Aqui vem o título do trabalho

Aqui vem o nome do autor e-mail@dominio.com.br

2020

Sumário

R	eferência	9
U	•	8
	Aqui vem o título do Desenvolvimento	7
5	Introdução	7
4	Aula9 (Como inserir figuras no Latex)	7
3	Aula 8 (Notações de Claculo)	5
2	Tchau Mundo	3
1	Equação Polinômial do 2^{0} Grau	3

Lista de Figuras

Lista de Tabelas

1 Equação Polinômial do 2º Grau

É uma equação do tipo $ax^2+bx+c=0$ com $a\neq 0$ será chamada de equação polinomial do 2^0 grau.

A solução dessa equação é dada por:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

para centralizar

para alinhar a direita

para alinhar a esquesda

Bem, aqui inicia **meu adorável** artigo. para deixar sublinhado

para dar os três efeitos basta aninhar

2 Tchau Mundo

... e aqui ele termina.

- 1. Primeira Questão
 - (a) Primeira acertiva da questão
 - i. terceito nível
 - (b) Segunda acertiva da questão
- 2. Segunda Questão
- 3. Terceira Questão
- primerio item da lista não é item da lista
- segundo item da lista
 - primteiro item da sublista $a \cdot b$

 $a \times b$

isso é uma fração na formatação da linha: $\frac{a}{b}$ isso é uma fração fora da linha: $\frac{a}{b}$

potência: $a^{(b+c)}$

sub escritos: a_{bacaxi}

Sejam os conjuntos: $A = \{a, b, c, d\}$

$$B = \{ x \in \mathbb{R} \mid -2 \le \leqslant x < 4 \ge \ge 0 \}$$
$$A \setminus B$$

- 1. Seja a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \frac{1}{2}x^2 2x + 1$.
 - (a) Esboce o gráfico da função.

(b)
$$x \mapsto \frac{1}{2}x^2 - 2x + 1$$
.

$$f(x) = \begin{cases} x^2 - 1; \text{ se } x \ge 1\\ x - 3; \text{ se } -1 \le x < 1\\ 2x + 1; \text{ se } x > 1 \end{cases}$$

- (c) $f(x) = \log_2 x + \ln x$
- (d) $f(x) = \cos x$.
- (e) $f(x) = \sin x$.
- (f) $f(x) = \sin x$.
- (g) $f(x) = \operatorname{sen}\left(x \frac{\pi}{2}\right)$.
- (h) $f(x) = \operatorname{sen}\left[x \frac{\pi}{2}\right]$.
- (i) $f(x) = \operatorname{sen}\left\{x \frac{\pi}{2}\right\}$.
- $1. \begin{bmatrix} 1 & 10 & -5 \\ 6 & 7 & 8 \end{bmatrix}$
- $2. \begin{pmatrix} 1 & 10 & -5 \\ 6 & 7 & 8 \\ 9 & 3 & 2 \end{pmatrix}$
- 3. $\begin{vmatrix} 1 & 10 & -5 \\ 6 & 7 & 8 \end{vmatrix}$
- 1. Consider a matriz

$$M = \begin{bmatrix} 1 & 10 & -5 \\ 6 & 7 & 8 \\ 3 & 21 & 12 \end{bmatrix}$$

Calcule o que for solicitado abaixo.

- (a) $\det M$
- (b) M^{-1}
- (c) M^T

1. Considere a matriz
$$m \times n$$
 dada por
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

1. Determine x, y, z na equação:

$$\begin{bmatrix} 1 & -2 & 4 \\ 5 & 2 & -2 \\ 6 & 1 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 10 \\ 6 \end{bmatrix}$$

- 1. Seja o segmento \overline{AB} . A partir dele podemos definir o segmento orientado \overline{AB} e o segmento orientado \overline{BA} .
- 2. Seja o vetor \vec{u} .
- 3. Sejam os vetores $\vec{u}=(1;\,-1;\,2)$ e $\vec{v}=(2;\,5;\,-4)$. Calcule o seguinte:
 - (a) $\vec{u} \cdot \vec{v}$
 - (b) $\vec{u} \times \vec{v}$
 - (c) Errado: $\langle \vec{u}, \vec{v} \rangle$. correto: $\langle \vec{u}, \vec{v} \rangle$
 - (d) $\|\vec{u}\|$
 - (e) Representação errada do segmento orientado em modulo $\|\overrightarrow{AB}\|$
 - (f) Representação correta do segmento orientado em modulo $\left\|\overrightarrow{AB}\right\|$
 - (g) Representação de vetores ortogonais:

$$\vec{u} \perp \vec{v}$$

(h) Letras gregas

$$\alpha$$
 β

(i) Sejam os vetores $\vec{u}=x_0;\ y_0;\ z_0$ e $\vec{v}=x_1;\ x_1;\ z_1.$ Temo que:

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \end{vmatrix}$$

3 Aula 8 (Notações de Claculo)

1.
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$

2.

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

3.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

- 4. $\lim_{x \to 1} \frac{x^2 1}{x 1}$
- 5. Derivadas:
 - (a) f'
 - (b) f''
 - (c) f'''
 - (d) $f^{(v)}$
- 6. Seja a função definida por $f(x) = x^2 \sqrt{x}$. Calcule as derivadas abaixo.
 - (a) $\frac{df}{dx}$
 - (b) $\frac{d^2f}{dx^2}$
 - (c) $\frac{d^5f}{dx^5}$
 - (d) $\frac{d^3f}{dx^3}$
- 7. Seja a função definida por $f(x, y) = yx^2 \sqrt{x} + y^3$. Calcule as derivadas abaixo.
 - (a) $\frac{\partial f}{\partial x}$
 - (b) $\frac{\partial^2 f}{\partial x^2}$
 - (c) $\frac{\partial^5 f}{\partial x^5}$
 - (d) $\frac{\partial^3 f}{\partial x^3}$
 - (e) $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$
- 8. Calcule as integrais abaixo.
 - (a) $\int_1^5 x^2 \cos x \, dx$
 - (b)

$$\int_{1}^{5} x^{2} \cos x \, dx$$

- (c) $\int_{1}^{5} x^2 \cos x \, dx$
- (d) $\int_{1}^{5} x^2 \cos x \, dx$
- 9. Calcule as integrais com somatórios abaixo.
 - (a) $\sum_{i=1}^{n} \int_{0}^{\infty} x^{i} dx$

$$\sum_{i=1}^{n} \int_{0}^{\infty} x^{i} dx$$

(c)
$$\sum_{i=1}^{n} \int_{0}^{\infty} x^{i} dx$$

(d)
$$\sum_{i=1}^{n} \int_{0}^{\infty} x^{i} dx$$

(e)
$$\sum_{i=1}^{n} \int_{0}^{\infty} x^{i} dx$$

4 Aula9 (Como inserir figuras no Latex)

- 1. Calcule o valor da x na figura
- 2. A Tabela 1 abaixo representa as derivadas básicas.

Função	Derivadas
$f(x) = x^n$	$f'(x) = nx^{n-1}$
$f(x) = \log_a x$	$f'(x) = \frac{1}{(\ln a)x}$

Tabela 1: Tabela Básica de Derivadas

Instituto Federal de Ciências e Tecnologia da Paraíba Campus Cajazeiras Curso de Licenciatura em Matemática

5 Introdução

Aqui vem a introdução. Aqui vem a introdução.

Aqui vem a introdução. Aqui vem a introdução. Aqui vem a introdução. Aqui vem a introdução. Aqui vem a introdução. Aqui vem a introdução. Aqui vem a introdução. Aqui vem a introdução. Aqui vem a introdução. Aqui vem a introdução. Aqui vem a introdução. Aqui vem a introdução.

6 Aqui vem o título do Desenvolvimento

Aqui vem o texto do desenvolvimento. vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento.

Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento.

Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento.

Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento. Aqui vem o texto do desenvolvimento.

6.1 Aqui vem o titulo da subseção

Aqui vem o texto da subseção. Aqui vem o texto da subseção.

Aqui vem o texto da subseção. Aqui vem o texto da subseção. Aqui vem o texto da subseção. Aqui vem o texto da subseção. [2]

6.1.1 Aqui vem o titulo da seção da subseção

Aqui vem o texto da seção da subseção. Aqui vem o texto da seção da subseção.

Aqui vem o texto da seção da subseção. Aqui vem o texto da seção da subseção. Aqui vem o texto da seção da subseção. Aqui vem o texto da seção da subseção.

Aqui vem o texto da seção da subseção. Aqui vem o texto da seção da subseção. Aqui vem o texto da seção da subseção. Aqui vem o texto da seção da subseção. [1]

Referências

- [1] Nome do Autor. Aqui vem o titulo. 2015.
- [2] Nome do Autor. Aqui vem o titulo. Nome da Editora, Cidade, 2020.

Fim do curso básico de \LaTeX .