

231-ICS-619 Project

Video-based Retail Store Shelf Monitoring

Khaled Almutairy
Mamoun Alghaslan

Introduction

- Seamless, Saudi Arabia's premier event, highlighted innovations in payments, fintech, retail, ecommerce, home delivery, and digital marketing.
- A focus on retails future featured cashier-less stores showcasing Alpowered shelf monitoring, addressing a key industry trend.

Challenges in Retail Inventory Management

Manual Inspection Process: relying on laborintensive manual work, with employees counting and correcting products on shelves, preparing OOS inventory, retrieving items from storage, and replenishing shelves.

 Financial Implications: High expenditure on inventory management and potential customer loss due to frustration or simply not finding the convenience

 Limited stock monitoring: Currently, supermarkets rely on distributers to manually count and sort the shelf products and report stock status.

Challenges in current approaches

- Limitations of traditional methods (ML, image processing)
- Deep learning's need for large annotated datasets

 Difficulty in achieving high precision for Out-Of-Stock and Misplaced detection due to shelf layout, object shapes, and occlusion.

Our proposed approach

 Collecting images directly from shelves

Labelling products and empty spaces with bounding boxes

 Fine-tuning a pre-trained object detection model on a supermarket dataset

 Building an efficient system around the detection model

Background

C

Object Detection and Recognition

- Detection involves locating and defining the best bounding box
- Recognition refers to classification

Model Implementation Options

- Traditional Image Processing such HOG, SIFT, SURF, BRISK and FAST
- Deep Learning Networks

Metrics

C

Object Detection

Figure 1.3: a) Intersection over Union b) Examples of different IoU [18]

Object Recognition

Table 1.2: Evaluation Metrics

Metric	Equation	Explanation					
Accuracy	$\frac{TP+TN}{TP+TN+FP+FN}$	Measures overall correctness of predic-					
	11 111 111 111	tions.					
Precision	$\frac{TP}{TP+FP}$	Measures how many of the positive predic-					
		tions are accurate.					
Recall	$\frac{TP}{TP+FN}$	Measures how many of the actual positives					
		are correctly predicted.					
Mean Average Precision	$\frac{1}{N}\sum_{i=1}^{N} AP_i$	A comprehensive metric that combines					
	.,	precision and recall for all classes. AP is					
		a precision-recall trade-off measurement.					

Existing Solutions

Deep Learning methods

- Faster R-CNN
 - A two-stage architecture, first generating region proposals and then predicting class labels, and bounding box coordinates
 - Generally slower due to its two-stage process
- YOLO
 - A single-stage architecture, simultaneously predicting class probabilities and bounding box coordinates in one pass through the network.
 - Known for its real-time object detection capabilities, achieving faster inference speeds.

Other methods

- Classical Methods
 - Do not generalize well when applied to new environments.
- · Depth Estimation Method
 - Fail to detect product misplacement

Data Collection

Danube Supermarket

- Focused on five shelves ~150 products
- Each product was removed to simulate OOS, and 32 product were moved around five times to simulate MIS
- A total of 310 images were collected and augmented
- Data set was split 90/5/5%, with 15 samples of OOS and MIS in val./test
- Roboflow for annotation

Figure 3.1: Example of a MIS sample (top row) with a bounding box in yellow

Experiments

YOLOv5 YOLOv7

Class	Images	Instances	P	R	mAP50	mAP	Class	Images	Instances	P	R	mAP50	mAP
all	40	6020	0.362	0.408	0.55	0.416	all	40	6020	0.916	0.893	0.918	0.672
MIS	40	25	0.356	0.16	0.246	0.139	MIS	40	25	1	0.68	0.759	0.42
OOS	40	15	0.0891	0.0667	0.409	0.255	OOS	40	15	0.753	1	0.995	0.752
Product	40	5980	0.64	0.999	0.994	0.853	Product	40	5980	0.996	0.999	0.999	0.844

Table 3.1: YOLOv5 performance metrics on test set

Table 3.2: YOLOv7 performance metrics on test set

Paperspace Jupyter Notebook, Quadro-P6000 GPU, 5- and 2.5-hours training time respectively

Model fine-tuning

YOLOv8s

Class mAP50 Images Instances P R mAP 30 0.957 all 4523 0.987 0.909 0.767 0.727 0.882 MIS 30 15 0.64830 15 0.962 0.995 0.78 OOS Product 30 4493 0.998 0.995 0.873

Table 4.1: YOLOv8 performance metrics on test set

Results

System Design

Components

- Detection model
- 2. Model API
- 3. Web Server
 - 1. Web-site server
 - 2. Web worker
 - 3. Broadcasting service
- 4. IP Cameras

Diagram

Figure 4.2: System high-level design

Prototype

Design

Figure 5.1: System high-level design with the preliminary implemented components boxed

Implemented Components

• Web server: Node.js + Express

• **Model server**: Python + Flask

Prototype

Conclusion

- Developed a Video-based Retail Store Shelf Monitoring System (SMS) using deep learning.
- Created dataset from Danube supermarket for Out-Of-Stock (OOS) and product misplacement (MIS).
- Achieved mean Average Precision (mAP) scores of 0.882 for MIS and 0.995 for OOS.
- Developed a preliminary prototype as a proof-ofconcept for feasibility.
- Future work includes real-world testing, refining accuracy, scalability, exploring additional functionalities like shelf restocking

+

THANK YOU

Mamoun Alghaslan, Khaled Almutairy

