TASK-1

BIG DATA ANALYSIS

Data Source: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Full PySpark Script:

```
# Step 6: Average fare by pickup location

avg_fare = df_clean.group8y("PULocationID").agg(avg("total_amount").alias("avg_fare"))

avg_fare.order8y(desc("avg_fare")).show(10)

# Step 7: Most common drop-off points

popular_dropoff = df_clean.group8y("DOLocationID").agg(count("*").alias("trip_count"))

popular_dropoff.order8y(desc("trip_count")).show(10)

# Step 8: Save the result to file (optional)

avg_fare.write.csv("avg_fare_output", header=True)

# Step 9: Stop Spark session

spark.stop()
```

Output:

1. Schema Output (df.printSchema()) objectivec root |-- VendorID: integer (nullable = true) |-- tpep_pickup_datetime: timestamp (nullable = true) |-- tpep_dropoff_datetime: timestamp (nullable = true) |-- passenger_count: integer (nullable = true) |-- trip_distance: double (nullable = true) |-- PULocationID: integer (nullable = true) |-- DOLocationID: integer (nullable = true) |-- fare_amount: double (nullable = true) |-- total_amount: double (nullable = true)

```
2. Sample Data (df.show(5))
  diff
  |VendorID|tpep_pickup_datetime | tpep_dropoff_datetime | passenger_co
  12
           2023-01-01 00:29:00 | 2023-01-01 00:36:00
                                                       11
  11
           2023-01-01 00:45:00 | 2023-01-01 00:53:00
                                                       12
  1
           2023-01-01 00:12:00 |2023-01-01 00:25:00
                                                       11
  12
           2023-01-01 00:20:00 | 2023-01-01 00:24:00
                                                       11
  11
           2023-01-01 00:30:00 | 2023-01-01 00:35:00
                                                       11
```

off_datetim	e passenge	r_count trip_dis	tance PULocationID	DOLocationID	fare_amount
1 00:36:00	1	2.1	238	151	8.0
1 00:53:00	2	3.5	238	236	11.0
1 00:25:00	1	5.1	170	186	15.0
1 00:24:00	1	1.2	140	230	5.0
1 00:35:00	1	2.8	230	79	9.0

3. Top 5 Longest Trips

python

top_trips.show()

4. Average Fare by Pickup Location

```
python

avg_fare.orderBy(desc("avg_fare")).show(10)
```

5. Most Frequent Drop-Off Points

python

popular_dropoff.show(10)

```
6. Output Files (If saved using write.csv)

If you run:

python

avg_fare.write.csv("avg_fare_output", header=True)
```

```
PULocationID, avg_fare

132,85.67

138,78.45
...
```

ii Insights Mention in Report:

- **Top 5 Longest Trips:** Useful for identifying outliers or edge-case fares.
- Average Fare per Pickup Zone: Can help in pricing strategies or zone-based marketing.
- Most Frequent Drop Locations: Insight into customer destinations for business planning.