I10 - Spektrální analýza číslicových signálů a převzorkování. (Základy zpracování signálů)

Základní dělení – z pohledu determinovanosti

Vzájemná energie

Energie:

$$E=\int_{-\infty}^{\infty}|x(t)|^2dt=\int_{-\infty}^{\infty}|x(t)\cdot x(t)^*|dt;$$
 (*komplexně sdružené)

Vzájemná energie dvou signálů:

 interakce mezi signály a jejich komponentami

$$E_{xy} = \int_{-\infty}^{\infty} |x(t) \cdot y(t)^*| dt$$

Jak si to představit?
$$E_z = \int_{-\infty}^{\infty} |z(t)|^2 dt$$

$$E_z = \int_{-\infty}^{\infty} |z(t)|^2 dt$$

Fourierova transformace 7/31

Obecná Fourierova transformace (FT)

Fourierova transformace 8/31

Symetrie spektra $f \in (-\infty, \infty)$

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-i\omega t}dt \qquad \omega = 2\pi f$$

frekvence ortogonální funkce $2\pi ft \ \epsilon(-\infty,\infty)$

Diskrétní v čase Fourierova transformace (DTFT)

14/31

Diskrétní v čase Fourierova transformace (DTFT)

Diskrétní signál → periodické spektrum

$$\Omega = 2\pi f T s = 2\pi \frac{f}{f_s}$$

$$T_s = \frac{1}{f_s}$$

Diskrétní v čase Fourierova transformace (DTFT)

16/31

Periodické spektrum $\Omega \epsilon(-\pi,\pi) + k2\pi, k\epsilon\mathbb{Z}$

Ekvivalentní zobrazení

Různá definice normalizace periody mezi DTF↔IDTF

FT - neřešíme periodu:
$$x(t) = \int_{-\infty}^{\infty} X(f)e^{i\omega t}df$$
 $X(f) = \int_{-\infty}^{\infty} x(t)e^{-i\omega t}dt$

$$\begin{split} \mathbf{F}\ddot{\mathbf{K}} - \check{\mathbf{r}} e\check{\mathbf{s}} & \text{ime periodu} \\ \text{na straně spektra} \end{split} \qquad \widetilde{x_n}(t) = \sum_{k=0}^n c[f_k] e^{ik\omega_0 t} \qquad c[fk] = \frac{1}{T_0} \int_0^{T_0} \!\! x(t) e^{-ik\omega_0 t} dt \end{split}$$

DTFT - řešíme periodu na straně času
$$x[n] = \frac{1}{2\pi} \int_0^{2\pi} X(f) e^{i\Omega n} df$$
 $X(f) = \sum_{n=-\infty}^{\infty} x[n] e^{-i\Omega n}$

Věty o Fourierově transformaci

Linearita:
$$\mathcal{F}\{\lambda_x x(t) + \lambda_y y(t)\} = \mathcal{F}\{\lambda_x x(t)\} + \mathcal{F}\{\lambda_y y(t)\}$$

Modulace:
$$\mathcal{F}\{x(t) \cdot \cos(\omega_c t)\} = \frac{1}{2}X(\omega - \omega_c) + \frac{1}{2}X(\omega + \omega_c)$$

$$|X(f)| \longrightarrow 1$$

$$|X(f)| \longrightarrow 0$$

$$|X(f)| \longrightarrow 0$$

$$|X(f)| \longrightarrow 0$$

$$|X(f)| \longrightarrow 0$$

Posun v čase: $\mathcal{F}\{x(t-td)\} = X(\omega)e^{-i\omega td}$ Posun v čase \leftrightarrow posun fáze ve spektru

Věty o Fourierově transformaci

Změna časového měřítka:
$$\mathcal{F}\{x(a\cdot t)\}=\frac{1}{|a|}X\left(\frac{\omega}{a}\right)$$

Zkrácení času ↔ zvětšení frekvence

Komplexní sdružení:
$$\mathcal{F}\{x(t)^*\} = X(-\omega)$$

Pro Re{} signály ↔ bez změny, symetrické spektrum v 0

Konvoluce: $\mathcal{F}\{x(t) * y(t)\} = X(\omega) \cdot Y(\omega)$ Konvoluce v čase \leftrightarrow skalární násobení spekter Filtrace v čase \leftrightarrow váhování spektra

Parsevalova rovnost:

$$\mathcal{F}\left\{\int_{-\infty}^{\infty}|x(t)|^2dt\right\} = \frac{1}{2\pi}\int_{-\infty}^{\infty}|X(\omega)|^2d\omega$$
 Energie Výkonová spektrální hustota

Energie signálu = Energie spektra

Signály z praxe, digitální zpracování a Fourierova transformace

Biologické signály, měření přírodních jevů apod.

Spojitý, neperiodický signál

- diskrétní
- neperiodický

finitní

 $n \notin (-\infty, \infty)$ $n \in (1, N)$

požadavky: $n \in (-\infty, \infty)$ požadavky:

perioda N_0

Periodizace:

Budeme předstírat, že finitní signál $n \in (1, N)$ je jedna perioda

$$x[n] = \sum_{k=0}^{N-1} X[f_k] e^{i\Omega_k n}$$

$$X[fk] = \frac{1}{N} \sum_{n=1}^{N} x[n]e^{-i\Omega_k n}$$

Počet vzorků v "periodě" N

→ Počet spektrálních čar *K=N*

Vzorkovací čas T_s (1/ f_s)

Pozor na vzorkovací teorém!

Zrcadlení ve spektru

 $\rightarrow f_{\underline{k}}' = f_{\underline{s}} - f_{\underline{k}} \quad \varphi_{\underline{k}}' = -\varphi_{\underline{k}}$

Omezení prosakování

Délkou segmentu

- · Celý násobek periody harmonické
- Pro úzkopásmový signál
- V praxi pouze vyjímečně

Př.: f_s=20 Hz

Zajímá nás 2 Hz složka T_0 =0.5s $\rightarrow N = r \cdot T_0 \cdot fs; r \in \mathbb{N}^+$ r=4 $\rightarrow T$ =2s $\rightarrow N$ =40

Zajímá nás 5.2 Hz složka
$$T_0$$
=0,1923 s \rightarrow $N=r\cdot T_0\cdot fs; r\in \mathbb{N}^+$ r =10 \rightarrow T =1,9231s \rightarrow N =38

Spektrum 12/28

1

Časová segmentace

- Délka signálu M
- Délka segmentu N
- Negativní překryv ${\cal O}$
- $O \in (0, N-1) \in \mathbb{N}^{\square}$

M

Segment signálu

$$\begin{aligned} y_w &= y[m] \\ m &\in \langle 1 + (N-O)(w-1); \ wN - O(w-1) \rangle \\ w &\in \langle 1, floor\left[(M-N)/(N-O) \right] + 1 \rangle \end{aligned}$$

Počet segmentů

V MATLAB

M=length(y);
start=1:N-O:M-N+1;
stop=start+N-1;
w=1;
yw=y(start(w):stop(w));
Tw=t(start(w)); % čas začátku segmentu

Spektrum 13/28

Spektrogram

- signál rozdělen do w časových oken délky N
- okna se mohou překrývat o O
- DFT pro každý segment

Spektrum 22/28

Odhad PSD

V literatuře často neodlišují "PSD" a "odhad PSD"

Výpočet odhadu PSD

(Welchova metoda):

- Časová segmentace
- Váhování oknem
- · Doplnění nulami
- FFT
- Kvadrát modulu spektra
- Průměr přes všechny segmenty
- $\widetilde{X}_{PSD}(f) = \operatorname{Avr}_{T_w}\{|X(f, Tw)|^2\}$

Spektrum 24/28

Shrnutí

Zahuštění spektra:

- Za signál vložíme nulové vzorky
- Nezmění se energie
- Zvýší se počet spektrálních čar
- Nepřidává informaci
- Užitečné pro porovnávání signálů s různým f_s nebo segmentací
- Optimalizace pro FFT: 2ⁿ vzorků

Spektrum 25/28

Shrnutí

Prosakování:

- Vzniká při periodizaci signálu pro DFT
- Nespojitost mezi periodami → vyšší harmonické složky
- <u>Váhováním</u> oknem minimalizujeme nespojitosti
- Rozmazání spektra <u>heterodynním</u> mísením

DSP čtyřúhelník

Převzorkování

Vzorkovací teorém

Rekonstrukce signálu

• mezi naměřenými hodnotami očekáváme spojité proložení

 pro rekonstrukci signálu se musí mezi dva sousední vzorky vejít více než půlperioda nejrychlejší harmonické složky

Vzorkovací teorém

Diskrétní, periodické spektrum

Nedodržení teorému

v jiné periodě spektra p

Diskrétní, periodické spektrum

Aliasing

Příklad nejednoznačného vyjádření frekvence→ 6Hz složka se přičte ke 4Hz

$$f_s$$
=10 Hz
 f_s /2=5 Hz
 f_0 =6 Hz
 $f_N(f_0)$ =4 Hz

Převzorkování (resampling)

Změna vzorkovacího kmitočtu

Ekvidistantní (rovnoměrné) vzorkování

Decimace

- Snížení vzorkovacího kmitočtu
- Vynechání vzorků

Interpolace

- Zvýšení vzorkovacího kmitočtu
- Proložení hodnot

Proč převzorkovávat?

- snížení datového toku při nevyužití celého frekvenčního pásma 0÷f_x/2
- sjednocení signálů s různou f_s
- převzorkování na 2^N (FFT)

Decimace

- Snížení vzorkovacího kmitočtu
- Decimační faktor $D = \frac{f_s}{f_{dec}}; D \in \mathbb{Z} (1,2,3,...)$

• Výběr každého D-tého vzorku

Decimace

- Decimační faktor $D = \frac{f_s}{f_{dec}}$
- $f_{dec} = \frac{f_s}{D}$, tj. nová vzorkovací frekvence

 $D \in \mathbb{Z} \ (1,2,3,\dots)$ D společným násobkem $f_{\rm s}$ a $f_{\rm dec}$ (celočíselně dělitelné)

Anti-aliasing

Návrh dolní propusti

- Ideální DP $f_0 = f_{dec}/2$ (nemožné)
- Optimálně $f_0 = (0,3 \div 0,4) f_{dec}$ (konečná strmost)
- FIR (kauzální, lineární fáze, stabilní) x[n]Decimace $R \times$ Anti-aliasing DP: $f_{DP} << \frac{f_s}{2D}$ Decimace: x[n] $f_{dec} = \frac{f_s}{D}$

Decimační faktor

- Decimační faktor $D = \frac{f_s}{f_{dec}}$; $D \in \mathbb{Z}$ (1,2,3, ...)
- Stupeň decimace limitován návrhem anti-aliasing DP
- D>10 (obtížný návrh) velmi úzký propustný lalok

Postupná decimace pro R>10

- Postupně decimovat s d_k<10
- $D = \prod_k d_k$; $d \in \mathbb{Z} (1,2,3,...)$

Př.: Invazivní EEG obsahuje složky až 1 kHz. Kvůli analýze zpoždění mezi kanály se vzorkuje 16 kHz. Pro vizuální on-line hodnocení postačí frekvence do 200 Hz. Datový tok při plné vzorkovacím kmitočtu je pro on-line režim výpočetně náročný a zahlcuje datovou síť během streamu. Decimujte signál pro potřeby on-line streamu.

$$f_s$$
=16 kHz
 f_{max} =200 Hz
 f_{dec} =3· f_{max} (vzorkovací teorém + rezerva)
 D =16.000/600=26,7 ($D \notin \mathbb{Z}$, společný násobek ???)
Hledáme násobky (<10) a zároveň dělitele f_s :
\$\displais\$5×5=25 (f_{dec} =640 Hz)
\$\displais\$9×3=27 (f_{dec} =592.59 Hz)

Interpolace

- Zvýšení vzorkovacího kmitočtu
- Interpolační faktor $I = \frac{f_{int}}{f_s}$; $I \in \mathbb{Z}$ (1,2,3, ...)
- Mezi každý vzorek vložíme (I-1) hodnot

Implementace

- DSP expandér
- Mezi vzorky vložíme (I-1) nul

•
$$y[n] = \begin{cases} x[n/I] & n = I, 2I, ... \\ 0 & \text{jinde} \end{cases}$$

Filtrace dolní propustí FIR: <u>sinc</u>(2πf_s/2)
 Digital to Analog <u>Converter</u> (DAC)

Co? Jak to funguje?

Implementace

- Mezi vzorky vložíme (I-1) nul
- Použijeme dolní propust $f_{DP}=f_s/2$
- + zesílení (kompenzace energie signálu - Parsevalova rovnost)
- Výsledek filtrace signál s omezeným spektrem

Rekonstruční dolní propust

Reconstruction filter Anti-imaging filter Digital to analog converter (DAC)

$$f_0=f_s/_2$$
 ... vzorkovací kmitočet před interpolací ${
m sinc}(2\pi f_0 t)=rac{\sin(2\pi f_0 t)}{2\pi f_0 t}$

Převzorkování v neceločíselném poměru

Největší společný dělitel K

mezi vstupním a výstupním vzorkovacím kmitočtem

Určíme faktory

- $D=f_{in}/K$
- $I=f_{out}/K$

Interpolace + Decimace

- Interpolujeme na $I \cdot f_{\mathrm{in}}$
- Decimujeme na $\frac{I \cdot f_{in}}{D}$

$$R = \frac{I}{D}$$

Převzorkování a filtrace

Odstranění extrémně pomalých složek

- izolinie: půlčlánkový potenciál na elektrodě, pohybové artefakty, tepelný drift senzorů a zesilovačů, ...
- filtrace horní propustí (HP), mezní kmitočet f_0 =0.05 Hz
- Jak navrhnout filtr, když f_s>>>f₀? (možná FIR obrovského řádu)

Řešení:

- od signálu odečteme izolinii
- izolinie (dolní propust): stejný problém s návrhem filtru
- decimace (malé fs)
- · návrh DP, filtrace: izolinie
- interpolace (původní fs)
- · odečtení signálu a izolinie

