Syyskuun vaikeammat valmennustehtävät

Ratkaisuja pyydetään seuraavaan valmennusviikonloppuun 18.-20.10. mennessä. Ratkaisut voi tuoda valmennusviikonlopulle, lähettää postitse osoitteeseen Katja Kulmala, Pekankatu 5A 25, 00700 Helsinki, tai lähettää sähköpostitse osoitteeseen katja.kulmala@helsinki.fi.

- 1. Kahden ympyrän keskipisteet ovat O_1 ja O_2 ja säteet r ja R vastaavasti. Oletetaan, että ympyrät leikkaavat kahdessa eri pisteessä A ja B ja että $O_1O_2=1$. Määritä kolmioiden O_1AB ja O_2AB pinta-alojen suhde.
- 2. Etsi kaikki parit (m, n) positiivisia kokonaislukuja, joille $2^m 1 \mid 2^n + 1$.
- 3. Olkoon $n \geq 3$ kokonaisluku. Montako tornin reittiä on $n \times n$ -shakkilaudan vasemmasta alakulmasta oikeaan yläkulmaan seuraavilla ehdoilla:
 - torni liikkuu joka siirrolla ylös tai oikealle ja
 - ullet torni ei kulje laudan keskiruutujen kautta (parillisilla n keskiruutuja on neljä ja parittomilla n yksi) ja
 - reittejä pidetään samoina, jos ne kulkevat täsmälleen samojen ruutujen kautta?
- 4. Olkoot a,b,c>0. Osoita, että $(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})^2\geq (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$.
- 5. Olkoon ABC teräväkulmainen kolmio, jossa $\angle ABC = \angle ACB$. Olkoon sen ympäripiirretyn ympyrän keskipiste O ja korkeusjanojen leikkauspiste H. Osoita, että pisteiden B, O ja H kautta kulkevan ympyrän keksipiste on suoralla AB.
- 6. Olkoon $x \ge 3$ kokonaisluku ja $n = x^6 1$. Oletetaan, että alkuluvulle p ja kokoaisluvulle $k \ge 0$ pätee $p^k \mid n$. Osoita, että $p^{3k} < 8n$.
- 7. Taululle on kirjoitettu $n \geq 2$ reaalilukua. Pelaajat A ja B pelaavat peliä vuorotellen; A aloittaa. Vuorollaan pelaaja valitsee taululta kaksi reaalilukua a ja b, pyyhkii ne ja kirjoittaa tilalle luvut $\frac{2(a+b)}{3}$ ja $\frac{2(a-b)}{3}$. Pelaajan B tavoite on saavuttaa tilanne, jossa kaikkien taulun lukujen itseisarvo on alle $\frac{1}{100}$. Pystyykö B välttämättä saavuttamaan tavoitteensa?
- 8. Olkoon P kolmion ABC sisäpiste siten, että $\angle ABP = \angle PCA$. Olkoon Q sellainen piste, että PBQC on suunnikas. Todista, että $\angle QAB = \angle CAP$.

9. Osoita, ettei ole olemassa funktiota $f:\mathbb{R}\to\mathbb{R},$ jolle

$$\frac{f(x)+f(y)}{2} \geq f(\frac{x+y}{2}) + |x-y|$$

kaikilla reaaliluvuilla x ja y.

10. Etsi kaikki funktiot $f: \mathbb{Z}_+ \to \mathbb{Z}_+$, joille f(n!) = f(n)! kaikilla $n \in \mathbb{Z}_+$ ja $a-b \mid f(a)-f(b)$ kaikilla $a,b \in \mathbb{Z}_+$, kun $a \neq b$.