

Chapter 1. Basic Concepts

Chapter 1. Basic Concepts

- 1.1 Overview: System Life Cycle
- 1.2 Pointers and Dynamic Memory Allocation
- 1.3 Algorithm Specification
- 1.4 Data Abstraction
- 1.5 Performance Analysis
- 1.6 Performance Measurement

1.5 Performance Analysis

Performance Evaluation

- Performance analysis
 - obtaining estimates of time and space that are machine independent
- Performance measurement
 - obtaining machine-dependent running time

1.5 Performance Analysis

Definition

Space complexity:
 the amount of memory that a program needs to run to completion

• Time complexity:

the amount of computation time that a program needs to run to completion

The space needed by a program

1) Fixed space requirements

- independent on the number and size of the program's input and output
- space for instruction(code), simple variables, fixed-size structured variables, and constants

2) Variable space requirements

- space needed by structured variables whose size depends on the particular instance I, of the problem being solved
- space required when a function uses recursion

$S(P) = c + S_P(I)$

- S(P): total space requirement of a program P
- c : constant for fixed space requirement
- $S_P(I)$:
 - the variable space requirement of a program P working on an instance I
 - a function of some characteristics of the instance I, where the characteristics include the number, size, and values of the I/O associated with I

$*S_P(I)$

- Ex)
 - If the input is an array containing *n* numbers, then *n* is an instance characteristic.
 - If n is the only characteristic we wish to use, when computing $S_P(I)$, we will use $S_P(n)$ to represent $S_P(I)$.
- When analyzing the space complexity of a program, we are usually concerned with $S_P(I)$.

Example : abc

- has only fixed space requirements
- $S_{abc}(I) = 0$

```
float abc(float a, float b, float c)
{
  return a+b+b*c+(a+b-c)/(a+b)+4.00;
}
```

Program 1.10: Simple arithmetic function


```
float sum(float list[], int n)
{
  float tempsum = 0;
  int i;
  for (i = 0; i < n; i++)
    tempsum += list[i];
  return tempsum;
}</pre>
```

Program 1.11: Iterative function for summing a list of numbers

Example : sum

- Input includes an array with size n
- $-S_{sum}(I)$
 - Depends on how the array is passed into the function
 - C passes the address of the first element of the array

$$S_{sum}(I) = S_{sum}(n) = 0$$

Example: rsum

- for each recursive call
 - the parameters, local variables, the return address for each recursive call

```
float rsum(float list[], int n)
{
  if (n) return rsum(list,n-1) + list[n-1];
  return 0;
}
```

Program 1.12: Recursive function for summing a list of numbers

Type	Name	Number of bytes
parameter: array pointer	list[]	4
parameter: integer	n	4
return address: (used internally)		4
TOTAL per recursive call		12

Figure 1.1: Space needed for one recursive call of Program 1.12

- If the array has $n = MAX_SIZE$ numbers, then $S_{rsum}(MAX_SIZE) = 12 * MAX_SIZE$
- The recursive version has a far greater overhead than its iterative counterpart!!!

- $T(P) = \text{compile time} + \text{execution time}(T_P)$
 - T(P): time taken by a program P
 - compile time : just one
- \diamond We are really concerned only with the T_P !!!
 - But, determining T_P is not an easy task
 - Alternatively, we could count program step.
 - a machine independent estimate

Definition

• program step:

Syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.

```
Ex)

a = 2; 1 step

a = 2*b+3*c/d-e+f/g/a/b/c; 1 step
```


*How to count program steps? 2 ways!

- using a global variable, count with initial value 0
- using a tabular method
 - Only consider the program steps required by each executable statement

using a global variable

```
float sum(float list[], int n) // count 는 전역변수

{
  float tempsum = 0; count++; /* for assignment */
  int i;
  for (i = 0; i < n; i++) {
    count++; /* for the for loop */
    tempsum += list[i]; count++; /* for assignment */
  }
  count++; /* last execution of for */
  count++; /* for return */ return tempsum;
}
```

Program 1.13: Program 1.11 with count statements

- The simplification makes easier to express the count arithmetically.
- The final count value will be 2n+3

```
float sum(float list[], int n)
{
  float tempsum = 0;
  int i;
  for (i = 0; i < n; i++)
     count += 2;
  count +=3;
  return 0;
}</pre>
```

Program 1.14: Simplified version of Program 1.13

Example [Recursive summing]

- for n = 0, count is 2.
- for n > 0, n recursive calls, count = 2n
- The final count value will be 2n+2

```
float rsum(float list[], int n)
{
  count++;     /* for if conditional */
  if (n) {
    count++;     /* for return and rsum invocation */
    return rsum(list,n-1) + list[n-1];
  }
  count++;
  return 0;
}
```

Program 1.15: Program 1.12 with count statements added

Example [Matrix addition]

Program 1.16: Matrix addition

Example [Matrix addition]

Program 1.17: Matrix addition with count statements

- ❖ The final count value will be 2rows·cols+2rows+1
 - We should interchange the matrices if the number of rows is significantly larger than the number of columns.

using a tabular method

* s/e : step counts per each statement

Statement	s/e	Frequency	Total steps
float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum = 0 ;	1	1	1
int i;	0	0	0
for $(i = 0; i < n; i++)$	1	<i>n</i> +1	<i>n</i> +1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total			2n+3

using a tabular method

* s/e : step counts per each statement

Statement	s/e	Frequency	Total steps
float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
return rsum(list, $n-1$) + list[$n-1$];	1	n	n
return 0;	1	1	1
}	0	0	0
Total			2n + 2

using a tabular method

* s/e : step counts per each statement

Statement	s/e	Frequency	Total Steps
void add(int a[][MAX_SIZE] · · ·)	0	0	0
{	0	0	0
int i, j;	0	0	0
for (i=0; i <rows; i++)<="" td=""><td>1</td><td>rows+1</td><td>rows+1</td></rows;>	1	rows+1	rows+1
for $(j = 0; j < cols; j++)$	1	$rows \cdot (cols+1)$	$rows \cdot cols + rows$
c[i][j] = a[i][j] + b[i][j];	1	rows · cols	rows · cols
}	0	0	0
Total			$2rows \cdot cols + 2rows + 1$

Three kinds of step counts

- Best-case step count
 - The minimum number of steps that can be executed for given parameters
- Worst-case step count
 - The maximum number of steps that can be executed for given parameters
- Average step count
 - The average number of steps on instance with the given parameters

1.5.3 Asymptotic Notation (O, Ω , Θ)

Motivation to determine step counts

- Compare the time complexities of two programs for the same function
- Predict the growth in run time as the instance characteristics change

*However,

- Determining the exact step count is very difficult.
 - The exact step count is not very useful for comparative purposes.
 - The notion of a step is itself inexact.

Asymptotic

shutterstock.com · 1663455688

- 사람의 수에 대한 예상(근사적 추정)
 - 최대 0000 명 정도 (식사준비 할 때)
 - 최소 0000 명 정도 (회비 걷을 때 예상)

1.5.3 Asymptotic Notation (O, Ω , Θ)

Time complexity

- Depends on input size.
- Maximum (O)
- Minimum (Ω)
- Maximum and Minimum (⊕)

1.5.3 Asymptotic Notation (0, Ω , Θ)

❖Definition [*Big "oh"*]

• f(n)=O(g(n)) (read as "f of n is big oh of g of n") iff $\exists c, n_0 > 0$, s.t. $f(n) \leq cg(n) \ \forall n, n \geq n_0$

1.5.3 Asymptotic Notation (O)

Examples

$$n \ge 2$$
, $3n + 2 \le 4n$ $\Rightarrow 3n + 2 = O(n)$
 $n \ge 3$, $3n + 3 \le 4n$ $\Rightarrow 3n + 3 = O(n)$
 $n \ge 10$, $100n + 6 \le 101n$ $\Rightarrow 100n + 6 = O(n)$
 $n \ge 5$, $10n^2 + 4n + 2 \le 11n^2 \Rightarrow 10n^2 + 4n + 2 = O(n^2)$
 $n \ge 4$, $6*2^n + n^2 \le 7*2^n$ $\Rightarrow 6*2^n + n^2 = O(2^n)$
 $n \ge 2$, $3n + 3 \le 3n^2$ $\Rightarrow 3n + 3 = O(n^2)$

$$3n+2 \neq O(1)$$

• for any constant c and all n, $n \ge n_0$, $3n + 2 \le c$ is false. $10n^2 + 4n + 2 \ne O(n)$

O(1) means a computing time is a constant.

1.5.3 Asymptotic Notation (O)

- $*O(1) < O(\log n) < O(n) < O(n) < O(n) < O(n^2) < O(n^3) < O(2^n)$
- * f(n) = O(g(n)) ('=' means 'is'
 not 'equal')
 - $\forall n, n \ge n_0, g(n)$ is an upper bound on f(n)
 - g(n) should be as small as one can come up with f(n)
 - in order for the statement f(n) = O(g(n)) to be informative

1.5.3 Asymptotic Notation (Ω)

- **❖Definition** [*Omega*]
- $f(n)=\Omega(g(n))$ iff
- $\Rightarrow \exists c, n_0 > 0, s.t. f(n) \ge cg(n) \ \forall n, n \ge n_0$

1.5.3 Asymptotic Notation (Ω)

Examples

```
n \ge 1, 3n + 2 \ge 3n \Rightarrow 3n + 2 = \Omega(n)

n \ge 1, 3n + 3 \ge 3n \Rightarrow 3n + 3 = \Omega(n)

n \ge 1, 100n + 6 \ge 100n \Rightarrow 100n + 6 = \Omega(n)

n \ge 1, 10n^2 + 4n + 2 \ge n^2 \Rightarrow 100n^2 + 4n + 2 = \Omega(n^2)

n \ge 1, 6*2^n + n^2 \ge 2^n \Rightarrow 6*2^n + n^2 = \Omega(2^n)
```

$f(n) = \Omega(g(n))$

- for all $n, n \ge n_0, g(n)$ is a lower bound on f(n)
- g(n) should be as large as one can come up with

1.5.3 Asymptotic Notation (⊕)

❖Definition [*Theta*]

$$f(n) = \Theta(g(n))$$
 iff

$$Arr \exists c_1, c_2, n_0 > 0, \text{ s.t. } c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n,$$

1.5.3 Asymptotic Notation (⊕)

Examples

$$n \ge 2$$
, $3n \le 3n + 2 \le 4n \implies 3n + 2 = \Theta(n)$, where $c_1 = 3$, $c_2 = 4$, $n_0 = 2$
 $3n + 3 = \Theta(n)$
 $10n^2 + 4n + 2 = \Theta(n^2)$
 $6*2^n + n^2 = \Theta(2^n)$
 $10*log n + 4 = \Theta(log n)$
 $2*n*m + 2*n + 1 = \Theta(n*m)$

$$f(n) = \Theta(g(n))$$

• g(n) is both an upper and lower bound on f(n)

1.5.3 Asymptotic Notation (O, Ω , Θ)

* Coefficients of all of the g(n)'s is 1!!!

- We do not write O(3n), Ω(4n²),
 Θ(32n)
 - but O(n), $\Omega(n^2)$, $\Theta(n)$

1.5.3 Asymptotic Notation (O, Ω , Θ)

Theorem 1.2: If $f(n) = a_m n^m + ... + a_1 n + a_0$, then $f(n) = O(n^m)$.

Proof:
$$f(n) \leq \sum_{i=0}^{m} |a_i| n^i$$

$$\leq n^m \sum_{i=0}^m |a_i| n^{i-m}$$

$$\leq n^m \sum_{i=0}^m |a_i|$$
, for $n \geq 1$

So,
$$f(n) = O(n^m)$$
. \square

1.5.3 Asymptotic Notation (O, Ω , Θ)

- *Asymptotic complexity (0,Ω,Θ) is determined easily without determining the exact step count.
 - Add up asymptotic complexities for each statement(or group of

statements)

Example

Statement	Asymptotic complexity	
void add(int a[][MAX_SIZE] · · ·)	0	
{	0	
int i, j;	0	
for (i=0; i <rows; i++)<="" td=""><td colspan="2">$\Theta(rows)$</td></rows;>	$\Theta(rows)$	
for $(j = 0; j < cols; j++)$	$\Theta(rows.cols)$	
c[i][j] = a[i][j] + b[i][j];	$\Theta(rows.cols)$	
}	0	
Total	Θ(rows.cols)	

Figure 1.5: Time complexity of matrix addition

1.5.4 Practical Complexities

	$\log n$	n	$n \log n$	n^2	n^3	2^n
1	0	1	0	1	1	2
2	1	2	2	4	8	4
4	2	4	8	16	64	16
8	3	8	24	64	512	256
16	4	16	64	256	4096	65,536
32	5	32	160	1024	32,768	4,294,967,296

Figure 1.7: Function values

1.5.4 Practical Complexities

Figure 1.8 Plot of function values

1.5.4 Practical Complexities

	f(n)							
n	n	$n\log_2 n$	n^2	n^3	n^4	n 10	2^n	
10	.01 µs	.03 µs	.1 μs	1 μs	10 μs	10 s	1 μs	
20	.02 μ.	.09 μs	.4 μs	8 μ.	160 μs	2.84 h	1 ms	
30	.03 μ	.15 μ	.9 μ	27 μ	810 μ	6.83 d	1 s	
40	.04 µs	.21 µs	1.6 µs	64 µs	2.56 ms	121 d	18 m	
50	.05 μs	.28 µs	2.5 µs	125 µs	6.25 ms	3.1 y	13 d	
100	.10 µs	.66 µs	10 µs	1 ms	100 ms	3171 y	4*10 ¹³ y	
10 ³	1 μs	9.96 µs	1 ms	1 s	16.67 m	3.17*10 ¹³ y	32*10 ²⁸³ y	
10 ⁴	10 µs	130 µs	100 ms	16.67 m	115.7 d	3.17*10 ²³ y		
105	100 μs	1.66 ms	10 s	11.57 d	3171 y	3.17*10 ³³ y		
106	1 ms	19.92 ms	16.67 m	31.71 y	3.17*10 ⁷ y	3.17*10 ⁴³ y		

 μ s = microsecond = 10⁻⁶ seconds; ms = milliseconds = 10⁻³ seconds s = seconds; m = minutes; h = hours; d = days; y = years

Figure 1.9: Times on a 1-billion-steps-per-second computer (109)

Super computer(Summit) 148.6 PF, 1PF(Peta Flops) = 10¹⁵ Korea Super computer(Nurion) 25.7 PF (15th rank)

- Measure actual time on an actual computer.
- Data to use for measurement
 - worst-case data
 - best-case data
 - average-case data
- *Timing mechanism clock(), time()

Timing events in C

- Use clock() or time() function in the C standard library.
- #include <time.h>

	Method 1	Method 2
Start timing	start = clock();	start = time(NULL);
Stop timing	stop = clock();	stop = time(NULL);
Type returned	clock_t	time_t
Result in seconds	duration = ((double) (stop-start)) / CLOCKS_PER_SEC;	duration = (double) difftime(stop,start);


```
#include <stdio.h>
#include <time.h>
#include "selectionSort.h"
#define MAX SIZE 1001
void main(void)
  int i, n, step = 10;
  int a[MAX_SIZE];
  double duration;
  clock t start;
  /* times for n = 0, 10, ..., 100, 200, ..., 1000 */
  printf(" n time\n");
  for (n = 0; n \le 1000; n += step)
  {/* get time for size n */
     /* initialize with worst-case data */
     for (i = 0; i < n; i++)
        a[i] = n - i;
     start = clock();
      sort(a, n);
      duration = ((double) (clock() - start))
                           / CLOCKS_PER_SEC;
     printf("%6d %f\n", n, duration);
     if (n == 100) step = 100;
```

Program 1.24: First timing program for selection sort


```
#include <stdio.h>
#include <time.h>
#include "selectionSort.h"
#define MAX_SIZE 1001
void main(void)
  int i, n, step = 10;
  int a[MAX_SIZE];
  double duration;
  /* times for n = 0, 10, ..., 100, 200, ..., 1000 */
  printf(" n repetitions
                                 time\n");
  for (n = 0; n \le 1000; n += step)
     /* get time for size n */
     long repetitions = 0;
     clock t start = clock();
        repetitions++;
        /* initialize with worst-case data */
        for (i = 0; i < n; i++)
           a[i] = n - i;
        sort(a, n);
      } while (clock() - start < 1000);</pre>
           /* repeat until enough time has elapsed */
      duration = ((double) (clock() - start))
                            / CLOCKS_PER_SEC;
      duration /= repetitions;
     printf("%6d %9d %f\n", n, repetitions, duration);
      if (n == 100) step = 100;
```

Program 1.25: More accurate timing program for selection sort

n	repetitions	time
0 8690714		0.000000
10	2370915	0.000000
20	604948	0.000002
30	329505	0.000003
40	205605	0.000005
50	145353	0.000007
60	110206	0.000009
70	85037	0.000012
80	65751	0.000015
90	54012	0.000019
100	44058	0.000023
200	12582	0.000079
300	5780	0.000173
400	3344	0.000299
500	2096	0.000477
600	1516	0.000660
700	1106	0.000904
800	852	0.001174
900	681	0.001468
1000	550	0.001818

Figure 1.11: Worst-case performance of selection sort (seconds)

Figure 1.12: Graph of worst-case performance of selection sort

- Performance Analysis
- Performance Measurement

Have a nice day !!