Introduction

Welcome to this EDA project exercise

Data description

The dataset is a CSV. file scrapped from the Glassdoor website of every job offer for the Data scientist job.

It is composed of one .CSV file containing 672 rows and 14 columns:

e Description	Column name
e Job ti	Job Title
e Estimate salary by Glassdoor in K. US dolla	Salary Estimate
n Description of the job of	Job Description
g Rating of the compa	Rating
e Name of the compa	Company Name
n Language of the audiobo	Location
s Rating and number of ratings of the audiobo	Headquarters
e Size of the company in number of employe	Size
d Year where the company has been found	Founded
Type of ownership of the compa	Type of ownership
y Industry of the compa	Industry
Sector of the compa	Sector
e Revenue of the company in US dolla	Revenue
s Direct competitors if existi	Competitors

Steps to perform

The 'Salary Estimate' column can't be analyzed as it is. Therefore split the maximum and minimum salary.

Regarding the 'Headquarters' and 'Location' columns we want to have the city and state in a separate columns.

As in data set company dataset is having name and rating together seperate it using seperator

Replace 'Unknown / Non-Applicable' into 'N/A' for more readibility:

Plot graphs

Plot bar chart for Number of job offers per Seniority using columns no_of_job_offers and job_seniority.

Plot bar chart for Number of job offers per Seniority and Sector using columns no_of_job_offers and job_seniority, Sector.

Plot bar chart for Average estimate salary per Sector using column Average estimate salary, sector.

Plot Scatter plot for Correlation between the average salary and the company rating use columns Average estimate salary, Rating, Seniority.

Plot histplot Distribution of the average estimate salary per type of ownership using Avg_salary_estimate, Type of ownership

Plot boxplot for Distribution of the average salary in each company size using Size, Avg_salary_estimate,

Plot countplot for Number of job offers per Company size using Size, job

Provide ths Summary

On analysis

```
In [1]:
```

```
1 #Importing Libararies
2 import pandas as pd
3 import numpy as np
4 import datetime as dt
5 import seaborn as sns
6 import matplotlib.pyplot as plt
7 from matplotlib.pyplot import figure
```

In [2]:

```
#Importing the data
Dataset = pd.read_csv(r"C:\Users\sanme\Downloads\archive\Uncleaned_DS_jobs.csv" , index_col=False)
df = Dataset.copy()
df
```

Out[2]:

	index	Job Title	Salary Estimate	Job Description	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership	Industry
0	0	Sr Data Scientist	137 <i>K</i> – 171K (Glassdoor est.)	Description\n\nThe Senior Data Scientist is re	3.1	Healthfirst\n3.1	New York, NY	New York, NY	1001 to 5000 employees	1993	Nonprofit Organization	Insurance Carriers
1	1	Data Scientist	137 <i>K</i> – 171K (Glassdoor est.)	Secure our Nation, Ignite your Future\n\nJoin	4.2	ManTech\n4.2	Chantilly, VA	Herndon, VA	5001 to 10000 employees	1968	Company - Public	Research & Development
2	2	Data Scientist	137 <i>K</i> - 171K (Glassdoor est.)	Overview\n\n\nAnalysis Group is one of the lar	3.8	Analysis Group∖n3.8	Boston, MA	Boston, MA	1001 to 5000 employees	1981	Private Practice / Firm	Consulting
3	3	Data Scientist	137 <i>K</i> – 171K (Glassdoor est.)	JOB DESCRIPTION:\n\nDo you have a passion for 	3.5	INFICON\n3.5	Newton, MA	Bad Ragaz, Switzerland	501 to 1000 employees	2000	Company - Public	Electrical & Electronic Manufacturing
4	4	Data Scientist	137 <i>K</i> – 171K (Glassdoor est.)	Data Scientist\nAffinity Solutions / Marketing	2.9	Affinity Solutions\n2.9	New York, NY	New York, NY	51 to 200 employees	1998	Company - Private	Advertising & Marketing
		•••		•••				•••			***	
667	667	Data Scientist	105K- 167K (Glassdoor est.)	Summary\n\nWe're looking for a data scientist	3.6	TRANZACT\n3.6	Fort Lee, NJ	Fort Lee, NJ	1001 to 5000 employees	1989	Company - Private	Advertising & Marketing
668	668	Data Scientist	105K- 167K (Glassdoor est.)	Job Description\nBecome a thought leader withi	-1.0	JKGT	San Francisco, CA	-1	-1	-1	-1	-1
669	669	Data Scientist	105 <i>K</i> – 167K (Glassdoor est.)	Join a thriving company that is changing the w	-1.0	AccessHope	Irwindale, CA	-1	-1	-1	-1	-1
670	670	Data Scientist	105 <i>K</i> – 167K (Glassdoor est.)	100 Remote Opportunity As an AINLP Data Scient	5.0	ChaTeck Incorporated\n5.0	San Francisco, CA	Santa Clara, CA	1 to 50 employees	-1	Company - Private	Advertising & Marketing
671	671	Data Scientist	105K- 167K (Glassdoor est.)	Description\n\nThe Data Scientist will be part	2.7	1-800- Flowers\n2.7	New York, NY	Carle Place, NY	1001 to 5000 employees	1976	Company - Public	Wholesale
672 r	ows ×	15 columr	าร									

In [3]:

4

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 672 entries, 0 to 671
Data columns (total 15 columns):

Data	columns (total 15	columns):	
#	Column	Non-Null Count	Dtype
0	index	672 non-null	int64
1	Job Title	672 non-null	object
2	Salary Estimate	672 non-null	object
3	Job Description	672 non-null	object
4	Rating	672 non-null	float64
5	Company Name	672 non-null	object
6	Location	672 non-null	object
7	Headquarters	672 non-null	object
8	Size	672 non-null	object
9	Founded	672 non-null	int64
10	Type of ownership	672 non-null	object
11	Industry	672 non-null	object
12	Sector	672 non-null	object
13	Revenue	672 non-null	object
14	Competitors	672 non-null	object
dtype	es: float64(1), int	:64(2), object(12)
memor	ry usage: 78.9+ KB		

Data Preprocessing

dtype='object')

Selecting the columns that to keep in analysis:-

- 1) The 'index' column is a duplicate so it has to drop.
- 2) The 'Job Description' won't be accurate neither as each row contains a high amount of text therefore impossible to convert in numeric values.
- 3) The 'Competitors' column contains mainly '-1' values so we won't be able to analyze it.

Now we want to remove every rows containing the '-1' values in the 'Headquarters', 'Founded' and 'Industry' columns:-

Then we remove the duplicates

```
1 df_new.dropna(inplace=True)
2 df_new.drop_duplicates(inplace=True)
```

Steps to Perform

1) Salary Estimate

We can notice undesired characters at the end of each value combined with the rating of the company in the 'Company Name'.

Similarly, we don't need the information '(Glassdor est.)' in the 'Salary Estimate' column.

```
In [9]:
```

In [8]:

```
1  df_new['Company Name']=df_new['Company Name'].str.split('\n').str[0]
2  df_new['Salary Estimate']=df_new['Salary Estimate'].str.split('(').str[0]
```

In [10]:

1 df_new

Out[10]:

	Job Title	Salary Estimate	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership	Industry	Sector	Revenue
0	Sr Data Scientist	137 <i>K</i> - 171K	3.1	Healthfirst	New York, NY	New York, NY	1001 to 5000 employees	1993	Nonprofit Organization	Insurance Carriers	Insurance	Unknown / Non- Applicable
1	Data Scientist	137 <i>K</i> - 171K	4.2	ManTech	Chantilly, VA	Herndon, VA	5001 to 10000 employees	1968	Company - Public	Research & Development	Business Services	1to2 billion (USD)
2	Data Scientist	137 <i>K</i> - 171K	3.8	Analysis Group	Boston, MA	Boston, MA	1001 to 5000 employees	1981	Private Practice / Firm	Consulting	Business Services	100to500 million (USD)
3	Data Scientist	137 <i>K</i> - 171K	3.5	INFICON	Newton, MA	Bad Ragaz, Switzerland	501 to 1000 employees	2000	Company - Public	Electrical & Electronic Manufacturing	Manufacturing	100to500 million (USD)
4	Data Scientist	137 <i>K</i> - 171K	2.9	Affinity Solutions	New York, NY	New York, NY	51 to 200 employees	1998	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable
663	Data Scientist	105 <i>K</i> – 167K	4.1	A-Line Staffing Solutions	Durham, NC	Utica, MI	501 to 1000 employees	2004	Company - Private	Staffing & Outsourcing	Business Services	Unknown / Non- Applicable
665	Data Scientist	105 <i>K</i> – 167K	3.8	Criterion Systems, Inc.	Vienna, VA	Vienna, VA	201 to 500 employees	2005	Company - Private	IT Services	Information Technology	50to100 million (USD)
666	Data Scientist	105 <i>K</i> – 167K	4.0	Foundation Medicine	Boston, MA	Cambridge, MA	1001 to 5000 employees	2010	Company - Public	Biotech & Pharmaceuticals	Biotech & Pharmaceuticals	100to500 million (USD)
667	Data Scientist	105 <i>K</i> – 167K	3.6	TRANZACT	Fort Lee, NJ	Fort Lee, NJ	1001 to 5000 employees	1989	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable
671	Data Scientist	105 <i>K</i> – 167K	2.7	1-800- Flowers	New York, NY	Carle Place, NY	1001 to 5000 employees	1976	Company - Public	Wholesale	Business Services	1to2 billion (USD)

548 rows × 12 columns

The 'Salary Estimate' column can't be analyzed as it is.

Therefore we can split the maximum and minimum salary using the str.split method.

In [11]:

```
1 df_new2=df_new
```

2 df_new2[['Min_salary_estimate','Max_salary_estimate']] = df_new2['Salary_Estimate'].str.split('-',expand=True)

In [12]:

```
1 df_new2.drop(['Salary Estimate'],axis=1,inplace=True)
2 df_new2
```

Out[12]:

	Job Title	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership	Industry	Sector	Revenue	Min_salary_estima
0	Sr Data Scientist	3.1	Healthfirst	New York, NY	New York, NY	1001 to 5000 employees	1993	Nonprofit Organization	Insurance Carriers	Insurance	Unknown / Non- Applicable	\$13
1	Data Scientist	4.2	ManTech	Chantilly, VA	Herndon, VA	5001 to 10000 employees	1968	Company - Public	Research & Development	Business Services	1to2 billion (USD)	\$13
2	Data Scientist	3.8	Analysis Group	Boston, MA	Boston, MA	1001 to 5000 employees	1981	Private Practice / Firm	Consulting	Business Services	100to500 million (USD)	\$13
3	Data Scientist	3.5	INFICON	Newton, MA	Bad Ragaz, Switzerland	501 to 1000 employees	2000	Company - Public	Electrical & Electronic Manufacturing	Manufacturing	100to500 million (USD)	\$13
4	Data Scientist	2.9	Affinity Solutions	New York, NY	New York, NY	51 to 200 employees	1998	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable	\$13
663	Data Scientist	4.1	A-Line Staffing Solutions	Durham, NC	Utica, MI	501 to 1000 employees	2004	Company - Private	Staffing & Outsourcing	Business Services	Unknown / Non- Applicable	\$10
665	Data Scientist	3.8	Criterion Systems, Inc.	Vienna, VA	Vienna, VA	201 to 500 employees	2005	Company - Private	IT Services	Information Technology	50to100 million (USD)	\$10
666	Data Scientist	4.0	Foundation Medicine	Boston, MA	Cambridge, MA	1001 to 5000 employees	2010	Company - Public	Biotech & Pharmaceuticals	Biotech & Pharmaceuticals	100to500 million (USD)	\$10
667	Data Scientist	3.6	TRANZACT	Fort Lee, NJ	Fort Lee, NJ	1001 to 5000 employees	1989	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable	\$10
671	Data Scientist	2.7	1-800- Flowers	New York, NY	Carle Place, NY	1001 to 5000 employees	1976	Company - Public	Wholesale	Business Services	1to2 billion (USD)	\$10
5/Q r	ows × 13	column	6									
J40 I	UWS ^ 13	COIUITIII	3									
4)

Both columns still contain undesired string values. We can use the str.replace method to get rid of those:

In [13]:

```
df_new2['Min_salary_estimate'] = df_new2['Min_salary_estimate'].str.replace(r'\D',"")
df_new2['Max_salary_estimate'] = df_new2['Max_salary_estimate'].str.replace(r'\D',"")
```

C:\Users\sanme\AppData\Local\Temp\ipykernel_3532\476796256.py:1: FutureWarning: The default value of regex will change from True to False in a future version.

df_new2['Min_salary_estimate'] = df_new2['Min_salary_estimate'].str.replace(r'\D',"")
C:\Users\sanme\AppData\Local\Temp\ipykernel_3532\476796256.py:2: FutureWarning: The default value of regex will change from True to False in a future version.

 $\label{lem:df_new2['Max_salary_estimate'] = df_new2['Max_salary_estimate'].str.replace(r'\D',"")} \\$

And convert it to numeric values

In [14]:

```
df_new2['Min_salary_estimate']=df_new2['Min_salary_estimate'].astype(np.int64)
df_new2['Max_salary_estimate']=df_new2['Max_salary_estimate'].astype(np.int64)
```

In [15]:

```
df_new2['Min_salary_estimate'] = df_new2['Min_salary_estimate'].multiply(1000)
df_new2['Max_salary_estimate'] = df_new2['Max_salary_estimate'].multiply(1000)
df_new2
```

Out[15]:

	Job Title	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership	Industry	Sector	Revenue	Min_salary_estima
0	Sr Data Scientist	3.1	Healthfirst	New York, NY	New York, NY	1001 to 5000 employees	1993	Nonprofit Organization	Insurance Carriers	Insurance	Unknown / Non- Applicable	1370
1	Data Scientist	4.2	ManTech	Chantilly, VA	Herndon, VA	5001 to 10000 employees	1968	Company - Public	Research & Development	Business Services	1to2 billion (USD)	1370
2	Data Scientist	3.8	Analysis Group	Boston, MA	Boston, MA	1001 to 5000 employees	1981	Private Practice / Firm	Consulting	Business Services	100to500 million (USD)	1370
3	Data Scientist	3.5	INFICON	Newton, MA	Bad Ragaz, Switzerland	501 to 1000 employees	2000	Company - Public	Electrical & Electronic Manufacturing	Manufacturing	100to500 million (USD)	1370
4	Data Scientist	2.9	Affinity Solutions	New York, NY	New York, NY	51 to 200 employees	1998	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable	1370
663	Data Scientist	4.1	A-Line Staffing Solutions	Durham, NC	Utica, MI	501 to 1000 employees	2004	Company - Private	Staffing & Outsourcing	Business Services	Unknown / Non- Applicable	1050
665	Data Scientist	3.8	Criterion Systems, Inc.	Vienna, VA	Vienna, VA	201 to 500 employees	2005	Company - Private	IT Services	Information Technology	50to100 million (USD)	1050
666	Data Scientist	4.0	Foundation Medicine	Boston, MA	Cambridge, MA	1001 to 5000 employees	2010	Company - Public	Biotech & Pharmaceuticals	Biotech & Pharmaceuticals	100to500 million (USD)	1050
667	Data Scientist	3.6	TRANZACT	Fort Lee, NJ	Fort Lee, NJ	1001 to 5000 employees	1989	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable	1050
671	Data Scientist	2.7	1-800- Flowers	New York, NY	Carle Place, NY	1001 to 5000 employees	1976	Company - Public	Wholesale	Business Services	1to2 billion (USD)	1050
5/8	rows × 13	column	c									
J40 I	OWS ^ 13	COIUITIII	.									
4												+

2) Headquarters and Location

Regarding the 'Headquarters' and 'Location' columns we want to have the city and state in a separate location:

In [16]:

```
df_new2[['HQ_city','HQ_state']]=df_new2['Headquarters'].str.split(',',expand=True)
df_new2['Job_city'] = df_new2.Location.str.split(',', expand = True)[0]
df_new2['Job_state'] = df_new2.Location.str.split(',', expand = True)[1]
df_new2.drop(['Headquarters','Location'], axis=1, inplace=True)
df_new2
```

Out[16]:

	Job Title	Rating	Company Name	Size	Founded	Type of ownership	Industry	Sector	Revenue I	Min_salary_estimate	Max_salary_estimate
0	Sr Data Scientist	3.1	Healthfirst	1001 to 5000 employees	1993	Nonprofit Organization	Insurance Carriers	Insurance	Unknown / Non- Applicable	137000	171000
1	Data Scientist	4.2	ManTech	5001 to 10000 employees	1968	Company - Public	Research & Development	Business Services	1to2 billion (USD)	137000	171000
2	Data Scientist	3.8	Analysis Group	1001 to 5000 employees	1981	Private Practice / Firm	Consulting	Business Services	100to500 million (USD)	137000	171000
3	Data Scientist	3.5	INFICON	501 to 1000 employees	2000	Company - Public	Electrical & Electronic Manufacturing	Manufacturing	100to500 million (USD)	137000	171000
4	Data Scientist	2.9	Affinity Solutions	51 to 200 employees	1998	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable	137000	171000
663	Data Scientist	4.1	A-Line Staffing Solutions	501 to 1000 employees	2004	Company - Private	Staffing & Outsourcing	Business Services	Unknown / Non- Applicable	105000	167000
665	Data Scientist	3.8	Criterion Systems, Inc.	201 to 500 employees	2005	Company - Private	IT Services	Information Technology	50to100 million (USD)	105000	167000
666	Data Scientist	4.0	Foundation Medicine	1001 to 5000 employees	2010	Company - Public	Biotech & Pharmaceuticals	Biotech & Pharmaceuticals	100to500 million (USD)	105000	167000
667	Data Scientist	3.6	TRANZACT	1001 to 5000 employees	1989	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable	105000	167000
671	Data Scientist	2.7	1-800- Flowers	1001 to 5000 employees	1976	Company - Public	Wholesale	Business Services	1to2 billion (USD)	105000	167000
549 -	ows × 15	column									
	UWS * 15	COIUITIN	>								
4											•

3) Size

```
In [17]:
```

```
df_new2['Size']=df_new2['Size'].str.replace(' employees','')
df_new2['Size']=df_new2['Size'].str.replace(' to ','-')
df_new2
```

Out[17]:

	Job Title	Rating	Company Name	Size	Founded	Type of ownership	Industry	Sector	Revenue	Min_salary_estimate	Max_salary_estimate	ŀ
0	Sr Data Scientist	3.1	Healthfirst	1001- 5000	1993	Nonprofit Organization	Insurance Carriers	Insurance	Unknown / Non- Applicable	137000	171000	N
1	Data Scientist	4.2	ManTech	5001- 10000	1968	Company - Public	Research & Development	Business Services	1to2 billion (USD)	137000	171000	ŀ
2	Data Scientist	3.8	Analysis Group	1001- 5000	1981	Private Practice / Firm	Consulting	Business Services	100to500 million (USD)	137000	171000	
3	Data Scientist	3.5	INFICON	501- 1000	2000	Company - Public	Electrical & Electronic Manufacturing	Manufacturing	100to500 million (USD)	137000	171000	
4	Data Scientist	2.9	Affinity Solutions	51- 200	1998	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable	137000	171000	N
						***			***			
663	Data Scientist	4.1	A-Line Staffing Solutions	501- 1000	2004	Company - Private	Staffing & Outsourcing	Business Services	Unknown / Non- Applicable	105000	167000	
665	Data Scientist	3.8	Criterion Systems, Inc.	201- 500	2005	Company - Private	IT Services	Information Technology	50to100 million (USD)	105000	167000	
666	Data Scientist	4.0	Foundation Medicine	1001- 5000	2010	Company - Public	Biotech & Pharmaceuticals	Biotech & Pharmaceuticals	100to500 million (USD)	105000	167000	Caı
667	Data Scientist	3.6	TRANZACT	1001- 5000	1989	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable	105000	167000	F
671	Data Scientist	2.7	1-800- Flowers	1001- 5000	1976	Company - Public	Wholesale	Business Services	1to2 billion (USD)	105000	167000	
548 1	ows × 15	column	9									
J-10 I	0443 ^ IU	COIGITITI										•
7												

Founded

```
In [18]:
```

```
today=dt.date.today()
df_new2['Company_age']=today.year-df_new2['Founded']
df_new2
```

Out[18]:

	Job Title	Rating	Company Name	Size	Founded	Type of ownership	Industry	Sector	Revenue	Min_salary_estimate	Max_salary_estimate	ŀ
0	Sr Data Scientist	3.1	Healthfirst	1001- 5000	1993	Nonprofit Organization	Insurance Carriers	Insurance	Unknown / Non- Applicable	137000	171000	N
1	Data Scientist	4.2	ManTech	5001- 10000	1968	Company - Public	Research & Development	Business Services	1to2 billion (USD)	137000	171000	ŀ
2	Data Scientist	3.8	Analysis Group	1001- 5000	1981	Private Practice / Firm	Consulting	Business Services	100to500 million (USD)	137000	171000	
3	Data Scientist	3.5	INFICON	501- 1000	2000	Company - Public	Electrical & Electronic Manufacturing	Manufacturing	100to500 million (USD)	137000	171000	
4	Data Scientist	2.9	Affinity Solutions	51- 200	1998	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable	137000	171000	N
663	Data Scientist	4.1	A-Line Staffing Solutions	501- 1000	2004	Company - Private	Staffing & Outsourcing	Business Services	Unknown / Non- Applicable	105000	167000	
665	Data Scientist	3.8	Criterion Systems, Inc.	201- 500	2005	Company - Private	IT Services	Information Technology	50to100 million (USD)	105000	167000	
666	Data Scientist	4.0	Foundation Medicine	1001- 5000	2010	Company - Public	Biotech & Pharmaceuticals	Biotech & Pharmaceuticals	100to500 million (USD)	105000	167000	Caı
667	Data Scientist	3.6	TRANZACT	1001- 5000	1989	Company - Private	Advertising & Marketing	Business Services	Unknown / Non- Applicable	105000	167000	F
671	Data Scientist	2.7	1-800- Flowers	1001- 5000	1976	Company - Public	Wholesale	Business Services	1to2 billion (USD)	105000	167000	
548 1	rows × 16	column	s									>

Revenue

The value 'Unknown / Non-Applicable' can be converted into 'N/A' for more readibility:

In [19]:

```
1 df_new2['Revenue'].value_counts()
```

Out[19]:

```
Unknown / Non-Applicable
                                               169
$100 to $500 million (USD)
                                                91
$10+ billion (USD)
                                                 61
$10 to $25 million (USD)
                                                40
$1 to $2 billion (USD)
                                                 36
$25 to $50 million (USD)
                                                 35
$2 to $5 billion (USD)
                                                 33
$2 to $3 billion (USD)
$50 to $100 million (USD)
$500 million to $1 billion (USD)
$1 to $5 million (USD)
                                                 30
                                                 19
                                                 18
$5 to $10 billion (USD)
$5 to $10 million (USD)
                                                  7
Less than $1 million (USD)
Name: Revenue, dtype: int64
```

In [20]:

```
df_new2['Revenue'] = df_new2['Revenue'].str.replace('Unknown / Non-Applicable',"N/A")
df_new2['Revenue'] = df_new2['Revenue'].str.replace('USD','')
df_new2['Revenue'] = df_new2['Revenue'].str.replace('[()]','')
df_new2['Revenue'] = df_new2['Revenue'].str.replace('to','-')
df_new2
```

C:\Users\sanme\AppData\Local\Temp\ipykernel_3532\2720762483.py:3: FutureWarning: The default value of regex will change fro
m True to False in a future version.
 df_new2['Revenue'] = df_new2['Revenue'].str.replace('[()]','')

Out[20]:

	Job Title	Rating	Company Name	Size	Founded	Type of ownership	Industry	Sector	Revenue	Min_salary_estimate	Max_salary_estimate	н
0	Sr Data Scientist	3.1	Healthfirst	1001- 5000	1993	Nonprofit Organization	Insurance Carriers	Insurance	N/A	137000	171000	Ne
1	Data Scientist	4.2	ManTech	5001- 10000	1968	Company - Public	Research & Development	Business Services	1-2 billion	137000	171000	Н
2	Data Scientist	3.8	Analysis Group	1001- 5000	1981	Private Practice / Firm	Consulting	Business Services	100- 500 million	137000	171000	
3	Data Scientist	3.5	INFICON	501- 1000	2000	Company - Public	Electrical & Electronic Manufacturing	Manufacturing	100- 500 million	137000	171000	
4	Data Scientist	2.9	Affinity Solutions	51- 200	1998	Company - Private	Advertising & Marketing	Business Services	N/A	137000	171000	Ne
663	Data Scientist	4.1	A-Line Staffing Solutions	501- 1000	2004	Company - Private	Staffing & Outsourcing	Business Services	N/A	105000	167000	
665	Data Scientist	3.8	Criterion Systems, Inc.	201- 500	2005	Company - Private	IT Services	Information Technology	50-100 million	105000	167000	,
666	Data Scientist	4.0	Foundation Medicine	1001- 5000	2010	Company - Public	Biotech & Pharmaceuticals	Biotech & Pharmaceuticals	100- 500 million	105000	167000	Can
667	Data Scientist	3.6	TRANZACT	1001- 5000	1989	Company - Private	Advertising & Marketing	Business Services	N/A	105000	167000	F
671	Data Scientist	2.7	1-800- Flowers	1001- 5000	1976	Company - Public	Wholesale	Business Services	1-2 billion	105000	167000	
548 r	ows × 16	column	S									
4												•
`												

Now let's create a new column named 'Avg_salary_estimate' to get the average salary estimated:

In [21]:

```
df_new2['Avg_salary_estimate']=df_new2[['Min_salary_estimate','Max_salary_estimate']].mean(axis=1)
df_new2['Avg_salary_estimate']=df_new2['Avg_salary_estimate'].astype('int')
```

Now we notice the information 'Senior' in certain rows on the 'Job Title' column.

We can therefore create a new column 'Seniority' to identify which job offer requires to be Senior or Junior:

In [22]:

```
df_new2['Seniority'] = df_new2['Job Title'].str.contains('Senior',case=False)
df_new2['Seniority'] = df_new2['Seniority'].astype(str)
df_new2['Seniority'] = df_new2['Seniority'].str.replace('False','Junior')
df_new2['Seniority'] = df_new2['Seniority'].str.replace('True','Senior')
```

In [23]:

```
1 df_new2['Seniority'].value_counts()
```

Out[23]:

Junior 497 Senior 51

Name: Seniority, dtype: int64

- df_finaldata=df_new2
 df_finaldata
- Out[24]:

0 Sr Data Scientist 3.1 Healthfirst 1001-5000 1993 Organization Nonprofit Organization Insurance Carriers Insurance N/A 137000 1 Data Scientist 4.2 ManTech 5001-10000 1968 Public Company - Public Research & Development Business Services billion 1-2 billion 2 Data Scientist 3.8 Group Analysis Group 1001-5000 1981 Private Practice / Firm Consulting Services Business Services 100-500 million 3 Data Scientist 3.5 INFICON 501-1000 Public 2000 Public Public Electrical & Electronic Manufacturing Manufacturing Manufacturing 100-500 million 137000 million		Ne H
Scientist 4.2 Main Tech 10000 1900 Public Development Services billion 137000	171000	Н
2 Scientist 3.8 Group 5000 1981 Practice / Firm Services 500 million 137000 3 Scientist 3.5 INFICON 501- 2000 Public Electronic Manufacturing 500 137000		
3 Signation 3.5 INFICON 501- Company - Electronic Manufacturing 500 137000	171000	
4 Data 2.9 Affinity 51- 1998 Company - Advertising & Business N/A 137000 Scientist 2.9 Solutions 200 Private Marketing Services	171000 N	Ne
		
Data A-Line 501- Company - Staffing & Business N/A 105000 Scientist Solutions 1000 Private Outsourcing Services	167000	
Data Criterion 201- Company - IT Services Information 50-100 105000 Figure 105000 Technology million	167000	,
Company - Biotech & Biotech & Biotech & Biotech & Biotech & Biotech & 500 105000 million	167000 Ca	Carr
667 Data 3.6 TRANZACT 1001- 1989 Company - Advertising & Business N/A 105000 Private Marketing Services	167000	F
671 Data 2.7 1-800- 1001- 1976 Company - Wholesale Business 1-2 105000 Services billion	167000	
548 rows × 18 columns		
4	•	

Plotting Graphs

1) Number of job offers per Seniority

```
In [25]:
```

```
plt.figure(figsize=(12, 8), dpi=80)
sns.countplot(x='Seniority', data=df_finaldata)
plt.xlabel("Job seniority", fontsize=12)
plt.ylabel("Number of job offers", fontsize=12)
plt.title("Number of job offers per Seniority", fontsize=15)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.show()
```


2) Number of job offers per Seniority and Sector

In [26]:

```
figure(figsize=(12, 8), dpi=80)
sns.countplot(data=df_finaldata, x=df_finaldata['Sector'],hue=df_finaldata['Seniority'], order=df_finaldata['Sector'].value_counts().

plt.xticks(rotation=45,ha='right', va='top', fontsize=11)
plt.yticks(fontsize=11)
plt.xlabel("Sector",fontsize=12)
plt.ylabel("Number of job offers",fontsize=12)
plt.title("Number of job offers per Seniority and Sector",fontsize=15)
plt.show()
```


3) Average estimate salary per Sector

```
In [27]:
```

```
plt.figure(figsize=(12, 8), dpi=80)
sns.barplot(x='Sector', y='Avg_salary_estimate', data=df_finaldata, order=df_finaldata.groupby(["Sector"])['Avg_salary_estimate'].mea
plt.xlabel("Sector", fontsize=12)
plt.ylabel("Average estimate salary", fontsize=12)
plt.title("Average estimate salary per Sector", fontsize=15)
plt.xticks(rotation=30, ha='right', va='top', fontsize=11)
plt.yticks(fontsize=11)
plt.show()
```


4) Correlation between the average salary and the company rating

In [28]:

```
figure(figsize=(12, 8), dpi=80)
sns.scatterplot(data=df_finaldata, x='Avg_salary_estimate', y='Rating', hue='Seniority')
plt.xlabel("Average estimate salary", fontsize=12)
plt.ylabel("Rating", fontsize=12)
plt.title("Correlation between the average salary and the company rating", fontsize=15)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.legend(title='Seniority', fontsize=11)
plt.show()
```


5) Distribution of the average estimate salary per type of ownership

In [29]:

```
figure(figsize=(12, 8), dpi=80)
sns.histplot(df_finaldata,x=df_finaldata['Avg_salary_estimate'], bins=15, hue=df_finaldata['Type of ownership'])
plt.xlabel("Average estimate salary",fontsize=12)
plt.ylabel("Number of job offers",fontsize=12)
plt.title("Distribution of the average estimate salary per type of ownership",fontsize=15)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.show()
```


6) Distribution of the average salary in each company size

```
In [30]:
```

```
figure(figsize=(12, 8), dpi=80)
sns.boxplot(x=df_finaldata['Size'], y=df_finaldata['Avg_salary_estimate'])
plt.xlabel("Company size", fontsize=12)
plt.ylabel("Average estimate salary", fontsize=12)
plt.title("Distribution of the average salary in each company size", fontsize=15)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.show()
```


7) Number of job offers per Company size

In [31]:

```
plt.figure(figsize=(12, 8), dpi=80)
sns.countplot(x=df_finaldata['Size'])
plt.xlabel("Company size", fontsize=12)
plt.ylabel("Number of job offers", fontsize=12)
plt.title("Number of job offers per Company size", fontsize=15)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.show()
```


Report on Analysis

After performing the analysis and plotting the graphs, we have gained insights into the data and divided into two parts:

A) Jobs Offered:-

- The first two bar charts provided information on the number of job offers per seniority and sector.
- Hence, going through it we can see there are much more junior job offers than senior job offers, hence quite encouraging for youngest Data Scientists who are
 looking to get a job for the same.
- While in 2nd plot we can see that the more no. of jobs which recrute Data Scientist are in IT sector which is as expected.
- Finally the Senior Data Scientist those who are searching for jobs they can basically focus on these sectors: Information Technology, Biotech & Pharmaceuticals and Business Services as there are more opportunities.

B) Salary:-

- The next graphs which can be analysis are Average estimate Salary per sector, correlation between the average salary and company rating based on different job seniorities and distribution of the average estimate salary per type of ownership.
- Firstly we see that the Retail sector is the sector that offers the highest average entry level salary while, the Non-profit sector is the one with the lowest average salary.
- Sometimes the job seekers thought that if the Company rating is high then the avg salary for the post will also be great. So we need to analyse that if there is any corelation between the company's ratinng and the avg salary offered. Hence by seeing the scatter plot we can summarize that there is no corelation.
- Finally we can see that most of the job offers are rewarded with an average estimate salary between 90,000 and 1,15,000 US dollars, with a minimum at 50,000 US dollars and 2,60,000 US dollars.
- The boxplot depicted the distribution of average salaries in each company size.
- Lastly, the countplot displayed the number of job offers per company size based on different seniority levels.

These visualizations give a comprehensive understanding of the data and can help in making data-driven decisions related to Job Offers, Salaries, and Company Preferences in the Data Science job market.

In [35]:

1 df_finaldata.to_csv('Cleaned_DS_Jobs_Glassdoor.csv', index=False)