MATH 217 W24 - LINEAR ALGEBRA, Section 001 (Dr. Paul Kessenich) Homework Set Part B due ??? at 11:59pm Zhengyu James Pan (jzpan@umich.edu)

1. Let V be a vector space, and let $(\vec{v}_1, ..., \vec{v}_n)$ be a list of vectors in V. Define the function $T : \mathbb{R}^n \to V$ by

$$T\left(\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}\right) = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n \text{ for all } \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n$$

(a) Prove that T is a linear transformation.

Solution: Let
$$b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$
, $c = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n$, $k \in \mathbb{R}$

$$T(b+c) = (b_1+c_1)v_1 + \dots + (b_n+c_n)v_n$$

$$= b_1v_1 + \dots + b_nv_n + c_1v_1 + \dots + c_nv_n$$

$$= T(b) + T(c)$$

$$T(kc) = (kc_1)v_1 + \dots + (kc_n)v_n$$

$$= k(c_1v_1) + \dots + k(c_nv_n)$$

$$= k(c_1v_1 + \dots + c_nv_n)$$

$$= kT(c)$$

(b) Prove that T is injective if and only if $(\vec{v}_1, \dots, \vec{v}_n)$ is linearly independent.

Solution: We know T is injective if and only if its kernel is 0_V . By definition, if $(\vec{v}_1, \ldots, \vec{v}_n)$ is linearly independent, then only $c_1 = \cdots = c_n = 0 \in \mathbb{R}$ satisfies $c_1v_1+\cdots+c_nv_n=0_V$, so the kernel of T is $\{0_n\}$. Meanwhile, if $(\vec{v}_1,\ldots,\vec{v}_n)$ is linearly dependent, there exists $c_1,\cdots,c_n\in\mathbb{R}$ not all zero which satisfy $c_1v_1+\cdots+c_nv_n=0_V$, meaning the kernel of T would not only be $\{0_n\}$. So linear independence of $(\vec{v}_1,\ldots,\vec{v}_n)$ is equivalent to T satisfying $\ker[T]=0_n$, which in turn is equivalent to T being injective.

(c) Prove that T is surjective if and only if $(\vec{v}_1, \ldots, \vec{v}_n)$ spans V.

Solution: If $(\vec{v}_1, \ldots, \vec{v}_n)$ spans V, any vector $\vec{v} \in V$ can be represented as $c_1v_1 + c_1v_2 = c_1v_1 + c_2v_2 = c_1v_1 + c_1v_2 = c_1v_2 = c_1v_2 = c_1v_1 + c_1v_2 = c_1v_2 =$

$$\cdots + c_n v_n = \vec{v}$$
, with $c_1, \ldots, c_n \in \mathbb{R}$. Then $T\left(\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}\right) = v$. So $(\vec{v}_1, \ldots, \vec{v}_n)$ spanning

V implies that T is surjective.

If T is surjective, then for all $v \in V$, there exists $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n$ such that $T \begin{pmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \end{pmatrix} =$

 \vec{v} . Then $v = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$ is a linear combination of $(\vec{v}_1, \dots, \vec{v}_n)$. So every $v \in V$ is in the span of $(\vec{v}_1, \dots, \vec{v}_n)$.

So we have shown that the surjectivity of T is equivalent to if $(\vec{v}_1, \ldots, \vec{v}_n)$ spans V.

(d) Prove that T is an isomorphism if and only if $(\vec{v}_1, \dots, \vec{v}_n)$ is an ordered basis of V.

Solution: By parts (b) and (c), $(\vec{v}_1, \ldots, \vec{v}_n)$ must be both linearly independent and span V in order for linear transformation T to be bijective. Then by Theorem B of Worksheet 11, the minimal spanning subset and maximal linearly independent ordered set $(\vec{v}_1, \ldots, \vec{v}_n)$ must be an ordered basis.

2. For a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, define the **transpose** of A to be the matrix

$$A^{\top} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

Consider the linear transformation

$$T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$$

$$T(A) = \frac{1}{2}(A + A^{\top}).$$

(a) Find the \mathcal{E} -matrix $[T]_{\mathcal{E}}$ of T, where

$$\mathcal{E} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right)$$

Solution: Plugging in each basis vector into T gives

$$T\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
$$T\begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}$$
$$T\begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$T\begin{pmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Using these results, we can find the \mathcal{E} -matrix of T

$$[T]_{\mathcal{E}} \left(\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \right) = \begin{bmatrix} \begin{bmatrix} 1&0\\0&0 \end{bmatrix} \end{bmatrix}_{\mathcal{E}} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$

(b) Find the C-matrix of T, where C is the ordered basis

$$\mathcal{C} = \left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right)$$

- (c) Compute the kernel of $[T]_{\mathcal{E}}$. This will be a subspace of the \mathcal{E} -coordinate space \mathbb{R}^4 for $\mathbb{R}^{2\times 2}$.
- (d) Find a basis for the corresponding subspace of $\mathbb{R}^{2\times 2}$ -that is, for the image of $\ker[T]_{\mathcal{E}}$ under the coordinate isomorphism $L_{\mathcal{E}}^{-1}: \mathbb{R}^4 \to \mathbb{R}2 \times 2$.
- (e) Compute the kernel of the C-matrix. This will be a subspace of the C-coordinate space \mathbb{R}^4 for $\mathbb{R}^{2\times 2}$.
- (f) Compute the image of the subspace $\ker[T]_{\mathcal{C}}$ under the coordinate isomorphism $L_{\mathcal{C}}^{-1}$: $\mathbb{R}^4 \to \mathbb{R}2 \times 2$.
- (g) Compare your answers in (d) and (f). How are they related to ker T?
- (h) Find a basis for the image of T using **either** \mathcal{E} -coordinates or \mathcal{C} -coordinates (which seems easier?) Don't forget to reinterpret vectors in the coordinate space as elements in $\mathbb{R}^2 \times 2!$