Дифференциальные уравнения первого порядка.

1.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = y + e^x$, $(y)dx + (x+2y)dy = 0$.

2.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2xy)dx + (x^2 + 2y)dy = 0$.

3.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = y + e^{-x}$, $(2x + 3y)dx + (3x)dy = 0$.

4.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = y \operatorname{tg} x + \frac{2x}{\cos x}$, $(2x-y)dx + (-x+4y)dy = 0$.

5.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2x+y)dx + (x-2y)dy = 0$.

6.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = -\frac{2y}{x} - \frac{e^{-x^2}}{x}$, $(4x + 2y)dx + (2x - 2y)dy = 0$.

7.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = -y + 2xy^3$, $(y)dx + (x-4y)dy = 0$.

8.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = xy + y^3 e^{-x^2}$, $(2xy+1)dx + (x^2)dy = 0$.

9.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = -\frac{2y}{x} + \frac{2\sqrt{y}}{\cos^2 x}$, $(2x - 3y)dx + (-3x)dy = 0$.

10.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = -y + \frac{x}{y}$, $(2x+2y)dx + (2x-4y)dy = 0$.

11.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{y}{x} - \frac{x}{1-x^2}$, $(2x-y)dx + (-x-2y)dy = 0$.

12.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = 3x + 2y$, $(4x - 2y)dx + (-2x - 2y)dy = 0$.

13.
$$y' = \frac{1+2x}{y^3}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = -\frac{y}{x} - \frac{3}{x}$, $(2x+3y)dx + (3x-2y)dy = 0$.

14.
$$y' = \frac{y}{x^3}$$
, $y' = -\frac{x+y}{x}$, $y' = x+y$, $(-4x+y)dx + (x-2y)dy = 0$.

15.
$$y' = \frac{y^2}{x^2 + 1}$$
, $y' = \frac{2xy}{x^2 - y^2}$, $y' = x - y$, $(-2x + y)dx + (x + 2y)dy = 0$.

16.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = y + e^x$, $(y)dx + (x+2y)dy = 0$.

17.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2xy)dx + (x^2 + 2y)dy = 0$.

18.
$$y' = \frac{xy^2 + x}{(y - x^2y)}, \quad \frac{y(x+y)}{x^2}, \quad y' = y + e^{-x}, \quad (2x + 3y)dx + (3x)dy = 0.$$

19.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = y \operatorname{tg} x + \frac{2x}{\cos x}$, $(2x-y)dx + (-x+4y)dy = 0$.

20.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2x+y)dx + (x-2y)dy = 0$.

21.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = -\frac{2y}{x} - \frac{e^{-x^2}}{x}$, $(4x + 2y)dx + (2x - 2y)dy = 0$.

22.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = -y + 2xy^3$, $(y)dx + (x-4y)dy = 0$.

23.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = xy + y^3 e^{-x^2}$, $(2xy+1)dx + (x^2)dy = 0$.

24.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = -\frac{2y}{x} + \frac{2\sqrt{y}}{\cos^2 x}$, $(2x - 3y)dx + (-3x)dy = 0$.

25.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = -y + \frac{x}{y}$, $(2x+2y)dx + (2x-4y)dy = 0$.

26.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = y + e^x$, $(y)dx + (x+2y)dy = 0$.

27.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2xy)dx + (x^2 + 2y)dy = 0$.

28.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $y' = \frac{y(x+y)}{x^2}$, $y' = y + e^{-x}$, $(2x + 3y)dx + (3x)dy = 0$.

29.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = y \operatorname{tg} x + \frac{2x}{\cos x}$, $(2x-y)dx + (-x+4y)dy = 0$.

30.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2x+y)dx + (x-2y)dy = 0$.

31.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = -\frac{2y}{x} - \frac{e^{-x^2}}{x}$, $(4x + 2y)dx + (2x - 2y)dy = 0$.

32.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = -y + 2xy^3$, $(y)dx + (x-4y)dy = 0$.

33.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = xy + y^3 e^{-x^2}$, $(2xy+1)dx + (x^2)dy = 0$.

34.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = -\frac{2y}{x} + \frac{2\sqrt{y}}{\cos^2 x}$, $(2x - 3y)dx + (-3x)dy = 0$.

35.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = -y + \frac{x}{y}$, $(2x+2y)dx + (2x-4y)dy = 0$.

36.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{y}{x} - \frac{x}{1-x^2}$, $(2x-y)dx + (-x-2y)dy = 0$.

37.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = 3x + 2y$, $(4x - 2y)dx + (-2x - 2y)dy = 0$.

38.
$$y' = \frac{1+2x}{y^3}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = -\frac{y}{x} - \frac{3}{x}$, $(2x+3y)dx + (3x-2y)dy = 0$.

39.
$$y' = \frac{y}{x^3}$$
, $y' = -\frac{x+y}{x}$, $y' = x+y$, $(-4x+y)dx + (x-2y)dy = 0$.

40.
$$y' = \frac{y^2}{x^2+1}$$
, $y' = \frac{2xy}{x^2-y^2}$, $y' = x - y$, $(-2x+y)dx + (x+2y)dy = 0$.

41.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = y + e^x$, $(y)dx + (x+2y)dy = 0$.

42.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2xy)dx + (x^2 + 2y)dy = 0$.

43.
$$y' = \frac{xy^2 + x}{(y - x^2y)}, \quad \frac{y(x+y)}{x^2}, \quad y' = y + e^{-x}, \quad (2x + 3y)dx + (3x)dy = 0.$$

44.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = y \operatorname{tg} x + \frac{2x}{\cos x}$, $(2x-y)dx + (-x+4y)dy = 0$.

45.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2x+y)dx + (x-2y)dy = 0$.

46.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = -\frac{2y}{x} - \frac{e^{-x^2}}{x}$, $(4x + 2y)dx + (2x - 2y)dy = 0$.

47.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = -y + 2xy^3$, $(y)dx + (x-4y)dy = 0$.

48.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = xy + y^3 e^{-x^2}$, $(2xy+1)dx + (x^2)dy = 0$.

49.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = -\frac{2y}{x} + \frac{2\sqrt{y}}{\cos^2 x}$, $(2x - 3y)dx + (-3x)dy = 0$.

50.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = -y + \frac{x}{y}$, $(2x+2y)dx + (2x-4y)dy = 0$.

51.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = y + e^x$, $(y)dx + (x+2y)dy = 0$.

52.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2xy)dx + (x^2 + 2y)dy = 0$.

53.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = y + e^{-x}$, $(2x + 3y)dx + (3x)dy = 0$.

54.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = y \operatorname{tg} x + \frac{2x}{\cos x}$, $(2x-y)dx + (-x+4y)dy = 0$.

55.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2x+y)dx + (x-2y)dy = 0$.

56.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = -\frac{2y}{x} - \frac{e^{-x^2}}{x}$, $(4x + 2y)dx + (2x - 2y)dy = 0$.

57.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = -y + 2xy^3$, $(y)dx + (x-4y)dy = 0$.

58.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = xy + y^3 e^{-x^2}$, $(2xy+1)dx + (x^2)dy = 0$.

59.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = -\frac{2y}{x} + \frac{2\sqrt{y}}{\cos^2 x}$, $(2x - 3y)dx + (-3x)dy = 0$.

60.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = -y + \frac{x}{y}$, $(2x+2y)dx + (2x-4y)dy = 0$.

61.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{y}{x} - \frac{x}{1-x^2}$, $(2x-y)dx + (-x-2y)dy = 0$.

62.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = 3x + 2y$, $(4x - 2y)dx + (-2x - 2y)dy = 0$.

63.
$$y' = \frac{1+2x}{y^3}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = -\frac{y}{x} - \frac{3}{x}$, $(2x+3y)dx + (3x-2y)dy = 0$.

64.
$$y' = \frac{y}{x^3}$$
, $y' = -\frac{x+y}{x}$, $y' = x+y$, $(-4x+y)dx + (x-2y)dy = 0$.

65.
$$y' = \frac{y^2}{x^2+1}$$
, $y' = \frac{2xy}{x^2-y^2}$, $y' = x - y$, $(-2x+y)dx + (x+2y)dy = 0$.

66.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = y + e^x$, $(y)dx + (x+2y)dy = 0$.

67.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2xy)dx + (x^2 + 2y)dy = 0$.

68.
$$y' = \frac{xy^2 + x}{(y - x^2y)}, \quad \frac{y(x+y)}{x^2}, \quad y' = y + e^{-x}, \quad (2x + 3y)dx + (3x)dy = 0.$$

69.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = y \operatorname{tg} x + \frac{2x}{\cos x}$, $(2x-y)dx + (-x+4y)dy = 0$.

70.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2x+y)dx + (x-2y)dy = 0$.

71.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = -\frac{2y}{x} - \frac{e^{-x^2}}{x}$, $(4x + 2y)dx + (2x - 2y)dy = 0$.

72.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = -y + 2xy^3$, $(y)dx + (x-4y)dy = 0$.

73.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = xy + y^3 e^{-x^2}$, $(2xy+1)dx + (x^2)dy = 0$.

74.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = -\frac{2y}{x} + \frac{2\sqrt{y}}{\cos^2 x}$, $(2x - 3y)dx + (-3x)dy = 0$.

75.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = -y + \frac{x}{y}$, $(2x+2y)dx + (2x-4y)dy = 0$.

76.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = y + e^x$, $(y)dx + (x+2y)dy = 0$.

77.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2xy)dx + (x^2 + 2y)dy = 0$.

78.
$$y' = \frac{xy^2 + x}{(y - x^2y)}, \quad \frac{y(x+y)}{x^2}, \quad y' = y + e^{-x}, \quad (2x + 3y)dx + (3x)dy = 0.$$

79.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = y \operatorname{tg} x + \frac{2x}{\cos x}$, $(2x-y)dx + (-x+4y)dy = 0$.

80.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2x+y)dx + (x-2y)dy = 0$.

81.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = -\frac{2y}{x} - \frac{e^{-x^2}}{x}$, $(4x + 2y)dx + (2x - 2y)dy = 0$.

82.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = -y + 2xy^3$, $(y)dx + (x-4y)dy = 0$.

83.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = xy + y^3 e^{-x^2}$, $(2xy+1)dx + (x^2)dy = 0$.

84.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = -\frac{2y}{x} + \frac{2\sqrt{y}}{\cos^2 x}$, $(2x - 3y)dx + (-3x)dy = 0$.

85.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = -y + \frac{x}{y}$, $(2x+2y)dx + (2x-4y)dy = 0$.

86.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{y}{x} - \frac{x}{1-x^2}$, $(2x-y)dx + (-x-2y)dy = 0$.

87.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = 3x + 2y$, $(4x - 2y)dx + (-2x - 2y)dy = 0$.

88.
$$y' = \frac{1+2x}{y^3}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = -\frac{y}{x} - \frac{3}{x}$, $(2x+3y)dx + (3x-2y)dy = 0$.

89.
$$y' = \frac{y}{x^3}$$
, $y' = -\frac{x+y}{x}$, $y' = x+y$, $(-4x+y)dx + (x-2y)dy = 0$.

90.
$$y' = \frac{y^2}{x^2+1}$$
, $y' = \frac{2xy}{x^2-y^2}$, $y' = x - y$, $(-2x+y)dx + (x+2y)dy = 0$.

91.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = y + e^x$, $(y)dx + (x+2y)dy = 0$.

92.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2xy)dx + (x^2 + 2y)dy = 0$.

93.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = y + e^{-x}$, $(2x + 3y)dx + (3x)dy = 0$.

94.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = y \operatorname{tg} x + \frac{2x}{\cos x}$, $(2x-y)dx + (-x+4y)dy = 0$.

95.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2x+y)dx + (x-2y)dy = 0$.

96.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = -\frac{2y}{x} - \frac{e^{-x^2}}{x}$, $(4x + 2y)dx + (2x - 2y)dy = 0$.

97.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = -y + 2xy^3$, $(y)dx + (x-4y)dy = 0$.

98.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = xy + y^3 e^{-x^2}$, $(2xy+1)dx + (x^2)dy = 0$.

99.
$$y' = \frac{xy^2 + x}{(y - x^2y)}$$
, $\frac{y(x+y)}{x^2}$, $y' = -\frac{2y}{x} + \frac{2\sqrt{y}}{\cos^2 x}$, $(2x - 3y)dx + (-3x)dy = 0$.

100.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = -y + \frac{x}{y}$, $(2x+2y)dx + (2x-4y)dy = 0$.

101.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = y + e^x$, $(y)dx + (x+2y)dy = 0$.

102.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2xy)dx + (x^2 + 2y)dy = 0$.

103.
$$y' = \frac{xy^2 + x}{(y - x^2y)}, \quad \frac{y(x+y)}{x^2}, \quad y' = y + e^{-x}, \quad (2x + 3y)dx + (3x)dy = 0.$$

104.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = y \operatorname{tg} x + \frac{2x}{\cos x}$, $(2x-y)dx + (-x+4y)dy = 0$.

105.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{2y}{x} - x$, $(2x+y)dx + (x-2y)dy = 0$.

106.
$$y' = \frac{-y}{x^2}$$
, $y' = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, $y' = -\frac{2y}{x} - \frac{e^{-x^2}}{x}$, $(4x + 2y)dx + (2x - 2y)dy = 0$.

107.
$$y' = \frac{(1+x)y}{(y-1)x}$$
, $y' = e^{\frac{y}{x}} + \frac{y}{x}$, $y' = -y + 2xy^3$, $(y)dx + (x-4y)dy = 0$.

108.
$$y' = \frac{y}{(1+x^2)x}$$
, $y' = \frac{y}{x} \ln \frac{y}{x}$, $y' = xy + y^3 e^{-x^2}$, $(2xy+1)dx + (x^2)dy = 0$.

109.
$$y' = \frac{xy^2 + x}{(y - x^2y)}, \quad \frac{y(x+y)}{x^2}, \quad y' = -\frac{2y}{x} + \frac{2\sqrt{y}}{\cos^2 x}, \quad (2x - 3y)dx + (-3x)dy = 0.$$

110.
$$y' = \frac{1-x^2}{xy}$$
, $y' = \frac{y(x-y)}{x^2}$, $y' = -y + \frac{x}{y}$, $(2x+2y)dx + (2x-4y)dy = 0$.

111.
$$y' = \frac{1-2x}{y^2}$$
, $y' = \sin(\frac{x+y}{x}) + \frac{y}{x}$, $y' = \frac{y}{x} - \frac{x}{1-x^2}$, $(2x-y)dx + (-x-2y)dy = 0$.

Дифференциальные уравнения второго порядка.

1.
$$(1-x^2)y'' = xy'$$
.

2.
$$2yy'' + (y')^2 + (y')^4 = 0$$
.

3.
$$y'' + y' \operatorname{tg} x = \sin 2x$$
.

4.
$$y'' + \frac{1}{x}y' = x^2$$
.

5.
$$1 + (y')^2 + yy'' = 0$$
.

6.
$$y''(1+y) - 5(y')^2 = 0$$
.

7.
$$xy'' + 2y' = x^2$$
.

8.
$$y'' \operatorname{tg} x = 2(y')^2$$
.

9.
$$y'' - 2y' \operatorname{tg} x = \sin x$$
.

10.
$$3yy'' + (y')^2 = 0$$
.

$$11. \ y'' = \frac{1}{2y'}.$$

$$12. y''x \ln x = y'.$$

13.
$$y'' = 1 + y'^2$$
.

14.
$$tg xy'' = y' + 1$$
.

$$\frac{15. \ y'' = x + \frac{y'}{x}}{10. \ y'' = x + \frac{y'}{x}}.$$

16.
$$xy'' - y' = x^2 e^x$$
.

17.
$$y'' - 2y' \operatorname{ctg} x = \sin^2 x$$
.

$$18. \ x^2y'' + xy' = 1.$$

19.
$$(y'')^2 = y'$$
.

$$20. \ y'' - y' \operatorname{tg} x = \sin 2x.$$

$$21. \ 2xy'' = y'.$$

22.
$$(1+x^2)y''2xy'=x^3$$
.

$$23. yy'' + (y')^2 = 0.$$

$$24. yy'' - (y')^2 = 0.$$

25.
$$yy'' - (y')^2 = y^2y'$$
.

$$26. (1 - x^2)y'' = xy'.$$

27.
$$2yy'' + (y')^2 + (y')^4 = 0.$$

28.
$$y'' + y' \operatorname{tg} x = \sin 2x$$
.

29.
$$y'' + \frac{1}{x}y' = x^2$$
.

$$30. 1 + (y')^2 + yy'' = 0.$$

31.
$$y''(1+y) - 5(y')^2 = 0$$
.

$$32. \ xy'' + 2y' = x^2.$$

33.
$$y'' \operatorname{tg} x = 2(y')^2$$
.

34.
$$y'' - 2y' \operatorname{tg} x = \sin x$$
.

$$35. \ 3yy'' + (y')^2 = 0.$$

36.
$$y'' = \frac{1}{2y'}$$
.

37.
$$y''x \ln x = y'$$
.

$$38. \ y'' = 1 + y'^2.$$

39.
$$tg xy'' = y' + 1$$
.

40.
$$y'' = x + \frac{y'}{x}$$
.

41.
$$xy'' - y' = x^2 e^x$$
.

42.
$$y'' - 2y' \operatorname{ctg} x = \sin^2 x$$
.

43.
$$x^2y'' + xy' = 1$$
.

44.
$$(y'')^2 = y'$$
.

45.
$$y'' - y' \operatorname{tg} x = \sin 2x$$
.

46.
$$2xy'' = y'$$
.

47.
$$(1+x^2)y''2xy' = x^3$$
.

48.
$$yy'' + (y')^2 = 0$$
.

49.
$$yy'' - (y')^2 = 0$$
.

50.
$$yy'' - (y')^2 = y^2y'$$
.

51.
$$(1-x^2)y'' = xy'$$
.

52.
$$2yy'' + (y')^2 + (y')^4 = 0$$
.

53.
$$y'' + y' \operatorname{tg} x = \sin 2x$$
.

54.
$$y'' + \frac{1}{x}y' = x^2$$
.

$$55. 1 + (y')^2 + yy'' = 0.$$

56.
$$y''(1+y) - 5(y')^2 = 0$$
.

$$57. xy'' + 2y' = x^2.$$

58.
$$y'' \operatorname{tg} x = 2(y')^2$$
.

59.
$$y'' - 2y' \operatorname{tg} x = \sin x$$
.

60.
$$3yy'' + (y')^2 = 0$$
.

61.
$$y'' = \frac{1}{2y'}$$
.

62.
$$y''x \ln x = y'$$
.

63. $y'' = 1 + y'^2$.

64. tg xy'' = y' + 1.

65. $y'' = x + \frac{y'}{x}$.

66. $xy'' - y' = x^2 e^x$.

67. $y'' - 2y' \operatorname{ctg} x = \sin^2 x$.

68. $x^2y'' + xy' = 1$.

69. $(y'')^2 = y'$.

70. $y'' - y' \operatorname{tg} x = \sin 2x$.

71. 2xy'' = y'.

72. $(1+x^2)y''2xy' = x^3$.

73. $yy'' + (y')^2 = 0$.

74. $yy'' - (y')^2 = 0$.

75. $yy'' - (y')^2 = y^2y'$.

76. $(1-x^2)y'' = xy'$.

77. $2yy'' + (y')^2 + (y')^4 = 0$.

78. $y'' + y' \operatorname{tg} x = \sin 2x$.

79. $y'' + \frac{1}{x}y' = x^2$.

80. $1 + (y')^2 + yy'' = 0$.

81. $y''(1+y) - 5(y')^2 = 0$.

 $82. xy'' + 2y' = x^2.$

83. $y'' \operatorname{tg} x = 2(y')^2$.

84. $y'' - 2y' \operatorname{tg} x = \sin x$.

 $85. \ 3yy'' + (y')^2 = 0.$

86. $y'' = \frac{1}{2y'}$.

87. $y''x \ln x = y'$.

88. $y'' = 1 + y'^2$.

89. tg xy'' = y' + 1.

90. $y'' = x + \frac{y'}{x}$.

91. $xy'' - y' = x^2 e^x$.

92. $y'' - 2y' \operatorname{ctg} x = \sin^2 x$.

93. $x^2y'' + xy' = 1$.

94. $(y'')^2 = y'$.

95.
$$y'' - y' \operatorname{tg} x = \sin 2x$$
.

96.
$$2xy'' = y'$$
.

97.
$$(1+x^2)y''2xy'=x^3$$
.

98.
$$yy'' + (y')^2 = 0$$
.

99.
$$yy'' - (y')^2 = 0$$
.

100.
$$yy'' - (y')^2 = y^2y'$$
.

101.
$$(1-x^2)y'' = xy'$$
.

102.
$$2yy'' + (y')^2 + (y')^4 = 0$$
.

$$103. \ y'' + y' \operatorname{tg} x = \sin 2x.$$

104.
$$y'' + \frac{1}{x}y' = x^2$$
.

$$105. \ 1 + (y')^2 + yy'' = 0.$$

106.
$$y''(1+y) - 5(y')^2 = 0.$$

$$107. xy'' + 2y' = x^2.$$

108.
$$y'' \operatorname{tg} x = 2(y')^2$$
.

109.
$$y'' - 2y' \operatorname{tg} x = \sin x$$
.

110.
$$3yy'' + (y')^2 = 0$$
.

$$111. \ y'' = \frac{1}{2y'}.$$

Линейные дифференциальные уравнения второго порядка.

1.
$$y'' + 4y' - 12y = 8\sin 2x$$
, $y(0) = 0$, $y'(0) = 0$.

2.
$$y'' - 6y' + 9y = x^2 - x + 3$$
, $y(0) = \frac{3}{4}$, $y'(0) = \frac{1}{27}$.

3.
$$y'' + 4y = e^{-2x}$$
, $y(0) = 0$, $y'(0) = 0$.

4.
$$y'' - 2y + 5y = xe^{2x}$$
, $y(0) = 1$, $y'(0) = 0$.

5.
$$y'' + 5y' + 6y = 12\cos 2x$$
, $y(0) = 1$, $y'(0) = 3$.

6.
$$y'' - 5y' + 6y = (12x - 7)e^{-x}, \quad y(0) = 0, \quad y'(0) = 0.$$

7.
$$y'' - 4y' + 13y = 26x + 5$$
, $y(0) = 1$, $y'(0) = 0$.

8.
$$y'' - 4y' = 6x^2 + 1$$
, $y(0) = 2$, $y'(0) = 3$.

9.
$$y'' - 2y' + y = 16e^x$$
, $y(0) = 1$, $y'(0) = 2$.

10.
$$y'' + 6y' + 9y = 10e^{-2x}$$
, $y(0) = 3$, $y'(0) = 2$.

11.
$$y'' + y' - 2y = 2x - 1$$
, $y(0) = 1$, $y'(0) = 0$.

12.
$$y'' - 4y' + 3y = x^2 - x + 3$$
, $y(0) = 1$, $y'(0) = -1$.

13.
$$y'' + 4y' + 3y = x^2 - 1$$
, $y(0) = -1$, $y'(0) = 0$.

14.
$$y'' - 3y + 2y = x - 1$$
, $y(0) = 1$, $y'(0) = 0$.

15.
$$y'' + 3y' + 2y = x^2 + 1$$
, $y(0) = 1$, $y'(0) = -1$.

16.
$$y'' + y' - 2y = 2x - 1$$
, $y(0) = 1$, $y'(0) = 0$.

17.
$$y'' - 4y' + 3y = x^2 - x + 3$$
, $y(0) = 1$, $y'(0) = -1$.

18.
$$y'' + 4y' + 3y = x^2 - 1$$
, $y(0) = -1$, $y'(0) = 0$.

19.
$$y'' - 3y + 2y = x - 1$$
, $y(0) = 1$, $y'(0) = 0$.

20.
$$y'' + 3y' + 2y = x^2 + 1$$
, $y(0) = 1$, $y'(0) = -1$.

21.
$$y'' + y' - 2y = 2x - 1$$
, $y(0) = 1$, $y'(0) = 0$.

22.
$$y'' - 4y' + 3y = x^2 - x + 3$$
, $y(0) = 1$, $y'(0) = -1$.

23.
$$y'' + 4y' + 3y = x^2 - 1$$
, $y(0) = -1$, $y'(0) = 0$.

24.
$$y'' - 3y + 2y = x - 1$$
, $y(0) = 1$, $y'(0) = 0$.

25.
$$y'' + 3y' + 2y = x^2 + 1$$
, $y(0) = 1$, $y'(0) = -1$.

26.
$$y'' + 4y' - 12y = 8\sin 2x$$
, $y(0) = 0$, $y'(0) = 0$.

27.
$$y'' - 6y' + 9y = x^2 - x + 3$$
, $y(0) = \frac{3}{4}$, $y'(0) = \frac{1}{27}$.

28.
$$y'' + 4y = e^{-2x}$$
, $y(0) = 0$, $y'(0) = 0$.

29.
$$y'' - 2y + 5y = xe^{2x}$$
, $y(0) = 1$, $y'(0) = 0$.

30.
$$y'' + 5y' + 6y = 12\cos 2x$$
, $y(0) = 1$, $y'(0) = 3$.

```
31. y'' - 5y' + 6y = (12x - 7)e^{-x}, \quad y(0) = 0, \quad y'(0) = 0.
32. y'' - 4y' + 13y = 26x + 5, y(0) = 1, y'(0) = 0.
33. y'' - 4y' = 6x^2 + 1, y(0) = 2, y'(0) = 3.
34. y'' - 2y' + y = 16e^x, y(0) = 1, y'(0) = 2.
35. y'' + 6y' + 9y = 10e^{-2x}, y(0) = 3, y'(0) = 2.
36. y'' + y' - 2y = 2x - 1, y(0) = 1, y'(0) = 0.
37. y'' - 4y' + 3y = x^2 - x + 3, y(0) = 1, y'(0) = -1.
38. y'' + 4y' + 3y = x^2 - 1, y(0) = -1, y'(0) = 0.
39. y'' - 3y + 2y = x - 1, y(0) = 1, y'(0) = 0.
40. y'' + 3y' + 2y = x^2 + 1, y(0) = 1, y'(0) = -1.
41. y'' + y' - 2y = 2x - 1, y(0) = 1, y'(0) = 0.
42. y'' - 4y' + 3y = x^2 - x + 3, y(0) = 1, y'(0) = -1.
43. y'' + 4y' + 3y = x^2 - 1, y(0) = -1, y'(0) = 0.
44. y'' - 3y + 2y = x - 1, y(0) = 1, y'(0) = 0.
45. y'' + 3y' + 2y = x^2 + 1, y(0) = 1, y'(0) = -1.
46. y'' + y' - 2y = 2x - 1, y(0) = 1, y'(0) = 0.
47. y'' - 4y' + 3y = x^2 - x + 3, y(0) = 1, y'(0) = -1.
48. y'' + 4y' + 3y = x^2 - 1, y(0) = -1, y'(0) = 0.
49. y'' - 3y + 2y = x - 1, y(0) = 1, y'(0) = 0.
50. y'' + 3y' + 2y = x^2 + 1, y(0) = 1, y'(0) = -1.
51. y'' + 4y' - 12y = 8\sin 2x, y(0) = 0, y'(0) = 0.
52. y'' - 6y' + 9y = x^2 - x + 3, y(0) = \frac{3}{4}, y'(0) = \frac{1}{27}.
53. y'' + 4y = e^{-2x}, y(0) = 0, y'(0) = 0.
54. y'' - 2y + 5y = xe^{2x}, y(0) = 1, y'(0) = 0.
55. y'' + 5y' + 6y = 12\cos 2x, y(0) = 1, y'(0) = 3.
56. y'' - 5y' + 6y = (12x - 7)e^{-x}, \quad y(0) = 0, \quad y'(0) = 0.
57. y'' - 4y' + 13y = 26x + 5, y(0) = 1, y'(0) = 0.
58. y'' - 4y' = 6x^2 + 1, y(0) = 2, y'(0) = 3.
59. y'' - 2y' + y = 16e^x, y(0) = 1, y'(0) = 2.
60. y'' + 6y' + 9y = 10e^{-2x}, y(0) = 3, y'(0) = 2.
61. y'' + y' - 2y = 2x - 1, y(0) = 1, y'(0) = 0.
62. y'' - 4y' + 3y = x^2 - x + 3, y(0) = 1, y'(0) = -1.
```

```
63. y'' + 4y' + 3y = x^2 - 1, y(0) = -1, y'(0) = 0.
64. y'' - 3y + 2y = x - 1, y(0) = 1, y'(0) = 0.
65. y'' + 3y' + 2y = x^2 + 1, y(0) = 1, y'(0) = -1.
66. y'' + y' - 2y = 2x - 1, y(0) = 1, y'(0) = 0.
67. y'' - 4y' + 3y = x^2 - x + 3, y(0) = 1, y'(0) = -1.
68. y'' + 4y' + 3y = x^2 - 1, y(0) = -1, y'(0) = 0.
69. y'' - 3y + 2y = x - 1, y(0) = 1, y'(0) = 0.
70. y'' + 3y' + 2y = x^2 + 1, y(0) = 1, y'(0) = -1.
71. y'' + y' - 2y = 2x - 1, y(0) = 1, y'(0) = 0.
72. y'' - 4y' + 3y = x^2 - x + 3, y(0) = 1, y'(0) = -1.
73. y'' + 4y' + 3y = x^2 - 1, y(0) = -1, y'(0) = 0.
74. y'' - 3y + 2y = x - 1, y(0) = 1, y'(0) = 0.
75. y'' + 3y' + 2y = x^2 + 1, y(0) = 1, y'(0) = -1.
76. y'' + 4y' - 12y = 8\sin 2x, y(0) = 0, y'(0) = 0.
77. y'' - 6y' + 9y = x^2 - x + 3, y(0) = \frac{3}{4}, y'(0) = \frac{1}{27}.
78. y'' + 4y = e^{-2x}, y(0) = 0, y'(0) = 0.
79. y'' - 2y + 5y = xe^{2x}, y(0) = 1, y'(0) = 0.
80. y'' + 5y' + 6y = 12\cos 2x, y(0) = 1, y'(0) = 3.
81. y'' - 5y' + 6y = (12x - 7)e^{-x}, \quad y(0) = 0, \quad y'(0) = 0.
82. y'' - 4y' + 13y = 26x + 5, y(0) = 1, y'(0) = 0.
83. y'' - 4y' = 6x^2 + 1, y(0) = 2, y'(0) = 3.
84. y'' - 2y' + y = 16e^x, y(0) = 1, \underline{y'(0)} = 2.
85. y'' + 6y' + 9y = 10e^{-2x}, y(0) = 3, y'(0) = 2.
86. y'' + y' - 2y = 2x - 1, y(0) = 1, y'(0) = 0.
87. y'' - 4y' + 3y = x^2 - x + 3, y(0) = 1, y'(0) = -1.
88. y'' + 4y' + 3y = x^2 - 1, y(0) = -1, y'(0) = 0.
89. y'' - 3y + 2y = x - 1, y(0) = 1, y'(0) = 0.
90. y'' + 3y' + 2y = x^2 + 1, y(0) = 1, y'(0) = -1.
91. y'' + y' - 2y = 2x - 1, y(0) = 1, y'(0) = 0.
92. y'' - 4y' + 3y = x^2 - x + 3, y(0) = 1, y'(0) = -1.
93. y'' + 4y' + 3y = x^2 - 1, y(0) = -1, y'(0) = 0.
94. y'' - 3y + 2y = x - 1, y(0) = 1, y'(0) = 0.
```

95.
$$y'' + 3y' + 2y = x^2 + 1$$
, $y(0) = 1$, $y'(0) = -1$.

96.
$$y'' + y' - 2y = 2x - 1$$
, $y(0) = 1$, $y'(0) = 0$.

97.
$$y'' - 4y' + 3y = x^2 - x + 3$$
, $y(0) = 1$, $y'(0) = -1$.

98.
$$y'' + 4y' + 3y = x^2 - 1$$
, $y(0) = -1$, $y'(0) = 0$.

99.
$$y'' - 3y + 2y = x - 1$$
, $y(0) = 1$, $y'(0) = 0$.

100.
$$y'' + 3y' + 2y = x^2 + 1$$
, $y(0) = 1$, $y'(0) = -1$.

101.
$$y'' + 4y' - 12y = 8\sin 2x$$
, $y(0) = 0$, $y'(0) = 0$.

102.
$$y'' - 6y' + 9y = x^2 - x + 3$$
, $y(0) = \frac{3}{4}$, $y'(0) = \frac{1}{27}$.

103.
$$y'' + 4y = e^{-2x}$$
, $y(0) = 0$, $y'(0) = 0$.

104.
$$y'' - 2y + 5y = xe^{2x}$$
, $y(0) = 1$, $y'(0) = 0$.

105.
$$y'' + 5y' + 6y = 12\cos 2x$$
, $y(0) = 1$, $y'(0) = 3$.

106.
$$y'' - 5y' + 6y = (12x - 7)e^{-x}, \quad y(0) = 0, \quad y'(0) = 0.$$

107.
$$y'' - 4y' + 13y = 26x + 5$$
, $y(0) = 1$, $y'(0) = 0$.

108.
$$y'' - 4y' = 6x^2 + 1$$
, $y(0) = 2$, $y'(0) = 3$.

109.
$$y'' - 2y' + y = 16e^x$$
, $y(0) = 1$, $y'(0) = 2$.

$$110. y'' + 6y' + 9y = 10e^{-2x}, \quad y(0) = 3, \quad y'(0) = 2.$$

111.
$$y'' + y' - 2y = 2x - 1$$
, $y(0) = 1$, $y'(0) = 0$.

Системы линейных дифференциальных уравнений второго порядка.

1.

$$\begin{cases} \dot{x} = 4x + 6y, \\ \dot{y} = 4x + 2y. \end{cases}$$

2.

$$\begin{cases} \dot{x} = -5x - 4y, \\ \dot{y} = -2x - 3y. \end{cases}$$

3.

$$\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = 8x + y. \end{cases}$$

4.

$$\begin{cases} \dot{x} = 6x + 3y, \\ \dot{y} = -8x - 5y. \end{cases}$$

5.

$$\begin{cases} \dot{x} = -x + 5y, \\ \dot{y} = x + 3y. \end{cases}$$

6.

$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x + 8y. \end{cases}$$

7.

$$\begin{cases} \dot{x} = -4x - 6y, \\ \dot{y} = -4x - 2y. \end{cases}$$

8.

$$\begin{cases} \dot{x} = -5x - 8y, \\ \dot{y} = -3x - 3y. \end{cases}$$

$$\begin{cases} \dot{x} = -x - 5y, \\ \dot{y} = -7x - 3y. \end{cases}$$

10. $\begin{cases} \dot{x} = -7x + 5y, \\ \dot{y} = 4x - 8y. \end{cases}$ 11. $\begin{cases} \dot{x} = 2x + 1y, \\ \dot{y} = -2x + 4y. \end{cases}$ 12. $\begin{cases} \dot{x} = -x + y, \\ \dot{y} = -2x + y. \end{cases}$ 13. $\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = 8x + y. \end{cases}$ 14. $\begin{cases} \dot{x} = -6x - 3y, \\ \dot{y} = 8x + 5y. \end{cases}$ 15. $\begin{cases} \dot{x} = x - 5y, \\ \dot{y} = -x - 3y. \end{cases}$ 16. $\begin{cases} \dot{x} = -3x + 2y, \\ \dot{y} = -2x - 8y. \end{cases}$ 17. $\begin{cases} \dot{x} = 4x + 6y, \\ \dot{y} = 4x + 2y. \end{cases}$ 18. $\begin{cases} \dot{x} = 5x + 8y, \\ \dot{y} = 3x + 3y. \end{cases}$ 19. $\begin{cases} \dot{x} = x + 5y, \\ \dot{y} = 7x + 3y. \end{cases}$

$$\begin{cases} \dot{x} = 4x + 6y, \\ \dot{y} = 4x + 2y. \end{cases}$$

21.

$$\begin{cases} \dot{x} = -5x - 4y, \\ \dot{y} = -2x - 3y. \end{cases}$$

22.

$$\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = 8x + y. \end{cases}$$

23.

$$\begin{cases} \dot{x} = 6x + 3y, \\ \dot{y} = -8x - 5y. \end{cases}$$

24.

$$\begin{cases} \dot{x} = -x + 5y, \\ \dot{y} = x + 3y. \end{cases}$$

25.

$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x + 8y. \end{cases}$$

26.

$$\begin{cases} \dot{x} = -4x - 6y, \\ \dot{y} = -4x - 2y. \end{cases}$$

27.

$$\begin{cases} \dot{x} = -5x - 8y, \\ \dot{y} = -3x - 3y. \end{cases}$$

28.

$$\begin{cases} \dot{x} = -x - 5y, \\ \dot{y} = -7x - 3y. \end{cases}$$

$$\begin{cases} \dot{x} = -7x + 5y, \\ \dot{y} = 4x - 8y. \end{cases}$$

$$\begin{cases} \dot{x} = 4x + 6y, \\ \dot{y} = 4x + 2y. \end{cases}$$

31.

$$\begin{cases} \dot{x} = -5x - 4y, \\ \dot{y} = -2x - 3y. \end{cases}$$

32.

$$\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = 8x + y. \end{cases}$$

33.

$$\begin{cases} \dot{x} = 6x + 3y, \\ \dot{y} = -8x - 5y. \end{cases}$$

34.

$$\begin{cases} \dot{x} = -x + 5y, \\ \dot{y} = x + 3y. \end{cases}$$

35.

$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x + 8y. \end{cases}$$

36.

$$\begin{cases} \dot{x} = -4x - 6y, \\ \dot{y} = -4x - 2y. \end{cases}$$

37.

$$\begin{cases} \dot{x} = -5x - 8y, \\ \dot{y} = -3x - 3y. \end{cases}$$

38.

$$\begin{cases} \dot{x} = -x - 5y, \\ \dot{y} = -7x - 3y. \end{cases}$$

$$\begin{cases} \dot{x} = 4x + 6y, \\ \dot{y} = 4x + 2y. \end{cases}$$

$$\begin{cases} \dot{x} = -5x - 4y, \\ \dot{y} = -2x - 3y. \end{cases}$$

41.

$$\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = 8x + y. \end{cases}$$

42.

$$\begin{cases} \dot{x} = 6x + 3y, \\ \dot{y} = -8x - 5y. \end{cases}$$

43.

$$\begin{cases} \dot{x} = -x + 5y, \\ \dot{y} = x + 3y. \end{cases}$$

44.

$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x + 8y. \end{cases}$$

45.

$$\begin{cases} \dot{x} = -4x - 6y, \\ \dot{y} = -4x - 2y. \end{cases}$$

46.

$$\begin{cases} \dot{x} = -5x - 8y, \\ \dot{y} = -3x - 3y. \end{cases}$$

47.

$$\begin{cases} \dot{x} = -x - 5y, \\ \dot{y} = -7x - 3y. \end{cases}$$

48.

$$\begin{cases} \dot{x} = -7x + 5y, \\ \dot{y} = 4x - 8y. \end{cases}$$

$$\begin{cases} \dot{x} = 4x + 6y, \\ \dot{y} = 4x + 2y. \end{cases}$$

50. $\begin{cases} \dot{x} = -5x - 4y, \\ \dot{y} = -2x - 3y. \end{cases}$ 51. $\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = 8x + y. \end{cases}$ 52. $\begin{cases} \dot{x} = 6x + 3y, \\ \dot{y} = -8x - 5y. \end{cases}$ 53. $\begin{cases} \dot{x} = -x + 5y, \\ \dot{y} = x + 3y. \end{cases}$ 54. $\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x + 8y. \end{cases}$ 55. $\begin{cases} \dot{x} = -4x - 6y, \\ \dot{y} = -4x - 2y. \end{cases}$ 56. $\begin{cases} \dot{x} = -5x - 8y, \\ \dot{y} = -3x - 3y. \end{cases}$ 57.

57.
$$\begin{cases} \dot{x} = -x - 5y, \\ \dot{y} = -7x - 3y. \end{cases}$$

58. $\begin{cases} \dot{x} = 4x + 6y, \\ \dot{y} = 4x + 2y. \end{cases}$

$$\begin{cases} \dot{x} = -5x - 4y, \\ \dot{y} = -2x - 3y. \end{cases}$$

60. $\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = 8x + y. \end{cases}$ 61. $\begin{cases} \dot{x} = 6x + 3y, \\ \dot{y} = -8x - 5y. \end{cases}$ 62. $\begin{cases} \dot{x} = -x + 5y, \\ \dot{y} = x + 3y. \end{cases}$ 63. $\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x + 8y. \end{cases}$ 64. $\begin{cases} \dot{x} = -4x - 6y, \\ \dot{y} = -4x - 2y. \end{cases}$ 65. $\begin{cases} \dot{x} = -5x - 8y, \\ \dot{y} = -3x - 3y. \end{cases}$ 66. $\begin{cases} \dot{x} = -x - 5y, \\ \dot{y} = -7x - 3y. \end{cases}$ 67. $\begin{cases} \dot{x} = -7x + 5y, \\ \dot{y} = 4x - 8y. \end{cases}$ 68. $\begin{cases} \dot{x} = 4x + 6y, \\ \dot{y} = 4x + 2y. \end{cases}$ 69. $\begin{cases} \dot{x} = -5x - 4y, \\ \dot{y} = -2x - 3y. \end{cases}$

$$\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = 8x + y. \end{cases}$$

71.

$$\begin{cases} \dot{x} = 6x + 3y, \\ \dot{y} = -8x - 5y. \end{cases}$$

72.

$$\begin{cases} \dot{x} = -x + 5y, \\ \dot{y} = x + 3y. \end{cases}$$

73.

$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x + 8y. \end{cases}$$

74.

$$\begin{cases} \dot{x} = -4x - 6y, \\ \dot{y} = -4x - 2y. \end{cases}$$

75.

$$\begin{cases} \dot{x} = -5x - 8y, \\ \dot{y} = -3x - 3y. \end{cases}$$

76.

$$\begin{cases} \dot{x} = -x - 5y, \\ \dot{y} = -7x - 3y. \end{cases}$$

77.

$$\begin{cases} \dot{x} = 4x + 6y, \\ \dot{y} = 4x + 2y. \end{cases}$$

78.

$$\begin{cases} \dot{x} = -5x - 4y, \\ \dot{y} = -2x - 3y. \end{cases}$$

$$\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = 8x + y. \end{cases}$$

$$\begin{cases} \dot{x} = 6x + 3y, \\ \dot{y} = -8x - 5y. \end{cases}$$

81.

$$\begin{cases} \dot{x} = -x + 5y, \\ \dot{y} = x + 3y. \end{cases}$$

82.

$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x + 8y. \end{cases}$$

83.

$$\begin{cases} \dot{x} = -4x - 6y, \\ \dot{y} = -4x - 2y. \end{cases}$$

84.

$$\begin{cases} \dot{x} = -5x - 8y, \\ \dot{y} = -3x - 3y. \end{cases}$$

85.

$$\begin{cases} \dot{x} = -x - 5y, \\ \dot{y} = -7x - 3y. \end{cases}$$

86.

$$\begin{cases} \dot{x} = -7x + 5y, \\ \dot{y} = 4x - 8y. \end{cases}$$

87.

$$\begin{cases} \dot{x} = 4x + 6y, \\ \dot{y} = 4x + 2y. \end{cases}$$

88.

$$\begin{cases} \dot{x} = -5x - 4y, \\ \dot{y} = -2x - 3y. \end{cases}$$

$$\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = 8x + y. \end{cases}$$

$$\begin{cases} \dot{x} = 6x + 3y, \\ \dot{y} = -8x - 5y. \end{cases}$$

91.

$$\begin{cases} \dot{x} = -x + 5y, \\ \dot{y} = x + 3y. \end{cases}$$

92.

$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x + 8y. \end{cases}$$

93.

$$\begin{cases} \dot{x} = -4x - 6y, \\ \dot{y} = -4x - 2y. \end{cases}$$

94.

$$\begin{cases} \dot{x} = -5x - 8y, \\ \dot{y} = -3x - 3y. \end{cases}$$

95.

$$\begin{cases} \dot{x} = -x - 5y, \\ \dot{y} = -7x - 3y. \end{cases}$$

$$\begin{cases} \dot{x} = 3x - 2y + t + 1, \\ \dot{y} = 2x - 2y + 2t. \end{cases}$$