Data Quality Assessment Report

Customer Segmentation Project - Online Retail Dataset

Analyst: Gabe Collins **Date:** 10/26/25

Dataset: UCI Online Retail Dataset (Dec 2010 - Dec 2011) **Source:** https://archive.ics.uci.edu/dataset/352/online+retail

Executive Summary

This report documents data quality issues identified in the Online Retail dataset and the remediation steps taken to ensure reliable analysis.

Key findings:

Total records: 541,909 transactions
Records removed: 153,144 (28.3%)

• Final clean dataset: 388,765 transactions (71.7%)

- Impact: While cleaning removed 28% of transactions and 31% of revenue, it only impacted 2% of customers. This indicates the removed data consisted primarily of:
 - Cancelled/returned orders
 - Wholesale/bulk orders (extreme outliers)
 - Data quality issues (missing customer IDs, duplicates, others listed below)

The 3.9% decrease in average transaction value confirms that cleaning successfully isolated typical retail customer behavior by removing wholesale/B2B transactions and anomalies.

1. Baseline/Missing Data Analysis

1.1 Missing Customer IDs

Issue Identified:

```
SELECT

COUNT(*) as total_records,

COUNT(*) - COUNT(customer_id) as missing_customer_id,

ROUND((COUNT(*) - COUNT(customer_id))::NUMERIC / COUNT(*) * 100, 2) as pct_missing
```

Results:

- Missing Customer IDs: 135,080 records (24.9%)
- Impact: Cannot perform customer segmentation without customer identifier

Decision: REMOVED records with missing ids

- Rationale: Customer-level analysis requires customer_id; these records cannot be used for segmentation
- Business Impact: Minimal these may be guest checkouts or data entry errors
- Alternative Considered: Could analyze as "Anonymous" segment, but rejected due to limited value

Code Applied:

WHERE customer_id IS NOT NULL

1.2 Duplicate Transactions

Issue Identified:

```
invoice_no,
stock_code,
customer_id,
COUNT(*) as duplicate_count

FROM retail.online_retail_raw

WHERE customer_id IS NOT NULL

GROUP BY invoice_no, stock_code, customer_id

HAVING COUNT(*) > 1;
```

Result: 5,225 duplicates found across 1,903 invoices

Decision: REMOVED duplicates (pending validation from the ecomm team or further investigation into how the ecomm system collects data)

Investigation:

 Upon detailed examination, these records contain identical information across every column

- There are records outside of these 5,225 that contain identical information across all columns EXCEPT the quantity column
 - It is possible that customers added the exact same product to their cart multiple times pulling into the invoice as multiple line items (will check with appropriate team)

Rationale:

- Exact duplicates inflate transaction counts and revenue without adding value.
- Partial duplicates represent legitimate business scenarios (e.g., customer ordered same item in different quantities/colors/sizes within same invoice).

Impact:

- o Records removed: 5,225 records a small portion (1%) of the dataset
- Revenue impact: £21,546.39 (0.26% of remaining revenue)

Next Steps / Follow-up:

Reach out to appropriate team for better understanding of system

2. Data Anomalies

2.1 Cancelled/Returned Orders

Issue Identified:

```
SELECT

COUNT(*) as cancelled_orders,

ROUND(COUNT(*)::NUMERIC / (SELECT COUNT(*) FROM retail.online_retail_raw

WHERE customer_id IS NOT NULL) * 100, 2) as pct_cancelled

FROM retail.online_retail_raw_deduped

WHERE customer_id IS NOT NULL

AND invoice_no LIKE 'C%';
```

Results:

- Cancelled Orders: 8,905 records (2.3% of remaining records)
- Dataset Info: Invoice numbers starting with 'C' indicate cancellations/returns

Decision: REMOVED records of cancelled/returned orders

- Rationale: Cancellations represent negative transactions that distort customer value
- Business Context: These are refunds/returns, not actual purchases
- Impact on Metrics:

- o Including them would understate customer value
- Could create negative transaction amounts
- Alternative Approach: Could analyze separately for return rate analysis

Code Applied:

WHERE invoice_no NOT LIKE 'C%'

2.2 Negative Quantities

No Issue Identified:

```
SELECT
```

```
COUNT(*) FILTER (WHERE quantity < 0) as negative_quantity,

MIN(quantity) as min_quantity,

ROUND(COUNT(*) FILTER (WHERE quantity < 0)::NUMERIC / COUNT(*) * 100, 2) as pct_negative

FROM retail.online_retail_raw_deduped

WHERE customer_id IS NOT NULL

AND invoice_no NOT LIKE 'C%';
```

Results:

• Negative Quantities: 0 records (0%)

Decision: Add code for future data integrity

- Rationale for checking: Negative quantities likely represent returns not marked with 'C' prefix
- Data Integrity: Consistent with positive revenue analysis

Code Applied:

WHERE quantity > 0

2.3 Negative or Zero Unit Prices

Issue Identified:

SELECT

```
COUNT(*) FILTER (WHERE unit_price < 0) as invalid_price,

MIN(unit_price) as min_price,

MAX(unit_price) as max_price,

COUNT(*) FILTER (WHERE unit_price = 0) as zero_price

FROM retail.online_retail_raw_deduped

WHERE customer_id IS NOT NULL

AND invoice_no NOT LIKE 'C%'

AND quantity > 0;
```

Results:

- Zero Prices: 44 records
- Issue: Zero prices may indicate promotional items, data errors, or manual adjustments

Decision: REMOVED zero price records

- Rationale: Cannot calculate accurate revenue or customer value with £0 prices
- Business Logic: Even promotional items have a cost; £0 suggests data error
- Impact: Small volume, minimal impact on overall analysis

Code Applied:

WHERE unit_price > 0

3. Outlier Analysis

3.1 Extreme Transaction Values

Issue Identified:

```
WITH transaction_values AS (

SELECT

quantity * unit_price as total_price

FROM retail.online_retail_raw_deduped

WHERE customer_id IS NOT NULL

AND invoice_no NOT LIKE 'C%'

AND quantity > 0

AND unit_price > 0
```

SELECT

```
PERCENTILE_CONT(0.50) WITHIN GROUP (ORDER BY total_price) as median,
PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY total_price) as p95,
PERCENTILE_CONT(0.99) WITHIN GROUP (ORDER BY total_price) as p99,
MAX(total_price) as max_value
FROM transaction_values;
```

Results:

P95 (95th percentile): £67.50
P99 (99th percentile): £203.52
Maximum value: £168,469.60
Top 1% range: £204 - £168,470

Analysis:

Percentile	Value	Interpretation
P50 (Median)	£11.80	Typical transaction
P95	£67.50	Large but reasonable
P99	£203.52	Very large order
Max	£168,469.60	Extreme outlier (~831x larger than P99)

Decision: REMOVED TOP 1%

- Rationale:
 - o Top 1% contains extreme bulk/wholesale orders
 - These orders are 100-800x larger than typical retail transactions
 - o May represent B2B sales rather than individual customers
 - Would distort "typical customer" segmentation
- Business Context: Dataset description mentions wholesale customers; these are likely B2B
- Impact:
 - Removed 3,890 transactions (1% of remaining)
 - Retained 99% of transaction volume
 - Analysis now focuses on retail customer behavior
- Alternative: Could create separate B2B segment (for more advanced analysis)

Code Applied:

```
WHERE (quantity * unit_price) <= (

SELECT PERCENTILE_CONT(0.99) WITHIN GROUP (ORDER BY quantity * unit_price)

FROM retail.online retail raw
```

4. Data Consistency Checks

4.1 Date Range Validation

Check Performed:

```
SELECT

MIN(invoice_date) as earliest_transaction,

MAX(invoice_date) as latest_transaction,

EXTRACT(DAY FROM (MAX(invoice_date) - MIN(invoice_date))) as days_covered

FROM retail.online_retail_raw;
```

Results:

• Date Range: December 1, 2010 to December 9, 2011

• Coverage: 373 days (~12.5 months)

• Status: Valid - matches dataset description

4.2 Customer ID Format Validation

Check Performed:

```
SELECT

MIN(customer_id) as min_id,

MAX(customer_id) as max_id,

COUNT(DISTINCT customer_id) as unique_customers

FROM retail.online_retail_raw

WHERE customer_id IS NOT NULL;
```

Results:

Range: 12346 to 18287Unique Customers: 4,372

• Format: All numeric, 5-digit IDs - consistent

5. Cleaning Summary

Before & After Comparison

Metric	Raw Data	Clean Data	Change
Total Records	541,909	388,765	-153,144 (-28.3%)
Unique Customer	s 4,372	4,290	-82 (-1.9%)
Date Range	Dec 2010 - Dec 2013	1 Dec 2010 - Dec 2011	L No change
Total Revenue	£9,747,747	£6,722,262	-£3,025,485 (-31.0%)
Avg Transaction	£17.99	£17.29	-£0.70 (-3.9%)

Key Observations:

- Date range fully preserved
- Minimal customer loss:
 - o Retained 98% of unique customers (removed B2B & large transactions)
- Significant transaction removal (28.3%)
 - o 135,080 of the 153,223 removed records were missing customer IDs
- Significant revenue removal (31%)
 - o £2,167,599 removed with top 1% outliers
 - o £1,447,682 removed with missing customer IDs
 - o £611,342 added from cancelled orders
- Average transaction value decreased slightly (confirming I removed high-value outliers/errors, not merely typical data)
- Dataset now suitable for reliable customer segmentation

6. Data Quality Rules Applied

SQL Cleaning Filter (Final)

```
invoice_no,
stock_code,
description,
quantity,
invoice_date,
unit_price,
```

```
customer id,
 country,
 (quantity * unit_price) as total_price,
 DATE TRUNC('month', invoice date) as invoice month,
 EXTRACT(DOW FROM invoice_date) as day_of_week,
  EXTRACT(HOUR FROM invoice_date) as hour_of_day
FROM retail.online retail raw deduped -- Remove duplicates
WHERE
 customer_id IS NOT NULL -- Remove missing customers
 AND invoice no NOT LIKE 'C%'
                                 -- Remove cancellations
 AND quantity > 0 -- Remove returns/negatives
 AND unit_price > 0 -- Remove zero/negative prices
 AND (quantity * unit_price) <= ( -- Remove top 1% outliers
   SELECT PERCENTILE CONT(0.99) WITHIN GROUP (ORDER BY quantity * unit price)
   FROM retail.online retail raw deduped
 );
```

7. Recommendations for Future Data Collection

Based on this quality assessment, I recommend:

Critical Priority (Immediate Implementation)

1. Implement Customer ID Validation

- Issue:
 - 135,080 transactions (24.9%) missing customer id
 - Prevents customer-level analysis for 1/4 of all transactions
- Proposed Solution:
 - Make customer id a required field at point of sale/checkout
 - Implement system-level validation to prevent transaction submission without customer id
 - For guest checkouts, auto-generate unique guest IDs
- Expected Impact:
 - Reduce missing customer id from 24.9% to <1%
 - Enable analysis of 100% of transactions
 - Improve customer lifetime value accuracy

- Better identify returning customers
- Implementation Cost:
 - Low (configuration change in existing systems)

2. Implement Transaction Type Classification

- Issue:
 - Cannot distinguish B2C (retail) from B2B (wholesale) transactions
 - Mixed customer types distort segmentation analysis
- Proposed Solution:
 - Add customer type field: "Retail" vs. "Wholesale"
 - Add transaction_type field: "Sale", "Return", "Exchange"
 - Implement at customer registration or first purchase
 - Auto-flag transactions >£500 as "Potential Wholesale" for review
- o Expected Impact:
 - Enable separate analysis of B2C vs B2B customers
 - Improve accuracy of retail customer segmentation
 - Better target marketing campaigns by customer type
 - Easier identification of high-value wholesale accounts
- Implementation Cost: Medium (requires database schema change and UI updates)

High Priority (Short-Term Implementation)

3. Standardize Cancellation Process

- Current Issue:
 - 8,905 cancelled orders identified by 'C' prefix in invoice no
 - Some negative quantities without 'C' prefix (inconsistent marking)
 - No return reason code or timestamp
- Proposed Solution:
 - Create dedicated order_status field: "Completed", "Cancelled", "Returned", "Partial Return"
 - Add return reason field with standardized codes:
 - "Customer Request"
 - "Defective Product"
 - "Wrong Item Shipped"
 - "Changed Mind"
 - "Other"
 - Record cancellation_date and return_date separately from original invoice_date
 - Maintain original transaction record, add linked cancellation record
- Expected Impact:

- Clear separation of sales vs. returns in reporting
- Analyze return patterns by reason
- Calculate accurate return rates by product/customer
- Improve inventory management based on return reasons
- Implementation Cost: Medium (database schema + workflow changes)

4. Implement Data Validation Rules

- Current Issue:
 - Negative quantities (10,624 records)
 - Zero or negative prices (1,338 records)
 - Extreme outliers (max transaction 831x larger than P99)
- Proposed Solution:
 - Price Validation:
 - Set minimum price threshold (e.g., >£0.01) at product catalog level
 - Flag £0 prices as "Promotional" or "Sample" with special code
 - Prevent negative prices in system
 - Alert on prices >3 standard deviations from product's historical average
 - Quantity Validation:
 - Prevent negative quantities (use return process instead)
 - Set maximum quantity limits per product (e.g., 1,000 units)
 - Alert on quantities >99th percentile for review
 - Transaction Amount Validation:
 - Flag transactions >£5,000 as "Requires Review"
 - Separate approval workflow for wholesale orders
- Expected Impact:
 - Eliminate data entry errors at source
 - Faster identification of fraudulent transactions
 - Cleaner data for real-time analytics
- Implementation Cost: Low-Medium (validation rules in existing system)

Medium Priority (Long-Term Improvements)

5. Add Customer Demographics

- Current Issue:
 - Limited customer information (only ID and country)
 - Cannot segment by age, gender, or other demographics
 - No acquisition channel tracking
- Proposed Solution:
 - Collect during account registration (optional fields):

- Age range (dropdown: 18-24, 25-34, 35-44, 45-54, 55-64, 65+)
- Gender (optional)
- Customer since date (auto-populated)
- Track acquisition source:
 - "Organic Search"
 - "Paid Ad"
 - "Email Campaign"
 - "Social Media"
 - "Direct"
 - "Referral"
- Add email_opt_in flag for marketing consent
- Expected Impact:
 - Richer customer segmentation (beyond RFM)
 - Demographic-based marketing campaigns
 - Better understanding of customer acquisition ROI
 - Personalized product recommendations
- Implementation Cost: Medium (requires customer-facing changes)

8. Impact on Analysis

Reliability Assessment

Analysis Type	Data Quality Impact	Confidence Level
RFM Segmentation	High - Clean customer-level data	Very High
Customer Lifetime Value	High - Accurate revenue totals	Very High
Cohort Analysis	High - Complete date coverage	Very High
Product Analysis	Medium - Some missing descriptions	Medium-High
Time Series	High - Consistent date range	Very High

Key Assumptions

- Missing Customer IDs: Assumed to be guest checkouts or data entry errors; not recoverable
- 2. **Outliers:** Top 1% assumed to be B2B/wholesale rather than typical retail customers
- 3. **Cancellations:** All 'C' prefixed invoices are cancellations/returns; some non-prefixed negatives also caught
- 4. Data Completeness: December 2011 data only through Dec 9 (partial month)

9. Files Generated

- data_quality_checks.sql All validation queries
- data_cleaning.sql Cleaning transformation
- online_retail_clean.csv Cleaned dataset
- cleaning_summary.xlsx Before/after metrics

10. Sign-Off

Data Quality Status: APPROVED FOR ANALYSIS

The dataset has been successfully cleaned and validated. The remaining 388,765 transactions across 4,290 customers provide a reliable foundation for customer segmentation analysis.

Analyst: Gabe Collins Date: 10/27/25

Reviewed By: Gabe Collins

Appendix A: SQL Validation Queries

All queries used in this assessment are available in:

- sql/data_quality_checks.sql
- cleaning_summary.xlsx