The Second Report

Zheng Yuan 2019/3/18

Shao's Method

(1) The Balanced Incomplete $CV(n_v)$ Method

Notations:

Sample size in model fitting: n_c Sample size in prediction: n_v

So $n_c + n_v = n$

Category I: At least obe nonzero component of β is not in β_{α}

Category II: β_{α} contains all nonzero components of β

Dataset splits:

We don't need to enumerate all of the subsets that contain n_v samples. We only need part of them. Let B denote the collection of all b subsets that have size n_v . B satisfies:

(a) every i, $1 \le i \le n$, appears in the same number of subsets in B;

(b) every pair (i,j), $1 \le i < j \le n$, appears in the same number of subsets in B.

$BICV(n_v)$:

The BICV (n_v) selects a model by minimizing

$$\hat{\Gamma}_{\alpha,n}^{BICV} = \frac{1}{n_v b} \sum_{s \in B} ||y_s - \hat{y}_{\alpha,s^c}||^2$$

over all $\alpha \in A$. Each α here represents a kind of model.

Important results:

(1)Under appropriate conditions, BICV (n_v) is asymptotically correct if $n_c \to \infty$ and $n_v/n \to 1$.

(2)Why BICV (n_v) can beat CV(1): large n_c will lead to a flat cross validation error over all the dels in Category II, where

$$\Gamma_{\alpha,n_c} = \sigma^2 + n_c^{-1} d_\alpha \sigma^2$$

. So it is difficult to find a smallest Γ_{α,n_c} . While with relatively small n_c in BICV (n_v) , this problem could be solved. (Why, here n_c is still large, only is relatively small compared with n_v .

Besides, can $n_v/n \to 1$ be relaxed under most cases? (Not all cases, cause he provides a counterexample.) Even though we should improve $n_v = 1$, but is $n_v/n \to 1$ is too strong compared with $n_v = 1$?

(2)Other $CV(n_v)$ Methods:

Monte Carlo $CV(n_v)$ Ramdonly draw

Analytic Approximate $CV(n_n)$