

GLEN: Generative Retrieval via Lexical Index Learning

Sunkyung Lee*

Minjin Choi*

Jongwuk Lee

Sungkyunkwan University (SKKU), Republic of Korea

Motivation

Generative Document Retrieval

- > Generative retrieval generates an identifier of a relevant document for a given query.
 - Model parameters encode all information of the corpus, enabling end-to-end optimization.
 - The memory and computational cost of the index structure is reduced.

Existing Methods

- > DSI is the first work to parameterize a retrieval system with a single transformer model.
 - It assigns random or semantic numbers for each document and learns the assignment.

Limitation of Existing Methods

- Most existing models pre-define static document identifiers, but they are difficult to generalize to new documents.
 - The static identifiers can be random numbers, topic hierarchies, titles, or URLs.

Limitation of Existing Methods

- Most existing models pre-define static document identifiers, but they are difficult to generalize to new documents.
 - The static identifiers can be random numbers, topic hierarchies, titles, or URLs.

Research Question

How can we learn appropriate document identifiers for generative retrieval?

Our Solution: Lexical Index Learning

- We devised a lexical index learning to dynamically learn identifiers considering query-document relevance.
 - Namely GLEN (Generative Retrieval via LExical INdex Learning)

Proposed Method

Overview of GLEN

- For training, GLEN exploits a dynamic lexical identifier using a two-phase lexical index learning to effectively learn relevance signals.
- For inference, GLEN utilizes collision-free inference to efficiently rank documents.

Two-phase Lexical Index Learning

- To effectively learn the lexical index, we propose a two-phase training strategy.
 - Phase 1: Pre-train the model using keyword-based IDs to learn the semantics of the corpus.

Two-phase Lexical Index Learning

- To effectively learn the lexical index, we propose a two-phase training strategy.
 - Phase 1: Pre-train the model using keyword-based IDs to learn the semantics of the corpus.
 - Phase 2: Learn ranking-based document IDs to reflect query-document relationships.

Experiments

Experimental Results: NQ320k

> GLEN achieves state-of-the-art or comparable performance compared to the best baseline on benchmark datasets.

Туре	Model	Natural Questions 320K		
		R@1	R@10	MRR@100
Traditional retrieval	BM25	29.7	60.3	40.2
	DocT5Query	38.0	69.3	48.9
	DPR	50.2	77.7	59.9
	GTR-base	56.0	84.4	66.2
Generative retrieval	DSI	55.2	67.4	59.6
	DSI-QG	63.1	80.7	69.5
	NCI	66.4	85.7	73.6
	GENRET	<u>68.1</u>	88.8	75.9
	TOME	66.6	-	<u>-</u>
	GLEN (Ours)	69.1	<u>86.0</u>	<u>75.4</u>

^{*}Pleases refer to the paper for more detailed results.

Experimental Results: MS MARCO & BEIR

GLEN yields a clear improvement over the best generative retrieval methods in largescale corpus and zero-shot evaluation settings.

Model	MS MARCO Dev (MRR@10)			
Traditional retrieval				
BM25	18.4			
DocT5Query	27.2			
GTR-Base	34.8			
Generative retrieval				
DSI	3.1			
DSI-QG	11.8			
NCI	<u>17.4</u>			
GLEN (Ours)	20.1			

Model	BEIR (nDCG@10)					
Model	Average	Arguana	NFCorpus			
Traditional retrieval						
BM25	32.0	31.5	32.5			
DocT5Query	33.9	34.9	32.8			
Generative retrieval						
DSI	6.5	1.8	11.1			
NCI	2.6	0.9	4.3			
GENRET	<u>12.1</u>	<u>12.1</u>	<u>12.1</u>			
GLEN (Ours)	16.8	17.6	15.9			

Conclusion

Conclusion

- We proposed a novel generative retrieval model for dynamic lexical identifiers.
 - GLEN: Generative Retrieval via Lexical Index Learning
- To reflect query-document relevance, we devised a two-stage lexical index training.
- To resolve the identifier collision problem, we introduced collision-free inference.
- GLEN achieves the best or comparable performance with existing generative retrieval models on NQ320k, MS MARCO Passage Ranking, and BEIR.

Thank you © Any questions?

Email: sk1027@skku.edu

Code: https://github.com/skleee/GLEN

Code