

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DCC511 – Lógica de Predicados (2022.2) Prof. Msc. Thais Oliveira Almeida

AULA 12:

EQUIVALÊNCIA ENTRE SENTENÇAS

Representação do Conhecimento

- ❖ Para facilitar a formalização de sentenças na lógica de predicados, destacamos quatro tipos de sentenças de especial interesse, denominadas enunciados categóricos:
 - Universal afirmativo: Todos os homens são mortais;
 - Universal negativo: <u>Nenhum</u> homem é extra-terrestre;
 - Particular afirmativo: <u>Alguns</u> homens são cultos;
 - Particular negativo: Alguns homens não são cultos.

Universal Afirmativo

- •É da forma $(\forall X)(p(X) \rightarrow q(X))$
- •Estabelece que p é um subconjunto de q.

- •Exemplo:
 - Sentença: Todos os homens são mortais;
 - Sintaxe: $(∀X)(h(X) \rightarrow m(X))$;
 - Semântica: para todo X, se X ∈ h então X ∈ m.

Universal Negativo

- •É da forma $(\forall X)(p(X) \rightarrow \neg q(X))$
- •Estabelece que os conjuntos p e q são disjuntos.

- •Exemplo:
 - Sentença: Nenhum homem é extra-terrestre;
 - Sintaxe: $(∀X)(h(X) \rightarrow \neg e(X))$;
 - Semântica: para todo X, se X ∈ h então X não pertence a e.

Particular Afirmativo

- •É da forma $(\exists X)(p(X) \land q(X))$
- •Estabelece que os conjuntos p e q têm interseção não vazia.

- •Exemplo:
 - Sentença: Alguns homens são cultos;
 - Sintaxe: $(\exists X)(h(X) \land c(X));$
 - Semântica: existe X, tal que $X \in h$ e $X \in c$.

Particular Negativo

- •É da forma (∃X)(p(X) ^ ¬q(X))
- •Estabelece que existem elementos em p que não estão em q.

- •Exemplo:
 - Sentença: Alguns homens não são cultos;
 - Sintaxe: $\exists X[h(X) \land \neg c(X)];$
 - Semântica: existe X, tal que $X \in h$ e X não pertence a c.

Equivalência entre Sentenças

Há sentenças que podem ser escritas em mais de uma forma.

Exemplo:

- Sentenças
 - Nem tudo que brilha é ouro.
 - Existe algo que brilha e não é ouro.
- Fórmulas
 - \circ $(\neg \forall X)(b(X) \rightarrow o(X))$
 - \circ $(\exists X)(b(X) \land \neg o(X))$

Equivalência entre Sentenças

Equivalência

```
(\neg \forall X)(b(X) \rightarrow o(X))
\equiv (\neg \forall X)(\neg b(X) \lor o(X))
\equiv (\exists X)\neg(\neg b(X) \lor o(X))
\equiv (\exists X)(b(X) \land \neg o(X))
```

- 1. Verifique se os pares de sentenças são equivalentes.
- a) Nem toda estrada é perigosa.

Algumas estradas não são perigosas.

b) Nem todo bêbado é fumante.

Alguns bêbados são fumantes.

c) Nem todo ator americano é famoso.

Alguns atores americanos não são famosos.

1. Verifique se os pares de sentenças são equivalentes.

Nem toda estrada é perigosa.

Algumas estradas não são perigosas.

- $\ \ \, \ \ \, \neg \forall X[estrada(X) \rightarrow perigosa(X)]$
- $-\forall X[-estrada(X) \ v \ perigosa(X)]$
- ❖∃X ¬[¬estrada(X) v perigosa(X)]
- ❖∃X [estrada(X) ^ ¬perigosa(X)]
- Equivalente!

1. Verifique se os pares de sentenças são equivalentes.

Nem todo bêbado é fumante.

Alguns bêbados são fumantes.

- $\ \ \, ^{} \neg \forall X[bebado(X) \rightarrow fumante(X)]$
- ❖¬∀X[¬bebado (X) v fumante (X)]
- ❖∃X ¬[¬ bebado (X) v fumante (X)]
- ❖∃X [bebado (X) ^ ¬ fumante (X)]
- **❖**Não é equivalente!

1. Verifique se os pares de sentenças são equivalentes.

Nem todo ator americano é famoso.

Alguns atores americanos não são famosos.

- $\neg \forall X[atoramericano(X) \rightarrow famoso(X)]$
- $-\forall X[-atoramericano (X) v famoso (X)]$
- ❖∃X ¬[¬ atoramericano (X) v famoso (X)]
- ❖∃X [atoramericano (X) ^ ¬ famoso (X)]
- Equivalente!

Resumo

•Equivalência de fórmulas

- H → G denota (\neg H v G)
- (H → false) denota \neg H
- (H ↔ G) denota (H \rightarrow G) $^{\land}$ (G \rightarrow H)
- (H ^ G) denota \neg (\neg H v \neg G)
- \circ $\neg((\forall x)H) = (\exists x)(\neg H)$
- \circ $\neg((\exists x)H) = (\forall x)(\neg H)$
- \circ ($\forall x$) H = \neg ($\exists x$)(\neg H)
- \circ ($\exists x$) H = \neg ($\forall x$)(\neg H)

•Representação do conhecimento

- Universal afirmativo: $(\forall X)(p(X) \rightarrow q(X))$;
- Universal negativo: $(\forall X)(p(X) \rightarrow \neg q(X));$
- Particular afirmativo: $(\exists X)(p(X) \land q(X));$
- Particular negativo: $(\exists X)(p(X) \land \neg q(X))$.