Дискретная математика II семестр

Лектор: Станкевич Андрей Сергеевич

зима/весна 2024

_scarleteagle

imkochelorov

Оглавление

І. Дискретная теория вероятностей	. 2
1.1. Введение	
1.2. Аксиоматическая теория вероятностей	
1.3. Независимость событий	
1.4. Прямое произведение вероятностных пространств	
1.5. Условная вероятность	

1. Дискретная теория вероятностей

1.1. Введение

Случайности и вероятности давно интересовали людей, в основном в азартных играх. Первые теоремы дискретной теории вероятностей появились задолго до появления первого конечного автомата. Но философы всех времён задаются вопросом — "существует ли случайность?"

Философская мысль делится на 2 направления — считающих, что случайности существуют, и остальных детерминистов, считающих, что у нас просто недостаточно входных данных

Это всё мы с вами изучать не будем

1.2. Аксиоматическая теория вероятностей

by Андрей Николаевич Колмогоров

Бытовое восприятие случайностей мешает в понимании формальной модели

Определение: множество элементарных исходов

 Ω — множество всех возможных элементарных исходов случайного эксперимента, который может закончиться ровно одним из них

 Ω может быть не более чем счётным, счётным, или не счётным. Но мы будем рассматривать дискретное множество элементарных исходов

 $|\Omega|$ — конечно или счётно

Определение: элементарный исход

Элемент $\omega \in \Omega$

Определение: дискретная плотность вероятности

$$p:\Omega \to \mathbb{R}: p(\omega \geq 0), \sum_{\omega \in \Omega} p(\omega) = 1$$

Если Ω несчётна, то требуется другая теория

Определение: дискретное вероятностное пространство

Пара из множества элементарных исходов и дискретной плотности вероятностей (Ω, p)

Примеры:

1. Честная монета:

$$\Omega = \{0,1\}, \ p(0) = p(1) = \frac{1}{2}$$

2. Нечестная монета (распределение Бернулли):

$$\Omega = \{0, 1\}, \ p(1) = p, \ p(0) = 1 - p$$

3. Честная игральная кость (1d6):

$$\Omega = \{1, 2, 3, 4, 5, 6\}, \ p(i) = \frac{1}{6}$$

1. "Честная" игральная кость (1d20):

$$\Omega = \{1, ..., 20\}, \ p(20) = 1$$

4. Колода карт:

$$\Omega = \{ \langle r, s \rangle \mid r = 1...13, s = 1...4 \}, \ p(\langle r, s \rangle)$$

Определение: случайное событие

Подмножество элементарных исходов $A\subset \Omega, \quad P(A)=\sum_{a\in A}p(a)$

Дискретное множество элементарных исходов является случайным событием

Примеры:

- 1. Пустое событие $P(\emptyset) = 0$
- 2. Достоверное событие (полное (?)) $P(\Omega) = 1$
- 3. Для честной монеты $P(\{0\}) = \frac{1}{2}, \quad P(\{1\}) = \frac{1}{2}$
- 4. Для честной 1d6 $P(\{1,3,5\})=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2}, \quad P(\{5,6\})=\frac{1}{3}, \quad P(\{1,2,3\})=\frac{1}{2}$

1.3. Независимость событий

Определение: независимое случайное событие

A и B независимы, если $P(A \cap B) = P(A) \cdot P(B)$

Примеры:

Для честной игральной кости

Even = $\{2, 4, 6\}$, Big = $\{5, 6\}$, Small = $\{1, 2, 3\}$

- $P(\text{Even} \cap \text{Big}) = P(\{6\}) = \frac{1}{6}$ $P(\text{Even}) \cdot P(\text{Big}) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$
- $P(\text{Even} \cap \text{Small}) = P(\{2\}) = \frac{1}{6}$ $P(\text{Even}) \cdot P(\text{Small}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$
- $P(\text{Big} \cap \text{Small}) = P(\emptyset) = 0$ $P(\text{Big}) \cdot P(\text{Small}) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}$

Определение: события, независимые в совокупности

$$A_1,A_2,...,A_k$$
 – независимы в совокупности, если $\forall I\subset\{1,2,...,k\}$ $Pigg(\bigcap_{i\in I}A_iigg)=\prod_{i\in I}P(A_i)$

Примеры:

Для броска двух разных честных монет

$$\Omega = \{00, 01, 10, 11\}, \quad p(i \cdot j) = \frac{1}{4}$$

 $A = \{01, 00\}, \quad B = \{10, 00\}, \quad \tilde{C} = \{11, 00\}$ не независимы в совокупности

1.4. Прямое произведение вероятностных пространств

Определение: прямое произведение вероятностей пространств

$$\begin{split} \langle \Omega_1, p_1 \rangle, \quad \langle \Omega_2, p_2 \rangle, \text{прямое произведение пространств } \Omega &= \Omega_1 \times \Omega_2: \quad p(\langle u_1, u_2 \rangle) = p_1(\omega_1) \cdot p_2(\omega_2) \\ \sum_{\langle \omega_1, \omega_2 \rangle \in \Omega_1 \times \Omega_2} p(\langle \omega_1, \omega_2 \rangle) &= \sum_{p_1(\omega_1)} p_1(\omega_1) \cdot p_2(\omega_2) = \sum_{\omega_1} \left(p_1(\omega_1) \cdot \sum_{\omega_2} p_2(\omega_2) \right) = 1 \end{split}$$

Пример:

$$A_1\subset\Omega_1,\ A_2\subset\Omega_2\Rightarrow A_1\times\Omega_2$$
 и $\Omega_1\times A_2$ — независимы $(A_1\times\Omega_2)\cap(\Omega_1\times A_2)=A_1\times A_2$

1.5. Условная вероятность

имеет смысл, если $P(B) \neq \emptyset$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) \neq 0$$

если
$$A$$
 и B независимы, то
$$P(A|B) = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$

$$p_B(\omega) = \frac{p(\omega)}{P(B)}, \quad P_B(A) = \frac{P(A \cap B)}{P(B)})$$

Теорема: (Формула полной вероятности)

$$\Omega = \underbrace{A_1 \cup A_2 \cup \ldots \cup A_k}_{\text{полная система событий}}, \quad A_i \cap A_j = \varnothing \text{ при } i \neq j$$

$$\begin{split} B & P(B|A_i) \\ P(B) &= \sum_{i=1}^{n} P(B|A_i) P(A_i) \\ \sum_{i=1}^{k} P(B|A_i) P(A_i) &= \sum_{i=1}^{k} \frac{P(B \cap A_i)}{P(A_i)} \cdot P(A_i) = \sum_{i=1}^{k} P(B \cap A_i) = P(B) \end{split}$$

Задача:

Две урны, в одной 3 черных и 2 белых, в другой 4 черных и 1 белый шар. С какой вероятностью можно вынуть черный шар?

$$\begin{array}{ccc} A_1 & A_2 & \frac{1}{2} \\ P(B|A_1) = \frac{3}{5} & P(B|A_2) = \frac{4}{5} & P(B) = \frac{3}{5} \cdot \frac{1}{2} + \frac{4}{5} \cdot \frac{1}{2} = \frac{7}{10} \end{array}$$

Задача:

$$P(B|A_i)$$
 $P(A_i)$ найти $P(A_i|B)=?$ Достоверность = 1 - $P(B|A_2)=99\%$ Надёжность = $P(B|A_1)=95\%$ A_1 — болен $(\frac{1}{100})$

$$A_2$$
 — здоров ($\frac{99}{100}$)

$$P(A_1|B) = \frac{0.95 \cdot 0.01}{0.95 \cdot 0.01 + 0.01 \cdot 0.99}$$

$$P(B|A_i) = \tfrac{P(A_i \cap B)}{P(A_i)}$$

Определение: формула Байеса

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum\limits_{j=1}^k P(B|A_j)P(A_j)}$$

Определение: Байесовский спам-фильтр

 A_1 — спам

 A_2 — не спам

В – критерий

 $P(B|A_1)$ — вероятность выполнения критерия, если письмо спам (можно посчитать)

 $P(B|A_2)$ — вероятность выполнения критерия, если письмо не спам (можно посчитать)

Сам фильтр: $P(A_1|B)$ — вероятность спама при выполнении критерия (можно вычислить, используя значения выше)