

不可压流体的模拟、渲染和应用研究

1452286 朱可仁

指导老师:赵君峤

内容

- 课题背景和工作概述
- 流体的并行化模拟
- 流体的并行化表面重建和渲染
- 演示

流体的范畴

液体[1]

烟尘[2]

冰淇凌[3]

物理真实、大计算量 离线算法

- [1] Realflow. http://docklandsmedia.com/course/realflow-training/
- [2] A. Chern, et al., "Schrödinger's smoke," ACM Trans. Graph., vol. 35, no. 4, pp. 1–13, Jul. 2016.
- [3] C. Jiang, et al., "The affine particle-in-cell method," ACM Trans. Graph., vol. 34, no. 4, p. 51:1-51:10, Jul. 2015.

本文的研究

烟尘[6]

视觉真实、小计算量 实时算法

[4] M. Müller, el at., "Particle-Based Fluid Simulation for Interactive Applications," Proc. 2003 ACM SIGGRAPH, no. 5

[5] D. Q. Nguyen, el at., "Physically based modeling and animation of fire," ACM Trans. Graph., vol. 21, no. 3, 2002.

[6] R. Fedkiw, el at., "Visual simulation of smoke," Proc. 2001 SIGGRAPH, pp. 15–22.

背景和现状

- 模拟算法不符合物理规律(如:不满足不可压性质 $∇ \cdot v = 0$)
- 模拟算法没有充分挖掘现代硬件的性能,实时性不好
- 渲染算法重建液体表面代价高昂
- 渲染算法表面着色模型不够真实

背景和现状

- 模拟算法不符合物理规律(如:不满足不可压性质 $\nabla \cdot \boldsymbol{v} = \boldsymbol{0}$)
- 模拟算法没有充分挖掘现代硬件性能,实时性不好
- 渲染算法重建液体表面代价高昂
- 渲染算法表面着色模型不够真实

本文的贡献:具有真实感的实时流体模拟和渲染

- 使用CUDA给出了基于位置的流体(Position Based Fluids)[7]的并行化实现
- 使用OpenGL给出了液体的屏幕空间渲染(Screen-space Rendering)[8]的并行化实现
- 提出使用双边滤波平滑液体表面的深度纹理
- 提出具有真实感的液体表面着色模型

- [7] M. Macklin, el at., "Position based fluids," ACM Trans. Graph., vol. 32, no. 4, p. 1, Jul. 2013.
- [8] W. J. van der Laan, el at., "Screen space fluid rendering with curvature flow," I3D '09, 2009, p. 91.

本文的结果

本文的结果

内容

- 课题背景和工作概述
- 流体的并行化模拟
- 流体的并行化表面重建和渲染
- 演示

NS方程

Navier-Stokes方程组描述了流体运动的规律

不可压条件
$$\nabla \cdot \boldsymbol{v} = 0$$
 动量方程 $\rho \frac{D \boldsymbol{v_i}}{Dt} = \rho \boldsymbol{g} - \nabla p + \mu \nabla^2 \boldsymbol{v}$ 粒子加速度 压强力

传统方法

- 不考虑不可压性
- 使用经验公式计算压强 (例如:粒子间距离)

Lagrangian 拉式离散 (粒子)

NS方程

Navier-Stokes方程组描述了流体运动的规律

不可压条件
$$\nabla \cdot \boldsymbol{v} = 0$$
 动量方程 $\rho \frac{D\boldsymbol{v_i}}{Dt} = \rho \boldsymbol{g} - \nabla p + \mu \nabla^2 \boldsymbol{v}$ 粒子加速度 压强力

基于位置的流体[7]

• 不可压性等价于密度平衡条件 $\nabla \cdot \boldsymbol{v} = 0 \Leftrightarrow \rho = \rho_0$

基于位置的流体

Navier-Stokes方程组描述了流体运动的规律

基于位置的流体[7]

- 不可压性等价于密度平衡条件 $\nabla \cdot \boldsymbol{v} = 0 \Leftrightarrow \rho = \rho_0$
- 密度平衡方程

$$C_i(\boldsymbol{p}_i, \cdots, \boldsymbol{p}_j) = \frac{\rho_i}{\rho_0} - 1 \neq 0$$

- 雅可比迭代
- 1. 对每个约束

$$p \leftarrow p + \Delta p_{C_i}$$

2. 牛顿法,位置沿约束梯度下降 $\Delta p = \lambda \nabla C$

雅可比迭代特点:

- 1. 一轮迭代仅依赖上轮迭代结果
- 2. 比高斯-赛德尔法慢2倍以上[10]
- 3. 易于并行!

基于位置的流体

Navier-Stokes方程组描述了流体运动的规律

基于位置的流体[7]

- 不可压性等价于密度平衡条件 $\nabla \cdot \boldsymbol{v} = 0 \Leftrightarrow \rho = \rho_0$
- 密度平衡方程 $C_i(\boldsymbol{p}_i,\cdots,\boldsymbol{p}_j) = \frac{\rho_i}{\rho_0} 1 \neq 0$
- 雅可比迭代
- 1. 对每个约束

$$p \leftarrow p + \Delta p_{C_i}$$

2. 牛顿法,位置沿约束梯度下降 $\Delta p = \lambda \nabla C$

步长计算公式

$$\lambda_i = -\frac{C_i(\boldsymbol{p}_1, \cdots, \boldsymbol{p}_n)}{\sum_{j \in \delta(\boldsymbol{p}_i)} \left\| \nabla_{\boldsymbol{p}_j} C_i \right\| + \epsilon}$$

位置更新公式

$$\mathbf{p}_{i} \leftarrow \mathbf{p}_{i} + \frac{1}{\rho_{0}} \sum_{j \in \overline{\delta(\mathbf{p}_{i})}} (\lambda_{i} + \lambda_{j}) \nabla W(\mathbf{p}_{i} - \mathbf{p}_{j})$$
邻居查找

算法流程

1.	预测新速度与位置	CUDA核函数
	1. $v' \leftarrow v + \Delta t \cdot g$ 2. $p' \leftarrow p + \Delta t \cdot v'$	advectKernel
2.	邻居查找预处理	computeGridRange
3.	密度修正迭代循环	
	1. 计算位置修正系数	λ_i computeLambda
	2. 计算Δ p i	
	3. 更新 $\boldsymbol{p}_i' \leftarrow \boldsymbol{p}_i' + \Delta \boldsymbol{p}_i$	computePos
	4. 边界处理	
4.	更新速度 $oldsymbol{v} \leftarrow rac{oldsymbol{p}^* - oldsymbol{p}}{\Delta t}$	updateVelocity
5.	再分 心 型 *	updatePositon
6.	速度的粘着力修正	1

注:核函数以粒子作为并行级别

哈希网格邻居查找算法

将空间分割为边长为h的网格 查找粒子邻居时,查找周边网格内的粒子

hash(x,y)=
 floor(x/h) +
 floor(y/h) * dim.x

哈希函数hash(p) 将空间位置映射到一个网格编号上

Grid ID	Particle ID
0	3
2	0
5	1
11	2

哈希网格邻居查找算法

将一个网格内的粒子重新连续编号

方法: 将粒子按照网格编号排序,从头开始编号

查找网格内粒子:记录网格内首个、最后一个粒子的编号

	New particle ID	Grid ID	gridStart	gridEnd
	0		gridStart[0] = 0	
	1	0	-	
	2		-	gridEnd[0]=2
•	3	2	gridStart[2]=3	gridEnd[2]=3
•	4	5	gridStart[5]=4	
	5		-	gridEnd[5]=5
	•••			

CUDA核函数

computeGridRange

串行:0(n)

并行:0(1)

内容

- 课题背景和工作概述
- 流体的并行化模拟
- 流体的并行化表面重建和渲染
- 演示

拉式液体的渲染

目标:渲染平滑的液体表面,减少"粒子感"

无平滑

拉式液体的渲染

目标:渲染平滑的液体表面,减少"粒子感"

传统方法:移动立方体(Marching Cubes)法[9]

- 从粒子位置生成密度分布
- 生成多边形等值曲面 (Isosurface)
- 能够实现GPU上并行,但计算和编程复杂度较高

液体的屏幕空间渲染

目标:渲染平滑的液体表面,减少"粒子感"

屏幕空间渲染(Screen-space rendering)法[8]

- 将粒子深度、厚度信息渲染到屏幕空间纹理上
- 对深度纹理进行平滑操作
- 从深度纹理还原液体表面法向量
- 对液体表面进行着色

传统方法:移动立方体(Marching Cubes)法[9]

- 从粒子位置生成密度分布
- 生成多边形等值曲面(Isosurface)
- 能够实现GPU上并行,但计算和编程复杂度较高

[8] W. J. van der Laan, el at., "Screen space fluid rendering with curvature flow," I3D '09, 2009, p. 91.

[9] William E. Lorensen, el at., 'Marching Cubes: A high resolution 3D surface construction algorithm'. In: Computer Graphics', Vol. 21, Nr. 4, July 1987

液体的屏幕空间渲染

算法流程

注:深度平滑与法向量重建过程包含大量计算,使用片元着色器完成。 也可使用CUDA或OpenGL compute shader完成,但增加了不必要的复杂性。

深度纹理

A907 A

深度纹理

意义:每个像素堆叠的粒子个数

• 注1:开启深度测试

• 注2:粒子大小在世界坐标内不变,

渲染大小gl_PointSize随距离摄像机远近调整。

厚度纹理

输出:每个像素在摄像机空间的深度(z坐标)

• 注1:关闭深度测试,开启纹理加法混合

• 注2:粒子大小在世界坐标内不变,

渲染大小gl_PointSize随距离摄像机远近调整。

表面法向量重建

着色器 restore_normal

输入:深度纹理

输出:液体表面法向量

目标:法向量纹理(GL_RGB32F类型)

方法:

1. 深度纹理上任意一点(s,t)对应液体表面上一点P(s,t) = (x,y,z)

2. z可从深度纹理中取出,(x,y)可利用投影变换的逆变换从(s,t)得到

3. 根据微分几何,表面法向量等于表面位置在两方向上偏导的叉积

$$\boldsymbol{n}(s,t) = \frac{\partial \boldsymbol{P}}{\partial s} \times \frac{\partial \boldsymbol{P}}{\partial t}$$

4. 利用一阶差分近似求偏导, Δs是一个像素对应的纹理坐标差值

$$\frac{\partial \mathbf{P}}{\partial s} \approx \frac{\mathbf{P}(s + \Delta s, t)}{\Delta s}$$

表面法向量重建

重建结果

深度纹理平滑

为了表现平滑的液体表面效果, 需要对深度纹理进行平滑

平滑操作:将邻近的像素加权平均

高斯模糊:错误的抹去了不连续的液体边缘! (应保留不连续的深度)

深度纹理平滑

为了表现平滑的液体表面效果,需要对深度纹理进行平滑

平滑操作:将邻近的像素加权平均

双边滤波:同时考虑位置差权重和深度差权重

滤波后深度 $I^{\text{filter}}(x) = \frac{1}{W_p} \sum_{y \in \Omega} \begin{bmatrix} xg & \text{深度差权重} & \text{位置差权重} \\ I(y) & f_r(\|I(y) - I(x)\|) \end{bmatrix} \cdot g_s(\|x - y\|)$

归一化因子
$$W_p = \sum_{y \in \Omega} f_r(\|I(y) - I(x)\|) g_s(\|x - y\|)$$

滤波核函数 $f_r(d) = e^{-\sigma_r d}, \quad g_s(d) = e^{-\sigma_s d}$

深度差越大,距离越远, 权重越小

深度纹理平滑

平滑方法对比

原法线图

双边滤波

高斯模糊

平滑后

平滑前

表面着色

得到平滑的液体表面法向量后,对其进行着色整个场景的渲染步骤如下所示

液体表面的着色由折射光+反射光两部分混合而成 折射/反射的比例由菲涅尔方程给出

液体表面的着色由折射光+反射光两部分混合而成 折射/反射的比例由菲涅尔方程给出

光线追踪得到反射和光线的颜色

反射颜色

折射颜色

液体表面的着色由折射光+反射光两部分混合而成 折射/反射的比例由菲涅尔方程给出

考虑厚度:Beer-Lambert定律 液体透光率随着厚度增加指数减小 透光率 $A = \max(e^{-0.5T}, 0.2)$ 修正后折射颜色 $I'_r = AI_r + (1-A)I_f$

T厚度 I_f 液体固有颜色

折射颜色

厚度染色

液体表面的着色由折射光+反射光两部分混合而成 折射/反射的比例由菲涅尔方程给出

为了计算简便,使用菲涅尔定律的近似,Schlick公式 **反射率** $R(\theta) = R_0 + (1 - R_0)(1 - \cos \theta)^5$

反射率

最终着色

内容

- 课题背景和工作概述
- 流体的并行化模拟
- 流体的并行化表面重建和渲染
- 演示

谢谢

附加内容

平滑粒子动力学

平滑粒子动力学(Smoothed Particle Hydrodynamics, SPH)

将流体粒子表示为空间中一个径向对称的分布。即粒子的"势力范围"。

核函数

$$W_{poly6}(\boldsymbol{r},h) = \frac{315}{64\pi h^9} \begin{cases} \left(h^2 - r^2\right)^3, & 0 \le r \le h \\ 0, & otherwise \end{cases}$$

平滑粒子动力学

平滑粒子动力学(Smoothed Particle Hydrodynamics, SPH)

将流体粒子表示为空间中一个径向对称的分布。即粒子的"势力范围"。

核函数

$$W_{poly6}(\boldsymbol{r},h) = \frac{315}{64\pi h^9} \begin{cases} \left(h^2 - r^2\right)^3, & 0 \le r \le h \\ 0, & otherwise \end{cases}$$

平滑粒子动力学

在粒子上记录的物理量 可估计空间中任意一点的物理量 可求物理量的梯度*

虚线:粒子上的物理量;实线:空间中的物理量

液体密度的估计

$$\rho(\boldsymbol{r}_i) = \sum_{i=1}^N m_i W(\boldsymbol{r}_{ij})$$

液体速度的估计

$$\boldsymbol{v}(\boldsymbol{r}_i) = \sum_{j=1}^N \boldsymbol{v}_j W(\boldsymbol{r}_{ij})$$

密度的梯度

$$\nabla \rho(\boldsymbol{r}_i) = \sum_{i=1}^N m_i \nabla W(\boldsymbol{r}_{ij})$$

^{*}求梯度时,Poly6核函数存在梯度消失的问题, 应使用Spiky核函数

Navier-Stokes方程组

Navier-Stokes方程组描述了流体运动的规律

传统模拟方法无不可压条件 使用一个经验公式计算压强力

Macklin等人[7]注意到不可压条件的等效条件是密度平衡条件

$$\nabla \cdot \boldsymbol{v} = 0 \Leftrightarrow \rho = \rho_0$$

对每个粒子建立密度平衡约束

$$C_i(\boldsymbol{p}_i, \cdots, \boldsymbol{p}_j) = \frac{\rho_i}{\rho_0} - 1 = 0$$

牛顿法更新粒子位置, $\Diamond \Delta p = \lambda \nabla C \mathcal{Q} C_i$ 的梯度下降

$$C(\boldsymbol{p} + \Delta \boldsymbol{p}) \approx C(\boldsymbol{p}) + \nabla C^{\mathrm{T}} \Delta \boldsymbol{p}$$

= $C(\boldsymbol{p}) + \nabla C^{\mathrm{T}} \nabla C \lambda = 0$

更新公式

$$\boldsymbol{p}_i \leftarrow \boldsymbol{p}_i + \frac{1}{\rho_0} \sum_{j \in \delta(\boldsymbol{p}_i)} (\lambda_i + \lambda_j) \nabla W(\boldsymbol{p}_i - \boldsymbol{p}_j)$$

$$\lambda_i = -\frac{C_i(\boldsymbol{p}_1, \cdots, \boldsymbol{p}_n)}{\sum_{j \in \delta(\boldsymbol{p}_i)} \|\nabla_{\boldsymbol{p}_j} C_i\| + \epsilon}$$
 稳定性修正 邻居查找

更新公式

$$\boldsymbol{p}_i \leftarrow \boldsymbol{p}_i + \frac{1}{\rho_0} \sum_{j \in \delta(\boldsymbol{p}_i)} (\lambda_i + \lambda_j) \nabla W(\boldsymbol{p}_i - \boldsymbol{p}_j)$$

$$\lambda_i = -\frac{C_i(\boldsymbol{p}_1, \cdots, \boldsymbol{p}_n)}{\sum_{j \in \delta(\boldsymbol{p}_i)} \left\| \nabla_{\boldsymbol{p}_j} C_i \right\| + \epsilon}$$

更新方法

雅可比迭代:独立对每个约束进行求解

并行实现:使用两个CUDA核函数,首先计算 λ_i ,然后更新 p_i 。

表面法向量重建

4. 利用一阶差分近似求偏导。不连续处失效!

$$\frac{\partial \mathbf{P}}{\partial s} \approx \frac{\mathbf{P}(s + \Delta s, t)}{\Delta s}$$

5. 选择连续一侧的偏导

$$\frac{\partial \mathbf{P}}{\partial s} \approx \min \left(\frac{\mathbf{P}(s + \Delta s, t)}{\Delta s}, \frac{\mathbf{P}(s - \Delta s, t)}{\Delta s} \right)$$

深度纹理平滑

平滑结果

原深度图

高斯模糊

液体表面的着色由折射光+反射光两部分混合而成 折射/反射的比例由菲涅尔方程给出

液体表面的着色由折射光+反射光两部分混合而成 折射/反射的比例由菲涅尔方程给出

为了计算简便, 使用菲涅尔定律的近似, Schlick公式

反射率
$$R(\theta) = R_0 + (1 - R_0)(1 - \cos \theta)^5$$

$$R_0 = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

液体表面的着色由折射光+反射光两部分混合而成 折射/反射的比例由菲涅尔方程给出

反射光线
$$\hat{I}_i = -\hat{I}_o + 2n$$

使用光线追踪求解反射光线的颜色 忽略中间经过的液体 最终光线来源:天空盒/棋盘格地面

液体表面的着色由折射光+反射光两部分混合而成 折射/反射的比例由菲涅尔方程给出

折射光线 $\hat{I}_r = -\hat{I}_o - c \cdot n$

HACK: 出射光线的反向,向法向做微小偏移

使用光线追踪求解折射光线的颜色 忽略中间经过的液体 最终光线来源:天空盒/棋盘格地面

液体表面的着色由折射光+反射光两部分混合而成 折射/反射的比例由菲涅尔方程给出

考虑厚度:Beer-Lambert定律 液体透光率随着厚度增加指数减小

透光率 $A = \max(e^{-0.5 T}, 0.2)$

修正后折射颜色 $I_r' = AI_r + (1-A)I_f$ T 厚度, I_f 液体固有颜色

Navier-Stokes方程组描述了流体运动的规律

基于位置的流体[7]

• 不可压性等价于密度平衡条件

$$\nabla \cdot \boldsymbol{v} = 0 \Leftrightarrow \rho = \rho_0$$

• 密度平衡方程

$$C_i = \frac{\rho_i}{\rho_0} - 1 = 0$$

• 密度计算:周围粒子的质量贡献

$$m_i = \int m_i W dV = 1$$

[7] M. Macklin, el at., "Position based fluids," ACM Trans. Graph., vol. 32, no. 4, p. 1, Jul. 2013.

哈希网格邻居查找算法

A907 A

将一个网格内的粒子重新连续编号

方法:将粒子按照网格编号排序,从头开始编号

⇒一个网格内粒子编号连续

New particle ID	Old Particle ID	Grid ID
0	4	
1	5	0
2	3	
3	0	2
4	1	5
5	2	
•••	•••	