Задача 9. Дадено е уравнението

$$y'' + py' + 4y = 0,$$

където p е реален параметър.

- а) При какви стойности на p всички решения на уравнението са ограничени за $x \in (-\infty, +\infty)$?
- б) При какви стойности на p всички решения на уравнението клонят към 0 при $\to -\infty$?
- в) При какви стойности на p уравнението има поне едно периодично решение, различно от $y(x)\equiv 0$

Решение:

Характеристичния полином на хомогенната и единствена част на уравнението е $P(\lambda) = \lambda^2 + p\lambda + 4$. За $P(\lambda) = 0$ имаме, че $D = p^2 - 16 = (p-4)(p+4)$.

I сл. При
$$p \in (-\infty; -4) \cup (4; +\infty)$$

$$D>0\Rightarrow \text{ имаме два реални корена }\Rightarrow \lambda_{1,2}=\frac{-p\pm\sqrt{p^2-16}}{2}\Rightarrow \\ \Phi \text{CP:=} \ \{e^{\frac{-p+\sqrt{p^2-16}}{2}x},\,e^{\frac{-p-\sqrt{p^2-16}}{2}x}\}\Rightarrow y(x)=c_1e^{\frac{-p+\sqrt{p^2-16}}{2}x}+c_2e^{\frac{-p-\sqrt{p^2-16}}{2}x}$$

II сл. При $p \in (-4; 4)$

 $D>0\Rightarrow$ имаме два комплексни корена

$$\begin{split} & \Rightarrow \lambda_{1,2} = \frac{-p \pm i \sqrt{16 - p^2}}{2} = -\frac{p}{2} \pm i \frac{\sqrt{16 - p^2}}{2} \Rightarrow \alpha = -\frac{p}{2}, \beta = \frac{\sqrt{16 - p^2}}{2} \Rightarrow \\ & \Phi \text{CP:= } \{e^{\alpha x} cos(\beta x), \, e^{\alpha x} sin(\beta x)\} \\ & \Rightarrow y(x) = c_1 e^{-\frac{p}{2} x} cos\left(\frac{\sqrt{16 - p^2}}{2} x\right) + c_2 e^{-\frac{p}{2} x} sin\left(\frac{\sqrt{16 - p^2}}{2} x\right) \end{split}$$

III сл. При $p=\pm 4$

D=0 \Rightarrow имаме двоен корен $\lambda_1=\lambda_2=-rac{p}{2}=\pm 4.$

При
$$p = 4$$
: $y(x) = c_1 e^{-2x} + x c_2 e^{-2x}$; При $P = -4$: $y(x) = c_1 e^{2x} + c_2 x e^{2x}$.

а) За да са ограничени решенията на уравнението е необходимо $\lim_{x \to \pm \infty} y(x) = const$.

Изследваме първо в интервала $(-\infty; -4)$:

$$\frac{-p\pm\sqrt{p^2-16}}{2} < 1 \Leftrightarrow \sqrt{p^2-16} < 2\pm p$$
, няма такива стойности на p , за които

това да е изпълнено едновременно, както в този интервал, така и в интервала $(4; +\infty)$

В интервала $p\in (-4;\ 4)$: $e^{-\frac{p}{2}x}$ може да е ограничена, единствено ако p=0, което е от интервала. И тъй като sin(x) и cos(x) са ограничени функции, то и всички решения ще бъдат ограничени.

При $p=\pm 4$ няма как да ограничим решенията при положение че x пробягва от $-\infty$ до $+\infty$.

- б) При $p \in (-\infty; -4)$ и $x \to -\infty$ всички решения клонят към 0.
- в) Единствено при p=0 ще има периодични решения.