Lemma 1. There is no proof of $A \to A$ in the Łukasiewicz system that is less than 5 steps long.

Proof. In order to prove that no such proof exists we will attempt to construct such a proof. We will despite our best efforts fail to do so demonstrating the impossibility of the task.

We will start our proof at the end. We know that the statement $A \to A$ must appear in the proof, and that any steps after it are extraneous and can be removed. Thus $A \to A$ must be the last step of the proof. We will label this step α

$$A \to A$$
 (α)

We also know that $A \to A$ does not fit the form of any of our axioms. This means that we must have arrived at it from modus ponens.

$$A \to A$$
 Modus Ponens (α)

Since we arrived at this from modus ponens we know that there must be earlier statements of the form ϕ and $\phi \to (A \to A)$. Since all statements are finite we also know that there is no ϕ such that

$$\phi = \phi \to (A \to A)$$

Thus the two statements must be separate.

$$\phi$$
 (γ)

$$\begin{array}{c} \phi \\ \phi \rightarrow (A \rightarrow A) \end{array} \tag{γ}$$

$$A \to A$$
 Modus Ponens (α)

We can express $\phi \to (A \to A)$ as a statement of L.S.1 if $\phi = A$, however doing so would mean that our proof would need to include a proof of A. Since A clearly is independent of our axioms we know that the statement cannot be a reference to L.S.1.

If we try to write the same statement as L.S.2 we will find it impossible.

$$\begin{split} \phi \to (A \to A) &= (\psi \to (\chi \to \omega)) \to ((\psi \to \chi) \to (\psi \to \omega)) \\ \phi &= (\psi \to (\chi \to \omega)), A \to A = (\psi \to \chi) \to (\psi \to \omega) \\ \phi &= (\psi \to (\chi \to \omega)), A = \psi \to \chi, A = \psi \to \omega \end{split}$$

Since A cannot be of the form $\psi \to \chi$ (nor the form $\psi \to \omega$) there is no instantiation of L.S.2 of the form $\phi \to (A \to A)$.

If we set ϕ equal to $\neg A \rightarrow \neg A$ we will find that L.S.3 allows us to conclude our statement.

$$\neg A \to \neg A$$
 (γ)

$$(\neg A \rightarrow \neg A) \rightarrow (A \rightarrow A)$$
 L.S.3 (β)

$$A \to A$$
 Modus Ponens (α)

Now using the same thought process as $A \to A$ we can show that $\neg A \to \neg A$ must be derived via modus ponens. This gives us a proof of the form:

$$\psi \qquad (\eta)$$

$$\psi \to (\neg A \to \neg A) \qquad (\delta)$$

$$(\neg A \to \neg A) \to (A \to A) \qquad \text{L.S.3 } (\beta)$$

$$\neg A \to \neg A \qquad \text{Modus Ponens } (\gamma)$$

$$A \to A \qquad \text{Modus Ponens } (\alpha)$$

Now since we are looking for a proof with 4 steps we know that it must be the case that ψ is equal to $(\neg A \rightarrow \neg A) \rightarrow (A \rightarrow A)$, otherwise we would have 5 steps.

$$\begin{array}{c} ((\neg A \to \neg A) \to (A \to A)) \to (\neg A \to \neg A) \\ (\neg A \to \neg A) \to (A \to A) & \text{L.S.3} \\ \neg A \to \neg A & \text{Modus Ponens} \\ A \to A & \text{Modus Ponens} \end{array}$$

Now we need to check whether the first statement can be a instantiation of one of our axioms. If we check we find that there are no values of ϕ , ψ and χ for which the our statement is an instantiation of any of the axioms.

Now we backtrace to the last descision we made. We chose to represent $\phi \to (A \to A)$ as L.S.3. Since that arrived us at an incorrect conclusion we know that it cannot be the case that in a four step proof that step is introduced by L.S.3. Since we have removed all of the axioms as possibilities to introduce $\phi \to (A \to A)$ we know that it is introduced by modus ponens.

$$\begin{array}{c} \phi \\ \psi \\ \psi \to (\phi \to (A \to A)) \\ \phi \to (A \to A) \\ A \to A \end{array}$$
 Modus Ponens

Since we have 5 claims here we know that in order to reduce our proof to 4 steps we must have two of them that are equal. It is clear that no statement containing ϕ can be equal to ϕ and the same goes for ψ . We also know that if a statement χ that relies on a statement ω , it must be the case that $\chi \neq \omega$ otherwise our proof would be circular.

Of the remaining statements that could be equal there is only one pair that has the same form. This leaves us to say that $\phi = \psi$.

$$\begin{array}{c} \phi \\ \phi \to (\phi \to (A \to A)) \\ \phi \to (A \to A) \\ A \to A \end{array} \qquad \begin{array}{c} \text{Modus Ponens} \\ \text{Modus Ponens} \end{array}$$

Our remaining statements must be instantiations of our axioms because any use of modus ponens would add new steps to the proof. If we start with the sentence $\phi \to (\phi \to (A \to A))$ we will find it can only be instantiated by L.S.1.

$$\begin{array}{c} A \to A \\ (A \to A) \to ((A \to A) \to (A \to A)) \\ (A \to A) \to (A \to A) \end{array} \qquad \begin{array}{c} \text{L.S.1} \\ \text{Modus Ponens} \\ A \to A \end{array}$$

Now in order to make this proof valid we must proof $A \to A$ in 1 step. This would require the instantiation of an axiom and we already know that this is impossible.

Thus there is no proof of $A \to A$ that is 4 steps or shorter.