南京林业大学试卷(B卷)

课程 线性代数 A

2018~2019 学年第 1 学期

题号	 =	111	四	五	六	七	八	总分
得分								

、单项选择题(每题3分,共15分)

1. 排列13···(2n -1)2n(2n -2···)2 的逆序数是 ().

 $(A) n^2$

N

姓

dr.

沿

- (B) n(n-1) (C) n(n+1) (D) n!

2. 五阶行列式 $D = \det(a_n)$ 中应有一项为 ().

 $(A) a_{11}a_{23}a_{45}a_{53}a_{44}$

 $(B) a_{11}a_{23}a_{34}a_{45}a_{54}$

 $(C) a_{11}a_{23}a_{35}a_{52}a_{44}$

(D) $a_{12}a_{23}a_{35}a_{52}a_{44}$

3. 设A 是任一 $n(n \ge 3)$ 阶方阵, A^* 是其伴随矩阵, 又常数 $k \ne 0$, ± 1, 则必有 $(kA)^* = ($).

- $(A) kA^*$
- $(B) k^{n-1}A^{\bullet}$
- (C) $k^n A^*$ (D) $k^{-1} A^*$

4. 设A为3阶方阵,R(A) = 1,则().

(A) $R(A^*) = 3$

 $(B) R(A^*) = 2$

 $(C) R(A^*) = 1$

(D) $R(A^*) = 0$

5. 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则下列向量组线性无关的是().

- $(A) \alpha_1 + \alpha_2, \alpha_3 + \alpha_4, \alpha_4 \alpha_4 \qquad (B) \alpha_1 + \alpha_2, \alpha_3 + \alpha_4 + \alpha_5, \alpha_4 + \alpha_5, \alpha_5 + \alpha_5, \alpha_6 + \alpha_7, \alpha_8 + \alpha_8, \alpha_8 +$
- $(C) \alpha_1 + 2\alpha_2, 2\alpha_3 + 3\alpha_3, 3\alpha_3 + \alpha_1$
- (D) $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 3\alpha_1 + 22\alpha_3 + 3\alpha_1 + 5\alpha_2 5\alpha_3$
- 二、填空题(每题3分,共15分)
- 1. $abla A = (1, 2, 3), B = (-1, 1, 0), M(A^T B)^2 = (-1, 1, 0)$

Пr 推 2. 若三阶方阵 A 有特征值1, 2, -1, 则行列式 $\left|A^* + 3A + 2E\right| = ___.$

3. 设矩阵
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{pmatrix}$$
, $B 为 3 阶 非零矩阵, 且 $AB = O$, 则 $t =$ ______$

4. 设
$$D = \begin{vmatrix} 3 & -5 & 2 & 1 \\ 1 & 1 & 0 & -5 \\ -1 & 3 & 1 & 3 \\ 2 & -4 & -1 & -3 \end{vmatrix}$$
, A_{ij} 为元素 a_{ij} 的代数余子式,则 $-A_{11} + 3A_{12} + A_{13} + 3A_{14} =$ _______.

- 5. 若实二次型 $f = x^2 + 4xy + ky^2 + z^2$ 为正定的,则 k 应满足的条件是
- 三、计算下列行列式(每题8分,共16分)

1.
$$\begin{vmatrix} 3 & 2 & 5 & 1 \\ 2 & 0 & 6 & 2 \\ -1 & -1 & -2 & 0 \\ 3 & 2 & 0 & 4 \end{vmatrix};$$

$$2. D_n = \begin{vmatrix} b & a & \cdots & a \\ a & b & \cdots & a \\ \vdots & \vdots & \vdots & \vdots \\ a & a & \cdots & b \end{vmatrix}.$$

四、
$$(10 \, \mathcal{G})$$
 已知矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,矩阵 X 满足 $A^*XA = 2XA - 8E$,其中 A^* 是 A 的伴随

矩阵, 求矩阵 X.

五、(12分) 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 2 & -1 & 3 & 2 \end{pmatrix}$$
.

- (1) 求行最简形矩阵 B 及可逆矩阵 P 使得 PA = B;
- (2) 求 A 的列向量组的一个最大无关组,并用此最大无关组线性表示其余向量.

$$x_1 + x_2 + (2 - \lambda)x_3 = 1$$

 六、(12 分) 当 λ 取何值时,非齐次方程组
$$\begin{cases} x_1 + x_2 + (2 - \lambda)x_3 = 1 \\ (2 - \lambda)x_1 + (2 - \lambda)x_2 + x_3 = 1, 有无穷多解,并求 \\ (3 - 2\lambda)x_1 + (2 - \lambda)x_2 + x_3 = \lambda, \end{cases}$$

其通解.

七、(15分)已知二次型

$$f = 2x_1^2 + x_2^2 - 4x_1x_2 + 2ax_2x_3$$
, $(a < 0)$

通过正交变换 x = Py 化成标准形 $f = -2y_1^2 + y_2^2 + 4y_3^2$, 求

(1) 常数 a:

