Simulation stochastique d'un système de réaction simple

Alexis Pernet

December 1, 2016

Dans ce TP, on a généré aléatoirement le moment de déclenchement d'une réaction sur un modèle simple, ne contenant qu'une unique réaction (de la forme $A+B\to C$).

On utilise la densité de probabilité qu'on a identifiée, c'est a à dire:

$$p(t) = e^{-c_{AB}t}c_{AB}dt$$

A partir de celle-ci, on a une formule qui permet de transformer un nombre aléatoire entre 0 et 1 en un t correspondant:

$$t = \frac{\ln \frac{i}{n}}{c_{AB}}$$

On réalise 3 séries de 10000 tirages aléatoires, chaque série utilisant un c_{AB} différent.

Avec $c_{AB} = 10$

Avec $c_{AB} = 100$

On retrouve la répartition selon une loi exponentielle pour chacun des trois histogrammes. Cette répartition est similaire pour les différentes valeur de c_{AB} , mais les valeurs de t obenues sont plus petites quand c_{AB} est plus grand.