R로 하는 구조방정식 연습 - 측정동일성(Measurement Invariance)¹

신종화(SHIN Jong-Hwa)²

March 12, 2013

 $^{^{1}}$ 한국여가문화학회 2013년 콜로키움의 자료로 준비되었습니다. 행사장에서는 일부 내용의 개선이 반영된 자료가 배포될 수 있습니다.

 $^{^2}$ 서울과학종합대학원(aSSIST) 레저경영주임교수/ 한국 R 사용자모임(KRUG) 커미티 shin.jonghwa@leisure.or.kr/ jhshin@assist.ac.kr

- [**상황**] 인근에 자리잡은 두 학교, Grant-White와 Pasteur를 두고, 학부형들끼리 논쟁을 벌이고 있다. 두 학교 중에 어느 학교가 학생을 잘 가르치는가에 대한 문제를 두고 말이다. 평가영역은 '시각', '문장', '반응성'이다. 이 평가 영역에 관한 9개의 항목이 x1, x,2, x3, x4, x5, x6, x7, x8, x9다.
- > require(lavaan)
- > data(HolzingerSwineford1939)
- > dim(HolzingerSwineford1939)
- [1] 301 15
- > names(HolzingerSwineford1939)

> head(HolzingerSwineford1939)

	id	sex	ageyr	agemo	school	grade	x1	x2	хЗ	x4	x5	x6
1	1	1	13	1	Pasteur	7	3.333333	7.75	0.375	2.333333	5.75	1.2857143
2	2	2	13	7	Pasteur	7	5.333333	5.25	2.125	1.666667	3.00	1.2857143
3	3	2	13	1	Pasteur	7	4.500000	5.25	1.875	1.000000	1.75	0.4285714
4	4	1	13	2	${\tt Pasteur}$	7	5.333333	7.75	3.000	2.666667	4.50	2.4285714
5	5	2	12	2	Pasteur	7	4.833333	4.75	0.875	2.666667	4.00	2.5714286
6	6	2	14	1	Pasteur	7	5.333333	5.00	2.250	1.000000	3.00	0.8571429
		х	7 x8	3	x9							

- $1\ \, 3.391304\ \, 5.75\ \, 6.361111$
- 2 3.782609 6.25 7.916667
- 3 3.260870 3.90 4.416667
- 4 3.000000 5.30 4.861111
- 5 3.695652 6.30 5.916667
- 6 4.347826 6.65 7.500000

> summary(HolzingerSwineford1939)

id	sex	${\tt ageyr}$ ${\tt agemo}$	
Min. : 1.0	Min. :1.000	Min. :11 Min. : 0.000	
1st Qu.: 82.0	1st Qu.:1.000	1st Qu.:12 1st Qu.: 2.000	
Median :163.0	Median :2.000	Median: 13 Median: 5.000	
Mean :176.6	Mean :1.515	Mean :13 Mean : 5.375	
3rd Qu.:272.0	3rd Qu.:2.000	3rd Qu.:14 3rd Qu.: 8.000	
•	Max. :2.000		
school	grade	x1 x2	
	•	Min. :0.6667 Min. :2.250	
Pasteur :156	1st Qu.:7.000	1st Qu.:4.1667 1st Qu.:5.250	
		Median :5.0000 Median :6.000	
		Mean :4.9358 Mean :6.088	
		3rd Qu.:5.6667 3rd Qu.:6.750	
		Max. :8.5000 Max. :9.250	
	NA's :1.000		
		x5 x6	
Min. :0.250	Min. :0.000	Min. :1.000 Min. :0.1429	
1st Qu.:1.375	1st Qu.:2.333	1st Qu.:3.500 1st Qu.:1.4286	
Median :2.125	Median :3.000	Median :4.500 Median :2.0000	
Hedian .2.125	nedian .5.000	median .4.500 median .2.0000	

Mean :2.250	Mean :3.061	Mean :4.341	Mean :2.1856
3rd Qu.:3.125	3rd Qu.:3.667	3rd Qu.:5.250	3rd Qu:2.7143
Max. :4.500	Max. :6.333	Max. :7.000	Max. :6.1429
x7 Min. :1.304 1st Qu.:3.478 Median :4.087 Mean :4.186 3rd Qu.:4.913 Max. :7.435	x8 Min.: 3.050 1st Qu.: 4.850 Median: 5.500 Mean: 5.527 3rd Qu.: 6.100 Max.: 10.000	Min. :2.778	

> ?HolzingerSwineford1939

어떤 분석 방법을 사용할 것인가?

- 1. 두 학교의 전교생 모두를 대상으로 평가조사를 할까?: 전수조사에 대한 고민
- 2. 수리영역, 언어영역, 운동능력 등을 어떻게 측정할 것인가?: 차원축소(요인)에 대한 고민
- 3. 기술통계 vs. 추리통계
 - (a) (탐색적) 요인분석
 - i. 평균차이검정
 - A. 정규분포인 경우: t-test
 - B. 비모수 차이검정?
 - (b) 확인적 요인분석

Part I

탐색적 요인분석(Exploratory Factor Analysis)

주성분보석(Principal Component Analysis, PCA)

> .PC <- princomp(HolzingerSwineford1939[, 7:15])
> screeplot(.PC)

탐색적 요인분석(Exploratory Component Analysis, EFA)

```
> .FA <- factanal(HolzingerSwineford1939[, 7:15], factors=3, rotation="varimax", scores="regression")
> .FA
Call:
factanal(x = HolzingerSwineford1939[, 7:15], factors = 3, scores = "regression",
                                                                                   rotation = "vari
Uniquenesses:
              xЗ
                    x4
                         x5
                                x6
                                      x7
                                            8x
                                                  x9
0.513 0.749 0.543 0.279 0.243 0.305 0.502 0.469 0.543
Loadings:
  Factor1 Factor2 Factor3
x1 0.277 0.623 0.151
x2 0.105
          0.489
           0.663 0.130
xЗ
x4 0.827 0.165
x5 0.861
x6 0.801 0.212
                   0.696
x7
           0.162
                 0.709
8x
x9 0.132 0.406
                 0.524
              Factor1 Factor2 Factor3
SS loadings
                2.185 1.343
                              1.327
                0.243
Proportion Var
                        0.149
                                0.147
Cumulative Var
                0.243
                        0.392
                                0.539
Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 22.38 on 12 degrees of freedom.
The p-value is 0.0335
> head(.FA$scores)
        Factor1
                   Factor2
```

[1,] 0.08247152 -0.7258616 -0.001591841

```
[2,] -1.21273720 0.5161999 0.822875023
[3,] -1.76841308 -0.2476878 -1.088698544
[4,] -0.04449707 0.7666871 -0.769782192
[5,] -0.06666738 -0.5306562 0.344127073
[6,] -1.53029546 0.3499646 1.148005610

> HolzingerSwineford1939$F1 <- .FA$scores[,1]

> HolzingerSwineford1939$F2 <- .FA$scores[,2]

> HolzingerSwineford1939$F3 <- .FA$scores[,3]

• x4, x5, x6 -> Factor1

• x1, x2, x3 -> Factor 2

• x7, x8, x9 -> Factor 3

• (탐색적) 요인분석은 다변량 정보를 단변량화 시키는 차원 축소의 영역이다.
```

3.1 집단별 평균차이 검정(t-test)

> t.test(F1~school, alternative='two.sided', conf.level=.95, var.equal=FALSE, data=HolzingerSwineford
Welch Two Sample t-test

 $\verb| > t.test(F2\~school, alternative='two.sided', conf.level=.95, var.equal=FALSE, data=HolzingerSwineforder and the state of the state$

Welch Two Sample t-test

> t.test(F3~school, alternative='two.sided', conf.level=.95, var.equal=FALSE, data=HolzingerSwineford

Welch Two Sample t-test

```
data: F3 by school t = -2.9541, df = 291.524, p-value = 0.003392 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:
```

-0.4712071 -0.0943852 sample estimates:

-0.1465654

mean in group Grant-White mean in group Pasteur 0.1362307

• t-test는 조사된 객관적 점수들-기준점이 필요없는-을 바탕으로 비교 집단들의 상대적 우열을 추론한다.

Part II

확인적 요인분석(Confirmatory Factor Analysis, CFA)

분석의 조건과 언어

- 탐색적 요인분석
 - 의미있는 특징을 발견하고, 수리적으로 정리하는 데 사용한다.
 - 귀납적 연구방법
- 확인적 요인분석
 - 경험적인 직관이나 지식에 기반한 추론의 적절성 여부
 - 적절성 판단이후에 수리적인 논거를 제시하는 데 사용한다.
 - 연역적 연구방법

4.1 다변량 정규성에 대한 확인

- > require(psych)
- > ?mardia
- > require(mvnormtest)
- > ?mshapiro.test
 - normality vs. Partial Least Squares(PLS)

4.2 모형적합성이란?

- 연역적 논거의 설계가 설득적인가에 대한 입장 표명
 - 설계된 모형과 수집된 표본의 분석 결과가 차이가 있는가의 여부: χ^2 검정

확인적 요인분석 기초

5.1 모형의 설계

- > cfa.model1 <- ' F1 =~ x1 + x2 +x3
- + F2 = x4 + x5 + x6
- + F3 = x7 + x8 + x9'

5.2 모형의 적합성 판단

> cfa.model1.fit <- cfa(cfa.model1, data=HolzingerSwineford1939, estimator="MLR")
> cfa.model1.fit

lavaan (0.5-11) converged normally after 41 iterations

Number	of	observations		301
--------	----	--------------	--	-----

Estimator	ML	Robust
Minimum Function Test Statistic	85.306	87.132
Degrees of freedom	24	24
P-value (Chi-square)	0.000	0.000
Scaling correction factor		0.979
for the Yuan-Bentler correction		

101 0H0 1ddi Boholol 001100010H

> summary(cfa.model1.fit, fit.measures=TRUE)

lavaan (0.5-11)	converged	${\tt normally}$	after	41	${\tt iterations}$
Number of obs	ervations				301

Estimator	ML	Robust
Minimum Function Test Statistic	85.306	87.132
Degrees of freedom	24	24
P-value (Chi-square)	0.000	0.000
Scaling correction factor		0.979

for the Yuan-Bentler correction

Model test baseline model:

Minimum Function Test Statistic Degrees of freedom P-value		852 36 000	880.082 36 0.000	
Full model versus baseline model:				
Comparative Fit Index (CFI)	~ -	931	0.925	
Tucker-Lewis Index (TLI)	0.	896	0.888	
Loglikelihood and Information Criteria:				
Loglikelihood user model (HO)	-3737.	745	-3737.745	
Scaling correction factor for the MLR correction			1.093	
Loglikelihood unrestricted model (H1)	-3695.	092	-3695.092	
Scaling correction factor for the MLR correction			1.043	
Number of free parameters		30	30	
Akaike (AIC)	7535.	490	7535.490	
Bayesian (BIC)	7646.			
Sample-size adjusted Bayesian (BIC)	7551.	560	7551.560	
Root Mean Square Error of Approximation:				
RMSEA	0.	092	0.093	
90 Percent Confidence Interval	0.071 0.	114	0.073	0.115
P-value RMSEA <= 0.05	0.	001	0.001	
Standardized Root Mean Square Residual:				
SRMR	0.	060	0.060	
Parameter estimates:				

Information Observed Standard Errors Robust.huber.white

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~				
x1	1.000			
x2	0.553	0.132	4.191	0.000
x3	0.729	0.141	5.170	0.000
F2 =~				
x4	1.000			
x5	1.113	0.066	16.946	0.000
x6	0.926	0.061	15.089	0.000
F3 =~				
x7	1.000			
x8	1.180	0.130	9.046	0.000
x9	1.082	0.266	4.060	0.000

Covariances:				
F1 ~~				
F2	0.408	0.099	4.110	0.000
F3	0.262	0.060	4.366	0.000
F2 ~~				
F3	0.173	0.056	3.081	0.002
Intercepts:				
x1	4.936	0.067	73.473	0.000
x2	6.088	0.068	89.855	0.000
x3	2.250	0.065	34.579	0.000
x4	3.061	0.067	45.694	0.000
x5	4.341	0.074	58.452	0.000
x6	2.186	0.063	34.667	0.000
x7	4.186	0.063	66.766	0.000
x8	5.527	0.058	94.854	0.000
x9	5.374	0.058	92.546	0.000
F1	0.000			
F2	0.000			
F3	0.000			
Variances:				
x1	0.549	0.156		
x2	1.134	0.112		
x3	0.844	0.100		
x4	0.371	0.050		
x5	0.446	0.057		
x6	0.356	0.047		
x7	0.799	0.097		
x8	0.488	0.120		
x9	0.566	0.119		
F1	0.809	0.180		
F2	0.979	0.121		
F3	0.384	0.107		

5.3 집단별 모형 적합성 판단: 기초

• HolzingerSwineford1939 데이터셋에는 집단변수로 'school'이 포함되어 있다.

> cfa.model1.fit.group <- cfa(cfa.model1, data=HolzingerSwineford1939, estimator="MLR", group="school > cfa.model1.fit.group

lavaan (0.5-11) converged normally after 63 iterations

Number of observations per group		
Pasteur	156	
Grant-White	145	
Estimator	ML	Robust
Minimum Function Test Statistic	115.851	121.741
Degrees of freedom	48	48

P-value (Chi-square) Scaling correction factor for the Yuan-Bentler correction	0.000	0.000 0.952
Chi-square for each group:		
Pasteur Grant-White	64.309 51.542	67.578 54.162
> summary(cfa.model1.fit.group, fit.measu	res=TRUE)	
lavaan (0.5-11) converged normally after	63 iterations	
Number of observations per group Pasteur Grant-White	156 145	
Estimator Minimum Function Test Statistic Degrees of freedom P-value (Chi-square) Scaling correction factor for the Yuan-Bentler correction	ML 115.851 48 0.000	Robust 121.741 48 0.000 0.952
Chi-square for each group:		
Pasteur Grant-White	64.309 51.542	67.578 54.162
Model test baseline model:		
Minimum Function Test Statistic Degrees of freedom P-value	957.769 72 0.000	934.309 72 0.000
Full model versus baseline model:		
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.923 0.885	0.914 0.872
Loglikelihood and Information Criteria:		
Loglikelihood user model (HO) Scaling correction factor for the MLR correction	-3682.198	-3682.198 1.099
Loglikelihood unrestricted model (H1) Scaling correction factor for the MLR correction	-3624.272	-3624.272 1.033
Number of free parameters Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	60 7484.395 7706.822 7516.536	

Root Mean Square Error of Approximation:

RMSEA		0.097	0.101	
90 Percent Confidence Interval	0.075	0.120	0.078	0.124
P-value RMSEA <= 0.05		0.001	0.000	

Standardized Root Mean Square Residual:

SRMR 0.068 0.068

Parameter estimates:

Information Observed Standard Errors Robust.huber.white

Group 1 [Pasteur]:

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~				
x1	1.000			
x2	0.394	0.197	1.996	0.046
x3	0.570	0.201	2.838	0.005
F2 =~				
x4	1.000			
x5	1.183	0.106	11.213	0.000
x6	0.875	0.093	9.388	0.000
F3 =~				
x7	1.000			
x8	1.125	0.262	4.298	0.000
x9	0.922	0.297	3.099	0.002
Covariances:				
F1 ~~				
F2	0.479	0.144	3.334	0.001
F3	0.185	0.076	2.449	0.014
F2 ~~				
F3	0.182	0.076	2.402	0.016
Intercepts:				
x1	4.941	0.095	52.249	0.000
x2	5.984	0.098	60.949	0.000
x3	2.487	0.093	26.778	0.000
x4	2.823	0.092	30.689	0.000
x5	3.995	0.105	38.183	0.000
x6	1.922	0.079	24.321	0.000
x7	4.432	0.087	51.181	0.000
x8	5.563	0.078	71.214	0.000
x9	5.418	0.079	68.440	0.000
F1	0.000			
F2	0.000			

F3	0.000	
Variances:		
x1	0.298	0.338
x2	1.334	0.179
х3	0.989	0.154
x4	0.425	0.073
x5	0.456	0.086
x6	0.290	0.055
x7	0.820	0.132
x8	0.510	0.101
х9	0.680	0.126
F1	1.097	0.378
F2	0.894	0.160
F3	0.350	0.140

Group 2 [Grant-White]:

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~				
x1	1.000			
x2	0.736	0.190	3.870	0.000
x3	0.925	0.216	4.281	0.000
F2 =~				
x4	1.000			
x5	0.990	0.089	11.179	0.000
x6	0.963	0.091	10.588	0.000
F3 =~				
x7	1.000			
x8	1.226	0.162	7.560	0.000
x9	1.058	0.250	4.228	0.000
Covariances:				
F1 ~~				
F2	0.408	0.115	3.535	0.000
F3	0.276	0.101	2.731	0.006
F2 ~~				
F3	0.222	0.105	2.115	0.034
Intercepts:				
x1	4.930	0.095	51.696	0.000
x2	6.200	0.092	67.416	0.000
x3	1.996	0.086	23.195	0.000
x4	3.317	0.093	35.625	0.000
x5	4.712	0.096	48.986	0.000
x6	2.469	0.094	26.277	0.000
x7	3.921	0.086	45.819	0.000
x8	5.488	0.087	63.174	0.000
x9	5.327	0.085	62.571	0.000

F1	0.000	
F2	0.000	
F3	0.000	
Variances:		
x1	0.715	0.182
x2	0.899	0.142
x3	0.557	0.122
x4	0.315	0.066
x5	0.419	0.071
x6	0.406	0.076
x7	0.600	0.100
x8	0.401	0.159
x9	0.535	0.140
F1	0.604	0.194
F2	0.942	0.162
F3	0.461	0.120

확인적 요인분석: 측정동일성

6.1 group.equal=c("loadings")

> cfa.model1.fit.group.loadings <- cfa(cfa.model1, data=HolzingerSwineford1939, estimator="MLR", group > summary(cfa.model1.fit.group.loadings, fit.measures=TRUE)

lavaan (0.5-11) converged normally after 46 iterations

Number of observations per group Pasteur Grant-White	156 145	
Estimator Minimum Function Test Statistic Degrees of freedom P-value (Chi-square) Scaling correction factor for the Yuan-Bentler correction	ML 124.044 54 0.000	Robust 125.997 54 0.000 0.984
Chi-square for each group:		
Pasteur Grant-White	68.825 55.219	
Model test baseline model:		
Minimum Function Test Statistic Degrees of freedom P-value	957.769 72 0.000	72
Full model versus baseline model:		
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.921 0.895	0.917 0.889
Loglikelihood and Information Criteria:		
Loglikelihood user model (HO)	-3686.294	-3686.294

	Scaling correcti						1.082	
	Loglikelihood un	restricted	model (H	H1)	-36	24.272	-3624.272	
	Scaling correcti	on factor					1.033	
	for the MLR co	rrection						
	Number of free r					54	54	
	Number of free p Akaike (AIC)	oarameters			74	.80.587	0 -	
	Bayesian (BIC)					80.771		
	Sample-size adju	sted Bayes	ian (BIC))		09.514		
	1 3	•						
R	loot Mean Square E	Error of Ap	proximati	ion:				
	RMSEA		-	0		0.093	0.094	0 110
	90 Percent Confi P-value RMSEA <=		rval	0.0	071	0.114		0.116
	P-value KMSEA <=	.0.05				0.001	0.001	
S	tandardized Root	Mean Squar	e Residua	al:				
	SRMR					0.072	0.072	
						0.012	0.072	
P	arameter estimate	es:						
	Information				Ob	served		
	Standard Errors		F	Robust.hı	ıber	.white		
G	roup 1 [Pasteur]:							
		Estimate	Std.err	Z-value	e P	(> z)		
L	atent variables:							
	F1 =~							
	4	1 000						

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~				
x1	1.000			
x2	0.599	0.140	4.285	0.000
x3	0.784	0.152	5.146	0.000
F2 =~				
x4	1.000			
x5	1.083	0.069	15.609	0.000
x6	0.912	0.069	13.283	0.000
F3 =~				
x7	1.000			
x8	1.201	0.135	8.884	0.000
х9	1.038	0.207	5.022	0.000
Covariances:				
F1 ~~				
F2	0.416	0.135	3.080	0.002
F3	0.169	0.133	2.564	0.002
F2 ~~	0.109	0.000	2.504	0.010
F2 F3	0.176	0.061	2.905	0.004
73	0.176	0.001	2.900	0.004
Intercepts:				
x1	4.941	0.095	52.249	0.000

x2	5.984	0.098	60.949	0.000
x3	2.487	0.093	26.778	0.000
x4	2.823	0.092	30.689	0.000
x5	3.995	0.105	38.183	0.000
x6	1.922	0.079	24.321	0.000
x7	4.432	0.087	51.181	0.000
x8	5.563	0.078	71.214	0.000
x9	5.418	0.079	68.440	0.000
F1	0.000			
F2	0.000			
F3	0.000			
Variances:				
x1	0.551	0.175		
x2	1.258	0.165		
x3	0.882	0.129		
x4	0.434	0.072		
x5	0.508	0.080		
x6	0.266	0.057		
x7	0.849	0.113		
x8	0.515	0.095		
x9	0.658	0.118		
F1	0.805	0.226		
F2	0.913	0.139		
F3	0.305	0.082		

Group 2 [Grant-White]:

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~				
x1	1.000			
x2	0.599	0.140	4.285	0.000
x3	0.784	0.152	5.146	0.000
F2 =~				
x4	1.000			
x5	1.083	0.069	15.609	0.000
x6	0.912	0.069	13.283	0.000
F3 =~				
x7	1.000			
x8	1.201	0.135	8.884	0.000
x9	1.038	0.207	5.022	0.000
Covariances:				
F1 ~~				
F2	0.437	0.107	4.067	0.000
F3	0.314	0.096	3.253	0.001
F2 ~~				
F3	0.226	0.099	2.288	0.022

```
Intercepts:
                        4.930
                                 0.095
                                          51.696
                                                     0.000
    x1
    x2
                        6.200
                                 0.092
                                          67.416
                                                     0.000
    xЗ
                        1.996
                                 0.086
                                                     0.000
                                          23.195
                        3.317
                                 0.093
                                          35.625
                                                     0.000
    x4
                        4.712
                                 0.096
                                          48.986
                                                     0.000
    x5
                        2.469
                                 0.094
                                          26.277
                                                     0.000
    x6
    x7
                        3.921
                                 0.086
                                          45.819
                                                     0.000
                       5.488
                                 0.087
                                          63.174
                                                     0.000
    8x
                                 0.085
                                                     0.000
    x9
                        5.327
                                          62.571
    F1
                        0.000
                        0.000
    F2
    F3
                        0.000
Variances:
    x1
                        0.645
                                 0.170
    x2
                       0.933
                                 0.146
    хЗ
                        0.605
                                 0.113
    x4
                       0.329
                                 0.065
    x5
                       0.384
                                 0.072
                       0.437
                                 0.075
    x6
    x7
                       0.599
                                 0.095
    8x
                       0.406
                                 0.144
    x9
                        0.532
                                 0.126
    F1
                        0.722
                                 0.176
    F2
                        0.906
                                 0.146
    F3
                        0.475
                                 0.113
```

> anova(cfa.model1.fit.group, cfa.model1.fit.group.loadings)

Scaled Chi Square Difference Test (test = yuan.bentler)

```
Df AIC BIC Chisq Chisq diff Df diff cfa.model1.fit.group 48 7484.4 7706.8 115.85 cfa.model1.fit.group.loadings 54 7480.6 7680.8 124.04 7.6798 6 Pr(>Chisq) cfa.model1.fit.group cfa.model1.fit.group.loadings 0.2625
```

6.2 group.equal=c("loadings", "intercepts")

> cfa.model1.fit.group.loadings.intercepts <- cfa(cfa.model1, data=HolzingerSwineford1939, estimator=
> summary(cfa.model1.fit.group.loadings.intercepts, fit.measures=TRUE)

lavaan (0.5-11) converged normally after 63 iterations

Number of observations per group		
Pasteur	156	
Grant-White	145	
Estimator	ML	Robust
Minimum Function Test Statistic	164.103	166.748

Degrees of freedom P-value (Chi-square) Scaling correction factor for the Yuan-Bentler correction	60 0.000	60 0.000 0.984	
Chi-square for each group:			
Pasteur Grant-White	90.210 73.893	91.664 75.084	
Model test baseline model:			
Minimum Function Test Statistic Degrees of freedom P-value	957.769 72 0.000	934.309 72 0.000	
Full model versus baseline model:			
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.882 0.859	0.876 0.851	
Loglikelihood and Information Criteria:			
Loglikelihood user model (H0) Scaling correction factor for the MLR correction	-3706.323	-3706.323 1.095	
Loglikelihood unrestricted model (H1) Scaling correction factor for the MLR correction	-3624.272	-3624.272 1.033	
Number of free parameters	48	48	
Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	7508.647 7686.588 7534.359	7686.588	
Root Mean Square Error of Approximation:			
RMSEA 90 Percent Confidence Interval P-value RMSEA <= 0.05	0.107 0.088 0.127 0.000	0.109 0.089 0.000	0.129
Standardized Root Mean Square Residual:			
SRMR	0.082	0.082	
Parameter estimates:			

Group 1 [Pasteur]:

Standard Errors

Information

Robust.huber.white

Observed

	Estimate	Std.err	Z-value	P(> z)
Latent variables: F1 =~				
тı – х1	1.000			
x2	0.576	0.131	4.395	0.000
x3	0.798	0.131	4.627	0.000
F2 =~	0.790	0.173	4.027	0.000
x4	1.000			
x5	1.120	0.067	16.623	0.000
x6	0.932	0.064	14.652	0.000
F3 =~	0.502	0.004	14.002	0.000
x7	1.000			
x8	1.130	0.133	8.488	0.000
x9	1.009	0.207	4.865	0.000
<i>N.</i> 3	1.005	0.201	4.000	0.000
Covariances: F1 ~~				
F2	0.410	0.135	3.043	0.002
F3	0.178	0.067	2.661	0.008
F2 ~~				
F3	0.180	0.062	2.889	0.004
Intercepts:				
x1	5.001	0.094	53.050	0.000
x2	6.151	0.087	70.867	0.000
х3	2.271	0.095	24.016	0.000
x4	2.778	0.086	32.173	0.000
x5	4.035	0.103	39.095	0.000
х6	1.926	0.075	25.751	0.000
x7	4.242	0.079	53.702	0.000
x8	5.630	0.075	75.002	0.000
x9	5.465	0.072	76.114	0.000
F1	0.000			
F2	0.000			
F3	0.000			
Variances:				
x1	0.555	0.184		
x2	1.296	0.161		
х3	0.944	0.147		
x4	0.445	0.073		
x5	0.502	0.081		
x6	0.263	0.058		
x7	0.888	0.128		
x8	0.541	0.089		
x9	0.654	0.115		
F1	0.796	0.239		
F2	0.879	0.135		
F3	0.322	0.092		

Group 2 [Grant-White]:

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~	4 000			
x1	1.000	0 101	4 005	0 000
x2	0.576	0.131	4.395	0.000
x3 F2 =~	0.798	0.173	4.627	0.000
r2 - x4	1.000			
x5	1.120	0.067	16.623	0.000
x6	0.932	0.064	14.652	0.000
F3 =~	0.502	0.004	14.002	0.000
x7	1.000			
x8	1.130	0.133	8.488	0.000
x9	1.009	0.207	4.865	0.000
Covariances:				
F1 ~~				
F2	0.427	0.107	4.003	0.000
F3	0.329	0.101	3.268	0.001
F2 ~~				
F3	0.236	0.097	2.423	0.015
Intercepts:				
x1	5.001	0.094	53.050	0.000
x2	6.151	0.087	70.867	0.000
х3	2.271	0.095	24.016	0.000
x4	2.778	0.086	32.173	0.000
x5	4.035	0.103	39.095	0.000
x6	1.926	0.075	25.751	0.000
x7	4.242	0.079	53.702	0.000
x8	5.630	0.075	75.002	0.000
x9 F1	5.465 -0.148	0.072 0.140	76.114 -1.053	0.000
F2	0.576	0.140	4.841	0.292
F3	-0.177	0.119	-1.712	0.000
Variances:				
x1	0.654	0.177		
x2	0.964	0.152		
x3	0.641	0.129		
x4	0.343	0.065		
x5	0.376	0.073		
х6	0.437	0.074		
x7	0.625	0.106		
x8	0.434	0.147		
х9	0.522	0.125		
F1	0.708	0.186		
F2	0.870	0.143		
F3	0.505	0.125		

```
> anova(cfa.model1.fit.group.loadings, cfa.model1.fit.group.loadings.intercepts)
Scaled Chi Square Difference Test (test = yuan.bentler)
                                        Df
                                               AIC
                                                     BIC Chisq Chisq diff
cfa.model1.fit.group.loadings
                                         54 7480.6 7680.8 124.04
cfa.model1.fit.group.loadings.intercepts 60 7508.6 7686.6 164.10
                                                                     26.706
                                        Df diff Pr(>Chisq)
cfa.model1.fit.group.loadings
cfa.model1.fit.group.loadings.intercepts
                                               6 0.0001644 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
> anova(cfa.model1.fit.group, cfa.model1.fit.group.loadings.intercepts)
Scaled Chi Square Difference Test (test = yuan.bentler)
                                               AIC
                                                     BIC Chisq Chisq diff
cfa.model1.fit.group
                                         48 7484.4 7706.8 115.85
cfa.model1.fit.group.loadings.intercepts 60 7508.6 7686.6 164.10
                                                                    37.616
                                        Df diff Pr(>Chisq)
cfa.model1.fit.group
cfa.model1.fit.group.loadings.intercepts
                                             12 0.0001774 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
   • cfa.model1.fit.group.loadings와 cfa.model1.fit.group.loadings.intercepts의 차이가 분산분석으로
     드러난다.
```

6.3 modIndices()

- 관찰변수 중에서 mi 값이 큰 두 개를 선택하고자 한다.
- 171번과 175번을 주목한다.
- > modindices(cfa.model1.fit.group.loadings.intercepts)

```
lhs op rhs group
                         mi mi.scaled
                                         epc sepc.lv sepc.all sepc.nox
    F1 = 
                     1.716
                                1.744 0.259
                                               0.231
                                                        0.199
1
           x1
                   1
                                                                 0.199
    F1 =~
           x2
                   1
                     0.302
                                0.307 -0.051
                                              -0.045
                                                       -0.036
                                                                -0.036
3
    F1 = 
                                1.637 -0.131
                                                       -0.097
           xЗ
                   1 1.611
                                              -0.117
                                                                -0.097
    F1 =~
           x4
                   1 0.286
                                0.291 0.045
                                               0.040
                                                        0.035
                                                                 0.035
5
    F1 =~
           x5
                   1 2.799
                                2.844 -0.152 -0.136
                                                       -0.107
                                                                -0.107
    F1 =~
6
            x6
                   1 1.181
                                1.200 0.077
                                               0.069
                                                        0.068
                                                                 0.068
7
    F1 =~
                   1 4.795
                                4.872 -0.249
                                              -0.222
                                                       -0.202
           x7
                                                                -0.202
8
    F1 =~
           x8
                   1 0.737
                                0.749 -0.092
                                              -0.082
                                                       -0.084
                                                                -0.084
    F1 =~
9
           x9
                   1 8.416
                                8.552 0.300
                                               0.268
                                                        0.270
                                                                 0.270
    F2 =~
10
           x1
                   1 7.705
                                7.829 0.323
                                               0.303
                                                        0.260
                                                                 0.260
    F2 = 
                  1 0.997
                                              -0.102
11
           x2
                                1.013 -0.109
                                                       -0.082
                                                                -0.082
                  1 5.639
                                5.730 -0.242
                                              -0.227
12
           x3
                                                       -0.189
                                                                -0.189
    F2 =~
                                              -0.003
                   1 0.002
                                0.002 -0.003
                                                       -0.003
1.3
            x4
                                                                -0.003
    F2 = 
                   1 2.507
                                2.548 0.087
                                               0.082
                                                        0.064
                                                                 0.064
14
           x5
    F2 =~ x6
                   1 2.450
15
                                2.489 -0.073 -0.069
                                                       -0.068
                                                                -0.068
```

16	F2 =~	x7	1	0.396	0.402	0.061	0.057	0.052	0.052
17	F2 =~	8x	1	0.507	0.515 -	0.065	-0.061	-0.063	-0.063
18	F2 =~	x9	1	0.041	0.042	0.018	0.017	0.017	0.017
19	F3 =~	x1	1	0.488	0.496	0.158	0.090	0.077	0.077
20	F3 =~	x2	1	1.217	1.237 -	0.233	-0.132	-0.106	-0.106
21	F3 =~	xЗ	1	0.000	0.000 -	0.004	-0.002	-0.002	-0.002
22	F3 =~	x4	1	0.003	0.003	0.008	0.004	0.004	0.004
23	F3 =~	x5	1	1.122	1.140 -	0.160	-0.091	-0.071	-0.071
24	F3 =~	x6	1	0.895	0.909	0.112	0.063	0.063	0.063
25	F3 =~	x7	1	0.008	0.008 -	0.020	-0.011	-0.010	-0.010
26	F3 =~	8x	1	0.026	0.027	0.023	0.013	0.013	0.013
27	F3 =~	x9	1	0.004	0.004 -	0.008	-0.004	-0.004	-0.004
28	x1 ~~	x1	1	0.000	0.000	0.000	0.000	0.000	0.000
29	x1 ~~	x2	1	0.634	0.645 -	0.083	-0.083	-0.057	-0.057
30	x1 ~~	x3	1	0.196	0.199 -	0.065	-0.065	-0.046	-0.046
31	x1 ~~	x4	1	3.983		0.121	0.121	0.090	0.090
32	x1 ~~	x5	1	0.564	0.573 -		-0.049	-0.033	-0.033
33	x1 ~~	x6	1	0.358		0.030	0.030	0.026	0.026
34	x1 ~~	x7	1	1.298	1.318 -		-0.092	-0.072	-0.072
35	x1 ~~	x8	1	0.379	0.385 -		-0.044	-0.039	-0.039
36	x1 ~~	x9	1	2.005		0.102	0.102	0.089	0.089
37	x2 ~~	x2	1	0.000		0.000	0.000	0.000	0.000
38	x2 ~~	x3	1	2.273		0.154	0.154	0.102	0.102
39	x2 ~~	x4	1	3.002	3.051 -		-0.125	-0.087	-0.087
40	x2 ~~	x5	1	0.007		0.006	0.006	0.004	0.004
41	x2 ~~	x6	1	0.721		0.051	0.051	0.040	0.040
42	x2 ~~	x7	1	8.913	9.057 -		-0.284	-0.207	-0.207
43	x2 ~~	x8	1	0.000	0.000 -		-0.001	-0.001	-0.001
44	x2 ~~	x9	1	2.376		0.130	0.130	0.105	0.105
45	x3 ~~	x3	1	0.000		0.000	0.000	0.000	0.000
46	x3 ~~	x4	1	0.409	0.415 -		-0.042	-0.030	-0.030
47	x3 ~~	x5	1	5.727	5.820 -		-0.168	-0.110	-0.110
48	x3 ~~	x6	1	0.862		0.050	0.050	0.041	0.041
49	x3 ~~	x7	1	0.363	0.369 -		-0.052	-0.039	-0.039
50	x3 ~~	x8	1	0.000	0.000 -		-0.001	-0.001	-0.001
51	x3 ~~	x9	1	2.701		0.125	0.125	0.105	0.105
52	x4 ~~	x4	1	0.000		0.000	0.000	0.000	0.000
53	x4 ~~	x5	1	5.563		0.165	0.165	0.113	0.113
54	x4 ~~	x6	1	7.522	7.643 -		-0.162	-0.139	-0.139
55	x4 ~~	x7	1	7.514		0.102	0.102	0.134	0.134
56	x4 ~~	x8	1	1.363	1.385 -		-0.062	-0.055	-0.055
57	x4 ~~	x9	1	1.346	1.368 -		-0.064	-0.056	-0.056
58	x5 ~~	x5	1	0.000		0.000	0.000	0.000	0.000
59	x5 ~~	x6	1	0.124		0.023	0.003	0.000	0.000
60	x5 ~~	x7	1	1.780	1.809 -		-0.090	-0.064	-0.064
61	x5 ~~	x8	1	0.353	0.359 -		-0.034	-0.028	-0.028
62	x5 x5 ~~	хо х9	1	0.333		0.034	0.032	0.025	0.025
62 63	х5 х6 ~~			0.285			0.032	0.025	0.025
	х6 х6 ~~	x6	1	0.000		0.000	0.005	0.000	
64 65	хо х6 ~~	x7 x8	1 1	1.623		0.005	0.005	0.004	0.004 0.057
66 67	x6 ~~	x9	1	0.054	0.055 -		-0.011	-0.011	-0.011
67	x7 ~~	x7	1	0.000	0.000	0.000	0.000	0.000	0.000

68	x7 ~~	x8	1	1.821	1.851	0.113	0.113	0.105	0.105
69	x7 ~~	x9	1	0.865	0.878	-0.073	-0.073	-0.067	-0.067
70	x8 ~~	x8	1	0.000	0.000	0.000	0.000	0.000	0.000
71	x8 ~~	x9	1	0.217	0.220	-0.039	-0.039	-0.040	-0.040
72	x9 ~~	x9	1	0.000	0.000	0.000	0.000	0.000	0.000
73	F1 ~~	F1	1	0.000	0.000	0.000	0.000	0.000	0.000
74	F1 ~~	F2	1	0.000	0.000	0.000	0.000	0.000	0.000
75	F1 ~~	F3	1	0.000	0.000	0.000	0.000	0.000	0.000
76	F2 ~~	F2	1	0.000	0.000	0.000	0.000	0.000	0.000
77	F2 ~~	F3	1	0.000	0.000	0.000	0.000	0.000	0.000
78	F3 ~~	F3	1	0.000	0.000	0.000	0.000	0.000	0.000
79	x1 ~1		1	4.485	4.557	-0.133	-0.133	-0.114	-0.114
80	x2 ~1		1	6.634	6.741	-0.165	-0.165	-0.132	-0.132
81	x3 ~1		1	17.717	18.002	0.248	0.248	0.206	0.206
82	x4 ~1		1	1.816	1.846	0.058	0.058	0.050	0.050
83	x5 ~1		1	1.316	1.337	-0.054	-0.054	-0.042	-0.042
84	x6 ~1		1	0.028	0.028	-0.007	-0.007	-0.007	-0.007
85	x7 ~1		1	13.681	13.902	0.205	0.205	0.186	0.186
86	x8 ~1		1	3.864	3.926	-0.099	-0.099	-0.102	-0.102
87	x9 ~1		1	1.322	1.343	-0.058	-0.058	-0.059	-0.059
88	F1 ~1		1	0.000	0.000	0.000	0.000	0.000	0.000
89	F2 ~1		1	0.000	0.000	0.000	0.000	0.000	0.000
90	F3 ~1		1	0.000	0.000	0.000	0.000	0.000	0.000
91	F1 =~	x1	2			-0.181	-0.152	-0.130	-0.130
92	F1 =~	x2	2		0.307	0.051	0.043	0.039	0.039
93	F1 =~	xЗ	2		1.637	0.131	0.110	0.105	0.105
94	F1 =~	x4	2	0.699	0.710	0.069	0.058	0.053	0.053
95	F1 =~	x5	2	2.588		-0.146	-0.123	-0.101	-0.101
96	F1 =~	x6	2	0.825	0.839	0.078	0.066	0.060	0.060
97	F1 =~	x7	2	5.478		-0.243	-0.204	-0.192	-0.192
98	F1 =~	x8	2	1.208		-0.112	-0.094	-0.091	-0.091
99	F1 =~	x9	2		11.704	0.334	0.281	0.276	0.276
100	F2 =~	x1	2	0.365	0.371	0.057	0.053	0.045	0.045
101	F2 =~	x2	2		0.857	0.076	0.071	0.065	0.065
102	F2 =~	xЗ	2		1.614	-0.099	-0.092	-0.088	-0.088
103	F2 =~	x4	2		0.001	0.002	0.002	0.002	0.002
104	F2 =~	x5	2		2.548	-0.087	-0.081	-0.067	-0.067
105	F2 =~	x6	2	2.450	2.489	0.073	0.068	0.063	0.063
106	F2 =~	x7	2			-0.101	-0.094	-0.089	-0.089
107	F2 =~	x8	2			-0.086	-0.080	-0.077	-0.077
108	F2 =~	x9	2		7.088		0.169	0.166	0.166
109	F3 =~	x1	2			-0.010	-0.007	-0.006	-0.006
110	F3 =~	x2	2			-0.066	-0.047	-0.043	-0.043
111	F3 =~	x3	2		0.166		0.036	0.035	0.035
112	F3 =~	x4	2			-0.017	-0.012	-0.011	-0.011
113	F3 =~	x5	2		0.162		0.029	0.024	0.024
114	F3 =~	x6	2			-0.025	-0.018	-0.016	-0.016
115	F3 =~	x7	2		0.003		0.005	0.005	0.005
116	F3 =~	x8	2			-0.023	-0.016	-0.016	-0.016
117	F3 =~	x9	2		0.004		0.005	0.005	0.005
118	x1 ~~	x1	2		0.000		0.000	0.000	0.000
119	x1 ~~	x2	2			-0.022	-0.022	-0.017	-0.017
-10	44.4	22		5.555	0.001	0.022	J. J.Z	0.011	0.011

120	x1 ~~	хЗ	2	1.843	1.873	-0.163	-0.163	-0.134	-0.134
121	x1 ~~	x4	2	0.060	0.061	0.014	0.014	0.011	0.011
122	x1 ~~	x5	2	0.059	0.060	-0.015	-0.015	-0.011	-0.011
123	x1 ~~	x6	2	0.016	0.017	-0.008	-0.008	-0.006	-0.006
124	x1 ~~	x7	2	7.662	7.785	-0.197	-0.197	-0.159	-0.159
125	x1 ~~	8x	2	0.211	0.214	0.031	0.031	0.025	0.025
126	x1 ~~	x9	2	8.604	8.743	0.197	0.197	0.166	0.166
127	x2 ~~	x2	2	0.000	0.000	0.000	0.000	0.000	0.000
128	x2 ~~	хЗ	2	3.301	3.354	0.143	0.143	0.125	0.125
129	x2 ~~	x4	2	0.432	0.439	0.039	0.039	0.032	0.032
130	x2 ~~	x5	2	0.989	1.005	-0.064	-0.064	-0.048	-0.048
131	x2 ~~	x6	2	0.000	0.000	0.000	0.000	0.000	0.000
132	x2 ~~	x7	2	1.276	1.296	-0.083	-0.083	-0.072	-0.072
133	x2 ~~	8x	2	0.006	0.007	0.005	0.005	0.005	0.005
134	x2 ~~	x9	2	0.193	0.196	0.030	0.030	0.027	0.027
135	x3 ~~	xЗ	2	0.000	0.000	0.000	0.000	0.000	0.000
136	x3 ~~	x4	2	0.155	0.157	0.021	0.021	0.018	0.018
137	x3 ~~	x5	2	1.189	1.209	-0.062	-0.062	-0.049	-0.049
138	x3 ~~	x6	2	1.571	1.597	0.069	0.069	0.061	0.061
139	x3 ~~	x7	2	1.489	1.513	-0.080	-0.080	-0.072	-0.072
140	x3 ~~	x8	2	0.155	0.158	-0.024	-0.024	-0.022	-0.022
141	x3 ~~	x9	2	0.850	0.864	0.057	0.057	0.053	0.053
142	x4 ~~	x4	2	0.000	0.000	0.000	0.000	0.000	0.000
143	x4 ~~	x5	2	0.987	1.003	-0.074	-0.074	-0.055	-0.055
144	x4 ~~	x6	2	2.422	2.461	0.092	0.092	0.076	0.076
145	x4 ~~	x7	2	0.594	0.604	0.039	0.039	0.033	0.033
146	x4 ~~	x8	2	5.071	5.153	-0.106	-0.106	-0.093	-0.093
147	x4 ~~	x9	2	0.458	0.466	0.032	0.032	0.029	0.029
148	x5 ~~	x5	2	0.000	0.000	0.000	0.000	0.000	0.000
149	x5 ~~	x6	2	0.369	0.375	-0.040	-0.040	-0.031	-0.031
150	x5 ~~	x7	2	0.411	0.418	0.035	0.035	0.027	0.027
151	x5 ~~	x8	2	0.853	0.867	0.047	0.047	0.037	0.037
152	x5 ~~	x9	2	0.191	0.194	0.023	0.023	0.018	0.018
153	x6 ~~	x6	2	0.000	0.000	0.000	0.000	0.000	0.000
154	x6 ~~	x7	2	0.021	0.021	-0.008	-0.008	-0.007	-0.007
155	x6 ~~	8x	2	0.444	0.451	-0.033	-0.033	-0.029	-0.029
156	x6 ~~	x9	2	0.053	0.053	-0.012	-0.012	-0.010	-0.010
157	x7 ~~	x7	2	0.000	0.000	0.000	0.000	0.000	0.000
158	x7 ~~	8x	2	8.278	8.411	0.214	0.214	0.194	0.194
159	x7 ~~	x9	2	3.049	3.098	-0.119	-0.119	-0.110	-0.110
160	x8 ~~	8x	2	0.000	0.000	0.000	0.000	0.000	0.000
161	x8 ~~	x9	2	1.383	1.405	-0.089	-0.089	-0.084	-0.084
162	x9 ~~	x9	2	0.000	0.000	0.000	0.000	0.000	0.000
163	F1 ~~	F1	2	0.000	0.000	0.000	0.000	0.000	0.000
164	F1 ~~	F2	2	0.000	0.000	0.000	0.000	0.000	0.000
165	F1 ~~	F3	2	0.000	0.000	0.000	0.000	0.000	0.000
166	F2 ~~	F2	2	0.000	0.000	0.000	0.000	0.000	0.000
167	F2 ~~	F3	2	0.000	0.000	0.000	0.000	0.000	0.000
168	F3 ~~	F3	2	0.000	0.000	0.000	0.000	0.000	0.000
169	x1 ~1		2	4.484	4.557	0.133	0.133	0.114	0.114
170	x2 ~1		2	6.634	6.741	0.165	0.165	0.151	0.151
171	x3 ~1		2	17.717	18.002	-0.248	-0.248	-0.238	-0.238

172	x4 ~1	2	1.816	1.846	-0.058	-0.058	-0.053	-0.053
173	x5 ~1	2	1.316	1.337	0.054	0.054	0.044	0.044
174	x6 ~1	2	0.028	0.028	0.007	0.007	0.006	0.006
175	x7 ~1	2	13.681	13.902	-0.205	-0.205	-0.193	-0.193
176	x8 ~1	2	3.864	3.926	0.099	0.099	0.096	0.096
177	x9 ~1	2	1.322	1.343	0.058	0.058	0.057	0.057
178	F1 ~1	2	0.000	0.000	0.000	0.000	0.000	0.000
179	F2 ~1	2	0.000	0.000	0.000	0.000	0.000	0.000
180	F3 ~1	2	0.000	0.000	0.000	0.000	0.000	0.000

6.4 group.partial=c("x3~1", "x7~1")

> cfa.model1.fit.group.loadings.intercepts.group.partial <- cfa(cfa.model1, data=HolzingerSwineford19 > summary(cfa.model1.fit.group.loadings.intercepts.group.partial, fit.measures=TRUE)

lavaan (0.5-11) converged normally after 65 iterations

Number of observations per group		
Pasteur	156	
Grant-White	145	
	207	
Estimator	ML	Robust
Minimum Function Test Statistic	129.422	130.994
Degrees of freedom	58	58
P-value (Chi-square)	0.000	0.000
Scaling correction factor		0.988
for the Yuan-Bentler correction		
Chi-square for each group:		
Pasteur	71.170	72.034
Grant-White	58.253	
didno wiiioo	00.200	33.533
Model test baseline model:		
Minimum Function Test Statistic	957.769	934.309
Degrees of freedom	72	72
P-value	0.000	0.000
Full model versus baseline model:		
Comparative Fit Index (CFI)	0.919	0.915
Tucker-Lewis Index (TLI)	0.900	0.895
Loglikelihood and Information Criteria:		
Loglikelihood user model (HO)	-3688.983	-3688.983
Scaling correction factor		1.086
for the MLR correction		
Loglikelihood unrestricted model (H1)	-3624.272	-3624.272
Scaling correction factor		1.033
for the MLR correction		

Number of free para	meters			50	50	
Akaike (AIC)	Akaike (AIC)				7477.966	
Bayesian (BIC)			76	63.322	7663.322	
Sample-size adjuste	d Bayesian	(BIC)	75	04.750	7504.750	
Root Mean Square Erro	r of Appro	ximation	:			
RMSEA				0.090	0.091	
90 Percent Confiden	ce Interva	1	0.070	0.111	0.071	0.112
P-value RMSEA <= 0.	05			0.001	0.001	
Standardized Root Mea	n Square R	esidual:				
SRMR				0.073	0.073	
Parameter estimates:						
Information			በኑ	served		
Standard Errors		Robi	or ist.huber			
		1000	200111001			
Group 1 [Pasteur]:						
Es	timate St	d.err Z	-value P	(> z)		
Latent variables:		_		,		

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~				
x1	1.000			
x2	0.606	0.146	4.166	0.000
х3	0.791	0.159	4.978	0.000
F2 =~				
x4	1.000			
x5	1.120	0.067	16.633	0.000
x6	0.932	0.064	14.655	0.000
F3 =~				
x7	1.000			
x8	1.200	0.134	8.952	0.000
x9	1.041	0.208	5.006	0.000
Covariances:				
F1 ~~				
F2	0.404	0.135	2.981	0.003
F3	0.168	0.066	2.558	0.011
F2 ~~				
F3	0.172	0.060	2.896	0.004
Intercepts:				
x1	4.914	0.095	51.601	0.000
x2	6.087			
x3	2.487			
x4	2.778			0.000
x5	4.035	0.103	39.087	0.000
x6	1.926	0.075	25.749	0.000

x7	4.432	0.087	51.181	0.000
x8	5.569	0.074	75.596	0.000
x9	5.409	0.070	77.093	0.000
F1	0.000			
F2	0.000			
F3	0.000			
Variances:				
x1	0.560	0.181		
x2	1.267	0.166		
x3	0.879	0.131		
x4	0.446	0.073		
x5	0.502	0.081		
x6	0.263	0.058		
x7	0.850	0.113		
x8	0.516	0.095		
x9	0.656	0.118		
F1	0.796	0.230		
F2	0.879	0.135		
F3	0.304	0.083		

Group 2 [Grant-White]:

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
F1 =~				
x1	1.000			
x2	0.606	0.146	4.166	0.000
x3	0.791	0.159	4.978	0.000
F2 =~				
x4	1.000			
x5	1.120	0.067	16.633	0.000
x6	0.932	0.064	14.655	0.000
F3 =~				
x7	1.000			
x8	1.200	0.134	8.952	0.000
x9	1.041	0.208	5.006	0.000
Covariances:				
F1 ~~				
F2	0.426	0.106	4.027	0.000
F3	0.312	0.097	3.224	0.001
F2 ~~				
F3	0.223	0.097	2.303	0.021
Intercepts:				
x1	4.914	0.095	51.601	0.000
x2	6.087	0.080	76.352	0.000
x3	1.955	0.109	17.907	0.000
x4	2.778	0.086	32.172	0.000

x5	4.035	0.103	39.087	0.000
x6	1.926	0.075	25.749	0.000
x7	3.992	0.092	43.463	0.000
x8	5.569	0.074	75.596	0.000
x9	5.409	0.070	77.093	0.000
F1	0.051	0.133	0.384	0.701
F2	0.576	0.119	4.841	0.000
F3	-0.071	0.089	-0.806	0.420
Variances:				
x1	0.651	0.172		
x2	0.939	0.149		
x3	0.603	0.114		
x4	0.343	0.065		
x5	0.377	0.073		
x6	0.437	0.074		
x7	0.599	0.095		
x8	0.407	0.145		
x9	0.531	0.127		

0.715

0.870

0.475

0.179

0.143

0.114

F1

F2

F3

- Grant-White(Group 2)의 intercepts에서 요인들(F1, F2, F3)의 점수를 살펴보고, 유의확률로 근거를 확보한다.
- "Grant-White의 F2의 상수값 0.576이 유의확률을 바탕으로 Pasteur 학교보다 높다고 말할 수 있다."

참고문헌

```
> citation()
To cite R in publications use:
  R Development Core Team (2011). R: A language and environment for
  statistical computing. R Foundation for Statistical Computing,
  Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
A BibTeX entry for LaTeX users is
  @Manual{,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2011},
    note = \{\{ISBN\}\ 3-900051-07-0\},\
    url = {http://www.R-project.org/},
We have invested a lot of time and effort in creating R, please cite it
when using it for data analysis. See also 'citation("pkgname")' for
citing R packages.
> citation("lavaan")
To cite lavaan in publications use:
  Yves Rosseel (2012). lavaan: An R Package for Structural Equation
  Modeling. Journal of Statistical Software, 48(2), 1-36. URL
  http://www.jstatsoft.org/v48/i02/.
A BibTeX entry for LaTeX users is
  @Article{,
    title = {{lavaan}: An {R} Package for Structural Equation Modeling},
    author = {Yves Rosseel},
    journal = {Journal of Statistical Software},
    year = \{2012\},\
    volume = \{48\},
    number = \{2\},
    pages = \{1--36\},
```

```
url = {http://www.jstatsoft.org/v48/i02/},
}
```