

Concours STIC/GIC session 2018

Composition : **Mathématiques 3** (algèbre)

Durée : 4 Heures

Consignes pour les candidats

Merci de ne rien marquer sur le sujet.

Pour chaque question de l'épreuve, une seule bonne réponse possible. Répondez sur la grille séparée qui comporte 20 questions (Q1 à Q20). Seules les grilles correctement remplies seront corrigées.

NB. : Dans cette épreuve, on demande d'indiquer, pour chaque question, la bonne réponse parmi celles qui sont proposées.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Exercíce 1:

Question1) X désigne une partie non vide de IR2.

L'ensemble $A=\{u \in GL(IR^2), u(X)=X\}$ est :

- A) Un groupe
- B) Un espace vectoriel
- C) Une algèbre
- D) Une droite
- E) Je passe

Question 2) Lequel des ensembles suivants n'est pas un groupe pour la composition des applications ?

- A) L'ensemble des bijections de [0 ;1] sur [0 ;1]
- B) L'ensemble des bijections continues de [0;1] sur [0;1]
- C) L'ensemble des bijections C¹ de [0 ;1] sur [0 ;1]
- D) L'ensemble des bijections croissantes de [0;1] sur [0;1]
- E) Je passe

Question 3) Lequel des ensembles suivants est un sous-groupe du groupe linéaire (GL₂(IR),x) ?

- A) L'ensemble des matrices inversibles à coefficients dans $\mathbb Z$
- B) L'ensemble des matrices à coefficients $\text{dans } \mathbb{Z} \text{ de déterminant } 1$
- C) L'ensemble des matrices de déterminant strictement négatif
- D) L'ensemble des matrices A vérifiant $A^2 = I_2$
- E) Je passe

Exercice 2:

Question 4) Soit E un espace vectoriel de dimension finie et f un endomorphisme de E.

Laquelle des conditions suivantes n'est pas suffisante pour affirmer que : $E = Ker(f) \oplus Im(f)$?

- A) $Ker(f) \cap Im(f) = \{0\}$
- B) f est inversible
- C) Le rang de f est 1
- D) $f^2 = f$
- E) Je passe

Question 5) Soit u l'application de M_n(IR) dans $M_n(IR)$ définie par : $u(M) = M + {}^tM$. Quel est le rang de u?

- A) n
- n(n+1)B)
- C)
- D) u n'est pas linéaire
- le passe

Exercice 3:

- Question 6) Supposons que deux matrices A et B de M_n(IR) aient le même spectre, et que A soit diagonalisable. Alors
 - A) B est semblable à A
 - B) B n'est pas forcément semblable à A, mais B est diagonalisable
 - C) B n'est pas forcément diagonalisable, mais B est trigonalisable
 - D) B n'est pas forcément trigonalisable
 - E) le passe
- Question 7) Soient F et G deux sous-espaces supplémentaires d'un espace vectoriel E et p le projecteur sur F parallèlement à G.

A quelle condition nécessaire et suffisante un sous-espace H est-il stable par p?

- A) $H \subset F \oplus G$
- B) $H \subset F$ ou $H \subset G$
- c) $H = (H \cap F) \oplus (H \cap G)$
- D) H⊂F∪G
- E) *Ie passe*
- Soit A dans $M_n(\mathbb{C})$ et B = $A^2 + A$. Question 8) Laquelle des propriétés suivantes n'est pas forcément vraie?
 - A) Si A est diagonalisable alors B est diagonalisable
 - B) Si A est trigonalisable alors B est trigonalisable
 - C) Si A est inversible alors B est inversible
 - D) Si A est nilpotente alors B est nilpotente
 - E) Je passe

Question 9) Laquelle des propositions suivantes est fausse?

". . . " 'Une matrice carrée M d'ordre n est diagonalisable . . . "

- A) si et seulement si elle a n valeurs propres distinctes.
- B) s'il existe une matrice inversible P telle que P-1MP soit une matrice diagonale.
- C) s'il existe une famille libre de n vecteurs colonnes qui soient vecteurs propres de M.
- D) si et seulement s'il existe une famille libre de n vecteurs colonnes qui soient vecteurs propres de
- E) Je passe

Question 10) Soit a, b et c trois réels non nuls,

$$U = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ et } V = \left(\frac{1}{a} \ \frac{1}{b} \ \frac{1}{c}\right).$$

Laquelle des propositions suivantes est fausse?

- A) Les valeurs propres de la matrice U.V sont 0, 0 et 3;
- B) 3 est l'unique valeur propre de la matrice V.U;
- C) Les valeurs propres de la matrice ^tV.V sont 0, 0 et $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$
- D) Les valeurs propres de la matrice ^t(U.V).U.V sont 0, 0 et 9
- E) Je passe

Exercice 4:

Question 11) (E, <,>) est un espace préhilbertien réel.

Soit e_1, e_2, \ldots, e_n des vecteurs unitaires de E tels que $\langle e_i, e_i \rangle = \beta$ pour couple (i, j) avec i \neq j, et tels que

 $e_1 + e_2 + ... + e_n = 0$. Que vaut β ?

- A) $-\frac{1}{4}$

- E) Je passe

Question 12) Soit (e_1, e_2) une base de l'espace euclidien IR^2 et (f_1, f_2) son orthonormalisée de Gram-Schmidt. On suppose que la base (e_2, e_1) a pour orthonormalisée de Gram-Schmidt la base (f_2, f_1) . Alors

- A) on ne peut rien dire car c'est toujours le cas
- B) (e₁, e₂) est nécessairement une base orthonormée
- C) e₁ et e₂ sont orthogonaux
- D) $\langle e_1, f_1 \rangle = \langle e_2, f_2 \rangle$
- E) Je passe

Exercíce 5:

Question 13) Laquelle des matrices suivantes est celle d'une rotation vectorielle de IR³?

A)
$$\begin{pmatrix}
sin\theta & 0 & 0 \\
0 & cos\theta & sin\theta \\
0 & -sin\theta & cos\theta
\end{pmatrix}$$
B)
$$\begin{pmatrix}
1 & 0 & 0 \\
0 & cos\theta & sin\theta \\
0 & sin\theta & cos\theta
\end{pmatrix}$$
C)
$$\begin{pmatrix}
cos\theta & 0 & 0 \\
0 & 1 & sin\theta \\
sin\theta & 0 & cos\theta
\end{pmatrix}$$
D)
$$\begin{pmatrix}
-1 & 0 & 0 \\
0 & cos\theta & sin\theta \\
0 & sin\theta & -cos\theta
\end{pmatrix}$$
E) $Je \ passe$

Question 14) Soit A = $\begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$ dans M₂(\mathbb{C}).

Alors

- A) A est diagonalisable car symétrique
- B) A est diagonalisable car son polynôme caractéristique est scindé
- C) A est diagonalisable car rg(A) = 1
- D) A n'est pas diagonalisable
- E) Je passe

<u>Exercíce 6</u>: Soit un espace vectoriel E muni d'une base B_0 =(e_1 , e_2 , e_3). On considère les applications linéaires f et g de E dans E. Leurs matrices respectives dans la base B_0 sont

respectivement A=
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ -1 & -1 & -1 \end{pmatrix}$$
 et B=2A+I

où I désigne la matrice identité d'ordre 3.

Question 15) Soit le vecteur u de E et v=f(u). On note (u_1, u_2, u_3) et (v_1, v_2, v_3) les composantes respectives de u et v dans la base B_0 . Lequel des systèmes suivants est vérifié ?

$$\begin{cases} v_1 = -u_3 \\ v_2 = u_1 - u_2 - u_3 \\ v_3 = -u_3 \\ u_1 = -v_3 \\ u_2 = v_1 - v_2 - v_3 \\ u_3 = -v_3 \\ v_1 = u_2 \\ v_2 = -u_2 \\ v_3 = -u_1 - u_2 - u_3 \\ u_1 = v_2 \\ u_2 = -v_2 \\ u_3 = -v_1 - v_2 - v_3 \\ u_3 = -v_1 - v_2 - v_3 \end{cases}$$

E) Je passe

Question 16) Laquelle des assertions suivantes est inexacte ?

A) L'application linéaire h= g · f de E dans E est représentée dans la base B₀ par la matrice

$$C = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

- B) $B^2=I$ et $A^2=A$
- C) Pour tout entier naturel non nul k, on a les relations $B^{2k}=I$, $B^{2k+1}=B$, $A^{2k}=-A$ et $A^{2k+1}=A$
- D) Si λ est une valeur propre de la matrice A, alors $\lambda'=2$ $\lambda+1$ est une valeur propre de la matrice B.
- E) Je pass

Question 17) Laquelle des assertions suivantes est fausse ?

- A) L'application linéaire g est une symétrie vectorielle par rapport à un plan
- B) Les valeurs propres de B sont -1 et 1
- C) $-e_1 + e_2$ est un vecteur propre de A et B
- D) La matrice B est diagonalisable dans IR
- E) Je passe

<u>Exercíce 7</u>: Soit E un espace vectoriel muni d'une base orthonormée (i, j, k).On considère l'application linéaire f de E dans E qui a pour matrice

$$A = \begin{pmatrix} 0 & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 dans la base (i, j, k) et l'application g de

E dans E qui a pour matrice $B = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ dans la même base.

Question 18) Laquelle des assertions suivantes est fausse ?

- A) L'application linéaire f²=f ∘ f est une homothétie
- B) Le polynôme caractéristique de la matrice A est

$$x_A = X^3 + \frac{1}{2}X^2 + \frac{1}{4}X - \frac{1}{8}$$

- C) Le polynôme caractéristique de A et sa dérivée ont une racine en commun
- D) f admet un sous-espace propre de dimension 1 engendré par j
- E) Je passe

Question 19) Laquelle des assertions suivantes est vraie ?

- A) Les applications f et g sont inverses l'une de l'autre
- B) La matrice B est diagonalisable et admet comme matrice diagonale la $\begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

matrice $\begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ La matrice de g⁵ dans l

- C) La matrice de g⁵ dans la base (i, j, k) est B⁵ = $\begin{pmatrix} 0 & 0 & 64 \\ 0 & 32 & 0 \\ 16 & 0 & 0 \end{pmatrix}$
- D) Les applications linéaires f et g commutent
- E) Je passe

Exercíce 8:

Question 20) Soit A une matrice carrée d'ordre 2 à coefficients réels, symétrique et de valeurs propres λ_1 et λ_2 tels que $0 < \lambda_1 < \lambda_2$. Quelle est l'excentricité de l'ellipse d'équation ${}^t XAX = 0$?

A)
$$\frac{\lambda_1}{\lambda_2}$$

$$B) \sqrt{1 - \frac{\lambda_1}{\lambda_2}}$$

C)
$$\sqrt{1+\frac{\lambda_1}{\lambda_2}}$$

D) 1 -
$$\frac{\lambda_1}{\lambda_2}$$