MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2020 Calculator-free

Marking Key

© MAWA, 2020

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

June 12th the end of week 7 of term 2, 2020

2

Section One: Calculator-free (50 Marks)

Question 1(a) (2 marks)

Solution	
$f(x) = (3 + x^3)^{\frac{1}{2}}$	
$f'(x) = \frac{1}{2}(3 + x^{3})^{\frac{-1}{2}}(3x^{2})$	
$=\frac{3x^2}{2\sqrt{3+x^3}}$	
Mathematical behaviours	Mark
applies chain rule	1
obtains correct result	1

Question 1(b) (2 marks)

Solution	
$z = t^2 \cos(2t - 1)$	
$\frac{dz}{dt} = \cos(2t - 1) \times 2t + t^2 \times (-2)\sin(2t - 1)$	
$=2t\cos(2t-1)-2t^2\sin(2t-1)$	
Mathematical behaviours	Marks
differentiates cos term correctly	1
applies product rule and states result	1

Question 1(c) (3 marks)

(aloonon = (a)	(O mana)
Solution	
$y = 5\sin(4x + 3)$	
$\frac{dy}{dx} = 5\cos(4x + 3^2 + 16 \times (5\sin(4x + 3))^2$	
$=400\cos^2(4x+3)+400\sin^2(4x+3)$	
$=400(\cos^2(4x+3)+\sin^2(4x+3)) \qquad(*)$	
=400	
Mathematical behaviours	Marks
differentiates correctly	1
substitutes and simplifies to (*)	1
evaluates correctly, stating Pythagorean identity	1

CALCULATOR-FREE SEMESTER 1 (UNIT 3) EXAMINATION

Question 2(a) (2 marks)

()	(=)
Solution	
$f(x) = 0 \Rightarrow x^3 - 12x = 0$	
$\Rightarrow x(x^2 - 1) = 0$	
$\Rightarrow x = 0, \pm \sqrt{12}$	
Mathematical behaviours	Marks
• equates function to 0 and obtains $x = 0$	1
• states $x = \pm \sqrt{12}$	1

Question 2(b) (4 marks)

Solution	
$f(x) = x^3 - 12x$	
$f'(x) = 3x^2 - 12 = 0 \Rightarrow x = \pm 2$ $f(2) = -16, f''(2) = 12 > 0 \Rightarrow \min$	
$f''(x) = 6x$ $f(-2) = 16, f''(-2) = -12 \Rightarrow \max$	
$f''(x) = 0 \Rightarrow x = 0, \ f(0) = 0 \Rightarrow \text{ point of inflection}$	
Mathematical behaviours	Marks
	_
differentiates, equates to 0 and solves	1
 differentiates, equates to 0 and solves obtains correct y values of the stationary points 	1 1
·	1
obtains correct y values of the stationary points	1

Question 2(c) (1 mark)

Solution	
$f(x) = x^3 - 12x$	
f(-4) = -64 + 48 = -16	
f(4) =64 - 48 =16	
∴ maximum is 16 since $f(-2)$ is also 16	
Mathematical behaviours	Marks
• determines $f^{(4)}$ and concludes maximum	1

•	plots stationary points and point of inflection accurately	1
•	obtains correct shape for the graph, scale and end points	

Question 2(d) (3 marks) Question 3(a) (1 mark)

Solution	, ,
x=2,	
$\frac{dc}{dx} = 2(8+1)^{\frac{1}{2}} = 6$	
Mathematical behaviours	Mark
states correct answer	1

Question 3(b) (4 marks)

puestion 3(b)	(4 marks)
Solution	
$\int_{0}^{2} x (2x^{2} + 1)^{\frac{1}{2}} dx$	
$=\frac{1}{4}\int_{0}^{2}4x(2x^{2}+1)^{\frac{1}{2}}dx$	
$=\frac{1}{4}\left[\left(2x^2+1\right)^{\frac{3}{2}}\cdot\frac{2}{3}\right]_0^2$	
$=\frac{1}{6}(27-1)$	
$=\frac{13}{3}$	
Mathematical behaviours	Marks
$\int_{2}^{2} x(2x^{2}+1)^{\frac{1}{2}} dx$	1
• states the change as ^o	
• anti differentiates correctly	4

Watternation behaviours	IVIGINS
$\int_{0}^{2} x(2x^{2}+1)^{\frac{1}{2}} dx$	1
• states the change as ^o	
anti-differentiates correctly	1
substitutes correct limits of integration	1
determines correct answer	1

Ouestion 4(a) (2 marks)

(()	(=)
Solution	
$k + 3k + 5k + 4k = 1 \Rightarrow k = \frac{1}{13}$	
Mathematical behaviours	Marks
states the sum of probabilities is 1	1
deduces k value	1
ν	·

(2 marks)

Mathematical behaviours	Marks
 states an expression to calculate required probability 	1
 determines probability 	1

Question 4(c) (2 marks)

Solution	
8	
$P(X \le 5 \mid X > 2) = \frac{\overline{13}}{\underline{12}} = \frac{8}{12} = \frac{2}{3}$	
Mathematical behaviours	Marks
writes fraction with the correct denominator	1
obtains simplified result	1

Question 5(a) (4 marks)

Solution	Solution	
(i)		
2π		
$\int_{0}^{2\pi} 2\sin(4x) dx$		
$\left[-2\cos(4x)\right]^{2\pi}$		
$= \left[\frac{-2\cos(4x)}{4}\right]_0^{2\pi}$		
$=-\frac{1}{2}[\cos 8\pi - \cos 0]$		
$\frac{1}{2} \left[\cos \omega t - \cos \theta \right]$		
=0		
(ii)		
$cx + \sqrt{x}$		
$\int \frac{1}{x} dx$		
-1		
$\int \frac{x + \sqrt{x}}{x} dx$ $= \int 1 + x^{-\frac{1}{2}} dx$ $= x + 2\sqrt{x} + c$		
$=x+2\sqrt{x}+c$		
Mathematical behaviours	Marks	
(i)		
states anti-derivative	1	
evaluates result	1	
(ii)		
rewrites fraction as sum of two functions	1	
• anit-differentiates including ^C	1	

CALCULATOR-FREE SEMESTER 1 (UNIT 3) EXAMINATION

Question 5(b) (3 marks)

Solution	
(i)	
6 1 6	
$\int_{1}^{\infty} f(x) dx = -\int_{4}^{\infty} f(x) dx + \int_{4}^{\infty} f(x) dx$	
=-1+4	
=3	
(ii)	
1 1	
$\int (2f(x)+1) dx = 2 \int f(x) dx + \int 1 dx$	
4 4 4	
$=2(1)+[x]_4^1$	
=2 + (1 - 4)	
=-1	
Mathematical behaviours	Marks

Mathematical behaviours	Marks
(i)	
applies linearity of integrals, swaps bounds of integration and determines	_
the correct result	1
(ii)	
applies linearity of integrals correctly	1
integrates correctly and calculates the result	1

Question 5(c) (5 marks)

0.1.0	
Solution	
$y = \frac{1}{e^{2x} + 1} = (e^{2x} + 1)^{-1}$ $\frac{dy}{dx} = \frac{-2e^{2x}}{(e^{2x} + 1)^2} = -2\left(\frac{e^x}{(e^{2x} + 1)}\right)^2$	
$\int \frac{dy}{dx} dx = \int 2\left(\frac{e^x}{(e^{2x}+1)}\right)^2 dx$	
$ie y+C=-2\int \left(\frac{e^x}{(e^{2x}+1)}\right)^2 dx$	
$ie^{\frac{1}{e^{2x}+1}}+C=-2\int \left(\frac{e^{x}}{(e^{2x}+1)}\right)^{2}dx$	
$ie\left(\frac{-1}{2}\right)\frac{1}{e^{2x}+1}+C=\int \left(\frac{e^{x}}{\left(e^{2x}+1\right)}\right)^{2}dx \Rightarrow A=\frac{-1}{2}$	
Mathematical behaviours	Marks
applies the chain rule to the derivative	1
• differentiates e^{2x} correctly	1
recognises application of the Fundamental Theorem	1
	1
• factors out -2 and re-writes fraction involving e^{2x} in numerator and	
denominator as one fraction squared	
<u> 1</u>	1
• multiplies both sides of expression by $\frac{1}{2}$ to obtain desired result	

Question 6(a) (3 marks)

Solution	
$y = \frac{8x}{(x-1)^2} \Rightarrow \frac{dy}{dx} = \frac{(x-1)^2 \cdot 8 - 8x \times (2)(x-1)}{(x-1)^4}$	
$= \frac{8(x-1)-16x}{(x-1)^3} \Rightarrow c = 1, d = -1$	
$= \frac{-8x - 8}{(x - 1)^3} \Rightarrow a = b = -8.$	
Mathematical behaviours	Marks
applies quotient rule	1
 differentiates both parts correctly and states the value of c and d 	1
simplifies result and states value of a and b	1

CALCULATOR-FREE SEMESTER 1 (UNIT 3) EXAMINATION

Question 6(b) (2 marks)

_	
\sim	H ITHAY
20	lution

Parallel to
$$x$$
 axis $\Rightarrow \frac{dy}{dx} = 0 \Rightarrow \frac{-8x - 8}{(x - 1)^3} = 0 \Rightarrow x = -1 \Rightarrow y = \frac{-8}{4} = -2$.

the coordinates of B are (-1,-2)

So

	Mathematical behaviours	Marks
•	equates derivative to 0 and solves	1
•	states co-ordinates of B	1

Question 7(a) (2 marks)

Solution	
It is the area between the two curves from $x = 0$ to $x = \pi$.	
Mathematical behaviours	Marks
states it is the area between the two given curves	1
• states the area is from $x = 0$ to $x = \pi$	1

Question 7(b) (3 marks)

Solution

$$\int \sin x - x e^{-x^2} dx = -\cos x - \left[-\frac{1}{2} \int -2x e^{-x^2} dx \right]$$
$$= -\cos x + \frac{1}{2} e^{-x^2} + c$$

Mathematical behaviours	Marks
anti-differentiates sin x correctly	1
 anti-differentiates xe^{-x²} correctly includes constant of integration 	1 1