OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

Envoi no. 5

Corrigé

Exercices du groupe B

 $Exercice\ 1$. Soit ABCD un carré de côté 1. À l'intérieur du carré, on trace les arcs de cercles de centres A,B,C,D et de rayon 1. Déterminer l'aire de chaque portion délimitée à l'intérieur du carré.

Solution de l'exercice 1

Considérons les aires a,b,c des portions indiquées sur la figure.

Comme l'aire du carré est égale à 1, on a

$$a + 4b + 4c = 1. (1)$$

Comme l'aire du quart de cercle ABC est égale à $\pi/4$, on a

$$a + 3b + 2c = \pi/4. (2)$$

Considérons maintenant le secteur angulaire OMN de rayon 1 et d'angle $\pi/3$. Il a pour aire $\pi/6$. D'autre part, le triangle OMN a pour aire $\frac{\sqrt{3}}{4}$, donc l'aire de la "lune" est égale à $\frac{\pi}{6} - \frac{\sqrt{3}}{4}$. On en déduit que

$$a + 2b + c = 2\left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right) + \frac{\sqrt{3}}{4} = \frac{\pi}{3} - \frac{\sqrt{3}}{4}.$$
 (3)

En soustrayant les équations (1) et (2) et les équations (1) et (3), on en déduit

$$b + 2c = 1 - \frac{\pi}{4}$$
$$2b + 3c = 1 + \frac{\sqrt{3}}{4} - \frac{\pi}{3}$$

ce qui donne facilement

$$b = -1 + \frac{\sqrt{3}}{2} + \frac{\pi}{12}$$

$$c = 1 - \frac{\sqrt{3}}{4} - \frac{\pi}{6}$$

$$a = 1 - \sqrt{3} + \frac{\pi}{3}.$$

Exercice 2. Dans un cercle \mathcal{C} de centre O, on trace une corde [CD]. Soit Γ le cercle de diamètre [CD] et O' son centre. La médiatrice de [CD] coupe le cercle \mathcal{C} en deux points A et B tels que A est extérieur à Γ . Notons T et T' les points de contact des tangentes à Γ passant par A. Soit F le milieu de [TT']. Montrer que O' est le milieu de [BF].

Solution de l'exercice 2

Comme les triangles AFT et ATO' sont semblables, on a $\frac{AF}{AT} = \frac{AT}{AO'}$. Or, $AT^2 = AO'^2 - O'T^2 = AO'^2 - O'C^2$ donc $AF = \frac{AO'^2 - O'C^2}{AO'}$.

Comme les triangles ACB et AO'C sont semblables, on a $\frac{AB}{AC} = \frac{AC}{AO'}$. Or, $AC^2 = AO'^2 + O'C^2$ donc $AB = \frac{AO'^2 + O'C^2}{AO'}$.

En additionnant les égalités précédemment trouvées, on obtient $\frac{AF + AB}{2} = AO'$.

Exercice 3. Soit ABC un triangle isocèle en A. Soient M et N deux points de [BC]. Les droites [AM] et [AN] recoupent le cercle circonscrit à ABC en P et Q.

1) Montrer que M, N, P, Q sont cocycliques.

2) Soient R_1 et R_2 les rayons des cercles circonscrits à BMP et CMP. Calculer $R_1 + R_2$ en fonction des longueurs AB et BC.

Solution de l'exercice 3

1)
$$\widehat{PMN} = \widehat{PMC} = \pi - \widehat{MCP} - \widehat{CPM} = \pi - \widehat{BCP} - \widehat{CPA} = \pi - \widehat{BCP} - \widehat{CBA}$$
, et $\widehat{NQP} = \widehat{AQP} = \widehat{ACP} = \widehat{ACB} + \widehat{BCP} = \widehat{CBA} + \widehat{BCP}$, donc $\widehat{PMN} = \pi - \widehat{NQP}$, ce qui prouve la cocyclicité de M, N, P, Q .

2) D'après la loi des sinus, on a

$$2(R_1 + R_2) = \frac{BM}{\sin \widehat{MPB}} + \frac{CM}{\sin \widehat{CPM}}.$$

Or, $\widehat{MPB} = \widehat{APB} = \widehat{ACB}$ et de même $\widehat{CPM} = \widehat{ACB}$, donc

$$2(R_1 + R_2) = \frac{BM + CM}{\sin \widehat{ACB}} = \frac{BC}{\sin \widehat{ACB}}.$$

D'autre part, soit H le projeté orthogonal de A sur (BC). On a $\sin \widehat{ACB} = \frac{AH}{AB} = \frac{\sqrt{AB^2 - (BC/2)^2}}{AB}$, donc

$$R_1 + R_2 = \frac{AB \times BC}{2\sqrt{AB^2 - (BC/2)^2}}.$$

Exercices communs

Exercice 4. Soit ABC un triangle. Les bissectrices de \widehat{A} , \widehat{B} et \widehat{C} recoupent le cercle circonscrit en A', B' et C' respectivement. Soit I le centre du cercle inscrit à ABC. Les cercles de diamètres [IA'], [IB'] et [IC'] coupent respectivement les droites (BC), (CA) et (AB) en A_1 et A_2 , B_2 et B_2 , C_1 et C_2 . Montrer que A_1 , A_2 , B_1 , B_2 , C_1 , C_2 sont cocycliques.

Solution de l'exercice 4

Notons Γ_A , Γ_B et Γ_C les cercles de diamètres respectifs [IA'], [IB'] et [IC']. Remarquons d'abord que I est l'orthocentre de A'B'C'. Pour le voir, montrons par exemple que $(A'C') \perp (B'I)$:

$$(B'I, A'C') = (BB', A'C') = (BB', BA) + (AB, AA') + (A'A, A'C')$$

$$= (BB', BA) + (AB, AA') + (CA, CC')$$

$$= \frac{\widehat{B} + \widehat{A} + \widehat{C}}{2} = \frac{\pi}{2} \pmod{\pi}.$$

Soit B'' le pied de la hauteur de A'B'C' issue de B'. Alors B,B'' et I sont alignés d'après ce qui précède.

D'autre part, comme $(IB'') \perp (B''A')$, B'' appartient à Γ_A . De même, il appartient à Γ_C , donc l'axe radical de ces deux cercles est (IB''). On en déduit que B appartient également à cet axe radical, ce qui entraı̂ne que $BA_1 \cdot BA_2 = BC_1 \cdot BC_2$ et donc A_1, A_2, C_1, C_2 sont cocycliques. Soit Γ_{CA} le cercle passant par ces points.

On définit de même Γ_{AB} et Γ_{BC} . Si ces trois cercles étaient deux à deux distincts, alors leurs axes radicaux pris deux à deux seraient (AB), (BC) et (CA) et ne seraient ni concourants ni parallèles, ce qui est impossible.

Donc deux de ces cercles sont confondus, et par conséquent $A_1, A_2, B_1, B_2, C_1, C_2$ sont cocycliques.

Exercice 5. Soit ABCD un quadrilatère cyclique. Un cercle passant par A et B coupe [AC] et [BD] en E et F. Les droites (AF) et (BE) coupent [BC] et [AD] en P et Q respectivement. Montrer que (PQ) est parallèle à (CD).

Solution de l'exercice 5

 $\widehat{AQB} = \widehat{AQE} = \pi - \widehat{QEA} - \widehat{EAQ} = \widehat{AEB} - \widehat{CAD}$ et de même, $\widehat{APB} = \widehat{AFB} - \widehat{CBD}$. Or, $\widehat{AEB} = \widehat{AFB}$ et $\widehat{CAD} = \widehat{CBD}$, donc $\widehat{AQB} = \widehat{APB}$. On en déduit que A, B, P, Q sont cocycliques. Il vient : (AD, PQ) = (QA, QP) = (BA, BP) = (BA, BC) = (DA, DC), donc (PQ) et (DC) sont parallèles.

Exercice 6. Soit A un point extérieur à un cercle Γ . On mène deux tangentes [AT] et [AT'] issues de A. Soient M et M' les milieux de [AT] et [AT']. Soit P un point de (MM'). Notons [UV] la corde de Γ telle que (PU) et (PV) soient tangentes à Γ . La droite (UV) coupe (MM') en Q. Montrer que le triangle PAQ est rectangle.

Solution de l'exercice 6

Comme MA = MT, M appartient à l'axe radical de A et Γ (A étant considéré comme un cercle de rayon nul). De même, M' appartient à cet axe radical, donc P et Q également. On en déduit que PA = PU = PV et que $QA^2 = QU \cdot QV$.

Notons H le projeté orthogonal de P sur (UV). On a

$$PA^{2} + QA^{2} = PU^{2} + QU \cdot QV = PH^{2} + HU^{2} + (QH - HU)(QH + HU)$$

= $PH^{2} + HU^{2} + QH^{2} - HU^{2} = PH^{2} + QH^{2} = PQ^{2}$,

donc PAQ est rectangle en A.

Exercices du groupe A

Exercice 7. Soit ABC un triangle et ω son cercle inscrit. On note P,Q,R les points de contact de ω avec (BC),(CA) et (AB). Un cercle passant par B et C est tangent en X à ω , un cercle passant par C et A est tangent en Y à ω et un cercle passant par A et B est tangent en Z à ω . Montrer que les droites (PX),(QY) et (RZ) sont concourantes.

Solution de l'exercice 7

Rappelons d'abord quelques résultats sur la polarité que nous allons utiliser. Soit \mathcal{C} un cercle de centre O et de rayon R. Si P est un point distinct de O, la polaire de P par rapport à \mathcal{C} est la droite formée des points M tels que $\overrightarrow{OP} \cdot \overrightarrow{OM} = R^2$. Le pôle par rapport à \mathcal{C} d'une droite \mathcal{D} ne passant pas par O est l'unique point P tel que pour tout M appartenant à \mathcal{D} on a $\overrightarrow{OP} \cdot \overrightarrow{OM} = R^2$. À partir de cette définition, il est facile de montrer les propriétés suivantes :

- (i) si P est un point extérieur à C et (PT), (PT') sont les deux tangentes à C, alors la polaire de P est la droite (TT');
- (ii) trois points donnés sont alignés si et seulement si leurs polaires sont concourantes.

(Remarque : pour la propriété (ii), la droite sur laquelle se trouvent les trois points est la polaire du point de rencontre des trois droites.)

Revenons à l'exercice. Notons Γ_A le cercle passant par B,C et X. On définit de même les cercles Γ_B et Γ_C . Soit A' le point de rencontre entre la tangente commune à ω et Γ_X , et la droite (BC). On définit de même les points B' et C'.

D'après la propriété (ii), la polaire de A' par rapport à ω est la droite (PX). Il suffit donc d'après la propriété (i) de montrer que A', B' et C' sont alignés.

Soit Γ le cercle circonscrit à ABC. Comme A' appartient à l'axe radical (BC) de Γ et Γ_A , on a $\mathcal{P}_{\Gamma}(A') = \mathcal{P}_{\Gamma_A}(A') = A'X^2 = \mathcal{P}_{\omega}(A')$. On en déduit que A' appartient à l'axe radical de Γ et ω . Il en va de même pour B' et C', ce qui prouve que A', B' et C' sont alignés.

Exercice 8. Soit ABC un triangle. On note P le milieu de l'arc du cercle circonscrit à ABC contenant A. On suppose que la bissectrice de l'angle \widehat{BAC} coupe le cercle de diamètre [PC] en deux points D et E. Soit F le symétrique de E par rapport à (BC) et I le milieu de [BC]. Montrer que B, D, F, I sont cocycliques.

Solution de l'exercice 8

On applique l'inversion i de pôle I et de puissance $-IB \cdot IC$. Soit Q le point diamétralement opposé à P. Alors i échange P et Q d'une part, et B et C d'autre part. Comme le cercle de diamètre [PC] passe par I, son image par i est une droite. Or, i(P) = Q et i(C) = B, donc i transforme le cercle de diamètre [PC] en la droite (BQ).

La bissectrice de \widehat{A} est transformée en un cercle passant par I et par P.

Notons K = i(D), L = i(E) et M = i(F). D'après ce qui précède, les points K et L appartiennent à (BQ), et P, I, K, L sont cocycliques. De plus, L et M sont symétriques par rapport à (BC).

Enfin, remarquons que $QI \cdot QP = QB^2$ car QBI et QPB sont semblables. En utilisant la puissance par rapport au cercle PIKL, on obtient que $QK \cdot QL = QB^2$, donc K et L sont inverses par rapport au cercle de centre Q et de rayon QB. On est ainsi ramenés à démontrer le lemme suivant :

<u>Lemme</u>: Soit C un cercle de centre Q. Soit [BC] une corde de C et L un point de (QB). Alors C, l'inverse de L par rapport à C et le symétrique de L par rapport à (BC) sont alignés.

<u>Première démonstration du lemme</u>: on note toujours I le milieu de [BC]. Soit Δ la médiatrice de [BC] et L' le symétrique de L par rapport à Δ . On a

$$[BL'] = \operatorname{sym}_{\Delta}([CL]) = \operatorname{sym}_{\Delta}\operatorname{sym}_{(BC)}([CM]) = \operatorname{sym}_{I}([CM]),$$

donc (CM) et (L'B) sont parallèles.

D'autre part, $\frac{\grave{Q}B}{QK} = \frac{QL}{QB} = \frac{QL'}{QC}$ donc (L'B) et (CK) sont parallèles. Finalement, (CM) et (CK)sont parallèles, donc C, K, M sont alignés.

Deuxième démonstration du lemme : on conserve les notations du paragraphe précédent. On note b, c, k, ℓ, ℓ', m les affixes de B, C, K, L, L', M, et on peut supposer que Q est l'origine, que |b|=1et que $c = \bar{b}$.

Comme L appartient à (QB), il existe $t \in \mathbb{R}$ tel que $\ell = tb$.

Comme K et L sont inverses par rapport au cercle, on a $k = \frac{1}{t}b$.

On a $\ell' = \bar{\ell}$. Le fait que L' est le symétrique M par rapport à I se traduit par $\ell' + m = b + c$. Il

vient $m = b + c - \overline{\ell} = b + c - tc$. On en déduit que $\overrightarrow{CM} = m - c = b - tc = tk - tc = t\overrightarrow{CK}$, par conséquent C, K, M sont alignés.

Exercice 9. Soit ABC un triangle isocèle en A, D le pied de la hauteur issue de A et M un point intérieur à ADC tel que \widehat{AMB} est obtus et $\widehat{DBM} + \widehat{DAM} = \widehat{MCB}$. Les droites (CM) et (AD) se coupent en P, et les droites (BM) et (AD) se coupent en Q. Soit S un point de [AB] et R un point de [AM) qui n'est pas sur [AM] tel que $\widehat{SQB} = \widehat{DPC}$ et $\widehat{MRQ} = 2\widehat{QAM}$. Montrer que QRS est isocèle.

Solution de l'exercice 9

Notons $\alpha = \widehat{BAD}$, $\beta = \widehat{CBM}$, $\gamma = \widehat{MCB}$ et $\theta = \widehat{DAM}$. Par hypothèse, on a $\beta + \theta = \gamma$, $\widehat{SQB} = \widehat{DPC} = \frac{\pi}{2} - \gamma$ et $\widehat{MRQ} = 2\theta$.

On a $\widehat{QSA} = \pi - \widehat{BSQ} = \widehat{QBS} + \widehat{SQB} = (\frac{\pi}{2} - \alpha - \beta) + (\frac{\pi}{2} - \gamma) = \pi - (\alpha + \beta + \gamma).$

D'après la loi des sinus pour les triangles QAS et QAR, on a

$$\frac{QS}{QR} = \frac{QS}{QA} \times \frac{QA}{QR} = \frac{\sin \alpha}{\sin(\alpha + \beta + \gamma)} \frac{\sin 2\theta}{\sin \theta} = \frac{2\sin \alpha \cos \theta}{\sin(\alpha + \beta + \gamma)}.$$

On doit montrer que ce rapport est égal à 1.

D'après le théorème de Ceva trigonométrique appliqué au point M dans le triangle ABC, on a

$$\frac{\sin(\alpha+\theta)}{\sin(\alpha-\theta)} \times \frac{\sin\beta}{\sin(\frac{\pi}{2}-\alpha-\beta)} \times \frac{\sin(\frac{\pi}{2}-\alpha-\gamma)}{\sin\gamma} = 1,$$

donc $\sin(\alpha + \theta) \sin \beta \cos(\alpha + \gamma) = \sin(\alpha - \theta) \cos(\alpha + \beta) \sin \gamma$.

En utilisant l'identité $2\sin x \cos y = \sin(x+y) + \sin(x-y)$, on en déduit

$$\sin(\alpha + \theta)[\sin(\alpha + \beta + \gamma) - \sin(\alpha + \gamma - \beta)] = \sin(\alpha - \theta)[\sin(\alpha + \beta + \gamma) - \sin(\alpha + \beta - \gamma)].$$

Compte tenu de $\gamma - \beta = \theta$,

$$\sin(\alpha + \theta)[\sin(\alpha + \beta + \gamma) - \sin(\alpha + \theta)] = \sin(\alpha - \theta)[\sin(\alpha + \beta + \gamma) - \sin(\alpha - \theta)],$$

ou encore $(\sin(\alpha + \theta) - \sin(\alpha - \theta))[\sin(\alpha + \beta + \gamma) - (\sin(\alpha + \theta) + \sin(\alpha - \theta))]$. Il vient $\sin(\alpha + \beta + \gamma) = \sin(\alpha + \theta) + \sin(\alpha - \theta)) = 2\sin\alpha\cos\theta$.