Chapter 16 Vector Calculus 16.7 Surface Integrals

Surface Differential

EXAMPLE. Find the area of the following parametric surface S:

https://www.desmos.com/3d/728faf627a

Parametric Equations

$$x = \cos((\pi/2)u)$$
$$y = \sin((\pi/2)u)$$
$$z = v$$

$$0 \le u \le 1, \ 0 \le v \le 1.$$

1. Divide the uv-region in small rectangles.

Divide D in small rectangles:

m parts of lungth Du

n parts of lungth Dv

Select a sample point Pin

in each rectangle.

2. Approximate the area of each small piece.

3. Sum up.

Area(S) ~
$$\sum_{i=1}^{\infty} \frac{\hat{s}}{\hat{j}^{-1}} |\vec{r}_u \times \vec{r}_v| \Delta A$$

4. Compute the Area.

$$|\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| = \frac{\pi}{2}$$

So,
$$Area(D) = \iint_D \frac{\pi}{2} dA = \int_0^1 \int_0^1 \frac{\pi}{2} du dv$$

$$= \left[\frac{\pi}{2}\right]$$

Surface Area Differential:

$$dS = |\vec{r}_u \times \vec{r}_v| dA$$

Integral of scalar-valued functions.

Data:

- A surface S.
- A parametrization $\vec{r}(u,v)$ of the surface with domain D.
 A scalar-valued function f(x,y,z). $\xrightarrow{}$ mass aersity.

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\vec{r}(u, v)) |\vec{r}_{u} \times \vec{r}_{v}| dA$$

5–20 Evaluate the surface integral.

5.
$$\iint_S (x + y + z) dS$$
,
 S is the parallelogram with parametric equations $x = u + v$, $y = u - v$, $z = 1 + 2u + v$, $0 \le u \le 2$, $0 \le v \le 1$

$$f(x_1y_1z) = x_1y_1z_1$$
, $\overrightarrow{r}(u_1v) = \langle u_1v_1, u_2v_1, u_1+2u_1v_2 \rangle$.

$$\overrightarrow{P}_{u} = \langle 1, 1, 2 \rangle$$

$$\overrightarrow{P}_{v} = \langle 1, -1, 1 \rangle$$

$$\overrightarrow{P}_{v} \times \overrightarrow{C}_{v} = \begin{vmatrix} \overrightarrow{D}_{v} & \overrightarrow{D}_{v} \\ 1 & 1 \end{vmatrix} = \langle 3, -(-1), -2 \rangle$$

$$\overrightarrow{P}_{v} \times \overrightarrow{C}_{v} = \begin{vmatrix} \overrightarrow{D}_{v} & \overrightarrow{D}_{v} \\ 1 & 1 \end{vmatrix} = \langle 3, -(-1), -2 \rangle$$

2 Integral
$$\iint x+y+z dS = \iint (u+v) + (u-v) + (1+zu+v) | \overrightarrow{P}_{u} \times \overrightarrow{P}_{v}| dA$$

$$= \iint \{|u+v+1| | \langle 3,1,-2 \rangle| dA$$

$$= \int_{0}^{1} \int_{0}^{2} (4u + v + 1) \sqrt{9 + 1 + 4} du dv$$

$$= \int_{0}^{1} \int_{0}^{2} (4u + v + 1) \sqrt{14} du dv$$

$$= \int_{0}^{1} \int_{0}^{2} (4u + v + 1) du dv$$

$$= \sqrt{14} \int_{0}^{1} \int_{0}^{2} (4u + v + 1) du dv$$

EXAMPLE.

Evaluate $\iint_S z \, dS$, where S is the surface whose sides are given by the cylinder $x^2 + y^2 = 1$ from z = 0 to z = 2 and whose bottom is the disk $x^2 + y^2 \le 1$ in the plane z = 0.

$$S = S_1 \sqcup S_2$$

 $S_1 : P(u,v) = \langle \cos u, \sin u, v \rangle$
 $0 \le u \le 2\pi, \quad 0 \le v \le 2$.
 $S_2 : P(u,v) = \langle v \cos u, v \sin u, o \rangle$

$$0 \le u \le 2\pi, \quad 0 \le v \le 1.$$

$$2 \quad \text{Integral} \quad \iint_{S} z \, dS = \iint_{S_1} z \, dS + \iint_{S_2} z \, dS$$

$$\frac{\partial n S_1}{\partial x} = \frac{\partial n S_1}$$

Then,
$$\iint_{S_1} Z dS = \int_0^2 \int_0^{2\pi} \sqrt{1} du dv = 4\pi$$

$$\frac{\text{on } S_2}{\text{on } S_2}$$
 Is $\frac{1}{2}dS = 0$ Why? because $\frac{1}{2}$ because $\frac{1}{2}$ or $\frac{1}{2}$ parametrization of S_2

So:
$$\iint_{S} z dS = 4\pi + 0 = 4\pi$$

Surface integral of Vector Fields.

• Non-orientable surfaces.

https://www.desmos.com/3d/45663aa8e7

• Orientable surface.

https://www.desmos.com/3d/b9f507b01b

- We assume that the surface is orientable, so that there is a well-defined normal vector.
- For a parametric surface with parametrization $\vec{r}(u, v)$:

$$\vec{n} = \frac{\vec{r}_u \times \vec{r}_v}{|\vec{r}_u \times \vec{r}_v|}$$

EXAMPLE.

Find a normal vector at every point of a sphere of equation

$$x^2 + y^2 + z^2 = 1$$

$$\vec{r}(0,\phi) = \langle \cos\theta \sin\phi, \sin\theta \sin\phi, \cos\phi \rangle$$
 $0 \le \theta \le 2\pi, \quad 0 \le \phi \le \pi$

$$\overrightarrow{F}_0 = \langle -\sin\theta \sin\phi, \cos\theta \sin\phi, o \rangle$$

$$\overrightarrow{F}_{d} = \langle \cos\theta, \cos\phi, \cos\phi, -\sin\phi \rangle$$

Thus,
$$\overrightarrow{n} = \frac{\overrightarrow{Po} \times \overrightarrow{P\phi}}{|\overrightarrow{Po} \times \overrightarrow{P\phi}|} = \langle -\cos\theta \sin\phi, -\sin\theta \sin\phi, -\cos\phi \rangle$$

$$|\overrightarrow{Po} \times \overrightarrow{P\phi}| = -\overrightarrow{P}(\theta, \phi).$$

Positive orientation of a closed surface.

Negative orientation of a closed surface.

Flux integral (or Surface integral).

https://www.desmos.com/3d/d51cd6d708

Data:

- An orientable surface S.
- A parametrization $\vec{r}(u, v)$ of the surface.
- A vector field $\vec{F}(x, y, z)$.

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F} \cdot (\vec{r}_{u} \times \vec{r}_{v}) \, dA$$

D: region of the parameters u and v.

EXAMPLE.

Find the flux integral of $\vec{F}(x,y,z) = \langle xy,yz,zx \rangle$ through the part of the paraboloid $z = 4 - x^2 - y^2$ lying above the square $[0,1] \times [0,1]$ and with upward orientation.

Parametrization

Flowy =
$$\langle x, y, 4-x^2-y^2 \rangle$$

for $0 \le x \le 1$, $0 \le y \le 1$.

$$\frac{\overrightarrow{C}_{x} \times \overrightarrow{P}_{y}}{\overrightarrow{C}_{x}} = \langle 1, 0, -2x \rangle$$

$$-x \quad \overrightarrow{P}_{x} \times \overrightarrow{P}_{y} = \langle 2x, 2y, 1 \rangle$$

$$\overrightarrow{P}_{y} = \langle 0, 1, -2y \rangle$$

$$\iint_{S} \overrightarrow{F} \cdot d\overrightarrow{S} = \iint_{D} \langle xy, y(4-x^2-y^2), x(4-x^2-y^2) \rangle$$

$$\langle 2x, 2y, 1 \rangle \quad dA$$

$$= \int_{0}^{1} \int_{0}^{1} 2x^{2}y + 2y^{2}(4-x^{2}-y^{2}) + x(4-x^{2}-y^{2}) dxdy$$

$$=$$
 $\frac{713}{180}$ ≈ 3.9611

EXAMPLE.

Find the flux integral of $\vec{F}(x, y, z) = \langle x, 2y, 3z \rangle$ if S is a cube with diagonal (0, 0, 0) to (1, 1, 1) and S has the positive orientation.

$$S_1: \langle u_1 | 1, v \rangle$$
 $S_3: \langle u_1 o_1 v \rangle$

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{T} \vec{F} \cdot d\vec{S} + \iint_{S_{1}} \vec{F} \cdot d\vec{S} + \iint_{S_{1}} \vec{F} \cdot d\vec{S} + \iint_{S_{1}} \vec{F} \cdot d\vec{S} + \iint_{S_{2}} \vec{F} \cdot d\vec{S} + \iint_{S_{3}} \vec{F} \cdot d\vec{S} + \iint$$

$$= \iint_{D} \langle u, 2v, 3 \rangle \cdot \langle 0, 0, 1 \rangle dA + \iint_{D} \langle u, 2v, 0 \rangle \cdot \langle 0, 0, -1 \rangle dA$$

Gauss' Law

The net charge enclosed by a closed surface S is

$$Q = \varepsilon_0 \iint_S \vec{E} \cdot d\vec{S}$$

where \vec{E} is the electric field and ε_0 is the permittivity of free space.