武汉大学计算机学院

2021-2022 学年第二学期 2020 级弘毅班

《计算机系统基础 2》期末考试试卷(A卷)答案

姓名______学号_

(注: ①闭卷考试; ②考试时间为 120 分钟; ③所有解答必须写在答题纸上。)

学号	班级	姓名	成绩	_
----	----	----	----	---

注意: 所有答题内容必须写在答题纸上, 凡写在试题或草稿纸上的一律无效。

本考试使用的 RISC-V 核心指令格式如下:

	31 27 26 25	24 20	19 15	14 12	11 7	6 0
R	funct7	rs2	rs1	funct3	rd	opcode
I	imm[11:0]		rs1	funct3	rd	opcode
S	imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode
SB	imm[12 10:5]	rs2	rs1	funct3	imm[4:1 11]	opcode
U	imm[31:12]				rd	opcode
UJ	imm[20 10:1 11 19:12]				rd	opcode

一、 单项选择题 (每小题 2 分, 共 20 分)

1-5 CBDCB

6-10 B C B B C

二、性能计算(每小题5分,共10分)

(1)

总执行周期 = 10×2 + 30×20 + 35×10 + 15×4 = 1030

改讲 A 周期 = 10×1 + 30×20 + 35×10 + 15×4 = 1020

加速比 = 1030/1020 = 1.01

改进 B 周期 = 10×2 + 30×15 + 35×10 + 15×4 = 880

加速比=1030/880=1.17

改进 C 周期 = 10×2 + 30×20 + 35×3 + 15×4 = 785

加速比 = 1030/785 = 1.31

改进 D 周期 = 10×2 + 30×20 + 35×10 + 15×1 = 985

加速比 = 1030/985 = 1.05

加快经常性事件

(2)

总执行周期 = $10 \times 1 + 30 \times 15 + 35 \times 3 + 15 \times 1 = 580$ 加速比 = 1030/580 = 1.776

三、指令系统(共15分)

(1)(8分,每空1分)

function:

addi x2, x2, -16 sd x1, 0(x2)

```
add x5, (x12), x13

sd x5, (8(x2))

jal x1, (leaf)

ld x11, (8(x2))

jal x1, (leaf)

ld x1, (0(x2))

addi x2, x2, (16)

(jalr) x0, x1
```

0x7fffffc

0x7fffff4 x5

0x7ffffec x1(或者 function 的返回地址)

0x7fffffc

0x7fffff4 x5

0x7ffffec x1(或者 function 的返回地址)

0x7ffffe4 x1(或者 leaf 的返回地址)

四、运算器(10分)

3, 32

1+1/16

times2: addi a0, a0, 0b00010000 (00010000B)

五、CPU (25分)

1、(共15分)

(1)(7分)

RegWrite	ALUSrc	ALUOp	PCSrc	MemWrite	MemRead	MemtoReg
1	1	00/Add	0	0	1	1

(2)(6分)

寄存器 1 号读地址输入	0x16
寄存器 2 号读地址输入	0x8
寄存器写地址输入	0x9
寄存器写数据输入	未知
ImmGen 的输入	0x008B3483

第2页共4页

0x008B3483, 0000 0000 1000 1011 0011 0100 1000 0011

(3)(2分)

分支中的 Add 产生输出但不会被用到,数据存储器的读端口不产生输出。

2、(共10分,每个周期2分)

时钟周期	Clk4	Clk5	Clk6	Clk7	Clk8
IF/ID.Rs1	10	10	12	12	12
IF/ID.Rs2		11	10	10	10
ID/EX.RegWrite	0	1	1	0	0
ID/EX.Rd	0	10	10	0	0
EX/MEM.RegWrite	0	0	1	1	0
EX/MEM.Rd	0	0	10	10	0
IF/IDWrite	1	1	0	0	1
PCWrite	1	1	0	0	1
ID/EXFlush	0	0	1	1	0

六、存储系统(20分)

1、(10分)

- (1)(3分)主存块大小为64B=2⁶字节,所以主存地址低6位为块内地址,Cache组数为32KB/(64B×8)=64=2⁶,故主存地址中间6位为Cache组号,主存地址中高32-6-6=20位为标记,采用8路组相联映射,故每行中的LRU位占3位,采用直写方式,故没有修改位。
- (2)(4分)008000C0H = 000000000100000000000011000000B, 主存地址的低 6 位为块内地址,为全 0,故 s位于一个主存块的开始处,占 1024×4B/64B=64个主存块;在执行程序段的过程中,每个主存块中的64B/4B=16个数组元素依次读、写 1次,因而对每个主存块,总是第一次访问缺失,此时会将整个主存块调入Cache,之后每次都命中。综上,数组 s 的数据 Cache 访问缺失次数为64次。
- (3) (3分) 0001 0003H = 0000 0000 0000 0001 0000 000000 000011B,根据主存地址划分可知,组索引为 0,故该地址所在主存块被映射到指令 Cache 的第 0 组;因为 Cache 初始为空,所有 Cache 行的有效位均为 0,所以 Cache 访问缺失。此时,将该主存块取出后存入指令 Cache 的第 0 组的任意一行,并将主存地址高 20 位(00010H)填入该行标记字段,设置有效位,修改 LRU 位,最后根据块内地址 000011B 从该行中取出相应的内容。

2、(10分)

(1)(4分)

虚页号 4 对应的 TLB 表项被替换。因为虚页号 10、12、16、7、26、4、12 和 20 映射到 TLB 组号依次是 2、4、0、7、2、4、4、4,只有映射到 4 号组的虚页号数量大于 2,相应虚页号依次是 12、4、12 和 20,根据 LRU,当访问第 20 页时,虚页号 4 对应的 TLB 表项被替换出来。

(2)(6分)

O793: 虚拟页号: 0, 页内偏移地址: 793 物理地址: 4889或者 0x001319

9048: 虚拟页号: 2, 页内偏移地址: 856 物理地址: -

12862: 虚拟页号: 3, 页内偏移地址: 574 物理地址: 574 或者 0x00023e