

Proposta de teste de avaliação Matemática A

11.º Ano de escolaridade

Duração: 90 minutos | Data:

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Na figura está representada, num referencial o.n. Oxyz, a pirâmide quadrangular regular de base [OABC] e vértice V.

Sabe-se que:

- o ponto E é o centro da base da pirâmide;
- a reta VE pode ser definida pela equação vetorial:

$$(x,y,z) = (-2,5,5) + k(1,2,2), k \in \mathbb{R}$$

- o volume da pirâmide é 108.
- 1.1. Justifique que o plano da base da pirâmide pode ser definido pela equação x + 2y + 2z = 0.
- **1.2.** Mostre que o ponto E tem coordenadas (-4,1,1).
- 1.3. Mostre que a área da base da pirâmide é igual a 36.
- **1.4.** Determine as coordenadas do vértice V sabendo que tem cota positiva.
- **1.5.** Qual é o valor do produto escalar $\overrightarrow{AV} \cdot \overrightarrow{AC}$?
 - **(A)** 36
- **(B)** 18
- (C) $2\sqrt{18}$ (D) $\sqrt{18}$
- Considere, num referencial o.n. Oxyz, o plano α definido pela equação x-y=0 e o ponto 2. P de coordenadas (2,1,2).

Seja β o plano paralelo a α e que passa no ponto P.

Qual das seguintes condições é uma equação do plano β ?

- (A) 2x - 2y = 1
- x + y = 3
- **(C)** y - x = 1
- **(D)** x-y=1

 \dot{x}

 $\overset{\circ}{C}$

3. Na figura estão representados, em referencial o.n. xOy:

- a reta r que interseta o eixo Ox no ponto
 A de abcissa -4 e o eixo Oy no ponto B
 de ordenada 2;
- uma circunferência que tem centro no ponto C de coordenadas (4,−1);

Sabe-se que a reta $\,r\,$ é tangente à circunferência no ponto $\,P\,$.

3.2. Escreva uma equação que defina a circunferência.

Determine o valor de:

$$\sin^2\left(-\alpha - \frac{7\pi}{2}\right) \times \sin(2\alpha)$$

3.4. Seja Q o ponto do segmento de reta [AB] tal que $\overline{AQ} = \frac{1}{3}\overline{QB}$.

Quais são as coordenadas do ponto Q?

$$(\mathbf{A}) \quad \left(-3, \frac{1}{2}\right)$$

(B)
$$\left(-\frac{5}{2}, \frac{3}{4}\right)$$

(C)
$$(-2,1)$$

(D)
$$\left(-1,\frac{3}{2}\right)$$

4. Quantas soluções tem a equação $\tan x - \cos x = 0$, no intervalo $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$?

- (A) Zero
- **(B)** Uma
- (C) Duas
- (D) Três

- 5. Considere a função f definida em \mathbb{R} por $f(x) = 2\left(1 2\cos\frac{\pi x}{3}\right)$.
 - **5.1.** Determine o contradomínio de f.
 - **5.2.** Mostre que a função f é periódica de período 6.
 - 5.3. Na figura está representada, num referencial cartesiano xOy, o triângulo [ABC] e a restrição da função f ao intervalo [0, 6].
 O ponto A pertence ao eixo Ox e os pontos.
 B e C são pontos do gráfico de f com

Determine a área do triângulo [ABC].

6. Num referencial o.n. *Oxyz*, a interseção dos conjuntos de pontos definidos pelas equações

$$x^{2} + (y-1)^{2} + (z-1)^{2} = 1$$
 e $x = 1$ é:

(A) o conjunto vazio

ordenada 4.

- (B) um ponto
- (C) um segmento de reta
- (D) uma circunferência
- 7. Na figura está representada, num referencial o.n. *xOy*, a circunferência com centro na origem do referencial e raio 2.

Sabe-se que:

- os pontos A e B pertencem à circunferência e aos semieixos positivos Ox e
 Oy , respetivamente;
- P é um ponto do arco AB, distinto de A e de B;
- o ponto C pertence à semirreta $\dot{O}P$;
- o segmento de reta [CA] é paralelo ao eixo Oy;
- c é o comprimento do arco AP.

Mostre que a expressão que dá área do triângulo [ACP] é:

$$2\left(\tan\left(\frac{c}{2}\right) - \sin\left(\frac{c}{2}\right)\right)$$

FIM

Cotações

1.1.	1.2.	1.3.	1.4.	1.5.	2.	3.1.	3.2.	3.3.	3.4.	4.	5.1.	5.2.	5.3	6.	7.	Total
10	15	15	15	10	10	15	10	15	10	10	10	15	15	10	15	200

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α : amplitude, em radianos, do ângulo ao centro; r: raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular: $\frac{\alpha r^2}{2}$ (α : amplitude, em radianos, do ângulo ao centro; r: raio)

Área lateral de um cone: πrg (r: raio da base; g: geratriz)

Área de uma superfície esférica: $4\pi r^2$ (r : raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r: raio)

Proposta de resolução

- 1. $VE: (x, y, z) = (-2, 5, 5) + k(1, 2, 2), k \in \mathbb{R}$
 - **1.1.** Atendendo a que [OABCV] é uma pirâmide quadrangular regular de vértice V e o ponto E é o centro da base, a reta VE é perpendicular ao plano da base. Assim, o vetor de coordenadas (1,2,2), por ser um vetor diretor da reta VE, é normal ao plano da base da pirâmide pelo que este plano pode ser definido por uma equação da forma x+2y+2z+d=0. Atendendo que o plano passa na origem do referencial, vem d=0. Portanto, x+2y+2z=0 é uma equação que define o plano da base da pirâmide.
 - **1.2.** O ponto E é a interseção da reta VE com o plano da base.

$$(x,y,z) = (-2,5,5) + k(1,2,2) , k \in \mathbb{R} \Leftrightarrow$$
$$\Leftrightarrow (x,y,z) = (-2+k,5+2k,5+2k), k \in \mathbb{R}$$

Qualquer ponto da reta VE é da forma (-2+k,5+2k,5+2k), $k \in \mathbb{R}$. Pretendemos o ponto da reta que pertence ao plano OAB, ou seja, o ponto que satisfaz a equação: x+2y+2z=0. Substituindo x, y e z pelas coordenadas de (-2+k,5+2k,5+2k), temos:

$$(-2+k)+2(5+2k)+2(5+2k)=0 \Leftrightarrow$$

 $\Leftrightarrow -2+k+10+4k+10+4k=0 \Leftrightarrow$
 $\Leftrightarrow 9k=-18 \Leftrightarrow k=-2$
Para $k=-2$, vem: $(-2-2,5+2\times(-2),5+2\times(-2))=(-4,1,1)$

O ponto E tem coordenadas (-4,1,1).

1.3.
$$O(0,0,0)$$
 e $E(-4,1,1)$

A base [OABC] da pirâmide é um quadrado de centro no ponto E .

$$\overrightarrow{OE}(-4,1,1)$$

$$\|\overrightarrow{OE}\| = \sqrt{(-4)^2 + 1^2 + 1^2} = \sqrt{16 + 1 + 1} = \sqrt{18}$$

Seja x a medida do lado da base. Então a área da base é x^2 e

$$x^{2} + x^{2} = (2\sqrt{18})^{2} \Leftrightarrow$$

$$\Leftrightarrow 2x^{2} = 4 \times 18 \Leftrightarrow x^{2} = 2 \times 18 \Leftrightarrow$$

$$\Leftrightarrow x^{2} = 36$$

A área da base da pirâmide é 36.

1.4. Comecemos por determinar a altura, h, da pirâmide:

$$V_{\rm pir\hat{a}mide} = \frac{1}{3} \times A_{\rm base} \times h$$

$$108 = \frac{1}{3} \times 36 \times h \Leftrightarrow 108 = 12h \Leftrightarrow$$

$$\Leftrightarrow h = \frac{108}{12} \Leftrightarrow h = 9$$

$$\|\overrightarrow{EV}\| = h = 9$$

$$V = E + \overrightarrow{EV}$$

 \overrightarrow{EV} é um vetor de norma igual a 9, colinear com o vetor $\overrightarrow{u}(1,2,2)$ por ser um vetor diretor da reta VE.

$$\|\vec{u}\| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3$$

$$\overrightarrow{EV} = k \vec{u}$$
, $\|\overrightarrow{EV}\| = \|k \vec{u}\| = 9$

$$||k\vec{u}|| = 9 \Leftrightarrow |k|||\vec{u}|| = 9 \Leftrightarrow$$

$$\Leftrightarrow |k| \times 3 = 9 \Leftrightarrow |k| = 3$$

Se
$$|k| = 3$$
 então $k = 3$ ou $k = -3$

Se
$$k = 3$$

$$\overrightarrow{EV} = k \vec{u} = 3(1, 2, 2) = (3, 6, 6)$$

$$V = E + \overrightarrow{EV} = E(-4, 1, 1) + (3, 6, 6) = (-1, 7, 7)$$

Se
$$k = -3$$

$$\overrightarrow{EV} = k \vec{u} = -3(1, 2, 2) = (-3, -6, -6)$$

$$V = E + \overrightarrow{EV} = E(-4, 1, 1) + (-3, -6, -6) = (-7, -5, -5)$$

Como V tem cota positiva, temos V(-1, 7, 7).

1.5. O ponto E é a projeção ortogonal do ponto V na reta AC

$$\overrightarrow{AV} \cdot \overrightarrow{AC} = ||\overrightarrow{AE}|| \times ||\overrightarrow{AC}|| =$$

= $\sqrt{18} \times 2\sqrt{18} = 2 \times 18 = 36$

Resposta: (A)

2. $\alpha: x-y=0$, P(2,1,2)

Como α e β são planos paralelos, o vetor $\vec{u}(1,-1,0)$, normal ao plano α , é também um vetor normal ao plano β .

Logo, uma equação do plano β é da forma x - y + d = 0.

Dado que P(2,1,2) pertence a β , vem $2-1+d=0 \Leftrightarrow d=-1$.

Portanto, x-y-1=0 é uma equação do plano β . Ora, como $x-y-1=0 \Leftrightarrow x-y=1$, esta equação também define o plano β .

Resposta: (D)

3.
$$A(-4,0), B(0,2), C(4,-1)$$

3.1.
$$\overrightarrow{AB} = B - A = (0, 2) - (-4, 0) = (4, 2)$$

Equação vetorial da reta r (passa no ponto B e tem a direção de \overline{AB}):

$$(x, y) = (0, 2) + k(4, 2), k \in \mathbb{R} \Leftrightarrow (x, y) = (4k, 2 + 2k), k \in \mathbb{R}$$

Como o ponto de tangência, P, pertence à reta r, é da forma P(4k, 2+2k)

Dado que reta $\,r\,$ é tangente à circunferência no ponto $\,P\,$, tem-se que a reta é perpendicular ao raio no ponto de tangência.

Logo,
$$\overrightarrow{AB} \cdot \overrightarrow{CP} = 0$$
.

$$\overrightarrow{CP} = P - C = (4k, 2 + 2k) - (4, -1) =$$

= $(4k - 4, 2 + 2k + 1) = (4k - 4, 2k + 3)$

$$\overrightarrow{AB} \cdot \overrightarrow{CP} = 0 \Leftrightarrow (4,2) \cdot (4k - 4, 2k + 3) = 0 \Leftrightarrow$$

$$\Leftrightarrow 16k - 16 + 4k + 6 = 0 = 0 \Leftrightarrow$$

$$\Leftrightarrow 20k - 10 = 0 \Leftrightarrow 20k = 10 \Leftrightarrow$$

$$\Leftrightarrow k = \frac{10}{20} \Leftrightarrow k = \frac{1}{2}$$

O ponto P tem coordenadas (2,3).

3.2.
$$\overrightarrow{CP} = P - C = (2,3) - (4,-1) = (-2,4)$$

Raio =
$$\|\overrightarrow{CP}\| = \sqrt{(-2)^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20}$$

Centro: C(4,-1)

Equação da circunferência: $(x-4)^2 + (y+1)^2 = 20$

3.3.
$$\overrightarrow{AB} = (4, 2)$$
 é um vetor diretor da reta r .

O declive da reta $r \notin m = \frac{2}{4} = \frac{1}{2}$.

Se α é a inclinação da reta r então $\tan \alpha = m = \frac{1}{2}$ e $0 < \alpha < \frac{\pi}{2}$.

$$\sin^2\left(-\alpha-\frac{7\pi}{2}\right)\times\sin\left(2\alpha\right)$$

$$=\sin^2\left(-\alpha-\frac{8\pi}{2}+\frac{\pi}{2}\right)\times 2\sin\alpha\cos\alpha=$$

$$=\sin^2\left(-4\pi+\frac{\pi}{2}-\alpha\right)\times 2\sin\alpha\cos\alpha=$$

$$=\sin^2\left(\frac{\pi}{2}-\alpha\right)\times 2\sin\alpha\cos\alpha=$$

 $=\cos^2\alpha\times2\sin\alpha\cos\alpha=2\cos^3\alpha\sin\alpha$

$$\tan \alpha = \frac{1}{2} e 0 < \alpha < \frac{\pi}{2}$$

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$1 + \left(\frac{1}{2}\right)^2 = \frac{1}{\cos^2 \alpha} \Leftrightarrow 1 + \frac{1}{4} = \frac{1}{\cos^2 \alpha} \Leftrightarrow \frac{1}{\cos^2 \alpha} = \frac{5}{4} \Leftrightarrow \cos^2 \alpha = \frac{4}{5}$$

Como
$$0 < \alpha < \frac{\pi}{2}$$
, vem $\cos \alpha > 0$, pelo que $\cos \alpha = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}}$.

$$\sin^2\alpha + \cos^2\alpha = 1$$

$$\sin^2 \alpha + \frac{4}{5} = 1 \Leftrightarrow \sin^2 \alpha = 1 - \frac{4}{5} \Leftrightarrow \sin^2 \alpha = \frac{1}{5}$$

Como
$$0 < \alpha < \frac{\pi}{2}$$
, vem $\sin \alpha > 0$, pelo que $\sin \alpha = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}}$.

$$2\cos^3\alpha\sin\alpha = 2\cos^2\alpha\cos\alpha\sin\alpha =$$

$$=2\times\frac{4}{5}\times\frac{2}{\sqrt{5}}\times\frac{1}{\sqrt{5}}=\frac{16}{5\times5}=\frac{16}{25}$$

Máximo Matemática A

3.4.

Se
$$\overline{AQ} = \frac{1}{3}\overline{QB}$$
 então $\overline{AQ} = \frac{1}{4}\overline{AB}$

Sendo M o ponto médio de [AB] então Q é o ponto médio de [AM]

$$A(-4,0), B(0,2)$$

$$M\left(\frac{-4+0}{2},\frac{0+2}{2}\right); M(-2,1)$$

$$Q\left(\frac{-4-2}{2}, \frac{0+1}{2}\right); Q\left(-3, \frac{1}{2}\right)$$

Em alternativa

$$Q = A + \overrightarrow{AQ} = A + \frac{1}{4}\overrightarrow{AB} = (-4, 0) + \frac{1}{4}(4, 2) =$$
$$= (-4, 0) + \left(1, \frac{1}{2}\right) = \left(-3, \frac{3}{2}\right)$$

Resposta: (A)

4. $\tan x - \cos x = 0 \Leftrightarrow \tan x = \cos x$

No intervalo $\left[\frac{\pi}{4}, \frac{\pi}{2}\right[$ a função tangente toma todos os valores no intervalo $\left[1, +\infty\right[$ e a função cosseno assume os valores do intervalo $\left]0, \frac{\sqrt{2}}{2}\right]$. Dado que estes intervalos são disjuntos, a equação $\tan x = \cos x$ é impossível em $\left[\frac{\pi}{4}, \frac{\pi}{2}\right[$.

Resposta: (A)

5.
$$f(x) = 2\left(1 - 2\cos\frac{\pi x}{3}\right), D_f = \mathbb{R}$$

5.1.
$$x \in \mathbb{R} \Leftrightarrow \frac{\pi x}{3} \in \mathbb{R} \Leftrightarrow -1 \le \cos \frac{\pi x}{3} \le 1 \Leftrightarrow$$

$$\Leftrightarrow -2 \le -2 \cos \frac{\pi x}{3} \le 2 \Leftrightarrow$$

$$\Leftrightarrow 1 - 2 \le 1 - 2 \cos \frac{\pi x}{3} \le 1 + 2 \Leftrightarrow$$

$$\Leftrightarrow 2 \times (-1) \le 2 \left(1 - 2 \cos \frac{\pi x}{3}\right) \le 2 \times 3 \Leftrightarrow$$

$$\Leftrightarrow -2 \le f(x) \le 6 \Leftrightarrow$$

$$D'_f = [-2, 6]$$

Máximo Matemática A

5.2. Se $x \in D_f$ então $x + 6 \in D_f$ porque $D_f = \mathbb{R}$

$$f(x+6) = 2\left(1 - 2\cos\frac{\pi(x+6)}{3}\right) = 2\left(1 - 2\cos\frac{\pi x + 6\pi}{3}\right) =$$

$$= 2\left(1 - 2\cos\left(\frac{\pi x}{3} + \frac{6\pi}{3}\right)\right) = 2\left(1 - 2\cos\left(\frac{\pi x}{3} + 2\pi\right)\right) =$$

$$= 2\left(1 - 2\cos\frac{\pi x}{3}\right) = f(x) \text{ porque a função cosseno é periódica de período } 2\pi.$$

$$\Leftrightarrow 1 - 2\cos\frac{\pi x}{3} = \frac{4}{2} \land x \in [0, 6] \Leftrightarrow$$

$$\Leftrightarrow -2\cos\frac{\pi x}{3} = 2 - 1 \land x \in [0, 6] \Leftrightarrow$$

$$\Leftrightarrow 2\cos\frac{\pi x}{3} = -1 \land \pi x \in [0, 6\pi] \Leftrightarrow$$

$$\Leftrightarrow \cos \frac{\pi x}{3} = -\frac{1}{2} \wedge \frac{\pi x}{3} \in [0, 2\pi] \Leftrightarrow$$

$$\Leftrightarrow \frac{\pi x}{3} = \pi - \frac{\pi}{3} \vee \frac{\pi x}{3} = \pi + \frac{\pi}{3} \Leftrightarrow \frac{x}{3} = 1 - \frac{1}{3} \vee \frac{x}{3} = 1 + \frac{1}{3} \Leftrightarrow$$

$$\Leftrightarrow x = 3 - 1 \lor x = 3 + 1 \Leftrightarrow x = 2 \lor x = 4$$

$$A_{[ABC]} = \frac{\overline{BC} \times 4}{2} = \frac{(4-2) \times 4}{2} = 4$$

A equação x=1 define um plano que passa no ponto A(1,1,1). Como o vetor $\overrightarrow{CA}(1,0,0)$ é normal ao plano e tem norma 1=r, podemos concluir que o plano é tangente à superfície esférica. Portanto, a interseção é o ponto A. Em alternativa,

$$x^{2} + (y-1)^{2} + (z-1)^{2} = 1 \land x = 1 \Leftrightarrow$$

$$\Leftrightarrow 1^{2} + (y-1)^{2} + (z-1)^{2} = 1 \land x = 1 \Leftrightarrow$$

$$\Leftrightarrow (y-1)^{2} + (z-1)^{2} = 0 \land x = 1 \Leftrightarrow$$

$$\Leftrightarrow y = 1 \land z = 1 \land x = 1 \Leftrightarrow (x, y, z) = (1, 1, 1)$$

O plano interseta a superficie esférica no ponto de coordenadas (1,1,1).

Resposta: (B)

7. Seja α a amplitude do ângulo AOP e seja D a projeção

de P no eixo Ox.

$$\frac{\overline{CA}}{\overline{OA}} = \tan \alpha \Leftrightarrow \frac{\overline{CA}}{2} = \tan \alpha \Leftrightarrow \overline{CA} = 2 \tan \alpha$$

$$\frac{\overline{OD}}{\overline{OP}} = \cos \alpha \Leftrightarrow \frac{\overline{OD}}{2} = \cos \alpha \Leftrightarrow \overline{OD} = 2\cos \alpha$$

$$\overline{DA} = \overline{OA} - \overline{OD} = 2 - 2\cos\alpha$$

Àrea do triângulo $[ACP] = \frac{\overline{AC} \times \overline{DA}}{2} =$

$$=\frac{2\tan\alpha\times(2-2\cos\alpha)}{2}=$$

$$= \tan \alpha \times (2 - 2\cos \alpha) =$$

$$= 2 \tan \alpha - 2 \tan \alpha \cos \alpha =$$

$$=2\left(\tan\alpha-\frac{\sin\alpha}{\cos\alpha}\cos\alpha\right)=$$

$$= 2(\tan \alpha - \sin \alpha)$$

c =comprimento do arco $AP = \alpha r$

Como
$$r = 2$$
, temos $c = 2\alpha \Leftrightarrow \alpha = \frac{c}{2}$ e

$$A_{[ACP]} = 2(\tan \alpha - \sin \alpha) = 2\left(\tan\left(\frac{c}{2}\right) - \sin\left(\frac{c}{2}\right)\right)$$

