SOC筆記

這堂課目的

希望能夠在很複雜的電路 電版 裡 去測試 零件因為很難測試

所以測試的零件 在一開始 就要設計進去

隨著時間越來越接近現代 設計 一塊電路 代價越來越低 測試 一塊電路 代價越來越高

這兩個很有名 CoWoS 是用堆疊的電路 2.5D SoIC 是立體 3D

BIST (built-in self test) 是很重要的單元 Memory Test 也很重要

Verification 判斷有沒有問題 這裡不能用test

Diagnosis 判斷哪裡有問題 Reliability 可靠度

Verification: To verify the correctness of a design

Diagnosis: To tell the faulty site

Reliability: To tell whether a good system will work after some time.

這圖是在說他何時會出錯
Burn in test 熱機測試 一開始就把壞的拿掉一些
Life cycle 生命週期 MTBT
Wear out 老化

N 是 晶片裡面的 電晶體數量 P 是 電晶體 出錯的機率

Pf 是 晶片出錯的機率

1-p 是一個 電晶體 正常的機率

如果不檢查 100個 就有63個出錯 期末盡量報告 這門課相關的 不會上台報告 所以 測試 是很有必要的

Problems to Think

- A 32 bit adder
- A 32 bit counter with RESET function
- A 1MB cache memory
- A 10⁷-transistor CPU

OUTLINE

- Introduction
- Fault modeling
- Fault simulation
- Test generation
- Automatic test pattern generation (ATPG)
- Design for testability (DFT)
- Built-in self test
- Memory Test

Testing: To tell whether a system is good or bad

Related fields

Verification: To verify the correctness of a

design

Diagnosis: To tell the faulty site

Reliability: To tell whether a good system will work after some time.

Importance of testing

N = # transistors in a chipp = prob. (a transistor is faulty)Pf = prob. (the chip is faulty)

If
$$p = 10^{-6}$$

N = 10^{6}

Difficulties in Testing

- Fault may occur anytime
 - DesignProcess

 - Package
 - Field
- Fault may occur at any place

Vss

- VLSI circuit are large
 - Most problems encountered in testing are NP-complete
- I/O access is limited

Vdd

How to do testing from Designer's points of view

- Circuit modeling
- Fault modeling

Modeling

- Logic simulation
- Fault simulation
- Test generation

ATPG

- Design for test
- Built-in self test

Synthesis for testability

- Fault simulation
- Test generation

Circuit Modeling

- Functional model--- logic function
 - f(x1, x2,...)=...
 - Truth table

- Behavioral model--- functional + timing
 - $f(x_1, x_2,...) = ...$, Delay = 10
- Structural model --- collection of interconnected components or elements

Levels of Description

Circuit level

Gate level

Switch level

Higher/ System level

Fault Modeling

stuck at 1

任何時間只有一个全线

- The effects of physical defects
- Most commonly used fault model:

卡 在 1				
A s-a-1 B s-a-1	C s-a-1 D s-a-1			
A s-a-0 B s-a-0	C s-a-0 D s-a-0			
E s-a-1 F s-a-1	G s-a-1			
E s-a-0 F s-a-0	G s-a-0			
り這叶分数 14 faults				

- Other fault models:
 - Break faults, Bridging faults, Transistor stuck-open faults, Transistor stuck-on faults, Delay faults(法意建文器)

所有錯

這個可以看 測試的質量 可以測試多少 錯誤

Fault Coverage (FC)

Example:

可以省時間 時間就是金錢

6 stuck-at faults $(a_0,a_1,b_0,b_1,c_0,c_1)$

只用0 0 的輸入 就只能測出 c 卡在1的錯誤

	Test	faults detected	FC
	{(0,0)}	C ₁	16.67%
0 1輸入 可以測出兩種	{(0,1)}	a ₁ ,c ₁	33.33%
	{(1,1)}	a_0,b_0,c_0	50.00%
{	(0,0),(1,1)}	a_0,b_0,c_0,c_1	66.67%
(1)} 李明	0),(0,1),(1,1)} 部 竟然不用全部狀況	all	100.00%
安씨山土	如 免然们用土即队从	J	

Introduction to VLSI Testing.11

Testing and Quality

- Quality of shipped parts is a function of yield Y and the test (fault) coverage T
- Defect level (DL): fraction of shipped parts that are defective

瑕疵的比率 程度

Defect Level, Yield and Fault Coverage

測試錯誤的覆蓋率 在IC設計時決定的

DL: defect level

 $DL = 1 - Y^{(1-T)}$ Y: yield

中球:

T: fault coverage

艮举	ii iaan oo torago		
Yield (Y)	Fault Coverage (T)	DPM (DL)	
50%	90%	67,000	
75%	90%	28,000	
90%	90%	10,000	
95%	90%	5,000	
99%	90%	1,000 ^{一百萬個} 只有1000是壞的	
90%	90%	10,000 還是挺多	
90%	95%	5,000	
90%	99%	1,000	
90%	99.9%	100	
	所以盡量提升 測試錯誤的覆蓋率	這樣給別人的 就可以少很多壞掉的	
	良率下降一點 沒關係		

Introduction to VLSI Testing.13

Test Quality Issues

- True pass and true reject are correct decision
- Test escapes = defective chips that pass test
 Also known as under-testing
- Yield loss = good chips that fail the tests
 Also known as overkill, over-testing
- Testing goal reduces both test escape and yield loss
- Quality test reduces test escape but increases yield loss
- Low cost test reduces yield loss but increase test escape

好的IC

壞掉的ic

	Good IC	Defective IC
Pass tests	True PASS	Test Escapes
Fail tests	Yield Loss	True Reject

好的被當成壞的 這個業界很在意 好不容易有好的 被丟掉

Logic simulation

- To determine how a good circuit should work
- Given input vectors, determine the normal circuit response

Fault simulation

To determine the behavior of faulty circuits

找到那些能測出錯誤的 pattern

希望有越少的pattern

而 測出更多的問題

因為要盡量減少儲存pattern

的空間

越少pattern 測越快

 Given a test vector, determine all faults that are detected by this test vector.

Example:

像這個1 1就可以測出三個錯誤

Test vector (1 1) detects
$$\{a_0, b_0, c_1\}$$

Test generation

Given a fault, identify a test to detect this fault

Example:

為了要測出 D卡在0 而我們只能看到F的輸出 所以要有110的輸入 才能看出d有沒有問題 但不確定是不是f卡在1

To detect D s-a-0, D must be set to 1.

Thus A=B=1.

To propagate fault effect to the primary output E must be 1. Thus C must be 0.

Test vector: A=1, B=1, C=0

Automatic Test Pattern Generation (ATPG)

 Given a circuit, identify a set of test vectors to detect all faults under consideration.

Difficulties in test generation

1. Reconvergent fanout

001的輸入 試測不出 D卡在1 所以要重找一個 輸入

Difficulties in test generation (cont.)

續向邏輯 也很難測 000 要把前面的都先測出來 001 2. Sequential test generation 010 011 **Combinational part** Pls Pls clk

Testable Design

- Design for testability (DFT)
 - ad hoc techniques
 - Scan design
 - Boundary Scan 電路板 掃描 用電路針 測不到
- Built-In Self Test (BIST)
 - Random number generator (RNG)
 - Signature Analyzer (SA)
- Synthesis for Testability

Example of ad hoc techniques

Insert test point

還沒加測試電路長這樣

多工器 這裡可以用來測試虛線 會多一隻腳 用來做多工器的選擇

Scan System

Original design **Modified design** PΙ C SO T/N 這個是記憶體 SI

這個正反器比較不一樣

Scan Cell Design

會長這樣

Scan Register

Boundary Scan

TRST*:Test rest (Optional)

TDI: Test data input TD0: Test data output

TCK: Test clock

TMS: Test mode select

Boundary Scan (Cont.)

Built-In-Self Test (BIST)

- Places the job of device testing inside the device itself
- Generates its own stimulus and analyzes its own response

Built-In-Self Test (BIST) (Cont.)

- Two major tasks
 - Test pattern generation
 - Test result compaction
- Usually implemented by linear feedback shift register

Random Number Generator (RNG)

- 1. Generate "pseudo" random patterns
- 2. Period is 2ⁿ 1

這個叫做 虛亂數

沒什麼規則

但只要決定好 一開始 後面都有規律的

可以更好的測試出錯誤

Signature Analyzer (SA)

Signature Analyzer (SA) (Cont.)

$$P(x): x^{5} + x^{4} + x^{2} + 1$$

$$\times Q(x): x^{2} + 1$$

$$x^{7} + x^{6} + x^{4} + x^{2} + x^{5} + x^{4} + x^{2} + 1$$

$$= x^{7} + x^{6} + x^{5} + 1$$

$$P(x)Q(x) + R(x) = x^{7} + x^{6} + x^{5} + x^{4} + x^{2} + 1 = G(x)$$

Prob. of aliasing error = 1/2ⁿ where n is # of FFs

Memory BIST Architecture with a Compressor

Memory BIST Architecture with a Compressor (Cont.)

Synthesis for Testability

- Automatic v.s Semi-automatic
- Commercial products
 - Testability analysis tools
 - Full / partial scan insertion
 - BIST insertion
 - Boundary scan insertion
- Research
 - RTL synthesis
 - FSM synthesis
 - Gate level synthesis
 - Boolean equation synthesis

CPU Test Control Architecture

Problems re-thinking

- A 32-bit adder --- ATPG
- A 32-bit counter --- Design for testability + ATPG
- A 1MB Cache memory --- BIST
- A 10⁷-transistor CPU --- All test techniques