

Заполнение пропусков

Заполнение пропусков: план

• Линейная интерполяция.

Заполнение пропусков: план

- Линейная интерполяция.
- Модели для заполнения пропусков.

Заполнение пропусков: план

- Линейная интерполяция.
- Модели для заполнения пропусков.
- Использование STL-разложения.

Линейная интерполяция

Идея

Заполним пропуски так, чтобы восстановленные значения идеально ложились на прямую (образовывали арифметическую прогрессию),

$$\Delta y_t^{imp} = const.$$

Линейная интерполяция

Идея

Заполним пропуски так, чтобы восстановленные значения идеально ложились на прямую (образовывали арифметическую прогрессию),

$$\Delta y_t^{imp} = const.$$

Пример:

10, NA, NA, 100.

Линейная интерполяция

Идея

Заполним пропуски так, чтобы восстановленные значения идеально ложились на прямую (образовывали арифметическую прогрессию),

$$\Delta y_t^{imp} = const.$$

Пример:

10, NA, NA, 100.

10, 40, 70, 100

1. Оцениваем модель, допускающую пропуски в данных. ARIMA подходит! И автоматическая ARIMA тоже!

- 1. Оцениваем модель, допускающую пропуски в данных. ARIMA подходит! И автоматическая ARIMA тоже!
- 2. Пропущенные значения y_t заменяем на условное математическое ожидание, полагая оценённые параметры модели равным истинными,

$$y_t^{imp} = \mathbb{E}(y_t \mid \mathsf{данныe}).$$

Используется фильтр Калмана.

- 1. Оцениваем модель, допускающую пропуски в данных. ARIMA подходит! И автоматическая ARIMA тоже!
- 2. Пропущенные значения y_t заменяем на условное математическое ожидание, полагая оценённые параметры модели равным истинными,

$$y_t^{imp} = \mathbb{E}(y_t \mid \mathsf{данныe}).$$

Используется фильтр Калмана.

- 1. Оцениваем модель, допускающую пропуски в данных. ARIMA подходит! И автоматическая ARIMA тоже!
- 2. Пропущенные значения y_t заменяем на условное математическое ожидание, полагая оценённые параметры модели равным истинными,

$$y_t^{imp} = \mathbb{E}(y_t \mid \mathsf{данныe}).$$

Используется фильтр Калмана.

Возможность оценивать модель на данных с пропусками сильно зависит от реализации.

Использование STL-разложения

1. Раскладываем ряд с пропусками на составляющие:

 $y_t = \text{trend}_t + \text{seasonal}_t + \text{remainder}_t = \text{seasonal}_t + \text{deseason}_t$.

STL восстанавливает сезонную компоненту без пропусков!

Использование STL-разложения

1. Раскладываем ряд с пропусками на составляющие:

```
y_t = {\sf trend}_t + {\sf seasonal}_t + {\sf remainder}_t = {\sf seasonal}_t + {\sf deseason}_t. STL восстанавливает сезонную компоненту без пропусков!
```

2. Восставливаем пропущенные значения десезонированного ряда линейной интерполяцией.

Использование STL-разложения

1. Раскладываем ряд с пропусками на составляющие:

 $y_t = {\sf trend}_t + {\sf seasonal}_t + {\sf remainder}_t = {\sf seasonal}_t + {\sf deseason}_t.$ STL восстанавливает сезонную компоненту без пропусков!

- 2. Восставливаем пропущенные значения десезонированного ряда линейной интерполяцией.
- 3. Пропущенные значения y_t заменяем на сумму восстановленных десезонированных значений и сезонной составляющей,

$$y_t^{imp} = \text{seasonal}_t + \text{deseason}_t^{imp}$$
.

Зачем заполнять пропуски?

• Иногда заполнение пропусков — основная задача.

Зачем заполнять пропуски?

- Иногда заполнение пропусков основная задача.
- Возможность использовать больше алгоритмов прогнозирования для восстановленного ряда.

Зачем заполнять пропуски?

- Иногда заполнение пропусков основная задача.
- Возможность использовать больше алгоритмов прогнозирования для восстановленного ряда.
- Возможность использовать восстановленный ряд как предиктор.

• Линейная интерполяция: просто и быстро!

- Линейная интерполяция: просто и быстро!
- Использование ARIMA или более сложных моделей.

- Линейная интерполяция: просто и быстро!
- Использование ARIMA или более сложных моделей.
- STL-разложение и восстановление компонент.

- Линейная интерполяция: просто и быстро!
- Использование ARIMA или более сложных моделей.
- STL-разложение и восстановление компонент.
- Вариации у каждого алгоритма.