SOLEMNE II - MICROECONOMÍA II

PROFESOR: JUAN PABLO TORRES-MARTÍNEZ AYUDANTES: MARTÍN FERRARI - CATALINA GÓMEZ

Pregunta 1

En el contexto de emparejamientos bilaterales uno-a-uno con preferencias estrictas, demuestre que todo emparejamiento estable está en el núcleo.

La pauta está en la demostración del Teorema 4 de los Apuntes sobre Emparejamientos Bilaterales Unoa-Uno, los cuales fueron utilizados como material de apoyo durante el curso.

Pregunta 2

Demuestre que toda regla de elección social totalmente implementable en estrategias Nash es Maskin monótona.

Considere una economía con n agentes y un conjunto de alternativas sociales A. Cada $i \in \{1, ..., n\}$ tiene preferencias determinadas por un parámetro $\theta_i \in \Theta_i$. Así, $\Theta = \Theta_1 \times \cdots \times \Theta_n$ es el conjunto de posibles perfiles de características de la población. Una regla de elección social $f: \Theta \twoheadrightarrow A$ asocia a cada perfil de características de la población un conjunto de alternativas socialmente factibles.

Recuerde que f es totalmente implementable en estrategias Nash si existe un mecanismo $\Gamma = (S_1, \ldots, S_n, g)$ tal que, para cada $\theta \in \Theta$ el conjunto de equilibrios de Nash del juego Γ_{θ} inducido por Γ cuando los individuos tienen preferencias caracterizadas por θ , denotado por $\mathbb{E}(\Gamma_{\theta})$, cumple $g(\mathbb{E}(\Gamma_{\theta})) = f(\theta)$. Recuerde también que f es Maskin monótona si dados dos perfiles de características para la población, $\theta, \theta' \in \Theta$ tales que $a \in f(\theta)$ y $\{b \in A : a \succeq_{\theta_i} b\} \subseteq \{b \in A : a \succeq_{\theta_i'} b\}$ para todo $i \in \{1, \ldots, n\}$, podemos concluir que $a \in f(\theta')$.

Nos piden demostrar que f es Maskin monótona desde que sea totalmente implementable en estrategias Nash. Así, fije perfiles $\theta, \theta' \in \Theta$ y asuma que $a \in f(\theta)$ y $\{b \in A : a \succeq_{\theta_i} b\} \subseteq \{b \in A : a \succeq_{\theta'_i} b\}$ para todo $i \in \{1, \ldots, n\}$. Nuestro objetivo es probar que $a \in f(\theta')$. Ahora, como f es totalmente implementable en estrategias Nash, existe un equilibrio $\overline{s}(\theta) = (\overline{s}_1(\theta), \ldots, \overline{s}_n(\theta)) \in \mathbb{E}(\Gamma_{\theta})$ tal que $a = g(\overline{s}(\theta))$. Esto es,

$$g(\overline{s}_i(\theta), (\overline{s}_j(\theta))_{j \neq i}) \succeq_{\theta_i} g(s_i, (\overline{s}_j(\theta))_{j \neq i}), \quad \forall s_i \in S_i, \forall i \in \{1, \dots, n\}.$$

Por lo tanto, $g(\overline{s}_i(\theta), (\overline{s}_j(\theta))_{j\neq i}) \succeq_{\theta'_i} g(s_i, (\overline{s}_j(\theta))_{j\neq i}), \forall s_i \in S_i, \forall i \in \{1, \dots, n\}, \text{ lo cual implica que } \overline{s}(\theta) \in \mathbb{E}(\Gamma_{\theta'})$. Y como f es totalmente implementable en estrategias Nash, $a = g(\overline{s}(\theta)) \in f(\theta')$.

Pregunta 3

En el contexto de provisión de un bien público en un mercado en que los agentes tienen preferencias cuasilineales, describa detalladamente los mecanismos de Groves y de Clarke y demuestre que son implementables de forma veráz en estrategias dominantes.

La pauta está en las Definiciones 9 y 13 y en la demostración del Teorema 5 de las *Lecture Notes in Contract Theory* de Holger Müller, material de apoyo que fue utilizado durante el curso.

¹Esto es, el juego en el cual cada agente i escoge estrategias en S_i para maximizar sus preferencias \succeq_{θ_i} , sabiendo que el resultado de un perfil de acciones $(s_1, \ldots, s_n) \in S_1 \times \cdots \times S_n$ será $g(s_1, \ldots, s_n) \in A$.

Pregunta 4

Considere el contexto de emparejamientos bilaterales uno-a-uno con preferencias estrictas tales que todos los individuos prefieren estar emparejados a quedarse solos. Si hay al menos siete individuos, ¿es posible implementar en estrategias Nash la correspondencia que asocia a cada perfil de preferencias el conjunto de todos los emparejamientos estables? Explique detalladamente su argumentos, demostrando sus afirmaciones.

Vamos a seguir la recomendación hecha en la nota al pie de página del enunciado de la Solemne II:

Identifique cada relación de preferencias estricta de un individuo i sobre sus potenciales parejas, \succ_i , con una relación de preferencias sobre emparejamientos, \succeq_i^* , de tal forma que:

- (a) μ es estrictamente preferido a η (denotado por $\mu \succ_i^* \eta$) si y sólo si $\mu(i) \succ_i \eta(i)$.
- (b) μ y η son indiferentes para el individuo i si y sólo si $\mu(i) = \eta(i)$.

Note que, con esta identificación (bastante natural), las preferencias individuales pasan a ser preferencias sobre emparejamientos, que son las *alternativas socialmente factibles* en este contexto.

Sea E un conjunto de empresas y T un conjunto de trabajadores tal que $E \cup T$ tiene al menos siete elementos. Sea A el conjunto de emparejamientos bilaterales uno-a-uno entre empresas y trabajadores. Denote por Θ_e al conjunto de preferencias \succeq_e^* de la empresa e que son inducidas por preferencias estrictas \succ_e sobre $T \cup \{e\}$ tales que $t \succ_e e$ para todo $t \in T$. Para cada $t \in T$, defina Θ_t de forma análoga. Sea $\Theta = (\prod_{e \in E} \Theta_e) \times (\prod_{t \in T} \Theta_t)$ el espacio de preferencias y $f : \Theta \twoheadrightarrow A$ la regla de elección social que asocia a cada perfil de preferencias el conjunto de emparejamientos estables.

Nos piden discutir si $f:\Theta \twoheadrightarrow A$ es implementable en estrategias Nash.² La herramienta que tenemos para intentar responder afirmativamente este asunto es aplicar el Teorema de Maskin (REE, 1999). Como $\#(E \cup T) \ge 7$, la restricción de tener tres o más individuos se cumple. Por lo tanto, vamos a verificar si f es monótona y cumple con la condición de no poder de veto.

Monotonía. Sean $\theta, \theta' \in \Theta$ dos perfiles de preferencias. Dado un emparejamiento $\mu \in f(\theta)$, asuma que $\mu \succeq_{i,\theta}^* \eta$ implica $\mu \succeq_{i,\theta'}^* \eta$ para cada $i \in E \times T$, donde $\succeq_{i,\theta}^*$ es la preferencia del individuo i asociada a $\theta \in \Theta$. Note que, para demostrar a monotonía de f hay que probar que $\mu \in f(\theta')$. Suponga que $\mu \notin f(\theta')$. Como todos los individuos prefieren estar emparejados a quedarse solos, esto implica que existen $(e,t) \in E \times T$ tal que $\mu(e) \neq t$ y el emparejamiento η que se obtiene cuando e y t desvían de μ para formar una pareja cumple con las condiciones $\eta \succ_{e,\theta'}^* \mu$ y $\eta \succ_{t,\theta'}^* \mu$. Pero esto implica que $\eta \succ_{e,\theta}^* \mu$ y $\eta \succ_{t,\theta}^* \mu$, lo cual nos asegura que el par (e,t) quiere bloquear μ cuando las preferencias son determinadas por θ , una contradicción con la hipótesis de estabilidad de μ . Con esto aseguramos que f es monótona.

No existencia de poder de veto. Dado $\theta \in \Theta$, asuma que existe un individuo $h \in E \times T$ y un emparejamiento μ tal que $\mu \succeq_{i,\theta}^* \eta$ para todo $\eta \neq \mu$ y para todo $i \neq h$. Esto es, bajo las preferencias inducidas por θ , el emparejamiento μ es la mejor alternativa para todos los individuos (empresas y trabajadores) diferentes de h. Queremos probar que μ es estable (i.e., $\mu \in f(\theta)$). Si esto no fuera así, tendría que haber un par de individuos $(e,t) \in E \times T$ que quisieran desviar, pues todos prefieren estar emparejados a quedarse solos. Lo cual es imposible, pues μ es la mejor alternativa para $\#(E \cup T) - 1$ individuos, por lo cual no puede haber dos que consigan mejorar a partir de μ .³

Por lo tanto, sigue del Teorema de Maskin (REE, 1999) que es posible implementar en estrategias Nash la correspondencia que asocia a cada perfil de preferencias el conjunto de los emparejamientos estables. \Box

²Aquí uno puede valorar las ventajas de trabajar con una notación que enfoque en los elementos relevantes del problema, pues al esconder lo superfluo se puede intuir el camino a seguir.

 $^{^3}$ Aquí es clave que sólo estemos considerando relaciones de preferencia en las cuales los individuos preferen estar emparejados a quedarse solos. Caso contrario, aunque $\#(E \cup T) - 1$ individuos coincidan en posicionar un emparejamiento μ como la mejor alternativa, el agente que no está de acuerdo podría bloquear μ para estar solo.