Devoir à la maison n°05

- ▶ Le devoir devra être rédigé sur des copies doubles.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

EXERCICE 1.

- 1. a. Montrer que sh est une bijection de \mathbb{R} sur \mathbb{R} . Par la suite, on note f sa bijection réciproque.
 - **b.** Montrer que ch induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$. Par la suite, on note g sa bijection réciproque.
 - **c.** Montrer que th induit une bijection de \mathbb{R} sur] -1, 1[. Par la suite, on note h sa bijection réciproque.
- **2. a.** Montrer que pour tout $x \in \mathbb{R}$

$$\operatorname{ch}(f(x)) = \sqrt{x^2 + 1}$$

b. Montrer que pour tout $x \in [1, +\infty[$

$$\operatorname{sh}(g(x)) = \sqrt{x^2 - 1}$$

- 3. a. Justifier que f est dérivable sur $\mathbb R$ et donner une expression de sa dérivée.
 - **b.** Justifier que g est dérivable sur $]1, +\infty[$ et donner une expression de sa dérivée.
 - **c.** Justifier que h est dérivable sur]-1,1[et donner une expression de sa dérivée.
- **4. a.** Montrer que pour tout $x \in \mathbb{R}$

$$f(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$$

b. Montrer que pour tout $x \in [1, +\infty[$

$$g(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$$

c. Montrer que pour tout $x \in]-1,1[$

$$h(x) = \frac{1}{2} \ln \left(\frac{x+1}{1-x} \right)$$

EXERCICE 2.

On pose pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$$

- **1.** Calculer I_0 et I_1 .
- 2. Justifier que $I_n > 0$ pour tout $n \in \mathbb{N}$.
- 3. En intégrant par parties, trouver une relation entre I_n et I_{n+2} .
- 4. En déduire une expression de I_{2n} et I_{2n+1} à l'aide de factorielles.
- **5.** Vérifier que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante. En déduire que

$$\forall n \in \mathbb{N}, \ \frac{n+1}{n+2}I_n \leqslant I_{n+1} \leqslant I_n$$

- 6. Déterminer la limite de la suite $\left(\frac{I_{n+1}}{I_n}\right)$.
- 7. Établir que

$$\forall n \in \mathbb{N}, \ (n+1)I_{n+1}I_n = \frac{\pi}{2}$$

8. En déduire la limite de la suite $(\sqrt{n}I_n)$.

EXERCICE 3.

Soit $g : \mathbb{R} \to \mathbb{R}$ continue. Pour $x \in \mathbb{R}$, on pose $f(x) = \int_0^x \sin(x - t)g(t) dt$.

- **1.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et que pour tout $x \in \mathbb{R}$, $f'(x) = \int_0^x \cos(t-x)g(t) \, dt$.
- 2. Montrer que f est de classe \mathcal{C}^2 et que f est solution de l'équation différentielle y''+y=g.
- 3. En déduire toutes les solutions de l'équation différentielle y'' + y = g.