Graph Search: Depth First Search (DFS)

Lily Li

CSC 265: Enriched Data Structures and Analysis

27 November 2018

Outline

Review

DFS: Basics

DFS: Properties

Topological Sort

Strongly Connected Components

DFS: Basics

(Special) Parameters of Vertex v:

- ▶ d[v]: the discovery time of v. Different from v.d of BSF.
- ▶ f[v]: the finish time of v.
- ▶ v.colour: indicates state of v; v is white before d[v], gray between d[v] and f[v], and black after f[v].

```
DFS(G)

1 t \leftarrow 0

2 for v \in V

3 v.colour = white

4 for v \in V

5 if v.colour = white

6 DFS-VISIT(v)
```

```
DFS(G)
                                            DFS-VISIT(\nu)
  t \leftarrow 0
                                              1 v.colour \leftarrow gray
2 for v \in V
                                              2 t \leftarrow t + 1
                                              3 \quad d[v] \leftarrow t
       v.colour = white
   for v \in V
                                              4 for u \in \mathbf{N}(v)
5
                                                       if u.colour = white
         if v.colour = white
                                              5
6
               DFS-VISIT(\nu)
                                                             u.parent = v
                                                             DFS-Visit(u)
                                                 v.colour \leftarrow black
                                                f[v] \leftarrow t
                                            10 t \leftarrow t + 1
```

```
DFS(G)
                                            DFS-VISIT(\nu)
  t \leftarrow 0
                                              1 v.colour \leftarrow gray
2 for v \in V
                                              2 t \leftarrow t + 1
                                              3 \quad d[v] \leftarrow t
       v.colour = white
                                              4 for u \in \mathbf{N}(v)
   for v \in V
5
         if v.colour = white
                                              5
                                                       if u.colour = white
6
               DFS-Visit(\nu)
                                                              u.parent = v
                                                              DFS-Visit(u)
                                                  v.colour \leftarrow black
                                                 f[v] \leftarrow t
                                             10 t \leftarrow t + 1
```

Q: What is the running time?

```
DFS(G)
  t \leftarrow 0
2 for v \in V
      v.colour = white
   for v \in V
5
        if v.colour = white
6
             DFS-Visit(\nu)
```

Q: What is the running time? **A:** O(m + n).

```
DFS-VISIT(\nu)
 1 v.colour \leftarrow gray
 2 t \leftarrow t + 1
 3 \quad d[v] \leftarrow t
 4 for u \in \mathbf{N}(v)
 5
           if u.colour = white
                  u.parent = v
                  DFS-VISIT(u)
     v.colour \leftarrow black
     f[v] \leftarrow t
10 t \leftarrow t + 1
```


DFS: Example

DFS: Example

DFS: Example

Theorem (Parenthetical Property)

Let G = (V, E) and $u, v \in V$. Then the following could occur:

Theorem (Parenthetical Property)

Let G = (V, E) and $u, v \in V$. Then the following could occur:

Proof.

W.l.o.g. assume that d[u] < d[v].

Theorem (Parenthetical Property)

Let G = (V, E) and $u, v \in V$. Then the following could occur:

Proof.

W.l.o.g. assume that d[u] < d[v].

1. f[u] < d[v]: d[u] < f[u] < d[v]. Neither vertex was gray when the other was discovered. No ancestor relationship.

Theorem (Parenthetical Property)

Let G = (V, E) and $u, v \in V$. Then the following could occur:

Proof.

W.l.o.g. assume that d[u] < d[v].

- 1. f[u] < d[v]: d[u] < f[u] < d[v]. Neither vertex was gray when the other was discovered. No ancestor relationship.
- 2. f[u] > d[v]: u was gray when v was discovered. Thus v is a descendant of u and finish exploring v before u (f[v] < f[u]).

Theorem (White Path Property)

In a depth-first forest, v is a descendant of u if and only if at d[u] there exists a path $u \rightsquigarrow v$ of only white nodes.

Theorem (White Path Property)

In a depth-first forest, v is a descendant of u if and only if at d[u] there exists a path $u \rightsquigarrow v$ of only white nodes.

Proof.

(\Longrightarrow) Suppose that v is a descendant of u.

Theorem (White Path Property)

In a depth-first forest, v is a descendant of u if and only if at d[u] there exists a path $u \rightsquigarrow v$ of only white nodes.

Proof.

(\Longrightarrow) Suppose that v is a descendant of u. Then **the path** $u\leadsto v$ on the depth-first tree **is a white path** at time d[u].

Theorem (White Path Property)

In a depth-first forest, v is a descendant of u if and only if at d[u] there exists a path $u \rightsquigarrow v$ of only white nodes.

Proof.

(\Longrightarrow) Suppose that v is a descendant of u. Then **the path** $u \leadsto v$ on the depth-first tree **is a white path** at time d[u].

(\iff) Suppose there exists a white path from u to v at time d[u].

Theorem (White Path Property)

In a depth-first forest, v is a descendant of u if and only if at d[u] there exists a path $u \rightsquigarrow v$ of only white nodes.

Proof.

(\Longrightarrow) Suppose that v is a descendant of u. Then **the path** $u \leadsto v$ on the depth-first tree **is a white path** at time d[u].

(\longleftarrow) Suppose there exists a white path from u to v at time d[u].

Claim: all vertices w on this path satisfy f[w] < f[u].

Theorem (White Path Property)

In a depth-first forest, v is a descendant of u if and only if at d[u] there exists a path $u \rightsquigarrow v$ of only white nodes.

Proof.

(\Longrightarrow) Suppose that v is a descendant of u. Then **the path** $u \leadsto v$ on the depth-first tree **is a white path** at time d[u].

(\iff) Suppose there exists a white path from u to v at time d[u].

Claim: all vertices w on this path satisfy f[w] < f[u].

Proof: Suppose not and let w' be the first vertex on the path such that f[w'] > f[u]. Then the parent p of w' on the path finished before exploring the edge pw'. This is not possible.

Theorem (White Path Property)

In a depth-first forest, v is a descendant of u if and only if at d[u] there exists a path $u \rightsquigarrow v$ of only white nodes.

Proof.

(\Longrightarrow) Suppose that v is a descendant of u. Then **the path** $u \leadsto v$ on the depth-first tree **is a white path** at time d[u].

(\iff) Suppose there exists a white path from u to v at time d[u].

Claim: all vertices w on this path satisfy f[w] < f[u].

Proof: Suppose not and let w' be the first vertex on the path such that f[w'] > f[u]. Then the parent p of w' on the path finished before exploring the edge pw'. This is not possible.

By Paren. Prop. every vertex on the path, including v, is a descendant of u.

DFS: Exercise

G is an undirected graph. Running BFS on G at vertex u produces a tree T. Running DFS on the u produces the same tree T.

DFS: Exercise

G is an undirected graph. Running BFS on G at vertex u produces a tree T. Running DFS on the u produces the same tree T. Show that G = T i.e. all edges in G belong to T.

Let G be a directed graph, $V = \{v_1, ..., v_n\}$ be the vertices of G and $[n] = \{1, 2, ..., n\}$.

Let G be a directed graph, $V = \{v_1, ..., v_n\}$ be the vertices of G and $[n] = \{1, 2, ..., n\}$.

A **topological order** is bijection $t: V \to [n]$ such that all edges (i,j) $(v_i \to v_j)$ satisfy $t(v_i) > t(v_j)$.

Let G be a directed graph, $V = \{v_1, ..., v_n\}$ be the vertices of G and $[n] = \{1, 2, ..., n\}$.

A **topological order** is bijection $t: V \to [n]$ such that all edges (i,j) $(v_i \to v_j)$ satisfy $t(v_i) > t(v_j)$.

Let G be a directed graph, $V = \{v_1, ..., v_n\}$ be the vertices of G and $[n] = \{1, 2, ..., n\}$.

A **topological order** is bijection $t: V \to [n]$ such that all edges (i,j) $(v_i \to v_j)$ satisfy $t(v_i) > t(v_j)$.

Let G be a directed graph, $V = \{v_1, ..., v_n\}$ be the vertices of G and $[n] = \{1, 2, ..., n\}$.

A **topological order** is bijection $t: V \to [n]$ such that all edges (i,j) $(v_i \to v_j)$ satisfy $t(v_i) > t(v_j)$.

Let G be a directed graph, $V = \{v_1, ..., v_n\}$ be the vertices of G and $[n] = \{1, 2, ..., n\}$.

A **topological order** is bijection $t: V \to [n]$ such that all edges (i,j) $(v_i \to v_j)$ satisfy $t(v_i) > t(v_j)$.

Let G be a directed graph, $V = \{v_1, ..., v_n\}$ be the vertices of G and $[n] = \{1, 2, ..., n\}$.

A **topological order** is bijection $t: V \to [n]$ such that all edges (i,j) $(v_i \to v_j)$ satisfy $t(v_i) > t(v_j)$.

A **topological sort** on *G* finds a topological order.

Q: Do all directed graph have a topological order? How would you perform topological sort on a graph with a topological order.

Let G be a directed graph, $V = \{v_1, ..., v_n\}$ be the vertices of G and $[n] = \{1, 2, ..., n\}$.

A **topological order** is bijection $t: V \to [n]$ such that all edges (i,j) $(v_i \to v_j)$ satisfy $t(v_i) > t(v_j)$.

A **topological sort** on *G* finds a topological order.

Q: Do all directed graph have a topological order? How would you perform topological sort on a graph with a topological order.

A: G has a topological order if and only if it is acyclic (DAG).

Using Sinks

A **sink** is a vertex with no out going edges.

Using Sinks

A **sink** is a vertex with no out going edges.

Claim: If G is acyclic then there must exist a sink.

Using Sinks

A **sink** is a vertex with no out going edges.

Claim: If G is acyclic then there must exist a sink.

Algorithm:

- 1. While graph G is not empty find a sink v.
- 2. Remove v and its adjacent edges.
- 3. Go back to step 1.

Using DFS

Algorithm: run DFS and sort vertices by increasing f[v].

Using DFS

Algorithm: run DFS and sort vertices by increasing f[v].

Lemma

If uv is an edge then f[u] > f[v].

Using DFS

Algorithm: run DFS and sort vertices by increasing f[v].

Lemma

If uv is an edge then f[u] > f[v].

Proof.

Two cases to consider:

1. DFS visits u before $v: u \to v$ a white path at time d[u]. By the White Path Theorem v is a descendant of u so f[v] < f[u].

Using DFS

Algorithm: run DFS and sort vertices by increasing f[v].

Lemma

If uv is an edge then f[u] > f[v].

Proof.

Two cases to consider:

- 1. DFS visits u before $v: u \rightarrow v$ a white path at time d[u]. By the White Path Theorem v is a descendant of u so f[v] < f[u].
- 2. DFS visits v before u: Since the graph is acyclic, there does not exists a path $v \rightsquigarrow u$. Thus DFS on v must finish before even discovering u.

SCC: Setup

Consider this graph.

SCC: Setup

Consider this graph. Its strongly connected components (SCC) are

SCC: Setup

Consider this graph. Its strongly connected components (SCC) are

In the language of equivalence relations:

R: "is in the same SCC as"

then uRv if there exists paths $u \rightsquigarrow v$ and $v \rightsquigarrow u$.

SCC: Algorithm

1. Reverse all edges in G. Call this graph G_R .

15 / 19

SCC: Algorithm

- 1. Reverse all edges in G. Call this graph G_R .
- 2. Run $\mathrm{DFS}(G_R)$. Record the finish times of the vertices.

- 1. Reverse all edges in G. Call this graph G_R .
- 2. Run $DFS(G_R)$. Record the finish times of the vertices.
- 3. Run DFS(G) (in decreasing order of finish times).

- 1. Reverse all edges in G. Call this graph G_R .
- 2. Run DFS(G_R). Record the finish times of the vertices.
- 3. Run DFS(G) (in decreasing order of finish times).
- 4. All vertices in the same DSF tree are in the same SCC.

- 1. Reverse all edges in G. Call this graph G_R .
- 2. Run DFS(G_R). Record the finish times of the vertices.
- 3. Run DFS(G) (in decreasing order of finish times).
- 4. All vertices in the same DSF tree are in the same SCC.

- 1. Reverse all edges in G. Call this graph G_R .
- 2. Run DFS(G_R). Record the finish times of the vertices.
- 3. Run DFS(G) (in decreasing order of finish times).
- 4. All vertices in the same DSF tree are in the same SCC.

- 1. Reverse all edges in G. Call this graph G_R .
- 2. Run DFS(G_R). Record the finish times of the vertices.
- 3. Run DFS(G) (in decreasing order of finish times).
- 4. All vertices in the same DSF tree are in the same SCC.

- 1. Reverse all edges in G. Call this graph G_R .
- 2. Run DFS(G_R). Record the finish times of the vertices.
- 3. Run DFS(G) (in decreasing order of finish times).
- 4. All vertices in the same DSF tree are in the same SCC.

0. Begin with a graph G.

1. Reverse all edges in G and call this graph G_R .

2. Run $DFS(G_R)$. Record the finish times of the vertices.

Heuristic: break ties lexicographically (first a, then b, etc.)

SCC: Proof of Correctness Proof.

1. Let G = (V, E) and $G_R = (V, E_R)$, $(v_1, v_2) \in E \iff (v_2, v_1) \in E_R$.

SCC: Proof of Correctness Proof.

- 1. Let G = (V, E) and $G_R = (V, E_R)$, $(v_1, v_2) \in E \iff (v_2, v_1) \in E_R$.
- 2. Construct a new graph H = (U, D) induced by SCC. $u_i \in U$ for component U_i . $(u_1, u_2) \in D$ if and only if there exists edge $(v_1, v_2) \in E$ for $v_1 \in U_1$ and $v_2 \in U_2$.

SCC: Proof of Correctness

Proof.

- 1. Let G = (V, E) and $G_R = (V, E_R)$, $(v_1, v_2) \in E \iff (v_2, v_1) \in E_R$.
- 2. Construct a new graph H = (U, D) induced by SCC. $u_i \in U$ for component U_i . $(u_1, u_2) \in D$ if and only if there exists edge $(v_1, v_2) \in E$ for $v_1 \in U_1$ and $v_2 \in U_2$.

3. Note that H is acyclic. Let $f[u_i] = \max_{v \in U_i} f[v]$:

SCC: Proof of Correctness Proof.

- 1. Let G = (V, E) and $G_R = (V, E_R), (v_1, v_2) \in E \iff (v_2, v_1) \in E_R$.
- 2. Construct a new graph H = (U, D) induced by SCC. $u_i \in U$ for component U_i . $(u_1, u_2) \in D$ if and only if there exists edge $(v_1, v_2) \in E$ for $v_1 \in U_1$ and $v_2 \in U_2$.

3. Note that H is acyclic. Let $f[u_i] = \max_{v \in U_i} f[v]$: Claim: if there exists an edge $(u_i, u_j) \in D$ then $f[u_i] < f[u_j]$.

SCC: Proof of Correctness

Proof.

- 1. Let G = (V, E) and $G_R = (V, E_R)$, $(v_1, v_2) \in E \iff (v_2, v_1) \in E_R$.
- 2. Construct a new graph H = (U, D) induced by SCC. $u_i \in U$ for component U_i . $(u_1, u_2) \in D$ if and only if there exists edge $(v_1, v_2) \in E$ for $v_1 \in U_1$ and $v_2 \in U_2$.

- Note that H is acyclic. Let f[u_i] = max_{v∈U_i} f[v]:
 Claim: if there exists an edge (u_i, u_j) ∈ D then f[u_i] < f[u_j].
- 4. **Perform DFS on** *G* in decreasing order of finish times. Show that this discovers the SCCs by induction.

SCC: Inductive Proof

Claim: if there exists an edge $(u_i, u_j) \in D$ then $f[u_j] > f[u_i]$. Lemma DFS(G) in decreasing order of finish times discovers the SCCs.

SCC: Inductive Proof

Claim: if there exists an edge $(u_i, u_j) \in D$ then $f[u_j] > f[u_i]$.

Lemma

DFS(G) in decreasing order of finish times discovers the SCCs.

Proof.

By induction on the number of calls of DFS-VISIT(ν) in DFS(G).

1. Base Case: By the claim, $v \in V$ with the largest F[v] is in a sink SCC, U_1 . DFS-VISIT(v) will find all vertices in U_1 .

SCC: Inductive Proof

Claim: if there exists an edge $(u_i, u_j) \in D$ then $f[u_j] > f[u_i]$.

Lemma

DFS(G) in decreasing order of finish times discovers the SCCs.

Proof.

By induction on the number of calls of DFS-VISIT(ν) in DFS(G).

- 1. Base Case: By the claim, $v \in V$ with the largest F[v] is in a sink SCC, U_1 . DFS-VISIT(v) will find all vertices in U_1 .
- 2. **Inductive Step:** S is the set of components already found. Run DFS-VISIT(v) for v in component U_i not yet discovered. Consider edge (v_i, v_j) for $v_i \in U_i$ and $v_j \in U_j \in S$. By the claim, $f[u_i] < f[u_j]$ so there exists a vertex in U_j with larger finish time than v. Since we are running DFS by decreasing finish times, component U_j must already have been explored. Thus we only visit the vertices in U_i .

Claim

If there exists an edge $(u_i, u_j) \in D$ then $f[u_j] > f[u_i]$.

Claim

If there exists an edge $(u_i, u_j) \in D$ then $f[u_j] > f[u_i]$.

Proof.

Let $v_i \in U_i$, $v_j \in U_j$ be the first vertices explored by $\mathrm{DFS}(G_R)$ their respective component.

Claim

If there exists an edge $(u_i, u_j) \in D$ then $f[u_j] > f[u_i]$.

Proof.

Let $v_i \in U_i$, $v_j \in U_j$ be the first vertices explored by $\mathrm{DFS}(G_R)$ their respective component.

1. v_i is explored before v_j : No path $v_i \rightsquigarrow v_j \in G_R$ since v_j and v_i are in different components. Finish exploring v_i before beginning with v_j . Thus $f[v_j] > f[v_i]$.

Claim

If there exists an edge $(u_i, u_j) \in D$ then $f[u_j] > f[u_i]$.

Proof.

Let $v_i \in U_i$, $v_j \in U_j$ be the first vertices explored by $DFS(G_R)$ their respective component.

- 1. v_i is explored before v_j : No path $v_i \rightsquigarrow v_j \in G_R$ since v_j and v_i are in different components. Finish exploring v_i before beginning with v_j . Thus $f[v_j] > f[v_i]$.
- 2. v_j is explored before v_i : There exists a white path from v_j to v_i , so by White Path Prop. and Paren. Prop. $f[v_i] < f[v_j]$.