Calcolatori Elettronici - Ingegneria Informatica

Soluzione esercizi 1, 2, 3, 6 esercitazione del 21/01/2022

1. Data la funzione booleana $f(a,b,c,d,e) = \Sigma(4, 5, 12, 13, 20, 21, 29, 31)$ scrivere l'espressione logica minima utilizzando il metodo di Quine-McCluskey.

4	00100	1
5	00101	2
12	01100	2
13	01101	3
20	10100	2
21	10101	3
29	11101	4
31	11111	5

Dividiamo i mintermini in gruppi omogenei in base al peso.

4	00100 1 x
5	00101 2 x
12	01100 2 x
20	10100 2 x
13	01101 3 x
21	10101 3 x
29	11101 4 x
31	11111 5 x

Combinando i termini che differiscono di un solo bit otteniamo

4,5	0010- x
4,12	0-100 x
4,20	-0100 x
5,13	0-101 x
5,21	-0101 x
12,13	0110- x
20,21	1010- x
13,29	-1101 x
21,29	1-101 x
29,31	111-1 PO

L'implicante P0(29, 31) = abce è primo.

Dalla combinazione dei termini della tabella precedente otteniamo

4,5, 12, 13	0-10- P1
4,5, 20, 21	-010- P2
5,13, 21, 29	101 P3

Otteniamo gli implicanti primi

P0(29, 31)= abce P1(4,5,12,13) = a'cd' P2(4,5,20,21) = b'cd' P3(5,13,21,29) = cd'e

Costruiamo la tabella degli implicanti

	4	5	12	13	20	21	<mark>29</mark>	31	
P0							X	X	
P1	X	X	X	X					
P2	X	X			X	X			
P3		X		X		X	X		

P0 è essenziale poichè è l'unico che copre il 31

P1 è essenziale poichè è l'unico che copre il 12

P2 è essenziale poichè è l'unico che copre il 20

P0, P1 e P2 coprono tutti i mintermini di conseguenza la copertura minima è

$$f(a,b,c,d,e) = P0+P1+P2 = abce + a'cd' + b'cd'$$

2. Si realizzi il diagramma degli stati e la tabella degli stati della macchina a stati finiti (tipo Mealy) che rappresenta il seguente circuito a due ingressi xy e una sola uscita *u* avente la seguente specifica funzionale.

L'uscita u nel generico istante vale 1 solo dopo l'arrivo delle coppie (0,0), (0,1), (0,0), (1,0), (0,0).

La macchina a stati è la seguente

La tabella degli stati che ne consegue è:

Stato	00	01	11	10
A	A/0	B/0	Z/0	Z/0
В	C/0	Z/0	Z/0	Z/0
C	A/0	B/0	Z/0	D/0
D	A/1	Z/0	Z/0	Z/0
Z	A/0	Z/0	Z/0	Z/0

3. Data la seguente tabella degli stati relativa ad una rete sequenziale con un solo ingresso x:

Stato	x=0	x=1
A	C/0	B/0
В	B/0	E/0
С	A/0	D/0
D	D/0	E/0
Е	D/0	A/1

- Eseguire la minimizzazione degli stati e realizzare la tabella degli stati della macchina minima equivalente.
- Costruire la tabella delle transizione e delle eccitazioni usando come elemento di memoria i FF D.
- Scrivere l'espressione logica minima delle funzioni booleane che rappresentano lo stato prossimo e l'uscita.

В	BC, BE X		_	
С	BD equivalenti	AB, DE X		
D	CD, BE X	equivalenti	AD, DE X	
Е	X	X	X	X
	A	В	С	D

A equivalente a C perché B è equivalente a D

$$a=\{A,C\}, b=\{B,D\}, c=\{E\}$$

Tabella degli stati in forma minima

Stato	x=0	x=1
a	a/0	b/0
b	b/0	c/0
С	b/0	a/1

Codifichiamo considerando a= 00, b=01, c=11

Stato	x=0	x=1
00	00/0	01/0
01	01/0	11/0
11	01/0	00/1

Poiché usiamo il ff D, la tabella delle eccitazioni coincide con quella delle transizioni.

Q1Q0	x=0	x=1
00	0	0
01	0	1
11	0	0
10	-	-
	$D1=xQ_1'Q_0$	

Q1Q0	x=0	x=1
00	0	1
01	1	1
11	1	0
10) -	-
	$D0=x'Q_0+xQ_1'$	

Q1Q0 00	x=0	x=1
00	0	0
01	0	0
11	0	1
10	-	-
	$U=xQ_1$	

6. Valutare lo speedup di un processore pipeline rispetto a uno sequenziale considerando il seguente instruction mix (load 20%, store 10%, branch 20% con 50% di branch taken, ALU 50%) e assumendo la presenza di 2 memorie distinte (istruzioni e dati), di non usare il data forwarding, di usare un approccio predict untaken per il branch e che l'esito del branch è noto nella fase di execute. Si assuma che il 40% delle ALU (istruzione i) ha una dipendenza con l'istruzione precedente (istruzione i-1).

 $CPI_{pipe} \!\!= 1 + f_{DataHazard} \!\!\!\!\!\!\!^*Stalli_{DataHazard} \!\!\!\!\!\!^+f_{ControlHazard} \!\!\!\!^*Stalli_{ControlHazard}$

$$\begin{split} f_{DataHazard} &= f_{ALU} * f_{DipendenzaALU(i\text{--}1,\ i)} = 50\% * 40\% = 20\% \\ Stalli_{DataHazard} &= 2 \end{split}$$

$$f_{ControlHazard} = f_{branch} * f_{BranchTaken} = 20\%*50\% = 10\%$$

$$Stalli_{ControlHazard} = 2$$

$$CPI_{pipe}$$
= 1+ 20%*2+10%*2 = 1+ 0,2*2+0,1*2 = 1,6 CPI_{Seq} = 5

Speedup=
$$CPI_{Seq} / CPI_{pipe} = 5/1,6 = 3,125$$