Second Degré.

1 Fonctions polynômes de degré 2.

Définition 1

- Une **fonction polynôme de degré** 2 est une fonction f définie sur \mathbb{R} qui peut être mise sous la forme $f(x) = ax^2 + bx + c$ où a, b, c sont trois nombres rééls avec a non nul.
- L'expression $ax^2 + bx + c$ est la **forme développée** de f(x).
- Une fonction polynôme de degré 2 est aussi appelée **trinôme** (du second degré).
- On appelle **parabole** la représentation graphique d'un trinôme.

Exemple 1

Les fonctions suivantes sont-elles des trinômes?

1.
$$g(x) = 2x^2 + 3x + 1$$
.

2.
$$h(x) = 3(x-1)^2 + 1$$
.

3.
$$i(x) = 4(x-1)(x+2)$$
.

4.
$$i(x) = 5x + 3$$
.

5.
$$i(x) = x^3 + 4x^2 + 1$$
.

Théorème 1 (Variations d'un trinôme du second degré)

Un trinôme $f(x) = ax^2 + bx + c$ admet pour variations :

— Si
$$a > 0$$

x	-∞	α	+∞
f(x)	+∞	β	+∞

x	-∞	α	+∞
f(x)	-∞	β	-∞

On peut calculer les coordonnées (α, β) du sommet S de la parabole grâce aux formules

$$\alpha = -\frac{b}{2a} \qquad \beta = f(\alpha)$$

1

De plus, f s'écrit $f(x) = a(x - \alpha)^2 + \beta$. Cette écriture est la **forme canonique** du trinôme.

Exemple 2

Pour chacun des trinômes $P(x) = 2x^2 + 4x - 3$ et $Q(x) = -(x-2)^2$:

- **1.** Identifier les coefficients *a, b, c*.
- 2. Dresser le tableau de variation.

2 Racines et factorisation.

Définition 2

Soit $f(x) = ax^2 + bx + c$ un trinôme du second degré et \mathcal{P} sa représentation graphique.

On appelle **racines** de f les solutions de l'équation f(x) = 0. Ce sont les abscisses des points d'intersection entre \mathcal{P} et l'axe des abscisses.

Exemple 3

Les fonctions suivantes admettent-elles des racines? Si oui, combien? Et quelles sont-elles?

1.
$$f(x) = 3(x+1)(x-2)$$
.

2.
$$g(x) = 2(x-3)^2$$
.

Proposition 1

Soit f(x) un trinôme du second degré et $\mathcal P$ sa représentation graphique. Trois cas peuvent se produire :

- f admet 2 racines, c'est-à-dire $\mathcal P$ coupe l'axe des abscisses en 2 points.
- f admet une racine, c'est-à-dire \mathcal{P} est tangente à l'axe des abscisses (1 point d'intersection). Dans ce cas, on dit que la racine est une **racine double**.
- f n'admet pas de racine, c'est-à-dire \mathcal{P} ne coupe pas l'axe des abscisses.

Définition 3 (Discriminant)

Soit f(x) un trinôme du second degré dont la forme développée réduite est $f(x) = ax^2 + bx + c$. On appelle **discriminant** de ce trinôme le nombre $\Delta = b^2 - 4ac$.

Exemple 4

Calculer les discriminants des trinômes suivants :

- 1. Soit $h(x) = x^2 4x + 3$.
- 2. Soit $i(x) = 2x^2 4x + 2$.
- 3. Soit $j(x) = -3x^2 + 12x 15$

Théorème 2 (Central)

Soit $f(x) = ax^2 + bx + c$ un trinôme.

— si le discriminant Δ de f(x) est strictement positif alors f(x) admet deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \qquad \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

et on peut factoriser f(x) en $f(x) = a(x - x_1)(x - x_2)$.

— si le discriminant de f(x) est nul alors f(x) admet une racine double

$$x_0 = -\frac{b}{2a} (=\alpha)$$

et on peut factoriser f(x) en $f(x) = a(x - x_0)^2$.

— si le discriminant de f(x) est strictement négatif alors f(x) ne possède pas de racine et on ne peut pas factoriser f(x) en un produit de termes de degré 1.

Exemple 5

Calculer les racines (éventuelles) des trinômes de l'exemple 4, puis factoriser ces trinômes (si possible).