SMIII lectures

Week 2

Estimable functions and best linear unbiased estimates

Consider the linear model formulation

$$Y = X\beta + E$$

- Theorems 1.2 and 1.3 (last lecture) describe the sampling distribution of the least squares estimates.
- The least squares estimate $\hat{\eta} = X\hat{\beta}$ is also the best linear unbiased estimate (BLUE) of $\eta = E[Y]$.

Definition 1.4

A quantity of the form $\lambda^T \eta$ where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)^T$ is a fixed vector is said to be an **estimable function**.

Examples

Consider the multiple regression model $Y = X\beta + \mathcal{E}$ where the columns of X are assumed to be linearly independent.

• Each individual regression coefficient β_i is an estimable function. To see this, take

$$\lambda^T = (0, \dots, 0, 1, 0, \dots, 0)(X^T X)^{-1} X^T.$$

• The point prediction, $\beta_0 + \beta_1 x_1 + \ldots + \beta_r x_r$ is an estimable function for any fixed values x_1, x_2, \ldots, x_r . To see this, take

$$\lambda^T = (1, x_1, x_2, \dots, x_r)(X^T X)^{-1} X^T.$$

The Gauss-Markov Theorem

Theorem 1.4

Suppose $E(\mathbf{Y}) = \boldsymbol{\eta} = X\boldsymbol{\beta}$ and $Var(\mathbf{Y}) = \sigma^2 I$.

If $\boldsymbol{a}^T\boldsymbol{Y}$ is an unbiased linear estimator for $\boldsymbol{\lambda}^T\boldsymbol{\eta}$, then

$$\operatorname{var}(\boldsymbol{a}^T\boldsymbol{Y}) \geq \operatorname{var}(\boldsymbol{\lambda}^T \hat{\boldsymbol{\eta}})$$

with equality if and only if

$$\boldsymbol{a} = X(X^T X)^{-1} X^T \boldsymbol{\lambda}.$$

The Gauss-Markov Theorem: proof

Observe first that for $\eta = X\beta$,

$$E(\boldsymbol{\lambda}^T \hat{\boldsymbol{\eta}}) = \boldsymbol{\lambda}^T \boldsymbol{\eta} \text{ and } \operatorname{var}(\boldsymbol{\lambda}^T \hat{\boldsymbol{\eta}}) = \sigma^2 \boldsymbol{\lambda}^T P \boldsymbol{\lambda}.$$

Next, observe that $\boldsymbol{a}^T\boldsymbol{Y}$ unbiased for $\boldsymbol{\lambda}^T\boldsymbol{\eta}$

$$\Leftrightarrow E(\boldsymbol{a}^T\boldsymbol{Y}) = \boldsymbol{\lambda}^T\boldsymbol{\eta}$$

$$\Leftrightarrow (\boldsymbol{a} - \boldsymbol{\lambda})^T\boldsymbol{\eta} = 0 \text{ for all } \boldsymbol{\eta} = X\boldsymbol{\beta}$$

$$\Leftrightarrow (\boldsymbol{a} - \boldsymbol{\lambda})^T\boldsymbol{X} = \mathbf{0}$$

$$\Leftrightarrow (\boldsymbol{a} - \boldsymbol{\lambda})^T\boldsymbol{P} = \mathbf{0} \text{ where } \boldsymbol{P} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T$$

and

$$var(\boldsymbol{a}^{T}\boldsymbol{Y}) = var(\boldsymbol{a}^{T}\boldsymbol{Y} - \boldsymbol{\lambda}^{T}\hat{\boldsymbol{\eta}} + \boldsymbol{\lambda}^{T}\hat{\boldsymbol{\eta}})$$

$$= var(\boldsymbol{a}^{T}\boldsymbol{Y} - \boldsymbol{\lambda}^{T}\hat{\boldsymbol{\eta}}) + var(\boldsymbol{\lambda}^{T}\hat{\boldsymbol{\eta}})$$

$$+ 2 cov(\boldsymbol{a}^{T}\boldsymbol{Y} - \boldsymbol{\lambda}^{T}\hat{\boldsymbol{\eta}}, \boldsymbol{\lambda}^{T}\hat{\boldsymbol{\eta}}).$$

Now,

$$cov(\boldsymbol{a}^{T}\boldsymbol{Y} - \boldsymbol{\lambda}^{T}\hat{\boldsymbol{\eta}}, \boldsymbol{\lambda}^{T}\hat{\boldsymbol{\eta}}) = cov\left((\boldsymbol{a}^{T} - \boldsymbol{\lambda}^{T}P)\boldsymbol{Y}, \boldsymbol{\lambda}^{T}P\boldsymbol{Y}\right)$$
$$= (\boldsymbol{a}^{T} - \boldsymbol{\lambda}^{T}P)\sigma^{2}IP\boldsymbol{\lambda}$$
$$= \sigma^{2}(\boldsymbol{a}^{T} - \boldsymbol{\lambda}^{T})P\boldsymbol{\lambda} = 0.$$

Hence,

$$\operatorname{var}(\boldsymbol{a}^T \boldsymbol{Y}) = \operatorname{var}(\boldsymbol{a}^T \boldsymbol{Y} - \boldsymbol{\lambda}^T \hat{\boldsymbol{\eta}}) + \operatorname{var}(\boldsymbol{\lambda}^T \hat{\boldsymbol{\eta}})$$

 $\geq \operatorname{var}(\boldsymbol{\lambda}^T \hat{\boldsymbol{\eta}})$

with equality if and only if

$$var(\boldsymbol{a}^T\boldsymbol{Y} - \boldsymbol{\lambda}^T\hat{\boldsymbol{\eta}}) = 0.$$

That is, if and only if,

$$a = P\lambda$$
.

Inference for multiple regression: regression coefficients

- Theorem 1.3 (last lecture) allows for inference concerning individual regression coefficients.
- Suppose the multiple regression model

$$M: \mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\mathcal{E}}$$

with

$$\mathcal{E} \sim N_n(\mathbf{0}, \sigma^2 I)$$

holds.

Pivotal quantity

A **pivotal quantity** for β_j is given by

$$\frac{\hat{\beta}_j - \beta_j}{s_e \sqrt{c_{jj}}} \sim t_{n-p}$$

where c_{jj} is the jth diagonal element of $(X^TX)^{-1}$.

Confidence interval for β_i

The random interval

$$\hat{\beta}_j \pm t_{n-p}(\alpha/2) s_e \sqrt{c_{jj}}$$

is a $100(1-\alpha)\%$ confidence interval for β_j .

Hypothesis testing of β_j

To test $H_0: \beta_j = 0$ we use the test statistic

$$t = \frac{\hat{\beta}_j - 0}{s_e \sqrt{c_{jj}}}$$

and the rule,

Reject
$$H_0$$
 for $|t| \ge t_{n-p}(\alpha/2)$,

to define a two-sided test with significance level α .

The P-value can be calculated in the usual way.

Testing multiple coefficients

Hypotheses of the form

$$H_0: \beta_p = \beta_{p-1} = \ldots = \beta_{p_0+1} = 0$$

may be tested using an F-test. The ANOVA table is

Source	SS	DF	MS	F
H_0 vs M	$Q(\hat{\boldsymbol{\beta}}_0) - Q(\hat{\boldsymbol{\beta}})$	$p-p_0$	$MS_H = \frac{Q(\hat{eta}_0) - Q(\hat{eta})}{p - p_0}$	$F = \frac{MS_H}{MS_E}$
Error	$Q(\hat{oldsymbol{eta}})$	n-p	$MS_E = \frac{Q(\hat{\beta})}{n-p}$	
Total	$Q(\hat{\boldsymbol{\beta}}_0)$	$n-p_0$	1	

• If H_0 is true then F has the F-distribution, $F \sim F_{p-p_0,n-p}$ so we reject H_0 , with significance level α , if $F \geq F_{p-p_0,n-p}(\alpha)$.

• $\hat{\boldsymbol{\beta}}_0$ is obtained by applying least squares calculation to the reduced regression model

$$Y = X_0 \beta_0 + \mathcal{E}$$

where X_0 is the $n \times p_0$ matrix comprising the first p_0 columns of X. That is, we have $\hat{\boldsymbol{\beta}}_0 = (X_0^T X_0)^{-1} X_0^T \boldsymbol{Y}$.

It can be proved that the F-statistic is given equivalently by

$$F = \frac{\hat{\boldsymbol{\beta}}_{1}^{T} C_{11}^{-1} \hat{\boldsymbol{\beta}}_{1}}{(p - p_{0}) s_{2}^{2}}$$

where $\hat{\boldsymbol{\beta}}_1^T = (\hat{\beta}_{p_0+1}, \dots, \hat{\beta}_p)$ and C_{11} is the lower right $(p-p_0) \times (p-p_0)$ block of $(X^TX)^{-1}$. - This form of the F-statistic reduces to $F = t^2$ when the test concerns a single parameter, $H_0: \beta_p = 0$.

Prediction in multiple regression

Consider the multiple regression model

$$Y = X\beta + \mathcal{E}$$
 with $\mathcal{E} \sim N_n(\mathbf{0}, \sigma^2 I)$.

- Suppose we have a new observation (Y_0, \boldsymbol{x}_0)
- with $Y_0 \sim N(\boldsymbol{x}_0^T \boldsymbol{\beta}, \sigma^2)$ (independently from \boldsymbol{Y}).

A $100(1-\alpha)\%$ confidence interval for $\eta_0 = \boldsymbol{x}_0^T \boldsymbol{\beta}$

The $100(1-\alpha)\%$ confidence interval for η_0 is therefore

$$\hat{\eta}_0 \pm t_{n-p}(\alpha/2) s_e \sqrt{\boldsymbol{x}_0^T (X^T X)^{-1} \boldsymbol{x}_0}$$

It follows from the Gauss-Markov theorem that $\hat{\eta}_0 = \boldsymbol{x}_0^T \hat{\boldsymbol{\beta}}$ is the BLUE for η_0 . Moreover, since

$$\hat{\boldsymbol{\beta}} \sim N_p \left(\boldsymbol{\beta}, \sigma^2 (X^T X)^{-1} \right),$$

it can be shown that

$$\hat{\eta_0} \sim N(\eta_0, \sigma^2 \boldsymbol{x}_0^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_0)$$

independently of s_e^2 . The pivotal quantity is

$$\frac{\hat{\eta}_0 - \eta_0}{s_e \sqrt{x_0^T (X^T X)^{-1} x_0}} \sim t_{n-p}.$$

A $100(1-\alpha)\%$ prediction interval for Y_0

The $100(1-\alpha)\%$ prediction interval for Y_0 is therefore

$$\hat{\eta}_0 \pm t_{n-p}(\alpha/2)s_e\sqrt{1+\boldsymbol{x}_0^T(X^TX)^{-1}\boldsymbol{x}_0}$$

Since $Y_0 \sim N(\eta_0, \sigma^2)$ independently of Y it follows that Y_0 is independent of $\hat{\eta}_0$ so that

$$Y_0 - \hat{\eta}_0 \sim N\left(0, \sigma^2(1 + x_0^T (X^T X)^{-1} x_0)\right)$$

and hence

$$\frac{Y_0 - \hat{\eta}_0}{s_e \sqrt{1 + x_0^T (X^T X)^{-1} x_0}} \sim t_{n-p}.$$

Remarks

The confidence interval is simply a confidence interval for the estimable function

$$\eta_0 = \boldsymbol{x}_0^T \boldsymbol{\beta}.$$

- The prediction interval is different in nature in the sense that it is predicting a likely range of values for the random variable Y_0 .

If the parameters β and σ^2 were known without error, it would still be relevant to consider the question of prediction and resulting interval would simply be

$$\eta_0 \pm z(\alpha/2)\sigma$$
.

The interval

$$\hat{\eta}_0 \pm t_{n-p}(\alpha/2)s_e\sqrt{1+x_0^T(X^TX)^{-1}x_0}$$

differs from this simple form

$$\eta_0 \pm z(\alpha/2)\sigma$$

because the parameters have been replaced by estimates and adjustments to allow for this fact have been made.

In particular, we use

- $t_{n-p}(\alpha/2)$ instead of $z(\alpha/2)$
- to allow for the fact that we are using s_e in place of σ .
- The term $x_0^T (X^T X)^{-1} x_0$ is introduced
- to allow for errors in the estimation of η_0 by $\hat{\eta}_0$.

Case study

Rubber example