AMENDMENTS TO THE CLAIMS

- 1. (currently amended) A process for preparing 1-butene polymers optionally containing up to 30% by mol of derived units of ethylene, propylene or an alpha olefin of formula CH₂=CHZ, wherein Z is a C₃-C₁₀ alkyl group, comprising polymerizing 1-butene and optionally ethylene, propylene or said alpha olefin, in the presence of a catalyst system obtained by contacting:
 - a) at least a metallocene compound of formula (I):

$$R^4$$
 R^5
 R^6
 R^6

wherein:

M is an atom of a transition metal selected from those belonging to group 4, 5, 6 or to the lanthanide or actinide groups in the Periodic Table of the Elements; p is 2, being equal to the formal oxidation state of the metal M minus 2; X, equal to or different from each other, are hydrogen atoms, halogen atoms, R, OR, OSO₂CF₃, OCOR, SR, NR₂ or PR₂ groups, wherein R is a linear or branched, C₁-C₂₀ alkyl, C₃-C₂₀ cycloalkyl, C₆-C₂₀ aryl, C₇-C₂₀ alkylaryl or C₇-C₂₀ arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or a OR'O group wherein R' is a divalent radical selected from C₁-C₂₀ alkylidene, C₆-C₄₀ arylidene, C₇-C₄₀ alkylarylidene or C₇-C₄₀ arylalkylidene radicals; R¹, equal to or different from each other, are linear or branched, C₁-C₂₀ alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀ aryl, C₇-C₂₀ alkylaryl or C₇-C₂₀ arylalkyl radicals, optionally

containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

R², R³ and R⁶, equal to or different from each other, are hydrogen atoms or linear or branched, C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

R⁴ and R⁵, form together a condensed saturated or unsaturated C₃-C₇ membered ring optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements; every atom forming said ring being substituted with R⁷ radicals wherein R⁷, equal to or different from each other, are hydrogen atoms or linear or branched, C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

L is $(R^8)_2$ wherein R^8 is a linear or branched, C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical; and

- b) an alumoxane or a compound that forms an alkylmetallocene cation.
- 2. (original) The process according to claim 1 wherein the catalyst system further comprises an organo aluminum compound.
- 3. (currently amended) The process according to claim 1, wherein in the compound of formula (I), M is titanium, zirconium or hafnium; and X is a hydrogen atom, a halogen atom or an R group.
- 4. (previously presented) The process according to claim 1 wherein R^1 is a C_1 - C_{20} -alkyl radical; R^2 , R^3 and R^6 are hydrogen atoms and R^7 is a hydrogen atom or a linear or branched, C_1 - C_{20} -alkyl radical.
- (previously presented) The process according to claim 1 wherein the compound of formula(I) has formula (IIa) or (IIb):

$$R^{7}$$
 R^{7} R^{8} R^{2} R^{1} R^{7} R^{8} R^{2} R^{7} R^{8} R^{7} R^{8} R^{7} R^{8} R^{7} R^{8} R^{7} R^{8} R^{7} R^{8} R^{8} R^{7} R^{7} R^{1} R^{2} R^{3} R^{7} R^{7} R^{7} (IIa)

- 6. (previously presented) The process according to claim 1 wherein 1-butene is homopolymerized.
- 7. (currently amended) A metallocene compound of formula (IIb):

$$R^7$$
 R^7
 R^7
 R^6
 R^6
 R^7
 R^7
 R^8
 R^7
 R^7
 R^8
 R^7
 R^7
(IIb)

wherein

M is an atom of a transition metal selected from those belonging to group 4, 5, 6 or to the lanthanide or actinide groups in the Periodic Table of the Elements;

p is 2, being equal to the formal oxidation state of the metal M minus 2; L is $Si(R^8)_2$ wherein R^8 is a linear or branched, C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl,

 $C_6\text{-}C_{20}\text{-}aryl,\, C_7\text{-}C_{20}\text{-}alkylaryl or \, C_7\text{-}C_{20}\text{-}arylalkyl \, radical};$

R¹, equal to or different from each other, are linear or branched, C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

R², R³ and R⁶, equal to or different from each other, are hydrogen atoms or linear or branched, C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

R⁷, equal to or different from each other, are linear or branched, C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

X, equal to or different from each other, are hydrogen atoms, halogen atoms, R, OR, OSO₂CF₃, OCOR, SR, NR₂ or PR₂ groups, wherein R is a linear or branched, C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or a OR'O group wherein R' is a divalent radical selected from C_1 - C_{20} alkylidene, C_6 - C_{40} arylalkylidene radicals.

- 8. (cancelled)
- 9. (currently amended) A process for preparing a metallocene compound of formula (IIb):

$$R^7$$
 R^7
 R^7
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^7
 R^7
(IIb)

wherein

M is an atom of a transition metal selected from those belonging to group 4, 5, 6 or to the lanthanide or actinide groups in the Periodic Table of the Elements;

p is 2, being equal to the formal oxidation state of the metal M minus 2; L is $Si(R^8)_2$ wherein R^8 is a linear or branched, C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical;

R¹, equal to or different from each other, are linear or branched, C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

 R^2 , R^3 and R^6 , equal to or different from each other, are hydrogen atoms or linear or branched, C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R⁷, equal to or different from each other, are linear or branched, C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

X, equal to or different from each other, are hydrogen atoms, halogen atoms, OR, OSO₂CF₃, or OCOR, SR, NR₂ or PR₂ groups, wherein R is a linear or branched, C₁-C₂₀ alkyl, C₃-C₂₀ cycloalkyl, C₆-C₂₀ aryl, C₇-C₂₀ alkylaryl or C₇-C₂₀ arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or a OR'O group wherein R' is a divalent radical selected from C₁-C₂₀ alkylidene, C₆-C₄₀ arylidene, C₇-C₄₀ alkylidene radicals;

comprising the following steps:
a)contacting a ligand of formula (V):

or its double bond isomer

with a base of formula T_jB or $TMgT^1$, or sodium or potassium hydride, or metallic sodium or potassium; wherein B is an alkaline or alkali-earth metalalkali or alkaline earth metal and j is 1 or 2, j being equal to 1 when B is an alkaline metal, and j being equal to 2 when B is an alkali-earth metal; T is selected from the group consisting of linear or branched, C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl groups, optionally containing at least one Si or Ge atom; T^1 is a halogen atom or a group OR" wherein R" is a linear or branched, C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements; wherein the molar ratio between said base and the ligand of the formula (V) and is at least 2:1; and

- b) contacting the product obtained in step a) with a compound of formula MX₄.
- 10. (cancelled)
- 11. (cancelled)
- 12. (previously presented) The process according to claim 5 wherein R⁷, equal to or different from each other, are linear or branched, C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements.
- 13. (previously presented) The process according to claim 12 wherein formula I is formula IIa.
- 14. (previously presented) The process according to claim 12 wherein formula I is formula IIb.