Матан один кусок

Неопределённый интеграл

Определение интеграла и первообразной

🖺 Первообразная

Пусть I - промежуток, f определена на I. F - <mark>первообразная</mark> для f на промежутке I, если $F'(x)=f(x),\ x\in I$

🖺 Неопределенный интеграл

 $\int f(x) dx$

- 1. Любая фиксированная первообразная
- 2. Множество всех первообразных

Методы интегрирования

Теорема: интегрирование по частям

$$\int u\,dv = uv - \int v\,du$$

- 1. На некоторых промежутках $\exists u'$ и v'
- 2. $\exists \int v \, du$ Тогда $\exists \int u \, dv$ и работает формула интегрирования по частям Доказательство

$$(uv)'-(\int v\,du)'+c'=u\cdot v'$$

Замечание

$$\int (lpha f + eta g) = lpha \int f + eta \int g$$

Теорема: метод замены переменной

$$\int rac{x\,dx}{1+x^2} = ig\{t=x^2\,dt = 2x\,dxig\} = rac{1}{2}\int rac{dt}{1+t} = rac{1}{\ln}|1+t| + C = rac{1}{2}\ln|1+x^2| + C$$

Теорема

Пусть $\int f(x)\,dx=F(x)+C$, $x=arphi(t),t\in I$ Пусть arphi дифф. на I . Тогда справедлива замена $arphi(t)=x,\;arphi'\,dt=dx$, то есть $\int f(arphi(t))arphi'(t)\,dt=F(arphi(t))+C$

Доказательство

$$(F(arphi(t)) + C)' = F_x' \cdot arphi'(t) = f(arphi(t) \cdot arphi'(t))$$

Интегрирование рациональных дробей

🖺 Простейшие дроби

Простейшей дробью называется дробь $\dfrac{P(x)}{Q(x)}$, где $\deg P \leq \deg Q$

Виды простейших дробей

1.
$$rac{A}{(x-a)^n}$$
 , $A\in\mathbb{R},\ n\in\mathbb{N}$

2. $\dfrac{Mx+N}{x^2+px+q}$, $M,N,p,q\in\mathbb{R}$, дискриминант знаменателя отрицательный.

Лемма 1

Лемма

Если
$$Q(x)=(x-a)^n\cdot ilde{Q}(x)$$
, $ilde{Q}(a)
eq 0$, то можно представить $\dfrac{P(x)}{Q(x)}$ $P(x)$ A $ilde{P}(x)$

в виде
$$rac{P(x)}{Q(x)}=rac{A}{(x-a)^n}+rac{P(x)}{(x-a)^{n-1}\cdot ilde{Q}(x)}$$

Следствия

$$rac{P(x)}{Q(x)} = rac{A_n}{(x-a)^n} + rac{H(x)}{ ilde{Q}(x)}$$

Доказательство

$$rac{P(x)}{Q(x)} - rac{A}{(x-a)^n} = rac{P(x) - A \cdot Q(x)}{Q(x)}$$
 $Q(x) = (x-a)^n \cdot ilde{Q}(x)$
 $A: P(a) - A \cdot ilde{Q}(a) = 0 \implies A = rac{P(a)}{ ilde{Q}(a)}$

Лемма 2

Лемма

Пусть $Q(x)=(x^2+px+q)^m ilde{Q}(x)$, где дискриминант отрицательный.

Тогда
$$\dfrac{P(x)}{Q(x)}=\dfrac{Mx+N}{(x^2+px+q)^m}+\dfrac{ ilde{P}(x)}{(x^2+px+q)^{m-1} ilde{Q}(x)}$$

Следствие

$$rac{P(x)}{Q(x)} = rac{M_m x + N_m}{(\ldots)^m} + rac{M_{m-1} x + N_{m-1}}{(\ldots)^{m-1}} + \cdots + rac{1(x)}{ ilde{Q}(x)}$$

Доказательство

$$egin{split} rac{P(x)}{Q(x)} &= rac{Mx+N}{(x^2+px+q)^m} = rac{P(x)-(Mx+N) ilde{Q}(x)}{(\ldots)^m ilde{Q}(x)} = \ &= rac{P(x)-(Mx+n) ilde{Q}(x)}{(x-x_1)^m(x-ar{x}_1)^m ilde{Q}(x)} \ &= rac{P(x)-(Mx+n) ilde{Q}(x)}{(x-x_1)^m(x-ar{x}_1)^m ilde{Q}(x)} \ &= 0 \ &= P(x_1)-(Mx_1+N) ilde{Q}(x_1) = 0 \ &= P(ar{x}_1)-(M_1ar{x}_1+N) ilde{Q}(ar{x}_1) = 0 \end{split}$$

У СЛУ с двумя уравениями есть два неизвестных $\implies \exists M,N$

Теорема: любая дробь разложима на простейшие

Теорема

Доказательство

$$rac{P(x)}{Q(x)} = rac{P(x)}{(x-a_1)^{n_1}\dots(x-a_k)^{n_k}(x^2+p_1x+q_1)^{m_1}\dots(x^2+p_tx+q_t^{m_t})}$$

Последовательно применим лемму 1 и 2.

$$\sum_{i=1}^{n_1} rac{c_i}{(x-a_1)^i} + \cdots + \sum +i = 1^{n_k} rac{d_i}{(x-a_k)^i} + \cdots = 1$$

Пример к теореме

$$rac{P}{Q} = rac{(x^2+1)}{(x+1)^2(x-1)} = rac{A}{(x+1)^2} + rac{B}{x+1} + rac{C}{x-1} =
onumber \ = rac{A(x-1) + B(x^2-1) + C(x+1)^2}{(x+1)^2(x-1)}
onumber \ x^2 + 1 = A(x-1)B(x^2-1) + C(x+1)^2$$

Затем методом неопределённых коэффициентов найдем A,B,C

Можно использовать формулу Тейлора

$$rac{x}{(x+1)(x+2)(x+3)} = rac{A}{x+1} + rac{B}{x+2} + rac{C}{c+3}$$

1.
$$A=?$$
, корень -1 , $f(x)=\dfrac{x}{(x+2)(x+3)}$, $A=f(-1)=-\dfrac{1}{2}$
$$\dfrac{P(x)}{Q(x)}=\dfrac{f(x)}{x+1}=\left\{f(x)=f(-1)+f'(-1)(x+1)\ldots$$
формула Тейлор
$$=\dfrac{(f(-1)+f'(-1)(x+1)+\ldots)}{x+1}$$
 $f(-1)=A$

$$rac{x}{(x+1)^2(x+2)(x+3)} = rac{A}{(x+1)^2} + rac{B}{(x+1)} + rac{C}{x+2} + rac{D}{x+3}$$

Метод Остроградского

$$\int \frac{P(x)}{Q(x)} dx$$
$$\deg P_k = \deg Q$$

Если у Q(x) есть кратный корень, то применяют метод Остроградского. $Q(x)=Q_1(x)\cdot Q_2(x)$, где $Q_2(x)$ - неприв. множителль Q в степени 1.

Например:

$$egin{aligned} Q(x) &= (x^2+1)^5(x-2)^2 \ Q_2 &= (x^2+1)(x-2) \end{aligned}$$

Тогда
$$\int rac{P(x)}{Q(x)}\,dx = rac{P_1(x)}{Q_1(x)} + \int rac{P_2(x)\,dx}{Q_2(x)}$$

Задача свелась к интегралу, где в знаменателе нет кратных корней. Продифференцируем обе части.

$$egin{split} rac{P(x)}{Q(x)} &= rac{P_1'(x)Q_1(x) - P_1(x)Q_1'(x)}{Q_1^2(x)} + rac{P_2(x)}{Q_2(x)} \ P(x) &= rac{P_1'(x)Q(x)}{Q_1(x)} - rac{P_1(x)Q_1'(x)Q(x)}{Q_1^2(x)} + rac{P_2(x)Q(x)}{Q_2(x)} \end{split}$$

Интегрирование тригонометрических функций

Универсальная замена

$$\int R(\cos x, \; \sin x) \, dx$$
, где R - рац. дробь

Заменим $t= anrac{x}{2}$.

$$\sin x = rac{2\sinrac{x}{2}\cosrac{x}{2}}{\cos^2rac{x}{2} + \sin^2rac{x}{2}} = rac{2 anrac{x}{2}}{1 + an^2rac{x}{2}} = rac{2t}{1 + t^2}$$
 $\cos x = rac{1 - t^2}{1 + t^2}$

- 1. $R(-\sin x, \cos x) = -R(\sin x, \cos x) \implies t = \cos x$
- 2. $R(\sin x, -\cos x) = -R(\sin x, \cos x) \implies t = \sin x$
- 3. $R(-\sin x, -\cos x) = R(\sin x, \cos x) \implies t = \tan x$

Интеграл от дифференциального бинома

🖺 Дифференциального бинома

$$x^m(a+bx^n)^p\,dx$$
 - дифф. бином. $a,b
eq 0$, $m,n,p\in\mathbb{Q}$

Теорема: интеграл от дифф. бинома

Теорема

Интеграл "берётся" только в трёх случаях:

- 1. $p \in \mathbb{Z}$. Тогда заменим $x = t^k$, k общий знаменатель дробей m и n
- 2. $\dfrac{m+1}{n} \in \mathbb{Z} \implies a+bx^n=t^s$, где s знаменатель p

3.
$$p + \frac{m+1}{n} \in \mathbb{Z}$$

Определённый интеграл

Определение

Разбиение отрезка и интегральная сумма

🖺 Разбиение отрезка

Говорят, что точки x_0,x_1,\ldots,x_n образуют <mark>разбиение</mark> отрезка [a,b], если $a=x_0< x_1<\cdots< x_n=b$. au - разбиение. $\Delta x_k=x_k-x_{k-1},\;k=1,\ldots,n$ - длины отрезков разбиения, $\xi_k\in[x_{k-1},x_k],\;k=1,\ldots,n$ - произв. точки.

🖺 Интегральная сумма

Пусть f определена на [a,b]. Тогда

$$S(f, au,\xi) = S_ au = \sum\limits_{k=1}^n f(\xi_k) \Delta x_k$$
 - интегральная сумма

⊘ Смысл интегральной суммы

Смысл интегральной суммы - сумма площадей прямоугольников, построенных под графиком на отрезках разбиения

🖺 Мелкость разбиения

 $\lambda au = \max \Delta x_k$ называется <mark>мелкостью разбиения</mark>.

Интегрируемость по Риману

🖺 Интеграл по Риману

Пусть f определена на $\left[a,b\right]$. f интегрируема по Риману на $\left[a,b\right]$, если

$$\exists I \in \mathbb{R}: orall \epsilon > 0 \exists \delta(\epsilon) > 0: orall au orall \xi \ (\lambda au < \delta) \implies I = \int\limits_a^b f(x) \, dx . \ \ I \ \ ag{1}$$

интеграл по Риману, или определённый интеграл

Пример

Возьмём функцию Дирихле. D(x) не интегрируема на $\left[a,b
ight]$

1.
$$\{\xi_k\} \subset I = \mathbb{R} \setminus \mathbb{Q}, f(\xi_k) = 0 \implies \forall \tau : S_\tau = 0$$

2.
$$\{\xi_k\}\subset \mathbb{Q}, f(\xi_k)=1, orall au S_ au=\sum 1\cdot \Delta x_k=b-a$$

Теорема о сумме интегралов

Теорема

Пусть f и g интегрируемы на [a,b], и $lpha,eta\in\mathbb{R}$. Тогда $\int\limits_a^b(lpha f+eta g)\,dx=lpha\int\limits_a^bf\,dx+eta\int\limits_a^bg\,dx$

Доказательство

$$egin{aligned} S(lpha f + eta g, au, \xi) &= \sum_{k=1}^n (lpha f(\xi_k) + eta g(\xi_k)) \Delta \xi_k = \ &= lpha \sum_{k=1}^n f(\xi_k) \Delta x_k + eta \sum_{k=1}^n g(\xi_k) \Delta x_k \end{aligned}$$

$$egin{aligned} |S(lpha f+eta g, au,\xi)-(lpha\int\limits_a^bf+eta\int\limits_a^bg)|=\ &=|lpha S(f, au,\xi)+eta S(g, au,\xi)-(lpha\int\limits_a^bf+eta\int\limits_a^bg)|\leq\ &\leq |lpha|\left|S(f, au,\xi)-\int\limits_a^bf
ight|+|eta|\left|S(g, au,\xi)-\int\limits_a^bg
ight|<rac{\epsilon}{|lpha|+|eta|} \end{aligned}$$

- так как f - интегрируемо, поэтому

$$orall \epsilon > 0 \exists \delta : orall au orall \xi (\lambda au \implies |S(f, au,\xi) - \int\limits_a^b f| < \epsilon$$
 .

Теорема придумайте название

Теорема

Если f и g интегрируемы на [a,b] и $f\geq g$ на [a,b], то $\int\limits_a^b f\geq \int\limits_a^b g$

Доказательство

$$orall au, orall \xi: S(f-g, au,\xi) = \sum_{k=1}^n (f(\xi_k)-g(\xi_k)) \Delta x_k \geq 0$$

По прошлой теореме f-g - интегрируемо, то есть

$$\exists \int\limits_a^b (f-g)$$

-- то есть

$$orall au, orall xi: S(f-g, au,\xi) \geq - \implies \int\limits_a^b (f-g) \geq 0$$

⊘ Доказать дома

Ребятки докажите за меня дома, на коллоке будет

По прошлой теореме
$$\int\limits_a^b (f-g) \geq 0$$
, то есть $\int\limits_a^b (f-g) = \int\limits_a^b f - \int\limits_a^b g \geq 0$

Теорема об ограниченности интегрируемой на отрезке функции

Теорема

Если f интегрируема по Риману на $\left[a,b
ight]$, то она ограничена на $\left[a,b
ight]$

Доказательство

От противного. Пусть f - не ограничена. Тогда есть разбиение au, на одном из отрезков котого ($[x_{j-1},x_j]$) функция не ограничена.

Тогда
$$S(f, au,\xi)=f(\xi_j)\Delta x_j+\sum\limits_{k=1}^nf(\xi_k)\Delta x_k$$

$$|S(f, au,\xi)|>|f(\xi_j)|\Delta x_j-|\sum_{k=j}f(\xi_k)\Delta x_k|$$

Зафиксируем $\xi_k,\ k
eq j$. Можно подобрать ξ_j так, что $|f(\xi_j)|>N, N\in\mathbb{N}$ Пусть $C=|\sum_{k=j}f(\xi_k)\Delta x_k|$. Тогда:

$$|S(f, au,\xi)| > |f(\xi_j)|\Delta x_j - |\sum_{k=j} f(\xi_k)\Delta x_k| > N\cdot x_k - C$$

Тогда S au - ограничено. Противоречие.

Критерий интегрируемости. Сумма Дарбу

Сумма Дарбу

$$M_k = \sup_{x \in [x_{k-1},x_k]} f(x)$$
 , $m_k = \inf_{x \in [x_{k-1},x_k]} f(x)$

🖺 Верхняя сумма Дарбу

$$\overline{S_{ au}} = \sum_{k=1}^n M_k \Delta x_k$$
 называется верхней суммой Дарбу

🖹 Нижняя сумма Дарбу

$$\underline{S_{ au}} = \sum_{k=1}^n m_k \Delta x_k$$
 называется нижней суммой Дарбу

Интегралы Дарбу

🖺 Интегралы Дарбу

Обозначение $I_* = \sup_{ au} \underline{S_{ au}}$ - нижний интеграл Дарбу, I^* - верхний интеграл Дарбу.

• $S_{ au} \leq I_* \leq I^* \leq \overline{S_{ au}}$ Доказательство

$$orall au_1 au_2: \underline{S_{ au_1}} \leq \overline{S_{ au_2}} \implies \sup_{ au+1} S_{ au_1} \leq \overline{S_{ au_2}} \implies I_* \leq \inf_{ au_2} = I^**$$

Теорема о неравенствах, связанных с суммами Дарбу

Теорема

Если f опр. на [a,b], то $orall au_1, au_2$ $S_{ au_1} \leq \overline{S_{ au_2}}$

Доказательство

 $au= au_1\cup au_2$

au - измельчение au_1 , au_2 , то есть $au_1\subseteq au$ и $au_2\subseteq au$ и его мелкость меньше. Тогда $\overline{S_ au}\le \overline{S_{ au_2}},\ S_{ au_1}\le \underline{S_ au}$

$$S_{ au_1} \leq \overline{S_{ au}} \leq \overline{S_{ au}} \leq \overline{S_{ au_2}}$$

Следствие

$$\forall au : \underline{S_{ au}} \le I_* \le I^* \le \overline{S_{ au}}$$

Теорема: критерий интегрируемости

Теорема

Пусть f - ограничена на [a,b]. f интегрируема на $[a,b]\iff orall \epsilon>0 \exists \delta>0 \quad orall au(\lambda_ au<\delta\implies \overline{S_ au}-S_ au\leq\epsilon)$

Доказательство

1. ⇒

Пусть f интегрируема на [a,b]. Тогда по определению интегрируемости, $\exists \delta:\ orall au, \xi(\lambda_ au < \delta) \implies |S(f_1 au) - I| < rac{\epsilon}{3})$

$$egin{aligned} S(f, au,xi) &< I + rac{\epsilon}{3} \ & \sup_{\xi} S(f, au,\xi) \leq I + rac{\epsilon}{3} \ & \sup_{\xi} S(f, au,\xi) = \overline{S_{ au}} \end{aligned}$$

Чтобы доказать это, воспользуемся свойствами \sup и \inf . Тогда $\sum_{k=1}^n \sup A_k = \sum_{k=1}^n \sup f(\xi_k) \Delta x_k = \overline{S_ au} = M_k X_k$.

$$\sup(A_1+\cdots+A_n)=\sup\left\{\sum\limits_{k=1}^nf(\xi_k)\Delta x_k
ight\}$$

$$I - rac{\epsilon}{3} \leq \underline{S_ au} \leq \overline{S_ au} \leq I + rac{\epsilon}{3}$$

Хотим получить: $I - rac{\epsilon}{3} < \underline{S_ au} \leq \overline{S_ au} < I + rac{\epsilon}{3}$

1. Рассморим левую часть неравенства из определения $I-rac{\epsilon}{3} < S(f_1 au_1)$, и возьмём \inf по $\xi \implies I-rac{\epsilon}{3} \leq \inf_\xi S(f_1 au_1\xi) = \inf_\xi S(f_1 au_1\xi)$.

$$S_{ au} = \sum_{j=1}^n \inf_{x \in [x_1,x_j]} f(x) \Delta x_j$$

$$\sum \inf_{x \in [x_1,x_j]} f(x) \Delta x_j = \inf_{(\xi_0,\dots,\xi_n)} \sum_{j=1}^n f(\xi_j) \Delta x_j$$

$$S(f_1 au_1\xi) < I + rac{\epsilon}{3}$$

$$\overline{S_{ au}} \leq I + rac{\epsilon}{3} \implies I - rac{\epsilon}{3} \leq \underline{S_{ au}} \leq \overline{S_{ au}} \leq I + rac{\epsilon}{3}$$

2. ←

$$S_ au \leq I_* \leq I^* \leq \overline{S_ au}$$

Знаем, что
$$orall \epsilon>0$$
 $\exists \delta: orall au(\lambda_ au<\delta\implies \overline{S_ au}-\underline{S_ au}<\epsilon)$ $\underline{S_ au}\leq S_t au\leq \overline{S_ au}$ $|S_ au-I_*|<\epsilon$

- показано геометрически.

 $\Longrightarrow I_*$ - интеграл Римана (по определению интеграла).

Следствие

Если f - интеграл по Риману на [a,b], то $I_*=I^*=\int\limits_a^b f(x)\,dx$

Теорема (без доказательства)

Теорема

f интегрируема на

$$[a,b] \iff I_* = I^* *\$,$$
иприэтомвсегда $\$\int\limits_a^b f(x)\,dx = I_* = I^*$

Теорема: аддитивность интегралов

Теорема

$$\int\limits_a^b f(x)\,dx = \int\limits_a^c f + \int\limits_c^b f$$
, где $a \leq c \leq b$

Доказательство

Покажем сначала равносильность существования этих интегралов. Рассмотрим точку c и возьмём произвольное разбиение отреза [a,b] au. $c \in [x_{j-1},x_j]$. Рассмотрим вспомогательное разбиение отрезков: $au': a < x_1 < \dots < x_j < c$, $au'': c < x_j < \dots < b$.

1. Пусть f интегрируема на [a,b]. Покажем, что $\exists \int\limits_a^c$ и $\exists \int\limits_c^b$ f интегрируема на $[a,b] \implies \overline{S_{ au}} - \underline{S_{ au}} < \epsilon$ для $au: \lambda_{ au} < \delta(\epsilon)$ $\overline{S_{ au}} \geq \overline{S_{ au'}} + \overline{S_{ au''}}$

- очевидно, т.к. в одной из сумм справа $\sup f(x)$ может стать меньше

$$\underline{S_{ au}} \leq S_{ au'} + S_{ au''}$$

$$\epsilon > \overline{S_ au} - S_ au \geq \overline{S_{ au'}} + \overline{S_{ au''}} = (S_{ au'} + S_{ au''}) = (\overline{S_{ au'}} - S_{ au'}) + (\overline{S_{ au''}} - S_{ au''})$$

2. Пусть f интегрируема на [a,c] и [c,b]. Покажем, что $\exists\int\limits_a^b f$

$$\overline{S_{ au}} = \sum_{k
eq j} + M_j \delta x_j, \ \underline{S_{ au}} = \sum_{k
eq j} m_j \Delta x_j$$

(на j-м отрезке находится точка c)

Пусть f ограничена на [a,b] числами B и -B.

Хотим: $\overline{S_{ au}} \geq \overline{S au'} + \overline{S_{ au''}}$

$$(?)$$
 $\overline{S_ au} \leq \overline{S_{ au'}} + \overline{S_{ au''}} +$ что-то $\overline{S_ au} - (\overline{S_{ au'}} + \overline{S_{ au''}}) = \left\{\sum_{k
eq j} - \operatorname{cokpathaetcs}
ight\} =$ $= M_j \Delta x_j - (\sup f(x)(c-x_{j-1}) + \sup_{[c,x]} f(x)(x_j-c)) \leq$ $\leq B \Delta x_j + B(c-x_{j-1}+x_j-c) = 2B \Delta x_j \leq 2B \lambda_ au$

Аналогично $\overline{S_ au} \geq S_{ au'} + S_{ au''} - 2B\lambda_ au$

Таким образом, $\overline{S_{ au}} \leq \overline{S_{ au'}} + \overline{S_{ au''}} + 2B\lambda_{ au}$ и $\underline{S_{ au}} \geq \underline{S_{ au'}} + \underline{S_{ au''}} - 2B\lambda_{ au}$

$$egin{aligned} \overline{S_{ au}} - \underline{S_{ au}} &\leq \overline{S_{ au'}} + \overline{S_{ au''}} + 2b\lambda_{ au} - \underline{S_{ au'}} - \underline{S_{ au''}} + 2B\lambda_{ au} = \ &= (\overline{S_{ au'}} - \underline{S_{ au'}}) + (\overline{S_{ au''}}\underline{S_{ au''}}) + 4B\lambda_{ au} < \epsilon \ &orall \epsilon > 0 \exists \delta(\epsilon) : orall au(\lambda_{ au} < \delta \quad \overline{S_{ au}} - S_{ au} < \epsilon) \end{aligned}$$

Возьмём $\delta = \min\left\{\delta_1(rac{\epsilon}{3}), \delta_2(rac{\epsilon}{3}), rac{\epsilon}{3\cdot 4B}
ight\}$

3. Теперь покажем, что $\int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f$.

$$(?) \quad |\int\limits_a^b - (\int\limits_a^c + \int\limits_c^b)| < \epsilon$$

$$|\int\limits_a^b-\left(\int\limits_a^c+\int\limits_c^b
ight)+(S_{ au'}+S_{ au''})-(S_{ au'}+S_{ au''})|\leq$$

$$\leq |\int\limits_{a}^{b} -(S_{ au'}+S_{ au''})| + |\int\limits_{a}^{c} -S_{ au'}| + |\int\limits_{c}^{b} -S_{ au''}| < \epsilon$$

Утверждение о переопределении интегрируемой функции

Утверждение

Если изменить интегрируемую функцию f в конечном числе точек, значение интеграла не изменится

Доказательство

Докажем для одной точки. Пусть значение переопределяется в точке x_0 . Заменим $f(x_0)$ на c. Рассмотрим $g(x)=egin{cases} f(x),x
eq x_0 \\ f(x_0)-c,x=x_0 \end{cases}$ f(x)+g(x) - новая функция. Покажем, что $\int\limits_a^b g(x)=0$. orall au $|S_ au| \leq |c-f(x_0)| \cdot \lambda_ au$. Но $\lambda_ au o 0 \implies \int\limits_a^b g(x)=0$

Классы интегрируемых функций

Теорема об интегрируемости непрерывной функции

Теорема

Пусть f непрерына на отрезке [a,b]. Тогда f интегрируема на нём.

Доказательство

По теореме Кантора, непрерывная функция на отрезке равномерно непрерывна на нём. Тогда

$$orall \epsilon > 0 \exists \delta(\epsilon) > 0: orall x', x'' \in [a,b]: (|x'-x''| < \delta) \implies |f(x') - f(x'')| < \epsilon$$

$$(?) \quad \forall \epsilon' > 0 \exists \delta'(\epsilon) : \forall \tau (\lambda_\tau < \delta' \implies \overline{S_\tau} - \underline{S_\tau} < \epsilon)$$

Рассмотрим $au:\lambda_ au<\delta$ - из определения равномерной непрерывности.

$$\overline{S_{ au}} - \underline{S_{ au}} = \sum_{k=1}^n (M_k - m_k) \Delta x k$$

 $orall \xi', \xi'' \in [x_j, x_{j+H}] \quad |\xi' - \xi''| < \delta$, т.к. $\lambda_{ au} < \delta$. Тогда $|f(\xi') - f(\xi'')| < \epsilon$, что равносильно (доказательство позже) $M_j - m_j < \epsilon$. Но тогда $\sum_{k=1}^n (M_k - m_k) \Delta x_k \le \epsilon \cdot \sum \Delta x_k = \epsilon (b-a)$

Доказательство равносильности.

1. \Longleftarrow $M_j-m_j<\epsilon$ - знаем. $f(\xi')-f(\xi'')\leq M_j-m_j\leq\epsilon$

$$egin{array}{ll} rac{1}{2} & \Longrightarrow & \ orall \xi', \xi'' & |f(\xi') = f(\xi'')| < \epsilon . & \sup_{\xi} (f(\xi') - f(\xi'')) = M_j - f(\xi'') \leq \epsilon . \end{array}$$

XYZ(

Теорема об интегрируемости монотонной функкции

Теорема

Пусть f - монотонна на $[a.\,b]$. Тогда f - интегрируема на [a,b].

Доказательство

Пусть б.о.о. f - возрастает.

$$(?) \quad orall \epsilon > 0 \exists \delta : orall au(\lambda_ au < \delta \implies \overline{S_ au} - S_ au < \epsilon)$$

$$\overline{S_{ au}} - \underline{S_{ au}} = \sum +k = 1^n (M_k - m_k \Delta x_k = \sum_{k=1}^n (f(x_k) - f(x_{k-1})) \Delta x_k$$

Пусть $\exists \delta: \lambda_{ au} < \delta$. Тогда

$$\overline{S_{ au}} - \underline{S_{ au}} = \sum_{k=1}^n (f(x_k) - f(x_{k-1})) \Delta x_k \leq \delta \cdot \sum_1^n (f(x_k) - f(x_{k-1})) \leq \epsilon$$

Возьмём
$$\delta < rac{\epsilon}{f(b) - f(a)}$$

Следствия

- 1. Функции с конечным числом точек разрыва интегрируемы
- 2. Кусочно-монотонные функции интегрируемы

3. Можно рассмотреть интеграл, если функция не определена в конечном числе точек

Теорема об интегрируемости композиции функций

Теорема

Пусть f - интегрируема на [a,b], и принимает значение на отрезке [c,d]. Пусть φ непрерывна на отрезке [c,d]. Тогда $\varphi(f(x))$ инт. на [a,b].

Пример

Для композиции интегрируемых теорема не работает.

$$egin{aligned} arphi &= egin{cases} 1, x
eq 0 \ 0, x = 0 \end{cases}, f(x) = egin{cases} rac{1}{q}, x = rac{p}{q} \ 0, x
otin \mathbb{Q} \end{cases} \ D(x) &= arphi(f(x)) = egin{cases} 0, x
otin \mathbb{Q} \ 1, x \in \mathbb{Q} \end{cases} \end{aligned}$$

Доказательство

arphi равномерно непрерывна на [c,d] (Кантор):

$$orall \epsilon > 0 \exists \delta : orall x', x'' \in [c,d] \quad |arphi(x') - arphi(x'')| < \delta \implies |arphi(x') - arphi(x')|$$

$$(?)$$
 $\overline{S_{ au}(arphi(f))}-\underline{S_{ au}(arphi(f))}<\epsilon$. Знаем, что f интегрируема. Тогда $(\lambda_{ au}<\delta\implies \overline{S_{ au}}(f)-S_{ au}(f)<\delta^2)$ - взли δ^2 как ϵ .

$$\overline{S_{ au}}(arphi(f)) - \underline{S_{ au}}(arphi(f)) = \sum_{k=1}^n (M_k(arphi(f)) - m_k()arphi(f)) \Delta x_k$$

Поделим на два семейства индексов:

$$I = \{k: M_k(f) - m_k(f) - \delta\}$$
 $II = k: M_k(f) - m_k(f) > \delta$

- 1. $k\in I$. Тогда воспользуемся леммой $(\sup-\inf)$, $f(\xi')-f(\xi'')<\delta;\quad \xi'$, по равномерно непрерывной $\varphi:\xi''\in [x_{k-1},x_k]\implies |\varphi(f(\xi'))-\varphi(f(\xi''))|<\epsilon\implies$ по этой же лемме $M_k(\varphi(f))-m_k(\varphi(f))<\epsilon$, $\sum\limits_{k\in I}(M_k(\varphi(f))-m_k(\varphi(f)))\Delta x_k<\epsilon(b-a)$
- 2. $k\in II$. Рассмотрим $\overline{S_{ au}}(f)-\underline{S_{ au}}(f)<\delta^2$. $\sum_{k\in II}(M_k(f)-m_k(f))\Delta x_k\leq \overline{S_{ au}}(f)-\underline{S_{ au}}(f)<\delta^2. \ \ \sum_{k\in II}\Delta x_k<\delta^2.$

$$\sum_{k \in II} (M_k(arphi(f)) - m_k(arphi(f))) \Delta x_k \leq 2l \cdot \sum_{k \in II} \Delta x_k \leq 2l \cdot \epsilon$$
, где l -

ограничение по т. Вейерштрасса.

Следствие

f инт. на $[a,b] \implies |f|,f^k,k>0$ - инт. на $f^k,k\leq 0$ - интегриуруема, если f=0 в конечном числа точек.

Теорема об интегрируемости произведения функций

Теорема

Пуссть f,g - инт. на [a,b]. Тогда $f\cdot g$ инт. на [a,b].

Доказательство

$$(f-g)^2 = f^2 - 2fg + g^2$$

- 1. Разность интегрируема
- 2. f^2, g^2 по следствию предыдущей теоремы интегируемы. $f \cdot g = \frac{f^2 g^2 (f g)^2}{2}$ сумма интегрируемых функций.

Интеграл с переменным верхним пределом

🖺 Интеграл с переменным верхним пределом

Пусть
$$f$$
 инт. на $[a,b]$. ($\Longrightarrow \ orall x \in (a,b)$ $\int\limits_a^x f(t)\,dt$ -

существует.) Тогда $\Phi(x)=\int\limits_a^x f(t)\,dt$ - интеграл с переменным

верхним пределом.

Теорема об ограниченности Φ

Теорема

Пусть f ограничена на [a,b]. Тогда Φ непрерывна и выполняется оценка $\exists C: |\Phi(x)-\Phi(y)| \leq C\cdot |x-y|, \ \forall x,y \in [a,b]$. - липшицевость.

Доказательство

Заметим, что из липшицевости следует непрерывность Φ (по определению непрерывности). Докажем только липшицевость.

Рассмотрим $|\Phi(x)-\Phi(y)|=|\int\limits_a^x f(t)\,dt-\int\limits_a^y f(t)\,dt|=|\int\limits_u^x f(t)\,dt|$.

Рассмотрим $|\sum f(\xi_k)\Delta x)k|\leq \sum |f(\xi_k)|\Delta x_k\implies |\int f|\leq \int |f|$. Тогда выражение сверху можно оценить:

$$|\int\limits_{y}^{x}f(t)\,dt|\leq \int\limits_{x}^{y}|f(t)|\,dt\leq \{|f|\leq B\}\leq B\cdot \left|\int\limits_{x}^{y}\,dt
ight|=B(x-y)$$

Теорема о дифференцируемости Φ

Теорема

Пусть f непрерывна на [a,b]. Тогда $orall x_0 \in (a,b)$ $\Phi'(x_0) = f(x_0)$

Доказательство

$$\begin{split} \Phi'(x_0) &= \lim_{h \to 0} \frac{\Phi(x_0 + h) - \Phi(x_0)}{h} \\ &= \frac{\frac{\Phi(x_0 + h) - \Phi(x_0)}{h}}{h} = \frac{x_0}{h} \pm \frac{f(x_0)}{h} \cdot h = \\ &= \frac{\int\limits_{x_0}^{x_0 + h} f(t) \, dt - f(x_0) \cdot h}{h} + f(x_0) = \frac{\int\limits_{x_0}^{x_0 + h} (f(t) - f(x_0)) \, dt}{h} + f(x_0) \\ &\left| \frac{|phi(x_0 + h) - \Phi(x_0)|}{h} - f(x_0) \right| = \left| \frac{\int\limits_{x_0}^{x_0 + h} (f(t) - f(x_0)) \, dt}{h} \right| \leq \\ &\leq \frac{1}{h} \cdot \int\limits_{x_0}^{x_0 + h} |f(t) - f(x_0)| \, dt \leq \{|t - x_0| \leq h\} \end{split}$$

f непрерывна: $orall \epsilon > 0 \exists \delta : (|t-x_0| < \delta \implies |f(t)-f(x_0)| < \epsilon))$. Возьмём произв. epsilon и найдём по нему δ . Возьмём $h < \delta$:

$$rac{1}{h} \cdot \int \limits_{x_0}^{x_0+h} |f(t) - f(x_0)| \, dt \leq \{|t - x_0| \leq h\} \leq rac{1}{h} \int \limits_{x_0}^{x_0+h} \epsilon \, dt = \epsilon$$

Теорема: формула Ньютона-Лейбница

Теорема

Пусть f интегрируема (в смысле определённого интеграла) на [a,b] и имеет первообразную на этом отрезке на [a,b] (F'f). Тогда $\int\limits_a^b f(x)\,dx = F(b) - F(a)$.

& Tip

Первообразная может быть и у неинтегрируемой по Риману функции: $F(x) = x^2 \sin(rac{1}{x^2}), x \in (0,1].$

$$F'(x) = 2x \cdot \sin\left(rac{1}{x^2}
ight) + x^2 \cdot \cos(rac{1}{x^2}) \cdot \left(rac{2}{x^3}
ight) = 2x \sin\left(rac{1}{x^2}
ight) - rac{2}{x}$$

Доказательство

Рассмотрим равномерное разбиение [a,b] (на n равных частей), $\frac{b-a}{n}$ - длина отрезка разбиения. Рассмотрим разность

$$F(b)-F(a)=\sum_1^n(F(x_k)-F(x_{k-1}))=$$
 $=\{F(x_k)-F(x_{k-1})=F'(\xi_k)(x_k-x_{k-1})$ - т. Лагранжа $\}=$ $=\sum_1^nf(\xi_k)\Delta x_k=$ $=\sum_1^nf(\xi_k)\cdotrac{(b-a)}{n}$

$$\lim_{n o\infty}(F(b)-F(a))=\lim_{n o\infty}\sum_1^nf(\xi_k)rac{(b-a)}{n}=\int\limits_a^bf(x)\,dx$$

Теорема - формула интегрирования по частям

Теорема

Пусть u и v - непрерывны и кусочно непрерывно дифференцируемы.

$$\int uv'\,dx = uvigg|_a^b - \int\limits_a^b vu'\,dx$$

Доказательство

По условиям теоремы, оба интеграла существуют как интегралы от кусочно-непрерывной функции.

(uv)'=u'v+uv' - за исключением конечного числа точек.

$$\int\limits_a^b (uv)' = \int\limits_a^b u'v + \int\limits_a^b uv'$$

Теорема: замена переменной

Теорема

Пусть функция f непрерына на отрезке $[x_1,x_2]$, а функция g - непрерывно дифференцируема на $[t_1,t_2]$, и $g(t_1)=x_1$, $g(t_2)=x_2$ и $g(t)\in [x_1,x_2], t\in [t_1,t_2]$. Тогда $\int\limits_{t_1}^{t_2}f(g(t))g'(t)\,dt=\int\limits_{x_1}^{x_2}f(x)\,dx$.

Доказательство

По условию f - непрерывна. Тогда существует F - первообразная f - по теореме о дифференцируемости интеграла с переменным верхним пределом. (рассмотрим $|Phi(x)=\int\limits_{x_1}^x f(t)\,dt$ и $\Phi'(x)=f(x)$). Тогда по формуле Ньютона-Лейбница $\int\limits_{x_1}^{x_2} f(x)\,dx=F(x_2)-F(x_1)$. Рассмотрим функцию F(g(t)). Тогда $(F(g(t)))'=F'(g(t))\cdot g'(t)=f(g(t))\cdot g'(t)$. Тогда F(g(t)) - первообразная для f(g(t))g'(t). Тогда по формуле Ньютона-Лейбница

 $\int\limits_{t_1}^{t_2} f(g(t))g'(t) = F(g(t_2)) - F(g(t_1)) = F(x_2) - F(x_1)$.

Теоремы о среднем

🖺 Среднее значение функции на отрезке

Предположим, что f интегрируема на [a,b]. Предположим, что нужно посчитать её среднее значение на отрезке.

 $\lim_{n o\infty}rac{\sum\limits_{k=1}^nf(\xi_k)}{n}$, где ξ_k - точки с отрезков разбиения. Домножим и поделим на (b-a). Тогда под пределом получается

интегральная сумма для равномерного разбиения, делённая на

$$\int\limits_{a}^{b}f(x)\,dx$$
 $(b-a).$ Тогда получается $\dfrac{a}{b-a}$ - среднее значение функции на отрезке.

🖺 Среднее взвешенное функции на отрезке

Пусть arphi(x) - весовая функция, т.е. $arphi(x) \geq 0$ на [a,b] и

интегрируема. Тогда
$$\dfrac{\sum\limits_{k=1}^n arphi(\xi_k)f(\xi_k)}{\sum\limits_{k=1}^n} \cdot \dfrac{(b-a)\cdot b}{(b-a)\cdot n}$$

$$=rac{\int\limits_a^b f(x) arphi(x) \, dx}{\int\limits_a^b arphi(x) \, dx}$$
 называется средним взвешенным функции на отрезке.

Замечание

Если f непрерывна, то f достигает $\min = m$ и $\max = M$, и по т. Коши о промежуточном значении

$$\exists \mu \in [m,M]: \exists x_0 \in [a,b]: \mu = f(x_0)$$

Первая теорема о среднем

Теорема

Пусть f интегрируема на [a,b], φ - весовая функция (≥ 0 и интегрируема), и $m\leq f\leq M$ на [a,b]. Тогда $\exists \mu\in [m,M]$, $\mu\cdot\int\limits_a^b\varphi=\int\limits_a^bf\cdot\varphi$. (отношение вот этого на вот это среднее взвешенное)

Доказательство

1.
$$\int\limits_a^b arphi = 0$$
. Тогда $m\int\limits_a^b \le \int\limits_a^b f arphi \le M\int\limits_a^b f \cdot arphi$ (*). Тогда $0=0$.

2.
$$\int\limits_a^b arphi
eq 0$$
. В $(*)$ поделим на $\int\limits_a^b arphi$. Тогда $m \leq rac{\int_a^b f \cdot \phi}{\int\limits_a^b arphi} \leq M$

Пример

Важно, чтобы φ сохраняла знак. Положим $f=x, \varphi= {
m sign}\ x$ на отрезке [-1,1]. Тогда $\int\limits_{-1}^1 x {
m sign}\ x\ dx=1$. Применим теорему. $\int\limits_{-1}^1 x {
m sign} x=\mu\int\limits_{-1}^1 {
m sign}\ x=0$, поэтому теорема не работает.

Вторая теорема о среднем

Теорема

Пусть на [a,b] функция f монотонно убывает (или возрастает), и arphi интегрируема. Тогда

$$\exists \xi in[a,b]: \int\limits_a^b f \cdot arphi = f(a) \int\limits_a^\xi arphi(x) \, dx + f(b) \int\limits_\xi^b arphi(x) \, dx$$

Без доказательства.

Геометрические приложения интеграла

Площадь под графиком

$$egin{cases} x=x(t)\ y=y(t),\ t\in[t_1,t_2].$$
 Посчитаем $\int\limits_{x_1}^{x_2}y(x).\ \int\limits_{x_1}^{x_2}y(x)\,dx=\left\{egin{array}{c} x=x(t)\ dx=x'(t)\,dt
ight\}=\int\limits_{t_1}^{t_2}y(t)x'(t)\,dt. \end{cases}$

- 1. x непрерывно дифференцируема на $\left[t_{1},t_{2}
 ight]$.
- 2. y непрерывно дифференцируема на $\left[x_1,x_2
 ight]$
- 3. Для x(t) существует обратная функция t(x) на $[t_1,t_2]$. Тогда y(t)=y(t(x))=y(x)

Длина дуги кривой

Кривой называется непрерывное отображение отрезка [lpha,eta] на плоскость.

🖺 Спрямляемая кривая

Кривая L называется <mark>спрямляемой</mark>, если множество длин вписанных в неё ломаных l ограничено сверху.

При добавлении к разбиению отрезка $[\alpha, \beta]$ новых точек ломаная становится длиннее, и её длина приближается к длине кривой. Тогда спрямляемость равносильна наличию длины у кривой.

Тогда длина ломаной равна сумме длин её отрезков. Тогда её можно посчитать по формуле

$$|l| = \sum\limits_{k=1}^n \sqrt{(x(t_k) - x(t_{k+1}))^2 + (y(t_k) - y(t_{k+1}))^2}$$
. Пусть x и y

непрерывно дифференцируемы. Тогда x' и y' - скорости, (x',y') - вектор скорости. По теореме лагранжа:

$$egin{aligned} |l| &= \sum\limits_{k=1}^n \sqrt{(x'(\xi_k)\Delta t_k)^2 + (y'(\xi_k)\Delta t_k)^2} \ &= \sum\limits_{k=1}^n \sqrt{(x'(\xi_k))^2 + (y'(\eta_k))^2} \Delta t_k \ . \ |l| &= \int\limits_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \, dt \, . \end{aligned}$$

Теорема о длине кривой

Теорема

Пусть x(t) и y(t) непрерывно дифференцируемы на [lpha,eta]. Тогда кривая L=(x(t),y(t)) - спрямляемая, и

$$|L|=\int\limits_{lpha}^{eta}\sqrt{(x'(t))^2+(y'(t))^2}\,dt$$

Доказательство

$$(*)\ |l|=\{ ext{по т. Лагранжа}\}=\sum_{k=1}^n\sqrt{(x'(\xi_k))^2+(y'(\eta_k))^2}\Delta t_k.$$
 Пусть $\sigma=\sum_{k=1}^n\sqrt{(x'(\xi_k))^2+(y'(\xi_k))^2}\Delta t_k.$ Тогда σ - интегральная сумма.

Оценим
$$||L|-\sigma|=|\sum\limits_{k=1}^n (\sqrt{-\sqrt{}})\Delta t_k|\leq$$
 В каждом из выражений

координата x одинаковая. Тогда расстояние между ними равно разности координат y. {по нер-ву труегольника}

$$\leq\sum_{k=1}^n(y'(\xi_k)-y'(\eta_k))\Delta t_k\leq\sum_{k=1}^n(M_k-m_k)\Delta t_k=\overline{S}(y', au)=\underline{S}(y', au)\leqarepsilon$$
 , тогда y' интегрируема, т.к. непрерывна.

Мы показали, что длина ломаной близка к интегральной сумме, то есть $||l|-\sigma|<arepsilon$ при мелких au. Тогда $(*)\leq B\cdot\sum_1^n\Delta t_k$. Поэтому кривая спрямляема. Тогда |l|pprox \approx \int\limits_a^b \dots. (интеграл из формулировки теоремы). Тогда |l|pprox |L| (опр. \sup).

Покажем теперь, что $||L|-\int_{\alpha}^{\beta}|\leq |L|-|l||_{(1)}+||l|-\int_{\alpha}^{\beta}|_{(2)}$ (первый интеграл из условия теоремы.). Оценим (1) и (2) по отдельности. $(1)\ \forall \epsilon>0 \exists l_e \ |L|-|l_\epsilon|<\epsilon$. Если ломаная l меньше, чем l_ϵ , то мы вычтем больше $|L|-|l|<\epsilon$ ю

 $(2)\ ||l|-\sigma|+|\sigma-\int_{lpha}^{eta}|\leq 2arepsilon$ (выше показано, что первое слагаемое при мелких au меньше ϵ и второе меньше arepsilon по определению S). Тогда выполняется, что

 $orall \epsilon>0 \quad ||L|-\int_lpha^eta|\leq |L|-|l||_{(1)}+||l|-\int_lpha^eta|_{(2)}<3arepsilon$. Но arepsilon можно взять любой, а разность фиксирована, поэтому она равна нулю.

Численное интегрирование

Пусть известно k точек, в которых известны $f(x_k)$. Можно применить интерполяционный многочлен Лагранжа, построив многочлен p(x). Тогда можно интегрировать p(x).

🖹 Разделённая разность

Разделённой разностью первого порядка в узлах x_1,x_2 называется выражение $f(x_1,x_2)=\dfrac{f(x_2)-f(x_1)}{x_2-x_1}$. Разделённой разностью k-го порядка в узлах x_1,\dots,x_{k+1} называется $\dfrac{f(x_2,\dots,x_{k+1})-f(x_1,\dots,x_k)}{x_{k+1}-x_1}$.

Пример: разделённая разность 2-го порядка. Возьмём узлы x_1, x_2, x_3 . $\frac{f(x_2, x_3) - f(x_1, x_2)}{x_3 - x_1}.$

🖺 Интерполяционный многочлен в форме Ньютона

$$N(x) = f(x_0) + f(x_0, x_1)(x - x_0) + \dots + f(x_0, \dots, x_n)(x - x_0) \dots$$
 (

Методы прямоугольников (многочлен 1-й степени)

- 1. Метод левых прямоугольников взять функции в левом конце отрезка, и посчитать площадь получившегося прямоугольника.
- 2. Метод средних прямоугольников взять среднее значение левого и правого конца отрезков.
- 3. Метод правых прямоугольников.

Метод трапеций

Многочлен первой степени. Посчитать площадь трапеции, построенной на точках $x_1,x_n,p(x_1),p(x_n)$. Тогда формула многочлена - $N(x)=f(x_1)+f(x_1,x_2)(x-x_1)$ = $f(x_1)+\dfrac{f(x_2)-f(x_1)}{x_2-x_1}(x-x_1)$. Проинтегрируем от $a=x_1$ до $b=x_2\colon f(a)b+\dfrac{f(b)-f(a)}{2}(b+a)-f(b)a$

Несобственный интеграл

🖺 Несобственный интеграл первого рода

Несобственным интегралом первого рода называется

 $\lim_{b o +\infty}\int\limits_a^b f(x)\,dx=\int\limits_a^{+\infty} f(x)\,dx$. Здесь предполагается, что orall b:f интегрируема на [a,b]

Abstract

Пусть $\omega in\mathbb{R}$. Несобственным интегралом второго рода называется $\lim_{b o\omega}\int\limits_a^bf(x)\,dx=\int\limits_a^\omega f(x)\,dx$. Аналогично, $orall b\in[a,\omega):f$ интегрируема на [a,b].

👌 Отличие от интеграла Римана

f может быть не ограничена в окрестности ω . Рассмотрим $\int\limits_0^1 \frac{dx}{\sqrt{x}} = \lim\limits_{a o 0} \int\limits_a^1 \cdots = \lim\limits_{a o 0} 2\sqrt{x} igg|_a^1 = \lim\limits_{a o 0} 2(1-\sqrt{a}) = 2$

🖺 Сходящийся несобственный интеграл

Говорят, что несобственный интеграл сходится, если $\exists \lim \in \mathbb{R}$. Иначе - расходится=

& Tip

Несобственный интеграл 2-го рода можно свести к 1-му роду.

Пусть
$$\omega \in \mathbb{R}$$
. Тогда $\int\limits_a^\omega f(x)\,dx = \left\{ egin{align*} & t = rac{1}{\omega - x} \ dt = rac{1}{(\omega - x)^2}\,dx = rac{1}{t^2}\,dx \end{array}
ight\}$

Теорема: критерий Коши сходимости несобственного интеграла

Теорема

$$orall \epsilon > 0 \exists b_\epsilon : orall b', b'' \quad (b_\epsilon < b' < b'' < \omega) \implies |\int\limits_{b'}^{b''} f(x) \, dx| < \epsilon$$

Без доказательства

Связь с другими интегралами

⚠ Связь интеграла Римана и несобственного интеграла

Если f интегрируема по Риману на [a,b], то существует несобственный интеграл второго рода, и он совпадает с собственным (т.е. интегралом Римана).

Теорема: аддитивность по промежутку

Теорема

Пусть $a < c < \omega$. Тогда $\int\limits_a^\omega f(x)\,dx$ и $\int\limits_c^\omega f(x)\,dx$ сходятся или расходятся одновременно. Если они сходятся, то выполняется свойство аддитивности по промежутку, то есть $\int\limits_a^\omega = \int\limits_c^c + \int\limits_c^\omega$

Доказательство

 $orall b \in [a,\omega)$ имеем аддитивность: $\int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f$. Очевидно, что эти интегралы либо сходятся, либо расходятся одновременно. Тогда $\int\limits_a^\omega$ сходится. Воспользуемся свойством пределов:

$$\lim_{b o\omega}\int\limits_a^bf=\lim_{b o\omega}\left(\int\limits_a^c+\int\limits_c^b
ight)=\int\limits_a^c+\lim_{b o\omega}\int\limits_c^b.$$

Теорема: линейность несобственного интеграла

Теорема

Пусть
$$\int\limits_a^\omega f$$
 и $\int\limits_a^\omega g$ сходятся. Тогда $\int\limits_a^\omega (lpha f + eta g) = lpha \int\limits_a^\omega f + eta \int\limits_a^\omega g$

Доказательство

Доказать дома))))))

Свойства интеграла Римана, которые не переносятся на несобственный интеграл

Интегрируемость произведения интегрируемых функций

$$\int\limits_0^1 rac{dx}{\sqrt{x}}$$
 - сходится. В случае интеграла Римана - $\int\limits_a^b f\cdot g$ существует, если f и g интегрируемы. Тогда
$$\int\limits_0^1 rac{1}{sqrtx}\cdotrac{1}{\sqrt{x}}\,dx=\int\limits_0^1 rac{1}{x}\,dx=\ln xigg|_0^1=+\infty.$$

Теорема о композиции функций

f - интегрируема по Риману $\implies |f|$ интегрируема по Риману. Для несобственных интегралов это не выполняется. Пример: построим

такую f, что $\int\limits_1^{+\infty}f$ сходится, а $\int\limits_1^{+\infty}|f|$ расходится. Дома рассмотреть ступенчатые функции, то есть

$$f=rac{(-1)^n}{n},\;x\in [n,n+1]$$
. Тогда $\int\limits_1^{+\infty}f=\sum +1^{+\infty}rac{(-1)^n}{n}$.

Рассмотрим числовую ось, отметим на ней числа $1,\,2,\,3,\,4,\,\ldots$ Поделим отрезок [1,2] на две части: в левой части положим f=1, в правой - f=-1. Отрезок [2,3] поделим на четыре части и положим функцию равной 1 и -1 попеременно. На отрезке [3,4] - 6 частей. Таким образом, на отрезке [k,k+1] будет 2k равных частей. Покажем, что интеграл от такой функции - сходится, а интеграл от |f| - расходится. Рассмотрим

 $b\in [1,+\infty)$ $\int\limits_1^b f(x)\,dx=\int +1^k+\int\limits_k^b=0+\int\limits_k^b.$ Предположим, что b принадлежит j-ому отрезку разбиения, где $1\le j\le 2k$. Рассмотрим 2 случая:

- 1. Пусть j нечётно. Тогда $\int\limits_k^b=\int\limits_k^u+\int\limits_u^b\leq rac{1}{2k} o 0$, где u начало j-го отрезка.
- 2. Пусть j чётно. Тогда $\int\limits_k^b = \int\limits_k^{j-1} + \int\limits_{j-1}^j + \int\limits_u^b \leq rac{1}{2k} o 0$, где u начало j-го отрезка.

Признаки сходимости несобственных интегралов

🖺 Абсолютно сходящийся интеграл

Несобственный интеграл — абсолютно сходящийся, если $\int\limits_a^\infty |f|$ сходится.

Теорема об абсолютной сходимости

Теорема

Если
$$\int\limits_a^\omega |f|$$
 сходится, то $\int\limits_a^\omega$ сходится.

Доказательство

$$\int\limits_{b'}^{b''}|f|<\epsilon \implies |\int\limits_{b'}^{b''}f|<\epsilon$$
 - по критерию Коши.

Теорема: первый признак сравнения

Теорема

Пусть f и $g \geq 0$ на $[a,\omega)$, и $f(x) \leq g(x), \; x \in [a,\omega)$. Тогда:

- 1. $\int\limits_a^\omega g$ сходится $\Longrightarrow \int\limits_a^\omega f$ сходится
 2. $\int\limits_a^\omega f$ расходится $\Longrightarrow \int\limits_a^\omega g$ расходится

Доказательство

- 1. $\int\limits_{0}^{b}f(x)\,dx$ не убывает по верхнему переделу b, т.к. $f\geq 0$. Тогда по теореме о пределе монотонной функции, если интегралы $\int\limits_{a}^{b}f$ ограничены сверху, то $\exists\int\limits_{a}^{\omega}f.$ Тогда $\int\limits_a^b f \leq \int\limits_a^b g \leq \int\limits_a^\omega g$
- 2. От противного. Пусть $\int\limits_a^\omega f$ расходится и $\int\limits_a^\omega g$ сходится. Но тогда $\int\limits_a^\omega f$ сходится по первому пункту, т.е. получили противоречие.

Теорема: второй признак сравнения

Теорема

Пусть f и g>0 на $[a,\omega)$ и $\exists c_1,c_2>0$ такие, что $c_1\cdot g\leq f\leq c_2\cdot g$ на $[a,\omega)$. Тогда $\int\limits_{\stackrel{\circ}{}}^{\omega}f$ и $\int\limits_{\stackrel{\circ}{}}^{\omega}g$ сходятся или расходятся одновременно.

Доказательство

1. Предположим, что $\int\limits_{\hat{x}}^{w}f$ сходится. Воспользуемся оценкой $c_1 \cdot g \leq f$. По первому признаку $\int\limits_{0}^{\omega} f$ сходится, поэтому $\int\limits_{0}^{\omega} g$ сходится

- 2. Пусть $\int f$ расходится. Используем правую оценку и первый признак сравнения.
- 3. дома аналогично
- 4. дома аналогично

Теорема: признак сравнения в предельной форме

Теорема

Если $\lim_{x o\omega} \frac{f(x)}{g(x)} = C>0$, то $\int\limits_a^\omega f$ и $\int\limits_a^\omega g$ сходятся или расходятся одновременно.

Доказательство

Пусть
$$|rac{f}{g}-C|<\epsilon$$
. Тогда $\epsilon=rac{C}{2}$: $-rac{C}{2}<rac{f}{g}-C<rac{C}{2}$ $rac{C}{2}<rac{f}{g}<rac{3}{2}C$

при этом $x \in O(\omega)$. Доказано по второму признаку сравнения.

Теорема: Формула Ньютона-Лейбница

Теорема

Пусть f имеет первообразную на промежутке $[a,\omega)$. Пусть $\int\limits_a^\omega$ существует. Тогда справедлива формула Ньютона-Лейбница: $\int\limits_a^\omega f = F\Big|_a^\omega = \lim_{b \to \omega} (F(b) - F(a)).$

Доказательство

 $\int\limits_a^b f = Figg|_a^b$, поэтому применим обычную формулу Н-Л с пределом:

$$\lim_{b o\omega}\int\limits_a^bf=\lim_{b o\omega}Figg|_a^b$$

Теорема: интегрирование по частям

Теорема

Пусть u,v - непр. на $[a,\omega)$ и кусочно непрерывно дифференцируемы на $[a,\omega)$. U - первообразная функции u, а функция v - имеет непрерывную производную.

Предположим, что сходится интеграл:

$$\int\limits_{a}^{\omega}U(x)u'(x)dx$$

Также пусть $\exists \lim_{b o\omega} u(b)v(b)$

Тогда справедливо:

$$\int\limits_{a}^{\omega}u\,dv=uv\Big|_{a}^{\omega}-\int\limits_{a}^{\omega}v\,du\quad (*)$$

Доказательство

Согласно форме интегрирования по частям для собственных интегралов при каждом $\omega' < \omega$ справедливо равенство

$$\left\| \iint_a^{\omega'} u dv = uv
ight|_a^{\omega'} - \int_a^{\omega'} v du
ight|$$

Переходя в котором к пределу при $\omega' \to \omega - 0$ переходм к предположению в теореме (*).

Теорема: признак Дирихле

Теорема

Пусть f непрерывна на $[a,\omega)$ и её первообразная F ограничена на $[a,\omega)$. Пусть g - непрерывно дифференцируема на $[a,\omega)$ и g o 0 , когда $x o \omega$

Доказательство

 $\int\limits_a^\omega f\cdot g=\int\limits_a^\omega F'\cdot g=Fg\Big|_a^\omega-\int\limits_a^\omega F\cdot g'.$ Нужно доказать, что $\int\limits_a^\omega F'\cdot g$ сходится. Рассмотрим $\lim\limits_{b o\omega}F(a)g(b)-F(a)g(a)$. Этот предел равен

нулю. Теперь рассмотрим второй интеграл $\int\limits_a^\omega F\cdot g'$. Пусть F

ограничена константой M. Тогда

$$egin{aligned} -M \left| \int\limits_a^\omega g'
ight| & \leq \int\limits_a^\omega F \cdot g' \leq M \cdot \left| \int\limits_a^\omega g'
ight| \ & \int\limits_a^\omega g' = g(\omega) - g(a) = \lim_{b o \omega} g(b) = 0 \ & -M \left| g(a)
ight| \leq \cdots \leq M \left| g(a)
ight| \end{aligned}$$

4 Кто-то все намешал

См. Телековского Теорему 9.10.8 (ст. 75) она вытекает из теоремы 9.10.7 (ст.74) которая вытекает из теоремы интегрирования по частям. Певел

Теорема: признак Абеля

Теорема

Пусть f непр ан $[a,\omega)$ и $\int\limits_a^\omega$ сходится. Пусть g - непр. дифф. на $[a,\omega)$ б монотонна и ограничена на этом же промежутке. Тогда $\int\limits_a^\omega f\cdot g$ сходится

Доказательство

 $\int\limits_a^{\infty}f\cdot g.$ f непр. \Longrightarrow есть первообразная F. Тогда $\int\limits_a^{\infty}=F(\omega)-F(a)$. Теперь нужно показать, что первообразная ограничена. По условию этот интеграл сходится, поэтому $F(\omega)$ - конечно. $\lim\limits_{b\to\omega}F(b)$. Заметим, что F - непр. как интеграл с переменным верхним пределом. Тогда на любом промежутке [a,b] F ограничена. (разбиваем промежуток $[a,\omega)$) на промежуток [a,b] и $[b,\omega)$. На $[b,\omega]$ F ограничена по определению предела. Поэтому F огр. на $[a,\omega)$. Поэтому f удовлетворяет условию признака Дирихле. g - монотонна и ограничена \Longrightarrow $\exists \lim\limits_{b\to\omega}g(b)$ = C. Рассмотрим

h(x)=g(x)-C. Понятно, что h - непр.дифф. и h o 0, когда $x o \omega$, поэтому h тоже удовлетворяет условиям признака Дирихле.

Рассмотрим интеграл $\int\limits_a^\omega f\cdot g==\int\limits_a^\omega f(g-c)+\int\limits_a^\omega f\cdot c$ - сходится по признаку Дирихле \implies данный интеграл сходится.

Ряды

$$\sum_{k=1}^{\infty}a_k$$
 - ряд

Сходимость ряда

🖹 Сходимость ряда

$$\sum\limits_{1}^{\infty}a_{k}$$
 сходится, если $\exists\lim_{K o\infty}\sum\limits_{k=1}^{K}a_{k}$

🖺 Ряд Лейбница

 $\sum (-1)^k a_k$, где $a_k o 0, a_k \geq 0$. Этот ряд сходися.

Теорема: интегральный признак Коши-Маклорена

Теорема

Формулировка теоремы [править | править код]

Пусть для функции f(x) выполняется:

- 1. $orall x\geqslant 1$ f(x)>0 , т.е. функция принимает положительные значения на промежутке $[1,+\infty)$;
- 2. $\forall x_1, x_2 \geqslant 1$ $x_1 < x_2 \Rightarrow f(x_1) \geqslant f(x_2)$, т.е. функция является монотонно невозрастающей на $[1, +\infty)$;
- 3. $\forall n \in \mathbb{N} \quad f(n) = a_n$ (соответствие значения функции члену ряда).

Тогда ряд $\sum_{n=1}^{\infty}a_n$ и несобственный интеграл $\int\limits_{1}^{\infty}f(x)\,dx$ сходятся или расходятся одновременно.

Пусть f - убывает к нулю на $[1,+\infty)$. Тогда $\sum\limits_{k=1}^{+\infty}f(k)$ сходится или расходится одновременно с интегралом $\int\limits_1^{+\infty}f.$

Доказательство

Набросок доказательства [править | править код]

- 1. Построим на графике f(x) ступенчатые фигуры как показано на рисунке.
- 2. Площадь большей фигуры равна $S_b = f(1) + f(2) + f(3) + \ldots + f(n-1)$.
- 3. Площадь меньшей фигуры равна $S_s = f(2) + f(3) + f(4) + \ldots + f(n)$.
- 4. Площадь криволинейной трапеции под графиком функции равна $S_{tr}=\int\limits_{1}^{n}f(x)\,dx$
- 5. Получаем $S_s \leqslant S_{tr} \leqslant S_b \; \Rightarrow \; S_n a_1 \leqslant \int\limits_1^n f(x) \, dx \leqslant S_{n-1}$
- 6. Далее доказывается с помощью критерия сходимости знакоположительных рядов.

Полное доказательство [править | править код]

orall b>1 f(x) монотонна на [1,b], следовательно $\int\limits_1^b f(x)dx$ существует.

 $orall x \in [n,n+1] \ f(n) \geqslant f(x) \geqslant f(n+1)$, следовательно

$$orall n \in \mathbb{N} \qquad \int\limits_n^{n+1} f(n) dx = f(n) \geqslant \int\limits_n^{n+1} f(x) dx \geqslant f(n+1).$$

Отсюда, если $\int\limits_{1}^{+\infty}f(x)\,dx$ сходится, то

$$S_n-f(1)=f(2)+\ldots+f(n)\leqslant \int\limits_1^n f(x)\,dx\leqslant \int\limits_1^{+\infty}f(x)\,dx<+\infty.$$

Поэтому S_n ограничена. А так как она неубывающая, то она сходится.

Если
$$\int\limits_1^{+\infty}f(x)\,dx$$
 расходится, то есть $\lim\limits_{n o\infty}\int\limits_1^nf(x)\,dx=+\infty$, то

$$S_n=f(1)+\ldots+f(n)\geqslant\int\limits_1^{n+1}f(x)\,dx
ightarrow+\infty,$$
 значит ряд расходится.

Теорема доказана.

Лемма: преобразования Абеля

Лемма

$$\sum\limits_{k=1}^{n}a_{k}b_{k}=S_{n}$$
. $B_{j}=\sum\limits_{k=1}^{j}b_{k}, j=1,\ldots,n$. B_{0} - выбранное число.

Доказательство

$$\sum_{k=1}^N = \left\{ = \sum_{m=1}^k b_m - \sum_{m=1}^k b_m = b_k
ight\} = \sum_{k=1}^n a_k (B_k - B_{k-1}) = \sum_{k=1}^n a_k b_k - \sum_{k=1}^n a_k E_k$$

$$\sum\limits_{k=1}^{n}a_{k}B_{k-1}=rac{m=k-1}{k=m+1}=\sum\limits_{k=0}^{n-1}a_{m+1}B_{m}=\sum\limits_{k=0}^{n-1}a_{k}B_{k}=a_{1}B_{0}+\sum\limits_{k=1}^{n-1}a_{k+1}B_{k}=$$

$$a_n = a_n B_n - a_1 B_0 + \sum\limits_{k=1}^{n-1} (a_k B_k - a_{k+1} B_k) = a_n B_n - a_1 B_0 - \sum\limits_{k=1}^{n-1} B_k (a_{k+1} - a_k)$$

Преобразования Абеля - аналог интегрирования по частям для

рядов. B_j - аналог первообразной для b. $\int\limits_1^i f(x) = \sum\limits_{m=1}^{j-1} b_m = B_{j-1}$, при $B_0 = 0$

$$a_{k+1} - a_k = rac{a(k+1) - a(k)}{(k+1) - k}$$
 - аналог производной

$$a(n)B(n)-a(1)B(0)-\sum\limits_{k=1}^{n+1}B(k)a'(k)$$
 - аналог интеграла.

Теорема: признак Дирихле

Теорема

Пусть
$$\sum_{k=1}^{\infty}$$
 - ряд. Пусть:

1. a_k монотонна и стремится к нулю при $k o \infty$

2.
$$\exists M: orall N \ |B_N| = |\sum_{k=1}^N b_k| \leq M$$
 Тогда $\sum a_k b_k$ - сходится.

Доказательство

Запишем преобразование Абеля: $B_0=0$,

$$egin{aligned} \sum_{k=1}^n a_k b_k &= a_n B_n - \sum_{k=1}^{n-1} B_k (a_{kH} - a_k) \ &|\sum_{k=1}^{n-1} B_k (a_{kH} - a_k)| \leq M \sum_{k=1}^n |a_{k+1-a_k}| = 0 \end{aligned}$$

$$\{a_k$$
- монотонны $\}=M|\sum_{k=1}^{n-1}(a_{k+1}-a_k)|=\ \$=M|a_n-a_1| o M|a_1|$

- конечное число
$$\implies \sum\limits_{k=1}^{n-1} B_k(a_{kH}-a_k)$$
 - сходится.

$$|\sum_{1}^{n-1}B_k(a_{k+1}-a_k)| \leq \sum_{1}^{n-1}|B_k||a_{k+1}-a_k| \leq C$$
 - сходится по

монотонности последовательности

Теорема: признак Абеля

Теорема

Пусть a_k - ограничено и $\sum\limits_1^\infty b_k$ сходится. Тогда $\sum\limits_1^\infty a_k b_k$ сходится.

Доказательство

 a_k - монотонна и ограничена \Longrightarrow по теореме о монотонной последовательности $\exists a = \lim_{n o +\infty} a_n$.

 $h_k = a_k - a o 0, k o \infty$ - монотонна.

 $\sum a_k b_k = \sum (h_k + a) b_k = \sum h_k b_k + a \sum b_k$. Первый ряд сходится по признаку Дирихле, второй - по условию.

Перестановка слагаемых в рядах

🖺 Абсолютно сходящийся ряд

 $\sum a_k$ - <mark>абс. сходящийся</mark>, если $\sum |a_k|$ сходится.

🖺 Условно сходящийся ряд

 $\sum a_k$ - <mark>сходится условно</mark>, если он сходится, но не абсолютно.

Рассмотрим ряд $\sum a_k$. Пусть $\sum a_k^*$ - перестановка этого ряда.

Теорема

Теорема

Пусть $\sum a_k$ сходится абсолютно. Тогда любая перестановка $\sum a_k^*$ сходится к той же сумме.

Доказательство

Дано, что $\sum |a_k|$ сходится. Рассмотрим частичную сумму $\sum_1^n |a_k^*| \leq \sum_{k=1}^\infty |a_k|$, так как a_k^* - подмножество a_k . Но тогда по теореме о монотонной последовательности ряд из модулей $\sum |a_k|$ сходится, то есть $\sum a_k^*$ сходится.

Пусть S - сумма исходного ряда $\sum\limits_1^\infty a_k$, S_n - его частичная сумма, S_n^* - частичная сумма этого ряда с перестановками.

Так как
$$S$$
 - сходится, то $\exists N: \forall n>N: \ |S-\sum\limits_{k=1}^\infty a_k|<rac{\epsilon}{2}$, то есть $|S-S_n|<rac{\epsilon}{2}$. Но $\exists M:\{a_1,\ldots,a_N\}\subseteq\{a_1^*,\ldots,a_M^*\}$. $|S_M^*-S_N|=|\sum\limits_{k=1}^M a_k^*-\sum\limits_{k=1}^N a_k|\leq \sum\limits_{N+1}^\infty |a_k|<rac{\epsilon}{2}$

лемааа

Лемма

Пусть
$$\sum a_k$$
 сходится условно. Тогда пусть $a_k^+=egin{cases} a_k,\ a_k\geq 0 \\ 0,\ a_k<0 \end{cases}$ и $a_k^-=egin{cases} a_k,\ a_k\leq 0 \\ 0,a_k>0 \end{cases}$ Тогда $\sum a_k^+$ и $\sum a_k^-$ расходятся

Доказательство

 $a_k=a_k^++a_k^-$. От противного, пусть $\sum a_k^+$ сходится. Но тогда $\sum a_k^-$ сходится. Но тогда $\sum |a_k|$ сходится. Противоречние

Теорема Римана

Теорема

Доказательство

Фиксируем произвольное A. Уберём из a_k^+ и a_k^- нулевые элементы. Тогда $\alpha_k>0$ $(a_k^+)-\beta_k$ $(a_k^-)\neq 0$. Тогда $\sum \alpha_k \to \infty$ и $\sum -\beta_k \to -\infty$, и $\alpha_k \to +\infty$, и $-\beta_k \to 0$.

- 1. Берём какие-то первые $lpha_k$. Останавливаемся тогда, когда $\sum_{1}^{N_1}lpha_k>A$.
- 2. Берём первые $-eta_k$. Останавливаемся тогда, когда в сумме >A.

Функциональные

последовательности и ряды

Функциональная последовательность

🖺 Функциональная последовательность

Пусть каждому $n\in\mathbb{N}$ сопоставлена некоторая функция $f_n(x)$, определённая на множестве X. Тогда $f_n(x)$ - функциональная последовательность на множестве X.

Примеры

• $f_n(x)=x^n,\ X=[0,+\infty)$

•
$$f_n(x) = \sum_{k=1}^n \frac{1}{k+x}, \ X = (-1, +\infty)$$

Если фиксировать $x=x_0$ и менять n, то получается обычная числовая последовательность. Если фиксировать n_0 и менять x, то получится функция $f_{n_0}(x)$

Равномерная и поточечная сходимость

🖺 Поточечная сходимость

Пусть $\forall x_0 \in X$ числовая последовательность $f_n(x_0)$ сходится. Обозначим этот предел как $f(x_0)$. Получаем функцию f, определённую на X:

$$f(x_0) := \lim_{n o +\infty} f_n(x_0)$$

Тогда последовательность $f_n(x)$ сходится поточечно к функции f(x) на X. Таким образом, это определение представляет

собой:

$$orall x \in X \ orall \epsilon > 0 \ \exists N = N(\epsilon,x) : orall n > N \ |f_n(x) - f(x)| < \epsilon$$

🖹 Равномерная сходимость

Последовательность $f_n(x)$ равномерно сходится на X к функции f, если

$$orall \epsilon > 0 \ \exists N = N(\epsilon) : orall x \in X \ orall n > N \ |f_n(x) - f(x)| < \epsilon$$

. Обозначение: $f_n(x)
ightrightarrows f(x), \ x \in X$.

△ Восклицательный знак

Очевидно, что поточечная сходимость следует из равномерной. Поэтому при исследовании функциональной последовательности на равномерную сходимость единственный возможный равномерный предел - это поточечный предел.

Используя неравенство треугольника, нетрудно показать, что если $f_n(x)
ightrightarrows f(x)$ и $g_n(x)
ightrightarrows g(x)$ на X, то $orall lpha, eta \in \mathbb{R}$:

$$lpha f_n(x) + eta g_n(x)
ightrightarrows lpha f(x) + eta g(x), \ x \in X$$

Теорема: критерий равномерной сходимости

Теорема

$$f_n(x)
ightharpoonup f(x),\ x\in X\iff \ \Leftrightarrow orall \epsilon>0 \exists N=N(\epsilon): orall n>N\ \sup_{x\in X}|f_n(x)-f(x)|<\epsilon$$
, то есть $\lim_{n o +\infty}\sup_{x\in X}|f_n(x)-f(x)|=0$

Доказательство

 \Longrightarrow . Знаем, что $orall \epsilon>0 \exists N=N(\epsilon): orall x\in X orall n>N|f_n(x)-f(x)|<\epsilon$. Так как это

неравенство выполняется для всех x, то оно выполняется и для x, при котором достигается $\sup |f_n(x) - f(x)| < \epsilon$.

$$\longleftarrow$$
 . Имеем, что $orall \epsilon>0 \exists N=N(\epsilon): orall n>N \sup_{x\in X}|f_n(x)-f(x)|<\epsilon$. Если $\sup_{x\in X}|f_n(x)-f(x)|<\epsilon$, то очевидно, и

$$orall x \in \stackrel{x \in \Lambda}{X} |f_n(x) - f(x)| < \epsilon$$

Теорема: критерий Коши равномерной сходимости

Теорема

$$f_n(x)
ightharpoonup f(x), \ x \in X \iff \ orall \epsilon > 0 \exists N = N(\epsilon) : orall x \in X \ orall n, m > N \ |f_n(x) - f(x)| < \epsilon$$

Доказательство

 \Longrightarrow . Знаем, что $orall \epsilon>0 \exists N=N(\epsilon):\ orall x\in X\ orall n>N\ |f_n(x)-f(x)|<\epsilon$. По неравенству треугольница, $|f_n(x)-f_m(x)|\leq |f(x)-f_n(x)|+|f(x)-f_m(x)|$.

Отсюда всё стандартно выводится. Мы уже такое делали, проверьте сами 🙂

← . Имеем

$$orall \epsilon > 0 \ \exists N = N(\epsilon) : orall x \in X \ orall n, m > N \ |f_n(x) - f_m(x)| < \epsilon$$

Зафиксируем точку x. Тогда по критерию Коши для предела функции в каждой точке существует $\lim_{n o +\infty} f_n(x) = f(x)$. Возьмём $\epsilon = \frac{\epsilon'}{2}$ Знаем, что

$$orall x \ \in X: \ \exists n,m>N \ |f_n(x)-f_m(x)|<rac{\epsilon'}{2}$$

Зафиксируем n>N. Тогда

$$|orall m>N: \; orall x\in X \left|f_n(x)-f_m(x)
ight|<rac{\epsilon'}{2}$$

Перейдём к пределу по m:

$$orall x \in X \ \lim_{m o +\infty} |f_n(x) - f_m(x)| = |f_n(x) - f(x)| \leq rac{\epsilon'}{2} < \epsilon'$$

Тогда получим:

$$orall \epsilon' > 0 \ \exists N = N(\epsilon') : orall x \in X \ orall n > N \ \ |f_n(x) - f(x)| < \epsilon'$$

Функциональный ряд

🖺 Функциональный ряд

Ряд вида $\sum_{k=1}^{+\infty} a_k(x)$ называется функциональным рядом. При фиксированных x это обычный числовой ряд.

🖺 Сходимость функционального ряда

Ряд $\sum\limits_{k=1}^{+\infty}a_k(x)$ сходится поточечно/равномерно на множестве X, если на нём поточечно/равномерно сходится последовательность его частичных сумм $\sum\limits_{k=1}^{n}a_k(x)$.

Признаки равномерной сходимости функциональных рядов

Теорема: признак Вейерштрасса

Теорема

Пусть на множестве X заданы ряды $\sum\limits_{k=1}^{+\infty}a_k(x)$ и $\sum\limits_{k=1}^{+\infty}b_k(x)$. При этом $orall x\in X$ и $k\in \mathbb{N}$:

$$|a_k(x)| \leq b_k(x)$$

Если ряд $\sum_{k=1}^{+\infty} b_k(x)$ равномерно сходится на X, то $\sum_{k=1}^{+\infty} a_k(x)$ тоже равномерно сходится на X.

Доказательство

По критерию Коши:

$$orall \epsilon > 0 \exists N = N(\epsilon) : orall x \in X \ orall n > m > N : \ \sum\limits_{k=m+1}^n b_k(x) < \epsilon$$
 .

Тогда имеем:

$$\left|\sum_{k=m+1}^n
ight| \leq \sum_{k=m+1}^n |a_k(x)| \leq \sum_{k=m+1}^n b_k(x) < \epsilon$$

Таким образом, уловие Коши выполняется и для $\sum\limits_{k=1}^{+\infty}a_k(x)$. Теорема доказана.

Теорема: признак Дирихле

Теорема

Если

- При каждом фиксированном $x_0 \in X$ числовая последовательность $a_k(x_0)$ монотонна
- Функциональная последовательность $a_k(x)$ равномерно сходится к $f\equiv 0$ на X
- Частичные суммы $\sum\limits_{k=1}^n b_k(x)$ равномерно ограничены на X, то есть

$$\exists M: orall n \in \mathbb{N} \ orall x \in X \ \left| \sum_{k=1}^n b_k(x)
ight| \leq M$$

Тогда ряд $\sum\limits_{k=1}^{+\infty}a_k(x)b_k(x)$ равномерно сходится на X.

Доказательство

Хотим получить оценку вида $\sum_{k=m+1}^n a_k(x)b_k(x)<\epsilon$, чтобы сослаться на критерий Коши. Применяя те же рассуждения, что и в преобразовании Абеля получаем

$$\sum_{k=m+1} a_k(x) b_k(x) = a_n(x) V_n(x) - \sum_{k=m+1} V_k(x) (a_{k+1}(x) - a_k(x))$$

Здесь $V_j(x) = \sum\limits_{k=m+1}^j b_k(x), \; V_m(x) := 0.$ Всё аналогично обычнтому преобразованию Абеля, где сдвинут нижний индекс.

По условию равномерной ограниченности:

$$egin{aligned} |V_j(x)| &= \left|\sum_{k=m+1}^j b_k(x)
ight| = \left|\sum_{k=1}^j b_k(x) - \sum_{k=1}^m b_k(x)
ight| \leq \ &\leq \left|\sum_{k=1}^j b_k(x)
ight| + \left|\sum_{k=1}^m b_k(x)
ight| \leq 2M \end{aligned}$$

Получаем

$$egin{aligned} \left| \sum_{k=m+1}^n a_k(x) b_k(x)
ight| &= \left| a_n(x) V_n(x) - \sum_{k=m+1}^{n-1} V_k(x) (a_{k+1}(x) - a_k(x))
ight| \leq \ &\leq |a_n(x) V_n(x)| + \left| \sum_{k=m+1}^{n-1} V_k(x) (a_{k+1}(x) - a_k(x))
ight| \leq \ &\leq 2M |a_n(x)| + 2M \sum_{k=m+1}^{n-1} |a_{k+1}(x) - a_k(x)| \quad (rac{m{\mathcal{V}}}{m{\mathcal{V}}}) \end{aligned}$$

По условию, $a_n(x)
ightrightarrows 0$, то есть при больших n и m для всех $x \in X$

$$|a_n(x)|<\epsilon, \ |a_{m+1}(x)|<\epsilon \quad (rac{r}{V})$$

Дано, что $orall x_0 \in X$ числовая последовательность $a_n(x_0)$ монотонна. Значит,

$$egin{aligned} \sum_{k=m+1}^{n-1}|a_{k+1}(x)-a_k(x)| &= \left|\sum_{k=m+1}^{n-1}(a_{k+1}(x)-a_k(x))
ight| &= \ &= |a_n(x)-a_{m+1}(x)| \quad ext{(of)} \end{aligned}$$

Подставляя $(law{red})$ и $(law{red})$ в $(law{red})$ и используя неравенство треугольника, получаем

$$|(igwedge)| < 2M\epsilon + 2M|a_n(x) - a_{m+1}(x)| \leq 2M\epsilon + 2M(|a_n(x)| + |a_{m+1}(x)|)$$

Продолжаем оценку, снова применяя (🐺):

$$(iggredown) = \left|\sum_{k=m+1}^n a_k(x)b_k(x)
ight| < 2M\epsilon + 2M(|a_n(x)| + |a_{m+1}(x)|) <$$

$$< 2M\epsilon + 2M(\epsilon + \epsilon) = 6M\epsilon$$

Теорема: признак Абеля

Теорема

Если

• Функциональная последовательность $a_n(x)$ равномерно ограничена на X, то есть

$$\exists M: \forall n \in \mathbb{N} \ \forall x \in X \ |a_n(x)| \leq M$$

- При каждом фиксированном $x_0 \in X$ числовая последовательность $a_k(x_0)$ монотонна
- Ряд $\sum\limits_{k=1}^{+\infty}b_k(x)$ равномерно сходится на X

Тогда ряд $\sum\limits_{k=1}^{+\infty}a_k(x)b_k(x)$ равномерно сходится на X.

Доказательство

Используем версию преобразования Абеля из признака Дирихле. Используя неравенство треугольника и равномерную ограниченность $a_k(x)$, получаем:

$$egin{aligned} \left| \sum_{k=m+1}^n a_k(x) b_k(x)
ight| & \leq |a_n(x) V_n(x)| + \left| \sum_{k=m+1}^{n-1} V_k(x) (a_{k+1}(x) - a_k(x))
ight| \leq \ & \leq M |V_n(x)| + \sum_{k=m+1}^{n-1} |V_k(x)| |a_{k+1}(x) - a_k| \end{aligned}$$

Вспомним, что

$$V_k(x) = \sum_{j=m+1}^k b_j(x)$$

Знаем, что ряд $\sum\limits_{k=1}^{+\infty}b_k(x)$ равномерно сходится на X, значит, для больших m, по критерию Коши,

$$|V_k(x)|<\epsilon,\;k>m+1$$

Подставим это в оценку:

$$|a_k(a_k)| \leq M\epsilon + \epsilon \sum_{k=m+1}^{n-1} |a_{k+1}(x) - a_k(x)|$$

Используя монотонность и равномерную ограниченность $a_k(x)$, получаем, что

$$egin{split} \sum_{k=m+1}^{n-1}|a_{k+1}(x)-a_k(x)|&=\left|\sum_{k=m+1}^{n-1}(a_{k+1}(x)-a_k(x))
ight|&=\ &=|a_n(x)-a_{m+1}(x)|\leq |a_n(x)|+|a_{m+1}(x)|\leq 2M \end{split}$$

Но тогда

$$\left|\sum_{k=m+1}^n a_k(x)b_k(x)
ight|=(lacksquare)\leq M\epsilon+2M\epsilon=3M\epsilon$$

Теорема: равномерная сходимость сохраняет непрерывность функции

Теорема

- $f_n(x)$ определены в некоторой окрестности x_0 .
- $f_n(x)$ непрерывны в x_0
- $f_n(x)
 ightrightarrows f$ в $O(x_0)$ Тогда f непрерывна в x_0

Доказательство

Хотим показать, что $\lim_{x o x_0}f(x)=f(x_0)$.

$$|f(x)-f(x_0)|=|f(x)-f_n(x)\pm f_n(x)\pm f_n(x_0)|\leq \ \leq |f(x)-f_n(x)|+|f_n(x_0)-f(x_0)|+|f_n(x)-f_n(x_0)|<3\epsilon$$

Следствие 1

В условиях теоремы можно переставлять пределы местами, то есть $\lim_{n o\infty}\lim_{x o x_0}f_n(x)=\lim_{x o x_0}\lim_{n o\infty}f_n(x)$

Доказательство следствия 1

$$\lim_{n o\infty}\lim_{x o x_0}f_n(x)=\lim_{n o\infty}f_n(x_0)=f(x_0) \ \lim_{x o x_0}\lim_{n o\infty}f_n(x)=\lim_{x o x_0}f(x)=f(x_0)$$

Следствие 2: теорема о непрерывности функциональных рядов

$$\sum_{k=1}^{\infty} a_k(x)$$

- ullet $orall k:a_k(x)$ определена в $O(x_0)$
- ullet $orall k:a_k(x)$ непр. в x_0
- $\sum a_k \rightrightarrows S(x)$

Тогда
$$S(x)$$
 непрерывна и $\sum\limits_{k=1}^\infty a_k(x) = \sum\limits_{1}^\infty \lim\limits_{x o x_0}^\infty a_k(x)$

Доказательство следствия 2

- S_n(x) = \sum\limits_1^n a_k(x)\$
- $orall n:\sum_1^n a_k(x)$ определена в $O(x_0)$
- $orall n:\sum_1^n a_k(x)$ непрерывна в x_0

Применяем теорему.

Пример

Последовательность всюду разрывных функций f_n равномерно сходится к непрерывной f.

$$f_n(x) = egin{cases} rac{1}{n}, x \in \mathbb{Q} \ 0, x
otin \mathbb{Q} \end{cases}
ightrightarrows f \equiv 0$$

$$\zeta(x) = \sum\limits_{1}^{\infty} rac{1}{n^x}$$
 - дзета-функция Римана

Теорема о кто

Теорема

Предположим, что f_n непрерывны на [a,b] и последовательность $f_n
ightrightarrows f$ на [a,b]. Тогда $\int\limits_a^x f_n(t)\,dt
ightharpoonup \int\limits_a^x f(t)\,dt$

Доказательство

 $orall n:f_n$ непрерывна на [a,b] \implies f_n интегрируема

$$egin{aligned} (?) & \sup_{x \in [a,b]} \left| \int\limits_a^x f_n(t) \, dt - \int\limits_a^x f(t) \, dt
ight|
ightarrow 0 \quad (?) \ & \sup_{x \in [a,b]} \left| \int\limits_a^x (f_n(t) - f(t)) \, dt
ight| \leq \sup_{[a,b]} \int\limits_a^x |f_n(t) - f(t)| \, dt \leq \ & \leq \left\{ \int\limits_{\forall t \in [a,b]} |f_n(t) - f(t)| < \epsilon
ight\} \leq \epsilon (b-a) \end{aligned}$$

Функция f интегрируема, так как f - непрерывна.

Следствие 1

В условиях теоремы верно, что
$$\lim_{n o\infty}\int\limits_a^bf(t)\,dt=\int\limits_a^b\lim_{n o\infty}f_n(t)\,dt$$

Следствие 2

$$\sum_{1}^{\infty}a_{k}(x)$$

- ullet $a_k(x)$ непрерывна на [a,b]
- $\sum a_k(x)
 ightrightarrow S(x)$ на [a,b]

Тогда S(x) интегрируема на [a,b] и $\int\limits_a^b\sum\limits_1^\infty a_k(x)\,dx=\sum\limits_1^\infty\int\limits_a^b a_k(x)\,dx$

Пример, когда нельзя поменять бесконечную сумму и интеграл местами

$$f_n(x) = egin{cases} 2n^3x, \ 0 \leq x \leq rac{1}{2n} \ 2n^2 - 2n^3x, \ rac{1}{2n} \leq x \leq rac{1}{n}
ightarrow f \equiv 0 \ 0, \ rac{1}{n} \leq x \leq 1 \ \ \lim_{n
ightarrow \infty} \int\limits_0^1 f_n(x) \, dx = +\infty \ \lim_{n
ightarrow \infty} f_n(x) \, dx = 0 \end{cases}$$

В этом случае отсутствует условие равномерной сходимости, нужное для теоремы.

Теорема о диффференцировании функциональных последовательостей

Теорема

- $\exists x_0 \in [a,b]: f_n(x_0)$ сходится
- ullet $f_n(x)$ непрерывно дифференцируемы на [a,b]
- $f_n'(x)
 ightrightarrows arphi(x)$ на [a,b] Тогда $f_n
 ightrightarrows f$ на [a,b] и f'(x)=arphi(x), то есть $(\lim_{n
 ightarrow\infty}f_n(x))'=\lim_{n
 ightarrow\infty}f_n'(x)$

Доказательство

 f_n и f_n^\prime - непрерывны, поэтому можно применить формулу Ньютона-Лейбница:

$$f_n(x)-f_n(x_0)=\int\limits_{x_0}^c f_n'(t)\,dt
ightrightarrows\int\limits_{x_0}^x arphi(t)\,dt \quad (\dagger)$$

Применим предыдущую теорему:

$$\int\limits_{x_0}^c f_n'(t)\,dt
ightrightarrows\int\limits_{x_0}^x arphi(t)\,dt$$

 $f_n(x_0)$ сходится $\implies f_n(x_0)
ightrightarrows$ (так как от x не зависит)

$$f_n(x)=\int\limits_{x_0}^x f_n'+f_n(x_0)$$

Сумма равномерно сходящихся равномерно сходится (по неравенству треугольника).

Таким образом, $f_n
ightrightarrows f$. Покажем, что f'(x) = arphi.

В (\dagger) в левой части перейдём к $\lim_{n o\infty}$. $f(x)-f(x_0)=\int\limits_{x_0}^x arphi(t)\,dt$, так

как равномерный предел равен поточечному. Теперь можно дифференцировать:

$$f'(x) = \varphi(x)$$

Степенные ряды

🖺 Степенной ряд

Ряд вида $\sum\limits_{1}^{\infty}a_k(x-x_0)^k,\; a_k\in\mathbb{R}$ - степенной ряд с центром в точке x_0 .

Ало

Можно сделать замену $t=x-x_0$, поэтому б.о.о. будем рассматривать ряди $\sum a_k x^k$

Теорема: первая теорема Абеля

Теорема

- 1. Пусть $\sum a_k\overline{X}^k$ сходится, $\overline{X}^k
 eq 0$. Тогда $\sum a_kx^k
 ightrightarrows$ на любом [-q,q], где $|q|<|\overline{x}|$, и он абсолютно сходится.
- 2. Пусть $\sum a_k \overline{X}^k$ расходится. Тогда $orall x:|x|>|\overline{x}|\implies\sum a_k x^k$ сходится

Доказательство

1.
$$|a_kX^k|=\frac{|a_k\overline{X}^k|\cdot|x^k|}{|\overline{x}^k|}\leq \left\{ \substack{\mathsf{T.K.}\sum a_k\overline{x}^k \text{ сходится}} \right\}$$

$$\leq M\left|\frac{x}{\overline{x}}\right|\leq M\left(\frac{q}{|\overline{x}|}\right)^k-\text{сходится}$$

2. От противного. $\exists x: |x|>|ar{x}|:\sum a_k x^k$ сх. По п.1 $\sum a_k ar{x}$ сходится. Противоречие.

Радиус сходимости

🖺 Радиус сходимости степенного ряда

 $R:=\supig\{|x|:\sum a_kx^k$ сходится $ig\}\in\mathbb{R}\cup\{+\infty\}$ - радиус сходимости степенного ряда

Теорема: следствие из 1-й теоремы Абеля

Теорема

- 1. $\sum a_k x^k$ абсолютно сходится на (-R,R)2. $\sum a_k x^k
 ightrightarrows$ на $orall [-q,q] \subset (-R,R)$
- 3. S(x) непрерывна на (-R,R)
- **4.** S интегрируема на $[a,b]\subset (-R,R)$

Доказательство

- 1. $R = \sup \ldots$
- 2. сидел прогал и потерял..

Теорема: вторая теорема Абеля

Теорема

Пусть $\sum a_k x^k$ сходится в $R\left(-R
ight)$. Тогда $\sum a_k x^k
ightrightarrows$ на $[0,\mathbb{R}]$ $([-\mathbb{R},0])$.

Доказательство

Признак Абеля. Пусть б.о.о. сходится в $\mathbb R$. Тогда $a_k x^k = a_k \mathbb R \cdot rac{x^k}{\mathbb D^k}$

Лемма о верхнем пределе

Лемма

Пусть $\{u_k\}$ - произвольная последовательность b $\{v_k\}:\exists v:=\lim_{k o\infty}v_k
eq 0$. Тогда $\overline{\lim_{k o\infty}}w_k=\overline{\lim_{k o\infty}}u_kv_k=\overline{v_{k o\infty}}u_k$.

Доказательство

$$\exists k_e: u_{k_e}
ightarrow \overline{\lim_{k
ightarrow \infty}} u_k$$
 - по свойству $\overline{\lim}$

Возьмём подпоследовательность с индексами k_e . Тогда

$$w_{k_e} = u_{k_e} \cdot v_{k_e} o v \overline{\lim_{k o \infty}} u_k \leq \overline{\lim_{k o \infty}} w_k$$

Возьмём k_t такую, что $w_{k_t} o \overline{\lim_{k o \infty}} u_k$. Тогда $w_{k_t} = u_{k_t} v_{k_t}$. Тогда

$$u_{k_t} = rac{w_{k_t}}{v_{k_t}}
ightarrow rac{\overline{\lim}\, w_k}{v} \leq \overline{\lim}\, u_k$$

Домножим на v:

$$\overline{\lim}\, w_k \leq v\, \overline{\lim}\, u_k$$

Мы получили две оценки с разных сторон.

Лемма: обобщённый признак Коши сходимости числового ряда

Лемма

$$\sum_1^\infty p_k, \; ar p = \overline{\lim k o \infty} \sqrt[k]{|p_k|}$$

Если

- $ar{p} < 1 \implies$ ряд сходится
- $ar{p} > 1 \implies$ ряд расходится

Доказательство

ar p < 1. $ar p = \overline{\lim_{k o\infty}}\sqrt[k]{|p_k|} \implies \exists N: orall k > N \sqrt[k]{|p_k|} < q$. От противного. Пусть $orall N\exists k > N: \sqrt[k]{|p_k|} \geq q$

- ullet если $\sqrt[k]{|p_k|}$ не ограничена \Longrightarrow можно выделить подпоследовательность с верхним пределом $=\infty$
- ullet Если $\sqrt[k]{|p_k|} \geq q \Longrightarrow$ по теореме Больцано-Вейершнтасса $\exists \sqrt[ke]{|p_k|} o b \geq q$, то есть расходится.

 $ar p=\overline{\lim}\implies p_{k_t} oar p$. Тогда $orall \epsilon>0\exists N(\epsilon):orall k_t>N$ $|ar p-p_{k_t}|<\epsilon$. Тогда $|p_k|< q^k$, и q^k - геом.прогрессия. Поэтому $|p_k|$ сходится.

ar p>1. Возьмём $ar \epsilon=ar p-1$. Тогда

$$|ar p-|p_{k_t}|\leq |ar p-p_{k_t}|$$

Перенесём $|p_{k_t}|$ вправо

$$1 \leq |p_{k_t}|$$

Тогда ряд расходится по необходимому условию сходимости.

Теорема Коши-Адамара

Теорема

$$R = rac{1}{\displaystyle arprojlim_{k o \infty} \sqrt[k]{|a_k|}}$$
 , $\sum a_k x^k$

Доказательство теоремы

• |x| < R. Покажем, что при таких x ряд сходится. $p_k = a_k x^k$. Предположим, что $x \neq 0$, так как в нуле ряд всегда сходится. Тогда

$$\overline{\lim_{k o\infty}}\sqrt[k]{|p_k|}=\overline{\lim_{k o\infty}}\sqrt[k]{|a_k||x^k|}=$$
 $=\{$ лемма о верхнем переделе $\}=|x|\cdot\overline{\lim}\sqrt[k]{|a_k|}<$ $<rac{1}{\overline{\lim}\sqrt[k]{|a_k|}}\cdot\overline{\lim}\sqrt[k]{|a_k|}=1$

Тогда по признаку Коши ряд сходится.

- $|x| \geq rac{1}{\overline{\lim} \sqrt[k]{|a_k|}}$. Делаем то же самое, получаем оценку $>1 \implies$ ряд расходится.
- $>1 \Longrightarrow$ ряд расходится.
 $rac{1}{\overline{\lim} \sqrt[k]{|a_k|}}$ тогда $\overline{\lim} \sqrt[k]{a_k|x^k|} = |x| \cdot 0 < 1$ ряд сходится.
- ullet $\overline{\lim} \sqrt[k]{|a_k|} = +\infty \implies$ ряд расходится.

Теорема: бесконечная дифференцируемость степенного ряда

Теорема

Рассмотрим $\sum a_k x^k = S(x)$. Тогда S'(x) - производная степенного ряда = $\sum k a_k x^{k-1}$ и радиус сходимости S' равен радиусу сходимости S.

Доказательство

Рассмотрим $\sum k a_k x^{k-1}$. Тогда

$$R'=rac{1}{\overline{\lim\limits_{k o\infty}\sqrt[k]{k|a_k|}}}=\left\{\sqrt[k]{k} o 1
ight\}=\{$$
лемма о верхнем пределе $\}=$

$$=\frac{1}{\varlimsup\sqrt[k]{|a_k|}}$$

Поэтому радиус сходимости совпадает с исходным. Покажем, что ряд из производных равен S'. Восмользуемся теоремой о дифференцируемости функционального ряда.

- $\exists x_0: \sum a_k x_0^k$ сходится
- ullet $a_k x^k$ непрерывно дифференцируем
- ullet $\sum ka_kx^{k-1}
 ightrightarrows$ на [-q,q] ?

Возьмём произвольный $[-q,q]\subset (-R,R)$. По 1й теореме Абеля $\sum ka_kx^{k-1}
ightrightarrows$ на $[-q,q] \implies$ на $[-q,q] S'(x) = \sum ka_kx^{k-1}$. Так как q произвольно, то это выполняется и на (-R,R).

Следствие

По индукции S - бесконечно дифференцируема. Поэтому $f(z),z\in\mathbb{C}$:

$$\lim_{\Delta z o 0} rac{f(z+\Delta z)-f(z)}{\Delta z} = f'(z),$$
 в $O(z)$

Если существует производная, то f - аналитична. Тогда у комплексных функций существует бесконечно много производных, если существует хотя бы одно. И таким образом, функция аналитична, только если она представима в виде степенного ряда (ряда Тейлора).

Теорема: все степенные ряды являются рядами Тейлора

Теорема

$$S(x) = \sum a_k x^k$$
. Тогда $S(x) = \sum rac{S^{(k)}(0)}{k!} x^k$ - ряд тейлора

Доказательство

$$egin{align} S^{(k)}(x) &= \left(\sum_{j < k}'
ight)^{(k)} + (a_k x^k)^{(k)} + \left(\sum_{j > k}
ight)^{(k)} = a_k k! + (a_{k+1} x^{k+1} + \ldots) \ a_a &= rac{S^{(k)}(0)}{k!} \end{aligned}$$

Теорема Вейерштрасса о равномерном приближении функции многочленом

Теорема

Пусть f непрерывна на [a,b]. Тогда orall arepsilon>0 существует многочлен $P_arepsilon(x)$, такой, что $\max_{[a,b]}|f(x)-P_arepsilon(x)|<arepsilon$

Доказательство

🖺 Многочлены Бернштейна

$$B_{n,k}(x) = C_n^k x^k (1-x)^{n-k}, \ 0 \le k \le n$$

-- многочлен Бернштейна

Свойства:

1.
$$\sum_{k=1}^n = C_n^k x^k (1-x)^{n-k} = \sum_{k=0}^n B_{n,k=1}$$

2. Поведение на [0,1].

$$B'_{n,k}(x)=C^k_n(kx^{k-1}(1-x)^{n-k}-x^k(n-k)(1-x)^{n-k-1})=0 \ \Longrightarrow$$
 возрастает на $[0,rac{k}{n}]$, убывает на $[rac{k}{n},1]$

3.
$$\sum_{k=0}^{n} \frac{k}{n} B_{n,k(x)} = x$$

4.
$$\sum_{k=0}^{n} rac{k^2}{n^2} B_{n,k(x)} = rac{x}{n} + rac{(n-1)}{n} \cdot x^2$$

5.
$$\sum_{0}^{n} (\frac{k}{n} - x)^{2} B_{n,k(x)} = \frac{x - x^{2}}{n}$$

1. Для отрезка [0,1]. Сопоставим f многочлен

$$p(x)=\sum_0^N f(rac{k}{n})B_{n,k}(x)$$
. $f(x)-p(x)=\{ ext{CB-BO }1\}=\sum_0^n \left(f(x)-f\left(rac{k}{n}
ight)
ight)B_{n,k}(x)$ = \text{{рассмотрим два семейства индексов}} == $\sum_{k\in I}+\sum_{k\in II}$, где

$$I=I(x)=\left\{k:\left|rac{k}{n}-x
ight|<rac{1}{n^{rac{1}{4}}}
ight\}$$

$$II = II(x) = \left\{ k: \left|rac{k}{n} - x
ight| \geq rac{1}{n^{rac{1}{4}}}
ight\}$$

1.
$$\left|\sum_{k\in II}
ight|\leq \sum_{k\in II}\left|f(x)-f(rac{k}{n})
ight|\cdot |B_{n,k(x)}|\leq \{f\leq M ext{ на } [a,b]\}\leq$$

$$\leq 2M \cdot \sum_{k \in II} B_{n,k}(x) \cdot rac{\left(rac{k}{n} - x
ight)^2}{\left(rac{k}{n} - x
ight)^2} \leq 2M \sqrt{n} \sum_{k \in II} B_{n,k}(x) (rac{k}{n} - x)^2 \leq$$

$$0 \leq 2M\sqrt{n}\sum_{k=0}^n = 2M\sqrt{n}\left(rac{x-x^2}{n}
ight) \leq rac{2M}{\sqrt{n}} < rac{arepsilon}{2}$$

2. По теореме Кантора f равномерно непрерывна на [0,1]. Возьмём $\varepsilon'=rac{arepsilon}{2}$. Тогда $\exists \delta(\varepsilon'):rac{1}{n^{rac{1}{4}}}<\delta(\varepsilon')$ при больших n. Тогда

$$\left|\sum_{k\in I}
ight|\leq \sum_{I}\left|f(x)-f(rac{k}{n})
ight|B_{n,k}(x)<rac{arepsilon}{2}$$

2. x=a+(b-a)t на [a,b]. Пусть f определена на [a,b]. Сделаем замену f(x)=f(a+(b-a)t)=g(t), определённая на [0,1]. |g(t)-p(t)|<arepsilon