Zestaw 6

1. Wykorzystując definicję całki Riemanna, oblicz granice:

a)
$$\lim_{n \to +\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n} \right)$$
,

b)
$$\lim_{n \to +\infty} \frac{\sqrt[n]{n!}}{n}.$$

2. Oblicz całki oznaczone:

a)
$$\int_0^3 |1-x| \, \mathrm{d}x$$
,

b)
$$\int_3^4 \ln|x - \mathbf{e}| \, \mathrm{d}x.$$

3. Załóżmy, że funkcja f jest ciągła i parzysta na przedziale [-a,a] dla pewnego $a\in\mathbb{R}$. Uzasadnij, że

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 2 \int_{0}^{a} f(x) \, \mathrm{d}x.$$

4. Załóżmy, że funkcja f jest ciągła i nieparzysta na przedziale [-a,a] dla pewnego $a\in\mathbb{R}$. Uzasadnij, że

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0.$$

5. Załóżmy, że funkcja f jest ciągła na przedziale [a,b]. Uzasadnij, że

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^b f(a+b-x) \, \mathrm{d}x.$$

6. Załóżmy, że dla pewnej funkcji ciągłej $f\colon \mathbb{R} \to \mathbb{R}$ i dowolnego $a \in \mathbb{R}$ zachodzi

$$\int_{a-1}^{a+1} f(x) \, \mathrm{d}x = 2025.$$

Uzasadnij, że funkcja f jest okresowa.

 ${\bf 7.}$ Oblicz pole obszaru ograniczonego krzywymi:

a)
$$y = 2x - x^2$$
, $y = -x$,

b)
$$y = \frac{x^2}{2}$$
, $y = \frac{x^2}{4}$, $y = 4$ dla $x \ge 0$.

8. Oblicz długość krzywej

$$y = \ln \frac{e^x + 1}{e^x - 1}$$
 dla $\frac{1}{2} \leqslant x \leqslant 1$.

9. Oblicz objętość bryły powstałej przez obrót krzywej

$$y = \operatorname{tg} x, \qquad 0 \leqslant x \leqslant \frac{\pi}{4}$$

dookoła osi Ox.

10. Oblicz pole powierzchni powstałej przez obrót dookoła osi Ox krzywej

$$y = 2x^3, \qquad 0 \leqslant x \leqslant 1.$$

11. Oblicz całki niewłaściwe:

a)
$$\int_0^{+\infty} x e^{-x^2} dx,$$

b)
$$\int_0^{1/e} \frac{\mathrm{d}x}{x \ln^2 x} \, \mathrm{d}x,$$

c)
$$\int_0^{\pi/2} \frac{dx}{1 + (\operatorname{tg} x)^{\sqrt{2}}} dx$$