HKUST – Department of Computer Science and Engineering COMP 2711: Discrete Math Tools for Computer Science

Spring 2020 Midterm Examination

Date: Monday, 6 April 2018 Time: 19:00–20:40

Problem 1: [8 pts] Let Z(x), D(x), F(x) and C(x) be the following predicates:

Z(x): "x attended the Zoom meeting of midterm dry run".

D(x): "x gets some marks deducted for the midterm exam".

F(x): "x submitted a file for the midterm dry run".

C(x): "x is cheating".

Express the following statements using quantifiers, logical connectives, and the predicates above, where the domain consists of all students in COMP2711.

- (a) Any student absent from the Zoom meeting of midterm dry run gets some marks deducted for the midterm exam.
- (b) If a student attended the Zoom meeting of midterm dry run but got some marks deducted for the midterm exam, then he/she must have not submitted a file for the midterm dry run.
- (c) Some students were absent from the Zoom meeting of midterm dry run but did not get marks deducted for the midterm exam.
- (d) Any student who submitted a file for the midterm dry run but were absent from the Zoom meeting of midterm dry run is considered as cheating.

Answer: (a) $\forall x(\neg Z(x) \rightarrow D(x))$.

- (b) $\forall x (Z(x) \land D(x) \rightarrow \neg F(x)).$
- (c) $\exists x (\neg Z(x) \land \neg D(x)).$
- (d) $\forall x (F(x) \land \neg Z(x) \to C(x)).$

Problem 2: [10 pts] Determine whether the following two propositions are logically equivalent.

(i)
$$((\neg p \land q) \rightarrow (p \lor s)) \lor ((\neg (\neg q \land p) \land q) \rightarrow (s \lor r)),$$

(ii)
$$q \to (p \lor s \lor r)$$

If they are, prove it by a series of logical equivalences. If they are not, give a counterexample.

Answer:

$$((\neg p \land q) \rightarrow (p \lor s)) \lor ((\neg (\neg q \land p) \land q) \rightarrow (s \lor r))$$

$$\equiv ((\neg p \land q) \rightarrow (p \lor s)) \lor (((q \lor \neg p) \land q) \rightarrow (s \lor r))$$

$$\equiv ((\neg p \land q) \rightarrow (p \lor s)) \lor (q \rightarrow (s \lor r))$$

$$\equiv (\neg (\neg p \land q) \lor (p \lor s)) \lor (\neg q \lor (s \lor r))$$

$$\equiv ((p \lor \neg q) \lor (p \lor s)) \lor (\neg q \lor (s \lor r))$$

$$\equiv \neg q \lor p \lor s \lor r$$

$$\equiv q \rightarrow (p \lor s \lor r)$$

Problem 3: [12 pts] For each of the following statement, determine it is true or false. Justification is not required. The domain is the set of real numbers.

(a)
$$\forall x(|x| \cdot x \ge x)$$

(b)
$$\forall x \forall y ((x > 2 \land y > 2) \rightarrow (xy > x + y))$$

(c)
$$\forall x \exists y (x = 2y + 3)$$

(d)
$$\exists y \forall x (x = 2y + 3)$$

(e)
$$\forall x((x>1) \rightarrow (x^2>x)) \leftrightarrow \neg \exists x((x>1) \rightarrow (x^2\leq x))$$

(f)
$$\forall x((x>1) \rightarrow (x^2>x)) \leftrightarrow \neg \exists x((x>1) \land (x^2\leq x))$$

Answer: (a) False. When x = -2, we have $2 \cdot -2 = -4 < -2$.

- (b) True. When y > 2, y/(y-1) < 2. So, x > y/(y-1). This implies x(y-1) > y, and thus xy > x + y.
- (c) True. There is always a y = (x-3)/2.
- (d) False. For every y, there exists an $x \neq 2y + 3$.
- (e) False.

$$\neg \exists x ((x > 1) \to (x^2 \le x))$$

$$\equiv \forall x \neg ((x > 1) \to (x^2 \le x))$$

$$\equiv \forall x \neg (\neg (x > 1) \lor (x^2 \le x))$$

$$\equiv \forall x ((x > 1) \land (x^2 > x))$$

which is false when $x \leq 1$. However, $\forall x((x > 1) \rightarrow (x^2 > x))$ is true.

(f) True.

$$\neg \exists x ((x > 1) \land (x^2 \le x))$$

$$\equiv \forall x \neg ((x > 1) \land (x^2 \le x))$$

$$\equiv \forall x ((x \le 1) \lor (x^2 > x))$$

$$\equiv \forall x ((x > 1) \rightarrow (x^2 > x))$$

Problem 4: [10 pts] Recall that we can express unique existence as

(1)
$$\exists x (P(x) \land \forall y (P(y) \rightarrow x = y))$$

In many unique existence proofs, instead of proving (1), we prove the following:

$$(2)$$
 $\exists x P(x)$

(3)
$$\forall x \forall y (P(x) \land P(y) \rightarrow x = y)$$

Your task here is to prove (1) from (2) and (3) using the rules of inference for propositional and predicate logic.

Answer:

- (4) P(c) for some c
- (2), existential instantiation
- (5) $\forall y (P(c) \land P(y) \rightarrow c = y)$
- (3), universal instantiation
- (6) $\forall y (\neg P(c) \lor \neg P(y) \lor c = y)$
- (5), equivalence
- (7) $\forall y (\neg P(y) \lor c = y)$
- (4), (6), resolution
- $(8) \quad \forall y (P(y) \to c = y)$
- (7), equivalence
- (9) $\forall y (P(c) \land (P(y) \rightarrow c = y))$
- (4), (8),conjunction
- $(10) \quad \exists x \forall y (P(x) \land (P(y) \to x = y))$
- (9), existential generalization
- (11) $\exists x (P(x) \land \forall y (P(y) \rightarrow x = y))$
- (10), null qualification

Problem 5: [10 pts] Decide if the following sets are countable or uncountable. Let \mathbf{N} be the set of natural numbers. P(S) denotes the power set of S. No need to justify your answers.

- (a) N^3
- (b) $P(\mathbf{N})$
- (c) $P(P(\mathbf{N}))$
- (d) The set of all functions from N to N
- (e) The set of all functions from $\{0,1\}$ to ${\bf N}$

Answer: (a) Countable; (b) Uncountable; (c) Uncountable; (d) Uncountable; (e) Countable.

Problem 6: [10 pts] Use the extended Euclid algorithm to find the inverse of 53 (mod 180). Show the steps of the algorithm.

Answer: Calculate gcd(180, 53) using euclidean algorithm.

$$180 = 53 \cdot 3 + 21$$

$$53 = 21 \cdot 2 + 11$$

$$21 = 11 \cdot 1 + 10$$

$$11 = 10 \cdot 1 + 1$$

$$10 = 1 \cdot 10 + 0$$

So
$$acd(180, 53) = 1$$
.

Rewriting:

$$21 = 180 - 53 \cdot 3$$

$$11 = 53 - 21 \cdot 2$$

$$10 = 21 - 11 \cdot 1$$

$$1 = 11 - 10 \cdot 1$$

Substituting:

$$1 = 11 - 10 \cdot 1$$

$$1 = 11 - (21 - 11 \cdot 1) \cdot 1$$

$$1 = 21 \cdot (-1) + 11 \cdot (2)$$

$$1 = 21 \cdot (-1) + (53 - 21 \cdot 2) \cdot (2)$$

$$1 = 53 \cdot (2) + 21 \cdot (-5)$$

$$1 = 53 \cdot (2) + (180 - 53 \cdot 3) \cdot (-5)$$

$$1 = 180 \cdot (-5) + 53 \cdot 17$$

So 17 is the modular inverse of 53 (mod 180)

Problem 7: [10 pts] Solve $10x + 4 \equiv 0 \pmod{23}$.

Answer: Solve $10x \equiv -4 \pmod{23}$

As gcd(10,23)=1 we can multiply both sides by the inverse of 10 (mod 23). We calculate the inverse of 10 (mod 23) using extended Euclidean algorithm.

$$23 = 10 \cdot 2 + 3$$

$$10 = 3 \cdot 3 + 1$$

$$3 = 1 \cdot 3 + 0$$

Rewriting:

$$3 = 23 - 10 \cdot 2$$

$$1 = 10 - 3 \cdot 3$$

Substituting:

$$1 = 10 - 3 \cdot 3$$

$$1 = 10 - (23 - 10 \cdot 2) \cdot 3$$

$$1 = 23 \cdot (-1) + 10 \cdot 7$$

7 is the modular inverse of 10 (mod 23). We multiply both sides by 7.

$$10x \equiv -4 \pmod{23} \implies 10x \cdot 10^{-1} \equiv -4 \cdot 10^{-1} \implies x \equiv -4 \cdot 7 \equiv -28 \equiv 18.$$
 $x \equiv 18 \pmod{23}$ is the final answer.

Problem 8: [10 pts] Show that gcd(21n+4,14n+3)=1, for any $n \in \mathbb{N}$.

Proof: Using the Euclid's algorithm, we have gcd(21n+4,14n+3) = gcd(14n+3,7n+1) = gcd(7n+1,1) = 1.

Problem 9: [10 pts] Solve $3^{5x-2} \equiv 9 \pmod{23}$. The solution is not unique, any solution is acceptable. [Hint: Use Fermat's Little Theorem.]

Answer: Multiplying 3^{-2} (inverse taken with modulo 23) on both sides, we obtain:

$$3^{5x-4} \equiv 1 \pmod{23}.$$

By Fermat's Little Theorem, if 5x-4 is a multiple of 22, then this congruence will hold, namely $5x - 4 \equiv 0 \pmod{22}$, i.e.,

$$5x \equiv 4 \pmod{22}$$
.

The inverse of 5 is 9 (mod 22), so $x \equiv 4 \cdot 9 \equiv 36 \equiv 14 \pmod{22}$. So x = 22k + 14 for any natural number k.

Problem 10: [10 pts] Recall the digital signature scheme based on RSA. Suppose your public key is (n, e) and private key is d, and you want to sign a message $x \in \mathbf{Z}_n$. You release both x and $C = x^d \mod n$. People can then verify your signature by checking $C^e \mod n = x$.

> However, you should be careful not to just sign any message people give you. Suppose an attacker asks you to sign another message $y = r^e x \mod n$ where $r \neq 1$ is a number chosen by the attacker, and you sign it (i.e., release $y^d \mod n$). Then the attacker can forge your signature on x, i,e, compute C without knowing d. Show how the attacker can do this. (This is known as a *chosen-message-attack*.)

Answer: $u^d \equiv (r^e x)^d \equiv r^{ed} \cdot x^d \equiv r \cdot x^d \pmod{n}$.

So the attacker can just find r^{-1} (in \mathbf{Z}_n), and then compute $y^d \cdot r^{-1} \equiv$ $x^d \equiv C \pmod{n}$.

Bonus Problem: [10 pts] A quasi-square number $n \in \mathbb{N}$ is one that is divisible by a square number. For example, 24 is a quasi-square number because it is divisible by $4 = 2^2$, while 15 is not a quasi-square number.

> Prove that for any $k \in \mathbb{N}$, there exist k consecutive numbers all of which are quasi-square numbers. [Hint: Use the Chinese Remainder Theorem.]

Proof: We give a constructive proof. Let p_i be the *i*th prime number. We know that $gcd(p_i^2, p_i^2) = 1$ for $i \neq j$. Consider the following system of linear congruences:

$$x \equiv -1 \pmod{p_1^2}$$

$$x \equiv -2 \pmod{p_2^2}$$

$$x \equiv -k \pmod{p_k^2}.$$

Based on the Chinese Remainder Theorem, there is a solution $x_0 \in \mathbf{Z}_n$ to this system for $n = p_1^2 \dots p_k^2$. We know that

$$p_1^2 \mid x_0 + 1 \\ p_2^2 \mid x_0 + 2$$

$$p_2^2 \mid x_0 + 2$$

$$p_k^2 \mid x_0 + k$$

So $x_0 + 1, \ldots, x_0 + k$ are all quasi-square numbers.