- 1. Random variables y_t are independent and normally distributed $\mathcal{N}(0;1)$. We define random variables $z_t = y_t \cdot y_{t-1}$.
 - (a) Are z_t independent?
 - (b) Find $\gamma_0 = \text{Var}(z_t)$, $\gamma_1 = \text{Cov}(z_t, z_{t-1})$, $\gamma_2 = \text{Cov}(z_t, z_{t-3})$.
 - (c) Is z_t a white noise process?
- 2. Consider stationary process $y_t = 3 + 0.5y_{t-1} + u_t + u_{t-1}$, where u_t is a white noise with $Var(u_t) = \sigma_u^2$. Find the following:
 - (a) $E(y_t), \gamma_0 = Var(y_t), \gamma_1 = Cov(y_t, y_{t-1}), \gamma_2 = Cov(y_t, y_{t-2});$
 - (b) Find the first two values of autocorrelation function, ρ_1 , ρ_2 ;
 - (c) Find the first two values of partial autocorrelation function, ϕ_{11} , ϕ_{22} ;
- 3. Consider the equation $y_t = 3 + 0.5y_{t-1} + u_t + u_{t-1}$.
 - (a) If it is possible to express y_t in terms of past u_{t-1} then calculate coefficients before u_{t-1} , u_{t-2} and u_{t-3} .
 - (b) If it is possible to express u_t in terms of past y_{t-i} then calculate coefficients before y_{t-1} , y_{t-2} and y_{t-3} .
- 4. This is the output of seasonal ARIMA model estimation in R for Russian population income. Quarterly data from 1992Q4 to 2015Q4 are used.

Series: y

ARIMA(0,1,1)(0,1,0)[4]

Coefficients:

ma1

-0.6611

s.e. 0.0811

- (a) Write down the estimated equation.
- (b) Is the series of population income stationary?
- 5. It is known that $u_{100} = 0.5$, $y_{100} = 4.5$, $Var(u_t) = 9$ and y_t is defined by equation $y_t = 3 + 0.5y_{t-1} + u_t + u_{t-1}$, where u_t is a white noise.
 - (a) Make one-step and two-steps point forecasts: find $E(y_{101}|\mathcal{F}_{100})$ and $E(y_{102}|\mathcal{F}_{100})$.
 - (b) Assuming normal distribution of u_t construct 95% prediction intervals for y_{101} and y_{102} .
- 6. Processes u_t and v_t are independent white noises. The process y_t is defined by equation

$$\begin{cases} y_0 = 0; \\ y_t = y_{t-1} + u_t. \end{cases}$$

The process z_t is defined by equation $z_t = 7 + 0.5z_{t-1} + 2y_{t-1} - 4y_t + v_t$;

- (a) Find the order of integration of y_t and z_t ;
- (b) Are y_t and z_t cointegrated?