

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160203703

FCC REPORT

(BLE)

Applicant: NEXUS TELECOM SERVICES (HK) LIMITED

Address of Applicant: R112, 11/F Hollywood Plaza, Mangkok, Kowloon, Hong Kong

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: GO779

Trade mark: GOMOBILE

FCC ID: 2AHDFGO779

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Feb., 2016

Date of Test: 29 Feb., to 11 Mar., 2016

Date of report issued: 11 Mar., 2016

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	11 Mar., 2016	Original

Tested by: 11 Mar., 2016

Test Engineer

Reviewed by: Date: 11 Mar., 2016

Project Engineer

3 Contents

			Page						
1	COV	/ER PAGE	1						
2	VER	VERSION2							
3		ITENTS							
4		T SUMMARY							
5		IERAL INFORMATION							
9									
	5.1	CLIENT INFORMATION							
	5.2	GENERAL DESCRIPTION OF E.U.T.							
	5.3	TEST ENVIRONMENT AND MODE							
	5.4	DESCRIPTION OF SUPPORT UNITS							
	5.5	LABORATORY FACILITY							
	5.6	LABORATORY LOCATION							
	5.7	TEST INSTRUMENTS LIST	8						
6	TES	T RESULTS AND MEASUREMENT DATA	9						
	6.1	ANTENNA REQUIREMENT:	9						
	6.2	CONDUCTED EMISSION	10						
	6.3	CONDUCTED OUTPUT POWER	13						
	6.4	OCCUPY BANDWIDTH	15						
	6.5	Power Spectral Density	18						
	6.6	BAND EDGE	20						
	6.6.1	Conducted Emission Method	20						
	6.6.2								
	6.7	Spurious Emission							
	6.7.1								
	6.7.2								
7	TES	T SETUP PHOTO	35						
R	FUT	CONSTRUCTIONAL DETAILS	36						

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	NEXUS TELECOM SERVICES (HK) LIMITED
Address of Applicant:	R112, 11/F Hollywood Plaza, Mangkok, Kowloon, Hong Kong
Manufacturer:	United Creation Technology Co.,Ltd
Address of Manufacturer:	Room 201, Block A, Science & Technology Building Phase-II, Nanhai Av. 1057, Nanshan, Shenzhen, China
Factory:	HuiZhou YouLianXing Electronic Science & Technology Co., Ltd
Address of Factory:	F2, Standard Fctory Building, No 3, Qunle Road, Ma an Town, Huicheng District, Huizhou City 516057, China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	GO779
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-1.43 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1300mAh
AC adapter:	Model: GO779 Input:100-240V AC, 50/60Hz 0.12A
	Output:5V DC MAX 500mA

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCISE160203703

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:									
Item	Test Equipment	Manufacturer	Manufacturer Model No. Inventory		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002		04-01-2015	03-31-2016			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016			
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016			
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			

Con	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016					
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016					
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or

15.247(c) (1)(i) requirement:

electrical connector is prohibited.

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -1.43 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7				
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
. , ,	Class B					
Class / Severity:						
Receiver setup:	RBW=9kHz, VBW=30kHz	1	ID 10			
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average					
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm					
Test procedure	 The E.U.T and simulators a line impedance stabilize 50ohm/50uH coupling implements. The peripheral devices through a LISN that prowith 50ohm termination. test setup and photograph. Both sides of A.C. line interference. In order to positions of equipment changed according to measurement. 	zation network (L.I.S.Network pedance for the measure are also connected ovides a 500hm/50uH (Please refer to the hs). The are checked for a find the maximum of and all of the interface.	N.), which provides a uring equipment. to the main power coupling impedance block diagram of the maximum conducted emission, the relative			
Test setup:	LISN 40cm		er — AC power			
Test Uncertainty:			±3.28 dB			
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Mobile phone : G0779 Model

Test Mode : BLE mode Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

(emark								
	Frea	Read Level	LISN Factor			Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>d</u> B		dBu∀	<u>dBu</u> ⊽	<u>d</u> B	
			10					
1	0.175	28.28	0.17	10.77	39.22	54.72	-15.50	Average
2	0.180	36.68	0.17	10.77	47.62	64.50	-16.88	QP
3	0.198	26.18	0.16	10.76	37.10	53.71	-16.61	Average
4	0.235	26.05	0.16	10.75	36.96	52.26	-15.30	Average
2 3 4 5 6 7 8 9	0.330	28.12	0.16	10.73	39.01	49.44	-10.43	Average
6	0.334	35.27	0.16	10.73	46.16	59.35	-13.19	QP
7	0.431	40.16	0.16	10.73	51.05	57.24	-6.19	QP
8	0.431	28.01	0.16	10.73	38.90	47.24	-8.34	Average
9	0.524	27.46	0.16	10.76	38.38			Average
10	0.564	37.35	0.17	10.77	48.29	56.00	-7.71	QP
11	0.630	36.29	0.17	10.77	47.23	56.00	-8.77	QP
12	1.433	35.06	0.19	10.92	46.17	56,00	-9.83	QP

Line:

Trace: 13

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT Mobile phone : G0779 Model

Test Mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

emark	•							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	dB	dB	dBu₹	dBu∜	<u>dB</u>	
1	0.165	40.41	0.26	10.77	51.44	65.21	-13.77	QP
2	0.185	26.49	0.26	10.77	37.52	54.24	-16.72	Average
3	0.235	39.11	0.26	10.75	50.12	62.26	-12.14	QP
4	0.330	40.96	0.26	10.73	51.95	59.44	-7.49	QP
4 5 6	0.330	28.67	0.26	10.73	39.66	49.44	-9.78	Average
6	0.435	38.11	0.26	10.73	49.10	57.15	-8.05	QP
7 8	0.459	38.59	0.27	10.75	49.61	56.71	-7.10	QP
8	0.524	26.97	0.27	10.76	38.00	46.00	-8.00	Average
9	0.595	24.47	0.27	10.77	35.51	46.00	-10.49	Average
10	0.724	36.48	0.28	10.78	47.54	56.00	-8.46	QP
11	0.792	22.17	0.28	10.81	33.26	46.00	-12.74	Average
12	1.374	21.97	0.30	10.91	33.18	46.00	-12.82	Average

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-4.68		
Middle	-3.98	30.00	Pass
Highest	-3.74		

Test plot as follows:

Lowest channel

Date: 29.FEB.2016 14:20:59 Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.726		
Middle	0.714	>500	Pass
Highest	0.726		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.044			
Middle	1.032	N/A	N/A	
Highest	1.038			

Test plot as follows:

6dB EBW

Date: 29.FEB.2016 14:30:15

Lowest channel

Date: 29.FEB.2016 14:31:29

Middle channel

Date: 29.FEB.2016 14:33:27

Highest channel

99% OBW

Date: 29.FEB.2016 14:26:00

Lowest channel

Date: 29.FEB.2016 14:26:32

Middle channel

Date: 29.FEB.2016 14:26:59

Highest channel

Page 17 of 36

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-5.53		
Middle	-4.78	8.00	Pass
Highest	-4.63		

Test plots as follow:

Date: 29.FEB.2016 14:28:25

Lowest channel

Date: 29.FEB.2016 14:27:59

Middle channel

Date: 29.FEB.2016 14:27:31

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer				
	Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

Date: 29.FEB.2016 14:24:46

Lowest channel

Date: 29.FEB.2016 14:23:26

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205				
Test Method:	ANSI C63.10: 2013 and KDB 558074v03r03 section 12.1						
Test Frequency Range:	2.3GHz to 2.5GHz Measurement Distance: 3m						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		RMS	1MHz	3MHz	Average Value		
Limit:	Freque	ency	Limit (dBuV		Remark		
	Above 1	IGHz	54.0 74.0		Average Value Peak Value		
Test Procedure:	the ground to determing to determing antenna, we tower. 3. The antenry the ground Both horizon make the notes and the meters and to find the second so to find the second find	at a 3 meter one the position was set 3 meter which was mountained to determine the antendation of the rota table maximum reasurement. It is not every system and width with sion level of the ceified, then to would be rep 3 margin would	camber. The factor of the highesters away from unted on the to tried from one the maximum cal polarizations assion, the EU na was turned for the was turned for the europe of the EUT in peasesting could borted. Otherwood be re-tested.	table was rost radiation. The interferop of a variation of the analysis arranged and the control of the control	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 thees to 360 degrees		
Test setup:	AE SOCM	EUT Ground Test Receive	Horn Ante	Antenna To	wer		
Test Instruments:	Refer to section	5.7 for details	S				
Test mode:	Refer to section	5.3 for details	S				
Test results:	Passed						

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone

Model : GO779 Test mode : BLE-L Mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki REMARK :

			Antenna Factor					Remark	
2	MHz	dBu∇	$\overline{-dB}/\overline{m}$	 <u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		-
	2390,000 2390,000				58.79 47.56				

Test channel: Lowest

Vertical:

Site 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Mobile Phone Model : G0779 Test mode : BLE-L Mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C
Test Engineer: Viki
REMARK : Huni:55%

THETH										
			Ant enna						5.52	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
_	MHz	dBu₹		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		-
1	2390.000	29.63	23.68	6.63	0.00	59.94	74.00	-14.06	Peak	
2	2390,000	17, 21	23.68	6.63	0.00	47.52	54.00	-6.48	Average	

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone : GO779 Model Test mode : BLE-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

EMARI	- 150 1000 VI		Antenna Factor						
-	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
	2483.500 2483.500				0.00 0.00				

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile Phone : G0779 Model Test mode : BLE-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: Viki

Huni:55%

REMARK

	Freq		Antenna Factor						
2	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 29.FEB.2016 03:47:41

30MHz~25GHz

Middle channel

Date: 29.FEB.2016 03:48:27

30MHz~25GHz

Highest channel

Date: 29.FEB.2016 03:49:28

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency Detector RBW VBW Remark								
·	30MHz-1GHz	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value							
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 1G112	RMS	1MHz	3MHz	Average Value				
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark				
	30MHz-88MHz		40.0		Quasi-peak Value				
	88MHz-216MHz		43.5		Quasi-peak Value				
	216MHz-960MH	z	46.0		Quasi-peak Value				
	960MHz-1GHz				Quasi-peak Value				
	Above 1GHz	-							
Test Procedure:	·								

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

: Mobile Phone EUT : GO779 Test mode : BLE Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Viki
REMARK Model

Huni:55%

EMAKK									
	Freq		Antenna Factor					Over Limit	Remark
_	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1	136.939	47.31	11.88	2.36	29. 29	32.26	43.50	-11.24	QP
2	285.978	51.68	12.26	2.90	28.47	38.37	46.00	-7.63	QP
2 3 4	651.942	46.01	18.82	3.87	28.77	39.93	46.00	-6.07	QP
4	701.761	47.10	19.28	4.19	28.66	41.91	46.00	-4.09	QP
5	755.387	45.05	20.43	4.36	28.45	41.39	46.00	-4.61	QP
6	807.429	44.83	20.66	4.33	28.17	41.65	46.00	-4.35	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : Mobile Phone Condition

EUT Model : G0779 Test mode : GU779
Test mode : BLE Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK :

THUTTE									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	₫B	₫₿	dBuV/m	dBu√/m	₫B	
1	45.695	37.60	17.28	1.29	29.85	26.32	40.00	-13.68	QP
2	182.559	44.25	9.32	2.75	28.95	27.37	43.50	-16.13	QP
3	285.978	52.05	12.26	2.90	28.47	38.74	46.00	-7.26	QP
2 3 4	390.723	44.87	15.59	3.08	28.74	34.80	46.00	-11.20	QP
5	755.387	40.65	20.43	4.36	28.45	36.99	46.00	-9.01	QP
5 6	807.429	40.55	20.66	4.33	28.17	37.37	46.00	-8.63	QP

Above 1GHz

Test channel:			Lo	west	Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	45.47	35.99	10.57	40.24	51.79	74.00	-22.21	Vertical	
4804.00	45.22	35.99	10.57	40.24	51.54	74.00	-22.46	Horizontal	
Т	est channel	•	Lowest		Le	vel:	A۱	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	35.27	35.99	10.57	40.24	41.59	54.00	-12.41	Vertical	
4804.00	35.31	35.99	10.57	40.24	41.63	54.00	-12.37	Horizontal	

Т	:	Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	46.04	36.38	10.66	40.15	52.93	74.00	-21.07	Vertical
4884.00	45.14	36.38	10.66	40.15	52.03	74.00	-21.97	Horizontal
Т	est channel	•	Middle		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	36.69	36.38	10.66	40.15	43.58	54.00	-10.42	Vertical
4884.00	35.55	36.38	10.66	40.15	42.44	54.00	-11.56	Horizontal

Test channel:			Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	43.97	36.71	10.73	40.03	51.38	74.00	-22.62	Vertical
4960.00	44.58	36.71	10.73	40.03	51.99	74.00	-22.01	Horizontal
Т	est channel	•	Highest		Le	vel:	A۱	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	33.69	36.71	10.73	40.03	41.10	54.00	-12.90	Vertical
4960.00	34.21	36.71	10.73	40.03	41.62	54.00	-12.38	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.