Einfürung in die Funktionentheorie Hausaufgaben Blatt Nr. 2

Jun Wei Tan* and Lucas Wollman *Julius-Maximilians-Universität Würzburg*(Dated: May 7, 2024)

Aufgabe 1. Seien C, C' und C_0 Halbkreise mit Durchmessern AC, AB bzw. BC, sodass A, B und C auf einer Gerade liegen. Wir betrachten erner Kreise C_{\setminus} für $n \in \mathbb{N}$ tangential zu den Halbkreisen C und C', sodass ferner C_n tangential zu C_{n-1} in einem Punkt P_n ist. Zeigen Sie, dass es eine Kreislinie gibt, die alle Berührpunkte P_0, P_1, \ldots enthält.

Beweis. Wir führen ein Möbiustransformation durch. OBdA nehmen wir an, dass *A* das Ursprung ist.

Danach betrachten wir die Inversion $z \mapsto 1/z$. Die reelle Achse wird offensichtlich auf die reelle Achse abgebildet. Insbesondere bleiben B und C auf der reellen Achse. A wird auf ∞ abgebildet.

Schritt 1: Die große Halbkreisen werden auf vertikale Geraden abgebildet.

Wir schreiben die Koordinaten von B bzw. C als x, $x \in \mathbb{R}$. Das höchste Punkt hat Koordinaten x/2 + ix/2. Das wird auf

$$\frac{1}{\frac{x}{2} + i\frac{x}{2}} = \frac{1 - i}{x} = \frac{1}{x} - \frac{i}{x}.$$

Das heißt, dass die Halbkreisen auf vertikalen Geraden bei x-Koordinaten $1/(2R_1)$ und $1/(2R_2)$ abgebildet werden.

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Aufgabe 2. Es sei $z_0 \in \mathbb{C}$, $(a_k) \subseteq \mathbb{C}$ und $K_R(z_0)$, $0 < R < \infty$, die Konvergenzkreisscheibe der Potenzreihe

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \ z \in K_R(z_0).$$

Zeigen Sie:

- (a) Für jedes $r \in [0, R)$ gilt $\sum_{k=0}^{\infty} |a_k|^2 r^{2k} = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{it})|^2 dt$.
- (b) Falls $|f(z)| \leq M$ für alle $z \in K_R(z_0)$, so gilt $|a_k| \leq M \frac{1}{R^k}$ für alle $k \in \mathbb{N}_0$.

Beweis. (a) Es gilt

$$\int_0^{2\pi} |f(z_0 + re^{it})|^2 dt = \int_0^{2\pi} \left| \sum_{k=0}^{\infty} a_k r^k e^{kit} \right|^2 dt$$

Aufgabe 3. Seien $z_0 \in \mathbb{C}$, r > 0 und $k \in \mathbb{Z} \setminus \{1\}$. Zeigen Sie, dass für alle $z \in K_r(z_0)$ folgende Identität gilt:

$$\int_{\partial K_r(z_0)} \frac{1}{(w-z)^k} \, \mathrm{d}w = 0.$$

Warum schließen wir k = 1 aus?

Hinweis: Betrachten Sie zunächst den Spezialfall $z=z_0$ und versuchen Sie anschließend den allgemeinen Fall auf diesen zurückzuführen.

Aufgabe 4. Sei $f: \mathbb{D} \to \mathbb{C}$ holomorph und g(z) = zf(z).

- (a) Sei $K \subset \mathbb{D}$ kompakt. Beweisen Sie, dass die Funktionreihe $\sum_{n=1}^{\infty} g(z^n)$ gleichmäßig auf K konvergiert.
- (b) Zeigen Sie, dass die Funktionenreihe $\sum_{n=1}^{\infty} g(z^n)$ nicht notwendigerweise gleichmäßig auf der ganzen Einheitskreisscheibe $\mathbb D$ konvergiert.