EDAF05 Exam

2 juni 2009, 14.00-19.00

Thore Husfeldt, Computer Science, Lund University

Instructions

What to bring. You can bring any written aid you want. This includes the course book and a dictionary. In fact, these two things are the only aids that make sense, so I recommend you bring them and only them. But if you want to bring other books, notes, print-out of code, old exams, or today's newspaper you can do so. (It won't help.)

You can't bring electronic aids (such as a laptop) or communication devices (such as a mobile phone). If you really want, you can bring an old-fashioned pocket calculator (not one that solves recurrence relations), but I can't see how that would be of any use to you.

Filling out the exam Most questions are multiple choice. Mark the box or boxes with a cross or a check-mark. If you change your mind, completely black out the box and write your answer's letter(s) in the left margin. In case it's unclear what you mean, I will choose the least favourable interpretation.

In those questions where you have to write or draw something, I will be extremely unco-operative in interpreting your handwriting. So *write clearly*. Use English or Swedish. If there is a way to misunderstand what you mean, I will use it.

Scoring Each multiple choice question has exactly *one* correct answer. To get the maximum score for that question, you must check that answer, and only that. However, to reflect partial knowledge, you *may* check several boxes, in case you're not quite sure (this lowers your score, of course – the more boxes you check, the fewer points you score). If you check *no* boxes or *all* boxes, your score for that question is 0. If the correct answer is not among the boxes you checked, you score is negative, so it's better to *not* answer a question where you're on very thin ice. The worst thing you can do is to check all boxes except the correct one, which gives you a large negative score.

Want an example? Assume a question worth maximum 2 points has k=4 possible answers (one of them correct).

- If you select only the correct answer, you receive 2 points.
- If you select 2 answers, one of which is correct, you receive 1 point.
- If you select 3 answers, one of which is correct, you receive 0.41 points.
- if you select no answer or all answers, you receive 0 point.
- If you select only one answer, and it is wrong, you receive -0.67 points.
- If you select 2 answers that are both wrong, you receive -1 point.
- If you select 3 answers that are all wrong, you receive -1.25 points.

As a special case, for a yes/no question, you receive 1, 0, or -1 points, depending on whether you answer is correct, empty, or wrong.

If you want to know the precise formula, if the question has k choices, and you checked a boxes, your score is $\log(k/a)$, provided you checked the correct answer, and $-a\log(k/a)/(k-a)$ if you only checked wrong answers. Moreover, I have weighted the questions by relevance (not necessarily difficulty), and indicated the maximum points with each question.

You really care why this scoring system makes sense? Then read [Gudmund Skovbjerg Frandsen, Michael I. Schwartzbach: A singular choice for multiple choice. SIGCSE Bulletin 38(4): 34–38 (2006)]. For example, random guessing will give you exactly 0 points, at least in expectation.

Algorithmic Problems

Camelot

King Arthur expects *N* knights for an annual dinner at Camelot, including himself. Unfortunately, some of the knights quarrel with each other. Thanks to his wizard Merlin's network of spies, Arthur knows who quarrels with whom. Arthur wants to seat his guests around a huge, round table so that no two quarrelling knights sit next to each other. Arthur is a beloved king, so he quarrels with nobody.

Input

The input consists of the integer N on a single line, followed by a list of N-1 names, one on each line, followed by a list of quarrels in the form of pairs of integers x y ($1 \le x < y < N$). The invited knights are indexed $1, \ldots, N-1$, Arthur himself has index N. Quarrels are mutual and only listed once.

Output

A seating order around the table, starting with Arthur, so that no knight quarrels with his neighbours. If no such order exists, the algorithm outputs the word "impossible".

Example

Example 1 Input	Example 2 Input
150 Gawain Lancelot (146 more names) Parceval 1 2 2 16 29 145 (many more lines) 137 149	Gawain Lancelot Parceval 1 2 2 3
Output Arthur Parceval (147 more names) Robert	Output

Ferries

Before bridges were common, ferries were used to transport cars across rivers. River ferries, unlike their larger cousins, run on a guide line and are powered by the river's current. Cars drive onto the ferry from one end, the ferry crosses the river, and the cars exit from the other end of the ferry.

Name:

There is a ferry across the river that can take M cars across the river in t minutes and return in t minutes. N > M cars arrive at the ferry terminal by a given schedule. (The schedule is known in advance.) What is the earliest time that all the cars can be transported across the river? What is the minimum number of trips that the operator must make to deliver all cars by that time?

Input

Input begins with M, t, N in the first line. N lines follow, each giving the arrival time for a car (in minutes since the beginning of the day). The operator can run the ferry whenever he or she wishes, but can take only the cars that have arrived up to that time.

Output

For each test case, output a single line with two integers: the time, in minutes since the beginning of the day, when the last car is delivered to the other side of the river, and the minimum number of trips made by the ferry to carry the cars within that time. You may assume that 0 < N, t, M < 1440. The arrival times for each test case are in non-decreasing order.

Examples

Make sure you understand these. In particular, think about why the answer to example 2 is "50 2" and not "60 2".

Example 1 Input	Example 2 Input
2 10 10 0 10 20 30 40 50 60 70 80 90	2 10 3 10 30 40
Output 100 5	Output 50 2

Wheels

Consider the machine to the right. Digits ranging from 0 to 9 are printed consecutively (clockwise) on the periphery of each wheel. The topmost digits of the wheels form a four-digit integer. For example, in the following figure the wheels form the integer 8056. Each wheel has two buttons associated with it. Pressing the button marked with a left arrow rotates the wheel one digit in the clockwise direction and pressing the one marked with the right arrow rotates it by one digit in the opposite direction.

We start with an initial configuration of the wheels, with the topmost digits forming the integer $S_1S_2S_3S_4$. You will be given a set of N forbidden configurations $F_{i,1}F_{i,2}F_{i,3}F_{i,4}$ ($1 \le i \le N$) and a target configuration $T_1T_2T_3T_4$. Your job is to write a program to calculate the minimum number of button presses required to transform the initial configuration to the target configuration without passing through a forbidden one.

Input

The first line of each test case contains the initial configuration of the wheels, specified by four digits. Two consecutive digits are separated by a space. The next line contains the target configuration. The third line contains an integer N giving the number of forbidden configurations. Each of the following N lines contains a forbidden configuration.

Output

Print a line containing the minimum number of button presses required. If the target configuration is not reachable print "-1".

Examples

Example 1 Input	Example 2 Input
8 0 5 6 6 5 0 8 5 8 0 5 7 8 0 4 7 5 5 0 8 7 5 0 8 6 4 0 8	0 0 0 0 5 3 1 7 8 0 0 0 1 0 0 0 9 0 0 1 0 0 0 9 0 0 1 0 0 0 9 0 0 1 0 0 0 9 0 0 0
Output 14	Output -1

Name:

Cylinder

Given an $M \times N$ matrix of integers (including negative numbers and zero), we want to compute a path of minimal weight from left to right across the matrix. A path starts anywhere in column 1 and consists of a sequence of steps terminating in column N. Each step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row, as shown to the right. The first and last rows (rows 1 and M) of a matrix are considered adjacent; i.e., the matrix "wraps" so that it represents a horizontal cylinder.

The weight of a path is the sum of the integers in each of the N cells of the matrix that are visited. The minimum paths through two slightly different 5×6 matrices are

The matrix values differ only in the bottom row. The path for the matrix on the right takes advantage of the adjacency between the first and last rows.

Input

The input consists of a sequence of matrix specifications. Each matrix consists of the row and column dimensions on a line, denoted M and N, respectively. This is followed by MN integers, appearing in row major order; i.e., the first N integers constitute the first row of the matrix, the second N integers constitute the second row, and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. No path's weight will exceed integer values representable using 30 bits.

In case you missed it: the integers can be negative, such as in Example 3 below.

Output

The cost of a minimum-weight path.

Examples

Example 1 Input	Example 2 Input	Example 3 Input
5 6	5 6	2 2
3 4 1 2 8 6	3 4 1 2 8 6	-1 10
6 1 8 2 7 4	6 1 8 2 7 4	9 -1
5 9 3 9 9 5	5 9 3 9 9 5	
8 4 1 3 2 6	8 4 1 3 2 6	
372864	3 7 2 1 2 3	
Output 16	Output 11	Output -2

Gophers

The are N gophers and M gopher holes, each at distinct (x,y) coordinates. A hawk arrives and if a gopher does not reach a hole in s seconds it is vulnerable to being eaten and considered not safe. A hole can save at most one gopher. All the gophers run at the same velocity v. The gopher family needs an escape strategy that minimizes the number of vulnerable gophers.

The input contains several cases. The first line of each case contains four positive integers less than 100: N, M, s, and v. The next N lines give the coordinates of the gophers; the following M lines give the coordinates of the gopher holes. All distances are in metres; all times are in seconds; all velocities are in metres per second.

Output consists of a single line for each case, giving the number of safe gophers.

Input 2 2 5 10 1.0 1.0 2.0 2.0 100.0 100.0 20.0 20.0

Output 1

Exam Questions

Analysis of algorithms

1. Let $f(n) = (n + 2\log n + \frac{1}{n})n\log n$	g n. True of false?
---	---------------------

(a) $(1 pt.) f(n) = O(n^3)$

x true

B false

(b) $(1 pt.) f(n) = O(n^2 \log n)$

x true

B false

(c) $(1 pt.) f(n) = O(n \log n)$

A true

false

2. Consider the following piece of code:

1: **for** i = 1 **to** n

2: for j = 1 to n

3: **for** k = j + 1 **to** j + 3

4: print k;

(a) (2 pt.) What is the running time? (Choose the smallest correct estimate.) Assume **print** takes constant

 $A O(\log n)$

 $\mathbb{B} O(\sqrt{n} \log n)$

CO(n)

 $D O(n \log n)$

 $\mathbb{E} O(n^{3/2})$

 $| V | O(n^2)$

 $G O(n^2 \log n)$

 $HO(n^3)$

 $\square O(n!)$

 $\int O(2^n \log n)$

(b) (1 pt.) Assume I changed line 4 to "**dostuff** (k, n);", where **dostuff**(k, n) takes time $O(k \log n)$. Then the running time for the whole algorithm is asymptotically

A faster

⊌ slower

C the same

(c) (2 pt.) Assume I changed line 3 and 4 to

if (i == i) then

4: for k = 1 to n print k;

else print *n*;

Then the running time for the whole algorithm is: (Choose the smallest correct estimate.)

 $A O(\log n)$

 $\mathbb{B} | O(\sqrt{n} \log n)$

C|O(n)

 $D O(n \log n)$

 $\mathbb{E}[O(n^{3/2})]$

 $\bigcirc O(n^2)$

 $G O(n^2 \log n)$

 $HO(n^3)$

 $\coprod O(n!)$

 $\bigcup O(2^n \log n)$

3. Consider the following piece of code:

1: int f(int n) {

2: if n > 9 then return f(n-1) + n/2;

3: else return 3; }

(a) (3 pt.) Which recurrence relation best characterises the running time of this method?

 $| \swarrow | T(n) = T(n-1) + O(1)$

 \square T(n) = T(n-1) + T(n/2)

 $\mathbb{E} T(n) = 2T(n-1) + O(1)$

 $|F|T(n) = 2T(n/2) + O(\log n)$

(b) (1 *pt.*) Find the solution to T(n) = 1 + T(n-1), T(0) = 0. Give the smallest correct answer.

 $A | O(\log \log n)$

 $B O(\sqrt{n} \log n)$

 $\bigcirc O(n)$

 $D | O(n \log n)$

 $\mathbb{E} |O(n^{3/2})|$

 $\mathbb{F} O(n^2)$ $G O(n^2 \log n)$

H O(n!)

 $IO(2^n \log n)$

(c) (1 pt.) (Harder) Find the solution to $T(n) = 1 + T(\sqrt{n})$, T(0) = 0. Give the smallest correct answer.

 $\bigcirc O(\log \log n)$ $\mathbb{F} O(n^2)$

B $O(\sqrt{n}\log n)$ $G O(n^2 \log n)$

CO(n) $\mathbb{H} O(n!)$ $D O(n \log n)$

 $\mathbb{E} O(n^{3/2})$

 $\square O(2^n \log n)$

(d) (1 pt.) Find the solution to $T(n) = n^2 + 4T(n/2)$, T(0) = 0. Give the smallest correct answer.

 $A O(\log \log n)$ $\mathbb{F} O(n^2)$

 $\mathbb{B} O(\sqrt{n} \log n)$ $\bigcirc O(n^2 \log n)$

 $\bigcirc O(n)$ HO(n!) $D | O(n \log n)$ $\square O(2^n \log n)$ $\mathbb{E} O(n^{3/2})$

Graphs

4. Consider the *n*-vertex graph $G_n = (V_n, E_n)$ that looks like this:

(a) There is an edge between u and v if

|A| u < v

 $B u \leq v$ $\mathbb{E} u^2 < v$

u + v is odd

 $|F|uv \leq 4$

 $|D|u = v \pmod{6}$ (b) $(1 pt.) G_n$ is bipartite

True

B False

(c) $(1 pt.) G_n$ is connected

A rue

B False

(d) (1 pt.) G_n is directed

A True

V False

(e) (1 pt.) G_n contains a Hamiltonian cycle

B False

(f) (1 pt.) Each vertex in G_n has degree

 $A \log n$

 $|B|\sqrt{n}$

⊘ n/2

D n

 \mathbb{E} 2n

(g) (1 pt.) A maximum independent set in G_n has size

 $|A| \log n$

 $|B|\sqrt{n}$

⊘ n/2

D n

 \mathbb{E} 2n

(h) (1 pt.) $|E_n| =$

 $n^2/4$

 $\mathbb{B} n^2/2$

D $2n^2$ $H^{2\binom{n}{2}}$

 $\mathbb{E}\binom{n}{2}/4$

/	– Page 9 of 13 –	Name:	

Unweighted graph traversal

5. The following probl	lem can be modell	ed as a traversal prob	lem in an unweigł	nted (!) graph.		
(a) (3 <i>pt.</i>) That prob	lem is					
A Camelot	B Ferry	⊘ Wheels	D Cylinder	E Gophers		
(b) (1 pt.) The numb	er of vertices in th	ne corresponding grap	oh is at most	_		
$\boxed{\mathbb{A}} N$	$\mathbb{B}M$	2 100		\square NM		
E 4	$\mathbb{F}N+N$		O	$\mathbb{H} M \log N$		
		of each vertex is at mo	ost			
$\triangle N$	$\mathbb{B}M$	<u>C</u> 10		≥ 8		
(d) $(1 pt.)$ The result						
≰ undirected	B directe					
(e) $(3 pt.)$ In the resu	ılting graph, we c	an solve the original p	problem by			
A starting a DF	S from every verte	ex				
finding the sl	nortest path betwe	en two specific vertic	es			
C finding the la	rgest connected co	omponent				
D counting the	number of odd cy	cles				
E finding a top	ological ordering	of the vertices				
F running Dijks	stra from all vertic	es at the left				
(f) (1 <i>pt.</i>) The runni	ng time is $O(N^2)$.	(Be careful about what	at N is!)			
A true		♂ fal	se			
Greedy						
J						
6.						
(a) $(3 pt.)$ The follow	ving problem adm	its a greedy algorithm	n:			
A Camelot	🕜 Ferry	C Wheels	D Cylinder	E Gophers		
(b) (2 <i>pt.</i>) Here's ho	w it works:					
\triangle Let K_1,\ldots,K_n	$_{ m N}$ be the knights so	orted by how many q	uarrels they have,			
\mathbb{B} Let K_1,\ldots,K_n	$_{ m N}$ be the knights so	orted alphabetically,				
	V be the cars sorte	d by arrival time,				
\square Let C_1,\ldots,C_n	$_{\rm V}$ be the cars sorte	d by the time it has to	wait before the ne	ext car arrives behind it,		
\mathbb{E} Let P_1, \ldots, P_N	\mathbb{E} Let P_1, \ldots, P_N be the forbidden positions sorted by their numerical distance to S ,					
\mathbb{F} Let C_1,\ldots,C_n	\mathbb{F} Let C_1, \ldots, C_N be columns sorted from left to right,					
		ners sorted by distance	e to nearest hole,			
	~ -	•		nave the same hole as their		
nearest hole,	1 (1 1	. 111	1 6 11 1	2 /		
	_N denote the goph	iers sorted by the nun	nber of other goph	ers within v^2/s metres,		
(c) (3 pt.)	1		1 1. 1.			
A in ascending	order.	⊌ in	descending order.			

(d) (1 pt.)

- \triangle Let the *i*th knight be the first knight among K_i, \ldots, K_N that does not quarrel with the (i-1)st knight.
- For $i = 1, ..., \lfloor N/M \rfloor$ a full ferry transports the cars $C_{(i-1)M+1}, ..., C_{iM}$. A single non-full ferry leaves with $C_{\lfloor N/M \rfloor M+1}, ..., C_M$ as soon as they have arrived.
- \square Start at the smallest entry in C_1 . In the *i*th step, go to the smallest of the three positions available from the (i-1)st position.
- \square For i = 1, ..., n, let G_i occupy to the nearest hole that is not yet occupied by $G_1, ..., G_{i-1}$.
- (e) (1 pt.) The running time is (give the smallest possible)

 $\bigcirc O(N)$. $\bigcirc O(N \log N)$.

Dynamic programming

7.

(a) (3 pt.) The following problem admits a straightforward dynamic programming solution:¹

A Camelot

B Wheels

Cylinder

D Gophers

(b) (3 pt.) Following the book's notation, we let OPT(i, j) denote the value of a partial solution. Then OPT satisfies²

Α

$$OPT(i, j) = min{OPT(i - 1, j), OPT(i - 1, j - 1) + f(i, j)}$$

B

$$OPT(i, j) = f(i, j) + \min_{j-1 \le k \le j+1} \{ OPT(i-1, k) \}$$

C

$$\mathrm{OPT}(i,j) = \min_{j \le k \le N} \big\{ \mathrm{OPT}(i-1,k) + f(i,k) \big\}$$

D

$$\mathrm{OPT}(i,j) = \max\{\, \mathrm{OPT}(f(i,j),j), \mathrm{OPT}(i-1,j) \,\}$$

Е

$$OPT(i, j) = max{OPT}(i - 1, f(i, j)), f(i) + OPT(i - 1, f(i - 1, j))}$$

F

$$OPT(i,j) = \min_{j-1 \le k \le j+1} \{ OPT(i-1,k) + f(i-1,k) \}$$

- (c) (2 pt.) where f(i,j) is
 - A 1 if knight *i* quarrels with knight *j* and 0 otherwise
 - \boxed{B} the distance from position i to position j

¹Yes, Ferries is missing from the list of answers. That is deliberate. I know that there is a dynamic programming solution to Ferries as well, but I don't want to hear it.

 $^{^{2}}$ There may be other cases, in particular, boundary conditions such as maybe for OPT(1,1) or OPT(N,0). Don't worry about them. This question is just about the most central part of the recurrence relation, otherwise this exercise becomes too large.

	\square the number of turns needed to turn position i into position j					
	the value in column i , row j					
	E the value in row i , column j					
		etween the <i>i</i> th gop	her and the i	ith hole		
		seconds needed for			to the ith hole	
	(d) $(1 pt.)$ The resulting			oner to get	to the jui note	
	· · · · ·	0		$C O(N^2)$	2)	$\square O(N^2 \log N)$
	EO(N)	$egin{array}{c} \mathbb{B} O(N \log N) & = 0 \end{array}$	5 M)	$\bigcirc O(N)$) M)	$\mathbb{H}O(NM^2)$
		1 0 (14 10)	5141)	(11)	*1)	<u> </u>
	Network flow					
8.						
	(a) (3 <i>pt.</i>) One of the is	problems in the se	et is easily so	olved by a	reduction to ne	etwork flow. That problem
	A Camelot	B Ferry	C Whee	els	D Cylinder	☑ Gophers
	(b) (2 <i>pt</i> .) The network	rk consists of a noo	de for ³			
	A each knight			B each	knight and eacl	h table position
	each car					empty slot" on the ferry
	E each configura				non-forbidden	configuration
	G each matrix er	ıtry		H each	~ .	sh hala
		number of nodes (ncluding the		gopher and eac	terms of the parameters of
	the original probl		nerdanig tik	e soure are	a the shirt, hi	terms of the parameters of
	M+N+2	$\mathbb{B}M+N$		C 2		\square M
	$\mathbb{E} N$	$\frac{\mathbb{B}}{\mathbb{F}} M + N$		GMN		$\mathbb{H} MN \log N$
	lously precise abo in general (use w sponding to a lett but complete exa	out how the nodes ords like "every no ter by an undirecte	are connected ode correspond arc of capa de example ins	ed and direction on ding to a conting to a conting the less tances. We are the continued and the conti	ected, and what giraffe is conn ngth of the nec That does a max	piece of paper. Be ridicu- t the capacities are. Do this lected to every node corre- k"), and also draw a small, kimum flow mean in terms al parameters?
	Computational complexity					
	These questions are a Gophers may or may		include ques	stions abou	ıt NP. Don't tal	ke this as an indication that
9.	(Decision version.) Th	e input to the decis	sion version	of Gopher	s is	
	(a) (1 pt.) a list of gop	oher and hole posi	tions			
	🜠 true	B false				
	(b) (1 <i>pt.</i>) an assignm	ent of some gophe	ers to holes			
	A true	❷ false				
	³ Apart from these, the the table, or the hawk, or the	re may be a constant nuthe two banks of the riv	— ımber of extra r rer, etc.	nodes, such a	s a source and a si	nk, or a single node representing

Name:

– Page 11 of 13 –

/	– P	age 12 of 13 –	Name:	
	() (1)			
	(c) (1 <i>pt.</i>) an integer <i>k</i>	ć 1		
	_	false	la ava ia	
	(d) $(1 pt.)$ The output to the	-	mers is	
	"yes," if at least k go	-		
	B "yes," if there are mo	U 1	one that can be carred	
		ch is the number of goph the hole assigned to each		
	E "yes" if the hawk ca		i gopilei	
	B yes if the flawk ca.	ii eat k gopileis		
10	. <i>Membership in NP</i> . The deci cate.	sion version of Gophers	is easily seen to be in NP,	because it admits a certifi-
	(a) (2 <i>pt.</i>) The certificate in information	cludes, (apart from the i	nput already listed in ans	wer above,) the following
	$\underline{\underline{A}}$ "yes," if k gophers can	an be rescued		
		•	of gophers that can be sav	red
	(yes," if the hawk ca	.		
		gophers such that the hav gopher in 0 seconds once	wk can kill them all before he reaches it.)	e they disappear. (Assume
	a list of pairs giving	the hole assigned to each	n gopher	
	F a list of the occupied	l holes		
	(b) (2 pt.) The certificate ha	s length (choose the sma	llest possible)	
	$\mathcal{O}(N)$	$\mathbb{B} O(N+M)$	$\bigcirc O(N^2)$	$\square O(M^2)$
	(c) (2 pt.) The certificate car			
	$\mathcal{O}(N)$	$\mathbb{B} O(N+M)$	$\bigcirc O(N^2)$	$\square O(M^2)$
	NP-hardness			
	One of the problems in the	set is NP-hard. ⁴		
11			_	
	(a) (3 pt.) The following pro-			
		Ferry C Whee		E Gophers
	(b) (3 pt.) The easiest way t			
	A Graph colouring E Vertex cover	B 3-dim. matching F 3-satisfiability	C Independent set G Travelling salesman	☑ Set packing☑ Hamiltonian cycle
	(c) (2 <i>pt.</i>) and prove			
	\triangle $P_1 \leq_P P_2$	$ \overrightarrow{v}$ $P_2 \leq_P P_1$		
	(d) (1 pt.) For this, an arbiti	cary instance of	_	_
	A Camelot	B Ferry	C Wheels	D Cylinder
	E Gophers	F Graph colouring	G 3-dim. matching	H Independent set
	I Set packing		K 3-satisfiability	L Travelling salesman
	Hamiltonian cycle			

 $[\]overline{\ }^4$ If P=NP then *all* these problems are NP-hard. Thus, in order to avoid unproductive (but hypothetically correct) answers from smart alecks, this section assumes that $P \neq NP$.

/	- I	Page 13 of 13 –	Name:	
	(e) (1 pt.) is transformed in	nto an instance of		
	✓ Camelot	B Ferry	C Wheels	D Cylinder
	E Gophers	F Graph colouring	G 3-dim. matching	H Independent set
			K 3-satisfiability	L Travelling salesman
	$\overline{\mathbb{M}}$ Hamiltonian cycle			

(f) (4 pt.) Describe the reduction on the back of this page, or on a separate piece of paper. Do this both in general and for a small but complete example. In particular, be ridiculously precise about the paramters of the instance you produce (for example number of vertices, edges, sets, colors) in terms of the parameters of the original instance, what the solution of hte transformed instance means in terms of the original instance, etc.