Sang Yup Lee

Autoencoder 구조

- Autoencoder 의 종속변수
 - 정답 (즉, 모형을 통해 예측되는 값) = 입력값

■ 비용함수

- This network can be trained by minimizing the *reconstruction error*, $L(x, \hat{x})$, which measures the differences between our original input and the consequent reconstruction.
- $L(x, \hat{x})$ can be either MSE or CE

- Autoencoder
 - Encoder 부분
 - 차원축소의 역할
 - Representation learning
 - 일반적으로 이부분에 더 큰 관심 (혹은 더 많이 사용됨)
 - 고차원 벡터의 경우: 차원의 저주
 - 즉, 불필요한 정보를 많이 담고 있다.
 - Decoder 부분
 - Generative model 역할

- Applications of autoencoder
 - Dimensionality reduction
 - Denoising
 - Anomaly/outlier detection
 - Recommender system

- 차원축소: Compared to PCA
 - PCA
 - Linear dimensionality reduction
 - 분산정보를 이용해서 분산이 많은 순으로 수직인 축을 찾고, 해당 축에 대해서 linear projection을 통해 새로운 벡터를 구한다.
 - Autoencoder
 - Non-linear activation function을 사용하는 경우 ⇒ Non-linear dimensionality reduction
 - Linear activation function을 사용하는 경우는, PCA와 유사
 - 따라서 Autoencoder가 PCA를 포함하는 방법이라고 생각할 수 있음

- Python coding
 - See "Autoencoder_example_MNIST.ipynb"

- LSTM을 이용한 문서 차원 축소 & 분류
 - LSTM_AE_example.ipynb 참고
 - 각 문서를 20x100의 형태로 표현
 - 즉, 각 문서의 길이 = 20
 - 각 토큰 벡터 크기 = 100
 - 이를 위해 Word2vec 사용

- LSTM AE (cont'd)
 - 모형의 구조

학습 후, 이 부분을 이용해서 문서 분류

Denoising AE

Denoising autoencoder

- Compared to autoencoder
 - 원 입력값에 노이즈를 추가해서 입력값으로 사용

 Autoencoder는 노이즈가 제거된 (i.e., denoise) 원본 입력값을 예측 (즉, 정답은 원 입력값)

- Python code
 - Denoising_AE_MNIST.ipynb

AE for Anomaly detection

AE for Anomaly detection

- 주요 과정
 - 정상 관측치만을 이용해서 학습
 - 이상치를 포함한 데이터에 적용해서 예측, 비용함수 계산
 - 이상치의 경우, 정상 관측치만을 이용해서 학습한 모형을 통한 비용함수의 값이 크다는 점을 이용
 - 비용함수 값을 이용해서 이상치 탐지

AE for Anomaly detection

- Python code
 - AE_for_anomaly_detection.ipynb

Q & A