data.info()

IMPORTING LIBRARIES

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder,MinMaxScaler
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive bayes import GaussianNB
from sklearn import metrics
from sklearn.metrics import accuracy score, classification report, confusion matrix
data=pd.read_csv('/content/survey.csv')
data.shape
     (1259, 27)
data.describe()
\rightarrow
                       Age
             1.259000e+03
      count
      mean
             7.942815e+07
       std
             2.818299e+09
             -1.726000e+03
       min
      25%
             2.700000e+01
       50%
             3.100000e+01
      75%
             3.600000e+01
              1.000000e+11
       max
```


<<class 'pandas.core.frame.DataFrame'> RangeIndex: 1259 entries, 0 to 1258 Data columns (total 27 columns):

Jucu	coramiis (cocar 2) coramiis)	•	
#	Column	Non-Null Count	Dtype
0	Timestamp	1259 non-null	object
1	Age	1259 non-null	int64
2	Gender	1259 non-null	object
3	Country	1259 non-null	object
4	state	744 non-null	object
5	self_employed	1241 non-null	object
6	family_history	1259 non-null	object
7	treatment	1259 non-null	object
8	work_interfere	995 non-null	object
9	no_employees	1259 non-null	object
10	remote_work	1259 non-null	object
11	tech_company	1259 non-null	object
12	benefits	1259 non-null	object
13	care_options	1259 non-null	object
14	wellness_program	1259 non-null	object
15	seek_help	1259 non-null	object
16	anonymity	1259 non-null	object
17	leave	1259 non-null	object
18	mental_health_consequence	1259 non-null	object
19	<pre>phys_health_consequence</pre>	1259 non-null	object
20	coworkers	1259 non-null	object
21	supervisor	1259 non-null	object
22	mental_health_interview	1259 non-null	object
23	phys_health_interview	1259 non-null	object
24	mental_vs_physical	1259 non-null	object
25	obs_consequence	1259 non-null	object
26	comments	164 non-null	object

dtypes: int64(1), object(26) memory usage: 265.7+ KB

data.head()

	Timestamp	Age	Gender	Country	state	self_employed	family_history	treatment	wor
0	2014-08- 27 11:29:31	37	Female	United States	IL	NaN	No	Yes	
1	2014-08- 27 11:29:37	44	М	United States	IN	NaN	No	No	
2	2014-08- 27 11:29:44	32	Male	Canada	NaN	NaN	No	No	
3	2014-08- 27 11:29:46	31	Male	United Kingdom	NaN	NaN	Yes	Yes	
4	2014-08- 27 11:30:22	31	Male	United States	TX	NaN	No	No	
5 rows × 27 columns									
4	→								

data.isnull().sum()

	0
Timestamp	0
Age	0
Gender	0
Country	0
state	515
self_employed	18
family_history	0
treatment	0
work_interfere	264
no_employees	0
remote_work	0
tech_company	0
benefits	0
care_options	0
wellness_program	0
seek_help	0
anonymity	0
leave	0
mental_health_consequence	0
phys_health_consequence	0
coworkers	0
supervisor	0
mental_health_interview	0
phys_health_interview	0
mental_vs_physical	0
obs_consequence	0
comments	1095

dtype: int64

```
data.drop(['comments'], axis= 1, inplace=True)
data.drop(['state'], axis= 1, inplace=True)
data.drop(['Timestamp'], axis= 1, inplace=True)
```

data.isnull().sum()

auca.isnaii().sam()	
	0
Age	0
Gender	0
Country	0
self_employed	18
family_history	0
treatment	0
work_interfere	264
no_employees	0
remote_work	0
tech_company	0
benefits	0
care_options	0
wellness_program	0
seek_help	0
anonymity	0
leave	0
mental_health_consequence	0
phys_health_consequence	0
coworkers	0
supervisor	0
mental_health_interview	0
phys_health_interview	0
mental_vs_physical	0
obs_consequence	0

dtype: int64

```
defaultInt = 0
defaultString = 'NaN'
defaultFloat = 0.0
intFeatures = ['Age']
stringFeatures = ['Gender', 'Country', 'self_employed', 'family_history', 'treatment', 'work
                 'no_employees', 'remote_work', 'tech_company', 'anonymity', 'leave', 'menta
                 'phys health consequence', 'coworkers', 'supervisor', 'mental health interv
                 'mental_vs_physical', 'obs_consequence', 'benefits', 'care_options', 'wellr
                 'seek help']
floatFeatures = []
for feature in data:
    if feature in intFeatures:
        data[feature] = data[feature].fillna(defaultInt)
    elif feature in stringFeatures:
        data[feature] = data[feature].fillna(defaultString)
    elif feature in floatFeatures:
        data[feature] = data[feature].fillna(defaultFloat)
    else:
        print('Error: Feature %s not recognized.' % feature)
data.isnull().sum()
```


Age	0
Gender	0
Country	0
self_employed	0
family_history	0
treatment	0
work_interfere	0
no_employees	0
remote_work	0
tech_company	0
benefits	0
care_options	0
wellness_program	0
seek_help	0
anonymity	0
leave	0
mental_health_consequence	0
phys_health_consequence	0
coworkers	0
supervisor	0
mental_health_interview	0
phys_health_interview	0
mental_vs_physical	0
obs_consequence	0

dtype: int64

```
data = data.drop(['Country'], axis= 1)
data.head()
```


→		Age	Gender	self_employed	family_history	treatment	work_interfere	no_employees
	0	37	Female	NaN	No	Yes	Often	6-25
	1	44	M	NaN	No	No	Rarely	More than 1000
	2	32	Male	NaN	No	No	Rarely	6-25
	3	31	Male	NaN	Yes	Yes	Often	26-100
	4	31	Male	NaN	No	No	Never	100-500
	5 ro	ws ×	23 columr	ns				
	4							>
<pre>gender = data['Gender'].unique() print(gender) ['Female' 'M' 'Male' 'male' 'female' 'm' 'Male-ish' 'maile' 'Trans-female' 'Cis Female' 'F' 'something kinda male?' 'Cis Male' 'Woman' 'f' 'Mal' 'Male (CIS)' 'queer/she/they' 'non-binary' 'Femake' 'woman' 'Make' 'Nah' 'All' 'Enby' 'fluid' 'Genderqueer' 'Female ' 'Androgyne' 'Agender' 'cis-female/femme' 'Guy (-ish) ^_' 'male leaning androgynous' 'Male ' 'Man' 'Trans woman' 'msle' 'Neuter' 'Female (trans)' 'queer' 'Female (cis)' 'Mail' 'cis male' 'A little about you' 'Malr' 'p' 'femail' 'Cis Man' 'ostensibly male, unsure what that really means'] male_str = ["male", "m", "male-ish", "maile", "mal", "male (cis)", "make", "male ", "man", "n trans_str = ["trans-female", "something kinda male?", "queer/she/they", "non-binary", "nah",</pre>								
	_				emale", "woman",	"femake",	"female ","cis-	female/femme",
for ((row	, col	l) in dat	ta.iterrows():				
i			-	.Gender) in malo '].replace(to_ro	_	r, value='m	nale', inplace=Tr	rue)
i	<pre>if str.lower(col.Gender) in female_str: data['Gender'].replace(to_replace=col.Gender, value='female', inplace=True)</pre>							
j	<pre>if str.lower(col.Gender) in trans_str: data['Gender'].replace(to_replace=col.Gender, value='trans', inplace=True)</pre>							
stk_]	list	= ['		e about you', ' ender'].isin(st	=			
print	(da	ta['0	Gender'].	.unique())				

```
\rightarrow <ipython-input-14-b168a9b6cc25>:11: FutureWarning: A value is trying to be set on a copy
    The behavior will change in pandas 3.0. This inplace method will never work because the
    For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col
       data['Gender'].replace(to_replace=col.Gender, value='female', inplace=True)
    <ipython-input-14-b168a9b6cc25>:8: FutureWarning: A value is trying to be set on a copy
    The behavior will change in pandas 3.0. This inplace method will never work because the
    For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col
       data['Gender'].replace(to replace=col.Gender, value='male', inplace=True)
    <ipython-input-14-b168a9b6cc25>:14: FutureWarning: A value is trying to be set on a copy
    The behavior will change in pandas 3.0. This inplace method will never work because the
    For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col
       data['Gender'].replace(to_replace=col.Gender, value='trans', inplace=True)
     ['female' 'male' 'trans']
data['self_employed'] =data['self_employed'].replace([defaultString], 'No')
print(data['self employed'].unique())
→ ['No' 'Yes']
data['work interfere'] = data['work interfere'].replace([defaultString], 'Don\'t know' )
print(data['work interfere'].unique())
→ ['Often' 'Rarely' 'Never' 'Sometimes' "Don't know"]
labelDict = {}
for feature in data:
   le = preprocessing.LabelEncoder()
   le.fit(data[feature])
   le_name_mapping = dict(zip(le.classes_, le.transform(le.classes_)))
   data[feature] = le.transform(data[feature])
   labelKey = 'label_' + feature
   labelValue = [*le_name_mapping]
   labelDict[labelKey] =labelValue
for key, value in labelDict.items():
    print(key, value)
→ label_Age [-1726, -29, 5, 11, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
    label_Gender ['female', 'male', 'trans']
    label_self_employed ['No', 'Yes']
    label_family_history ['No', 'Yes']
```

```
label treatment ['No', 'Yes']
     label_work_interfere ["Don't know", 'Never', 'Often', 'Rarely', 'Sometimes']
     label_no_employees ['1-5', '100-500', '26-100', '500-1000', '6-25', 'More than 1000']
     label_remote_work ['No', 'Yes']
     label_tech_company ['No', 'Yes']
     label_benefits ["Don't know", 'No', 'Yes']
     label care options ['No', 'Not sure', 'Yes']
     label_wellness_program ["Don't know", 'No', 'Yes']
     label_seek_help ["Don't know", 'No', 'Yes']
     label_anonymity ["Don't know", 'No', 'Yes']
     label_leave ["Don't know", 'Somewhat difficult', 'Somewhat easy', 'Very difficult', 'Ver
     label_mental_health_consequence ['Maybe', 'No', 'Yes']
     label_phys_health_consequence ['Maybe', 'No', 'Yes']
     label_coworkers ['No', 'Some of them', 'Yes']
label_supervisor ['No', 'Some of them', 'Yes']
     label_mental_health_interview ['Maybe', 'No', 'Yes']
     label phys health interview ['Maybe', 'No', 'Yes']
     label_mental_vs_physical ["Don't know", 'No', 'Yes']
     label obs consequence ['No', 'Yes']
corrmat = data.corr()
f, ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corrmat, vmax=.8, square=True);
plt.show()
```



```
k=10
cols = corrmat.nlargest(k, 'treatment')['treatment'].index
cm = np.corrcoef(data[cols].values.T)
sns.set(font scale=1.25)
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10},
plt.show()
\rightarrow
                                                                                           - 1.0
                        treatment 1.00 0.62 0.38 0.24 0.22 0.15 0.14 0.09 0.09 0.09
                  work interfere
                                      0.62 1.00 0.32 0.16 0.13 0.14 0.06 0.10 0.09 0.09
```



```
scaler = MinMaxScaler()
data['Age'] = scaler.fit_transform(data[['Age']])
data.head()
```


	Age	Gender	self_employed	<pre>family_history</pre>	treatment	work_interfere	no_employees
0	0.46	0	0	0	1	2	4
1	0.60	1	0	0	0	3	5
2	0.36	1	0	0	0	3	4
3	0.34	1	0	1	1	2	2
4	0.34	1	0	0	0	1	1

5 rows × 23 columns

```
feature_cols = ['Age', 'Gender', 'family_history', 'benefits', 'care_options', 'anonymity',
X = data[feature_cols]
y = data.treatment
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0)
models = {
    "Logistic Regression":LogisticRegression(),
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
    "Naive Bayes": GaussianNB()
}
# Evaluate each model
for name, model in models.items():
    print(f"--- {name} ---")
    # Train the model
    model.fit(X_train, y_train)
    # Make predictions
    y_pred = model.predict(X_test)
    # Calculate accuracy
    accuracy = accuracy_score(y_test, y_pred)
    # Display results
    print(f"Accuracy: {accuracy:.2f}")
    print("\nConfusion Matrix:")
    print(confusion_matrix(y_test, y_pred))
    print("\nClassification Report:")
    print(classification_report(y_test, y_pred))
    print("\n")
```

Classificat	ion Report:			
	precision	recall	f1-score	support
(0.76	0.75	0.75	191
:	1 0.75	0.75	0.75	187
accurac	y		0.75	378
macro av	g 0.75	0.75	0.75	378
weighted av	g 0.75	0.75	0.75	378

--- Random Forest ---

Accuracy: 0.80

Confusion Matrix:

[[144 47] [30 157]]

Classification Report:

	precision	recall	f1-score	support
(0.83	0.75	0.79	191
:	0.77	0.84	0.80	187
accuracy	y		0.80	378
macro av	g 0.80	0.80	0.80	378
weighted ava	0.80	0.80	0.80	378