# 摘要

人工智慧盛行在我們的時代,啟能悄悄從它身邊走過,偶然的接觸到人工智慧,竟然完全無招架之力的被那科技深深吸引,開啟短暫但我相信還有續集的探索之旅。

- 一、卷積神經網路(Convolutional Neural Network, CNN):一種用於圖像辨識和分類的深度學習模型。MNIST 手寫數字辨識和 Cifar-10 圖片判斷都是基於卷積神經網路實現的。
- 二、YOLO技術:這是一種物件檢測技術,可以實現快速而準確地檢測圖像中的物體。可製作判別貓狗位址和自動瞄準外掛都是基於YOLO實現的。
- 三、3D虛擬人物控制: MediaPipe 是 Google Research 開發的一個跨平台的機器學習框架,可以實現從相機、影像等輸入中擷取關鍵信息並進行處理。進一步使用 MediaPipe 模型操控3D虛擬人物。
- 四、神經風格轉換(Neural Style Transfer):將一張圖像的風格轉 移到另一張圖像上的技術。
- 五、生成對抗網路(Generative Adversarial Network, GAN):這是一種利用兩個神經網路模型相互競爭來生成逼真的圖像的技術。GAN 的變體 CycleGAN 可以更加快速地實現風格轉換, GAN 這種技術在許多領域都有廣泛的應用。

# 前言

# 一、研究動機

世代的轉換代表的是成長、變動,更是恐慌。農業時代進階到工業時代、工業時代進階到AI時代,都代表著一群企業及人的沒落,同時也創造了另一批企業及人的興起,而現在正值AI時代要進階到人工智慧的時代,不想被這波洪流淹沒,則要加緊腳步迎頭趕上,也正是時機讓我們有個創造的舞台!處在這樣的時間及轉捩點,對我來說是非常興奮的。

#### 二、研究目的

- (一) 研究人工智慧所擁有的有趣技術
- (二)辨識系統的應用
- (三) 虛擬人物的控制
- (四) AI繪圖原理

# 三、人工智慧 (Artificial Intelligence, AI)

1956年,人工智慧被確立為一門學科,半世紀間經過許多起起落落。如今電腦的運算能力約為30年前的100萬倍,且近10幾年大數據的快速發展,人工智慧重新過來,許多先進的機器學習技術成功應用於社會中的許多問題。

# 四、機器學習 (Machine Learning, ML)

而在AI底下有個分支,也就是這次的主題機器學習。從 1980 開始蓬勃興起。機器學習之所以能興起,也歸功於硬體儲存成本下降、運算能力增強、大數據的發展。而機器學習中又有4類的學習方式,分別為監督學習、半監督學習、無監督學習、強化學習。

# 五、深度學習 (Deep Learning, DL)

深度學習又是機器學習的分支,深度學習能自動提取資料特徵,其能力遠遠甩開其它演算法。深度學習參考人腦神經概念,用程式還原神經網路的構造,人工神經網路架構分為輸入層(input layer)、隱藏層(hidden layer)、輸出層(output layer)。輸入層是資料進入系統的入口,而隱藏層是處理資訊的地方,隱藏層從輸入層或其他隱藏層取得輸入。人工神經網路可以有大量的隱藏層。每個隱藏層分析前一層的輸出,進一步處理,並將其傳遞給下一層,重複直到輸出層,而最終的計算結果就會顯現在輸出層,也就是預測結果。

# 六、神經網路種類

- (一) 前饋神經網路 (Feedforward Neural Network, FNN) 是最古老的神經網路之一,最簡單的神經網路模型,資料經由輸入層通過隱藏層到輸出層,神經元之間沒有連接迴路存在。
- (二) 卷積神經網路 (Convolutional Neural Network, CNN) 卷積神經網路通常用於圖片辨識,模仿人類大腦的認知方式,觀察由細微的事物到整體特色。卷積層 (Convolution Layer) 使權重的減少、池化層 (Pooling layer) 壓縮圖片,以此更高效率的判斷圖片。

#### 1. 卷積層 (Convolution Layer)

將輸入的圖像劃分為若干個矩形區域,對每個子區域以相同權重運算,最後加上激勵函數。神經元運算中無須每個輸入都要一個權重,我們稱共享權值(Shared weights),可大幅減少權重數量,藉此減少運算時間。

#### 2. 池化層 (Pooling Layer)

一個壓縮圖片並保留重要資訊的方法,取圖片 範圍內最高或平均當做輸出,常用的有最大池化 (Max pooling)與平均池化 (Average pooling)。

### 3. 扁平層 (Flatten Layer)

將多維的輸入壓扁為一維輸出,常用在從卷積層到全連接層的過渡。

4. 全連接層 (Fully Connected Layer) 連接最基本的神經網絡。



圖1卷積神經網路架構

- (三) 遞迴神經網路 (Recurrent Neural Network, RNN) 最常被用來處理時間和序列相關的問題。與使 用前饋類神經網路不同的是,循環類神經網路具備 前一層事件的「記憶」,並附加到目前層的輸出內容。
- (四) 長短期記憶網路 (Long Short-Term Memory, LSTM) 是進階的遞迴神經網路,解決許多問題。長短期記憶網路會透過三個控制閥(輸入閥、遺忘閥、輸出閥)來決定將什麼資料保存(記憶)下來,而什麼記憶又該捨棄(遺忘)。看似不錯但也因為家入了許多內容導致參數變多,訓練難度提升了不少。
- (五) 生成對抗網絡 (Generative Adversarial Network, GAN) 生成對抗網路是種非監督式學習,主要是兩個相互競爭的神經網路生成網路 (Generative Network) 與判別網路 (Discriminative Network)。生成網路生成圖片,目標騙過判別網路,判別網路判斷是否與資料相同,目標提升鑑定水準,這樣一來一回的對抗促使兩邊互相成長。

# 七、YOLOv8

YOLO (You Only Look Once) 是一種物件偵測方法,目前共推出8個版本。YOLO 的主要優勢是其快速的運算速度,能夠及時處理圖像。YOLOv8剛好在2023登陸,既然是最新版本,運算成本應該較低,因此選用 YOLOv8。



圖2 YOLOv8 架構

# 研究設備及器材

# 一、硬體設備

(一) 桌上型電腦

作業系統: Windows 10 CPU: Intel Core i7-12700K GPU: NVIDIA GeForce RTX 3060

記憶體: 32 GB

(二) Logitech C310 HD 網路攝影機

# 二、軟體工具

(一) Python 3.9: 程式語言

(二) C#:程式語言

(三) Unity:遊戲引擎

(四) CSGO:射擊遊戲(測試用)

(五) Anaconda:虛擬環境

(六) Kaggle: 數據建模和數據分析競賽平台

(七) Roboflow:線上圖片標註

## 機器辨識

大家想到大數據總是又愛又恨,愛的是他的功能強大,只要有足夠 的數據,能在幾毫秒得到所需答案,比過去數萬人、同時作業數年的效 果更快更精準,相對的也可能涉及到隱私問題。機器視覺中的人臉辨識 已是最基礎的,各種生物、物品的辨識所造成的人力精簡及時間的省節, 都可藉由深度學習來達成,且準確度更不會有人為的疏失!

#### (一) MNIST、Cifar-10 辨識

MNIST 是一種黑白的手寫數字資料集,分類為 10 類 (0~9), 在踏入CNN這領域時,大多數人都會使用這資料集當作練習,可 以將解決 MNIST 視為深度學習的 "Hello World!"。

Cifar-10 資料集內含 10 種類別的圖片,分別是飛機、汽車、鳥、 貓、鹿、狗、青蛙、馬、船、卡車,且屬於彩色圖片。

#### 1. 實際執行







圖4 偵測為青蛙、卡車、汽車

#### 2. 結論

第一次辨識成功後,我非常驚訝只用數學運算就可辨識物件, 難怪現在深度學習如此有人氣,想不到未來這技術能有多強大, 真的很佩服想到深度學習的人。

# (二) 貓狗偵測

試驗 YOLOv8 技術,採用 yolov81-seg 訓練模型,較講求精準。

### 1. 實際執行





圖5貓狗

圖6貓狗偵測

#### 2. 結論

製作資料集時手真的差點抽筋,非常痛苦的三小時,其餘 都相對簡單。意外的是,只需120張圖片就可做出正確率如此高 的辨識模型,讚嘆 YOLO。

# (三) CSGO 自動瞄準

在逛 Roboflow 網站時,意外找到 CSGO(射擊遊戲) 人物偵測的 資料集,馬上意識到這資料集是為了外掛而生。使用 YOLO 預測 人物位置,再移動鼠標至人物,加點隨機數,這不就是個無法防範 的外掛(一般外掛以破解遊戲內部資料為主)。

# 1. 實際執行

準備就緒後,開一場電腦場(只有我一個玩家),不出意外的 話就要出意外了。偵測不給力、時間差、容易偵測到隊友、鼠標 移動,種種問題浮現,主要還是偵測太慢且不准。輸入到偵測完 成,敵人早以移動到下個位置了,如果能一直偵測到,這問題就 可以用預測的方式解決,但這偵測模型只要距離稍微遠一些,就 完全偵測不到了。





圖7 SCGO畫面



# 2. 結論

可說是完全的失敗,不過我相信只要優化過偵測模型,還 是能成為很好的外掛。但為什麼這種外掛模式不怎麼聽過,很明 顯效益不高,與傳統外掛相比,傳統外掛直接竊取內部資料簡單、 快速、準確、更強。相反這種外掛還需要看到敵人才能有所反應, 各項技能皆差距傳統外掛一大截,唯一好處是難被抓包,不過遊 戲端應該也可反用AI抓這種外掛。

# 總結

透過最基礎的卷積神經網路技術的測試以及進一步的應用,可以發 現其在辨識與定位方面的應用潛力非常大。除了手寫數字辨識、貓狗辨 識等基礎應用外,還可以應用在許多重要的場景中,例如自駕車、軍事、 失踪人口協尋等等。然而,應用卷積神經網路技術時也必須注意遵守相 關法律法規以及道德規範,確保技術應用的合法性與合理性。總體而言, 卷積神經網路技術的應用前景廣闊,將對未來的生活、工作、社會等方 面產生深遠的影響。

## 藝術

透過AI的協助更可擴大藝術家、非藝術家的創意發想,只要想得到 的,不只都能創作出來,且可發揮比想到的更大更精準的效果,並引領 創作者達到另一個層次與想像!換句話說,也不再需要藝術家了,人人 都可以透過此設計就比藝術家更厲害了。

#### (一) 神經風格轉換 (Neural Style Transfer, NST)

過去幾個月流行將現實圖片轉換成動漫風,而我也被這技術驚 豔到,因此學習神經風格轉換。

#### 1. 實際執行

選擇本人照片當內容圖,而使用 梵谷《星夜》(The Starry Night)、康丁斯基《第七號構圖》(Composition VII)、葛飾北齋 《神奈川沖浪裏》(The Great Wave off Kanagawa) 為風格圖。



圖9風格轉換

#### 2. 結論

神經風格轉換為神經網路影像風格轉換的開山始祖,但每次 要生成一張新的風格化影像需要重新訓練一次 VGG-19, 效率頗 低,且完全不能即時轉換。

#### (二) DCGAN

發現神經風格轉換無法實現即時轉換後,嘗試找出何種方式可 即時轉換。雖然當時沒找到,但找到生成對抗網絡這有趣技術, 只要給無標註的圖片,就可隨機生成出同類別圖片。

### 1. 實際執行



圖12 版本一大小256\*256

圖13 版本二大小256\*256

# 2. 結論

只能說待加強,感覺模型還可再增強、學習率也可再調,生 成對抗網絡是由兩個模型互相比較而來,兩個模型要一起成長、 進步,不能其中一個的能力強過多於另一個,因此微調其中參數 也是很重要的一環。

# (三) CycleGAN

生成對抗網絡有非常多變體,多到以英文字頭+GAN取名的變 體都快佔滿了,當中我無意看中 CycleGAN,希望藉此達成即時轉 換功能。

# 1. 實際執行

2. 結論



DCGAN 都如此難訓練了,更別說 CycleGAN 了。原理是很 有趣、巧妙,但產生的圖形缺乏多樣化,訓練時損失震盪巨大, 成效差強人意,並不是太有效的風格轉換方式。

# 總結

使用GAN技術進行影像風格轉換是一種很有前景的應用,它可以讓 我們將一張圖片的風格轉換成另外一種風格,例如將印象派畫作的風格 應用到一張照片中。儘管成果目前並不十分樂觀,但這個技術仍有很大 的發展空間,特別是隨著AI技術的不斷進步,未來我們可能能夠更好地 掌握影像的細節,進一步提高影像風格轉換的效果。

這項技術對美化世界有很大的潛力,它可以幫助藝術家以更快、更 有效的方式創作出令人讚嘆的作品,同時也可以創造出更多具有價值的 商品。除此之外,影像風格轉換還可以應用在影視、遊戲等領域,讓觀 眾享受到更多美感和豐富的視覺體驗。總之,這項技術有很大的潛力, 值得我們繼續關注和發展。

# 3D虛擬人物

藉由程式設計,我創造出自己的虛擬人物,這個虛擬人物就可以隨我控制,一個人體結構,就可以有40個控制點,著實令人興奮 不已,過去在虛擬實境(Virtual Reality, VR)的遊戲裡,控制虛擬人物大多都以VR穿戴裝置實現,總是需要手把或其他工具來操作這個 虛擬人物。使用 MediaPipe 後,發現是否只用一台攝影機,我個人的任何動作都可控制這個虛擬人物,不需任何的手把或工具。並且我 相信仍有更多使用的空間。

### (一) MediaPipe

MediaPipe 是 Google Research 發表的開源專案,可 支援多種語言,擁有許多辨識功能,這次實驗主要使用 臉部網路 (Face Mesh)、人體偵測 (Pose)、手部偵測 (Hands)。這些偵測模型可抓出身體各部位,只使用一個 鏡頭,並且輸出三維位置。人體偵測原理是訓練時以三 維當標籤,臉部網路則是偵測幾個點後再將3D圖形套上。



圖15 MediaPipe專案類別

#### (二) 人體動作偵測

只能控制虛擬人物太無聊了,因此設計動作偵測, 創造互動式小遊戲。希望做出特定動作,角色就可發射 子彈,攻擊目標。

### 1. 資料集

使用 MediaPipe 偵測點位,而動作是需要時間完 成的,所以需要在相同時間內完成動作,並將時間內 所有偵測到的點當作資料集。

收集的資料集為,發射動作與無動作。





圖16 發射資料

圖17無動作資料

# 2. 模型製作

剛好動作與時間序相關,正好可使用長短期記憶 網路,可記憶以前重點事件並輸出給下個神經元,最 後以密集層連接。

# 3. 實際執行





圖18 發射偵測

圖19無動作偵測

# (三) 歐拉角 (Euler angles)

物體在三維空間旋轉的方法,三個旋轉軸分別為翻 滾(Roll)、俯仰(Pitch)、偏擺(Yaw)。運用臉部網路偵測 點,

推算頭部翻滾、俯仰、偏擺。



圖20翻滾、俯仰、偏擺示意圖

# (四)卡爾曼濾波器 (Kalman Filter)

是一種高效率的遞歸濾波器,能夠從包含雜訊的測 量中,排除雜訊。MediaPipe 偵測中很難完全無雜訊, 卡爾曼濾波器這時就可很好的發揮其作用。

# (五) 傳輸控制協定 (Transmission Control Protocol, TCP)

將 MediaPipe 偵測完人體位置後,Python 傳送至 Unity 中的所需工具。傳輸控制協定會在兩個端點間建 立連線確保雙方的溝通順暢,其中要求位置(IP)、連接 埠(Port)。

# (六) Unity

最初不知要使用何種方式呈現虛擬人物,一度嘗試 用 Python 建3D模型,但難以執行,後來發現 Unity,簡 直與我的需求完全符合。Unity 為2D和3D的遊戲引擎, 語言為 C#(完全沒碰過 全部重頭學起)。

# (七) 3D虛擬人物模型

大部分虛擬人物皆需要錢,Unity 官方有免費釋出 一個人物模型 Unity-Chan,有免費肯定用啊。



圖21 Unity-Chan

#### (八) 物理骨 (PhysBones)

由 VRChat 開發,在 Unity 中模擬頭髮、衣物、配 件物理飄動功能。

#### (九)製作過程

版本1: 先在 Python 中使用 MediaPipe 人體偵測, 再用傳輸控制協定將偵測資料傳給 Unity, 使每個傳輸 資料控制小方塊,完成後就可簡單看出人體架構了。





圖22 Unity影像

圖23 現實影像

版本2:將 Unity-Chan 人物模型套入,但3維位置 無法控制角色關節活動的, Unity 中有指令可使一個3維 位置指向另一個,藉此完成角色控制,最後推算並套 用頭部角度。實測發現全身有嚴重震動,卡爾曼濾波 器加入後優化許多,但移動速度就相對慢一拍。





圖24 Unity影像

圖25 現實影像

版本3:只有控制角色就稍微無趣些,因此加入第 一人稱視角的小型射擊遊戲,遠處放上些許目標物, 偵測人體動作判斷是否射擊,藉此擊倒目標物。手指 可以表達許多事物,因此也將手指偵測位置套入,但 手指相對精細,距離稍遠可能偵測不完全。





圖26 Unity影像

圖27 現實影像

# (九)實際執行

第一人稱射擊小遊戲展示。





圖28 Unity影像

圖29 現實影像

# 總結

真的很訝異我能夠做出控制虛擬人物程式,以前以為遙 不可及的,現在卻在我手中。過程中訪查了上百上千個網站 來學習,為了達到這個功能,為此還特別學了一種程式語言。 雖然這技術還有需多可改進的地方,像是偵測的準確度,可 以使用雙攝影機加上自己設計的模型,也許就可判斷更加準 確。

這種技術的應用對多個領域帶來了實際的改進。從VR到 元宇宙,這種精確控制的程式為人們提供了更方便、更簡單、 更直觀的虛擬體驗。隨著這些技術的進一步發展和普及,可 以期待看到更多的人從中受益。