EECS 336: Introduction to Algorithms

Sample Midterm

80 minutes

Advice: Skip problems that might take a while and come back to them later. If an algorithm is requested, be as succinct as possible. Often a simple description in English is more effective than pseudocode. You do not need to supply any proofs unless explicitly asked. All runtimes should be given using big-oh notation.

1. Simplify the following expressions if possible.

[Points: ____/12]

- (a) $O(n^2 + 500n)$.
- (b) $O(n \log n + n^{1.01})$.
- (c) $O(3n^3 2n^2 + n)$.
- (d) $O(\sqrt{n} + \log n)$.
- (e) O(1+1/n).
- (f) $O(\log(n^2))$.
- 2. The Mergesort algorithm described in class works as follows on an unordered list U of n numbers:
 - If n = 1, return U (it is already sorted).
 - Break U into two lists U_1 and U_2 (of roughly the same length).
 - Recursively sort: $S_1 = \text{Mergesort}(U_1)$ and $S_2 = \text{Mergesort}(U_2)$.
 - Output merger: $S = \text{Merge}(S_1, S_2)$

Answer the following questions:

[Points: ____/2]

- (a) Give the recurrence relationship that describes the runtime of Mergesort.
- (b) Give the runtime of Mergesort using big-oh notation.
- 3. Define 3-Mergesort to break the list into three sublists of length roughly n/3, recursively sort these sublists, and then 3-Merge them together. [Points: _____/8]
 - (a) Give an algorithm for 3-Merge.
 - (b) Give the runtime for 3-Merge using big-oh notation.
 - (c) Give the recurrence relationship that describes the runtime of 3-Mergesort.
 - (d) Give the runtime for 3-Mergesort using big-oh notation.
- - (a) Assume that k-Merge (on lists of size n/k) can be implemented in $\Theta(n \log k)$ and give the recurrence relationship for the runtime of k-Mergesort.
 - (b) Give the runtime for k-Mergesort using big-oh notation.
 - (c) Give an algorithm for k-Merge that runs in $O(n \log k)$ time. (Hint: use priority queues.)

- 5. You are given a graph G(V, E) with edge costs c(e) for $e \in E$. You may assume that the edge costs $c(\cdot)$ are distinct. Let $T \subset E$ be the minimum spanning tree. Consider what happens to the tree if we change the cost of an edge e'. Formally, the the new edge costs are $c'(\cdot)$ given by $c'(e') \neq c(e')$ and c'(e) = c(e) if $e \neq e'$. You may assume that the edge costs $c'(\cdot)$ are each distinct. Let T' be the minimum spanning tree with respect to costs $c'(\cdot)$. [Points: _____/10]
 - (a) Consider decreasing the cost of an edge in T (i.e., $e' \in T$ and c'(e') < c(e')). Is T' = T always?
 - (b) Consider increasing the cost of an edge in T (i.e., $e' \in T$ and c'(e') > c(e')). Is T' = T always?
 - (c) Consider decreasing the cost of an edge not in T (i.e., $e' \notin T$ and c'(e') < c(e')). Is T' = T always? If not, give an illustrative example that shows why and give a simple algorithm for computing T' from T without solving the MST problem over from scratch.
 - (d) Consider increasing the cost of an edge not in T (i.e., $e' \notin T$ and c'(e') > c(e')). Is T' = T always? If not, give an illustrative example that shows why and give a simple algorithm for computing T' from T without solving the MST problem over from scratch.
- 6. You've just started consulting for a startup company, DigiDyne, that is doing dynamic pricing of digital music downloads. They are considering two business models. In the *subscription* model customers are asked to pay a fixed price p and can download as many songs as they please. In the *a-la-carte* model a customer is asked to pay a fixed price q per song. The price for d downloads in the a-la-carte model is $d \cdot q$.

DigiDyne has done some market research that suggests that each consumer behaves in the following way. Consumer i wishes to download d_i songs and pay at most v_i for the privilege. If the total price consumer i is asked to pay for d_i downloads is at most v_i , they will pay the asked price. If the total price consumer i is asked to pay is more than v_i , they will not pay for any service (Perhaps they will use a competing service instead). Thus, the input to DigiDyne's pricing problem is completely specified by two n-dimensional vectors, $\mathbf{v} = (v_1, \ldots, v_n)$ and $\mathbf{d} = (d_1, \ldots, d_n)$. [Points: ______/8]

Example:

- $S = \{1, 2, 3\}, \mathbf{v} = (4, 5, 6), \mathbf{d} = (1, 2, 3).$
- For subscription price p = 5: consumers 2 and 3 buy (v_2 and v_3 are greater than p = 5), consumer 1 does not buy ($v_1). The total revenue is 10.$
- For a-la-carte price q = 3: consumer 1 buys $(v_1/d_1 \ge q = 3)$, consumers 2 and 3 do not buy (v_2/d_2) and $v_3/d_3 < q = 3$. The total revenue is 3 (consumer 1 buys one song for q = 3).
- (a) Show that neither of these business models is always better than the other. To do so, give an input (\mathbf{v}, \mathbf{d}) where the revenue from the optimal subscription price, p^* , is less than the revenue from the optimal a-la-carte price, q^* . Then given an input $(\mathbf{v}', \mathbf{d}')$ where the revenue from the optimal subscription price, p^* , is more than the revenue from the optimal a-la-carte price, q^* .
- (b) Give an algorithm that on input (\mathbf{v}, \mathbf{d}) computes the a-la-carte price, q^* , with the highest total revenue. What is the runtime of your algorithm?