Optimal transport and generated Jacobian equations, applications to nonimaging optics

Anatole Gallouët

Supervised by Boris Thibert and Quentin Mérigot

Non-imaging optics

Goal: Construct a mirror that reflects a given light source toward a prescribed target.

Non-imaging optics: Transport of measures

Input: Light source \mathcal{X} with intensity $\mu \in \mathcal{P}(\mathcal{X})$. Target distribution \mathcal{Y} with intensity $\nu \in \mathcal{P}(\mathcal{Y})$.

Non-imaging optics: Transport of measures

Input: Light source \mathcal{X} with intensity $\mu \in \mathcal{P}(\mathcal{X})$. Target distribution \mathcal{Y} with intensity $\nu \in \mathcal{P}(\mathcal{Y})$.

Output: A surface Σ such that $T_{\Sigma}\#\mu=\nu$.

Measure prescription equation

Optimal transport & Generated Jacobian eq.

- Assume $\mu(x)=\rho(x)\,\mathrm{d}\,x$ and $\nu(y)=\sigma(y)\,\mathrm{d}\,y$ then $T_\#\mu=\nu$ amounts to: $\forall x\in\mathcal{X},\sigma(T(x))\det(DT(x))=\rho(x)$
- From Snell's law if Σ is parametrized by a function $u: \mathcal{X} \to \mathbb{R}$ then T is a function of x, u(x) and $\nabla u(x)$.

Optimal transport & Generated Jacobian eq.

- Assume $\mu(x)=\rho(x)\,\mathrm{d}\,x$ and $\nu(y)=\sigma(y)\,\mathrm{d}\,y$ then $T_\#\mu=\nu$ amounts to: $\forall x\in\mathcal{X},\sigma(T(x))\det(DT(x))=\rho(x)$
- From Snell's law if Σ is parametrized by a function $u:\mathcal{X}\to\mathbb{R}$ then T is a function of x, u(x) and $\nabla u(x)$.

A Monge-Ampère type equation:

$$\forall x \in \mathcal{X}, \det(DT(x)) = \frac{\rho(x)}{\sigma(T(x))} \text{ with } T(x) = f(x, u(x), \nabla u(x)).$$

- In some particular cases this equation is OT, otherwise it is a GJE. [Trudinger '14]
 - We want to solve this equation numerically

Prescribe the mass of each cell

Outline

- Stability in optimal transport
 - 1) Strongly c-concave functions
 - 2) Stability under strong c-concavity
 - 3) Application to the Far-field point reflector
- Numerical resolution of Generated Jacobian equations
 - 1) Damped Newton algorithm for GJE
 - 2) Application to the Near Field parallel reflector

Stability in optimal transport

Problem: Numerical optimal transport involves discretization of measure(s).

Examples: Discrete: [Oliker-Prussner '89], [Galichon-Salanie '09] [Cuturi '13].

Semi-discrete: [Kitagawa-Mérigot-Thibert '16].

Question: Does it gives a good approximation of optimal transport maps?

Stability in optimal transport

Problem: Numerical optimal transport involves discretization of measure(s).

Examples: Discrete: [Oliker-Prussner '89], [Galichon-Salanie '09] [Cuturi '13].

Semi-discrete: [Kitagawa-Mérigot-Thibert '16].

Question: Does it gives a good approximation of optimal transport maps?

Stability with respect to the data:

Assume $T: \mu \to \nu$ and $\tilde{T}: \tilde{\mu} \to \tilde{\nu}$ optimal.

We want $d(T, \tilde{T}) \leq d((\mu, \nu), (\tilde{\mu}, \tilde{\nu}))^{\alpha}$.

Stability in optimal transport

Problem: Numerical optimal transport involves discretization of measure(s).

Examples: Discrete: [Oliker-Prussner '89], [Galichon-Salanie '09] [Cuturi '13].

Semi-discrete: [Kitagawa-Mérigot-Thibert '16].

Question: Does it gives a good approximation of optimal transport maps?

Stability with respect to the data:

Assume $T: \mu \to \nu$ and $\tilde{T}: \tilde{\mu} \to \tilde{\nu}$ optimal.

We want
$$d(T, \tilde{T}) \leq d((\mu, \nu), (\tilde{\mu}, \tilde{\nu}))^{\alpha}$$
.

Existing results:

- [Ambrosio-Gigli '09] Local stability near Lipschitz transport map.
- [Berman '18] Global stability.
- [Mérigot-Delalande-Chazal '19] Global stability, independent of the dimension.
- [Li-Nochetto '20] Local stability with respect to source and target.

All these results are for the quadratic cost $c(x,y) = ||x-y||^2$.

Previous stability results

Theorem: [Ambrosio-Gigli '09]

Let \mathcal{X} and \mathcal{Y} be compact domains of \mathbb{R}^d , $\mu \in \mathcal{P}(\mathcal{X})$, $\nu_0 \in \mathcal{P}(\mathcal{Y})$ be abs. cont. and any $\nu_1 \in \mathcal{P}(\mathcal{Y})$. Let $T_{\mu \to \nu_i}$ be optimal between μ and ν_i for the cost $c(x,y) = \|x-y\|^2$ and assume that $T_{\mu \to \nu_0}$ is K-Lipschitz. Then

$$||T_{\mu \to \nu_0} - T_{\mu \to \nu_1}||_{L^2(\mu)}^2 \le 4KM_{\mathcal{X}} W_1(\nu_0, \nu_1).$$

Previous stability results

Theorem: [Ambrosio-Gigli '09]

Let \mathcal{X} and \mathcal{Y} be compact domains of \mathbb{R}^d , $\mu \in \mathcal{P}(\mathcal{X})$, $\nu_0 \in \mathcal{P}(\mathcal{Y})$ be abs. cont. and any $\nu_1 \in \mathcal{P}(\mathcal{Y})$. Let $T_{\mu \to \nu_i}$ be optimal between μ and ν_i for the cost $c(x,y) = \|x-y\|^2$ and assume that $T_{\mu \to \nu_0}$ is K-Lipschitz. Then

$$||T_{\mu \to \nu_0} - T_{\mu \to \nu_1}||_{L^2(\mu)}^2 \le 4KM_{\mathcal{X}} W_1(\nu_0, \nu_1).$$

- T_0 is K-Lipschitz iff ψ_0 is 1/K-strongly convex.
- [Li-Nochetto '20] have a similar result with respect to both measures.

Motivation: Generalize stability results to other cost $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

 \longrightarrow Introduce the notion of strongly c-concave function.

Pushforward measure:

Let $T: \mathcal{X} \to \mathcal{Y}$, and $\mu \in \mathcal{P}(\mathcal{X})$, then $T_{\#}\mu \in \mathcal{P}(\mathcal{Y})$ and $\forall B \subset \mathcal{Y}$, $T_{\#}\mu(B) = \mu(T^{-1}(B))$.

Pushforward measure:

Let
$$T: \mathcal{X} \to \mathcal{Y}$$
, and $\mu \in \mathcal{P}(\mathcal{X})$,
then $T_{\#}\mu \in \mathcal{P}(\mathcal{Y})$ and $\forall B \subset \mathcal{Y}$, $T_{\#}\mu(B) = \mu(T^{-1}(B))$.

Optimal transport problem:

Given $\mu \in \mathcal{P}(\mathcal{X})$, $\nu \in \mathcal{P}(\mathcal{Y})$ and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ with \mathcal{X} and \mathcal{Y} submanifolds of \mathbb{R}^d .

Monge problem: Find $T: \mathcal{X} \to \mathcal{Y}$ realizing $\min_{T_{\#}\mu=\nu} \int_{\mathcal{X}} c(x, T(x)) d\mu(x)$.

Pushforward measure:

Let $T: \mathcal{X} \to \mathcal{Y}$, and $\mu \in \mathcal{P}(\mathcal{X})$, then $T_{\#}\mu \in \mathcal{P}(\mathcal{Y})$ and $\forall B \subset \mathcal{Y}$, $T_{\#}\mu(B) = \mu(T^{-1}(B))$.

Optimal transport problem:

Given $\mu \in \mathcal{P}(\mathcal{X})$, $\nu \in \mathcal{P}(\mathcal{Y})$ and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ with \mathcal{X} and \mathcal{Y} submanifolds of \mathbb{R}^d .

Monge problem: Find $T: \mathcal{X} \to \mathcal{Y}$ realizing $\min_{T_{\#}\mu=\nu} \int_{\mathcal{X}} c(x, T(x)) d\mu(x)$.

Discrete:

Pushforward measure:

Let
$$T:\mathcal{X}\to\mathcal{Y}$$
, and $\mu\in\mathcal{P}(\mathcal{X})$, then $T_{\#}\mu\in\mathcal{P}(\mathcal{Y})$ and $\forall B\subset\mathcal{Y},\,T_{\#}\mu(B)=\mu(T^{-1}(B)).$

Optimal transport problem:

Given $\mu \in \mathcal{P}(\mathcal{X})$, $\nu \in \mathcal{P}(\mathcal{Y})$ and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ with \mathcal{X} and \mathcal{Y} submanifolds of \mathbb{R}^d .

Monge problem: Find $T: \mathcal{X} \to \mathcal{Y}$ realizing $\min_{T_{\#}\mu=\nu} \int_{\mathcal{X}} c(x, T(x)) d\mu(x)$.

Continuous:

Pushforward measure:

Let $T: \mathcal{X} \to \mathcal{Y}$, and $\mu \in \mathcal{P}(\mathcal{X})$, then $T_{\#}\mu \in \mathcal{P}(\mathcal{Y})$ and $\forall B \subset \mathcal{Y}, T_{\#}\mu(B) = \mu(T^{-1}(B)).$

Optimal transport problem:

Given $\mu \in \mathcal{P}(\mathcal{X})$, $\nu \in \mathcal{P}(\mathcal{Y})$ and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ with \mathcal{X} and \mathcal{Y} submanifolds of \mathbb{R}^d .

Monge problem: Find $T: \mathcal{X} \to \mathcal{Y}$ realizing $\min_{T_{\#}\mu=\nu} \int_{\mathcal{X}} c(x, T(x)) d\mu(x)$.

Semi-discrete:

$$\mu(x) = f(x) d x$$

$$\nu = \sum_{i} \nu_{i} \delta_{y_{i}}$$

$$u = \sum_{i} \nu_i \delta_{y_i}$$

Pushforward measure:

Let $T:\mathcal{X}\to\mathcal{Y}$, and $\mu\in\mathcal{P}(\mathcal{X})$, then $T_{\#}\mu\in\mathcal{P}(\mathcal{Y})$ and $\forall B\subset\mathcal{Y}$, $T_{\#}\mu(B)=\mu(T^{-1}(B))$.

Optimal transport problem:

Given $\mu \in \mathcal{P}(\mathcal{X})$, $\nu \in \mathcal{P}(\mathcal{Y})$ and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ with \mathcal{X} and \mathcal{Y} submanifolds of \mathbb{R}^d .

Monge problem: Find $T: \mathcal{X} \to \mathcal{Y}$ realizing $\min_{T_{\#}\mu=\nu} \int_{\mathcal{X}} c(x, T(x)) d\mu(x)$.

Semi-discrete:

$$\mu(x) = f(x) \,\mathrm{d}\,x$$

$$\nu = \sum_{i} \nu_i \delta_{y_i}$$

Goal: Find ψ such that $\mu(\operatorname{Lag}_i(\psi)) = \nu_i$

Pushforward measure:

Let $T: \mathcal{X} \to \mathcal{Y}$, and $\mu \in \mathcal{P}(\mathcal{X})$, then $T_{\#}\mu \in \mathcal{P}(\mathcal{Y})$ and $\forall B \subset \mathcal{Y}$, $T_{\#}\mu(B) = \mu(T^{-1}(B))$.

Optimal transport problem:

Given $\mu \in \mathcal{P}(\mathcal{X})$, $\nu \in \mathcal{P}(\mathcal{Y})$ and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ with \mathcal{X} and \mathcal{Y} submanifolds of \mathbb{R}^d .

Monge problem: Find $T: \mathcal{X} \to \mathcal{Y}$ realizing $\min_{T_{\#}\mu=\nu} \int_{\mathcal{X}} c(x, T(x)) d\mu(x)$.

Semi-discrete:

$$\mu(x) = f(x) \,\mathrm{d}\, x$$

$$u = \sum_{i} \nu_i \delta_{y_i}$$

 $\operatorname{Lag}_{i}(\psi) = \{x \mid c(x, y_{i}) + \psi_{i} \leq c(x, y_{j}) + \psi_{j}\}\$

Goal: Find ψ such that $\mu(\operatorname{Lag}_i(\psi)) = \nu_i$

Theorem: The map $T: \mathcal{X} \to \mathcal{Y}$ defined by

$$T^{-1}(y_i) = \operatorname{Lag}_i(\psi)$$

is an optimal transport map from μ to ν .

Kantorovich relaxation

Definition: (transport plan)

Let $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$, we say that $\gamma \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is a transport plan between μ and ν if it satisfies

$$\forall A \subset \mathcal{X}, \gamma(A \times \mathcal{Y}) = \mu(A) \text{ and } \forall B \subset \mathcal{Y}, \gamma(\mathcal{X} \times B) = \nu(B).$$

We denote by $\Gamma(\mu,\nu)$ the set of tranport plans between μ and ν .

Kantorovich relaxation

Definition: (transport plan)

Let $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$, we say that $\gamma \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is a transport plan between μ and ν if it satisfies

$$\forall A \subset \mathcal{X}, \gamma(A \times \mathcal{Y}) = \mu(A) \text{ and } \forall B \subset \mathcal{Y}, \gamma(\mathcal{X} \times B) = \nu(B).$$

We denote by $\Gamma(\mu, \nu)$ the set of tranport plans between μ and ν .

A simple example:

- No transport map
- Tranport plans allow to split the mass of a dirac measure

Kantorovich relaxation

Definition: (transport plan)

Let $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$, we say that $\gamma \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is a transport plan between μ and ν if it satisfies

$$\forall A \subset \mathcal{X}, \gamma(A \times \mathcal{Y}) = \mu(A) \text{ and } \forall B \subset \mathcal{Y}, \gamma(\mathcal{X} \times B) = \nu(B).$$

We denote by $\Gamma(\mu, \nu)$ the set of tranport plans between μ and ν .

A simple example:

■ No transport map

 Tranport plans allow to split the mass of a dirac measure

Kantorovich problem:

Find
$$\gamma \in \Gamma(\mu, \nu)$$
 realizing $\min_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \, \mathrm{d} \, \gamma(x, y)$.

lacksquare If the cost is twisted and μ has a density, then Monge \iff Kantrovich.

Kantorovich duality & c-concavity

Dual problem: Find
$$\varphi \in \mathcal{C}^0(\mathcal{X})$$
 and $\psi \in \mathcal{C}^0(\mathcal{Y})$ realizing
$$(DP) = \sup_{\varphi \oplus \psi \leq c} \int_{\mathcal{X}} \varphi \, \mathrm{d}\, \mu + \int_{\mathcal{Y}} \psi \, \mathrm{d}\, \nu$$

Kantorovich duality & c-concavity

Dual problem: Find
$$\varphi \in \mathcal{C}^0(\mathcal{X})$$
 and $\psi \in \mathcal{C}^0(\mathcal{Y})$ realizing
$$(DP) = \sup_{\varphi \oplus \psi < c} \int_{\mathcal{X}} \varphi \, \mathrm{d}\, \mu + \int_{\mathcal{Y}} \psi \, \mathrm{d}\, \nu$$

where
$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \varphi \oplus \psi(x,y) = \varphi(x) + \psi(y) \leq c(x,y)$$
 Best choice for a fixed φ
$$\psi(y) = \inf_{x \in \mathcal{X}} c(x,y) - \varphi(x) = \varphi^c(y)$$
 c-transform

ullet c-transform is a generalization of Legendre transform.

Kantorovich duality & c-concavity

Dual problem: Find $\varphi \in \mathcal{C}^0(\mathcal{X})$ and $\psi \in \mathcal{C}^0(\mathcal{Y})$ realizing

$$(DP) = \sup_{\varphi \oplus \psi \le c} \int_{\mathcal{X}} \varphi \, \mathrm{d} \, \mu + \int_{\mathcal{Y}} \psi \, \mathrm{d} \, \nu$$

where
$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \varphi \oplus \psi(x,y) = \varphi(x) + \psi(y) \leq c(x,y)$$

— c-transform

- lacktrians c-transform is a generalization of Legendre transform.
- If (φ, ψ) maximizes (DP) then they are \emph{c} -conjugate:

$$\psi=\varphi^c$$
 and $\varphi=\psi^c$

We recover the optimal transport map by

$$T(x) \in \underset{y \in \mathcal{Y}}{\operatorname{arg\,min}} c(x, y) - \psi(y)$$

$$\psi(y) = \varphi^c(y) = \inf_{x \in \mathcal{X}} c(x, y) - \varphi(x)$$

$$\psi(y) = \varphi^c(y) = \inf_{x \in \mathcal{X}} c(x, y) - \varphi(x)$$

- The c-superdifferential of a function $\psi: \mathcal{Y} \to \mathbb{R}$ is defined by $\partial^c \psi(y) = \{x \in \mathcal{X} \mid \forall z \in \mathcal{Y}, c(x,z) \psi(z) \geq c(x,y) \psi(y)\}$
- ψ is c-concave $\iff \partial^c \psi(y) \neq \emptyset$ for any $y \in \mathcal{Y}$.

$$\psi(y) = \varphi^c(y) = \inf_{x \in \mathcal{X}} c(x, y) - \varphi(x)$$

- The c-superdifferential of a function $\psi: \mathcal{Y} \to \mathbb{R}$ is defined by $\partial^c \psi(y) = \{x \in \mathcal{X} \mid \forall z \in \mathcal{Y}, c(x,z) \psi(z) \geq c(x,y) \psi(y)\}$
- ψ is c-concave $\iff \partial^c \psi(y) \neq \emptyset$ for any $y \in \mathcal{Y}$.

$$\psi(y) = \varphi^c(y) = \inf_{x \in \mathcal{X}} c(x, y) - \varphi(x)$$

- The c-superdifferential of a function $\psi: \mathcal{Y} \to \mathbb{R}$ is defined by $\partial^c \psi(y) = \{x \in \mathcal{X} \mid \forall z \in \mathcal{Y}, c(x,z) \psi(z) \geq c(x,y) \psi(y)\}$
- ψ is c-concave $\iff \partial^c \psi(y) \neq \emptyset$ for any $y \in \mathcal{Y}$.

Definition: (c-concave functions) A function $\psi: \mathcal{Y} \to \mathbb{R} \cup \{-\infty\}$ is c-concave if there exists $\varphi: \mathcal{X} \to \mathbb{R} \cup \{-\infty\}$ such that

$$\psi(y) = \varphi^c(y) = \inf_{x \in \mathcal{X}} c(x, y) - \varphi(x)$$

The c-superdifferential of a function $\psi: \mathcal{Y} \to \mathbb{R}$ is defined by $\partial^c \psi(y) = \{x \in \mathcal{X} \mid \forall z \in \mathcal{Y}, c(x,z) - \psi(z) \geq c(x,y) - \psi(y)\}$

• ψ is c-concave $\iff \partial^c \psi(y) \neq \emptyset$ for any $y \in \mathcal{Y}$.

Particular case:

- $c(x,y) = \langle x|y\rangle$
- c-concavity matches regular concavity
- $\partial^c \psi(y) = \partial^+ \psi(y)$

Strong *c*-concavity

Definition: [G.-Mérigot-Thibert '22] (Strong c-concavity)

A c-concave function $\psi: \mathcal{Y} \to \mathbb{R}$ is said to be strongly c-concave with modulus $\omega: \mathbb{R}^+ \to \mathbb{R}^+$ if for any $y, z \in \mathcal{Y}$ and $x \in \partial^c \psi(y)$,

$$c(x,z) - \psi(z) \ge c(x,y) - \psi(y) + \omega(d(y,z))$$

In practice we have $\omega(\mathrm{d}(y,z))=C\,\mathrm{d}(y,z)^2$.

Stability w.r.t target measure

Theorem 1: [G.-Mérigot-Thibert '22] Let $D \subseteq \mathcal{X} \times \mathcal{Y}$ be a compact set and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty\}$ be C^1 on D. Let $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{Y})$. We assume $T_{\mu \to \nu_i}$ is an optimal transport map from μ to ν_i with associated potential $\psi_i: N \to \mathbb{R}$ (i=0,1) such that:

- ullet ψ_0 is Lipschitz on ${\mathcal Y}$ and c-concave on D.
- ψ_1 is Lipschitz on $\mathcal Y$ and strongly c-concave with $\omega(r)=Cr^2$ on D.
- The maps T_i satisfies for any $x \in \mathcal{X}$, $(x, T_i(x)) \in D$.

Then

$$C \| dy(T_{\mu \to \nu_0}, T_{\mu \to \nu_1}) \|_{L^2(\mu)}^2 \le (\text{Lip}(\psi_0) + \text{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

Stability w.r.t target measure

Theorem 1: [G.-Mérigot-Thibert '22] Let $D \subseteq \mathcal{X} \times \mathcal{Y}$ be a compact set and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty\}$ be C^1 on D. Let $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{Y})$. We assume $T_{\mu \to \nu_i}$ is an optimal transport map from μ to ν_i with associated potential $\psi_i: N \to \mathbb{R}$ (i=0,1) such that:

- ullet ψ_0 is Lipschitz on ${\mathcal Y}$ and c-concave on D.
- ullet ψ_1 is Lipschitz on ${\mathcal Y}$ and strongly c-concave with $\omega(r)=Cr^2$ on D.
- The maps T_i satisfies for any $x \in \mathcal{X}$, $(x, T_i(x)) \in D$.

Then

$$C \| d_{\mathcal{Y}}(T_{\mu \to \nu_0}, T_{\mu \to \nu_1}) \|_{L^2(\mu)}^2 \le (\text{Lip}(\psi_0) + \text{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

- Justifies the semi-discrete approach on continuous problems
- Generalizes Ambrosio: replaces T_1 Lipschitz by ψ_1 strongly c-concave.

Stability w.r.t target measure

Theorem 1: [G.-Mérigot-Thibert '22] Let $D \subseteq \mathcal{X} \times \mathcal{Y}$ be a compact set and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty\}$ be C^1 on D. Let $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{Y})$. We assume $T_{\mu \to \nu_i}$ is an optimal transport map from μ to ν_i with associated potential $\psi_i: N \to \mathbb{R}$ (i=0,1) such that:

- ψ_0 is Lipschitz on \mathcal{Y} and c-concave on D.
- ψ_1 is Lipschitz on \mathcal{Y} and strongly c-concave with $\omega(r) = Cr^2$ on D.
- The maps T_i satisfies for any $x \in \mathcal{X}$, $(x, T_i(x)) \in D$.

Then

$$C \| d_{\mathcal{Y}}(T_{\mu \to \nu_0}, T_{\mu \to \nu_1}) \|_{L^2(\mu)}^2 \le (\text{Lip}(\psi_0) + \text{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

- Justifies the semi-discrete approach on continuous problems
- Generalizes Ambrosio: replaces T_1 Lipschitz by ψ_1 strongly c-concave.
- If $D = \mathcal{X} \times \mathcal{Y}$ blue assumptions disappear (but necessary in some appl.)

By Kantorovich-Rubinstein Theorem:

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, d(\nu_1 - \nu_0) \le \text{Lip}(\psi_0 + \psi_1) \, W_1(\nu_0, \nu_1).$$

By Kantorovich-Rubinstein Theorem:

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, d(\nu_1 - \nu_0) \le \text{Lip}(\psi_0 + \psi_1) \, W_1(\nu_0, \nu_1).$$

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, \mathrm{d}(\nu_1 - \nu_0) = \int_{\mathcal{Y}} \psi_1 \, \mathrm{d}(\nu_1 - \nu_0) + \left(\int_{\mathcal{Y}} \psi_0 \, \mathrm{d}(\nu_0 - \nu_1) \right)$$

By Kantorovich-Rubinstein Theorem:

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, d(\nu_1 - \nu_0) \le \text{Lip}(\psi_0 + \psi_1) \, W_1(\nu_0, \nu_1).$$

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, \mathrm{d}(\nu_1 - \nu_0) = \int_{\mathcal{Y}} \psi_1 \, \mathrm{d}(\nu_1 - \nu_0) + \int_{\mathcal{Y}} \psi_0 \, \mathrm{d}(\nu_0 - \nu_1)$$

$$A = \int_{\mathcal{Y}} \psi_1(T_1(x)) - \psi_1(T_0(x)) \, \mathrm{d}\mu(x) \qquad T_i \# \mu = \nu_i$$

By Kantorovich-Rubinstein Theorem:

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, d(\nu_1 - \nu_0) \le \text{Lip}(\psi_0 + \psi_1) \, W_1(\nu_0, \nu_1).$$

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, \mathrm{d}(\nu_1 - \nu_0) = \int_{\mathcal{Y}} \psi_1 \, \mathrm{d}(\nu_1 - \nu_0) + \int_{\mathcal{Y}} \psi_0 \, \mathrm{d}(\nu_0 - \nu_1)$$

$$A = \int_{\mathcal{Y}} \psi_1(T_1(x)) - \psi_1(T_0(x)) \, \mathrm{d}\mu(x) \qquad T_i \# \mu = \nu_i$$

$$\sum_{x \in \partial^c \psi_1(T_1(x))} \int_{\mathcal{X}} c(x, T_1(x)) - c(x, T_0(x)) + \omega(\mathrm{d}_{\mathcal{Y}}(T_1(x), T_0(x))) \,\mathrm{d}\,\mu(x)$$

By Kantorovich-Rubinstein Theorem:

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, d(\nu_1 - \nu_0) \le \text{Lip}(\psi_0 + \psi_1) \, W_1(\nu_0, \nu_1).$$

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, \mathrm{d}(\nu_1 - \nu_0) = \int_{\mathcal{Y}} \psi_1 \, \mathrm{d}(\nu_1 - \nu_0) + \int_{\mathcal{Y}} \psi_0 \, \mathrm{d}(\nu_0 - \nu_1)$$

$$A = \int_{\mathcal{V}} \psi_1(T_1(x)) - \psi_1(T_0(x)) d\mu(x) \qquad T_i \# \mu = \nu_i$$

$$\sum_{x \in \partial^{c} \psi_{1}(T_{1}(x))} \sum_{x \in \partial^{c} \psi_{1}(T_{1}(x))} \int_{\mathcal{X}} c(x, T_{1}(x)) - c(x, T_{0}(x)) + \omega(\mathrm{d}_{\mathcal{Y}}(T_{1}(x), T_{0}(x))) \, \mathrm{d}_{\mu}(x)$$

Similarly
$$B \ge \int_{\mathcal{X}} c(x, T_0(x)) - c(x, T_1(x)) d\mu(x)$$

By Kantorovich-Rubinstein Theorem:

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, d(\nu_1 - \nu_0) \le \operatorname{Lip}(\psi_0 + \psi_1) \, W_1(\nu_0, \nu_1).$$

$$\int_{\mathcal{Y}} (\psi_1 - \psi_0) \, \mathrm{d}(\nu_1 - \nu_0) = \int_{\mathcal{Y}} \psi_1 \, \mathrm{d}(\nu_1 - \nu_0) + \left(\int_{\mathcal{Y}} \psi_0 \, \mathrm{d}(\nu_0 - \nu_1) \right)$$

$$A = \int_{\mathcal{V}} \psi_1(T_1(x)) - \psi_1(T_0(x)) d\mu(x) \qquad T_i \# \mu = \nu_i$$

$$A = \int_{\mathcal{X}} \psi_{1}(T_{1}(x)) - \psi_{1}(T_{0}(x)) d\mu(x) \qquad T_{i} \# \mu = \nu_{i}$$

$$\geq \int_{\mathcal{X}} c(x, T_{1}(x)) - c(x, T_{0}(x)) + \omega(dy(T_{1}(x), T_{0}(x))) d\mu(x)$$

$$x \in \partial^{c} \psi_{1}(T_{1}(x))$$

Similarly
$$B \ge \int_{\mathcal{X}} c(x, T_0(x)) - c(x, T_1(x)) d\mu(x)$$

Finally
$$\int_{\mathcal{X}} \omega(\mathrm{d}_{\mathcal{Y}}(T_1(x), T_0(x))) \, \mathrm{d}\, \mu(x) \leq \mathrm{Lip}(\psi_0 + \psi_1) \, \mathrm{W}_1(\nu_0, \nu_1).$$

Error bound for transport plans

Theorem 2: [G.-Mérigot-Thibert '22] Let $D \subseteq \mathcal{X} \times \mathcal{Y}$ be a compact set, $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu_0 \in \mathcal{P}(\mathcal{Y})$. We assume T is an optimal transport map from from μ to ν with associated potential ψ such that

- ψ is strongly c-concave with modulus $\omega(r)=Cr^2$ on D.
- For any $x \in \mathcal{X}$, $(x, T(x)) \in D$.

Then for any transport plan $\gamma \in \Gamma(\mu, \nu)$:

$$\int_{\mathcal{X} \times \mathcal{Y}} C \, \mathrm{d} y (T(x), y)^2 \, \mathrm{d} \gamma(x, y) \le \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \, \mathrm{d} \gamma(x, y) - \int_{\mathcal{X}} c(x, T(x)) \, \mathrm{d} \mu(x)$$

Error bound for transport plans

Theorem 2: [G.-Mérigot-Thibert '22] Let $D \subseteq \mathcal{X} \times \mathcal{Y}$ be a compact set, $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu_0 \in \mathcal{P}(\mathcal{Y})$. We assume T is an optimal transport map from from μ to ν with associated potential ψ such that

- ψ is strongly c-concave with modulus $\omega(r)=Cr^2$ on D.
- For any $x \in \mathcal{X}$, $(x, T(x)) \in D$.

Then for any transport plan $\gamma \in \Gamma(\mu, \nu)$:

$$\int_{\mathcal{X} \times \mathcal{Y}} C \, \mathrm{d} \mathcal{Y}(T(x), y)^2 \, \mathrm{d} \, \gamma(x, y) \leq \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \, \mathrm{d} \, \gamma(x, y) - \int_{\mathcal{X}} c(x, T(x)) \, \mathrm{d} \, \mu(x)$$

$$\geq C W_1^2(\gamma_T, \gamma)$$

- Generalizes a result of (Li Nochetto '20)
- Kind of strong convexity of the total transport cost for transport plans.

Stability w.r.t to both measures

Theorem 3: [G.-Mérigot-Thibert '22]

Let $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be Lipschitz, $\mu, \tilde{\mu} \in \mathcal{P}(\mathcal{X})$ and $\nu, \tilde{\nu} \in \mathcal{P}(\mathcal{Y})$.

Let $T_{\mu \to \nu}$ be an optimal transport map from μ to ν induced by a c-concave potential ψ and $\tilde{\gamma} \in \Gamma(\tilde{\mu}, \tilde{\nu})$ be an optimal transport plan between $\tilde{\mu}$ and $\tilde{\nu}$.

Assume that ψ is strongly c-concave with modulus $\omega(r)=Cr^2$.

Then
$$W_1(\gamma_{T_{\mu \to \nu}}, \tilde{\gamma}) \leq \varepsilon + \sqrt{\frac{2 \text{Lip}(c)}{C}} \sqrt{\varepsilon}$$
, where $\varepsilon = W_1(\mu, \tilde{\mu}) + W_1(\nu, \tilde{\nu})$.

lacksquare Assume that the cost c to be Lipschitz on the whole product space $\mathcal{X} imes \mathcal{Y}$.

Stability w.r.t to both measures

Theorem 3: [G.-Mérigot-Thibert '22]

Let $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be Lipschitz, $\mu, \tilde{\mu} \in \mathcal{P}(\mathcal{X})$ and $\nu, \tilde{\nu} \in \mathcal{P}(\mathcal{Y})$.

Let $T_{\mu \to \nu}$ be an optimal transport map from μ to ν induced by a c-concave potential ψ and $\tilde{\gamma} \in \Gamma(\tilde{\mu}, \tilde{\nu})$ be an optimal transport plan between $\tilde{\mu}$ and $\tilde{\nu}$.

Assume that ψ is strongly c-concave with modulus $\omega(r) = Cr^2$.

Then
$$W_1(\gamma_{T_{\mu \to \nu}}, \tilde{\gamma}) \leq \varepsilon + \sqrt{\frac{2\text{Lip}(c)}{C}}\sqrt{\varepsilon}$$
, where $\varepsilon = W_1(\mu, \tilde{\mu}) + W_1(\nu, \tilde{\nu})$.

- Assume that the cost c to be Lipschitz on the whole product space $\mathcal{X} \times \mathcal{Y}$. Idea of proof.
 - Gluing of measure

Bound the gap:

$$\int_{\mathcal{X} \times \mathcal{Y}} c \, \mathrm{d} \, \gamma - \int_{\mathcal{X} \times \mathcal{Y}} c \, \mathrm{d} \, \gamma_T \le 2 \mathrm{Lip}(c) \varepsilon$$

Apply Theorem 2

Ma-Trudinger-Wang tensor

Let $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty\}$ of class \mathcal{C}^4 and that satisfies (Stwist) on $D \subseteq \mathcal{X} \times \mathcal{Y}$, meaning that $\nabla_x c(x, \cdot)$ is injective and D^2_{xy} is non-singular.

Definition: The Ma-Trudinger-Wang tensor is defined for $(x_0, y_0) \in D$ and $(\eta, \zeta) \in T_{x_0} \mathcal{X} \times T_{y_0} \mathcal{Y}$ by

$$\mathfrak{S}_c(x_0, y_0)(\eta, \zeta) = -\frac{3}{2} \frac{\partial^2}{\partial q_{\tilde{\eta}}^2} \frac{\partial^2}{\partial y_{\zeta}^2} \left(c(\exp_{y_0}(q), y) \right) \Big|_{y=y_0, q=-\nabla_y c(x_0, y_0)}$$

with $\tilde{\eta} = -\nabla^2_{xy} c(x_0, y_0) \eta \in T_{y_0} \mathcal{Y}$

Here $-\nabla^2_{xy}c(x_0,y_0):T_{x_0}\mathcal{X}\times T_{y_0}\mathcal{Y}\to\mathbb{R}$ is a non singular bilinear form. the linear form $\tilde{\eta}:T_{y_0}\mathcal{Y}\to\mathbb{R}$ is identified with a vector.

Definition: The weak MTW condition (MTWw) is satisfied on a compact set $D \subseteq \mathcal{X} \times \mathcal{Y}$ if there exists a constant C > 0 such that for any $(x_0, y_0) \in D$ and $(\eta, \zeta) \in T_{x_0} \mathcal{X} \times T_{y_0} \mathcal{Y}$ we have

$$\mathfrak{S}_c(x_0, y_0)(\eta, \zeta) \ge -C|\langle \zeta | \tilde{\eta} \rangle | \|\zeta\| \|\eta\|$$

4th order condition that appears in the regularity theory [MTW 2005]

Sufficient condition for strong c-concavity

Theorem 4: [G.-Mérigot-Thibert '22]

We consider $D\subseteq\mathcal{X}\times\mathcal{Y}$ a symmetrically c-convex compact set. We assume that $c\in\mathcal{C}^4(D,\mathbb{R})$, that c and \check{c} satisfy (STwist) on D where $c(x,y)=\check{c}(y,x)$. We also assume that the weak MTW condition is satisfied on D. Let $\psi\in\mathcal{C}^2(\mathcal{Y},\mathbb{R})$ be a c-concave function on D and such that there exists $\lambda>0$ satisfying for any $x\in\partial^c\psi(y)$

$$D_{yy}^2 c(x,y) - D^2 \psi(y) \ge \lambda Id \tag{*}$$

Then ψ is strongly c-concave on D with modulus $\omega(\mathrm{d}_{\mathcal{Y}}(\bar{y},y)) = C\,\mathrm{d}_{\mathcal{Y}}(\bar{y},y)^2$ where C>0 depends on λ , c, \mathcal{X} and \mathcal{Y} .

Sufficient condition for strong c-concavity

Theorem 4: [G.-Mérigot-Thibert '22]

We consider $D\subseteq\mathcal{X}\times\mathcal{Y}$ a symmetrically c-convex compact set. We assume that $c\in\mathcal{C}^4(D,\mathbb{R})$, that c and \check{c} satisfy (STwist) on D where $c(x,y)=\check{c}(y,x)$. We also assume that the weak MTW condition is satisfied on D. Let $\psi\in\mathcal{C}^2(\mathcal{Y},\mathbb{R})$ be a c-concave function on D and such that there exists $\lambda>0$ satisfying for any $x\in\partial^c\psi(y)$

$$D_{yy}^2 c(x,y) - D^2 \psi(y) \ge \lambda Id \tag{*}$$

Then ψ is strongly c-concave on D with modulus $\omega(\mathrm{d}_{\mathcal{Y}}(\bar{y},y)) = C\,\mathrm{d}_{\mathcal{Y}}(\bar{y},y)^2$ where C>0 depends on λ , c, \mathcal{X} and \mathcal{Y} .

- Generalizes a result from [Trudinger-Wang '06] for c-concavity using techniques from [Kim-McCann '07]
- We need to work on a set $D \subseteq \mathcal{X} \times \mathcal{Y}$ where the cost is regular.

Sufficient condition for strong c-concavity

Theorem 4: [G.-Mérigot-Thibert '22]

We consider $D \subseteq \mathcal{X} \times \mathcal{Y}$ a symmetrically c-convex compact set. We assume that $c \in \mathcal{C}^4(D,\mathbb{R})$, that c and č satisfy (STwist) on D where $c(x,y) = \check{c}(y,x)$. We also assume that the weak MTW condition is satisfied on D. Let $\psi \in \mathcal{C}^2(\mathcal{Y}, \mathbb{R})$ be a c-concave function on D and such that there exists $\lambda > 0$ satisfying for any $x \in \partial^c \psi(y)$

$$D_{yy}^2 c(x,y) - D^2 \psi(y) \ge \lambda Id \tag{*}$$

Then ψ is strongly c-concave on D with modulus $\omega(\mathrm{d}_{\mathcal{Y}}(\bar{y},y))=C\,\mathrm{d}_{\mathcal{Y}}(\bar{y},y)^2$ where C > 0 depends on λ , c, \mathcal{X} and \mathcal{Y} .

- Generalizes a result from [Trudinger-Wang '06] for c-concavity using techniques from [Kim-McCann '07]
- We need to work on a set $D \subseteq \mathcal{X} \times \mathcal{Y}$ where the cost is regular.
- Hypothesis (*) can be replaced by:
 - The map $T(x) = \arg\min_y c(x,y) \psi(y)$ is \mathcal{C}^1 . Applies to O.T.
 - \blacksquare $\forall x \in \mathcal{X}, (x, T(x)) \in D.$

The Far-field point reflector

- Punctual light source at origin o $\mu \in \mathcal{P}(\mathbb{S}^2)$.
- Target light at infinity, $\nu \in \mathcal{P}(\mathbb{S}^2)$.

Problem : Find a mirror surface Σ that sends (\mathbb{S}^2, μ) to (\mathbb{S}^2, ν) .

The Far-field point reflector

- Punctual light source at origin o $\mu \in \mathcal{P}(\mathbb{S}^2)$.
- Target light at infinity, $\nu \in \mathcal{P}(\mathbb{S}^2)$.

Problem : Find a mirror surface Σ that sends (\mathbb{S}^2, μ) to (\mathbb{S}^2, ν) .

- Parametrize Σ by $x \in \mathbb{S}^2 \mapsto xu(x)$ with $u : \mathbb{S}^2 \to \mathbb{R}^+$ radial distance.
- Snell's law: $T: x \in \mathbb{S}^2 \mapsto y = x 2\langle x|n\rangle n$.

Semi-discrete:

 $lue{\mu}$ absolutely continuous

$$\nu = \sum_{1 \leq i \leq N} \nu_i \delta_{y_i} \text{ discrete}$$

Semi-discrete:

lacksquare μ absolutely continuous

$$\nu = \sum_{1 \leq i \leq N} \nu_i \delta_{y_i} \text{ discrete}$$

[Caffarelli-Kochengin-Oliker '99]

 P_i paraboloid of focus o and axis y_i redirects all the light in direction y_i .

Semi-discrete:

- lacksquare μ absolutely continuous
- $\nu = \sum_{1 \le i \le N} \nu_i \delta_{y_i} \text{ discrete}$
- Mirror Σ is a minimum of paraboloids of focus o and direction $(y_i)_{1 \le i \le N}$.
- Parametrization:

$$u(x) = \min_{1 \le i \le N} \frac{1}{v_i} \frac{1}{1 - \langle x | y_i \rangle}$$

Semi-discrete:

- lacksquare μ absolutely continuous
- $\nu = \sum_{1 \leq i \leq N} \nu_i \delta_{y_i} \text{ discrete}$
- Mirror Σ is a minimum of paraboloids of focus o and direction $(y_i)_{1 \le i \le N}$.
- Parametrization:

$$u(x) = \min_{1 \le i \le N} \frac{1}{v_i} \frac{1}{1 - \langle x | y_i \rangle}$$

$$V_i = \left\{ x \in \mathbb{S}^2 \mid \forall j \in \{1, \cdots, N\}, \frac{1}{v_i} \frac{1}{1 - \langle x | y_i \rangle} \le \frac{1}{v_j} \frac{1}{1 - \langle x | y_j \rangle} \right\}$$

Semi-discrete:

- lacksquare μ absolutely continuous
- $\nu = \sum_{1 \le i \le N} \nu_i \delta_{y_i} \text{ discrete}$
- Mirror Σ is a minimum of paraboloids of focus o and direction $(y_i)_{1 \le i \le N}$.
- Parametrization:

$$u(x) = \min_{1 \le i \le N} \frac{1}{v_i} \frac{1}{1 - \langle x | y_i \rangle}$$

$$\operatorname{Lag}_{i}(\psi) = \left\{ x \in \mathbb{S}^{2} \mid \forall j, -\ln(1 - \langle x|y_{i}\rangle) + \underbrace{\psi_{i}} \leq -\ln(1 - \langle x|y_{j}\rangle) + \psi_{j} \right\}$$

$$= -\ln(v_{i})$$

Semi-discrete:

- lacksquare μ absolutely continuous
- $\nu = \sum_{1 \leq i \leq N} \nu_i \delta_{y_i} \text{ discrete}$

Cost function:

 $c(x,y) = -\ln(1 - \langle x|y\rangle)$

Semi-discrete optimal transport problem

Problem: Find $\psi \in \mathbb{R}^N$ such that for all $i \in \{1, \dots, N\}$, $\mu(\operatorname{Lag}_i(\psi)) = \nu_i$

with $\text{Lag}_i(\psi) = \{x \in \mathbb{S}^2 \mid \forall j \in \{1, \cdots, N\}, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \}$ 21 - 6

Application to the Far-field point reflector

Theorem 5: [G-Mérigot-Thibert '22] Let $\mu, \nu_0 \in \mathcal{P}(\mathbb{S}^2)$ be two abs. cont. strictly positive $\mathcal{C}^{1,1}$ densities. Then for any $\beta > 0$ there exists C > 0 s.t $\forall \nu_1 \in \mathcal{P}(\mathbb{S}^2)$ s.t $M_{\nu_1}(\beta) < 1/8, \|\operatorname{d}_{\mathbb{S}}(T_1, T_0)\|_{L^2(\mu)}^2 \leq CW_1(\nu_0, \nu_1)$ where $M_{\nu}(\beta) = \sup_{x \in \mathbb{S}^2} \nu(\operatorname{B}(x, \beta))$, and C depends on β , μ and ν_0 .

Application to the Far-field point reflector

Theorem 5: [G-Mérigot-Thibert '22] Let $\mu, \nu_0 \in \mathcal{P}(\mathbb{S}^2)$ be two abs. cont. strictly positive $\mathcal{C}^{1,1}$ densities. Then for any $\beta > 0$ there exists C > 0 s.t

$$\forall \nu_1 \in \mathcal{P}(\mathbb{S}^2) \text{ s.t. } (M_{\nu_1}(\beta) < 1/8) \| d_{\mathbb{S}}(T_1, T_0) \|_{L^2(\mu)}^2 \le CW_1(\nu_0, \nu_1)$$

where $M_{\nu}(\beta) = \sup_{x \in \mathbb{S}^2} \nu(\mathrm{B}(x,\beta))$, and C depends on β , μ and ν_0 .

Applies to discrete measures

Main difficulty:

• Show that the transport is supported on $D_{\varepsilon} = \{(x,y) \mid d(x,y) > \varepsilon\}$

Then:

- The cost $c(x,y) = -\ln(1 \langle x|y\rangle)$ is regular on D_{ε} , in particular it satisfies the (MTW) hypothesis.
- lacktriangle Regularity of the map T_0 comes from the strictly positive $\mathcal{C}^{1,1}$ densities.

Outline

- Stability in optimal transport
 - 1) Strongly c-concave functions
 - 2) Stability under strong c-concavity
 - 3) Application to the Far-field point reflector
- Numerical resolution of Generated Jacobian equations
 - 1) Damped Newton algorithm for GJE
 - 2) Application to the Near Field parallel reflector

The Near-Field Parallel reflector

Collimated light source:

$$\mu \in \mathcal{P}(\mathcal{X})$$
 abs. cont.

Near field target:

$$u = \sum_{1 \le i \le N} \nu_i \delta_{y_i} \text{ with } y_i \in \mathbb{R}^2.$$

The Near-Field Parallel reflector

- Collimated light source: $\mu \in \mathcal{P}(\mathcal{X})$ abs. cont.
- Near field target: $\nu = \sum \nu_i \delta_{y_i} \text{ with } y_i \in \mathbb{R}^2.$
- Mirror Σ is a maximum of paraboloids of focus (y_i) .

 $1 \le i \le N$

Parametrization of Σ : $u(x) = \max_{1 \le i \le N} \frac{1}{2\psi_i} - \frac{\psi_i}{2} ||x - y_i||^2$

$$Lag_{i}(\psi) = \left\{ x \in \mathcal{X} \mid \forall j, \frac{1}{2\psi_{i}} - \frac{\psi_{i}}{2} ||x - y_{i}||^{2} \ge \frac{1}{2\psi_{j}} - \frac{\psi_{j}}{2} ||x - y_{j}||^{2} \right\}$$

The Near-Field Parallel reflector

- Collimated light source: $\mu \in \mathcal{P}(\mathcal{X})$ abs. cont.
- Near field target:

$$\nu = \sum_{1 \le i \le N} \nu_i \delta_{y_i} \text{ with } y_i \in \mathbb{R}^2.$$

- Mirror Σ is a maximum of paraboloids of focus (y_i) .
- Parametrization of Σ : $u(x) = \max_{1 \le i \le N} \frac{1}{2\psi_i} \frac{\psi_i}{2} \|x y_i\|^2 := G(x, y_i, \psi_i)$

$$Lag_{i}(\psi) = \left\{ x \in \mathcal{X} \mid \forall j, \frac{1}{2\psi_{i}} - \frac{\psi_{i}}{2} ||x - y_{i}||^{2} \ge \frac{1}{2\psi_{j}} - \frac{\psi_{j}}{2} ||x - y_{j}||^{2} \right\}$$

Problem: Find $\psi \in \mathbb{R}^N$ such that for all $i \in \{1, \dots, N\}$, $\mu(\operatorname{Lag}_i(\psi)) = \nu_i$

Not linear in $\psi \to \text{not optimal transport}$.

Definition: (Generating function & generalized Laguerre cells) A function $G: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ is said to be a generating function if it satisfies (Reg), (Twist), (UC) and (Mono). The generalized Laguerre cells form a partition of the set \mathcal{X} defined for $\psi \in \mathbb{R}^N$ and $y_i \in \mathcal{Y}$ by $\operatorname{Lag}_i(\psi) = \{x \in \mathcal{X} \mid \forall j \in \{1, \cdots, N\}, G(x, y_i, \psi_i) \geq G(x, y_j, \psi_j)\}$

Definition: (Generating function & generalized Laguerre cells)

A function $G: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ is said to be a generating function if it satisfies (Reg), (Twist), (UC) and (Mono).

The generalized Laguerre cells form a partition of the set $\mathcal X$ defined for $\psi \in \mathbb R^N$ and $y_i \in \mathcal Y$ by

$$\text{Lag}_{i}(\psi) = \{x \in \mathcal{X} \mid \forall j \in \{1, \dots, N\}, G(x, y_{i}, \psi_{i}) \geq G(x, y_{j}, \psi_{j})\}$$

Generated Jacobian equation: Find $\psi \in \mathbb{R}^N$ such that

$$H(\psi) = \nu \tag{GJE}$$

where the mass function H is defined by $H(\psi) = (\mu(\operatorname{Lag}_i(\psi)))_{1 \leq i \leq N}$.

Definition: (Generating function & generalized Laguerre cells)

A function $G: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ is said to be a generating function if it satisfies (Reg), (Twist), (UC) and (Mono).

The generalized Laguerre cells form a partition of the set \mathcal{X} defined for $\psi \in \mathbb{R}^N$ and $y_i \in \mathcal{Y}$ by

$$Lag_i(\psi) = \{x \in \mathcal{X} \mid \forall j \in \{1, \dots, N\}, G(x, y_i, \psi_i) \ge G(x, y_j, \psi_j)\}$$

Generated Jacobian equation: Find $\psi \in \mathbb{R}^N$ such that

$$H(\psi) = \nu \tag{GJE}$$

where the mass function H is defined by $H(\psi) = (\mu(\operatorname{Lag}_i(\psi)))_{1 \leq i \leq N}$.

- Here we identified $\mathbb{R}^{\mathcal{Y}}$ with \mathbb{R}^N (semi-discrete).
- Examples of generating functions:

Optimal transport:

Near field parallel reflector:

$$G(x, y, v) = -c(x, y) - v G(x, y, v) = \frac{1}{2v} - \frac{v}{2} ||x - y||^2$$

Definition: (Generating function & generalized Laguerre cells)

A function $G: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ is said to be a generating function if it satisfies (Reg), (Twist), (UC) and (Mono).

The generalized Laguerre cells form a partition of the set \mathcal{X} defined for $\psi \in \mathbb{R}^N$ and $y_i \in \mathcal{Y}$ by

$$Lag_i(\psi) = \{x \in \mathcal{X} \mid \forall j \in \{1, \dots, N\}, G(x, y_i, \psi_i) \ge G(x, y_j, \psi_j)\}$$

Generated Jacobian equation: Find $\psi \in \mathbb{R}^N$ such that

$$H(\psi) = \nu \tag{GJE}$$

where the mass function H is defined by $H(\psi) = (\mu(\mathrm{Lag}_i(\psi)))_{1 \leq i \leq N}$.

• Here we identified $\mathbb{R}^{\mathcal{Y}}$ with \mathbb{R}^{N} (semi-discrete).

Solve using Newton alg.

Examples of generating functions:

Optimal transport:

Near field parallel reflector:

$$G(x, y, v) = -c(x, y) - v$$
 $G(x, y, v) = \frac{1}{2v} - \frac{v}{2} ||x - y||^2$

Differential of the mass function H

Proposition 1: [G-M-T '21] (Formula for DH) For any $i \neq j$ we have

$$\frac{\partial H_{j}}{\partial \psi_{i}}(\psi) = \int_{[\operatorname{Lag}_{ij}(\psi)]} \rho(x) \frac{|\partial_{v} G(x, y_{i}, \psi_{i})|}{\|\nabla_{x} G(x, y_{j}, \psi_{j}) - \nabla_{x} G(x, y_{i}, \psi_{i})\|} d\mathcal{H}^{d-1}(x) \ge 0$$

$$\operatorname{Lag}_{ij} = \operatorname{Lag}_{i} \cap \operatorname{Lag}_{j}$$

$$\sum_{i} H_{i}(\psi) = 1 \implies \frac{\partial H_{i}}{\partial \psi_{i}}(\psi) = -\sum_{j \neq i} \frac{\partial H_{j}}{\partial \psi_{i}}(\psi)$$

Differential of the mass function H

Proposition 1:[G-M-T '21](Formula for DH) For any $i \neq j$ we have > 0 by (Mono) $\frac{\partial H_j}{\partial \psi_i}(\psi) = \int_{\text{Lag}_{ij}(\psi)} \rho(x) \underbrace{\frac{\left[\left[\partial_v G(x,y_i,\psi_i)\right]\right]}{\left[\left[\left[\nabla_x G(x,y_j,\psi_j) - \nabla_x G(x,y_i,\psi_i)\right]\right]}} d\mathcal{H}^{d-1}(x) \geq 0$ $\text{Lag}_{ij} = \text{Lag}_i \cap \text{Lag}_j \qquad \neq 0 \text{ by (Twist)}$ $\sum_i H_i(\psi) = 1 \implies \frac{\partial H_i}{\partial \psi_i}(\psi) = -\sum_{i \neq i} \frac{\partial H_j}{\partial \psi_i}(\psi) < 0 \text{ if } H_i(\psi) > 0$

Descent direction for Newton

Proposition 2: [G-M-T '21] Let $\psi \in \mathcal{S}^+ = \{\psi \in \mathbb{R}^N \mid \forall i, H_i(\psi) > 0\}$, then

- The differential $DH(\psi)$ is of rank N-1.
- It image is $\operatorname{Im}(DH(\psi)) = \mathbf{1}^{\perp}$ where $\mathbf{1} = (1, \dots, 1) \in \mathbb{R}^{N}$.
- Its kernel is $\ker(DH(\psi)) = \operatorname{span}(w)$ with $w_i > 0$ for $1 \le i \le N$.

Remark: The differential DH has no reason to be symmetric, while it is the case for optimal transport problems.

Descent direction for Newton

Proposition 2: [G-M-T '21] Let $\psi \in \mathcal{S}^+ = \{\psi \in \mathbb{R}^N \mid \forall i, H_i(\psi) > 0\}$, then

- The differential $DH(\psi)$ is of rank N-1.
- It image is $\operatorname{Im}(DH(\psi)) = \mathbf{1}^{\perp}$ where $\mathbf{1} = (1, \dots, 1) \in \mathbb{R}^{N}$.
- Its kernel is $\ker(DH(\psi)) = \operatorname{span}(w)$ with $w_i > 0$ for $1 \le i \le N$.

Remark: The differential DH has no reason to be symmetric, while it is the case for optimal transport problems.

Corollary: (Descent direction) Let $\psi \in \mathcal{S}^+$, the system

$$\begin{cases}
DH(\psi)u = H(\psi) - \nu \\
u_1 = 0
\end{cases}$$

has a unique solution $u \in \mathbb{R}^N$.

Idea of proof:

- We have $H(\psi) \nu \in \mathbf{1}^{\perp} = \operatorname{Im}(DH(\psi))$.
- Fixing $u_1 = 0$ is possible because of the structure of $\ker(DH(\psi))$.
- lacksquare Uniqueness comes from the rank of $DH(\psi)$.

Damped Newton algorithm

Newton algorithm for solving $H(\psi) = \nu$

Initialize
$$\psi^0 \in \mathcal{S}^{\delta} = \{ \psi \in \mathbb{R}^N \mid \forall i, H_i(\psi) > \delta \}$$
 and $\varepsilon > 0$.

While $||H(\psi) - \nu|| \ge \varepsilon$:

$$\longrightarrow$$
 Compute u^k solution of

$$--- \text{Compute } u^k \text{ solution of } \begin{cases} DH(\psi)u^k = H(\psi) - \nu \\ u_1^k = 0 \end{cases}$$

 \rightarrow Define for $\tau \in [0,1]$, $\psi^{k,\tau} = \psi^k - \tau u^k$.

Parameter Compute
$$\tau^k = \sup \left\{ \tau \in [0,1] \mid \|H(\psi^{k,\tau}) - \nu\| \le (1 - \frac{\tau}{2}) \|H(\psi^k) - \nu\| \right\}$$
 and $\psi^{k,\tau} \in \mathcal{S}^{\delta}$

 \longrightarrow Put $\psi^{k+1} \leftarrow \psi^{k,\tau^k}$ and $k \leftarrow k+1$

Return ψ^k .

Iterate stays in admissible set

Damped Newton algorithm

Newton algorithm for solving $H(\psi) = \nu$

Initialize
$$\psi^0 \in \mathcal{S}^{\delta} = \{ \psi \in \mathbb{R}^N \mid \forall i, H_i(\psi) > \delta \}$$
 and $\varepsilon > 0$.

While $||H(\psi) - \nu|| \ge \varepsilon$:

 \rightarrow Define for $\tau \in [0,1]$, $\psi^{k,\tau} = \psi^k - \tau u^k$.

Damping Parameter Compute $\tau^k = \sup \left\{ \tau \in [0,1] \mid \|H(\psi^{k,\tau}) - \nu\| \le (1 - \frac{\tau}{2}) \|H(\psi^k) - \nu\| \right\}$ and $\psi^{k,\tau} \in \mathcal{S}^{\delta}$

 \longrightarrow Put $\psi^{k+1} \leftarrow \psi^{k,\tau^k}$ and $k \leftarrow k+1$

Return ψ^k .

Iterate stays in admissible set

convergence

Theorem: [G-M-T'21] (Convergence) Assume that the support of μ is connected and compact and that the set \mathcal{Y} is generic. Then $\exists \tau^* > 0$ s.t

$$||H(\psi^k) - \nu|| \le \left(1 - \frac{\tau^*}{2}\right)^k ||H(\psi^0) - \nu||$$

Proof: Bound τ^k below for any k by compactness of the set

$$K = \{ \psi \in \mathcal{S}^{\delta} \mid \psi_1 = \psi_1^0 \text{ and } ||H(\psi) - \nu|| \le ||H(\psi^0) - \nu|| \}.$$

Implementation for the Near field reflector

Laguerre diagram for (NF-par):

$$\operatorname{Lag}_{i}(\psi) = \left\{ x \in \mathbb{S}^{2} \mid \forall j, \frac{1}{2\psi_{i}} - \frac{\psi_{i}}{2} \|x - y\|^{2} \right\}$$
$$\geq \frac{1}{2\psi_{j}} - \frac{\psi_{j}}{2} \|x - y\|^{2} \right\}$$

Particular case of Möbius diagram

Implementation for the Near field reflector

Laguerre diagram for (NF-par):

$$\operatorname{Lag}_{i}(\psi) = \left\{ x \in \mathbb{S}^{2} \mid \forall j, \frac{1}{2\psi_{i}} - \frac{\psi_{i}}{2} \|x - y\|^{2} \right\}$$
$$\geq \frac{1}{2\psi_{j}} - \frac{\psi_{j}}{2} \|x - y\|^{2} \right\}$$

Definition: (Power and Möbius diagram)

- Power diagram : $Pow_i(c, r) = \{x \mid \forall j, \|x c_i\|^2 + r_i \le \|x c_j\|^2 + r_j\}$
- Möbius diagram : $Mob_i(y, \lambda, \mu) = \{x \mid \forall j, \lambda_i || x y_i ||^2 + \mu_i \le \lambda_j || x y_j ||^2 + \mu_j \}$

Implementation for the Near field reflector

■ Laguerre diagram for (NF-par):

$$\operatorname{Lag}_{i}(\psi) = \left\{ x \in \mathbb{S}^{2} \mid \forall j, \frac{1}{2\psi_{i}} - \frac{\psi_{i}}{2} \|x - y\|^{2} \right\}$$
$$\geq \frac{1}{2\psi_{j}} - \frac{\psi_{j}}{2} \|x - y\|^{2} \right\}$$

Definition: (Power and Möbius diagram)

- Power diagram : $Pow_i(c, r) = \{x \mid \forall j, ||x c_i||^2 + r_i \le ||x c_j||^2 + r_j\}$
- Möbius diagram : $Mob_i(y, \lambda, \mu) = \{x \mid \forall j, \lambda_i ||x y_i||^2 + \mu_i \le \lambda_j ||x y_j||^2 + \mu_j \}$

Theorem: [Boissonnat-Wormser-Yvinec '07]. For any family $(\lambda_i, \mu_i)_i \subset \mathbb{R}$, and $(y_i)_i \subset \mathbb{R}^d$ there exists $(r_i)_i \subset \mathbb{R}$ and $(c_i)_i \subset \mathbb{R}^{d+1}$ such that

$$\mathrm{Mob}_i(y,\lambda,\mu) = \Pi(\mathrm{Pow}_i(c,r) \cap P)$$

where $P=\{(x,\|x\|^2),x\in\mathbb{R}^d\}$ and Π is the orthogonal projection of \mathbb{R}^{d+1} on $\mathbb{R}^d imes\{0\}$.

Numerical experiments

- $\mathcal{X} = [-1, 1]^2$ with μ uniform
- $\mathcal{Y} \subset [0,1]^2$, with ν uniform and N=5000.

Initial diagram

Final diagram

Laguerre diagram before and after convergence of the Newton algorithm

Numerical experiments

- $\mathcal{X} = [-1,1]^2$ with μ uniform
- $\mathcal{Y} \subset [0,1]^2$, with ν uniform

Convergence rate for different values of N.

Perspectives

- Apply stability results to other optimal transport problems
- Uniqueness of solutions to GJE
- Local stability for GJE
- Detailled study of a stochastic algorithm for (GJE)

Thank you for your attention

Appendix

Generating Function:

- $G(x,y,v) \text{ is } \mathcal{C}^1 \text{ in } x \text{ and } v \text{ and } \sup_{\mathcal{X} \times \mathcal{Y} \times [\alpha,\beta]} |\nabla_x G(x,y,v)| < +\infty \quad \text{(Reg)}$
- $\forall x \in \mathcal{X}, (y, v) \mapsto (G(x, y, v), \nabla_x G(x, y, v))$ is injective on $\mathcal{Y} \times \mathbb{R}$ (Twist)
- $\forall y \in Y, \lim_{v \to -\infty} \inf_{x \in \mathcal{X}} G(x, y, v) = +\infty$ (UC)

A stochastic algorithm for GJE

Entropic regularization:

- Regularized cells: $\mathcal{L}_{\varepsilon,i}[\psi](x) = \frac{e^{G(x,y_i,\psi_i)/\varepsilon}}{\sum_k e^{G(x,y_k,\psi_k)/\varepsilon}} \xrightarrow[\varepsilon \to 0]{} \begin{cases} 1 \text{ if } x \in \operatorname{Lag}_i(\psi) \\ 0 \text{ otherwise} \end{cases}$
- Regularized mass function: $H_i^{\varepsilon}(\psi) = \int_X \mathcal{L}_{\varepsilon,i}[\psi](x) \,\mathrm{d}\,\mu(x) \xrightarrow[\varepsilon \to 0]{} H_i(\psi)$

Regularized GJE: Find $\psi \in \mathbb{R}^N$ such that $H^{\varepsilon}(\psi) = \nu$

A stochastic algorithm for GJE

Entropic regularization:

- Regularized cells: $\mathcal{L}_{\varepsilon,i}[\psi](x) = \frac{e^{G(x,y_i,\psi_i)/\varepsilon}}{\sum_k e^{G(x,y_k,\psi_k)/\varepsilon}} \xrightarrow[\varepsilon \to 0]{} \begin{cases} 1 \text{ if } x \in \operatorname{Lag}_i(\psi) \\ 0 \text{ otherwise} \end{cases}$
- Regularized mass function: $H_i^{\varepsilon}(\psi) = \int_X \mathcal{L}_{\varepsilon,i}[\psi](x) \,\mathrm{d}\,\mu(x) \xrightarrow[\varepsilon \to 0]{} H_i(\psi)$

Regularized GJE: Find $\psi \in \mathbb{R}^N$ such that $H^{\varepsilon}(\psi) = \nu$

Fixed point iterate: $\psi^{k+1} = \psi^k + \tau^k (H^{\varepsilon}(\psi) - \nu)$

A stochastic algorithm for GJE

Entropic regularization:

- Regularized cells: $\mathcal{L}_{\varepsilon,i}[\psi](x) = \frac{e^{G(x,y_i,\psi_i)/\varepsilon}}{\sum_k e^{G(x,y_k,\psi_k)/\varepsilon}} \xrightarrow[\varepsilon \to 0]{} \begin{cases} 1 \text{ if } x \in \operatorname{Lag}_i(\psi) \\ 0 \text{ otherwise} \end{cases}$
- Regularized mass function: $H_i^{\varepsilon}(\psi) = \int_X \mathcal{L}_{\varepsilon,i}[\psi](x) \,\mathrm{d}\,\mu(x) \xrightarrow[\varepsilon \to 0]{} H_i(\psi)$

Regularized GJE: Find $\psi \in \mathbb{R}^N$ such that $H^{\varepsilon}(\psi) = \nu$

Stochastic fixed point iterate: $\psi^{k+1} = \psi^k + \tau^k (\mathcal{L}_{\varepsilon}[\psi](x_k) - \nu)$ where $x_k \sim \mu$ so that $\mathbb{E}(\mathcal{L}_{\varepsilon}[\psi](x_k)) = H^{\varepsilon}(\psi)$

- Stochastic gradient descent in the case of optimal transport.
- Numerical experiments converge for $\tau^k = \frac{1}{\sqrt{k}}$
- Proof of convergence is an open problem.