Section 10 Combining AOD, light scatter, and PM_{2.5} into daily PM_{2.5}/AOD ratios

General summary: In this section we outline the process of merging hourly aerosol optical depth values (AOD_{1h}), 550nm (green) aerosol scatter ($b_{sp,1h}$), and 9-day average fine aerosol concentrations (PM_{2.5,9d}) into one file. The merged data is the transformed into satellite PM_{2.5,24h}/AOD_{10-14h} ratios (defined as η_{1d}) and hourly fine mass (PM_{2.5,1h}) suitable for website uploading and sharing.

Processing PM_{2.5}, scatter, and AOD data:

For step 10 to work, we must have quality assurance from Nephelometer (step 5), AOD (step 4), and PM_{2.5} physical data (step 3), and PM_{2.5} chemical data (step 7,8) from a given site.

The above information is combined using the Matlab program PM25 condensing v2.m

INPUT: The merging files have the following shape:

Neph: Neph[instr #]_[start date]_[end date]_[site code]_hourly.csv AOD: AOD_[start date]_[end date]_[site code]_hourly.csv PM_{2.5} (phys and chem): PM25_[start date]_[end date]_[site code].csv

Start and end dates have the format yyyymmdd

For example, here is the data for Mammoth Cave (USMC):

Neph_20140619_to_20140715_Mammoth_USMC_hourly.csv AOD_20140101_20141231_Mammoth_USMC_hourly PM25_20140607_20140712_Mammoth_USMC.csv

OUTPUT: The above are merged via the data condensing routine located at

[Stetson] gsnider/SPARTAN/K_constant_empirical/PM25_condensing_v2.m or [Stetson] gsnider/SPARTAN/neph condensing/PM25 condensing v2.m

The output file (one per site) has the format

[Stetson] gsnider/SPARTAN/neph_condensing/ [Site name_code]/PM25/PMhourly [start date] [end date] [site code].csv The MATLAB program PM25_condensing_v2.m keeps track of the start and end dates of the desired files, but requires frequent updates since any new Neph, AOD, or PM_{2.5} file requires a new date range before generating.

Because Excel corrupts the break points of the generated csv file, so DO NOT OPEN WITH EXCEL before uploading to website (Spartan-network.org)

Data generated with PM25_condensing_v2.m:

Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7	Col 8	Col 9	Col 10	Col 11	Col 12	Col 13
DateTime	Temp_C	RH	fRH	Bsp_550nm	AOD_550nm	PM_filter	BC	NH4	Nitrate	Sulfate	PM_h	h

The data columns come from a combination of hourly nephelometer data, hourly* AOD data, and 9-day physical and chemical filter data.

Physical filter information:

- 1. Black carbon (surface reflectance)
- 2. Total deposited mass (pre- and post-weighed on microbalance)

Chemical information:

- 1. Anion concentrations (seven total)
- 2. Cation concentrations (six total)
- 3. Trace metal concentrations (24 total)

Calculating and filtering κ-Kohler theory values (in PM25 condensing v2.m)

Details of κ -Kohler method are in section 9, reconstructed fine mass (RCFM). While combining chemical and physical data together, the κ -Kohler values for mass (κ_m) and volume are calculated (κ_v). The latter (κ_v) is used to estimate growth factors for local aerosol populations in a given location.

The figure below is an example of a .png automatically generated by running the condensing program. It is found in the folder/template as follows:

[Stetson]: gsnider/SPARTAN/K_constant_empirical/[Sitename_code]_kappa_timeline.png

Table 1: κ-Kohler theory for specific species, defined for volume and mass RH growth

Κ _{v,i}	Density (ρ_i/ρ_{H20})	К _{m,i}	Ref.
0	2.5	0	
0	2	0	
.05*	1.35	0.037	В
0.67	1.72	0.39	Α
0.56	1.77	0.32	Α
1.2	2.17	0.55	A
	0 0 0.05* 0.67 0.56	0 2.5 0 2 0.05* 1.35 0.67 1.72 0.56 1.77	0 2.5 0 0 2 0 0.05* 1.35 0.037 0.67 1.72 0.39 0.56 1.77 0.32

A = (Hersey et al., 2013), B = (Dusek et al., 2011),

Each printout contains four pieces of information:

- 1. Top left: Seasonal trend in κ_v values, calculated by taking a 45-day forward and backward running mean (91 days total, or about three months, e.g. one season).
- 2. Top Right: Relative contributions to growth factor. Usually ANO₃ dominates, however sometimes residue is largest contributor. We assume $\kappa_{v,org} = 0.1$. The value κ_v above the pie chart is the mean for the entire measurement period
- 3. Bottom left: Contribution to volume. This takes mass data from each major chemical species and converts to volume via density (we assume volumes are additive)
- 4. Bottom right: Contribution to mass is simply the contribution to total-weighed PM_{2.5} mass (RCFM helps decide how to parse). The PM_{2.5} mass in brackets is the mean over the total measurement period.

Figure 1: Top, outlined: Unfiltered (unscreened) κ_v values at Bandung site, Bottom: four panels of data, including filtered κ_v values (and PM_{2.5} mass trends), resulting in a lower mean value.

Merging species κ_v results

The components of $\kappa_{v,tot}$ are obtained by linear combinations of mass measurements m_i , assumed densities ρ_i . Volume growth factors $\kappa_{v,i}$ are obtained from cited works.

$$\kappa_{v,tot} = \frac{1}{V} \sum_{i} \frac{m_i}{\rho_i} \kappa_{v,i}$$
 Eq. 1

Volume growth factors are a simple function of $\kappa_{v,tot}$ and percent relative humidity (0 < RH < 100):

$$f_v(RH) = 1 + \kappa_{v,tot} \frac{RH}{100 - RH}$$
 Eq. 2

Table 2: Mean volumetric uptake constant per SPARTAN site

Tubic 20 Michael (Oranico) to update constant per STIRITIA (Sice								
Location	Host Institute	$\kappa_{v,tot}$ (SD)	Sampling Period					
Atlanta	Emory University	0.20 (0.08)	Jan May 2014					
Bandung	IIT Bandung	0.19 (0.04)	Jan. 2014 - Jan. 2015					
Beijing	Tsinghua University	0.24 (0.12)	June 2013 - Dec. 2014					
Buenos Aires	CITEDEF	0.27 (0.10)	Oct Dec. 2014					
Dhaka	Dhaka University	0.15 (0.05)	Oct. 2013 - Nov. 2014					
Ilorin	Ilorin University	0.15 (0.05)	March – Oct. 2014					
Kanpur	IIT Kanpur	0.19 (0.04)	Dec 2013 - Apr. 2014					
Mammoth Cave	Mammoth Cave Nat. Park (IMPROVE)	0.25 (0.10)	June – Aug. 2014					
Manila	Manila Observatory	0.20 (0.08)	Feb. – July 2014					
All-site Average	-	0.20 (0.07)	-					
Continental US ¹	Various	0.16(0.07), 80 nm 0.18(0.09), 60 nm	2008					
California coast ²	Various	0.2 - 0.4, 150-250 nm						

¹(Padró et al., 2012), ²(Hersey et al., 2013)

Mass fractions, per component can sometimes lead to suspecious results such that $\kappa_{v,tot} > 0.6$. The residue composition (associated with organics) is defined as in **section 9** to be **[RM] = [PM]** – **[IN**_{tot}]. The value [RM] can be negative either because IN_{tot} is too large, or PM too small.

- We initially screen out negative PM values, which may occur when debris was on preweighed filter, change in balance calibration, or other unknown effects.
- If $[IN_{tot}]$ is larger than [PM] by 10%, i.e. $([PM] [IN_{tot}])/[IN_{tot}] < -0.1$, we keep the negative value. When [RM] is more negative we manually inspect those masses to determine on a case-by-case basis.
- If mass values are $\kappa_{v,tot} > 0.6$ we manually inspect to verify potential bad values (possible reasons: too-high IC/ICP/EBC results, or too low PM)

Figure 2: Seasonal trends in κ_v for nine SPARTAN sites. Suspicious growth factors (those where $\kappa_{v,tot} > 0.8$) have been checked and eliminated.

Integrating κ_v results with hourly nephelometer and 9-day PM_{2.5} data

The seasonal κ_v value is then interpolated into hourly values, $\kappa_{v,h}$, whereby it is used to estimate dry scatter 550 nm nephelometer scatter. Humidity above 80% is presently ignored (converted to NaN values). Otherwise the dry scatter is defined as

$$b_{sp,dry-1h} = \frac{b_{sp,1h} \{RH < RH_{max}\}}{f_v(RH)}$$
 Eq. 3

The dry scatter is then used to calculate hourly PM_{2.5} via hourly dry scatter $b_{sp,1h}$, 9-day filer-measured PM_{2.5}, and a 9-day mean of dry scatter (Snider et al., 2015).

$$PM_{2.5,dry-1h} = < \overline{PM}_{2.5,dry,9d} > \frac{b_{sp,dry-1h}}{< b_{sp,dry,9d} >}$$
 Eq. 4

Using the equation 4 we obtain reasonably accurate hourly PM_{2.5} estimates, as shown below.

Figure 3: Reconstructed hourly $PM_{2.5}$ using the merged SPARTAN filter-nephelometer data. Plot is overlaid with a MetOne BAM-1020 at the US Beijing Embassy (15 km away). Reduced major axis (RMA) slope shows reconstructed hourly SPARTAN $PM_{2.5}$ underestimates BAM measurements by a factor 0.83 with an absolute mass bias of 4.5 μ g m⁻³ (while measuring over a concentration range of 10 – 300 μ g m⁻³). Pearson correlations between SPARTAN and BAM are r = 0.80 (hourly) and 0.82 (daily). Depending on RH and gaseous ammonia concentrations, is not uncommon to find BAM instruments reporting greater masses than gravimetric instruments (Watson et al., 1998).

Combining daily AOD (**Section 4**, averaged over satellite-relevant hours), we take daily means of the PM_{2.5} in equation 4 and obtain daily η :

$$\eta = \frac{PM_{2.5,24h}}{AOD_{10-14h}}$$
 Eq. 5

The Matlab file columns 8-11 (BC, NH₄, Nitrate, and Sulfate) are held constant for given 9-day periods (though logged hourly as to fit file format). We do not interpolate changes in subcomposition of aerosol; by definition we assume κ_v is constant during a given 9-day sampling period.

REFERENCES

- Dusek, U., Frank, G. P., Massling, A., Zeromskiene, K., Iinuma, Y., Schmid, O., Helas, G., Hennig, T., Wiedensohler, A. and Andreae, M. O.: Water uptake by biomass burning aerosol at sub- and supersaturated conditions: closure studies and implications for the role of organics, Atmos. Chem. Phys., 11(18), 9519–9532, doi:10.5194/acp-11-9519-2011, 2011.
- Hersey, S. P., Craven, J. S., Metcalf, A. R., Lin, J., Lathem, T., Suski, K. J., Cahill, J. F., Duong, H. T., Sorooshian, A., Jonsson, H. H., Shiraiwa, M., Zuend, A., Nenes, A., Prather, K. A., Flagan, R. C. and Seinfeld, J. H.: Composition and hygroscopicity of the Los Angeles Aerosol: CalNex, J. Geophys. Res. Atmos., 118(7), 3016–3036, doi:10.1002/jgrd.50307, 2013.
- Padró, L. T., Moore, R. H., Zhang, X., Rastogi, N., Weber, R. J. and Nenes, A.: Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment, Atmos. Chem. Phys., 12(21), 10239–10255, doi:10.5194/acp-12-10239-2012, 2012.
- Snider, G., Weagle, C. L., Martin, R. V., van Donkelaar, A., Conrad, K., Cunningham, D., Gordon, C., Zwicker, M., Akoshile, C., Artaxo, P., Anh, N. X., Brook, J., Dong, J., Garland, R. M., Greenwald, R., Griffith, D., He, K., Holben, B. N., Kahn, R., Koren, I., Lagrosas, N., Lestari, P., Ma, Z., Vanderlei Martins, J., Quel, E. J., Rudich, Y., Salam, A., Tripathi, S. N., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D. and Liu, Y.: SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications, Atmos. Meas. Tech., 8(1), 505–521, doi:10.5194/amt-8-505-2015, 2015.
- Watson, J. G., Chow, J. C., Moosmuller, H., Green, M., Frank, N. and Marc, P.: Guidance for using Continuous Monitors in PM2.5 Monitoring Networks., 1998.