Cheat Sheet - Part 2

Introduction to Data Analysis with Python https://github.com/janekfleper/Workshop-Konstanz-2025

Basics

ord("a") len([0, 1, 2])	A <i>function</i> is called with (optional) arguments
<pre>y.count("a") "abc".upper()</pre>	A <i>method</i> is called on a value or on a variable
# a comment	A # starts a <i>comment</i> that will not be evaluated
type(x)	Get the <i>type</i> of a value or of a variable
<pre>def square(x): return x**2</pre>	Define a function with a parameter x and a return value
sorted(x)	Get a <i>sorted</i> copy of an iterable (list, string, etc)

Data types

· / F · ·	
"hello", 'abc', "0.9", str(123)	A <i>string</i> is a sequence of characters in quotes
12, -4, int("5")	An <i>integer</i> is a number without a decimal part
0.9, -3.1415, float("-0.1")	A <i>float</i> is a number with a decimal part
<pre>True, False, bool(0), x < 1</pre>	A <i>boolean</i> can only take the values True or False
<pre>[0, "abc", 0.1] list("hello")</pre>	A <i>list</i> is a mutable, sorted collection of values
{"a": 1, "b": 2} dict(a=1, b=2)	A <i>dictionary</i> is a mutable collection of key-value pairs
(0, "0.9", True) tuple([0, 1, 2])	A <i>tuple</i> is an immutable, sorted collection of values

Files

<pre>with open("a.txt") as f:</pre>	
<pre>for line in f: print(line)</pre>	Iterate over all lines in a file
f.read()	Read a file as a string
<pre>f.readline()</pre>	Read a single line as a string
f.readlines()	Read a file as a list of strings

Strings

s1 = "hello"	Initialize a regular string
$s2 = f"x = {x}"$	Initialize an f-string
<pre>s1.strip("ho")</pre>	Strip characters from a string
<pre>s2.split("=")</pre>	Split a string at a substring
bool(s1)	Only an empty string is False

Arrays

<pre>import numpy as np</pre>	
n = [1, 1, 2, 3] a = np.array(n)	Initialize an array
<pre>np.arange(1, 9)</pre>	Get a sequence of integers
a[0], a[0:-3]	Get values from an array
a[0] = 4 a[0:-3] = 0	Set values in an array
3 * a, a + 3.14, a / 4, a - a**2	Compute element-wise arithmetic operations
a[a == 1]	Filter data in an array
<pre>a.sum(), a.prod() a.mean(), a.std() a.min(), a.max()</pre>	Run computations on all values in an array
np.bincount(a)	Get the histogram distribution of an array

a.shape	Get the shape of an array
a.dtype	Get the data type of an array
a.astype(t)	Get a copy of an array with a specific data type t
<pre>np.sort(a)</pre>	Get a sorted copy of an array
np.argsort(a)	Get the indices that would sort an array

Plots

<pre>import matplotlib.pyplot as plt</pre>	
<pre>plt.plot(y) plt.plot(x, y)</pre>	Create a simple line plot
<pre>plt.bar(x, y)</pre>	Create a (vertical) bar plot
<pre>plt.xlabel("x") plt.ylabel("y")</pre>	Add axis labels to a plot
<pre>plt.title("plot")</pre>	Add a title to a plot
plt.legend()	Add a legend to a plot

Jupyter shortcuts

Enter / Esc	Start/exit the edit mode
Shift + Enter	Run cell(s) and select next
A/B	Insert new cell above/below
\uparrow , K/ \downarrow , J	Select cell above/below
X,C,V	Cut, copy or paste cell(s)
D+D	Delete cell(s)
\mathbb{Z}/\mathbb{S} hift + \mathbb{Z}	Undo/redo cell operation
Shift + Tab	Open the documentation