Lecture19: Common-gate amplifier

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Configurations

- Three terminals of the MOSFET
 - The common terminal, the input terminal, and the output terminal

Source	Gate	Drain	Remark
Common	Input	Output	Common-source amp.
Common	Output	Input	X
Input	Common	Output	It will be covered.
Output	Common	Input	X
Input	Output	Common	X
Output	Input	Common	It will be covered.

Common-gate amplifier

- Why do we study other amplification topologies?
 - Different circuit properties
- Common-gate amplifier

Small-signal model

Let's draw the small-signal model together!

Gain & input impedance (1/2)

- Neglect the output resistance, r_0 .
 - Voltage gain

$$A_{v} = +g_{m}R_{D}$$

Input impedance

$$R_{in} = \frac{1}{g_m}$$

It's small!

Gain & input impedance (2/2)

- Consider the output resistance, r_0 .
 - Voltage gain

$$A_v = +\left(g_m + \frac{1}{r_O}\right)(R_D||r_O)$$

Input impedance

$$R_{in} = \frac{r_O + R_D}{g_m r_O + 1}$$

Output impedance

• Without a finite source resistance, $R_{out} = r_0 ||R_D||$

Generic form of CS and CG stages

Source follower

- Also called the "common-drain" stage
 - The drain is ac grounded.
- Wait a minute!
 - Is it a real amplifier?

Its core

• Gain is less than 1?? (Neglecting r_0)

$$A_v = +\frac{g_m R_S}{1 + g_m R_S}$$

You should be able to draw the small-signal model.

Useless?

- Calculate the input and output impedances.
 - Since the gate is the input terminal, the input impedance is very high at low frequencies.
 - How about the output impedance?

$$R_{out} = \frac{1}{g_m} ||r_O||R_S$$

- It is relatively low.
- High input imp., low output imp.
 - They can serve as good "buffers."

Razavi, example 17.39

- Design the source follower.
 - Determine W/L and R_S .
 - The DC drain current is 1 mA.
 - The voltage gain is 0.8.

Homework#8 (Again)

- Due: 09:00, May 20 (Mon)
- Solve the following problems of the final exam in 2017.
 - P33
 - P34
 - P38
 - P39
 - P40
 - P41