### 13) Logit and Probit I

Vitor Kamada

October 2018

Tables, Graphics, and Figures from

### **Introductory Econometrics**

Wooldridge, J. M. (2015): Chapter 17 - Limited Dependent Variable Models

#### **Graph of the Logistic Function**



#### **Specifying Logit and Probit Models**

$$P(y=1|x)=G(eta_0+xeta)$$
  $0< G(z)<1$   $G(z)=rac{e^z}{1+e^z}=\Lambda(z)$   $G(z)=\Phi(z)=\int_{-\infty}^z\phi(v)dv$   $\phi(v)=(2\pi)^{-rac{1}{2}}exp(-rac{z^2}{2})$ 

#### Latent Variable Model

$$y^* = eta_0 + xeta + e$$
 $y = 1[y^* > 0]$ 
 $e \perp x$ 

$$e \sim N(0,1)$$
 or  $Logistic(0,1)$ 

$$\therefore 1 - G(-z) = G(z)$$

#### Response Probability for y

$$P(y = 1|x) = P(y^* > 0|x) = P[e > -(\beta_0 + x\beta)|x]$$

$$= 1 - G[-(\beta_0 + x\beta)] = G(\beta_0 + x\beta)$$

$$\frac{\partial p(x)}{\partial x_j} = g(\beta_0 + x\beta)\beta_j$$

$$g(z) = \frac{dG}{dz}(z) > 0$$

### $G(\cdot)$ is a strictly increasing cdf

$$\phi(0)=rac{1}{\sqrt{2\pi}}pprox$$
 .4,  $\lambda(0)=rac{exp(0)}{[1+exp(0)]^2}pprox$  .25

# Partial Effect of Continuous Variables on the Response Probability

$$\frac{\partial p(x)}{\partial x_i} = g(\beta_0 + x\beta)\beta_j$$

$$\frac{\partial p(x)}{\partial x_j} / \frac{\partial p(x)}{\partial x_h} = \frac{\beta_j}{\beta_h}$$

Binary: 
$$\frac{\Delta p(x)}{\Delta x_1} = G(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k)$$
  
 $-G(\beta_0 + \beta_2 x_2 + ... + \beta_k x_k)$ 

Vitor Kamada ECO 6100 Econometrics October 2018 7 / 15

#### Maximum Likelihood Estimation (MLE)

$$f(y|x_i;\beta) = [G(x_i\beta)]^y[1 - G(x_i\beta)]^{1-y}$$

$$\ell_i(\beta) = y_i \log[G(x_i\beta)] + (1 - y_i) \log[1 - G(x_i\beta)]$$

$$\mathcal{L}(\beta) = \sum_{i=1}^{n} \ell_i(\beta)$$



8 / 15

Vitor Kamada ECO 6100 Econometrics October 2018

Pseudo 
$$R^2 = 1 - \frac{\mathcal{L}_{ur}}{\mathcal{L}_0}$$

 $\mathcal{L}_0$  the model with only an intercept

$$|\mathcal{L}_{ur}| \leq |\mathcal{L}_0|$$

#### Percent Correctly Predicted

$$ilde{y}_i = 1 ext{ if } G(\hat{eta}_0 + x_i \hat{eta}) \geq .5$$
  $ilde{y}_i = 0 ext{ if } G(\hat{eta}_0 + x_i \hat{eta}) < .5$ 

|                      | $(y_i,$ | $\tilde{y}_i$ |
|----------------------|---------|---------------|
| Correct Prediction   | 0,0     | $\boxed{1,1}$ |
| Incorrect Prediction | 0,1     | 1,0           |

The % correctly predicted is the % of times that  $y_i = \tilde{y}_i$ 

#### Table 17.1 Estimates of Labor Force Participation

| Independent Variables          | LPM (OLS) | Logit (MLE) | Probit (MLE) |
|--------------------------------|-----------|-------------|--------------|
| nwifeinc                       | 0034      | 021         | 012          |
|                                | (.0015)   | (.008)      | (.005)       |
| educ                           | .038      | .221        | .131         |
|                                | (.007)    | (.043)      | (.025)       |
| exper                          | .039      | .206        | .123         |
|                                | (.006)    | (.032)      | (.019)       |
| exper <sup>2</sup>             | 00060     | 0032        | 0019         |
|                                | (.00019)  | (.0010)     | (.0006)      |
| age                            | 016       | 088         | 053          |
|                                | (.002)    | (.015)      | (.008)       |
| kidslt6                        | 262       | -1.443      | 868          |
|                                | (.032)    | (.204)      | (.119)       |
| kidsge6                        | .013      | .060        | .036         |
|                                | (.014)    | (.075)      | (.043)       |
| constant                       | .586      | .425        | .270         |
|                                | (.152)    | (.860)      | (.509)       |
| Percentage correctly predicted | 73.4      | 73.6        | 73.4         |
| Log-likelihood value           | —         | -401.77     | -401.30      |
| Pseudo <i>R</i> -squared       | .264      | .220        | .221         |

#### Partial Effect at the Average (PEA)

$$\Delta \hat{P}(y=1|x) \approx [g(\hat{\beta}_0 + x\hat{\beta})\hat{\beta}_j]\Delta x_j$$

$$g(\hat{\beta}_0 + \bar{x}\hat{\beta}) = g(\hat{\beta}_0 + \hat{\beta}_1\bar{x}_1 + \hat{\beta}_2\bar{x}_2 + ... + \hat{\beta}_k\bar{x}_k)$$

Partial Effect of  $x_j$  for the "average" person in the sample.

# Average Partial Effect (APE) or Average Marginal Effect (AME)

$$n^{-1}\sum_{i=1}^n \left[g(\hat{\beta}_0+x_i\hat{\beta})\hat{\beta}_i\right]$$

AME is the average of the nonlinear function rather than the nonlinear function of the average

$$g[E(x\beta)] \neq E[g(x\beta)]$$

October 2018

# Table 17.2 Average Partial Effects for the Labor Force Participation Models

| Independent Variables | LPM     | Logit   | Probit  |
|-----------------------|---------|---------|---------|
| nwifeinc              | 0034    | 0038    | 0036    |
|                       | (.0015) | (.0015) | (.0014) |
| educ                  | .038    | .039    | .039    |
|                       | (.007)  | (.007)  | (.007)  |
| exper                 | .027    | .025    | .026    |
|                       | (.002)  | (.002)  | (.002)  |
| age                   | 016     | 016     | 016     |
|                       | (.002)  | (.002)  | (.002)  |
| kidslt6               | 262     | 258     | 261     |
|                       | (.032)  | (.032)  | (.032)  |
| kidsge6               | .013    | .011    | .011    |
|                       | (.014)  | (.013)  | (.013)  |

# Figure 17.2 Estimated Response Probabilities with Respect to Education for the Linear Probability and Probit Models

