Supervised Machine Learning: Classification

Personal Note - Supervised Learning Sheet

1. Hồi Quy Logistic & Thước Đo Lỗi

1.1. Bài toán & mô hình

- Bài toán: phân loại nhị phân $(y \in \{0, 1\})$.
- Mô hình: xác suất lớp 1 theo hàm **Sigmoid**:

$$p(y = 1|x) = \sigma(z) = \frac{1}{1 + e^{-z}}, \quad z = w^{T}x + b$$

- Ký hiệu: $x \in \mathbb{R}^d$ (vector đặc trưng), w (trọng số), b (bias), σ (sigmoid), z (logit).
- Biên quyết định (decision boundary): tập điểm $\{x: w^Tx + b = 0\}$. Khi z = 0, p = 0.5.

1.2. Hàm mất mát (Binary Cross-Entropy / Log Loss)

$$\mathcal{L}(w,b) = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log p_i + (1 - y_i) \log(1 - p_i) \right] + \lambda ||w||_2^2$$

- Ký hiệu: $p_i = \sigma(w^T x_i + b)$, λ là hệ số L2 regularization (giảm overfitting).
- Gradient:

$$\nabla_w \mathcal{L} = \frac{1}{n} \sum_{i=1}^n (p_i - y_i) x_i + 2\lambda w$$
$$\partial_b \mathcal{L} = \frac{1}{n} \sum_{i=1}^n (p_i - y_i)$$

1.3. Hiệu chỉnh ngưỡng (threshold)

- Dự đoán nhãn $\hat{y} = 1[p \ge \tau].$
- Mặc định $\tau = 0.5$ nhưng có thể tối ưu theo mục tiêu (F1, Recall...).

1.4. Thước đo đánh giá (Classification Metrics)

- Confusion Matrix (nhãn dương = 1): TP, FP, TN, FN.
- Accuracy: $\frac{TP+TN}{TP+FP+TN+FN}$ dễ sai lệch khi mất cân bằng lớp.
- Precision: $\frac{TP}{TP+FP}$ tỷ lệ dự đoán dương đúng.
- Recall (TPR): $\frac{TP}{TP+FN}$ khả năng bắt đúng dương.
- $\mathbf{F1}$: $2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$.
- ROC-AUC: diện tích dưới đường ROC (TPR vs FPR).
- PR-AUC: tốt khi dữ liệu lệch lớp.
- Log Loss: đánh giá xác suất, phạt nặng dự đoán tự tin nhưng sai.
- Calibration: xác suất mô hình có "thật" không.

1.5. Key Takeaways

- Sigmoid biến logit thành xác suất; điều chỉnh ngưỡng quan trọng.
- Dùng regularization (L2) để chống overfit.
- Với dữ liệu lệch lớp: ưu tiên Recall/F1/PR-AUC thay vì Accuracy.
- Calibration hữu ích nếu cần xác suất tin cậy (ra quyết định rủi ro).

2. K-Nearest Neighbors (KNN)

$2.1. \acute{Y}$ tưởng

- "Bạn của tôi là K láng giềng gần nhất".
- Phân loại theo đa số phiếu (hoặc có trọng số khoảng cách).

2.2. Khoảng cách thường dùng

• Euclidean (L2):

$$||x - x'||_2 = \sqrt{\sum_j (x_j - x_j')^2}$$

• Manhattan (L1):

$$\sum_{j} |x_j - x_j'|$$

• Minkowski (p):

$$\left(\sum_{j} |x_j - x_j'|^p\right)^{1/p}$$

• Cosine: $1 - \frac{x \cdot x'}{||x||||x'||}$ - cho dữ liệu dạng hướng.

Chú ý: KNN nhạy cảm thang đo \rightarrow cần chuẩn hóa/scale đặc trưng.

2.3. Dự đoán

- Classification: $\hat{y} = \text{mode}(y_{(1)}, ..., y_{(K)})$ hoặc vote có trọng số $w_i = 1/(d_i + \epsilon)$.
- Regression: trung bình (hoặc trung vị) của K láng giềng.

2.4. Chọn K & độ phức tạp

- K nhỏ \to phương sai cao (overfit). K lớn \to độ chệch cao (underfit).
- Độ phức tạp: huấn luyện rẻ (lazy), suy diễn tốn $O(n \cdot d)$ mỗi truy vấn.
- Có thể tăng tốc bằng KD-Tree/Ball Tree.

2.5. Key Takeaways

- Hiệu quả khi biên quyết định phức tạp, dữ liệu không tuyến tính.
- Scale features & chọn K bằng CV; cân nhắc weight theo khoảng cách.
- Với dữ liệu lớn, xem xét cấu trúc chỉ mục hoặc mô hình khác.

3. Support Vector Machines (SVM) với Gaussian (RBF) Kernel

3.1. Max-margin & Soft-margin

- Mục tiêu: tìm siêu phẳng phân tách với biên lớn nhất.
- \bullet Soft-margin dùng tham số C cân bằng giữa biên rộng và lỗi huấn luyện.

3.2. Dạng dual & hàm quyết định

• Hàm quyết định:

$$f(x) = \sum_{i=1}^{n} \alpha_i y_i K(x_i, x) + b$$

• Ký hiệu: $\alpha_i \geq 0$ là trọng số trong bài toán dual; chỉ support vectors có $\alpha_i > 0$, K là hàm kernel.

3.3. Gaussian (RBF) Kernel

$$K(x, x') = \exp(-\gamma ||x - x'||_2^2)$$

- γ (gamma) lớn \rightarrow vùng ảnh hưởng nhỏ \rightarrow biên phức tạp (overfit). γ nhỏ \rightarrow biên mượt hơn.
- C lớn \to phạt lỗi mạnh \to ít lỗi huấn luyện nhưng dễ overfit. C nhỏ \to biên rộng hơn.

3.4. Xác suất & chuẩn hóa

- SVM không sinh xác suất tự nhiên; có thể calibrate (Platt scaling / isotonic).
- Như KNN, chuẩn hóa đặc trưng là bắt buộc khi dùng RBF.

3.5. Key Takeaways

- C và γ cần tìm bằng CV (grid/random search).
- Mạnh với biên phi tuyến; nhạy với scale và tham số.
- Ít bị ảnh hưởng bởi nhiễu ngoại lai nếu chọn tham số hợp lý.

4. Cây Quyết Định (Decision Trees)

$4.1. \acute{Y}$ tưởng

• Chia để trị: tách không gian đặc trưng thành các vùng đồng nhất bằng các điều kiện if-then $(x_i \leq t, ...)$.

4.2. Độ đo nhiễm bẩn (Impurity)

- Gini: $G = 1 \sum_{k} p_k^2$.
- Entropy: $H = -\sum_k p_k \log p_k$.
- Information Gain (IG) tại ngưỡng t trên thuộc tính j:

$$IG = H(\text{node}) - \left(\frac{n_L}{n}H(L) + \frac{n_R}{n}H(R)\right)$$

• Ký hiệu: p_k là tần suất lớp k trong node; L,R là node trái/phải với kích thước n_L,n_R .

4

4.3. Dừng & cắt tỉa

- Tham số: max_depth, min_samples_split, min_samples_leaf....
- Pruning (cost-complexity) để giảm overfit.

4.4. Uu nhươc

- Ưu: dễ hiểu, giải thích, xử lý feature số/lịch sử, không cần scale.
- Nhược: dễ overfit nếu không kiểm soát độ sâu; biên quyết định bậc thang.

4.5. Key Takeaways

- Chọn độ sâu hợp lý + pruning.
- Dùng Gini hoặc Entropy; theo dõi IG để hiểu quyết định tách.

5. Học Tổ Hợp (Ensembles)

5.1. Bagging

- Huấn luyện nhiều mô hình độc lập trên các bootstrap samples.
- \bullet Dự đoán bằng trung bình/đa số \to giảm phương sai.

5.2. Random Forest (RF)

- Bagging cây + chọn ngẫu nhiên feature tại mỗi split.
- \bullet Giảm tương quan giữa cây \rightarrow hiệu quả hơn bagging thuần.
- Feature importance có sẵn (impurity-based; nên kiểm tra thêm permutation).

5.3. Boosting (AdaBoost, Gradient Boosting)

- Xây mô hình tuần tự, mỗi mô hình mới tập trung vào lỗi còn lại.
- AdaBoost:
 - Sai số base learner: ϵ_t .
 - Trọng số mô hình:

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$$

- Cập nhật trọng số mẫu: $w_i \leftarrow w_i \exp(-\alpha_t y_i h_t(x_i))$, rồi chuẩn hóa.
- Gradient Boosting: khóp residuals theo hướng giảm gradient của loss (ví dụ log-loss, MSE).
- Tham số: learning_rate, n_estimators, max_depth (của cây yếu).

5.4. Stacking

• Học meta-model (level-2) trên out-of-fold predictions của nhiều base models (level-1).

5.5. Key Takeaways

- RF: manh, it tuning, baseline tốt.
- Boosting: rất mạnh nhưng cần tuning (learning rate, n_estimators, depth). Dễ overfit nếu quá nhiều vòng.
- Stacking: hợp nhất điểm mạnh của nhiều mô hình, cần pipeline CV cẩn thận để tránh leakage.

6. Khả Năng Giải Thích Mô Hình (Model Interpretability)

6.1. Toàn cục vs Cục bộ

- Global: tầm ảnh hưởng chung của feature (coefficients, feature importance, PDP).
- Local: giải thích cho 1 quan sát (ICE, SHAP/LIME, local surrogate).

6.2. Kỹ thuật

- Linear/Logistic: hệ số đã chuẩn hóa → dấu & độ lớn = hướng & cường độ ảnh hưởng.
- Trees/RF/GB:
 - Impurity importance (nhanh, có bias).
 - Permutation importance (đáng tin hơn).
- **PDP** (Partial Dependence Plot): $\mathbb{E}_{x_{-j}}[\hat{f}(x_j, x_{-j})].$
- ICE: đường ảnh hưởng theo từng cá thể.
- SHAP: phân rã dự đoán thành đóng góp từng feature dựa trên giá trị Shapley.
- Calibration & Threshold: đường reliability để kiểm tra xác suất.

6.3. Key Takeaways

- Chọn công cụ phù hợp loại mô hình & mục tiêu (global vs local).
- Permutation + PDP/ICE là combo trực quan & đáng tin.
- Với quyết đinh rủi ro: kiểm tra calibration.

7. Mô Hình Hóa Lớp Mất Cân Bằng (Modeling Unbalanced Classes)

7.1. Vấn đề

• Lớp dương hiếm (ví dụ 1%). Accuracy dễ đánh lừa.

7.2. Chiến lược

- Dánh giá: dùng Precision, Recall, F1, PR-AUC, confusion matrix, cost-sensitive.
- Resampling:
 - Downsampling lớp lớn.
 - Upsampling lớp hiếm (Random Over-Sampling) hoặc SMOTE/ADASYN (tạo mẫu tổng hợp).
- Class weights: tăng phạt lỗi cho lớp hiếm (weight $\propto 1/\text{freq}$).
- Threshold moving: tối ưu τ theo metric mong muốn (ví dụ maximize F1).
- Stratified CV: giữ tỉ lệ lớp trong các fold.

7.3. Key Takeaways

- Tránh chỉ báo cáo Accuracy; theo dõi PR-AUC/F1/Recall.
- Bắt đầu bằng class weights và stratified CV (đơn giản, an toàn).
- Cân nhắc SMOTE + tuning threshold để tối ưu mục tiêu nghiệp vụ.

Phụ lục: Bảng ký hiệu nhanh

- x: vector đặc trung; x_i : đặc trung thứ j.
- w: vector trọng số; b: bias.
- σ : sigmoid; z: logit.
- TP/FP/TN/FN: các phần tử ma trận nhầm lẫn.
- C: tham số phạt SVM; γ : tham số kernel RBF.
- IG: Information Gain; PDP/ICE/SHAP: công cụ diễn giải.

Key Takeaways toàn bộ khóa

- Bài toán phân loại cần metric phù hợp với mục tiêu và phân phối lớp.
- Regularization/Resampling/Threshold là ba đòn bẩy quan trọng.
- RF/Boosting thường cho baseline mạnh; SVM-RBF tốt khi dữ liệu vừa phải & phi tuyến; KNN đơn giản nhưng nhạy với scale.
- Giải thích mô hình không chỉ để trình bày mà còn để debug và đưa ra quyết định.