Интегрированные компьютерные системы проектирования и анализа

Лабораторная №2 Уравнения в SolidWorks

Параметрическое моделирование (параметризация) — моделирование (проектирование) с использованием параметров элементов модели и соотношений между этими параметрами. Параметризация позволяет за короткое время «проиграть» (с помощью изменения параметров или геометрических соотношений) различные конструктивные схемы и избежать принципиальных ошибок.

Параметрическое моделирование существенно отличается от обычного двухмерного черчения или трёхмерного моделирования. Конструктор в случае параметрического проектирования создаёт математическую модель объектов с параметрами, при изменении которых происходят изменения конфигурации детали, взаимные перемещения деталей в сборке и т. п.

Еще одним подходом к параметризации модели в SolidWorks является использование уравнений. Они позволяют создавать сложные взаимосвязи между параметрами модели, тем самым позволяют подчинить большое число параметров модели небольшому числу параметров. Ниже описывается порядок добавления уравнения в окне Вид уравнений.

В главном меню Инструменты \rightarrow Уравнения Σ .

Щелкните по размеру в графической области. При этом SolidWorks выполняет следующие действия:

- занесет имя размера в пустую ячейку в столбце Имя и заключит его в кавычки;
 - перемещает курсор в поле Значение/уравнения и вставляет = (знак равно);
 - открывает всплывающее меню с вариантами начального ввода уравнения.

После = (знака равно) добавьте член уравнения, выполнив одно из указанных ниже действий введите число, переменную, другой размер или условное выражение.

Решение уравнения появляется в столбце Равняется, а курсор перемещается в следующую ячейку столбца Заметки.

Нажмите ОК, чтобы закрыть диалоговое окно (рисунок 1).

Основные функции, корыте доступны при написании уравнений сведены в таблицу 1.

При использовании тригонометрических функций в уравнениях выберите Градусы или Радианы в Угловых единицах уравнения в диалоговом окне "Уравнения"

Условный оператор имеет следующий синтаксис If(условие, значение1, значение2). Таким образом, если условие истинно, то будет возвращено значение1, иначе значение2. Например, пусть указано уравнение "D1@Sketch1" = (If("D1@Sketch4">15, 20, 10)) + 8, тогда, если "D1@Sketch4">15, то D1@Sketch1 будет равно 28, иначе 18.

Глобальные переменные. Для создания глобальной переменной достаточно присвоить переменной значение, например k=5, после чего будет создана глобальная переменная k.

Задание. Разработать параметрическую модель кардридера согласно варианту (см. л/р №1), используя уравнения.

Таблица 1 — Основные стандартные функции, доступные при создании уравнений

Оператор	Имя	Заметки
+	знак плюс	сложение
-	знак минус	вычитание
*	звездочка	умножение
/	слеш	деление
^	вставка	экспонент (возведение в степень)
Функции		
sin (a)	синус	а - это угол; возвращает значение синуса
cos (a)	косинус	а - это угол; возвращает значение косинуса
tan (a)	тангенс	а - это угол; возвращает значение тангенса
sec (a)	секанс	а - это угол; возвращает значение секанса
cosec (a)	косеканс	а - это угол; возвращает значение косеканса
cotan (a)	котангенс	а - это угол; возвращает значение котангенса
arcsin (a)	арксинус	а - это значение синуса; возвращает угол
arccos (a)	арккосинус	а - это значение косинуса; возвращает угол
atn (a)	арктангенс	а - это значение тангенса; возвращает угол
arcsec (a)	арксеканс	а - это значение секанса; возвращает угол
arccosec (a)	арккосеканс	а - это значение косеканса; возвращает угол
arccotan (a)	арккотангенс	а - это значение котангенса; возвращает угол
abs (a)	модуль	возвращает модуль числа а
exp (n)	экспонента	возвращает значение е, возведенное в степень п
log (a)	логарифм	возвращает значение натурального логарифма числа а с основанием е
sqr (a)	корень квадратный	возвращает значение квадратного корня из а
int (a)	целая часть числа	возвращает целую часть числа а
sgn (a)	знак	возвращает знак числа а как -1 или 1
Константа		
пи	пи	отношение длины окружности к ее диаметру (3.14)

Рисунок 1 – Окно для ввода уравнений