Esperienza n. 6: CARATTERISTICHE I-V di un transistor BJT

Caratteristiche del transistor bipolare (BJT)

Lo scopo di questa esperienza è quello di ricavare la caratteristica in uscita ed in ingresso del transistor BJT. Lo schema elettrico consigliato è presentato in fig. 1 dove il transistor è collegato ad emettitore comune.

Fig. 1 Schema elettrico per ricavare le curve caratteristiche di un transistor

Il comportamento del transistor collegato in questo modo è il seguente: facendo passare una piccola corrente I_b dentro la base si ottiene un grande passaggio di corrente I_c sul collettore. Il rapporto di amplificazione e definito come:

$$\beta_f = h_{FE} = I_c/I_b$$

Questa amplificazione è generalmente compressa fra 10 e qualche centinaia e dipende oltre che dalla sua costruzione, anche dalla temperatura del transistor; infatti l'espressione della corrente in una giunzione, ricavata nell'esperimento del diodo:

$$I = I_s(e^{\frac{V}{\eta V_T}} - 1)$$

dipende dalla temperatura assoluta sia nella corrente I_s che nel valore dell'esponente. A parità di tensione applicata ai capi della giunzione, aumentando la temperatura aumenta la corrente nella giunzione. Per evitare che le caratteristiche che si stanno ricavando siano compromesse dal forte aumento della temperatura del transistor è necessario <u>limitare la potenza dissipata</u> soprattutto nel circuito di collettore. A tal fine è necessario <u>disegnare</u>, <u>prima di iniziare le misure</u>, <u>la curva di massima potenza</u>:

$$P_{max} = V_{ce} I_c$$

che nel piano $I_c = f(V_{ce})$ è rappresentata da un iperbole. Il transistor disponibile in laboratorio è del tipo **NPN** con sigla **TIP31** e può dissipare al massimo **1W**, pertanto se la tensione V_{ce} è 2 V si può far passare 0.5 A, mentre con $V_{ce} = 6$ V la I_c massima che si può far passare è 0.17 A, e così via.

Si richiede di ricavare la famiglia di curve $I_c = f(V_{ce})$ per $I_b = costante$ (caratteristica in uscita) come presentato per esempio in fig. 2, costruendo la tabella 1, variando la corrente I_b da 100 μ A a 400 μ A a intervalli di 50 μ A. Dagli stessi dati è poi possibile ricavare la caratteristica in ingresso, semplicemente profilando la tabella 1 in modo opportuno.

Eventualmente, tra una variazione di I_b e l'altra, lasciare raffreddare il transistor, prima di riprendere le misure con la nuova I_b .

Fig. 2 Caratteristica $I_c = f(V_{ce})$ per $I_b = costante$

Procedimento:

- 1. Realizzare il circuito di fig. 1 utilizzando due multimetri digitali e due analogici.
- 2. Variando V_{be} , impostare una corrente di base di 100 μ A, leggendola sul tester analogico.
- 3. Leggere la tensione \mathbf{V}_{be} sul tester digitale.
- 4. Variare la tensione V_{ce} (registrarla) e leggere la corrente I_c sul tester analogico. Annotarsi la corrente I_b e la tensione V_{be} ad ogni variazione di V_{ce} . Se la corrente I_b dovesse variare per un certo valore di V_{ce} (quando passo da regione di saturazione a regione attiva) non reimpostare V_{be} .
 - Al fine di ricavare in modo preciso la curva del punto "3 analisi dati", per ogni valore di I_b prendere un punto nell'intorno di Vce = 6 V.
- 5. Impostare una corrente di base a 150 μA e rifare le misure cambiando V_{ce} .
- 6. Ripetere le misure fino alla corrente $I_b = 400 \mu A$, procedendo per incrementi di 50 μA .

I _b [μA]	V _{ce} [V]	V _{be} [V]	I _c [mA]
100	0,1		
100			
100			
100	Vcemax		
150	0,1		
150			
150			
150	Vcemax		

Tabella 1

Analisi dati:

- 1. Ricavare la famiglia di curve $I_c = f(V_{ce})$ per $I_b = costante$.
- 2. Ricostruire la famiglia di curve per $I_b = f(V_{be})$ con $V_{ce} = costante$.
- 3. Graficare $\beta_f = f(I_c)$ per $V_{ce} = 6 \text{ V}$.
- 4. Ricavare la tensione di Early effettuando una regressione lineare delle curve $I_c = f(V_{ce})$ nella regione attiva.