Практическая работа №6

Основы организации последовательного порта

Цель работы: изучить использование последовательного порта МК для различных применений.

1. Основные сведения о режимах работы последовательного порта

В структуру МК-51 входит дуплексный канал последовательной связи с буферизацией, который может быть запрограммирован для работы в одном из четырех режимов:

- Режим 0 синхронный, последовательный ввод-вывод со скоростью $f_{\rm ocu}/12;$
- Режим 1 асинхронный с 10-битовым кадром и переменной скоростью передачи, зависящей от частоты переполнения таймера / счетчика 1 T/C1;
- Режим 2 асинхронный с 11-битовым кадром и фиксированной скоростью передачи $f_{\text{осц}}/32$ или $f_{\text{осц}}/64$;
- Режим 3 асинхронный с 11-битовым кадром и переменной скоростью передачи, также определяемой частотой переполнения T/C1.

Принятые входные и передаваемые выходные данные в параллельном коде хранятся в буферном регистре SBUF, который располагается в пространстве SFR по адресу 99h. Управление работой приемопередатчиков осуществляется через слово управления и состояния SCON, расположенное в регистре по адресу 98h, имеющем структуру, показанную на рис. 1.

Рис. 1. Структура регистра SCON

SCON.0 – RI. Флаг прерывания приемника.

SCON.1 – TI. Флаг прерывания передатчика.

SCON.2 - RB8. Восьмой бит приемника в режимах 2 и 3. В режиме 1, если SM2 = 0, то отображает стоп-бит. В режиме 0 не используется.

SCON.3 – ТВ8. Восьмой бит передатчика в режимах 2 и 3.

SCON.4 – REN. Разрешение приема.

SCON.5 – SM2. Запрещение приема кадров с нулевым восьмым битом данных. В режиме 0 должен быть сброшен.

SCON.6 – SM1. Младший разряд для кодирования номера режима.

SCON7. – SM0. Старший разряд для кодирования номера режима.

Режим работы последовательного порта определяется следующим образом:

SM0	SM1	Режим	SM0	SM1	Режим
0	0	0	1	0	2
0	1	1	1	1	3

Биты SCON.0 – SCON.2 устанавливаются аппаратно, а сбрасываются программно, биты SCON.3-SCON.7 устанавливаются и сбрасываются программно.

В режиме 0 работы последовательного порта для синхронизации внешних устройств используется линия TxD (P3.1), по которой передаются синхроимпульсы, а прием и передача информации осуществляется по линии RxD (P3.0).

Скорость приема/передачи в режиме 0 определяется как

$$f_0 = f_{\text{осц}}/12$$
,

где $f_{\text{осц}}$ – частота кварцевого резонатора.

За один машинный цикл МК последовательный порт передает один бит информации.

Скорость приема/передачи последовательного порта в режиме 2 определяется как

$$f_2 = (2^{SMOD}/64)f_{\text{OCII}},$$

где бит SMOD является 7 битом регистра PCON (рис. 2).

Регистр PCON располагается в пространстве SFR по адресу 87h и полностью реализован в микросхемах КМОП технологии для управления режимом энергопотребления.

SMOD -	-	_	GF1	GF0	PD	IDL	
--------	---	---	-----	-----	----	-----	--

Рис. 2. Структура регистра PCON

Назначение бит регистра следующее:

PCON.0 - IDL. Бит холостого хода. При PCON.0 = 1 МК переходит в режим холостого хода.

PCON.1 - PD. Бит пониженной мощности. При PCON.1 = 1 МК переходит в режим пониженного потребления мощности.

PCON.2 – GF0. Флаг, специфицируемый пользователем.

PCOM.3 – GF1. Флаг, специфицируемый пользователем.

PCON.4 Не используется.

PCON.5 Не используется.

PCON.6 Не используется.

PCON.7 - SMOD. Удвоенная скорость работы последовательного порта, если SMOD = 1.

Скорость передачи в режимах 1 и 3 определяется не только битом SMOD, но и частотой переполнения таймера-счетчика T/C1. При настройке порта на эти режимы работы необходимо запретить прерывания по переполнению таймера T/C1.

$$f_{1,3} = (2^{SMOD}/32)f_{OVT1}$$

где f_{OVT1} — частота переполнения таймера-счетчика T/C1. Наиболее удобно при работе последовательного порта использовать второй режим работы T/C1 — режим 8-битного суммирующего счетчика с автоперезагрузкой. При этом частота передачи определяется выражением:

$$f_{1,3} = (2^{SMOD}/32) \cdot (f_{\text{осц}}/12(256 - (TH1))),$$

где TH1 – содержимое регистра TH1 таймера счетчика T/C1.

Параметры настройки T/C1 для управления частотой работы последовательного порта представлены в таблице 1.

Таблица 1 Настройка МК для управления частотой последовательного порта

Частота **SMOD** C/T1 Режим Т/С1 TH1 $f_{\text{оси}}$, МΓц Режим 0: 1 МГц X^* 12 X X X Режим 2: 375 КГц 12 X X X Режим 1, 3: 62,5 КГц 12 1 0 2 0FFh 19,2 КГц 11,059 1 0 2 0FDh 9,6 КГц 11,059 0 0 2 0FDh 4,8 КГц 11,059 0 0 2 0FAh 2,4 КГц 11,059 0 0F4h 0

1,2 КГц	11,059	0	0	2	0F8h
137,5 Гц	11,059	0	0	2	1Dh
110 Гц	6	0	0	2	72h

*Символ X обозначает безразличие в настройке соответствующего параметра.

Передача данных по последовательному порту инициируется всякий раз, когда новые данные заносятся в регистр SBUF, например, по команде MOV SBUF, А. Признаком окончания передачи служит установка флажка прерывания TI.

Операция приема данных активизируется только при установленном бите REN = 1, когда флажок RI сброшен. Установка флажка RI свидетельствует о готовности данных для считывания из регистра SBUF, тогда может быть использована, например, команда MOV A, SBUF.

2. Порядок выполнения практической работы

Создайте новый проект и разместите на рабочем поле МК MCS-51 и Virtual Terminal.

Puc. 2. Схема подключения Virtual Terminal

Пример С-программы для передачи символов «аbc» из последовательного порта при работе во 2 режиме (11-битовый кадр, фиксированная скорость передачи 375 Кбит/с).

```
#include <8051.h>
     //функция отправки символа по последовательному порту
     void tput(unsigned char c1)
     SBUF=c1; //заносим символ в буфер передачи
     while(!TI); //ожидаем окончания передачи
     TI=0; //сбрасываем флаг окончания передачи
     void main()
     char z;
     int i;
     //объявляем и инициализируем передаваемые символы
     unsigned char src[]={ 'a', 'b', 'c'};
     //устанавливаем бит SMOD в 1, для того чтобы скорость
приема
        /
            передачи равнялась 1/32
                                          частоты
                                                   кварцевого
резонатора
     PCON=0x80;
     for (i=0; i<3; i++)
     ACC=src[i]; //заносим текущий символ в аккумулятор
     //заносим
                 значение
                               регистр
                                         управления
                            В
                                                      режимом
приемопередатчика
     SCON = 0x88;
     //передаем текущий символ в функцию отправки
     tput (src[i]);
     while (1) {} //бесконечный цикл
```

3. Задание на практическую работу

11

12

13

Необходимо передать N байт информации, настроив последовательный порт на K-режим работы со скоростью обмена S Кбит/с.

В качестве приемника информации используется Virtual Terminal, который должен быть настроен на ту же скорость передачи /приема, что и МК.

Варианты задания

Таблица 2

	1	2	3	4	5	6	7	8	9	10
R/T	T	T	R	T	R	T	R	T	T	T
K	3	1	2	3	2	1	2	3	1	1
S, Кбит/с	19,2	19,2	375	2,4	187,5	4,8	187,5	62,5	9,6	1,2
XX	50h	30h	40h	50h	40h	60h	30h	40h	30h	50h
N	10	6	15	8	20	10	20	15	20	10

15

14

17

18

19

20

16

R/T	T	T	R	T	T	T	R	T	T	T
K	1	1	2	3	1	1	2	3	3	3
S, Кбит/с	2,4	4,8	375	9,6	19,2	1,2	187,5	2,4	4,8	9,6
XX	30h	30h	30h	50h	50h	30h	40h	50h	30h	30h
N	20	6	8	10	15	20	15	6	20	8

	21	22	23	24	25
R/T	T	T	T	T	T
K	1	3	1	1	3
S, Кбит/с	62,5	19,2	62,5	2,4	62,5
XX	50h	40h	30h	50h	30h
N	10	6	20	8	10