Part I Commutative Rings

Definition 0.1 — Ring.

A ring is a set R equipped with two binary operations + (addition) and · (multiplication) satisfying the following three sets of axioms, called the ring axioms.

- 1. (R, +) is an abelian group.
- 2. (R, \cdot) is a semigroup.
- 3. Multiplication is distributive with respect to addition, meaning that
 - $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in R$ (left distributivity).
 - $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a, b, c \in R$ (right distributivity).

A ring is called unitary if it contains the multiplicative identity and commutative if multiplication is commutative.

Definition 0.2 — Ideal.

Definition 0.3 — Ideal Arithmetic.

Definition 0.4 — Prime Ideal.

Definition 0.5 — Maximal Ideal.

Definition 0.6 — Spectrum.

Definition 0.7 — .

Let A be a ring and \mathfrak{a} an ideal. Let $\mathbf{V}(\mathfrak{a})$ denote the subset of $\mathrm{Spec}(A)$ consisting of those primes that contain \mathfrak{a} , i.e.

$$\mathbf{V}(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{a} \subseteq \mathfrak{p} \}$$
 (1)

We call $\mathbf{V}(\mathfrak{a})$ the variety of \mathfrak{a} .

Definition 0.8 — Zariski Topology.

Let $\mathfrak{a} \subseteq A$ be an ideal. Declaring the sets

$$Z(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{a} \subseteq \mathfrak{p} \}$$
 (2)

to be closed induces a topology on Spec(A), the Zariski Topology.

Definition 0.9 — Quotient Ring.

Given a ring A and two-sided ideal $\mathfrak a$ in A, we may define an congruence relation \sim on A as follows:

$$x \sim y : \iff x - y \in \mathfrak{a}. \tag{3}$$

The equivalence class of the element x in A is given by

$$[x] = x + \mathfrak{a} := \{ x + a \mid a \in \mathfrak{a} \} \tag{4}$$

and the set of all such equivalence classes is denoted by A/\mathfrak{a} ; it becomes a ring, the factor ring or the quotient ring of A modulo \mathfrak{a} , if one defines

- 1. $(a + \mathfrak{a}) + (b + \mathfrak{a}) = (a + b) + \mathfrak{a}$
- 2. $(a+\mathfrak{a})(b+\mathfrak{a}) = (ab) + \mathfrak{a}$

The map $\pi: R \longrightarrow A/\mathfrak{a}$, $x \mapsto \pi(x) := x + \mathfrak{a}$ is a surjective ring homomorphism and is sometimes called the natural quotient map or the canonical homomorphism.

Proposition 1 (Universal Property). Let A and B be rings, \mathfrak{a} an ideal, and $f: A \longrightarrow B$ a ring homomorphism with $\mathfrak{a} \subseteq \operatorname{Ker}(f)$. Then there exists a unique ring homomorphism $\tilde{f}: A/\mathfrak{a} \longrightarrow B$ such that $f = \tilde{f} \circ \pi$.

Definition 0.10 — Integral Domain.

Theorem 0.11. • prime ideal, quotient is integral domain

- same as above, but if prime maximal, then quotient is a fields
- Maximal ideals are prime ideals.
- There is a 1:1 correspondence

$$\{ Ideals \ in \ A/\mathfrak{a} \} \longleftrightarrow \{ \mathfrak{b}/\mathfrak{a} \mid \mathfrak{a} \subseteq \mathfrak{b} \subseteq A \}$$
 (5)

0.1 Exercises