Generative Models

2021. 8 Yongjin Jeong, KwangWoon University

[참고] 본 자료에는 인터넷에서 다운받아 사용한 그림이나 수식들이 일부 있으니 다른 용도로 사용하거나 외부로 유출을 금해 주시기 바랍니다.

Contents

- Autoencoders
- Variational Autoencoder (VAE)
- GANs

Autoencoders

Autoencoder

• To learn a representation (encoding) for training data set (dimensionality reduction) by training the network to ignore signal "noise", in other words, feature extraction.

2D - Dataset

Focus on the encoder.

Autoencoders

Applications of Autoencoders

- Dimensionality reduction
- Anomaly detection
- Image denoising
- Image compression
- Image generation

Denoising Autoencoder

Denoising Autoencoder

- Add noise to the input and learn to reconstruct the original input without noise
- Noise can be generated in random input units using <u>Gaussian Noise</u> or <u>Dropout</u>.

Stacked Autoencoder

Training One Autoencoder at a time

• Rather than training the whole stacked autoencoder in one go, it is much faster to train one shallow autoencoder at a time, then stack all of them into a single.

Deep Learning

Variational Autoencoder (VAE)

- Provides a probabilistic manner for describing an observation in latent space
- Encoder is formulated to describe a probability distribution for each latent attribute
- Encoder is referred to as recognition model, and decoder is referred to as the generative model

Autoencoders

Auto-encoder

- Reconstruction loss (MSE) = $\frac{1}{N} \sum_{i=1}^{N} (X_i \hat{X}_i)^2$ (N is number of images in a batch)
- It is not good at generating new images because of its latent space structure:
 - The latent space was not continuous and did not allow easy interpolation.
 - Encoded vectors are grouped in clusters corresponding to different data classes, and there are huge gaps between the clusters.
 - While generating a new sample, the decoder often produces a gibberish output if the chosen point in the latent space did not contain any data

- A generative model (focus on the decoder)
- Instead of mapping the image on a point in space, the encoder of VAE maps the image onto a normal distribution.
- Sample a latent vector Z from two latent variables Z_{μ} and Z_{σ} (also called a sampling-layer)
- We want the latent vector Z to follow a standard normal distribution. (Z_{μ} and Z_{σ} should be trained such that they are close to 0 and 1 respectively)

https://learnopencv.com/variational-autoencoder-in-tensorflow/

- Discrete latent vector (Standard auto-encoder) and a standard normal distribution (VAE)
 - Instead of a single point, the VAE covers a certain area: a sample from anywhere in the area will be very similar to the original input.

Why normal distribution?

- We assume that our dataset would inherently follow a distribution similar to the normal distribution.
- Enforcing the latent variables to follow a normal distribution in VAE is very common and works the best.

Objective Function of VAE

- ullet Unit Gaussian Distribution $\mathcal{N}(0,1)$, and
- Minimize the reconstruction error $\frac{1}{N} \sum_{i=1}^{N} (X_i \hat{X}_i)^2$.
- VAE's total loss
 - Loss = Reconstruction_loss + KL_divergence_loss

$$L_{MSE}(\theta, \phi) = \frac{1}{N} \sum_{i=1}^{N} \left(x_i - f_{\theta}(g_{\phi}(x_i)) \right)^2$$

$$L_{KL}[G(Z_{\mu}, Z_{\sigma}) || \mathcal{N}(0, 1)] = -0.5 * \sum_{i=1}^{N} 1 + log(Z_{\sigma_i}^2) - Z_{\mu_i}^2 - Z_{\sigma_i}^2$$

```
kl_loss = -0.5 * numpy.sum(1 + numpy.log(Z_sigma ** 2) - numpy.square(Z_mean)
- numpy.exp(np.log(Z_sigma ** 2), axis = 1)
kl_loss = -0.5 * numpy.sum(1 + numpy.log(Z_sigma ** 2) - numpy.square(Z_mean)
- Z_sigma ** 2, axis = 1)
```

Reparameterization Trick

- Sampling prevents backpropagation and their training.
- Trick: convert the random node Z to a deterministic node (Z_{μ} and Z_{σ} remain as the learnable parameters while still maintaining the stochasticity of the entire system via ϵ .)

$$Z=Z_{\mu}+Z_{\sigma}^{2}\odot arepsilon$$
 (Here, $arepsilon\sim\mathcal{N}(0,1)$ and \odot is element-wise multiplication.)

KL Divergence

- 두 확률 분포의 다른 정도 (= Relative Entropy)
- 두 분포가 Gaussian 일 경우 간략하게 표현 가능

$$-D_{KL}(q_{\theta}(z|x_i)||p(z)) =$$

$$\int \frac{1}{\sqrt{2\pi\sigma_q^2}} \exp\left(-\frac{(x-\mu_q)^2}{2\sigma_q^2}\right) \log\left(\frac{\frac{1}{\sqrt{2\pi\sigma_p^2}} \exp\left(-\frac{(x-\mu_p)^2}{2\sigma_p^2}\right)}{\frac{1}{\sqrt{2\pi\sigma_q^2}} \exp\left(-\frac{(x-\mu_q)^2}{2\sigma_q^2}\right)}\right) dz$$

$$\begin{split} q_{\theta}(z|x_i) &\to \frac{1}{\sqrt{2\pi\sigma_q^2}} \exp\left(-\frac{(x-\mu_q)^2}{2\sigma_q^2}\right) \\ p(z) &\to \frac{1}{\sqrt{2\pi\sigma_p^2}} \exp\left(-\frac{(x-\mu_p)^2}{2\sigma_p^2}\right) \\ \sigma_p &= 1 \text{ and } \mu_p = 0, \end{split}$$

$$= \int \frac{1}{\sqrt{2\pi\sigma_q^2}} \exp\left(-\frac{(x-\mu_q)^2}{2\sigma_q^2}\right) \times \left\{-\frac{1}{2}\log(2\pi) - \log(\sigma_p) - \frac{(x-\mu_p)^2}{2\sigma_p^2} + \frac{1}{2}\log(2\pi) + \log(\sigma_q) + \frac{(x-\mu_q)^2}{2\sigma_q^2}\right\} dz$$

VAE Loss function

$$-D_{KL}(q_{\theta}(z|x_{i})||p(z)) = \log(\sigma_{q}) - \frac{\sigma_{q}^{2} + \mu_{q}^{2}}{2} + \frac{1}{2}$$

$$= \frac{1}{2}\log(\sigma_{q}^{2}) - \frac{\sigma_{q}^{2} + \mu_{q}^{2}}{2} + \frac{1}{2}$$

$$= \frac{1}{2}\left[1 + \log(\sigma_{q}^{2}) - \sigma_{q}^{2} - \mu_{q}^{2}\right]$$

$$\mathcal{L} = -\sum_{j=1}^{J} \frac{1}{2} \left[1 + \log \left(\sigma_i^2 \right) - \sigma_i^2 - \mu_i^2 \right] - \frac{1}{L} \sum_{l} E_{\sim q_{\theta}(z|x_i)} \left[\log p(x_i|z^{(i,l)}) \right]$$

$$(\theta^*, \phi^*) = argmin_{(\theta, \phi)} \mathcal{L}(\theta, \phi)$$
Cross entropy

L: number of samples

J: dim of latent vector z

Ref: https://arxiv.org/pdf/1907.08956.pdf

$$\mathcal{L}\left(x,\hat{x}
ight) + eta \sum_{j} KL\left(q_{j}\left(z|x
ight)||N\left(0,1
ight)
ight)$$

- Focus only on reconstruction loss, and allows the decoder be able to reproduce the original handwritten digits.
- there are areas in latent space which don't represent any of our observed data

- Focus only on KL divergence loss, and describe every observation using the same Gaussian (e.g. same characteristics)
- failed to describe the original data

Deep Learning

- Generative Adversarial Network (GAN)
 - Loss function: to make real(D(x)) close to 1, and fake(D(G(z)) close to 0
 - Discriminator: binary classifier (1: real, 0: fake)
 - Two separated optimizers

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} [\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim P_{\text{noise}}} \left[\log \left(1 - D(G(\mathbf{z})) \right) \right]$$

$$\mathbf{y} = 1 \quad 2 \quad | \text{loss function}$$

$$\mathbf{y} = 0 \quad 2 \quad | \text{loss function}$$

GAN?

Generative Adversarial Network (GAN)

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} [\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim P_{\text{noise}}} \left[\log \left(1 - D(G(\mathbf{z})) \right) \right]$$

```
def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)

generator_optimizer = tf.keras.optimizers.Adam(1e-4)
```

[ref: https://www.tensorflow.org/tutorials/generative/dcgan?hl=ko]

discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

(Unconditional) GAN

Example of a Conditional Generator and a Conditional Discriminator in a Conditional Generative Adversarial Network.

Taken from Conditional Generative Adversarial Nets, 2014.

Conditional GAN (cGAN)

 $min_{G}max_{D}V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[logD(x|y)] + \mathbb{E}_{x \sim p_{z}(z)}[log(1 - D(G(z|y)))]$