

MODELING LEAF INVESTMENT WITH OPTIMIZATION THEORY

Yujie Wang¹, John S. Sperry¹, Martin D. Venturas¹, Anna T. Trugman², & William R.L. Anderegg¹

¹University of Utah, and ²UC Santa Barbara

1. OBJECTIVES

Leaf area per basal area (LA:BA) and photosynthetic capacity (measured by $V_{\rm cmax}$) are very plastic traits and significantly impact global carbon and water cycles. Predicting how LA:BA and $V_{\rm cmax}$ vary spatially and temporally is key to estimate the magnitude and impacts of future climate change.

Yet, how plants optimize LA:BA and $V_{\rm cmax}$ is poorly understood. We propose a model that optimize LA:BA and $V_{\rm cmax}$ simultaneously by maximizing GCP:

$$GCP = CNPP - LCC (1)$$

$$CNPP = \int (A(t) - R(t)) \cdot dt$$
 (2)

$$LCC = LCBM + NS (3)$$

GCP Growing season canopy profit

CNPP Canopy net primary productivity

LCC Leaf construction costs

LCBM Leaf carbon biomass costs

NS Nutrient supply costs

We further evaluate the sensitivity of optimal LA:BA and $V_{\rm cmax}$ to

- Plant hydraulic traits
- Leaf traits
- Water supply
- Environmental conditions

5. CONCLUSIONS

- Leaf construction costs (LCBM and NS) and root depth (H_{root}) are the key traits
- Environmental conditions have great impact on leaf investment
- Leaf investment is insensitive to hydraulic traits, but these traits are required for predicting tree health status
- Elevated CO_2 results in higher LA:BA and V_{cmax} , suggesting the reported lower V_{cmax} in FACE experiments is due to other factors, e.g., higher LCBM or NS
- Quantifying key plant traits and their coordination and acclimation is essential for mechanistically modeling leaf investment

CONTACT INFORMATION

Email yujie.wang@utah.edu