台塑石化股份有限公司煉油部

開發【PRU#2丙烯回收單元AI操作優化模組】

報告人:郭國良 2021年02月02日

【密】【會後收回】

執行摘要

- 1. 煉油部第二套丙烯回收單元目的係分離**丙烯與丙烷**,因兩者沸點差 5.7℃,**較難分離且蒸汽耗用較高**,故設計採用**熱泵蒸餾系統**:
 - ① 熱泵蒸餾系統較節能但製程不易穩定控制。
 - ② 蒸餾塔設計板數214層,操作應答時間長達180分鐘,產品品質較不易控制,操作上趨於保守。

由製程專業知識及統計手法將59個變數篩選出特徵變數,開發【AI品質預測及操作優化模組】,可預測未來180分鐘內,每30分鐘丙烯純度及製程變化,再篩選出「壓縮機轉速」、「迴流量」、「再沸器控制閥開度」等可控變數由AI協同操作,以改善製程操作應答延遲的問題並提升品質穩定度,模組於2020年6月上線運行。

2. 投資金額:3,500千元。

專案完成後,高壓蒸汽使用量合計減少5.0噸/時、丙烯回收增加344噸/年,年效益:30,832千元。

回收年限:0.11年。

- 一、製程說明
- 二、動機說明
- 三、建置流程
- 四、優化成果
- 五、結論與後續推動事項

P3

P5

P7

P18

P20

一、製程說明

- 1. 第二套丙烯回收單元係利用丙烯蒸餾塔分離丙烯與丙烷, 丙烯與丙烷沸點分別為-47.7℃ 及-42.0℃,僅相差5.7℃,較難分離。故蒸餾塔設計板數達214層,並分為2支塔,該系統 因蒸汽耗用較高且蒸餾塔溫差小(12.2℃),故採用相對節能之熱泵蒸餾系統。
- 2. 熱泵蒸餾系統係將蒸餾塔塔頂的丙烯氣體12.0kg/cm²G,28.8°C藉由壓縮機(a)加壓升溫至20.8kg/cm²G,60.7°C,做為塔底再沸器(b)的熱源,本身換熱冷凝後,做為塔頂迴流(c),以此達到節能效果,但系統複雜較不易穩定控制。

一、製程說明(傳統蒸餾塔與熱泵蒸餾系統之差異)

傳統蒸餾塔

熱泵蒸餾系統(設計採用)

型式	冷卻水用量(頓/時)	蒸汽用量(噸/時)	能耗(Gcal/h)
傳統蒸餾塔	14,009 (冷卻器)	141 (再沸器)	155.7
熱泵蒸餾系統	1,526 (冷卻器)	47 (熱泵)	18.5
		10 7	

使用熱泵蒸餾系統,相較傳統蒸餾塔節省能耗達88.1%。 $1-\frac{18.5}{155.7}=88.1\%$

二、動機說明

(一) 降壓節能

- ▶ 熱泵蒸餾系統雖較節能但操作不易控制,執行降壓節能測試時(12→11.5kg/cm²G),因 再沸器出口控制閥為手動操作,蒸餾塔降壓後操作裕度變小,手動更不易穩定控制,導 致再沸器出口流體產生氣、液兩相且波動變大,造成管線振動。
- ▶ 擬藉由「動態物理模型及大數據分析」,探索降壓後的製程操作條件,並導入AI協同 操作以避免產生氣液兩相,造成再沸器出口管線振動,達到降壓節能目標。

二、動機說明

(二)改善「操作應答時間長」

- ▶ 丙烯蒸餾塔雙塔操作、設備高、塔板層數多(214層),進行控制調整後,產品品質須180 分鐘後才能趨於穩定,導致產品品質不易穩定控制,操作較為保守。
- ▶ 因此須建置一套品質預測模組,預測未來180分鐘內變化,以穩定操作,維持產品品質

開發歷程:

項目	(第一階段) 物理模型模擬與大數據分析	(第二階段) 建置AI模組(品質預測模組及AI操作優化模組)並線上應用					
執行重點	 1.定義問題、目標 2.建立物理模型 3.動態模擬比對分析 4.探討再沸器出口管線振動問題 	1. 資料蒐集、盤點 2. 資料處理 3. 資料探索分析 4. 品質預測模組開發 5. 操作優化模組開發	模型測試	單元定檢	模型測試調整	Open loop 測試	Closed loop 自動 控制
階段成效	1.找出降壓導致振動的原因 及改善對策 2.建立壓縮機節能操作區間 上述結果導入「AI操作優化 模組」	1. 完成AI品質預測模約 2. 完成AI操作優化模約 3. 完成降壓操作 4. AI操作優化模組上約 5. 產品品質穩定度提升	且開發 泉自動控制	(Close	ed loop)		
效益	專案完成後,高壓蒸汽量合言	十減少5.0噸/時,丙烯回	收量增加3	844噸/	年,年效。	益30,832千元	Ċ

(一) 物理模型模擬與大數據分析:

> 改善對策(1):建立溫度控制線

應用Aspen Plus軟體建立丙烯蒸餾塔動態物理模型,透過模擬分析結果找出再沸器出口振動原因,並建立溫度控制線作為操作依據,成功改善降壓後再沸器出口管線振動問題。

• 分析結果:

振動原因:再沸器出口控制閥為手動操作,蒸餾塔降壓後更不易穩定控制,導致再沸器出口流體產生氣、液兩相波動變大(液与氣),造成再沸器出口管線振動。

改善對策:為達降壓節能並確保操作穩定,建立再沸器出口溫度控制線作為操作 依據,並導入AI操作優化模組中,由AI協同操作,解決再沸器出口管線振動問題。

y ≥ 2.264x + 4.791(溫度控制線)

y:再沸器出口温度(°C)

x:再沸器出口壓力(錶壓kg/cm²G)

溫度控制線為依降壓前的操作數據採 線性迴歸手法所推導出。

(一) 物理模型模擬與大數據分析:

> 改善對策(1):建立溫度控制線

應用Aspen Plus軟體建立丙烯蒸餾塔動態物理模型,透過模擬分析結果找出再沸器出口振動原因,並建立溫度控制線作為操作依據,成功改善降壓後再沸器出口管線振動問題。

• 分析結果:

振動原因:再沸器出口控制閥為手動操作,蒸餾塔降壓後更不易穩定控制,導致再沸器出口流體產生氣、液兩相波動變大(液与氣),造成再沸器出口管線振動。 改善對策:為達降壓節能並確保操作穩定,建立再沸器出口溫度控制線作為操作 依據,並導入AI操作優化模組中,由AI協同操作,解決再沸器出口管線振動問題。

y ≥ 2.264x + 4.791(溫度控制線)

y:再沸器出口溫度(°C)

x:再沸器出口壓力(錶壓kg/cm²G)

溫度控制線為依降壓前的操作數據採 線性迴歸手法所推導出。

(一) 物理模型模擬與大數據分析:

> 改善對策(2):建立壓縮機節能操作區間

依大數據分析結果,壓縮機**操作點**愈接近操作控制線單位能耗愈低,結合壓縮機安全操作限制,建立壓縮機轉速與入口流量的**節能操作區間表**,作為操作調整依據。

節能操作區間對應表							
壓縮機轉速(rpm)	壓縮機入口流量(Nm³/h)						
4,700-4,750	455,000-460,000						
4,750-4,800	460,000-465,000						
4,800-4,850	465,000-470,000						
4,850-4,900	470,000-475,000						
4,900-4,950	475,000-480,000						
4,950-5,000	480,000-485,000						
:							
5,200-5,250	505,000-510,000						
5,250-5,300	510.000-515.000						

然此归从历明业库主

綜合上述改善對策將(1)「溫度控制線」、(2)「壓縮機節能操作區間」嵌入AI模組中,並由AI操作優化模組協同操作,可避免再沸器出口管線振動並達到節能目標。

(二) AI模組建置:

資料蒐集前處理

資料探索分析

預測模組與操作 優化模組開發

線上應用

> 數據盤點:

丙烯回收單元共**59個變數**、2個品質管制點。 **DCS數據9,813萬筆**(2016/01~2019/02),品質 檢驗數據1,894筆。

> 資料處理:

- 1.資料時間重新對齊 2.缺失值處理
- 3.離群值處理

4.資料縮減

5.資料標準化

清理結果:

經資料清理後,保留DCS數據共847萬筆, 品質檢驗數據1,680筆。

(二)AI模組建置:

丙烯回收單元有59個變數,分別依照主成分分析篩選出22個變數,製程專業知識篩選出30個變數,兩者取聯集後,最終篩選出30個特徵變數,DCS數據457萬筆,品質檢驗數據1,680筆,作為模型建置使用。

(二) AI模組建置:

資料蒐集前處理

資料探索分析

預測模組與操作 優化模組開發

線上應用

預測模組開發

操作優化模組開發

各模型準確度比較表

演算法 塔頂丙烯純度	PLS (偏最小平方回歸)			N 經網路)	S2S (序列對序列模型)		
驗證指標 時間	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	
當下	0.980	0.005	0.636	0.035	0.998	0.001	
未來60分鐘	0.910	0.011	0.627	0.035	0.998	0.001	
未來120分鐘	0.790	0.016	0.610	0.036	0.997	0.001	
未來180分鐘	-0.140	0.030	0.635	0.035	0.994	0.002	

模型驗證指標:

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}$$

 \hat{y}_i :預測值

 y_i :實際值

 \bar{y} :平均值

將數據分為80%訓練數據及20%驗證數據,以3種演算法進行建模與驗證,準確度驗證指標為決定係數(R²)及均方根誤差(RMSE),經評估後,以**序列對序列模型**(S2S, Sequence to Sequence)作為後續應用。

(二)AI模組建置:

序列對序列模型(Sequence to Sequence, S2S):

為新一代人工智慧技術,基於自然語言處理(NLP)所發展出的新一代遞迴神經網路(RNN) 演算法,模型訓練時嵌入物理操作特徵,依製程長時間操作數據,來預測未來製程變化, 有效解決系統有延遲時間及應答慢的問題。

NLP: Natural Language Processing(自然語言處理)、RNN: Recurrent Neural Network(遞迴神經網路)

(二) AI模組建置:

資料蒐集前處理 資料探索分析 **預測模組與操作** 線上應用 **優化模組開發** 操作優化模組開發 操作優化模組開發

以序列對序列模型建置AI品質預測模組,預測模組上線後,可準確預測品質。

(二) AI模組建置:

資料蒐集前處理

資料探索分析

預測模組與操作 優化模組開發

線上應用

預測模組開發

操作優化模組開發

操作優化模組係藉AI預測模組預測未來180分鐘內品質及製程變化,透過操作優化模組計算,找出最佳操作點。而**最佳操作點**係在【維持產品品質】及【設備安全操作】範圍內,以【節省能耗】為優化目標,由AI操作優化模組,導出【最佳操作建議】。

限制條件

維持產品品質:品質需求限制

AI503_TAR - AI503_{t+H} ≤ 0.03 mol% (99.68 mol% ≥丙烯品質 ≥ 99.62 mol%)

設備安全操作:再沸器振動限制

TI508A_{t+H} \geq 2.264 × PI131_{t+H} + 4.791 TI508B_{t+H} \geq 2.264 × PI132_{t+H} + 4.791 (再沸器出口溫度 ≥ 丙烯汽化溫度(℃))

設備安全操作:壓縮機操作限制

FI015CA_{t+H} \geq P(SC020)_{t+H}(節能區間轉速對應流量) XI002_{t+H} \leq 70 μ m YI002_{t+H} \leq 70 μ m

優化目標

節省能耗:

最低能耗 = $\sum_{H=0}^{180} \frac{(蒸汽量_{t+H})}{(入料量_{t+H})}$

最佳操作點

最佳操作建議:

可控變數:

4,700 ≤ SC020_{t+H} ≤ 5,300 rpm (壓縮機轉速)

50 ≤ FC511_{t+H} ≤ 100 M³/h (塔頂迴流量)

40 ≤ HV503A_{t+H} ≤ 70 % 40 ≤ HV503B_{t-H} ≤ 70 % (再沸器控制閥開度)

 $\mid \Delta SC020_{t+H} \mid \leq 5 \text{ rpm}$ $\mid \Delta FC511_{t+H} \mid \leq 3 \text{ M}^3/\text{h}$ $\mid \Delta HV503A_{t+H} \mid \leq 1\%$

 $\Delta HV503B_{t+H} \mid \leq 1\%$

(二)AI模組建置:

資料蒐集前處理 資料探索分析 **預測模組與操作優化模組開發** 線上應用 預測模組開發 操作優化模組開發

AI操作優化模組是以最低單位能耗為控制目標,從丙烯回收單元30個特徵變數中,再篩選出4個可控變數(壓縮機轉速SC020、塔頂迴流量FC511及再沸器出口控制閥開度HV503A、HV503B),作為AI操作優化模組的操作建議,同時為確保製程操作穩定,建立其可控制範圍及每次最大操作變化量。

	控制目標	4個可控變數	可控制範圍	每次最大操作變化量
		壓縮機轉速 SC020 _{t+H}	$4,700 \le SC020_{t+H} \le 5,300 \text{ rpm}$	$\mid \Delta SC020_{t+H} \mid \leq 5 \text{ rpm}$
30 個 特	最低 單位能耗	塔頂迴流量 FC511 _{t+H}	$50 \le FC511_{t+H} \le 100 \text{ M}^3/\text{h}$	$\mid \Delta FC511_{t+H} \mid \leq 3 \text{ M}^3/\text{h}$
数	$\sum_{t+H}^{180} \frac{(\bar{x}, \bar{1} = t+H)}{(x + H)}$	再沸器出口控制閥A開度 HV503A _{t+H}	$40 \le HV503A_{t+H} \le 70 \%$	$\mid \Delta HV503A_{t+H} \mid \leq 1\%$
	$\left \underset{H=0}{{\sum}} ($	再沸器出口控制閥B開度 HV503B _{t+H}	$40 \le HV503B_{t+H} \le 70 \%$	$\mid \Delta HV503B_{t+H} \mid \leq 1\%$

(二) AI模組建置:

資料蒐集前處理

資料探索分析

預測模組與操作 優化模組開發

線上應用

建立操作平台

操作平台功能有:

- 1.可供盤面人員輸入丙烯品質控制目標。
- 2.可顯示未來180分鐘內品質預測值及操作建議。

品質預測模組											
福口		品質預測值						控制	控制		
項目	控制目標	實際值	當下	30分鐘	60分鐘	90分鐘	120分鐘	150分鐘	180分鐘	下限	上限
丙烯品質(mol%)	99.65	99.645	99.643	99.647	99.649	99.650	99.651	99.651	99.652	99.6	99.7

操作優化模組										
品化净送	每次最大 製程操作建議值					控制	控制			
採作是報	操作建議操作變化量實際值			60分鐘	90分鐘	120分鐘	150分鐘	180分鐘	下限	上限
壓縮機轉速(rpm)	5 (rpm)	5,039	5,040	5,040	5,040	5,040	5,040	5,040	4,700	5,300
再沸器出口控制閥A開度(%)	1 (%)	60.9	61.0	61.0	61.0	60.9	60.9	60.9	40.0	70.0
再沸器出口控制閥B開度(%)	1 (%)	61.9	62.1	62.1	62.1	62.0	62.0	62.0	40.0	70.0
塔頂迴流量(M³/h)	3 (M ³ /h)	70.0	69.1	68.8	68.6	68.3	68.2	68.2	50.0	100

四、優化成果

(一)實現降壓節能,解決再沸器振動問題並自動化控制(Closed loop)

- (I)AI導入後,依AI操作優化模組之建議執行操作及**降壓(12.0kg/cm²G**降至11.5kg/cm²G), 降壓後再沸器出口管線振動值無明顯變化,成功解決振動問題。
- (II)模組經第一階段上線確認可行後,寫入DCS自動控制(Closed loop),並進一步執行降壓操作(11.5kg/cm²G降至11.0kg/cm²G),同時下修壓縮機節能操作區間。
- →蒸餾塔經**兩階段**降壓後,高壓蒸汽使用量合計減用**5.0噸/時**,年效益28,240千元。

四、優化成果

(二)自動化控制(Closed loop)使產品品質穩定度提升

模組可同時自動調整4個可控變數,使蒸餾塔穩定控制,品質穩定度大幅提升。

- ▶ 塔頂丙烯品質標準差改善37.1%(由0.027mol%降至0.017mol%)。
- ▶ 塔底丙烷中丙烯含量由2.18mol%減少至1.73mol%,換算丙烯回收增加344噸/年,年效益2.592千元。

五、結論與後續推動事項

> 結論:

導入丙烯回收單元【AI操作優化模組】,AI操作優化模組可自動化控制4個可控變數(Closed loop),實現節能操作與穩定控制。

- 1. 透過物理模型模擬,成功解決再沸器出口管線振動問題。
- 2. 結合物理模型動態模擬與人工智慧技術,開發具有預測製程變化 及操作建議功能之AI操作優化模組,改善製程操作應答時間延遲 的問題。
- 3. 將設備安全操作範圍嵌入【AI操作優化模組】,協助完成複雜的控制工作,藉由與AI協同合作,進而提升設備可靠度。
- 4. 專案完成後:
 - 高壓蒸汽使用量合計減少5.0噸/時
 - 丙烯回收增加344噸/年
 - 年效益**30,832千元**。

> 後續推動事項:

本案將持續精進,並推廣至第一套丙烯回收單元及烯烴轉化單元擴大效益。

煉油部執行AI專案彙總

單位:千元/年

項次	推動項目	建置方式	預完日	執行效益
1	第三套常壓蒸餾單元操作優化模組	Schneider	已完成	147,463
2	選擇性氫化單元操作優化模組	產學合作	已完成	12,380
3	第一套常壓蒸餾單元操作優化模組	自行建置	已完成	120,109
4	第一套重油加氫脫硫單元C3300柴油操作優化模組	自行建置	已完成	4,479
5	第二套丙烯回收單元操作優化模組	產學合作	已完成	30,832
6	第四套胺液再生單元操作優化模組	產學合作	2021.03.31	14,856
7	第二套常壓蒸餾單元操作優化模組	自行建置	2021.03.31	52,057
8	第二套汽油加氫脫硫單元C6770操作優化模組	產學合作	2021.06.30	5,648
9	真空製氣油加氫脫硫單元C2321操作優化模組	自行建置	2021.06.30	5,835
10	第一套汽油加氫脫硫單元C6700操作優化模組	自行建置	2021.10.31	5,648
11	第二套胺液再生單元操作優化模組	自行建置	2021.12.31	14,856
12	第二套甲基第三丁基醚單元主反應器操作優化模組	產學合作	2022.09.30	25,400
13	異構化脫蠟單元操作優化模組建置	產學合作	2022.12.31	18,751
14	第一套甲基第三丁基醚操作單元主反應器優化模組	自行建置	2023.06.30	10,160
		•		益:468.474

合計效益:468,474

報告完畢恭請派

附錄一、專有名詞中英文對照表

英文縮寫	英文全名	中文名稱	說明
DCS	Distributed Control System	分散式控制系統	工廠或製程使用的電腦化控制系統。
NLP	Natural Language Processing	自然語言處理	為計算機科學和計算機語言學中的一個領域,研究自然語言和計算機之間的交互作用。自然語言包含文字、語音等。
ОСТ	Olefin Conversion Technology	烯烴轉化單元	烯烴轉化單元(OCT)以丁烯和乙烯做為原料經反應後產製丙烯的製程。
PLS	Partial Least Squares regression	偏最小平方回歸	透過投影預測變數和觀測 變數到一個新空間,尋找 一個線性回歸模型。

附錄一、專有名詞中英文對照表(續)

英文縮寫	英文全名	中文名稱	說明
PRU	Propylene Recovery Unit	丙烯回收單元	將丙烯及丙烷混合液化石油 氣,經分離純化產出聚合級 丙烯的製程。
\mathbb{R}^2	Coefficient of determination	決定係數	用於判斷模型解釋力的驗證 指標。
RMSE	Root Mean Square Error	方均根誤差	用於衡量預測值與實際值 之間偏差的驗證指標。
RNN	Recurrent Neural Network	遞迴神經網路	具有記憶功能的神經網路, 廣泛應用於文字翻譯或語音 轉換。
S2S	Sequence to Sequence	序列對序列模型	基於自然語言處理所發展出的新一代遞迴神經網路演算法。

附錄二、常壓蒸餾單元操作優化模組建置時程及預估效益

單元	開始建置 至 上線運作	柴油增產量 (噸/年)	柴油-塔底油價差 (美元/噸)	效益 (千元/年)	2020年度上線率 (%)					
CDU#3	2017年1月 ~ 2019年1月 (實際)	24,888 (實際)	194.26 (2018年01~12月)	147,463	96.5					
CDU#1	2019年2月 ~ 2020年3月 (實際)	30,336 (實際)	129.81 (2020年01~05月)	120,109	98.9					
CDU#2	2020年3月 ~ 16.686 107.58									
備註	1. CDU#3單元效益數據係依據2019年1月28日「CDU3操作優化模組效益以會計資料計算 結果報告」。									

附錄三、塑化公司列管AI案件彙總表

單位:千元/年

部門	煉油部	烯烴部	公用部	麥電	保養中心	油品部	工務部	碼槽處	安衛處	油調組	合計
2019年完成件數	1	-	-	1	-	_	-	-	-	-	2
效益	147, 463	-	_	37, 564	-	_	-	-	-	-	185, 027
2020年完成件數	4	3	5	-	0	1	0	0	0	1	14
效益	167, 800	188, 834	7, 699	_	-	_	-	-	_	-	364, 333
2021年完成件數	6	2	4	1	2	1	1	1	1	0	19
效益	98, 900	8, 160	45, 159	10, 080	5, 408	250	-	-	500	-	168, 457
2022年完成件數	3	1	1	3	0	0	0	0	0	0	8
效益	54, 311	4, 078	21, 120	17, 716	_	_	-	-	-	-	97, 225
2019~2022年	14	6	10	5	2	2	1	1	1	1	43
完成件數/效益 小計	468, 474	201, 072	73, 978	65, 360	5, 408	250	-	_	500	-	815, 042

附錄四、蒸餾塔降壓前後再沸器出口溫度、壓力變化

