COMP6453: Week 9 Answers

1 Zero Knowledge Proof for Graph Isomorphism

For this exercise, review what an isomorphism between two graphs is.

Consider the following proof between a prover P and a verifier V. Given two graphs G_0 and G_1 , P wants to convince V that he knows a permutation π such that $\pi(G_0) = G_1$. P could simply send π to V, but that is hardly zero-knowledge; we want to convince V that π is an isomorphism without revealing anything about it. The protocol is as follows:

 $P \to V$: P randomly chooses a permutation σ and a bit $b \in \{0,1\}$, computes $H = \sigma(G_b)$, and sends H to V.

 $V \to P$: V chooses a bit $b_0 \stackrel{R}{\leftarrow} \{0,1\}$ and sends it to P.

 $P \to V$: P sends the permutation τ to V , where

$$\tau = \begin{cases} \sigma & b = b' \\ \sigma \pi^{-1} & b = 0, b' = 1 \\ \sigma \pi & b = 1, b' = 0 \end{cases}$$

V accepts if and only if $H = \tau(G_{b_0})$.

Show the protocol is complete and sound (it is also zero knowledge, can try to prove this as well)

Answer:

Completeness can be verified. For soundness, we note that when $b \neq b'$, then $\tau(G_{b'} = H)$ if and only if π is an isomorphism. If π is not an isomorphism, then the verification check only passes when b = b' and for one of the other cases. This occurs with a probability below 1. We can reduce this probability by re-running the protocol multiple times.

Zero-knowledge. To see this is zero knowledge, we need to show that for any (honest) verifier V^* , there exists an efficient simulator S which can produce a transcript indistinguishable to conversation between the prover P and the verifier V^*

Given a verifier V^* , define $h^*(G_0, G_1, H)$ be the bit chosen by $V^*(G_0, G_1, z)$ at the second step of the protocol, after having received H.

The simulator works as follows: randomly choose a bit $b \in \{0,1\}$ and a permutation σ on G_b . Set $H = \sigma(G_b)$ and let $b' = h^*(G_0)$. If b' = b, output (b', σ, H) . Otherwise, restart. Since Pr[b = b'] = 1/2, simulator iterates twice on average, so it is efficient.

Using Pr[b = b'] = 1/2 again, we see that the simulator halting on a certain (b, σ) is independent of the choice of (b, σ) and therefore of $H = \sigma(G_b)$. Therefore the distribution of the simulator output is the same as the distribution of a real interaction.

2 Interactive Proof for Quadratic Residue

Next, we describe an interactive proof, where the P convinces V of knowledge of a quadratic residue in \mathbb{Z}_N . Namely, for a public statement $x \in \mathbb{Z}_N$, P will prove he knows w such that $w^2 = x \pmod{N}$.

 $P \to V : P$ chooses random $u \stackrel{R}{\leftarrow} \mathbb{Z}_N^*$ and sends $y = u^2$ to V.

 $V \to P : V$ chooses $b \xleftarrow{R} \{0,1\}$ and sends b to P.

 $P \to V$: If b = 0, P sends u to V. If b = 1, P sends $w \cdot u \pmod{n}$ to V.

Verification: Let z denote the number sent by P. V accepts the proof in the case b = 0 and $z^2 = y \pmod{n}$. In the case b = 1, V accepts the proof if $z^2 = xy \pmod{n}$.

Show the protocol is complete and sound (it is zero knowledge as well but this is much trickier).

Answer:

Completeness is an easy check. For soundness, suppose x is not a quadratic residue. Let y be P's output at the beginning of the protocol. Note that we can make V reject if $y \notin Z_N^*$, so assume $y \in Z_N^*$ without loss of generality. Note that y is independent of the bit b which the verifier sends in the second step in the protocol. Assume x is not a quadratic residue. We now have two cases:

Case 1: y itself is a quadratic residue. Then $y=u^2$ for some $u\in\mathbb{Z}_N^*$. With probability 1/2 we have b=1. Assume the prover accepts in this case. Let z be the P's message in the last step of the protocol. Since b=1, the verifier only accepts when $z^2=xy$. But this implies that $(zu^{-1})^2=z^2u^{-2}=xyy^{-1}=x$. This implies x is a quadratic residue, a contradiction. So the verifier rejects with probability >1/2 in this case.

Case 2: y is not a quadratic residue. With probability 1/2 we have that b=0. In this case, the prover must come up with z such that $z^2=y$, which is impossible. So the verifier rejects with probability $\geq 1/2$ in this case.

We showed the verifier accepts with probability less than 1/2 when x is not a quadratic residue. This probability can be reduced with multiple iterations of the protocol.