# TP 3

# Digital Electronics [ELEC-H-310]

## Correction

v1.0.0

Question 1. Find all prime implicant using the Quine-McCluskey method.

N.B.:  $\sum_{m}$  is a sum of minterms,  $\sum_{d}$  is a sum of 'don't care'.

a) 
$$f(a, b, c, d) = \sum_{m} (0, 4, 5, 8, 12, 13)$$

**Answer:** We first need to convert decimal numbers into binary.

|    | a | b | $\mathbf{c}$ | d |
|----|---|---|--------------|---|
| 0  | 0 | 0 | 0            | 0 |
| 4  | 0 | 1 | 0            | 0 |
| 5  | 0 | 1 | 0            | 1 |
| 8  | 1 | 0 | 0            | 0 |
| 12 | 1 | 1 | 0            | 0 |
| 13 | 1 | 1 | 0            | 1 |

Then, we can group the elements and merge them. The ' $\checkmark$ ' states that a line as been merged. The numbers between parenthesis show the values that have been merged.

1

The prime implicants hence are  $\overline{cd}$  (IP1) and  $b\overline{c}$  (IP2).

b) 
$$f(a, b, c, d) = \sum_{m} (2, 3, 4, 10, 12, 13) + \sum_{d} (11, 14, 15)$$

**Answer:**  $f(a, b, c, d) = \overline{b}c + b\overline{c}\overline{d} + ac + ab$ 

c) 
$$f(a, b, c, d, e, f) = \sum_{m} (16, 28, 53, 60, 63)$$

$$G_{1} = 01 - (2,5,10,11)$$
 $G_{1} = 01 - (2,5,10,11)$ 
 $G_{1} = 01 - (2,5,10,11)$ 

-100 -01- 11-1
bid 50 ac as

Fibid + 50 fac tab

The Uénifier Solut? i hable de Karmanyh

col 400 for 11/10

ab 00 01 11 10 on met la volum

11 19 de la représentat décimale

TP 3 Correction page 2

**Answer:**  $f(a, b, c, d, e, f) = abcdef + bcd\overline{ef} + ab\overline{c}d\overline{e}f + \overline{a}b\overline{c}d\overline{e}f$ 

Question 2. Find the simplified function:

a) 
$$f(a,b,c,d) = \sum_{m} (2,3,4,10,12,13) + \sum_{d} (11,14,15)$$

**Answer:** The coverage table with the prime implicants of the previous exercise:  $i_1 = b\overline{cd}, i_2 = \overline{bc}, i_3 = ac \text{ et } i_4 = ab.$ 

|      | $i_1$ | $i_2$        | $i_3$    | $i_4$        |
|------|-------|--------------|----------|--------------|
| 0010 |       | $\checkmark$ |          |              |
| 0011 |       | ✓            |          |              |
| 0100 | ✓     |              |          |              |
| 1010 |       | <b>√</b>     | <b>√</b> |              |
| 1100 | ✓     |              |          | $\checkmark$ |
| 1101 |       |              |          | <b>√</b>     |

We can deduce the following coverage function:

$$1 = i_2 \cdot i_1 \cdot (i_2 + i_3) \cdot (i_1 + i_4) \cdot i_4 = i_2 i_1 i_4$$

Using these axioms and theorems:

$$x \cdot x = x$$
$$x \cdot (x + y) = x$$
$$(x + y) \cdot (x + z) = x + y \cdot z$$

We find  $f(a, b, c, d) = \overline{b}c + b\overline{c}d + ab$ 

b) 
$$f(a, b, c, d) = \sum_{m} (0, 2, 4, 5, 10, 11, 13, 15) + \sum_{d} (6, 8)$$

**Answer:**  $f(a,b,c,d) = \overline{a}b\overline{c} + \overline{b}\overline{d} + a\overline{b}c + abd$  ou  $f(a,b,c,d) = a\overline{b}c + b\overline{c}d + abd + \overline{a}\overline{d}$ ou  $f(a, b, c, d) = \overline{a}b\overline{c} + a\overline{b}c + abd + \overline{a}\overline{d}$  ou  $f(a, b, c, d) = b\overline{c}d + a\overline{b}c + acd + \overline{a}\overline{d}$  ou  $f(a,b,c,d) = b\overline{c}d + acd + \overline{a}\overline{d} + \overline{b}\overline{d}$  ou  $f(a,b,c,d) = \overline{a}b\overline{c} + acd + abd + \overline{b}\overline{d}$  ou  $f(a, b, c, d) = \overline{a}b\overline{c} + b\overline{c}d + acd + \overline{b}d$ 

Question 3. Draw the K-maps of the following function, optimize the functions and find redundant terms to avoid glitches.

a) 
$$f(a,b,c,d) = \sum_{m} (0,1,2,6,8,9,10,14)$$

2. a) i (= b [d], i2=bc, i3= ac, i4= ab 3, a) S Pour le terme no , Inalandan 5) f: Tc+ (d+ Tod chaisit le plus grand groupe

### **Answer:**



b) 
$$f(a, b, c, d) = \sum_{m} (1, 3, 5, 7, 8, 9, 12, 13)$$

#### Answer:

## Question 4. Build a Huffman table for this graph:



4. ab

OO OI II 10 E Stable state

A A B B C O

C O C D C O

Present state

Sulvar state

| [ELEC-H-310] | Digital Electronics | v1.0.0 |
|--------------|---------------------|--------|
| TP 3         | Correction          | page 4 |

#### **Answer:**

|              | 00           | 01           | 11 | 10           | ab | Z |
|--------------|--------------|--------------|----|--------------|----|---|
| A            | A            | В            | D  | A            |    | 0 |
| В            | A            | В            | В  | С            |    | 0 |
| $\mathbf{C}$ | $\mathbf{C}$ | $\mathbf{C}$ | D  | $\mathbf{C}$ |    | 1 |
| D            | D            | В            | D  | С            |    | 0 |

Question 5. From this coded Huffman table, find the corresponding state graph and equations.

| $Y_1 Y_2$ | 00          | 01 | 11 | 10 | ab | Z |
|-----------|-------------|----|----|----|----|---|
| 00        | <b>(0</b> 0 | 01 | 01 | 00 |    | 0 |
| 01        | 00          | 01 | 11 | 11 |    | 1 |
| 11        | 11          | 10 | 11 | 11 |    | 1 |
| 10        | 11          | 10 | 10 | 00 |    | 1 |
| 111 119   |             |    |    |    |    |   |

 $y_1 y_2$ 

**Answer:** 



In order to find the underlying equation, we can deduce Karnaugh tables from the Nuffan table.



Correction

page 5

