5

10

15

ABSTRACT OF THE DISCLOSURE

An impluse response $h_{mn}(q)$ of each transmission path is estimated from N received signals r_m ($m=1, \cdots, M$) and a known signal (for a number of users equal to N, $n=1, \cdots, N$). M×N matrix \mathbf{H} (\mathbf{q}) having $h_{mn}(\mathbf{q})$ as an element and a Q×Q matrix \mathbf{H} having $\mathbf{H}(\mathbf{q})$ as an element are determined (where Q represents a number of multipaths of each transmitted wave and $\mathbf{q}=0, \cdots, Q-1$). A soft decision value $b'_n(k)$ is determined from decoded λ_2 [$b_n(k)$], and this is used to generate an interference component matrix $\mathbf{B'}(k)$ to generate an interference replica $\mathbf{H}\cdot\mathbf{B'}(k)$. The interference replica $\mathbf{H}\cdot\mathbf{B'}(k)$ is subtracted from a received matrix $\mathbf{y}(k)$ to determine $\mathbf{y'}(k)$. $\mathbf{y}(k)$ and \mathbf{H} are used to determine an adaptive filter coefficient $\mathbf{w}_n(k)$ to be applied to an \mathbf{n} -th user in order to eliminate residual interference components in $\mathbf{y'}(k)$ according to the minimum mean square error criteria. $\mathbf{y}(k)$ is passed through $\mathbf{w}_n(k)$ to provide a log-likelihood ratio as a received signal from the user \mathbf{n} from which interferences are eliminated.