Universal Gate – NOR

NOR Gate

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	0

NOR Gate as an Inverter Gate

NOR Gate as an OR Gate

NOR Gate as an AND Gate

NOR Gate Equivalent of AOI Gates

Process for NOR Implementation

- 1. If starting from a logic expression, implement the design with AOI logic.
- 2. In the AOI implementation, identify and replace every AND,OR, and INVERTER gate with its NOR equivalent.
- 3. Redraw the circuit.
- 4. Identify and eliminate any double inversions. (i.e. back-to-back inverters)
- 5. Redraw the final circuit.

Example:

Design a NOR Logic Circuit that is equivalent to the AOI circuit shown below.

Solution – Step 2

Identify and replace every AND,OR, and INVERTER gate with its NAND equivalent.

Solution – Step 3

Redraw Circuit.

Solution – Step 4

Identify and eliminate any double inversions.

Solution – Step 5

Redraw Circuit.

Proof of Equivalence

AOI vs NOR

IC Type	Gates	Gate / IC	# ICs
74LS04	1	6	1
74LS08	2	4	1
74LS32	1	4	1
Total Number of ICs →			3

IC Type	Gates	Gate / IC	# ICs
74LS02	7	4	2
Total Number of ICs →			2