11 класс

TC	_		
$K \cap \Pi$	работы		
тод	paooibi		

Таблица результатов

	Задача	Σ_{max}	Балл жюри	Апелляция	Результат	Подпись
11-1.	«Гармоническая разминка»	33				
11-2.	«Миг невесомости»	35				
11-3.	«Прогрессивная электростатика»	38				
	Σ_{max}	106	Σ :			

Схемы оценивания

Пункт	Содержание	Баллы	Оценки жюри
	Задание 11-1. «Гармоническая разминка» (37 балло	в)	-
1.1 «P	азгон маятника»	I	
	Записана формула Гюйгенса (1) для «неподвижного» маятника $T_0 = 2\pi \sqrt{\frac{l}{g}}.$	1	
	Использован метод «эффективного ускорения» (2) (или эквивалентный) $T = 2\pi \sqrt{\frac{l}{g^*}}.$	2	
1.1	Проанализированы эффективные ускорения (3), (4, (5) для электрички и лифта (два случая), указано, что равенство возможно только при условии (4) (ускорение лифта направлено вверх) $\mathbf{g}^* = \mathbf{g} + a_1.$	3	
	Записано (6) для равенства периодов $\sqrt{a_2^2 + g^2} = g + a_1.$	1	
	Получено и правильно посчитано (7) ускорение электрички (в любом направлении) $a_2 = \sqrt{a_1(a_1+2\mathrm{g})} = 5,6 \; \mathrm{m/c^2}.$	2	
	Указано, что лифт может ехать куда угодно – как вверх, так и вниз. Данных условия недостаточно для однозначного ответа.	2	
1.2 «M	аятник в шахте»	Г	
1.2	Записано (8) для ускорения свободного падения на поверхности Земли $\mathbf{g} = G \frac{\mathbf{M}}{R^2}.$	1	
	Получено (9) для периода колебаний маятника на поверхности Земли $T_0 = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{l \cdot R^2}{GM}} = 2\pi R \sqrt{\frac{l}{GM}}.$	2	

		·	
	Правильно проведено разложение $(10) - (12)$ $g(h) \approx \frac{1}{\left(1 + \frac{h}{R}\right)^2} g = \left(1 - \frac{2h}{R}\right) g.$	2	
	$(1+\frac{\pi}{R})$ Выведено (13) для периода колебаний на горе		
	$T_1(h) = 2\pi \sqrt{\frac{l}{g(h)}} = T_0 \left(1 + \frac{h}{R}\right).$	1	
	Вычислено (14) – (15) для суточного отставания часов $N_1 = \frac{{24 \times 60 \times 60}}{{1.000157}} = 86\ 386.$	1	
	Получено (16) для ускорения в шахте $g(h) = \left(1 - \frac{h}{R}\right)g.$	2	
	Найдено (17) для периода в шахте $T_2(h) = T_0\left(1 + \frac{h}{2R}\right).$	2	
	Получено (18) $T_0\left(1+\frac{h_1}{R}\right) = T_0\left(1+\frac{h_2}{2R}\right) \Longrightarrow h_2 = 2h_1 = 2,0 \text{ км}.$	2	
1 3 «H	епостоянная планка»		
	Записаны (20) — (22) для вычисления центра масс $l_1 = \frac{m_2}{m_1 + m_2} l$ $l_2 = \frac{m_1}{m_1 + m_2} l$	2	
	Правильно найдено (23) и (24) $AO = \overrightarrow{AB} = \alpha R,$ $h_1 = BC = R(1 - \cos \alpha) \approx \frac{\alpha^2}{3}R.$	1	
İ	Выведено (25) – (26) для потенциальной энергии	2	
1.3	$E^{\Pi}=(m_1+m_2)\mathbf{g}\cdot\ h_2=(m_1+m_2)\mathbf{g}R\cdot\frac{\alpha^2}{2}.$ Записано (28) для скоростей шариков $v_1=\omega(l_1-\alpha R)$ $v_2=\omega(l_2+\alpha R)$	2	
	Получено (29) и преобразовано к виду (30) $E^{\kappa} = \frac{\omega^2}{2} (m_1 l_1^2 + m_2 l_2^2).$	2	
	Правильно записано уравнение для полной энергии (32) $E^{\Pi} + E^{K} = (m_1 + m_2)gR \cdot \frac{\alpha^2}{2} + (m_1l_1^2 + m_2l_2^2) \cdot \frac{\omega^2}{2} = const.$	1	
	Найден период колебаний (35) $T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m_1 l_1^2 + m_2 l_2^2}{(m_1 + m_2) gR}} = 2\pi \frac{l}{m_1 + m_2} \sqrt{\frac{m_1 m_2}{gR}}.$	2	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	37	Σ :
	Задание 11-2. «Миг невесомости» (35 баллов)		
	Часть 1. Общая теория	Г	
1.1	Правильно нарисованы силы, действующие на бусинку в процессе движения, записан второй закон Ньютона (1) и (2) для ее движения	2	
	дыя 🕶 движения	L	

	$ma_{\text{uc}} = m\frac{v^2}{R} = mg\cos\alpha - N.$		
	10		
	Записан закон сохранения энергии (3) $\frac{mv^2}{2} = mgR(1 - \cos \alpha) \implies \frac{v^2}{R} = 2g(1 - \cos \alpha).$	1	
	Получено (4) для $N(\alpha)$ $N(\alpha) = mg\cos\alpha - m\frac{v^2}{R} = mg(3\cos\alpha - 2).$	2	
1.2	Из (4) правильно найдено значение $\cos\alpha_1 = \frac{2}{3} \Longrightarrow \alpha_1 = 48, 1^\circ = 0,839 \text{ рад.}$	1	
	Правильно разложена сила реакции на компоненты (6) $\vec{N} = \vec{N}_y + \vec{N}_x$		
1.3	$N_{y}(\alpha) = N(\alpha)\cos\alpha.$ $N_{x}(\alpha) = N(\alpha)\sin\alpha$	2	
	Найдена зависимость (7) $N_y(\alpha) = N(\alpha)\cos\alpha = mg(3\cos\alpha - 2)\cdot\cos\alpha.$	2	
	Проведены правильные вычисления, заполнена таблица вычислений.	2	
	В соответстсвие с таблицей на бланке построен график заввисимости $N_y^*(\alpha)$		
1.4	6	3	
1.5	Отмечены участки убывания и возрастания функции, точка минимума, точка максимального значения.	2	
	Часть 2. Работа с графиком		
	Отмечена точка касания графика и оси абсцисс, указано, что здесь вес равен нулю.	1	
	Записано (10) для веса системы $P(\alpha) = Mg + 2N_y(\alpha) = g(M + 2m(3 \cos \alpha - 2) \cdot \cos \alpha).$	2	
2.1	Найдена точка экстремума (11) $\cos \alpha_4 = \frac{1}{3} \implies \alpha_4 = 70,5^\circ = 1,23 \text{ рад,}$ и значение в минимуме (12) $(3\cos \alpha_4 - 2) \cdot \cos \alpha_4 = -\frac{1}{3}.$	2	
	Записаны (13) и (14) $m = \frac{3}{2}M,$	2	

	учтено начальное условие (15) $8m_0g = (M+2m)g \implies M+2m = 8m_0.$		
	Получено верные значения (16) для искомых масс $m=3m_0=30\ { m r}$ $M=2m_0=20\ { m r}$	2	
2.2	Указано, что максимальный вес достигается в нижней точке бусинок при $\alpha = \pi$.	2	
	Записано (17) $P_{max} = P(\alpha = \pi) = 32m_0 \text{g}.$	2	
	Предложен метод оцифровки, указано, как найти систему отсчета, как найти масштабный отрезок (две реперные точки).	2	
2.3	Предложенный метод реализован на графике в тетради.	1	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	35	Σ :
	Задание 11-3. Прогрессивная электростатика (38 балл	ов)	
	Часть 1. Арифметическая электростатика		
1 1	Методом «мысленного поворота» (или любым другим)		
1.1	показано, что поле \vec{E}_1 равно нулю (2) $\vec{E}_1 = \vec{0}$.	1	
1.2	Для вычислений использован закон Кулона (3) и принцип суперпозиции электрических полей (4) $\vec{E}_2 = \sum_i \vec{E}_i = \vec{E}_1 + \dots + \vec{E}_{n-1} + \vec{E}_n.$	2	
	Сформулирована идея модернизированного «метода мысленного поворота»: повернуть всю систему на угол α и умножить на (-1). Отмечено (5), что при этом модули соответствующих векторов не изменятся $E_2 = E_2^* = E_2^{**}.$	3	
	Далее «накладываем» полученную систему на старую, строим векторную диаграмму, записано (6) $\vec{E}_S = \vec{E}_2 + \vec{E}_2^{**}.$	2	
	Указано, это же поле есть поле точечного заряда $(-nq_0)$, находящегося в первой точке цепочки (7) $E_S = \frac{nq_0}{4\pi\varepsilon_0R^2}.$	2	
	Из векторной диаграммы получено (8) $E_S = 2E_2 \sin\left(\frac{\alpha}{2}\right) \implies E_2 = \frac{E_S}{2\sin\left(\frac{\alpha}{2}\right)}.$	2	
	Из (7) и (8) найдено искомое значение (9) $E_2 = \frac{nq_0}{8\pi\varepsilon_0 R^2 \sin\left(\frac{\alpha}{2}\right)} = \frac{nq_0}{8\pi\varepsilon_0 R^2 \sin\left(\frac{\pi}{n}\right)} = \frac{n}{2\sin\left(\frac{\pi}{n}\right)} E_0.$	2	

	Из векторной диаграммы найден угол β	1	
	$\beta = \frac{\pi}{2} - \frac{\alpha}{2} = \frac{\pi}{2} - \frac{\pi}{n} = \frac{n-2}{2n}\pi.$		
	Из векторной диаграммы найдено количество вершин n многоугольника (11) и угол α	_	
	$\beta = 2\alpha \implies \frac{n-2}{2n}\pi = 2\frac{2\pi}{n} \implies n = 10.$	2	
1.3	Проведены расчеты (13) и (14), сохранено три значащие		
	цифры		
	$E_2 = 5.00 \cdot 10^3 \frac{B}{M} = 5.00 \frac{\kappa B}{M}$	3	
	$\beta = \frac{10-2}{2\cdot10}\pi = \frac{2\pi}{5} = 1,26$ рад = 72,0°.		
	Часть 2. Геометрическая электростатика		
2.1	Вычислена напряжённость E_0 (15)		
2.1	$E_0 = \frac{q_0}{4\pi\epsilon_0 R^2} = 588 \frac{B}{M}$	1	
	Сформулирована идея вновь		
	модернизированного «метода $\vec{E}_{\text{доп}}$		
	мысленного поворота»: удвоить все заряды и повернуть всю систему на угол α Результирующий вектор \vec{E}_3^*	2	
	угол α . Результирующий вектор \vec{E}_3^*	2	
	также удвоится. При этом векторная 0 Рис. 07		
	диаграмма примет вид:		
	Указано, это же поле есть поле старой системы и точечного заряда $(2^n - 1) \cdot q_0$, находящегося в первой точке цепочки.		
	Записано (16) для его напряженности	2	
	$\vec{E}_{\text{доп}} = (2^n - 1) \cdot \vec{E}_0.$		
	Записаны принцип суперпозиции (17) и теорема косинусов		
2.2	(18) $ (E_{\text{доп}})^2 = (E_0 \cdot (2^n - 1))^2 = E_3^2 + 4E_3^2 - 2E_3(2E_3)\cos\alpha. $	3	
	Получен верный результат (19) для напряженности $(19)^n$		
	$E_3 = \frac{2^{n} - 1}{\sqrt{5 - 4\cos\alpha}} E_0 = \frac{(2^n - 1) \cdot q_0}{4\pi\varepsilon_0 R^2 \sqrt{5 - 4\cos\left(\frac{2\pi}{n}\right)}}.$	2	
	V		
	По теореме синусов найден угол γ (21)		
	$\sin \gamma = \frac{2(2^n - 1)}{\sqrt{5 - 4\cos \alpha}} E_0 \cdot \frac{\sin \alpha}{E_0 \cdot (2^n - 1)} = \frac{2\sin \alpha}{\sqrt{5 - 4\cos \alpha}} = \frac{2\sin\left(\frac{2\pi}{n}\right)}{\sqrt{5 - 4\cos\left(\frac{2\pi}{n}\right)}}.$	2	
	$\sqrt{5-4\cos(\frac{\pi}{n})}$ Указано, что в этом случае треугольник напряженностей		
	прямоугольный, записано (22)	1	
	$\sin \gamma = \sin \frac{\pi}{2} = 1 = \frac{2 \sin \alpha}{\sqrt{5 - 4 \cos \alpha}}.$	1	
	Найдено значение угла (23) и числа сторон (24)		
2.3	$\cos \alpha = \frac{1}{2}$ \Rightarrow $\alpha = \frac{\pi}{3} = 60^{\circ}, n = \frac{2\pi}{\alpha} = 6.$	2	
	Проведены расчеты (25) и (26)		
	$E_3 = 21.4 \cdot 10^3 \left(\frac{\text{B}}{\text{M}}\right) = 21.4 \left(\frac{\text{KB}}{\text{M}}\right)$.	2	
	Решение оформлено аккуратно, с необходимыми	1	
	комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	38	Σ :

1 ретии этип	республиканской	олимпиасы п	о учеоному п	редмету «Ф	изика» (2023 _/	/2024 учеонь