MÉTODOS CUANTITATIVOS - PROGRAMACIÓN DINÁMICA GUÍA PARA LA CUARTA CLASE COMPUTACIONAL

Profesor: Eduardo Engel. Semestre Otoño, 2025. Ayudante: Agustín Farías Lobo. Esta versión: 7 de marzo de 2025.

Pregunta I. Modelo de Búsqueda de McCall (1970).

Considere el modelo de búsqueda de McCall (1970) revisado en clases. La ecuación de Bellman de este problema está dada por

$$v(w) = \max\left\{\frac{w}{1-\beta}, -c + \beta \int v(w')q(w')dw'\right\},\tag{1}$$

donde v es la función valor; w es el salario que le hes ofrecido al agente; q(w') es la función de probabilidad de w', donde se asume que los w' son i.i.d; c es el costo de buscar una nueva oferta de trabajo y β es el coeficiente de descuento intertemporal.

A continuación resolvemos la ecuación de Bellman de forma numérica. Para ello, siga las siguiente instrucciones.

- 1. Usaremos una distribución Gamma con parámetros α y θ para modelar la densidad de probabilidad q(w) (no es necesario que conozca tal distribución). Fije n=100, alpha =4 y theta =6. Obtenga los valores de q(x) para $x\in\{0,1,...,n\}$ usando la función gampdf y guárdelos en un vector q.
- 2. Fije los parámetros c y β en -10 y 0.99, respectivamente. ¿Cómo se interpreta que c sea negativo?
- 3. Suponga que el mínimo salario que se puede ofrecer es 5 y el máximo es 20. Genere una grilla de n+1 valores para el salario entre el mínimo y máximo posible. Llámela w_grid.
- 4. Grafique q contra w_grid. Esa será la p.d.f. del salario.
- 5. Defina un parámetro de precisión y un número máximo de iteraciones.
- 6. A continuación utilizamos el método VFI para resolver la ecuación de Bellman.
 - a) Genere un guess inicial para v(w). Llame a este V0.
 - b) Inicialice un vector de $n+1 \times 2$
 - c) Usando for, guarde los posibles valores de cada acción posible para cada posible valor de w. Note que tales valores dependerán del guess inicial y de la p.d.f. q(w').
 - d) Guarde en un vector Vn de dimensiones $n+1 \times 1$ el valor máximo entre las dos acciones posibles para cada w.
 - e) Si $\max_{w} |V_n(w) V_{n-1}(w)|$ es menor al parámetro de precisión definido previamente, entonces guarde Vn como V y termine el loop usando break. En otro caso, utilice Vn como guess inicial y vuelva a repetir los pasos entre b) y e).
- 7. Genere un gráfico de las primeras cinco iteraciones de la función valor contra w.
- 8. Encuentre el salario de reserva.

- 9. Presente un gráfico de la función valor contra w, e incluya en él una recta vertical indicando el salario de reserva.
- 10. A continuación haremos un ejercicio de estática comparativa. En particular, analizaremos el cambio en el salario de reserva ante diferentes valores de c y de β .
 - a) Utilizando el código que ya ha escrito, cree una custom function llamada McCallSearch_VFI, la que tome como argumento un cierto valor de β y un cierto valor de c, y que entregue como output la función valor correspondiente.
 - b) Cree una grilla de veinte valores entre -15 y 5 para c. Llame a esta c_grid.
 - c) Cree una grilla de veinte valores entre 0.9 y 0.99 para β . Llámela beta_grid.
 - d) Inicialize un arreglo tridimensional de $20 \times 20 \times (n+1)$.
 - e) Utilizando for, obtenga la aproximación numérica de la función valor para cada c y β de las grillas creadas anteriormente. Guarde ellas en el arreglo tridimensional creado anteriormente.
 - f) Usando la función valor, calcule el salario de reserva para cada valor de c y de β .
 - g) Con los resultados anteriores y usando contourf, genere un "mapa de calor" donde las variables independientes sean c y β , y la variable dependiente sea el salario de reserva. Interprete.
 - h) Con los resultados anteriores y usando surf, genere un gráfico en tres dimensiones donde las variables independientes sean c y β , y la variable dependiente sea el salario de reserva. Interprete.