Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки: 09.03.04 — Системное и прикладное программное обеспечение Дисциплина «Вычислительная математика»

Лабораторная работа №3

Вариант 6

Выполнил:

Капарулин Тимофей Иванович

Преподаватель:

Машина Екатерина Алексеевна

Цель работы

Найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

Вычисление заданного интеграла

$$\int_{1}^{2} (3x^3 + 5x^2 + 3x - 6) dx$$

1. Точное решение

$$\int_{1}^{2} \left(3x^{3} + 5x^{2} + 3x - 6\right) dx = \left(0.75x^{4} + \frac{5}{3x^{3}} + 1.5x^{2} - 6x\right)_{1}^{2} = \frac{257}{12} \approx 21.416667$$

2. Формула Ньютона-Котеса при n=6

$$h = \frac{2-1}{6} \approx 0.16667$$

i	0	1	2	3	4	5	6
x_i	1	1.16667	1.33333	1.5	1.66667	1.83333	2
y_i	5	9.06953	13.99989	19.875	26.77793	34.79149	44

n	C_n	c_n^0	c_n^1	c_n^2	c_n^3	c_n^4	c_n^5	c_n^6
6	840	41	216	27	272	27	216	41

$$\int_{1}^{2} (3x^{3} + 5x^{2} + 3x - 6) dx = \frac{n * h}{C_{n}} * \sum_{i=1}^{n} c_{n}^{i} * f(x_{i}) =$$

$$= \frac{6*0.16667}{840} * (41*5 + 216*9.06953 + 27*13.99989 + 272$$
$$*19.875 + 27*26.77793 + 216*34.79149 + 41*44)$$

$$=\frac{1}{840}$$
* 17989.98146 = 21.41665

3. Формула средних прямоугольников при n=10

	0	1	2	3	4	5	6	7	8	9	10
x_i	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
$f(\frac{x_{i-1}+x_i}{2})$	-	6.13538	8.62512	11.42188	14.54363	18.00838	21.83413	26.03887	30.64062	35.65738	41.10713

$$\int_{1}^{2} \left(3x^{3} + 5x^{2} + 3x - 6\right) dx = \frac{(b - a)}{n} * \sum_{i=1}^{n} f\left(\frac{x_{i-1} + x_{i}}{2}\right) =$$

$$\frac{1}{10}*(6.13538 + 8.62512 + 11.42188 + 14.54363 + 18.00838 + 21.83413 + 26.03887 + 30.64062 + 35.65738 + 41.10713) = 21.40125$$

3. Формула трапеций при n=10

	0	1	2	3	4	5	6	7	8	9	10
x_i	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
$f(x_i)$	5	7.343	9.984	12.941	16.232	19.875	23.888	28.289	33.096	38.327	44

$$\int_{1}^{2} (3x^{3} + 5x^{2} + 3x - 6)dx = \frac{(b - a)}{n} * \left(\frac{f(x_{0}) + f(x_{n})}{2} + \sum_{i=1}^{n-1} f(x_{i})\right) = \frac{1}{10} * (24.5 + 189.975) = 21.4475$$

4. Формула Симпсона при n=10

	0	1	2	3	4	5	6	7	8	9	10
x_i	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
$f(x_i)$	5	7.343	9.984	12.941	16.232	19.875	23.888	28.289	33.096	38.327	44

$$\int_{1}^{2} (3x^{3} + 5x^{2} + 3x - 6) dx =$$

$$= \frac{(b-a)}{3n} * \left(f(x_{0}) + 4 * \sum_{i=0}^{\lfloor n/2 \rfloor} f(x_{2i+1}) + 2 * \sum_{i=0}^{\lfloor n/3 \rfloor} f(x_{2i+2}) + f(x_{n}) \right)$$

$$\frac{1}{30} * (5 + 427.1 + 166.39999 + 44) = 21.416666$$

5. Результаты

I	Метод Ньютона –	Метод прямоугольников	Метод трапеций	Метод Симпсона	
	Komeca				
21.416667	21.416645	21.40125	21.4475	21.416666	

	Метод Ньютона – Котеса	Метод прямоугольников	Метод трапеций	Метод Симпсона
Погрешность	0.000022	0.01542	0.03083	0.000001

Листинг программы

Формула прямоугольников:

```
def rectangle rule(func, a, b, n, frac):
  """Обобщённое правило прямоугольников."""
  dx = (b - a) / n
  xstart = a + frac * dx # 0 <= frac <= 1 задаёт долю смещения точки,
                       # в которой вычисляется функция,
                       # от левого края отрезка dx
  for i in range(n):
    ans += func(xstart + i * dx)
  return ans*dx
def_rectangle_rule_with_e(func, a, b, n, e, frac):
  err_est = max(1, abs(ans))
  while (err est > e):
    ans = _rectangle_rule(func, a, b, 2*n, frac)
    n *= 2
    err_est = abs(ans - old_ans)
  return ans, n
class RectangleRule:
  @classmethod
  def left_rectangle_rule(self, func, a, b, n = 4, e = 1e-4):
    """Правило левых прямоугольников"""
    return_rectangle_rule_with_e(func, a, b, n, e, 0.0)
  @classmethod
  def right_rectangle_rule(self, func, a, b, n = 4, e = 1e-4):
    """Правило правых прямоугольников"""
```

@classmethod

ans *= dx

err_est = max(1, abs(ans))

while (err_est > e):

```
def midpoint_rectangle_rule(self, func, a, b, n = 4, e = 1e-4):
    """Правило прямоугольников со средней точкой"""
    return _rectangle_rule_with_e(func, a, b, n, e, 0.5)
Метод трапеций:
def_rectangle_rule(func, a, b, n, frac):
  """Обобщённое правило прямоугольников."""
  dx = 1.0 * (b - a) / n
  xstart = a + frac * dx # 0 <= frac <= 1 задаёт долю смещения точки,
              # в которой вычисляется функция,
              # от левого края отрезка dx
  for i in range(n):
    sum += func(xstart + i * dx)
  return sum * dx
def midpoint_rectangle_rule(func, a, b, n):
  """Правило прямоугольников со средней точкой"""
  return _rectangle_rule(func, a, b, n, 0.5)
class TrapezoidRule:
  @classmethod
  def trapezoid_rule(self, func, a, b, n = 4, e = 1e-4):
    """Правило трапеций
    е - желаемая относительная точность вычислений
    n0 - начальное число отрезков разбиения"""
    ans = 0.5 * (func(a) + func(b))
    for i in range(1, n):
      ans += func(a + i * dx)
```

```
old_ans = ans
ans = 0.5 * (ans + midpoint_rectangle_rule(func, a, b, n)) # новые точки для
уточнения интеграла
# добавляются ровно в середины предыдущих
отрезков
n *= 2
err_est = abs(ans - old_ans)

return ans, n
```

Метод Симпсона:

class SimpsonRule:

```
@classmethod
def simpson_rule(self, func, a, b, n = 4, e = 1e-4):
"""Интегрирование методом парабол с заданной точностью.
e - относительная точность,
n - число отрезков начального разбиения"""
old_trapez_sum, _ = TrapezoidRule.trapezoid_rule(func, a, b, n, e=float('inf'))
new_trapez_sum, _ = TrapezoidRule.trapezoid_rule(func, a, b, 2*n, e=float('inf'))
ans = (4 * new_trapez_sum - old_trapez_sum) / 3

err_est = max(1, abs(ans))

while (err_est > e):
n*=2
old_ans = ans
old_trapez_sum = new_trapez_sum
new_trapez_sum, _ = TrapezoidRule.trapezoid_rule(func, a, b, 2*n, e=float('inf'))

ans = (4 * new_trapez_sum - old_trapez_sum) / 3
err_est = abs(old_ans - ans)

return ans, n
```

Пример работы программы

• Пример 1

$$f(x) = \sin(x) + \cos(x)$$

Отрезок: [1, 2]

E: 0.001

Метод трапеций:1.0241922273158819

• Пример 2

$$f(x) = 3x^3 + 5x^2 + 3x - 6$$

Начально придлижение: [1, 2]

E: 0.001

Метод Симпсона: 21.416666

Выводы

В данной работе были реализованы методы численного интегрирования. Методы были протестированы на различных примерах. Результаты показали, что реализованные алгоритмы успешно справляется с поставленной задачей и находят решения в пределах допустимых погрешностей.