定理 4.15 G を n 個の頂点を持つ単純グラフとする。 G の任意の 2 頂点 u と v に対して , $\deg(u) + \deg(v) \ge n-1$ であるとき , G にハミルトン道が存在する。

【証明】

- (1) まず ,任意の頂点 u とv に対して $\deg(u) + \deg(v) \ge n-1$ が成立するにはG が連結でなければならないことを示す。単純グラフG が連結でないと仮定すると,少なくとも二つの連結成分が含まれる。これらを G_1 , G_2 とし,それぞれの頂点数を n_1 , n_2 とする。ここで, $n \ge n_1 + n_2$ である。 G_1 の任意の頂点 u に対して $\deg(u) \le n_1 1$,及び G_2 の任意の頂点 v に対して $\deg(v) \le n_2 1$ である。よって, $\deg(u) + \deg(v) \le n_1 1 + n_2 1 \le n 2$ であり, $\deg(u) + \deg(v) \ge n 1$ が成立しないので,定理の条件を満たすにはG は連結グラフでなければならない。
- (2) $P = (v_1, v_2, ..., v_n)$ を G の最大数の頂点を含む初等道とすると,必ず p = n で ある。すなわち, Pがハミルトン道である。これを背理法で示す。 p < n であるならば,あるPの頂点 v_i がP以外の頂点uに隣接している $(1 \le i \le p$)。 P が G の最大数の頂点を含む初等道であるので , v_1 と v_p に隣 接している頂点はすべて P に含まれる。 $S = \{v_{a1}, v_{a2}, ..., v_{am}\}$ を v_1 に隣接し ている頂点の集合とし(ここで, $2=a1 < a2 < ... < am \le p$), $T = \{v_{a1-1}, v_{a2-1}, ..., v_{am-1}\}$ とすると , T の m 個の頂点も道 P に含まれる。 v_n がT のいずれとも隣接していなければ , $\deg(v_n) \leq (p-1) - m$ になる。よっ て, $\deg(v_1) + \deg(v_n) \le m + (p-1) - m = p-1 < n-1$ である。これは条件に 矛盾する。ゆえに v_n は T のある頂点 v_{qi-1} に隣接している。すると , 初等 道 P の p 個の頂点は初等閉路 $C = (v_1, v_{ai}, ..., v_{n-1}, v_n, v_{ai-1}, ..., v_2, v_1)$ を構成し ている(下図参照)。 つまり,P に含まれる頂点のどれから始めてもC に沿 って長さpの初等道を作ることができる。P (同ときにC)以外の頂点uに 隣接している頂点 v_i がCに含まれるので,uから v_i への辺と v_i から始まる C に沿った長さ p の初等道からなる長さ p+1 の初等道が存在することに なる。これはPが最大数の頂点を含む初等道であることに矛盾する。ゆえ に , p = n , すなわち , G の最大数の頂点を含む初等道は , G のすべての 頂点を含むのでGにはハミルトン道が存在する。

