

#### Relatório Final

## Implementação do Planejador Probabilistic Roadmap

Apresentada por: Mateus Zarth Seixas

Orientado por: Prof. Marco Reis, M.Eng.

Dezembro de 2021

#### Mateus Zarth Seixas

# Implementação do Planejador Probabilistic Roadmap

# Sumário

| 1                | Introdução                   | 1  |
|------------------|------------------------------|----|
|                  | 1.1 Objetivos                | 1  |
|                  | 1.2 Justificativa            | 2  |
|                  | 1.3 Organização do documento | 2  |
| <b>2</b>         | Fundamentação Teórica        | 3  |
|                  | 2.1 Turtlebot3               | 3  |
|                  | 2.2 Probabilistic Roadmap    |    |
|                  | 2.3 Move Base                | 4  |
| 3                | Desenvolvimento do projeto   | 6  |
|                  | 3.1 Simulação                | 6  |
|                  | 3.2 Prática                  | 6  |
| 4                | Resultados                   | 8  |
| 5                | Conclusão                    | 9  |
| $\mathbf{R}_{0}$ | eferências                   | 10 |

# Lista de Figuras

| 1.1 | Turtlebot3                    | 1 |
|-----|-------------------------------|---|
|     | Turtlebot3 e seus Componentes |   |
| 2.2 | Probabilistic Roadmap         | 4 |
| 2.3 | Move Base                     | 5 |
| 3.1 | Simulação no Gazebo           | 7 |
|     | Simulação no Gazebo           |   |

# Lista de Tabelas

## Introdução

Nesse estudo foi feita a implementação do algoritmo de planejamento de trajetória Probabilistic Roadmap (PRM) em um robô diferencial não-holonômico chamado Turtlebot3 para permitir a navegação autônoma desse robô. Os testes foram realizados em ambiente de simulação e em um labirinto real construído.



Figura 1.1: Turtlebot3

Fonte: Autoria própria.

## 1.1 Objetivos

O objetivo desse estudo foi fazer a implementação do algoritmo de planejamento de trajetória PRM no Turtlebot3 para ser integrada à navegação desse robô como planejador global, a fim de que esse robô pudesse ser capaz de navegar autonomamente em um labirinto, após mapeado, indo de um ponto a outro sem colidir com os obstáculos.

Capítulo Um 1.2. Justificativa

#### 1.2 Justificativa

Em um trabalho futuro, o algoritmo de planejamento aqui desenvolvido será comparado com outras técnicas de planejamento e trajetória, como A\*, D\* e Dijkstra, para comparar seus resultados estatisticamente.

### 1.3 Organização do documento

Este documento apresenta 5 capítulos e está estruturado da seguinte forma:

- Capítulo 1 Introdução: É apresentado o estudo realizado, com a descrição do problema, objetivo e justificativa.;
- Capítulo 2 Fundamentação Teórica: É apresentada a base teórica que sustenta o estudo desenvolvido;
- Capítulo 3 Desenvolvimento do projeto: Nesse capítulo é apresentado o desenvolvimento realizado para implementar o planejador;
- Capítulo 4 Resultados: Nesse capítulo são apresentados os resultados obtidos;
- Capítulo 5 Conclusão: Apresenta as conclusões do trabalho e trabalhos futuros.

## Fundamentação Teórica

O estudo tinha como objetivo fazer a implementação do planejador de trajetória PRM no robô diferencial Turtlebot3. Nesse capítulo serão apresentadas as características do robô e do planejador de trajetória Probabilistic Roadmap.

#### 2.1 Turtlebot3

O Turtlebot3 é um robô diferencial não-holonômico desenvolvido pela empresa Robotis e tem como o ambiente de desenvolvimento padrão o ROS (Robot Operating System). O Turtlebot3 tem como unidade central de processamento uma Raspberry Pi e o sistema operacional instalado nela foi o Ubuntu 20.04 com o ROS Noetic.

O Turtlebot3 tem 2 modelos, o Burger e o Waffle Pi. O modelo escolhido para esse desenvolvimento foi o Waffle Pi, que conta o motor DYNAMIXEL (XM430-W210-T) e uma câmera Raspberry Pi, componentes que o diferenciam do modelo Burger, além do seu formato. O Turtlebot3 conta com um sensor de escaneamento a laser LiDar, uma OpenCR, módulo Bluetooth e uma beteria Li-Po. Pode-se ver o robô e seus componentes na Figura 2.1.



Figura 2.1: Turtlebot3 e seus Componentes

Fonte: Autoria própria.

### 2.2 Probabilistic Roadmap

O algoritmo Probabilistic Roadmap é um planejador de trajetória que permite que um robô se desloque de um ponto inicial a um ponto final sem a interferência de um operador evitando a colisão com obstáculos. A ideia do planejador é gerar pontos aleatórios no mapa, verificando se esses pontos são espaços livres ou não, e tentando conectar eles com os outros pontos mais próximos já gerados, caso não tenha nenhuma barreira entre esses pontos. A medida que o número de pontos cresce, vão se formando trajetórias entre todos os espaços livres do mapa, como mostrado na Figura 2.2.



Figura 2.2: Probabilistic Roadmap

Fonte: Autoria própria.

O algoritmo PRM tem duas fases, uma fase de construção do mapa de rotas e uma fase de questionamento. Na fase de construção, são gerados nós em pontos aleatórios do mapa que estejam em espaços livres. Cada nó desse é então ligado a número k de nós mais próximos, verificando se não a colisão no caminho. O mapa de rotas é construído então de maneira incremental e armazenado.

Na fase de questionamento, são declarados no algoritmo o ponto inicial e o ponto final do robô, sendo utilizado alguma técnica para calcular o caminho de menor custo. O algoritmo utilizado nesse caso foi o A\*.

#### 2.3 Move Base

O pacote de navegação para ROS utilizado para auxiliar nessa funcionalidade do robô é o Move Base. Através dele é possível declarar uma ação para o robô se deslocar de uma posição inicial para um posição final utilizando um planejador global e um planejador local. Nesse estudo o planejador global que será utilizado é o planejador de trajetória PRM. Na Figura 2.3 é possível ver um esquemático de como o Move Base funciona.

Capítulo Dois 2.3. Move Base

Figura 2.3: Move Base



### Desenvolvimento do projeto

O primeiro passo para o desenvolvimento desse estudo foi a montagem do robô Turtlebot3 e a realização do tutorial disponível no site (ROBOTIS, 2021). Foi instalada a imagem do Ubuntu 20.04 na Raspberry Pi, o ROS Noetic, as dependências necessárias e os pacotes do Turtlebot3 ros-noetic-dynamixel-sdk, ros-noetic-turtlebot3-msgs e o ros-noetic-turtlebot3.

Para implementar o planejador de trajetória PRM foi feita inicialmente uma busca das soluções já disponíveis na internet. Foi encontrado um pacote no GitHub no Link (MWSWARTWOUT, 2015) que implementa o planejador PRM como Plugin no ROS. O pacote foi desenvolvido para outra versão de ROS, foram necessário fazer algumas modificações no mesmo e também instalar algumas dependências necessárias: occupancy\_grid\_utils, ros\_noetic\_tf2\_bullet, ros\_noetic\_ompl e ros\_noetic\_ompl\_dbgsym.

No site <a href="http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS">http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS</a> é encontrado um tutorial de como desenvolver o planejador como Plugin e como utilizá-lo. Para selecionar o PRM como planejador global do Move Base é necessário alterar o parâmetro base\_global\_planner do pacote turtlebot3\_navigation para o PRM.

Foi desenvolvido um repositório no GitHub com o planejador PRM com as modificações e o tutorial de como instalar as dependências necessárias. O repositório se encontra nesse site <a href="https://github.com/seixasxbr/prm\_planner">https://github.com/seixasxbr/prm\_planner</a>>.

### 3.1 Simulação

A simulação do sistema foi realizada no software Gazebo para validar o funcionamento do planejador de trajetórias PRM. A simulação pode ser vista na Figura 3.1.

#### 3.2 Prática

O planejador foi testado também no mundo real, sendo utilizado um labirinto para avaliar a navegação autônoma do robô utilizando o PRM como planejador global. A foto do experimento pode ser visto na Figura 3.2.

Capítulo Três 3.2. Prática

Figura 3.1: Simulação no Gazebo

Fonte: Autoria própria.



Figura 3.2: Simulação no Gazebo

Fonte: Autoria própria.

|            | Capítulo Quatro |  |  |
|------------|-----------------|--|--|
| Resultados |                 |  |  |

Foi possível implementar o planejador Probabilistic Roadmap (PRM) no Turtlebot3, carregando o algoritmo desse planejador como Plugin e sendo integrado ao pacote de navegação move\_base. Na simulação o planejador apresentou bons resultados, conseguindo lidar com os obstáculos na trajetória do robô. Na prática, o algoritmo funcionou, entretanto para alguns trajetos, principalmente que envolviam curvas fechadas, o planejador não conseguiu em alguns casos alcançar a solução. Alguns parâmetros do move\_base podem ser reconfigurados para tentar achar uma melhor implementação do planejador.

| Capítulo | Cinco |
|----------|-------|
|          |       |

## Conclusão

O estudo realizado trouxe maior entendimento sobre as funcionalidades de planejamento de trajetória e navegação, além de trazer conhecimento sobre o funcionamento do planejador Probabilistic Roadmap. Em ambiente de simulação o planejador teve bons resultados, porém na prática, para algumas trajetórias mais complicadas, o planejador não conseguiu obter solução, mas conseguiu lidar bem com trajetórias simples. Alguns parâmetros do move\_base podem ser ajustados para encontrar um melhor resultado da implementação do algoritmo. Para trabalhos futuros o serão implementadas os ajustes dos parâmetros e o resultado obtido com esse planejador será comparado com outros planejadores, como A\*, D\* e Dijkstra, para comparar seus resultados estatisticamente.

## Referências

MWSWARTWOUT. PRM Planner. 2015. <a href="https://github.com/mwswartwout/turtlebot\_prm">https://github.com/mwswartwout/turtlebot\_prm</a>>. Accessed: 2021-12-19. Citado na página 3.

ROBOTIS. Turtlebot3 e-Manual. 2021. <a href="https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/">https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/</a>. Accessed: 2021-12-19. Citado na página 3.

Implementação do Planejador Probabilistic Roadmap

Mateus Zarth Seixas

Salvador, Dezembro de 2021.