Московский физико-технический институт (госудраственный университет)

Лабораторная работа по оптике

Дифракция света [4.3.1]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Аннотация	1
2	Теоретические сведения	1
3	Результаты измерений и обработка данных 3.1 Измерения и обработка результатов	7 7
4	Выводы	12
5	Литература	12

1 Аннотация

В работе предстоит исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических приборов.

2 Теоретические сведения

Дифракция Френеля

Рис. 1: Схема установки.

Распределение интенсивности света в плоскости Π рассчитаем с помощью зон Френеля. При освещении S_2 параллельным пучком лучей (плоская зона) зоны Френеля представляют собой плоскости, параллельные краям щели. Результирующая амплитуда в точке наблюдения определенется суперпозицией колебаний от тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы — спирали Корню. Суммарная ширина m зон Френеля z_m определяется соотношение

$$z_m = \sqrt{am\lambda},\tag{1}$$

где a — расстояние от щели до плоскости Π . Вид наблюдаемой картины определяется $uucnom\ \Phi penena$ Φ :

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}}$$

– число зон Френеля, которые укладываются в ширине щели D. $p=\frac{1}{\Phi^2}$ называется волновым параметром.

Дифракция Фраунгофера на одной щели

Для выкладок ниже нам потребуется знать *принцип Гюйгенса-Френеля*. Он формулируется следующим образом

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Рис. 2: Построение зон Френеля

Теперь рассмотрим первое применение этого принципа, получившее название метод зон Френеля

Для этого рассмотрим действие световой волны действующей из точки A в какой-то точке B.

В этом случае можно, взяв точку M_0 в качестве центра (см. рис. 1), построить ряд концентрических сфер, радиусы которых начинаются с b и увеличиваются каждый раз на половину длины волны $\lambda/2$. При пересечении с плоским фронтом волны F эти сферы дадут концентрические окружности. Таким образом, на фронте волны появятся кольцевые зоны (зоны Френеля) с радиусами r_1, r_2 и т. д.

Из геометрических соображений посчитав, можно получить, что

$$r_i = i\sqrt{a\lambda} \tag{2}$$

Введем так же обозначение: число Френеля

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}} \tag{3}$$

В этом пункте рассмотрим дифракцию, когда ширина щели становится значительно меньше ширины первой зоны Френеля, т.е. если

$$D \ll \sqrt{a\lambda} \tag{4}$$

Это условие всегда выполняется при достаточно большом a. В

Рис. 3: K фазовым соотношениям при дифракции Фраунгофера

этом случае говорят, что дифракция Фраунгофера. При выполнении пункта (2) у нас заметно упрощаются фазовые соотношения, что поясняет рис. 2, в итоге с хорошим приближением можно считать, что разность хода между соседними лучами равна

$$\Delta = r_2 - r_1 \approx D \sin \theta \approx D \cdot \theta \tag{5}$$

Здесь предполагается, что θ достаточно мал.

Схема установки

Дифракцию Фраунгофера можно наблюдать на подобной установке

Рис. 4: Схема установки для пункта 2

Объектив здесь нужен для удобства, так как неудобно работать с очень узкими щелями. Дифракционная картина здесь наблюдается в фокальной плоскости объектива O_2 .

Посчитав легко определить угловую координату любой темной полосы:

$$\theta_m = \frac{m\lambda}{D} \tag{6}$$

И расстояние от центра соответственно

$$X_m = f_2 m \frac{\lambda}{D} \tag{7}$$

Дифракция Фраунгофера на двух щелях

Заменим S_2 на две щели

Рис. 5: Установка для третьего пункта

В этом случае легко видеть, что угловая координата максимума будет

$$\theta_m = \frac{m\lambda}{d} \tag{8}$$

И между соседними полосами

$$\delta x = f_2 \frac{\lambda}{d} \tag{9}$$

Так же нетрудно оценить число интерференционных полос укладывающихся в области центрального максимума

$$n = \frac{2d}{D} \tag{10}$$

Влияние дифракции на разрешающую способность оптического инструмента

Рис. 6: Схема установки для пункта 4.

Если перед O_2 расположить S_2 , то изображение объекта будет искажено из-за дифракции. Качественной характеристикой этого искажения может служить φ_{min} — минимальное угловое между объектами (источниками).

$$\varphi = \frac{d}{f_1} \tag{11}$$

Из геометрии l между объектами равно

$$l = \phi \cdot d_2 \tag{12}$$

$$\frac{\lambda}{D_0} = \frac{l}{f_2} = \frac{d}{f_1} \tag{13}$$

3 Результаты измерений и обработка данных

Соберем схему и подготовим приборы к работе, следуя техническому описанию, расположенному на установке.

Часть А

3.1 Измерения и обработка результатов

Запишем ширину щели: $b=0,360\pm0,005$ мм.

Приближая микроскоп к щели, снимем зависимость координаты микроскопа от числа n темных полос по формуле $a_n = x_n - x_0$, где $x_0 = 52,9$ мм — положение нуля. Результаты занесем в табл. 1 и построим график зависимости величины $2\xi_n$ от n. Длина волны зеленого света $\lambda = 5461 \cdot 10^{-10}$ м. (Формула 1)

Таблица 1: Зависимость координаты микроскопа от числа n темных полос

x_n , MM	n	a_n , MM	ξ_n , mm
539	5	6	0.404
537	4	8	0.418
535	3	10	0.404
531	2	12	0.362

График зависимости суммарной ширины зон Френеля от их числа

Таким образом, ширина примерно совпадает с шириной щели и является постоянной величиной. «Сдвиг» объясним неточностью в измерении нуля.

Часть Б

Величина щели по винту равна $b=0,5\pm0,03$ мм. Фокусное расстояние линзы $f_2=10.0$ см.

Измерим с помощью винта поперечного перемещения микроскопа координаты X_m нескольких дифракционных минимумов. Здесь x_m — измерения, которые затем умножаем на $\alpha=0,02$ мм — цену деления винта, т.е. $X_m=\alpha x_m$. Результаты занесем в табл. 2 и построим график зависимости минимумов от их номеров.

x_m	X_m , mm	m
-9.0	-0.090	-4
-5.0	-0.050	-3
-2.5	-0.025	-2
-1.0	-0.010	-1
3.0	0.030	1
5.0	0.050	2
7.0	0.070	3
9.0	0.090	4

Зависимость минимумов от их номера т

Из графика получаем, что угол наклона $a=(23,0\pm1,2)\cdot10^{-4}$ мм. Это и есть расстояние ΔX между соседними максимумами. Из формулы 4 мы получаем, что

$$b_9 = \frac{X_m}{m} = \frac{\lambda}{b_9} f_2 b_9 = 2 \cdot \frac{\lambda}{a} f_2 = 0,502 \pm 0,007$$
 (14)

Таким образом, наши значения для b и $b_{\mathfrak{s}}$ близки.

Дифракционная картина на одной щели

Часть В

Получим на экране дифракционную картину и проведем измерения. Получим для 1 и 2 максимума слева и справа соответственно координаты на винте x_m , а затем получим $X_m = \alpha x_m$ аналогично предыдущему пункту.

\overline{m}	-2	-1	1	2
x_m	-1,55	-1,6	0.7	0.8
m, MM	-0.031	-0.032	0.015	0.018

Измерения максимумов на двух щелях

Ширина главных максимумов $\delta x = 3(x_1 - x_{-1}) = 0,042$ мм, где 3 — число наблюдаемых светлых полос. Из формулы 5 получаем расстояние между щелями

$$d = f_2 \frac{\lambda}{\delta x} = 0,144 \pm 0,006 \tag{15}$$

Это примерно сходится с измеренной непосредственно $b_0\approx 0,07.$ Так как эта же ширина равна $\frac{2f_2\lambda}{b}$

$$b = \frac{2f_2\lambda}{d} = 0,082 \pm 0,004 \tag{16}$$

Из формулы 6 мы получаем $n=\frac{2\cdot 0,134}{0,089}\approx 3,01\pm 0,08,$ что сходится с наблюдениями.

Дифракционная картина на двух щелях

Часть Г

- 1. Собрали схему, изменив в схеме из предыдущего пункта только S.
- 2. Поставили между линзами щель S_2 и уменьшая ее ширину наблюдать ухудшение изображения. Подобрать ширину S_2 так, чтобы изображения почти сливались.

$$D_0 = (0,060 \pm 0,005)_{\text{MM}}$$

Погрешность берем как половину цены деления. В итоге получаем, что выполнено соотношение (13).

3. Поставить двойную щель и измерить расстояние между щелями и толщину самих щелей.

$$d = (1,00 \pm 0,01)$$
MM

$$D = (0, 20 \pm 0, 01)$$
MM

Погрешность берем как половину цены деления.

4 Выводы

Мы изучили два основных типа дифракции: Френеля и Фраунгофера при разных размерах щели и провели качественные наблюдения этих явлений, а также экспериментально проверили справедливость теоретических формул.

5 Литература

- 1. Лабораторный практикум по общей физике. В 3 т. Том 2. Оптика: учебное пособие
- 2. http://mathhelpplanet.com (МНК и регрессионный анализ)