

20. SAS Club

Wien, 11. November 2010

"Die Wäscherei" Albertgasse 49 1080 Wien

Mathematische Modellierung mit SAS

Dr. Gerhard Svolba

Datenmanagement mit SQL

```
PROC SQL;
CREATE TABLE ordermart
AS
 SELECT s.ShopID
                     Format = shop.,
       p.ProductID
                     Format = product.,
       ProdStatus,
       mdy(month(date),1,year(date)) as MonthYear format = yymmp7.,
       SUM(quantity) AS Quantity Format = 8.,
       AVG(Price) AS AvgPrice Format = 8.2
      products AS p,
FROM
       shops
                  AS S,
       orders AS 0
WHERE p.productid
                      = o.productid
  AND s.shopid
                      = o.shopid
GROUP BY
              MonthYear,
              s.ShopID,
              p.ProductID,
              s.ShopID,
ORDER BY
              p.ProductID,
              MonthYear;
QUIT;
```


Datenmanagement mit dem SAS DATASTEP Erzeugen fortlaufender Nummern und kumulativer Summen

CustID	Date	Points
1	10032004	45
1	04042004	10
1	20042004	20
1	16052004	18
1	01062004	5
2	01022004	10
2	19032004	30
3	05082004	4
3	16082004	16
3	31082004	12
3	10092004	20

```
data customer:
set customer;
by CustID;
if first.custid then do;
                           Purch No = 1;
                            Cum Poi = Points;
                                                 end:
else do; Purch No + 1;
           Cum Poi + Points;
                              end:
run:
```


Datenmanagement mit dem SAS DATASTEP

Zugriff auf Werte in vorhergehenden Zeilen (LAG, DIF)

Date	Value
01012004	45
01022004	34
01032004	5
01042004	34
01052004	32
01062004	44

```
data measurements;
  set measurements;
  Value_PrevDay = lag(Value);
run;
```


Datenmanagement mit SAS

- Datenmanagement
 - SQL
 - SAS Datastep, SAS Procedures, SAS Funktionen
- Features/Funktionen
 - Aggregation von transaktionellen Daten zu Zeitreihendaten; automatisches Auffüllen von Zeitperioden ohne Transaktion
 - Lesen von komplexen Datenstrukturen; Hierarchien, Listen, wechselnde Felddefinitionen
 - Transponieren zwischen unterschiedlichen Datenstrukturen
 - Funktionen: Text-String, Perl Regular Expressions, Statistische und Mathematische Funktionen, Kombinatorik, Wahrscheinlichkeit, Quantile, Zufallszahlen

Was braucht man noch?

Matrix-Matrizzen multiplikation Vektoren **Indizes** Skalare Teilmatrizzen

Was bietet SAS?

SAS® IML

(Interactive Matrix Language)

Ermöglicht Matrizzenoperationen direkt im SAS (Proc IML)

Bietet ein Interface zu "R" (The R Project for Statistical Computing)

Beispiele für IML Operationen und **Funktionen**

Operator	Description	
` (accent grave)	Transpose (postfix)	
- (prefix)	Negative prefix	
[]	Subscript	
**	Matrix exponentiation	
##	Element-wise exponentiation	
*	Matrix multiplication	
#	Element-wise multiplication	
/	Element-wise division	
@	Direct (Kronecker) product	
+	Addition	
-	Subtraction	
	Horizontal concatenation	
//	Vertical concatenation	

Beispiele

- A+B : matrix addition
- A*B : matrix multiplication,
- A#B: element-wise multiplication
- A[5,2]: Element aus der 5. Zeile, 2. Spalte
- A[1:3,2:10]: die ersten drei Spalten für die 2. bis 10. Zeile
- $W = INV(T(x)^*x);$

Matrizzenoperationen direkt im SAS mit Proc IML (Beispiel)

$$\hat{\beta} = (X'X)^{-1}X'y \qquad \hat{\mathbf{Y}} = \mathbf{X}^*\mathbf{\beta}$$

```
PROC IML;
 xpxi=inv(t(x)*x);
                             /* inverse of X'X
                                                          * /
beta=xpxi*(t(x)*y);
                             /* parameter estimate
                                                          */
 yhat=x*beta;
                             /* predicted values
                                                          */
 resid=y-yhat;
                                 /* residuals
                                                          * /
 sse=ssq(resid);
                                 /* SSE
                                                          * /
                                 /* sample size
                                                          * /
n=nrow(x);
 dfe=nrow(x)-ncol(x);
                                 /* error DF
                                                          * /
                                                          * /
mse=sse/dfe;
                                 /* MSE
 cssy=ssq(y-sum(y)/n);
                                 /* corrected total SS
                                                          * /
 rsquare=(cssy-sse)/cssy;
                                 /* RSOUARE
                                                          * /
 stdb=sqrt(vecdiag(xpxi)*mse); /* std of estimates
                                                          * /
 t=beta/stdb;
                                 /* parameter t tests
                                                          * /
                                 /* p-values
prob=1-probf(t#t,1,dfe);
                                                          * /
QUIT;
```


Live Demo:

Lineare Regression mit Proc IML

Was braucht man noch?

Matrix-Matrizzen multiplikation **Vektoren Indizes** Skalare Teilmatrizzen

Was bietet SAS?

SAS®IML (Interactive Matrix Language)

Das SAS IML-Studio

Funktionsweise des R-Aufrufs aus SAS

```
/***... SAS Datastep .. SAS Procedures
 ... Matrizzen-Operationen
 ***/
 run ExportMatrixToR( y, "Ry" );
 submit / R;
     Rs <- smooth( Ry )
     Rs <- as.matrix(Rs)
 endsubmit;
 run ImportMatrixFromR( s, "Rs" );
/*** Aufbereitung der Ergebnisse
 ... SAS Datastep ... SAS Procedures ... Reporting, Plots, ... ***/
 declare ScatterPlot plot;
plot = ScatterPlot.Create("Tukey", x, y);
 plot.DrawUseDataCoordinates();
 plot.DrawLine(x, s);
```


SAS/IML und IML/Studio

- Zielgruppe: "High-end data analysts"
- Flexible Programmierumgebung auf Basis von SAS und SAS/IML. Erweitert um die IML-Plus Sprache
- Aufruf von R functions
 - Kombination der Power von SAS mit dem "Free Tool" R aus dem akademischen Bereich
 - Zugang zu neu publizierten Methoden, sobald diese erscheinen

