Statistik

Es sollen damit die Berechnung grundlegender statistischer Maße wie Mittelwert, Median, Modus, Spannweite, Varianz und Standardabweichung gezeigt werden.

Gehaltsdaten

Mitarbeiter	Gehalt [€]	Mitarbeiter	Gehalt [€]	Mitarbeiter	Gehalt [€]
MA_1	2000	MA_8	2700	MA_15	4200
MA_2	2100	MA_9	2800	MA_16	4500
MA_3	2200	MA_10	3000	MA_17	5000
MA_4	2300	MA_11	3500	MA_18	5500
MA_5	2400	MA_12	3600	MA_19	6000
MA_6	2500	MA_13	3800	MA_20	12000
MA_7	2600	MA_14	4000		

Interpretation der statistischen Maße

Mittelwert (Durchschnitt)

• Er zeigt den durchschnittlichen Verdienst in diesem Unternehmen.

Der Mittelwert wird stark von Ausreißern beeinflusst.

$$\frac{\mathbf{Mittelwert} = \frac{\sum \mathbf{x_i}}{\mathbf{n}}}{\mathbf{n}}$$

 $\sum x_i = extsf{Summe}$ aller Gehälter $n = extsf{Anzahl}$ der Personen im Datensatz

 \circ 1.) Summe aller Gehälter: $2000 + 2200 + ... + 12000 = 77000 \, EUR$

 \circ 2.) Anzahl der Personen: n=20

 \circ 3.) Mittelwert berechnen: $\mathbf{Mittelwert} = rac{77000}{2} = \underline{3850}~EUR$

Median

- Er teilt den Datensatz in zwei Hälften:
 - Die eine Hälfte der Mitarbeiter verdient weniger, die andere mehr.

Der Median ist robuster gegenüber Ausreißern als der Mittelwert.

- 1.) Datensatz sortieren
- 2.) Anzahl der Werte feststellen
- o 3.) Mittleren Werte sind an Stelle 10 und 11

$${f Median} = rac{3000 + 3500}{2} = rac{3250\ EUR}{2}$$

Modus

• Der Modus zeigt den häufigsten Wert.

Eine Clusterung in Bereiche kann Sinn machen.

Der Modus ist nützlich für kategorische Daten

- z.B. häufige Antworten bei Umfragen.
- 1.) Zählen der Häufigkeit jedes Wertes.
- o 2.) Der am häufigsten vorkommende Wert ist der Modus.

Der Wert 2500 EUR kommt 2 mal vor.

Spannweite

• Sie gibt an, wie groß der Unterschied zwischen dem höchsten und niedrigsten Wert ist.

Die Spannweite ist ein sehr einfaches Maß für die Streuung.

$$\mathbf{Spannweite} = \mathbf{max_{(x_i)}} - \mathbf{min_{(x_i)}}$$

$$max_{(x_i)} = der\ gr\"{o}$$
ßte $Wert\ im\ Datensatz$ $min_{(x_i)} = der\ kleinste\ Wert\ im\ Datensatz$ $Maximalwert\ (h\"{o}chstes\ Gehalt) = \underline{12\ 000\ EUR}$ $Minimalwert\ (niedrigstes\ Gehalt) = 2\ 000\ EUR$

Spannweite =
$$12\ 000 - 2\ 000 = 10\ 000\ EUR$$

Varianz

• Sie misst die durchschnittliche quadratische Abweichung vom Mittelwert.

$$\mathbf{Varianz} = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{x}_i - \mathbf{\bar{x}}\right)^2$$

- 1.) Mittelwert berechnen
- o 2.) Abweichung jedes Wertes zum Mittelwert berechnen
- 3.) Abweichungen quadrieren (damit werden sie positiv)
- ∘ 4.) Summe bilden
- 5.) Durch die Anzahl der Werte dividieren

Standardabweichung

• Die Standardabweichung misst die durchschnittliche Abweichung der Werte vom Mittelwert.

Sie zeigt an, wie stark die einzelnen Werte um den Mittelwert **streuen**.

- o Je größer die Standardabweichung, desto weiter liegen die Werte auseinander.
- o Eine kleine Standardabweichung bedeutet, dass die Werte eng um den Mittelwert gruppiert sind.

$$\mathbf{Standardabweichung} = \sqrt{rac{1}{n}\sum_{i=1}^{n}{(\mathbf{x_i} - \mathbf{ar{x}})^2}}$$

Statistische Maße

Mittelwert	3840 EUR		
Median	3250 EUR		
Modus	2500 EUR		
Spannweite	10000 EUR		
Varianz	5042526 EUR		
Standardabweichung	2245 EUR		

Diagramm

