

HOJA DE TRABAJO NO. 1 INTRODUCCIÓN A OPTIMIZACIÓN PARA CIENCIA DE DATOS

Instrucciones:

- Resuelva cada una de las cuestiones que se le presentan a continuación dejando constancia de todo procedimiento y razonamiento hecho.
- Favor de entregar su trabajo en formato electrónico (via GES) una semana después de la fecha de asignación.
- 1. Dada la función $f: \mathbb{R} \to \mathbb{R}_{\ni}$

$$f(x) = x^4 - 6x^3 + 3x^2 + 10x.$$

- a) Utilice cualquier software para graficar dicha función.
- b) Localice los máximos y mínimos locales, si los hay.
- c) ¿Existe un mínimo global? ¿y un máximo global? justifique su respuesta.
- 2. Construya un ejemplo de una función (de una variable real) que no tenga mínimo global ni máximo global.
- 3. Considere el problema de optimización:

$$\begin{aligned} & \text{min} \quad f(x,y) = x \\ & \text{s.t.} \quad x^2 + y^2 \leq 4 \\ & \quad x^2 \geq 1. \end{aligned}$$

- a) ¿Es el problema de optimización anterior lineal? Justifique su respuesta.
- b) Grafique la región factible para dicho problema.
- c) Determine el conjunto activo (active set) en los puntos $P_1(2,0)$, $P_2(1,0)$ y $P_3(\frac{3}{2},\frac{1}{10})$.
- d) Utilice la gráfica del inciso (a) para determinar la solución del problema de optimización.
- 4. A continuación se le presentan un conjunto de datos, se desea constuir un modelo de regresión para predecir la Presión Arterial Sistólica en función del Peso y la Edad a partir de un conjunto de 7 personas seleccionadas aleatoriamente.

Observación	1	2	3	4	5	6	7
Edad (años)	16	25	39	45	49	64	70
Peso (lbs)	140	149	165	170	165	159	144
Presión Arterial Sistólica (mm Hg)	16	25	39	45	49	64	70

- a) Escriba una función de costo $c(\omega)$ para este problema.
- b) Plantee un problema de optimización para minimizar dicha función de costo. Escriba este problema en la forma estándar presentada en clase.
- c) Utilizando cualquier software resuelva el problema de optimización del inciso anterior.