

COMPUTER VISION

Le Thanh Ha, Ph.D

Assoc. Prof. at University of Engineering and Technology, Vietnam National University

<u>ltha@vnu.edu.vn</u>; <u>lthavnu@gmail.com</u>; 0983 692 592

Linear filtering

Motivation: Noise reduction

 Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them! What's the next best thing?

Source: S. Seitz

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for a 3x3 moving average?

1	~	~	1
<u> </u>	1	1	1
9	1	1	1

"box filter"

Defining convolution

 Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g.

$$(f * g)[m,n] = \sum f[m-k,n-l]g[k,l]$$

- Convention: kernel is "flipped"
- MATLAB: conv2 vs. filter2 (also imfilter)

Key properties

- Linearity: $filter(f_1 + f_2) = filter(f_1) + filter(f_2)$
- Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a*b_1)*b_2)*b_3)$
 - This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k(a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...], a * e = a

Annoying details

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Annoying details

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Source: S. Marschner

Annoying details

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):
 - clip filter (black): imfilter(f, g, 0)
 - wrap around: imfilter(f, g, 'circular')
 - copy edge: imfilter(f, g, 'replicate')
 - reflect across edge: imfilter(f, g, 'symmetric')

Source: S. Marschner

Original

0	0	0
0	~	0
0	0	0

Original

100

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

?

Original

Shifted left By 1 pixel

Original

1 9	1	1	1
	1	1	1
	1	1	1

?

Original

Blur (with a box filter)

Original

9 1 1 1

(Note that filter sums to 1)

 0
 0

 0
 2

 0
 0

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before

after

Smoothing with box filter revisited

- Smoothing with an average actually doesn't compare at all well with a defocused lens
- Most obvious difference is that a single point of light viewed in a defocused lens looks like a fuzzy blob; but the averaging process would give a little square

Source: D. Forsyth

Smoothing with box filter revisited

- Smoothing with an average actually doesn't compare at all well with a defocused lens
- Most obvious difference is that a single point of light viewed in a defocused lens looks like a fuzzy blob; but the averaging process would give a little square
- Better idea: to eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center, like so:

"fuzzy blob"

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

 Constant factor at front makes volume sum to 1 (can be ignored, as we should re-normalize weights to sum to 1 in any case)

Choosing kernel width

 Gaussian filters have infinite support, but discrete filters use finite kernels

Source: K. Grauman

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Example: Smoothing with a Gaussian

Mean vs. Gaussian filtering

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width σ V2
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

65

The filter factors into a product of 1D filters:

1	2	1		1
2	4	2	=	2
1	2	1		1

x 1 2 1

Perform convolution along rows:

Followed by convolution along the remaining column:

	11	V				
*	18		=	0	65	
	18			24	6	

Separability

Why is separability useful in practice?

Impulse noise

Salt and pepper noise

Gaussian noise

Noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Source: S. Seitz

Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

Source: M. Hebert

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing salt-and-pepper noise

What's wrong with the results?

Alternative idea: Median filtering

 A median filter operates over a window by selecting the median intensity in the window

Is median filtering linear?

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

Source: K. Grauman

Median filter

Salt-and-pepper noise

Median filtered

Source: M. Hebert

Median vs. Gaussian filtering

Sharpening revisited

What does blurring take away?

Let's add it back:

Unsharp mask filter

