Econ720 - TA Session 5

Yanran Guo

UNC-Chapel Hill

2020. 9. 18

1. Money and Heterogeneity

Consider a two-period OLG model with fiat money.

Demographics: In each period, $N_t = (1+n)^t$ persons are born. Each lives for 2 periods. Half of the agents are of type 1, the other half of type 2.

Endowments: The initial old hold M_0 units of money, evenly distributed across agents. Each person is endowed with (e_i^y, e_i^o) units of consumption when young and old, respectively.

Preferences: $ln(c_t^y) + \beta ln(c_{t+1}^o)$

Technology: Goods can only be eaten the day they drop from the sky.

→Save by holding money

Government: The government pays a lump-sum transfer of $x_t p_t$ units of money to each old person: $M_t = M_{t-1} + N_{t-1} x_t p_t$. The aggregate money supply grows at the constant rate μ : $M_{t+1} = (1 + \mu) M_t$.

How many choices do government make?

Markets: In each period, agents buy/sell goods and money in spot markets.

→What comes into HH BC?

Question

1 Define a competitive equilibrium.

Answer key:

 \bullet How many sectors? \to H.H. and Gov.

$$\begin{aligned} \max & \ln(c_{i,t}^{y}) + \beta \ln(c_{i,t+1}^{o}) \\ s.t. & p_{t}c_{i,t}^{y} + p_{t}m_{i,t}^{d} = p_{t}e_{i}^{y} \\ & p_{t+1}c_{i,t+1}^{o} = p_{t+1}e_{i}^{o} + p_{t}m_{i,t}^{d} + p_{t+1}x_{t+1} \\ \mathscr{L} &= \ln(c_{i,t}^{y}) + \beta \ln(c_{i,t+1}^{o}) \\ & + \lambda_{it}\{e_{i}^{y} + \frac{p_{t+1}}{p_{t}}(e_{i}^{o} + x_{t+1}) - c_{i,t}^{y} - \frac{p_{t+1}}{p_{t}}c_{i,t+1}^{o}\} \end{aligned}$$

Notice that x_{t+1} is an **exogenous** variable for household!

$$egin{aligned} [c_{i,t}^y] : & rac{1}{c_{i,t}^y} = \lambda_{it} \ [c_{i,t+1}^o] : & eta rac{1}{c_{i,t+1}^o} = \lambda_{it} rac{p_{t+1}}{p_t} \ & \Rightarrow rac{1}{c_{i,t}^y} = eta rac{1}{c_{i,t+1}^o} rac{p_t}{p_{t+1}} \end{aligned}$$

Competitive equilibrium:

Allocations $\{c_{i,t}^{y}, c_{i,t}^{o}, m_{i,t+1}^{d}, x_{t}, M_{t}\}$ and prices $\{p_{t}\}$ that satisfy

- Household: 1 Euler Equation, 2 Budget Constraint
- Government: $M_t = M_{t-1} + N_{t-1}x_tp_t$, $M_{t+1} = (1+\mu)M_t$
- Market Clearing Conditions:

1. Goods market:
$$\frac{N_t}{2}c_{1,t}^y + \frac{N_t}{2}c_{2,t}^y + \frac{N_{t-1}}{2}c_{1,t}^o + \frac{N_{t-1}}{2}c_{2,t}^o = \frac{N_t}{2}e_1^y + \frac{N_t}{2}e_2^y + \frac{N_{t-1}}{2}e_1^o + \frac{N_{t-1}}{2}e_2^o$$

2.Money market: $\frac{N_t}{2}m_{1,t}^dp_t + \frac{N_t}{2}m_{2,t}^dp_t = M_t$

Derive the household consumption function.

Tip: log-utility \rightarrow consumption is a constant fraction of income.

Answer key:

From the lifetime budget constraint:

$$c_{i,t}^{y} + \frac{p_{t+1}}{p_t}c_{i,t+1}^{o} = e_i^{y} + \frac{p_{t+1}}{p_t}(e_i^{o} + x_{t+1})$$

Substitute E.E.

$$c_{i,t}^{y} + \frac{p_{t+1}}{p_{t}} \beta c_{i,t}^{y} \frac{p_{t}}{p_{t+1}} = e_{i}^{y} + \frac{p_{t+1}}{p_{t}} (e_{i}^{o} + x_{t+1})$$

Hence

$$c_{i,t}^{y} = \frac{1}{1+\beta} \left(e_{i}^{y} + \frac{e_{i}^{o}}{R_{t+1}} + \frac{x_{t+1}}{R_{t+1}} \right), \text{ where } R_{t+1} = \frac{p_{t}}{p_{t+1}}$$

$$c_{i,t+1}^{o} = \beta c_{i,t}^{y} R_{t+1} = \frac{\beta}{1+\beta} \left(R_{t+1} e_{i}^{y} + e_{i}^{o} + x_{t+1} \right)$$

 $oldsymbol{\circ}$ Derive a difference equation for the equilibrium interest rate when $\mu=0$.

Logic:
$$\mu=0 o$$
 gov. doesn't add money to the economy $o x_t=0$

Answer key:

When $x_t = 0$

$$c_{i,t}^{y} = \frac{1}{1+\beta} (e_{i}^{y} + \frac{e_{i}^{o}}{R_{t+1}})$$
 $c_{i,t+1}^{o} = \beta c_{i,t}^{y} R_{t+1} = \frac{\beta}{1+\beta} (R_{t+1} e_{i}^{y} + e_{i}^{o})$

From goods market clearing condition:

$$\frac{N_t}{2}(c_{1,t}^y + c_{2,t}^y) + \frac{N_{t-1}}{2}(c_{1,t}^o + c_{2,t}^o) = \frac{N_t}{2}(e_1^y + e_2^y) + \frac{N_{t-1}}{2}(e_1^o + e_2^o)$$

Rearrange this equation by using $N_t = (1+n)^t$, $N_{t-1} = (1+n)^{t-1}$

$$\begin{aligned} e_1^y + e_2^y + \frac{1}{n+1} (e_1^o + e_2^o) &= & c_{1,t}^y + c_{2,t}^y + \frac{1}{n+1} (c_{1,t}^o + c_{2,t}^o) \\ &= & \frac{1}{1+\beta} (e_1^y + \frac{e_1^o}{R_{t+1}} + e_2^y + \frac{e_2^o}{R_{t+1}}) \\ &+ & \frac{1}{n+1} \frac{\beta}{1+\beta} (R_t e_1^y + e_1^o + R_t e_2^y + e_2^o) \end{aligned}$$

Difference equation of
$$R$$
: $\beta(1+n-R_t)(e_1^y+e_2^y)=\frac{1+n-R_{t+1}}{R_{t+1}}(e_1^o+e_2^o)$

Is the monetary steady state dynamically efficient?

Answer key:

In steady state, $m_{t+1}=m_t=\bar{m}$, where $m_t=\frac{M_t}{\rho_t N_t}$ Hence,

$$\frac{M_{t+1}}{p_{t+1}N_{t+1}} = \frac{M_t}{p_tN_t} \Rightarrow \frac{M_{t+1}}{M_t} = \frac{p_{t+1}}{p_t} \frac{N_{t+1}}{N_t} \Rightarrow 1 + \mu = \frac{1+n}{R_{t+1}}$$

In steady state,

$$R = \frac{1+n}{1+\mu}$$

- ullet If $\mu>0$, this monetary steady state is **not** dynamically efficient.
- ullet If $\mu=0$, this monetary steady state is dynamically efficient.

1. Money and Heterogeneity

Consider a two-period OLG model with fiat money and a storage technology.

Demographics: In each period, $N_t = (1+n)^t$ persons are born. Each lives for 2 periods.

Endowments: The initial old hold capital K_0 and money M_0 . Each young person is endowed with e units of consumption.

Preferences: $u(c_t^y) + \beta u(c_{t+1}^o)$

Technology: Storing k_t units of the good in t yields $f(k_t)$ units in t+1. f obeys Inada conditions. The resource constraint is $N_t K_{t+1} = N_t e + N_{t-1} f(k_t) - C_t$ where $C_t = N_t c_t^y + N_{t-1} c_t^o$

 \rightarrow Save by holding money and storing capital.

Government: The government pays a lump-sum transfer of $x_t p_t$ units of money to each old person: $M_{t+1} = M_t + N_{t-1} x_t p_t$. The aggregate money supply grows at the constant rate μ : $M_{t+1} = (1 + \mu) M_t$.

Markets: In each period, agents buy/sell goods and money in spot markets.

Timing in period t:

- The old enter period t holding aggregate capital $K_t = N_{t-1}k_t$ and nominal money balances of $M_t = m_t N_{t-1}$.
- Gov pays a lump-sum transfer of $x_t p_t$ units of money to each old person.
- Each old person produces $f(k_t)$.
- ullet The young buy money $rac{m_{t+1}}{
 ho_t}$ from the old, consume c_t^y and save k_{t+1} .
- The old consume c_t^o .

Question

State the HH's BC when young and old.

- Young:
- Old:

Question

State the HH's BC when young and old.

- Young: $p_t c_t^y + p_t k_{t+1} + m_{t+1} = p_t e$
- Old: $p_{t+1}c_{t+1}^o = p_{t+1}f(k_{t+1}) + \frac{m_{t+1}}{m_{t+1}} + p_{t+1}x_{t+1}$

Oerive the HH's optimality conditions. Define a solution to the HH problem.

$$\max \ u(c_t^y) + \beta u(c_{t+1}^o)$$

s.t.
$$p_t c_t^y + p_t k_{t+1} + m_{t+1} = p_t e$$

 $p_{t+1} c_{t+1}^o = p_{t+1} f(k_{t+1}) + m_{t+1} + p_{t+1} x_{t+1}$

$$\mathcal{L} = u(c_t^y) + \beta u(c_{t+1}^o) + \lambda_t \{ e + \frac{p_{t+1}}{p_t} (f(k_{t+1}) + x_{t+1}) - c_t^y - k_{t+1} - \frac{p_{t+1}}{p_t} c_{t+1}^o \}$$

$$\begin{aligned} &[c_t^y]: \ u'(c_t^y) = \lambda_t \\ &[c_{t+1}^o]: \ \beta u'(c_{t+1}^o) = \lambda_t \frac{p_{t+1}}{p_t} \\ &[k_{t+1}]: \ \frac{p_t}{p_{t+1}} = f'(k_{t+1}) \end{aligned}$$

Solution to HH problem is given price p_t , a vector $(c_t^y, c_{t+1}^o, m_{t+1}, k_{t+1})$ that satisfies

- 2 BCs
- EE: $u'(c_t^y) = \beta u'(c_{t+1}^o) \frac{p_t}{p_{t+1}}$
- FOC: $\frac{p_t}{p_{t+1}} = f'(k_{t+1})$

Oefine a competitive equilibrium

Answer key:

Competitive equilibrium:

Allocations $\{c_t^y, c_t^o, m_{t+1}, k_{t+1}, x_t, M_t\}$ and prices $\{p_t\}$ that solve

- Household: 1 Euler Equation, 2 Budget Constraint
- Government: $M_{t+1} = M_t + N_{t-1}x_tp_t$, $M_{t+1} = (1+\mu)M_t$
- Market Clearing Conditions:
 - 1. Money market: $N_{t-1}m_t = M_t$
 - 2.Goods market: $N_t c_t^y + N_{t-1} c_t^o + N_t k_{t+1} = N_t e + N_{t-1} f(k_t)$
- Accounting identity: $\frac{p_t}{p_{t+1}} = f'(k_{t+1})$

Open Does an equilibrium with positive inflation exist? Intuition

Answer key:

No. That implies rate of return dominance, and nobody would hold money.

• Define a steady sate as a system of 6 equations with 6 unknowns

CE:
$$\{c_t^y, c_t^o, m_{t+1}, k_{t+1}, x_t, M_t\}, \{p_t\}$$

$$u'(c_t^y) = \beta u'(c_{t+1}^o) \frac{p_t}{p_{t+1}}$$

$$p_t c_t^y + p_t k_{t+1} + m_{t+1} = p_t e$$

$$p_{t+1} c_{t+1}^o = p_{t+1} f(k_{t+1}) + m_{t+1} + p_{t+1} x_{t+1}$$

$$M_{t+1} = M_t + N_{t-1} x_t p_t$$

$$M_{t+1} = (1 + \mu) M_t$$

$$N_{t-1} m_t = M_t$$

$$N_t c_t^y + N_{t-1} c_t^o + N_t k_{t+1} = N_t e + N_{t-1} f(k_t)$$

$$\frac{p_t}{p_{t+1}} = f'(k_{t+1})$$

A steady state consists of constants $(c^y, c^o, m/p, k, x, \pi)$ that satisfy

$$\bullet \ \frac{1}{1+\pi} = \frac{1+n}{1+\mu} \to \pi$$

•
$$f'(k) = \frac{1}{1+\pi} \rightarrow k$$

•
$$u'(c^y) = \beta u'(c^o) \frac{1}{1+\pi}$$
 and $c^y + \frac{1}{1+n}c^o + k = e + \frac{1}{1+n}f(k) \rightarrow c^y$ and c^o

$$\bullet c^y + k + m/p(1+\pi) = e \to m/p$$

•
$$x = \mu(m/p) \rightarrow x$$

• Find the money growth rate (μ) that maximizes steady state consumption per young person $\frac{N_t c^y + N_{t-1} c^o}{N_t}$

Answer key:

$$max c^y + \frac{1}{1+n}c^o \Leftrightarrow max e + \frac{1}{1+n}f(k) - k$$

Hence,

$$rac{1}{1+n}f'(k^*) - 1 = 0$$
 $f'(k^*) = 1 + n o rac{1}{1+\pi^*} = 1 + n o rac{1+n}{1+\mu^*} = 1 + n$

$$\mu^* = 0$$