Wrap-up Advanced Logics

Summer semester 2021

July 13, 2021

Technische Universität Dresden¹

FOL: syntax

Vocabulary:
$$Voc = (Pred, Func)$$

$$t ::= x \mid f(t_1, \dots, t_n)$$
 (terms)
$$\varphi ::= \mathbf{true} \mid P(t_1, \dots, t_n) \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \forall x. \varphi \mid \underbrace{t_1 = t_2}_{\text{optional}}$$
 (formulas)

Syntactic sugar:

$$t_{1} \neq t_{2} = \neg(t_{1} = t_{2})$$

$$false = \neg true$$

$$\varphi_{1} \lor \varphi_{2} = \neg(\neg\varphi_{1} \land \neg\varphi_{2})$$

$$\exists x.\varphi = \neg \forall x.\neg\varphi$$

$$\vdots$$

FOL: semantics

```
Interpretation: \mathcal{I} = (\mathcal{A}, \mathcal{V})
\mathcal{A} \dots structure
\mathcal{V} \dots valuation
```

$$x^{\mathcal{I}} = \mathcal{V}(x)$$

$$f(t_1, \dots, t_m)^{\mathcal{I}} = f^{\mathcal{A}}(t_1^{\mathcal{I}}, \dots, t_m^{\mathcal{I}})$$

$$\mathcal{I} \models \mathsf{true}$$

$$\vdots$$

$$\mathcal{I} \models \forall x. \varphi \qquad \text{iff} \quad \mathcal{I}[x := a] \models \varphi \text{ for all } a \in \mathcal{A}$$

$$\mathcal{I} \models (t_1 = t_2) \qquad \text{iff} \quad t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

FOL: sound and complete Hilbert proof system

Hilbert proof system: decidable set of proof rules (axioms are special instances of proof rules)

A rule:

$$\begin{array}{ccc} \Phi_1, \dots, \Phi_n & \longleftarrow & \text{premise} \\ \hline & \Phi & \longleftarrow & \text{consequence} \end{array}$$

Derivation

Definition (Derivation)

If \mathfrak{F} is a formula-set then a *derivation* in \mathfrak{D} from \mathfrak{F} denotes a **finite sequence** ψ_1, \ldots, ψ_m of formulas such that for each $i \in \{1, \ldots, m\}$ at least one of the following conditions holds:

- \cdot ψ_i is an element of ${\mathfrak F}$
- ψ_i is an instance of an axiom
- there exists an instance $(\phi_1, \ldots, \phi_n, \phi)$ of some n-ary proof rule in $\mathfrak D$ such that $n \geqslant 1$ and $\psi_i = \phi$ and $\{\phi_1, \ldots, \phi_n\} \subseteq \{\psi_1, \ldots, \psi_{i-1}\}.$

Complete and sound Hilbert proof systems

A Hilbert proof system is

• complete, if for each formula φ and formula set \mathfrak{F} :

$$\mathfrak{F} \Vdash \varphi \implies \mathfrak{F} \vdash_{\mathfrak{D}} \varphi$$

• weak complete, if for each formula φ :

$$\Vdash \varphi \implies \vdash_{\mathfrak{D}} \varphi$$

• sound, if for each formula φ and formula set \mathfrak{F} :

$$\mathfrak{F} \vdash_{\mathfrak{D}} \varphi \implies \mathfrak{F} \Vdash \varphi$$

Gödel's completeness theorem

Theorem (Gödel's completeness theorem)There exists a Hilbert proof system that is sound and complete for FOL.

The complete and sound Hilbert proof system for FOL in the script is called \mathfrak{D}_{FOL} (without equality page 21, with equality page 26).

Check soundness of a Hilbert proof system

Lemma (Criterion for soundness)

 $\mathfrak D$ is sound if and only if all proof rules in $\mathfrak D$ are sound in the following sense:

- \cdot all instances of the axioms in $\mathfrak D$ are valid and
- whenever $(\phi_1, \ldots, \phi_n, \phi)$ is an instance of a proof rule in \mathfrak{D} then $\{\phi_1, \ldots, \phi_n\} \Vdash \phi$.

Semi-decidability of FOL-tautologies

Lemma

The set of all valid FOL-formulas (over some fixed recursively enumerable vocabulary Voc and recursively enumerable variable-set Var) is recursively enumerable.

- · Set of all FOL-formulas is recursively enumerable
- Fix a complete and sound Hilbert proof system $\mathfrak D$
- · Generate algorithmically every finite sequence $\varphi_0,\ldots,\varphi_m$
 - · If $\varphi_0,\ldots,\varphi_m$ is a $\mathfrak D$ -derivation , output φ_m
 - Otherwise, just continue

Undecidability of FOL-tautologies

Lemma

The set of all valid FOL-formulas is undecidable.

And therefore the satisfiability problem, the equivalence problem and the consequence problem are undecidable.

Proof sketch

by the reduction from Post's correspondence problem (PCP). Take an instance $K = (u_1, v_1), \dots, (u_n, v_n)$ with $u_i, v_i \in \{0, 1\}^*$.

Assume *Voc* consists the unary predicate symbol P, two unary function symbols f_0 and f_1 , and a constant c. We define

$$f_{l_1 l_2...l_n(t)=f_{l_n}(...f_2(f_1(t)))}$$

Define

$$\varphi_{K} = \psi_{1} \wedge \psi_{2} \to \theta$$

$$\psi_{1} = \bigwedge_{1 \leq i \leq n} P(f_{u_{i}}(c), f_{v_{i}}(c))$$

$$\psi_{2} = \forall x \forall y. \left(P(x, y) \to \bigwedge_{1 \leq i \leq n} P(f_{u_{i}}(x), f_{v_{i}}(y)) \right)$$

$$\theta = \exists x. P(x, x)$$

Undecidability over finite models

Lemma

FOL-SAT-FIN is recursively enumerable.

Lemma

FOL-SAT-FIN is undecidable.

Theorem (Trakhtenbrot's theorem) FOL-VALID-FIN is not recursively enumerable.

Monadic FOL

- · purely relational
- · only unary predicate symbols

Lemma (Finite model property)

If φ is a satisfiable MFO-formula (without equality) with k predicate symbols then φ has a model where the domain is a subset of $\{0,1\}^k$.

Schönfinkel-Bernays formulas

Formulas of the form

$$\exists x_1 \ldots \exists x_n \forall y_1 \ldots \forall y_m . \varphi$$

where $n, m \ge 0$ and φ quantifier-free.

Lemma (Small model property)

Let ψ be a satisfiable Schönfinkel-Bernays sentence with n existential quantifiers and ℓ constant symbols. Then, ψ has a model with at most $n + \ell$ elements.

Proof.

- · Let ${\mathcal A}$ be a model of ψ
- a_1, \ldots, a_n the values of x_1, \ldots, x_n under \mathcal{A}
- Structure with $\{a_1,\ldots,a_n\}\cup\{c_1^{\mathcal{A}},\ldots,c_\ell^{\mathcal{A}}\}$ and the same behavior as \mathcal{A} is a model for ψ

FO-theories

Definition (FO-theory)

Let $\mathfrak T$ be a set of FOL-formulas. $\mathfrak T$ is called *closed under logical consequences* if for all formulas $\phi\colon \mathfrak T\vdash \phi$ implies $\phi\in \mathfrak T$. $\mathfrak T$ is called an *FO-theory* if $\mathfrak T$ is true in some structure and closed under logical consequences.

Definition (complete FO-theory)

A theory $\mathfrak T$ is called *complete* if it is maximal satisfiable over some structure, i.e., for all sentences ϕ : either $\phi \in \mathfrak T$ or $\neg \phi \in \mathfrak T$.

Definition (FO-theory of a structure)

If A is a structure for some vocabulary *Voc* then the first-order theory of A, denoted Th(A), defined by

$$Th(\mathcal{A}) = \{ \varphi : \mathcal{A} \models \varphi \}$$

consists of all FOL-formulas ϕ over *Voc* that hold over \mathcal{A} .

Complete theory

Theorem (Characterization of complete theories) Let \mathfrak{T} be a FO-theory. Then, the following statements are equivalent:

- (a) $\mathfrak T$ is complete (i.e., for each sentence ϕ either $\phi \in \mathfrak T$ or $\neg \phi \in \mathfrak T$).
- (b) $\mathfrak{T} = Th(\mathcal{A})$ for some structure \mathcal{A} .
- (c) $\mathfrak{T} = Th(A)$ for all structures A such that $A \models \mathfrak{T}$.

Decidability of theories (I)

Theorem (Semi-decidablity and decidability of complete theories)

Let $\mathfrak T$ be a complete theory. Then, $\mathfrak T$ is recursively enumerable if and only if $\mathfrak T$ is decidable.

Decidability of theories (II)

Definition (Axiomatizable theories)

A theory $\mathfrak T$ is said to be *axiomatizable* if there exists a decidable set $\mathfrak F$ of formulas such that $\mathfrak T$ agrees with the logical closure of $\mathfrak F$, i.e.,

$$\mathfrak{T} = \{ \phi : \mathfrak{F} \Vdash \phi \} = Cl(\mathfrak{F}).$$

In this case, $\mathfrak F$ is called an axiomatization for $\mathfrak T$.

Axiomatizability vs. Calculi

Theorem (Axiomatizability and sound and complete deductive calculi)

Let $\mathfrak T$ be a FO-theory. Then, $\mathfrak T$ is axiomatizable iff $\mathfrak T$ has a sound and complete deductive calculus.

A proof system $\mathfrak D$ is sound and complete for $\mathfrak T$ if $\vdash_{\mathfrak D} \varphi$ iff $\varphi \in \mathfrak T$ for all sentences φ

Axiomatizability vs. Calculi

Theorem (Axiomatizability and sound and complete deductive calculi)

Let $\mathfrak T$ be a FO-theory. Then, $\mathfrak T$ is axiomatizable iff $\mathfrak T$ has a sound and complete deductive calculus.

Proof.

• For direction " \Rightarrow " take an arbitrary and complete Hilbert proof system $\mathfrak D$ and an axiomatization $\mathcal F$ for $\mathfrak T$. Then $\mathfrak D+\mathcal F$ is a sound and complete deductive calculus.

Axiomatizability vs. Calculi

Theorem (Axiomatizability and sound and complete deductive calculi)

Let $\mathfrak T$ be a FO-theory. Then, $\mathfrak T$ is axiomatizable iff $\mathfrak T$ has a sound and complete deductive calculus.

Proof.

- For direction " \Leftarrow " enumerate \mathfrak{T} : ψ_0, ψ_1, \dots
- Set $\varphi_n = \psi_n \wedge \underbrace{\mathsf{true} \wedge \ldots \wedge \mathsf{true}}_{n \text{ times}}$ and $\mathfrak{F} = \{\varphi_n : n \in \mathbb{N}\}$
- For a formula φ with $|\varphi|=m$ to be in \mathfrak{F} , $\varphi_n=\varphi$ has to hold for a $n\leqslant m$.
- Enumerate $\varphi_0, \ldots, \varphi_m$ and check whether $\varphi = \varphi_i$ for a $i \in \{0, \ldots, m\}$

Well-known FO-theories

Corollary (Equivalence of axiomatizability and semidecidability)

Let $\mathfrak T$ be a FO-theory. Then, $\mathfrak T$ has an axiomatization iff $\mathfrak T$ is recursively enumerable.

- $Th(\mathbb{N}, +, *, =)$ is neither decidable, recursively enumerable, axiomatizable, nor have a sound and complete deductive calculi (*First Gödel's incompleteness theorem*)
- $Th(\mathbb{N},+,=)$ is decidable and axiomatizable (Presburger arithmetic)
- $Th(\mathbb{Q}, +, *, =)$ is not decidable, etc.
- $Th(\mathbb{R},+,*,=)$ is decidable and axiomatizable (Tarski algebra)

Quantified Boolean formulas

- Syntax: $\varphi ::= \text{true} \mid q \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \forall p. \varphi$
- · Syntactic sugar and semantics as expected

Theorem (Theorem by Stockmeyer and Meyer) QBF — TRUTH is PSPACE-complete.

QBF – TRUTH denotes the problem to decide whether a QBF-sentence is equivalent to **true**.

Quantified Boolean formulas

- Syntax: $\varphi ::= \mathbf{true} \mid q \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \forall p. \varphi$
- Syntactic sugar and semantics as expected

Theorem (Theorem by Stockmeyer and Meyer) QBF — TRUTH is PSPACE-complete.

- · Membership by algorithm using a decision tree
- Hardness by reducing a polynomial space-bounded deterministic Turing machine to a QBF formula

Compactness theorem

Theorem (Compactness Theorem) Let $\mathfrak F$ be a set of FOL-formulas. Then, $\mathfrak F$ is satisfiable iff every finite subset of \mathfrak{F} is satisfiable.

Proof. "⇒" obvious.

Compactness theorem

Theorem (Compactness Theorem) Let \mathfrak{F} be a set of FOL-formulas. Then, \mathfrak{F} is satisfiable iff every finite subset of \mathfrak{F} is satisfiable.

Proof. "⇐"

- Proof by contradiction. Assume \mathfrak{F} is unsatisfiable, but every finite subset is satisfiable.
- Hence, $\mathfrak{F} \Vdash \mathsf{false}$
- For every sound and complete Hilbert proof system: $\mathfrak{F} \vdash_{\mathfrak{D}} \varphi$ iff there exists a finite subset \mathfrak{F}_0 of \mathfrak{F} s.t. $\mathfrak{F}_0 \vdash_{\mathfrak{D}} \varphi$
- · Hence,
 - $\mathfrak{F} \Vdash \varphi$ iff there exists a finite subset \mathfrak{F}_0 of \mathfrak{F} s.t. $\mathfrak{F}_0 \Vdash \varphi$
- There exists a finite subset \mathfrak{F}_0 of \mathfrak{F} such that $\mathfrak{F}_0 \Vdash$ false. Contradiction to \mathfrak{F}_0 being satisfiable

Upward Löwenheim-Skolem theorem

Theorem (Upward Löwenheim-Skolem Theorem) Let \mathfrak{F} be a set of formulas such that for each $n \in \mathbb{N}$ there exists a finite model $(\mathcal{A}_n, \mathcal{V}_n)$ for \mathfrak{F} with at least n elements. Then, \mathfrak{F} has an infinite model.

- Take $\psi_n = \exists x_1 \dots \exists x_n . \bigwedge_{1 \le i < j \le n} (x_i \ne x_j)$ requiring at least n elements
- Every finite subset of $\mathfrak{F} \cup \{\psi_n : n \geq 2\}$ is satisfiable
- By compactness, $\mathfrak{F} \cup \{\psi_n : n \geq 2\}$ is satisfiable
- $\mathfrak{F} \cup \{\psi_n : n \geq 2\}$ has an infinite model, thus \mathfrak{F}

Upward Löwenheim-Skolem Theorem for FOL without equality

Theorem (Upward Löwenheim-Skolem Theorem for FOL without equality)

Let \mathfrak{F} be a satisfiable set of FOL-formulas without equality and let C be a set. Then, \mathfrak{F} is satisfiable over some structure where the domain is a superset of C.

Proof.

- · Take a model $(\mathcal{B}, \mathcal{V}_{\mathcal{B}})$
- Take an arbitrary element $b_0 \in \text{Dom}(\mathcal{B})$
- Define surjective homomorphism $h: \mathrm{Dom}(\mathcal{B}) \cup \mathcal{C} \to \mathrm{Dom}(\mathcal{B})$ by taking the identity for elements of B and b_0 for elements of \mathcal{C}
- Define a new model in accordance to h

Upward Löwenheim-Skolem Theorem for FOL with equality

Theorem (Upward Löwenheim-Skolem Theorem for FOL with equality)

Let \mathfrak{F} be a satisfiable set of FOL-formulas that is satisfiable over some infinite structure and let C be a set. Then, \mathfrak{F} is satisfiable over some structure where the domain is a superset of C.

Proof.

- Extend vocabulary by fresh constant c for every $c \in C$
- By compactness theorem $\mathfrak{G} = \mathfrak{F} \cup \{c \neq d : c, d \in C, c \neq d\}$ is satisfiable
- Therefore \mathfrak{G} (and \mathfrak{F}) have a model with a domain being a superset of C

Downward Löwenheim-Skolem Theorem

Theorem (Downward Löwenheim-Skolem Theorem)Each satisfiable set of FOL-formulas (over some countable vocabulary and countable variable-set) has a countable model. More precisely:

- Each satisfiable set of FOL-formulas without equality has an infinite countable model.
- Each satisfiable set of FOL-formulas with equality has a (finite or infinite) countable model.

Downward Löwenheim-Skolem Theorem – Proof idea

- Construct formula set \mathfrak{F}^+ with the following properties:
 - (1) $\mathfrak{F} \subseteq \mathfrak{F}^+$ and \mathfrak{F}^+ is satisfiable.
 - (2) For each formula ϕ : either $\phi \in \mathfrak{F}^+$ or $\neg \phi \in \mathfrak{F}^+$.
 - (3) For each formula ϕ and variable x there is a constant symbol c such that:

$$\neg \forall x. \phi \rightarrow \neg \phi[x/c] \in \mathfrak{F}^+$$

- · Construct term model ${\mathcal I}$
 - · for without equality: directly
 - · for with equality: quotient-based

FO-definability

Definition (FO-definability of a class of structures) Given a vocabulary Voc, a class $\mathcal C$ of structures for Voc is said to be FO-definable if there exists a FOL-sentence ϕ over the vocabulary Voc, such that exactly the structures $\mathcal A \in \mathcal C$ are models for ϕ , i.e.,

 $C = \{A : A \text{ is a structure over Voc such that } A \models \phi\}$

Simple examples:

- · groups,
- · linear orders, ...

Theorem (The class of finite structures is not FO-definable) There is no vocabulary Voc and set $\mathfrak F$ consisting of FOL-formulas over Voc such that for all structures $\mathcal A$ for Voc:

 ${\mathcal A}$ is a model for ${\mathfrak F}$ iff ${\mathcal A}$ is finite.

Theorem (The class of finite structures is not FO-definable) There is no vocabulary Voc and set $\mathfrak F$ consisting of FOL-formulas over Voc such that for all structures $\mathcal A$ for Voc:

 \mathcal{A} is a model for \mathfrak{F} iff \mathcal{A} is finite.

Proof. By the upward Löwenheim-Skolem-Theorem

Natural numbers and FOL

Theorem (The natural numbers cannot be characterized in FOL) There is no satisfiable set \mathfrak{F} of FOL-sentences over Voc_{nat} such that $(\mathbb{N}, succ, 0) \models \mathfrak{F}$ and all countable models for \mathfrak{F} are isomorphic to $(\mathbb{N}, succ, 0)$.

Natural numbers and FOL

Theorem (The natural numbers cannot be characterized in FOL) There is no satisfiable set \mathfrak{F} of FOL-sentences over Voc_{nat} such that $(\mathbb{N}, succ, 0) \models \mathfrak{F}$ and all countable models for \mathfrak{F} are isomorphic to $(\mathbb{N}, succ, 0)$.

Proof.

- · Assume by contradiction, there exists such an ${\mathfrak F}$
- Consider the set $\mathfrak{G} = \mathfrak{F} \cup \{x \neq succ^n(0) : n \in \mathbb{N}\}$
- By compactness and the Downward-Löwenheim-Skolem theorem, there is a countable model (\mathcal{B}', n') with $(\mathcal{B}', n') \models \mathfrak{G}$
- By $(\mathcal{B}', n') \models \{x \neq succ^n(0) : n \in \mathbb{N}\}\ \mathcal{B}'$ is non-isomorphic to $(\mathbb{N}, succ, 0)$, but still $\mathcal{B}' \models \mathfrak{F}$

Complexity of checking FO-definable graph properties

Theorem (FO-definable graph properties are in PTIME) For each formula ϕ over Voc_{graph} the problem ϕ -GRAPH is solvable in time polynomial in the size of the input-graph. (Formula ϕ is viewed to be fixed and the size of a finite graph is the total number of nodes and edges.)

By recursive analysis.

Rechability

Theorem (Reachability is not FO-definable) There is no FOL-formula $\phi(x,y)$ over Voc_{graph} such that for all graphs $\mathcal G$ and nodes a, b in $\mathcal G$ we have:

$$(\mathcal{G}, a, b) \models \phi(x, y)$$
 iff b is reachable from a in \mathcal{G}

- · Find formulas:
 - \cdot φ for strongly connectedness,
 - \cdot ψ for having outdegree exactly 1
- $\varphi \wedge \psi$ characterizes exactly simple cycles, i.e., cycles where every node is visited exactly once
- By the upward Löwenheim-Skolem theorem, $\varphi \wedge \psi$ has an infinite model. But there are no infinite simple cycles.

Ehrenfeucht-Fraïssé games

- Two-player game on two structures ${\mathcal A}$ and ${\mathcal B}$: Spoiler and duplicator
- \cdot In every round spoiler chooses an element from ${\mathcal A}$ or ${\mathcal B}$
- Duplicator responds with an element from the other structure
- k-round outcome: $\langle (a_1,\ldots,a_k),(b_1,\ldots,b_k)\rangle$

Partial isomorphism

Definition (Partial isomorphism)

Let \mathcal{A} and \mathcal{B} be structures for the same finite and relational vocabulary Voc with domains $A = \mathrm{Dom}^{\mathcal{A}}$ and $B = \mathrm{Dom}^{\mathcal{B}}$, and let $\overline{a} = (a_1, \ldots, a_k) \in A^k$, $\overline{b} = (b_1, \ldots, b_k) \in B^k$. The pair $\langle \overline{a}, \overline{b} \rangle$ is said to define a partial isomorphism between \mathcal{A} and \mathcal{B} iff the following conditions hold:

- (1) $a_i = a_j$ iff $b_i = b_j$ for all $1 \le i < j \le k$
- (2) for all constant symbols $c \in Const$ and all $i \in \{1, ..., k\}$: $a_i = c^{\mathcal{A}}$ iff $b_i = c^{\mathcal{B}}$
- (3) for each *n*-ary predicate symbol *P* and each index-tuple $(i_1, \ldots, i_n) \in \{1, \ldots, k\}^n$:

$$(a_{i_1},\ldots,a_{i_n})\in P^{\mathcal{A}}$$
 iff $(b_{i_1},\ldots,b_{i_n})\in P^{\mathcal{B}}$

Partial isomorphism

$$\overline{a} = (a_1, \ldots, a_i, \ldots, a_i, \ldots, a_k) \in A^k$$

$$\overline{b} = (b_1, \ldots, b_i, \ldots, b_j, \ldots, b_k) \in B^k$$

Partial isomorphism

Winning outcomes

Definition (Winning outcomes)

Recall that $Const = \{c_1, \dots, c_\ell\}$ is the set of constant symbols in the underlying finite, relational vocabulary. An outcome

$$\langle \overline{a}, \overline{b} \rangle = \langle (a_1, \ldots, a_k), (b_1, \ldots, b_k) \rangle \in A^k \times B^k$$

of a *k*-round play is said to be *winning* (*for the duplicator*) iff the pair

$$\langle (\overline{a}, \overline{c}^{\mathcal{A}}), (\overline{b}, \overline{c}^{\mathcal{B}}) \rangle = \langle (a_1, \ldots, a_k, c_1^{\mathcal{A}}, \ldots, c_\ell^{\mathcal{A}}), (b_1, \ldots, b_k, c_1^{\mathcal{B}}, \ldots, c_\ell^{\mathcal{B}}) \rangle$$

defines a partial isomorphism between \mathcal{A} and \mathcal{B} . Otherwise, i.e., if $\langle (\overline{a}, \overline{c}^{\mathcal{A}}), (\overline{b}, \overline{c}^{\mathcal{B}}) \rangle$ does not define a partial isomorphism, the spoiler wins.

Strategies

... are functions

$$S: \bigcup_{0 < i < k} (A^{i+1} \times B^i \cup A^i \times B^{i+1}) \to A \cup B,$$

where $A^0 = B^0 = \{\varepsilon\}$ consists of the empty tuple, such that for all $0 \le i < k$ and elements $a_1, \ldots, a_i, a_{i+1} \in A$ and $b_1, \ldots, b_i, b_{i+1} \in B$:

$$S((a_1,...,a_i),(b_1,...,b_i,b_{i+1})) \in A$$

 $S((a_1,...,a_i,a_{i+1}),(b_1,...,b_i)) \in B$

k-round game equivalence

Definition (k-round game equivalence \cong_k) Let $k \in \mathbb{N}$ and \mathcal{A} and \mathcal{B} structures for Voc. Then, k-round-game-equivalence of \mathcal{A} and \mathcal{B} is defined by:

$$\mathcal{A}\cong_k\mathcal{B} \stackrel{\text{\tiny def}}{\Longleftrightarrow} \left\{ egin{array}{ll} \text{the duplicator has a k-round winning strategy} \\ \text{in the Ehrenfeucht-Fra\"{i}ss\'{e} game for \mathcal{A} and \mathcal{B}} \end{array}
ight.$$

For the case k=0 this means: $\mathcal{A}\cong_0\mathcal{B}$ iff $\langle \overline{c}^{\mathcal{A}}, \overline{c}^{\mathcal{B}} \rangle$ defines a partial isomorphism.

Rank-k-types

Quantifier rank of an FOL-formula φ is its maximal nesting depth.

As before, let Voc be a finite relational vocabulary. If $\mathcal A$ is a structure for Voc then

$$FOL[k](A) = \{ \phi : \phi \text{ is a } FOL[k]\text{-sentence with } A \models \phi \}$$

is called the rank-k-type over \mathcal{A} . A formula-set \mathfrak{R} is said to be a rank-k type if $\mathfrak{R} = FOL[k](\mathcal{A})$ for some structure \mathcal{A} for Voc.

Lemma (FOL[k]-definability of the rank-k-types) Let Voc be a finite relational vocabulary and let $\mathfrak{R}_1, \ldots, \mathfrak{R}_s$ be the rank-k-types of Voc. Then, there are FOL[k]-sentences $\theta_1, \ldots, \theta_s$ such that for all $i \in \{1, \ldots, s\}$:

- $\mathfrak{R}_i = \{ \psi : \psi \text{ is a FOL}[k] \text{-sentence with } \theta_i \Vdash \psi \}$
- for each structure A we have: $A \models \theta_i$ iff $FOL[k](A) = \mathfrak{R}_i$.

Furthermore, each FOL[k]-sentence is equivalent to the disjunction of some of the θ_i 's.

Ehrenfeucht-Fraïssé-Theorem

Theorem (Ehrenfeucht-Fraissé-Theorem)

Let Voc be a finite relational vocabulary and $\mathcal A$ and $\mathcal B$ two structures for Voc. Then, the following two statements are equivalent:

- (a) $A \cong_k \mathcal{B}$
- (b) \mathcal{A} and \mathcal{B} agree on all FOL[k]-sentences, i.e., $\mathcal{A} \models \psi$ iff $\mathcal{B} \models \psi$ for all FOL[k]-sentence ψ

Proof by induction on k

FOL-equivalence of structures

Corollary (FOL-equivalence of structures)Let \mathcal{A} and \mathcal{B} structures over the same finite relational vocabulary Voc. Then, the following statements are equivalent:

- (a) $A \cong B$
- (b) ${\cal A}$ and ${\cal B}$ fulfill the same FOL-sentences over Voc.
- (c) Th(A) = Th(B)

$$\mathcal{A} \cong \mathcal{B}$$
 iff $\mathcal{A} \cong_k \mathcal{B}$ for all $k \in \mathbb{N}$

FOL-equivalence of structures

Corollary (FOL-equivalence of structures)Let \mathcal{A} and \mathcal{B} structures over the same finite relational vocabulary Voc. Then, the following statements are equivalent:

- (a) $A \cong B$
- (b) ${\cal A}$ and ${\cal B}$ fulfill the same FOL-sentences over Voc.
- (c) Th(A) = Th(B)

$$\mathcal{A} \cong \mathcal{B}$$
 iff $\mathcal{A} \cong_k \mathcal{B}$ for all $k \in \mathbb{N}$

Example: Every two dense linear orders without endpoints satisfy the same FOL-sentences, e.g., $Th(\mathbb{R}, \leq) = Th(\mathbb{Q}, \leq)$

FO-definability and Ehrenfeucht-Fraïssé games

Theorem (FO-definability and Ehrenfeucht-Fraïssé games) Let Voc be a finite relational vocabulary and C a class of structures for Voc. Then, the following statements are equivalent:

- (a) C is FO-definable.
- (b) There exists $k \in \mathbb{N}$ such that for all structures A and B over Voc:

if
$$A \in C$$
 and $A \cong_k B$ then $B \in C$.

FO-definability and Ehrenfeucht-Fraïssé games

Theorem (FO-definability and Ehrenfeucht-Fraïssé games) Let Voc be a finite relational vocabulary and C a class of structures for Voc. Then, the following statements are equivalent:

- (a) C is FO-definable.
- (b) There exists $k \in \mathbb{N}$ such that for all structures \mathcal{A} and \mathcal{B} over Voc:

if
$$A \in \mathcal{C}$$
 and $A \cong_k \mathcal{B}$ then $\mathcal{B} \in \mathcal{C}$.

Example: Connectivity of finite undirected graphs is not FO-definable.

Countable Conjunctions: Syntax and semantics

- allows additionally $\bigwedge_{i \in I} \varphi_i$ for a countable set I,
- Syntactic sugar: $\bigvee_{i \in I} \varphi_i = \neg \bigwedge_{i \in I} \neg \varphi_i$,
- Semantics: $(\mathcal{A}, \mathcal{V}) \models \bigwedge_{i \in I} \varphi_i$ iff $(\mathcal{A}, \mathcal{V}) \models \varphi_i$ for all $i \in I$,
- $\bigwedge_{i \in \varnothing} \varphi_i \equiv \mathsf{true} \text{ and } \bigvee_{i \in \varnothing} \varphi_i \equiv \mathsf{false}$

Countable conjunction and finite structures

 $\psi_{\rm fin}$ holds exactly for finite structures:

$$\psi_n = \exists x_1 \dots \exists x_n. \bigwedge_{1 \leq i < j \leq n} (x_i \neq x_j)$$

$$\psi_{\text{fin}} = \bigvee_{n \in \mathbb{N}} \neg \psi_n$$

Countable conjunction and finite structures

 ψ_{fin} holds exactly for finite structures:

$$\psi_n = \exists x_1 \dots \exists x_n. \bigwedge_{1 \leqslant i < j \leqslant n} (x_i \neq x_j)$$

$$\psi_{\text{fin}} = \bigvee_{n \in \mathbb{N}} \neg \psi_n$$

 ψ_{even} holds exactly for finite, even structures:

$$\psi_n = \exists x_1 \dots \exists x_n. \left(\bigwedge_{1 \le i < j \le n} (x_i \ne x_j) \land \forall y. \bigvee_{1 \le i \le n} y = x_i \right)$$

$$\psi_{\text{fin}} = \bigvee_{n \in \mathbb{N}} \psi_{2n}$$

Countable conjunction and natural numbers

Assume a constant symbol 0 and a unary function succ

$$\forall x.succ(x) \neq 0$$

 $\land \forall x \forall y.(succ(x) = succ(y) \rightarrow x = y)$
 $\land \forall x. \bigvee_{n \geq 0} x = succ^{n}(0)$

characterizes the natural numbers, i.e., every model is isomorphic to $(\mathbb{N}, succ, 0)$.

Other $FOL(\bigwedge)$ -definable examples

- · Reachability in graphs,
- · Periodic groups

Compactness and $FOL(\bigwedge)$

Theorem (Lack of compactness property for $FOL(\Lambda)$)
There exists an unsatisfiable countable set of $FOL(\Lambda)$ -sentences that is finitely satisfiable.

$$\mathfrak{F} = \{\psi_{\text{fin}}\} \cup \{\psi_n : n \geqslant 2\}$$

is finitely satisfiable, but not satisfiable ψ_n characterizes all structures having at least n elements

Upward Löwenheim-Skolem theorem and $FOL(\bigwedge)$

As consequence of the definability of finite structures, the upward Löwenheim-Skolem theorem ("from finite to infinite") does not hold.

 ψ_{fin} has for every $n \in \mathbb{N}$ a model of cardinality n, but no infinite model.

Upward Löwenheim-Skolem theorem and $FOL(\bigwedge)$

As consequence of the definability of finite structures, the upward Löwenheim-Skolem theorem ("from finite to infinite") does not hold.

 ψ_{fin} has for every $n \in \mathbb{N}$ a model of cardinality n, but no infinite model.

Also, as $(\mathbb{N}, succ, 0)$ can be characterized in $FOL(\Lambda)$, the upward Löwenheim-Skolem theorem ("from infinite to larger models") does not hold.

Calculus for $FOL(\bigwedge)$

Theorem

There is no sound and complete calculus for $FOL(\Lambda)$.

$$\mathfrak{F}\models \varphi$$
 implies $\mathfrak{G}\models \varphi$ for a finite $\mathfrak{G}\subseteq \mathfrak{F}$

But then

```
\mathfrak F unsatisfiable iff \mathfrak F\models \mathsf{false} iff \mathfrak G\models \mathsf{false} for a finite \mathfrak G\subseteq \mathfrak F iff there exists an unsatisfiable, finite \mathfrak G\subseteq \mathfrak F
```

• Contradiction to the non-existing compactness property for $FOL(\bigwedge)$

Downward Löwenheim-Skolem theorem for $FOL(\bigwedge)$

Theorem

Each satisfiable $FOL(\Lambda)$ -sentence has a countable (possibly finite) model.

- · Assume an uncountable model ${\cal B}$ with domain ${\cal B}$
- Define a sequence of countable subsets of $B B_0, B_1, \ldots$ s.t.
 - (i) if $\psi = \psi(x_1, \dots, x_n, x) \in \mathrm{subf}^+(\phi)$ and $b_1, \dots, b_n \in B_i$ such that

$$(\mathcal{B}, [x_1 := b_1, \ldots, x_n := b_n]) \models \exists x.\psi$$

then there exists some $a \in B_{i+1}$ with

$$(\mathcal{B},[x_1:=b_1,\ldots,x_n:=b_n,x:=a]) \models \psi.$$

(ii) for each n-ary function symbol f of Voc and all elements $b_1, \ldots, b_n \in B_i$ we have:

$$f^{\mathcal{B}}(b_1,\ldots,b_n)\in B_{i+1}$$

• Define $A = \bigcup_{i \ge 0} B_i$ and a model A accordingly

Infinite quantification: Syntax and Semantics

Syntax:

- FOL with $\stackrel{\infty}{\exists} x.\varphi$
- syntactic sugar: $\overset{\infty}{\forall} x.\varphi = \neg \overset{\infty}{\exists} x.\neg \varphi$

Semantics:

 $\overset{\infty}{\exists} x.\varphi \text{ iff there exists infinitely many } a \in \mathcal{A} \text{ with } (\mathcal{A}, \mathcal{V}[x:=a]) \models \varphi$ $\overset{\infty}{\forall} x.\varphi \text{ iff for almost all } a \in \mathcal{A} \text{ holds: } (\mathcal{A}, \mathcal{V}[x:=a]) \models \varphi$

$FOL(\stackrel{\infty}{\exists})$ and Finite Structures

- $\psi_{\text{fin}} = \neg \stackrel{\infty}{\exists} x.$ true characterizes finite structures
- Analogously to $FOL(\bigwedge)$ the following theorems are violated to:
 - compactness theorem,
 - upward Löwenheim-Skolem theorem "from finite to infinite models"

$FOL(\stackrel{\infty}{\exists})$ and the Natural Numbers

Assume a relational vocabulary with \sqsubseteq as binary predicate.

$$arphi_{\mathrm{nat}} = \psi_{\mathrm{LO}} \wedge \psi_{\mathrm{1}} \wedge \psi_{\mathrm{2}}$$
 with

 ψ_{LO} describing \sqsubseteq as linear order

$$\psi_1 = \forall x. \overset{\infty}{\forall} y.x \sqsubseteq y$$

$$\psi = \forall x. \exists y. x \sqsubseteq y$$

holds true exactly for those structures isomorphic to (\mathbb{N}, \leqslant) .

$FOL(\stackrel{\infty}{\exists})$ and the Natural Numbers

Assume a relational vocabulary with \sqsubseteq as binary predicate.

$$arphi_{\mathrm{nat}} = \psi_{\mathrm{LO}} \wedge \psi_{\mathrm{1}} \wedge \psi_{\mathrm{2}}$$
 with

$$\psi_{\mathrm{LO}}$$
 describing \sqsubseteq as linear order
$$\psi_{\mathrm{1}} = \forall x. \stackrel{\infty}{\forall} y.x \sqsubseteq y$$

$$\psi = \forall x. \exists y. x \sqsubset y$$

holds true exactly for those structures isomorphic to (\mathbb{N}, \leq) . Consequence: The upward Löwenheim-Skolem theorem ("from infinite to larger models") does not hold.

Embedding of $FOL(\frac{\infty}{3})$ into $FOL(\Lambda)$

Theorem (Embedding of $FOL(\stackrel{\infty}{\exists})$ into $FOL(\bigwedge)$)

For each FOL($\stackrel{\sim}{\exists}$)-formula ϕ there exists a FOL(\bigwedge)-formula $\overline{\phi}$ over the same vocabulary such that ϕ and $\overline{\phi}$ have the same models.

Trick:

$$\stackrel{\infty}{\exists} x.\varphi = \bigwedge_{n\geqslant 1} \exists x_1 \ldots \exists x_n. (\overline{\varphi}[x/x_1] \wedge \ldots \wedge \overline{\varphi}[x/x_n] \wedge \bigwedge_{1\leq i < j \leq n} x_i \neq x_j$$

where $x_1, x_2,...$ is a sequence of pairwise distinct fresh variables.

Embedding of $FOL(\frac{\infty}{3})$ into $FOL(\Lambda)$

Theorem (Embedding of $FOL(\stackrel{\infty}{\exists})$ into $FOL(\bigwedge)$)

For each FOL($\stackrel{\sim}{\exists}$)-formula ϕ there exists a FOL(\bigwedge)-formula $\overline{\phi}$ over the same vocabulary such that ϕ and $\overline{\phi}$ have the same models.

Trick:

$$\stackrel{\infty}{\exists} x.\varphi = \bigwedge_{n\geqslant 1} \exists x_1 \ldots \exists x_n. (\overline{\varphi}[x/x_1] \wedge \ldots \wedge \overline{\varphi}[x/x_n] \wedge \bigwedge_{1\leq i < j \leq n} x_i \neq x_j$$

where $x_1, x_2,...$ is a sequence of pairwise distinct fresh variables.

Consequence: The downward Löwenheim-Skolem theorem holds for $FOL(\stackrel{\infty}{\exists})$.

Uncountable quantification: Syntax and Semantics

Syntax:

- FOL with $\stackrel{2^{\mathbb{N}}}{\exists} x.\varphi$
- syntactic sugar: $\overset{2^{\mathbb{N}}}{\forall} x. \varphi = \neg \overset{2^{\mathbb{N}}}{\exists} x. \neg \varphi$

Semantics:

 $\exists x.\varphi$ iff there exists uncountably many $a \in \mathcal{A}$ with $(\mathcal{A}, \mathcal{V}[x := a]) \models \varphi$

 $\overset{2^{\mathbb{N}}}{\forall} \ \textit{x.} \varphi \ \text{iff for countably many} \ a \in \mathcal{A} \ \text{holds:} \ (\mathcal{A}, \mathcal{V}[\textit{x} := a]) \not\models \varphi$

$FOL(\stackrel{2^{\mathbb{N}}}{\exists})$ and set cardinality

$$\mathcal{A} \models^{2^{\mathbb{N}}}_{\exists} x.$$
true iff \mathcal{A} is uncountable $\mathcal{A} \models^{2^{\mathbb{N}}}_{\forall} x.$ false iff \mathcal{A} is countable

$FOL(\exists)$ and set cardinality

$$\mathcal{A} \models^{2^{\mathbb{N}}}_{\exists} x.\mathsf{true} \text{ iff } \mathcal{A} \text{ is uncountable}$$

$$\mathcal{A} \models^{2^{\mathbb{N}}}_{\forall} x.\mathsf{false} \text{ iff } \mathcal{A} \text{ is countable}$$

Consequence: Downward Löwenheim-Skolem theorem and Upward Löwenheim-Skolem theorem "from infinite to larger models" are violated.

$FOL(\stackrel{2^{\mathbb{N}}}{\exists})$ and calculi

- With a suitable additional axioms, $FOL(\exists^{2^{\mathbb{N}}})$ has a sound and complete calculus
- · Hence, the compactness theorem holds.

$FOL(\stackrel{2^{\mathbb{N}}}{\exists})$ and the natural numbers

Theorem

There is no set \mathfrak{F} of $FOL(\stackrel{2^{\mathbb{N}}}{\exists})$ -sentences over Voc_{nat} such that $(\mathbb{N}, succ, 0) \models \mathfrak{F}$ and all countable models for \mathfrak{F} are isomorphic to $(\mathbb{N}, succ, 0)$.

Second order logic

Vocabulary has three kinds of variables:

- first-order variables $x, y, z, ... \in Var$ that represent elements of the domain of a structure,
- predicate variables $X, Y, Z, ... \in PVar$ that stand for relations over the domain,
- function variables $F, G, H, \ldots \in FVar$ that stand for functions over the domain.

Second order logic: Syntax

$$t ::= \underbrace{x \mid f(t_1, \dots, t_m)}_{\text{as in FOL}} \mid F(t_1, \dots, t_m)$$

$$\phi ::= \underbrace{\text{true} \mid P(t_1, \dots, t_n) \mid t_1 = t_2 \mid \phi_1 \land \phi_2 \mid \neg \phi \mid \forall x.\phi}_{\text{as in FOL}}$$

$$X(t_1, \dots, t_n) \mid \underbrace{\forall X.\phi \mid \forall F.\phi}_{\text{second-order quantification}}$$

Second Order Logic: Semantics

Interpretation $\mathcal{I} = (\mathcal{A}, Val)$.

- · valuation Val as in FOL, but additionally:
 - · $Val(X) = X^{\mathcal{I}} \subseteq A^n$, for each *n*-ary predicate variable
 - $Val(F) = F^{\mathcal{I}} : A^m \to A$ for each *n*-ary function variable
- interpretation of an SOL formula as in FOL, but additionally:

$$\mathcal{I} \models X(t_1, \dots, t_n) \text{ iff } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in X^{\mathcal{I}}$$

$$\mathcal{I} \models \forall X. \phi \text{ iff } (\mathcal{A}, Val[X := R]) \models \phi \text{ for all relations } R \subseteq A^n$$

$$\mathcal{I} \models \forall F. \phi \text{ iff } (\mathcal{A}, Val[F := f]) \models \phi \text{ for all functions}$$

$$f : A^m \to A$$

Leibnitz Axiom for Equality

Equality can be represented by SOL directly:

$$t_1 = t_2$$
 iff $\forall X.X(t_1) \leftrightarrow X(t_2)$

- ⇒ obvious
- \Leftarrow As X is all-quantified, take $X^{\mathcal{I}} = \{t_1^{\mathcal{I}}\}$

SOL and Natural Numbers

Characterization of the natural numbers based on the induction principle:

$$\phi_{\mathrm{ind}} = \forall X. \Big((X(0) \land \forall y. (X(y) \rightarrow X(\mathit{succ}(y)))) \rightarrow \forall y. X(y) \Big)$$

SOL and Natural Numbers

Characterization of the natural numbers based on the induction principle:

$$\phi_{\mathrm{ind}} = \forall X. \Big(\left(X(0) \land \forall y. (X(y) \to X(\mathit{succ}(y))) \right) \to \forall y. X(y) \Big)$$

Two additional FOL-formulas necessary:

$$\varphi_1 = \forall x.succ(x) \neq 0$$

 $\varphi_2 = \forall x. \forall y. (succ(x) = succ(y) \rightarrow x = y)$

SOL and Natural Numbers

Characterization of the natural numbers based on the induction principle:

$$\phi_{\mathrm{ind}} = \forall X. \Big(\big(X(0) \land \forall y. \big(X(y) \rightarrow X(\mathit{succ}(y)) \big) \Big) \rightarrow \forall y. X(y) \Big)$$

Two additional FOL-formulas necessary:

$$\varphi_1 = \forall x.succ(x) \neq 0$$

 $\varphi_2 = \forall x.\forall y.(succ(x) = succ(y) \rightarrow x = y$

Other examples of SOL-definable structures: Well-ordering, periodic groups, . . .

... and finite sets ...

Characterization of infinite structures:

$$\psi_{\infty} = \exists F \Big(\underbrace{\forall x \forall y. (F(x) = F(y) \to x = y)}_{\text{injective}} \land \underbrace{\exists z \forall x. (F(x) \neq z)}_{\text{not surjective}}\Big)$$

The existence of an injective, but not surjective function $F:A\to A$ guarantees that A is infinite.

... and finite sets ...

Characterization of infinite structures:

$$\psi_{\infty} = \exists F \left(\underbrace{\forall x \forall y. (F(x) = F(y) \to x = y)}_{\text{injective}} \land \underbrace{\exists z \forall x. (F(x) \neq z)}_{\text{not surjective}} \right)$$

The existence of an injective, but not surjective function $F:A\to A$ guarantees that A is infinite. Consequence of the definability of finite structures: The compactness property does not hold (same argumentation as for $FOL(\bigwedge)$

... and countable sets

Characterization of countable structures (over *Voc* with a binary predicate variable \sqsubseteq)

$$\phi_{\mathsf{ctbl}} = \exists \sqsubseteq . \left(\phi_{\mathsf{lin_order}}(\sqsubseteq) \land \forall \mathsf{X} \exists \mathsf{X}. \big(\psi_{\mathsf{fin}}(\mathsf{X}) \land \forall \mathsf{y}. \big(\mathsf{y} \sqsubseteq \mathsf{X} \leftrightarrow \mathsf{X}(\mathsf{y}) \big) \right) \right)$$

... and countable sets

Characterization of countable structures (over Voc with a binary predicate variable \sqsubseteq)

$$\phi_{\mathsf{ctbl}} = \exists \sqsubseteq . \left(\phi_{\mathsf{lin_order}}(\sqsubseteq) \land \forall \mathsf{x} \exists \mathsf{X}. \big(\psi_{\mathsf{fin}}(\mathsf{X}) \land \forall \mathsf{y}. \big(\mathsf{y} \sqsubseteq \mathsf{x} \, \leftrightarrow \, \mathsf{X}(\mathsf{y}) \, \big) \, \right)$$
 Idea:

A is countable iff $\left\{ \begin{array}{l} \text{there exists a linear order} \sqsubseteq \text{ on } A \\ \text{such that for each } a \in A \\ \text{the downward closure } A \downarrow a \text{ is finite} \end{array} \right.$

$$A \downarrow a = \{b \in A : b \sqsubseteq a\}$$

SOL and the Löwenheim-Skolem theorems

The existence of $\psi_{\rm fin}$ and $\phi_{\rm ctbl}$ yields that non of the Löwenheim-Skolem theorems holds for SOL:

- There exists a SOL-sentence that has finite models of arbitrary size n ≥ 1, but has no infinite model.
- There exists a SOL-sentence that has an infinite, but no uncountable model.
- There exists a satisfiable SOL-sentence that has no countable model.

Gödel's second incompleteness theorem

Theorem

There is no sound and weakly complete deductive calculus for the set of valid SOL-sentences.

This is a consequence of

Theorem (SOL – VALID is not recursively enumerable)The set of valid SOL-sentences over some vocabulary with at least one binary predicate symbol is not recursively enumerable.

Proof

For every FOL-sentence ψ holds:

$$\psi \in \text{FOL-VALID-FIN}$$
 iff $\mathcal{A} \models \psi$ for all finite structures \mathcal{A} iff the SOL-sentence $\varphi_{\text{fin}} \to \psi$ is valid iff $\varphi_{\text{fin}} \to \psi \in \text{SOL-VALID}$

For every FOL-sentence ψ holds:

$$\psi \in \text{FOL-VALID-FIN}$$
 iff $\mathcal{A} \models \psi$ for all finite structures \mathcal{A} iff the SOL-sentence $\varphi_{\text{fin}} \to \psi$ is valid iff $\varphi_{\text{fin}} \to \psi \in \text{SOL-VALID}$

If SOL-VALID would be recursively enumerable, we could enumerate all valid SOL-formulas φ , and if it has the form $\varphi_{\mathrm{fin}} \to \psi$, output ψ . Hence, FOL-VALID-FIN would be recursively enumerable. Contradiction to Trakhtenbrot's theorem.

SOL and reachability

Reachability in directed graphs is SOL-definable:

$$\phi_{\text{reach}}(X, y) = \forall Z. \left(Z(X) \land \psi(Z) \to Z(y) \right)$$

$$\psi(Z) = \forall u \forall v. \left(Z(u) \land E(u, v) \to Z(v) \right)$$

٠

SOL and reachability

Reachability in directed graphs is SOL-definable:

$$\phi_{\text{reach}}(X, y) = \forall Z. \left(Z(X) \land \psi(Z) \to Z(y) \right)$$

$$\psi(Z) = \forall u \forall v. \left(Z(u) \land E(u, v) \to Z(v) \right)$$

Idea: $\psi(Z)$ states that the unary predicate variable is closed under the edge relation E Hence:

$$(\mathcal{G}, a, b) \models \phi_{\text{reach}}(x, y)$$
 iff b is reachable from a in \mathcal{G}

٠

Existential SOL

Definition (Existential SOL-formula)

An existential SOL-formula, simply called ESOL-formula, is a SOL-formula over some purely relational vocabulary of the form

$$\exists X_1 \dots \exists X_n . \psi$$

where

- the X_i 's are predicate variables of arbitrary arity,
- ψ a FOL-formula (possibly with equality) when X_1, \ldots, X_n are viewed as predicate symbols and does not contain any other second-order variable.

ESOL-definable graph properties

Theorem (ESO-definable graph properties are in NP) For each ESOL formula ϕ over Voc_{graph} , the problem ϕ -GRAPH belongs to NP. (Formula ϕ is viewed to be fixed.)

ESOL-definable graph properties

Theorem (ESO-definable graph properties are in NP) For each ESOL formula ϕ over Voc_{graph} , the problem ϕ -GRAPH belongs to NP. (Formula ϕ is viewed to be fixed.)

Proof idea: Choose sets for existential quantified set variables non-deterministically. Apply PTIME algorithm for FOL-graph.

Weak SOL

- Syntax: the same as in normal SOL except there are no function variable.
- · Semantics: quantification about finite relations only.

Finite structures

For

$$\varphi_{\text{fin}} = \exists X. \forall y. X(y)$$

holds:

$$\mathcal{A} \models_{\text{weak}} \varphi_{\text{fin}}$$
 iff \mathcal{A} is finite

Finite structures

For

$$\varphi_{\text{fin}} = \exists X. \forall y. X(y)$$

holds:

$$\mathcal{A} \models_{\text{weak}} \varphi_{\text{fin}}$$
 iff \mathcal{A} is finite

Even more, for every infinite structure $\mathcal A$ holds: $\mathcal A \not\models_{\mathrm{weak}} \varphi_{\mathrm{fin}}$ and $\mathcal A \models \varphi_{\mathrm{fin}}$

Weak SOL and the natural numbers

Similar to $FOL(\stackrel{\infty}{\exists})$ we ask for a linear order, where the downward closure of every element is finite:

$$\phi_{\mathrm{nat}}^{\mathsf{W}} \ = \ \phi_{\mathrm{lin_order}} \ \land \ \underbrace{\forall x \, \exists y. \, x < y}_{\mathrm{no \; maximal}} \ \land \ \underbrace{\forall x \, \exists Y \, \forall y. \, \big(\, y \leq x \, \rightarrow \, Y(y) \big)}_{\mathrm{the \; downward \; closure \; of }}$$

Embedding Weak SOL into SOL

We use, that there exists an SOL-formula $\psi_{\rm fin}(X)$ for every n-ary predicate variable X stating that X is finite.

Embedding Weak SOL into SOL

We use, that there exists an SOL-formula $\psi_{\text{fin}}(X)$ for every n-ary predicate variable X stating that X is finite.

In a weak SOL formula φ replace every occurrence of $\forall X.\psi$ with $\forall X.(\psi_{\text{fin}}(X) \to \psi')$ where ψ' is the replaced version of ψ .

Embedding Weak SOL into $FOL(\bigwedge)$

Idea: Replace predicate variables with disjunction of equivalences.

Embedding Weak SOL into $FOL(\bigwedge)$

Idea: Replace predicate variables with disjunction of equivalences. Consequence of the existence of an embedding of weak SOL into $FOL(\Lambda)$: The Downward Löwenheim-Skolem theorem holds for weak SOL.

Monadic Second Order Logic

- Predicate variables are restricted to be unary
- Syntax and semantics cover full FOL
- We focus on finite words on structures

MSO over finite words

We assume a vocabulary $\textit{Voc}_{\Sigma,\mathrm{graph}}$ denoting a graph with labels on the nodes.

```
P_{\mathfrak{a}}(X) with x \in Var, \mathfrak{a} \in \Sigma

E(x,y) with x,y \in Var

x \in X with x \in Var and X an unary predicate variable

x = y with x, y \in Var
```

MSO over finite words

We assume a vocabulary $\textit{Voc}_{\Sigma,\mathrm{graph}}$ denoting a graph with labels on the nodes.

```
P_{\mathfrak{a}}(x) with x \in Var, \mathfrak{a} \in \Sigma

E(x,y) with x,y \in Var

x \in X with x \in Var and X an unary predicate variable

x = y with x, y \in Var
```

Examples for definability: Reachability, partitioning, singleton sets,...

MSO over finite words

We assume a vocabulary $\textit{Voc}_{\Sigma,\mathrm{graph}}$ denoting a graph with labels on the nodes.

```
P_{\mathfrak{a}}(x) with x \in Var, \mathfrak{a} \in \Sigma

E(x,y) with x,y \in Var

x \in X with x \in Var and X an unary predicate variable

x = y with x, y \in Var
```

Examples for definability: Reachability, partitioning, singleton sets,...

A finite word w can be seen as graph where the nodes are natural numbers from $\{1, ..., |w|\}$ and the edges are E(i, i+1) for every $i \in \{1, ..., n-1\}$.

Example formulas

$$first(x) = \bigvee_{\alpha \in \Sigma} P_{\alpha}(x) \land \neg \exists y. E(y, x)$$

denotes that x is the first position

Example formulas

$$first(x) = \bigvee_{\alpha \in \Sigma} P_{\alpha}(x) \land \neg \exists y. E(y, x)$$

denotes that *x* is the first position

$$last(x) = \bigvee_{\mathfrak{a} \in \Sigma} P_{\mathfrak{a}}(x) \land \neg \exists y. E(x, y)$$

denotes that x is the last position

Example formulas

$$first(x) = \bigvee_{\alpha \in \Sigma} P_{\alpha}(x) \land \neg \exists y. E(y, x)$$

denotes that *x* is the first position

$$last(x) = \bigvee_{\mathfrak{a} \in \Sigma} P_{\mathfrak{a}}(x) \land \neg \exists y. E(x, y)$$

denotes that x is the last position $\bigvee_{\alpha \in \Sigma} P_{\alpha}(x)$ excludes the empty word

MSO-definability

A language $L\subseteq \Sigma^*$ is said to be MSO-definable, if there exists an MSO-sentence φ over $Voc_{\Sigma,\mathrm{graph}}$ such that

$$L = \{ w \in \Sigma^* : \operatorname{Graph}(w) \models \varphi \}$$

MSO-definability

A language $L\subseteq \Sigma^*$ is said to be MSO-definable, if there exists an MSO-sentence φ over $Voc_{\Sigma,\mathrm{graph}}$ such that

$$L = \{ w \in \Sigma^* : \operatorname{Graph}(w) \models \varphi \}$$

Theorem (MSO, EMSO and regular languages) Let $L \subseteq \Sigma^*$ be a language over finite words. Then, the following statements are equivalent:

- (1) L is regular.
- (2) L is EMSO-definable.
- (3) L is MSO-definable.

Consequences

- Given an MSO formula φ , one can construct an NFA A with $L(\varphi) = L(A)$
- The set of satisfiable MSO formulas (over finite words) is decidable
- The set of valid MSO formula (over finite words) is decidable

FOL over finite words

FOL cannot express reachability. Therefore we assume a binary predicate ≤ with the semantics

$$X \leq y$$
 iff y is reachable from X

The standard edge relation can be established in straightforward manner:

$$E(x,y) = x < y \land \neg \exists z. (x < z \land z < y)$$

Star-free expression

... are given by the following grammar:

$$\alpha ::= \emptyset \mid \varepsilon \mid \mathfrak{a} \mid \alpha_1 + \alpha_2 \mid \alpha_1 \alpha_2 \mid \overline{\alpha}$$

Star-free expression

... are given by the following grammar:

$$\alpha ::= \emptyset \mid \varepsilon \mid \mathfrak{a} \mid \alpha_1 + \alpha_2 \mid \alpha_1 \alpha_2 \mid \overline{\alpha}$$

Every star-free language is induced by a star-free expression and vice versa.

Star-free expression

... are given by the following grammar:

$$\alpha ::= \emptyset \mid \varepsilon \mid \mathfrak{a} \mid \alpha_1 + \alpha_2 \mid \alpha_1 \alpha_2 \mid \overline{\alpha}$$

Every star-free language is induced by a star-free expression and vice versa.

Examples: $L(\overline{\emptyset}\mathfrak{b}\overline{\emptyset}) = L(\mathfrak{a}^*)$ is a starfree language.

FO-definable and star-free languages

Lemma (Star-free languages are FO-definable) Each star-free language is FO-definable.

Proof. by induction, concatenation case is difficult/technical

FO-definable and star-free languages

Lemma (Star-free languages are FO-definable) Each star-free language is FO-definable.

Proof. by induction, concatenation case is difficult/technical

Lemma (FO-definable languages are star-free) If $L \subseteq \Sigma^*$ is FO-definable then L is star-free.

Proof. Induction over k for FOL[k] sentences.