Diffusion Processes on Complex Networks - Lab

Assignment 1

Janusz Szwabiński

1. Consider the undirected network defined by the following set of links:

Alice	Bob	Bob	Gail	Irene	Gail
Carl	Alice	Gail	Harry	Irene	Jen
Alice	David	Harry	Jen	Ernst	Frank
Alice	Ernst	Jen	Gail	David	Carl
Alice	Frank	Harry	Irene	Carl	Frank

- (a) Draw the network by hand.
- (b) How many nodes are there?
- (c) What is the density of the network?
- (d) Calculate the degree of each node. Who is the most central node according to this measure?
- (e) Calculate the clustering of each node and the average clustering of the network.
- (f) Calculate the closeness centrality for each node. Who is the most central node according to this measure?
- (g) Calculate the betweenness centrality of each node. Who is the most central node according to this measure?
- 2. For the above network:
 - (a) prepare a CSV file with the edge list;
 - (b) visualize the network by making use of the Gephi software;
 - (c) calculate the basic network measures within Gephi.

You may have a look at http://barabasilab.neu.edu/courses/phys5116/content/Gephi_2016_EKT.pdf for a nice introduction to Gephi.

3. An undirected unweighted network of size N may be represented through a symmetric adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$, which has $a_{ij} = 1$, if nodes i and j are connected, and $a_{ij} = 0$ otherwise. We assume that $a_{ii} = 0$, so there are no self-loops in the network.

Let **e** be a column vector of N elements all equal to 1, i.e. $\mathbf{e} = (1, 1, \dots, 1)^T$, where the superscript T indicates the transposition.

Write expressions for or answer each of the following by making use of the above quantities and the matrix formalism (no sum symbol \sum allowed!):

- (a) the vector \mathbf{k} whose elements are the degrees k_i of the nodes $i = 1, 2, 3, \dots, N$;
- (b) the total number L of links in the network;

- (c) the matrix **N** whose element n_{ij} is equal to the number of common neighbors of nodes i and j;
- (d) the number T of triangles present in the network. A triangle is three vertices, each connected by edges to both of the others (hint: trace of a matrix);
- (e) how would you determine whether the network is connected only by looking at the adjacency matrix?