

Deep Learning

Housing Price Prediction

U Kang Seoul National University

In This Lecture

- House pricing data
- Time series prediction with LSTM network

Outline

- **→** □ Problem Definition
 - ☐ Preprocessing Codes

Dataset (1)

- Zillow Economic Data
- Housing and economic data from a variety of public and proprietary sources by Zillow

Dataset (2)

- We will focus on these files
 - 'City_time_series.csv'
 - 'cities_crosswalk.csv'
- In EDA part, we will explore each file
- In prediction part, we will use 'ZHVIPerSqft_AllHomes' column in 'City_time_series.csv'
 - Mean value of the all homes per square feet

Problem Definition

- We will extract time series house pricing data and predict future price
- Input will be series of past house prices
- Output will be series of future house prices

Method

- Input data are time series
- We will use LSTM as main predictor
- We will apply techniques for treating time series data
 - Stationarity
 - Making data for supervised learning

Outline

- Problem Definition
- **→** □ Preprocessing Codes

Import libraries

- We will use following libraries
 - Numpy
 - Pandas
 - Sklearn
 - Matplotlib
 - Seaborn # for prettifying graph
 - Plotly # for drawing graph

EDA (1)

- First file: 'City_time_series.csv'
- In EDA part, we will focus on next columns
 - 'ZHVIPerSqft_AllHomes'
 - 'MedianListingPricePerSqft_AllHomes'
 - 'MedianRentalPricePerSqft_AllHomes'
 - 'ZHVI_2bedroom'
 - 'ZHVI_3bedroom'
 - 'ZHVI_4bedroom'
 - 'RegionName'

EDA (2)

ZHVI means 'Zillow Home Value Index'

```
df_city_time_seris = pd.read_csv('./data/City_time_series.csv')
df_city_time_seris.head()
```

	Date	RegionName	InventorySeasonallyAdjusted_AllHomes	InventoryRaw_AllHomes	MedianListingPricePerSqft_1Bedro
0	1996- 04-30	abbottstownadamspa	NaN	NaN	1
1	1996- 04-30	aberdeenbinghamid	NaN	NaN	1
2	1996- 04 - 30	aberdeenharfordmd	NaN	NaN	I
3	1996- 04-30	aberdeenmonroems	NaN	NaN	1
4	1996- 04-30	aberdeenmoorenc	NaN	NaN	1

5 rows × 81 columns

EDA (3)

- Second file: 'cities_crosswalk.csv'
- 'Unique_City_ID' column will be used later to draw nation wide map

```
df_cities_crosswalk = pd.read_csv('./data/cities_crosswalk.csv')
df_cities_crosswalk.head()
```

	Unique_City_ID	City	County	State
0	oak_grovechristianky	Oak Grove	Christian	KY
1	jarvisburgcurritucknc	Jarvisburg	Currituck	NC
2	mcminnvilleyamhillor	McMinnville	Yamhill	OR
3	union_townshiperiepa	Union Township	Erie	PA
4	oshkoshwinnebagowi	Oshkosh	Winnebago	WI

EDA (4)

- Value of all homes per square in different years
 - Mean of the value of all homes per square foot

Mean of the value of all homes per square foot in different year

EDA (5)

Median of list prices per square foot in different years

```
df_city_time_seris_without_null = df_city_time_seris.dropna(
    subset=['MedianListingPricePerSqft_AllHomes'], how='any')

df_city_time_seris_without_null \
    .groupby(df_city_time_seris_without_null.Date.dt.year)['MedianListingPricePerSqft_AllHomes'] \
    .mean().plot(kind='bar', figsize=(10, 6))

plt.suptitle('Median of list prices per square foot in different year', fontsize=24)

plt.ylabel('Median Listing Price Per Square foot')

plt.xlabel('Year')

plt.show()
```

Median of list prices per square foot in different year

EDA (6)

 Median of rental prices per square foot in different years

```
df_city_time_seris_without_null_rent = df_city_time_seris.dropna(
    subset=['MedianRentalPricePerSqft_AllHomes'], how='any')

df_city_time_seris_without_null_rent.groupby(df_city_time_seris_without_null_rent.Date.dt.year) \
    ['MedianRentalPricePerSqft_AllHomes'].mean().plot(kind='bar', figsize=(10, 6))

plt.suptitle('Median of rental prices per square foot in different year', fontsize=24)

plt.ylabel('Median rental Price Per Square foot')

plt.xlabel('Year')

plt.show()
```

Median of rental prices per square foot in different year

EDA (7)

- Zillow's different home values in different years
 - Values vary based on housing types, e.g. 2,3,4 bed rooms

```
df_city_time_seris.groupby(df_city_time_seris.Date.dt.year) \
    [['ZHVI_2bedroom','ZHVI_3bedroom','ZHVI_4bedroom']].mean().plot(kind='bar', figsize=(10, 6))
    plt.suptitle("Zillow's different home value in different year", fontsize=24)
    plt.ylabel('Zillow home value in different housing type')
    plt.xlabel('Year')
    plt.show()
```

Zillow's different home value in different year

EDA (8)

 Median of the value of all homes per square foot in different states

EDA(9)

Draw graph across the states

```
1 scl = [
       [0.0, 'rgb(242,240,247)'],
       [0.2, 'rgb(218,218,235)'],
      [0.4, 'rgb(188,189,220)'],
      [0.6, 'rgb(158,154,200)'],
      [0.8, 'rgb(117,107,177)'],
       [1.0, 'rgb(84,39,143)']]
9
10 # difine our data for plotting
11 data = [ dict(
12
           type='choropleth',
13
            colorscale = scl.
14
           autocolorscale = False,
           locations = df reqi zhvi sq mean['RegionName'], # location (states)
16
            z = df regi zhvi sq mean['ZHVIpersqft mean'].astype(float), # Zillow Home value per square foot
17
           location mode = 'USA-states', # let's define the location mode to USA states
18
           text = 'Median home value per square foot',
19
           marker = dict(
20
                line = dict (
21
                   color = 'rgb(255, 255, 255)',
23
               )),
            colorbar = dict(
                title = "Home value per square foot")
26
            ) ]
27
29
       title = 'Median of the value of all homes per square foot in different states<br/>(Hover for breakdown)
30
       geo = dict(
31
            scope='usa',
32
            projection=dict( type='albers usa' ),
33
            showlakes = True,
34
            lakecolor = 'rgb(255, 255, 255)'),
35
36
37
38 fig = dict( data=data, layout=layout )
39 # let's plot
40 py.iplot( fig, filename='d3-cloropleth-map' )
```


EDA (10)

Result

Extract feature (1)

- Among many features in 'City_time_series.csv', we will use average of 'ZHVIPerSqft_AllHomes' per month as feature
- Then, our feature is series of floating point numbers containing average house prices over months

```
df_city_time_series = pd.read_csv('./data/City_time_series.csv',parse_dates=['Date'])
# drop null values in ZHVIPerSqft_AllHomes because we are interested in this column
df_city_time_series = df_city_time_series.dropna(subset=['ZHVIPerSqft_AllHomes'])
df_city_time_series.head()
```


Extract feature (2)

- Corresponding codes are below
- This will plot average price graph over years

```
# the ZHVIPerSqft AllHomes column has many value in same date but for different location.
   # For this notebook we are not interested in location. We mean all the value in same date
   df zhvi sqft all = df city time series.set index('Date') \
                        .groupby(pd.Grouper(freq='d')).mean().dropna(how='all') \
                        .ZHVIPerSqft AllHomes
   fig, ax = plt.subplots(figsize=(15, 10))
   ax.scatter(df zhvi sqft all.index, df zhvi sqft all)
 9 # change x axis year location interval to 1 year. So that it displays data in interval of 1 year
10 ax.xaxis.set major locator(mdates.YearLocator(1))
11 # Add the title to the graph
12 plt.title('Zillow Home Value Index in Per Square foot in different year', fontsize=18)
13 # add xlabel
14 plt.xlabel('Year', fontsize=18)
15 # add ylabel
16 plt.ylabel('Zillow Home Value Index in Per Square foot', fontsize=18)
17 # beautify the x axis date presentation
18 fig.autofmt xdate()
19 # And finally show the plot in a new window.
   plt.show()
21
```


Stationarity (1)

- So far, we have a series of prices
- Before feeding in these numbers to LSTM, we need to make this time series stationary
- Stationarity in time series means statistical properties of a process generating a time series do not change over time
- We can give stationarity by using difference between current and next elements in series

Stationarity (2)

 The following functions can be helpful with respect to stationarity

```
# create a differenced series
# this is to make time series stationary
# why stationarity? => https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322

def difference(dataset, interval=1):
    diff = list()
    for i in range(interval, len(dataset)):
        value = dataset[i] - dataset[i - interval]
        diff.append(value)
    return pd.Series(diff)
```


Make supervised data (1)

- RNN is a network for supervised dataset
- This means that we need both feature and 'label'
- We only have feature (e.g. differenced series data) and not 'label'
- We can convert this series to feature and 'label'

Make supervised data (2)

- We can frame current value as feature and next value as label
- By doing this, we will predict the very next value from past values

```
# frame a sequence as a supervised learning problem
# this methods will create a column and column value will be 1 shift from the data.
# it will make our data to supervised so that we can feed into network

def timeseries_to_supervised(data, lag=1):
    df = pd.DataFrame(data)
    columns = [df.shift(i) for i in range(1, lag+1)]
    columns.append(df)
    df = pd.concat(columns, axis=1)
    df.fillna(0, inplace=True)
    return df
```


Make supervised data (3)

- After timeseries_to_supervised
 - □ 1st column: shifted value
 - □ 2nd column: orig. value

	0	0
0	0.000000	-0.034709
1	-0.034709	-0.041769
2	-0.041769	-0.003739
3	-0.003739	-0.011523
4	-0.011523	0.022334
5	0.022334	0.051720
6	0.051720	0.136330
7	0.136330	0.175334
8	0.175334	0.238790
9	0.238790	-0.037459
10	-0.037459	0.308243
11	0 308243	0 216467

Scaler (1)

- Scaler can convert arbitrary range of values to given range
- This is a kind of standardization method and also can improve training quality

Scaler (2)

We will use minmax scaler from sklearn

```
# scale train and test data to [-1, 1]
def scale(train, test):
    # fit scaler
    scaler = MinMaxScaler(feature_range=(-1, 1))
    scaler = scaler.fit(train)
    # transform train
    train_scaled = scaler.transform(train)
    # transform test
    test_scaled = scaler.transform(test)
    return scaler, train_scaled, test_scaled
```


Model Suggestion

Our model gets monthly data as input

As you can see, we predict last value given previous values

After dense layer, y' is scalar

Questions?