Guía de Exploración 10

Objetivos de la Guía

- Aprender sobre los grafos
- · Aprender sobre la implementación matriz de adyacencia en C++
- Aprender sobre la implementación lista de adyacencia en C++

Soy el mapa

El mapa de Dora la exploradora se va a retirar porque ya esta muy viejo, así que busca entrenar a un nuevo mapa que sea el nuevo mapa. Como hoy en día, los mapas tienen el poder de los computadores, parte del entrenamiento consiste en realizar programar de C++ para poder leer y mostrar mapas.

Mostrar la información de matriz * Parte 1:

La primera parte del entrenamiento consiste en hacer uso de la matriz de adyacencia para poder representar un mapa. Su trabajo es realizar un código que lea un grafo por consola y muestre por cada nodo los vecinos a los que puede llegar.

* Input:

La primera línea consiste en dos enteros n y m_{r} dónde n corresponde a la cantidad de nodos y mcorresponde a la cantidad de aristas del grafo respectivamente.

Luego, le siguen m líneas dónde cada línea tiene dos enteros a y b $(1 \le a, b \le n)$ correspondiente a que entre la ciudad a y b existe una arista bidireccional.

3 4 1 2 2 3 3 3 1 3			
1 2			
2 3			
3 3			
1 3			
Output:			

Muestre por pantalla líneas, dónde en la i-ésima línea se muestre todos los vecinos del nodo i. Si el nodo no tiene vecinos, la línea quedará vacía. No importa el orden en que se muestran los vecinos.

2 3		
3		
1 2 3		
Atmos ciemples		

* Otros ejemplos:

Input 1 0 Output

Guía de Exploración 10

Input

Output

Tip 1

Recuerde que en la matriz de adyacencia si en la posición (i,j) hay un 1 es porque existe la arista entre i y j, si hay un 0 es porque no existe.

* Parte 2: Ahora con lista de adyacencia

Realice el mismo problema anterior, pero ahora utilizando lista de adyacencia. Utilice los mismos ejemplos anteriormente planteados.

Tip 1

Recuerde que en la lista de la adyacencia, en la posición i del vector se encuentran los vecinos de i.

Guía de Exploración 10

> B - El amigo del amigo

Mak Suqerver creó la red social OCIBook y tiene una pregunta, ¿Qué amigos tienen en común dos personas?. Para eso les pide ayuda a ustedes, en hacer un programa que reciba la cantidad de personas en su red social. Además, de recibir si es que una persona a es amiga de una persona b.

* Input:

La primera línea consiste de dos enteros n_i dónde n corresponde a la cantidad de personas dentro de la red social.

Luego, le siguen $n \cdot n$ líneas, dónde en la i-línea se encuentra dos enteros a_i y b_i , correspondiente a que las personas a_i y b_i son amigas. Luego, le sigue una última línea que corresponde dos enteros x e y, dónde x e y son las personas que queremos saber cuáles son sus amigos en común.

6 4			
6 4 1 2 2 3 1 3 4 3 1 3			
2 3			
1 3			
4 3			
1 3			

* Output:

Muestre por pantalla todos los amigos que tienen en común x e y. Da lo mismo el orden en que muestres a los amigos en común.

2

* Otros ejemplos:

Input

8 5
3 2
4 5
3 5
4 6
6 3
4 3

Output

5 6

Tip 1

Para este problema imaginen que:

- las personas son nodos
- si a y b son amigos, entonces existe una arista entre a y b.