

2 March 2016 Lecture 4 - Lime

CE 344 Materials of Construction

Çağla Meral, Ph.D., cmeral@metu.edu.tr

Dept. of Civil Eng., METU - Ankara

CE 344 – Tentative Outline						
V	Week Dates			Торіс		
	1	22-Feb	26-Feb	Introduction to materials of construction Gypsum		
	2	29-Feb	4-Mar	3. Lime		
	3	7-Mar	11-Mar	4. Portland cement		
	4	14-Mar	18-Mar	(1st Lab around these dates)		
	5	21-Mar	25-Mar			
	6	28-Mar	1-Apr	5. Pozzolans		
		Specific date TBA		1st MIDTERM EXAMINATION		
	7	4-Apr	8-Apr	6. Aggregates		
	8	11-Apr	15-Apr	(<u>2nd Lab around these dates</u>)		
	9	18-Apr	22-Apr	7. Concrete		
	10	25-Apr	29-Apr	(<u>3rd Lab around these dates</u>)		
	11	2-May	6-May			
	12	9-May	13-May			
		Specific date TBA		2 nd MIDTERM EXAMINATION		
	13	16-May	20-May	8. Ferrous metals, alloys and concrete reinforcement		
	14	23-May	27-May	9. Polymers		
	10. Clay bricks					
(*) The detailed course schedule is available at the course web page. Wednesday, March 2, 2016 Cagla Meral – cmeral@metu.edu.tr						

- Gypsum plaster:
 - o For each 1 cm, 9-11 kg/m²
 - o 150-165 TL/ton (2014)
- Saten plaster
 - For each 1 mm, 1 kg/m²
 - o 279 TL/ton (2014)

Wednesday, March 2, 201

igla Meral – cmeral@metu.e

_		(1000 tons)	2012	Reserves					
	1	China	48,000	NA					
	2	Iran	14,000	NA					
	3	Spain	11,500	NA					
	4	Thailand	10,000	NA					
	5	United States	9,900	700,000					
	6	Japan	5,700	NA					
	7	Italy	4,100	NA					
	8	Mexico	3,850	NA					
	9	Russia	3,100	NA					
	10	Australia	3,000	NA					
	11	Turkey	3,000	NA					
	12	Brazil	2,800	230,000					
	13	India	2,750	69,000					
	14	France	2,300	NA					
	15	Saudi Arabia	2,300	NA					
	16	Canada	2,200	450,000					
	17	Germany	2,050	NA					
	18	United Kindom	1,700	NA					
	19	Algeria	1,650	NA					
	20	Argentina	1,200	NA					
	21	Poland	1,200	55,000					
	22	Other countries	14,900	NA					
		World (rounded)	150,000	Large					
⊉n	metu.edu.tr 3								

Calcination of Gypsum

■ Gypsum rock when heated to 100-190°C looses ¾ of its water:

CaSO₄.2H₂O
$$\stackrel{100-190^{\circ}C}{\longrightarrow}$$
 CaSO₄.½H₂O + 3/2 H₂O \uparrow Plaster of Paris

(This is low burning process called as INCOMPLETE CALCINATION.)

■ When calcination is carried out at temperatures above 190°C all water is removed:

$$CaSO_4.2H_2O \xrightarrow{>190^{\circ}C} CaSO_4 + 2H_2O$$

(This is high-burning process & COMPLETE CALCINATION.)

Wednesday, March 2, 2016

Cagla Meral - cmeral@metu.edu.tr

Calcining:

$$CaCO_3 \xrightarrow{>900^{\circ}C} CaO + CO_2 \uparrow$$
Calcium Quicklime
Carbonate

Hydration or Slaking:

CaO +
$$H_2O \rightarrow Ca(OH)_2$$
 + Heat (i.e. exothermic)

(volume expansion)

Carbonation of hydrated lime:

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3$$

Wednesday, March 2, 2010

Cagla Meral - cmeral@metu.edu.tr

Calcination of MgCO₃

 Decomposition of magnesium carbonate to form magnesium oxide and carbon dioxide begins at a temperature slightly above 400 °C.

$$MgCO_3 \xrightarrow{>400^{\circ}C} MgO + CO_2 \uparrow$$

Wednesday, March 2, 2016

Cagla Meral – cmeral@metu.edu.tr

Calcination of MgCO₃ and CaCO₃

C

■ 1 ton of dolomitic limestone with 30 weight% MgCO₃ was calcined at 700°C. Calculate the amounts of **MgO**, **CaO** produced and **CO**₂ given off by this calcination process.

(Ca: 40, Mg:24, C: 12, O:16, S: 32, H:1)

Wednesday, March 2, 2016

Cagla Meral - cmeral@metu.edu.t

13

Calcination of MgCO₃ and CaCO₃

C

If a 24g sample of a MgCO₃ and CaCO₃ mixture produces 12g CO₂, then what is the percentage by mass of MgCO₃ in the original mixture?

(Ca: 40, Mg:24, C: 12, O:16, S: 32, H:1)

Wednesday, March 2, 2016

Cagla Meral – cmeral@metu.edu.tr

Kilns for calcining lime

Calcining:

$$CaCO_3 \xrightarrow{>900^{\circ}C} CaO + CO_2 \uparrow$$
Calcium Quicklime
Carbonate

- Calcination is carried out in various kilns:
 - 1. Temporary clamp kiln
 - 2. Permanent structure kilns
 - 1. Intermittent
 - 2. Continuous
 - 3. Rotary
 - 4. Reactor

Wednesday, March 2, 201

Cagla Meral - cmeral @metu.edu.tr

15

Simplest method: Clamp kiln

Common in Roman and medieval Britain

- Not permanent ...
- Not really a kiln at all, but consisted of layers of fuel and limestone stacked together in a mound, covered with clay or turf and slowly burned in a method similar to that used in charcoal burning.
- Difficult to control the quality
- Remains of such 'kilns' comprise merely a hearth on the floor of a pit, measuring up to φ 2.5m and 2.0m in depth.
- Surrounding soil may show evidence of burning by a change in color and loose piles of rock may be present.

Wednesday, March 2, 2016

Cagla Meral – cmeral @metu.edu.tr

Slaking (Hydration) of lime

Hydration or Slaking:

CaO + $H_2O \rightarrow Ca(OH)_2$ + Heat (i.e. exothermic)

(volume expansion)

Rate of slaking and rate of heat evolution depends on:

- Quicklime particle size
 - Finer and porous quicklimes hydrate more quickly and give off greater amount of heat
- Chemical composition
 - Higher calcium → higher CaO → hydrate more quickly and give off higher heat%
- Burning temperature
 - Underburned quicklimes hydrate more slowly than the ones burned at higher temperature

Wednesday, March 2, 2010

Cagla Meral – cmeral @metu.edu.tr

21

Calcination of Lime

Q

How much water is necessary to slake the quicklime obtained from 10 tons of pure limestone?

(Ca: 40, C: 12, O:16, S: 32, H:1)

Wednesday, March 2, 201

Cagla Meral - cmeral@metu.edu.tr

Slaking (Hydration) of lime

Hydration or Slaking:

CaO + $H_2O \rightarrow Ca(OH)_2$ + Heat (i.e. exothermic) (volume expansion)

Lime can be slaked at a construction site (if necessary precautions are taken). However, a better way would be buying it from a factory; as the product would be more homogeneous & economical, and less plastic.

Wednesday, March 2, 201

Cagla Meral - cmeral@metu.edu.t

-00

Calcium Hydroxide

- Slaked lime or portlandite
- Notation:
 - Ca(OH)₂ = CH (in cement chemistry)
- Large, weak crystals with hexagonal – prism morphology

* Image courtesy of P.J.M. Monteiro

Wednesday, March 2, 2016

Cagla Meral – cmeral @metu.edu.tr

Seasoning of slaked lime

Hydration or Slaking:

- CaO is mixed with water in a slaking box until a "putty" has been formed.
- The putty is then covered with sand to protect it from the action of the air & left for seasoning.
- Time of seasoning \rightarrow 1 week for mortar use 6 weeks for plaster use

Cagla Meral - cmeral@metu.edu.tr

Hydration or Slaking:

CaO + $H_2O \rightarrow Ca(OH)_2$ + Heat (i.e. exothermic) (volume expansion)

Seasoning for two/three Putty aged two months, with corrosic on the prism side [arrow] as plat

Portlandite crystals: Aging → size reduction and developing submicrometer, platelike crystals.

If CaO is not slaked well, it

will occur.

reactions

weeks provides a

homogeneous mass & completion of chemical

will absorb moisture from air & since the volume expands upto 2.5-3 times popouts

* J. Am. Ceram. Soc., 81 [11] 3032-34 (19

Classification of quicklime

1. According to Particle Size

- Lump Lime (10-30 cm lumps)
- Pebble Lime (2-5 cm)
- Granular Lime (~0.5 cm)
- Crushed Lime (~5-8 mm)
- Ground Lime (passes #10 sieve, by grinding crushed lime)
- Pulverized Lime (passes #100 sieve)

wednesday, March 2, 2016

Cagla Meral - cmeral@metu.edu.tr

27

Classification of quicklime

- 2. According to Chemical Composition
 - High-Calcium (CaO ≥ 90%)
 - Slakes faster
 - Hardens faster
 - Have greater sand carrying capacity
 - Calcium (75% < CaO < 90%)
 - Magnesian (MgO ≥ 20%)
 - High-magnesian (dolomitic, MgO ≥ 25%)

Wednesday, March 2, 2016

Cagla Meral - cmeral@metu.edu.tr

Classification of quicklime

- According to Intended Use
 - Mortar Lime (Sand + Lime + Water)
 - used for masonry construction until the advent of portland cement in mid-1800s.
 - now used in the conservation of buildings originally built using lime mortar
 - Two types:
 - Non-Hydraulic
 - Hydraulic
 - Plaster Lime
 - Lime + Water
 - Lime wash

Wednesday, March 2, 2016

Cagla Meral - cmeral@metu.edu.tr

-00

Air slaked lime (Bayat kireç)

- When quicklime (CaO) is left uncovered it picks up moisture and CO_2 from air & becomes partly $CaCO_3$.
 - air CaO + H₂O → Ca(OH)₂ → Expansion observed
 - $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

Wednesday, March 2, 2016

Cagla Meral – cmeral @metu.edu.tr

Setting/Hardening of lime mortar

- $Ca (OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O \rightarrow SLOW!$
- Higher the moisture
- Lower the CO₂
- Lower the calcium

longer the setting time

Wednesday, March 2, 201

Cagla Meral - cmeral@metu.edu.t

Plasticity of lime mortar

- Plasticity of lime mortar = spreading quality of mortar
 - $\circ\quad$ If it spreads easily and smoothly $\xrightarrow{}$ plastic
 - If it sticks to the trowel or cracks, curls up and drops behind the trowel → non-plastic
- Adding enough sand ¬

Increases plasticityReduces drying shrinkageResults in cheaper mortar

■ Adding too much sand → non-plastic mortar

Wednesday, March 2, 2016

Cagla Meral - cmeral @metu.edu.t

Strength of lime mortars

- Chemical composition of lime
 - Magnesian Limes > Calcium Limes
- Sand amount & properties
 - Adding sand decreases strength
 - Too little sand → shrinkage cracks in the mortar → reduced strength
 - Mortars with fine sand > Mortars with coarse sand
- Amount of water
 - Voids are formed after evaporation
- Setting conditions
 - Lower humidity & higher CO₂ → higher strength

Wednesday, March 2, 2016

Cagla Meral - cmeral @metu.edu.tr

33

Lime pops (Kireç topakları)

- If quicklime is not mixed completely with water, some CaO will be carried to construction stage.
- In its final stage it will absorb water & CO₂ from air and will expand upto 2.5-3 times.
- This will cause cracking & pop-ups in the structure.

Wednesday, March 2, 2016

Cagla Meral - cmeral@metu.edu.tr

3/

Properties of lime mortars

- Lime + sand → Lime mortar
 - Modern mix: 1 to 3 by weight
 - Historical mix: 1 to 2 by weight

Adding sand:

- Adjusting plasticity → otherwise too sticky
- More economical → sand is cheaper than lime
- Decreasing shrinkage effects → horse hair can be also added

Wednesday, March 2, 201

Cagla Meral - cmeral@metu.edu.t

35

Why use lime mortar?

- Plaster mortars → sets slower than gypsum
- White-wash (badana)
- Lime mortar is soft and porous
 - Better with softer building materials as masonry mortar: natural stone, terracotta...

Catalhoyuk, ca. 7500 BC

- Good for repairs of older, stone-built structures and restoration of historical buildings (Portland cement is good for brick and concrete construction)
- In production of masonry blocks
 - Slaked lime + sand + pressure

Vednesday, March 2, 2016

Cagla Meral - cmeral@metu.edu.tr

Durability of limes

Not resistant to moving water

Not for outside use

Hydraulic binder?

Wednesday, March 2, 201

agla Meral – cmeral@metu.edu.tr

Hydraulic lime

- A lime obtained by calcination of siliceous or clayey limestone at higher temperature
- It differs from quicklime:
 - o Burned at higher temperature
 - It contains lime silicates
 - o It can set & harden under water

like portland cement

Wednesday, March 2, 2016

Cagla Meral – cmeral@metu.edu.tr

