$\begin{array}{c} {\sf Step \ 1-Apply \ Laplace \ Transform} \\ {\sf Step \ 2-Solve \ for \ } {\it X(s)} \\ {\sf Step \ 3-Rearrange \ to \ Find \ Invertable \ Form} \\ {\sf Step \ 4-Invert \ for \ Final \ Answer} \end{array}$

Module 10 - The Laplace Transform

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 2 - Laplace Transforms Method

Topic 2 - Laplace Transforms Method

- Step 1 Apply Laplace Transform
- Step 2 Solve for X(s)
- Step 3 Rearrange to Find Invertable Form
- Step 4 Invert for Final Answer

Step 1 - Apply Laplace Transform

Example:

Solve the first order differential equation using the Laplace Transforms Method with the initial condition given.

$$4\dot{x} = \sin(t)$$
 with $x(t=0) = x_0$

Apply the Laplace Transform to both sides of the differential equation.

$$4(sX(s)-x_0)=\frac{1}{s^2+1}$$

Step 2 - Solve for X(s)

This step can seem open ended...

$$X(s) = \frac{1}{4s(s^2+1)} + \frac{x_0}{s}$$

Step 3 - Rearrange to Find Invertable Form

Write X(s) in a form that can be inverted using the table of Laplace transform pairs. This typically involves partial fraction decomposition.

$$\frac{1}{4s(s^2+1)} = \frac{1/4}{s(s^2+1)} = \frac{a}{s} + \frac{bs+c}{s^2+1}$$

Mulitply through by the denominator $4s(s^2+1)$:

$$1 = 4as(s^2 + 1) + 4s(bs + c) = 4(a + b)s^2 + 4cs + 4a$$

Solve for the coefficients by equating coefficients.

$$(a+b) = 0$$
 $c = 0$ $a = \frac{1}{4} \implies a = \frac{1}{4}$ $b = -\frac{1}{4}$ $c = 0$

Step 4 - Invert for Final Answer

Substitute the coefficients into X(s),

$$X(s) = \frac{x_0}{s} + \frac{1}{4s} - \frac{s}{4(s^2 + 1)}$$

and use the inverse transform to solve for x(t). Use the Table.

$$\mathcal{L}^{-1}(X(s)) = x(t) =$$

$$= x_0 + \frac{1}{4} - \frac{1}{4}\cos(t) = x_0 + \frac{1}{4}(1 - \cos(t))$$

This method works for complex problems but it can get messy...

Step 4 - Invert for Final Answer

Table of Laplace Transforms									
	$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$		$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$				
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$				
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$				
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\ldots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$				
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$				
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$				
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$				
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$				
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$				

Step 3 - Rearrange to Find Invertable Form Step 4 - Invert for Final Answer

17.	sinh(at)	$\frac{a}{s^2-a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
19.	$e^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$e^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
21.	$e^{at}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$e^{at}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
23.	$t^n \mathbf{e}^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{\left(s-a\right)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_c(t) = u(t-c)$ Heaviside Function	$\frac{\mathbf{e}^{-cs}}{s}$	26.	$\delta(t-c)$ Dirac Delta Function	e^{-cs}
27.	$u_c(t) f(t-c)$	$e^{-cs}F(s)$	28.	$u_c(t)g(t)$	$e^{-cs} \mathfrak{L} \{g(t+c)\}$
29.	$\mathbf{e}^{ct}f(t)$	F(s-c)	30.	$t^n f(t), n=1,2,3,$	$(-1)^n F^{(n)}(s)$
31.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$	32.	$\int_0^t f(v)dv$	$\frac{F(s)}{s}$
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T) = f(t)	$\frac{\int_0^T \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$
35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^2F(s)-sf(0)-f'(0)$
37.	$f^{(n)}(t)$	$s^n F(s) - s$	$r^{n-1}f($	$0)-s^{n-2}f'(0)\cdots-sf^{(n-2)}$	$(0)-f^{(n-1)}(0)$