EE230 – Final Project 1.9 GHz CP PLL Design

(using 45nm CMOS Technology)

Muhammad Aldacher
Chad Santos

Overview

- 1) Project Target
- 2) Matlab Simulations
- 3) VerilogA Simulations
- 4) PLL Circuits
 - a. PFD
 - b. Charge Pump
 - c. Loop Filter
 - d. VCO
 - i. LC tank
 - ii. Current-Starved Ring
 - e. Divider
- 5) System Simulations
- 6) Corner Simulations
- 7) Summary

(1) Project Target

Target

$$FOM = 10 \log \left(Jitter^2 \cdot \frac{Power}{1 \, mW} \right) < -220 \, dB$$

PLL Block Diagram

(2) Matlab Simulations

System Parameters

Parameter	Value
F _{REF}	30 MHz
F _{OUT}	1.9 GHz
M _{Divider}	64
I _{CP}	100 uA
K _{vco}	600 MHz/V
R_{P}	6.5 ΚΩ
C _P	100 pF
C ₂	10 pF

Open-Loop Bode Plots

Closed-Loop Bode Plots

Bode Plot Parameters

Parameter		Value
Zero	f _z	0.245 MHz
Unity-Gain BW	f_{ugb}	0.871 MHz
Pole	f _{p3}	2.693 MHz
Max Phase Margin	PM _{Max}	56.44°
Phase Margin	PM	56.38°
Closed-Loop BW	BW	1.41 MHz

(3) VerilogA Simulations

Test Bench

Waveforms

(4) PLL Circuits

1- PFD

2- Charge Pump

2- Charge Pump

3- Loop Filter

PFD/CP

Reference lagging by 1ns

PFD/CP

Reference leading by 1ns

4- VCO

LC Oscillator

LC Oscillator

Vcontrol Tuning Range

LC Oscillator

4- VCO

b) Current Starved Ring VCO

Current Starved Ring Oscillator

Current Starved Ring Oscillator

Vcontrol Tuning Range

Current Starved Ring Oscillator

Phase Noise at 1MHz Offset

5- Divider

➤ Divide-by-64 (6 Divide-by-2 blocks)

5- Divider

a) TSPC Flipflop

5- Divider

b) CMOS Flipflop

(5) PLL System Simulations

Test Bench

A. Using LC VCO

Waveforms

RMS Jitter

Pk-Pk Jitter

Eye Diagram Jitter

Eye Diagram Jitter

B. Using Current-Starved Ring VCO

Waveforms

RMS Jitter

Pk-Pk Jitter

Comparison

	PLL with LC VCO	PLL with Ring VCO
Tuning Range	1.68 GHz – 2.02 GHz	0.5 GHz – 3 GHz
Locking Time	< 2.1 us	< 1.5 us
P dissipation	1.26175 mW	1.21701 mW
RMS Jitter	1.5421 ps	18.9632 ps
FOM	-235.23 dB	-213.59 dB

(6) Corner Simulations

All Corners

Nominal TT, 27°, 1 V_{DD}

FF, 125°, 0.9 VDD

FF, 125°, 1.1 V_{DD}

FF, -40°, 0.9 VDD

FF, -40°, $1.1 V_{DD}$

SS, 125°, 0.9 VDD

SS, 125°, 1.1 V_{DD}

SS, -40°, 0.9 V_{DD}

SS, -40°, 1.1 VDD

(7) Summary

- Our work shows a comparison between a CP-PLL using a Ring VCO & another using an LC VCO:
 - The Ring VCO gives a higher KVCO, which affects the PLL's stability & gives a higher jitter than that in the LC VCO.
 - Using the LC VCO, we were able to achieve a low RMS jitter with a reasonable power dissipation, achieving the required FOM.
- In our corners' analysis:
 - The range of the output frequency after the PLL locks is between 1.916 GHz & 1.946 GHz.
 - The range of the feedback frequency after the PLL locks is between 30.015 MHz & 30.077 MHz.