

Dense Visual SLAM for RGB-D cameras

Christian Kerl, Jürgen Sturm, and Daniel Cremers

Goal

Estimate camera motion from RGB-D data

Application Domains

Position control

Autonomous navigation

3D reconstruction

$$p = \pi^{-1}(x, Z_1(x))$$
 $p' = T_{\xi}p$ $x' = \pi(p')$

Photometric consistency

$$I_2(\boldsymbol{x'}) = I_1(\boldsymbol{x})$$

Geometric consistency

$$Z_2(\boldsymbol{x'}) = \boldsymbol{p'_z}$$

Least squares formulation

$$\mathbf{e} = \begin{pmatrix} e_I \\ e_Z \end{pmatrix} = \begin{pmatrix} I_2(\boldsymbol{x'}) - I_1(\boldsymbol{x}) \\ Z_2(\boldsymbol{x'}) - \boldsymbol{p'_z} \end{pmatrix}$$

$$\xi^* = \operatorname*{arg\,min}_{\xi} \sum_{i}^{n} \mathbf{e}_i^{\mathsf{T}} \Sigma^{-1} \mathbf{e}_i$$

 I_1

 I_2

Residuals before registration

$$(I_2(\mathbf{x'}) - I_1(\mathbf{x}))^2 \quad \xi = 0$$

Residuals after registration

$$(I_2(\mathbf{x'}) - I_1(\mathbf{x}))^2 \quad \xi = 0 \quad (I_2(\mathbf{x'}) - I_1(\mathbf{x}))^2 \quad \xi = \xi^*$$

Robust Dense Visual Odometry

- Outliers violate consistency assumption
 - » Moving objects
 - » Non-lambertian surfaces
 - » Noise

Problem: Quadratic term gives high influence

Robust Dense Visual Odometry

$$I_2(\boldsymbol{x'}) - I_1(\boldsymbol{x})$$

Robust Dense Visual Odometry

Weighted least squares formulation

$$\boldsymbol{\xi}^* = \underset{\boldsymbol{\xi}}{\operatorname{arg\,min}} \sum_{i}^{n} \boldsymbol{w}_i \mathbf{e}_i^\mathsf{T} \boldsymbol{\Sigma}^{-1} \mathbf{e}_i$$

$$w_i(\mathbf{e}_i) = \frac{\nu+1}{\nu+\mathbf{e}_i^\mathsf{T}\Sigma^{-1}\mathbf{e}_i}$$

Visual Odometry Results

Visual Odometry Results

- Frame-to-frame motion estimation
 - » Fast
 - » Highly accurate
 - » Drift 0.03 m/s

Problem: drift accumulation (1.8 m/min)

Dense Visual SLAM

Local drift

Keyframes

Global drift

Pose graph optimization

Keyframes

Frame-to-frame

Keyframes

Frame-to-keyframe

Pose Graph Optimization

Correct global drift with loop closures

Pose Graph Optimization

Search for loop closure candidates

Pose Graph Optimization

Validate loop closure and update graph

Dense Visual SLAM

• How to select keyframes?

How to validate loop closures?

Dense Visual SLAM

- \blacksquare Least squares yields estimate of covariance of ξ^*
- \blacksquare Compute entropy of parameter distribution as $H(\xi) = \ln(|\Sigma_{\xi}|)$
- $lackbox{\bf -} H(\xi)$ is a measure of uncertainty in estimate, i.e., quality

Visual SLAM Results

Master Thesis Topics

- Dense Visual SLAM for Quadrocopters
 - » Implement on AscTec Pelican

- Multi-Session Dense Visual SLAM
 - » Relocalization / place recognition
 - » Reduced pose graph
 - » Efficient map representation