Discussion #7

Ordinary Debugging

- 1. Anirudhan is fitting a multiple linear regression model with Scikit-learn, but he is having a few bugs and issues along the way. Help him debug his code and his logic!
 - (a) Suppose he runs the code below to fit on design matrix X of shape 250 by 3 with corresponding response variable y of shape 250. We wish to use our model to predict on a new dataset X_t with 50 data points, storing the predictions in a variable final_predictions. What are 2 potential issues with this code?

```
model = LinearRegression(fit_intercept = False)
final_predictions = model.predict(X_t)
model.fit(X_t, y)
```

(b) Suppose he forgets about the dataset X_t and wishes to focus only on dataset X. Realizing he did not use an intercept term in part (a), he decides to add one using the add_intercept function from the lab. What are 2 potential issues with this new code? *Note:* one of these may not break Scikit-learn, but it's an issue nevertheless!

2

Dive into Gradient Descent

2. Given the following loss function and $\vec{x} = [x_i]_{i=1}^n$, $\vec{y} = [y_i]_{i=1}^n$, and $\theta^{(t)}$, explicitly write out the update equation for $\theta^{(t+1)}$ in terms of x_i , y_i , $\theta^{(t)}$, and α , where $\alpha = 0.5$ is the constant learning rate.

$$L(\theta, \vec{x}, \vec{y}) = \frac{1}{n} \sum_{i=1}^{n} \left(\theta^2 x_i - \log(y_i) \right)$$

Bonus: As $t \to \infty$, what are the required conditions for $\theta^{(t)}$ to converge? To what can it converge?

3. We want to minimize the loss function $L(\theta) = (\theta_1 - 1)^2 + |\theta_2 - 3|$. While you may notice that this function is not differentiable anywhere, we can still use gradient descent wherever the function *is* differentiable!

Recall that for a function f(x) = k|x|, $\frac{df}{dx} = k$ for all x > 0 and $\frac{df}{dx} = -k$ for all x < 0.

- (a) What are the optimal values $\hat{\theta}_1$ and $\hat{\theta}_2$ to minimize $L(\theta)$? At that point $\hat{\theta}$, what is the gradient ∇L ?
- (b) Suppose we initialize our gradient descent algorithm randomly at $\theta_1=2$ and $\theta_2=5$. Calculate the gradient $\nabla L=\begin{bmatrix}\frac{\partial L}{\partial \theta_1} & \frac{\partial L}{\partial \theta_2}\end{bmatrix}^T\Big|_{\theta_1=2,\theta_2=5}$ at the specified θ_1 and θ_2 values.
- (c) Apply the first gradient update with a learning rate $\alpha=0.5$. In other words, calculate $\theta_1^{(1)}$ and $\theta_2^{(1)}$ using the initializations $\theta_1^{(0)}=2$ and $\theta_2^{(0)}=5$.

Discussion #7

(d) How many gradient steps does it take for θ_1 and θ_2 to converge to their optimal values obtained in part (a) assuming we keep a constant learning rate of $\alpha=0.5$?

Hint: After part (c), what is the derivative $\frac{\partial L}{\partial \theta_1}$ evaluated at $\theta_1^{(1)}$?

The Cook County Housing Dataset

- 4. In Project 1 we will work with real world housing data from Cook County, Illinois. Analyze the dataframe on the next page and address the following questions:
 - (a) Based on the columns presented in this dataset and the values that they take, what do you think each row represents? That is, what is the granularity of this dataset?
 - (b) Why do you think this dataset was collected? For what purposes? By whom? This question calls for your speculation and is looking for thoughtfulness, not correctness.
 - (c) Certain variables in this dataset contain information that either directly contains demographic information (data on people) or could when linked to other datasets. Identify at least one and explain the nature of the demographic data it embeds.
 - (d) Craft at least two questions about housing in Cook County that can be answered with this dataset and provide the type of analytical tool you would use to answer it (e.g. "I would create a plot of ... and ..." or "I would calculate the [summary statistic] for ... and ..."). Be sure to reference the columns that you would use and any additional datasets you would need to answer that question.

Cook County Assessor's Office Dataset (204792 rows x 62 columns): 5 randomly sampled rows

			PIN	Property Class		orhood Code	Land Square Feet	Town Code	Apartments	Wall Material			sement E	asement Finish		
	59751	2030216	60680000	203	1	121	3750.0	72	0.0	2.0	1.	0	1.0	3.0	2.0	5.0
1	98610	62221	30070000	207	,	13	5640.0	18	0.0	1.0	1.	0	2.0	3.0	1.0	5.0
1	43557	132630	20230000	203	1	70	3125.0	71	0.0	2.0	1.	0	1.0	1.0	1.0	5.0
1	07891	3020110	0008000	202	!	101	6600.0	37	0.0	1.0	1.	0	1.0	3.0	1.0	5.0
1	09977	532122	20050000	203	1	150	9864.0	23	0.0	2.0	1.	0	1.0	3.0	1.0	5.0
	Centra Aiı	Firen	laces	Attic At Type Fin		sign (Plan	Cathedra Ceiling		nstruction Quality	Desirabi		rage Size			Garage 1 achment	Garage 1 Area
	0.0)	0.0	3.0	0	0.0	0.0)	2.0		2.0	4.0	1.	.0	2.0	2.0
	1.0)	0.0	3.0	0	2.0	0.0)	2.0		2.0	3.0	1.	.0	1.0	1.0
	1.0)	0.0	3.0	0	2.0	0.0)	2.0		2.0	3.0	1.	.0	2.0	2.0
	0.0)	0.0	3.0	0	2.0	0.0)	2.0		2.0	3.0	1.	.0	2.0	2.0
	1.0)	1.0	2.0	3	2.0	2.0)	2.0		2.0	2.0	2	.0	1.0	2.0
	Garage 2 Size		2 Att	Garage 2 achment	Garage 2 Area		Impro	Othe vement	Sallar	e Condi		ulti ode	Number Commerc Ur	rial ESI	imate Land)	Estimate (Building)
	7.0		0.0	0.0	0.0	3		0.	.0 1077.	0	2.0	2.0		0.0	22500	70770
	7.0		0.0	0.0	0.0	3		0.	.0 1902.	0	2.0	2.0		0.0	29610	212670
	7.0		0.0	0.0	0.0	3		0.	0 1260.	0	2.0	2.0		0.0	43750	254010
	7.0		0.0	0.0	0.0	3		0.	.0 952.	0	2.0	2.0		0.0	21450	61680
	7.0		0.0	0.0	0.0	3		0.	.0 1307.	0	2.0	2.0		0.0 1	03570	305320
	Dee		Sale				0		Multi							
		ea No.	Price	Longitu	de La	titude	Censi Tra		Property Indicator	Modeli Gro		Use	O'Har Nois		lplain	Road Proximity
	171093			-87.6730		60296		ct	Property Indicator				Nois	e Floor	O.0	
			Price		73 41.7		Tra).0	Indicator		up Age	1	Nois	0		Proximity
		34064 116011	Price 1	-87.6730	73 41.7 88 42.0	60296	Tra).0).0	Indicator 0		up Age	1	Nois 1 0.	0	0.0	0.0
	13184	34064 116011 34087	1 173500	-87.6730 -88.1884	73 41.7 88 42.0 25 41.9	60296	672000 804310	0.0 0.0 0.0	Indicator 0		SF 58	1	Nois 1 0 1 0 1 0	0 0	0.0	0.0 0.0
	13184 162423	34064 416011 34087 46032	Price 1 173500 372500	-87.6730 -88.1884 -87.7229	73 41.7 88 42.0 25 41.9 89 41.5	60296 024901 30439	672000 804310 220702	0.0 0.0 0.0 2.0	0 0 0		SF 58 SF 24 SF 24	1 1 1	Nois 1 0 1 0 1 0	0 0 0 0	0.0 0.0 0.0	0.0 0.0 0.0
	13184 162423 132194 180194 Sale	34064 416011 34087 46032	Price 1 173500 372500 56000 394875 Sale	-87.6730 -88.1884 -87.7229 -87.5354 -87.7437	73 41.7 88 42.0 25 41.9 89 41.5 717 42.0 Sale S	60296 024901 30439 96277 72883 Sale	672000 804310 220702 826202 800900 Most	0.0 0.0 0.0 2.0	0 0 0 0 Pure	Gro	SF 58 SF 24 SF 24 SF 56 SF 60 Neigbort	1 1 1 1 1 1 1 1 1 1 1	Nois 1 0. 1 0. 1 0. 1 0.	0 0 0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
	13184 162423 132194 180194 Sale	34064 416011 34087 46032 46026 Sale	Price 1 173500 372500 56000 394875 Sale Half-	-87.6730 -88.1884 -87.7229 -87.5354 -87.7437 Sale Quarter	73 41.7 88 42.0 25 41.9 89 41.5 717 42.0 Sale S	60296 024901 30439 96277 72883 Sale Half of Re	672000 804310 220702 826202 800900 Most	0.0 0.0 0.0 2.0 0.0 Age	0 0 0 0 Pure Market	Gro Garage	SF 58 SF 24 SF 24 SF 56 SF 60 Neigbort	1 1 1 1 1 1 1 1 1 1 1	Nois Nois Nois Nois Towr	0 0 0 0 0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	13184 162423 132194 180194 Sale Year	34064 416011 34087 46032 46026 Sale Quarter	Price 1 173500 372500 56000 394875 Sale Half- Year	-87.6730 -88.1884 -87.7229 -87.5354 -87.7437 Sale Quarter of Year	73 41.7 88 42.0 25 41.9 89 41.5 717 42.0 Sale S Month of Year	60296 024901 30439 96277 72883 Sale Half of Re	672000 804310 220702 826202 800900 Most ecent Sale	0.0 0.0 0.0 2.0 0.0 0.0 Age	O O O O Pure Market Filter	Gro Garage dicator	SF 58 SF 24 SF 24 SF 56 SF 60 Neigbort	acod code ing)	Nois Nois Nois Nois Towr	0 0 0 0 0 1 and 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 0.0 0.0 0.0 0.0 Description	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 size
	13184 162423 132194 180194 Sale Year	34064 416011 34087 46032 46026 Sale Quarter	Price 1 173500 372500 56000 394875 Sale Half- Year 41	-87.6730 -88.1884 -87.7229 -87.5354 -87.7437 Sale Quarter of Year	73 41.7 88 42.0 25 41.9 89 41.5 717 42.0 Sale 3 Month of Year 1	60296 024901 30439 96277 72883 Sale Half of Year	672000 804310 220702 826202 800900 Most ecent Sale	0.0 0.0 0.0 2.0 0.0 0.0 Age ecade	O O O O O O O O O O O O O O O O O O O	Garage dicator	SF 58 SF 24 SF 24 SF 56 SF 60 Neigbort	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nois Nois Nois Nois Towr	0 0 0 0 0 0 1 and 1 0 0 0 0 1 1813 i Th 7170	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	13184 162423 132194 180194 Sale Year 2017	34064 416011 34087 46032 46026 Sale Quarter 82	Price 1 173500 372500 56000 394875 Sale Half- Year 41	-87.6730 -88.1884 -87.7229 -87.5354 -87.7437 Sale Quarter of Year	73 41.7 88 42.0 25 41.9 89 41.5 717 42.0 Sale 3 Month of Year 3	60296 024901 30439 96277 72883 Sale Half of Year	Tra 672000 804310 220702 826202 800900 Most ecent Sale 1.0	0.0 0.0 0.0 2.0 0.0 0.0 Age ecade	O O O O O O O O O O O O O O O O O O O	Garage dicator	SF 58 SF 24 SF 24 SF 56 SF 60 Neigbort	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nois Nois Nois Nois	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Discussion #7

Dummy Variables/One-hot Encoding (Bonus)

In order to include a qualitative variable in a model, we convert it into a collection of dummy variables. These dummy variables take on only the values 0 and 1. For example, suppose we have a qualitative variable with 3 possible values, call them A, B, and C, respectively. For concreteness, we use a specific example with 10 observations:

We can represent this qualitative variable with 3 dummy variables that take on values 1 or 0 depending on the value of this qualitative variable. Specifically, the values of these 3 dummy variables for this dataset are x_A , x_B , and x_C , arranged from left to right in the following design matrix, where we use the following indicator variable:

$$x_{k,i} = \begin{cases} 1 & \text{if } i\text{-th observation has value } k \\ 0 & \text{otherwise.} \end{cases}$$

This representation is also called one-hot encoding. It should be noted here that $\vec{x_A}$, $\vec{x_B}$, and $\vec{x_C}$ are all vectors.

$$\mathbb{X} = \begin{bmatrix} | & | & | \\ \vec{x_A} & \vec{x_B} & \vec{x_C} \\ | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

We will show that the fitted coefficients for $\vec{x_A}$, $\vec{x_B}$, and $\vec{x_C}$ are \bar{y}_A , \bar{y}_B , and \bar{y}_C , the average of the y_i values for each of the groups, respectively.

5. Show that the columns of \mathbb{X} are orthogonal, (i.e., the dot product between any pair of column vectors is 0).

6. Show that

$$\mathbb{X}^T \mathbb{X} = \begin{bmatrix} n_A & 0 & 0 \\ 0 & n_B & 0 \\ 0 & 0 & n_C \end{bmatrix}$$

Here, n_A , n_B , n_C are the number of observations in each of the three groups defined by the levels of the qualitative variable.

7. Show that

$$\mathbb{X}^T \mathbb{Y} = \begin{bmatrix} \sum_{i \in A} y_i \\ \sum_{i \in B} y_i \\ \sum_{i \in C} y_i \end{bmatrix}$$

where i is an element in group A, B, or C.

8. Use the results from the previous questions to solve the normal equations for $\hat{\theta}$, i.e.,

$$\hat{\theta} = [\mathbb{X}^T \mathbb{X}]^{-1} \mathbb{X}^T \mathbb{Y}
= \begin{bmatrix} \bar{y}_A \\ \bar{y}_B \\ \bar{y}_C \end{bmatrix}$$

9. (Extra) Show that if you augment your \mathbb{X} matrix with an additional $\vec{1}$ bias vector as shown below, $\mathbb{X}^T\mathbb{X}$ is not full rank. Conclude that the new $\mathbb{X}^T\mathbb{X}$ is not invertible, and we cannot use the least squares estimate in this situation.

Hint: Use the original computation of this matrix from question 6 to help you!

$$\mathbb{X} = \begin{bmatrix} | & | & | & | \\ \vec{1} & \vec{x_A} & \vec{x_B} & \vec{x_C} \\ | & | & | & | \end{bmatrix}$$