NOMBRES COMPLEXES

INTRODUCTION AUX NOMBRES COMPLEXES

1 Nombres complexes

Il existe un ensemble $\mathbb C$ des nombres complexes qui possède les propriétés suivantes :

- 1. \mathbb{C} contient \mathbb{R} .
- 2. \mathbb{C} est muni d'une addition et d'une multiplication qui suivent les mêmes règles de calcul que dans \mathbb{R} .
- 3. \mathbb{C} contient un nombre noté i tel que $i^2 = -1$.
- 4. Tout nombre complexe \boldsymbol{z} admet une unique écriture sous la forme

$$z = x + iy$$

avec $(x,y) \in \mathbb{R}^2$.

- Cette écriture est appelée forme algébrique du nombre z.
- le réel x est la partie réelle du nombre z notée Re(z),
- le réel y est la partie imaginaire du nombre z notée Im(z),
- si y=0, le nombre z est dit réel et si x=0 le nombre z est dit imaginaire pur.
- L'ensemble des imaginaires purs est noté :

$$i\mathbb{R} = \{z = x + iy : x = 0 \text{ et } y \in \mathbb{R}\}.$$

2 Règles de calcul

Soient z = a + ib et z' = a' + ib' deux nombres complexes (a, b, a') et b' sont des réels).

- l'opposé de z est -z=-a-ib.
- La multiplication par un scalaire $\lambda \in \mathbb{R}$: $\lambda z = \lambda a + i(\lambda b)$.
- L'inverse de z=a+ib, $(z\neq 0)$ est le nombre complexe $\frac{1}{z}=\frac{a-ib}{a^2+b^2}$.
- La **multiplication** de z par z' est le nombre complexe

$$z \times z' = aa' - bb' + i(ab' + a'b).$$

– La **division** $\frac{z}{z'}$, $(z' \neq 0)$ est le nombre complexe $z \times \frac{1}{z'}$.

Proposition 1 Pour tout $z \in \mathbb{C}$ différent de 1, on a

$$1 + z + z^{2} + \dots + z^{n} = \frac{1 - z^{n+1}}{1 - z}.$$

3 Nombre conjugué

3.1 Définition

Soit z=x+iy un nombre complexe, on appelle nombre complexe conjugué de z le nombre complexe z=x-iy.

1 IONISX

NOMBRES COMPLEXES

INTRODUCTION AUX NOMBRES COMPLEXES

3.2 Propriétés de la conjugaison

Soient z_1, z_2 deux nombres complexes. Alors,

$$\overline{z_1+z_2}=\bar{z_1}+\bar{z_2},$$

$$\overline{z_1 - z_2} = \bar{z_1} - \bar{z_2},$$

$$\overline{z_1 z_2} = \bar{z_1} \bar{z_2},$$

$$\frac{\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, \text{ pour tout } z_2 \neq 0, \\
\forall n \in \mathbb{N}, \overline{z^n} = (\overline{z})^n.$$

3.3 Remarques

- 1. $z + \bar{z} = 2 \ Re(z) \ \text{et} \ z \bar{z} = 2 \ i \ Im(z)$.
- 2. $z \in \mathbb{R} \Leftrightarrow z = \bar{z}$.
- 3. $z \in i\mathbb{R} \Leftrightarrow z = -\bar{z}$.

4 Module d'un nombre complexe

4.1 Définition

Soit z = x + iy un nombre complexe, on appelle module de z le nombre réel

$$|z| = \sqrt{x^2 + y^2}.$$

4.2 Propriétés

Soient z, z_1 et z_2 trois nombres complexes. Alors

- 1. $z\bar{z} = |z|^2$.
- 2. $|\bar{z}| = |z|$.
- 3. $|z| = 0 \iff z = 0$.
- **4.** $|z_1 \ z_2| = |z_1||z_2|$ et $\forall n \in \mathbb{N}, |z_1^n| = |z_1|^n$.
- 5. Pour tout $z \neq 0$, $\left| \frac{1}{z} \right| = \frac{1}{|z|}$.
- 6. Pour tout $z_2 \neq 0$, $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$.
- 7. $|z_1 + z_2| \le |z_1| + |z_2|$ (inégalité triangulaire).
- 8. $||z_1| |z_2|| \le |z_1 z_2|$.