

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/085,910	02/28/2002	Tommi Auranen	04770.00039	1183
22907	7590	01/03/2008	EXAMINER	
BANNER & WITCOFF, LTD. 1100 13th STREET, N.W. SUITE 1200 WASHINGTON, DC 20005-4051			TORRES, MARCOS L	
			ART UNIT	PAPER NUMBER
			2617	
			MAIL DATE	DELIVERY MODE
			01/03/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/085,910	AURANEN ET AL.	
	Examiner	Art Unit	
	Marcos L. Torres	2617	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 10-15-07.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1,3-42 and 44 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1,3-42 and 44 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
- 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
- 3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date _____
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____
- 5) Notice of Informal Patent Application
- 6) Other: _____

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 10-20-06 has been entered.

Response to Arguments

2. Applicant's arguments filed 11-20-06 have been fully considered but they are not persuasive.
3. As to applicant arguments that Jonsson that the mobile station performs the handover operation, the present action now relies in Chen for the above mentioned limitations.
4. As to applicant arguments that Jonsson receiver is not a digital broadcast receiver for receiving digital video broadcasting, that limitation is taught by Chen as previously stated in the prior action.
5. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., two-way communication) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are

not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

6. Regarding applicant argument that Chen does not teach or suggest a handoff from a first digital video broadcasting signal to a second digital video broadcasting signal performed by the mobile station as claimed, because uses different data or indicator; it is noted that the claim does not specify which data or indicator is being used, only discloses a “predefined criterion”, thereby Chen does reads in the above limitation.

7. Applicant alleges that Malek in col. 6, lines 31-35 fails to disclose handover between transmission bursts (frames), however that portion clearly disclose to cease receiving frames (burst) via the old base and on the next frame (burst) start receiving on the new base station. That is how normally a handoff is done to prevent burst interruption. Therefore, the combination of Malek with Jonsson and Chen does disclose the above limitations.

8. Finally, applicant submit that there is no expectation of success in the combination of Jonsson and Chen, because Jonsson describes a system for two way radio telephone and Chen describes a broadcast communication system; this allegation is contrary of the Chen disclosure, in page 4, lines 35-41 Chen discloses using the existing cellular infrastructure for broadcasting. Therefore the references are properly combinable.

Art Unit: 2617

9. Applicant's arguments, see page 11, filed 11-20-06, with respect to the 112 rejections have been fully considered and are persuasive. The 112 rejections of claims 1, 9, 16, 21 and 36 have been withdrawn.

Claim Rejections - 35 USC § 112

10. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

11. Claims 21 and 26 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

12. The term "quasi-error-free" in claims 21 and 36 is a relative term which renders the claim indefinite. The term " quasi-error-free" is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the scope of the invention.

Claim Rejections - 35 USC § 103

13. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

14. The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

Art Unit: 2617

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

15. Claims 1 and 6-8 are rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson (U.S. Patent 5,513,246) in view of Chen US 6731936 B2.

As to claim 1, Jonsson discloses a method for receiving at a mobile terminal a signal formatted as a series of transmission bursts (see col. 8, lines 46-57), the signal provided by each of a plurality of wireless transmitters (see col. 9, lines 45-53), said method comprising the steps of: receiving a first signal broadcast by a first wireless transmitter (see col. 7, lines 20-48); if said first signal meets a first predefined criterion (see col. 10, lines 3-10), deriving signal data from a second signal broadcast by a second wireless transmitter (see col. 10, lines 11-15); and if said signal data from said second wireless transmitter meets a second predefined criterion, switching reception from said first wireless transmitter to said second wireless transmitter after a first signal transmission burst has been received (see col. 10, line 3 - col. 11, line 45) and switching reception to said second wireless transmitter (see fig. 1e). Jonsson does not specifically disclose that the broadcast data is video. In an analogous art, Chen discloses: receiving by the mobile station a first video broadcasting signal broadcast by a first wireless transmitter (see col. 6, lines 61-66), if said first signal meets a first predefined criterion (see col. 8, lines 8-13), the mobile station deriving video broadcasting signal data from a second video broadcasting signal by a second wireless transmitter (see col. 8, lines 28-32) and switching reception to said second wireless transmitter (see col. 8, lines 54-57);

Art Unit: 2617

thereby allowing the transmission of digital video broadcasting. Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to add these teaching to the Jonsson method for maintaining the communication service as suggested by Jonsson in col. 1, lines 26-29 and Chen in col. 2, lines 44-47 and enhance the services (see col. 4, lines 35-41).

As to claims 6, Jonsson discloses a method wherein said first criterion is met if a receiver signal strength value for said first signal measured by the mobile terminal is less than a predetermined value (see col. 9, lines 9-20; col. 10, lines 3-55). Jonsson does not specifically disclose that the broadcast data is video. In an analogous art, Chen discloses wherein the broadcast data is video (see col. 6, lines 61-64), thereby allowing the transmission of digital video broadcasting. Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to add this teaching to the Jonsson method for maintaining the data quality in a mobile multimedia device.

As to claims 7-8, Jonsson discloses a method wherein said first and second is met by been greater or smaller than a predetermined value (see col. 10, lines 3-55). Jonsson does not specifically disclose criterion is a bit error rate. Chen discloses were the criterion is a bit error rate and deriving it from the signal (see col. 8, line 10-13).

16. Claims 24-29, 31, 33-35 and 41-42 are rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson (U.S. Patent 5,513,246) in view of Chen US 6731936 B2 and further in view of Malek US 5822313A.

As to claim 24 and 33, Jonsson discloses a mobile terminal suitable for receiving information from a plurality of synchronized digital broadcasting wireless transmitters (see col. 2, lines 32-38), said mobile terminal comprising: a digital broadcast receiver configured to receive at least a first portion of the information as a first transmission burst, said first transmission burst broadcast by a first digital video broadcasting wireless transmitter (see col. 7, lines 20-48); a processor coupled to the digital broadcast receiver (see col. 7, lines 54-57), switch reception by the digital broadcast receiver from the first digital broadcasting wireless transmitter to a second digital video broadcasting wireless transmitter (see col. 10, line 3 - col. 11, line 45). Jonsson does not specifically disclose the type of data, buffer configured to store said first transmission burst and going a handover after reception of said first transmission burst has been completed and before a consecutive transmission burst is sent by the synchronized first and second digital video broadcasting wireless transmitters. In an analogous art, Malek discloses a buffer configured to store said first transmission burst; a mobile station executing a handover after reception of said first transmission burst has been completed and before a consecutive transmission burst is sent by the synchronized first and second digital broadcasting wireless transmitters (see col. 6, lines 31-35; col. 3, lines 56 67; col. 4, lines 10-14). In an analogous art, Chen discloses wherein the broadcast data is video (see col. 6, lines 61-64) and transmit a synchronized common signal (see col. 6, lines 65-66; col. 7, lines 46-50), thereby allowing the transmission of digital video broadcasting. Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to add this

Art Unit: 2617

teaching to the Jonsson method for maintaining the data quality in a mobile multimedia device.

As to claims 25 and 34-35, Jonsson discloses a method wherein said first and second is met by been greater or smaller than a predetermined value (see col. 10, lines 3-55). Chen discloses were the criterion is a bit error rate and deriving it from the signal (see col. 8, lines 10-14).

As to claims 26, Jonsson discloses a method wherein said first criterion is met if a receiver signal strength value for said first signal measured by the mobile terminal is less than a predetermined value (see col. 9, lines 9-20; col. 10, lines 3-55). Jonsson does not specifically disclose that the broadcast data is video. In an analogous art, Chen discloses wherein the broadcast data is video (see col. 6, lines 61-64), thereby allowing the transmission of digital video broadcasting.

As to claim 27, Jonsson discloses wherein the switching of said signal data from said second wireless transmitter meets a second predefined criterion, switching reception from said first wireless transmitter to said second wireless transmitter after a first signal transmission burst has been received (see col. 10, line 3 - col. 11, line 45). In an analogous art, Chen discloses wherein the broadcast data is video (see col. 6, lines 61-64), thereby allowing the transmission of digital video broadcasting.

As to claim 31, Jonsson discloses a digital broadcasting system comprising: a first digital broadcasting transmitter configured to broadcast information as a first plurality of consecutive transmission bursts (see col. 7, lines 20-48; col. 9, lines 45-53); a second digital video broadcasting transmitter configured to broadcast the information

as a second plurality of consecutive transmission bursts in synchronization with the first plurality of consecutive transmission bursts (see col. 10, lines 11-15; col. 5, lines 40-49), and a receiver system configured to receive said information (see col. 5, line 56 – col. 6, line 1), said receiver further including a processor, and executable instructions executed by the processor (see col. 6, lines 15-24; 52-59 col. 8, lines 18-25), cause the processor to perform a hand-over from said first digital broadcasting transmitter to said second digital broadcasting transmitter upon receipt of a first transmission burst, if at least one predefined criterion has been met (see col. 10, line 3 - col. 11, line 45). Jonsson does not specifically disclose the video data, receiver system including a buffer configured to buffer said transmission bursts or handover prior to a consecutive transmission burst. In an analogous art, Chen discloses wherein the broadcast data is video (see col. 6, lines 61-64), thereby allowing the transmission of digital video broadcasting. In an analogous art, Malek discloses a buffer configured to store said first transmission burst; a mobile station executing a handover after reception of said first transmission burst has been completed and before a consecutive transmission burst is sent by the synchronized first and second digital broadcasting wireless transmitters (see col. 6, lines 31-35; col. 3, lines 56 67; col. 4, lines 10-14). Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to combine both teachings for enhanced management of system resources.

As to claims 28 and 29, Malek discloses the mobile terminal wherein the executable instructions are further for converting said first transmission burst in a data stream and vice versa (see col. 4, lines 9-25).

As to claim 41, Malek discloses wherein the pluralities of transmitters are synchronized (see col. 2, lines 49-53).

As to claim 42, Malek discloses method wherein said step of selecting said second wireless transmitter for receiving the information is performed after receipt of a signal transmission burst from said first wireless transmitter, and prior to receipt of a consecutive signal transmission burst from said second wireless transmitter (see col. 6, lines 31-35).

17. Claims 3-5 are rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson (U.S. Patent 5,513,246) in view of Chen US 6731936 B2 as applied to claim 1 above, and further in view of Ahopelto (U.S. Patent 5,970,059).

As to claim 3, Jonsson discloses everything claimed as explained above except for the step of stripping encapsulation from said first signal after receipt by the mobile station or the broadcast data is video. Ahopelto discloses the step of stripping encapsulation from said first signal after receipt by the mobile station (see col. 9, lines 28-30). In an analogous art, Chen discloses wherein the broadcast data is video (see col. 6, lines 61-64), thereby allowing the transmission of digital video broadcasting. Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to add this teaching for the simple purpose of using the data.

As to claim 4, OFFICIAL NOTICE IS TAKEN THAT the use of several synchronized transmitters is a common and well-known technique used in several wireless communication standards such as GSM and TDMA. Also, the EN 301192 is a common and well-known standard. Therefore, it would have been obvious to one of the

Art Unit: 2617

ordinary skill in the art at the time of the invention to use such standards in the Jonsson modified system for the simple reason of compatibility.

As to claim 5, Jonsson discloses a method further comprising the step of sending said first signal to an application processor for conversion (see col. 5, line 40 - col. 8, line 24), to a data packet (see col. 6, lines 13-28). In an analogous art, Chen discloses wherein the broadcast data is video (see col. 6, lines 61-64), thereby allowing the transmission of digital video broadcasting. Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to combine this teaching for improved network bandwidth management.

18. Claims 21, 23, 36-38 are rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson in view of Chen and further in view of Malek (U.S. Patent US005822313A).

As to claim 21, Jonsson discloses a method for receiving a series of signals provided by each of plurality of wireless transmitters (see col. 9, lines 45-53), said method comprising the steps of: selecting a first synchronized wireless transmitter from a plurality of synchronized wireless transmitters for providing information (see col. 9, lines 1-20), each said synchronized wireless transmitter broadcasting; receiving signals broadcast by the first synchronized wireless transmitter (see col. 7, lines 20-48); deriving a first quality rate for information received from said first wireless transmitter; if said first quality rate for said first wireless transmitter is greater than a predefined quality value, deriving a second quality rate for a second synchronized wireless transmitter; and if said second quality rate is less than said quality value, selecting said second

synchronized wireless transmitter for providing the information (see col. 10, line 3 - col. 11, line 45) and switching reception directly to said second wireless transmitter (see fig. 1e). Jonsson does not specifically disclose synchronized wireless transmitter, that the quality rate is a bit error rate or the BTS on different frequencies. However, Jonsson discloses that he is using TDMA a system that uses synchronized wireless transmitter. In an analogous art, Chen discloses a mobile station selecting (see col. 8, lines 54-57) synchronous transmitters (see col. 7, lines 46-51) and were the criterion is a bit error rate and deriving it from the signal (see col. 8, lines 10-13, 28-32), thereby permitting a soft handover. In an analogous art, Malek discloses using different frequencies for different base station (see col. 1, lines 58-63), thereby minimizing co-channel interference. Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to combine this teaching with the Jonsson system for an even quality of communication.

As to claim 36, Jonsson discloses a method for receiving a series of signals provided in synchronization by each of first and second wireless transmitters, said method comprising the steps of: receiving signals broadcast synchronously by the first and second wireless transmitters (see col. 2, lines 32-38; col. 5, line 45-49), selecting the first wireless transmitter for receiving information broadcast in consecutive transmission bursts, (see col. 9, lines 1-20), each said synchronized wireless transmitter broadcasting; receiving signals broadcast by the first wireless transmitter (see col. 7, lines 20-48); deriving a first quality rate for information received from said first wireless transmitter; if said first quality rate for said first wireless transmitter is greater than a

Art Unit: 2617

predefined quality value, deriving a second quality rate for a second synchronized wireless transmitter; and if said second quality rate is less than said quality value, selecting said second synchronized wireless transmitter for providing the information (see col. 10, line 3 - col. 11, line 45) and switching reception directly to said second wireless transmitter (see fig. 1e). Jonsson does not specifically disclose synchronized wireless transmitter, that the quality rate is a bit error rate or the BTS on different frequencies. However, Jonsson discloses that he is using TDMA a system that uses synchronized wireless transmitter. In an analogous art, Chen discloses a mobile station selecting (see col. 8, lines 54-57) synchronous transmitters (see col. 7, lines 46-51) and were the criterion is a bit error rate and deriving it from the signal (see col. 8, lines 10-13, 28-32), thereby permitting a soft handover. Although it is obvious that Jonsson and Chen use different frequencies for different base station they do not specify such simplistic details. In an analogous art, Malek discloses using different frequencies for different base station (see col. 1, lines 58-63), thereby minimizing co-channel interference. Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to combine this teaching with the Jonsson system for an even quality of communication.

As to claims 23 and 38, Jonsson discloses a method wherein said first criterion is met if a receiver signal strength value for said first signal measured by the mobile terminal is less than a predetermined value (see col. 9, lines 9-20; col. 10, lines 3-55).

As to claim 37, Malek discloses method wherein said step of selecting said second wireless transmitter for receiving the information is performed after receipt of a

Art Unit: 2617

signal transmission burst from said first wireless transmitter, and prior to receipt of a consecutive signal transmission burst from said second wireless transmitter (see col. 6, lines 31-35).

19. Claim 22 is rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson in view of Chen and Malek as applied to claim 21 above, and further in view of Taketsugu (U.S. Patent US005420863A).

As to claim 22, Jonsson discloses everything claimed as explained above except for selecting a wireless transmitter between transmissions burst. In an analogous art, Taketsugu discloses selecting a wireless transmitter between transmissions burst (see col. 6, lines 41-56), thereby allowing a smooth transition between transmitters without loosing or having to retransmit data. Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to combine both teachings for enhanced management of system resources.

20. Claims 9-14, 16, 18-20 and 39 are rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson in view of Chen and further in view of Makinen (U.S. Patent 5,764,700).

As to claims 9, 12-14 and 16, Jonsson discloses a mobile terminal suitable for receiving information from a plurality of wireless transmitters, said mobile terminal comprising: a digital broadcast receiver for receiving at least a first portion of the information as a first transmission burst, said first transmission burst broadcast by a first wireless transmitter converting in to a data stream and viceversa; and means for switching reception (election module) from the first wireless transmitter to a second

wireless transmitter after reception of said first transmission burst has been completed (see col. 5, line 40 - col. 11, line 42) and switching reception directly to said second wireless transmitter (see fig. 1e). Jonsson does not specifically disclose synchronous transmitters or an elastic buffer in the receiver. However, Jonsson discloses that he is using TDMA a system that uses synchronized wireless transmitter. In an analogous art, Chen discloses synchronous transmitters (see col. 7, lines 46-51) and wherein the information is a digital video broadcasting (see abstract), thereby permitting a soft handover. Jonsson and Makinen do not specially disclose an elastic buffer. In another analogous art, Makinen discloses an elastic buffer in the receiver (see col. 2, line 59 - col. 3, line 14). Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to add this teaching to the Jonsson apparatus for a reliable reception of data even if the timing are not precise.

Regarding claim 11, Jonsson discloses the mobile terminal further comprising means for deriving a received signal strength indicator value for said first transmission burst (see col. 10, lines 30-38).

As to claim 18, Jonsson discloses a method wherein said first criterion is met if a receiver signal strength value for said first signal measured by the mobile terminal is less than a predetermined value (see col. 9, lines 9-20; col. 10, lines 3-55).

As to claims 10 and 19-20, Jonsson discloses a method wherein said first and second is met by been greater or smaller than a predetermined value (see col. 10, lines 3-55). Jonsson does not specifically disclose criterion is a bit error rate. Chen discloses were the criterion is a bit error rate and deriving it from the signal (see col. 8, lines 10-

Art Unit: 2617

14).

As to claim 39, Jonsson discloses wherein the receiver system comprises a mobile terminal (see col. 1, lines 5-8).

21. Claim 17 is rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson in view of Chen and Makinen as applied to claim 16 above, and further in view of Doshi (U.S. Patent 5,936,965).

As to claim 17, Jonsson discloses a transmitter and encapsulating a transmission burst as mentioned above. Doshi discloses a transmitter using more than one protocol (see abstract). Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to combine these teachings for compatibility purposes.

22. Claim 32 is rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson in view of Chen US 6731936 B2 and further in view of Malek as applied to claim 31 above, and further in view of Doshi (U.S. Patent 5,936,965).

As to claim 32, Jonsson discloses a transmitter and encapsulating a transmission burst as mentioned above. Doshi discloses a transmitter using more than one protocol (see abstract). Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to combine these teachings for compatibility purposes.

23. Claims 40 and 44 are rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson in view of Chen further in view of Makinen as applied to claims 9 and 16 above, and further in view of Malek.

As to claim 40, Jonsson discloses the digital broadcasting system everything claimed as explained above except for wherein executing a hand-over from said first

transmitter to said at least one other transmitter upon receipt of said transmission burst comprises completing the hand-over prior to a consecutive transmission burst transmitted by the synchronized first and other transmitters. In an analogous art, Malek discloses wherein executing a hand-over from said first transmitter to said at least one other transmitter upon receipt of said transmission burst comprises completing the hand-over prior to a consecutive transmission burst transmitted by the synchronized first and other transmitters (see col. 6, lines 31-35; col. 3, lines 56 67; col. 4, lines 10-14).

As to claim 44, Malek discloses method wherein said step of selecting said second wireless transmitter for receiving the information is performed after receipt of a signal transmission burst from said first wireless transmitter, and prior to receipt of a consecutive signal transmission burst from said second wireless transmitter (see col. 6, lines 31-35).

24. Claim 15 is rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson in view of Chen and Makinen as applied to claim 14 above, and further in view of Lim (U.S. Patent US006766168B1).

As to claim 15, Jonsson discloses everything claimed as explained above except for the mobile terminal wherein said stream filter comprises an Internet Protocol (IP) filter. In an analogous art, Lim discloses a mobile terminal wherein said stream filter comprises an Internet Protocol (IP) filter (see col. 4, lines 23-39), thereby allowing the use of the Internet in the mobile device. Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to combine these teachings for enhanced features for the user.

Art Unit: 2617

25. Claim 30 is rejected under 35 U.S.C. 103(a) as being unpatentable over Jonsson (U.S. Patent 5,513,246) in view of Chen US 6731936 B2 and further in view of Malek (U.S. Patent US005822313A) as applied to claim 24 above, and further in view of Lim (U.S. Patent US006766168B1).

As to claim 30, Jonsson discloses everything claimed as explained above except for the mobile terminal wherein said stream filter comprises an Internet Protocol (IP) filter. Lim discloses a mobile terminal wherein said stream filter comprises an Internet Protocol (IP) filter (see col. 4, lines 23-39), thereby allowing the use of the Internet in the mobile device. Therefore, it would have been obvious to one of the ordinary skill in the art at the time of the invention to combine these teachings for enhanced features for the user.

Conclusion

Any response to this Office Action should be mailed to:

U.S. Patent and Trademark Office
Commissioner of Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Or faxed to:

571-273-8300

for formal communication intended for entry, informal communication or draft communication; in the case of informal or draft communication, please label "PROPOSED" or "DRAFT"

Hand delivered responses should be brought to:

Customer Service Window
Randolph Building
401 Dulany Street

Art Unit: 2617

Alexandria, VA 22314

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Marcos L. Torres whose telephone number is 571-272-7926. The examiner can normally be reached on 8:00am-6:00 PM alt. Wednesday Off.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, George Eng can be reached on 571-252-7495. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Marcos L Torres
Examiner
Art Unit 2617

mlt

GEORGE ENG
SUPERVISORY PATENT EXAMINER