Лабораторная работа №2.2.6 Определение энерги активации по температурной зависимости вязкости жидкости

Мухаметзянов Дамир, Лангман Александр 15 февраля 2023 г. **Цель работы:** 1) измерение скорости падения шариков при разной температуре жидкости; 2) вычисление вязксоти жидкости по закону Стокса и расчет энергии активации.

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром 1-2 мм).

1 Теоретическая часть

1.1 Энергия активации

Для того чтобы перейти в новое состояние, молекула жидкости должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Температурная зависимость вязкости жидкости при достаточно грубых предположениях можно опистаь формулой

$$\eta \sim Ae^{W/kT} \tag{1}$$

Из формулы (1) следует, что существует линейня зависимость между величинами $ln\eta$ и 1/T, и энергию активации можно найти по формуле

$$W = k \frac{d(\ln \eta)}{d(1/T)} \tag{2}$$

1.2 Измерение вязкости

По формуле Стокса, если шарик радиусом r и со скоростью v движется в среде с вязкостью η , и при этом не наблюдается турбулентных явлении, тормозящую силу можно найти по формуле (3)

$$F = 6\pi \eta r v \tag{3}$$

Для измерения вязкости жидкости рассмотрим свободное падение шарика в жидкости. При медленных скоростях на шарик действуют силы Архимеда и Стокса, выражения для которых мы знаем. Отсюда находим выражения для установившейся скорости шарика и вязкости жидкости

$$v_{\rm ycr} = \frac{2}{9}gr^2\frac{\rho - \rho_{\rm x}}{\eta} \tag{4}$$

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_{\text{m}}}{v_{\text{vct}}} \tag{5}$$

Как видим, измерив установившуюся скорость шарика и параметры системы можно получить вязкость по формуле (5).

1.3 Экспериментальная установка

Для измерений используется стеклянный цилиндрчиеский сосуд B, наполненный исследуемой жидкостью (глицерин). Диаметр сосуда ≈ 3 см, длина ≈ 25 см. На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка должна располагаться ниже уровня жидкости с таким расчетом, чтобы скорость шарика к моменту прохождения этой метки успевала установиться. Измеряя расстояние между метками, b время падения определяют установившуюся скорость шарика $v_{\rm уст}$. Сам сосуд B помещен в рубашку D, омываемую водой из термостата. При работающем термостате температура воды в рубашке D, а потому и температура жидкости 12 равна температуре воды в термостате. Схема прибора (в разрезе) показана на рис. 1.

Рис. 1: Установка для определения коэффициента вязкости жидкости.

2 Ход работы

2.1 Подготовительные работы

Для начала отбираем 20 шариков, и измеряем их диаметры. Диаметры измеряем в трех случайных направлениях и усредняем. Это делается по той причине, что некоторые шарики (в частности металлические) имеют неидеальную геометрию. Эти измерения слабо отличались и в таблицу сразу заносились данные, усредненные в уме. Погрешности измерении диаметров $\sigma_d = 0.05$ мм. Плотности шариков в эксперименте

$$\rho_{\text{стекло}} = 2.5 \Gamma/\text{см}^3$$
 $\rho_{\text{метали}} = 7.8 \Gamma/\text{см}^3$

Nº	$\langle d \rangle$	$N_{\overline{0}}$	$\langle d \rangle$
	MM		MM
s1	2	m1	0.75
s2	2	m2	0.85
s3	2	m3	1
s4	2.1	m4	0.9
s5	2	m5	0.75
s6	2.05	m6	0.775
s7	2.1	m7	0.8
s8	2.2	m8	0.75
s9	2.1	m9	0.95
s10	2.1	m10	0.75

Таблица 1: Измеренные диаметры шариков. S - стеклянные, m - металлические

Измеряем длины частей цилиндра установки

$$l_1 = l_2 = (10 \pm 0.1)$$
cm

2.2 Измерение установившихся скоростей

Мы знаем путь, который проходит шарик от одной отметки цилиндра к другой. Осталось измерить время прохождения между этими отметками для получения скорости. Анализировав полученные значния получаем следующие данные (см. таблицу 2). Как видим скорости t_1 и t_2 всегда бизки. Отсюда можно предположить что на рассматриваемых участках скорость не меняется. В дальнейшем будем считать это предположение справедливым, которое в дальнейшем подтверждается малостью времени и пути релаксации.

Для каждого измерения считаем v, η, Re, τ, S где v это скорость шарика на участке $1+2, \tau$ это время релаксации (см. формулу 6), а $S=v\tau$ это путь релаксации.

$$\tau = \frac{2r^2\rho}{9\eta} \tag{6}$$

Плотность жидкости берем из графика 2

Данные всех расчетов приведены в таблице 3

$N_{\overline{0}}$	$T,^{\circ}C$	t_1	t_2	$N_{\overline{0}}$	$T,^{\circ}C$	t_1	t_2
s1	20	38:40	1:17:13	m1	20	54:30	1:50:64
s2	20	39:08	1:18:43	m2	20	40:53	1:21:92
s3	30	20:97	41:36	m3	30	18:91	38:08
s4	30	20:25	39:95	m4	30	20:75	41:37
s5	40	10:96	22:17	m5	40	12:04	25:00
s6	40	10:72	21:96	m6	40	13:78	27:37
s7	50	5:93	11:81	m7	50	8:97	17:97
s8	50	5:26	10:94	m8	50	8:87	17:72
s9	60	3:13	6:16	m9	60	3:55	6:65
s10	60	3:05	5:88	m10	60	4:71	9:53

Таблица 2: Измеренные времена падения шариков.

Как видим, времена и пути релаксации очень малые величины, поэтому предположение что установившейся скорость достигается на участках 1 и 2 оправдано. Как видим, числа Рейнольдса в основном меньше 1. Можно предположить что формула Стокса работает, но окончательный вердикт вынесет график зависимости $ln(\eta)(1/T)$. Собственно построим график этой зависимости.

Построив графики и апроксимировав точки прямой линией методом минимума хи квадрат получаем следующие данные (см. графики в конце)

Для стеклянных шариков

$$W/k = (5610 \pm 43) \mathrm{K}$$
 $\bar{\chi}_{\mathrm{стекло}} = 7.6$

Для металлических шариков

$$W/k = (5610 \pm 34) \mathrm{K}$$
 $ar{\chi}_{ ext{metajj}} = 6$

Для всех шариков вместе

$$W/k = (5488 \pm 63) {
m K}$$

 $ar{\chi}_{
m cmem} = 11.47$

Так как у графика со всеми шариками $\bar{\chi}$ большой, то ее в счет мы не возмьем. Так как у стеклянных шариков ошибки немного занижены ($\bar{\chi}=$

Nº	$T, ^{\circ}C$	v, cm/c	η , м Π ас	Re	τ , MC	S, μ_{M}
s1	20	0.26	417	0.02	0.53	0.01
s2	20	0.26	424	0.02	0.52	0.01
s3	30	0.48	224	0.08	0.99	0.05
s4	30	0.51	233	0.08	1.05	0.05
s5	40	0.9	121	0.28	1.84	0.17
s6	40	0.95	120	0.30	1.94	0.19
s7	50	1.7	71	0.89	3.43	0.58
s8	50	1.83	72	0.94	3.72	0.68
s9	60	3.25	37	3.24	6.57	2.13
s10	60	3.4	36	3.56	6.89	2.34
m1	20	0.18	443	0.02	0.07	0.001
m2	20	0.24	422	0.02	0.09	0.002
m3	30	0.53	271	0.07	0.20	0.011
m4	30	0.48	239	0.08	0.19	0.009
m5	40	0.8	100	0.30	0.31	0.025
m6	40	0.73	110	0.25	0.28	0.021
m7	50	1.11	82	0.50	0.43	0.048
m8	50	1.12	71	0.59	0.44	0.05
m9	60	2.07	62	1.24	0.81	0.168
m10	60	2.1	38	2.04	0.82	0.17

Таблица 3: Значения вязкостей в экспериментах

Рис. 2: Плотность глицерина при различных температурах.

7.6), то учитывая близость значении W для металлических и стеклянных шариков возмьем W как среднее этих двух. Получаем ответ

$$W/k = (5610 \pm 43) \text{K} \tag{7}$$

3 Обсуждение результатов

Сравним наши результаты с более точными результатами^[1]. На графике (3) видно, что значение вязкостей заметно отличаютя при низких температурах, при которых наш метод работает лучше всего. Различие можно объяснить различием состава глицерина и, возможно, неравномерностью нагрева в нашей установке, т.к. при низких температурах вязкость меняется резче, и неравномерная температура может сръезно повлиять на среднюю вязкость.

На графике (4), что связь между $ln(\eta)$ и 1/T лениейная лишь в некотором приближении. Если попытаться аппроксимировать точки линией методом хи квадрат, то для энергии активации получаем $W/k=(6517\pm2){\rm K},\,\bar\chi=59.0.$ Наша энергия активации отличается от последней на $\varepsilon=13\%,\,$ что так же можно объяснить предыдущими аргументами. Значение $\bar\chi$ намекет что линейная модель не описывает данную зависимость.

Рис. 3: Линеаризованный график для данных из работы [1]

Рис. 4: График со стеклянными шариками

Рис. 5: График с металлическими шариками

Рис. 6: График со всеми шариками