Homework set #4

- 1. Let X_1, \ldots, X_n be an i.i.d. sample from uniform (0,1) distribution. Find the $EX_{(k)}$.
- 2. Let X_1, \ldots, X_{4n} be an i.i.d. sample from exponential(β) distribution. Find the joint distribution of $(\frac{X_{(n)}+X_{(3n)}}{2}, X_{(3n)}-X_{(n)})$.
- 3. Let X_1, \ldots, X_n be an i.i.d. sample from a distribution with density $\frac{1}{x^2}I_{(1,\infty)}(x)$. Is EX_k finite? What about $EX_{(k)}$? (Hint: The answer might be different for different k.)
- 4. Let X_1, \ldots, X_n be i.i.d. sample from a distribution with density f(x). Fix i < j < k and find the formula for the joint density $f_{X_{(i)}, X_{(j)}, X_{(k)}}(s, u, v)$.
- 5. Let X_1, \ldots, X_n be i.i.d. from Geometric (p) distribution.
 - (a) Set (for this problem part only) $n = 10, p = \frac{1}{4}$. Find $P(X_{(3)} = X_{(5)} = 3)$.
 - (b) Fix $1 \le i < j \le n$. Find the probability mass function $f_{X_{(i)},X_{(j)}}(a,b)$.
- 6. Let \bar{X}_n and S_n^2 be the sample mean and variance based on X_1, \ldots, X_n . Suppose a new observation X_{n+1} becomes available. Show
 - (a) $\bar{X}_{n+1} = \frac{X_{n+1} + n\bar{X}_n}{n+1}$;
 - (b) $nS_{n+1}^2 = (n-1)S_n^2 + \frac{n}{n+1}(X_{n+1} \bar{X}_n)^2$.
- 7. What is the probability that a larger of two continuous i.i.d. random variables exceeds the population median? Generalize the result to sample of size n.
- 8. Let X_1, \ldots, X_n be i.i.d. $U(0, \theta)$. Show that $X_{(1)}/X_{(n)}$ and $X_{(n)}$ are independent.
- 9. Show that each of the following are exponential family and describe the natural parameter space.
 - (a) Gamma(α, β) with both α, β unknown.
 - (b) Beta (α, β) with both α, β unknown.
 - (c) Negative Binomial(r, p) with r known and p unknown.