論文題目 二段にできます

広島大学 大学院先進理工系科学研究科 情報科学プログラム M123456 広大 太朗

1 はじめに

修士論文中間発表予稿の様式サンプルです.

発表予稿を T_EX で作成する場合は、スタイルファイル proceedings_bachelor.sty を利用してください.

その他の方法で発表予稿を作成する場合は,この様式を 参考にしてください.

ただし、研究分野で特有の書式がある場合には、その様式に従ってください.

2 数式の記述

数式の記述例を次に示します.

本研究では、前節での調査結果から、光源スペクトルの周波数成分に基づいて波長サンプル組数を決定する. すなわち、光源スペクトルをフーリエ変換した高周波数成分を重み付け加算した値を用いて波長サンプル組数Sを、次式により決定する.

$$S = a \sum_{i=0}^{n} F(i)g(i) + c$$
 (1)

ここで、a は重み付け加算した高周波成分に対する寄与係数、c は最小波長サンプリング組数、F(i) は第i 調波成分の値、n は最大高周波、g(i) は高周波成分に対する重み関数であり、次式とする.

$$g(i) = \left(\frac{i}{b}\right)^{\gamma} \tag{2}$$

ここで,b は重み付け関数の調整係数, γ は重み付け関数べき乗係数である.本研究では,前節での調査結果に基づき $a=2.1,\ b=100,\ c=5,\ \gamma=0.25$ に設定した.

図 1: 東広島キャンパスのアメリカ楓並木

3 図表について

3.1 図の挿入

図の使用例を次に示します.

東広島キャンパスでは、図1に示すように、初夏にはアメリカ楓の美しい並木が緑に輝く.

Minkowski Island は 4 つの Minkowski Sausage (Quadratic type 2 curve) を正方形状に配置したフラクタル図形である(図 2 参照).

図 2: Minkowski Island

表 1: 光の経路の表記法

L	光源	(k)+	k が1回かそれ以上起きる
E	視点	(k)*	kが0回かそれ以上起きる
S	鏡面反射	(k)?	k が 0 回か 1 回起きる
D	拡散反射	(k k')	k あるいは k' が起きる

3.2 表の作成

表の記入例を次に示します.

コースティックフォトンマップには、光源から放出されたフォトンが拡散反射面に到達する前に、1回以上鏡面反射あるいは透過したフォトンの情報が格納される. すなわち、表1に示す表記法を用いれば、LS+Dの経路をたどったフォトンの位置、放射束、入射方向が記録される.

4 文献引用

文献引用の例を次に示します.

レンダリング方程式(rendering equation) [1] は,算出 すべき放射輝度 L が式の両辺に表れた積分方程式となって いる.

フォトンマッピング法 [2] では 2 段階のレイトレーシング を行うことによりレンダリング方程式を解く.

5 **まとめ**

修士論文中間発表予稿の様式を示しました.

参考文献

- [1] J. T. Kajiya, "The rendering equation," in *Proceedings* of the 13th Annual Conference on Computer Graphics and Interactive Techniques, 1986, pp. 143–150.
- [2] H. W. Jensen, Realistic image synthesis using photon mapping. Ak Peters Natick, 2001, vol. 364.