Eletricidade e Circuitos para Computação I 5^a. Lista de Exercícios

Modelos de Norton e Thévenin, Transferência Máxima de Potência

Um voltímetro com uma resistência de 100 k Ω é usado para medir a tensão v_{ab} no circuito da Fig. P4.57.

- a) Qual é a leitura do voltímetro?
- b) Qual é o erro percentual da leitura do voltímetro, definido como [(valor medido valor real)/valor real)] × 100%?

Fig. P4.57

- a) Determine o circuito equivalente de Thévenin do circuito da Fig. P4.58 em relação aos terminais a e b calculando a tensão de circuito aberto e a corrente de curto-circuito.
- b) Calcule a resistência de Thévenin removendo as fontes independentes. Compare o resultado com a resistência de Thévenin obtida no item (a).

Fig. P4.58

Determine o circuito equivalente de Thévenin do circuito da Fig. P4.59 em relação aos terminais a e b.

Fig. P4.59

Determine o circuito equivalente de Thévenin do circuito da Fig. P4.60 em relação aos terminais a e b.

Fig. P4.60

Determine o circuito equivalente de Thévenin do circuito da Fig. P4.66 em relação aos terminais a e b.

Fig. P4.66

O circuito equivalente de Thévenin também pode ser obtido a partir de medidas elétricas. Suponha que as seguintes medidas tenham sido realizadas nos terminais a e b do circuito da Fig. P4.67:

- (1) Com um resistor de 15 k Ω ligado aos terminais a e b, a tensão medida entre estes terminais foi $v_{ab} = 45 \text{ V}$.
- (2) Com um resistor de 5 k Ω ligado aos terminais a e b, a tensão medida entre estes terminais foi $\nu_{ab}=25$ V.

Determine o circuito equivalente de Thévenin do circuito do ponto de vista dos terminais a e b.

Fig. P4.67

A leitura de um amperímetro usado para medir a corrente i_{ϕ} da Fig. P4.68 é 10 A.

- a) Qual é a resistência do amperímetro?
- b) Qual é a porcentagem de erro na medida de corrente?

Fig. P4.68

Determine o circuito equivalente de Thévenin do circuito da Fig. P4.69 em relação aos terminais a e b.

Fig. P4.69

4.71

- a) Determine o valor do resistor variável R_o no circuito da Fig. P4.71 para que o resistor de 6 Ω dissipe a maior potência possível. (Sugestão: Conclusões apressadas podem ser perigosas para a sua carreira.)
- b) Qual a maior potência que pode ser dissipada no resistor de 6Ω ?

Fig. P4.71

4.74 P

O resistor variável R_o do circuito da Fig. P4.74 é ajustado para que a potência dissipada pelo resistor seja 250 W. Determine os valores de R_o que satisfazem esta condição.

Fig. P4.74

4.75

O resistor variável R_o do circuito da Fig. P4.75 é ajustado para que a potência transferida para R_o seja máxima.

b) Determine a maior potência que pode ser transferida para R_o .

Fig. P4.75

4.76

Que porcentagem da potência total fornecida pelas fontes no circuito da Fig. P4.75 é transferida para R_o quando R_o é ajustada para que a potência transferida seja máxima?

• resistor variável R_o do circuito da Fig. P4.77 é ajusta-• para que a potência transferida para R_o seja máxima.

- \blacksquare Determine o valor de R_o .
- **b** Determine a maior potência que pode ser transferida para R_o .

Fig. P4.77

Que porcentagem da potência total fornecida pelas fons no circuito da Fig. P4.75 é transferida para R_o quan- R_o é ajustada para que a potência transferida seja máxima?

O resistor variável R_o do circuito da Fig. P4.79 é ajustapara que a potência transferida para R_o seja máxima.

- \blacksquare Determine o valor de R_o .
- be Determine a maior potência que pode ser transferida para R_o .

Fig. P4.79

O resistor variável R_o do circuito da Fig. P4.80 é ajustado para que a potência transferida para R_o seja máxima. Que porcentagem da potência total fornecida pelas fontes é transferida para R_o ?

Fig. P4.80

4.81 O resistor variável R_o do circuito da Fig. P4.81 é ajustado para que a potência transferida para R_o seja máxima.

- a) Determine o valor de R_o .
- b) Determine a maior potência que pode ser transferida para R_o .
- c) Determine a porcentagem da potência total fornecida pelas fontes que é transferida para R_o .

Fig. P4.81

4.82 O resistor variável R_o do circuito da Fig. P4.82 é ajustado para que a potência transferida para R_o seja máxima.

- a) Determine o valor de R_o .
- b) Determine a maior potência que pode ser transferida
- c) Qual é a potência transferida para o circuito pela fonte de 280 V quando R_o é ajustada para o valor do item

Fig. P4.82