数学B いろいろな数列の漸化式

目次

第1章	隣接 2 項間漸化式 · · · · · · · · · · · · · · · · · · ·	5
1.1	$a_{n+1} = a_n$ (恒等型) · · · · · · · · · · · · · · · · · · ·	6
1.2	$a_{n+1} = a_n + p$ (等差型) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
1.3	$a_{n+1} = pa_n$ (等比型) · · · · · · · · · · · · · · · · · · ·	8
1.4	$a_{n+1} = a_n + f(n)$ (階差型) · · · · · · · · · · · · · · · · · · ·	9
1.5	$a_{n+1} = pa_n + f(n)$ (特性方程式型) · · · · · · · · · · · · · · · · · · ·	14
1.6	$a_{n+1} = pa_n^q$ (対数型) · · · · · · · · · · · · · · · · · · ·	22
1.7	$a_{n+1} = f(n)a_n$ (階比型) · · · · · · · · · · · · · · · · · · ·	24
1.8	$a_{n+1} = f_1(n)a_n + f_2(n)$ · · · · · · · · · · · · · · · · · · ·	29
1.9	$a_{n+1} = \frac{f_1(n)a_n}{f_2(n)a_n + f_3(n)} \cdot \cdot$	31
1.10	$a_{n+1} = \frac{f_1(n)a_n + f_2(n)}{f_3(n)a_n + f_4(n)} \cdot \cdot$	33
1.11	演習問題(基礎~標準レベルのみ)・・・・・・・・	37
1.12	演習問題解答 ・・・・・・・・・・・・・・・・・・・・・・・・	38
第2章	隣接 3 項間漸化式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
2.1	$a_{n+2} + pa_{n+1} + qa_n = 0 \cdot \cdot$	46
2.2	$a_{n+2} + pa_{n+1} + aa_n = r \cdot \cdot$	48

第1章 隣接2項間漸化式

初項と、隣接する2項の関係を定めれば、数列のすべての項が決定される。各項をそれ以前の項で表した等式のことを**漸化式**という。 隣接する2項間にある関係を表した漸化式のことを特に、**隣接2項間 漸化式**という。

与えられた隣接 2 項間漸化式から一般項を求めることは,一般には 困難であるが,漸化式が特別な形をしていれば一般項を求められる場 合がある。ここでは,一般項を求められる特別な隣接 2 項間漸化式に ついて見ていこう。

1.1 $a_{n+1} = a_n$ (恒等型)

 $a_1 = a$, $a_{n+1} = a_n$ という条件によって定められる数列 $\{a_n\}$ の一般項は

$$a_n = a \tag{1.1}$$

である。

[証明]

n=1 のとき,

$$a_1 = a$$

より,式(1.1)が成立する。

n=k のとき式 (1.1) が成立する、つまり $a_k=a$ であると仮定すると、

$$a_{k+1} = a_k = a$$

より、n = k + 1 のときにも式 (1.1) が成立する。

以上より, $a_1 = a$, $a_{n+1} = a_n$ という条件によって定められる数列 $\{a_n\}$ の一般項は,

$$a_n = a$$

である。

当たり前といえば当たり前である。次の項がその直前の項と同じになるということは、 a_1 の値から変化しないということを意味する。

1.2 $a_{n+1} = a_n + p$ (等差型)

 $a_1=a,\ a_{n+1}=a_n+p$ という条件によって定められる数列 $\{a_n\}$ の 一般項は

$$a_n = a + p(n-1) \tag{1.2}$$

である。

[証明]

n=1 のとき,式 (1.2)の右辺を計算すると

$$a + p(1 - 1) = a = a_1$$

より,式(1.2)が成立する。

n=k のとき式 (1.2) が成立する、つまり $a_k=a+p(k-1)$ であると仮定すると、

$$a_{k+1} = a_k + p = a + p(k-1) + p = a + p\{(k+1) - 1\}$$

より、n = k + 1 のときにも式 (1.2) が成立する。

以上より, $a_1=a$, $a_{n+1}=a_n+p$ という条件によって定められる数列 $\{a_n\}$ の一般項は,

$$a_n = a + p(n-1)$$

1.3 $a_{n+1} = pa_n$ (等比型)

 $a_1=a,\ a_{n+1}=pa_n$ という条件によって定められる数列 $\{a_n\}$ の一般項は

$$a_n = ap^{n-1} (1.3)$$

である。

[証明]

n=1 のとき、式 (1.3) の右辺を計算すると

$$ap^{1-1} = a = a_1$$

より、式 (1.3) が成立する。

n=k のとき式 (1.3) が成立する、つまり $a_k=ap^{k-1}$ であると仮定すると、

$$a_{k+1} = pa_k = p(ap^{k-1}) = ap^{(k+1)-1}$$

より、n = k + 1 のときにも式 (1.3) が成立する。

以上より, $a_1=a$, $a_{n+1}=pa_n$ という条件によって定められる数列 $\{a_n\}$ の一般項は,

$$a_n = ap^{n-1}$$

1.4 $a_{n+1} = a_n + f(n)$ (階差型)

 $a_1=a,\ a_{n+1}=a_n+f(n)$ という条件によって定められる数列 $\{a_n\}$ の一般項は

$$a_n = a + \sum_{k=1}^{n-1} f(k) \ (n \ge 2), \quad a_1 = a$$

である。ただし、 a_1 のときも n の式が成り立つ場合は 1 つの式で表すことができる。

[参考] $\sum_{k=1}^n f(k)$ の性質と計算方法

性質 1
$$\sum_{k=1}^{n} \{f(k) + g(k)\} = \sum_{k=1}^{n} f(k) + \sum_{k=1}^{n} g(k)$$

性質 2
$$\sum_{k=1}^{n} cf(k) = c \sum_{k=1}^{n} f(k)$$

• $\sum_{k=1}^n r^{k-1}$ (初項 1,公比 r の等比数列第 n 項までの和)

$$(1-r)\sum_{k=1}^{n} r^{k-1} = \sum_{k=1}^{n} (r^{k-1} - r^k)$$
$$= 1 - r^n$$

m 次の項の和は

$$\sum_{k=1}^{n} \left\{ k^{m+1} - (k-1)^{m+1} \right\} = n^{m+1}$$

を利用する。このような式を立てることで, $k^{m+1}-(k-1)^{m+1}$ が m 次式となり,(m-1) 次までの項の総和を用いて表せる。

•
$$\sum_{k=1}^{n} 1$$

$$\sum_{k=1}^{n} \{k - (k-1)\} = \sum_{k=1}^{n} 1 = n$$

$$\cdot \sum_{k=1}^{n} k$$

$$\sum_{k=1}^{n} \left\{ k^2 - (k-1)^2 \right\} = \sum_{k=1}^{n} (2k-1)$$

$$= 2 \sum_{k=1}^{n} k - \sum_{k=1}^{n} 1$$

$$= 2 \sum_{k=1}^{n} k - n$$

$$= n^2$$

$$\bullet \sum_{k=1}^{n} k^2$$

$$\sum_{k=1}^{n} \left\{ k^3 - (k-1)^3 \right\} = \sum_{k=1}^{n} \left(3k^2 - 3k + 1 \right)$$

$$= 3 \sum_{k=1}^{n} k^2 - 3 \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1$$

$$= 3 \sum_{k=1}^{n} k^2 - \frac{3}{2} n(n+1) + n$$

$$= 3 \sum_{k=1}^{n} k^2 - \left(\frac{3}{2} n^2 + \frac{1}{2} n \right)$$

$$= n^3$$

$$\cdot \sum_{k=1}^{n} k^3$$

$$\sum_{k=1}^{n} \left\{ k^4 - (k-1)^4 \right\} = \sum_{k=1}^{n} \left(4k^3 - 6k^2 + 4k - 1 \right)$$

$$= 4 \sum_{k=1}^{n} k^3 - 6 \sum_{k=1}^{n} k^2 + 4 \sum_{k=1}^{n} k - \sum_{k=1}^{n} 1$$

$$= 4 \sum_{k=1}^{n} k^3 - n(n+1)(2n+1) + 2n(n+1) - n$$

$$= 4 \sum_{k=1}^{n} k^3 - \left(2n^3 + 3n^2 + n - 2n^2 - 2n + n \right)$$

$$= 4 \sum_{k=1}^{n} k^3 - \left(2n^3 + n^2 \right)$$

$$= n^4$$

同様にして, $\sum_{k=1}^{n} k^4$ 以降も計算することができる。

[例題]

 $a_1=1,\ a_{n+1}=a_n+4n-3$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答]

$$b_n = a_{n+1} - a_n = 4n - 3$$
 とする。
 $n \ge 2$ のとき、

$$a_n = a_1 + \sum_{k=1}^{n-1} b_k$$

$$= 1 + \sum_{k=1}^{n-1} (4k - 3)$$

$$= 1 + 2(n - 1)n - 3(n - 1)$$

$$= 2n^2 - 5n + 4$$

である。

$$2 \cdot 1^2 - 5 \cdot 1 + 4 = 2 - 5 + 4$$

$$= 1$$

$$= a_1$$

より、この式はn=1のときも成立する。よって、求める一般項は

$$a_n = 2n^2 - 5n + 4$$

1.5 $a_{n+1} = pa_n + f(n)$ (特性方程式型)

この式を適切に変形することで,

$$b_{n+1} = pb_n$$

という, 恒等型 (§1.1) や等比型 (§1.3) の漸化式を得られる。

変形して $b_{n+1} = pb_n$ の形で表すためには, $b_n = a_n - g(n)$ とおき, 等式を満たすように g(n) を適切に定めればよい。

この考え方は, 等差型 (§1.2) や階差型 (§1.4) の漸化式に対して も使うことができる。

この考え方を使いこなすには慣れるしかないが、分かりやすいものとして、f(n) が n の m 次式のとき、g(n) は p=1 のとき (m+1) 次、 $p \neq 1$ のとき m 次になるという性質がある。

具体的な使い方は, いくつかの例題で確認しよう。

[例題 1]

 $a_1 = 9$, $a_{n+1} = a_n + 7$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答 1] 普通は等差型(§1.2)の公式で解く。

 $a_{n+1}=a_n+7$ を変形して $b_{n+1}=b_n$ の形で表すために, $b_n=a_n-(lpha_1n+lpha_0)$ とおいて $lpha_1$, $lpha_0$ の値を定める。このとき

$$a_{n+1} - \{\alpha_1(n+1) + \alpha_0\} = a_n - (\alpha_1 n + \alpha_0)$$

であり、これを整理すると、

$$a_{n+1} = a_n + \alpha_1$$

となる。これが $a_{n+1} = a_n + 7$ となるためには、

$$\alpha_1 = 7$$

とすればよい。

このとき, $b_1 = 2 - \alpha_0$, $b_{n+1} = b_n$ であるから,

$$b_n = b_1 = 2 - \alpha_0$$

である。これと $a_n = b_n + 7n + \alpha_0$ より、求める一般項は

$$a_n = 7n + 2$$

[例題 2]

 $a_1 = 1$, $a_{n+1} = a_n + 4n - 3$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答 2] 普通は階差型(§1.4)の考え方で解く。

 $a_{n+1}=a_n+4n-3$ を変形して $b_{n+1}=b_n$ の形で表すために, $b_n=a_n-\left(\alpha_2n^2+\alpha_1n+\alpha_0\right)$ とおいて α_2 , α_1 , α_0 の値を定める。このとき

$$a_{n+1} - \left\{ \alpha_2(n+1)^2 + \alpha_1(n+1) + \alpha_0 \right\} = a_n - \left(\alpha_2 n^2 + \alpha_1 n + \alpha_0 \right)$$

であり、これを整理すると、

$$a_{n+1} = a_n + 2\alpha_2 n + (\alpha_2 + \alpha_1)$$

となる。 これが $a_{n+1} = a_n + 4n - 3$ となるためには、

$$\alpha_2 = 2$$
, $\alpha_1 = -5$

とすればよい。

このとき, $b_1 = 4 - \alpha_0$, $b_{n+1} = b_n$ であるから,

$$b_n = b_1 = 4 - \alpha_0$$

である。これと $a_n = b_n + 2n^2 - 5n + \alpha_0$ より、求める一般項は

$$a_n = 2n^2 - 5n + 4$$

[例題 3]

 $a_1 = 1$, $a_{n+1} = 3a_n + 6n - 5$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答3]

 $a_{n+1}=3a_n+6n-5$ を変形して $b_{n+1}=3b_n$ の形で表すために, $b_n=a_n-(\alpha_1 n+\alpha_0)$ とおいて, α_1 , α_0 の値を定める。このとき

$$a_{n+1} - \{\alpha_1(n+1) + \alpha_0\} = 3\{a_n - (\alpha_1 n + \alpha_0)\}\$$

であり、これを整理すると、

$$a_{n+1} = 3a_n - 2\alpha_1 n + (\alpha_1 - 2\alpha_0)$$

となる。 これが $a_{n+1} = 3a_n + 6n - 5$ となるためには,

$$\alpha_1 = -3, \quad \alpha_0 = 1$$

とすればよい。

このとき, $b_1 = 3$, $b_{n+1} = 3b_n$ であるから,

$$b_n = 3 \cdot 3^{n-1} = 3^n$$

である。これと $a_n = b_n - 3n + 1$ より、求める一般項は

$$a_n = 3^n - 3n + 1$$

[例題 4]

 $a_1 = 7$, $a_{n+1} = 2a_n + 3 \cdot 5^n$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答 4] 指数関数は和の形と相性が悪く,積の形と相性 が良い。

 $a_{n+1} = 2a_n + 3 \cdot 5^n$ の両辺を $\frac{1}{5^{n+1}}$ 倍すると,

$$\frac{a_{n+1}}{5^{n+1}} = \frac{2}{5} \cdot \frac{a_n}{5^n} + \frac{3}{5}$$

となり、 $b_n = \frac{a_n}{5^n}$ とおくと

$$b_{n+1} = \frac{2}{5}b_n + \frac{3}{5}$$

と表せる。これを $c_{n+1}=\frac{2}{5}c_n$ の形で表すために, $c_n=b_n-\alpha$ とおいて α の値を定める。このとき

$$b_{n+1} - \alpha_1 = \frac{2}{5}(b_n - \alpha_1)$$

であり、これを整理すると、

$$b_{n+1} = \frac{2}{5}b_n + \frac{3}{5}\alpha$$

となる。これが $b_{n+1} = \frac{2}{5}b_n + \frac{3}{5}$ となるためには、

$$\alpha = 1$$

とすればよい。

このとき,
$$c_1 = b_1 - 1 = \frac{2}{5}$$
, $c_{n+1} = \frac{2}{5}c_n$ であるから,

$$c_n = \left(\frac{2}{5}\right)^n$$

であり、 $b_n = c_n + 1$ より

$$b_n = \left(\frac{2}{5}\right)^n + 1$$

である。これと $a_n=5^nb_n$ より、求める一般項は

$$a_n = 2^n + 5^n$$

[例題 5]

 $a_1=1,\ a_{n+1}=2a_n+3\cdot 5^n-4$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答5]

 $a_{n+1}=2a_n+3\cdot 5^n-4$ を変形して $b_{n+1}=2b_n$ の形で表すために, $b_n=a_n-(\alpha\cdot 5^n+\beta)$ とおいて, α , β を定める。このとき

$$a_{n+1} - (\alpha \cdot 5^{n+1} + \beta) = 2\{a_n - (\alpha \cdot 5^n + \beta)\}\$$

であり、これを整理すると、

$$a_{n+1} = 2a_n + 3\alpha \cdot 5^n - \beta$$

となる。 これが $a_{n+1}=2a_n+3\cdot 5^n-4$ となるためには、

$$\alpha = 1, \quad \beta = 4$$

とすればよい。

このとき, $b_1 = -8$, $b_{n+1} = 2b_n$ であるから,

$$b_n = -8 \cdot 2^{n-1} = -2^{n+2}$$

である。これと $a_n = b_n + 5^n + 4$ より、求める一般項は

$$a_n = 5^n - 2^{n+2} + 4$$

[例題 6]

 $a_1=3,\ a_{n+1}=2a_n-rac{n+2}{n(n+1)}$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

「解答 6] 分数式は、部分分数分解してみる。

(ただし,すべての場合でうまくいくとは限らない。)

 $a_{n+1}=2a_n-rac{n+2}{n(n+1)}$ を変形して $b_{n+1}=2b_n$ の形で表すために, $b_n=a_n-f(n)$ とおいて,f(n) を定める。このとき

$$a_{n+1} - f(n+1) = 2\{a_n - f(n)\}\$$

であり、これを整理すると、

$$a_{n+1} = 2a_n + \{f(n+1) - 2f(n)\}\$$

となる。これが $a_{n+1}=2a_n-rac{n+2}{n(n+1)}$ となるためには、

$$f(n+1) - 2f(n) = -\frac{n+2}{n(n+1)} = \frac{1}{n+1} - \frac{2}{n}$$

であればよい。つまり,

$$f(n) = \frac{1}{n}$$

とすればよい。

このとき, $b_1 = 2$, $b_{n+1} = 2b_n$ であるから,

$$b_n = 2 \cdot 2^{n-1} = 2^n$$

である。これと $a_n = b_n + \frac{1}{n}$ より、求める一般項は

$$a_n = 2^n + \frac{1}{n}$$

1.6 $a_{n+1} = pa_n^q$ (対数型)

両辺の対数(底は任意の実数で構わないが、 $\log_c p$ が有理数になるような c を底に選ぶと変形がしやすい。)をとることで

$$\log_c a_{n+1} = q \log_c a_n + \log_c p$$

とでき, §1.5 の形になるため, 一般項を求められるようになる。

「例題]

 $a_1 = -1$, $a_{n+1} = -4a_n^2$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答]

与式より $a_n < 0$ である。両辺の絶対値(底が正の数であるときは 真数にできるのが正の数であるということに注意する)をとり,2 を 底とする対数をとると

$$\log_2|a_{n+1}| = 2\log_2|a_n| + 2$$

となる。ここで $b_n = \log_2 |a_n| + 2$ とおくと、この式は

$$b_{n+1} = 2b_n$$

と表せる。 $b_1 = 2$ より、

$$b_n = 2 \cdot 2^{n-1} = 2^n$$

である。これと $|a_n| = 2^{b_n-2}$ より、

$$|a_n| = 2^{2^n - 2}$$

とわかる。

 $a_n < 0$ より、求める一般項は

$$a_n = -2^{2^n - 2}$$

1.7 $a_{n+1} = f(n)a_n$ (階比型)

この形の漸化式で与えられる数列の一般項のよくある求め方は,第n項から第1項まで遡ることで式を求めるものである。しかし,

$$\frac{a_{n+1}}{g(n+1)} = \frac{pa_n}{g(n)}$$

とできれば, $b_n = \frac{a_n}{g(n)}$ とおくことで一般項を求められる。ここでは変形を利用して,一般項を求めてみよう。

f(n) が指数関数である場合は、一旦両辺の対数をとると分かりやすくなることがある。

[例題 1]

 $a_1=4,\ a_{n+1}=\left(2+rac{4}{n}
ight)a_n$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答1]

 $a_{n+1}=\left(2+rac{4}{n}
ight)a_n$ を変形して $b_{n+1}=pb_n$ の形で表すために, $b_n=rac{a_n}{f(n)}$ とおいて, $p,\ f(n)$ を定める。このとき

$$\frac{a_{n+1}}{f(n+1)} = \frac{pa_n}{f(n)}$$

であり、これを整理すると、

$$a_{n+1} = \frac{pf(n+1)}{f(n)}a_n$$

となる。 これが
$$a_{n+1}=\left(2+\frac{4}{n}\right)a_n$$
 となるためには,
$$\frac{pf(n+1)}{f(n)}=2+\frac{4}{n}=\frac{2(n+2)}{n}=\frac{2(n+1)(n+2)}{n(n+1)}$$

であればよい。つまり,

$$p = 2$$
, $f(n) = n(n+1)$

とすればよく, このとき, $b_1 = 2$, $b_{n+1} = 2b_n$ であるから,

$$b_n = 2 \cdot 2^{n-1} = 2^n$$

である。これと $a_n = n(n+1)b_n$ より、求める一般項は

$$a_n = 2^n n(n+1)$$

[例題 2]

 $a_1=1,\ a_{n+1}=(n+1)a_n$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

「解答 2]

 $a_{n+1} = (n+1)a_n$ を変形して $b_{n+1} = pb_n$ の形で表すために, $b_n = \frac{a_n}{f(n)}$ とおいて, p, f(n) を定める。このとき

$$\frac{a_{n+1}}{f(n+1)} = \frac{pa_n}{f(n)}$$

であり、これを整理すると、

$$a_{n+1} = \frac{pf(n+1)}{f(n)}a_n$$

となる。 これが $a_{n+1} = (n+1)a_n$ となるためには、

$$\frac{pf(n+1)}{f(n)} = n+1 = \frac{(n+1) \cdot n!}{n!} = \frac{(n+1)!}{n!}$$

であればよい。つまり,

$$p = 1, \quad f(n) = n!$$

とすればよく, このとき, $b_1 = 1$, $b_{n+1} = b_n$ であるから,

$$b_n = b_1 = 1$$

である。これと $a_n = n! \cdot b_n$ より、求める一般項は

$$a_n = n!$$

[例題 3]

 $a_1=2,\ a_{n+1}=2^{2n+1}a_n$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

「解答 3-1]

 $a_{n+1} = (n+1)a_n$ を変形して $b_{n+1} = pb_n$ の形で表すために, $b_n = \frac{a_n}{f(n)}$ とおいて, p, f(n) を定める。このとき

$$\frac{a_{n+1}}{f(n+1)} = \frac{pa_n}{f(n)}$$

であり、これを整理すると、

$$a_{n+1} = \frac{pf(n+1)}{f(n)}a_n$$

となる。 これが $a_{n+1} = 2^{2n+1}a_n$ となるためには,

$$\frac{pf(n+1)}{f(n)} = 2^{2n+1} = 2^{(n+1)^2 - n^2} = \frac{2^{(n+1)^2}}{2^{n^2}}$$

であればよい。つまり,

$$p = 1$$
, $f(n) = 2^{n^2}$

とすればよく, このとき, $b_1 = 1$, $b_{n+1} = b_n$ であるから,

$$b_n = b_1 = 1$$

である。これと $a_n = 2^{n^2} b_n$ より、求める一般項は

$$a_n = 2^{n^2}$$

[解答 3-2]

与式の両辺に、2を底とする対数をとると、

$$\log_2 a_{n+1} = (2n+1) + \log_2 a_n$$

これを変形すると

$$\log_2 a_{n+1} - (n+1)^2 = \log_2 a_n - n^2$$

とできる。(詳しくは §1.4、§1.5、または §1.12 を参照) $b_n = \log_2 a_n - n^2$ とおくと、 $b_1 = 0$ 、 $b_{n+1} = b_n$ であるから、

$$b_n = b_1 = 0$$

である。これと $a_n=2^{b_n+n^2}$ より、求める一般項は

$$a_n = 2^{n^2}$$

1.8 $a_{n+1} = f_1(n)a_n + f_2(n)$

階比型(§1.7)のときと同様に変形し、

$$\frac{a_{n+1}}{g_1(n+1)} = \frac{pa_n}{g_1(n)} + g_2(n)$$

とできれば、 $b_n = \frac{a_n}{g_1(n)}$ とおくことで階差型や特性方程式型となり、 $\S1.4$ や $\S1.5$ と同様の考え方で一般項を求められる。

[例題]

 $a_1=1,\ a_{n+1}=rac{n+1}{n}a_n+2n^2+3n+1$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答]

 $a_{n+1}=(n+1)a_n$ を変形して $b_{n+1}=pb_n+g(n)$ の形で表すために, $b_n=rac{a_n}{f(n)}$ とおいて, $p,\ f(n),\ g(n)$ を定める。このとき

$$\frac{a_{n+1}}{f(n+1)} = \frac{pa_n}{f(n)} + g(n)$$

であり、これを整理すると、

$$a_{n+1} = \frac{pf(n+1)}{f(n)}a_n + f(n+1)g(n)$$

となる。これが $a_{n+1}=rac{n+1}{n}a_n+2n^2+3n+1$ となるためには、

$$\frac{pf(n+1)}{f(n)} = \frac{n+1}{n}$$

であればよい。つまり,

$$p = 1, \quad f(n) = n$$

とすればよく, また,

$$g(n) = 2n + 1$$

である。このとき、 $b_1 = 1$, $b_{n+1} = b_n + 2n + 1$ であるから、

$$b_n = b_1 + (n^2 - 1) = n^2$$

である。(§1.4 参照) これと $a_n = nb_n$ より、求める一般項は

$$a_n = n^3$$

1.9
$$a_{n+1} = \frac{f_1(n)a_n}{f_2(n)a_n + f_3(n)}$$

 $a_{n+1} \neq 0$ かつ $f_1(n)a_n \neq 0$ であるなら、両辺の逆数をとることができ、

$$\frac{1}{a_{n+1}} = \frac{f_3(n)}{f_1(n)} \frac{1}{a_n} + \frac{f_2(n)}{f_1(n)}$$

とすれば、 $b_n=\frac{1}{a_n}$ とおくことで $\S1.8$ の形になるため、一般項を求められるようになる。

「例題]

 $a_1=1,\ a_{n+1}=rac{2^{2n+1}a_n}{2^{1-n^2}a_n+1}$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答]

 $a_{n+1}=0$ と仮定すると a_n も 0 となり, $a_1=0$ となる。しかしこれは $a_1=1$ に矛盾する。よって $a_{n+1}\neq 0$ かつ $2^{2n+1}a_n\neq 0$ である。与式の両辺の逆数をとると,

$$\frac{1}{a_{n+1}} = \left(\frac{1}{2}\right)^{2n+1} \frac{1}{a_n} + \left(\frac{1}{2}\right)^{n^2 + 2n}$$

となる。この両辺に $2^{(n+1)^2} = 2^{n^2+2n+1}$ を掛けると

$$\frac{2^{(n+1)^2}}{a_{n+1}} = \frac{2^{n^2}}{a_n} + 2$$

となる。(§1.7 参照)

さらに両辺から 2(n+1) = 2n+2 を引くと

$$\frac{2^{(n+1)^2}}{a_{n+1}} - 2(n+1) = \frac{2^{n^2}}{a_n} - 2n$$

となる。(§1.5 参照)

ここで,
$$b_n = \frac{2^{n^2}}{a_n} - 2n$$
 とおくと, $b_1 = 0$, $b_{n+1} = b_n$ であるから,

$$b_n = b_1 = 0$$

である。これと
$$a_n=rac{2^{n^2}}{b_n+2n}$$
 より,求める一般項は

$$a_n = \frac{2^{n^2 - 1}}{n}$$

1.10
$$a_{n+1} = \frac{f_1(n)a_n + f_2(n)}{f_3(n)a_n + f_4(n)}$$

変形して

$$a_{n+1} - g(n+1) = \frac{g_1(n)\{a_n - g(n)\}}{g_2(n)\{a_n - g(n)\} + g_3(n)}$$

とできれば、 $b_n = a_n - g(n)$ とおくことで、§1.9 の形になり、一般項を求められるようになる。

[例題 1]

 $a_1=4,\ a_{n+1}=rac{3a_n-4}{a_n-1}$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答 1]

与式を変形して $b_{n+1}=\frac{f_1(n)b_n}{f_2(n)b_n+f_3(n)}$ の形で表すために, $b_n=a_n-g(n)$ とおいて, $f_1(n)$, $f_2(n)$, $f_3(n)$, g(n) を定める。このとき

$$a_{n+1} - g(n+1) = \frac{f_1(n)\{a_n - g(n)\}}{f_2(n)\{a_n - g(n)\} + f_3(n)}$$

であり、これを整理すると

$$a_{n+1} - g(n+1) = \frac{f_1(n)a_n - f_1(n)g(n)}{f_2(n)a_n + \{f_3(n) - f_2(n)g(n)\}}$$

$$a_{n+1} = \frac{\{f_1(n) + f_2(n)g(n+1)\}a_n + \{f_3(n)g(n+1) - f_2(n)g(n)g(n+1) - f_1(n)g(n)\}}{f_2(n)a_n + \{f_3(n) - f_2(n)g(n)\}}$$

となる。

これが
$$a_{n+1}=rac{3a_n-4}{a_n-1}$$
 となるためには,

$$g(n) = 2$$
, $f_1(n) = 1$, $f_2(n) = 1$, $f_3(n) = 1$

とすればよい。(連立方程式を解き、解を求めた。)

このとき

$$b_{n+1} = \frac{b_n}{b_n + 1}$$

であり, $b_1 \neq 0$ より $b_{n+1} \neq 0$ かつ $b_n \neq 0$ だから, 両辺の逆数をとって

$$\frac{1}{b_{n+1}} = \frac{1}{b_n} + 1$$

とできる。 $b_1 = 2$ より $\frac{1}{b_n} = \frac{1}{2}$ であるから,

$$\frac{1}{h} = \frac{2n-1}{2}$$

とわかる。(§1.2 参照)

したがって,

$$b_n = \frac{2}{2n-1}$$

である。これと $a_n = b_n + 2$ より、求める一般項は

$$a_n = \frac{4n}{2n-1}$$

[例題 2]

 $a_1=3,\ a_{n+1}=rac{2a_n+3^{n+1}}{3^{n-1}a_n+2}$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答 2]

与式を変形して $b_{n+1}=\frac{f_1(n)b_n}{f_2(n)b_n+f_3(n)}$ の形で表すために, $b_n=a_n-g(n)$ とおいて, $f_1(n)$, $f_2(n)$, $f_3(n)$, g(n) を定める。このとき

$$a_{n+1} - g(n+1) = \frac{f_1(n)\{a_n - g(n)\}}{f_2(n)\{a_n - g(n)\} + f_3(n)}$$

であり、これを整理すると

$$a_{n+1} - g(n+1) = \frac{f_1(n)a_n - f_1(n)g(n)}{f_2(n)a_n + \{f_3(n) - f_2(n)g(n)\}}$$

$$a_{n+1} = \frac{\{f_1(n) + f_2(n)g(n+1)\}a_n + \{f_3(n)g(n+1) - f_2(n)g(n)g(n+1) - f_1(n)g(n)\}}{f_2(n)a_n + \{f_3(n) - f_2(n)g(n)\}}$$

となる。

これが
$$a_{n+1}=rac{2a_n+3^{n+1}}{3^{n-1}a_n+2}$$
 となるためには,

$$g(n) = 3$$
, $f_1(n) = 2 - 3^n$, $f_2(n) = 3^{n-1}$, $f_3(n) = 3^n + 2$

とすればよい。(連立方程式を解き、解の1つを求めた。) このとき、 $b_1 = 0$ であるから、

$$b_n = 0$$

である。これと $a_n = b_n + g(n)$ より、求める一般項は

 $a_n = 3$

である。(他の解を用いても同じ結果が得られる。)

 $a_k=3$ のとき $a_{k+1}=3$ になるということから、数学的帰納法を用いて証明してもよい。

1.11 演習問題(基礎~標準レベルのみ)

以下の条件によって定められる数列 $\{a_n\}$ の一般項を求めよ。

1.
$$a_1 = 3$$
, $a_{n+1} = a_n - 2$

2.
$$a_1 = 7$$
, $a_{n+1} = a_n + 3$

3.
$$a_1 = 4$$
, $a_{n+1} = 8a_n$

4.
$$a_1 = 6$$
, $a_{n+1} = 9a_n$

5.
$$a_1 = 1$$
, $a_{n+1} = a_n + 2n + 1$

6.
$$a_1 = 0$$
, $a_{n+1} = a_n + 6n^2 - 4n - 1$

7.
$$a_1 = 2$$
, $a_{n+1} = a_n + 2^n$

8.
$$a_1 = 2$$
, $a_{n+1} = 3a_n + 2$

9.
$$a_1 = 3$$
, $a_{n+1} = 5a_n - 8$

10.
$$a_1 = 5$$
, $a_{n+1} = 4a_n + 9$

11.
$$a_1 = 2$$
, $a_{n+1} = 2a_n + 5n - 4$

12.
$$a_1 = 4$$
, $a_{n+1} = 3a_n + 2n - 5$

13.
$$a_1 = 1$$
, $a_{n+1} = 4a_n - 6n - 1$

14.
$$a_1 = 1$$
, $a_{n+1} = 2a_n + 4n^2 - 5n + 1$

1.12 演習問題解答

詳しい解答は省略する。

1. $a_1 = 3$, $a_{n+1} = a_n - 2$ より、求める一般項は

$$a_n = 3 - 2(n-1) = -2n + 5$$

である。

→ 初項 3, 公差 -2 の等差数列

- 2. $a_n = 3n + 4$
 - → 初項 7, 公差 3 の等差数列

 $3. a_1 = 4, a_{n+1} = 8a_n$ より、求める一般項は

$$a_n = 4 \cdot 8^{n-1} = 2^2 \cdot 2^{3(n-1)} = 2^{3n-1}$$

である。

→ 初項 4, 公比 8 の等比数列

- 4. $a_n = 2 \cdot 3^{2n-1}$
 - → 初項 6, 公比 9 の等比数列

5. 数列 $\{a_n\}$ の階差数列 $\{b_n\}$ を利用すると,

$$b_n = a_{n+1} - a_n = 2n + 1$$

であるから, $n \ge 2$ のとき,

$$a_n = 1 + \sum_{k=1}^{n-1} (2k+1)$$

$$= 1 + 2 \cdot \frac{1}{2} (n-1)n + (n-1)$$

$$= 1 + n^2 - n + n - 1$$

$$= n^2$$

この式は n=1 でも成り立つ。したがって求める一般項は

$$a_n = n^2$$

6. 数列 $\{a_n\}$ の階差数列 $\{b_n\}$ を利用すると,

$$b_n = a_{n+1} - a_n = 6n^2 - 4n - 1$$

であるから, $n \ge 2$ のとき,

$$a_n = 0 + \sum_{k=1}^{n-1} (6k^2 - 4k - 1)$$

$$= 6 \cdot \frac{1}{6}(n-1)n(2n-1) - 4 \cdot \frac{1}{2}(n-1)n - (n-1)$$

$$= (n-1)n(2n-1) - 2(n-1)n - (n-1)$$

$$= 2n^3 - 3n^2 + n - 2n^2 + 2n - n + 1$$

$$= 2n^3 - 5n^2 + 2n + 1$$

この式は n=1 でも成り立つ。したがって求める一般項は

$$a_n = 2n^3 - 5n^2 + 2n + 1$$

7.
$$a_n = 2^n$$

8. 与式を変形して $b_{n+1}=3b_n$ の形で表すために, $b_n=a_n-\alpha$ とおいて α の値を定める。このとき

$$a_{n+1} - \alpha = 3(a_n - \alpha)$$

であり、これを整理すると、

$$a_{n+1} = 3a_n - 2\alpha$$

となる。これが $a_{n+1} = 3a_n + 2$ となるためには、

$$\alpha = -1$$

とすればよい。

このとき, $b_1 = 3$, $b_{n+1} = 3b_n$ であるから,

$$b_n = 3 \cdot 3^{n-1} = 3^n$$

である。これと $a_n = b_n - 1$ より、求める一般項は

$$a_n = 3^n - 1$$

9.
$$a_n=5^{n-1}+2$$
 $\rightarrow b_n=a_n-2$ とおくと、 $b_{n+1}=5b_n$ の形にできる。

10.
$$a_n = 2^{2n+1} - 3$$

 $\rightarrow b_n = a_n + 3$ とおくと、 $b_{n+1} = 4b_n$ の形にできる。

11. 与式を変形して $b_{n+1} = 2b_n$ の形で表すために $b_n = a_n - \alpha_1 n - \alpha_0$ とおき, α_1 , α_0 の値を定める。このとき

$$a_{n+1} - \alpha_1(n+1) - \alpha_0 = 2(a_n - \alpha_1 n - \alpha_0)$$

であり、これを整理すると、

$$a_{n+1} = 2a_n - \alpha_1 n + (\alpha_1 - \alpha_0)$$

となる。 これが $a_{n+1} = 2a_n + 5n - 4$ となるためには,

$$\alpha_1 = -5, \quad \alpha_0 = -1$$

とすればよい。

このとき, $b_1 = 8$, $b_{n+1} = 2b_n$ であるから,

$$b_n = 8 \cdot 2^{n-1} = 2^{n+2}$$

である。これと $a_n = b_n - 5n - 1$ より、求める一般項は

$$a_n = 2^{n+2} - 5n - 1$$

12.
$$a_n = 3^n - n + 2$$
 $\rightarrow b_n = a_n + n - 2$ とおくと、 $b_{n+1} = 3b_n$ の形にできる。

13.
$$a_n=-2^{2n-1}+2n+1$$
 $\rightarrow b_n=a_n-2n-1$ とおくと、 $b_{n+1}=4b_n$ の形にできる。

14. 与式を変形して $b_{n+1} = 2b_n$ の形で表すために,

$$b_n = a_n - \alpha_2 n^2 - \alpha_1 n - \alpha_0$$

とおき, α_2 , α_1 , α_0 の値を定める。このとき

$$a_{n+1} - \alpha_2(n+1)^2 - \alpha_1(n-1) - \alpha_0 = 2(a_n - \alpha_2 n^2 - \alpha_1 n - \alpha_0)$$

であり、これを整理すると、

$$a_{n+1} = 2a_n - \alpha_2 n^2 + (2\alpha_2 - \alpha_1)n + (\alpha_2 + \alpha_1 - \alpha_0)$$

となる。 これが $a_{n+1} = 2a_n + 4n^2 - 5n + 1$ となるためには、

$$\alpha_2 = -4, \quad \alpha_1 = -3, \quad \alpha_0 = -8$$

とすればよい。

このとき, $b_1 = 16$, $b_{n+1} = 2b_n$ であるから,

$$b_n = 16 \cdot 2^{n-1} = 2^{n+3}$$

である。これと $a_n = b_n - 4n^2 - 3n - 8$ より、求める一般項は

$$a_n = 2^{n+3} - 4n^2 - 3n - 8$$

第2章 隣接3項間漸化式

初項,第2項,隣接する3項の関係を定めれば,数列のすべての項が決定される。隣接する3項間にある関係を表した漸化式を,**隣接3項間漸化式**という。2項間漸化式の考え方を利用することで同様に解くことができる。

2.1 $a_{n+2} + pa_{n+1} + qa_n = 0$

この式を適切に変形することで,

$$a_{n+2} - \alpha_1 a_{n+1} = \alpha_2 (a_{n+1} - \alpha_1 a_n)$$

の形で表すことができれば、 $b_n = a_{n+1} - \alpha_1 a_n$ とおくことにより

$$b_{n+1} = \alpha_2 b_n$$

という, 等比型 (§1.3) の漸化式を得られる。

[例題]

 $a_1 = a_2 = 1$, $a_{n+2} - 5a_{n+1} + 6a_n = 0$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答]

与式を変形して

$$a_{n+2} - \alpha_1 a_{n+1} = \alpha_2 (a_{n+1} - \alpha_1 a_n)$$

の形で表すために α_1 , α_2 を定める。整理すると

$$a_{n+2} - (\alpha_1 + \alpha_2)a_{n+1} + \alpha_1\alpha_2a_n = 0$$

となる。 これが $a_{n+2} - 5a_{n+1} + 6a_n = 0$ となるためには,

$$\begin{cases} \alpha_1 = 2 \\ \alpha_2 = 3 \end{cases}$$

とすればよい。(和と積の情報から二次方程式を作って解いた。) $b_n = a_{n+1} - 2a_n$ とおくと, $b_1 = -1$, $b_{n+1} = 3b_n$ より,

$$b_n = -3^{n-1}$$

となる。これと $b_n = a_{n+1} - 2a_n$ より,

$$a_{n+1} = 2a_n - 3^{n-1}$$

という隣接 2 項間漸化式が得られる。この漸化式に対して特性方程式型(§1.5)の[**例題 4**]の考え方を用いると,

$$\frac{a_{n+1}}{3^{n+1}} = \frac{2}{3} \cdot \frac{a_n}{3^n} - \frac{1}{9}$$

 $c_n = \frac{a_n}{3^n}$ とおくと

$$c_{n+1} = \frac{2}{3}c_n - \frac{1}{9}$$

である。

$$d_n = c_n + \frac{1}{3}$$

とおくことで $d_{n+1}=\frac{2}{3}d_n$ となり,これを用いると $d_n=\left(\frac{2}{3}\right)^n$ となる。したがって, $c_n=\left(\frac{2}{3}\right)^n-\frac{1}{3}$ であり,求める一般項は

$$a_n = 2^n - 3^{n-1}$$

2.2 $a_{n+2} + pa_{n+1} + qa_n = r$

この式を適切に変形することで,

$$a_{n+2} - \alpha_1 a_{n+1} = \alpha_2 (a_{n+1} - \alpha_1 a_n) + r$$

の形で表すことができれば、 $b_n = a_{n+1} - \alpha_1 a_n$ とおくことにより

$$b_{n+1} = \alpha_2 b_n + r$$

という,特性方程式型(§1.5)の漸化式を得られる。

[例題]

 $a_1=1,\ a_2=4,\ a_{n+2}-5a_{n+1}+6a_n=2$ によって定められる数列 $\{a_n\}$ の一般項を求めよ。

[解答]

与式を変形して

$$a_{n+2} - \alpha_1 a_{n+1} = \alpha_2 (a_{n+1} - \alpha_1 a_n) + 2$$

の形で表すために α_1 , α_2 を定める。整理すると

$$a_{n+2} - (\alpha_1 + \alpha_2)a_{n+1} + \alpha_1\alpha_2a_n = 2$$

となる。 これが $a_{n+2} - 5a_{n+1} + 6a_n = 2$ となるためには,

$$\begin{cases} \alpha_1 = 2 \\ \alpha_2 = 3 \end{cases}$$

とすればよい。

$$b_n = a_{n+1} - 2a_n$$
 とおくと, $b_1 = 2$, $b_{n+1} + 1 = 3(b_n + 1)$ より,

$$b_n = 3^n - 1$$

となる。 これと $b_n = a_{n+1} - 2a_n$ より,

$$a_{n+1} = 2a_n + 3^n - 1$$

という隣接 2 項間漸化式が得られる。この漸化式に対して特性方程式型 ($\S1.5$) の **[例題 3]** の考え方を用いると,

$$a_{n+1} - 1 = 2(a_n - 1) + 3^n$$

さらに特性方程式型(§1.5)の [例題 4] の考え方を用いると,

$$\frac{a_{n+1}-1}{3^{n+1}} = \frac{2}{3} \cdot \frac{a_n-1}{3^n} + \frac{1}{3}$$

$$c_n = \frac{a_n - 1}{3^n}$$
 とおくと

$$c_{n+1} = \frac{2}{3}c_n + \frac{1}{3}$$

である。

$$d_n = c_n - 1$$

とおくことで $d_{n+1}=\frac{2}{3}d_n$ となり、これを用いると $d_n=-\left(\frac{2}{3}\right)^{n-1}$ となる。したがって、 $c_n=-\left(\frac{2}{3}\right)^{n-1}+1$ であり、求める一般項は

$$a_n = -3 \cdot 2^{n-1} + 3^n + 1$$