ARSTRACTIVE TEXT SUMY ARBATION

(Pecumoent Neural Networks)
weed in speech recognicion, language translation, stock prediction spam mails, ex. Also used in image recognisation uses PNN Apps I. Google Ing search That are Good at MODELLING SEQUENCE DATA.
Example Ball pic Which direction you can only Guess. Could it move? Quess.
seems to be a stautact i.e. ball is moving towards right.
Sequence Data Forms (Input). 1. Audio -> chunny, feed Into PNN 2. Text -> seq of char/world
Sequential Memory Specific order sequence
ABCO. 2 eary 2. 2 YXIN. BA bit toush. Mechanism that makes it eacier for your brain to eacier for your brain.

recognise sequence parterns.

mn = RNN()

ff = Feed Followed NN()

hidden state = [0.0, 0.0, 0.0,0.0] shape dimensions

for word in input:

output, hidden_ state = nom (wold, hidden_state)

prediction = ff (output).

At it soci turther, It has brouble retaining Info from prev states

SHORT TERM MEMORY

Reduce to the nature of

NAMICHING GRADIENT

Back propagation

Time series (uses ENN)

Considers this entire time block of data

Applications

1. Google Image search

V text converted to Image

2. Goodle lens

> Image to text

3. Googe translator

many-many PNN.

seq. Info & Kept.

Tut-30

Forward Propagation over time

Sentence XI = 2711 712, MIZ, 714)

At tol preprocess this to FAIN

preprocess this to FAIN

41,01, both sent to next PAIN

Seq. Info is kept.

some fine. CALD. 102 = + (712 XW + 01 W) 1 03 = f(m12 xw, + 02 w) 1 04 = + (714 x w + 03 w). Ja > predicted value. AIM: To reduce This

- @ Words get transformed to machine readable vector.
- Then, each vector is processed to a RNN in a seq.
- in HIDDEN STATE holds Info on provided.

Problem with Feed Folloard NN

- -> not designed for sequence time series data. Hence, results with some senies / requential data are bad.
 - -) Does not model many

Type of NN designed for capturing Info from sequence time series data.

simple RNN St = FW (St-1/XH) St = tanh (MSSty + MXXX) Yr= Wyst unrolled ws, wy, wx temasn same.

Inp for other

- Multiple layer PNN.

- @ loss cal. in backwald,
 - @ RNN learn in backwould.

say, each state has gr=10-2. 100 states

1st stak, = (10-2)100 -: neural Supdate in states =0 won't learn at vantshing problem.

$$f_t = \sigma \left(W_f S_{t-1} + W_f X_t \right) \longrightarrow forget Gate$$
 $f_t = \sigma \left(W_i S_{t-1} + W_i X_t \right) \longrightarrow Foput Gate$
 $o_t = \sigma \left(W_0 S_{t-1} + W_0 X_t \right) \longrightarrow output Gate$

@ fach gate has DIFFERENT WEIGHTS.

$$e_t = (I_t * \hat{c}_t) + (f_t * e_{t-1}) \longrightarrow cell state,$$

$$h_t = o_t * tanh (e_t) \longrightarrow new state,$$

a+R=C+

operations

1. calculate it