> Jerome Dumortier

Introductor Example

Approach

Candidate
Distributions
and Estimation

Goodness o

Discrete Data Distribution Fitting

Introduction to Probability Distribution Fitting

Jerome Dumortier

22 September 2022

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Dat Distribution Fitting

Lecture Overview

Distribution fitting

• Finding the best-fitting theoretical probability distribution for the observed data

Three approaches covered in this lecture:

MASS: fitdistr()

• fitdistrplus: fitdist()

• gamlss: fitDist()

Notes:

- No need to specify distribution function for the last approach, i.e., fitDist()
- Introduction and overview to a very broad field of research

Jerome Dumortier

Introducto Example

Approa

Candidate
Distributions

Goodness o

Discrete Date Distribution Fitting

Introduction

Empirical work often requires understanding of the underlying distribution of data:

- Distribution of corn yields in a particular county based on observations to calculate the probability of getting a yield below a certain threshold, e.g., for crop insurance purposes
- Wind speed distribution at a particular location for construction of a wind farm:
 Electricity production is not possible below and above a certain wind speed

Estimation of one or more parameters characterizing a probability distribution function

> Jerome Dumortier

Introductory Example

Approach

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution Fitting

Introductory Example

Jerome Dumortier

Introductory Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution

Weibull: Random Data Generation

Random generation of data (N=10000) following a Weibull distribution with two parameters:

Shape: k = 2
 Scale: λ = 1.5

weibulldata = rweibull(10000,2,1.5)

> Jerome Dumortier

Introductory Example

Approac

Candidate
Distributions

Goodness o

Discrete Data Distribution

Weibull: Histogram

Histogram of Weibull Data

Jerome Dumortier

Introductory Example

Approac

Candidate
Distributions
and Estimatio

Goodness of Fit

Discrete Data Distribution Fitting

```
Weibull: Distribution Fitting with fitdistr
```

```
## shape scale
## 1.994347 1.488994
```

> Jerome Dumortier

Introductory Example

Approach

Candidate
Distributions

Goodness of

Discrete Dat Distribution Fitting

Weibull: Observed Data and Estimated Distribution

```
hist(weibulldata, freq=FALSE, ylim=c(0,0.6), xlim=c(0,6))
range = seq(0,6,0.1)
lines(range, dweibull(range, shape, scale))
```

Histogram of weibulldata

> Jerome Dumortier

Introductory Example

Approach

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution Fitting

Approach

Jerome Dumortier

Introducto Example

Approach

Candidate
Distributions
and Estimatio

Goodness of Fit

Discrete Date Distribution Fitting

Distribution Fitting Steps

General steps (see Fitting Distributions with R by Vito Ricci for more information)

- **1** General hypothesis about candidate distributions, e.g., discrete vs. continuous, entire real number line vs. positive numbers only
 - Histogram as a valuable first approach
- 2 Parameter estimation
 - Example: Calculating shape and scale parameters of the Weibull distribution or mean and variance for a Normal distribution
- Goodness of fit

Starting point for an overview of various probability distributions: List of probability distributions

> Jerome Dumortier

Introductory Example

Approach

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution Fitting

Candidate Distributions and Estimation

> Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Dat Distribution Fitting

Meridian Hills: Possible Distributions

Meridian Hills home values:

- Source: https://jrfdumortier.github.io/dataanalysis/
- 101 home values in the Meridian Hills neighborhood in Indianapolis
- Scaling of data to measure home values in \$1000

Candidate distributions:

- Gamma distribution: Shape and scale parameter
- Weibull distribution: Shape and scale parameter
- Log-normal distribution, i.e, Y = ln(X) has a normal distribution: μ and σ

```
mhprice = mh1$price/1000
mhgamma = fitdistr(mhprice, "gamma")
mhweibull = fitdistr(mhprice, "weibull", lower=c(0,0))
mhlognormal = fitdistr(mhprice, "log-normal")
```

Jerome Dumortier

Introduct Example

прріоц

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Dat Distribution

Meridian Hills: Histogram I

> Jerome Dumortier

Introducto Example

Approach

Candidate
Distributions
and Estimation

Goodness of

Discrete Dat Distribution Fitting

Meridian Hills: Histogram II

Meridian Hills

> Jerome Dumortier

Introductory Example

Approach

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting

Goodness of Fit

lerome Dumortier

Goodness of Fit

Meridian Hills: Setup for fitdist()

Use of the function fitdist() from the package fitdistrplus

```
mhprice
               = mh1$price/1000
mhgamma
                = fitdist(mhprice, "gamma", lower=c(0,0))
mhweibull
                = fitdist(mhprice, "weibull", lower=c(0,0))
               = fitdist(mhprice, "lnorm", lower=c(0,0))
mhlognormal
```

> Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions
and Estimatio

Goodness of Fit

Discrete Date Distribution

Meridian Hills: Gamma Distribution

Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions
and Estimatio

Goodness of Fit

Discrete Date Distribution

Meridian Hills: Weibull Distribution

Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Date Distribution

Meridian Hills: Log-Normal Distribution

> Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions
and Estimatio

Goodness of Fit

Discrete Dat Distribution Fitting

Ground Beef: Possible Distributions

Second example using the function fitdist() package:

Use of the data groundbeef associated with the package fitdistrplus:
 Serving sizes collected in a French survey, for ground beef patties consumed by children under 5 years old.

> Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions

Goodness of Fit

Discrete Data Distribution

Ground Beef: Histogram

Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions

Goodness of Fit

Discrete Data Distribution Fitting

Ground Beef: Results I

Histogram and theoretical densities

> Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions

Goodness of Fit

Discrete Data Distribution Fitting

Ground Beef: Results II

Empirical and theoretical CDFs

> Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions

Goodness of Fit

Discrete Data Distribution Fitting Results: Q-Q Plot


```
Introduction
to Probability
Distribution
Fitting
```

Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting

```
Unspecified Distribution: fitDist()
```

```
Use of the function fitDist() from package gamlss
```

```
output = fitDist(mhprice, type="realplus")
```

output\$family

```
## [1] "IGAMMA" "Inverse Gamma"
```

output\$Allpar

```
## eta.mu eta.sigma
## 5.1768720 -0.4921408
```

> Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions
and Estimatio

Goodness of Fit

Discrete Dar Distribution

Goodness of Fit with Inverse Gamma

> Jerome Dumortier

Introductory Example

Approach

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution Fitting

Discrete Data Distribution Fitting

> Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions

Goodness of Fit

Discrete Data Distribution Fitting **EV** Data

```
evpoisson = fitdist(evdata$numcars,discrete=TRUE,distr="pois")
evnbinom = fitdist(evdata$numcars,discrete=TRUE,distr="nbinom")
```

lerome Dumortier

Discrete Data Distribution Fitting

EV Data: Results Poisson

Emp. and theo. distr.

Emp. and theo. CDFs

Data

lerome Dumortier

Discrete Data Distribution Fitting

EV Data: Results Negative Binomial

Emp. and theo. CDFs

Data