

Segurança em Sistemas Operacionais e Redes de Computadores II

Análise do conteúdo do tráfego – Sniffer

Sniffing e sniffers

•Objetivo:

Capturar tráfego de rede local para análise;

•A quem se destina:

É útil tanto para atacantes como para administradores de rede.

Sniffing e sniffers

- O atacante pode ler dados que passam por uma determinada máquina em tempo real ou guardar esses dados para futuro acesso;
- O administrador usa para detectar e resolver problemas.

Tipos de dados capturados

- Qualquer coisa que é enviada pela rede e que não esteja encriptada:
 - nomes de usuários e senhas para sessões de telnet;
 - consultas e respostas a servidores de nomes (DNS);
 - mensagens de correio eletrônico;
 - senhas de FTP;
 - arquivos acessados através de NFS ou compartilhamentos do Windows;
 - etc...

Modo promíscuo

- É o modo no qual a interface de rede captura todo o tráfego independentemente do endereço MAC de destino e pode ser utilizado em capturas de sniffing;
- Quando a interface de rede captura apenas o tráfego destinado a ela está no modo normal não-promíscuo.

Acesso

- Para utilizar um sniffer é preciso ter uma conta de acesso à máquina onde está ou pode ser instalado o *sniffer*. Assim, empregados, fornecedores ou contratados podem se tornar atacantes se eles tem acesso a essas máquinas;
- Outras formas de acesso é através de exploração de vulnerabilidades através de ataques a aplicações e ao sistema operacional como por exemplo o ataque de "buffer overflow".

Acesso

 Na maioria dos sistemas operacionais (incluindo o Windows e Linux), devido a limitações de acesso à leitura de pacotes diretamente de dispositivos de rede, o atacante necessita ter acesso de administrador.

Sniffing através de hubs: sniffing passivo

- Em redes ligadas por hubs todas as interfaces recebem os dados destinados a todas elas "pegando" apenas os dados que lhes correspondem (todas as interfaces pertencem ao mesmo domínio de colisão);
- Se o atacante tiver uma interface nesse tipo de rede basta esperar passivamente pelos dados;
- Ferramentas: Snort (que evoluiu para um IDS), Sniffit e Wireshark

Sniffing ativo: sniffing através de switches

- Nos switches cada porta é um domínio de colisão separado ou seja o tráfego é enviado apenas para o destinatário (porta cuja interface tem o endereço de MAC de destino);
- Para superar essa dificuldade são utilizadas ferramentas que ativamente injetam tráfego na LAN;
- Ferramentas: Dsniff e Ettercap.

Wireshark (evoluiu do Ethereal)

- A ferramenta de análise e rastreamento de pacotes mais popular;
- Software livre (GNU GPL);
- Muitas opções.

Wireshark

Escolha da interface e inicio da captura

Wireshark

•É possível guardar e abrir arquivos de capturas em uma grande variedade de formatos.

Wireshark

Encontrar pacotes

Wireshark

Marcar e desmarcar pacotes
Edit → Mark/Unmark Packet

No.	Time	Source
	33 24.94	40110 200.221.2.70
	34 24.94	40190 200.147.67.189
		18470 200.221.2.70
	36 26.46	18590 200.147.67.189
	37 27.47	86290 200.147.67.189
	38 27.47	88590 200.221.2.70
	39 34.01	93020 200.147.67.189
	40 34.01	94270 200.221.2.70
	41 47.80	8755010.0.2.15

NO.	Time	Jource	pes
	33 24.9	440110 200.221.2.70	10
	34 24.9	440190 200.147.67.189	10
	35 26.4	618470 200.221.2.70	10
	36 26.4	618590 200.147.67.189	10
	37 27.4	786290 200.147.67.189	10
	38 27.4	788590 200.221.2.70	10
	39 34.0	193020 200.147.67.189	10
4	40 34.0	194270 200.221.2.70	10
4	41 47.8	08755010.0.2.15	18
	43 53 4	022220 0-4	JD 0-

Wireshark

Estabelecer referência de tempo
Edit → Set/Unset Time Reference

NO.	jime įsource	Des	9
	33 24.9440110 200.221.	2.70 10)
	34 24.9440190 200.147.	67.189 10)
	35 26.4618470 200.221.	2.70 10)
	36 26.4618590 200.147.	67.189 10)
	37 27.4786290 200.147.	67.189 10)
	38 27.4788590 200.221.	2.70 10)
	39 34.0193020 200.147.	67.189 10)
	40 34.0194270 200.221.	2.70 10)
	41 47.8087550 10.0.2.1	5 18	3
	40 50 4000000 6-4		

No.	Time	Source	Dest
	32 24.944	0030 200.221.2.70	10.
	33 24.944	0110 200.221.2.70	10.
	34 24.944	0190 200.147.67.189	10.
	35 26.461	8470 200.221.2.70	10.
	36 *REF*	200.147.67.189	10.
	37 1.0167	7000 200.147.67.189	10.
	38 1.0170	0000 200.221.2.70	10.
	39 7.5574	4300 200.147.67.189	10.
	40 7.5575	6800 200.221.2.70	10.
	41 21.346	896010.0.2.15	189

Wireshark

Estabelecer filtros de captura ou usar os preestabelecidos
Capture → Capture Filters...

Wireshark

 Estabelecer filtros de apresentação ou usar os preestabelecidos

Analyze → Display Filters...

Fontes:

- wireshark.org;
- SKODIS E., LISTON T. Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer Attacks and Effective Defenses