Deep Logical Circuits

Generalization through Interpretation

Contribution:

Algorithm:

Neural Network -> Boolean Formula

<->linear decision tree

Allows:

- Very tight gen bounds
 - & Interpretability

Should answer together:

- "Did it learn?"
- "What did it learn?"

Spoilers

(a) Capacity vs Training Step

(b) Capacity vs Num Parameters

Linear Data: "Why does deep learning work"

Looking closer: Neuron by Neuron

Regularity even has combinatorial description

More complicated data

More complicated data -> Similar Conclusion

How to Analyze Nonlinear Case

Theorem 3. (Theorem 17 in [Goldberg and Jerrum, 1995]): Let k,n be positive integers and $f: \mathbb{R}^n \times \mathbb{R}^k \mapsto \{0,1\}$ be a function that can be expressed as a Boolean formula containing s distinct atomic predicates where each atomic predicate is a polynomial inequality or equality in k+n variables of degree at most d. Let $\mathcal{F} = \{f(\cdot, w) : w \in \mathbb{R}^k\}$. Then $VCDim(\mathcal{F}) \leq 2k \log_2(8eds)$.

-> Need to express network as boolean formula (Complexity doesn't depend on depth)

How to Analyze Nonlinear Case

Theorem 3. (Theorem 17 in [Goldberg and Jerrum, 1995]): Let k,n be positive integers and $f: \mathbb{R}^n \times \mathbb{R}^k \mapsto \{0,1\}$ be a function that can be expressed as a Boolean formula containing s distinct atomic predicates where each atomic predicate is a polynomial inequality or equality in k+n variables of degree at most d. Let $\mathcal{F} = \{f(\cdot, w) : w \in \mathbb{R}^k\}$. Then $VCDim(\mathcal{F}) \leq 2k \log_2(8eds)$.

-> Need to express network as boolean formula (Complexity doesn't depend on depth)

Example of transformation Output (7e5 param)

Setting

Fully connected networks -> control network complexity

Setting

Fully connected networks -> control network complexity

Synthetic Data -> Control data complexity

