Quiz 5 Make-Up

Problem 1 (15 points; 3 points each). Decide if each of the following are true or false and provide a justification or counterexample in each case. A justification could consist of a theorem from the text. All vector spaces are assumed to be finite-dimensional here.

(a) _____ If A is singular, then Ax = b, has infinitely many least-square solutions.

(b) _____ If A is singular, there are infinitely many $\hat{\boldsymbol{b}}$ so that $\hat{\boldsymbol{b}} - \boldsymbol{b} \perp \operatorname{rng}(A)$.

(c) _____ Let $\mathcal{U} = \{ \boldsymbol{u}_1, \dots, \boldsymbol{u}_n \}$ is a basis for V with respect to an inner product $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{C}$. Suppose that whenever $\boldsymbol{v} = \sum_{i=1}^n \alpha_i \boldsymbol{u}_i$, then $\|\boldsymbol{v}\|_2^2 = \sum_{i=1}^n |\alpha_i|^2$. Then \mathcal{U} is orthonormal.

(d) _____ There can be more than one norm on a vector space that is generated by an inner-product.

(e) ______ If $C = \{u_1, \dots, u_n\}$ is an orthonormal basis for V with respect to an inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ and $\mathbf{v} \in V$, then for any $(c_1, \dots, c_n) = [\mathbf{v}]_C$, $c_i = \langle v, u_i \rangle$.

Problem 2 (10 points). Using the inner product

$$\langle p, q \rangle = \int_0^1 pq \, dx$$

use Gram-Schmidt to find an orthonormal basis for $U = \text{span}\{1, x^{1/2}, x^2\}$. Use this to find the orthogonal projection, q, of p = x onto U.

