This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

L5 ANSWER 1 OF 1 JAPIO (C) 2003 JPO on STN

AN 1992-307974 JAPIO

TI ELECTRICALLY ERASABLE NONVOLATILE SEMICONDUCTOR STORAGE DEVICE

IN YOSHIMI MASANORI

PA SHARP CORP

PI JP 04307974 A 19921030 Heisei

AI JP 1991-73239 (JP03073239 Heisei) 19910405

PRAI JP 1991-73239 19910405

SO PATENT ABSTRACTS OF JAPAN (CD-ROM), Unexamined Applications, Vol. 1992

AN 1992-307974 JAPIO

AB PURPOSE: To contrive an increase in the integration of the title device by a method wherein floating gates are respectively divided functionally into a write site and an erase site and in the sides of the erase sites, a tunnel oxide film is provided to constitute the erase sites without providing a source offset and in the sides of the write sites, a source offset is provided to constitute the write sites.

CONSTITUTION: One pair of L-shaped floating gates 2 consisting of a polysilicon film are respectively provided on gate regions between a source line 3 in the surface of a silicon substrate and one pair of drain lines 4 and 4 arranged on both sides of the line 3 via an insulating film. Moreover, control gates 5 consisting of a polysilicon film to the gates 5 are respectively provided on the gates 2 via an interlayer insulating film. In one pair of write sites, writing using an injection of electrons from the side of each drain to each gate 2 is performed. On the other hand, in the erase sites, erase using an F-N tunneling is performed en bloc from the side of a source to the gates 2 and 2.

COPYRIGHT: (C) 1992, JPO&Japio

(19) 日本四特种庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平4-307974

(43)公開日 平成4年(1992)10月30日

(51) Int.CL⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 29/788

29/792 27/115

8225-4M

H01L 29/78

371

8831-4M

434

審査請求 未請求 請求項の数1(全 4 頁)

(21)出頭番号

特顯平3-73239

(71)出版人 000005049

27/10

シヤープ株式会社

大阪府大阪市阿倍野区县池町22番22号

(72)発明者 吉見 正徳

大阪市阿倍野区長池町22番22号 シャープ

株式会社内

(74)代理人 井理土 野河 佰太郎

(22)出顧日

平成3年(1991)4月5日

(54) 【発明の名称】 電気的消去可能不揮発性半等体記憶装置

(57)【要約】

【目的】 ソースオフセットに選択ゲートを構成したE EPROMにおけるF-Nトンネリングによる消去を円 滑化して、素子の縮小化を図る。

【構成】 1つのソースラインとその両側のドレインラ インとで2つのEEPROMセルを構成し、各フローテ ィングゲートの一方何をホットエレクトロンによる書き 込み部位とし他方側をF-Nトンネリングによる一括消 去部位として機能分離する。

[0100]

公告書、Cなう悪水準機主張のくロイセンエイでホ、対 コ合品のこ、なるも本要なるヤコならがなまれートでロ て遺跡の合むくトレイにはつめずの子、 パち永速なとこる **支兵上支田福合強ペトリイングで北西金数銀化ーリコ的** は比較的高電圧を印加する必要が生じる。 従って、必然 ベトイド よいころであままけこ かるれる大きさろこる **支用呼ぶたくリオイイN-3の同イーややくトデーロア** ムントイド 、合体のこ、、大主 、たらなかきでなろこされ

。ふっるな合体不るです五法が分件の

. ቆልፓ 0 ቆ ቆ ቲ ようよし共闘を重勝るする諸師を去路さればやくじれて したEEPROMにおいても、ソース側からのF-Nト **気料タイーや発展ご溶イドサで木勝スーソコムニ ,0 &** 丁のき六パミホ下路状る心心、山伊野のこ [6000]

多研去的健康スーソのCーブリ量がゴ土臭か働4(木くイ 六rsを国国河路両スーVを各(d) 、3.公路本込き書る 第イーヤ国土丁したタイセサイヤスーV々各(g)、社 イーヤヤントモーロで各の核一品工 、大輪をイーヤベー はしくに、高来様化に強したEEPROMの表子構造に 20 及びこのフロティングゲー上に配置されるされるコンド イーヤヤントモーロての技一される最通引土対策イーヤ のこ 津路イーヤの校一るけち宝鬼ケ間のされこび返嫁 **遠くトイドの杖ーされち最通い勘両の子と謝剤スーソ社** パルコ伊奈のニアリ〉体【母手のみ式さす名祭会展集】

香の校一丁付嬢多イでかて木スーンゴケ爵立語を返さ書 なっころけ気をイッサマヤスーンゴケ層が衝去路、だせ コが商去南とか随を必ち書ご的遺跡タイーヤとくトデー ロマ 、〉かず炎熱を顕藍婦土 、制度袋のご【1100】 ち雪冠ゴでふぐ野アノ底共多土イセサイヤスーペンズが **耐冬込き香のイーヤやくトモーロての枚一頭土、水イー**

特成でも利夫部と、を有してなり、上記コントロールや

。るるアのさぶじ輪多項手でいるるで放射さが耐ぐ込き

たけなおななる者な常円々各、もれるたけなるではない **マトリド各いなし作多イセサで大地人出のくロイセリエ** イで市では、全サポムこるマムイーと発展タイーヤベー ロインこの土イセナで木のこのお丁れち男事なイセサで たスーソ、お丁いなコ油を込き香煙躍くトイド 【用計】 [0015]

されなな行うし芸一体法院な常円、れたな行体として 、イイルー3のさな時スーソフリ代を強力強小キベイカホ ち銀国コ財再の謝房スーソ、& ホリホち 女子 イセサて木 スーソゴブいおゴ商去所ر庫スーソ、九一【8100】

のこプいと基づ時旗実を示引面図付添、不以【時旗実】 [0014] *やなマママ

-ZSÞ

08 行习指円金去路のモーモ、>舗ご並がたくじキくイバー 毎の存在により、ソースとフロマティングゲート間のF イマサイヤ、おご合都のこ、らななしなし【8000】

・される大き **は、このオマセット部上に選択ゲートを記録することも** 選挙 1 ペナイトコ国の 3 1 一 4 4 く 7 キーロ く 3 く 7 ト 【0007】そのため、EEPROMを構成するソース

し、EEPROMの集積度が香しく低下する。

加部冷勝画序等のパナーバチトくらけ近アし立姓タイー **ヤ児氏 、らかなしなし 【恵舞さすらさよし名祭改印訳】**

。さいてたけな行なしばしばしば行なわれている。 陳獻温土ブか合語ネイーや現画、ぬれのこ【3000】

.ራሌኊል

大るすかくをでーリケトデ体パナリチャナン主社去断険 品にしたりングにより得去する構造では、 しばしば過

【0004】 いかしながら、このようにソース個より下 。 るけたな行体去的るよごと

くいホンイバーヨのよ際スーン、パけな計込み必要者を **みにおいては、ドレイン個よりホットエレクトロンによ** そ有さない。 いわゆる初類のスタックゲートEEPRO 30 される。 (イーヤンセジセンサ) イーや発展アンチ [8000]

。さいプリ用内なみ

及立書入去許さよコやくじキぐイ(misdbaok-aslwoy) N-304点を含むコンロイクリエイでホ , J 許多 イーゲゼントデーロでる中たいまれずい、0台ブルと政 体配体性値(EEPROM)として組みの構造のものが 英半封発料不識而去時的及謝 、さん来坊 【游劫の来坊】

. 4世間 発体未常体記傳義區(EEPROM)に関する。 さらに 戦不譲に去断的及言、11時祭のこ【程公民時の土棄室】

[[000]

【伊瓜な職等の伊託】

【囲跡の永穂清砕】

盤国外等半社発戦不能向去所的設定されては古舞団コで よら悪丁し転共き土イベサトヤス一くひ刃が部れぶき書 トロートゲントモーロての校一出土、沈イーゲバーロイ くに国土、0カブノ育多、幼稚去皆るす魚精多能去所優 01 海スーソのCーブリ最かは上部が耐小キベイ かれち量品 コ暦両スーVヶ合(d) 、3.幼稚や込き書るで魚精多額 **そ込き書信期ベトレイの枚一丁し盟かコ土津第イーや店 エブンれきイセサマホスーソネ各(8) パイーヤやく** トマーロて各の杖一団土 ,大学タイーヤバーロインころ 14ち国国コエイーヤゼントモーロてのこびダイーヤゼン トで一口ての状ーられら園品コ土津第イーやのこ 、東南 イーやの技一されち宝畑で同のされこび五世間ベトイド の校一されち貴婦コ酵詞の子と津磨スーツ 【1 更象稿】

I

(2)

発明を詳認する。

٠, ١,

【0015】図1は、この発明の一実施網のEEPRO Mを示す平面構成説明図であり、図2 (イ) は、図1の A-A・終断面説明図、図2(ロ)は同じくB-B・線 新面裂明図である。.

【0016】これらの菌に示すように、この発明のEE PROMは、シリコン基板表面のソースライン3とその 両側に配置される一対のドレインライン4、4との間の ゲート領域上に、絶縁膜を介してポリシリコンからなる 1対のL字状フローティングゲート2を配設してなり、 さらに、このフローティングゲート2上に層間絶縁障を 介して、共通するポリシリコンからなるコントロールゲ ート5を配設してなる。

【0017】上記フローティングゲート2は、図2 (イ) に示すように、A-A' 断歯においては、ソース オフセット9を保ってゲート領域のゲート酸化膜1、1 上に位置する一対の書き込み部位(狭幅部分)を有す る。ここでソースードレイン幅は1.6~2.0μm、ソ ースオフセットは 0.8~1.0 μmとするのが適してい る。かかる書き込み部位上のコントロールゲート5は、 各々のソースオフセット上で選択ゲートとしても機能す

【0018】一方、図2(ロ)に示すように、B-B' 断面においては、ソースライン3の両側に配置されたト ンネル酸化膜6上を被覆する消去部位(広幅部分)を有 してなる。なお、図中、7は、ロコス酸化酸からなる素 子分離領域である。

【0019】かかる構造のBEPROMにおいては、上 記一対の書き込み部位において、各々ドレイン側からフ ローティングゲートへのホットエレクトロンの往入によ 30 る書き込みが行なわれる。そして、消去部位において は、ソース側から両フローティングゲート2、2へ一括 してF-Nトンネリングによる消去が行なわれることと なる。そして、上記ホットエレクトロンの往入及びF-Nトンネリングがコントロールゲートを選択ゲートとし て制御されることとなる。

【0020】かかる図1のEEPROMは、例えば以下 のようにして作製することができる。まず、図3に示す ように、シリコン基板の所定の領域にロコス酸化法によ り、来子分離領域?を形成した後、メモリーセルのソー 40 ス構成ラインのイオン注入及び確素のイオン注入を行っ てDDD構造のソースラインを形成する。 表面を熱酸化 に付して全面に何えば200~300人程度のゲート酸 化膜 1 を形成し、フォトリソグラフィのパターニング及 びエッチングを行なうことにより、その一部にトンネル 酸化膜用窓を形成し、フォトレジストの除去後、熱度化 を行なうことにより、各々、一対のトンネル酸化膜6を 形成する。

【0021】次に、CVD法により全面にポリシリコン を堆積し、N型不純物拡散してフォトエッチングするこ 50 9 ソースオフセット

とにより、図5に示すように、各々狭幅領域と広幅領域 を有する一対のL字状フローティングゲート2を形成す

【0022】上記フローティングゲート2の形成後、図 6に示されるようにフォトレジスト8を用いたフォトリー ソグラフィにより、メモリーセルのドレイン構成ライン に砒素をイオン住入してドレインラインを形成する。

【0023】この後、フローティングゲート2の書き込 み部位上に各々CVDによる層間絶縁膜(SIOs)を 10 被覆形成した後、ポリシリコンの堆積層へのN型不純物 拡散並びに堆積層のフォトリソグラフィによるパターニ ング及びエッチングを行なうことにより、四7に示すご とく、コントロールゲート5を形成してこの発明のEE PROMが得られる。

[0024]

[発明の効果] 以上の様に、この発明のEEPROMに よれば、ソース側のオフセット部を選択ゲートとする場 合においても、ソース何より円滑に消去操作できるの で、独立して消去用ゲートを設ける場合と比べメモリー セル専有面積が著しく減少され、さらなるEEPROM の高集積化を図ることが可能となる。

【0025】さらに、ホットエレクトロン発生効率の良 いドレイン接合及び、消去用の高電圧においてもリーク 竜流の少ない、ソース接合を別々に最適化できる。従っ て、ドレイン個よりホットエレクトロンにより書き込 み、ソース個よりF-Nトンネリングにより消去する電 気的消去可能不揮発性半導体配性装置の製造の観点から も、その設計がより容易となり、製造工程も容易となる 利点も得られる。

【図面の簡単な説明】

【図1】この発明の一実施例のEEPROMの平面構成 政明図である。

【図2】(イ)は、図1のA-A'維新面説明図、 (ロ)は、B-B'線斯面説明図である。

【図3】図1のEEPROMの製造工程を示すレイアウ ト団である。

【図4】図3に続くレイアウト図である。

【図5】図4に続くレイアウト図である。

【図6】図5に続くレイアウト図である。

【図7】図6に続くレイアウト図である。

【符号の説明】

- 1 ゲート酸化酸
- 2 フローティングゲート
- 3 ソースライン
- ドレインライン
- 5 コントロールゲート
- 6 トンネル酸化額
- 7 索子分離領域
- 8 フォトレジスト

