Systèmes dynamiques

Feuille d'exercices 13

Exercice 1. Groupes topologiquement cycliques

Soit G un groupe localement compact et g un élément de G. On suppose que $g^{\mathbf{Z}}$ est dense dans G. Le but de cet exercice est de démontrer l'alternative suivante: soit $G = g^{\mathbf{Z}}$, soit G est compact.

- 1. Soit X un espace topologique localement compact et $T: X \to X$ une application continue. On suppose que, pour tout $x \in X$, l'orbite positive $\{T^n(x): n \geq 0\}$ est dense dans X. Montrer que X est compact.
- 2. On suppose que G n'est pas égal à $g^{\mathbf{Z}}$. Montrer que pour tout voisinage V de e, et pour tout entier $n \geq 0$, il existe $p \geq n$ tel que $g^p \in V$.
- 3. Montrer que $g^{\mathbf{N}}$ est dense dans G et conclure.
- 4. Montrer que si un élément $g \in \mathrm{SL}_d(\mathbf{R})$ n'est contenu dans aucun sous-groupe compact, alors $g^n \underset{n \to +\infty}{\longrightarrow} \infty$.

Exercice 2. Critére de compacité

Soit Λ un réseau de \mathbf{R}^d . On note $s(\Lambda)$, la systole de Λ , la plus petite norme d'un vecteur non-nul de Λ . Soit E un sous-ensemble de $\mathrm{SL}_d(\mathbf{R})/\mathrm{SL}_d(\mathbf{Z})$: le but de cet exercice est de montrer que E est relativement compact si, et seulement si, il existe $\epsilon > 0$ tel que, pour tout $x = g\mathrm{SL}_d(\mathbf{Z})$ dans E, on ait $s(g\Lambda) \geq \epsilon$.

- 1. On suppose E relativement compact. Montrer la première partie de l'équivalence.
- 2. Soit $\epsilon > 0$. Pour t > 0, on considère $A_t^{\epsilon} = \{a \in A_t : a_{1,1} \ge \epsilon\}$. Montrer que A_t^{ϵ} est compact dans A.
- 3. On suppose que E vérifie la deuxième proposition de l'équivalence. Montrer que $E \subset KA_{\frac{2}{\sqrt{3}}}^{\epsilon}N_{\frac{1}{2}}\mathrm{SL}_d(\mathbf{Z})$ et conclure.

Exercice 3. Récurrence des flots unipotents

Un sous-groupe à un paramètre $(u_t)_{t \in \mathbf{R}}$ de $\mathrm{SL}_2(\mathbf{R})$ est dit unipotent s'il existe une matrice 2×2 nilpotente N telle que pour tout $t \in \mathbf{R}$, $u_t = \exp(tN)$. Le but de cet exercice est de démontrer le résultat suivant.

Théorème (Dani-Margulis). Soit (u_t) un sous-groupe à un paramètre unipotent de $SL_2(R)$ et x un élément de $SL_2(\mathbf{R})/SL_2(\mathbf{Z})$. Alors, pour tout $\epsilon > 0$, il existe un compact K de $SL_2(\mathbf{R})/SL_2(\mathbf{Z})$ tel que, pour tout T > 0, on ait

$$|\{0 \le t \le T : u_t x \in K\}| \ge (1 - \epsilon)T.$$

Dans la suite, on notera (e_1, e_2) la base canonique de \mathbb{R}^2 .

1. Montrer qu'il est possible de se ramener au cas où le sous-groupe $(u_t)_{t\in\mathbf{R}}$ est donné par

$$\forall t \in \mathbf{R}, \ u_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

2. Soit $g \in SL_2(\mathbf{R})$ tel que $x = gSL_2(\mathbf{Z})$. On pose $\Lambda = g\mathbf{Z}^2$ le réseau unimodulaire associé. Montrer le théorème dans le cas où $\Lambda \cap \mathbf{R}e_1 \neq \emptyset$.

On suppose dans ce qui suit que $\Lambda \cap \mathbf{R}e_1 = \emptyset$. On introduit l'ensemble suivant

$$E = \left\{ t \in \mathbf{R} \, : \, s(u_t \Lambda) < \frac{1}{2} \min(s(\Lambda), 1) \right\}.$$

On introduit également $F_t \subset \Lambda$ l'ensemble des vecteurs $v \in \Lambda$ tels que $||u_t v|| = s(u_t \Lambda)$, et pour tout $v \in \Lambda \setminus \{0\}$, on considère l'ensemble $E_v \subset E$ des réels t tels que $v \in F_t$.

- 3. Montrer que E_v est à la fois ouvert et fermé dans E et que, pour tout $t \in E_v$, $F_t = \{\pm v\}$.
- 4. Soit \mathcal{I} l'ensemble au plus dénombrable des composantes connexes de E. Pour $I \in \mathcal{I}$, par la propriété précédente, on notera $v^I \in \Lambda$ le vecteur tel que $s(u_t\Lambda) = \|u_tv^I\|$. Montrer que I est un intervalle ouvert borné de la forme (a,b) et que $w = u_a v^I$ vérifie $\|w\| = \frac{1}{2} \min(s(\Lambda), 1)$.
- 5. Fixons ϵ tel que $0 < \epsilon \le \frac{1}{4}\min(s(\Lambda), 1)$. Montrer que si $t = a + r \in I$ est solution de $s(u_t\Lambda) \le \epsilon$, alors

$$(w_1 + rw_2)^2 + w_2^2 \le \epsilon^2.$$

- 6. Montrer que l'ensemble $\{a \le t \le T : \|u_t v^I\| \le \epsilon\}$ est vide pour $T \le a + \frac{1}{4w_2} \min(s(\Lambda), 1)$.
- 7. En déduire que

$$|\{a \le t \le T : ||u_t v^I|| \le \epsilon\}| \le 8 \frac{\epsilon}{\min(s(\Lambda), 1)} (T - a).$$

8. Montrer que

$$|\{0 \le t \le T : s(u_t\Lambda) \le \epsilon\}| \le 8 \frac{\epsilon}{\min(s(\Lambda), 1)} T,$$

et en déduire le théorème.

9. En considérant le sous-groupe à un paramètre défini par $a_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$, $t \in \mathbf{R}$, montrer que la condition d'unipotence est nécessaire dans le résultat précédent.