Towards Modern Regression

Daniel Lawson University of Bristol

Lecture 02.1 (v2.0.0)

Signposting

- ► This lecture covers:
 - Classical regression
 - Towards Modern Regression the vectorised version, which uses Matrix algebra.
 - ► Leave-one-out Cross Validation
- ▶ The maths here underpins almost all modern data science.

Correlation and Covariance

- ► Correlation and Covariance are quantifications of a relationship between *x* and *y*.
- ► They quantify the linear relationship.
- \blacktriangleright They ask, "How does variation in x and y associate?"
- Consequently, they are purely descriptive and do not attempt to establish any cause and effect.
- ► Covariance is a generalisation of variance; it summarises the 2-D marginals of high dimensional data.

Covariance

▶ A reminder: covariance is simply the second (central) moment:

$$cov(X,Y) = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right]$$

▶ it is straightforward to show that

$$cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Recall that we typically use unbiased estimators which often slightly different from natural theoretical analogue. The sample covariance is:

$$cov(X,Y) = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

Correlation

Correlation is simply a normalised measure of covariance.

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

- ▶ It takes values between -1 and 1.
- ► Sample correlation uses the unbiased estimator of covariance, to account for the number of degrees of freedom in the data.
- ▶ What should we take the correlation of?
 - ► See rank correlation, canonical correlation, etc.

Examples

From Wikipedia: Correlation_and_dependence

Regression

- Regression, considers the relationship of a response variable as determined by one or more explanatory variables.
 - Regression is designed to help make predictions of y when we observe x.
 - lt is **not** a joint model of x and y.
 - ► It predicts the *best guess*.
 - ► There is a probabilistic interpretation based on Normal Distributions.
- Regression is a often used as a tool to establish causality...
 - ▶ A and B share a causal relationship if a regression for B given A, conditional on C (C=everything else), has an association
 - ▶ This does not resolve whether A causes B, or B causes A
 - Since we don't measure everything else, regression rarely establishes causality!
 - Assumptions are needed to make a causal connection. This is known as causal inference and there are frameworks to establish causality.

Discrete predictors

- ► If you include categorical/factor predictors, each **level** or unique value is used as a binary predictor.
- ► This is called **One Hot Encoding**.

Regression example

Multiple Regression example

```
> lm(mpg ~ cyl + hp + wt,data=mtcars) %>% summary
Call:
lm(formula = mpg ~ cyl + hp + wt, data = mtcars)
Residuals:
   Min
        1Q Median 3Q
                             Max
-3.9290 -1.5598 -0.5311 1.1850 5.8986
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
cyl
     -0.94162
                   0.55092 -1.709 0.098480 .
hp
       -0.01804 0.01188 -1.519 0.140015
       -3.16697
                   0.74058 -4.276 0.000199 ***
wt.
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 '
```

Important measures of regression

- ▶ **R squared** (and adjusted R squared): variance explained/total variance. This tells us how predictable *y* is.
- ▶ The coefficients β_i .
 - ▶ These should be compared to their error $\hat{\sigma}_i$.
 - ▶ The ratio is a t-value $(t_i = \beta_i/\hat{\sigma}_i)$ from which a p-value can be calculated.
- F statistic and F test p-value:
 - ► *F* is the ratio of the explained to unexplained variance, accounting for the degrees of freedom.
 - ► The full model compared to a null in which there are no explanatory variables.
 - Used in variable selection, ANOVA, etc.

Vector Notation

- ▶ There are several choices of convention that we have to make
- ▶ Vectors of length k are also matrices, but are they $k \times 1$ or $1 \times k$?
- \blacktriangleright We use $k \times 1$, i.e. column vectors
- Similarly there are choices about matrix derivatives
- We use derivative with respect to a column vector as a row vector
- Some resources will have everything transposed as a consequence

Linear algebra view of covariance

- ► The covariance matrix of a random variable X
- ightharpoonup Where X is a vector-valued RV with length k,
- has entries:

$$Cov(X)_{ij} = Cov(X_i, X_j) = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)].$$

► The matrix form for this is:

$$\Sigma = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T],$$

▶ Where $\mu = \mathbb{E}[X]$.

Linear algebra view of correlation

▶ Division by standard deviations is required to correctly generalise the scalar correlation:

$$\operatorname{Corr}(X,Y) = \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}.$$

► The matrix form for correlation is:

$$\operatorname{Corr}(X) = (\operatorname{diag}(\Sigma))^{-1/2} \Sigma (\operatorname{diag}(\Sigma))^{-1/2}$$

► The matrix inversion is not computationally challenging because it is for a **diagonal matrix**.

Regression is analogous to linear algebra with noise

► Most problems in Linear Algebra can be seen as solving a system of linear equations:

$$XA + b = 0.$$

- \blacktriangleright Where X is an n by p matrix of data,
- ightharpoonup A is an p by 1 matrix of coefficients,
- ightharpoonup and $-\mathbf{b}$ is a *n*-vector of target values.
- ▶ However, data are not usually generated from a linear model.
- ▶ We therefore typically seek the least-bad fit that we can:

$$\operatorname{argmin}||\mathbf{X}\mathbf{A} + \mathbf{b}||_2^2 = \sum_{i=1}^{N} (\mathbf{x}_i \mathbf{A} + b_i)^2$$

- ▶ i.e. we find A and b such that they minimise the distance (in the squared L_2 norm)
- ► Linear algebra allows this very effectively!
- ► Linear Algebra is therefore a very powerful way to view regression.

Matrix form of least squares

- ► Consider data X' with p' features (columns) and n observations.
- ► Given the regression problem:

$$\mathbf{y} = \mathbf{X}'\beta' + \mathbf{b} + \mathbf{e}$$

- ► to find:
 - \triangleright β' (a matrix dimension $p' \times 1$))
 - ightharpoonup and b,
 - lacktriangle to minimise 'error': in $e^2 = \sum_{i=1}^n \epsilon_i^2$

Matrix form of least squares

We construct a simpler representation by adding a constant feature:

$$\mathbf{X} = \begin{bmatrix} 1 & \mathbf{X}_{11} & \cdots & \mathbf{X}_{1p'} \\ & & \cdots & \\ 1 & \mathbf{X}_{n1} & \cdots & \mathbf{X}_{np'} \end{bmatrix}$$

- ightharpoonup which has p=p'+1 features.
- ► We now solve the analogous equation:

$$y = X\beta + e$$

which has the same solution but is in a more convenient form.

Mean Squared Error (MSE)

► The **prediction error** is:

$$\mathbf{e}(\beta) = \mathbf{y} - \mathbf{X}\beta$$

- ▶ Using the notation that e is a p by 1 matrix
- ► The estimation error is written in matrix form:

$$MSE(\beta) = \frac{1}{n} \mathbf{e}^T \mathbf{e}$$

- ightharpoonup Why? $\mathbf{e}^T\mathbf{e} = \sum_{i=1}^n e_i^2$
 - ► Hence $MSE(\beta)$ is a 1×1 matrix, i.e. a scalar, and $|MSE(\beta)| = MSE(\beta)$.
 - ▶ Noticing this sort of thing makes the matrix algebra easier.
- We want to minimise this MSE with respect to the parameters β .

How to do the Matrix Algebra

Lecture 13 of Cosma Shalizi's notes is a really helpful reminder!

- ► Look at the Matrix Algebra Cheat Sheet specifically:
 - ► How does a transpose work?
 - ► How do you re-order elements?
 - How does a gradient work in linear and quadratic forms?

Minimising MSE

▶ Taking (vector) derivatives with respect to β :

$$\nabla \text{MSE}(\beta) = \frac{1}{n} (\nabla \mathbf{y}^T \mathbf{y} - 2\nabla \beta^T \mathbf{X}^T \mathbf{y} + \nabla \beta^T \mathbf{X}^T \mathbf{X}\beta) \quad (1)$$
$$= \frac{1}{n} (0 - 2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X}\beta) \quad (2)$$

 \blacktriangleright which is zero at the optimum $\hat{\beta}$:

$$\mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} - \mathbf{X}^T \mathbf{y} = 0$$

with the solution:

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

Exercise: For the case p'=1, check that this solution is the same as you can find in regular linear algebra textbooks.

The Hat Matrix

There is an important and response independent quantity hidden in the prediction:

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

► The fitted values are:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}$$

- ightharpoonup H is dimension $N \times N$
- lackbox H "projects" $\mathbf y$ into the fitted value space $\hat{\mathbf y}$
- ▶ Put the "hat" on y

Properties of the Hat Matrix

- ▶ Influence: $\frac{\partial \hat{y}_i}{\partial y_j} = H_{ij}$. So H controls how much a change in one observation changes the estimates of each other point.
- **symmetry**: $H^T = H$. So influence is symmetric.
- ▶ **Idempotency**: $H^2 = H$. So the predicted value for any projected point is the predicted value itself.
- You should read up on these and other vector algebra properties.

Residuals and the Hat Matrix

► The residuals can be written:

$$e = y - Hy = (I - H)y$$

- ightharpoonup I H is also symmetric and idempotent, and can also be interpreted in terms of Influence.
- ▶ Because of this,

$$MSE(\hat{\beta}) = \frac{1}{n} \mathbf{y}^T (1 - \mathbf{H})^T (1 - \mathbf{H}) \mathbf{y} = \frac{1}{n} \mathbf{y}^T (1 - \mathbf{H}) \mathbf{y}$$

Expectations

► If the data were generated by our model(!) then they are described by an RV Y (an n-vector):

$$\mathbf{Y}_i = \mathbf{x}_i \boldsymbol{\beta} + \boldsymbol{\epsilon}_i$$

- $ightharpoonup \mathbf{x}_i$ is still a vector but *not* a Random Variable!
- lacktriangle ϵ is an n imes 1 matrix of RVs with mean $oldsymbol{0}$ and covariance $\sigma_s^2 {
 m I}$.
- From this it is straightforward to show that the fitted values are unbiased:

$$\mathbb{E}[\hat{\mathbf{y}}] = \mathbb{E}[\mathbf{H}\mathbf{Y}] = \mathbf{x}\beta$$

using the properties of Expectations with the symmetry and idempotency of H.

Covariance

Similarly, it is straightforward to show that

$$Var[\hat{\mathbf{y}}] = \sigma_s^2 \mathbf{H}$$

using the properties of Variances with the symmetry and idempotency of H.

► In other words, the covariance of the fitted values is determined entirely by the structure of the covariates, via the Hat matrix.

Motivation: Residuals

► The residual sum of squares for *n* predictions of a univariate *y*:

$$R^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

- ▶ The expected value of the prediction error $\mathbb{E}(e^2) = R^2/n$.
- ▶ What happens if compare two models M_1 and M_2 , where M_1 is a subset of M_2 ?

Linear Models - Model selection

► For illustration, consider

$$Y = \mathbf{x}_1 A_1 + \epsilon_1$$

and

$$Y = \mathbf{x}_1 A_1 + \mathbf{x}_2 A_2 + \epsilon_2.$$

- ▶ Unless $\mathbf{x}_2 = 0$ or $\mathbf{x}_2 \equiv \mathbf{x}_1$, then ϵ_2^2 will be smaller than ϵ_1^2 .
 - ► This is an example of a more general rule: larger models always have better predictions.
- So prediction error is OK to use to fit models with the same dimension, but is incomplete for model selection.

Cross-Validation Motivation

- Usually we are not interested in properties of our sample.
- We instead wish to know how our inference will generalise to new samples.
- ► The most straight forward way to predict how a model generalises is to test in held-out data.
- Cross Validation is a procedure to leave-out some data for testing.
- ► How much data?
 - Leave-one-out Cross-Validation (LOOCV) leaves out one datapoint at a time for testing.
 - **k-Fold Cross Validation** (k-fold CV) keeps a fraction (k-1)/k of the data for learning parameters and 1/k for testing.

Prediction accuracy in linear regression

In linear regression, the errors are

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\boldsymbol{\beta} = \mathbf{y} - \mathbf{H}\mathbf{y} = \mathbf{y} - \hat{\mathbf{y}}$$

- ▶ Recall the H matrix describes the influence of y_i on \hat{y}_j , i.e. that y_i and \hat{y}_j covary.
- ► We show in Worksheet 2.2A that the expected MSE for the *i*-th datapoint is:

$$\mathbb{E}(e_i^2) = \mathbb{E}\left[(y_i - \hat{y}_i)^T (y_i - \hat{y}_i)\right] = \mathbb{E}\left[(y_i - \hat{y}_i)^2\right]$$

$$= \operatorname{Var}[y_i] + \operatorname{Var}[\hat{y}_i] - 2\operatorname{Cov}[y_i, \hat{y}_i] + \left[\mathbb{E}(y_i) - \mathbb{E}(\hat{y}_i)\right]^2$$

$$(4)$$

lacktriangle This is shown by rearranging the formula for $\mathrm{Var}[y_i - \hat{y}_i]$

Out-of-sample prediction accuracy in linear regression

We can write the same thing when predicting an out-of-sample y_i' :

$$\mathbb{E}(e'_{i}^{2}) = \mathbb{E}\left[(y'_{i} - \hat{y}_{i})^{T}(y'_{i} - \hat{y}_{i})\right]$$

$$= \operatorname{Var}[y'_{i}] + \operatorname{Var}[\hat{y}_{i}] - 2\operatorname{Cov}[y'_{i}, \hat{y}_{i}] + \left[\mathbb{E}(y'_{i}) - \mathbb{E}(\hat{y}_{i})\right]^{2}$$

$$(6)$$

- ▶ But out-of-sample, $Cov[y'_i, \hat{y}_i] = 0$ whereas within-sample, $Cov[y_i, \hat{y}_i] \neq 0$.
- ► Therefore:

$$\mathbb{E}(e_i'^2) = \mathbb{E}(e_i^2) + 2\operatorname{Cov}[y_i, \hat{y}_i]$$

Quantifying Out-of-sample prediction accuracy

► Fortunately we already did the work required to describe this:

$$Cov[y_i, \hat{y}_i] = \sigma^2 \mathbf{H}_{ii}$$

► The mean out-of-sample prediction error is

$$\mathbb{E}(e'^2) = n^{-1} \sum_{i=1}^n e_i'^2 = n^{-1} \sum_{i=1}^n e_i^2 + 2n^{-1} \text{tr}(\mathbf{H})$$

- ▶ We show in Worksheet 2.2A that $tr(H) = \sigma^2 p$ where p=number of predictors.
- ► The **optimism** is defined as $2n^{-1}\sigma^2p$.
- ► The optimism grows with σ^2 and p but shrinks with n. It is used to define the **model selection criteria** ΔC_p which is minimised:

$$\Delta C_p = MSE_1 - MSE_2 + \frac{2}{n}\hat{\sigma}^2(p_1 - p_2)$$

Linear model optimism and AIC

► Minimising Akaike's Information Criterion:

$$AIC = -2\mathbb{L}(\hat{\theta}) + 2\text{Dim}(\theta)$$

- ightharpoonup reduces to maximising ΔC_p when the Likelihood $\mathbb L$ is a Normal distribution.
- ► There are many other Information Criteria...

LOOCV

- We write a statistic \hat{s} based on all data $\{y\}$ except i as $\hat{s}^{(-i)}$ and the data is $\{y\}^{(-i)}$.
- ► For a general **loss function** we can write:

$$LOOCV = \frac{1}{n} \sum_{i=1}^{n} Loss (y_i; \hat{\theta} | y^{(-i)})$$

- ▶ i.e. we evaluate the loss function for each datapoint using the estimate from the remaining data.
- NB A loss function is something that we choose the parameters θ to minimise. It can be:
 - ▶ the MSE,
 - the (negative log) likelihood,
 - a penalised version of these,
 - or any other convenient quantity.

LOOCV for linear models

▶ For the MSE of a linear model we can write:

$$LOOCV = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)})^2$$

lt is not particularly straightforward to show that:

$$LOOCV = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - H_{ii}} \right)^2$$

- ► This is a very important quantity, often called the Studentized residual
- ▶ i.e. the LOOCV can be directly computed from a regression containing all data, by "downweighting" low-leverage data and upweighting high-leverage (hard to predict) data.

¹Our references avoid proving this, but do discuss the motivation. Proofs are available but beyond scope.

Leave-one-out Cross-Validation

- ► Leaving out a single datapoint is going to be insufficient unless the data are independent.
- ► The real world is rarely completely independent.
- ▶ However, there is often a computationally convenient way to compute LOOCV, and it is still better than leaving nothing out. It converges to C_p for large n.
- ► Analogous tricks work for:
 - ► Linear models including Best Linear Unbiased Predictors (BLUPs)
 - Kernel methods
 - ► Nearest neighbour methods
 - And others

Asymptotics

- Here are some facts about the asymptotic behaviour of LOOCV:
 - As $n \to \infty$, the expected out-of-sample MSE of the model picked by LOO cross-validation is close to that of the best model considered.
 - As $n \to \infty$, if the true model is among those being compared, LOOCV tends to pick a **strictly larger model** than the truth.
- ► LOOCV is not the right tool for choosing the right model.
- ► It is however an excellent tool for choosing the model with the best out-of-sample **predictive power**.
- ... when the data to be predicted come from the same distribution as the data!

Implications

- ► Matrix form is a massive simplification of complex algebra
- ▶ It is easy to check that e.g. dimensions make sense
- ► These vector calculations are repeated in many machine-learning methods
- ► The details change but the principle remains
- Linear-Algebra loss minimisation techniques are extremely important
- ► They often sit inside a wider argument, e.g. updated conditional on some other parameters

Reflection

- By the end of the course, you should:
 - Be able to define correlation and regression in multivariate context
 - ▶ Be able to perform basic calculations using these concepts
 - ▶ Be able to extend intuition about their application.
 - Be able to follow the reasoning in a paper where things get complicated.
- ► Matrix algebra is worth reading up on!
 - Describe it for example in your assessments' reflection.

Signposting

- ► Make sure to look at 02.1-Regression.R
- ► The mathematics behind Modern Regression is analogous to the mathematics underpinning scalable Machine Learning. It is very important.
- ► For accessible material see Cosma Shalizi's Modern Regression Lectures (Lectures 13-14)
- ► Further reading in chapters 2.3 and 3.2 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani)
- ► Next up: 2.2 Statistical Testing