DMA Přednáška – Kongruence, počítání modulo

Definice.

Nechť $n \in \mathbb{N}$. Řekneme, že čísla $a, b \in \mathbb{Z}$ jsou **kongruentní modulo** n, značeno $a \equiv b \pmod{n}$, jestliže $n \mid (b-a)$.

Věta.

Nechť $n \in \mathbb{N}$. Pro čísla $a, b \in \mathbb{Z}$ jsou následující podmínky ekvivalentní:

- (i) $a \equiv b \pmod{n}$,
- (ii) existuje $k \in \mathbb{Z}$ takové, že b = a + kn,
- (iii) $a \mod n = b \mod n$, tj. jsou si rovny zbytky po dělení číslem n.

Fakt.

Nechť $n \in \mathbb{N}$. Pak platí:

- (i) Pro každé $a \in \mathbb{Z}$ je $a \equiv a \pmod{n}$.
- (ii) Pro každé $a, b \in \mathbb{Z}$ platí, že $a \equiv b \pmod{n}$ je ekvivalentní s $b \equiv a \pmod{n}$.
- (iii) Pro každé $a, b, c \in \mathbb{Z}$ platí, že jestliže $a \equiv b \pmod{n}$ a $b \equiv c \pmod{n}$, pak také $a \equiv c \pmod{n}$.

Věta.

Nechť $n \in \mathbb{N}$, uvažujme $a, b, u, v \in \mathbb{Z}$ takové, že $a \equiv u \pmod{n}$ a $b \equiv v \pmod{n}$. Pak platí následující:

- (i) $a + b \equiv u + v \pmod{n}$;
- (ii) $a b \equiv u v \pmod{n}$;
- (iii) $ab \equiv uv \pmod{n}$.

Fakt.

Nechť $n \in \mathbb{N}$, uvažujme $a \in \mathbb{Z}$. Jestliže $r = a \mod n$, tedy r je zbytek po dělení a číslem n, pak $a \equiv r \pmod n$.

Věta.

Nechť $n \in \mathbb{N}$, uvažujme $a, u \in \mathbb{Z}$ takové, že $a \equiv u \pmod{n}$. Pak pro všechna $k \in \mathbb{N}$ platí $a^k \equiv u^k \pmod{n}$.

Definice.

Nechť $n \in \mathbb{N}$.

Uvažujme $a \in \mathbb{Z}$. Řekneme, že $b \in \mathbb{Z}$ je **inverzní číslo** (**inverse number**) k a **modulo** n, jestliže $a \cdot b \equiv 1 \pmod{n}$.

Věta.

Nechť $n \in \mathbb{N}$. Pro $a \in \mathbb{Z}$ existuje inverzní číslo modulo n právě tehdy, když $\gcd(a,n) = 1$.

Věta.

Nechť $n \in \mathbb{N}$. Předpokládejme, že $a, x \in \mathbb{Z}$ a x je inverzní prvek k a modulo n. Pak $y \in \mathbb{Z}$ je inverzní prvek k a modulo n právě tehdy, když $y \equiv x \pmod{n}$.

Věta. (malá Fermatova věta)

Nechť $n \in \mathbb{N}$ je prvočíslo. Je-li $a \in \mathbb{Z}$ nesoudělné s n, pak platí $a^{n-1} \equiv 1 \pmod{n}$. Pro každé $a \in \mathbb{Z}$ platí $a^n \equiv a \pmod{n}$.

Definice.

Nechť $n \in \mathbb{N}$, označme $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. Pro $a, b \in \mathbb{Z}_n$ definujme operace

$$a \oplus b = (a+b) \bmod n,$$

$$a \odot b = (a \cdot b) \mod n$$
.

Věta.

Nechť $n \in \mathbb{N}$. Pro libovolné $a, b, c \in \mathbb{Z}_n$ platí následující:

- (i) $a \oplus b = b \oplus a$ (komutativita);
- (ii) $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ (asociativita);
- (iii) $a \oplus 0 = 0 \oplus a = a$;
- (iv) $a \odot b = b \odot a$ (komutativita);
- (v) $a \odot (b \odot c) = (a \odot b) \odot c$ (asociativita);
- (vi) $a \odot 1 = 1 \odot a = a$;
- (vii) $a \odot 0 = 0 \odot a = 0$;
- (viii) $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$ (distributivní zákon).

Definice.

Uvažujme $n \in \mathbb{N}$.

Nechť $a \in \mathbb{Z}_n$. Řekneme, že $b \in \mathbb{Z}_n$ je **inverzní prvek** k $a \vee \mathbb{Z}_n$, jestliže $a \odot b = 1 \vee \mathbb{Z}_n$.

Pokud takovýto prvek b existuje, pak jej značíme $b = a^{-1}$ a řekneme, že a je **invertibilní** (**invertible**) v \mathbb{Z}_n .

Věta.

Nechť $n \in \mathbb{N}$.

Uvažujme $a \in \mathbb{Z}_n$. Inverzní prvek a^{-1} v \mathbb{Z}_n existuje právě tehdy, když $\gcd(a,n) = 1$. Pokud existuje, tak je tento prvek jediný.

Algoritmus pro hledání inverzního prvku k $a \vee \mathbb{Z}_n$.

- **0.** Například pomocí rozšířeného Euklidova algoritmu najděte gcd(a, n) = Aa + Bn.
- 1. Jestliže gcd(a, n) > 1, pak inverzní prvek k $a \vee \mathbb{Z}_n$ neexistuje.

Pokud umíte gcd(a, n) získat snadněji než Euklidovým algoritmem (třeba pohledem) a vyjde číslo větší než 1, je možné krok $\bf 0$ přeskočit.

2. Jestliže $\gcd(a,n)=1$, pak Bezoutova identita dává $1=a\cdot A+B\cdot n$. To znamená, že $a\cdot A\equiv 1\pmod n$ a x=A je inverzní číslo k a modulo n. Pak $a^{-1}=A$ mod n.

(Ideálního kongruentního zástupce čísla A z rozmezí $1,2,\ldots,n-1$ získáme buď přičtením/odečtením vhodného násobku n, nebo dělením se zbytkem.)

Definice.

Nechť $n \in \mathbb{N}$, nechť $a \in \mathbb{Z}_n$. Řekneme, že $b \in \mathbb{Z}_n$ je **opačný prvek** k $a \vee \mathbb{Z}_n$, jestliže $a \oplus b = 0 \vee \mathbb{Z}_n$.

Fakt.

Nechť $n \in \mathbb{N}$.

- (i) (-0) = 0.
- (ii) Jestliže $a \in \mathbb{Z}_n$ a $a \neq 0$, pak (-a) = n a.

Odečítání: **opačné prvky** (-a) splňují $a \oplus (-a) = 0$.

pro $a \in \mathbb{Z}_n$, $a \neq 0$ platí (-a) = n - a.

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
$\overline{2}$	2	3	0	1
3	3	0	1	2

\odot	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
2	0	2	4	6	8	10	12	0	2	4	6	8	10	12
3	0	3	6	9	12	1	4	7	10	13	2	5	8	11
4	0	4	8	12	2	6	10	0	4	8	12	2	6	10
5	0	5	10	1	6	11	2	7	12	3	8	13	4	9
6	0	6	12	4	10	2	8	0	6	12	4	10	2	8
7	0	7	0	7	0	7	0	7	0	7	0	7	0	7
8	0	8	2	10	4	12	6	0	8	2	10	4	12	6
9	0	9	4	13	8	3	12	7	2	11	6	1	10	5
10	0	10	6	2	12	8	4	0	10	6	2	12	8	4
11	0	11	8	5	2	13	10	7	4	1	12	9	6	3
12	0	12	10	8	6	4	2	0	12	10	8	6	4	2
13	0	13	12	11	10	9	8	7	6	5	4	3	2	1

Lemma. (Euklidovo lemma)

Nechť $a, b, d \in \mathbb{Z}$.

Jestliže $d \mid (ab)$ a gcd(d, a) = 1, pak $d \mid b$.

Lemma.

Nechť $p, p \in \mathbb{N}$ jsou nesoudělná. Pro čísla $a, b \in \mathbb{Z}$ platí $a \equiv b \pmod{pq}$ právě tehdy, když $a \equiv b \pmod{p}$ a $a \equiv b \pmod{q}$.

 $T(a)=a^e \pmod n, \qquad \qquad de\equiv 1 \pmod {n-1} \text{ pak } T^{-1}(b)=b^d \pmod n.$