NASA-TM-84628 19830022194

NASA Technical Memorandum 84628

PRESSURE DISTRIBUTIONS ON A 0.04-SCALE MODEL OF THE SPACE SHUTTLE ORBITER'S FORWARD FUSELAGE IN THE LANGLEY UNITARY PLAN WIND TUNNEL

Pamela F. Bradley, Paul M. Siemers III, Paul F. Flanagan, and Martin W. Henry

MARCH 1983

Tibulli Cost

JUH A STEEL LANGLEY RESEARCH CENTER LIBRARY, NASA
HAMPTON, VIRGINIA

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665

٠.

ENTER:

28
1
1 RN/NASA-TM-84628

DISPLAY 28/2/1
83N30465*# ISSUE 19 PAGE 3062 CATEGORY 12 RPT#: NASA-TM-84628 NAS
1.15:84628 83/03/00 101 PAGES UNCLASSIFIED DOCUMENT

UTTL: Pressure distributions on a 0.04-scale model of the Space Shuttle
Orbiter's forward fuselage in the Langley unitary plan wind tunnel
AUTH: A/BRADLEY, P. F.; B/SIEMERS, P. M., III; C/FLANAGAN, P. F.; D/HENRY, M.
W.

CORP: National Aeronautics and Space Administration. Langley Research Center,
Hampton, Va. AVAIL.NTIS SAP: HC A06/MF A01

MAJS: /*FUSELAGES/*PRESSURE DISTRIBUTION/*SPACE SHUTTLE ORBITERS

MINS: / INFORMATION FLOW/ ORIFICES/ WIND TUNNEL TESTS

ABA: Author

ERRATA

NASA Technical Memorandum 84628

PRESSURE DISTRIBUTIONS ON A 0.04-SCALE MODEL OF THE SPACE SHUTTLE ORBITER'S FORWARD FUSELAGE IN THE LANGLEY UNITARY PLAN WIND TUNNEL

Pamela F. Bradley, Paul M. Siemers III, Paul F. Flanagan, and Martin W. Henry

March 1983

Page 32 - Wrong page was inadvertently printed in report. Replace with the attached new page 32.

Issued 8-15-83

N83-30465#

		-
		-
		~

Pressure Distributions Obtained on a 0.04-Scale Model of the Space Shuttle Orbiter's Forward Fuselage in the Langley Unitary Plan Wind Tunnel

Pamela F. Bradley; Paul M. Siemers III; Paul F. Flanagan; and Martin W. Henry

Summary

Results from pressure distribution tests on a 0.04-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Langley Unitary Plan Wind Tunnel (UPWT). The model was tested at angles of attack from -2.5° to 30° and angles of sideslip from -5° to 5° in both test sections.

The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data.

Introduction

The SEADS is an across-the-speed-range flush orifice air data system proposed for installation on the Space Shuttle Orbiter (ref. 1). The system consists of 20 pressure orifices, 14 of which are arranged in a cruciform pattern and are installed in a baseline geometry nose cap assembly. The other six are located on the forward fuselage. An extensive flow-field model

development program has been completed to define the algorithm which will enable researchers to convert the SEADS flight data into research quality air data. This reduction algorithm is based on a modification of Newtonian flow theory which entails the use of correction factors based on wind-tunnel data obtained across the Mach number range on various models of the orbiter's forward fuselage. The wind-tunnel data presented in this report are an important part of the SEADS data base for the Mach numbers tested—in the range 1.5 to 4.63 (refs. 2 and 3).

Data are presented for a 0.04-scale model of the forward fuselage. This investigation was completed in the Langley UPWT. The angle of attack was varied from -2.5° to 30° and the angle of sideslip from -5° to 5°. The model is of the forward fuselage region of the Space Shuttle Orbiter. The model extends back to the canopy region and includes scaled forward RCS jet scallops. Thirty-four pressure orifices on the model duplicate locations of the propsed SEADS and current DFI orifices. The remaining orifices support the SEADS flow-field model development. The data are presented in plotted and tabular form.

Wind-Tunnel Facility

The tests were conducted in both the low and high Mach number test sections of the Langley UPWT which is a variable-pressure, continuous-flow facility. Asymmetric sliding-block nozzles lead to the test sections and permit continuous variation in Mach number from 1.5 to 2.9 in the low Mach number test section and from 2.3 to 4.7 in the high Mach number test section. The present tests were run at a nominal Reynolds number of $6.6 \times 10^6/m$.

Model and Instrumentation

The 0.04-scale model was instrumented with 72 pressure orifices matching locations of proposed SEADS, current DFI, and SEADS support orifices. The model was instrumented with two chromel-alumel thermocouples installed near the nose of the model. This instrumentation was necessary to monitor model temperature during runs in wind tunnels with high stagnation temperatures. The stagnation temperature at the test conditions in the UPWT was lower than the models design limit. It was, therefore, not necessary to monitor model temperature during these tests.

A photograph of the model is shown in figure 1. Figure 2 gives the model's coordinate system. Table I gives the orifice numbers and locations. The SEADS array of orifices is modeled by orifices 201 through 220. The DFI locations duplicated are listed in table II along with their corresponding model orifices. The model was sting mounted from the back to the tunnel's model support system.

Test Setup

Data were obtained from the orifices via a scani-valve system. Four scani-valves were used. Several orifices were redundantly connected to each scani-valve to provide a means for pressure accuracy assessment. A nominal run consisted of 10 data points; a data point is one angle-of-attack/sideslip combination and identified sequentially by the "Ref" number. The model was also tested in the inverted position to determine any flow asymmetry in the tunnel. The data points are listed in table III.

Presentation of Results

To preserve data accuracy and for the convenience of the reader, the data are presented in tables IV through XXXIX. Data are presented in dimensional form (psia). Since these are being used in both pressure coefficients and nondimensional forms P/Q and P/P_{t_2} , they are presented here in dimensional form along with enough tunnel information to provide the reader any of the three nondimensional forms. A limited amount of data are plotted in figures 3 through 14 to show trends. These data are nondimensionalized by P_{t_2} as calculated from tunnel conditions. Some limited comparisons of the present data to flight data have been obtained. Reference 4 presents these comparisons at the times the oribter passes through the Mach numbers tested during its reentry.

List of Symbols

M _w	free-stream number
Pi	pressure at orifice "i", psia
P _{t1}	tunnel stagnation pressure, psia
Pt ₂	total pressure behind the shock, psia
P	tunnel free-stream static pressure, psia
q _∞	tunnel free-stream dynamic pressure, psia
x,y,z	model coordinates, m
α	angle of attack, deg.
, β	angle of sideslip, deg.
λ ₁	orifice lateral angle, deg.
ф	model roll angle, deg.
φ1	orifice longitudinal angle, deg.

References

- Pruett, C. D.; Wolf, H.; Siemers, P. M. III; and Heck, M. L.: An Innovative Air Data System for the Space Shuttle Orbiter: Data Analysis Techniques. AIAA Paper No. 81-2455, Nov. 1981.
- 2. Bradley, P. F.; Siemers, P. M. III; Flanagan, P. F.; and Henry, M. W.: Pressure Distributions Obtained on a 0.04-Scale and 0.02-Scale Model of the Space Shuttle Orbiter's Forward Fuselage in the Langley 20-Inch Mach 6 Air Tunnel. NASA TM-84629, March 1983.
- 3. Bradley, P. F.; Siemers, P. M. III; Flanagan, P. F.; and Henry, M. W.: Pressure Distributions on a 0.04-Scale Model of the Space Shuttle Orbiter's Forward Fuselage in the Langley Continuous Flow Hypersonic Tunnel. NASA TM-84630, March 1983.
- 4. Bradley, P. F.; Siemers, P. M. III; and Weilmuenster, K. J.: An Evaluation of Space Shuttle Orbiter Forward Fuselage Surface Pressures: Comparisons with Wind-Tunnel and Theoretical Predictions. AIAA Paper No. 83-0119, Jan. 1983.

Table I 0.04-Scale Model Orifice Locations

Table I continued

Orifice Number	\mathbf{X} , \mathbf{m}	Y,m	Z,m
238	.0964	0264	.0529
239	.0953	0005	.0544
244	.0699	.0009	0945
245 046	.1005	.0000	0818
246 947	.1405	0602	0046
248 248	.0949 .0383	0737 0873	.0181 0333
249	0383	007 <i>3</i> 0873	0333 - 0333
252	.2110	.0000	.0260

Table II Corresponding Orbiter/Model Orifices Orbiter DFI Designation Model Orifice

=	
********	218
V07P9100 V07P9451 V07P9453	218 239 238 237 236 235 215 225 245 244
V07P9451	$\overline{2}\overline{3}\overline{9}$
V07P9453	<u> </u>
V07P9455	วิจีวี
V 07P9457	536
V07P9459	200 095
V07P9461	200 01E
V07P9801	215
V07P9805	225
7107D0907	245
V07P9807 V07P9810	2 44
\$10gD00g1	216
V07P9871	216 247
V07P9873 V07P9877	246
V07P9877	248
V07P9887	249
V07P9888	2.10

Table III: Data Summary - Unitary Plan Wind Tunnel - 4% Model

Ref	Run	Point	М.,	α	β	φ	P_{t_2}	q.	P_{\bullet}	P_{t_2}
				deg	deg	deg	psf	psf	psf	psf
12345678901234567890123456789012344444444444444455555555555566666666666	11111111122222223333333333344556666666666666667777777777	22222333333444445601235555556666666777777778888888999999999999	1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	2.3387777242887823288877722833731499999113999999111991 2.2494912-494912-44949111-249999991119911991 2.124949111-1499999911199111991 1122 - 1494911122 - 1122 1122 - 1122 122	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	000000000000000000000000000000000000000	992.35 991.53 991.53 991.53 991.53 991.53 991.53 991.52 990.39 990.49 990.49 990.78 991.55 990.49 991.55 991.55 991.55 991.55 991.55 991.55 991.55 991.55 991.79 992.32 1179.98 1178.36 1178.36 1178.36 1178.68 1179.04	425.752 425.779 425.241 425.241 425.402 425.403 425.403 425.403 425.403 425.398 425.398 425.398 425.398 425.398 425.398 425.398 425.398 425.398 425.619 425.619 425.619 425.7742 425.619 425.7742 425.22.231 426.601	270.319 269.891 269.896 270.097 270.085 270.096 270.096 270.096 270.096 270.096 269.891 269.996 269.996 270.233 270.233 270.233 270.233 270.233 270.233 270.330 270.330 270.558 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.699 150.795 150.795 150.795 150.699 150.699 150.795	922.686 921.228 921.228 921.928 921.928 921.928 921.928 921.928 921.928 921.928 921.928 921.928 921.078 921.257 921.2547 921.2547 921.2547 921.2547 921.2547 921.2547 921.2547 921.2547 921.2547 921.928 921.928 921.928 921.928 921.928 921.928 921.928 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.33598 922.3569 923.3569 923.3699 923.3699 923.3699 923.3699 923.3699 923.3699 923.3699 923.468 924.9699 925.077 925.077 926.077 927.077 927.077 928.077 929.0

Ref	Run	Point	N.	α	ß	ø	P_{t_1}	q.	P_{ullet}	P_{t_2}
				deg	deg	deg	psf	psf	psi	psf
345678901234567890123456789012345678901234 666666777777777888888888899999999999012345678901234 11111111111111111111111111111111111	001111112222211111111111111222222222222	7878012369358901234567890123456767890123456789901234567 1123369358901234567890123456767699012345678999999999999999999999999999999999999	00000000000000000000000000000000000000	14.4.9.1.4.1.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	0.000000000000000000000000000000000000	000000000000000000000000000000000000000	179.28 1179.28 1179.23 1179.23 1192.36 10 10 10 10 10 10 10 10 10 10 10 10 10	421.980 421.908 421.908 422.9808 422.9808 422.9808 423.9808	150.717 150.717 150.717 150.389 150.389 170.3885 170.3885 170.3885 170.3885 170.3885 150.9924 150.9924 150.9924 150.9924 150.9924 150.9924 150.9924 150.9924 150.9924 150.9924 150.9924 150.9924 150.9924 115.896 115	850.141 850.1425 850.1441 850.1441 850.1641 850.1641 850.1641 850.1641 850.1641 850.1641 850.1641 851.1668 861.168

Ref	Run	Point	H*	α	β	φ	P_{i_1}	q.	P_{\bullet}	P_{t_3}
				dog	deg	deg	psf	taq	psf	psi
126789012345678901234545678901234568789012345678900123456789000000000000000000000000000000000000	7777778888888899990001111111111111111111	99012345678901121111111111111111111111111111111111	ໟໟໟໟໟໟໟໟໟໟໟໟໟໟໟໟໟໟໟໟໟໟໟຨຨຨຨຨຨຨຨຨຨຨຨຨຨ	5.01.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		000000000000000000000000000000000000000	2039.322 203	361.5774 361.55774 361.55774 361.55774 361.5590 361.5591 361.5591 361.5591 361.5591 361.5591 361.5591 361.5591 361.5591 361.5591 361.5591 361.5591 361.5591 361.5991 361.6991 361	558258294493116662200031111170899525555555555555555555555555555555555	88619986198869988699886998869988699889988

Table III(continued)

Table IV: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 1.5$, Inverted, Pressures in psf

	Nominal α							
Ori-	-5.0°	-5.0° -2.5°		2.5°				
fice			0.0° Ref 66					
ID	Pi	Pi	Pi	Pi				
2	350.3	374.9	400.5	423.5				
5	460.5	463.5	464.2	463.9				
6	479.1	479.4	480.5	480.3				
9	579.7	548.7	513.7	485.4				
10	304.8	326.5	349.8	370.6				
13	416.9	417.9	418.9	416.8				
14	428.4	430.6	430.6	431.7				
17	564.4	540.9	517.6	492.6				
19	381.0	376.6	375.7	375.7				
20	404.5	397.4	393.5	389.6				
21	335.1	338.2	343.1	343.6				
22	346.1	348.3	352.5	354.7				
23	313.5	315.3	315.6	316.4				
24	323.3	326.6	327.0	329.7				
25	295.3	298.5	301.1	302.2				
26	313.0	315.4	317.6	318.8				
43	396.0	408.0	419.0	426.6				
44	406.9	419.7	430.8	440.2				
85	487.2	491.0	493.9	493.7				
86	497.4	501.1	504.1	505.6				
87	378.8	401.1	423.1	443.7				
88	382.7	406.9	431.8	452.7				
89	255.6	270.0	283.9	297.0				
90	252.3	268.4	283.7	297.8				
91	254.8	266.5	282.0	292.2				
921	599.5	566.3	533.8	504.7				
922	370.7	397.4	426.0	451.1				
93	300.4	321.5	344.4	365.2				
128	475.2	449.8	426.2	405.1				
201	876.7	856.9	836.3	814.2				
202	918.9	911.9	901.9	889.7				
203	918.6	922.8	924.9	924.0				
204	879.0	895.6	909.3	918.3				
205	777.6	806.9	833.9	856.1				
206	699.7	731.7	761.6	786.8				
207	615.1	648.5	681.0	709.1				

-14-

Table IV(continued)
Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 1.5$, Inverted, Pressures in psf

	Nominal a							
Ori-	-5.0°	-2.5°	0.0°	2.5°				
fice		Ref 67	Ref 66	Ref 65				
ID	Pi	Pi	Pi	Pi				
203	512.0	551.8	587.7	619.4				
209	756.7	766.8	773.9	777.5				
210	805.7	819.1	829.8	835.2				
211	850.2	866.2	880.3	889.0				
212	858.1	874.6	887.8	896.2				
213	816.3	829.3	840.4	847.8				
214	769.8	778.8	786.0	789.8				
215	594.3	561.5	527.8	498.6				
216	469.3	477.9	485.9	491.1				
217	483.5	493.3	499.7	504.1				
218	377.3	403.6	432.4	456.3				
219	326.1	325.9	331.1	336.0				
220	332.9	332.5	337.2	343.2				
225	492.0	461.7	433.8	410.8				
226	694.4	663.3	632.2	603.0				
227	734.7	701.7	670.4	640.0				
228	820.5	794.9	769.3	743.8				
229	448.1	477.7	508.0	535.3				
230	271.3	287.6	305.0	320.8				
231	599.4	603.1	602.9	603.1				
232	691.7	697.0	702.2	702.9				
233	709.9	717.0	720.9	722.2				
234	617.8	619.1	620.9	618.8				
235	301.9	322.7	339.6	350.6				
236	278.3	300.7	320.0	334.9				
237	268.3	284.6	301.8	318.0				
238	267.4	282.2		314.3				
239	267.3							
244								
245								
246								
247	310.7	329.3						
248	318.7	320.1						
249								
252	470.4	502.4	533.6	562.3				

Table V: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 1.5$, Upright, Pressures in psf

	Nominal α							
Ori-	-2.5°	0.0°	2.5°	5.0°	10.0°	15.0°	20.0°	
fice				Ref 4		Ref 6	Ref 7	
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	
2	372.6	394.2	422.0	449.5	507.3	570.9	635.9	
5	478.1	479.5	479.0	477.7	475.0	465.1	453.4	
6	464.6	463.7	464.3	463.6	457.0	451.1	436.8	
9	550.0	521.3	489.0	458.1	403.1	354.2	312.0	
10	323.9	342.9	368.5	395.3	449.5	506.8	568.8	
13	432.3	432.7	433.1	430.8	427.4	420.3	408.6	
14	415.3	416.4	415.6	415.7	412.3	405.0	395.6	
17	542.0	522.2	495.0	466.2	412.0	362.7	316.5	
19	390.0	388.1	388.2	388.5	385.3	373.0	364.7	
20	384.4	382.3	378.2	374.8	368.7	360.7	353.5	
21	350.7	353.7	356.8	357.9	356.3	357.1	353.5	
22	335.6	339.0	341.7	343.4	345.4	346.5	342.1	
23	326.9	326.3	325.7	325.8	326.9	325.2	322.8	
24	316.2	318.0	319.9	320.2	319.9	318.9	308.4	
25	312.0	312.6	314.8	315.5	314.6	309.2	306.1	
26	307.7	308.4	311.4	312.7	311.5	304.4	298.3	
43	419.3	429.3	439.1	448.3	460.1	464.8	461.2	
44	405.7	415.4	425.8	432.4	441.0	443.6	436.7	
85	507.2	508.0	510.4	509.4	506.1	497.0	482.0	
86	485.3	487.7	487.9	488.4	484.7	474.8	461.3	
87	405.1	425.7	449.9	472.9	518.2	563.0	603.6	
88	397.0	417.6	442.1	464.4	509.4	552.4	591.9	
89	265.9	279.3	295.0	310.2	348.5	393.0	439.8	
90	266.3	278.1	293.7	310.0	346.6	390.5	436.3	
91	266.9	278.3	293.3	309.2	347.3	394.2	440.6	
921	570.4	540.4	508.0	479.7	427.0	374.5	330.1	
922	395.8	419.7	449.3	480.4	543.3	609.1	674.3	
93	316.8	337.3	363.1	389.0	442.7	500.1	561.9	
128	453.6	431.9	409.3	387.1	350.1	320.7	295.7	
201	860.1	840.1	813.8	786.5	727.4	662.2	594.1	
202	913.9	903.3	888.7	871.9	829.4	776.6	717.3	
203	923.8	923.5	921.3	917.1	897.1	867.7	823.3	
204	895.4	905.4	914.5	920.9	924.0	918.2	894.4	
205	806.8	827.8	851.3	871.8	902.8	923.3	925.9	
206	731.3	754.4	783.0	809.3	854.1	892.5	915.6	
207	647.4	672.8	705.6	735.7	792.2	844.1	883.2	

Table V(continued)
Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 1.5$, Upright, Pressures in psf

	Nominal α							
Ori-	-2.5°	0.0	2.5°	5.0°	10.0°	15.0°	20.0°	
fice	Ref 1						Ref 7	
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	
208	549.2	579.8	616.0	649.7	716.2	778.8	832.7	
209	782.2	786.9	789.5	791.8	787.7	771.0	746.7	
210	831.7	839.1	845.7	850.2	851.0	838.3	815.1	
211	874.8	883.8	892.9	900.0	904.3	896.9	873.8	
212	866.6	876.2	884.9	891.6	895.1	888.9	866.6	
213	817.0	823.8	830.2	834.0	833.3	823.1	799.5	
214	763.8	767.6	772.2	773.2	768.0	754.4	731.4	
215	564.7	535.5	502.8	472.2	419.7	368.5	324.2	
216	493.8	499.0	504.7	509.0	512.1	509.1	496.5	
217	476.9	482.7	487.6	491.3	493.8	488.6	479.1	
218	402.8	426.3	454.4	485.1	546.0	611.5	674.9	
219	339.1	340.8	348.4	354.2	361.4	356.6	345.8	
220	319.7	322.4	329.6	339.2	352.8	344.8	333.3	
225	465.8	440.4	414.4	389.9	347.7	308.3	279.8	
226	666.8	638.0	606.6	573.8	513.4	458.0	386.0	
227	706.8	676.6	641.3	607.0	534.4	456.4	389.9	
228	798.7	774.6	743.9	713.6	649.9	585.0	524.2	
229	474.5	500.9	532.1	562.3	626.3	691.1	751.7	
230	286.1	298.5	317.1	338.6	386.6	437.4	498.6	
231	620.7	620.2	620.3	617.4		591.6	572.2	
232	715.4	718.1	720.9	720.0			675.0	
233	699.3	700.7	701.2	700.7		677.0	655.6	
234	602.3	601.5	600.1	596.7			552.1	
235	325.5	341.5	358.0					
236	299.7	317.3	335.7				443.7	
237	282.8	296.9	314.2				473.2	
238	279.9	294.2	310.8					
239	279.7	292.5	308.4					
244	456.0	434.0	409.3					
245	463.7	440.8	415.2					
246	406.2	396.2						
247	334.9	347.9	361.3	367.3				
248	332.0	332.5	331.7					
249	321.7	323.6						
252	500.5	526.4	557.7	589.7	652.9	716.6	775.4	

	Nominal α						
Ori-	-2.5°	0.0	5.0°	10.0°	15.0°	20.0°	
fice	Ref 9	Ref 10	Ref 11	Ref 12	Ref 13	Ref 14	
ID	Pi	Pi	Pi	Pi	Pi	Pi	
2	371.9	394.4	447.6	506.2	570.3	634.2	
5	455.9	456.5	455.7	450.9	444.0	429.7	
6	488.2	488.5	486.3	481.9	473.2	460.4	
9	549.2	521.7	458.1	402.4	354.0	310.8	
10	323.2	343.5	394.1	449.1	506.8	567.8	
13	412.0	413.4	410.7	406.1	399.4	387.3	
14	436.1	437.5	436.5	433.1	426.6	415.6	
17	542.4	523.0	467.1	412.3	362.0	316.3	
19	371.8	369.3	368.4	364.5	353.8	346.6	
20	402.4	399.1	392.4	386.5	379.4	371.9	
21	333.2	337.1	340.5	340.5	340.6	333.8	
22	352.2	357.1	359.9	360.4	362.8	361.2	
23	312.1	312.2	312.3	312.5	310.4	310.4	
24	331.3	333.3	333.9	333.8	333.1	323.4	
25	298.5	299.0	302.0	300.5	298.4	293.0	
26	320.7	322.6	325.9	324.1	318.2	311.3	
43	402.3	411.5	427.5	437.2	441.5	434.0	
44	422.9	433.5	453.1	463.7	466.9	462.2	
85	483.5	485.5	486.5	481.1	471.6	453.5	
86	509.2	511.3	511.0	507.9	500.2	486.2	
87	395.5	415.2	459.8	503.2	544.9	583.2	
88	408.1	430.5	478.7	524.2	570.4	611.5	
89	266.3	278.5	308.4	344.6	387.5	434.1	
90	266.0	278.9	311.3	349.1	394.2	441.0	
91	266.5	277.9	308.2	346.3	393.8	440.0	
921	569.7	540.2	479.3	427.8	374.9	330.3	
922	394.3	420.4	478.9	542.3	607.3	672.4	
93	318.8	337.6	387.9	442.4	500.1	560.4	
128	452.5	431.6	386.3	349.8	319.2	294.7	
201	860.3	841.0	788.1	728.2	661.4	593.0	
202	914.6	905.4	873.4	829.3	774.9	715.7	
203	924.7	925.6	918.7	898.9	864.5	822.6	
204	896.5	907.7	923.2	925.7	915.0	893.8	
205	807.0	829.6	873.3	905.2	920.2	924.9	
206	731.2	756.4	809.8	854.9	889.3	914.8	
207	646.5	673.9	736.3	792.8	841.3	882.5	

Table VI(continued)
Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\infty} = 1.5$, Upright, Pressures in psf

	Nominal α						
Ori-	-2.5°	0.0	5.0°	10.0°	15.0°	20.0°	
fice			Ref 11			Ref 14	
ID	Pi	Pi	Pi	Pi	Pi	Pi	
208	548.0	579.7	650.2	716.7	776.6	832.1	
209	759.5	765.0	769.8	763.5	748.3	725.3	
210	813.6	822.9	833.8	832.3	818.5	797.4	
211	863.6	875.6	892.9	894.9	884.2	863.3	
212	876.5	886.3	901.2	905.7	896.3	875.4	
213	833.0	840.4	851.1	850.1	840.0	815.9	
214	783.6	789.5	794.1	788.8	776.2	751.1	
215	562.1	532.8	470.7	418.6	367.8	323.6	
216	471.0	477.6	486.3	486.5	483.1	468.8	
217	499.5	505.6	514.2	519.7	514.8	504.8	
218	400.1	424.8	482.2	543.6	607.3	670.8	
219	321.7	324.3	338.3	344.9	337.1	324.3	
220	337.0	340.1	355.3	367.0	364.1	354.4	
225	465.3	440.7	390.0	346.8	307.7	279.2	
226	666.1	638.4	574.9	513.6	457.4	383.3	
227	706.0	677.4	606.8	533.5	454.9	389.7	
228	798.8	775.7	714.1	650.3	584.4	523.5	
229	473.9	501.0	561.9	624.7	689.2	750.0	
230	285.3	298.7	338.1	385.9	437.9	497.5	
231	595.5	595.7	591.4	581.1	565.4	547.7	
232	690.9	694.4	694.1	685.9	671.4	650.5	
233	721.3	724.2	725.1	716.9	702.4	678.1	
234	625.8	626.7	622.0	611.6	597.2	576.1	
235	316.3	330.4	354.7	364.8	360.0	353.6	
236	295.7	311.7	345.0	373.9	398.8	423.4	
237	281.8	296.2	330.0	370.2	414.4	463.3	
238	280.4	294.0	327.8	370.2	417.4	471.0	
239	279.4	292.7	326.5	369.7	418.2	475.0	
244	455.1	433.7	386.5	348.8	313.8	291.3	
245	462.9	440.8	391.8	347.9	315.3	288.6	
246	384.9	378.0	374.1	367.6	357.5	346.6	
247	324.7	336.6	351.3	348.3	334.3	316.9	
248	316.3	317.7	316.7	312.2	303.1	295.9	
249	337.7	340.1	338.1	332.9	324.8	314.3	
252	499.1	527.1	588.9	652.7	714.2	774.0	

Table VII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\odot} = 1.5$, Upright, Pressures in psf

	Nominal α						
Ori-	-2.5°	0.0	5.0°	10.0°	15.0°	20.0°	
	Ref 16	Ref 17	Ref 19			Ref 22	
ID	Pi	Pi	Pi	Pi	Pi	Pi	
2	372.5	394.8	449.0	505.6	569.0	633.2	
5	419.8	421.0	419.3	415.7	407.8	390.1	
6	523.6	525.2	525.1	520.2	512.9	501.9	
9	545.7	517.8	457.4	401.5	352.0	309.2	
10	322.1	341.5	393.9	448.5	506.0	566.4	
13	380.7	380.9	378.8	375.6	367.6	356.0	
14	470.4	472.2	471.7	468.3	462.9	451.7	
17	534.9	513.8	458.9	405.0	355.9	312.0	
19	343.7	344.6	342.7	339.7	327.1	315.8	
20	437.1	432.9	425.5	419.6	408.1	405.6	
21	309.2	314.1	318.0	317.5	315.1	306.3	
22	379.5	385.1	386.3	389.0	393.1	394.1	
23	290.2	292.2	291.9	292.5	291.1	281.6	
24	357.6	357.4	360.4	360.9	357.7	352.0	
25	279.5	281.6	285.5	284.6	276.5	272.6	
26	345.0	346.6	348.6	346.4	345.5	335.8	
43	374.0	382.8	396.7	403.5	403.2	392.2	
44	452.1	463.5	484.7	499.1	505.6	504.2	
85	447.6	450.1	451.2	446.4	435.7	418.1	
86	546.9	548.6	550.2	547.4	539.9	526.4	
87	379.0	397.0	438.6	478.2	516.8	552.0	
88	423.9	446.6	500.3	550.0	597.8	641.4	
89	265.9	276.6	305.0	338.8	381.9	424.1	
90	262.2	275.7	313.2	353.4	399.8	448.8	
91	264.1	276.2	308.7	346.9	391.7	440.1	
921	567.2	538.3	477.8	426.1	374.3	329.6	
922	393.2	417.3	478.4	542.3	605.7	671.9	
93	318.0	336.5	387.7	441.6	498.3	560.0	
128	448.2	428.3	383.5	346.7	316.5	292.5	
201	856.2	836.6	784.7	726.0	661.0	594.7	
202	909.0	899.3	867.7	825.4	773.0	714.0	
203	919.6	920.0	913.0	893.9	862.5	820.2	
204	891.7	901.7	917.7	921.5	913.3	891.7	
205	802.0	823.7	867.4	899.6	918.4	922.6	
206	725.5	751.1	804.7	850.2	887.0	911.6	
207	643.6	670.8	732.2	789.3	838.9	880.0	

Table VII(continued)
Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 1.5$, Upright, Pressures in psf

	Nominal a							
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0		
fice			Ref 19		Ref 21	Ref 22		
ID	Pi	Pi	Pi	Pi	Pi	Pi		
208	545.0	576.3	646.7	713.7	775.0	828.9		
209	725.1	730.6	735.2	729.7	714.4	689.9		
210	784.0	791.7	803.5	802.0	789.4	767.7		
211	844.5	854.2	871.8	875.5	866.5	845.6		
212	886.1	896.4	912.1	915.9	909.0	888.0		
213	855.5	863.8	875.4	876.5	865.9	842.9		
214	813.1	819.3	826.3	821.9	808.6	785.7		
215	554.9	528.4	466.5	415.0	365.0	322.4		
216	437.8	442.8	450.9	450.5	444.1	429.0		
217	535.4	543.2	554.5	559.2	557.3	548.8		
218	397.0	421.8	479.0	539.7	602.5	666.0		
219	296.4	302.1	318.2	321.5	311.0	294.1		
220	365.3	369.3	380.2	393.9	397.4	389.5		
225	463.4	437.5	387.1	344.4	306.6	277.5		
226	662.7	635.7	572.0	513.2	456.5	381.4		
227	702.5	674.4	604.1	531.4	452.1	392.3		
228	794.8	771.2	711.6	648.9	584.0	523.2		
229	471.4	498.5	560.7	624.5	687.1	749.5		
230	283.1	297.8	336.6	385.1	436.2	497.0		
231	555.6	555.6	552.9	542.9	528.6	510.4		
232	650.6	654.6	656.6	648.1	633.7	613.8		
233	757.7	760.7	761.1	755.1	739.9	716.3		
234	664.9	666.4	661.5	651.8	635.6			
235	305.1	316.9	330.6	334.2	327.0			
236	290.9	303.9	328.8			391.5		
237	279.7	292.5	323.3					
238	278.6	291.3	323.3					
239	277.6	290.8	325.0					
244	451.3	430.2	383.0					
245	460.1	438.3	389.3					
246	355.1	351.8	345.6					
247	308.3	318.3	328.9	323.7				
248	292.6	294.4	296.2	293.8				
249	366.8	366.6						
252		524.5	586.9	648.9	711.7	772.7		

Table VIII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\odot} = 1.5$, Upright, Pressures in psf

1	Nom	nal α
0ri		15.0°
fice	Ref 24	Ref 25
D	Pi	Pi
	393.7	571.2
	504.3	493.3
	439.2	424.5
_ 6	520.3	354.2
10	342.4	507.7
13	456.4	443.6
14		383.2
17	517.7	360.8
19	410.0	395.0
20	366.5	341.0
21	373.9	376.4
22	322.7	329.5
23		341.7
24	304.2	303.7
25	329.2	322.7
26	295.2	293.3
43	449.2	490.5
44	396.7	416.7
85		524.0
86	463.9	450.7
87	438.1	582.4
88	405.0	533.4
89	279.4	399.0
90	276.3	385.9
91	277.5	393.3
921	540.8	374.3
922	419.5	608.7
93	336.9	501.0
128	431.6	319.3
201	838.1	661.4
202	903.1	776.1
203	923.4	865.3
204	904.7	915.2
205	827.6	920.7
206	755.9	889.9
207	673.6	842.4
		- 4~· T

Table VIII(continued)
Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 1.5$, Upright, Pressures in psf

	Nomi	nal α
Ori-	0.0	15.0°
fice	Ref 24	Ref 25
110	Pi	Pi
208	579.9	777.9
209	808.6	796.0
210	856.3	858.6
211	893.8	906.3
212	865.1	874.7
213	805.4	801.5
214	745.2	729.8
215	537.2	368.5
216	525.3	536.3
217	459.3	463.1
218	426.9	612.8
219	362.8	377.5
220	306.5	327.4
225	438.2	308.2
226	637.2	457.4
227	676.3	457.4
228	772.8	583.3
229	499.6	689.3
230	298.4	438.2
231	648.2	619.6
232	744.3	724.3
233	675.0	651.4
234	575.3	544.5
235	353.5	408.8
236	322.0	435.1
237	298.2	430.7
238	294.8	427.5
239	292.5	421.5
244	432.2	314.2
245	440.3	312.9
246	418.2	399.1
247	363.5	377.5
248	350.6	332.6
249	307.4	
252	526.6	714.6

Table IX: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 1.5$, Upright, Pressures in psf

	Nomi	nal α
Ori-	0.0°	15.0°
fice	Ref 26	Ref 27
ID	Pi	Pi
2	390.8	568.9
5	541.3	531.3
6	404.0	389.4
9	519.0	351.5
10	340.7	504.3
13	490.4	480.7
14	365.4	352.9
17	511.6	354.7
19	440.9	426.8
20	340.8	315.8
21	402.9	404.2
22	300.1	305.3
23	369.6	369.1
24	285.3	284.0
25	352.6	354.5
26	278.5	276.7
43	479.8	527.8
44	367.6	380.5
85	573.1	563.3
86	432.1	415.6
87	454.1	607.8
88	387.6	504.3
89	276.1	404.0
90	274.0	378.3
91	275.5	391.9
921	538.2	371.7
922	417.9	605.5
93	336.1	499.3
128	429.3	315.6
201	832.7	656.2
202	896.9	771.5
203	917.4	860.0
204	897.7	909.8
205	821.3	915.6
206	749.9	885.3
207	668.9	837.4

-24-

Table IX(continued)
Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 1.5$, Upright, Pressures in psf

	Nomi	nal α
Ori-	0.0	15.0°
fice	Ref 26	
ID	Pi	Pi
208	577.4	774.6
209	837.3	823.8
210	877.9	878.5
211	902.1	913.6
212	843.5	856.4
213	773.2	770.5
214	709.0	693.6
215	537.2	368.3
216	560.5	576.2
217	428.6	426.5
218	426.1	613.4
219	392.2	409.1
220	286.6	301.6
225	436.2	301.7
226	634.2	453.4
227	672.4	456.7
228	768.0	579.8
229	496.6	686.5
230	296.5	436.1
231	686.2	658.0
232	780.0	758.5
233	635.9	612.6
234	536.6	505.8
235	371.6	442.1
236	332.0	457.5
237	298.7	440.6
238	294.2	433.0
239	290.7	422.9
244	427.4	309.4
245	435.7	308.0
246	452.2	430.6
247	382.9	412.7
248	378.6	358.1
249	286.4	282.0
252	522.8	711.5

Table X: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 2.0$, Inverted, Pressures in psf

	Nominal α						
Ori-	-5.0°	-2.5°	0.0	2.5°			
fice	Ref 73	Ref 72	Ref 71				
ID	Pi	Pi	Pi	Pi			
2	235.8	257.7	282.7	298.1			
5	335.5	335.5	337.5	337.2			
6	347.3	350.3	351.9	353.0			
9	441.4	410.1	379.6	361.5			
10	191.2	209.7	229.7	243.0			
13	291.2	290.1	291.4	291.0			
14	303.1	305.1	305.1	305.2			
17	442.7	412.2	381.9	361.7			
19	252.3	250.5	246.6	245.0			
20	271.5	270.3	270.8	269.1			
21	216.6	218.6	220.6	219.7			
22	226.7	228.1	229.0	228.8			
23	199.4	199.2	198.9	198.3			
24	207.4	208.6	209.5	208.9			
25	183.4	184.9	185.1	185.2			
26	198.1	198.9	199.9	200.1			
43	275.6	286.5	294.9	300.3			
44	286.2	298.0	308.5	312.9			
85	366.6	369.1	370.8	371.5			
86	377.8	381.9	384.9	385.3			
87	263.9	284.8	305.7	318.4			
88	268.9	290.4	312.8	326.4			
89	141.2	152.9	164.6	172.7			
90	140.4	152.5	165.0	172.8			
91	141.5	151.6	163.3	169.4			
921	467.9	438.6	408.5	390.2			
922	256.0	279.7	305.5	321.8			
93	186.8	205.4	224.9	237.9			
128	349.9	324.4	299.5	284.7			
201	788.5	766.5	743.1	726.7			
202	843.7	834.7	822.8	812.7			
203	846.1	849.3	850.8	849.6			
204	802.2	818.2	832.4	838.9			
205	686.1	715.6	743.7	759.9			
206	602.7	633.3	662.5	680.7			
207	512.9	542.8	573.3	593.5			

Table X(continued)
Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 2.0$, Inverted, Pressures in psf

	Nominal α						
Ori-	-5.0°	-2.5°	0.0°	2.5°			
fice	Ref 73	Ref 72	Ref 71	Ref 70			
ID	Pi	Pi	Pi	Pi			
208	392.7	426.8	463.0	486.0			
٤09	658.8	667.4	673.2	676.3			
210	715.9	727.4	738.5	743.3			
211	769.1	784.2	799.0	805.2			
212	777.1	791.6	806.2	812.2			
213	725.7	738.5	749.4	754.1			
214	670.7	679.5	686.7	689.8			
215	459.3	430.1	399.3	381.9			
216	350.1	357.8	363.5	366.2			
217	365.0	373.6	380.6	384.3			
218	261.0	285.1	310.9	328.2			
219	202.8	208.1	216.5	221.1			
220	210.4	213.9	218.1	222.7			
225	351.7	324.6	298.5	283.8			
226	573.9	542.3	511.0	491.3			
227	617.4	583.0	547.9	524.3			
228	721.7	694.5	665.9	646.1			
229	324.3	354.5	385.0	404.3			
230	155.8	168.7	184.5	194.8			
231	478.2	480.2	479.9	479.2			
232	584.2	589.3	592.1	593.5			
233	602.5	607.8	611.4	612.9			
234	495.9	497.1	497.2	497.8			
235	192.1	204.9	215.3				
236			198.1	207.5			
237							
238	150.9		177.2				
239			176.0				
244			297.3				
245	352.7		+				
246							
247							
248							
249							
252	342.5	374.8	407.6	428.2			

Table XI: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 2.0$, Upright, Pressures in psf

	т								
۸	0.50				Nominal	α			
Ori- fice		0.00	2.5	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
ID					Ref 32				Ref 36
<u>2</u>	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
5	268.1	279.0	304.5	329.9	386.2	445.3	507.3	573.5	637.1
6	354.8	354.6	355.2	354.7	350.4	341.5	331.9	321.7	306.3
9	332.2	333.4	334.2	334.0	329.8	324.1	317.1	305.8	288.3
10	394.9	380.5	351.3	324.0	274.4	232.0	196.1	164.6	139.8
13	217.8	227.3	249.8	272.7	324.0	380.7	441.7	503.6	567.2
14	307.4	306.9	306.4	305.7	302.1	298.7	292.7	283.1	272.9
17	287.2	287.8	288.4	287.7	286.5	283.0	278.0	268.2	257.9
	396.0	381.5	351.9	322.2	271.2	228.5	191.9	157.1	127.3
19 20	259.3	258.1	256.7	257.2	254.9	252.5	250.1	245.1	238.9
21	255.2	255.7	254.0	243.0	241.7	239.7	236.8	230.1	226.4
22	231.5	231.6	230.2	231.2	237.1	236.7	228.4	221.7	221.8
23	214.5	215.3	216.1	217.4	222.8	221.9	215.6	211.1	212.8
24	208.2	207.7	208.9	209.3	209.0	206.9	208.2	209.2	208.5
25	197.2	197.4	198.3	199.1	199.6	196.4	197.9	198.7	196.9
26	197.5	197.6	198.3	198.7	197.4	191.7	190.4	191.7	195.8
43	188.0	188.0	188.4	188.9	187.3	184.9	184.2	183.6	187.6
44	303.5	308.2	317.4	324.0	335.1	341.8	342.4	337.0	330.0
85	286.5	290.5	299.5	306.2	315.9	319.9	319.6	314.2	306.4
86	387.6 364.6	388.2	388.3	387.5	383.6	375.9	366.2	351.8	331.5
87	301.4	365.8	366.9	366.7	364.0	358.1	348.6	335.1	314.9
88		311.8	333.8	354.6	398.3	442.4	483.7	523.4	558.1
89	290.2 156.2	300.3	322.3	343.1	386.4	429.0	469.4	509.5	541.6
90	155.8	162.0	175.6	192.5	229.3	273.1	320.4	372.6	426.9
91	155.7	161.3	175.3	191.7	227.0	270.5	316.4	367.3	423.3
921	423.7	161.0	174.9	191.1	228.0	271.7	320.2	375.1	432.4
220	290.8	410.1	379.7	351.2	298.8	253.1	213.2	177.4	149.2
93	212.8	8.506	329.9	357.2	417.6	483.6	548.4	613.7	676.8
28	313.7	223.0	244.2	266.9	317.4	373.4	433.9	496.3	560.5
201	756.4	301.9 743.9	279.1	257.5	221.0	192.1	169.4	152.6	143.4
202	829.5		716.5	689.6	627.7	561.6	492.4	425.8	364.3
03	849.8	823.8	807.4	789.9	744.3	690.0	630.5	568.9	508.1
04	823.9	850.4	848.1	844.1	823.4	789.9	745.9	695.8	638.8
05	728.6	830.7 741.6		848.1	852.2	844.2	821.9	789.7	744.0
06	645.7		766.5	790.3	825.7	846.1	851.1	846.6	826.9
07	555.2			716.3	767.3	806.6	833.2	850.2	853.4
<u> </u>	۵۵۵.۵	070.3	601.4	632.8	694.2	747.4	791.2	825.7	847.0

Table XI(continued)
Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 2.0$, Upright, Pressures in psf

	Nominal α									
Ori-	-2.5°	0.0	2.5°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°	
fice	Ref 28	Ref 29	Ref 30	Ref 31	Ref 32				Ref 36	
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	
208	441.7	459.2	496.6	532.4	604.7	670.8	727.7	778.3	817.9	
209	687.1	689.0	692.8	695.7	692.3	677.6	654.2	623.7	585.9	
210	746.3	750.7	758.2	763.9	765.5	753.9	731.6	700.2	659.4	
211	798.6	804.7	815.4	824.0	829.3	820.5	798.1	766.5	722.6	
212	790.7	796.7	806.2	814.5	818.8	811.5	790.8	760.9	719.9	
213	729.2	734.0	740.5	745.2	746.4	736.2	713.3	684.5	646.0	
214	665.5	668.6	673.0	675.3	671.7	659.3	636.6	607.7	571.7	
215	416.6	402.4	372.3	344.4	292.6	247.3	208.8	174.1	146.6	
216	376.2	379.3	384.4	388.4	391.3	389.6	383.1	371.9	354.0	
217	359.2	362.4	367.0	370.9	375.4	373.3	367.9	355.8	336.0	
218	297.4	310.0	337.0	364.5	423.2	486.8	550.5	615.4	676.5	
219	221.5	225.9	231.9	236.4	237.8	234.9	228.0	221.4	206.3	
220	204.0	206.5	213.2	221.0	223.3	220.7	216.1	209.1	191.3	
225	310.7	298.8	275.9	255.3	217.8	185.6	159.8	141.3	126.1	
226	528.1	512.3	480.8	449.4	383.5	320.2	268.7	224.2	187.9	
227	567.3	549.9	512.6	474.6	403.5	348.0	300.9	257.8	219.2	
228	681.4	666.6	636.6	605.9	544.4	483.8	423.0	364.6	304.6	
229	366.6	381.2	412.8	442.9	506.8	572.7	635.3	695.2	749.8	
230	174.5	181.7	199.4	218.2	260.9	310.7	365.3	425.7	490.3	
231	500.2	500.1	498.8	497.4	488.9	479.7	463.4	440.9	416.2	
232	609.2	610.2	611.4	612.9	608.2	594.5	574.6	547.2	515.7	
233	590.1	591.1	593.8	592.7	586.4	574.3	552.7	527.0	493.8	
234	475.9	475.3	475.2	472.7	467.2	455.2	441.0	422.8	401.3	
235	216.1	221.5	232.6	242.8	257.1	264.6	267.1	268.4	273.3	
236	192.4	199.7	216.8	233.2	265.1	295.7	324.5	352.8	380.8	
237	171.6	179.2	196.1	214.5	253.9	298.1	346.1	397.5	453.1	
238	168.3	175.5	191.7	209.6	250.6	296.7	347.4	403.8	465.0	
239	166.6	173.2	189.1	206.8	247.6	293.8	346.7	404.1	468.6	
244	310.7	299.2	276.7	254.5	218.0	187.8	165.6	147.0	137.6	
245	313.0	302.3	279.6	258.1	219.6	188.3	163.8	145.7	132.0	
246	270.4	269.0	267.0	264.3	260.5	256.6	252.7	244.4	241.2	
247	233.2	235.2	238.6	241.0	243.2	239.4	229.0	210.8	183.6	
248	214.2	213.7	212.5	211.2	206.0	197.9	190.4	183.9	185.2	
249	201.3	201.5	201.6	200.5	196.9	189.1	182.2	175.6	175.1	
252	387.3	404.2	438.3	470.4	535.9	600.8	661.3	719.5	769.9	

Table XII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\infty} = 2.0$, Upright, Pressures in psf

		Nominal α									
Ori-	-2.5°	0.0	2.5°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°		
fice	Ref 39		Ref 41		Ref 43	Ref 44	Ref 45	Ref 46	Ref 47		
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi		
2	267.6	278.7	299.2	330.7	385.8	444.4	507.1	572.3	637.7		
5	330.7	331.6	331.9	330.7	326.4	318.8	310.7	298.6	282.4		
6	354.2	354.7	355.4	355.3	352.9	346.1	338.8	328.3	312.7		
9	394.1	380.7	356.4	322.9	274.0	231.7	195.0	165.2	139.6		
10	216.5	226.3	243.8	272.1	323.6	379.7	441.2	502.9	568.1		
13	285.2	285.6	286.2	284.8	282.3	276.6	271.6	262.4	251.2		
14	307.1	307.5	307.7	307.7	306.0	303.4	297.9	289.9	280.4		
17	395.3	380.9	357.3	322.9	270.8	226.7	189.1	156.4	129.0		
19	242.0	240.1	238.9	238.6	237.0	234.5	230.3	224.8	218.1		
20	273.3	273.5	262.4	260.1	258.8	256.9	254.9	250.0	247.0		
21	213.9	214.1	214.4	216.0	220.3	217.9	210.9	204.1	206.4		
22	229.3	230.2	231.3	232.2	238.8	239.0	234.1	227.6	227.4		
23	192.3	192.3	193.6	194.5	194.8	193.0	193.1	193.2	190.2		
24	212.3	212.6	212.9	213.7	213.7	211.2	211.5	215.9	216.1		
25	182.7	183.2	183.9	183.9	183.2	178.7	176.2	178.3	180.9		
26	201.0	201.9	202.9	203.2	201.5	197.0	197.1	198.2	202.4		
43	284.1	288.9	296.1	304.2	313.4	316.4	317.2	311.3	305.1		
44	304.2	308.6	316.5	325.9	336.8	342.5	343.7	340.2	328.5		
85	364.0	364.4	365.4	363.5	358.2	351.7	342.2	328.3	309.6		
86	387.1	388.2	388.6	390.5	388.0	381.3	371.0	358.0	339.4		
87	289.2	300.4	316.9	340.3	382.1	424.4	463.9	503.0	536.3		
88	300.3	311.3	329.1	355.7	400.3	445.2	488.4	529.9	565.5		
89	154.5	159.8	170.3	189.5	225.5	267.8	313.8	365.5	420.2		
90	154.6	160.6	172.2	192.1	229.5	273.2	321.0	373.6	430.1		
91	153.8	159.5	170.7	189.6	226.9	270.3	319.5	375.0	432.2		
921	424.0	409.7	385.4	351.4	299.0	253.3	212.2	177.7	148.5		
922	289.1	301.2	322.7	355.5	416.9	482.4	548.3	613.9	677.8		
93	211.8	221.9	239.1	266.5	316.8	372.7	433.4	495.6	561.3		
128	312.9	300.6	282.0	257.3	221.1	191.6	168.6	152.2	142.8		
201	755.0	743.4	723.0	689.8	629.3	561.1	492.3	426.9	366.4		
202	827.8	821.9	809.2	788.6	744.1	688.5	629.3	568.2	509.0		
203	848.6	848.3	847.4	842.7	823.5	788.7	745.3	695.1	639.3		
204	822.6	828.4	837.3	846.6	852.0	843.1	821.4	789.6	745.2		
205	726.7	739.3	760.2	788.5	824.9	844.7	850.1	846.8	828.5		
206	644.5	658.3	680.9	714.3	765.2	804.5	832.1	850.2	854.9		
207	554.2	568.6	593.6	631.2	692.5	745.7	790.2	825.7	848.7		

-30-

Table XII(continued)
Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\infty} = 2.0$, Upright, Pressures in psf

F	r			N	ominal o	x			
Ori-	-2.5°	0.0°	2.5°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
						Ref 44	Ref 45	Ref 46	Ref 47
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
208	440.6	458.4	487.0	530.9	603.4	668.4	726.5	778.2	818.9
209	663.2	665.1	669.0	672.0	668.0	654.3	629.9	600.5	564.0
210	726.4	730.8	736.9	743.6	745.7	734.5	711.1	680.5	642.4
211	786.1	792.2	801.2	811.0	818.4	809.2	786.3	755.9	714.0
212	799.1	805.1	813.4	823.7	830.1	820.5	800.1	771.6	730.5
213	747.1	751.0	757.3	763.7	766.4	753.6	732.8	703.2	663.1
214	687.5	691.0	693.8	697.8	695.1	680.8	659.4	630.0	593.5
215	414.4	400.4	376.3	342.5	291.7	246.7	207.1	174.6	146.5
216	354.2	357.0	360.5	364.0	366.0	364.5	358.5	347.6	330.3
217	379.7	383.4	387.7	393.7	398.2	397.1	391.0	381.6	362.9
218	294.6	306.6	328.3	361.3	421.2	483.8	548.1	611.9	673.6
219	206.0	209.7	215.7	220.6	221.2	215.3	209.9	201.4	179.5
220	217.4	219.5	228.8	236.5	239.5	237.8	234.1	229.0	214.5
225	309.2	298.0	279.8	254.5	216.8	185.1	160.1	140.9	125.1
226	526.8	512.2	487.3	449.1	382.6	320.9	268.4	225.1	188.1
227	566.4	549.0	520.2	474.3	403.1	348.4	301.1	258.4	219.9
228	680.5	666.8	642.3	606.0		482.5	422.7	365.5	304.1
229	365.8	380.5	406.0	441.8		570.8	634.6	695.1	751.1
230	172.8	180.2	194.5	217.4		309.9	364.4	424.4	489.7
231	472.0	472.5	470.9	468.5		451.6	436.5	415.8	392.4
232	583.5	583.9	585.4			569.1	549.6	523.3	
233	615.2	616.7	617.8			598.5	576.9	551.3	
234	503.3	502.7	502.2			482.1	465.7		
235	204.6	209.9	218.3						
236	185.6								
237	168.7	175.7	188.2						
238	166.0	172.6	185.2						
239	164.9	171.6							
244	309.7	298.2							
245	312.3	301.6							
246	251.0								
247	217.3								
248									
249	217.1								
252	387.6	402.7	429.5	469.0	534.6	598.6	660.2	718.6	771.6

Table XIII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 2.0$, Upright, Pressures in psf

	Nominal α									
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.08		
fice	Ref 50		Ref 52					Ref 57		
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi		
2	265.4	277.0	330.1	385.9	443.3	504.9	570.2	634.5		
5	298.7	299.3	298.3	293.5	285.5	278.2	266.2	250.3		
6	390.3	391.6	393.2	389.9	383.7	376.2	363.7	350.5		
9	393.2	378.2	322.2	272.9	230.6	194.3	162.7	137.9		
10	215.7	226.2	270.5	322.0	378.4	439.7	501.5	566.0		
13	257.3	257.6	255.9	252.8	248.0	241.3	233.7	220.0		
14	339.5	339.8	341.0	339.3	337.1	331.4	322.2	313.5		
17	387.4	372.5	316.2	266.7	221.3	187.8	148.7	126.1		
19	222.6	221.7	214.5	211.6	209.9	205.5	198.4	187.6		
_ 20	295.5	293.2	289.9	289.5	286.7	284.6	282.7	279.6		
21	191.0	192.2	194.8	198.5	196.2	186.9	180.3	173.4		
22	259.6	260.3	260.0	265.4	267.6	262.4	257.1	256.1		
23	174.4	174.6	177.3	176.9	173.7	172.5	170.8	168.6		
24	232.7	233.6	236.1	236.0	233.7	239.4	243.8	243.8		
25	165.3	165.8	167.7	166.1	162.3	159.4	157.0	162.3		
26	225.6	225.9	226.5	224.4	223.1	220.1	220.4	226.3		
43	258.6	262.8	274.6	280.6	282.8	280.9	277.1	270.8		
44	333.3	338.3	357.5	371.9	379.8	382.4	377.3	370.9		
85	329.7	330.0	329.0	323.0	315.9	307.5	293.4	276.2		
86	421.7	423.2	426.7	424.5	418.3	409.4	393.9	375.7		
87	273.0	281.9	319.4	357.9	397.2	434.4	470.4	502.8		
88	316.3	327.2	375.2	423.3	471.9	517.5	559.4	596.8		
89	152.5	157.7	185.7	219.7	261.4	305.8	357.0	410.4		
90	154.1	161.3	195.1	233.2	279.0	327.1	380.0	437.9		
91	152.9	158.6	189.4	226.7	270.6	318.8	373.5	431.0		
921	422.8	408.7	351.0	297.8	251.9	211.6	175.5	147.1		
922	286.9	299.2	354.2	415.3	480.8	545.5	611.0	674.2		
93	211.1	221.2	265.1	315.4	371.3	431.9	494.1	560.2		
128	310.7	299.3	254.2	218.2	188.6	165.8	150.4	138.9		
201	752.7	740.5	687.9	625.8	560.3	491.8	425.9	366.0		
202	824.4	818.4	785.1	739.0	685.8	625.7	565.2	505.9		
203	845.3	845.9	839.4	818.6	785.5	741.1	692.5	636.4		
204	819.4	826.0	843.9	848.1	840.2	817.5	786.6	741.8		
205	722.3	736.3	784.7	820.8	841.3	846.4	843.0	823.7		
206	640.9	655.2	710.1	761.6	801.6	827.7	846.0	850.4		
207	551.9	567.2	628.3	690.3	743.2	785.7	821.3	843.4		

Table XIII(continued)
Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 2.0$, Upright, Pressures in psf

	<u> </u>						·····	Nominal a										
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°										
fice	Ref 50	Ref 51	Ref 52	Ref 53	Ref 54	Ref 55	Ref 56	Ref 57										
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi										
208	438.7	456.2	529.2	600.9	665.6	723.0	774.4	813.8										
209	627.6	630.4	636.7	632.3	618.4	594.3	565.3	530.1										
210	695.0	698.7	711.6	713.0	701.6	679.3	650.9	613.2										
211	765.9	772.8	791.3	797.2	789.4	767.6	737.1	695.1										
212	811.8	817.9	835.9	840.3	833.8	811.7	783.1	741.3										
213	771.4	776.6	790.1	791.1	781.7	758.8	728.8	688.5										
214	718.6	721.7	729.9	727.7	714.5	692.2	662.9	624.7										
215	409.8	395.6	339.2	288.2	244.3	205.8	171.6	144.9										
216	321.7	325.1	329.2	330.7	328.8	323.1	310.5	295.7										
217	413.4	416.8	430.2	435.4	435.5	430.9	419.8	402.2										
218	289.2	301.6	356.1	416.2	479.3	541.1	604.9	665.7										
219	184.2	188.6	198.1	198.3	193.2	183.9	169.0	143.7										
220	243.0	247.6	263.8	267.4	266.7	260.5	260.8	255.9										
225	308.2	295.8	253.4	215.1	184.9	158.5	138.3	123.0										
226	525.3	510.1	447.6	381.9	320.8	269.3	225.5	189.0										
227	564.3	547.2	472.7	403.7	349.0	301.0	258.5	218.6										
228	678.7	664.3	604.8	543.1	482.2	421.8	364.0	303.0										
229	364.1	379.6	441.0	505.2	569.1	631.4	691.9	746.6										
230	171.7	180.0	215.7	259.7	308.8	363.8	423.1	488.9										
231	431.5	431.7	427.0	422.6	413.6	398.0	378.6	357.9										
232	545.3	546.2	548.1	544.1	531.7	513.0	487.9	458.8										
233	651.5	652.6	656.0	649.7	635.8	614.5	587.1	552.7										
234	543.4	543.1	541.6	533.8	521.0	504.8	483.7	457.2										
235	189.6	193.5	207.3	213.8	215.8	216.4	216.4	220.2										
236	176.3	182.2	207.9	232.0	255.3	278.3	302.1	328.4										
237	164.8	171.7	202.5	238.3	278.2	323.1	371.3	426.2										
238	163.3	170.2	202.5	240.7	284.5	334.3	387.8	448.3										
239	163.5	170.5	204.8	243.8	290.5	343.0	399.2	463.7										
244	309.0	296.8	253.4	215.0	185.1	161.9	144.7	133.4										
245	311.2	299.6	255.6	217.1	184.6	158.9	141.5	127.0										
246	229.4	228.3	221.5	217.5	212.9	209.0	201.4	198.2										
247	195.9	198.2	203.0	200.6	192.7	178.3	153.9	129.8										
248	177.4	178.0	177.7	175.4	168.5	160.0	152.8	151.5										
249	239.8	239.4	237.6	231.3	225.1	218.7	214.0	212.8										
252	385.2	401.6	467.6	533.2	597.7	657.8	715.4	766.6										

Table XIV: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 2.0$, Upright, Pressures in psf

	Nominal α						
Ori-	0.0	15.0°	25.0°				
fice	Ref 59	Ref 60	Ref 61				
ID	Pi	Pi	Pi				
2	275.9	443.6	572.1				
5	375.6	364.8	345.9				
6	311.4	302.6	283.4				
9	380.3	231.7	163.7				
10	225.7	379.7	502.8				
13	326.5	319.0	306.1				
14	268.5	263.4	246.4				
17	378.6	226.7	156.8				
19	275.7	270.4	264.6				
20	237.1	222.1	214.0				
21	246.8	254.1	241.1				
22	199.0	204.0	194.3				
23	223.1	223.1	226.8				
24	181.8	182.9	185.5				
25	211.9	206.0	206.2				
26	177.1	174.1	171.0				
43	326.1	364.1	363.6				
44	272.5	297.5	288.5				
85	410.2	399.8	376.1				
86	342.7	335.5	311.2				
87	320.5	458.0	543.7				
88	288.0	411.4	487.0				
89	160.7	276.4	376.6				
90	159.0	264.9	362.0				
91	159.1	271.1	373.9				
921	408.4	252.3	176.8				
922	301.0	482.2	612.8				
93	220.9	371.9	496.2				
128	302.3	190.9	152.3				
201	742.0	560.1	424.8				
202	820.9	688.8	569.0				
203	847.3	787.6	695.1				
204	826.1	841.8	788.2				
205	737.7	844.2	845.3				
206	657.0	805.2	849.1				
207	567.7	746.6	825.0				

Table XIV(continued)
Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 2.0$, Upright, Pressures in psf

	N	ominal d	χ 7
Ori-	0.0°	15.0°	25.0°
		Ref 60	Ref 61
ID	Pi	Pi	Pi
208	458.2	668.9	778.4
209	710.1	701.4	645.1
210	766.9	773.3	718.3
211	812.0	829.6	775.3
212	781.5	798.2	749.2
213	712.1	713.7	664.6
214	644.1	634.0	584.9
215	403.7	247.7	173.7
216	400.6	414.0	397.2
217	339.2	349.9	329.4
218	308.8	487.7	616.8
219	239.9	252.3	243.6
220	191.6	203.0	187.8
225	296.7	184.7	140.4
226	512.0	320.3	224.2
227	549.5	348.6	257.0
228	665.4	481.4	363.5
229	380.2		694.7
230	180.9	308.7	424.8
231	525.0	504.7	466.8
232	633.9	620.1	572.0
233	566.3	547.9	501.5
234	448.5	430.8	400.0
235	232.5	284.7	291.9
236	205.3	310.4	371.3
237	180.0	304.3	406.8
238	175.1	299.3	407.9
239	172.0	293.4	
244	298.2	186.6	146.4
245	300.9		
246	287.6		
247	250.0	258.3	
248		211.9	
249	185.9	177.6	
252	402.5	599.8	718.4

Table XV: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 2.0$, Upright, Pressures in psf

	N	ominal	α
Ori-	0.0°	15.0°	25.0°
fice	Ref 62	Ref 63	Ref 64
ID	Pi	Pi	Pi
2	273.7	442.3	570.2
5	413.6	403.4	384.6
6	280.2	271.1	250.6
9	377.2	229.6	162.2
10	226.4	378.0	501.2
13	362.2	353.6	339.4
14	240.4	234.1	217.7
17	371.6	220.9	148.7
19	305.8	301.9	298.6
20	212.3	198.4	186.8
21	275.6	285.0	271.0
22	180.5	182.0	173.0
23	248.5	247.9	255.4
24	165.0	163.5	160.5
25	237.1	229.2	230.2
26	160.1	158.1	152.0
43	357.1	402.5	406.7
44	246.7	263.8	253.9
85	448.0	439.3	414.9
86	310.1	300.8	278.7
87	339.0	483.4	574.1
88	271.1	384.0	454.6
89	161.3	281.5	384.8
90	155.6	258.3	352.5
91	158.1	270.9	373.9
921	405.3	250.3	175.6
922	300.5	479.8	610.3
93	221.3	371.1	493.7
128	300.1	188.1	147.7
201	735.5	554.2	421.2
202	813.0	683.9	566.7
203	840.1	781.8	690.0
204	818.6	835.6	782.1
205	731.9	838.0	839.8
206		799.3	844.0
207	563.5	741.1	820.0

Table XV(continued)
Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 2.0$, Upright, Pressures in psf

	N	ominal d	$\overline{\mathbf{x}}$
Ori-	0.0	15.0°	25.0°
fice	Ref 62	Ref 63	Ref 64
ID	Pi	Pi	Pi
208	457.0	665.4	774.3
209	741.1	733.0	678.0
210	789.9	797.3	742.8
211	821.8	839.3	785.0
212	758.3	775.4	728.1
213	678.8	679.7	631.8
214	606.9	595.2	548.7
215	404.1	247.1	173.1
216	436.8	453.9	438.3
217	307.2	314.2	293.2
218	310.6	487.9	619.4
219	266.8	283.5	274.3
220	175.5	180.9	157.5
225	293.1	182.9	137.0
226	508.5	320.5	223.0
227	546.7	345.4	254.4
228	660.1	476.1	358.4
229	379.1	567.9	690.7
230	179.8	309.2	423.5
231	566.0	543.3	504.1
232	672.0	656.8	608.2
233	527.7	507.9	463.9
234	406.5	392.1	365.0
235	252.6	316.9	327.7
236	216.3	334.2	403.3
237	182.6	315.1	422.0
238	176.1	305.4	416.5
239	170.8	294.2	405.2
244	296.4	183.2	142.2
245	296.1	181.8	138.3
246			295.0
247		289.7	
248			223.4
249			145.4
252	400.8	595.9	714.7

Table XVI: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 2.3$, Inverted, Pressures in psf

	Nominal α						
Ori-	-5.0°	-2.5°	0.0°	2.5°			
fice		Ref 72		Ref 70			
ID	Pi	Pi	Pi	Pi			
2	235.8	257.7	282.7	298.1			
5	335.5	335.5	337.5	337.2			
6	347.3	350.3	351.9	353.0			
9	441.4	410.1	379.6	361.5			
10	191.2	209.7	229.7	243.0			
13	291.2	290.1	291.4	291.0			
14	303.1	305.1	305.1	305.2			
17	442.7	412.2	381.9	361.7			
19	252.3	250.5	246.6	245.0			
20	271.5	270.3	270.8	269.1			
21	216.6	218.6	220.6	219.7			
22	226.7	228.1	229.0	228.8			
23	199.4	199.2	198.9	198.3			
24	207.4	208.6	209.5	208.9			
25	183.4	184.9	185.1	185.2			
26	198.1	198.9	199.9	200.1			
43	275.6	286.5	294.9	300.3			
44	286.2	298.0	308.5	312.9			
85	366.6	369.1	370.8	371.5			
86	377.8	381.9	384.9	385.3			
87	263.9	284.8	305.7	318.4			
88	268.9	290.4	312.8	326.4			
89	141.2	152.9	164.6	172.7			
90	140.4	152.5	165.0	172.8			
91	141.5	151.6	163.3	169.4			
921	467.9	438.6	408.5	390.2			
922	256.0	279.7	305.5	321.8			
93	186.8	205.4	224.9	237.9			
128	349.9	324.4	299.5	284.7			
201	788.5	766.5	743.1	726.7			
202	843.7	834.7	822.8	812.7			
203	846.1	849.3	850.8	849.6			
204	802.2	818.2	832.4	838.9			
205	686.1	715.6	743.7	759.9			
206	602.7	633.3	662.5	680.7			
207	512.9	542.8	573.3	593.5			

	Nominal α							
Ori-	-5.0°			2.5°				
fice	Ref 73	Ref 72	Ref 71	Ref 70				
ID	Pi	Pi	Pi	Pi				
208	392.7	426.8	463.0	486.0				
209	658.8	667.4	673.2	676.3				
210	715.9	727.4	738.5	743.3				
211	769.1	784.2	799.0	805.2				
212	777.1	791.6	806.2	812.2				
213	725.7	738.5	749.4	754.1				
214	670.7	679.5	686.7	689.8				
215	459.3	430.1	399.3	381.9				
216	350.1	357.8	363.5	366.2				
217	365.0	373.6	380.6	384.3				
218	261.0	285.1	310.9	328.2				
219	202.8	208.1	216.5	221.1				
220	210.4	213.9	218.1	222.7				
225	351.7	324.6	298.5	283.8				
226	573.9	542.3	511.0	491.3				
227	617.4	583.0	547.9	524.3				
228	721.7	694.5	665.9	646.1				
229	324.3	354.5	385.0	404.3				
230	155.8	168.7	184.5	194.8				
231	478.2	480.2	479.9	479.2				
232	584.2	589.3	592.1	593.5				
233	602.5	607.8	611.4	612.9				
234	495.9	497.1	497.2	497.8				
235	192.1	204.9	215.3	221.5				
236	167.4	183.5	198.1	207.5				
237	152.6	166.4	180.8	190.2				
238	150.9	158.0	177.2	186.8				
239	150.7	162.3	176.0	185.0				
244	347.7	324.1	297.3	282.2				
245	352.7	327.0	301.8	287.3				
246	264.0	259.6	256.2	254.7				
247	215.0	220.9	225.9	227.5				
248	204.4	204.9	203.3	202.2				
249	214.2	214.7	213.6	212.9				
252	342.5	374.8	407.6	428.2				

Table XVII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 2.3$, Upright, Pressures in psf

	Nominal α								
Ori-	-2.5°	0.0	2.5°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
1				Ref 31				Ref 35	Ref 36
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
2	268.1	279.0	304.5	329.9	386.2	445.3	507.3	573.5	637.1
5	354.8	354.6	355.2	354.7	350.4	341.5	331.9	321.7	306.3
6	332.2	333.4	334.2	334.0	329.8	324.1	317.1	305.8	288.3
9	394.9	380.5	351.3	324.0	274.4	232.0	196.1	164.6	139.8
10	217.8	227.3	249.8	272.7	324.0	380.7	441.7	503.6	567.2
13	307.4	306.9	306.4	305.7	302.1	298.7	292.7	283.1	272.9
14	287.2	287.8	288.4	287.7	286.5	283.0	278.0	268.2	257.9
17	396.0	381.5	351.9	322.2	271.2	228.5	191.9	157.1	127.3
19	259.3	258.1	256.7	257.2	254.9	252.5	250.1	245.1	238.9
20	255.2	255.7	254.0	243.0	241.7	239.7	236.8	230.1	226.4
21	231.5	231.6	230.2	231.2	237.1	236.7	228.4	221.7	221.8
22	214.5	215.3	216.1	217.4	222.8	221.9	215.6	211.1	212.8
23	208.2	207.7	208.9	209.3	209.0	206.9	208.2	209.2	208.5
24	197.2	197.4	198.3	199.1	199.6	196.4	197.9	198.7	196.9
25	197.5	197.6	198.3	198.7	197.4	191.7	190.4	191.7	195.8
26	188.0	188.0	188.4	188.9	187.3	184.9	184.2	183.6	187.6
43	303.5	308.2	317.4	324.0	335.1	341.8	342.4	337.0	330.0
44	286.5	290.5	299.5	306.2	315.9	319.9	319.6	314.2	306.4
85	387.6	388.2	388.3	387.5	383.6	375.9	366.2	351.8	331.5
86	364.6	365.8	366.9	366.7	364.0	358.1	348.6	335.1	314.9
87	301.4	311.8	333.8	354.6	398.3	442.4	483.7	523.4	558.1
88	290.2	300.3	322.3	343.1	386.4	429.0	469.4	509.5	541.6
89	156.2	162.0	175.6	192.5	229.3	273.1	320.4	372.6	426.9
90		161.3	175.3	191.7	227.0	270.5	316.4	367.3	423.3
91	155.7	161.0	174.9	191.1	228.0	271.7	320.2	375.1	432.4
921	423.7	410.1	379.7	351.2	298.8	253.1	213.2	177.4	149.2
922		302.8	329.9	357.2	417.6	483.6	548.4	613.7	676.8
93		223.0	244.2	266.9	317.4	373.4	433.9	496.3	560.5
128		301.9	279.1	257.5	221.0	192.1	169.4	152.6	143.4
201	756.4	743.9	716.5	689.6	627.7	561.6	492.4	425.8	364.3
202		823.8	807.4	789.9	744.3	690.0	630.5	568.9	508.1
203		850.4	848.1	844.1	823.4	789.9	745.9	695.8	
204		830.7	840.2	848.1	852.2	844.2	821.9	789.7	744.0
205		741.6	766.5	790.3		846.1	851.1	846.6	826.9
206		660.1	689.3	716.3		806.6	833.2	850.2	853.4
207		570.3	601.4	632.8		747.4	791.2	825.7	847.0

	<u> </u>				ominal				
Ori-	-2.5°	0.00	2.5°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
		Ref 29	Ref 30	Ref 31	Ref 32	Ref 33			Ref 36
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
208	441.7	459.2	496.6	532.4	604.7	670.8	727.7	778.3	817.9
209	687.1	689.0	692.8	695.7	692.3	677.6	654.2	623.7	585.9
210	746.3	750.7	758.2	763.9	765.5	753.9	731.6	700.2	659.4
211	798.6	804.7	815.4	824.0	829.3	820.5	798.1	766.5	722.6
212	790.7	796.7	806.2	814.5	818.8	811.5	790.8	760.9	719.9
213	729.2	734.0	740.5	745.2	746.4	736.2	713.3	684.5	646.0
214	665.5	668.6	673.0	675.3	671.7	659.3	636.6	607.7	571.7
215	416.6	402.4	372.3	344.4	292.6	247.3	208.8	174.1	146.6
216	376.2	379.3	384.4	388.4	391.3	389.6	383.1	371.9	354.0
217	359.2	362.4	367.0	370.9	375.4	373.3	367.9	355.8	336.0
218	297.4	310.0	337.0	364.5	423.2	486.8	550.5	615.4	676.5
219	221.5	225.9	231.9	236.4	237.8	234.9	228.0	221.4	206.3
220	204.0	206.5	213.2	221.0	223.3	220.7	216.1	209.1	191.3
225	310.7	298.8	275.9	255.3	217.8	185.6	159.8	141.3	126.1
226	528.1	512.3	480.8	449.4	383.5	320.2	268.7	224.2	187.9
227	567.3	549.9	512.6	474.6	403.5	348.0	300.9	257.8	219.2
228	681.4	666.6	636.6	605.9	544.4	483.8	423.0	364.6	304.6
229	366.6	381.2	412.8	442.9	506.8	572.7	635.3	695.2	
230	174.5	181.7	199.4		260.9	310.7	365.3	425.7	490.3
231			498.8		488.9	479.7	463.4	440.9	416.2
232			611.4		608.2	594.5	574.6	547.2	
233	590.1	591.1	593.8		586.4		552.7	527.0	
234		475.3			467.2			422.8	
235		221.5	232.6			264.6		268.4	
236						295.7		352.8	
237							346.1	397.5	
238									
239									
244									
245									
246									
247									
248				 					
249									
252	387.3	404.2	438.3	470.4	535.9	600.8	661.3	719.5	109.8

Table XVIII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\odot} = 2.3$, Upright, Pressures in psf

				Nomi	nal α			
Ori-	-2.5°	0.0	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice							Ref 46	Ref 47
ID	Pi	Pi						
2	267.6	278.7	330.7	385.8	444.4	507.1	572.3	637.7
5	330.7	331.6	330.7	326.4	318.8	310.7	298.6	282.4
8	354.2	354.7	355.3	352.9	346.1	338.8	328.3	312.7
9	394.1	380.7	322.9	274.0	231.7	195.0	165.2	139.6
10	216.5	226.3	272.1	323.6	379.7	441.2	502.9	568.1
13	285.2	285.6	284.8	282.3	276.6	271.6	262.4	251.2
14	307.1	307.5	307.7	306.0	303.4	297.9	289.9	280.4
17	395.3	380.9	322.9	270.8	226.7	189.1	156.4	129.0
19	242.0	240.1	238.6	237.0	234.5	230.3	224.8	218.1
20	273.3	273.5	260.1	258.8	256.9	254.9	250.0	247.0
21	213.9	214.1	216.0	220.3	217.9	210.9	204.1	206.4
22	229.3	230.2	232.2	238.8	239.0	234.1	227.6	227.4
23	192.3	192.3	194.5	194.8	193.0	193.1	193.2	190.2
24	212.3	212.6	213.7	213.7	211.2	211.5	215.9	216.1
25	182.7	183.2	183.9	183.2	178.7	176.2	178.3	180.9
26	201.0	201.9	203.2	201.5	197.0	197.1	198.2	
43		288.9	304.2	313.4	316.4	317.2		
44		308.6	325.9	336.8		343.7	340.2	
85		364.4	363.5	358.2	351.7			
86		388.2	390.5					
87		300.4	340.3	382.1				
88		311.3	355.7					
89	154.5	159.8	189.5	225.5				
90	154.6	160.6	192.1	229.5				
91	153.8	159.5	189.6	226.9				
921	424.0	409.7	351.4					
922	289.1	301.2	355.5					
93	211.8	221.9	266.5					
128								
201		743.4						
202		821.9	788.6					
203		848.3	842.7					
204	822.6	828.4						
205			788.5	824.9				
206								
207		568.6	631.2	692.5	745.7	790.2	825.7	848.7

Table XVIII(continued)
Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\infty} = 2.3$, Upright, Pressures in psf

				Nomi			-	
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 39	Ref 41	Ref 42	Ref 43	Ref 44	Ref 45	Ref 46	Ref 47
ID	Pi	Pi	Pi Pi		Pi	Pi	Pi	Pi
208	440.6	458.4	530.9	603.4	668.4	726.5	778.2	818.9
209	663.2	665.1	672.0	668.0	654.3	629.9	600.5	564.0
210	726.4	730.8	743.6	745.7	734.5	711.1	680.5	642.4
211	786.1	792.2	811.0	818.4	809.2	786.3	755.9	714.0
212	799.1	805.1	823.7	830.1	820.5	800.1	771.6	730.5
213	747.1	751.0	763.7	766.4	753.6	732.8	703.2	663.1
214	687.5	691.0	697.8	695.1	680.8	659.4	630.0	593.5
215	414.4	400.4	342.5	291.7	246.7	207.1	174.6	146.5
216	354.2	357.0	364.0	366.0	364.5	358.5	347.6	330.3
217	379.7	383.4	393.7	398.2	397.1	391.0	381.6	362.9
218	294.6	306.6	361.3	421.2	483.8	548.1	611.9	673.6
219	206.0	209.7	220.6	221.2	215.3	209.9	201.4	179.5
220	217.4	219.5	236.5	239.5	237.8	234.1	229.0	214.5
225	309.2	298.0	254.5	216.8	185.1	160.1	140.9	125.1
226	526.8	512.2	449.1	382.6	320.9	268.4	225.1	188.1
227	566.4	549.0	474.3	403.1	348.4	301.1	258.4	219.9
228	680.5	666.8	606.0	544.4	482.5	422.7	365.5	304.1
229	365.8	380.5	441.8	506.5	570.8	634.6	695.1	751.1
230	172.8	180.2	217.4	260.2	309.9	364.4	424.4	489.7
231	472.0	472.5	468.5	462.9	451.6	436.5	415.8	392.4
232	583.5	583.9	586.5	582.6	569.1	549.6	523.3	492.9
233	615.2	616.7	618.2	612.2	598.5	576.9	551.3	519.1
234	503.3	502.7	500.8	493.1	482.1	465.7	447.1	423.3
235	204.6	209.9	227.4	238.9	245.3	245.3	247.3	251.8
236	185.6	192.4	222.7	251.4	279.3	304.9	330.5	358.7
237	168.7	175.7	208.7	247.8	289.5	337.3	388.5	442.3
238	166.0	172.6	206.4	246.4	291.7	342.6	398.4	458.9
239	164.9	171.6	205.2	246.2	292.0	345.3	402.9	466.7
244	309.7	298.2	254.0	217.3	187.9	165.0	147.1	136.1
245	312.3	301.6	257.3	218.8	187.5	163.3	145.1	132.0
246	251.0	249.9	246.1	242.4	238.3	233.3	228.0	222.7
247	217.3	219.7	225.6	226.3	219.5	207.0	187.8	158.4
248	197.6	197.3	195.9	192.0	185.3	176.8	170.6	170.7
249	217.1	216.9	215.2	210.8	202.5	194.5	189.6	190.4
252	387.6	402.7	469.0	534.6	598.6	660.2	718.6	771.6

Table XIX: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 2.3$, Upright, Pressures in psf

		15155			nal α			
Ori-	-2.5°	0.0	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 50		Ref 52					Ref 57
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
2	265.4	277.0	330.1	385.9	443.3	504.9	570.2	634.5
5	298.7	289.3	298.3	293.5	285.5	278.2	266.2	250.3
6	390.3	391.6	393.2	389.9	383.7	376.2	363.7	350.5
9	393.2	378.2	322.2	272.9	230.6	194.3	162.7	137.9
10	215.7	226.2	270.5	322.0	378.4	439.7	501.5	566.0
13	257.3	257.6	255.9	252.8	248.0	241.3	233.7	220.0
14	339.5	339.8	341.0	339.3	337.1	331.4	322.2	313.5
17	387.4	372.5	316.2	266.7	221.3	187.8	148.7	126.1
19	222.6	221.7	214.5	211.6	209.9	205.5	198.4	187.6
20	295.5	293.2	289.9	289.5	286.7	284.6	282.7	279.6
21	191.0	192.2	194.8	198.5	196.2	186.9	180.3	173.4
22	259.6	260.3	260.0	265.4	267.6	262.4	257.1	256.1
23	174.4	174.6	177.3	176.9	173.7	172.5	170.8	168.6
24	232.7	233.6	236.1	236.0	233.7	239.4	243.8	243.8
25	165.3	165.8	167.7	166.1	162.3	159.4	157.0	162.3
26	225.6	225.9	226.5	224.4	223.1	220.1	220.4	226.3
43	258.6	262.8	274.6	280.6	282.8	280.9	277.1	270.8
44	333.3	338.3	357.5	371.9	379.8	382.4	377.3	370.9
85	329.7	330.0	329.0	323.0	315.9	307.5	293.4	276.2
86	421.7	423.2	426.7	424.5	418.3	409.4	393.9	375.7
87	273.0	281.9	319.4	357.9	397.2	434.4	470.4	502.8
88	316.3	327.2	375.2	423.3	471.9	517.5	559.4	596.8
89	152.5	157.7	185.7	219.7	261.4	305.8	357.0	410.4
90	154.1	161.3	195.1	233.2	279.0	327.1	380.0	437.9
91	152.9	158.6	189.4	226.7	270.6	318.8	373.5	431.0
921	422.8	408.7	351.0	297.8	251.9	211.6	175.5	147.1
922	286.9	299.2	354.2	415.3	480.8	545.5	611.0	674.2
93	211.1	221.2	265.1	315.4	371.3	431.9	494.1	560.2
128	310.7	299.3	254.2	218.2	188.6	165.8	150.4	138.9
201	752.7	740.5	687.9	625.8	560.3	491.8	425.9	366.0
202	824.4	818.4	785.1	739.0	685.8	625.7	565.2	505.9
203	845.3	845.9	839.4	818.6	785.5	741.1	692.5	636.4
204	819.4	826.0	843.9	848.1	840.2	817.5	786.6	741.8
205	722.3	736.3	784.7	820.8	841.3	846.4	843.0	823.7
206	640.9	655.2	710.1	761.6	801.6	827.7	846.0	850.4
207	551.9	567.2	628.3	690.3	743.2	785.7	821.3	843.4

Table XIX(continued)
Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 2.3$, Upright, Pressures in psf

	T			Nomi	nal α			
Ori-	-2.5°	0.00	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
1	Ref 50							Ref 57
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
208	438.7	453.2	529.2	600.9	665.6	723.0	774.4	813.8
209	627.6	630.4	636.7	632.3	618.4	594.3	565.3	530.1
210	695.0	698.7	711.6	713.0	701.6	679.3	650.9	613.2
211	765.9	772.8	791.3	797.2	789.4	767.6	737.1	695.1
212	811.8	817.9	835.9	840.3	833.8	811.7	783.1	741.3
213	771.4	776.6	790.1	791.1	781.7	758.8	728.8	688.5
214	718.6	721.7	729.9	727.7	714.5	692.2	662.9	624.7
215	409.8	395.6	339.2	288.2	244.3	205.8	171.6	144.9
216	321.7	325.1	329.2	330.7	328.8	323.1	310.5	295.7
217	413.4	416.8	430.2	435.4	435.5	430.9	419.8	402.2
218	289.2	301.6	356.1	416.2	479.3	541.1	604.9	665.7
219	184.2	i88.6	198.1	198.3	193.2	183.9	169.0	143.7
220	243.0	247.6	263.8	267.4	266.7	260.5	260.8	255.9
225	308.2	295.8	253.4	215.1	184.9	158.5	138.3	123.0
226	525.3	510.1	447.6	381.9	320.8	269.3	225.5	189.0
227	564.3	547.2	472.7	403.7	349.0	301.0	258.5	218.6
228	678.7	664.3	604.8	543.1	482.2	421.8	364.0	303.0
229	364.1	379.6	441.0	505.2	569.1	631.4	691.9	746.6
230	171.7	180.0	215.7	259.7	308.8	363.8	423.1	488.9
231	431.5	431.7	427.0	422.6	413.6	398.0	378.6	357.9
232	545.3	546.2	548.1	544.1	531.7	513.0	487.9	458.8
233	651.5	652.6	656.0	649.7	635.8	614.5	587.1	552.7
234	543.4	543.1	541.6	533.8	521.0	504.8	483.7	457.2
235	189.6	193.5	207.3	213.8	215.8	216.4	216.4	220.2
236	176.3	182.2	207.9	232.0	255.3	278.3	302.1	328.4
237	164.8	171.7	202.5	238.3	278.2	323.1	371.3	426.2
238	163.3	170.2	202.5	240.7	284.5	334.3	387.8	448.3
239	163.5	170.5	204.8	243.8	290.5	343.0	399.2	463.7
244	309.0	296.8	253.4	215.0	185.1	161.9	144.7	133.4
245	311.2	299.6	255.6	217.1	184.6	158.9	141.5	127.0
246	229.4	228.3	221.5	217.5	212.9	209.0	201.4	198.2
247	195.9	198.2	203.0	200.6	192.7	178.3	153.9	129.8
248	177.4	178.0	177.7	175.4	168.5	160.0	152.8	151.5
249	239.8	239.4	237.6	231.3	225.1	218.7	214.0	212.8
252	385.2	401.6	467.6	533.2	597.7	657.8	715.4	766.6

Table XX: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 2.3$, Upright, Pressures in psf

	N	ominal	α
Ori-	0.00	15.0°	25.0°
fice	Ref 59		
ID	Pi	Pi	Pi
2	275.9	443.6	572.1
5	375.6	364.8	345.9
6	311.4	302.6	283.4
9	380.3	231.7	163.7
10	225.7	379.7	502.8
13	326.5	319.0	306.1
14	268.5	263.4	246.4
17	378.6	226.7	156.8
19	275.7	270.4	264.6
20	237.1	222.1	214.0
21	246.8	254.1	241.1
22	199.0	204.0	194.3
23	223.1	223.1	226.8
24	181.8	182.9	185.5
25	211.9	206.0	206.2
26	177.1	174.1	171.0
43	326.1	364.1	363.6
44	272.5	297.5	288.5
85	410.2	399.8	376.1
86	342.7	335.5	311.2
87	320.5	458.0	543.7
88	288.0	411.4	487.0
89	160.7	276.4	376.6
90	159.0	264.9	362.0
91	159.1	271.1	373.9
921	408.4	252.3	176.8
922	301.0	482.2	612.8
93	220.9	371.9	496.2
128	302.3	190.9	152.3
201	742.0	560.1	424.8
202	820.9	688.8	569.0
203	847.3	787.6	695.1
204	826.1	841.8	788.2
205	737.7	844.2	845.3
206	657.0	805.2	849.1
207	567.7	746.6	825.0

-46

Table XX(continued)
Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 2.3$, Upright, Pressures in psf

	Nominal α								
Ori-	0.0°	15.0°	25.0°						
fice	Ref 59	Ref 60	Ref 61						
ID	Pi	Pi	Pi						
208	458.2	668.9	778.4						
209	710.1	701.4	645.1						
210	766.9	773.3	718.3						
211	812.0	829.6	775.3						
212	781.5	798.2	749.2						
213	712.1	713.7	664.6						
214	644.1	634.0	584.9						
215	403.7	247.7	173.7						
216	400.6	414.0	397.2						
217	339.2	349.9	329.4						
218	308.8	487.7	616.8						
219	239.9	252.3	243.6						
220	191.6	203.0	187.8						
225	296.7	184.7	140.4						
226	512.0	320.3	224.2						
227	549.5	348.6	257.0						
228	665.4	481.4	363.5						
229	380.2	571.7	694.7						
230	180.9	308.7	424.8						
231	525.0	504.7	466.8						
232	633.9	620.1	572.0						
233	566.3	547.9	501.5						
234	448.5	430.8	400.0						
235	232.5	284.7	291.9						
236	205.3	310.4	371.3						
237	180.0	304.3	406.8						
238	175.1	299.3	407.9						
239	172.0	293.4	403.6						
244	298.2	186.6	146.4						
245	300.9	186.2	144.0						
246	287.6	275.0	264.3						
247	250.0	258.3	235.6						
248	230.3	211.9	198.4						
249	185.9	177.6	164.1						
252	402.5	599.8	718.4						

Table XXI: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 2.3$, Upright, Pressures in psf

				_				
	1			N	omin	al	α	
	Ori		0.0°		15.		25	.0°
	fice		Ref 6	<u>s</u>	Ref	63	Ref	64
	ID	_	Pi		Pi		P	i
,		2	273.7	•	44	2.3	57	0.2
		5	413.6	3	40:	3.4	38	4.6
	6	-	280.2		27	1.1	25	0.6
)	377.2		229	9.6		2.2
	_10	_	226.4		378	3.0	50	1.2
Į	13	3	362.2		353	3.6	33	9.4
1	14	F	240.4	.]	234	1.1	21	7.7
l	17	1	371.6	П	220			8.7
Į	19		305.8	1	301	.9		8.6
L	20	1	212.3	T	198	3.4		6.8
l	21		275.6	1	285	5.0		1.0
	22		180.5	T	182	2.0		3.0
L	23	П	248.5	T	247	'.9		5.4
Į	24	, [165.0	T	163			0.5
	25		237.1	T	229		23	
[26	T	160.1	T	158	.1		0.5
[43	T	357.1	T	402	.5	400	
	44	Т	246.7	T	263	.8	253	
	85	T	448.0	T	439	.3	414	
Ĺ	86	Τ	310.1	T	300		278	
	87	T	339.0	T	483		574	1.1
	88	T	271.1	Τ	384	.0	454	
	89	T	161.3	T	281	.5	384	
	90	Τ	155.6	Γ	258	.3	352	
	91	Τ	158.1	Γ	270	.9	373	
	921		405.3	Γ	250		175	
	922	Τ	300.5	Γ	479.		610	
	93	Γ	221.3		371.		493	
	128	Γ	300.1	Г	188.		147	.7
	201	Γ	735.5	Г	554.		421	
i	202		813.0		683.	9	566	_
i	E03		840.1		781.		690	
;	204	Г	818.6		835.		782	
7	205		731.9		838.		839	
1	206		652.7		799.		844	
1	207		563.5		741.	1	820	_
		_		_				

-48

	Nominal α								
Ori-	0.0	15.0°	25.0°						
	Ref 62	Ref 63							
ID	Pi	Pi	Pi						
208	457.0	665.4	774.3						
209	741.1	733.0	678.0						
210	789.9	797.3	742.8						
211	821.8	839.3	785.0						
212	758.3	775.4	728.1						
213	678.8	679.7	631.8						
214	606.9	595.2	548.7						
215	404.1	247.1	173.1						
216	436.8	453.9	438.3						
217	307.2	314.2	293.2						
218	310.6	487.9	619.4						
219	266.8	283.5	274.3						
220	175.5	180.9	157.5						
225	293.1	182.9	137.0						
226	508.5	320.5	223.0						
227	546.7	345.4	254.4						
228	660.1	476.1	358.4						
229	379.1	567.9	690.7						
230	179.8	309.2	423.5						
231	566.0	543.3	504.1						
232	672.0	656.8	608.2						
233	527.7	507.9	463.9						
234	406.5	392.1	365.0						
235	252.6	316.9	327.7						
236	216.3	334.2	403.3						
237	182.6	315.1	422.0						
238	176.1	305.4	416.5						
239	170.8	294.2	405.2						
244	296.4	183.2	142.2						
245	296.1	181.8	138.3						
246	318.5	305.0	295.0						
247	275.5	289.7	272.5						
248	256.4	236.1	223.4						
249	166.6	161.2	145.4						
252	400.8	595.9	714.7						

Table XXII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 3.0$, Inverted, Pressures in psf

		<u>Nomi</u>	nal α	
Ori-	-5.0°	-2.5°	0.0°	2.5°
fice	Ref 226	Ref 225	Ref 227	Ref 223
ID_	Pi Pi	Pi	Pi	Pi
2	127.5	144.1	162.3	186.8
5	210.2	210.8	211.0	210.9
6	218.1	219.0	219.6	219.8
9	295.9	269.7	244.2	213.7
10	96.1	108.8	123.7	143.2
13	172.3	172.5	172.8	172.8
14	180.5	180.5	180.4	180.1
17	291.1	261.7	234.1	202.3
19	140.9	140.5	135.1	132.6
20	146.2	149.6	149.4	141.5
21	112.3	112.5	112.9	113.7
22	119.8	119.1	119.1	120.1
23	100.4	99.8	98.6	98.3
24	107.2	106.6	105.4	105.2
25	92.7	92.8	92.0	91.5
26	100.5	100.2	100.0	99.4
43	162.7	169.9	176.5	184.6
44	169.2	176.4	182.9	190.6
85	237.3	238.3	238.7	239.7
86	246.1	247.8	249.4	250.8
87	154.8	170.4	186.8	208.0
88	158.0	173.9	190.5	212.3
89	59.3	66.5	74.8	87.1
90	57.2	64.6	73.3	86.3
91	57.4	64.4	72.4	84.5
921	325.8	298.0	271.7	239.1
922				
93	93.1	105.6	119.7	139.0
128	219.4	195.7	174.0	149.6
201	635.3	613.9	591.0	560.1
202	692.7	683.6	671.5	653.2
203	696.7	699.0	699.3	697.2
204	648.6	662.9	675.1	687.1
205	533.1	560.8	586.3	616.0
206	454.6	483.2	509.1	542.8
207	378.7	405.3	431.0	464.2

Table XXII(continued)
Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 3.0$, Inverted, Pressures in psf

		Nomi	nal α	
Ori-	-5.0°	-2.5°	0.0°	2.5°
fice	Ref 226	Ref 225		Ref 223
ID	Pi	Pi	Pi	Pi
208	275.3	299.5	323.7	358.4
209	511.0	518.7	524.2	528.6
210	564.0	575.5	584.6	593.1
211	618.1	632.4	645.3	657.2
212	625.6	639.1	651.3	662.8
213	574.1	584.6	593.2	601.8
214	520.1	527.4	532.7	537.9
215	317.3	290.3	264.2	232.6
216	224.7	229.9	234.9	240.5
217	233.8	240.1	245.3	251.0
218	147.8	166.2	185.9	212.8
219	107.1	110.0	113.3	115.4
220	112.0	114.6	117.9	121.1
225	219.8	196.7	175.2	150.9
226	421.9	392.2	362.5	324.7
227	458.6	426.7	395.2	358.2
228	567.9	543.1	516.9	484.3
229	201.0	223.7	246.7	278.8
230	68.4	77.4	87.7	102.9
231	333.7	333.7	333.4	333.9
232	443.0	447.1	449.8	452.5
233	456.0	459.7	461.8	463.9
234	345.1	345.6	345.5	345.5
235	97.6	105.5	112.2	120.5
236	76.8	87.2	97.8	111.3
237	64.6	73.6	83.9	98.3
238	62.6	71.3	81.0	95.1
239	62.2	70.2	79.5	93.7
244	216.1	193.0	171.6	147.4
245	219.2	195.5	173.3	148.4
246	153.7	149.0	144.2	142.4
247	110.2	114.0	116.8	119.3
248	103.1	102.5	101.3	99.7
249	111.4	110.7	109.3	107.7
252	216.1	240.1	264.5	298.6

Table XXIII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 3.0$, Upright, Pressures in psf

Γ	<u> </u>			N	ominal	α			
Ori-	-2.5°	0.0°	2.5°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
	Ref 112			Ref 115			Ref 118	Ref 119	
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
2	144.9	163.7	184.3	205.7	253.8	306.4	361.3	418.7	477.3
5	220.2	221.0	221.2	221.0	219.6	216.5	210.2	201.7	190.0
6	209.6	209.8	210.0	209.9	208.8	204.9	199.6	190.8	180.6
9	266.8	242.7	218.9	195.8	156.4	123.6	97.3	77.2	61.4
10	109.5	124.6	140.9	158.7	199.7	247.2	299.9	356.8	416.5
13	181.3	181.5	182.1	181.3	180.0	177.4	173.6	169.6	160.9
14	172.3	172.2	171.7	171.6	170.7	168.1	163.7	159.4	152.0
17	260.2	234.4	208.3	185.1	139.4	105.1	81.3	63.9	51.9
19	147.0	141.9	140.5	139.5	139.1	138.9	138.6	137.6	133.4
20	141.9	141.6	135.1	133.8	132.8	132.0	131.1	129.6	125.5
21	118.9	119.8	120.7	121.5	123.5	122.7	120.9	121.6	119.4
22	112.2	112.5	113.5	114.4	115.5	115.4	113.7	114.6	112.7
23	105.8	105.2	105.2	105.1	105.3	107.0	108.1	107.9	108.4
24	100.2	99.5	99.5	99.4	99.7	101.0	102.2	101.6	101.9
25	98.6	97.7	97.7	97.0	94.8	94.0	95.0	99.7	101.3
26	94.3	93.8	93.4	92.7	91.2	90.5	91.0	94.6	95.6
43	178.2	185.5	192.5	198.5	208.8	216.1	219.4	222.0	222.9
44	169.3	175.9	181.6	186.9	195.4	201.8	203.5	203.4	202.8
85	248.9	249.8	250.3	251.0	250.9	247.0	239.5	228.9	215.7
86	237.7	239.4	240.5	241.3	240.6	236.7	229.8	219.1	206.0
87	175.6	193.0	211.3	229.6	267.9	307.4	344.5	380.7	416.0
88	170.3	186.9	204.9	222.2	259.7	297.1	333.5	368.3	402.5
89	66.9	75.3	85.4	97.1	125.0	159.6	200.3	247.4	299.7
90	64.3	73.0	83.5	95.0	123.2	157.8	197.8	244.9	296.6
91	64.2	72.6	82.4	93.9	122.0	157.3	198.7	247.5	300.7
921	294.9	269.2	244.7	219.7	177.4	140.8	111.1	88.1	69.0
922					ļ			ļ	
93	106.0	120.7	137.0	154.2	194.1	241.3	293.5	350.2	
128	195.6	174.1	154.5	137.7	107.3	84.5	69.1	58.2	
201	611.4	588.8	563.8	537.8	479.1	418.5	360.9	307.4	
202	682.5	670.4	655.7	639.3	597.2	547.6	496.6	445.0	392.4
203	699.0	698.5	697.8	694.5	676.2	646.4	609.5	562.5	509.1
204		675.6	686.5	* 694.0	698.9	693.3	677.4		
205		589.6	613.4	635.0	670.1	690.8	700.2		
206		512.8	539.5	564.9	610.9	648.3	677.9		
207	407.7	434.5	460.9	487.0	540.4	589.1	632.8	666.7	690.8

Table XXIII(continued)
Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 3.0$, Upright, Pressures in psf

	T.			N	ominal				
Ori-	-2.5°	0.0	2.5°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 112	Ref 122	Ref 114	Ref 115	Ref 116	Ref 117	Ref 118	Ref 119	Ref 120
ID	Pi								
208	301.3	327.3	354.9	385.1	448.3	509.1	565.7	615.8	655.6
209	529.6	535.2	539.3	541.5	538.7	527.1	507.8	481.0	448.4
210	585.3	594.0	602.4	608.0	610.3	602.5	585.7	557.5	521.5
211	639.2	649.9	661.9	670.3	676.8	670.4	654.0	625.0	584.5
212	635.2	645.4	657.4	664.8	671.0	665.2	648.8	621.6	583.3
213	576.4	584.9	592.3	597.4	598.9	590.3	572.6	545.3	510.5
214	517.8	523.3	527.5	529.8	527.2	514.6	495.6	470.2	438.7
215	288.3	263.3	238.7	214.1	172.7	137.2	108.3	85.9	67.6
216	239.9	244.9	250.2	254.4	260.5	262.6	259.0	251.4	241.3
217	231.0	235.3	240.4	244.5	250.0	250.7	246.5	237.6	226.2
218	167.9	188.6	210.6	234.3	285.9	340.6	398.6	457.2	514.7
219	116.5	120.1	122.4	123.8	124.7	124.6	123.9	120.2	108.8
220	108.4	111.7	114.5	115.9	117.1	117.2	116.4	112.2	100.6
225	195.7	174.3	155.6	137.6	108.2	85.8	68.4	56.5	47.5
226	388.1	358.9	330.5	301.9	249.4	203.8	164.5	132.5	104.2
227	422.2	391.6	362.9	336.2	285.6	240.2	198.7	162.5	128.6
228	539.1	514.1	488.2	461.7	404.4	347.5	291.4	239.4	190.9
229	225.3	249.6	275.4	302.8	360.2	419.1	477.2	534.0	586.2
230	77.4	87.9	100.7	114.4	147.1	187.3	234.3	286.7	343.9
231	345.5	345.7	345.5	345.1	341.2	332.6	320.7	304.1	285.3
232	458.1	461.3	463.6	464.6	460.4	449.5	432.5	409.5	381.8
233	449.6	451.7	452.4	453.0	446.6	433.7	415.2	392.6	364.4
234	334.4	334.0	333.6	333.0	328.3	320.2	308.0	294.1	276.0
235	110.2	117.3	125.5	132.2	144.2	154.6	163.1	171.9	182.4
236	90.2	101.1	113.5	125.4	150.1	176.7	204.8	233.3	264.4
237	74.8	85.3	97.6	110.9	141.4	178.1	220.2	266.5	317.7
238	72.0	81.9	93.6	106.9	137.9	175.9	219.9	269.8	324.3
239	70.6	79.8	91.5	104.5	135.4	173.6	218.3	269.2	325.3
244	193.1	171.3	151.6	133.9	105.8	83.4	67.6	56.5	50.2
245	195.3	173.4	153.3	135.3	106.0	84.0	67.5	57.5	49.7
246	155.5	151.4	150.4	149.1	146.4	143.8	141.8	140.3	138.3
247	120.1	123.3	126.4	128.1	130.5	130.0	124.8	113.4	103.6
248	108.9	108.0	106.7	105.4	101.8	97.3	95.0	94.7	96.5
249	104.0	102.8	102.0	100.7	96.8	92.5	90.0	89.3	91.9
252	241.4	267.6	295.0	323.9	384.8	444.5	502.9	556.9	606.8

Table XXIV: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\infty} = 3.0$, Upright, Pressures in psf

				Nomi				
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 123	Ref 131	Ref 125	Ref 126	Ref 127	Ref 128	Ref 129	Ref 130
ID	Pi							
2	145.5	164.3	206.1	254.1	306.3	361.6	417.9	478.1
5	201.3	201.8	201.7	200.3	196.7	191.7	183.8	172.5
6	228.3	228.8	229.3	228.2	224.4	218.3	209.8	198.3
9	266.6	242.3	195.4	156.1	123.4	97.3	77.2	61.4
10	109.8	124.5	159.0	199.9	247.3	299.6	356.1	416.3
13	164.6	164.7	164.3	162.4	160.4	157.7	153.1	145.0
14	188.8	188.6	188.5	187.5	185.1	181.0	175.9	168.5
17	258.6	231.7	183.0	135.7	104.9	81.0	64.0	52.0
19	133.3	129.1	126.1	125.5	125.0	124.5	123.8	118.0
20	157.4	156.8	148.1	147.3	147.1	145.9	144.6	140.8
21	107.2	107.5	109.1	110.6	109.9	108.9	108.9	103.4
22	125.1	125.5	127.7	129.3	128.9	126.7	127.1	127.7
23	95.3	94.6	94.7	94.7	96.1	96.6	96.1	94.7
24	111.9	111.0	111.1	111.0	112.5	114.0	114.4	113.7
25	88.9	88.5	87.7	85.3	84.2	84.7	89.2	89.4
26	105.4	104.5	103.3	101.6	100.6	101.7	104.6	107.3
43	163.2	169.8	181.3	190.1	196.2	200.1	202.0	203.8
44	184.0	191.2	203.3	213.6	220.0	222.7	223.4	222.3
85	228.7	229.2	230.7	230.5	226.6	219.1	209.9	197.3
86	257.9	258.9	261.4	260.8	257.1	249.8	239.0	225.0
87	167.1	183.1	218.4	254.1	290.5	327.1	362.2	396.5
88	179.7	196.5	233.6	272.6	311.5	349.8	387.3	422.0
89	66.6	74.7	95.3	122.7	156.2	195.7	242.8	293.9
90	65.2	74.2	96.9	125.7	160.8	202.2	249.2	301.0
91	64.3	72.4	93.8	121.9	157.0	198.3	246.5	300.2
921	295.2	269.4	219.9	177.0	140.8	111.1	88.1	69.2
922								
93	106.5	120,8	154.7	194.4	241.3	293.1	349.4	409.4
128	194.9	173.6	136.9	106.7	84.4	68.9	58.0	52.3
201	611.9	588.1	537.5	479.1	418.4	361.0	308.2	253.2
202	682.6	669.5	638.4	596.3	547.0	496.2	445.3	392.4
203	700.4	699.1	693.0	675.4	646.1	608.3	562.4	509.1
204	666.2	676.8	692.9	698.7	693.1	676.5	647.4	606.5
205	564.8	589.7	634.6	668.8	690.5	700.0	697.6	682.5
206	485.7	512.9	563.4	609.7	647.3	677.0	695.2	701.8
207	408.5	434.0	486.4	538.7	588.5	631.7	665.8	691.3

Table XXIV(continued)
Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\infty} = 3.0$, Upright, Pressures in psf

					nal α			
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
	Ref 123	Ref 131	Ref 125	Ref 126	Ref 127	Ref 128	Ref 129	Ref 130
ID	Pi							
208	302.6	327.3	384.5	147.1	508.6	565.6	614.3	656.7
209	509.9	515.1	520.6	517.4	505.5	486.2	460.3	428.8
210	569.0	577.4	588.7	592.0	583.2	566.5	539.3	504.5
211	630.2	641.1	658.9	666.0	659.8	642.9	614.5	576.4
212	647.5	657.0	673.5	680.0	674.0	657.8	631.0	593.9
213	595.6	602.9	614.6	616.6	607.7	590.1	563.4	526.8
214	539.0	543.9	550.2	547.0	534.8	517.3	491.1	457.9
215	286.6	261.4	213.1	171.3	136.3	107.7	85.6	67.3
216	221.3	225.7	234.7	239.9	241.2	237.7	231.3	221.5
217	249.9	254.9	264.2	270.0	271.7	267.5	259.3	246.7
218	167.1	187.4	232.6	282.8	338.2	395.9	454.4	512.3
219	105.0	108.0	111.2	111.7	111.5	110.5	104.9	93.0
220	120.8	124.2	129.0	130.8	131.0	130.7	127.4	117.5
225	195.1	173.6	137.4	107.8	85.5	68.4	56.4	47.3
226	388.7	358.8	302.0	249.5	204.4	164.7	132.7	104.2
227	423.7	391.4	336.1	286.0	240.7	198.5	162.5	128.8
228	540.0	513.8	461.8	404.1	347.3	291.0	239.4	191.3
229	225.9	250.1	302.6	359.6	418.5	477.0	533.3	586.5
230	77.8	88.1	114.4	147.0	186.9	233.6	286.2	343.2
231	322.3	322.3	321.9	317.7	308.9	296.4	282.6	264.3
232	437.3	440.8	442.5	438.3	426.8	409.2	387.4	359.8
233	471.6	473.1	474.3	468.2	454.8	438.0	414.5	385.0
234	357.8	357.2	356.0	350.6	342.1	331.0	315.8	296.5
235	102.2	108.4	121.1	131.1	139.2	147.5	156.3	164.9
236	85.9	95.8	117.4	139.9	163.9	190.0	218.0	246.3
237	73.3	83.2	107.6	136.6	171.8	213.0	258.1	308.2
238	71.2	80.7	105.0	135.2	172.2	215.8	264.4	319.0
239	70.3	79.8	104.0	134.5	172.6	217.1	267.9	324.1
244	192.2	171.3	134.0	105.4	83.2	67.7	56.0	49.1
245	193.5	172.3	135.0	105.6	83.7	67.8	57.1	49.1
246	140.9	137.4	135.0	132.1	130.0	128.1	126.8	125.8
247	108.8	111.8	115.5	116.7	115.0	109.2	97.3	90.5
248	98.0	97.1	94.9	91.5	87.7	84.9	84.5	86.7
249	116.8	115.4	112.0	107.5	103.0	100.0	100.0	101.6
252	242.2	267.9	323.4	384.3	444.0	502.1	556.5	607.1

Table XXV: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 3.0$, Upright, Pressures in psf

				Nomi	nal α			
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 132							
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
2	145.0	164.1	205.7	253.0	305.4	360.0	417.0	474.8
5	175.0	175.1	175.0	173.7	170.5	166.0	158.9	148.2
6	259.0	259.8	260.5	258.6	254.2	247.7	238.8	226.9
9	265.3	240.9	194.8	155.7	123.2	97.1	76.8	61.0
10	109.6	124.4	158.7	199.0	246.3	298.0	355.1	413.6
13	141.9	141.9	141.4	139.7	137.7	135.5	130.4	122.2
14	216.2	216.2	216.3	214.9	212.6	208.3	202.5	194.9
17	254.8	229.4	182.9	138.5	110.5	79.7	63.1	51.1
19	114.1	111.1	108.1	107.0	106.2	105.6	103.7	96.5
20	182.4	181.4	171.8	171.4	171.0	169.6	168.4	165.7
21	91.4	91.5	93.0	93.8	92.9	91.9	91.3	82.1
22	146.0	146.7	149.3	151.1	150.3	148.7	149.2	149.3
23	80.5	80.3	80.5	80.6	81.2	81.0	80.7	72.4
24	131.4	130.2	130.2	130.3	132.0	134.4	135.4	134.4
25	74.7	75.1	75.1	72.5	71.4	72.2	75.0	76.1
26	123.9	122.8	121.2	119.7	118.8	120.1	123.0	127.7
43	142.1	148.0	157.6	165.1	169.9	173.0	175.2	176.8
44	208.5	216.5	230.9	242.7	250.8	254.5	254.6	253.3
85	199.8	200.4	201.7	201.9	198.2	191.3	183.2	171.1
86	289.3	291.1	294.1	292.8	289.0	281.3	269.3	254.1
87	153.3	168.8	200.7	233.9	267.2	301.5	334.9	366.4
88	192.9	212.0	251.1	292.3	334.0	374.3	414.4	451.0
89	65.4	73.0	92.4	118.5	151.0	189.5	234.6	284.7
90	66.0	75.7	99.3	129.3	165.3	207.2	255.5	308.0
91	63.5	71.9	93.4	121.5	156.3	197.6	245.3	298.6
921	294.6	268.4	219.3	176.8	140.6	111.0	88.0	69.3
922								
93	106.0	120.6	154.1	193.7	240.5	292.1	348.1	407.3
128	193.1	171.6	135.3	105.3	82.9	66.9	55.3	51.3
201	609.0	584.9	534.9	477.0	417.2	360.4	307.6	253.1
202	678.2	664.2	633.7	592.6	543.2	492.4	442.4	389.8
203	696.3	695.0	689.0	670.9	641.0	604.4	559.2	506.8
204	662.3	673.0	689.6	695.1	688.3	672.7	644.0	603.7
205	560.4	585.4	629.9	665.0	685.7	695.6	693.5	678.2
206	481.5	508.6	559.0	605.4	643.3	672.7	690.7	697.8
207	405.1	431.5	483.4	535.8	585.1	627.6	661.8	686.6

Table XXV(continued)
Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 3.0$, Upright, Pressures in psf

	<u> </u>			Nomi	nal α			
Ori-	-2.5°	0.00	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 132	Ref 140	Ref 134	Ref 135				
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
208	300.5	325.6	382.1	444.0	505.5	561.4	611.0	651.3
209	476.5	481.5	486.1	483.2	470.9	452.6	428.6	398.8
210	537.7	546.3	557.7	560.3	551.7	536.3	511.1	478.5
211	609.7	621.6	637.8	645.2	639.4	624.1	596.0	559.3
212	658.5	669.0	684.5	690.1	684.4	669.0	641.7	604.0
213	619.1	626.9	639.2	640.8	631.5	615.2	587.0	549.4
214	568.3	573.2	580.4	578.4	565.5	548.0	520.6	486.0
215	282.7	257.9	210.5	169.7	134.9	106.5	84.5	66.8
216	194.4	198.5	206.3	211.4	211.6	208.4	202.6	193.3
217	279.7	285.8	296.5	302.0	304.3	300.3	291.4	278.5
218	164.6	184.9	228.5	278.1	332.7	389.9	448.4	505.3
219	89.4	92.1	94.7	94.8	93.7	91.2	83.5	73.9
220	140.5	144.2	150.2	152.2	152.8	153.6	152.9	144.7
225	193.8	172.9	136.5	107.8	85.3	67.9	55.3	45.7
226	387.4	357.8	301.6	249.4	204.1	164.2	132.1	103.7
227	421.3	389.8	334.9	284.9	239.8	197.4	161.5	128.3
228	538.1	511.5	459.2	402.3	346.3	289.7	238.9	191.7
229	224.6	249.4	301.4	357.9	416.5	474.5	531.0	582.8
230	77.3	87.8	114.1	146.7	186.3	232.8	284.8	341.8
231	288.3	288.7	287.7	283.6	275.2	264.1	251.8	234.8
232	404.6	407.6	409.0	404.3	392.6	375.3	353.4	328.7
233	503.8	505.8	508.0	502.0	488.6	471.2	446.4	415.4
234	394.7	394.5	392.2	386.6	377.8	365.2	348.4	327.8
235	90.6	96.0	105.8	112.9	118.6	125.8	133.1	141.0
236	78.7	87.3	105.7	124.6	145.7	169.1	194.4	221.6
237	70.5	79.6	101.9	129.3	162.4	201.5	244.8	293.1
238	69.3	78.6	101.7	130.6	166.6	209.2	256.6	309.6
239	69.6	78.9	103.1	133.6	171.0	215.8	265.6	320.7
244	191.3	170.4	133.2	104.7	82.2	65.4	53.6	46.8
245	191.6	170.5	133.6	105.2	82.7	66.6	55.3	47.3
246	120.2	118.0	115.9	113.3	111.1	109.5	108.4	106.9
247	92.9	96.0	98.6	98.2	94.8	87.3	76.9	73.7
248	81.8	81.9	81.0	78.4	74.7	72.4	71.6	74.0
249	137.5	135.6	131.2	126.2	121.5	118.2	117.1	119.2
252	241.0	266.6	321.9	381.7	441.1	499.1	553.6	601.9

Table XXVI: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 3.0$, Upright, Pressures in psf

Ori-fice Ref 141 Ref 142 Ref 143 ID Pi Pi Pi 2 16 3 304.9 416.9 5 238.6 234.3 219.2 6 192.7 187.8 174.5 9 242.8 123.3 77.3 10 124.1 246.3 355.9 13 197.3 193.8 185.6 14 156.7 152.4 144.5 17 233.4 105.3 63.5 19 155.9 153.3 152.0 20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 <td< th=""><th>Γ</th><th>l x</th><th>ominal</th><th>~</th></td<>	Γ	l x	ominal	~
fice Ref 141 Ref 142 Ref 143 Ref 143 Ref 143 Ref 143 Ref 143 Pi Pi Pi 2 1633 304.9 416.9 416.9 5238.6 234.3 219.2 6192.7 187.8 174.5 9242.8 123.3 77.3 10124.1 246.3 355.9 1319.3 193.8 185.6 144.5 173.3 193.8 185.6 144.5 174.5 172.3 193.8 185.6 144.5 174.5 172.3 193.8 185.6 144.5 144.5 172.3 193.8 185.6 144.5 145.6 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 142.0 144.3 144.5 144.5 144.5 144.5 144.5 144.5 144.3 144.3 144.3 144.2 144.3 144.3 144.2 144.3 144.3 144.8 144.2 <td< td=""><td>0</td><td>0.00</td><td></td><td></td></td<>	0	0.00		
D				
2 16 (3.) 304.9 416.9 5 238.6 234.3 219.2 6 192.7 187.8 174.5 9 242.8 123.3 77.3 10 124.1 246.3 355.9 13 197.3 193.8 185.6 14 156.7 152.4 144.5 17 233.4 105.3 63.5 19 155.9 153.3 152.0 20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3				
5 238.6 234.3 219.2 6 192.7 187.8 174.5 9 242.8 123.3 77.3 10 124.1 246.3 355.9 13 197.3 193.8 185.6 14 156.7 152.4 144.5 17 233.4 105.3 63.5 19 155.9 153.3 152.0 20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2				
6 192.7 187.8 174.5 9 242.8 123.3 77.3 10 124.1 246.3 355.9 13 197.3 193.8 185.6 14 156.7 152.4 144.5 17 233.4 105.3 63.5 19 155.9 153.3 152.0 20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5				
9 242.8 123.3 77.3 10 124.1 246.3 355.9 13 197.3 193.8 185.6 14 156.7 152.4 144.5 17 233.4 105.3 63.5 19 155.9 153.3 152.0 20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 <td></td> <td></td> <td></td> <td></td>				
10 124.1 246.3 355.9 13 197.3 193.8 185.6 14 156.7 152.4 144.5 17 233.4 105.3 63.5 19 155.9 153.3 152.0 20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6	<u> </u>			
13 197.3 193.8 185.6 14 156.7 152.4 144.5 17 233.4 105.3 63.5 19 155.9 153.3 152.0 20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 156.9 246.8				
14 156.7 152.4 144.5 17 233.4 105.3 63.5 19 155.9 153.3 152.0 20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8			_	
17 233.4 105.3 63.5 19 155.9 153.3 152.0 20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9				
19 155.9 153.3 152.0 20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 140.3 349.4 12				
20 123.7 119.4 117.2 21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 5				
21 132.4 135.6 134.3 22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 3				
22 102.2 103.9 102.8 23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9	_			117.2
23 116.4 118.2 120.2 24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 <td< td=""><td></td><td></td><td></td><td></td></td<>				
24 90.2 91.5 91.0 25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 140.3 87.9 922 140.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 67				102.8
25 108.5 104.2 109.7 26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 140.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2				120.2
26 85.2 81.3 85.2 43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9			91.5	91.0
43 200.4 234.5 240.8 44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	25			109.7
44 160.8 183.3 185.6 85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6		85.2		85.2
85 268.5 266.6 248.3 86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6		200.4	234.5	240.8
86 221.1 218.0 201.2 87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	44	160.8	183.3	185.6
87 202.0 320.6 398.5 88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	85	268.5	266.6	248.3
88 177.9 281.5 350.3 89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	86	221.1	218.0	201.2
89 76.3 162.4 251.6 90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922	_87	202.0	320.6	398.5
90 72.1 153.6 240.3 91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	88	177.9	281.5	350.3
91 72.1 156.9 246.8 921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	89	76.3	162.4	251.6
921 269.2 140.3 87.9 922 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	90	72.1	153.6	240.3
922 3 93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	91	72.1	156.9	246.8
93 120.1 240.3 349.4 128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	921	269.2	140.3	87.9
128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	922			
128 174.2 84.1 57.6 201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	93	120.1	240.3	349.4
201 587.3 417.4 306.6 202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	128			57.6
202 669.6 547.9 445.5 203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	201		417.4	306.6
203 698.7 645.9 561.8 204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	202	669.6		
204 675.3 692.8 645.9 205 588.7 690.6 696.2 206 512.4 647.9 694.6	203	698.7	645.9	561.8
205 588.7 690.6 696.2 206 512.4 647.9 694.6	204			
206 512.4 647.9 694.6	205			
	206			
	207	433.1	588.4	665.5

Table XXVI(continued)
Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 3.0$, Upright, Pressures in psf

	Nominal α						
Ori-	0.0°	15.0°	25.0°				
fice	Ref 141						
ID	Pi	Pi	Pi				
208	326.0	508.8	614.3				
209	554.7	547.3	500.3				
210	611.3	619.4	573.5				
211	660.7	679.3	633.1				
212	636.7	654.0	610.8				
213	567.3	571.2	527.4				
214	503.0	492.9	449.7				
215	264.6	137.5	86.3				
216	263.5	282.2	272.2				
217	218.6	230.9	218.4				
218	189.6	342.5	459.2				
219	132.7	137.7	135.3				
220	101.7	105.6	97.8				
225	173.6	85.5	55.9				
226	358.9	203.2	131.6				
227	391.4	239.5	161.7				
228	513.5	346.1	238.9				
229	248.9	418.5	532.5				
230	87.9	186.8	285.4				
231	368.3	354.8	325.6				
232	481.7	470.2	430.4				
233	430.4	411.1	371.5				
234	312.6	298.4	273.2				
235	127.0	168.8	188.6				
236	107.1	188.9	249.2				
237	87.7	183.3	274.2				
238	83.0	178.6	273.8				
239	80.1	173.7	269.5				
244		82.9	55.3				
245	171.1	83.2	56.5				
246		158.6	154.3				
247	135.6	144.5	130.3				
248							
249							
252	266.7	443.7	555.9				

Table XXVII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 3.0$, Upright, Pressures in psf

	.0°	ominal	
		15.0°	25.0°
			Ref 146
ID P	i	Pi	Pi
	3.2	303.1	415.2
	0.7	266.1	250.1
	6.6	162.1	150.2
	2.1	123.2	76.9
	3.7	245.5	354.2
	6.8	223.2	214.5
	4.5	130.3	122.9
	1.4	110.6	62.8
	9.6	178.3	177.5
	5.4	101.2	98.2
21 15	5.3	159.5	157.1
	6.4	87.7	86.0
	7.0	138.9	143.0
	6.9	77.4	75.8
	7.7	123.0	128.2
	3.1	68.9	71.0
43 227		266.6	274.6
44 139		157.7	159.2
85 302		300.5	280.5
86 193		189.9	174.9
87 217	7.8	343.6	425.9
88 163	3.3	258.3	322.0
89 77	7.8	167.0	257.8
90 70).1	148.2	232.2
	.8	156.8	246.2
921 267	7.9	140.1	87.7
922			
93 119	8.0	239.6	347.7
128 174	.0	82.6	53.4
201 581	.8	413.9	303.6
202 663	.4	544.1	443.5
203 693	.5	640.8	558.0
204 669	.4	687.2	640.9
205 584	.3	685.5	690.7
206 508	.0	643.3	689.2
207 429	.3	584.2	660.7

Table XXVII(continued)
Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 3.0$, Upright, Pressures in psf

	N	ominal	χ
Ori-	0.0	15.0°	25.0°
	Ref 144		
ID	Pi	Pi	Pi
208	324.6	506.8	610.2
209	583.5	577.7	529.8
210	634.8	643.1	596.9
211	671.1	689.2	643.2
212	615.0	633.5	592.1
213	534.8	539.1	498.2
214	468.0	457.5	416.9
215	265.6	138.4	86.5
216	295.6	316.4	306.1
217	191.8	201.6	190.2
218	191.7	344.1	459.5
219	155.8	161.4	161.6
220	86.8	89.0	77.5
225	173.0	85.0	54.1
226	356.3	201.4	130.1
227	388.7	237.0	159.5
228	507.7	342.8	238.0
229	247.3	415.1	529.0
230	87.6	186.4	284.7
231	406.1	392.8	360.4
232	514.1	503.5	461.8
233	396.7	376.6	339.2
234	279.3	265.6	243.1
235	144.1	194.4	216.7
236	117.5	209.0	274.4
237	91.1	191.9	285.8
238	84.9	183.6	279.8
239		174.3	269.7
244	169.3	81.3	52.4
245	168.6	81.6	
246	192.6		
247	157.9	170.4	160.8
248	141.0		
249			
252	265.7	441.4	552.0

Table XXVIII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 3.5$, Inverted, Pressures in psf

		Nomi	nal α	
Ori-	-5.0°	-2.5°	0.0°	2.5°
fice		Ref 230		
ID	Pi	Pi	Pi	Pi
2	93.2	105.9	120.7	140.7
5	158.8	158.5	158.3	158.0
6	167.2	167.3	166.8	166.5
9	230.2	206.5	184.8	159.0
10	68.0	77.6	89.0	105.1
13	127.3	127.1	126.6	126.0
14	135.1	134.9	133.8	133.2
17	220.9	196.0	173.1	146.7
19	101.9	98.2	95.7	94.0
20	108.5	108.8	103.2	101.6
21	78.8	78.6	77.8	78.8
22	85.5	85.3	84.7	84.9
23	68.8	67.8	67.2	67.0
24	75.1	74.1	73.5	73.1
25	63.3	62.7	62.2	61.4
26	70.2	69.5	68.8	67.9
43	120.2	125.8	130.9	136.8
44	126.7	132.3	136.9	142.7
85	181.2	181.8	181.6	182.2
86	191.4	192.5	192.5	193.0
87	114.9	127.3	140.8	158.3
88	118.7	131.3	145.3	162.9
89	40.0	45.0	50.8	60.2
90	36.9	42.1	48.7	58.7
91	37.6	42.4	48.2	57.7
921	255.4	231.3	207.8	180.1
922				
93	65.4	74.8	85.7	101.8
128	164.7	144.7	126.0	104.8
201	526.1	505.1	483.4	454.3
202	577.3	566.0	553.8	536.3
203	581.3	581.1	579.1	575.5
204	539.9	551.0	559.5	568.1
205	436.5	460.5	481.3	506.2
206	367.2	392.4	414.5	442.7
207	304.3	327.5	348.6	376.6

Table XXVIII(continued)
Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 3.5$, Inverted, Pressures in psf

		Nominal α							
Ori-	-5.0°	-2.5°	0.0°	2.5°					
fice	Ref 231	Ref 230		Ref 228					
_ID	Pi	Pi	Pi	Pi					
208	218.7	239.2	258.8	286.8					
209	416.8	422.8	426.5	429.4					
210	463.4	472.2	478.5	485.3					
211	511.4	523.4	531.8	541.2					
212	518.9	530.1	538.1	546.6					
213	473.7	482.2	487.8	493.1					
214	427.3	432.5	435.8	438.2					
215	248.7	224.6	202.0	174.8					
216	172.1	176.3	179.7	184.5					
217	181.1	186.1	189.7	193.8					
218	109.7	124.0	140.2	162.0					
219	75.9	77.0	78.5	80.0					
220	81.1	82.6	84.1	85.8					
225	164.7	145.3	128.1	107.8					
226	337.8	310.5	283.7	251.2					
227	369.3	341.1	314.5	283.2					
228	467.4	444.1	420.1	389.6					
229	153.7	172.0	191.1	216.9					
230	46.0	52.3	60.2	72.3					
231	262.6	262.8	262.2	261.2					
232	358.8	362.4	364.2	365.5					
233	372.7	375.0	375.6	374.9					
234	275.5	275.2	274.3	272.6					
235	69.2	74.2	79.6	86.1					
236	51.9	59.2	66.9	78.0					
237	42.2	48.4	56.2	67.5					
238	40.7	46.6	53.9	65.1					
239	40.2	45.7	52.8	63.7					
244	161.4	142.1	124.5	103.6					
245	162.2	143.2	125.4	104.4					
246	109.4	105.2	103.7	102.1					
247	76.7	79.1	81.4	83.4					
248	71.9	70.7	69.6	68.1					
249	78.6	77.5	76.5	74.7					
252	166.8	185.7	205.9	233.4					

	Nominal α								
Ori-	-2.5°	0.0°	2.5°		10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 147	Ref 156	Ref 149	Ref 150	Ref 151	Ref 152	Ref 153	Ref 154	Ref 155
\Box ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
2	105.0	119.9	_ 136.6	154.9	195.6	240.1	286.0	334.6	384.2
5	166.3	167.0	168.1	168.6	168.2	165.7	160.9	153.8	143.8
6	157.2	157.8	158.6	159.0	158.0	155.4	151.5	144.8	135.8
9	206.4	186.0	165.9	147.4	115.1	89.4	68.4	52.4	41.7
10	76.9	88.2	101.5	116.0	150.1	189.5	232.7	280.1	331.3
13	133.4	133.8	134.6	135.0	134.3	132.9	130.6	126.0	118.7
14	126.3	126.4	126.7	126.7	125.9	124.2	121.6	117.8	111.6
17	198.0	174.9	153.3	133.7	96.3	73.2	54.3	42.0	34.1
19	104.5	102.3	101.3	100.9	100.9	101.1	100.7	99.4	94.6
20	101.3	96.9	96.0	95.4	95.0	94.7	94.3	92.9	89.1
21	84.7	84.3	85.2	86.0	87.3	86.9	86.0	85.9	83.0
22	79.4	78.4	78.8	79.6	81.0	80.8	80.0	80.3	78.0
23	73.3	72.7	72.7	72.8	73.2	74.5	74.6	74.2	73.7
24	68.8	68.2	68.0	68.1	68.5	69.6	69.8	69.8	68.8
25	67.9	67.2	67.0	66.4	64.5	63.9	64.7	66.7	68.2
26	64.4	63.8	63.4	63.0	61.4	60.8	61.6	63.5	64.4
43	131.5	137.5	143.4	149.4	159.4	165.8	169.8	172.7	173.7
44	124.4	129.6	134.8	139.7	147.2	152.5	155.5	156.8	157.0
85	190.0	191.4	193.4	194.9	195.2	192.3	186.1	177.7	166.0
86	181.3	182.6	184.2	185.3	185.0	182.0	176.8	169.0	157.8
87	130.3	144.9	160.1	176.5	210.0	242.8	274.0	306.1	334.8
88	126.3	140.0	154.3	169.6	201.4	232.8	263.7	294.3	322.4
89	44.6	50.8	57.9	66.6	88.1	115.8	149.3	189.2	233.2
90	41.2	47.7	55.1	64.1	86.1	113.8	147.0	186.7	230.6
91	41.5	47.6	54.7	63.5	85.3	113.1	147.2	188.3	234.1
921	230.2	208.7	187.5	167.6	132.1	103.6	80.0	61.1	48.0
922									
93	74.1	85.0	98.0	112.2	145.5	184.1	227.0	274.1	325.8
128	147.4	129.4	112.3	97.0	72.1	54.8	42.8	36.1	33.2
201	501.9	482.6	463.3	440.7	390.7	339.7	291.9	243.8	199.0
202	563.3	553.5	542.6	530.0	494.8	453.9	410.3	365.3	319.0
203	577.3	579.0	579.4	578.6	563.3	538.6	506.1	466.4	417.8
204	547.4	559.7	569.6	578.7	583.5	579.1	564.4	540.0	501.1
205	457.8	481.6	504.4	525.8	557.5	576.1	583.7	583.1	566.9
206	389.7	415.1	440.0	463.7	505.2	537.2	562.6	579.9	582.9
207	325.4	349.0	373.4	397.1	443.4	484.4	521.8	553.4	572.0

Table XXIX(continued)

Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 3.5$, Upright, Pressures in psf

				N	ominal				
Ori-	-2.5°	2.0°	2.5°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
	Ref 147	Ref 156		Ref 150	Ref 151	Ref 152	Ref 153	Ref 154	Ref 155
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
208	237.0	259.0	282.5	307.8	361.5	413.2	461.8	506.9	540.7
209	429.7	435.9	441.2	445.1	442.8	433.3	416.8	393.9	363.3
210	477.3	487.2	495.3	502.2	504.8	498.7	483.9	460.6	426.7
211	524.4	537.0	547.5	556.8	563.4	558.7	544.0	519.6	482.1
212	521.5	533.3	543.1	551.8	557.8	553.0	539.3	516.8	481.3
213	470.2	479.0	486.0	492.1	493.6	486.7	472.0	450.2	417.1
214	420.2	425.6	429.9	433.1	430.4	421.0	405.1	384.2	354.8
215	224.6	204.0	182.9	163.2	128.5	100.8	77.8	59.5	46.7
216	183.5	188.9	194.0	198.7	204.5	206.1	203.6	198.6	189.4
217	175.7	180.3	184.5	188.3	193.2	193.9	191.6	185.5	176.2
218	123.3	140.1	158.4	178.6	223.0	269.1	317.5	367.5	417.2
219	82.5	84.5	86.3	87.4	88.5	88.9	88.4	84.7	75.8
220	76.6	77.9	79.6	80.8	82.2	82.7	82.2	78.8	71.3
225	147.0	129.4	113.5	99.7	75.6	56.8	44.7	35.9	30.2
226	308.6	283.4	260.5	236.6	193.8	156.8	124.9	97.1	75.8
227	339.2	314.1	292.2	269.6	227.5	188.6	153.9	121.5	95.6
228	440.8	419.4	398.9	375.6	326.1	276.4	229.5	184.0	146.3
229	170.2	190.7	212.6	235.7	285.9	335.4	385.3	434.3	478.8
230	51.7	59.5	68.8	79.8	105.9	138.1	176.3	219.9	269.4
231	271.9	273.2	274.5	274.5	270.9	264.0	253.3	240.3	222.9
232	369.9	374.2	377.6	379.6	375.6	366.4	351.5	331.2	305.6
233	362.2	364.8	366.7	367.2	361.6	351.1	335.6	317.1	291.5
234	262.4	263.0	263.5	263.4	259.1	252.1	242.7	231.3	215.3
235	78.2		89.8	95.6	106.0	114.8	122.7	131.3	138.8
236		69.7	78.8	88.5	108.9	131.1	154.6	179.6	204.9
237	48.9	56.7		76.1	100.6	130.3	165.2	204.7	248.0
238			62.7	73.0	97.5	128.0	164.4	206.2	253.4
239					95.4	126.0	162.5	205.4	
244						54.3	42.5		
245							44.2		
246									
247									
248	76.5								
249								61.1	
252	184.1	205.5	228.5	253.2	305.7	357.4	406.9	455.2	496.8

Table XXX: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\infty} = 3.5$, Upright, Pressures in psf

					nal α			
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 157	Ref 165	Ref 159	Ref 160	Ref 161	Ref 162	Ref 163	Ref 164
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
2	105.4	119.8	155.1	196.4	241.2	286.5	334.4	384.1
5	150.9	151.0	152.8	152.4	150.7	145.8	138.8	129.1
6	172.8	173.4	174.7	174.1	171.5	166.5	160.0	149.9
9	206.1	186.0	147.4	114.8	89.1	68.2	52.3	41.6
10	77.0	88.0	116.1	150.4	189.7	232.7	280.1	330.5
13	120.7	120.9	121.6	121.1	119.7	117.3	112.8	105.4
14	140.2	140.3	140.7	140.2	138.3	135.3	131.4	124.4
17	195.8	174.2	132.7	96.3	72.8	53.8	41.7	34.1
19	93.9	91.5	89.7	89.6	89.8	88.9	87.3	82.5
20	114.4	108.7	107.1	106.7	106.7	105.8	104.4	100.7
21	74.7	74.0	76.0	76.8	76.4	75.5	75.7	71.5
22	88.8	88.9	90.3	91.6	91.4	90.3	90.7	89.3
23	64.1	63.6	63.8	64.5	65.3	65.1	65.0	63.0
24	77.8	77.0	76.9	77.5	79.0	79.6	79.1	79.2
25	59.3	58.8	58.2	56.2	56.0	56.5	58.7	59.3
26	73.1	72.2	71.2	69.7	69.3	69.9	72.1	73.4
43	119.9	125.1	135.8	144.6	150.7	154.0	156.5	157.6
44	136.7	142.6	153.6	162.4	168.5	171.3	173.6	172.2
85	173.1	174.2	177.5	177.8	175.6	170.0	161.6	150.7
86	198.0	199.6	202.6	202.6	199.5	193.7	185.3	172.7
87	123.5	136.3	166.2	198.4	230.2	260.4	290.2	318.5
88	133.7	147.7	179.1	213.1	246.4	278.0	310.0	339.6
89	44.1	50.1	65.5	86.5	113.5	146.5	185.0	228.0
90	41.8	48.6	65.5	88.2	116.8	150.4	190.5	235.2
91	41.6	47.7	63.5	85.4	113.6	147.6	188.3	233.6
921	230.0	209.1	167.7	132.3	103.5	79.9	61.0	48.1
922								
93	74.3	85.0	112.1	145.9	184.8	227.1	274.2	325.2
128	147.1	129.1	96.2	71.7	54.7	42.6	35.9	32.9
201	502.5	483.9	441.5	391.1	340.3	292.2	243.9	200.2
202	563.6	554.7	530.2	494.8	454.3	409.8	364.6	319.4
203	578.4	580.2	578.9	564.0	540.0	506.2	465.6	419.0
204	548.6	560.6	579.2	584.4	581.1	564.5	539.7	502.6
205	458.1	482.2	526.6	557.7	577.7	583.5	583.2	567.5
206	389.9	415.3	463.9	505.4	538.8	562.5	579.8	583.4
207	325.5	349.0	398.2	443.5	485.9	522.1	553.2	572.1

Table XXX(continued)
Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\infty} = 3.5$, Upright, Pressures in psf

				Nomi				
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 157	Ref 165	Ref 159	Ref 160	Ref 161	Ref 162	Ref 163	Ref 164
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
208	237.8	259.4	308.6	362.0	414.1	462.3	506.7	540.8
209	412.2	418.3	426.8	424.3	414.8	398.3	376.4	347.9
210	462.4	471.8	486.3	489.4	483.7	467.9	445.1	414.2
211	516.2	528.5	548.0	554.7	550.6	535.7	510.9	475.3
212	531.1	542.6	561.2	567.3	562.9	548.7	524.9	489.8
213	486.1	494.7	508.6	510.4	504.3	488.3	464.9	432.0
214	437.8	443.7	452.3	449.6	440.9	424.4	402.0	371.3
215	223.1	202.4	162.1	127.7	100.1	76.9	58.8	46.5
216	168.1	172.3	181.7	187.2	189.1	187.1	181.5	172.8
217	191.4	196.3	205.6	210.7	212.0	209.5	203.4	192.2
218	122.8	138.8	177.7	221.6	268.0	315.8	365.9	414.4
219	72.8	74.6	77.3	78.0	78.2	77.0	72.9	64.2
220	86.1	88.1	91.2	92.7	93.4	93.5	90.9	82.8
225	146.5	128.9	99.3	75.2	56.4	44.3	35.8	30.0
226	308.8	283.9	237.1	194.2		124.7	96.7	
227	339.3	314.6	270.0	228.0		153.8		95.9
228	441.6	420.5	375.8	326.5	276.9	229.4		146.9
229		190.7	236.7	286.7	336.7	386.2		478.7
230		59.2	79.6	105.7	138.2	176.2		
231	252.3	253.0	254.8			234.6		
232	352.1	356.0	360.5					
233	380.6	383.4	386.8					
234	281.6	282.1	283.4	279.1				
235	71.3	76.3						
236	57.1	64.9						
237	47.6	55.0						
238	45.9	53.1	71.5					
239	45.2	52.3						
244	143.8	126.5	95.6					
245	144.4	126.7						
246								
247	75.2	77.6						
248	66.8	66.0						
249	81.6							
252	184.6	205.5	253.9	306.5	5 358.5	407.3	454.8	496.6

Table XXXI: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 3.5$, Upright, Pressures in psf

				Nomi	nal α			
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 166	Ref 174	Ref 168	Ref 169	Ref 170	Ref 171	Ref 172	Ref 173
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
2	105.1	119.7	154.2	195.3	239.4	285.2	332.9	382.6
5	129.6	129.3	130.5	130.9	129.2	124.9	118.6	110.4
6	198.6	199.1	200.5	199.8	196.6	191.2	183.9	173.0
9	205.2	185.4	147.2	114.9	88.9	68.4	52.2	41.6
10	77.2	87.9	115.4	149.8	188.8	231.5	278.5	329.3
13	102.1	102.7	103.0	102.4	101.3	99.1	94.8	88.0
14	162.9	163.2	163.7	163.2	160.8	157.7	153.1	148.1
17	195.0	173.4	133.1	97.0	74.9	53.8	41.3	33.5
19	78.9	77.0	74.8	75.0	74.6	74.0	72.3	66.4
20	134.7	128.7	126.4	126.3	126.2	125.3	123.9	120.6
21	62.2	61.1	62.7	63.8	63.3	62.7	61.7	56.6
22	105.8	106.5	107.6	109.4	109.4	107.9	107.8	107.7
23	53.0	52.8	52.9	53.2	53.4	53.1	53.3	48.2
24	93.4	92.6	92.3	93.0	94.5	95.8	95.3	95.6
25	48.6	48.3	48.1	46.6	46.1	46.7	48.2	45.2
26	88.1	86.8	85.6	84.4	83.8	84.4	87.0	
43	103.1	107.6	116.8	124.0	128.7	132.2	134.5	136.0
44	157.0	163.8	176.2	186.6	193.4	197.0	199.1	197.8
85	149.7	150.6	153.6	153.9	151.8	147.0	139.5	
86	224.9	226.7	229.9	229.6		220.2	210.7	
87	112.6	124.3	151.4	180.9			267.1	293.5
88	145.3	160.5	193.7	229.8	264.7	299.0		
89	43.5	48.8	63.4	83.3		141.2		
90	42.9	49.7	67.3	91.1				
91	41.1	47.5						
921	229.3	208.9	167.4	132.2	103.5	80.1	61.1	48.1
922						<u> </u>		
93		85.0	111.8					
128	145.8	128.0	95.1					
201	500.2							
202		551.3						
203	575.0							
204	545.2	558.0						
205	454.9	478.9						
206	386.4	412.2						
207	323.4	346.8	395.5	441.3	482.8	519.0	550.0	568.3

Table XXXI(continued)
Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 3.5$, Upright, Pressures in psf

	<u> </u>			Nomi	nal α			
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°
fice	Ref 166	Ref 174	Ref 168	Ref 169	Ref 170	Ref 171	Ref 172	
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
208	236.5	258.5	306.8	359.3	411.1	459.7	503.1	536.6
209	383.4	389.0	397.0	394.3	385.4	370.3	349.3	322.3
210	435.7	445.5	459.5	462.2	456.8	442.0	420.7	390.8
211	499.0	511.7	531.1	537.8	533.6	519.5	495.5	460.5
212	541.4	553.1	571.9	577.3	572.7	558.7	534.4	498.9
213	506.9	516.2	530.4	532.3	525.6	509.4	485.2	451.0
214	463.4	469.5	478.8	476.8	467.6	450.7	426.8	395.3
215	220.2	200.1	160.2	126.4	98.8	76.3	58.4	46.2
216	146.4	150.2	158.5	163.2	164.6	162.9	157.9	150.3
217	217.0	222.4	232.4	238.2	239.7	237.0	230.7	218.9
218	121.1	136.9	174.3	217.5	263.1	310.7	360.7	409.2
219	60.4	61.8	64.2	64.6	64.4	62.4	57.0	50.0
220	102.3	105.1	108.3	110.3	111.0	112.1	110.6	103.7
225	146.0	128.6	98.8	75.2	56.5	44.0	34.9	29.1
226	308.3	283.6	236.5	194.1	156.7	124.6	96.5	75.7
227	338.5	314.0	269.1	227.2	188.1	153.4	120.9	95.6
228	440.2	418.8	374.2	325.1	276.1	229.1	183.7	147.3
229	170.5	190.5	235.9	285.1	334.7	384.1	432.1	475.6
230	51.7	59.1	79.0	105.5	137.5	175.3	218.9	268.0
231	225.0	225.4	226.3	222.4	216.3	207.5	196.2	182.2
232	324.2	328.0	331.5	326.6	316.3	302.0	283.1	260.8
233	408.2	411.4	415.4	410.3	400.1	383.3	361.6	334.0
234	312.6	312.9	313.6	309.9	302.0	291.2	276.9	258.0
235	62.6	66.6	74.0	80.8	87.0	92.8	99.5	106.1
236	51.6	58.1	72.5	88.2	106.0	126.1	147.1	169.6
237	45.7	52.0	68.8	91.2	118.3	150.1	187.1	227.7
238	44.6	51.5	68.9	91.8	121.1	155.6	195.7	240.7
239	45.0	51.5	69.5	94.1	124.5	160.8	203.0	250.9
244	143.5	126.2	94.8	70.6	53.4	41.2	33.3	28.2
245	143.1	125.9	95.9	71.8	54.4	43.2	34.6	29.7
246	84.3	83.6	82.0	80.9	79.3	77.9	76.8	74.9
247	62.9	65.2	67.1	67.7	65.9	60.1	54.3	52.9
248	54.7	54.8	53.9	52.0	49.4	47.5	47.5	50.1
249	98.4	97.0	93.6	89.8	86.1	83.6	82.9	85.0
252	184.2	204.9	252.5	305.1	356.4	404.9	452.2	493.5

Table XXXII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 3.5$, Upright, Pressures in psf

	Nominal α								
Ori-	0.0	15.0°	25.0°						
fice	Ref 175	Ref 176	Ref 177						
ID	Pi	Pi	Pi						
2	119.9	239.1	333.0						
5	183.0	182.1	169.1						
6	142.9	140.8	130.4						
9	186.2	89.3	52.5						
_10	88.3	189.1	279.2						
13	148.7	147.7	140.4						
14	113.3	111.4	105.2						
17	174.5	73.7	41.6						
19	113.8	113.1	111.4						
20	86.4	84.2	81.8						
21	94.6	98.2	97.1						
22	69.1	71.5	70.7						
23	82.1	84.3	84.3						
24	59.9	61.2	61.4						
25	76.3	73.1	75.5						
26	56.2	53.5	55.6						
43	151.1	182.7	189.5						
44	116.9	137.8	141.9						
85	208.3	209.5	194.0						
86	166.5	166.0	153.4						
87	153.0	255.0	320.9						
88	131.7	220.0	278.1						
89	51.7	118.5	192.9						
90	47.0	111.1	182.2						
91	47.4	113.3	188.0						
921	208.7	103.2	61.1						
922									
93	84.8	183.7	273.4						
128	129.3	54.6	35.2						
201	481.2	338.1	242.7						
202	552.6	452.9	364.9						
203	578.3	537.2	465.1						
204	558.1	577.5	538.2						
205	481.0	574.6	581.7						
206	414.8	536.1	578.2						
207	348.6	483.6	552.1						

 $(\mathbf{i}_{i+1},\ldots,\mathbf{i}_{i+1},\mathbf{v}_{i+1})$

Table XXXII(continued) Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 3.5$, Upright, Pressures in psf

	N	ominal	α
Ori-	0.0°	15.0°	25.0°
fice	Ref 175	Ref 176	
ID	Pi	Pi	Pi
208	258.6	412.6	505.8
209	454.0	451.2	411.5
210	502.3	513.3	475.0
211	544.9	566.2	527.3
212	522.9	543.0	507.0
213	462.6	469.6	433.1
214	407.1	401.3	365.1
215	204.7	101.1	59.6
216	204.7	224.0	216.1
217	164.6	177.6	168.9
218	141.3	270.9	369.2
219	94.7	100.5	97.9
220	69.4	73.2	67.8
225	128.4	57.2	35.4
226	283.1	156.1	96.4
227	313.1	187.8	120.9
228	418.1	275.6	183.5
229	190.2	334.8	433.5
230	59.3	138.3	219.5
231	293.1	283.6	258.5
232	392.6	384.5	349.8
233	346.5	331.2	297.8
234	244.4	233.5	212.9
235	91.6	126.9	145.2
236	74.3	141.6	193.3
237	58.9	135.2	211.0
238	54.8	130.9	209.7
239	52.6	126.7	205.6
244	126.2	53.9	34.3
245	125.2	54.4	35.3
246	123.0	117.7	114.1
247	97.0	105.9	95.4
248	85.3	76.2	73.4
249	62.5	55.8	54.1
252	205.6	356.8	454.1

Table XXXIII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 3.5$, Upright, Pressures in psf

	Nominal α								
Ori-	0.0°	15.0°	25.0°						
fice	Ref 178								
ID	Pi	Pi	Pi						
2	119.4	236.9	331.2						
5	208.5	207.3	193.6						
6	122.8	121.2	111.8						
9	185.8	89.3	52.3						
10	87.6	188.2	278.2						
13	171.7	170.6	162.6						
14	96.6	94.8	89.0						
17	172.2	73.4	41.2						
19	132.8	132.7	131.2						
20	73.0	70.6	68.1						
21	112.4	116.6	114.8						
22	57.3	59.4	58.1						
23	98.3	100.3	100.9						
24	50.4	50.7	50.0						
25	91.1	87.5	90.5						
26	46.6	44.5	46.7						
43	172.6	208.2	216.0						
44	100.6	118.2	121.6						
85	235.4	236.8	219.8						
86	144.9	144.3	133.0						
87	165.1	273.5	343.3						
88	120.1	201.0	255.7						
89	52.6	121.7	198.0						
90	45.5	107.0	176.4						
91	47.2	112.9	187.6						
921		102.9	60.8						
922									
93	84.6								
128	129.7								
201	477.3		240.9						
202		450.1	363.8						
203	574.0								
204									
205	476.3								
206	411.2								
207	344.8	479.6	548.4						

-72

Table XXXIII(continued)
Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 3.5$, Upright, Pressures in psf

	N	ominal	α
Ori-	0.0°	15.0°	25.0°
fice	Ref 178	Ref 179	Ref 180
ID	Pi	Pi	Pi
208	256.6	409.9	502.2
209	477.4	475.9	435.4
210	521.3	532.4	493.4
211	553.3	573.7	535.3
212	505.2	525.6	492.0
213	435.7	442.9	409.3
214	378.2	372.4	338.9
215	205.7	101.7	59.8
216	230.5	251.5	243.6
217	143.7	154.9	147.1
218	142.1	271.8	369.7
219	112.4	119.1	117.9
220	58.5	61.1	54.0
225	128.7	56.4	34.2
226	281.4	154.7	95.4
227	311.6	186.1	119.7
228	414.0	273.2	183.1
229	188.9	332.1	430.6
230	58.7	137.6	218.7
231	322.8	313.3	286.4
232	418.7	411.3	375.7
233	318.8	303.1	271.6
234	218.3	207.8	188.9
235	104.9	146.7	167.5
236	82.3	157.0	213.9
237	61.4	141.8	220.7
238	56.3	134.4	214.7
239	52.5	126.9	206.3
244	125.3	53.1	32.5
245	124.1	53.3	33.9
246	143.3	137.6	133.2
247	114.4	126.2	118.1
248	101.8	91.0	87.6
249	52.1	47.1	45.3
252	204.4	353.8	451.0

Table XXXIV: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 4.6$, Inverted, Pressures in psf

			Nominal α								
Ori-	-5.0°	-2.5°	0.0°	2.5°							
fice	Ref 236	Ref 235		Ref 233							
ID	Pi	Pi	Pi	Pi							
2	56.6	64.7	74.9	85.7							
5	100.1	100.4	100.9	100.7							
6	106.3	106.8	107.4	107.1							
9	152.6	135.7	120.1	105.9							
10	39.4	45.4	53.2	61.4							
13	77.7	77.6	77.7	77.6							
14	83.6	83.7	83.7	83.2							
17	141.5	123.1	107.1	87.2							
19	59.0	56.7	55.5	54.5							
20	64.0	61.9	60.9	60.1							
21	44.6	43.5	43.5	44.2							
22	49.6	48.0	47.9	48.2							
23	37.8	36.9	36.6	36.1							
24	41.8	40.9	40.5	40.0							
25	33.8	33.5	33.2	32.8							
26	38.0	37.8	37.5	37.0							
43	73.5	77.2	81.4	85.1							
44	79.0	82.4	86.4	89.8							
85	116.4	117.2	118.3	119.0							
86	124.2	125.4	126.4	126.8							
87	71.1	79.7	89.4	99.4							
88	74.5	83.2	93.0	102.6							
89	22.3	25.0	28.6	32.8							
90	18.5	21.6	25.6	29.9							
91	20.6	22.9	26.3	30.4							
921	171.0	153.5	136.8	122.1							
922											
93	37.7	43.4	50.9	58.9							
128	105.2	89.7	76.4	65.0							
201	371.9	358.2	342.7	326.5							
202	411.2	405.4	397.4	387.6							
203	415.0	416.5	416.3	415.2							
204	384.1	393.2	400.9	406.8							
205	305.8	323.7	341.0	355.8							
206	254.1	272.3	290.8	307.3							
207	208.6	225.9	243.6	259.4							

Table XXXIV(continued)
Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 4.6$, Inverted, Pressures in psf

 $(\mathbf{A}_{i,\mathbf{q}}) = \frac{1}{\mathbf{q}} \cdot (\mathbf{A}_{i,\mathbf{q}})$

		Nomi	nal α	
Ori-	-5.0°	-2.5°	0.0°	2.5°
fice	Ref 236	Ref 235		Ref 233
ID	Pi	Pi	Pi	Pi
208	148.4	162.9	178.2	193.4
209	290.1	295.2	299.3	301.4
210	325.5	332.6	338.8	342.9
211	363.4	372.4	380.3	386.2
212	369.1	378.0	385.7	391.3
213	334.2	341.1	347.2	351.2
214	299.0	304.1	308.2	310.2
215	166.2	148.9	132.7	118.2
216	111.5	114.8	118.4	121.4
217	118.4	121.7	125.1	127.8
218	67.8	77.6	88.8	100.9
219	42.0	42.8	43.8	44.7
220	46.6	47.1	48.0	48.7
225	106.5	92.1	79.0	67.5
226	230.0	210.7	191.8	174.9
227	254.4	235.7	217.8	201.4
228	328.7	312.7	296.1	279.0
229	100.2	112.6	126.1	140.3
230	24.9	28.3	33.5	38.9
231	175.6	176.4	177.6	176.8
232	248.5	251.4	254.3	255.0
233	259.4	261.7	263.7	263.8
234	186.1	186.7	187.1	186.7
235	40.3	43.4	46.7	49.8
236	27.8	31.8	36.7	42.0
237	21.3	25.1	29.7	34.7
238	20.5	23.7	28.2	33.4
239	20.2	23.5	27.6	32.5
244	102.7	87.8	75.0	64.1
245	103.7	88.9	75.5	64.4
246	63.8	62.6	61.9	60.9
247	43.0	44.3	45.9	46.7
248	40.4	39.6	38.6	38.0
249	44.4	43.7	42.7	41.9
252	109.2	122.3	136.7	151.3

Table XXXV: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 4.6$, Upright, Pressures in psf

					Nomi	nal α				
Ori-	-2.5°	0.0°	2.5°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°	32.0°
fice	Ref 181	Ref 191	Ref 183	Ref 184	Ref 185	Ref 186	Ref 187	Ref 188	Ref 189	Ref 190
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
2	66.1	74.9	86.0	98.6	126.2	158.2	192.1	228.7	263.3	273.9
5	106.1	106.8	106.9	107.1	106.4	104.4	101.2	95.8	89.4	87.4
6	101.0	101.3	101.3	101.3	100.3	98.5	95.5	90.6	85.1	83.3
9	134.2	120.2	105.9	92.8	69.9	51.6	38.6	29.2	22.7	21.4
10	46.0	53.0	61.6	71.4	94.4	122.2	154.1	189.4	225.1	235.6
13	82.7	82.8	83.1	82.8	82.3	81.2	79.2	76.0	71.5	69.9
14	78.4	78.4	78.3	77.9	77.2	76.0	74.2	71.6	67.8	66.2
17	122.2	107.0	87.6	75.7	55.4	39.6	29.3	22.4	18.0	17.0
19	60.9	59.6	59.0	58.9	58.3	58.3	58.5	57.5	54.7	53.4
20	57.5	56.5	56.0	55.7	55.2	55.1	55.3	54.1	51.9	50.7
21	47.0	47.0	47.8	48.5	48.7	48.3	48.7	48.6	46.5	45.7
22	44.2	44.5	45.0	45.4	45.5	45.2	45.6	45.5	44.1	43.4
23	40.2	39.6	39.3	39.7	39.9	40.3	40.5	40.5	39.9	39.2
24	38.1	37.6	37.1	37.5	37.5	37.7	38.1	38.4	38.0	37.4
25	36.7	36.1	35.7	35.4	33.7	33.7	34.6	35.2	35.1	34.8
26	34.8	34.5	34.1	33.8	32.3	32.1	33.0	33.8	33.9	33.5
43	82.5	86.1	90.8	94.6	100.9	106.0	109.5	112.1	113.9	114.5
44	78.3	81.3	84.8	87.8	93.3	97.3	100.0	102.0	102.9	103.2
85	124.0	124.9	125.8	126.2	126.2	124.1	119.8	113.4	105.8	103.3
86	119.3	119.9	120.5	120.7	120.2	118.2		108.2	101.2	
87	83.8	92.7	103.6	114.6	137.3	161.6	185.3	208.1	229.0	
88	81.5	89.9	99.7	110.3	132.0	155.2		200.1	220.3	
89	25.4	28.3	33.2	38.5	52.6	71.7	95.2		155.7	
90	21.5	24.9	29.7	35.6	50.1	69.7		122.5	154.4	
91	22.7	25.6	30.0	35.5	50.0	69.5		122.6	155.7	
921	151.7	137.0	121.6	107.2	82.1	61.6	46.3	35.0	26.8	25.1
922										<u> </u>
93		50.7	59.0	68.7	91.2			184.9		231.5
128	90.0	77.9	65.8	55.2		28.0				
201		343.4	326.6			235.0				
202		397.8	388.4	377.4	351.2					
203		417.2	416.0	413.2	402.1					
204			407.4	411.6	415.1					
205				371.0	394.3					
206				325.1	355.2					
207					309.8	339.9	366.9	389.1	403.8	406.1

408.2 -

Table XXXV(continued)
Nominal Conditions: $\beta = 0.0^{\circ}$, $M_{\infty} = 4.6$, Upright, Pressures in psf

					Nomi	nal α			·	1
Ori-	-2.5°	0.0	2.5°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°	32.0°
fice			Ref 183	Ref 184			Ref 187	Ref 188	Ref 189	
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
208	165.2	178.2	194.5	211.1	247.7	285.2	320.9	353.0	379.0	384.5
209	303.7	307.6	310.4	311.5	309.1	302.0	289.7	272.4	250.8	244.1
210	340.5	346.3	351.0	354.3	355.8	351.5	340.3	322.2	298.7	291.0
211	377.1	384.8	391.6	396.0	400.4	397.5	386.3	367.2	341.0	332.6
212	374.3	382.0	388.3	392.6	397.1	394.2	383.5	365.1	340.9	333.1
213	334.6	340.2	344.4	347.4	348.8	343.9	332.9	314.9	292.6	285.3
214	296.6	300.2	302.6	303.0	301.1	294.3	282.7	265.6	245.4	239.1
215	147.8	133.3	118.2	104.4	79.4	59.6	44.9	33.8	26.1	24.3
216	121.3	124.5	128.1	130.8	134.5	135.7	134.4	130.3	124.6	123.1
217	116.4	118.9	121.7	123.7	127.1	127.8	126.1	121.6	116.4	114.8
218	79.1	89.2	101.9	115.5	145.8	179.6	214.9	252.1	286.6	297.1
219	46.3	47.3	48.3	49.0	49.8	50.3	50.2	47.6	42.8	41.9
220	43.8	44.7	45.5	45.9	46.7	47.3	47.3	44.8	40.9	39.9
225	90.7	79.7	68.5	58.2	41.0	30.0	23.1	18.4	15.3	14.7
226	208.2	192.2	174.1	157.6	126.9	99.8	77.6	58.9	44.8	41.7
227	233.5	218.1	200.7	184.7	153.6	124.1	98.3	75.9	58.5	54.3
228	310.5	296.6	278.6	260.8	223.3	186.0	151.2	119.5	94.1	87.8
229	114.5	126.0	141.0	156.8	191.4	228.5	264.6	300.6	332.4	341.2
230	28.4	32.8	38.9	46.1	63.6	86.4	114.0	146.0	180.9	191.8
231	184.7	185.5	185.0	184.2	180.5	174.9	167.5	157.6	145.4	142.0
232	260.2	262.4	263.5	263.6	259.7	252.1	240.3	224.9	206.8	201.2
233	254.3	255.8	256.0	255.0	250.5	242.5	231.2	215.6	198.2	192.8
234	179.2	179.4	178.7	177.4	173.8	168.6	161.6	151.9	141.0	137.6
235	46.2	49.4	53.0	56.9	64.1	70.9	77.6	84.4	91.0	92.7
236	33.9	38.2	44.3	50.7	65.3	81.4	98.4	117.0	136.3	142.0
237	25.9	29.9	35.8	42.7	59.5	80.6	105.6	134.0	165.7	175.7
238	24.4	28.1	33.9	40.6	57.5	79.1	104.8	135.1	169.1	179.7
239	23.8	27.3	32.9	39.4	55.8	77.4	103.8	134.8	169.2	180.2
244	87.5	76.4	64.7	54.4	38.2	27.4	21.3	17.3	15.0	14.7
245	88.0	76.8	65.2	55.3	39.4	29.0	22.5	18.0	15.5	14.9
246	66.8	66.1	65.7	65.0	63.4	62.1	61.3	60.2	58.9	58.1
247	48.1	49.2	50.4	51.9	53.5	53.8	51.8	47.9	46.9	46.8
248	42.8	41.9	41.2	40.4	38.5	36.7	35.8	35.7	37.0	37.4
249	40.4	39.6	39.1	38.2	36.3	34.6	33.6	33.8	35.5	35.8
252	124.2	136.5	152.3	169.0	205.1	243.4	280.4	315.3	345.8	353.8

Table XXXVI: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\infty} = 4.6$, Upright, Pressures in psf

	1				ominal				
Ori-	-2.5°	0.0°	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°	32.0°
fice	Ref 192	Ref 201	Ref 194	Ref 195	Ref 196	Ref 197	Ref 198		Ref 200
ID	Pi	Pi	Pi						
2	65.1	74.3	98.2	125.9	158.0	192.0	228.0	262.9	273.9
5	94.2	94.9	95.1	94.8	93.6	90.4	85.8	79.7	78.2
6	111.1	111.8	111.7	111.1	109.4	106.0	101.0	94.2	92.1
9	133.5	120.2	92.6	69.6	51.6	38.3	29.1	22.7	21.2
10	45.5	52.5	71.2	94.2	121.8	153.5	188.2	224.2	235.2
13	72.6	72.8	72.8	72.3	71.7	70.0	67.2	62.8	61.4
14	87.9	88.0	87.2	86.6	85.5	83.5	80.3	75.8	74.4
17	120.5	106.3	74.9	55.0	39.5	29.1	22.4	18.0	17.0
19	52.5	51.7	50.8	50.7	51.0	50.9	50.0	46.9	46.0
20	65.7	65.0	63.6	63.2	63.2	62.7	61.6	59.2	58.2
21	40.0	40.3	41.5	41.8	41.6	41.7	41.5	39.4	38.6
22	50.9	51.1	52.0	52.4	51.9	52.0	52.3	50.9	50.2
23	34.0	33.9	33.8	33.9	34.4	34.4	34.9	33.7	33.2
24	43.5	43.3	43.1	43.1	43.8	44.1	44.4	44.0	43.5
25	30.8	30.9	29.9	28.5	28.5	29.1	30.0	29.6	29.4
26	40.3	40.1	39.1	37.6	37.6	38.3	38.9	39.2	39.1
43	73.3	76.7	84.0	89.9	94.6	98.2	101.1	102.7	103.2
44	86.6	90.0	97.2	103.3	108.0	111.0	112.7	113.1	113.3
85	110.8	111.9	113.4	113.4	111.7	107.9	102.4	95.2	93.1
86	129.9	131.0	132.3	132.2	130.1	125.9	119.7	111.3	108.4
87	77.8	86.2	106.8	128.5	151.6	174.4	196.8	216.9	222.9
88	86.0	94.7	116.3	139.6	164.0	187.7	211.1	232.1	238.1
89	24.6	27.7	37.3	51.0	69.3	92.4	120.2	151.8	161.8
90	21.5	25.3	36.2	51.3	71.3	95.9	124.7	157.2	167.5
91	22.0	25.2	35.0	49.5	69.0	93.0	122.1	155.1	165.7
921	151.3	137.1	107.0	81.8	61.6	46.2	35.0	26.8	25.0
922									
93	43.3	50.1	68.4	90.9	118.3	149.6	184.3	220.3	231.2
128	89.3	77.6	54.7	38.5	27.7	21.7	18.3	16.7	16.5
201	356.4	343.5	309.1	271.6	234.6	198.5	164.5	133.0	124.9
202	404.4	397.8	377.1	350.1	320.0	287.3	254.8	220.6	211.0
203	416.2	417.4	413.3	401.1	383.3	358.5	329.0	294.4	284.3
204	393.4	401.4	411.8	414.0	411.4	400.3	381.5	354.5	345.9
205	325.5	341.1	371.0	393.0	407.4	413.6	412.4	401.8	397.9
206	274.1	290.8	324.6	353.7	378.2	397.1	409.3	412.3	412.1
207	227.5	243.2	277.0	309.0	338.4	366.1	388.4	402.7	405.8

Table XXXVI(continued)

Nominal Conditions: $\beta = 2.0^{\circ}$, $M_{\infty} = 4.6$, Upright, Pressures in psf

3 , 1

	 			N	ominal	α			
Ori-	-2.5°	0.0	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°	32.00
fice	Ref 192		Ref 194						
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
208	164.1	177.9	210.9	247.1	284.2	320.5	352.4	378.1	384.0
209	289.0	293.3	297.0	294.4	287.6	275.5	258.9	238.3	232.3
210	327.4	333.9	341.6	342.9	338.9	327.7	310.7	288.0	281.1
211	370.1	378.2	389.3	392.8	389.6	378.6	360.6	334.5	326.5
212	381.6	389.1	399.7	402.6	399.2	388.8	371.5	346.2	338.1
213	346.3	352.2	359.5	359.9	355.1	343.7	326.3	302.9	295.4
214	309.9	313.6	317.4	314.7	307.7	295.4	278.5	257.4	250.8
215	146.3	132.5	103.3	78.7	59.3	44.4	33.7	25.9	24.3
216	109.4	112.4	118.3	121.8	123.0	121.8	118.5	113.2	111.7
217	126.2	129.3	135.0	138.8	139.8	138.1	133.7	127.2	125.1
218	77.8	87.9	114.3	144.4	177.7	212.7	249.2	284.4	295.2
219	39.5	40.7	42.1	42.9	43.3	42.6	39.9	35.9	35.1
220	50.0	51.0	52.5	53.3	54.0	54.1	52.4	47.8	46.6
225	90.4	79.7	57.7	40.8	30.1	22.8	18.2	15.2	14.5
226	208.2	192.5	157.3	126.7	99.9	77.3	59.0	44.8	41.6
227	233.6	218.2	184.5	153.3	124.1	98.2	76.2	58.5	54.2
228	310.8	296.5	260.5	222.8	185.7	150.7	119.7	94.0	87.8
229	113.6	125.6	156.6	191.3	228.1	264.4	299.5	331.8	340.6
230	27.8	32.5	45.4	63.3	85.8	113.3	144.9	180.3	191.5
231	169.6	170.7	169.6	166.0	160.9	153.7	144.4	133.4	130.6
232	245.3	248.2	248.9	244.7	237.0	225.5	210.8	193.6	188.7
233	267.0	269.0	269.1	264.4	256.4	244.3	229.0	210.4	204.6
234	191.7	192.3	191.1	187.7	182.3	174.5	164.7	152.8	149.0
235	41.2	44.1	50.2	56.7	63.0	68.9	75.2	81.0	82.9
236	30.6	34.8	45.7	58.9	73.6	89.6	107.6	125.4	131.1
237	24.5	28.6	40.2	56.4	76.9	100.7	128.7	159.4	169.1
238	23.3	27.2	39.1	55.6	76.7	101.9	131.6	165.0	175.7
239	23.1	27.0	38.6	55.2	76.7	102.7	133.2	167.9	179.3
244	87.2	76.3	54.1	38.0	27.2	20.8	16.9	14.7	14.3
245	87.4	76.5	54.8	38.8	29.0	22.2	18.0	15.2	14.7
246	58.3	57.9	56.7	55.5	54.7	53.8	53.2	51.8	51.2
247	41.1	42.5	44.3	45.9	46.1	43.5	40.7	40.2	40.6
248	36.4	36.1	34.9	33.1	31.9	30.6	31.2	32.3	32.8
249	46.4	45.7	43.7	41.5	39.8	38.8	38.8	40.1	40.5
252	123.1	136.1	168.3	204.7	242.9	280.1	314.4	345.3	353.4

Table XXXVII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 4.6$, Upright, Pressures in psf

<u></u>	Γ			Nomi	nal α			
Ori-	0.0	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°	32.0°
fice	Ref 210							
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
2	74.2	98.1	125.7	157.4	191.1	226.7	261.5	272.2
5	79.7	80.2	79.8	78.8	76.0	72.2	67.0	65.4
6	130.3	130.3	129.6	127.3	123.5	117.5	110.1	108.0
9	119.5	92.1	69.3	51.6	38.4	29.1	22.7	21.2
10	52.3	71.1	93.9	121.4	152.9	187.6	223.0	233.8
13	60.3	60.1	59.7	59.2	57.9	55.5	51.6	50.3
14	104.4	103.6	102.9	101.5	99.1	95.2	90.5	89.0
17	104.4	77.3	55.6	39.4	28.9	22.2	17.8	16.9
19	41.7	41.2	41.2	41.2	41.1	40.3	37.3	36.3
20	78.7	77.5	77.0	76.7	75.9	75.0	72.1	71.2
21	32.2	33.2	33.3	33.3	33.5	33.1	30.7	29.9
22	63.1	64.3	64.6	64.3	64.0	64.0	62.9	62.4
23	27.2	27.0	26.9	27.1	27.4	27.4	25.8	25.3
24	54.0	53.8	54.0	54.9	55.1	54.9	55.0	54.9
25	24.3	23.4	22.5	22.7	23.0	23.8	22.4	22.0
26	50.2	49.1	47.6	47.4	48.0	48.9	49.3	49.3
43	64.6	70.7	75.6	79.7	83.0	85.7	87.6	88.2
44	105.6	113.6	120.6	126.1	129.3	130.5	131.2	131.4
85	95.3	96.5	96.4	95.2	92.0	87.1	81.0	79.1
86	150.9	152.1	152.0	149.4	144.8	137.5	128.1	125.5
87	77.4	96.3	116.4	137.5	158.9	179.6	198.3	203.9
88	104.0	127.3	152.3	177.7	202.9	227.7	249.1	255.7
89	27.1	36.2	49.0	66.7	89.0	115.7	146.5	156.3
90	26.2	37.7	53.5	74.0	99.2	128.5	161.6	171.7
91	25.1	34.8	49.5	68.7	92.9	121.7	154.6	164.8
921	136.6	106.6	81.5	61.7	46.3	35.0	26.9	25.1
922								
93	50.2	68.3	90.9	117.9	149.2	183.5	219.0	229.7
128	76.7	54.1	38.1	27.1	20.8	17.5	15.0	14.3
201	341.6	307.5	270.4	233.8	198.0	163.6	132.5	124.5
202	395.2	374.5	347.5	317.5	285.4	252.7	219.1	209.5
203	415.2	410.6	398.4	380.7	356.4	326.4	292.3	282.9
204	399.5	409.8	412.4	409.1	398.3	379.2	352.1	344.2
205	339.1	368.6	390.7	405.2	411.7	410.2	399.3	395.0
206	288.6	322.2	351.5	375.3	394.7	406.4	409.8	409.4
207	241.3	275.3	307.2	336.4	363.8	385.9	400.1	402.9

Table XXXVII(continued)
Nominal Conditions: $\beta = 5.0^{\circ}$, $M_{\infty} = 4.6$, Upright, Pressures in psf

	Nominal α							
Ori-	0.00	5.0°	10.0°	15.0°	20.0°	25.0°	30.0°	32.0°
fice	Ref 210	Ref 203	Ref 204	Ref 205	Ref 206	Ref 207	Ref 208	Ref 209
ID	Pi	Pi	Pi	Pi	Pi	Pi	Pi	Pi
208	177.2	209.7	245.8	282.3	318.6	349.7	375.4	381.4
209	270.5	274.3	272.0	265.9	254.8	239.6	219.5	213.7
210	313.7	321.5	322.9	319.1	309.0	293.0	271.3	265.2
211	365.4	376.4	379.9	377.4	366.8	349.3	324.1	316.1
212	397.0	407.2	409.6	406.6	396.1	378.3	352.8	344.7
213	368.2	375.4	376.1	370.9	359.4	341.0	316.6	309.3
214	333.1	337.1	334.7	327.5	315.0	297.0	274.6	267.6
215	130.4	101.8	77.6	58.6	43.9	33.3	25.7	24.1
216	96.8	101.9	104.8	106.0	105.0	101.9	97.5	96.2
217	148.3	154.4	158.4	159.8	158.0	152.6	145.1	142.9
218	86.6	112.5	141.8	174.6	209.1	245.3	280.4	290.5
219	32.5	33.5	34.1	34.3	33.5	30.7	27.7	27.1
220	62.6	64.6	65.5	66.3	66.9	65.2	60.7	59.3
225	79.1	57.7	40.9	29.9	22.4	17.9	14.8	14.1
226	191.5	156.8	126.2	99.6	77.0	58.8	44.7	41.5
227	217.2	183.7	152.6	123.7	98.0	76.0	58.4	54.3
228	294.9	259.2	221.7	185.1	150.3	119.6	94.2	88.0
229	125.4	156.2	190.6	226.8	263.2	297.6	329.7	338.4
230	32.3	45.5	63.2	85.8	113.2	144.4	179.5	190.4
231	150.5	149.6	145.7	141.3	134.7	126.5	116.9	114.2
232	226.5	226.9	222.4	214.8	203.9	190.2	174.3	169.8
233	289.9	290.1	285.5	277.0	264.8	248.3	228.7	222.6
234	214.5	213.4	209.8	204.0	195.5	184.5	171.1	167.1
235	37.4	42.4	47.4	52.3	57.3	63.0	68.0	69.7
236	30.4	39.5	50.6	63.6	78.1	94.1	110.8	115.9
237	26.7	37.5	52.6	71.6	94.3	120.8	150.6	159.9
238	26.5	37.6	53.3	73.7	98.1	126.9	159.8	170.1
239	26.7	38.3	54.8	75.9	101.7	132.4	166.8	177.5
244	75.8	54.0	37.8	26.9	20.2	16.3	13.1	12.3
245	76.1	54.8	39.1	28.7	21.8	17.4	14.5	13.6
246	47.7	46.8	45.7	45.0	44.4	44.0	42.8	42.3
247	34.1	35.6	36.5	35.9	33.2	31.8	31.8	31.9
248	28.7	28.0	26.9	25.8	24.7	25.4	26.4	26.6
249	56.9	54.2	51.5	49.4	48.1	47.9	49.2	49.7
252	135.8	168.2	204.2	241.9	278.4	312.4	342.9	350.9

Table XXXVIII: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 4.6$, Upright, Pressures in psf

	Nominal α				
Ori-	0.0	15.0°	25.0°		
fice		Ref 213	Ref 214		
ID	Pi	Pi	Pi		
2	77.2	157.5	227.0		
5	118.2	115.8	106.7		
6	90.3	88.0	81.4		
9	116.4	51.9	29.1		
10	54.6	121.6	188.2		
13	93.1	91.1	85.6		
14	69.3	67.3	63.3		
17	97.9	39.6	22.4		
19	67.8	66.8	65.7		
20	49.4	48.5	47.1		
21	54.4	55.8	55.9		
22	38.3	39.1	39.3		
23	45.8	46.8	47.4		
24	32.3	32.2	33.2		
25	41.6	39.5	41.0		
26	29.5	27.6	29.1		
43	97.1	117.4	123.5		
44	73.0	86.8	91.6		
85	137.4	136.3	124.9		
86	108.0	106.3	97.9		
87	101.2	170.1	219.1		
88	85.6	144.9	188.9		
89	30.2	73.3	126.3		
90	25.5	67.5	119.2		
91	26.3	68.9	122.5		
921	132.6	61.7	34.8		
922					
93	52.3	117.8	183.9		
128	74.4	27.6	17.8		
201	338.9	234.4	162.9		
202	398.0	320.8	254.2		
203	417.5	383.2	327.0		
204	402.7	410.7	379.3		
205	345.0	406.9	411.0		
206	295.6	377.4	407.8		
207	247.6	338.0	387.5		

Table XXXVIII(continued)
Nominal Conditions: $\beta = -2.0^{\circ}$, $M_{\infty} = 4.6$, Upright, Pressures in psf

	N	ominal	α
Ori-	0.00	15.0°	25.0°
fice		Ref 213	
ID	Pi	Pi	Pi
208	181.8	283.8	351.5
209	320.9	315.2	284.1
210	358.5	361.9	331.6
211	392.5	401.9	371.2
212	376.9	385.7	357.0
213	329.8	330.7	302.2
214	287.3	279.7	251.4
215	130.0	60.2	34.0
216	137.2	148.4	142.6
217	108.0	115.2	110.5
218	92.5	180.5	251.8
219	54.8	58.0	55.8
220	39.0	41.1	38.1
225	76.6	30.1	18.2
226	187.0	99.8	58.6
227	213.2	124.0	75.6
228	291.6	185.7	119.1
229	129.3	227.4	298.7
230	33.9	85.9	145.1
231	198.9	189.3	170.5
232	275.5	265.9	237.9
233	242.3	227.7	201.4
234	165.7	155.0	139.1
235	55.9	79.5	94.1
236	43.5	88.6	126.7
237	32.8	83.8	139.0
238	30.3	80.6	138.1
239	28.7	77.3	135.0
244	72.8	27.3	16.9
245	73.1	28.9	17.9
246	75.0	70.5	68.0
247	56.9	62.3	56.5
248	48.1	42.3	41.4
249	33.9	30.1	29.6
252	140.1	242.5	313.7

Table XXXIX: Unitary Plan Wind Tunnel - 4% Model Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 4.6$, Upright, Pressures in psf

	Nominal α				
Ori-	0.00	15.0°	25.0°		
fice		Ref 216	Ref 217		
ID	Pi	Pi	Pi		
2	74.2	156.3	225.3		
5	137.3	134.2	123.8		
6	76.0	74.3	68.4		
9	119.8	51.6	29.1		
10	52.6	121.0	187.2		
13	110.3	107.8	101.3		
14	57.6	55.8	52.4		
17	103.6	39.4	22.3		
19	82.2	80.9	79.3		
20	40.5	39.4	37.9		
21	67.2	68.7	68.2		
22	30.8	31.5	31.2		
23	57.2	58.4	58.3		
24	26.1	25.8	25.9		
25	52.4	49.7	51.0		
26	23.4	22.0	22.9		
43	112.0	136.1	142.5		
44	60.8	72.9	77.4		
85	157.5	156.1	143.6		
86	92.0	90.6	83.2		
87	107.7	184.0	235.7		
88	74.9	131.1	171.7		
89	29.7	75.8	129.7		
90	23.8	64.8	114.8		
91	25.0	68.7	121.9		
921	135.7	61.2	34.8		
922					
93	50.3	117.3	182.9		
128	77.8	27.2	17.1		
201	340.2	232.3	161.5		
202	395.1	318.3	252.6		
203	414.3	379.5	324.2		
204	397.0	406.9	375.6		
205	337.6	403.4	407.3		
206	288.3	374.4	404.4		
207	240.4	335.1	384.1		

Table XXXIX(continued)
Nominal Conditions: $\beta = -5.0^{\circ}$, $M_{\infty} = 4.6$, Upright, Pressures in psf

l	<u>N</u>	ominal			
Ori-	0.0	15.0°	25.0°		
fice		Ref 216			
<u>ID</u>	Pi	Pi	Pi		
208	175.9	282.0	348.9		
209	338.7	334.0	301.8		
210	372.2	376.9	345.6		
211	397.3	407.9	377.0		
212	361.3	372.6	345.0		
213	307.9	310.4	284.0		
214	264.1	257.7	231.6		
215	134.5	60.4	34.2		
216	155.4	168.6	162.4		
217	92.1	99.0	94.8		
218	90.5	181.2	252.5		
219	67.3	71.2	69.7		
220	32.1	33.3	29.8		
225	79.5	29.7	17.7		
226	190.4	98.7	58.2		
227	216.1	122.4	75.2		
228	293.0	183.8	118.6		
229	125.0	225.4	296.4		
230	32.5	85.6	144.5		
231	221.4	211.4	190.8		
232	295.1	286.5	257.8		
233	220.6	206.5	182.1		
234	146.2	136.2	121.6		
235	64.5	93.7	110.0		
236	47.9	100.6	141.6		
237	33.4	89.0	145.8		
238	30.0	83.3	141.4		
239	27.6	77.6	135.0		
244	75.4	26.7	16.0		
245	75.3	28.3	17.2		
246	90.2	84.8	81.2		
247	69.0	76.8	71.2		
248	59.6	52.4	50.8		
249	27.5	24.5	24.1		
252	135.5	240.4	311.3		

Figure 2. - Model's coordinate system.

Run # 1, β .0, Facility: UNITARY Tunnel 4% Model

Figure 3. - Sample data, M_{∞} = 1.50, β = 0, longitudinal sweep.

Run # 6, β .0, Facility: UNITARY Tunnel 4% Model

Figure 4. - Sample data, M_{∞} = 2.00, β = 0, longitudinal sweep.

Run # 1, β .0, Facility: UNITARY Tunnel 4% Model

Figure 5. - Sample data, M_{∞} = 2.30, β = 0, longitudinal sweep.

-2.4 M_∞ 2.96 P_{t2} 692.95 0 .1 M_∞ 2.96 P_{t2} 692.83 $2.6 \ M_{\infty} \ 2.96 \ P_{t_2}$ 693.04 α \Diamond 5.1 M_∞ 2.96 P_{t2} 693.13 α Δ $10.1 \ M_{\infty} \ 2.96 \ P_{t_2} \ 693.22$ ∇ 15.1 M_{∞} 2.96 P_{t_2} 693.28 α \Box 20.1 M_∞ 2.96 P_{t2} 693.02 α Ω α 25.1 M_{∞} 2.96 P_{t_2} 693.01 \Diamond 30.1 M_m 2.96 P_t 693.03 α \Diamond

Run # 6, β .0, Facility: UNITARY Tunnel 4% Model

Figure 6. - Sample data, M_{∞} = 2.96, β = 0, longitudinal sweep.

Run # 11, β .0, Facility: UNITARY Tunnel 4% Model

Figure 7. - Sample data, M_{∞} = 3.50, β = 0, longitudinal sweep.

 $-2.2 M_{\infty} 4.63 P_{t_2}$ 407.93 0 $-.0 \text{ M}_{\infty} \quad 4.63 \text{ P}_{t_2}^{2}$ $2.5 \text{ M}_{\infty} \quad 4.63 \text{ P}_{t_2}^{2}$ $5.0 \text{ M}_{\infty} \quad 4.63 \text{ P}_{t_2}^{2}$ 407.99 408.03 α \Diamond 408.06 Δ 10.0 M_∞ 4.63 P_{t2} 408.09 7 15.0 M_∞ 4.63 P_{t2} 408.11 D α 19.9 M_{∞} 4.63 P_{t_2} 408.14 Δ α 25.0 M_{∞} 4.63 P_{t₂} 408.15 \Diamond α 29.9 M_{∞} 4.63 P_{t_2} 408.19 \Diamond α 31.4 M_{∞} 4.63 P_{t_0} 408.20

Run # 16, β 0.0, Facility: UNITARY Tunnel 4% Model

Figure 8. - Sample data, M_{∞} = 4.63, β = 0, longitudinal sweep.

Run # 1, α -.3, Facility: UNITARY Tunnel 4% Model

Figure 9. - Sample data, M_{∞} = 1.50, β = 0, lateral sweep.

Run # 6, α -.1, Facility: UNITARY Tunnel 4% Model

Figure 10. - Sample data, M_{∞} = 2.00, α = 0, lateral sweep.

0	β	.0 M _∞	2.30 Pt	853.11
	β	.0 M _∞	2.30 P _t	841.60
\Diamond	β	2.0 M _∞	2.30 P _t	836.86
Δ	β	5.0 M _∞	2.30 Pt	837.55
7	β	$-2.0~{\rm M}_{\infty}$	-	

Run # 1, α .1, Facility: UNITARY Tunnel 4% Model

Figure 11. - Sample data, M_{∞} = 2.30, α = 0, lateral sweep.

0 β .0 M_{∞} 2.96 P_{t_2} 692.83 β 2.0 M_{∞} 2.96 P_{t_2} 692.92 ϕ β 5.0 M_{∞} 2.96 P_{t_2} 692.84 Δ β −1.9 M_{∞} 2.96 P_{t_2} 693.12 Δ β −5.0 M_{∞} 2.96 P_{t_2} 693.02

Run # 6, α .1, Facility: UNITARY Tunnel 4% Model

Figure 12. - Sample data, M_{∞} = 2.96, α = 0, lateral sweep.

0 β .0 M_{∞} 3.50 P_{t_2} 575.37 □ β .0 M_{∞} 3.50 P_{t_2} 575.64 ♦ β 2.0 M_{∞} 3.50 P_{t_2} 575.36 Δ β 2.0 M_{∞} 3.50 P_{t_2} 575.61 ► β 5.0 M_{∞} 3.50 P_{t_2} 575.66

Run # 11, α -.0, Facility: UNITARY Tunnel 4% Model

Figure 13. - Sample data, $M_{\infty} = 3.50$, = 0, lateral sweep.

Run # 16, α -.0, Facility: UNITARY Tunnel 4% Model

Figure 14. - Sample data, M_{∞} = 4.63, = 0, lateral sweep.

1. Report No.	2 Carrage Associate No.	
·	2. Government Accession No.	3. Recipient's Catalog No.
NASA TM-84628		•
4. Title and Subtitle		5. Report Date
	0.04-Scale Model of the Space	March 1983
Shuttle Orbiter's Forward Fu	6. Performing Organization Code	
Plan Wind Tunnel		506-63-32-01
7. Author(s)		
		8. Performing Organization Report No.
Pamela F. Bradley, Paul M. S	iemers III, Paul F. Flanagan,	
and Martin W. Henry		10. Work Unit No.
9. Performing Organization Name and Address		10. 10.
NASA Langley Research Center	•	
Hampton, VA 23665		11. Contract or Grant No.
		12 Type of Pagent and Paint County
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
National Aeronautics and Spa	ce Administration	Technical Memorandum
Washington, DC 20546	CC Administration	14. Sponsoring Agency Code
Washing bon, Do 20770		3 3 · · · · · · · · · · · · · · · · · ·
15.0		
15. Supplementary Notes		i

16. Abstract

Pressure distribution tests on a 0.04-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Langley Unitary Plan Wind Tunnel (UPWT). The UPWT has two different test sections operating in the continuous mode. Each test section has its own Mach number range. The model was tested at angles of attack from -2.5° to 30° and angles of sideslip from -5° to 5° in both test sections. The test Reynolds number was 6.6×10^6 per meter.

The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data.

17. Key Words (Suggested by Author(s)) Pressure Distributions Space Shuttle Forward Fuselage		Uncla	tion Statement ssified - Unl ct Category 12	
19. Security Classif (of this report) Unclassified	20. Security Classif. (of this Unclassified	page)	21. No. of Pages 100	22. Price A05

		•	
· · · · · · · · · · · · · · · · · · ·			

3 1176 00513 9341