eCommerce Analytics and Recommendations

Team Name - "FourYottabytes"

Members:-

Amogh Hassija (amoghhassija@iisc.ac.in) Ashwin Korwarkar (kashwin@iisc.ac.in) Henna Arora (hennaarora@iisc.ac.in) Sai Harish Pathuri (saipathuri@iisc.ac.in)

Project Objectives

Value to the customers

- Users get recommendations based on their past behaviour
- Recommendations may help show products that users would be interested in
- User need not browse a lot to find a better suited product

Value to the platform

- Platform suits the user's needs better
- Push more product off the shelf
- Entice the user to buy more, more frequently
- The business makes money!

Salient Features

- Promoting underdog products
- User-brand preference ranking
- Customer segmentation based on price-point
- Recommendations based on one or multiple of the above

Data Preparation - ETL Pipeline

Recommendation Pipeline

Exploratory Data Analysis

Personalized Product Recommendation

Use Case Definition: To provide product **recommendations** to the users **based on** their **average spendings or views** on the portal

Motivation: Having a **pipeline** to make **personalized recommendations**, with a minimum **threshold** on user's historical activity data.

Analytics:

- The engine tries to analyse user behaviour (given enough historical data)
- Top products are picked based on certain metrics of the user, taking threshold into account.
- This might make the **user buy more** out of what he/she sees
- The recommendations can be made from products in a particular category (like a Big Basket category page) or across all products (like your Amazon Homepage)

Input Data: Catalog and User Profile Information

Output Data: Recommendations

user_id ev	vent_type avg_event_price	stddev	/	lower_bound	+ upper_bound -	product_id	event_count	avg_price	category_code	brand rank
628167977 pi	urchase 393.06727201288396 urchase 393.06727201288396 urchase 393.06727201288396	5 180.67 5 180.67	7117508017432 3 7117508017432 3	302.7316844727968 302.7316844727968	483.4028595529711 483.4028595529711	1307555 5100689	1882 1195	331.94396912712415	electronics.audio.headphone	apple 3
product_id	t category_code	brand	+ avg_price	+ users					-	
				+						

Price Point Analysis

Use Case Definition: - Quantitative estimation of the user's purchasing power.

Motivation: Different users purchase products belonging to *different classes* (cheapest/budget/mid-range/top-line) based on their *capacity and preference*.

We regard *purchase history* as a strong *metric* of the user's *behavioural aspects*

Price Point Analysis

Category	UserIdX . O Big spends	Budget buys o · UserIdY
electronics-mobile	iPhone13 - Rs. 95,000	Redmi Note 11 - Rs. 18,000
electronics-tv	Sony Bravia TV - Rs. 1,30,000	LG LCD TV - Rs. 34,000
apparel-shoes	Nike Air Jordan 1 - Rs. 16,000	Bata Casuals - Rs. 1700

Recommendations using Price Point Analysis

query_PPA2(["568782581", "512480149"], "electronics.smartphone")

Query product recommendations for one or more users, from a particular category or in general.

```
User-568782581
Cold Start User
User-512480149
product_id|category_code
           |electronics.smartphone|
1003532
1003705
           |electronics.smartphone|
1004777
           |electronics.smartphone|
1004732
           |electronics.smartphone|
1003989
           |electronics.smartphone|
1004740
           electronics.smartphone
1004819
           electronics.smartphone
1003548
            electronics.smartphone
1003707
           |electronics.smartphone|
```

Market Basket Analysis

Use Case Definition: - A technique to uncover associations between products.

Motivation:- Improving on top of the basic analytics stores. Analysing to provide recommendations of the form "**Frequently bought together**" or "**Customers also bought**."

Market Basket Analysis fits our requirements well.

Associations made between products based on their -

- Purchases product purchases per user, product purchases per user session
- **Views** product views per user, product views per user session

Market Basket Analysis

A set of measures that show what **combinations of products** occur together in orders most frequently.

$$Support = \frac{frq(X,Y)}{N}$$

$$Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Measure of how frequent the itemSet appears in the dataset$$

$$Measure of how often Y is present, given X is already in the dataset$$

Analytics mentioned below prepared from the clean parquet dump

- Our own associative products confidence scores for two products
- Spark ML based FP-Growth data mining model to build rules and predict the product that can be added to a new/unseen product combination(s).

INPUT						
user_id	uniq_prod_history					
441522689	[1004838]					
461023190	[14100275]					
470193237	[1004428]					
512385518	[1004775]					
512386977 [8	700025, 1004657					
+	+					

Frequent Itemsets	OUTPUT		Association Rules			
items freq	+ 	a	ntecedent	cons	equent c	onfidence lift
[1004856] 19228 [1004767] 14410 [1005115] 8352 [1004833] 8340 [4804056] 7563	[10 [10 [10	04870, 04833, 04767, 04833,	1004856] 1004767] 1004856] 1004856]	[10 [10 [10	004767] 004856] 004833] 004767]	0.471 8.618 0.408 5.584 0.262 8.260 0.262 4.787 0.242 3.322

ML Model to predict product mix

Motivation: Moving past the analytical features such as price-point analysis, personalized recommendations and association rules to recommend products,

We wanted a *prediction model* on *unseen/new product combinations* to complete our product recommendations.

We used the *frequent pattern mining FP-Growth* algorithm supported in *PySpark* to build our model.

The hyperparameters of "minSupport" and "minConfidence" were manually tuned to find the best value for our dataset.

Personalized Placement Analysis

Use Case Definition:

- Product Rank Ranking position of any product in the organic eCommerce search results.
- Personalized Product Rank Incorporate user preference to get revised rank

Motivation:

- Enhance user experience by giving a personalized touch
- **Higher conversion rate** to drive enhanced sales

Analytics

- Generate **organic product rank** based on conversion rates
- Generate user preference based on adjustment factor (brand purchase count/total purchase count)
- Adjustment factor multiplier on organic product rank to get revised product rank

User Statistics							
User ID	Brand	BPC	TPC	AF			
Product Statistics							
Product	ID	Brand	Orga	nic Rank			

Adjustment Factor (AF)
Brand Purchase Count (BPC)
Total Purchase Count (TPC)
AF = BPC/TPC

Product	Organic Rank	Personalised Product Rank
Samsung S21	1	3
iPhone 14	2	1
Google Pixel 7	3	2

"Underdog" Product Recommendations

Use Case Definition:

Push "Underdog" products – Products with lesser views but high conversion rate

Motivation:

- Boost products which are relatively unexplored,
 but when viewed are more likely converted into a sale
- Product visibility drives business sales

Analytics

- Generate Product Conversion Rate (PCR) & Product View Count (PVC)
- Generate product's Category-average Conversion Rate (CCR) and Category-average View Count(CVC)
- Products with (PCR > x% of CCR) && (PVC < y% of CVC) are underdog products

```
Underdog Product Ids (UPiD)
Product Ids (PiD)

if (PCRi > x% of CCRi && PVCi < y% of CVCi)
UPiDs.append(PiD)
```

```
category code product id PVC
computers.periphe...
                                 26 | 115.385 | 11.896 | 113.138
                                 21 95.238 11.896 113.138
computers.periphe...
computers.periphe...
                                 41 73.171 11.896 113.138
computers.periphe...
                                 17 58.824 11.896 113.138
                                     90.909 | 11.896 | 113.138 |
computers.periphe...
                                 32 | 125.000 | 11.896 | 113.138 |
computers.periphe...
computers.periphe...
                        9200717
                                 46 43.478 11.896 113.138
computers.periphe...
                                 48 41.667 11.896 113.138
appliances.kitche...
                                     45.455 11.544 238.229
                       14500009
appliances.kitche...
                       14500070
```

Benchmarking

# Months	Ram (GB)	# Cores	Purchase Threshold	View Threshold	# Users	Time (min)
1	2	2	4	30	20	3
2	12	2	10	200	120	3
2	40	12	30	100	120	1
4	40	12	10	200	500	0.8
4	40	12	10	200	2050	2.5
6	40	12	10	200	4000	6.5

Running the recommendation pipeline for:-

- Different numbers of users
- Different threshold values
- Various system configurations.

Recommendation Benchmark

# Months	Ram (GB)	# Cores	Time (min)
1	8	2	13
2	8	2	28
3	8	2	42
4	8	4	66
4	40	12	8

ETL Benchmark

Running the ETL pipeline under various system configurations.

Summary

Exploratory Data Analysis

Identifying our scope

- Cleaning and Normalization
- Sales Trend Insights
- User behaviour patterns

Value Addition

Aimed at business and customer growth

- Personalized Product Recommendations
- Price-point analysis
- Market Basket Analysis
- Promoting "Underdogs"
- Rank personalizations

Keeping it scalable

The platform grows, and with it, our system

- Successful analysis on 55 GB of eCommerce data
- Promising performance results

More ideas enroute

Ever-growing analytics and possible options

- Explore advanced ML techniques
 - Matrix factorization
 - o TensorFlow Garden NeuMF
- Advanced analytics
 - Traffic analysis
 - Price effect on sales

Thank You

And best of luck!