

Erik Jaaniso

Automatic mapping of free texts to bioinformatics ontology terms

Master's Thesis

Supervisor: Hedi Peterson, PhD

06.06.2016

Thousands of tools and services in bioinformatics

⇒ how to find & not make a duplicate?

- ⇒ how to find & not make a duplicate?
- Collect metadata in a database

- ⇒ how to find & not make a duplicate?
- Collect metadata in a database
 - ⇒ how to find from database?

- ⇒ how to find & not make a duplicate?
- Collect metadata in a database
 - ⇒ how to find from database?
- Categorise and annotate using a standard vocabulary

- ⇒ how to find & not make a duplicate?
- Collect metadata in a database
 - ⇒ how to find from database?
- Categorise and annotate using a standard vocabulary
 - ⇒ done manually by a *curator*

Thousands of tools and services in bioinformatics

- ⇒ how to find & not make a duplicate?
- © Collect metadata in a database
 - ⇒ how to find from database?
- Categorise and annotate using a standard vocabulary
 - ⇒ done manually by a *curator*

Mapping tools & services to vocabulary terms requires:

Motivation

Thousands of tools and services in bioinformatics

- ⇒ how to find & not make a duplicate?
- © Collect metadata in a database
 - ⇒ how to find from database?
- Categorise and annotate using a standard vocabulary
 - ⇒ done manually by a *curator*

Mapping tools & services to vocabulary terms requires:

- Motivation
- 応 Time

Thousands of tools and services in bioinformatics

- ⇒ how to find & not make a duplicate?
- © Collect metadata in a database
 - ⇒ how to find from database?
- Categorise and annotate using a standard vocabulary
 - ⇒ done manually by a *curator*

Mapping tools & services to vocabulary terms requires:

- Motivation
- □ Time
- Knowledge (of both tool/service and vocabulary)

Thousands of tools and services in bioinformatics

- ⇒ how to find & not make a duplicate?
- © Collect metadata in a database
 - ⇒ how to find from database?
- Categorise and annotate using a standard vocabulary
 - ⇒ done manually by a *curator*

Mapping tools & services to vocabulary terms requires:

- Motivation
- □ Time
- Knowledge (of both tool/service and vocabulary)

The curator might lack any of them.

Thousands of tools and services in bioinformatics

- ⇒ how to find & not make a duplicate?
- © Collect metadata in a database
 - ⇒ how to find from database?
- Categorise and annotate using a standard vocabulary
 - ⇒ done manually by a *curator*

Mapping tools & services to vocabulary terms requires:

- Motivation
- □ Time
- Knowledge (of both tool/service and vocabulary)

The curator might lack any of them. Can we help him?

Ontology (philosophy) – what "things" exist

- ⇒ "things" represented by *concepts*, labelled by *terms*
- ⇒ use different terms for same concept, or *vice versa*

- Ontology (philosophy) what "things" exist
 - ⇒ "things" represented by *concepts*, labelled by *terms*
 - ⇒ use different terms for same concept, or *vice versa*
- Humans good at disambiguating and guessing meaning
 - ⇒ but computers not

- Ontology (philosophy) what "things" exist
 - ⇒ "things" represented by *concepts*, labelled by *terms*
 - ⇒ use different terms for same concept, or *vice versa*

Humans good at disambiguating and guessing meaning

⇒ but computers not

Ontology (CS) - make knowledge computationally useful

- Ontology (philosophy) what "things" exist
 - ⇒ "things" represented by *concepts*, labelled by *terms*
 - ⇒ use different terms for same concept, or *vice versa*
- Humans good at disambiguating and guessing meaning
 - ⇒ but computers not
- Ontology (CS) make knowledge computationally useful
 - conceptualise things into classes (e.g., chair)
 - describe relationships (e.g., *is a* furniture)

- Ontology (philosophy) what "things" exist
 - ⇒ "things" represented by *concepts*, labelled by *terms*
 - ⇒ use different terms for same concept, or *vice versa*
- Humans good at disambiguating and guessing meaning
 - ⇒ but computers not
- Ontology (CS) make knowledge computationally useful
 - conceptualise things into classes (e.g., chair)
 - describe relationships (e.g., is α furniture)

To better query, browse and share knowledge in a domain

EDAM – simple bioinformatics ontology (3218 concepts)

EDAM – simple bioinformatics ontology (3218 concepts)

4 main sub-ontologies or *branches*:

- topic "Data visualisation", "Proteomics"
- operation "Visualisation", "Sequence alignment"
- Format "PNG", "FASTA"

EDAM – simple bioinformatics ontology (3218 concepts)

4 main sub-ontologies or *branches*:

- topic "Data visualisation", "Proteomics"
- operation "Visualisation", "Sequence alignment"
- r data "Image", "Sequence"
- Format "PNG", "FASTA"

Concept ID is URI and it has *parts*:

- synonyms (exact/narrow/broad) "Rendering"

http://rainbio.france-bioinformatique.fr/rainbio/browseEdam

http://rainbio.france-bioinformatique.fr/rainbio/browseEdam

Main tools & services metadata database used:
bio.tools – ELIXIR Tools and Data Services Registry
as of writing thesis, 2402 entries

Main tools & services metadata database used:
bio.tools – ELIXIR Tools and Data Services Registry
⇒ as of writing thesis, 2402 entries

An entry is a collection of free texts (*query*), with *parts*:

Main tools & services metadata database used:
bio.tools – ELIXIR Tools and Data Services Registry
⇒ as of writing thesis, 2402 entries

An entry is a collection of free texts (query), with parts:

- rame "WEBnma"
- description "provides users with quick, automated computation and analysis of low-frequency normal modes for protein structures."
- publication 10.1186/s12859-014-0427-6, 10.1186/1471-2105-6-52
- homepage http://apps.cbu.uib.no/webnma
- Cocumentation http://apps.cbu.uib.no/webnma/howto

Match words between tool/service parts and concept parts

⇒ if matches found, suggest concept as annotation

Match words between tool/service parts and concept parts ⇒ if matches found, suggest concept as annotation

"... automated computation and analysis of low-frequency normal modes for protein structures."

"Protein flexibility and motion analysis"

Match words between tool/service parts and concept parts ⇒ if matches found, suggest concept as annotation

"... automated computation and analysis of lowfrequency normal modes for protein structures." motion analysis"

"... automated computation and analysis of low-frequency normal modes for protein structures."

"Protein structure analysis"

Match words between tool/service parts and concept parts ⇒ if matches found, suggest concept as annotation

```
"... automated computation and analysis of low-frequency normal modes for protein structures." motion analysis"

"... automated computation and analysis of low-frequency normal modes for protein structures." "Protein structure analysis"
```

But, how to order the suggestions?

Match words between tool/service parts and concept parts ⇒ if matches found, suggest concept as annotation

```
"... automated computation and analysis of low-frequency normal modes for protein structures." motion analysis"

"... automated computation and analysis of low-frequency normal modes for protein structures." "Protein structure analysis"
```

But, how to order the suggestions? more words matching

Match words between tool/service parts and concept parts ⇒ if matches found, suggest concept as annotation

```
"... automated computation and analysis of low-frequency normal modes for protein structures." motion analysis"

"... automated computation and analysis of low-frequency normal modes for protein structures." "Protein structure analysis"
```

But, how to order the suggestions?

- re more words matching
- more context preserved

Match words between tool/service parts and concept parts ⇒ if matches found, suggest concept as annotation

```
"... automated computation and analysis of low-frequency normal modes for protein structures." motion analysis"

"... automated computation and analysis of low-frequency normal modes for protein structures." "Protein structure analysis"
```

But, how to order the suggestions?

- re more words matching
- more context preserved
- r more parts matched

Automatic mapping of free texts to bioinformatics ontology terms

Match words between tool/service parts and concept parts ⇒ if matches found, suggest concept as annotation

```
"... automated computation and analysis of low-frequency normal modes for protein structures." motion analysis"

"... automated computation and analysis of low-frequency normal modes for protein structures." "Protein structure analysis"
```

But, how to order the suggestions?

- r more words matching
- more context preserved
- r more parts matched
- re more "important" words matching

10.1186/s12859-014-0427-6

10.1186/s12859-014-0427-6

Title: "WEBnm@ v2.0: Web server and services for comparing protein flexi..."

Keywords: "Elastic network models", "Normal mode analysis", "Web-tool", ...

Abstract: "Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise ..."

Fulltext: "Protein dynamics is defined as the time-dependent changes in the structure of a protein, which includes equilibrium fluctuations governing ..."

10.1186/s12859-014-0427-6

Title: "WEBnm@ v2.0: Web server and services for comparing protein flexi..."

Keywords: "Elastic network models", "Normal mode analysis", "Web-tool", ...

Abstract: "Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise ..."

Fulltext: "Protein dynamics is defined as the time-dependent changes in the structure of a protein, which includes equilibrium fluctuations governing ..."

Query publication databases (like PubMed) by ID

10.1186/s12859-014-0427-6

Title: "WEBnm@ v2.0: Web server and services for comparing protein flexi..."

Keywords: "Elastic network models", "Normal mode analysis", "Web-tool", ...

Abstract: "Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise ..."

Fulltext: "Protein dynamics is defined as the time-dependent changes in the structure of a protein, which includes equilibrium fluctuations governing ..."

- Query publication databases (like PubMed) by ID
- Or, from publisher website (custom extraction rules)

10.1186/s12859-014-0427-6

Title: "WEBnm@ v2.0: Web server and services for comparing protein flexi..."

Keywords: "Elastic network models", "Normal mode analysis", "Web-tool", ...

Abstract: "Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise ..."

Fulltext: "Protein dynamics is defined as the time-dependent changes in the structure of a protein, which includes equilibrium fluctuations governing ..."

- Query publication databases (like PubMed) by ID
- © Or, from publisher website (custom extraction rules)
- Publication parts extracted from XML, HTML or PDF

Fetching homepage & docs

Fetching homepage & docs

http://apps.cbu.uib.no/webnma

Fetching homepage & docs

http://apps.cbu.uib.no/webnma

"About WEBnm@ provides users with quick, automated computation and analysis of low-frequency normal modes for protein structures. The computation performed through our server should help the user understand whether a given protein can undergo large amplitude movements, and ..."

http://apps.cbu.uib.no/webnma/howto

"HowTo Single Analysis Comparative Analysis Examples Single Analysis Comparative Analysis Other input examples Single Analysis Submit a structure file in the pdb format and our server will calculate the lowest frequency normal modes of your molecule. You will then be offered different types of ..."

Pre-processing

"WEBnm@ provides users with quick, automated computation and analysis of low-frequency normal modes for protein structures."

Pre-processing

"WEBnm@ provides users with quick, automated computation and analysis of low-frequency normal modes for protein structures."

Punctuation removal and tokenisation

[webnm, provides, users, with, quick, automated, computation, and, analysis, of, lowfrequency, normal, modes, for, protein, structures]

Stop words removal

[webnm, provides, users, quick, automated, computation, analysis, lowfrequency, normal, modes, protein, structures]

Stemming

[webnm, provid, user, quick, autom, comput, analysi, lowfrequ, normal, mode, protein, structur]

↳ Score

↳ Score

For each concept a match score, so annotations are ranked

↳ Score

For each concept a match score, so annotations are ranked

Performance → benchmark against manual annotations

↳ Score

For each concept a match score, so annotations are ranked

Performance → benchmark against manual annotations

- mean recall (how much found among top *n*)
- mean average precision (how are ranked)

↳ Score

For each concept a match score, so annotations are ranked

Performance → benchmark against manual annotations

- mean recall (how much found among top *n*)
- mean average precision (how are ranked)

Can be outdated, incomplete ⇒ but best we have

→ Score

For each concept a match score, so annotations are ranked

Performance → benchmark against manual annotations

- mean recall (how much found among top *n*)
- mean average precision (how are ranked)

Can be outdated, incomplete ⇒ but best we have

Manually tune algorithm parameters for best performance

Mapping algorithm features

- ♠ ♠ Approximate matching
 - Proximity matching
- - Non-linear scaling of match count
 - - Combining parts' scores (weighted average)
 - ♠ ♥ Stop words removal & Stemming

"WEBnma" to "Protein flexibility and motion analysis"

"WEBnma"

Tool

WEBnma

description

[webnm, provid, user, quick, autom, comput, analysi, lowfrequ, normal, mode, protein, structur]

publication title

[webnm, v20, web, server, servic, compar, protein, flexibl]

publication abstract

[background, normal, mode, analysi, nma, us, elast, network, model, reliabl, costeffect, comput, method, characteris, protein, flexibl, extens, dynam, further, insight, dynamicsfunct, relationship, can, gain, compar, protein, motion, between, protein, homolog, function, classif, can, achiev, compar, normal, mode, obtain, from, set, evolutionari, relat, protein, result, we, have, develop, autom, tool, compar, nma, set, prealign, protein, structur, user, can, submit, sequenc, align, fasta, format, correspond, coordin, file, protein, data, bank, pdb, format, comput, normalis, squar, atom, fluctuat, atom, deform, energi, submit, structur, can, easili, compar, graph, provid, web, user, interfac, web, server, provid, pairwis, comparison, dynam, all, protein, includ, submit, set, us, two, measur, root, mean, squar, inner, product, bhattacharyya, coeffici, compar, analysi, ha, been, implement, our, web, server, nma, webnm, which, also, provid, recent, upgrad, function, nma, singl, protein, structur, includ, new, visualis, protein, motion, visualis, interresidu, correl, analysi, conform, chang, us, overlap, analysi, addit, programmat, access, webnm, now, avail, through, soapbas, web, servic, webnm, avail, http, appscbuuibno, webnma, conclus, webnm, v20, onlin, tool, offer, uniqu, capabl, compar, nma, multipl, protein, structur, along, conveni, web, interfac, power, comput, resourc, sever, method, mode, analys, webnm, facilit, assess, protein, flexibl, within, protein, famili, superfamili, analys, can, give, good, view, how, structur, move, how, flexibl, conserv, over, differ, structur]

"Protein flexibility and motion analysis"

Concept http://edamontology.org/operation_0244

label

[protein, flexibl, motion, analysi]

definition

[analys, flexibl, motion, protein, structur]

comment

[us, concept, analysi, flexibl, rigid, residu, local, chain, deform, region, undergo, conform, chang, molecular, vibrat, fluctuat, dynam, domain, motion, other, largescal, structur, transit, protein, structur]

"WEBnma" to "Protein flexibility and motion analysis"

Tool

WEBnma

description

[webnm, provid, user, quick, autom, comput, analysi, lowfrequ, normal, mode, protein, structur]

publication title

[webnm, v20, web, server, servic, compar, protein, flexibl]

publication abstract

[background, normal, mode, analys], nma, us, elast, network, model, reliabl, costeffect, comput, method, characteris, protein, flexib], extens, dynam, further, insight, dynamicsfunct, relationship, can, gain, compar, protein, motion, between, protein, homolog, function, classif, can, achiev, compar, normal, mode, obtain, from, set, evolutionari, relat, protein, result, we, have, develop, autom, tool, compar, nma, set, prealign, protein, structur, user, can, submit, sequenc, align, fasta, format, correspond, coordin, file, protein, data, bank, pdb, format, comput, normalis, squar, atom, fluctuat, atom, deform, energi, submit, structur, can, easili, compar, graph, provid, web, user, interfac, web, server, provid, pairwis, comparison, dynam, all, protein, includ, submit, set, us, two, measur, root, mean, squar, inner, product, bhattacharyya, coeffici, compar, analysi, ha, been, implement, our, web, server, nma, webnm, which, also, provid, recent, upgrad, function, nma, singl, protein, structur, includ, new, visualis, protein, motion, visualis, interresidu, correl, analysi, conform, chang, us, overlap, analysi, addit, programmat, access, webnm, now, avail, through, soapbas, web, servic, webnm, avail, http, appscbuiibno, webnma, conclus, webnm, v20, onlin, tool, offer, uniqu, capabl, compar, nma, multipl, protein, structur, along, conveni, web, interfac, power, comput, resourc, sever, method, mode, analys, webnm, facilit, assess, protein, flexibl, within, protein, famili, superfamili, analys, can, give, good, view, how, structur, move, how, flexibl, conserv, over, differ, structuri

Concept http://edamontology.
org/operation 0244

label

[protein, flexibl, motion, analysi]

definition

[analys, flexibl, motion, protein, structur]

comment

[us, concept, analysi, flexibl, rigid, residu, local, chain, deform, region, undergo, conform, chang, molecular, vibrat, fluctuat, dynam, domain, motion, other, largescal, structur, transit, protein, structur]

"WEBnma" to operation branch

TP	FP	FN	Concept	Query	Score
	Standardization and normalization (Normalization)		narrow_synonym	publication_title 10.1186/1471-210 5-6-52	0.51%
Protein flexibility and motion analysis			label	publication_abstra ct 10.1186/s12859-0 14-0427-6	0.39%
Visualisation			label	doc	0.35%
	Protein modelling (Homology modelling)		exact_synonym	publication_abstra ct 10.1186/s12859-0 14-0427-6	
	Protein structure analysis		label	description	0.26%
		Structure visualisation			
		Protein structure comparison			

"WEBnma" to *topic* branch

TP	FP	FN	Concept	Query	Score
Protein structure analysis (Protein structure)			exact_synonym	description	0.30%
Protein folds and structural domains (Protein folds)			narrow_synonym	publication_fullte xt 10.1186/s12859-0 14-0427-6	0.28%
	Protein analysis (Proteins)		exact_synonym	publication_abstra ct 10.1186/s12859-0 14-0427-6	0,27%
	Molecular dynamics (Molecular motions)		broad_synonym	publication_fullte xt 10.1186/s12859-0 14-0427-6	0.25%
	Small molecules (Peptides)		narrow_synonym	publication_mesh 10.1186/1471-210 5-6-52 Peptides	0.25%

"WEBnma" to data branch

TP	FP	FN	Concept	Query	Score
Protein structure			label	description	3.37%
	Structure alignment (protein) (Protein structure alignment)		exact_synonym	publication_abstract 10.1186/s12859-0 14-0427-6	
	Structure		label	doc	2.51%
	Protein flexibility or motion report (Protein flexibility or motion)		exact_synonym	publication_abstract 10.1186/s12859-0 14-0427-6	
	Protein structure report (Protein structural property)		exact_synonym	publication_fullte xt 10.1186/s12859-0 14-0427-6	
	71	Plot			
		Sequence profile			
		Structure alignment			
		Structural profile			

"WEBnma" to *format* branch

TP	FP	FN	Concept	Query	Score
	protein		label	publication_abstra ct 10.1186/s12859-0 14-0427-6	2.78%
	Format		label	doc	2.39%
	Protein secondary structure format		label	publication_abstra ct 10.1186/s12859-0 14-0427-6	1.42%
	Protein structure report (quality evaluation) format		label	publication_fullte xt 10.1186/s12859-0 14-0427-6	1.39%
PDB			label	webpage	1.22%
		PDF			
		Textual format			
		FASTA-like (text)			

Top 5 & all branches: recall 27%; average precision 16%

Top 5 & all branches: recall 27%; average precision 16%

In other databases: ms-utils.org: 52%; 37%

BioConductor: 36%; 24%

Top 5 & all branches: recall 27%; average precision 16%

In other databases: ms-utils.org: 52%; 37%

BioConductor: 36%; 24%

Mistakes in manual annotations and tool descriptions

Top 5 & all branches: recall 27%; average precision 16%

In other databases: ms-utils.org: 52%; 37%

BioConductor: 36%; 24%

Mistakes in manual annotations and tool descriptions And of course, deficiencies of the mapping algorithm:

Top 5 & all branches: recall 27%; average precision 16%

In other databases: ms-utils.org: 52%; 37%

BioConductor: 36%; 24%

Mistakes in manual annotations and tool descriptions And of course, deficiencies of the mapping algorithm:

- inability to differentiate meaning
- incorrect order caused by noise & less relevant content

Top 5 & all branches: recall 27%; average precision 16%

In other databases: ms-utils.org: 52%; 37%

BioConductor: 36%; 24%

Mistakes in manual annotations and tool descriptions And of course, deficiencies of the mapping algorithm:

inability to differentiate meaning

incorrect order caused by noise & less relevant content

Best metric: usefulness to the curator

Top 5 & all branches: recall 27%; average precision 16%

In other databases: ms-utils.org: 52%; 37%

BioConductor: 36%; 24%

Mistakes in manual annotations and tool descriptions And of course, deficiencies of the mapping algorithm:

- inability to differentiate meaning
- incorrect order caused by noise & less relevant content

Best metric: usefulness to the curator

- many false positives make sense
- flexibility (match short and long text, tune parameters)

Manual annotation of thousands of bioinformatics tools

- ✓ very useful
- time-consuming and error-prone

Manual annotation of thousands of bioinformatics tools

- ✓ very useful
- time-consuming and error-prone

Manual annotation of thousands of bioinformatics tools

- ✓ very useful
- time-consuming and error-prone

Goal to make an automatic mapper

A reads in free text from metadata

Manual annotation of thousands of bioinformatics tools

- ✓ very useful
- time-consuming and error-prone

- A reads in free text from metadata
- **a** adds content from Internet

Manual annotation of thousands of bioinformatics tools

- ✓ very useful
- time-consuming and error-prone

- A reads in free text from metadata
- **a** adds content from Internet
- **A** matches against EDAM ontology terms

Manual annotation of thousands of bioinformatics tools

- ✓ very useful
- time-consuming and error-prone

- A reads in free text from metadata
- **a** adds content from Internet
- **A** matches against EDAM ontology terms
- **A** outputs best annotation suggestions to curator

Manual annotation of thousands of bioinformatics tools

- ✓ very useful
- time-consuming and error-prone

Goal to make an automatic mapper

- A reads in free text from metadata
- **a** adds content from Internet
- **A** matches against EDAM ontology terms
- **A** outputs best annotation suggestions to curator

As result, we have a helpful curation tool

Manual annotation of thousands of bioinformatics tools

- ✓ very useful
- time-consuming and error-prone

Goal to make an automatic mapper

- A reads in free text from metadata
- **a** adds content from Internet
- **A** matches against EDAM ontology terms
- **A** outputs best annotation suggestions to curator

As result, we have a helpful curation tool

⇒ https://github.com/edamontology/edammap

Future work

Development will continue in collaboration with curators

- Incremental updates
- Integrate with on-line bio.tools portal
- Annotate training materials (PPT, PDF)
- Discover new tools
- Extract new EDAM concepts

"KEGGanim" results

KEGGanim

KEGGanim is a web-based tool for visualizing experimental data in the context of biological pathways. KEGGanim produces animations or static images of KEGG pathways by overlaying public or user uploaded high-thourghput data over handdrawn KEGG pathway maps.

Publication 10.1093/bioinformatics/btm581

Title: KEGGanim: pathway animations for high-throughput data.

MeSH terms: Animals; Humans; Computational Biology; Gene Expression Regulation; Ventricular Remodeling; Computer Graphics; Software; Metabolic Networks and Pathways

MOTIVATION: Gene expression analysis with microarrays has become one of the most widely used high-throughput methods for gathering genome-wide functional data. Emerging -omics fields such as proteomics and interactomics introduce new information sources. With the rise of systems biology, researchers need to concentrate on entire complex pathways that guide individual genes and related processes. Bioinformatics methods are needed to link the existing knowledge about pathways with the growing amounts of experimental data. RESULTS: We present KEGGanim, a novel web-based tool for visualizing experimental data in biological pathways, KEGGanim produces animations and images of KEGG pathways using public or user uploaded high-throughput data. Pathway members are coloured according to experimental measurements, and animated over experimental conditions. KEGGanim visualization highlights dynamic changes over conditions and allows the user to observe important modules and key genes that influence the pathway. The simple user interface of KEGGanim provides options for filtering genes and experimental conditions. KEGGanim may be used with public or private data for 14 organisms with a large collection of public microarray data readily available. Most common gene and protein identifiers and microarray probesets are accepted for visualization input. AVAILABILITY: http://biit.cs.ut.ee /KEGGanim/.

Full text present (9334 characters)

Molecular interactions, pathways and networks (Pathways)	narrow_synonym	publication_fulltext	1.12%
Animals	label	publication_title	0.77%
Microarray experiment (Microarrays)	exact_synonym	publication_abstract	0.54%
Proteomics	label	publication_fulltext	0.54%
Imaging	label	description	0.50%
Gene expression profile pathway mapping	label	publication_fulltext	0.39%
Gene expression data analysis (Gene expression analysis)	exact_synonym	publication_abstract	0.31%
Visualisation	label	webpage	
Pathway or network analysis (Pathway analysis)	exact_synonym	publication_fulltext	
Gene expression analysis	label	publication_fulltext	0.22%
Pathway or network (Pathway)	exact_synonym	publication_title	4.29%
Data	label	publication_abstract	
Image	label	publication_abstract	3.14%
Experimental measurement (Measurement)	exact_synonym	publication_abstract	3.04%
Gene expression data (Microarray data)	narrow_synonym	publication_abstract	3.01%
Gene expression data format	label	publication_abstract	1.50%
Gene expression report format (Gene expression data format)	exact_synonym	publication_abstract	1.50%
Biological pathway or network format	label	publication_fulltext	1.46%
KEGG PATHWAY entry format	label	description	1.42%
protein	label	publication_abstract	1.21%