# Feature Selection by Singular Value Decomposition for Reinforcement Learning

**TA: Aleksey Grinchuk** 

**Dmitry Krylov** 

Nikita Kotelevskii

Ksenia Yagafarova

Anna Anikina

#### Introduction

Reinforcement learning with a large state space



#### **Problem statement**

Choosing the correct number of features

How to choose appropriate number of features

Lack of theoretical explanation of LFD

Why LFD works and how to explain it

Time-consuming performance

Train Estimator with LSPI

Assumption about transition matrix

Low-rank Transition Matrix

### Main ideas from paper (Behzadian, Petrik 2018)

- LFD is a low-rank approximation to the matrix of transition probabilities
- We can obtain good feature encoder using SVD

## Formulation of the problem



## Methodology

**Markov Decision Process:** 

S - states, A - actions, P - transition probabilities matrix, r - rewards

Value function

$$\boldsymbol{v}^{\pi} = \boldsymbol{r}^{\pi} + \gamma P^{\pi} \boldsymbol{v}^{\pi}$$

Linear value function

$$\tilde{\boldsymbol{v}}^{\pi} = \Phi \, \boldsymbol{w}$$

 $\Phi$  is the feature matrix of dimensions  $|S| \times k$ ; the columns of this matrix are the features  $\Phi$ i

$$P_{\Phi}^{\pi} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}P^{\pi}\Phi \qquad \boldsymbol{r}_{\Phi}^{\pi} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}\boldsymbol{r}^{\pi}$$
$$\boldsymbol{w}_{\Phi}^{\pi} = \boldsymbol{r}_{\Phi}^{\pi} + \gamma P_{\Phi}^{\pi}\boldsymbol{w}_{\Phi}^{\pi}$$
$$P_{A}^{\pi} = \sum_{i=1}^{m} \sigma_{i}u_{i}v_{i}^{\top} = U\Sigma V^{\top} \qquad \begin{array}{c} E^{\pi} = U_{1}, \\ D^{\pi} = \Sigma_{1}V_{1}^{\top} \end{array}$$

#### Results obtained



#### Results obtained



#### Conclusion

- No need to know number of features to select in advance
- Easier to implement
- Less-time consuming
- Better performance

#### References

- Song, Z.; Parr, R. E.; Liao, X.; and Carin, L. 2016. Linear feature encoding for reinforcement learning. In Advances in Neural Information Processing Systems, 4224–4232.
- Behzadian, B. and Petrik M. 2018. Low-rank feature selection for reinforcement learning, ISAIM (2018).
- Eckart, G., and Young, G. 1936. The approximation of one matrix by another of lower rank. Psychometrika 1:211218.
- Hrinchuk O. 2017. Feature space perspectives for Reinforcement learning.

## Thank you for your attention!

**Questions?**