

Santander Customer Transaction Prediction

Решение 21/8802 места. Solo Gold медаль. Рязанов Василий @ryazanoff vasily.ryazanov@phystech.edu

Конкурсы Santander на Kaggle

- Santander Customer Satisfaction (апрель 2016, 5123 команды)
 - Шейкап на лидерборде +- 2000 мест

- Santander Value Prediction Challenge (август 2018, 4484 команды)
 - о Лик

- Santander Customer Transaction Prediction (апрель 2019, 8802 команды)
 - \circ

Santander Customer Satisfaction

1	4 3	Shize & Nir	Moddmerty Div
2	▲ 848	kg_joi	
3	^ 6	#1 Leustagos	+8
4	~ 1	Why so noise?	
5	▲ 2024	Michael Hartman	
6	229	Noah Xiao @ Accenture	•••
7	4	Rolling Stones (Can't Get No [
8	▲ 718	Matt Motoki	••••
9	4	no one	
10	▲ 1240	Bang Nguyen	
11	▲ 27	DataGeek, Kele XU & GDA	9 3 2
12	▼ 4	uis	
13	▲ 266	Ouranos	
14	▲ 318	g a	<u> </u>

2115	▼ 1718	Sterby	(5)
2116	▼ 1585	Andrey Shapulin	9
2117	▼ 1380	Aneesh Chinubhai	
2118	▼ 1713	Yi Jin	
2119	▼ 1523	Somshubra Majumdar	
2120	▼ 1376	waronzevon	4
2121	▼ 1376	javawokr	W.
2122	▼ 1376	XiyaoLin	\$
2123	▼ 1375	AppletonTower	4
2124	▼ 1372	Puppey	
2125	▼ 1549	jhamann	
2126	▼ 1589	Nelson Dinh	
2127	▼ 1525	dusj	9
2128	▼ 1600	Ansup Babu	

Santander Value Prediction Challenge

Лик (The Data "Property") от Giba

Данные - time-series одновременно и по колонкам и по столбцам.

ID	target	f190486d6	58e2e02e6	eeb9cd3aa	9fd594eec
7862786dc	3513333.3	0	1477600	1586889	75000
c95732596	160000.0	310000	0	1477600	1586889
16a02e67a	2352551.7	3513333	310000	0	1477600
ad960f947	280000.0	160000	3513333	310000	0
8adafbb52	5450500.0	2352552	160000	3513333	310000
fd0c7cfc2	1359000.0	280000	2352552	160000	3513333
a36b78ff7	60000.0	5450500	280000	2352552	160000
e42aae1b8	12000000.0	1359000	5450500	280000	2352552
0b132f2c6	500000.0	60000	1359000	5450500	280000

Santander Customer Transaction Prediction

	Задача бинарной классификации		var_1	var_2	var_3	var_4	
	oaga la omiaprion la laconquina quin	0	-6.7863	11.9081	5.0930	11.4607	
	(90%-10%)	1	-4.1473	13.8588	5.3890	12.3622	
1)	Данные	2	-2.7457	12.0805	7.8928	10.5825	
		3	-2.1518	8.9522	7.1957	12.5846	
	Train: 200K*200	4	-1.4834	12.8746	6.6375	12.2772	
	Test: 200K*200	5	-2.3182	12.6080	8.6264	10.9621	
0)		6	-0.0832	9.3494	4.2916	11.1355	
2)	Метрика	7	-7.9881	13.8776	7.5985	8.6543	
	ROC-AUC	8	2.4426	13.9307	5.6327	8.8014	
		9	1.9743	8.8960	5.4508	13.6043	-

		var_1	var_2	var_3	var_4
1. 200 признаков в разных диапазонах (общий	0	-6.7863	11.9081	5.0930	11.4607
[-90;90])	1	-4.1473	13.8588	5.3890	12.3622
2. Признаки округлены до 4 знака	2	-2.7457	12.0805	7.8928	10.5825
3. Признаки независимы (корреляции близки к 0)	3	-2.1518	8.9522	7.1957	12.5846
	4	-1.4834	12.8746	6.6375	12.2772
5. Heт nan	5	-2.3182	12.6080	8.6264	10.9621
	6	-0.0832	9.3494	4.2916	11.1355
	7	-7.9881	13.8776	7.5985	8.6543
	8	2.4426	13.9307	5.6327	8.8014

1.9743

8.8960

5.4508

13.6043

1. Сырые признаки

- 1. Сырые признаки
- 2. Разности признаков

- 1. Сырые признаки
- 2. Разности признаков
- 3. row-wise статистики (sum, mean, min, max, ...)

- 1. Сырые признаки
- 2. Разности признаков
- 3. row-wise статистики (sum, mean, min, max, ...)
- 4. mean target на признаках

- 1. Сырые признаки
- 2. Разности признаков
- 3. row-wise статистики (sum, mean, min, max, ...)
- 4. mean target на признаках
- 5. стекинг lr, knn, bayes, lightgbm

- 1. Сырые признаки
- 2. Разности признаков
- 3. row-wise статистики (sum, mean, min, max, ...)
- 4. mean target на признаках
- 5. стекинг lr, knn, bayes, lightgbm
- 6. ROC_AUC 0.899

- 1. Сырые признаки
- 2. Разности признаков
- 3. row-wise статистики (sum, mean, min, max, ...)
- 4. mean target на признаках
- 5. стекинг lr, knn, bayes, lightgbm
- 6. Тюнинг гипер параметров на основе форума
- 7. ROC AUC 0.9

Состояние leaderboard на тот момент

- 1. 2-4 команды со скором 0.904+
- 2. 5-10 команд со скором 0.901
- 3. По несколько тысяч команд 0.9 и ниже

Состояние форума на тот момент

A part of the magic?

CoreyLevinson 24 days ago

Is this magic?

tarobxl 25 days ago

Discover The Magic Of Santander

Darko Androcec a month ago

Still looking for magic: Timestamp

François 23 days ago

"Shuffling the features" seems the key magic

RunningZ a month ago

I found some magic features by some way

J MA a month ago

Некоторые открытия на тот момент

- 1. Всем стало понятно что есть лик ("магия")
- 2. Оказалось что признаки можно перемешивать в пределах таргета

```
df_train0[c] = df_train0[c].sample(frac=1, random_state=rs_).values
df_train1[c] = df_train1[c].sample(frac=1, random_state=10*rs_+1).values
```


Но это не была "магия"

EDA и попытки найти магию

- 1. PCA, t-SNE
- 2. Denoising Autoencoder
- 3. Поиск категориальных признаков
- 4. Поиск time-series внутри признака и признаков
- 5. Важность признаков
- 6. Перемешивание, аугментация
- 7. Анализ дубликатов
- 8. Сортировки, кумулятивные суммы

... и многое-многое другое

Процесс поиска магии

Первые странности

rolling mean количества дубликатов по признакам объекта в train/test

Количество дубликатов* внутри объекта

200К объектов train и **100К** объектов теста - **нормальное распределение** (mean около **160**)

100K объектов теста - ровно **200**!

В этом было что-то полностью неестественное и я начал копать дальше

*кол-во фичей у которых значение встречалось в других объектах

Некоторые открытия

- 1. 100К с 200 повторяющимися значениями полностью не попадали в Public (я думал это Private)
- 2. 100К с 200 повторяющимися значениями были составлены из значения другой половины теста (думал это Public)
- 3. Становится ясно зачем добавили фейки (чтобы на сырых данных частотные статистики не работали)

EDA и попытки найти магию

- 1. PCA, t-SNE
- 2. Denoising Autoencoder
- 3. Поиск категориальных признаков
- 4. Поиск time-series внутри признака и признаков
- 5. Важность признаков
- 6. Перемешивание, аугментация

7. Анализ дубликатов

0.901 Leaderboard

200 новых признаков

```
1) По трейну:df_train[c].duplicated(keep=False)
```

2) Πο τεcτy:df test[c].isin(df train[c].unique())

Распределения получались одинаковые.

0.904 - 0.914 Leaderboard

- 200 сырых признаков
- 200 признаков-дубликатности
- 200 признаков частотности (посчитанные по train)
- 200 признаков с заменами:
 - о Если значение дубликат оставляем сырое
 - Если значение уникальное заменяем на среднее по признаку

Самый важный Kernel

O List of Fake Samples and Public/Private LB split

Python notebook using data from Santander Customer Transaction Prediction · 12,824 views

Основная идея:

- Ищем 100К фейков по алгоритму ранее
- Ищем кандидаты из которых строились фейки
 - По каждому значению фейка ищем объекты у которых такое значение встретилось 1 раз
 - Следовательно это должен быть объект-генератор

Получаем разбиение 50К/50К/100К!

Проверкой убеждаемся что это Public/Private/Fake(?)

0.922 Leaderboard

- 1. Я пересчитал статистики по 200К train + 100К real test
- 2. Все больше людей начало отрывать магию и получать результаты 0.901-0.914

Сдвиги к среднему

Исходное распределение

```
mms = MinMaxScaler()
df_vc_nf_ = df_vc_nf.copy()
df_vc_nf_ = mms.fit_transform(df_vc_nf_)
df_vc_nf_ = df_vc_nf_**(1/4)

vals shift = pd.DataFrame(df_vc_nf_*df_all[raw_cols].values + \
```


Распределение после сдвига

0.924 признаки

- 200 сырых фичей
- 200 фичей-дубликатов (0/1)
- 200 фичей-частот
- 200 фичей с заменами уникальных значения на среднее
- 200 фичей со сдвигом к среднему пропорционально частоте
- 200-600 фичей с заменами на среднее по определенным порогам частоты
- Некоторые row-wised статистики по частотам

0.924 модель

- Отбор признаков по Shap Importance (-700 признаков)
- Аугментация train на фолдах (х1, х2, х3)
- Усреднение рангов СТВ, LGB, разных аугментаций, сидов фолдов.

Реализации бустинга:

- LightGBM быстро и хорошо
- CatBoost медленней и хуже
- Xgboost медленно и плохо, убивал kernel :(

Железо

- Workstation 64RAM + i7 + 2 GPU
 - Для обучения основных моделей
- Ноутбук с 32RAM
 - для EDA
- Под конец Memory Optimized AWS EC2
 - о для монотонных генераций признаков

Что не хватило для победы?

- Выдохся, не хватало воображения
- Использование нейронок и блендинг с ними (использовали в top10)
- Модель на простых фичах (хинт 4 места)
 - Table 4 columns: [value, count, var number, target], *var number * in range 0-199.
 - 40M of rows. Training on this table with LGBM you achieve not so big AUC around ~0.530
 - Reshape and get ~0.925 CV using just product of rows.

Сборник золотых решений:

https://www.kaggle.com/c/santander-customer-transaction-prediction/discussion/88926

Хинт с разворачиванием таблицы

- Table 4 columns: [value, count, var number, target], *var number * in range 0-199.
- 40M of rows. Training on this table with LGBM you achieve not so big AUC around ~0.530
- Reshape and get ~0.925 CV using just product of rows.

	target	var_0	var_1	var_2
	target	Vai_U	V ai_1	Vai_2
	0	5.7154	-1.2824	10.781100
	0	11.3034	6.1088	17.723301
	0	6.8898	0.8730	12.859800
	Ū			12.000000
	1	11.1349	7.0059	11.175100
	0	14.2565	-5.3368	12.220100
200K	0	10.4030	-5.9898	15.166200
_00.1				
	0	8.8095	-5.5346	12.791400
	0	10.8458	0.4223	14.916100
	0	9.6543	-0.6606	12.334600
	- E			
	0	8.7797	3.5260	13.280600

Что были за данные и почему "магия" работала?

- 1. Данные синтетические, скорее всего сгенерированы из распределения
- 2. Либо реальные данные перемешали неким образом
- 3. Это может быть связано с тем что в Европе запрещают анализировать данные клиентов, но разрешают анализировать "похожие" данные
- 4. Либо Santander боится за свои данные

Почему магия работает

- 1. Возможно результат семплирования и округления до 4 знаков
- 2. https://www.kaggle.com/c
 deotte/200-magical-mode
 ls-santander-0-920
- 3. Никто так до конца и не понял :(

Некоторые заключительные советы

- 1. Делайте коммиты
- 2. Используйте tqdm и tg_tqdm, логгируйте в телеграм
- 3. Используйте SHAP чтобы понять/отобрать признаки
- 4. Добавляйте скор и время в название файла
- 5. Читайте Discussion первых мест LB
- 6. Можно чекать Github
- 7. Не выбирайте рандомных тиммейтов

Делайте коммиты

- 1. Легко отправить код организаторам
- 2. Легко найти место с наилучшим решением и не запутаться
- 3. Добавляйте в message текущий скор

```
import os
def make_commit(mes, filename='baseline.ipynb'):
    os.system("git add {}".format(filename))
    os.system("git commit -m '{}'".format(mes))
    os.system("git push origin master")
```

tqdm / Telegram / логирование

- 1. tqdm https://github.com/tqdm/tqdm
- 2. tg_tqdm https://github.com/ermakovpetr/tg_tqdm
- 3. telepot https://github.com/nickoala/telepot

SHAP

https://github.com/slundberg/shap

Добавляйте скор/время в submission

```
COMMENT = 'MEAN SCORE {} \t NFOLD:{}'.format(np.array(scores).mean(), nfold)
ts = time.time()
st = datetime.datetime.fromtimestamp(ts).strftime('%m_%d__%H_%M_%S')
ss.to_csv('../submissions/{}_{}.csv'.format(st, COMMENT), index=None)
```

Discussion лидеров

Проверка Github

Обычно слабо отличается от публичных Kernel

Про выбор тиммейтов

Если хоть один тиммейт нарушил правила - вся команда лишается наград! В Santander человек так лишился золота.

Нарушения:

- 1) Несколько аккаунтов
- 2) Приватный обмен кодом

Поэтому не берите в команду случайных

Рязанов Василий @ryazanoff vasily.ryazanov@phystech.edu