Distilling BERT

By Tu4n @AIST

 DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter by huggingface, 2019

- Distilling Task-Specific Knowledge from BERT into Simple Neural Networks by Tang et al., 2019
- TinyBERT: Distilling BERT for Natural Language Understanding by Jiao et al., 2019

CYHW

Distilling the Knowledge in a Neural Network

Geoff Hinton et al., 2015

DARK KNOWLEDGE DAKK KNOMLEDGE

Knowledge Distillation

- "Many insects have a larval form that is optimized for extracting energy and nutrients from the environment and a completely different adult form that is optimized for the very different requirements of traveling and reproduction"
- "Knowledge distillation (sometimes also referred to as teacher-student learning) is a compression technique in which a small model is trained to reproduce the behavior of a larger model (or an ensemble of models)."
- "An image of a BMW, for example, may only have a very small chance of being mistaken for a garbage truck, but that mistake is still many times more probable than mistaking it for a carrot → Dark knowledge"

Teacher - student Framework

Teacher - student Framework

Teacher & student

Different architecture

Same architecture but smaller

Teacher & student

System	Layers	Hidden Size	Feed-forward Size	Model Size	Inference Time
BERT BASE (Teacher)	12	768	3072	109M(× 1.0)	188s(× 1.0)
Distilled BiLSTM SOFT	1	300	400	10.1M(× 10.8)	24.8s(× 7.6)
BERT-PKD/DistilBERT	6	768	3072	52.2M(× 2.1)	63.7s(× 3.0)
TinyBERT	4	312	1200	14.5M(× 7.5)	19.9s(× 9.4)

Loss

Baseline: Train a student network to mimic **the full output distribution** of the teacher network (its knowledge)

Cross-entropy loss:

$$L = -\sum_{i} t_{i} * log(s_{i})$$

With t the logits from the teacher and s the logits of the student

Softmax-temperature:

$$p_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

T is the temperature parameter.

Loss

Kullback-Leibler loss

$$KL(p||q) = \mathbb{E}_p(log(\frac{p}{q}))$$
$$= \sum_i p_i * log(p_i) - \sum_i p_i * log(q_i)$$

```
import torch
     import torch.nn as nn
     import torch.nn.functional as F
     from torch.optim import Optimizer
 5
     KD_loss = nn.KLDivLoss(reduction='batchmean')
    def kd_step(teacher: nn.Module,
 9
                 student: nn.Module.
10
                 temperature: float,
                 inputs: torch.tensor,
11
12
                 optimizer: Optimizer):
         teacher.eval()
13
14
         student.train()
15
16
        with torch.no grad():
             logits t = teacher(inputs=inputs)
18
         logits_s = student(inputs=inputs)
19
20
         loss = KD_loss(input=F.log_softmax(logits_s/temperature, dim=-1),
21
                        target=F.softmax(logits t/temperature, dim=-1))
22
         loss.backward()
23
24
         optimizer.step()
25
         optimizer.zero_grad()
```

Loss

$$\mathcal{L}_{ ext{attn}} = rac{1}{h} \sum_{i=1}^h ext{MSE}(oldsymbol{A}_i^S, oldsymbol{A}_i^T),$$

$$\mathcal{L}_{\mathrm{embd}} = \mathtt{MSE}(oldsymbol{E}^S oldsymbol{W}_e, oldsymbol{E}^T),$$

$$\mathcal{L}_{\text{hidn}} = \text{MSE}(\boldsymbol{H}^{S}\boldsymbol{W}_{h}, \boldsymbol{H}^{T}),$$

Data Augmentation

- Masking: randomly replace a word with [MASK], which corresponds to the masked word (unknown) token in BERT.
- POS-guided word replacement: randomly replace a word with another of the same POS tag.
- n-gram sampling: randomly sample an n-gram from the example,
 where n is randomly selected from {1, 2, ..., 5}.

GLUE

System	MNLI-r	m MNLI-mm	QQP	SST-2	QNLI	MRPC	RTE	CoLA	STS-B	Avrg.
BERT BASE (Google)	84.6	83.4	71.2	93.5	90.5	88.9	66.4	52.1	85.8	79.6
BERT BASE (Teacher)	83.9	83.4	71.1	93.4	90.9	87.5	67.0	52.8	85.2	79.5
BERT SMALL	75.4	74.9	66.5	87.6	84.8	83.2	62.6	19.5	77.1	70.2
Distilled BiLSTM _{SOFT}	73.0	72.6	68.2	90.7	-	-	-	-	0-	-
BERT-PKD	79.9	79.3	70.2	89.4	85.1	82.6	62.3	24.8	79.8	72.6
DistilBERT	78.9	78.0	68.5	91.4	85.2	82.4	54.1	32.8	76.1	71.9
TinyBERT	82.5	81.8	71.3	92.6	87.7	86.4	62.9	43.3	79.9	76.5

Table 4: Results of wider or deeper TinyBERT variants and baselines.

System	MNLI-m	MNLI-mm	MRPC	CoLA	Average
BERT _{BASE} (Teacher)	84.2	84.4	86.8	57.4	78.2
BERT-PKD (M =6; d' =768; d'_i =3072)	80.9	80.9	83.1	43.1	72.0
DistilBERT ($M=6;d'=768;d'_i=3072$)	81.6	81.1	82.4	42.5	71.9
TinyBERT ($M=4;d'=312;d'_i=1200$)	82.8	82.9	85.8	49.7	75.3
TinyBERT ($M=4;d'=768;d'_i=3072$)	83.8	84.1	85.8	50.5	76.1
TinyBERT $(M=6;d'=312;d'_i=1200)$	83.3	84.0	86.3	50.6	76.1
TinyBERT ($M=6;d'=768;d'_i=3072$)	84.5	84.5	86.3	54.0	77.3

Table 5: Ablation studies of different procedures (i.e., TD, GD, and DA) of the two-stage learning framework. The variants are validated on the dev set.

System	MNLI-m	MNLI-mm	MRPC	CoLA	Average
TinyBERT	82.8	82.9	85.8	49.7	75.3
No GD	82.5	82.6	84.1	40.8	72.5
No TD	80.6	81.2	83.8	28.5	68.5
No DA	80.5	81.0	82.4	29.8	68.4

Table 6: Ablation studies of different distillation objectives in the TinyBERT learning. The variants are validated on the dev set.

System	MNLI-m	MNLI-mm	MRPC	CoLA	Average
TinyBERT	82.8	82.9	85.8	49.7	75.3
No Embd	82.3	82.3	85.0	46.7	74.1
No Pred	80.5	81.0	84.3	48.2	73.5
No Trm	71.7	72.3	70.1	11.2	56.3
No Attn	79.9	80.7	82.3	41.1	71.0
No Hidn	81.7	82.1	84.1	43.7	72.9

Table 7: Results (dev) of different mapping strategies.

System	MNLI-m	MNLI-mm	MRPC	CoLA	Average
TinyBERT (Uniform-strategy)	82.8	82.9	85.8	49.7	75.3
TinyBERT (Top-strategy)	81.7	82.3	83.6	35.9	70.9
TinyBERT (Bottom-strategy)	80.6	81.3	84.6	38.5	71.3

	No.params	Inference Speed
BERT Base	100	100
Distilled BiLSTM	1	1500
DistilBERT	60	160
Tiny BERT	13	940

Thank you!