# Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/000805

International filing date: 17 January 2005 (17.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-010171

Filing date: 19 January 2004 (19.01.2004)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)



# 日本国特許庁 JAPAN PATENT OFFICE

17.01.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 1月19日

出 願 番 号

特願2004-010171

Application Number: [ST. 10/C]:

[JP2004-010171]

出 願 人
Applicant(s):

中部キレスト株式会社キレスト株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 2月17日





【書類名】 特許願 【整理番号】 33044 【提出日】 平成16年 1月19日 【あて先】 特許庁長官殿 【国際特許分類】 CO9K 15/16 【発明者】 三重県四日市市日永東3丁目3-3 中部キレスト株式会社 兀 【住所又は居所】 日市工場内 【氏名】 南部 信義 【発明者】 三重県四日市市日永東3丁目3-3 中部キレスト株式会社 兀 【住所又は居所】 日市工場内 【氏名】 有松 一比古 【発明者】 三重県四日市市日永東3丁目3-3 中部キレスト株式会社 四 【住所又は居所】 日市工場内 【氏名】 濱口 寿光 【特許出願人】 【識別番号】 596148629 【住所又は居所】 大阪市阿倍野区旭町1丁目2番7-1102号 【氏名又は名称】 中部キレスト株式会社 【特許出願人】 【識別番号】 592211194 大阪市阿倍野区旭町1丁目2番7-1102号 【住所又は居所】 【氏名又は名称】 キレスト株式会社 【代理人】 【識別番号】 100067828 【弁理士】 【氏名又は名称】 小谷 悦司 【選任した代理人】 【識別番号】 100075409 【弁理士】 【氏名又は名称】 植木 久一 【手数料の表示】 【予納台帳番号】 012472 【納付金額】 21,000円 【提出物件の目録】 特許請求の範囲 1 【物件名】 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【包括委任状番号】 9710071

【包括委任状番号】

9710068



# 【請求項1】

熱可塑性樹脂を主な基材成分とする成形材料に配合される気化性防錆剤であって、当該 熱可塑性樹脂の軟化点以上の融点を有する亜硝酸金属塩と、安息香酸金属塩と、飽和ポリ カルボン酸またはその金属塩と、非鉄金属用防錆成分とを含有することを特徴とする樹脂 への練り込み用気化性防錆剤。

### 【請求項2】

前記亜硝酸金属塩が、亜硝酸のアルカリ金属塩およびアルカリ土類金属塩から選択される少なくとも1種である請求項1に記載の気化性防錆剤。

# 【請求項3】

前記安息香酸金属塩が、安息香酸のアルカリ金属塩およびアルカリ土類金属塩から選択される少なくとも1種である請求項1または2に記載の気化性防錆剤。

# 【請求項4】

前記飽和ポリカルボン酸が、セバシン酸、ドデカン二酸、アジピン酸、フマル酸、コハク酸、クエン酸、酒石酸、リンゴ酸よりなる群から選択される少なくとも1種である請求項 $1\sim3$ のいずれかに記載の気化性防錆剤。

### 【請求項5】

前記飽和ポリカルボン酸の金属塩が、アルカリ金属塩およびアルカリ土類金属塩よりなる群から選択される少なくとも1種である請求項1~4のいずれかに記載の気化性防錆剤

### 【請求項6】

前記非鉄金属用防錆成分が、 $2-メルカプトベンゾチアゾール、<math>2-ベンゾチアジルチオ酢酸、3-2-ベンゾチアジルチオプロピオン酸、2,4,6-トリメルカプト-s-トリアジン、2-ジブチルアミノー4,6-ジメルカプト-s-トリアジン、ベンゾトリアゾール、メチルベンゾトリアゾールおよびこれらのアルカリ金属塩、アルカリ土類金属塩、亜鉛塩よりなる群から選択される少なくとも1種である請求項<math>1\sim5$ のいずれかに記載の気化性防錆剤。

### 【請求項7】

前記亜硝酸金属塩と、安息香酸金属塩と、飽和ポリカルボン酸またはその金属塩と、非鉄金属用防錆成分とを、それぞれ5~50:10~90:1~80:0.1~80の質量比率で含有する請求項1~6のいずれかに記載の気化性防錆剤。

### 【請求項8】

前記熱可塑性樹脂が、ポリオレフィン系樹脂を主成分として含むものである請求項1~7のいずれかに記載の気化性防錆剤。

# 【請求項9】

前記請求項1~8のいずれかに記載の気化性防錆剤が、熱可塑性樹脂中に0.5~10 質量%含まれていることを特徴とする気化性防錆樹脂製品製造用成形材料。

# 【請求項10】

前記請求項9に記載の成形材料をフィルム状に成形したものであることを特徴とする気 化性防錆フィルム。

### 【請求項11】

前記請求項9に記載の成形材料をシート状に成形したものであることを特徴とする気化性防錆シート。

### 【請求項12】

前記請求項9に記載の成形材料を繊維状に成形したものであることを特徴とする気化性 防錆繊維。

### 【書類名】明細書

【発明の名称】気化性防錆剤、これを用いた成形材料および成形品 【技術分野】

# [0001]

本発明は、熱可塑性樹脂を主体とする成形材料に配合することによって、金属に対し優れた防錆効果を発揮する気化性防錆剤と、これを配合した成形材料、並びに該成形材料を用いて得られる気化防錆性成形品に関するものである。本発明の防錆剤は、例えばポリオレフィン系樹脂などの熱可塑性樹脂に混入させ、インフレーション成形法やTダイ成形法、溶融紡糸法などによってフィルム状やシート状、繊維状などに加工することで、各種金属製品の防錆に有用な気化性防錆製品を与える。

# [0002]

殊に、本発明の気化性防錆剤は熱的に安定であり、これを配合することによって得られる成形材料や成形品は、鉄鋼材に代表される鉄基金属材を激しく腐食させる環境下においても優れた防錆能を発揮すると共に、銅、真鍮その他の非鉄金属材に対しても優れた防錆作用を発揮する。

### 【背景技術】

# [0003]

鉄鋼に代表される鉄基金属や銅などの非鉄金属からなる金属製品の変色や発錆を防止するための手法として、ポリエチレンやポリプロピレン等の熱可塑性樹脂に気化性防錆剤を練り込んでフィルム状に加工した防錆フィルムや気化性防錆剤を塗布・印刷した防錆フィルムは公知であり、各種金属製品の主として包装用に実用化されている。

# [0004]

こうした用途に用いられる防錆剤の中でも、特に鉄鋼材に対して優れた防錆能を有する ものとしては、ジシクロヘキシルアンモニウム・ナイトライト(以下、DICHANと略 記する)、亜硝酸ナトリウム、安息香酸ナトリウム、有機酸アミン塩などが挙げられる。

# [0005]

例えば特許文献 1 、 2 には、上記DICHANや昇華性アミンなどの気化性防錆剤を熱可塑性樹脂に練り込んでフィルム状に成形し、防錆フィルムを得る方法が記載されている。しかしこれらの方法では、熱可塑性樹脂と混合して押出し成形する際に、熱可塑性樹脂の種類にもよるが、通常は約 $100\sim250$  の高温に加熱されるため、防錆剤が気化・揮散して防錆能が低下するばかりでなく作業環境を悪化させ、更にはフィルムとしての物性や外観を劣化させるという問題が指摘されている。

### [0006]

また上記以外の鉄鋼材の防錆に、亜硝酸塩や安息香酸塩などの水溶性防錆剤を防錆フィルムへ配合して使用することも試みられたが、これら単独では殆ど気化性防錆能を示さない。そこで、気化性防錆能を与えるためDAICHAN等の併用も検討されたが、気化性防錆剤は水溶性防錆剤との共存下で、熱可塑性樹脂に練り込んだときに熱時加水分解を起こして発泡し、フィルムの物性や外観を著しく劣化させる。

### [0007]

その他、鉄鋼材に対して高い防錆作用を有する亜硝酸ナトリウムやDAICHAN等の 亜硝酸塩は、アルミニウムや亜鉛、真鍮などを始めとする多くの非鉄金属に対しては却っ て腐食を助長するという問題がある。そこで、非鉄金属に対し防錆能を有しているベンゾ トリアゾールやメチルベンゾトリアゾール等を併用することも試みられたが、ベンゾトリ アゾールやメチルベンゾトリアゾールは、前述した如く約100~250℃の高温で鉄鋼 材用の気化性防錆剤と共に熱可塑性樹脂に練り込む際に溶融し、他成分と反応して凝集し 、凝集物が押出し成形装置のフィルター部分で詰りを起こす原因になり、しかも凝集物に よってフィルムの成形不良を招くといった問題を引き起こす。しかも、フィルム状などに 成形加工する際の熱で気化性防錆剤の一部が気化し、防錆効果が十分に発揮されなくなる という問題も指摘される。

### [0008]



【特許文献1】特公昭50-10625号公報

【特許文献2】特開2001-301027号公報

# 【発明の開示】

【発明が解決しようとする課題】

# [0009]

本発明は上記の様な状況に鑑みてなされたものであり、その目的は、熱可塑性樹脂基材中に練り込んでフィルム状などに成形する際の高温条件下においても溶融、分解、気化、揮散などを起こさず、作業環境を汚染することがなく、しかも、基材樹脂に練り込むことによって、鉄鋼を始めとする鉄基金属材はもとより銅や真鍮などの非鉄金属材に対しても、また高温多湿条件下においても、優れた防錆能を発揮し得る気化性防錆剤を提供し、併せて、該防錆剤を配合することによって気化性防錆能を有する熱可塑性樹脂成形品を与える成形材料を提供し、更には、該成形材料を用いた高性能の気化性防錆成形品を提供することにある。

# 【課題を解決するための手段】

# [0010]

上記課題を解決することのできた本発明に係る樹脂への練り込み用気化性防錆剤とは、熱可塑性樹脂を主たる基材成分とする成形材料に配合される気化性防錆剤であって、当該熱可塑性樹脂の軟化点以上の融点を有する亜硝酸金属塩と、安息香酸金属塩と、飽和ポリカルボン酸またはその金属塩と、非鉄金属用防錆成分とを含有するところに特徴を有している。

# [0011]

本発明で使用する上記亜硝酸金属塩としては、亜硝酸のアルカリ金属塩およびアルカリ土類金属塩から選択される少なくとも1種が好ましく、また前記安息香酸金属塩としては、安息香酸のアルカリ金属塩およびアルカリ土類金属塩から選択される少なくとも1種が好ましい。また上記飽和ポリカルボン酸として好ましいのは、セバシン酸、ドデカン二酸、アジピン酸、フマル酸、コハク酸、クエン酸、酒石酸、リンゴ酸よりなる群から選択される少なくとも1種であり、これら飽和ポリカルボン酸の金属塩として好ましいのは、同様にアルカリ金属塩及び/又はアルカリ土類金属塩である。

### [0012]

更に、上記非鉄金属の防錆用に配合される好ましい防錆成分としては、2ーメルカプトベンゾチアゾール、2ーベンゾチアジルチオ酢酸、3ー2ーベンゾチアジルチオプロピオン酸、2,4,6ートリメルカプトーsートリアジン、2ージブチルアミノー4,6ージメルカプトーsートリアジン、ベンゾトリアゾール、メチルベンゾトリアゾールおよびそれらのアルカリ金属塩、アルカリ土類金属塩、亜鉛塩が挙げられ、これらも各々単独で配合し得る他、必要により2種以上を任意の組み合わせで併用することができる。

# [0013]

また、上記亜硝酸金属塩と、安息香酸金属塩と、飽和ポリカルボン酸またはその金属塩と、非鉄金属用防錆成分の好ましい含有比率は、全防錆成分中に占める質量比率で亜硝酸金属塩: $5\sim5$ 0%、安息香酸金属塩: $10\sim9$ 0%、飽和ポリカルボン酸またはその金属塩: $1\sim8$ 0%、非鉄金属用防錆成分: $0.1\sim8$ 0%の範囲である。

### $[0\ 0\ 1\ 4]$

上記本発明の気化性防錆剤が配合される熱可塑性樹脂の種類は、目的とする成形品の用途や性状などによって任意に選択使用できるが、性能面やコストなどを総合的に考慮して最も実用性の高いのは、ポリエチレン、ポリプロピレン、ポリブチレンなどのポリオレフィン系樹脂、あるいはそれらを含む共重合樹脂である。

# [0015]

更に本発明には、上述した気化性防錆剤が熱可塑性樹脂中に0.5~10質量%配合さ れた、気化性防錆樹脂製品の製造用として有用な成形材料が包含され、この成形材料は、 常法に従ってフィルム状、シート状、繊維状など任意の形状に加工することによって、用 途に応じた形状の気化性防錆成形品を与えるので、これらの気化防錆性成形品(フィルム 、シート、繊維など)も本発明の技術的範囲に含まれる。

# 【発明の効果】

# [0016]

本発明の気化性防錆剤は、熱可塑性樹脂をフィルム状、シート状、繊維状などに成形す る際の高温条件下においても溶融、気化、分解、揮散することがなく、且つ悪臭や防錆剤 の昇華による粉塵の発生もなくて作業環境を害することがなく、安定した品質の気化性防 錆成形品を与える。しかも、本発明の防錆剤中に含まれる飽和ポリカルボン酸またはその 金属塩と亜硝酸塩成分が雰囲気中の水分と反応して亜硝酸ガスを発生するため、防錆フィ ルム等に直接接触していない部分においても防錆成分が金属表面に吸着し、防錆フィルム 等に接触した部分と同様の不動体皮膜を形成して防錆能を発揮する。更に、非鉄金属材に 対して防錆能を有する防錆成分を配合することにより、非鉄金属材の防食にも有効に活用 できると共に、鉄鋼材などの鉄基金属材に対する防錆性能も一段と向上する。

# 【発明を実施するための最良の形態】

# [0017]

上記の様に本発明の気化性防錆剤は、熱可塑性樹脂中に配合して加熱成形する際の温度 域においても、溶融、分解、気化などを生じない高融点の水溶性固体粉末であり、亜硝酸 金属塩と、安息香酸金属塩と、飽和ポリカルボン酸またはその金属塩と、非鉄金属用防錆 剤との少なくとも4成分を組み合わせたところに特徴を有している。

# [0018]

上記亜硝酸金属塩は鉄基金属に対して優れた防錆能を発揮する。特に、雰囲気中に存在 する水分や湿気などによる水分共存系では酸性域または中性域においても、後述する飽和 ポリカルボン酸またはその金属塩の存在と相俟って、亜硝酸金属塩の分解により鉄基金属 に対して優れた防錆能を発揮する亜硝酸ガスを発生させる作用を有しているため、鉄基金 属の防錆に最も重要な成分である。

### $[0\ 0\ 1\ 9\ ]$

金属塩の具体例としては種々挙げられるが、空気中の水分や湿気との反応性やコストの 観点から最も好ましいのは、ナトリウム、カリウム等のアルカリ金属、およびカルシウム 、マグネシウム等のアルカリ土類金属であり、これらの中でも最も実用性の高いのはナト リウム塩である。

### [0020]

次に安息香酸金属塩は、鉄基金属の接触防錆に寄与するもので、特に前述した亜硝酸金 属塩との共存下において鉄基金属材に対し相乗的に優れた防錆能を発揮する。こうした作 用は安息香酸自体によっても有効に発揮されるが、安息香酸の金属塩によっても同様に発 揮される。好ましい安息香酸の金属塩としては、同様にナトリウム、カリウム等のアルカ リ金属、およびカルシウム、マグネシウム等のアルカリ土類金属であり、これらの中でも 最も実用性の高いのはナトリウム塩である。

### [0021]

更に上記飽和カルボン酸またはその金属塩は、単独では鉄基金属に対し接触部において 優れた防錆能を有し、且つ前述した様に亜硝酸金属塩との共存下では優れた気化性防錆ガ スを発生させる作用を有しており、本発明において最も特徴的な成分である。飽和ポリカ ルボン酸としては、分子中に2以上のカルボキシル記を有する様々の飽和カルボン酸を使 用できるが、好ましいのはセバシン酸、ドデカン二酸、アジピン酸、フマル酸、コハク酸 、クエン酸、酒石酸、リンゴ酸などであり、中でも特に好ましいのはセバシン酸、ドデカ ン二酸、アジピン酸、酒石酸などである。これらは単独で使用し得る他、必要により2種 以上を併用することも可能であり、更にはこれらの酸の金属塩も同様に有効である。

# [0022]

上記亜硝酸金属塩と安息香酸金属塩が鉄基金属材に対して防錆能を有していることは知られている。しかし本発明では、これらを併用することで両者の防錆能を相乗的に発揮させ、更にはこれらと共に飽和ポリカルボン酸またはその金属塩を併用することで、更なる接触の防錆能の向上、もしくは更に高い気化防錆能を発揮させ、上記亜硝酸金属塩と安息香酸金属塩の有する鉄基金属材に対する防錆能を飛躍的に高めると共に、以下に示す非鉄金属用防錆成分の作用とも相俟って、非鉄金属材に対しても卓越した防錆能を発揮させることが可能となる。

# [0023]

次に非鉄金属用防錆成分は、上記3成分では達成することのできない非鉄金属に対する防錆効果を発揮させる上で欠くことのできない成分であり、これを適量配合することで、防錆剤として鉄基金属のみならず銅や真鍮などの非鉄金属材に対しても優れた防錆能を与えることが可能となる。該非鉄金属用防錆成分の具体例は、対照となる非鉄金属材の種類によっても変わってくるが、前述した亜硝酸金属塩、安息香酸金属塩、飽和ポリカルボン酸またはその金属塩との組み合わせにおいて優れた防錆能を発揮するのは、2ーメルカプトベンゾチアゾール(以下、MBTと略称する)、2ーベンゾチアジルチオ酢酸、3ー2ーベンゾチアジルチオプロピオン酸、2,4,6ートリメルカプトーsートリアジン、2ージブチルアミノー4,6ージメルカプトーsートリアジン、ベンゾトリアゾール、メチルベンゾトリアゾール、およびこれらのアルカリ金属塩、アルカリ土類金属塩、亜鉛塩などである。これらは各々単独で使用し得るほか、必要に応じて2種以上を任意の組み合わせで併用することができる。

# [0024]

上記4成分を必須とする本発明の防錆剤において、亜硝酸金属塩の配合量は5質量%以上、50質量%以下とするのがよい。5質量%未満では、特に鉄基金属材に対する防錆能が不足気味となり、一方、50質量%を超えると危険物の可燃性固形物に該当するものとなり、取扱いに制約が加わるので好ましくない。亜硝酸金属塩のより好ましい配合量は10質量%以上、30質量%以下である。

### [0025]

安息香酸金属塩の配合量は10質量%以上、90質量%以下とするのがよい。10質量%未満では、亜硝酸塩の配合量が相対的に多くなり過ぎて可燃性固形物に該当するものとなるため好ましくなく、逆に90質量%を超えて多量配合し過ぎると、その他の防錆成分の必要配合量を確保できなくなるので好ましくない。安息香酸金属塩のより好ましい配合量は20質量%以上、80質量%以下である。

### [0026]

飽和ポリカルボン酸またはその金属塩の配合量は、全防錆剤成分中に占める比率で1質量%以上、80質量%以下が好ましい。1質量%未満では鉄基金属材に対する防錆能が不足気味となり、逆に80質量%を超えて多くなり過ぎると、他の防錆成分の必要配合量を確保し難くなるため好ましくない。飽和ポリカルボン酸またはその金属塩のより好ましい配合量は2質量%以上、50質量%以下である。

# [0027]

非鉄金属用防錆成分の配合量は、全防錆剤成分中に占める比率で0.1質量%以上、80質量%以下が好ましく、0.1質量%未満では非鉄金属材に対する防錆能が不足気味となり、80質量部を超えて多過ぎると、他の防錆成分の適正配合量を確保し難くなるので好ましくない。非鉄金属用防錆成分のより好ましい配合量は0.5質量%以上、50質量%以下である。

### [0028]

本発明の防錆剤は上記4成分を必須成分とするが、これらの他に、例えばシリカ、アルミナなどの滑剤や無機質粒子、可塑剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、着色剤、防黴剤などを用途、目的に応じて適量配合することができる。

### [0029]

また本発明防錆剤の熱可塑性樹脂への配合量は0.5質量%以上、10質量%以下とす出証特2005-3011482



# [0030]

本発明の防錆剤は、上記必須の4成分と必要により配合することのあるその他成分を含 む混合物として、通常は粉末状で提供されるが、取扱い時の飛散防止などを含めて搬送性 や取扱い性を高めるため、粒状やフレーク状、錠剤状などとして提供できる。また、例え ば配合すべき熱可塑性樹脂材料に高濃度で混入させ、マスターバッチとしてペレット状や 粒状、フレーク状、塊状などの成形材料として提供することもできる。

# [0031]

上述した防錆剤を熱可塑性樹脂に含有させるに当っては、好ましくは100μm程度以 下に微粉砕した防錆剤粉末(混練物)を、熱可塑性樹脂のペレットや粒子、粉末などに任 意の手段で混練し、バンバリーミキサー、ミキシングロール、ニーダー、二軸混練押出し 機などによってコンパウンド化したり、前記ペレット、粒子、粉末などと防錆剤を直接ブ レンドしてから成形機に投入したりすればよい。

# [0032]

気化性防錆剤が配合される熱可塑性樹脂としては、低密度ポリエチレン、中密度ポリエ チレン、高密度ポリエチレン、ポリプロピレン、その他のポリオレフィン系樹脂やポリオ レフィン系共重合樹脂が最適であるが、この他、ポリエステル系樹脂、ポリアミド系樹脂 、エチレン-酢酸ビニルやアクリル酸エステル等の共重合体、アイオノマー樹脂、ポリ塩 化ビニル、ポリビニルアルコールなど、様々の熱可塑性樹脂を使用できる。

# [0033]

気化性防錆剤が配合された該熱可塑性樹脂成形材料を用いた成形法にも格別の制限はな く、公知の成形法、例えばフィルム状に成形する方法としては、インフレーション法やT ダイ法など;シート状に成形する方法としてはTダイ法など;繊維状に成形する方法とし ては溶融押出し法などを採用すればよい。繊維状とする場合はその後、用途目的に応じて 綿状、あるいは不織布状やネット状、更には任意の形状の織・編物状の防錆製品にするこ とができる。

# [0034]

従って、適量の気化性防錆剤が配合されたフィルム状やシート状、繊維状の成形品は、 これを袋状、包装紙状、箱状など任意の形状に加工することで各種金属製品の包装に使用 することで、当該金属製品の保管時もしくは輸送時における発錆を可及的に抑えることが できる。

### [0035]

また場合によっては、金属製品が封入された容器内にシート片や布状片として封入して おくことで防錆能を発揮させることもでき、更には各種反応乃至処理容器の如く特に内周 壁の防錆が必要となる金属製品では、搬送中乃至保管中の当該製品の内部に本発明の気化 防錆性成形品を装入しておくだけでも防錆機能を果たすことができる。更に、本発明の気 化性防錆剤を混合した熱可塑性樹脂、例えばポリエチレンやポリプロピレンなどを射出成 形することで、種々の形状の密閉容器を製造することができ、この容器に金属製品を収納 することによって容易に防錆を図ることができる。

### [0036]

本発明の気化性防錆剤は、上記の様に亜硝酸金属塩と安息香酸金属塩に飽和ポリカルボ ン酸またはその金属塩を配合することで、これらが水分や湿気の存在下で亜硝酸塩と徐々 に反応して鉄基金属材の防錆に有効な亜硝酸ガスを発生させ、鉄基金属材に対して接触部 はもとより非接触の気相部においても高い防錆効果を発揮する。しかも、銅や真鍮などの 非鉄金属材用の防錆成分と組み合わせることで、非鉄金属材に対しても優れた防錆能を発 揮するばかりでなく、鉄基金属材に対しても相乗的に優れた防錆能を発揮する。

### 【実施例】

### [0037]

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される

なお、下記実施例および比較例で用いた成分は下記の通りである。

# [0038]

成分(A):亜硝酸ナトリウム、日産化学工業社製の商品名「亜硝酸ソーダ」

成分(B):セバシン酸ナトリウム、豊国製油社製の商品名「SA-NA」

成分(C):安息香酸ナトリウム、伏見製薬社製の商品名「フミナール」

成分(D):2-メルカプトベンゾチアゾール(MBT)、三新化学工業社製の商品名「サンセラーM」

# 実施例および比較例

# [0039]

上記で得た各気化性防錆フィルムと、鉄鋼、銅、真鍮からなる各試験片( $6.0\times8.0\times1$ .  $2\,\mathrm{mm}$ )とを、図1(図中、1は金属試験片、2は気化性防錆フィルム、3はアクリル板、4は接着剤を示す)に略示する如く、接触部分と非接触の気相部分ができる様に、同じ種類の試験片 2枚の間にアクリル樹脂( $3.0\times6.0\times5\,\mathrm{mm}$ ) 2枚を、試験片間隔が $3.0\,\mathrm{mm}$ となる様に瞬間接着剤(東亞合成社製の商品名「アロン $\alpha$ 」)で接合し、箱状としてフィルムで包装してからヒートシールし、加温・湿潤雰囲気( $4.9\pm1.0$ 0、RH95%以上)における防錆能を下記の基準で評価した。結果を表3に示す。

### [0040]

なお試験は、上記加温・湿潤雰囲気で1ヶ月経過後のフィルムと金属試験片との接触部 および非接触部について、各試験片の発錆状態を下記の基準で評価した。

# [0041]

- ◎:錆および変色がみられない、○:点錆と僅かな変色がみられる、
- △:金属試験片の全表面積に対し10%未満で明らかな錆または変色が観察される、
- ×:金属試験片の全表面積に対し10~50%の範囲で錆または変色が観察される、
- ××:金属試験片の全表面積に対し50%超の領域に錆または変色が観察される。

### [0042]

【表1】

| (0    | 7  | 5       | 80       | 10         | 5               |                        |                     |                       | -                |
|-------|----|---------|----------|------------|-----------------|------------------------|---------------------|-----------------------|------------------|
| (質量%) | 9  | 70      | 15       | 10         | 5               |                        |                     |                       |                  |
|       | 5  | 25      | 09       | 10         | 1               | -                      |                     | 1                     | 5                |
|       | 4  | 25      | 09       | 10         | 1               |                        |                     | 5                     |                  |
|       | 3  | 22      | 09       | 10         |                 |                        | 2                   |                       |                  |
|       | 2  | 22      | 09       | 10         |                 | 2                      |                     |                       |                  |
|       | 1  | 22      | 09       | 10         | 5               | 1                      |                     |                       |                  |
|       | 符号 | 亜硝酸ナリウム | 安息香酸ナハウム | セバシン酸ナトリウム | 2-メルカプトベングチアゾール | 2-メルカプトベングチアゾールのナトリウム塩 | 3-2-ベングチアジルチオプロピオン酸 | 2,4,6-トリメルカプト-s-トリアジン | ベンブトリアゾールのナトリウム塩 |

[0043]

【表2】

| (     | 16 |    |           |            | 1         |           | 1            |                 | 100               |
|-------|----|----|-----------|------------|-----------|-----------|--------------|-----------------|-------------------|
| (質量%) | 15 | 2  | 88        | 10         |           |           |              | 1               |                   |
|       | 14 | 25 | 64.95     | 10         |           | 1         |              | 0.05            | 1                 |
|       | 13 | 25 | 55        | 10         | ]         | 5         | 5            | *****           |                   |
|       | 12 | 25 | 99        | 10         | 1         | -         | 5            | -               | *******           |
|       | 11 | 25 | 60        | 10         |           | 5         |              |                 |                   |
|       | 10 | 25 | 65        | 10         | 1         |           |              |                 |                   |
|       | 6  | 25 | 72        | 1          | 3         |           |              |                 |                   |
|       | 8  | 25 | 75        | a          |           | 1         |              |                 | -                 |
|       | 李  | 二二 | 安息香酸ナトリウム | セベシン酸ナトリウム | 酒石酸水素カリウム | ベングドリアゾール | メチルベングトリアゾール | 2-メルカプトベンゾチアゾール | ジンクロヘキシルアミンの安息香酸塩 |

[0044]

# 【表3】

| 亜硝酸ガス  | 発生量 | $(\mu  \mathrm{g/10ml})$ | 24.5 | 24.4 | 23.8 | 23.6 | 24.7 | 86.2 | 9.7 | 3.9      | 170.3 | 24.2 | 28.1 | 27.3 | 31.7 | 24.5 | 4.4  |      |      |      | -    | 24.5 |                                                                                                                                                                                                       |
|--------|-----|--------------------------|------|------|------|------|------|------|-----|----------|-------|------|------|------|------|------|------|------|------|------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 防鲭剤    | Hd  | (1%)                     | 7.1  | 9.6  | 7.4  | 7.4  | 9.6  | 7.4  | 7.1 | 9.4      | 5.7   | 9.4  | 7.2  | 7.2  | 7    | 9.2  | 6    |      | ļ    | I    |      | 7.1  | 1.<br>1.                                                                                                                                                                                              |
|        | 真鍮板 | 非接触部                     | 0    | 0    | 0    | 0    | 0    | 0    | 0   | ٥        | ×     | ×    | V    | ٥    | 0    | ×    | ٧    | ۵    | ٥    | ◁    | ×    | 0    | 国内A社製の亜硝系防錆フィルム、厚さ105 $\mu$ m<br>海外B社製の亜硝系防錆フィルム、厚さ105 $\mu$ m<br>市販の防錆剤が添加されたポリエチレン系フィルム、厚さ100 $\mu$ m<br>防錆剤無添加のポリエチレンスイルム(厚さ100 $\mu$ m)を包装用として使用し、<br>内部剤無添加のポリエチレンフィルム(厚さ100 $\mu$ m)を包装用として使用し、 |
|        | 草   | 接触部                      | 0    | 0    | 0    | 0    | 0    | O.   | 0   | ×        | ×     | ×    | 0    | 0    | 0    | ×    | ×    | ٧    | ×    | ۷    | ×    | ×    | ム、厚さ10m)を包装<br>m)を包装<br>2ohfい m                                                                                                                                                                       |
| 試験片の種類 | 銅板  | 非接触部                     | 0    | 0    | 0    | 0    | 0    | 0    | 0   | $\nabla$ | ××    | ×    | 0    | 7    | 0    | ×    | 7    | 7    | ∇    | Δ    | ×    | 0    | 条防錆フィルム、厚さ105μm<br>冬防錆フィルム、厚さ105μm<br>加されたポリエチレン系フィルム、厚さ100μm<br>リエチレンフィルム(厚さ100μm)を包装用として使用・<br>・ホア な ラ1のフィルス100cm *を 折り 唱り、 ř 挿 入 1 キャ                                                              |
| 試験)    | 剣   | 接触部                      | 0    | 0    | 0    | 0    | 0    | 0    | 0   | ×        | ×     | ×    | 0    | 0    | 0    | ×    | ×    | Δ    | ×    | Δ    | ×    | ×    | イントな、アイント、アイント、アイント、アイント、アイント、アントントン・アントントン・アントントン・アファン・アントン・アファン・アー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファ                                                                                           |
|        | 鋼板  | 非接触部                     | 0    | 0    | 0    | 0    | 0    | 0    | 0   | V        | 0     | 0    | 0    | 0    | 0    | 0    | ◁    | 0    | 0    | 0    | ×    | 0    | 号17:国内A社製の亜硝系防錆フィルム、<br>号18:海外B社製の亜硝系防錆フィルム、<br>号19:市販の防錆剤が添加されたポリエラ<br>号20:防錆剤無添加のポリエチレンフィル<br><sub>内型17</sub> A 属学路 ヒェモに 佐 早 1 の 2                                                                  |
|        | 夢   | 接触部                      | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 7        | 4     | 0    | 0    | 0    | 0    | 0    | ×    | ×    | 0    | 0    | ×    | ×    | A社製の国B社製の国B社製の国の対象の関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関                                                                                                                                           |
|        | 試験例 |                          | 符号1  | 符号2  | 符号3  | 符号4  | 符号5  | 符号6  | 符号7 | 符号8      | 符号9   | 符号10 | 符号11 | 符号12 | 符号13 | 符号14 | 符号15 | 符号16 | 71号级 | 符号18 | 符号19 | 符号20 | 符号17:国内<br>符号18:海外1符号19:市販<br>符号20:防衛<br>存号20:防衛                                                                                                                                                      |

### [0045]

上記表1~3の結果から、次の様に解析できる。

### [0046]

本発明の好ましい要件を全て満たす符号 $1\sim7$ の防錆剤は、鉄鋼材とフィルムとの接触部および非接触の気相部の何れにおいても錆の発生がみられず、且つ、非鉄金属材である銅に対しても高い防錆効果を有していることが分かる。

# [0047]

これらに対し、飽和ポリカルボン酸と非鉄金属用の防錆成分が含まれていない符号 8 は、鉄鋼材および銅、真鍮のいずれについても変色が激しく、防錆能が乏しい。また、該符号 8 に飽和ポリカルボン酸を添加した符号 9,10では、鉄鋼材の特に気相部で優れた防錆能が認められるが、銅、真鍮いずれの非鉄金属材に対しても変色が激しく、殆ど防錆能を有していない。

# [0048]



# [0049]

亜硝酸金属塩の添加量が好適範囲に満たない符号15は、鉄鋼に対する防錆効果が不足し、銅、真鍮に対する防錆効果も、亜硝酸の気化ガスが少ないためか不十分であった。また、有機アミンの安息香酸塩からなる符号16は、フィルム状に成形する際に防錆剤が気化して白煙が発生し、作業環境を著しく害するばかりでなく、鉄鋼および銅、真鍮に対する接触防錆効果も劣っている。

### [0050]

符号17,18は市販の亜硝酸塩系防錆剤を配合した防錆フィルムであり、鉄鋼に対する防錆効果はある程度有しているものの、銅、真鍮に対する防錆効果は劣るものであった

# [0051]

符号 19 はポリエチレンのみからなるフィルムを用いたブランク材であり、当然のことながら全く防錆効果が得られない。また符号 20 は、ポリエチレンフィルムの内部に、符号 1 で用いた気化防錆性フィルム 100 c m 2 を折り畳んで挿入したものであり、ポリエチレンフィルムとの接触部には発錆が確認されたが、非接触部では気相防錆効果が発揮されて錆の発錆は認められなかった。

# [0052]

「気化亜硝酸ガス量および水溶液 p H]

前記符号  $1\sim 1$  3 で使用した防錆剤粉末の気化亜硝酸ガス量を測定した。試験法としては、100m1のビーカーに各防錆剤サンプル0.5gを採取して17 リットルのデシケータ内に入れ、該デシケータ内に、35% グリセリン水10m1 を直径 40mmの秤量瓶に入れて装入することにより、デシケータ内を湿度 90% に調整して 24 時間保持する。 24 時間後、35% グリセリン水 10m1 に吸収された亜硝酸含量( $\mu$  g/10m1)を、<math>1- ナフチルアミン法で、紫外線分光器による吸光度から定量した。結果を表 3 に併記した。

### [0053]

また、各防錆剤粉末をイオン交換水で1%に希釈したときのpHを測定し、結果を表 3 に併記した。なお符号1, 3, 4, 6, 7, 11, 12, 13, 14 は、防錆成分の一部が水に懸濁した状態であった。

### [0054]

上記実験の結果から、亜硝酸金属塩と安息香酸金属塩を併用しただけの符号 8 では、気化亜硝酸ガス量は少ないが、酒石酸水素カリウムを入れた符号 9 では、酸性条件下での複分解によって多量の気化ガスを発生するため、多量の気化亜硝酸ガスが発生している。しかし、アルカリ性の飽和ポリカルボン酸が配合された符号  $1\sim 6$  及び符号 1  $0\sim 1$  4 においても、発生の機構は不明であるが気化ガスの発生はかなり多い。鉄鋼に対して気化防錆効果の高い代表的な防錆剤である D I C H A N の、この測定法で測定される気化亜硝酸ガス量は 1 0 0 1 1 1 程度であり、亜硝酸金属塩と飽和ポリカルボン酸またはその金属塩を併用することで、鉄鋼に対して優れた防錆効果を発揮し得ることが分かる。

### [0055]

なお上記実施例では、気化性防錆剤を熱可塑性樹脂に配合してフィルム状に加工した場合の実施例を示したが、シート状(好ましくは表面積の大きい波板状など)に加工した成形品であっても同様の機能を発揮し、更には繊維状に加工して不織布状や織・編物状とした場合でも同様の防錆能を発揮することが期待される。

### 【図面の簡単な説明】

### [0056]

ページ: 11/E

【図1】実験で採用した防錆試験法を略示する説明図である。

【符号の説明】

[0057]

- 1 金属試験片
- 2 気化性防錆フィルム
- 3 アクリル板
- 4 接着剤









【要約】

【課題】 フィルム状、シート状、繊維状などの気化性防錆成形品を製造する際に、高温条件下に曝されても、溶融、凝集、分解、気化、揮散等を起こさず、且つ悪臭や防錆剤の昇華による粉塵の発生がなくて作業環境を汚染することがなく、鉄基金属材はもとより銅などの非鉄金属材に対しても優れた防錆効果を発揮する樹脂練り込み用気化性防錆を提供し、更にはこれを練り込んだ気化防錆性成形品をすること。

【解決手段】 熱可塑性樹脂に練り込まれる気化性防錆剤であって、亜硝酸金属塩と、安息香酸金属塩と、飽和ポリカルボン酸またはその金属塩と、非鉄金属用防錆成分を含む複合防錆剤と、該防錆剤が配合されたフィルム状などの気化性防錆樹脂成形品を開示する。

【書類名】 手続補正書 【整理番号】 33044 平成16年 7月14日 【提出日】 特許庁長官殿 【あて先】 【事件の表示】 特願2004-10171 【出願番号】 【補正をする者】 【識別番号】 596148629 【氏名又は名称】 中部キレスト株式会社 【補正をする者】 592211194 【識別番号】 キレスト株式会社 【氏名又は名称】 【代理人】 100075409 【識別番号】 【弁理士】 植木 久一 【氏名又は名称】 【手続補正1】 特許願 【補正対象書類名】 代理人 【補正対象項目名】 【補正方法】 変更 【補正の内容】 【代理人】 【識別番号】 100075409 【弁理士】 【氏名又は名称】 植木 久一 【代理人】 100067828 【識別番号】 【弁理士】 小谷 悦司 【氏名又は名称】

【その他】

代理人の記載順序の変更であり、記載内容には変更ありません。

特願2004-010171

出願人履歴情報

識別番号

[596148629]

1. 変更年月日 [変更理由] 住 所 氏 名 1996年10月15日 新規登録 大阪市阿倍野区旭町1丁目2番7-1102号 中部キレスト株式会社 特願2004-010171

出願人履歴情報

識別番号

[592211194]

1. 変更年月日 [変更理由]

1996年10月15日

 住所変更 大阪市阿倍野区旭町1丁目2番7-1102号

キレスト株式会社