Documentation for the SUNFLO crop model March 27, 2015

Abstract

SUNFLO is a process-based model for the sunflower crop which was developped to simulate the grain yield and oil concentration as a function of time, environment (soil and climate), management practice and genetic diversity (Casadebaig et al., 2011; Debaeke et al., 2010; Lecoeur et al., 2011).

This model is based on a conceptual framework initially proposed by Monteith (1977) and now shared by a large familly of crop models [REF]. In this framework, the crop dry biomass growth rate (dDM/dt) is calculated as an ordinary differential equation [EQ1] function of incident photosynthetically active radiation (PAR, $MI.m^{-2}$), light interception efficiency $(1 - exp^{-k \cdot LAI})$ and radiation use efficiency (RUE, $g.MJ^{-1}$). The light interception efficiency is based on Beer-Lambert's law as a function of leaf area index (LAI) and light extinction coefficient (k). The radiation use efficiency concept (Monteith, 1994) is used to represent photosynthesis at the crop scale.

[EQ1]
$$dDM/dt = RUE \cdot (1 - exp^{-k \cdot LAI}) \cdot PAR$$

Broad scale processes of this framework, the dynamics of LAI, photosynthesis (RUE) and biomass allocation to grains were split into finer processes (e.g leaf expansion and senescence, response functions to environmental stresses) to reveal genotypic specificity and to allow the emergence of genotype x environment interactions. Globally, the SUNFLO crop model has about 50 equations and 64 parameters (43 plant-related traits and 21 environment-related).

```
Abstract
             2
Inputs
           5
    Climate
                5
    Soil
            5
    Management
                     5
    Species
    Cultivar
                5
Phenology
               7
    Emergence
    ThermalTime
                     7
    PhenoStages
                    7
LeafArea
              9
    Leaf Initiation Time, \ Leaf Expansion Time, \ Leaf Senes cence Time
                                                                  9
    LeafExpansionDuration
                               9
    Potential Leaf Area \\
    LeafGrowthRate, LeafSenescenceRate, LeafArea
Light interception
                       11
    LAI
            11
    RIE
            11
Biomass production
                         12
    RUE
             12
    CropBiomass (Monteith, 1977)
                                      12
    CropPerformance
                         12
Thermal stress
                    13
    ThermalStressRUE (Villalobos et al., 1996)
    ThermalStressMineralization (Valé et al., 2007)
                                                      13
    ThermalStressAllocation
                                13
```

Contents

```
Water stress
                 14
    WaterDemand
                      14
    WaterSupply
                    14
    WaterStress
                   14
    Water Stress Expansion,\ Water Stress Conductance
                                                     14
    WaterStressPhenology
    WaterStressMineralization
                                 14
Nitrogen stress
                    15
Radiation stress
                    16
   RadiationStressExpansion (Rey, 2003)
                                           16
Outputs
             17
    Timed variables
                       17
    Indicators
                 18
```

References

19

Inputs

Climate

label	description	unit
TemperatureAirMin	Minimum air temperature	°C
TemperatureAirMax	Maximum air temperature	°C
Radiation	Global incident radiation	MJ.m-2
PET	Reference evapotranspiration	mm
Rainfall	Rainfall	mm

Soil

label	description		unit	reference
RootingDepth	Potential rooting depth	1000.00	mm	(Lecoeur et al., 2011)
SoilWaterCapacity	Water content at field capacity (0-30 cm)	19.69	%	NA
SoilWaterCapacity	Water content at wilting point (o-30cm)	9.69	%	NA
SoilWaterCapacity	Water content at field capacity (30 cm-rooting depth)	19.69	%	NA
SoilWaterCapacity	Water content at wilting point (30 cm-rooting depth)	9.69	%	NA
SoilDensity	Soil bulk density (0-30cm)	1.30	$g.cm^{-3}$	NA
SoilDensity	Soil bulk density (30 cm-rooting depth)	1.30	$g.cm^{-3}$	NA
StoneContent	Stone content (o-rooting depth)	0.10	[0, 1]	NA
MineralizationRate	Potential nitrogen mineralization rate	0.50	$kg.ha^{-1}.day^{-1}(normalized)$	(Valé et al., 2007)

Management

label	description	value	unit	reference
SowingDate	Sowing date	NA	date(dd/mm)	NA
HarvestDate	Harvest date	NA	date(dd/mm)	NA
SowingDensity	Plant density	7	plant.m ⁻²	NA
Fertilization	Fertilization (date 1)	NA	date(dd/mm)	NA
Fertilization	Fertilization (amount 1)	0	$kg.ha^{-1}$ eq. mineral nitrogen	NA
Fertilization	Fertilization (date 2)	NA	date(dd/mm)	NA
Fertilization	Fertilization (amount 2)	О	$kg.ha^{-1}$ eq. mineral nitrogen	NA
Irrigation	Irrigation (date 1)	NA	date(dd/mm)	NA
Irrigation	Irrigation (amount 1)	О	mm	NA
Irrigation	Irrigation (date 2)	NA	date(dd/mm)	NA
Irrigation	Irrigation (amount 2)	0	mm	NA
Irrigation	Irrigation (date 3)	NA	date(dd/mm)	NA
Irrigation	Irrigation (amount 3)	О	mm	NA

Species

Cultivar

label	description	value	unit	reference
ThermalTimeVegetative	Temperature sum to floral initiation	482.000	C.d	(Lecoeur et al., 2011)
ThermalTimeFlowering	Temperature sum from emergence to the beginning of flowering	836.000	C.d	(Lecoeur et al., 2011)
ThermalTimeSenescence	Temperature sum from emergence to the beginning of grain filling	1083.000	C.d	(Lecoeur et al., 2011)
ThermalTimeMaturity	Temperature sum from emergence to seed physiological maturity	1673.000	C.d	(Lecoeur et al., 2011)

label	description	value	unit	reference
PotentialLeafNumber	Potential number of leaves at flowering	29.000	leaf	(Lecoeur et al., 2011)
PotentialLeafProfile	Potential rank of the plant largest leaf at flowering	17.000	lea f	(Lecoeur et al., 2011)
PotentialLeafSize	Potential area of the plant largest leaf at flowering	448.000	cm^{-2}	(Lecoeur et al., 2011)
ExtinctionCoefficient	Light extinction coefficient during vegetative growth	0.880	-	(Lecoeur et al., 2011)
WaterResponseExpansion	Threshold for leaf expansion response to water stress	-4.420	-	(Casadebaig et al., 2008)
WaterResponseConductance	Threshold for stomatal conductance response to water stress	-9.300	-	(Casadebaig et al., 2008)
PotentialHarvestIndex	Potential harvest index	0.398	-	(Casadebaig et al., 2011)
PotentialOilContent	Potential seed oil content	55.400	%dry _m atter	(Casadebaig et al., 2011)

Phenology

label	description	value	unit	reference
ThermalTimeVegetative	Temperature sum to floral initiation	482.00	C.d	(Lecoeur et al., 2011)
ThermalTimeFlowering	Temperature sum from emergence to the beginning of flowering	836.00	C.d	(Lecoeur et al., 2011)
ThermalTimeSenescence	Temperature sum from emergence to the beginning of grain filling	1083.00	C.d	(Lecoeur et al., 2011)
ThermalTimeMaturity	Temperature sum from emergence to seed physiological maturity	1673.00	C.d	(Lecoeur et al., 2011)
SowingDepth	Sowing depth	30.00	mm	NA
Germination	Temperature sum from sowing to germination	86.20	C.d	(Casadebaig et al., 2011)
ElongationRate	Reciprocal of hypocotyl elongation rate	1.19	$Cd.mm^{-1}$	(Villalobos et al., 1996)

Emergence

Emergence = Germination + ElongationRate * SowingDepth

- *Germination* = 86, Thermal time for germination (°C.d);
- *ElongationRate* = 1.19, Hypocotyl elongation rate (°Cd/mm)
- SowingDepth = 30, Sowing depth (mm).

ThermalTime

$$ThermalTime_d = \left\{ egin{array}{ll} \int_0^d \left(T_m - T_b
ight) * \left(1 + WaterStressPhenology
ight) & ext{if } T_m > T_b \\ 0 & ext{else} \end{array}
ight.$$

with:

- *T_m*, Daily mean air temperature (°C);
- $T_b = 4.8$, Basal temperature (°C) (Granier and Tardieu, 1998);
- Thermal Stress Phenology, Water stress effect on plant heating

PhenoStages

In the software model, phenostages are computed as integers $\in [0,7]$ corresponding to duration between key stages:

- o, begining of simulation sowing (bare soil)
- 1, sowing (Ao) emergence (A2)
- 2, emergence (A2) floral initiation (E1)
- 3, floral initiation (E1) flowering (F1)
- 4, flowering (F1) onset of senescence (Mo)

- 5, onset of senescence (Mo) maturity (M3)
- 6, maturity (M₃) harvest
- 7, harvest end of simulation (bare soil)

LeafArea

label	description	value	unit	reference
PotentialLeafNumber	Potential number of leaves at flowering	29.00	leaf	(Lecoeur et al., 2011)
PotentialLeafProfile	Potential rank of the plant largest leaf at flowering	17.00	leaf	(Lecoeur et al., 2011)
PotentialLeafSize	Potential area of the plant largest leaf at flowering	448.00	cm^{-2}	(Lecoeur et al., 2011)
Phyllotherm_1	Phyllotherm (leaf <= 6)	71.43	C.d	(Rey, 2003)
Phyllotherm_7	Phyllotherm (leaf > 7)	16.34	C.d	(Rey, 2003)
PotentialLeafDuration	Thermal time between expansion and senescence	851.33	C.d	(Casadebaig, 2008)

LeafInitiationTime, LeafExpansionTime, LeafSenescenceTime

$$\textit{Leaf InitiationTime}_i = \left\{ \begin{array}{ll} i*\textit{Phyllotherm}_1 & \text{if } i \leq 6 \\ (i-5)*\textit{Phyllotherm}_7 + a & \text{if } i \leq \textit{Leaf Number} \end{array} \right.$$
 with:

- *Phyllotherm*₁ = 76.43 (°C.d)
- $Phyllotherm_7 = 16.34$ (°C.d)
- $a = 400 \, (^{\circ}\text{C.d})$

 $LeafExpansionTime_i = LeafInitiation_i + 1/a$ with a = 0.01379.

LeafExpansionDuration

 $-(i-PotentialLeafProfile)^2$ $LeafExpansionDuration_i = a + PotentialLeafDuration * exp^{\frac{1}{(c*PotentialLeafNumber)^2}}$

- PotentialLeaf Duration = 851.3 (°C.d)
- $a = 153 \, (^{\circ}\text{C.d})$
- b = 0.78

 $LeafSenescenceTime_i = LeafExpansionTime_i + LeafExpansionDuration_i$

PotentialLeafArea

 $Potential Leaf Area_i = Potential Leaf Size * exp^{a*(\frac{i-Potential Leaf Profile}{Potential Leaf Profile-1})^2 + b*(\frac{i-Potential Leaf Profile}{Potential Leaf Profile-1})^3}$ with: * a = -2.05 and b = 0.049, shape parameters * *PotentialLeafSize* (cm2) and PotentialLeaf Profile (node), genotypic parameters.

LeafGrowthRate, LeafSenescenceRate, LeafArea

$$\begin{aligned} \textit{Leaf Growth Rate}_i &= (T_m - T_b) * \textit{Potential Leaf Area}_i * a * \\ &= \underbrace{exp^{-a(Thermal Time - \textit{Leaf Expansion Time}_i)}}_{(1 + exp^{-a(Thermal Time - \textit{Leaf Expansion Time}_i))^2} \\ \\ \textit{Leaf Senescence Rate}_i &= (T_m - T_b) * \textit{Leaf Area}_i * a * \\ &= \underbrace{exp^{-a(Thermal Time - \textit{Leaf Senescence Time}_i)}}_{(1 + exp^{-a(Thermal Time - \textit{Leaf Senescence Time}_i))^2}} \end{aligned}$$

with:

- $T_m = 25$, mean air temperature (°C)
- $T_b = 4.8$, base temperature (°C)
- a = 0.01379

The illustration uses i=10 as values for $PotentialLeafArea_i$, $LeafExpansionTime_i$ and $Leaf Senescence Time_i$

$$\textit{LeafArea}_i = \int \textit{LeafGrowthRate}_i - \int \textit{LeafSenescenceRate}_i$$

Light interception

LAI

$$LAI = SowingDensity * \sum_{i=1}^{LeafNumber} LeafArea_i$$

RIE

$$RIE = 1 - exp^{(-ExtinctionCoefficient*LAI)}$$

Biomass production

RUE

$$Potential RUE = \left\{ \begin{array}{l} r_0 \\ r_0 + 2 * \frac{ThermalTime - 300}{ThermalTimeFlowering - 300} \\ r_{max} \\ a * exp^{b*(1 - \frac{ThermalTime-ThermalTimeMaturity}{ThermalTimeMaturity - ThermalTimeSenescence})} \\ 0 \end{array} \right.$$

with:

- $r_0 = 1$, vegetative RUE
- $r_{max} = 3$, maximum RUE
- a = 0.015, final RUE
- b = 4.5, slope of RUE decrease in grain filling stage

 $if\ Thermal Time < 300$

if 300 < ThermalTime < ThermalTimeFlowering

 $if\ Thermal Time Flowering < Thermal Time < Thermal Time Senescence$

 $if\ Thermal Time Senescence < Thermal Time < Thermal Time Maturity$

CropBiomass (Monteith, 1977)

dCropBiomass = Radiation * 0.48 * RIE * RUE * dt

CropPerformance

Thermal stress

ThermalStressRUE (Villalobos et al., 1996)

$$ThermalStressRUE = \left\{ \begin{array}{ll} T_m * \frac{1}{T_{ol} - T_b} - \frac{T_b}{T_{ol} - T_b} & \text{if } T_b < T_m < T_{ol} \\ 1 & \text{if } T_{ol} < T_m < T_{ou} \\ T_m * \frac{1}{T_{ou} - T_c} - \frac{T_c}{T_{ou} - T_c} & \text{if } T_{ou} < T_m < T_c \\ 0 & \text{else} \end{array} \right.$$

with:

- $T_b = 4.8$, base temperature (°C)
- $T_{ol} = 20$, optimal lower temperature (°C)
- $T_{ou} = 28$, optimal upper temperature (°C)
- $T_c = 37$, critical temperature (°C)

ThermalStressMineralization (Valé et al., 2007)

$$\textit{ThermalStressMineralization} = \frac{T_c}{1 + (T_c - 1) * exp^{(-0.119*(T_m - T_b))}}$$

with:

- $T_b = 15$, base temperature (°C)
- $T_c = 36$, critical temperature (°C)

ThermalStressAllocation

Process — ThermalStressMineralization

Water stress

WaterDemand

$$WaterDemand = K_c * PET * RIE$$

with $K_c = 1.2$, crop coefficient

WaterSupply

$$WaterSupply = Rainfall + Irrigation - Transpiration - Evaporation - Drainage$$

Transpiration = WaterDemand * WaterStressConductance

$$Evaporation = (1 - RIE) * PET * SoilConductivity$$

SoilConductivity =
$$\sqrt{x+1} - \sqrt{x}$$

with

$$dx/dt = \left\{ egin{array}{ll} 1 & \mbox{if $Rainfall+Irrigation} <= 4 \\ 0 & \mbox{else} \end{array} \right.$$

WaterStress

$$WaterStress = \frac{WaterAvailable}{WaterTotal}$$

Water Available = Water Supply

WaterTotal = SoilWaterCapacity * SoilDensity * (1 - StoneContent) * RootingDepth

WaterStressExpansion, WaterStressConductance

$$WaterStressProcess = -1 + \frac{2}{1 + exp^{(a*WaterStress)}}$$

with $a \in [-15.6; -2.3]$, genotype-dependant response parameter

WaterStressPhenology

WaterStressPhenology = a * (1 - WaterStressConductance)

with a = 0.1, scaling parameter for water-stress plant heating

WaterStressMineralization

 $WaterStressMineralization = 1 - (1 - y_0) * (1 - RelativeWaterContent_{layer1})$

Nitrogen stress

Radiation stress

RadiationStressExpansion (Rey, 2003)

$$RadiationStressExpansion = s*a + \frac{b}{1 + exp^{\left(\frac{c - IPAR/LAI}{d}\right)}}$$

with:

- s = 2.5, scaling parameter for density effect;
- a = -0.14; b = 1.13; c = 4.13; d = 2.09

Outputs

Timed variables

symbol	label	description	unit
TN	TemperatureAirMin	Minimum air temperature	С
TX	TemperatureAirMax	Maximum air temperature	С
TM	TemperatureAirMean	Mean air temperature	С
GR	Radiation	Global incident radiation	$MJ.m^{-2}$
ETP	PET	Reference evapotranspiration	mm
RR	Rainfall	Rainfall	mm
TTA2	ThermalTime	Temperature sum from emergence	C.d
PhenoStage	PhenoStage	Phenological stages index	-
FTSW	WaterStress	Water stress index	-
FHTR	WaterStressConductance	Transpiration response to water stress	-
FHRUE	WaterStressConductance	Photosynthesis response to water stress	-
ETRETM	WaterSupplyDemandRatio	Water supply:demand ratio	-
FTRUE	ThermalStressRUE	Photosynthesis response to thermal stress	-
NAB	NitrogenAbsorbed	Absorbed nitrogen	$kg.ha^{-1}.d^{-1}$
NNI	NitrogenNutritionIndex	Nitrogen nutrition index	-
FNRUE	NitrogenStressRUE	Photosynthesis response to nitrogen stress	-
LAI	LAI	Leaf area index	-
RIE	RIE	Radiation interception efficiency	-
RUE	RUE	Radiation use efficiency	-
TDM	CropBiomass	Crop aerial dry biomass	$g.m^{-2}$
GY	CropYield	Grain yield	$q.ha^{-1}$
OC	OilContent	Grain oil content	, %(drymatter)

Indicators

level	factor	symbol	description	unit	formula
climate	light	SGR	Photosynthetically active radiation	$MJ.m^{-2}$	sum(GR*0.48)
climate	water	SRR	Rain	mm	sum(RR)
climate	water	SETP	Potential evapotranspiration	mm	sum(PET)
climate	water	SCWD	Climatic water deficit	mm	sum(RR - PET)
species	temperature	TT	Thermal time (4.8 C basis)	C.d	sum(TM-4.8)
species	temperature	D_SE	Duration of sowing - emergence phase	d	-
genotype	temperature	D_EF	Duration of vegetative phase	d	-
genotype	temperature	D_FM	Duration of flowering phase	d	-
genotype	temperature	D_MH	Duration of grain filling phase	d	-
species	temperature	NHT	Thermal stress, high temperature (discrete)	d	sum(TM > 28)
species	temperature	NLT	Thermal stress, low temperature (discrete)	d	sum(TM < 20)
species	temperature	SFTRUE	Thermal stress impact on photosynthesis	-	sum(1 - FTRUE)
species	water	SFTSW	Edaphic water deficit (continuous)	-	sum(1 - FTSW)
species	water	METR	Edaphic water deficit (continuous)	-	mean(ET/PET)
species	water	NETR	Edaphic water deficit (discrete)	d	sum(ET/PET < 0.6)
genotype	water	SFHTR	Water stress impact on crop transpiration	-	sum(1 - FHTR)
genotype	water	SFHRUE	Water stress impact on crop photosynthesis	-	sum(1 - FHRUE)
species	nitrogen	SNAB	Absorbed nitrogen	$kg.ha^{-1}$	diff(range(NAB))
species	nitrogen	SNNI	Nitrogen deficit (continuous)	-	sum(1-NNI)
species	nitrogen	SFNRUE	Nitrogen stress impact on photosynthesis	-	sum(1 - FNRUE)
genotype	-	LAI	Leaf area index	-	max(LAI)
genotype	-	LAD	Leaf area duration	-	sum(LAI)
genotype	light	SIR	Intercepted radiation	$MJ.m^{-2}$	sum(RIE*GR*0.48)
genotype	-	MRUE	Photosynthesis	$g.MJ^{-1}.m^{-2}$	mean(RUE)
genotype	-	STDM	Aerial Biomass	$g.m^{-2}$	max(TDM)
genotype	-	GY	Grain yield	$q.ha^{-1}$	max(GY)
genotype	-	OC	Grain oil content	, %(drymatter)	max(OC)

References

Casadebaig, P., 2008. Analyse et modélisation de l'interaction Génotype - Environnement - Conduite de culture: application au tournesol (Helianthus annuus L.) (PhD thesis). Toulouse University.

Casadebaig, P., Debaeke, P., Lecoeur, J., 2008. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes. European Journal of Agronomy 28, 646-654.

Casadebaig, P., Guilioni, L., Lecoeur, J., Christophe, A., Champolivier, L., Debaeke, P., 2011. SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agricultural and Forest Meteorology 151, 163–178.

Debaeke, P., Casadebaig, P., Haquin, B., Mestries, E., Palleau, J.-P., Salvi, F., 2010. Simulation de la réponse variétale du tournesol à l'environnement à l'aide du modèle SUNFLO. Oléagineux, Corps Gras, Lipides 17, 143-51.

Granier, C., Tardieu, F., 1998. Is thermal time adequate for expressing the effects of temperature on sunflower leaf development? Plant, Cell & Environment 21, 695-703.

Lecoeur, J., Poiré-Lassus, R., Christophe, A., Pallas, B., Casadebaig, P., Debaeke, P., Vear, F., Guilioni, L., 2011. Quantifying physiological determinants of genetic variation for yield potential in sunflower. SUNFLO: a model-based analysis. Functional Plant Biology 38, 246-259.

Monteith, J.L., 1977. Climate and the Efficiency of Crop Production in Britain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 281, 277-294.

Monteith, J.L., 1994. Validity of the correlation between intercepted radiation and biomass. Agricultural and Forest Meteorology 68, 213-220.

Rey, H., 2003. Utilisation de la modélisation 3D pour l'analyse et la simulation du développement et de la croissance végétative d'une plante de tournesol en conditions environnementales fluctuantes (température et rayonnement). (PhD thesis). Ecole Nationale Supérieure Agronomique de Montpellier, spécialité sciences agronomiques, CIRAD-AMAP / INRA - LEPSE.

Valé, M., Mary, B., Justes, E., 2007. Irrigation practices may affect denitrification more than nitrogen mineralization in warm climatic conditions. Biology and Fertility of Soils 43, 641-651.

Villalobos, F., Hall, A., Ritchie, J., Orgaz, F., 1996. OILCROP-SUN: a development, growth and yield model of the sunflower crop. Agronomy Journal 88, 403-415.