Probability Distributions

EES 4891/5891
Probability & Statistics for Geosciences
Jonathan Gilligan

Class #6: Thursday, January 23 2025

Learning Goals

Learning Goals

- Learn what probability distributions are
 - Continuous and discrete distributions
- Learn how we characterize probability distributions
 - Moments of a distribution
 - Graphical summaries
- Learn the difference between exploratory and confirmatory data analysis
- Learn practices for avoiding mistakes in statistical analysis
- Learn about exploratory data analysis
 - Robustness and Resiliance
- Learn about exploratory analysis of multivariate data
- Learn about pitfalls of relying too much on numerical summaries of statistical data

Homework

Homework

- I will post a homework assignment tomorrow
- It will cover data wrangling in R, focusing on selected exercises in *R for Data Science*.
- Start working on it before Tuesday, but it will not be due until the following week.
- Come to class Tuesday with questions about the exercises from the reading for Tuesday (these will be clearly indicated in the assignment)
 - We will discuss them and prepare you to compelete them after class.
- You do not need to do all the exercises in *R for Data Science*. Only the ones in the homework.

Probability Distributions

Probability Distributions Discrete vs. Continuous

- Discrete:
 - Examples:
 - Counts: how many earthquakes happen in a year?
 - Discrete outcomes: Dice rolls, mineral types
 - Ranges: group grain sizes into ranges (Wentworth classes)
 - Distribution:
 - Probability Mass Function (PMF)

$$P(X = x_i)$$

- Continuous:
 - Examples:
 - Weights
 - Ages
 - Temperatures
 - Distributions:
 - Probability Distribution Function (PDF):

$$P(X = x)$$

Discrete Probability Ranges

Probability Distributions

Discrete vs. Continuous

- Discrete:
 - Probability Mass Function (PMF)

$$P(X = x_i)$$

Cumulative Distribution Function

$$F(x) = P(X \le x) = \sum_{i=1}^{N} P(X = x_i),$$

where $x_i \leq x$ for $i = 1, \ldots, N$

Survival Function

$$P(X > x) = 1 - F(x)$$

- Contiunous:
 - Probability Distribution Function (PDF):

$$P(X = x)$$

Cumulative Distribution Function

$$F(x) = P(X \le x) = \int_{z=-\infty}^{x} P(X = z)$$

Survival Function

$$P(X > x) = 1 - F(x)$$

Empirical Probability Distributions

Empirical Probability Distributions

- Discrete PMF:
 - Histograms
- Continuous PDF:
 - Kernel-Density Estimation (KDE)
 - You choose the kernel function and the bandwidth.
 - It's usually fine to just use the defaults for the KDE function
 - There's not much difference
 - But you may want to manually adjust the bandwidth if your data set is unusual.
 - The figure shows four different kernel density estimates for the data, and they are all almost identical.

Describing an Empirical Distribution

- Quantiles and Percentiles
 - A *quantile* describes a value of x such that a certain fraction of the data x_i are less than x
 - median: what value has exactly 50% of the points below it?
 - quartiles: what values of x have exactly 25%, 50%, and 75% of the data below them?
 - o deciles: 10%, 20%, ... 90%
 - opercentiles: 1%, 2%, ..., 98%, 99%

Parametric Distributions

- Functions like the normal distribution, which are defined by parameters (mean, standard deviation), which we try to estimate from the data.
 - We'll look at this in more detail in Chapter 5

Moments of a Distribution

Moments of a Distribution

• Expected Value: On average, what value do we expect?

$$E(X) = \mu = \begin{cases} \sum_{i=1}^{N} x_i P(X = x_i) & \text{Discrete} \\ \int_{-\infty}^{\infty} x P(x) dx & \text{Continuous} \end{cases}$$

- This is the *first moment* of P, and it's equivalent to the *mean* of P.
- Higher moments:
 - The second moment is the *variance* of *P*
 - lacktriangle The third moment is related to the *skewness*, or asymmetry, of P
 - The fourth moment is related to the *kurtosis*, or how sharply peaked, versus spread out, *P* is.
 - The textbook gives the mathematical formulas for a generic *n*-th order moment
 - If you know all the moments (up to $n=\infty$), you know everything about P.

Practical Application: Climate Change

Caution

- Francis J. Anscombe data sets:
 - 4 sets of 11 data points in x and y
 - Identical means and standard deviations

set	mean_x	mean_y	sd_x	sd_y
1	9	7.501	3.317	2.032
2	9	7.501	3.317	2.032
3	9	7.500	3.317	2.030
4	9	7.501	3.317	2.031

Exploratory Data Analysis

Data Analysis

- Exploratory data analysis: examines data to try to find patterns and develop hypotheses about it.
- Confirmatory data analysis: examines data to test previously developed hypotheses.
- Scientific Process:
 - If you use the same data for *exploratory* and *confirmatory* analysis, you are likely to fool yourself and make errors.
 - Overfitting data: Your data may not be perfectly representative of all possible measurements. the hypothesis that best describes your data may not describe newer data very well.
 - It's important to *test* hypotheses with different, independent data to the data you used to *generate* the hypothesis.

Avoiding Mistakes in Exploratory Analysis

- For *exploratory analysis*, we want to use methods that are *robust* and *resistant*
 - robust methods are not sensitive to assumptions about the data (e.g., assuming the data are normally distributed)
 - resistant methods are not sensitive to small numbers of unsual observations (outliers).
 - If there are 100 ordinary people in a coffee shop, and Elon Musk walks in, suddenly the *mean* wealth of people in the coffee shop is several billion dollars.
 - But the *median* wealth doesn't change very much
 - The *median* is much more *resistant* than the *mean* for describing average properties of observations

Numerical Summaries

- Range: difference between largest and smallest
- Location:
 - mean
 - median: If the mean and median are different, the distribution must have skewness
 - Other measures trimean, trimmed mean are rarely used

Numerical Summaries

- Spread:
 - standard deviation

$$s = \sqrt{E((X - E(X))^2)} = \sqrt{E((X - \text{mean})^2)}$$

- Not very reistant
- The variance $v = s^2$
- *interquartile range* $IQR = q_{0.75} q_{0.25}$ is much more *resistant* than standard deviation
 - Difference between 1st and 3rd quartiles (25th and 75th percentiles)
- mean absolute deviation MAD is also resisant.

$$MAD = E(|X - q_{0.50}|) = E(|X - median|)$$

Examples:

```
data = rnorm(50, 0, 2)
```

- Mean: mean(data) = -0.049
- Median: median(data) = 0.028
- Standard deviation:sd(data) = 1.737
- Interquartile range:IQR(data) = 2.398
- Mean absolute deviation:
 mad(data) = 1.896

```
data_2 = c(data, 10)
```

- Mean: mean(data_2) = 0.148
- Median: median(data_2) = 0.071
- Standard deviation:sd(data_2) = 2.222
- Interquartile range:IQR(data_2) = 2.482
- Mean absolute deviation:mad(data_2) = 1.906

Example (cont.)

Graphical Summaries

Multivariate Data

Multivariate Data

- So far we've looked at observations of one variable at a time.
- What do we do if we measure several variables for each observation?
- Covariance:

$$Cov(X, Y) = E((X - E(X))(Y - E(Y)))$$

= $E(XY) - E(X)E(Y)$

- If there is no relationship between X and Y, Cov(X, Y) = 0
- Standardized data: mean = 0, sd = 1

$$X_{\rm std} = \frac{X - E(X)}{\sigma_X}$$

lacktriangle Correlation coefficient ho is the covariance of standardized variables

$$\rho_{XY} = \text{Cov}(X_{\text{std}}, Y_{\text{std}})$$

Correlation

- $ho_{XY}=0$: There is no relationshp between X and Y
- $|
 ho_{XY}| > 0$: The value of X tells us something about Y
- $ullet |
 ho_{XY}|=1$: The values of X and Y lie exactly on a line

Caution

Anscombe data

set	mean_x	mean_y	sd_x	sd_y	cor
1	9	7.501	3.317	2.032	0.816
2	9	7.501	3.317	2.032	0.816
3	9	7.500	3.317	2.030	0.816
4	9	7.501	3.317	2.031	0.817

More Fun with Correlations

"Datasaurus" data set

dataset	mean_x	mean_y	sd_x	sd_y	cor
dino	54.263	47.832	16.765	26.935	-0.064
away	54.266	47.835	16.770	26.940	-0.064
h_lines	54.261	47.830	16.766	26.940	-0.062
v_lines	54.270	47.837	16.770	26.938	-0.069
x_shape	54.260	47.840	16.770	26.930	-0.066
star	54.267	47.840	16.769	26.930	-0.063
high_lines	54.269	47.835	16.767	26.940	-0.069
dots	54.260	47.840	16.768	26.930	-0.060
circle	54.267	47.838	16.760	26.930	-0.068
bullseye	54.269	47.831	16.769	26.936	-0.069
slant_up	54.266	47.831	16.769	26.939	-0.069
slant_down	54.268	47.836	16.767	26.936	-0.069
wide_lines	54.267	47.832	16.770	26.938	-0.067

Lesson

- Numerical summaries are useful, but limited
- Summary graphs are better, but still limited
- Always plot your data

Bivariate Plots Scatterplots

- Old Faithful geyser in Yellowstone National Park is known for regular eruptions.
 - Plot the eruption duration versus the waiting time between eruptions

Bivariate Histograms

Bonus: How to Make the Plots

Scatterplot

```
p = ggplot(faithful,
           aes(x = waiting,
               y = eruptions)) +
  geom_contour_filled(data = faithfuld,
                      aes(z = density),
                      alpha = 0.3) +
  geom_point(color = "darkgreen") +
  guides(fill = "none") +
  labs(x = "waiting time (minutes)",
       y = "eruption duration (minutes)") +
  theme bw (base size = 20)
pm = ggMarginal(p, type = "density",
                color = "purple",
                fill = "purple",
                alpha = 0.3)
pm
```


Hexagon Plot

```
p2 = ggplot(faithful,
            aes(x = waiting,
                y = eruptions)) +
  geom point() +
  geom\ hex(bins = 20) +
  scale fill distiller(palette = "Greens",
                       direction = 1) +
  guides(fill = "none") +
  labs(x = "waiting time (minutes)",
       y = "eruption duration (minutes)") +
  theme bw (base size = 20)
p2m = ggMarginal(p2,
                 type = "histogram",
                 bins = 20,
                 color = "darkgreen",
                 fill = "darkgreen",
                 alpha = 0.3)
p2m
```

