1

Side-Channel Attacks and Chosen Ciphertext Security

Mike Reiter

Copyright © 2020 by Michael Reiter All rights reserved.

1

Chosen Ciphertext Attacks

2

- Recall that in a chosen ciphertext attack, the adversary is given
 - **■** An encryption oracle E_K
 - \blacksquare A decryption oracle D_K
 - \blacksquare A test oracle T_K
 - **■** If $c \leftarrow T_K(m_0, m_1)$ then adversary is not permitted to invoke $D_K(c)$
- lacktriangle Arguably having otherwise unfettered access to D_K is unrealistic, and so variations on this model have been explored
 - **■** Lunchtime attack: Adversary can query D_K only before querying T_K
 - Side-channel attack: Instead of having access to D_K , adversary is given access to a "side channel" oracle P_K
 - $\P P_K(c)$ returns $f(D_K(c))$ for a particular function f
- We will explore a frequently practical side channel in this lecture

Copyright © 2020 by Michael Reiter All rights reserved.

Recall CBC Mode Encryption

3

■ Let $f: \text{Keys} \times \{0,1\}^L \rightarrow \{0,1\}^L$ be a pseudorandom permutation

$$\begin{aligned} & \underline{\text{Algorithm}} \ E_K(m): \\ & \text{let } m_1|\dots|m_n = m: m_i \in \{\mathbf{0},\mathbf{1}\}^L \\ & c_0 \leftarrow_R \{0,1\}^L \\ & \text{for } i = 1 \dots n \text{ do } c_i \leftarrow f_K(c_{i-1} \oplus m_i) \\ & \text{return } c_0 \mid c_1 \mid \dots \mid c_n \end{aligned}$$

Algorithm $D_K(c)$:

let
$$c_0 | c_1 | \dots | c_n = c : c_i \in \{0,1\}^L$$

for $i = 1 \dots n$ do $m_i \leftarrow f_K^{-1}(c_i) \oplus c_{i-1}$
return $m_1 | \dots | m_n$

- Above description assumes that length of *m* is a multiple of *L*
 - If not, <u>padding</u> is required

Copyright © 2020 by Michael Reiter All rights reserved.

3

Padding

4

- A padding function is a function PAD: $\{0,1\}^* \rightarrow (\{0,1\}^L)^+$
 - Most applications require PAD to be reversible
- **■** Two types of padding functions
 - **■** Byte-oriented, where PAD: $(\{0,1\}^8)^+ \to (\{0,1\}^L)^+$ and L = 8b
 - Bit-oriented, where domain of PAD is unrestricted
- **■** Example: CBCPAD is a byte-oriented padding function

Algorithm CBCPAD(
$$m$$
):
$$\det m_1 | \dots | m_n = m : m_i \in \{0,1\}^8$$

$$p \leftarrow b - (n \mod b)$$

$$\operatorname{return} m \mid pp \dots p$$

$$p \text{ times}$$

- Padding is "01", "02 02", "03 03 03", "04 04 04 04" ...
 - **■** Denote this by " $p \times p$ "

Copyright © 2020 by Michael Reiter All rights reserved.

Processing Padding

5

- What if the padding in a ciphertext is not valid?
 - **▼** tear down the session (as in SSL/TLS)?
 - \blacksquare log the error (as in ESP)?
 - **▼** return an error message (as in WTLS)?
- Either way, typically will leak whether the padding was valid
- Abstract this as an oracle P_K

```
Algorithm P_K(c):

let c_0 \mid c_1 \mid \dots \mid c_n = c : c_i \in \{0,1\}^L

for i = 1 \dots n do m_i \leftarrow f_K^{-1}(c_i) \oplus c_{i-1}

if m_n ends in p \times p for some p > 0

return 1

else

return 0
```

Copyright © 2020 by Michael Reiter All rights reserved.

5

Last Byte Decryption

[Vaudenay 2002]

- Consider a two-block ciphertext $c_0 \mid c_1$
- We know that decryption is performed as follows

$$m_1 \leftarrow \bigoplus f_K^{-1} \leftarrow c_1$$

■ Consider any $c_0' \neq c_0$

$$m_1' \leftarrow \bigoplus f_K^{-1} \leftarrow c_1$$

■ Since $c_0 \oplus m_1 = c_0' \oplus m_1' = f_K^{-1}(c_1)$, we get $m_1 = (c_0 \oplus c_0') \oplus m_1'$ ■ We know $(c_0 \oplus c_0')$ but not m_1'

Copyright © 2020 by Michael Reiter All rights reserved.

Last Byte Decryption (cont.)

7

- However, if we can find c_0 such that $P_K(c_0' | c_1) = 1$, then we know that m_1 is correctly padded
- Moreover, if c_0 is chosen randomly from $\{0,1\}^L$, then
 - **■** m_1' ends in 01 with probability $1/2^8$
 - **■** m_1 ' ends in 02 02 with probability $1/2^{16}$
 - **■** m_1 ' ends in 03 03 03 with probability $1/2^{24}$
 - ■
- So, we could just assume that m_1' ends in 01, and would usually be right
 - **■** If correct, then last byte of m_1 is last byte of $(c_0 \oplus c_0') \oplus 01$

Copyright © 2020 by Michael Reiter All rights reserved.

7

Last Byte Decryption (cont.)

8

- To get it right in all cases, start from c_0' where $P_K(c_0' | c_1) = 1$ and do the following
 - If $P_K((c_0' \oplus 01(00)^{b-1}) | c_1) = 0$ then m_1' ends in $b \times b$, else
 - If $P_K((c_0' \oplus 01(00)^{b-2}) | c_1) = 0$ then m_1' ends in $b-1 \times b-1$, else
 - ◥ ..
 - If $P_K((c_0' \oplus 01(00)^1) | c_1) = 0$ then m_1' ends in 02 02, else
 - \blacksquare m_1' ends in 01

Copyright © 2020 by Michael Reiter All rights reserved.

Last Byte Decryption (cont.)

9

- To get it right in all cases, start from c_0' where $P_K(c_0' | c_1) = 1$ and do the following
 - If $P_K((c_0' \oplus 01(00)^{b-1}) | c_1) = 0$ then m_1' ends in $b \times b$, else
 - If $P_K((c_0' \oplus 01(00)^{b-2}) | c_1) = 0$ then m_1' ends in $b-1 \times b-1$, else
 - ₹ ...
 - If $P_K((c_0' \oplus 01(00)^1) | c_1) = 0$ then m_1' ends in 02 02, else
 - \blacksquare m_1' ends in 01

Copyright © 2020 by Michael Reiter All rights reserved.

C

Last Byte Decryption (cont.)

10

- To get it right in all cases, start from c_0' where $P_K(c_0' \mid c_1) = 1$ and do the following
 - If $P_K((c_0' \oplus 01(00)^{b-1}) | c_1) = 0$ then m_1' ends in $b \times b$, else
 - If $P_K((c_0' \oplus 01(00)^{b-2}) | c_1) = 0$ then m_1' ends in $b-1 \times b-1$, else
 - ◥ ..
 - If $P_K((c_0' \oplus 01(00)^1) | c_1) = 0$ then m_1' ends in 02 02, else
 - \blacksquare m_1' ends in 01

Copyright © 2020 by Michael Reiter All rights reserved.

11

Block Decryption	12
■ Now we can use this to find all of m_1	
\oplus c_0'	
⊕ 01⊕02	
=	
\oplus $c_0 \oplus c_0'$	
$=$ m_1	
Copyright © 2020 by Michael Reiter All rights reserved.	

13 **Block Decryption** lacksquare Now we can use this to find all of m_1 $f_K^{-1}(c_1)$ \oplus $c_0{'}$ Find $x : P_K = 1$ \oplus 01⊕02 m_1' 02 02 $c_0 \oplus c_0'$ \oplus m_1 Copyright © 2020 by Michael Reiter All rights reserved.

Block De	cryptio	n				14
■ Now we car	n use this t	o find a	ll of <i>m</i>	1		
	<u> </u>				j	$f_K^{-1}(c_1)$
⊕	<u> </u>					$c_0{'}$
⊕				x	01⊕02	Find $x: P_K = 1$
=	<u> </u>			02	02	m_1'
⊕	□⊏					$c_0 \oplus c_0{'}$
⊕	╗┈置			х		
=						m_1

15

■ Now we can use this to find all of m_1

Copyright © 2020 by Michael Reiter All rights reserved.

15

Full Decryption

16

- Once we've implemented block decryption, full decryption of multi-block messages is straightforward
 - **■** Do each block separately
 - Use preceding ciphertext block as its initialization vector
- Block decryption can be sped up using binary search instead of linear search to find padding length

Copyright © 2020 by Michael Reiter All rights reserved.

Other Symmetric Encryption Schemes

- CBC is not the only encryption mode where padding is used
- Recall counter mode

Algorithm $E_K(m)$:

let
$$m_1|...|m_n = m : m_i \in \{0,1\}^L$$

let $c_0 \leftarrow_R \{0,1\}^L$
for $i = 1...n$ do $c_i \leftarrow f_K(c_0 + i \mod 2^L) \oplus m_i$
return $c_0 \mid c_1 \mid ... \mid c_n$

Algorithm $D_K(c)$:

let
$$c_0 \mid c_1 \mid \dots \mid c_n = c : c_i \in \{0,1\}^L$$

for $i = 1 \dots n$ do $m_i \leftarrow f_K(c_0 + i \mod 2^L) \oplus c_i$
return $m_1 \mid \dots \mid m_n$

■ Padding here is similarly tricky

Copyright © 2020 by Michael Reiter All rights reserved.

17

Counter Mode Encryption

- 18
- Suppose CBCPAD were used with counter mode
- A ciphertext $c_0 \mid c_1$ is decrypted as follows

$$c_1 \longrightarrow c_0+1 \longrightarrow f_K \longrightarrow m$$

■ For any $c_1' \neq c_1$

$$c_{1}' \xrightarrow{\qquad \qquad } m_{1}$$

$$c_{0}+1 \xrightarrow{\qquad \qquad } f_{K}$$

- Since $c_1 \oplus m_1 = c_1' \oplus m_1' = f_K(c_0+1)$, we get $m_1 = (c_1 \oplus c_1') \oplus m_1'$
- lacktriangle Once again, padding oracle enables m_1 to be recovered

Copyright © 2020 by Michael Reiter All rights reserved.

Counter Mode Encryption (cont.)

19

■ Note, however, that unlike with CBC, padding is not *necessary* with counter mode encryption

- Blue portion can be discarded, rather than padding to utilize it
 - Advantage: eliminates any padding oracle
 - Disadvantage: exposes exact bit length of plaintext

Copyright © 2020 by Michael Reiter All rights reserved.

19

Other Byte-Oriented Padding Schemes

20

- IPSec Encapsulated Security Payload (ESP-PAD)
 - **■** To pad with p > 0 bytes, use 01 02 ... p
 - Also vulnerable in the same way
- Prefix padding
 - Use CBCPAD but at front of message
 - Still vulnerable to same attack, and requires more state to encrypt
- Last byte = padding length
 - Last byte is length of padding; all other padding bytes random
 - Can be used in roughly same way, but to extract only the last byte of each plaintext block

Copyright © 2020 by Michael Reiter All rights reserved.

____ 20 Other Byte-Oriented Padding Schemes (cont.)

\blacksquare XY padding

- \blacksquare Let X and Y be two distinct public constants
- \blacksquare Pad with X followed by as many Y's as needed (possibly 0)
- Also vulnerable in (roughly) the same way

Any-pair padding

- Like XY padding, but X and Y are chosen randomly per message, and Y must be appended at least once
- All ciphertexts have valid padding, except those with all plaintext bytes being equal
- Eliciting a 0 from the oracle requires expected 2^{L-9} queries if plaintexts are random (which they're not)

Copyright © 2020 by Michael Reiter All rights reserved.

21

Other Byte-Oriented Padding Schemes (cont.)

Any-tail padding

- \blacksquare Message padded with any random Y (at least once) that is distinct from the last byte X of the plaintext
- All ciphertexts have valid padding
 - Padding oracle is eliminated
- Has an obvious bit-oriented analog

■ Padding followed by integrity check

- Message is padded, and then hash(message|padding) is appended before encryption
- Important for hash to be performed *after* padding, and checked before padding is checked on receiver side
- Virtually eliminates padding oracle (but has other weaknesses)

Copyright © 2020 by Michael Reiter All rights reserved.

Aborts

■ Some protocols (notably SSL/TLS) abort if they encounter a padding error

- If ciphertext is not authenticated, this is denial-of-service vulnerability
- If ciphertext is authenticated, then padding oracle is unavailable
- Aborts limit the attacker to one guess
- If the receiver does not abort, then attacker learns last byte of plaintext for whatever ciphertext he submitted
 - **■** Succeeds with probability $\approx 1/2^8$

Copyright © 2020 by Michael Reiter All rights reserved.

23

Padding Oracles in Public Key Systems

24

23

[Bleichenbacher 1998]

- Public key systems are equally vulnerable to attacks using padding oracles
- Recall RSA cryptosystem
 - **■** Public key $K = \langle e, N \rangle$, where N = pq for primes p, q
 - **■** Private key $K^{-1} = \langle d, N \rangle$, where $ed \equiv 1 \mod (p-1)(q-1)$
 - \blacksquare $E_K(m) = (\text{pad}(m))^e \mod N$
 - $D_{K^{-1}}(c) = \operatorname{pad}^{-1}(c^d \operatorname{mod} N)$

Copyright © 2020 by Michael Reiter All rights reserved.

PKCS #1 v1.5 Padding for Encryption

25

- If |N| = k bytes, then $256^{k-1} < N < 256^k$
- PKCS #1 (v1.5) padding for encryption is correct if
 - 1st byte is 00
 - 2nd byte is 02
 - next 8 bytes different from 00
 - at least one more 00 byte

Copyright © 2020 by Michael Reiter All rights reserved.

25

Properties of PKCS #1 v1.5 Padding

26

■ Probability Pr(PKCS) that a random message is correctly padded is

$$0.18 \cdot 2^{-16} \leq \text{Pr(PKCS)} \leq 0.97 \cdot 2^{-8}$$

- 1/Pr(PKCS) < 360,000
 - PKCS conforming messages can be found by trial and error
- Given a target ciphertext $c = m^e \mod N$, attacker can submit $c_i = c(s_i)^e \mod N$ to the padding oracle
 - **■** If c_i is PKCS conforming, then $2 \cdot 256^{k-2} \le ms_i \mod N < 3 \cdot 256^{k-2}$
- lacktriangle This fact can be leveraged to decrypt c

Copyright © 2020 by Michael Reiter All rights reserved.

Cost of Attack

27

- Number of queries needed
 - Pr(PKCS) = probability that a random message is PKCS conforming ■ $0.18 \cdot 2^{-16} < \text{Pr}(\text{PKCS}) < 0.97 \cdot 2^{-8}$
 - ▼ Pr(PKCS|A) = probability that a message with leading bytes 00 and 02 is PKCS conforming
 - 0.18 < Pr(PKCS|A) < 0.97
 - Number of oracle queries is $\approx 3/\Pr(PKCS) + 16k/\Pr(PKCS|A)$
- For example, if N is 1024 bits then roughly 1,000,000 queries are needed

Copyright © 2020 by Michael Reiter All rights reserved.

27

Length-Revealing Oracles

28

- Padding oracles are not the only side channels
- Consider a length-revealing oracle
 - Given ciphertext input, returns the length of the plaintext (with padding stripped)
- May result from link encryption
 - Outgoing link reveals length of incoming plaintext

■ This can be used to defeat even the previous "good" padding schemes■ (Work some examples)

Copyright © 2020 by Michael Reiter All rights reserved.

All right:

Chosen Ciphertext Security

- These various side-channel attacks motivate the need for chosen ciphertext security
- Any adversary that can succeed using a side-channel attack can succeed using a chosen-ciphertext attack
 - simply uses the decryption oracle to implement the side channel
- Conversely, encryption that is invulnerable to chosen ciphertext attacks is also invulnerable to side channel attacks (based on the output from the decrypting party)

Copyright © 2020 by Michael Reiter All rights reserved.

29

30

Recall a Chosen Ciphertext Attack

- The adversary is given three oracles
 - **■** An encryption oracle E_K
 - A test oracle $T_K(m_0, m_1)$ that can be called only once

Oracle
$$T_K(m_0, m_1)$$
:
if $|m_1| \neq |m_2|$ then return \perp
 $b \leftarrow_R \{0,1\}$
return $E_K(m_b)$

- \blacksquare A decryption oracle D_K
- The adversary must guess whether b = 0 or b = 1, but if

$$C \leftarrow T_K(m_0, m_1)$$

then adversary cannot query $D_K(c)$

Copyright © 2020 by Michael Reiter All rights reserved.

___ 30 **Definition of CCA Security**

31

■ A CCA-secure encryption scheme is a triple

$$\langle \text{Gen}, E, D \rangle$$

such that for every PPT ${\it A}$ there is a negligible ${\it v_A}$ where

$$\Pr[A^{E_K,D_K,T_K}=0:b\leftarrow 0]-\Pr[A^{E_K,D_K,T_K}=0:b\leftarrow 1]\leq \nu_A(\lambda)$$

for all sufficiently large λ , where

- **¬** the probabilities are taken over $K \leftarrow \text{Gen}(1^{\lambda})$
- \blacksquare $A^{EK,DK,TK}$ is not permitted to query $D_K(c)$ if $c \leftarrow T_K(m_0, m_1)$

Copyright © 2020 by Michael Reiter All rights reserved.