Estimation and Detection (Fall 2016)

- * Total points: 100
- * Due 12/05/2016

1. (100 points)

$$x[n] = A\cos(2\pi f_0 n + \phi) + \omega[n], \ n = 0, 1, ..., N - 1$$

Assume A and f_0 are known. Let $A=1,\,f_0=0.06,\,\phi=\pi/4,\,\sigma^2=0.05$ and N=100.

(a) (15 points) Prove the following approximation:

$$\hat{\phi} = -\arctan \frac{\sum_{n=0}^{N-1} [A\cos(2\pi f_0 n + \phi) + \omega[n]] \sin 2\pi f_0 n}{\sum_{n=0}^{N-1} [A\cos(2\pi f_0 n + \phi) + \omega[n]] \cos 2\pi f_0 n}$$

$$\approx -\arctan \frac{-\frac{NA}{2} \sin \phi + \sum_{n=0}^{N-1} \omega[n] \sin 2\pi f_0 n}{\frac{NA}{2} \cos \phi + \sum_{n=0}^{N-1} \omega[n] \cos 2\pi f_0 n}$$

- (b) (15 points) Obtain the MLE by grid search. Plot the log-likelihood function vs. ϕ . Indicate $\hat{\phi}_{ML}$ that you find. (Hint: Let the grid step be $\pi/10000$).
- (c) (15 points) Using the Method of Scoring iterative procedure, to obtain the MLE for ϕ . Show the mathematical derivation.
- (d) (10 points) Followed (b), plot $(\hat{\phi}_{ML} \phi)$ vs. k, where k is the iteration index.
- (e) (10 points) Repeat M=1000 realizations, plot the asymptotical PDF of $\hat{\phi}_{ML}$ in page 20 in the slide, and the histogram of $\hat{\phi}_{ML}$ obtained in (b).

- (f) (10 points) Now let σ^2 be a variable. Define SNR be $A^2/2\sigma^2$. Let M=1000. Plot $N \text{var}\{\phi\}$ (both Monte Carlo simulation and asymptotic theoretical PDF) as a function of SNR from -20 dB to 20 dB with step size 0.1 dB.
- (g) (10 points) Let the approximation error at the *i*th realization be e_i . Plot $\frac{1}{M} \sum_{i=1}^{M} |e_i|^2$ as a function of N, where N = 10 to 100 with step size 1.
- (h) (5 points) Let A = 1 and $\sigma^2 = 0.1$. Repeat (g).
- (i) (5 points) Let A = 1 and $\sigma^2 = 1$. Repeat (g).
- (j) (5 points) Conclude your observations in (g)-(i).