All About Spinors

...on flat spacetime

Sean Ericson

UO

Theory meeting, June 27, 2024

Some Philisophical Motivation

Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries
 - Implies an action of the group of isometries on the space of physical states $\tilde{\phi}_{\mathbf{g}}: \mathcal{S} \to \mathcal{S}$

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries
 - Implies an action of the group of isometries on the space of physical states $\tilde{\phi}_{\mathbf{g}}: \mathcal{S} \to \mathcal{S}$
- General covariance: For a physical entity described by a tensor field $T^{a...}_{b...}$, the equations governing the field should be of the form $f(T, \partial T, \cdots, g_{ab}, \partial g_{ab}, \cdots)$

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries
 - Implies an action of the group of isometries on the space of physical states $\tilde{\phi}_{\mathbf{g}}: \mathcal{S} \to \mathcal{S}$
- General covariance: For a physical entity described by a tensor field $T^{a...}_{b...}$, the equations governing the field should be of the form $f(T, \partial T, \dots, g_{ab}, \partial g_{ab}, \dots)$
 - Expresses the invariance of physical laws under diffeomorphisms

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries
 - Implies an action of the group of isometries on the space of physical states $\tilde{\phi}_{\mathbf{g}}: \mathcal{S} \to \mathcal{S}$
- General covariance: For a physical entity described by a tensor field $T^{a...}_{b...}$, the equations governing the field should be of the form $f(T, \partial T, \cdots, g_{ab}, \partial g_{ab}, \cdots)$
 - Expresses the invariance of physical laws under diffeomorphisms
 - ightharpoonup G.C. \Longrightarrow S.C.

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries
 - Implies an action of the group of isometries on the space of physical states $\tilde{\phi}_{\mathbf{g}}: \mathcal{S} \to \mathcal{S}$
- General covariance: For a physical entity described by a tensor field $T^{a...}_{b...}$, the equations governing the field should be of the form $f(T, \partial T, \cdots, g_{ab}, \partial g_{ab}, \cdots)$
 - Expresses the invariance of physical laws under diffeomorphisms
 - ightharpoonup G.C. \Longrightarrow S.C.
- $lue{}$ Special/General covariance ightarrow Special/General relativity

• Consider $(\mathbb{R}^4, \eta_{ab})$, $\mathcal{S} = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$

- Consider (\mathbb{R}^4,η_{ab}), $\mathcal{S}=\{\psi\in\mathcal{H}\ :\ \left|\psi\right|^2=1\}/\sim$
 - $\qquad \qquad \psi \sim \psi' \iff \psi = \mathrm{e}^{\mathrm{i}\alpha}\psi'$

- Consider $(\mathbb{R}^4, \eta_{ab})$, $\mathcal{S} = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
 - $\psi \sim \psi' \iff \psi = e^{i\alpha}\psi'$
- Isometry group: $G = ISO(3,1)^+$

- Consider $(\mathbb{R}^4, \eta_{ab})$, $\mathcal{S} = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
 - $\qquad \qquad \psi \sim \psi' \iff \psi = \mathrm{e}^{\mathrm{i}\alpha}\psi'$
- Isometry group: $G = ISO(3,1)^+$
- lacktriangle Associate with $ilde{\phi}_{m{g}}$ a map $U_{m{g}}: \mathcal{H}
 ightarrow \mathcal{H}$ which preserves \sim

- Consider $(\mathbb{R}^4, \eta_{ab})$, $\mathcal{S} = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
- Isometry group: $G = ISO(3,1)^+$
- lacktriangle Associate with $ilde{\phi}_{m{g}}$ a map $U_{m{g}}: \mathcal{H}
 ightarrow \mathcal{H}$ which preserves \sim
 - $ightharpoonup U_g$ can be rephased to be (anti-)unitary

- Consider (\mathbb{R}^4 , η_{ab}), $\mathcal{S} = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
- Isometry group: $G = ISO(3,1)^+$
- Associate with $\tilde{\phi}_{\mathbf{g}}$ a map $U_{\mathbf{g}}: \mathcal{H} \to \mathcal{H}$ which preserves \sim
 - $ightharpoonup U_g$ can be rephased to be (anti-)unitary
- Composition: $\tilde{\phi}_{g_1} \circ \tilde{\phi}_{g_2} = \tilde{\phi}_{g_1g_2} \implies U_{g_1}U_{g_2} = e^{i\theta}U_{g_1g_2}$

- Consider $(\mathbb{R}^4, \eta_{ab})$, $\mathcal{S} = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
 - $\psi \sim \psi' \iff \psi = e^{i\alpha}\psi'$
- Isometry group: $G = ISO(3,1)^+$
- lacksquare Associate with $ilde{\phi}_{m{g}}$ a map $U_{m{g}}:\mathcal{H} o\mathcal{H}$ which preserves \sim
 - $ightharpoonup U_g$ can be rephased to be (anti-)unitary
- $\qquad \qquad \mathsf{Composition:} \ \, \tilde{\phi}_{g_1} \circ \tilde{\phi}_{g_2} = \tilde{\phi}_{g_1g_2} \ \, \Longrightarrow \ \, U_{g_1}U_{g_2} = e^{i\theta}U_{g_1g_2}$
 - Wigner ('39): can set phases so $\theta=n\pi$, i.e. $U_{g_1}U_{g_2}=\pm U_{g_1g_2}$

- lacksquare Consider (\mathbb{R}^4,η_{ab}) , $\mathcal{S}=\{\psi\in\mathcal{H}\ :\ \left|\psi\right|^2=1\}/\sim$
 - $\psi \sim \psi' \iff \psi = e^{i\alpha}\psi'$
- Isometry group: $G = ISO(3,1)^+$
- Associate with $\tilde{\phi}_{\mathbf{g}}$ a map $U_{\mathbf{g}}: \mathcal{H} \to \mathcal{H}$ which preserves \sim
 - $ightharpoonup U_g$ can be rephased to be (anti-)unitary
- lacktriangle Composition: $ilde{\phi}_{g_1} \circ ilde{\phi}_{g_2} = ilde{\phi}_{g_1g_2} \implies U_{g_1}U_{g_2} = e^{i\theta}U_{g_1g_2}$
 - lacktriangle Wigner ('39): can set phases so $heta=n\pi$, i.e. $U_{g_1}U_{g_2}=\pm U_{g_1g_2}$
- \mathcal{H} a rep. space for a unitary rep. (up to sign) of $ISO(3,1)^+$!

- Consider $(\mathbb{R}^4, \eta_{ab})$, $\mathcal{S} = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
 - $\qquad \qquad \psi \sim \psi' \iff \psi = \mathrm{e}^{\mathrm{i}\alpha}\psi'$
- Isometry group: $G = ISO(3,1)^+$
- lacksquare Associate with $ilde{\phi}_{m{g}}$ a map $U_{m{g}}:\mathcal{H} o\mathcal{H}$ which preserves \sim
 - $ightharpoonup U_g$ can be rephased to be (anti-)unitary
- Composition: $\tilde{\phi}_{g_1} \circ \tilde{\phi}_{g_2} = \tilde{\phi}_{g_1g_2} \implies U_{g_1}U_{g_2} = e^{i\theta}U_{g_1g_2}$
 - lacktriangle Wigner ('39): can set phases so $heta=n\pi$, i.e. $U_{g_1}U_{g_2}=\pm U_{g_1g_2}$
- \mathcal{H} a rep. space for a unitary rep. (up to sign) of $ISO(3,1)^+!$
- Bargmann ('54): reps up to sign are exactly the true reps of the universal cover

■ The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space which covers M

- The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space which covers M
- Construction:

- The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space which covers M
- Construction:
 - Cut M such that it becomes simply connected with boundary

- The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space which covers M
- Construction:
 - Cut M such that it becomes simply connected with boundary
 - ► Glue together copies to eliminate the boundaries

- The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space which covers M
- Construction:
 - Cut M such that it becomes simply connected with boundary
 - ► Glue together copies to eliminate the boundaries
- Lie group structure of M is naturally lifted to $\mathcal{U}(M)$

- The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space which covers M
- Construction:
 - Cut M such that it becomes simply connected with boundary
 - ► Glue together copies to eliminate the boundaries
- Lie group structure of M is naturally lifted to $\mathcal{U}(M)$
- Fundamental group of $ISO(3,1)^+$ is $\mathbb{Z}_2 \to \text{double cover}$

- The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space which covers M
- Construction:
 - Cut M such that it becomes simply connected with boundary
 - Glue together copies to eliminate the boundaries
- Lie group structure of M is naturally lifted to $\mathcal{U}(M)$
- Fundamental group of $ISO(3,1)^+$ is $\mathbb{Z}_2 \to \text{double cover}$
- In fact, $\mathcal{U}(ISO(3,1)^+) \cong ISL(2,\mathbb{C})$

■ Let $W \cong \mathbb{C}^2$

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A: W \to \mathbb{C}$

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A : W \to \mathbb{C}$
 - lacktriangle Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W o\mathbb{C}$

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A : W \to \mathbb{C}$
 - lacktriangle Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W o\mathbb{C}$
 - Conjugate space \overline{W} : the dual space of \overline{W}^*

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A:W\to \mathbb{C}$
 - Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W\to\mathbb{C}$
 - Conjugate space \overline{W} : the dual space of \overline{W}^*
- Tensor of type (k, l; k', l'):

$$T_{B_{1}...B_{l}B_{1}'...B_{l'}'}^{A_{1}...A_{k}'}: \left(W^{*}\right)^{k} \times \left(W\right)^{l} \times \left(\overline{W}^{*}\right)^{k'} \times \left(\overline{W}\right)^{l'} \to \mathbb{C}$$

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A:W\to \mathbb{C}$
 - Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W\to\mathbb{C}$
 - Conjugate space \overline{W} : the dual space of \overline{W}^*
- Tensor of type (k, l; k', l'):

$$T_{B_{1}...B_{l}B'_{1}...B'_{l'}}^{A_{1}...A'_{k'}}: (W^{*})^{k} \times (W)^{l} \times \left(\overline{W}^{*}\right)^{k'} \times \left(\overline{W}\right)^{l'} \to \mathbb{C}$$

■ Space of type (0,2;0,0) antisymmetric tensors is 1-dimensional

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A:W\to \mathbb{C}$
 - lacktriangle Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W o\mathbb{C}$
 - Conjugate space \overline{W} : the dual space of \overline{W}^*
- Tensor of type (k, l; k', l'):

$$T_{B_{1}...B_{l}B_{1}'...B_{l'}'}^{A_{1}...A_{k}'}: (W^{*})^{k} \times (W)^{l} \times \left(\overline{W}^{*}\right)^{k'} \times \left(\overline{W}\right)^{l'} \to \mathbb{C}$$

- Space of type (0,2;0,0) antisymmetric tensors is 1-dimensional
- Spinor space: (W, ϵ_{AB})

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A:W\to \mathbb{C}$
 - Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W\to\mathbb{C}$
 - Conjugate space \overline{W} : the dual space of \overline{W}^*
- Tensor of type (k, l; k', l'):

$$T_{B_{1}...B_{l}B'_{1}...B'_{l'}}^{A_{1}...A'_{k'}}: (W^{*})^{k} \times (W)^{l} \times \left(\overline{W}^{*}\right)^{k'} \times \left(\overline{W}\right)^{l'} \to \mathbb{C}$$

- Space of type (0,2;0,0) antisymmetric tensors is 1-dimensional
- Spinor space: (W, ϵ_{AB})
 - $\lambda^A \in W$ is called a *spinor*

Spinors, Spinorial Tensors, and Spinor Space

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A : W \to \mathbb{C}$
 - lacktriangle Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W o\mathbb{C}$
 - Conjugate space \overline{W} : the dual space of \overline{W}^*
- Tensor of type (k, l; k', l'):

$$T_{B_{1}...B_{l}B'_{1}...B'_{l'}}^{A_{1}...A'_{k'}}: (W^{*})^{k} \times (W)^{l} \times \left(\overline{W}^{*}\right)^{k'} \times \left(\overline{W}\right)^{l'} \to \mathbb{C}$$

- Space of type (0,2;0,0) antisymmetric tensors is 1-dimensional
- Spinor space: (W, ϵ_{AB})
 - $\lambda^A \in W$ is called a *spinor*
 - ► Tensors over *W* are called *spinoral tensors*

• (Un)primed index order irrelevant: $T^{AD'B}{}_{C} \leftrightarrow T^{AB}{}_{C}{}^{D'}$

- (Un)primed index order irrelevant: $T^{AD'B}{}_{C} \leftrightarrow T^{AB}{}_{C}{}^{D'}$
- Conjugation maps (k, l; k', l') tensors to (k', l'; k, l) tensors:

$$T^{A}_{BC} \leftrightarrow \overline{T}^{A'}_{B'C'}$$

- (Un)primed index order irrelevant: $T^{AD'B}{}_{C} \leftrightarrow T^{AB}{}_{C}{}^{D'}$
- Conjugation maps (k, l; k', l') tensors to (k', l'; k, l) tensors:

$$T^A_{\ BC} \leftrightarrow \overline{T}^{A'}_{\ B'C'}$$

ullet ϵ^{AB} , ϵ_{AB} raise/lower unprimed indices; $\overline{\epsilon}_{A'B'}$ for primed

- (Un)primed index order irrelevant: $T^{AD'B}{}_{C} \leftrightarrow T^{AB}{}_{C}{}^{D'}$
- Conjugation maps (k, l; k', l') tensors to (k', l'; k, l) tensors:

$$T^A_{BC} \leftrightarrow \overline{T}^{A'}_{B'C'}$$

- \bullet ϵ^{AB} , ϵ_{AB} raise/lower unprimed indices; $\bar{\epsilon}_{A'B'}$ for primed
- Contraction occurs over *first* index of ϵ :

$$\phi_{A} = \epsilon_{BA}\phi^{B} = -\epsilon_{AB}\phi^{B}$$

- (Un)primed index order irrelevant: $T^{AD'B}{}_{C} \leftrightarrow T^{AB}{}_{C}{}^{D'}$
- Conjugation maps (k, l; k', l') tensors to (k', l'; k, l) tensors:

$$T^A_{BC} \leftrightarrow \overline{T}^{A'}_{B'C'}$$

- \bullet ϵ^{AB} , ϵ_{AB} raise/lower unprimed indices; $\bar{\epsilon}_{A'B'}$ for primed
- Contraction occurs over *first* index of ϵ :

$$\phi_{A} = \epsilon_{BA}\phi^{B} = -\epsilon_{AB}\phi^{B}$$

 $\rightarrow \phi_A \phi^A = 0$

- (Un)primed index order irrelevant: $T^{AD'B}{}_{C} \leftrightarrow T^{AB}{}_{C}{}^{D'}$
- Conjugation maps (k, l; k', l') tensors to (k', l'; k, l) tensors:

$$T^A_{BC} \leftrightarrow \overline{T}^{A'}_{B'C'}$$

- \bullet ϵ^{AB} , ϵ_{AB} raise/lower unprimed indices; $\bar{\epsilon}_{A'B'}$ for primed
- Contraction occurs over *first* index of ϵ :

$$\phi_{A} = \epsilon_{BA}\phi^{B} = -\epsilon_{AB}\phi^{B}$$

$$\rightarrow \phi_A \phi^A = 0$$

 \bullet $\delta^{A}_{B} = \mathbb{I}_{W}$ differs by a sign from $\delta^{D}_{C} = \mathbb{I}_{W^{*}}$

- (Un)primed index order irrelevant: $T^{AD'B}{}_{C} \leftrightarrow T^{AB}{}_{C}{}^{D'}$
- Conjugation maps (k, l; k', l') tensors to (k', l'; k, l) tensors:

$$T^{A}_{\ BC} \leftrightarrow \overline{T}^{A'}_{\ B'C'}$$

- \bullet ϵ^{AB} , ϵ_{AB} raise/lower unprimed indices; $\bar{\epsilon}_{A'B'}$ for primed
- Contraction occurs over *first* index of ϵ :

$$\phi_{A} = \epsilon_{BA}\phi^{B} = -\epsilon_{AB}\phi^{B}$$

- $\rightarrow \phi_A \phi^A = 0$
- ullet $\delta^A_{\ B} = \mathbb{I}_W$ differs by a sign from $\delta^{\ D}_{\ C} = \mathbb{I}_{W^*}$
 - ightharpoonup use $\epsilon^A_{\ B}$, $\epsilon_C^{\ D}$ and their conjugates to avoid confusion

■ Let $L^A_B: W \to W$ be a linear transformation

- Let $L^A_B: W \to W$ be a linear transformation

- Let $L^A_B: W \to W$ be a linear transformation
- $SL(2,\mathbb{C})$ is simply all L with det(L) = 1

- Let $L^A_B: W \to W$ be a linear transformation
- $SL(2,\mathbb{C})$ is simply all L with det(L) = 1
 - ▶ Polar decomp: $L = UH \rightarrow 6$ real d.o.f.

- Let $L_R^A: W \to W$ be a linear transformation
- $SL(2,\mathbb{C})$ is simply all L with det(L) = 1
 - ▶ Polar decomp: $L = UH \rightarrow 6$ real d.o.f.
 - ▶ Simply connected Lie group $\cong S^3 \times \mathbb{R}^3$

- Let $L_R^A: W \to W$ be a linear transformation
- $SL(2,\mathbb{C})$ is simply all L with det(L) = 1
 - ▶ Polar decomp: $L = UH \rightarrow 6$ real d.o.f.
 - ▶ Simply connected Lie group $\cong S^3 \times \mathbb{R}^3$
 - $\blacktriangleright \det(L) = 1 \iff L^{A}{}_{C}L^{B}{}_{D}\epsilon_{AB} = \epsilon_{CD}$

lacktriangle Tensors $\phi^{AA'} \in W_{1,0;1,0}$ comprise a \mathbb{C}^4 vector space

- lacktriangle Tensors $\phi^{\mathcal{A}\mathcal{A}'}\in W_{1,0;1,0}$ comprise a \mathbb{C}^4 vector space
 - ▶ Let $\{o^A, \iota^A\}$ be a basis for W with $o_A \iota^A = 1$

- Tensors $\phi^{AA'} \in W_{1,0;1,0}$ comprise a \mathbb{C}^4 vector space
 - Let $\{o^A, \iota^A\}$ be a basis for W with $o_A \iota^A = 1$
 - ▶ A basis for $W_{1,0;1,0}$ can be given by

$$t^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} + \iota^A \overline{\iota}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$x^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} + \iota^A \overline{o}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$y^{AA'} = \frac{i}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} - \iota^A \overline{o}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

$$z^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} - \iota^A \overline{\iota}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Tensors $\phi^{AA'} \in W_{1,0;1,0}$ comprise a \mathbb{C}^4 vector space
 - Let $\{o^A, \iota^A\}$ be a basis for W with $o_A \iota^A = 1$
 - ▶ A basis for $W_{1,0;1,0}$ can be given by

$$t^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} + \iota^A \overline{\iota}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$x^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} + \iota^A \overline{o}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$y^{AA'} = \frac{i}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} - \iota^A \overline{o}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

$$z^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} - \iota^A \overline{\iota}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Under conjugation, $\overline{W}_{1,0;1,0} = W_{1,0;1,0}$

- Tensors $\phi^{AA'} \in W_{1,0;1,0}$ comprise a \mathbb{C}^4 vector space
 - ▶ Let $\{o^A, \iota^A\}$ be a basis for W with $o_A \iota^A = 1$
 - ▶ A basis for $W_{1,0;1,0}$ can be given by

$$t^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} + \iota^A \overline{\iota}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$x^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} + \iota^A \overline{o}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$y^{AA'} = \frac{i}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} - \iota^A \overline{o}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

$$z^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} - \iota^A \overline{\iota}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Under conjugation, $\overline{W}_{1,0;1,0} = W_{1,0;1,0}$
 - $\phi^{AA'} \in W_{1,0;1,0}$ s.t. $\overline{\phi}^{AA'} = \phi^{AA'}$ are called *real*

 ${\color{red} \bullet} \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real

- $\blacksquare \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$

- $\blacksquare \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$

- $\blacksquare \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - g is nondegenerate with signature (+, -, -, -); a Lorentz metric!

- $\blacksquare \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - g is nondegenerate with signature (+, -, -, -); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_{B} \overline{L}^{A'}_{B'}$

- $\blacksquare \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - g is nondegenerate with signature (+, -, -, -); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_{B} \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$

- $\blacksquare \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacksquare They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - g is nondegenerate with signature (+, -, -, -); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_{B} \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$
 - ▶ But this means $\lambda \in O(3,1)$ (in fact, $SO(3,1)^+$)!!

- $\blacksquare \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - g is nondegenerate with signature (+, -, -, -); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_{B} \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$
 - ▶ But this means $\lambda \in O(3,1)$ (in fact, $SO(3,1)^+$)!!
 - $ightharpoonup L_1,\ L_2
 ightarrow\ \lambda \implies L_1=\pm L_2$ (a double cover)

- $\blacksquare \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - ightharpoonup g is nondegenerate with signature (+, -, -, -); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_B \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$
 - ▶ But this means $\lambda \in O(3,1)$ (in fact, $SO(3,1)^+$)!!
 - L_1 , $L_2 o \lambda \implies L_1 = \pm L_2$ (a double cover)
- Let $\{t^a, x^a, y^a, z^a\}$ be a basis for $\mathbb{R}^{3,1}$

- $\blacksquare \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - ightharpoonup g is nondegenerate with signature (+, -, -, -); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_{B} \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$
 - ▶ But this means $\lambda \in O(3,1)$ (in fact, $SO(3,1)^+$)!!
 - $ightharpoonup L_1,\ L_2
 ightarrow\ \lambda \implies L_1=\pm L_2$ (a double cover)
- Let $\{t^a, x^a, y^a, z^a\}$ be a basis for $\mathbb{R}^{3,1}$
- Define $\sigma^a_{AA'} := t^a t_{AA'} x^a x_{AA'} y^a y_{AA'} z^a z_{AA'}$

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- They span a 4-real dimensional space $V \subset W_{1.0:1.0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} := \epsilon_{AB} \overline{\epsilon}_{A'B'}$
 - \triangleright g is nondegenerate with signature (+, -, -, -); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_B \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$
 - ▶ But this means $\lambda \in O(3,1)$ (in fact, $SO(3,1)^+$)!!
 - \blacktriangleright $L_1.$ $L_2 \rightarrow \lambda \implies L_1 = \pm L_2$ (a double cover)
- Let $\{t^a, x^a, y^a, z^a\}$ be a basis for $\mathbb{R}^{3,1}$
- Define $\sigma^a_{AA'} := t^a t_{AA'} x^a x_{AA'} y^a y_{AA'} z^a z_{AA'}$
 - lacktriangledown is an isomorphism between $\mathrm{Re}[W_{1,0;1,0}]$ and $\mathbb{R}^{3,1}$

■ Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} \eqqcolon k^{AA'} \in \mathsf{Re}[W_{1,0;1,0}]$

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$
 - $\qquad \qquad k_{AA'} k^{AA'} = g_{AA'BB'} k^{AA'} k^{BB'} = \epsilon_{AB} \bar{\epsilon}_{A'B'} \psi^A \bar{\psi}^{A'} \psi^B \bar{\psi}^{B'} = 0$

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$

 - \triangleright $k^{AA'}$ is thus a null vector (ψ^A "square root" of a null vector?)

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$
 - $\qquad \qquad k_{AA'}k^{AA'} = g_{AA'BB'}k^{AA'}k^{BB'} = \epsilon_{AB}\bar{\epsilon}_{A'B'}\psi^A\bar{\psi}^{A'}\psi^B\bar{\psi}^{B'} = 0$
 - \blacktriangleright $k^{AA'}$ is thus a null vector $(\psi^A$ "square root" of a null vector?)
- Let $\psi^A, \phi^A \in W$, then $\psi_A \overline{\psi}_{A'} \phi^A \overline{\phi}^{A'} = \left| \psi_A \phi^A \right|^2 > 0$

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$

 - \blacktriangleright $k^{AA'}$ is thus a null vector $(\psi^A$ "square root" of a null vector?)
- Let $\psi^A, \phi^A \in W$, then $\psi_A \overline{\psi}_{A'} \phi^A \overline{\phi}^{A'} = \left| \psi_A \phi^A \right|^2 > 0$
 - $ightharpoonup k_{\psi}^{AA'}$, $k_{\phi}^{AA'}$ on the same side of the light cone: future direction

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$
 - $\qquad \qquad k_{AA'}k^{AA'} = g_{AA'BB'}k^{AA'}k^{BB'} = \epsilon_{AB}\bar{\epsilon}_{A'B'}\psi^A\bar{\psi}^{A'}\psi^B\bar{\psi}^{B'} = 0$
 - \blacktriangleright $k^{AA'}$ is thus a null vector (ψ^A "square root" of a null vector?)
- Let $\psi^A, \phi^A \in W$, then $\psi_A \overline{\psi}_{A'} \phi^A \overline{\phi}^{A'} = \left| \psi_A \phi^A \right|^2 > 0$
 - $lackbox{ } k_{\psi}^{AA'}$, $k_{\phi}^{AA'}$ on the same side of the light cone: future direction
 - ▶ $Re[W_{1,0;1,0}]$ has a natural time orientation

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$

 - \blacktriangleright $k^{AA'}$ is thus a null vector $(\psi^A$ "square root" of a null vector?)
- Let $\psi^A, \phi^A \in W$, then $\psi_A \overline{\psi}_{A'} \phi^A \overline{\phi}^{A'} = \left| \psi_A \phi^A \right|^2 > 0$
 - $ightharpoonup k_{\psi}^{AA'}$, $k_{\phi}^{AA'}$ on the same side of the light cone: future direction
 - $ightharpoonup Re[W_{1,0;1,0}]$ has a natural time orientation
- Def. $\epsilon_{AA'BB'CC'DD'} := \epsilon_{AB}\epsilon_{CD}\overline{\epsilon}_{A'C'}\overline{\epsilon}_{B'D'} \epsilon_{AC}\epsilon_{BD}\overline{\epsilon}_{A'B'}\overline{\epsilon}_{C'D'}$

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$

 - \blacktriangleright $k^{AA'}$ is thus a null vector $(\psi^A$ "square root" of a null vector?)
- Let $\psi^A, \phi^A \in W$, then $\psi_A \overline{\psi}_{A'} \phi^A \overline{\phi}^{A'} = \left| \psi_A \phi^A \right|^2 > 0$
 - $ightharpoonup k_{\psi}^{AA'}$, $k_{\phi}^{AA'}$ on the same side of the light cone: future direction
 - $ightharpoonup Re[W_{1,0;1,0}]$ has a natural time orientation
- Def. $\epsilon_{AA'BB'CC'DD'} := \epsilon_{AB}\epsilon_{CD}\overline{\epsilon}_{A'C'}\overline{\epsilon}_{B'D'} \epsilon_{AC}\epsilon_{BD}\overline{\epsilon}_{A'B'}\overline{\epsilon}_{C'D'}$
 - ▶ $Re[W_{1,0;1,0}]$ has a natural orientation

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$

 - \blacktriangleright $k^{AA'}$ is thus a null vector $(\psi^A$ "square root" of a null vector?)
- Let $\psi^A, \phi^A \in W$, then $\psi_A \overline{\psi}_{A'} \phi^A \overline{\phi}^{A'} = \left| \psi_A \phi^A \right|^2 > 0$
 - $ightharpoonup k_{\psi}^{AA'}$, $k_{\phi}^{AA'}$ on the same side of the light cone: future direction
 - $ightharpoonup \operatorname{Re}[W_{1,0;1,0}]$ has a natural time orientation
- Def. $\epsilon_{AA'BB'CC'DD'} := \epsilon_{AB}\epsilon_{CD}\overline{\epsilon}_{A'C'}\overline{\epsilon}_{B'D'} \epsilon_{AC}\epsilon_{BD}\overline{\epsilon}_{A'B'}\overline{\epsilon}_{C'D'}$
 - ▶ $Re[W_{1,0;1,0}]$ has a natural orientation
- Null flag: $F^{AA'BB'} := \psi^A \psi^B \overline{\epsilon}^{A'B'} + \overline{\psi}^{A'} \overline{\psi}^{B'} \epsilon^{AB}$

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$

 - $k^{AA'}$ is thus a null vector (ψ^A "square root" of a null vector?)
- Let $\psi^A, \phi^A \in W$, then $\psi_A \overline{\psi}_{A'} \phi^A \overline{\phi}^{A'} = \left| \psi_A \phi^A \right|^2 > 0$
 - $ightharpoonup k_{\psi}^{AA'}$, $k_{\phi}^{AA'}$ on the same side of the light cone: future direction
 - $ightharpoonup \operatorname{Re}[W_{1,0;1,0}]$ has a natural time orientation
- Def. $\epsilon_{AA'BB'CC'DD'} := \epsilon_{AB}\epsilon_{CD}\overline{\epsilon}_{A'C'}\overline{\epsilon}_{B'D'} \epsilon_{AC}\epsilon_{BD}\overline{\epsilon}_{A'B'}\overline{\epsilon}_{C'D'}$
 - $ightharpoonup Re[W_{1,0;1,0}]$ has a natural orientation
- Null flag: $F^{AA'BB'} := \psi^A \psi^B \overline{\epsilon}^{A'B'} + \overline{\psi}^{A'} \overline{\psi}^{B'} \epsilon^{AB}$
 - $F^{AA'BB'} = -F^{BB'AA'}, \ F_{AA'BB'}F^{AA'BB'} = F_{AA'BB'}\psi^B\bar{\psi}^{B'} = 0$

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$
 - $\qquad \qquad k_{AA'}k^{AA'} = g_{AA'BB'}k^{AA'}k^{BB'} = \epsilon_{AB}\bar{\epsilon}_{A'B'}\psi^A\bar{\psi}^{A'}\psi^B\bar{\psi}^{B'} = 0$
 - $k^{AA'}$ is thus a null vector (ψ^A "square root" of a null vector?)
- Let $\psi^A, \phi^A \in W$, then $\psi_A \overline{\psi}_{A'} \phi^A \overline{\phi}^{A'} = \left| \psi_A \phi^A \right|^2 > 0$
 - $ightharpoonup k_{\psi}^{AA'}$, $k_{\phi}^{AA'}$ on the same side of the light cone: future direction
 - $ightharpoonup \operatorname{Re}[W_{1,0;1,0}]$ has a natural time orientation
- Def. $\epsilon_{AA'BB'CC'DD'} := \epsilon_{AB}\epsilon_{CD}\overline{\epsilon}_{A'C'}\overline{\epsilon}_{B'D'} \epsilon_{AC}\epsilon_{BD}\overline{\epsilon}_{A'B'}\overline{\epsilon}_{C'D'}$
 - $ightharpoonup Re[W_{1,0;1,0}]$ has a natural orientation
- Null flag: $F^{AA'BB'} := \psi^A \psi^B \overline{\epsilon}^{A'B'} + \overline{\psi}^{A'} \overline{\psi}^{B'} \epsilon^{AB}$
 - $F^{AA'BB'} = -F^{BB'AA'}, F_{AA'BB'}F^{AA'BB'} = F_{AA'BB'}\psi^B\bar{\psi}^{B'} = 0$
 - ightharpoonup $\Longrightarrow F^{AA'BB'} = k^{AA'}m^{BB'} k^{BB'}m^{AA'}$ for some $m^{AA'}$

- Let $\psi^A \in W$, then $\psi^A \bar{\psi}^{A'} =: k^{AA'} \in \text{Re}[W_{1,0;1,0}]$

 - $k^{AA'}$ is thus a null vector (ψ^A "square root" of a null vector?)
- Let $\psi^A, \phi^A \in W$, then $\psi_A \overline{\psi}_{A'} \phi^A \overline{\phi}^{A'} = \left| \psi_A \phi^A \right|^2 > 0$
 - $ightharpoonup k_{\psi}^{AA'}$, $k_{\phi}^{AA'}$ on the same side of the light cone: future direction
 - $ightharpoonup \operatorname{Re}[W_{1,0;1,0}]$ has a natural time orientation
- Def. $\epsilon_{AA'BB'CC'DD'} := \epsilon_{AB}\epsilon_{CD}\overline{\epsilon}_{A'C'}\overline{\epsilon}_{B'D'} \epsilon_{AC}\epsilon_{BD}\overline{\epsilon}_{A'B'}\overline{\epsilon}_{C'D'}$
 - $ightharpoonup Re[W_{1,0;1,0}]$ has a natural orientation
- Null flag: $F^{AA'BB'} := \psi^A \psi^B \bar{\epsilon}^{A'B'} + \bar{\psi}^{A'} \bar{\psi}^{B'} \epsilon^{AB}$
 - $F^{AA'BB'} = -F^{BB'AA'}, F_{AA'BB'}F^{AA'BB'} = F_{AA'BB'}\psi^B\bar{\psi}^{B'} = 0$
 - $ightharpoonup F^{AA'BB'} = k^{AA'}m^{BB'} k^{BB'}m^{AA'}$ for some $m^{AA'}$
 - $\psi, \psi' \to F \iff \psi = \pm \psi'$

■ Let T_{ab} $(T_{AA'BB'})$ be a tensor on $\mathbb{R}^{3,1}$ $(\text{Re}[W_{0,1;0,1}])$

- Let T_{ab} $(T_{AA'BB'})$ be a tensor on $\mathbb{R}^{3,1}$ $(\mathsf{Re}[W_{0,1;0,1}])$
- Antisymmetrization:

- Let T_{ab} $(T_{AA'BB'})$ be a tensor on $\mathbb{R}^{3,1}$ $(\text{Re}[W_{0,1;0,1}])$
- Antisymmetrization:
 - $T_{[ab]} = T_{(AB)[A'B']} + T_{[AB](A'B')} = \phi_{AB}\overline{\epsilon}_{A'B'} + \overline{\phi}_{A'B'}\epsilon_{AB}$ with $\phi_{AB} = \frac{1}{2}T_{(AB)A'}^{A'}$ symmetric

- Let T_{ab} $(T_{AA'BB'})$ be a tensor on $\mathbb{R}^{3,1}$ $(\text{Re}[W_{0,1;0,1}])$
- Antisymmetrization:
 - $T_{[ab]} = T_{(AB)[A'B']} + T_{[AB](A'B')} = \phi_{AB}\overline{\epsilon}_{A'B'} + \overline{\phi}_{A'B'}\epsilon_{AB}$ with $\phi_{AB} = \frac{1}{2}T_{(AB)A'}^{A'}$ symmetric
- Symmetrization:

- Let T_{ab} $(T_{AA'BB'})$ be a tensor on $\mathbb{R}^{3,1}$ $(\mathsf{Re}[W_{0,1;0,1}])$
- Antisymmetrization:
 - $T_{[ab]} = T_{(AB)[A'B']} + T_{[AB](A'B')} = \phi_{AB}\overline{\epsilon}_{A'B'} + \overline{\phi}_{A'B'}\epsilon_{AB}$ with $\phi_{AB} = \frac{1}{2}T_{(AB)A'}^{A'}$ symmetric
- Symmetrization:
 - ► $T_{(ab)} = T_{(AB)(A'B')} + T_{[AB][A'B']} = T_{(AB)(A'B')} + \frac{1}{4} \epsilon_{AB} \overline{\epsilon}_{A'B'} T$ where $T = T_A{}^A{}_A{}^A = T_a T^a$

- Let T_{ab} $(T_{AA'BB'})$ be a tensor on $\mathbb{R}^{3,1}$ $(\text{Re}[W_{0,1;0,1}])$
- Antisymmetrization:
 - $T_{[ab]} = T_{(AB)[A'B']} + T_{[AB](A'B')} = \phi_{AB}\overline{\epsilon}_{A'B'} + \overline{\phi}_{A'B'}\epsilon_{AB}$ with $\phi_{AB} = \frac{1}{2}T_{(AB)A'}^{A'}$ symmetric
- Symmetrization:
 - ► $T_{(ab)} = T_{(AB)(A'B')} + T_{[AB][A'B']} = T_{(AB)(A'B')} + \frac{1}{4} \epsilon_{AB} \overline{\epsilon}_{A'B'} T$ where $T = T_A{}^A{}_A{}^A = T_a T^a$
 - Note also that $T_{[AB]A'}^{\ \ A'} = \frac{1}{2} \epsilon_{AB}^T$

- Let T_{ab} $(T_{AA'BB'})$ be a tensor on $\mathbb{R}^{3,1}$ $(\text{Re}[W_{0,1;0,1}])$
- Antisymmetrization:
 - $T_{[ab]} = T_{(AB)[A'B']} + T_{[AB](A'B')} = \phi_{AB}\overline{\epsilon}_{A'B'} + \overline{\phi}_{A'B'}\epsilon_{AB}$ with $\phi_{AB} = \frac{1}{2}T_{(AB)A'}^{A'}$ symmetric
- Symmetrization:
 - ► $T_{(ab)} = T_{(AB)(A'B')} + T_{[AB][A'B']} = T_{(AB)(A'B')} + \frac{1}{4} \epsilon_{AB} \overline{\epsilon}_{A'B'} T$ where $T = T_A{}^A{}_A{}^A = T_a T^a$
 - Note also that $T_{[AB]A'}^{\ \ A'} = \frac{1}{2} \epsilon_{AB}^T$
- \bullet $\partial_{AA'}\partial_{B}^{A'}=\frac{1}{2}\epsilon_{AB}\Box$, where $\Box=\partial_{AA'}\partial^{AA'}$

■ Given a Lie algebra \mathfrak{g} , the universal enveloping algebra $\mathscr{U}(\mathfrak{g})$ is the unique unital associative algebra whose representations correspond exactly to the representations of \mathfrak{g}

- Given a Lie algebra \mathfrak{g} , the universal enveloping algebra $\mathscr{U}(\mathfrak{g})$ is the unique unital associative algebra whose representations correspond exactly to the representations of \mathfrak{g}
- Construction

- Given a Lie algebra \mathfrak{g} , the universal enveloping algebra $\mathscr{U}(\mathfrak{g})$ is the unique unital associative algebra whose representations correspond exactly to the representations of \mathfrak{g}
- Construction
 - lackbox Form the Tensor algebra $T(\mathfrak{g}) := \mathbb{C} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \cdots$

- Given a Lie algebra \mathfrak{g} , the universal enveloping algebra $\mathscr{U}(\mathfrak{g})$ is the unique unital associative algebra whose representations correspond exactly to the representations of \mathfrak{g}
- Construction
 - Form the *Tensor algebra* $T(\mathfrak{g}) := \mathbb{C} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \cdots$
 - ▶ Recursively lift [,] from \mathfrak{g} to $T(\mathfrak{g})$

- Given a Lie algebra \mathfrak{g} , the universal enveloping algebra $\mathscr{U}(\mathfrak{g})$ is the unique unital associative algebra whose representations correspond exactly to the representations of \mathfrak{g}
- Construction
 - Form the *Tensor algebra* $T(\mathfrak{g}) := \mathbb{C} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \cdots$
 - Recursively lift [,] from \mathfrak{g} to $T(\mathfrak{g})$
 - ▶ Fully lifted, [,] obeys Leibniz's law: $T(\mathfrak{g})$ is a *poisson* algebra

- Given a Lie algebra \mathfrak{g} , the universal enveloping algebra $\mathscr{U}(\mathfrak{g})$ is the unique unital associative algebra whose representations correspond exactly to the representations of \mathfrak{g}
- Construction
 - Form the *Tensor algebra* $T(\mathfrak{g}) := \mathbb{C} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \cdots$
 - ▶ Recursively lift [,] from \mathfrak{g} to $T(\mathfrak{g})$
 - ▶ Fully lifted, [,] obeys Leibniz's law: $T(\mathfrak{g})$ is a *poisson* algebra
 - $\mathscr{U}(\mathfrak{g})$ is what remains after "modding out" the poisson structure, i.e. $\mathscr{U}(\mathfrak{g}) = T(\mathfrak{g})/\sim$ where the equivalence relation is given by $[a,b] = a\otimes b b\otimes a$

- Given a Lie algebra \mathfrak{g} , the universal enveloping algebra $\mathscr{U}(\mathfrak{g})$ is the unique unital associative algebra whose representations correspond exactly to the representations of \mathfrak{g}
- Construction
 - Form the *Tensor algebra* $T(\mathfrak{g}) := \mathbb{C} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \cdots$
 - ▶ Recursively lift [,] from \mathfrak{g} to $T(\mathfrak{g})$
 - ▶ Fully lifted, [,] obeys Leibniz's law: $T(\mathfrak{g})$ is a *poisson* algebra
 - $\mathscr{U}(\mathfrak{g})$ is what remains after "modding out" the poisson structure, i.e. $\mathscr{U}(\mathfrak{g}) = T(\mathfrak{g})/\sim$ where the equivalence relation is given by $[a,b] = a\otimes b b\otimes a$
- Casimir elements

- Given a Lie algebra \mathfrak{g} , the universal enveloping algebra $\mathscr{U}(\mathfrak{g})$ is the unique unital associative algebra whose representations correspond exactly to the representations of \mathfrak{g}
- Construction
 - Form the *Tensor algebra* $T(\mathfrak{g}) := \mathbb{C} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \cdots$
 - ▶ Recursively lift [,] from \mathfrak{g} to $T(\mathfrak{g})$
 - ▶ Fully lifted, [,] obeys Leibniz's law: $T(\mathfrak{g})$ is a *poisson* algebra
 - $\mathscr{U}(\mathfrak{g})$ is what remains after "modding out" the poisson structure, i.e. $\mathscr{U}(\mathfrak{g}) = T(\mathfrak{g})/\sim$ where the equivalence relation is given by $[a,b] = a\otimes b b\otimes a$
- Casimir elements
 - ▶ Center $Z(\mathcal{U}(\mathfrak{g}))$: all elements that commute with all of $\mathcal{U}(\mathfrak{g})$

- Given a Lie algebra \mathfrak{g} , the universal enveloping algebra $\mathscr{U}(\mathfrak{g})$ is the unique unital associative algebra whose representations correspond exactly to the representations of \mathfrak{g}
- Construction
 - Form the *Tensor algebra* $T(\mathfrak{g}) := \mathbb{C} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \cdots$
 - ▶ Recursively lift [,] from \mathfrak{g} to $T(\mathfrak{g})$
 - ▶ Fully lifted, [,] obeys Leibniz's law: $T(\mathfrak{g})$ is a *poisson* algebra
 - $\mathscr{U}(\mathfrak{g})$ is what remains after "modding out" the poisson structure, i.e. $\mathscr{U}(\mathfrak{g}) = T(\mathfrak{g})/\sim$ where the equivalence relation is given by $[a,b] = a\otimes b b\otimes a$
- Casimir elements
 - ▶ Center $Z(\mathcal{U}(\mathfrak{g}))$: all elements that commute with all of $\mathcal{U}(\mathfrak{g})$
 - Casimir elements form a basis of $Z(\mathcal{U}(\mathfrak{g}))$

- Given a Lie algebra g, the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ is the unique unital associative algebra whose representations correspond exactly to the representations of g
- Construction
 - ▶ Form the *Tensor algebra* $T(\mathfrak{g}) := \mathbb{C} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \cdots$
 - Recursively lift [,] from \mathfrak{g} to $T(\mathfrak{g})$
 - ► Fully lifted, [,] obeys Leibniz's law: T(g) is a poisson algebra
 - $\triangleright \mathscr{U}(\mathfrak{g})$ is what remains after "modding out" the poisson structure, i.e. $\mathscr{U}(\mathfrak{g}) = T(\mathfrak{g})/\sim$ where the equivalence relation is given by $[a, b] = a \otimes b - b \otimes a$
- Casimir elements
 - Center $Z(\mathcal{U}(\mathfrak{g}))$: all elements that commute with all of $\mathcal{U}(\mathfrak{g})$
 - Casimir elements form a basis of $Z(\mathcal{U}(\mathfrak{g}))$
 - Casimir representatives proportional to identity

• $\mathcal{U}(ISL(2,\mathbb{C}))$ has two independent Casimir elements: P^2 and S^2 with eigenvalues m^2 and s(s+1), respectively.

- $\mathcal{U}(ISL(2,\mathbb{C}))$ has two independent Casimir elements: P^2 and S^2 with eigenvalues m^2 and s(s+1), respectively.
- Classes:

- $\mathcal{U}(ISL(2,\mathbb{C}))$ has two independent Casimir elements: P^2 and S^2 with eigenvalues m^2 and s(s+1), respectively.
- Classes:
 - 1. $m^2 > 0$

- $\mathcal{U}(ISL(2,\mathbb{C}))$ has two independent Casimir elements: P^2 and S^2 with eigenvalues m^2 and s(s+1), respectively.
- Classes:
 - 1. $m^2 > 0$
 - 2. $m^2 = 0$; nontrivial translations

- $\mathcal{U}(ISL(2,\mathbb{C}))$ has two independent Casimir elements: P^2 and S^2 with eigenvalues m^2 and s(s+1), respectively.
- Classes:
 - 1. $m^2 > 0$
 - 2. $m^2 = 0$; nontrivial translations
 - 2.1 Helicity parameterization: $s = 0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2} \dots$

- $\mathcal{U}(ISL(2,\mathbb{C}))$ has two independent Casimir elements: P^2 and S^2 with eigenvalues m^2 and s(s+1), respectively.
- Classes:
 - 1. $m^2 > 0$
 - 2. $m^2 = 0$; nontrivial translations
 - 2.1 Helicity parameterization: $s = 0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2} \dots$
 - 2.2 "Continuous spin"

- $\mathcal{U}(ISL(2,\mathbb{C}))$ has two independent Casimir elements: P^2 and S^2 with eigenvalues m^2 and s(s+1), respectively.
- Classes:
 - 1. $m^2 > 0$
 - 2. $m^2 = 0$; nontrivial translations
 - 2.1 Helicity parameterization: $s = 0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2} \dots$
 - 2.2 "Continuous spin"
 - 3. $m^2 = 0$; trivial translations

- $\mathcal{U}(ISL(2,\mathbb{C}))$ has two independent Casimir elements: P^2 and S^2 with eigenvalues m^2 and s(s+1), respectively.
- Classes:
 - 1. $m^2 > 0$
 - 2. $m^2 = 0$; nontrivial translations
 - 2.1 Helicity parameterization: $s = 0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2} \dots$
 - 2.2 "Continuous spin"
 - 3. $m^2 = 0$; trivial translations
 - 4. $m^2 < 0$ (tachyons!)

- $\mathcal{U}(ISL(2,\mathbb{C}))$ has two independent Casimir elements: P^2 and S^2 with eigenvalues m^2 and s(s+1), respectively.
- Classes:
 - 1. $m^2 > 0$
 - 2. $m^2 = 0$; nontrivial translations
 - 2.1 Helicity parameterization: $s = 0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2} \dots$
 - 2.2 "Continuous spin"
 - 3. $m^2 = 0$; trivial translations
 - 4. $m^2 < 0$ (tachyons!)
- Physically relevant cases are 1 and 2.1

■ Let n = 2s. Class 1 reps selected by

$$\left(\Box+m^2\right)\phi^{A_1...A_n}=0$$

■ Let n = 2s. Class 1 reps selected by

$$\left(\Box+m^2\right)\phi^{A_1...A_n}=0$$

or, equivalently

$$\begin{split} \partial_{AA'}\phi^{A_1...A_n} &= \frac{m}{\sqrt{2}}\xi_{A_1'}^{A_2...A_n} \\ \partial_{AA'}\xi_{A_1'}^{A_2...A_n} &= -\frac{m}{\sqrt{2}}\phi^{A_1...A_n} \end{split}$$

■ Let n = 2s. Class 1 reps selected by

$$\left(\Box + m^2\right)\phi^{A_1...A_n} = 0$$

or, equivalently

$$\partial_{AA'}\phi^{A_1...A_n} = \frac{m}{\sqrt{2}}\xi_{A_1'}^{A_2...A_n}$$
$$\partial_{AA'}\xi_{A_1'}^{A_2...A_n} = -\frac{m}{\sqrt{2}}\phi^{A_1...A_n}$$

■ For s=1/2, the pair $(\phi^A, \xi_{A'})$ is known as a *Dirac* spinor, and the above equations are just the Dirac equation

■ For class 2.1, previous equations do not select irreducible reps

- For class 2.1, previous equations do not select irreducible reps
- Irreps for class 2.1 given by

$$\partial_{A_1'A_1}\phi^{A_1...A_n}=0$$

- For class 2.1, previous equations do not select irreducible reps
- Irreps for class 2.1 given by

$$\partial_{A_1'A_1}\phi^{A_1...A_n}=0$$

 $ightharpoonup s = \frac{1}{2}$: Weyl neutrino equation

- For class 2.1, previous equations do not select irreducible reps
- Irreps for class 2.1 given by

$$\partial_{A_1'A_1}\phi^{A_1...A_n}=0$$

- $ightharpoonup s = \frac{1}{2}$: Weyl neutrino equation
- ightharpoonup s = 1: Maxwell's equations

- For class 2.1, previous equations do not select irreducible reps
- Irreps for class 2.1 given by

$$\partial_{A_1'A_1}\phi^{A_1...A_n}=0$$

- $ightharpoonup s = \frac{1}{2}$: Weyl neutrino equation
- ightharpoonup s = 1: Maxwell's equations
- ightharpoonup s = 2: Linearized GR

■ We need an inner product for this Hilbert space

- We need an inner product for this Hilbert space
- Define the (conserved) particle current vector:

$$j^{AA'}(\phi,\psi) := (-i)^{n-1} \left(\overline{\phi}^{A'A'_2...A'_n} \partial_{A'_2A_2} \cdots \partial_{A'_nA_n} \psi^{AA_2...A_n} \right)$$
$$+ \overline{\xi}^{AA'_2...A_n} \partial_{A'_2A_2} \cdots \partial_{A'_nA_n} \zeta^{A'A_2...A_n} \right)$$

where ξ and ζ are the auxiliary fields corresponding to ϕ and $\psi,$ respectively

- We need an inner product for this Hilbert space
- Define the (conserved) particle current vector:

$$j^{AA'}(\phi,\psi) := (-i)^{n-1} \left(\overline{\phi}^{A'A'_2...A'_n} \partial_{A'_2A_2} \cdots \partial_{A'_nA_n} \psi^{AA_2...A_n} \right)$$
$$+ \overline{\xi}^{AA'_2...A_n} \partial_{A'_2A_2} \cdots \partial_{A'_nA_n} \zeta^{A'A_2...A_n} \right)$$

where ξ and ζ are the auxiliary fields corresponding to ϕ and $\psi,$ respectively

■ Define an inner product by integrating the normal component of the particle current of a Cauchy surface Σ :

$$\langle \phi, \psi \rangle \coloneqq \int_{\Sigma} j^{AA'} n_{AA'} \mathrm{d}V$$

■ The natural action of $ISL(2,\mathbb{C})$ on spinoral tensor fields $\phi^{A_1...A_n}$ gives rise to all known physical fields

- The natural action of $ISL(2,\mathbb{C})$ on spinoral tensor fields $\phi^{A_1...A_n}$ gives rise to all known physical fields
 - ► For even *n* (bosons), the representations are true reps of the Poincaré group (spinors not actually required)

- The natural action of $ISL(2,\mathbb{C})$ on spinoral tensor fields $\phi^{A_1...A_n}$ gives rise to all known physical fields
 - For even *n* (bosons), the representations are true reps of the Poincaré group (spinors not actually required)
 - ► For odd *n* (fermions), the reps are only reps up to sign, and spinors are necessary to describe them

References

- [1] Wikipedia.
- [2] R. M. Wald. *General Relativity*. The University of Chicago Press, 1984.