

MACHINE LEARNING GRADED PROJECT

PREPARED FOR

MACHINE LEARNING MENTOR

PREPARED BY

NITIN KUMAR SINGH

INDEX

- 1.1 Basic data summary, Univariate, Bivariate analysis, graphs, checking correlations, outliers and missing values treatment (if necessary) and check the basic descriptive statistics of the dataset.
- 1.2 Split the data into train and test in the ratio 70:30. Is scaling necessary or not?
- 1.3 Build the following models on the 70% training data and check the performance of these models on the Training as well as the 30% Test data using the various inferences from the Confusion Matrix and plotting a AUC-ROC curve along with the AUC values. Tune the models wherever required for optimum performance.:
 - a. Logistic Regression Model
 - b. Linear Discriminant Analysis
 - c. Decision Tree Classifier CART model
 - d. Naïve Bayes Model
 - e. KNN Model
 - f. Random Forest Model
 - g. Boosting Classifier Model using Gradient boost.
- 1.4 Which model performs the best?
- 1.5 What are your business insights?
- 2.1 Pick out the Deal (Dependent Variable) and Description columns into a separate data frame.
- 2.2 Create two corpora, one for those who secured a Deal, the other for those who did not secure a deal.
- 2.3 The following exercise is to be done for both the corpora:
 - a) Find the number of characters for both the corpuses.
 - b) Remove Stop Words from the corpora. (Words like 'also', 'made', 'makes', 'like', 'this', 'even' and 'company' are to be removed)
 - c) What were the top 3 most frequently occurring words in both corpuses (after removing stop words)?
 - d) Plot the Word Cloud for both the corpora.
- 2.4 Refer to both the word clouds. What do you infer?
- 2.5 Looking at the word clouds, is it true that the entrepreneurs who introduced devices are less likely to secure a deal based on your analysis?

SUMMARIZE DATA

There are 444 rows × 9 columns present in our dataset, 7 Columns are int64 ('Age', 'Engineer', 'MBA', 'Work Exp', 'Salary', 'Distance', 'license') & 2 is object (Gender, Transport), No null & No missing value present in data

SKEWNESS OF DATA

Age	0.955276
Gender	0.937952
Engineer	-1.186708
MBA	1.144763
Work Exp	1.352840
Salary	2.044533
Distance	0.539851
license	1.259293
Transport	0.753102

COORELATION OF DATA

	Age	Engineer	MBA	Work Exp	Salary	Distance	license
Age	1.000000	0.091935	-0.029090	0.932236	0.860673	0.352872	0.452311
Engineer	0.091935	1.000000	0.066218	0.085729	0.086762	0.059316	0.018924
MBA	-0.029090	0.066218	1.000000	0.008582	-0.007270	0.036427	-0.027358
Work Exp	0.932236	0.085729	0.008582	1.000000	0.931974	0.372735	0.452867
Salary	0.860673	0.086762	-0.007270	0.931974	1.000000	0.442359	0.508095
Distance	0.352872	0.059316	0.036427	0.372735	0.442359	1.000000	0.290084
license	0.452311	0.018924	-0.027358	0.452867	0.508095	0.290084	1.000000

AGE IS HIGHLY COORELATED WITH WORK EXP AND SALARY

UNIVARIATE ANALYSIS

IN AGE Column MIN AGE is 18 & MAX AGE is 43. Aprrox most of data lie b\W 18-37 and Some outliers are present in data

IN GENDER Column two category are present (MALE:316,FEMALE:128)

Values present in dataset

IN ENGINEER Column two category are present (0:335,1:109) Values present in dataset(0 is non engineer, 1 is engineer)

IN MBA Column two category are present (0:322,1:112) Values present in dataset (0 is NON MBA, 1 is MBA)

IN WORK EXP Column MIN EXP is 0 is MAX EXP is 24 most of the EXP is B\W 0-11 and some outliers are present in this column

IN SALARY Column MIN SALARY(LPA) is 6.5 & MAX SALARY is 57 most of the SALARY is B\W Approx 6.5-18 and outliers are present in this column

IN DISTANCE Column MIN DIST. is 3.2 & MAX DIST. is 23.4 most of the DISTANCE is B\W Approx 5-18 and outliers are present in this column

IN LICENCE Column two category are present (0:340, 1:104) Values present in dataset (0 NON LICENCE, 1 LICENCE)

IN TRANSPORT Column two category are present (public :300, private :144)

Values present in dataset

BIVARIATE ANALYSIS

AGE IS LINEAR RELATION WITH WORK EXP AND SALARY SALARY IS LINEAR RELATION WITH WORK EXP

AGE IS HIGHLY COORELATED WITH WORK EXP AND SALARY

ENCODE THE DATA

	Age	Gender	Engineer	MBA	Work Exp	Salary	Distance	license	Transport
0	28	Male	0	0	4	14.3	3.2	0	Public Transport
1	23	Female	1	0	4	8.3	3.3	0	Public Transport
2	29	Male	1	0	7	13.4	4.1	0	Public Transport
3	28	Female	1	1	5	13.4	4.5	0	Public Transport
4	27	Male	1	0	4	13.4	4.6	0	Public Transport
		***		***				***	
439	40	Male	1	0	20	57.0	21.4	1	Private Transport
440	38	Male	1	0	19	44.0	21.5	1	Private Transport
441	37	Male	1	0	19	45.0	21.5	1	Private Transport
442	37	Male	0	0	19	47.0	22.8	1	Private Transport
443	39	Male	1	1	21	50.0	23.4	1	Private Transport

First we encoded the object column (GENDER,TRANSPORT) with the help of **mapping.** encode the data is neccessary because in model creation object column does not accept.

	Age	Gender	Engineer	MBA	Work Exp	Salary	Distance	license	Transport
0	28	0	0	0	4	14.3	3.2	0	0
1	23	1	1	0	4	8.3	3.3	0	0
2	29	0	1	0	7	13.4	4.1	0	0
3	28	1	1	1	5	13.4	4.5	0	0
4	27	0	1	0	4	13.4	4.6	0	0
	***	***	***	***	***		***	***	***
439	40	0	1	0	20	57.0	21.4	1	1
440	38	0	1	0	19	44.0	21.5	1	1
441	37	0	1	0	19	45.0	21.5	1	1
442	37	0	0	0	19	47.0	22.8	1	1
443	39	0	1	1	21	50.0	23.4	1	1

then Separate independent column and dependent column and store in (X,y)

	Age	Gender	Engineer	MBA	Work Exp	Salary	Distance	license	У	
0	28	0	0	0	4	14.3	3.2	0	,	
1	23	-1	1	0	4	8.3	3.3	0	0	0
2	29	0	1	0	7	13.4	4.1	0	1	0
3	28	1	1	1	5	13.4	4.5	0	2	0
4	27	0		0	4	13.4	4.6	0	3	0
		(20)		1777	100	777		075	4	0
439	40	0	1	0	20	57.0	21.4	1		
440	38	0	1	0	19	44.0	21.5	1	439	1
141	37	0	1	0	19	45.0	21.5	1	440	1
442	37	0	0	0	19	47.0	22.8	1	441	1
									442	1
143	39	0	31	1	21	50.0	23.4	340.	443	1

SPLIT DATA

Data Split: Split the data into train and test (70:30) for model creation

Help of sklearn model_selection.train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1234)

then scaling the data help of **sklearn preprocessing .StandardScaler** its neccessary because scaling the standardize the data, mean is o and std is 1

LOGISTIC REGRESSION MODEL

PERFORMACE OF MODEL IS 0.76 it is UNDER FITING Model High bias and High variance

PERFORMACE OF MODEL IS (TP+TN \ TP+TN+FN+FP)

Linear Discriminant Analysis

PERFORMACE OF MODEL IS 0.76 it is UNDER FITING Model High bias and High variance

PERFORMACE OF MODEL IS (TP+TN \ TP+TN+FN+FP)

A model with high variance may represent the dataset accurately but could lead to overfitting to noisy or otherwise unrepresentative training data. In comparison, a model with high bias may underfit the training data due to a simpler model that overlooks regularities in the data

Decision Tree Classifier

PERFORMACE OF MODEL IS 0.79 it is UNDER FITING Model High bias and High variance

PERFORMACE OF MODEL IS (TP+TN \ TP+TN+FN+FP)

Naïve Bayes Model

PERFORMACE OF MODEL IS 0.75 it is UNDER FITING Model High bias and High variance

PERFORMACE OF MODEL IS (TP+TN \ TP+TN+FN+FP)

A model with high variance may represent the dataset accurately but could lead to overfitting to noisy or otherwise unrepresentative training data. In comparison, a model with high bias may underfit the training data due to a simpler model that overlooks regularities in the data

KNN Model

PERFORMACE OF MODEL IS 0.78 it is UNDER FITING Model High bias and High variance

PERFORMACE OF MODEL IS (TP+TN \ TP+TN+FN+FP)

Random Forest Model

PERFORMACE OF MODEL IS 0.84 it is UNDER FITING Model High bias and High variance

PERFORMACE OF MODEL IS (TP+TN \ TP+TN+FN+FP)

A model with high variance may represent the dataset accurately but could lead to overfitting to noisy or otherwise unrepresentative training data. In comparison, a model with high bias may underfit the training data due to a simpler model that overlooks regularities in the data

Boosting Classifier Model using Gradient boost.

PERFORMACE OF MODEL IS 0.79 it is UNDER FITING Model High bias and High variance

PERFORMACE OF MODEL IS (TP+TN \ TP+TN+FN+FP)

OVERFITING MODEL		UNDERFITING MODEL		GENALIZED MODEL	Í
TEST ERROR	25%	TEST ERROR	25%	TEST ERROR	<10%
TRAINING ERROR	2%	TRAINING ERROR	26%	TRAINING ERROR	<10%

An 75-89% model performance can be considered good, but whether it is sufficient for testing data depends on the specific context and requirements of the task. Generally, a model with an accuracy of 75-89% indicates that it is making correct predictions for 75-89% of the test data points

When evaluating model performance, it's important to consider the nature of the problem you're trying to solve and the baseline or industry standards for that specific task. Some tasks may require higher accuracy rates, while others may have lower expectations. Additionally, you should also consider other metrics such as precision, recall, F1-score, or area under the ROC curve, depending on the nature of the problem.

Furthermore, it's important to ensure that the test data is representative of the real-world data the model is likely to encounter. If the test data differs significantly from the training data, the model's performance may not generalize well to new, unseen data.

ROC AND AUC SCORE

Logistic Regression Model	.76
Linear Discriminant Analysis	.76
Decision Tree Classifier	.77
Naïve Bayes Model	.84
KNN Model	.78
Random Forest ModeL	.87
Boosting Classifier Model Gradient boosting	.84

ROC (Receiver Operating Characteristic) and AUC (Area Under the Curve) are metrics commonly used to evaluate the performance of binary classification models.

The ROC curve is a graphical representation of the true positive rate (sensitivity) against the false positive rate (1-specificity) at different classification thresholds. It shows how well the model can distinguish between the positive and negative classes as the threshold for classifying instances is varied.

The AUC score is the area under the ROC curve. It provides a single numerical value that represents the overall performance of the model

BEST PERFORM MODEL

RANDOM FOREST MODEL IS PERFORM BEST ALL OF THE MODEL

ACCURACY IS 0.84

BUSINESS INSIGHTS

Most of the people use public transport, compared to private transport, it is almost approx 1.7-2 times. If 5 people go from home to office by private transport, then 8 to 10 people go to office by public transport.

The distance between home and office for most of the employers is between 5 to 18-20 kms. and the mostly male emolyes are there Approox Ratio of MALE: FEMALE(5:2)

As the number of people is increasing, work experience and salary are also increasing along with it.

EmploysApprox salary between 6-18 LPA

TEXT MINING

Deal (Dependent Variable) and Description columns into a separate data frame

	deal	description
0	False	Bluetooth device implant for your ear.
1	True	Retail and wholesale pie factory with two reta
2	True	Ava the Elephant is a godsend for frazzled par
3	False	Organizing, packing, and moving services deliv
4	False	Interactive media centers for healthcare waiti

490	True	Zoom Interiors is a virtual service for interi
491	True	Spikeball started out as a casual outdoors gam
492	True	Shark Wheel is out to literally reinvent the w
493	False	Adriana Montano wants to open the first Cat Ca
494	True	Sway Motorsports makes a three-wheeled, all-el

total 495 rows × 2 columns

two corpora, one for those who secured a Deal, the other for those who did not secure a deal.

description	deal	
Bluetooth device implant for your ear	False	0
Organizing, packing, and moving services deliv.	False	3
Interactive media centers for healthcare waiti.	False	4
A mixed martial arts clothing line looking to	False	6
Attach Noted is a detachable "arm" that holds	False	7
Buck Mason makes high-quality men's clothing i.	False	482
Frameri answers the question, "Why aren't your.	False	484
The Paleo Diet Bar is a nutrition bar that is .	False	485
Sunscreen Mist adds another point of access fo	False	488
Adriana Montano wants to open the first Cat Ca	False	493

244 rows × 2 columns Secured a Deal (TRUE)

	deal	description
1	True	Retail and wholesale pie factory with two reta
2	True	Ava the Elephant is a godsend for frazzled par
5	True	One of the first entrepreneurs to pitch on Sha
9	True	An educational record label and publishing hou
10	True	A battery-operated cooking device that siphons
489	True	SynDaver Labs makes synthetic body parts for u
490	True	Zoom Interiors is a virtual service for interi
491	True	Spikeball started out as a casual outdoors gam
492	True	Shark Wheel is out to literally reinvent the w
494	True	Sway Motorsports makes a three-wheeled, all-el

251 rows × 2 columns did not secure deal. (FALSE)

```
Secured a Deal (TRUE) did not secure deal. (FALSE)
                                                                          fd.most_common(40)
                                                                                                                                                                                                                                                                                                                                                       [('designed', 19),
                                                                                                                                                                                                                                                                                                                                                              'make', 19),
'use', 17),
'water', 17),
'system', 16),
'one', 15),
                                                                           [('make', 28),
('free', 23),
('children', 21),
('designed', 21),
                                                                                                                                                                                                                                                                                                                                                        ('one', 15),
('one', 15),
('online', 15),
('bottle', 14),
('without', 14),
('fun', 13),
('products', 13),
('device', 12),
('line', 11),
('kids', 11),
('way', 11),
('premium', 11),
('natural', 11),
('allows', 11),
('bolm', 11),
('bolm', 11),
('bolm', 10),
('cards', 10),
('featuring', 10),
('featuring', 10),
('help', 10),
('bolm', 10),
('help', 10),
('help', 10),
('help', 10),
('bolm', 10),
('help', 10),
('
                                                                                  ('easy', 20),
('natural', 20),
                                                                                   ('line', 19),
('products', 19),
                                                                              ('use', 19),
('use', 19),
('one', 18),
('water', 19),
('one', 18),
('without', 18),
('kids', 17),
('new', 15),
('product', 15),
('online', 15),
('built', 14),
('offers', 13),
('look', 13),
('service', 13),
('keep', 13),
('home', 13),
('box', 13),
('box', 13),
('box', 13),
('casier', 12),
('ingredients', 12),
('need', 12),
('using', 12),
('design', 12),
('design', 12),
('skin', 12),
('skin', 12),
('skin', 12),
('get', 11),
('time', 11),
('time', 11),
('coffee', 11),
('safe', 11),
('safe', 11),
('quality', 11)]
                                                                                                                                                                             Characters for
                                                                                                                                                            both the corpuses.
                                                                                                                                                                                                                                                                                                                                                            ('help', 10),
('helps', 10),
('every', 10),
('free', 10),
('hair', 10),
                                                                                                                                                                                                                                                                                                                                                            ('accessories', 9),
                                                                                                                                                                                                                                                                                                                                                          ('accessories',
('service', 9),
('instead', 9),
('unique', 9),
('food', 9),
('full', 9),
('eco', 9),
('tauditional'
                                                                                                                                                                                                                                                                                                                                                           ('traditional', 9),
                                                                                                                                                                                                                                                                                                                                                         ('comes', 9),
('available', 9)]
from nltk.corpus import stopwords
# Make a list of english stopwords
stopwords = nltk.corpus.stopwords.words("english")
# Extend the list with your own custom stopwords
my_stopwords = ['also','made','makes','like','this','even','company']
```

text_token: after stoping stop word

stopwords.extend(my stopwords)

	deal	description	text_token
1	True	retail and wholesale pie factory with two reta	[retail, wholesale, pie, factory, two, retail,
2	True	ava the elephant is a godsend for frazzled par	[ava, elephant, godsend, frazzled, parents, yo
5	True	one of the first entrepreneurs to pitch on sha	[one, first, entrepreneurs, pitch, shark, tank
9	True	an educational record label and publishing hou	[educational, record, label, publishing, house
10	True	a battery-operated cooking device that siphons	[battery, operated, cooking, device, siphons,

did not secure deal. (FALSE)

	deal	description	text_token
0	False	bluetooth device implant for your ear.	[bluetooth, device, implant, ear]
3	False	organizing, packing, and moving services deliv	[organizing, packing, moving, services, delive
4	False	interactive media centers for healthcare waiti	[interactive, media, centers, healthcare, wait

Secured a Deal (TRUE) top 10 word use with count after stopword

TOP 3 IS MAKE, FREE, CHILDREN

did not secure deal. (FALSE) top 10 word use with count after stopword

TOP 3 IS DESIGNED, MAKE, USE

```
[('designed', 19),
  ('make', 19),
  ('use', 17),
  ('water', 17),
  ('system', 16),
  ('one', 15),
  ('product', 15),
  ('online', 15),
  ('bottle', 14),
  ('without', 14)]
```

Secured a Deal (TRUE)

did not secure deal. (FALSE)

A word cloud is a visual representation of text data, where words are displayed in varying sizes based on their frequency or importance. It provides a quick overview of the most common or significant words in a given text or collection of texts.

Looking at the word clouds, is it true that the entrepreneurs who introduced devices are less likely to secure a deal based on your analysis

Secured a Deal (TRUE)

did not secure deal. (FALSE)

it is true that the entrepreneurs who introduced devices are
less likely to secure a deal based on our analysis
because, enetrepeneurs introduced devices, names these are
looking at the worldcloud in a very small size
We can easily see that is highlighted and in big size
letters, these are not perfect coorelated to device and
device specification, so it is true less likely to secure a deal