TRAVAUX DIRIGÉS: Intégrales dépendant d'un paramètre

Exercice 1: (Solution)

Pour $x \in \mathbb{R}$ on pose :

$$g(x) = \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt$$
 et $h(x) = \int_0^x e^{-t^2} dt$.

- 1. Montrer que g et h sont de classe \mathscr{C}^1 sur \mathbb{R}_+ et calculer leurs dérivées.
- 2. Montrer que $x \mapsto g(x^2) + h^2(x)$ est une fonction constante sur \mathbb{R}_+ . Déterminer cette constante.
- 3. Montrer que pour tout $x \in \mathbb{R}_+$, on a : $0 \le g(x^2) \le e^{-x^2}$. En déduire la convergence et la valeur de l'intégrale $\int_0^{+\infty} e^{-t^2} dt$.

Exercice 2: (Solution)

Pour x > -1, on pose :

$$g(x) = \int_0^{\frac{\pi}{2}} \ln(1 + x \sin^2 t) dt.$$

- 1. Montrer que q est continue sur $]-1;+\infty[$.
- 2. Montrer que g est de classe \mathscr{C}^1 sur] $-1; +\infty[$ et exprimer g'(x) sous forme d'une intégrale.
- 3. Pour x > -1, calculer g'(x) à l'aide du changement de variable $u = \tan t$.
- 4. En déduire une expression explicite de g(x) pour x > -1.

Exercice 3: (Solution)

Soit Γ la fonction définie par $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- 1. Montrer que Γ est définie sur $]0; +\infty[$.
- 2. Montrer que Γ est continue sur $]0; +\infty[$.
- 3. Montrer que Γ est de classe \mathscr{C}^{∞} sur $]0;+\infty[$ et que :

$$\forall k \in \mathbb{N}, \forall x > 0, \Gamma^{(k)}(x) = \int_0^{+\infty} \ln^k t e^{-t} t^{x-1} dt.$$

4. Montrer que la fonction Γ est convexe sur \mathbb{R}_+^* .

- 5. Montrer que pour tout $x \in]0; +\infty[$, $\Gamma(x+1) = x\Gamma(x)$.
- 6. En déduire que pour tout $n \in \mathbb{N}$, $\Gamma(n+1) = n!$.
- 7. Démontrer que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- 8. On pose pour tout x > 1, $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

Montrer que pour tout x > 1,

$$\Gamma(x)\zeta(x) = \int_0^{+\infty} \frac{t^{x-1}}{e^t - 1} dt.$$

Exercice 4: (Solution)

Pour $x \in \mathbb{R}$, on pose :

$$g(x) = \int_0^{+\infty} e^{-t^2} \cos(xt) dt.$$

- 1. Montrer que g est définie sur \mathbb{R} et qu'elle est paire.
- 2. Montrer que g est de classe \mathscr{C}^1 sur $\mathbb R$ et exprimer g'(x) sous forme d'une intégrale.
- 3. Montrer que g est solution de l'équation différentielle : $y' + \frac{x}{2}y = 0$.
- 4. En déduire une expression de g en utilisant l'égalité :

$$\int_{0}^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

Exercice 5: (Solution)

Soit $f:\mathbb{R}\to\mathbb{C}$ une fonction continue et intégrable sur $\mathbb{R}.$ On pose :

$$\widehat{f}: x \longmapsto \int_{-\infty}^{+\infty} f(t)e^{-ixt}dt.$$

- 1. Montrer que \widehat{f} est définie, continue et bornée sur \mathbb{R} .
- 2. On considère dans tout ce qui suit $f: t \longmapsto e^{-\frac{t^2}{2}}$. Montrer que \widehat{f} est de classe \mathscr{C}^{∞} sur \mathbb{R} .
- 3. Calculer \hat{f}' et en déduire la valeur de \hat{f} . (on pourra utiliser les résultats des exercices précédents).

Exercice 6: (Solution)

Soit f une fonction continue et bornée sur \mathbb{R}_+ .

On pose $F(x) = \int_0^{+\infty} e^{-xt} f(t) dt$. Montrer que F est de classe \mathscr{C}^{∞} sur \mathbb{R}_+^* . La fonction F est-elle de classe \mathscr{C}^{∞} sur \mathbb{R}_+ en général?

Exercice 7: (Solution)

Soit g la fonction définie par $g(x) = \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$.

- 1. Déterminer le domaine de définition de g.
- 2. Étudier la continuité.
- 3. Montrer que g est dérivable sur \mathbb{R} .
- 4. Calculer g' puis en déduire g.

Exercice 8: (Solution)

Pour x convenable, on pose :

$$F(x) = \int_0^{+\infty} \frac{\ln(t)}{t^2 + x^2} dt.$$

- 1. Donner le domaine de définition D de F.
- 2. Montrer que F est de classe \mathscr{C}^1 sur D.
- 3. Exprimer $\int_0^1 \frac{\ln(t)}{t^2 + x^2} dt$ en fonction de $\int_1^{+\infty} \frac{\ln(t)}{1 + t^2 x^2} dt$.
- 4. En déduire la valeur de F en 1.
- 5. Exprimer F(x) en fonction de $x \in D$.

Exercice 9: (Solution)

- 1. Justifier que l'intégrale $I = \int_0^{+\infty} \frac{\ln(t)}{1+t^2} dt$ converge.
- 2. En posant $u = \frac{1}{t}$ calculer I.
- 3. Pour x > 0, on pose :

$$I(x) = \int_0^{+\infty} \frac{\ln t}{(1+t^2)(x^2+t^2)} dt.$$

(a) Justifier que l'intégrale I(x) converge.

- (b) Calculer I(x) pour $x \neq 1$.
- (c) En déduire I(1).

Exercice 10: (Solution

Pour x réel, on pose :

$$F(x) = \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt.$$

- 1. Montrer que F est définie et continue sur \mathbb{R} .
- 2. Montrer que F est de classe \mathscr{C}^1 .
- 3. En déduire une expression de F(x) à l'aide des fonctions usuelles.

SOLUTIONS TRAVAUX DIRIGÉS : Intégrales dépendant d'un paramètre

Solution Exercice 1. Pour $x \in \mathbb{R}$ on pose :

$$g(x) = \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt$$
 et $h(x) = \int_0^x e^{-t^2} dt$.

1. • On pose $I = \mathbb{R}_+$, J = [0,1] et $f(x,t) = \frac{e^{-x(1+t^2)}}{1+t^2}$. Notons que J = [0,1] est un segment de \mathbb{R} . La fonction $f:(x,t) \longmapsto f(x,t)$ est de classe \mathscr{C}^1 sur $I \times J = I \times [0,1]$ par composition et quotient, le dénominateur ne s'annulant pas. On en déduit que g est de classe \mathscr{C}^1 sur $I = \mathbb{R}_+$. On a pour tout $x \in \mathbb{R}_+$,

$$g'(x) = \int_0^1 \frac{\partial f}{\partial x}(x, t)dt = \int_0^1 -e^{-x(1+t^2)}dt$$
$$= -e^{-x} \int_0^1 e^{-xt^2}dt$$

- La fonction $t \mapsto e^{-t^2}$ est continue sur \mathbb{R} .

 Par conséquent la fonction $h: x \mapsto \int_0^x e^{-t^2} dt$ est une primitive de la fonction $t \mapsto e^{-t^2}$ sur \mathbb{R} . h est donc de classe \mathscr{C}^1 sur \mathbb{R} (donc sur \mathbb{R}_+).
 - On a pour tout $x \in \mathbb{R}_+$: $h'(x) = e^{-x^2}$.
- 2. Montrons que $F: x \longmapsto g(x^2) + h^2(x)$ est une fonction constante sur \mathbb{R}_+ . La fonction $F: x \longmapsto g(x^2) + h^2(x)$ est de classe \mathscr{C}^1 sur \mathbb{R}_+ par somme de telles fonctions.

Pour tout $x \in \mathbb{R}_+$, $F'(x) = 2xg'(x^2) + 2h'(x)h(x)$.

Pour tout x > 0:

$$F'(x) = -2xe^{-x^2} \int_0^1 e^{-x^2t^2} dt + 2e^{-x^2} \int_0^x e^{-t^2} dt$$

$$= -2xe^{-x^2} \int_0^x e^{-u^2} \frac{du}{x} + 2e^{-x^2} \int_0^x e^{-t^2} dt$$

$$= -2e^{-x^2} \int_0^x e^{-u^2} du + 2e^{-x^2} \int_0^x e^{-t^2} dt$$

$$= 0.$$

Si
$$x = 0$$
 on a $F'(0) = 2 \times 0$ $g'(0^2) + 2h'(0) \underbrace{h(0)}_{=0} = 0$.

Par conséquent pour tout $x \in \mathbb{R}_+$, F'(x) = 0. La fonction F est donc constante sur \mathbb{R}_+ .

Il vient pour tout $x \in \mathbb{R}_+$:

$$F(x) = F(0) = g(0) + h^{2}(0) = \int_{0}^{1} \frac{1}{1+t^{2}} dt = \left[\arctan t\right]_{0}^{1} = \frac{\pi}{4}.$$

3. Montrons que pour tout $x \in \mathbb{R}_+$, on a : $0 \le g(x) \le e^{-x^2}$.

Pour tout $x \in \mathbb{R}_+$, $g(x^2) = e^{-x^2} \int_0^1 \frac{e^{-xt^2}}{1+t^2} dt$ avec $0 \le \frac{e^{-xt^2}}{1+t^2} \le 1$.

Par croissance de l'intégrale il vient $0 \leqslant \int_0^1 \frac{e^{-xt^2}}{1+t^2} dt \leqslant 1$ puis :

$$0 \leqslant g(x^2) \leqslant e^{-x^2}.$$

On en déduit par le théorème des gendarmes que $\lim_{x\to +\infty} g(x^2)=0$.

D'après la question précédente, on a :

$$g(x^2) + h(x)^2 = \frac{\pi}{4} \text{ donc } \lim_{x \to +\infty} h(x)^2 = \frac{\pi}{4}.$$

Puisque $h(x) \ge 0$ pour tout $x \ge 0$ on obtient : $\lim_{x \to +\infty} h(x) = \frac{\sqrt{\pi}}{2}$.

Conclusion: $\lim_{x \to +\infty} \int_0^x e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$:

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

Solution Exercice 2. Pour x > -1, on pose :

$$g(x) = \int_0^{\frac{\pi}{2}} \ln(1 + x \sin^2 t) dt.$$

1. Montrons que g est continue sur $]-1;+\infty[$.

On pose $J = [0; \frac{\pi}{2}]$. J est un segment de \mathbb{R} .

La fonction $f:(x,t) \longmapsto \ln(1+x\sin^2 t)$ est continue sur le produit cartésien $I \times J =]-1; +\infty[\times[0;\frac{\pi}{2}]$ par composition.

En effet:

- la fonction $(x,t) \mapsto 1 + x \sin^2 t$ est continue et strictement positive sur $I \times J : \sin^2 t \ge 0$ donc $(x > -1 \Longrightarrow x \sin^2 t > -\sin^2 t \ge -1)$.
- la fonction ln est continue sur \mathbb{R}^*_{\perp} .

On en déduit que la fonction g est continue sur $]-1;+\infty[$.

2. Par composition, la fonction $(x,t) \mapsto \ln(1+x\sin^2 t)$ est de classe \mathscr{C}^1 sur $I \times J =]-1; +\infty[\times[0; \frac{\pi}{2}].$

On en déduit que g est de classe \mathscr{C}^1 sur $]-1;+\infty[$ et pour tout x>-1 :

$$g'(x) = \int_0^{\frac{\pi}{2}} \frac{\partial f}{\partial x}(x, t)dt = \int_0^{\frac{\pi}{2}} \frac{\sin^2 t}{1 + x \sin^2 t} dt.$$

3. Si x = 0 on calcule directement :

$$g'(0) = \int_0^{\frac{\pi}{2}} \sin^2 t dt = \int_0^{\frac{\pi}{2}} \frac{1 - \cos 2t}{2} dt = \frac{1}{2} \left[t - \frac{\sin 2t}{2} \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

Pour $x>-1, x\neq 0$, calculons g'(x) à l'aide du changement de variable $u=\tan t.$

La fonction $t \mapsto \tan t$ est de classe \mathscr{C}^1 , strictement croissante sur $[0; \frac{\pi}{2}]$ et réalise une bijection de $[0; \frac{\pi}{2}]$ sur $[0; +\infty[$.

L'intégrale obtenue après changement de variable a la même nature que l'intégrale initiale, c'est-à-dire convergente.

On a $du = (1 + \tan^2 t)dt = (1 + u^2)dt$.

En remarquant que $\sin^2=\cos^2\tan^2=\frac{\tan^2}{1+\tan^2}=\frac{u^2}{1+u^2},$ il vient :

$$\int_0^{\frac{\pi}{2}} \frac{\sin^2 t}{1 + x \sin^2 t} dt = \int_0^{+\infty} \frac{\frac{u^2}{1 + u^2}}{1 + x \frac{u^2}{1 + u^2}} \frac{du}{1 + u^2}$$

$$= \int_0^{+\infty} \frac{u^2}{1 + u^2} \frac{du}{1 + u^2 + u^2 x}$$

$$= \int_0^{+\infty} \frac{1}{x} \left(\frac{1}{1 + u^2} - \frac{1}{1 + u^2 (x + 1)} \right) du.$$

- On a $\int_0^{+\infty} \frac{1}{1+u^2} du = \lim_{A \to +\infty} [\arctan u]_0^A = \frac{\pi}{2}.$
- On calcule l'autre intégrale à l'aide du changement de variable $v=u\sqrt{(x+1)}:dv=\sqrt{x+1}du.$

La fonction $u \mapsto u\sqrt{(x+1)}$ est de classe \mathscr{C}^1 , strictement croissante sur $[0; +\infty[$ et réalise une bijection de $[0; +\infty[$ sur $[0; +\infty[$.

L'intégrale obtenue après changement de variable est de même nature que

l'intégrale initiale $\int_0^{+\infty} \frac{1}{1+u^2(x+1)} du$ donc convergente

(on a $\frac{1}{1+u^2(x+1)} \sim \frac{1}{u \to +\infty} \frac{1}{(x+1)u^2}$).

On obtient:

$$\int_0^{+\infty} \frac{1}{1 + u^2(x+1)} du = \int_0^{+\infty} \frac{1}{1 + v^2} \frac{dv}{\sqrt{x+1}} = \frac{\pi}{2\sqrt{x+1}}.$$

Il vient:

$$\forall x > 0, g'(x) = \int_0^{\frac{\pi}{2}} \frac{\sin^2 t}{1 + x \sin^2 t} dt = \frac{\pi}{2x} - \frac{\pi}{2x\sqrt{x+1}}.$$

Notons que $\lim_{x\to 0} g'(x) = \frac{\pi}{4} = g'(0)$ car :

$$\frac{\pi}{2x} - \frac{\pi}{2x\sqrt{x+1}} = \frac{\pi}{2x} \left(\frac{\sqrt{x+1}-1}{\sqrt{x+1}} \right) \underset{x \to 0}{\sim} \frac{\pi}{2x} \frac{1}{2} = \frac{\pi}{4}.$$

Cet équivalent était attendu puisque la fonction g' est continue sur \mathbb{R}_+ (car g y est de classe \mathscr{C}^1).

4. On a
$$g(0) = \int_0^{\frac{\pi}{2}} \ln(1 + 0\sin^2 t) dt = 0.$$

Par conséquent, $\int_0^x g'(t)dt = g(x) - g(0) = g(x).$

Or $\forall x > 0$, $g'(x) = \frac{\pi}{2x} - \frac{\pi}{2x\sqrt{x+1}} = \frac{\pi}{2x} \left(\frac{\sqrt{x+1}-1}{\sqrt{x+1}} \right)$.

Ainsi, pour tout x > 0:

$$\begin{split} g(x) = & \frac{\pi}{2} \int_0^x \frac{1}{t} \frac{\sqrt{t+1}-1}{\sqrt{t+1}} dt \\ = & \frac{\pi}{u=\sqrt{t+1}} \frac{\pi}{2} \int_1^{\sqrt{x+1}} \frac{1}{u^2-1} \frac{u-1}{u} 2u du \\ = & \frac{\pi}{2} \int_0^{\sqrt{x+1}} \frac{1}{u+1} du \\ = & \frac{\pi}{2} \left(\ln(\sqrt{x+1}+1) - \ln(2) \right). \end{split}$$

Solution Exercice 3. Soit Γ la fonction définie par $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- 1. Voir cours.
- 2. Voir cours.
- 3. Montrons que Γ est de classe \mathscr{C}^{∞} sur $]0; +\infty[$ et que :

$$\forall k \in \mathbb{N}, \forall x > 0, \Gamma^{(k)}(x) = \int_0^{+\infty} \ln^k t e^{-t} t^{x-1} dt.$$

On pose HR(k):

"
$$f \in \mathscr{C}^k(]0; +\infty[) \text{ et } \forall x > 0, \Gamma^{(k)}(x) = \int_0^{+\infty} \ln^k(t) e^{-t} t^{x-1} dt$$
".

On a démontré en cours que Γ est continue et de classe \mathscr{C}^1 sur \mathbb{R}_+^* .

Les propriétés HR(0), HR(1) sont donc vérifiées.

On suppose HR(k) vérifiée et on pose $h = q^{(k)}$.

On pose $h = \Gamma^{(k)}$ et $f(x,t) = \ln^k t e^{-t} t^{x-1}$.

On pose $K = [c, d] \subset I =]0; +\infty[$.

- Pour tout $t \in J =]0; +\infty[$, la fonction $x \mapsto \ln^k t e^{-t} t^{x-1}$ est de classe \mathscr{C}^1 sur K par produit et par composition.
- Pour tout $x \in K$:
 - * la fonction $t \mapsto \ln^k t e^{-t} t^{x-1}$ est intégrable sur $J =]0; +\infty[$ par hypothèse de récurrence.
 - * la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t) = \ln^{k+1} t e^{-t} t^{x-1}$ est continue sur $J =]0; +\infty[$.
- hypothèse de domination.

Soit $x \in K = [c, d]$. Notons que :

* si $t \ge 1$,

$$\begin{split} c \leqslant x \leqslant d &\Longrightarrow c \ln t \leqslant x \ln t \leqslant d \ln t \\ &\Longrightarrow t^c \leqslant t^x \leqslant t^d \\ &\Longrightarrow |\ln t|^{k+1} e^{-t} t^c \leqslant |\ln t|^{k+1} e^{-t} t^x \leqslant |\ln t|^{k+1} e^{-t} t^d \\ &\Longrightarrow |\ln t|^{k+1} e^{-t} t^{c-1} \leqslant |\ln t|^{k+1} e^{-t} t^{x-1} \leqslant |\ln t|^{k+1} e^{-t} t^{d-1} \\ &\Longrightarrow |\ln t|^{k+1} e^{-t} t^{c-1} \leqslant |f(x,t)| \leqslant |\ln t|^{k+1} e^{-t} t^{d-1} \end{split}$$

* si t < 1.

$$\begin{split} c\leqslant x\leqslant d &\Longrightarrow c\ln t\geqslant x\ln t\geqslant d\ln t\\ &\Longrightarrow t^c\geqslant t^x\geqslant t^d\\ &\Longrightarrow |\ln t|^{k+1}e^{-t}t^c\geqslant |\ln t|^{k+1}e^{-t}t^x\geqslant |\ln t|^{k+1}e^{-t}t^d\\ &\Longrightarrow |\ln t|^{k+1}e^{-t}t^{c-1}\geqslant |\ln t|^{k+1}e^{-t}t^{x-1}\geqslant |\ln t|^{k+1}e^{-t}t^{d-1}\\ &\Longrightarrow |\ln t|^{k+1}e^{-t}t^{c-1}\geqslant |f(x,t)|\geqslant |\ln t|^{k+1}e^{-t}t^{d-1} \end{split}$$

On pose
$$\psi(t) = \begin{cases} |\ln t|^{k+1} e^{-t} t^{c-1} & \text{si} \quad t \in]0; 1[\\ |\ln t|^{k+1} e^{-t} t^{d-1} & \text{si} \quad t \geqslant 1 \end{cases}$$

La fonction ψ est continue et positive sur $J =]0; +\infty[$.

La fonction ψ est intégrable sur $J=]0;+\infty[$. En effet,

$$\psi(t) \underset{t \to 0}{=} o\left(\frac{1}{t^{1-\frac{c}{2}}}\right) \text{ avec } 1 - \frac{c}{2} < 1$$
$$\psi(t) \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right).$$

On a de plus pour tout $t\in]0;+\infty[,|f(x,t)|\leqslant \psi(t):$ l'hypothèse de domination est vérifiée.

On en déduit que la fonction $h=\Gamma^{(k)}$ est de classe \mathscr{C}^1 sur K=[c,d] et que pour tout $x\in[c,d]$:

$$\Gamma^{(k+1)}(x) = h'(x) = \int_0^{+\infty} \ln^{k+1} t e^{-t} t^{x-1} dt.$$

On en déduit que la fonction Γ est de classe \mathscr{C}^{k+1} sur K = [c, d].

Puisque [c,d] est un segment quelconque de \mathbb{R}_+^* on en déduit que Γ est de classe \mathscr{C}^{k+1} sur \mathbb{R}_+^* .

La récurrence est achevée.

4. La fonction Γ est de classe \mathscr{C}^2 sur \mathbb{R}_+^* et pour tout x>0:

$$\Gamma''(x) = \int_0^{+\infty} \ln^2(t) e^{-t} t^{x-1} dt.$$

L'intégrande $\ln^2(t)e^{-t}t^{x-1}$ est positive pour tout t>0 donc l'intégrale est positive.

On en déduit que $\forall x \in \mathbb{R}_+^*, \Gamma''(x) \geq 0$ donc Γ est convexe sur \mathbb{R}_+^* .

5. Soit x > 0.

$$\Gamma(x+1) = \int_0^{+\infty} e^{-t} t^x dt$$

On intègre par parties. On pose :

$$\left\{ \begin{array}{lll} u(t) & = & t^x \\ v'(t) & = & e^{-t} \end{array} \right. \Longrightarrow \left\{ \begin{array}{lll} u'(t) & = & xt^{x-1} \\ v(t) & = & -e^{-t} \end{array} \right.$$

Ainsi, définies les fonctions u, v sont de classe \mathscr{C}^1 sur \mathbb{R}_+^* .

De plus, le produit $u(t)v(t)=-e^{-t}t^x=-e^{-t}e^{x\ln t}=-e^{-t+x\ln t}$ a pour limites :

$$\lim_{t \to 0} -e^{-t}e^{x \ln t} = 0 \text{ et } \lim_{t \to +\infty} -e^{\underbrace{-t}_{t \to +\infty}^{-t} - t} = 0$$

L'intégrale obtenue après intégration par parties est donc convergente de même que l'intégrale $\int_0^{+\infty} e^{-t}t^x dt$.

Il vient:

$$\Gamma(x+1) = \int_0^{+\infty} e^{-t} t^x dt$$

$$= \left(\lim_{+\infty} uv - \lim_{0} uv\right) + x \int_0^{+\infty} e^{-t} t^{x-1} dt$$

$$= x\Gamma(x).$$

6. On démontre la propriété par récurrence sur $n \in \mathbb{N}$.

On a $\Gamma(0+1) = \Gamma(1) = \int_0^{+\infty} e^{-t} dt = 1$. La propriété est initialisée.

De plus si $\Gamma(n+1)=n!$ pour un entier $n\in\mathbb{N}$ alors le résultat de la question précédente montre que :

$$\Gamma(n+2) = \Gamma(n+1+1) = (n+1)\Gamma(n+1) = (n+1)n = (n+1)!$$

7. Montrons que $\Gamma(\frac{1}{2}) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} = \sqrt{\pi}$.

On effectue le changement de variable $u = \sqrt{t}$. La fonction $t \mapsto \sqrt{t}$ est de classe \mathscr{C}^1 sur $]0; +\infty[$, strictement croissante sur $]0; +\infty[$ et réalise une bijection de $]0; +\infty[$ sur $]0; +\infty[$.

L'intégrale obtenue après changement de variable est donc de même nature que l'intégrale initiale, convergente.

On a $u = \sqrt{t}$ donc $du = \frac{1}{2\sqrt{t}}dt = \frac{1}{2u}dt$ soit dt = 2udu:

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} \frac{e^{-u^2}}{u} 2u du$$
$$= 2\int_0^{+\infty} e^{-u^2} du = 2\frac{\sqrt{\pi}}{2} = \sqrt{\pi}$$

d'après les résultats de l'Exercice 1.

Solution Exercice 4. Pour $x \in \mathbb{R}$, on pose :

$$g(x) = \int_0^{+\infty} e^{-t^2} \cos(xt) dt.$$

1. Montrons que g est définie sur $\mathbb R$ et qu'elle est paire.

On pose $f:(x,t)\longmapsto e^{-t^2}\cos(xt)$.

Soit $x \in \mathbb{R}$ fixé.

La fonction $t \longmapsto f(x,t)$ est continue sur \mathbb{R}_+ .

L'intégrale définissant g(x) est donc impropre en $+\infty$.

Mais $|e^{-t^2}\cos(xt)| = o\left(\frac{1}{t^2}\right)$.

On en déduit que l'intégrale $\int_0^{+\infty} e^{-t^2} \cos(xt) dt$ est absolument convergente donc convergente

(notons qu'on vient de démontrer que la fonction $t \mapsto f(x,t)$ est intégrable sur \mathbb{R}_+).

Puisque x est quelconque dans \mathbb{R} on en déduit que g est définie sur \mathbb{R} .

Soit maintenant $x \in \mathbb{R}$.

La parité de cos donne la parité de g:

$$g(-x) = \int_0^{+\infty} e^{-t^2} \cos(-xt) dt = \int_0^{+\infty} e^{-t^2} \cos(xt) dt = g(x)$$

- 2. Montrons que g est de classe \mathscr{C}^1 sur \mathbb{R} et exprimons g'(x) sous forme d'une intégrale.
 - Pour tout $t \in J = [0; +\infty[$, la fonction $x \mapsto f(x, t) = e^{-t^2} \cos(xt)$ est de classe \mathscr{C}^1 sur $I = \mathbb{R}$.
 - Pour tout $x \in I = \mathbb{R}$:
 - * la fonction $t \mapsto f(x,t)$ est intégrable sur $J = [0; +\infty[$ (on l'a montré à la question précédente).
 - * la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t) = -te^{-t^2}\sin(xt)$ est continue sur $J = [0; +\infty[$.
 - Hypothèse de domination.

Soit $x \in I = \mathbb{R}$ quelconque. On a pour tout $t \in J = [0; +\infty[$:

$$\left| \frac{\partial f}{\partial x}(x,t) \right| = \left| -te^{-t^2} \sin(xt) \right| \leqslant te^{-t^2}.$$

La fonction $\varphi: t \longmapsto te^{-t^2}$ est positive, continue et intégrable sur $J = [0; +\infty[$.

On en déduit que la fonction g est de classe \mathscr{C}^1 sur \mathbb{R} et que :

$$\forall x \in \mathbb{R}, g'(x) = \int_0^{+\infty} -te^{-t^2} \sin(xt) dt.$$

3. Montrons que g est solution de l'équation différentielle : $y' + \frac{x}{2}y = 0$. Soit $x \in \mathbb{R}$. On intègre par parties l'intégrale définissant g'(x). On pose :

$$\begin{cases} u(t) &= \sin(xt) \\ v'(t) &= -te^{-t^2} \end{cases} \Longrightarrow \begin{cases} u(t) &= x\cos(xt) \\ v(t) &= \frac{1}{2}e^{-t^2} \end{cases}$$

Les fonctions u, v ainsi définies sont de classe \mathscr{C}^1 sur \mathbb{R}_+ . Le produit uv admet des limites finies en 0 et $+\infty$, il vient :

$$g'(x) = \int_0^{+\infty} -te^{-t^2} \sin(xt) dt = \left(\lim_{t \to \infty} uv - \lim_{t \to \infty} uv\right) - \frac{x}{2} \int_0^{+\infty} \cos(xt) e^{-t^2} dt$$

Il vient : $g'(x) + \frac{x}{2}g(x) = 0$ pour tout $x \in \mathbb{R}$.

4. On a $g'(x) = -\frac{x}{2}g(x)$ pour tout $x \in \mathbb{R}$ donc il existe $K \in \mathbb{R}$, tel que pour tout $x \in \mathbb{R}$

$$g(x) = Ke^{-\frac{x^2}{4}}.$$

De plus $g(0) = \int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2} \text{ donc } K = \frac{\sqrt{\pi}}{2}.$

On obtient finalement:

$$\forall x \in \mathbb{R}, g(x) = \frac{\sqrt{\pi}}{2}e^{-\frac{x^2}{4}}.$$

Solution Exercice 5. Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue et intégrable sur \mathbb{R} . On pose :

$$\widehat{f}: x \longmapsto \int_{-\infty}^{+\infty} f(t)e^{-ixt}dt.$$

- 1. Montrons que \hat{f} est définie, continue et bornée sur \mathbb{R} .
 - La fonction $t \mapsto f(t)e^{-ixt}$ est continue sur \mathbb{R} par produit de telles fonctions.

De plus $|f(t)e^{-ixt}| = |f(t)|$ pour tout $t \in \mathbb{R}$.

La fonction f étant par hypothèse intégrable sur \mathbb{R} , on en déduit que la fonction $t \longmapsto f(t)e^{-ixt}$ est intégrable sur \mathbb{R} .

Par conséquent \hat{f} est bien définie sur \mathbb{R} .

- * Pour tout $t \in \mathbb{R}$, la fonction $x \mapsto f(t)e^{-ixt}$ est continue sur \mathbb{R} .
 - * Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto f(t)e^{-ixt}$ est continue sur \mathbb{R} .
 - * Hypothèse de domination.

Soit $x \in \mathbb{R}$ fixé. Pour tout $t \in \mathbb{R}$, on a :

$$\left| f(t)e^{-ixt} \right| = |f(t)|.$$

La fonction $\varphi: t \longmapsto |f(t)|$ est positive, continue, intégrable sur \mathbb{R} . On en déduit que \widehat{f} est continue sur \mathbb{R} .

— Pour tout $x \in \mathbb{R}$, on a :

$$\left|\widehat{f}(x)\right| = \left|\int_{-\infty}^{+\infty} f(t)e^{-ixt}dt\right| \leqslant \int_{-\infty}^{+\infty} |f(t)|dt.$$

Cette dernière intégrale converge car f est intégrable sur \mathbb{R} . On en déduit que f est bornée sur \mathbb{R} .

2. On considère $f: t \longmapsto e^{-\frac{t^2}{2}}$. Notons tout de suite que $f \in \mathscr{C}^{\infty}(\mathbb{R})$.

Montrons que \hat{f} est de classe \mathscr{C}^{∞} sur \mathbb{R} .

On définit pour tout $k\in\mathbb{N}$:

$$HR(k): \widehat{f} \in \mathscr{C}^k(\mathbb{R}) \text{ et } \forall x \in \mathbb{R}, \widehat{f}^{(k)}(x) = \int_{-\infty}^{+\infty} (-it)^k f(t) e^{-ixt} dt".$$

Le résultat de la question précédente montre que HR(0) est vérifiée.

On suppose que HR(k) est vraie pour un entier $k \in \mathbb{N}$.

On pose $h = \widehat{f}^{(k)}$ et $u(x,t) = (-it)^k f(t)e^{-ixt}$.

- Pour tout $t \in J = \mathbb{R}$, la fonction $x \mapsto u(x,t) = -(it)^k e^{-itx} f(t)$ est de classe \mathscr{C}^1 sur \mathbb{R} .
- Pour tout $x \in I = \mathbb{R}$:
 - * la fonction $t \mapsto u(x,t) = (-it)^k f(t)e^{-ixt}$ est intégrable sur $J = \mathbb{R}$ car continue et de module |f(t)| (fonction intégrable sur \mathbb{R}).

- * la fonction $t \mapsto \frac{\partial u}{\partial x}(x,t) = (-it)^{k+1} f(t) e^{-ixt}$ est continue sur $\mathbb R$ par produit.
- Hypothèse de domination.

Soit $x \in I = \mathbb{R}$. Pour tout $t \in J = \mathbb{R}$ on a :

$$\left| \frac{\partial u}{\partial x}(x,t) \right| = |f(t)|.$$

La fonction $\varphi: t \longmapsto |f(t)|$ est positive, continue et intégrable sur \mathbb{R} . On en déduit que h est de classe \mathscr{C}^1 sur \mathbb{R} et

$$h'(x) = \widehat{f}^{(k+1)}(x) = \int_{-\infty}^{+\infty} (-it)^{k+1} f(t)e^{-ixt} dt.$$

La fonction \hat{f} est donc de classe \mathscr{C}^{k+1} sur \mathbb{R} , la récurrence s'achève.

3. On a pour tout $x \in \mathbb{R}$:

$$\widehat{f'}(x) = \int_{-\infty}^{+\infty} (-it)e^{-t^2}e^{-ixt}dt =$$

$$= \int_{-\infty}^{+\infty} (-it)e^{-t^2}(\cos(-xt) + i\sin(-xt))dt$$

$$= \int_{-\infty}^{+\infty} -ite^{-t^2}\cos(xt)dt - \int_{-\infty}^{+\infty} te^{-t^2}\sin(xt)dt.$$

- La fonction $t \mapsto te^{-t^2}\cos(xt)$ est intégrable sur \mathbb{R} et impaire donc $\int_{-\infty}^{+\infty} te^{-t^2}\cos(xt)dt = 0$ (exercice classique).
- La fonction $t \mapsto te^{-t^2}\sin(xt)$ est intégrable sur $\mathbb R$ et paire donc $\int_{-\infty}^{+\infty}te^{-t^2}\sin(xt)dt=2\int_0^{+\infty}te^{-t^2}\sin(xt)dt$ (classique aussi).

On intègre cette dernière intégrale par parties

$$\left\{ \begin{array}{lcl} u(t) & = & \sin(xt) \\ v'(t) & = & te^{-t^2} \end{array} \right. \Longrightarrow \left\{ \begin{array}{lcl} u'(t) & = & x\cos(xt) \\ v(t) & = & -\frac{1}{2}e^{-t^2} \end{array} \right.$$

et il vient:

$$\int_0^{+\infty} t e^{-t^2} \sin(xt) dt = \frac{x}{2} \int_0^{+\infty} e^{-t^2} \cos(xt) dt$$
$$= \frac{x}{2} \frac{\sqrt{\pi}}{2} e^{-\frac{x^2}{4}}$$

par l'exercice précédent.

On en déduit que pour tout $x \in \mathbb{R}$:

$$\widehat{f}'(x) = -2 \int_0^{+\infty} t e^{-t^2} \sin(xt) dt = -\frac{\sqrt{\pi}x}{2} e^{-\frac{x^2}{4}}.$$

On intègre cette égalité entre 0 et $x \in \mathbb{R}$ (la fonction \hat{f}' est continue sur \mathbb{R}) il vient:

$$\widehat{f}(x) - \widehat{f}(0) = \int_0^x \widehat{f}'(t)dt = -\sqrt{\pi} \int_0^x \frac{t}{2} e^{-\frac{t^2}{4}} dt$$
$$= -\sqrt{\pi} \left[-e^{-\frac{t^2}{4}} \right]_0^x = \sqrt{\pi} e^{-\frac{x^2}{4}} - \sqrt{\pi}$$

avec
$$\widehat{f}(0) = \int_{-\infty}^{+\infty} e^{-t^2} dt = 2 \int_{0}^{+\infty} e^{-t^2} dt = 2 \frac{\sqrt{\pi}}{2} = \sqrt{\pi}.$$

On en déduit que $\widehat{f}(x) = \sqrt{\pi}e^{-\frac{x^2}{4}}$ pour tout $x \in \mathbb{R}$.

Solution Exercice 6. Soit f une fonction continue et bornée sur \mathbb{R}_+ .

On pose
$$F(x) = \int_0^{+\infty} e^{-xt} f(t) dt$$
.

Montrons que F est de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} .

Pour cela, on montre que f est continue sur tout intervalle du type K = $[c; +\infty[$ avec c > 0.

On définit pour tout $k \in \mathbb{N}$, la propriété :

HR(k): "la fonction F est de classe \mathscr{C}^k sur $K = [c; +\infty[$ et pour tout $x \in$ $[c; +\infty[,$

$$F^{(k)}(x) = \int_0^{+\infty} (-t)^k e^{-xt} f(t) dt.$$

Initialisation.

Montrons que F est continue sur $[c; +\infty[$. On pose $u: (x,t) \longmapsto e^{-xt} f(t)$.

- Pour tout $t \in J = \mathbb{R}_+$, la fonction $x \mapsto u(x,t) = e^{-xt} f(t)$ est continue sur $K = [c; +\infty]$ car la fonction exp est continue sur \mathbb{R} .
- Pour tout $x \in K = [c; +\infty[$, la fonction $t \mapsto u(x,t) = e^{-xt}f(t)dt$ est continue sur \mathbb{R}_+ car la fonction exp est continue sur \mathbb{R} .
- Hypothèse de domination.

Soit $x \in K = [c, +\infty[\subset I = \mathbb{R}_+.$

Pour tout $t \in J = \mathbb{R}_+$ on a $(x \geqslant c \Longrightarrow -xt \leqslant -ct \Longrightarrow e^{-xt} \leqslant e^{-ct})$ et par conséquent :

$$|e^{-xt}f(t)| \leqslant Me^{-ct}$$

avec $M \in \mathbb{R}_+$ tel que $|f(t)| \leq M$ pour tout $t \in \mathbb{R}_+$ (f est bornée sur \mathbb{R}_+). La fonction $t \longmapsto Me^{-ct}$ est positive, continue et intégrable sur \mathbb{R}_+ .

On en déduit que F est continue sur $[c; +\infty[$.

Hérédité.

On suppose que $F \in \mathscr{C}^k([c; +\infty[)$ avec :

$$\forall x \in [c; +\infty[, F^{(k)}(x)] = \int_0^{+\infty} (-t)^k e^{-xt} f(t) dt.$$

Posons $h = F^{(k)}$ et $u: (x,t) \longmapsto (-t)^k e^{-xt} f(t)$ et montrons que h est de classe \mathscr{C}^1 sur $[c; +\infty[$.

- Pour tout $t \in J = [0; +\infty[$ la fonction $x \longmapsto (-t)^k e^{-xt} f(t)$ est de classe \mathscr{C}^1 sur $[c; +\infty[$ car exp est de classe \mathscr{C}^1 sur \mathbb{R} .
- Pour tout $x \in [c; +\infty[$:
 - * la fonction $t \mapsto (-t)^k e^{-xt} f(t)$ est intégrable sur \mathbb{R}_+ car $(-t)^k e^{-xt} f(t) = O(t^k e^{-ct})$.
- * la fonction $t \longmapsto \frac{\partial u}{\partial x}(x,t) = (-t)^{k+1}e^{-xt}f(t)$ est continue sur \mathbb{R}_+ Hypothèse de domination.

Soit $x \in [c, +\infty[$. Alors pour tout $t \in \mathbb{R}_+$:

$$\left| \frac{\partial u}{\partial x}(x,t) \right| = t^{k+1} e^{-xt} f(t) \leqslant t^{k+1} e^{-ct} f(t).$$

La fonction $t \mapsto t^{k+1}e^{-ct}f(t)$ est positive, continue et intégrable sur \mathbb{R}_+ . On en déduit que $h = F^{(k)}$ est de classe \mathscr{C}^1 sur $[c; +\infty]$ et

$$\forall x \in [c; +\infty[, h'(x) = F^{(k+1)}(x) = \int_0^{+\infty} (-t)^{k+1} e^{-xt} f(t) dt.$$

La récurrence s'achève.

On a finalement prouvé que F est de classe \mathscr{C}^k sur $[c; +\infty[$ pour tout entier $k \in \mathbb{N}$ et pour tout réel $c \in \mathbb{R}_{+}^{*}$.

Par conséquent F est de classe \mathscr{C}^{∞} sur \mathbb{R}_{\perp}^* . En effet :

$$(F \in \mathscr{C}^{\infty}(\mathbb{R}_{+}^{*})) \iff (F \text{ est } k \text{ fois dérivable sur } \mathbb{R}_{+}^{*})$$

 $\iff (F \text{ est } k \text{ fois dérivable en tout point de } \mathbb{R}_{+}^{*}).$

Soit $x_0 \in \mathbb{R}_+^*$ et $k \in \mathbb{N}$.

F est k fois dérivable sur tout segment $[c, +\infty[, c > 0.$

Il existe c > 0 tel que $x_0 \in [c, +\infty[$, intervalle sur lequel F est k fois dérivable.

Il s'en suit que F est k fois dérivable en tout $x_0 \in \mathbb{R}_+^*$ pour tout $k \in \mathbb{N}$.

Étude en 0.

En général F n'est pas de classe \mathscr{C}^{∞} sur \mathbb{R}_{+} .

Considérons la fonction sin continue et bornée sur \mathbb{R}_+ (comme requis dans l'énoncé).

Pourtant F n'est même pas définie en $0:\int_0^{+\infty}\sin(t)dt$ diverge. **Solution Exercice 7.** Soit g la fonction définie par $g(x) = \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$.

1. Pour tout $x \in \mathbb{R}$, la fonction $t \longmapsto \frac{\sin(xt)}{t}e^{-t}$ est continue sur $]0; +\infty[$.

L'intégrale $\int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$ est donc impropre en 0 et en $+\infty$.

- En 0: $\frac{\sin(xt)}{t}e^{-t} \sim \frac{xt}{t} = x$.

La fonction $t \longmapsto \frac{\sin(xt)}{t} e^{-t}$ est donc prolongeable par continuité en 0.

L'intégrale $\int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$ est faussement impropre en 0.

- En $+\infty$: $\frac{\sin(xt)}{t}e^{-t} = o(\frac{1}{t^2})$.

D'où la convergence de l'intégrale $\int_1^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$.

On en déduit que l'intégrale $\int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$ converge pour tout $x \in \mathbb{R}$.

Par conséquent g est définie sur $\mathcal{D}_g = \mathbb{R}$.

2. Continuité

Montrons que g est continue sur tout segment du type [-a; a], a > 0.

On pose $f:(x,t)\longmapsto \left\{ \begin{array}{lll} \frac{\sin(xt)}{t}e^{-t} & \mathrm{si} & (x,t)\in[-a;a]\times\mathbb{R}_+^* \\ x & \mathrm{si} & (x,t)\in[-a;a]\times\{0\} \end{array} \right.$

— Pour tout $t \in \mathbb{R}_+$, la fonction $x \mapsto f(x,t)$ est continue sur [-a;a]: si t = 0 il s'agit de la fonction linéaire, $x \mapsto x$.

si $t \neq 0$, la fonction sin étant continue sur \mathbb{R}_+ , la conclusion suit.

- Pour tout $x \in [-a; a]$, la fonction $t \mapsto f(x, t)$ est continue sur \mathbb{R}_+ : en effet, $t \mapsto f(x, t)$ est continue sur \mathbb{R}^* et $\lim_{t \to 0} f(x, t) = x = f(x, 0)$.
- Hypothèse de domination.

Soit $x \in [-a; a]$ fixé dans la suite de cette question.

Pour tout $t \in \mathbb{R}_+^*$,

$$|f(x,t)| = \left|\frac{\sin(xt)}{t}e^{-t}\right| \leqslant \frac{|xt|}{t}e^{-t} = |x|e^{-t} \leqslant ae^{-t}.$$

(on a utilisé l'inégalité classique $|\sin(u)| \leq |u|$).

On pose $\varphi: t \longmapsto \begin{cases} ae^{-t} & \text{si} & t > 0 \\ a & \text{si} & t = 0. \end{cases}$

Alors φ est positive, continue et intégrable sur \mathbb{R}_+ et pour tout $t \in \mathbb{R}_+$:

$$|f(x,t)| \leqslant \varphi(t).$$

On en déduit que $g: x \longmapsto \int_0^{+\infty} f(x,t)dt$ est continue sur [-a;a].

Dérivabilité.

On montre que g est de classe \mathscr{C}^1 sur [-a;a].

— Pour tout $t \in \mathbb{R}_+$, la fonction $x \longmapsto f(x,t)$ est de classe \mathscr{C}^1 sur [-a;a]: si t=0 il s'agit de la fonction linéaire $x \longmapsto x$.

Si $t \neq 0$ il s'agit de la fonction $x \longmapsto \frac{\sin(xt)}{t}e^{-t}$ qui est bien de classe \mathscr{C}^1 sur [-a;a].

- Pour tout $x \in [-a; a]$:
 - * la fonction $t \longmapsto f(x,t)$ est intégrable sur \mathbb{R}_+ (cf. question 1.)
 - * la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t) = \begin{cases} 1 & \text{si} \quad t = 0 \\ \cos(xt)e^{-t} & \text{si} \quad t \neq 0 \end{cases}$ est continue sur \mathbb{R}_+ .
- Hypothèse de domination.

Soit $x \in [-a; a]$. On pose $\psi(t) = e^{-t}$ et on obtient pour tout $t \in \mathbb{R}_+$:

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant e^{-t} = \psi(t).$$

On en déduit que g est de classe \mathscr{C}^1 sur [-a;a] et

$$\forall x \in [-a; a], g'(x) = \int_0^{+\infty} \cos(xt)e^{-t}dt.$$

Puisque a est quelconque dans \mathbb{R}_+^* , on en déduit que f est dérivable en tout point de \mathbb{R} et que sa dérivée y est continue.

En effet, pour tout $x_0 \in \mathbb{R}$, il existe a > 0 tel que $x_0 \in [-a; a]$ segment sur lequel q de classe \mathscr{C}^1 .

3. Soit $x \in \mathbb{R}$, on a $g'(x) = \int_0^{+\infty} \cos(xt)e^{-t}dt = \operatorname{Re} \int_0^{+\infty} e^{ixt}e^{-t}dt$. Soit A > 0. On a :

$$\int_{0}^{A} e^{ixt-t} dt = \int_{0}^{A} e^{t(ix-1)} dt$$

$$= \frac{1}{ix-1} \left[e^{t(ix-1)} \right]_{0}^{A}$$

$$= \frac{1}{ix-1} \left(e^{A(ix-1)} - 1 \right)$$

$$= \frac{e^{Aix}e^{-A}}{ix-1} - \frac{1}{ix-1}$$

Or: $\left| e^{Aix} e^{-A} \right| = e^{-A} \underset{A \to +\infty}{\longrightarrow} 0.$

Ainsi: $\int_0^{+\infty} e^{t(ix-1)} dt = -\frac{1}{ix-1} = \frac{1}{1-ix} = \frac{1+ix}{|1-ix|^2} = \frac{1}{1+x^2} + i\frac{x}{1+x^2}.$

Par conséquent :

 $\int_0^{+\infty} \cos(xt)e^{-t} = \frac{1}{1+x^2}.$

On obtient alors pour tout $x \in \mathbb{R}$ (g' est continue sur \mathbb{R}) :

$$g(x) - g(0) = \int_0^x g'(t)dt = \int_0^x \frac{1}{1+t^2}dt = \arctan(x).$$

Notons enfin que $g(0) = \int_0^{+\infty} 0 dt = 0$. Finalement, $g(x) = \arctan(x)$ pour tout $x \in \mathbb{R}$.