CT303 - Digital Communications Autumn 2019/20

In-Sem 1 6th September 2019 Duration: 90 minutes Total Marks 20

Note: You may use any result/example derived/stated in class/lab without proof.

1. Assume that you are sitting at a point on the rim of a Ferris wheel, as you did in Lab1. The only difference is that, the Ferris wheel is a *nested* one, i.e., a second wheel rotates about its center c_1 which is fixed on the rim of the first one (and moves with the first wheel), and a third wheel rotates about its center c_2 which is fixed on the rim of the second wheel (and moves with the first and second wheel). The wheels are each of radius r_0 , r_1 , r_2 , each completing one rotation in T, $\frac{T}{2}$, $\frac{T}{4}$ seconds respectively with constant velocity, and center of the first wheel c_0 is fixed at the point (0,h). Each wheel rotates in the direction indicated in Figure 1, and you are seated on the rim of the third wheel.

Figure 1: Nested Ferris wheel. Assume \hat{y} along the height of the Ferris wheel, and $h > r_0 + r_1 + r_2$.

- (a) Assuming any starting position you want (draw it), describe your (x, y) position as a function of time.
- (b) What is the Nyquist sampling rate for sampling these functions.

2. Short Questions (and short answers):

- (a) Let X(t) be a stochastic process with ACF $R_X(\tau) = k\delta(\tau)$, $\tau \in \mathbb{R}$, where $k \in \mathbb{R}$ is some positive constant. Find an LTI system (i.e. specify its impulse response h) such that if X is given as an input, the output stochastic process Y has a cross-correlation with the input X given by $R_{YX}(\tau) = \frac{1}{2}\cos(\tau)$, $\tau \in \mathbb{R}$. [2]
- (b) Let X(t) be a zero-mean White Gaussian stationary process with PSD N_0 . Compute the variance of X(t). [2]
- (c) Let $\eta(t)$ be a stationary zero-mean stochastic process that models noise. Let it contaminate a known but arbitrary deterministic signal s(t) to yield the noisy signal (stochastic process) $Z(t) = s(t) + \eta(t)$. Find whether Z(t) is stationary or not.

- (d) Verify if the following functions are valid autocorrelation functions defined on \mathbb{R} with justification. (a) $R_x(\tau) = \exp(-\tau)$, (b) $R_x(\tau) = (\sin c(\tau T))^2$, (c) $R_x(\tau) = \cot(\frac{\tau}{T})$. [3]
- (e) Given a noiseless channel with bandwidth *W* Hz, state with justification the theoretical maximum symbol rate in symbols/sec that the channel can support? What about the maximum data rate in bits/sec? [2]
- 3. Consider a binary PCM signalling scheme with waveforms s_1 (for bit 0) and either s_2 or s_3 (for bit 1) as shown in Figure 2 below. For each waveform, determine the expression of the matched filter impulse response. On the receiver end, the bit transmitted is estimated based on which of the two matched filter produces a higher output every T seconds. Assume same prior probabilities, AWGN noise with PSD $\frac{N_0}{2}$ Watts/Hz and no inter-symbol interference. Compute the probability of error of the receiver with the matched filters (maybe in terms of the Q function, if possible), and decide which of the two waveforms s_2 and s_3 will you choose to represent bit 1. [6]

Figure 2: Binary PCM signaling. What will you prefer, $\{s_1, s_2\}$ or $\{s_1, s_3\}$?

Brief Solutions

- 1. Ferris Wheel:
 - (a) Let $c_i(t)$, i=0,1,2 denote the coordinated of the center of the i^{th} Ferris wheel. Coordinates of your position p(t) is then given by $p(t)=r_2(\cos\left(\frac{8\pi t}{T}\right),-\sin\left(\frac{8\pi t}{T}\right))+c_2(t)$. Similarly, $c_2(t)=r_1(\cos\left(\frac{4\pi t}{T}\right),\sin\left(\frac{4\pi t}{T}\right))+c_1(t)$, and $c_1(t)=r_0(\cos\left(\frac{2\pi t}{T}\right),-\sin\left(\frac{2\pi t}{T}\right))+c_0$. Thus,

$$p(t) = r_2(\cos\left(\frac{8\pi t}{T}\right), -\sin\left(\frac{8\pi t}{T}\right)) + r_1(\cos\left(\frac{4\pi t}{T}\right), \sin\left(\frac{4\pi t}{T}\right)) + r_0(\cos\left(\frac{2\pi t}{T}\right), -\sin\left(\frac{2\pi t}{T}\right)) + (0, h).$$

- (b) Nyquist sampling rate: $f_s = \frac{8}{T}$ Hz.
- 2. Short Questions.
 - (a) $R_{YX}(\tau) = (h * R_X)(\tau)$. Thus $h(t) = \frac{1}{2k} \cos(\tau)$.
 - (b) $\sigma^2 = \mathbb{E}[X_t X_t] = R_X(0) = \int_{-\infty}^{\infty} |G_x(f)| df$. Given that $G_x(f) \equiv N_0$, $\sigma^2 = \infty$.
 - (c) $\mathbb{E}[Z(t_1)] = \mathbb{E}[s(t_1) + \eta(t_1)] = s(t_1)$, while $\mathbb{E}[Z(t_2)] = \mathbb{E}[s(t_2) + \eta(t_2)] = s(t_2)$. Since $s(t_1) \neq s(t_2)$, Z(t) is not a stationary stochastic process.
 - (d) Valid autocorrelation functions. (a) Invalid, since $R_X(-1) > R_X(0)$. (b) Valid, since $R_X(0) \ge RX(\tau)$, $\forall \tau$, $R_X(\tau) = R_X(-tau)$, $G_X(f)$ is the triangle hat/tent function, which is non-negative and real. (c) Invalid, since $G_X(f)$ is the sinc function, which is negative at several frequencies.
 - (e) As already shown in class, given a noiseless channel with bandwidth W Hz, it can support 2W symbols/sec using sinc pulses. Since no constraint if given on the receiver, each symbol can encode infinitely many bits, and thus there is no upper bound for the bit rate.
 - (f) Matched filter:
 - $h_1(t)=s_1(T-t)=s_2(t)=\frac{t}{T}, \forall t\in[0,T], h_2(t)=s_2(T-t)=s_1(t)=1-\frac{t}{T}, \forall t\in[0,T], h_3(t)=s_3(T-t)=-s_1(t)=\frac{t}{T}-1, \forall t\in[0,T].$ Note that $|H_1(f)|=|H_2(f)|=|H_3(f)|$. Thus noise power at the output of the filter is the same for all three matched filters. Let z_1,z_2,z_3 represent the output of the three corresponding filters sampled at time T. The distributions of the three random variables are: $z_1\sim\mathcal{N}(a_{11},\sigma_0)+\mathcal{N}(a_{12},\sigma_0)$ or $z_1\sim\mathcal{N}(a_{11},\sigma_0)+\mathcal{N}(a_{13},\sigma_0)$, where σ_0 is the noise output power, and a_{ij} is the output of filter i when the received signal is purely $s_i(t)$. Since energy of the three symbols is the same $a_{11}=a_{22}=a_{33}$. Similarly, $z_2\sim\mathcal{N}(a_{21},\sigma_0)+\mathcal{N}(a_{22},\sigma_0)$, and $z_3\sim\mathcal{N}(a_{31},\sigma_0)+\mathcal{N}(a_{33},\sigma_0)$. For symbols s_1,s_2 the probability of error is $p(e)=0.5p(z_1< z_2|s_1)+0.5p(z_1>z_2|s_2)=p(z_1< z_2|s_1)$, which in turn will depend on the difference between a_{11} and a_{21} . Similarly, for the symbol set s_1,s_3 , the probability of error will depend on the difference between a_{33} and a_{31} , which is greater than the difference between a_{22} and a_{21} . Thus the symbol set s_1,s_3 will have a lesser probability of error.