Orthogonal Range Searching in 2D using Ball Inheritance

Mads Ravn

Computer Science, Aarhus University

2015

- Giv en præsentation af den i specialet introducerede simplificerede datastruktur til range searching i 2d. (3)
- Beskriv ball-inheritance problemet og forklar sammenhængen til range searching. (2)
- Beskriv også det klassiske kd-træ (1)
- og fortæl om hvilke eksperimenter du har foretaget for at sammenligne performance af de to strukturer. Forklar hvad du så og om det var som forventet. (4)

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - kd-tree
- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater
 - Resultater

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - kd-tree
 - Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater
 - Resultater

Orthogonal Range Searching i 2D

Punkt i 2D søgerum er objekt. En rektangulær søgeboks er defineret ved Opdeling af akser.

Preliminaries

Orthogonal range searching

- Svar effektivt på forespørgslen $q = [x_1, x_2] \times [y_1, y_2]$.
- $p \in [x_1, x_2] \times [y_1, y_2] \Leftrightarrow p_x \in [x_1, x_2] \land p_y \in [y_1, y_2]$

Preliminaries

- n punkter fra \mathbb{R}^2 . Alle koordinater er unikke
- Rank space. Sorteret array. Vi finder \hat{y}_1 og \hat{y}_2 og så ved vi hvor mange elementer der er imellem dem.
- n er en potens af 2
- static og output-sensitive

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - kd-tree
- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- 3 Resultater
 - Resultater

kd-træ

Jon L. Bentley. 1975.

- $\mathcal{O}(n)$ plads
- $\mathcal{O}(\sqrt{n}+k)$ tid

Konstruktion: Givet n punkter, x eller y på skift. Et punkt per blad i træet.

Opbygning af kd-træ

Det $\lceil \frac{n}{2} \rceil$ 'te element bliver valgt som median. Skille-linje. Knudens område er punkter i undertræ.

Søgning i kd-træ

1 tager $\mathcal{O}(k)$ tid, 3 tager $\mathcal{O}(1)$ tid. Bound på 2.

Søgning i kd-træ

$$\mathcal{O}(\sqrt{n})$$
 regioner. $\mathcal{O}(\sqrt{n}+k)$ tid.

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - kd-tree
- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- 3 Resultater
 - Resultater

• Vi er givet et perfekt binært træ.

- Vi er givet et perfekt binært træ.
- Roden indeholder *n* punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Boldene i roden er sorteret.

- Vi er givet et perfekt binært træ.
- Roden indeholder *n* punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Boldene i roden er sorteret.
- Hver knude har en liste over hvilke bolde der går igennem knuden. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Boldene i roden er sorteret.
- Hver knude har en liste over hvilke bolde der går igennem knuden. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.
- Løs: Givet en knude og et index i knudens liste, hvilket blad ender denne bold ved?

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Boldene i roden er sorteret.
- Hver knude har en liste over hvilke bolde der går igennem knuden. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.
- Løs: Givet en knude og et index i knudens liste, hvilket blad ender denne bold ved?
- Vi ønsker at følge en bold ned til bladet for at "dekode" punktets koordinater.

Rank-select

Givet en bitvektor, så er rank-select query en constant-time query der finder boldens nye position i barnets bitvektor.

Man kan nu komme ned med $\mathcal{O}(\lg n)$ tid. $\mathcal{O}(1 \cdot \lg n)$. Fylder $\mathcal{O}(n)$ bits per level.

$$\begin{bmatrix} 0 & 1 & 1 & 2 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 4 & 0 & 3 \end{bmatrix}$ $\begin{bmatrix} 0 & 5 & 1 & 6 \end{bmatrix}$ $\begin{bmatrix} 1 & 8 & 0 & 7 \end{bmatrix}$

Faster Queries

Færre skridt fra knude til blad. Knuder på niveau deleligt med B^i hopper B^i niveauer over. Det er $\mathcal{O}(B^i)$ bits per bold per B^i te level. $B = \Omega(\lg^{\epsilon} n)$.

Det bruger

- $\mathcal{O}(\frac{n}{\epsilon}) = \mathcal{O}(n)$ plads
- $\mathcal{O}(\lg^{\epsilon} n)$ tid

hvor $\epsilon>0$ er en arbitrær lille konstant. Space-time tradeoff.

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - kd-tree
- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater
 - Resultater

BISintro

Ball Inheritance Search (BIS) er en datastruktur som er en simplificering af den datastruktur der findes i **Orthogonal Range Searching on the RAM, Revisited**[1] af Chan et al. $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$ imod $\mathcal{O}(\lg \lg n + (1+k) \cdot \lg^{\epsilon} n)$.

- $\mathcal{O}(n + \frac{n}{\epsilon})$ plads.
- $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$ tid, hvor $\epsilon > 0$ er en arbitrær lille konstant

da vi har valgt $B = \Omega(\lg^{\epsilon} n) = \lceil \frac{1}{2} \lg^{\frac{1}{3}} n \rceil$.

Specifikt til BIS, så er punkterne **fordelt** efter x og **sorteret** efter y. Det betyder

- Undertræer i knuder i mellem \hat{x}_1 og \hat{x}_2 kun indeholder punkter i $[x_1, x_2]$.
- Bolde mellem \hat{y}_1 og \hat{y}_2 kun indeholder punkter i $[y_1, y_2]$. Ligesom fractional cascasding.

I denne datastruktur bruger vi ball-inheritance til

- Følge en bold ned når vi ved den ligger i vores søge-område.
 Dvs dekode fra bold-til-blad(punkt).
- Fra roden, opdatere et interval af hvilke bolder der ligger i $[y_1, y_2]$.

Nu har vi markeret de bolde der ligger i $[y_1, y_2]$ på de knuder hvis undertræ kun indeholder punkter i $[x_1, x_2]$. Og det er netop de punkter der ligger i $[x_1, x_2] \times [y_1, y_2]$.

- Rank space opslag ved roden.
- Vedligehold $[\hat{y}_1, \hat{y}_2]$ ned til LCA.
- Find fully contained knuder og deres $[\hat{y}_1, \hat{y}_2]$ interval.
- Ball Inheritance fra knuder.
- $p \in [x_1, x_2] \times [y_1, y_2] \Leftrightarrow ...$

Vi har nu nogle knuder og lister over indeces i disse knuder. Det er præcis det problem ball inheritance løser. Vi kan nu bruge ball inheritance på alle disse knuder til at finde ud af hvilke blade der indeholder punkter i $[y_1, y_2]$.

Det giver en kørselstid på $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$ for at finde k punkter.

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

• Bit vectors. $\mathcal{O}(n)$ bits per level.

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

- Bit vectors. $\mathcal{O}(n)$ bits per level.
- Store hop $\mathcal{O}(\lg \Sigma)$ bits per entry hvert $\lg \Sigma$ level. $(\lg \Sigma = B^i)$.

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

- Bit vectors. $\mathcal{O}(n)$ bits per level.
- Store hop $\mathcal{O}(\lg \Sigma)$ bits per entry hvert $\lg \Sigma$ level. $(\lg \Sigma = B^i)$.
- Egentlig punkter

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

- Bit vectors. $\mathcal{O}(n)$ bits per level.
- Store hop $\mathcal{O}(\lg \Sigma)$ bits per entry hvert $\lg \Sigma$ level. $(\lg \Sigma = B^i)$.
- Egentlig punkter
- Binær søgning

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - kd-tree
- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater
 - Resultater

Setup

Setup

- Square area $\sqrt{n} \cdot \sqrt{k} \times \sqrt{n} \cdot \sqrt{k}$ returnerer k punkter.
- Slices af størrelse k returnerer k punkter. $[0, n] \times [y, y + k]$

•
$$\sqrt{n} + k = \lg n + k \cdot \lg^{\epsilon} n \Leftrightarrow k = \frac{\sqrt{n} - \lg n}{\lg^{\epsilon} n - 1}$$

Setup

- $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$ vs $\mathcal{O}(\sqrt{n} + k)$. y = ax + b
- BIS er mere stabil når vi ændrer shape. $\mathcal{O}(\sqrt{n})$ er problemet.
- Slice er godt for BIS og square er godt for kd-træ.
- kd-træ er hurtigere jo flere punkter, og jo mindre $\mathcal{O}(\sqrt{n})$ er.

Squared

Squared

Vertical

Vertical

Horizontal

Horizontal

Small k

Small k

Shapes

Shapes

Different B

Sizes

Future work

- Bedre bit-fiddling
- Cache
- Concurrency

Færdig

Spørgsmål?

praktisk log epsilon n

Små hop

Hvert niveau gemmer n bits som indikerer om bolden er gået til højre eller venstre. Hvert 32 bit gemmer vi et 32 bit major checkpoint. Precomputed tabel med 16 bit tal som tæller antal 1-entries. $\mathcal{O}(n)$ bits per level.

Store hop

 $\mathcal{O}(\lg \Sigma)$ per entry. $\Sigma = 2^{B^i}$. Så plads er $\mathcal{O}(B^i)$ bits per entry. Det er

$$\sum_{i=1}^{\lg_B \lg n} \frac{\lg n}{B^i} \cdot \mathcal{O}(B^i) = \mathcal{O}(\lg n \cdot \lg_B \lg n)$$

for hele kæden. Vælg nu $B = \Omega(\lg^{\epsilon} n)$.

Vi har n punkter, hvilket giver $\mathcal{O}(n \lg n \cdot \lg_B \lg n)$ bits. Det er $\mathcal{O}(n \cdot \frac{\lg \lg n}{\epsilon \lg \lg n}) = \mathcal{O}(\frac{n}{\epsilon})$ ord.

Store hop

Vi hopper højst B hop på B^i før vi rammer hop på B^{i+1} . Vi har at $i = \lg_B \lg n$ er det største i sådan at $B^i \le \lg n$.

$$\mathcal{O}(B \lg_B \lg n) = \mathcal{O}(\lg^{\epsilon} n)$$

$$B = \lg^{\epsilon/2} n = \Omega(\lg \lg n).$$

- Vi har B hop på B^0 før vi rammer B^1 .
- Vi har B hop på B^1 før vi rammer B^2 .
- Vi har B hop på B^2 før vi rammer B^3 .

• ..

Det er $B \cdot i$ hvor $i \leq \lg_B \lg n$.

OBIS

OBIS af Chan et al. Med $\mathcal{O}(n)$ plads og $\mathcal{O}(\lg \lg n + (1+k) \cdot \lg^{\epsilon} n)$. Bruger også Ball Inheritance til at finde de k punkter.

OBIS

- Op til nærmeste level med pred-search
- Gå ned til LCA højst lg lg n levels nede.
- Gå ned og find resultater i begge børn af LCA.

OBIS

small k

References I

Timothy M. Chan, Kasper Green Larsen, Mihai Patrascu.

Orthogonal Range Searching on the RAM, Revisited.

