Esercizi sulle memorie cache

Sia data una cache da 2 KB, set associativa a 2 vie. Ogni linea ha lunghezza 32 byte. Avendo uno spazio di indirizzamento a 16 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

read A; read B; read C; read D; read E; read F.

Gli indirizzi in memoria delle variabili, di tipo char, sono indicati in tabella;

b) si riporti la sequenza di accessi specificando, per ogni accesso, se è hit o miss, nel caso di miss di che tipo, il set, la via, il byte all'interno della linea, quali dati provocano la sostituzione e quali dati vengono sostituiti (politica di sostituzione LRU).

Dato	Indirizzo
Α	540BH
В	FC03H
С	FE03H
D	F823H
E	581FH
F	541FH

Sia data una cache da 16 KB, set associativa a 2 vie. Ogni linea ha lunghezza 32 byte. Avendo uno spazio di indirizzamento a 20 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

read A; read B; read C; read D; read E; read F; read G.

Gli indirizzi in memoria delle variabili, di tipo char, sono indicati in tabella;

b) si riporti la sequenza di accessi specificando, per ogni accesso, se è hit o miss, nel caso di miss di che tipo, il set, la via, il byte all'interno della linea, quali dati provocano la sostituzione e quali dati vengono sostituiti (politica di sostituzione LRU).

Dato	Indirizzo
Α	FE01Fh
В	02000h
С	0100Fh
D	02020h
E	FE00Fh
F	A0000h
G	0201Fh

c) Si indichi cosa sarebbe cambiato nel caso che la sequenza di accessi fosse stata: read A; read B; read C; read D; read F; read G; read E.

Sia data una cache da 32 KB, direct mapped. Ogni linea ha lunghezza 16 byte. Avendo uno spazio di indirizzamento a 20 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

read A; write B; read C; read D; read E; write F; read G.

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write through, not write allocate**.

b) si riporti la sequenza di accessi specificando, per ogni accesso, se è hit o miss, nel caso di miss di che tipo, il set, il byte all'interno della linea, quali dati provocano la sostituzione e quali dati vengono sostituiti (politica di sostituzione LRU).

Dato	Indirizzo
Α	F8003h
В	C8010h
С	C8011h
D	00000h
E	0001Fh
F	C8012h
G	C8013h

Sia data una cache da 16 KB, 2-vie associativa. Ogni linea ha lunghezza 16 byte. Avendo uno spazio di indirizzamento a 16 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

read A; read B; write C; read D; read E; write F; read B.

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write through, not write allocate**.

Dato	Indirizzo
Α	600Fh
В	400Fh
С	0000h
D	6000h
E	F00Fh
F	200Ah

Sia data una cache da 64 KB, 2-vie associativa. La cache contiene 1024 linee. Avendo uno spazio di indirizzamento a 24 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

write A; read A; read B; read C; write D; write B; read D; read E.

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write through, not write allocate**.

b) si riporti la sequenza di accessi specificando, per ogni accesso, se è hit o miss, nel caso di miss di che tipo, il set, il byte all'interno della linea, quali dati provocano la sostituzione e quali dati vengono sostituiti (politica di sostituzione LRU).

Dato	Indirizzo
Α	7803Fh
В	70000h
С	78001h
D	00000h
E	70003h

Sia data una cache da 8 KB, 2-vie associativa. La cache contiene linee da 16 byte ciascuna. Avendo uno spazio di indirizzamento a 16 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

read A; read B; write C; write D; read B; write A; read D; read C

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write through, not write allocate**.

Dato	Indirizzo
Α	A0F0h
В	50F7h
С	A0FFh
D	B0F3h

Sia data una cache da 128 KB, 2-vie associativa contenente 2048 linee. Avendo uno spazio di indirizzamento a 20 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

read A; write B; read C; read D; read E; read B; write E

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write through, not write allocate**.

b) si riporti la sequenza di accessi specificando, per ogni accesso, se è hit o miss, nel caso di miss di che tipo, il set, la via e il byte all'interno della linea, quali dati provocano la sostituzione e quali dati vengono sostituiti (politica di sostituzione LRU).

Dato	Indirizzo
Α	A803Ch
В	A0000h
С	B003Fh
D	B0040h
E	00000h

Sia data una cache da **128 KB**, **direct mapped**, con linee da **32 bytes/linea**. Avendo uno spazio di indirizzamento a 20 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

write A; read B; read C; read D; read A; read C; write D; read B

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write through, not write allocate**.

b) si riporti la sequenza di accessi specificando, per ogni accesso, se è hit o miss, nel caso di miss di che tipo, il set e il byte all'interno della linea, quali dati provocano la sostituzione e quali dati vengono sostituiti (politica di sostituzione LRU).

Dato	Indirizzo
Α	F881Fh
В	E8825h
С	F8800h
D	1881Fh

Sia data una piccola cache da **1 KB**, **2-vie associativa**, con linee da **64 bytes/linea**. Avendo uno spazio di indirizzamento a **16** bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

read A; write D; write B; write A; read C; read E

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write back, write allocate**.

b) si riporti la sequenza di accessi specificando, per ogni accesso, se è hit o miss, nel caso di miss di che tipo, il set, lavia e il byte all'interno della linea, quali dati provocano la sostituzione e quali dati vengono sostituiti (politica di sostituzione LRU).

Dato	Indirizzo
Α	F620h
В	001Fh
С	BE37h
D	FF43h
E	0031h

Sia data una cache **2-vie associativa** da **16 KB** con **8 bytes/linea**. Avendo uno spazio di indirizzamento a 20 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

write A; read A, read B; write A; read C; write B; write D

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write through, write no allocate**.

b) si riporti la sequenza di accessi specificando, per ogni accesso, se è hit o miss, nel caso di miss di che tipo, il set, il byte all'interno della linea, quali dati provocano la sostituzione e quali dati vengono sostituiti (politica di sostituzione LRU).

Dato	Indirizzo
Α	A300Fh
В	A200Dh
С	A100Eh
D	A200Fh

Sia data una cache **2-vie associativa** da **8 KB** con **4 bytes/linea**. Avendo uno spazio di indirizzamento a 20 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

write A; read A, read B; write A; read C; write B; write D

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write through, write no allocate**.

Dato	Indirizzo
Α	A300Fh
В	A200Dh
С	A100Eh
D	A200Fh

Sia data una cache 2-vie associativa con 2048 linee da 8 bytes/linea. Avendo uno spazio di indirizzamento a 24 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

read A; read B; write C; read D; read C.

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write back, write allocate**.

b) si riporti la sequenza di accessi specificando, per ogni accesso, se è hit o miss, nel caso di miss di che tipo, il set, il byte all'interno della linea, quali dati provocano la sostituzione e quali dati vengono sostituiti (politica di sostituzione LRU).

Dato	Indirizzo
Α	A3F006h
В	002003h
С	A3E000h
D	106000h

Sia data una cache **2-vie associativa** da **16 KB** con **256 linee**. Avendo uno spazio di indirizzamento a 20 bit: a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

read A; write B; read D; write C; read E; read B.

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write through, write no allocate**.

Dato	Indirizzo
Α	CFC3h
В	FFFh
С	CFF0h
D	FC0h
Е	EFFFh

Sia data una cache da 16 KB, 2-vie associativa. Ogni linea ha lunghezza 32 byte. Avendo uno spazio di indirizzamento a 16 bit:

a) si scrivano le dimensioni di tag, index e offset.

Si supponga che la cache sia inizialmente vuota e che debbano essere svolte in sequenza le seguenti operazioni:

read A; read B; write C; read D; read E; write F; read C.

Gli indirizzi in memoria delle variabili, di tipo **char**, sono indicati in tabella. La cache adotta una politica di scrittura **write back, write allocate**.

Dato	Indirizzo
Α	601Fh
В	400Fh
С	0000h
D	6010h
E	F00Fh
F	200Ah