

FUNDAÇÃO DE ENSINO "EURÍPEDES SOARES DA ROCHA" CENTRO UNIVERSITÁRIO DE MARÍLIA – UNIVEM BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

LABORATÓRIOS DE CIRCUITOS DIGITAIS TRABALHO 01 – SÍNTESE E PROJETO DE UM AUTÔMATO PARA CONTROLAR O ACIONAMENTO DAS OITO VÁLVULAS DE UM MOTOR DE 1000 C.C

JOSÉ NOBRE - 430439

MARCEL TAMADA- 600822

MARIA EDUARDA SANTOS- 607185

MARIANA AMARO – 602371

PEDRO PAZINI - 582174

VINICIUS FRANÇOZO - 607551

1° ANO – TURMA B

PROF. ILDEBERTO DE GENOVA BUGATTI

Marília, 2020

Síntese e Projeto de um Autômato para Controlar o acionamento das oito Válvulas de um motor de 1000 cc.

Um carro popular é equipado com um motor de 1000cc e oito (8) válvulas. Testes com o motor mostraram que, a mudança na ordem de abertura e fechamento das válvulas do motor influencia no seu desempenho.

As oito (8) válvulas do motor estão identificas por estados enumerados de 0 a 7.

São 15 opções para gerar a sequência de estados do autômato proposto, cada opção será executada por 16 grupos diferentes. Cada grupo será composto por 5 ou 6 alunos, totalizando 84 alunos.

Dessa forma estão sendo propostas 16 opções, uma sequência de estados diferente para cada grupo de alunos:

Grupo	Sequência Proposta
1	3, 4, 5, 6, 7, 2, 1, 0
2	2, 1, 6, 3, 4, 5, 0, 7
3	2, 1, 0, 3, 4, 5, 6, 7
4	0, 3, 4, 5, 6, 7, 2, 1
5	6, 3, 4, 5, 0, 7, 2, 1
6	4, 5, 6, 7, 2, 1, 0, 3
7	0, 7, 2, 1, 6, 3, 4, 5
8	7, 2, 1, 0, 3, 4, 5, 6
9	6, 3, 4, 5, 0, 7, 2, 1
10	0, 3, 4, 5, 6, 7, 2, 1
11	3, 4, 5, 0, 7, 2, 1, 6
12	5, 6, 7, 2, 1, 0, 3, 4
13	0, 7, 2, 1, 6, 3, 4, 5
14	1, 0, 3, 4, 5, 6, 7, 2
15	4, 5, 0, 7, 2, 1, 6, 3

Essa sequência de abertura e fechamento de válvulas de um grupo, precisa ser inserida no sistema de injeção eletrônica do carro, através da construção de um circuito s que irá gerar a sequência ideal.

Sintetize e projete um circuito sequencial síncrono, utilizando Flip-Flop do tipo JK, que gere a sequência de abertura e fechamento de válvulas solicitado, para ser inserido no sistema de injeção eletrônica que está sendo projetado.

Para obter os resultados solicitados no projeto de forma eficiente é adequado realizar os passos que seguem relacionados:

a- Modelar o autômato utilizando um grafo dirigido que mostra a sequência de abertura das válvulas na sequência ideal; que modela o contador;

b- Definir a quantidade necessária de Flip-Flops para gerar o circuito mínimo que implementa o autômato modelado pelo grafo dirigido;

$$\log 8 \le x \rightarrow 2^x >= 8 \rightarrow x=3 \text{ Flip-Flops}$$

c- Montar a tabela de estímulos do Flip-Flop JK;

$ \begin{array}{c c} Estado \\ \hline Anterior & Posterior \\ (E_i) & (E_{i+1}) \end{array} $		Funções de Estímulos		
Qi	Q_{i+1}	J	K	
0	0	0	X	0 0
	V	U	21	01
0	1	1	X	10
U		1		11
1	0	X	1	10
1				11
1	1	V	•	10
		l l A	X	U

d- Transformar o Grafo e forma de tabela e gerar as funções de estímulos de todos os Flip-Flops JK;

Deci mal	Estado Anterior	Estado Posterior	Funções de Estímulos
mai	$Q_2 Q_1 Q_0$	$Q_2 Q_1 Q_0$	$ \mathbf{J_2} \mathbf{K_2} \mathbf{J_1} \mathbf{K_1} \mathbf{J_0} \mathbf{K_0} $
5	1 0 1	1 1 0	X 0 1 X X 1
6	1 1 0	1 1 1	X 0 X 0 1 X
7	1 1 1	0 1 0	X 1 X 0 X 1
2	0 1 0	0 0 1	0 X X 1 1 X
1	0 0 1	0 0 0	0 X 0 X X 1
0	0 0 0	0 1 1	0 X 1 X 1 X
3	0 1 1	1 0 0	1 X X 1 X 1
4	1 0 0	1 0 1	X 0 0 X 1 X

e- Construir os mapas de Karnaugh e sintetizar as expressões mínimas das funções de estímulos de todos os Flip-Flops JK.

$$K2 = Q1 \cdot Q0$$

$$J1 = Q2. Q0 + Q2'. Q0'$$

$$K1 = Q2$$

J0 = 1

K0 = 1