

기초전기전자공학(8판) electronics fundamentals

circuits, devices, and applications

THOMAS L. FLOYD DAVID M. BUCHLA

1장 양과 단위

과학적 및 공학적 표기법

매우 크고 매우 작은 수는 과학 및 공학적 표기법으로 나타낸다.

[Xample-1]
$$47,000,000 = 4.7 \times 10^7$$
(과학적 표기법) $= 47 \times 10^6$ (공학적 표기법)

과학적 및 공학적 표기법

Example-2
$$0.000\ 027 = 2.7\ x\ 10^{-5}$$
(과학적 표기법) $= 27\ x\ 10^{-6}$ (공학적 표기법)

Example-3
$$0.605 = 6.05 \times 10^{-1}$$
(과학적 표기법) $= 605 \times 10^{-3}$ (공학적 표기법)

미터법 변환

과학적 표기법으로 나타낸 수는 과학용 계산기에서 *EE* 키를 사용하여 입력한다. <

대부분의 과학용 계산기는 입력된 임의의 십진수를 과학적 표기법 혹은 공학적 표기법으로 자동 변환하는 모드로 둘 수 있다.

7 Basic SI Units

kg

Avogadro's number = 6.0221367×10^{23}

양(Quantity)	T A mt)	심볼(Symbol)
길이	Meter	\mathbf{m}
질량	Kilogram	kg /
시간	Second	S
전류	Ampere	A /
온도	Kelvin	\mathbf{K}
조도	Candela	cd
물질의 양	Mole	mol

주요 전기 단위

전류를 제외하고 모든 전기 및 자기 단위는 기본 단위로부터 유도된다.

Quantity	Unit	Symbol
전류	Ampere	A
전하	Coulomb	C
전압	Volt	V
저항	Ohm	Ω
전력	Watt	W

유도된 단위들(units)은 미터-킬로그램-초(meter-kilogramsecond) 시스템에서 온 기본 단위에 근거한다. 따라서 mks 단위라고 한다.

큰(Large) 공학 미터법 접두어

접두어 (prefixes)와 이의 의미를 댈 수 있습니까? P
T
G
M

peta
tera
giga
mega
kilo

 10^{15} 10^{12} 10^{9} 10^{6}

작은(\$mall) 공학 메트릭 접두어

접두어 (prefixes)와 이의 의미를 댈 수 있습니까? m

µ

n

p

milli
micro
nano
pico
femto

10-3
10-6
10-9
10-12
10-15

미터법 변환

보다 큰 단위에서 보다 작은 단위로 변환할 때, 소수점(decimal point)을 오른쪽으로 옮긴다. 보다 작은 단위의 경우 수가 보다 커야만 하는 것을 기억하라.

Smaller unit

$$0.47 \text{ M}\Omega = 470 \text{ k}\Omega$$

Larger number

미터법 변환

보다 작은 단위에서 보다 큰 단위로 변환할 때, 소수점(decimal point)을 왼쪽으로 옮긴다. 보다 큰 단위의 경우 수가 보다 작아야만 하는 것을 기억하라.

Larger unit

Example-2

10,000 pF = 0.01
$$\mu$$
F

Smaller number

미터법 연산

미터법 접두어를 갖는 수를 더하거나 뺄 경우, 먼저 수를 같은 접두어로 변환해라.

Example-1

$$10,000 \Omega + 22 k\Omega =$$

$$10,000 \Omega + 22,000 \Omega = 32,000 \Omega$$

또 다른 방법으로,

$$10 k\Omega + 22 k\Omega = 32 k\Omega$$

미터법 연산

미터법 접두어를 갖는 수를 더하거나 뺄 경우, 먼저 수를 같은 접두어로 변환해라.

Example-2₂

$$200 \, \mu A + 1.0 \, mA =$$

$$200 \mu A + 1,000 \mu A = 12,000 \mu A$$

또 다른 방법으로,

$$0.200 \text{ mA} + 1.0 \text{ mA} = 1.2 \text{ mA}$$

오차, 정확도 및 정밀도

실험의 불확실성은 모든 측정의 일부를 차지한다. 오차는 참(혹은 최상으로 허용되는)값과 측정값 사이의 차이이다. 정확도는 측정에서 오차의 범위를 나타내는 지표이다. 정밀도는 반복성의 척도이다.

유효숫자

측정값을 보고할 때, 하나의 불확실한 자리수(digit)는 보존될 수 있지만 다른 불확실한 자리수들은 버려야만 된다. 보통 이는 원래의 측정값과 같은 개수의 자릿수이다.

두 개의 측정량이 10.54와 3.92라고 가정한다. 만약 보다 큰 것을 보다 작은 것으로 나누면, 답은 2.69이다. 그 이유는 이 답이 원래 측정값과 같은 불확실성을 갖고 있기 때문이다.

유효숫자

보고된 자리수가 유효숫자인지 결정하는 규칙

- 1. 영이 아닌 자릿수는 항상 유효숫자로 고려한다.
- 2. 첫 번째로 영이 아닌 자리수의 왼쪽에 있는 영들은 결코 유효숫자가 아니다.
- 3. 영이 아닌 자릿수 사이에 있는 영들은 항상 유효숫자이다.
- 4. 십진수(decimal number)의 경우 소수점 오른쪽에 있는 영들은 유효숫자이다.
- 5. 정수(whole number)의 경우 소수점 왼쪽에 있는 영들은 측정에 따라 유효숫자 이거나 혹은 아닐 수 있다.

Examples:

- 1. 영이 아닌 자릿수는 항상 유효숫자로 고려한다.
 - Example: 23.92 은 영이 아닌 자릿수가 네개이다- 이들은 모두 유효숫자이다.
- 첫 번째로 영이 아닌 자리수의 왼쪽에 있는 영들은 결코 유효숫자가 아니다. <u>Example</u>: 0.00276 첫 번째로 영이 아닌 자리수의 왼쪽에 세 개의 영이 있다. 오직 세 개의 유효숫자가 있다.
- 3. 영이 아닌 자릿수 사이에 있는 영들은 항상 유효숫자이다.
 - Example: 806 은 세개의 유효숫자를 갖고 있다.
- 4. 십진수(decimal number)의 경우 소수점 오른쪽에 있는 영들은 유효숫자이다
 - Example: 9.00 은 세개의 유효숫자를 갖고 있다.
- 5. 정수(whole number)의 경우 소수점 왼쪽에 있는 영들은 측정에 따라 유효숫자 이거나 혹은 아닐 수 있다.
 - Example: 4000 은 유효숫자의 수가 명확하지 않다.

수의 반올림

반올림은 의미 없는 자릿수를 버리는 과정이다. 반올림이 규칙은 다음과 같다.

- 1. 만약 탈락되는 자릿수가 5보다 크면, 마지막으로 유지되는 자릿수를 1만큼 증가시킨다.
- 2. 만약 탈락되는 자릿수가 5보다 작으면, 마지막으로 유지되는 자릿수를 변화시키지 않는다.
- 3. 만약 탈락되는 자릿수가 5이면, 마지막으로 유지되는 자릿수를 증가시켜 짝수가 되게 한다. 그렇지 않은 경우 변화시키지 않는다. 이를 '짝수로의 반올림'("round-to-even") 규칙이라 한다.

유틸리티 전압과 GFIC

대부분의 실험 장비는 120 Vrms 아울렛(outlet)에 연결된다. 아울렛으로의 결선은 일반적으로 '핫(hot)'(검정 혹은 빨강색 전선), '중립(neutral)'(흰색 전선), 그리고 '안전접지(safety ground)'(초록색 전선)라 불르는 세 개의 절연선을 사용한다.

전기안전

안전은 항상 전기회로의 관심사항이다. 규칙을 알고 안전한 환경을 유지하는 것은 모든 사람의 일이다. 몇 가지 중요한 안전관련 제안사항은 다음과 같다.

- 혼자, 혹은 졸릴 때 작업하지 말라.
- 전도성이 있는 보석을 착용하지 말라.
- 작동하고 있는 장비의 잠재적인 위험성을 숙지하라;
 장비와 전력코드를 자주 점검하라.
- 에너지가 공급되는 회로와의 모든 접촉을 피하라; 비록 낮은 전압회로 일지라도
- 깨끗한 작업공간을 유지하라
- 전력 차단 및 소화기의 위치를 숙지하라.
- 실험실 혹은 작업 공간에서 음식을 먹거나 혹은 음료수를 마시지 마라.