OpenType Math Font Specimen

Asana Math (+ TeX Gyre Pagella)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i} \geqslant \left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}} \quad \text{and} \quad \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

Erewhon Math (+ erewhon)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \quad \text{and} \quad \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \oint_{\partial D} (P \, dx + Q \, dy).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$.

Fira Math (+ Fira Sans)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \mathbb{Z}_{\partial D}(P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i} \ge \left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}} \quad \text{and} \quad \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \mathbb{E}_{\partial D}(P dx + Q dy).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$.

Garamond-Math (+ EB Garamond)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}\left(P\,\mathrm{d}x+Q\,\mathrm{d}y\right).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

GFS Neohellenic Math (+ GFS Neohellenic)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}(P\,\mathrm{d}x+Q\,\mathrm{d}y).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

KpMath Light (+ KpRoman)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}(P\,\mathrm{d}x+Q\,\mathrm{d}y).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

KpMath Regular (+ KpRoman)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}(P\,\mathrm{d}x+Q\,\mathrm{d}y).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

KpMath Semibold (+ KpRoman)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_{D} \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}(P\,\mathrm{d}x+Q\,\mathrm{d}y).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $\boxtimes \cdot (\boxtimes \times \boxtimes) = \boxtimes \cdot (\boxtimes \times \boxtimes) = \boxtimes \cdot (\boxtimes \times \boxtimes)$.

KpMath Bold (+ KpRoman)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i} \geqslant \left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}} \quad \text{and} \quad \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy).$$

2

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $\boxtimes \cdot (\boxtimes \times \boxtimes) = \boxtimes \cdot (\boxtimes \times \boxtimes) = \boxtimes \cdot (\boxtimes \times \boxtimes)$.

KpMath Sans (+ KpSans)

• Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy)$.

Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}(P\,\mathrm{d}x+Q\,\mathrm{d}y).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

Libertinus Math (+ Libertinus Serif)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- · Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}(P\,\mathrm{d}x+Q\,\mathrm{d}y).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

STIX Math (+ STIX)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \quad \text{and} \quad \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$.

STIX Two Math (+ STIX Two Text)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- · Display:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \quad \text{and} \quad \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \oint_{\partial D} (P \, dx + Q \, dy).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$.

XTIS Math Regular (+ XITS)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}(P\,\mathrm{d}x+Q\,\mathrm{d}y).$$

3

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

XTIS Math Bold (+ XITS)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}(P\,\mathrm{d}x+Q\,\mathrm{d}y).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \square (b \times c) = b \square (c \times a) = c \square (a \times b)$.

Latin Modern Math (+ Latin Modern Roman)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \quad \text{and} \quad \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}x \, \mathrm{d}y = \oint_{\partial D} (P \, \mathrm{d}x + Q \, \mathrm{d}y).$$

• ISO type setting: $\mathrm{e}^{\mathrm{i}\pi}+1=0,$ and $\boldsymbol{a}\cdot(\boldsymbol{b}\times\boldsymbol{c})=\boldsymbol{b}\cdot(\boldsymbol{c}\times\boldsymbol{a})=\boldsymbol{c}\cdot(\boldsymbol{a}\times\boldsymbol{b}).$

NewComputerModernMath Regular (+ NewComputerModern10)

- Inline: $\frac{1}{n} \sum_{i=1}^n x_i \geqslant \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display

$$\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \quad \text{and} \quad \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}x \, \mathrm{d}y = \oint_{\partial D} (P \, \mathrm{d}x + Q \, \mathrm{d}y).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

$NewComputerModernMath\ Book\ (+\ NewComputerModern10)$

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^n x_i \geqslant \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \quad \text{and} \quad \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathrm{d}x\,\mathrm{d}y = \oint_{\partial D} (P\,\mathrm{d}x + Q\,\mathrm{d}y).$$

• ISO type setting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

TeX Gyre Bonum Math (+ TeX Gyre Bonum)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \geqslant \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \quad \text{and} \quad \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy).$$

4

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$.

TeX Gyre DejaVu Math (+ DejaVu Serif)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \quad \text{and} \quad \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \oint_{\partial D} (P \, dx + Q \, dy).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$.

TeX Gyre Pagella Math (+ TeX Gyre Pagella)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}(P\,\mathrm{d}x+Q\,\mathrm{d}y).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

TeX Gyre Schola Math (+ TeX Gyre Schola)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\geqslant\left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}}\quad\text{and}\quad\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\,\mathrm{d}y=\oint_{\partial D}(P\,\mathrm{d}x+Q\,\mathrm{d}y).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.

TeX Gyre Termes Math (+ TeX Gyre Termes)

- Inline: $\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$, and $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy)$.
- Display:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i} \geqslant \left(\prod_{i=1}^{n}x_{i}\right)^{\frac{1}{n}} \quad \text{and} \quad \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} (P dx + Q dy).$$

• ISO typesetting: $e^{i\pi} + 1 = 0$, and $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$.