Profesor: Felipe Osorio Ayudante: Nicolás Alfaro

Contacto: nicolas.alfaro@sansano.usm.cl Semestre: 2021-2 (Primavera 2021)

AYUDANTÍA 8

25 de Noviembre, 2021

PROBLEMAS

P1 Sea X_1, X_2, \ldots, X_n una muestra aleatoria IID proveniente de una distribución normal con media θ y varianza 1 $(N(\theta, 1))$, entonces un intervalo de confianza del 95% para θ viene dado por

$$[\bar{X} - \frac{1.96}{\sqrt{n}}, \bar{X} + \frac{1.96}{\sqrt{n}}]$$

Sea p la probabilidad de que una observación adicional X_{n+1} pertenezca a este intervalo. Determine entonces si p es mayor,menor o igual a 0.95.

P2 Suponga que T es un estadístico real y que $Q(t,\theta)$ es una función monótona creciente en t para todo $\theta \in \Theta$. Demuestre que si la función de densidad conjunta de T, $f(t|\theta)$ tiene la siguiente forma

$$f(t|\theta) = g(Q(t,\theta)) \left| \frac{\partial}{\partial t} Q(t,\theta) \right|$$

Donde g es alguna función arbitraria, entonces $Q(t,\theta)$ es un pivote.

P3 Sea X una observación proveniente de una distribución Beta $(\theta, 1)$.

- (a) Dado $Y = -(\log(X))^{-1}$. Evalue el coeficiente de confianza asociado a $[\frac{y}{2}, y]$.
- (b) Encuentre un pivote y utilícelo para construir un intervalo de confianza con el mismo coeficiente de confianza del inciso anterior.
- (c) Compare los 2 intervalos de confianza.

 $\boxed{\mathbf{P4}}$ Encuentre una transformación g (estabilizadora de varianza) tal que satisfaga que

$$\sqrt{n}(q(\bar{X}_n) - q(\lambda)) \xrightarrow{d} N(0,1)$$

Donde \bar{X}_n es la media muestral de una muestra aleatoria X_1, \ldots, X_n proveniente de una distribución Poisson con parámetro λ (Poiss(λ)). Utilice este resultado para encontrar un intervalo de confianza asintótico en términos de λ