

UO STRUCTURES 1 - ASSESSMENT

Assessment Name	Assessment – Truss Design Report		
Test Available from			
Test Due			
Weighting	% of the total grade for this course		
File Type to submit	One *.doc or *.docx file, with a maximum file size of 100MB		

TRUSS ANALYSIS AND DESIGN REPORT TEST COURSE OBJECTIVES:

It is beneficial to familiarise yourself with the relationship between the assessment and the course objectives.

- CO1: acting on structures and determine costs and use this to justify design decisions.
- CO2: support reactions, shear forces, bending moments and deflections.

ASSESSMENT SUMMARY:

COMPONENTS	COURSE OBJECTIVES	WEIGHTING	DUE DATE	DETAILS	SUBMISSION PROCESS
2 Questions	CO 1, 2	%			Online

ASSESSMENT DESCRIPTION

In this test, please apply the relevant concepts covered in this course. In the first question, design different members of a truss. Where relevant, reference the relevant Australian Standard Loading Codes AS1170 and ASI Design Capacity Tables for Structural Steel.

Resources from weeks 1 - 10 will be a valuable reference.

Student ID Student name Page 1

UO Structures 1 Test Instructions

Read this page in detail

- The Test is out of 100 marks and is worth 35% of overall course grade
- Answer All Questions
- All Calculations must be typed, preferably using the Word Equation Editor. Handwritten calculations will not be assessed.
 - * Preferably, type the calculations using equation editor in MS Word.
 - *Excel spreadsheets and software analysis tools will not be accepted for submission.
- Word document submission only
 - Excel spreadsheets and software analysis tools will not be accepted for submission
- Where relevant, <u>diagrams must be included</u> with calculations (e.g. Free body diagrams, tributary areas) and these can be hand drawn and scanned in.
 - o Clear and informative diagrams can help the assessor follow your calculations and reasoning.
- For **full marks** for any part of a question, working must be displayed and units must be correct at every step of working.
 - For example, in Question 1 Part A the correct support reactions with no working or free body diagram(s) to show how the support reactions were obtained, will only score 1 out of 10 for that part.
- The marks for each part are <u>underlined in bold font</u>
- Answers are to be correct to 2 decimal place.
 - For example, an answer of "The force in member YZ is 125.367 kN (Compression)" can be written as The force in member YZ is 125.37 kN (Compression)
 - For example, an answer of "The force in member YZ is 300.00 kN (Compression)" can be written as The force in member YZ is 300 kN (Compression)
- The <u>Design Properties and Capacity Tables</u> can be found in Course Information section and also in the **Assessment 2** Section on the Course website.
- You will need to access the Australian Standards, especially AS/NZS 1170.1:2002 via <u>Techstreet at the UniSA Library</u>.

Student ID Student name Page 2

Student Name: Sarah Duggie

Student Email: sduggie@mymail.unisa.edu.au

QUESTION 1:

Determine the forces in members AB, BC, and AC of the given triangular truss using the method of joints.

QUESTION 2:

Identify all zero-force members in the provided truss structure. Explain your reasoning.

QUESTION 3:

Using the method of sections, calculate the internal force in member DE. Indicate whether it is in tension or compression.

QUESTION 4:

Given a uniformly distributed load on the top chord of the truss, calculate the reaction forces at the supports.

QUESTION 5:

Suggest a suitable cross-sectional area for member FG to safely resist a compressive force of 25 kN. Use the provided yield strength.

Parameter Table

Parameter	Value
-----------	-------