

ANNOUNCEMENTS

Sept 11 • 7:00 PM 1170 TMCB

Food Provided

Raffle + Prizes

Sponsored by

Lucidchart

Network with students + professionals in Computer Science

Follow @acmbyu for updates!

Class# 👳	Week# =	Month =	Date =	Topic	Reading	Labs	Due date
1	1	Sep	4	Welcome, Introduction, Course Objectives, DS Lifecycle	Chapter 1 Intro DS	Lab 1: IDE Set Up, GitHub	Sept 6, 2025
2	2	Sep	9	Python setup, Google colab, Github	Chapter 2.1-2.5 Python		
3	2	Sep	11	NumPy, Vectorization		Lab 2: Vectorization	Sept 13, 2025
4	3	Sep	16	Pandas, Matplotlib, Seaborn	Chapter 2.6-2.8 Python		
5	3	Sep	18	Data Cleaning and Preparation		Lab 3: NumPy, Pandas	Sept 20, 2025
6	4	Sep	23	Data Acquisition, ETL, Populations, Sampling	Chapter 3 Data F		
7	4	Sep	25	Descriptive Statistics	Chapter 4 Prob 8		5
8	5	Sep	30	Exploratory Data Analysis (EDA)	hapter 5 EDA		
9	5	Oct	2	Principles of Data Visualization			
10	6	Oct	7	Business Intelligence with Tableau	Chapte 6 BI & T		
11	6	Oct	9	Tableau Dashboards, Stories	You are h	ovo.	
12	7	Oct	14	Data management - databases, SQL queries	Tou are in		
13	7	Oct	16	More SQL Features, Joins	Chapter 7 DB an		
14	8	Oct	21	SQL continued, NoSQL, Connect to Tableau			
15	8	Oct	23	MIDTERM REVIEW			
16	9	Oct	28	Overview of AI, ML, DL, GenAl Topics for remainder of semester	Chapter 8 Unsur		
17	9	Oct	30	Unsupervised Learning- Kmeans			
18	10	Nov	4	Unsupervised Learning- Hierarchical, DBSCAN	Chapter 9 Supervised Learn		
19	10	Nov	6	Supervised Learning: Part 1	Chapter 10 Decision Trees	Lab 8: Cluster Analysis	Nov 08, 2025
20	11	Nov	11	Supervised Learning: Part 2	Chapter 11 Regression (optional)		
21	11	Nov	13	Evaluation of models, comparing performance	Chapter 12 Eval	Lab 9: ML Classification/Regression	Nov 15, 2025
22	12	Nov	18	ANN, Multi-Layer Perceptron, Backpropagation	Chapter 13 ANN		
23	12	Nov	20	Deep Learning		Lab 10: MLP and Backpropagation	Nov 22, 2025
24	13	Nov	25	GenAl - Introduction	Chapter 14 GenAl		
-	13	Nov	27	No Class. Thanksgiving Holiday.			
25	14	Dec	2	GenAl - Applications	Chapter 15 Al Ethics		
26	14	Dec	4	Ethics / Data Privacy / Business and Government Policy		Lab 11: GenAl Applications	December 06, 20
27	15	Dec	9	Review and Wrap Up, The Future of DS/ML/AI			
28	16	Dec	17	Finals Week. Final 12/12 2:30-5:30pm 1102 JKB		Final	

TOOLS FOR DATA MINING

- Start with Pickaxe and Shovel
- Move to jack hammer and other automated tools
- Python, SQL, R most common languages
- NumPy, Pandas, Matplotlib, Seaborn, Scikit-Learn
- Tableau, PowerBl
- AWS SageMaker, Dataiku, DataRobot, DataBricks

COMMON DATA SCIENCE PACKAGES FOR PYTHON

Common Import name Description alias NumPy includes functions and classes that aid in numerical computation. NumPy is used in numpy np many other data science packages. pandas provides methods and classes for tabular and time-series data. pandas pd scikit-learn provides implementations of many machine learning algorithms with a uniform syntax for preprocessing data, specifying models, fitting models with cross-validation, and sklearn sk assessing models. matplotlib allows the creation of data visualizations in Python. The functions mostly expect matplotlib.pyplot plt NumPy arrays. seaborn also allows the creation of data visualizations but works better with pandas seaborn sns DataFrame. SciPy provides algorithms and functions for computing problems that arise in science, scipy.stats sp.stats engineering and statistics. scipy.stats provides the functions for statistics. statsmodels adds functionality to Python to estimate many different kinds of statistical statsmodels smmodels, make inferences from those models, and explore data.

CS 180

NUMPY

- Spelled: NumPy, Pronounced "num-pie"
- What is NumPy? NumPy (Numerical Python) is the fundamental package for scientific computing with Python. It provides a highperformance multidimensional array object and tools for working with these arrays.
- Why NumPy?
 - Speed: NumPy arrays are more efficient and faster than Python lists for numerical operations, as they are implemented in C.
 - Functionality: It provides a rich set of functions for linear algebra, Fourier transforms, and random number generation.
 - Foundation: Many other data science libraries like Pandas, SciPy, and Scikit-learn are built on top of NumPy.

NUMPY ARRAY FUNCTIONS

Function	Parameters	Description
array()	object dtype=None ndim=0	Returns an array constructed from object. object must be a scalar or an ordered container, such as tuple or list. The array element type is inferred from object unless a dtype is specified. ndim is the minimum number of array dimensions.
delete()	arr obj axis=None	Deletes a slice of input array arr. axis is the axis along which to remove a slice. obj is the index of the slice along the axis.
full()	shape fill_value dtype=None	Returns an array filled with fill_value. The shape tuple specifies array shape. dtype specifies the array type. If dtype=None, the type is inferred from fill_value.
insert()	arr obj values axis=None	Inserts array values to input array arr . axis is the axis along which to insert. obj is the index before which values is inserted.
zeros()	shape dtype=float	Returns an array filled with zeros. The shape tuple specifies array shape. dtype specifies the array type.
ones()	shape dtype=None	Returns an array filled with ones. The shape tuple specifies array shape. dtype specifies the array type. If dtype=None , the type is float64.
sort()	a axis=-1	Sorts array a along axis. The default axis=-1 sorts along the last axis in a. axis=None flattens a before sorting.

UPCOMING ASSIGNMENTS

- Reading: 2.1 2.5
- DS Lab 2: Vectorization due Sept 13th 11:59 pm

