sometimes to represent a species, and some other times to represent it's isomorphism class. The usage at a particular point in the text should be clear from the context. For any E \in B and any species S we write S[E] for the image of E under S. Every element in S[E] is called an S - structure on E.

The reader is referred to [3] (or [5]) for the definitions of the <u>sum</u> S + T, <u>product</u> $S \cdot T$, <u>cartesian product</u> $S \times T$, <u>derivative</u> S', and <u>substitution</u> $S \circ T$ (if $T[\emptyset] = \emptyset$), of two species S and T. They are summarized as follows:

Definition II.2.2 ([3]). For any $E \in B$,

(a)
$$(S + T)[E] = S[E] + T[E]$$
 (b) $(S \cdot T)[E] = \sum_{E = E_1 + E_2} S[E_1] \times T[E_2]$

(c)
$$(S \times T)[E] = S[E] \times T[E]$$
 (d) $S'[E] = S[E + 1]$

(d)
$$(S \circ T)[E] = \sum_{\pi \in P[E]} S[\pi] \times \prod_{C \in \pi} T[C]$$

where P[E] is the set of all partitions of E.

A species S is called a **subspecies** of the species U if $S[E] \subset U[E]$ for all finite sets E and the inclusion is a natural transformation. It is obvious that if S is a subspecies of U then there exists a unique species T such that U = S + T.

Example II.2.3. The zero species, 0, is defined by: $O[E] = \emptyset$ for any finite set E. 0 is the unit element for addition.

Example II.2.4. $1 = B(\emptyset, -)$, so the species 1 satisfies $1[E] = \emptyset$ for any non-empty finite set E and $1[\emptyset] = \{*\}$; i.e. there is a unique 1-structure on the empty set. 1 is the unit element for multiplication.

Example 11.2.5. $X = B(\{*\}, -)$, so $X[E] = \{*\}$ if |E| = 1; $X[E] = \emptyset$ if $|E| \neq 1$.

Example II.2.6. For $n \in \mathbb{N}$, write $\mathbf{n} = \{1, 2, ..., n\}$. We have $X^n = \mathbf{B}(\mathbf{n}, -) = X \cdot X \cdot ... \times \mathbb{N}$. More generally, let $H \subset \mathbf{n}^{\nabla}$; then we use X^n/H to denote the species $\mathbf{B}(\mathbf{n}, -)/H$, i.e. $X^n/H[E] =$ the set of all "left cosets" of H in $\mathbf{B}(\mathbf{n}, E)$ where $\mathbf{B}(\mathbf{n}, E)$ is the set of all bijections from \mathbf{n} to E ($\mathbf{B}(\mathbf{n}, E)$ is not a group). In fact $X^n/H[\mathbf{n}] =$ the set of all left cosets of H in \mathbf{n}^{∇} .

Example II.2.7. The exponential species $e^X = B(-, \{*\})$ is defined by: $e^X[E] = \{*\}$ for any finite set E, i.e. there is a unique e^X -structure on any finite set. We have:

$$e^{X} = \sum_{n \geq 0} x^{n} / n_{o}^{\sigma}$$

A species U is called a **molecule** if $U \neq 0$, and U = S + T implies either S = 0 or T = 0. Every species is a (possibly infinite) sum of its molecular subspecies. The molecules are of the type:

$$X^{n}/H$$
 where H is a subgroup of n ?.

It is easy to prove that $X^n/H = X^m/K$ iff n = m and H, K are conjugate in n = m. Let m denote the set of isomorphism classes of all molecular species and m = m denote the set of isomorphism classes of all non-constant molecular species.

Proposition II.2.8 ([13]). Let $n, m \in \mathbb{N}$, $H \subseteq n$? and $K \subseteq m$?, then:

- (1) $X^{n}/H \cdot X^{m}/K = X^{n+m}/(H*K)$ where "*" is the external product.
- $(2) \ X^{n}/H \times X^{m}/K \ = \left\{ \begin{array}{cc} \sum_{L} \left|L\right| \left|A_{L}\right| \ X^{n}/L & \text{if } n=m; \text{ where } A_{L} = \{g \in \textbf{n} \ \ \ \ \ \} \\ 0 & \text{otherwise,} \end{array} \right.$
- (3) $X^{n}/H \circ X^{m}/K = X^{mn}/(K\iota H)$ where " ι " is the wreath product.
- (4) $(X^n/H)' = \sum_{e \in O_{n,H}} X^n/(H \cap (n-\{e\})^n)$ where $O_{n,H}$ denotes a complete set of representatives for the orbits of H in **n**.

By propositions II.1.8 and II.2.8, we have

Proposition II.2.9. (\mathfrak{M}, \cdot) is a free commutative monoid.

Definition II.2.10. ([13]). A species S is called **finitary** if S[E] is finite for all $E \in B$. A finitary species S is called **strictly finite** if $\exists n > 0$ such that S[E] = \emptyset for all $E \in B$ with |E| > n.

The set of all finitary species (resp strictly finite species) forms a half-ring which

is isomorphic to $\mathbb{N}[[\mathfrak{M}]]$ (resp $\mathbb{N}[\mathfrak{M}]$). The universal ring V (resp SV) containing this is called the ring of virtual species (or Z-species). Every element in V can be represented as S-T where S and T are two species. The ring V (resp SV) is isomorphic to Z[[¶]] (resp Z[¶]). From propositions II2.4 and II2.9, we have

Theorem IL2.11. These two rings $\mathbb{Z}[\{\mathfrak{M}_i\}]$ and $\mathbb{Z}[\mathfrak{M}_i]$ are UFD's.

There are many identities involving $+, \cdot, \times, \circ, ', 0$ and 1([3],[5],[13]). Let S, T and U be species, then

(i)
$$(S+T) \circ U = (S \circ U) + (T \circ U);$$
 (ii) $(S \cdot T) \circ U = (S \circ U) \cdot (T \circ U);$

(ii)
$$(S \cdot T) \circ U = (S \circ U) \cdot (T \circ U)$$

(iv)
$$(S + T)' = S' + T'$$
;

(v)
$$(S \cdot T)' = S' \cdot T + S \cdot T';$$

(vi)
$$(S \times T)' = S' \times T'$$
;

(vii)
$$(S \circ T)' = (S' \circ T) \cdot T'$$

... etc.

One objective is to extend all these identities to the setting of K-species. This is done in chapter three.

§ II.3. d-species.

Definition II.3.1 ([3]). Let d be an integer > 0. A d-species is a functor S: $B^d \longrightarrow Sets$, and a morphism τ from d-species S to d-species T is a natural transformation τ from functor S to functor T.

Let S, T be d-species and $T_1, T_2, ..., T_d$ be r-species (where d, $r \in \mathbb{N}$). The sum S + T, product S + T, cartesian product $S \times T$, partial derivatives ($\partial S / \partial X_i$), 1414d, and substitution So(T₁, T₂, ..., T_d) are defined as follows:

Definition II.3.2 ([3]). For any $\underline{E} = (E_1, E_2, ..., E_d) \in \mathbf{B}^d$ and $\underline{A} = (A_1, ..., A_r) \in \mathbf{B}^r$, define

(a)
$$(S + T)[E] = S[E] + T[E]$$

(b)
$$(S \cdot T)[\underline{E}] = \sum_{E = D+F} S[\underline{D}] \times T[\underline{F}]$$

where $\underline{E} = \underline{D} + \underline{F}$ means $E_i = D_i + F_i$ for $1 \le i \le d$,

(c)
$$(S \times T)[\underline{E}] = S[\underline{E}] \times T[\underline{E}]$$
 (d) $(\partial S/\partial X_i)[\underline{E}] = S[\underline{E} + \underline{e}_i]$

(d)
$$(\partial S/\partial X_i)[\underline{E}] = S[\underline{E} + \underline{e_i}]$$

where
$$e_i = (F_1, F_2, ..., F_d)$$
 with $F_i = \{*\}$ and $F_i = \emptyset$ if $i \neq j, 1 \leq i, j \leq d$,

(d)
$$S \circ (T_1, ..., T_d)[\underline{A}] = \sum_{\pi \in P[A]} \sum_{f:\pi \to d} S[(f^{-1}(1), ..., f^{-1}(d)] \times \prod_{C \in \pi} T_{f(C)}[C \cap A_1, ..., C \cap A_r]$$

where P[A] denotes the set of all partitions of $A_1 + \cdots + A_d$.

Example II.3.3. $X_i = B^d(\underline{e}_i, -)$ where $\underline{e}_i = (F_i, F_2, ..., F_d)$ with $F_i = \{*\}$ and $F_j = \emptyset$ if $i \neq j$. For $\underline{E} = (E_i, E_2, ..., E_d) \in B^d$, $X_i[\underline{E}] = \{*\}$ if $E_i = \underline{e}_i$; $X_i[\underline{E}] = \emptyset$ otherwise.

Example II.3.4. $X_1^{n_1} \cdot X_2^{n_2} \cdots X_d^{n_d} = B^d(\underline{n}, -)$ where $\underline{n} = (n_1, n_2, ..., n_d)$. and $B^d(\underline{n}, \underline{E})$ is the set of all $(f_1, f_2, ..., f_d)$ where all f_i are bijections from n_i to E_i . Note that $B^d(\underline{n}, \underline{E})$ is empty unless $|E_i| = n_i$ for all i. More generally, let $H \subset n_1 \nabla \times n_2 \nabla \times \cdots \times n_d \nabla$, then $(X_1^{n_1} \cdot X_2^{n_2} \cdots X_d^{n_d}/H)[\underline{E}]$ is the set of all "left cosets" of H in $B^d(\underline{n}, \underline{E})$; we often use $X_1^{n_1} \cdot X_2^{n_2} \cdots X_d^{n_d}/H$ to denote the d-species $B^d(\underline{n}, -)/H$.

As in the single variable case, every d-species is uniquely a (possibly infinite) sum of its molecular d-subspecies. The molecular d-species are of the type:

$$X_1^{n_1} \cdot X_2^{n_2} \cdots X_d^{n_d} / H \qquad \text{where} \quad H \subseteq n_1 \mathring{\nabla} \times n_2 \mathring{\nabla} \times \cdots \times n_d \mathring{\nabla}.$$

Let \mathfrak{M}_d be the set of all isomorphism classes of molecular d-species.

Definition II.3.5 ([13]). Let $\mathbf{n}_i, \mathbf{m}_i \in \mathbb{N}$ for laid, $\mathbf{H} \in \mathbf{n}_1$ $\mathbf{v} \times \cdots \times \mathbf{n}_d$ $\mathbf{v}_i, \mathbf{K} \in \mathbf{m}_1$ $\mathbf{v} \times \cdots \times \mathbf{m}_d$ \mathbf{v}_i . For any $\mathbf{h} = (\mathbf{h}_1, ..., \mathbf{h}_d) \in \mathbf{H}$, $\mathbf{k} = (\mathbf{k}_1, ..., \mathbf{k}_d) \in \mathbf{K}$ (\mathbf{h}_i and \mathbf{k}_i are the restriction of \mathbf{h}_i , \mathbf{k}_i to \mathbf{n}_i , \mathbf{m}_i respectively for laid and $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_d) \in (\mathbf{n}_1 + \mathbf{m}_1) \times ... \times (\mathbf{n}_d + \mathbf{m}_d)$, we define: $(\mathbf{h} *_d \mathbf{k}) (\mathbf{u}) = (\mathbf{g}_1(\mathbf{u}_1), \mathbf{g}_2(\mathbf{u}_2), ..., \mathbf{g}_d(\mathbf{u}_d))$ where $\mathbf{g}_i(\mathbf{u}_i) = \mathbf{h}_i(\mathbf{u}_i)$ if $\mathbf{u}_i \in \mathbf{n}_i$; $\mathbf{g}_i(\mathbf{u}_i) = \mathbf{k}_i(\mathbf{u}_i)$ if $\mathbf{u}_i \in \mathbf{m}_i$ for laid, and $\mathbf{H} *_d \mathbf{K} = \{\mathbf{h} *_d \mathbf{k} \mid \mathbf{h} \in \mathbf{H} \text{ and } \mathbf{k} \in \mathbf{K}\}$.

From the above definition, we have

$$(X_1^{n_1} \cdots X_d^{n_d}/H) \cdot (X_1^{m_1} \cdots X_d^{m_d}/K) = X_1^{n_1+m_1} \cdots X_d^{n_d+m_d}/(H *_d K).$$

Lemma II.3.6. ($\mathfrak{M}_{d\nu}$) is a free commutative monoid.

Theorem 11.3.7. The ring of virtual finitary species $\mathbf{Z}[\{\mathfrak{M}_d\}]$ and the ring of virtual strictly finite species $\mathbf{Z}[\mathfrak{M}_d]$ are UFD's.

Proposition II.3.8 ([13]). Let $n_i, m_i \in \mathbb{N}$, $K_i \subset m_i$ for 1sisd, $H \subset n_1$ $\times \cdots \times n_d$, and $K \subset m_1$ $\times \cdots \times m_d$ $\times \cdots \times m_d$

$$(X_{1}^{n_{1}} \cdots X_{d}^{n_{d}}/H) \circ (X_{1}^{m_{1}}/K_{1}, \cdots, X_{d}^{m_{d}}/K_{d}) = (X_{1}^{n_{1}m_{1}} + \cdots + n_{d}^{m_{d}}/(K_{1}, ..., K_{d}) \chi H)$$

$$(X_{1}^{n_{1}} \cdots X_{d}^{n_{d}}/H) \times (X_{1}^{m_{1}} \cdots X_{d}^{m_{d}}/K) = \begin{cases} \sum_{L} |L| \cdot |A_{d,L}| \cdot (X_{1}^{n_{1}} \cdots X_{d}^{n_{d}}/L) & \text{if } m_{i} = n_{i} \text{ for } 1 \leq i \leq d; \\ 0 & \text{if } m_{i} \neq n_{i} \text{ for some } i. \end{cases}$$

where $A_{d,L} = \{ g \in \mathbf{n}_1 \nabla \times \mathbf{n}_2 \nabla \times \cdots \times \mathbf{n}_d \nabla \mid gHg^{-1} \cap K = L \}.$

Just as in the case of one variable, there are many identities involving the operations $+, \cdot, \times, \circ$ and ' in d-species ([3]). We can also extend those identities of d-variable species to the setting of d-variable \mathbb{K} -species.

§ II.4. K-species.

Let K be a half-ring. We can extend the operations +, , × and ' to the set

$$\mathbb{K}([\mathfrak{M}]) = \{ \sum_{I \in \mathfrak{M}} a_I \top \mid a_I \in \mathbb{K} \}$$

as follows:

Of course, the terms must be collected on the right sides of (b), (c), (d). It is possible to do so because: given a molecular species M, there are only finitely many pairs of molecular species (S,T) such that $M = S \cdot T$, finitely many pairs of molecular species (U,V) such that M is a subspecies of $U \times V$, and finitely many molecular species W such that M is a subspecies of W!

Let σ be the unique half-ring homomorphism: $\mathbb{N} \to \mathbb{K}$; then σ induces a half-ring homomorphism $\hat{\sigma} \colon \mathbb{N}[[\mathfrak{M}]] \to \mathbb{K}[[\mathfrak{M}]]$. The homomorphism preserves +, ·, × and '. We hope to extend the concept of substitution, \circ , to $\mathbb{K}[[\mathfrak{M}]]$ in such a way that $\hat{\sigma}$ preserves \circ and all the identities involving +, ·, ×, \circ , ' continue to hold.

Unfortunately it cannot succeed for all half-rings. For example:

- (1) Let $\mathbb{K} = \mathbb{F}_2$, then $(X^2/2\sqrt[n]{2}) \circ (X+X) = (X^2/2\sqrt[n]{2}) \circ (0) = 0$, but $(X^2/2\sqrt[n]{2}) \circ (X+X) = (X^2/2\sqrt[n]{2}) + X^2 + (X^2/2\sqrt[n]{2}) = X^2$. This is a contradiction.
- (2) Let $\mathbb{K} = \mathbb{Z}[i]$. Let $(X^2/2\sqrt[n]) \circ (iX) = aX^2 + b(X^2/2\sqrt[n])$ since deg $((X^2/2\sqrt[n]) \circ (iX)) = 2$. (Here we are assuming a bit more about the extended substitution, namely that degrees multiply under substitution of \mathbb{K} -species of the form scalar times molecule.) More detailed computations show that (a,b) = (i,(-1-i)/2) or (i,(-1+i)/2). This is a contradiction since $b \notin \mathbb{Z}[i]$.

For examples above, we want $\binom{i}{2} = (-1-i)/2 \in \mathbb{K}$ if $i \in \mathbb{K}$. This suggests that some special half-rings, "binomial half-rings", will satisfy our desire.

Definition II.4.1 ([13]). A half-ring IK is called a binomial half-ring if

- (a) there exists a Q-algebra L containing K, and
- (b) for every $a \in \mathbb{K}$ and $i \in \mathbb{N}$, $\binom{a}{i} = a(a-1)(a-2) \cdots (a-i+1)/i! \in \mathbb{K}$.

For example IN, Z, Q, IR, C, Q[i] and IN + Q ϵ (ϵ ² = 0) are all binomial half-rings, but \mathbf{F}_p , p prime, and Z[i] are not binomial half-rings.

Definition II.4.2 ([13]). Let \mathbb{K} be a binomial half-ring. A \mathbb{K} - species is an element S of $\mathbb{K}[\{\mathfrak{N}_i\}]$, i.e. a formal linear combination of the molecular species with coefficients in \mathbb{K} .

The concepts of species (resp. virtual species) and ${\bf N}$ -species (resp. ${\bf Z}$ -species) coincide.

Chapter III: The calculus of K-species

§ III.1. Extension of substitution to K-species.

In this section, **K** is a given binomial half-ring. We will define the operation • for **K**-species and prove that the identities in chapter II involving • continue to hold.

Proposition III.1.1. Let T_1 and T_2 be two species, then $e^{T_1+T_2}=e^{T_1}\cdot e^{T_2}$

Notation III.1.2. a) Let \mathbb{L} be a \mathbb{Q} -algebra, $a \in \mathbb{L}$ and $r_1, r_2, ..., r_n \in \mathbb{N}$. We write

$$(r_1, r_2, ..., r_n) = a(a-1) \cdots (a-\Sigma r+1) / r_1! r_2! \cdots r_n!$$

where Σr means $r_1 + r_2 + \cdots + r_n$.

b) Let $(p_j)_{j\in J}$ be a family of formal variables. We denote by $\mathbb{N}[\binom{p}{j}]$ the sub half-ring of $\mathbb{Q}[(p_j)_{j\in J}]$ generated by the polynomials $\binom{p}{i}$, $i\in J$, $i\in \mathbb{N}$.

Remark III.1.3. If $f((p_j)_{j\in J}) \in \mathbb{N}[(^{p_j}_{i^j})]$ and $(a_j)_{j\in J}$ is an arbitrary family of elements of the binomial half-ring \mathbb{K} , then $f((a_j)_{j\in J}) \in \mathbb{K}$. We also have

$$\left(\begin{smallmatrix} r_1,r_2,\dots,r_n \end{smallmatrix}\right)=\left(\begin{smallmatrix} r_1,r_2,\dots,r_n \end{smallmatrix}\right)\left(\begin{smallmatrix} a \\ \Sigma r \end{smallmatrix}\right)\in\mathbb{N}[\left(\begin{smallmatrix} a \\ i \end{smallmatrix}\right)].$$

Corollary III.1.4. For all $n \in \mathbb{N}$,

$$e^{nX} = (e^X)^n = \sum_{k \geq 0} \sum_{r_1 + 2r_2 + \dots + kr_k = k} (r_1, r_2, \dots, r_k) (X/1)^n (X^2/2)^{r_1} \cdots (X^k/k)^{r_k}$$

=
$$\sum_{M \in \P L} g_M(n) M$$

where all r_i are non-negative integers and all $g_M(p) \in \mathbb{N}[(p)]$.

Proposition III.1.5. $S \times e^{nX} = S \circ (nX)$ for all $n \in \mathbb{N}$.

Proof. It is easy to show that for any $E \in B$,

$$(S \circ (nX))[E] = S[E] \times n^E$$

In particular for $S = e^X$, this gives $e^{nX}[E] = n^E$. Substituting this back into the above equality gives

$$(S \bullet (nX))[E] = S[E] \times e^{nX}[E].$$

Naturality in E is easily verified, so the proof is completed.

Lemma III 1.6. $(\sum_{A \in \P \setminus d} a_A A) \cdot (\sum_{A \in \P \setminus d} b_A A) = \sum_{A \in \P \setminus d} c_A A$, where $c_A = \sum_{A_1 \cdot A_2 = A} a_{A_1} b_{A_2}$ is a finite sum.

Proposition III.1.8. Let S be a species and $n \in \mathbb{N}$, then $S(nX) = \sum_{M \in \mathbb{N}} f_M(n)M$ for some $f_M(p) \in \mathbb{N}[\{P\}]$.

Now, we can extend proposition III 1.8 to IK - species:

Definition III.1.9. Let \mathbb{K} be a binomial half-ring, $a \in \mathbb{K}$ and S be a \mathbb{K} -species. Then $S(aX) = \sum_{M \in M} f_M(a) M$ with $f_M(p)$ defined in proposition III.1.8.

Tables 4 and 5 give S(-X) and S(nX) for molecular species of small degree.

Lemma III 1.10. $X_1^n \cdots X_d^{n_d} H \circ (X_1^m {}_1/K_1, ..., X_d^{m_d}/K_d) = X^m {}_1^n {}_1^+ m_2^n {}_2^+ \cdots + m_d^n {}_d ((K_1, K_2, ..., K_d) \)$ where $n_1, m_1 \in \mathbb{N}$, $K_1 \subset m_1 \$ for $1 \le i \le d$, and $H \subset n_1 \$ $\times n_2 \$ $\times \cdots \times n_d \$ \otimes .

Corollary III.11. Let $T_1, T_2, ..., T_d$ be d-species, then $e^{T_1 + T_2 + ... + T_d} = e^{T_1} \cdot e^{T_2} ... e^{T_d}$.

Lemma III.1.2. $e^{X} \cdot (n_1 X_1 + \dots + n_d X_d) = \sum_{A \in M \setminus d} f_A(n_1, \dots, n_d) A$

where $f_A(p_1,...,p_d) \in \mathbb{N}[\binom{p_i}{j}]_{1 \le i \le d}$ **Lemma III.1.13.** For any $n_1,n_2,...,n_d \in \mathbb{N}$ and d-species S, we have:

$$S \circ (n_1X_1, n_2X_2,...,n_dX_d) = S \times (e^X \circ (n_1X_1+...+n_dX_d)).$$

Lemma III 1.14. Let $M_1,...,M_d \in \mathbb{T}^*$, then $(\sum_{A \in \mathfrak{M}_d} a_A A) \bullet (M_1,...,M_d) = \sum_{B \in \mathfrak{M}_d} c_B B$ where $c_B = \sum (a_A \mid A \in \mathfrak{M}_d, A \circ (M_1, M_2, ..., M_d) = B)$, a finite sum.

Lemma III 1.15. Let T be species, $A_j \in \mathbb{R}^*$ for $1 \le j \le d$. Then we have $T \circ (n_1 A_1 + ... + n_d A_d) = \sum_{B \in \mathfrak{M}_k} f_B(n_1, n_2, ..., n_d) B$, where $f_B(p_1, p_2, ..., p_d) \in \mathbb{N}[\binom{p_j}{i}]_{1 \le j \le d}$ for all $B \in \mathfrak{M}$.

Remark III.1.16. Let S be a species and S \circ ($\sum_{A \in \P_b} n_A A$) = $\sum_{B \in \P_b} f_B((n_A)_{A \in \P_b}) B$ where f_B depends only on S and on the n_A 's with degA \le deg B. So we have:

Proposition III.1.17. Let T be a species, then

$$T \circ (\sum_{A \in \P_k} * n_A A) \approx \sum_{B \in \P_k} f_B((n_A)_{A \in \P_k}) B$$
 where $f_B((p_A)_{A \in \P_k}) \in \mathbb{N}[\binom{p_A}{j}]_{A \in \P_k}$

Definition III.1.18 ([13]). Let \mathbb{K} be a binomial half-ring and S, T be two \mathbb{K} -species with $T = \sum_{A \in \P_b *} n_A A$ for $n_A \in \mathbb{K}$. The **substitution** of T in S, SoT, is defined by

$$\sum_{B \in \PL} f_B((n_A)_{A \in \PL}) B$$
 with $f_B((p_A)_{A \in \PL})$ given in proposition III 1.17.

If S is a \mathbb{K} -species, then $S = \sum_{n \in \mathbb{N}} \sum_{H} a_{nH} \cdot X^{n}/H$ where $a_{nH} \in \mathbb{K}$ and H ranges over representatives for the conjugacy classes of subgroups of n?. S_{n} denotes the n-th term of the outer sum. (If S is an actual species, then $S_{n}[E] = S[E]$ if |E| = n; $S_{n}[E] = \emptyset$ if $|E| \neq n$.)

Theorem III.1.19. Let S, T and U be \mathbb{K} -species with $T_0 = U_0 = 0$, then

$$(S \circ T) \circ U = S \circ (T \circ U)$$

Proof. Let $S = \sum_{A \in \P_B} s_A A$, $T = \sum_{B \in \P_B} t_B B$ and $U = \sum_{C \in \P_B} u_C C$. We have

$$(S \circ T) \circ U = \sum_{M \in \mathfrak{M}} f_M((s_A, t_B, u_C)_{A,B,C \in \mathfrak{M}})M, \quad S \circ (T \circ U) = \sum_{M \in \mathfrak{M}} g_M((s_A, t_B, u_C)_{A,B,C \in \mathfrak{M}})M$$

where
$$f_{M}((p_{A},q_{B},r_{C})_{A,B,C\in\P_{k}})$$
, $g_{M}((p_{A},q_{B},r_{C})_{A,B,C\in\P_{k}})\in \mathbb{N}[(p_{A},q_{B},r_{C})_{A,B,C\in\P_{k}}]$

By associativity of substitution for actual species, f_M and g_M agree when natural number are substituted for p_A , q_B and r_C , and hence they agree when arbitrary elements of $I\!K$ are substituted.

Similar arguments prove all the identites involving +, \cdot , \times , \circ , \cdot , 0 and 1. Substitution for several-variable \mathbb{K} -species is defined in the analogous way and identities from actual species can be lifted to these by arguments similar to the one variable case.

§ IIL2. The K-species SIN, COS, and LG.

The trigonometric functions, $\cos x$ and $\sin x$ have properties such as $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$ and $\sin^2 x + \cos^2 x = 1$. Here we try to find some special **K**-species which have similar properties.

In fact, we can't find any **Z**-species (=virtual species) which have the properties above. Suppose S and C are two **Z**-species with $S_0 = 0$, $C_0 = 1$ such that S' = C, C' = -S and $S \cdot S + C \cdot C = 1$.

Let $S = a_1X + a_2X^2 + a_3X^2/2_0^{\nabla} + \cdots$ and $C = 1 + b_1X + b_2X^2 + b_3X^2/2_0^{\nabla} + \cdots$. We have:

- (i) $a_1 + (2a_2 + a_3)X + ... = 1 + b_1 X + ...$, since S' = C;
- (ii) $b_1 + (2b_2 + b_3)X + ... = -(a_1X + ...)$, since C' = -S;
- (iii) $1 + 2b_4X + (a_1^2 + b_1^2 + 2b_2)X^2 + 2b_7X^2/2_0^2 + \cdots = 1$, since $S \cdot S + C \cdot C = 1$.

Comparing the coefficients of each molecular species on both sides, we have: $a_1 = 1$, $b_1 = 0$, and $a_1^2 + b_1^2 + 2b_2 = 1 + 2b_2 = 0$. This is a contradiction since $b_2 \notin \mathbb{Z}$.

Definition III.2.1. Let K be a binomial ring containing Q, then

COS X =
$$1/2 (e^{iX} + e^{-iX})$$
 and SIN X = $-i/2 (e^{iX} + e^{-iX})$.

Of course, in this definition, e^{iX} and e^{-iX} are both computed by substituting i for n in corollary III.4. Let the ring homomorphism $\sigma: \mathbb{Q}[i] \to \mathbb{Q}[i]$ be defined by: $a+bi\mapsto a-bi$. The induced homomorphism $\hat{\sigma}: \mathbb{Q}[i][[\mathfrak{M}]] \to \mathbb{Q}[i][[\mathfrak{M}]]$ fixes species SIN and species COS. So SIN, COS $\in \mathbb{Q}[[\mathfrak{M}]]$.

Proposition III.2.2. Let S be a \mathbb{Z} -species with $S_0 = 0$. If $e^X \circ S = 1$ then S = 0.

Proof. $1 = e^{X_0}S = \sum_{n \ge 0} \sum_{r_1 + 2r_2 + \cdots + nr_n} = n ((X^{r_1}/r_1 \%) \circ (S_1)) \cdot ((X^{r_2}/r_2 \%) \circ (S_2)) \cdot \cdots ((X^{r_n}/r_n \%) \circ (S_n))$ where $r_1 \ge 0$ for all i. Comparing terms of degree n on both sides gives:

$$0 = \sum_{r_1 + 2r_2 + \cdots + nr_n = n} ((\chi^{r_1} / r_1 \overset{\nabla}{\vee}) \circ (S_1)) \cdot ((\chi^{r_2} / r_2 \overset{\nabla}{\vee}) \circ (S_2)) \cdot \cdots ((\chi^{r_n} / r_n \overset{\nabla}{\vee}) \circ (S_n))$$

The n-th equation has highest term S_n (from $r_1 = \dots = r_{n-1} = 0$, $r_n = 1$) and all lower

terms involve only S_1 , S_2 , ..., S_{n-1} . The system of equations can be solved recursively. We have S_n = 0 for $n \ge 1$. i.e. S = 0.

Corollary III.2.3. Let S, T be two \mathbb{Z} -species such that $S_0 = T_0 = 0$ and $e^{X_0}S = e^{X_0}T$ then S = T.

Definition III.2.4. The species $LG = \sum_{k \ge 0} S_k$ is recursively defined by

$$S_0 = 0, S_1 = -X$$

and

$$\sum_{\Gamma_1+2\Gamma_2+\cdots+n\Gamma_n=n} ((X^{\Gamma_1}/\Gamma_1^{\nabla})\circ(S_1))\cdot ((X^{\Gamma_2}/\Gamma_2^{\nabla})\circ(S_2))\cdots ((X^{\Gamma_n}/\Gamma_n^{\nabla})\circ(S_n)) = 0, \quad n \geq 2.$$

Proposition III.2.5. $e^{X} \circ LG X = 1 - X$

Let $V_i = \{T \in \mathbb{Z}[\{\mathfrak{M}_i\}] \mid T_0 = i\}$ then $T \mapsto e^T (= e^X \circ T)$ gives a group homomorphism exp: $(V_0, +) \to (V_1, +)$. From the propositions III1.1, III2.2 and III2.5, we know that exp is a group isomorphism and that its inverse log is given by: $T \mapsto LG(1 - T)$ (log is not a species).

Proposition III.2.6. LG(1 - S · T) = LG(1 - S) + LG(1 - T) for any S, $T \in V_1$.

NOTATION FOR TABLES

n§ = The group of all permutations on **n**; A_n = The group of all even permutations on **n**; C_n = The cyclic subgroup of **n**§ generated by (12...n); D_n = The dihedral group of order 2n; $A \cdot B$ = The direct product of group A and group B; K_4 = {id,(12)(34),(13)(24),(14)(23)}; $H = \{id, (12)(34)\}$; $L = \{id, (123), (132), (12)(45), (13)(45), (23)(45)\} = A_5 \cap Stabilizer \{4,5\}$; $T = The normalizer of <math>C_5$ = The affine group {ax + b| a,b $\in \mathbb{F}_5$, a $\neq 0$ } = {id, (12345), (13524), (14253), (15432), (2354), (25)(34), (2453), (1534), (13)(45), (1435), (1452), (15)(24), (1254), (1523), (12)(35), (1325), (1243), (14)(23), (1342)}.

The cartesian product between molecular species of degree 4 3

X × X = X			
$X^2 \times X^2 = 2X^2$	$X^2 \times X^2/2 = X^2$	$X^2/2\nabla \times X^2/2\nabla = X^2$	X ² / 2 ♥
$X^3 \times X^3 = 6X^3$	$X^3 \times X^3/2 = 3 X^3$	$X^3 \times X^3 / A_3 = 2X^3$	$X^3 \times X^3/3$ = X^3
$X^3/2\% \times X^3/2\% =$	$X^{3}/2^{9} + X^{3} - X^{3}/2^{9}$	$\times X^{3}/A_{3} = X^{3}$	$\chi^3/2^{\circ}_{\circ} \times \chi^3/3^{\circ}_{\circ} = \chi^3/2^{\circ}_{\circ}$
$X^3/A_3 \times X^3/A_3 =$	$2 X^3/A_3 \qquad X^3/A_3$	$\times X^3/3^{\circ}_{\circ} = X^3/A_3$	$X^3/3^{\circ}_{\circ} \times X^3/3^{\circ}_{\circ} = X^3/3^{\circ}_{\circ}$

Table 1

The cartesian product between molecular species of degree 4

	-							,			
*, X	* *	2X4	3×t	4×4	+χ9	т X9	т, ХЭ	8X 4	12X 4	12X4	24X4
т, X	*\ \±	2 X 4 H	3 X ⁴	2X4	2 X ⁴ + 2X ⁴	¥, ¥ 9	2X + + 2 X +	4X 4	6X ⁴	1 X + 4 X +	12X 4
χ ⁴ 2 <u>γ</u>	Х ⁴ 2 <u>ү</u>	*X	X* + X* = X*	2 X ⁴ + X ⁴	2 X + 2X +	3X.4	3X ⁴	4 X 4	$2 \frac{X^{4}}{2\overline{y}} + 5X^{4}$, , X9	12X4
X 4 A 3	X t	2 X ⁴	*×	$\frac{X^{t_t}}{A^3} + X^{t_t}$	2X 4	2X 4	2X4	$2 \frac{X^{4}}{A_{3}} + 2X^{4}$	4X*	4X 4	8X t
X t	*x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X,t	$\frac{X^{4}}{C_{4}} + \frac{X^{4}}{H}$	⁷ , X	X + X + X	3 X t	$2 \frac{X^{4}}{C_{4}} + X^{4}$	2X4	3X ⁴	2X ⁴ + 2 X ⁴ H	^{+,} Χ9
X t _t	X t X	2 X 4 K4	3 X t _t	[†] ×	3 X 4	6 X K	3 X 4	2X 4	3Х.	, X ф	٠, χ9
<u>×, X</u>	<u> </u>	X,t	X ⁴ X ⁴ Z <u>y</u> 2 <u>y</u> + H	2 X ⁴ 2 <u>2</u>	2 <u>x</u> + x ⁴	3 X.t	X ⁴ + X ⁴ H	2X4	$2\frac{X^{4}}{2V} + 2X^{4}$	2 X + + 2X 4	ηХ9
3 <u>0</u>	<u>Å£</u>	X 4.	Х ⁴ 2 7	$\frac{X^4}{3\overline{V}} + \frac{X^4}{2\overline{V}}$	2 X ⁴ 2 <u>2</u>	×	X	$\frac{X^{4}}{A^{3}} + X^{4}$	2 X + X + 2	2X ⁴	4X 4
X t	X ⁴ D ₄	X ⁴ K ₄	$\frac{X^4}{D_4} + \frac{X^4}{K_4}$	X 4 2 7	X + X + X X	3 X t	X ⁴ + X ⁴ C ₄ + Η	⁺ X	X + X + Z = X	3 X t	3X ⁴
X.t.	$\frac{X}{A_{t_{-}}}$	2 X 4 A4	X K	X ⁴ A 3	X H	2 X ⁴ K ₄	**\X	2 X ⁴ / _{A3}	X	2 X ⁴	2X 4
Х 4 <u>ү</u>	χ ⁴ <u>4</u> 7	X ⁴ A ₄	X + D ₄	X.* 3 <u>v</u>	χ ⁴ 2 <u>γ2γ</u>	X t	*\\\'\'\'\'	X 4 3	χ ⁴ 20	± ×°	×
cartesian product	Х ^ф Д	X + A	X t C C t	X 4 3 3 7	<u>λζλζ</u>	X t	* C	X th	X *	* <u>×</u> ±	*×

Table 2

The derivative of molecular species of degree $\mbox{\ensuremath{\varsigma}}\ 5$

Molecular	Derivative	Molecular	Derivative
1	0	X ⁵	5X ⁴
Χ	1	Х ⁵ /Н	X ⁴ /H + 2X ⁴
χ2	2X	X ⁵ / 2 Ÿ	3X ⁴ /27 + X ⁴
X ² /2 [▽] ⁄2	x	X ⁵ /A ₃	$2X^{4}/A_{3} + X^{4}$
x ³	3X ²	x ⁵ /C ₄	$X^4/C_4 + X^4$
X ³ / 2 ⊽	$X^2/2^\nabla_{\bullet} + X^2$	x ⁵ /K ₄	X ⁴ /K ₄ + X ⁴
x ³ /A ₃	χ ²	X ⁵ / 2 ₹· 2 ₹	X ⁴ /28:28 + 2X ⁴ /28
X ³ /3 [⊽]	X ² / 2 ⊽	x ⁵ /C ₅	X ⁴
X ⁴	$4 \times^3$	X ⁵ /L	Х ⁴ /А ₃ + Х ⁴ /Н
Х ⁴ /н	2x ³	X ⁵ / A ₃ · 2♥	X ⁴ /A ₃ + X ⁴ / 2♥
X ⁴ /2♥	$2X^3/2\nabla + X^3$	X ⁵ / 3 °⁄8	2X ⁴ /3♥ + X ⁴ /2♥
X ⁴ /A ₃	$X^3/A_3 + X^3$	X ⁵ /D ₄	X ⁴ /D ₄ + X ⁴ /2 ⁷ ⁄2
X ⁴ / C ₄	χ ³	x ⁵ /0 ₅	Х ⁴ /Н
X ⁴ /K ₄	х ³	X ⁵ / 2 ₹· 3 ₹	$X^{4}/2$ $?$ 2 $?$ $+$ $X^{4}/3$
X ⁴ /2♥·2♥	2X ³ / 2 ⊽	X ⁵ /A ₄	$X^4/A_4 + X^4/A_3$
X ⁴ /38∕	$X^3/3^{\circ}_{\circ} + X^3/2^{\circ}_{\circ}$	Х ⁵ /Т	X ⁴ /C ₄
X^4/D_4	X ³ / 2 °	X ⁵ / 4 ♡	$X^4/3$ $+ X^4/4$
X ⁴ /A ₄	X^3/A_3	x ⁵ /A ₅	X ⁴ /A ₄
X4/48	χ ³ / 3 ϔ	X ⁵ / 5 ₹	X ⁴ / 4 ⊽

Table 3

The substitution of -X in molecular species of degree $\mbox{\ensuremath{\varsigma}}\ 5$

$1 \circ (-X) = 1$	$X \circ (-X) = -X$		
$X^2 \circ (-X) = X^2$	$X^2/2\nabla^{\circ}(-X) = X^2 - X^2/2\nabla^{\circ}$		
$\chi^{3}\circ(-\chi)=-\chi^{3}$	$X^{3}/2\nabla^{\circ}(-X) = X^{3}/2\nabla^{\circ} - X^{3}$		
$X^3/A_3\circ(-X) = -X^3/A_3$	$X^{3}/3$ $^{\circ}$ $_{\circ}$ $_$		
$X^{4} \circ (-X) = X^{4}$	$X^4/Ho(-X) = X^4/H$		
$X^4/2^{\nabla}_{\circ}\circ(-X)=X^4-X^4/2^{\nabla}_{\circ}$	$X^4/A_3\circ(-X)=X^4/A_3$		
$X^4/C_4 \circ (-X) = X^4/H - X^4/C_4$	X^4/K_4 o(-X) = $3X^4/H - X^4 - X^4/K_4$		
$X^4/2^{\nabla}_{\circ}\cdot 2^{\nabla}_{\circ}\circ (-X)=X^4/2^{\nabla}_{\circ}\cdot 2^{\nabla}_{\circ}+X^4-2X^4/2^{\nabla}_{\circ}$	$X^4/3$ $^{\circ}$ \circ $(-X) = X^4/3$ $^{\circ}$ $+ X^4 - 2X^4/2$ $^{\circ}$		
$X^4/D_4\circ(-X) = X^4/2^{\circ}_{\circ}\cdot 2^{\circ}_{\circ} + X^4/H - X^4/2^{\circ}_{\circ} - X^4/H$	$D_4 X^4/A_4 \circ (-X) = 2X^4/A_3 + X^4/H - X^4 - X^4/A_4$		
$X^{4}/4^{\nabla}_{o}\circ(-X) = X^{4}/2^{\nabla}_{o}\cdot 2^{\nabla}_{o} + 2X^{4}/3^{\nabla}_{o} + X^{4} - 3X^{4}$	7/ 2 ♥ - X ⁴ / 4 ♥		
$X^{5}\circ(-X)=-X^{5}$	X ⁵ /Ho(-X) = -X ⁵ /H		
$X^5/2^{\nabla}_{\circ}(-X) = X^5/2^{\nabla}_{\circ} - X^5$	$X^{5}/A_{3}\circ(-X) = -X^{5}/A_{3}$		
X^5/C_4 \circ (-X) = X^5/C_4 - X^5/H	X^5/K_4 °(-X) = $X^5/K_4 + X^5 - 3X^5/H$		
$X^{5}/2^{\nabla}_{\diamond}\cdot2^{\nabla}_{\diamond}\circ(-X)=2X^{5}/2^{\nabla}_{\diamond}-X^{5}-X^{5}/2^{\nabla}_{\diamond}\cdot2^{\nabla}_{\diamond}$	X^5/C_5 °(-X) = - X^5/C_5		
$X^5/L_{\circ}(-X) = X^5/L + X^5 - 2X^5/H - X^5/A_3$	$X^5/A_3 \cdot 2^{\circ}_{\circ} \circ (-X) = X^5/2^{\circ}_{\circ} \cdot A_3 - X^5/A_3$		
$X^{5}/3\nabla_{\circ}(-X) = 2X^{5}/2\nabla_{\circ} - X^{5} - X^{5}/3\nabla_{\circ}$	$X^{5}/D_{4}\circ(-X) = X^{5}/2^{\circ}_{4} + X^{5}/D_{4} - X^{5}/2^{\circ}_{5} \cdot 2^{\circ}_{5} - X^{5}/H$		
X^5/D_5 °(-X) =- X^5/D_5	$X^{5}/T \circ (-X) = 2X^{5}/C_{4} - X^{5}/T - X^{5}/H$		
$X^{5}/2\nabla \cdot 3\nabla \cdot (-X) = 3X^{5}/2\nabla + X^{5}/2\nabla \cdot 3\nabla - X^{5}/3\nabla$	3° - X ⁵ - 2X ⁵ /2° 2°		
7 7 2 6 6 7 7 5 7 7 2 6 5 8 7 7 5 6 6 8 7 7 5 6			
$X^{5}/A_{4}\circ(-X) = X^{5} + X^{5}/A_{4} - 2X^{5}/A_{3} - X^{5}/H$			
	^{√5} - X ⁵ / 2 [♥] · 2 [♥]		
X^5/A_4 o(-X) = $X^5 + X^5/A_4 - 2X^5/A_3 - X^5/H$			

Table 4

The substitution of nX in molecular species of degree 4 4

Table 5

REFERENCES

- [1] N. Bourbaki, "Algebra". Paris: Hermann, 1942-1962.
- [2] N. Bourbaki, "Algèbre Commutative". Paris: Herman, 1962.
- [3] A. Joyal, "Une théorie combinatoire des séries formelles". Adv. in Math. Vol. 42, No. 1, pp. 1-82, Octobre 1981.
- [4] A. Joyal, "Règle des signes en algèbre combinatoire", C.R. Acad. Sci., Soc. Roy., Canada, Vol. VII, No. 5, October 1985, pp. 285-290.
- [5] J. Labelle, "Applications diverses de la théorie combinatoire des espèces de structures". Ann. Sc. Math. du Québec, Vol. 7, no. 1, pp. 59-94, 1983.
- [6] J. Labelle, "Quelques espèces sur les ensembles de petite cardinalité". Ann. Sc. Math. du Québec, vol. 9, no. 1, pp. 31-58, 1985.
- [7] G. Labelle, "Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange. Adv. in Math. Vol. 42, pp. 217-247, 1981.
- [8] G. Labelle, "On Combinatorial Differential Equations". J. of Math. Analysis and Applications. Acad. Press. (to appear).
- [9] P. Leroux and G. Viennot. "Combinatorial resolution of systems of differential equations". (This volume).
- [10] S. Maclane, "Categories for the working Mathematician". New York: Springer-Verlag, 1971.
- [11] D.S. Passman, "Permutation Group", New York: Benjamin, 1969.
- [12] B.R. Tennison, "Sheaf Theory", New York: Cambridge University Press, 1975.
- [13] Y.N Yeh, "On the combinatorial species of Joyal", Ph.D. Thesis. State University of NY at Buffalo, 1985.