Multimodal Data Processing

Geoffrey lyer

University of California gsiyer@math.ucla.edu

May 10, 2017

Results

Overview

Introduction: Multimodal Data

- Introduction: Multimodal Data
 - Multimodality
 - Manifold Alignment
 - Synthetic Example
- Our Method
 - Problem setup
 - Multimodal Weights
 - Graph Laplacian Theory
 - Nyström Extension
- Results
 - Synthetic example revisited
 - DFC2015 Data
 - Umbrella Data
- Future Work
 - Graph Matching
- References

Multimodal datasets

With the increasing availability of data, many applications involve data drawn from more than one source (called *modalities*).

FMRI FFG

How to solve standard machine learning problems on multimodal data?

Multimodality

000000000000

Introduction: Multimodal Data

Example Multimodal Data

Remote sensing example: RGB + Elevation map of residential neighborhood in Belgium. Found in [Bampos-Taberner et al, 2016].

RGB Data

Lidar Data

000000000000 Multimodality

Future Work

Examples from the literature

Exposure Fusion, from [Mertens et al, 2008].

(a) Exposure bracketed sequence

(b) Fused result

Examples from the literature

Audio-Visual speech recognition, from [Datcu et al, 2007].

0000000000000 Multimodality

> Most multimodal methods are developed specifically for one problem, BUT:

[Lahat et al, 2015]: "... a solution that is based on a sufficiently data-driven, model-free approach may turn out to be useful in very different domains."

0000000000000

Manifold alignment

Attempt to address multimodality in general via manifold alignment.

For each modality, view the data as a manifold (have sets $X^1, X^2, \dots, X^{\ell}$. $\ell =$ number of modalities).

 X^1

 X^2

0000000000000 Manifold Alignment

Example from [Tuia et al, 2016]

Compare sets by using the latent space image.

Manifold Alignment

Manifold alignment: Methods from the literature

Some examples from the literature:

- [Yeh et al, 2014]: Canonical Correlation Analysis, linear or with nonlinear kernel (unsupervised)
- [Wang et al, 2013]: Graph-based methods (semi-supervised)
- [Tuia et al, 2016]: Similar to [Wang et al, 2013] with an added nonlinear kernel (semi-supervised)

000000000000 Manifold Alignment

Common theme: Create the latent space by finding and correlating redundancies between sets.

Using code from [Tuia et al, 2016]

Manifold Alignment

Manifold alignment: Our goal

Our idea: Can improve on these methods. Find and exploit the unique information that each modality brings.

Distinguish road from grass

Distinguish roof from ground

Synthetic example: Data

Synthetic example:

Introduction: Multimodal Data

00000000000000 Synthetic Example

Ground truth = 3 point clouds in \mathbb{R}^3 (20 points per cloud).

Modality 1 = projection onto xy-plane.

Modality 2 = projection onto xz-plane.

0000000000000 Synthetic Example

> Assumption: Data is *co-registered*. *i*-th point from modality 1 corresponds to *i*-th point from modality 2.

0000000000000 Synthetic Example

Result of CCA algorithm from [Yeh et al, 2014] applied to the data:

Image of clusters in latent space

Image of data in latent space

Problem setup

We use co-registration assumption and Graph Laplacian theory for segmentation of multimodal datasets.

RGB Data

Lidar Data

Notation

From each modality, have a data set X^k . $\ell =$ number of modalities.

N = number of observations.

 $d_i = \text{dimension of set } X^k$. (Can view $X^k \in \mathbb{R}^{N \times d_k}$).

From co-registration assumption: i-th point in X^{k_1} corresponds to i-th point in X^{k_2} . Create concatenated set $X = (X^1, X^2, \dots, X^{\ell}) \subset \mathbb{R}^{N \times (d_1 + \dots + d_{\ell})}$

 $x_i = \text{element } i \text{ from } X. \ x_i^k = \text{element } i \text{ from } X^k.$

Weight Matrix: Background

For each pair $x_i, x_j \in X$, define a weight w_{ij} that measures the similarity between the points.

 \implies represent data as $N \times N$ weight matrix W.

Common similarity measure from the literature: RBF kernel

$$w_{ij}=\exp\left(-\left\|x_{i}-x_{j}\right\|/\sigma\right).$$

Need to adapt this to multimodal data.

Multimodal Weights

For each modality X^k , calculate the distance matrix E^k via

$$E_{ij}^k = \left\| x_i^k - x_j^k \right\|.$$

||.|| chosen based on the details of the modality. (in our examples we use the 2-norm)

Scale each distance matrix by standard deviation

$$\bar{E}^k = \frac{E^k}{\operatorname{std}(E^k)}.$$

Define

Multimodal Weights

$$w_{ij} = \exp\left(-\max\left(\bar{E}_{ij}^1, \dots, \bar{E}_{ij}^k\right)/\sigma\right).$$

Heuristics:

- Standard deviation scaling allows us to directly compare \bar{E}^{k_1} , \bar{E}^{k_2} with reasonable results.
- Because of the max, elements are similar under this measure only if they are similar in each modality.

Graph min cut

Introduction: Multimodal Data

Using W, state the problem as graph-cut minimization.

Given a partition of X into subsets A_1, A_2, \ldots, A_m , we define the normalized graph-cut

Results

$$\operatorname{Ncut}(A_1, \dots, A_m) = \frac{1}{2} \sum_{k=1}^m \frac{W(A_k, A_k^c)}{\operatorname{vol}(A_k)}.$$

$$W(A, B) = \sum_{i \in A, j \in B} w_{ij}.$$

$$\operatorname{vol}(A) = \sum_{i \in A, j \in \{1, \dots, n\}} w_{ij}.$$

Graph min cut

Introduction: Multimodal Data

$$Ncut(A_1,\ldots,A_m) = \frac{1}{2} \sum_{k=1}^m \frac{W(A_k,A_k^c)}{vol(A_k)}.$$

Minimize graph cut \implies segment set. Compare the edges cut as a fraction of total edges.

Solving exactly is $O(|X|^{m^2})$.

Example graph cut. m = 2

Graph Laplacian

Introduction: Multimodal Data

Let $D = N \times N$ diagonal matrix, with

$$d_{ii} = \sum_{j=1}^{n} w_{ij}.$$

Graph Laplacian

$$L = D - W$$
.

Graph Laplacian

From A_1, \ldots, A_m , get $H = N \times m$ indicator matrix.

$$H_{ij} = \begin{cases} \frac{1}{\sqrt{vol(A_j)}} & \text{if } x_i \in A_j \\ 0 & \text{else} \end{cases}$$

Columns of $H \iff$ classes. Rows of $H \iff$ data points.

$$Ncut(A_1, ..., A_m) = \frac{1}{2} \sum_{i=1}^m \frac{W(A_i, A_i^c)}{vol(A_i)}$$
$$= Tr(H^T L H).$$

Relaxed graph min cut

Optimal graph cut is

$$\operatorname{argmin}_{H \text{ an indicator matrix}} \operatorname{Tr} \left(H^T L H \right)$$
.

This is an $O\left(|X|^{m^2}\right)$ problem. Instead we solve the relaxed problem:

$$\operatorname{argmin}_{H \in \mathbb{R}^{N \times m}, H^T H = I} \operatorname{Tr} \left(H^T L H \right).$$

Solution: Columns of H = eigenvectors of L with smallest eigenvalues.

Relaxed graph min cut

In relaxed problem,

columns of
$$H \iff$$
 features rows of $H \iff$ data points.

Can use features for a variety of applications.

Our code: K-means on feature vectors \rightarrow classification (this is called Spectral Clustering).

Nyström Extension

As |X| becomes large, computing the $|X| \times |X|$ weight matrix W becomes prohibitive.

Instead choose $A \subseteq X$ landmark nodes with $|A| \ll |X|$. Up to permutation, we have

$$W = \begin{pmatrix} W_{A,A} & W_{A,A^c} \\ W_{A^c,A} & W_{A^c,A^c} \end{pmatrix}.$$

Nyström Extension

Nyström: Approximate Graph Laplacian eigenvectors using only $W_{A,A}$, $W_{A^c,A}$.

$$W pprox \begin{pmatrix} W_{A,A} \\ W_{A^c,A} \end{pmatrix} W_{AA}^{-1} \begin{pmatrix} W_{A,A} & W_{A,A^c} \end{pmatrix}.$$

Compute and store matrices of size at most $|X| \times |A|$.

Synthetic example: Data

Synthetic example:

Ground truth = 3 point clouds in \mathbb{R}^3 (20 points per cloud).

Modality 1 = projection onto xy-plane.

Modality 2 = projection onto xz-plane.

Synthetic example revisited

Result of our multimodal graph-based algorithm applied to the data:

Image of clusters in latent space

DFC2015 Data Data

Introduction: Multimodal Data

Our algorithm applied to [Bampos-Taberner et al, 2016] dataset.

RBG Modality

Lidar Modality

Results

Example eigenvectors of Graph Laplacian

DFC2015 Data Results

Introduction: Multimodal Data

Spectral Clustering result (unsupervised). m = 6 classes.

Classes

Regions on original image

Data

Our algorithm applied to [Scharstein et al. 2014] dataset.

RBG Modality

Lidar Modality

Umbrella Data

Results

Example eigenvectors of Graph Laplacian

Umbrella Data Results

Introduction: Multimodal Data

Spectral Clustering result (unsupervised). m = 8 classes.

Classes

Regions on original image

Future Work

Goal: Remove or weaken the coregistration assumption.

Current idea: Graph matching.

View each dataset as a (weighted) graph. Try to match nodes with similar structure.

Graph Matching Example

Introduction: Multimodal Data

A reasonable matching would send $1 \rightarrow 2$. Difficult to match other nodes due to symmetry.

Problem Setup

Two weighted graphs, G_1 , G_2 , with weights W_1 , W_2 . Assume $|G_1| = |G_2| = N$

Search for an isomorphism of graphs $G_1 \rightarrow G_2$ that preserves the weights.

Best isomorphism is $1 \rightarrow 3$, $2 \rightarrow 1$, $3 \rightarrow 2$.

Graph Matching

Isomorphism $G_1 \rightarrow G_2$ corresponds to a permutation on nodes. Have P the corresponding permutation matrix. Want to minimize

$$\left\|PW_1P^T-W_2\right\|_F^2.$$

Exact solution is too expensive. Can solve using Graph Laplacian trick from [Umetama 1988, Knossow et al. 2009].

Relaxation

Introduction: Multimodal Data

Relax problem to

$$Q^* = \operatorname{argmin}_{QQ^T = I} \left\| QW_1 Q^T - W_2 \right\|_F^2.$$

Let L_1, L_2 the Graph Laplcians corresponding to W_1, W_2

 U_1 , U_2 the corresponding matrices of eigenvectors.

Then
$$Q^* = U_1 S U_2^T$$
.

S is a diagonal matrix with entries of ± 1 to account for sign ambiguity in eigenvectors.

Heuristics

Introduction: Multimodal Data

Recall from Graph Laplacian

columns of
$$U_i \iff$$
 features rows of $U_i \iff$ data points.

Match rows of U_1 to rows of U_2 by considering $U_1U_2^T$.

Matching Algorithm

Introduction: Multimodal Data

 Q_{ii}^* gives the similarity between node i from G_1 and node j from G_2 .

Choose a matching $p: \{1, 2, \dots, N\} \rightarrow \{1, 2, \dots, N\}$ by maximizing

$$\sum_{i=1}^{N} Q_{i,p(i)}^*.$$

Hungarian algorithm finds this in $O(N^3)$.

Example Calculation

Say we have N = 6 and calculated:

$$Q^* = \begin{pmatrix} -0.1629 & -0.1711 & -0.1703 & 0.3426 & 0.3717 & -0.2100 \\ -0.1647 & -0.1662 & -0.1677 & 0.2966 & 0.3192 & -0.1172 \\ -0.1660 & -0.1653 & -0.1657 & -0.1477 & -0.1861 & 0.8308 \\ -0.4579 & 0.6860 & 0.2665 & -0.1787 & -0.1480 & -0.1678 \\ 0.4939 & -0.1039 & 0.1196 & -0.6689 & 0.3080 & -0.1486 \\ 0.4577 & -0.0795 & 0.1176 & 0.3561 & -0.6647 & -0.1872 \end{pmatrix}$$

Then

$$P^* = egin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Benefits of Graph Matching

A precise number representing similarity between nodes gives us many options.

- Thresholding
- Many-to-many matching
- Mierarchical matching
- etc.

Example Matching

Introduction: Multimodal Data

Recall from earlier.

Synthetic Dataset

Example Matching

Introduction: Multimodal Data

Result of our code

References I

Introduction: Multimodal Data

Tom Mertens and J. Kautz and Frank Van Reeth

Exposure Fusion: A Simple and Practical Alternative to High Dynamic Range Photography

Results

Computer Graphics Forum 28(1):161 - 171

D. Datcu and Z. Yang and L. Rothkrantz (2007)

Multimodal workbench for automatic surveillance applications 2007 IEEE Conference on Computer Vision and Pattern Recognition 1-2

Lahat, Dana and Adalı, Tülay and Jutten, Christian (2015)

Multimodal Data Fusion: An Overview of Methods, Challenges and **Prospects**

Proceedings of the IEEE 103(9), 1449-1477

Yi-Ren Yes and Chun-Hao Huang and Yu-Chiang Frank Wang Heterogeneous Domain Adaptation and Classification by Exploiting the Correlation Subspace

IEEE Transactions on Image Processing 23(5), 2009-2018

Wang, Chang and Mahadevan, Sridhar (2013)

Manifold Alignment Preserving Global Geometry

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence IJCAI '13, 1743-1749

Results

Tuia, Devis AND Camps-Valls, Gustau (2016) Kernal Manifold Alignment for Domain Adaptation PLOS ONE 11. 1-25

M. Campos-Taberner and A. Romero-Soriano and C. Gatta and G. Camps-Valls and A. Lagrange and B. Le Saux and A. Beaupre and A. Boulch and A. Chan-Hon-Tong and S. Herbin and H. Randrianarivo and M. Ferecatu and M. Shimoni and G. Moser and D. Tuia (2015)

Processing of Extremely High-Resolution LiDAR and RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest #8211; Part A: 2-D Contest

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(12), 5547-5559

Results

References III

Introduction: Multimodal Data

Daniel Scharstein and Heiko Hirschmüller and York Kitajima and Greg Krathwohl and Nera Nešić and Xi Wang and Porter Westling (2014) High-resolution stereo datasets with subpixel-accurate ground truth Proceedings of the 36th German Conference on Pattern Recognition 31-42

Umeyama, S. (1988)

An Eigendecomposition Approach to Weighted Graph Matching Problems IEEE Trans. Pattern Anal. Mach. Intell., 10(5), 695-703

Knossow, David and Sharma, Avinash and Mateus, Diana and Horaud, Radu" (2009)

Inexact Matching of Large and Sparse Graphs Using Laplacian Eigenvectors

Graph-Based Representations in Pattern Recognition: 7th IAPR-TC-15 International Workshop, 2009. Proceedings