$$\min 3x_1 + 4x_2 + 6x_3$$

$$x_1 + 3x_2 + 4x_3 = 1$$

$$2x_1 + x_2 + 3x_3 = 2$$

$$x_1, x_2, x_3 \ge 0$$

 $2x_1$

 $min y_1 + y_2$

	x_1	$+3x_{2}$	$+4x_3 +3x_3$	$+y_1$		=1	
₹	$2x_1$	$+x_2$	$+3x_{3}$		$+y_2$	=2	;
			$y_2 \ge 0$				

Forma Canonica Riga #0 - #1 - #2

					`		
-5/	4	-9/4	0	7/4	0	-5/4	
1/	4	3/4	1	1/4	0	1/4 5/4	x_3
5/	4	-5/4	0	-3/4	1	5/4	y_2

 y_1

 y_2

 y_1

0	0	0	1	1	0	
0	1	1	2/5	-1/4	0	x_3
1	-1	0	-3/5	-1/4 $4/5$	1	x_1

Soluzione ottima $x^T = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$ di valore 0. Se fosse rimasta in base una y avremmo eseguito un'operazione di pivot sulla riga corrispondente alla yfacendo entrare una qualsiasi x.

Eliminiamo le colonne fuori base y_1 e y_2 e ripristiniamo la f.o. originaria.

x_1		x_3		
3	4	6	0	
0	1	1	0	x_3
1	-1	0	1	x_1

0	1	0	-3			
0	1	1	0	x_3		
1	-1	0	1	x_1		
Forma Canonica						

#0 - (6 x #1) - (3 x #2)

Eseguiamo la Fase II del Simplesso. Niente da eseguire, la base è ottima.