

Introduction to Inverse Problem in Imaging

EC 522 Computational Optical Imaging

Lei Tian

Admins

- » HW 2 is posted
 - » Due 2/21 (Wednesday; after Presidents' day break)

Mathematical tools & road map

- » Vector space (IIP Appx A)
 - » Key idea: think about the imaging signals as a <u>vector</u>
- » Linear operator (IIP Appx B)
 - » Key idea: think about imaging process as a linear transformation, i.e. a linear operator
 - » Later, we will perform discretization and convert the operator into a <u>matrix</u>

Linear operator

Linear operator

» Linear operator A maps the input to the output:

»
$$A: \mathcal{X} \to \mathcal{Y}$$

Linear operator

- » Linear operator $A: \mathcal{X} \to \mathcal{Y}$ satisfies
 - » $A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 A(f_1) + \alpha_2 A(f_2)$, for any complex numbers α_1 and α_2
 - » Additivity: $A(f_1 + f_2) = A(f_1) + A(f_2)$
 - » Scalability: $A(\alpha f) = \alpha A(f)$

» Simplified notation as

$$Af = g$$

Linear operator: example

» Fourier transform is linear operator

- » CTFT: $\mathcal{L}^2(\mathbb{R}) \to \mathcal{L}^2(\mathbb{R})$
- » DFT: $\mathbb{C}^N \to \mathbb{C}^N$

Fourier transform can be treated as linear operator!

Range space*

- » The *Range space* of a linear operator $A: \mathcal{R}(A)$
 - » The set of all elements $g \in \mathcal{Y}$ from Af = g

$$\mathcal{R}(A) = \{ g = Af \in \mathcal{Y}, f \in \mathcal{X} \}$$

» $\mathcal{R}(A)$ is a subspace in \mathcal{Y}

* plays a central role in inverse problem

Null space *

- » The **null space** of a linear operator $A: \mathcal{N}(A)$
 - » The set of all elements $f \in \mathcal{X}$ such that Af = 0

$$\mathcal{N}(A) = \{ f \in \mathcal{X}, Af = 0 \}$$

» $\mathcal{N}(A)$ is a subspace in \mathcal{X}

* plays a central role in inverse problem

LSI system and Convolution operator

Convolution operator

» Convolution operator A

$$(Af)(x) = K(x) * f(x)$$

$$= \int K(x - x') f(x') dx'$$

» Spectral representation

»
$$(Af)(x) = \int \widetilde{K}(u) \, \widetilde{f}(u) e^{i2\pi xu} du$$

» Properties: linear & bounded

Why?

Convolution operator

- » Properties: bounded
- » Proof:
 - » Existence of FT

$$\hat{K}_{max} = \max_{\omega} |\hat{K}(\omega)|$$

$$\longrightarrow \|Af\| \leq \hat{K}_{max} \|f\|.$$

Bandlimited convolution operator/system

» Frequency Support (Band): ${\mathcal B}$

» Bandlimited system

»
$$\widetilde{K}(u) = 0$$
, for $u \notin \mathcal{B}$

Range of a convolution operator

» Range of convolution operator A, $\mathcal{R}(A)$

» $\mathcal{R}(A)$ contains all the bandlimited functions with a band that is contained in \mathcal{B} :

$$\mathcal{R}(A) \subset \{g \in L^2 | \tilde{g}(u) = 0, u \notin \mathcal{B}\}$$

The Range of A is set by \mathcal{B}

Side note:

- I found it is easier to work with $u = \omega/2\pi$ in FT and IFT, the textbook uses ω .
- Throughout the lecture, we will use the definition in the u-space.

Null space of a convolution operator

» Null space of convolution operator $A, \mathcal{N}(A)$

» $\mathcal{N}(A)$ contains all the functions that satisfy

$$\mathcal{N}(A) \supset \{ f \in L^2 | \tilde{f}(u) = 0, u \in \mathcal{B} \}$$

» "invisible object"?

Example: Null space of a convolution operator

Why super-resolution is hard?

Linear operator (cont'd)

- » Linear operator A is bounded, if
 - » there exists a constant M such that, for every f

$$||Af||_{\mathcal{Y}} \leq M||f||_{\mathcal{X}}$$

» The operator **norm** of A:

$$||A|| = \sup_{f \in \mathcal{X}} \frac{||Af||_{\mathcal{Y}}}{||f||_{\mathcal{X}}}$$

supremum = the least upper bound

» The operator A is continuous, if

$$\|f_n - f\|_{\mathcal{X}} \to 0$$
 then $\|Af_n - Af\|_{\mathcal{Y}} \to 0$

» Iff A is bounded

Inverse operator

» A bounded linear operator A: $\mathcal{X} \to \mathcal{Y}$ is <u>invertible</u> if there exists a bounded linear operator B: $\mathcal{Y} \to \mathcal{X}$ such that

$$BAx = x$$
 for every $x \in \mathcal{X}$, and $ABy = y$ for every $y \in \mathcal{Y}$

» Theoretical useful, in practice, inverse rarely exist

Inverse of a convolution operator

except for isolated point

» If $\widetilde{K}(u)$ has a support coincides with the whole frequency space $Non-zero\ everywhere$

» The inverse operator A^{-1}

$$(A^{-1}g)(x) = \frac{1}{2\pi} \int \frac{\tilde{g}(u)}{\tilde{K}(u)} e^{i2\pi xu} du$$

» Not bounded if $\widetilde{K}(u)$ contains zeros.

Adjoint operator *

- » The adjoint operator A* (or A^H) of a linear and bounded operator A
 - » $A^*: \mathcal{Y} \to \mathcal{X}$ is the adjoint of $A: \mathcal{X} \to \mathcal{Y}$, when

$$\langle Ax, y \rangle_{\mathcal{U}} = \langle x, A^*y \rangle_{\mathcal{X}}$$
 for every $x \in \mathcal{X}, y \in \mathcal{Y}$

- » If $A = A^*$, A is self-adjoint or Hermitian
- » Generalization of the Hermitian transpose (complex conjugate transpose) of a matrix

* important in inverse problem

Exercise: Adjoint operator

What is the adjoint of Fourier transform operator?

Example: adjoint for LSI system

Adjoint of a convolution operator

» Definition of Adjoint operator:

$$\langle Ax, y \rangle_{\mathcal{Y}} = \langle x, A^*y \rangle_{\mathcal{X}}$$

» Use definition of the convolution operator

$$\langle Ax, y \rangle_{y} = \frac{1}{(2\pi)^{q}} \int \hat{K}(\omega) \hat{f}(\omega) \hat{g}^{*}(\omega) d\omega$$
$$= \frac{1}{(2\pi)^{q}} \int \hat{f}(\omega) \left[\hat{K}^{*}(\omega) \hat{g}(\omega) \right]^{*} d\omega$$
$$= (f, A^{*}g)$$

$$(A^*g)(x) = \frac{1}{(2\pi)^q} \int \hat{K}^*(\omega) \hat{g}(\omega) e^{ix\cdot\omega} d\omega.$$

Properties of Adjoint operator

- » The adjoint A* is unique
- $(A^*)^* = A$
- » The operators AA* and A*A are self-adjoint
- $||A^*|| = ||A||$
- » If A is invertible, $(A^{-1})^* = (A^*)^{-1}$
- $(A+B)^*=A^*+B^*$ why
- \Rightarrow (BA)*=A*B*

Geometric relation between null space and range space

$$\mathcal{N}(A) = \mathcal{R}(A^*)^{\perp}$$

 $\mathcal{N}(A^*) = \mathcal{R}(A)^{\perp}$

Relation between null space and range

» Proof

Proof B.1. We prove the first relation (B.8). From the definition (B.6) of the adjoint operator it follows that, if $f \in \mathcal{N}(A)$, i.e. Af = 0, then the l.h.s. of the equation (B.6) is zero for any g, so that f is orthogonal to all elements A^*g , i.e. to $\mathcal{R}(A^*)$. This result implies that $\mathcal{N}(A)$ is contained in $\mathcal{R}(A^*)^{\perp}$. On the other hand, if $f \in \mathcal{R}(A^*)^{\perp}$, then the r.h.s. of equation (B.6) is zero for any g and therefore Af is orthogonal to all elements of \mathcal{Y} . But this implies Af = 0, i.e. $f \in \mathcal{N}(A)$. It follows that $\mathcal{R}(A^*)^{\perp}$ is contained in $\mathcal{N}(A)$. By combining the two inclusions, we get $\mathcal{N}(A) = \mathcal{R}(A^*)^{\perp}$. The second relation in (B.8) is obtained from the first one by simply exchanging A with A^* .

Example: Relation between range and null space of a convolution operator

A is a convolution operator

$$f_1 \in \mathcal{R}(A)$$

$$f_2 \in \mathcal{N}(A)$$

»
$$f_1 \perp f_2$$

and
$$\mathcal{N}(A) = \mathcal{R}(A)^{\perp}$$

Why?

Relation between range and null space of a convolution operator

A is a convolution operator

»
$$f_1 \in \mathcal{R}(A)$$
 Only contain frequency component $u \in \mathcal{B}$

»
$$f_2 \in \mathcal{N}(A)$$
 Only contain frequency component $u \notin \mathcal{B}$

»
$$f_1 \perp f_2$$
 and $\mathcal{N}(A) = \mathcal{R}(A)^{\perp}$

Adjoint of a convolution operator

» Adjoint of convolution operator A*

$$(A^*g)(x) = K^*(-x) * g(x)$$

$$= \int K^*(x'-x)g(x')dx'$$

» Spectral representation

»
$$(A^*g)(x) = \int \widetilde{K}^*(u) \, \widetilde{g}(u) e^{i2\pi xu} du$$

Proof?

Side note:

- I found it is easier to work with $u = \omega/2\pi$ in FT and IFT, the textbook uses ω .
- Throughout the lecture, we will use the definition in the u-space.

Unitary operator

- » Preserve geometry (lengths and angles) when mapping one vector space to another
- » A bounded linear operator $A: \mathcal{X} \to \mathcal{Y}$ is unitary, when
 - » A is invertible
 - » A preserves inner product

$$\langle f, h \rangle_{\mathcal{X}} = \langle Af, Ah \rangle_{\mathcal{Y}}$$
, for every $f, h \in \mathcal{X}$

Unitary operator

» A is unitary if and only if

$$A^{-1} = A^* \text{ or } A^*A = I$$

» If A is unitary, then $||Ax||^2 = ||x||^2$

Eigenvector and eigenvalue of a linear operator

» An **eigenvector** of a linear operator $A: H \rightarrow H$ is a nonzero vector $v \in H$, such that $Av = \lambda v$

» $\lambda \in \mathbb{C}$ is the **eigenvalue**.

Example: LSI system

Eigenvector/eigenvalue of self-adjoint operator

- » All eigenvalues are *real*
- » Eigenvectors corresponding to distinct eigenvalues are <u>orthogonal</u>

Definite linear operator

- » Consider operator $A: H \rightarrow H$
- » Positive semidefinite: $A \ge 0$, when
 - $(Ax, x) \ge 0$, for all $x \in H$
- » Positive definite: A > 0, when
 - (Ax, x) > 0, for all $x \in H$

A summary of LSI system and Convolution operator

Convolution operator

» Convolution operator A

$$Af(x) = K(x) * f(x)$$

$$= \int K(x - x') f(x') dx'$$

» Spectral representation

»
$$(Af)(x) = \int \widetilde{K}(u) \, \widetilde{f}(u) e^{i2\pi xu} du$$

» Properties: linear & bounded

Why?

Convolution operator

- » Properties: bounded
- » Proof:
 - » Existence of FT

$$\hat{K}_{max} = \max_{\omega} |\hat{K}(\omega)|$$

$$\longrightarrow \|Af\| \leq \hat{K}_{max} \|f\|.$$

Bandlimited convolution operator/system

» Frequency Support (Band): ${\mathcal B}$

» Bandlimited system

»
$$\widetilde{K}(u) = 0$$
, for $u \notin \mathcal{B}$

Range of a convolution operator

» Range of convolution operator A, $\mathcal{R}(A)$

» $\mathcal{R}(A)$ contains all the bandlimited functions with a band that is contained in \mathcal{B} :

$$\mathcal{R}(A) \subset \{g \in L^2 | \tilde{g}(u) = 0, u \notin \mathcal{B}\}$$

The Range of A is set by \mathcal{B}

Side note:

- I found it is easier to work with $u = \omega/2\pi$ in FT and IFT, the textbook uses ω .
- Throughout the lecture, we will use the definition in the u-space.

Null space of a convolution operator

» Null space of convolution operator $A, \mathcal{N}(A)$

» $\mathcal{N}(A)$ contains all the functions that satisfy

$$\mathcal{N}(A) \supset \{ f \in L^2 | \tilde{f}(u) = 0, u \in \mathcal{B} \}$$

» "invisible object"?

Example: Null space of a convolution operator

Why super-resolution is hard?

Relation between range and null space of a convolution operator

A is a convolution operator

$$f_1 \in \mathcal{R}(A)$$

$$f_2 \in \mathcal{N}(A)$$

»
$$f_1 \perp f_2$$

and
$$\mathcal{N}(A) = \mathcal{R}(A)^{\perp}$$

Why?

Relation between range and null space of a convolution operator

A is a convolution operator

»
$$f_1 \in \mathcal{R}(A)$$
 Only contain frequency component $u \in \mathcal{B}$

»
$$f_2 \in \mathcal{N}(A)$$
 Only contain frequency component $u \notin \mathcal{B}$

»
$$f_1 \perp f_2$$
 and $\mathcal{N}(A) = \mathcal{R}(A)^{\perp}$

Adjoint of a convolution operator

» Adjoint of convolution operator A*

$$(A^*g)(x) = K^*(-x) * g(x)$$

$$= \int K^*(x'-x)g(x')dx'$$

» Spectral representation

»
$$(A^*g)(x) = \int \widetilde{K}^*(u) \, \widetilde{g}(u) e^{i2\pi xu} du$$

Proof?

Side note:

- I found it is easier to work with $u = \omega/2\pi$ in FT and IFT, the textbook uses ω .
- Throughout the lecture, we will use the definition in the u-space.

Adjoint of a convolution operator

» Definition of Adjoint operator:

$$\langle Ax, y \rangle_{\mathcal{Y}} = \langle x, A^*y \rangle_{\mathcal{X}}$$

» Use definition of the convolution operator

$$\langle Ax, y \rangle_{y} = \frac{1}{(2\pi)^{q}} \int \hat{K}(\omega) \hat{f}(\omega) \hat{g}^{*}(\omega) d\omega$$
$$= \frac{1}{(2\pi)^{q}} \int \hat{f}(\omega) \left[\hat{K}^{*}(\omega) \hat{g}(\omega) \right]^{*} d\omega$$
$$= (f, A^{*}g)$$

$$(A^*g)(x) = \frac{1}{(2\pi)^q} \int \hat{K}^*(\omega) \hat{g}(\omega) e^{ix\cdot\omega} d\omega.$$

Inverse of a convolution operator

except for isolated point

» If $\widetilde{K}(u)$ has a support coincides with the whole frequency space $Non-zero\ everywhere$

» The inverse operator A^{-1}

$$(A^{-1}g)(x) = \frac{1}{2\pi} \int \frac{\tilde{g}(u)}{\tilde{K}(u)} e^{i2\pi xu} du$$

» Not bounded if $\widetilde{K}(u)$ contains zeros.

Example of convolution operator: microscopes

- » Range and null space?
- » Adjoint operator?
- » Inverse operator?

Example: motion blur

- » What are Object space \mathcal{X} and image space \mathcal{Y} ?
- » What is the operator A? linear?
- » Find an element in the null space?
 - » What's the implication of this?

Example of Shift-invariant system: holography

Range and null space?

- » Adjoint operator?
- » Inverse operator?

HW 2 P2

Application: back-propagation using adjoint operator = inverse operator!?

Transfer function $H(u, v) = e^{i2\pi z/\lambda} \exp\{-i\lambda z(u^2 + v^2)\}$