

Projeto de Circuitos Eletrônicos Integrados 2

Projeto de Amplificadores de 2 Estágios (Revisão)

Professor: Wellington Amaral (waamaral@unb.br)

$$R_1 \approx \frac{1}{g_{m3}} ||r_{ds3}||r_{ds1} \approx \frac{1}{g_{m3}}$$
 $C_1 = C_{gs3} + C_{gs4} + C_{bd1} + C_{bd3}$

$$R_2 = r_{ds2} || r_{ds4}$$

$$C_2 = C_{gs6} + C_{bd2} + C_{bd4}$$

$$R_3 = r_{ds6} || r_{ds7}$$

$$C_3 = C_L + C_{bd6} + C_{bd7}$$

$$R_1 \approx \frac{1}{g_{m3}} ||r_{ds3}||r_{ds1} \approx \frac{1}{g_{m3}}$$
 $C_1 = C_{gs3} + C_{gs4} + C_{bd1} + C_{bd3}$

$$R_2 = r_{ds2} || r_{ds4}$$

$$C_2 = C_{gs6} + C_{bd2} + C_{bd4}$$

$$R_3 = r_{ds6} || r_{ds7}$$

$$C_3 = C_L + C_{bd6} + C_{bd7}$$

$$R_1 \approx \frac{1}{g_{m3}} ||r_{ds3}||r_{ds1} \approx \frac{1}{g_{m3}}$$
 $C_1 = C_{gs3} + C_{gs4} + C_{bd1} + C_{bd3}$

$$R_2 = r_{ds2} || r_{ds4}$$

$$C_2 = C_{gs6} + C_{bd2} + C_{bd4}$$

$$R_3 = r_{ds6} || r_{ds7}$$

$$C_3 = C_L + C_{bd6} + C_{bd7}$$

Considerações

$$R_1 \approx \frac{1}{g_{m3}} ||r_{ds3}||r_{ds1} \approx \frac{1}{g_{m3}}$$
 $C_1 = C_{gs3} + C_{gs4} + C_{bd1} + C_{bd3}$

$$R_2 = r_{ds2} || r_{ds4}$$

$$C_2 = C_{gs6} + C_{bd2} + C_{bd4}$$

$$R_3 = r_{ds6} || r_{ds7}$$

$$C_3 = C_L + C_{bd6} + C_{bd7}$$

Tensão V1 no gate de M3/M4 é dada por (gm1*V_{in}/2)*R1

$$\begin{split} R_1 &\approx \frac{1}{g_{m3}} \, || r_{ds3} || r_{ds1} \approx \frac{1}{g_{m3}} \\ C_1 &= C_{gs3} + C_{gs4} + C_{bd1} + C_{bd3} \end{split}$$

$$R_2 = r_{ds2} || r_{ds4}$$

$$C_2 = C_{gs6} + C_{bd2} + C_{bd4}$$

$$R_3 = r_{ds6} || r_{ds7}$$

$$C_3 = C_L + C_{bd6} + C_{bd7}$$

Considerações

$$R_1 \approx \frac{1}{g_{m3}} ||r_{ds3}||r_{ds1} \approx \frac{1}{g_{m3}}$$
 $C_1 = C_{gs3} + C_{gs4} + C_{bd1} + C_{bd3}$

$$R_2 = r_{ds2} || r_{ds4}$$

$$C_2 = C_{gs6} + C_{bd2} + C_{bd4}$$

$$R_3 = r_{ds6} || r_{ds7}$$

$$C_3 = C_L + C_{bd6} + C_{bd7}$$

Tensão V2 é dada pelo somatório das duas fontes de corrente vezes R2

Considerações

➤ Considerando que R1 é pequeno.

Considerações

Margem de fase menor que 45°!!

Considerações

Compensação Miller

Considerações

Compensação Miller

Especificações Necessárias

- 1. Gain at dc, $A_{\nu}(0)$
- 2. Gain-bandwidth, GB
- 3. Phase margin (or settling time)
- 4. Input common-mode range, ICMR
- Load Capacitance, C_L
- 6. Slew-rate, SR
- 7. Output voltage swing
- 8. Power dissipation, $P_{\rm diss}$

Especificações Necessárias

- 1. Gain at dc, $A_{\nu}(0)$
- 2. Gain-bandwidth, GB
- 3. Phase margin (or settling time)
- 4. Input common-mode range, ICMR
- 5. Load Capacitance, C_L
- 6. Slew-rate, SR
- 7. Output voltage swing
- 8. Power dissipation, $P_{\rm diss}$

<u>Equações de Projeto</u> (<u>Considerações</u>)

1-
$$V_{SG4} = V_{SG6}$$
 (1)

$$V_{DD}$$
 V_{SG4}
 V_{SG6}
 V_{SG6}
 V_{SG6}
 V_{SG6}
 V_{Cc}
 V_{CC}

2- Se
$$V_{SG4} = V_{SG6} \Rightarrow I_6 = \left(\frac{S_6}{S_4}\right)I_4$$
 (2)

3- O projeto deve satisfazer a "Condição de Balanceamento/Casamento": 16 = 17 (3

4- Logo,
$$\left| \frac{S_6}{S_4} = \frac{2S_7}{S_5} \right|$$
 (5)

Além disto:
$$I_7 = \left(\frac{S_7}{S_5}\right)I_5 = \left(\frac{S_7}{S_5}\right)(2I_4)$$
 (4)

<u>Equações de Projeto</u> (<u>Considerações</u>)

Slew rate
$$SR = \frac{I_5}{C_c}$$
 (Assuming $I_7 >> I_5$ and $C_L > C_c$)

First-stage gain
$$A_{v1} = \frac{g_{m1}}{g_{ds2} + g_{ds4}} = \frac{2g_{m1}}{I_5(l_2 + l_4)}$$

Second-stage gain
$$A_{v2} = \frac{g_{m6}}{g_{ds6} + g_{ds7}} = \frac{g_{m6}}{I_6(l_6 + l_7)}$$

Gain-bandwidth
$$GB = \frac{g_{m1}}{C_c}$$

Output pole
$$p_2 = \frac{-g_{m6}}{C_L}$$

RHP zero
$$z_1 = \frac{g_{m6}}{C_c}$$

60° phase margin requires that $g_{m6} = 2.2g_{m2}(C_L/C_c)$ if all other roots are $\ge 10GB$.

Positive ICMR
$$V_{\text{in(max)}} = V_{DD} - \sqrt{\frac{I_5}{b_3}} - |V_{T03}|_{(\text{max})} + V_{T1(\text{min})}$$

Negative ICMR $V_{\text{in(min)}} = V_{SS} + \sqrt{\frac{I_5}{b_1}} + V_{T1(\text{max})} + V_{DS5}(\text{sat})$

<u>Etapas de Projeto</u>

1 -
$$C_c > 0.22C_L$$

$$2 - I_5 = SR \cdot C_c$$

$$V_{SG4}$$
 V_{SG6}
 V_{S

 V_{DD}

3 -
$$S_3 = \frac{I_5}{K'_3[V_{DD} - V_{in}(\text{max}) - |V_{T03}|(\text{max}) + V_{T1}(\text{min})]^2}$$

4 -
$$g_{m1} = GB \cdot 2\pi \cdot C_C \rightarrow S_2 = \frac{g_{m1}^2}{K'_1 I_5}$$

5 -
$$V_{DS5}(\text{sat}) = V_{in}(\text{min})$$
 - V_{SS} - $\sqrt{\frac{I_5}{\beta_1}}$ - $V_{T1}(\text{max}) \ge 100 \text{ mV}$

6 -
$$S_5 = \frac{2I_5}{K_5[V_{DS5}(\text{sat})]^2}$$

$$\beta = K.5$$

Etapas de Projeto

$$7 - g_{m6} \ge 10g_{m1}$$
$$g_{m4} = \sqrt{2KP'S_4I_4}$$

8 -
$$S_6 = \frac{g_{m6}}{g_{m4}} S_4$$

$$9 - I_6 = \frac{g_{m6}^2}{2K'_6S_6}$$

10 -
$$S_7 = (I_6/I_5)S_5$$

11 -
$$P_{diss} = (I_5 + I_6)(V_{DD} + |V_{SS}|)$$

12 -
$$A_v = \frac{2g_{m2}g_{m6}}{I_5(l_2 + l_4)I_6(l_6 + l_7)}$$

Equações de Projeto

$$1 - C_c > 0.22C_L$$

$$2 - I_5 = SR \cdot C_c$$

3 -
$$S_3 = \frac{I_5}{K'_3[V_{DD} - V_{in}(\text{max}) - |V_{T03}|(\text{max}) + V_{T1}(\text{min})]^2}$$

4 -
$$g_{m1} = GB \cdot 2\pi \cdot C_c \rightarrow S_2 = \frac{g_{m1}^2}{K'_1 I_5}$$

5 -
$$V_{DS5}(\text{sat}) = V_{in}(\text{min}) - V_{SS} - \sqrt{\frac{I_5}{\beta_1}} - V_{T1}(\text{max}) \ge 100 \text{ mV}$$

6 -
$$S_5 = \frac{2I_5}{K'_5[V_{DS5}(\text{sat})]^2}$$

$$\beta = K.S$$

$$7 - g_{m6} \ge 10g_{m1}$$
$$g_{m4} = \sqrt{2K_P S_4 I_4}$$

8 -
$$S_6 = \frac{g_{m6}}{g_{m4}}S_4$$

9 -
$$I_6 = \frac{g_{m6}^2}{2K'_6S_6}$$

10 -
$$S_7 = (I_6/I_5)S_5$$

11 -
$$P_{diss} = (I_5 + I_6)(V_{DD} + |V_{SS}|)$$

12 -
$$A_V = \frac{2g_{m2}g_{m6}}{I_5(l_2 + l_4)I_6(l_6 + l_7)}$$

Exercício

Projete um Amp. Op de 2 Estágios com as seguintes especificações:

Av > 3000 V/V	VDD = 1,8v
Margem de fase 60°	0,5>Vout range>1,3V
GB = 5MHz	SR > 4V/us
ICMR = 0,9V a 1,3V	Pdiss ≤ 2mW

Dados da tecnologia:

Vtn = 0,397V	$\lambda_{N} = 0.06V^{-1}$
Vtp = 0,457V	$\lambda_{\rm P} = 0.08 V^{-1}$
Kn = 593uA/V ²	Cox = 8,82E-15 F/um2
Kp = 216uA/V ²	

Demais dados de projeto:

C _L = 2pF	
Lmin e Wmin = 0,5um	

Referências

➤ Phillip Allen, Douglas Holberg, "CMOS Analog Circuit Design", Capítulo 6 Oxford, 2a ed., 2002.