

Model Optimization and Tuning Phase Template

Date	20 July 2024
Team ID	SWTID1720082030
Project Title	Hydration Essentials: Classifying Water Bottle Images
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
	It uses Adam optimiser and batch normalisation along with dropout .
CNN	<pre>proded definition model = sequential({ resize_and_rescale, Comp20/22, kernel_size=(0, 3), activation='relu', input_shape=input_shape), NaxYoolingDipool_size=(0, 2), activation='relu'), Comp20(c4, kernel_size=(0, 3), activation='relu'),</pre>
(optimiser:	MasFoolingDipool_size(2, 2)), Com2D(s4, kernel_size(3, 3), activation-'relu'), MasFoolingDipool_size(2, 2)), Com2D(s4, kernel_size(3, 3), activation-'relu'), MasFoolingDipool_size(2, 2)), Flatten(),
Adam, batch	Dense(128, activation=None), Batthbermalization(), Activation("rebu"), Dropout(0.3), # Dropout layer with a dropout rate of 0.5 Dense(04, activation=None), Batthbermalization(),
normalisation	Activation("chul"), Dropout(a,3), # Oropout layer with a dropout rate of 0.5 Dense(num_classes, activation='softmax"),]) model.build(input_shape=input_shape)
and dropout)	[] model.summary() 3: Show hidden output
	 Model Training
	[10] model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=('accuracy'))

It uses Adam optimiser and 2 fully connected layers CNN (optimizer : Adam, 2 fully connected layers) It uses Adam optimiser and 3 fully connected layers **CNN** (optimiser: adam with 3 fully connected layers) Model Training It uses SDG optimiser with 3 layers CNN (with optimiser: SDG, 3 layers)

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
CNN (with optimiser: SDG, 3 layers)	A CNN with three layers optimized using SGD is a basic yet effective choice for image classification. SGD offers computational efficiency, making it suitable for large datasets. The three-layer architecture provides a balance between model complexity and performance, often yielding good results for simpler image classification tasks. While deeper architectures and more advanced optimizers might outperform this model on complex datasets, its simplicity and efficiency make it a strong baseline.