NASA-CR-134511) SINGLE-STAGE EXPERIMENTAL EVALUATION OF TANDEM-AIRFOIL ROTOR STATOR BLADING FOR COMPRESSORS. PART 6: DATA AND PERFORMANCE FOR (Pratt and Whitney Aircraft)

N74-12449

CSCL 21E

G3/28 23515

SINGLE-STAGE EXPERIMENTAL EVALUATION OF TANDEM-AIRFOIL ROTOR AND STATOR BLADING FOR COMPRESSORS

PART VI - DATA AND PERFORMANCE FOR STAGE D

by D. R. Clemmons

PRATT & WHITNEY AIRCRAFT SORPORATION
DIVISION OF UNITED AIRCRAFT SORPORATION
FLORIDA RESEARCH AND DEVELOPMENT CENTER

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center Contract NAS3-11158

1.	Report No.	2. Government Accession	n No.	3. Recipient's Catalog No.	
<u> </u>	NASA CR-134511			<u> </u>	
4.	4. Title and Subtitle "SINGLE-STAGE EXPERIMENTAL EVALUATION OF TANDEM-AIRFOIL ROTOR AND STATOR BLADING FOR COMPRESSORS," PART VI DATA AND PERFORMANCE FOR STAGE D		5. Report Date		
ŀ				30 November 1973 6. Performing Organization Code	
			6. Performing Organization Code		
7.	Author(s)			8. Performing Organization Report No.	
	D. R. Clemmons			PWA FR-5852	
			<u> </u>	10. Work Unit No.	
9.	Performing Organization Name and Address				
	Pratt & Whitney Aircraft		1	11. Contract or Grant No.	
	Division of United Aircraft Corpor Florida Research and Development			NAS3-11158	
	West Palm Beach, Florida 33402	i Center			
12.	Sponsoring Agency Name and Address	· · · · · · · · · · · · · · · · · · ·		13. Type of Report and Period Covered Contractor Report	
	National Aeronautics and Space Ad	ministration			
	Washington, D. C. 20546			14. Spansoring Agency Code	
15.	Supplementary Notes				
, .	Project Manager, Everett E. Baile	ov Fluid System Co	mnonente Divicion		
	NASA - Lewis Research Center, C	Eleveland, Ohio 441	35		
	An axial flow compressor stage, having single-airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were: (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of tandem-airfoil blading designed for the same vector diagrams and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, the rotor achieved a maximum adiabatic efficiency of 90.1% at design equivalent rotor speed and a pressure ratio of 1.281. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure ratio of 1.266. Hub radial, tip radial, and circumferential distortion of the inlet flow caused reductions in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.				
17.	Key Words (Suggested by Author(s))	1	8. Distribution Statement		
	Compressor	ļ	Unclassified - un	limited	
	Secondary Flow Tandem Blading				
	I andom Status				
					
19.	Security Classif. (of this report) Unclassified	20. Security Classif. (of Unclassified	this page)		
	Unclassified	Unctabbilled			

FOREWORD

This report was prepared by the Pratt & Whitney Aircraft Division of United Aircraft Corporation, West Palm Beach, Florida, to present the data and performance for Stage D, which was tested under Contract NAS3-11158, Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors. Mr. Everett E. Bailey, NASA-Lewis Research Center, Fluid System Components Division, was Project Manager.

The requirements of NASA Policy Directive NPD 2220.4 (September 14, 1970) regarding the use of SI Units have been waived in accordance with the provisions of paragraph 5d of that Directive by the Director of Lewis Research Center.

CONTENTS

	PAGE
ILLUSTRATIONS	v
TABLES	xv
SUMMARY	1
INTRODUCTION	2
DESIGN SUMMARY	2
Blading Design	2
TEST EQUIPMENT	3
Compressor Test Facility	3 3 3 6
PROCEDURES	7
Test Procedures	7
Shakedown Tests	7 7
Data Reduction Procedures	8
Overall Performance	8 9 9
PRESENTATION OF DATA	9
Uniform Inlet	9
Overall Performance	$\begin{matrix} 9 \\ 10 \end{matrix}$
Rotor Blade Element Performance Stator Blade Element Performance	10 11
Hub and Tip Radial Inlet Flow Distortion	12
Overall Performance	$\begin{array}{c} 12 \\ 12 \end{array}$
Rotor and Stator Blade Element Performance Flow Distribution Data	13 13
Circumferential Distortion	1 3
Overall Performance	13 14
SUMMARY REMARKS	15

CONTENTS (Continued)

	PAGE
APPENDIX A - Tabulated Overall and Blade Element Performance Data	155
APPENDIX B - Stator D Static Pressure Coefficients	241
APPENDIX C - Definition of Symbols	243 245
Variables	246
REFERENCES	249

ILLUSTRATIONS

FIGURE		PAGE
1	Stage D Airfoils	16
2	Compressor Research Facility	17
3	Single-Stage Compressor Rig	18
4	Flowpath Dimensions	19
5	Instrumentation Layout	20
6	Eight-Degree Wedge Traverse Probe	21
7	Stator D Static Pressure Orifice Locations	22
8	Twenty-Degree Wedge Traverse Probe	23
9	Total Pressure/Total Temperature Circumferential Traverse Unit	24
10a	Composition of Station 1 Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions	25
10b	Composition of Station 2 Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions	26
10c	Composition of Station 2A Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions	27
11	High-Response Probe	28
12	Typical Stall Transient Data	29
13	Station 0 Equivalent Static Pressure vs Equivalent Weight Flow for Stage D Flowpath with Support Screen	· 30
14	Overall Performance of Rotor D; Uniform Inlet Flow	31
15	Overall Performance of Stage D; Uniform Inlet Flow	32
16a	Rotor D Blade Element Performance; 5% Span from Tip; Uniform Inlet Flow	33
16b	Rotor D Blade Element Performance; 10% Span from Tip; Uniform Inlet Flow	34
16c	Rotor D Blade Element Performance; 15% Span from Tip; Uniform Inlet Flow	35
16d	Rotor D Blade Element Performance; 30% Span from Tip; Uniform Inlet Flow	. 36
16 e	Rotor D Blade Element Performance; 50% Span; Uniform Inlet Flow	37
1 6f	Rotor D Blade Element Performance; 70% Span from Tip; Uniform Inlet Flow	38

FIGURE		PAGI
16g	Rotor D Blade Element Performance; 85% Span from Tip; Uniform Inlet Flow	39
16h	Rotor D Blade Element Performance; 90% Span from Tip; Uniform Inlet Flow	4(
16 i	Rotor D Blade Element Performance; 95% Span from Tip; Uniform Inlet Flow	41
17a	Rotor D Loss Parameter vs Diffusion Factor; 10% Span from Tip; Uniform Inlet Flow	42
17b	Rotor D Loss Parameter vs Diffusion Factor; 30% Span from Tip; Uniform Inlet Flow	43
17c	Rotor D Loss Parameter vs Diffusion Factor; 50% Span Uniform Inlet Flow	44
17d	Rotor D Loss Parameter vs Diffusion Factor; 70% Span from Tip; Uniform Inlet Flow	.45
17e	Rotor D Loss Parameter vs Diffusion Factor; 90% Span from Tip; Uniform Inlet Flow	46
18	Rotor D Tip Static Pressure Ratio vs Percent Axial Chord; 100% Design Equivalent Rotor Speed; Uniform Inlet Flow	47
19a	Stator D Blade Element Performance; 5% Span from Tip; Uniform Inlet Flow	48
19b	Stator D Blade Element Performance; 10% Span from Tip; Uniform Inlet Flow	49
19c	Stator D Blade Element Performance; 15% Span from Tip; Uniform Inlet Flow	50
19d	Stator D Blade Element Performance; 30% Span from Tip; Uniform Inlet Flow	51
19e	Stator D Blade Element Performance; 50% Span; Uniform Inlet Flow	52
19f	Stator D Blade Element Performance; 70% Span from Tip; Uniform Inlet Flow	53
19g	Stator D Blade Element Performance; 85% Span from Tip; Uniform Inlet Flow	54
19h	Stator D Blade Element Performance; 90% Span from Tip; Uniform Inlet Flow	55
19i	Stator D Blade Element Performance; 95% Span from Tip; Uniform Inlet Flow	56
20a	Stator D Loss Parameter vs Diffusion Factor; 10% Span from Tip; Uniform Inlet Flow	57

${\bf ILLUSTRATIONS} \ ({\bf Continued})$

FIGURE		PAGE
20b	Stator D Loss Parameter vs Diffusion Factor; 30% Span from Tip; Uniform Inlet Flow	58
20 e	Stator D Loss Parameter vs Diffusion Factor; 50% Span Uniform Inlet Flow	59
20d	Stator D Loss Parameter vs Diffusion Factor; 70% Span from Tip; Uniform Inlet Flow	60
20e	Stator D Loss Parameter vs Diffusion Factor; 90% Span from Tip; Uniform Inlet Flow	61
21a	Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 120.02 lb/sec; Uniform Inlet Flow	62
21b	Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 110.18 lb/sec; Uniform Inlet Flow	63
21c	Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 102.67 lb/sec; Uniform Inlet Flow	. 64
21d	Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 95.36 lb/sec; Uniform Inlet Flow	65
21e	Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 88.32 lb/sec; Uniform Inlet Flow	66
22a	Wall Static Pressure Distributions Upstream and Downstream of Stator D; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 110.18 lb/sec; Uniform Inlet Flow	67
22b	Wall Static Pressure Distribution Upstream and Downstream of Stator D; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 88.32 lb/sec; Uniform Inlet Flow	68
23	Typical Rotor Inlet Total Pressure Profiles With Hub and Tip Radial Distortion; 100% Design Equivalent Rotor Speed	69
24	Overall Performance of Rotor D; Hub Radial Distortion Compared With Uniform Inlet Flow	70
25	Overall Performance of Stage D; Hub Radial Distortion Compared With Uniform Inlet Flow	71

FIGURE		PAGE
26	Overall Performance of Rotor D; Tip Radial Distortion Compared With Uniform Inlet Flow	7 2
27	Overall Performance of Stage D; Tip Radial Distortion Compared With Uniform Inlet Flow	73
28a	Rotor D Blade Element Performance; 5% Span from Tip; Hub and Tip Radial Distortion	74
28b	Rotor D Blade Element Performance; 10% Span from Tip; Hub and Tip Radial Distortion	75
28 c	Rotor D Blade Element Performance; 15% Span from Tip; Hub and Tip Radial Distortion	76
28d	Rotor D Blade Element Performance; 30% Span from Tip; Hub and Tip Radial Distortion	77
28e	Rotor D Blade Element Performance; 50% Span; Hub and Tip Radial Distortion	78
28 f	Rotor D Blade Element Performance; 70% Span from Tip; Hub and Tip Radial Distortion	79
28g	Rotor D Blade Element Performance; 85% Span from Tip; Hub and Tip Radial Distortion	80
28h	Rotor D Blade Element Performance; 90% Span from Tip; Hub and Tip Radial Distortion	81
28i	Rotor D Blade Element Performance; 95% Span from Tip; Hub and Tip Radial Distortion	82
29a	Stator D Blade Element Performance; 5% Span from Tip; Hub and Tip Radial Distortion	83
29b	Stator D Blade Element Performance; 10% Span from Tip; Hub and Tip Radial Distortion	84
29c	Stator D Blade Element Performance; 15% Span from Tip; Hub and Tip Radial Distortion	85
29d	Stator D Blade Element Performance; 30% Span from Tip; Hub and Tip Radial Distortion	86
29e	Stator D Blade Element Performance; 50% Span; Hub and Tip Radial Distortion	87
29f	Stator D Blade Element Performance; 70% Span from Tip; Hub and Tip Radial Distortion	88
29g	Stator D Blade Element Performance; 85% Span from Tip; Hub and Tip Radial Distortion	89
29h	Stator D Blade Element Performance; 90% Span from Tip; Hub and Tip Radial Distortion	90
29 i	Stator D Blade Element Performance; 95% Span from Tip: Hub and Tip Radial Distortion	01

FIGURE		PAGE
30a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 114.76 lb/sec; Hub Radial Distortion	92
30b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 97.44 lb/sec; Hub Radial Distortion	93
30e	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.40 lb/sec; Hub Radial Distortion	94
31a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 102.52 lb/sec; Hub Radial Distortion	95
31b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 88.60 lb/sec; Hub Radial Distortion	96
31c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 76.35 lb/sec; Hub Radial Distortion	97
32a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 82.96 lb/sec; Hub Radial Distortion	98
32b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 71.46 lb/sec; Hub Radial Distortion	99
32c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 59.11 lb/sec; Hub Radial Distortion	100

FIGURE		PAGE
33a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 115.11 lb/sec; Tip Radial Distortion	101
33b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 106.05 lb/sec; Tip Radial Distortion	102
33c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 99.09 lb/sec; Tip Radial Distortion	103
34a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 105.62 lb/sec; Tip Radial Distortion	104
34b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 97.85 lb/sec; Tip Radial Distortion	105
34c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.04 lb/sec; Tip Radial Distortion	106
35a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 85.36 lb/sec; Tip Radial Distortion	107
35b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 80.21 lb/sec; Tip Radial Distortion	108
35c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 72.74 lb/sec; Tip Radial Distortion	109

FIGURE		PAGE
36	Typical Rotor Inlet Total Pressure Distribution With Circumferential Distortion; 100% Design Equivalent Rotor Speed; 92.4% Design Equivalent Flow (101.6 lb/sec); 50% Span	110
37	Overall Performance of Rotor D; Circumferential Distortion Compared With Uniform Inlet Flow	111
38	Overall Performance of Stage D; Circumferential Distortion Compared With Uniform Inlet Flow	112
39	Overall Performance of Rotor D; Circumferential Distortion Compared With Uniform Inlet Flow	113
40	Overall Performance of Stage D; Circumferential Distortion Compared With Uniform Inlet Flow	114
41a	Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	115
41b	Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	116
41c	Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	117
41d	Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	118
41e	Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	119
41 f	Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	120
41g	Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	121
41h	Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	122

FIGURE		PAGE
41i	Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	123
41j	Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	124
41k	Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion.	125
411	Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	126
41m	Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	127
42a	Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	128
42b	Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	129
42e	Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	130
42d	Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	131
42e	Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	132
42f	Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec:	
	Circumferential Distortion	133

FIGURE		PAGE
42g	Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	134
42h	Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	135
42 i	Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	136
42 j	Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	137
42k	Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	138
421	Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	139
42m	Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	140
43a	Rotor Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	141
43b	Rotor Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78'lb/sec; Circumferential Distortion	1 42
43c	Rotor Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	143
43d	Rotor Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	144

FIGURE		PAGE
43e	Stator Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	145
43f	Stator Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	146
43g	Stator Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	147
43h	Stator Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	148
43i	Stator Exit Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	149
43j	Stator Exit Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	150
43k	Stator Exit Total Temperature vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	151
431	Stator Exit Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	152
43m	Stator Exit Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion.	153

TABLES

TABLE		PAGE
I	Rotor D Blade Element Design	4
11	Stator D Blade Element Design	5
A-1	Overall Performance - Stage D, Uniform Inlet	1 57
A-2	Blade Element Performance - Uniform Inlet Untranslated	1 58
A-3	Blade Element Performance - Uniform Inlet	159
A-4	Overall Performance - Stage D, Radial Distortion	184
A-5	Blade Element Performance - Hub Radial Distortion	185
A-6	Blade Element Performance - Tip Radial Distortion	194
A-7	Overall Performance - Stage D, Circumferential Distortion	203
A-8	Blade Element Performance - Circumferential Distortion	204

SUMMARY

A single-stage axial flow compressor, having single-airfoil blading, was designed and tested as part of an overall program to evaluate the effectiveness of tandem airfoils for increasing the design point loading capability and stable operating range of compressors. The stage was designed with zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The resulting blading had large variations in twist (i.e., end-bends) in the endwall regions. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. The specific flow and resulting rotor inlet Mach number were generally consistent with design practice for compressor middle stages; however, the blade loading was appreciably higher. The stage was tested with uniform inlet flow and with hub radial, tip radial and 90 deg one-per-revolution circumferential distortion of the inlet flow.

Overall and blade element performance data for uniform inlet flow were obtained at 50, 70, 90, 100 and 110% of design equivalent rotor speed, and are presented herein. At design equivalent rotor speed and flow, the rotor achieved an adiabatic efficiency of 88.9% at the design pressure ratio of 1.28 compared with the design value of 89.9%. At the same flow and rotor speed, the stage achieved its design adiabatic efficiency of 84.8% at its design pressure ratio of 1.26. At design equivalent rotor speed, maximum rotor and stage adiabatic efficiencies of 90.1% and 86.1%, respectively, were reached at approximately 96% design equivalent flow.

For both hub radial and tip radial distortion of the inlet flow, overall performance, blade element performance and flow distribution data were obtained at 70, 90 and 100% of design equivalent rotor speed and are also presented herein. For circumferential distortion of the inlet flow, overall performance data were obtained at 70, 90 and 100% of design equivalent rotor speed. Flow distribution data were also obtained with circumferential distortion of the inlet flow for two operating points (defined as a combination of flow and speed) at design equivalent rotor speed and one operating point at 90% design equivalent rotor speed.

Hub radial distortion and circumferential distortion produced moderate changes in surge pressure ratio for the stage, whereas tip radial distortion caused surge pressure ratio to decrease substantially. At design equivalent rotor speed with hub radial, tip radial, and circumferential distortion the surge pressure ratio decreased 2.0, 9.7, and 4.6%, respectively, when compared with the uniform inlet flow value. Peak adiabatic efficiency with hub radial distortion was essentially unchanged from the uniform inlet flow value (which occurred at design speed), even though the stage pressure ratio was reduced significantly at 90 and 100% design equivalent rotor speed with hub distortion. Tip radial distortion of the inlet flow resulted in a slight increase in peak adiabatic efficiency at 70 and 90% design equivalent rotor speed, but the stage lost 4.5 percentage points in peak efficiency at design rotor speed. Stage pressure ratio with tip radial distortion was reduced considerably over most of the 90% speedline and over all the 100% speedline. Stage pressure ratio was not affected significantly by circumferential distortion of the inlet flow, calculated values of adiabatic efficiency with circumferential distortion were considered to be inaccurate, prohibiting an evaluation of the effects of circumferential distortion on peak efficiency.

INTRODUCTION

The effectiveness of tandem airfoils as a means for increasing the loading limit and stable operating range of highly loaded compressor blade rows was investigated for the National Aeronautics and Space Administration at the Florida Research and Development Center of Pratt & Whitney Aircraft under Task I of Contract NAS3-11158 (References 1 through 3). During this program, tandem rotors demonstrated higher pressure rise and efficiency than a single airfoil rotor with identical inlet and exit airfoil angles. The performance of the conventional stage was controlled to a large extent by three-dimensional flow effects associated with high losses near the walls. The three-dimensional flows resulted even though the blading was designed with increased work input near the walls to compensate for the high losses in these regions and, thereby, maintain a constant radial pressure distribution.

A second single-stage compressor investigation was initiated to evaluate the potential of tandem blading for improving the performance over that of a more moderately loaded stage, composed of single-airfoil blade rows. A study was performed to select a radial work gradient for the rotor, which resulted in maximum rotor and stator loading levels consistent with good performance (Reference 4). Based on this study a rotor design with uniform work input at all radii and an overall pressure ratio of 1.28 at a design tip speed of 757 ft/sec was chosen for this investigation. This rotor has lower work input near the walls than the rotors of References 1 through 3. This lower work input near the walls should reduce the three-dimensional flows and high wall losses that are characteristic of highly loaded blade rows and provide a stage design that is not characterized by a highly three-dimensional flow and associated poor performance.

A single-airfoil rotor and stator, a dual-airfoil tandem rotor, and a dual-airfoil tandem stator were designed and fabricated for this investigation. Because of the large inlet boundary layer noted during the Reference 1 through 3 testing, a design procedure was used that accounted for the inlet total pressure gradient and the effects of axial velocity ratio and secondary flow on blade row performance. This report presents the data and performance obtained with Stage D, which was composed of single-airfoil rotor and stator blading. A discussion of the aerodynamic and mechanical design of Stage D is presented in Reference 4.

DESIGN SUMMARY

Blading Design

The stage was designed with zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. A rotor tip inlet Mach number of approximately 0.8 and a specific flow of 33 lb/sec-ft² were selected to be generally representative of current design practice for highly loaded compressor middle stages. The design velocity diagrams were calculated by means of a computer program that solves the continuity, energy, and radial equilibrium equations for an axisymmetric flow field. The rotor inlet total pressure distribution from the data of the Reference 1 program was used for the vector diagram calculations. Radial gradients of enthalpy and entropy were included in the calculation, and the influence of wall and streamline curvature on the radial distribution of static pressure was taken into account. Simulated double-circular-arc

airfoil sections (i.e., the mean camber line and the suction and pressure surface lines of each blade element are lines with a constant rate of angle change with path distance on a specified conical surface) were selected for the rotor and stator blading to be as consistent as possible with studies being conducted by NASA-Lewis Research Center (Reference 5). Design incidence (minimum loss) and deviation angles were calculated using equations 286 and 287 of Reference 6. The three-dimensional corrections to the incidence and deviation angles were omitted and a two-dimensional turning value, which includes the effects of axial velocity ratio and secondary flow, was used (Reference 4). This procedure combined with the use of the actual inlet pressure gradient resulted in blading with large variations in twist in the endwall regions of both the rotor and stator. (See figure 1.)

Rotor and stator design velocity diagram data, blade element geometry data, and predicted performance are presented in tables I and II for the rotor and stator, respectively. Symbols and performance variables are defined in Appendix C.

TEST EQUIPMENT

Compressor Test Facility

A schematic of the compressor test facility is shown in figure 2. The compressor is driven by a single-stage turbine, powered by exhaust gases from a J75 slave engine, with compressor speed controlled by means of the engine throttle. Air enters the compressor through a 103-ft combined inlet duct, plenum, and belimouth inlet, and is exhausted through an exit diffuser to the atmosphere. The inlet duct contains a flow measuring orifice designed and installed in accordance with ASME standards. The area contraction ratio from plenum to compressor inlet is approximately 10 to 1.

Compressor Test Rig

A schematic of the compressor test rig is shown in figure 3. The flowpath dimensions are shown in figure 4. The hub/tip ratio at the rotor inlet is 0.798. The test section has a constant hub diameter of 32.85 in., and the outer wall converges from a diameter of 41.15 in. at the rotor leading edge to 39.99 in. at the stator trailing edge. Rotor bearing loads are transmitted to the rig support through struts located in the inlet and exhaust case assemblies. The inlet struts are sufficiently far upstream so that their wakes are dissipated ahead of the rotor. The stage design specifications of zero rotor prewhirl and axial discharge flow eliminated the need for inlet and exit guide vanes. Flowrate and/or backpressure were varied with a set of motor driven throttle vanes located in the exhaust case.

Distortion Screens

Twenty-mesh, 0.020-in. diameter wire was used for the distortion screens (i.e., tip radial, hub radial and circumferential). The tip and hub radial distortion screens covered 35 and 40% of the inlet annulus area respectively, and the circumferential screen covered a 90 deg sector of the inlet annulus area. The distortion screens were mounted on a 1.0-in. mesh 0.125-in. diameter wire support screen located approximately one rotor radius upstream of the rotor leading edge. The support screen, which spanned the entire annulus, was installed for all the Stage D tests.

Table I. Rotor D Blade Element Design

VELOCITY DIAGRAM DATA

Equivalent Rotor Speed = 4210 rpm

Equivalent Weight Flow = 110 lb/sec

Percent Span From Tip

	Leading Edge	Trailing Edge	V'te (ft/sec)	V _{zle} (ft/sec)	V'ele (ft/sec)	β'le (deg)	U _{le} (ft/sec)	V'te (ft/sec)	Vzte (ft/see)	V'ete (ft/sec)	β'te (deg)	U _{te} (ft/sec)	a (deg)
Hub	96.8	95.0	758,6	458.8	608.7	53.00	608.7	416, 8	371.3	193.5	27.95	610.5	1.52
	92.0	90.0	787.8	488.5	615.8	51.50	615,8	493,9	448.9	204.8	24.55	617.6	1.37
	86.9	85.0	800.7	500.5	623.8	51,10	623.8	535.6	491.5	215.9	23.72	624.7	0.89
	71.0	70.0	819,8	501.1	642.9	52.20	642.9	575.8	519.6	249.0	25.70	645.9	-1.17
	49.5	50.0	844.3	499.9	680.6	53.60	680.6	603.1	525.8	293.7	29.35	674.3	-4.21
	28.1	30.0	869.4	496.5	713.2	55.00	713.2	622.8	521.1	339.8	32.95	702.6	-7.16
	12.0	15.0	877.9	473.4	737.8	57,10	737.8	596.0	464.2	370.0	38.35	723.9	-9.37
	7.1	10.0	861.4	428.7	745.3	59.80	745.3	553.0	400.9	379.7	43.48	730.9	-9.64
Tip	3.0	5.0	837.2	375.1	751,5	64,10	751.5	483.5	270.0	388.9	53.00	738.0	-9.07

Note: $\beta_{le} = 0$ and is constant with radius.

DESIGN PERFORMANCE DATA

Rotor Pressure Ratio: 1,282

Adiabatic Efficiency: 89,9%

		nt Span n Tip										
	Leading Edge	Trailing Edge	M' le	i _m (deg)	D	ਛਾ	Loss Parameter	δ° (deg)	Ple (psia)	Tle (°R)	P _{te} (psia)	T _{te} (°R)
Hub	96.8	95.0	0.697	0.57	0.604	0.236	0.0604	12,79	14,427	518.7	17.765	561.14
	92.0	90.0	0.719	Ü.58	0.530	0.162	0.0432	10.38	14,659	518.7	18.361	561, 15
	86.9	85.0	0.732	0.52	0.484	0.106	0.0288	9.08	14.694	518.7	18.735	561.14
	71.0	70.0	0.750	0.15	0.453	0.064	0.0177	7.05	14.699	518.7	19.000	561.34
	49.5	50.0	0.774	-0.36	0.436	0.046	0.0129	6.16	14.693	518.7	19.063	561,34
	28.1	30.0	0.796	-0.88	0.426	0.056	0.0158	5.44	14.701	518.7	19,010	561.07
	12.0	15.0	0.801	-1.41	0.461	0.123	0.0335	6.82	14.602	518,7	18,465	561,28
	7.1	10.0	0.783	-2.32	0.504	0.150	0.0382	10.45	14.308	518.7	17.915	561.14
Tip	3.0	5.0	0.757	-3.90	0.567	0.201	0.0428	17.12	13.820	518.7	17.130	561.38

GEOMETRY DATA

Airfoil: Simulated Double-Circular-Arc** Number of Blades: 70 Chord Length: 2,57 in,

		ent Span om Tip	_								
	Leading Edge	Trailing Edge	κ'le (deg)	κ' _{te} (deg)	φ (deg)	γ° (deg)	σ .	t/e	r _{le} (in.)	r _{te} (in.)	
Hub	96.8	95,0	52,42	15,14	37.27	33.78	1.725	0.0782	0,009	0.009	
	92.0	90.0	50,91	14.15	36.75	32.53	1.705	0.0763	0.009	0.009	
	86.9	85.0	50.57	14.63	35,94	32,60	1.684	0.0743	0.009	0.009	
	71.0	70.0	52.04	18,64	33.40	35,34	1,627	0.0681	0.008	0.008	
	49.5	50.0	53.96	23.19	30.77	38.58	1,553	0.0599	0.007	0.007	
	28.1	30.0	55.88	27.50	28,37	41.69	1.485	0.0515	0.006	0.006	
	12.0	15.0	58.51	31,53	26,98	45,02	1.439	0.0454	0.006	0.006	
	7.1	10.0	62,12	33,03	29.09	47.58	1.424	0.0433	0.006	0.006	
Тір	3.0	5.0	68.00	35.87	32, 12	51.93	1.412	0,0415	0,006	0,006	

^{&#}x27;Information included in this table is defined on planes tangent to the conic surfaces, which approximate design streamlines of revolution.

^{**}Mean camber line and suction and pressure surface lines of each blade element are lines with a constant rate of angle change with path distance on the conic surface, which approximates the design streamline of revolution.

Table II. Stator D Blade Element Design

VELOCITY DIAGRAM DATA

Equivalent Rotor Speed = 4210 rpm

Equivalent Weight Flow = 110 lb/sec

Percent	Span
From '	Γip

	Leading Edge	Trailing Edge	V _{le} (ft/sec)	$rac{ m V_{zle}}{ m (ft/see)}$	Vele (ft/sec)	$m{eta}_{ m le}$ (deg)	V _{te} (ft/sec)	V _{zte} (ft/sec)	V∌te (ft/sec)	β _{te} (deg)	(deg)
Hub	95.0	. 95.0	569,9	383.9	417.2	47.65	395, 1	395.1	0.0	0.0	-0.29
	90.0	90.0	616.8	456.9	412.8	41.90	472.2	472.2	0.0	0.0	-0.57
	85.0	85.0	645,3	501.1	407.9	39.20	514.3	514.3	0.0	0.0	-0,86
	70.0	70.0	659.8	526.2	396.8	37.00	543.9	543.9	0.0	0.0	-1.72
	50.0	50.0	655.9	533.7	380.5	35.50	554.2	554.2	0.0	0.0	-2.86
	30.0	30.0	642.5	529.8	362.9	34.40	547.8	547.8	0.0	0.0	-4.00
	15.0	15.0	595.2	471.9	354.3	36.50	486.2	486.2	0.0	0.0	-4.86
	10.0	10.0	538.1	407.2	349.0	40.40	417.2	417.2	0.0	0.0	-5.14
Tip	5,0	5.0	450.2	284.3	349.1	52.50	298.4	298.4	0.0	0.0	-5.43

DESIGN PERFORMANCE DATA

Stage Pressure Ratio: 1,265

Stage Adiabatic Efficiency: 84.8%

Percent	Span
From	Tin

		P								
	Leading Edge	Trailing Edge	M_{le}	¹ m (deg)	D	교	Loss Parameter	δ° (deg)	P _{te} (psia)	
Hub	95.0	95.0	0.5024	-2,51	0.540	0.0972	0.02216	8.83	17,419	
	90.0	90.0	0.5463	-1,48	0,462	0.0803	0.02027	11.31	18.117	
	85.0	85.0	0.5751	-1.08	0.423	0.0712	0.01902	11.31	18.472	
	70.0	70.0	0.5867	-1.02	0.389	0.0604	0.01714	10.97	18.748	
	50.0	50.0	0,5832	-1.18	0.369	0.0534	0.01610	11.01	18.864	
	30.0	30.0	0.5709	-1.43	0.364	0.0587	0.01866	11.66	18,762	
	15,0	15.0	0.5262	-2.15	0.418	0.0995	0.03165	12.44	18.153	
	10.0	10.0	0.4748	-3.11	0.488	0.1506	0.04575	12.68	17.534	
Tip	5.0	5.0	0.3958	-6.64	0.630	0.1634	0.04282	4.85	16,738	

GEOMETRY DATA

Airfoil: Simulated Double-Circular-\re**

Number of Vancs: 66

Chord Length: 2.35 in.

Percent	Span
From	Tip

From Tip										
	Lending Edge	Trailing Edge	K (deg)	K _{te} (deg)	φ (deg)	γ° (deg)	σ	t/c	rle	r _{te} (in.)
Hub	95.0	95.0	50,16	- 8,83	59.00	20,66	1,484	0.09	0.010	0.010
	90.0	90.0	43.38	-11.31	54.70	16,03	1.468	0.09	0.010	0.010
	85.0	85.0	40.28	-11.31	51,60	14,48	1,453	0.09	0.010	0.010
	70.0	70.0	38,02	-10.97	49.00	13,52	1.407	0.09	0.010	0.010
	50.0	50.0	36,68	-11.01	47,70	12,83	1,350	0.09	0.010	0.010
	30.0	30.0	35,83	-11.66	47.50	12,08	1,298	0.09	0.010	0.010
	15.0	15.0	38.65	-12.44	51.10	13, 10	1,262	0.09	0.010	0.010
	10.0	10.0	43.11	-12,68	55.80	15.21	1,250	0.09	0.023	0.010
Tip	5.0	5.0	59.14	- 4.85	64.00	27, 14	1,238	0.09	0.040	0.014

biformation included in this table is defined on planes tangent to the conic surfaces, which approximate design streamlines of revolution.

^{**}Mean camber line and suction and pressure surface lines of each blade element are lines with a constant rate of angle change with path distance on the conic surface, which approximates the design streamline of revolution.

Instrumentation

Instrumentation was provided to obtain overall and blade element performance data for each blade or vane row. The locations of axial instrumentation stations are indicated in figure 4. Axial and circumferential locations of the instrumentation are shown in figure 5. Except for the omission of one rotor inlet total pressure probe during uniform inlet and radial distortion tests, dual instrumentation was provided at each axial station. The dual instrumentation provided (1) a redundant set of measurements during uniform and radially distorted inlet flow testing, and (2) measurements within and outside of the distorted region during the circumferential distortion testing.

Airflow was measured with an ASME standard thin-plate orifice located in the compressor facility inlet duct. Compressor rotor speed was measured with an electromagnetic sensor mounted adjacent to a 60-tooth gear on the rotor shaft. Gear tooth passing frequency was displayed as rpm on a digital counter. Rotor rpm was also recorded on magnetic tape. Inlet total temperature was measured in the inlet plenum by means of six half-shielded total temperature probes; inlet total pressure was measured in the plenum by means of five Kiel total pressure probes. Six equally spaced static pressure orifices were located on both the inner and outer walls at instrumentation Station 0.

Radial distributions of static pressure at the rotor inlet and exit and at the stator exit were measured by means of 8-deg wedge probes (figure 6). Four inner wall and four outer wall static pressure orifices, approximately equally spaced, were located at each of these stations. The rotor exit (i.e., stator inlet) instrumentation station also had two inner wall and three outer wall orifices installed across a vane gap to measure the static pressure variation across the gap. Likewise, the stator exit instrumentation station had four inner wall and four outer wall orifices installed across a vane gap to measure the gap-wise static pressure gradient on each wall. Eleven static pressure orifices were located over the rotor blade tips on the outer wall, between -26% and 107% rotor axial chord, to measure the rotor tip static pressures. Stator surface static pressure distributions at 10% and 90% span were measured with eight suction surface and three pressure surface orifices situated from approximately 15 to 85% chord at both span locations. The three pressure surface orifices at each percent span were installed on the same airfoil and a different stator vane was used for each group of eight suction surface pressure orifices, i.e., a total of three stators. The three stators were positioned in the stator assembly such that at least one uninstrumented vane separated those with static pressure orifices. The circumferential location of each instrumented airfoil and the location of the pressure orifices in terms of percent chord are shown in figure 7.

Twenty-deg wedge probes (figure 8) were used to measure the radial distributions of total pressure and flow angle at the rotor inlet and exit, and flow angle at the stator exit. Stator exit total pressure and temperature across a stator gap were measured at each of two circumferential locations by means of circumferentially traversed radial rakes with elements at nine radial positions (figure 9). The elements of each radial rake were designed to measure both total pressure and temperature. A fixed radial rake with five Kiel total pressure sensors was also installed downstream of the stator for use with the wall static measurements to calculate the freestream Mach number. This Mach number was used to correct the total temperature and the 8-deg wedge static pressure measurements.

As previously stated, dual instrumentation was provided at each axial measuring station to provide measurements within and outside of the distorted regions during the circumferential distortion testing. The dual instrumentation also reduced the number of circumferential distortion screen locations required to obtain a uniform spacing of flow distribution data relative to a reference screen location. Six screen locations resulted in the circumferential distributions (relative to a reference screen location) of data shown in figures 10a through 10c for stations 1, 2, and 2A, respectively.

Steady-state pressure data were measured with a multichannel pressure transducer scanning system that includes automatic data recording on computer cards. Steady-state temperature measurements were also automatically recorded on computer cards by a multichannel scanning system in conjunction with a temperature reference oven and a digital voltmeter. Traverse pressure and temperature data and transient pressure data were recorded on magnetic tape at up to 600 samples per minute per channel.

One static pressure orifice located in the plenum, two of the outer wall static pressure orifices at Station 0, and a total pressure probe with sensors at 10, 50, and 90% spans at the rotor exit were close-coupled to transducers for transient recording during operation into and out of stall. High-response pressure transducers mounted as total pressure probes at 10, 50, and 90% span from the tip behind the rotor (figure 11) were used to measure high-frequency total pressure oscillations and to indicate the initiation of rotating stall. The high-response transducer output was recorded on magnetic tape and correlated in time with the transient recording of the plenum and Station 0 statics and the stage exit total pressures.

Five rotor blades were instrumented with strain gages to provide vibratory stress data. The gage outputs were displayed on oscilloscopes and visually monitored during tests. Gage locations were determined by bench vibration tests with the aid of stresscoat and the selected locations were verified by a fatigue test.

PROCEDURES

Test Procedures

Shakedown Tests

A shakedown test was performed to check out the rig and blade vibration levels, blade stress levels, instrumentation, and data reduction programs. Overall and blade element performance data were obtained for two operating points with uniform inlet flow at 100% design equivalent rotor speed. One stall transient was performed during this test.

Performance Tests

Overall performance, blade element performance, flow distribution and stall transient data were obtained during the uniform inlet flow tests at 50, 70, 90, 100, and 110% of design equivalent rotor speed. Five data points (defined as a combination of flow and speed) were recorded at each speed to define stage performance between maximum obtainable flow and near stall. The near-stall

point was determined on the basis of flow and rotor exit pressure. Overall performance, blade element performance and flow distribution data were obtained at three flow conditions, including maximum and near-stall flow, at 70, 90, and 100% of design equivalent rotor speed for the hub and tip radial inlet flow distortion tests. For circumferential distortion of the inlet flow, overall performance data were recorded for three data points at each of 70, 90, and 100% of design equivalent rotor speed. Flow distribution data were also obtained with circumferential distortion of the inlet flow for two of the above data points at design equivalent rotor speed and one data point at 90% design equivalent rotor speed. To obtain an approximately uniform spacing of flow distribution data around the circumference of the compressor, data were recorded for six screen locations for each of the three data points. The resulting circumferential locations of the instrumentation relative to a reference screen locations are shown in figure 10.

At each data point, traverse surveys were followed by the recording of fixed pressure and temperature instrumentation data. Blade stresses were monitored during steady-state and stall transient operation at all rotor speeds.

Transient measurements of bellmouth static pressure, rotor speed, and rotor exit total pressure were recorded ten times per second to define stall characteristics as the stage was operated into and out of stall. The output from a high-response total pressure probe (10, 50, and 90% spans) at the rotor exit was also recorded as the stage was operated into and out of stall and correlated in time with the other transient measurements.

Data Reduction Procedures

Data reduction was accomplished in two steps. The first step involved the use of two computer programs (1) to convert millivolt readings to appropriate engineering units, and (2) to provide a tabulated and plotted array of pressures, temperature, and air angle data at each station. Conversion of data to absolute values, appropriate Mach number corrections, and adjustment of pressures and temperature to equivalent NASA standard day conditions were performed in the second computer program.

The second step in the data reduction procedure involved a computer program to calculate overall and blade element performance variables for the rotor and stator. The array of data provided in step one above was analyzed for the selection of radial distributions of pressures, temperature, and air angle at each axial station for input into the computer program.

Overall Performance

Total pressure ratios and adiabatic efficiencies were calculated for the rotor and the rotor-stator (stage). The rotor and stator exit total pressures and total temperatures were weighted according to local mass flow to obtain average values. The mass-averaged stator exit total temperatures were used for both the rotor and stage efficiency calculations.

The stator wake total pressures and total temperatures at each radial measuring station were mass-averaged using the local total pressure in the wake, the local total temperature in the wake, and the 8-deg wedge probe static pressure.

Mach number was determined from the local total and static pressure measurements. The local mass flow was then obtained from the relationship

$$\overline{m} = \frac{W\sqrt{T}}{PA} = \frac{\sqrt{\gamma g_c}}{R} \quad M \quad \left[1 + \frac{\gamma - 1}{2} M^2\right]^{\frac{1 + \gamma}{2(1 - \gamma)}}$$

where A is the flow area associated with each radial measurement increment.

For the circumferential distortion data, the mass flow averaged values of total pressure and total temperature measured at one circumferential location within and one circumferential location outside of the distorted flow region were weighted according to the circumferential extent of distorted and undistorted flow to obtain the actual values used to calculate the pressure ratio and efficiency. It was assumed that the relative extents of distorted and undistorted flow remained the same through each blade row.

Blade Element Performance and Flow Distribution Data

Blade element performance and flow distribution data are presented for each blade row for uniform and radially distorted inlet flow. Performance calculations were made along design streamlines that pass through 5, 10, 15, 30, 50, 70, 85, 90, and 95% span at instrumentation Station 2. The calculations were performed at the instrumentation stations and at the rotor and stator leading and trailing edges. The pressures, temperatures, and air angles at the blade row leading and trailing edges were obtained by translating the measured values from the instrumentation stations assuming conservation of angular momentum, conservation of energy, continuity, and that the actual streamlines do not deviate substantially from design streamlines for any test point. A description of the translation method is presented in Reference 3. For circumferentially distorted inlet flow, flow distribution data (i.e., total pressure, total temperature, flow angle, velocity, Mach number and turning) is presented for the three data points with six screen positions. These flow distribution data are at the instrumentation stations and not translated to the blade row leading and trailing edges.

Stall Transient Data

Bellmouth static pressure at incipient stall was determined from plots similar to the one shown in figure 12 and the corresponding weight flow was determined from the correlation of bellmouth static pressure and orifice weight flow shown in figure 13. The steady-state pressure ratio data were extrapolated to the stall flow using the shape of the transient data curve as a guide line. Incipient stall points were determined in this manner for each rotor speed.

PRESENTATION OF DATA

Uniform Inlet

Overall Performance

Overall performance data are presented in terms of total pressure ratio and adiabatic efficiency as functions of equivalent weight flow $(W\sqrt{\theta}/\delta)$ and equivalent rotor speed $(N/\sqrt{\theta})$ for the rotor in figure 14 and the rotor-stator (stage)

in figure 15. The design total pressure ratio and adiabatic efficiency for the rotor were 1.28 and 89.9%, respectively, at a design flow of 110.0 lb/sec. The corresponding design values for the stage were 1.26 and 84.8%. The design point is shown on each figure for comparison with the performance results. The solid symbol on the stall line in figures 14 and 15 is the stall point determined from the transient data. Pressure ratio, adiabatic efficiency and polytropic efficiency for the rotor and stage are also tabulated for the steady-state data points in table A-1 of Appendix A.

Based on a curve faired through the data points, the rotor achieved an adiabatic efficiency of 88.9% and a total pressure ratio of 1.28 at design equivalent rotor speed and flow. At the same flow and rotor speed the stage achieved an adiabatic efficiency of 84.8% and a total pressure ratio of 1.26. Peak efficiencies of 90.1% and 86.1% for the rotor and stage, respectively, were reached at design equivalent rotor speed and an equivalent flow of 103 lb/sec (i.e., 96% of design).

Blade Element Performance and Flow Distribution Data

As discussed on page 9, the blade element performance and flow distribution data were calculated for the instrumentation stations and for the rotor and stator leading and trailing edges. Table A-2 of Appendix A presents the data at the instrumentation stations at the near design point operating condition and is included only to illustrate the small differences between values calculated from the data at the instrumentation stations and the values calculated from the data that have been translated to the rotor and stator leading edges. Because of the small differences between translated and untranslated values, only the translated values are given in table A-3 of Appendix A for the remaining compressor test points. The plotted results discussed for the rotor and stator in the following paragraphs are based on the translated data.

Rotor Blade Element Performance

Rotor diffusion factor, deviation angle, and loss coefficient are shown as functions of incidence angle in figures 16a through 16i. At the design incidence angle and rotor speed, total pressure losses were less than or equal to the design values from 10 to 95% span from the tip and greater than the design value only at 5% span. Deviation angles were greater than the design values between 30 and 90% span from the tip and were equal to or less than the design values at 5, 10, 15, and 95% span. The diffusion factor at design incidence angle and rotor speed was greater than the design value at 5% span from the tip, approximately equal to the design values from 10 to 90% span, and less than the design value at 95% span.

Loss parameter versus diffusion factor is presented in figures 17a through 17e for 10, 30, 50, 70, and 90% span, respectively. The design curve representing a correlation of the minimum loss data from Reference 3, References 7 through 13, and unpublished Pratt & Whitney Aircraft in-house data is shown in these figures for comparison with the performance data. Although the data from References 7 through 13 are for Series 65 blade sections, the data presented in Reference 6 indicates that a single correlation of loss parameter vs diffusion factor can be used for Series 65 and double-circular-arc blade sections. The range of data in the Reference 6 correlation and the two-dimensional cascade data from figure 149 of Reference 6 are also shown at 10, 50, and 90% span in

figures 17a, 17c, and 17e, respectively, for comparison with the selected design loss curves. At design equivalent rotor speed, the loss parameter values that correspond to the minimum loss coefficient at 10, 30, 50, 70, and 90% span (figures 16b, 16d, 16e, 16f, and 16h, respectively) are on or below the design curve.

Axial gradients of rotor tip static pressure ratio (p_L/p at -7.3% axial chord) are shown in figure 18 for each flowrate at design equivalent rotor speed. This figure indicates that the rotor tip loading shifted toward the leading edge of the blade as the compressor was throttled toward stall flow.

Stator Blade Element Performance

Stator diffusion factor, deviation angle, and loss coefficient are presented as functions of incidence angle in figures 19a through 19i. For design incidence angle, the stator losses were less than or equal to design at 5, 10, 30, 50, 70 and 95% span from the tip and greater than design at 15, 85, and 90% span. Deviation angles, at design incidence, were from 2 to 5 deg greater than the design values across the entire span of the vane. Diffusion factors, at design incidence angle, were less than the design value at 5, 10, 15, 30, and 95% span from the tip, approximately equal to the design value at 50, 70, and 90% span, and greater than the design value only at 85% span.

Loss parameter versus diffusion factor is shown in figures 20a through 20e for 10, 30, 50, 70, and 90% span, respectively. The design curve, representing a correlation of the minimum loss data derived from the same references discussed in the rotor blade element performance section, is shown on each figure. The design point, the range of stator data from Reference 6, and the two-dimensional cascade data from Reference 6 are also included in the figures for comparison with Stator D performance data. For design equivalent rotor speed, the loss parameter values corresponding to the minimum measured loss coefficients were below the design curve at 10 and 30% span from the tip, approximately equal to the design curve value at 50 and 70% span, and greater than the design curve value at 90% span.

The stator static pressure coefficient distributions at 10 and 90% span from the tip are shown in figures 21a through 21e for design equivalent rotor speed. Static pressure coefficient distributions for all uniform inlet data points are tabulated in Appendix B. Vane suction surface instrumentation at 90% span was inoperative at 45, 55, 65, 75, and 85% chord, preventing calculation of static pressure coefficients at these locations.

The wall static pressure data were examined to determine if circumferential gradients with respect to the stator vanes were significant. In general, the variations of static pressure at different circumferential locations (solid symbols in figure 22), at approximately the same location relative to the stator vane, are as large as any variations that may be noted within one stator vane pitch. It was therefore concluded that no significant pitch variation was present in these data. Representative curves for two flow conditions at design equivalent rotor speed are presented as figures 22a and 22b.

Hub and Tip Radial Inlet Flow Distortion

Overall performance, blade element performance and flow distribution data were obtained with hub radial and tip radial distortion of the inlet flow. The screens used to produce the distortion are described on page 3. At a flow of approximately 115 lb/sec (i.e., 105% design equivalent flow), the hub and tip radial distortion screens produced 15.6 and 17.2% total pressure distortion, i.e., $(P_{max}-P_{min})/P_{max}$, over the inner 47 and outer 38% of the compressor annulus area, respectively. Rotor inlet total pressure profiles are presented in figure 23.

Overall Performance

Overall performance data obtained with hub radial distortion of the inlet flow are presented in terms of pressure ratio and adiabatic efficiency as functions of equivalent weight flow and equivalent rotor speed for the rotor in figure 24 and the stage in figure 25. Similarly presented in figures 26 and 27, is the overall performance obtained with a tip radial distortion of the inlet flow. Uniform inlet flow data and the rotor and stage design point are presented in these figures for comparison with the radially distorted inlet flow data. The stall line shown is determined from stall transient data. Pressure ratio, adiabatic efficiency, and polytropic efficiency for the rotor and stage are also tabulated for the steady-state data points with radial distortion in table A-4 of Appendix A.

With hub radial distortion of the inlet flow, rotor pressure ratio and efficiency at 100% design equivalent rotor speed and 110 lb/sec flow were 1.25 and 89%, compared with 1.28 and 88.9% for uniform inlet flow. Similarly, stage pressure ratio and efficiency were 1.24 and 84.5% as compared with 1.26 and 84.8% with uniform inlet flow. With the addition of hub radial distortion at 90 and 100% design equivalent rotor speed, there were 2.0% and 2.1% reductions, respectively, in stage surge pressure ratio and at 70% design rotor speed the loss in surge pressure ratio was only 1.1%. Therefore, Stage D was not appreciably affected by hub radial distortion.

With tip radial distortion of the inlet flow, rotor pressure ratio at 100% design equivalent rotor speed and 110 lb/sec equivalent weight flow, was 1.25 compared with 1.28 for the uniform inlet flow. Rotor efficiency under the same conditions was 87.5%, compared with 88.9% for uniform inlet flow. The corresponding stage pressure ratio and efficiency were 1.23 and 80.5% compared with 1.26 and 84.8% for the uniform inlet. With the addition of tip radial distortion stage surge pressure ratio decreased by 4.1, 7.2, and 9.7% at 70, 90 and 100% design equivalent rotor speed, respectively, when compared with the uniform inlet test results. Consequently, Stage D was substantially affected by tip radial distortion.

Blade Element Performance and Flow Distribution Data

Blade element performance and flow distribution data with radial distortion were calculated for each of the nine design streamline locations and the results, based on data translated to the blade row leading and trailing edges, are presented in tables A-5 and A-6 of Appendix A.

Rotor and Stator Blade Element Performance

Diffusion factor, deviation angle and loss coefficient with hub radial and tip radial distortion of the inlet flow are presented as functions of incidence angle in figures 28a through 28i for the rotor and in figures 29a through 29i for the stator. Comparison of the data shown in figures 28 and 29 with the uniform inlet flow data shown in figures 16 and 19 indicates that the rotor and stator deviation angle and loss coefficient distributions with radial distortion are generally equivalent to or are a normal extension of the values obtained with uniform inlet flow. However, comparison of diffusion factor distributions indicates a different level and rate of change of diffusion factor with incidence angle for each inlet flow condition. Diffusion factor is the only one of the three variables ($\overline{\omega}$, δ° or D) that would be strongly influenced by not properly accounting for radial flow shifts through the blade row. As discussed on page 9, the blade element performance calculations were made along design and not actual streamlines. One might expect larger differences between the actual and design streamlines with radial distortion than with uniform inlet flow. One might also expect differences in axial velocity ratio along the actual streamlines with and without distortion. Therefore, the changes in diffusion factor vs incidence curves may be attributed to both radial flow shifts and changes in axial velocity along a streamline.

Flow Distribution Data

Radial distributions of total and static pressure, total temperature, air angle, and axial velocity for the rotor inlet, stator inlet and stator exit are presented for hub and tip radial distortion of the inlet flow in figures 30a through 32c and 33a through 35c, respectively. The values for the nine design streamline locations are also presented in tables A-5 and A-6 of Appendix A.

The similarity of the stage inlet and exit total pressure and axial velocity profiles shown in figures 30a and 33a for hub and tip distortion, respectively, at design rotor speed and approximately 115 lb/sec (i.e., 105% design flow) indicates very little attenuation of either distortion pattern. Generally, this result is typical of the results obtained at other rotor speeds and flows.

Circumferential Distortion

Rotor and stage overall performance were obtained with circumferential distortion of the inlet flow. The screen used to produce the distortion is described on page 3. At a flow of approximately 116 lb/sec (i.e., 105% design equivalent flow), the screen produced 13.75% total pressure distortion, i.e., $(P_{1 \text{ max}} - P_{1 \text{ min}})/P_{1 \text{ max}}$, over a 90 deg sector of the compressor flow annulus. A typical rotor inlet total pressure distribution is presented in figure 36. The profile at approximately 105% design equivalent flow is not shown because at that flow pressure data were recorded at only two circumferential locations.

Overall Performance

The rotor and stage overall performance achieved with circumferential distortion of the inlet flow is compared with uniform inlet performance in figures 37 and 38, respectively. The half-solid symbols of figures 37 and 38 indicate the data points for which both overall performance and flow distribution data were recorded. Pressure ratio, adiabatic efficiency, and polytropic efficiency for the

rotor and stage are also presented in table A-7 of Appendix A for the steady-state data points with circumferential distortion.

The rotor and stage pressure ratios at design equivalent rotor speed and flow were 1.27 and 1.25 with circumferential distortion of the inlet flow, compared with 1.28 and 1.26 for uniform inlet flow. Surge pressure ratio for the stage decreased by 2.0, 2.4, and 4.6% with circumferentially distorted inlet flow when compared with uniform inlet flow results at 70, 90, and 100% design equivalent rotor speed, respectively.

The overall performance shown on figures 37 and 38 was calculated from pressures and temperatures measured at one circumferential location within and one circumferential location outside the distorted region. The pressures and temperatures were weighted according to the circumferential extent of the distorted and undistorted flow to obtain the average values for use in calculating the pressure ratio and efficiency. (See Appendix C.) In an effort to verify the high efficiencies shown on figures 37 and 38 and table A-7 with circumferential inlet flow distortion, the overall performance was recalculated for the three data points for which data were recorded at six screen locations using a larger sample of the data within and outside of the distorted area. Average pressures and temperatures were obtained by area weighing the spanwise mass-average values from each of twelve circumferential locations around the flow field, thus providing a better average of the rotor and stage exit pressures and temperature than was used to calculate the pressure ratios and efficiencies shown in figures 37 and 38 and in table A-7. The overall performance calculated from the data at twelve circumferential locations is compared with the performance calculated from two circumferential locations in figures 39 and 40 for the rotor and stage, respectively. As shown on figures 39 and 40, the larger data sample had little effect on pressure ratio but resulted in slightly different calculated levels of efficiency at the nearsurge flow points at 90 and 100% design equivalent rotor speed and a reduction in efficiency of approximately 4 percentage points at the midpoint on the design equivalent rotor speed operating characteristic. This result combined with the high efficiencies (i.e., over 100% for the rotor at 70% design equivalent rotor speed) shown on figures 37 and 38 suggest that the efficiencies are not correct and that additional data samples should be obtained in future test programs to obtain a more accurate assessment of the rotor and stage efficiencies with circumferential distortion of the inlet flow. Although the effects of distortion on efficiency cannot be accurately evaluated, the relatively low losses in surge pressure ratio indicate that Stage D was only moderately affected by circumferential distortion.

Flow Distribution Data

Table A-8 of Appendix A presents flow distribution data at the instrumentation stations for circumferential increments of 30-deg around the compressor annulus. Circumferential distributions of total pressure, static pressure, total temperature, air angle and axial velocity for each instrumentation station at the nine design streamline locations are shown in figures 41 through 43. Figures 41 and 42 present the values for the two data points at design equivalent rotor speed and figure 43 presents the data for the one point at 90% design equivalent rotor speed. The measured variables (pressure, temperature and air angle) are plotted at the circumferential locations of the measuring instrument relative to the distortion screen, and the axial velocity is plotted at circumferential locations corresponding to the locations of the 20-deg wedge probes relative to the distortion screen. A comparison of the circumferential distributions of total pressure

and axial velocity at the rotor inlet with the corresponding values at the stage exit indicates very little attenuation of the inlet distortion by either the hub or tip sections of the compressor. This result is consistent with the results obtained with radial distortion of the inlet flow.

SUMMARY REMARKS

Stage D, composed of Rotor D and Stator D, was tested with uniform inlet flow and with hub radial, tip radial, and 90 deg one-per-revolution circumferential distortion of the inlet flow. The results of these tests provide performance data for: (1) comparison with data obtained from subsequent tests of a stage comprised of tandem-airfoil blading, (2) evaluating the effectiveness of accounting for the inlet boundary layer, axial velocity ratio and secondary flows in compressor design, and (3) evaluating the effects of inlet flow distortion on the stage performance.

With uniform inlet flow at design equivalent rotor speed and flow, the rotor achieved an adiabatic efficiency of 88.9% at a pressure ratio of 1.28 compared with respective design values of 89.9% and 1.28. At the same flow and rotor speed, the stage achieved its design adiabatic efficiency of 84.8% at a pressure ratio of 1.26. At design equivalent rotor speed, maximum rotor and stage adiabatic efficiencies of 90.1% and 86.1%, respectively, were reached at approximately 96% design equivalent flow.

With tip radial distortion of the inlet flow, significant decreases in stage surge pressure ratio occurred, i.e., at design equivalent rotor speed, the surge pressure ratio decreased by 9.7%. The surge pressure ratio at design speed with hub radial and circumferential distortion decreased 2.0 and 4.6%, respectively, from the uniform inlet test results. Peak adiabatic efficiency for the stage was essentially unchanged with the addition of hub radial distortion. Tip radial distortion, however, produced a slight increase in peak adiabatic efficiency at 70 and 90% design speed and a significant decrease of 4.5 percentage points at 100% design speed. The effects of circumferential distortion on adiabatic efficiency could not be accurately determined. For both radial and circumferential distortion of the inlet flow, the hub and tip regions of the compressor produced very little attenuation of the inlet distortion.

STATOR D

Figure 1. Stage D Airfoils

ROTOR D

Figure 2. Compressor Research Facility

FD 75491

Figure 3. Single-Stage Compressor Rig

FD 75492

FLOWPATH LOCATION	LOCATION DESCRIPTION	INNER DIAMETER, in.	OUTER DIAMETER, in.	AXIAL DISTANCE FROM REFERENCE PLANE, in.
Α	REFERENCE PLANE	32.850	41.790	0.0
В	DISTORTION SCREEN	32.850	41.790	1.500
С	SUPPORT STRUT LEADING EDGE	32.850	41.744	2.440
D	SUPPORT STRUT TRAILING EDGE	32.850	41.444	6.265
E	INSTRUMENTATION STATION 0	32.850	41.340	10.248
F	INSTRUMENTATION STATION 1	32.850	41.226	17.188
G	ROTOR INLET STATION	32.850	41.145	18.061
Н	ROTOR D STACKING LINE	32.850	40.860	19.188
ı	ROTOR EXIT STATION	32.850	40.562	20.315
J	INSTRUMENTATION STATION 2	32.850	40.520	21.368
K	STATOR INLET STATION	32.850	40.450	22.163
L	STATOR D STACKING LINE	32.850	40.220	23.293
M	STATOR EXIT STATION	32.850	39.990	24.468
N	INSTRUMENTATION STATION 2A	32.850	39.990	25.418

NOTE: ALL DIMENSIONS ARE IN INCHES.

Figure 4. Flowpath Dimensions

NOTE: ALL DIMENSIONS ARE IN DEGREES

Figure 5. Instrumentation Layout

This page is reproduced at the back of the report by a different reproduction method to provide better detail.

NOTE: ALL DIMENSIONS ARE IN INCHES

STATOR GEOMETRY IS NOT TO SCALE

PERCENT CHORD LOCATION

10% SPAN FROM TIP		90% SPAN FROM TIP	
SUCTION SURFACE	PRESSURE SURFACE	SUCTION SURFACE	PRESSURE SURFACE
(354° 36')	(338° 12')	(5° 30')	(338° 12')
15	15	15	15
25	50	25	50
35	85	35	85
45		45	
55		55	
65		65	
75		75	
85		85	

NOTE: NUMBERS IN PARENTHESES INDICATE THE CIRCUMFERENTIAL POSITION OF THE INSTRUMENTED AIRFOIL IN THE STATOR ASSEMBLY. ZERO DEGREES IS TOP CENTER; THE ANGLE INCREASES CLOCKWISE LOOKING AFT.

Figure 7. Stator D Static Pressure
Orifice Locations

FD 75493

0.375 DIA _ 0.562 0.103 0.031 HYPO TUBE -0.058 0.350 0.074 0.060 0.045 0.050 TOTAL PRESSURE ORIFICE STATIC PRESSURE ORIFICE --THERMOCOUPLE

NOTE: ALL DIMENSIONS ARE IN INCHES

FRONT VIEW WITH COVER REMOVED

REAR VIEW

Figure 9. Total Pressure/Total Temperature Circumferential Traverse Unit

FD 47068

Figure 10a. Composition of Station 1 Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions

Figure 10b. Composition of Station 2 Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions

Figure 10c. Composition of Station 2A Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions

NOTE: ALL DIMENSIONS ARE IN INCHES

Figure 11. High-Response Probe

FD 58984B

Figure 12. Typical Stall Transient Data

FD 75494

Figure 13. Station 0 Equivalent Static Pressure vs Equivalent Weight Flow for Stage D Flowpath with Support Screen

Figure 14. Overall Performance of Rotor D; Uniform Inlet Flow

·DF 97693

Figure 15. Overall Performance of Stage D; Uniform Inlet Flow

Figure 16a. Rotor D Blade Element Performance; 5% Span from Tip; Uniform Inlet Flow

Figure 16b. Rotor D Blade Element Performance, DF 97696 10% Span from Tip; Uniform Inlet Flow

Figure 16c. Rotor D Blade Element Performance; DF 97697 15% Span from Tip; Uniform Inlet Flow

Figure 16d. Rotor D Blade Element Performance; DF 97698 30% Span from Tip; Uniform Inlet Flow

Figure 16e. Rotor D Blade Element Performance; DF 977699 50% Span; Uniform Inlet Flow

Figure 16f. Rotor D Blade Element Performance; DF 97700 70% Span from Tip; Uniform Inlet Flow

Figure 16g. Rotor D Blade Element Performance; DF 97701 85% Span from Tip; Uniform Inlet Flow

Figure 16h. Rotor D Blade Element Performance; DF 97702 90% Span from Tip; Uniform Inlet Flow

Figure 16i. Rotor D Blade Element Performance; DF 97703 95% Span from Tip; Uniform Inlet Flow

Figure 17a. Rotor D Loss Parameter vs Diffusion Factor; 10% Span from Tip; Uniform Inlet Flow

Figure 17b. Rotor D Loss Parameter vs Diffusion Factor; 30% Span from Tip; Uniform Inlet Flow

Figure 17c. Rotor D Loss Parameter vs Diffusion Factor; 50% Span; Uniform Inlet Flow

Figure 17d. Rotor D Loss Parameter vs Diffusion Factor; 70% Span from Tip; Uniform Inlet Flow

Figure 17e. Rotor D Loss Parameter vs Diffusion Factor; 90% Span from Tip; Uniform Inlet Flow

Figure 18. Rotor D Tip Static Pressure Ratio vs
Percent Axial Chord; 100% Design
Equivalent Rotor Speed; Uniform Inlet
Flow

Figure 19a. Stator D Blade Element Performance; DF 97710 5% Span from Tip; Uniform Inlet Flow

Figure 19b. Stator D Blade Element Performance; DF 97711 10% Span from Tip; Uniform Inlet Flow

Figure 19c. Stator D Blade Element Performance; DF 97712 15% Span from Tip; Uniform Inlet Flow

Figure 19d. Stator D Blade Element Performance; DF 30% Span from Tip; Uniform Inlet Flow

Figure 19e. Stator D Blade Element Performance; DF 97714 50% Span; Uniform Inlet Flow

Figure 19f. Stator D Blade Element Performance; 70% Span from Tip; Uniform Inlet Flow

Figure 19g. Stator D Blade Element Performance; D1 85% Span from Tip; Uniform Inlet Flow

Figure 19h. Stator D Blade Element Performance; 90% Span from Tip; Uniform Inlet Flow

Figure 19i. Stator D Blade Element Performance; DF 95% Span from Tip; Uniform Inlet Flow

Figure 20a. Stator D Loss Parameter vs Diffusion Factor; 10% Span from Tip; Uniform Inlet Flow

Figure 20b. Stator D Loss Parameter vs Diffusion Factor; 30% Span from Tip; Uniform Inlet Flow

Figure 20c. Stator D Loss Parameter vs Diffusion Factor; 50% Span; Uniform Inlet Flow

Figure 20d. Stator D Loss Parameter vs Diffusion Factor; 70% Span from Tip; Uniform Inlet Flow

Design Point

Figure 20e. Stator D Loss Parameter vs Diffusion Factor; 90% Span from Tip; Uniform Inlet. Flow

Figure 21a. Stator D Static Pressure Coefficient vs
Percent Chord; 100% Design Equivalent
Rotor Speed; Equivalent Weight Flow =
120.02 lb/sec; Uniform Inlet Flow

Figure 21b. Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 110.18 lb/sec; Uniform Inlet Flow

Figure 21c. Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 102.67 lb/sec; Uniform Inlet Flow

Figure 21d. Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 95.36 lb/sec; Uniform Inlet Flow

Figure 21e. Stator D Static Pressure Coefficient vs
Percent Chord; 100% Design Equivalent
Rotor Speed; Equivalent Weight Flow =
88.32 lb/sec; Uniform Inlet Flow

⊙ Inner Wall Static Pressure⊡ Outer Wall Static Pressure

Solid symbols denote data transposed from other circumferential locations. See figure 5.

Figure 22a. Wall Static Pressure Distributions
Upstream and Downstream of Stator D;
100% Design Equivalent Rotor Speed;
Equivalent Weight Flow = 110.18 lb/sec;
Uniform Inlet Flow

Figure 22b. Wall Static Pressure Distribution
Upstream and Downstream of Stator D;
100% Design Equivalent Rotor Speed;
Equivalent Weight Flow = 88.32 lb/sec;
Uniform Inlet Flow

HUB RADIAL DISTORTION 104.3% Design Equivalent Weight Flow (114.76 lb/sec)

TIP RADIAL DISTORTION
104.6% Design Equivalent Weight Flow (115.11 lb/sec)

Figure 23. Typical Rotor Inlet Total Pressure Profiles With Hub and Tip Radial Distortion; 100% Design Equivalent Rotor Speed

Figure 24. Overall Performance of Rotor D; Hub
Radial Distortion Compared With
Uniform Inlet Flow

Figure 25. Overall Performance of Stage D; Hub DF 97733
Radial Distortion Compared With
Uniform Inlet Flow

Figure 26. Overall Performance of Rotor D; Tip
Radial Distortion Compared With
Uniform Inlet Flow

Figure 27. Overall Performance of Stage D; Tip DF 97735
Radial Distortion Compared With
Uniform Inlet Flow

Figure 28a. Rotor D Blade Element Performance; 5% Span from Tip; Hub and Tip Radial Distortion

Figure 28b. Rotor D Blade Element Performance; 10% Span from Tip; Hub and Tip Radial Distortion

Figure 28c. Rotor D Blade Element Performance; 15% Span from Tip; Hub and Tip Radial Distortion

Figure 28d. Rotor D Blade Element Performance; 30% Span from Tip; Hub and Tip Radial Distortion

Figure 28e. Rotor D Blade Element Performance; DF 97740 50% Span; Hub and Tip Radial Distortion

Figure 28f. Rotor D Blade Element Performance; 70% Span from Tip; Hub and Tip Radial Distortion

Figure 28g. Rotor D Blade Element Performance; 85% Span from Tip; Hub and Tip Radial Distortion

Figure 28h. Rotor D Blade Element Performance; 90% Span from Tip; Hub and Tip Radial Distortion

Figure 28i. Rotor D Blade Element Performance; 95% Span from Tip; Hub and Tip Radial Distortion

Figure 29a. Stator D Blade Element Performance; 5% Span from Tip; Hub and Tip Radial Distortion

Figure 29b. Stator D Blade Element Performance; 10% Span from Tip; Hub and Tip Radial Distortion

Figure 29c. Stator D Blade Element Performance; 15% Span from Tip; Hub and Tip Radial Distortion

Figure 29d. Stator D Blade Element Performance; 30% Span from Tip; Hub and Tip Radial Distortion

Figure 29e. Stator D Blade Element Performance; 50% Span; Hub and Tip Radial Distortion

Figure 29f. Stator D Blade Element Performance; DF: 70% Span from Tip; Hub and Tip Radial Distortion

Figure 29g. Stator D Blade Element Performance; 85% Span from Tip; Hub and Tip Radial Distortion

Figure 29h. Stator D Blade Element Performance; 90% Span from Tip; Hub and Tip Radial Distortion

Figure 29i. Stator D Blade Element Performance; 95% Span from Tip; Hub and Tip Radial Distortion

Figure 30a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 114.76 lb/sec; Hub Radial Distortion

Figure 30b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 97.44 lb/sec; Hub Radial Distortion

Figure 30c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.40 lb/sec; Hub Radial Distortion

Figure 31a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit, 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 102.52 lb/sec; Hub Radial Distortion

Figure 31b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 88.60 lb/sec; Hub Radial Distortion

Figure 31c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 76.35 lb/sec; Hub Radial Distortion

Figure 32a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 82.96 lb/sec; Hub Radial Distortion

Figure 32b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 71.46 lb/sec; Hub Radial Distortion

Figure 32c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 59.11 lb/sec; Hub Radial Distortion

a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 115.11 lb/sec; Tip Radial Distortion

Figure 33b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 106.05 lb/sec; Tip Radial Distortion

Figure 33c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 99.09 lb/sec; Tip Radial Distortion

Figure 34a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 105.62 lb/sec; Tip Radial Distortion

Figure 34b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 97.85 lb/sec; Tip Radial Distortion

Figure 34c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.04 lb/sec; Tip Radial Distortion

Figure 35a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 85.36 lb/sec; Tip Radial Distortion

Figure 35b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 80.21 lb/sec; Tip Radial Distortion

Figure 35c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 72.74 lb/sec; Tip Radial Distortion

Figure 36. Typical Rotor Inlet Total Pressure Distribution With Circumferential Distortion; 100% Design Equivalent Rotor Speed; 92.4% Design Equivalent Flow (101.6 lb/sec); 50% Span

Figure 37. Overall Performance of Rotor D;
Circumferential Distortion Compared
With Uniform Inlet Flow

Half-solid symbols denote conditions at which flow distribution data were recorded Solid symbols denote stall points determined from transient stall data

Figure 38. Overall Performance of Stage D;
Circumferential Distortion Compared
With Uniform Inlet Flow

Figure 39. Overall Performance of Rotor D;
Circumferential Distortion Compared
With Uniform Inlet Flow

Figure 40. Overall Performance of Stage D;
Circumferential Distortion Compared
With Uniform Inlet Flow

Figure 41a. Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41b. Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41c. Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41d. Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41e. Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41f. Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41g. Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41h. Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41i. Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41j. Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41k. Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 411. Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41m. Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 42a. Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42b. Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42c. Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42d. Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42e. Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42f. Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42g. Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42h. Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42i. Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42j. Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42k. Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 421. Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42m. Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 43a. Rotor Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43b. Rotor Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43c. Rotor Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43d. Rotor Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43e. Stator Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43f. Stator Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43g. Stator Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43h. Stator Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43i. Stator Exit Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43j. Stator Exit Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43k. Stator Exit Total Temperature vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 431. Stator Exit Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43m. Stator Exit Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

APPENDIX A TABULATED OVERALL AND BLADE ELEMENT PERFORMANCE AND FLOW DISTRIBUTION DATA

Rotor D and Stage D overall performance with a uniform inlet, hub radial distortion, tip radial distortion, and circumferential distortion of the inlet flow is tabulated in tables A-1, A-4, and A-7, respectively. Rotor D and Stator D blade element performance and flow distribution data for uniform inlet, hub radial distortion of the inlet flow and tip radial distortion of the inlet flow is presented in tables A-3, A-5, and A-6, respectively. The flow distribution data with circumferential distortion of the inlet flow are given in table A-8 for circumferential increments of 30 deg around the compressor annulus. Table A-2 is presented to illustrate the small differences at the near-design point between values calculated from the data at the instrumentation stations and the values calculated from the data that have been translated to the blade row leading and trailing edges.

The blade element performance and flow distribution data with uniform inlet flow and radial distortion of the inlet flow are arranged in order of decreasing rotor speed and decreasing flow at each rotor speed. The flow distribution data with circumferential distortion of the inlet flow are given at the instrumentation station planes and are arranged for a given equivalent rotor speed flow combination in order of increasing circumferential position. The circumferential positions of the data at each instrumentation station is noted at the top of each data sheet. These positions were selected so that they would correspond as close as possible to the locations of the 20 deg wedge probes relative to the distortion screen and provide data at increments of 30 deg around the compressor annulus.

Preceding page blank

NOMENCLATURE USED FOR OVERALL PERFORMANCE TABULATION

Mass-Averaged Rotor Inlet Total Pressure	$\mathbf{\overline{P}_{1}}$
Mass-Averaged Stator Inlet Total Pressure	$\overline{\overline{P}}_2$
Mass-Averaged Stator Exit Total Pressure	$\overline{\mathtt{P}}_{\mathbf{2A}}$
Adiabatic Efficiency*	$\eta_{ m ad}$
Polytropic Efficiency*	$\eta_{_{ m D}}$

NOMENCLATURE USED FOR BLADE ELEMENT AND DISTORTION DATA TABULATION

Exit Diameter DIA Absolute Flow Angle BETA
Absolute Flow Angle BETA
Historiae I Iow High
Relative Flow Angle BETA (PR)
Absolute Velocity V
Axial Velocity VZ
Absolute Tangential Velocity V-THETA
Relative Tangential Velocity V-THETA PR
Rotor Speed U
Absolute Mach Number M
Relative Mach Number M (PR)
Relative Turning Angle TURN (PR)
Loss Coefficient ($\overline{\omega}$)**
Loss Parameter** LOSS PARA
Diffusion Factor** DFAC
Polytropic Efficiency** EFFP
Adiabatic Efficiency** EFF
Incidence** INCID
Deviation** DEVM
Total Pressure P
Total Temperature T
Stator Exit Average Freestream Total Pressure from Wake Rakes P2 FS
Loss Coefficient Based on P2FS ($\overline{\omega}_{fs}$) UUBAR FS
Loss Parameter Based on UUBAR FS LOSS PARA FS

^{*}Efficiencies calculated from mass-averaged values of total pressure and total temperature.

^{**}Denotes variables excluded from circumferential distortion data.

Where applicable the appropriate instrumentation station is noted.

Table A-1. Overall Performance - Stage D Uniform Inlet

Equivalent		ROTOR			STAGE	
Weight Flow, lb/sec	$\overline{P}_2/\overline{P}_1$	$\eta_{ m ad}$	$\eta_{ m p}$	$\overline{P}_{2A}/\overline{P}_{1}$	$\eta_{ m ad}$	η_{p}
	-	110% 1	Design Equiv	valent Rotor S	peed	
123.41	1. 2185	0.7293	0.7368	1. 1947	0.6539	0.6625
116.07	1.3400	0.8855	0.8901	1.3226	0.8436	0.8496
109.67	1.3540	0.8800	0.8850	1.3397	0.8470	0.8532
102.55	1.3637	0.8774	0.8827	1.3414	0.8279	0.8349
97. 1 8	1.3671	0.8378	0.8449	1.3477	0.7948	0.8033
		100% I	Design Equiv	valent Rotor S	speed	
120.02	1. 1958	0.7570	0.7631	1. 1742	0.6774	0.6846
110. 18	1.2782	0.8892	0.8929	1.2645	0.8481	0.8531
102.67	1.2830	0.9008	0.9043	1.2692	0.8595	0.8641
95. 36	1. 2928	0.8740	0.8785	1.2741	0.8222	0.8282
88.32	1. 3012	0.8545	0.8598	1.2784	0.7943	0.8013
		90% I	Design Equi	valent Rotor S	Speed	
113.67	1. 1697	0.8117	0.8159	1. 1566	0.7516	0.7567
103.01	1. 2170	0.8975	0.9004	1.2055	0.8532	-0.8562
91.28	1.2244	0.8745	0.8781	1.2154	0.8410	0.8454
85.21	1. 2294	0.8908	0.8940	1.2174	0.8278	0.8325
76.85	1.2 334	0.8310	0.8360	1.2190	0.782 3	0.7883
		70% I	Design Equiv	valent Rotor S	peed	
92.54	1. 1095	0.8597	0.8617	1. 1005	0.7909	0.7938
82, 65	1. 1238	0.8952	0.8969	1.1173	0.8490	0.8514
71.87	1. 1303	0.8675	0.8698	1. 1255	0.8358	0.8386
65.46	1. 1378	0.8619	0.8644	1.1312	0.8213	0.8244
58.62	1. 1391	0.8303	0.8334	1. 1287	0.7700	0.7739
		50% I	Design Equiv	valent Rotor S	peed	
66.42	1.0530	0.7785	0.7802	1.0496	0.7292	0.7310
59.41	1,0603	0.8370	0.8384	1.0579	0.8036	0.8052
51.12	1.0647	0.8367	0.8382	1.0618	0.7992	0.8009
46.51	1.0650	0.8178	0.8195	1.0632	0.7953	0.7971
40.70	1.0672	0.7818	0.7838	1.0636	0.7399	0.7422

Table A-2. Blade Element Performance
Stage D. Rotor D - Stator D
Calculations Using Untranslated Values
Percent Equivalent Rotor Speed = 100.56 Equivalent Rotor Speed = 4233.41 Equivalent Weight Flow = 110.18
Uniform Inlet

INLET	PCT SPAN	96.80	92.00	86.90	71.00	4 4 E.	24 30		_		
	DIA	33.118	33.520	33.947	35.279	49.50 37.080	26.10 38.872	12.00 40.221	7.10 40.631	3.00 40.975	PCT SPAN
STATION G	EETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	D.000	DIA Beta o
STATION I	BETA 1	0.000 437.82	0.000 437.82	0.000	0.000	0.000	0.000	0.000	U.000	0.000	BETA I
	νĭ	461.00	501.51	437.82 506.29	437.82 504.38	437.82 500.00	437.62 489.76	437.82 471.30	437.82	437.62	V G
	VZ O	437.82	437.82	437.82	437.61	437.79	437.75	437.72	446.99 437.71	402.62 437.70	V 1 V/ G
	VZ 1 V-THETA C	461.00	501.50	508.29	504.36	499.98	469.76	471.21	446.92	402.7E	VŽ 1
	V-THETA 1	0.00	0.00	0.00 6.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	Y-THETA Q
	мс	0.3983	0.3983	0.3983	0.3983	0.00 0.3983	0.00 0.3983	0.00 0.3983	0.00 0.3983	0.60	V-THETA I
	M 1	0.4201	0.4585	0.4650	0.4613	0.4571	0.4474	0.4299	0.4069	0.3963 0.3656	M O M 1
	TURN UUBAK	0.0 0.4554	0.0 0.2635	0.0 0.2471	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	DFAC	-0.65	-0.145	-0.161	0.3115 -0.152	0.3082 -0.142	0.3121	0.3509 -0.076	U_4494	0-6255	UULAH
	LFFP	0.2002	0.5573	0.5997	0.5269	0.5114	0.4603	0.3232	-0.021 0.0898	₽.CE0 -0.3403	DFAC EFFP
	INCIO	0.0001	0.0061	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	P G	-6.00b	-0.000 15.227	-0.000 15.227	-0.000 15.227	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	P 1	14.508	14.811	14.637	14.735	15.227 14.741	15.227 14.734	15.227 14.673	15.227 14.518	15.227	P U P 1
	T L	516.700	518.700	518.700	518.700	518.700	516.700	518.700	518.760	14.240 518.700	T 6
`	T 1	516.700	516.700	518.700	518.700	518.700	518.700	518.700	>18.700	518.70C	ŢĬ
ROTER D	PLT SPAN	94.94	90.00	84.99	70-00	50.00	36.00	14.96	9,99	A 115	OFT CRAM
CR4316 .	UIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40-138 801-04	PCT SPAN Lia
STATIEN 1 STATION 2	EETA 1 BETA 2	0.000 42.980	0.000	0.000	0.000	0.666	0.000	0.000	0.000	0.000	BETA 1
	bETA(PR) 1	52.999	40.450 50.994	39.440 50.972	37.700 52.261	36.380 53.872	35.550 55.706	57.500 57.616	♦C.8∠0	45.190	BETA 2
	BETA (PR) 2	25.633	26.741	27-405	29.119	31.237	34.469	38.489	59.227 41.557	61.980 47.461	BETAIPR) L BETA(PR) 2
	V 1 V 2	461.00	501-51	508.29	504.38	500.00	489.76	471.30	446.99	402.E2	V 1
	VZ 1	592.61 461.00	601.61 501.50	606.43 506.29	617.06 504.38	626.90 499.98	620.17	567,97	555.61	502.75	V 2
	V2 2	433.54	457.BU	466.34	488-23	504.48	489.70 503.87	471.21 465,45	446.92 419.55	402.76	V2 1
	V-THETA 1	6.00	0.00	0.00	0.60	0.00	0.00	0.00	0.01	354.24 0.60	VZ 2 V-THETA 1
	V-THETA 2 V(PF) 1	404.60 706.0	390.31 796.8	385.24	377.34	371.67	360.67	357.15	362.40	355.30	V-THEIA 2
	VIPRI 2	481.7	512.6	807.2 527.5	824-1 558.9	848.0 590.3	869.2 612.0	879.6 595.9	673.5 501.9	657.4	VIPE I
	ALHETA BKT	-611.7	-619.2	-627.1	-651.7	-684.9	-716.0	-743.0	-750.5	524.4 -756.9	V(PR) 2 Viheta Pri
	VTHE 1A PR2	-209.9 611.75	-230.7	-242.8	-272.0	-306.0	-345.9	-370.1	-371.9	-166.1	VTHETA PK2
	u 2	613.89	619.17 620.96	627.06 628.06	651.66 649.30	684.93 677.63	718.03 705.97	742.95 727.25	750.52	756.86	U 1
	H 1	0.4201	0.4585	0-4650	0.4613	0.4571	0.4474	0.4299	734.32 0.4069	741.42 0.3656	U ž M a
	N ∠ M(PR) 1	0.5233	0.5329	0.5383	0.5482	0.5569	0.5505	0.5199	6.4897	0.4407	H 2
	HIPR) 2	0.6981 0.4253	0.7285 G.4541	0.7385 0.4682	0.7536 0.4965	0.7753 0.5244	0.7939 0.5433	0.6025	v.7953	D. 77LZ	MIPE) 1
	TURN [PR]	27.106	24.254	23.567	23.143	22.652	21.290	0.5270 19.218	0.4952 17.775	0.46Li 14.629	MIPR) 2 TURNIPRE
	UUCAR LESS PARA	0.6962	0.1185	0.1083	0.0641	0.0492	0.0463	0.0960	0.1356	0.1576	UUBAR
	DFAC	0.0251	0-0310 0-5005	0.0285 0.4863	0.0172 0.4624	0.0135	0.0134	0.0261	0.0356	0.0376	LOSS PARA
	£FFP	0.8407	0.8327	0.8757	0.9326	0.4443 0.9532	0.434D 0.9591	0.4621 6.8977	0.5007 0.8615	0.5331 0.5089	GFAC £FFP
	tff	0.6352	0.8273	U.8716	0.9304	0.9515	0.9576	0.6941	0.6568	0.8025	£FF.
	19010 DEVM	0.573 10.664	0.084 12.582	0.397	0.226	-0.699	-0-184	-0.400	-2-966	-6.062	INCIU
	r 1	14.508	14.811	12.772 14.837	10.477 14.735	8.023 14.741	6.905 14.734	6.860 14.673	6.412 14.518	11.474 14.246	PI.
	P 2	10.455	16.569	16.642	16.818	19.036	19.067	18.706	16-435	17.927	P ž
	T 1 T 2	518.700 562.900	518.700 560.550	518.700	510.700	518.700	518.700	518.760	518.706	518.700	T 1
		2021700	300.330	558.810	559.050	560-020	560-100	560.950	561.460	562.65U	7 2
STATUR D	PCT SPAN	c.e									
31410. 0	Ula	95.00 33.207	90.00 33.564	85.00 33.921	70.06 34.992	50.00 36.420	30.00 37.848	15.00	10.00	5.00	PCT SPAN
STATION _	BETA 2	42.980	40.450	39.440	37.700	46.380	35.550	38.919 37.500	39.276 40.826	39.633 45.096	DIA Beta 2
STATION 24	BETA ZA	2.050	2.850	2.900	2.500	2.260	2.970	3.690	4.340	3.950	BFTA ZA
	V 2 V 2A	592.61 458.38	601.61 462.30	606.43 466.08	617.08	626.90	620.17	567.97	555.61	502.75	V 2
	V2 2	433.54	457.80	468.34	512.78 488.23	539.23 504.48	548.37 503.87	503.25 465.45	482.55 419.55	468.43 354.24	V ZA
	V2 2A	458.09	461.72	465.46	512.24	538.69	547.43	501.96	460.89	467.46	V2 ZA
	V-THETA 2A	404.00 16.40	396.31 22.99	385.24	377.34	371.67	300.07	357.15	362.40	355.36	V-TELTA 2
	4 2	0.5233	0.5329	23.58 0.5383	22.36 0.5482	21.26 0.5569	28.40 0.5505	32.37 0.5199	36.50	32.25	V-The TA ZA
	M &A	U • ~ O U 4	0.4048	0.4089	0.4513	0.4752	0.4836	0.4416	0.4897 0.4226	0.4407	m ∠ H ZA
	TURN (FR) UULAR	40.929 0.0709	37.599	36-540	35.198	34.101	32.524	33.716	36.374	41.030	TURNIPRI
	LOSS PARA	0.0239	0.0568 0.0329	0.1087 0.0374	0.0313 0.0111	0.0229	0.0166	0.0637	0.0485	-0.1111	UULAR
	LFAC	0.4469	0.4396	0.4370	0.3740	0.0085 0.3477	0.0064 0.3230	0.0331	0.0153 6.3679	-6.0447 0.3285	LÚSS PAKA DFAC
	LFFP	U.6405	0.7866	0.7606	0.9101	0.9221	0.9326	0.7177	0.B211	1.761e	EFFP
	INC EG	-7-188 10-882	+2.938 14.162	-0.649 14.210	-0.326 13.475	-0.327	-0.340	-1.25+	-2.407	-14.167	INCID
	P 2	16.455	18.569	15.642	18.818	13.272 19.036	14.635 19.067	16.129 18.760	17.018 اد.4.5	8.601 17.927	DEVM
	P ZA	16.233	16.253	18.279	18.709	18.953	19.008	16.502	18.300	18-17t	P Z P ZA
	T ∠ T 2A	562.900 562.900	560.550	558.810	559.050	560.020	560.100	560.950	561.460	562.650	1 4
	UUBAR FS	0.0695	560.550 0.0811	558.810 0.0834	559.05 <i>0</i> 0.0444	560.020	560.100	560.950	561-460	562.650	T ZA
	P2 FS	18.451	18.513	18.549	10.865	0.0355 19.083	0.0323 19.124	0.1295 18.932	0.1362 18.725	J.1445 18.596	UUBAR FS P2 F S
	LOSS PARA FS	0.0234	0.0275	0.0287	0.0157	0.0131	0.0124	0.0512	0.0552	0.0581	LOSS PARA ES

Table A-3. Blade Element Performance
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 109, 68 Equivalent Rotor Speed = 4617,58 Equivalent Weight Flow = 123,41
Uniform Inlet

INLET											
ANGEL	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.06	PCT SPAN
	bl A	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	BETA 1	0.000 491.30	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	v i	546.89	491.30 559.06	491.30 550.09	491.30 537.76	491.30 529.77	491.30 528.53	491.30 519.64	491.30 497.35	491.30 467.65	V O
	VZ O	491.30	491.30	491-30	491.29	491.26	491.22	491.18	491.17	491.17	V2 0
	AS T	546.88	559.06	550.09	537.77	529.73	528.45	519.51	497.22	467.73	VZ 1
	V-THETA D	0.00	0.00	0.00	0.00	0-00	0.00	0.00	0.00	0.00	V-THETA G
	M-THETA 1	0.UQ 0.448B	0.00 0.4486	0.00 0.4488	0.00 D.4488	0.00	0.00	0.00	0.00	0.00	V-THETA I
	ΗĬ	0.5020	0.513B	0.5051	0.4933	0.4488 0.4856	0.4488 0.4844	0.4488 0.4759	0.448b 0.4546	0.446B 0.4266	M 6 M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	₽. 0	TURN
	UURAR	0.5134	0.3342	0.3131	0.3553	0.3790	0.3922	0.4501	0.5529	0.6768	UUBAR
	GFAC LFFP	-0.113 0.3306	-0.138	-0.120 0.4656	-0.095	-0.078	-0.076	-0.056	-0.012	0.048	DFAC
	INCID	0.0001	0.4667	0.0001	0.3740 0.0001	0.3145	0.2998 0.0001	0.2189 0.0001	0.0451 0.0661	-0.1674 0.0001	EFFP Incid
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	PO	15.510	15.510	15.510	15.510	15.510	15.510	15.510	15.516	15.516	PO
	P 1 T U	14.462	14-841	14.883	14.799	14.751	14.725	14.609	14.403	14.155	P 1
	Τĭ	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	516.700 516.700	518.700 518.70G	T 0 T 1
0.07C b							•				
ROTC+ D	PCT SPAN UIA	95.00 33.236	90.00 33.621	85.00 34.007	70.00 35.164	50.00 36.706	30.00 38.248	15.00 39.405	10.06	5.00	PCT SPAN
ROTOR -L.E.	EETA 1	0.006	0.000	0.000	0.000	0.000	0.000	0.000	39.791 0.000	40.176 0.000	DIA BETA J
ROTOR -T.E.	BETA 2	35.749	32.673	32.270	31.288	29.149	26.566	26.780	29.503	34-061	BETA 2
	BETA (PR) 1	50.587	48.514	48.586	50.283	52.470	53.962	55.134	56.539	58.315	BETAIPR) 1
	beta (PR) 2	25.509	24.826	25.204	29.328	32.226	35.701	40.359	47.191	56-614	BETALPR) 2
	V 1 V 2	546.41 689.30	597.23 729.01	603.17 735.29	590.12 708.86	573.95 713.06	572.54 706.13	567.35 658.26	543.91	511.93	y i
	VZ 1	546.30	597.09	603.10	590 OB	573.24	570.22	563.61	561.36 540.04	446.56 508.59	V ∠ V2 1
	VZ 2	559.40	613.62	621.70	605,77	622.47	632.38	586.13	+87.24	369.04	vž ž
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2 V(PR) 1	402.70 663.7	393.53	392.57	368.14	347.16	316.20	245,82	275.70	249.49	V-THETA 2
	V(PR) 2	019.9	901.5 676.1	911.8 687.1	923.5 694.9	941.4 736.1	969.2 779.7	988.I 770.7	981.6 718.2	470.l 671.4	V(PR) 1 V(PR) 2
	VTHETA PRI	-467.2	-675.2	-683.8	-710.3	-746.3	-782-0	-808.9	-817.1	-824.0	VTHETA PK1
	VTHETA PR2	-266.4	-283.9	-292-6	-340.3	-392.4	-454.4	-498 - 1	-526.D	-560.0	YTHETA PR2
	U 1	667.21	675.23	683.75	710.33	746.26	782.03	808.93	817-12	823.97	UI
	U 2 M 1	669.63 0.5035	677.40 0.5509	645.17 0.5567	708.48 0.5440	739.55 0.5282	770.6 <u>3</u> 0.5269	793.93 0.5218	601.70	609.47	U 2 M 1
	M 2	0.6147	0.6537	0.6607	0.6345	0.6388	0.6351	0.5880	0.4992 0.4971	0-4685 0-3917	M 2
	M(PR) 1	0.7929	0.8316	0.8416	0.8513	0.8665	0.4919	0.9088	0.9008	0.8877	MIPRI 1
	MIPRI 2	0.5526	0.6063	0.6175	0.6220	0.6594	0.6993	0.6864	0-6360	0.5889	M(PR) 2
	TURN(PR) UUBAR	25.074 D.2246	23.684 0.1893	23.300 0.1637	20.954 0.2045	20.225	18.144 0.1320	14.689	9.262	1.628	TURN(PR)
	LUSS PARA	0.0587	0-0504	0.0493	0.0549	0.1682 0.0458	0.0360	0.1800 0.0476	0.2570 G.D612	0.3059 0.0596	UUBAR LDSS PARA
	DFAC	0.4170	0.3762	0.3743	0.3701	0.3363	0.3044	0.3230	0.3659	0.3582	DFAC
	EFFP	0.7399	0.7730	0.8118	0.7293	0.7648	0.7930	D-6949	0.5125	0.3567	EFFP
	£FF	0.7320	6.7660	0.6058	0.7215	0.7578	0.7866	0.6872	6.5036	0-3425	EFF
	INCIL DEVM	-1.644 10.360	-2.402 10.666	-1.992 10.570	-1.760 10.688	-1.533 9.015	-2.096 6.140	+3.563 6.734	-5.776	-9.852	INCID
	P 1	14.462	14.641	14.883	14.799	14.751	14.725	6.734 14.609	14.052 14.403	20.645 14.155	DEVM P 1
	P 2	17-891	18.419	16.535	18.092	16.187	16.134	17-416	16.361	15.464	ΡŽ
	ŢŢ	518.700	516.700	518.700	518.700	518.700	518.700	518.700	518.700	514.700	Т 1
	T 2	562.620	561.810	560.350	561.180	560.900	559.120	557.580	556,900	557.450	1 4
FT.T(1 ()	007 0011	WE 00			70.00						
STATUR D	PCT SPAN GIA	95.00 33.207	90.00 33.564	65.00 33.921	70.06 34.992	50.00 36.420	30.00 37.648	15.00 36.919	10.00 36.374	5.00	PCT SPAN
STATOR-L.E.	BETA 2	36.040	32.449	31.570	31.326	28.672	26.449	27.372	39,276 30,413	39.633 35.457	DIA Beta 2
STATUR-T.E.	BETA ZA	1.600	2.700	2.700	0.750	0.500	1.761	1-901	-0.100	-4.261	BETA ZA
	V 2	664.58	733.72	750.23	708.B8	725.04	712.11	645.87	546.75	431-64	V ž
	V 2A	590.48	623.04	644.06	673.61	684-2C	662-36	605.68	>66.55	542.87	V 2A
	VZ ZA	553.55 590.25	619.15 622.33	639.16 643.31	605.44 673.46	635.81 663.94	636.94 681.65	572.77 604.86	470.8a 566.05	351.27	V2 2
	V-THETA ∠	402.76	393.66	342.76	366.49	347.69	316.85	296.54	276.40	540.64 250.16	VZ ZA V-THETA Z
	V-THETA ZA	16,49	29.35	30.34	8-82	5.97	20.24	20.07	-0.99	-39.73	V-THETA ZA
	M 2	0.6102	0-6583	0.6754	0.6345	0.6504	0.6389	U.5762	0-4836	0.3764	Μż
	M ZA	0.5214	0.5523	0.5730	0.6006	0.6105	0.6102	0.5382	0.5019	0.4797	M 2A
	TURN(PR) UUBAR	34.439 0.1632	29.748 0.1930	28.669 0.1568	30.570 -0.0025	28.156 -0.0023	24.720 0.0097	25.432 0.1023	30.466 -0.1091	39.597 -0.6236	TURN (PR)
	LOSS PARA	0.0617	0.0656	0.0539	-0.0009	-0.0009	0.0037	0.0405	-0.0437	-0.2510	UUBAR LUSS PAKA
	UFAC	0.3276	0.3200	0.3080	0.2304	0.2314	0.2030	0.2329	0.1678	0.0148	DFAC
	EFFP	0.3712	0.4027	0.4919	1.0214	1.0181	0.9000	0.2539	-0.3234	0.0276	EFFP
	INCID DEVM	-14.127 10.432	-10.939 14.012	-8.720 14.010	-6.704 11.725	-6.031	-9.413	-11.327	~12.753	-23.745	INCID
	P 2	17.691	18.419	18.535	18.092	11.512 18.187	13.366 16.134	14.340 17.416	12.580 16.361	0.657 15.464	DEVM P 2
	PZA	17.163	17.522	17.770	18.103	16.198	18.092	17.058	16.625	16.371	P 2A
	T Z	562.820	561.810	560.350	>61.180	560.900	559.120	557.580	556.900	557.450	T 2
	T ZA	564.820	561.810	560.350	561.180	560.900	559.120	557.580	556.900	557.450	T ZA
	UUBAR FS P2 FS	0.1682 17.819	0.1302 18.083	0.1009 18.231	0.0449 18.305	0.0354 18.36;	0.0472 18.305	0.2189 17.941	0.2640 17.587	0.2675 17.233	UUBAR FS
	LOSS PARA F		0.0442	U+0346	0.0161	0.0138	0.0180	0.0866	0.1057	0.1076	P2 FS LUSS PARA FS
	·	-									

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 109.78 Equivalent Rotor Speed = 4621.54 Equivalent Weight Flow = 116.07
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10		
	DIA BETA O	33.122	33.529	33.962	35.312	37-137	38.954	40,321	7.10 40.737	3.00 41.085	PCT SPAN
	HETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DIA BETA Q
	V 0	464.12	464.12	464.12	0.000 464.12	0.000 464.12	0.000 464.12	0.000	0.000	0.000	BETA 1
	V 1 V2 0	501.01	504.39	497-16	493.40	489.48	490.99	464.12 482.93	464.12 467.00	464.12 437.37	A 1
	V2 1	464,12 501-01	464-12 504-39	464.12 497.16	464.11 493.39	464.09	464.04	464.00	463.49	464.00	VZ o
	V-THETA O	0.00	0.00	0.00	0.00	489.45 0.00	490.91 0.00	482.81 0.00	+66.88	437.25	V2 1
	M O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	Mil	0.4231 0.4581	0.4231 0.4613	0.4231 0.4544	0.4231 0.4508	0-4231	0.4231	0.4231	0.4231	0.4231	V-THETA 1 M u
	TUHN	0.0	0.0	0.0	0.0	0.4471	0.4485 0.0	0.4409	0.4258	0.3979	M 1
	UUBAR G fac	0.4166	0.2550	0.2432	0.2844	0.3020	0.3226	0.0 0.3725	0.0 0.4>18	0.0 0.5928	TURN Liubar
	EFFP	-0.079 0.2958	-0.087 0.4315	-0.071 0.3933	-0.063 0.3280	-0.055	-0.058	-0.041	-0.006	0.058	DFAC
	INCID	0.0001	0.0001	0.0001	0.0001	0.2836 0.0001	0.2821 0.0001	0.1904 0.0001	0.0282	~0.2450	EFFP
	DEVM Pú	-0+000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.0001 -0.000	-0.0001 0.0001	INCID DEVM
	Pi	15.280 14.5 . 2	15.280 14.828	15.280 14.849	15.280 14.776	15.280	15.280	15.280	15.280	15.200	PO
	Τυ	518.700	518.700	514.700	518.700	14-745, 518-700	14.709 518.700	14.620 518.700	14-480	14.230	P 1
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	516.700 516.700	510.700 518.700	T 0 T 1
ROTER 9	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00				
ACT CB	ΔĮΑ	33.236	33.621	34-007	35.164	50.00 36.706	30.00 36.246	15.00 39.405	10.00	5.00	PCT SPAN
ROTER -L.E. ROTER -1.L.	BETA 1 BETA 2	0.000	0.000	0.000	0.000	0.666	0.000	0.000	39.791 0.000	40.176 0.000	DIA Beta l
	BETA(PR) 1	45.750 53.056	43.567 51.573	42.750 51.641	40.385 52.858	38.924	37.879	39.628	43.042	46.953	BETA 2
	BETA (PR) 2	20.568	28.184	29.199	31.184	54.767 32.650	56.010 35.720	57.200 39.289	58.284	60.108	BETA(PR) 1
	V 1 V 2	502.28	536.26	541.66	538.52	528.18	529.89	525.22	42.536 509.03	46.845 477.18	BETA(PR) 2 V 1
	ŸZ 1	629.16 502.18	629.20 536.15	629.59 541.60	639.44 538.49	657.14	653.55	627.90	594.13	556.2B	v ž
	VZ 2	439.02	455.73	462.26	487.05	527.53 511.06	527.74 515.22	521.76 482.68	505.41 433.20	474.07	VZ 1
	V-THETA 1 V-THETA 2	0.60 450.67	0.00	0.00	0.00	0.60	0.00	0.00	433.39 0.00	379.08 0.00	VZ 2 V—THETA 1
	V(PR) 1	635.6	433.79 662.7	427.42 872.8	414.30 891.9	412.73	400.78	399.71	404.73	405.85	V-THETA 2
	V(PK) 2	490.9	517.1	529.6	569.3	914.8 607.2	945.2 635.4	905.1 624.9	963.3	952.6	V(PR) 1
	VTHETA PRI VTHETA PKZ	-667.B -219.5	-675.B	-664.3	-710.9	-746.9	~782.7	-B09.6	589.3 -817.8	555.2 -824.7	V(PR) 2 VTHETA PRI
	U 1	667.78	-244.2 675.81	-256.3 684.34	-294.8 710.94	-327.5 746.90	-370.5	-394,9	-397.7	-+0+.3	VTHETA PR2
	0 2	670.20	677.96	645.76	709.0B	740.19	782.70 771.29	809.63 794.61	817.82 602.39	824.68	U 1
	M 1 M 2	0.4593 0.5531	0.4918	0.4970	0.4940	0.4640	0.4857	0.4812	0.4657	810.17 0.4354	U 2
	MIPR) I	0.7641	0.5545 0.7912	0.5556 0.80 0 8	0-5649 0-8181	0.5811 0.8383	0.5774	0.5527	0.5210	0.4853	M 2
	M(PR) 2	0.4315	0.4556	0.4673	0.5029	0.5370	0.8663 0.5614	0.8842	0.8813 0.5168	0.8594	M(PR) 1
	TURN(PR) UUBAR	26.484 0.1141	23.385 0.1333	22-440	21.674	22.099	20.235	17.030	15.665	0.4843 13.203	M[PR] 2 Tukn(PR)
	LOSS PARA	0.0296	0.0345	0.1241 0.0322	0.0869 0.0229	0.0614 0.0166	0.0548	0.1008	0-1454	0.1687	UUBAR
	LFAC LFFP	0.5690	0.5484	0.5388	0.5044	0.4806	0.0150 0.4693	0.0271 D.4949	0.0376 0.5341	0.0409	LOSS PARA
	EFF	0.6455 0.8391	0.8347 0.8282	0.8632 0.8578	0.9055	0.9560	0.9626	0.9065	0.8600	0.8168	DFAC EFFP
	INCLU	0.625	0.657	1.063	0.9016 0.816	0.9540 0.764	0.9609 0.015	0.9024	0.8542	0.8093	EFF
	UEVM ₽ 1	11.419	14.D24	14.565	12.543	9.438	8.159	-1.491 7.665	-4.028 9.400	-8.055 10.866	INCIO DEVM
	P 2	14.542 19.362	19.828 19.414	14.849 19.471	14.776	14.745	14.709	14.620	14.480	14.230	Pi
	T 1	518.700	518.700	516.700	19.627 518.700	19.991 510.700	20.043 518.700	19.700 518.700	19.289	10.873	P 2
	7 2	571.360	566.820	567.360	567.310	568.100	568.600	569.820	518.700 570.550	518.700 572.550	T 1 T 2
										J. 122332	• •
STAICH U	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	E 40	DET CO.
STATER-L.C.	DIA BLTA Z	35.207 46.123	33.564	33.921	34.992	36.420	37.848	38.919	39.276	5.00 39.633	PCT SPAN DIA
STATOR-T.L.	ELTA ZA	4-740	43.315 3.000	41.935 5.100	40.43B 3.150	38.317 2.700	37.728	40.558	44.617	49.441	BETA 2
	A 5	625.51	632.55	639.91	639.44	666.97	3.401 656.83	4-502 616-64	4.842 578.25	4.962 536.09	BETA ZA
	A 5 V	469.03 433.40	468.62 460.23	468.96	509.16	544.06	559.63	509.98	490.88	478.88	V Z V 2A
	VZ ZA	468.49	467.97	476.01 468.25	486.62 500.31	523.09 543.28	519.10 550 22	466.17	411.22	346.27	A5 5
	V-THETA 2	450.74	433.93	427.63	414.69	413.36	558.32 401.61	507.99 400.67	488.70 405.76	476.56 406.93	VZ ZA V≃Theta z
	V-THETA 2A	22.42 0.5445	24-52 0-5576	25.36	27.98	25.62	33.18	40.00	41.39	41.37	V-THETA ZA
	M 2A	6-4068	0-4074	0.4083	0.5649 0.4446	0.5904 0.4761	0.5805 0.4901	0.5424	0.5063	0-4669	H 2
	TURN (PR) UUDAR	43.383	40.314	38.834	37.201	35.599	34.294	0.4443 36.010	0.4268 39.726	0.4152 44.426	M ZA Turnipri
	LOSS PARA	0.0695	0.0900 0.0306	0.1041 0.0358	0.0422	0.0446	0.0241	0.0960	0.0386	-0.0755	UUSAR
	DFAC	0.4607	0-4797	0.4838	0.0150 0.4192	0.0165 0.4003	0.0093 0.3651	0.0379	0.0154	-0.0303	LOSS PARA
	EFFP INCID	U.8576	U.8215	4.7991	0.8979	0.8835	0.9229	0.4064	0.4048 0.8751	0.3837 1.3394	DFAC EFFP
	DEVM	-4.044 11.572	-0.073 14.312	1.645 14.410	2.407	1.611	1.86D	1.850	1.445	-9.763	INCID
	P 2	19.362	14.414	19.471	14.125 19.627	13.711 19.991	15.065 20.043	16.939 19.700	17.517	9.810	DEVM .
	P ZA T Z	19,113	19.081	19.076	19,466	19.804	19.944	19.357	19.289 19.170	18.873 19.071	P 2 P 2A
		571.380 571.380	568.820 568.820	567.380 567.380	567.310 567.310	568.100	568.600	569.820	570.550	572.550	T 2
	UUBAR FS	0.0727	0.0830	0.0872	0.0531	568.100 0.0463	568.600 0.0359	569.820 0.1356	370.550 0.1416	572,550	T 2A
	P2 F5 LCSS PARA F5	19+375	19.385	19.401	19.671	19.999	20.092	19.063	19.461	0.1279 19.484	UUBAR FS P2 FS
	VANA F3	*****	0.0282	0.0300	0.0149	0.0171	0-0138	0.0535	0.0564	0.0513	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 109.90 Equivalent Rotor Speed = 4625.64 Equivalent Weight Flow = 109.67
Uniform Inlet

INLET							•				
1000	PCT SPAN	96.80	92 -00	86.90	71.00	49.50	28.10	12.00	7 141	3 00	D/ T COAN
	DIA	33.122	33.529	33.962	35.312	37-137	38.954	40.321	7.10 40.737	3,00 41,085	PCT SPAN D1a
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	V 0 V 1	435.43 467.94	435.43 478.78	435.43 475.70	435.43 478.94	435.43	435.43	435.43	435.43	435.43	¥ u
	V2.0	435.43	435.43	435.43	435.43	458.43 435.40	460.25 435.36	442.46 435.32	423.17 435.32	396.26 435.32	V 1
	VZ 1	467.94	478.78	475.70	478.94	458.39	460.17	442.35	423.65	350.17	V2 0 V2 1
	V-THETA C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	V-THETA 1 M Ú	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	M 1	0.3961 0.4267	0.3961 0.4370	0.3961 0.4340	D-3961	0.3961	0.3961	0.3961	0.3961	0.3561	МО
	TURN	0.0	0.0	0.0	0.4371	0.4177 0.0	0.4194	0.4027 0.0	Q.3846	0.3595	H 1
	UUBAR	0.4110	0.2649	0.2649	0.3154	0.2915	0.3015	0.3898	Ŭ•Ġ U•48G8	0.6069	TURN UUBAK
	MFAC	-0.075	-0.166	-0.092	-0.100	-0.053	-0.057	-0.016	0.028	0.090	UFAC
	EFFP	0.2836	0.4555	0.4363	0.4130	0.2821	0.2912	0.0806	-0.1372	-0.4143	EFFP
	DEAW INCID	0.0001 -0.000	0.0001 -0.000	0.6001 -0.000	0.0001	0.0061	0.0001	0.0001	0.0001	0.0601	INClu
	PG	15.218	15.218	15.218	-0.000 15.218	-0.000 15.218	-0.000 15.218	-0.000 15.216	-0.000	-0.000	DEAM
	P 1	14.577	14.805	14.805	14.726	14.764	14.748	14-610	15.218 14.469	15.218 14.272	P u
	TO	518.700	518.700	518.700	518.700	518.700	518.700	518,700	518.700	518.700	i û
	7 1	518.700	518.700	518.700	51B.700	518.700	518.700	518.700	518.700	516.700	Ť 1
ROTOR D	PLT SPAN	95.00	90-00	85.ÕQ	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
51.51.5	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39-405	39.791	40.170	DIA
RLTOR -L.E. RUTOR -T.E.	BETA 1 BETA 2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.000	BETA 1
KOTOK -TALA	LETA(PK) 1	46.001 54.949	46.094 53.100	45.279 52.963	43.232 53.749	41.984	40.622	42.286	45.366	49.218	BETA 2
	BETAIPR) 2	24.935	27.492	28.723	31.061	56.619 34.202	57.806 36.645	59.564 40.618	60.873 44.538	62.584 48.166	BETA(PR) 1 beta(PR) 2
	V 1	469.09	508.09	517.01	521.91	493.29	495.32	479.37	459.47	430-96	V 1
	V 2	636.44	627.69	626.31	631.68	631.31	635.86	609.58	573.58	546.31	v ž
	V2 1 V2 2	469.00	507.96 435.27	516.95	521.86	492.6B	493.32	476.22	456 - 20	428.15	VZ 1
	V-THETA 1	425.84 0.00	0.00	440.70 0.00	460.23 0.00	469.12 0.00	+62.08	450.36	402.27	356.29	VZ Z
	V-THETA 2	472.96	452.22	445.01	432.67	422.16	0.00 413.52	0.U0 409.41	0.00 4 07.44	0.00 413.04	V-THETA 1 V-THETA 2
	V(PR) 1	616.7	846.1	65B.3	882.6	895.8	927.0	941.7	938.8	931.3	V(Pk) 1
	VIPRI 2	469.6	496.7	502.6	537.3	567.4	601.6	594-2	565.4	535.0	V(Px) 2
	VTHETA PRI VTHETA PRI	-068.5 -198.0	-676.6 -226.5	-685.1 -241.5	-711.7 -277.2	-747.7	-783.6	-810.5	-818.7	-625.6	VIHETA PRI
	U I	668.52	676.56	685-10	711.72	-318.E 747.72	-358.6 783.56	-386.1 810.52	-395.8 61d.72	-398.0 625.59	VTHETA PR.: U I
	U 2	670.94	678.73	686.51	709.87	7+1-00	772.14	795.49	803.2H	811.06	0 1
	H 1	0.4278	0.4648	0.4733	0.4780	0.4507	0.4527	0.4375	0.4187	0.3919	M 1
	M Z M(PR) l	0.5586	0.5518	0.5514	0.5565	0.5558	0.5596	0.5346	0.5007	0.4750	M 2
	HIPR) 2	0.744B 0.4122	0.7740 6.4314	0.7858 0.4425	0.8084 0.4733	0.8185 0.4996	0.8471 0.5297	0.8594	0.8555	U-8469	M(PK) 1
	TURN (PR)	30.009	25.603	24.238	22.687	22.400	21.109	0.5211 10.872	0.4936 16.263	0.4652 14.371	M(PR) 2 Turn(Pr)
	UUBAR	0.0931	D. 1120	0.1012	0.0751	0.0828	0.0747	0.1082	0.1436	0.1687	UUŁAR
	LCSS PARA	0.0244	0.0291	0.0263	0.0196	0.0220	0.0202	0.0285	0.0354	0.0399	LOSS PAKA
	DFAC LFFP	0.5930	0.5770	0.5686	0.5419	0.5176	0.5000	0.5186	0.5485	0.5812	DFAC
	i FF	0.6771 0.8716	0.6637 0.6580	0.8957 0.8913	0.9270 0.9238	0.9234 0.9200	0.9396 0.9369	0.6912	0.8344	0.8036	EFFP
	INCIL	2.517	2.183	2.385	1.706	2.617	1.814	0.8864 6.879	0.6274 -1.436	0.7954 	EFF Inclu
	DEVM	9.766	15.532	14.089	12.420	10,991	9.084	8.993	11.379	12.190	DEVA
	P 1	14.577	14.805	14.805	14.726	14.764	14.748	14.610	14.469	14.272	ΡJ
	P 2 1 1	19.875 518.700	19.813 518.700	19.844	19.927	20.025	20-165	19.823	19.388	17.098	Ρž
	1 2	573.B10	571.180	510.700 569.500	518.700 569.370	518.700 570.000	518.700 570.460	518.700 572.000	518.700 573.386	516.700 575.300	T 1 T 2
	. –					3,0000	2700400	>12,000	J130300	373.300	1 2
STATOR D	PCT SPAN	95.00	90.00	65.00	70.00	50.00	30.00	15.00	16.00	5.00	PCT SPAN
	UIA	33.207	33.564	33.921	34.992	36.420	37-846	30.919	39.276	39.633	bla gran
STATOK-Lab.	EITA Z	48.409	45.799	44.388	43.290	41.341	40.465	43.287	47.036	51.897	BETA 2
STATCK-T.!.	BETA 2A	2.940	3.300	3.150	3.280	2.451	3.551	4.701	5.232	6.062	BLTA 2A
	V 2 V 2A	632.49 470.25	631.02 459.32	636.51 451.86	631.68	640.33	638.95	599.11	558.66	526.70	V 2
	VZ 2	419.85	439.93	454.85	484.84 459.74	519-36 480-57	533.65 485.76	493.32 435.71	476-88 380-43	467.65 324.75	V 2A V2 Z
	VZ ZA	469.62	458.55	451.16	483.98	518.71	532.32	491.26	474.46	464.60	VŽ ŽA
	V-THETA Z	473.04	452.37	445.23	433.08	422.60	414.37	410.40	408.47	414.14	V-THETA 2
	V-THETA ZA	24.12	20.44	24.83	27.74	22.20	33.03	40.40	43.44	46.45	Y-IHETA ZA
	M 2 M 2A	0.5550 0.4070	0.5549 0.3982	0.5610 0.3921	0.5565 0.4218	0.5643 0.4528	0.5627 0.4656	0.5249 0.4284	0.4871 0.4131	0.4572	M 2
	TURN (PR)	45-469	42.498	41.236	40.003	30.672	36.681	34-540	41.756	0.4042 45.844	M 2A TURN(PR)
	UU∂AR	0.0925	0.0997	0.1167	0.0575	0-0240	0.0239	0.0641	-0.0196	-0.1056	UULAR
	LOSS PARA	0.0311	0.0339	0.0401	0.0204	0.0089	0.0092	0.0253	~0.007s	-0.0424	LOSS PARA
	UFAC EFFP	0.4957 0.8149	0.5021	0.5177	D.4610	0.4214	0.3958	0.4229	0.4095	0.3939	DEAL
	1NC 1D	-1.758	0.8099 2.411	0.7890 4.097	0.8752 5.259	0.9381 4.635	0.9302 4.597	0.8208 4.579	1.0655	1.4541	EFFP
	DEVM	11.772	14.612	14.460	14.255	13.462	15.215	17.139	3.864 17.907	-7.305 10.650	INCIO DEVM
	۶ 2	19.875	19.813	19.844	19.927	20.025	20.165	19.623	19.306	14-096	P 2
	P ZA	19.526	19.440	19.398	14.709	19.932	20.072	19.606	19.445	19.367	P ZA
	T 2	573.810	571.180 571.180	569.500	569.370	570.000	570.460	572-000	573.380	575-300	Ť۷
	T 2A UUBAR FS	5 73.810 0.0488	0.1972	569.500 0.1035	569.370 0.0889	5 70.00 0 0.0722	5 70. 460 0.3443	572.006 0.1218	573.380 0.1242	575.30L	T ZA
	P2 FS	19.860	19.844	19.787	20.056	20.227	20.248	20.046	19.865	0.1156 19.735	OUBAK FS P2 #5
	LOSS PARA F		0.0364	0.0355	0.0315	0.0267	0.0173	0.0485	3.454	343464	LUSS PAKA FS

Table A-3. Blade Element Performance (Continued)
Stage D. Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 109.60 Equivalent Rotor Speed = 4614.29 Equivalent Weight Flow = 102.55
Uniform Inlet

[NLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.1G	12.00	7.10	3.66	DCT Chan
	blá beta ú	33.122 0.000	33.529 0.000	33.962 0.600	35.312	57-137	36.954	40.321	40-737	41-065	PCT SPAN Ula
	DETA L	0.006	0.000	0.000	0.000	0.000	0.000 0.0uC	0.000	0.000	0.000	BETA O
	A 1	405.14	405.14	405.14	405.14	405.14	405.14	405.14	0.0LG 405.14	0.00g 405.14	BETA 1 V G
	V2 U	423,38 405.14	441.04 405.14	437.63 405.14	432.67	429-15	427.59	410.68	390.24	352.10	v 1
	V2 1	423.36	441.04	437.43	405.14 432.67	405_11 429.11	405.06 427.52	405.04 409.98	405.04	405.04	V2 0
	V-THETA C	6.00	0.00	0.00	0.00	0.00	0.00	0.06	396.18 0.00	352.09 0.00	VZ 1 V-THETA U
	V-THETA 1 M O	0.00 1 0. 076	0.00 0.3670	0.00 0.1678	0.00 0.3676	0.00 0.3678	0.00	0.00	0.00	0.00	V-THETA 1
	M 1	0.3848	0.4013	0.3976	0.3935	0-3902	0.367b 0.3887	0.367a 0.3724	0.3678 0.3595	0.3676	M U
	TURN UUEAR	0.0 0.441e	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3186 0.0	M 1 TURN
	LFAC	-0.045	0.2511 -0.069	0.2335 -0.079	0.2762 -0.066	0.2930 -0.059	0-2945	0.3678	0.4342	0.6402	UUBAR
	EFFP	0.1783	0+4308	0.4245	0.3462	0.3040	-0.055 0.2885	-0.012 0.0651	0.022 -0.1155	0.131	DEAC
	INCIL UEVM	0.0001 -0.000	0.0001 -0.000	0.0001	0.0001	0.0001	0.6001	0.3001	0.0001	-0.6453 0.0001	EFFP 1NC1D
	PC	15.129	15,129	-0.00 <i>0</i> 15.129	-0.000 15-129	-0.000 15.129	-0.000 15.129	-0.000	-0.000	-0.000	DE VM
	P 1	14+533	14.791	14.614	14.757	14.734	14.73	15.129 14.633	15.129 14.543	15.129	P U P 1
	Г С Т 1	516.700 516.700	518.700 518.700	516.700	518.700	516.700	518.700	518.700	516.700	518.700	T a
				516.700	518.700	516.700	518.700	516.700	518.700	516.700	T 1
KETCK D	PCT SPAN DIA	95.00 33.236	90.00 33.621	65.00 34.007	70.00 35.164	50.00	30.00	15.00	10.00	5.00	PCT SPAN
RCTUR -L.E.	beta 1	0.000	D-000	0.000	0.000	36.706 0.000	36.246 0.066	39.405 0.000	39.791 0.000	40+176	DIA
KCTGK -T.E.	běta 2 LETA (PK.) 1	50.001 57.529	48.801	46.153	46.099	44-812	43.858	46.091	49.081	0.000 53.841	BETA 1 BETA 2
	ELTATER 2	23.860	55.321 27.163	55.287 26.602	56-526 31-160	58.318	59.66E	61.425	64 - 425	65.262	BETA(PR) 1
	V 1	424.37	406.96	473.40	469.50	34.676 460.81	37.769 459.09	42.735 443.19	45.754 429.46	49.278 381.87	BLTA(PR) Z
	V 2 V/ 1	030.88 424,29	6.0.61 466.86	617.57	621.14	616.43	615.92	563.70	562.35	542.53	V Ž
	VI Z	404.36	408.90	473.34 412.00	469.47 430.70	460.24 437.16	457.2s	440.28	420.42	374.58	VZ 1
	V-THETA &	0.00	0.00	0.00	0-00	0.00	0.00	404.22	363.32 0.00	319.71	VI 2 V-THETA 1
	V-1HETA 2 VIPR) L	487.87 790.3	467.10 820.6	460.03 831.2	447.55	434.32	426.32	419.90	428.12	437.48	V-THETA 2
	VIPRI 2	447.7	459.6	469.3	851.0 503.3	876.6 533.1	906.3 561.9	921.9 551.3	922.6 521.6	907.6	V(Pk) 1
	VIMEIA PKI VIMEIA PRZ	-666.7	-674.6	-053.3	-709.0	-745.7	-761.5	-806.4	-61a.5	490.8 -623.4	VIPR) 2 VTHETA PRA
	UL	-181.3 666.73	-209.8 674.75	-224.6 603.27	-260.4 709.82	-304.7 745.73	-343.8	-373.5	-373.0	-371.4	VTHE1A PRZ
	U Z	669.15	676.92	684.68	707.97	739.02	781.47 770.08	808.36 793.37	616.54 801.13	623. 1 9 606.64	U 1 U 2
	M 1 H 7	0.3657 0.5562	U-4258 U-5447	0.4319	0.4282	0.4200	0.4183	0.4034	0.3905	0.3461	M I
	M(PR) 1	0.71.3	6.7482	0.5428 0.7583	0.5462 0.7761	0.5415 U.7969	0.5407 0.8259	0.5098	0.4695	0.4766	M 2
	M(PQ) Z	0.3924	0.4033	0.4125	0.4426	0.4683	0.4934	0.0390 0.4615	0.6387 0.4541	0.6.26 0.4256	M(PR) 1 M(PR) 2
	TORN(PK) UUUAR	33.640 6.8660	26.153 0.1110	26.683 0.1060	25.359	23.427	21.852	18.625	16.600	15.942	TURN (PR)
	LGUS PARA	0.01BU	U-U290	0.0276	0.0857 0.0226	0.0819 0.0216	0.0889 D.0236	0.1357 0.0346	0.1767 0.0437	0.1925	UUBAK
	UFAC EFFP	0.6126 0.9027	0.6071	0.5999	0.5702	0.5507	0.5370	0.5586	0.5756	0.0445 0.6285	LOSS PARA Deac
	t F F	0.0980	0.6765 U.6710	0.9111 0.9072	0.9349 0.9319	0.9375 D.9346	0.9374 0.9345	0.8572	0+614E	0.8691	FFFF
	1%(15 554M	: U78	4-405	4.704	4.477	4.318	3.680	0.8510 2.147	0.6069 0.126	U.8006 -2.661	EFF INCID
	P 1	6.736 14.535	13.004 14.791	13.468 14.614	12.519	11-064	14.207	11.110	12.015	13.302	DEVM
	F 2	26.161	20.026	20.057	14.757 20.129	14.734 20.181	14.732 20.242	14.633 15.820	14.543 15.560	14.265	P 1
	T 1 T 2	510.700	518.700	516.700	518.700	514.700	516.700	518.70C	518.700	19.334 516.700	F 2 T 1
		575.500	572.560	570.400	570.330	570 - 890	571.450	575 .9 00	575.5Du	577.500	7 2
STAILE L	PCT SPAN	95.00	90.0 €	85.00	70.00	LO 05	36. 4.				
CT.T.C.	υLA	33.207	. 33.564	33.921	34.992	50.00 36.420	30.00 37.848	15.00 36.919	10.00 39.276	5.00 39.633	PCT SPAN
STATUR-L.E. STATUR-L.E.	SETA 2 EETA 2A	50.438 3.000	46 - 46 1	47-162	40.162	44.120	43.692	47.210	51.616	57.034	DIA SEZA Ž
	٧٧	632.94	3.70C 624.07	3.360 627.49	3.250 621.14	2.090 625.04	3,501 618,83	4.651	5.161	5.752	BETA ZA
	V ZA	461.29	449.41	443-40	470.11	460.15	466.39	574.05 449.31	547.95 427.50	5.3.15 4.62	V 2 V 2A
	V2 2A	463.12 466.60	413.67 448.48	420.47	430.17	448-55	447.16	369.64	339.99	264.49	V2 2
	V-THETA 2	407.45	407.20	442.61 460.26	469.29 447.97	479.67 434.99	485.20 427.14	447.47 420.92	435.34 429.21	4.52.18	V2 2A
	V+1HETA ZA M Z	24.14	29.00	26.14	26.65	17.51	29.68	38.40	٠٤٠٥.	436.64 43.53	V-THETA 2 V-THETA ZA
	M ZA	0.396	0.5478 0.3689	0.5521 0.3843	0-5462 0-4062	0.5495 0.4176	0.5435	0.5609	U-4764	0.4531	M 2
	TURN (Pk.)	41.436	44.780	43.601	42.905	42.012	0.4224 40.157	0.3883 42.512	0.3773 46.408	0-3742 51-234	H ZA Turn(PR)
	UUBAR LOSS PARA	0.1096 0.0369	0.1073 £.0364	0.1317	0.0876	0.0811	0.0906	0.0940	0.0963	-0.0292	CUBAR
	DFAL	0.5181	6.5141	0.6453 0.5516	0.0311 0.4647	0.0366 0.4860	0.034E 0.4627	0.0371 0.4844	0.6192 0.4886	-0.0117	LGSS PARA
	EFFP INCIL	6.7901	D. 7994	0.7629	0.8156	0.6.28	0.7874	U.1781	u.b779	0.475 <i>t</i> 1.0667	LFAC Effy
	DEVM	0.271 11.832	5.693 15.012	6.691 14.696	6.131 14.725	7-414	7.623	6.502	5.44	-2. lot	14010
	P 2	20.181	20.026	20.657	14.725 20.129	13.102 26.181	15.165 20.242	17.068 19.620	17.837 15.560	16.599 15.334	DE VM
	P 2A 1 2	15.764	19.630	19.563	19.805	19.677	19.969	19.527	19.4.4	19.406	P Z P ZA
	T _A	575.500	572.560 572.560	570.400 570.400	570.330 570.33c	570.890 570.890	571.450 571.450	573.900	575.500	577.566	T L
	ULLAK FS Pā FS	0.0941	0.1199	0.1102	0.1020	0+1062	0.0985	900 و 57 0 • 135	575.50C 0.1309	577.560 0.1111	T ∠A UUSAN FS
	LUSS PARA F	20.115 J.U316	20.079 0.0407	19.966 U.U379	20.187	20+285	20.275	194971	14.827	19.734	P2 FS
			210701	210379	0.0361	0.0392	U+0378	0.0536	0.0523	V + U 4 4 5	LCUS PARA FL

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 110.20 Equivalent Rotor Speed = 4639.37 Equivalent Weight Flow = 97.18
Uniform Inlet

INLET								•			
219221	PET SPAN	96.80	92.00	86.90	71 00						
	DIA	33.122	33.529	33.962	71.00 35.312	49.56 37.137	28.16 38.954	12.00 40.321	7.10	3.06	PCT SPAN
	BETA O BETA 1	0.000 0.000	0.000	0.000	0.000	0.000	0.060	0.000	40.737 6.000	41.085 U.000	DIA BETA D
	V G	362.12	0.000 362.12	0.000 382.12	0.00C 382.12	0.000	0.000	0.000	0.000	0.000	BETA 1
	V 1	407.75	422.96	422.70	415.83	382.12 406.19	382.12 401.73	362.12 361.33	302-12	362.12	νι
	V2 0 V2 1	382.12 407.75	362.12	382.12	362.11	362.09	382.66	382.62	364.05 302.01	331.12 362.02	V 1 VZ G
	V-THETA U	0.00	422.96 0.00	422.70 0.00	415.83 6.00	406.16	401.66	361.24	363.96	331.65	VZ 1
	V-THETA 1	0.06	0.60	0.00	0.00	0.00	0.00 6.00	0.00	0.00	0.00	V-1Held ä
	M U M I	0.3461	0.3463	0.3463	0.3463	0.3463	0.3463	0.3463	0.3463	0.00 3463	V-THETA 1 M D
	TURN	0.0	0.3644	0.3842 0.0	0.3777 0.0	0.3647 0.0	0.3646	0.3456	0.3296	0.2992	M 1
	UUBAR	0.4436	6.2769	0.2427	0.2803	0.3026	0.0 0.2940	0.0 0.3836	0.4607	0.U 0.6188	TUKN
	LFAC LFFP	-U.067 U.2446	-⊔.107 0.4595	-∪-106 0.4911	-0.066	~U.C63	-0.051	0.002	U.G47	6.1.0	UUBAR UFAC
	INCID	0.6001	6.0001	0.0001	0-4672 0-6601	0.3094	0.2720 0.0001	-0.0113 0.0001	-0.2613	-0.7029	EFFP
	P D	-0.000 15.084	-0.000	-0-000	-0.000	-0.000	-0.066	-0.000	0.0001 -0.000	0.0001 -0.000	INCID DEVM
	۲ 1	14.556	15.069 14.756	15.069 14.797	15.089 14.752	15.089	15.089	15.089	15.089	15.089	PO
	T o	518.700	516.760	516.700	518.700	14.725 518.700	14.735 518.700	14.628 518.700	14.535 518.700	14.345 516.700	P 1
	T 1	516.700	516.700	516.700	516.700	518.700	518.700	516.700	516.760	516.706	1 6 T 1
ייΩ1Ωא ח	PCT SPAN	95-00	90.00	65.00	70.00	50.00	30.00	15.00			
RGTOR -L.L.	DIA BETA 1	31.236	33.621	34.007	35.164	36.706	38.248	39.405	10.00 39.791	5.06 40.176	PCT SPAN Dia
ROTOR -1.L.	bETA 2	000 50.66€	0.000 49.583	0.000 49.086	6.000 47.290	0.000	0.000	0.000	0.000	0.000	SETA 1
	SETA(PR) 1	58.636	>6.604	56.350	57.732	46.769 59.881	46.259 61.371	50.791 63.304	53.790 64.539	56.107	BETA 2
	BETA(PR) 2 V 1	24.268 408.69	27.323	27.920	29.608	35.667	40.590	44.596	46.391	66.715 49.453	BETA(PR) 1 BETA(PR) 2
	V 2	635.21	447.37 620.82	457.35 624.27	450.63 635.43	435.50 607.29	430.65	411,40	393.70	358.61	V 1
	VZ 1	400.61	447.27	457.30	450.60	434.96	589.40 428.91	571.25 408.69	547.89 390.96	555.64 356.27	V 2
	VZ 2 V-THETA 1	462,66 0.00	402.49	408.85	431.00	415.69	407.13	360.65	343.26	292.98	V2 1 V2 2
	V-THETA 2	491.25	472.65	6.00 471.75	0.66 406.96	0.00 442.49	0.66 425.43	00-0 40-54	0.60	ն	A-LHF LY T
	V(PR) 1	765.1	812.6	625.3	844.0	867.1	890.0	442.05 910.9	441.51 910.5	470.62 902.2	V-THETA 2 V(Pk))
	V(PR) 2 YTHETA PRI	~41.7 -670.4	453.1 4578.4	462.7 -687.0	495.7 -713.7	513.2	536.7	507.3	467.6	451.4	V(PK) 2
	VIHETA PRZ	-181.5	-207.9	-216.7	-2+4.9	-749.8 -300.5	-785.7 -348.6	-612.7 -355.6	-821.0 -3 64. 0	-627.4	VIHETA PKI
	U 1 U 2	670.36 672.79	678.42	666.98	715.05	749.78	765.72	812.75	826.96	-342.5 62 7. 86	VTHETA PRZ U 3
	H I	0.3711	660_60 0-4073	688.40 0.4167	711.62 0.4104	743.04 0-3961	774.26 0.3916	797.68	805.49	813,29	Uż
	M 2	0.5555	0.5436	0.5479	U.55B1	0.5315	0.5145	0.3736 0.4965	0.3571 0.4745	0.3246 0.4802	M 1 H 2
	M(PR) 1 M(PR) 2	0.7128 0.3863	0.7399	0.7519	0.7686	0.7867	G.B147	0.8272	0.8259	9918905	M (PR) i
	TURN (PR)	34.365	0.3967 29.276	0.4061 26.426	0.4354 28.124	0.4491 24.000	0.4686 20.738	0.4409	0.4223	0.3905	M(PR) 2
	UUBAR	0.0755	0.1067	0.1048	0.0821	0.1030	0.1267	18.647 0.2081	10.09I 0.2396	17.227 0.2711	TURN (PR) UUEAR
	LOSS PARA UFAC	0.0199 0.6190	0.027b 0.6133	0.0275 0.6092	0.0220 0.5826	0.0269	0.0329	U.D514	0.0558	0.0624	LOSS PARA
	EFFP	0.6749	0.8621	0.9056	0.9409	0.5718 0.8899	0.5595 0.8453	0.6099 0.7795	0.6329 0.7355	0.6629 0.7560	DFAC EFFP
	EFF INCID	0.8689 6.265	0.6559 5.668	0.9016	0.9361	0.8849	0.6385	0.7701	0.7246	0.7453	EFF
	∂E A₩	9-118	13.164	5.772 13.286	5.650 10.967	12.655	5.386 13.027	4.633	2.251	-1-421	INCID
	P 3 P 2	14.550	14.756	14.797	14.752	14.725	14.735	12.972 14.628	15.25s 14.535	14.345	b T DFAW
	T 1	20.250 516.700	20.126 516.700	20.250 518.700	20.476	20.186	19.963	14.664	14.356	14.426	P 2
	T 2	577.750	574.900	572.650	510.700 573.000	518.700 574.000	518.700 574.950	518.700 576.120	518.760 579.75u	518.766	Ţı
								3101120	2076130	561.700	T ż
STATUR C	PCT SPAN	95.00	90.00	B5.00	70.00	50.00	30.60	15.00	10.ub		D. 7. CO.
STATOR-L.E.	ůlA BETA 2	33.207	33.564	33.921	34.492	36.420	37.846	36.919	39.276	00.c 34.633	PCT SPAN Ula
STATUR-T.E.	BETA ZA	51.107 3.060	49.255	46.075 3.410	47.355 3.020	46.061	46.090	54.100	56.024	61.976	bETA 2
	¥ 2	631.29	624.07	634.36	635.43	2.060 615.65	2.040 592.08	3.461 561.93	5.121 534.07	6.U62 535.05	BETA 2A
	V 2A V2 Z	478.98 396.37	462.68 407.32	452.63	470.94	472.28	474.18	441-24	43.71	434-09	V 2 V 2A
	VZ 2A	478.30	461.52	423.85 452.00	430.42 470.22	427.06 471.82	410.36 473.60	344.96	256.29	251.33	V2 2
	V-THETA 2	491.34	472.60	471.96	467.35	443.17	426.3U	440.07 443.12	442.66 442.63	431.19 472.07	VZ ZA V-THETA Z
	V-THETA 2A M 2	25 .57 0 .5518	32.51 0.5466	26.93 0.5573	24.81	16.47	16-67	26.61	44.66	45.74	A> ATBHE-V
	A A	0.4134	6.3999	0.3919	0.5581 0.4080	0.5392 0.4068	0.5170 0.4101	0.4880 0.3797	0.4620	0.4621	M 2
	TURN (PK.) UUDAR	48.046	45.224	44.664	44.329	43.982	44.015	48.594	0.3725 50.858	0.,722 55.645	M ZA Turn(pr)
	LOSS PARA	0.0692	0.0791 0.0269	0.1227 0-0421	0.1360 0.0483	0.0776 0.0267	0.0339	0.0382	-6-0471	-0.0229	UUBAR
	UF AC	0.4899	0.4990	0.5279	0.5069	0.4901	0-0131 0-4667	0.0151 0.5102	-0.0168 0.4924	-0.0092	LUSS PARA
	EFFP Incid	0.8542 0.939	0.6424 5.867	0.7753	0.7290	0.8504	0-9147	0.9090	1-1266	0-5122 1-0614	DFAC EFFP
	DEVM	11.892	15.342	7.785 14.720	9.324 13.995	9.355 13.072	10.221 13.705	13,394	12.656	2.375	INCID
	P 2	20.250	20.126	20.250	20.476	20.188	19.983	15.699 19.664	17.797 19.356	10.929 19.428	DE VM
	P ZA T Z	19.988 577.750	19.834 574.900	19.777 572.650	19.945 573.00D	19.907	19.670	19.551	19.480	19-489	P ZA
	T ZA	577.750	574.900	572.650	573.000	574.000 574.000	574.950 574.950	576.120 578.120	579.750 579.750	581.700	1 2
	UUBAR FS P2 FS	0.0931	0.1199	0.1233	0.1096	0.1459	0.1522	0.1433	0.1358	581.70u 0.1270	T ZA UUBAK FS
	LOSS PARA F	20.350 0.0313	20.298 0.0408	2D.252 C.0423	20.360 0.0389	20.478 0.0539	20.447 0.0588	20.026	19.913	19.882	P2 F5
						,,,,	>00	0.0566	0.0542	0.0510	LUSS PARA FS

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 100.53 Equivalent Rotor Speed = 4232.16 Equivalent Weight Flow = 120.02 Uniform Inlet

INLET									=		
10261	PCT SPAN	96.Bu	92.00	86.90	71.60	40.50					
	OIA	32.142	33.529	33.962	35.312	49.50 37.137	28.10 38.954	12.00 40.321	7.10	3.00	PCT SPAN
	bt TA U	0.000	0.000	0.000	0.000	0.000	0.000	0.000	40.737 ∪.000	41.085 0.000	DIA
	BETA 1 V U	0.666 477.92	0.000	0.000	0.000	0.000	0.000	0.006	0.000	0.000	BETA G Beta 1
	v ĭ	52u.57	477.92 536.48	477.92 530.49	477.92 521.77	477.92 509.88	477.92	477.92	477.92	477.92	V L
	VZ U	477.92	477.92	477.92	477.91	477.BB	507.02 477.64	491.20 477.80	476.84 477.79	449.40	y 1
	VZ 1 V-THETA U	520.97	5-0.97	530.49	521.76	509.84	506.44	491.08	476.71	477.79 449.34	۷2 ن ۷2 1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA U
	M U	U.4561	0.4361	0.4361	0.60 0.4361	0.00 0.+361	0.00	0.00	0.00	0.00	V-THETA 1
	M 1	0.4771	0.4925	0.4863	0.4779	0.4665	0.4638	0.4361 0.4487	0.4361 0.4351	0.4361	MU
	TURN UULAK	0.6 0.5169	U.0	0.0	0.0	U.C	0.0	0.0	G.0	0.4093	M 1 Turn
	LFAC	-0.690	U.3169 -0.124	0.2883 -0.110	0.3189 -0.092	0.3578	0.3633	0-4439	0.5185	0.6467	UUBAR
	LFFP	6.2770	U.4884	0.4633	0.3916	-0.067 0.2916	-0.061 0.2689	-0.028 0.1184	0.602 -0.0092	0.060	DFAC
	DEAW INCIS	6.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	-0.2286 0.0001	EFFP Inclo
	Pu	-6.000 15.423	-0.000 15.423	-0.600 15.423	-0.000	-0.000	-0.000	-0.600	-0.000	-0.000	DEVM
	P 1	14.445	14.6.1	14.676	15.423 14.821	15.423	15.423 14.737	15.423 14.584	15.423	15.423	PU
	r o	518.700	510.700	516.700	516.700	518-106	518.700	516.700	14.443 516.700	14.201 518.700	P 1 7 G
	1 1	510.700	510.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ťi
RETUR J	PCT SPAN	55.00	90.00	85.00	70.00	50.00	30.06	15.00	10.00	5.00	PCT SPAN
KLIGK -L.E.	bela 1	33.236 6.006	ქა.ი?] ს.ცეეე	34.067 0.060	35.164 0.000	36.706	38+248	39.405	39.791	40-176	DIA
RCTUR -T.E.	EETA 2	34.500	31.609	30.635	29.980	0.00D 29.J07	0.600 26.919	0.000	0.000	0.000	BETA 1
	BETACPRI 1	49.500	47.236	47.212	48.735	51.1oB	52.712	26.505 54.383	28.619 55.4u2	32.586	BETA 2
	5 t TA(PR) ∠ V 1	27.214 5.2.27	22.928	25-433	26.608	31.797	34.723	39.566	44.959	57.147 51.098	BETA(PR)] BETA(PR) 2
	v î	619.00	572.44 661.81	560.15 683.56	571.27 695.46	551.24	548 00	534-65	20.31	490.87	V 1
	A5 T	522.17	572.31	580.Ub	571.24	66D.24 550.56	666.72 5-5.76	615.29 531.13	543.DU	469.95	V 2
	V2 Z V=1HLIA 1	510-61	563.60	568.15	602.36	577.17	500.21	549.18	516.61 474.44	487.67 394.97	A5 5 A5 1
	V-IHETA	0.00 351.67	0.00 246∎85	0.00 340.29	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	VIPHI 1	604.2	t+3.0	854.0	347.60 866.1	320.01 878.5	296.66 902.2	273.86 914.1	201.02	252.46	V-THETA 2
	V(PK) 2 VTHEJA PRI	574.4	046.7	651.3	673.7	674.4	716.6	713.8	911.9 671.7	900.7 629.8	V(PR) 1 V(PR) 2
	VIHETA PRZ	-611.5 -202.7	-018.9 -274.0	-c26.7 -279.7	-651.0	-664.0	-716.6	-741.4	-746+9	-755.2	VTHETA PRI
	U I	611.52	048.87	626.68	-501.7 651.04	-257.8 683.97	-407.0 716.75	-453.6 741.41	-4 73.8	-489.4	VIHETA PRZ
	U 2	013.74	620.86	627.98	649.34	677.82	766.30	727.66	748.92 734.79	755.20 741.91	U I U Z
	M 1 M 2	0.4764 0.5516	0.5266	0-5343	0.5256	0.5062	6.5031	0.4903	0.4705	0.4484	H 1
	M (PR) 1	0.7366	0.5923 6.7756	0.6143 0.7864	0.6255 0.7969	0.5914 6.60.3	0.5424	0.5496	0.4820	0.4145	ΜŽ
	MIPHI 2	0.5113	U.5609	0.5653	0.6055	0.8867 0.6085	0.0263 0.6425	0.6382 0.6376	0.6351 0.5962	0.8226	MIPRI 1
	TURN(PK)	22.269	21.306	21.776	22.127	19.352	17.930	14.729	10.354	0.5555 5.979	M(PR) 2 Turnipa)
	UUSAK LUSS PARA	0.1675 0.0463	6.1692 6.0446	0.1369	0.1225	0.1481	0.1221	0.1437	0.2090	0.2516	UUBAR
	⊔F AC	0.4124	0.3775	0.0267 0.3566	0.0337 0.3455	0.04C5 0.3434	6.033d 6.3163	0.0305	0.0519	0.0560	LOSS PARA
	££fP	0.7014	U.728F	4.8232	0.8561	0.7711	0.7977	0.3222 0.7222	0.3629 L.5764	0.3442 6.4835	ÚFAC EFFP
	EFF INCIL	0.6939 -2.925	-J-676	0.0163	0.8530	6.7051	0.7914	C.715e	0.5706	0.4754	iek
	DEVM	12.004	11.766	-3.367 10.799	-3,307 7,967	74.505 8.505	-3.247	-4.315	-0.915	-11.624	INCLU
	P 1	14.443	14.821	14.676	14.621	14.747	7.162 14.737	7.942 14.584	11.820 14.443	15.123	PEAM
	P 2 T 1	17.214 516.700	17.666	16.001	18.137	17.c97	17.707	17.151	16.447	15.639	P 1 P
	Ϊζ	557.140	518 .700 555 . 920	518.700 554.160	518.700 554.760	518.700	516.760	516.700	516.700	516.700	T 1
				,	2210100	554.950	553.960	553.450	552.740	553.250	T 2
STATER 0	PET SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10 65		
STATUR-L.L.	LIA Leta Z	35.267	33.564	33.921	34.992	36.420	37.840	36.914	10.00 34.276	5.00 34.633	PCT SPAN DIA
STATCH-T.L.	LETA ZA	34.749 2.300	31.420 2.250	30.64∠	30.025	20.500	26.613	27.052	29.664	33.931	beta 2
	V 2	610.04	605.58	1.900 690.68	0.62u 695.46	0.600 670.31	1.550	2.101	1.000	-2.601	BETA ZA
	V ZA	561.60	610.73	616.27	646.86	642.43	664-13 649-51	604.50 588.03	529.18 553.18	454.12 576.77	V 2
	VZ 2 VZ 2A	501.17 501.15	567.96	002.54	602.04	588.33	592-14	537.61	454.08	525.77 376.25	V 2A VZ 2
	V-THETA 2	351.15	600.25 46.97	617.90 346.46	646.76 547.93	643.1P	646-69	587.13	552.60	524.67	VZ ZA
	A-IHFIN TV	42.54	43.56	20.50	7.06	520.50 6.74	249.27 17.56	274.55 42.15	261-69	253.13	Y-THETA 2
	H 2 H ZA	0.5482	0-5960	0.6264	0.6255	0.6011	0.5957	0.5394	7.05 0.409i	رج. 33– 0-4001	M S
	TURN (PR)	0-4972 32-449	0.5344 29.169	0.5518 28.140	0.5767	0.5753	0.5617	0.5239	0-4914	4.4658	M ZA
	UUt.≜R	0.6484	6.6990	0.1154	29.399 0.0752	27.964 -0.0066	25.234 -0.0053	24.853	26.636	36.474	TURN (PR)
	LUSS PARA	0.0.31	0.033 K	0.0397	0.0267	-0.0024	-6.0626	0.0607 0.0240	-0.6£17 -0.6327	-0.3052 -0.1230	UULAR LOSS PARA
	UFAL GFFP	0.2661 0.4612	0.2630 0.5336	0.2742	0.2444	0.2140	0.1862	0.1937	6.1463	0.0894	UFAC
	INCL	-15.418	-11.9cb.	0.5272 -10.249	0.5217 -8.005	1.0719 -u.123	1.1644 -9.049	-0.0024	0.2060	0.1820	ŁFFP
	DEVM P 2	11.132	15.562	13.210	11.595	11.612	13.215	-11.646 14.606	-13.461 13.679	-25.269 2.256	INCIU DEVM
	P Z	17.214	17.666 17.312	16.001	18,137	17.647	17.707	17.151	16.427	15.639	P 2
	7 2	557.140	555.920	17.518 554.160	17.621 554.780	17.722 554.950	17.7.7 553.960	16.964	16.614	10.344	P ZA
	T 2A	557.140	555,920	554.160	554.780	554.950	553.960	553.050	552.740 552.740	553.250 553.250	T 2 T 2A
	UUBAR FS P2 F5	0.1424	0.0955 17.671	0.0799 17.839	0.0320	0.0321	0.0378	0.1533	0.2120	0.2300	UUBAH FS
	LOSS PARA ES	0.0479	0.0325	0.0275	17.949 0.0113	17.849 0.0116	17:875 0:0142	17-613 J.J725	17.283 0.Jo48	16:988	P2 FS
									0.00.0	0.6927	LUSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.56 Equivalent Rotor Speed = 4233.41 Equivalent Weight Flow = 110.18
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	31. 14.	•	_		
	ALU	33.122	33.529	33.962	35.312	37.137	28.10 38.954	12.00 40.321	7.16	3.66	PCT SPAN
	BETA O Beta 1	0.060	0.000	0.000	0.000	0.000	0.000	0.000	0.000	41.015 0.000	DIA BETA U
	¥ 0	0.000 437.84	0.000 437.84	0.000 437.84	0.000	0.000	0.000	0.000	0.000	6.160	BETA 1
	V 1	467.56	483.07	477.92	437.84 469.38	437.64 464.41	437.84	437.64	427.84	437.64	٧ ر
	V2 0	437.83	437.63	437.84	437.83	437.80	463.85 437.76	459.04 427.73	440.26 437.7c	4-1-61	V 1
	VZ 1 V-TheTA Q	407.56	463.07	477.92	469.36	464.38	463.78	458.93	440.06	437.72	V2 C V2 i
	V-THETA 1	0.00	0.00 0.00	0.00	0.00	0.06	i.00	0.00	0.00	اندا	V-THETA C
	мυ	0.3983	0.3983	4.3963	0.00	0.00	0.40 4.3963	0.00	0.00	0.00	V-THEFA]
	H 1	0.4263	0-4410	0.4361	0.4281	0.4234	0.4228	0.5903 0.4183	0.400b	0.35L3 0.3645	M L
	TURN UUBAR	0.6 0.4553	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.6	M 1 Turn
	UFAL	-0.00b	0.2635 -0.103	0.2470 -0.092	0.3114 -0.072	0.3061	0.5121	0.2509	0.4494	0.6255	ULEAS
	EFFP	0.2444	0.4667	0.4514	0.3364	-0.061 0.3003	-0.059 0.2929	-0.048 0.2296	-6.005	0.005	UFAC
	INCIL	0.0001	0.0001	0.0001	0.0001	0.0001	0.6001	0.0001	0.0245 0.0001	-0.3(85 0.0001	EFFF INCID
	DEVM P G	-0.060 15.227	-0.000 1:.227	-0.000	-0.000	-0.000	-0.000	-6.600	-0.000	-0.660	UL VM
	PI	14.508	14.611	15.227 14.637	15.227 14.735	15.227	15.227	15.227	15.227	15.227	ب ۲
	TC	518.700	518.700	516.700	518.706	14.741 518.700	14.734 518.700	14.673 516.700	14.516 518.700	14.240	P 1
	7 1	518.700	518.700	516.700	518.700	518.700	516.700	516.700	518.760	516.7cc 516.7cc	7 U 7 1
RDICK U	PCT SPAN	95.00	90.00	65.00	70.00	50.00	30.00	15.06	10.60		
ACTUR -L.L.	DIA BETA 1	35.236	33.621	34.067	35.164	30.706	38.246	34.405	35.791	5.00 40.17e	PLI SPAN LIA
RC1CR -1	BETA 2	0.∪00 42.97b	0.000 46.524	0.000 39.662	0.00	0.000	0.000	0.000	6.066	6.600	EE14 1
	EETA(PR) 1	52.545	50.366	50.249	37.684 51.862	36.489 53.875	35.444 55.252	36,997	46.067	44.656	SETA Z
	PETA (PR) 2	25.839	20.816	27.612	29.147	31.403	34,446	56.292 38.078	57.610 40.906	60.161 46.557	SETA(PR) 1
	V 1 V 2	468.76	512 BE	519.59	511.00	499.98	499.36	498.03	476.64	435.80	61 TA (PK) 2 V 1
	VZ 1	542.61 468.61	600.64 512.74	603.49 519.53	617.06	624.88	621.25	594.20	563.42	511.47	v ž
	VZ 2	433.55	456.55	464.57	510.97 488.33	+99.37 502.19	497.34 505.47	494.75 473.59	475.23	432.70	V <u>i</u> 1
	V-THETA 1	6.00	0.00	0.00	0.00	0.00	0.00	0.00	430.15 0.00	366.69 6.00	VZ L
	V-THETA 2 V(PR) 1	403.97 776.c	390.26	365.17	377.21	371.45	3: 9.79	356.85	362.UE	355.21	V-THĒJA 1 V-THLJA 2
	V(PR) 2	461.7	603.9 511.6	#14.2 524.3	827.t 559.1	547.4	873.7	393.3	889.0	872-1	VIPK) 1
	VTHETA PKI	-611.7	-619.1	-626.9	-651.2	568.6 -684	613.b -717.⊔	-741.6	576.5	534.5	V(PR) 2
	VTHETA PK:	-209.9	-230.8	-243.0	-272.3	-300.6	-346.7	-371.0	-749.ì -373.0	-755.4 -387.1	VIHETA PRI VIHETA PR.
	Ų Ž	611.70 613.92	619.05 621.04	626.87	651.23	684.17	716.96	741.63	749.14	755.42	U 1
	M 1	0.4274	0.4694	626.16 0.4758	649.53 0.4676	678.02 0.4571	706.51 0.4565	727.08	735.00	746.12	U 2
	H Z	0.5233	0.5320	0.5355	0.5481	0.5550	0.5515	0.455 <i>2</i> 0.5257	0-4368 0-4969	0.3964 6.4486	h
	M(PR) 1 M(PR) 2	0.7627	0.7357	0.7456	0.7575	0.7747	0.7967	U.8166	0.F113	U.7953	M(PK) 1
	TURN (PR)	0.4254 26.703	0.4531 23.545	0.465 <u>2</u> 22.735	0.4967	0.5226	0.5449	0.5334	U.5031	0.4686	MIPRI 2
	UUBAK	0.0952	0.1167	0.1066	22.734 0.063a	22.454 0.0493	26.747 0.0479	18.129 0.0937	16.600	15.5E*	TURNEY: 1
	LOSS PARA	0.0248	0.0306	0.0281	0.0171	0-0135	0.0133	0.0256	0.1316 0.0349	0.1527 0.0372	DULAK LUIS PARA
	DFAC LFFP	0.5270 G.840 7	0.5062 0.6327	0.4967	0.4645	0.4459	0.4350	G-4625	6.4497	0.5367	(FAL
	EFF	6-1352	0.6273	0.6757 U.6716	0.9328 0.9304	0.9532 0.9515	0.4541 0.4576	0.8977	0.8615	D・とこんり	1 P P
	INCIO	0.114	⊣ენს	-0.229	-0.101	-J.,¿b	~U.74+	0.6941 -2.402	i∙65e8 ~4•704	0.8(.)5 -7.5(.)	EHÍ
	bεVM P 1	10.689	12-657	12.978	10.506	8.192	6.688	6.455	7.766	10.500	INCID DEVM
	Pi	14.508 18.455	14.511 18.564	14.037 18.642	14.735 18.816	14.741	14.734	14.67,	14.516	14	P 1
	T 1	518.700	518.700	516.700	518.700	19.036 518.700	19.067 518.700	18.766 518.700	16.435 518.706	17.527	₽ .
	1.2	562.900	560.550	556.810	559.050	560.020	560.100	564.950	561.460	516.706 562.6.0	T) T 2
STATER L	FCT SPAN	95.UQ 33.267	90.06 33.564	65.60	70.00	50.00	30.00	15.00	10.00	5.44.0	PCT SPAN
STATER-L.E.	BETA 2	43.302	40.288	33.921 36.947	34.992 37.732	36.420 35.461	37.646	30.919	a9.276	30.0.3	DIA
STATUR-ILE.	BETA ZA	2.050	2.850	2.900	2.500	2.260	35.313 2.971	37.809 3.692	41.457	400	EETA .
	V 2 V 2A	569.11	603.74	613.07	617.06	033.79	624.23	564.12	548.83	3.45)	EETA ZA V .
	V 4A VZ 2	458.40 426.72	462.31 460.52	466.09	512.75	539.23	546.37	503.20	462.55	401.94	V
	VZ 2A	456.10	461.73	476.79 465.47	487.95 512.19	512.77 538.63	500.95	460.99	410-89	341.29	V _ ∠
	V-THETA 2	404.04	390.39	385.36	377.57	372.02	547.31 366.53	501.75 357.69	460.74 362.97	467.34 355.45	V2 24
	V-THETA ZA	16.40	22.99	23.56	22.36	21.26	26.40	32.37	30.56	32.08	V-Théia 2 V-Théia 2
	M ZA	0.5200	D.5349 O.4046	0.5445 0.4089	0.5481 0.4513	0.5634 6.4752	0.5543	0.5163	0.4634	0.43.4	H .
	TURN (PR)	41.252	37.437	36.045	35.226	33.063	0.4836 32.510	0.4416 34.372	0.4226	0.4100	M _A
	UUBAK	0.0717	0-0962	0.1065	0.0313	0.0225	0.0164	0.6847	37.066 0.0495	42.190 -6.1150	TUKN (PK.) UUFAK
	LOSS PARA UFAC	0.0241 0.4436	0.0327	0.0366	0.0111	0.0082	6.0063	0.0335	0.0197	-0.0463	LUSS PARA
	EFFP	0.6357	0.4416 0.7503	0.4431 0.7729	0.3741 0.9101	0.3549	0.3275	0.3606	0.3003	6.3164	UFAC
	INCID	~ 0.865	-3.100	-1.344	-0.298	0.9263 -0.744	0.9364 -0.554	0.7633 -0.896	0.6014 =1.716	2.0751	LFF P
	DEVM	10.862	14.162	14.210	13.475	13.272	14.635	16.130	-1.716 17.016	-13.00a 6.801	1NC1L UEVM
	P 2 P 2A	16.455 16.233 -	18.569	18.642 18.270	16.818	19.036	19.067	18.766	18.43:	17.527	P c
		562.900	560.550	18.2 79 556.810	18.709 559.050	18.953 560.020	19.008 560.100	18.502	18.300	10 17c	P ZA
	T 2A	562.900	560.550	558.810	559.050	560-020	560.100	560.450 566.450	561.460 561.460	562.650 562.650	1 .
	UUBAR FS P2 F5	0.0703	0.0805	0.0817	0.0444	0.0348	0.0319	0.1311	0.1412	3.1484	l .A UUDAH FS
	LOSS PARA FS	18.451 5 J.0236	18.513 0.0273	18.549	18.865	19.083	19.124	18.932	19.725	18.596	P. 15
				950200	0.0157	0.0128	0.0122	C.C518	0.0562	0.0>97	LUSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.16 Equivalent Rotor Speed = 4216.70 Equivalent Weight Flow = 102.67
Uniform Inlet

1.4LE [
1.4661	PCT SPAN	46.10	92.b0	66 .46	71.00	49.50	20.10				
	LIA	33.122	33.529	33.962	35.312	37-137	28.10 36.954	12.00 40.321	7.10 40.737	3.06	PCT SPAN
	BETA U	U.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	41.065	DIA BETA O
	V 6	406.18	0.000 40.15	û-000 406.18	0.000 406.18	0.000 406.18	0.000	0.000	0.000	0.666	bETA 1
	V I	422+48	435.94	433.91	426.43	426.01	406.18 426.81	406-16 412-60	400.18 400.64	406.16 372.66	¥ 6
	A7 0	406.16 422.47	400.18 435.94	406.18	406.16	406.15	406.12	406.08	406.07	406.08	A 1
	V-THETA O	0.60	0.00	434.41	426.42	425.98 0.00	426.74 0.00	412.49	466.53	372.59	A5 T
	V-The TA 1	0.00	0.00	0.06	0.00	9.00	0.00	U.DO U.DO	0.00	0.00 0.00	Y-THETA O
	M 0 H 1	0.3839 0.3839	0.3687 0.3966	0.3687	0.3667	7806.0	7866.0	0.3687	0.3687	0.3667	V-THETA 1 H U
	TUKN	0.6	0.0	0.3947	0.3876	0.3873 0.0	0.3860 0.0	0.3747	0.3636	0.3376	M 1
	UUBAR DEAC	0.4356	6.2627	0.2308	0.2764	U-2817	0.2625	0.0 0.3523	0.0 0.4207	0.0 0.5573	TUKN UULAR
	LFFP	-0.04C 0.1036	د70.07 0.3780	-0.068 0.0916	-0.050	-U.044	-0.051	~0.016	0.014	0.082	DFAC
	INCID	0.0001	0.0001	0.0601	0.2795 0.0001	0.2715 0.0001	0.2791 0.0001	0.0862	-0.0726	-0.4147	EFFP
	DLVM P U	-0.000	-0.000	+0.060	-0.000	-0.000	-0.000	-0.000	0.0001 -0.000	0.0001 -0.000	INCID Devm
	P I	15.116 14.52c	15.118 14.7e2	15.110 14.605	15.118 14.744	15-118	15.118	15-118	15-116	15,118	FU
	TL	18.70v	518.700	514.760	518.700	14.737 518.700	14.735 516.700	14.641 516.700	14.548 518.700	14.363	P 1
	T 1	510.700	518.700	518.700	518.700	516.700	518.700	518.700	516.700	518.700 518.700	T 0 T 1
FCTC+ L	PLT SPAN	95.00	90.60	65.00	70.00	50.00	30.00	35.00			
41.71 F	∍la bela l	33.236	130.t£	34.007	35.164	36.706	38.240	15.06 39.405	10.00 39.791	5.00 40.176	PCT SPAN DIA
nulus -L.	LTA 2	₩.000 45.847	0.000 ∪81.4÷	U-036	0.000	0.000	4.000	0-000	0.000	0.006	btTA 1
	FETA(PR) 1	55.205	53.198	43.189 53.040	41.301 54.513	59.914 50.166	38.682 57.419	40.347	42.36E	45.709	BETA 2
	LETA(PR) 2	25.915	27.777	29.567	31.129	33.554	36.316	59.046 39.191	59.976 41.861	61.885 46.665	SETAIPR) L SETAIPR) 2
	V 1	420.46 577.42	461.43 575.63	464.90 504.84	462,44	457.35	458.23	445.99	434.32	404.66	Y 1
	VŽ 1	423.36	2د.104	409.84	580.92 462.46	587.29 456.79	567.10 456.18	572.49 443.05	549-10	508.60	V ž
	V= 15:01A 1	%U.⊒∀	412.00	415.46	436.4I	450.30	450.54	435.49	431.23 404.96	402.02 354.54	V2 1 V2 2
	V~THETA Z	0.00 415.49	0.00 -01.15	0.00 389.99	0.00 383.41	0.00	0.00	0.00	D-00	0.00	V-THETA 1
	V(FK) 1	7-2.0	770.1	761.5	796.7	376.69 820.7	368.14 845.5	369.94 862.4	369.JI 863.4	363.43	V-THETA 2
	V(PR) 2 VILLYA PRI	44 6. 5 -c(4.3	400.0	477.7	509.8	540.6	567.3	563.0	544.7	854.4 517.5	V(PR) 1 V(PK) 2
	VIEETA PAZ	-196.0	-010.0 -217.4	-624.4 -235.7	-6+8.7 -261.6	-681.5	-714.1	-738.7	-746.2	-752.4	VTHETA PRI
	U I	609.ZL	645.01	624.39	648.66	-298.7 681.47	-335.6 714.13	-355.1 736.76	-362.5 746.18	-375.6 752.44	YThETA PR∠
	υ • 1	611.50 0.3849	616.59 C-4205	625.68	646.97	675.35	763.72	745.01	732.10	739.20	0 1 0 2
	M 2	0.5107	0.5005	0.4265 0.5040	0.4215 0.5142	0.4167 0.5200	0-4175	0.4660	0.3950	0.3673	H 1
	HIPK] L	0.6744	0.7019	0.7127	0.7261	U.7478	0.5195 0.7731	U.5054 O.7855	0.4633 0.7653	0.4457	M 2
	M(PK) Z TURN(PR)	0.1955 29.257	U-4122	0.4225	0.4513	0.4786	0.5020	0.4976	0.4795	0.4535	M(PR) 1 M(PR) 2
	UUBAR	0.0764	25.416 0.1103	23.471 0.1089	23.383 0.0787	22.595 0.0617	21.049 0.0628	19.779	10-040	15.166	TURN(PR)
	LUSS PARA	0.1194	0.0286	0.0261	0.0247	0.0165	0.0170	0.0963 U.U259	0.1236 0.0323	0.1450 0.0352	UUHAR LUSS PARA
	ufac Leep	∪.5500 0.8846	0.5472 0.6670	0.5371 0.6655	6.5079	0.4885	0.4762	0.4956	0.5176	0.5436	DFAC
	CFF	J.:797	0.0625	0.ra15	0.9241 0.9266	0.9620 v.4606	0.9593 0.9578	0.9272 0.9245	0.8607	0.B298	EFFP
	ANCID CEVM	2.774	135.5	2.401	2.476	2.165	1.426	V-360	0.8164 -4.331	0.6239 -0.271	EFF Incid
	h)	10.765 14.526	10.018	14.933 14.065	12.468 14.744	10.342	B.756	7.507	0.722	16-686	DEVM
	P 2	16.725	18.705	16.674	10.626	14.737 19.024	14.735 19.066	14.641 18.911	14.548 10.653	14.363	P 1
	T 1 1 2	516.700 563.050	516.700	18.700	518.700	518.700	516.700	518.700	516.700	16.262 518.700	P 2 T 1
	• •	2024020	560.780	559 U.U	559.210	555.570	560.240	561.260	502-260	503.420	Τż
STATER D	PCT SPAN	66 16									
	u I ż	95.60 13.267	90.00 33.564	85.00 35.921	70.00 34.992	50.00 36.426	30.00	15.00	16.00	5.00	PCT SPAN
Shelok-Late	DETA 2	46.200	42.442	44.417	+1.355	39.351	37.846 36.746	36.919 41.245	34.270 43.835	39.633 47.676	UEA
TATUM-TAGE	Et1A 2A V 2	3.200 575 .77	3.750	3.750	2.640	2.520	3.571	4-771	5.051	>-241	BETA ZA
	V ZA	~41.08	57E.50 435.68	578.48 434.24	580.92 465.99	595.23	569.87	563.05	535.11	490.96	V 2
	V2 2	346.51	416.66	427.05	436.00	~83.98 460.09	498.37 459.70	457.94 422.94	441.20 385.61	431-10 320-36	V ZA VZ Z
	VZ ZA V=fhETA z	446.34 415.56	+34 =73 401.29	435.30	465.43	463.35	497.11	455.49	439.16	426.85	A5 58
	V-THETA ZA	24.64	28.49	390.19 28.40	363.77 21.46	3 77.2 7 21.26	308.90 31.02	370.64	170.25	304+34	V-TheTA 2
	M 1	6.1076	0.5112	0.5120	0.5142	0.5274	0.5220	36.06 0.4966	38.82 0.4104	39.34 0.4297	V-1HETA ZA M Z
	™ ŻA TURN(PR)	0.3846 43.000	0.3807 40.171	0.3800 38.666	0.4066	0-4248	0.4377	0.4000	0.3652	0.3757	M 2A
	UUBAR	0.624	U+0744	0.686	38.70E 0.0321	36.813 0.0486	35.142 0.0363	36.427 0.1200	38.735	42.68U	TURN(PK)
	LOSS PARA Deal	0.0210	0-0253	0.0236	0.0114	v.0180	0.0134	0.0474	0.0918 0.0366	-0.0331 -0.0133	UUBAR LESS PARA
	FFFY	0.4627 0.6629	0.4665 0.8438	0.4649 0.8573	0.4200 0.9167	0.4591	0.3769	0-4224	0.4246	0.3969	UFAC
	INCIU	-3.967	0.534	2.126	3.324	0.6712 2.645	0.8662 2.678	0.676D 2.537	0.736) 0.663	1.1336	EFFP
	DEVM P 2	i032 16.725	15.065	15.060	13.615	13.532	15.235	17.209	17.727	-11.224 10.096	INCID DEVM
	PZA	16.725	18.705 18.477	10.674 18.464	16.626 16.729	19.624	19.066	16.911	16.653	16.262	P 2
	1.	563.05U	560.785	554.050	559.210	18.864 559.570	16.966 560.240	18.559 501.260	16.413 562.260	16.334 563.420	PLA
	T 2A Cubar Fs	503.050 5.0772	560.780	\$54.050	559.210	554.570	560.240	561.260	562.260	563.420	T Z T ZA
	PZ FS	18.774	0.0906 18.756	0.0922 18.753	0.0561 18.907	0.0508	0.0355	0.1159	0.1364	J.1372	UUBAK FS
	LOSS PARA F	v.€260	0.0308	0.0317	0.0199	19:031 C:0188	19.082 0.0136	18.897 0.0459	10.769	18.691 Jag551	PZ FS LUSS PARA FS
						· ·		55575	0.00	245221	LUGG PARF FG

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values

Percent Equivalent Rotor Speed = 100.06 Equivalent Rotor Speed = 4212.51 Equivalent Weight Flow = 95.36
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	66.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	36.954	40.321	40.737	41.065	AID
	BETA O BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	A 0	375.24	375.24	375.24	375.24	0.000 375_24	0.000 375.24	0.000 375.24	0.000 375.24	6.000 375,24	BETA 1 V O
	V 1 Vž o	386.54	400.37	399.71	394.29	394.81	392.60	380.93	371.86	349.16	v i
	V2 1	375.24 386.54	375.24 400.37	375.24 399.71	375.24 394.26	375.22 394.76	375.18	375.15	375.14	375.15	VZ O
	V-THETA O	0.60	0.00	0.00	0.00	0.00	392.54	380.84 0.00	371.76 0.00	349.06 0.00	VZ 1 V-THETA O
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	M 0 M 1	0.3400 0.3504	0.3400 0.3633	0.3400 0.3627	0.3400	0.3400	0.3400	0.3400	0.3400	0.3400	M O
	TURN	C.0	0.0	0.0	0.3576 0.0	0.3581 0.0	0.3561 0.0	0.3452 0.0	0.3368	0.3158	M 1 Turn
	UUBAR	0.4374	0.2576	0.2142	0.2656	0.2691	0.2736	0-3400	0.3931	0.5082	UULAR
	DFAC EFFP	-0.030	-0.067	-0.065	-0.051	-0.052	-0.046	-0.015	0.009	0.070	OFAL
	INCID	0.1264 0.0001	0.3592 0.0001	0.3964 0.0601	0.2900 0.0001	0.293C 0.0001	0.2651 0.0001	0.0854 0.0661	-0.0498	-0.3739	EFFP
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0-0001 -0-000	0.0001 -0.000	INCID Devm
	P () P 1	15.042	15.042	15.042	15.042	15.042	15.042	15,042	15.042	15.042	P O
	7 0	14.536 518.700	14.744 518.700	14.794 518.700	14.735 518.700	14.731 518.700	14.726 518.700	14.649 518.700	14.587	14.454	P 1
	ŤĨ	518.700	518.700	518.700	518.700	518.700	518.700	516.700	518.700 518.700	518.700 510.700	T 0 T 1
KOTER D	PET SPAN	95.00	90.00	85.00	70.00	50.00	36.00	15.00	10.00	5.00	PCT SPAN
RUTUR -L.E.	DIA Beta 1	33.236 0.000	33.621 0.000	34.607 0.000	35.164	36.706	38.246	39.405	39.791	40.176	DIA
RCTUR -T.E.	BETA 2	48.497	47.106	46.300	0.000 44.626	0.000 43.598	0.000 42.267	0.000 43.683	0.000 47.106	0.000 50.329	BETA 1
	BETAIPR) 1	57.529	55.526	55.310	56.639	58.174	59.577	61.048	61.814	63.422	BETA 2 Beta(PR) 1
	BETA(PR) 2 V 1	25.197	26.821	30.536	32.161	34,509	34.864	39.866	44.597	48.902	BETA(PR) 2
	V 2	387.42 575.45	423.06 558.20	431.81 552.90	426.67 562.04	423.0 6 568.33	42D.65 592.14	410.96 560.19	402.34	378.53	¥ 1
	VZ I	387.34	422.96	431.76	420.65	422.54	418.95	408.25	521.88 399.47	492.51 376.06	V 2 VZ 1
	V2 2	381.65	379.92	361.95	399.99	411.45	437.73	403,06	354.62	313.95	VZ Z
	V-THETA 1 V-THETA 2	0.00 431.33	0.00 408.93	0.00 399.72	0.00 394.83	0.00 391.80	0.00	0.00	U.00	0.00	V-THETA 1
	VIPE 1	721.5	747.3	758.7	775_9	801.5	397.64 628.2	387.66 644.7	381.70 847.1	378.55 841.6	V-THETA 2 V(PR) 1
	V(PR) 2	421.6	433.7	443.5	472.5	499.5	534.3	526.2	498 9	478.3	VIPRE 2
	VTHETA PRI VTHETA PRI	-608.7 -179.6	-616.0 -209.0	-623.8	-648.0	-680.6	-713.4	-730.0	-745.4	-751.7	VTHETA PRI
	U 1	608.68	616.00	-225.3 623.77	-251.5 648.01	-282.9 680.79	-305.2 713.42	-336.6 737.97	-349.7 745.44	-359.9 751.69	VTHETA PRZ U 1
	U Z	610.89	617.97	625.06	646.32	674.68	703.02	724.29	731.36	736.46	Ŭ Ž
	M 1	0.3513	0.3845	0.3927	0.3879	D.3845	0.3622	0.3732	0.3651	0.3430	M I
	M 2 M(PR) 1	0.5066 0.6542	0.4912 0.6792	0.4672 0.6899	0.4957 0.7053	0.5011 0.7285	0.5231 0.7526	0.4926 0.7670	0.4569 0.7688	0-4296 0-7626	H 2
	M(PR) 2	0.3710	0.3816	0.3908	0.4167	0.4404	0.4720	0.4626	0.1008	0.4173	M(PR) 1 M(PR) 2
	TURN (PR)	32.329	26.701	24.770	24.476	23.649	24.644	21.113	17.149	14.471	TURN(PR)
	UUBAR LOSS PARA	0.0765 0.0200	0.1149 0.0295	0.1160 0.0297	0.0913 0.0238	0.0884 0.0235	0.0778 0.0215	0.1229	0.1686	0.1904	UUBAR
	UFAL	0.5884	0.5604	0.5720	0.5474	0.5335	0.5152	0.0327 0.5349	0.0421 0.5675	0.0443 0.589£	LOSS PARA Ufac
	EFFP	0.8762	U_8376	0.8587	0.9040	0.9182	0.9735	0.8845	0.6057	U-760E	EFFP
	EFF Inčiu	0.8714 5.098	0.8319	0.8539	0.9005	0.9152	0.9724	0.8802	0.7969	0.7521	EFF
	DEVM	10.047	4.609 14.661	4.732 15.404	4.597 13.520	4-173 11-297	3.589 7.324	2.369 t.242	-0.486 11.458	-4.728 12.926	DEAW JUCIO
	P 1	14.536	14.744	14.794	14.735	14.731	14.726	14.649	14.587	14.454	P 1
	P 2	18.936	18.774	18.764	18.907	19.071	19.409	19.020	16.611	18.324	P 2
	T 1 T 2	516.700 565.410	516.700 563.27u	518.700 561.390	518.700 561.230	518.700 562.100	518.700 562.490	516.700 564.350	518.700	516.70u	7 1
	, .				2011120	3021100	302 \$470	304.330	565.490	567.060	Т 2
STATUR U	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATUR-L.E.	DIA BETA 2	33.207 48.883	33.564 46.827	33.921 45.460	34.992 44.688	36.420 42.974	57.848	38.919	39.276	39.633	DIA
STATOR-T.E.	BETA 2A	3.760	4.210	3.750	3.120	2,460	42.115 3.301	44.891 4.131	46.8C7 5.4GZ	52.586 5.702	DETA 2 BETA 2A
	¥ 2	572.63	560.92	561.09	562.04	575.85	594.87	551.10	508.96	475.68	V 2
	V ZA VZ Z	427.92	417.95	413.92	441.65	453.09	461.34	421.79	407.11	400-26	V 2A
	V2 2A	376.56 427.00	383.78 416.81	393.54 413.01	399.53 440.93	421.17 452.52	440.97 460.30	390.0B 420.36	334.93 404.95	286.14 347.88	VZ 2A
	A-1HF1V 5	431.40	409.07	399.92	395.20	392.40	398.06	388.60	382.67	379.55	Y-THETA 2
	V-THETA ZA	28.06	30.65	27.07	24.03	19.44	26.55	30.36	38.29	39.75	Y-THETA 2A
	M 2 M 2A	0.5036 0.3722	0.4937 U.3640	0.4948	0.4957 0.3859	0.5081 0.3959	0.5256 0.4032	0.4842	0.4452	0.4144	M 2
	TURN(PR)	45.123	42.616	41.708	41.562	40.496	38.760	40.714	43.357	47.235	M ZA Turn(Pr)
	UUBAR	0.0700	0.0487	0.0591	0.0361	0.0605	0.1411	0.1536	0.0592	-0.0476	UUBAR
	LOSS PARA Deac	0.0235	0.0165 0.4847	0.0203 0.4913	0.0128 0.4494	0.0224	0.0543	0.0607	0.0236	-0.0191	LDSS PARA
	EFFP	6.8555	0.9001	0.8815	0.9142	0.4538	0.4666 0.6766	0.4938 0.6560	0.4726 0.8476	0.4467 1.1517	UFAC EFFP
	INCIL	-1.264	3.439	5.169	6.857	6.266	6.246	6.183	5.635	-6.215	INCIO
	DEVM P 2	12.592	15.522	15-060	14.095	15,471	14.965	16.568	18.677	10.550	DE VM
	P 2A	18.936 18.725	18.774 18.634	16.764 16.593	16.907 18.802	19.071 18.865	19.409 18.939	19.020 16.587	18.611 15.470	18.324 18.421	P 2 P 2 A
	7 2	565.410	563.270	561.390	561.230	562.100	562.490	564-350	565.490	567.060	1 2
	T 2A	565.410	563.270	561.390	561.230	562.100	562.490	564.350	565.490	567.060	T ZA
	UUBAR FS PZ FS	0.0880 18.995	0.1046 18.954	0.1157 16.949	0.079 <u>8</u> 19.046	0.0760 19.123	0.0652 19.138	0.1102 18.882	0.1272 18.795	0.1215	UUBAK FS
	LUSS PARA F		0.0354	0.0397	0.0283	0.0281	0.0250	0.0435	3.4506	18.718 J.0488	P2 FS LUSS PARA FS

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 100,09 Equivalent Rotor Speed = 4213.61 Equivalent Weight Flow = 88.32 Uniform Inlet

15.16.7											
INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.54	
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	7.10 40.737	3.00 41.085	PCT SPAN DIA
	BETA Q	0.000	0.000	0.000	0.000	0.000	0.000	U.000	0.000	0.000	BETA U
	BETA 1 V O	0.000	D.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA L
	v i	346.20 357.52	346.20 374.91	346.20 370.88	346.20 367.53	346.20 363.00	346.20 361.71	346.20 347.07	346.20	346-20	V U
	V2 0	346.20	346 - 20	346.20	346.20	346.18	346.15	346.12	339.28 346.11	328.73 346.11	V 1 VZ C
	VZ 1	357.52	374.91	370.88	367.53	362.97	361.65	346.98	339.18	328.05	V2 1
	V-THETA O V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	- M U	0.3131	0.00 0.3131	0.00 0.3131	0.00 0.3131	0.00 0.3131	0.00 0.3131	0.00 0.3131	0.00	0.00	V-THETA 1
	M 1	0.3236	0.3397	0.3359	0.3328	0.3286	0.3274	0.3139	0.3131 0.3067	0.3131 0.2970	M O
	TURN	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR DFAC	0.4464 -0.033	0.2527 -0.083	0.2268 -0.071	0.2569 -0.062	0.2631 -0.049	0.2651 -0.045	0.3252	0.3687	0.4392	UUBAR
	EFFP	0.1329	0.4148	0.4033	0.3369	0.2813	0.2635	-0.002 0.0155	0.020 -0.1247	0.050 -0.2993	DFAC
	INCIO	0.0001	0.0001	0.0001	1 000.0	0.0001	0.0001	0.0001	0.0001	0.0001	EFFP INCID
	DEYM P O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.006	DEVM
	P 1	14.980 14.541	14.980 14.732	14.980 14.757	14.980 14.728	14.980 14.721	14.980 14.719	14.980	14.980	14.980	PO
	T Q	518.700	516,760	518.700	518.700	518.700	518.700	14.660 518.700	14.618 516.700	14.548 518.700	P I T G
	Ti	518.700	518.700	51B.700	518.700	518.700	518.700	518.700	516.700	516.700	ŤĬ
ROTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
90TG5 -1 E	DIA	33-236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTUR -L.E. ROTOR -T.E.	BETA 1 Beta 2	0.066 50.596	0.606 49.304	0.000 46.731	0.000	0.000	0.000	0.000	6.000	0.000	BETA 1
	BETA(PR) 1	59.527	57.298	57.344	47.526 58.513	47.246 60.339	46.550 61.633	50.33£ 63.303	53.661 63.993	57.508	BETA Z
	BETA(PR) 2	23.951	27.444	30.607	30.195	32.099	37.260	43.778	46.253	64.610 47.753	BETA(PR) 1 BETA(PR) 2
	V 1	358.32	395.68	399.93	397.03	368.28	386.88	373.67	366.39	355.98	V 1
	V 2 V2 1	579.39 358.25	563.60 395.59	547.58 399.88	571.87	581-88	563.48	525.14	514.21	515.30	A 5
	YZ Z	367.78	367.48	361.18	397.00 366.15	367.80 394.90	385.31 387.17	311-21 334.73	263.78 304.17	353-66 276-52	V2 i V4 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.66	V-THE FA 1
	V~THETA 2 V(PR) 1	447.66 706.5	427.29	411.57	421.80	427.14	408.69	403.73	413.75	434,19	Y-THETA 2
	VIPRI 2	402.5	732.3 +14.1	741.1 419.7	760.1 446.8	783.9 466.4	811.7 407.1	827.4 464.4	830.6	631.9	V(Pk) 1
	VTHETA PRI	8.804-	-616.2	-623.9	-648.2	-681.0	-713.6	-738.2	440.7 -745.6	412.0 -751.9	V(PR) 2 VTHETA PRI
	VTHETA PRE	-163.4	-190.8	-213.7	-224.7	-247.7	-294.5	~ 320.7	−317.ь	- 104 5	VTHETA PRE
	U 1 U 2	606.84 611.05	616.16 618.14	623.94 625.23	648.16 646.49	680.97	713.61	736.10	745-64	751.E9	U 1
	M 1	0.1245	0.3589	0.3629	0.3602	674.85 0.3521	703.21 0.3508	724.48 0.3385	731,57 0.3318	736.65 0.322I	U 2 M 1
	M 2	0.5094	0.4958	0.4618	0.5041	0.5129	0.4953	0.4590	0.4485	0.4466	MZ
	M(PR) 1 M(PR) 2	0.6394 0.3538	0.6643	0.6725	0.6896	0.7108	0.7360	0.7495	0.7523	0.7526	MEPRI L
	TURN (PR)	35.573	0.3643 24.850	0.3692 26.735	0.3938 28.318	0.4111 28.226	0.4281 24.330	0.4059 19.466	0.3843	0.3588	MIPRIZ
	UUPAK	0.0766	0.1173	0.1215	0.1058	0.1074	0.1256	0.2076	17.661 0.2525	17.014 0.2921	TURNIFR) UUBAR
	LOSS PARA	0.0268	0.0305	0.0310	0.0281	0.0293	0.6337	U.0520	0.0612	0.0496	LOSS PAKA
	UFAC EFFP	0.6142 0.8962	0 <u>-6059</u> 0-8646	U.5988 D.6647	0.5827 0.9276	0.5797 C.4549	0.5681	0.6065	0.6426	0.6680	DFAC
	EFF	0.6921	0.8597	0.8599	0.9246	0.9531	0.9D26 U.8966	0.7816 0.7732	0.7439 0.735c	0.735U 0.7256	EFFP EFF
	1NC10	7.098	0.362	0.700	0.471	6.340	5.049	4.634	1.16.		INLIC
	DEVM P 1	8-601	13.285	15.973	11.55	5.887	9.698	12,152	13.114	11.776	Dt VM
	Ρô	14.541 19.146	14.732 18.993	14.757 18.861	14.728 19.167	14.721 19.452	14.719 19.279	14.660 18.759	14.618	14.548	P ± P 2
	T 1	518.700	518.700	518.700	518.700	518.700	518.760	516.700	16.606 518.706	18.606 518.700	Ti
	T 2	566.250	564.130	562.500	502.730	503.800	564.950	567.650	569.06E	570.75u	ŤŽ
STATOR D	PCT SPAN DIA	95.00 33.207	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PLT SPAN
STATUR-L.E.	BETA 2	51.014	33.564 46.996	33.921 47.824	34.992 47.592	36,420 46.528	37.848 46.361	38.919 51.575	39.276	39.033	DIA
STATUR-T.E.	BETA 2A	3.750	4.590	4.250	3.090	2.690	2.900	3.401	55.637 4.952	61.128 5.572	BETA 2 BETA 2A
	V 2	576.04	566.40	555.65	571.87	569.67	566.04	516.94	501.65	497.3t	V Z
	V 2A VZ 2	431.34 362.40	420.64 371.61	414.13 373.06	428.61	435.51	435.54	399.85	390.71	289.40	V _ L
	YZ ZA	430.41	419.48	412.97	385.63 427.93	405.57 434.89	390.26 +3+. 7 2	321.05 398.82	281.53 368.91	240.05	V4 2
	V-THETA 2	447.70	427.43	411.77	422.20	427.5C	409.55	404.71	414.84	30 7. 15 435.35	V2 ZA V≕THETA 2
	V-THETA 2A M 2	28.21	33.67	30.69	23.10	20.43	22.03	23.76	33.69	37.77	V-The TA ZA
	M ZA	0.5063	0.4984 U.3663	0.4892 0.3608	0.5041 0.3737	0.5201 0.3795	0.4977 0.3791	0-4515	0.4371 6.3379	0.4326	H 2
	TURN (PR)	47.264	44.406	43.572	44.495	45.620	43.446	0.3464 48.128	50.840	0.3362 55.512	M ZA TUKN(PF)
	UUBAR	0.0809	0.0677	0.0397	0.1067	0.1677	0.1281	C.0620	0.0330	0.0341	UUSAR
	LOSS PARA DFAC	0.4966	0.0230	0.0136	0.0379	0.0620	0.0443	0.0245	6.0131	0.01.7	LUSS PARA
	EFFP	0.8323	0.4939 0.8620	0.4910 0.9183	0.4991 0.7776	0.5181 0.6630	0-4955 0-7124	0.5203 0.8576	0.5276	0.54.7	ÚFAL LELG
	INCID	0.847	5.668	7.533	9.561	9.822	10.512	12.868	0.9222 12.665	0.9182 1.933	EFFF INCIC
	DEVM	12-582	15.901	15.560	14.064	13.701	14.565	15.839	17.627	10.420	DEVM
•	P 2 P 2A	19.146 18.697	18.993 18.792	18.861 18.747	19-187	19.452	19.279	16.759	18.000	16.600	# Z
	T Ž	566.250	564.130	562.500	16.861 562.730	18.902 563.600	18.694 564.95u	18.607 567.650	16.530 569.060	16.529 570.750	P .A T 2
	T 2A	566.250	564.130	562.500	562.730	563.800	564.950	567.650	569.060	570.75u	1 24
	UUBAR FS P2 F5	0.0933 19.187	0.1094 19.131	0.1147	0.1329	0.1330	0.1087	0.1087	0.1197	0.1149	UUSAK FS
	LOSS PARA F		0.0371	19.101 0.0392	19,279 0:0472	19.320 0:0491	19.213 0.0418	18.887 0:0429	1=+631 0+2475	18.810	PZ FS LOSS PARA FS
						0.07/1	4-4-10	0.0727	Q+U4/3	0.0461	LIISS PAKA PS

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 90.72 Equivalent Rotor Speed = 3819.18 Equivalent Weight Flow = 113.67 Uniform Inlet

INLET							•				
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	20.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38,954	40.321	40.737	41.085	DIA
1	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA C
	BETA 1 V O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	v i	452.47 491.83	452.47 500.19	452.47 493.39	452.47 485.63	452.47	452.47	452-47	452.47	452.47	V O
	VZ O	452.47	452.47	452.47	452.46	479.52 452.43	480.81 452.39	474.16 452.35	466.26	434.84	V 1
	VZ 1	491.82	500.19	493.39	485.62	479.49	480.73	474.04	452.34 466.13	452.35 434.72	VZ G VZ 1
	V-THETA 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	Y-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	M O	0.4121	0.4121	0.4121	0.4121	0.4121	0.4121	0.4121	0.4121	0.4121	M D
	M 1	0.4493	0.4573	0.4508	0.4434	0.4377	0.4389	0.4326	0.4251	0.3955	M 1
	TURN UUBAR	0.0 0.4497	0.0 0.2794	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	DFAC	-0.087	-0.105	0.2622 -0.090	0.3183 -0.073	0.3226	0.3288	0.3639	0.4121	0.5515	UUBAR
	EFFP	0.2984	0.4584	0.4344	0.3362	-0.060 0.2681	-0.063 0.2941	-0.048 0.2219	-0.030 0.1344	0.039 -0.1690	DFAC
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.1366 0.0001	0.0001	EFFP INCID
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEAM
	PO	15.278	15.278	15.278	15,278	15.276	15.278	15.278	15.278	15.278	PO
	P 1	14.520	14.807	14.836	14.742	14.734	14.724	14.665	14.584	14.349	Pi
	T 0 T 1	518.700	516.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 0
	, ,	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	516.700	T 1
RETOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	LETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.000	BETA 1
RUTUR -T.E.	BETA 2	33.619	30.602	29.467	28.502	27.700	26.086	25.993	28.770	31.920	BETA 2
	BETA(PR) 1 BETA(PR) 2	48.226	40.416	46.471	47.968	50.091	51.401	52.587	53.256	55.339	BETA(PR) 1
	V I	26.992 493.06	26.365	26.312	26.478	29.680	33.309	39.162	43.857	50.662	BETA(PR) 2
	v ž	566.44	531.66 598.82	53 7.28 614.37	529.61 640.49	516.00 631.25	518.43 619.86	515.17	506.18	474.31	V 1
	V2 1	492.96	531.54	537.22	529.58	516.24	516.33	562.56 511.78	502.37 504.56	429.08 471.22	V 2
	VZ 2	471.67	515.39	534.88	562.84	558.65	555.84	504.33	439.15	363.26	VZ 1 VZ 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2	313.60	304.82	302.21	305.63	293.30	272.13	245.90	241.12	226.29	V-THETA 2
	V(PR) 1	740.0	771.1	780-1	791.0	805.1	828.9	844.4	845.6	830.3	V(PR) 1
	V(PR) 2 VTHETA PR)	529.4 -551.6	575.3	596.7	628.8	643.3	666-0	651.7	610.2	573.9	V(PR) 2
	VTHETA PRZ	-240.2	-558.5 -255.5	-565.5 -264.5	-587.5 -280.3	-617.2 -318.4	-646.6	-669.1	-£75.8	-661.5	VTHETA PRI
	U 1	551.84	558.48	565.53	587.51	617.23	~365.2 646.81	-410.8 669.06	-422.0	-443.2	YTHETA PR2
	υz	553.85	560.27	566.70	585.98	611.68	637.38	. 656-66	675.84 663.09	681.50 669.51	U 1 U 2
	M 1	0.4505	0.4874	0-4928	0.4854	0.4732	0.4747	0.4716	0.4649	0.4327	Mi
	M 2	0.5047	0.5360	0.5516	0.5763	0.5673	0.5571	0.5033	0.4472	0.3798	M 2
	MIPRI I	0.6762	0.7069	0.7155	0.7250	0.7371	0.7590	0.7730	0.7736	0.7575	MIPRI 1
	M(PR) 2	0.4717	0.5149	0.5358	0.5658	0.5781	0.5985	0.5830	0.5432	0.5079	M(PR) 2
	TURN(PR) UUBAR	21.229	20.046	20.156	21.490	20.392	18.029	13.334	9.305	4.602	TURN (PR)
	LOSS PARA	0.1648 0.0425	0.1450 0.0381	0.1133	0.0651 0.0179	0.0757	0.0726	0.1305	0.2018	0.2357	UUBAR
	DFAC	0.4076	0.3701	0.3502	0.3238	0.0212 0.3177	0.0204 0.3062	0.0351	0.0510	0.0529	LUSS PARA
	EFFP	0.6906	0.7224	0.8110	0.9117	0.8872	0.8870	0.3284 0.7334	0.3774 0.5914	0.4045 0.4819	DFAC EFFP
	E#F	0.0841	0.7167	0.4069	0.9094	0.8844	0.8843	0.7283	0.5852	0.4754	EFF
	INCID	-4.206	-4.500	-4.108	-4.074	-3.912	-4.600	-6.115	-9.069	-12.637	INCIO
	DEAW	11.643	12.205	11.678	7.837	6.469	5.750	7.538	10.718	14.687	DEVM
	P 1 P 2	14.520	14.807	14.536	14.742	14.734	14-724	14.665	14.584	14.349	Pl
	Τĺ	16.791 518.700	17.113 518.700	17.306 518.700	17.581	17.510	17.385	16.750	16.220	15-674	P 2
	ήŽ	550.840	549.260	547.610	518.700 548.140	518.700 548.350	518.700 547.210	518.700	518.700	518.700	1 1
			,,,,,,,	3410010	2400145	2406370	7414210	546,280	546.050	546,600	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
53 4 7 C to 1 5	DIA BETA 2	33.207	33.564	33.921	34.992	36-420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E. STATOR-T.E.	BETA ZA	33.847 1.650	30.437 1.630	28.965 1.410	28.537 0.360	27.317	25.997	26.495	29.598	33.190	BETA 2
JINION TILL	V 2	563.13	601.92	624.37	640.49	0.270 640.43	1.200 622.86	1.681 553.31	0.430 490.12	-3,241	BETA ZA
	V ZA	511.55	544.32	564.55	618.58	620.46	612.60	549.75	515.73	415.08	V 2
	V2 2	467.70	518.96	546.25	562.57	560.71	559.29	494.50	425.56	488.42 346.86	A 5 Y
	VZ ZA	511.33	544.09	564.35	618.48	620.24	612.09	549.06	515.26	487.12	VZ ŽA
	V-THETA &	313.65	304.92	302.36	305.92	293.75	272.69	246.49	241.73	226.89	V-THETA 2
	V-THETA ZA	14.73	15.48	13.89	3.89	2.92	13.68	16.11	3.87	-27.58	V-THETA ZA
	M 2 M 2A	0.5016	0.5389	0.5612	0.5763	0.5761	0.5599	0-4946	0.4359	0.3670	H 2
	TURN (PR)	0,4537 32,197	0.4848 28.807	0.5045 27.554	0.5553 20.171	0.5570 27.031	0.5501 24.484	0.4913	0.4596	0.4341	H 2A
	UUBAR	0.1031	0.0898	0.0802	-0.0091	-0.0153	-0.0003	24,776 0.0375	29,122 -0.0555	36.373 -0.2890	TURN(PR)
	LOSS PARA	0.0347	0.0304	0.0276	-0.0032	-0.0057	-0.0001	0.0319	-0.0222	-0.1164	UUBAR LOSS PARA
	DFAC	0.2705	0.2595	0.2550	0.2021	0.1999	0-1774	0.1724	0.1430	0.0717	DFAC
	EFFP	0.4644	0.5596	0.6109	1.1176	1.2164	1.0088	-1.6362	0.5263	0.3046	EFFP
	INCID	-16.320	-12,950	-11.325	-9.493	-9.384	-9.869	-12.203	~l3.567	-26.010	INCID
	DEVM	10.482	12.942	12.720	11.335	11.282	12,946	14.120	13.110	1.616	DEVM
	P 2 P 2A	16.791 16.517	17.113 16.638	17.306 17.038	17.581 17.613	17.510	17.385	16.750	16.220	15-674	P 2
	T 2	550.840	549.260	547.610	548,140	17.564 548.350	17.386 547.210	16.654	16.330	16.077	P 2A
	Ť ŽA	550.840	549.240	547.610	548.140	540.350	547.210	544.280 544.280	546.050 546.050	546.600 546.600	T 2 T 2A
	UUBAR FS	0.1562	0.0927	0.0902	0.0389	0.0272	0.0622	0.1999	0.2376	0,2353	UKUBAR FŞ
	P2 FS	15.957	17.123	17,341	17.757	17.664	17.607	17.274	16.963	16.629	P2 FS
	LOSS PARA F	5 0.J525	0.0316	0.0310	0.0137	0.0101	0.0207	0.0794	0.0950	3.0947	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 90.27 Equivalent Rotor Speed = 3800.48 Equivalent Weight Flow = 103.01
Uniform Inlet

INLET											
INC.	PCT SPAN	96.80	92.00	86.90	71.00	40.50					
	DIA	33.122	33.529	33.962	35.312	49.50 37.137	28.10 38.954	12-00	7.10	3.00	PCT SPAN
	BETA O	0.000	0.000	0.000	0.600	0.000	0.000	40.321 0.000	40.737 0.000	41.085 0.000	DIA
	BETA 1	0.000	6.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O Beta 1
	A 1	407.27 427.80	407.27 437.64	407-27	407.27	407.27	407.27	407.27	407.27	407.27	V O
	¥Z o	407.27	407.27	434.89 407.27	428.74 407.26	425.61	421.61	417.38	395.65	359.67	V 1
	VZ 1	427.80	437.64	434.89	428.73	407.24 425.58	407.20 421.74	407.17 417.26	407.16	407.16	VZ O
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	395.74 0.00	359.58 0.00	VI 1
	V-THETA 1	Ú.DO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	M Q M 1	0.3697 0.3889	0.3697 0.3982	0.3697	0.3697	0.3697	0.3697	ũ∙3697	0.3697	0.3697	HG
	TURN	0.0	0.0	0.3956 0.0	0.3698 0.0	0.3869	0.3833	D.3792	0.3591	0.3256	H 1
	UUBAR	0.4366	D.2750	0.2448	0.2901	0.0 0.3007	0.0 0.2901	0.0 0.3301	D.O 0.4412	0.0	TURN
	DFAC	-0.050	-0.075	-0.068	-0.053	-0.045	-0.036	-0.025	0.028	0.6225 0.117	UUBAR
	EFFP Inlio	0.1980	0.3717	0.3762	0.2814	0.2432	0.2082	0.1375	-0.1499	-0.5719	DFAC EFFP
	DEVM	-0.000	0.0001 -0.000	0.0001 ~0.000	0.0001	0.0001	0.0001	0.0001	0.0001	10001	INCID
	PU	15,134	15.134	15.134	-0.000 15.134	-0.000 15.134	-0.000 15.134	-0.600	-0.000	-0-660	DEVM
	P 1	14.539	14.759	14.601	14.739	14.724	14.739	15.134 14.684	15.134 14.531	15.134	PO
	10	518.760	218 - 100	518.700	518.700	518.700	518.700	516.700	14.533 518.700	14.286 516.766	P 1 T o
	T 1	518.700	518.700	518.700	516.700	518 .7 00	518.700	518.700	518.700	518.700	Τĭ
ADTUA C	PCT SPAN	95.00	90.00	85-00	70.00	50.00	30.00	15.00	10.00	5.04	PCT SPAN
ROTUR -L.L.	DIA SETA 1	33.236 6.000	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -T.E.	BETA 2	41.096	0.006 444 444	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
, , , , , , , , , , , , , , , , , , , ,	SETA (PR) 1	52.020	56.191	37.492 50.076	35.734 51.499	34.844 53.388	33.603	34.810	37.366	40.716	BETA 2
	BETA(PR) 2	25-459	26.429	27.698	27.763	30.316	54.989 34.056	56.043 37.847	57.653 40.398	60-248	BETAIPE 1
	V 1	428.81	463.28	471-00	465.09	456.91	452.70	451-32	428.99	46.656 390.17	BETA(PR) 2 V 1
	V 2 VZ 1	542.42 426.72	551.38	550.09	576.58	579.25	568.89	541.76	515.36	458.94	v 2
	vi 2	408.74	463.17 431.72	470.94 436.45	465.06	456.34	450-A7	448.35	445.93	387.63	A5 1
	V-THETA 1	0.00	0.00	0.00	468.02 0.00	475.21 0.00	473.18 0.00	443.84 0.00	408.66	345.63	V2 2
	V-THETA 2	356.54	342.95	334.80	336.73	330.82	314.42	308.59	0.00 312.06	0.00 297.45	V-THETA L
	V(PR) 1 V(Pk) 2	646.7	723.5	733.9	747.1	765.5	786.9	804.3	797.7	782.4	V-THETA 2 V(PR) 1
	VIHETA PRE	-452.7 -549.1	+82.1 -555.7	493.0	528.9	550.7	571.9	563.2	537.7	506.3	V(PR) 2
	VTHETA PKZ	-194.0	-214.6	-562.6 -229.1	-584.6 -246.4	-614.2 -277.9	-643.6 -319.8	-665 B	-672.5	-676.2	VTHETA PRI
	UI	549.14	555.75	562.76	584.63	614.21	643.04	-344.9 665.74	-347.E 672.53	-360.6 678.17	VTHETA PRZ
	U 2	551.14	557.53	563.92	503.11	608.69	634.26	653.44	659.84		UL
	Mi	0.3899	0.4223	0.4296	0.4240	0.4163	0.4123	0.4110	0.3900	666.23 0.3538	U 2 # 1
	H 2 M(PR) 1	0.4809 0.6335	0.4902	0.4697	0.5143	0.5164	0.5067	0.4813	0+4568	0.4029	M Z
	M(Pk) 2	0.4013	0.6595 0.4286	0.6693 0.4368	0.6811	0.6974	0.7167	0.7325	0.7253	0.7045	M(PR) 1
	TURN (PR)	20.556	23.758	22.375	0.4716 23.735	0.4910 23.053	0.5094 20.875	0.5003 18.111	0.4766	9.4404	HIPRI 2
	UUBAR	0.0946	u.1051	0.1016	0.0492	0.0382	0.0405	0.0829	17.171 0.1124	13.332 0.1275	TURN (PR.) UUBAR
	LÚSS PARA DFAC	0.0247	0.0276	0.0267	0.0134	0.0106	0.0113	0.0227	0.0300	0.0309	LOSS PARA
	EFFP	0.4987 0.6301	0.4729 0.8368	0.4639	0.4305	0.4191	0.4066	0.4317	0.4618	0.4864	DFAC
	EFF	0.8254	0.8326	0.8668 0.6633	0.9560 0.9547	0.9723 0.9715	0.9580	0.8986	0.8771	0.8024	EFFP
	INCID	-0.411	-0.725	-0.502	-0.544	~0.615	0.9568 -1.007	0.8957 -2.651	4.662 -4.662	0.7974 -1.913	ÉFF NOVE
	DEYM F I	10.309	12.269	13.065	9.123	7.105	6.496	6.224	7.260	10.879	INC1D De vm
	P 2	14.539 17.602	14.759 17.695	14.801	14.739	14.724	14.739	14-584	14.553	14.286	P 1
	T 1	518.760	518.700	17.705 510.700	18.014 518.700	18.138 518.700	18,047	17.829	17.571	17-077	P≥
	T Z	553.980	551.840	550.260	550.760	551.470	518.700 551.440	518.700 551.710	518.700 551.790	518,700	T 1
								,,,,,,,,	2211170	552.730	† 2
STATER D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	6 CA	007 5000
674761	CIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	5.60 39.633	PCT SPAN D1a
STATOR-L.F. STATOR-T.E.	BETA 2 BETA 24	41.385	36.256	36-867	35.779	34.378	33.492	35.521	38.550	42.528	BETA 2
7,000	V 2	2.050 539.39	∠.360 554.06	2,250 558.33	1.540	1.350	2.001	2.B51	3.101	2.001	BETA 2A
	V 2A	433.63	440.83	444.04	576.58 490.54	587.04 509.88	571.45 514.42	533.03	502.60	441.72	V 2
	VZ Z	404.69	435.06	446.66	467.70	484.29	514.62 476.15	467.65 433.34	445.11 392.61	433.57 325.16	V 2A V2 2
	VZ ZA	4.3.55	440.45	443.72	490.29	509.57	514.00	466.69	444-07	432.85	VZ ZA
	V-THETA 2 V-THETA 2A	356.60 15.52	343.67 18.15	334.96	337.05	331.32	315.06	309.33	312.86	298.24	V-THETA 2
	M 2	0.4781	0.4927	17.45 0.4974	13.16 0.5143	12.01	17.95 D.5091	23.24	24.06	15.12	V-THETA 2A
	M 2A	0.3814	0.3885	0.3921	0.4344	0.5237	0.4563	0.4732 0.4130	0.4450 0.3925	0.389D 0.3616	M 2
	TURN(PR)	39.335	35.897	34.616	34.232	33.010	31.459	32.625	35.400	44.470	M 2A Turnipr)
	UUBAR LOSS PARA	0.0653 0.0230	0.0830 0.0282	0.0763	0.0384	0.0236	0.0074	0.0939	0.0756	-0.1333	UUBAR
	DFAC	0.4088	0.4042	0.0262 0.4006	0.0137 0.3493	0.0088	0.0026	0.0372	0.0302	-0.0537	LUSS PARA
	EFFP	0.6227	0.7934	0.8107	0.8746	0.3335 0.9138	0.3007 0.9650	0.3366 0.6258	0.3457 0.6755	0.2786	DFAC
	INCID	~8.782	-5.130	-3.424	-2.252	-2.327	-2.374	-3.184	-4-621	4.3941 -10.677	EFFP Incid
	DEVM P Z	10.882 17.602	13.672	13.560	12.515	12.362	13.665	15.290	15.778	6.653	DEVM
	P ZA	17.428	17.695 17.470	17.705 17.495	18.014 17.900	18.138	18.097	17.829	17.571	17.077	P 2
	1.5	553.960	551.640	550.260	550.760	18.065 551.470	18.075 551.440	17.591 551.710	17.402 551.790	17.302	P ZA
	T 2A	553.980	551-B40	550.260	550.760	551.470	551.440	551.710	551.790	552.730 552.730	T 2 T 2A
	UUBAR FS P2 FS	0.0353 17.515	0.0673	0.0867	0.0335	0.0253	0.0229	3.1411	0.1765	J.1855	UUBAR FS
	LUSS PARA F	5 0 1119	17.649 0.0228	17.736 0.0297	17.999	18.143 0.3094	18.143	17.968	17:044	17.741	P2 FS
					4444	0 # J U Y **	0.0066	0.0559	0.0705	0.0751	LUSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 90.45 Equivalent Rotor Speed = 3807.96 Equivalent Weight Flow = 91.28
Uniform Inlet

1 M C 7											
INLET	PCT SPAN	96.80	92.00	86.90	71.00	+9.50	28.10	12.00	7.10	3.00	PLT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	36.954	46.321	40.737	41.065	DIA
	BETA O	0.000	0.000	0.000	0.000	0.400	0.000	0.000	0.000	L.LOO	BETA O
	BETA 1	0.000 356.01	0.000 358.01	0.000 358.01	0.000	0.000	0.000	0.000	0.000	6.666	BETA 1
	νĭ	367.84	386.12	384.76	358.01 376.51	358.01 375.73	358.01 375.04	358.01 359.97	358.01 351.18	358.G1 314.65	V 0 V 1
	VZ O	358.01	358.01	358.01	350.01	357.99	357.95	357.92	3>7.92	357.92	VZ G
	V2 1	367.64	386.12	364.78	376.51	375.70	374.98	359.88	351.09	314.56	V2 1
	V-THETA C V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.40	0.00	0.00	0.00	V-THETA D
	M C	0.3240	0.3240	0.3240	0.00	0.00 0.3240	0.00 0.3240	0,00 0,3240	0,40 0.3240	0.00 0.3240	V-THETA 1 M U
	M 1	0.3331	0.3501	0.3488	0.3411	0.3404	0.3398	0.3258	0.3177	0.2841	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	TURN
	UUDAR D FAC	0.4492 -0.027	0.2513 -0.079	0.2231 -0.075	0.2746 -0.052	0.2746 - v.049	0.2823 -0.048	0.3531 -0.005	0.4016	0.5976	UUBAK
	EFFP	0.1133	0.4031	0.4198	0.2863	0.2773	0-2638	0.0311	0.019 -0.1076	0.121 -0.6363	DFAC EFFP
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	6.0001	0.0001	INCID
	DEAN	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	4 G P 1	15.621 14.547	15.021 14.756	15.G21 14.786	15.021 14.731	15.021 14.731	15.021 14.723	15.021 14.649	15.021	15.021 14.391	P 0 P 1
	7 0	518.760	516.700	516.700	518.700	518.700	518.700	518.700	14.598 518.700	516.700	To
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	516.700	Ťi
- ROTON U	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
0.000	ALU	33.236	33.621	34.007	35.164	36.706	38.246	39.405	39.791	40.176	DIA
ROTOR -L.L. ROTOR -T.L.	bETA 1 BETA 2	0.00U 45.396	0.600 43.775	0.000 42.675	0.000 41.631	0.000 40.255	0.000 38.988	0.006	0.000	0.000	BETA 1
NO TON TALL	SETA(PR) 1	56.182	53.793	53.631	55.211	56.868	58.205	42.293 59.991	43.426 60.787	46.804 63.536	BETA 2 BETA(PR) 1
	BETA(PK) 2	25.742	27.224	28.603	31.117	34.782	36.892	39.053	41.826	47.428	BETA(PR) 2
	V 1	366.67	407.75	415.29	406.99	402.16	401.41	367.63	379.50	340.48	V 1
	V 2 V2 1	525.66 366.60	525.39 407.66	523.19 415.24	523,77 406.96	518-67	524.72 399.79	515-21	495.30	453.60	V 2
	V2 2	369.69	374.35	383.40	391.47	401.67 395.70	407.37	385.28 380.43	376.80 359.03	338.26 309.94	VZ 1
	V-THLTA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Y-THETA 1
	Y-THETA 2	374.26	363.47	355.97	347.95	335.05	329.74	346.08	339.€4	330.15	V-THETA 2
	V(PR) 1 V(PR) 2	662.s 469.8	690-2 426-6	700.3 436.7	713.3 457.3	735.2 462.0	759-6 510-0	771.6 490.9	773-4	760.0	V(PR) 1
	VTHETA PRI	-550.2	->>6.6	-563.9	-585.6	-615.4	-644.9	-667.1	462.8 -6 73.9	458.9 -679.5	V(PR) 2 Viheta Pki
	VTHETA PR2	-17b.u	-195.2	-209-1	-236.3	-274.8	-305.6	-306.6	-321.3	-337.4	VTHETA PR2
	0 1	550.22	556.84	563.67	565.78	615.41	644.91	667.10	673.85	679.50	U 1
	U 2 M 1	552.22 0.3339	556.63 0.3702	565.03 0.3772	584.26 0.3695	609.88 0.3650	635.51 0.3643	654.73 0.3516	661.14 0.3439	667.54 0.3078	U 2 H 1
	M 2	0.4646	0.4652	0.4639	0.4643	0.4595	0.4649	0.4557	0.4371	0.3987	M Z
	M(PR) 1	0.5998	0.6266	0.6361	0.6475	0.6672	0.6894	0.6996	C.7008	0.6672	M(PR)
	M(PR) 2	0.3622	0.1776	0.3872	0.4054	0.4270	0.4516	0.4342	0.4261	0.4034	MIPR) 2
	TURN(PR) UUSAR	30.437 0.0658	26.564 0.1009	25.026 0.0965	24.094 0.0812	22.069 0.0769	21.262 0.0681	20.865 0.1284	18.890 0.1460	16.060 0.1581	TURN (PR.) UUBAR
	LOSS PARA	0.0172	0.0263	0.0251	0.0214	0.0203	0.0183	0.0346	0.0387	0.0379	LOSS PARA
	DFAC	0.5453	0-5366	0.5275	0.5088	0.4905	0.4736	0.5181	0.5284	0.5487	DFAC
	ErfP EFF	Ü.673∻ G.869&	0.6620 0.8581	0.6938 0.6968	0.9123 0.9097	0.911 4 0.9088	0.9295	0.9067	D.8556	0.6082	EFFP
	INCIU	2.751	2.677	3.053	3.168	2.867	0.9273 2.214	0.9039 1.306	0.8517 -1.516	0.8026 -4.614	EFF Inclu
	DEYM	10.592	13.064	13.969	12.476	11.571	9.330	7.429	8-687	11-451	DEVH
	Pì	14.547	14.756	14.786	14.731	14.731	14.723	14.649	14.596	14.391	P 1
	P 2 T 1	17.950 518.700	17.971 518.700	17.981 518.700	18.012 518.700	18.032 518.700	18.145 518.700	18.053 518.700	17.848 518.700	17.490 518.700	P 2 T 1
	1 2	555.620	553.720	552.160	552.410	552.640	553.110	554-000	554.710	555.730	Ť Ž
STATUR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	DIA Beta 2	33.207 45.727	33.564 43.535	33.921 42.150	34.992 41.686	36.42D 39.734	37.846 38.866	38.919 43.207	39.276 44.878	39.633 49.069	DIA
STATUR-Tala	BETA 2A	3.360	3.640	3.600	2.540	2.140	3.441	4.922	5.152	5.302	BETA 2 Beta 2a
	V 4	522.76	527.07	530.73	523.77	525.15	526.96	507.19	483.31	438.55	V 2
	V 2A	402.91	396.64	396.68	426.55	439.86	451.30	413.49	398 . 24	390-02	V 2A
	V2 2 VZ 2A	364.94 402.21	382.67 395.74	393.46 395.48	391.10 426.07	403.69 439.41	409,99 450.22	369.34 411.63	342.16 396.28	267.06 387.94	VZ 2 VZ 2A
	V-THETA 2	374.32	363.59	350.15	348.28	335.56	330.41	346.92	340.71	331.03	V-THETA 2
	V-THETA 2A	23.61	26.56	24.91	18.90	16.42	27.07	35.44	35.73	36.00	V-THETA ZA
	M 2	0.4620	0.4675	0-4708	0.4643	0.4655	0.4669	0.4483	0.4261	0.3851	H 2
	M 2A Turn(Pr)	42.367	39.694	36.549	0.3754 39.140	37,576	35.392	0.3631 38.239	0.3491 39.678	0.3414 43.714	N 2A Turn(Pr)
	UUBAR	0.0666	0.0990	0.1021	0.0314	0-0049	0.0195	0.1274	0.0986	-0.0559	UUBAR
	LOSS PARA	0.0231	0.0336	0.0351	0.0112	0.0018	0.0075	0.0503	0.0393	-0.0225	LDSS PARA
	DFAC	0.4553	0.4661 0.7900	0.4677	0.4096	0.3882	0.3664	0.4296	0.4301	0.3639	DFAC
	EFFP Incid	0.8440 -4.440	0.147	0.7864 1.860	0.9143 3.655	0,9849 3.026	0.9331 2.998	0.6468 4.499	0.7133	1.2505 -10.135	EFFP INC10
	DEVM	12.192	15.152	14.910	13.515	13.151	15.105	17.359	17.627	10,150	DEAW
	P 2	17.950	17.971	17.981	14.012	18.032	18-145	18.053	17.840	17.490	P 2
	P 2A T 4	17.783 555.620	17.724 553.720	17.722 552.180	17.934 552.410	18.020 552.640	18.096 553.110	17.756 554.000	17.642 554.710	17.586	P 2A
	T 2A	555.620	553.720	552,180 552,180	552.410	552,640	553.110 \$53.110	354.000	554.710	555.730 555.730	T 2 T 2A
	UUBAR FS	0 •4766	0.0935	0-1044	0.0665	0.0369	0+0430	0.1260	0.1367	0.1277	UUBAR FS
	P2 FS	17.971	17.956	17.987	18.104	18.114	18:206	18.046	17.941	17.849	PZ FS
	LUSS PARA F	-a U+6237	0.0317	C+0359	0.0237	0.0135	0.0165	0.0497	0+3545	3.0514	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 89.98 Equivalent Rotor Speed = 3788.04 Equivalent Weight Flow = 85.21
Uniform Inlet

INLET											
	PCT SPAN	96.80	¥2.00	66.40	71.00	49.50	28.10	12.00	7 1/	3.00	*** *- :
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	7.16 40.737	3.00 41.065	PCT SPAN DIA
	6LTA O BETA 1	0.000	0.000 0.000	0.000	0.000	0.000	0.006	0.000	0.060	6.000	BETA O
	ν̈́o	333.14	33.14	333-14	0.000 333.14	0.000 333.14	0.000 333.14	0.000 333.14	0.000	0.000	BETA 1
	V 1	344.05	357.94	357.09	350.56	346.80	346.62	334.99	333.14 323.42	333.14 294.66	A T A 0
	VZ 0 VZ 1	333.14 344.05	333.14 357.94	333.14	333.13	333.11	333.08	333.05	333.05	333.05	VZ O
	V-THETA O	0.00	0.00	357.09 0.00	350.56 0.00	3 46.77 0.00	346.56 0.00	334.91 0.00	323.33	294.76	V2_1
	A-THEAT T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00 ' 0.00	V-THETA O V-THETA 1
	W O	0.3011 0.3111	0.3011	0.3011	0-3011	0.3011	0.3011	0.3011	0.3011	0.3011	M O
	TURN	0.0	0.3240	0.3232 6.0	0.3171 0.6	0.3137 0.0	0.3135	0.3028	0.2921	0.2660	M 1
	UUBAR	0-4265	0.2468	0.2133	0.2635	0.2646	0.0	0.0 0.3193	0.0 0.3897	0.0 0.5572	TURN UUBAR
	OFAC ŁFFP	-0.033 0.1363	-U.074	-6.072	-0.052	-0.041	-0.040	-0.006	0.029	0.115	DFAC
	INCID	0.0001	0.3930 0.0001	0-4197 0-0001	0.2964	0.2463 0.0001	0.2461 0.0001	0.0347	-0.1769	-0.6585	EFFP
	DEVM	~0.000	-0.000	-0.000	-0.000	-0.066	-0.000	-0*000 0*0007	-0-000 1000 -0	0.0001 -0.000	DEAN INCID
	P C P 1	14.962	14.962	14.962	14.962	14.962	14.962	14.962	14.962	14-962	Pu
	îû	14.573 516.700	14.757 518.700	14.767 516.700	14.721 518.700	14.720 518.700	14.724	14.671	14.606	14.454	P 1
	T 1	516.760	548.700	516.700	518.700	518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	1 0 1 1
AUTUR L	PCT SPAN	45.00	90.00	85.00	70.00	50.00	30.00	15.00			
COTES	DIA	33.236	1 62 £ د	34.007	35-164	36.706	38.248	39.405	10.00 39.791	5.00 40.176	PCT SPAN DIA
ROTOR -L.L. Rotor -T.L.	BETA 1 BETA 2	0.000 47.999	0.000 46.483	0.000 45.949	0.000	0.000	0_000	0.000	0.000	0.000	BETA 1
	SETATPR) 1	57.796	55.730	55.556	44.282 57.008	43.26B 58.83B	42.376 60.096	44.409	47.066	50.504	BETA 2
	SETA(PR) 2	24.848	27.193	29.296	31.488	35.366	36.805	61.649 40.890	62.665 43.518	64-894 47.278	BETA(PR) 1 BETA(PR) 2
	V 1 V 2	344.81	377.52	384.75	378.32	370.66	370.46	360.45	348.98	318.81	V 1
	V2 1	521.70 344.74	515.07 377.43	506.92 384.70	511.32 378.30	504.80 370.20	515.69 368.9A	494.65	477.75	455.36	V 2
	VZ_2	349.00	354.65	352.45	366.05	367.46	380.70	358.07 352.92	346.49 324.75	316.73 289.20	¥1 1 ¥2 2
	V-THETA 1 V-THETA 2	0.00 387.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	V-THETA 1
	VIPE 1	040.9	373.50 670.3	364.33 680.2	356.99 694.8	345.89 715.7	347.33	345.71	349.3D	350.86	V-THETA 2
	V(PR) 2	354.7	391.7	404.2	429.3	450.8	740.0 476.1	755.2 467.7	755.7 446.7	747.4 427.0	VIPR) 1
	VIHETA PRI VTHETA PRI	-547.3	-553.9	-560.9	-582.7	-612.2	-641.5	-663.6	-674.3	-675.9	V(PR) 2 VTHŁTA PR]
	Ul	-161.7 547.35	-182.2 553.93	-197.8 560.92	-224.2 582.72	-260.5 612.20	-284.9	-305.6	-306.4	-313.2	VTHETA PR2
	U 2	549.33	555.71	562.08	581.20	600.69	641.54 632.16	663.61 651.30	670.33 657.68	675.95 664.05	U 1 U 2
	M 2	0.3116	0.3421	0.3488	0.3428	0.3357	0.3355	0.3263	0.3157	0.2879	W I
	M(PR)	0.4607 0.585u	0.4555 0.6074	0.4488 0.6166	0.4526 0.6296	0.4464	0.4564	0.4365	0.4206	0.3998	M 2
	HIPR) 2	0.3397	0.3526	0.3577	0.3799	0.6482 0.3987	0-6710 0-4212	0.6836 0.4125	0-6636 0-3950	0.6749	M(PR)
	TURN (PR)	32.944	∠8-534	26.258	25.520	23.457	23.244	20.693	14.083	0.3744 17.573	M(PR) ¿ TUKN(PR)
	UUBAR LGSS PARA	0.0733 0.0193	0.1040 0.0271	0.1079 0.0279	0.0865	0.0895	0.0878	0.1352	0.1727	0.1900	UUGAR
	UFAL	6.5792	0.5689	0.5650	0.0227 0.5400	0.0235 0.5251	0.0237 0.5139	0.0355 0.538]	0.0439 0.5668	0.0457	LOSS PARA
	FFFP	0.8813	0.8738	0.8914	0.9164	0.9112	6.9378	0.8660	0.8295	0.5935 0.8031	DFAC LFFP
	EFF INCID	0.877o 5.365	0.8701 814	6.6883	0.9139	0.9086	0.9358	0.8640	0.8246	0.7974	EFF
	DEVM	9-698	13.033	4.978 14.662	4.960 12.847	4.638 12.154	4.106 4.243	2.972 9.265	0.369 10.379	-3.251	INCID
	PI	14.573	14.737	14.767	14.721	14.720	14.724	14.671	14-606	11.302 14.454	DEAN.
	P 2 T 1	18.084 518.700	18.043 516.700	18.002	18.073	18.084	18.257	18.043	17.660	17.666	P 2
	T 2	556.300	554.190	518.700 552.700	518.700 552.960	518.700 553.270	518.700 553.830	518.700 555.260	518.700	518.700	1 1
							2226030	333.200	555.900	557.090	T 2
STATER D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15-00	10.00	5.60	PCT SPAN
STATOR-L	RETA S	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.643	UIA
STATOR-I	BETA ZA	46.358 3.750	40.22 <i>)</i> 3.940	45.157 3.690	44.341 2.580	42.698 2.350	42.243	45.376	48.720	53,105	BETA 2
	V 2	510.66	517.47	514.10	511.32	511.02	3.600 518.07	4.741 487.32	5.252 466.37	>.842 440.24	BETA 2A V 2
	V 2A Vi 2	366.63	377.79	374.28	404.66	416.62	420.87	388.50	374.95	366.53	V 2A
	VZ ZA	344.77 365.60	358.01 376.89	362.51 373.49	365.64 404.20	375.43	383.27	342.02	307.43	264.10	VZ 2
	V-THETA 2	367.75	373.63	364.51	357.33	416.13 346.41	419.80 348.05	346.86 346.54	373.04 350.19	364.25 351.61	VZ ZA V-THETA Z
	V-THETA 2A M 2	25.29	25.96	24.09	18.21	17.08	26.41	32.09	34.29	37.27	V-THETA ZA
	M ZA	0.4581 0.3382	0.4577 0.3309	0.4552 0.3262	0.4526 0.3555	0.4522	0-4584	0.4296	0.4102	0.3861	# 2
•	TURN (PK)	44.667	42-282	41.465	41.754	0.3661 40.330	0.3698 38.604	0.3402 40.589	0.3279 43.420	0.3200	M 2A
	DUBAR Lūss para	0.0611	0.0983	0.0961	0.0438	0.0262	0.0844	0.1217	0.0902	47.213 0.0124	TURN(PR) UUBAR
	DFAC	0.0273	0.0334 0.4989	0.5002	0.0156	0-0097	0.0324	0.0481	0.0359	0.0050	LOSS PARA
	EFFP	0.6312	0.6049	0.8103	0.4448 0.8916	0.4242 0.9278	0.4279 0.7708	0.4601 0.6876	0.4688 0.7607	0-4576	DFAC
	INCID	-1.810	2.835	4.866	6.310	5.992	6.374	6,668	0.7607 5.548	0.9620 -6.097	EFFP INCID
	DEVM P Z	12.582 16.064	15.252 18.043	15.000	13.555	13.361	15.264	17.179	17.927	10.690	DEVM
	P 2A	17.887	17.606	18.002 17.773	16.073 17.970	18.084 18.022	16.257 18.050	10.043 17.781	17.860	17.666	P 2
	1 2	556.300	554.190	552.700	552.960	553.270	553.830	555,260	17.683 555.900	17.645 557.090	P 2A T 2
	T ZA UUGAR FS	556.30D J.L776	554.190 0.1342	552.700	552-960	553.270	553.830	555.260	555.900	557.090	T ZA
	P2 FS	18.074	18.059	0.0965 18.003	0.0834 18.176	0.0723 18.201	0.0732 18.227	0.1096 19.013	0.1165	J.1076	UUBAR FS
	LOSS PARA F	\$ J.J261	0.0354	0.0331	0.0297	0.0267	0.0291	0.0433	17.921 0.0471	17.850 J.0433	P2 FS LOSS PARA FS
											PARE I MUM 1.3

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 90.17 Equivalent Rotor Speed = 3796.33 Equivalent Weight Flow = 76.85
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	86-90	71.00	49.50	28.16	12.00	7.16	3.06	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	ÚIA
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	BETA 1 V O	0.000 298.76	0.000 298.70	0.000 298.70	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	Ϋ́I	313.71	323.80	320.27	298.70 313.11	298.70 309.71	298.70 308.14	298.70 298.97	298.70 281.44	298.70	V O
	V2 0	298.70	298.70	298.70	298.69	298.68	298.65	298.62	296.62	254.61 298.62	V 1 V2 0
	VZ 1	313.71	323.80	320.26	313.11	309.68	308.09	298.89	281.36	254.54	VZ i
	V-THETA O V-THETA 1	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	N O	0.2695	0.2695	0.2695	0.2695	0.00	0.00 0.2695	0.00 0.2695	0.2695	0.UQ 0.2695	V-THETA 1 M O
	H 1	0.2832	0.2925	0.2892	0.2027	0.2796	0.2781	0.2697	0.2537	0.2292	M 1
	TURN UUBAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UFAC	0.4093 -0.054	0-2462 -0-064	0.22 40 -0.072	0.2572 -0.048	0.2711 -0.037	0.2766 -0.032	0.3333	0-4287	0.5622	UUBAR
	EFFP	0.2049	0.4225	0.4072	0.2831	0.2213	0.1923	-0.001 0.0058	0.05e -0.3648	0.148 -0.9124	DFAC EFFP
	INCID	0.0001	0.0001	0.0001	1000.0	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	DEVM P o	-0.000 14.914	-0.000 14.914	-0.000 14.914	-0.000 14.914	-0.000	-0.000	-0.000	-0.000	-0.000	DEAM
	Ρĺ	14.614	14.733	14.750	14.725	14.914 14.715	14.914 14.711	14.914 14.669	14.914 14.599	14.914 14.487	P 0 P 1
	T O	518.700	518.700	518.700	518,700	518.700	518.700	518.700	518.700	518.700	TO
	T 1	518.700	518.700	518.700	518.700	518.700	518,700	518.700	510.700	518.700	ŤΪ
ROTUR D	PCT SPAN	95.0u	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.t.	DIA BETA 1	33.236 0.000	33.621 0.000	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -T.F.	BETA 2	50.600	49.706	0.000 49.583	0.000 48.721	0.000 48.160	0.000 47.867	0.000 50.810	0.000 53.834	0.000	BETA 1
	BETA(PR) 1	60.186	58.436	58.507	59.994	61.718	63.007	64.369	65.867	57-112 68-049	BETA 2 BETA(PR) 1
	BETA(PR) 2	24.680	28.477	29.106	31.492	38.296	38.292	40.547	44.927	48.528	BETA(PR) 2
	V 1 V 2	314.39 515.93	341.10	344.43	337.27	330.52	328.83	321.20	303.13	274.81	V 1
	٧ <u>2</u> 1	314.33	500.16 341.02	501.93 344.39	504-02 337-25	478.21 330.11	498.82 327.50	496.78 319.09	472.77 300.97	456.16 273.02	V 2
	V2 2	327.47	323.45	325.42	332.52	318.91	334.34	313.51	278.64	248.52	V2 1 V2 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2 Viprj 1	398.66 632.3	381.48 651.6	382.14 659.3	378.77 674.4	356.18 696.9	369.59	364.53	361.19	384.33	V-THETA 2
	V(PR) 2	361.0	368.0	372.5	390.0	406.5	722.1 426.5	738.6 413.4	737.0 394.3	731.0 375.9	V(PR) 1 V(PR) 2
	VTHETA PRI	-548.5	-555.1	-502.1	-584.D	-613.5	-642.9	-665.1	-671.8	-677.4	VTHETA PRI
	VIHETA PR2 U 1	-151.9 548.54	-175-4	-181-2	-203.7	-251.8	-264.0	-268.2	-277.9	-281.2	VTHETA PR≥
	υŽ	550.53	555.14 556.92	562.15 563.31	583.99 582.47	613.53 608.02	6+2.94 633.57	652.73	671.79	677.43	U 1
	M 1	0.2839	0.3084	0.3115	0.3049	0.2987	0.2971	0-2901	659.12 0.2735	665.50 0.2477	U 2 M 1
	M &	0.4551	0.4414	0.4434	0.4453	0.4214	D.4396	0.4368	0.4146	0.4009	M 2
	M(PR) 1 M(PR) 2	0.576B 0.3184	0.589 0.3248	0.5962 0.3290	0.6096	0.6298	0.6525	0.6671	0.6651	0.6588	M(PA) 1
	TURN (PR)	35.302	29.957	29.399	0.3445 28.502	0.358 <i>2</i> 23.406	0.3759 24.675	0.3634 23.766	0.3457 20.890	0.3288 19.492	M(PR) 2 Turn(Pr)
	UUGAR	0.1041	0.1342	0.1352	0.1257	0.1370	0.1474	0.2081	0.2394	0.2548	UUBAR
	LESS PARA	0.0274	0.0346	0.0351	0.0330	0.0346	0.0389	0.0549	0.0594	0.0598	LOSS PARA
	OFAC EFFP	0-6120 0-6696	0.6072 0.8527	0.6073 0.6801	0.5943 0.9101	0.5805 0.8537	0.5803 0.8772	0.6194	0.6447	0-6704	DFAC
	EFF	0.8655	U. 8484	0.8766	0.9074	0.8494	0.8734	0.8257 0.8203	0.7784 0.7716	0.7604 0.7532	EFFP Eft
	INCID	7.755	7.522	7.929	7.952	7.719	7.026	5.702	3.585	-0.081	INCLU
	P I DEVM	9.731 14.614	14.317 14.733	14.472	12.851	15.086	10.730	8.922	11.788	12.552	DEVM
	P 2	18.158	18.036	14.750 18.097	14.725 18.188	14.715 18.016	14.711 18.259	14.669 18.198	14.599	14.487	P 1
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	17.965 518.700	17.853 518.700	P 2 T 1
	1 2	557.060	555.070	554.310	554.260	555.050	556.520	558.870	559.740	561.070	Ť 2
STATOR D	PCT SPAN DIA	95.00 33.207	90.00 33.564	85.00 33.921	70.00 34.992	50.00 36.420	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	BETA Z	50.991	49.419	48.690	40.789	47.507	37.848 47.715	38.919 52.039	39.276 55.938	39.633 60.510	DIA BETA 2
STATOR-1.E.	BETA 2A	3.780	4.130	4.020	3.360	2.330	2.291	3.321	4.061	6.022	BETA ZA
	¥ 2	513.14	502-46	509.00	504.02	483.93	500.89	489.22	461.58	442.93	V 2
	V 2A V2 2	381.55 322.99	369.86 326.86	366.55 336.00	361.96 332.03	384.64 326.79	391.63 336.82	364.22	354.65	354.77	V 2A
	VZ ZA	380.71	368.89	365.63	381.25	384.19	391.09	300.73 363.31	258.38 353.37	217.93 352.44	V2 2 V2 2A
	V-THETA 2	398.73	381.60	382.32	379.13	356.72	370.35	385.46	382.16	385.35	V-THETA 2
	V-THETA 2A H 2	25.15 0.4525	26-64 0-4435	25.69	22.38	15.63	15,64	21.08	28.81	37.18	V-THETA ZA
	M ZA	0.3334	0.3236	0.4499 0.3208	0.4453	0.4266 0.3368	0.4415 0.3426	0.4299 0.3174	0.4044 0.3089	0.3871 0.3084	# 2 # 34
	TURN(PR)	47.211	45.288	44.668	45.423	45.159	45.390	48.672	51.231	54.443	M 2A Turn(pr)
	UUEAR	0.0755	0.0650	0.0969	0.1044	0.0273	0.1096	0.1823	0.1151	0.0608	UUBAR
	LOSS PARA UFAC	0.0254 0.5016	Ŭ+0221 U+5046	0.0333 0.5213	0.0370 0.4943	0.0101 0.4671	0.0422	0.0722	0.0459	0.0244	LGSS PARA
	EFFP	D-8434	0.8681	0.8128	0.7718	0.9310	0.4922 0.7374	0.5524 0.6155	0.5394 0.7348	0.5183 0.8399	DFAC EFFP
	INCIL	0.624	6.031	6.399	10.756	10.601	11.846	13.333	12.769	1.313	INCID
	DEVM P 2	12.612	15.442	15.330	14.335	13.341	13.955	15.759	17.337	10.869	DEVM
	P 2A	18.158 17.978	18.036 17.888	18.097 17.870	18.100 17.947	18.016 17.958	18.259 18.009	18.198 17.803	17.965 17.745	17.653 17.747	P 2
	T 2	557.060	555.070	554.310	554.260	555.050	556.520	558.870	559,740	561.070	P 2A T 2
	T 24	557.060	555.070	554.310	554.260	555.050	554.520	558.870	559.740	561.070	T 2A
	UUBAR FS P2 FS	0-1062 18:239	0.1273 19.198	0.1197 18.158	0+1198 18-229	0.1298 18.264	0.1510	0.1706 18.168	0+1742	0.1691	UUBAR FS
	LOSS PARA F		0.0433	0.0411	0.0424	0.0479	18.371 0.0581	2.0675	15.102 0.3695	18.082 J.C679	P2 FS LOSS PARA FS
					. .					440012	togs rank fo

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 69.80 Equivalent Rotor Speed = 2938.61 Equivalent Weight Flow = 92.54
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	0.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.600	BETA 1
	V 0	363.13	363.13	363.13	363.13	363.13	363.13	363.13	363.13	363.13	V O
	Y 1	378.92	395.70	392.71	386.20	378.69	377.58	366.30	341-24	315.61	y i
	V2 0	363.13	363.13	363.13	363.13	363.11	363.07	363.04	363.03	363.04	vz o
	¥2 1	378.92	395.70	392.71	386.19	378.86	377.52	366.21	341.15	315.53	VZ 1
	V-THETA D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	V-THETA 1	6.00	0.00	0.00	0.00	0-00	0.00	0.00	0.00	0.00	V-THETA 1
	M Q	0.3288	0.3288	0.3288	0,3286	0.3208	0.3288	0.3288	0.3286	0.3288	# O
	M 1	0.3434	0.3590	0.3562	0.3501	0.3433	0.3421	0.3317	0.3005	0.2850	Äi
	TURN	0.0	0.0	0.D	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.4464	0.2491	0.2303	0.2680	0.2680	0.2775	0.3435	0.4879	0-6266	UUBAR
	DFAC	-0.043	-0.090	-0.081	-0.064	-0.043	-0.040	-0.009	0.060	0.131	DFAC
	EFFP	0.1706	0.4393	0.4341	0.3372	0.2558	D.2331	0.0502	-0.3275	-0.6642	EFFP
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	ΡO	15.028	15.028	15.028	15.028	15.028	15.028	15.026	15.028	15.028	P 0
	Pi	14.545	14.758	14.779	14.738	14.738	14.728	14.656	14.500	14.349	Pì
	T D	518.700	518.700	516.700	518.700	518.700	518.700	518.700	518.700	518.700	TÔ
	T 1	516.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	516.700	Ťi
								2101100	310.700	2101100	, .
RCTOR 6	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
ROTOR -T.E.	BETA 2	32.848	29.943	29.235	28,169	27.063	25-254	24.618	26.395	29.951	BETA 2
	. SETA (PR) 1	48.195	45.796	45.742	47.263	49.533	51.029	52-698	54.866	57.094	BETA(PR) 1
	BETA(PR) 2	23.948	24.453	24.057	24.796	28,698	32.731	36.906	41.663	51.185	BETAIPRI 2
	V 1	379.76	418.03	424.06	417-70	405.65	404.22	394.80	368.55	341.54	V 1
	V Z	405.49	482.68	496.67	512.76	499.61	487.33	460.95	411.92	327-67	¥ 2
	VZ 1	379.71	417.93	424.01	417.68	405.15	402.59	392,20	365.93	339.31	vz 1
	VZ 2	391-04	418.23	433.39	452-01	444.70	440.05	417.84	367.91	283.15	VZ 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2	252.47	240.91	242.57	242.05	227.20	207.58	191.46	182.60	163.16	V-THETA 2
	V(PR) L	569.7	599.5	607.6	615.5	624.6	641-2	648.8	637.4	625.8	V(PR) 1
	Y(PR) 2	427.9	459.5	474.6	497.9	507.2	523.6	523.6	493.6	452.4	VIPR) 2
	VTHETA PRI	-424.6	-429.7	-+35.1	-452.0	-474.9	-497.7	-514.8	-520.0	-524.4	VTHETA PRI
	VIHETA PRZ	-173.7	-190.2	-193.5	-208.8	-243.4	-282.8	-313.6	-327.6	-352.0	VTHETA PRZ
	U 1	424-61	429.71	435.14	452.05	474.92	497.68	514.80	520.01	524.37	U 1
	U Z	426.15	431,09	436.04	450.87	470.65	490.42	505.26	510.20	515.14	υž
	H I	0.3442	0.3798	0.3854	0.3795	0.3682	0.3669	0.3581	0.3338	0.3088	M I
	M 2	0.4159	0.4325	0.4461	D-460B	0.4466	0.4375	0.4131	0.3680	0.2912	M Z
	M(PR) 1	0.5163	0.5447	0.5522	0.5592	0.5670	0.5820	0.5885	0.5772	0.5658	M(PR) 1
	M(PR) 2	0.3824	0.4117	0.4263	0.4475	0.4554	0.4702	0.4693	0.4410	0.4020	M(PR) 2
	TURN (PR)	24.243	21.338	21.683	22.466	20.814	18.236	15.698	13.093	5.837	TURN (PR)
	UUBAR	0.0916	0.0995	0.0709	0.0289	0.0381	0.0332	0.0445	0.0840	0-1470	UUBAR
	LGSS PARA	0.0242	0.0266	0.0192	0.0081	0.0108	0.0094	0-0124	0.0220	0.0326	LOSS PARA
	UF AC	0.3775	0.3516	0.3375	0.3118	0.3045	0.2911	0.2943	0.3250	0.3687	DFAC
	EFFP	0.7614	0.7667	0.8785	0.9405	0.9093	0.9125	0.8662	0.7667	0.5631	EFFP
	EFF	0.7578	0.7634	0.8767	0.9395	0.9079	0.9112	0.8643	0.7636	0.5591	EFF
	INCID	-4.236	-5.120	-4.836	-4.780	-4.471	-4.971	-6.003	-7.455	-11.077	INCID
	GEVM	a.799	10.293	9.423	6.155	5.488	5.172	5.284	8.545	15.211	DEVM
	Pl	14.5.5	14.756	14.779	14.738	14.738	14.728	14.656	14.500	14.349	Pl
	₽ 2	16.129	16.252	16.390	16.533	16.461	16.369	16.160	15.802	15.301	P 2
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
	7 2	539.220	537.670	536.450	537.130	537.040	536.150	535.680	535.590	535.870	T 2
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2200.20	2224000	2320270	3334610	1 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.648	38.919	39.276	39.633	DIA
STATER-L.E.	BETA 2	33.046	29.804	28.806	28.203	26.753	25.186	25.046	27.094	31.052	BETA 2
STATOR-T.E.	BETA ZA	1.450	1.300	1.010	0.100	-0.700	0.500	1.500	0.400	-3.251	BETA 2A
	¥ 2	463.07	484.87	503.69	512.76	505.78	489.29	454.00	402.52	317-63	¥ 2
	V 2A	418.40	445.18	458.32	496.21	493.03	487-13	441.78	416.10	398.18	V ZA
	VZ 2	388-16	420.73	441.34	451.79	451.40	442.32	410.73	357.82	271.70	V2 2
	VZ 2A	418.27	445-05	458.23	476.14	492.83	486.82	441.27	415.72	397.12	VZ ZA
	V-THETA 2	252.52	240.99	242.69	242.28	227.55	206.01	191.92	183.06	163.59	V-THETA 2
	V-THETA 2A	10.59	10-10	8.08	0.67	-6.02	4.25	11.56	2.90	-22.56	V-THETA ZA
	M 2	0.4137	0.4345	0.4526	0.4608	0.4543	0.4393	0.4067	0.3594	0.2821	M 2
	H 2A	0.3726	0.3978	0.4104	0.4453	0.4424	0.4373	0.3954	0.3718	0.3553	H ZA
	TURN (PR)	31.596	28.503	27.794	28.097	27.437	24.659	23.508	26.651	34.247	TURN (PR.)
	UUBAR	0.1090	0.0631	0.0761	-0.0005	-0.0132	-0.0075	0.1046	0.0030	-0.4450	UUBAR
	LOSS PARA	0.0367	0.0215	0.0262	-0.0002	-0.0049	-0.0029	0.0415	0.0012	-0.1792	LOSS PARA
	UFAC	0.2725	0.2441	D-2506	0.1999	0.1967	0.1655	0.1853	0.1463	-0.0162	DFAC
	EFFP	0.4444	0.6276	0.5919	1.0064	1.2422	1.7871	-0.8441	1-0419	0.2606	EFFP
	INCID	-17.122	-13.584	-11.485	-9.827	-9.950	-10.675	-13.651	-16.068	-28.145	INCID
	DEVM	10.282	12.612	12.320	11.075	10.312	12.166	13.940	13.080	1.606	DEVM
	P 2	16.129	16.252	16.390	16.533	16.461	16.369	16.160	15.802	15.301	P Z
	P ZA	15.934	16.127	16.226	16.534	16.490	16.385	15,978	15.798	15.667	P 2A
	T 2	539.220	537.670	536.450	537.130	537.040	536.150	535.680	535.590	535.870	T 2
	T ZA	539.220	537.670	536.450	537.130	537.040	534.150	535.680	535.590	535-670	T 2A
	UUBAR FS	0.1400	0.0929	0.1579	0.0256	0.0252	0.0353	0.1917	0.2429	0.2391	UUBAR FS
	24 54	16.174	16.316	16.598	16.593	16.547	16.460	16-347	16.229	16.040	PZ FS
	LOSS PARA F		0.0316	0.0543	0.0102	0.0093	0.0136	0.0760	0.0971	0.0963	LOSS PARA FS
								0.0.00	5-44		,

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 70.10 Equivalent Rotor Speed = 2951.37 Equivalent Weight Flow = 82.65
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O Beta 1	0.000	0.000	0.000	0.000	0-000	0.000	0.000	0.000	0.000	BETA O
	V 0	0.000 322.90	322.90	0.000 322.90	0.000 322.90	0.000 322.90	0.000 322.90	0.000 322.90	0.000 322.90	0.000 322.90	BETA 1 V D
	V i	340.66	345.72	338.74	328.50	323.69	329.61	317.58	304.15	262.01	v i
	V2 0	322.90	322.90	322-90	322.90	322.68	322.85	322.82	322.82	322.62	VZ O
	V2 1 V-THETA O	340.66 0.00	345.71	338.74	328.49	323.67	329.55	317.50	304.07	281.94	VZ 1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	V-THETA O V-THETA 1
	M O	0.2917	0.2917	0.2917	0.2917	0.2917	0.2917	0.2917	0.2917	0.2917	M O
	M I	0.3080	0.3127	0.3062	0.2968	0.2924	0.2978	0.2868	0.2745	0.2542	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR DFAC	0.3703 -0.055	0.2386 -0.071	0.2208 -0.049	0,2243 -0.017	0.2366 -0.002	0.2600 -0.021	0.3478 0.016	0.4309 0.058	0.5721 0.127	UUBAR DFAC
	EFFP	0.2389	0.3877	0.3197	0.1385	0.0206	0.1425	-0.1069	-0.3665	-0.7322	EFFP
	INCIU	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	DEVM P O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	P 1	14.936 14.619	14.936 14.732	14.936 14.747	14.936 14.744	14.936 14.732	14.936 14.714	14.936 14.638	14.936 14.567	14.936 14.446	P 0 P 1
	Τō	518.700	>18.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TÔ
	T 1	518.700	518.700	518.700	518.700	518.700	518,700	518.700	518.700	518.700	T 1
ROTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33,621	34.007	35.164	36.706	38,248	39.405	39.791	40.176	DIA
ROTGR -L.E. ROTGR -T.E.	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
KUIGK -IBEE	BETA 2 BETA(PR) 1	39.175 51.325	36.812 49.826	35.971 50.164	34.334 52.050	33.383 54.107	32.314 54.954	32.904 56.735	35.259 58.060	30.451 60.108	BETA 2 Beta(PR) 1
	BETA(PR) 2	24.708	25.953	26.800	20.263	31.144	33.865	37.054	40.150	48.693	BETA(PR) 2
	V 1	341-41	364-46	364.62	354-10	345.61	352.01	341.43	327.93	304.72	V 1
	V 2	433.05	437.87	439.62	449.10	448.31	447.70	432.07	405.69	342.69	¥ 2
	¥2 1 ¥2 2	341.34 335.69	364.3B 350.54	364.58 355.78	354.08 370.85	345.18 374.19	350.59 377.84	339.18 361.93	325.60 330.47	302.74 267.79	VI 1 VI 2
	V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2	273.54	262.35	258.21	253.29	246.57	238.99	234.18	233.64	212.63	V-THETA 2
	V(PR) 1	546.3	564.9	569.2	575.8	589.0	611.4	619.6	616.7	608.5	V(PR) 1
	V(PR) 2 VTHETA PR1	369.5 -426.5	389.9 -431.6	398.6 -437.0	421.1 -454.0	437.4 -4 77.0	455.7 -499 .8	454.5 -517.0	433.3 -522.3	406.3 -526.7	VIPR) 2 VTHETA PR1
	VTHETA PR2	-154.5	-170-6	-179.7	-199.5	-226.1	-253.6	-273.3	-278.8	-304.7	VTHETA PRZ
	n I	426.45	431.5B	437.03	454.01	476.98	499.84	517.04	522.27	526.65	U 1
	U 2 M 1	428.00	432.97	437.93	452.83	472.69	492.55 0.3185	507.45 0.3087	512.42	517.38	U 2 M 1
	M 2	0.3087 0.3858	0.3300 0.3909	0.3301 0.3929	0.3204 0.4015	0.3126 0.4006	0.4000	0.3856	0.2963 0.3614	0.2750 0.3040	M 2
	M(PR) 1	0.4939	0.5114	0.5153	0.5210	0.5327	0.5531	0.5602	0.5572	0.5491	HIPR) 1
	M(PR) 2	0.3293	0.3481	0.3562	0.3765	0.3908	0.4071	0.4056	0.3860	0.3605	M(PR) 2
	TURN (PR)	26.614	23.868	23.362	23.766	22.945	21.031	19.596	17.827	11.354	TURN (PR)
	UUBAR LOSS PARA	0.0885 0.0233	0.0922 0.0243	0.0830 0.0220	0.0544 0.0147	0.0450 0.0124	0.0389 0.0109	0.0525 0.0145	0.0935 0.0250	0.1232 0.0288	UUBAR LOSS PARA
	DFAC	0.4688	0.4462	0.4345	0.4038	0.3916	0.3852	0.3965	0.4290	0.4549	DFAC
	EFFP	0.8267	0.8563	0.9058	0.9383	0.9477	0.9608	0.9495	0.8913	0.7493	EFFP
	EFF	0.8239	0.8541	0.9043	0.9372 0.007	0.9468 0.105	0.9601	0.9487	D. 8895	0.7458	EFF Incid
	DEAW TUCIO	-1.106 9.558	-1.090 11.793	-0.414 12.166	9-642	7.933	-1.042 6.305	-1.958 5.432	-4,253 7.013	-8.054 12.717	DEVH
	P 1	14.619	14.732	14.747	14.744	14.732	14.714	14.638	14.567	14.446	P 1
	P 2	16.406	16.447	16.477	16.579	16.620	16.630	16.518	16.325	15.939	P 2
	T 1 T 2	516.700	518.700 538.110	518.700 537.170	518.700 537.560	518.700 537.900	518.700 537.930	518.700 537.900	516.700 537.990	518.700 538.510	T 1 T 2
	• •	539.790	2304110	3374110	2318300	2311100	2314930	2311700	2311770	2301210	
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
JIHION D	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	39.418	36.639	35.447	34.376	33.006	32.226	33.501	36.258	39.996	BETA 2
STATOR-T.E.	BETA 2A	2.210	2.060	1.880	0.690	0.520	1.360	2.811	1.921	-0.060	BETA ZA
	V 2 V 2A	430.87 354.46	439.77 362.06	445.48 366.77	449.10 401.34	453.56 412.96	449.49 413.44	425.82 378.74	396.53 359.02	332.11 350.09	V 2 V 2A
	VZ 2	332.86	352.87	362.90	370.60	380.18	379.90	354.65	319.35	254.11	¥2 2
	VZ ZA	354.19	361.82	366.56	401.26	412.80	413.08	377.97	356.50	349.72	YZ ZA
	V-THETA 2	273.59	262.44	258.34	253.53	246.95	239.48	234.75	234.23	213.20	V-THETA 2
	V—THETA 2A H 2	13.67 0.3838	13.01 0.3926	12.03 0.3983	4.83 0.4015	3.75 0.4054	9.81 0.4017	18.56 0.3799	12.02 0.3531	-0.37 0.2945	Y-THETA ZA M 2
	M ZA	0.3143	0.3217	0.3262	0.3576	0.3681	0.3685	0.3369	0.3189	0.3107	M ZA
	TURN (PR)	37-208	34.578	33.565	33.680	32.469	30.834	30.646	34.288	39.998	TURN (PR.)
	UUBAR	0.0865	0.0821	0.0828	0.0052	-0.0034	0.0168	0.1169	0.0784	-0.2348	UUBAR
	LOSS PARA Deac	0.0291	0.0279 0.3699	0.0285 0.3672	0.0019 0.3035	-0.0013 0.2887	0.0065 0.2779	0.0463 0.3130	0.0314 0.3201	-0.0947 0.2067	LOSS PARA Deac
	EFFP	0.7469	0.7596	0.7581	0.9757	1.0166	0.8978	0.4707	0.5860	-1-0150	EFFP
	INCID	-10.749	-6.749	-4.844	-3.654	-3.699	-3.639	-5.203	-6.912	-19.207	INCID
	DEAM	11.042	13.372	13.190	11.665	11.532	13.025	15.250	14.599	4.794	DEAW
	P 2 P 2A	16.406 16.269	16.447 16.311	16.477 16.336	16.579 16.570	16.620 16.626	16.430 16.600	16.516 16.335	16.325 16.219	15.939 16.157	P 2 P 2A
	T 2	539.790	538.110	537.170	537.560	537.900	537.930	537.900	537.990	538.510	T 2
	T 2A	539.790	538.110	537.170	537,540	537.900	537.930	537.900	537.990	538.510	T 2A
	UUBAR FS	0.0576	0.0630	0.0729	0.0234	0.0307	0.0322	0.1430	0.1577	0.2026	UUBAR FS
	P2 F5 LOSS PARA F	16.357 5 0.0193	16.413 0.0214	16.459 0.0251	16,611 0.0085	16.682 D.0117	16.657 0.0124	1 6.5 65 0.0566	16.525 0.0792	16.449	P2 FS LOSS PARA FS
	2=0= 1 BINA 1										1

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 69.75 Equivalent Rotor Speed = 2936.49 Equivalent Weight Flow = 71.87
Uniform Inlet

INLET											
•	PCT SPAN	96.80	92.00	86.90	71.00	49.50	20.10	12 00	7.10		
	DIA	33.122	33.529	33.962	35.312	37.137	36.954	12.00 40.321	7,10 40,737	3.00 41.085	PCT SPAN Dia
	BETA D	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	BETA 1 V O	0.000 278.95	0.000 278.95	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	νĭ	287.02	290.94	278.95 289.16	278.95 2 8 9.38	278.95 287.95	278.95	278.95	278.95	278.95	V 0
	AY 0	278.95	278.95	278.95	278.94	278.93	286.66 278.90	275.30 278.86	264.45	242.60	V L
	VZ 1	287.02	290.94	289.16	289.38	287.93	286.62	275.23	276.87 264.38	278.87 242.53	V2 D V2 1
	V-THETA O V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	H D	0.00 0.2514	0.00 0.2514	0.00 0.2514	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	M 1	0.2588	0.2624	0.2608	0.2514 0.2610	0.2514 0.2596	0.2514 0.2585	0.2514	0.2514	0.2514	M O
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.2481 0.0	0.2382	0.2183 0.0	M 1
	UUBAR	0.3749	0_2341	0.2104	0.2373	0.2531	0.2579	0.3464	0.4192	0.5616	TURN UUBAR
	DFAC EFFP	-0.029 0.1377	-0.043 0.2774	-0.037	-0.037	-0.032	-0.028	0.013	0.052	0.130	DFAG
	INCID	0.0001	0.0001	0.2662 0.0001	0.2474	0.2096 0.0001	0.1818 0.0D01	-0-0830	-0.3264	-0.7864	EFFP
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.0001 -0.000	0.0001 -0.000	-0.0001 -0.000	INCIO
	P 0	14.878	14.876	14.870	14.878	14.878	14.878	14.878	14.878	14.876	DEVM P 0
	P 1 T 0	14.638 518.700	14.728 518.700	14.743	14.726	14.716	14.713	14.656	14.609	14.516	P 1
	Ťĺ	516.700	518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700	T O
KOTOR D	PCT SPAN	95.00	90.00						518.700	518.700	T 1
	DIA	33.236	90.00 33.621	85.00 34.007	70.00 35.164	50.00 36.706	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	BETA 1	0.000	0.000	0.000	0.000	D.000	38.248 0.000	39.405 0.000	39.791	40.176	DIA
ROTOR -T.E.	BETA 2	44.497	42.473	42.015	40.705	39.334	38.182	39.318	0.000 41.502	0.000 44.841	BETA 1 Beta 2
	BETA(PK) 1 BETA(PR) 2	55 - 872	54.516	54.467	55.418	57.131	56.529	60.292	61,460	63.607	BETA (PR) 1
	A F	25.365 287.63	28.073 306.18	28.334 310.58	30.359	32.875	36.051	39.203	41.295	45.553	BETA(PR) 2
	¥ 2	409.86	+03.13	407.25	311.43 411.02	307.03 414.98	305.65 412.21	295.47	284.64	261.74	γţ
	72 I	287.57	306.11	310.54	311.41	306.65	304.41	400.01 293.53	366.60 262.61	361.12 260.03	¥ 2
	YZ 2	292.34	297.34	302.57	311.57	320.86	323.63	308.86	289.16	255.60	VZ 1 VZ 2
	V-THETA 1 V-THETA 2	0.00 287.25	0.00 272.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Y-THETA 1
	Y(PR) 1	512-6	527.4	272.58 534.3	268.05 548.7	262.94	254.50	252.96	255.85	254.19	V-THETA, 2
	V(PR) 2	323.5	337.0	343.8	361.1	565.2 382.2	583.7 400.8	593.2 399.4	592.5	585.7	V(PR) L
	VTHETA PRI	-424.3	-429.4	-434.8	-451.7	-474.6	-497.3	-514.4	385.6 -519.6	365.7 -524.0	V(PR) 2 VTHETA PRI
	VTHETA PR2	-138.6 424.30	-158.6	-163.1	-182.5	-207.4	-235.6	-251.9	-254.0	-260.6	VTHETA PRE
	Ü 2	425.84	429.40 430.78	434.82 435.72	451.72 450.55	474.57	497.32	514.43	519.64	524.00	Ul
	M 1	0.2594	0.2763	0.2804	0.2811	470.31 0.2771	490.07 0.2758	504.89 0.2665	509.83	514.77	Ų 2
	M 2	0.3641	0.3585	0.3626	0.3660	0.3695	0.3669	0.3556	0.2566 0.3435	0.2357 0.3199	M 1 M 2
	M{PR} 1 H{PR} 2	0.4622	0-4760	0.4824	0.4953	0.5101	0.5268	0.5351	0.5342	0.5275	H(PR) 1
	TURN(PR)	0.2874 30.503	0.2997 26.438	0.3061 26.131	0.3215	0.3403	0.3568	0.3550	0.3424	0.3240	MIPRI 2
	UUBAR	0.0845	0.1020	0.0973	25.058 0.0796	24.240 0.0644	22.42B 0.0626	21.016 0.0809	20.094	16.007	TURN (PR)
	LOSS PARA	0.0221	D.0264	0.0254	0.0211	0.0174	0.0170	0.0218	0.1136 0.0299	0.1424 0.0353	UUBAR 1050 BARA
	DFAC LFFP	0.5314	0.5126	0.5083	D.4920	0.4730	0.4590	0.4735	0.4991	0.5281	LOSS PARA Deac
	EFF	0-8254 0-8224	0.8259 0.8231	0.8637	0.9041	0.9267	0.9265	0.8959	0.8628	0.8069	EFFP
	INCIU	3.441	3.600	0.8817 3.889	0.9024 3.375	0.9254 3.13D	0.9251	0.8940	0.8604	0.8036	EFF
	DEAN	10.216	13.913	13.700	11.718	9.663	2,539 8.490	1.609 7.579	-0.841 8.157	-4.542 9.576	INCID
	P 1 P 2	14.636	14.728	14.743	14.726	14-716	14.713	14.656	14.609	14.518	DEVM P 1
	P 2 T 1	16.554 518.700	16.514 518.700	16.564	16.615	16.686	10.696	16.625	16.524	16.352	P 2
	Ť Ž	541.270	539.650	518.700 538.610	518.700 538.870	518.700 539.190	518.700	510.700	518.700	518.700	T 1
				2304010	3304010	2372170	539.330	539.980	540.290	541.010	T 2
STATOR U	PCT SPAN	95.00	90.00	85.00	70.00	50.00	20.00				
	DIA	33.207	33.564	33.921	34.992	50.00 36.420	30.00 37.848	15.00 38.919	10.00 39.276	5.00 39.433	PCT SPAN
STATOR-L.E. STATOR-T.E.	BETA 2	44.785	42.268	41.378	40.758	38.682	38.081	40.065	42.749	39.633 46.819	DIA Beta 2
SIMIDK-11E.	BETA 2A	3.700	3.750	3.300	2.320	2.060	3.271	4-66 L	4.851	4.942	BETA 2A
	V ŽA	407.83 327.89	404.84 322.61	412.58 322.68	411.02	419.70	413.80	394.36	378.25	349.85	V 2
	VZ 2	289.46	299.58	309.57	345.46 311.29	353.53 326.58	361.92 325.46	333.68	319.22	312.99	V 24
	A5 5Y	327.20	321.91	322.13	345.13	353.16	361.11	301.50 332.31	277.48 317.79	239.17 311.50	VZ 2 VZ 2A
	V-THETA 2	287.30	272.29	272.71	268.30	263.34	255.02	253.57	256.50	254.86	V-THETA 2
	V-THETA ZA H 2	21.16 0.3623	21.10 0.3601	18.57	13.98	12.70	20.64	27-09	26.97	26.93	V-THETA ZA
	M ZA	0.2899	0.2856	0.3675 0.2859	0.3660 0.3064	0.3738 0.3136	0.3684 0.3212	0.3504	0.3357	0.3098	M 2
	TURN (PR)	41.085	38.518	38.077	30.432	36.003	34.778	0.2955 35.359	0.2824 37.849	0.2766 41.823	H 2A
	UUBAR LOSS PARA	0.0430	0.0372	0.0714	0.0152	0.0310	0.0129	0.1032	0.0906	-0.0202	TURN (PR) UUBAR
	DFAC	0.0145 0.4159	0.0126	0.0245	0.0054	0.0115	0.0050	0-0408	0.0361	-0.0081	LOSS PARA
	EFFP	0.8644	0.4145 0.9032	0.430 <u>2</u> 0.8254	0.3799 0.9511	0.3796	0.3447	0.3829	0.4004	0.3700	DFAC
	INCID	-5.382	-1.119	1.067	2.728	0.8991 2.176	0.9483 2.213	0.6532	0.6984	1.0972	EFFP
	DEVM	12.532	15.062	14-610	13.295	13.072	14.935	1.358 17.098	-0.423 17.527	-12.386 9.791	DEAM INCID
	P Z P ZA	16.554	16.514	16.564	16.615	16.686	16.696	16.625	16.524	16.352	P 2
	T 2	16.493 541.270	16.461 539.650	16.459 538.610	16.593	16.638	16.677	16.486	16.412	16.373	P 2A
	T 2A	541.270	539.650	538.610	538.870 53 8. 870	539.190 539.190	539.330 539.330	539.980 539.980	540.29D	541.010	T 2
	UUBAR FS	0-0638	0.0844	0.0913	0.0426	0-0292	0.0368	0.1140	540.290 0.1407	541.010 0.1526	T 2A Uubar FS
	P2 FS LOSS PARA F	16.586	16.586	16.596	15.657	16.682	16.733	16-642	16.596	16-566	P2 FS
	LV33 FARA F	2 V+0215	0.0286	0.0313	0.0151	0.0108	0.0142	0.0450	0.0560	0.0612	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 70.18 Equivalent Rotor Speed = 2954.55 Equivalent Weight Flow 45.46
Uniform Inlet

INLET							•				
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00 41.085	PCT SPAN
	DIA Beta o	33.122 0.000	33.529 0.000	33.962 0.000	35.312 0.000	37.137 0.000	38.954 0.000	40.321 0.000	40.737	0.000	DIA BETA O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	V D	253.22	253.22	253.22	253.22	253.22	253.22	253.22	253.22	253.22	A O
	V i Vz o	263.73 253.22	268.75 253.22	267.00 253.22	264.12 253.21	263.02 253.20	260-29 253-18	253.35 253.15	239.84 253.15	219.31 253.15	V 1 VZ O
	VZ 1	263.72	268.75	267.00	264.11	263.00	260.25	253.29	239.78	219.25	ŸŽ Ĭ
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00 0.2280	0.00 0.2280	0.00	0.00 0.2280	Y—THETA 1 M O
	H 0 H 1	0.2280 0.2375	0.2280 0.2421	0.2280 0.2405	0,2280 0,2379	0.2280 0.2369	0.2344	0.2281	0.2280 0.2158	0.1972	H 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	DUBAR	0.3791	0.2374	0.2125	0.2470	0.2565	0.2700	0.3083	0-4021	0.5648	UUBAR
	DFAC EFFP	-0.041 0.1652	-0.061 0.3520	-D.054 0.3492	-D.043 O.2662	-0.039 0.2373	-0.028 0.1762	-0.001 0.0033	0.053 -0.3508	0.134 -0.8108	DFAC EFFP
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	C-0001	0.0001	0.0001	0.0001	INCID
	DEYM	-0.00G	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	PO	14.647	14.547	14.847 14.735	14.847 14.717	14.847 14.711	14.847 14.705	14.847 14.684	14.647 14.635	14.847 14.549	P 0 P 1
	P 1 T 0	14.647 518.700	14.722 510,700	518.700	518.700	518.700	518.700	518.700	516.700	518.700	Ťô
	Ť 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	516.700	518.700	Ti
ROTOR D	PCT SPAN	y5.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
RCTOR -L.E. RCTOR -T.E.	BETA 1 BETA 2	0.000 48.170	0.000 46.792	0.000 46.436	0.000 44.688	0.000 44.014	0.000 42.889	0.000 45.225	0.000 47.738	0.000 51.107	BETA 1 Beta 2
KCTOK -I+L+	BETA(PR) 1	58.245	56.812	56.781	58.008	59.624	61.105	62.459	63.903	65.986	BETA(PR) 1
	BETA(PR) 2	23.354	28.410	28.873	30.234	33.738	37.157	39.994	44.142	47.605	BETAIPRI 2
	V 1	264.28 414.75	282-66	286.53 396.89	283.93 405.63	280.22 402.80	277.29 399.41	271.70 391.17	257.94 366.92	236.43 353.79	V 1 V 2
	V 2 VZ 1	264.23	394.33 282.60	286.50	283.92	279.88	276.17	269.91	256.10	234.89	VZ 1
	VZ 2	276.60	269.97	273.52	288.36	289.59	292.33	275.07	247.70	221.BZ	VZ 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 274.97	V-THETA 1 V-THETA 2
	V-THETA 2 V(PR) 1	309.ü3 502.1	287.40 516.3	287.58 523.0	285.25 535.9	279.79 553.6	271.54 572.1	277.23 584.6	272.58 583.0	577.B	V(PR) 1
	V(PR) 2	301.3	306.9	312.4	333.8	348.4	367.3	359.7	345.6	329.5	V(PR) 2
	VTHETA PRI	-426.9	-432.0	-437.5	-454.5	-477.5	-500.4	-517.6	-527.8	-527.2	VTHETA PRI
	VTHETA PR2	-119.4	-146.0	-150.B	-168.I 454.50	-193.4 477.49	-221.5 500.38	-230.8 517.59	-240.4 522.83	-243.0 527.22	VTHETA PK2 U 1
	U 1 U 2	420.91 428.46	432.05 433.43	437.50 438.40	453.32	473.20	493.08	500.00	512.97	517.94	Ų Ž
	й 1	0.2381	G.2546	0.2584	0.2560	0.2526	0.2499	0.2448	0.2323	0.2127	M 1
	H 2	0.3663	0.3502	0.3529	0.3607	0.3580	0.3547	0.3469	0.3266	0.3127	M 2
	M(PR) 1 M(PR) 2	0.4523 0.2676	0.4654	0.4715 0.2777	0.4831 0.2968	0.4990 0.3096	0.5156 0.3262	0.5267 0.3191	0.5250 0.3062	0.5199 0.2913	M(PR) 1 M(Pk) 2
	TURNIPE	34.887	28.398	27.906	27.773	25.871	23.904	22.401	19.702	16.343	TURN(PR)
	UUBAR	0.0844	0.1139	0.1115	0.0837	0.0915	0.0904	0.1412	0.1713	0.1885	UUBAR
	LOSS PARA	0.0224	0.0294	0.0290	0.0223 0.5407	0.0245 0.5327	0.0242 0.5165	0.0376 0.5477	0.0431 0.5692	0.0450 0.5968	LOSS PARA Deac
	DFAC EFFP	0.5785 0.8783	0.5690 0.8411	0.5662 0.8956	0.9242	0.9163	0.9049	0.8551	0.7996	0.7757	EFFP
	EFF	0.8759	0.8383	0.8938	0.9228	0.9147	0.9031	0.8524	0.7960	0.7717	EFF
	INCIL	5.814	5.896	6.203	5.966	5.624	5.119	3.785	1.612	-2.154	INCID
	DEVM P 1	6.205 14.647	14.250 14.722	14.239 14.735	11.593 14.717	10.526 14.711	9.595 14.705	6.370 14.684	11.003 14.635	11.628 14.549	P 1
	P 2	16.755	16.620	16.663	16.758	16.773	16.761	16.722	16.562	16.470	P 2
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ţ <u>1</u>
	T 2	541.690	540.520	539.450	539.950	540.360	540.790	541.720	542.140	542,940	7 2
CT.TOD D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR D	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	48.499	46,556	45.705	44.748	43.485	42.775	46.151	49.291	53.597	BETA 2
STATOR-1.E.	BETA 2A	4,590 412.69	4.530	3.210	2.860	2,450 407.34	3.291 400.93	4.511 385.68	5.312 360.79	6.722 342.80	BETA 2A V 2
	V 2 V 2A	306.56	395.96 299.76	402.00 295.90	405.63 321.26	326.60	335.03	307.77	295.21	292.93	V ZA
	VZ 2	273.46	272.29	280.72	260.05	295.44	294.10	266.96	235.13	203.29	VZ 2
	VZ 2A	307.57	298.61	295.42	320.B1	328.19	334.28	306.57	293.69	290.61	VZ ZA
	V-THETA 2 V-THETA 2A	309.08 24.69	287.50 23.67	287.72 16.57	285.52 16.03	280.22 14.04	272.10 19.22	277.91 24.19	273.27 27.30	275.70 34.25	V-THETA 2 V-THETA 2A
	M 2	0.3665	0.3517	0.3576	0.3607	0.3621	0.3561	0.3420	0.3193	0.3028	M 2
	И 24	D.2724	0.2649	0.2617	0.2843	0.2908	0.2965	0.2717	0.2604	0.2582	M ZA
	TURN (PR)	43.909	42.025	42.494	41.881	41.017	39.450	41.593	43.931	46.825	TURN(PR)
	UUBAR LOSS PARA	0.0987 0.0331	0.0445 0.0151	0.0296	0,0645 0.0229	0.0515 0.0190	0.0423 0.0163	0.1205 0.0476	0.0537 0.0214	-0.0189 -0.0076	UUBAR LOSS PARA
	DEAC	0.4845	6.4700	0.4964	0.4446	0.4361	0.4085	0.4643	0.4563	0.4316	DFAC
	EFFP	0.7669	0.9007	0.8208	0.0354	0.8600	0.8668	0.6821	0.8440	1.0676	EFFP
	INCID	-1.668 13.422	3.168 15.842	5.415 14.520	6.717 13.834	6.779 13.461	6.906 14.955	7.443 16.949	6.119 17.987	-5.604 11.569	INCID DEVM
	DEVM	16.755	16.620	16.663	16.756	16.773	16.781	16.722	16.562	16.470	P 2
	P 2A	16.608	16.560	16.542	16.665	16.698	16.721	16.566	16.501	16.489	P 2A
	T 2	541.890	540.520	539.450	539,950	540.360	540.790	541.720	542.140 543.140	542.940	Ť 2
	T ZÄ UUBAR FS	541.890 0.0839	540.520 0.1097	5 39.450 0.0968	5 39.950 0.0697	540.360 0+0697	5 40.790 0.0661	541.720 0.1325	542.140 0.1470	542.940 -0.1346	T 2A UUBAR FS
	P2 FS	16.730	16.720	16,680	16.765	16.801	16.816	16.740	16.665	16.649	P2 F5
	LOSS PARA F		0.0372	0.0333	0.0247	0.0257	0.0254	0.0523	0-0585	3.0541	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 70.40 Equivalent Rotor Speed = 2964.03 Equivalent Weight Flow = 58.15
Uniform Inlet

INLET											
211221	PCT SPAN	96.80	92.00	86.90	71.00	49.50	20.15				
	LIA	33-122	33.529	33.962	35.312	37.137	28.10 35.954	12.00 40.321	7.16 40.737	3.00	PCT SPAN
	6ETA O BETA 1	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	41.085 0.606	DIA Beta o
	¥ 0	224.22	224.22	0.000 224.22	0.000 224.22	0.000 224.22	0.000	0.000	0.000	0.000	BETA 1
	V 1	232.46	241.54	239.25	231.73	229.91	224.22 231.99	224.22 225.07	224.22	224.22	V G
	V2 U V2 1	224.22 232.46	224.22 241.34	224.22	224.21	224.20	224.16	224-16	213.35 224.16	186.11 224.16	V 1 V2 0
	V-THETA U	6.00	0.00	239,25	231.73	229.89 0.00	231.95	225.02	213.30	188.06	v2 i
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	V-THETA O
	M j	0.2016 0.2091	0.2016 u.2172	0.2016	0.2016	0.2016	0.2016	0.2016	0.2016	0.6D 0.2016	V-THETA 1 H O
	TURN	0.0	0.0	0.2153 0.0	0.2065 0.0	0-0	0.2087 0.0	0.2024	0.1918	0.1690	H I
	UUBAR UFAC	0.3172	0.2386	0.2143	0.2241	0.2386	0.2484	0.0 0.3044	0.0 0.3896	0.0	TURN
	EFFP	-0.037 0.1641	-0.476 0.4032	-0.067 0.3965	-0.034	-0.025	-0.035	-0.004	0.048	0.5844 0.161	UUBAR DFAC
	INCID	0.0001	U.0C01	0.0001	0.2362	0.1796 0.0001	0.2239 0.0001	0-0248 0-0601	-0.3257	-1.0454	EFFP
	P O	-0.000 14.50d	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.0001 -0.000	0.0001 -0.000	INCIO Devm
	ΡĬ	14-647	14.608 14.709	14.808 14.719	14.806 14.715	14.808 14.709	14.808	14.808	14.808	14.808	PO
	1 0	516.700	516.700	518.700	518.700	518.700	14.705 518.700	14.68 <i>2</i> 518.700	14.646	14.566	P 1
	1 1	516.700	518.700	518.700	518.700	518.700	516.700	518.700	518.700 518.700	518.700 518.700	T 0 T 1
RUTCK U	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00				• •
RUTER -L.E.	EFTA I	236	33.621	34.007	35.164	36.766	38.248	15.00 39.405	10.60 39.791	5.00 40.176	PCT SPAN
ROTUK -1.2.	FETA 2	0.000 50.938	₩.₩₩ 50.402	0.000 50.J57	0.000	0.000	0.000	0.000	0.000	0.000	DIA Beta 1
	bETAIPR) 1	61.463	57.600	59.699	49.633 61.377	49.565 62.968	49.496 63.898	51.940	54.742	57.379	BETA 2
	BETA(PR) 2 V 1	23.060 232.95	26.600	29-410	34.196	34.659	37.896	65.232 42.693	66.540 45.650	69.163 46.776	BETA(PR) 1 Beta(Pr) 2
	v .	411.45	253.68 397.97	256.51 369.33	248.85 378.35	244.71	246.94	241-17	229.27	\$G2+62	V 1
	VZ 1	452.90	253.62	256.48	248.84	392.57 244.41	391.06 245.94	376.27 239.58	369.39	367.38	Y 2
	VZ Z V-THEIA 1	259.27 0.00	80. tes	248.39	245.05	254.55	253.79	231.66	227.63 212.98	201-30 197-64	VZ 1 VZ 2
	V-THETA &	319.47	0.00 64ء ہاد	0.00 299.79	U.QU 286.26	0.00 298. 7 3	0.00	0.00	U.BŌ	0.00	V-THETA 1
	V(PK) 1 VIPK) 2	407.5	502.2	508.4	519.4	537.9	297.13 559.4	295.89 572.5	301.26 572.4	309.10	V-THETA 2
	VIHETA PRI	201.6 -428.3	∠84+2 ~433•4	285.1 -438.9	296.3	309.6	322.0	315.6	302.0	566.4 289.4	V(PR) 1 V(PR) 2
	VIHETA PRZ	-110.4	-126.2	-140.0	-456.0 -166.5	-479.0 -176.0	-502.0 -197.5	-519.3	-524.5	-528.9	VTHETA PRI
	6 1 U Z	426.28 429.84	433.43	438.90	455.96	479.02	501.98	-213.7 519.25	-213.4 524.51	-210.5 526.91	VIHETA PR2 U 1
	M 1	0.2096	434.82 U.2264	439.81 0.2310	454.77 0.2240	474.72	494.67	509.63	514.61	>19.60	U 2
	M Z	0.3653	0.3535	0.3459	0.3357	0.2202 0.3484	0.2223 0.3467	0.2170	0.2062	0.1821	M 1
	M(PR) 1 M(PR) 2	0.4386 0.2502	0.4522	0.4578	0.4676	U-4841	0.5035	0.5152	0.3265 0.5149	0.3244	M 2 M(PR) 1
	TURN (PK)	30.400	0.2524 32.854	0.2533 30.268	0.2628 27.181	0.2747 28.296	0.2854	0.2794	0.2669	0.2555	M(PR) 2
	UUBAR	0.1639	U.1319	0.1411	0.1501	0.1569	25.965 0.1652	22.467 0.2183	21.442 0.2504	22.365	TURN (PR)
	LCSS PAKA DFAC	0.6277	0.0345 0.6134	0.0365	0.0362	0.0416	0.0436	0.0557	0.0624	0.2605 0.0632	UUBAR LOSS PARA
	EFFP	0.6946	0.6879	0.6144	0.6002 6.8487	D.6025 U.8903	0.6018 0.8631	0.6262	0.6552	0.6807	DFAC
	eff Incle	Ç.6446 4.€34	U+6858	0.6989	0.8460	0.6882	0.6605	0.7867 U.7628	0.7603 0.7559	0.7713 0.7669	EFFP EFF
	UE VM	1.910	0./*1 12.649	9.121 14.776	9.335 15.555	8.971	7.919	6.569	4.261	1.036	INCIP
	P 1 P 2	14.647	14.709	14.719	14.715	11-447 14-709	10.333 14.705	11.067 14.682	11.911 14.646	10.799	DEAW
	T 1	16.814 516.700	16.736 518.700	10.696	16.643	16.789	16-824	16.693	16.637	14.566 16.631	P 1
	Γž	542.010	540.736	518.700 539.860	518.700 540.650	518.760 541.190	518.700 542.340	516.700	516.700	516.700	T 1
				-			242.340	543.466	544.140	544.810	1.2
STATCE	PCT SPAN	95.60	90.00	85.00	70.00	50.00	30.00	15.00			
STATUR-L.E.	LIA EETA 2	23.207	53.504	33,921	34.992	36.420	37.848	15.00 38.919	10.00 39.276	5.00 39.633	PCT SPAN
STATOK-I.C.	DETA ZA	51.309 4.560	50.134 4.576	49.525 4.100	49.703	48.930	49-362	53.121	50.774	60.613	DIA Beta 2
	V 2	409.37	399.65	394-31	2.670 378.35	2.220 396.96	2.G31 392.57	3.541	4.732	6.072	BETA 2A
	V 2A VZ 2	286.34 2>5.90	278.43	275.65	297.71	296.73	295.92	371.04 272.33	361.26 266.62	355.87 270.80	V 2 V 2A
	¥4. 4A	207.43	256.17 277.54	255.95 274.93	244.67 297.34	260.72	255.53	222.53	197.83	174.54	V2 2
	V-THETA 2	317.52	300.75	299.44	288.54	296.41 2 9 9.19	295.56 297.74	271.59 296.61	265.48 302.03	269.00	VZ ZA
	V-THETA ZA M 2	2.92 6.3634	22.18 0.3650	19.71	13.87	11.49	10.48	16.81	21.97	309.92 28.62	V-THETA 2 V-THETA 2A
	M ZA	0.2543	0.3550 0.2457	0.3504 0.2434	0.3357 0.2630	0.3524 0.2620	0.3480	0.3282	0.3191	0.3141	H 5
	TURN (PA.) UBBAR	40.749	45.563	45.423	47.026	40.692	0.2610 47.298	0+2397 49+534	0.2344 51.998	0.2380 54.496	M 2A TURN{PR}
	LCSS PARA	0.1351 0.0457	0.1299 U.0441	0.1171 0.0402	0.0218	0.1291	0.1476	0.1537	0.1360	0.1210	UUBAR
	LFAC	C-5398	0.5459	0+5+59	0.0077 0.4717	0.0478 0.5218	0.0568 0.5293	0.0608 0.5666	0.0542	0.0486	LOSS PARA
	EFFF INCID	0.742u 1.142	0.7584	0.7807	0.9453	U.7200	0.6724	0.6790	0.5740 0.7116	0.5600 0.7226	DFAC EFFP
	DE VM	13.592	6.746 15.682	9-234 15-410	11.672 13.645	12.224	13.494	14.415	13.606	1.417	INCIO
	Pe	16.014	16.738	16.696	15.643	13.232 16.789	13.695 16.824	15.979 16.693	17.407	10.920	DE VM
	P ZA T Z	16.614	16.557	16.537	16.615	16.610	16.625	16.509	16.637 16.482	16.631 10.498	P 2 P 2A
	T 2A	542.010	540.730 540.730	539.860 539.860	540.650 540.650	541.190 541.190	542,340	543.460	544.140	544.810	T 2
	ULBAN FS P2 FS	0.1053	0.1295	0.1276	0.0981	0.1447	542.340 0.1563	543.460 0.1529	544.140 0.1555	544.810 0.1528	T ZA
	LCSS PARA FS	16.763	16.737	16.712	16,747	16.613	16.838	16.692	16.662	16.672	UUBAR FS P2 FS
				0.0438	0.0346	0.0535	0.0601	0.0605	0.0619	0.0613	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 49.38 Equivalent Rotor Speed = 2078.86 Equivalent Weight Flow = 66.42
Uniform Inlet

			•								
INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3-00	PCT SPAN
	DIA BETA O	33.122 0.600	33.529	33-962	35.312	37-137	38,954	40.321 0.000	40.737	41.085	DIA
	BETA 1	0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O BETA 1
	V O	257-13	257.13	257.13	257.13	257.13	257-13	257.13	257.13	257.13	V O
	V 1	268.28	272.95	271 - 63	267.37	265.27	263.68	252.24	248.79	239.77	Ϋ́I
	V 2 0	257.13	257.13	257.13	257.13	257.11	257.09	257.06	257.06	257.06	V2 0
	V2 1	268.28	272.95	271.63	267.36	265.26	263.64	252+18	248.73	239.71	VZ 1
	V-THETA D V-THETA 1	0.00	G.∪O	0.00	0-00	0.00	0.00	0.00	0.00	0.00	V-THETA O V-THETA 1
	M O	0.2315	0.00 0.2315	0.00 0.2315	0.00 0.2315	0.00 0.2315	0.00 0.2315	0.00 0.2315	0.00 0.2315	0.00 0.2315	M O
	M 1	0.2417	0.2459	0 .2 448	0.2469	0.2390	0.2375	0.2271	0.2240	0.2158	# I
	TUKN	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.4612	0.2433	D • 2 U 99	0.2229	0-2415	0.2415	0.3158	0.3752	0.4402	UUBAR
	DFAC EFFP .	-D.Q43 0.1833	-0.062 0.3468	~0.056 0.3606	-0.040 0.2709	-0.032	-0.025	0.019	0.032	0.068	UFAC
	INCID	0.0001	0.0001	0.0001	0.0001	0.2135	0.1786 0.0001	-0.1383 0.0001	-0.2093 0.0001	-0.4306 0.6001	EFFP INCID
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	P O	14.840	14.840	14.840	14.640	14.840	14.840	14.840	14-840	14.840	PG
	P 1	14.622	14.708	14.726	14.719	14.709	14.709	14+669	14.636	14.601	P 1
	7 0 7 1	518.700	518.700	516.700	518.700	518.700	518.700	518.700	518.700	518-700	Tu
		516.700	518.700	51 6. 700	518.700	518.700	518.700	518.700	518.700	518.700	7 1
KUTER D	PET SPAN	95.00	90.00	65.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	Ula	33.23t	33.621	34.007	35.164	36.704	36.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	LETA 1	0.000	6.000	6.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
RCTCR +T.L.	BETA 2 Betaipri 1	32.496 40.177	30.918	29.805 40.559	28.437 48.050	27-361 49.962	25.646 51.526	24.995 53.577	26.156	26.654	BETA 2
	BETAIPE 2	24.044	46.643 23.643	23-991	25.508	28.686	32.767	37.472	54.158 40.471	55-286 51-867	BETA(PR) 1 BETA(PR) 2
	Y 1	268.05	287.11	291.55	287.46	2B2.64	280.93	270.51	267.64	258.67	V 1
	A *	330.05	392.92	349.25	356.09	352.29	343.02	320.76	299.99	228.78	V 2
	V2 1	268.80	287.04	291.52	287-44	282,29	279.79	266.73	265-74	256.98	VZ 1
	VZ 2 V-THETA 1	278 - 34	294.17	363.03	313.12	312.74	308.74	289+95	268.49	200.21	V2 2
	V-THETA 2	0.uC 177.30	0.00 176.19	0.00 173.61	0.00 169.56	0.00 161.84	0,00 148_23	0.00 135.17	0.00 131.66	109-40	V-THETA 1 V-THETA 2
	V(PR) 1	463.1	416.1	424.0	430.0	439.0	450.4	453.7	454.9	452.2	V(PR) 1
	V(PR) &	304+8	321.1	331.7	346.9	356.7	367.7	366.1	353.7	324.7	VIPR) 2
	VIHLTA PKI	-300.4	-304.0	-307-8	-319.8	-336.0	-352.1	-364,2	-367.9	-371.0	VTHETA PRI
	VTHE 1A PRZ	-124.2 300.38	-126.8 304.00	-134.9 307.83	-149.4 319.80	-171.1 335.97	-198.7	-222.3	~229.1	-255.0	VTHETA PR2
	U Ž	301.47	304.97	3L8.47	316-96	332.95	352.08 346.94	364-19 357-44	367.88 360.94	370.96 364.43	U 1 U 2
•	M 1	0.2422	0.2589	0.2629	0.2592	0.2548	0.2532	0.2437	0.2411	0.2329	MI
	M 2	0.2950	0.3070	0.3131	0.3192	0.3157	0.3074	0.2871	0.2663	0.2039	M 2
	M(PR) 1	0.3632	0.3770	0.3824	0.3877	0.3958	0.4060	0.4087	0.4098	0.4073	M(PR) 1
	M(PR) 2 Tuknipr)	0.2724 24.129	0,2876 22,995	0.2973 2566	0.3110 22.541	0.3196 21.256	0.3294 18.697	0.3277 16.014	0.3163 13.594	0.2894 3-345	M(PR) 2 Turn(Pr)
	UUSAR	0.0906	0.0960	0.0727	0.0384	0.0389	0.0410	0.0533	0.0904	0.1706	UUBAR
	LOSS PARA	0.0240	0.0258	0.0197	0.0107	0.0110	0.0116	0.0147	0.0241	0.0373	LOSS PARA
	LIFAC	0.3715	0.3557	0.3394	0.3143	0.3058	0.2936	0.2955	0.3232	0.3670	DFAC
	EFFP	0.6805	0.7505	0.8417	0.8605	0.8542	0.8405	0.7869	0.7112	0.4121	EFFP
	EFF The To	0.67dí -4.235	∪.7487 -4.∠75	u +8 405 - ++ 6 19	0.8594 -3.993	0.853C -4.041	0.8393	0.7854 -5.122	0.7D94. -6.16¢	4099 -12.8e7	EFF Incid
	DEAN	8.654	5.484	5.357	6.867	5.475	5.268	5.850	7.333	15.892	DEVM
	¥ 1	14-622	14.708	14.720	14.719	14.709	14.709	14.669	14.636	14.601	P 1
	P 2	15.396	15.475	15.522	15.574	15.556	15.508	15.391	15.282	14.986	P 2
	T 1 T 2	518.706 536 650	518.700 528.830	518.700 528.050	518.700	518.700 528.510	518.700 528.110	518.700 527.830	516.700 527.770	518.700 528-140	7 1 T 2
	1 2	536.656	320,030	22 01 0 20	528-510	3204310	2204110	7211030	3211110	220-140	1 2
						_	_				
STATUR D	PCT SPAN	95.00	90.00	65.00	70.00	50.00	30.60	15.00	10.00	5.00	PCT SPAN
CTATCH - 4	DIA BLTA 2	33.207 32.673	33.564 30.790	33.921 29.421	34-992 28-471	36.420 27.089	37.846 25.586	38.919 25.392	39.276 26.600	39.633 29.653	DIA BETA 2
STATER-L.E. STATER-T.E.	BETA ZA	1.310	1.300	1.080	0.040	-0.810	0.510	1.671	0.990	-2.801	BETA 2A
2.810K-11C+	V 2	326.48	344.51	353,61	356.09	356.13	344.29	316.45	293.62	222.06	V 2
	V ZA	298.67	313.36	3 22 . 73	347.80	347.54	343.21	307.23	291.16	284.09	V 2A
	VŽ Ž	276.50	295.78	367.99	312-97	316.90	310-21	285,47	261.69	192.68	VZ 2
	VZ ZA V-THETA Z	296.57 177.33	313.27 176.24	322.66 173.69	347.75 169.72	347.39 162.09	342.99 148.53	306.85 135.50	290.86 132.19	283.45 109.69	VZ 2A V-THETA 2
	V-THE IA ZA	6.83	7.11	80.0	0.24	-4.91	3.05	8.95	5.03	-13.67	V-THETA ZA
	M Z	0.2935	0.3083	0.3170	0.3192	0.3192	0.3085	0.2832	0.2625	0.1979	M 2
	M ZA	0.2605	0.2801	V.2889	0.3116	0.3114	0.3075	0.2748	0.2603	0+2538	M ZA
	TURN (PR)	31.363	29.469	28.340	28.425	27.883	25.048	23.684	25.768	32.399	TURN (PR)
	UUSAR LESS PARA	0.0768 0.0259	0.0747 0.0254	0.0677	-0.0181 -0.0064	-0.0124 -0.0046	-0.0061 -0.0024	0.0993	0.0692 0.0277	-0.5105 -0.2057	UUBAR Loss Para
	DFAC	0.2657	0.2573	D.2507	0.1928	0.1983	0.1666	0.1885	0.1826	-0.0539	DEAC
	LFFP	0.5715	0.5815	0.6108	1.3752	1.2483	1.9486	-0.6739	-3.0287	0.2194	EFFP
	INCID	-17.494	-12.598	-10-B69	-9.559	-9.614	-10.275	-13.305	-16,362	-29.544	INCID
	DEVM	10-142	12.612	12.390	11.015	10.202 15.556	12-176 15-508	14.110 15.391	13.670 15.282	2.056 14.986	DEVM
	P 2 P 2a	15.396 15.327	15.475 15.401	15.522 15.451	15.574 15.593	15.569	15.514	15.308	15.232	15.192	P Z P 2A
	T	530.050	528-830	528.050	528.510	528.510	528.110	527.830	527.770	528.140	T 2
	1 2A	530.050	526.830	526.050	528-510	528.510	528.110	527.830	527.770	528 - 140	T 2A
	UDBAR 65	0.1039	0.0964	0.0784	0.0284	0.0186	0.0338	0.1648	0.2319	0.2261	UUBAR FS
	P2 FS LUSS PARA F	15.422	15.498 0.0327	15,533	0.0100	15.589	15.548 0.0133	15.478 0.0731	15.432 0.0928	15.372 0.0919	PZ FS Loss Para Fs
	econ inpari							• •			

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 49.47 Equivalent Rotor Speed = 2082.73 Equivalent Weight Flow = 59.41
Uniform Inlet

INLET											
	PLT SPAN	96.50	92.00	86 • 90	71.00	49.50	28.10	12,60	7 10		
	ii I A	122 ، د د	33.529	33.462	35.512	37+137	38.954	40.321	7.10 46.737	3.60 41.685	PCT SPAN
	SŁTA O EŁTA 1	0.000	0-006	0- 600	0.000	0.000	0.000	0.000	0.000	0.000	DIA Beta o
	v o	229+28	0.000 229.28	0.000 229.28	0.000 229.28	0.000	0.000	0.000	6.000	0+000	BETA 1
	V 1	234.37	237.92	£ 35 • 94	232.51	229.28 232.38	229.28 231.76	229.28 223.83	229.28 217.34	229.28	v o
	V2 G	229.28	229.28	229-28	229.26	229.27	229.24	229.22	229.22	198.03 229.22	¥ 1 ¥2 0
	VŽ 1 V−THĒTĀ ∪	234.37 0.00	237.92	235.94	مة من الم	232.36	231.74	223.78	217.29	197.98	ν <u>τ</u> ι .
	V-THETA 1	0.00	0.00 0.00	0.00	0.00 4.00	0.00	0.00	0.00	0.00	0+00	V-THETA D
	м О	0.2662	0.2062	6.206∠	0.2062	0.00 0.2662	0.00 0.2062	0.00 0.2062	0.00	0.00	V-THETA 1
	M 1	0-2109	0.2141	0.2123	0.2092	0.2690	0.2685	0.2013	0.2062 0.1954	0.2062 0.1779	И 0 Н 1
	TUKN UUBAR	0.0 0.5681	0.0 0.2283	0.0	0.0	0 . c	0_e	0.0	0.0	0.0	TURN
	DEAC	-0.022	-0-038	6.2027 −0.0∠9	0.4306 -0.014	0.2563 -0.013	0.2423 -0.011	0.3168	0.3867	0.5521	UUBAR
	EFFP	0.1049	0.2539	0.2278	0.1102	· 0.0967	0.0831	0.024 -0.1773	0.052 -0.3621	0.136 -0.8685	DFAC
	INCIB DEVM	∪-6601 -0.660	0.0001	0.0001	0.0001	0.0001	0-0001	0.0001	0.0001	0.0001	EFFP INCID
	PL	14.814	-0.06C 14.814	-0.666 14.814	-0.666 14.814	-0.600 14.814	-0.000	-0.000	-0.000	-0.000	DEVH
	P 1	14.05	14.715	14.726	14-714	14.763	14.814 14.709	14.614 14.677	14-814	14.814	PO
	1 0 1 L	518.760	518.700	516.700	518-700	516.700	518.700	518.700	14.647 518.700	14.575 518.700	P 1 T 0
		518.700	518.700	516.700	518.70D	518.700	518.700	518.700	518.700	518.700	ŤĬ
RUTLK D	PCT SPAN Lla	45.00 33.230	90.00 33.621	85.00	70.60	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTER -L.F.	SEIA 4	0.006	0.000	34.067 0.060	35-164 0.606	36.706 0.000	36.248	39.405	39.791	40.176	DIA
ROTOR -I.E.	BETA 2	36.348	36.549	35.421	33.902	33.052	0.000 31.867	0.000 31.738	0.000 33.546	0.000 36.401	BETA 1
	heta(PR) i beta(PR) z	\$2.046 200	50.619	50.646	52.071	55.723	55.140	56.856	57.819	60.301	BETA 2 Beta(PR) 1
	V 1	25.280 2.4.86	25-661 250-06	26.329 252.94	27.271	29.710	33.670	37-417	40.847	50.742	BETA(PR) 2
	₩ 2	40اند	310.25	314.41	249.69 324.22	247.35 325.49	246-69 310-25	239.83	233.58	213.36	Y 1
	Ar *	234.62	256.00	252+91	249.67	247.05	245.70	405.05 238.25	284.72 231.92	231.87 211.97	¥
	VZ 2 V=TBETA 1	239.06 0.00	249.21	256.18	269.10	273.12	269.96	258.83	236.70	186.19	V2 2
	V-THETA 2	169.13	0.00 184.73	0.00 182.27	0.06 100.64	0.00 177.72	0.00	0.00	0.00	0.00	V-THETA 1
	V(PR) 1	381.7	394.1	198.9	406.4	417.7	167-78 430-4	160.09 436.6	156.94 436.3	137-28	V-THETA 2
	V(PR) 2 Viheta Pri	264.4 -306.5	277.0	285.8	302.6	314.6	324.7	326.5	313.6	428.5 294.7	V(PR) 1 V(PR) 2
	VIHEIA PEZ	-306.9 -112.9	-364 -0 -1.0.8	-308.4 -1.6.8	-320.4 -136.7	-336.6	-352.7	-364.9	-36B.6	-371.6	VTHETA PRI
	l 1	200.44	304.56	306.40	320.39	-155.9 336.60	-179.8 352.73	-148.0 364.86	-204.7	-227.8	VTHETA PRZ
	U .	دناه عنات	305.54	309.04	319.55	533.57	347.59	358.10	368.56 361.60	371.65 365.11	n 5 n T
	M 1 M 2	0.2115 0.2722	0.2251 6.2774	0.2277	0.2148	C - 2226	0.2220	0.2158	0.2161	0.1918	Mi
	M(PR) 1	0.3434	0-3547	0.2814 0.3591	0.2900 0.2657	0.2916 0.3760	0.2845	0.2726	0.2541	0.2064	M Z
	9(PF) 2	U-2361	0.2476	0 4558	0.2768	0.2814	0.3874 0.2904	0.3529 0.2918	0.3926 0.2799	0.3852 0.2623	M(PR) 1
	TURN (PR.) UUBAR	20-752 6-6895	24.753	24.315	24.800	23.993	21.413	19.355	16.889	9.498	Mipr) 2 Turn(pr)
	LUSS PARA	6-0234	0.1006 0.026a	0.0632 0.0221	0.0446 0.0122	0.0340	0.0445	0.0524	0.0873	0.1137	UUBAR
	LFAC	0-451c	0.4349	0.4192	0.3915	0.0095 0.3832	0.0125 0.3757	0.0144 0.3782	0.0232 0.4063	0.0255	LOSS PARA
	LFFP LFF	(+7764	0.8237	6434-0	U-8864	6.9158	0.680D	0.8492	0.7863	0.4249 0.6231	DF AC EFFP
	16.010	ۥ7766 -0•39c	0.812 4 -0.497	860 e3	U+6854	0.9.50	0.8790	0.8479	0.7847	C-6207	£FF.
	DE AW	10.131	11.702	11.695	0.629 6.630	-0.260 5.500	-0.656 6-111	-1,630 5.794	-4.494	-7.660	INCIO '
	P 1	14.655	14.715	14.720	14.714	14.703	14.709	14.677	7.710 14.647	14.767 14.575	DEVM P 1
	P į	15.50a 518.700	15.538 518.766	15.566	15+629	15.656	15.626	15.561	15.464	15.242	PZ
	1 4	525.516	526.586	518.700 527.670	518.700 528.890	518 -7 00 528 - 960	518.70C 528.99U	518.700	518.700	518.700	T I
				2274010	3401070	2204700	320.990	529.010	529.040	529.460	1 2
STATUR L	PCT SPAN	95.00	40.00	85.00	70.60	50.00	30.00	15.00	10.00	E 00	DCT CD41
STATUR-L.L.	bla ‼Fla ≟	.3.2U7	33.504	33.921	34.992	36.420	37.448	38.919	39.276	5.00 39.633	PCT SPAN Dia
STATUR-I.L.	ELTA ZA	30-500 1.986	30.393 2.010	14.96c 1.460	33.944	32.716	31.793	32.267	34.419	37,763	BETA Z
	V 2	303.45	311.47	318.25	0.956 314+22	0.170 329.48	1.090 319.41	2-111 300.98	1.991	0.020	BETA 2A
	V 2A	-61.37	205-05	269.10	295.85	299.87	301.87	273.63	278.72 259.31	225.05 255.53	V 2 V 2A
	V/	437.25 401.61	250.72	260-81	266.92	277.08	271.24	254.18	229.63	177.69	¥2 2
	V-THETA .	169.16	204.88 184.80	269.00 182.36	295.77 181.01	299.77	301-64	273.22	2.58.93	255.26	VZ ZA
	V-THETA 24	4.65	9.30	0.86	4.90	177.99 0.89	168.13 5.74	160-48 10-07	157.34 9.60	137.64	V-THETA Z
	M ZA	6.2709	0.2785	0.2849	0.2900	0.2948	0.2856	0.2689	0-2487	0.09	V-THETA ZA M 2
	TURNIPRI	36-585	0.2365 34.362	0.2403 33.560	0.2643	0.2679	0.2697	0.2441	0.2312	0-2277	M ZA
	UULAR	0.0201	0.0470	0.0666	32.988 -0.0102	32,528 0.0110	30-671 -0-0012	30-112 0-0992	32.360	37.685	TURN (PR)
	LCSS PARA	0.0101	0.0160	0.0236	-0.0036	0.0041	-0.0005	0.0393	0.0619 0.0248	-0.3931 -0.1586	UUBAR LOSS PARA
	UFAL ŁFFP	0.5366 0.6854	0.3410	0 -3 445	0.2509	0.2895	0-2516	0.2901	0.2838	0.1125	DFAC
	INCID	-11.60.	0.8349 -6.995	0 • 7 6 7 0 -5 • 329	1.0592 -4.086	0.9382 -3.989	1-0107 -4-072	0.4444	0.5512	-0.3271	EFFP
	DFAW	10.612	13.322	12.770	11.925	11-182	12.756	-6.437 14.550	-8.750 14.669	-Z1-440	INCID
	P Z P ZA	15.506	15.538	15.568	15.629	15.656	15.626	15.561	15.464	4,874 15,242	DEVM P 2
	7 2	15.48J 529.570	15.499 528.580	15.509 527.670	15+639	15.646	15.627	15.485	15.424	15.408	P ZA
	T 2A	569.576	528.580	527.670	528.890 528.896	528.960 528.960	528.99D 528.996	529.010 529.010	529.040 529.040	529.460	1 2
	UUBAR FL	0.0688	0.0655	0.0697	0.0221	0.0144	0.0195	0.1580	0.2122	529,460 0.1987	T 2A Uubar FS
	P2 FS LUSS PARA F:	15.538	15.553 0.0223	15.568	15.659	15.659	15.544	15.613	15.588	15.553	P2 FS
			******	0.0239	0.0078	0.0053	0.0081	0.0626	0.0850	0.0801	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 49.76 Equivalent Rotor Speed = 2094.84 Equivalent Weight Flow = 51.12
Uniform Inlet

INLET											
	PCT SPAN	96.60	92.00	86 - 90	71.00	49.50	28.10	12.60	7.10	3.00	PCT SPAN
	UIA	33.122	33.529	33-962	35.312	37.137	38.954	40,321	46.737	41.085	DIA
	EETA D BETA 1	0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA D BLTA 1
	V D	196.64	196.64	196.64	196+64	196.64	196.64	196.64	196.64	196-64	V G
	V 1	202+1B	208.18	207.48	203.33	201.89	202.37	195.48	190.23	172.28	V 1
	V2 G V2 1	196.64 202.18	196.64 208.18	1 %6 • 64 2 07 • 48	196.63 203.33	196.62 201.87	196.60 202.34	196.59 195.43	196.58 196.18	196.59 172.23	γ2 G γ2 1
	V-THETA C	0.00	0.00	0.00	0.00	0.06	0.00	0-60	0.00	0.00	V-THETA O
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	н 0 н 1	0.1767 0.1817	0.1767 0.1871	0.1767 0.1865	0.1767 u.1827	0.1767 0.1814	0.1767 0.1819	0.1767 D.1756	0.1767	0.1767	M C
	TURN	U-0	0.0	0.0	0.0	0.0	0.0	0.6	0-1709 0-0	0.1547 0.0	M 1 TURN
	UUBAR	6.3853	6.2337	0.1959	0.2461	6.2495	0.2432	0.2969	0.3569	0.5401	UUBAR
	DFAC EFFP	-0.026 0.1299	-0.059	-C+055	+0.034	-0.027	-0.029	0.006	0.033	0.124	DFAC
	INCIC	U.UÚUI	0.3428 0.0001	0.36B8 0.000l	0.2257	0.1793 0.0001	0.1973 0.0D01	-0.0423 0.0001	-0.2223 0.0001	-0.7658 0.0001	EFFP Incid
	LE YM	-C-00t	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	F G F 1	14.762	14.762	14-762	14.782	14.782	14.782	14.782	14-782	14.782	PO
	י ד ט ד	14.659 516.768	14.707 518.766	14.719 518.700	14.705 514.700	14.702 518.700	14.704 518.700	14.687 518.760	14.668 518.700	14.610 518.700	P 1 T 0
	1 1	516.700	518.700	516.700	514.700	518.700	518.700	518.700	518.700	518.700	Ť ī
RUTUR D	PCT SPAN	95.00	90.00	85 60	70.00	50.00	30.00	15.00	10.00	5,00	PCT SPAN
	UZA	33.4.36	±3.6∠1	34.007	35.164	36.706	38.248	39.465	39.791	40.176	DIA
KDTÚR ≁L.É. RújuR –T.É.	BETA 2	0.000	0.600	G-000	0.000	0.000	0.060	0.000	0.000	0.000	BETA 1
KOTOK -1959	EETA(PR) 1	43.796 56.210	42.549 54.466	41.840 54.362	40.461 55.902	39.401 57.646	38-111 58-856	38.271 60.466	40.493 61.314	43,339 63,757	BETA 2 Beta(PR) l
	EERA(PR) _	25.302	26.463	29.442	29.918	32.868	36.287	39.339	41.705	47.508	BETALPR) 2
	V 1	≥0≥ •60	418.67	4 22 • 25	218.17	214.74	215.20	209.29	204.29	165.50	V 1
	V _ V2 1	245.74 262.56	285.72 218.62	2 65 • 82 2 22 • 23	295.72 218.16	295.86 214.47	292.94 214.39	265.78 207.92	274.64 202.84	246.56 184.29	V 2 V2 1
	vž ž	412.01	210.46	212.93	224.93	228.54	230.21	223.91	2CB.43	180.43	WZ Z
	A-THFIY I	0+00	0.00	0.00	0+60	0.00	0.00	0.00	0-00	0.00	Y-THETA 1
	V-THETA 2 V(PR) 1	263.29 364.2	193.20 376.4	190.65 381.6	191.98 369.2	187.73 400.9	180-58 415-0	176.65	177.97	170.27	V-THETA 2 Y(PR) 1
	V(Pk) 2	234.6	239.4	244.5	259.5	272.3	286.0	422-5 290-1	423.3 279.7	417.3 267.6	V(PR) 2
	VTHETA PRI	-302.7	-300.3	-310.2	-322.3	-338.6	-354.8	-367.0	-370.7	-373.8	VTHETA PRI
	VTHETA PRZ U 1	-100.5	-114.1 504.33	-150-5	-129.4	-147.8	-169.0	-183.5	-185.7	-197.0	VTHETA PRE
	U 2	302.69 203.79	306.33 307.31	3 10 - 20 3 10 - 84	322.25 321.41	338.55 335.51	354.78 349.61	366.98 360.18	370.70 363.71	373.81 367.23	U 1 U 2
	H I	0.1621	D.1966	0.1999	0-1962	0.1931	0.1935	0.1881	0.1836	0.1666	M I
	N Z	0620	0.2550	0 -2553	0.2640	0.2641	0.2614	0.2549	0+2448	0.2212	N 2
	M(PR) 1 M(PR) 1	U.3273 U.2693	0.3384 0.2137	0.3432 0.2184	0.3499 0.2317	0.3604 0.2431	0.3731 0.2552	0.3797 0.2587	0.3604 0.2493	0.3748 0.2381	M(PR) 1 M(PR) 2
	TURN (PR)	20.644	26.016	24.937	25.963	24.741	22.519	21.056	19.538	16-202	TURN(PR)
	UUL AK	C. U667	0.1019	0.1016	0-0757	0.0707	0-0694	0.0802	0.1131	0.1248	UUBAR
	LUSS PARA DFAC	0.0175 0.517a	0.0263 0.5146	0.0263 0.5077	0.0262 0.4847	0.0191 0.4710	0.0188 0.4562	0.0215 0.4572	0.0296 0.4851	0.0299 0.5021	LOSS PARA Deac
	LFFP	6.6357	6.8345	0.8855	0.8771	0.8939	0.8671	0.8410	0.7936	0.7284	EFFP
	LFF	6.5342	0.6331	0 4845	0.8760	0.8929	0.8659	0.8396	6.7918	0.7261	EFF
	INCIO DIVM	3.774 16.215	3.576 14.304	3.864 14.808	3.866 11.2 77	3.645 9.677	2.866 8.726	1.705 7.715	-v-980 8.567	-4.392 11.531	JNEIÐ DEVM
	P 1	14.659	14.707	14.714	14.705	14.702	14.704	14.687	14.668	14.610	Pl
	P 4	15.6.6	15.569	15.597	15,653	15.673	15.673	15-644	15-592	15.481	P 2
•	1 1	518.700 526.150	518•700 529•150	51 8. 700 52 8. 490	518.700 529.360	518.700 529.410	518.700 529.720	518.700 529.940	518.700 530.240	518.700 530.620	T 1 T 2
	, ,	2202120	324.130	32 64 4 70	22 7= 300	327.410	227.720	327.740	220.240	330.020	• •
STATER U	PLT SPAN	95.00	90.00	85 . 00	76.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
01111011	LIA	33.207	33.564	55. 921	34.992	36.+20	37.848	38.919	39-276	39.633	DIA
STATUR-L.E.	BLTA &	44.060	42.359	41.259	40.534	38,984	38.024	38.947	41.625	45.113	BETA 2
STATUK-T.E.	BETA LA	3.12U 292.38	3.170 266.65	3.⊥00 289.26	2.080 295.72	1.950 298.98	2.831 293.99	4.061 282.00	4.151 268.89	4.131 241.21	BETA 2A V 2
	V IA	235.56	232.09	230 93	250.73	257.43	262.19	243.73	233.07	228.84	V ZA
	V2 2	110.11	211.96	217.44	224.72	232.31	231.41	219.09	200.78	170.05	V2 2
	V2 2A V=1861a 2	245.20 203.33	231.73 193.27	2 30 - 56 1 90 - 75	250.53 192.16	257.19 188.02	261.72 180.95	242.93 177.08	232.25 178.42	228.00 170.72	VZ 2A V-THETA 2
	V-IntTA .A	182	12.83	14 . BY	9.10	8.76	12.94	17.25	16.86	16.47	V-THETA ZA
	M Z	0.2608	0.2560	0.2584	0.2646	0.2670	0.2624	0.2515	0.2396	0.2146	M 2
	M ZA	6.2698 40.940	0.2067 34.188	0.2058 38.057	0.2234 38.447	0.2294 37.016	0.2337 35.160	0.2170 34.841	0.2074 37.424	0.2035	M 2A Turn(Pr)
	TURN(PK) UUBAK	0.0655	0.03.3	0.0498	0.0258	0.0266	0.0028	0.0897	0.0890	40.926 -0.0823	UUBAR
	LOSS PARA	0.0220	0.0113	0.0171	0.0092	0.0098	0.0011	0.0354	0.0355	-0.0331	LOSS PARA
	UFAC	0.4139	0.4052	0.4135	0.3726	0.3618	0.3294	0.3617	0.3751	0.3110	OFAC
	EFFP Inclu	0.6183 -6.107	0.9061 -1.029	0 -8 663 0, 768	0.9107 2.503	0.9003 2.279	0.9871 2.156	0.6544	0.6502 -1.547	1.8061 -14.092	EFFP Incid
	DEVM	11.952	14.482	14,510	13.055	12.962	14-495	16.499	16.828	8.981	DE VM
	P 2	15.620	15.589	15.597	15.653	15,673	15.673	15.644	15.592	15.481	P 2
	P 2A T 2	15.578 530.156	15.566 529.150	15.562 526.490	15.634 529.360	15.653 529.410	15.671 529.720	15.583 529.940	15-538 530-240	15.521 530.620	P 2A T 2
	T ZA	530.150		528.490	529.360	529.410	529.720	529.940	530.240	530.620	T 2A
	UUBAR F\$	0.0779	0.0971	0.0957	0.0455	0.0397	0.0364	0.1160	0.1777	Q.1 4 83	UUBAR FS
	P2 FS	15.638	15.638	15.633	15.668	15.663	15-698	15+663	15-658	15.613 0.0596	P2 F5 LDSS PARA F5
	LOSS PARA F	. 0.0201	0.0329	0.0328	0.0101	0.0146	0.0143	0-0458	0.0709	0.0770	EUZS FARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 49.75 Equivalent Rotor Speed = 2094.55 Equivalent Weight Flow = 46.51
Uniform Inlet

INLET											
2	PCT SPAN	96.80	92.00	8e • 90	71.00	49.50	28.10	12.00	7 10		
	b1A	33-122	33.529	33.702	35.312	37.137	36.954	40.321	7.10 40.737	3.00 41.085	PCT SPAN DIA
	BETA D Beta i	D-000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	A O	0.000 176.58	178.54	0.000 178.58	0.000 176.58	0.000	0.000	0.000	0.000	0.000	BETA 1
	V 1	184.28	189.66	187.10	165.48	178.58 184.56	178.58 183.86	176.56 177.95	178.58 169.73	178.58	V O
	V2 6	178.58	178.58	1 78 • 56	178.58	176.57	178.55	178.53	178.53	156.82 178.53	V 1 V2 D
	V2 } V−THETA C	184428	189.06 0.00	187.10	165.48	184.54	183.83	177.90	169.69	156.78	YZ 1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00 U.00	0.00	0.00	0.00	V-THETA O
	M D	0.1604	0.1604	0.1604	0.1604	0.1604	0.1604	0.00 0.1604	0.00 0.1604	0.00 0.1664	V~THETA 1 M Q
	M I	0.1655	0.1698	0.1681	0.1666	0.1658	0.1651	D.1598	0.1524	0.1407	Hi
	TURN UUHAR	0.0 6.3766	0.U 0.257	0.0 0.2666	ŭ.ŭ ŭ.1295	0.0	0.0	0.0	0.0	4.0	TURN
	UFAC	-0.032	-0.059	-0.048	-0.039	0.2333 -0.033	0.2218 -0.030	0.2830 0.004	0.3710 0.050	0.5239	UUBAR
	EFFP	6,1465	0.3505	0 +3 228	U.2568	0.2274	0.2141	-0.0263	-0.3567	0.122 -0.78+3	OFAC EFFP
	INCLU DEVM	0.0001 -0.000	-0.000 -0.000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0DD1	INCID
	PU	14.703	14.763	-6.000 14.763	-0.000 14.763	-0.000 14.763	-0.000 14.763	-0.000	-0-000	-0.000	DEVM
	P A	14.664	14.764	14.769	14,703	14.702	14.705	14.763 14.689	14.763 14.666	14.763 14.625	P 0 P 1
	7 G	518.700 518.700	516.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TO
notio t			518.700	51 8. 700	518.700	518.700	518-700	518.700	518.700	518.700	T 1
ROTER &	PET SPAN DIA	95.00 دیمورد	90.00 33.521	85 . 0 0 3 4 . 3 0 7	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
RUTER -L.f.	GETA 1	0.000	0.000	0.000	35+164 0+660	36.706 0.000	38.248 0.000	39.405	39.791	40.176	DIA
ROTCH -I.E.	LETA L	47.327	46.417	46-260	44.976	43.984	42.884	43.244	0.000 44.690	0.000 47.892	BETA L Beta 2
	BETA(PK) 1 BETA(PK) 2	58.616 .5.01c	57.056	57.145	58.309	59.930	61.234	62.724	63.985	65.835	BETA(PR) 1
	V I	164.60	28.536 196.53	28.798 200.32	31.231 196.94	35.330	37.819	40.962	43.647	4B • 464	BETA(PR) 2
	V Z	_ c6 . ab	-74.54	281.90	282.54	196.23 278.60	195.49 280-10	190.44 273.82	182.20 263.73	168.80	V 1
	VZ i	lt+.t2	178.48	200 - 30	198.93	195.99	194.70	189.19	180.90	245.37 167.70	V 2 VZ 1
	VZ Z V-lheta i	195.8G U.GG	192.71	194.90	200.16	200.40	205 - 02	199.12	187.15	164.27	VZ 2
	V-THETA L	414.39	202-48	0.00 4∪3.66	0.00 200.00	0.00 193.42	0.00 190.42	0.00	0.00	0.00	V-THETA 1
	V(FR) 1	54.5	Jo5 +0	369.2	376.7	391.3	+05+0	167.27 413.4	185.14 413.0	181.75 410.1	V-THETA 2 V(PR) 1
	V(PR) _ VTHE1A PL1	-16.1 -502.6	-19.4	-22-4	234-1	245.7	259.9	264.2	259.1	248.1	VIPR) 2
	VIHETA PK.	-91.4	-164.6	-310.1 -107.1	-322.2 -121.4	-338.5 -142.0	-354.7 -159.1	-366.9 -172.9	-370.6	-373+8	VINETA PRI
	Uţ	302.65	300.29	310.15	322.21	338.51	354.73	366.93	-178.5 370.65	-185.4 373.76	VTHETA PRZ U 1
	0 Z N 1	303.75	307.27	3 10 . 79	321.37	335 46	349.56	360.13	363.66	367.18	Ŭ 2
	M 2	0.1659 0.∠57¢	0.1784 U.2494	0.1800 0.2517	0.1788 U.2:24	0.1763	0.1756	0.1711	0.1636	0.1515	M I
	M(PK)]	0.3104	0.2660	0.3316	د0.340	0.2484 0.3515	0.2497 0.3639	0.2439 0.3714	0.2348 0.3709	0.2182	M 2
	M(FR) Z	6.1527	0.1957	0.1986	U.2086	0-2191	0.2317	0.2353	0-2307	0.3682 0.2207	M(PR) 1 M(PR) 2
	TURNIPE E UUBAR	33.600 0.0853	28+516 0.1184	28.346	27.078	24.585	23.376	21-700	20.279	17.332	TURN (PR)
	LESS PALA	0+0224	0.0345	0.1177 0.0306	0.1048 0.0276	0.1112 0.0292	0.1084 0.0288	0.1224 0.0321	0.1385	0+1585	UUBAR
	DEAC	0.5644	U.562U	0.5616	0.5441	0.5304	0.5154	0.5168	0.0351 0.5283	0.0372 0.5506	LOSS PARA Deac
	LFFP EFF	6.8512 6.8498	0.8494	0.9180	0.4807	0.8512	0.8482	0.8067	0.7626	0.7188	EFFP
	Thul	6.465	0.8401	0.91 7 3	0.8796 0.267	0.8498 5.930	0.8469 5.254	0.8050	0.7605	0.7164	EFF
	UL VIII	9.065	14.376	14-104	12.596	12-118	10.257	4.051 9.337	1.694 10.50B	-2.305 12.487	DEAM DEAM
	* 1 * .	14-504	14.704	14.709	14.703	14.702	14.705	14.689	14.666	14-625	P 1
	T i	15.662 516.760	15.6625 518.760	15-645 518-700	15.664 518.700	15.657 510.700	15.683 518.700	15.655	15.606	15.528	P 2
	1 2	530.300	529.390	526.760	524.470	529.780	530-080	518.700 530.540	518.700 530.920	518.700 531.190	T 1 T 2
STATLE 6	PCT SPAN UIA	95.00 53.207	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATUR-L.E.	oFTA 4	47.624	33.564 46.261	33+ 921 45-563	34.492 45.039	36.420 43.500	37-846	38,919	39.276	34.633	DIA
STATUR-1.L.	rETA ZA	4-160	4-150	3.950	3.410	3-110	42.785 2.871	44.055 3.801	46.007 4.892	49.988 6.092	BETA 2 Beta 2a
	V _	287.50	280.64	265.28	282.96	281.51	281.10	270.22	258.23	238.13	V 2
	V 2A V4 2	221.53 193.81	216.35 194.24	214.32	232-16	240.19	243.62	223.61	213.80	210.52	A 5Y
	12 24	224.45	215.77	199.65 213.80	199.92 231.72	204.13 239.75	206.16 243.17	194.03 222.94	179.20	152.97	VZ 2
	V-THETA .	21 <u>2</u> -43	202.55	203.76	200.19	193.71	190.81	187.72	212.84 185.61	209.11 182.23	VZ ZA V-Theta 2
	V-THETA ∠A M 2	16.07	15.64	14.76	13.81	13.03	12.19	14.81	18.21	22.32	V-THETA ZA
	M 2A	4,2564 U.1976	0.2504 0.1925	0.2547 0.1908	0.2524 0.2067	0.2511 0.2138	0.2506	0.2407 0.1988	0-2298	0.2117	M 2
	TURN (PR)	43.464	44.000	41.632	41.622	40.372	39.880	40.206	0.1900 41.066	0.1870 43.843	M 2A Turn(Pr)
	UUBAK	0.0660	0.0497	U •0 873	0.0237	-0.0135	0.0090	0.0942	0-0785	-0.0568	UUBAR
	LUSS PARA Deal	0.4597	0.4560	0 .0 300 0 .4 771	0.0084	-0.0050	0.0035	0.0372	0.0313	-0.0228	LOSS PARA
	EFFP	0.6410	0.8804	0.8044	0.4141 0.9296	0.3853 1.0485	0.3793 0.965 <i>2</i>	0.4276 0.7078	0.4331 0.7555	0.3888 1.2552	OFAC EFFP
	INCID	-2.543	2.813	5- 293	7.G08	6.794	6.916	5.347	2.834	-9.216	INCID
	DEAW.	14.992 15.462	15.462	15.260	14.385	14.121	14.535	16.239	17.567	10.940	DEAK
	P 2A	15.010	15.590	15.645 15.585	15.664 15.648	15.657 15.666	15.683 15.677	15.655 15.597	15.606	15.528	P 2
	1 2	530.300	529-390	52 B. 760	529.470	529.780	530-080	530.540	15.562 530.920	15.555 531.190	P ZA T 2
	T 2A Gusar es	530 .30 0 0.0865	529.390	528 760	529.470	529.780	530.080	530.540	530.920	531-190	T 2A
	P2 FS	15.677	0.1095 15.667	0.1224 15.672	0.0767 15.703	0.0582 15.708	0.0650 15.723	0.1193 15.672	0.1199	0.1260	UUBAR FS
	LUSS PARA F	3.0291	0.0372	0.0420	0.0272	0.0215	0.0252	0.0471	15.632 0.0478	15.627 J.U565	P2 FS LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 49.50 Equivalent Rotor Speed = 2084.12 Equivalent Weight Flow = 40.70
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA Beta o	33.122 0.000	33.529 0.000	33.462	35.312	37.137	38.954	40-321	40.737	41.085	DIA
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	V D	155.93	155.93	155.93	155.93	155.93	155.93	155.93	155.93	155.43	BETA 1 V O
	V 1 VZ G	163.80 155.93	169.94 155.93	169.89	165.81	160.63	161.70	154.85	145.26	128,49	V 1
	VŽ 1	163.60	169.94	155.93	155.93 165.81	155.92 160.82	155.91 161.67	155.90 154.81	155.89 145.23	155.89 128.45	. V2 0
	V-THETA C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60	VZ 1 V-THETA O
	V-THETA 1 M G	0.00	0.00	0.00	0.00	0.60	0.00	0.60	0.00	0.00	V-THETA 1
	M 1	0.1399 0.1470	0.1399 0.1526	0.1399 0.1525	0.1399 0.1488	0.1399	0.1399 0.1451	0.1399 0.1390	0-1399	0.1399	# 0
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1303 0.0	0.1152 0.0	M 1 Turn
	UUSAR DFAC	0.3756	0.2204	0 -2 003	0.2204	0.2204	0.2404	0.2755	0.3906	0.5910	UUGAR
	EFFP	-0.050 0.2166	-0.090 0.4618	-0.069 0.4839	-0.063 0.3734	-0.031 0.2249	-0.037 0.2389	0.DQ7 -0.0544	0.068	0.176	DFAC
	INCIL	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	-0.5169 0.0001	-1.2025 0.0001	EFFP INCID
	DEVM P O	-6.000	-0-000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	P 1	14.754 14.679	14.754 14.710	14.754 14.714	14.754 14.710	14.754 14.710	14.754 14.706	14.754	14-754	14.754	PO
	TO	518,700	518.700	518.700	518.700	518.700	518.700	14.699 518.700	14.676 516.700	14-636 518.700	P 1 T 0
	Т 1	516.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ť 1
ROTOR D	PCT SPAN	95.00	90.66	65 .00	70.00	50.00	30-00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	DIA 1 alse	33.236 U.UOU	33.621 0.000	3 4. 007 U= 606	35.164 0.000	36.706 U.000	38-248	39.405	39.791	40.176	DIA
ROTOR -T.E.	bETA ∠	50.507	50.477	50.361	50.084	50.107	0.000 49.685	0.000 50.808	0.000 52.964	0.000 54.997	BETA 1 Beta 2
	PETATER) T	61.413	59.664	59.497	60,995	63.121	64.131	65.739	67.238	69.733	BETAIPR) 1
	BETA(PR) 2 V 1	22.650 164-13	28.700 176.39	29.663 181.83	30.973 177.76	35.144	39.402	44.347	45.636	45.213	BETA(PR) 2
	V 2	291.44	273.05	272.14	277.55	170.93 273.95	171.85 269.02	165.65 257.63	155.85 256.22	138.23 261.63	V 1 V 2
	V2 1	164.10	176.35	181.80	177.75	170.72	171.16	164.56	154.75	137.32	VZ 1
	V2 ∠ V—THETA 1	165.34 0.00	173.76 0.00	0.00	178.09	175.66	173.91	162.59	154.12	150.01	VZ 2
	V-THETA	2:4.89	210.61	209.57	0.00 212.87	0.00 210.14	0.00 204.96	0.00 199.41	0.00 204.26	0.00 214.22	V-THETA 1 V-THETA 2
	V(PR) L	343.0	353.1	358.2	366.6	377.7	392.6	400.9	400-4	396.8	V(PR) 1
	V(PR) 2 VTHETA PRI	200.6 -301.1	196.1 -304.8	200.2 -306.6	207.7 -320.6	214.9	225.3	227.7	220.8	213.3	V{PR} 2
	VIHETA PR.	-77.3	-95.1	-99.7	-106.9	-336.8 -123.7	-353.0 -142.9	-365.1 -158.9	-368.8 -157.6	~371.9 -151.1	VTHETA PRI VTHETA PRZ
	U 1	301-14	304.76	308-61	320-60	336.82	352.96	365-11	368-60	371.90	Ul
	6-2 M-1	302.23 6.1473	305.74 0.1602	309.25 0.1633	319.77	333.79 0.1535	347.62	358.34	361.84	365.35	U 2
	M 2	0.2598	0.2434	0.2427	0.1596 0.2474	0.2441	0.1543 0.2395	0.1487 0.2291	0.1399 0.2277	0.1240 0.2327	M 1 M 2
	H(PR) 1	0.5079	0.2171	0.3217	0.3292	0.3391	0.3525	0.3599	0.3593	0.3559	M(PR) A
	M(PR) 1 Turn(PL)	0.1790 38.760	0.1766 30.960	0 .1 785 29. 632	0.1651	0.1915	0.2006	0.2025	0.1963	0.1896	M(PR) 2
	UUBAR	6.1019	0.1377	0.1365	30.021 0.1408	27.965 0.1640	24.692 0.1701	21.343 0.2012	21.559 0.2249	24.500 0.2377	TURN (PR) UUBAR
	LDSS PARA	0.0272	0.0354	0.0352	0.0371	0.0432	0.0442	0.0499	0.0551	0.0593	LOSS PARA
	DFAC EFFP	0.6047 L.8554	U.6142 U.8224	0 -6 150 0 -8 706	0.6118	0.6094	0.6004	0.6030	0.6257	0.6519	DFAC
	EFF	U-E539	0.8209	0.8694	0.8527 0.6514	0.0332 0.6316	0.7827 0.7806	0.7066 0.7040	0.6965 0.6938	0.7207 0.7180	EFFP EFF
	11/10	6 + 4 0 K	6.746	6.944	8.952	9.124	8.152	7.078	4.962	1.611	ENCID
	DE V M P 1	7.500 14.679	14.540 14.710	15.229 14.714	12.332 14.710	11.932 14.710	11.839	12.721	12.497	9.236	DEAN
	P .	15.727	15.655	15.664	15.704	15.702	14.706 15.694	14.699 15.638	14.676 15.624	14.636 15.644	P 1 P 2
	ŢŢ	516.700	51B.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Τī
	Τż	530.790	530.040	529,460	530.190	536.440	531-160	531.850	532.190	532.580	T 2
STATOR O	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.60	lo se	F 00	DCT FRAU
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	15.00 38.919	10.00 39.276	5.00 39.633	PCT SPAN Dia
STATER-L.E.	EETA Z	50.639	50.228	49.585	50.155	49.510	49.565	51.877	54.758	57.774	BETA 2
STATUR-7.E.	BETA 2A V 2	290.09	4.700 274-11	4.510 275.39	3.290 277.55	2.920 276.81	2.761 269.97	2.671 254.27	4.121	5,262	BETA 2A
	Y 2A	211.99	202.58	202.47	208-88	210.64	214.30	200.99	250.89 192.36	254.05 194.83	V 2 V 2A
	V2 2	103-19	175.36	178.54	177.81	179.69	175.01	156.67	144.48	135.39	VZ 2
	VŽ ŽA V—THETA Ž	211.27 224.93	201.90 210.66	201-84 209-67	208.50 213.00	210.30 210.46	213.93 205.38	200.61 199.89	191.69	193.80	VZ ZA
	V-THETA ZA	17.37	16.60	15.92	11.99	10.73	10.32	9.36	204.78 13.81	214.78 17.92	V-THETA 2 V-Theta za
	M 2	0.2566	0.2443	0.2456	0.2474	0.2467	0.2403	0.2261	0-2230	0.2257	M 2
	M ZA Turn(Pr)	0.1884 46.139	0.1801 45.526	0.1801 45.073	0.1857 46.859	0.1872 46.571	0.1904 46.771	0.1764 49.159	0.1706 50.590	0.1727 52.444	M 2A
	UUBAR	6-1082	0.0583	0.0717	0.1089	0.1111	0.0715	0.0716	0.0831	0.0958	TURN{PR} UUBAR
	LUSS PARA	0.0363	0.0198	0.0246	0.0386	0.0411	0.0275	0.0284	0.0332	0.0385	LOSS PARA
	UFAL EFFP	0.5163 0.7734	0.5022 0.8744	0.5072 0.8475	0.5055 0.7545	0.5072 0.7420	0.4858 0.8111	0.5082 0.8130	0.5397 0.8021	0-5478	DFAC
	INCIL	0.672	6.B40	9. 294	12.125	12.804	13.697	13.170	11-568	0.7720 · -1.425	EFFP INCID
	DEAW	13.532	16.012	15.820	14.265	13.931	14.425	15.110	16.798	10.130	DEVM
	P ZA	15.727 15.650	15.655 15.618	15.664 15.618	15,704 15,633	15.702 15.630	15.694	15.638	15.624	15.644	P 2
	T 2	530.790	530-040	529.460	530.190	530.440	15.650 531.160	15.599 531.850	15.579 532.190	15.592 532.580	P 2A T 2
	1 24	530.790	530.040	529,460	530.190	530.440	531.160	531.850	532.190	532.580	T 2A
	UUBAR FS P2 FS	0.0828 15.707	0.1105 15.692	0.1041 15. 687	0.1331 15.722	0.1506 15.732	0.1324 15.737	0.1337	0.1462	0.1476	UUBAR FS
	LUSS PARA F	5 0.0277	0.0375	0.0357	0.0471	0.0557	0.0509	15.677 0.0530	15.662 0.0584	15.677	P2 FS LOSS PARA FS
											TOUR TRANS FO

Table A-4. Overall Performance - Stage D, Radial Distortion

Equivalent		ROTOR			STAGE	
Weight Flow, lb/sec	$\overline{P}_2/\overline{P}_1$	η_{ad}	$\eta_{ m p}$	$\overline{P}_{2A}/\overline{P}_{1}$	$\eta_{ m ad}$	$\eta_{ m p}$
		Hub R	adial Distortion	<u></u>		
	100	0% Design I	Equivalent Roto	r Speed		
114.76	1.2493	0.8863	0.8899	1.2355	0.8399	0.8446
97.44 84.40	1. 2603 1. 2538	0.8838 0.8045	0.8875 0.8107	1, 2444 1, 2299	0.8329 0.7331	0.8380 0.7408
	90)% Design F	Equivalent Rotor		.,	0
		_	_	r opecu		
102.52	1. 1875	0.8944	0.8970	1. 1769	0.8459	0.8494
88.60	1. 2135	0.8964	0.8992	1.2011	0.8467	0.8506
76.35	1,2026	0.8103	0.8152	1. 1858	0.7464	0.7525
	. 70	% Design I	Equivalent Rotor	r Speed		
82.96	1. 1180	0.8925	0.8942	1. 1109	0.8397	0.8421
71.46	1. 1292	0.8854	0.8874	1. 1234	0.8461	0.8487
59. 11	1. 1272	0.8143	0.8175	1. 1190	0.7629	0.7667
						•
		Tip_Ra	adial Distortion	<u></u>		
	100	% Design B	Equivalent Rotor	r Speed		
115. 11	1.2430	0.8520	0.8565	1.2183	0.7704	0.7767
106. 05	1.2585	0.8792	0.8831	1. 2382	0.8143	0.8199
99. 09	1. 2739	0.8653	0.8698	1.2556	0.8112	0.8172
	90	% Design E	Equivalent Rotor	r Speed		
105, 62	1. 1862	0.8559	0.8594	1. 1724	0.7954	0.5000
97,85	1, 2089	0.9122	0.9146	1. 1955	0.7554	$0.7999 \\ 0.8602$
90.04	1. 2207	0.8776	0.8810	1. 2079	0.8292	0.8337
	70	% Design E	Equivalent Rotor	r Speed		
85.36				-	0.01==	
80.21	1. 1212 1. 1301	0.8996 0.9106	0.9012	1. 1132	0.8415	0.8439
72.74	1. 1331	0.8871	0.9121 0.8891	1. 1217	0.8534	0.8558
	T* 100 T	0.0011	0.0031	1. 1266	0.8444	0.8470

Table A-5. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 99.96 Equivalent Rotor Speed = 4208.22 Equivalent Weight Flow = 114.76
Hub Radial Distortion

INLET							•				
*******	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.16	3.60	PCT SPAN
	UIA	33.122	33.529	33.962	35.312	37.137	36.954	40.321	46.737	41.065	DIA
	BETA G	0.000	0.000	0.000	0.000	0.000	D.GQQ	0.006	0.000	0.600	BLTA C
	BETA 1	416.36	0.000 416.36	0.000 415.36	0.000	0.000	0.006	0.000	0.000	0.000	beïa 1
	v i	284.83	297.86	301.94	416.36 304.24	416.36 469.37	416.36 557.87	416.36	416.36	416.36	V U
	VZ U	416.36	416.36	416.36	416.35	416.33	416.29	534.08 416.25	508.51 416.25	405.26 416.25	V 1 V2 ()
	VZ 1	284.63	297.B6	301.94	304.24	469.34	557.77	533.94	5CE.37	465.14	V2 I
	V-THETA C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 0
	V-THETA 1 M 0	0.00 0.3782	0.00 0.3782	0.00 0.37B2	. 0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	M I	0.2586	0.3182	0.2724	0.3782 0.2746	0.3782 0.4280	0.3762 0.5126	0.3782 0.4897	0.3782 6.4652	0.3762	M 0
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.6	6.4247 6.0	M 1 TURN
	DUBAR	2 2469	2.1673	2.1275	2.1311	1.2697	0.5458	U.7U51	0.6786	1.1394	UUBAR
	OFAC Ł#fp	0.311	0.285	0.275	0.269	-0.127	-0.340	-0.283	-6.221	-6.117	DFAC
	INCIL	-0.2522 6.0001	-0.2706 0.0001	-0.2679 0.0001	-0.2616 0.0001	0.1764	0.0046	0.4875	0.3651	0.1607	EFFP
	DEVA	-0.000	-0.000	-0.000	-0.000	0.0001 -0.000	0.0001 -0.000	0.0001 -0.660	0.0001 -0.600	4.000} -0.000	INC10 DEVM
	PO	16.551	16.551	16.551	16.551	16.551	16.551	16.551	16.551	16.551	PG
	P 1	13.054	13.178	13.240	13.235	14.575	15.701	15.454	15.185	14.776	ΡĪ
	T D T 1	518.700 518.700	518.700 518.700	516.700 518.700	518.700 518.700	518.700	518.700	516.700	516.700	516.700	Ţυ
			3101100	2202100	3164 100	518.700	518.700	518.700	516.700	518.700	T 1
KOTOR J	PCT SPAN	95.00	90.00	65.00	70.00	50.0C	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.L.	DIA BETA 1	33.236 0.000	33.621 0.000	34.007 0.000	35.164	36.706	36.246	39,405	39.791	40.17€	OIA
RETOK -T.c.	DETA 2	45.797	43.580	42.636	0.006 38.782	0.000 29.991	6.00G 27.514	0.606 29.∠11	0.000 31.654	0.006	BETA 1 BETA 2
	BETALPRI 1	64.703	63.404	62.495	63.156	53.410	49.719	51.790	53.411	34.251 50.04:	BÉTA(PR) 1
	DETAIPR) 2	24.567	26.876	29.164	32-473	32.282	32.150	37.645	41.449	44.695	bt TA (Pil)
	V 1	267.44	313.56	324.49	327.62	505.54	606.45	584.18	556.60	568.46	V 1
	V 2 V2 1	589.31 267.39	564.35 315.49	574.00	575.23	644-00	689.90	624.60	573.04	533.4.	V 2
	Vi Z	410.85	423.30	324.46 422.27	327.60 448.40	504.91 557.53	603.99 610.93	560.34 543.82	552.83 487.20	565.64 439.81	V Z 1 V z 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	Y-THETA 2	422.45	402.82	388.76	360.30	321.78	318.22	304.07	300.30	299.49	V-THETA 2
	VIPR) 1	672.6	690.7	702.6	725.5	547.4	935.8	940.6	929.b	907-2	V(PR) 1
	V(PR) 2 VTHETA PK1	451.6 -608.1	474.6 -615.4	403.6 -623.1	531.5 -647.4	659.7	722.6	688+2	651.3	622.6	V(PK) 2
	VTHETA PK2	-167.8	-214.5	-235.6	-285.4	-680.1 -352.2	-712.7 -364.1	-737.2 -419.5	-744,7 -436.3	-750.5 -436.2	VIHETA PK:
	Uı	606.06	615.37	623-14	647.35	680.10	712.70	737.22	744.68	750.93	U
	U Z	610.27	617.35	624.43	645.67	673.99	702.31	723.55	730.63	737.71	υž
	M 1	0.2592	0.2831	0.2931	0.2960	0.4624	0.5600	0.5362	0.5116	0.4056	M 1
	M 2 M(PR) 1	0.5264 0.6065	0.5168 0.6235	0.5080 0.6347	0.509E 0.6555	0.5751 0.7751	0.6191 0.6641	0.5573 0.8666	0.5096	6.4714	M &
	MIPRI 2	0.3996	0.4197	C-+280	0.4710	0.5892	0.0485	0.6141	0.8544 0.5784	0.6506 0.5565	MIPK)) MIPR) 2
	TUKN(PR)	40.133	36.125	33.329	30.684	21.109	17.498	14.051	11.866	11.679	TUAN(PA)
	UUBAR	-0.6675	-0.0748	-0.0593	-G.1193	-0.0229	0.0717	0.1306	0 - 1 6 - u	0.1624	UUEAK
	LOSS PARA Lifac	-0.0231 0.5106	-0.0196 0.4842	-0.0154 0.4762	-0.0310 0.4200	-0-0062	6.0204	6.0359	0-0431	6-0406	LESS PARA
	EFFP	1.0472	1.0534	1.0624	1.1163	0.3432 5.9923	0.3413 0.8734	0.3795 0.7633	0.4117 0.7306	0-436 <i>±</i> 6-7471	DFAC Effp
	EFF	1.0493	1-0556	1.0649	1.1211	0.9920	0.6695	4.7774	0.7242	0.7407	£FF
	INCID	14.4473	12.089	11.917	11.116	-0.593	-6.262	-6.912	-8.914	-12.176	INCLU
4.4	DEÄM	9:417	13:718	1530	13.632	6.037	2.722	9.422	4.511	A ATL	ni∧₩
	P 2 T 1	17.571 518.700	17.537	17-458	17.537	18.585	19.452	18.619	10.055	17.001	řζ
	† 2	562.500	518.760 560.500	516.760 558.750	518.700 557.456	518.700	518.700	516.700	516.700	518.70C	Ţl
	` -	,,,,,,,	200.200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JJ 7543C	556.300	556.350	555.180	555. 65€	555	1.
STATOR U	PCT SPAN	95.00	BO 00	64 00	70.00		20.00				
SIMPUR D	DIA	33.207	90.00 33.564	85.00 33.921	70.00 34.492	50.00 36,420	30.00 27.848	15.06 38.414	10.66	5 . 0 c	PLT SPAN
STATOP-Late	billA Z	46.155	43.324	41.874	38.832	29.557	27.397	29.634	39.276 32.660	39.63 <i>-</i> 35.771	UIA Bela 2
STATON-1.E.	mETA ZA	2.800	3.100	2.900	1.550	0.710	2.661	1.65)	L . 900	-2.661	BETA ZA
	V 2	585-65	567.30	582.75	575.23	653.62	693.65	613.53	558.74	514.33	V 2
	V 2A VZ 2	456.13	450.84	443.93	486.01	567-48	650.55	577.08	541.55	515.41	V 4A
	A5 58	405.83 455.58	427.25 450.17	433.91 443.34	448.U3 485.77	568.28 587.24	615.24 649.77	551.53	469.77	410-71	V
	V-THETA &	422.52	402.95	368.97	360.64	342.27	316.67	576.91 304.8.	541.00 301.13	5.4.34 360.28	VZ ZA V=THITA Ž
	V-THETA 2A	22.28	24.38	22.46	13.14	7.26	22.70	18.64	6.50	-23.26	V-THETA A.S.
	M 2	0.5172	0.5195	0.5161	0.5096	0.5843	0.6227	0.5468	0.4955	1.4543	H 2
	M 2A TURN(PR)	0.3985 43.354	0.3945	0.3889	0.4275	0.5216	0.5813	0.5131	0.4796	0.455.	M 2A
	UUBAR	0.1600	40.223 6.1032	38.973 6.0971	37.275 0.0119	28.831 0.0659	0.0302	0.6756	\$1.714 0 0400	31.314	TLKN(PK)
	LUSS PARA	0.0336	0.0351	0.0334	0.0042	0.0022	0.0116	0.0306	0=0404 0=0162	0.4024 0.4036	UUBAR LESS PARA
	DFAL	0.4516	0.4520	0.4550	0.3702	0.2802	0.2274	0.4443	0.241	0.2509	DEAL
	EFFP ENCIO	0.7697	0.7721	0.7899	0.9627	0.9734	C.7856	0.4079	0.3979	1.5262	tffp
	INCID Devm	-4.015 11.632	-∂.064 14.412	1.583 14.210	0.801 12.525	-7.146	-8.465	-a.869	-10.501	-23.425	INCLU
	P Z	17.571	17.537	17.458	17.537	11.722 18.585	13.065 19.452	14.290 16.619	13.560 16.655	2 - 256 1 2 - 61	UEVM
	P 2A	17.278	17.233	17.177	17.503	18-562	19.317	18.360	17.545	17.661 17.656	P 2 P . a
	T 2	562.500	560.500	558.750	557.450	556.300	556.350	555.18v	555-054	155.290	T .
	T 2A UUEAR FS	562.500 0.0508	260.500	558.750	557.450	556.300	556.350	555.18L	555.050	5.5.29	T 24
	P2 FS	17.419	0.0840 17.475	0.0792 17.402	0.0565 17.678	0.0397 18.719	0.0433	0.1864 19.085	0.2336	0.2293	LUBAK FS
	LOSS PARA F		0.0205	0.0272	0.0206	0.0148	19.513 0.0166	0.0739	18.759 0.0936	18.348 0.0955	P2 FU LUSS PARA FS
										******	F/ TO LWLV LO

Table A-5. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.05 Equivalent Rotor Speed = 4212.04 Equivalent Weight Flow = 97.44
Hub Radial Distortion

INLET											
LINCT I	PCT SPAN	96.60	42.00	66.90	71.00	49.50	28.10	12.00	7.10		
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.3∠1	7.10 40.737	3.00 41.065	PCT SPAN DIA
	EETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA D
	A Q	· 0.000 364.71	0.000 364.71	0.000 304.71	0.000	0.000	0.000	0.600	0.000	0.000	BETA 1
	νí	313.84	310.14	316.42	364.71 313.89	364.71 400.92	364.71 481.64	364.71 469.55	364.71 467.74	364.71	y e
	V2 0	364.71	364.71	364.71	364.71	364-69	364.65	364.62	364.61	413.83 364.62	Y Z a
	VZ 1 V=TH1TA 0	31,.83	316.14	316.42	313.88	400.89	481.54	469.43	467.61	413.72	V2 1
	V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.00	V-THETA C
	A O	0.3302	0.3302	0.3362	0.3302	0.00	0.00 0.3302	0.00 0.3302	0.00	0.00	V-THETA I
	M 1	D.2833	0.2855	0.2657	0.2834	0.3638	6.4397	0.4282	0.4265	0.3302 0.3759	M O
	TURN CUBAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	QFAL.	1.6320 0.139	1.5384 0.133	1.5197 0.132	1.5665 0.139	1.0612 -0.099	0.3874	0.4610	0.4813	0.6553	UUBAR
	EFFP	-0.1653	-0.1898	-0.1915	-0.1950	0.1656	-0.321 0.6670	-0.267 0.5867	-0.282 0.5819	-0.135 0.2553	DEAC
	INCID	0.0001	6.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	EFFP Inlio
	()EVM የ u	-0.000 15,700	-0.000 15.760	-0.00D 15.766	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	Ρĺ	13.690	13.790	14.018	15.760 13.965	15.760 14.544	15.760 15.316	15.760	15.760	15.766	F 0
	Γυ	*16.700	518.7UD	518.700	518.700	518.700	516.700	15.209 518.700	15.269 518.700	14.760 518.700	P 1 T 0
	1 1	510.700	518.700	518.700	516.700	518.700	518.700	516.700	518.700	516.700	T 1
RUTUR D	PCT SPAN	95.00	96.00	65.00	70.00	50.00	30.00	15.UC	10.00	5.06	PCT SPAN
HUTCK -Lata	UIA CETA	33.236	33.021	34.007	35.164	36.706	38.246	39,405	39.791	40.176	DIA
HOTUR -Taba	CETA I BETA 2	0.000 52.996	0.000 53.104	0.000 52.616	0.000	D-000	C.00C	0.066	0+000	0.000	SETA 1
	SETAIPRE 1	62.676	61.612	61.196	48.275 62.445	40.309 57.766	32.305 54.052	32.376 55.529	34.384	37.561	BETA 2
	BETAIPE 2	25-190	.29.077	31+658	32.651	36.451	36.562	38.242	55.816 39.495	59.222 44.955	BETA(PR) 1 BETA(PR) 2
	V L V Z	314.52	3.2.95	340.23	338-11	429.70	519.38	50y.43	509.87	450.59	Y 1
	VZ 1	564.70 314.40	545.11 332.87	533.33 340.19	551.03 136.09	552.90	606.89	604.39	568.66	526.15	V Z
	VZ 2	339.67	327.25	323.79	366.74	429.23 421.48	517.28 512.23	506.58 509.30	506.25 484.76	447.06 417.7j	VZ 1
	V-IHE IA	0.06	0.00	0.00	0.00	0.40	0.00	0.00	0.60	0.00	V2 2 V-THETA 1
	V-ThETA Z V(PR)]	450.96 665.1	415.93	423.78	411.20	357.55	323.89	322.63	331.74	321.24	V-THETA 2
	V(PR) 2	375.6	70U.2 374.5	710.5 301.2	730.9 435.6	805.6 527.6	882.4 638.u	896.9	903.1	576+3	V(PR) 1
	V16iJA PK1	-606.6	-015.9	-623.7	-647.9	-680.7	-713.3	649.7 -737.9	629.6 -745.4	591.4 -751.6	V(PR) Z VTHETA PRI
	VIHETA PEZ	-159.9	-182.0	-201-2	-235.0	-317.0	-379.1	-4D1.4	-349.6	-417.1	VTHETA PK2
	ט ג	606.61 616.62	617.YI	623.70 624.99	647.94 646.25	680.72	713.34	737-89	745.36	751.61	UI
	9 1	0.2046	0.3009	0.3076	0.3057	674.60 0.3908	702,95 0.4756	724.21 0.4666	731.29 0.4665	738.30 0.4103	U 2
	M Z	0.4961	0.4787	0.4686	0.4856	D-4868	0.5409	0.5379	0.5230	C.4662	M 1 M 2
	MIPK) 1 MIPRI 2	0.6165 0.3300	0.6326 0.3289	0.6424	0.6607	0.7320	0.8080	0.8207	J.8263	0.7580	M(PR) 1
	TURN (PR)	37.482	32-531	0.3350 29.530	0.3839 29.793	0.4665 20.799	0.5686 17.493	0.5783 17.201	0.5592	0.5220	M(PR) Z
	UUHAR	0.1246	0.1619	0.1672	0.0969	0.1120	0.0764	0.0656	10.231 0.1133	14.200 0.1205	TURN(PR) UUBAR
	LOSS PARA DEAC	0.0325	0.0415	0.0422	0.0251	0.0288	0.6266	0.0179	0.0307	0.0302	LUSS PARA
	EFFF	0.6427 0.6018	0.6481 0.6514	0.6407 0.8569	0.5769 0.9538	0.4870 0.6901	0.3995	0.3994	0.4304	0.4536	DFAC
	FFF	0.8772	U.8461	0.6516	0.9521	0.6665	0.9371 0.4351	6.9498 0.9481	0.8960 0.8427	0.85() 0.6455	EFFF EFF
	INCIG DEV#	10.245	10-696	10.013	10-402	3.765	-1.945	-3.106	-0.504	-6.443	INClb
	Pi	10.041 13.890	14.417 13.497	17-224 14-618	14.016 15.905	13.739	8.941	6.618	6.358	6.462	DEVM
	P 2	18.155	17.992	17.896	18.143	14.544 16.244	15.316	15.20° 19.124	15.207 16.952	19.785 20.6	P L
	T 1	516.700	518.700	518.700	516.700	518.700	518.700	518.70C	518.700	518.766	τï
	, F	565.700	564.300	562.700	561.000	557.850	554,600	555.76U	556.400	557.400	τZ
STATER D	PCT SPAN	06.00	4.6								
314168 0	UIA	95.00 34.207	90.00 33.564	85.00 31.921	70.00 34.992	50.00	30.00	15.60	10.00	5.00	PCT SPAN
SIATER-L.F.	BETA 2	53.444	52.766	51. 93	48.342	36.420 39.765	37.846 32.191	35.919 35.059	39.27c 35.525	39.635 39.281	DIA
SIATUM-1.:.	BETA ZA	3.930	4.440	4,050	3.100	2.000	2.361	081.	3.601	4.161	ÖLTA 2 BETA 2A
	V 2 V 2A	561.50 393.63	547.72	541.06	551.03	560.06	609.76	593.47	573.06	569.17	V 2
	YZ Z	134.44	263.52 24.41	380.52 336.13	413.94 366.22	454.84 430.33	515.56	511.56 497.20	487.0L	469.02	V ZA
	V2 2A	394.71	362.36	379.56	413.27	454.41	533.42	510.41	465.61 485.61	393.79 467.33	VZ 2A
	V-THETA 2 V-THETA 2A	451.03	436.08	423.99	411.65	358.10	324.55	323.0L	332.58	3./2.09	V-THETA 2
	M 2	26.98 0.4932	24-64 0.4811	26.B7 0.4757	22.36 0.4856	15.87 0.4954	22.18	27.47	36.50	£4 .5 د	Y-THLTA ZA
	M ZA	0.3415	0.3230	0.3308	0.3611	0.3991	0.5436 0.4730	0.5261 0.4516	0.5083 0.4208	0.4459 0.4121	H ZA
	TURN(PR)	49.513	48.325	47-542	45.230	37-747	29.779	29.934	31.874	35.14.	TURNIPRI
	UUBAK LOSS PARA	0.1408 D.0473	U.1180 U.0401	0.0085 0.0304	0.0952	0.0133	0.0293	0.1232	0-1576	0.0645	UUBAR
	L'FAL	0.5534	U-5526	0.6304 6.5497	0.5004	0.0049 U.4149	0.0113 0.3159	0.0467 0.3375	0+3624	0.3093	LOSS PARA Deal
	EFFP	0.7451	0.7864	0.6384	0.7993	0.9645	0.8879	0.5697	0.4629	0.3043	EFFF
	DE AW INCTP	3.270	9-378	11.303	10.312	3.060	-3.674	-5.645	-7.645	-19.923	INCID
	P 7	12.76z 16.153	15.752 17.992	15.360 17.696	14.075 18.143	13.012 18.244	14.045	15-520	10.278	8-951	DEAW
	P _A	17.762	17.661	17.668	17.885	18.207	14.076 16.974	19.124 16.716	16.952 18.47J	16.309 16.298	P 2 P 2 A
	T 2	565.700	564.300	562.700	561.000	557.850	554.600	555.700	556.400	557.460	1 2 A
	T 2A UUWAR ES	565.700 0.1068	0.1380	562.700 0.1275	561.000	557.850 0.0488	554-660	555.700	556.400	557.400	T 2A
	P2 F5	18-047	18-053	18.010	0.0995 18.155	0.0655 18.401	0.0417 19.120	0.1267 19.136	0.1580 18.954	0.1754	ULE # FS
	LUSS PARA F.	5 0 0358	0.0469	0.0438	0.0353	0.0241	0.0160	0.0500	0.0630	16.798 0.0701	P2 F5 LLSS PARA F5
						•	-	•			· · · · · · -

Table A-5. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.56 Equivalent Rotor Speed = 4233.69 Equivalent Weight Flow = 84.40
Hub Radial Distortion

INLET											
2.722.1	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.065	UIA
	BETA O	0.000	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	BETA O
	BETA 1 V G	0.000 319.06	0.000 319.06	0.000	0.000	0.000	0.000	0.006	0.000	0.000	BeTA 1
	v i	260.78	265.34	319.06 265.31	319.06 274.71	319.06 364.87	319.06 422.05	319.06 412.53	319.06 393.27	319.66 361.16	¥ 0 ¥ 1
	¥2 0	319.06	319.06	319.06	319.06	319.04	314.01	318.98	318.98	318.98	vzo
	VZ 1	260.78	265.33	265.31	274.71	364.84	421.98	412.43	393.16	361.07	V2 1
	V-THETA Q V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0-00	0.00	0.00	Y-THETA D
	M O	0.00 0.2881	0.00 0.2881	0.00 0.2881	0.00 0.2881	0.00 0.2881	0.00 0.2881	0.00 0.2881	0.00	0.00	V-THETA I M O
	ЙÍ	0.2349	0,2390	0-2390	0.2476	D.3304	0.3835	0.3747	0.2881 0.3567	0.2881 0.3269	H 1
	TURN	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	TURN
	UUBAR	1.6305	1.5431	1.5418	1.4847	0.8371	0.2928	0.4459	6-5601	0.7625	UUBAR
	DFAC EFFP	0.183 -0.2515	0.168 -0.2466	0.168 -0.2470	0,139 -0.2089	-0.144	~0.323	-0.293	-0.235 0.4873	-0.132	DFAC
	INCID	0.0001	0.0001	0.0001	0.0001	0.2718 0.0001	0.7261 0.0001	0.6061	0.0001	0-2677 0-0001	EFFP Inclu
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVA
	PO	15.415	15.415	15-415	15-415	15.415	15.415	15.415	15.415	15.415	PO
	Pi Tú	14.007 518.700	14.082 516.700	14.063 518.700	14.133 518.700	14.692 518.700	15.162	15.030	14.931	14.739	P 1
	Ťi	518.700	518.700	518.700	518.700	518.700	518.700 518.700	510.700 510.700	518.700 518.700	518.700 518.700	7 O 7 1
RUTOR D	PCT SPAN Dła	95.00 33.236	90.00 33.621	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
RUTUR -L.E.	BETA 1	0.000	0.000	34.007 0.000	35.164 0.000	36.706 0.000	38.248 0.000	39.405 0.000	39.791 6.000	40.176 0.000	DIA BETA 1
ROTOR -T.E.	BETA 2	57.695	58.231	58.189	54.969	48.241	39-082	36.210	37.525	40.578	BETA 2
	BETA(PR) 1	66.872	65.742	65.578	65.60 L	60.328	57.822	59.152	60.546	62.739	BETA(PR) 1
	BETA(PR) 2 V 1	26.910	29.468	32.644	32-283	38.458	37.815	38.226	40.738	46.024	BETA(PRI 2
	A 5	261.33 549.92	279.05 541.18	284.71 529.03	295.44 549.80	390.31 532.00	452.97 573.77	445.92 594.86	426,11 57ú.14	391.83	V 1 V 2
	VZ 1	261.28	278.99	284.67	295.42	389.83	451.14	442.98	423-G8	517.31 389.27	٧2 ⁻ 1
	V2 2	293.69	284.93	278.86	315.60	354.22	444.86	478.96	451.15	392.10	V2 2
	Y-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA I
	V-THETA 2 V(PR) 1	404.79 665.2	460.09 679.1	449.56 688.5	450-19 715-2	396.74 787.7	361.30	350.67	346.49	335.80	V-THETA 2
	VIPRI 2	329.6	327.3	331.2	373.3	452.5	848.1 563.8	865.4 610.9	861.9 596.6	851.0 565.7	V(PR) 1 VIPR) 2
	VTHETA PRE	-611.7	-619.1	-626.9	-651.3	-684.2	-717.0	-741.7	-749.2	-755.5	VTHETA PRI
	VIHETA PRZ	~149.2	-161.0	-176.6	-199.4	-281.3	-345.3	-377.3	-38B.£	-406.4	VTHETA PR2
	U 1 U Z	611.74 613.96	619.09 621.08	626.91 628.21	651.27 649.57	684.22 678.07	717-01	741.68	749.19	755.47	V 1
	H I	0.2354	0.2515	0.2567	0.2665	0.3540	706.56 0.4126	727.93 0.4059	735.05 0.3873	742.17 0.3554	U 2 M 1
	Ħ 2	0.4812	0.4739	0.4634	0.4829	0.4679	0.5082	0.5272	0.5043	0.4552	M 2
	M(PR) 1	0.5991	0.6121	0.6208	0-6451	0.7143	0.7725	0.7878	0.7835	0.7716	M(PR) 1
	M(PK) 2 Turn(PR)	0.2884 39.960	U-2866	0.2901	0.3279	0.3980	0.4994	0.5414	0.5277	0.4977	MIPR) 4
	UUBAK	0.2220	36.271 0.2571	32.932 0.2569	33.317 0.2326	21.856 0.2594	19.956 0.1854	20.849 0.1142	19.734 0.1373	16.664 0.1705	TURNIPR) UUBAR
	LOSS PARA	0.0573	0-0657	0.0642	0.0605	0.0654	0.0493	0.0312	0.0365	0.0419	LOSS PARA
	DF AC	0.7073	0.7171	0.7131	0.6714	0.5876	0.4775	0.4334	0.4474	0.4739	DFAC
	EFFP EFF	0.8011 0.7936	0.7954 0.7881	0.8025 0.7956	0.8630	0.7635	0.8376	0.8957	0.8700	0 793 2	EFFP
	INCIU	14.442	14,827	15.000	0.8580 13.558	0.7563 6.328	0.8326 0.832	0.6922 U.466	0.6657 -1.759	0.7669 -5414	EFF INCLU
	DEYM	11.761	15.308	18.010	13.642	15.245	10.253	0.603	7.600	10.047	DEVM
	P 1	14.007	14.062	14.083	14.133	14.692	15-162	15-030	14.931	14.739	P 1
	P 2 T 1	18.117 518.700	18.044 518.700	17,960 518.700	18.253 518.700	16.159 518.700	18.757 518.700	19.030 516.700	18.746 518.700	18.211 518.700	P 2 T 1
	7 2	560.550	567.000	565.600	564.550	561.500	557.750	559.250	558.950	559.770	† 2
STATOR D	PCT SPAN	95.60	90.00	85.00	70.00	50.00	30.00	15.00	10.06	5.00	PCT SPAN
SINION D	νία	33.207	33.564	33.921	34.992	36.420	37.848	36.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	56-220	57.814	56.945	55.053	47.548	38.949	37.000	38.781	42.461	BETA 2
STATUR-Tala	BETA 2A	1.800	1.806	1.700	0.800	1.400	3.401	4.751	5.142	5.302	BETA 2A
	V 2 V 2A	546.86 373.83	543.82 363.99	536.66 360.92	549.80 390.57	538.68 430.25	576.36 483.16	584.76 477.20	555.23 455.47	499.12	V 2
	V2 2	288,00	289.48	292.71	314.92	363.48	447.90	466.49	432.34	442.85 367.69	V 2A VZ 2
	VZ ZA	373.64	363.80	360.75	390.48	429.98	482.02	475.1B	453.24	440.49	V2 2A
	V-THETA 2	464.87	460.24	449.79	450.62	397.35	362.04	351.52	347-37	336.70	V-THETA 2
	V-THETA 2A M 2	11.74	11.43 0.4763	10-71 0-4704	5.45 0.4829	10.51 0.4740	28.64 0.5107	39.50 0.5178	40.76 0.4905	40.85	V-THETA 2A M 2
	M ZA	0.3231	0.3149	0.3126	0.3392	0.3756		0.4188	0.3992	0.4385 0.3875	M ZA
	TURN (PR)	56.420	56.013	55.243	54.246	46.130	0.4248 35.515	32.204	33.591	37.126	TURN (PR)
	UUBAR	0.1669	0.1790	0.1661	0.1956	0.0648	0.0957	0.2003	0.1860	0.0372	UUBAR
	LOSS PARA UFAC	0.0562 0.5956	0.0609 0.6119	0.0572 0.6694	0.0695 0.5779	D.0240 0.4681	0.0368 0.3856	0.0791 0.3967	0.0741 0.4021	0.0150 0.3535	LOSS PARA DFAC
	EFFP	0.7095	0.6987	0.7179	0.6338	0.8357	0.7080	0.4522	0.4765	0.8381	EFFP
	INClu	6.053	14.426	16.654	17.022	10.842	3.081	-1.707	-4.391	-16.723	INCID
	DEVM	10.632	13.112	13.010	11.775	12.412	15.065	17.189	17.817	10.150	DEAN
	P 2 P 2A	18.117 17.679	16.044 17.579	17.960 17.540	18.253 17.727	18.159 17.991	18.757 18.464	19.030 18.393	18.746 18.218	16.211	P 2
	7 ZA	566.550	567.000	565.600	564.550	561.500	557.750	559,250	556.950	16.128 559.770	P ZA T 2
	1 2A	566.550	567.000	565.600	564.550	561.500	557.750	559.250	558.950	559.770	T 2A
	UUBAR FS	0.1544	0.1771	0.1959	0.2191	0.1719	0.0877	0.1312	0.1671	0.1631	UUBAR FS
	P2 FS LOSS PARA F	18,079	0.0602	18.053	18.320	18.491 0.0636	14.729 0.0337	18.777 0.0518	18.682	14.414	P2 FS LOSS PARA FS
	LUSS FARA P	2 010720	410025	010014	444.04	A. 0538	444331	V4V344	040443	0 50 7 25	FRDD LWAY L7

Table A-5. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 89.86 Equivalent Rotor Speed = 3783.29 Equivalent Weight Flow = 102.52
Hub Radial Distortion

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.30		
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40,321	7.10 40.737	3.00 41.085	PCT SPAN
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DIA BETA O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	V D V 1	381.48 327.36	381.48	381.48	361.48	381.48	381.48	381.48	301.48	361.46	VO
	vzo	381.48	338.10 301.40	334.57 381.48	325.22	415.91	494 48	496.93	469.68	430.91	V 1
	VZ 1	327.36	338.10	334.57	381.47 325.21	381.45	381.42	381.38	381.38	381.38	VZ O
	V-THETA D	0.00	0.00	0.00	0.00	415.88 0.00	494.39	496-80	469.56	430.80	VZ 1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Y-THETA O
	M O	0.3457	0.3457	0.3457	0.3457	0.3457	0.3457	0.00	0.00	0.00	Y-THETA I
	M 1	0.2958	0.3057	0.3024	0.2938	0.3778	0.4518	0.3457 0.4542	0.3457	0.3457	MG
	TURN	0.0	0.0	0.D	0.0	0.0	0.0	0.0	0-4283	0.3918 0.0	M 1
	UUBAR	1.7784	1.6670	1.6584	1.6584	1-1+39	0.4065	0.4665	0.6637	0.9038	TURN UUSAR
	DFAC	0.142	0.114	0.123	0.147	-0.090	-0.296	-0.303	-0.231	-0.130	UFAC
	EFFP Incid	-0.1689 0.0001	-0.1444	-0.1580	-0.1926	0.1425	0.6363	0.6092	0.4453	0.2373	EFFP
	DEVM .	-0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	PO	15.947	-0.000 15.947	-0.000	-0.000	-0.000	-0.000	-U.00D	-0.000	-0.000	DEVM
	P 1	13.696	13.837	15.947 13.848	15.947 13.846	15.947	15.947	15.947	15.947	15.947	PO
	7 0	518.700	518.700	518.700	518.700	14.449 518.700	15.433	15.357	15.107	14.803	P 1
	T 1	518.700	518.700	518.700	518.700	518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	† 0 † 1
ROTOK O	PCT SPAN	95.00	90.00	85.00	70.00					220.100	, 1
*	DIA	33.236	33.621	85.00 34.007	70.00 35.164	50.00	30,00	15.00	10.00	5.00	PCT SPAN
RCTUR -L.E.	BETA 1	0.000	0.000	0.000	0.000	36.706 0.000	38.248 0.000	39.405	39-791	40.176	DIA
ROTER -T.E.	BETA 2	44-498	42.873	41-817	38.184	29.676	25-628	0.000	0.000	0.000	BETA 1
	BETAIPR) 1	59.035	57.221	57.273	58.942	53.913	50.316	26.471 50.952	29.032	32.445	BETA Z
	BETA(PR) 2	25.281	27.109	29.060	32.873	32.902	34.047	37.557	52.785	55.338	BETALPR) 1
	¥ 1	328.08	350.33	360.G6	350.51	446.20	533.81	541.20	41.29 <u>2</u> 512.09	47.394 469.86	BETA(PR) 2
	V 2	528.70	525.82	519.38	515.45	573.40	607.05	575.10	525.58	457.28	V 1 V 2
	V2 1	328.01	356.25	360.02	350.49	445.65	531.65	537.64	50R.45	466.80	YZ <u>1</u>
	VZ 2 V-THETA 1	377.10	385.34	367.07	405.15	497.97	546-46	513.47	458.26	384.93	VŽ Z
	V-THETA 2	0.00 370.55	0-00	0.00	0.00	0.00	0.00	D.00	0.00	0.00	V-THETA 1
	VIPR) 1	637.6	357.74 658.1	346.29	318.64	283.76	262.14	255.68	254.36	244.70	V-THETA 2
	V(PK) 2	+17.1	432.9	665.9 44 2.8	679.4	756.9	834.0	855.7	842.9	B22.5	V(PR) 1
	VTHETA PRI	-546.7	-553.2	-560.2	482.4 -582.0	593.3 -611.4	660.4 -640.7	649.0	611.2	569.5	V(PR) 2
	VTHETA PRZ	-178.1	-197.3	-215-1	-261.8	-322.2	-369.2	-662.B	-669.5	-675.1	VTHETA PRI
	U 1	546.66	553.23	560.22	581.99	611.43	640.73	-394.8 662.78	-402.5	-418.5	VTHETA PR2
	U 2	548.64	555.01	561.37	580.47	605.93	631.39	650.49	669.49 656.85	675.10	U 1
	M 1	0-2964	0.3225	0.3259	0.3171	0.4062	0.4894	0-4966	0.4686	663.22 0.4285	U 2
	M 2	0.4680	0.4662	0-4611	0.4582	0.5131	0.5455	0.5154	0.4692	0.4059	M 1 M 2
	M(PR) L	0.5760	0.5955	0.6028	0.6146	0.6891	0.7647	0.7851	0.7714	0.7501	M(PR) 1
	M(PR) 2 TURN(PR)	0.3691	0.3838	0.3931	0-4288	0.5309	0.5934	0.5817	0.5456	0.5055	M(PR) 2
	UUBAR	33.751 0.0635	30.107	28.211	26.069	ZO.993	16.206	13.300	11.398	7.870	TURN (PR)
	LUSS PARA	0.0166	0.0879	0.0789	0.0181	-0.0175	0.0515	0.0897	0.1367	0.1744	UUBAR
	OFAC	0.5145	0.0229 D.5016	0.0205 0.4896	0.0047	-0.0047	0.0144	0.0247	0.0360	0.0416	LOSS PARA
	E+FP	0.8922	0.8966	0.9369	0.4341 1.0032	0.3363 1.0331	0.3131	0.3442	0.3797	0.4120	DFAC
	EFF	0.6890	D-8936	0.9352	1.0033	1.0340	0.9138 0.9118	0.8530	0.7871	0.6846	EFFP
	INCID	6.604	6-305	6.695	6.900	-0.090	-5.686	0.0498 -7.753	0.7829	0.6791	EFF
	DEVM	10.131	12.949	14.426	14.232	9.690	6.487	5.934	-9.541 0.154	-12-838	INCID
	P 1	13.090	13.637	13.848	13.648	14.499	15.433	15.357	15.107	11.417 14.803	DEAN
	P 2	16.865	16.654	16.822	16.876	17.581	18.189	17.864	17.321	16.713	P 1 P 2
	T 1 T 2	518.700	518.700	518.700	510.700	518.700	518.700	518.700	518.700	518.700	Ťì
	1 2	554.450	552.350	550.400	548.750	547.100	546.050	545.650	545.100	545.650	ΤŽ
											- -
STATOR U	PCT SPAN Dia	95.00	90.00	65.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	BETA 2	33.207 44.818	33.564 42.640	33.921 41.120	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-T.L.	BETA ZA	3.300	3.300		38.233	29.296	25.538	26,992	29.893	33.771	BETA 2
	¥ 2	525.80	528.30	3.250 526.84	1.800 515.45	0.340	1.450	2.351	0.900	-2.001	BETA ZA
	V ZA	423.66	417.27	410.00	439.53	581.08 527.38	609.94	565.49	512.39	442-01	¥ 2
	V2 2	372.98	388.63	396.87	404-83	504.50	506.95 549.79	526.24	490.37	466.03	¥ ZA
	V2 2A	422.95	416.57	+09.32	439.25	527.19	586-41	503.19 525.37	443.60	366.90	¥Z 2
	V-THETA 2	370.61	357.86	346.46	318.94	284.19	262.68	256.30	489.87 25 5. 00	465.25	VZ 2A
	V-THETA ZA	24.38	24.02	23.24	13.80	3.13	14.85	21.57	7.70	245.35 -16.25	V-THETA 2
	M 2	0.4653	0.4685	0.4680	0.4582	0.5203	0.5482	0.5063	0.4569	0.3919	V-THETA ZA M Z
	M 2A Turn(pr)	0.3721	0.3670	0.3611	0.3865	0.4700	0.5264	0.4696	0.4365	0.4139	M ZA
	UUBAR	41.518 0.0840	39.339	37.869	36.426	Z8.940	24.061	24.603	28.947	35.715	TURN (PR)
	LOSS PARA	0.0283	0-1015 0-0345	0.1111 0.0382	0.0336	0.0073	-0.0032	0.1287	0.0705	-0.1293	UUBAR
	OFAC	0.4161	0.4255	0.0382	0.0119 0.3581	0.0027	-0.0012	0.0510	0.0282	-0.0521	LOSS PARA
	EFFP	0.7792	0.7511	0.7397	0.3561	0.2721 0.9628	0.1950	0.2349	0.2372	0.1856	DFAC
	INC1D	-5.350	-0.748	0.830	0.202	-7.407	1.0305 -10.323	0.1290	0.2305	-0.0735	EFFP
	DEVM	12.132	14-612	14.560	12.775	11.352	13.116	-11.706 14.7 9 0	-13.272	-25,429	INCID
	PZ	16.865	16.854	16.822	16.876	17.581	10,109	17.864	13.500 17.321	2.855	DEVM
	P 2A	16.670	16,615	16.561	16.600	17.540	18.200	17.495	17.156	16.713 16.930	P 2 P 2A
	T 2	554.450	552.350	550.400	548.750	547.100	546.050	545.650	545.100	545.650	T 2
	T 2A UUBAR FS	554.450	552.350	550.400	548.750	547.100	544.050	545.650	545.100	545,650	Ť ŽA
	P2 FS	0.0625 16.812	0.0958	0.0775	0.0554	0-0426	0.0329	0.1829	0.2193	0.2575	UUBAR FS
	LOSS PARA F	0.0212	16.839 0.0325	16.736	16.953	17.690	18.314	18.054	17.761	17.587	PZ FS
	/ / -		414363	0.0256	0.0231	0.0157	0.0123	0.0724	0.0877	0.1037	LOSS PARA FS

Table A-5. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 90.37 Equivalent Rotor Speed = 3804.45 Equivalent Weight Flow = 88.60
Hub Radial Distortion

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	26.10	12.66	3.10	3	
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	12.00 40.321	7.10 46.7 <i>:</i> 7	3.00 41.065	PCT SPAN Llm
	BETA O	0.000	6.000	0-000	0.000	0.000	0.000	0.000	0.00	C.000	JATA C
	DETA 1	0.000	0.000	0.000	0.000	0.000	6.000	0.000	0.00	U=U06	Si TA I
	¥ 1	333.31 277.23	333.31 280.03	333.31	333.31	333.31	333.31	333.31	333.31	اد،دور	۷ ن
	VZ o	333.21	333.31	282.36 333.31	279.51 333.30	356.15 333.26	452.88 333.25	420.05	14 د د 40	373.37	V 1
	yZ 1	277.23	280.03	282.30	279.50	356.13	432.80	333.22 426.55	333.22	335.22	Va U
	Y-THETA O	0.00	0.00	0.00	6.00	0.00	C.0L	0+66	465.03 0.06	3/37 0.00	YZ ↓ V-ĭHĒTA €
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	Ç-LU	6.66	6.00	V-THLTA 1
	H 0 H 1	0.3012	0.3012	0.3012	0.3012	0.3012	0.3012	0.3012	0.3012	0.3012	мь
	TURN	0.2499	0.2524	0.2545	0-2516	0.3223	0.3937	0.3822	0.3659	⊾نادد. 0	M s
	UUBAR	1.5996	1.5271	0.0 1.4880	0.0 1.5271	0.0 1.6195	0.0 6.3726	0.4	0.0	0.0	TURA
	DEAC	0.166	0.160	0.153	0.161	-0.069	-0.255	0.4618 -0.202	0.5957 -0.216	0.8020 -0.110	UUDAR
	EFFP	-0.2347	-0.2354	-0.2314	-0.2380	0.1231	0.6562	6.5699	0.4437	0.2443	LFAL EFFP
	INC 1D	0-0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0061	6.6001	INC19
	D E VM	-0.066 15.550	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	µE VM
	P 1	14.033	15.550 14.102	15.550 14.139	15,550	15.550	15.550	15.550	15.556	16.55u	FU
	Το	518.700	518.700	518.700	14.102 516.700	14,583 518.700	15.197 518.700	15.112 518.760	14.965	14.789	P. J.
	T 1	548.700	518.700	518.700	518.700	518.700	518.760	518.700	518.700 518.700	516.700 51a.706	1 6 T 1
ROTOR D	PCT SPAN	95.00	90.00	a5 . 00	70.00	50.00					
	DIA	23.236	33.621	34.007	35.164	50.00 36.706	30,66 35,248	15.46 39.465	16.60 39.79i	5.00 38.00	PÚT SPAN Úla
ROTOR -L.E.	LETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.666	ELTA .
ROTOR -T.E.	BETA 2	52.400	52.607	52, 397	47-979	39.603	32.50£	32.591	34.716	37.559	ELTA 2
	BETA(PR) 1 BETA(PR) 2	63-193	62.161	61.714	62.811	58.258	54.296	55.657	57.175	54.319	EFTA(PA) 1
	V 1	24.439 277.82	28.364 294.61	32.336 303.20	30.251 300.65	36.573	35.684	37.867	41.140	+5.5+2	BLTA(PK) 2
	v Ž	515.85	497-16	479.00	515.07	380-83 504-12	464.94 554.07	454.97	437.00	405.42	V i
	VZ 1	277.76	294.54	303.16	300-63	380.36	463.06	549.43 451.58	514.39 433.45	471.53 462.70	ν ν
	V2_2	314.74	301.91	292.27	344.74	386.26	400-61	401.66	429.98	372.76	V2 L
	V-THETA 1	Ú+00	0.00	0.00	0.00	0.00	0.00	0.60	6.66	ن د د د	V-THETA 1
	V-THETA 2 V(PR) 1	408.69 615.9	394.96	379.49	382.63	321.25	297.35	295.15	247.43	267.00	V-Tect TA 2
	V(PR) 2	345.7	629.5 343.2	63 9 . 8 34 5 . 9	658.0 399.1	723.2	794.5	607.U	802.7	790.7	VIPRI 1
	VTHETA PRI	-544.7	-556.3	-503.3	-585+2	483.7 -614.8	576.7 -644.3	586.û -666.5	>63.6 -673.2	533.2	V(P6)
	VIHETA PR2	-143.0	-163.1	-185.0	-201-1	-288-1	-357.6	-355.0	-361.6	-675.9 -379.9	VTHETA PK1 VTHETA PK2
	Ul	549.72	556.33	563.35	565.24	614.85	644.32	666.48	673.23	676.06	b 1
	U 2 M 1	551.71	558.11	564.51	583.72	609.32	63 92	654.+3	660.53	066.53	u ž
	M 2	0.2504 0.4551	0.2657 0.4385	0 •2 730 6 •4224	0.2713	0-3451	0.4239	0.4145	0.3976	0.3660	4 1
	M(PR) 1	0.5551	0.5678	0.5773	0.4559 0.5536	0.4469 0.6555	0,4939 C.7243	0.4843	0.4602	0.4171	M &
	M(PR) 2	0.3050	0.3027	0.3051	0.3533	0.4267	6.5140	0.7351 0.5220	0.7302 0.5011	0.7176 0.4716	M(PR) 1 M(PR) 2
	TURN (PR)	38.752	33.714	29.376	32.559	21.670	18.355	17.904	16.970	13.715	TURN (Pk.)
	UUBAR	0.1163	0.1463	0.1568	0.0867	0.0875	0.0692	0+0640	0.0934	0.1224	UU! AK
	LUSS PARA Ufac	0.0307 0.6312	0.0378	0.0398	0.0230	0.0226	0.0189	0.0175	0.0250	v.0304	LUSS PARA
	EFFP	0.8947	0.6392 0.6757	0.6356 0.8637	0.5721 0.9937	0.4736 0.9102	0.3992	0.3996	0.4267	0.4532	UF AC
	EFF	0.8913	0.6719	0.6598	0.9935	0.9077	0.9212 0.9191	0.9445 (.9430	0.9243	6.63.9	EFFY
	INCIO	10.763	11-166	14.150	10.709	4 258	-1.701	-4.01b	0.9213 -5.121	6.8∠8€ -6.045	LFF 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	DEAM	9.269	14.224	17.702	11.610	13.361	8.323	0+243	7.605	9.262	JE VM
	P L	14.633 17.525	14.102	14.139	14-102	14.583	15.197	15.112	14.985	14.769	P 1
	Ti	518.700	17.396 518.700	17.271 518.700	17,641 518,700	17-652	18.267	18 2 7	18.044	17.567	P 4
	τŽ	550.850	555.500	554+200	553.200	518.700 556.750	518.70D 549.350	518.700 549.500	516.700	10.700	Ţ 1
				22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3300130	347.330	3474200	549.350	556.250	1.
STATOR D	PET SPAN	95.00	90.00	85.06	70.00	50.00	30.00	15.00	16.00	E	50 T + 5 + 1
	DIA	33.207	33.564	33-921	34,992	36.420	⇒7 .84 6	36+919	16.00 39.276	5.00 39.033	PCT SPAN 51A
STATOR-L.E.	BETA 2	52.817	52.290	51.437	48.045	39.102	32,404	33.245	35.758	39.434	ELTA 2
STATOR-T.E.	BETA ZA	4.350	4.350	4.030	3.500	1.750	2,401	3.161	5.501	3.401	LÉ IN CA
	V 2 V 2A	513-05	499.44	485 -58	515.07	510.53	556.52	540.35	511.27	455.61	¥ 4
	¥z 2	365.13 310.07	357.13 305.49	353.17 362.69	386.99 344.31	417.97	488.28	463.74	438+93	424.U1	V 4A
	VZ ZA	364-08	356.09	352.28	386.21	395.87 417.63	469.45 487.57	451-36 462-66	414-17	352,46	V4 4
	V-THETA 2	408.76	395.11	3 79 . 66	383.00	321.74	297.96	295.67	437.73 498.69	422.82 287.61	V2 κΑ V=TH61Α ∠
	V-THETA ZA	47.69	27.09	24 . 82	23.6.	12.76	20.44	25.55	26.78	25.13	V-THETA ZA
	M 2 M 2A	0.4525	0.4406	0.4284	0.4559	0.4526	0.4961	0.4810	0.4541	0.40.6	A 2
	TURN (PR)	0.3188 48.467	0.3121 47.939	0 -3 089 4 7- 406	0.3395	0.3682	0.4329	0.4103	0.3877	6.3739	M AA
	UUBAR	0.1244	0.0999	0.0569	44.539 0.1174	37.334 0.0343	29.972	30.041	32.249	35.779	TURNIPKI
	LOSS PARA	0.0418	0.0339	0.0195	0.0416	0.0127	0.0393 0.0151	0.1336 0.0529	0.1356 0.0542	-0.0143 -0.0057	UUBAR LUSS PAKA
	DFAC	0.5366	0.5360	0.5245	0.4972	0.4059	0.3156	0.3412	0+3556	0.3035	CEAC
	EFFP	0.7653	0.6093	0.8873	0.7497	0.9039	0.8455	0.5342	0.5216	1.0994	LFFF
	DEAM INCID	2.650	B.902	11-146	10.014	2.396	-3-462	-5 -459	-7.372	-14.969	1NC1U
	P 2	13.182 47.525	15.662 17.398	15.340 17.271	14.475	12.762	14.065	15.599	16.178	8 - 251	LE VM
	P 2A	17.239	17.161	17.155	17.366	17.652 17.573	18.287 18.176	18-267 17-929	18.044 17.721	17.567 17.594	P i
	T 2	556.850	555,500	554.200	553.200	550.750	549.350	549.500	549.350	550.250	P 2A T 2
	T ZA	556.850	555,500	554-200	553.200	550.750	549.350	549.500	549.350	550.250	T ZA
	UUBAR FS	0.0913	0.1153	0.1331	0.1117	0.0684	0.0303	0.1321	0.1812	0.2108	UUBAK FS
	P2 F5 Loss Para F:	17.441 S 0.030A	17.435 0.0391	17.451 0.0456	17.626	17.737	16.261 0.0116	18.282	18+176	18.097	P. FS
			-,	******			V-J449	4.4343	0.0724	0.0840	LUSS PAKA F5

Table A-5. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 90.38 Equivalent Rotor Speed = 3805.08 Equivalent Weight Flow = 76.35
Hub Radial Distortion

			·								
INLET	PCT SPAN	96.80	92.00	86.90	71.00	10.50			_		
	DIA	33.122	33.529	33.962	35.312	49.50 37.137	28.10 38.954	12,00 40,321	7.10	3.00	PCT SPAN
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	40.737	41.085	DIA BETA O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	V 0 V 1	289.27 229.49	289.27 239.38	289.27 239.97	269.27	289.27	289.27	289.27	289.27	289.27	V 0
	vz o	289.27	289.27	289.27	242.92 209.27	319.20 289.25	375.65 289.22	366.89 289.20	351.21	319.65	V 1
	V2 1	229.49	239.38	239.97	242.92	319.17	375.59	366.80	289.19 351.12	289.19 319.56	VZ 0 VZ 1
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	M O	0.00	0.00 0.2609	0.00 0.2609	0.00 0.2609	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	H I	0.2064	0-2154	0.2159	0.2186	0.2609 0.2863	0.2609 0.3403	0.2609 0.3322	0.2609 0.3177	0.2609	M G
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2887 0.0	M 1 Turn
	UUBAR DFAÇ	1.5892 0.207	1.4906	1.4640	1.4199	0.8528	0.3226	0.3918	0.5268	0.7865	UUBAR
	EFFP	-0.3002	0.172 -0.2657	0.170 -0.2684	0.160 -0.2602	-0.103 0.2052	-0.299 0.6863	-0.268	-0.214	-0.105	DFAC
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.6144	0.4781 0.0001	0.2716	EFFP Incid
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	P 0 P 1	15.272 14.151	15.272 14.220	15.272 14.239	15.272 14.270	15.272	15.272	15.272	15.272	15.272	PO
	T G	518.700	518.700	518.700	518.700	14.670 510.700	15.044 518.700	14.996 518.700	14.699 518.700	14.717 518.700	P 1 T 0
	T 1	518.700	518.700	518,700	518.700	518.700	518.700	518.700	510.700	518.700	Ťì
KOTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00			
	ÜÏA	33.236	33.621	34.007	35.164	36.706	30.00 38.248	15.00 39.405	10.00 39.791	5.00 40.176	PCT SPAN Dia
RUTUR -L.E.	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
ACTOR -T.L.	BETA 2 BETA(PR) 1	56.995 67.306	57.414 65.673	57.556	54.270	47,829	38.890	36.343	37.860	40.519	BETA 2
	BETA(PR) 2	27.421	30.443	65.459 33.376	65.973 32.291	61.039 38.389	58.143 38.180	59.488 39.271	60.767	63.151	BETA(PR) 1
	V 1	229.97	251.60	257.29	260.96	340.74	402.08	395.44	41.070 379.53	46.513 345.97	BETA(PR) Z V 1
	V 2 VZ 1	492.15	481.59	471.56	494.42	478.84	512.77	523.98	508.65	460-62	v 2
	YZ 2	229.92 268.06	251.54 259.37	25 7.26 252.97	260.94 288.72	340.32 321.39	400.45 398.65	392.84	376.83	343.72	VZ 1
	V-THETA L	0.00	0.00	0.00	0.00	0.00	0.00	421.17 0.00	400.69 0.00	349.43 0.00	VZ Z V—Theta 1
	V-THETA 2	412.72	405.77	397.95	401.35	354.80	321,55	309.87	311.47	298.64	A-IHFIY 5
	VIPR) 1 VIPR) 2	596.0 302.0	610-7 300-9	619.4 302.9	640.9 341.6	703.0 410.2	759.6	775.1	772.9	762.1	V(PR) 1
	VTHETA PRI	-549.8	-556.4	-503.4	-585.3	-614.9	507.7 -644.4	545.1 -666.6	532.6 -673.3	508.6 ~679.0	Y(PR) 2 VTHETA PR]
	VTHETA PR2	-139.1	-152-4	-166.7	-182.5	-254.6	-313.5	-344.4	-349.2	-368.4	VTHETA PRZ
	U 1 U 2	549.81 551.80	556.42 558.21	563.44 564.61	585.34 583.81	614.95	644-42	666.59	673.34	678.99	UL
	M 1	0.2069	0.2265	0.2317	0.2350	609.42 0.3081	635.03 0.3649	654.23 0.3587	66 0.64 D .3439	667.D4 0.3129	U 2
	M 2	0.4326	0.4236	0.4148	0.4361	0.4227	0.4548	0.4650	0.4510	0.4067	M 1 M 2
	M(PR) 1 M(PR) 2	0.5361	0.5498	0.5578	0.5772	0.6357	0.6893	0.7031	0.7005	0.6892	M(PR) 1
	TURN(PR)	0.∠655 34.882	0.2646 35.227	0.2665 32.081	0.3013 33.681	0.3621 22.637	0.4503 19.913	0.4838	D-4722	0.4491	M(PR) 2
	UUБAR	0.2077	0.2400	0-2480	0.2238	0.2326	0.1668	20.142 0.1194	19.625 0.1365	16.588 0.1573	TURN (PR) UUBAR
	LUSS PARA	0.0534	0.0607	0.0615	0.0582	0.0587	0.0441	0.0321	0.0361	0.0363	LOSS PARA
	OFAC EFFP	0.6942 0.8029	0.7025 0.7978	0.7019 0.7984	0.6595 0.8728	0.5783	0.4729	0.4342	0.4510	0.4702	DFAC
	EFF	0.7970	0.7920	0.7928	0.8690	0.7929 0.7876	0.8320 0.8278	0.8752 0.8718	0.8754 0.8721	0.8049 0.8001	EFFP EFF
	INCID	14.676	14.758	14.882	13.931	7.040	2.151	0.803	-1.537	-5.001	INCID
	DEVM P I	12.272 14.151	16.283 14.220	18.742	13.651	15.176	10.617	7.647	7.932	10.536	DEYM
	P 2	17.440	17.367	14.239 17.310	14.270 17.565	14.670 17.523	15.044 17.929	14.996 18.064	14.899	14.717	P 1
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	17.918 518.700	17.492 518.760	P 2 T 1
	1 2	556.750	557.200	556.250	555,200	553.000	550.990	551.200	550,900	551.500	T 2
28.85m											
STATER D	PCT SPAN UIA	95.00 33.207	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATUK-L.E.	BETA 2	57.479	33.564 57.043	33.921 56.407	34.992 54.351	36.420 47.182	37.848 38.771	38.919	39.276	39.633	DIA
STATOK-T.E.	BETA ZA	2.340	2.400	2.270	1.690	1.900	3,311	37.081 4.891	39.059 5.102	42.324 4.982	BETA 2 BETA 2A
	V 2 V 2A	489.56	483.76	477.98	494.42	484-58	514.94	515.74	496.13	445.22	V Z
	V2 2	341.67 263.19	328.38 263.17	325.26 264.45	356.94 288.13	383.65	433.00	423.88	405.81	392.18	¥ 24
	V2 2A	341.38	328.08	324.99	356.73	329.25 383.31	401.17 432.02	410.99 422.00	384.81 403.84	328.00 390.26	VZ 2 VZ 2A
	V-THETA 2	412.79	405.91	398.15	401.73	355.34	322.21	310.62	312.26	299.44	V-THETA Z
	V-THETA ZA M 2	13.95 0.4302	13.75 0.4256	12.88	10.53	12.72	24.99	36.11	36.05	34.02	V-THETA 2A
	M ZA	0.2975	0.2861	0.2836	0.4361 0.3120	0.4280 0.3366	0.4568 0.3818	0.4574 0.3734	0.4394 0.3572	0.3927	M 2
	TURN (PR)	55.13 9	54.642	54.136	52.655	45.264	35.427	32.146	33.909	0.3447 37.289	M 2A TURN(PR)
	UUBAR LOSS PARA	0.1347	0.1402	0.1388	0.1691	0.0752	0.0826	0.1679	0.1775	0.0295	UUBAR
	DEAC	0.0453 0.5766	0.0504 0.5974	0.0477	0.0601 0.5598	0.0278 0.4710	0.0316 0.3826	0.0663	0.0707	0.0118	LOSS PARA
	EFFP	0.7536	0.7414	0.7566	0.6688	0.6120	0.7396	0.3904 0.5192	0.4063 0.4986	0.3613 0.8766	DFAC EFFP
	INCID DEVM	7.312	13.655	16.117	16.321	10.476	2.903	-1.625	-4-113	-16.880	INCID
	P 2	11.172 17.440	13.712 17.367	13.580 17.310	12.665 17.565	12,912 17,523	14.975	17.328	17.777	9.830	DEAW
	P 2A	17.160	17.066	17.035	17.201	17.367	17.929 17.731	18.064 17.658	17.918 17.523	17.492 17.440	P 2 P 2A
	T 2 T 2A	558.750	557.200	556.250	555.200	553.000	55 0.9 00	551.200	550.900	551.500	Ť Z
	UUBAR FS	558 .75 0 0.1406	557.200 0.1793	556.250 0.2012	5 55.200 0.1768	5 53.000 0.1397	550.900 0.0641	551.200 0.1224	550-900 0-1596	551,500	T 2A
	P2 FS	17.455	17.444	17-465	17.590	17.678	17.881	17.936	17.870	0.1708 17.792	UUBAR FS P2 FS
	LOSS PARA F	5 0.0473	0.0610	0.0691	0.7635	0.0518	0.0246	0.0483	0.0636	0.0683	LOSS PARA ES

Table A-5. Blade Element Performance (Continued)
stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 71.15 Equivalent Rotor Speed = 2995.46 Equivalent Weight Flow = 82.96
Hub Radial Distortion

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12-00	7-10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O Beta 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA U
	V O	312.82	312.62	0.000 312.82	0.000 312.62	0.000 312.82	0.000 312.82	0.000	0.000	0.000	BETA 1
	Y I	259.69	262.99	263.37	260.03	337.44	397.52	312.82 392.41	312.82 391.01	312.82 334.40	V 0 V 1
	V2 0	312.82	312.82	312.82	312.81	312.80	312.77	312.74	312.73	312.74	YZ O
	VZ 1 V-THETA O	259.69	262.99	263.37	260.03	337.41	397.45	392.31	390.90	334.32	VZ 1
	V-THETA 1	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Y-THETA D
	M O	0.2824	0.2824	0.2824	0.2824	0.00 0.2824	0.00 0.2824	0.00 0.2824	0.00	0.00	Y-THETA 1
	M 1	0.2339	0.2369	0.2372	0.2342	0.3050	0.3607	0.3559	0.2824 0.3546	0.2824 0.3022	M O M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR DFAC	1.590L 0.170	1.5207	1.5017	1.5270	0.9713	0.3625	0.3966	0.4092	0.8450	UUBAR
	EFFP	-0.2396	0.159 -0.2361	0.158 -0.2379	0.169 -0.2507	-0.079 0.1454	+0.271	-0.254	-0.250	-0.069	DFAC
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.6362	0.5983 0.0001	0.5658 0.0001	0-1462 0-0001	EFFP INCID
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEAM
	PO P1	15-427	15.427	15.427	15.427	15.427	15-427	15.427	15.427	15.427	₽ 0
	TO	14.105 518.700	14.163 518.700	14.178 518.700	14.157	14.619	15-125	15.097	15.087	14.724	P 1
	Ťĺ	518.700	518.700	518.700	518.700 518.700	518.700 518.700	510.700 510.700	518,700 518,700	518.700 518.700	518.700 518.700	T 0 T 1
ROTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00			
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	10.00 39.791	5.00 40.176	PCT SPAN Dia
KUTOR -L.E.	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
ROTOR -T.E.	BETA 2	43.993	42.059	41.188	37.580	29.464	25.337	25.219	26.902	30.434	BETA 2
	BETA(PR) 1 BETA(PR) 2	58.988 24.116	57.737 26.594	57.501	58.762	53.360	50.091	51.271	51.570	56.049	BETA(PR) 1
	V 1	260.24	276.57	28.079 282.60	30.499 2 79. 50	31.492 360.50	33.320 426.03	37.014 423.64	39.946	48.801	BETAIPR) 2
	V Z	427.30	421.90	419.33	426.88	466.24	489.90	466.01	423.60 434.88	362.23 353.01	V 1 V 2
	VZ 1	260.19	276.51	282.57	279.48	360.05	424.31	420.85	420.58	359.87	VZ 1
	VZ 2	307.40	313.23	315.56	338.30	405,75	442.06	420,47	386.71	303.56	¥2 2
	V-THETA 1	0.00 296. 7 8	0.00 202.42	0.00 276.13	0.00 260.33	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V(PR) 1	505.0	518.0	525.9	538.9	229.23 603.6	209.31 662.5	198.03 674.4	196.20 678.5	178.34 645.7	V-THETA 2
	Y(PR) 2	336.8	350.3	357.7	392.6	477.1	529.7	527.7	505.5	461-6	V(PR) 1 V(PR) 2
	VTHETA PRI	-432.8	-438.0	-443.6	-460_8	-484.I	-507.3	-524.8	-530.1	-534.5	VTHETA PRI
	VTHETA PR2 U 1	-137.6	-156.8	-168.3	-199.3	-250.5	-290.6	-317.0	-323.9	-346.8	VTHETA PR2
	U 2	432.82 434.39	438.03 439.43	443.56 444.47	460.T9 459.59	484.10 479.75	507.31	524.76	530.07	534.52	V I
	M 1	0.2344	0.2493	0.2548	0.2519	0.3263	499.91 0.3873	515.03 0.3850	520.07 0.3050	525.11 0.3279	U 2 M 1
	M 2	0.3797	0.3754	0.3736	0.3809	0.4175	0.4398	0.4177	0.3891	0.3141	M 2
	M(PR) 1	0.4548	0-4669	0.4741	0.4858	0-5464	0.4022	0.6130	0.6167	0.5845	H(PR) 1
	M(PR) 2 Turn(Pr)	0.2993	0.3117	0.3186	0.3503	0.4272	0.4756	0.4730	0.4523	0.4107	M(PR) 2
	UUBAR	34.869 0.0835	31,139 0.0870	29.420 0.0772	24.263 0.0070	21.649 -0.0130	16.709	14.162	11.526	7.175	TURN (PR)
	LOSS PARA	0.0221	0.0228	0.0202	0.0019	-0.0036	0.0376 0.0106	0.0596 0.0165	0.1189 0.0320	0.1358 0.0317	UUBAR Loss para
	DFAC	0.5036	0.4840	0.4760	0.4199	0.3314	0.3058	0.3186	0.3555	0.3821	DFAC
	EFFP	0.8459	0.0686	0.9239	1.0311	1.0119	0.9194	0.8665	0.7671	0.6584	EFFP
	EFF INCID	0.8431 6.557	0.8663 6.822	0.9225	1.0317	1.0121	0.9182	0.8646	0.7643	0.6548	EFF
	DEVM	8.967	12,434	4.923 13.445	4.720 11.858	-0.443 8.481	-5.910 5.760	-7-423 5-391	-10.758 6.808	-12-125	INCID DEVM
	P 1	14.105	14.163	14.178	14.157	14.619	15.125	15.097	15.087	12.825 14.724	Pì
	P 2	16.074	16.042	16.052	16.136	16.546	16.840	16.672	16.430	15.874	P 2
	1 1	518.700	518.700	510.700	514.700	518.700	510.700	518.700	51B.700	518.700	T 1
	T 2	542.100	540,400	539.000	537.850	537.150	536.300	535.950	535.450	535.900	Ť Z
STATUR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.846	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	44.280	41.855	40.568	37.626	29.135	25.265	25.661	27.626	31.574	BETA 2
STATUR-T.E.	BETA ZA	3.400	3.500	3.000	1.250	0.200	1.400	2.001	1.000	-2.001	BETA 2A
	V 2 V 2A	425.16 349.54	423.71 345.30	424.81 338.61	426.88	471.79 433.20	491.93	459.05	424 83	342.03	V 2
	V2 2	304.39	315.59	322.69	3 46.9 4 3 38. 04	411.89	478.30 444.42	432.28 413.19	403.98 375.85	385.77 290.96	V 2A
	VZ ZA	348.93	344.65	338.13	366.80	433.05	477.88	431.67	403.56	385.13	VZ 2 VZ 2A
	V-THETA 2	296.83	282.72	276.27	260.58	229.58	209.74	198,51	196.70	178.81	V-THETA 2
	Y-THETA 2A	20.73	21.08	17.72	8.00	1.51	11.68	15.08	7.05	-13.45	V-THETA 2A
	M 2 N 2A	0.3776	0.3771	0.3786	0.3809	0.4226	0.4417	0.4113	0.3799	0.3042	M 2
	TURN (PR)	0.3092 40.880	0.3058 38.354	0.3002 37.567	0.3262 36.371	0.3870 28.918	0.4290 23.838	0.3 0 66 23.623	0.3607 26.582	0.3439 33.519	M 2A
	UUBAR	0.0731	0.0735	0.1090	0.0560	0.0161	-0.0075	0.1232	0.1247	-0.2288	TURN (PR) UUBAR
	LOSS PARA	0.0246	0.0250	0.0375	0.0199	0.0047	-0.0029	0.0488	0.0499	-0.0922	LOSS PARA
	DFAC	0.3967	0.3955	0.4127	0.3511	0.2414	0.1035	0.2176	0-2287	0.1000	DFAC
	EFFP INCID	0.7865 -5.887	0.792 8 -1.533	0.7144 0.278	0.7976	0.8929	1.1256	-0.0169	-0.2308	0.2000	EFFP
	DEAM	12.232	14.812	14.310	-0.403 12.225	-7.569 11.212	-10.594 13.044	-13.036 14.440	-15.537 13.679	-27.624 2.855	INCID DEVM
	P 2	16.074	16.042	14.052	16.136	16.546	14.840	16.672	16.430	15.874	P 2
	P 2A	15.963	15.932	15.000	14.050	16.511	16.856	14.446	16.236	16.100	P ZA
	T 2	542.100	540,400	539.000	537.850	537.150	536,300	535.950	535.450	535.900	T 2
	T 2A Uubar FS	542.100 0.0614	540.400 0.0873	539.000 0.0845	537.650 0.0411	537.150 D.0246	534.300 0.0248	535.950	535.450	535.900	T ZA
	P2 FS	16.054	16.064	16.012	16-112	16.558	16.910	0.1827 16.805	0.2431 16.673	0.2650 16.537	UUBAR FS P2 FS
	LOSS PARA F		0.0297	0.0290	0.0146	0.0091	0.0096	0.0723	0.0972	0.1068	LOSS PARA FS

Table A-5. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 71.21 Equivalent Rotor Speed = 2997.75 Equivalent Weight Flow = 71.46
Hub Radial Distortion

INLET	1										
	PCT SPAN	94.80	92.00	86.90	71.00	49.50	28.10	12.00	*	*	
•	DIA	33,122	33.529	33.962	35.312	37-137	38.954	40.321	7.10 40.737	3.60 41.665	PCT SFAN DIA
1	BETA O Beta 1	0.000	0.000	6,000	0.000	0.000	0.000	0.000	6.060	0.000	SETA U
1	A 0	2 70.49	8.000 270.49	270-69	0.000 270.69	0.000	0.000	0.000	0.000	0.000	BETA 1
	νì	218.30	224.73	229.10	223,92	270.69 284.26	270.69 341.12	270.69	270.69	270.69	γo
	VZ O	270.69	270-69	270.49	270.69	270.67	270.65	331.42 270.63	322.01 270.62	302.01 270.62	V 1
	VZ 1	218.30	224.73	2 29 . 10	223-91	284.24	341.06	331.34	321.92	101.53	V2 U V2 1
	V-THETA 0 V-THETA 1	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	6-66	V-THLTA C
	M Q	0-2439	0.2439	0.2439	0.00 0.2439	0.00 0.2439	0.00 0.2439	0.00	0.00	0.60	V-THETA 1
	M 1	D.1943	0,2039	0 -2 061	0.2014	0.2563	0.3084	0.2439 0.2995	0.2439 0.2909	0.2439	. M ú
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.2725 0.6	M 1 Turn
	UUBAR DFAC	1.5140	1.4082	1.3747	1.4166	0.9634	0.355B	0.4179	0-4935	0.0751	DUBAR
	EFFP	-0.2976	0.162 -0.2674	0.154 -0.2588	0.173 -0.2851	-0.050 0.0970	-0.260	-0.224	-0.190	-0.116	LFAC
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.6283 0.0001	0.5494	0.4616	0.2680 0.0601	EFFP
	DEVM P O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	INC1D Deym
	PI	15,215 14.281	15.215 14.346	15.215	15.215	15.215	15.215	15.215	15.215	15.215	F 0
	Το	518.700	518.700	14.367 518.700	14.341 518.700	14.621 518.700	14.995	14.957	14.911	14.797	۲ .
	T 1	518.700	518.700	518.700	518.700	518.700	518.700 518.700	518.700 518.700	518.700 518.700	516.766 516.760	7 G 7 1
ROTOR D	PCT SPAN	95.00	90.00	85.00	70.00	E0 (:0					
	DIA	33.236	33.621	34.007	70.00 35.164	50.00 36.706	30.00 38.246	15.00 39.405	10.00 39.751	5.00	PCT SPAN
ROTOR -L.E.	BETA 1	0.000	0.000	U-000	0.000	0-000	0.000	0.000	C-00D	40.174 0.000	UIA BETA I
ROTOR -T.E.	BETA 2 BETA(PR) 1	50.796	50.682	50.256	45.877	38.060	31.915	32.233	34.070	±7.655	bĹĬA 4
	BETA(PR) 2	63.209 24.275	61.482 28.831	61.052 30.564	62.468	5B - 004	54.434	56.002	56.964	58.757	EETAIPRI 1
	V 1	218.75	238.24	245.55	32.708 240.40	34.623 303.06	35.578 364.49	37.865	40-396	46.799	LETALPR) 2
	V 2	410.15	391.82	387.99	394.83	413.96	441.07	350.54 433.76	347.44 412.41	326.65 362.25	V 1
	VZ 1 VZ 2	218.71	238.19	245.52	240.39	302.69	363.01	3540	344.96	324.52	۸۲ ۱
	V-THETA 1	259 <u>-</u> 24 0.00	248.26 0.00	3 48 104	274.88	325.73	373.67	300.00	340.76	286.15	VZ Z
	V-THETA 2	317.81	303.12	0.00 298.32	0.00 283.42	0.00 255.22	0.00 232.65	0.00	0.00	0.00	V-THETA 1
	V(PR) 1	485.3	498.9	507.3	520.0	571.5	625.0	230.81 634.8	230.56 654.1	22u.66 626.8	V-THETA 2 VIPK) 1
	V(PR) 2 VTHETA PRI	284.4	283.4	268.1	326.7	396.0	460.3	464.6	448.4	416.7	Vipk) 4
	VTHETA PRI	-433,2 -116.9	-438.4 -136.7	-443.9 -146.5	-+61.1	-484.5	-507.7	-525.2	-530.5	-534.9	VIHETA PRI
	u l	433.15	438.36	443.90	-176.5 461.15	-224.9 484.47	-267.4 507-69	-204.6 - 525.16	-290.0	-304.7	VINETA PRŽ
	U 2	434.73	+39.77	444 . Bi	459.95	480.12	500-29	515.42	530.46 520.47	554.93 545.51	U I U 2
	M 1 M 2	0.1967 0.3636	0-2144	0.2210	0.2163	0.2735	0.3300	0.3227	0.3143	0.4951	M T
	MIPR 3 1	0.436	0.3476 0.4489	0.3445 0.4566	0.3508 0.4680	0.3687	0.3939	0.3871	0.3675	17∠ذ.0	M Z
	M(PR) 2	0.2543	0.2514	0.2558	0.2903	0.5157 0.3527	0.5659 0.4110	0.5744 0.4146	0.5736	0.5063	M(PS) 1
	TURN(PR)	38.932	32.648	30.487	29.759	23.365	18.799	18.652	0.3995 16-463	0.3718 11.893	M(PK) Z TUKN(PK)
	UUBAR LOSS PARA	0.0986	0.1385	0.1407	0.0724	0.0543	0.0564	0.0630	0.0985	0.1415	UUEAR
	DFAC	0.0260 0.6040	0.0356 0.6105	0 -0360 0 -6069	0.0187 0.5393	0.0144	C.0154	0.6173	0.0263	U-D343	LOSS PARA
	EFFP	0.8778	0.8481	0.8619	0.9421	0.4502	0.3879 0.9177	0.3931 0.9187	0.6142 0.6661	0.4556	DEAL
	EFF	0.8753	0.8453	0.8797	0.9410	0.9445	0.9163	6.9173	0.6640	0.7566 0.75±3	6666 CHF
	INCIG DEYM	10.779 9.125	10.507	10.475	10.420	4.063	-1.563	-2,692	-5.352	-9.410	INCIE 1
	P 1	14.281	14.671 14.346	15.930 14.367	14.067 14.341	11.411 14.621	8.017	6.242	7.258	10.822	LEVM
	P 2	16.420	16.314	16.314	16,386	16.583	14.595 16.862	14.957 16.836	14.911 16.661	14.797 16.350	P 4 P 2
	T 1 T 2	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.704	īī
	1 2	542.810	541.650	540-500	540.100	538.820	538.006	538.150	53t-200	530.0.0	i .
AT. TOO 6											
STATOR D	PCT SPAN DIA	95.00	90.00	85 - 60	70.00	50.00	30.00	15.00	10.00	5.00	PLT SPAN
STATOR-L.E.	BETA 2	33.207 51.156	33.564 50.413	33,92 <u>1</u> 49,428	34.992 45.939	36.420	37.846	38.919	39.276	39.e33	υla
STATOR-T.E.	BETA ZA	5.010	4.800	4.350	2.890	37.648 1.440	31.829 1.750	32.815 2.941	35.659	39.173	EETA 2
	V Z	408.12	393.46	392.95	394.83	415.66	442.81	427.47	3.081 403.61	2.581 350.92	BETA ZA V Z
	V ZA VZ Z	303.86	294.35	289.43	319.57	349.57	398.47	373.62	354,60	344.07	V ZA
	VZ ZA	255.97 302.70	250.73 293.31	255.57 288.58	274.54	331.35	375.88	356.61	329.55	271.71	V2 2
	V-THETA 2	317.87	303.22	298.47	319.12 283.69	349.35 255.61	398.45 233.52	375.63	353.17	341.40	VA
	V-THETA 2A	26.54	24.63	21.95	16.11	6.75	12.16	231.37 19.16	231.69 19.01	221,39 15.41	V-THETA 2 V-Theta La
	M 2 M 2a	0.3620	0.3490	0.3496	0.3508	0.3736	0.3955	0.3813	0.3589	0.3114	M 4
	TURN (PR)	0.2680 46.146	45.612	0 -2 556 45- 676	0.2827 43.042	0.3102	0+354E	0.3323	0.3143	0.3040	M LA
	UUBAR	0.1042	0.0683	0.0865	0.0349	36.19C 0.0443	30.048 0.0180	29-631 0-1224	31.910	30.526	TURN (PK)
	LOSS PARA	0.0350	0.0232	0.0297	0.0124	0.0164	0.0069	0.0464	0.1239 0.0495	-0.0779 -0.0314	UULAR LLSS PAKA
	UFAÇ EFFP	0.4960 0.7771	0.4931	0.5660	0.43.0	0.3841	0.2934	0.3234	5دد3 € و	0.2618	CFAC
	INCID	0.989	0.8517 7.025	0.8193 9.137	6.9037 7.908	0.8616	0.9113	0.5075	0.4635	2.6030	[h h h
	DEVM	13.842	10-112	15.660	13.864	0.942 12.452	-4.036 13.415	-5.889 15.380	-6.130	-26.031	INCID
	P 2	16,420	16.314	16,314	16.380	16.583	16.662	10.630	10.681	7.432 16.356	DEVM P 4
	P 2A T 2	16.272	16.223	16,200	16.339	16.516	16.831	16.640	16.505	10.433	P JA
	Ť ŽĄ	542.810 542.810	541.650 541.650	540.500 540.500	540.100 540.100	538.820 538.820	538.000	538.150	536.460	536.020	Τ¢
	UUBAR FS	0.1010	0.1322	0.1127	0.0732	538.820 0.0426	538.000 0.0428	538.150 0.1266	538.∠60 0.1795	539.620 0.1828	7 2A 1001 - 2 5 5
	P2 FS	16.415	16.409	16.352	16.440	16.580	16.905	16.844	16.777	16.689	UULAK FS P _e FS
	LOSS PARA F.	0.0339	0.0449	0.0387	0.0260	0.0157	0.0164	0.0500	0.0717	0.0736	LLIS PARA FI

Table A-5. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 71.59 Equivalent Rotor Speed = 3013.87 Equivalent Weight Flow = 59.11
Hub Radial Distortion

INLET											
INCE	PCT SPAN	96.80	92.00	86 - 90	71.00	49.50	26.16	10			
	DIA	33.122	33.529	33.962	35.312	37.137	28.10 36.954	12,00 40,521	7.16 46.737	3.66 41.085	PCT SPAN Ula
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.000	EL JA D
	BETA 1	0.000 224.58	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.660	SETA 1
	Ϋ́ì	185.70	224.58 184.04	224.58 186.87	224.58 190.94	224.58 252.27	224.58 294.54	224.58	224.58	224.58	Υú
	WZ O	224.58	224.58	2 24 . 50	224.58	224.56	224.54	276.14	263.16 224.52	242.67 224.52	V 1 V2 C
	VŽ 1	185.70	184-04	186.87	190.94	252.25	294.49	278-07	263.19	242+60	V4 1
	V-THETA O V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0-40	0.00	6.66	V-THETA U
	M G	0.2020	0.2020	0.2020	0.00 0.2020	0.00	0.00	0.00 0.2020	0.00	ن د د د	V-THETA 1
	M 1	0-1668	0.1653	0.1679	0.1715	0.2271	0.2657	0.2507	0.2026 0.2376	0.2020 6.2184	M 0 M 1
	TURN UUBAR	0.0	0.0	0.0	0.0	0.0	0.0	0. €	0.6	U · C	TURN
	DFAC	1.4176 0.173	1-4302 0+161	1.2841 U.108	1.3933	0.8593	0.3423	0.4224	0.5510	6.7355	UULAK
	LFFP	-0.2859	-0.3270	-0.3145	~0.2474	-0.123 0.2348	-0.511 0.6814	-C.238	-0.172 0.4067	-6.061 0.1669	UFAÇ EFFP
	INCID	0.0001	0.0001	1000.0	0.0001	0.0001	0.0001	0.0001	0.0001	6.0001	1NC10
	ĐEVM P O	-0.000 15.033	-0.000 15.033	-0.000	-0.000	-0.000	-0.600	-0.000	-6-606	-0.666	DEVM
	P 1	14.436	14.473	15.033 14.492	15.633 14.446	15.033 14.671	15.033 14.889	15.033 14.655	15.033	15.633	F 0
	Τo	518.700	518.700	518.700	518.706	518.700	518.700	518.700	14.601 516.700	14.72_ 518.760	1 O F T
	т 1	518.700	518.700	516.700	518.700	518.700	518.700	518.700	510.700	116.7Cu	Ťι
ROTOR D	PCT SPAN	95.00	9D.00	85.00	70.00	50.00	30.00	15.00	10.06	5.00	PCT SPAN
ROTOR -L.E.	DIA	33.236	33-621	34-007	35.164	36.706	38.248	39++65	39.791	40.176	DIA
RCTOR -T.E.	BETA 1 Beta 2	0.000 55.794	0.000 56.198	0.000	0.000	0.000	0.000	0.000	0.000	0-606	OLTA 1
	BETA(PR) 1	66.867	66.330	56.508 65.655	54.019 66.167	45.122 61.148	39-990 58 . 492	57.268 60.676	38.936 62.197	41.498	5.TA 2
	BETA(PR) 2	29.037	3∠.095	32.439	31.490	37.605	38.674	40.102	42.167	64+189 47-351	ELTA(PK) 1 BETA(PR) 2
	V 1 V 2	30.481	193.24	200.66	264.82	266.68	314.16	298.55	283.25	261-51	V 1
•	V2 1	383.70 186.04	374.74 193.19	377.49 200.05	395.54 204.81	382.80	400.98	407.14	393.42	-58-74	V 2
	VZ 2	215.70	208.47	207.97	232.38	268.35 250.46	312-89 306.86	296.58 323.16	261.23 365.25	260.11 268.15	V2 1 V2 4
	V-THETA 1	0.00	0.00	0.00	0.00	0-00	0.00	0.00	0.00	6.00	V-THETA 1
	V-THETA 2 Vipr) 1	317.32 473.6	311.39 481.2	315.02	320.07	269.36	257.39	245.97	246.7ĉ	237.22	V-THETA 1
	V(PR) 2	246.7	240.1	489.1 246.4	506.9 272.5	556.3 316.5	599.4 343.5	606.5	603.9	593.1	V(PR) 1
	VTHETA PRI	-455.5	-440.7	-446.3	0.E0#-	-487.1	-510.4	423.4 -520.0	412.6 -533.3	390.4 - 537.8	V(PK) ∠ VTHE1A PK1
	VTHETA PRZ	-119.7 435.48	-130.7	-132.2	-142.3	-193.3	-245.6	-2.72.2	-676.6	-291.1	VTHETA PAZ
	U Ž	437.Do	440.72 442.14	446.28 447.21	463.63 462.42	487.08 482.70	510.42 502.98	527.99	533.35	537.60	U 1
	M 1	0.1671	0-1736	0.1798	0.1841	0.2421	0.2836	518.20 0-2693	523.27 0.2553	528,34 0,2358	U 2 8 1
	M 2	0.3394	0.3316	0 -3 344	0-3508	0-4396	0.3567	0.3635	0.3498	0.5161	8 2
	M(PR) 1 M(PR) 2	0.4254 0.2183	0.4323	0.4395	0.4555	0.5012	0-5411	0.54/2	0.5444	v.53e7	MIPK) I
	TURN (PR)	37.828	0.217b 34.232	0-2183 33-414	0.2417 34.676	0.2810 23.469	C.3500 19.771	ú.578l 20.5.₩	0.3670	4.3516	MCPK 1 2
	UUBAR	D.1977	0.2235	0.2390	0.1949	0.2214	0.1562	20 -5 4 0 - 10 5 4	19.964 0.1308	10.793 U.1582	TUKN (PR) UUFAR
	LUSS PARA UFAC	0.0501	0.0555	0.0599	0.0511	0.0564	0.0410	0.0260	0.0346	0+6396	LUSS PARA
	EFFP	0.6735 6.7729	0.6787 0.7752	0.6876 0.8019	0-6564 0-8826	0.5978 U.BZ41	848 4. U. 4418.Q	0.4414	0.4583	0.4764	DEAC
	LFF	0.7667	0.7692	0.7984	0.8803	0.8211	0.8337	1.0773 1.0786	0.8639 0.861a	6.7777	LFFF LFF
	INCID	14.427	15 • • 15	15.277	14-124	7.149	2.501	1-995	-0.101	-5.950	INCID ! IT
	DEVM P 1	13.687 14.436	17.935 14.473	17.805 14.492	12-849 14-446	14.453	11.409	6-477	9.028	11.574	₽E ΛW
	P 2	16-421	16.382	16.416	16.556	14.671 16.50g	14.689 16.683	14.655 16.756	106.41 16.651	14.723 16.421	P 1 P 2
	T 1	518.700	518.700	518.700	518.700	516-700	518.700	518.760	518.700	510.700	īi
	1 2	544.000	543.000	5+2-250	5+2.100	540.350	539+256	535.550	539.306	539.820	Ť.
STATOR U	PCT SPAN DIA	95.00 33.207	90.00 33.564	65.00 33.921	70.00 34.992	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATCR-L.E.	BETA 2	56.219	55.874	55.539	54-100	36,420 48,501	37.846 39.885	38.919 37.964	39.276 40.676	39.633 42.244	Cla
STATOR-T.E.	BETA 2A	3.200	3.080	3. 480	2.700	1.800	3.451	4.751	4.952	5.052	LETA I BETA IA
	¥ 2 ¥ 2A	381.54	376.24	382 - 27	395.54	387.05	402.51	40 5	384.01	347.56	v i
	γZ 2	283.76 212.31	275.75 211.10	272.45 216.30	290.46 231.91	300.72 256.39	337.24	331.70	315.01	306-55	V ZA
	VZ ZA	285.31	275.35	272 - 62	290.10	300-47	308.63 336.50	316-JO 3309	293.98 313.55	252 . 90 307 . 03	V2 2 A
	V-THETA 2	317.37	311.49	315.18	320.38	289.81	257.92	240.57	247.34	237.c5	V-THETA 2
	V-THETA 2A M 2	45.84 0.3377	14.62	15,11	13.68	9.44	19.11	27.45	27.17	27-14	V-THETA ZA
	M ZA	0.2497	0.3330 0.2428	0.3387 0.2400	0.350b 0.2562	0.3437 0.2658	0.3581 0.2989	0.3582 0.2936	0.3418	0.308C	M Z
	TURN(PR)	53.019	52.793	52.357	51,394	46.683	36.601	33.166	35.076	56.136	M ZA Turn (Ph.)
	UUBAR LOSS PARA	0.0656	0.0777	0.1184	0.1492	0.0829	0.0586	0.1403	0.1464	-0.0098	UUBAR
	DFAC	0.0221 0.5229	0.0264 0.5358	0-0407 0-5578	0.0530 0.5418	0.0307	0.0225	0.0554	0.0584	-0.0039	LDSS PAKA
	EFFP	0.8596	0.6389	0.7690	0.6897	0.7998	0.3918 0.8131	0.3911 0.3065	0.4115 0.5737	0.3585 +-0444	DFAC LFFP
	INCID	6.052	12.486	15.248	10.070	11.795	4.017	-6.743	-3.096	-15.960	INLIU
	DEVM P 2	12.032 16.421	14.392 16.382	14,490	13.675	12.812	14.915	17-186	17.627	9.900	DEVM
	P 2A	16.339	16.286	16.416 16.267	16.556 16.354	16.50b 16.400	16.683 16.600	16.758 16.559	16.651	10.421	P 2
	T A	544.000	543.000	542,250	542-100	540.350	539.250	535.550	16.462 539.360	16.431 539.826	P ZA T 2
	T 2A UUBAR FS	544.000	543.000	542.250	542-100	540.350	539.250	539.550	539.300	539.620	T ZA
	P2 FS	0.1515 16.547	0.1791 16.531	0.2023	0.1901 16.623	0.1645	0.0990	0.1391	0.1607	0.1747	UUBAR F5
	LOSS PARA FS	0.0510	0.0608	0.0695	0.0675	16.633 0.0609	16.746 D.0380	16.756 0.0549	16.705 0.0721	16-654	P2 F5 LUSS PARA FS
											2022 . FNA 13

Table A-6. Blade Element Performance
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.34 Equivalent Rotor Speed = 4224.11 Equivalent Weight Flow = 115.11
Tip Radial Distortion

INLET											
	PCT SPAN	96∙ 80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	DCT CO.A.
	DIA Beta d	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	3.00 41.065	PCT SPAN DIA
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA G
	V O	427-68	427.68	427.68	427.68	427.68	0.000 427.68	0.000 427.68	0.00 <i>6</i> 427.68	0.000	BETA 1
	V 1 V2 0	530.06 427.68	549.70	554.44	564.32	547.77	363.61	268.73	259.93	427,68 226.09	V 0 V 1
	VZ 1	530.05	427.68 549.70	427.68 554.44	427.67 564.31	427.65	427.61	427.57	427.56	427-57	VZ O
	V-THETA O	0.00	0.00	0.00	0.00	547.73 U.00	363.55 0.00	268.66	259.86	226.03	VZ 1
	V-THETA 1 M G	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	V-THETA O V-THETA 1
	M I	0.3888 0.4858	0.3868 0.5048	0.3888 0.5093	0.3688 0.5184	0.3868	0.3886	0.3868	0.3886	0.3866	M O
	TURN	0.0	0 . D	0.0	0.0	0.5029	0.3292 0.0	0.2421 0.0	0.2341	0+2033	M I
	UUBAR Ofal	0.9307	0.6592	0.5458	0.4530	0.6489	1.7968	2.1130	2.1268	0.0 2.1955	TURN UUBAR
	EFFP	-0.239 0.3717	-0.285 0.5080	-0.296 0.5671	-0.319 0.6335	-0.281	0.150	0.372	0.392	0.471	DFAC
	INCIL	0.0001	0.0001	0.0001	0.0001	0.5075 0.0001	-0.1752 0.6001	-0.3706 0.0001	-0.3881 0.0001	-0-4446	EFFP
	DEVM P 0	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.0001 -0.000	INCID DEVM
	P 1	16,227 14.732	16.227 15.168	16.227 15.351	16.227 15.500	16.227 15.105	16.227	16.227	16.227	16.227	PO
	7 6	518.700	518.700	518.700	518.700	518.700	13.341 518.700	12.833 516.70D	12.811 518.700	12.700	P 1
	та	516.700	518.700	516.700	518.700	518.700	>18.700	518.700	518.700	516.700 518.700	T 0 T 1
KOTER D	PCT SPAN DIA	95.00	90.00	65.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	BETA 1	33.236 0.000	33.621 0.000	34.007 0.000	35.164	36.766	36.248	39.405	39.791	40.176	DIA
RUTOR -T.E.	BETA 2	37.498	33.162	31.482	0.000 30.787	0.000 31.102	0.000 35.693	0.000 39.268	0.000	0.000	BETA 1
	BETA(PR) 1	46.959	46.481	45.8ď1	46.270	46.974	61.565	68.639	42.816 69.617	45.831 72.166	BETA 2 Beta(pr) 1
	béta(PR) 2 V 1	29.05b 531.44	27.365 586.70	26.392	26.551	28.271	35.375	39.498	43.249	50.534	BETAIPR) 2
	Λ 5	563.67	632.17	608.32 662.99	621.64 688.67	594.72 692.73	368.94 608.47	286.35 572.49	279.73	243.60	V 1
	VZ 1	531.34	586.57	608.24	621.61	593.99	387.37	286.45	536.49 277.14	474.41 242.21	V 2 V2 1
	VZ Z V-THETA 1	463.05 U.00	529.17 0.00	565.39	591.61	592.89	493.53	442.36	392.77	329.99	VZ 2
	V-THETA 2	355.28	345.79	0.00 346.22	0.06 352.49	0-00 35 7 •68	0.00 354.55	0.00 361.65	0.00	0.00	V-THETA 1
	V(PR) 1	609.3	851.9	872.5	899.3	905.4	814.3	794.2	363.92 798.1	339.70 792.2	V-THETA 2 V(PR) 1
	V(PR) 2 VTHETA PRI	529.8 -610.4	595.9 -617.7	631.2 -625.5	661.4 -649.8	673.5	606.1	574.4	540.3	519.9	Y(PR) 2
	VTHETA PRE	-257.3	-273.9	-280.6	-295.6	-682.7 -318.9	-715.4 -350.4	-740.0 -364.6	-747.5 -369.5	-753.6	VTHETA PRI
	U 1 U 2	610.35	617.69	625.49	649.80	682.67	715.39	740.00	747.49	-400.8 753.76	VTHETA PR2 U 1
	M 1	612.57 0.4872	619.68 U.5406	626.78 U.5618	648.11 0.5749	676.53	704.96	726.28	733.39	740.50	U 2
	P 2	0.5164	ú.5647	0.5949	0.6186	0.5485 0.6214	0.3527 0.5405	0.2600 0.5055	0.2521 0.4722	0-2194	M 1
	M(PR) 1 M(PR) 2	0.7419	0.7850	0.8058	0.8317	0.8350	0.7384	0.7161	0.7194	0.4149 0.7130	M 2 M(PR) 1
	TURN(PR)	0.4705 19.897	0.5325 19.110	0.5663 19.406	0.5941 19.719	0.6041	0.5384	0.5072	0.4755	0-4547	M(PR) 2
	UUBAR	C-1868	0.1493	0.1201	0.1249	20.681 0.0995	26.146 -0.0567	29.304 -0.0633	26.337 0.0166	21.643	TURN (PR)
	LOSS PAKA DFAC	0.0473	0.0389	0.6319	4400.0	0.0282	-0.0156	-0.0169	0.0042	0.0438 U.0099	UUBAR LOSS PARA
	LFFP	0-4726 0-7319	0.4198 0.7711	0.3945 0.8494	0.3850 0.8446	0.3828	0.4011	0.4334	0.4814	0.4943	DFAC
	t F F	V.7251	U.7652	0.6452	0.8401	0.8979 0.8946	1.1211 1.1261	1.0991	1.0257 1.0267	0.9050 0.9014	EFFP
	INEIL CEVM	+3.472	-4.436	-4.777	-2.772	-5.030	5.581	10.192	7.354	4.077	EFF INClu
	P 1	13.909 14.752	13.206 15.168	11.756 15.351	7.910 15.500	5.061 15.185	7-B14	7.874	10.110	14.559	DEVM
	Ρż	17.592	16.189	16.619	18.951	19.006	13.341 17.780	12.833 17.349	12.611 16.996	12.706 16.455	P 1 P 2
	T 1 T 2	516.70ú 555.90u	518.700 566 800	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T i
		3338700	554.800	553.500	555.200	557.100	558.100	561.000	561.200	562.900	T 2
STATUR D	PCT SPAN	95.00	90.00	65.00	70.00	50.00	30.00	15.00	10.00	.	
STATOK-L.E.	DIA	33.207	33.564	33.921	34.992	36.420	37.846	38.919	10.00 39.276	5.00 39.633	PCT SPAN DIA
STATUR-T.E.	beta 2 beta 2a	37.763 1.100	32.972 1.700	30.694 1.700	30.825	30.607	35.565	40.130	44.290	48.044	BETA 2
	V 2	580.25	635.59	674.68	0.850 688.67	0.900 703.93	3.851 611.35	4.301 563.05	1.450 522.99	-1.751	BETA 2A
	V ZA	506.71	536.52	563.04	609.23	646.57	574.72	485.31	461.11	458.43 452.20	V 2 V 2A
	V2 2A	458.71 506.61	533.20 538.27	576.93 562.77	591.28	605.57	496.89	430.06	374.00	306.21	VZ 2
	V-THETA 2	355.34	345.90	346.39	609.08 352.62	626.28 358.23	573.09 355.27	483.55 362.53	460.56	451.51	V2 2A
•	V-THETA ZA M Z	9.77	15.97	16.70	9.04	9.84	38.58	36.37	364.84 11.66	340.60 -13.80	V-THETA 2 V-THETA 2A
	N ZA	0.5152 0.4489	0.5679 6.4769	0.6061 0.5003	0.6186 0.5428	0.e322 0.5581	0.5433	0.4968	0.4598	0.4004	M 2
	TURN (PR)	36,663	31.272	29.192	29.969	29.690	0.5090 31.682	0.4255 35.783	0.4035 42.787	0.3948	M 2A
	UUBAR Lüss para	0.0171	0.1050	0.1363	0.0858	0.0603	-0.0803	0.0902	0.0433	49.734 -0.2085	TURN (PR.) UUBAR
	UFAC	0.0057 0.3240	U∙0357 U•3296	0.0469 0.3339	0.0305	0.0223	-0.0308	0.0357	0.0173	-0-0841	LOSS PARA
	FEFF	6.9336	0.6696	0.6061	0.6586	0.2938 0.7513	0.2605 1.6055	0.3691 0.6804	0.3900 0.8212	0.3271 8.1230	DFAC EF F P
	INCID DEVM	-12.404	-10.415	-9.397	-7. 205	-6.097	-0.303	1.423	1.117	-11.160	INCID
	P 2	9.932 17.592	13.012 18.189	13.010 18.619	11.525 16.951	11.912	15.515	16.739	14.129	3.105	DEVM
	P 2A	17.543	17.613	18.062	18.581	19.006 18.735	17.780 18.040	17.349 17.107	16.996 16.897	16.455	P 2
	T 2 T 2A	555.900	554.000	553.500	555.200	557.100	558.100	561.000	561.200	16.814 562.900	P 2A T 2
	UUBAR FS	555.9U0 U-1462	55+.600 0.1091	553,500 U.0920	555.200 0.0427	557.100	558.100 0.0592	561.000	561.200	562.900	T 2A
	PZ FS	15.033	18-204	18.420	18.756	0.0279 18.856	18.260	0.1699 17.608	0.1550 17.299	0.1129 17.078	UUBAR FS P2 FS
	LOSS PARA F	\$ 9+0487	0.0371	0.0316	0.0151	0.0103	0.0227	0.0672	0.0619	0.0455	LOSS PARA FS

Table A-6. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 98.51 Equivalent Rotor Speed = 4147.38 Equivalent Weight Flow = 106.05
Tip Radial Distortion

INLET											
	PCT SPAN UIA	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	BETA D	33.122	33.529 0.000	33.962 0.000	35.312 0.000	37.137 0.000	38.954	40.321	40-737	41.065	DIA
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000	0.000 0.000	0.000 0.000	BETA O Beta 1
	Y O	401.24	401.24	401.24	401.24	401.24	401.24	401.24	401.24	401.24	V 0
	Y 1 Y2 a	516.10	545.55	540.77	527.43	495.64	370.45	312.63	295.29	261.77	V i
	VZ 1	401.24 516.09	401-24 545.55	401.24 540.77	401.23 527.42	401.21	401.17	401.14	401.13	401-13	VZ u
	V-THETA D	0.00	0.00	0.00	0.00	495.60 0.00	370.39 0.00	312.55	295.21 0.00	261.70 0.00	4 SV O ATSHT-V
	V-THETA 1	0.00	0.00	0-00	0.00	0.00	0.00	0.00	ú.00	00.0	V-THETA I
	M O	0.3641	0.3641	0.3641	0.3641	0.3641	0.3641	0.3641	0.3041	0.3641	M G
	M 1 TURN	0.4725 6.0	0.5007 0.0	0-4961	0.4033	0-4530	0.3355	0.2822	D-2664	0.2358	M 1
	UUBAR	0.7068	0.3880	0.0 0.3452	0.0 0.3841	0.0 0.5396	0.0 1.4104	0.0 1.6281	0.0 1.6748	0.0 1.7914	TURN UUBAK
	DFAC	-0.286	-0.360	-0.348	-0.315	-0.235	0.077	0.221	0-264	0.348	UFAC
	EFFP	0.4896	0.6975	0.7140	0.6661	0.5039	-0.1158	-0.3088	-0.3638	-0.4497	EFFP
	INCID DEVM	-0.000	0.0001 -0.000	0.0001 ~0.000	0.0001 -0.000	0.0001	0.0001	6.0001	0.0001	0.0001	INCIO
	PO	15.783	15.783	15.783	15.783	-0.000 15.783	-0.000 15.763	-0.000 15.783	-0.000 15.783	-0.000 15.763	DEVM P O
	P 1	14.807	15.247	15.306	15.253	15.03B	13.835	13.534	13-470	13.308	Pì
	10	518.700	5 18 . 700	516.700	510.700	518.700	518.700	518.706	518.700	518.700	Τü
	T 1	518.700	518.700	518.700	510.700	510.700	518.700	518.700	518.706	518.700	1 1
ROTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
00700	AIG	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E. Kuluk -l.e.	BETA 1 Beta 2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
WOINK -1155	BETA(PR) 1	39.998 49.199	36.466 46.183	34.494 46.045	32.786 47.828	34,506	41-877	48-260	51.766	55.952	BETA 2
	BETA (PR) 2	26.641	26.395	26.823	26.555	51.432 29.984	60.661 36.642	65.324 42.974	66.705 46.097	69.224 51.120	6ETA(PR) 1 BETA(PR) ∠
	V 1	517.39	582.07	592.19	577.96	535.12	396.40	336.03	318.26	282.62	V 1
	¥ 2	585.62	612.45	626.02	661.72	637.75	567.32	522.61	504.76	477.93	V 2
	VZ 1 VZ 2	517.29 448.60	581.94 492.52	592.12 515.95	577.93	534.46	394.80	333.82	315.99	280.78	VZ 1
	V-THETA L	0.00	0.00	0.00	556.29 0.00	525.34 0.00	421.96 0.00	347.43	311.95 0.00	267.29	VZ 2
	V-THETA 2	376.40	363.99	354.51	358.31	361.14	378.30	389.40	395.93	0.00 395.55	V-THETA 1 V-TH:TA 2
	V(PR) 1	791.7	840.6	853.1	860.9	857.7	804.5	800.5	799.9	792.2	VIPRI 1
	V(PR) Z VTHETA PRI	501.9 -599.3	549.9 -606.5	576.2	621.9	606.8	526.5	475.7	450-6	426-4	Y(PK) 2
	VTHETA PRZ	-225.0	-244.4	-614.1 -260.9	-638.0 -278.0	-670.3 -303.1	-702.4 -313.9	-726.6 -323.7	-733.9 -324.1	-740.1 -331.5	VTHETA PRI
	U 1	599.27	606.47	614.13	638.00	670.27	702.39	726.56	733.92	740.07	VIHETA PR2 U 1
	U 2	601.44	608.42	615-40	636.33	664.24	692.15	713.09	720.07	727.04	υŽ
	M I M 2	0.4737 0.5193	0.5361	0.5460	0.5321	0.4907	0.3596	0.3037	0.2074	0.2546	M 1
	M(PR) 1	0.7249	0.5455 0.7743	0.5592 0.7866	0.5928 0.7926	0.5690 0.7865	0.5021 0.7317	0.4592 0.7236	0.4421 0.7224	0.4170	M 2
	H(PR) 2	0.4451	0.4898	0.5165	0.5571	0.5414	9-4660	0.4180	0.3947	0.7142 0.3726	M(PR) J M(PR) 2
	TURN (PR)	22.554	19.703	19.220	21.273	21.428	23.973	22.299	20.562	18.079	TURN (PR)
	UUBAR LOSS PARA	0.1306 0.0338	0.1357 0.0356	0.1007	0.0474	0.0836	0.0612	0.1405	0.1836	0.2026	UUBAK
	DFAC	0.5040	0.4731	0.0267 0.4458	0.4055	0.0233 0.4275	0.0165 0.5038	0.0357 0.5731	0.0447 0.6086	0.0451 0.6370	LOSS PARA Deac
	EFFP	0.8112	0.8087	0.8767	0.9757	0.9375	1.0325	0.9263	0.8622	0.8166	EFFP
	EFF	0.8057	0.8033	0.8731	0.9749	0.9355	1.0337	0.9173	0.8572	0.8101	EFF.
	INCID Devm	-3.232 11.492	-4.734 12.235	-4.533 12.109	-4.214 7.914	-2.572 6.773	4.675	0.661	4.427	1.099	INCIO -
	P 1	14.807	15.247	15.306	15.253	15.036	9.081 13.835	11.348 13.534	12.958 13.470	15.145 13.300	DEVM P 1
	P 2	18.196	18.529	18.743	19.216	18.948	18.013	17.487	17.304	17.057	P 2
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	510.700	53B-700	T 1
	T 2	557.750	555.680	554.100	555.000	556.550	558.000	561.650	563.600	565.750	T 2
STATUR D	PCT SPAN Dia	95.00 33.207	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATUR-L.E.	BETA 2	40.288	33.564 36.258	33.921 33.877	34.992 32.826	36.420 33.997	37.848 41.728	38.919 49.405	39.276	39-633	DIA
STATOK-T.E.	BETA 2A	1.550	2.550	2.750	2.391	1.300	4.301	4.251	53.751 3.151	59.236 1.601	BETA 2 BETA 2A
	V 2	582.18	615.67	636.34	661.72	647.16	569.93	514.45	492.53	461.80	¥ 2
	V 2A	473.20	491.51	505.37	566.11	549.32	486.27	413.58	396.25	395.46	V 2A
	VZ Z VZ ZA	444.09 473.03	496.45 491.02	528.29 504.77	555.96 565.54	536.29 568.98	425.05 484.62	334-51	291.04	236-08	VZ 2
	V-THETA 2	376.46	364.11	354.69	358.65	361.69	379.07	412.11 390.34	395.30 396. 9 4	394.89 396.60	VZ 2A V-THETA 2
	V-THETA ZA	12.00	21.87	24.25	23.61	12,91	36.45	30.63	21.70	11.03	V-THETA ZA
	M 2	0.5161	0.5486	0.5690	0.5928	0.5780	0.5045	0.4518 0.3606	0.4310	0.4024	M 2
	M ZA TURN(PR)	0.4157 38.738	0.4333 33.707	0.4466 31.125	0.5024 30.430	0.5047 32.600	0.4275 37.393		0.3445	0.3431	M ZA
	UUBAR	0.0622	0.1050	0.1206	0.0674	0.0028	-0.0019	45.107 0.0494	50.551 0.0321	57.585 -0.0895	TURN(PA] UUBAR
	LOSS PARA	0.0209	0.0357	0.0415	0.0239	0.0010	-0.0007	0.0195	0.0128	-0.0361	LOSS PARA
	DFAC	0.3977	0.3911	0.3848.	0.3248	0.3205	0.3795	0.4748	0.5020	0.4824	DFAL
	EFFP INCID	0.6344 -9.879	0.7405 -7.130	0.7090 -6.413	0.7003 -5.204	0.9892 -2.707	1.0042	0.8710 10.697	0.9154	1-3124	EFFP
	DEAM	10.382	13.862	14.040	13.365	12.312	15,944	10.697	10.500 15.028	0.039 6.453	DEAN INCIA
	P 2	15.196	18.529	18.743	19,216	18.940	18.013	17.467	17.304	17.057	P 2
	P 2A	18.008	18.169	10.298	18.942	18.737	10.018	17.374	17.236	17.216	P 2A
	T 2 T 2A	557.750 557.750	555.680 555.680	554.100 554.100	555.000 555.000	556.550 864.550	556.000	561.650	563.600	565.750	T 2
	UUBAR FS	0.0889	0.0871	0.0826	0.0505	0.0398	550.000 0:0640	5 61.450 0.0912	5 63.400 0.0943	565.750 0.0820	T 2A UUBAR FS
	P2 FS	18.284	18+462	18.590	19.144	19.095	18.215	17-592	17.447	17-393	PZ FS
	LOSS PARA F	5 0.0298	0.0298	0.0284	0.0179	0.0142	0.0236	0.0360	0.0376	0.0331	LOSS PARA FS

Table A-6. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 98.93 Equivalent Rotor Speed = 4165.08 Equivalent Weight Flow = 99.09
Tip Radial Distortion

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA BETA O	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.065	DIA
	BETA 1	0.000	0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	V O	375.66	375.66	375.66	375.66	0.000 375.66	0.000 375.66	0.000 375.66	0.000	0.000	BETA 1
	V 1	465.24	498.83	499.90	496.97	473.32	348.81	290.33	375.66 277.58	375.66 246.77	Y 0
	V2 0 V2 1	375.66	375.66	375-66	375.65	375.43	375.60	375.57	375.56	375.56	vz o
	V-THETA O	465.24 0.00	498.83 0.00	499.90 0.00	494.96 0.00	473.29	348.76	290.25	277.50	246.70	VZ 1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	N O	0.3404	0.3404	0.3404	0.3404	D.3404	0.3404	0.3404	0.00 0.3404	0.00 0.3404	V-THETA 1 M O
	N 1 Turn	0.4241	0.4560	0.4570	0.4542	0.4318	0.3155	0.2618	0.2502	0.2221	Äĭ
	UUBAR	0.0 0.7368	0.0 0.3834	0.0 0.3127	0.0 0.3657	0.0	0.0	0.0	0.0	0.0	TURN
	DFAC	-0.23a	-0.328	-0.331	-0.323	0.5513 ~0.260	1.3640	1.6114 0.227	1.6379 0.261	1.7439	UUBAR
	EFFP	0.4270	0.4756	0.7211	0.6822	0.5250	-0.1118	-0.3250	-0.3728	0.343 -0.4651	DFAC EFFP
	DEAM IMCIO	0.0001 -0.000	-0.0001 -0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	PO	15.625	15.625	-0.000 15.625	-0.000 15.625	-0.000 15.625	-0.000 15.625	-0.000	-0.000	-0.000	DEVM
	P]	14.739	15.164	15.249	15.185	14.962	13.984	15.625 13.686	15.625 13.654	15.625 13.526	P Q P 1
	T 0 T 1	518.700 518.700	518.700 518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TÔ
				518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
ROTOR D	PCT SPAN DIA	95.00 33.236	90.00 33.621	85.00 34.007	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	BETA 1	0.000	0.000	0.000	35.164 0.000	36.706 0.000	38.248 0.000	39.405 0.000	39.791	40.176	DIA
ROTOR -T.E.	BETA 2	41.398	38.469	37.205	35.139	38,115	46.651	54-162	0.000 58.321	0.000 61.253	BETA 1 Beta 2
	BETA(PR)) BETA(PR) 2	52.232	48.968	48.549	49.738	52.886	62.236	66.998	68.066	70.408	BETA(PR)]
	V 1	25.523 466.38	26.706 530.16	27.405 544.78	27.376 542.47	30.022	38.382	45.374	47.533	51.429	BETA(PR) Z
	V 2	592.51	601.44	407.35	639.70	509,97 622.57	372.85 547.45	311.61 510.68	298.92 508.05	266.28	V 1
	VZ 1	466.29	530.04	544.71	542.64	509.34	371.34	309.76	296 - 79	493.80 244.54	V 2 V2 1
	V-THETA 1	0.00	470.88	483.72	523.11	489.64	375.45	298.67	266.54	237.29	VŽ Ž
	V-THETA 2	391.80	0.00 374.13	0.00 367.24	0.00 368.17	0.00 384.14	0.00	0.00	0.00	0.00	V-THETA 1
	V(PR) 1	761.4	807.5	822.9	039.6	844.5	397.72 797.9	413.54 793.5	431.92 795.4	432.59 789.5	V-THETA 2
	V(PA) Z	492.5	527-1	544.9	589.1	545.8	479.5	425.8	395.4	361.1	V(PR) 1 V(PR) 2
	VTHETA PRI VTHETA PR2	-601.8 -212.2	-609.1 -236.9	-616.7 -250.8	-640.7	-673.1	-705.4	-729.7	-737.0	-743.2	VTHETA PRI
	0 1	601.83	609.06	616.75	-270.9 640.72	-2 8 2.9 673.13	-297.4 705.39	-302.6	-291.2	-297.6	VTHETA PRZ
	U Z	604.01	611.02	618.03	639.05	667-08	695.11	729.66 716.13	737.05 723.14	743.23 730.15	U 1 U 2
	M 1 M 2	0.4252	0.4859	0.5000	0,4980	0.4666	0.3377	0.2815	0.2697	0.2399	MI
	#(PR) 1	0.5243	0.5340 0.7401	0.5404	0.5706 0.7705	0.5538 0.7727	0.4822	0.4464	0.4431	0.4293	M 2
	M(PR) 2	0.4359	0.4680	0.4846	0.5255	0.5032	0.7227 0.4224	0.7163 0.3722	0.7176 0.3449	0.7112	M(PR) 1
	TURN (PR)	26.705	22.250	21.142	22.361	22.845	23.013	21.580	20.494	0.3314 18.959	M(PR) 2 Turn(Pr)
	UUBAR Lūss para	0.0696 0.0182	0.1011	0.0920	0.0408	0.0982	0-1184	0.1944	0.2433	0.2491	UUBAR
	DFAC	0.5024	0.0265 0.4833	0.0242 0.4705	0.0111 0.4331	0.0274 0.4759	0.0312 0.5654	0.0474	0.0576	0.0550	LOSS PARA
	EFFP	0.8703	0.8455	0.8823	0.9684	0.9503	0.9487	0.6425 0.8422	0.6914 0.8125	0.7096 0.7864	DFAC EFFP
	EFF	0.8659	0.8407	0.8786	0.9673	0.9485	0.9467	0.0363	0.8054	0.7783	EFF
	INCID DEVM	-0.199 10.373	-1.948 12.546	-2.029 12.771	-2.304	-1.117	6.253	B-342	5.795	2.289	INCID
	P 1 '	14.739	15.164	15.249	8,735 15.1 8 5	6.811 14.962	10.820 13.984	13,748	14.394	15.654	DEAW
	P 2	18.473	18.827	18.939	19.332	19.098	18.173	13.686 17.737	13.654 17.716	13.526 17.599	P 1 P 2
	T 1 T 2	518.700 560.600	516.700	518.700	514.700	518.700	518.700	518.700	518.700	518.700	ΤĪ
	, -	700.000	558.050	556.410	557.000	358.200	561.300	566.400	568.450	570.750	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	FA 40					
	DIA	33.207	33.564	33.921	70.00 34.992	50.00 36.420	30.00 37.848	15.00 38.919	10.00 39.276	5.00 39.633	PCT SPAN
STATOR-L.E.	BETA 2	41.705	36.249	36.545	35.143	37.557	46.492	55.579	60.915	65.470	DIA Beta 2
STATOR-T.E.	BETA 2A V ⊋	2.700 589.01	3.200	3.350	3.250	3,451	3.451	3.601	3.751	2.151	BETA ZA
	Ý ŽA	466.19	604.55 472.54	617.04 477.69	639.70 532.63	631.43	547.83	502.81	495.72	476.94	¥ 2
	VZ 2	439.74	474.76	495.72	522.75	524.02 500.34	450.08 37 8.3 1	400.00 284.06	388.34 240.87	3 90.6 0 197.94	V 24
	VZ ZA	465.67	471.79	476.85	531.70	524.89	449.00	398.89	387.17	309.91	VZ 2A
	V-THETA 2 V-THETA 2A	391.87 21.96	374.26 26.38	367.42	364.53	364.73	398.54	414.54	433.02	433.73	V-THETA 2
	A Z	0.5211	0.5369	27.91 0.5495	30.19 0.5704	31.65 0.5622	27.07	25-10	25.30	14.64	V-THETA 2A
	M ZA	0.4043	0.4150	0.4203	0.4705	0.4638	0.4844 0.3935	0.4392 0.3470	0.4320 0.3360	0.4142 0.3373	N 2 N 2A
	TURM (PA) UUBAR	37.005	35.048	33.193	31.927	34.069	43.007	51,934	57.122	63.277	TURN (PR.)
	LOSS PARA	0.0691 0.0232	0.0967 0.0329	0.1120 0.0385	0.0438	0.0346	-0.0079	-0.0145	0.0150	-0.0488	UUBAR
	DFAC	0.4201	0.4144	0.4155	0.0227 0.3558	0.0178 0.3748	-0.003D 0.4429	-0.0057 0.5132	0.0060 0.5476	-0.0197	LOSS PARA
	EFFF	0.8330	0.7762	0.7491	0.8161	0.7000	1.0217	1.0345	0.9641	0.5376 1.1380	DFAC EFFP
	DEAM	-8.462 11.532	-5.139	-3.744	-2.848	0.851	10.423	16.874	17.750	4.280	INCID
	P 2	18.673	14.512 18.827	14.660 18.939	14.225 19.332	14.441 19.098	15.115 10.173	16.039	16.428	7.002	DEVH
	P ZA	10.455	18.503	18.544	19,086	10.971	19.195	17.737 17.769	17.716 17.684	17.599 17.695	P 2 P 2A
	† 2 † 2A	560.600	558.050	556.410	557.000	550° 500	561,300	566.400	548.450	570.750	T 2
	UUBAR FS	540-400 0-0718	550.050 0.0787	956.410 0.0793	557.000	558.200 0.0411	541.300	344.400	568,450	570.750	T ZA
	P2 FS	18.682	18.761	18.815	0.0297 19.197	0.0611 19.203	0.0901 18.464	0.0924 17.996	0.1159 17.959	0.1139 17.959	UUBAR FS
	LOSS PARA F	S 0.0241	3.62 67	U.G272	0.0105	0.0225	0.0342	0.0363	0.0463	3.0459	P2 FS LOSS PARA FS
										-	(9

Table A-6. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 87.36 Equivalent Rotor Speed = 3677.76 Equivalent Weight Flow = 105.62
Tip Radial Distortion

INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	26 10	12.00	7 10	2.40	DC 7
	DIA	33.122	33.529	33.962	35.312	37.137	28.10 38.954	12.00 40.321	7.10 40.737	3.60 41.665	PCT SPAN DIA
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA U
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	A 7 A 0	401.52 504.28	401.52 518.91	401.52 514.67	401.52	401.52	401.52	401.52	401.52	401-52	V 6
	vz o	401.52	401.52	401.52	508.25 401.51	485.64 401.49	358.79 401.45	309.11 401.42	306.24 401.41	309.61 401.41	V 1 Vž o
	V2 1	504.28	518.91	514.67	508.25	485.60	358.73	309.03	300.16	309.53	V2 1
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA D
	V-THETA 1 M U	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
•	H I	0.3644 0.4612	0.3644	0.36 44 0.4711	0.3644 0.4650	0.3644 0.4435	0.3644 0.3247	0.3644 0.2790	0.3644	0.3644 0.2795	M 0 M 1
	TUKN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UULAR	0.6709	0.3525	0.2671	0.3215	0.5466	1.2998	1.5483	1.5949	1.6570	UUBAR
	DFAG EFFP	-0.256	-0.292	-0.282	-0.266	-u.210	0.106	0.230	D. 232	U.229	DFAC
	INLID	0.4715 0.0001	0.6669 0.0001	0.7179 0.0001	0.6638 0.0001	0.4685 0.0001	-0.1827 0.0001	-0.3481 0.0001	-0.3371 0.0001	-0.3136 0.0001	EFFP Incid
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-U-000	-0.000	-0.000	DEVM
	PO	15.714	15.714	15.714	15.714	15.714	15.714	15.714	15.714	15.714	PO
	P i T O	14.790 516.700	15-229	15.346	15.272	14.961	13-924	13.582	13.516	13.432	P 1
	† 1	518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 516.760	516.700 518.700	1 0 1 1
						3252100	3101100	3101700	3101100	318.100	• •
KUTGR D	PCT SPAN	95.00	90.00	65.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
RITOR -L.F.	DIA BETA 1	33.236 0.000	33.621 0.000	34.007 0.000	35.164 0.000	36.706 0.000	38.24B 0.000	39,465 0,000	39.791 0.000	40.176	DIA GETA 1
ROTOR -T.E.	BETA 2	35.698	31.852	30.003	28.890	30-285	35.749	40.290	42.756	0.000 47.130	BETA 1 BETA 2
	BETAIPR) 1	46.434	44.243	44.114	45.518	48.643	56.470	62.876	63.110	63.110	BETA(PR) 1
	BETA(PR) 2	26.367	26.310	26.213	25.492	27.869	35.279	39.219	41.951	50.770	BETAIPK) 2
	V L V Z	505.56 540.91	552.33 569.33	561.76 589.08	555.64 626.58	523.86 613.26	383.70 530.53	332.23 499.17	332.46 477.65	334.98	V 1 V 2
	VZ 1	505.46	552.20	561.69	555.61	523.22	362-14	330.04	330.03	412.27 332.79	V2 1
	VZ Z	439.25	483.57	510.13	548.58	529.34	430.02	380.04	350.16	280.02	V2 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2 V(PR) 1	315.61 733.5	300.43 770.9	294.56 782.4	302.71 793.0	309.13 792.3	309.55 731.6	322.19 724.9	323.77 730.6	301.65 736.8	V-THETA 2 V(PR) 1
	VIPRI 2	490.3	539.5	568.b	407.8	599.1	527.4	491.5	471.8	443.5	V{PR] 2
	VIHETA PRI	-531.4	-537.8	-544.6	-565.8	-594.4	-622.9	-644.3	-650.6	-656.3	VTHETA PRI
	VTHETA PRZ U 1	-217.7 531.41	-239.1 537.80	-251.2	-261.6	-279.9	-304.2	-310.2	-314.6	-543-1	VTHETA PRZ
	U 2	533.34	539.53	544.59 545.72	565.75 564.28	594.37 589.03	622.86 613.78	644.29 632.34	650.61 630.53	656.27 644.72	U 1 U 2
	N i	0.4624	0.5073	0.5164	0.5105	0.4799	0.3478	0.3002	0.3004	0.3026	нí
	M 2	0.4816	0.5091	0.5284	0.5637	0.5503	0.4720	0-4424	0-4225	0.3624	M 2
	M(PR) 1 M(PR) 2	0.6709 0.4365	0.7086	0.7192	0.7285	0.7258	0.6631	0.6551	0.6604	0-6660	M(PR) 1
	TURN(PR)	20.063	0.4824 17.928	0.5100 17.899	0.5468 20.025	0.5375 20.753	0.4692 23.140	0.4355 23.595	0-4171 21.096	0.3898 12.261	M(PK) 2 TURN(PR)
	UUBAR	0.1489	0.1459	0-1147	0.0552	0.0625	0.0332	0.0679	0.1054	0.1503	UUUAR
	LOSS PARA	0.0386	0.0384	0.0306	0.0153	0.0178	0.0091	0.0183	0.0275	0.0337	LOSS PARA
	⊔FAC {FFP	0.4564	0.4147 0.7156	0.3851 0.7869	0.3509 0.9235	0.3690	0.4203	0.4748	0.5083	0.5419	DFAC
	ŁFF	0.7145	0.7101	0.7826	0.9216	0.9316 0.9298	0.9914 0.9911	0.9769 0.9763	0.9244	0.7751 0.7695	EFFP EFF
	INCIO	-5.998	-6.673	-6.464	-6.524	-5.361	2.479	4.203	0.816	-5.041	TACID
	DEVM	11.217	12.150	11.579	6.851	4.659	7.718	7,594	0.813	14.803	OFAW
	P 1 P 2	14.790 17.090	15,229 17,432	15.346 17.689	15.272 18.106	14.961 17.913	13.924 16.983	13.582 16.662	13.518 16.469	13.432 15.956	P 1 P 2
	Τī	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T)
	T 2	549.300	547.450	546.150	546.750	548.150	549.250	550.650	551.350	552.690	1 2
STATOR U	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	OIA	33.207	33.564	33.921	34-992	36.420	37.648	38.919	39.276	39.633	DIA
SIATUR-L.E. SIATOR-T.L.	BETA 2 Beta 2a	35.935 1.150	31.686 1.780	29,509 1,630	28.925 0.800	29.871 0.890	35.639 3.321	41-121 4-901	44.151 3.301	49.351 0.500	BETA 2 Beta 2a
318 108 7110	A 5	537.89	572.16	598.34	626.58	621.94	532.79	491.56	466.45	398.99	¥ 2
	V ZA	469.66	496.40	5 27 . 92	574.38	574.68	504-03	424.81	404.35	400.41	V ZA
	V2 2	435.52	486.67	520.69	548.31	539.05	432.64	369.96	334.36	259.68	V2 2
	VZ ZA V-THETA 2	469.56 315.67	496.15 300.53	517-69 294-70	574.24 303.00	574.42 309.60	502.88 310.19	422-91 322-97	403.33 324.59	399.97	V2 ZA V-THETA 2
	V-THETA 2A	9.43	15.42	14.73	8.02	8.92	29.18	36.26	23.26	302.45 3.49	V-THETA 2A
	M 2	0.4788	0.5117	0.5371	0.5637	0.5585	0.4741	0.4354	0.4121	0.3504	M 2
	M 2A TURN(PR]	0.4158	0.4411	0.4616	0.5142	0.5138	0.4474	0.3744	0.3557	0-3517	M ZA
	UUBAR	34.785 0.0668	29.905 0.0861	27.878 0.0950	28.119 0.03#1	2 8.964 0.0	32.286 -0.0729	36,174 0.0972	40.799 0.0965	48.793 -0.2099	TURN(PR) UUBAR
	LOSS PARA	0.0225	0.0300	0.0327	0.0135	0.0	-0.0280	0.0384	0.0386	-0.0847	LOSS PARA
	DFAC	6.3187	0.3022	0.2956	0.2510	0.2556	0.2582	0.3664	0.3932	0.3004	DFAC
	EFFP INCIO	0.7430 -14.232	0.6776	0.6604	0.7 9 03 -9.105	1.0000	1.6272	0.6427	0.6361	-26.6366	EFFP
	DEVM	9.982	-11.702 13.092	-10.701 12.940	11.775	-6.833 11.902	-0.228 14.985	2.413 17.338	0.978 15.978	-9.653 5.354	INCID Devm
	P 2	17.090	17.432	17.689	18.106	17.913	16.983	16.662	16.469	15.956	P 2
	P 2A	16-924	17.181	17.389	17.972	17.913	17.159	16.464	16.294	16.229	P 2A
	† 2 T 24	549.300 549.300	547.450	546.150 546.150	546.750 544.750	548, 150	549.250	550.650	551.350	552.690	T 2
	T 2A UUBAR FS	0.1368	547.450 0,1025	0.0804	546.750 0.0255	548.150 0.0193	549.250 0.0737	550.650 0.1417	551.350 0.1531	552.690 0.1420	7 2A UUBAR FS
	P2 F\$	17.291	17.478	17.638	16.060	17.980	17.365	16.767	16.590	16.489	P2 FS
	LOSS PARA F	\$ 0460	0.0349	0.0276	0.0090	0.0000	0.0283	0.0559	0.0612	J.0573	LOSS PARA FS

Table A-6. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 88.49 Equivalent Rotor Speed = 3725.25 Equivalent Weight Flow = 97.85
Tip Radial Distortion

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12-00	7.10	3.00	PCT SPAN
	OIA DETA D	33.122	33.529	33.962	35.312	37.137	36.954	40.321	40.737	41.085	UIA
	BETA O Beta 1	0.000	0.000	0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	BETA G
	V 0	371.51	371.51	371.51	371.51	371.51	0.000 371.51	0.000 371.51	0.000 371.51	0.000	SETA 1
	Y I	460.55	486.62	483.85	472.68	454.70	337.66	279.64	264.14	371,51 240.87	V 0 V 1
	V2 0	371.51	371.51	371.51	371.50	371.46	371.45	371.42	371.41	371.41	V2 0
	VZ 1 V-THETA O	460.55 Q.00	486.62 0.00	483.85 0.00	472.67 0.00	454.67	337.60	279.57	264.07	240.80	V2 1
	V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0-00 0-00	V-THETA G
	M O	0.3365	0.3365	0.3365	0.3365	0.3365	0.3365	0.3365	0.3365	0.3365	V-THETA 1 M G
	N 1	0.4197	0-4444	0.4418	0.4312	0-4142	0.3052	0.2521	0.2379	0-2168	M 1
	TURN UUBAR	0.0 0.6716	0.0 0.3376	0-0 0-2925	0.0 0.3737	0.0 0.5543	0.0	0.0	0.0	0.0	TURN
	DFAC	-0.240	-0.310	-0.302	-0.272	-0.224	1.3036 U.091	1.5924 U.247	1.6647 U.289	1.7459 0.352	UUBAR DFAC
	EFFP	0.4517	0.6893	0.7138	0.6335	0.4818	-0.1535	-0.3649	-0.4098	-0.4781	EFFP
	INCIO DEVM	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	PO	-0.000 15.581	-0.000 15.581	-0.000 15.581	-0.000 15.581	-0.000 15.581	-0.000 15.581	-0.000	-0.000	-0.000	DEVM
	PI	14.792	15.184	15.237	15-142	14.930	14.050	15.501 13.710	15.581 13.626	15.581 13.530	P 0 P 1
	1 0	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Το
	T 1	518.700	516.700	518.700	518.700	518.700	518.700	518.700	510.700	518.700	T 1
ROTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	DIA BETA 1	33.236 0.600	33.621 0.000	34.007 0.000	35.164 0.000	36.706	36.248	39.405	39.791	40,176	DIA
ROTOR -T.E.	BETA 2	39.398	35.554	33.974	32.466	0.000 34.092	0.000 40.882	0.000 46.177	0.000 49.667	0.000 54.000	BETA 1
	BETA(PR) 1	49.386	46.520	46-344	48.070	50.943	60.340	65.443	66.819	66.776	BETA 2 BETA(PR) 1
	BETA(PR) 2	26-298	26.102	25.966	25.900	28.908	36.351	41,263	45.191	49.229	BETAIPR 1 2
	V 1 V 2	461.67 531.43	516.69 557.64	526.40	514.75	489.13	360.74	300.16	284.30	259.85	V 1
	ÝZ 1	461.58	516.5B	574.21 526.33	603.77 514.72	586.42 488.53	513.99 359.26	482.70 298.20	458-15 287-28	438.63	V 2
	A1 3	410.45	453.66	474.17	509.27	485.44	368.17	333.71	282.28 296.06	256.16 257.50	VZ 1 VZ 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2 V(PR) 1	337.29 709.1	324.23 750.8	320.87	324.27	328.57	336.03	347.71	348.72	354.42	Y-THETA 2
	V(PR) 2	458.I	505.2	762.5 529.7	770.3 566.2	775.7 554.8	726.8 482.6	718.3 444.6	717.9	713.7	V(PR) 1
	VTHETA PRI	-538.3	-544.7	-551.6	-573.1	-602.0	-630.9	-652.b	420.9 -659.2	394.9 -064.7	V(PR) 2 VTHETA PRI
	VIHETA PRZ	-202.9	-222.3	-231.9	-247.3	-266.1	-285.7	-292.6	-294.1	-296.6	VTHETA PRZ
	U 1 U 2	538.27 540.23	544.75 546.49	551.62 552.76	573.ub 571.57	602.05	630.90	652.61	659.22	664.74	Ul
	M I	0-4206	0.4730	0.4823	0.4712	596.64 0.4468	621.71 0.3265	640.51 0.2708	646.78 0.2563	653.04 0.2340	U 2 # 1
	M 2	0.4724	0.4976	0.5137	0.5414	0.5242	0.4570	0-4262	0-4032	0.3849	M Z
	M(PR) 1	0.6463	0.6874	0-6967	0.7051	0.7085	0.6579	0 +6 48 1	0.6472	0.6428	MIPR) 1
	M(PR) Z Turn(Pr)	0.4D72 23.084	0.4508 20.414	0.4738 20.376	0.5076	0.4959	0.4291	0.3927	0.3704	0.3465	M(PR) 2
	UUBAR	0.1245	0.1271	0.0975	22.169 0.0368	22.014 0.0669	23.942 0.0619	24.128 0.0992	21.582 0.1357	19.521 0.1688	TURN(PR) UUBAK
	LOSS PARA	0.0323	0.0335	0.0260	0.0102	0.0189	0.0168	0.0259	0.0335	0.0391	LÜŞŞ PARA
	DFAC EFFP	0.4920	0.4540	0-4304	0.3944	0.4206	0-4904	0.5473	0.5825	0.6210	DFAC
	EFF	0.8123 0.8078	0.8082 Ú.8036	0.880B 0.8780	0.9992 0.9992	0.9671 0.9662	1.0851 1.0877	0.9610 0.9598	0.8944	0-8491	EFFP
	INCID	-3.045	-4.396	-4.235	-3.973	-3.061	4.353	6.780	0.891 <i>2</i> 4.542	0.0446 6.649	EFF. INCED 544
	DEAM	11.148	11.942	11.332	7.259	5.698	8.790	9.638	12.052	13.253	DEVM
	P 1 P 2	14.792 17.496	15.184 17.793	15.237	15.142	14,930	14.050	13.710	13.626	13.530	P 1
	Ti	518.700	518.700	17.994 518.700	10.344 518.700	18.132 518.700	17.358 518.700	17.029 51 8.70 0	16.817 518.700	16.669 518.700	P 2
	T Z	550.250	548.600	547-450	547.950	549.350	5484400	553.230	554.770	556.420	T 1 T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5-00	PCT SPAN
STATOR-L.E.	DIA BETA 2	33.207 39.666	33.564	33.921	34,992	36.420	37.848	38.919	39.276	39.633	AIO
STATOR-T.E.	BETA ZA	1.400	35.375 2.360	33.411 2.400	32 .527 1.950	33.634 1.930	40.755 4.051	47.200	51.438	56.943	BETA 2
	V 2	52B.50	560.26	583.04	603.77	594.40	516.17	4,841 475,43	3.851 447.42	2.401 424.25	BETA ZA V Z
	V ZA	439.85	458,40	474.16	529.48	529.34	456.45	388-24	371.52	368.59	V ŽA
	VZ 2 VZ 2A	406.83 439.72	456-81	486-67	508.97	494.67	390.72	322.76	278.70	231.28	VZ Z
	V-THETA 2	337.35	458.00 324.34	473.73 321.03	529.10 324.58	520.87 329.07	455.04 336.72	386.54 348.56	370.35 349.60	367.87	¥2 2A
	V-THETA 2A	10.75	18.88	19.85	18.02	17.62	32.22	32.74	24.93	355.36 15.42	V-THETA 2 V-THETA 2A
	M 2	0.4696	0.5000	0.5220	0.5414	0.5318	0.4590	0-4195	0.3935	0.3719	M 2
	M ZA Turn(Pr)	0.3882 38.266	0-4058	0.4207	0.4716	0.4708	0.4040	0.3406	0.3251	0.3220	M ZA
	UUBAR	0.0389	33.014 0.0911	31.009 0-1067	30.571 0.0432	31.686 -0.0053	36.671 -0.0341	42.313 0.0764	47.538 0.0345	54.490 -0.0419	TURN (PR)
	LOSS PARA	0.0131	0.0310	0.0367	0.0153	-0.0020	-0.0131	0.0302	0-0137	-0.0169	UUBAR LOSS PARA
	UFAC	0.3760	0.3676	0.3648	0.3039	0.3040	0.3441	0.4483	0.4617	0.4584	DFAC
	EFFP Incid	0.8839 -10.501	0.7489 -8.013	0.7219	0.8335	1.0230	1.1428	0.7855	0.8963	1.1610	EFFP
	DEVM	10.232	13.672	-6.880 13.710	-5 .504 12.925	-3.071 12.942	4.866 15.714	8.492 17.279	8.267 16.528	-2-256 7-252	DEAM INCID
	P 2	17.496	17.793	17.994	10.344	18.132	17.358	17.029	16.817	7.252 16.669	P 2
	P ZA	17.400	17.53B	17.669	18.201	18.149	17.438	16.881	16.759	16.732	P ZA
	T Z T ZA	550.250 550.250	548.600 548.600	547,450 547,350	547.950 547.950	549.350	548,400 548,400	553.230	554.770	556-420	Υ 2 Τ 24
	UUBAR FS	0.0992	0.0716	0.0758	0.0289	549,350 0.0237	548.400 0.0652	553.230 0.0959	5 54.770 0.0932	556.420 0.0773	T ZA Uubar FS
	P2 FS	17.659	17.733	17.892	18.295	18.226	17.606	17.071	16.928	16 864	P2 FS
	LOSS PARA F	5 U.0334	0.0243	0.0261	0.0102	0.0089	0.0250	0.0379	0.0372	0.0312	LUSS PARA FS

Table A-6. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 89.54 Equivalent Rotor Speed = 3769.57 Equivalent Weight Flow = 90.04
Tip Radial Distortion

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	30 10				
	D1A	33.122	33.529	33.962	35.312	37.137	28.10 38.954	12.00 40.321	7.10	3.00	PCT SPAN
	BETA O BETA 1	0-000	0.000	0-000	0.000	0.000	0.000	D.000	40.737 0.000	41.085 0.600	OJA
	A O	0.000 342.49	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA G BETA 1
	νī	423.95	342.49 442.22	342.49 441.86	342,49	342.49	342.49	342.49	342.49	342.49	V C
	VZ 0	342.49	342.49	342.49	437.46 342.49	414.09 342.47	311.15	261.78	241.82	210.16	V 1
	VZ 1	423.95	442.22	441.86	437.46	414.00	342.44 311.10	342.41	342.40	342-46	V2 0
	Y-THETA O	0.00	0.00	6.00	0.00	0.00	0.00	261.71 0.00	241.76 0.00	210.10 0.60	V2 1
	V-THETA 1 M O	0.00 0.3097	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O V-THETA 1
	H I	0.3653	0.3097 0.4025	0.3097 0.4021	0.3097	0.3097	0.3097	0.3097	0.3097	0.3097	M O
	TURN	0.0	0.0	0.0	0.3980 0.0	0.3761	0.2809	0.235B	0.2176	0.1689	M 1
	UUBAR	0.0177	0.3427	0.2898	0.3321	0.0 0.5331	0.0 1.2947	0.0 1.5063	0.0	0.0	TURN
	UFAC	-0.238	-0.291	-0.290	-0.277	-U. 209	0.092	0.236	1.580j 0.294	1-6967 0.386	UUBAR
	EFFP INCID	0.4696	0.6691	0.7046	0.6636	0-4715	-0.1556	-0.3751	-0.4546	-0.5625	DFAC E ff p
	DEVM	-0.000	0.0001 -0.000	0.0001 -0.000	0.0001	0.0001	0.0001	6.0061	0.0001	0.0001	INCID
	P O	15.418	15.418	15.418	-0.000 15.418	-0.000 15.418	-0.000	-0.000	-0.000	-0.666	DEVM
	PL	14.805	15.076	15.131	15.069	14.869	15.418 14.134	15.418 13.924	15.418	15.416	PO
	T 0 T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	13.651 518.700	13.735 518.700	P 1 T 0
		518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ťì
ROTER U	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTER -L.E.	DIA BETA I	33.236 0.000	33.621 0.000	34-007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -T.E.	BETA 2	41.898	38.563	0.000 37.491	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	BETA(PR) 1	52.045	49.660	49.380	35.684 50.686	38.101 53. 9 37	46.261	53.209	57.355	60.662	PELY 5
	BETA(PR) 2	26.197	27.112	27.625	28.144	30.916	62.615 36.840	67.099 44.130	68.638 46.717	71.503	BETA(PR) 1
	Y 1 V 2	424.95	468.24	478.81	474.89	444.20	332.05	280.82	260.08	50.671 226.51	BETAIPR) 2 V 1
	VZ 1	528=69 424-86	540.22 468.14	546.31	568.26	554.95	507.63	469.60	463.00	450.00	v ž
	V2 2	393.51	422.34	478.75 433.46	474.86 461.56	443.65	330.70	278.97	258.23	225.03	VZ 1
	V-THETA 1	0.00	0.00	0.00	9.00	436.54 0.00	350.63 0.00	260.91 0.00	249.53	220+30	VZ Z
•	V-THETA 2	353.05	336.74	332 - 49	331.47	342.31	366.41	375-63	0.66 389.52	0.00 391.94	V-THETA 1 V-THETA 2
	V(PR) 1 V(PR) 2	690.8 438.6	723.3	735.4	749.5	754.0	719.6	717.6	716.0	709.6	YIPK))
	VTHETA PRI	-544.7	474.6 -551.2	489.2 ->56.2	523.5 -579.9	509.1	436.7	392.0	364.6	348.1	V(Pk) 2
	VTHETA PRZ	-143.6	-216.3	-276.8	-246.9	-609.2 -261.4	-638.4 -262.7	-660.4 -272.5	-667.1	-672.7	VTHETA PRI
	U 1 U 2	544.68	551.23	558.18	579.08	609.21	638.41	660.37	-265.0 667.06	-268.9 672.65	VTHETA PR2 U 1
	Mi	546.65 0.3863	553.00 0.4270	559.34	578.37	603.73	629.1U	648.13	654.47	660.61	ŭ 2
	M 2	0.4688	0.4804	0.4370 0.4867	0-4333 0-5071	0.4043 0.4941	0.3001	0.2531	0.2342	0-2037	M 1
	M(PR) 1	0.6279	0-6595	0.6712	0.6838	0.6863	0.449 <u>1</u> 0.6503	0.4126 0.6469	0.4062	0.3936	M 2
	M(PR) Z	0.3889	0.4220	0.4359	0-4671	0.4532	0.3861	0.3444	0.6448 0.3198	0.6364 0.3045	M(PR) 1 M(PR) 2
	TURN (PR) UUBAR	25.844 0.0937	22,544	21.753	22.542	23.002	25.734	22.926	22.065	20.819	TURN(PK)
	LOSS PARA	0.0244	0.0979 0.0255	0.0878 0.0231	0.0509 0.0138	0.0868	0.1060	0.1895	0.2303	0.2369	UUBAK
	LFAC	0.5134	0.4806	0.4691	0.4375	0.0240 0.4704	0.0285 0.5604	0+0472 0+6337	0.0554	0.0532	LDSS PARA
	EFFP	0.8489	0.8522	0-9033	0.9685	0.9640	0.9963	0.8543	0.6797 0.8328	0.7034 0.6093	DEAC
	LFF 1NCID	0.8448	0.8484	0.9006	0.9676	0.9629	0.9962	0.5498	0.8276	0.6032	EFFP EFF,
	DEVM	-0.387 11.048	-1.256 12.952	-1.198	-1.357	-0.066	0-633	8 . 44 4	6.571	3.390	INCLU
	P 1	14-805	15.078	12.991 15.131	9.503 15.089	7.705 14.889	9.278 14.134	12.504	13.578	14.696	DEVM
	P 2	17.869	18.016	16.111	18.341	18.205	17.670	13.924 17.271	13.851 17.208	13.735	P 1 P 2
	7 1 7 2	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	17.124 518.700	Ti
	, 2	552.600	550.600	549.050	549.450	550.550	553.000	557.450	558.800	560-700	ΪŹ
STATES O	O/T COAN	05.00									
STATOR D	PCT SPAN DIA	95.00 33.207	90.00 33.564	85.00 33.921	70.00 34.992	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	BETA 2	42.190	38.359	36.874	35.729	36.420 37.597	37.846 46.113	38.919 54.528	39.276	39.033	DIA
STATOR-T.E.	BETA 2A	2.400	3.200	3.190	2,920	3.100	3.751	4.201	59.765 4.101	64.619 3.001	BETA 2
	¥ 2	525.78	542.61	554.41	568.26	562.16	509.76	462.62	452.21	435.14	BETA 2A
	V ZA VZ Z	422.21 389.56	429.71	441.11	479.98	473.10	411-06	370.51	358.21	356.12	V ZA
	VZ 2A	421.84	425.63 429.03	443.49 440.41	461.23 4 79. 29	445.23	353.17	268.30	227.60	186.44	VZ 2
	V-THETA 2	353.11	336.85	332.66	331.76	472.25 342.83	409.93 367.17	369.22	356.98	355.26	VZ ZA
	V-THETA 2A	17.68	23.98	24.54	24-45	25.58	24.87	376.54 27.12	390.50 25.60	392.99 16.62	V-THETA 2 V-THETA 2A
	M 2 M 2A	0.4661	D.4828	0.4943	0.5071	0.5008	0.4511	0.4062	0.3963	0.3802	M 2
	TURN (PR)	0.3714 3y.790	0.3789 35.159	0.3898 33.682	0.4252 32.803	0.4184	0.3612	0.3235	0.3121	0.3097	M ZA
	UUBAR	0.0420	0.0816	0.0791	0.0409	34.479 0.0231	42.329 0.0410	50_283	55.621	61.575	TURN (PR)
	LOSS PARA	0.0141	0.0275	0.0272	0.0145	0.0085	0.0158	0.0057 0.0022	0.0178 0.0 071	-0.0296 -0.0117	UUBAR LOSS PARA
	DFAC EFFP	0.4119	0.4048	0.3959	0.3480	0.3682	0-4520	0.5002	0.5326	0.5308	DFAC
	INCID	0.8912 -7.977	0.8011 ->.029	0.8032 -3.417	0.8711	0.9285	0.8917	0.9653	0.9551	1-0829	EFFP
	DEVM	11.232	14.512	14.500	-2.302 13.895	0.891 14.111	10.244	15.823	16.599	5-428	INCID
	P 2	17.869	18.016	18.111	18.341	18.205	15.415 17.670	16.639 17.271	16.777 17.208	7.852	DEVM
	₽ 2A	17-765	17-801	17.890	16.221	18.139	17.576	17.261	17.177	17.124 17.172	P 2 P 2A
		552.600 552.600	550.600 550.600	549.050 549.050	549-450 549-450	550.550	553.000	557.450	558-800	560.700	TŽ
	UUBAR FS	3.0661	0.0775	0.3652	549.450 0.0408	550.550 0.0509	553.000 0:0887		558-800	560.700	T 2A
	P2 F5	17.932	18.006	18.069	18.341	18.289	17.791	0.0929 17.450	0.1080 17.387	0.1089	UUBAR FS
	LOSS PARA FS	0.0222	0-0263	0.0224	0:0144	0-0187	0.0341	0.0358	0.0431	17.376 0.0439	P2 FS LUSS PARA FS
											mmm . 3

Table A-6. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 70.73 Equivalent Rotor Speed = 2977.76 Equivalent Weight Flow = 85.36
Tip Radial Distortion

INLET	1										
2.422.4	PCT SPAM	96.80	92.00	86.90	71.00	49.50	30.10		_		
	DIA	33.122	33.529	33.962	35.312	37.137	28.10 38.954	12.00 40.321	7.10 40.737	3.00	PCT SPAN
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	41.U85 0.U06	DJA Beta o
	BETA 1 V O	0.000 324.69	0.000 324.69	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	νĭ	390.36	411.32	324.69 412.20	324.69 403.24	324.69	324.69	324.69	324.69	324.69	V O
	VZ O	324.68	324.69	324.69	324.68	383.78 324.66	285.84 324.63	235.51 324.60	227.27	206.03	V 1
	VZ 1	390.36	411.32	412.20	403.23	383.75	285.60	235.45	324.60 227.21	324.60 205.96	VZ 0
	V-THETA O V-THETA 1	0.00 0.00	0.00	0.00	0.00	0.00	0.0G	0.00	0.00	0.00	V-THETA D
	N O	0.2933	0.00 0.2933	0.00 0.2933	0.00 0.2933	0.00 0.2933	0.00	0.00	0.00	0.00	V-THETA 1
	H 1	0.3540	0.3735	0.3743	0.3660	0.3479	0.2933 0.2577	0.2933 0.2119	0-2933	J=2933	M 6
	TURN	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.2044 0.0	0.1852 0.0	M 1 Turn
	UUBAR OFAC	0.6329 -0.202	0.3335 -0.267	0.2748	0.3335	0.5390	1.2552	1.5077	1.5605	1-6003	UUBAK
	EFFP	0.4188	0.6522	-0.270 0.6976	-0.242 0.6270	-0.182 0.4306	0.120 -0.2180	0.275	0.306	0.365	DFAC
-	INCID	0.0061	0.0001	0.0001	0.0001	0.0001	D-0001	-0.4510 0.0001	-0.⇒762 0.0001	-0.547. 0.0001	EFFP
	DEVM P Q	-0.000 15.335	-0.000 15.335	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEAW TUCID
	Pi	14.772	15.038	15.335 15.090	15.335 15.038	15.335	15.335	15.335	15.335	15.335	PO
	T O	518.700	518.700	518.700	518.700	14.856 518.700	14.219 518.700	13.995 518.700	13.946	13.859	P 1
	7 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700 518.700	516.700 516.700	7 0 7 1
ROTEK U	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	16.50		
RUTUR -L.E.	DIA BETA 1	33.236	33.621	34.007	35-164	36.706	38.246	39.405	16.60 39.791	5.00 40.176	PCT SPAN Dia
RCTLR -1.L.	BETA 2	0.000 34.747	0.000 31.546	0.000	0.000	D-000	0.000	0.000	0.000	0.000	BETA 1
	BETA(PR) 1	47.725	45.048	29.738 44.6 9 9	28.689 46.378	29.671 49 .537	35,104 58,957	39.166	42.026	45-047	BETA 2
	SETA(PR) 2	25.724	25.015	25.096	25.534	28-297	35.484	64.326 39.332	65.261 42.147	67.455 51.606	BETA(PR) 1
	V 1 V 2	391-25	434.81	445.65	+36.57	411.00	30+.76	252.42	244 32	222.04	BETA(PK) 2 V 1
	VZ 1	447.13 391.17	474.41 434.71	469.48 445.60	506.15	495.56	429-61	404.89	366.08	330.89	V Ž
	VZ 2	367.38	404.28	425.01	436.54 445.76	410.49 430.40	303.53 351.01	250.76 313.21	242.56	220.54	YZ 1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	286.25	233.36 0.60	VZ Z V—THETA 1
	V-THETA 2 V(PR) 1	254.83 581.6	240.19	242.60	243.93	245.20	246.73	255.34	257.92	233.75	V-THETA 2
	V(PR) 2	407.8	615.4 446.2	626.9 469.3	632.6 494.6	632.9 489.0	589.2	579.5	580.8	575.9	VIPK) 1
	VTHETA PRI	-430-3	-435.4	-440.9	-458.1	-481.2	431.6 -504.3	405.7 -521.7	386.8 -526.9	371.4	V(PR) 2
	VTHETA PRZ	~177.0	-168.7	-199.1	-212.9	-231.T	-250.2	-256.7	-259.1	-531.4 -266.3	VTHETA PRE VTHETA PR2
	U 1 U 2	430.27 431.83	435.44 436.84	440.94 441.85	458.07	481.24	504.31	521.66	526.94	531.36	Ui
	M 1	0.3548	0.3955	D-4U57	456.68 0.3972	476.92 0.3732	496-96 0-2750	511.99	517.00	522.61	U 2
	M 2	0.3993	0.4251	0-4395	0.4569	0.4447	0.3835	0.2273 0.3604	0.2199 0.3432	0.1997 0.2929	M 1 M 4
	M(PR) 1 M(PR) 2	0.5274 0.3642	0.5597	0.5707	0.5757	0-5747	0.531B	0.5217	0.5227	6.5179	MIPR) 1
	TURN (PR)	21.997	0.3998 20.028	0.4214 19.600	0.4442 20.843	0.4389 21.219	0.3853	0.3611	0.3436	0.3288	H(PR) 2
	UUBAR	0.1169	0.1229	0-0664	0.0354	0-0412	23.424 0.0346	24.937 U.D624	23,080 0.lu44	16.414	TURN (PR.)
	LGSS PARA UFAC	0.0305	0.0327	0.0232	0.0098	0.0117	0.0095	0.0167	0.0271	0.122u 0.u272	UUBAR LESS PARA
	EFFP	0.4259 0.7699	0.3934 0.7867	0.3665 0.8813	0.3377 0.9909	0.3515	0.4073	0.4514	0.4882	0.4976	DFAC
	EFF	0.7665	0.7838	0.6796	0.9908	0.9850 0.9848	1.0261 1.0266	0.9983	0.9515	0.8024	EFFP
	INCIU	-4.707	->-B68	-5.886	-5+664	-4.467	2.968	5.659	0.950b 2.99c	0.759¢ −0.678	LEF. INCLL
	P L	10.575 14.772	10.856 15.036	10.462	6-893	5.087	7.923	7,708	9.009	15.033	DEVM
	P 2	16.343	16.551	15.090 16.697	15.038 16.885	14.656 16.760	14.219 16.176	13.995	13.948	13.659	P 1
	Ţi	518.700	518,700	518.700	518.700	518.700	518.700	15.968 516.700	15.863 518.700	15.529 518.700	P ∠
	T 2	538.520	537.080	536.000	536.320	537.170	537.660	538.850	539.130	540.136	T 1 T 2
4.7.7. C. D.											
STATUR D	PCT SPAN DIA	95.00 33.207	90.00 33.564	85.00 33.921	70.00 34.992	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATUR-L.E.	EETA 2	34.456	31.399	29.303	28.724	36.420 29.326	37.846 35.010	38.919	39.276	39.633	u I A
STATUR-T.L.	BETA ZA	1-400	1.450	1.400	0.700	0.050	2.800	39.935 4.841	43.291 3.651	47.006 1.250	BETA 2
	V 2 V 2A	444.85 389.39	476.55	496.35	506.15	501.66	431.30	399.L4	377.47	320.74	BETA ZA V 2
	VZ 2	364.59	413.75 406.75	435.17 432.82	473.08 445.54	467.36	416.14	355.39	336.90	327.75	V ZA
	VZ ZA	389.27	413.61	435.02	472.97	437.14 467.21	352.95 415.45	305.74 353.83	274.48	216.51	V2 2
•	V-THETA 2	254.67	248.27	242.92	244.17	245.58	247.24	255.95	335.92 258.58	327.32 234.37	VZ ZA V-THLTA Z
	V-THETA ZA M Z	9.51 0.3972	10.47 0.4271	10.63	5.78	0.41	20.32	29.97	21.43	7.14	V-THETA ZA
	M ZA	0.3464	0.3691	0.4460 0.3892	0.4569 0.4241	0.4504 0.4185	0-3850 0-3712	0.3552 0.3154	0.3353	0-263E	H 2
	TURN(PR)	33.556	24,948	27-902	28.018	29.260	32.178	35.048	0.2986 39.590	0.2901 45.698	M 2A Turn(Pr)
	UUBAR LOSS PARA	0.0868 0.0292	0.1017 0.0346	0.082	0.0232	0.0048	-0.0863	0.0782	ٕ0 7 03	-0.2346	UUBAK
	ÚFAC	0.3105	0.3018	0.0303 0.28 45	0.0082 0.2361	0.0018 0.2499	-0.0332	0.0309	0.0281	-0.0947	LOSS PARA
	LFFP	0.0509	0-6148	0.6471	0.8407	0.9667	0.2387 2.1704	0.3354 0.6413	0.3664 0.6697	6.2656 -4.0835	OFAC .
	INCID DEVM	-15.211	-11.989	-10.967	-9-306	-7.377	-0.856	1.226	0.118	-12.198	EFFP INC15
	P 2	10.232	12.762 16.551	12.710	11.675	11+062	14.465	17.27B	16.326	6.103	DEVM
	P 24	16.197	16.353	16.697 16.510	16.885 16.833	16.760 16.750	16.176	15.988	15-863	15.529	P 2
	T Z	538.520	537.080	530.000	536.320	537-170	16.311 537.660	15.883 536.656	15.779 539.130	15.727 546.130	P 2A T 2
	T 2A UUBAR FS	536.520 0.1353	537.080	536.000	536.320	537.170	537.660	538.850	539.130	540.130	T ZA
	P2 FS	16,437	0.1046 16.557	0.0885 16.698	0.0372 16.918	0.0262 16.808	D:0847	0.1611	0.1729	0.1742	UUBAK FS
	LUSS PARA FO		0.0355	0-0304	0.0131	0.0098	16.469 D:0326	16.119 0.0636	16.009	15.947	P2 FS
											LUSS PARA ES

Table A-6. Blade Element Performance (Continued)
Stage D, Rotor D ~ Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 70.80 Equivalent Rotor Speed = 2980.69 Equivalent Weight Flow = 80.21
Tip Radial Distortion

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	DCT CDLM
	UIA	33.122	33-529	33.962	35.312	37.137	38.954	40.321	40.737	41.065	PCT SPAN Lia
	BETA O Beta 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA D
	V 0	305.98	305.9B	305.98	0.000 305.98	0.000 305.98	0.000 305.98	0.000 305.98	0.000 3∪5.98	ს.660 3ახ.98	BETA 1
	V 1	369.30	384.65	384.60	379.79	363.13	270.36	221.01	209.84	165.50	V 0 V 1
	VZ U VZ 1	305.98 369.30	305.96 384.65	305.98	305.97	305.96	305.93	305.90	365.90	3u5.9u	V2 0
	V-THETA O	0.00	0.00	384.60 0.00	379.78 0.00	363.10 0.00	.70.31 0.00	220.96 0.00	209.76	165.51	V? 1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	V-THETA 0 V-THETA 1
	H 0 H 1	0.2761	0.2761	0-2761	0.2761	0-2761	0.2761	0.2761	0.2761	0.2761	M O
	TURN	0.3345 0.0	0.3487 0.0	0.3486 0.0	0.3442	0.3288	0.2436	0.1987	0.1886	0.1667	H 1
	UUBAR	0.5725	D.3219	0.2559	0.2823	0.4933	1.2188	0.0 1.4262	0.0 1.5090	0.u 1.6277	TURN UUÐAR
	DFAC EFFP	-0.207	-0.257	-0.257	-0.241	-0.187	U-116	0.278	0.314	0.394	DEAC
-	INCIE	0.4493	0.6501 0.0001	0.7005 0.0001	0.0001	0.4589 0.0001	-0.2194 0.0001	-0.4829	-0.5323	-0-6204	Ł F F P
	DEVM	-0.000	-0.000	-0-000	-0.000	-0.000	-0.000	0.0001 -0.006	0.0001 -0.000	-0.0001 -0.000	INCID DEVM
	P O P I	15.227	15.227	15.227	15.227	15-227	15.227	15.227	15.227	15.227	Pΰ
	To	14.778 518.700	14.974 518.700	15.026 516.700	15.006 518.700	14.840	14.270	14.083	14.042	13.949	PI
	1 1	516.700	518.700	518.700	518.700	518.700 518.700	518.700 518.700	518.700 518.700	516.700 516.700	518.700 518.700	1 0 1 1
RUTON L	PCT SPAN	95.60	90.00	65 +00	70.00	50.00	30.00	15.00			
ee s	UIA	33.256	33.621	34.007	35.164	30.706	38.246	39.405	10.60 39.791	5.00 40.176	PCT SPAN Ula
RCTUK -L.č. 4C1GR -T.t.	BETA 1 BETA 2	0.000 37.995	J-000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	BETAIPR) 1	49.330	34.850 47.626	33.250 46.761	31.826 48.157	33.075 51.154	39.438 60.386	44.794	47.291	50.828	BETA 2
	BETA(PR) 2	26.008	25.736	25.811	25.819	28.756	35.029	65.749 40.610	67.003 44.728	69.529 50.757	BETA(PK) 1 Bétaipri 2
	V 1 V 2	370.13	406.17	415-09	410.61	368.42	288.10	236.74	225.47	149.66	Y 1
	VZ 1	432.23 370.06	452.21 406.08	404.22 415.04	487.35 410.56	474.94 387.95	423.27	309.60	3ca.5u	337.91	V 2
	A5 5	340.61	371.09	388.21	414.07	397.81	286.94 326.52	235.23 276.08	223.8c 249.53	198.56 213.14	V2 1 V2 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60	V-THETA 1
	V-THETA 2 V(PK) 1	266.07 567.5	258.39 595.8	254.52 605.9	256.99 615.5	259.09 610.6	266.57 581.2	274.10	270.33	261.59	V-Thr TA 2
	V(PR) 2	379.0	412.0	431.2	460.0	454.0	399.3	573.4 365.4	573.c 351.9	5 68.2 3 37. 4	V(PR) 1 V(PR) ∠
	VTHETA PEL	-4-30-7	-435.9	-441-4	-456.5	-481.7	-504.0	-522.2	-527.5	-531.9	VTHETA PRI
	VIHETA PK2	-166.2 430.69	-176.9 435.87	-187.8 441.37	-200.3 +58.52	-218.3 481.72	-228.9	-236.4	-247.2	-260.9	VINETA PRZ
	U-2	432.25	437.27	442.28	457.33	477.39	504.80 497.45	522.17 512.49	527-46 517-51	531.88 522.52	∪1 U2
	K 1	0.3352	0-3667	6.3770	0.3729	0.3522	0.2596	0.2136	0.2026	0.1796	мі
	M 2 M(PK) 1	0.3854 0.5143	0.4042 6.5408	0.4158 0.5504	0.4371 0.5589	0.4251 0.5e11	0.3773	0.3466	0.3264	0.2967	M 2
	M(PR) 2	0.3379	0-3683	0.3662	0.4125	0.4064	0.5241 0.3554	0.5159 0.3244	0.5355 0.3118	0.510£ 0.2962	M(PR) 1 M(Pk) 2
	TORN (PR)	23.316	21.286	20.947	22.337	22,378	25.309	24.889	22.230	18.749	TURN(PF)
	UUBAR LOSS PARA	0.1152 0.630u	0-1112 0-0294	0.0845 0.0226	0.0395	0.0475	0.0476	0.1014	0.1332	0.1413	UUbAk
	DFAC	0.4686	0.4359	0.4131	0.0109 0.3809	0.4006	0.0131 0.4673	0.0266 0.527u	0.0332 0.5563	0.6317 6.5678	LGSS PARA DFAC
	EFFP	0.7969	0.8269	0.9078	0.9979	0.9861	1.0461	0.9486	0.8829	6.8175	EFFP
	£F⊬ INCIU	101 د - 101	0.8243 -3.890	₩3.064 #18.6#	0.9979 -3.885	0.9859	1.0490	0.9476	0.6607	0.8144	ŁFF
	DEVM	10.659	11.576	11.176	7.178	-2,849 5,546	4.399 7.469	7.082 9.185	4.72t 11.589	1.436 14.782	INULU DEVM
	P 1	14.778	14,974	15-026	15.006	14.840	14.270	14.083	14-042	13.949	P 1
	P 2 T 1	16.456 518.700	16.622 518.700	16.746 518.700	16.954 518.700	16.850	16.394	16.156	16.011	15.635	P 2
	Ť Ž	539.050	537.750	530.700	537.150	518.700 538.150	516.700 538.700	518.700 540.600	518.7u0 541.200	518.700 542.200	T 1
								- 100000	>110200	3426100	
STATOR D	PCT SPAN	95.00	90,00	65.60	70.00	50.00	30.00	15.00	10.60	5.40	PC1 SPAN
STATUR-L.E.	UIA BETA 2	33.207 38.228	33.564 34.687	33.921	34,992	36.420	37.846	36.919	39.276	39.633	DIA
STATOR-L.E.	PETA SY	1.600	1.680	32.765 1.600	31.865 1.350	32.692 0.600	39.332 3.851	45.704 5.451	46-816	53.269	BETA 2
	V 2	430.05	454.20	470.55	487.35	480.64	424.92	364.21	5.252 360.39	801ء 327 ، 51	BETA 2A V 2
	V 2A VZ 2	363.10	381.01	394+45	+35-76	432.85	383.14	326.52	310.46	306.49	V ŽA
	VZ ZA	337.83 362.92	373.47 380.63	395.67 394.28	413.83 435.58	404.31 432.66	328.43 382.05	268.09	237.11	195.72	V2 2
	V-THE TA 2	266.11	258.48	254-65	257.24	259.48	269.12	324.78 274.76	308.88 271.02	305.50 202.29	VZ ZA V-THETA Z
	A-THETA SY	11.40	11.17	11.01	10.26	6.04	25.72	30.99	28.39	20.30	V-THETA ZA
	M Z M ZA	0.3834 0.3223	0.4061 0.3390	0.4216 0.3516	0.4371 0.3893	0.4304	0.3788	0.3410	0-3192	0.2843	M 2
	TURN (PR)	36.428	33.006	31.163	30.509	0.3863 31.875	0.3406 35.448	40.207	43.516	0.2705 49.415	M ZA TURNIPR)
	UUBAR	0.0451	0.0778	0.0914	0.0323	0.0051	-0.0302	0.0622	0.0142	-0.1554	CUBAR
	LGSS PARA Ofac	0.0152 0.3553	0.0265 U.3467	0.0314 0.3402	0.0115 0.2863	0.0019	-0.011£	0.0245	0.0057	-0.0625	LDSS PARA
	EFFF	0.8520	6.7536	0.7127	0.8510	0.2953 0.9749	0.3201 1.1517	0.4032 0.7860	0.46 9 7 0.9476	0.3642 2.2016	DFAC EFFP
	INCID	-11.939	-6.701	-7.526	-6.165	-4.012	3.464	6.996	5.646	->-933	INCIO
	DEVM P Z	10.632 16.456	12.992 16.622	12.910	12.325	11.612	15.515	17.888	17.927	8.651	DEYM
	P ZA	16.385	16.483	16.746 16.570	16.954 16.886	16.850 16.640	16.394 16.441	16.156 16.078	16.011 15.995	15.835 15.973	P 2
	T Z	539.050	537.750	536.700	537.150	538.150	538.700	540.600	541.200	542.200	P 2A T 2
	T 2A UUBAR FS	539.050 0,0954	537.750	536.700	537-150	538.150	538.700	540.600	541.200	542.200	T 2A
	P2 FS	16.544	0.0755 16.617	0.0718 16.705	0.0302 16.948	0.0203 16.001	0.0641 16.550	0.1106 16.223	0.1156 16.135	0.D\$67	UUBAR FS
	LOSS PARA F		0.0297	0.0246	0.0107	0.0075	0.0246	0.0435	0.0464	16.073 0.0357	P2 F5 LGSS PARA F5

Table A-6. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 71.31 Equivalent Rotor Speed = 3002.25 Equivalent Weight Flow = 72.74
Tip Radial Distortion

14:4 C T											
INLET	PCT SPAN	90.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	OCT COAN
	UIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	PCT SPAN Dia
	BETA U	0.000	0.000	0.000	0.000	U+000	0.000	0.000	£-060	0.000	SETA C
	BETA L	277.57	0.000 277.57	0.000 277-57	0.00G 277.57	0.000	0.000	0.600	0.000	0.000	BETA 1
	νĭ	330.03	348.21	343.00	337.19	277.57 330.01	277.57 247.18	277.57 206.33	277.57 193.89	277.57	V 0
	VZ G	277.57	277.57	277.57	277.57	277.55	277.53	277.50	277.50	169.21 277.50	V 1 VZ O
	VZ 1	330-03	348.21	343.06	337.19	529.99	247.14	206.28	193.63	109.16	VZ 1
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60	0.00	V-THETA C
	H 0	0.2502	0.2502	0.00 0.2502	0.00 0.2502	0.00 0.2502	0.00 0.2502	0.00 0.2502	0.00	0.00	V-THETA 1
	M 1	0.2982	0.3150	0.3102	0.3048	0.2982	0.2225	0.1854	0.2502 0.1742	0.2502 0.1519	М 0 М 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	TURN
	UUEAR	0.5655 -0.189	0.2620 -0.254	0.2460	0.2939	0.4856	1.1566	1.4282	1.4921	1.6039	UULAR
	EFFP	0.4270	0.6921	-0.236 0.6876	-0.215 0.6239	-0.189 0.4649	0.109 -0.2183	U.257	0.301	0.590	DFAC
	INC 1D	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	-0.4521 0.0001	-0.5162 0.0001	-0.6325 0.0001	EFFP Incid
	DEAN	-0.000	-0.000	-0.000	-0.000	-0.000	-0.600	-0.000	-0.000	-0.000	DEAN
	P 0 P 1	15.125 14.761	15.125 14.956	15.125 14.967	15.125	15.125	15.125	15.125	15.125	15.125	Pu
	τo	518.70U	516.700	518.700	14.936 518.700	14.812 518.700	14.386 518.700	14.205 518.700	14.164 518.760	14.092	P 1
	T L	518.700	518.700	518-76D	518.700	518.700	518.700	518.700	518.700	518.700 518.700	7 0 7 1
אטורא ט	PCT SPAN	95.00	90.D0	85.00	70.00	50.04					
	DIA	33.236	33.621	34.007	35.164	50.06 36.706	30.60 38.246	15,00 39,405	10.00 39.791	5.00 40.176	PCT SPAN
KLILR -L.F.	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DIA SETA 1
KCTLK -1.C.	BETA 2	41.194	36 - 35 3	36.965	35.383	7.384 د 7 د	44.173	50-573	53.779	57-191	BETA 2
,	BETA(PK) 1 BETA(PK) 2	52.682 25.900	50.10 <i>3</i> 27.424	56-283	51.786	54.039	62.725	67.345	68.735	71.333	SETA(PR) 1
	V 1	330.75	.367.12	28.413 369.36	29.002 363.63	30.610 352.45	37.8us 263.22	43,235 220.97	45-624	47.899	BETAIPR) 2
	¥ 2	425.20	428.70	431.02	446.79	446.52	400.17	377.41	208.24 364.98	182.18 365.64	V 1 V 2
	VZ 1	330.69	367.C4	369.31	363.61	352.01	262.16	219.52	206.76	180.99	A5_T
	VZ Z V-THLTA I	319.94 30.U	336.17	344.38	364.26	354.67	266.73	239.37	218.35	198.02	Á3 5
	V-THETA 2	260.03	Ů.ŪŬ 266.DÜ	0.00 259.17	0.00 258.70	0.00 271.01	0.00 278.57	0.00 241-14	0.00 296.10	0.00	V-THETA I
	V(PR) I	545.5	572.3	578.0	587.0	599.7	572.5	570.5	570.6	307.16 565.9	V-THETA 2 V{PRJ 1
	V (PR) 2	355.7	376.6	391.6	416.5	412.3	363.4	329.1	312.6	295.8	VIPRI 2
	VIHETA PAL VINLTA PRZ	-433.8 -155.4	-439.0 -374.4	-444.6	-461-8	-485.2	-508.5	-525.9	و. 31 55-	-535.7	VTHETA PRI
	n i	433,80	439.02	-186.3 444.56	-201.9 461.84	-209.8 485.20	-222.5 508. + 6	-225.1 525.95	-223.2 531.27	-219.1	VTHETA PRZ
	U 2	435.38	440.43	445.48	460.64	460.84	501-04	516.20	521.25	535.73 526.30	U 1
	M]	6.2989	0.3324	0.33+5	0.3292	0.3189	0.2371	0.1987	0.1872	0-1036	M I
	H 2 H(PR) 1	0.3767 0.4930	U.3E25 U.5182	0.3650 6.5235	0.3993	0.3988	0.3557	0.3344	0.3274	0.3232	MZ
	M(PR) 2	0.3168	U.3379	0.3498	0.5322 0.3723	U.5426 U.3682	0.5157 0.3230	0.5130 0.2916	0.512y 0.2768	0.5682	M{PR} 1
	TURN (Pk)	26.779	22.674	21.667	22.783	23.410	24.876	24.069	23.076	C.Z614 23.422	M(PR) 2 Turn(PR)
	UUDAR	6-0946	0.1170	0-0943	0.0627	0.0794	0-0982	0.1615	0.1951	0.2117	UUBAR
	LUSS PARA Ufac	0.0245 0.4969	0.0305	0.0246 0.4558	0.0169 0.4267	0.0220	0.0261	0.0408	0.6479	0-0563	LOSS PARA
	EFFP	0.5632	U-6505	0.9212	0.9655	0.4574 0.4981	0.5278 0.9721	0.5986 0.8946	0.6334 0.8650	0.6678 0.8442	DFAC EHFP
	TEE	0.6607	0.8461	0.4199	G.964B	D.9980	0.9716	0.8925	U-8624	0.8411	
	DEAW Tucia	0-251	-0.013	-6 - 29 c	-0.256	0.036	6.743	8.692	b= 466	30214	EFF
	P	10.75u 14./61	14.265 14.956	13.779 14.967	10.361 14.936	7.399 14.812	10.246 14.380	11.609	12.485	11.922	DEAW
	Pe	16.639	16.086	16.727	16.845	16.850	16.490	14.205 16.305	14.164 16.253	14.092 16.243	P 1 P 2
	T 1	518.700	516.700	518.700	518.700	518.700	518.700	516.700	518.700	518.700	Ti
	Т 2	539.660	530.120	536-900	537.500	538.200	54D-BQU	542.050	542.820	544,256	T Z
STATER D	PÇT SPAN Dia	95.00 33.207	40.00	85-00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATUS-L.L.	LETA 2	41.453	33.564 36.173	33.921 36.425	34.992 35.427	36.420 36.948	37.848 44.055	38.919 >1.695	39.276	39.633	D1A
STATOK-T.E.	EETA ZA	2.840	2.740	2.430	2.190	2.550	3.541	4.381	55.736 4.431	60.396 4.161	BETA 2 BETA 2A
	V 2	423.07	430.55	436.72	446.79	451.74	401.70	372.16	361.03	354.40	V 2
	¥ 2A ¥Z 2	335.98 317.09	341.32	348.03	365.00	384.57	347-16	300.03	287.09	289.50	A 5V
	VI ZA	335.57	340.47 340.93	351.38 347.70	364.01 384.66	360.87 384.06	288.50 346.30	230.53 298.91	203.59	174.98	A1 5
	V-THETA 2	280.06	266.09	259.30	258.95	271.42	279.14	291.84	265.97 298.85	288.42 307.9a	V2 ZA V-THETA Z
	V-THETA 2A	16.65	16.32	14.75	14.71	17.11	21.43	22.90	22.16	21.09	V-THETA ZA
	M Z M ZA	0.3767 0.2976	0-3642 0-3029	0.3903 0.3093	0.3993	0.4036	0.3571	0.3296	0.3260	0.3129	M 2
	TURN (PK)	30.613	35.432	31.994	0.3427 33.231	0.3421 34.301	0.3076 40.481	0.2647 47.268	0.2530 51.258	0-2548	M ZA
	UUBAR	0.0729	0.0860	0.0864	0.0170	0.0316	-0.0296	0.0392	0.0506	50.168 0.0338	TURN(Pk) UUSAR
	LOSS PARA	0.0245	0.0293	0.0297	0.0060	0.0117	-0.0114	0.0155	0.0203	0.0136	LOSS PARA
	UFAC EFFP	0-4156 0-8129	0.4649 6.7669	0.396D 0.7764	0.3330 0.9381	0.3579 0.8923	0.3841	0.4619	0.5144	0.5118	DFAC
	INCLO	-8.714	->.215	-3.065	-2.603	0.243	1.1109 8.186	0.8928 12.988	0.8661 12.567	0.9023 1.200	EFFP INCID
	DEAM	11.672	14.052	13.740	13.165	13.562	15.205	16.819	17,105	9.031	DEAM
	P 2	16.639	16-68-	16.727	16.845	16.850	16.490	16.305	16.253	16.243	P 2
	P 2A	16.526 539.680	16.547 538.120	16.583 536.900	16.815 537.500	16.794	16-531	16-258	16.197	16.207	P 2A
	T ZA	539.680	538-120	536.900	537.500	538.200 538.200	540.000 540.000	542.050 542.050	542.820 542.820	544.250 544.250	T 2 T 2A
	UUEAR FS	0.0507	0.0586	0.0598	0.0111	0.0256	0.0379	0.0756	0.0922	0.1028	UUBAR FS
	PZ FS LOSS PARA F	16.602	16.638	16.680	16.834	16.039	14.587	16.350	14.304	14.325	P2 FS
	CUJS FARA F	2 440110	0.0199	0.0205	0.0039	0.0094	0-0146	0.0298	0.0368	0.0413	LOSS PARA FS

Table A-7. Overall Performance - Stage D, Circumferential Distortion

Equivalent		ROTOR			STAGE	
Weight Flow, lb/sec	$\overline{P}_{2}/\overline{P}_{1}$	$\eta_{ m ad}$	$\eta_{ m p}$	$\overline{P}_{2A}/\overline{P}_{1}$	$\eta_{ m ad}$	$\eta_{ m p}$
	:	100% Design	n Equivalent Rot	tor Speed		
116.07	1.2386	0.8472	0.8517	1.2163	0.7731	0.7794
*101.60	1.2835	0.9596	0.9610	1.2643	0.8998	0.9030
* 90.59	1.2809	0.8613	0.8661	1. 2478	0.7674	0.7745
		90% Design	n Equivalent Rot	or Speed		
107.38	1. 197 3	0.8930	0.8957	1. 1839	0.8358	0.8398
90.90	1.2257	0.9556	0.9568	1.2085	0.8874	0.8903
* 79.78	1. 2252	0.8622	0.8661	1.2013	0.7763	0.7821
		70% Design	Equivalent Rot	or Speed		
87.12	1. 1216	0. 9 488	0.9496	1. 1142	0.8928	0.8948
73.45	1.1368	1.0113	1.0111	1. 1286	0.9536	0.9540
6 1. 84	1. 1371	0.8612	0.8637	1. 1233	0.7776	0.7816

NOTE: *Data taken at multiple screen positions.

Table A-8. Blade Element Performance
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60
Circumferential Distortion
Station 1 (16°) - Station 2 (6°) - Station 2A (355°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	4.536	2.728	-2.335	-2.344	-1.592	-1.615	-1.397	-1.789	-1.911	BETA 1
STATION 2	BETA 2	54.082	53.791	53.121	48.012	46.003	44.969	46.586	50.313	55.454	BETA 2
	BETAIPR) 1	61.321	61.313	61.633	60.913	61.138	62.909	64.280	65.590	68.877	BETA(PR) 1
	BETA(PR) 2	24.743	18.205	27.790	30.027	33.114	35.850	39.363	42.693	47.623	BETA(PR) 2
	V 1	316.45	325.15	340.82	365.18	377.26	366.75	356.36	340.06	291.55	V 1
	¥ 2	558.99	610.08	553.46	565.23	568.69	570.75	555.34	532.44	505.25	v 2
	V2 1	315.45	324.77	340.53	364.88	377.10	366.55	356.19	339.84	291.36	VZ 1
	VZ 2	327.91	360.39	332.14	378.11	394.89	403.37	381.04	339.48	286.15	V2 2
	V-THETA 1	25.03	15.47	-13.89	-14.94	-10.48	-10.33	-8.69	-10.61	-9.72	V-THETA 1
	V-THETA 2	452.70	492.25	442.71	420.11	408.96	402.93	402.74	409.09	415.63	V-THETA 2
	V(PR) 1	657.3	676.6	716.7	750.6	781.2	804.9	820.8	822.4	808.5	V(PR) 1
•	V(PR) 2	361.1	379.4	375.4	436.7	471.7	498.3	493.9	462.8	425.3	V(PR) 2
	VTHETA PRI	-576.7	-593.5	-630.7	-655.9	-684.2	-716.6	-739.5	-748.8	-754.2	VTHETA PRI
	VTHETA PR2	-151.1	-118.5	-175.0	-218.5	-257.6	-291.5	-312.6	-313.2	-313.6	VTHETA PRZ
	V 1 .	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	U 2	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	Ü Ž
	M 1	0.2857	0.2937	0.3082	0.3306	0.3418	0.3321	0.3225	0.3075	0.2629	MI
	Ħ 2	0.4894	0.5376	0.4860	0.4965	0.4990	0.5018	0.4864	0.4649	0.4399	M 2
	M(PR) 1	0.5935	0.6112	0.6480	0.6796	0.7079	0.7289	0.7428	0.7435	0.7292	M(PR) 1
	M{PR} 2	0.3161	0.3343	0.3297	0.3836	0.4139	0.4381	0.4326	0.4041	0.3703	M(PR) 2
	TURN(PR)	36.578	43.108	33.843	30.888	28.041	27.113	25.010	23.003	21.365	TURN (PR)
	P 1	13.302	13.472	13.519	13.548	13.564	13.595	13.629	13.629	13.452	P 1
	P 2	18.227	18.804	18.169	18.399	18.517	18.684	18.526	18.287	18.048	P 2
•	T 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	T 1
	T 2	568.911	566.964	565.050	565.941	567.361	565.513	568.034	569.384	570.168	Ť 2
							,,,,,,,,	,000,054	307,304	2101100	1 4
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.B48	38.919	39.276	39.633	DIA
STATION 2	BETA 2	54.082	53.791	53.121	48.012	46.003	44.969	46.586	50.313	55.454	BETA 2
STATION 2A	BETA 2A	2.031	1.978	0.641	0.077	3.093	3.831	4-651	5.306	4.926	BETA 2A
	V 2	558.99	610.08	553.46	565.23	568.69	570.75	555.34	532.44	505.25	V 2
	V 2A	406.71	399.91	392.36	416.13	443.75	466.37	441.45	426.96	430.09	V ZA
	VZ 2	327.91	360.39	332.14	378.11	394.89	403.37	381.04	339.48	286.15	VZ 2
	VZ 2A	406.45	399.67	392.32	416.09	443.01	465.16	439.78	424.89	428.19	VZ ZA
	V-THETA 2	452.70	492.25	442.71	420.11	408.96	402.93	402.74	409.09	415.63	V-THETA 2
	V-THETA 2A	14.41	13.80	4.39	0.56	23.94	31.15	35.78	39.46	36.90	V-THETA 2A
	M 2	0.4894	0.5376	0.4860	0.4965	0.4990	0.5018	0.4864	0.4649	0.4399	H 2
	M ZA	0.3514	0.3460	0.3398	0.3607	0.3849	0.4057	0.3826	0.3693	0.3718	M ZA
	TURN (PR)	52.050	51.812	52.480	47.933	42.890	41.079	41.839	44.902	50.426	TURN (PR)
	P 2	18.227	18.804	18.169	18.399	18.517	18.684	18.526	18.287	18.048	P 2
	P 2A	17.912	17.825	17.778	17.952	18.170	18.361	18.157	18.049	18.062	P 2A
	<u>T</u> 2	568.911	566.964	565.050	565.941	567.361	565.513	568.034	569.384	570.168	T 2
	T ZA	571.067	569.328	567.570	568 - 224	569.385	567.875	570.196	571.433	572.178	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (46°) - Station 2 (36°) - Station 2A (25°)

RUTOR D												
STATION 1 SETA 1	RUTOR D			90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
STATION 2		DIA	33.234	33.617	34,001	35.151	36.665	38.219	39.371	39.754	40.138	DIA
STATION 2	STATION 1	BETA 1	5.541	5.131	4.687	3.733	4.174	2.028	2.670	3.207		
BETAIPR 1 52.278 51.402 51.103 50.617 52.38 54.715 57.125 58.323 61.712 BETAIPR 2 62.625 27.153 26.600 29.349 31.333 36.044 39.603 43.741 51.433 BETAIPR 2 V 1 434.99 455.45 606.15 500.49 490.22 487.93 459.06 441.00 384.71 V 1 V 2 569.74 568.55 579.43 599.67 603.49 588.31 560.39 523.15 641.72 V 2 V 2 V 2 V 2 V 32.94 473.62 466.56 499.43 488.90 487.56 458.48 440.50 383.32 V 1 V 2 V 7	STATION 2	BETA 2	45.619	45.766	45.665	40.276	39.363					
BETAIPR) 2 26-263 27-153 26-600 29-369 31.333 36.044 39.643 43.741 51.453 8ETAIPR) 2 V 1 43-99 455-55 468.15 500.49 490.22 487.93 490.6 441.06 384.71 V 1 V 2 560-74 568.55 579.43 593.67 603.49 588.31 560.39 523.15 461.72 V 2 V 2 1 432-94 453.62 466.56 499.43 488.90 487.56 588.48 440.30 383.22 V 1 V 2 7 398.49 396.61 404.94 452.91 466.39 458.95 426.01 373.59 307.44 V 2 V-THETA 1 42.00 40.73 38.25 32.59 35.68 17.26 21.38 24.67 32.21 V-THETA 1 V-THETA 2 407.19 407.36 414.45 383.77 382.59 360.40 362.35 364.75 383.40 V-THETA 2 VIPR) 1 707.6 727.1 743.2 767.1 803.8 844.1 844.7 888.5 808.9 V/RN 1 VIPR) 2 4044.4 445.7 453.1 519.7 546.3 568.4 554.4 518.1 494.1 VIPR) 2 VIHETA PR1 -559.7 -568.3 -578.5 -608.4 -638.0 -608.0 -709.4 -713.5 -712.2 VIHETA PR1 VIHETA PR2 -106.6 -703.4 -203.3 -254.9 -283.9 -334.0 -353.0 -357.5 -385.9 VIHETA PR2 VI 1 601.81 609.20 616.77 640.97 673.77 673.77 730.62 573.0 -357.5 -385.9 VIHETA PR2 VI 2 603.82 160.77 6.40.97 673.77 673.77 730.62 5730.76 733.21 744.46 U 1 V 2 603.82 160.77 6.50.60 0.5167 0.5298 0.5387 73 0.713.3 722.88 729.26 U 2 VI 1 604.87 0.6437 0.6624 0.6777 0.7196 0.7343 0.7709 0.7631 0.7691 0.7691 0.7293 NIHER PR2 VINNIPRI 2 0.3944 0.3944 0.4641 0.4638 0.4876 0.6591 0.7697 0.7690 0.7333 NIHER PR2 VINNIPRI 2 0.6437 0.6624 0.6777 0.7196 0.7343 0.7709 0.7697 0.7630 0.7633 0.7659 0.7659 1 1.6791 0.7691 0.7691 0.7691 0.7697 0.7690 0.7333 NIHER PR2 VI 1 158.699 518		SETA (PR) 1	52.278	51.402	51.113							
V V V V V V V V V V		BETAIPR) 2	26.263									
V 2 569.74 568.55 579.43 593.67 603.49 584.31 500.39 522.15 401.72 V 2 V 2 378.49 456.62 466.65 494.43 468.90 487.56 456.84 40.30 383.32 V 1 V 2 V 7 HETA 1 42.00 40.73 38.25 32.59 35.68 17.26 21.38 24.67 373.59 307.44 V 2 V 7 HETA 1 42.00 40.73 38.25 32.59 35.68 17.26 21.38 24.67 32.21 V 7 HETA 1 V 7 HETA 2 407.19 407.36 416.45 383.77 382.59 360.40 362.35 364.75 343.40 V 7 HETA 2 V 19R1 2 V 19R1 2 444.4 445.7 453.1 519.7 546.3 568.4 554.4 518.1 494.1 V 19R1 2 V 7 HETA PR1 -557.7 568.3 578.5 560.4 6-36.0 568.4 554.4 518.1 494.1 V 19R1 2 V 7 HETA PR2 -196.6 -203.4 -203.3 -254.9 -283.9 -334.0 -353.0 -357.5 -385.9 V 7 HETA PR2 V 19R1 2 V		V 1										
V2 1		V 2										
V		V2 1	432.94									
V-THETA 1												
V-THETA 2												
VIPR) 1												
VIPR1 2												
VTHETA PRI												
VTHETA PR2									-7004			
U 1 601.71 609.02 616.77 640.97 673.70 706.25 730.76 738.21 744.46 U 1 U 2 603.82 610.78 617.75 638.65 666.52 694.39 715.32 722.28 729.26 U 2 8 1 0.3957 0.4149 0.4269 0.4576 0.4478 0.4456 0.4183 0.4014 0.3467 M 1 0.3957 0.4149 0.4269 0.4576 0.4478 0.4456 0.4183 0.4014 0.3467 M 1 1 0.3957 0.4149 0.4269 0.4576 0.4478 0.4456 0.4183 0.4014 0.3467 M 1 1 0.4037 0.5056 0.5167 0.5298 0.5387 0.5213 0.4961 0.4633 0.4065 M 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
U 2 603.82 610.78 617.75 638.65 66.52 60.439 713.32 722.28 729.26 U 2 H 1 0.3997 0.4149 0.4269 0.4576 0.4478 0.4456 0.4183 0.4014 0.3467 H 1 H 2 0.5057 0.5056 0.5167 0.5298 0.5387 0.5213 0.4981 0.4633 0.4005 H 2 HIPR) 1 0.6437 0.6624 0.6777 0.7196 0.7343 0.7709 0.7697 0.7630 0.7333 M[PR] 1 HIPR) 2 0.3944 0.3964 0.4041 0.4638 0.4876 0.5071 0.4927 0.4589 0.4350 M[PR] 2 TURN[PR] 2 6.015 24.250 24.453 21.250 21.222 18.725 17.574 14.687 14.572 P 1 P 1 14.585 14.748 14.830 15.073 15.010 15.119 14.947 14.887 14.572 P 1 P 2 18.267 18.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 T 1 518.699 518.6												
N 1												
M 2												
MIPR] 1												
MIPR 2												
TURN (PR) 26.015 24.250 24.453 21.250 21.222 18.725 17.574 14.687 10.366 TURN (PR) P 1 14.585 14.748 14.830 15.073 15.010 15.119 14.947 14.887 14.572 P 1 17.650 P 2 18.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 2 1 1 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 7 1 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.343 554.737 T 2 STATOR D PCT SPAN 95.00 90.00 85.00 70.00 50.00 30.00 15.00 10.00 5.00 PCT SPAN DIA 33.207 33.564 33.921 34.992 36.420 37.848 38.919 39.276 39.633 DIA STATION 2 8ETA 2 45.619 45.766 45.665 40.276 39.363 38.142 40.384 44.314 48.163 BETA 2 45.619 45.766 45.665 40.276 39.363 38.142 40.384 44.314 48.163 BETA 2 45.619 45.766 45.665 40.276 39.363 38.155 4.118 45.779 4.292 BETA 2A 419.21 414.33 409.47 448.00 477.41 480.41 437.10 421.25 418.89 Y 2A Y 2 398.49 396.61 404.94 452.91 466.39 458.95 426.01 373.59 307.44 Y 2 2 Y 2 Y 2 Y 2 Y 2 Y 2 Y 2 Y 2 Y 2												
P 1												
P 2 18.267 18.262 18.402 18.661 18.877 18.781 18.592 18.201 17.660 P 2 T 1 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 T 1 7 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2												
T 1 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 T 1 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2 STATOR D PCT SPAN 95.00 90.00 85.00 70.00 50.00 30.00 15.00 10.00 5.00 PCT SPAN D1A 33.207 33.564 33.921 34.992 36.420 37.848 38.919 39.276 39.633 D1A STATION 2 BETA 2 45.619 45.766 45.665 40.276 39.363 38.142 40.384 44.314 48.163 BETA 2 STATION 2A 5ETA 2A 1.825 2.453 1.809 1.563 2.363 3.155 4.118 4.579 4.292 BETA 2A V 2 569.74 568.55 579.43 593.67 603.49 584.31 560.39 523.15 461.72 V 2 V 2 4 419.21 414.33 409.47 448.00 477.41 480.41 437.10 421.25 418.89 V 2A V 2 2 398.49 396.61 404.94 452.91 466.39 458.95 426.01 373.59 307.44 V 2 V 2 2 4 419.00 413.94 409.25 447.78 476.90 479.50 435.75 419.67 417.41 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V												
T 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2 STATUR D PCT SPAN 95.00 90.00 85.00 70.00 50.00 30.00 15.00 10.00 5.00 PCT SPAN 01A 33.207 33.564 33.921 34.992 36.420 37.848 38.919 39.276 39.633 DIA 34.942 36.919 39.276 39.633 DIA 34.942 36.942 39.291 39.291 39.363 38.142 40.384 44.314 48.163 BETA 2 45.764 47.764 48.064 37.10 421.25 418.89 42.94 47.41 48.064 47.41 480.41 437.10 421.25 418.89 42.4 47.41 480.4												
STATOR D PCT SPAN 95.00 90.00 85.00 70.00 50.00 30.00 15.00 10.00 5.00 PCT SPAN 01A 33.207 33.564 33.921 34.992 36.420 37.848 38.919 39.276 39.633 DIA STATION 2 BETA 2 45.619 45.766 45.665 40.276 39.363 38.142 40.384 44.314 48.163 BETA 2 45.619 45.766 45.665 40.276 39.363 38.142 40.384 44.314 48.163 BETA 2 45.619 45.766 45.665 40.276 39.363 38.142 40.384 44.314 48.163 BETA 2 40.384 41.314 41.314 41.314 41.314 41.314 41.315 41.315 41.318 41.315 41.318 41.315 41.318 41.315 41.318 41.315 41.318 41.315 41.318 41												
OIA 33.207 33.564 33.921 34.992 36.420 37.448 38.919 39.276 39.633 DIA STATION 2 BETA 2 45.619 45.766 45.665 40.276 39.363 38.142 40.384 44.314 48.163 BETA 2 STATION 2A SETA 2A 1.825 2.453 1.809 1.583 2.363 3.155 4.118 4.579 4.292 BETA 2A V 2 569.74 568.55 579.43 593.67 603.49 584.31 560.39 523.15 461.72 V 2 V 2A 419.21 414.33 409.47 448.00 477.41 480.41 437.10 421.25 418.89 V 2A VZ 2 398.49 396.61 404.94 452.91 466.39 458.95 426.01 373.59 307.44 VZ 2 VZ 2A 419.00 413.94 409.25 447.78 476.90 479.50 435.75 419.67 417.41 VZ 2A V-THETA 2 407.19 407.36 414.45 383.77 382.59 360.40 362.35 364.75 343.40 V-THETA 2 V-THETA 2 407.19 407.36 414.45 383.77 382.59 360.40 362.35 364.75 343.40 V-THETA 2 V-THETA 2 407.19 407.36 414.45 383.77 319.68 26.43 31.37 33.61 31.33 V-THETA 2 V-THETA 2 407.19 407.36 414.45 383.77 319.68 26.43 31.37 33.61 31.33 V-THETA 2 V-THETA 2 407.19 407.36 414.45 383.77 319.68 26.43 31.37 33.61 31.33 V-THETA 2 V-THETA 2 407.19 407.36 414.45 383.77 319.68 26.43 31.37 33.61 31.33 V-THETA 2A M 2 0.5057 0.5056 0.5167 0.5298 0.5367 0.5213 0.4981 0.4663 0.4065 M 2 M 2 A 0.3674 0.3637 0.3600 0.3947 0.4212 0.4241 0.3844 0.3699 0.3672 M 2A TURN(PR) 43.793 43.312 43.856 38.691 36.980 34.929 36.170 39.628 43.762 TURN(PR) P 2 18.267 18.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 P 2 A 18.053 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2A T 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2		, 2	2224243	223-102	221-223	221.410	222.627	551.247	552.882	553.363	554.737	T 2
OIA 33.207 33.564 33.921 34.992 36.420 37.448 38.919 39.276 39.633 DIA STATION 2 BETA 2 45.619 45.766 45.665 40.276 39.363 38.142 40.384 44.314 48.163 BETA 2 STATION 2A SETA 2A 1.825 2.453 1.809 1.583 2.363 3.155 4.118 4.579 4.292 BETA 2A V 2 569.74 568.55 579.43 593.67 603.49 584.31 560.39 523.15 461.72 V 2 V 2A 419.21 414.33 409.47 448.00 477.41 480.41 437.10 421.25 418.89 V 2A VZ 2 398.49 396.61 404.94 452.91 466.39 458.95 426.01 373.59 307.44 VZ 2 VZ 2A 419.00 413.94 409.25 447.78 476.90 479.50 435.75 419.67 417.41 VZ 2A V-THETA 2 407.19 407.36 414.45 383.77 382.59 360.40 362.35 364.75 343.40 V-THETA 2 V-THETA 2 407.19 407.36 414.45 383.77 382.59 360.40 362.35 364.75 343.40 V-THETA 2 V-THETA 2 407.19 407.36 414.45 383.77 319.68 26.43 31.37 33.61 31.33 V-THETA 2 V-THETA 2 407.19 407.36 414.45 383.77 319.68 26.43 31.37 33.61 31.33 V-THETA 2 V-THETA 2 407.19 407.36 414.45 383.77 319.68 26.43 31.37 33.61 31.33 V-THETA 2 V-THETA 2 407.19 407.36 414.45 383.77 319.68 26.43 31.37 33.61 31.33 V-THETA 2A M 2 0.5057 0.5056 0.5167 0.5298 0.5367 0.5213 0.4981 0.4663 0.4065 M 2 M 2 A 0.3674 0.3637 0.3600 0.3947 0.4212 0.4241 0.3844 0.3699 0.3672 M 2A TURN(PR) 43.793 43.312 43.856 38.691 36.980 34.929 36.170 39.628 43.762 TURN(PR) P 2 18.267 18.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 P 2 A 18.053 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2A T 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2	STATED D	DCT SDAN	95.00	90.00	95.00	70.00	E0 00	20.00	17.00			*** ****
STATION 2 BETA 2 45.619 45.766 45.665 40.276 39.363 38.142 40.384 44.314 48.163 BETA 2 STATION 2A SETA 2A 1.825 2.453 1.809 1.583 2.363 3.155 4.118 4.579 4.292 BETA 2A V 2 569.74 568.55 579.43 593.67 603.49 584.31 560.39 523.15 461.72 V 2 V 2A 419.21 414.33 409.47 448.00 477.41 480.41 437.10 421.25 418.89 V 2A V 2 398.49 396.61 404.94 452.91 466.39 458.95 426.01 373.59 307.44 V 2 2 V 2 A 419.00 413.94 409.25 447.78 476.90 479.50 435.75 419.67 417.41 V 2 2A V THETA 2 407.19 407.36 414.45 383.77 382.59 360.40 362.35 364.75 343.40 V THETA 2 V THETA 2 A 13.35 17.73 12.93 12.37 19.68 26.43 31.37 33.61 31.33 V THETA 2 A 2 0.5057 0.5056 0.5167 0.5288 0.5387 0.5213 0.4981 0.4653 0.4065 M 2 M 2 A 0.3674 0.3637 0.3600 0.3947 0.4212 0.4241 0.3844 0.3699 0.3672 M 2 A 10.4067 18.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 P 2 A 18.505 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2 A 18.505 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2 A 18.505 35.482 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2	JIAION D											
STATION 2A	STATION 2											
V 2 569.74 568.55 579.43 593.67 603.49 584.31 560.39 523.15 461.72 V 2 V 2A 419.21 414.33 409.47 448.00 477.41 480.41 437.10 421.25 418.89 V 2A V 2 398.49 396.61 404.94 452.91 466.39 458.95 426.01 373.59 307.44 V 2 V 2 4 419.00 413.94 409.25 447.78 476.90 479.50 435.75 419.67 417.41 V 2 2A V—THETA 2 407.19 407.36 414.45 383.77 382.59 360.40 362.35 364.75 343.40 V—THETA 2 V—THETA 2 13.35 17.73 12.93 12.37 19.68 26.43 31.37 33.61 31.33 V—THETA 2 V—THETA 2 0.5057 0.5056 0.5167 0.5298 0.5387 0.5213 0.4981 0.4633 0.4065 M 2 M 2 0.3674 0.3637 0.3600 0.3947 0.4212 0.4241 0.3844 0.3699 0.3672 M 2A TURN(PR) 43.793 43.312 43.856 38.691 36.880 34.929 36.170 39.628 43.762 TURN(PR) P 2 16.267 18.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 P 2 A 18.053 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2A T 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2												
V 2A 419.21 414.33 409.47 448.00 477.41 480.41 437.10 421.25 418.89 V 2A VZ 2 398.49 396.61 404.94 452.91 466.39 458.95 426.01 373.59 307.44 VZ 2 VZ 2A 419.00 413.94 409.25 447.78 476.90 479.50 435.75 419.67 417.41 VZ 2A V—THETA 2 407.19 407.36 414.45 383.77 382.59 360.40 362.35 364.75 343.40 V—THETA 2 V—THETA 2 13.35 17.73 12.93 12.37 19.68 26.43 31.37 33.61 31.33 V—THETA 2 M 2 0.5057 0.5056 0.5167 0.5298 0.5387 0.5213 0.4981 0.4633 0.4065 M 2 0.3674 0.3637 0.3600 0.3947 0.4212 0.4241 0.3844 0.3699 0.3672 M 2A TURN(PR) 43.793 43.312 43.856 38.691 36.980 34.929 36.170 39.628 43.762 TURN(PR) P 2 16.267 16.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 P 2A 18.053 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2A 15.053 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2	31811UF 28											
VZ 2 398.49 396.61 404.94 452.91 466.39 458.95 426.01 373.59 307.44 VZ 2 VZ 2A 419.00 413.94 409.25 447.78 476.90 479.50 435.75 419.67 417.41 VZ 2A V—THETA 2 407.19 407.36 414.45 383.77 382.59 360.40 362.35 364.75 343.40 V—THETA 2 V—THETA 2A 13.35 17.73 12.93 12.37 19.68 26.43 31.37 33.61 31.33 V—THETA 2A M 2 0.5057 0.5056 0.5167 0.5298 0.5387 0.5213 0.4981 0.4633 0.4065 M 2 M 2A 0.3674 0.3637 0.3600 0.3947 0.4212 0.4241 0.3844 0.3699 0.3672 M 2A TURN(PR) 43.793 43.312 43.856 38.691 36.980 34.929 36.170 39.628 43.762 TURN(PR) P 2 16.267 18.262 18.402 18.661 18.879 18.761 18.592 18.201 17.660 P 2 P 2A 18.053 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2A 15.053 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2												
VZ 2A 419.00 413.94 409.25 447.78 476.90 479.50 435.75 419.67 417.41 VZ 2A V—THETA 2 407.19 407.36 414.45 383.77 382.59 360.40 362.35 364.75 343.40 V—THETA 2 V—THETA 2A 13.35 17.73 12.93 12.37 19.66 26.43 31.37 33.61 31.33 V—THETA 2A M 2 0.5057 0.5056 0.5167 0.5298 0.5387 0.5213 0.4981 0.4633 0.4065 M 2 M 2A 0.3674 0.3637 0.3600 0.3947 0.4212 0.4241 0.3844 0.3699 0.3672 M 2A TURN(PR) 43.793 43.312 43.856 38.691 36.980 34.929 36.170 39.628 43.762 TURN(PR) P 2 18.267 18.262 18.402 18.661 18.879 18.761 18.592 18.201 17.660 P 2 P 2A 18.053 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2A T 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2												
V-THETA 2 407.10 407.36 414.45 383.77 382.59 360.40 362.35 364.75 343.40 V-THETA 2 V-THETA 2A 13.35 17.73 12.93 12.37 19.68 26.43 31.37 33.61 31.33 V-THETA 2A												
V-THETA 2A 13.35 17.73 12.93 12.97 19.68 26.43 31.37 33.61 31.33 V-THETA 2A M 2 0.5057 0.5056 0.5167 0.5298 0.5387 0.5213 0.4981 0.4633 0.4065 M 2 M 2A 0.3674 0.3637 0.3600 0.3947 0.4212 0.4241 0.3844 0.3699 0.3672 M 2A TURN(PR) 43.793 43.312 43.856 38.691 36.980 34.929 36.170 39.628 43.762 TURN(PR) P 2 16.267 18.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 P 2A 18.053 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2A T 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2												
M 2												
M 2A 0.3674 0.3637 0.3600 0.3947 0.4212 0.4241 0.3844 0.3699 0.3672 M 2A TURN(PR) 43.793 43.312 43.856 38.691 36.980 34.929 36.170 39.628 43.762 TURN(PR) P 2 16.267 18.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 P 2A 18.053 18.001 17.971 18.296 18.538 18.126 18.002 17.975 P 2A 18.053 553.182 553.283 553.182 553.283 553.182 553.283 553.787 T 2												
TURN(PR) 43.793 43.312 43.856 38.691 36.980 34.929 36.170 39.628 43.762 TURN(PR) P 2 16.267 18.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 P 2A 18.053 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2A T 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2												
P 2 16.267 16.262 18.402 18.661 18.879 18.781 18.592 18.201 17.660 P 2 P 2A 18.053 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2A T 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2												
P 2A 18.053 18.001 17.971 18.296 18.535 18.538 18.126 18.002 17.975 P 2A T 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2												TURN(PR)
T 2 555.243 553.182 551.253 551.916 552.657 551.247 552.882 553.363 554.737 T 2												
										18.002		
T ZA 556.Z66 554.260 552.349 552.757 553.550 553.132 553.850 554.389 555.998 T 2A												
		1 2 A	556.266	554.260	552.349	552.757	553.550	553.132	553.850	554.389	555.998	T 2A

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101,60
Circumferential Distortion
Station 1 (76°) - Station 2 (66°) - Station 2A (55°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	1.559	1.267	0.923	1.444	0.970	1.014	0.770	1.180	1.652	BETA 1
STATION 2	BETA 2	43.284	40.256	38.972	37.455	36.389	36.041	37.318	40.291	43.465	BETA 2
	BETA (PR) 1	54.561	52.908	51.584	50.600	52.668	54.823	57.615	58.711	59.703	
	BETA (PR) 2		25.807	26.798	28.297	30.654	34.291	37.146	40.416		BETA(PR) 1
	V 1	420.26	453.01	483.03	515.99	507.37	491.79			45.470	BETA(PR) 2
	v ž	595.94	601.61	604.68	616.77	622.99		459.70	443.27	427.99	V 1
	VZ 1	420.10	452.89				610.08	593.10	558.47	512.56	V 2
	VZ Z	433.81		482.96	515.83	507.27	491.65	459.57	443.10	427.77	VZ 1
	V-THETA 1	11.43	459.12	470-11	489.59	501.28	492.63	470.65	425-04	371.24	VZ 2
			10.02	7.78	13.00	8.59	8.70	6.18	9-13	12.34	V-THETA 1
,	V-THETA 2	408.58	388.76	380.31	375.06	369.43	358.45	358.78	360.34	351.87	V-THETA 2
	V(PR) I	724.5	750.9	777.3	812.7	836.5	853.4	858.1	853.2	848.0	Y(PR) 1
	V(PR) 2	475.7	510.0	526.7	556.1	583.0	597.1	591.8	559.5	530.4	V(PR) 2
	VTHETA PRI	-590.3	-599.0	-609.0	-6 28.0	-665.1	-697.6	-724.6	-729.1	-732.1	VTHETA PRI
•	VTHETA PRZ	-195.2	-222.0	-237.4	-263.6	-297.1	-335.9	~356.5	-361.9	-377.4	VTHETA PR2
	U 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	Ul
	Ų 2	603.82	610.7B	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U Z
	M 1	0.3819	0.4126	0.4410	0.4724	0.4641	0.4493	0.4189	0.4034	0.3891	H 1
	M 2	0.5288	0.5352	0.5391	0.5498	0.5552	0.5448	0.5269	0.4943	0.4516	H 2
	M(PR) 1	0.6583	0.6840	0.7096	0.7440	0.7652	0.7797	0.7820	0.7766	0.7709	M(PR) 1
	M(PR) 2	0.4221	0.4537	0.4696	0.4957	0.5196	0.5332	0.5257	0.4952	0.4673	M(PR) 2
	TURN (PR)	30.330	27.101	24.786	22.304	22.030	20.584	20.560	18.399	14.342	TURN (PR)
	P 1	14.432	14.737	14.955	15.169	15.144	15.075	14.936	14.855	14.789	P 1
	P 2	18.709	18.782	18.816	19.018	19.191	19.169	19.040	18.657	18.217	P 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	T 1
	T 2	558.061	555.905	553.939	555.346	556.274	552.824	556.623	557.200	557.925	
	_				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	33002.14	2224024	220.023	3774200	2216723	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	43.284	40.256	38.972	37.455	36.389	36.041	37.318	40.291	43.465	BETA 2
STATION 2A	BETA ZA	1.806	2.788	2.710	2.702	1.904	2.598	3.529	3.896	3,685	BETA 2A
	V 2	595.94	601.61	604.68	616.77	622.99	610.0B	593.10	558.47	512.56	V 2
	V 2A	442.34	448.07	443.28	492.18	529.67	533.53	493.15	469.48	455.33	V ZA
	V2 2	433.81	459.12	470.11	489.59	501.28	492.63	470.65	425.04	371.24	VZ 2
	VZ ZA	442.12	447.53	442.76	491.58	529.26	532.78	491.96	468.13	454.07	VZ ZA
	V-THETA 2	408.58	388.76	386.31	375.06	369.43	358.45	358.78	360.34	351.87	V-THETA 2
	V-THETA 2A	13.94	21.79	20.96	23.20	17.59	24.17	30.34	31.88	29.24	V-THETA 2A
	M 2	0.5288	0.5352	0.5391	0.5498	0.5552	0.5448	0.5269	0.4943	0.4516	M 2
	M 2A	0.3881	0.3940	0.3904	0.4345	0.4686	0.4736	0.4349	0.4131	0.3999	M ZA
	TURN (PR)	41.477	37.467	36.262	34.751	34.466	33.386	33.695	36.289		
	P 2	16.709	18.782	18.816	19.018	19.191	19.169	19.040		39.670	TURN (PR)
	P ZA	18.242	16.284	18.252	18.681	19.036	19.053		18.657	16.217	P 2
	Ť 2	558.061	555.905	553.939	555.346	556.274		18.577	18.362	18.218	P 2A
	T 2A	556.977	554.856	552.895			552.824	556.623	557.200	557.925	T 2
		~ / V • / 1 /	0.09ACC	/2Z.073	554.124	554.974	551.753	555.228	555.797	556.620	T ZA

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 98. 91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60

Circumferential Distortion
Station 1 (106°) - Station 2 (96°) - Station 2A (85°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	. 33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	2.377	2,508	2.257	0.735	1.316	1.103	1.918	1.494	2.599	BETA 1
STATION 2	BETA 2	33.791	35.014	38.410	36.395	35.728	35.378	36.460	39.314	42.601	BETA 2
	BETA (PR) 1	55.231	52.759	52.323	53.103	53.496	56.002	59.697	61.874	67.011	BETA(PR) 1
•	BETA(PR) 2	28.321	27.617	25.393	26.844	29.115	32.600	35.764	40.552	45.364	BETA(PR) 2
	V 1	406.38	448.48	462.59	476.66	490.39	470.39	419.20	389.36	310.22	V 1
	V 2	601.40	609.42	621.96	638.22	643.62	631.92	610.90	558.78	513.79	v Ž
	V2 1	406.02	448.04	462.23	476.62	490.24	470.24	418.88	389.17	309.87	VZ 1
	VZ 2	499.80	499.11	487.36	513.70	522.25	514.52	490.23	431.33	377.39	ŸŽ Ž
	V-THETA 1	16.85	19.62	18.22	6.11	11.26	9.05	14.03	10.15	14.07	V-THETA 1
	V-THETA 2	334.47	349.66	386,41	378.67	375.66	365.35	362.22	353.21	347.04	V-THETA 2
	V(PR) 1	712.0	740.4	756.3	793.9	824.1	841.0	830.2	825.6	793.4	V(PR) 1
	V(PR) 2	567.8	563.3	539.5	575.8	598.1	611.6	605.5	568.9	538.2	V(PR) 2
	VTHETA PRI	-584.9	-589.4	-598.6	-634.9	-662.4	-697.2	-716.7	-728.1	-730.4	VTHETA PRI
	VTHETA PR2	-269.3	-261.1	-231.3	-260.0	-290.9	-329.0	-353.1	-369.1	-382.2	VTHETA PR2
	Ul	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	U 2	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U 2
	M 1	0.3689	0.4083	0.4216	0.4349	0.4480	0-4290	0.3809	0.3531	0.2800	M 1
	M 2	0.5339	0.5426	0.5555	0.5705	0.5750	0.5644	0.5437	0.4947	0.4526	
	M(PR) 1	0.6463	0.6741	0.6893	0.7244	0.7528	0.7670	0.7543	0.7486	0.7162	M 2
	M(PR) 2	0.5040	0.5015	0.4818	0.5147	0.5344	0.5463	0.5389	0.5037	0.4741	M(PR) 1
	TURN (PR)	26.910	25.142	26.930	26.261	24.397	23.453	24.022	21.427	21.757	M(PR) 2
	P 1	14.488	14.770	14.868	14.955	15.123	15.008	14.736			TURN (PR)
	P 2	18.792	18.951	19.129	19.356	19.510	19.478	19.280	14.595	14-251	P 1
	T Î	516.699	518.699	518.699	518.699	518.699	518.699	518.699	18.683 518.699	18.241	P 2
	T 2	553.146	555.902	553.893	554.717	555.830	554.864	556.509	556.909	518.699	Ť 1
	-		222102	7726072	JJ 70 1 I 1	333.030	J54.00 4	220.207	220.707	558.223	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	33.791	35.014	38.410	36.395	35.728	35.378	36.460	39.314	42.601	BETA 2
STATION 2A	BETA 2A	2.203	2.636	2.555	2.362	2.094	2.504	3.296	4.082	4.012	BETA ZA
	V 2	601.40	609.42	621.96	638.22	643.62	631.92	610.90	558.78	513.79	V 2
	V 2A	464.51	465.53	463.92	511.26	536.66	542.48	489.67	469.86	459.22	
	V2 2	499.80	499.11	487.36	513.70	522.25	514.52	490.23	431.33		V 2A
	VZ ZA	464.17	465.03	463.44	510.77	536.19	541.76		468.40	377.39 457.77	V2 2
	V-THETA 2	334.47	349.66	386.41	378.67	375.66	365.35	362.22	353.21		VZ 2A
	V-THETA 2A	17.66	21.41	20.68	21.07	19.60	23.69	28.14		347.04	V-THETA 2
	M 2	0.5339	0.5426	0.5555	0.5705	0.5750	0.5644	0.5437	33.43	32.11	V-THETA ZA
	M ZA	0.4077	0.4095	0.4088	0.4517	0.4747	0.4801		0.4947	0.4526	H 2
	TURN (PR)	31.567	32.377	35.855	34.031	33.615		0.4312	0.4130	0.402B	M ZA
	P 2	18.792	18.951	19.129	19.356	19.510	32.818 19.478	33.071	35.127	38.480	TURNIPR)
	P 2A	15.478	18.476	18.460	18.908	19.162	19.478	19.280	18.683	18.241	P 2
	T 2	558.146	555.902	553.693	554.717	555.830	554.864	18.582	18.397	18.294	P ZA
	T ZA	556.029	555.805	553.890	554.849			556.509	556.909	558.223	Ţ 2
			2.2002	-JJ+U7 U	J240047	555.858	555.731	556.615	556.895	556.539	T 2A

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60
Circumferential Distortion
Station 1 (136°) - Station 2 (126°) - Station 2A (115°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	2.607	1.874	1.097	0.806	0.970	1.148	1.363	1.629	1.035	BETA 1
STATION 2	BETA 2	42.805	40.134	38.975	37.498	36.518	35.876	37.673	39.963	43.753	BETA 2
	BETA(PR) 1	52.489	51.418	51.128	50.663	52.293	53.427	57.153	58.051	59.677	BETA(PR) 1
	BETA(PR) 2	24.760	26.107	27.803	29.325	30.624	34.597	36.563	41.537	45.157	BETA(PR) 2
	V 1	446.76	473.76	489.71	519.39	514.19	516.50	464.87	452.61	430.98	V 1
	V 2	593.22	599.27	594.61	605.72	622.72	607.32	598.29	547.88	515-40	V 2
	VZ 1	446.29	473.50	489.62	519.33	514.09	516.32	464.65	452.35	430.87	VZ 1
	VZ 2	435.22	458.15	462.26	480.54	500.23	491.42	472.53	418.98	371.52	VZ Z
	V-THETA 1	20.32	15.49	9.38	7.31	8.70	10.35	11.06	12.86	7.78	V-THETA 1
	V-THETA 2	403.09	386.27	374.00	368.70	370.40	355.42	364.86	351.11	355.69	V-THETA 2
	V(PR) 1	732.9	759.3	780.2	819.3	840.6	866.6	856.7	854.9	853.5	V(PR) 1
	V(PR) 2	479.3	510.2	522.6	551.2	581.6	597.8	589.6	561.0	527.9	V(PR) 2
	VTHETA PRI	-581.4	-593.5	-607.4	-633.7	-665.0	-695.9	-719.7	-725.3	-736.7	VTHETA PRI
	VTHETA PR2	-200.7	-224.5	-243.8	-269.9	-296.1	-339.0	-350.5	-371.2	-373.6	VTHETA PR2
	U 1	601,71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	U 2	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U 2
	M 1	0.4067	0.4322	0.4473	0.4756	0.4706	0.4729	0.4238	0.4122	0.3919	N 1
	M 2	0.5257	0.5324	G-5290	0.5390	0.5543	0.5416	0.5311	0.4838	0.4537	M 2
	M(PR) 1	0.6673	0.6927	0.7126	0.7503	0.7694	0.7933	0.7810	0.7786	0.7761	M(PR) 1
	M(PR) 2	0.4247	0.4533	0.4650	0.4905	0.5178	0.5332	0.5234	0.4954	0.4647	M{PR} 2
	TURN (PR)	27.729	25.312	23.325	21.340	21.686	18.862	20.680	16.618	14.631	TURN (PR)
	P 1	14.583	14.831	14.965	15.197	15.104	15.186	14.875	14.820	14.687	P 1
	P 2	18.733	18.862	18.622	18.974	19.282	19.221	19.181	18.613	18.312	₽ 2
	T 1	518.699	518.699	518.699	518.699	518-699	518.699	518.699	518.699	518.69 9	Ţļ
	T 2	559,249	557.171	555.115	555.993	557.393	553.944	557.931	558.582	559-066	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
JIHION D	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	42.805	40.134	38.975	37.498	36.518	35.876	37.673	39.963	43.753	BETA 2
STATION 2A	BETA 2A	2.511	2.537	2.426	2.042	2.217	2.502	3.161	4.216	4.162	BETA 2A
	V 2	593.22	599.27	594.61	605.72	622.72	607.32	598.29	547.88	515.40	V 2
	V ZA	459.78	467.24	459.87	502.91	538.08	541.77	499.92	477.25	464.55	V 2A
	VZ 2	435.22	458.15	462.26	480.54	500.23	491.42	472.53	415.98	371.52	VZ 2
	VZ ZA	459.33	466.77	459.44	502.54	537,56	541.05	498.91	475.69	463.00	VZ ZA
	V-THETA 2	403.09	386.27	374.00	368.70	370.40	355.42	364.86	351.11	355.69	V-THETA 2
	V-THETA ZA	20.14	20.68	19.46	17.92	20.81	23.64	27.55	35.07	33.69	V-THETA 2A
	M 2	0.5257	0.5324	0.5290	0.5390	0.5543	0.5416	0.5311	0.4838	0.4537	M 2
	M 2A	0.4032	0.4108	0.4049	0.4439	0.4757	0.4805	0.4404	0.4195	0.4077	M ZA
	TURN (PR)	40.293	37.596	36.549	35.454	34.282	33.317	34.41B	35.641	39.482	TURN (PR)
•	P 2	18.733	18.862	18.822	18.974	19.282	19.221	19.181	18.613	18.312	P 2
	P 2A	18.447	18.495	18-433	18.817	19.168	19.187	18.699	18.482	18.354	P 2A
	Ť 2	559.249	557.171	555.115	555.993	557.393	553.944	557.931	558.582	559.066	7 2
	T 2A	558.692	556.505	554.392	555.180	556.484	553.435	556.9 9 5	557.62 9	558.230	T ZA

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60
Circumferential Distortion
Station 1 (166°) - Station 2 (156°) - Station 2A (145°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	1.876	2.032	2.014	2.231	2.062	2.431	2.140	2.326	3.044	BETA 1
STATION 2	BETA 2	42.182	40.194	39.283	36.901	35.854	35.275	37.026	39.779	44.297	BETA 2
	BETA(PR) 1	55.600	53.447	52.546	53.195	55.744	56.876	60.548	62.224	66.865	BETA(PR) 1
	BETA (PR) 2	25.977	26.800	28.034	28.515	30.250	34,550	38.715	41.411	46.043	BETA (PR) 2
	V 1	403.19	440.24	460.38	466.36	448.13	448.86	404.47	361.05	311.49	V 1
	V 2	584.BC	592.29	590.99	617.15	630.04	610.17	577.15	549.41	507.22	V 2
	VZ 1	402.97	439.95	460.09	466.01	447.82	448.40	404-12	380.67	311.02	VZ 1
	VZ Z	433.34	452.42	457.44	493.49	510.42	497.44	459.76	421.27	362.30	¥2 2
	V-THETA 1	13.20	15.61	16.18	18.15	16.12	19.04	15.10	15.46	16.54	V-THETA 1
	V-THETA 2	392.68	382.24	374.18	370.54	368.85	351.88	346.70	350.73	353.52	V-THETA 2
	V(PR) 1	713.3	738.7	756.6	777.9	795.6	820.6	821.9	816.9	791.4	V(PR) 1
	V(PR) 2	482.1	506.9	518.2	561.7	591.2	604.8	590.5	562.9	522.9	V(PR) 2
	VTHETA PRI	-588.5	-593.4	-600.6	-622.8	-657.6	-687.2	-715.7	-722.8	-727.9	VTHETA PRI
	VTHETA PR2	-211.1	-228.5	-243.6	-268.1	~297.7	-342.5	-368.5	-371.6	-375.7	VTHETA PR2
	Ul	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	Ŭ Ž	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	Ŭ Ž
	Mi	0.3659	0.4006	0.4196	0.4252	0.4080	0.4087	0.3671	0.3453	0.2812	M î
	M 2	0.5170	0.5249	0.5245	0.5485	0.5600	0.5418	0.5099	0.4841	0.4447	H Z
	M(PR) 1	0.6474	0.6722	0.6895	0.7092	0.7244	0.7472	0.7460	0.7404	0.7146	M(PR) 1
	M(PR) 2	0.4262	0.4492	0.4599	0.4992	0.5254	0.5371	0.5217	0.4960	0.4585	M(PR) 2
	TURN (PR)	29.623	26.647	24.512	24.682	25.511	22.380	21.924	20.918	20.932	TURN (PR)
	P 1	14.542	14.799	14.940	14.947	14.821	14.931	14.728	14.630	14.316	P 1
	P 2	18.657	10.735	18.727	19.096	19.343	19.242	18.940	18.641	18.251	P 2
	Ti	518-699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	ΤÎ
	Ť 2	560.892	559.134	557.394	558.468	559.811	558.723	560.894	561.204	562.730	Ť Ž
	' -	300.072	237##34	231.374	>30.400	237.011	33001123	2001074	2011104	3021130	•
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
DIN ON D	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	GETA 2	42.182	40.194	39.283	36.901	35.854	35.275	37.026	39.779	44.297	BETA 2
STATION 2A	BETA ZA	2.503	2.671	2.605	2.117	2.012	2.597	3.174	4.032	3.693	BETA ZA
DIMITON EN	V 2	584.80	592.29	590.99	617.15	630.04	610.17	577.15	549.41	507.22	¥ 2
	V ZA	474.79	473.18	476.16	528.17	560.95	569.22	512.88	491.02	479.70	V ŽA
	VZ 2	433.34	452.42	457.44	493.49	510.42	497.44	459.76	421.27	362.30	VZ 2
	VZ ZA	474.34	472.66	475.65	527.76	560.48	568.43	511.83	489.53	478.36	VZ ZA
	V-THETA 2	392.68	382.24	374.18	370.54	366.85	351.88	346.78	350.73	353.52	V-THETA 2
	V-THETA 2A	20.73	22.05	21.64	19.51	19.69	25.78	28.38	34.51	30.88	V-THETA ZA
	M 2	0.5170	0.5249	0.5245	0.5485	0.5600	0.5418	0.5099	0.4841	0.4447	M 2
	M 2A	0.4159	0.4151	0.4183	0.4653	0.4949	0.5026	0.4502	0.4302	0.4193	M ZA
	TURN (PR)	39.678	37-522	36.678	34.782	33.823	32.622	33.758	35.641	40.494	TURN (PR)
	P 2	18.657	16.735	18.727	19-096	19.343	19.242	18.940	18.641	18.251	P 2
	P 2A	18.605	18.586	18.611	19.105	19.435	19.513	18.845	18.625	18.507	P ZA
	1 2	560.892	554.134	557.394	558.468	559.811	558.723	560.894	561.204	562.730	T 2
	T 2A	561.049	559.443	557.971	559.373	560.857	560.729	562-020	562-151	563.854	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (196°) - Station 2 (186°) - Station 2A (175°)

				•							
ROTOR D	PCT SPAN	94.99	90.00	64.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	JIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	2.479	2.457	1.850	2.038	3.647	2.212	2.326	1.846	2.507	BETA 1
STATION 2	BETA 2	42.873	40.600	39.763	38.584	37.085	35.956	37.509	40.768	43.823	BETA 2
	BETA(PR) 1	51.343	49.876	50.566	50.389	51.378	54.096	55.953	57.538	59.468	BETA(PR) 1
	BETA(PR) 2	24.274	26.131	27.493	29.407	30.420	33.793	37.539	39.496	45.016	BETA(PR) 2
	V 1	465.65	495.83	494.38	515.62	513.22	497.84	481.08	460.49	428-47	V 1
	V 2	597.34	596.91	594.20	600.13	622.39	615.95	588.36	566.75	516.69	V 2
	VZ 1	465.21	495.36	494.12	515.29	512.16	497.40	480.60	460.17	428.02	VZ 1
	VZ 2	437.76	453.21	456.76	469.09	496.28	497.90	465.71	428.29	372.02	VZ 2
	V-THETA 1	20.14	21.26	15.96	18.34	32.64	19.21	19.52	14.83	18.74	V-THETA 1
	V-THETA 2	406.41	388.45	380.06	374.26	375.13	361.16	357.47	369.28	357-04	V-THETA 2
	V(PR) I	744.7	768.7	777.9	808.2	820-5	848.2	858.4	857.4	842.6	V(PR) 1
	V(PR) 2	480.2	504.8	514.9	538.5	575.8	600.0	588.6	556.3	527.3	V(PR) 2
	VTHETA PRI	-581.6	-587.8	-600.8	-622.6	-641.1	-687.0	-711.2	-723.4	-725.7	VTHETA PRI
	VTHETA PR2	-197.4	-222.3	-237.7	-264.4	-291.4	-333.2	-357.9	-353.0	-372.2	VTHETA PR2
	U 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738-21	744-46	U 1
	U 2	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U 2
	M 1	0.4245	0.4531	0.4518	0.4720	0.4697	0.4551	0.4391	0.4197	0.3896	# 1
	M 2	0.5300	0.5307	0.5293	0.5347	0.5552	0.5512	0.5228	0.5022	0.4556	M 2
	M(PR) 1	0.6790	6.7025	0.7108	0.7399	0.7510	0.7753	0.7836	0.7814	0.7660	M(PR) 1
	M(PR) 2	0.4261	0.4488	0.4587	0.4798	0.5137	0.5369	0.5230	0.4930	0.4650	M(PR) 2
	TURN (PR)	27.070	23.745	23.073	20.984	20.974	20.355	18.504	18.146	14.563	TURN (PR)
	P 1	14.873	15+093	15.087	15.227	15.173	15.153	15-104	14.961	14.810	P 1
	P 2	16.795	18.815	18.804	18.915	19.269	19.352	19.082	18.841	18.339	P 2
	<u>† 1</u>	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	<u>T 1</u>
	T 2	558.358	556.082	553.772	554.169	555.165	551.279	555.795	556.645	557.333	T 2
										+	
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
67.77eu o	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	42.873	40.600	39.763	38.584	37.085	35.956	37.509	40.768	43.823	BETA 2
STATION 2A	BETA ZA	2.549	2.909	2.892	2.226	1.896	2.675	3.370	4.060	3.570	BETA 2A
	V 2	597.34	596.91	594.20	600.13	622.39	615.95	588.36	566.75	516.69	¥ 2
	V ZA	451-19	453.15	448.65	491.42	534.08	537.20	502.46	480.04	463.50	V ZA
	VŽ 2	437.76	453.21	456.76	469.09	496.28	497.90	465.71	428.29	372.02	VZ 2
	VZ ZA	450.74	452.56	448.06	491.00	533.67	536.42	501.33	478.56	462.27	VZ ZA
	V-THETA 2	406.41	368.45	360.06	374.26	375.13	361.16	357.47	369.28	357.04	V-THETA 2
	V-THETA ZA	20.07	23.00	22.64	19.09	17.67	25.06	29.52	33.97	28.84	V-THETA 2A
	M 2	0.5300	0.5307	0.5293	0.5347	0.5552	0.5512	0.5228	0.5022	0.4556	M 2
	M 2A	6.3951	0.3977	0.3944	0.4332	0.4719	0.4763	0.4425	0.4218	0.4064	H ZA
	TURN (PR) P 2	40.323	37.690	36.871	36.356	35.170	33.224	34.045	36.602	40.143	TURN (PR)
	P 2 A	18.795 18.490	18.815	18.804	18.915	19.269	19.352	19.082	18.841	18.339	P 2
	T 2	55u-350	18.505	18.467	16.826	19.230	19.241	18.813	18.590	18.422	P 2A
	T 2A		556+082	553.772	554.169	555.165	551.279	555.795	. 556.645	557.333	T 2
	1 48	559.546	557.400	555.143	555.614	556.692	553.297	557,455	558.190	559.091	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (226°) - Station 2 (216°) - Station 2A (205°)

00700 0	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
ROTOR D	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
*******	BETA 1	-0.849	0.956	3.878	3.933	3.708	2.607	3.214	4.585	5.917	BETA 1
STATION 1		42.027	40.395	40.209	38.470	37.088	35.951	37.925	40.872	44.102	BETA 2
STATION 2	BETA 2			51.848	51.492	54.199	56.263	58.745	60.820	61.799	BETA(PR) 1
	BETA (PR) 1	56.362	53.958		28.034	31.220	35.100	30.495	43.052	47.411	BETA(PR) 2
	BETA(PR) 2	25 922	26.911	27.374	484-69	465.20	458.28	429.67	395.90	380.25	V 1
	V 1	404.40	437.90	461.08				577.19	531.94	494.69	v ž
	V 2	585.94	590.35	593.43	614.71	613.72	601.50		394.57	370.18	VZ 1
	VZ 1	404.34	437.84	460.02	483.55	464.20	457.75	428.91			VZ 2
	VZ 2	435.25	449-60	453.20	481.26	489.34	486.25	454.32	401.36	354.52	V-THETA 1
	V-THETA 1	~5.99	7.31	31.18	33.24	30.08	20.84	24.09	31.64	39.19	
	V-THETA 2	392.27	382.57	383.10	382.40	369.93	352.65	354.00	347.32	343.58	V-THETA 2
	V(PR) 1	729.9	744.2	744.7	776.6	793.6	824.2	826.7	809.3	800.3	V(PR) 1
	V(PR) 2	483.9	504.2	510.3	545.3	572.5	595.2	581.7	550.4	524.8	V(PR) 2
	VTHETA PRI	-607.7	-601.7	-585.6	-607.7	-643.6	-685.4	-706.7	-706.6	-705.3	VTHETA PRI
	VTHETA PR2	-211.5	-228 + 2	-234.7	-256.3	-296.6	-341.7	-361.3	-375.0	-385.7	VTHETA PR2
	U 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	U 2	603.82	610.76	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U 2
	M 1	0.3671	0.3984	0.4202	0.4426	0.4241	0.4176	0.3907	0.3592	0.3446	H 1
	M 2	0.5203	0.5254	0.5289	0.5482	0.5468	0.5353	0.5122	0.4700	0.4353	M 2
	M(PR) 1	0.6625	0.6770	0.6787	0.7091	0.7235	0.7510	0.7517	0.7342	0.7253	M(PR) 1
	M(PR) 2	0.4297	0.4487	0.4549	0.4863	0.5101	0.5297	0.5162	0.4863	0.4618	M(PR) 2
	TURN (PRI	30.440	27.047	24.474	23.460	22.996	21.216	20.341	17.873	14.498	TURN(PR)
	P 1	14.590	14.838	15.008	15.161	15.056	15.062	14.934	14.766	14.757	P 1
	P 2	18.666	18.769	18.830	19.136	19.191	19.149	18.957	18.459	18.125	P 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	T 1
	Ť 2	556.290	554.396	553.143	554.606	555.605	555.566	556.193	556.606	557.892	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
DIMIGH P	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	42.027	40.395	40.209	38.470	37.088	35.951	37.925	40.872	44.102	BETA Z
STATION 2A	BETA ZA	2.801	3.353	3.383	2.333	2.035	2.674	3.994	4.729	4.493	BETA ZA
31411014 24	V 2	585.94	590.35	593.43	614.71	613.72	601.50	577.19	531.94	494.69	¥ 2
	V ZA	451.00	448.59	451.17	500.98	519.16	527.96	479.10	460.80	447.77	V ZA
	vz 2	435.25	449.60	453.20	481.26	489.34	486.25	454.32	401.36	354.52	V2 2
	VZ ZA	450.46	447.82	450.37	500.51	518.71	527.19	477.70	458.97	446.07	VZ ZA
	V-THETA 2	392.27	382.57	363.10	382.40	369.93	352.65	354.00	347.32	343.58	V-THETA 2
	V-THETA ZA	22.04	26.24	26.62	20.39	18.43	24.62	33.35	37.97	35.05	V-THETA ZA
			0.5254	0.5289	0.5482	0.5468	0.5353	0.5122	0.4700	0.4353	M Z
	M 2	0.5203			0.4428	0.4591	0.4674	0.4220	0.4052	0.3930	H ZA
	M 2A	0.3965	0.3951	0.3979	36.135	35.034	33.220	33.837	36.037	39.500	TURN (PR)
	TURN (PR)	39.225	37.041	36.826		19.191	19.149	18.957	18.459	18.125	P 2
	P 2	18.666	18.769	18.830	19-136			18.589	18.416	16.302	P ZA
	P 2A	18.501	15.482	18.506	18.949	19.093	19.126			557.892	T 2
	T 2	556.290	554.396	553.143	554.606	555.605	555.566	556.193	556.606 555 .7 98	557.002	T 2A
	T 2A	555.195	553.198	551.943	553.469	554.656	554.121	555.417	222 • 140	331.004	1 4R

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (256°) - Station 2 (246°) - Station 2A (235°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	4.037	3.605	3.466	3.101	3.761	2.545	2.544	2.289	3.193	BETA 1
STATION 2	BETA 2	42.486	42.528	42.793	40.682	39.941	38.764	41.930	44.719	50.036	BETA 2
	BETA (PR) 1	52.865	52.514	52.674	53.577	54.334	57.618	60.210	62.167	64.422	BETA (PR) 1
	BETA(PR) 2	24.938	25.580	25.550	30.372	31.808	34.783	39.477	42.973	47.433	BETA(PR) 2
	V 1	433.61	446.45	450.36	455.44	462.73	436.11	408.44	382.07	347.65	V 1
	V 2	592.98	593.73	599.68	582.59	596.68	595.43	559.48	529.93	498.34	Ÿ Ž
	VZ 1	432.53	445.56	449.54	454.78	461.71	435.62	407.96	381.71	347.07	VZ 1
	VZ 2	437.28	437.54	440.05	441.78	457.29	463.68	415.44	375.82	319.57	VZ 2
	V-THETA 1	30.53	28.07	27.23	24.64	30.35	19.36	18.13	15.26	19.36	V-THETA 1
	V-THETA 2	400.49	401.33	407.39	379.75	382.91	372.33	373.14	372.15	381.33	V-THETA 2
	V(PR) 1	716.5	732.1	741.4	766.0	791.9	813.4	821.2	817.6	803. 9	V(PR) 1
	V(PR) 2	482.3	465.1	487.7	512+1	538.4	565.4	539.3	514.7	473.3	V(PR) 2
	VTHETA PRI	-571.2	-580.9	-589.5	-616.3	-643.3	-686.9	-712.6	-723.0	-725-1	VTHETA PRI
	VTHETA PR2	-203.3	-209.4	-210.4	-258.9	-283.6	-322.1	-342.2	-350.1	-347.9	VTHETA PR2
	U 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U I
	U Z	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U 2
	M 1	0.3944	0.4064	0.4101	0.4149	0.4218	0.3967	0.3708	0.3463	0.3144	H 1
	M Z	0.5251	0.5265	0.5328	0.5162	0.5292	0.5280	0.4940	0.4664	0.4369	M 2
	M(PR) 1	0.6516	0.6665	0.6751	0.6976	0.7218	0.7399	0.7456	0.7410	0.7271	M(PR) 1
	M(PR) 2	0.4270	0.4302	0.4334	0.4538	0.4775	0.5013	0.4762	0.4530	0.4149	M(PR) 2
	TURN (PR)	27.928	26.934	27.124	23 . 20 7	22.543	22.888	20.826	19-2 99	17.099	TURN(PR)
	P 1	14.955	15.146	15.156	15.195	15.237	15.142	15.061	14.913	14.719	P 1
	P 2	18.902	18.949	19-046	18.658	19.043	19.097	18.730	18.407	18.140	P 2
	<u>T 1</u>	518.699	518.699	518.699	518-699	518-699	518.699	518.699	518.699	518.699	T 1
	T Z	560.012	558.461	557.065	558.197	558.616	558.735	559.793	560.686	562.123	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00		20.
314158 5	UIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	10.00 39.276	5.00 39.633	PCT SPAN Dia
STATION 2	BETA 2	42.486	42.528	42.793	40.682	39.941	38.764	41.930	44.719	50.036	BETA 2
STATION 2A	BETA ZA	2.947	3.531	3.601	2.470	2.492	2.750	3.900	4.301	4.047	BETA ZA
	V 2	592.98	593.73	599.68	582.59	596.68	595.43	559.48	529.93	498.34	V 2
	V 2A	490.02	485.62	481.73	518.77	532.40	536.79	494.15	472.58	463.83	V 2A
	VZ 2	437.28	437.54	440.05	441.78	457.29	463.68	415.44	375.82	319.57	V2 2
	VZ ZA	489.37	464.68	480.76	518.23	531.78	535.97	492.76	470.98	462.34	VZ ZA
	V-THETA 2	400.49	401.33	407.39	379.75	382.91	372.33	373.14	372.15	381.33	V-THETA 2
	V-THETA ZA	25.19	29.91	30.26	22.35	23.14	25.74	33.59	35.42	32.71	V-THETA 2A
	M 2	0.5251	0.5265	0.5328	0.5162	0.5292	0.5280	0.4940	0.4664	0.4369	M 2
	M ZA	0.4305	0.4272	0.4242	0.4577	0.4700	0.4740	0.4346	0.4147	0.4063	H 2A
	TURN (PR)	39.538	38.996	39.192	38.210	37.429	35.956	37.934	40.311	45.881	TURN (PR)
	P 2	18.902	18.949	19.046	18.858	19.043	19.097	18.730	18.407	18.140	P 2
	P 2A	18.795	18.760	18.730	19.071	19.187	19.183	18.708	18.507	18.417	P ZA
	Ť 2	560.012	558.461	557.065	558.197	558.616	558.735	559.793	560.686	562-123	T 2
	T 2A	559.053	557.347	555.913	557.058	557-647	557.680	558.310	558.997	560.347	Ť ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (286°) - Station 2 (276°) - Station 2A (265°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA I	-2.615	-2.618	-2.747	-1.794	-2.135	-1.781	-0.500	-2.050	-2.305	BETA 1
STATION 2	BETA 2	39.673	39.740	39.643	40.743	42.781	43.609	47.672	51.266	55.560	BETA 2
	BETA (PR) 1	55.862	54.459	55.301	56.429	58.763	61.032	64.133	66.946	69.880	BETA(PR) 1
	BETA(PR) 2	26.312	25.956	26.251	28.644	33.251	38.469	43.777	46.533	50.665	BETA(PR) 2
	V 1	421.45	450.23	442.25	434.63	418.36	398.06	355.91	319.30	277.07	V 1
	V 2	592.56	602.58	606.98	598.85	574.60	549.52	517.47	502.27	482.03	V 2
	VZ 1	421.00	449.76	441.73	434.42	418.05	397.82	355.83	319.04	276.82	V2 1
	V2 2	456.09	463.35	467.39	453.70	421.57	397.45	347.90	313.80	272.26	VZ 2
	V-THETA 1	-19.23	-20.57	-21.19	-13.61	-15.58	-12.37	-3.11	-11.42	-11.14	V-THETA 1
	V-THETA 2	378.29	385.23	387.25	390.83	390.12	378.60	381.96	391.21	397.04	V-THETA 2
	V(PR) 1	750.2	773.7	776.0	785.6	806.2	821.4	815.6	614.7	804.7	V(PR) 1
	V(PR) 2	508.8	515.3	521.1	517.0	504.4	508.3	482.7	457.0	430.2	V(PR) 2
	VTHETA PRI	-620.9	-629-6	-638.0	-654.6	-689.3	-718.6	-733.9	-749.6	-755.6	VTHETA PRI
	VTHETA PRZ	-225.5	-225.5	-230.5	-247.8	-276.4	-315.8	-333.4	-331.1	-332.2	VTHETA PRZ
	U 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	Ŭ Ž	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U Ž
	M Î	0.3830	0.4100	0.4025	0.3953	0.3801	0.3612	0.3221	0.2884	0.2497	H 1
	M 2	0.5242	0.5341	0.5386	0.5300	0.5070	0.4835	0.4527	0.4384	0.4195	M 2
	M(PR) 1	0.6817	0.7046	0.7062	0.7146	0.7324	0.7453	0.7381	0.7358	0.7253	M(PR) 1
	M(PR) 2	0.4501	0.4568	0.4624	0.4576	0.4450	0.4473	0.4223	0.3988	0.3744	M(PR) 2
	TURN (PR)	29.556	28.503	29.050	27.787	25.530	22.619	20.451	20.518	19.324	TURN (PR)
	P 1	14.838	15.116	15.062	15.064	15.050	15.055	14.902	14.735	14.596	P 1
i	P 2	19.030	19.174	19.238	19.114	18.783	18.490	18.129	17.975	17.819	P 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	T 1
	T 2	560.944	559.866	559.170	561.078	561.971	562.586	566.039	567.290	568.790	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	LIA	33.207	33.564	33.921	34.992	36-420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	39.673	39.740	39.643	40.743	42.781	43.609	47.672	51.266	55.560	BETA 2
STATION ZA	BETA 2A	2.805	3.048	3.160	2.715	3.648	3.013	1.970	1.070	0.045	BETA 2A
• • • • • • • • • • • • • • • • • • • •	V 2	592.56	602.58	606.98	596.85	574.60	549.52	517.47	502.27	482.03	V 2
	V 2A	488.05	486.00	486.20	508.80	498.92	479.41	427.46	410.86	405.36	V 2A
	VZ 2	456.09	463.35	467.39	453.70	421.57	397.45	347.90	313.80	272.26	VZ 2
	VZ 2A	487.46	485.31	485.44	508.18	497.80	478.57	426.99	410.55	405.07	VI 2A
	V-THETA 2	378.29	385.23	387.25	390.83	390.12	378.60	381.96	391.21	397.04	V-THETA 2
	V-THETA 2A	23.88	25.84	26.80	24.10	31.74	25.19	14.69	7.67	0.32	V-THETA 2A
	M 2	0.5242	0.5341	0.5386	0.5300	0.5070	0.4835	0.4527	0.4384	0.4195	M 2
	M 2A	0.4291	0.4276	0.4280	0.4479	0.4386	0.4205	0.3726	0.3573	0.3518	M 2A
	TURN (PR)	36.867	36.691	36.483	38.026	39.113	40.537	45.604	50.089	55.410	TURN (PR)
	P 2	19.030	19.174	19.238	19.114	18.783	18.490	18.129	17.975	17.819	P 2
	P 2A	18.816	18.788	16.782	18.965	18.828	18.583	18.110	17.989	17.941	P ZA
	T 2	560.944	559.666	559.170	561.078	561.971	562.586	566.039	567.290	568.790	T 2
	T 2A	558.248	557.152	556.579	558.584	559.066	560.009	562.984	564.299	566.148	T 2A

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow 181.60
Circumferential Distortion

Station 1 (316°) - Station 2 (306°) - Station 2A (295°)

RCTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34,001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-12.470	-12.460	-12.290	-12.968	-13.116	-14.160	-13.707	-14.179	-15.059	BETA 1
STATION 2	BETA 2	45.464	51,311	52.835	51.414	53.223	49.248	53.740	57.716	62.902	BETA 2
	BETA (PR) 1	67.697	66.551	65.652	66-464	68.376	69.919	71.651	73.464	75.449	BETA (PR) 1
	.BETA (PR) 2	28.209	28.591	34.694	36.432	37.082	36.034	44.292	49.318	53.088	BETA(PR) 2
	V 1	276.01	299.22	313.63	318.43	302.11	293.37	271.48	244.44	215.16	V I
	Ÿ Ž	554.47	544.75	508.40	514.21	531.88	563.95	517.72	492.97	487.66	V Ž
	VZ 1	271.45	292.17	306.44	310.31	294.21	284.42	263.70	236.95	207.75	٧ <u>.</u> ١
	V2 2	388.88	340.51	307.13	320.70	318.35	367.81	305.83	263.01	221.95	VZ 2
	V-THETA 1	-60.03	-64.56	-66.76	-71.46	-68.56	-71.76				VA A
	V-THETA 2	395 • 23	425.20		401.93			-64.32	-59.87	-55.90	V-THETA 1
	V(PR) 1	715.3	734.2	405.14 749.1	777-1	425.91	426.83	416.95	416.30	433.77	V-THETA 2
	V(PR) 2					798.4	828.4	837.7	832.5	826.9	V(PR) 1
		441.3	367.6	373.5	398.6	399.2	455.5	428.0	404-1	370.1	V(PR) 2
	VTHETA PRI	-661.7	-673.6	-683.5	-712.4	-742.3	~778.0	-795.1	-798.1	-800.4	VTHETA PRI
	VTHETA PR2	-208.6	-185.6	-212.6	-236.7	-240-6	-267.6	-298.4	-306.0	-295.5	VTHETA PR2
	U 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738-21	744.46	U 1
	U Z	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U 2
	M 1	0.2506	0.2700	0.2832	0+2876	0-2726	0.2646	0.2446	0.2200	0.1934	M 1
	M 2	0.4851	0.4767	0.4441	0.4491	0.4645	0.4940	0.4506	0.4279	0.4229	M 2
	M(PR) 1	0.6447	0.6624	0.6763	0.7018	C.7205	0.7472	0.7548	0.7493	0.7434	M(PR) 1
	M(PR) 2	0.3860	J.3393	0.3263	0.3481	0.3487	0.3990	0.3725	0.3508	0.3210	M(PR) 2
	TURN (PR)	39.488	37.961	31.159	30.034	31.315	33.940	27.455	24.252	22.468	TURN (PR)
	PI	13.630	13.815	13.831	13.806	13.768	13.780	13,790	13.761	13.675	P 1
	P 2	18.407	18.303	17.953	18.027	18.238	18.618	18.050	17.823	17.809	P 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	T 1
	† 2	569.362	568.171	566.809	567.612	569.061	568.732	571.756	572.490	573.048	T 2
STATOR D	PCT SPAN	05 60	20.00		=						
STATUK D		95.00	96.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
£747700 0	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	45.464	51.311	52.835	51.414	53.223	49.248	53.740	57.716	62.902	BETA 2
STATION 2A	BETA 2A	2.596	2.540	2.439	2.429	4.337	3.328	1.098	-0.415	-1.863	BETA 2A
	V 2	554.47	544.75	508.40	514.21	531.88	563.95	517.72	492.97	487.66	V 2
	V 2A	414.74	410.22	404.74	418.27	429.65	412.89	379.14	362.11	363.90	V ZA
	VZ 2	388.88	340.51	307.13	320.70	318.35	367.81	305.83	263.01	221.95	VZ 2
	VZ 2A	414.32	409.8C	404.36	417.85	428.32	412.04	378.88	361.89	363.44	VZ ZA
	V-THETA 2	395.23	425.20	405.14	401.93	425.91	426.83	416.95	416.30	433.77	V-THETA 2
	V-THETA 2A	18.76	18.18	17.22	17.72	32.48	23.96	7.26	-2.62	-11.82	V-THETA 2A
	M 2	0.4851	0.4767	0.4441	0.4491	0.4645	0.4940	0.4506	0.4279	0.4229	M 2
	M ZA	0.3600	0.3563	0.3518	0.3634	0.3731	0.3582	0.3273	0.3120	0.3134	M 2A
	TURN (PR)	42.867	48.770	50.396	48.983	48.867	45.861	52.548	58.032	64-672	TURN (PR)
	P 2	18.407	18.303	17.953	18.027	18.238	18.618	18.050	17.823	17.809	P Z
	P ZA	18.110	18.058	18.020	18.101	18.154	18.002	17.763	17.656	17.656	P ZA
	T 2	569.362	566.171	566.809	567.612	569.061	568.732	571.756	572.490	573.048	T Z
	T 2A	566.755	565.594	564.433	565.717	567.163	567.032	570.488	571.432	572.219	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (346°) - Station 2 (336°) - Station 2A (325°)

STATION SETA 7-7.00 -0.577 -0.390 -0.590 -0	ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
STATION	KUTUK D											
STATION 2 SETA 2 53.766 56.390 54.501 50.604 47.815 46.293 47.895 50.696 54.266 BETA 2 BETA 1PR 1 63.777 61.262 60.763 61.218 61.659 61.659 62.893 64.101 65.606 66.458 BETA 1PR 1 2 24.595 26.623 38.109 39.072 32.940 38.419 44.564 47.956 48.808 BETA 1PR 1 2 2 24.595 26.623 38.109 39.072 32.940 38.419 44.564 47.956 48.808 BETA 1PR 1 2 2 2 2 2 2 2 2 2	CT4.TT04: 1											
BETAIRR 1 63.777 61.262 60.783 61.218 61.659 62.893 64.101 65.608 88.454 BETAIRR 2 8.777 6595 26.623 38.109 39.072 32.960 389.49 47.656 47.956 48.08 BETAIRR 2 V 1 318.58 370.20 380.17 389.89 389.29 377.63 355.98 311.76 V 1 V 2 560.57 540.15 486.60 495.64 566.76 546.92 510.91 490.03 493.72 V 2 V 1 310.06 356.48 367.91 377.38 387.33 386.24 375.21 353.51 309.30 V 1 V 2 V 2 331.34 314.51 282.15 314.69 380.47 377.53 347.20 390.92 287.6 V 2 V 7 V 2 V 2 V 7 V 2 V 2 V 7 V 2 V 2												
BETAIPR) 2 24.595	21 MITON 5											
V 1 318.58 358.85 370.20 380.17 389.89 389.29 377.63 355.98 311.76 V 1 V 2 2 2 2 2 50.57 540.15 486.00 495.64 566.76 546.92 510.91 490.03 493.72 V 2 V 1 310.06 356.48 367.91 377.38 387.33 386.24 375.21 353.51 309.30 V 1 V 2 V 2 331.34 314.51 282.15 314.69 380.47 377.53 382.03 309.92 287.96 V 2 V T T T T T T T T T												
V 2 56C.57 540.15 486.60 495.64 56C.76 546.92 510.91 490.03 493.72 V 2 V 71 316.66 356.48 367.13 378.38 387.33 386.24 375.21 335.51 309.30 V 2 1 V 2 V 71 V												
V2 1 316.06 356.48 367.91 377.38 387.33 386.24 375.21 355.51 309.30 VZ 1 VZ 2 331.34 314.51 262.15 314.69 380.47 377.53 342.03 309.92 287.96 VZ 2 V-THETA 1 -39.95 -41.10 -41.07 -45.98 -44.42 -48.29 -42.00 -41.39 -38.90 V-THETA 2 V-THETA 2 452.16 439.14 396.45 383.16 419.82 394.96 378.46 378.60 400.24 V-THETA 2 V-THETA 1 V-THETA 2												
V												
V-THETA 1												
V-HeTA 2												
VIPR1 715.3 741.4 753.7 783.8 815.9 847.7 859.1 856.0 842.2 VIPR1 VIPR1 VIPR1 782 741.4 753.7 783.8 815.9 847.7 842.5 840.9 443.6 438.0 VIPR1 VIPR1 VIPR1 787.1 741.4 753.1 741.4 753.7 762.5 772.8 777.6												
VIPRI 2 364.4 356.3 358.6 405.4 453.7 482.5 480.9 463.6 438.0 VIPRI 2 VIHETA PRI VIHETA PRI -641.7 -650.1 -657.8 -686.9 -718.1 -774.5 -772.8 -779.6												
VTHETA PR2 -151.7 -650.1 -657.8 -686.9 -718.1 -754.5 -772.8 -779.6 -783.4 VTHETA PR2 VTHETA PR2 -151.7 -171.6 -621.3 -255.5 -266.7 -299.4 -336.9 -343.7 -329.0 VTHETA PR2 VTHETA PR2 VTHETA PR2 -151.7 -171.6 -601.71 609.02 616.77 640.97 673.70 706.25 730.76 738.21 744.46 U 1 U 2 603.82 610.78 617.75 638.65 666.52 694.39 715.32 722.28 729.26 U 2 H 1 0.2877 0.3248 0.3353 0.3452 0.3556 0.3553 0.3462 0.3221 0.2814 H 1 0.2877 0.3248 0.3353 0.3462 0.3556 0.4621 0.4291 H 2 M(PR) 1 0.6640 0.4711 0.4623 0.4322 0.4967 0.4786 0.4453 0.4261 0.4291 H 2 M(PR) 2 0.3185 0.3130 0.3123 0.3533 0.3976 0.4222 0.4191 0.4031 0.3806 M(PR) 1 UNN(PR) 39.182 32.640 22.674 22.148 28.716 24.530 19.632 17.758 19.756 17.848 19.756 P 1 13.546 13.686 13.718 13.700 13.673 13.713 13.757 13.734 13.578 P 1 VINN(PR) 1 1.518.699 518.69												
VTMETA PR2 -151.7 -171.6 -221.3 -255.5 -246.7 -299.4 -336.9 -343.7 -329.0 VTMETA PR2 U 1 601.71 609.02 616.77 640.97 640.97 706.25 730.76 738.21 744.46 U 1 2 603.82 610.78 617.75 638.65 666.52 694.39 715.32 722.28 729.26 U 2 1 2 603.82 610.78 617.75 638.65 666.52 694.39 715.32 722.28 729.26 U 2 1 2 603.82 610.78 617.75 638.65 666.52 694.39 715.32 722.28 729.26 U 2 1 2 603.82 610.78 617.75 638.65 666.52 694.39 715.32 722.28 729.26 U 2 1 2 603.82 610.78 617.75 638.65 666.52 694.39 715.32 722.28 729.26 U 2 2 604.96 617.75 617.75 610.42 617.75 619.75 617.75 619.75 617.75 619.75 617.75 619.75 617.75 619.75 617.75 619.75 617.75 619.75 619.75 617.75 619.75 617.75 619.75 617.75 619.75 617.75 619.75 61												
U 1 601.71 609.02 616.77 640.97 673.70 706.25 730.76 738.21 744.46 U 1 U 2 603.62 610.78 617.75 638.65 666.52 694.39 715.32 722.28 729.26 U 2 U 2 H 1 0.2877 0.3248 0.3353 0.3445 0.3536 0.3530 0.3422 0.3221 0.2814 H 1 0.2877 0.3248 0.3353 0.3445 0.3536 0.3530 0.3422 0.3221 0.2814 H 1 0.2877 0.4629 0.4719 0.4629 0.4520 0.4967 0.4786 0.4453 0.4261 0.4291 H 2 0.4011 0.6627 0.7103 0.7399 0.7887 0.7784 0.7747 0.7603 M [FR] 1 0.6620 0.6711 0.6627 0.7103 0.7399 0.7887 0.7784 0.7747 0.7603 M [FR] 1 0.4011 0.3815 0.3130 0.3123 0.3533 0.3976 0.4222 0.4191 0.4031 0.3806 M [FR] 2 TURN(FF] 39.182 32.640 22.674 22.148 28.716 24.530 19.632 17.758 19.756 TURN(FF] P 1 13.546 13.686 13.718 13.700 13.673 13.713 13.757 13.734 13.578 P 1 1 15.86.69 518.699 518.699 518.699 518.699 518.693 17.843 17.902 P 2 18.550 18.102 17.019 17.762 18.562 18.449 18.035 17.843 17.902 P 2 18.560 18.102 17.019 17.762 18.562 18.449 18.035 17.843 17.902 P 2 17.000 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
U 2 603.82 610.78 617.75 638.65 666.52 694.39 715.32 722.28 729.26 U 2 H 1 0.2877 0.3248 0.3353 0.3455 0.3536 0.3550 0.3452 0.3530 0.3452 0.3530 0.3452 H 2 0.4900 0.4719 0.4239 0.4322 0.4967 0.4786 0.4453 0.4261 0.4291 H 2 H(PR) 1 0.4660 0.6711 0.6627 0.7103 0.7399 0.7687 0.7784 0.7774 0.7763 M(PR) 1 H(PR) 2 0.3185 0.3130 0.3123 0.3533 0.3976 0.4222 0.4191 0.4031 0.3806 H(PR) 2 TURN(PR) 39.182 32.640 22.674 22.148 28.716 24.530 19.632 17.758 19.756 TURN(PR) 1 P 1 13.546 13.686 13.718 13.700 13.673 13.713 13.757 13.734 13.578 P 1 P 2 18.356 18.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 T 1 518.699 518.												
M 1												
M 2												
MIPR 1												
MIRK) 2												
TURN(PP) 39.182 32.640 22.674 22.148 28.716 26.530 19.632 17.758 19.756 TURN(PR) P 1 13.546 13.686 13.718 13.700 13.673 13.713 13.757 13.734 13.578 P 1 13.546 13.686 13.718 13.700 13.673 13.713 13.757 13.734 13.578 P 1 1 1 1 518.650 18.102 17.019 17.762 18.562 18.469 18.035 17.843 17.902 P 2 1 1 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 7 1 1 7 2 570.870 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2		M(PR) 1										
P 1 13.546 13.686 13.718 13.700 13.673 13.713 13.757 13.734 13.578 P 1 1 1 518.699 18.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 1 1 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 T 1 7 2 570.870 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2		M(PR) 2			0.3123				0.4191			
P 2 18.350 18.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 T 1 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 T 1 7 2 570.870 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2		TURN (PR)	39.182	32.640	22.674	22.148	28.716	24.530	19.632	17.758	19.756	TURN (PR)
T 1		P 1	13.546	13.686	13.718	13.700	13.673	13.713	13.757	13.734	13.578	
T 2 570.870 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2 STATOR D PCT SPAN 95.00 90.00 85.00 70.00 50.00 30.00 15.00 10.00 5.00 PCT SPAN DIA 33.207 33.564 33.921 34.992 36.420 37.848 38.919 39.276 39.633 DIA 54.561 50.604 47.815 46.293 47.695 50.696 54.266 BETA 2 53.766 54.390 54.561 50.604 47.815 46.293 47.695 50.696 54.266 BETA 2 54.20 2.302 2.122 1.198 0.837 3.787 3.739 3.158 2.873 1.993 BETA 2 2 2 560.57 540.15 486.60 495.84 566.76 546.92 510.91 490.03 493.72 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V		P Z	18.350	18.102	17.619	17.762	18.562	18.449	18.035	17.843	17.902	P 2
STATOR D PCT SPAN 95.00 90.00 85.00 70.00 50.00 30.00 15.00 10.00 5.00 PCT SPAN DIA 33.207 33.564 33.921 34.992 36.420 37.848 38.919 39.276 39.833 DIA STATION 2 BETA 2 53.766 54.390 54.561 50.604 47.815 46.293 47.895 50.696 54.266 BETA 2 STATION 2 BETA 2 2.302 2.122 1.198 0.837 3.787 3.739 3.158 2.873 1.993 BETA 2A 2 2.302 2.122 1.198 0.837 3.787 3.739 3.158 2.873 1.993 BETA 2A 2 2.302 2.122 1.198 0.837 3.787 3.739 3.158 2.873 1.993 BETA 2A 2 2.302 2.122 1.198 0.837 3.787 3.739 3.158 2.873 1.993 BETA 2A 2 2.302 2.122 1.198 0.837 3.787 3.739 3.158 2.873 1.993 BETA 2A 2 2.302 2.122 1.198 0.837 3.787 3.782 369.56 372.44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		T 1	518-699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	
DIA 33.207 33.564 33.921 34.992 36.420 37.848 38.919 39.276 39.633 DIA		т 2	570,870	569.574	568.172	568.143	568.529	568.340	569.593	570.257	571.217	T 2
DIA 33.207 33.564 33.921 34.992 36.420 37.848 38.919 39.276 39.633 DIA												
STATION 2 BETA 2 53.766 54.390 54.561 50.664 47.815 46.293 47.895 50.696 54.266 BETA 2 57ATION 2A BETA 2A 2.302 2.122 1.198 0.837 3.787 3.739 3.158 2.873 1.993 BETA 2A V 2 560.57 540.15 486.60 495.84 566.76 546.92 510.91 490.03 493.72 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V	STATOR D											
STATION 2A BETA 2A 2.302 2.122 1.198 0.837 3.737 3.739 3.158 2.873 1.993 BETA 2A V 2 560.57 540.15 486.60 495.84 566.76 546.92 510.91 490.03 493.72 V 2 V 2A 379.28 375.09 367.25 382.51 413.45 415.77 377.82 369.56 372.44 V 2A V 2 2 331.34 514.51 262.15 314.69 380.47 377.53 342.03 300.92 287.96 V 2 2 V 2 A 378.97 374.82 367.16 382.43 412.46 414.73 377.06 368.89 371.95 V 2 2A V - THETA 2 452.16 439.14 396.45 383.16 419.82 394.96 378.46 378.60 400.24 V - THETA 2 V - THETA 2 15.23 13.89 7.68 5.59 27.30 27.10 20.80 18.51 12.94 V - THETA 2 A M 2 0.4900 0.4719 0.4239 0.4322 0.4967 0.4966 0.3267 0.3261 0.4291 M 2 M 2A 0.3276 0.3242 0.3177 0.3312 0.3587 0.3606 0.3267 0.3193 0.3215 M 2A TURN(PR) 51.463 52.267 53.363 49.765 44.008 42.495 44.640 47.717 52.168 TURN(PR) P 2 18.350 16.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 P 2A 17.786 17.786 17.791 17.779 17.985 17.991 17.722 17.673 17.685 P 2A 17.786 17.786 17.791 17.779 17.985 17.991 17.722 17.673 17.685 P 2A 17.786 509.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2		DIA	33.207	33.564	33.921	34.992	36,420	37.848	38.919	39.276		
V 2 560.57 540.15 486.60 495.84 566.76 546.92 510.91 490.03 493.72 V 2 V 2A 379.28 375.09 367.25 382.51 413.45 415.77 377.82 369.56 372.44 V 2A V 2 331.34 314.51 262.15 314.69 380.47 377.53 342.03 309.92 287.96 V 2 2 V 2 A 378.97 374.82 367.16 382.43 412.46 414.73 377.06 368.89 371.95 V 2 A V THETA 2 452.16 439.14 396.45 383.16 419.82 394.96 378.46 378.60 400.24 V THETA 2 V THETA 2 15.23 13.89 7.68 5.59 27.30 27.10 20.80 18.51 12.94 V THETA 2 M 2 0.4900 0.4719 0.4239 0.4322 0.4967 0.4716 0.4453 0.4261 0.4291 M 2 M 2 0.3276 0.3242 0.3177 0.3312 0.3567 0.3606 0.3267 0.3193 0.3215 M 2A TURN(PR) 51.463 52.267 53.363 49.765 44.008 42.495 44.640 47.717 52.168 TURN(PR) P 2 18.350 15.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 P 2 A 17.786 17.746 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P 2A 17.786 509.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2	STATION 2	₽ETA 2	53.766	54.390	54.561	50.604	47.815		47.895	50.696	54.266	BETA Z
V 2A 379.28 375.09 367.25 382.51 413.45 415.77 377.82 369.56 372.44 V 2A VZ 2 331.34 514.51 262.15 314.69 380.47 377.53 342.03 309.92 287.96 VZ 2 VZ 2A 378.97 574.82 367.16 382.43 412.46 414.73 377.06 368.89 371.95 VZ 2A V—THETA 2 452.16 439.14 396.45 383.16 419.82 394.96 378.46 378.60 400.24 V—THETA 2 V—THETA 2 15.23 13.89 7.68 5.59 27.30 27.10 20.80 18.51 12.94 V—THETA 2 M 2 0.4900 0.4719 0.4239 0.4322 0.4967 0.4766 0.4453 0.4261 0.4291 M 2 M 2A 0.3276 0.3242 0.3177 0.3312 0.3587 0.3606 0.3267 0.3193 0.3215 M 2A TURN(PR) 51.463 52.267 53.363 49.765 44.008 42.495 44.640 47.717 52.168 TURN(PR) P 2 18.350 16.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 P 2A 17.786 17.748 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P 2A 17.786 17.786 17.748 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P 2A 1 2 570.876 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2	STATION 2A	BETA ZA			1.198			3.739	3.158	2.873		
VZ 2 331.34 314.51 262.15 314.69 380.47 377.53 342.03 309.92 287.96 VZ 2 VZ ZA 378.97 374.82 367.16 382.43 412.46 414.73 377.06 368.89 371.95 VZ ZA V-THETA 2 452.16 439.14 396.45 383.16 419.82 394.96 378.46 378.60 400.24 V-THETA 2 V-THETA 2A 15.23 13.89 7.68 5.59 27.30 27.10 20.80 18.51 12.94 V-THETA 2A M 2 0.4900 0.4719 0.4239 0.4322 0.4967 0.4786 0.4453 0.4261 0.4291 M 2 M ZA 0.3276 0.3242 0.3177 0.3312 0.3587 0.3606 0.3267 0.3193 0.3215 M ZA TURN(PR) 51.463 52.267 53.363 49.765 44.008 42.495 44.640 47.717 52.168 TURN(PR) P 2 18.350 16.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 P ZA 17.786 17.748 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P ZA 1 570.876 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2		V 2		540.15	486.60	495.84	566.76					
VZ ZA 378.97 374.82 367.16 382.43 412.46 414.73 377.06 368.89 371.95 VZ ZA V-THETA 2 452.16 439.14 396.45 383.16 419.82 394.96 378.46 378.60 400.24 V-THETA 2 V-THETA 2 15.23 13.89 7.68 5.59 27.30 27.10 20.80 18.51 12.94 V-THETA 2A M 2 0.4900 0.4719 0.4239 0.4322 0.4967 0.4786 0.4453 0.4261 0.4291 M 2 M ZA 0.3276 0.3242 0.3177 0.3312 0.3587 0.3606 0.3267 0.3193 0.3215 M ZA TURN(PR) 51.463 52.267 53.363 49.765 44.008 42.495 44.640 47.717 52.168 TURN(PR) P 2 18.350 16.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 P ZA 17.786 17.786 17.791 17.792 17.985 17.991 17.722 17.673 17.685 P ZA 17.786 509.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2												
V-THETA 2 452.16 439.14 396.45 383.16 419.82 394.96 378.46 378.60 400.24 V-THETA 2 V-THETA 2A 15.23 13.89 7.68 5.59 27.30 27.10 20.80 18.51 12.94 V-THETA 2A 15.23 13.89 7.68 5.59 27.30 27.10 20.80 18.51 12.94 V-THETA 2A 15.23 13.89 7.68 5.59 27.30 27.10 20.80 18.51 12.94 V-THETA 2A 15.23 13.89 7.68 5.59 27.30 27.10 20.80 18.51 12.94 V-THETA 2A 15.23 13.89 7.68 7.42 14.20 18.51 12.94 V-THETA 2A 15.24 12.94		VZ 2	331.34	314.51	262.15	314.69	380.47	377.53	342.03	309.92	287.96	VZ 2
V-THETA 2A 15.23 13.89 7.68 5.59 27.30 27.10 20.80 18.51 12.94 V-THETA 2A M 2 0.4900 0.4719 0.4239 0.4322 0.4967 0.4786 0.4453 0.4261 0.4291 M 2 M 2A 0.3276 0.3242 0.3177 0.3312 0.3587 0.3606 0.3267 0.3193 0.3215 M 2A TURN(PR) 51.463 52.267 53.363 49.765 44.008 42.495 44.640 47.717 52.168 TURN(PR) P 2 18.350 16.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 P 2A 17.786 17.748 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P 2A T 2 570.876 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2		VZ ZA	378.97	374.82	367.16	382.43	412.46	414.73	377.06	368.89		
M 2 0.4900 0.4719 0.4239 0.4322 0.4967 0.4786 0.4453 0.4261 0.4291 M 2 M 2A 0.3276 0.3242 0.3177 0.3312 0.3587 0.3606 0.3267 0.3193 0.3215 M 2A TURN(PR) 51.463 52.267 53.363 49.765 44.008 42.495 44.640 47.717 52.168 TURN(PR) P 2 18.350 16.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 P 2A 17.786 17.748 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P 2A T 2 570.876 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2		V-THETA 2	452.16	439.14	396.45	383.16	419.82	394.96	378.46	378.60		
M ZA 0.3276 0.3242 0.3177 0.3312 0.3587 0.3606 0.3267 0.3193 0.3215 M ZA TURN(PR) 51.463 52.267 53.363 49.765 44.008 42.495 44.640 47.717 52.168 TURN(PR) P 2 18.350 16.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P Z P ZA 17.786 17.748 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P ZA T Z 570.876 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T Z		V-THETA ZA		13.89	7.68	5.59	27.30		20.80	18.51		
TURN(PR) 51.463 52.267 53.363 49.765 44.008 42.495 44.640 47.717 52.168 TURN(PR) P 2 18.350 16.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 P 2A 17.786 17.748 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P 2A T 2 570.876 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2		M 2	0.4900	0.4719	0.4239	0.4322	0.4967	0.4786	0.4453	0.4261	0.4291	H 2
P 2 18.350 16.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 P 2A 17.786 17.748 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P 2A T 2 570.876 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2		M ZA	0.3276	0.3242	0.3177	0.3312	0.3587	0.3606	0.3267	0.3193	0.3215	
P 2 18.350 16.102 17.619 17.762 18.562 18.449 18.035 17.843 17.902 P 2 P 2A 17.786 17.748 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P 2A T 2 570.876 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2		TURN (PK)	51.463	52.267	53.363	49.765	44.008	42.495	44.640	47.717	52.168	TURN (PR)
P ZA 17.786 17.748 17.701 17.779 17.985 17.991 17.722 17.673 17.685 P ZA T Z 570.876 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T Z			18.350	16.102	17.619	17.762	18.562		18.035	17.843	17.902	P 2
T 2 570.876 569.574 568.172 568.143 568.529 568.340 569.593 570.257 571.217 T 2				17.748	17.701		17.985	17.991	17.722	17.673	17.685	P 2A
			570.876	569-574	568.172	568.143	568.529	568.340	569.593			
1 Eu Salvale S		T 2A	569.672	566.582	567.344	567.061	567.216	567.703	568.581	568.935	569.995	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (16°) - Station 2 (6°) - Station 2A (355°)

ROTOR U	PCT SPAN	94.99	40.00	84.99	70.00	50.00	36.00	14.98	9.99	4.98	PCT SPAN
	AIG	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-4.794	-4.700	-4.428	-4.168	-3.426	-3.497	-3.850	-4 .098	-4.581	BETA 1
STATION 2	BETA 2	55.144	55.313	55.327	51.322	48.967	47.789	51.343	55.065	60.400	BETA 2
	BETA(PR) 1	63.980	62.299	61.511	61.933	62.264	63.965	64.715	65.897	67.466	BETA(PR) 1
	BETA(PR) 2	19.125	15.166	25.516	36.250	33.075	36.763	42.331	46.306	48.191	BETA(PR) 2
	V 1	312.44	340.84	356.24	362.50	372.48	362.20	363.30	347.79	325.85	V 1
	¥ 2	602.48	635.79	574.03	524.02	573.41	568.58	539.38	518.00	521.89	Ÿ Ž
	VZ 1	311.34	339.69	355.18	361.53	371.79	361.48	362.41	346.84	324.78	VZ 1
	VZ Z	344.32	361.62	326.56	327.47	376.17	381.65	336.47	296.26	257.54	¥2 2
	V-THETA 1	-26.11	-27.93	-27.50	-26.47	-22.26	-22.09	-24.39	-24.85	-26.02	V-THETA 1
	V-THETA 2	494-39	522.79	472.09	409.08	432.54	420.73	420.63	424.13	453.35	V-THETA 2
	V(PR) 1	709.7	730.8	744.6	768.4	798.9	823.6	848.5	849.3	847.5	V(PR) 1
	V(PR) 2	364.4	374.9	361.9	406.1	449.1	477.0	456.0	429.6	387.0	V(PR) 2
	VTHETA PRI	-637.8	-647.0	-654.5	-678.0	-707.1	-740.0	-767.2	-775.3	-782.8	VTHETA PRI
	VTHETA PR2	-119.4	-98.1	-155.9	-240.1	-245.0	-285.1	-306.5	-310.1	-288.0	VTHETA PRZ
	Ŭ I	611.65	619.07	626.96	651.56	684.82	717.92	742-83	750.40	756.76	U 1
	ŭ 2	613.79	620.86	627.95	649.19	677.52	705 -86	727.13	734.21	741.30	U 2
	M I	0.2821	0.3082	0.3224	0.3282	0.3374	0.3279	0.3289	0.3146	0-2944	M 1
	M 2	0.5292	0.5614	0.5046	0.4584	0.5034	0.4990	0.4717	0.4520	0.4550	M 2
	M(PR) 1	0.6407	0.6607	0.6739	0.6956	0.7236					
	M(PR) 2	0.3201	0.3310	0.3181	0.3553		0.7456	0.7682	0.7682	0.7656	M(PR) 1
	TURN(PR)	44.854	47.133	35.995		0.3943	0-4186	0.3988	0.3749	0.3374	M(PR) 2
	P 1	13.581	13.723		25.685	29.206	27.257	22.479	19.697	19.385	TURN (PR)
	P 2	18.919		13.757	13.747	13.795	13.763	13.817	13.758	13.648	P 1
	T 1		19.317	18.574	18.133	18.790	18.852	18.541	16.319	18.365	P 2
	Ť 2	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	<u>T 1</u>
	1 2	569.566	567.449	565.943	566.568	567.238	567.271	568.296	568.792	570.066	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	55.144	55.313	55.327	51.322	48.987	47.789	51.343	55.065	60.400	BETA 2
STATION 2A	BETA ZA	3.612	0.557	-1.815	-2.075	2.510	3.997	5.516	6.249	6.697	BETA ZA
• • • • • • • • • • • • • • • • • • • •	V 2	602.4B	635.79	574.03	524.02	573.41	568.58	539.38			
	V ZA	409.47	401.63	388 56	407.87	430.35	440.09	427-56	518.00	521.89 420.15	¥ 2 ¥ 2A
	VZ 2	344.32	361.82	326.56	327.47	376.17	381.65		414.24		
	VŽ ŽA	408.65	401.61	388.35				336.47	296-26	257.54	VZ 2
	V-THETA 2	494.39	522.79	472.09	407.56	429.84	438-86	425.37	411.54	416.98	VZ ZA
	V-THETA ZA				409.08	432.54	420.73	420.63	424.13	453.35	V-THETA 2
	M 2	25.60	3.90	-12.31	-14.77	18.84	30.66	41.08	45.06	48.96	V-THETA ZA
		0.5292	0.5614	0.5046	0.4584	0.5034	0.4990	0.4717	0.4520	0-4550	M 2
•	M 2A Turn(Pr)	0.3538	0.3474	0.3362	6.3531	0.3728	0.3814	0.3700	0.3580	0.3629	M ZA
	P 2	51.531 18.919	54.755	57.142	53.395	46.457	43.733	45.733	48.716	53.611	TURN (PR)
•	P 2A		19.317	18.574	16.133	18.790	18.852	18.541	18.319	18.365	P 2
	T 2	18.118	18.012	17.920	18.069	18.243	18.328	18.231	18.131	18.166	P ZA
		569.566	567.449	565.943	566.568	567.238	567.271	568 • 296	568.792	570.066	Ť 2
	T 2A	571.449	569.650	568.322	569.090	569.946	570.183	571.037	571.399	572.560	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (46°) - Station 2 (36°) - Station 2A (25°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	5.763	6.005	6.525	4.815	5.454	4,433	5.106	5.037	6.649	BETA 1
STATION 2	BETA 2	46.929	46.300	45.694	42.370	43.059	41.016	43.867	47.261	51.706	BETA 2
SINITON E	BETA(PR) 1	53.350	51.563	51.527	52.286	53.423	55.360	57.746	58.800	61.545	BETA(PR) 1
			27.993	29.252	31.920	33.765	38.776	42.216	45.772	49.326	BETA (PR) 2
	BETA(PR) 2	27.710						445.59	433.17	388.39	V 1
	V 1	425.46	455.98	459.69	474.71	476.72	472.25			492.98	V 2
	V 2	558.52	569.49	567.35	572.44	578.69	559.79	540.76	513.74		
	VZ 1	423.30	453.47	456.71	473.03	474.54	470.78	443.73	431.43	385.74	YZ 1
	VZ 2	366.94	393.45	396.29	422.40	422.66	421.87	389.16	348.04	305.04	VZ Z
	V-THETA 1	42.72	47.70	52.24	39.85	45.31	36.50	39.65	38.03	44.97	V-THETA 1
	V-THETA 2	421.06	411.72	406-01	385.76	394.95	366.93	374.07	376.65	386.33	V-THETA 2
	VIPR) 1	709.1	729.5	734.1	773.3	796.4	828.3	831.5	832.9	809.6	Y(PR) 1
	V(PR) 2	414.5	445.6	454.2	498.3	508.7	541.8	526.5	499.9	468.8	V(PR) Z
	VTHETA PRI	-568.9	-571.4	-574.7	-611.7	-639.5	-681.4	-703.2	-712.4	-711.8	YTHETA PRI
	VTHETA PRZ	-192.7	-209.1	-221.9	-263.4	-282.6	-338.9	-353.1	-357.6	-355.0	VTHETA PRZ
	U 1	611.65	619.07	626.96	651.56	684.82	717.92	742.83	750-40	756.76	U 1
				627.95	649.19	677.52	705.86	727.13	734.21	741.30	Ŭ Ž
	U 2	613.79	620.86					0.4056	0.3940	0.3522	M 1
	M 7	0.3867	0.4154	0.4189	0.4331	0.4350	0.4308				M 2
	M 2	0.4937	0.5050	0.5040	0.5087	0.5147	0.4969	0.4784	0.4532	0.4333	
•	M(PR) 1	0.6446	0.6645	0.6690	0.7055	0.7267	0.7555	0.7569	0.7575	0.7341	M(PR) 1
	M(PR) 2	0.3664	0.3951	0.4035	0.4428	0.4524	0.4809	0.4657	0.4410	0.4121	M(PR) 2
	TURN(PR)	25.640	23.570	22.275	20.368	19.676	16.638	15.624	13.134	12.328	TURN (PR)
	P 1	14.526	14.749	14.760	14.869	14.912	14.939	14.834	14.811	14.579	P 1
	P 2	18.386	18.525	18.530	18.685	18.836	18.741	18.592	18.306	18-112	P 2
	T 1	518.699	518.699	518.699	518.699	516.699	518.699	518.699	518.699	518.6 99	Τi
	ŤŽ	558.516	556.309	554.130	554.129	553.928	554.323	556.052	556.789	55B.876	T 2
	· -	2201220									
					** **	£0.00	20.00	15.00	10.00	5.00	PCT SPAN
STATOR D	PCT SPAN	95.00	90.60	85.00	70.00	50.00	30.00		39.276	39.633	DIA
	DIA	33.207	33.564	33.921	34,992	36.420	37-846	38.919			
STATION 2	BETA 2	48.929	46.300	45.694	42.370	43.059	41.016	43.867	47.261	51.706	BETA 2
STATION 2A	BETA 2A	3.261	2.104	1.104	0.854	2.738	4.031	5.494	5.897	6.067	BETA 2A
	V 2	558.52	569.49	567.35	572.44	578.69	559.79	540.76	513.74	492.98	V 2
	V 2A	403.72	399.16	392.24	413.40	433.27	445.71	420.13	411.86	408.98	V 2A
	VZ 2	366.94	393.45	396.29	422.90	422.66	421.87	369.16	348.04	305.04	V2 2
	VZ ZA	403.06	396.68	392.16	413.31	432.68	444.44	417.99	409.47	406.40	VZ ZA
	V-THETA 2	421.06	411.72	406.01	385.76	394.95	366.93	374.07	376.65	386.33	V-THETA 2
	V-THETA 2A	23.11	14.65	7.56	6.16	20.69	31.32	40.20	42.29	43.19	V-THETA ZA
				0.5040	0.5087	0.5147	0.4965	0.4784	0.4532	0.4333	M 2
	M 2	0.4937	0.5050						0.3604	0.3570	M ZA
	M 2A	0.3526	0.3492	0.3437	V.3627	0.3807	0.3919	0.3682			TURN (PR)
	TURN (PR)	45.647	44.145	44.590	41.514	40.301	36.927	38.277	41.258	45.534	
	P 2	16.386	18.525	18.530	18.685	18.836	18.741	18.592	16.306	18.112	P 2
•	P ZA	16.131	18.057	18.022	18.190	18.333	18.438	18.212	18-134	18.113	P 2A
	1 2	558.518	556.309	554.130	554-129	553 . 928	554.323	556.052	556.789	558.876	† 2
	T 2A	559.163	557.078	554.755	554.685	554.496	554.902	556.599	557.619	559.901	T 2A
	- =										

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (76°) - Station 2 (66°) - Station 2A (55°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35-151	36.685	38,219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	3.176	1.848	1.003	1.389	0.836	0.571	0.424	0.427	1.158	BETA 1
STATION 2	BETA Z	46.218	44.505	43.155	41.480	40.083	39.387	40.823	44.324	48-107	BETA 2
	BETA (PR) 1	58.017	50.595	56.031	54.545	55.486	58.388	60.547	61.842	63.682	BETA(PR) 1
	BETAIPR) 2	25.310	27.130	26.427	30.670	31.818	35.629	38.330	41.210	45.696	BETA(PR) 2
	V 1	369.72	399.99	417.53	456.24	466.26	439.26	417.81	400.14	370.71	Y 1
	v Ž	585.02	582.21	600-04	586.65	605.94	594.67	581.93	555.12	519.83	¥ 2
	VZ 1	369.15	399.78	417.47	456.10	466.19	439.18	417.72	400.06	370-60	VZ 1
	¥2 2	404.78	415.22	437.73	439.49	463.41	459.03	439.49	396.35	346.50	VZ 2
	V-THETA 1	20.50	12.90	7.31	11.06	6.80	4.38	3.09	2.98	7.49	V-THETA 1
	V-THETA 2	422.36	408-11	410.41	388.56	390.00	376.88	379.67	387.11	386.28	V-THETA 2
	V(PR) 1	696.9	726.1	747.2	786.3	822.8	837.9	849.6	847.8	835.9	VEPRI 1
	V(PR) 2	447.8	466.6	488.8	511.0	545.7	565.5	561.4	528.0	497.0	V(PR) 2
	VTHETA PRI	-591.2	-606.2	-619.6	-640.5	-678.0	-713.5	-739.7	-747.4	-749.3	VTHETA PRI
	VTHETA PR2	-191.4	-212.8	-217.5	-260.6	-287.5	-329.0	-347.5	-347.1	-355.0	VTHETA PR2
	U 1	611.65	619.07	626.96	651.56	684 . 82	717.92	742.83	750.40	756.76	U 1
	U Z	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	Ŭ Ž
	M 1	0.3348	0.3630	0.3793	0-4156	0.4251	0.3997	0.3796	0.3631	0.3358	M Î
	M 2	0.5170	0.5155	0.5330	0.5202	0.5382	0.5275	0.5149	0.4900	0.4569	M 2
	M(PR) 1	0.6312	0.6589	0.6788	0.7163	0.7502	0.7624	0.7718	0.7693	0.7571	M(PR) 1
	M(PR) 2	0.3957	0.4131	0.4342	0.4532	0.4847	0.5016	0.4967	0.4661	0.4369	M(PR) 2
	TURN (PR)	32.707	29.465	29.605	23.877	23.688	22.813	22.309	20.737	18.097	TURN(PR)
	Pl	14.357	14.548	14.633	14.891	14.960	14.827	14.778	14.681	14.510	Pi
	P 2	18.802	18.764	18.995	18.876	19.190	19.167	19.089	18.781	18.420	P 2
	T 1	516.699	518.699	518.699	516.699	518.699	518.699	518.699	518.699	518.699	ΤÎ
	T 2	561.405	558.981	557.354	557.796	558.027	558.353	559.779	559.735	561.024	ŤŽ
	1 2	301.402	770.701	221.324	371.170	330.027	220.223	2276777	2274132	2011-02-4	1 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	30.919	39.276	39.633	DIA
STATION 2	BETA 2	46.216	44.505	43.155	41.480	+0.083	39.387	40.823	44.324	48.107	BETA 2
STATION 2A	BETA 2A	3.111	3.426	3.491	3.151	2.832	3.645	4.806	5.042	5.017	BETA ZA
	V 2	585.02	582.21	600.04	586.65	605.94	594.67	581.93	555.12	519.83	V 2
	V 2A	435.78	428.82	417.25	452.54	481.93	496.71	461.31	441.87	435.85	V 2A
	VZ 2	404.78	415.22	437.73	439.49	463.41	459.03	439.49	396.35	346.50	VZ 2
	V2 2A	435.14	428.05	416.47	451.81	481.24	495.52	459.45	439.92	433.87	VZ ZA
	V-THETA 2	422.36	408.11	410.41	388.56	390.00	376.88	379.67	387.11	386.28	V-THETA 2
	V-THETA 2A	23.65	25.63	25.41	24.87	23.81	31.57	38.63	38.81	38.09	V-THETA 2A
	M 2	0.5170	U.5155	0.5330	0.5202	0.5382	0.5275	0.5149	0.4900	0.4569	H 2
	M 2A	0.3610	0.3755	0.3657	0.3975	0.4241	0.4375	0.4047	0.3871	0.3811	H ZA
	TURN (PR)	43.106	41.078	39.664	36.327	37.231	35.684	35.921	39.175	42.982	TURN(PR)
	P 2	18.602	18.764	18.995	18.876	19.190	19.167	19.089	18.781	18.420	PZ
	P ZA	16.444	18.367	18.313	18.591	18.830	16.949	18.583	18.422	18.342	P ZA
	T 2	561.405	558.981	557.354	557.796	558.027	558.353	554.779	559.735	561.024	T 2
	T ZA	560.344	557.941	556.196	556.510	556.572	556.882	558.439	558.569	560.057	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (106°) - Station 2 (96°) - Station 2A (85°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
AGION D	DIA	33.234	33.617	34.001	35,151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	3.226	4.177	3.938	3.352	3.470	2.828	1.812	2.103	2.942	BETA 1
STATION 2	BETA 2	45.657	43.312	42,506	40.927	39,613	38.891	40.103	42-655	46.653	BETA 2
SIMILUM 2	BETAIPR) 1	56.636	55.191	53.611	53.763	54.581	56.689	59.717	61.797	64.897	BETA(PR) 1
	BETA(PR) 2	25.945	28.080	29.512	31.603	33.649	36.098	39.900	43.000	48.025	BETA(PR) 2
	V 1	388.97	410.71	440.78	458.64	467.76	457.57	426.21	394.97	346.70	V 1
	V 2	581.67	578.00	574.55	579.69	589.21	591.25	567.58	539-63	498.37	Ÿ Ž
	VZ 1	388.35	409.61	439.74	457.85	466.88	456.95	425.91	394.64	346.21	V2 1
		406.55	420.57	423.56	437.96	453.71	459.61	433.26	396.04	341.45	VZ 2
	VZ Z		29.91	30.27	26.82	28.31	22.57	13.47	14,49	17.79	V-THETA 1
	V-THETA 1	21.89			379.73	375.52	370.74	364.87	364.88	361.75	V-THETA 2
	V-THETA 2	415.98	396.49	388.20	774.6	805.6	832.1	844.6	835.1	816.1	V(PR) 1
	V(PR) 1	706.1	717.6	741.2		545.3	569.6	565.9	542.6	511.4	V(PR) 2
	V(PR) 2	452.1	476.7	486.7	514.2		-695.3	~729.4	-735.9	-739.0	VTHETA PRI
	VTHETA PRI	-589.8	-589.2	-596.7	-624.7	-656.5				-379.6	VTHETA PRZ
	VTHETA PR2	-197.8	-224.4	-239.8	-269.5	-302.0	-335.1	-362.3	-369.3	756.76	U 1
	U 1	611.65	619.07	626.96	651.56	684.82	717.92	742.83	750.40		
	U 2	613.79	620.56	627.95	649.19	677.52	705-86	727.13	734.21	741.30	U 2
	M 1	0.3527	0.3730	0.4011	0.4179	0.4265	0.4169	0.3674	0.3583	0.3136	M 1
	M 2	0.5138	0.5114	0.5092	0.5139	0.5226	0.5242	0.5017	0.4754	0.4370	M 2
	M(PR) 1	0.6403	0.6516	0.6745	0.7058	0.7346	0.7581	0.7678	0.7575	0.7381	M(PR) 1
	M(PR) 2	0.3994	0.4218	0.4314	0.4559	0.4837	0.5050	0.5002	0.4781	0.4485	MIPR) 2
	TURN (PR)	30.691	27.111	24.099	22.163	20.950	20.645	19. 9 10	18. 90 2	16.982	TURN (PR)
	P 1	14.435	14.606	14.789	14.879	14.957	14.974	14.825	14.687	14.458	P 1
	ΡŽ	18.849	18.822	18.795	18.894	19.091	19.214	19.010	18.714	18.297	P 2
	T 1	518.699	516.699	518.69 9	518.699	518-699	518.699	518.699	518.699	510.699	T 1
	T 2	561.447	559.339	557.246	557.447	557.820	558.468	559.394	560.301	561.885	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
SINION O	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	45.657	43.312	42.506	40.927	39.613	38.891	40.103	42.655	46.653	BETA 2
STATION 2A	BETA 2A	3.414	3.634	3.542	2.840	2.773	3.594	4.562	5.128	5.205	BETA ZA
SINITUM EN	V 2	581.67	578.00	574.55	579.69	589-21	591.25	567.58	539.63	498.37	V 2
	V ZA	450.06	442.01	435.86	465.88	488.36	503.18	462.79	445.54	439.37	V ZA
			420.57	423.56	437.96	453.71	459-61	433.26	396.04	341.45	VZ 2
	AX 5	406.55			465.26	487.68	502.00	461.09	443.51	437.25	VZ ZA
	VZ 2A	449.26	441.11	435.01			370.74	364.87	364.88	361.75	V-THETA 2
	V-THETA 2	415.98	396.49	388.20	379.73	375.52					
	V-THETA 2A	26.80	28.01	26.93	23.08	23.62	31.53	36.79	39.80	39.83	V-THETA 2A
	M 2	0.5138	0.5114	0.5092	0.5139	0.5226	0.5242	0.5017	0.4754	0.4370	M 2
	M ZA	0.3935	0.3869	0.3822	0.4092	0.4295	0.4428	0.4055	0.3898	0.3836	M ZA
	TURN (PR \	42 - 242	39.677	38.964	38.085	36.820	35-239	35.446	37.421	41.339	TURN (PR)
	P 2	18.849	16.822	18.795	18.894	19.091	19.214	19.010	18.714	18.297	PZ
	P 2A	18.617	18.550	18.510	18.747	10.932	19.043	18.636	18.497	18.424	P ZA
	T 2	561.447	559.339	557.246	557.447	557.820	558.468	559.394	560.301	561.885	T 2
	T ZA	561.347	559.260	557.135	557.435	557.854	558.532	559.742	560.264	562.042	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (136°) - Station 2 (126°) - Station 2A (115°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	3.276	2,540	2.096	1.524	1.964	1.461	1.590	0.742	0.450	BETA 1
STATION 2	BETA 2	46.816	44.602	43.646	42.326	40.817	40.155	42.395	43.808	47.736	BETA 2
	BETA (PR) 1	57.483	55.958	55.474	55.116	56.968	58.194	61.413	63.486	63.833	BETA(PR) 1
	BETA(PR) 2	25.406	27.596	28.016	30.294	33.513	36.177	37.959	41.661	45.648	BETA(PR) 2
	V 1	376.82	406.46	421.00	446.15	435.84	438.41	398.98	372.06	370.44	V 1
	v Ž	582.25	577.27	584.03	587.39	586.94	587.10	582.63	551.33	520.04	V 2
	V2 1	376.20	406.06	420.71	445.99	435.56	438.21	398.76	371.97	370.40	VZ 1
	VZ 2	398.45	409.59	422.61	434.25	444.02	448.17	429.47	397.08	349.13	VZ 2
	V-THETA 1	21.53	18.01	15.40	11.87	14.94	11.33	11.07	4-82	2.91	V-THETA 1
	V-THETA 2	424.54	406.77	403.09	395.50	383.50	378.13	392.09	380.90	364.16	V-THETA 2
	VIPRI 1	699.8	725.4	742.3	779.B	799.0	631.5	833.4	833.2	839.9	V(PR) 1
	V(PR) 2	441.1	462.2	478.7	503.0	532.8	556.0	545.9	532.6	500.4	V(PR) 2
	VTHETA PRI	-590.1	-601.1	-611.6	-639.7	-669.9	-706.6	-731.8	-745.6	-753.8	VTHETA PRI
	VTHETA PRZ	-189.2	-214.1	-224.9	-253.7	-294.0	-327.7	-335.0	-353.3	-357.1	VTHETA PR2
	U 1	611.65	619.07	626.96	651.56	684-82	717.92	742.83	750.40	756-76	U 1
	Ŭ Ž	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	V Z
	M 1	0.3414	0.3690	0.3826	0.4062	0.3965	0.3989	0.3620	0.3370	0.3355	H 1
	H 2	0.5145	0.5110	0.5182	0.5212	0.5206	0.5205	0.5161	0.4863	0.4571	H 2
	M(PR) 1	0.6341	0.6585	0.6745	0.7099	0.7269	0.7565	0.7562	0.7548	0.7608	M(PR) 1
	M(PR) 2	0.3898	0.4091	0.4248	0.4463	0.4726	0.4929	0.4835	0.4699	0.4398	M(PR) 2
	TURN (PR)	32.077	28.362	27.458	24.824	23.473	22.071	23.545	21.930	18.295	TURN(PR)
	P 1	14.493	14.694	14.791	14.952	14.890	14.962	14.739	14.609	14.636	P 1
	P 2	18.892	18.842	16.933	19.031	19.106	19.217	19.235	18.690	18.535	P 2
	T 1	518.699	518.699	518-699	518.699	518.699	518.699	518.699	518.699	518-699	T 1
	T 2	561.111	558.735	556.948	557.293	557.636	558.125	558.629	560.069	561.163	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	01A	33.207	33.564	33.921	34.992	36.420	37.640	38.919	39.276	39.633	DIA
STATION 2	BETA 2	46.816	44.802	43.646	42.326	40.817	40.155	42.395	43.808	47.736	BETA 2
STATION 2A	BETA ZA	3.610	3.702	3.450	2.470	2.779	3.556	4.371	5.219	5.372	BETA 2A
	V 2	582.25	577.27	584.03	587.39	586.94	587.10	582.63	551.33	520.04	¥ 2
	V ZA	441.20	430.69	423.50	459.01	482.86	500.15	460.36	441.85	435.83	Y ZA
	VZ 2	398.45	409.59	422.61	434.25	444.02	448.17	429.47	397.08	349.13	VZ 2
	VZ ZA	440.32	429.78	422.72	458.54	482.19	499.00	458.79	439.77	433.61	VZ ZA
	V-THETA 2	424.54	406.77	403.09	395.50	383.50	378.13	392.09	380.90	364.18	V-THETA 2
	V-THETA 2A	27.78	27.81	25.48	19.78	23.41	31.01	35.07	40.17	40.77	V-THETA 2A
	H 2	0.5145	0.5110	0.5182	0.5212	0.5206	0.5205	0.5161	0.4863	0.4571	H 2
	M ZA	0.3855	0.3768	0.3710	0.4030	0.4245	0.4401	0.4037	0.3865	0.3806	M ZA
	TURN (PR)	43.205	41.099	40.196	39.854	30.018	36.541	37.928	38.482	42.256	TURN(PR)
	P 2	18.892	18.842	18.933	19.031	19.106	19.217	19.235	18.890	18.535	P 2
	P 2A	18.568	16.505	18.446	18.720	18.924	19.063	18.668	18.507	18.429	P ZA
	Ţ 2	561.111	558.735	556.948	557.293	557.636	558.125	558.629	560.069	561.163	T 2
	T ZA	561.408	559.117	557.251	557.447	557.750	558.267	558.813	560.163	561.351	T 2A

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59
Circumferential Distortion
Station 1 (166°) - Station 2 (156°) - Station 2A (145°)

ROTER D	PCT SPAN	94.99	90.00	64.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	5.820	5.498	5.804	5.801	5.571	4.988	5.308	6.055	6.040	BETA 1
STATION 2	BETA 2	46.554	44.027	43.312	41.933	40.662	39.456	40.998	43.872	48.305	BETA 2
• • • • • • • • • • • • • • • • • • • •	BETA(PR) 1	54.895	53.213	52.413	53.379	55.411	56.937	59.885	62.019	65.289	BETA(PR) 1
	BETA(PR) 2	25.690	28.343	28.895	31.688	32.722	36.908	39.723	43.259	47.207	BETA(PR) 2
	V :	403.29	433.63	449.88	452.57	444 .59	443.96	410.67	379.59	333.96	V 1
	V 2	586.79	573.37	577.40	575.81	594.47	581.51	567.81	536.43	506.83	V 2
	VZ 1	401.21	431.83	447.57	450.26	442.47	442.22	408.83	377.41	332.07	YZ 1
	VZ 2	399.39	412.25	420.13	428.34	449.41	448.42	427.70	385.94	336.54	VZ 2
	V-THETA 1	40.69	41.57	45.49	45.74	43.16	38.60	37.98	40.03	35.14	V-THETA 1
•	V-THETA 2	421.66	398.49	396.08	384.77	368.77	369.07	371.77	371.03	3 77.79	V-THETA 2
	V(PR) 1	697.7	721.1	733.8	754.8	779.4	810.6	814.9	B04.4	794.4	Y(PR) 1
	V(PR) 2	443.2	468.4	479.9	503.4	534.5	561.6	557.2	531.0	496.3	V(PR) 2
	VTHETA PRI	-570.8	-577.5	-581.5	-605.8	-641.7	-679.3	-704.8	-710.4	-721.6	VTHETA PRI
	VTHETA PR2	-192.1	-222.4	-231.9	-264.4	-268.8	-336.8	-355.4	-363.2	-363.5	VTHETA PR2
	U 1	611.65	619.07	626.96	651.56	684.82	717.92	742.83	750.40	756.76	U 1
	Ŭ Ž	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	Ū Ž
	M 1	0.3660	0.3946	0.4097	0.4122	0.4047	0.4041	0.3729	0.3440	0.3018	M I
	H 2	0.5140	0.5083	0.5129	0.5109	0.5280	0.5155	0.5023	0.4729	0.4450	M 2
	M(PR) 1	0.6332	0.6559	0.6682	0.6875	0.7095	0.7378	0.7400	0.7290	0.7180	M(PR) 1
	M(PR) 2	0.3923	0.4152	0.4263	0.4467	0.4747	0.4979	0.4929	0.4681	0-4357	M(PR) 2
	TURN (PR)	29.205	24.870	23.518	21.694	22.706	20.083	20.255	18.865	18.193	TURN (PR)
	PI	14.659	14.890	14.982	14.981	14.946	15.006	14.836	14.686	14.485	P 1
	P Z	18.817	18.742	18.801	18.843	19.150	19.094	19.008	16.672	10.371	P 2
	ΤĪ	518.699	518,699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	T 1
	Ť 2	559.340	556.945	555.119	556.150	556.865	557.569	558.543	559.493	561.237	Ť 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.492	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	46.554	44.027	43.312	41.933	40.862	39.456	40.998	43.872	48.305	BETA 2
STATION 2A	BETA 2A	3.441	3.711	3.579	2.582	2.999	3.547	4.299	5.191	5.276	BETA 2A
	V 2	580.79	573.37	577.40	575.81	594.47	581.51	567.81	536.43	506.83	V 2
	V ZA	435.32	425.59	420.43	458.03	484.14	501.14	457.10	440.38	434.39	A 5V
	VZ 2	399.39	412.25	420.13	428.34	449-41	448.42	427.70	385.94	336.54	VZ Z
	V2 2A	434.53	424-68	419.60	457.52	463.37	500.00	455.59	438.32	432.25	VZ ZA
	V-THETA 2	421.66	398.49	396.0B	364.77	368.77	369-07	371.77	371.03	377.79	V-THETA 2
	V-THETA 2A	26.13	27.54	26.24	20.63	25.32	30.99	34.25	39.82	39.92	V-THETA 2A
	M 2	0.5140	0.5083	0.5129	0.5109	0.5280	0.5155	0.5023	0.4729	0.4450	M 2
	M 2A	0-3808	0.3729	0.3689	0.4025	0.4259	0.4412	0.4007	0.3853	0.3793	M ZA
	TURN (PR)	43.112	40.315	39.733	39.349	37.843	35.851	36.603	36.574	42.921	TURN (PR)
	P 2	18.817	18.742	18.801	18.843	19.150	19.094	19.008	18.672	18.371	P 2
	P 2A	16.543	18.463	18.432	18.732	18.959	19.085	18.642	16.507	18.432	P 2A
	T 2	559.340	556.945	555.119	556.150	556.865	557.569	558.543	559.493	561.237	ŢZ
	T 2A	559.508	557.154	555.183	556.366	557.139	557.836	558.985	559.786	561.551	T ZA

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59
Circumferential Distortion
Station 1 (196°) - Station 2 (186°) - Station 2A (175°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	AIG
STATION 1	BETA 1	5.652	5.649	5.274	5.261	4.549	4.164	4.338	4.463	4.236	BETA 1
STATION 2	BETA 2	46.995	45.201	44.673	43.890	42.072	40.613	42.896	45.795	50.908	BETA 2
	BETA(PR) 1	55.501	54.432	55.125	54.986	56.981	58.855	61.062	62.732	64.988	BETA(PR) 1
	BETA(PR) 2	25.773	27.668	28.888	31.093	32.765	36.109	38.504	41.370	46.992	BETA(PR) 2
	V 1	395.52	415.47	412.30	430.61	424.52	416.72	395.38	373.01	342.24	V 1
	V 2	578.72	575.41	573.25	575.60	590.51	586.64	576.57	552.70	511.28	¥ 2
	V2 1	393.59	413.44	410.55	428.80	423.16	415.56	394.17	371.82	341.27	
	VZ 2	394.72	405.44	407.65	414.80	438.16	444.79	421.61	384.64	321.89	VZ 1
	V-THETA 1	38.95	40.90	37.90	39.48	33.67	30.25	29.90	29.02	25.28	VZ 2 V-THETA 1
	V-THETA 2	423.21	408.29	403.03	399.04	395.52	381.41	391.72			
	V(PR) 1	694.9	710.8	718.0	747.3	776-6	803.5		395.46	396.20	V-THETA 2
	V(PR) 2	438.3	457.8	465.6	484.4	521.3	551.3	814.7	811.6	807.2	V(PR) 1
	VTHETA PRI	-572.7	-578.2	-589.1	-612.1			539.9	513.6	472.8	V(PR) 2
	VTHETA PRZ	-190.6	-212.6	-224.9	-250.2	-651.2	~687.7	-712.9	-721.4	-731.5	VTHETA PRI
	UI	611.65	619.07	626.96		-282.0	-324.4	~335.4	-338.7	-345.1	VTHETA PRZ
	U Ž	613.79			651.56	684.82	717.92	742.83	750-40	756.76	U 1
	H 1	0.3586	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	U 2
			0.3774	0.3744	0.3916	0.3859	0.3786	0.3587	0.3379	0.3095	M 1
	M Z	0.5123	0.5103	0.5090	0.5108	0.5245	0.5206	0.5108	0.4879	0.4492	M 2
	M(PR) 1	0.6304	0.6457	0.6521	0.6796	0.7059	0.7299	0.7390	0.7352	0.7299	M(PR) 1
	M(PR) 2	0.3880	0.4060	0.4134	0.4299	0-4631	0.4892	0.4783	0.4534	0.4153	M(PR) 2
	TURN (PR)	29.729	26.765	26.237	23.895	24.233	22.801	22.650	21.467	18.106	TURN(PR)
	P 1	14.770	14.918	14.903	15.001	14.960	14.953	14.902	14.796	14.617	P 1
	P 2	18.796	18.792	18.784	18.654	19.090	19.132	19.060	16.780	18.373	P 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518-699	T 1
	T 2	558.887	556.593	555.210	555.920	556.440	557.095	557.842	559.395	560.968	T 2
F74700 D	DCT CDAN	05.40	00.00		24						
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
47.770	DIA	33.207	33.564	33.921	34.992	36.420	37.846	38.919	39.276	39.633	DIA
STATION 2	BETA 2	46.995	45.201	44.673	43.890	42.072	40.613	42.896	45.795	50.908	BETA 2
STATION 2A	BETA ZA	3.295	3.767	3.784	2.767	3.028	3.405	4.288	5.259	5.454	BETA 2A
	V 2	578.72	575-41	573.25	575.60	590.51	586.64	576.57	552.70	511.28	V 2
	V ZA	439.03	428.95	425.97	454.02	477.74	489.45	451.67	433.91	432.27	V 2A
•	V2 2	394.72	405.44	407.65	414.80	438.16	444.79	421.61	384.64	321.89	VZ 2
	VZ 2A	438.31	428.01	425.03	453.45	476.96	488.41	450-17	431.84	430.01	VZ ZA
	V-THETA 2	423.21	408.29	403.03	399.04	395.52	381.41	391.72	395.46	396.20	V-THETA 2
	V-THETA 2A	25.23	28.16	26.11	21.92	25.23	29.06	33.75	39.75	41.06	V-THETA 2A
	M 2	0.5123	0.5103	0.5090	0.5108	0.5245	0.5206	0.5108	0.4879	0.4492	H 2
	M 2A	0.3843	0.3760	0.3739	0.3990	0.4203	0.4308	0.3962	0.3796	0.3776	H ZA
	TURN (PR)	43.699	41.433	40.889	41.121	39.024	37.149	38.511	40.429	45.348	TURN (PR)
	P 2	18.796	18.792	16.784	18.854	19.090	19.132	19.060	18.780	18.373	P 2
	P 2A	18.555	18.464	18.451	16.678	16.865	16.952	18.572	18.432	16.384	P ZA
	T 2	558.887	556.593	555.210	555.920	556.440	557.095	557.842	559.395	560.968	T 2
	T ZA	559.206	55 6. 616	555.309	555.989	556.526	557.195	557.860	559.251	560.830	T ZA

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59
Circumferential Distortion
Station 1 (226°) - Station 2 (216°) - Station 2A (205°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	36.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	36.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	8.133	7.973	8.154	7.758	7.948	7.454	8.512	7.281	9.709	BETA 1
STATION 2	BETA Z	45.864	44.766	44.578	43.539	43.112	43.276	48.062	51.857	56.706	BETA 2
	BETA(PR) 1	56.389	54.843	54.333	55.437	56.768	59.635	61.212	62.343	65.633	BETA(PR) 1
	BETA(PR) 2	25.954	27.370	27.677	30.401	34.054	37.534	41.941	44.567	47.406	BETAIPR) 2
	V 1	375.05	400.75	412.18	414.14	415.09	394.04	361.42	371.63	322.75	V 1
	V 2	580.90	579.30	583.89	562.70	575.94	567.65	541.70	527.15	517-94	V Ž
	VZ 1	371.27	396.87	408.01	410.35	411.08	390.66	377.15	368.57	318.10	VZ 1
	VZ 2	404.51	411.29	415.90	422.36	420.29	412.81	361.47	325.11	283.98	A5 5
	V-THETA 1	53.06	55.59	58.46	55.90	57.39	51.11	56.45	47.09	54.43	V-THETA 1
	V-THETA 2	416.90	407.94	409 . BZ	401.37	393.46	388.71	402.33	413.98	432.41	V-THETA 2
	V(PR) 1	670.7	689.2	699.8	723.3	750.1	772.8	783.2	794.1	771.0	V(PR) 1
	V(PR) 2	449.9	463.1	469.6	489.7	507.5	521.3	486.9	457.2	420.3	V(PR) 2
	VTHETA PRI	-558.6	-563.5	-568.5	-595.7	-627.4	-666.8	-686.4	-703.3	-702.3	VTHETA PRI
	VTHETA PRZ	-196.9	-212.9	-218.1	-247.B	-284.1	-317.1	-324.8	-320-2	-308.9	VTHETA PRZ
	U 1	611.65	619-07	626.96	651.56	684.82	717.92	742.83	750.40	756.76	
	Ū Ž	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	U 1 U 2
	M 1	0.3398	0.3637	0.3743	0.3762	0.3770	0.3574	0.3457	0.3366	0.2915	M 1
	M 2	0.5152	0.5146	0.5195	0.5174	0.5107	0.5023	0.4770	0.4631	0.4537	
	M(PR) 1	0.6077	0.6254	0.6355	0.6570	0.6814	0.7010	0.7098	0.7193		M 2
	MIPR) 2	0.3990	0.4114	0.4178	0.4349	0.4500	0.4613	0.4287		0.6964	M(PR) 1
	TURN (PR)	30.436	27.473	26.656	25.038	22.732	22.156	19.365	0.4016 17.882	0.3682	M(PR) 2
	P 1	14.748	14.899	14.979	14.999	15.022	14.939	14.969	14.945	18.338 14.741	TURN (PR)
	P 2	18.746	18.770	18.858	18.858	18.639	18.791	18.519	18.361		P 1
	T Ī	518.699	518.699	518.699	516.699	518.699	518.699	518.699	518.699	18.288	P 2
	T 2	557.155	555.375	554.141	555.974	556.681	558.215	561.174	562.436	518.699	T 1
				2246141	3334714	JJ04001	750.215	3014114	202.430	564.570	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00			
\$1810K B	DIA	33.207	33.564	33.921	34.492	36.420	37.848	15.00	10.00	5.00	PCT SPAN
STATION 2	BETA 2	45.864	44.766	44.578	43.539			38.919	39.276	39.633	DIA
STATION 2A	BETA ZA	3.291	3.970	4.157	3.025	43.112 2.583	43.278	48.062	51.857	56.706	BETA 2
4141.004 EA	V 2	580.90	579.30	583.89	582.70		3.081	4.611	5.812	6.581	BETA 2A
	V ZA	436.71	428.84			575.94	567.65	541.70	527.15	517.94	V 2
	vz 2	404.51	411.29	428.22	458.00	466.00	465.85	422.55	413.05	414.80	V 2A
	V2 2A	437.98	427.80	415.90	422.38	420.29	412.81	361.47	325.11	263.98	V2 2
	V-THETA 2	416.90		427.07	457.32	465.42	465.00	420.97	410.70	411.77	VZ 2A
	V-THETA 2A		407.94	409-62	401.37	393.46	368.71	402.33	413.98	432.41	V-THETA 2
		25.18	29.69	31.04	24-17	21.00	25.03	33.95	41.80	47.50	V-THETA 2A
	M 2	0.5152	0.5146	0.5195	0.5174	0.5107	0.5023	0.4770	0.4631	0.4537	M 2
	M 2A	0.3847	0.3764	0.3764	0-4027	0.4096	0.4092	0.3694	0.3604	0.3613	M ZA
	TURN(PR)	42-572	40.795	40.421	40.512	40.509	40.138	43.355	45.942	50.026	TURN (PR)
	P 2 P 2A	18.748	16.770	18.858	18.858	18.839	16.791	18.519	16.361	18.288	P 2
	T 2	16.559	18.484	18.468	18.716	18.752	18.711	18.309	18.245	16.245	P 2A
		557.155	555.375	554.141	555.974	556.881	558-215	561.174	562-436	564.576	T 2
	T ZA	557.166	555.411	553.922	555.790	556.697	557.411	559.479	560 .779	562.821	T 2A

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59
Circumferential Distortion
Station 1 (256°) - Station 2 (246°) - Station 2A (235°)

ROTOR D	PCT SPAN	94,99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	5.789	4.640	4.698	4.286	4.784	4.073	4.927	5.876	6.202	BETA 1
STATION 2	BETA 2	44.946	44.200	44.560	45.035	47.133	53.303	63.249	66.668	69.958	BETA 2
	BETA(PR) 1	58 . 844	57.864	57.766	56.904	60.498	64.205	66.035	67.894	71.556	BETA(PR) 1
	BETA(PK) 2	24.975	26.055	27.028	29.494	32.038	37.993	47.076	49.590	53.751	BETA(PR) 2
	V 1	350.22	371.24	377.13	377.05	371.28	336.33	319.23	294.16	245.02	V 1
	V 2	592.41	592.62	589.55	586.33	584.95	556.84	528.49	531.04	527.16	Ÿ Ž
	¥2 1	348.43	370.02	375.86	375.99	369.97	335.43	317.99	292.56	243.56	V2 1
	VZ 2	419.29	424.85	420.06	414.33	397.81	332.50	237.71	210.19	180.58	VZ Z
	V-THETA 1	35.32	30.03	30.89	28.16	30.96	23.89	27.41	30.11	26.47	V-THETA 1
	V-THETA 2	416.50	413.15	413.66	414.84	428.58	446.14	471.59	487.32	495.01	V-THETA 2
	V(PR) 1	673.5	695.6	704.7	728.0	751.3	770.9	782.9	777.5	769.8	V(PR) 1
	V(PR) 2	462.5	472.9	471.6	476.0	469.5	422.5	349.6	324.8	305.8	V(PR) 2
	VTHETA PRI	-576.3	-589.0	->96.1	-623.4	-653.9	-694.0	-715.4	-720.3	-730.3	VTHETA PRI
	VTHETA PR2	-195.3	-207.7	-214.3	-234.4	-248.9	-259.7	-255.5	-246.9	-246.3	VTHETA PRZ
	U 1	611.65	619.07	626.96	651.56	684-82	717.92	742.83	750.40	756.76	U 1
,	U 2	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	Ŭ Ž
	M 1	0.3168	0-3363	0.3417	0.3416	0.3363	0.3040	0.2883	0.2653	0.2205	M 1
	M Z	0.5250	0.5261	0.5235	0.5196	0.5176	0.4899	0-4619	0.4636	0.4592	M 2
	M(PR) 1	0.6092	0.6361	0.6385	0.6596	0.6805	0.6968	0.7071	0.7012	0.6929	M(PR) 1
	M(PR) 2	0.4099	0.4196	0.6363	0.4218	0.4155	0.3717	0.3055	G-2836	0.2664	M(PR) 2
	TURN (PR)	33.869	31.810	30.738	29.412	28.477	26.267	19.060	18.410	17.910	TURN (PR)
	PI	14.841	14.975	15.020	15.039	15.042	14.973	14.968	14.852	14.643	Pl
	P 2	18.897	15.940	18.925	18.907	18.884	18.517	18.246	18.288	18.281	P 2
	T 1	518.699	516.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	7 1
	Ť 2	559.100	557.242	556.707	558.574	559.912	563.325	567.995	569.376	571.610	T 2
	1 2	3574100	331.242	556.707	336.514	224.415	203.323	201.772	207.310	,	1 2
STATCR D	PCT SPAN	95.60	00.60	0E 00	70.00	Fn 00	20.00	15.00	10.00		DCT FRAN
SINICK D	DIA	33.207	90.00 33.564	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATION 2	BETA 2	44.946	44.200	33.921	34.992	36.420	37.648	38.919	39.276	39.633	DIA
STATION 2A	BETA ZA	3.298	4.048	44.560	45.035	47.133	53.303	63.244	66.668	69.958	BETA 2
SINITUM SX	V 2	592.41		4.332	3.305	1.950	0.972	1.889	3.081	4.111	BETA ZA
	V 2A	462.63	592.62 455.39	589.55	586.33	584.95	556.84	528.49	531.04	527.16	V 2
	VZ 2			456.97	467.46	450.97	435.68	403.98	394.19	399.43	V ZA
		419.29	424.85	420.06	414.33	397.81	332.50	237.71	210.19	180.58	VZ 2
	VZ 2A	461.66	454.24	455.65	466-63	450-60	435.46	403.56	393.40	398.12	VZ ZA
	V-THETA 2	418.50	413.15	413-66	414-84	428.58	446-14	471-59	487.32	495.01	V-THETA 2
	V-THETA 2A	26.61	32.15	34.52	26.95	15.34	7.39	13.31	21.18	28.61	V-THETA 2A
	H 2	0.5250	0.5261	0.5235	0-5196	0.5176	0.4899	0.4619	0.4636	0.4592	M 2
	M ZA	0.4060	0.4001	0.4018	0.4107	0.3954	0.3807	0.3509	0.3418	0.3458	M 2A
	TURN (PR)	41.647	40-151	40.226	41.728	45.163	52.273	61.281	63.509	65.777	TURN (PR)
	P 2	18.897	18.940	18.925	18.907	18.884	18.517	18.246	18.288	18.281	PZ
	P 2A	18.626	18.569	18.581	18.637	18.477	18.306	18-053	17.986	18.016	P 2A
	1 2 7 24	559.100	557.242	556.707	558.574	559.912	563.325	567.995	569.376	571.610	T 2
	T ZA	556-130	556-238	555.508	557.188	558.221	560.889	565.113	566.421	568.616	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (286°) - Station 2 (276°) - Station 2A (265°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.665	36.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-6.861	-6.291	-6.045	-5.567	-4.769	-6.275	-5.914	-5.889	-5.931	BETA 1
STATION 2	BETA 2	43.967	44.076	44.362	46.561	51.629	58.959	67.734	70.730	74.394	BETA 2
	BETA(PR) 1	62.228	61.402	61.456	62.386	64.825	68.244	70.952	74.166	78.541	BETA(PR) 1
	BETA(PR) 2	26.239	25.661	25.721	26.939	31.629	39.998	52.023	56.609	60.905	BETA(PR) 2
	V 1	346.39	361.26	363.90	360.85	336.21	301.50	267.46	220.44	157.55	V 1
	V 2	585.05	596.56	601.73	603.63	581-06	547.71	515.66	508.44	512.60	V 2
	VZ 1	343.90	359.08	361.88	359.14	335.03	299.65	265.98	219.24	156.69	VZ 1
	V2 2	420.94	428.57	430.20	415.03	360.60	282.27	195.29	167.73	137.86	VZ 2
	V-THETA 1	-41.38	-39.59	-36.32	-35.01	-27.95	-32.95	-27.55	-22.61	-16.28	V-THETA 1
	V-THETA Z	406.31	414.97	420.72	438.26	455.43	469.02	476.97	479.75	493.56	V-THETA 2
	V(PR) 1	738.0	750.2	757.3	774.8	787.6	608.5	815.0	803.5	788.8	V(PR) 1
	V(PR) 2	469.3	475.5	477.5	465.6	423.7	368.9	317.8	305.1	283.8	
	VTHETA PRI	-653.0	-656.7	-665.3	-686.6	-712.8	-750.9	-770.4	-773.0	-773.0	V(PR) 2
	VTHETA PRZ	-207.5	-205.9	-207.2	-210.9	-222.1	-236.8	-250.2			VTHETA PRI
	Ul	611.65	619.07	626.96	651.56	684.82	717.92		-254.5	-247.7	VTHETA PR2
	U Z	613.79	620.86	627.95	649.19	677.52		742.83	750.40	756.76	U 1
	M 1	0.3133	0.3270	0.3295	0.3266	0.3039	705.86	727.13	734.21	741.30	UZ
	H 2	0.5150	0.5263	0.5314			0.2720	0-2409	0.1982	0.1414	M 1
	MIPR) 1	0.6675	0.6791	0.6857	0.5315	0.5093	0.4769	0.4463	G-4393	0.4421	M 2
	M(PR) 2	0.4131			0.7014	0.7119	0.7295	0.7342	0.7225	0.7079	M(PR) 1
	TURN(PR)	35.989	0.4195	0.4217	0.4099	0.3714	0.3212	0.2750	0.2636	0-2448	M(PR) Z
	P 1	14.847	35.742 14.946	35.735 14.979	35.449	33.213	28.303	19.022	17.656	17.731	TURN (PR)
	P 2	16.937	14.091	19.156	15.023 19.142	15.000	14.939	14-865	14.700	14.548	P 1
	Ti	518-699	518.699	518.699		18.816	18.398	18.108	18.065	18-142	P 2
	T 2	565.587	564.266		516.699	518.699	518.649	518.699	518.699	518.699	T 1
		101.00	7040200	563.722	567.053	564.638	573.965	577.660	579.025	581.262	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00		06T 6044
• • • • • • • • • • • • • • • • • • •	DIA	33.207	33.564	33.921	34.992	36.420	37.846	38.919		5.00	PCT SPAN
STATION 2	BETA 2	43.987	44.076	44.362	46.561	51.629	58.959	67.734	39.276	39.633	DIA
STATION 2A	BETA ZA	3.295	3.639	4.679	3.698	0.962	-5.454	-8.315	70.730	74.394	BETA 2
	V 2	585.05	596.56	601.73	603.63	581.06	547.71		- 7.732	-7.284	BETA ZA
	V ZA	467.79	472.92	477.62	479.74			515.66	508.44	512.60	V 2
	VZ 2	420.94	428.57	430.20	415.03	439.68	413.10	380-87	379.98	391.28	V 2A
	VZ ZA	467.02	471.85	476.39	478.69	360.60	282.27	195.29	167.73	137.86	VZ 2
	V-THETA 2	406.31	414.97	_		439.52	411.08	376.67	376.31	387.85	VZ ZA
	V-THETA 2A	26.89	31.66	420.72 33.97	438.28	455.43	469.02	476.97	479.75	493.56	V-THETA 2
	M 2	0.5150	0.5263		30.94	7.38	-39.25	-55.05	-51.09	-49.57	V-THETA 2A
	M ZA			0.5314	0.5315	0.5093	0.4769	0.4463	0-4393	0.4421	M 2
	TURN(PK)	0.4092 40.691	0.4144	0.4189	0.4195	0.3624	0.3572	0.3275	0.3262	0.3354	M ZA
	P 2		40.236	40-283	42.861	50.647	64.357	75.975	78.389	81-614	TURN (PR)
	P 2A	16.937 16.535	19.091	19.156	19.142	18.810	18.396	18.108	18.065	18.142	P2
	T 2	565.587	18.568	18.592	18.563	16.207	17.995	17.783	17.782	17.877	P 2A
	T 2A	561.961	564-266	563.722	567.053	569.636	573.965	577-660	579.025	581-262	<u>†</u> 2
	I ZA	201*201	560.653	559.975	563.447	566.260	570.640	574.956	576-596	578.979	T 24

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59
Circumferential Distortion
Station 1 (316°) - Station 2 (306°) - Station 2A (295°)

ROTUR D	PCT SPAN	94,99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	4دَ2. دَ3	33.017	34.001	35.151	36.665	38.219	39.371	39.754	40.138	DIA
1 MOITATZ	BETA 1	-23-657	-22.520	-21.469	-20.439	-21.745	-24.021	-24.433	-24.721	-25.866	BETA 1
STATION 2	BETA 2	45.457	46.214	49.203	48.503	55.704	61.720	74.846	79.057	85.154	BETA 2
	BETA(PR) 1	69.878	66.963	68.673	68.401	70.175	72.613	73.997	74.422	75.076	BETA(PR) 1
	BETA(PR) 2	28.383	31.525	36.528	32.792	37.007	44.293	65.120	72.822	62.311	BETA(PR) 2
	V 1	291.43	306.68	322.20	322.94	310.45	286.07	269.10	264.26	257.52	A 1
	V 2	562.23	537.84	506.01	552.12	541.77	525.88	475.70	460.12	457.01	Ÿ Z
	VZ 1	266.94	283.28	299.84	302.61	268.34	261.27	244.96	240.01	231.67	YZ 1
	V2 2	394.37	358.36	330.62	365.81	305.20	249.03	124.33	87.33	38.61	VZ 2
	V-THETA 1	-116.94	-117.49	-117.92	-112.77	-115.01	-116.44	-111.29	-110.50	-112.42	V-THETA 1
	V-THETA 2	400.71	401.03	383.06	413.52	447.48	462.89	459.05	451.69	455.36	V-THETA 2
	V(PR) 1	775.9	789.2	803.0	822.1	850.2	874.3	886.6	893.7	897.5	VIPR) 1
	' V(PR) 2	448.3	420.4	411.4	435.2	382.4	348.3	295.7	295.6	288.5	V(PR) 2
	VTHETA PKI	-728.6	-736.6	-744.9	-764.3	-799.8	-634.4	-854.1	-860.9	-869.2	VTHETA PRI
	VTHETA PR2	-213.1	-219.8	-244.9	-235.7	-230.0	-243.0	-268.1	-282.5	-285.9	VTHETA PR2
	U 1	611.65	619.07	626.96	651.56	684.82	717.92	742-83	750.40	756.76	U 1
•	ŪŽ	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741-30	U Ž
	MĪ	0.2628	0.2768	0.2910	0.2917	0.2802	0.2579	0.2424	0-2380	0.2319	ÄÌ
	M Z	0.4903	G-4687	0.4400	0.4811	0.4709	0.4554	0.4098	0.3958	0.3924	M 2
	M(PR) 1	0.6998	6.7122	0.7253	0.7425	0.7675	0.7883	0.8005	0.8050	0.8100	M(PR) 1
	M(PR) 2	0.3909	0.3664	0.3578	0.3792	0.3323	0.3016	0.2547	0.2544	0.2478	M(PR) Z
	TURN (PR)	41.496	37.438	31.546	35.611	33.187	26.378	8.950		-7.207	TURN(PR)
	Pl	13.929	14.025	14.081	14.071	14.086	14.078	14.064	1.660	14.036	
	PZ	18.608	18.320	17.993	18.463	18.386	18.188	17.671	14.066 17.571	17.594	P 1
	Ti	518-699	514.699	518.699	518.699	518.699	518.699	518.699			P 2
	Ť 2	573.431	572.058	571.667	573.521	575.281	577.843		518.699	518.699	Ţl
	•	2,3431	3121030	3114067	3134721	3134201	217.043	579.645	580.077	581.772	7 2
					_						
STATUR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5-00	PCT SPAN
	DIA	33.207	33-564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	45-457	46.214	49.203	46.503	55.704	61.720	74.846	79.057	85.154	BETA Z
STATION ZA	BETA 2A	3.351	_3 <u>-</u> 158	2.929	2.991	0.561	-8.232	-12.935	-12.724	-12.672	BETA ZA
	V 2	562.23	537-84	506.01	552.12	541.77	525.68	475.70	460.12	457.01	V 2
	V 2A	431.92	431.28	433.33	421.39	392.03	367.50	343.58	342.12	364.82	V ZA
	V2 2	394.37	358.38	330.62	365.81	305.20	249.03	124.33	87.33	38.61	VZ 2
	VZ 2A	431.18	430.61	432.75	.420.78	391.93	363.58	334.70	333.54	355.69	VZ 2A
	V-THETA 2	400.71	401.03	383.06	413.52	447.48	462.89	459.05	451-69	455.36	V-THETA 2
	V-THETA ∠A	25.25	23.76	22.14	21.99	3.84	-52.60	-76.87	-75.31	-79.98	V-THETA 2A
	M 2	0.4903	0-4687	U.4400	0.4811	0.4709	0.4554	0.4098	0.3958	0.3924	H Z
	H ZA	0.3737	0.3736	0.3756	0+3641	0.3375	0.3151	0.2935	0.2921	0.3113	N ZA
	TURN (PR)	42.105	45.055	46-274	45.510	55.124	69.898	87.725	91.733	97.798	TURN (PR)
	P 2	18.608	18.320	17.993	18.463	18.386	18.188	17.671	17.571	17.594	P 2
	P ZA	18.137	18-112	18.115	17.967	17.764	17.612	17.539	17.562	17.715	P ZA
	T 2	573.431	572.058	571.667	573.521	575.281	577.843	579.645	580.077	581.772	T 2
	T 2A	571.369	569.971	569.619	572.055	574.237	577.420	579.892	580.627	582.510	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (346°) - Station 2 (336°) - Station 2A (325°)

ROTUR D	PCT SPAN	94.99	40.00	64.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	36.219	39.371	39.754	40.138	DIA
1 MOITATS	BETA 1	-11.179	-10.560	-10.196	-10.048	-10.115	-9.670	-9.355	-9.278	-10-320	BETA 1
STATION 2	BETA 2	51.969	53.427	53.687	50.400	50.065	50.307	52.765	57.688	62.812	BETA 2
	BETA(PR) L	64.456	63.265	63.027	63.412	64.746	65.444	66.434	68.093	71.960	BETA(PR) 1
	BETA(PR) 2	31.449	34.045	40.548	35.410	33.474	38.581	47.852	52.790	58.566	BETA(PR) 2
	V 1	329.05	350.09	356.87	363.42	358.31	360.89	353.87	327.32	266.35	V 1
	V 2	527.11	514.95	478.46	530.55	568.93	552.37	497.07	474.47	453.20	V 2
	VZ 1	322.80	344.15	351.23	357.84	352.72	355.72	349.10	322.99	262.01	VZ 1
	VZ 2	324.74	366.83	283.34	338.17	365.10	352.48	300.39	253.34	206.90	VZ 2
	V-THETA 1	-63.79	-64-16	-63.17	-63.41	-62.93	-60.61	-57.51	-52.76	-47.71	V-THETA 1
	V-THETA 2	415.18	413.55	385.54	408.78	436.11	424.67	395.25	400.56	402.80	V-THETA 2
	V(PR) 1	748.6	765.0	774.4	799.5	826.8	856.0	873.2	865.7	946.1	VIPR) 1
	V(PR) 2	380.7	370.3	372.9	414.9	437.9	451.5	448.3	419.5	397.2	V(PR) 2
	VTHETA PRI	-675.4	-683.2	-690.1	-715.0	-747.7	-778.5	-800.3	-803.2	-804.5	VTHETA PRI
	VTHETA PR2	-198.6	-207.3	-242.4	-240.4	-241.4	-281.2	-331.9	-333.6	-338.5	VTHETA PRZ
	U 1	611.65	619.07	626.96	651.56	684.82	717.92	742.83	750.40	756.76	U I
	U 2	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	ÜŽ
	M 1	0.2973	0.3167	0.3230	0.3290	0.3243	0.3267	0.3202	0.2957	0.2399	M 1
	M 2	0.4591	0.4485	0.4161	0.4628	0.4975	0.4819	0.4314	0.4110	0.3916	H 2
	M(PR) 1	0.6764	0.6921	0.7008	0.7238	0.7483	0.7748	0.7901	0.7821	0.7622	M(PR) 1
	M(PR) 2	0.3315	0.3225	0.3243	0.3620	0.3829	0.3939	0.3891	0.3634	0.3431	M(PR) 2
	TURN (PR)	33.007	29.221	22.479	28.004	31.290	26.919	18.676	15.405	13.493	TURN (PR)
	P 1	13.844	13.969	13.979	13.967	13.958	13.968	14.013	13.917	13.717	P 1
	P 2	18.146	17.944	17.605	18.157	18.687	18.541	17.911	17.712	17.562	P 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	516.699	518.699	T 1
	T 2	571.686	570.601	569.395	570.265	571.244	572.179	572.964	573.239	574.564	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
DIRIUM D	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	51.969	53.427	53.687	50.400	50.065	50.307	52.765	57.688	62.812	BETA 2
STATION 2A	BETA ZA	3.555	1.400	-0.289	-0.390	1.604	-1.456	-2.715	-2.172	-1.866	BETA ZA
• • • • • • • • • • • • • • • • • • • •	V 2	527.11	514.95	478.46	530.55	568.93	552.37	497.07	474.47	453.20	V 2
	V 2A	383.61	381.39	379.66	391.60	401.45	390.81	355.30	349.03	356.15	V ZA
	VZ 2	324.74	306.83	283.34	338.17	365.10	352.48	300.39	253.34	206.90	VZ 2
	VZ ZA	382.87	361.27	379.64	391.55	401.20	390.54	354.72	348.56	357.71	VZ ZA
	V-THETA 2	415.18	413.55	385.54	408.76	436.11	424.67	395.25	400.56	402.80	V-THETA 2
	V-THETA 2A	23.79	9.32	-1.91	-2.67	11.23	-9.93	-16.82	-13.22	-11.65	V-THETA 2A
	M 2	0.4591	0.4485	0.4161	0.4628	0.4975	0.4819	0.4314	0-4110	0.3916	# 2
	M ZA	0.3310	0.3292	0.3280	0.3383	0.3467	0.3368	0.3054	0.2998	0.3074	H ZA
	TURN (PR)	46.413	52.026	53.976	50.788	48.441	51.703	55.383	59.760	64.585	TURN (PR)
	P 2	16.148	17.944	17.605	18.157	16.687	18.541	17.911	17.712	17.562	P Z
	P 2A	17.883	17.874	17.855	17.916	17.978	17.902	17.705	17.685	17.744	P ZA
	T 2	571.686	570.601	569.395	570.265	571.244	572.179	572.964	573.239	574.564	T 2
	T ZA	571.281	570.480	569.379	570.371	571.443	572.931	573.865	574.156	575.677	Ť ZA

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78

Circumferential Distortion
Station 1 (16°) - Station 2 (6°) - Station 2A (355°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	56.60	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	36.219	39.371	39.754	40.136	DIA
STATION 1	BETA 1	350 ذ~	-3.538	-3.473	407ءد-	-2.199	-2.207	-2.237	-2.243	-2.251	BETA 1
STATION 2	SETA 2	54.976	54.979	54.271	51.062	50.075	48.934	51.774	55.819	59.100	BETA 2
	BETA(PR) 1		02.893	62.380	63.297	63.115	65.068	65.950	67.072	68.006	BETA(PR) 1
	BETA(PR) 2	16.868	17.757	26.664	33.209	36.671	36.239	41.392	46.243	47.905	BETA(PR) 2
	V 1	263.08	291.05	301.30	300.45	315.19	301.93	299.79	286.78	275.95	V I
	V 2	536.66	549.65	28 ـ د 50	484.12	483.32	507.64	485.62	461.48	461.77	V 2
	VZ 1	262.62	290.49	300.75	299.92	314.90	301.66	299.50	286.51	275.71	VZ 1
	VZ 2	307.96	315.43	293.89	300.29	310.09	333.18	300.09	258.95	236.89	VZ 2
	V-THETA 1	-15.41	-17.96	-18.25	-17.86	-13.19	-11.63	-11.70	-11.22	-10-84	V-THETA 1
	V-THETA 2	439.46	450.12	408.56	379.71	370.54	382.39	380.99	361.31	395.82	V-THETA 2
	V(PR) 1	617.0	637.5	648.7	667.4	696.4	715.6	734.9	735.5	736.2	V(PR) 1
	V(PR) 2	325.5	331.2	329.4	358.9	386.8	413.7	400.8	375.1	354.0	V(PR) 2
	VTHETA PRI	-558.4	->67.5	-574.8	-596.2	-621.1	-648.9	-671.1	-677.3	-682.6	VTHETA PRI
	VTHETA PRZ	-105.4	-101.0	-148.9	-196.6	-230.9	-244.2	-264.5	-270-4	-262.2	VTHETA PR2
	U 1	542.45	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	UI
	U 2	544.86	551.13	557.43	576.28	601.43	626.58	645.47	651.75	658.04	Ŭ Ž
	M 1	0.2370	0.2625	0.2719	0.2711	0.2846	0.2724	0.2705	0.2586	0.2467	M 1
•	M 2	0.4732	U-4860	0.4441	0.4263	0.4254	0.4490	0.4270	0.4047	0.4048	M 2
	M(PR) 1	0.5558	(• 5750	0.5853	0.6022	0.6268	0.6457	0.6631	0.6631	0.6635	MIPR) 1
	M(PR) 2	0.2870	0.2929	0.2907	0.3161	0.3405	0.3658	0.3524	0.3290	0.3103	MIPR) 2
	TURN (PR)	45.923	45.136	35.516	30.090	26.463	28.884	24.652	20.935	20-211	TURN(PR)
	P 1	13.906	14.003	14.331	14.006	14.073	14.036	14.067	14.007	13.957	P 1
	P 2	18.034	18.162	17.726	17.623	17.745	18.048	17.835	17.630	17.637	P 2
	Ţ 1	518.699	516.699	518.699	518.699	516.699	518.699	518.699	518.699	518.699	Τī
	T Z	559.149	557.329	555.546	556.150	556.574	553.470	557.905	558.742	559.346	Τ̈́z
					N.						
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	UIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	54.476	54.979	54.271	51.662	50.675	48.934	51.774	55.819	59.100	BETA 2
STATION ZA	BETA ZA	2.921	1.628	-0.762	-2.030	0.352	1.693	J. 995	5.004	4.927	BETA ZA
	¥ 2	526.60	549.65	503.28	484.12	483.32	507.64	485.62	461.48	461.77	V 2
	V 2A	358.90	349.88	340.79	363.88	377.86	382.01	376.71	361.83	368.01	V ŽA
	V2 2	307.98	315.43	293.89	300.29	310.09	33.18د	300.09	258.95	236.89	vz 2
	VZ ZA	356.43	349.73	340.75	363.61	377.77	381.70	375.61	360.24	366.39	VZ ZA
	V-THETA 2	439.48	450.12	406.56	379.71	370.54	382.34	380.99	361.31	395.82	V-THETA 2
	V-THETA 2A	16.29	9.94	-4.53	-12.89	2.32	11.28	26.23	31.54	31.58	V-THETA 2A
	M 2	0.4732	0.4866	0.4441	0.4263	0.4254	0.4490	0.4270	0.4047	0.4048	H 2
	M ZA	0.3121	0.3046	0.2970	U-3172	U.3295	0.3346	0.3281	0.3146	0.3199	M 2A
	TURN (PR)	54.056	53.350	55.633	53.689	44.703	+7.182	47.085	50.716	54.077	TURN(PR)
	P 2	18.034	18.182	17.726	17.623	17.745	16.048	17.635	17.630	17.637	P 2
	P 2A	17.432	17.334	17.202	17.421	17.531	17.571	17.518	17.431	17.457	P ZA
	T 2	559.149	251.324	555.546	556.150	550.574	553.470	557.905	556.742	559.346	T Ž
	T 2A	560.962	559.304	557.722	558.582	559.232	556.630	560.563	561.267	561.924	T ŽA
									-	- ·	

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89,25 Equivalent Rotor Speed - 3757,35 Equivalent Weight Flow 79,78 Circumferential Distortion Station 1 (46°) - Station 2 (36°) - Station 2A (25°)

RUTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.95	4.98	PCT SPAN
1191411	UIA	33.234	33.617	34-001	35.151	36.685	36.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	5.040	4.746	5.187	3.942	4.784	2.944	3.681	3.751	5.702	BETA 1
STATION 2	BETA 2	49.042	46.729	40.012	44.062	43.327	42.160	44.531	47.568	51.898	BETA 2
•••••	BETA(PR) 1	54.985	53.492	53.514	54.825	55.349	57.765	60-460	62.442	65.482	BETA(PR) 1
	BETA(PR) 2	26.487	27.396	28.466	33.167	35.579	38.081	41.793	45.011	46.452	BETA(PR) 2
	V 1	359.66	384.54	387.30	389.67	398.60	389.81	361.35	336.90	294.54	V I
	V 2	503.65	508.73	508.59	494.65	446.66	501.03	483.07	462.04		
	vz 1	358.26	383.21	385.71	368.75	397.19	389.45	360.54		458.91	V Z
	VZ 2	330.14	348.71	353.22	355.44				336.12	293.05	V2 1
	V-THETA 1	31.60	31.82			362.61	370.97	343.76	311-20	282.75	VZ 2
	V-THETA 2	360.35		35.01	26.79	33.24	20.02	23.19	22-04	29.26	V-THETA 1
	V(PR) 1	624.4	376.41 644.1	365.92	343.95	342.03	335.90	338.18	340 - 43	360.58	V-THETA 2
	V(PR) 2			648.7	674.8	698.6	729.8	731.3	726.5	706.2	V(PR) 1
		368.9	392.8	401.8	424.6	446.1	471.9	462.0	441.0	411.2	V(PR) 2
	VTHETA PRI	-511.4	-517.7	-521.5	-551.6	-574.7	-617.3	-636+2	-644.1	-642.5	VTHETA PRI
	VTHETA PRZ	-164.5	-180.7	-191.5	-232.3	-259.4	-290.7	-307.3	-311.3	-297.5	VTHETA PR2
	Ul	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	U 1
	υž	544.86	551.13	557.43	576.28	601.43	626.58	645.47	651.75	658.04	ŲΖ
	M 1	0.3255	0.3486	0.3512	0.3534	0.3617	0.3535	0.3271	0.3045	0.2657	M 1
	M 2	0.4470	0-4523	0.4528	0.4397	0.4433	0.4461	0.4284	0.4088	0.4055	M 2
	M(PR) 1	0.5651	0.5839	0.5881	0.6119	0.6338	0.6618	0.6626	0.6568	0.6370	M(PR) 1
	M(PR) Z	0.3273	0.3492	0.3577	0.3775	0-3966	0.4201	0.4097	0.3902	0.3633	M(PR) 2
	TURN (PR)	28.498	26.096	25.048	21.660	19.788	19.739	18.760	17.537	19.140	TURN (PR)
	Pi	14.639	14.802	14.612	14.838	14.894	14.902	14.795	14.690	14.521	P 1
	P 2	17.752	17.836	17.857	17.776	17.912	17.996	17.866	17.685	17.663	P 2
	T 1	518.699	510.699	518.699	518.699	518.699	518.699	516.6 9 9	518.699	518.699	T 1
	† 2	549.507	547.979	546.590	547.023	547.167	545.910	>48.>55	549.316	550.451	T 2
STATOR D	, PCT SPAN	95.00	50.00	85.00	70.00	50.00	30.06	15.00	10.60	5.00	PCT SPAN
J	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919			
STATION 2	BETA Z	49.042	46.729	46.C12	44.064	43.327	42.160	44.531	39.276	39.633	DIA
STATION ZA	BETA ZA	3.430	2.821	1.576	0.613	1.476	2.905	4-509	47.568	51.898	BETA 2
DIR. 12011 211	¥ 2	503.65	508.73	508.59	494.65	498.66	501.03	483.07	5.311	5.312	BETA 2A
	V ŽA	360.00	355.34	347.27	370.89	374.56	385.37		462.04	458.91	V 2
	V2 2	350.14	346.71	353.22	355.44			364.36	356.36	353.94	V ZA
	V2 2A	359.35	354.90	347.12		362-61	370.97	343.76	311.20	282.75	VZ 2
	V-THE1A 2	360.35	370.41	365.92	370.63	374.35	364.73	363.05	354.63	352.17	V2 2A
	V-THETA ZA	41.58			343.99	342.03	335.90	338.18	340.43	360.58	V-THETA 2
	M 2		17.49	7.55	3.97	9.65	19.52	28.63	32.97	32.74	V-THETA 2A
		0.4476	0.4523	0.4528	0.4397	0.4433	0.4461	0.4284	C-4088	0.4055	M 2
	M ZA	0.3164	0.3127	0.3058	0.3270	0.3302	0.3400	0.3206	0.3132	0.3107	M ZA
	TURN(PR) P I	45.605	43.507	44.436	43.447	41.831	39.196	39.925	42.151	46.480	TURN (PR)
	P ZA	17.752	17.656	17.857	17.776	17.912	17.996	17.866	17.685	17.663	P 2
	T 2	17.472	17.416	17.364	17.514	17.553	17.628	17.461	17.406	17.395	P ZA
		549.507	547.979	546.596	547.023	547-167	545.910	546.555	549.316	550.451	Īż
	T ZA	549.423	547.923	546.574	546.940	547.612	546.954	548.526	549.175	550.527	T ZA

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78
Circumferential Distortion
Station 1 (76°) - Station 2 (66°) - Station 2A (55°)

									-		
RGTCR U	PCT SPAN	94.99	90.06	84.49	70.00	50.60	30.00	14.98		4.48	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40-138	DIA
STATION 1	BETA 1	3.669	3.160	2.259	1.736	1.661	1.782	1.785	2.158	3.355	BETA 1
STATION &	bETA 2	40.264	44.445	43.131	42.103	40.725	40.037	41.718	45.477	49.029	BETA 2
	BETALPRI 1	58.048	56.157	57.936	55-646	57.133	58.921	62.114	62.659	64.525	BETA(PR) 1
	BETA(PR) 2	25.558	20-107	26-427	28.734	34.057	36.497	39.316	42.340	46.705	BETAIPR) 2
	V i	326.23	330.50	340.50	387.50	385.73	377.28	343.50	338.13	311.93	A 7
	V 2	517.37	525.51	532.73	534.99	516.59	518.58	506.53	483.01	454.78	V 2
	VZ 1	325.55	329.99	340.23	387.32	385.55	377.05	343.27	37.84د	311.36	VZ 1
	VZ 2	357.67	376.45	388.76	396.91	391.34	396.55	377.36	338.05	294.09	vz z
	V-THETA 1	20.99	18.22	13.42	11.74	11.18	11.73	10.70	12.73	18-25	V-THETA 1
	V-THETA 2	373.81	366.66	364.21	358.67	336.90	333.18	336.43	343.72	345.91	V-THETA 2
	V(PR) 1	615.2	625.5	040.9	686.4	710.5	730-4	734.0	735.6	723.9	V(Pk) 1
	V(PR) 2	396.5	419.2	434.2	452.7	472.6	494.0	488.8	458.3	429.6	V(PR) 2
	VTHETA PRI	-522.0	-531.3	->43.1	-566.6	-596.7	-625.6	~648.7	-653.4	-653.5	VTHETA PRI
	VTHETA PRZ		-184.5	-193.2	-217.6	-264.5	-293.4	-309.0	-308.0	-312.1	VTHETA PRZ
	U 1	542.95	549.54	550.54	578.36	607.91	637.29	659.40	666.13	671.77	Ul
	U 2	544.86	551.13	557.43	576.28	601.43	626.58	645.47	651.75	658.04	ŭ 2
	M 1	0.2947	U-2987	0.3079	0.3513	0.3497	0.3419	0.3106	0.3057	0.2816	H I
	M 2	0.4577	0.4660	0.4734	0.4753	0.4580	0.4617	0.4482	0.4263	0.4003	H 2
	M(PR) 1	0.5558	0.5652	0.5795	0.6223	0.6441	0.6618	0.6637	0.6650	0.6535	M(PR) 1
	MIPR) 2	0.3507	0.3717	0.3858	0.4022	0.4190	0.4398	0.4325	0.4045	0.3782	M(PR) 2
	TURN (PR)	32.490	32.651	31.509	26.914	23.094	22.478	22.891	20.424	17.930	TURN(PR)
	P 1	14.602	14.632	14.681	14.936	14.942	14.894	14.782	14.767	14.651	Pl
	P 2	17.974	18.068	18.173	18.246	16.112	16.206	18.108	17.889	17.656	P 2
	T 1	510.699	518.699	518.699	518.699	518.699	516.699	518.699	518.659	518.699	7 1
	T 2	554.667	552.260	550.539	000.1cc	551.010	547.433	552.747	553.697		Ť Ž
									3331071	3344200	
STATOR D	PCT SPAN	95.00	40.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	UIA	33.207	33.564	33.921	34.992	36.420	37.646	38.919	39.276	39.633	DIA
STATION 2	BETA 2	46.264	44.245	43.131	42.103	40.725	40.037	41.716	45.477	49.629	BETA 2
STATION ZA	EETA ZA	3.650	3.786	3.472	2.742	2.341	3.432	4.333	4.985	5.176	BETA ZA
	V 2	517.37	525.51	532.73	534.99	516.59	516.58	506.53	483.01	454.78	¥ 2
	V 2A	392.19	365.63	378.19	410.39	430.03	435.13	410.59	392.57	385.87	V ZA
	VZ Z	357.67	376.45	388.76	396.91	391.34	396.55	377.36	338.65	294.09	VZ 2
	VZ_ZA_	391.31	384.78	377.49	404.87	424.58	434.19	409.21	390.86	384.03	VZ ZA
	V-THETA 2	373.81	306.66	364.21	356.67	336.90	333.18	336.43	343.72	345.91	V-THETA 2
	V-THETA 2A	46.33	25.46	22.90	19.63	17.56	26.04	31.01	34.09	34.79	V-THETA 2A
	M 2	6.4577	U.466C	6.4734	0.4753	U-4580	0.4617	0.4482	0.4263	U-4003	M 2
	M ZA	0.3444	0.3290	0.3326	0.3617	U-3793	0.3853	0.3613	0.3448	0.3386	M ZA
	TURN (PK)	42-413	40.458	39.054	39.359	36.364	36.547	37.289	40.385	44.340	TURN (PK)
	P 2	17.974	16.068	18.173	18.246	16.112	16.208	18.108	17.889	17.656	P 2
	P 2A	17.750	17.712	17.672	17.88û	16.030	18.076	17.629	17.702	17.647	P ZA
	Ţ 2	554.067	:52.260	ングロックラダ	551.060	551.010	547.433	552.747	553.697	554.206	T 2
	T ZA	552.525	>50-823	549 - 214	549.761	550.174	546.386	551.331	552.285	552.901	7 2A

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed - 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (106°) - Station 2 (96°) - Station 2A (85°)

ROTOK D	PCT SPAN	94.99	90.00	64.49	70.00	50.00	00.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	J3.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	ELTA 1	1.676	2.203	2.637	2.845	1.529	2.278	0.841	1.159	0.451	BETA 1
STATION 2	beta 2	45.265	43.690	42.803	41.758	40.743	39.738	41.014	43.965	47.012	BETA 2
	BETA(PR) I	59.464	57.665	56.164	55.254	57.138	58.858	62.112	62.967	68.540	BETA(PR) 1
	beta(PR) 2	24-494	27.584	26.224	30.858	33.627	36.555	39.627	42.849	47.000	BETA(PR) 2
	V 1	314.74	339.67	361.27	388.29	386.20	376.38	346.37	336.54	263.29	V l
	V 2	528.47	515.76	519.38	518.41	520.24	518.73	504.85	479.52	450.71	V 2
	VZ 1	314.60	339.61	360.83	387.62	386.04	376.03	346.27	336.41	263.25	VZ 1
	VZ 2	371.95	372.41	361.06	386.69	393.99	398.39	380.18	344.46	306.75	VZ 2
	V-THETA 1	9.22	13.06	17.88	19.27	10.30	14.96	5.08	6.81	2.07	V-THETA 1
	V-THETA 2	375.40	356.31	352.90	345.23	339.40	331.20	330.65	332.23	329.09	V-THETA 2
	V(PR) 1	619.0	634.9	648.3	680.4	711.5	727.1	740.3	740.2	719.6	V(PR) 1
	V(PR) 2	408.7	420.7	432.5	450.5	473.4	496.6	494.6	470.8	450.6	V(PR) 2
	VTHETA PRI	-533.7	-536.5	-536.7	-559.1	-597.6	-622.3	-654.3	-659.3	-669.7	VTHETA PRI
	VIHETA PR2	-169.5	-194.8	-204.5	-231.0	-262.0	-295.4	-314.8	-319.5	-329.0	VTHETA PRZ
	U 1	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	U 1
	U 2	544.66	551.13	557.43	576.26	601.43	626.58	645.47	651.75	658.04	Ū Ž
	M 1	0.1842	0.3073	0.3270	0.3521	0.3501	0.3410	0.3133	0.3042	0.2371	M I
	M 2	0.4664	0.4574	0.4616	0.4605	0.4619	0.4609	0.4470	0.4236	0.3969	N Z
	M(PR) 1	0.5594	0.5741	0.5869	0.6170	0.6450	0.6588	0.6696	0.6691	0.6481	M(PR) 1
	M(PR) 2	0.3623	0.3731	0.3843	0.4002	0.4203	0.4413	0.4380	0.4159	0.3968	M(PR) 2
	TURN (PR)	34.990	30.081	27.960	24.397	23.529	22.356	22.578	20.224	21.651	TURN (PR)
	P 1	14.491	14.620	14.743	14.902	14.881	14.883	14.796	14.771	14.476	P 1
	Р 2	16.152	18.037	18.094	18.125	18.217	18.269	18.176	17.941	17.694	P Ž
	T 1	516.699	516.699	516.699	516.699	518.699	518-699	518.699	518.699	518.699	Τī
	T 2	553.011	551-200	549.355	549.759	550-490	549.423	551.999	552.493	553-616	Ť Ž
									•		
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	45.265	43.696	42.603	41.756	40.743	39.738	41.014	43.965	47.012	BETA 2
STATION 2A	BETA ZA	3.939	3.870	3.517	2.635	2.355	3.162	4.152	4.919	5.576	BETA 2A
	V î	528.47	>15.78	519.38	518.41	520.24	518.73	504+85	479.52	450.71	V 2
	V 2A	410.95	400.97	396.85	423.93	437.83	447.09	411.32	393.39	386.96	V ZA
	V2 2	371 .9 5	372.91	381.06	386.69	393.99	398.39	380.18	344.46	306.75	VZ 2
	VZ ZA	409.98	400.04	396.09	423.44	437.36	446.24	410.03	391.72	384.65	VZ ZA
	V-THETA 2	375.40	356.31	35z . 90	345.23	339.40	331.20	330.65	332.23	329.09	V-THETA 2
	V-THETA 2A	26.23	27.06	24.34	19.49	17.99	24.65	29.77	33.71	37.59	V-THETA 2A
	M 2	0.4684	0.4574	0.4616	0.4605	0.4619	0.4609	0.4470	0.4236	0.3969	M 2
	M 2A	0.3608	U=3524	0.3493	0.3736	0.3861	0.3945	0.3616	0.3453	0.3391	M 2A
	TURNIPE	41.325	39.625	34.286	39.121	36.366	36.518	36.766	38,939	41.326	TURN (PR)
	P 2	18.152	18.037	18.094	18.125	16.217	18.269	18.176	17.941	17.694	P 2
	F ZA	17.915	17.846	17.821	18.022	16.127	18.139	17.865	17.744	17.687	P 2A
	T L	553.011	551.200	544.355	544.759	50.490	549.423	551.999	552.493	553.616	T 2
	T ZA	553.932	552-609	550.250	550.317	550.979	551.177	552.550	552.979	554.260	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed - 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (136°) - Station 2 (126°) - Station 2A (115°)

ROTOR D	PCT SPAN	94.49	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33-617	34.001	35.151	30.685	38.219	39.371	39.754	40.136	DIA
STATION 1	BETA 1	3.663	3.036	2.443	1.623	2.242	2.536	2.104	2.602	2.482	BETA 1
STATION 2	BETA 2	46.331	44.584	43.475	42.177	42.059	40.891	42.434	46.296	49.113	BETA 2
	BETAIPR) 1		56.617	55.417	55.630	57.011	58.683	61.505	62.787	62.898	BETA(PR) 1
	BETA(PR) 2		28.566	29.714	29.729	33.736	37.255	40.762	41.848	45.976	BETA(PR) 2
	V 1	315.74	350.35	373.06	385.37	385.15	377.98	351.07	335.11	336.68	A 1
	V 2	524.38	505.75	505.75	526-49	516.13	510.21	493.29	486.65	459.90	Ϋ́Ž
	V2 1	315.08	549.89	372.72	365.21	384.83	377.56	350.76	334.71	336.33	VZ 1
	V2 2	362.û7	160.17	367.01	390.15	383.06	385.23	363.39	335.63	300.53	VZ 2
	V-THETA 1	20.28	16.56	15.90	10.91	15.07	16.72	13.25	15.21	14.58	V-THETA 1
	V-THETA 2	379.30	355.04	347.97	353.48	345.62	333.59	332.22	351.16	347-10	V-THETA 2
	V(PR) 1	010.3	635.9	656.7	685.9	706.8	726.4	735.2	732.0	738.3	Y(PR) 1
	VIPR) 2	398.1	410.1	422.6	449.3	460.9	484.6	480.7	451.5	433.3	V(PR) 2
	VTHETA PRI		->31.0	-540.6	-567.5	-592.8	-620.6	-646.2	-650.9	-657.2	VTHETA PRI
	VTHETA PRZ		-196.1	-209.5	-222.8	-255.8	-293.0	-313.2	-300.6	-310.9	VTHETA PR2
	U i	542.95	549.54	556.54	578.38	607.91	637-29	659.40	666.13	671.77	U 1
	ŪŽ	544.86	551.13	557.43	576.26	601.43	626.58	645.47	651.75	658.04	U 2
	Mi	0.2651	0.3170	0.3379	0.3494	0.3492	0.3425	0.3176	0.3029	0.3043	N 1
	H 2	0.4654	0.4489	0.4497	0.4683	0.4583	0.4549	0.4367	0.4303	0.4056	
	M(PR) 1	0.5511	0.5753	0.5949	0.6218	0.6408	0.6582				M 2
	M(PR) 2	0.3534	V+3640	0.3757	0.3997	0.4093		0.6652	0.6616	0.6674	M(PR) 1
	TURN (PR)	34.346	28.051	25.703	26.103	23.293	0.4321	0.4256	0.3993	0.3621	H(PR) 2
	Pl	14.533	14.727	14.869			21.483	20.837	21-045	17.031	TURN (PR)
	P Z	18.150	17.981		14.931	14.948	14.933	14.825	14.743	14.775	P 1
	Ti	518.699	518.699	17.994	18.252	16.218	18-247	18.093	18.056	17.809	P 2
	Ť Ž	551.065		518.699	518.699	518.699	518.699	518.699	518.699	518.699	<u>† 1</u>
	1 2	331.003	549.543	547.634	549+008	549.854	545.246	551.156	551.904	552.534	T 2
STATER U	PCT SPAN	95.00	90.00	85.60	70.00	50.00	30.00	15.00	10.00	5.00	DCT COLM
	DIA	33.207	564 دُور	33.921	34.492	36.420	37.845	38.919	39.276	39.633	PCT SPAN
STATION 2	BETA 2	46.331	44.589	43.475	42.177	42.059	40.891	42.434	46.296	39.033 49.113	DIA
STATION ZA	BETA ZA	3.927	3.882	3.435	2.411	2.263	3.009	4.040	4.909		BETA 2
	V 2	524.3t	505.75	505.75	526.49	516.13	510-21	493.29		5.739	BETA 2A
	Ý ŽA	396.38	339.52	379.39	410.33	430.29	434.96	407.06	486.65	459.90	V 2
	VZ Ž	362.07	360.17	367.G1	390.15	383.06	385.23		385.65	379.88	V ZA
	VZ ZA	395.45	366.62	376.70	409.42	429.85		363.39	335.63	300.53	VZ 2
	V-THETA 2	379.30	355.04	347.97	353.48		434.20	405.84	384.01	377.71	V2 2A
	V-THETA 2A	27.15	20.37			3+5-62	333.59	332.22	351.16	347.10	V-THETA 2
	M 2	0-4054		22.73	17.26	17-14	22.84	28.66	32.98	37.96	V-THETA 2A
	M ZA	U=4654 U=3485	6.4489	0.4497	0.4683	0.4563	0.4549	0.4367	0.4303	0.4056	M 2
	M ZA TOKN(PK)		0.3-28	0.3343	0.3619	0.3797	0.3854	0.3582	0.3367	0.3333	H ZA
	P 2	42.403 18.150	40.706	40.040	39.764	39.756	37.823	38.297	41.280	43.267	TURN (PR.)
	PZA		17.981	17.994	16.252	16.218	16.247	15.093	18.056	17.809	P 2
		17.863	17.816	17.747	17.900	16.099	16.136	17.671	17.719	17.066	P 2A
	T 2	551.665	544.543	547.634	549.008	544.854	545.240	551.156	551.904	552.534	T 2
	T ZA	551.500	549.911	547.971	549.054	549.917	545.865	551.240	551.952	552.655	T 2A

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78
Circumferential Distortion
Station 1 (166°) - Station 2 (156°) - Station 2A (145°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	40.00	14.98	9.99	4.98	PCT SPAN
	DIA	J3.234	53.617	34-001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	EETA 1	4.064	4.026	4.080	3.993	3.770	3.172	2.969	2.948	4.140	BETA I
STATION 2	bETA 2	46.651	45.107	44.089	42.780	41.324	40.316	41.817	44.518	48.675	BETA 2
	bETA(PR) 1	57.273	55.053	54-161	55.128	56.804	58.541	62.432	64.417	67.091	BETA(PR) 1
	SETA(PK) 2	25.735	27.364	26.435	32.061	34.246	36.663	40.228	43.062	47.213	BETA(PR) 2
	A T	334.55	366.95	383.25	365.31	302.15	377.75	335.69	311.70	276.21	V 1
**	V 2	514.96	513.31	513.90	506.02	513.56	516.52	498.55	477.53	450.13	v ž
	VZ 1	333.70	366.04	362.28	384.37	381.30	377.12	335.18	311.23	275.46	VZ 1
	V2 2	353.49	362.28	369.11	371.38	385.52	393.35	370.85	339.83	296.73	VZ 2
	V-THETA 1	23.71	25.76	27.27	26.83	25.13	20.90	17.38	16.03	19.94	V-THETA 1
	V-THETA 2	374.47	363.64	357.56	343.66	338.98	333.78	331.77	334.16	337.46	V-THETA 2
	V(PR) 1	617.2	639.0	652.9	672.3	696.5	722.6	724.3	720.8	707.7	V(PR) 1
	V(PR) 2	392.4	407.9	419.8	438.2	466.6	491.0	486.7	466.1	437.6	V(PR) 2
	VTHETA PRI		-523.8	-529.3	-551.6	-582.8	-616.4	-642.0	-650.1	-651.8	VTHETA PRI
	VTHETA PR2	-170.4	-187.5	-199.9	-232.6	-262.5	~292.8	-313.7	-317.6	-320.6	VTHETA PRZ
	Uì	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	U 1
	ŪŽ	544.86	551.13	557.43	576.28	601.43	626.58	645.47	651.75	658.04	U 2
	M 1	0.3024	0.3323	0.3474	0.3493	0.3464	0.3423	0.3034	0.2814	0.2489	
	M 2	0.4560	0-4553	0.4565	0.4489	0.4556	0.4586	0.4410	0.4215		M 1
	M(PR) 1	0.5579	0.5786	0.5918	0.6095	U-6312	0.6548			0.3961	M 2
-	M(PR) 2	0.3475	U-3618	0.3729	0.3888	0.4139	0.4360	0.6547	0-6507	0.6378	M(PR) I
	TURN (PR)	31.536	27.689	25.726	23.068	22.576	21.932	0.4305	0.4114	0.3851	M(PR) 2
	P 1	14.641	14.821	14.924	14.923			22.298	21.461	19.968	TURN(PR)
	P Z	18-006	18.012	18.033	18.006	14.917	14.925	14.743	14.653	14.543	P 1
	T 1	516.699	516.699	518.699	518.699	18.142	18.251	18.111	17.930	17.686	P 2
	T 2	552.706	550.661	549.300		518.699	516.699	518.699	518.699	518-699	T i
	, ,	3322100	220.001	747.300	550.142	550.801	550.000	552 .489	553.001	554.229	T 2
STATOR D	PGT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	ÛΙΑ	33.207	33.564	33.921	34-992	36.420	37.846	36.919	39.276	39.633	DIA
STATION 2	EETA 2	46.65l	45-107	44.089	42.780	41.324	40.316	41.817	44.518	48.675	BETA 2
STATION ZA	BETA ZA	3.764	3.936	3.494	2.445	2.222	3.404	4.186	5.069	5.299	BETA ZA
	V ∠	514.96	513.31	513+90	506.02	513.56	516.52	498.55	477.53	450.13	V 2
	V 2A	368.57	376.59	373.82	412.79	430.97	444.17	407.49	391.06	383.13	V ŽA
	V2 2	353.49	362.28	369.11	371.38	365.52	393.35	370.85	339.63	296.73	VZ Z
	V2 2A	3£7.73	317.69	373.11	412.37	43C.55	443.22	406.19	389.31	381.22	VŽ ZA
	V-THETA 2	374.47	363.64	357.50	343.66	338.98	333.78	331.77	334.16	337.46	V-THETA 2
	V-THETA 2A	25.51	25.99	22.78	17.61	16.71	26.36	29.73	34.53	35 .36	V-THETA ZA
	4 2	0.4560	6.4553	0.4565	0.4489	0.4556	0.4586	0.4410	0.4215	0.3961	H 2
	M 2A	C-2412	0.3328	0.3269	0.3638	0.3800	0.3919	0.3582	C.3433	0.3357	M 2A
	TURN (PR)	42.800	41.170	40.595	40.353	9.082	36.854	37.535	39.342	43.268	TURN (PR)
	P 2	16.006	18.012	18.033	18.006	18-142	18.251	18.111	17.936	17.686	P 2
	P ZE	17.817	17.746	17.714	17.962	18.115	18.206	17.885	17.760	17.700	P 2A
	1 2	552.70a	550.661	549.300	550.144	550.801	550.000	552.489	553.001	554.229	T 2
	T ZA	552.252	550.558	549.040	550.015	550.779	550.968	552.490	552.632	554.191	T ZA
							>>0=700	2250470	//2002	7774477	1 48

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (196°) - Station 2 (186°) - Station 2A (175°)

RUTCK D	PCT SPAN	74.49	90.06	84.99	70.00	50-00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.23+	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATIUN I	bETA 1	6.245	5.320	4.691	4.258	4.744	4.240	5.159	5.205	5.759	BETA 1
STATION 2	bETA 2	47.509	45.395	44.993	44.579	42.844	42.117	43.886	47.565	51.907	BETA 2
	BETA(PK) 1	56.311	55.113	55.437	55.155	56.860	59.200	60.914	61.879	64.010	BETA(PR) 1
	BETAIPE 2	24.116	20.178	27.900	29.674	33.232	37.315	39.674	43.479	47.316	BETAIPE 2
	V 1	339.37	301.38	364.12	381.54	377.79	364.87	350.75	340.93	313.76	V 1
	V 2	523.69	>21.34	515.45	520.26	518.51	507.52	500.86	473.83	452.65	Ÿ Ž
	VZ 1	337.35	359.01	362.69	380.17	376.48	363.83	349.27	339.46	312.15	VZ 1
	Vi 2	353.47	366.69	364.52	370.56	380.03	376.03	360.33	319.16	278.84	VZ Ž
	V-THETA 1	36.92	33.51	29.78	32.01	31.28	26.97	31.53	30.92	31.48	V-THETA 1
	V-THETA Z	386.67	571.17	364.43	365.15	352.45	339.97	346.59	349.10	355.70	V-THETA 2
	V(PR) 1	008.2	629.1	639.7	665.4	688.7	710.6	718.5	720.2	712.3	V-1761A 2 V(PR) 1
	V(PR) Z	د.78د	407.9	412.5	426.5	454.6	473.4	469.1	440.7	412.0	
	VTHETA PRI	-506.u	-516.0	-526.8	-546.1	-576.6	-610.3	-627.9	-635.2	-640.3	V(PR) 2
	VTHETA PRZ	-158.2	-150.0	-193.0	-211.1	-249.0	-286.6	-298.9			VTHETA PRI
	Ul	542.95	549-54	556.54	578.38	607.91			-302.7	-302.3	VTHETA PRZ
•	ŭż	544.86	551.13	557.43	576.28		637.29	659.40	666.13	671.77	U 1
	M I	0.3068	0.3271	0.3297	0.3458	601.43 0.3423	626.58	645.47	651.75	658.04	U 2
	M Ž	0.4643	0.4629	0.4581	0.4622		0.3304	0.3173	0.3063	0.2833	M 1
	M(PR) 1	0.5498	0.5695	0.5791		0.4604	0.4518	0.4433	0-4161	0.3985	M 2
	M(PR) Z	0.3432	0.3622		0.6031	0.6240	0.6433	0.6500	0.6512	0.6431	M(PR) 1
	TURN(PR)	32.201	28.935	0.3666	0.3789	0.4036	0.4215	0.4152	0.3889	0.3628	M(PR) 2
	Pl	14.760		27.537	25.483	23-646	21.940	21.332	18.506	16.804	TURN (PR)
	PZ		14.865	14.876	14.969	14.961	14.943	14.881	14.856	14.732	P 1
		16.055	16.092	18.057	18.139	18.161	18.146	18.101	17.855	17.678	P 2
	T 1	518.699	>16,699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	T 1
	T Z	552.617	550.528	546.889	549.761	550.286	546.439	552.037	553.090	553.906	T 2
STATER &	PCT SPAN	95.00	96.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	LIA	33.207	33.564	33.921	34.492	36.420	37.048	36.919	39.276		
STATION 2	BETA 2	47.569	45.345	44.993	44.579	42.844	44.117	43.886	47.565	39.633	DIA
STATION ZA	BETA ZA	3.607	4.086	3.727	2.504	2.179	3.539	4.274		51.907	BETA 2
	V 2	523.69	>21.34	515.45	520.26	518.51	507 . 52		5.162	5.121	BETA 2A
	V 2A	390.43	389.57	366.27	412.76	430.49	438.76	500.86 412.25	473.63	452.65	V 2
	VZ 2	353.41	365-09	364.52	370.56	380.03			393.02	390.02	V 2A
	VŽ 2A	395.64	388.57	385.44	412.32		376.03	360.33	319.16	278-84	VZ 2
	V-THETA Z	366.67	3/1.17			430.08	437.78	416.90	391.20	388.18	VZ 2A
	V-THETA ZA	24.94	∠7.76	364.43	365.15	352 - 45	339.97	346.59	349.16	355.70	V-THETA 2
	M 2	0.4043		25.11	18.03	16.36	27.07	30.71	35.34	34.79	V-THETA ZA
	M ZA	0.3461	0.4629	0.4581	0.4622	0.4604	0.4518	0.4433	0.4181	0.3985	H 2
	TURN(PR)		0.3425	0.3401	0.3636	0.2796	0.3884	0.3626	0.3449	0.3420	M 2A
	P 2	43.961	41-508	41.266	42.073	40.645	38.519	39.515	42.297	46.680	TURN(PR)
	P 2A	16.095	16-092	18.057	16.139	18-161	18-146	18-101	17.855	17.678	P 2
		17.651	17-614	17.779	17.961	16.091	16.138	17.694	17.753	17.715	P 2A
	T 4	552.617	550.528	548.889	549.761	250.206	540-419	552.037	553.690	553.906	1 2
	T ZA	552.964	550.850	549.182	549.976	550.504	547.095	552.152	553.070	553.938	T 2A

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (226°) - Station 2 (216°) - Station 2A (205°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33-617	34.001	35-151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	EETA 1	6.516	5.982	6.553	6.469	6.078	5.121	6.317	6.610	7.223	BETA 1
STATION 2	BETA 2	46.208	45.364	45.122	44.168	43.554	43.447	46.914	50.296	53.959	BETA 2
	BETA(PR) 1	60.362	56.487	57.036	56.760	59.049	61.142	64.933	65.575	69.530	BETA(PR) 1
	BETA(PK) 2	25.329	27.048	26.854	31.115	33.946	37.924	41.485	43.422	46-440	BETA(PR) 2
	V I	291.96	316.33	338.12	355.10	344.64	336.05	295.09	289.36	241.38	V 1
	V 2	519.21	514.93	522.98	510.14	511.24	500.48	484.51	475.12	461.67	v ž
	VZ I	290.06	316.59	335.91	352.84	342.69	334.67	293.24	287.39	239.44	VZ 1
	VZ Z	359.31	361.79	369.02	365.90	370.37	362.95	330.44	303.04	271.26	VZ 2
	V-THETA 1	33.13	33.17	38.59	40.01	36.49	29.99	32.46	33.30	30.35	V-THETA I
	V-THETA 2	374.79	366.41	370.59	355.43	352.13	343.79	353.28	364.96	372.79	V-THETA 2
	V(PR) 1	586.6	605.7	617.3	643.7	666.3	693.4	692.2	695.0	684.7	V(PR) 1
	V(PR) 2	397.5	406.2	413.6	427.4	446.7	460.7	441.9	418.1	394.4	V(PR) 2
	VTHETA PRI	-509.8	-516.4	-518.0	-538.4	-571.4	-607.3	-626.9	-632.8	-641.4	VTHETA PRI
	VTHETA PRZ	-170.1	-164.7	-186.8	-220.9	-249.3	-282.8	-292.2	-286.8	-285.2	VTHETA PRZ
	U 1	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	U 1
	U 2	544.86	551.13	557.43	576.28	601.43	626.58	645.47	651.75	658.04	U 2
	M 1	0.2633	0.2875	0.3057	0.3213	0.3117	0.3038	0.2662	0.2609	0.2172	MI
	Μź	0.4610	0.4577	0.4657	0.4531	0.4538	0.4438	0.4279	6.4189	0.4061	M Z
	M(PR) 1	0.5290	U-5470	0.5581	0.5625	0.6026	0.6268	0.6243	0.6268	0.6161	M(PR) 1
	M(PR) 2	0.3529	0.3611	0.3683	0.3797	0.3965	0.4085	0.3903	0.3686	0.3469	#(PR) 2
	TURN (PR)	35.034	31.439	30.162	25.648	25.121	23.273	23.542	22.260	23.200	
	P 1	14.643	14.783	14-863	14.977	14.925	14.929	14.811	14.812	14.662	TURN(PR)
	P 2	17.977	17.977	18.082	17.980	18.052	17.977	17.854	17.769	17.648	P 1
	Τī	518.699	518.699	518.699	516.699	516.699	518.699	518.699			P 2
	Ť Ž	550-390	548.706	547.627	549.057	549.934	550.095		518.699	518.699	Ť 1
	• •	2202270	340.100	3411021	2476021	J7787J7	550.075	553.161	554.170	555.635	T 2
STATOR D	PCT SPAN	95.60	90.00	85.00	70.00	50.00	30.00	15.00	10.00	F 60	*** ****
51A.G.	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	10.00	5.00	PCT SPAN
STATION 2	BETA 2	46.208	45.364	45.122	44.168	43.554	43.447	46.914	39.276	39.633	DIA
STATION ZA	BETA ZA	3.512	4.487	4.384	2.577	2.203	3.074	4.365	50.296	53.959	BETA 2
31412011 24	V 2	519.21	514.93	522.98	510.14	511.24	500.48		5.273	5.938	BETA 2A
	V ŽA	378.91	369.95	372.54	405.58	416.13	419.50	484.51	475.12	461.67	V 2
	V2 2	359.31	361.79	369.02	365.90	370.37	362.95	378.43	366.10	365.40	V 2A
	VZ ZA	378.20	308.81	371.44	405.13	415.73	418.75	330.44	303.04	271.26	V2 2
	V-THETA 2	374.79	366.41	370.59	355.43	352.13		377.14	364.34	363.18	VZ 2A
	V-THETA ZA	23.21	26.94	28 48	18.25	15.99	343. 7 9 22.49	353-26	364.96	372.79	V-THETA 2
	M 2	0.4610	0.4577	0.4657	0.4531	0-4538		28.79	33.63	37.77	V-THETA 2A
	M 2A	0.3330	0.3255	0.3282			0.4438	0.4279	0.4169	0.4061	M 2
	TURN (PR)	4£.695	40.876	40.738	0.3576	0.3668	0.3696	0.3320	0.3208	0.3197	M ZA
	P 2	17.977	17.977		41.589	41.331	40.314	42.452	44.918	47.918	TURN(PR)
	P 2A	17.737		18.062	17.980	18.052	17.977	17.854	17.769	17.648	P 2
	7 ZA 7 Z	550.396	17.676	17-690	17.917	17.969	17.967	17.638	17.563	17.555	P 2A
			548.700	547.627	549.057	549.934	550.095	553.161	554-170	555.635	T 2
	T ZA	550.764	548.848	547.740	549.112	549.920	550.665	552.422	553.194	554.707	T ZA

Table A-8. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D

Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78
Circumferential Distortion
Station 1 (256°) - Station 2 (246°) - Station 2A (235°)

NOTICE PCT SPAN V4-V9 V0-00 V4-V9 T0-00 S0-00 30-00 14-08 V9-99 4-98 PCT SPAN STATION 1 EETA 33-234 33-107 34-001 35-151 35-155 35-165												
STATION	ROTUR U	PCT SPAN	44.49	90.00	84.79	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
STATION 2 BETA 2					34.001	35.151	30.665	36.219	39.371	39.754	40.138	DIA
BETAIRN 1 60.724 59.131 58.988 59.642 11.301 63.571 67.058 68.412 69.622 BETAIRN 1 BETAIRN 2 24.201 24.931 25.234 29.351 34.945 31.064 41.08 46.893 49.599 BETAIRN 2 V 1 290.55 313.17 319.40 323.92 319.41 305.97 268.90 254.02 238.29 V 1 V 2 531.49 531.65 537.76 521.70 319.40 305.97 268.90 254.02 238.29 V 1 V 2 72 2 375.56 376.65 384.02 368.95 352.04 310.94 317.07 322.76 318.30 305.02 267.43 252.41 236.63 V 1 2 V 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				5.071	5.245	4-846	4.700	4.427	5.894	6.382	6.720	BETA 1
BETAIRRY 2 24-201 24-933 25-234 29-351 32-974 37-108 44-108 44-893 49-569 BETAIRRY 2	STATION 2					44.989	46.659	51.808	60.650	64.826	67.362	BETA 2
V 290.55 313.17 316.40 323.92 319.41 305.97 268.90 234.02 238.29 V 1 V 2 231.59 531.165 537.76 521.70 513.10 500.19 479.86 479.75 478.84 V 2 V 1 269.29 311.94 317.07 322.76 318.30 305.02 267.43 222.41 236.63 V 1 V 2 V 2 375.56 376.65 384.02 368.95 352.04 309.02 234.92 203.93 184.20 V 2 V THETA 269.93 27.66 29.11 27.33 26.50 23.61 27.61 282.23 27.86 V THETA 2 V THETA 2 24.92 203.93 184.20 V 2 V V V V V V V V					58.988	59-642	61.301	63.571	67.058	68-412	69.822	BETA(PR) 1
V 1							34.974	37.108	44.108	46.893	49.589	BETA(PR) 2
V						323.92	319.41	305.97	268.90	254.02	238.29	A 7
V				531-85	537.76	521.70	513.10	500.19	479.68	479.75	478.84	V 2
V-THETA 1						322.76	318.30	305.02	267.43	252.41	236.63	VZ 1
V-THETA 2 376-07 376-51 376-44 388-81 373-04 392.81 417.76 433-88 441.69 V-THETA 2 V/PR) 1 591-6 606-0 606-0 615-4 636-6 602-6 865-3 866-1 606-0 606-0 V/PR) 1 V/PR) 2 411-8 414-2 424-5 423-3 419-8 388-0 327.7 299-0 284-6 V/PR) 2 V/HATA PR1 -516-0 -521-9 -527.4 -551-1 -581-4 -613.7 -631-8 -637-9 -643-9 V/HATA PR1 -516-0 -521-9 -527.4 -551-1 -581-4 -613.7 -631-8 -637-9 -643-9 V/HATA PR1 -516-0 -521-9 -527.4 -551-1 -581-4 -613.7 -631-8 -637-9 -643-9 V/HATA PR1 -516-0 -521-9 -527.4 -551-1 -581-4 -613.7 -631-8 -637-9 -643-9 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -174-6 -181-0 -207.5 -228-4 -233-8 -227.7 -217.9 -216-4 V/HATA PR2 -108-8 -181-0 -228-2 0.2761 0.2423 0.4200 M 2 -228-2 0.2425 0.2424 M 1 -228-2 0.2425 0.2426 M 1 -228-2 0.2425 0.2426 M 1 -228-2 0.2428 M 1 -228-2 0.2426 M 1 -228-2 0.2428						368.95	352.04	309.02	234.92	203.93	184.20	VZ 2
VIPR) 1					29.11	27.33	26.50	23.61	27.61	28.23	27.88	
VIPR) 1 591.6 606.0 615.4 636.6 662.8 665.3 666.1 666.0 666.0 VIPR) 1 VIPR) 2 11.8 41.62 424.5 4					376.44	368.81	373.04	392.81	417.76	433.88	441.69	V-THETA 2
VTHETA PRI						636.6	662.8	685.3	686.1	686.0	686-0	
VTHETA PR2					424.5	423.3	419.8	368.0	327.7	299.0	284.6	V(PR) 2
U 1 542,95 549,54 556,554 578,36 607.91 637.29 659.40 666.13 671.77 U 1 2 U 2 544.86 551.13 557.43 576.26 601.43 626.58 659.40 7 551.75 658.04 U 2 H 1 0.2620 0.2827 0.2875 0.2926 0.2885 0.2761 0.2423 0.2287 0.2144 H 1 1 0.2620 0.2817 0.2478 0.4788 0.4580 0.2885 0.2761 0.2423 0.2287 0.2144 H 1 1 0.2625 0.5489 0.5558 0.576 0.6631 0.4546 0.4435 0.4213 0.4200 H 2 H 1 1 0.5335 0.5489 0.5558 0.576 0.5989 0.5986 0.6165 0.6181 0.6177 0.6173 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						-551.1	-581.4	-613.7	-631.8	-637.9	-643.9	VTHETA PRI
U 1 542,95 549,54 556,54 578,36 607.91 637.29 659.40 666.13 671.77 U 1 U 2 544.86 551.13 557.43 576.26 601.43 626.58 645.47 651.75 658.04 U 2 H 1 0.2620 0.2627 0.2687 0.2926 0.2926 0.2885 0.2761 0.2423 0.2287 0.2144 H 1 H 2 0.4719 0.4728 0.4788 0.4631 0.4546 0.4435 0.4218 0.4213 0.4200 H 2 H 1 0.5355 0.5489 0.5558 0.5769 0.5986 0.6185 0.6181 0.6177 0.6173 H(PR) 1 H(PR) 1 0.5355 0.5489 0.5558 0.3760 0.3757 0.3720 0.3440 0.2882 0.2265 0.22496 H(PR) 2 TURN(PR) 3 36.524 34-199 33.754 30.293 28.345 26.518 23.045 21.625 20.342 TURN(PR) 2 P 1 14.782 14.920 14.943 14.987 14.987 14.986 14.996 14.893 14.843 14.778 P 1 P 2 18.073 16.113 18.207 18.078 11.7895 17.692 17.700 17.710 17.710 P 2 T 1 518.699 516.699 516.699 516.699 516.699 516.699 516.699 516.699 516.699 T 1 T 2 551.328 550.072 549.088 550.812 552.097 550.230 557.253 558.864 560.641 T 2 STATION 2 BETA 2 45.039 45.067 44.429 44.889 46.659 51.806 60.650 64.826 67.362 BETA 2 V 2 531.49 531.85 537.76 521.70 13.018 1.736 47.75 47.75 47.804 22 V 2 531.49 531.85 537.76 521.70 13.018 17.895 17.66 47.75 549.08 V 2 V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 402.01 396.87 394.97 12.42 410.66 399.16 371.06 359.56 363.08 V 2A V 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						-207.5	-228.4	-233.8	-227.7	-217.9	-216.4	VTHETA PRZ
M 1				549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	
M 2						576.26	601,43	626.58	645.47	651.75	658.04	U 2
MIPR] 1					0.2875	0.2926	0.2885	0.2761	0.2423	0.2287	0.2144	H 1
MIPR) 1 0-5355				0.4728	0.4788	0.4631	0.4546	0.4435	0.4218	0.4213	0.4200	M 2
TURN(PR) 30.524 34.199 33.754 30.293 28.345 20.518 23.045 21.625 20.342 TURN(PR) P 1 14.782 14.920 14.943 14.9487 14.998 14.996 14.893 14.843 14.7778 P 1 14.782 15.113 18.207 18.071 18.018 17.895 17.692 17.700 17.710 P 2 1 1 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 71 1 51.00 10.00 5.00 FCT SPAN 550.407 550.230 557.253 558.864 560.041 T 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				6.5489	0.5558	0.5769	0.5986	0.6185	0.6181	0.6177	0.6173	
TURN(PR) 36.524 34-199 33.754 30.293 28.345 26.518 23.045 21.625 20.342 TURN(PR) P 1 14.782 14.920 14.943 14.987 14.987 14.998 14.996 14.893 14.843 14.778 P 1 1 518.073 16.113 18.207 18.077 18.018 17.895 17.692 17.700 17.710 P 2 1 1 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 518.699 7 1 1 518.695 518.699 518.699 518.699 518.699 7 1 1 518.695 518.699 518.699 518.699 7 1 1 518.695 518.699 518.699 518.699 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				6.3683	0.3780	U.3757	0.3720	0.3440	0.2882	0.2625	0.2496	M(PR) 2
## 2					33.754	30.293	28.345	26.518	23.045	21.625		
F 2			14.782	14-920	14.943	14.987	14.998	14.996	14.893			
T 1 518.699 516.699 516.699 516.699 516.699 516.699 516.699 516.699 516.699 516.699 518.699 51			18.073	16.113	18.207	18.077	18.018	17.895	17.692	17.700	17.710	
STATUR D PCT SPAN 95.00 90.00 85.00 70.00 50.00 30.00 15.00 10.00 5.00 PCT SPAN DIA 33.207 33.564 33.921 34.992 36.420 37.848 38.919 39.276 39.633 DIA STATION 2 BETA 2 45.039 45.067 44.429 44.989 46.659 51.808 60.650 64.826 67.362 BETA 2 STATION 2A BETA 2A 3.301 4.511 4.621 2.756 1.996 0.945 1.738 2.532 3.549 BETA 2A V 2 531.49 531.85 537.76 521.70 513.10 500.19 479.68 479.75 478.84 V 2 V 2 4 40.659 394.97 412.42 410.66 399.76 371.06 359.56 363.08 V 2A V 2 2 375.56 375.63 384.02 368.95 352.04 309.02 234.92 203.93 184.20 V 2 V 2 A 401.32 395.64 393.67 411.90 410.32 399.56 370.70 359.01 362.12 V 2 2 V 7 THETA 2 A 75.07 376.51 376.44 368.61 373.04 392.81 417.76 433.88 461.69 V-THETA 2 V-THETA 2 A 23.57 31.21 31.82 19.83 14.30 6.59 11.25 15.68 22.46 V-THETA 2 A 10.4719 0.4728 0.4768 0.4631 0.4546 0.4545 0.4216 0.4213 0.4200 M 2 TURNIPR) 41.677 40.555 39.608 42.231 44.643 50.804 58.804 58.808 62.211 63.735 TURNIPR) 41.677 40.555 39.608 42.231 44.643 50.804 58.808 58.808 560.041 T 2 551.326 550.012 552.07 550.230 557.253 558.864 560.041 T 2				516-699	518.699	518.699	516.699	518.699	518.699	518.699		T 1
STATION 4 BETA 2 45.039 45.067 44.429 44.989 46.659 51.808 60.650 64.826 67.362 BETA 2 STATION 2A BETA 2A 3.361 4.511 4.621 2.756 1.996 0.945 1.736 2.532 3.549 BETA 2A 7.25 531.49 531.85 537.76 521.70 513.10 500.19 479.68 479.75 478.84 7.2 2 531.49 531.85 537.76 521.70 513.10 500.19 479.68 479.75 478.84 7.2 2 2 375.56 375.63 384.02 368.95 352.04 309.02 234.92 203.93 184.20 7.2 2 7.		T &	551.328	550.072	549.088	550.812	552.097	550.230	557.253	558.864	560.041	T 2
STATION 2 BETA 2 45.039 45.067 44.429 44.989 46.659 51.808 60.650 64.826 67.362 BETA 2 STATION 2A BETA 2A 3.301 4.511 4.621 2.756 1.996 0.945 1.738 2.532 3.549 BETA 2A Y 2 531.49 531.85 537.76 521.70 513.10 500.19 479.68 479.75 478.84 Y 2 Y 2 A 402.01 396.87 394.97 412.42 410.66 399.76 371.06 359.56 363.08 Y 2A Y 2 Z 375.56 375.63 384.02 368.95 352.04 309.02 234.92 203.93 184.20 Y 2 Z Y 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	STATCH D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATION 2 BETA 2		DIA										
STATION 2A BETA 2A 3.301 4.511 4.621 2.756 1.996 0.945 1.736 2.532 3.549 BETA 2A V 2 531.49 531.85 537.76 521.70 513.10 500.19 479.68 479.75 478.84 V 2 V 2A 402.01 396.87 394.97 412.42 410.66 399.76 371.06 359.56 363.08 V 2A V 2 375.56 375.63 384.02 368.95 352.04 309.02 234.92 203.93 184.20 V 2 2 V 2 2A 401.32 395.64 393.67 411.90 410.32 399.56 370.70 359.01 362.12 V 2 2A V THETA 2 376.07 576.51 376.44 368.81 373.04 392.81 417.76 433.88 441.69 V THETA 2 V THETA 2 2 2 3.57 31.21 31.82 19.83 14.30 6.59 11.25 15.68 22.46 V THETA 2 2 4 0.4719 0.4726 0.4768 0.4631 0.4546 0.4435 0.4216 0.4213 0.4200 M 2 M 2 A 0.5536 0.3549 0.3483 0.3635 0.3616 0.3523 0.3246 0.3139 0.3167 M 2 A 10.873 14.677 46.555 39.808 42.231 44.643 50.804 58.828 62.211 63.735 TURN(PR) P 2 18.073 18.113 18.207 18.077 18.018 17.895 17.692 17.700 17.710 P 2 P 2 A 17.793 17.752 17.743 17.853 17.852 17.855 557.253 558.864 560.041 T 2	STATION 2	BETA 2	45.039	45.067	44.429	44.989						
V 2 531.49 531.85 537.76 521.70 513.10 500.19 479.68 479.75 478.84 V 2 V 2A 402.01 396.87 394.97 412.42 410.66 399.76 371.06 359.56 363.08 V 2A VZ 2 375.50 375.63 384.02 368.95 352.04 309.02 254.92 203.93 184.20 VZ 2 VZ 2A 401.32 395.64 393.67 411.90 410.32 399.56 370.70 359.01 362.12 VZ 2A V-THETA 2 376.51 376.44 368.81 373.04 392.81 417.76 433.88 441.69 V-THETA 2 V-THETA 2A 23.57 31.21 31.82 19.83 14.30 6.59 11.25 15.68 22.46 V-THETA 2A M 2A 0.4719 0.4726 0.4768 0.4631 0.4546 0.4435 0.4216 0.4213 0.4200 M 2 M 2A 0.5336 0.3490 0.34823	STATION 2A	BETA 2A	3.361	+.511	4.621							
V 2A		V 2	531.49									
VZ 2 375.50 375.63 384.02 368.95 352.04 309.02 234.92 203.93 184.20 VZ 2 VZ 2A 401.32 395.64 393.67 411.90 410.32 399.56 370.70 359.01 362.12 VZ 2A V-THETA 2 376.07 376.51 376.44 368.81 373.04 392.81 417.76 433.88 441.69 V-THETA 2 V-THETA 2A 23.57 31.21 31.82 19.83 14.30 6.59 11.25 15.68 22.46 V-THETA 2A M 2 0.4719 0.4726 0.4768 0.4631 0.4546 0.4435 0.4216 0.4213 0.4200 M 2 M 2A 0.5536 0.3490 0.3483 0.3635 0.3616 0.3523 0.3246 0.3139 0.3167 M 2A TURNIPR) 41.677 40.555 39.608 42.231 44.643 50.804 58.828 62.211 63.735 TURNIPR) P 2 18.073 18.113 18.207 18.077 18.018 17.895 17.692 17.700 1		V 2A	402.01	396.87	394.97	412.42	410.66	399.76				
V7 2A 401-32 395-64 393-67 411-90 410-32 399-56 370-70 359-01 362-12 VZ 2A V-THETA 2 376-VT 576-51 376-44 368-81 373-04 392-81 417-76 433-88 441-69 V-THETA 2 V-THETA 2 2 3-57 31-21 31-82 19-83 14-30 6-59 11-25 15-68 Z2-46 V-THETA 2 A 0 0-4719 0-4726 0-4768 0-4631 0-4546 0-4435 0-4216 0-4213 0-4200 M 2 A 0 0-5936 0-3463 0-3463 0-3616 0-3523 0-5246 0-3159 0-3167 M 2A 10-5936 0-3956 0-3616 0-3635 0-3616 0-3523 0-5246 0-3159 0-3167 M 2A 10-8718 14-677 40-555 39-808 42-231 44-643 50-804 58-828 62-211 63-735 TURN(PR) P 2 18-073 18-113 18-207 18-077 18-018 17-895 17-692 17-700 17-710 P 2 P 2A 17-793 17-752 17-743 17-853 17-852 17-725 17-511 17-446 P 2A 1 551-326 551-326 550-072 549-088 550-812 552-097 550-236 557-253 558-864 560-041 T 2		VZ 2	375.56	375.63	384.02	368.95	352.04	309.02				
V-THETA 2 376.07 376.51 376.44 368.81 373.04 392.81 417.76 433.88 441.69 V-THETA 2 V-THETA 2A 23.57 31.21 31.82 19.83 14.30 6.59 11.25 15.68 22.46 V-THETA 2A 2 0.4719 0.4726 0.4768 0.4631 0.4546 0.4435 0.4216 0.4213 0.4200 M 2 M 2A 0.535 0.3490 0.3483 0.3635 0.3616 0.3523 0.3246 0.3139 0.3167 M 2A 10.535 0.3667 40.555 39.808 42.231 44.643 50.804 58.828 62.211 63.735 TURN(PR) P 2 18.073 18.113 18.207 18.077 18.018 17.895 17.692 17.700 17.710 P 2 P 2A 17.793 17.752 17.743 17.653 17.653 17.620 17.725 17.511 17.432 17.446 P 2A 1 2 551.326 550.672 549.088 550.612 552.097 550.236 557.253 558.864 560.041 T 2		VZ ZA	401.32	395.64	393.67	411-90						
V-THETA 2A 23.57 31.21 31.82 19.83 14.30 6.59 11.25 15.68 22.46 V-THETA 2A M 2 0.4719 0.4726 0.4768 0.4631 0.4546 0.4435 0.4216 0.4213 0.4200 M 2 M 2A 0.555 0.3496 0.3483 0.3635 0.3616 0.3523 0.5246 0.3159 0.3167 M 2A TURNIPR) 41.677 40.555 39.808 42.231 44.643 50.804 58.828 62.211 63.735 TURNIPR) P 2 18.073 18.113 18.207 18.077 18.018 17.895 17.692 17.700 17.710 P 2 P 2A 17.793 17.752 17.743 17.653 17.853 17.820 17.725 17.511 17.432 17.448 P 2A 1 2 551.326 550.672 549.088 550.812 552.097 550.236 557.253 558.864 560.041 T 2		V-THETA Z	376.07	376.51	376.44	368.81	373.04	392.81				
M 2 0.4719 0.4728 0.4768 0.4631 0.4546 0.4435 0.4216 0.4213 0.4200 M 2 M 2A 0.5536 0.3440 0.3483 0.365 0.3616 0.3523 0.5246 0.3139 0.3167 M 2A TURNIPR) 41.677 40.555 39.608 42.231 44.643 50.804 58.828 62.211 63.735 TURNIPR) P 2 18.073 18.113 18.207 18.017 18.018 17.895 17.692 17.700 17.710 P 2 P 2A 17.793 17.752 17.743 17.653 17.852 17.725 17.511 17.448 P 2A T 2 551.328 550.672 549.088 550.812 552.097 550.236 557.253 558.864 560.041 T 2		V-THETA 2A	23.57	31.21	31.82	19.83	14.30					
M 2A		H Z	0.4719	0-4728	0.4768	0.4631	0-4546	0.4435	0.4216	0.4213		
P 2 18.073 18.113 18.207 18.017 18.018 17.895 17.692 17.700 17.710 P 2 P 2A 17.793 17.752 17.743 17.853 17.820 17.725 17.511 17.432 17.448 P 2A T 2 551.328 550.072 549.088 550.812 552.097 550.236 557.253 558.884 560.041 T 2			U. 5536	6.3496	0.3483	0.3635	0.3616	0.3523	0.5246	0.3139		
P ZA 17.793 17.75Z 17.743 17.653 17.620 17.725 17.511 17.432 17.448 P ZA T Z 551.3Z6 550.67Z 549.088 550.61Z 552.097 550.23C 557.253 558.864 560.041 T Z				40.555	39.808	42.231	44.643	50.804				
T 2 551-326 550-672 549-088 550-612 552-097 550-236 557-253 558-864 560-041 T 2				18.113	18.207	18.077	18.018	17.895	17.692	17.700	17.710	P 2
The state of the s			17.793	17.752	17.743	17.653	17.82C	17.725	17.511	17.432	17.448	P 2A
T 2A 550.726 549.337 548.258 549.794 550.858 549.160 555.366 556.846 558.074 T 2A				550.672	549.088	550.812	552+047	550.236	557.253	558.864	560.041	T 2
		T ZA	550.736	549.337	548.258	544.744	550.858	549.160	555.300	556.846	558.074	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (286°) - Station 2 (276°) - Station 2A (265°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-7 . 156	-7.633	-7.670	-5.652	-5.446	-6.435	-5.082	-6.243	-6.419	BETA 1
STATION 2	bETA 2	45.509	45.597	45.793	47.854	51.682	55.467	64.553	67.756	70.732	BETA 2
	BETA(Pk) 1	62.887	62.127	62 4 4 6 5	63.412	66.043	68.990	71.078	73.805	77.750	BETA(PR) 1
	BETA(PK) 2	26.360	25.483	25.725	26.749	30.639	38.043	48-549	52.121	55.832	BETA(PR) 2
	V 1	299.44	313.29	313.16	306.05	263.49	257.50	234-12	201.03	150.47	V 1
	V 2	513.57	525.94	529.49	5-3.78	520.97	494.73	464.83	461-77	460.33	v 2
	VZ 1	297.10	310.93	310.78	304.57	262.17	255.65	233.16	199.81	149.51	VZ 1
	VZ Z	359.90	367.99	369.19	358.13	322.93	280.26	199.60	174.69	151.84	VZ 2
	V-THETA 1	-37.31	-38.36	-38.54	-30.14	-27.15	-28.86	-20.73	-21.86	-16.82	V-THETA 1
	V-THETA 2	366.35	375.74	379.55	395.78	408.63	407.28	419.47	427.17	434.36	V-THETA 2
	V(PR) 1	651.9	665.1	671.4	680.5	694.9	713.6	719.0	716.4	704.6	V(PR) 1
	V(PR) 2	461.7	407.7	409.b	401.1	376.3	356.3	302.0	284.9	270.7	V(PR) 2
	VTHETA PRI	-580.3	-587.9	-595.1	-608.5	-635.1	-666.1	-680.1	-688.0	~688.6	VTHETA PRI
	VTHETA PRZ	-176.5	-175.4	-177.9	-180.5	-192.8	-219.3	-226.0	-224.6	-223.7	VTHETA PR2
	Ul	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	U 1
	ŪŽ	544.86	551.13	557.43	576.28	601.43	626.58	645.47	651.75	658.04	U 2
	M 1	0.2702	0.2828	0.2827	0.2762	0.2556	0.2319	0.2106	0.1807	0.1350	M 1
	M 2	0.4531	0.4650	0.4685	0.4714	0.4586	0.4339	0.4054	0.4022	0.4005	M 2
	M{PR} 1	0.5882	L-6004	0.6561	0.6141	0.6265	0.6426	0.6469	0.643b	0.6323	MIPR) 1
	M(PR) 2	G-3545	0.3604	0.3626	0.3542	0.3313	0.3125	0.2634	0.2482	0.2355	M(PR) 2
	TURN (PR)	36.507	36.644	36.699	36.665	35.222	31.002	22.623	21.786	22.022	
	P 1	14.830	14.909	14.921	14.928	14.910	14.872	14.827	14.729	14.610	TURN(PR)
	P 2	17.973	18.129	18.166	18.206	18.082	17.819	17.554	17.540	17.567	P 1 P 2
	Τī	518.699	518.699	>18.699	518.699	518.699	518.699	518.699	518.699	518.699	
	Ť Ž	556.499	555.376	554.900	557.305	559.533	561.431	564.957	566.152	567.485	T 1
		3301,77	3334310	,,,,,,,,,	2218303	JJ7 6 JJJ	201.431	7046751	300.132	201,402	1 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36,420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	45.509	45.597	45.793	47.659	51.682	55.467	64.553	67.758	70.732	BETA 2
STATION 2A	BETA ZA	3.063	3.613	3.826	3.249	1.230	-5.079	-7.486	-7.134	-6.828	BETA ZA
	V 2	513.57	525.94	529.49	533.78	520.97	494.73	464.83	461.77	460.33	V 2
	V 2A	405.46	409.28	409.65	419.37	396.46	372.69	347.42	344.91	354.78	V ŽA
	VZ Z	359.90	367.99	369.19	358-13	322.93	280-26	199.60	174.69	151.64	VZ 2
	VZ ZA	404.88	406.46	408.73	418.65	396.30	371.09	344.29	342.05	352-01	VZ ZA
	V-THETA 2	366.35	375.74	379.55	395.78	408.63	407.28	419.47	427.17	434.36	V-THETA 2
	V-THETA ZA	21.67	25.79	27.33	23.77	8.51	-32.98	-45.25	-42.61	-42.15	V-THETA 2A
	H 2	0.4551	0.4650	0.4685	0-4714	0.4586	0-4339	0.4054	0.4022	0.4005	M Z
	M 2A	0.3560	0.3596	0.3602	0.3661	0.3469	0.3249	0.3015	0.2996	0.3072	M. ZA
	TURN (PR)	44.445	41.983	41.967	44.608	50.432	60.486	71.960	74.811	77.485	TURN (PR)
	P 2	17.973	18.129	16.166	18.206	10.062	17.619	17.554	17.540	17.567	P 2
	P ZA	17.723	17.732	17.739	17.74	17.606	17.436	17.275	17.206	17.330	P ZA
	T _	556.499	555-376	554. 900	557.305	554.533	561.431	564.957	566.154	567.465	T 2
	T ZA	553.550	552-445	552 - 08C	554.664	556.606	559.210	562.621	563.782	565.355	T ZA
						_		· ·			

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion

Station 1 (316°) - Station 2 (306°) - Station 2A (295°)

KOTEK E	PCT SPAN	94.79	90.00	84.99	7à.60	56.00	30.06	14.98	9.99	4.96	PCT SPAN
	LIA	33.234	17ه.3د	34-661	25.151	36.065	38.219	39.371	34.754	40.138	DIA
STATION 1	BETA 1	-21.156	-20.641	-19.161	-18.382	-16.261	-19.046	-18.693	-19.411	-19.884	BETA 1
STATILN 2	BETA 2	40.999	48.821	49.885	51.211	56.320	د1.07ء	74.267	78.396	82.752	BETA 2
	BLTA(PR) 1	70.636	69.712	66.743	69.284	70.760	72.748	74.123	74.861	75.447	BETA(PR) 1
	BETAIPR) 2	25.767	27.807	32.261	31.170	38.168	42.620	63.094	70.179	78.117	BETA(PR) 2
	V 1	233.77	252.20	205.11	263.63	252.41	234.55	219.64	211.24	204.69	V 1
	V Ž	513.75	501.06	475.84	497.50	474-41	474.84	431.32	423.93	413.48	
	V2 1	216.01	∠36.01	250.39	250.16	239.69	221.66	207.77			V 2
	V2 2	350.38	329.41	306.59	311.65	263.03	229.44		199.21	192.47	VZ 1
	V-THETA 1	-84.37	-88.40	-67.10	-83.14	-79.09		116.93	85.26	52.16	V2 2
	V-THETA 2	375.72	377-14	363.90	387.77		-76.53	-71.11	-70-20	-69.61	V-THETA 1
	V(PR) 1	664.1	680.7	690.6		394.69	415.47	415.06	415.20	410.15	Y-THETA 2
	V(PR) 2	369.1	373.ú		707.2	727.6	747.5	759.5	762.8	766-0	V(PR) 1
	VTHETA PRI			362.6	364.3	334.7	312.1	258.6	251.6	253.4	V(PR) 2
		-627.3	-636.4	-043-6	-661.5	-687.0	-713.8	-730.5	-736.3	-741.4	VTHETA PRI
	VTHETA PRZ	-109.1	-174.0	-193.5	-188.5	-206.7	-211.1	-230.4	-236.5	-247.9	VTHETA PR2
	U 1	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	U 1
	U 2	544.86	551-13	557.43	576.20	601.43	626.58	645.47	651.75	658.04	U Z
	M 1	0.2103	0.2271	0.2388	0.2375	0.2272	0.2116	0.1975	0.1899	0.1840	и 1
	M 2	0.4506	U-4395	0.4170	C.4361	0.4144	û.4151	0.3745	0.3675	0.3584	M 2
	M(PR) 1	0.5975	0.6128	0.6221	0.6370	0.6551	0.6725	0.6829	0.6657	0.6884	M(PR) I
	M(PR) 2	0.3413	0.3272	0.3177	0.3193	0.2923	0.2726	0.2245	0.2161	0.2193	M(PR) 2
	TURN(PK)	45.069	41.906	36.481	36.117	32.618	30.186	11.107	4.75u	-2.627	TURN (PR)
	P 1	14.122	14.206	14.253	14.251	14.242	14.234	14.245	14.224	14.211	P 1
	P 2	17.966	17.665	17.635	17.849	17.655	17.647	17.275	17.224	17-197	P 2
	T 1	518.699	518.699	518.699	518.499	518.699	516.699	518.699	518.699	518.699	Ìί
	T 2	562.660	501.715	560.774	562.256	564.171	503.382	567.588	568.741	569.446	ΤŽ
STATUR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	16.00	10.00		
	UIA	33.207	33.564	35.921	34.992			15.00	10.00	5.00	PCT SPAN
STATION 2	BETA 2	46.999	48.021			30.420	37.848	38.919	39.276	39.633	DIA
STATION ZA	BETA ZA	2.654		49.885	51-211	56.320	61.093	74.267	78.396	82.752	BETA 2
SINITON ZX	V 2	513.75	2.677	2.523	2.699	0.563	-8.022	-11.824	-11.653	-11.903	BETA ZA
	V 2A		501.08	475-84	497.50	474.41	474.84	431.32	423.93	413.48	V 2
		386.87	360.56	360.53	374-61	351.41	330.29	319.58	315-63	335.63	V 2A
	V2 2	350.38	3.9.41	306.59	311.65	263.03	229.42	116.93	85.26	52.16	VI 2
	VZ ZA	300.40	360.14	38u. 15	374.15	351.32	326.94	312.65	308.96	320.10	VZ ZA
	V-THETA 2	375.72	377.14	3 63.9 0	387.17	394.69	415.47	415.06	415.20	410.15	V-THETA 2
	V-THETA ZA	18.83	17.77	16.75	17-64	5.45	-46.68	-65.45	-63.72	-69.18	V-THETA ZA
	M 2	0.4506	0.4395	0.4170	0.4361	0-4144	0.4151	0.3745	0.3675	0.3580	M 2
	M ZA	0.3315	0.3316	0.3319	0.5260	0.3049	0.2663	0.275b	0.2720	0.2893	M ZA
	TURN (PK)	44.164	46.143	47.362	48.510	55.738	69.061	66.033	89.999	94.618	TURN(PR)
	P 2	17.966	17.865	17.635	17.849	17.655	17.647	17.275	17.224	17.197	P 2
	P IA	17.477	17.456	17.447	17.390	17.234	17.124	17.106	17.109	17.220	P ZA
	T Z	502.606	501.715	560.774	502.250	564.171	563.36∠	567.588	548.741	569.446	T Z
	T ZA	561-221	500-057	554.231	561.001	563.093	562.985	567-320	568-582	569-417	T ZA

Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89. 25 Equivalent Rotor Speed - 3757. 35 Equivalent Weight Flow = 79. 78 Circumferential Distortion Station 1 (346°) - Station 2 (336°) - Station 2A (325°)

ROTER D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.96	9.99	4.98	PCT SPAN
	ÚΙΑ	33.234	33.617	34.061	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BEIA 1	-10.461	-10.053	-10.062	-9.993	-9.707	-10.243	-9.785	-9 .921	-10.942	BETA 1
STATION 2	BETA 2	51.295	52.069	52.669	50.981	51.343	52.797	58.046	62.120	66.538	BETA 2
	BETA (PR) 1		64.948	64.819	65.546	66.698	68.024	68.978	70.794	74.644	BETA(PR) 1
	BETA(PR) 2	28.361	27.106	32.392	31.243	35.095	40.472	49.552	55.794	60-784	BETA(PR) 2
	V 1	260.48	284.44	289.94	290.34	286.78	281.93	275.46	250.90	198.45	V 1
	V 2	487.38	499.49	472.31	497.30	493.18	477.80	439.74	414.98	404.15	¥ 2
	VZ 1	256.14	280.67	265.48	285.93	282.66	277.40	271.41	247-10	194.82	VZ 1
	VZ Z	304.76	307.04	285.11	313.08	307.98	288.66	232.50	193.89	160.81	VZ 2
	V-THETA 1	-47.29	-49.65	-50.66	-50.38	-48.35	~50.13	-46.81	-43.22	-37.47	V-THETA 1
	V-THETA 2	380.34	393.97	376.55	386.36	385.02	380.27	372.74	366.51	370.50	V-THETA 2
	V(PR) 1	043.4	661.4	671.0	690.7	714.5	741.3	756.6	751.2	735.7	
	VIPRI 2	346.3	344.4	337.6	366.2	376.6	379.9	358.9	345.3	327-8	V(PR) 1
	VTHETA PRI	-590.2	-599.2	-607.2	-648.8	-656.3	-687.4	-706.2	-70 9. 3	-70 9 .4	V(PR) 2
	VTHETA PRZ	-164.5	-157.2	-180.9	-189.9	-216.4	-246.3	-272.7			VTHETA PRI
	U 1	544 95	549.54	556.54	578.38	607.91	637.29		-285.2	-287.5	VTHETA PR2
	ŭź	544.86	551.13	557.43	576.28	601.43		659.40	666.13	671.77	V 1
	Mī	0.2346	0.2564	0.2615	0.2618	0.2586	626.58 0.2542	645.47	651.75	458.04	U 2
	ΜŽ	0.4272	0.4387	0.4144	0.4366	0.4324		0.2482	0.2259	0-1783	M 1
	M(PR) 1	0.5795	0.5963	0.6051	0.6229	0-6443	0.4185	0.3835	0.3612	0.3512	M 2
	M(PR) Z	0.5036	0.3050	0.2962	0.3215	0.3302	0.6682	0-6818	0.6762	0.6611	M(PR) 1
	TURN (PR)	36.160	37.843	32.427	34.305		0.3328	0.3130	0.3006	0.2866	M(PR) 2
	Pl	14.016	14.119	14.131	14.115	31.621 14.121	27.609 14.109	19.519	15.099	13.955	TURN (PR.)
	P 2	17.622	17.699	17.469	17.759	17.811	17.658	14.128	14.057	13.935	P 1
	T 1	516.699	518.699	518.699	518.699	518.699	518.699	17.308	17.130	17.066	P 2
	Ť Ž	561.297	560.135	559.178	560.515	561.596		518.699	518.699	518.699	T 1
	• •	3020271	2004432	2274210	2004919	201+376	561.306	563-101	563.470	564.525	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	7.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	51.295	52.069	52.869	50.981	51.343	52.797	58.046	62.120	66.538	BETA 2
STATION ZA	BETA ZA	2.786	1.844	0.220	-0.438	0.226	-2.870	-3.169	-2.498	-2.688	BETA 2A
	V 2	467.38	499.49	472.31	497.30	493.18	477.80	439.74	414.98	404.15	A 5
	V 2A	د7.4+3	339.90	335.68	354.85	361.00	353.11	323.89	317.66	329.72	V ZA
	V2 2	304.76	307.04	265.11	313.06	307.96	286.68	232.50	193.69	160.81	VZ Ž
	VZ 2A	344.34	339.71	335.86	354.61	360.91	352.54	323 23	317.17	329.12	VZ ZA
	V-THETA 2	360.34	393.97	56.55د	366.26	385.02	380.27	372.74	366.51	370.50	V-THETA 2
	V-THETA ZA	10.76	16.94	1.29	-2.71	1.42	-17.67	-17.90	-13.84	-15.45	V-THETA ZA
	M 2	0.4274	4.4387	0.4144	0.4366	0.4324	0.4185	0.3835	0.3612	0.3512	M 2
	M 2A	0.4996	6.2955	0.2922	0.3085	U-3136	6.3064	0.2804	0.2748	0.2851	M ZA
	TUKN(PR)	46.506	50.224	52.649	51.417	51.097	55.608	61.124	64.526	69.142	TURN (PR.)
	P 2	17.622	17.699	17.469	17.759	17.811	17.658	17.308	17.130	17.066	P 2
	P ZA	17-318	17,284	17.257	17.352	17.384	17.326	17.168	17.159	17.226	P ZA
	1 4	561.247	560.135	559.178	>60.515	501.596	>61.306	563.101	563.470	564.525	T 2
	T 2A	560.960	560.046	559.402	566.952	562.311	563.206	564-156	564.466	565.707	Ť 2A

APPENDIX B STATOR D SURFACE STATIC PRESSURE COEFFICIENTS

$$C_{p} = \frac{P_{surface} - P_{2}_{fs}}{(\rho V^{2}/2)_{2fs}}$$

Design Equivalent Rotor	Equivalent Weight Flow.		Percent Chord Suction Surface										Pressure Surface						
Speed	lb/sec		10% Span From Tip 90% Span From Tip										10% Span From Tip 90% Span From Tip						
		15	25	35	45	55	65	75	85	15	25	35	*	15	50	85	15	50	11 Ttp 85
110	123,41	-0.76	-1,24	-1.61	-1.94	-1.79	-1.61	-1.39	-1.03	-0.27	-0.60	-0.81	_	-0.69	-0.31	-0.36	-0.04		0.22
110	116.07	-0.65	-0,76	-0.76	-0.74	-0,53	-0.34	-0.28	-0.20	-0.48	-0.48	-0.41	_	0.31	0.36	0.22	0.46	0,21 0,49	0.44
110	109.67	-0.73	-0.78	-0.73	-0.67	-0,47	-0.29	-0.23	-0.17	-0.49	-0.45	-0.34	_	0.38	0.39	0.24	0.49	0.51	0.4
110	102.55	-0.65	-0.62	-0.53	-0.42	-0.27	-0.13	-0.09	-0.02	-0.47	-0.38	-0.24	_	0.55	0.49	0.33	0.43	0.52	0.4
110	97.18	-0.70	-0.54	-0.42	-0.30	-0.20	-0,12	-0.09	-0.03	-0.49	-0.38	-0.23	_	0.58	0.47	0.31	0.51	0.51	0.4
100	120.02	-0.68	-L.16	-1,52	-1.87	-1.71	-1,54	-1.33	-0.96	-0.34	-0.68	-0.91	_	-0.60	-0.24	-0.30			
100	110.18	-0.60	-0.78	-0.81	-0.83	-0.63	-0.47	-0.36	-0.27	-0.42	-0.48	-0.46	_	0.21	0.30	0.17	-0.11 0.38	0.15	0,1
100	102.67	-0.60	-0.67	-0.65	-0.62	-0.42	-0.25	-0.18	-0.13	-0.48	-0.48	-0.41	_	0.40	0.42	0.17	0.46	0.45	0.4
100	95,36	-0.62	-0.62	-0.55	-0.47	-0.30	-0.13	-0,10	-0.06	-0.53	-0.48	-0.36	_	0.52	0.49	0.33	0.50	0.49	0.4
100	88.32	-0,64	-0.50	-0.38	-0,28	-0.15	-0,06	-0.03	-0.03	-0.47	-0.39	-0.25	_	0.63	0.54	0.37	0.52	0.50	0.4
90	113.67	-0.67	-1.10	-1.43	-1,72	-1,64	-1,56	-1.36	-0.97	-0.37	-0.68							_	
90	103.01	-0.59	-0.78	-0.85	-0.91	-0.76	-0.58	-0.49	-0.33	-0.41	-0.52	-0.88	- [-0,66	-0.27	-0.33	-0.12	0.14	0.1
90	91.28	-0.56	-0.62	-0.61	-0.58	~0.40	-0.23	-0.16	-0.11	-0.46	-0.48	-0.52 -0.41	-	0.13 0.40	0.24	0,12	0.32	0.42	0.3
90	85,21	-0.56	-0.56	-0.50	-0.42	-0.25	-0.10	-0.06	-0.03	-0.45	-0.42	-0.32		0.40	0.41	0.27 0.33	0.45	0.48	0.4
90	76.85	-0.58	-0.44	-0.33	-0.25	-0.13	-0.04	-0.01	0.04	-0.47	-0.38	-0.25	_	0.63	0.49	0.35	0.52 0.55	0.52 0.51	0.4
70	92.54	-0.62	-1.02	-1,29	-1.58	-1.53	-1.49	-1.31	-0.90	-0.39	-0.68		i						
70	82,65	-0.58	-0.79	-0.91	-1.00	-0.89	-0.77	-0.64	-0.40	-0.33	-0.55	-0.83 -0.59	-	-0.59	-0,23	-0.28	-0,05	0,16	0.1
70	71,87	-0.58	-0.67	-0.68	-0.67	-0.52	-0.30	-0.24	-0.17	-0.52	-0.56	-0.52	_	0.01	0.16	0.05	0.26	0.37	0.3
70	65,46	-0.67	-0,66	-0.61	-0.54	-0.36	-0.19	-0,15	-0.11	-0.53	-0.50	-0,40	_	0.32	0.42	0,22 0,26	0.38	0.43	0.3
70	58.15	-0.54	-0.41	-0,29	-0.19	-0.08	0.00	0.03	0.09	-0.40	-0,32	-0.18	_	0.46	0.42	0.40	0.47 0.57	0.46 0.55	0.3
50	66.41	-0.55	-0.89	-1.11	-1.39	-1.31	-1.28	-1.14	-0.76	~0, 39	-0.67	-0.83	_						1
50	59.41	-0.62	-0.87	-0,99	-1,12	-1.01	-0.94	-0.77	-0.49	-0.45	-0.61	-0.67	l i	-0.43	-0.12	-0.17	-0.02	0.17	0.1
50	51,12	-0.63	-0.73	-0.75	-0.84	-0.61	-0.44	-0.36	-0.24	-0.45 -0.55	-0.62	-0.59	_	-0.05 0.27	0.09	0.00	0.19	0.31	0.2
50	46,51	-0.60	-0.62	-0.57	-0.52	-0.35	-0.16	-0.12	-0.06	-0.53	-0.52	-0.44	-	0.27	0.29	0.16	0.34	0.38	0.3
50	40.70	-0.61	-0.49	-0.39	-0.28	-0.16	-0.07	-0.03	-0.03	-0.49	-0.43	-0.29	-	0.48	0.52	0.31 0.36	0.45 0.53	0.46 0.50	0.3

^{*}Suction surface static pressure instrumentation at 45, 55, 65, 75 and 85% chord, 90% span from tip were inoperative.

APPENDIX C DEFINITIONS

Definitions of Symbols

a _o	Inlet relative stagnation velocity of sound, ft/sec
с	Chord length, inches
$C_{\mathbf{p}}$	Static pressure coefficient
d	Diameter, inches
D	Diffusion factor
$g_{\mathbf{c}}$	Gravitational acceleration, 32.174 ${\rm lb_m}$ - ${\rm ft/lb_f\text{-}sec^2}$
i_m	Incidence angle, degree from axial direction
M	Mach number
N	Rotor speed, rpm
P	Total pressure, psia
PR	Rotor tip static pressure ratio (ratio of local static pressure to static pressure at -7.3% axial chord)
р	Static pressure, psia
R	Gas constant for air, 53.34 ft-lb $_{ m f}/{ m lb}_{ m m}$ -°R
r	Radius, inches
S	Blade passage gap (leading edge), inches
t	Blade maximum thickness, inches
T "	Total temperature, °R
$T_{\mathbf{S}}$	Static temperature, °R
υ	Rotor speed, ft/sec
V	Velocity, ft/sec
W	Actual flowrate, lbm/sec
α	Cone angle (angle of plane tangent to conic surface that approximates the design streamline of revolution), deg
β	Air angle, degrees from axial direction

Definitions of Symbols (Continued)

γ	Ratio of specific heats
γ°	Blade-chord angle, degree from axial direction
δ	Ratio of total pressure to NASA standard sea level pressure of 14.694 psia
δ°	Deviation angle, degree
η	Efficiency
θ	Ratio of total temperature to NASA standard sea level temperature of 518.7°R
κ	Blade metal angle, degree from axial direction
ρ	Density, $lb_f/sec^2/ft^4$
σ	Solidity, chord divided by blade spacing (c/S)
φ	Blade camber angle, κ_1 - κ_2 , degree
$\bar{\omega}$	Loss coefficient
$\overline{\omega}\cos \beta/2\sigma$	Loss parameter
Subscripts	
0	Compressor inlet (bellmouth)
1	Rotor inlet
2	Rotor exit/stator inlet
2A	Stator exit
ad	Adiabatic
f	Force
fs	Freestream value
id	Isentropic condition
\mathbf{L} .	Local
m	Mean or mass
max	Maximum
min	Minimum

244

Definition of Symbols (Continued)

Subscripts (Continued)

le Leading edge

p Polytropic

te Trailing edge

s Static condition

z Axial component

θ Tangential component

Superscripts:

Related to rotor blade

Mass average value

Definitions of Overall Performance Variables

Pressure ratio:

Rotor:
$$\frac{\overline{\overline{P}}_2}{\overline{\overline{P}}_1}$$

Stage:
$$\frac{\overline{P}_{2A}}{\overline{P}_{1}}$$

Equivalent flow:

$$\frac{W\sqrt{\theta}}{\delta}$$

Equivalent rotor speed:

$$N/\sqrt{\theta}$$

Adiabatic efficiency:

Rotor:
$$\eta_{\mathrm{ad}} = \frac{\left(\overline{P}_{2}/\overline{P}_{1}\right)^{\frac{\gamma-1}{\gamma}}-1}{\overline{T}_{2A}/518.7-1}$$
 Stage: $\eta_{\mathrm{ad}} = \frac{\left(\overline{P}_{2A}/\overline{P}_{1}\right)^{\frac{\gamma-1}{\gamma}}-1}{\overline{T}_{2A}/518.7-1}$

Definitions of Overall Performance Variables (Concluded)

Polytropic efficiency:

Rotor:
$$\eta_{p} = \frac{\frac{\gamma - 1}{\gamma} \ln (\overline{P}_{2}/\overline{P}_{1})}{\ln (\overline{T}_{2}/518.7)}$$
 Stator: $\eta_{p} = \frac{\frac{\gamma - 1}{\gamma} \ln (\overline{P}_{2A}/\overline{P}_{2})}{\ln (\overline{T}_{S_{2A}}/\overline{T}_{S_{2}})}$

Change in surge pressure ratio:

$$\Delta \text{ Surge Pressure Ratio} = \left[1.0 - \frac{(\overline{P}_{2A}/\overline{P}_{1})}{(\overline{P}_{2A}/\overline{P}_{1})} \right]_{\text{Uniform Inlet}} N / \sqrt{\theta} = \text{constant}$$

Values of pressure ratio for each condition are at constant value of flow which corresponds to the flow at surge with distortion.

Average pressures and temperatures for circumferential distortion tests:

$$\overline{P}_1 = \frac{(3) \ (\overline{P}_1 \ \text{Undistorted}) + (1) \ (\overline{P}_1 \ \text{Distorted})}{4}$$

$$\overline{P}_2 = \frac{(3) \ (\overline{P}_2 \ \text{Undistorted}) + (1) \ (\overline{P}_2 \ \text{Distorted})}{4}$$

$$\overline{P}_{2A} = \frac{(3) \ (\overline{P}_{2A} \ \text{Undistorted}) + (1) \ (\overline{P}_{2A} \ \text{Distorted})}{4}$$

$$T_1 = \text{Plenum Conditions (corrected to standard day)}$$

$$\overline{T}_2 = \text{Set equal to } \overline{T}_{2A}$$

$$\overline{T}_{2A} = \frac{(3) \ (\overline{T}_{2A} \ \text{Undistorted}) + (1) \ (\overline{T}_{2A} \ \text{Distorted})}{4}$$

Definitions of Blade Element Performance Variables

Incidence angle:

Rotor:
$$i_m = \beta_1' - \kappa_{le}$$
 Stator: $i_m = \beta_2 - \kappa_{le}$

Diffusion factor:

Rotor:
$$D = 1 - \frac{V_2'}{V_1'} + \frac{d_2V_{\theta 2} - d_1V_{\theta 1}}{(d_1 + d_2)V_1' \sigma}$$

Definitions of Blade Element Performance Variables (Concluded)

Diffusion factor:

Stator:
$$D = 1 - \frac{V_{2A}}{V_{2}} - \frac{d_{2}V_{\theta_{2}} - d_{2A}V_{\theta_{2A}}}{(d_{2} + d_{2A}) V_{2}\sigma}$$

Deviation angle:

Rotor:
$$\delta^{\circ} = \beta'_2 - \kappa_{te}$$
 Stator: $\delta^{\circ} = \beta_{2A} - \kappa_{te}$

Loss coefficient:

Rotor:
$$\overline{\omega}' = \frac{(\overline{P}'_2)_{id} - P'_2}{\overline{P}'_1 - p_1}$$

where:

$$(P'_2)_{id} = P'_1 \qquad \left\{1 + \frac{\gamma - 1}{2} \quad \left(\frac{U_2^2}{a_{0_1}^2}\right) \quad \left[1 - \left(\frac{d_1}{d_2}\right)^2\right] \quad \right\}^{\frac{\gamma}{\gamma - 1}}$$

P' is found from
$$p/P' = \left[1 + \frac{\gamma - 1}{2} - M^{\frac{\gamma}{1 - \gamma}}\right]^{\frac{\gamma}{1 - \gamma}}$$

and M' is calculated using trigonometric functions and the measurements of U, β , P, and p.

Stator:
$$\overline{\omega} = \frac{P_2 - \overline{P}_{2A}}{P_2 - p_2}$$
 $\overline{\omega}_{fs} = \frac{P_{2A_{fs}} - \overline{P}_{2A}}{P_{2A_{fs}} - p_2}$

where:

 $P_{2A_{fs}}$ = stator exit average freestream total pressure from wake rakes

P₂ = stator inlet total pressure from 20-deg wedge probes

Definitions of Blade Element Performance Variables (Continued)

Rotor tip static pressure ratio:

$$PR = \frac{p_L}{p \text{ at -7.3\% axial chord}}$$

Stator static pressure coefficient:

$$Cp = \frac{p_{surface} - p_{2fs}}{(\rho V^2/2)_{2fs}}$$

REFERENCES

- 1. Brent, J. A., J. G. Cheatham, and A. W. Nilsen, "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part I Analysis and Design of Stages A, B, and C," NASA CR-120803, FR-4667, June 1972.
- 2. Brent, J. A. and D. R. Clemmons, "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part III Data and Performance for Stage C," NASA CR-120938, FR-5028, August 1972.
- 3. Brent, J. A., "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part II Data and Performance for Stage A," NASA CR-120804, FR-4719, July 1972.
- 4. Brent, J. A., J. G. Cheatham, and D. R. Clemmons, "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part V Analysis and Design of Stages D and E," NASA CR-121008, FR-5212, December 1972.
- 5. Sanger, N. L., "Analytical Study of the Effects of Geometric Changes on the Flow Characteristics of Tandem-Bladed Compressor Stators," NACA TND-6264, March 1971.
- 6. "Aerodynamic Design of Axial Flow Compressor," (Revised), NASA SP-36, 1965.
- 7. Linder, C. G. and B. A. Jones, "Single-Stage Experimental Evaluation of Slotted Rotor and Stator Blading, Part V Data and Performance for Slotted Rotor 3 Slotted Stator 2," NASA CR-54548, FR-2285, August 1967.
- 8. Linder, C. G. and B. A. Jones, "Single-Stage Experimental Evaluation of Slotted Rotor and Stator Blading, Part VIII Data and Performance for Slotted Stator 3," NASA CR-54551, FR-2288, October 1967.
- 9. Miller, M. L. and G. Seren, "Single-Stage Experimental Evaluation of Boundary Layer Blowing Techniques for High Lift Stator Blades, Part III Data and Performance of Single-Slotted 0.65 Hub Diffusion Factor Stator," NASA CR-54566, Allison EDR-5759, June 1968.
- 10. Carmody, R. H. and G. Seren, "Single-Stage Experimental Evaluation of Boundary Layer Blowing Techniques for High Lift Stator Blades, Part IV Data and Performance of Double-Slotted 0.75 Hub Diffusion Factor Stator," NASA CR-54567, Allison EDR-5861, August 1968.
- 11. Horn, R. A., Jr., G. Seren, and R. H. Carmody, "Single-Stage Experimental Evaluation of Boundary Layer Bleed Techniques for High Lift Stator Blades, Part IV Data and Performance of Triple-Slotted 0.75 Hub Diffusion Factor Stator," NASA CR-54572, Allison EDR-5944, August 1969.

REFERENCES (Continued)

- 12. Brent J. A., and B. A. Jones, "Single-Stage Experimental Evaluation of Compressor Blading With Slots and Vortex Generators, Part II Data and Performance for Stage 5 Without Slots or Vortex Generators," NASA CR-72634, FR-3481, March 1970.
- 13. Brent, J. A., "Single-Stage Experimental Evaluation of Compressor Blading With Slots and Vortex Generators, Part IV Supplemental Data for Stage 4," NASA CR-72778, FR-4135, December 1970.

THE FOLLOWING PAGES ARE DUPLICATES OF

ILLUSTRATIONS APPEARING ELSEWHERE IN THIS

REPORT. THEY HAVE BEEN REPRODUCED HERE BY

A DIFFERENT METHOD TO PROVIDE BETTER DETAIL