

education

Department: Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

FEBRUARY/MARCH 2010

MEMORANDUM

MARKS: 150

This memorandum consists of 14 pages.

1.1	Range = 26 – 4 = 22	✓ maximum and minimum values ✓ answer ANSWER ONLY: Full Marks (2)
1.2	Mean $= \frac{4+5+8+13+19+22+25+26+23+17+14+7}{12}$ $= \frac{183}{12}$ $= 15,25$	✓ method ✓183 ✓ answer (3)
1.3	Standard deviation = 7,6 (7,59522)	✓✓ answer (2)
1.4.1	Increase in mean = $\frac{(3 \times 5) + (9 \times 1)}{12}$ = 2°C per month.	✓✓ answer (2)
1.4.2	The maximum value increases by 1°C and the minimum value increases by 5°C. This implies that the range of the range of the data will now decrease. This will result in the standard deviation getting smaller. (new SD = $6,27$)	✓ decrease in range ✓ decrease in standard deviation (2) [11]

Mathematics/P2 DoE/Feb. - March 2010

QUESTION 3

3.1							
	Time (in	11 ≤ <i>t</i> < 15	$15 \le t < 19$	19 ≤ <i>t</i> < 23	$23 \le t < 27$	$27 \le t < 30$	
	minutes)		0	10	10	0	
	Frequency Cumulative	6	9	13 28	12 40	8 48	✓ cumulative
	Frequency	O	13	28	40	48	frequency totals
	14.1.1						(1)
3.2							
3.2							
				rve showing th	ne		
		time ta	aken to compl	ete a task			✓✓✓ plotting points at upper
	60						limits
							6 correct – 3
	50						marks 3 to 5 correct
	<u> </u>						– 2 marks
	Sugnatura 40						1 or 2 correct
	e 30						- 1 mark 0 correct - 0
	lative						marks
	30 amnuative Frequency						.(0)
							✓curve
	10						(4)
	0 +	(0	12 15 10	21 24 27	20 22		
	0 3	6 9	12 15 18	21 24 27	30 33		
			Time (in min	nutes)			
3.3	Median value a						✓ median
	LQ value at pos UQ value at pos						✓ lower quartile
	Value at po	Sition 50. C	pper quartife	~ 23,3 mmu	cs (Holli ogiv	<i>(</i>)	✓ upper
	NOTE : Allow	margin of e	rror for readi	ng off the grap	ph.		quartile
3.4							(3)
J.T		•		•			
	 			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			✓ box
	0	10	20	30 40	50	60	✓ whiskers (2)
3.5	The times are si				people finishe	ed this task	✓ skewed to
	very quickly w	mist omers t	ook more um	I C .			the right (1)
							[11]

4.1	2-0 1	✓ substitution
	$m_{PQ} = \frac{2-0}{0-4} = -\frac{1}{2}$	(1)
4.2	$A:\left(\frac{0+4}{2};\frac{2+0}{2}\right)$	
	$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \end{pmatrix}$	✓ x-coordinate
	A (2; 1)	✓ y-coordinate (2)
4.3	$m_{AB}.m_{PO} = -1$	$\checkmark m_{AB}.m_{PO} = -1$
	$m_{AB} \cdot (-1/2) = -1$, $m_{AB} = 2$	$\sim m_{AB} = 2$
	Equation of AB is $y = 2x + c$	✓ equation of AB
	$\therefore 1 = 2(2) + c$	$\checkmark y = 2x - 3$
	c = -3	$\checkmark c = -3$
	Equation of AB is $y = 2x - 3$.	(5)
	OR	
	$m_{AB}.m_{PQ} = -1$	$\checkmark m_{AB}.m_{PQ} = -1$
	$m_{AB} \cdot (-1/2) = -1$, $m_{AB} = 2$	$ \checkmark m_{AB} = 2 $
	y-1=2(x-2)	✓ gradient of AB
	y-1=2x-4	✓ substitution into formula
	y = 2x - 3	✓ equation of AB
		(5)
4.4	B is the point $(0; -3)$	✓ coordinates of B
	$BQ = \sqrt{(0-4)^2 + (-3-0)^2}$	✓ substitution
	= 5	✓ answer (3)
4.5	$BP = \sqrt{(0-0)^2 + (-3-2)^2}$	
		✓ BP = 5
	= 5 $BP = BQ$	$\checkmark BP = BQ$
	$\triangle \Delta BPQ$ is isosceles.	(2)
	OR	
	BP = 2 + 3	
	= 5	✓ BP = 5
	BP = BQ	✓ BP = BQ
1.6	∴ ABPQ is isosceles	(2)
4.6	If PBQR is a rhombus then A is the midpoint of BR. Let the coordinates of R be $(x; y)$	✓ A is the midpoint of BR
		DK
	$\frac{x+0}{2} = 2 \qquad \text{and} \qquad \frac{y-3}{2} = 1$	
		\checkmark x coordinate
	x = 4 y = 5	✓ x coordinate ✓ y coordinate
	\therefore R(4;5)	(3)
	OR	✓ RQ PB
	$RQ \parallel PB \text{ so } x_R = 4$	\checkmark RQ PB \checkmark x coordinate
	$RQ = PB = 5$, so $y_R = 5$	✓ y coordinate
	∴R(4;5)	(3)
		[16]

Copyright Reserved

AB is defined as 5y - 3x - 5 = 0 which can be written as $y = \frac{3}{5}x + 1$

$$m_{AB}=\frac{3}{5}$$

Let α be the inclination of AB.

$$\tan \alpha = \frac{3}{5}$$

$$\alpha = 30.96^{\circ}.$$

Let β be the inclination of CD

$$\beta = 45^{\circ} + 30,96^{\circ}$$

= 75,96°

Gradient of CD = $\tan 75.96^{\circ} = 4$.

OR

$$\tan \beta = \tan(\alpha + 45^{\circ})$$

$$= \frac{\tan \alpha + \tan 45^{\circ}}{1 - \tan \alpha \cdot \tan 45^{\circ}}$$

$$= \frac{\frac{3}{5} + 1}{1 - \frac{3}{5} \times 1}$$

$$= 4$$

$$m_{CD} = \tan \beta$$

$$m_{CD} = 4$$

$$m_{AB} = \frac{3}{5}$$

$$\checkmark \tan \alpha = \frac{3}{5}$$

$$\checkmark \alpha = 30.96^{\circ}$$

✓ gradient of CD

(5)

(5)

✓ expansion

 $\checkmark \tan 45^\circ = 1$

 $\checkmark \tan \alpha = \frac{3}{5}$

✓ substitution

✓ answer

NSC – Memorandum

5.2	Equation of CD is $y = 4x + c$ $\therefore 4 = 4(5) + c$ $c = -16$ Equation of CD is $y = 4x - 16$.	✓ y- intercept ✓ equation of CD	(2)	
	y-4 = 4(x-5) $y-4 = 4x-20$ $y = 4x-16$	✓ substitution ✓ equation of CD	(2) [7]	

QUESTION 6

6.1	$x^2 + y^2 + 8x + 4y - 38 = 0$	
	$x^{2} + 8x + 16 + y^{2} + 4y + 4 = 16 + 4 + 38$	✓ completing the
		square (both or one)
	$(x+4)^2 + (y+2)^2 = 58$	✓ factor form
	Centre is $(-4; -2)$ and the radius is $\sqrt{58}$	✓ centre ✓ radius
		(4)
6.2	Centre of second circle is (4; 6)	✓centre
	Distance between centres is $\sqrt{(4+4)^2 + (6+2)} = \sqrt{128} = 11,31$	✓distance
6.2		(2)
6.3	Sum of radii = $\sqrt{58} + \sqrt{26} = 12,71$	✓✓ sum of radii
	Distance between centres is 11,31.	V Suili of fauli
	sum of the radii > distance between the centres	✓ conclusion
	sum of the fault > distance between the centres	(3)
	: the circles must overlap and hence the circles must intersect.	
6.4	Equation of second circle:	
	$(x-4)^2 + (y-6)^2 = 26$	
	$x^2 - 8x + 16 + y^2 - 12y + 36 = 26$	✓ equation of circle in
	$x^2 - 8x + y^2 - 12y + 26 = 0$	form = 0
	Let $(x; y)$ be either of the two points on intersection.	
	Then	✓ statement – two
	$x^2 + y^2 + 8x + 4y - 38 = 0$	points of intersection ✓ subtracting
	and $x^2 + y^2 - 8x - 12y + 26 = 0$	subtracting
	Subtract $16y + 16x - 64 = 0$	✓ simplification
	y = -x + 4	(4)
	Both points of intersection lie on this line.	
	\therefore $y = -x + 4$ is the equation of the common chord.	
	OR	

NSC – Memorandum

NSC – Welliorandum	,
Check that the line $y = -x + 4$ cuts the two circles at the same points:	
$(x-4)^{2} + (-x-2)^{2} = 26$ $x^{2} - 8x + 16 + x^{2} + 4x + 4 = 26$ $2x^{2} - 4x - 6 = 0$	✓ substitution
$x^{2}-2x-3=0$ $(x-3)(x+1)=0$ $x=3 \text{ or } x=-1$	✓ answer
$x^{2} + y^{2} + 8x + 4y - 38 = 0$ $x^{2} + (4 - x)^{2} + 8x + 4(4 - x) - 38 = 0$ $x^{2} + 16 - 8x + x^{2} + 8x + 16 - 4x - 38 = 0$	✓ substitution
$2x^{2} - 4x - 6 = 0$ $x^{2} - 2x - 3 = 0$	✓ answer (4)
x = 3 or $x = -1$	[13]

QUESTION 7

7.1.1	P'(5;-2)	✓ answer
		(1)
7.1.2	P'(5;2)	\checkmark x coordinate
		✓ y coordinate
501	T T (14 1) (2 2)	(2)
7.2.1	$K \to K'' : (14; 4) \to (2; 2)$	
	$U \to U'' : (18; 6) \to (3; 9)$	
	$H \to H'' : (16; 8) \to (4; 8)$	
	$L \rightarrow L'' : (18; 10) \rightarrow (5; 9)$	
	$E \to E'' : (14; 12) \to (6; 7)$	
	So "halve" and 'interchange" or 'interchange" and "halve".	✓ reflected
	<u> </u>	✓ the line $y = x$
	Reflection across $y = x$ followed by contraction by $\frac{1}{2}$	✓ enlarged
	OR	\checkmark scale factor of $\frac{1}{2}$
	Contraction by $\frac{1}{2}$ followed by reflection across $y = x$.	(4)
7.2.2	$H' = \frac{1}{2}(16;8) = (8;4)$	✓ (8;4)
	OR $H^{/}(8;16)$	√ (8; 16)
	01. 11 (0,10)	(2)
7.2.3	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	✓ ✓ answer
	Area KUHLE : Area K"U"H"L"E" = $\left(\frac{2}{1}\right)^2 = 4 : 1$	(2)
		[11]

8.1	For anti-clockwise rotation:	
0.1	For anti-clockwise rotation: $x' = x \cos \theta - y \sin \theta$	
	$= 3\cos 120^{\circ} - 2\sin 120^{\circ}$	✓ formula
	$= 3(-\cos 60^{\circ}) - 2\sin 60^{\circ}$ = 3(-\cdot \cdot 60^{\circ}) - 2\sin 60^{\circ}	
		✓ simplification
	$= 3\left(-\frac{1}{2}\right) - 2\left(\frac{\sqrt{3}}{2}\right)$	✓ substitution
		✓ answer
	$=\frac{-3-2\sqrt{3}}{2}$	allswei
	$y' = x\sin\theta + y\cos\theta$	
	$= 3\sin 120^{\circ} + 2\cos 120^{\circ}$	
	$= 3\sin 60^{\circ} + 2(-\cos 60^{\circ})$	
		✓ simplification
	$= 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right)$	
	$=\frac{3\sqrt{3}-2}{2}$	✓ answer
	<u> </u>	unover
	$P'\left(\frac{-3-2\sqrt{3}}{2};\frac{3\sqrt{3}-2}{2}\right)$	(6)
8.2	(1) $(\sqrt{3})$	(0)
	$-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$	<u></u>
	$-4 = -x - \sqrt{3}y \qquad \dots \text{equation 1}$	$\checkmark -4 = -x - \sqrt{3}y$
	$0 = x \left(\frac{\sqrt{3}}{2}\right) + y \left(-\frac{1}{2}\right)$	
	$0 = \sqrt{3}x + y$	
	$y = -\sqrt{3}x$ equation 2	$\checkmark y = -\sqrt{3}x$
	Substitute equation 2 into equation 1	
	$-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$	
	-4 = -x + 3x	
	-4=2x	1: .
	x = -2	✓ x-coordinate ✓ y-coordinate
	$y = 2\sqrt{3}$	(4)
	$Q\left(-2;2\sqrt{3}\right)$	[10]

9.1.1	4	✓ correct quadrant
	$\sin \theta = -\frac{3}{5} \text{ and } \cos \theta = -\frac{4}{5}$	and values.
	-4 θ	$\checkmark \sin \theta = -\frac{3}{5}$
	$\sin\theta + \cos\theta = -\frac{7}{5}$	$\checkmark \cos \theta = -\frac{4}{5}$
	5	5
	•	✓answer (4)
9.1.2	$\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{2\sin \theta \cos \theta}{\cos^2 \theta - \sin^2 \theta}$	$\sqrt{\sin 2\theta}$
	$\frac{\tan 2\theta}{\cos 2\theta} = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta - \sin^2 \theta}$	$\cos 2\theta$
	$2\left(-\frac{3}{5}\right)\left(-\frac{4}{5}\right)$	$\checkmark \sin 2\theta = 2\sin\theta \cdot \cos\theta$ $\checkmark \cos 2\theta = \cos^2\theta - \theta$
	$=\frac{\left(\begin{array}{c}5\right)\left(\begin{array}{c}5\right)}{16}$	$\sin^2\theta$
	$\frac{10}{25} - \frac{5}{25}$	✓ substitution
	$=\frac{24}{7}$	✓ answer
	$-{7}$	(5)
	OR	
	$ an 2\theta$	
	$= \frac{2 \tan \theta}{1 + \tan^2 \theta}$	✓✓ expansion
	$=\frac{1-\tan^2\theta}{1-\tan^2\theta}$	
	$2\left(\frac{3}{2}\right)$	✓✓ substitution
	$=\frac{4}{(2)^2}$	
	$=\frac{3}{1-\left(\frac{3}{4}\right)^2}$	
	24	
	$=\frac{24}{7}$	✓ answer (5)
9.2.1	$\cos(360^{\circ} - x) \cdot \tan^2 x$, ,
	$\overline{\sin(x-180^\circ).\cos(90^\circ+x)}$	$\sqrt{\cos x}$
	$=\frac{(\cos x)(\tan^2 x)}{(-\sin x)(-\sin x)}$	$\checkmark -\sin x$ $\checkmark -\sin x$
	$=(\cos x)\left(\frac{\sin^2 x}{\cos^2 x}\right)\left(\frac{1}{\sin^2 x}\right)$	$\checkmark \frac{\sin^2 x}{\cos^2 x}$
	$\cos^2 x / \sin^2 x$	cos x
	$=\frac{1}{1}$	✓ answer
	cos x	(5)
9.2.2	$x = 30^{\circ}$	✓ x = 30°
	$\frac{1}{\cos 30^{\circ}} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}$	✓ answer
	$\frac{\cos 30^{\circ}}{2}$ $\frac{\sqrt{3}}{2}$	(2)
	2	[16]

Copyright Reserved

10.1.1	$\sin 400 = \sin(260 + 120)$	('.': 400 ·
10.1.1	$\sin 48^\circ = \sin(36^\circ + 12^\circ)$	✓ writing 48° in terms of
	$= \sin 36^{\circ} \cos 12^{\circ} + \cos 36^{\circ} \sin 12^{\circ}$	36° and 12°
	= p + q	✓ expansion ✓ answer
		(3)
10.1.2	$\sin 24^\circ = \sin(36^\circ - 12^\circ)$	✓ writing 24° in terms of
	$= \sin 36^{\circ} \cos 12^{\circ} - \cos 36^{\circ} \sin 12^{\circ}$	36° and 12°
	= p - q	✓ expansion
	– <i>p q</i>	$\checkmark \sin 24^\circ = p - q$
	OR	(3)
		(iti
	$\sin 24^\circ = \sin(36^\circ - 12^\circ)$	✓ writing 24° in terms of 36° and 12°
	$= \sin 36^{\circ} \cos 12^{\circ} - \cos 36^{\circ} \sin 12^{\circ}$	✓ expansion
	= p - q	$\checkmark \sin 24^\circ = p - q$
		(3)
10.1.3	$\sin 48^\circ = 2\sin 24^\circ \cos 24^\circ$	$\checkmark \cos 48^\circ = 2\cos^2 24^\circ - 1$
	$\therefore p + q = 2(p - q)\cos 24^{\circ}$	$\checkmark \sin 48^\circ = p + q$
	p+q	✓ answer
	$\therefore \cos 24^\circ = \frac{p+q}{2(p-q)}$	(3)
	OR	
	$\cos 48^\circ = 2\cos^2 24^\circ - 1$	$\checkmark \cos 48^{\circ} = 2 \cos^2 24^{\circ} - 1$
	$\sqrt{1+\cos 48^{\circ}}$ $\sqrt{1/\sqrt{2}}$	$\checkmark \sin 24^\circ = p - q$
	$\therefore \cos 24^{\circ} = \sqrt{\frac{1 + \cos 48^{\circ}}{2}} = \sqrt{\frac{1}{2} \left(1 + \sqrt{1 - \sin^2 48^{\circ}} \right)}$	✓ answer
		(3)
	$=\sqrt{\frac{1}{2}\left(1+\sqrt{1-(p+q)^2}\right)}$	
	V2(· · · · ·)	
	OR	
	$\cos^2 24^\circ = 1 - \sin^2 24^\circ$	$\sqrt{\cos^2 24^\circ = 1 - \sin^2 24^\circ}$
	$\cos^2 24^\circ = 1 - (p - q)^2$	$\checkmark \cos^2 24 = 1 - \sin^2 24$ $\checkmark \sin 24^\circ = p - q$
	$\cos 24^{\circ} = \sqrt{1 - (p - q)^{2}}$	\checkmark answer
	$\cos 24^\circ = \sqrt{1 - (p - q)}$	(3)

10.3.1	$\sin^4 x + \sin^2 x \cos^2 x$	
	$\frac{1+\cos x}{}$	✓ factorisation
	$=\frac{\sin^2 x(\sin^2 x + \cos^2 x)}{\sin^2 x + \cos^2 x}$	· lactorisation
	$1 + \cos x$	$\checkmark \sin^2 x + \cos^2 x = 1$
	$=\frac{\sin^2 x}{\cos^2 x}$	
	$1+\cos x$	(identity)
	$=\frac{1-\cos^2 x}{1-\cos^2 x}$	✓identity
	$1 + \cos x$	✓ factorisation
	$=\frac{(1-\cos x)(1+\cos x)}{(1+\cos x)}$	(0)
	$(1+\cos x)$	(4)
10.3.2	$= 1 - \cos x$ $1 + \cos x = 0$	$\checkmark 1 + \cos x = 0$
10.5.2	$\cos x = -1$	1 1 603 % = 0
	$x = 180^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	✓180° + k.360°
	Undefined for $x = 180^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$.	(2)
	Ondermed 101 % = 100 + K.300 , K C Z .	[22]

11.1	$1 + \sin x = \cos 2x$	
	$1 + \sin x = 1 - 2\sin^2 x$	✓ expansion
	$\sin x + 2\sin^2 x = 0$	
	$\sin x(1+2\sin x)=0$	✓ factorisation
	$\sin x = 0 \qquad \text{or} \qquad \sin x = -\frac{1}{2}$	✓ equations
	$x = k.180$ or $x = -30^{\circ} + k.360$ $k \in \mathbb{Z}$	$\checkmark x = k.180$
	$x = k.180$ or $x = -30 + k.360$ $k \in \mathbb{Z}$ $x = 210^{\circ} + k.360$	✓ solution for
	$x \in \{180^\circ; 210; 330^\circ; 360^\circ\}$	$\sin x = -\frac{1}{2}$
	OR	✓✓answers
	OK	(7)
	$1 + \sin x = \cos 2x$	
	$1 + \sin x = \cos^2 x - \sin^2 x$	✓ expansion
	$1 + \sin x = 1 - \sin^2 x - \sin^2 x$	
	$\sin x + 2\sin^2 x = 0$	✓ factorisation
	$\sin x(1+2\sin x)=0$	
	$\sin x = 0 \qquad \text{or} \qquad \sin x = -\frac{1}{2}$	✓ equations
	$x = k.180$ or $x = -30^{\circ} + k.360$ $k \in \mathbb{Z}$	$\checkmark x = k.180$
	$x = 210^{\circ} + k.360$	✓ solution for
	$x \in \{180^\circ; 210; 330^\circ; 360^\circ\}$	$\sin x = -\frac{1}{2}$
		✓✓answers
		(7)

NSC – Memorandum

QUESTION 12

12.1	= <u>BC</u>	✓ sine rule
	$\frac{\sin[180^{\circ} - (\alpha + \beta)]}{\sin[\alpha]} - \frac{\sin \alpha}{\sin \alpha}$	$\hat{ABC} = 180^{\circ} - (\alpha + \beta)$
	$BC\sin(\alpha + \beta) = b\sin\alpha$	$ABC = 180 - (\alpha + \beta)$
	$BC = \frac{b\sin\alpha}{\sin(\alpha + \beta)}$	✓ BC =
	$\sin(\alpha + \beta)$	
	but BC = DF	✓ BC = DF
	$\therefore DF = \frac{b\sin\alpha}{\sin(\alpha + \beta)}$	✓ manipulation
	$\sin(\alpha + \beta)$	
	$\cos \theta = \frac{DF}{DE}$ $\therefore DE = \frac{DF}{\cos \theta}$	✓ DE =
	$\therefore DE = \frac{b \sin \alpha}{\sin(\alpha + \beta) \cos \theta}$	(6)
12.2	$DE = \frac{2000 \sin 43^{\circ}}{10000000000000000000000000000000000$	✓substitution
	$DE = \frac{1}{\sin 79^{\circ}.\cos 27^{\circ}}$	numerator
	$=1559,50 \mathrm{m}$	✓substitution
		denominator ✓answer (3)
		✓ answer (3) [9]

TOTAL: 150