$\begin{array}{c} CSC581 \; Final \; Spring \; 2016 \\ \text{due Tuesday } 5/10 \; @ \; midnight \; in \; Sakai \end{array}$

version 1.0

Short Answer Problems
1. What is meant by a maximum-margin classifier and why are they predable over perceptrons?
2. What do we mean by the <i>feasible region</i> of an optimization problem?

3.	What	are	the	KKT	conditions	and	why	are	they	important?	

4. How do a Lagrangian and a Lagrangian dual differ?

5.	Why do we	consider	maximum-	margin	classifiers	with	large	margin	less
	complex tha	n maxim	um-margin	classifie	rs with a	small	margi	in?	

 $6.\ \,$ Explain the basic idea behind the gradient ascent/descent optimization technique.

7.	What is	quadratic	programming	and	how	can	it	be	used	in	the	context	of
	SVMs?												

8. Given that both SVMs and MLPs can solve nonlinear decision problems, what are some of the advantages of SVMs?

9.	What is	${\rm meant}$	by '	the	term	kernel	$trick \ {\rm in}$	the	context	of	SMVs?	

10. What is a *support vector*?

Problems

For the final examination you have a choice:

- 1. Build and evaluate support vector machine regression models for an appropriate regression data set, OR
- 2. Select a classification data set and build SVM and RandomForest classifiers for this data set and compare them (see Part C below).

Please indicate your choice clearly. For data set selection the same rules apply as for the midterm.

Part A Perform an exploratory data analysis using summary statistics and histograms. Briefly explain your findings.

Part B Build the best model possible for your data set:

- 1. Document your grid search/model evaluation process carefully, including the type of kernel you are using, the values of its free parameters, and the value of C.
- 2. For regression use the cross-validated mse (or rmse) in order to determine your best model.
- 3. Select the two best performing models.

Part C Investigate whether the difference in performance of your top two models is statistically significant or not using the bootstrap. You should use 95% confidence intervals for this investigation.

- 1. What are the 95% error confidence intervals for your two models?
- 2. Is the performance difference statistically significant? If yes, which model would you pick? if no, which model would you pick and why?

Write a brief report summarizing your findings from Parts A, B, and C.

NOTE: All the work has to be done in R.

NOTE: All work has to be your own, no collaboration is permitted.