Jan 25

• See examples on page 2 -

Example 1

- There is an 8x8 board, with 1 square covered already. You are given a 3 piece, or a *trinomal*. Is it possible to cover the entire board with them?
- Yes it is possible to cover then. So does 4x4.
- Each is 2^k . Assume that you are given a 2^k size board. Is it possible?
- Yes, because if one is blocked off in a 4x4 you put what is missing in the middle. It is possible to build around what is missing. This is **induction**. It is also a **recursive** algorithm.
 - Induction start simple and go up
 - Recursion start high up, and go down

Example 2

Given a triangle, $a^2 + b^2 = c^2$. a = 1 and b = 1. then c = sqrt(2).

- Thm sqrt(2) is not a rational number
 - · Prove this without loss of generality
- Suppose that sqrt(2) is a rational number. So, sqrt(2) is p/q and supposed that without loss of generality, that p and q have no common denominator.
- See notebook, page 3

Traveling Salesman Problem

- See notebook, page 3 -
- There are N cities: n(n-1)(n-2)...1 = n!n * n!
- The time unit is the **flop** floating pint operations
- 1 flop = $10^{(} 9)$ seconds
- For n = 4, is $4 * 4! * 10^{(-9)} = 10^2 * 10^{(-9)} = 10^{(-7)} = 10^{(-3)}$ so 1 ms
- For n = 50, is 50 * 50! = 10(66)ms, 10(66) * 10(-9)sec

•