Лабораторная работа № 1

Тема: Численные методы одномерной минимизации.

Цель работы: Приобретение практических навыков для решения задач одномерной минимизации численными методами.

Постановка задачи

Требуется найти безусловный минимум функции одной переменной y=f(x) на отрезке [a,b], где функция является унимодальной. То есть найти такую точку $x^* \in [a,b]$, что $f(x^*) = \min_{x \in [a,b]} f(x)$.

Численные методы одномерной минимизации

К основным численным методам одномерной минимизации относят:

- 1. метод равномерного поиска;
- 2. метод поразрядного поиска;
- 3. метод деления отрезка пополам;
- 4. метод дихотомии;
- 5. метод золотого сечения;
- 6. метод Фибоначчи;
- 7. метод квадратичной интерполяции.

Задание

- 1. Составить программы поиска минимума функции тремя различными методами в соответствии с заданием (язык программирования выбрать самостоятельно).
- 2. Найти координаты и значение функции в точке минимума заданными методами.
- 3. Найти точное значение координаты точки минимума аналитическими методами, то есть используя необходимые и достаточные условия экстремума.
- 4. Исследовать сходимость методов и провести сравнение по числу вычислений функции для достижения заданной точности. Проанализировать полученные результаты.

Варианты заданий

<u>Nº</u>	Функция	a	b	ε	Метод 1	Метод 2	Метод 3
1	$f(x) = \sin(x)$	$-\pi$	$\pi/2$	0.0001	1	3	5
2	$f(x) = (x-2)^2$	0	3	0.0005	2	3	5
3	$f(x) = \cos(x)$	0	π	0.0005	1	4	5
4	$f(x) = (x - 15)^2 + 5$	12	20	0.001	2	4	5
5	$f(x) = (x+5)^4$	-6	2	0.001	1	3	6
6	$f(x) = xe^x$	-2	0	0.0001	2	3	6
7	$f(x) = x^2 + 2x - 4$	-2	1	0.0001	1	4	6
8	$f(x) = x^3 - x$	0	1	0.0001	2	4	6
9	$f(x) = x^3 + x^4/4$	-4	-2.5	0.0001	1	3	7
10	$f(x) = -x/e^x$	0	1.5	0.0001	2	3	7
11	$f(x) = x^4 - x$	0.5	1	0.0001	1	4	7
12	$f(x) = x^4 / \ln(x)$	1.1	1.4	0.0001	2	4	7
13	$f(x) = -xe^{-x}$	-2	6	0.001	1	3	5
14	$f(x) = x^3 + 6x^2 + 9x$	-3	2	0.001	2	3	5
15	$f(x) = 2^x - x$	0	1	0.0001	1	4	5
16	$f(x) = -7\ln(x) + 3x$	1	5	0.0005	2	4	5
17	$f(x) = \sin(2x) - 2\sin(x)$	1	3	0.0001	1	3	6
18	$f(x) = x^5 - x^2$	0	1	0.0001	2	3	6
19	$f(x) = 3x - 5\ln(x)$	1	3	0.0001	1	4	6
20	$f(x) = (1/2)^x + 3$	-4	0	0.0005	2	4	6
21	$f(x) = x - 2\ln(x)$	1	4	0.0005	1	3	7
22	$f(x) = x^2/(x-2)$	3	5	0.0001	2	3	7
23	$f(x) = (x-1)^2/x$	0.5	2	0.0001	1	4	7
24	$f(x) = \sin(2x) - x$	-1.5	0	0.0001	2	4	7
25	$f(x) = e^{-x}\sin(2x)$	-2	0	0.0001	1	3	5
26	<i>y</i> ()	-1	0.5	0.0001	2	3	5
27	$f(x) = (x^2 - 3)/(x + 2)$	-2	2	0.001	1	4	5
28	$f(x) = xe^{-2x}$	-2	6	0.001	2	4	5
29	$f(x) = 1/(1 + 2x - x^2)$	0	1.5	0.0001	1	3	6
30	$f(x) = 1/(1 + 2x + x^2)$	0	4	0.001	2	3	6
31	$f(x) = (3x^4 + 1)/x^3$	0.5	3	0.0005	1	4	6
32	$f(x) = (4 - x^3)/x^2$	-3	-0.5	0.0001	2	4	6

Содержание отчёта

- 1. Титульный лист, который должен включать:
 - название учреждения, где выполнена работа;
 - номер лабораторной работы;
 - название лабораторной работы;
 - номер варианта;
 - Ф.И.О. студента, выполнившего работу;
 - изображение подписи рядом с фамилией;

- номер учебной группы;
- Ф.И.О. преподавателя;
- год и место выполнения.
- 2. Цель работы.
- 3. Формулировка задачи с указанием номера варианта.
- 4. Графическое представление функции на заданном интервале.
- 5. Найденное точное значение минимума функции, координата точки где он достигается и описание процесса решения.
- 6. Листинги программ в виде текста (скриншоты программного кода вставлять не допускается), либо другие материалы, показывающие ход решения.
- 7. Результаты вычислений.
- 8. Сравнительная характеристика методов по числу итераций и по количеству вычислений функции.
- 9. Выводы.