

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 July 2001 (26.07.2001)

PCT

(10) International Publication Number
WO 01/53524 A2

- (51) International Patent Classification⁷: **C12Q 1/68**, G01N 33/574, A61K 48/00, 39/00, 39/395, C07H 21/04, C12N 15/63, C07K 14/47
- (21) International Application Number: PCT/GB01/00188
- (22) International Filing Date: 18 January 2001 (18.01.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
0000993.6 18 January 2000 (18.01.2000) GB
- (71) Applicant (for all designated States except US): **THE NOTTINGHAM TRENT UNIVERSITY [GB/GB]**; Clifton Lane, Nottingham NG11 8NS (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): **REES, Robert, Charles [GB/GB]**; 48 Longford Road, Bradway, Sheffield S17 4LQ (GB). **Li, Geng [CN/GB]**; 132 Trent Road, Beeston, Nottingham NG9 1LQ (GB). **MIAN, Shahid [GB/GB]**; 33 Cheyne Walk, Hucknall, Nottingham NG15 7TR (GB).

(74) Agents: ELSY, David et al.; Withers & Rogers, Goldings House, 2 Hays Lane, London SE1 2HW (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/53524 A2

(54) Title: CANCER ASSOCIATED GENES AND THEIR PRODUCTS

(57) Abstract: The application discloses cancer-associated genes and their products, especially those identifiable by SEREX. The genes and products are used to identify, track and treat cancer. Preferably the cancer is prostate cancer.

CANCER ASSOCIATED GENES AND THEIR PRODUCTS.

The invention relates to isolated nucleic acid sequences which are expressed in cancers, especially prostate cancers, to their protein products and to the use of the nucleic acid and protein products for the identification and treatment of prostate cancers.

The prostate gland is an accessory sex gland in males which is wrapped around the urethra as this tube leaves the bladder. The gland secretes an alkaline fluid during ejaculation. Cancer of the prostate gland is very serious and represents the second leading cause of death from cancer in men.

Two specific proteins are known to be made in very high concentrations in prostate cancer cells. These are prostatic acid phosphatase (PAP) and prostate specific antigen (PSA). These proteins have been characterised and have been used to follow response to therapy. However, it has been difficult to correlate the presence of these two proteins to the presence of cancer.

Accordingly, there is a need to identify new genes and proteins which are associated with the presence of prostate cancer.

The inventors have used a technique known as SEREX (Serological Identification of Antigens by Recombinant Expression Cloning) to identify genes which are over-expressed in prostate cancer tissue. This technique was published by Sahin *et al* (PNAS (USA), 1995, Vol. 92, pages 11810-11813). SEREX uses total RNA isolated from tumour

biopsies from which poly(A)⁺ RNA is then isolated. cDNA is then produced using an oligo (dT) primer. The cDNA fragments produced are then cloned into a suitable expression vector, such as a bacteriophage and cloned into a suitable host, such as E.coli. The clones produced are screened with high-titer IgG antibodies in autologous patient serum, to identify antigens associated with the tumour.

The inventors have used this technique to identify a number of genes and gene products associated with prostate cancer. Furthermore, preliminary results have found that some antigens identified by this technique have been also identified by the inventors as being associated with other cancers, such as stomach cancer and oesophagial cancer.

A first aspect of the invention provides an isolated mammalian nucleic acid molecule selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5, SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40, SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56, SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66. Preferably the isolated nucleic acid molecule encodes a mammalian antigen which is expressed in higher than normal concentrations in cancer cells, compared with normal non-cancerous cells. Preferably the cancer is prostate

cancer. The term "higher than normal concentrations" preferably means that the protein is expressed at a concentration at least 5 times greater in tumour cells than normal cells.

The invention also includes, within its scope, nucleic acid molecules complementary to such isolated mammalian nucleic acid molecules.

The nucleic acid molecules of the invention may be DNA, cDNA or RNA. In RNA molecules "T" (Thymine) residues may be replaced by "U" (Uridine) residues.

Preferably, the isolated mammalian nucleic acid molecule is an isolated human nucleic acid molecule.

The invention further provides nucleic acid molecules comprising at least 15 nucleotides capable of specifically hybridising to a sequence included within the sequence of a nucleic acid molecule according to the first aspect of the invention. The hybridising nucleic acid molecule may either be DNA or RNA. Preferably the molecule is at least 90% homologous to the nucleic acid molecule according to the first aspect of the invention. This may be determined by techniques known in the art.

The term "specifically hybridising" is intended to mean that the nucleic acid molecule can hybridise to nucleic acid molecules according to the invention under conditions of high stringency. Typical conditions for high stringency include 0.1 x SET, 0.1% SDS at 68°C for 20 minutes.

The invention also encompasses variant DNAs and cDNAs which differ from the sequences identified above, but encode the same amino acid sequences as the isolated mammalian nucleic acid molecules, by virtue of redundancy in the genetic code.

	U	C	A	G	
U	UUU Phe UUC UUA Leu UUG	UCU Ser UCC UCA UCG	UAU Tyr UAC UAA* Stop UAG* Stop	UGU Cys UGC UGA* Stop UGG Trp	U C A G
C	CUU CUC Leu CUA CUG	CCU Pro CCC CCA CCG	CAU His CAC CAA Gln CAG	CGU Arg CGC CGA CGG	U C A G
A	AUU AUC Ile AUA AUG** Met	ACU Thr ACC ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg AGG	U C A G
G	GUU GUC Val GUA GUG**	GCU Ala GCC GCA GCG	GAU Asp GAC GAA Glu GAG	GGU Gly GGC GGA GGG	U C A G

* Chain-terminating, or "nonsense" codons.

** Also used to specify the initiator formyl-Met-tRNAMet. The Val triplet GUG is therefore "ambiguous" in that it codes both valine and methionine.

The genetic code showing mRNA triplets and the amino acids which they code for.

The invention also includes within its scope vectors comprising a nucleic acid according to the invention. Such vectors include bacteriophages, phagemids, cosmids and plasmids. Preferably the vectors comprise suitable regulatory sequences, such as promoters and termination sequences which enable the nucleic acid to be expressed upon insertion into a suitable host. Accordingly, the invention also includes hosts comprising such a vector. Preferably the host is E.coli.

A second aspect of the invention provides an isolated protein or peptide obtainable from a nucleic acid sequence according to the invention. As indicated above, the genetic code for translating a nucleic acid sequence into an amino acid sequence is well known.

The invention further provides polypeptide analogues, fragments or derivatives of antigenic polypeptides which differ from naturally-occurring forms in terms of the identity of location of one or more amino acid residues (deletion analogues containing less than all of the residues specified for the protein, substitution analogues wherein one or more residues specified are replaced by other residues in addition analogues wherein one or more amino acid residues are added to a terminal or medial portion of the polypeptides) and which share some or all properties of the naturally-occurring forms. Preferably such polypeptides comprise between 1 and 20, preferably 1 and 10 amino acid deletions or substitutions.

Preferably the protein or peptide is at least 95%, 96%, 97%, 98% or 99% identical to the sequences of the invention. This can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive,

Madison, WI 53711). When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed.

The nucleic acids and proteins/peptides of the invention are preferably identifiable using the SEREX method. However, alternative methods, known in the art, may be used to identify nucleic acids and protein/peptides of the invention. These include differential display PCR (DD-PCR), representational difference analysis (RDA) and suppression subtracted hybridisation (SSH).

All of the nucleic acid molecules according to the invention and the peptides which they encode are detectable by SEREX (discussed below). The technique uses serum antibodies from prostate cancer patients to identify the molecules. It is therefore the case that the gene products identified by SEREX are able to evoke an immune response in a patient and may be considered as antigens suitable for potentiating further immune reactivity if used as a vaccine.

The third aspect of the invention provides the use of nucleic acids or protein/peptides according to the invention, to detect or monitor prostate cancer.

The use of a nucleic acid molecule hybridisable under high stringency conditions, a nucleic acid according to the first aspect of the invention to detect or monitor prostate cancer is also encompassed. Such molecules may be used as probes, e.g. using PCR.

The expression of genes, and detection of their protein products and/or peptides may be used to monitor disease progression during therapy or as a prognostic indicator of the initial disease status of the patient. There are a number of techniques which may be used to detect the presence of a gene, including the use of Northern blot and reverse transcription polymerase chain reaction (RT-PCR) which may be used on tissue or whole blood samples to detect the presence of cancer associated genes. For protein and/or peptide sequences in-situ staining techniques or enzyme linked ELISA assays or radio-immune assays may be used. RT-PCR based techniques would result in the amplification of messenger RNA of the gene of interest (Sambrook, Fritsch and Maniatis, Molecular Cloning, A Laboratory Manual, 2nd Edition). ELISA based assays necessitate the use of antibodies raised against the protein or peptide sequence and may be used for the detection of antigen in tissue or serum samples (McIntyre C.A., Rees R.C. *et. al.*, Europ. J. Cancer 28, 58-631 (1990)). In-situ detection of antigen in tissue sections also rely on the use of antibodies, for example, immuno peroxidase staining or alkaline phosphatase staining (Gaepel, J.R., Rees, R.C. *et.al.*, Brit. J. Cancer 64, 880-883 (1991)) to demonstrate expression. Similarly radio-immune assays may be developed whereby antibody conjugated to a radioactive isotope such as I¹²⁵ is used to detect antigen in the blood (Turkes, A., *et.al.*, Prostate-specific antigen - problems in analysis. Europ. J. Cancer. 27, 650-652 (1991)).

Blood or tissue samples may be assayed for elevated concentrations of the nucleic acid molecules, proteins or peptides.

Kits for detecting or monitoring cancer, such as prostate cancer, using polypeptides, nucleic acids or antibodies according to the invention are also provided. Such kits may additionally contain instructions and reagents to carry out the detection or monitoring.

The fourth aspect of the invention provides for the use of nucleic acid molecules according to the first aspect of the invention or protein/peptide molecules according to the second aspect of the invention in the prophylaxis or treatment of cancer, or pharmaceutically effective fragments thereof. By pharmaceutically effective fragment, we mean a fragment of the molecule which still retains the ability to be a prophylactant or to treat cancer. The cancer may be prostate cancer.

The molecules are preferably administered in a pharmaceutically amount. Preferably the dose is between 1 µg/kg. to 10 mg/kg.

The nucleic acid molecules may be used to form DNA-based vaccines. From the published literature it is apparent that the development of protein, peptide and DNA based vaccines can promote anti-tumour immune responses. In pre-clinical studies, such vaccines effectively induce a delayed type hypersensitivity response (DTH), cytotoxic T-lymphocyte activity (CTL) effective in causing the destruction (death by lysis or apoptosis) of the cancer cell and the induction of protective or therapeutic immunity. In clinical trials peptide-based vaccines have been shown to promote these immune responses in patients and in some instances cause the regression of secondary malignant disease. Antigens expressed in prostate cancer (or other types of cancers) but not in normal tissue (or only

weakly expressed in normal tissue compared to cancer tissue) will allow us to assess their efficacy in the treatment of cancer by immunotherapy. Protein or peptide derived from the tumour antigen may be administered with or without immunological adjuvant to promote T-cell responses and induce prophylactic and therapeutic immunity. DNA-based vaccines preferably consist of part or all of the genetic sequence of the tumour antigen inserted into an appropriate expression vector which when injected (for example via the intramuscular, subcutaneous or intradermal route) cause the production of protein and subsequently activate the immune system. An alternative approach to therapy is to use antigen presenting cells (for example, dendritic cells, DC's) either mixed with or pulsed with protein or peptides from the tumour antigen, or transfect DC's with the expression plasmid (preferably inserted into a viral vector which would infect cells and deliver the gene into the cell) allowing the expression of protein and the presentation of appropriate peptide sequences to T-lymphocytes.

Accordingly, the invention provides a nucleic acid molecule according to the invention in combination with a pharmaceutically-acceptable carrier.

A further aspect of the invention provides a method of prophylaxis or treatment of prostate cancer comprising the administration to a patient of a nucleic acid molecule according to the invention.

The protein/peptide molecules according to the invention may be used to produce vaccines to vaccinate males against prostate cancer.

Accordingly, the invention provides a protein or peptide according to the invention in combination with a pharmaceutically acceptable carrier.

The invention further provides use of a protein or peptide according to the invention in a prophylaxis or treatment of a cancer such as prostate cancer.

Methods of prophylaxis or treating prostate cancer, by administering a protein or peptide according to the invention to a patient, are also provided.

Vaccines comprising nucleic acid and/or proteins and peptides according to the invention are also provided.

The proteins and peptides of the invention may be used to raise antibodies. In order to produce antibodies to tumour-associated antigens procedures may be used to produce polyclonal antiserum (by injecting protein or peptide material into a suitable host) or monoclonal antibodies (raised using hybridoma technology). In addition PHAGE display antibodies may be produced, this offers an alternative procedure to conventional hybridoma methodology. Having raised antibodies which may be of value in detecting tumour antigen in tissues or cells isolated from tissue or blood, their usefulness as therapeutic reagents could be assessed. Antibodies identified for their specific reactivity with tumour antigen may be conjugated either to drugs or to radioisotopes. Upon injection it is anticipated that these antibodies localise at the site of tumour and promote the death of tumour cells through the release of drugs or the conversion of pro-drug to an active metabolite. Alternatively a lethal effect may be delivered by the use of antibodies conjugated to

radioisotopes. In the detection of secondary/residual disease, antibody tagged with radioisotope could be used, allowing tumour to be localised and monitored during the course of therapy.

The term "antibody" includes intact molecules as well as fragments such as Fa, F(ab')₂ and Fv.

The invention accordingly provides a method of treating prostate cancer by the use of one or more antibodies raised against a protein or peptide of the invention.

The cancer-associated proteins identified may form targets for therapy.

The invention also provides nucleic acid probes capable of binding sequences of the invention under high stringency conditions. These may have sequences complementary to the sequences of the invention and may be used to detect mutations identified by the inventors. Such probes may be labelled by techniques known in the art, e.g. with radioactive or fluorescent labels.

The invention will now be described by reference to the following figure and examples:

Figure 1 shows RT-PCR of different tumour samples showing over-expression of MTA-1 (SEQ.ID.57).

Technique used to identify genes encoding tumour antigens (SEREX technique)

The technique for the expression of cDNA libraries from human prostate cancer tissue is described, and was performed according to published methodology (Sahin et.al. Proc Natl. Acad. Sci. 92, 11810-11813, 1995).

SEREX has been used to analyze gene expression in tumour tissues from human melanoma, renal cell cancer, astrocytoma, oesophageal squamous cell carcinoma, colon cancer, lung cancer and Hodgkin's disease. Sequence analysis revealed that several different antigens, including HOM-MEL-40, HOM-HD-397, HOM-RCC-1.14, NY-ESO-1, NY-LU-12, NY-CO-13 and MAGE genes, were expressed in these malignancies, demonstrating that several human tumour types express multiple antigens capable of eliciting an immune response in the autologous host. This represents an alternative and more efficient approach to identify tumour markers, and offers distinct advantages over previously used techniques:

- 1) the use of fresh tumour specimens to produce the cDNA libraries obviates the need to culture tumour cells *in vitro* and therefore circumvents artefacts, such as loss or neo-antigen expression and genetic and phenotypic diversity generated by extended culture;
- 2) the analysis is restricted to antigen-encoding genes expressed by the tumour *in vivo*;
- 3) using cDNA expression cloning, the serological analysis (in contrast to autologous typing) is not restricted to cell surface antigens, but covers a more extensive repertoire of cancer-associated proteins (cytosolic, nuclear, membrane, etc.);
- 4) in contrast to techniques using monoclonal antibodies, SEREX uses poly-specific sera to scrutinise single antigens that are highly enriched in lytic

bacterial plaques allowing the efficient molecular identification of antigens following sequencing of the cDNA. Subsequently the tissue-expression spectrum of the antigen can be determined by the analysis of the mRNA expression patterns using northern blotting and reverse transcription-PCR (RT-PCR), on fresh normal and malignant (autologous and allogeneic) tissues. Likewise, the prevalence of antibody in cohorts of cancer patients and normal controls can be determined.

Construction of cDNA expression libraries, screening and sequencing

The detailed methodology for SEREX expression cloning established by the inventors is as follows: Total RNA is isolated from fresh prostate cancer tissues using the guanidinium thiocyanate-phenol-chloroform extraction method; RNA integrity is determined by electrophoresis in formalin/MOPS gels. Poly(A)+ RNA is prepared by applying the prepared RNA sample to a column of oligo (dT) cellulose and cDNA expression libraries is constructed from 5-8 µg of poly(A)+ RNA; first-strand synthesis is performed using an oligo(dT) primer with an internal *Xho* I site and 5-methyl-CTP. cDNA is ligated to *Eco*RI adaptors and digested with *Xho* I and cDNA fragments are cloned directionally into the bacterophage expression vector, packaged into phage particles, and used to transfet *Escherichia coli*. Immuno-screening for the detection of clones reactive with antibodies present in diluted autologous serum is then performed. Transfection for primary screening and plaque transfer onto nitrocellulose membranes is followed by pre-incubation of the membranes with an alkaline phosphatase-conjugated antibody specific for human IgG. Reactive clones representing expressed IgG heavy chains visualized by staining are eliminated from the study. These pre-stained membranes are then incubated with the autologous patient serum, and binding to recombinant proteins expressed in lytic plaques

detected by incubation with an alkaline phosphatase-conjugated goat anti-human IgG, and differentiated from the IgG-heavy chain transcripts. The reactive clones are sub-cloned, purified, and *in vitro* excised to pBK-CMV plasmid forms. Plasmid DNA is prepared using the Wizard (Trade Mark) Miniprep DNA purification system (Promega Corp., Southampton, UK). The inserted DNA is evaluated by restriction mapping, and clones representing different cDNA inserts sequenced using the automated sequencer.

Expression of Antigens in Different Cancers

The expression of metastasis associated 1 (MTA1) (SEQ.ID.57) in cancer samples was compared with that in corresponding normal tissues by semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR). RT-PCR was carried out using processes well known in the literature. A relative over-expression of MTA1 mRNA (normal/tumour ratio ≥ 2) was observed in esophageal cancer (3/7) and head and neck tumour (1/7) (Table 1). See Figure 1, tracks 6 and 8. Testis did not show any over-expression. GAPDH (Glyceraldehyde-3-phosphate Dehydrogenase) expression was also tested as a control. No difference in expression was normal tissue and observed between tumours.

Table 1

Tumour type	Positive rate
Esophageal cancer	3/7
Head and neck tumour	1/7

Table 2 shows the results of further studies of a variety of sequences in different tumours. " - " indicates not studied. This table shows that the proteins are immunogenic in a higher portion of patients with cancer than controls since the patients have antibodies against the cloned protein product.

Table 2

Serological responses in cancer patients and controls to the protein products of genes cloned from the SEREX.

SEQ ID #	Gene size bp	Identity	Immunoscreening with sera from:				
			Controls	BPH	Prostate Ca	Head & Neck Ca	Co Ca
8	Pr III-41 3500 137,144	Unknown	0/7	-	4/10	-	2/4
10	Pr III-90 3000 102,108	Unknown	0/10	0/2	2/7	2/4	-
12	Pr III-104 1500	Unknown	0/8	0/2	2/7	2/4	-
16	Pr III-133 1550	Unknown	0/5	0/2	4/7	-	-
18	Pr III-147 1100	Unknown	1/10	0/2	8/12	2/4	0/2
50	Pr III-157 400	Hu Ribosomal Protein S10	0/4	-	5/10	1/4	-
57	Pr III-176 2600	MTA1	0/13	0/3	2/13	-	0/2
60	Pr III-197 1200	ALG2	1/17	0/3	4/13	3/4	0/2
29	Pr III-213 2500	Unknown	0/6	0/2	4/12	2/4	0/2

Serum samples from:

Controls

BPH- Benign Prostatic Hyperplasia

Prostate Cancer

Head and Neck Cancers

Co Ca-Colon Cancer

Ga Ca-Gastric Cancer

Table 3 shows some of the mutations identified by the inventors.

Table 3

SEQ ID #	Gene	Identity	Mutation
35	PrIII-30	Human geminin.	Point mutation at nt 78 (A to C)
34	PrIII-13	Human glutamyl-prolyl-tRNA synthetase	261 nt longer at 5' of mRNA. There is a starting code (ATG) in this region. This clone may be a new isoform.
43	PrIII-118	Human poly(ADP-ribose) polymerase mRNA.	Point mutation at nt 79 (C to G) and nt 145 (G to A).
44	PrIII-119	Human tankyrase	Point mutation at nt 2410 (G to A).
52	PrIII-163	Human mitochondrial DNA	Point mutation at nt 10769 (A to G).
60	PrIII-197	Human calcium binding protein (ALG-2) mRNA.	6 nt deletion from nt 487 to 492 (GGTTTC).
65	PrIII-219	Human FACL5 fatty acid coenzyme A ligase 5	Point mutation at nt 758 (A to G)
66	PrIII-224	Human DNA-binding protein (HRC 1) mRNA	129 nt deletion in exon 2. This clone may be an alternatively spliced isoform.

Mutations detected in the sequence of genes cloned by SEREX.

SEQ ID 1

PR2-7A Human mRNA for KIAA0160 gene

GGCGGCTCGGGGCCAGCGCGGGTCCGGGGAGGC GGCTC GGGGTT CGCGCGGT
 GGC CGCGCAGCGCTCGGCGCAAATCCGGCGGGAGCTGTGGAGGGGGTGGCA
 GTTACTCGCCTCCTCCTCCTCCGCGGGCAGCGCGGGGCTCGGGTACCGGT
 GAAGAAGCCAAAATGGAGCACGTCCAGGCTGACCACAGCTTCCAGGCCTTGA
 GAAGCCAACACAGATCTAGATTCTCGAACCTCGAAACTCTCATAGCACCAATATTTG
 CACAGAACTCTTACATGTCTATCGAAACTCCAGAACAAACATCAAAGGAAACA
 TTTAAAGTTGATGATATGTTATCAAAGTAGAGAAAATGAAAGGAGAGCAAGAA

SEQ ID 2

PR2-1A Human protein immuno-reactive with anti-PTH polyclonal antibodies mRNA

ACAGGTGAAAAACCAAATACTTTCTAGGGATGACCTGTGATGACATAATTAGTCATCTCA
 AACAGTCTCAGAGGACGGTACTCGCTTGCTGTAAATTGTAAGAATGTCAATTACTCATT
 GATCAACATGAAATGAAGTGTAAAGATTGTGTTCACCTATTGAAAATTAAAAGCATT
 GTTTATGAAAAGATTAACAGAACTTAAAGATAATCAGTGTGAGCGAACCTAGAGTAAAAA
 TTGAAAAGTAAAAAAGGCTAGTGTACTACAAAAGAGACTATCTGAAAAAGAAGAA
 ATAAAATCGCAGTTAACAGCATGAAACACTTGAATTGGAAAAAGAACTCTGTAGTTGAGA
 TTTGCCCTACAGCAAGAAAAAGAAAAGAAGAAATGTTGA

SEQ ID 3

PR2-21 2 Human JK-recombination signal binding protein (RBPJK) gene

GAGAGTTGTGGAAGATGGCGCTGTGACAGGGAAATTGGTGGAGCGGCCTCCACCT
 AAACGACTTACTAGGGAAAGCTATGCGAAATTATTAAAAGAGCGAGGGGATCAAACAGT
 ACTTATTCTCATGCAAAGTTGACAGAAGTCATATGAAATGAAAAAAGGTTTTTGC
 CCACCTCCTGTGTATATCTTATGGGAGTGGATGGAAGAAAAAAAAGAACAAATGAA
 CGCGATGGTTGTTCTGAACAAGAGCTCAACCGTGTGCATTATTGGGATAGGAAATAGT
 GACCAAGAAATGCAGCAGCTAAACTTGAAGGAAAGACTATTGACAGCCAAAACATTG
 TATATATCTGACTA

SEQ ID 4

PR2-5A Human mRNA for E6-AP isoform-I

GATTCGGAGAATGATGGAGACATTTCAGCAACTTATTACTTATAAAGTCATAAGCAATGA
 ATTAAACAGTCGAAATCTAGTGAATGATGATGATGCCATTGTTGCTGCTTCAGTGCTTG
 AAAATGGTTACTATGCAAATGTAGTGGAGGGAAAGTGGACACAAATCACATGAAGA
 AGATGATGAAGAGCCCCTCCCTGAGTCCAGCGAGCTGACACTTCAGGGAACTTTGGGAG
 AAGAAAAGAAGAACAAAGAAAGGTCTCGAGTGGACCCCTGGAAACTGAACCTGGTAA
 AAAACCTGGATTGTCAAAACCACCTATCCCTTGTGAAGAGTTATTAAATGAACCACTGA
 ATGAGGTTCTAGAAATGGATAAGATTACTTT

SEQ ID 5

PR2-20 3 Human mRNA for TPRD

GGAAATATGTCTACCCCTGACTGTGAAGGTGTCAATTCTAAGATTATCATCTTCAGTG
 GTGGTGAAGTTAAATGTGAATTGAAACACAAGGTCAAAAAGAAAAGTTCTCCAAGAC
 CTATTCTGAAACAGAAATGTTCTAGCCTAGAGAAAATAGACTGAAAGAAGACAAAAAAT
 TGAAGAGAAAGATCCAAAAAAAAGAAGCAAAAAGTTAGCACAAGAAAGAATGGAGGA
 GGACTTAAGAGAAAAGTAATCCACCCAAAATGAGACAGAAAGAAAATGTAGACAATGT
 TCAAGCGTTGTCAAGTCCCTGATGACAGAATTCTACAGTGTATAAGCACTGTTGACA
 GGATTAATCCGGCATACAGAATACAGCCATGCTTCTAAAGAATTGTT

SEQ ID 6

PR2-1B Unknown

GGGAAGCAGAAGGATTGGAGTTCTTTAAAGTGAATTCCCTTCCCCCTTCATT
 CCACTGTGGGTGTTATTATCCTGACAATTGTCATACATTCTGTCTTTAAAAATAACTG
 TATACTAAGCAAAACTCAGGTCTAAAATAATGAAATTAGATTCCATACATCGATTA
 ATTGAGGAAACACAGATCTCCAGATGCAACAAATCATCAATTAAAGTCACGCGGGGACATG
 GTGGCCCTGCTCACCCCCCAGGGATACCTGTAATTACCTGCTTCCACTTCATGGGCTAC
 AATCTCATGCTGTCACAATTCTGTGCTCACTCATATAACACCACAAATGGGATATTGTG

AAGAAACTTCGCTGCGGAGCT

SEQ ID 7

Pr2-2 Unknown

AGGGACAGCTTGCATCGAGACCCCTCACTGTCATCTGTGGCCAAAGAAGTGCCTCG
CCATGCTTTCTTCGAGCATCTCCTCTGTTCAAGCTCAAGGGCCCTGAAGGGGG
TCAGAGATGTTGTTACAAGCAGGCCCTTAAGACTGCTGATATGGGCTGACAGAAAAC
ATCGGGGACAGCGGACTCTGCTTGAGTTGTTGCGCGCGTGCACGAGAGGCA
TACACTCTGCAGGCAACCTCACCAAGAGATCAAACACTCAAGTGGACAAGTTCTATTGCCAG
CTGCTGTGGAGACAGGCAAGCCCACAACAAGGAGCTCCGAGTGCAGCAGATGGTGTATG
GCATTGGGATAAACCTCTGGACATAAAGCCCTGGGGAGCGA

SEQ ID 8

Pr3-41 Unknown

GCGGCGGGCCCCCTCGCAGCAGCTGGCCGGGGCCCCCAGCA
GTTCGCGCTCTCCAACCTCCCGGCCATCCGGCCGAGATCCAGCGCT
TCGAGTCCGTGCATCCCAATATCTACGCCATCTACGACCTGATCGAGC
GCATCGAGGATTGGCGCTGCAGAACAGATCCGGGAGCACGTATC
TCCATCGAGGACTGTTGTGAACAGCCAGGAGTGGACGCTGAGCCG
CTCCGTACCGGAGCTTAAGTGGCATAGTGGGAACCTGTCTAGCG
GGAAGTCAGCCCTGGTGCACCGCTATCTGACGGGGACCTATGTCCA
GGAGGAGTCCCCCTGAAGGGGGCGTTAAGAAGGAGATTGTGGTG
GATGGCAGAGTTCTGCTGTGATC

SEQ ID 9

Pr3-42 Unknown

GGCTGGCAGTAGAGGTGACCGAGGCGGTGGCGGAGGCAGG
GATTGCTGTGTCGGCCCCAGTCGGCGGAAGTCGCGGTAGAGCGTAG
CCCCACGCCCTCCCCGTCCGCGCCCTCCCTCTTCCCTGGGATG
GAGAAGGCGACGGTCTGGTGGCGGCGACGGCTTGCAGAAGG
AGAAGGGAGCCCCCGGGCGGTGGCGGCTTGTGGCGGGCCCCCGC
GGCGCGGAGGGTCGGCGGCGCTGGCGGCAGCAGCAGAGCTCGC
TCGGCCTCGTCTCTGTGGGATGGTGCAGTCTGCACCTGCTCCT
GAAGAAGAAGCCGCCAGCAGCAGCACCAAGGCAAGCGTAAC
CGGACTTGCCACCCCCCAGCAGCAGCGAAC

SEQ ID 10

Pr3-90 Unknown

GCGGCGGGCCCCCTCGCAGCAGCTGGCCGGGGCCCCCAGCA
GTTCGCGCTCTCCAACCTCCCGGCCATCCGGCCGAGATCCAGCGCT
TCGAGTCCGTGCATCCCAATATCTACGCCATCTACGACCTGATCGAGC
GCATCGAGGATTGGCGCTGCAGAACAGATCCGGGAGCACGTATC
TCCATCGAGGACTGTTGTGAACAGCCAGGAGTGGACGCTTGCAG
GCTCCGTACCGGAGCTTAAGTGGCATAGTGGGAACCTGTCTAGC
GGGAAGTCAGCCCTGGTGCACCGCTATCTGACGGGGACCTATGTCCA
GGAGGAGTCCCCCTGAAGGGGGCGTTAAGAAGGAGATTGTGGTG
TGGCAGAGTTCTGCTGC

SEQ ID 11

Pr3-93 Unknown

ATTATGAAGTAACTGAACCTTGGTCAAGCATGGTGCCTGTGAAATG
CAATGGACTTGTGGCAATTCACTCCTCTTCAAGGAGCTCTAAGA
ACAGGGTTGAAGTATGTTCTCTTCAAGTTATGGTGCAGACCCAA
CACTGCTCAATTGTCAACAATAAAAGTGTATAGACTTGCTCCACAC
CACAGTTAAAAGAAAGATTAGCATATGAATTAAAGGCCACTCGTTGC

20

TGCAAGCTGCACGAGAAGCTGATGTTACTCGAACATCAAAAAACATCTCT
 CTCTGGAAATGGTGAATTCAAGCATTCAAACACATGAAACAGCAT
 TGCATTGTGCTGCTGCATCTCCATATCCAAAAGAAAGCAAATATGTG
 AACTGTTGCTAGAAAAGC

SEQ ID 12

Pr3-104 Unknown

CCTCAGCATACCCACCGAGCAGCTGCCAGCCTGGCTGAGGGTGGC
 ATGAGGCAGGAGTCAGCACTGGACCTAGGGATGTGAGGTTTCTGT
 GCCCCAAGTTGTGGAAAGGTGGCACTACTGCTGGGCCACAGACA
 CAGCCAGCTGGAAAAGGGAGGTCTAGCCCAGCAGAGAGATGAGGA
 CATTTTGCTTCTCCATGCCAACAGCATGAGCTGAGCTTCTGCTT
 GCTGAAATGAAATAAACCTGGTATGAATTGTGCCAAGGCCTCCCA
 GTTGTCACTGCCTCTGTTGCCCTCCCTGCTTGCCTGCCCCCACCC
 CACACCCATGCCCTGTTCTACAGATTGTGATATTGTCTAATGTG
 TAATAGAACCGAGCTCCCA

SEQ ID 13

Pr3-113 Unknown

CTTACCTCATTTCTGAATGTGCATTTCCAGCCTTCTGCTCTCAGAGC
 TATTGTTCAAGCAGAAAACAAGCTGCTTTATTACA

SEQ ID 14

Pr3-122 Unknown

GAGAGAACTAGTCTCGAGTTTTTTATTCTCTATATTCTATGAAT
 ATGGTGTGTCCTGTCATTAATTATTATAATATGTGAACGTGCTGG
 AGGTAAA

SEQ ID 15

Pr3-124 Unknown

TCGATCCTTAGTGAACATACAAATCAGGCCCTAATTGAAACACACAC
 ACATTGTTATTGACAGTGTAGAAATACTGACTCATAGAAAAATTCA
 CATATTAGTTAGCAGACTAACAGGAACAGCAGCAGCAGCAGCT
 GGTCACTGCTCTGTGTGTTGCTAGCAACAAGAAACCAGACAGCAAG
 GCCCCAAACAGGAACCTCTGCATTTCATCTGTGATGAGGCACAC
 TTGATGCTGGGATTAAATGAGCCTGAGAGATAAAAGCAGTGTITACC
 ACTGGAAAATGTCCTACACTAAAGCAAGGGTAAGTATCAATGCA
 AACCGAGTGCAGCTATAAGCCTGATTCTCTGGAAATTATGTACAA
 ACTAATACAAATAATCTCATTACTTGAAC

SEQ ID 16

Pr3-133 Unknown

GCTACGGCTGCTCCGGAGCTGGTGGCGCCGCGATAGGAGAGCCGAT
 GGCCAAGTGGGTGAGGGAGACCCACGCTGGATCGTGGAGGAGCGG
 GCGGACGCCACCAACGTCAACAACACTGGCACTGGACGGAGAGAGATGC
 TTCAAAATTGGTCCACGGATAAGCTGAAAACACTGTTCTGGCAGTGCA
 GGTTCAAAATGAAGAAGTCAGTGTGAGGTGACGGAAGTGAAGTAAGC
 TTGATGGAGAGTCATCCATTAACAAATCGCAAAGGGAAACTTATCTCT
 TTTATGAATGGAGCGTCAAACACTAACTGGACAGGTACTCTAAGTCAG
 GAGTACAGTACAAAGGACATGAGGAGATCCCAATTGTCTGATGAA
 AAC

SEQ ID 17

Pr3-140 Unknown

CATTACCTTACAGTGTAAACAGGAGTCTAATTGTATCAATACTATGT
 TTTGGTTGTAATTCACTCACCCAAATGTACAACCAATGAAAT
 AAAAGAAGCATTAAAAGGAA

SEQ ID 18

Pr3-147 Unknown

GGCGTGTGGTCTCGCAGCGTTGCTCACAGAACAGAGTAGAGGCCGC
 GGCGCCGGCGCCGGACCCAGACTGGTAGTGAGCGTGTCCCAGGGCGCTGG
 AGCCGCTGCAATGCCGCTGGAGCTGGAGCTGTCAGATGCCATGGCCA
 GTGGCGGGCAACACCCGTGCTTCATTGNCGAGATCGGCCAGAA
 CCACCAAGGGCGACCTGGACGTAGCCAAGCGCATGATCCGATGGCCA
 AGGAGTGTGGGCTGATTGTGCCAAGTCCAGAAGAGTGAGCTAGAA
 TTCAAGTTAACCGGAAAGCCTGGACAGGCCATACACCTGAAGCA
 TTCCTGGGGAAAGACGTACGGGACACAACGACATCTGGAGTTCA
 GCCATGACCAGTCAGGGAGCTGAGAGGTCA

SEQ ID 19

Pr3-148 Unknown

GACGGACCGAGACCGGAGATGTTTCAAGCCCCGGCTCCGGCGGCTTT
 ACAGGGCGCTGAGCGCGACGAAGACAACGACAGCGACGGCTACG
 CGGAAGCACTCGAACCGGGGGTGAAGCCTCTGCGCCGGCCTGCCT
 CGGATCCAGGATGAGAAGACTGATAAAAAGAAGAAGCTAGCTAACAG
 CTGAAAATGCCAACATCTGGTTCACAAAACCAATTCAAGAGTAAAAA
 TTCTGACAGTGAAGCAATATGGTAGAGAAACCATATGAAAGAAAGA
 GTAAAGACAAGATTGCATCCTACAGCAAAACTCCAAAATTGAACGA
 AGTGTGAGCAAGGAGATGAAAGAGAAATCATCCATGAAACCGTA
 AACCTCCCTTC

SEQ ID 20

Pr3-162 Unknown

GCAGGAGGGGCCCTGCCAGCTCCGCCGCCGCGTCGTTTCAGGACCCGGACGGCGGA
 TTGCGCTGCCCTCCGCCGCAGCGGGGAGCCGGGGGAGGCCAGCGAGGGGC
 GCGCGTGGCGCGCCATGGACTGCGCCGGATCCGGTGACAGCAGGGAGCCAAGCG
 GCCGGGCCCTGAGCGCGCTTCTCCGGGGGCTGCCCTCTGCTCGCGGGCG
 GGCTCTGCTCCGGTTGCTGGCGCTTGTGCTGGCTGTGGCGCGGCCAGGATCATGT
 CGGGTCGCCGCTGCCGCCGGAGCGGCTGCGCAGCGCCGGCGAGGCCGT
 GGAGCCGGCCGCCGAAGCTGTCAGGGCGTGCCAACGGGACGTGGAACGAGTAAG
 AGGCTG

SEQ ID 21

Pr3-180 Unknown

GCCAACTCAGTCCAGCAGAACAAAATGTAGCTGCCATTCTGGAGTC
 TCTGAAAGCTTATTGGAAAGAAAGCATCAGGCCAACGCCATCGGAAA
 GAAGGTGGACAAGAACGTTGTCACAGGCTATATCTGCTTTGTTCT
 TTATACCTTGTCTAACAGAGACCAACATTGGACTGTATCTGAAAATT
 TAATATGCCCGAGGATATATACAAAATCTTCACTGGAACTGCCCTC
 ATTCTCATCTTGTGTTACATTCTGAGGGACTGAGGGAGTTT
 GGGTTTACAGAGCCCTTTGGTAGAACTTACCAAGAACGACTGACTACT
 GTGTAAGGGCAGAATTAATCCCTATGGGAAGTTCTNGGAGTTTA
 GAGGGTCGAGAAAACAGTTTCAGNGCCNGGTACAAAAGTCTAA
 TGCTTAGCTAACGAAACCTGAANGNTCTANGNCATTGGTCNTT
 TTTAAAGACCCCAAGCCAGCAAATTGTTATNCAAAATCTNTTCNTN
 AAAACCAACCTCAAAANGNNAAAAGTCCNAATGCTTTNTCCCG
 GGGNGGGGGTTNTTCCCGAACNGAANTTTGNGGAANTTT
 TTTAAATTTTTTNG

SEQ ID 22

Pr3-187 unknown

GGGAGGCAGCGGGCAGCGTTAAGTGAGAAAGGAAAAAGACAACGAGGAAAAGGAGG
 TGTCGGGTAGGGCAACGCGCGACACCCGAGGCCTGGTGGTGGCGGGATCGAGA
 TATTCAAGGCTGAAGCAGCTACGGAACGGCAGCGGCCGGTCGACAAACTGACTG

ACCGAGCCGGGTGGTGGCGGGAGCAGCGGGAGCAGCGGAACGATGCCGGCGTGAG
 CCTCCCGCCAAGGAGAATGCGCTCTCAAGCGGATCTGAGGTGTTATGAACATAA
 ACAGTATAGAAATGGATTGAAATTCTGTAACAAACTTCTAACCTCAAATTG
 AGAGCATGGAGAAACCTGGCTATGAAAGGATTAACATTGAACGTGTTGGGGAAAAA
 GGAAGAACTTATGAATTGTTCTAGAGGTTGAGAAATGACTGAAGAGTCATGTG
 TGTTGCCACGTTATGGCTTTCAAGGTCAANACAGAAGTNTGATGAANNCC
 AANTGTTACAGAAATGCCTAAATGGGATAAGACATCTTAAATTAAAGGGNCTTCT
 TCTACAANTCAATCCAACTNGNGGNTTCCNGGAACCAGGTTNANTCTTCANTTN
 CNCCTCCCAAAGCATTATGNT

SEQ ID 23

Pr3-194 Unknown

CGGTGGCGCGGAGGCAGCAGATTGCTGTGTCGGCCCCAGTGCAGCCGAAGTCGC
 GGTAGAGCGTAGCCCCACGCCCCCTCCCCCGTCCGCAGGCTGCAGAAAGGAGAAGGGAGCC
 TGAGAAGGCAGCGTCCGGTGGCGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
 CCCCAGCGGTGGCGCTGTGGCGGGCCCCCGCGCGCGAGGAGGAGGAGGAGGAGG
 TTGGCGGCAGCAGCAGAGCTCGCTGGCCTCGTCTCTCGTGGGAGGAGGAGGAGG
 GCGACCTGCTCTGAAGAAGAAGCCGCCAGCAGCAGCACCAAGGCAAGCGTA
 ACCGGACTTGCCGACCCCCCAGCAGCAGCGAAAGCAGCAGCAGCAGCAGCAGCAG
 GCGCGGTGGAGGCAGCGGTGGAGCGGAAGTGGCGGGCGGACCCAGCANTAAACAA
 CAGCAGGAAANAAAGGACACACACCAGGAANAGAGGTTNTGAGGGAGTTTATT
 GGNTCAGATTATGAAANTCAANCCTGNAACTTCCAGGTNTCTATAANGTCNT
 TGTNGNGCATACNTANGAANTANNCCAAAANNAGNTTNTAGGGAGTTTACNAAAC
 NCAGTTGGATC

SEQ ID 24

Pr3-199 Unknown

CTNNGTTTTTTTTTTTTCCAGACTCTCTGTTCTTATATCTCAGAAAG
 GATTGGGTTTCAGGTGAAAATCTTTCCAGCTCTGCATAGGTAGGTAGCATCTC
 ACTGAGGAATGGAGTATTACACCTATTGTTCTGTNCCAGTCTAGTAGAGCTTAG
 CAAAANCTACAGGCAACAAATTCTATTAAACATCCTGTTACACAAACAAATATGC
 TGAGTATGCACACAAATAATGGTGAAGAGAGGCNAAAGAAGTGAACATCGTGC
 ATGGTAGGAATAATTGAATTGTTACATGTCTTAAATATTGNTTAAACAGTNATA
 TTTTACATTTCATTGAAATGAAAAGCATGTCTGTGTTGAAATAATTTCATCG
 NNCNTCATTTTGATCCCCNACTAATGAGNAGAAANCAGTGTGATTGCAAAA
 TGTGTTCCCNCCCTNAAGGAATNCNCNTNGAATTCTGCAAGNTCTGGAGANCTCCN
 TANTTGTGTTACATGAGTAACTTACACTCCCTGGGGGGTCTTAGCCTNNC
 GCNNCTNCNTCTACNANCATTGTTNTCTANNGCNCTCANNTAANTNCTN
 CAGGCCNCNAANTGNNTATNNANCCNNNCNTNC

SEQ ID 25

Pr3-201 Unknown

CCCGAACCTGCAAGGCCTGGTCTGGGACCCACACAACCGTAGGAGA
 CAGGTCTGAATACCCGGCCCAAGAGCCCAAGCTGTGCTGCCCTCA
 GGGTTCTCCTGGAGTCACCGAGCCGTGGTCCACTCGTCGTGCCCTG
 TGAAGAACCAAGGCACGCTGGGTACAGCAATTCTACAAAGACATGGAA
 AACCTGTTCCAGGTCAACGGTGACCCACACTCAACATCGTCATCACT
 GACTATAGCAGTGGAGGACATGGATGTTGAGATGGCACTGAAGAGGTC
 CAAGCTGCGGAGCTACCAAGTACGTGAAGCTAAGTGGAAACTTGAAC
 GCTCAGCTGGACTTCAGGTGGCATAGACCTCGTGAAGGACCCGCAC
 AGCATCATCTTCCTGATGTGACCTCCACATCACTTCCACTGGAGTCA
 TNGATGCCATTGGAACACTTGTGTGGAGGGAAAAGAAGGGCTTTG
 CCCCTGGTATAAGGTTGGNNTGGGGCNCCCCAANGCTGAGGC
 TCGGGAGGGAAAAGGGTTGGNNTGGATTACAATTNCCTGANAN
 GATGGGGGCNTAACCAAAAGGANTCCAACANCCTGGGNGGGAAAANG
 GNACTTTNNAGGAATTCAANGCN

SEQ ID 26

Pr3-202 Unknown

G TGAGATGAATGTTCCCCCTCAATTCTCCTTATTGCCAAATATTT
 CATTCCCTTTGTCAATTAGAAAATAAACCATGCATCACA

SEQ ID 27

Pr3-205 Unknown

AGGAACCAAAGAAGACATGGTCCCTGCCTCATGGTCAGACAGGGAGGCAGACATT
 AAACAACTAATTATCAGTTATTCAATT

SEQ ID 28

Pr3-208 Unknown

GCGACTCGGGGACCTGGAGCTGACGCCTAGACACTTGATTAGCTT
 AATAGAACAGAAATGGAGGAGCCATAGAATATTAAGGATGAATTAG
 GAAGGCCTGAGACCAGGGAAACTTGCCTGCTCTACACTATTTCC
 AAGGAGAGGTTGCTATGGTGACAGACTATGGGGCCTTATCAAATC
 CCAGGCTGTCGAAGCAAGGTCTGGTCCATCGAACTCATATGTCATC
 CTGTCGGGTGGATAAGCCTCTGAGATAGTAGATGTTGGAGATAAAG
 TGTGGGTGAAGCTTATTGGCCGAGAGATGAAAAATGATAGAATAAAA
 GTATCCCTCTCCATGAAGGTTGTCAATCAAGGGGACTGGGAAAGACC
 TTGATCCAACAATGTTATCATTGAGCAAGAACAGAGANGGGAGGG
 TCCTCCAGGATTACACTGGGCAGNAAAGATCACCCCTGAGGCTTGTCT
 TGACCCCTACCTCAANAAGNGNGNTGAAAGGGCCCTTGCAAAAAAA
 TGGTTATGCANCNGGGGAAATTAAACTTTTTCCNTGGAAAGGAA
 AGGAAAGCCAATCCCCANTTGNAAACCTNCCTCAGGAATTTTAA
 NAAAGAGGGAAAAAAAANAACCN

SEQ ID 29

Pr3-213 Unknown

CTGTCATGGCTGCTCTGTACGTAGTCACGGCTTGTGCTCTAACGAA
 AACGACAGCACCGTGTCTTTCACTAGTAGAAGTGCAGTTGGTTCA
 TGTTGACAACCTTGAAGCCAATTGGAAAGTGTTCAGTGGAGAACAAAA
 TGAATAACAAAGCGGGCTCTTTCTGGAACCTTAGACAATTCAAGTA
 CATTAGTTCAACAAGCAGAACTATGAGGCTATGTTGGGACTTT
 GCAAACCAAAATAGTTCAACTGGAAACATTAAACTTTC
 ATAACAGAACATGCAATCAACTGATATCATTAGATATCTTCAGGATG
 CATTCACTTAAATCAGATGTTGGCTTCAAACAAAGGGCATAAGCC
 TCTACAGCCCTAGAATTGAAGAC

SEQ ID 30

Pr3-214 Unknown

GTATGGCGCGTCAAAGGTGAAGCAGGACATGCCCTCCGCCGGGG
 CTATGGGCCATCGACTACAAACGGAACCTGCCGCGTGCAGGACTGT
 CGGGCTACAGCATGCTGGCCATAGGGATTGGAACCTGATCTACGGG
 CACTGGAGCATAATGAAGTGGAACCGTGAGCGCAGGCGCTACAAAT
 CGAGGACTTCGAGGCTCGCATCGCGCTGTTGCCACTGTTACAGGCAG
 AAACCGACCGGAGGACCTTGCAAGATGCTCGGGAGAACCTGGAGGAG
 GAGGCCATCATGAAGGACGTGCCGACTGGAAGGTGGGGAGT
 CTGTGTTCCACACAACCCGCTGGGTGCCCCCTTGTACGGGAGCTG
 TACGGCTTGCACACCACAGAGGAGGCTTCATGCCAGCC

SEQ ID 31

Pr3-2 Homo sapiens geminin mRNA

GCAGGGCTTACTGCAGAGCGCGCCGGCACTCCAGCGACCGTGGG

GATCAGCGTAGGTGAGCTGTGGCCTTTGCGAGGTGCTGCAGCCATA
 GCTACGTGCGTTCGCTACGAGGATTGAGCGTCTCCACCCATCTTCTGT
 GCTTCACCACATCTACATAATGAATCCCAGTATGAAGCAGAACAGAAG
 AAATCAAAGAGAAATAAAGAATAGTTCTGTCCCAAGAAGAACTCTGA
 AGATGATTGAGCCTCTGCATCTGGATCTTGTGGAAAGAGAAAATG
 AGCTGTCCGCAGGCTTGTCCAAAAGGAAACATCGGAATGACCACTTA
 ACATCTACAACCTCCAGCCCTGGGGTTATTGTCCCAGAATCTAGTGAA
 AATAAAATCTGGAGGAGTACCCAGGA

SEQ ID 32

Pr3-8 *Homo sapiens scaffold attachment factor A*

GCGAACTCGGTAAAGGAATTGGCGCCGTTGACACCCAGGGCGATCC
 GCTCTGCAGCACGAACCCATCTCCAGCCGCAGCCGCAGCCGCC
 GGCGCAGGAGCAGCCGCAGCAGCCGCACCGTGGCCGAGTGAGCG
 GAGCCGAGTTGAGGCAGCGCTAGCGGTGAATCGGGGCCCTACCA
 TGAGTTCTCGCTGTAAATGAAAAAGCTGAAGGTGTCGGAGCTG
 AAAGAGGAGCTCAAGAACGACGCCCTTCTGACAAGGGTCTCAAGGC
 CGAGCTCATGGAGCGACTCCAGGCTCGCTGGACGACGAGGAGGCC
 GGGGGCCGCCCGCATGGAGCCGGAACGGCAGCCTAGAACCTGG
 GCGGGGATTCCGCTGGGA

SEQ ID 33

Pr3-11 *Homo sapiens ribosomal protein L32*

CCTACGGAGGTGGCAGCCATCTCCTCTCGGCATCATGGCCGCCCTC
 AGACCCCTTGTGAAGCCAAGATCGTCAAAAAGAGAACCAAGAACGTT
 CATCCGGCACCAGTCAGACCGATATGTCAAAATTAAGCGTAACCTGGC
 GGAAACCCAGAGGCATTGACAACAGGGTTCTGAGAAGATTCAAGGGC
 CAGATCTGATGCCAACATTGGTTATGGAAGAACAAAAAAACAAA
 GCACATGCTGCCAGTGGCTCCGGAAAGTTCCTGGTCCACAACGTCA
 AGGAGCTGGAAAGTGCTGATGTGCAACAAATCTTACTGTGCCGA
 GATCGCTNACAATGTTCTCAAGACCGCAAAGGCC

SEQ ID 34

Pr3-13 *Homo sapiens glutamyl-prolyl-tRNA synthetase*

GTCGGGTACGCGCACACGGTGCATCTCTTCCCTTCGCGGGGTCTC
 CGTAGTTCTGGCACGAGCCAGGCGTACTGACAGGTGGACCAGCGGAC
 TGGTGGAGATGGCGACGCTCTCTGACCGTGAAATTCAAGGAGACCT
 CCGCTAGGAGCTTGCTGGCAGTAGAACACGTGAAAGACGATGTCA
 GATTCCGTTGAAGAAGGGAAAGAGAACATTCTCATGTTCTGAAAA
 TGTGATATTACAGATGTGAATTCTAATCTCGCTACTGGCTAGAGT
 TGCAACTACAGCTGGTTATATGGCTCTAATCTGATGGAACATACTGA
 GATTGATCACTGGTTGGAGTC

SEQ ID 35

Pr3-30 *Homo sapiens geminin mRNA (mutation at nt 220)*

GCGGAGTTAGCAGGGCTTACTGCAGAGCGCCGGGCACTCCAGCG
 ACCGTGGGATCAGCGTAGGTGAGCTGTGGCTTTGCGAGGTGCTG
 CAGCCATAGCTACGTGCGTTCGCTACGAGGATTGAGCGTCTCCACCC
 ATCTTCTGTGCTTCAACATCTACATAATGAATCCCAGTATGAAGCAGA
 AACAAAGAAGAAATCAAAGAGAAATAAAGACTAGTTCTGTCCCAAGA
 AGAACTCTGAAGATGATTGAGCCTCTGCATCTGGATCTTGTGG
 AGAGAAAATGAGCTGTCCGCAGGCTGTCCAAAAGGAAACATCGGAA
 TGACCACTAACATCTACAACCTCCAGCCTGGGGTTATTGTCCCAGA
 ATTCTAGTGAAAATAAAATTNGNNNGGAGTCACCCANGAGTATT
 TTGATCTTATGATTAAGGAAAATCCATCTTTAATATTGAAGGGAA
 GNGGGCAGAAAACGGAAAAGGGGNCCCTNTGAAGCCTTAAGGGA
 AAATGAGNAAACTCTACAAAGNAAATTGACCAAANGACAATTGAAA
 ATGGCCGCTGAAAAAGGAAAATAAGACTGGCNNAAGTAGCAAAA

CATGTCCNGGTTTTG

SEQ ID 36

Pr3-43 Homo sapiens DNA-binding protein (HRC1) mRNA
 (5'end of the clone corresponds to the beginning
 of exon 2 of HRC1)

CAGGCATGTTGGACTGGCGGCCATGGAGCTGAAGGTGTGGTG
 GATGGCATCCAGCGTGTGGTCTGTGGGTCTCAGAGCAGACCACCTG
 CCAGGAAGTGGTCATCGCACTAGCCAAGCAATAGGCCAGACTGGCC
 GCTTGTGCTTGTGCAGCGCTTCGGGAGAAGGAGCGGCAGTTGCTG
 CCACAAGACTGTCAGTGGGCCACCTGCGGACAGTTGC
 CAGCGATGTCAGTGTCTGAGGCCACAGGGCCACGCTAGCTG
 GGAGGCCCTCTCAGACAGCTGTCCACCCCGAACGCTGCCTAATT
 CGTGCCAGCCTCCCTGTAAGCCACGGGCTTGCCTGGCTGTGAG
 CCCGCAAAACACTGACCCGAGCCAGCCC

SEQ ID 37

Pr3-49 Homo sapiens vesicle docking protein p115 mRNA

CCGAGTTGGAGGCAGGCTGGAGGCCAGCAGTAGGAGTGTAGAGTGC
 GGATTGGGGCCAGGCCCTGCGGAGGGCGGGGAAGTTGTCTTCTT
 TTTTCGGAGGGGCCGTAACCTGGCTGAACGGCAAGATGAA
 TTTCCTCCCGGGGTAATGGGGGTCAAGAGTGCAGGCCGACCCAGCACA
 CAGAACCGAGACGATTCAAAGCTTGTGACAGAGTAGCTTCACT
 ACTTTATTGGATGATCGAAGAAATGCTGTTGCTCTCAAATCATTA
 TCTAAGAAATACCGCTTGGAAAGTGGTATAACAAGCTATGAAACATCTT
 ATTCAATGTTTACAAACAGATCGTTCANATTCTGAAATTATAGGTATG
 CTTGGACACACTATATAATNNATATCTAA

SEQ ID 38

Pr3-101 Homo sapiens upstream transcription factor, c-fos interacting (USF2)
 ACATGCTGGACCCGGTCTGGATCCCGCTGCCTCGGCCACCGCTGCT
 GCCGCCGCCAGCACGACAAGGGACCCGAGGCCAGGAGGGCGTC
 AGCTGCAGGAAGGCCAGGACGGCCCAGGAGCGGAGGAGCACAGC
 GGTGGCCATCACAGCGTCCAGCAGGCCGTTGGCGACCAACA
 TCCAGTACCAAGTCCGCACAGAGACAAATGGAGGACAGGTGACATAC
 CGCGTAGTCCAGGTGACTGATGGTCAGCTGGACGCCAGGGCGACAC
 AGCTGGGCCGTCAAGCGTGTCCACCGCTGCTCGCGGGGGCA
 AGCAGGCTGTGACCAGGTG
 GGTGTGC

SEQ ID 39

Pr3-109 Homo sapiens DNA-binding protein (HRC1) mRNA (Type I transcript)
 GTCCCCGGTGGGGCGTTCCCATGCCGGCGCCGGGGCTGGCGTG
 CGGGCGCCCTCGCGCCGCCGGGAGGGGGCAGTGTCTCCGAGCC
 AGGACAGGCATGTTGGACTGGCGGCCATGGAGCTGAAGGTGTG
 GGTGGATGGCATCCAGCTGTGTGTCNTGTGGGTCTCAGAGCAGAC
 ACCTGCCAGGAAGTGGTCATCGCACTAGCCAAGCAATAGGCCAGAC
 TGGCCGCTTGTGCTTGTGCAGCGGCTTCGGGAGAAGGAGCGGAGT
 TGCTTGCACAAAGAGTGTCCAAGTGGCGCCAGGCCACCTGCGGAC
 AGTTGCCAGCGATGTCCAGTTGTCTGAGGCCACAGGGCCAGC
 CTAGCTGGAGGCCTTAGACAGCTGC

SEQ ID 40

Pr3-111 Homo sapiens proteasome sub-unit HSPC mRNA
 GAGTCGGCGGAGGAGGCCGGCGCCGCCGGCATGAGCTA
 CGACCGCGCCATACCGTCTTCGCCCCAGGCCACCTCTTCAAG
 TGGAGTACGCGCAGGAGGCCGTCAAGAAGGGCTGACCGCGGTTGG
 TGTTCGAGGAAGAGACATTGTTCTGGTGTGGAGAAGAAGTCAG

TGGCCAAACTGCAGGATGAAAGAACAGTGCAGGAAAGATCTGTGCTTG
 GATGACAACTGCTGCATGGCCTTTGCAGGCCACCGCCATGCAAG
 GATAGTCATCAACAGGGCCGGTGGAGTGCCAGAGCCACCGGCTGA
 CTGTGGAGGACC CGTCACTGTGGAGTACATA CCGCTACATGCCA
 GTCTGAAGCAGCGTTACCGCAC

SEQ ID 41

Pr3-112 Homo sapiens trans-Golgi p230 mRNA
 GCCGAGGCCAGCCAGTGGCACCCGGAAGAAAGAGACGCCGGCG
 CGACGCCGACACCCCTCAGGACGAGTCTCCGACTTGCCCACAGCCTC
 AAGGAGGAGACGGCGAGGGCCGGGGACTCCCCGGCTCTGCCCT
 AAGTCCCGTAGCCGTCGCCGGGGACTCCCCGGCTCTGCCCT
 CAGGTTCTGTTGACACTCAGGACCGTACGTACCGCTTGCGCCATGTT
 AAGAAA ACTGAAGCAAAAGATCAAGCGAGGAGCAGCAGCTCCAGC
 AGGCCTGGCTCTGCTCAGGCGCTCCAATTCTCAACACCAACA
 AGAATGAGGAGCAGGACATCTTCATTCAAGAGCAACTTGTATGAAGGT
 ACACCAATAGAGAGTCAGGTGACACACAGTCTTTGA

SEQ ID 42

Pr3-116 Homo sapiens ribosomal protein S14
 CACCCCCATCCCTCTGACAGCACTCGCAGGAAGGGGGTCGCCGTG
 GTGCCCGTCTGTGAACAAGATTCTCAAAATATTTCTGTTAATAAAT
 TGCCTTCATGTA

SEQ ID 43

Pr3-118 Homo sapiens poly (ADP-ribose) polymerase mRNA (The clone is 14 nt longer than the polymerase at 5' end; There is a point mutation at nt 159 of the clone)

GCGCTCAGGCCCTGCGGCTGGGTAGCGCACCGAGGCCGAG
 GCGGCAGCGTGTCTAGGTCGTGGCGTCGGCTCCGGAGCTTGC
 CGGCAGCTAGGGAGGATGGCGGAGTCTCGGATAAGCTCTATCGAG
 TCGAGTACGCCAAGAGCGGCCGCGCTCTGCAAGAAATGCAGCGAG
 AGCATCCCCAAGGACTCGCTCCGGATGGCCATCATGGTGCAGTCGC
 CATGTTGATGGAAAAGTCCCACACTGGTACCACTTCTCTGCTTCTG
 GAAGGGGGCCACTCCATCCGGCACCTGACGGTGGAGGTGGATGGGT
 TCTCTGAGCTCGGTGGATGATCAAGCAGAAAGTCAAGAACAGC
 GGAAGCTGGAGGAGTNCAGG

SEQ ID 44

Pr3-119 Homo sapiens tankyrase, TRF-interacting ankyrin-related polymerase (TNKS) mRNA, and translated products (point mutation at nt 129 of the clone)
 TAAAGGAAAGTATGAAATCTGCAAGCTCCTTTAAACATGGAGCAG
 ATCCAACAAAAAGAACAGAGATGGAAATACACCTTGGATTTGGTAA
 AGGAAGGAGACACAGATATTCAGGACTTACTGAGAGGGGATGCTGCT
 TTGTTGGATGCTGCCAAGAAGGGCTGCCGGCAAGAGTGCAGAAGCT
 CTGTACCCAGAGAAATATCAACTGCAGAGACACCCAGGGCAGAAATT
 CAACCCCTCTGCACCTGGCAGCAGGCTATAATAACCTGGAAGTAGCT
 GAATATCTCTAGAGCATGGAGCTGATGTTAATGCCAGGACAAGGG
 TGGTTAATTCTCTCATGCGGCATCTTATGGGCATGTTGACA

SEQ ID 45

Pr3-128 Homo sapiens proteasome sub-unit HSPC mRNA
 GAAGAAACAAAAGAAAGCATCATGATGAAATAAAATGTCTTGCTTGT
 ATTTTTAAATTCATATCAATCATGGATGAGTCTCGATGTGTAGGCCTT
 TCCATTCCATTATTACACACTGAGTGTCCCTACAATAAAACTCCGTATTT
 TTA

SEQ ID 46

Pr3-146 Human poly(ADP-ribose) polymerase mRNA (point mutation at nt 140 of the clone)

```
GCGATGNCTATTACTGCACTGGGGACGTCACTGCCTGGACCAAGTGT
ATGGTCAGACACAGACACCCAAACCGAACGGAGTGGTAACCCAAA
GGAATTCGAGAAATCTCTACCTCAAGAACATTGAAGGTTAAAAAACAA
GGACCGTATATCCCCCCCAGAAACCAGCGCCTCGTGGCGGCCACGC
CTCCGCCCTCACAGCCTCGGCTCTGCTGTGAACCTCTGCTT
CAGCAGATAAGCCATTATCCAACTATGAAGATCTGACTCTCGGAAG
CTGTCCCGGAACAAGGATGAAGTGAAGGCCATGATTGAGAAACTCGG
GGGAAAGTTGACGGGGACGCCAACAAAGGCTCCGTGCATAAGCA
CCAAAAAGGAGGTGGAAAAGATGAATAAGAAGATG
```

SEQ ID 47

Pr3-152 Homo sapiens ribosomal protein L10

```
AGAACANGGAGCATGTGATTGAGGCCCTGCGCAGGGCCAAGTTCAAG
TTCTGGCCGCCAGAACAGATCCACATCTCAAAAGTGGGGCTTCAC
AAGTTCAATGCTGATGAATTGAAGACATGGTGGCTGAAAAGCGGCT
CATCCAGATGGCTGTGGGTCAAGTACATCCCCAGTCGTGCCCTC
TGGACAACTGGCGGGCCCTGCACTCATGAGGGCTTCAAATGTGCTGC
CCCCCTCTTAATACTCACCAATAAATTCTACTTCCTGTCCAAAAAAA
AAA
```

SEQ ID 48

Pr3-154 Homo sapiens clone Xu-3 immunoglobulin heavy chain variable region mRNA

```
GTCGTGGACCTCCTGCACAAAGAACATGAAACACCTGTGTTCTCCTC
CTCCTGGTGGCAGCTCCAGATGGTCTGTCCAGGTGCAGTTACA
GCAGTGGGCCAGGACTCTTGAAAGCCTTCGGAGAACCTGTCCCTCA
CCTGCGCNTGTCTATGGTGGGTCTTAAGTGGTTATGGCTGGAGCNT
GGATCCGCCAGCCCCCAGGGAAGGGGCTTGGAGTGGATTGGGAAG
TCGACCATCGTGGCAGGCCAACATTACAGTCGGCCCTCAGAGTCGA
GTCTCCGTATCATTGGACACGTCCAAGAACCGGTCTCCCTGAGGCT
GAACTCAGTGACCGCCGGACACGGCTTTATNCTGTGCAGAGAGG
CCTAATATAAGCAATGGCTCTATTGGC
```

SEQ ID 49

Pr3-155 Homo sapiens phospholipase C, gamma 1 mRNA

```
GCCAGATCACGTGGAGCCGGGGCGCCGACAAGATCGAGGGGGCCAT
TGACATTCTGTGAAATTAAAGGAGATCCGCCAGGGAAAGACCTCACGGG
ACTTGATCGCTATCAAGAGGACCCAGCTTCCGGCCGGACCAGTCA
CATTGCTTGTCTATGGAATGAAATTGCGCTGAAAACGCTG
AGCCTGCAAGCCACATCTGAGGATGAAGTGAACATGTGGATCAAGGG
CTTAACTTGGCTGATGGAGGATACATTGCAAGGCACCCACACCCCTGC
AGATTGAGAGGTGGCTCCGGAAAGCAGTTTACTCAGTGGATCGGAAT
CGTAGGGATCGTATATCAGCCAAGGACCTGAAGAACATGCTGTCCC
GGTCAACTACCGGGTCCCAACC
```

SEQ ID 50

Pr3-157 Homo sapiens ribosomal protein S10 mRNA

```
GTACCTTACCAATGAGGGTATCCAGTATCTCCGTGATTACCTTCATCT
GCCCGGAGATTGTGCCTGCCACCTACGCCGTAGCCGTCCAGAGA
CTGGCAGGCCCTCGGCCCTAAAGGTCTGGAGGGTGGAGCGACCTGCGAG
ACTCACAAGAGGGGAAGCTGACAGAGATACCTACAGACGGAGTGTG
TGCCACCTGGTGGCGACAAGAACGCCAGGTGGCTGGGTGGTCAGC
AACCGAATTCCAGTTAGAGGCGGATTGGTGTGGACGTGGTCAGC
CACCTCAGTAAAATTGGAGAGGATTCTTGCATTGAATAAAACTTACA
```

GCCAAAAAAACCTTA

SEQ ID 51

Pr3-160 Homo sapiens poly(ADP-ribose) synthetase mRNA
AATCCGGGCACCAGGTTCGTGCCTCCTCCCTCGAGGAATGCTC
GGGTCACTGGTCTTCAGAGCGATGCCATTACTGCACTGGGACG
TCACTGCCTGGACCAAGTGTATGGTCAAGACACAGACACCCAACCGG
AAGGAGTGGGTAACCCCAAAGGAATTCTGAGAAATCTCTAACCTCA
AGAAAATTGAAGGTTAAAAAACAGGACCGTATACTCCCCCAGAAACC
AGCGCCTCCGTGGCGGCCACGCCTCCGCCACAGCCTCGGCTCC
TGCTGCTGTGAACCTCTGCTTCAGAGATAAGCATTATCCAACAT
GAAGATCCTGACTCTCGGGAAAGCTGCCCCGACAAGGATGAAGTGA
AGGCATGATTGAGAAACTCGGGGGAAAGTTGACGGGA

SEQ ID 52

Pr3-163 Homo sapiens mitochondrial DNA (A point mutation at nt 169 of the clone)
AGGCTATGTGTTTGTCAAGGGGTTGAGAATGAGTGTGAGGCGTATT
ATACCATAGCCGCTAGTTCAAGAGTACTGCGGCAAGTACTATTGAC
CCAGCGATGGGGCTTCGACATGGCTTAGGGAGTCATAAGTGGAG
TCCGTAAGAGGTATCTTACTATAAAGGCTATTGTGAGCTAGTCA
TATTAAGTTGTTGGCTCAGGAGTTGATAGTTCTGGGAGTGAGAGT
GAGTAGTAGAATGTTAGTGTGAGCTAGGGTGTGAGTGTAAATT
AGTGCAGATGAGTAGGGGAAGGGAGCCTACTAGGGTGTAGAATAGGA
AGTATGCTCGCTTCAGCGTTCTGCTGGTGCCTCATGGGTGAT
GATAGCCAAGGTGGGATAAGTGTGGTCAAAC

SEQ ID 53

Pr3-165 Homo sapiens ribosomal protein S8
GAGCGATGGGCATCTCTCGGGACAACGGCACAAGCGCCGAAAACC
GGGGGCAAGAGAAAGCCCTACCACAAGAAGCGGAAGTATGAGTTGG
GGCGCCCAAGCTGCCAACACAAAGATTGGCCCCCGCCGCATCCACACA
GTCCGTGTGCGGGGAGGTAACAAGAAATACCGTGCCTGAGGTTGGA
CGTGGGAATTCTCTGGGCTCAGAGTGTGACTCGTAAACAA
GGATCATCGATGTTGTCTACAATGCATCTAAACGAGCTGGTCTCGTA
CCAAGACCTGGTAAGAAATTGCATCGTGCATCGACAGCACACCG
TACCGACAGTGGTACGAGTCCCACTATGCGCTGCCCTGGGCCGCAAG
AAGGGAGCCAAGCTGACT

SEQ ID 54

Pr3-168 Homo sapiens ubiquitin specific protease 8 (USP) mRNA
GGCACATTGGCTAAAGGCTTTGGAGAATGTTGGATTCAAAGA
CAAAACCCAAAAGAGCAATGGTAAAAGAATGAAAATGTGAGACCA
AAGAGAAAAGGAGCAATCACAGCAAAGGAACATACACAATGATGACG
GATAAAAACATCAGCTGATTATAATGGATGCTCGAAGAATGCAGGA
TTATCAGGATTCTCTGATTTCACATTCTCTCAGTGTCTGAAGAAC
CATCAGTCCAGGAGTCAGTCTAGTTGAATTGAAGCACACCTGCCAG
ATGATTCTAAAGACACATGAAAGAAGAGGGGNAATGTGGAGTATTG
TGGGTACTCTTGACTGGGTTAAGTCTGCCAAAGATTACCAAGATT
GGAACCAACTCTCCGGAGTTGAAAGATGCACCTTCAAGGGGGAA
AGTAAAACCTGGTCTGCNCATGAGCCTTGGNTTAANGGGGGTT
GAAACTGGTCCTTTNTNCCCCGTTCCACAAGCTTANGGCNTCCC
CCNCACCNANAAAANNGGNTTCACTGGGTTNCTTCCCTNGGAA
AAAAAATCTTTAACGGGNCCACCCCCCTTTAAAAN

SEQ ID 55

Pr3-170 Homo sapiens sgk protein kinase

TACCNNTGTTGNCGCTCGCGCCCTGCAGGTCGACACTAGTGGATCCA
AAG
CAACTCCATTGGCAAGTCCCCGTACAGCGTCCTCGTCACAGCCAGCG
TCAAGGAAGCTGCCGAGGCTTCTAGGCTTTCTATGCGCCTCCCA
CGGACTCTTCTCTGAACCCCTGTTAGGGCTGGTTAAAGGATT
ATGTGTGTTCCGAATGTTAGTTAGCCTTTGGTGGAGCCGCCAGC
TGACAGGACATCTAACAGAGAATTGACATCTCTGGAAGCTTAGCA
ATCTTATTGCACACTGTCGCTGGAAGCTTTGAAGAGCACATTCTC
CTCAGTGAGCTCATGAGGTTTCTATTCTCCCTCAACGTGG
TGCTATCTGAAACGAGCGTTAAGAGTGCCCCCCTAGACGGAGCA
NGGAGTTTCGTTAGAAAAGCGGACGCTGTTCTAAAAAANGTCTCG
GCAGATCTGTCGGCTGGTGTAGCNAATATTATGAAAATGTGNCC
TTNTGAANAAAATGGGGTAGCTCNAACTTCTTCGAAGGGTTTC
AAGTTTTATTNCCTGGAAATNCCTGGGAACCCCCGGGAAGGG
GGGATGCCNGANCNAAGGNTTTGTTAGCCNNAAGGGGACCTTGGC
GACTNCACGGGAAATTNTTTGTTT

SEQ ID 56

Pr3-174 Homo sapiens mitochondrial genome

GTCACCAAGACCTACTTCTAACCTCCCTGTTCTATGAATTGAAACA
GCATACCCCGATTCCGCTACGACCAACTCATACACCTCTATGAAAA
AACTCCTACCACCTACCCCTAGCATTACTTATATGATATGTCCTCATA
CCCATTACAATCTCCAGCATTCCCCCTCAAACCTAA

SEQ ID 57

Pr3-176 Homo sapiens metastasis associated 1 (MTA1) mRNA

GGGACATCTCCAGCACCCCTATGCCCTGGCCACAAGCACGCAACC
CTGTCAGTCTGCTATAAGGCCGGACCGGGGGCGGACAACGGCGAGG
AAGGGAAATAGAAGAGGAAATGGAGAATCCGAAATGGTGGACCT
GCCCGAGAAACTAAAGCACCAGCTCGGCATCGGAGCTGTTCTCT
CCCGCAGCTGGAGTCTGCCCCGACGCACATCAGGGCAAGTGC
AGCGTCACCTGCTCAACGAGACCGAGTCGCTCAAGTCCCTACCTGGA
GCGGGAGGATTCTCTTCTATTCTCTAGTCTACGACCCACAGCAGAA
GACCTGCTGGCAGATAAAGGAGAGATTGAGTAGGAAACCGGTACC
AGGCAGACATCAGGACTTGTAAAAGAAGGGAGGGAGATGGCGA
GACCAGTCCAGGTTGGAGACCCAAGTGTNGGGAGGGGACAACCCA
CTTACAGACAAGCCAGATGNNCATTCTGGGGGGGGCGCTTTG
GGGCACCTTCCACGGGNCTGGACTGAGANNTTCTCCACACCCAC
TTGCAAAGANCNCNAATTGCTTCCNAAAAATNNCCTTCCNCAC
GGGTTCTTCAAAANAAATTACAAATTAGG

SEQ ID 58

Pr3-179 Homo sapiens trans-Golgi p230 mRNA

CCGAGGCCAGCCAGTGGCACCCGGAAAGAAAGAGACGCCGGCGGC
GACGCCGACACCCCTCAGGACGAGTGTCCGGACTTGCCCACAGCCTCA
AGGAGGAGACGGCGAGGCCGGCCCCGCTGCCCCGGTGTAAAGA
AGTCGCCGTAGCCGTGCGGCCGGACTCCCCGGCTCTGCCCTTC
AGGTTCTGTTGACACTCAGGACCGTACGTACGCTGCCATGTTCAA
GAAACTGAAGAAAAGATCAGCGAGGAGCAGCAGCTCCAGCAG
GCGCTGGCTCTGCTAGGCGTCTCCAATTCTCAACACCAACAAGA
ATGAGGAGCAGGACATCTTACAGAGCAACTTGATGNAAGGTA
CACCCAATAGAAGAGTTCAAGGTGGACACACAAGTCTTGCACAGA
AAGCTTCAGTTCCNGGTGCCCTGGGGAGTCTTGTGTTTNGAAGTC
CGATAAGGAATTNTTTCCGGNCTTTAAAGAGTTTTGGTCAA
AATNTTCAAAAATCCTGAATGATTGACTGGAAGNTCTGCCGTTTG
ATCCCCCTTTGATGNNGGGAAAAATTGGGGGGATTNANACG

NTTAAAAAAAATGTTTCNGGTTGNAAAAAAGAANAANN

SEQ ID 59

Pr3-186 Homo sapiens Surf-5 and Surf-6 genes

AGAAAACACAAAAGAAATTCCGGAAGCGAGAAGAGAAGGGCTGCTGAG
 CACAAGGCCAAGTCCTGGGGAGAAATCTCAGCAGCCTCTGGGC
 CAGGAGGCCTGAGGCAGCAAAGAGGAAGCAGCTGGGCTTCCAGCT
 CAGCAGGGAACCCCTGCAGATGCCCTGGCCACTGAGCCTGAGTCTGTC
 TTTGCTCTGGATGTTCTGCGACAGCACTGCATGAGAAGATCCAGGA
 GGCCCCGGGCCAGGGCAGTGCCAAGGAGCTGTCCCCTGCCGCCTTG
 GAGAAAAGGCAGGGAGAAAGCAGGAACGGGACCGGAAGAAGAGGA
 AGCGAAAAGGAGCTGCAGGGCGAAAGANAAGCCAGGAAGGCTGAGGAG
 GCCACGGAGGCCAGGAGGTGGAGGCAACCCAGAGGGGGCCT
 GCACGGACCNANGAGCCCCGGCTTGTCTCATTAAGGGGGAGGTG
 AGCGAAAACAACCGGCCACAAGGGGACCAAAAAAAAAAAAGCANAGG
 TGAAAGGGAACCTNCCTNCCGGAGAATACCGCANTTTGAACCTGC
 GCNCCGAAACCGTTGANAANTCGCCNATGGGGAGCNGACTGGCAAANA

SEQ ID 60

Pr3-197 Homo sapiens calcium binding protein (ALG-2) mRNA (6 nt deletion and a point mutation)

GGTCTCTCGCTGCAGGCCCTCAGGCCAGCCGCGTGCCTGGCC
 CATGGCCGCCTACTCTTACCGCCCCGGCCCTGGGCGGCCCTGGGC
 CTGCTGCAGGCCGCGCTGCCGGACCAGAGCTTCTGTGGAACGTT
 TTCCAGAGGGTCGATAAAAGACAGGAGTGGAGTGTATATCAGACACCGA
 GCTTCAGCAAGCTCTCTCAACGGCACGTGGACTCCCTTAATCCAGT
 GACTGTCAGGTGATCATATCCATGTTGACCGTGAGAACACAAGGCCG
 GCGTGAACCTCAGCGAGTCACGGGTGTGGAAGTACATCACGGAC
 TGGCAGAACGTCTCCGACGTACGACCGGACAACCTCGGGATGAT
 CGATAAGAACGAGCTGAAGCAGGCCCTCTCAGGCTACCGGCTTNTNT
 GACCAGTTCCACGACATCTTATCGAAAAGTTGACAGGCAGGGACG
 GGGCAAATCGCTTCAACACTTTATCANGGCTGNATTGCTGAANAG
 GTGGCGGTNTTTAACTTCACCGGATAGGANGTGTGTTAAGGGGTC
 ACNAAAAAANCTGCCANGNTTAAANTCGAAGACNGCCCCTTGGGAG
 GGCCCCACTNGGAAGGCCAATGTNCCNT

SEQ ID 61

Pr3-200 Mus musculus BS4 peptide mRNA

GCGCAGGGATGGCACAAAAGAAATCTTCAAGCAAAATTGACCCAG
 TTTTAAGGGAAAGACAGGATTCAACTTGGAAACCTCCATATACAGAT
 GAAAATAAAAAGTTGGTTGGCATTAAAGGACCTGCTAACAGTA
 CTCTGACAGACTAGAATGCTGTGAAATGAAGTAGAAAAGGTAATAG
 AAGAAATACGTTGCAAGGCAATTGAGCGTGGAAACAGGAAATGACAAT
 TATAGAACACGGGAATTGCTACAATCGAGGTGTTTACCAAGA
 CTAAAAAAAGATAGGAAAAACTGTGAGGACCCGATTGCAACATCAC
 TGGCAGAGAACTGAGGTCCAAATAGCTGAAACCTTGACTTCAAG
 AAAATTATATCAAATTGTCATAAATAAGAAGCAACTACACTAGGGAA
 AACCCCTGAAGAAAAGGCGTGGCTCCAATGTGAAAGCGATGGTGCCT
 GACTAAAACATCTGAAAGGACGCGAGGAAACTTCCGTTGGGAAGAGA
 GCAAAANAGGCCACTCAAGAAAACANTCGNGNCAGANGGCTGAATC
 TGGCAGAAGCACNAAAGNGGGGACCAAAGAACCCNCTTAACCTNT
 TACNGNCGGCNATN

SEQ ID 62

Pr3-203 Homo sapiens Pig11 (PIG11 mRNA)
 GGCTCTGGCACACAGCTGTGTCACAAAATCTGGGTGGCTTGGTTA
 GAGCTAATTGTAGTGGAGCCTGCAGGTGAGGGGAGGGGGCT
 GCAGGTCAAGTAAGATCTGGAAGACAGACAGTCAGCTTGAGGGCAG
 GGGGACTCTAACCGCAAGGAGATTACAGTTGGAAAGGAGGCAGTGG
 CAGAGGGGTGAGGGACAGGGGCCCTAACGTCAGCGAGGAAAGCTC
 GGTGTGGGCCGCTACGCTCCGTTGGGTGACCTGGAACGCCTC
 TTCTCCAGCTCCCTCCAGCCATCAGCAGCCTCTGTCAAGCTTCTGC
 CTCGCCCCAGTCTATCCCCAACCCAAATCAAGACCACCTTCTTCAC
 GGTCACTATTATCTTGTCTTTCTTTGTAAAGAAACATTACA
 AAAACAGTGCNNNNCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
 NNN
 CNTNGNTTCCCCGGGGGGCCGGNAAGGNCCCCATNCCTTNNG
 GGGGGGTNNATNTGGGCCGGNTAAAACNTNGATNGNACCNCTG
 GCT

SEQ ID 63

Pr3-206 Homo sapiens F1F0-type ATP synthase sub-unit d mRNA
 GCAGCCAGGGTCGGTGAAGGATCCCCAAATGGCTGGCGAAAATG
 CTCTAAAAACCATTGACTGGTAGCTTTCAGAGATCATACCCCAGA
 ACCAAAAGGCCATTGCTAGTCCCTGAAATCCTGGAATGAGACCCCTC
 ACCTCCAGGTGCTGCTTACCTGAGAATCCACCAAGCTATGACTG
 GGTTACTACAAGGCCAATGTGGCCAAGGCTGGCTTGGATGACT
 TTGAGAAGAAGTTAAATGCGCTGAAGGTTCCCGTGCCAGAGGATAAA
 TATACTGCCAGGTGGATGCCGAAGAAAAAGAAGATGTGAAATCTTG
 TGCTGAGTGGGTGTCCTCTCAAAGGCCAGGATTGTAGAATATGAA
 GAAAGAGATGGAGAAGATGAAAGAACTTAATTNCTTGTAGATG
 ACCATTGANGGACTTGAATGAAGCTTCCAGAAACCAATTAGACAA
 GAAAAAGTNTCCATTGGNCTCACCANCCATTGGAATTATAAAATGA
 GTCNGGAGGAAGTTGGCTTGTACCAATTGGCTTAATATTATT
 TCCCN>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
 CTT

SEQ ID 64

Pr3-209 Homo sapiens ribosomal protein L18a
 GCTGTCAAGCAGTCCACGACTCCAAGATCAAGTTCCGCTGCCCA
 CCGGGTCTGCCTGCAGACAAGGCCACGCTTCACCACCAAGAGGC
 CCAACACCTTCTCTAGGTGCAGGGCCCTGTCGGGTGTGCCCA
 ATAAACTCAGGAACGCCCAAAAAAAⁿAAAAAAⁿAAAAAAⁿAAAAAAⁿ
 AAAAAAAAC

SEQ ID 65

Pr3-219 Human FACL5 for fatty acid coenzyme A ligase 5
 GTTGCTCTCTCAGATGCCAAGACTATGTATGAGGTTTCCAAGAG
 GACTCGCTGTGCTGACAATGGGCCCTGCTTGGGATATAGAAAACCA
 AACCAAGCCCTACAGATGGCTATCTTACAAACAGGTGTGATAGAGC
 AGAGTACCTGGGTCTGTCTTGCATAAAGGTATAAATCATCACC
 AGACCAGTTGTCGGCATCTTGCTCAGAATAGGCCAGAGTGGATCA
 TCTCCGAATTGGCTTGTACACCGTACTCTATGGTAGCTTGTACCTCT
 GTATGACACCTGGGACCAGAACCCATCGTACATATTGTCAACAAGG
 CTGATATGCCGTGGTGTACACACCCCCAAAGGCATTGGTG
 CTGATAGGAAATGTAAGAAGGCTCACCC

SEQ ID 66

Pr3-224 Homo sapiens DNA-binding protein (HRC1) mRNA (The clone contains alternative exon 1a; it might be a new isoform of HRC1)

CCGGATNGGTCTCAGGCTGGCGAGCGCCCAGGCCAGACTGGCCG
CTTGCTTGTGCAGCGGCTTCGGGAGAAGGAGCGCAGTTGCTGC
CACAAAGAGTGTCCAGTGGCGCCCAGGCCACCCCTGCGGACAGTTGC
CAGCGATGTCCAGTTGTCTGAGGCGCACAGGGCCCAGCCTAGCTG
GGAGGCCCTCCTCAGACAGCTGTCCACCCCCGGAACGCTGCCTAATT
CGTGCAGCCTCCCTGTAAAGCCACGGGCTGCGCTGGCTGTGAGCC
CCGCAAAACACTGACCCCCGAGCCAGCCCCAGCCTCTCACGCCCTG
GCCCTGCGGCCCTGTGACACCCACACCAGGCTGCTGCACAGACCTG
CGGGCTGAACTCAGGGTGCAGAGGAC

CLAIMS

1. The use of an isolated nucleic acid molecule comprising a sequence selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5, SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40, SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56, SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66 to detect or monitor cancer.

2. The use of a nucleic acid probe which is capable of hybridising under high stringency conditions to an isolated nucleic acid molecule comprising a sequence selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5, SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40, SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56,

SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66 to detect or monitor cancer.

3. A method of detecting or monitoring cancer comprising the step of detecting or monitoring elevated levels of a nucleic acid molecule comprising a sequence selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5, SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40, SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56, SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66 in a sample from a patient.

4. A method of detecting or monitoring cancer comprising the use of a nucleic acid molecule or probe according to claim 1 or claim 2 in combination with a reverse transcription polymerase chain reaction (RT-PCR).

5. A method of detecting or monitoring cancer comprising detecting or monitoring elevated levels of a protein or peptide comprising an amino acid sequence encoded by a nucleic acid sequence selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5, SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12,

SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40, SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56, SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66.

6. A method according to claim 5 comprising the use of an antibody selective for a protein or peptide as defined in claim 5 to detect the protein or peptide.

7. A method according to claim 7 comprising the use of an Enzyme-linked Immunosorbant Assay (ELISA).

18. Use or method according to any one of claims 1 to 7, wherein the cancer is prostate cancer is prostate cancer.

9. A kit for use with a method according to any one of claims 3-8 comprising a nucleic acid, protein or peptide, or an antibody as defined in any one of claims 3-8.

10. A method of prophylaxis or treatment of cancer comprising administering to a patient a pharmaceutically effective amount of nucleic acid molecule comprising a nucleic acid sequence selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5,

SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40, SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56, SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66 or a pharmaceutically effective fragment thereof.

11. A method of prophylaxis or treatment of cancer comprising administering to a patient a pharmaceutically effective amount of a nucleic acid molecule hybridisable under high stringency conditions to a nucleic acid molecule comprising a nucleic acid sequence selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5, SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40, SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56, SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66 or a pharmaceutically effective fragment thereof.

12. A method of prophylaxis or treatment of cancer comprising administering to a patient a pharmaceutically effective amount of a protein or peptide comprising an amino acid sequence encoded by a nucleic acid sequence selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5, SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40, SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56, SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66 or a pharmaceutically effective fragment thereof.

13. A method of prophylaxis or treatment of cancer comprising the step of administering to a patient a pharmaceutically effective amount of an antibody capable of specifically binding a protein or peptide comprising an amino acid sequence encoded by a nucleic acid sequence selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5, SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40,

SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56, SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66.

14. A method according to any one of claims 10 to 11, wherein the cancer is prostate cancer.

15. A vaccine comprising a nucleic acid molecule having a nucleic acid sequence selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5, SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40, SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56, SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66 or a pharmaceutically effective fragment thereof and a pharmaceutically acceptable carrier.

16. A vaccine comprising a protein or peptide comprising an amino acid sequence encoded by a nucleic acid sequence selected from SEQ.ID.1, SEQ.ID.2, SEQ.ID.3, SEQ.ID.4, SEQ.ID.5, SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11,

SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.31, SEQ.ID.32, SEQ.ID.33, SEQ.ID.34, SEQ.ID.35, SEQ.ID.36, SEQ.ID.37, SEQ.ID.38, SEQ.ID.39, SEQ.ID.40, SEQ.ID.41, SEQ.ID.42, SEQ.ID.43, SEQ.ID.44, SEQ.ID.45, SEQ.ID.46, SEQ.ID.47, SEQ.ID.48, SEQ.ID.49, SEQ.ID.50, SEQ.ID.51, SEQ.ID.52, SEQ.ID.53, SEQ.ID.54, SEQ.ID.55, SEQ.ID.56, SEQ.ID.57, SEQ.ID.58, SEQ.ID.59, SEQ.ID.60, SEQ.ID.61, SEQ.ID.62, SEQ.ID.63, SEQ.ID.64, SEQ.ID.65 and SEQ.ID.66 or a pharmaceutically effective fragment thereof, and a pharmaceutically acceptable carrier.

17. An isolated mammalian nucleic acid molecule comprising a nucleic acid sequence selected from SEQ.ID.6, SEQ.ID.7, SEQ.ID.8, SEQ.ID.9, SEQ.ID.10, SEQ.ID.11, SEQ.ID.12, SEQ.ID.13, SEQ.ID.14, SEQ.ID.15, SEQ.ID.16, SEQ.ID.17, SEQ.ID.18, SEQ.ID.19, SEQ.ID.20, SEQ.ID.21, SEQ.ID.22, SEQ.ID.23, SEQ.ID.24, SEQ.ID.25, SEQ.ID.26, SEQ.ID.27, SEQ.ID.28, SEQ.ID.29, SEQ.ID.30, SEQ.ID.43, SEQ.ID.44, SEQ.ID.52, SEQ.ID.60 and SEQ.ID.66 or a variant of a fragment thereof which encodes a prostate-associated antigen which is expressed in higher than normal concentrations in prostate cancer cells.

18. A vector comprising an isolated mammalian nucleic acid molecule according to claim 17.

40

19. A nucleic acid molecule comprising at least 15 nucleotides, the nucleic acid molecule being capable of hybridising to a molecule according to claim 17 under high stringency conditions.
20. An isolated protein or peptide comprising an amino acid sequence obtainable from a nucleic acid molecule according to claim 17, 18 or 19.
21. A nucleic acid probe capable of hybridising to a nucleic sequence as defined in SEQ ID 34, SEQ ID 35, SEQ ID 43, SEQ ID 44, SEQ ID 52, SEQ ID 60, SEQ ID 65 or SEQ ID 66, or a sequence complementary thereto, under high stringency conditions.

FIGURE 1

1. Esophageal cancer 2
2. Paired normal esophagus 2
3. Esophageal cancer 3
4. Paired normal esophagus 3
5. Esophageal cancer 4
6. Paired normal esophagus 4
7. Head and neck tumor 34
8. Paired normal head and neck 34