Languages and Computation (COMP2049/AE2LAC)

Revision

Dr. Tianxiang Cui

tianxiang.cui@nottingham.edu.cn

Examination

- 29th May 2018 (9:30 11:30) TB405
 - Please double check this
- Answer all THREE questions
- Total marks available: 75
- Regular short answer questions

The Chomsky Hierarchy

the traditional Chomsky hierarchy

Basics

- Symbol
- Word(string)
 - Concatenation of words
- Alphabet
 - Powers of an alphabet
 - Kleene star of an alphabet
- Language
 - Union
 - Concatenation
 - Closure

Deterministic Finite Automata

- The language of a DFA
 - A language is regular *iff* it is the set of strings accepted by some DFA
- Accepting the union/intersection/difference of two Languages
- Language distinguishable
- The Pumping Lemma
 - To prove a language is not regular by showing the language cannot be accepted by a DFA
 - E.g., $L = \{a^i b^i \mid i \ge 0\}$
- Equivalence classes of DFA
- Minimizing the number of states in DFA
 - Table-filling algorithm

Regular Languages

- Definition:
- The set of regular languages R over an alphabet Σ is defined recursively as follows:
- Basis Clause:
 - The empty language \varnothing is the element of R
 - For any symbol $s \in \Sigma$, the language $\{s\}$ is the element of R
- Inductive Clause:
 - For every two languages L_1 and L_2 in \boldsymbol{R} , the three languages $L_1 \cup L_2$, $L_1 \cup L_2$, and L_1 * are elements of \boldsymbol{R}

Regular Expressions

- · A regular language has an explicit formula
 - · A regular expression for a language is a slightly more user-friendly formula
- Parentheses () replace curly braces {}, and are used only when needed, and the union symbol is replaced by +

Regular language	Regular Expression
Ø	\varnothing
{ε}	ε
$\{a,b\}^*$	$(a+b)^*$
${aab}^*{a,ab}$	$(aab)^*(a+ab)$

Exercise

- Write regular expression for the following language over the alphabet $\Sigma = (a,b,c)$
- 1. Words that contain at least one a
- 2. Words that contain exactly one a and one b (but any number of c's)
- 3. Words such that all c's appear before all a's

Nondeterministic Finite Automata

- We can add nondeterminism to DFA NFA
 - But this does not increase its power
- Convert NFA into DFA
 - Eliminate e-transitions
 - Subset construction
- Kleene's Theorem
- 1. For every alphabet Σ , every regular language over Σ can be accepted by a finite automaton
- 2. For every finite automaton A, the language L(A) is regular

Context-Free Grammars

- Nonterminal, terminal, starting symbol, production
- Rules, called productions, that describe how symbols called nonterminals, can be replaced by nonterminals and terminals until only terminals left

 $nonterminal \rightarrow terminals \ and \ nonterminals$

- Derivation tree
 - Left-most
 - Right-most
- Ambiguity
- Disambiguating grammars
 - Operator precedence
 - Associativity

Pushdown Automata

- Similar to a finite automaton, but with unlimited memories
- At any time instance, the state of the computation of a PDA is given by an Instantaneous Description (ID)/configuration
 - Describe the sequence of moves for a given input word
- The Language of a PDA
 - Acceptance by final state
 - Acceptance by empty stack

PDA and CFG

- The CFGs and the PDAs describe the same class of languages
- Translating a CFG into a PDA
- Deterministic PDA
 - A PDA that has no choice $|\delta(q, x, z)| + |\delta(q, \varepsilon, z)| \le 1$
 - The set of languages accepted by the DPDAs is a strict subset of the languages accepted by PDAs: $L(DPDA) \subset L(PDA) = CFL$

Turing Machine

- TM a general model of computation
- Church—Turing Thesis any real-world computation can be translated into an equivalent computation involving a TM
- Language of a TM use TM to process a given input string
- Use TM to Compute a function
- Combine TMs
- Variants of TM
 - Multitape Turing Machines
 - Nondeterministic Turing Machines
- Universal Turing Machines
 - Encoding function

Enumerability, Decidability

- Recursively enumerable languages are those that can be accepted by a TM
- Recursive languages are those that can be decided by a TM
- Unrestricted grammars correspond to recursively enumerable languages
 - Similar to CFGs, except that production rules must have at least one variable on the left hand side
 - Less restrictive than CFG rules
- Context-Sensitive Grammar (CSG): unrestricted grammar in which no production is length-decreasing Length of RHS of production must be greater than or equal to the length of LHS
- Linear-Bounded Automata (LBA)

Good Luck With Your Exam!

