

# **Amplifier configurations**

Nikolay Nikolaev Nikolai Poliakov (nanikolaev@itmo.ru) (polyakov\_n\_a@itmo.ru)

# Emitter-follower configuration





$$I_B = \frac{V_{EE} - V_{BE}}{R_B + (\beta + 1)R_E}$$

$$V_{CE} = V_{EE} - I_E R_E$$

$$A_i = \frac{I_{out}}{I_{in}} = \frac{I_E}{I_B} = \beta \gg 1$$

# Common-base configuration



$$V_{CE} = V_{EE} + V_{CC} - I_E(R_C + R_E)$$
$$V_{CB} = V_{CC} - I_CR_C$$

$$A_{i} = \frac{I_{out}}{I_{in}} = \frac{I_{C}}{I_{E}} = \alpha \cong 1$$

$$A_{v} = \frac{V_{out}}{V_{in}} = \frac{V_{C}}{V_{F}} = \frac{R_{C}I_{C}}{R_{F}I_{F}} \cong \frac{R_{C}}{R_{F}}$$

Given dynamic emitter resistance, are, we get

$$A_v = \cong \frac{R_C}{r_E}$$

# RC-Coupled BJT Amplifiers



### Cascode Connection

#### **ITMO**

Cascode configuration

Practical cascode circuit



#### Advantages:

- ✓ The bandwidth is high due to the elimination of the Miller Effect.
- Due to the cascode connection between two transistors the overall gain of the system is high.
- ✓ Even the parts of the count for both the transistors are low.

#### Disadvantages:

- ✓ The presence of two transistors requires a high amount of voltage supply.
- The sufficient amount ofcollectoremitter voltage must be supplied to both the transistor which strikes lesser the limit on the supply voltage.

### Darlington connection. Darlington pair





$$\beta_D = \beta_1 \beta_2$$

#### Advantage

- ✓ Very high current gain
- ✓ Very high input impedance for overall circuit
- ✓ Convenient and easy circuit configuration to use

### Darlington connection. Darlington pair







$$\beta_D = \beta_1 \beta_2$$

#### Disadvantage

- ✓ Slow switching speed
- ✓ Limited bandwidth
- ✓ Introduces a phase shift that can give rise to problems at certain frequencies in circuit using negative feedback
- ✓ Higher overall base-emitter voltage =  $2 \times Vbe$ .
- ✓ High saturation voltage (typically around 0.7 V) which can lead to high levels of power dissipation in some applications

### Sziklai Pair

#### **ITMO**



#### Advantage

- ✓ Very high current gain
- ✓ Very high input impedance for overall circuit
- ✓ Convenient and easy circuit configuration to use
- ✓ Low overall base-emitter voltage = 1 x Vbe.

$$\beta_S = \beta_1 \beta_2$$

Disadvantage

- ✓ Slow switching speed
- ✓ Limited bandwidth
- ✓ High saturation voltage (typically around 0.7 V) which can lead to high levels of power dissipation in some applications

8

# Phase Splitter Configuration



For common emitter

$$A_{v} = -\frac{R_{L}}{R_{E}}$$

For common collector

$$A_{v} = 1$$

## Phase-inverted scheme





### Transformer-Coupled Push-Pull Circuits



# Complementary-Symmetry Circuits





### Quasi-Complementary Push-Pull Amplifier







# Complementary-Symmetry Circuits





# Complementary-Symmetry Circuits







### **Current mirrors**



$$I_{\text{control}} = \frac{V_{CC} - V_{BE}}{R}$$

$$I_{B} = I_{B_{1}} + I_{B_{2}}$$
 $I_{B_{1}} = I_{B_{2}}$ 
 $I_{B} = I_{B_{1}} + I_{B_{1}} = 2I_{B_{1}}$ 
 $I_{\text{control}} = I_{C_{1}} + I_{B} = I_{C_{1}} + 2I_{B_{1}}$ 
 $I_{C_{1}} = \beta_{1}I_{B_{1}}$ 
 $I_{\text{control}} = \beta_{1}I_{B_{1}} + 2I_{B_{1}} = (\beta_{1} + 2)I_{B_{1}}$ 
 $I_{\text{control}} \cong \beta_{1}I_{B_{1}}$ 
 $I_{D} = \frac{I_{\text{control}}}{I_{D}}$ 

### **Current mirrors**



### Current mirrors 2





 $I_{\text{control}} = \frac{V_{CC} - 2V_{BE}}{R} \approx I_C + \frac{I_C}{\beta} = \frac{\beta + 1}{\beta}I_C \approx I_C$ 

 $I = I_{DSS}$ 

# Maintaining a Fixed Load Current



$$V_E = V_B - 0.7 \text{ V}$$
  $I_C \cong I_E = \frac{V_E}{R_E} = \frac{V_B - 0.7 \text{ V}}{R_E}$ 

# Maintaining a Fixed Load Current



### Current source circuits



$$V_B = \frac{R_1}{R_1 + R_2} (-V_{EE})$$

$$V_E = V_B - 0.7 \text{ V}$$

$$I_E = \frac{V_E - (-V_{EE})}{R_E} \approx I_C$$









# Transistor switching networks





## Transistor switching networks









## Differential amplifier circuit. DC Bias





The emitter dc bias current

$$I_E = \frac{V_E - (-V_{EE})}{R_E} \approx \frac{V_{EE} - 0.7 \text{ V}}{R_E}$$

the transistors are well matched (as would occur in an IC unit)

$$I_{C_1} = I_{C_2} = \frac{I_E}{2}$$

collector voltage of

$$V_{C_1} = V_{C_2} = V_{CC} - I_C R_C = V_{CC} - \frac{I_E}{2} R_C$$

# Differential amplifier circuit. AC Operation of Circuit iTMO



### Differential amplifier circuit. AC Voltage Gain





$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{C}}{2r_{e}}$$



$$A_d = \frac{V_o}{V_d} = \frac{R_C}{r_e}$$

# Differential amplifier circuit. Common-Mode Operation TMO



### Differential amplifier circuit. Constant-Current Source TMO











$$A_c = \frac{\beta R_C}{r_i + 2(\beta + 1)R_E} = \frac{75(47 \,\mathrm{k}\Omega)}{20 \,\mathrm{k}\Omega + 2(76)(43 \,\mathrm{k}\Omega)} = \mathbf{0.54}$$

$$A_c = \frac{\beta R_C}{r_i + 2(\beta + 1)R_E} = \frac{75(10 \,\mathrm{k}\Omega)}{11 \,\mathrm{k}\Omega + 2(76)(200 \,\mathrm{k}\Omega)} = 24.7 \times 10^{-3}$$

#### BIFET, BIMOS, AND CMOS DIFFERENTIAL AMPLIFIER CIRCUITS

BiFET differential amplifier circuit



BiMOS differential amplifier circuit.



CMOS differential amplifier



# **Amplifier Coupling**





# Direct Coupling



# RC Coupling











## Feedback concepts



Feedback improvements

(Output

signal)

- 1. Higher input impedance.
- 2. Better stabilized voltage gain.
- 3. Improved frequency response.
- 4. Lower output impedance.
- 5. Reduced noise.
- 6. More linear operation.

## Feedback connection types





(c)



 $I_{s} \qquad I_{o} = I_{L}$   $A = \frac{I_{o}}{I_{i}}$   $\beta = \frac{I_{f}}{I_{o}}$ 

- 1. Voltage-series feedback (a)
- 2. Voltage-shunt feedback (b).
- 3. Current-series feedback (c).
- 4. Current-shunt feedback (d).



### Voltage-Series Voltage-Shunt Current-Series Current-Shunt

| Gain without feedback | A     | $\frac{V_p}{V_i}$ | $\frac{V_o}{I_i}$ | $\frac{I_o}{V_i}$ | $\frac{I_o}{I_i}$ |
|-----------------------|-------|-------------------|-------------------|-------------------|-------------------|
| Feedback              | β     | $\frac{V_f}{V_o}$ | $\frac{I_f}{V_o}$ | $\frac{V_f}{I_o}$ | $rac{I_f}{I_o}$  |
| Gain with feedback    | $A_f$ | $\frac{V_o}{V_s}$ | $\frac{V_o}{I_s}$ | $\frac{I_o}{V_s}$ | $\frac{I_o}{I_s}$ |

Voltage-Series Feedback

$$A_f = \frac{V_o}{V_s} = \frac{A}{1 + \beta A}$$

Voltage-Shunt Feedback

$$A_f = \frac{A}{1 + \beta A}$$



| Voltage-Series                     | Current-Series     | Voltage-Shunt           | Current-Shunt           |
|------------------------------------|--------------------|-------------------------|-------------------------|
| $Z_{if} Z_i(1 + \beta A)$          | $Z_i(1 + \beta A)$ | $\frac{Z_i}{1+\beta A}$ | $\frac{Z_i}{1+\beta A}$ |
| (increased)                        | (increased)        | (decreased)             | (decreased)             |
| $Z_{of} = \frac{Z_o}{1 + \beta A}$ | $Z_o(1 + \beta A)$ | $\frac{Z_o}{1+\beta A}$ | $Z_o(1 + \beta A)$      |
| (decreased)                        | (increased)        | (decreased)             | (increased)             |



Reduction in Frequency Distortion

Reduction in Noise and Nonlinear Distortion

Effect of Negative Feedback on Gain and Bandwidth









### AC equivalent of op-amp circuit





#### ideal



#### IDEAL OP AMP ATTRIBUTES

- ✓ Infinite Differential Gain
- ✓ Zero Common Mode Gain
- ✓ Zero Offset Voltage
- ✓ Zero Bias Current
- ✓ Infinite Bandwidth

#### **OP AMP INPUT ATTRIBUTES**

- ✓ Infinite Impedance
- ✓ Zero Bias Current
- ✓ Respond to Differential Voltages
- ✓ Do Not Respond to Common Mode Voltages

#### **OP AMP OUTPUT ATTRIBITES**

✓ Zero Impedance

# Block Diagram



**OP-AMP BASICS** 

### **ITMO**



A component-level diagram of the common 741 op amp.
Dotted lines outline: current mirrors; differential amplifier; class A gain stage; voltage level shifter; output stage.

## Gain-Bandwidth

### **iTMO**



Slew rate = maximum rate at which amplifier output can change in volts per microsecond ( $V/\mu s$ )

Slew rate calculation & formula

$$SR = \frac{\Delta V_o}{\Delta t} V/\mu s$$
 or  $SR = 2\pi f V$ 

Where

Slew Rate (SR) is measured in volts / second, although actual measurements are often given in v/ $\mu$ s f – the highest signal frequency, Hz V – the maximum peak voltage of the signal.



### **ITMO**

## Maximum Signal Frequency

The maximum frequency at which an op-amp may operate depends on both the bandwidth (BW) and slew rate (SR) parameters of the op-amp. For a sinusoidal signal of general form

$$v_o = K \sin(2\pi f t)$$

the maximum voltage rate of change can be shown to be signal maximum rate of change  $= 2\pi f K V/s$ 

To prevent distortion at the output, the rate of change must also be less than the slew rate, that is,

$$2\pi f K \le SR$$
$$\omega K \le SR$$







# Differential and common-mode operation

**ITMO** 

Differential Inputs 
$$V_d = V_{i_1} - V_{i_2}$$

Common Inputs 
$$V_c = \frac{1}{2}(V_{i_1} + V_{i_2})$$

Output Voltage 
$$V_o = A_d V_d + A_c V_c$$

Common-Mode Rejection Ratio 
$$\frac{\text{CMRR}}{A_c} = \frac{A_d}{A_c}$$

- 1. Sarma M. S. Introduction to electrical engineering. New York: Oxford University Press, 2001. C. 715-716.
- Boylestad, Robert L. Electronic devices and circuit theory / Robert L. Boylestad, Louis Nashelsky.—11th ed.
- ISBN 978-0-13-262226-4Scherz P., Monk S. Practical electronics for inventors.
   McGraw-Hill Education, 2016.
- 4. Horowitz, Paul, and Winfield Hill. "The Art of Electronics. 3rd." *New York, NY, USA: University of Cambridge* (2015).
- 5. All about circuits (<a href="https://www.allaboutcircuits.com/">https://www.allaboutcircuits.com/</a>)
- 6. <a href="https://www.electronics-tutorials.ws/">https://www.electronics-tutorials.ws/</a>
- 7. <a href="https://en.wikipedia.org/">https://en.wikipedia.org/</a>

