

MATHEMATICAL REASONING

Chapter 10

LEYES DE COMPOSICIÓN

HELICO MOTIVATING

RELOJES MATEMÁTICOS

¿QUÉ ES UNA LEY DE COMPOSICIÓN INTERNA

Es una operación matemática definida en un determinado conjunto. También se le puede llamar operación binaria, y puede tener una presentación algebraica o una presentación tabular.

$$a * b = a + b - 12$$

Fila de entrada

Columna de entrada

Cuerpo o matriz de resultados

PROPIEDADES

CUMPLE LAS PROPIEDADES:

- CLAUSURA
- CONMUTATIVA
- ELEMENTO NEUTRO
- ELEMENTO INVERSO

Se refiere a que todos los elementos, tanto los de partida como los resultados, sean elementos de un mismo conjunto dado.

Ejemplo:

Sea:
$$A = \{1; 2; 3; 4\}$$

*	1	2	3	4
1	1	2	3	4
2	2	3	4	1
3	3	4	1	2
4	4	1	2	3

OBSERVACIÓN

SE OBSERVA QUE
TODOS LOS
ELEMENTOS DE LA
TABLA
PERTENECEN AL
CONJUNTO A

PROPIEDAD CONMUTATIVA

Una operación será conmutativa si se cumple que:

$$a * b = b * a$$

En una tabla:

OBSERVACIÓN

DESPUÉS DE VERIFICAR
QUE LA FILA Y
COLUMNA DE ENTRADA
ESTEN EN EL MISMO
ORDEN; SI SE DA LA
DISTRIBUCIÓN
SIMÉTRICA RESPECTO A
LA DIAGONAL
PRINCIPAL ES
CONMUTATIVA.

Por lo tanto, es: conmutativa

PROPIEDAD DEL ELEMENTO NEUTRO (e)

$$a*e=e*a=a$$

En una operación algebraica:

$$a * b = a + b - 12$$

$$a * e = a + e - 12$$

$$\alpha = \alpha + e - 12$$

$$12 = e$$

En una operación tabular:

*	1	2	3	4	
1	3	4	1	2	
2	4	1	2	3	
3	1	2	3	4	e = 3
4	2	3	4	1	

PROPIEDAD del elemento inverso

Se define en Z:

Halle el valor de 5^{-1} en: e=10

$$e = 10$$

$$m \Delta n = m + n - 10$$

$$a \Delta a^{-1} = a + a^{-1} - 10$$

$$e = a + a^{-1} - 10$$

$$10 = a + a^{-1} - 10$$

$$20 - a = a^{-1}$$

$$20 - 5 = 5^{-1}$$

$$15 = 5^{-1}$$

$$a \Delta a^{-1} = a^{-1} \Delta a = e$$

En una operación tabular: Halle el valor de 4⁻¹

Δ	1	2	3	4	$\rho = 3$
1	3	4	1	2	C — 3
2	4	1	2	3	
3	1	2	3	4	
4	2	3	4	1	$4^{-1}=2$

HELICO PRACTICE

Determine el elemento neutro de la operación * si:

$$a*b=a+b+2$$

RESOLUCIÓN

Operando

$$a * e = a + e + 2$$

$$\alpha = \alpha + e + 2$$

$$\Rightarrow e = -2$$

A partir de la tabla determine el elemento neutro de la operación *, *y determine*: $1^{-1} * 2^{-1}$

RESOLUCIÓN

De la tabla: e=1

$$e = 1$$

$$a * a^{-1} = a^{-1} * a = e$$

CALCULANDO

$$1 * 1^{-1} = 1$$
 $-1 = 1$

$$2 * 2^{-1} = 1$$
 \longrightarrow $2^{-1} = 4$

ME PIDEN:

$$1^{-1} * 2^{-1} = 1 * 4 = 4$$

Del problema anterior, determine $3^{-1} * 4^{-1}$

*	1	2	3	4
1	1	2	3	4
2	2	3	4	1
3	3	4	1	2
4	4	1	2	3

RESOLUCIÓN

De la tabla: e=1

$$a * a^{-1} = a^{-1} * a = e$$

CALCULANDO

$$3 * 3^{-1} = 1$$
 \longrightarrow $3^{-1} = 3$

$$4 * 4^{-1} = 1$$
 \longrightarrow $4^{-1} = 2$

ME PIDEN:

$$3^{-1} * 4^{-1} = 3 * 2 = 4$$

Calcular 31 * 24

*	1	2	3	4
1	7	9	11	13
2	12	14	16	18
3	17	19	21	23

PROBLEMA 4 RESOLUCIÓN

POR LO TANTO:
$$a * b = 5a + 2b$$

$$31 * 24 = 5(31) + 2(24) = 203$$

La cantidad de gramos de sal y de ají molido necesarios para la preparación de cierta cantidad de platos de cebiche se anotaron en la siguiente tabla.

Esta tabla pertenece a la cebichería °Sol y Mar°, ¿Cuántos platos de cebiche se obtendrán utilizando de 15 gramos de sal y 40 gramos de ají molido?

Δ	2	4	6	8
2	6	8	10	12
4	10	12	14	16
6	14	16	18	20
8	18	20	22	24

POR LO TANTO:
$$a * b = 2a + b$$

$$15 * 40 = 2(15) + 40 = 70$$

Escriba verdadero(v) o falso(f) según corresponda respecto a la operación a * b = a + b + 1

```
La operación es conmutativa ......()

El elemento neutro es -1.......()

2^{-1} = -4.....()
```


I. La operación es conmutativa ()

Para que sea conmutativa:

$$a * b = b * a$$

$$a * b = a + b + 1$$

 $b * a = b + a + 1$

OBSERVACIÓN

La suma es una operación conmutativa, por lo tanto, como la regla solo conta de suma, sin necesidad de reemplazar, se afirma que es conmutativa

VERDADERO

II. El elemento neutro es $-1 \dots ()$

$$a * e = e * a = a$$

$$a * e = a + e + 1$$

 $a = a + b + 1$
 $e = -1$

a = a + b + 1 VERDADERO

$$III.2^{-1} = -4...$$
 ()

Halando el inverso de 2

$$a * a^{-1} = a^{-1} * a = e$$

$$2 * 2^{-1} = 2 + 2^{-1} + 1$$

-1 = 3 + 2⁻¹

$$2^{-1} = -4$$

OBSERVACIÓN

REGLA DE DEFINICIÓN:

$$a * b = a + b + 1$$

ELEMENTO NEUTRO:

$$e = -1$$

VERDADERO

Se define en los reales $a * b = \sqrt{3ab(b * a)}$, determine $3^{-1} * 4^{-1}$

RESOLUCIÓN

Redefiniendo:

$$b*a = \sqrt{3ba(a*b)}$$

$$a * b = \sqrt{3ab\sqrt{3ba(a*b)}}$$

$$(a*b)^4 = \left(\sqrt{3ab\sqrt{3ba(a*b)}}\right)^4$$

$$(a*b)^4 = 3^2 a^2 b^2 3ba(a*b)$$

$$a * b = 3ab$$

Hallando elemento neutro

$$a * e = e * a = a$$

$$a * e = 3 e a$$

$$a * e = 3 e a$$
$$= 3 e a$$

$$\frac{1}{3} = e$$

Halando el inverso de $3^{-1}*4^{-1}$:

$$a * a^{-1} = a^{-1} * a = e$$

$$a * a^{-1} = 3. a. a^{-1}$$

$$\frac{1}{3} = 9. a^{-1}$$

$$\frac{1}{3} = a^{-1}$$

$$4^{-1} = \frac{1}{36}$$

OBSERVACIÓN

ELEMENTO NEUTRO:

$$e = \frac{1}{3}$$

NOS PIDEN:

$$3^{-1} * 4^{-1} = \frac{1}{27} * \frac{1}{36} = 3. \frac{1}{27} \cdot \frac{1}{36}$$

RESPUESTA:
$$\frac{1}{108}$$

El alumno Neyra observa la tabla indicada y debe responder a tres preguntas rigurosas con verdadero (V) o falso (F) según corresponda, para A = {1; 2; 3; 4}, respecto a la operación #.

*	1	2	3	4
1	1	2	3	4
2	2	3	4	1
3	3	4	1	2
4	4	1	2	3

La operación es conmutativa ()
La operación * es cerrada ()
El elemento neutro es 1 ()

I. La operación es conmutativa ()

SE OBSERVA EN LA TABLA:

OBSERVACIÓN

DESPUÉS DE VERIFICAR
QUE LA FILA Y
COLUMNA DE ENTRADA
ESTEN EN EL MISMO
ORDEN; SI SE DA LA
DISTRIBUCIÓN
SIMÉTRICA RESPECTO A
LA DIAGONAL
PRINCIPAL ES
CONMUTATIVA.

Por lo tanto, es: conmutativa

VERDADERO

II. La operación * es cerrada()

Por dato: $A = \{1; 2; 3; 4\}$

VERDADERO

III. El elemento neutro es 1 ()

 *
 1
 2
 3
 4

 1
 1
 2
 3
 4

 2
 2
 3
 4
 1

 3
 3
 4
 1
 2

 4
 4
 1
 2
 3

$$e=1$$

VERDADERO

HELICO WORKSHOP

MUCHAS GRACIAS

