Lezione del 16 Marzo

Teorema 0.1. Sia $p: E \to X$ rivestimento regolare, allora

$$Aut(E) \cong \frac{\pi_1(X, x)}{p_{\star}(\pi_1(E, \tilde{x}))}$$

Dimostrazione. Per prima cosa osserviamo che il termine di destra è un gruppo, il sottogruppo per cui stiamo quozientando è normale (essendo il rivestimento regolare).

Sia ϑ : $\pi_1(X,x) \to Aut(E)$ tale che $\forall \alpha \in \pi_1(X,x)$ definiamo $\vartheta(\alpha)$ come l'unico elemento di Aut(E) tale che $\vartheta(\alpha)(\tilde{x}) = \tilde{x} \cdot \alpha$.

Osserviamo che tale isomorfismo esiste in quanto il rivestimento è regolare (azione è transitiva) ed è unico poichè l'azione è libera.

Mostriamo che ϑ è un omomorfismo

$$(\vartheta(\alpha_1)\vartheta(\alpha_2))(\tilde{x}=\vartheta(\alpha_1)(\tilde{x}\cdot\alpha_2)=(\vartheta(\alpha_1)(\tilde{x}))\cdot\alpha_2=(\tilde{x}\cdot\alpha_1)\cdot\alpha_2$$

Dove la seconda uguaglianza deriva dal fatto che l'azione di monodromia è quella indotta da Aut(E) commutano

Mostriamo che ϑ è suriettivo.

Se $\varphi \in Aut(E)$ poichè l'azione di monodromia è transitiva, $\exists \alpha \in \pi_1(X, x)$ con $\tilde{x} \cdot \alpha = \varphi(\tilde{x})$, dunque $\vartheta(\alpha) = vp$ in quanto i due isomorfismi coincidono su \tilde{x} (Aut(E) agisce in maniera libera).

Mostriamo che $Ker\vartheta = p_{\star}(\pi_1(E, \tilde{x}))$, da cui per il primo teorema di isomorfismo si ha la tesi. Poichè Aut(E) agisce liberamente si ha

$$\vartheta(\alpha) = Id \Leftrightarrow \vartheta(\alpha)(\tilde{x}) = \tilde{x} \Leftrightarrow \tilde{x} \cdot \alpha = \tilde{x} \Leftrightarrow \alpha \in p_{\star}(\pi_1(E, \tilde{x}))$$

Corollario 0.2.

$$p: E \to X \ regolare \quad \Rightarrow \quad X \cong \frac{X}{Aut(E)}$$

Dimostrazione. Essendo aperto e suriettivo p è un'identificazione, per cui $X \cong \frac{X}{\infty}$ dove

$$\tilde{x} \sim \tilde{y} \quad \Leftrightarrow \quad p(\tilde{x}) = p(\tilde{y}) \quad \Leftrightarrow \quad \tilde{x} = \varphi(\tilde{y}) \, \exists \varphi \in Aut(E)$$

dove per l'ultima implicazione abbiamo usato il fatto che $\varphi \circ p = p$ e in quanto Aut(E) agisce in maniera transitiva sulle fibre

Vale una sorta di viceversa

Proposizione 0.3. Se G agisce in maniera propriamente discontinua su uno spazi connesso E allora la proiezione $p: E \to \frac{E}{G}$ è un rivestimento regolare

Dimostrazione. Dato $x \in \frac{E}{G}$ devo costruire un intorno ben rivestito U.

Scelgo $\tilde{x} \in E$ con $p(\tilde{x}) = x$, dalla definizione di azione propriamente discontinua, $\exists V \subseteq X$ aperto che contiene \tilde{x} tale che $\gamma(V) \cap V = \emptyset$, $\forall \gamma \in G \setminus \{Id\}$

Pongo U = p(V) che è aperto (le proiezioni al quoziente per azioni di gruppi sono aperte).

Per costruzione $p^{-1}(U) = \bigcup_{\gamma \in G} \gamma(V)$ ora $\gamma(V)$ è aperto (γ è omeomorfismo) e l'unione è disgiunta.

$$\gamma_1(V) \cap \gamma_2(V) \neq \emptyset \quad \Rightarrow \quad V \cap (\gamma_1^{-1}\gamma_2(V)) \neq \emptyset \quad \Rightarrow \quad \gamma_1^{-1}\gamma_2 = Id \quad \Rightarrow \quad \gamma_1 = \gamma_2$$

Infine $p_{|\gamma(V)}$ è un omeomorfismo su U in quanto è continua, aperta, suriettiva e iniettiva

Osservazione 1. Un rivestimento universale è regolare. $p_{\star}(\{1\}) = \{1\} \triangleleft \pi_1(X, x)$

Corollario 0.4. Sia $p: E \to X$ un rivestimento universale, allora $Aut(E) \cong \pi_1(X, x)$

Corollario 0.5. Se E è semplicemente connesso e G agisce su E in maniera propriamente discontinua, $\pi_1\left(\frac{E}{G}\right)\cong G$

Esempio 0.6.

- 1. $S^1 = \frac{\mathbb{R}}{\mathbb{Z}}$ ora essendo \mathbb{R} semplicemente connesso si ha $\pi_1(S^1) = \mathbb{Z}$
- 2. $(S^1)^n = \frac{\mathbb{R}^n}{\mathbb{Z}^n} da cui \pi_1((S^1)^n) = \mathbb{Z}^n$
- 3. $\mathbb{P}^n(\mathbb{R}) = \frac{S^n}{\{\pm Id\}}$ dunque se $n \geq 2$ allora $\pi_1(\mathbb{P}^n(\mathbb{R})) \cong \{\pm Id\} = \mathbb{Z}_2$

Definizione 0.1.

X spazio topologico connesso per archi si dice **semilocalemente semplicemente connesso** se

 $\forall x \in X \ \exists U \subseteq X \ \text{aperto con } x \in X \quad i: U \to X \ \text{induce il morfismo banale} \ i_{\star}: \pi_1(U, x) \to \pi_1(X, x)$

ovvero $\forall x \in X \; \exists U \ni x$ tale che tutti i lacci basati in x e contenuti in U sono banali in X

Osservazione 2. La propietà sopra definita è verificata, ad esempio, se ogni punto ha un intorno semplicemente connesso

Osservazione 3. Se X ammette un rivestimento universale, allora è semilocalmente semplicemente connesso.

Dato $x \in X$, posso prendere un suo intorno U connesso per archi e ben rivestito.

Se $p:E\to X$ è il rivestimento universale $V\subseteq p^{-1}(U)$ è un aperto con $p_{|V}:V\to U$ omeomorfismo dunque abbiamo il seguente diagramma

$$V \stackrel{j}{\subset} E$$

$$s \stackrel{j}{\subset} p_{|V} \qquad \downarrow p$$

$$U \stackrel{i}{\subset} X$$

da cui $i = p \circ j \circ s$ dunque $i_{\star} = p_{\star} \circ j_{\star} \circ s_{\star}$ ma j_{\star} è banale in quanto lo è $\pi_1(E)$ da cui i_{\star} è banale

Lemma 0.7. Quando esiste, il rivestimento universale è unico a meno di isomorfismi

Dimostrazione. Siano $p_1:E_1\to X$ e $p_2:E_2\to X$ rivestimenti universali di X. Abbiamo dunque:

$$E_2$$

$$\downarrow_{p_2}$$
 dove l'esistenza di φ $(p_2\circ\varphi=p_1)$ deriva dal fatto che E_1 è semplicemente
$$E_1 \xrightarrow{p_1} X$$

connesso.

Fissati $\tilde{x}_1 \in p_1^{-1}(x)$ e $\tilde{x}_2 \in p_2^{-1}(x)$ posso richiedere $\varphi(\tilde{x}_1) = \tilde{x}_2$.

In modo analogo $\exists \psi: E_2 \to E_1$ con $p_1 \circ \psi = p_2$ e $\psi(\tilde{x}_2) = \tilde{x}_1$

Ne segue che φ e ψ sono isomorfismi l'uno l'inverso dell'altro

Teorema 0.8. X spazio topologico localmente connesso per archi e connesso

X ammette rivestimento universale \Leftrightarrow X semilocalmente semplicemente connesso inoltre, in tal caso il rivestimento è unico

 $Dimostrazione. \Rightarrow già visto$

 \Leftarrow Fissato $x \in X$. Si definisce $E = \frac{\bigcup_{y \in X} \Omega(x, y)}{\sim}$ dove $\gamma_1 \sim \gamma_2$ se e solo se sono omotopi come cammini.

Si topologizza $\bigcup_{y \in X} \Omega(x,y)$ tale insieme con la topologia compatta-aperta e si dota E della topo-

logia quoziente.

Sia $p: E \to X$ dove $p([\gamma]) = \gamma(1)$

Teorema 0.9. X connesso e semilocalmente semplicemente connesso per archi, $x \in X$ $\forall H < \pi_1(X, x)$ esiste $p: E \to X$ tale che $p_{\star}(\pi_1(E, \tilde{x})) = H$ dove $\tilde{x} \in p^{-1}(x)$. Tale rivestimento è unico

Dimostrazione. Sia $g:\widetilde{X}\to X$ il rivestimento universale di X e fissiamo $\widetilde{\widetilde{x}}\in g^{-1}(x)$. Abbiamo un isomorfismo $\pi_(X,x)\to Aut(\widetilde{X})$, con un abuso di notazione denoto anche con H la copia di H in $Aut(\widetilde{X})$, pongo $E=\frac{\widetilde{X}}{H}$

$$\widetilde{X} \xrightarrow{\pi} E = \frac{\widetilde{E}}{H} \xrightarrow{p} X = \frac{\widetilde{X}}{\pi_1(X,x)}$$

Si verifica facilmente che p è un rivestimento (un aperto ben rivestito rispetto a g lo è anche rispetto a p)

Inoltre se $\tilde{x} = \pi\left(\tilde{\tilde{x}}\right) \in E$ abbiamo $p_{\star}(\pi_1(E, \tilde{x})) = Stab(\tilde{x})$ rispetto all'azione di monodromia. Dato $\alpha \in \pi_1(X, x)$ con $\alpha = [\gamma]$ siano

 $\widetilde{\gamma}$ e $\widetilde{\widetilde{\gamma}}$ i sollevamenti di γ in E a partire da \widetilde{x} e $\widetilde{\widetilde{x}}$ così che $\widetilde{\gamma}=\pi\circ\widetilde{\widetilde{\gamma}}$

Ora $\widetilde{x} \cdot \alpha = \widetilde{\gamma}(1) = \pi\left(\widetilde{\widetilde{\gamma}}(1)\right)$ che è uguale a \widetilde{x} se e solo se $\widetilde{\widetilde{\gamma}}(1)$ è equivalente a $\widetilde{\widetilde{x}}$ tramite l'azione di H che equivale alla tesi

Sia Γ un grafo finito connesso avente V vertici e E lati

- \bullet Γ è un albero se non contiene cicli, cioè loop iniettivi
- Un albero è contraibile (induzione sul numero di vertici: un albero deve avere un vertice libero, è possibile retrarre per deformazione il lato che lo contiene sul resto dell'albero)
- Se Γ è un albero allora V E = 1 (induzione: ogni retrazione toglie un vertice e un lato, si finisce con un vertice e 0 lati)
- Γ conesso allora contiene Γ' albero massimale che contiene tutti i vertici di Γ

$$\Gamma = \Gamma' \cup \{ \text{ qualche lato} \}$$

• Definisco $\chi(\Gamma) = V - E$ che prende il nome di caratteristica di Eulero. Se $\Gamma' \subset \Gamma$ massimale allora $\chi(\Gamma') = 1$ e $\Gamma = \Gamma' \cup \{(1 - \chi(\Gamma)) \text{ lati}\}$

Teorema 0.10.

$$\pi_1(\Gamma) \cong F_{1-\chi(\Gamma)}$$

Dimostrazione. Si dimostra usando induttivamente Van Kampen e dal fatto che Γ si ottiene da un albero massimale aggiungendo $1 - \chi(\Gamma)$ lati

Teorema 0.11. F gruppo libero su n generatori, H < F di indice k. Allora H è un gruppo libero su k(n-1)+1 generatori

Dimostrazione. $F = \pi_1(\Gamma)$ con $\chi(\Gamma) = 1 - n$ per il teorema appena visto.

Sia $\widetilde{\Gamma}$ il rivestimento di Γ associato ad H.

Poichè vertici e lati sono semplicemente connessi, se V, E sono i vertici ed i lati di Γ allora i vertici di $\widetilde{\Gamma}$ sono kV e kE in quanto il grado del rivestimento è k da cui $H = \pi_1(\widetilde{\Gamma}) = F_{1-\chi(\widetilde{\Gamma})} = F_{1+k(n-1)}$