Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Δασκαλάκης Ευάγγελος	AM:	1079327	Έτος:	3
--------	-------------------------	-----	---------	-------	---

Ασκηση 1

Ερώτηση 1 (α) Τι παρατηρείτε εάν αντί για Ts=0.02s ή 0.05s θέσετε Ts=0.1s ; Αιτιολογήστε την απάντησή σας

Απάντηση: Σε αντίθεση με τα Ts=0.02s & Ts=0.05s, το Ts=0.1s δίνει αλλοιωμένη γραφική παράσταση, καθώς η συχνότητά του (1/Ts = Fs = 10Hz) καταλήγει να είναι μικρότερη από τα πρώτα δύο και επομένως δειγματοληπτεί λιγότερα σημεία.

Ερώτηση 2 (β) Πώς επηρεάζει η συχνότητα δειγματοληψίας την ποιότητα ανακατασκευής του σήματος; Για κάθε συνάρτηση ανακατασκευής χρησιμοποιήστε το μέσο τετραγωνικό σφάλμα, ανάμεσα στο αρχικό και το ανακατασκευασμένο σήμα, και την τυπική απόκλιση, ως μετρικές ποιότητας ανακατασκευής (δείτε στο m-file που σας δίνεται για τον ορισμό τους).

Απάντηση:

T_{s}	MSE_1, STD_1	MSE_2, STD_2	MSE_3, STD_3	MSE_4, STD_4
0.02s	0.0000, 0.0034	0.0006, 0.0253	0.0164, 0.1282	0.0000, 0.0002
0.05s	0.0002, 0.0151	0.0228, 0.1509	0.0997, 0.3158	0.0003, 0.0182
0.1s	0.5000, 0.7071	0.5000, 0.7071	0.5000, 0.7071	0.5000, 0.7071

Ερώτηση 3 (γ) Σχολιάστε τον ρόλο της αρχικής φάσης του σήματος του ερωτήματος (γ).

Απάντηση: Χωρίς την ύπαρξη αρχικής φάσης, οι διάφορες γραφικές παραστάσεις προσεγγιστικά ταυτίζονται, οπότε και είναι δύσκολο να εντοπίσουμε διαφορές. Με τη χρήση αρχικής φάσης καταλήγουμε με πιο ξεκάθαρα αποτελέσματα.

Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Δασκαλάκης Ευάγγελος	AM:	1079327	Έτος:	3
--------	-------------------------	-----	---------	-------	---

Ερώτηση 4 (δ) Συμπληρώστε τον παρακάτω πίνακα με τα δικά σας γραφήματα.

Απάντηση:

Ερώτηση 5 (δ συνέχεια) Τι παρατηρείτε στις παραπάνω γραφικές παραστάσεις σας; Ποιά η συχνότητα των ανακατασκευασμένων σημάτων; Εξηγήστε.

Απάντηση: Στη γενική περίπτωση, πρέπει να ισχύει **ΑΥΣΤΗΡΑ** $f_s \ge 2f_0$, αλλιώς το σήμα αναδιπλώνεται.

 $\Omega \varsigma \, f_{\rm S} = \frac{1}{T_{\rm S}}$ ορίζεται η Συχνότητα Δειγματοληψίας, ενώ ως f_0 ορίζεται η maximum συχνότητα που έχει ενέργεια.

- Στην περίπτωση συχνότητας $f_0=4~{\rm Hz}$ ο κανόνας δεν καταπατάται, καθώς γνωρίζουμε πως το $f_s=200{\rm Hz}.$
- Στην περίπτωση συχνότητας $f_0 = 204~{\rm Hz}$ ο κανόνας πλέον καταπατάται, οπότε και παρατηρούμε το φαινόμενο της αναδίπλωσης.
- Στην περίπτωση συχνότητας $f_0 = 4004~{\rm Hz}$ δεν είμαι σε θέση να εξηγήσω γιατί το σήμα ταυτίζεται με αυτό που δειγματολήπτησα για $f_0 = 4~{\rm Hz}$.

Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Δασκαλάκης Ευάγγελος	AM:	1079327	Έτος:	3
--------	-------------------------	-----	---------	-------	---

Ασκηση 2

Ερώτηση 1 (α.2) Υπολογίστε την απόκριση συχνότητας του συστήματος (μόνο θεωρητικά).

Απάντηση: Για να βρούμε την απόκριση συχνότητας του συστήματος, ξεκινάμε από τη συνέλιξη του αρχικού συστήματος, $y(t)=x(t)*h(t)=>Y(\omega)=X(\omega)H(\omega)=>H(\omega)=\frac{Y(\omega)}{X(\omega)}$. Επομένως θα χρησιμοποιήσουμε το διάνυσμα $h=[-1/2,\ 1,\ -1/2]$ ως κρουστική απόκριση του αρχικού συστήματος $y[n]=-\frac{1}{2}x[n+1]+x[n]-\frac{1}{2}x[n-1]$.

 $\Gamma\iota\alpha >> [H,W] = freqz(h,1,10)$

Н	W
0.0000 + 0.0000i	0
0.0465 - 0.0151i	0.3142
0.1545 - 0.1123i	0.6283
0.2423 - 0.3335i	0.9425
0.2135 - 0.6572i	1.2566
0.0000 - 1.0000i	1.5708
-0.4045 - 1.2449i	1.8850
-0.9333 - 1.2845i	2.1991
-1.4635 - 1.0633i	2.5133
-1.8556 - 0.6029i	2.8274

Ερώτηση 2 (β) Σχεδιάστε το μέτρο και τη φάση της απόκρισης συχνότητας (χρησιμοποιώντας της συνάρτηση *freqz()* της Matlab).

Απάντηση:

Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Δασκαλάκης Ευάγγελος	AM:	1079327	Έτος:	3
--------	-------------------------	-----	---------	-------	---

Ερώτηση 3 (γ) Ποιές συχνότητες του σήματος εισόδου διατηρεί το παραπάνω σύστημα;

Απάντηση: Βάσει του πρώτου σχήματος, φαίνεται να διατηρούνται οι συχνότητες που είναι μεγαλύτερες των 10Hz. Δηλαδή τα 10Hz λειτουργούν ως το μεταβατικό σημείο από όπου και έπειτα το σύστημα δέχεται συχνότητες.

Ερώτηση 4 (δ) Χρησιμοποιώντας τις συναρτήσεις conv() και filter(), υπολογίστε και σχεδιάστε την έξοδο του συστήματος για την είσοδο x[n] (μόνο για τα πρώτα 100 δείγματα). Με ποία από τις δύο συναρτήσεις μπορούμε να υλοποιήσουμε IIR φίλτρα;

Απάντηση: Δειγματοληψία για n = 100 δείγματα.

Οι συναρτήσεις conv() και filter() δίνουν μεν το ίδιο αποτέλεσμα, αλλά η filter() είναι αυτή που μπορεί να χρησιμοποιηθεί και για IIR (**infinite** impulse response) φίλτρα. Η διαφορά έγκειται στα ορίσματα των 2 συναρτήσεων. Όμως στην περίπτωση της filter(), το μεσαίο όρισμα 'A' μπορεί να οριστεί ως μονάδα και μέσω αναδρομής, οι συντελεστές του φίλτρου θα είναι απλώς '1'.

Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Δασκαλάκης Ευάγγελος	AM:	1079327	Έτος:	3
--------	-------------------------	-----	---------	-------	---

Ερώτηση 5 (ε) Σχεδιάστε το abs (fftshift (fft (x))) και abs (fftshift (fft (y))).

Απάντηση: Με βάσει τις γραφικές παραστάσεις, το σύστημα φαίνεται να εξομαλύνει τις συχνότητες του σήματος εισόδου. Έτσι οι μεταβάσεις δε γίνονται πλέον απότομα.

Σε αντίθεση με τον DTFT, ο **DFT** φαίνεται να είναι πιο χρήσιμος στην περίπτωσή μας δεδομένου ότι το σήμα εισόδου αποτελείται από τριγωνομετρικές σχέσης. Επίσης ο DTFT εκτείνεται από το $-\infty$ έως το $+\infty$ ενώ στην περίπτωσή μας ενδιαφερόμαστε για διακριτές τιμές που $\in [0, 16000]$.

Ερώτηση 6 (α) Ποιος μετασχηματισμός/αλγόριθμος υλοποιείται κάθε φορά και γιατί;

Απάντηση: Σε περιπτώσεις «καθαρών» δυνάμεων του 2, φαίνεται να προτιμάται ο μετασχηματισμός FFT, ο οποίος βασίζεται στην τακτική διαίρει και βασίλευε. Εξού και οι μεγάλες διαφορές χρόνου υπολογισμού.

Για μήκος σήματος N-1 χρησιμοποιείται ο DFT, αλλά με παραπάνω χρονική καθυστέρηση.

Πολυπλοκότητα **DFT**: $O(n^2)$

Πολυπλοκότητα FFT: $O(n * \log(n))$

Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο: Δασκαλάκης Ευάγγελος	AM:	1079327	Έτος:	3
--------------------------------	-----	---------	-------	---

Ερώτηση 6 (β) Καταγράψτε στον παρακάτω πίνακα τα αποτελέσματα σας για 10000 επαναλήψεις.

Μήκος Ακολουθίας Ν	Χρόνος Εκτέλεσης DFT (Μήκος Σήματος N-1)	Χρόνος Εκτέλεσης FFT (Μήκος Σήματος N)
2 ⁶	0.006482	0.005185
27	0.033476	0.006713
28	0.021096	0.009410
2 ⁹	0.075413	0.012402
2 ¹⁰	0.093997	0.023876
2 ¹¹	0.418517	0.040432
2 ¹²	0.221146	0.081406
2 ¹³	1.839057	0.164145
2 ¹⁴	4.960151	0.384177
2 ¹⁵	11.059400	0.776076

Για τον υπολογισμό χρησιμοποιήθηκε ο παρακάτω κώδικας, με αλλαγές της μεταβλητής 'TEST'.

```
1 - TEST = 2^13-1;
2
3 - x = cos(pi*n/4) - sin(pi/2*n) + (-1/2).^n;
4 - N=10000;
5 - tic;
6 - - for i=1:N
7 - g=fft(x,TEST);
8 - end
9 - toc
```