Resolução da <u>Lista 4</u> da disciplina de Matemática Discreta

Feita por Guilherme de Abreu Barreto¹

Relações

Exercício 1

Se concordarmos que a Teoria dos Conjuntos provêm uma sólida fundamentação axiomática a partir da qual construirmos demais saberes matemáticos, então temos de demonstrar como demais objetos matemáticos podem ser descritos enquanto conjuntos de algum tipo. Ou seja, se **pares ordenados** não forem compreendidos enquanto axiomas, então estes podem ser descritos enquanto conjuntos. O principal problema o qual temos de sanar nesta representação é o fato de que conjuntos descrevem qualquer agrupamento de elementos distintos, mesmo aqueles **desordenados**; tal que um conjunto $A = \{a,b\} = \{b,a\}$.

Para sanar essa insuficiência, o matemático Kazimierz Kuratowski propôs em 1921 a seguinte definição:

• Considere um conjunto com dois valores a, b:

$$A = \{a, b\}$$

• Então, o conjunto potência de A é:

$$P(A) = \{\{\}, \{a\}, \{b\}, \{a, b\}\}$$

• Se deste conjunto derivarmos um subconjunto contendo todos os elementos que por vez contêm *a*, teremos:

$$S(P(A)) = \{\{a\}, \{a,b\}\}$$

Note que este subconjunto contém toda informação necessária para descrevermos um par ordenado:

- Os valores $a \in b$.
- A ordenação destes: o primeiro elemento é descrito pelo elemento $\{a\}$

Finalmente, podemos então restituir a notação original estabelecendo a correspondência $(a,b) := \{\{a\}, \{a,b\}\}.$

Voltemos ao problema em questão. (a,b) = (c,d) se e somente se a=c e b=d. Procederemos na ida por demonstração direta:

$$(a,b) := \{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\} := (c,d)$$

E na volta procederemos por contradição. Por hipótese, a = c e b = d, onde $(a,b) := \{\{a\}, \{a,b\}\}$. Vamos assumir aqui que também a = b = c = d. Pela definição de conjuntos, os elementos que constituem um conjunto são todos **distintos entre si**, de tal forma que repetições são redundantes, não constituem novos elementos. Assim:

$$(a,a) := \{\{a\}, \{\underbrace{a,a}\}\} = \{\underbrace{\{a\}, \{a\}}\} = \{\{a\}\}$$

Podemos notar que a cardinalidade deste conjunto é distinta daquela da hipótese:

$$\begin{aligned} |\{\{a\}\}| &= 1; \\ |\{\{a\}, \{a, b\}\}| &= 2 \end{aligned}$$

O que é absurdo. Logo, só é possível que (a,b)=(c,d) se a=b e c=d, e não doutra forma. lacktriangle

Exercício 2

a.

b.

R	a	b	С
1	0	1	1
2	0	0	0
3	0	1	0
4	1	0	1

c.
$$R^{-1} = \{(b,1),(c,1),(b,3),(a,4),(c,4)\}$$

R ⁻¹	1	2	3	4
a	0	0	0	1
b	1	0	1	0
С	1	0	0	1

d. Uma é a matriz transposta da outra. Isso é uma se obtêm pela transposição dos elementos ordenados em linhas na outra para colunas na própria.

a.
$$T = R \circ S = \{(1,x),(2,y),(2,z)\}$$

$$\mathbf{b}.\,M_R = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}; M_S = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 1 & 1 \end{bmatrix}$$

c. Estas são ligeiramente diferentes:

$$M_T = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

$$M_R M_S = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix} \cdot egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 1 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \ 0 & 2 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

Note que a matriz resultante M_RM_S corresponde às posições de incidência das setas em C e também o número destas:

$T = R \circ S$	X	y	Z
1	1	0	0
2	0	2	1
3	0	0	0
4	0	0	0

Exercício 4

Nota-se que as relações R, R^{-1} e R^2 **não** são funções pois mapeiam pelo menos um valor no domínio para mais de um valor na imagem.

Exercício 6

Exercício 7

Sejam R e S ordens parciais sobre um conjunto A. Mostre que $R \cap S$ também é uma relação de orden parcial sobre A.

Para uma relação ser de tipo ordem parcial, esta necessita ser **reflexiva**, **antissimétrica** e **transitiva**. A relação de intersecção $R \cap S$ é deste tipo por consequência de carregar tais características dos conjuntos

que integra:

- Esta é reflexiva pois qualquer par ordenado $(a,a) \in R$ corresponde s $(a,a) \in S$ e portanto a $(a,a) \in R \cap S$.
- Para qualquer par ordenado $(a,b) \in R \cap S$, $(a,b) \in R$ e $(a,b) \in S$. Como tanto R e S são antissimétricos, $(b,a) \not\in R$, $(b,a) \not\in S$ e $(b,a) \not\in R \cap S$.
- Para qualquer par ordenado $(a,b),(b,c)\in R\cap S$, $(a,b),(b,c)\in R$ e $(a,b),(b,c)\in S$. Como tanto R e S são transitivos, $(a,c)\in R$, $(a,c)\in S$ e $(a,c)\in R\cap S$.

Exercício 8

Tal relação é:

- ullet Reflexiva pois $a^1=a$, $1\in\mathbb{N}$. Portanto $(a,a)\in R$.
- Antissimétrica pois se $a^r=b$ então $b^{\frac{1}{r}}=\pm a$, mas $\frac{1}{r}\not\in\mathbb{N}$. Portanto $(a,b)\in R$, mas $(b,a)\not\in R$.
- ullet Transitiva pois se $a^r=b$ e $b^s=c$ então $a^{r\cdot s}=c$, $r\cdot s\in \mathbb{N}$. Então $(a,c)\in R$.

O conjunto destas qualidades configura que o conjunto R é de tipo parcialmente ordenado sobre $\mathbb{Z}.$

Exercício 9

Tal relação é:

- ullet Reflexiva pois se A=B então $(A,A)\in R.$
- ullet Antissimétrica pois se $A\subset B$ então $B
 ot\subset A$. Portanto $(A,B)\in R$, mas $(B,A)
 ot\in R$.
- Transitiva pois se $A\subseteq C$ e $C\subseteq B$ então $A\subseteq B$. Logo $(A,C)\in R$, $(C,B)\in R$ e $(A,B)\in R$.

O conjunto destas qualidades configura que o conjunto R é de tipo parcialmente ordenado.

Diagrama de Hasse para $S = P(\{a,b,c\})$

Uma relação de equivalência trata-se de uma relação binária que é reflexiva, simétrica e transitiva.

Assim sendo, a relação descrita é de tal tipo tido que ela é

- ullet Reflexiva pois se p=r e q=s então $((p,q)(p,q))\in R$.
- ullet Simétrica pois se pq=rs então $((p,q)(r,s))\in R$ e $((r,s),(p,q))\in R.$
- Transitiva pois se pq=mn e mn=rs então $((p,q),(m,n))\in R$, $((m,n),(r,s))\in R$ e $((p,q),(r,s))\in R$.

Exercício 11

(Ida) A cardinalidade do conjunto $|\mathbb{Z}|$ é infinita, entretanto $P(\mathbb{Z})$ contém todos os subconjuntos possíveis de serem compostos por elementos de \mathbb{Z} , tal que $P(\mathbb{Z})=\{\{\},\{0\},\{1\},\{-1\},\{2\},\ldots,\{0,1\},\{0,-1\},\ldots\}$. Assim $P(\mathbb{Z})$ contém incontáveis subconjuntos cada qual finito, tal que para dois subconjuntos A e B quaisquer a diferença simétrica entre estes também é finita pois $A\Delta B\subseteq A\cup B$.

(Volta) A relação R entre quaisquer conjuntos finitos é

- ullet Reflexiva pois $A\Delta A=arnothing$, um conjunto finito contendo nenhum elemento. Logo, $(A,A)\in R$.
- ullet Simétrica pois $A\Delta B=B\Delta A$. Assim, $(A,B)\in R$ e $(B,A)\in R$.
- Transitiva pois se $A\Delta B$ é finita e $B\Delta C$ também, isso implica que $A\Delta C$ também será. Portanto $((A,B),(B,C)\in R)\implies ((A,C)\in R).$

Finalmente, observa-se que R trata-se de uma relação de **equivalência**.

Exercício 12

Temos a relação $R=\{(a,b)\in\mathbb{R}:(b-a)\in\mathbb{Z}\}$, está é uma relação de equivalência pois

- ullet esta é reflexiva: para qualquer $a\in\mathbb{R}$, (a-a)=0 e $0\in\mathbb{Z}$, logo $(a,a)\in R$;
- ullet esta é simétrica: pois o módulo da diferença de b-a equivale àquele da diferença de a-b em \mathbb{Z} , logo $(a,b),(b,a)\in R$;
- esta é transitiva pois se $(a-b), (b-c) \in \mathbb{Z}$ então $(a-c) \in \mathbb{Z}$, logo $(a,b), (b,c), (a,c) \in R$.

Assim, para qualquer valor $x\in\mathbb{R}$ dada a relação R sobre \mathbb{R} tem-se a classe de equivalência $[x]=\{y\in\mathbb{R}:(x.y)\in R\}$ representativa de todos os valores aqueles para os quais a diferença x-y produz um número inteiro.

Exercício 13

- R e R^{-1} são relações transitivas tais que $(a,b),(b,c),(a,c)\in R$ e $(c,b),(b,a),(c,a)\in R^{-1}$, logo $R\cap R^{-1}$ também é transitiva pois $(a,b),(b,c),(a,c),(c,b),(b,a),(c,a)\in R\cap R^{-1}$;
- R e R^{-1} são relações reflexivas, então $(a,a)\in R$, $(a,a)\in R^{-1}$ e portanto $(a,a)\in R\cap R^{-1}$;
- Finalmente, se (a,b) e (b,a) está em $R\cap R^{-1}$, tal qual demonstrado anteriormente, então $R\cap R^{-1}$ é também simétrica e constitui uma relação de equivalência.

Exercício 14

A relação $a \equiv b \pmod{n}$ denota existência da igualdade a = kn + b para algum $k \in \mathbb{Z}^*$. Podemos notar que esta trata-se de uma relação de equivalência pois esta possui as características de

- ullet reflexividade: existe $a\equiv a ({
 m mod}\ n)$, para qualquer n quando a=0 e para a quando n>a;
- simetria: $a \equiv b \pmod{n}$ se, e somente se, $b \equiv a \pmod{n}$.

$$a=kn+b\iff b=a\underbrace{-k}_{k_2}n=k_2n+a$$

• transitividade: se $a \equiv b \pmod{n}$ e $b \equiv c \pmod{n}$, então $a \equiv c \pmod{n}$.

$$\begin{cases} a = kn + b \\ b = k_2n + c \\ \therefore a = \underbrace{kn + k_2n}_{k_3n} + c = k_3n + c \end{cases}$$

Sejam A,B,C matrizes de dimensão $n\times n$ e P uma matriz inversível também de dimensão $n\times n$ tal que duas matrizes similares entre si, denotadas por $A\sim B$, estão relacionadas por $PAP^{-1}=B$. Esta relação de similitude trata-se de uma relação de equivalência pois:

ullet Esta é reflexiva: $A\sim A$

Prova: Seja P a matriz identidade I_n , $(I_n)^{-1}AI_n=A$.

ullet Esta é simétrica: $A\sim B$ se e apenas se $B\sim A$

Prova: se assumirmos que $A \sim B$, teremos

$$P^{-1}AP = B$$

 $P(P^{-1}AP) = P(B)$
 $(AP)P^{-1} = PBP^{-1}$
 $PBP^{-1} = A$

Seja Q uma matriz tal que $Q=P^{-1}$, logo $Q^{-1}BQ=A\implies B\sim A$

Assim, $A \sim B \iff B \sim A \blacksquare$.

ullet Esta é transitiva: se $A\sim B$ e $B\sim C$ então $A\sim C$

Prova: Por hipótese temos

$$\begin{cases} B = P^{-1}AP \\ C = Q^{-1}BQ \\ \therefore C = Q^{-1}(P^{-1}AP)Q = (PQ)^{-1}A(PQ) \end{cases}$$

Seja W uma matriz tal que W=PQ, logo $C=W^{-1}AW\implies C\sim A$

1. nUSP: 12543033; Turma 04