Kirchhoff's Voltage law (KVL)

The algebraic sum of all the voltages around any closed path in a

Kirchhoff's current law (KCL)

The algebraic sum of all the currents at any node in a circuit equals zero.

Analyzing a Circuit Continuing Dependent Source Solve using KVL

Resistors in Series

$$V_{5} = V_{1} = V_{2} - V_{3} = V_{5} + V_{2} - V_{5} = V_{5} + V_{5} + V_{5} + V_{5} + V_{5} = V_{5} + V_{5} + V_{5} + V_{5} + V_{5} + V_{5} = V_{5} + V_{5$$

$$v_s = i_s(R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7).$$

$$R_{\rm eq} = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7$$

$$R_{\text{eq}} = \sum_{i=1}^{\kappa} R_i = R_1 + R_2 + \cdots + R_k$$

$$\frac{1}{R_{\text{eq}}} = \sum_{i=1}^{k} \frac{1}{R_i} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_k}$$

The Current-Divider Circuit

$$i_j = \frac{v}{R_j} = \frac{R_{\text{eq}}}{R_j}$$

Real-World Applications

Resistive touch screen

$$V_{x} = \frac{\alpha R_{x}}{\alpha R_{x} + (1 - \alpha)R_{x}} V_{s} = \frac{\alpha R_{x}}{R_{x}} V_{s} = \alpha V_{s}.$$

$$\alpha = V_{x}$$

$$x = (1 - \alpha)p_x$$

 p_x pixels in the x-direction p_y pixels in the y-direction.

 α represents the location of the touch point with respect to the right side of the screen, (1 - α) represents the location of the touch point with respect to the left side of the screen

