3E Construct the De Bruijn Graph of a Collection of k-mers

De Bruijn Graph from k-mers Problem

Construct the de Bruijn graph from a collection of k-mers.

Input: A collection of *k*-mers *Patterns*. **Output:** The graph DEBRUIJN(*Patterns*).

Formatting

Input: A space-separated list of *k*-mer strings *Patterns*.

Output: An adjacency list representing DEBRUIJN(*Patterns*).

Constraints

- The number of patterns in the string-set *Patterns* will be between 1 and 10^4 .
- The length of any one pattern in *Patterns* will be between 1 and 10^2 .
- All strings in *Patterns* will be DNA strings.

Test Cases 🖸

Case 1

Description: The sample dataset is not actually run on your code.

Input:

```
G GG C GG GGGG GGG C GG GGG GG
```

Output:

```
G G: GG
C G: GG GG
GGG: GGG
GG: GGG
```

Case 2

Description: The sample dataset is not actually run on your code.

Input:

```
GC G C GCT TG CG
```

Output:

```
GC : C G
C GC: GCT
TG C: G CG
```

Case 3

Description: The sample dataset is not actually run on your code.

Input:

```
GGT GGCT GGC
```

Output:

```
GG: GGT GGC
```

Case 4

Description: The sample dataset is not actually run on your code.

Input:

```
TTCT GGCT GT GGCT TTCT
```

Output:

```
TTC: TCT TCT
GGC: GCT GCT
G: GT
```

Case 5

Description: The sample dataset is not actually run on your code.

Input:

```
\mathsf{C} \quad \mathsf{C} \quad \mathsf{C} \quad \mathsf{C} \quad \mathsf{C} \quad \mathsf{C} \mathsf{C}
```

Output:

C: C

Case 6

Description: A larger dataset of the same size as that provided by the randomized autograder. Check input/output folders for this dataset.