UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

(Universidad del Perú, Decana de América)

Facultad de Ingeniería de Sistemas e Informática

Escuela de Ingeniería de Software

SIGNATURA: Cálculo I

Semestre: 2022-I

GUÍA DE PRÁCTICA Nº 09

1.- Calcular las siguientes derivadas usando la definición:

a)
$$f(x) = \frac{Ax + B}{Cx + D}$$

$$b) \ f(x) = \cos x$$

a)
$$f(x) = \frac{Ax + B}{Cx + D}$$
 b) $f(x) = \cos x$ c) $f(x) = 3^x$ **GRUPO 1(a,b,c)**

d)
$$f(x) = \frac{2}{\sqrt{x}} - 1$$
, $en \ x = 4$ $e) \ f(x) = \frac{x}{\sqrt{a^2 - x^2}}$ $f) \ f(x) = \frac{\sqrt{x^2 + a^2}}{x}$ GRUPO 2(d,e,f)

$$g) \ f(x) = \sqrt{ax} + \frac{a}{\sqrt{ax}}$$

$$h) f(x) = \frac{x^3 + 1}{x}$$

g)
$$f(x) = \sqrt{ax} + \frac{a}{\sqrt{ax}}$$
 h) $f(x) = \frac{x^3 + 1}{x}$ i) $f(x) = \frac{1}{\sqrt{2x + 3}}$, en $x = 3$

GRUPO 3(q,h,i)

j)
$$f(x) = \frac{1}{x} + x + x^2$$
, en $x = -3$

j)
$$f(x) = \frac{1}{x} + x + x^2$$
, en $x = -3$ k) $f(x) = \sqrt{1+9x}$, en $x = 7$ GRUPO 4(j,k)

Evaluar las derivadas laterales indicadas en los puntos dados. GRUPO 5(a,b), GRUPO 6(c,d), GRUPO 7(e,f), GRUPO 8(g)

a)
$$f(x) = \begin{cases} x, x < 0 \\ x^2, x \ge 0 \end{cases}$$
; $x_0 = 0, f'_+(0), f'_-(0)$ b) $f(x) = \begin{cases} -x^2, & x \le 0 \\ x^3, & x > 0 \end{cases}$, $x > 0$

c)
$$f(x) = \begin{cases} x^2, x \le 1 \\ x^3, x > 1 \end{cases}$$
; $f'_{+}(1), f'_{-}(1)$

c)
$$f(x) = \begin{cases} x^2, x \le 1 \\ x^3, x > 1 \end{cases}$$
; $f'_+(1), f'_-(1)$ d) $f(x) = \begin{cases} x^2, x \le -2 \\ -4 - 4x, -2 \le x < 1 \end{cases}$; $f'_+(-2), f'_-(-2)$

e)
$$f(x) = |x^2| \sqrt{x-1}; f'_+(\sqrt{2}), f'_-(\sqrt{2})$$

e)
$$f(x) = |x^2| \sqrt{x-1}$$
; $f'_+(\sqrt{2})$, $f'_-(\sqrt{2})$ f) $f(x) = |x-3|^3 \cdot (x-3) + x^3 \cdot \left| |x-\frac{3}{2}| \right|$; $x_0 = 3$

g)
$$f(x) = \begin{cases} \sqrt{|x|}, & x < 1 \\ x^2, & x \ge 1 \end{cases}$$
, $x_0 = 1$

3.- Determine si existe la derivada de
$$f(x) = (x^3 - |x|^3)^{2/3}$$
, cuando $x = 0$. **GRUPO 9**

4.- Determina las ecuaciones de la tangente y normal al gráfico de la función

$$f(x) = \frac{x}{a^2 \sqrt{a^2 + x^2}}$$
, en x = a GRUPO 10

5.- Determina las ecuaciones de la tangente y normal al gráfico de la función:

$$f(x) = \frac{8a^3}{4a^2 + x^2}$$
, en $x_0 = 2a$. GRUPO 1

6.- Determina las ecuaciones de la tangente y normal al gráfico de la función:

$$h(x) = \frac{abx}{a^2 + x^2}$$
 en (a; b/2). GRUPO 2

7.- Sea
$$f(x) = \begin{cases} x^2 . sen \frac{1}{x} & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$$
 GRUPO 3

Pruebe que f es derivable en x=0, pero su función derivada f no es continua en x=0. Calcule la ecuación de la recta tangente al grafico de la función en (0;0).

8.- Sea
$$f(x) = \begin{cases} x^4 \text{ Sen}(\frac{1}{2x}) + 3, & \text{si } -2 < x < 2 \ y \ x \neq 0 \\ 3, & \text{si } x = 0 \end{cases}$$
 GRUPO 4

Pruebe que es derivable y con derivada continua en x=0. Calcule la ecuación de la recta tangente al grafico de la función en (0;3)

- 9.- Si la función F: R→R es derivable, tal que F(tx) = t F(x) para cuales quiera t, x real. Pruebe que existe un c real tal que su derivada es F'(x)=c y que F(x)=c x para todo x real. GRUPO 5
- 10.- Sea la función definida por $f(x) = \begin{cases} A \ln(x-1), x \geq 2 \\ 3x-6, x < 2 \end{cases}$. Halle el valor de A de tal modo que f sea derivable en x=2, luego determine la ecuación de la recta tangente a la curva en el punto de abscisa 2. **GRUPO 6**
- 11.- Sea la función definida por $f(x) = \begin{cases} \ln{(7x+1)} & x \le 0 \\ 7x & 0 < x \end{cases}$ determine si es derivable en el punto x=0, en caso afirmativo determine la ecuación de la recta tangente a la curva en el punto de abscisa 0. **GRUPO 7**

12.- Determine si
$$f(x) = \begin{cases} 4x - 7 & x \le 2 \\ x^2 - 3 & 2 < x \end{cases}$$
 GRUPO 8

Es derivable en el punto x=2, en caso afirmativo determine la ecuación de la recta tangente a la curva en el punto de abscisa 2.

13.- Si f(x) es derivable en $x \le \frac{3}{2}$, halle m y n de: GRUPO

$$f(x) = \begin{cases} \frac{x^2 + x + 1}{x + m} & \text{si } x < 1\\ x^3 + nx^2 - 5x + 3 & \text{si } 1 \le x \le 3/2 \end{cases}$$

14.- Sea $f(x) = \begin{cases} x^2 + 4, & x < -1 \\ b + ax, -1 \le x < 0 \end{cases}$ Halle las constantes a, b, c para que f sea continua $c + x^3, x \ge 0$

y derivable en $x_0 = -1$; $x_1 = 0$ GRUPO 10

15.- Calcular las derivadas de las siguientes funciones: GRUPO 1(a,b,c), GRUPO 2(d,e,f), GRUPO 3(g,h)

a)
$$y = \frac{1}{(x+a)^m} + \frac{1}{(x+b)^n}$$
 b) $y = Ln \left[\frac{(2+3x)(5+x)}{1+2x} \right]$ c) $y = \frac{(4+2x)(3-x)(1+x)}{(5-2x)(2+3x)}$
d) $y = \frac{x}{\sqrt{a^2-x^2}}$ e) $y = \frac{\sqrt{x+a}}{\sqrt{x}+\sqrt{a}}$ f) $y = \frac{\sqrt{2.x^2-2x+1}}{x}$
g) $y = \frac{\sqrt{x^2+1}+\sqrt{x^2-1}}{\sqrt{x^2+1}-\sqrt{x^2-1}}$ h) $y = \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$

16.- Determine la ecuación de la recta tangente y normal al grafico de la función GRUPO 4

a)
$$f(x) = 2xsen(x)$$
 en el punto $x_0 = \frac{\pi}{2}$.

b)
$$f(x) = \sqrt[3]{2x} + \sqrt[3]{4x^2}$$
 en el punto de abscisa $x_0 = 4$.

17.- Suponga que la posición de una partícula en el eje x, está dado por **GRUPO 5** $x(t) = 3\cos(t) + 4sen(t)$; donde x: recorrido en pies y t: tiempo en segundos.

- a) Determinar la posición de la partícula cuando t = 0; $t = \pi/2$
- b) Determinar la velocidad de la partícula cuando t = 0; $t = \pi/2$

18.- La función $H = (k/mg) \sin^2(\theta)$ con k, m y g constantes, representa la altura alcanzada por saltamentes cuyo ángulo de salto es θ . Determine los valores θ para los cuales $dH/d\theta = 0$. **GRUPO 6**

19.- La cantidad X de sustancia presente en el tiempo t durante una reacción química de tercer orden, está dado por $X(t) = [c^2/(2k\ c^2\ t + 1)]^{1/2}$ Donde c y k son constantes. Encuentre la derivada X'(1) e interprete. **GRUPO 7**

20.- Sea la función f: (a,b) → R continua. Dado c en (a,b); se define: h: (a,b) → R tal que

$$h(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} & \text{; } x \in (a, b) - \{c\} \\ L & \text{; } x = c \end{cases}$$
 GRUPO 8

Pruebe que h(x) es continua si y solo si, existe f'(c) y f'(c)=L

21- Halle los valores de x real donde las funciones no son derivables GRUPO 9(a,b), GRUPO 10(c,d)

a)
$$f(x)=|sen(x)|$$

b)
$$f(x)=|x+1|/|x-1|$$

c)
$$f(x) = \begin{cases} 0, x \in Q \\ 1, x \in I \end{cases}$$

d)
$$f(x) = \begin{cases} \frac{1 - \cos(x)}{x} & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}$$

SIN MATEMÁTICAS, NO HAY NADA QUE PUEDAS HACER. TODO A TU ALREDEDOR ES MATEMÁTICAS. TODO A TU ALREDEDOR SON NÚMEROS.

SHAKUNTALA DEVI.