



# 线性代数

# 张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

第三章 线性方程组



## 第一节 齐次线性方程组

- 齐次线性方程组解的存在性
- 齐次线性方程组解的结构
- 非齐次线性方程组
- 向量组线性表示

## 线性方程组是指

$$\begin{cases} a_{11} \ x_1 + a_{12} \ x_2 + \dots + a_{1n} \ x_n = b_1 \\ a_{21} \ x_1 + a_{22} \ x_2 + \dots + a_{2n} \ x_n = b_2 \\ & \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \end{cases}$$

它的系数形成了一个  $m \times n$  矩阵 A, 称为系数矩阵. 系数和常数项一起形成了一个  $m \times (n+1)$  矩阵 (A,b), 称为增广矩阵.

线性方程组等价于

$$Ax = b$$

其中

$$\boldsymbol{x} = (x_1, \dots, x_n)^{\mathrm{T}}.$$

## 齐次线性方程组非零解的判定

当 b=0 为零向量时,称该线性方程组为齐次的;否则称为非齐次的.齐次线性方程组总有解 x=0. Ax=0 有非零解  $\iff$  A 的列向量线性相关  $\iff$  R(A) < n.

## 定理

- (1)  $A_{m \times n} x = 0$  有 (无穷多) 非零解  $\iff R(A) < n$ ;
- (2)  $A_{m \times n} x = \mathbf{0}$  只有零解  $\iff R(A) = n$ .

## 推论

设 A 是 n 阶方阵.

- (1) Ax = 0 有 (无穷多) 非零解  $\iff |A| = 0$ ;
- (2)  $\mathbf{A}\mathbf{x} = \mathbf{0}$  只有零解  $\iff |\mathbf{A}| \neq 0$ .

## 推论

若方程个数小于未知元个数,则齐次线性方程组有非零解

# 例: 齐次线性方程组非零解的判定

## 例

假设

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 0 \\ 4x_1 + ax_2 + 3x_3 = 0 \\ 3x_1 - x_2 + x_3 = 0 \end{cases}$$

有非零解,求 a.

#### 解

此时系数矩阵行列式为零:

$$0 = \begin{vmatrix} 1 & 2 & -2 \\ 4 & a & 3 \\ 3 & -1 & 1 \end{vmatrix} = 7a + 21, \quad a = -3.$$

例: 齐次线性方程组非零解的判定

例

若下述方程有非零解,求 a.

$$\begin{cases} x_1 + & x_2 + ax_3 = 0 \\ -x_1 + (a-1)x_2 + (1-a)x_3 = 0 \\ x_1 + & x_2 + a^2x_3 = 0 \\ x_1 + & x_2 + (2a+1)x_3 = 0 \end{cases}$$

解

$$\begin{pmatrix} 1 & 1 & a \\ -1 & a-1 & 1-a \\ 1 & 1 & a^2 \\ 1 & 1 & 2a+1 \end{pmatrix} \ \stackrel{r}{\sim} \begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

的秩小于 3, 因此 a=0.

## 定义

称空间  $\{x \mid Ax = 0\}$  的一组基为该齐次线性方程组的基础解系.

### 定理

设  $A \in M_{m \times n}$ , R(A) = r. 线性方程组 Ax = 0 的基础解系包含 n - r 个向量.

#### 证明

通过交换未知元的位置 (相当于交换 A 列的位置), 不妨设 A 化为行最简形

$$\begin{pmatrix}
1 & \cdots & 0 & b_{11} & \cdots & b_{1,n-r} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & b_{r,1} & \cdots & b_{r,n-r} \\
\hline
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0
\end{pmatrix} = \begin{pmatrix}
\mathbf{E}_r & \mathbf{B} \\
\mathbf{O} & \mathbf{O}
\end{pmatrix}.$$

#### 续证

方程化为  $(E_r, B)x = 0$ , 即

$$\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = -\boldsymbol{B} \begin{pmatrix} x_{r+1} \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{x} = \begin{pmatrix} -\boldsymbol{B} \\ \boldsymbol{E}_{n-r} \end{pmatrix} \begin{pmatrix} x_{r+1} \\ \vdots \\ x_n \end{pmatrix}.$$

于是 
$$C := \begin{pmatrix} -B \\ E_{n-r} \end{pmatrix}$$
 的  $n-r$  个列向量生成了整个解空间. 由于  $R(C) \geqslant R(E_{n-r}) = n-r$ ,  $C$  列满秩, 因此它的列向量就是一组基础解系.

#### 推论

Ax = 0 任意 n - r 个线性无关的解都是一组基础解系.

## 求基础解系的步骤

## 解齐次线性方程组的步骤:

- (1) 将系数矩阵通过初等行变换化为行最简形.
- (2) 去掉零行, 并取负矩阵, 得到  $r \times n$  矩阵.
- (3) 添加 n-r 行  $e_j^{\rm T}$ , 使得对角元全都变成  $\pm 1$ , 其中 1 对应的是原来的非零行的第一个 1. 得到  $n\times n$  矩阵.
- (4) 去掉对角元是 1 对应的列, 得到  $n \times (n-r)$  矩阵.
- (5) 这个矩阵的列向量就是一组基础解系.

解方程 
$$\begin{cases} x_1 + 2x_2 + 4x_3 + x_4 = 0 \\ 2x_1 + 4x_2 - 2x_3 - x_4 = 0. \\ 3x_1 + 6x_2 + 2x_3 = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 2 & 4 & 1 \\ 2 & 4 & -2 & -1 \\ 3 & 6 & 2 & 0 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 4 & 1 \\ 0 & 0 & -10 & 3 \\ 0 & 0 & -10 & 3 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & -1/5 \\ 0 & 0 & 1 & 3/10 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

## 续解

$$\begin{pmatrix} -1 & -2 & 0 & 1/5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & -3/10 \\ 0 & 0 & 0 & 1 \end{pmatrix} \implies \begin{pmatrix} -2 & 1/5 \\ 1 & 0 \\ 0 & -3/10 \\ 0 & 1 \end{pmatrix}$$

通解为

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = k_1 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1/5 \\ 0 \\ -3/10 \\ 1 \end{pmatrix}, \quad k_1, k_2 为任意常数.$$

典型例题: 求基础解系

## 练习

解方程 
$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
, 其中  $\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 & 1 & 1 \\ 2 & 4 & 3 & 1 & 1 \\ -1 & -2 & 1 & 3 & -3 \\ 0 & 0 & 2 & 5 & -2 \end{pmatrix}$ 

## 答案

$$\mathbf{4} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \implies \begin{pmatrix} -1 & -2 & 0 & 0 & -2 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \implies \begin{pmatrix} -2 & -2 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

例:基础解系

## 例

设 $\overline{A} \in M_{m \times n}$ , R(A) = n - 3,  $\xi_1, \xi_2, \xi_3$  为 Ax = 0 的三个线性无关的解. 那么(B)是该方程的一组基础解系.

(A)  $\xi_1, -\xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1$ 

(B)  $\xi_1, \xi_1 + \xi_2, \xi_1 + \xi_2 + \xi_3$ 

(C)  $\xi_1, \xi_2$ 

(D)  $\xi_1, \xi_1 - \xi_2 - \xi_3, \xi_1 + \xi_2 + \xi_3$ 

#### 例

设  $\xi_1, \xi_2, \xi_3$  是 Ax = 0 的一组基础解系,则(D)也是该方程的一组基础解系.

(A) 与  $\xi_1, \xi_2, \xi_3$  等价的一组向量

(B) 与  $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3$  同秩的一组向量

(C)  $\xi_1 - \xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1$ 

(D)  $\xi_1 + \xi_2, \xi_2 + \xi_3, \xi_3 + \xi_1$ 

例:基础解系的应用

例

设 A 是 n 阶方阵, R(A) = n-1 且每行元素之和为 0. 那么齐次线性方程组 Ax = 0 的解为\_\_\_\_k(1,1,...,1)<sup>T</sup>, k 为任意常数\_\_\_\_.

例

设 $A_{m \times n} B_{n \times s} = O$ ,证明 $R(A) + R(B) \leqslant n$ .

证明

由于 B 的列向量都是 Ax = 0 的解, 因此 R(B) 不超过该方程解空间的维数, 即 n - R(A).

例:基础解系

例

设  $\mathbf{A}$  是实矩阵, 证明  $R(\mathbf{A}^{\mathrm{T}}\mathbf{A}) = R(\mathbf{A})$ .

### 证明

若  $A^{\mathrm{T}}Ax=0$ , 则

$$0 = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{A} \boldsymbol{x})^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}.$$

设  $\mathbf{A}\mathbf{x} = (y_1, \dots, y_n)^{\mathrm{T}}$ , 则右侧为  $y_1^2 + \dots + y_n^2 = 0$ , 这迫使  $y_1 = \dots = y_n = 0$ , 于是  $\mathbf{A}\mathbf{x} = 0$ . 所以  $\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{0} \iff \mathbf{A}\mathbf{x} = \mathbf{0}$ . 二者列数相同, 因此二者秩相同.

注意, 对于复矩阵这并不成立, 例如

$$oldsymbol{A} = \begin{pmatrix} 1 \\ i \end{pmatrix}, \quad oldsymbol{A}^{\mathrm{T}} oldsymbol{A} = 0.$$

此时有  $R(\overline{\boldsymbol{A}}^{\mathrm{T}}\boldsymbol{A}) = R(\boldsymbol{A})$ , 其中  $\overline{\boldsymbol{A}}$  表示所有元素取共轭.

例:基础解系

例

设 n 阶方阵 A 列向量的一个极大线性无关组为  $\alpha_1,\ldots,\alpha_{n-1}$ . 那么  $A^*x=0$  的解为  $k_1\alpha_1+\cdots+k_{n-1}\alpha_{n-1},k_1,\ldots,k_{n-1}$  为任意常数 ...

例

设 n 阶方阵 A 满足 R(A) = n - 1,代数余子式  $A_{11} \neq 0$ . 那么 Ax = 0 的解为  $k(A_{11}, \ldots, A_{1n})^{\mathrm{T}}, k_1, \ldots, k_{n-1}$  为任意常数 .

## 练习

若 
$$\mathbf{A} = \begin{pmatrix} a & 1 & a^2 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$
 且存在 3 阶非零矩阵  $\mathbf{B}$  使得  $\mathbf{A}\mathbf{B} = \mathbf{O}$ , 则( $\mathbf{A}$ ).

(A) 
$$a = 1, |\mathbf{B}| = 0$$
 (B)  $a = -2, |\mathbf{B}| = 0$  (C)  $a = 1, |\mathbf{B}| \neq 0$  (D)  $a = -2, |\mathbf{B}| \neq 0$ 

例: 基础解系

若  $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5)$  且  $\mathbf{A}\mathbf{x} = \mathbf{0}$  的解为  $k_1(1, 0, -1, 0, 1)^{\mathrm{T}} + k_2(1, 0, 0, 1, -1)^{\mathrm{T}}$ , 则 A 列向量组的一个极大无关组是 (D).

(A)  $\alpha_1, \alpha_3, \alpha_5$ 

(B)  $\alpha_1, \alpha_3, \alpha_4$ 

(C)  $\alpha_3, \alpha_4, \alpha_5$ 

(D)  $\alpha_2, \alpha_3, \alpha_5$ 

## 解的存在性

设  $A \in M_{m \times n}$ . 对于非齐次线性方程组 Ax = b, 若方程有解, 则 b 可以由 A 的列向量线性表示, 从而 A 的列向量组和 (A, b) 的列向量组等价. 因此 R(A) = R(A, b).

注意到 A 列向量生成的空间 V 是 (A,b) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b),则 A 列向量组的一个极大无关组 S 也是 (A,b) 的极大无关组. 从而 b 是 S 的线性组合, 也是 A 列向量的线性组合.

### 定理

$$\overline{Ax = b}$$
 有解  $\iff R(A) = R(A, b)$ .

#### 推论

若  $R(A_{m\times n})=m$  (即 A 行满秩), 则 Ax=b 总有解.

若非齐次线性方程组 Ax=b 有解  $x=x_0$ , 则  $A(x-x_0)=b$ . 从而  $x-x_0$  是 Ax=0 的解. 设  $\xi_1,\ldots,\xi_{n-r}$  为 Ax=0 的一组基础解系, 则 Ax=0 的通解为

$$\boldsymbol{x} = \boldsymbol{x}_0 + k_1 \boldsymbol{\xi}_1 + \dots + k_{n-r} \boldsymbol{\xi}_{n-r},$$

 $k_1,\ldots,k_{n-r}$  为任意常数.

## 定理

- (1) 若 R(A) < R(A, b), 则 Ax = b 无解;
- (2) 若 R(A) = R(A, b) = n, 则 Ax = b 有唯一解;
- (3) 若 R(A) = R(A, b) < n, 则 Ax = b 有无穷多解.

## 推论

若 A 是 n 阶方阵, 则 Ax = b 有唯一解  $\iff |A| \neq 0$ .

若 |A| = 0, 则 Ax = b 无解或有无穷多解.

## 求解的步骤

## 解非齐次线性方程组的步骤:

- (1) 写: 写出方程组对应的增广矩阵 (A, b);
- (2) 变: 通过初等行变换将其化为行最简形;
- (3) 判: 通过行最简形判定方程是否有解;
- (4) 解: 若系数矩阵部分零行对应的常数项均为零,则方程有解. 其中特解为每个非零 行对应未知元取对应常数项值,其余取零.
- (5) 通解 = 特解 + 对应的齐次方程的基础解系的线性组合.

典型例题:解非齐次线性方程组

#### 例

解方程 
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 1\\ 2x_1 - x_2 + 2x_3 - 2x_4 = 3\\ 3x_1 + x_2 + 5x_3 + 2x_4 = 2 \end{cases}$$

#### 解

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 1 \\ 2 & -1 & 2 & -2 & 3 \\ 3 & 1 & 5 & 2 & 2 \end{pmatrix} \overset{r}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 & 1 \\ 0 & -5 & -4 & -10 & 1 \\ 0 & -5 & -4 & -10 & -1 \end{pmatrix} \overset{r}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 & 1 \\ 0 & -5 & -4 & -10 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

于是 
$$R(A) = 2 < R(A, b) = 3$$
, 无解.

## 例

解方程 
$$\begin{cases} x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - 3x_4 = 1 \\ x_1 - x_2 - 2x_3 + 3x_4 = -1/2 \end{cases}$$

#### 解

$$\begin{pmatrix} 1 & -1 & -1 & 1 & 0 \\ 1 & -1 & 1 & -3 & 1 \\ 1 & -1 & -2 & 3 & -1/2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & -1 & 0 & -1 & 1/2 \\ 0 & 0 & 1 & -2 & 1/2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

于是  $R(\mathbf{A}) = 2 = R(\mathbf{A}, \mathbf{b}) = 2$ , 有解. 特解为  $(1/2, 0, 1/2, 0)^{\mathrm{T}}$ .

## 典型例题:解非齐次线性方程组

#### 续解

$$\begin{pmatrix}
-1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix} \implies \begin{pmatrix}
1 & 1 \\
1 & 0 \\
0 & 2 \\
0 & 1
\end{pmatrix} \implies \text{ $\underline{\textbf{k}}$ ali $\mathbf{k}$ $\mathbf{\xi}_1$} = \begin{pmatrix}
1 \\
1 \\
0 \\
0
\end{pmatrix}, \quad \mathbf{\xi}_2 = \begin{pmatrix}
1 \\
0 \\
2 \\
1
\end{pmatrix},$$

通解为

$$m{x} = egin{pmatrix} 1/2 \ 0 \ 1/2 \ 0 \end{pmatrix} + k_1 egin{pmatrix} 1 \ 1 \ 0 \ 0 \end{pmatrix} + k_2 egin{pmatrix} 1 \ 0 \ 2 \ 1 \end{pmatrix},$$

 $k_1, k_2$  为任意常数.

#### 例

# 已知

$$\alpha_1 = (1, 4, 0, 2)^{\mathrm{T}}, \alpha_2 = (2, 7, 1, 3)^{\mathrm{T}}, \alpha_3 = (0, 1, -1, a)^{\mathrm{T}}, \beta = (3, 10, b, 4)^{\mathrm{T}}.$$

问 a, b 为何值时,

- (1)  $\beta$  不能由  $\alpha_1, \alpha_2, \alpha_3$  线性表示;
- (2)  $\beta$  能由  $\alpha_1, \alpha_2, \alpha_3$  唯一线性表示;
- (3)  $\beta$  能由  $\alpha_1, \alpha_2, \alpha_3$  不唯一线性表示.

#### 解

即问  $\mathbf{A}\mathbf{x} = \mathbf{b}$  的解的情况, 其中  $\mathbf{A} = (\alpha_1, \alpha_2, \alpha_3)$ .

$$(\mathbf{A}, \mathbf{b}) = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 4 & 7 & 1 & 10 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & b \\ 0 & -1 & a & -2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & a - 1 & 0 \\ 0 & 0 & 0 & b - 2 \end{pmatrix}$$

于是可知  $R(\mathbf{A})$  和  $R(\mathbf{A}, \mathbf{b})$ , 故

- (1)  $b \neq 2$  时,  $\beta$  不能由  $\alpha_1, \alpha_2, \alpha_3$  线性表示;
- (2)  $a \neq -1, b = 2$  时,  $\beta$  能由  $\alpha_1, \alpha_2, \alpha_3$  唯一线性表示;
- (3) a = -1, b = 2 时,  $\beta$  能由  $\alpha_1, \alpha_2, \alpha_3$  不唯一线性表示.

例: 线性方程组解的性质

### 例

设  $\mathbf{A} \in M_{m \times n}$ , 则 (  $\mathbf{D}$  ).

- (A) 若 Ax = 0 仅有零解, 则 Ax = b 有唯一解
- (B) 若 Ax = 0 有非零解, 则 Ax = b 有无穷多解
- (C) 若 Ax = b 有无穷多解, 则 Ax = 0 只有零解
- (D) 若 Ax = b 有无穷多解, 则 Ax = 0 有非零解

#### 例

设  $\mathbf{A} \in M_{m \times n}, R(\mathbf{A}) = m < n$ , 则 (  $\mathbf{C}$  ).

- (A) A 的任意 m 个列向量线性无关
- (B) A 的任意一个 m 阶子式不等于 0
- (C) Ax = b 一定有无穷多个解
- (D) A 经过初等行变换可化为 (E, O) 的形式

#### 例

a 为何值时, 以下方程(1)有唯一解; (2)无解; (3)有无穷多解? 并在有无穷多解时求其通解.

$$\begin{cases} (1+a)x_1 + x_2 + x_3 = 0\\ x_1 + (1+a)x_2 + x_3 = 3\\ x_1 + x_2 + (1+a)x_3 = a \end{cases}$$

注意处理带未知数的矩阵时, 不宜实施  $\frac{1}{a+1}r_2$ ,  $(a-2)r_3$  等类似操作, 因为其分母或系数可能为零.

### 解

$$(\mathbf{A}, \mathbf{b}) = \begin{pmatrix} 1+a & 1 & 1 & 0 \\ 1 & 1+a & 1 & 3 \\ 1 & 1 & 1+a & a \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 1+a & 1 & 3 \\ 0 & -a & a & a-3 \\ 0 & a & a^2+2a & a^2+a \end{pmatrix}$$

## 续解

$$\overset{r}{\sim} \begin{pmatrix} 1 & 1+a & 1 & 3 \\ 0 & a & -a & 3-a \\ 0 & 0 & a^2+3a & a^2+2a-3 \end{pmatrix}.$$

(1) 若  $a \neq 0, -3$ , 则 R(A) = R(A, b) = 3, 方程有唯一解.

(2) 
$$\stackrel{}{\mathcal{Z}} a = 0$$
,  $\stackrel{}{\mathcal{Q}} (\mathbf{A}, \mathbf{b}) \stackrel{r}{\sim} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ ,  $R(\mathbf{A}) = 1 < R(\mathbf{A}, \mathbf{b}) = 2$ ,  $\stackrel{}{\mathcal{Z}}$   $\stackrel{}{\mathcal{$ 

#### 续解

(3) 若 
$$a = -3$$
, 则  $(\mathbf{A}, \mathbf{b}) \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$ ,  $R(\mathbf{A}) = R(\mathbf{A}, \mathbf{b}) = 2$ , 方程有无穷多解. 特解为  $\begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$ , 基础解系为  $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ , 通解为

$$\boldsymbol{x} = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix} + k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

k 为任意常数.

由于系数矩阵为 3 阶方阵, 也可以先通过  $|A| \neq 0$  得到唯一解情形.

### 练习

a,b 为何值时, 以下方程(1)有唯一解; (2)无解; (3)有无穷多解? 并在有无穷多解时求其通解.

$$\begin{cases} x_1 + x_2 + & x_3 + & x_4 = 1 \\ x_2 - & x_3 + 2 & x_4 = 1 \\ 2x_1 + 3x_2 + (a+2)x_3 + 4 & x_4 = b+3 \\ 3x_1 + 5x_2 + & x_3 + (a+8)x_4 = 5 \end{cases}$$

## 典型例题:解非齐次线性方程组

## 答案

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 2 & 3 & a+2 & 4 & b+3 \\ 3 & 5 & 1 & a+8 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & a+1 & 0 & b \\ 0 & 0 & 0 & a+1 & 0 \end{pmatrix}.$$

- (1)  $a \neq -1$  时有唯一解;
- (2)  $a = -1, b \neq 0$  时无解;
- (3) a = -1, b = 0 时有无穷多解, 通解为

$$m{x} = egin{pmatrix} 0 \ 1 \ 0 \ 0 \end{pmatrix} + k_1 egin{pmatrix} -2 \ 1 \ 1 \ 0 \end{pmatrix} + k_2 egin{pmatrix} 1 \ -2 \ 0 \ 1 \end{pmatrix}.$$

例:线性方程组解的性质

# 例

设四元非齐次线性方程组 Ax=b 的系数矩阵 A 的秩为 3. 已知  $\eta_1,\eta_2,\eta_3$  是它的三个解向量, 且

$$\eta_1 = (2, 3, 4, 5)^{\mathrm{T}}, \quad \eta_2 + \eta_3 = (1, 2, 3, 4)^{\mathrm{T}}.$$

求 Ax = b 的通解.

### 解

由于  $R(\mathbf{A})=3$ , 因此  $\mathbf{A}\mathbf{x}=\mathbf{0}$  的基础解系只包含一个向量. 根据解的性质,

$$2\eta_1 - (\eta_2 + \eta_3) = (3, 4, 5, 6)^{\mathrm{T}}$$

是 Ax=0 的一个解, 因此这是它的一个基础解系. 故 Ax=b 的通解为

$$\mathbf{x} = \mathbf{\eta}_1 + k(3, 4, 5, 6)^{\mathrm{T}} = (2, 3, 4, 5)^{\mathrm{T}} + k(3, 4, 5, 6)^{\mathrm{T}}.$$

例: 线性方程组解的性质

#### 例

已知 4 阶方阵  $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ , 且  $\alpha_2, \alpha_3, \alpha_4$  线性无关,  $\alpha_1 = 2\alpha_2 - \alpha_3$ . 若  $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ , 求  $Ax = \beta$  的通解.

### 解

由题设可知  $R({\bf A})=3$ , 因此  ${\bf A}{\bf x}={\bf 0}$  的基础解系只包含一个向量. 由  ${\bf \alpha}_1=2{\bf \alpha}_2-{\bf \alpha}_3$  可知  $(1,-2,1,0)^{\rm T}$  是  ${\bf A}{\bf x}={\bf 0}$  的一个解, 因此这是它的一个基础解系. 注意到  $(1,1,1,1)^{\rm T}$  是  ${\bf A}{\bf x}={\bf b}$  的一个特解, 故通解为

$$\mathbf{x} = (1, 1, 1, 1)^{\mathrm{T}} + k(1, -2, 1, 0)^{\mathrm{T}}.$$

例:线性方程组解的性质

已知  $\beta_1, \beta_2$  是 Ax = b 的两个不同的解,  $\alpha_1, \alpha_2$  是 Ax = 0 的基础解系, 则 Ax = b的通解为(B),  $k_1, k_2$  为任意常数.

(A) 
$$\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2)$$
 (B)  $2\beta_1 - \beta_2 + k_1 \alpha_1 + k_2 (\alpha_1 - \alpha_2)$ 

(C) 
$$\frac{\beta_1 + \beta_2}{2} + k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$$
 (D)  $\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\beta_1 - \beta_2)$ 

已知 
$$\eta_1 = (0,1,0)^{\mathrm{T}}, \eta_2 = (-3,2,2)^{\mathrm{T}}$$
 是线性方程组 
$$\begin{cases} x_1 - x_2 + 2x_3 = -1 \\ 3x_1 + x_2 + 4x_3 = 1 \end{cases}$$
的两个 
$$ax_1 + bx_2 + cx_3 = d$$

解向量,则该方程组的通解为  $(0,1,0)^{T} + k(-3,1,2)^{T}$ 

## 向量组线性表示

若 B 的列向量可由 A 的列向量组线性表示, 那么 (A,B) 的列向量组和 A 的列向量组等价, 因此 R(A) = R(A,B).

注意到 A 列向量生成的空间 V 是 (A,B) 列向量生成的空间 W 的子空间. 若 R(A) = R(A,b), 则 A 列向量组的一个极大无关组 S 也是 (A,B) 的极大无关组. 从 而 B 的列向量都是 S 的线性组合, 也是 A 列向量的线性组合.

## 定理

- (1) B 的列向量组可由 A 的列向量组线性表示  $\iff AX = B$  有解  $\iff R(A) = R(A, B)$ .
- (2)  $\mathbf{B}$  的列向量组和  $\mathbf{A}$  的列向量组等价  $\iff$   $R(\mathbf{A}) = R(\mathbf{A}, \mathbf{B}) = R(\mathbf{B})$ .

例: 向量组等价

例

证明向量组  $\alpha_1, \alpha_2$  与  $\beta_1, \beta_2, \beta_3$  等价, 其中

$$\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ 3 \end{pmatrix}, \ \beta_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \ \beta_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \ \beta_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}.$$

证明

因此  $R(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = R(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = R(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = 2.$