Лекция 7, 18.11.11

Предложение 1. Пусть $a \in \Sigma$, $u, v \in \Sigma^*$. Если иа $v \sim_{2n-1} uv$, то либо $ua \sim_n u$, либо $av \sim_n v$.

Доказательство. Пусть $ua \nsim_n u$ и $av \nsim_n v$. Тогда в ua есть подслово xa длины $\leq n$, которого нет в u, и аналогично, в av есть подслово ay длины $\leq n$, которого нет в v. Рассмотрим xay, его длина $\leq 2n-1$. Оно есть в uav, но его нет в uv. Противоречие.

Обозначим через c(w) содержание слова w, т.е. множество букв слова w.

Предложение 2. Пусть $uv \in \Sigma^*$ u n > 0. Тогда $u \sim_n vu$ e том u только e том случае, когда найдутся такие слова $u_1, \ldots, u_n \in \Sigma^*$, что $u = u_1 \ldots u_n$ u $c(v) \subseteq c(u_1) \subseteq c(u_2) \subseteq \ldots \subseteq c(u_n)$.

Доказательство. Необходимость. Индукция по n. База индукции. n=1. Если $u \sim_1 vu$, то $c(v) \subseteq c(u)$ и $u_1 = u$.

Шаг индукции. Пусть $u \sim_{n+1} vu$. Обозначим через u_{n+1} наикратчайший суффикс слова u такой, что $c(u_{n+1})=c(u)$. Если записать $u_{n+1}=au'$, где $a \in \Sigma$, то ясно по построению, что a не встречается в u'. Если w таково, что $u=wu_{n+1}$, то для доказательства достаточно доказать, что $w \sim_n vw$, так как тогда к слову w можно будет применить предположение индукции. Пусть x – какое-то подслово длины $\leq n$ в vw. Тогда xa подслово длины $\leq n+1$ в vu=vwau'. Из условия $u \sim_{n+1} vu$ следует, что xa есть подслово в u, но u=wau' и a не появляется в u'. Поэтому x является подсловом в w.

Достаточность. База индукции. $u = u_1$ и $c(v) \subseteq c(u_1)$. Тогда понятно, что c(vu) = c(u), т.е. $vu \sim_1 u$.

Шаг индукции. Допустим, что $u=u_1\dots u_{n+1}$ и при этом $c(v)\subseteq c(u_1)\subseteq c(u_2)\subseteq \dots\subseteq c(u_{n+1})$. Надо доказать, что тогда $u\sim_{n+1}vu$. По предположению индукции $u_1u_2\dots u_n\sim_n vu_1u_2\dots u_n$. Теперь возьмем произвольное подслово x длины $\leq n+1$ в слове vu. Обозначим через x' наидлиннейший суффикс слова x, который является подсловом в u_{n+1} и пусть x=x''x'. Поскольку $c(u_{n+1})=c(vu)$, по крайней мере последняя буква слова x попадает в x'. Тогда x'' имеет длину $\leq n$ и является подсловом в $vu_1\dots u_n$. По предположению индукции x'' является подсловом в $u_1\dots u_n$. А тогда x является подсловом в $u_1\dots u_{n+1}=u$.

Следствие 1. Для любых слов $u,v\in \Sigma^*$ имеем $(uv)^n\sim_n v(uv)^n\sim_n (uv)^nu$.

Раз, \sim_n – конгруэнция конечного индекса, то Σ^*/\sim_n – конечный моноид. Из следствия вытекает, что это $\mathscr J$ -тривиальный моноид. Допустим, что $\bar a\mathscr R \bar b$

(через \bar{a} обозначаем образ слова a в Σ^*/\sim_n), $\bar{a}=\bar{b}p$ и $\bar{b}=\bar{a}q$. Тогда $\bar{a}=\bar{a}qp=\bar{a}(qp)^n$. Пусть $q=\bar{u},\ p=\bar{v}$, имеем

$$(\bar{u}\bar{v})^n = \overline{(uv)^n} = \overline{(uv)^n}u = (\bar{u}\bar{v})^n\bar{u} = (qp)^nq.$$

Значит, $\bar{a}(qp)^n = \bar{a}(qp)^n q = \bar{a}q = \bar{b}$.

Аналогично, если $\bar{a}\mathscr{L}\bar{b}$, то $\bar{a}=\bar{b}$.

Пусть M – конечный моноид. Говорят, что язык $L \subseteq \Sigma^*$ распознается моноидом M, если существуют гомоморфизм $\varphi \colon \Sigma^* \to M$ и подмножество $P \subseteq M$ такие, что $u \in L \iff \varphi(u) \in P$.

Пример 1. f = bcaca cadca babab dacba

g = bacca dcabb cbcab cdabc

 $f \sim_3 g$ (Различающее слово dccc)

В качестве h можно взять слово $bcacc\ acadc\ abbcb\ cabab\ dacbca$.