Chapitre 5

Fonctions usuelles

Sommaire

I	Fonctions circulaires - Inversions	
	1) Fonctions circulaires : rappels	
	2) Inversion des fonctions circulaires	
II	Fonctions logarithme et exponentielle	
	1) Logarithme népérien	
	2) La fonction exponentielle	
III	Fonctions puissances	
	1) Puissance quelconque	
	2) Croissance comparée de ces fonctions	
IV	Fonctions hyperboliques 52	
	1) Définition	
	2) Trigonométrie hyperbolique	
V	Solution des exercices	

I FONCTIONS CIRCULAIRES - INVERSIONS

1) Fonctions circulaires : rappels

Le plan \mathcal{P} est muni d'un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$. Soit x un réel, et M(x) le point du cercle trigonométrique tel que $(\overrightarrow{u}, \overrightarrow{OM}) = x \pmod{2\pi}$ alors les coordonnées de M(x) sont $(\cos(x), \sin(x))$, lorsque $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$, on pose $\tan(x) = \frac{\sin(x)}{\cos(x)}$.

Remarque 5.1 – Le réel x représente également la longueur de l'arc de cercle AM avec A(1,0), le cercle étant orienté dans le sens direct.

Quelques propriétés :

- $\forall x \in \mathbb{R}, \cos^2(x) + \sin^2(x) = 1.$
- Les fonctions sinus et cosinus sont 2π -périodiques définies continues dérivables sur \mathbb{R} , à valeurs dans [-1;1], et on a sin' = cos et cos' = sin.

- La fonction tangente est π -périodique, définie continue dérivable sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi\mid k\in\mathbb{Z}\}$ et on a $\tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$.
- Les fonctions sinus et tangente sont impaires alors que la fonction cosinus est paire.

🥱 - À retenir

Si u est une fonction dérivable alors $\sin(u)$ et $\cos(u)$ sont dérivables avec les formules :

$$[\sin(u)]' = u'\cos(u) \text{ et } [\cos(u)]' = -u'\sin(u)$$

Si de plus la fonction cos(u)) ne s'annule pas, alors la fonction tan(u) est dérivable et :

$$[\tan(u)]' = u'(1 + \tan^2(u)) = \frac{u'}{\cos^2(u)}$$

- On a les relations $\sin(\pi + x) = -\sin(x)$ et $\cos(\pi + x) = -\cos(x)$.
- On a les valeurs remarquables :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	,
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		

comme $\sin(\pi - x) = \sin(x)$ et $\cos(\pi - x) = -\cos(x)$, on peut compléter le tableau avec les valeurs $\frac{2\pi}{3}$, $\frac{3\pi}{4}$, $\frac{5\pi}{6}$ et π , la parité permet ensuite d'avoir un tableau de $-\pi$ à π .

- Formules d'addition : $\forall x, y \in \mathbb{R}$ on a :
 - $\cos(x + y) = \cos(x)\cos(y) \sin(x)\sin(y)$. En particulier, $\cos(2x) = 2\cos^2(x) 1 = 1 2\sin^2(x)$.

 - $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$. En particilier, $\sin(2x) = 2\sin(x)\cos(x)$. $\tan(x+y) = \frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}$. En particulier, $\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$.
 - En posant $u = \tan(\frac{x}{2})$, on a $\sin(x) = \frac{2u}{1+u^2}$ et $\cos(x) = \frac{1-u^2}{1+u^2}$.

★Exercice 5.1

1/ Montrer que $\forall x \in \mathbb{R}, |\sin(x)| \leq |x|, 0 \leq 1 - \cos(x) \leq \frac{x^2}{2}$.

2/ Montrer que $\forall x \in]-\frac{\pi}{2}; \frac{\pi}{2}[, |\tan(x)| \geqslant |x|.$

Inversion des fonctions circulaires 2)

La fonction arcsin

La fonction $f: [-\frac{\pi}{2}; \frac{\pi}{2}] \to [-1; 1]$ définie par $f(x) = \sin(x)$ est continue et strictement croissante sur I = $[-\frac{\pi}{2}; \frac{\pi}{2}]$, elle réalise donc une bijection entre I et $f(I) = J = [\sin(-\frac{\pi}{2}); \sin(\frac{\pi}{2})] = [-1; 1]$. La bijection réciproque est notée f^{-1} = arcsin [arcsinus], elle est définie par :

arcsin:
$$[-1;1] \rightarrow [-\frac{\pi}{2}; \frac{\pi}{2}]$$

$$x \mapsto \arcsin(x) = y \text{ tel que } \begin{cases} y \in [-\frac{\pi}{2}; \frac{\pi}{2}] \\ \sin(y) = x \end{cases}$$

Exemple: $\arcsin(-1) = -\frac{\pi}{2}$, $\arcsin(1) = \frac{\pi}{2}$, $\arcsin(0) = 0$, $\arcsin(\frac{1}{2}) = \frac{\pi}{6}$, ...

La fonction f étant strictement croissante et continue sur I, la fonction f^{-1} = arcsin est strictement croissante et continue sur [-1;1]; f est dérivable sur I et sa dérivée s'annule en $-\frac{\pi}{2}$ et $\frac{\pi}{2}$, mais pas sur l'intervalle ouvert, la réciproque est donc dérivable sur]-1; 1[mais pas en -1 ni en 1 [tangente verticale en ces points], on a la formule suivante :

$$\forall x \in]-1;1[,\arcsin'(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1-x^2}}.$$

Car: $\cos^2(\arcsin(x)) + \sin^2(\arcsin(x)) = 1$, c'est à dire $\cos^2(\arcsin(x)) + x^2 = 1$ d'où $\cos(\arcsin(x)) = \pm \sqrt{1 - x^2}$, mais ce cosinus est positif car $\arcsin(x) \in [-\frac{\pi}{2}; \frac{\pi}{2}]$, donc $\cos(\arcsin(x)) = \sqrt{1 - x^2}$.

Si u est une fonction dérivable à valeurs dans] – 1;1[alors la fonction $\arcsin(u)$ est dérivable et : $[\arcsin(u)]' = \frac{u'}{\sqrt{1-u^2}}$

Propriétés:

- $\forall x \in [-1; 1], \sin(\arcsin(x)) = x.$
- $\forall x \in [-\frac{\pi}{2}; \frac{\pi}{2}], \arcsin(\sin(x)) = x.$
- ∀ $x \in [-1;1]$, arcsin(-x) = $-\arcsin(x)$ [fonction impaire].
- $\forall x \in [-1; 1], \cos(\arcsin(x)) = \sqrt{1 x^2}.$
- $\forall x \in [-\pi; \pi], \arcsin(\cos(x)) = \frac{\pi}{2} |x|.$

La fonction $f: x \mapsto \arcsin(\sin(x))$ n'est pas l'identité, elle est 2π - périodique et impaire, il suffit donc l'étudier sur $[0;\pi]$, mais elle vérifie $f(\pi-x)=f(x)$, la droite $x=\frac{\pi}{2}$ est donc un axe de symétrie et l'étude se réduit à $[0;\frac{\pi}{2}]$, intervalle sur lequel f(x)=x.

La fonction arccos

La fonction $f: [0;\pi] \to [-1;1]$ définie par $f(x) = \cos(x)$, est continue et strictement décroissante, elle définit donc une bijection entre $[0;\pi]$ et $f([0;\pi]) = [f(\pi);f(0)] = [-1;1]$. Par définition, la bijection réciproque est notée f^{-1} = arccos [arccosinus], elle est définie par :

arccos:
$$[-1;1] \rightarrow [0;\pi]$$

$$x \mapsto \arccos(x) = y \text{ tel que } \begin{cases} y \in [0;\pi] \\ \cos(y) = x \end{cases}$$

Exemple: $\operatorname{arccos}(-1) = \pi$, $\operatorname{arccos}(1) = 0$, $\operatorname{arccos}(0) = \frac{\pi}{2}$, $\operatorname{arccos}(-\frac{1}{2}) = \frac{2\pi}{3}$, ...

La fonction f étant strictement décroissante et continue sur $I = [0;\pi]$, la fonction $f^{-1} = \arccos$ est strictement décroissante et continue sur [-1;1]; f est dérivable sur I et sa dérivée s'annule en 0 et et π , mais pas sur l'intervalle ouvert, la réciproque est donc dérivable sur]-1;1[mais pas en -1 ni en 1 [tangente verticale en ces points], on a la formule suivante :

$$\forall x \in]-1;1[,\arccos'(x) = \frac{-1}{\sin(\arccos(x))} = \frac{-1}{\sqrt{1-x^2}}.$$

Car: $\sin^2(\arccos(x)) + \cos^2(\arccos(x)) = 1$, c'est à dire $\sin^2(\arccos(x)) + x^2 = 1$ d'où $\sin(\arccos(x)) = \pm \sqrt{1 - x^2}$, mais ce sinus est positif car $\arccos(x) \in [0; \pi]$, donc $\sin(\arccos(x)) = \sqrt{1 - x^2}$.

Si u est une fonction dérivable à valeurs dans] -1;1[alors la focntion $\arccos(u)$ est dérivable et : $[\arccos(u)]' = \frac{-u'}{\sqrt{1-u^2}}$

Propriétés :

- $\forall x \in [-1; 1], \cos(\arccos(x)) = x.$
- ∀x ∈ [0; π], arccos(cos(x)) = x.
- $\forall x \in [-1;1]$, $\sin(\arccos(x)) = \sqrt{1-x^2}$.
- $\forall x \in [-1; 1], \arccos(x) + \arcsin(x) = \frac{\pi}{2}.$
- $\forall x \in [-1; 1], \arccos(-x) = \pi \arccos(x).$

La fonction $f: x \mapsto \arccos(\cos(x))$ n'est pas l'identité, elle est 2π - périodique et paire, il suffit donc l'étudier sur $[0;\pi]$ intervalle sur lequel f(x) = x.

La fonction arctan

La fonction $f:]-\frac{\pi}{2}; \frac{\pi}{2}[\to \mathbb{R}$ définie par $f(x) = \tan(x)$, est continue et strictement croissante, elle réalise donc une bijection entre $]-\frac{\pi}{2}; \frac{\pi}{2}[$ et $f(]-\frac{\pi}{2}; \frac{\pi}{2}[) = \mathbb{R}$. Par définition, la bijection réciproque est notée $f^{-1} = \arctan[\arctan[ent], elle est définie par :$

arctan:
$$\mathbb{R} \rightarrow]-\frac{\pi}{2}; \frac{\pi}{2}[$$

$$x \mapsto \arctan(x) = y \text{ tel que } \begin{cases} y \in]-\frac{\pi}{2}; \frac{\pi}{2}[\\ \tan(y) = x \end{cases}$$

Exemple: $\arctan(0) = 0$, $\arctan(1) = \frac{\pi}{4}$, $\arctan(\sqrt{3}) = \frac{\pi}{3}$, ...

La fonction f étant strictement croissante et continue sur $I =]-\frac{\pi}{2}; \frac{\pi}{2}[$, la fonction $f^{-1} = \arctan$ est strictement croissante et continue sur \mathbb{R} ; f est dérivable sur I et sa dérivée ne s'annule pas sur I, la réciproque est donc dérivable sur \mathbb{R} , et on a la formule suivante :

$$\forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{1 + \tan^2(\arctan(x))} = \frac{1}{1 + x^2}.$$

À retenir

Si u désigne un fonction dérivable, alors la fonction $\arctan(u)$ est dérivable et : $[\arctan(u)]' = \frac{u'}{1+u^2}$

Propriétés:

- ∀ $x \in \mathbb{R}$, tan(arctan(x)) = x.
- $\forall x \in]-\frac{\pi}{2}; \frac{\pi}{2}[, \arctan(\tan(x)) = x.$
- ∀ $x \in \mathbb{R}$, arctan $(-x) = -\arctan(x)$.
- $\forall x \in \mathbb{R}_+^*$, $\arctan(x) + \arctan(\frac{1}{x}) = \frac{\pi}{2}$.
- $\forall x \in \mathbb{R}$, $\arctan(x) = \arcsin\left(\frac{x}{\sqrt{1+x^2}}\right)$. $\forall x \in \mathbb{R}$, $\arctan(x) = \operatorname{Arg}(1+ix)$.

FONCTIONS LOGARITHME ET EXPONENTIELLE

1) Logarithme népérien

La fonction $x \mapsto \frac{1}{x}$ est continue sur $]0; +\infty[$, elle admet une unique primitive qui s'annule en 1.

L'unique primitive de la fonction $x \mapsto \frac{1}{x} \operatorname{sur}]0; +\infty [\operatorname{qui} s'\operatorname{annule} \operatorname{en} 1 \operatorname{est} \operatorname{appelée} \operatorname{logarithme} \operatorname{népérien}]$ et notée ln. On a donc $\forall x > 0$, $\ln(x) = \int_1^x \frac{dt}{t}$.

Cette fonction est donc dérivable sur I]0; $+\infty$ [et $\ln'(x) = \frac{1}{x}$, elle est donc strictement croissante sur I.

Soit y > 0, la fonction $f: x \mapsto \ln(xy)$ et dérivable sur I et $f'(x) = y \frac{1}{xy} = \frac{1}{x}$, on en déduit que $f(x) = \ln(x) + c$ où c est une constante, on a $\ln(y) = f(1) = \ln(1) + c = c$, par conséquent on obtient :

🚰 Théorème 5.1 (Propriété fondamentale du logarithme)

$$\forall x, y > 0, \ln(xy) = \ln(x) + \ln(y).$$

Conséquences:

- Si u est une fonction dérivable qui ne s'annule pas, alors $[\ln(|u|)]' = \frac{u'}{u}$.
- $\ \forall x, y \in \mathbb{R}^*, \ln(|xy|) = \ln(|x|) + \ln(|y|).$
- $\forall x, y \in \mathbb{R}^*, \ln(|\frac{x}{y}|) = \ln(|x|) \ln(|y|).$
- $\forall n \in \mathbb{Z}^*, \forall x \in \mathbb{R}^*, \ln(|x^n|) = n \ln(|x|).$

Théorème 5.2 (Limites du logarithme népérien)

$$\lim_{x \to +\infty} \ln(x) = +\infty; \ \lim_{x \to 0^+} \ln(x) = -\infty; \ \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0; \ \lim_{x \to 0^+} x \ln(x) = 0; \ \lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1.$$

Preuve: $\forall n \in \mathbb{N}$, $\ln(2^n) = n \ln(2)$ or $\ln(2) > 0$, donc la suite $(\ln(2^n))$ tend vers $+\infty$ ce qui prouve que la fonction \ln n'est pas majorée, par conséquent elle tend $+\infty$.

En posant $X = \frac{1}{x}$ on a $\lim_{x \to 0^+} X = +\infty$ donc $\lim_{x \to 0^+} \ln(x) = \lim_{X \to +\infty} -\ln(X) = -\infty$.

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = \ln'(1) = 1.$$

Pour $t \ge 1$ on a $\sqrt{t} \le t$ et donc pour $x \ge 1$ on a $0 \le \ln(x) \le \int_1^x \frac{dt}{\sqrt{t}} = 2[\sqrt{x} - 1]$, le théorème des gendarmes entraîne $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0.$

Courbe représentative :

🙀 Théorème 5.3 (Inégalité de convexité)

$$\forall x > 0, \ln(x) \leqslant x - 1.$$

Preuve : Il suffit d'étudier la fonction $f: x \mapsto \ln(x) - x + 1$.

2) La fonction exponentielle

La fonction ln est strictement croissante sur $I =]0; +\infty[$, elle définit donc une bijection de I sur J = Im(ln), $comme \ elle \ est \ continue \ on \ a \ Im(ln) = \underset{0}{|lim \, ln; lim \, ln[} = \mathbb{R}.$

Définition 5.2

La réciproque est appelée **fonction exponentielle** et notée exp, elle est définie par :

exp:
$$\mathbb{R} \to]0; +\infty[$$

 $x \mapsto \exp(x) = y \text{ tel que } y > 0 \text{ et } \ln(y) = x$

Propriétés:

- La fonction exp est strictement croissante sur \mathbb{R} et continue, de plus $\exp(0) = 1$.
- La fonction ln est dérivable sur]0; +∞[et sa dérivée ne s'annule pas, donc la fonction exp est dérivable $\operatorname{sur} \mathbb{R} \operatorname{et} \Big| \exp'(x) = \frac{1}{\ln'(\exp(x))}$ $= \exp(x)$

- Dans un repère orthonormé, la courbe de la fonction exp et celle de la fonction ln sont symétriques par rapport à la première bissectrice.

Soient $x, y \in \mathbb{R}$, notons $X = \exp(x)$ et $Y = \exp(y)$ alors X et Y sont dans $]0; +\infty[$ on peut donc écrire $\ln(XY) = \ln(X) + \ln(Y)$ ce qui donne $x + y = \ln(XY)$, par conséquent $\exp(x + y) = XY = \exp(x) \exp(y)$, on peut donc énoncer:

🙀 Théorème 5.4 (Propriété fondamentale de l'exponentielle)

$$\forall x,y \in \mathbb{R}, \exp(x+y) = \exp(x)\exp(y).$$

Il en découle en particulier que $\exp(-x) = \frac{1}{\exp(x)}$.

Notation: On déduit de ce théorème que pour tout entier $n \in \mathbb{Z}$ et pour tout réel x on a $\exp(nx) = [\exp(x)]^n$. En particulier on a pour x = 1, $\exp(n) = [\exp(1)]^n$. On pose alors $e = \exp(1)$, d'où $\exp(n) = e^n$. On convient alors d'écrire pour tout réel x :

$$\exp(x) = e^x$$

Les propriétés s'écrivent alors :

- $e^{x+y} = e^x \times e^y.$
- $e^0 = 1$, $e^{-x} = \frac{1}{e^x}$, $\forall n \in \mathbb{Z}$, $e^{nx} = [e^x]^n$. Si u désigne une fonction dérivable alors $[e^u]' = u' \times e^u$.
- $\forall x \in \mathbb{R}, e^x \geqslant x + 1.$

Preuve: Soit $X = e^x$, on sait que $ln(X) \le X - 1$ ce qui donne l'inégalité.

🚰 Théorème 5.5 (Limites de la fonction exponentielle)

$$\lim_{x \to -\infty} e^x = 0, \lim_{x \to +\infty} e^x = +\infty, \lim_{x \to +\infty} \frac{e^x}{x} = +\infty, \lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Preuve: La fonction exp est continue et strictement croissante sur \mathbb{R} donc $Im(exp) = \lim_{n \to \infty} exp; \lim_{n \to \infty} exp[=]0; +\infty[$. Soit

$$X = e^x \text{ alors } \lim_{x \to +\infty} \frac{e^x}{x} = \lim_{X \to +\infty} \frac{X}{\ln(X)} = +\infty. \lim_{x \to 0} \frac{e^x - 1}{x} = \exp'(0) = 1.$$

Remarque 5.2 – *Il en découle que* $\lim_{x \to +\infty} x e^{-x} = 0$.

FONCTIONS PUISSANCES

Les puissances entières sont supposées connues.

Puissance quelconque

Æ Définition 5.3

 $Si \alpha$ est un réel et $Si \alpha > 0$ alors on pose $x^{\alpha} = e^{\alpha \ln(x)}$.

Cela définit une fonction f_{α} continue et dérivable sur]0; + ∞ [avec la formule : $[x^{\alpha}]' = \alpha x^{\alpha-1}$.

Il en découle que si u est une fonction dérivable à valeurs strictement positives, alors la fonction u^{α} est dérivable et:

$$(u^{\alpha})' = \alpha \times u' \times u^{\alpha - 1}$$

 $\left[\left(u^{\alpha} \right)' = \alpha \times u' \times u^{\alpha - 1} \right]$ On a $\lim_{x \to 0} f_{\alpha}(x) = \left\{ \begin{array}{ll} 0 & \text{si } \alpha > 0 \\ +\infty & \text{si } \alpha < 0 \end{array} \right.$ Dans le premier cas on pose $0^{\alpha} = 0$, dans le second cas il y a une

Lorsque $\alpha > 0$: $\frac{x^{\alpha} - 0}{x} = e^{(\alpha - 1)\ln(x)} \xrightarrow[x \to 0]{} \begin{cases} 0 & \text{si } \alpha > 1 \\ +\infty & \text{si } 0 < \alpha < 1 \end{cases}$, lorsque $\alpha > 1$ on a une tangente horizontale et lorsque α < 1 on a une tangente verticale.

Cas particuliers (avec x > 0):

- a) Lorsque $\alpha = n \in \mathbb{Z}$, on retrouve bien les puissances entières car $\exp(n \ln(x)) = (\exp(\ln(x)))^n = x^n$.
- b) Lorsque $\alpha = \frac{1}{n}$ avec $n \in \mathbb{N}^*$: soit $y = x^{\alpha}$, on a $y^n = \exp(\frac{n}{n}\ln(x)) = x$, comme y est positif, on dit que yest la racine n^e de x. Notation pour x > 0 : $x^{1/n} = \sqrt[n]{x}$.
- c) Lorsque $\alpha = \frac{p}{q} \in \mathbb{Q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$: soit $y = x^{\alpha}$, on a $y^q = \exp(q \frac{p}{q} \ln(x)) = x^p$, comme y est positif, y est la racine q^e de x^p . Autrement dit, pour x > 0, $x^{p/q} = \sqrt[q]{x^p}$.

Théorème 5.6 (Propriétés)

Avec x, y > 0 et α , $\beta \in \mathbb{R}$:

$$-\ln(x^{\alpha}) = \alpha \ln(x)$$

Avec
$$x$$
, $y > 0$ et α , $\beta \in \mathbb{R}$.

$$- \ln(x^{\alpha}) = \alpha \ln(x).$$

$$- x^{\alpha} \times x^{\beta} = x^{\alpha+\beta}, \text{ et donc } x^{-\alpha} = \frac{1}{x^{\alpha}}, \text{ et } \frac{x^{\alpha}}{x^{\beta}} = x^{\alpha-\beta}.$$

$$- (x^{\alpha})^{\beta} = x^{\alpha\beta}.$$

$$- (xy)^{\alpha} = x^{\alpha} \times y^{\alpha}.$$

$$- Pour \alpha \text{ non nul, } y = x^{\alpha} \iff x = y^{\frac{1}{\alpha}}.$$

$$-(x^{\alpha})^{\beta}=x^{\alpha\beta}$$

$$-(xy)^{\alpha} = x^{\alpha} \times y^{\alpha}$$

- Pour
$$\alpha$$
 non nul. $v = x^{\alpha} \iff x = v^{\frac{1}{\alpha}}$

Preuve : Celle-ci est simple et laissée en exercice.

★Exercice 5.2

1/ Soient u et v deux fonctions dérivables avec u > 0, calculer la dérivée de la fonction $x \mapsto u(x)^{v(x)}$. 2/ Calculer $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x$.

Croissance comparée de ces fonctions

Comparaison des puissances : si $\alpha < \beta$ alors x^{α} est négligeable devant x^{β} au voisinage de $+\infty$ et x^{β} est négligeable devant x^{α} au voisinage de 0, c'est à dire :

$$\lim_{x \to +\infty} \frac{x^{\alpha}}{x^{\beta}} = 0 \text{ et } \lim_{x \to 0^{+}} \frac{x^{\beta}}{x^{\alpha}} = 0$$

Comparaison des puissances et des logarithmes : si α et β sont des réels strictement positifs, alors $[\ln(x)]^{\alpha}$ est négligeable devant x^{β} au voisinage de $+\infty$ et $|\ln(x)|^{\alpha}$ est négligeable devant $\frac{1}{x^{\beta}}$ au voisinage de 0, c'est à dire:

$$\lim_{x \to +\infty} \frac{[\ln(x)]^{\alpha}}{x^{\beta}} = 0 \text{ et } \lim_{x \to 0^+} x^{\beta} |\ln(x)|^{\alpha} = 0$$

Preuve : $\frac{[\ln(x)]^{\alpha}}{x^{\beta}} = \left(\frac{\frac{\alpha}{\beta}\ln(u)}{u}\right)^{\alpha} = \left(\frac{\alpha}{\beta}\right)^{\alpha} \left(\frac{\ln(u)}{u}\right)^{\alpha}$ avec $u = x^{\frac{\beta}{\alpha}}$, ce qui donne la première limite. La deuxième en découle avec le changement de variable $u = \frac{1}{r}$ Comparaison des puissances et des exponentielles : si α est un réel et si $\beta > 0$, alors x^{α} est négligeable devant $e^{\beta x}$ au voisinage de $+\infty$, c'est à dire :

$$\lim_{x \to +\infty} x^{\alpha} e^{-\beta x} = 0$$

Preuve : Lorsque $\alpha \le 0$ il n'y a rien à démontrer. Lorsque $\alpha > 0$, $u = e^x \xrightarrow[x \to +\infty]{} + \infty$ et on a $x^\alpha e^{-\beta x} = \frac{[\ln(u)]^\alpha}{u^\beta} \xrightarrow[u \to +\infty]{} 0$.

Exercice 5.3 Comparer x^{α} et $e^{x^{\beta}}$ au voisinage $de + \infty$ avec α et β strictement positifs.

FONCTIONS HYPERBOLIQUES

1) **Définition**

Définition 5.4

Pour $x \in \mathbb{R}$, on pose $\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$ [cosinus hyperbolique], $\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$ [sinus hyperbolique] et $\operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ [tangente hyperbolique].

Le cosinus hyperbolique: la fonction che st paire, définie continue dérivable sur \mathbb{R} et ch'(x) = sh(x), on en déduit le tableau de variation et la courbe :

Quelques propriétés :

$$- \forall x \in \mathbb{R}, \operatorname{ch}(x) \geqslant 1.$$

$$-\lim_{x\to+\infty}\frac{\operatorname{ch}(x)}{x}=+\infty \text{ et }\lim_{x\to+\infty}\frac{\operatorname{ch}(x)}{e^x}=\frac{1}{2}.$$

 $-\lim_{x\to +\infty}\frac{\operatorname{ch}(x)}{x}=+\infty \text{ et }\lim_{x\to +\infty}\frac{\operatorname{ch}(x)}{e^x}=\frac{1}{2}.$ **Le sinus hyperbolique**: la fonction sh est impaire, définie continue dérivable sur $\mathbb R$ et sh' $(x)=\operatorname{ch}(x)$, on en déduit le tableau de variation et la courbe :

Quelques propriétés :

-
$$\forall x \in \mathbb{R}$$
, ch(x) ≥ 1 .

$$-\lim_{x \to +\infty} \frac{\operatorname{ch}(x)}{x} = +\infty \text{ et } \lim_{x \to +\infty} \frac{\operatorname{ch}(x)}{e^x} = \frac{1}{2}.$$

- $\forall x \in \mathbb{R}, \operatorname{ch}(x) + \operatorname{sh}(x) = e^x \operatorname{et } \operatorname{ch}(x) - \operatorname{sh}(x) = e^{-x}.$

- $\forall x > 0, x < \operatorname{sh}(x) < \operatorname{ch}(x).$

 $-\lim_{x\to +\infty}\frac{\sinh(x)}{x}=+\infty \text{ et }\lim_{x\to +\infty}\frac{\sinh(x)}{e^x}=\frac{1}{2}.$ **La tangente hyperbolique** : la fonction th est impaire, définie continue dérivable sur $\mathbb R$ et

$$th'(x) = \frac{ch^2(x) - sh^2(x)}{ch^2(x)} = 1 - th^2(x) = \frac{1}{ch^2(x)}$$

d'où les variations et la courbe :

Quelques propriétés :

- $\forall x \in \mathbb{R}, -1 < \text{th}(x) < 1.$
- $\forall x > 0, \text{th}(x) < x.$

Trigonométrie hyperbolique 2)

- $\forall x \in \mathbb{R}, \operatorname{ch}^{2}(x) \operatorname{sh}^{2}(x) = 1.$
- Formules d'addition : $\forall x, y \in \mathbb{R}$ on a :
 - $\operatorname{ch}(x + y) = \operatorname{ch}(x)\operatorname{ch}(y) + \operatorname{sh}(x)\operatorname{sh}(y)$.
 - sh(x + y) = sh(x) ch(y) + ch(x) sh(y). $th(x + y) = \frac{th(x) + th(y)}{1 + th(x)th(y)}$.

- Transformations de somme en produit : $\forall x, y \in \mathbb{R}$, en posant $p = \frac{x+y}{2}$ et $q = \frac{x-y}{2}$, on a x = p + q et y = p - q, on obtient :
 - $ch(x) + ch(y) = 2 ch(\frac{x+y}{2}) ch(\frac{x-y}{2}).$
 - $\operatorname{ch}(x) \operatorname{ch}(y) = 2 \operatorname{sh}(\frac{x+y}{2}) \operatorname{sh}(\frac{x-y}{2}).$ $\operatorname{sh}(x) + \operatorname{sh}(y) = 2 \operatorname{sh}(\frac{x+y}{2}) \operatorname{ch}(\frac{x-y}{2}).$ $\operatorname{th}(x) + \operatorname{th}(y) = \frac{\operatorname{sh}(x+y)}{\operatorname{ch}(x)\operatorname{ch}(y)}.$

SOLUTION DES EXERCICES

Solution 5.1

1/ Il suffit de le démontrer pour x positif en étudiant la fonction $x \mapsto x - \sin(x)$, puis on intègre de 0 à x ce qui donne la deuxième inégalité.

2/ On étudie $x \mapsto x - \tan(x)$ sur $[0; \frac{\pi}{2}[$. Pour $x \in]-\frac{\pi}{2}; 0]$, on applique l'inégalité précédente à -x.

1/ Comme l'exposant varie, on passe à la forme exponentielle : $u^v = e^{v \ln(u)}$, d'où la dérivée : $[u^v]' = [v \ln(u)]' e^{v \ln(u)} = [v \ln(u)]' e^{v \ln(u)}$ $v'\ln(u)u^{\nu} + v\frac{u'}{u}u^{\nu} = v'\ln(u)u^{\nu} + vu'u^{\nu-1}.$

2/ Comme l'exposant varie, on passe à la forme exponentielle : $\left(1+\frac{1}{x}\right)^x=e^{x\ln(1+\frac{1}{x})}=e^{\frac{\ln(1+X)}{X}}$ avec $X=\frac{1}{x}\xrightarrow[x\to+\infty]{}0$, or on sait que $\lim_{X\to 0} \frac{\ln(1+X)}{X} = 1$, et donc la limite cherchée vaut $e^1 = e$ (par continuité de l'exponentielle).

Solution 5.3 Il faut étudier la limite du quotient, c'et à dire la limite en $+\infty$ de $x^{\alpha}e^{-x^{\beta}}$. On pose $X = x^{\beta} \xrightarrow[x \to +\infty]{} +\infty$, on a alors $x = X^{1/\beta}$ et $x^{\alpha}e^{-x^{\beta}} = X^{\alpha/\beta}e^{-X} \xrightarrow[x \to +\infty]{} 0$ d'après les croissances comparées.