Design and Analysis of Algorithms Graphs 3: Depth-First Search

Daniel Shannon April 21st, 2022

3.4.2

Claim: A directed graph has a cycle *if and only if* its DFS reveals a back edge.

Proof:

By Induction. Consider a directed graph with two nodes, A and B ($A \rightarrow B \rightarrow A...$), in a cycle. Base Case: If we execute a DFS from node N=0 (node A), we will explore node B. Since the only other option is A, which has been marked as explored, we will create a back edge to include the cycle. If we start exploring at N=1 (node B), A will be marked as explored, and by the same logic we will create a back edge to include the cycle from $B \Rightarrow A$. Here we can see the cyclic nature of back edges from $A \rightarrow B$ and $B \rightarrow A$ regardless of the starting node.

By Induction. Consider the same graph $A \to B \to A...$ Base Case: A graph was explored from N=0 (node A) to generate a DFS tree that has the structure $A \to B...A$ with a back edge from $B \to A$. This is cyclic in nature. Now consider a DFS tree generated from N=1 (node B) with the structure $B \to A$ and a back edge to from $B \to A$. We can see that a DFS tree generated from a cyclic graph is reproducible regardless of the starting node.