Written Assignment 5 Math 290, Dr. Walnut

Lucas Bouck

11/2/15

1 Problem 1:

Let a and b be natural numbers. Use the WOP to prove that gcd(a,b) is the smallest natural number d with the property that for some integers x and y, ax + by = d.

Proof:

Let a and b be natural numbers. Define the set S to contain the natural number n such that there exist integers x and y such that ax + by = n. Since this set only contains natural numbers, all the elements of the set S are in the natural numbers. Thus, $S \subseteq \mathbb{N}$. For all natural numbers a and b, a*1+b*1=a+b. Since 1 and 1 are integers, $(a+b) \in S$. Thus, S is not empty. Since $S \subseteq \mathbb{N}$ and $S \neq \emptyset$, by the well ordering principle, S has a least element S. Thus, by the way it is defined, there does exist a smallest natural number S0 with the property that for some integers S1 and S2 and S3 are in the natural number S4.

We want to show that d is a common divisor of a and b. We will show this by contrapositive. There will be two cases. For the first case, let $d \not a$. Thus, by the division algorithm, a = dq + r, where 0 < r < d. Then, r = a - dq = a - (ax + by)q = a - aqx - bqy = a(1 - qx) - b(qy). Since $q, x, y \in \mathbb{Z}$, then (1 - qx) and qy are integers. Since r > 0 and there exist integers (1 - qx) and qy such that r = a(1 - qx) - b(qy), $r \in S$. Since $r \in S$ and r < d, d is not the least element of S. For case 2, let $d \not b$. Thus, by the divisor algorithm, b = dk + n, where 0 < n < d. Then, n = b - dk = b - (ax + by)k = b - akx - bky = b(1 - ky) - a(kx). Since $k, x, y \in \mathbb{Z}$, then (1 - ky) and kx are integers. Since n > 0 and there exist integers (1 - ky) and kx such that n = b(1 - ky) - a(kx), $n \in S$. Since $n \in S$ and n < d, d is not the least element of S. In both cases, if d is not a common divisor of a and b, then d is not the least element of S. Thus, by contrapositive, since d is the least element of S, d is a common divisor of a and b.

We know that d as defined exists and is a common divisor of a and b. We now want to show that d is greater than or equal to all other common divisors of a and b. Let z be a common divisor of a and b. Then, there exist integers m and p such that zm = a and zp = b. Since ax + by = d, then zmx + zpy = d. Then, z(mx + py) = d. Let mx + py = l.

Since $m, x, p, y \in \mathbb{Z}$, then $l \in \mathbb{Z}$. Hence, there exists an integer l such that zl = d. Then, z|d. Since z|d, $z \leq d$. Therefore, any common divisor of a and b is less than or equal to d.

Since we have proven the smallest natural number d with the property that for some integers x and y, ax + by = d does exist, is a common divisor of a and b, and is greater than or equal to all other common divisors of a and b, then d as it is defined is the greatest common divisor of a and b.

$\mathbf{2}$ Problem 2:

Use induction to prove that for all natural numbers $n \geq 2$, $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$.

Let n = 2. Since $2 > \sqrt{2}$, then $\sqrt{2} + \sqrt{2} = 2\sqrt{2} < 2 + \sqrt{2}$. Then, $\sqrt{2} < \frac{2+\sqrt{2}}{2} = \frac{\sqrt{2}+1}{\sqrt{2}} = \frac{\sqrt{2}+1}{2} = \frac{\sqrt{2}+1$

 $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}}$. Thus, $\sqrt{2} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}}$. The result holds for n = 2. Let $n \in \mathbb{N}$. Assume $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$ is true. Since $n \in \mathbb{N}$, n + 1 > n. Since $n \in \mathbb{N}$ is a natural number, $\sqrt{n+1} > \sqrt{n}$. Then, $\sqrt{n+1}\sqrt{n} > n$. Then, $1 + \sqrt{n+1}\sqrt{n} > n + 1$. Then, $\frac{1+\sqrt{n+1}\sqrt{n}}{\sqrt{n+1}} > \frac{n+1}{\sqrt{n+1}}$. Then, $\frac{1}{\sqrt{n+1}} + \sqrt{n} > \sqrt{n+1}$. By the inductive hypothesis, $\frac{1}{\sqrt{n+1}} + \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}}$. Since $\frac{1}{\sqrt{n+1}} + \sqrt{n} > \sqrt{n+1}$, then $\sqrt{n+1} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}}$. Thus, the result holds for n+1.

3 Problem 3:

Use induction to prove that for all x > 0 and natural numbers $n \ge 2$, $(1+x)^n > 1 + nx$. **Proof:**

Let n = 2. Since x > 0, $x^2 > 0$. Thus, $x^2 + 2x + 1 > 2x + 1$. Thus, $(1+x)^2 > 1 + 2x$. Therefore, the result holds for n=2.

Let $n \in \mathbb{N}$. Assume $(1+x)^n > 1 + nx$ is true. Since x > 0 and n > 0, $nx^2 > 0$. Thus, $nx^2 + (n+1)x + 1 > (n+1)x + 1$. By factoring the left side, we get $(1+nx)(1+x) > nx^2 + (n+1)x + 1$ (n+1)x+1. By the induction hypothesis, which is $(1+x)^n>1+nx$, $(1+x)^n(1+x)>$ (1+nx)(1+x) > (n+1)x+1. Thus, $(1+x)^{n+1} > 1+(n+1)x$. Therefore, the result holds for n+1.

Problem 4 4

Let a and b be natural numbers. Use induction to prove that if gcd(a,b) = 1 then for all natural numbers n, $gcd(a, b^n) = 1$. (Hint: You already proved the base case, n = 2, in a previous written assignment, so you do not have to do it again here.)

Proof:

We already did the base case in a previous assignment, so we will just do the inductive step. Let $n \in \mathbb{N}$. Let gcd(a,b) = 1 then for all natural numbers n, $gcd(a,b^n) = 1$ be true. We want to show that if gcd(a,b) = 1, then $gcd(a,b^{n+1}) = 1$. Let gcd(a,b) = 1. By the inductive hypothesis, $gcd(a,b^n) = 1$. Then, there exist integers x and y such that $ax + b^n y = 1$. Since gcd(a,b) = 1, then there exist integers m and l such that am + bl = 1. Then, bl = 1 - am. By multiplying bl to both sides of $ax + b^n y = 1$, we get $axbl + bb^n ly = axbl + b^{n+1}(ly) = bl = 1 - am$. Then, $axbl + am + b^{n+1}(ly) = a(xbl + m) + b^{n+1}(ly) = 1$. Let (xbl + m) = c and let ly = d. Since $x, b, l, m, y \in \mathbb{Z}$, then $c, d \in \mathbb{Z}$. Then, there exist integers c and d such that $ac + b^{n+1}d = 1$. By a theorem proven earlier in the course, $gcd(a, b^{n+1}) = 1$. Therefore, the result holds for n + 1.