Metrics&Scaling for Classification/Clustering

Supervised Learning Algorithm

Supervised Learning

Big Picture

Machine Learning Algorithms

Metrics

Predicted

Metrics

Metrics

Feature Scaling

Normalization or Standardization

- Feature Scaling means scaling features to the same scale.
- Normalization scales features between 0 and 1, retaining their proportional range to each other.

Normalization Normalization
$$X' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

 Standardization scales features to have a mean (u) of 0 and standard deviation (a) of 1.

Standardization
$$X' = \frac{x - u}{a} \leftarrow \frac{\text{mean}}{\text{standard deviation}}$$

Metrics for Clustering - Silhouette

Silhouette analysis for KMeans clustering on sample data with n_c clusters = 7

Metrics for Clustering - K-means

Metrics for Clustering - K-means

In cluster analysis, the elbow method is a heuristic used in determining the number of clusters in a data set. The method consists of plotting the explained variation as a function of the number of clusters, and picking the elbow of the curve as the number of clusters to use

minimize
$$\left(\sum_{k=1}^k W(C_k)\right)$$

where C_k is the k^{th} cluster and $W(C_k)$ is the within-cluster variation

