

Linear Regression

Covering chapters HTF: Ch3, 7

R Greiner
Department of Computing Science
University of Alberta

The Design Cycle

startcollect data choose features choose model train classifier evaluate classifier end

Most of ML course(s) focus on...

Outline

- Linear Regression
 - Iterative approach
 - Gradient Descent
 - Exact computation
 - Basis functions

Prediction Problems ...

- Predict housing price from:
 - House size, lot size, #rooms, neighborhood, location, location, location, ...
- Predict person's weight from:
 - Gender, height, ethnicity, ...
- Predict life expectancy increase from:
 - Medication, disease state, ...
- Predict salary from:
 - GPA, age, skill-set, ...

...

Prediction of (Continuous) Output

- Predict a continuous output based on set of discrete / continuous inputs:
 - Eg, predict Salary from GPA

Training a Regressor

Age	GPA	TroMk		Eye	Salary
35	95	Υ		Pale	100
22	110	Ν	•••	Clear	58
:	:			:	:
10	87	N		Pale	53

Age	GPA	TroMk	 Eye
32	90	N	 Pale

The Linear Regression Task

■ Given set of labeled Instances: $\{[x_j, y_j]\}$ GPA, Age, TroubleMaker, ShoeSize \rightarrow Salary

```
Eg: [ (97, 34, 1, 8); 150 ]
 [ (93, 24, 0, 12); 200 ]
 [ (88, 20, 0, 9); 45 ]
```

- Intuition: Evidence Adds, or Subtracts
 - Base salary := θ_0
 - Salary $+= \theta_1 \times GPA$
 - Salary += $\theta_2 \times$ TroubleMaker
 - Salary += 0 × ShoeSize

Just allow $\theta_2 < 0$

Sometimes... $\theta_3 = 0$

-

The Linear Regression Task

■ **Given set of labeled Instances:** $\{[x_j, y_j]\}$ GPA, Age, TroubleMaker, ShoeSize \rightarrow Salary

```
Eg: [ (97, 34, 1, 8); 150 ]
 [ (93, 24, 0, 12); 200 ]
 [ (88, 20, 0, 9); 45 ]
```

- Learn: Mapping from x to y(x)
 - Direct linear mapping: $y(x) \approx \theta_0 + \sum_j \theta_j x_j$
 - Find coeff's $\theta = (\theta_0, \theta_1, ..., \theta_k)$
- **Model**: Observed value $y(x) = \theta_0 + \sum_j \theta_j x_j + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$

Best LINEAR Fit

- Finding LINEAR fit
 - Find $(\theta_0, \theta_1, ..., \theta_k)$ $y = \theta_0 + \theta_1 x_1 + ... + \theta_k x_k$

- Linear least squares fitting on $X \in \Re$
- Seek the linear function of X that minimizes the sum of squared residuals from Y

$$\arg \min_{\theta} \left[\sum_{i} (y^{(i)} - \theta_0 - \sum_{j} \theta_j x_j^{(i)})^2 \right]$$

Best LINEAR Fit

- Finding LINEAR fit
 - Find $(\theta_0, \theta_1, ..., \theta_k)$ $y = \theta_0 + \theta_1 X_1 + ... + \theta_k X_k$
- Linear least squares fitting on $X \in \Re^2$
- Seek the linear function of X that minimizes the sum of squared residuals from Y

$$\arg\min_{\theta} \left[\sum_{i} (y^{(i)} - \theta_0 - \sum_{j} \theta_j x_j^{(i)})^2 \right]$$

Linear Equation is Hyperplane

Equation $\sum_{i} \theta_{i} x_{i}$ is a (hyper)plane

4

Linear Regression Model

• Assumes that the regression function f(x) is linear

$$f(\mathbf{x}) = \theta_0 + \sum_{i=1}^k \theta_i \, x_i$$

- Linear models are old tools but ...
 - Still very useful
 - Simple
 - Allow an easy interpretation of regressor's effects
 - Useful to understand as foundation for many other methods
 - Very general as X_i's used can be any function of direct variables (quantitative or qualitative)
 - Basis functions

Dealing with Offset

- Actually want k+1 values $\begin{bmatrix} \theta_0 \\ \theta_0 \end{bmatrix}$ θ_1 ,..., θ_k $\end{bmatrix}^T$ $y = \theta_0 + \theta_1 x_1 + ... + \theta_k x_k$
- So view each k-tuple x(i) as k+1 tuple [1, x(i)]

Matrix Notation

X is m × (k+1) of input
$$X = \begin{bmatrix} 1 & x_1^T \\ 1 & x_2^T \\ ... \\ 1 & x_m^T \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & ... & x_{1k} \\ 1 & x_{21} & x_{22} & ... & x_{2k} \\ ... & ... & ... & ... \\ 1 & x_{m1} & x_{m2} & ... & x_{mk} \end{bmatrix}$$

y is the m-vector of outputs (labels)

$$\mathbf{y} \equiv \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_m \end{bmatrix}$$

 \bullet is the (k+1)-vector of parameters

$$oldsymbol{ heta} \equiv egin{array}{c} oldsymbol{ heta}_0 \ oldsymbol{ heta}_1 \ oldsymbol{ heta}_k \ oldsymbol{ heta}_k \end{array}$$

How to make predictions ...

 The linear model is characterized by k+1 parameters θ*

 \blacksquare For each instance x, the prediction is

$$y(x) = x^T \theta^*$$

Gradient Descent

Goal: Find θ* that minimize squared error

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i} [y^{(i)} - \boldsymbol{\theta}_{0} - \boldsymbol{\theta}^{T} \mathbf{x}^{(i)}]^{2}$$

- Can use Gradient Descent!
 - aka Delta Rule, Adaline Rule, Widrow-Hoff Rule, LMS Rule, Classical Conditioning

Local Search via Gradient Descent

- Start w/ (random) weight vector θ^0
- Repeat until Converged (or bored):

■ Compute Gradient
$$\nabla J(\theta^t) = \left[\frac{\partial J(\theta^t)}{\partial \theta_0}, ..., \frac{\partial J(\theta^t)}{\partial \theta_n}\right]$$

- Let $\theta^{t+1} = \theta^t + \eta \nabla J(\theta^t)$
- When CONVERGED: Return(θ^t)

Computing the Gradient

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i} [y^{(i)} - \boldsymbol{\theta}^{T} x^{(i)}]^{2}$$

$$\Delta \mathbf{\Theta}_{j} = \frac{\partial J(\mathbf{\Theta})}{\partial \theta_{j}} = \frac{\partial}{\partial \theta_{j}} \left(\frac{1}{m} \sum_{i=1}^{m} err_{i}(\mathbf{\Theta}) \right) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \theta_{j}} err_{i}(\mathbf{\Theta})$$

$$\frac{\partial err_{i}(\theta)}{\partial \theta_{j}} = \frac{\partial}{\partial \theta_{j}} \left[\left(\sum_{i=1}^{m} \theta_{j} x_{j}^{(i)} \right) - y^{(i)} \right]^{2}$$

$$= 2 \cdot \left[\left(\sum_{i=1}^{m} \theta_{j} x_{j}^{(i)} \right) - y^{(i)} \right] \cdot \frac{\partial}{\partial \theta_{j}} \left[\left(\sum_{i=1}^{m} \theta_{j} x_{j}^{(i)} \right) - y^{(i)} \right]$$

$$= 2 \cdot \left[\left(\sum_{i=1}^{m} \theta_{j} x_{j}^{(i)} \right) - y^{(i)} \right] \cdot x_{j}^{(i)}$$

Then descend a distance
$$\eta$$
 along gradient $\left[\frac{\partial J(\theta)}{\partial \theta_0}, \frac{\partial J(\theta)}{\partial \theta_1}, ..., \frac{\partial J(\theta)}{\partial \theta_k}\right]_{18}$

feature j

0. New θ

$$\Delta \theta := 0$$

1. For each row i, compute

a.
$$E^{(i)} = y^{(i)} - \theta^T x^{(i)}$$

b.
$$\Delta \theta += E^{(i)} \mathbf{x}^{(i)}$$

 $E^{(i)}$

$$[\forall j \ \Delta \theta_j += E^{(i)} x^{(i)}_j]$$

2. Increment $\theta += \eta_t \Delta \theta$

y⁽ⁱ⁾

 $\Delta \Theta \rightarrow \boxed{ \Delta \Theta_{j} }$

4

Gradient Descent Algorithm

Gradient-Descent(S : training examples; $\eta \in \Re^+$)

%
$$S = \{ [\mathbf{x}^{(i)}, y^{(i)}] \},...$$

% $x = vector of input values; t is target output value % <math>\eta$ is learning rate (eg, 0.05)

- Initialize each θ_i to small random value
 - Typically $\in [-0.05, +0.05]$
- Until termination condition is met, do
 - Initialize each $\Delta \theta_i \leftarrow 0$
 - For each $[\mathbf{x}^{(i)}, \mathbf{y}^{(i)}] \in S$, do
 - Set $E^{(i)} \leftarrow y^{(i)} \theta^T \mathbf{x}^{(i)}$
 - For each j, do

$$\Delta \theta_{j} \leftarrow \Delta \theta_{j} + E^{(i)} x^{(i)}_{j}$$

For each j do

$$\bullet \theta_j \leftarrow \theta_j + \eta_t \Delta \theta_j$$

Return θ

$$E^{(i)} \leftarrow y^{(i)} \ - \theta^{\text{T}} \ x^{(i)}$$

Batch vs On-Line

- Batch:
 - do entire "epoch" (all instances),
 - then update weights
- On-line:
 - Update weights after each instances
 - ... do multiple epochs...
 aka "Stochastic Gradient Descent",
 "Robbins-Munro algorithm"
- In gen'l...
 - Batch is smoother, better model of training data
 - But on-line may avoid local minima as "noisier"

4

Correctness

- Rule is intuitive: Climbs in correct direction...
- Theorem: Converges to correct answer, if ...
 - sufficiently small η
- Proof: Weight space has **EXACTLY 1 minimum**! (no non-global minima)
 - ⇒ with enough steps, finds correct function!
- Explains early popularity
- If η too large, may overshoot If η too small, takes too long
- Can use η_t ... which decays with # of iterations, t

4

Learning Rates and Convergence

- Learning rate η ≡ "step size"
- Convergence whenever...
 - $\lim_{t\to\infty}\eta_t = 0$
- ∃ sophisticated alg's
 (Newton's method; Line Search; ...)
 that choose step size automatically, converge faster.
- ∃ only one "basin" for linear threshold units
 ⇒ local minimum is global minimum!
- Good starting point ⇒ algorithm converges faster

Results wrt Gradient Descent

Gradient descent (Delta training rule)

- guaranteed to converge to hypothesis with minimum squared error (eventually!)
 if...
 - Sufficiently small learning rate η

- ... even when training data...
 - contains noise
 - not separable!

Outline

- Linear Regression
 - Iterative approach
 - Exact computation
 - Matrix operation
 - Least Square = MLE if Gaussian noise
 - Basis functions

Regression in Matrix Notation

$$\boldsymbol{\theta}^* = arg\min_{\boldsymbol{\theta}} \sum_{i=1}^m \left[\mathbf{y}^{(i)} - \sum_{j=1}^k \mathbf{\theta}_j \ \mathbf{x}_j^{(i)} \right]^2$$

$$= arg\min_{\boldsymbol{\theta}} (\mathbf{y} - \mathbf{X} \boldsymbol{\theta})^{\mathrm{T}} (\mathbf{y} - \mathbf{X} \boldsymbol{\theta})$$

"input" X values

Residual Error of θ

Optimal θ^* Values

$$J(\theta) = (\mathbf{X}\theta - \mathbf{y})^{T} (\mathbf{X}\theta - \mathbf{y})$$

$$= (\mathbf{X}\theta)^{T} \mathbf{X}\theta - \mathbf{y}^{T} \mathbf{X}\theta - (\mathbf{X}\theta)^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y}$$

$$= \theta^{T} \mathbf{X}^{T} \mathbf{X}\theta - 2\mathbf{y}^{T} \mathbf{X}\theta + \mathbf{y}^{T} \mathbf{y}$$

$$J'(\theta) = 2\theta \mathbf{X}^{T} \mathbf{X} - 2\mathbf{X}^{T} \mathbf{y}$$

$$J'(\theta) = 0$$

$$\Rightarrow \theta \mathbf{X}^{T} \mathbf{X} = \mathbf{X}^{T} \mathbf{y}$$

$$\Rightarrow \theta^{*} = (\mathbf{X}^{T} \mathbf{X})^{-1} (\mathbf{X}^{T} \mathbf{y})$$

Regression solution = simple matrix operations

$$\theta^* = \arg\min_{\theta} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

Setting derivative to 0 yields:

Solution:
$$\mathbf{\theta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \mathbf{A}^{-1} \mathbf{b}$$

where
$$\mathbf{A} = \mathbf{X}^T \mathbf{X} = \begin{bmatrix} & & \\$$

If X square & invertible, then $(X^TX)^{-1}X^T = X^{-1}$

Gradient-Descent vs Matrix-Inversion

Pro: Gradient Descent advantages

- ≈Biologically plausible
- Each iteration costs only O(km)
- If uses < m iterations, faster than Matrix Inversion!
- More easily parallelizable

Con: Gradient Descent disadvantages

- It's moronic... essentially a slow way to build X^TX matrix, then solve a set of linear equations
- If m is small, it's especially outrageous If m is large then direct matrix inversion method can be problematic but not impossible if you want to be efficient
- Need to choose a good learning rate η_t -- how?
- Matrix inversion takes predictable time.
 You can't be sure when gradient descent will stop.

Likelihood of Data, given θ

■ **Model**: Observed value is $y(\mathbf{x}) = \theta^T \mathbf{x}_j + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$

$$P(\mathbf{y}|\mathbf{x},\boldsymbol{\theta},\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{[\mathbf{y}-\boldsymbol{\theta}^T\mathbf{x}]^2}{2\sigma^2}}$$

• Given θ , σ : y_1 given x_1 is independent of y_2 given x_2

$$P(\mathbf{y}_{1}, \mathbf{y}_{2} \mid \mathbf{x}_{1}, \mathbf{x}_{2}, \boldsymbol{\theta}, \sigma) = P(\mathbf{y}_{1} \mid \mathbf{x}_{1}, \boldsymbol{\theta}, \sigma) P(\mathbf{y}_{2} \mid \mathbf{x}_{2}, \boldsymbol{\theta}, \sigma)$$

$$= \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\left[\mathbf{y}_{1} - \boldsymbol{\theta}^{T} \mathbf{x}_{1}\right]^{2}}{2\sigma^{2}}} \times \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\left[\mathbf{y}_{2} - \boldsymbol{\theta}^{T} \mathbf{x}_{2}\right]^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{2} e^{-\frac{\left[\mathbf{y}_{1} - \boldsymbol{\theta}^{T} \mathbf{x}_{1}\right]^{2} + \left[\mathbf{y}_{2} - \boldsymbol{\theta}^{T} \mathbf{x}_{2}\right]^{2}}{2\sigma^{2}}}$$
31

Distribution p(y|x), at each x

Likelihood of Data, given θ

Likelihood from MANY labeled instances,
 given θ

$$= \ln P([y^{(1)}, ..., y^{(m)}] | [x^{(1)}, ..., x^{(m)}], \theta, \sigma)$$

$$= m \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right) - \frac{1}{2\sigma^2} \sum_{i} \left[y^{(i)} - \sum_{j} \theta_{j} x_{j}^{(i)}\right]^{2}$$

Max Likely Estimate

 Find most likely value of θ from MANY labeled instances... (MLE)

instances... (MLE)

$$\ln P(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}, \sigma) = m \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right) - \frac{1}{2\sigma^2} \sum_{i} \left(y^{(i)} - \sum_{j} \theta_j x_j^{(i)}\right)^2$$

$$\operatorname{argmax}_{\theta} \ln P(\mathbf{y} \mid \mathbf{x}, \theta, \sigma) = \left[\operatorname{argmin}_{\theta} \sum_{i} \left(y^{(i)} - \sum_{j} \theta_{j} x_{j}^{(i)} \right)^{2} \right]$$

Least-squares Linear Regression is MLE for Gaussians !!!

Outline

- Linear Regression
 - Iterative approach
 - Exact computation
 - Basis functions

What about other features?

- Data:
 - Not linear!!
 - Perhaps $f(x) = \alpha_2 x^2 + \alpha_1 x + \alpha_0$
- How to fit ???

У	
18	
11	
38	
6	
	-

$$\alpha_2 = -0.179$$
 $\alpha_1 = 1.938$
 $\alpha_0 = 1.543$

4

General Approach

General Linear Regression Task

- Given set of labeled Instances: { [x_i, y_i] }
- Learn: Mapping from x to y(x)
- Can use **BASIS** functions: $H = \{ h_1(\mathbf{x}), ..., h_r(\mathbf{x}) \}$
 - Eg: x_i^2 , x_i^3 , $(x_1 x_3)$, $x_i \sin(x_i)$, ...
 - (Basis) linear mapping: $y(x) \approx \sum_{j} \theta(h_{j}(x))$
 - Find coeffs $\theta = (\theta_1, ..., \theta_r)$
- **Model**: Observed value $y^*(x) = \sum_j \theta_j h_j(x) + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$

Model is LINEAR in these bases... even if bases are NOT linear

Features/Basis Functions

Polynomials

Fun Demo

http://mste.illinois.edu/users/exner/java.f/leastsquares/

- \blacksquare 1, x, X^2 , X^3 , X^4 , \blacksquare
- Gaussian densities
 - Indicators
- Sigmoids
 - Step functions
- Sinusoids (Fourier basis)
- Wavelets
- Anything you can imagine...

The Design Cycle

Features: basis functions...

Common Basis Functions

Polynomial basis functions:

$$\varphi_j(\mathbf{x}) = \mathbf{x}^j$$

small changes in x affect all basis functions

4

Common Basis Functions

2. Gaussian Basis functions:

$$\varphi_j(\mathbf{x}) = \exp\left(-\frac{(\mathbf{x} - \mu_j)^2}{2s_j^2}\right)$$

- $-\mu_j$, s_j control location, scale (width)
- $\varphi_j(x)$ is ≈ 1 when x is $\pm \alpha s_j$ of μ ... else ≈ 0
- Wider range, for larger s_j

Common Basis Functions

2. Gaussian Basis functions:

$$\varphi_j(\mathbf{x}) = \exp\left(-\frac{(\mathbf{x} - \mu_j)^2}{2s_j^2}\right)$$

- Suite of basis functions ...
 - Range of $\{\mu_j\}$, fixed $s_j = s$
- local:
 small changes in x only
 affect nearby basis functions

Common Basis Functions, ...

3. Sigmoidal basis functions:

$$\varphi_j(\mathbf{x}) = \sigma(k_j(\mathbf{x} - \mu_j))$$
where $\sigma(a) = \frac{1}{1 + \exp(-a)}$

- μ_i and k_j control location and slope
- Suite

 local: small changes in x only affect nearby basis functions

Why use Basis Functions?

- Other basis functions can involve >1 variables
- Labels that are ...
 - NOT linear combination of the original input space x,
 - might be linear in the feature space $\varphi_j(x)$
- ... or at least, approximately so...

What if response **y**(i) is a vector?

- Want to have linear models for predicting both [height, weight]?
- Nothing changes!
- Scalar prediction:

Solution:
$$\mathbf{\Theta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Vector prediction:

Solution:
$$\mathbf{\Theta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$
Weight MATRIX Target MATRIX

- Why?
- ... parameters are independent of each other...

Properties of Least Squares estimators

• If X fixed, Y_i are independent and $Var(Y_i) = \sigma^2$ constant, then

$$E(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}, \quad Var(\hat{\boldsymbol{\theta}}) = \sigma^2 (X^T X)^{-1}$$
and
$$E(\hat{\sigma}^2) = \sigma^2 \quad \text{where} \quad \hat{\sigma}^2 = \frac{1}{m - k - 1} \sum (y_i - \hat{f}(\mathbf{x}_i))^2$$

• If, in addition $Y_i = f(X_i) + \varepsilon$ with $\varepsilon \sim N(0, \sigma^2)$, then

$$\hat{\boldsymbol{\theta}} \sim N(\boldsymbol{\theta}, X^T X \sigma^2)$$
 where $(m-k-1)\hat{\sigma}^2 \sim \sigma^2 \chi_{m-k-1}^2$

Warning

$$\hat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

- If X square & invertible, then $(X^TX)^{-1}X^T = X^{-1}$
- When X^TX is singular,
 the least squares coefficients θ are not well defined
- Need alternative strategy to obtain a solution:
 - Recoding and/or dropping redundant columns
 - Filtering
 - Control fit by regularization

Sparse models: LATER!

Summary

Finding linear regression model

$$\mathbf{y} = \boldsymbol{\theta}^T \mathbf{x}$$

is very common

- Many ways to find this effective
 - Iterative approach: Gradient descent
 - Exact computation (Matrix operation)
 - Least Square = MLE if Gaussian noise
- Can handle complex relations by using basis functions