(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-60390

(43)公開日 平成11年(1999)3月2日

(51) Int.Cl. ⁶	識別記号	FI
C30B 29/36		C 3 0 B 29/36 A
23/02		23/02
27/00		27/00
H01L 21/20	5	H 0 1 L 21/205
# HO1L 33/00		33/00 Z
		審査請求 未請求 請求項の数5 OL (全 6 頁)
(21)出願番号	特顧平9-213546	(71)出頭人 000004260
		株式会社デンソー
(22) 出顧日	平成9年(1997)8月7日	愛知県刈谷市昭和町1丁目1番地
	·	(72)発明者 北岡 英二
		爱知県刈谷市昭和町1丁目1番地 株式会
		社デンソー内
		(72)発明者 牧野 肇
		爱知果刈谷市昭和町1丁目1番地 株式会
		社デンソー内
		(72)発明者 横井 政雄
		爱知県刈谷市昭和町1丁目1番地 株式会
		社デンソー内
		(74)代理人 弁理士 伊藤 祥二 (外1名)
		最終頁に続く

(54) 【発明の名称】 炭化珪素単結晶の製造方法

(57)【要約】

【課題】 結晶の形及び結晶面の整った良質な炭化珪素 単結晶を容易に製造できる方法を提供する。

【解決手段】 炭化珪素原料粉末2の温度を2200~2300℃にして、炭化珪素原料粉末2の温度が前記炭化珪素原料粉末2の温度より50~100℃低い温度に到達後、不活性ガス雰囲気の圧力を2段以上の多段階に減圧する。その多段階に減圧する圧力を、第1段階で200~500Torr、第2段階で100~200Torr、第3段階で1~10Torrの領域にし、さらに不活性ガス雰囲気の圧力の減圧開始から結晶成長する圧力に到達するまでの減圧時間を10分以上の時間をかけてゆっくり減圧する。これにより、結晶成長の初期成長速度を制御し、良質な炭化珪素単結晶の格子に従って、結晶の形、結晶面の整った良質な炭化珪素単結晶7が成長する。

【特許請求の範囲】

【請求項1】 炭化珪素原料粉末(2)を不活性ガス雰 囲気中で加熱昇華させ、前記炭化珪素原料粉末(2)よ り低温になっている炭化珪素単結晶基板 (5) の表面に 炭化珪素単結晶(7)を結晶成長させる炭化珪素単結晶 の製造方法において、

前記炭化珪素原料粉末(2)の温度及び、前記炭化珪素 単結晶基板(5)の温度が結晶成長温度に到達したの ち、前記不活性ガス雰囲気の圧力を複数段階に減圧し て、前記炭化珪素単結晶(7)の結晶成長の初期におけ 10 る成長速度を制御することを特徴とする炭化珪素単結晶 の製造方法。

【請求項2】 前記不活性ガス雰囲気の圧力を第1段階 の減圧として、200~500Torrの範囲の圧力ま で減圧し、この範囲の圧力を第1の所定時間保持する工

前記不活性ガス雰囲気の圧力を第2段階の減圧として、 100~200Torrの範囲の圧力まで減圧し、この 範囲の圧力を第2の所定時間保持する工程と、

前記不活性ガス雰囲気の圧力を第3段階の減圧として、 1~10 Torrの範囲の圧力まで減圧し、この範囲の 圧力を保持する工程とを備えていることを特徴とする請 求項1に記載の炭化珪素単結晶の製造方法。

【請求項3】 前記不活性ガス雰囲気の圧力の減圧を開 始してから前記炭化珪素単結晶(7)が結晶成長する圧 力に到達するまでの時間を10分間以上にすることを特 徴とする請求項1に記載の炭化珪素単結晶の製造方法。

【請求項4】 前記第1の所定時間に比して、前記第2 の所定時間を長くすることを特徴とする請求項2に記載 の炭化珪素単結晶の製造方法。

【請求項5】 炭化珪素原料粉末(2)を不活性ガス雰 囲気中で加熱昇華させ、前記炭化珪素原料粉末(2)よ り低温になっている炭化珪素単結晶基板(5)の表面に 炭化珪素単結晶(7)を結晶成長させる炭化珪素単結晶 の製造方法において、

前記炭化珪素原料粉末(2)の温度及び、前記炭化珪素 単結晶基板(5)の温度が結晶成長温度に到達したの ち、前記炭化珪素単結晶(7)が結晶成長する圧力に前 記不活性ガス雰囲気の圧力を連続的に減圧させるように 素単結晶(7)が結晶成長する圧力に近づくにつれて前 記減圧における減圧速度を小さくすることを特徴とする 炭化珪素単結晶の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、昇華再結晶法によ る炭化珪素単結晶の製造方法に関する。

[0002]

【従来の技術】近年、高耐圧電力用トランジスタ、高耐 圧ダイオード等の高耐圧大電力用半導体装置の半導体基 50 で結晶成長したあとに、一気に不活性ガス雰囲気の圧力

板として炭化珪素単結晶基板が開発されている。この炭 化珪素単結晶基板の製造方法としては、アチソン法、レ ーリー法、結晶再結晶法(改良レーリー法)等が知られ ているが、これらの方法によると自然偶発的な核形成に より炭化珪素単結晶が成長するため、結晶の形及び結晶 面の制御が困難である。また、上記方法によると成長速 度が数mm/hrと極めて大きいため、柱状に成長しや すく、色々な形や方向の成長面が現れ結晶性が悪いとい う問題もある。

【0003】そのため、良質な炭化珪素単結晶を成長さ せる方法が特開昭59-35099号公報に提案されて いる。すなわち、図5に示すように数百Torrの高圧 不活性ガス雰囲気中で基板上に良質な炭化珪素単結晶を 成長させ、次いでその圧力を1~10Tor r迄の低圧 に減圧し、この低圧状態で炭化珪素単結晶を成長させて

【0004】このようにすると、数百Torrの高圧下 で良質な炭化珪素単結晶を形成したのち、さらに数百T orrの高圧化より1~10Torrの低圧に減圧して 良質な炭化珪素単結晶上に結晶成長を行えるため、数百 μm/hrという速い成長速度で炭化珪素単結晶を形成 することができる。

[0005]

【発明が解決しようとする課題】しかしながら、上記従 来方法では、数百Torrの高圧不活性ガス雰囲気中で 結晶成長させた後、1~10Torrの低圧に一気に減 圧させているため、数百Torrの高圧不活性ガス雰囲 気中で良質な炭化珪素単結晶を成長させても、その後の 急激な圧力変化によって形成される炭化珪素単結晶が上 30 記良質な炭化珪素単結晶の格子に従わず、また成長速度 が極めて大きくなるため柱状(多結晶状態)に成長しや すく、色々な形や方向の成長面が現れてしまい、結晶性 が悪いという問題がある。

【0006】本発明は上記問題に鑑みてなされ、結晶の 形及び結晶面の整った良質な炭化珪素単結晶を容易に得 ることができる炭化珪素単結晶の製造方法を提供するこ とを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成するた なっており、前記不活性ガス雰囲気の圧力が前記炭化珪 40 め、以下の技術的手段を採用する。請求項1に記載の発 明においては、炭化珪素原料粉末(2)の温度及び、炭 化珪素単結晶基板(5)の温度が結晶成長温度に到達し たのち、不活性ガス雰囲気の圧力を複数段階に減圧し て、炭化珪素単結晶(7)の結晶成長の初期における成 長速度を制御することを特徴としている。

> 【0008】このように、不活性ガス雰囲気の圧力を複 数段階に減圧して、不活性ガス雰囲気の圧力を複数段階 に減圧して炭化珪素単結晶(7)の結晶成長の初期にお ける成長速度を制御すれば、高圧な不活性ガス雰囲気中

を減圧させて炭化珪素単結晶(7)を結晶成長させないため、高圧下で結晶成長させた良質な炭化珪素単結晶(7)の格子に従った結晶成長をさせることができる。これにより、結晶の形及び結晶面の整った良質な炭化珪素単結晶(7)を製造することができる。

【0009】請求項2に記載の発明においては、不活性 ガス雰囲気の圧力を第1~第3段階に分けて減圧し、第 1段階の減圧では200~500Torrの範囲の圧力 にして、この範囲の圧力を第1の所定時間保持し、第2 段階の減圧では100~200Torrの範囲の圧力に 10 して、この範囲の圧力を第2の所定時間保持し、第3段 階の減圧では1~10Torrの範囲の圧力まで減圧し て、この範囲の圧力を保持することを特徴としている。 【0010】このように、不活性ガス雰囲気の圧力を、 第1段階では200~500Torr、第2段階では1 00~200Torr、第3段階では1~10Torr の圧力範囲内になるようにし、それぞれ所定時間その範 囲における圧力を保持することによって、炭化珪素単結 晶(7)の結晶成長の初期成長速度を制御することがで き、請求項1に示す良質な炭化珪素単結晶(7)を形成 20 することができる。

【0011】請求項3に記載の発明においては、不活性 ガス雰囲気の圧力の減圧を開始してから炭化珪素単結晶 (7)が結晶成長する圧力に到達するまでの時間を10 分間以上にすることを特徴としている。このように、長 い時間をかけて緩やかに減圧することにより、結晶成長 の初期の成長速度を緩やかにすることができるため、請 求項1に示す良質な炭化珪素単結晶(7)を形成するこ とができる。

【0012】請求項4に記載の発明においては、第1の 30 所定時間に比して、第2の所定時間を長くすることを特徴としている。このように、第1段階の減圧後の圧力保持時間よりも第2段階の減圧後の圧力保持時間を長くすることにより、より良質な炭化珪素単結晶(7)を形成することができる。

【0013】請求項5に記載の発明においては、炭化珪素単結晶(7)が結晶成長する圧力になるように不活性ガス雰囲気の圧力を連続的に減圧させるようになっており、不活性ガス雰囲気の圧力が炭化珪素単結晶(7)が結晶成長する圧力に近づくにつれて該減圧における減圧40速度を小さくすることを特徴としている。このように、不活性ガス雰囲気の圧力が連続的に減圧させる場合においても、炭化珪素単結晶(7)が結晶成長する圧力に不活性ガス雰囲気の圧力が近づくにつれて、不活性ガス雰囲気の圧力が近づくにつれて、不活性ガス雰囲気の圧力が近づくにつれて、不活性ガス雰囲気の圧力が近づくにつれて、不活性ガス雰囲気の圧力が近づくにつれて、不活性ガス雰囲気の圧力が近づくにつれて、不活性ガス雰囲気の圧力が近づくにつれて、不活性ガス雰囲気の圧力の減圧における減圧速度を小さくすれば、結晶成長の初期の成長速度を緩やかにすることができるため、請求項1と同様に良質な炭化珪素単結晶(7)を形成することができる。

[0014]

【発明の実施の形態】以下、この発明の実施の形態を図 50 前工程で成長した良質な炭化珪素単結晶の格子に従って

面に従って説明する。図1に、本実施の形態において用いられる黒鉛製ルツボ1を示す。この黒鉛製ルツボ1は、黒鉛製ルツボ1内に備えられた炭化珪素原料粉末2を熱処理によって昇華させ、種結晶である炭化珪素単結晶層5上に炭化珪素単結晶7を結晶成長させるものである。

【0015】この黒鉛製ルツボ1は、上面が開口しているルツボ本体1aと、ルツボ本体1aの開口部を塞ぐ蓋材1bとから構成されている。そして、この黒鉛製ルツボ1のうち、蓋材1bは種結晶である炭化珪素単結晶層 5を支持する台座となる。また、黒鉛製ルツボ1は、アルコンガスが導入できる真空容器の中でヒータにより加熱できるようになっており、このヒータのパワーを調節することによって種結晶である炭化珪素単結晶層5の温度が炭化珪素原料粉末2の温度よりも100℃程度低温に保たれるようにしている。

【0016】次に、炭化珪素単結晶の製造方法を説明する。まず、黒鉛製ルツボ1が入っている真空容器内を不活性ガス、例えばアルゴンガスを導入して500~700Torrの圧力とし、この圧力を保持する。その後、ヒータに電源を投入し、黒鉛製ルツボ1の温度を結晶成長する所定温度2200~2300℃まで昇温させる。このとき、真空容器内の圧力が500~700Torrの高圧であることと、黒鉛製ルツボ1の温度が昇温途中であるために、炭化珪素原料粉末2からは原料ガスは昇華しないために結晶成長は行われない。

【0017】黒鉛製ルツボ1の温度が結晶成長する所定の温度2200~2300℃に到達したら、真空容器内の圧力を排気弁をあけて減圧する。ここでは、まず第1段階の減圧として真空容器内の圧力を200~500Torrの範囲の圧力まで7~15分間かけて減圧して、この範囲内の圧力を5~10分間保持する。この過程は高圧下であるために結晶成長速度は数μm/hrと遅いが、炭化珪素単結晶基板5上に良質な炭化珪素単結晶が成長する。なお、この第1段階の減圧10分以上の長い時間書けて行うようにすれば、緩やかな減圧を行うことができるため、結晶成長の初期の成長速度を緩やかにでき、より良質な炭化珪素単結晶を成長させることができる

【0018】さらに真空容器内の圧力を100~200 Torrの範囲の圧力まで5~10分間かけて減圧して、この範囲内の圧力を5~10分間保持する。これにより、高圧下で成長した良質な炭化珪素単結晶の格子に従って、良質な炭化珪素単結晶が成長する。この結晶成長における結晶成長速度は数十μm/hrと高圧下の時よりも速く成長する。

【0019】この後さらに、真空容器内の圧力を1~1 0Torrの範囲の圧力まで20~40分間かけて減圧 して、この範囲の圧力を数時間保持する。これにより、 前工程で成長した良質な影化性素単結晶の格子に従って 良質な炭化珪素単結晶7が結晶成長速度数mm/hrと速く成長する。この真空容器内の圧力を1~10Torrの範囲の圧力まで減圧する時間は、20分間未満になると経過時間に対して圧力変動が大きくなり往状の結晶が成長し易くなり、また40分間を超えても結晶成長速度があまり変わらないため、長時間かけて減圧するのは成長上非効率的であるため好ましくない。すなわち、20~40分位が結晶成長の品質を保持しながら効率よく成長できる時間である。

【0020】このように結晶成長開始時の高圧から低圧 10 への減圧を段階的に行うことにより、図5に示す高圧か ら低圧へ1段階で減圧するよりも結晶成長速度が遅くな り、柱状に結晶成長することを抑制し、結晶の形及び結 晶面が揃った結晶性の良い炭化珪素単結晶を成長させる ことができる。上記した実施形態においては、アルゴン ガス雰囲気の圧力範囲やその圧力にする時間範囲を示し たが、このような圧力範囲や時間範囲からアルゴンガス 雰囲気の圧力やその圧力にする時間を選択的に設定すれ ば良い。例えば、上記実施形態では第1~第3段階に分 けてアルゴンガス雰囲気の減圧を行う場合を説明した が、上記圧力範囲が時間範囲を満たすかぎり、前記減圧 をより多数段階に分けて行ってもよく、また前記減圧を リニアに行ってもよい。具体的な圧力や時間を選択した 実施例を以下に示して各実施例における効果について説 明する。

[0021]

【実施例】以下、本発明を実施例1~3に示して説明するが、本発明は各実施例に限定されるものではない。

(実施例1)図2に実施例1におけるアルゴンガス雰囲 することにより、よ 気の圧力の経時変化曲線を示し、この図に基づいて実施 30 せることができる。 例1を説明する。 (実施例3)図4に

【0022】まず真空容器内にアルゴンガスを導入して500Torrの圧力まで上昇させたのち(図2の時点t1)、加熱を行って原料粉末2の温度を2200~2300℃まで昇温させる(図2の時点t2)。そして、原料粉末2の温度が所定の温度に到達した後、第1段階の減圧としてアルゴンガス雰囲気の圧力を200Torrまで7分間かけて減圧し(図2の時点t3)、このままの圧力で6分間保持する。

【0023】次に、第2段階の減圧としてアルゴンガス 40 雰囲気の圧力を100Torrまで6分間かけて減圧し(図2の時点 t4)、このままの圧力で6分間保持する。なお、本実施例ではこの第2段階の減圧時における圧力保持時間を第1段階の減圧時における圧力保持時間と同じ時間行っている。さらに、第3段階の減圧としてアルゴンガス雰囲気の圧力を1Torrまで25分かけて減圧する(図2の時点 t5)。そして、このままの圧力で炭化珪素原料粉末2の温度が2300℃、炭化珪素単結晶基板5との温度差が60℃になるような条件下で3時間結晶成長させて炭化珪素単結晶7を形成する。50

【0024】この結果、炭化珪素単結晶基板5の上に厚さ500μmの極めて良質な炭化珪素単結晶7の結晶を得ることができる。このように、上記実施形態に示した第1~第3段階の範囲における圧力を任意に選択して、その選択した圧力を所定時間保持するという段階的な減圧及び保持を行うようにして炭化珪素単結晶7を形成してもよい。

【0025】(実施例2)図3に実施例2におけるアルゴンガス雰囲気の圧力の経時変化曲線を示し、この図に基づいて実施例2を説明する。上記実施例1では、第1段階の減圧時における圧力保持時間と第2段階の減圧時における圧力保持時間とを同じ時間にしているが、本実施例2では第1段階の減圧時における圧力保持時間よりも第2段階の減圧時における圧力保持時間が長くなるようにしている。

【0026】具体的には、真空容器内の圧力を多段に減圧する過程において第1段階の減圧後の圧力保持時間を Tとした場合、第2段階の減圧後の圧力保持時間を Tとした場合、第2段階の減圧後の圧力保持時間を Tとした場合、第2段階の減圧後の圧力保持時間を の20間とするのが望ましい)等して、アルゴンガス雰囲気の 減圧の段階を増やす毎に圧力保持時間を長くしている。 【0027】このように、アルゴンガス雰囲気を多段階 に減圧する場合において、それぞれの段階における圧力 保持時間を順に長くしていくと、圧力保持時間を同一に した場合に比してより良質な炭化珪素単結晶7を成長さ せることができるという結果が実験により得られた。従 って、アルゴンガス雰囲気を多段階に減圧する場合にお いて、それぞれの段階における圧力保持時間を順に長く することにより、より良質な炭化珪素単結晶7を成長さ サることができる

(実施例3)図4に実施例3におけるアルゴンガス雰囲気の圧力の経時変化曲線を示し、この図に基づいて実施例3を説明する。

【0028】上記実施例1、実施例2では、アルゴンガス雰囲気の減圧を段階的に行ったが、本実施例3では上記実施形態における第1~第3段階の圧力範囲及び時間範囲を満たす条件下でアルゴンガス雰囲気の減圧をリニアに行っている。具体的には、真空容器内の圧力を減圧する際、高圧下での初期の減圧速度pa/taとし、圧力が下がるにつれて減圧速度を連続的に遅くし、結晶成長が始まるころの減圧速度がpb/tb(pa/ta>pb/tb)となるような2次曲線を描く減圧速度での減圧を行っている。

【0029】このように、結晶成長開始後におけるアルゴンガス雰囲気の減圧速度を結晶成長開始前よりも遅く変化させた場合、実施例1に比してより良質の炭化珪素単結晶を得ることができるという結果が実験により得られた。従って、結晶成長開始後におけるアルゴンガス雰囲気の減圧速度を結晶成長開始前よりも遅く変化させる50ことにより、より良質な炭化珪素単結晶7を成長させる

7

ことができる。

【図面の簡単な説明】

【図1】炭化珪素単結晶の成長用黒鉛製ルツボの断面図である。

【図2】第1実施例におけるアルゴンガス雰囲気圧力の 経時変化曲線図である。

【図3】第2実施例におけるアルゴンガス雰囲気圧力の 経時変化曲線図である。 【図4】第3実施例におけるアルゴンガス雰囲気圧力の 経時変化曲線図である。

【図5】従来におけるアルゴンガス雰囲気圧力の経時変 化曲線図である。

【符号の説明】

1…黒鉛製ルツボ、1 a…ルツボ本体、1 b…蓋部材、 2…炭化珪素単結晶粉末、5…炭化珪素単結晶基板(種 結晶)、7…インゴットの炭化珪素単結晶。

【図5】

2nd Embodineut

【図4】

30d 11

フロントページの続き

(72)発明者 木藤 泰男

愛知県刈谷市昭和町1丁目1番地 株式会

社デンソー内