Automatic MVA Evaluation

Thomas Keck Moritz Gelb Nils Braun

August 9, 2019

Abstract

Evaluation plots

Contents

1	Classifiers	3
	1.1 mva_cs_id_2.xml	3
2	Variables	3
	2.1 Importance	4
	2.2 Correlation	4
	2.3 CleoConeCS(3)	
	2.4 KSFWVariables(hso14)	5
	2.5 KSFWVariables(et)	6
	2.6 cosTBz	6
	2.7 thrustOm	
	2.8 KSFWVariables(hso02)	
	2.9 R2	
	2.10 KSFWVariables(hoo2)	8
	2.11 thrustBm	9
	2.12 cosTBTO	9
	2.12 0001B10	J
3	Classifier Plot	9
4	ROC Plot	10
5	Classification Results	11
•	5.1 mya c	
	0.1 mva_c	
6	Diagonal Plot	11
	6.1 mva c	11
	6.2 Overtraining Plot	
7	Spectators	12
	7.1 mbc	13
	7.1.1 mbc with classifier mva_cs_id_2.xml	13

1 Classifiers

This section contains the GeneralOptions and SpecificOptions of all classifiers represented by an XML tree. The same information can be retreived using the basf2_mva_info tool.

Table 1: Abbreviations of identifiers

Identifier	Abbreviation
$mva_cs_id_2.xml$	mva_c

1.1 mva_cs_id_2.xml

```
<?xml version="1.0" encoding="utf-8"?>
<method>FastBDT</method>
 <weightfile>mva_cs_id_2.xml</weightfile>
<treename>tree</treename>
<target_variable>isSignal</target_variable>
<weight_variable/>
<signal_class>1</signal_class>
 <max_events>0</max_events>
 <number_feature_variables>10</number_feature_variables>
<variable0>R2</variable0>
<variable1>thrustBm</variable1>
<variable2>thrust0m</variable2>
<variable3>cosTBTO</variable3>
<variable4>cosTBz</variable4>
<variable5>KSFWVariables(et)</variable5>
<variable6>KSFWVariables(hso02)</variable6>
<variable7>KSFWVariables(hso14)/variable7>
<variable8>KSFWVariables(hoo2)</variable8>
<variable9>CleoConeCS(3)</variable9>
<number_spectator_variables>1</number_spectator_variables>
<spectator0>mbc</spectator0>
<number_data_files>1</number_data_files>
<datafile0>~/../eganiev/analysis/phase3/train.root</datafile0>
<FastBDT_version>2</FastBDT_version>
<FastBDT_nTrees>200</FastBDT_nTrees>
<FastBDT_nCuts>8</FastBDT_nCuts>
<FastBDT_nLevels>3</FastBDT_nLevels>
<FastBDT_shrinkage>0.10000000000001/FastBDT_shrinkage>
<FastBDT_randRatio>0.5/FastBDT_randRatio>
<FastBDT_flatnessLoss>-1</FastBDT_flatnessLoss>
<FastBDT_sPlot>false</FastBDT_sPlot>
<FastBDT_number_individual_nCuts>0</FastBDT_number_individual_nCuts>
<FastBDT_purityTransformation>false</FastBDT_purityTransformation>
< FastBDT\_number\_individual Purity Transformation > 0 < / FastBDT\_number\_individual
```

2 Variables

This section contains an overview of the importance and correlation of the variables used by the classifiers. And distribution plots of the variables on the independent dataset. The distributions are normed for signal and background separately, and only the region +- 3 sigma around the mean is shown.

Table 2: Abbreviations of variables

Variable	Abbreviation
CleoConeCS(3)	CleoC
KSFWVariables(hso14)	KSFWV1
KSFWVariables(et)	KSFWV2
$\cos TBz$	$\cos TB1$
thrustOm	thrus1
KSFWVariables(hso02)	KSFWV3
R2	R2
KSFWVariables(hoo2)	KSFWV4
thrustBm	thrus2
cosTBTO	$\cos TB2$

2.1 Importance

2.2 Correlation

Signal Background

negative uncorrelated positive

2.3 CleoConeCS(3)

${\bf 2.4 \quad KSFWVariables (hso 14)}$

2.5 KSFWVariables(et)

$2.6 \cos TBz$

2.7 thrustOm

2.8 KSFWVariables(hso02)

2.9 R2

2.10 KSFWVariables(hoo2)

2.11 thrustBm

$2.12 \cos TBTO$

3 Classifier Plot

This section contains the receiver operating characteristics (ROC), purity projection, ...of the classifiers on training and independent data. The legend of each plot contains the shortened identifier and the area under the ROC curvein parenthesis.

4 ROC Plot

5 Classification Results

$5.1 \quad mva_c$

6 Diagonal Plot

6.1 mva_c

6.2 Overtraining Plot

7 Spectators

This section contains the distribution and dependence on the classifier outputs of all spectator variables.

Table 3: Abbreviations of spectators

Spectator	Abbreviation
mbc	mbc

7.1 mbc

7.1.1 mbc with classifier mva_cs_id_2.xml

