Acta Crystallographica Section E

#### **Structure Reports Online**

ISSN 1600-5368

#### 1-Benzyl-3-methyl-3',5'-diphenylspiro-[quinoxaline-2(1*H*),2'(3'*H*)-1,3,4thiadiazole]

### Caleb Ahoya Anothane, Rachid Bouhfid, El Mokhtar Essassi and Seik Weng Ng<sup>c,d</sup>\*

<sup>a</sup>Laboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, <sup>b</sup>Institute of Nanomaterials and Nanotechnology, MAScIR, Avenue de l'Armée Royale, Rabat, Morocco, <sup>c</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and <sup>d</sup>Chemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 7 December 2011; accepted 7 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma(C-C) = 0.003$  Å; disorder in main residue; R factor = 0.045; wR factor = 0.135; data-to-parameter ratio = 24.5.

In the title spiro compound,  $C_{29}H_{24}N_4S$ , the quinoxaline and thiadiazole ring systems share a common C atom; their mean planes are aligned at 87.0 (1)° in one molecule and at 84.1 (1)° in the other independent molecule. The thiazole ring possesses two aromatic ring substituents and is roughly coplanar with these rings [the dihedral angles between the thiadiazole and phenyl rings are 10.7 (1) and 11.7 (1)° in one molecule, and 16.8 (1) and 17.7 (1)° in the other]. The aromatic ring of the benzyl unit of one molecule is disordered over two orientations in a 1:1 ratio.

#### **Related literature**

For the structure of a related molecule, see: Anothane *et al.* (2010).

#### **Experimental**

Crystal data

 $\begin{array}{lll} \text{C}_{29}\text{H}_{24}\text{N}_{4}\text{S} & \gamma = 65.275 \text{ (1)}^{\circ} \\ M_r = 460.58 & V = 2383.45 \text{ (6)} \text{ Å}^3 \\ \text{Triclinic, } P\overline{1} & Z = 4 \\ a = 13.5441 \text{ (2)} \text{ Å} & \text{Mo } K\alpha \text{ radiation} \\ b = 14.8971 \text{ (2)} \text{ Å} & \mu = 0.16 \text{ mm}^{-1} \\ c = 15.0149 \text{ (2)} \text{ Å} & T = 293 \text{ K} \\ \alpha = 66.431 \text{ (1)}^{\circ} & 0.35 \times 0.34 \times 0.17 \text{ mm} \\ \beta = 63.921 \text{ (1)}^{\circ} \end{array}$ 

Data collection

 $\begin{array}{ll} \text{Bruker APEX DUO diffractometer} & 69257 \\ \text{Absorption correction: multi-scan} & 14918 \\ (SADABS; \text{Sheldrick}, 1996) & 10508 \\ T_{\min} = 0.946, \, T_{\max} = 0.973 & R_{\text{int}} = 0.976 \\ \end{array}$ 

69257 measured reflections 14918 independent reflections 10508 reflections with  $I > 2\sigma(I)$   $R_{\rm int} = 0.030$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$   $wR(F^2) = 0.135$  S = 1.0114918 reflections 609 parameters 37 restraints H-atom parameters constrained  $\Delta \rho_{\text{max}} = 0.27 \text{ e Å}^{-3}$ 

 $\Delta \rho_{\text{min}} = -0.22 \text{ e Å}^{-3}$ 

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5152).

#### References

Anothane, C. A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o3227.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2012). E68, o103 doi:10.1107/S1600536811052731 Anothane et al. 0103

| supplementa | ry materials |  |  |
|-------------|--------------|--|--|
|             |              |  |  |
|             |              |  |  |
|             |              |  |  |
|             |              |  |  |

Acta Cryst. (2012). E68, o103 [doi:10.1107/S1600536811052731]

1-Benzyl-3-methyl-3',5'-diphenylspiro[quinoxaline-2(1H),2'(3'H)-1,3,4-thiadiazole]

C. A. Anothane, R. Bouhfid, E. M. Essassi and S. W. Ng

#### Comment

A previous study reported 1-allyl-3-methyl-3',5'-diphenylspiro[quinoxaline-2(1H),2'(3'H)-[1,3,4]thiadiazole] (Anothane *et al.*, 2010). The allyl substitutent is replaced by a benzyl substituent in the present study. The asymmetric unit of  $C_{29}H_{24}N_4S$  (Scheme I) consists of two independent molecules, one of which is disordered in the benzyl substituent. The quinoxaline and thiadiazole ring systems share a common C atom; their mean planes are aligned at 87.0 (1)° in one molecule (Fig. 1) and at 84.1 (1)° in the other independent molecule (Fig. 2). The thiazole ring possesses two aromatic ring substituents and is nearly coplanar with these rings. The aromatic ring of the benzyl unit of one molecule is disordered over two positions in a 1:1 ratio.

#### **Experimental**

To a solution of1-benzyl-3-methylquinoxaline-2-thione (1 g, 3.75 mmole) and diphenylnitrilimine (1.28 g, 5.55 mmole) in THF (20 mL), was added triethylamine (0.78 ml, 5.55 mmol). The mixture was heated under reflux for 24 hours. The precipitate was recovered by filtration and was separated by chromatography on silica gel (hexane/ethylAcetate: 9/1). Colorless crystals were isolated when solvent was allowed to evaporate.

#### Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

One of the phenyl rings of the second independent molecule is disordered over two positions in 1:1 ratio. The ring was refined as a rigid hexagon of 1.39 Å sides. The temperature factors of the primed atoms were set to those of the unprimed ones, and all anisotropic temperature factors were restrained to be nearly isotropic. The pair of  $C_{benzyl}$ – $C_{phenyl}$  distances were restrained to within 0.01 Å of each other.

Omitted were (0 1 1), (0 1 1), (1 0 0) and (1 1 1).

#### **Figures**



Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of one  $C_{29}H_{24}N_4S$  molecule at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.



Fig. 2. Thermal ellipsoid plot (Barbour, 2001) of second  $C_{29}H_{24}N_4S$  molecule at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the phenyl ring is now shown.

#### 1-benzyl-3-methyl-3',5'-diphenyl-1H,3'H-spiro[quinoxaline-2,2'- [1,3,4]thiadiazole]

Crystal data

 $C_{29}H_{24}N_4S$  Z=4

 $M_r = 460.58 F(000) = 968$ 

Triclinic,  $P\overline{1}$   $D_x = 1.284 \text{ Mg m}^{-3}$ 

Hall symbol: -P 1 Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å

a = 13.5441 (2) Å Cell parameters from 9950 reflections

b = 14.8971 (2) Å  $\theta = 2.5-30.7^{\circ}$ 

c = 15.0149 (2) Å  $\mu = 0.16 \text{ mm}^{-1}$  $\alpha = 66.431 (1)^{\circ}$  T = 293 K

 $\beta = 63.921 (1)^{\circ}$  Prism, colorless

 $\gamma = 65.275 (1)^{\circ}$  0.35 × 0.34 × 0.17 mm

V = 2383.45 (6) Å<sup>3</sup>

Data collection

Bruker APEX DUO diffractometer 14918 independent reflections

Radiation source: fine-focus sealed tube 10508 reflections with  $I > 2\sigma(I)$ 

graphite  $R_{\text{int}} = 0.030$ 

 $\theta_{max} = 30.8^{\circ}, \, \theta_{min} = 1.6^{\circ}$ 

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $h = -19 \rightarrow 19$ 

 $T_{\text{min}} = 0.946, T_{\text{max}} = 0.973$   $k = -21 \rightarrow 21$ 

69257 measured reflections  $l = -21 \rightarrow 21$ 

Refinement

Refinement on  $F^2$  Primary atom site location: structure-invariant direct

metho

Least-squares matrix: full Secondary atom site location: difference Fourier map

 $R[F^2 > 2\sigma(F^2)] = 0.045$  Hydrogen site location: inferred from neighbouring

× 20(1 )] 0.043

 $wR(F^2) = 0.135$  H-atom parameters constrained

S = 1.01  $w = 1/[\sigma^2(F_0^2) + (0.0622P)^2 + 0.5234P]$ 

where  $P = (F_0^2 + 2F_c^2)/3$ 

14918 reflections  $(\Delta/\sigma)_{\text{max}} = 0.001$ 

609 parameters  $\Delta \rho_{max} = 0.27 \ e \ \text{Å}^{-3}$ 

37 restraints

$$\Delta \rho_{min} = -0.22 \text{ e Å}^{-3}$$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{\mathbb{A}}^2)$ 

|      | x             | y            | z            | $U_{\rm iso}^*/U_{\rm eq}$ | Occ. (<1) |
|------|---------------|--------------|--------------|----------------------------|-----------|
| S1   | 1.03210(3)    | 0.16041 (3)  | 0.12571 (3)  | 0.04354 (9)                |           |
| S2   | 0.00042(3)    | 0.90325 (3)  | 0.39048 (3)  | 0.04801 (10)               |           |
| N1   | 0.83510 (11)  | 0.22867 (9)  | 0.36228 (9)  | 0.0460(3)                  |           |
| N2   | 0.79303 (10)  | 0.23285 (9)  | 0.19279 (8)  | 0.0422 (2)                 |           |
| N3   | 0.90581 (10)  | 0.34954 (9)  | 0.08824 (8)  | 0.0424(2)                  |           |
| N4   | 0.98330 (10)  | 0.33516 (8)  | -0.00567 (8) | 0.0392(2)                  |           |
| N5   | 0.19751 (10)  | 0.90389 (9)  | 0.14100 (8)  | 0.0417 (2)                 |           |
| N6   | 0.20056 (9)   | 0.74996 (8)  | 0.32571 (8)  | 0.0363 (2)                 |           |
| N7   | 0.01669 (9)   | 0.74698 (8)  | 0.34166 (8)  | 0.0382(2)                  |           |
| N8   | -0.06977 (10) | 0.74838 (9)  | 0.43523 (9)  | 0.0420(2)                  |           |
| C1   | 0.76113 (13)  | 0.17803 (10) | 0.37494 (10) | 0.0432 (3)                 |           |
| C2   | 0.70620 (15)  | 0.12791 (12) | 0.47415 (11) | 0.0544 (4)                 |           |
| H2   | 0.7206        | 0.1278       | 0.5293       | 0.065*                     |           |
| C3   | 0.63089 (18)  | 0.07861 (14) | 0.49172 (14) | 0.0682 (5)                 |           |
| Н3   | 0.5945        | 0.0451       | 0.5583       | 0.082*                     |           |
| C4   | 0.60992 (18)  | 0.07943 (15) | 0.40958 (15) | 0.0712 (5)                 |           |
| H4   | 0.5587        | 0.0463       | 0.4214       | 0.085*                     |           |
| C5   | 0.66327 (16)  | 0.12833 (13) | 0.31002 (13) | 0.0586 (4)                 |           |
| H5   | 0.6481        | 0.1277       | 0.2556       | 0.070*                     |           |
| C6   | 0.73990 (12)  | 0.17860 (10) | 0.29116 (10) | 0.0420(3)                  |           |
| C7   | 0.97184 (16)  | 0.32273 (14) | 0.25839 (13) | 0.0583 (4)                 |           |
| H7A  | 0.9749        | 0.3136       | 0.3242       | 0.087*                     |           |
| H7B  | 0.9432        | 0.3945       | 0.2276       | 0.087*                     |           |
| H7C  | 1.0476        | 0.2954       | 0.2147       | 0.087*                     |           |
| C8   | 0.89375 (13)  | 0.26797 (11) | 0.27174 (10) | 0.0433 (3)                 |           |
| C9   | 0.89281 (12)  | 0.25828 (10) | 0.17439 (9)  | 0.0382(3)                  |           |
| C10  | 0.78465 (13)  | 0.21995 (13) | 0.10455 (11) | 0.0492 (3)                 |           |
| H10A | 0.8047        | 0.1472       | 0.1124       | 0.059*                     |           |
| H10B | 0.8412        | 0.2465       | 0.0426       | 0.059*                     |           |
| C11  | 0.66866 (12)  | 0.27151 (12) | 0.08998 (10) | 0.0444 (3)                 |           |
| C12  | 0.59016 (14)  | 0.35441 (14) | 0.12664 (13) | 0.0560 (4)                 |           |
| H12  | 0.6069        | 0.3788       | 0.1650       | 0.067*                     |           |
| C13  | 0.48657 (16)  | 0.40219 (15) | 0.10738 (15) | 0.0651 (4)                 |           |
| H13  | 0.4340        | 0.4577       | 0.1334       | 0.078*                     |           |
| C14  | 0.46113 (17)  | 0.36769 (16) | 0.04981 (15) | 0.0681 (5)                 |           |
| H14  | 0.3918        | 0.3999       | 0.0364       | 0.082*                     |           |
| C15  | 0.53893 (17)  | 0.28544 (16) | 0.01246 (14) | 0.0666 (5)                 |           |
| H15  | 0.5224        | 0.2622       | -0.0269      | 0.080*                     |           |
| C16  | 0.64163 (15)  | 0.23679 (14) | 0.03277 (12) | 0.0540 (4)                 |           |
| H16  | 0.6931        | 0.1803       | 0.0079       | 0.065*                     |           |
| C17  | 0.83014 (12)  | 0.44896 (10) | 0.09100 (10) | 0.0396 (3)                 |           |
| C18  | 0.73607 (14)  | 0.46811 (13) | 0.17849 (12) | 0.0519 (3)                 |           |
| H18  | 0.7201        | 0.4143       | 0.2362       | 0.062*                     |           |

| C19  | 0.66687 (15) | 0.56774 (14) | 0.17868 (14)  | 0.0595 (4)                               |      |
|------|--------------|--------------|---------------|------------------------------------------|------|
| H19  | 0.6044       | 0.5803       | 0.2370        | 0.071*                                   |      |
| C20  | 0.68894 (15) | 0.64826 (13) | 0.09420 (15)  | 0.0604 (4)                               |      |
| H20  | 0.6424       | 0.7149       | 0.0955        | 0.073*                                   |      |
| C21  | 0.78075 (15) | 0.62907 (12) | 0.00762 (15)  | 0.0575 (4)                               |      |
| H21  | 0.7954       | 0.6833       | -0.0500       | 0.069*                                   |      |
| C22  | 0.85136 (13) | 0.53058 (11) | 0.00511 (12)  | 0.0464(3)                                |      |
| H22  | 0.9130       | 0.5188       | -0.0539       | 0.056*                                   |      |
| C23  | 1.05153 (11) | 0.24335 (10) | 0.00069 (9)   | 0.0368(3)                                |      |
| C24  | 1.13657 (11) | 0.20878 (10) | -0.09069 (10) | 0.0378(3)                                |      |
| C25  | 1.14717 (13) | 0.27713 (13) | -0.18831 (11) | 0.0494(3)                                |      |
| H25  | 1.1034       | 0.3455       | -0.1953       | 0.059*                                   |      |
| C26  | 1.22270 (15) | 0.24296 (16) | -0.27435 (12) | 0.0630(4)                                |      |
| H26  | 1.2289       | 0.2885       | -0.3393       | 0.076*                                   |      |
| C27  | 1.28896 (15) | 0.14228 (16) | -0.26508 (14) | 0.0653 (5)                               |      |
| H27  | 1.3395       | 0.1199       | -0.3236       | 0.078*                                   |      |
| C28  | 1.28045 (14) | 0.07476 (14) | -0.16929 (14) | 0.0592 (4)                               |      |
| H28  | 1.3261       | 0.0069       | -0.1630       | 0.071*                                   |      |
| C29  | 1.20409 (12) | 0.10748 (12) | -0.08214 (12) | 0.0464(3)                                |      |
| H29  | 1.1980       | 0.0613       | -0.0175       | 0.056*                                   |      |
| C30  | 0.28653 (11) | 0.87214 (10) | 0.18112 (10)  | 0.0397(3)                                |      |
| C31  | 0.37500 (13) | 0.91778 (12) | 0.12528 (13)  | 0.0528 (4)                               |      |
| H31  | 0.3737       | 0.9673       | 0.0633        | 0.063*                                   |      |
| C32  | 0.46396 (14) | 0.89049 (14) | 0.16081 (15)  | 0.0618 (4)                               |      |
| H32  | 0.5222       | 0.9219       | 0.1237        | 0.074*                                   |      |
| C33  | 0.46623 (14) | 0.81610 (14) | 0.25209 (15)  | 0.0592 (4)                               |      |
| H33  | 0.5263       | 0.7977       | 0.2764        | 0.071*                                   |      |
| C34  | 0.38066 (13) | 0.76849 (12) | 0.30798 (13)  | 0.0493 (3)                               |      |
| H34  | 0.3841       | 0.7179       | 0.3690        | 0.059*                                   |      |
| C35  | 0.28904 (11) | 0.79598 (10) | 0.27338 (10)  | 0.0373 (3)                               |      |
| C36  | 0.01034 (15) | 0.90929 (12) | 0.15860 (13)  | 0.0549 (4)                               |      |
| H36A | 0.0288       | 0.9529       | 0.0899        | 0.082*                                   |      |
| Н36В | -0.0579      | 0.9466       | 0.2022        | 0.082*                                   |      |
| H36C | -0.0025      | 0.8507       | 0.1584        | 0.082*                                   |      |
| C37  | 0.10810 (12) | 0.87449 (9)  | 0.19810 (10)  | 0.0387(3)                                |      |
| C38  | 0.09188 (11) | 0.81007 (9)  | 0.30892 (9)   | 0.0349 (2)                               |      |
| C39  | 0.19346 (12) | 0.68252 (11) | 0.43048 (10)  | 0.0435 (3)                               |      |
| H39A | 0.1181       | 0.6718       | 0.4638        | 0.052*                                   | 0.50 |
| H39B | 0.1996       | 0.7177       | 0.4691        | 0.052*                                   | 0.50 |
| Н39С | 0.1176       | 0.6729       | 0.4641        | 0.052*                                   | 0.50 |
| H39D | 0.2009       | 0.7173       | 0.4687        | 0.052*                                   | 0.50 |
| C40  | 0.2843 (4)   | 0.5780 (3)   | 0.4369 (5)    | 0.0450 (3)                               | 0.50 |
| C41  | 0.3129 (5)   | 0.5183 (5)   | 0.3729 (4)    | 0.0530 (11)                              | 0.50 |
| H41  | 0.2802       | 0.5438       | 0.3213        | 0.064*                                   | 0.50 |
| C42  | 0.3902 (6)   | 0.4206 (5)   | 0.3860 (6)    | 0.0691 (12)                              | 0.50 |
| H42  | 0.4093       | 0.3807       | 0.3431        | 0.083*                                   | 0.50 |
| C43  | 0.4389 (5)   | 0.3825 (3)   | 0.4631 (7)    | 0.0853 (7)                               | 0.50 |
| H43  | 0.4907       | 0.3171       | 0.4718        | 0.102*                                   | 0.50 |
| C44  | 0.4104 (5)   | 0.4421 (5)   | 0.5271 (5)    | 0.0808 (16)                              | 0.50 |
| J. 1 | J. 110 1 (J) | J. 1121 (J)  | 3.32,1 (3)    | J. J | 5.50 |

| H44  | 0.4430        | 0.4167       | 0.5787       | 0.097*      | 0.50 |
|------|---------------|--------------|--------------|-------------|------|
| C45  | 0.3330 (4)    | 0.5399 (4)   | 0.5140 (5)   | 0.0592 (11) | 0.50 |
| H45  | 0.3139        | 0.5798       | 0.5569       | 0.071*      | 0.50 |
| C40' | 0.2816 (4)    | 0.5787 (3)   | 0.4372 (5)   | 0.0450(3)   | 0.50 |
| C41' | 0.3403 (5)    | 0.5333 (5)   | 0.3561 (4)   | 0.0530 (11) | 0.50 |
| H41' | 0.3291        | 0.5689       | 0.2927       | 0.064*      | 0.50 |
| C42' | 0.4159 (5)    | 0.4347 (5)   | 0.3696 (6)   | 0.0691 (12) | 0.50 |
| H42' | 0.4552        | 0.4043       | 0.3152       | 0.083*      | 0.50 |
| C43' | 0.4326 (5)    | 0.3815 (3)   | 0.4642 (7)   | 0.0853 (7)  | 0.50 |
| H43' | 0.4831        | 0.3155       | 0.4732       | 0.102*      | 0.50 |
| C44' | 0.3738 (5)    | 0.4269 (5)   | 0.5454 (5)   | 0.0808 (16) | 0.50 |
| H44' | 0.3851        | 0.3913       | 0.6087       | 0.097*      | 0.50 |
| C45' | 0.2983 (4)    | 0.5255 (4)   | 0.5319 (4)   | 0.0592 (11) | 0.50 |
| H45' | 0.2590        | 0.5558       | 0.5862       | 0.071*      | 0.50 |
| C46  | 0.05731 (12)  | 0.65744 (9)  | 0.30806 (10) | 0.0373 (3)  |      |
| C47  | 0.13942 (13)  | 0.65090 (11) | 0.21192 (11) | 0.0441 (3)  |      |
| H47  | 0.1696        | 0.7053       | 0.1694       | 0.053*      |      |
| C48  | 0.17631 (14)  | 0.56422 (12) | 0.17923 (12) | 0.0508(3)   |      |
| H48  | 0.2300        | 0.5613       | 0.1143       | 0.061*      |      |
| C49  | 0.13428 (18)  | 0.48211 (12) | 0.24180 (13) | 0.0617 (4)  |      |
| H49  | 0.1604        | 0.4232       | 0.2203       | 0.074*      |      |
| C50  | 0.05311 (19)  | 0.48863 (13) | 0.33660 (13) | 0.0657 (5)  |      |
| H50  | 0.0243        | 0.4334       | 0.3791       | 0.079*      |      |
| C51  | 0.01315 (15)  | 0.57533 (11) | 0.37033 (11) | 0.0510(4)   |      |
| H51  | -0.0429       | 0.5787       | 0.4342       | 0.061*      |      |
| C52  | -0.08744 (12) | 0.82234 (10) | 0.46872 (11) | 0.0431 (3)  |      |
| C53  | -0.17437 (13) | 0.83765 (11) | 0.56788 (11) | 0.0500(3)   |      |
| C54  | -0.26402 (16) | 0.79480 (15) | 0.61287 (15) | 0.0689 (5)  |      |
| H54  | -0.2698       | 0.7567       | 0.5801       | 0.083*      |      |
| C55  | -0.3453 (2)   | 0.80904 (18) | 0.70713 (17) | 0.0888 (7)  |      |
| H55  | -0.4058       | 0.7807       | 0.7372       | 0.107*      |      |
| C56  | -0.3365 (2)   | 0.86476 (19) | 0.75598 (17) | 0.0921 (8)  |      |
| H56  | -0.3907       | 0.8735       | 0.8193       | 0.111*      |      |
| C57  | -0.2486 (2)   | 0.90736 (18) | 0.71186 (16) | 0.0849 (7)  |      |
| H57  | -0.2432       | 0.9451       | 0.7453       | 0.102*      |      |
| C58  | -0.16709 (17) | 0.89472 (14) | 0.61754 (14) | 0.0643 (4)  |      |
| H58  | -0.1077       | 0.9244       | 0.5876       | 0.077*      |      |
|      |               |              |              |             |      |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|    | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|----|--------------|--------------|--------------|---------------|---------------|---------------|
| S1 | 0.04818 (19) | 0.03957 (17) | 0.03708 (16) | -0.01054 (14) | -0.01453 (14) | -0.00653 (13) |
| S2 | 0.0507(2)    | 0.03946 (18) | 0.0531(2)    | -0.01480 (15) | -0.00821 (16) | -0.01978 (15) |
| N1 | 0.0593 (7)   | 0.0467 (6)   | 0.0350 (5)   | -0.0181 (6)   | -0.0160 (5)   | -0.0105 (5)   |
| N2 | 0.0467 (6)   | 0.0550(7)    | 0.0311 (5)   | -0.0223(5)    | -0.0101 (4)   | -0.0124 (5)   |
| N3 | 0.0486 (6)   | 0.0376 (6)   | 0.0320 (5)   | -0.0109 (5)   | -0.0085(5)    | -0.0079 (4)   |
| N4 | 0.0421 (6)   | 0.0409 (6)   | 0.0326 (5)   | -0.0144 (5)   | -0.0095 (4)   | -0.0086 (4)   |
| N5 | 0.0503 (6)   | 0.0379 (6)   | 0.0376 (5)   | -0.0180(5)    | -0.0151(5)    | -0.0047(4)    |

| N6   | 0.0397 (5)  | 0.0362 (5)  | 0.0328 (5)  | -0.0117 (4)  | -0.0140 (4)  | -0.0059 (4)  |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| N7   | 0.0415 (6)  | 0.0347 (5)  | 0.0390 (5)  | -0.0169 (4)  | -0.0087 (4)  | -0.0094 (4)  |
| N8   | 0.0395 (6)  | 0.0409 (6)  | 0.0402 (6)  | -0.0136 (5)  | -0.0080(5)   | -0.0093 (5)  |
| C1   | 0.0519 (8)  | 0.0386 (7)  | 0.0360(6)   | -0.0124 (6)  | -0.0125 (6)  | -0.0099 (5)  |
| C2   | 0.0698 (10) | 0.0470 (8)  | 0.0361 (7)  | -0.0185 (7)  | -0.0136 (7)  | -0.0041 (6)  |
| C3   | 0.0809 (12) | 0.0593 (10) | 0.0493 (9)  | -0.0349 (9)  | -0.0102 (9)  | 0.0025 (8)   |
| C4   | 0.0826 (13) | 0.0679 (11) | 0.0652 (11) | -0.0481 (10) | -0.0167 (10) | -0.0005 (9)  |
| C5   | 0.0699 (11) | 0.0620 (10) | 0.0531 (9)  | -0.0361 (9)  | -0.0184 (8)  | -0.0083 (7)  |
| C6   | 0.0479 (7)  | 0.0397 (7)  | 0.0364 (6)  | -0.0160 (6)  | -0.0099 (5)  | -0.0093 (5)  |
| C7   | 0.0686 (10) | 0.0716 (11) | 0.0526 (9)  | -0.0344 (9)  | -0.0224 (8)  | -0.0159 (8)  |
| C8   | 0.0527 (8)  | 0.0463 (7)  | 0.0366 (6)  | -0.0162 (6)  | -0.0168 (6)  | -0.0121 (5)  |
| C9   | 0.0444 (7)  | 0.0397 (6)  | 0.0317 (5)  | -0.0149 (5)  | -0.0120 (5)  | -0.0085 (5)  |
| C10  | 0.0470 (8)  | 0.0714 (10) | 0.0379 (7)  | -0.0210 (7)  | -0.0100 (6)  | -0.0234 (7)  |
| C11  | 0.0477 (7)  | 0.0595 (8)  | 0.0309(6)   | -0.0263 (7)  | -0.0086 (5)  | -0.0101 (6)  |
| C12  | 0.0569 (9)  | 0.0674 (10) | 0.0564 (9)  | -0.0200 (8)  | -0.0198 (7)  | -0.0253 (8)  |
| C13  | 0.0589 (10) | 0.0691 (11) | 0.0743 (11) | -0.0128 (8)  | -0.0252 (9)  | -0.0280 (9)  |
| C14  | 0.0612 (11) | 0.0815 (13) | 0.0730 (12) | -0.0186 (9)  | -0.0338 (9)  | -0.0205 (10) |
| C15  | 0.0703 (11) | 0.0897 (13) | 0.0622 (10) | -0.0301 (10) | -0.0287 (9)  | -0.0265 (10) |
| C16  | 0.0580 (9)  | 0.0695 (10) | 0.0453 (8)  | -0.0243 (8)  | -0.0145 (7)  | -0.0222 (7)  |
| C17  | 0.0416 (7)  | 0.0397 (6)  | 0.0440 (7)  | -0.0107 (5)  | -0.0176 (5)  | -0.0145 (5)  |
| C18  | 0.0545 (9)  | 0.0536 (8)  | 0.0476 (8)  | -0.0132 (7)  | -0.0124 (7)  | -0.0212 (7)  |
| C19  | 0.0548 (9)  | 0.0656 (10) | 0.0650 (10) | -0.0061 (8)  | -0.0177 (8)  | -0.0383 (9)  |
| C20  | 0.0597 (10) | 0.0470 (8)  | 0.0863 (12) | -0.0005 (7)  | -0.0355 (9)  | -0.0318 (9)  |
| C21  | 0.0612 (10) | 0.0408 (8)  | 0.0745 (11) | -0.0120 (7)  | -0.0313 (9)  | -0.0118 (7)  |
| C22  | 0.0468 (8)  | 0.0419 (7)  | 0.0527 (8)  | -0.0137 (6)  | -0.0196 (6)  | -0.0102 (6)  |
| C23  | 0.0378 (6)  | 0.0404 (6)  | 0.0344 (6)  | -0.0152 (5)  | -0.0119 (5)  | -0.0081 (5)  |
| C24  | 0.0340(6)   | 0.0462 (7)  | 0.0382 (6)  | -0.0159 (5)  | -0.0106 (5)  | -0.0128 (5)  |
| C25  | 0.0475 (8)  | 0.0547 (8)  | 0.0405 (7)  | -0.0149 (7)  | -0.0120 (6)  | -0.0102 (6)  |
| C26  | 0.0568 (10) | 0.0858 (13) | 0.0388 (7)  | -0.0252 (9)  | -0.0062 (7)  | -0.0154 (8)  |
| C27  | 0.0481 (9)  | 0.0910 (14) | 0.0580 (10) | -0.0188 (9)  | -0.0023 (7)  | -0.0398 (10) |
| C28  | 0.0446 (8)  | 0.0620 (10) | 0.0713 (11) | -0.0082 (7)  | -0.0118 (7)  | -0.0340 (9)  |
| C29  | 0.0414 (7)  | 0.0483 (8)  | 0.0500(8)   | -0.0134 (6)  | -0.0136 (6)  | -0.0148 (6)  |
| C30  | 0.0408 (7)  | 0.0393 (6)  | 0.0398 (6)  | -0.0145 (5)  | -0.0086(5)   | -0.0136 (5)  |
| C31  | 0.0495 (8)  | 0.0525 (8)  | 0.0532 (8)  | -0.0238 (7)  | -0.0053 (7)  | -0.0147 (7)  |
| C32  | 0.0431 (8)  | 0.0649 (10) | 0.0795 (12) | -0.0243 (7)  | -0.0055 (8)  | -0.0286 (9)  |
| C33  | 0.0407 (8)  | 0.0648 (10) | 0.0830 (12) | -0.0115 (7)  | -0.0214(8)   | -0.0326 (9)  |
| C34  | 0.0446 (8)  | 0.0521 (8)  | 0.0575 (8)  | -0.0105 (6)  | -0.0212 (7)  | -0.0194 (7)  |
| C35  | 0.0374 (6)  | 0.0378 (6)  | 0.0397 (6)  | -0.0105 (5)  | -0.0105(5)   | -0.0161 (5)  |
| C36  | 0.0633 (10) | 0.0492 (8)  | 0.0608 (9)  | -0.0228 (7)  | -0.0374(8)   | 0.0029 (7)   |
| C37  | 0.0480 (7)  | 0.0314 (6)  | 0.0395 (6)  | -0.0138 (5)  | -0.0192 (5)  | -0.0044(5)   |
| C38  | 0.0379 (6)  | 0.0307 (6)  | 0.0369 (6)  | -0.0118 (5)  | -0.0119(5)   | -0.0082(5)   |
| C39  | 0.0476 (7)  | 0.0452 (7)  | 0.0324 (6)  | -0.0100 (6)  | -0.0151 (5)  | -0.0070(5)   |
| C40  | 0.0494 (8)  | 0.0423 (7)  | 0.0388 (6)  | -0.0112 (6)  | -0.0173 (6)  | -0.0056(5)   |
| C41  | 0.053 (3)   | 0.0546 (19) | 0.0449 (18) | -0.0114 (15) | -0.0151 (18) | -0.0131 (14) |
| C42  | 0.070(3)    | 0.0560 (18) | 0.067(2)    | -0.0065 (16) | -0.015 (2)   | -0.0238 (18) |
| C43  | 0.0932 (16) | 0.0511 (10) | 0.0841 (14) | 0.0059 (10)  | -0.0393 (13) | -0.0088 (10) |
| C44  | 0.095 (4)   | 0.062(2)    | 0.068 (2)   | -0.001 (2)   | -0.047 (3)   | -0.0011 (16) |
| C45  | 0.072 (3)   | 0.0533 (17) | 0.046 (2)   | -0.0124 (17) | -0.027 (2)   | -0.0057 (15) |
| C40' | 0.0494 (8)  | 0.0423 (7)  | 0.0388 (6)  | -0.0112 (6)  | -0.0173 (6)  | -0.0056 (5)  |

| C41'           | 0.053 (3)      | 0.0546 (19) | 0.0449 (18) | -0.0114 (15) | -0.0151 (18) | -0.0131 (14) |
|----------------|----------------|-------------|-------------|--------------|--------------|--------------|
| C42'           | 0.070(3)       | 0.0560 (18) | 0.067(2)    | -0.0065 (16) | -0.015 (2)   | -0.0238 (18) |
| C43'           | 0.0932 (16)    | 0.0511 (10) | 0.0841 (14) | 0.0059 (10)  | -0.0393 (13) | -0.0088 (10) |
| C44'           | 0.095 (4)      | 0.062(2)    | 0.068(2)    | -0.001 (2)   | -0.047(3)    | -0.0011 (16) |
| C45'           | 0.072(3)       | 0.0533 (17) | 0.046(2)    | -0.0124 (17) | -0.027 (2)   | -0.0057 (15) |
| C46            | 0.0468 (7)     | 0.0329 (6)  | 0.0382 (6)  | -0.0134(5)   | -0.0196 (5)  | -0.0069 (5)  |
| C47            | 0.0515 (8)     | 0.0409 (7)  | 0.0431 (7)  | -0.0173 (6)  | -0.0150 (6)  | -0.0108 (5)  |
| C48            | 0.0623 (9)     | 0.0488 (8)  | 0.0474 (8)  | -0.0124 (7)  | -0.0212 (7)  | -0.0190 (6)  |
| C49            | 0.0979 (14)    | 0.0410 (8)  | 0.0591 (9)  | -0.0187(8)   | -0.0360 (9)  | -0.0158 (7)  |
| C50            | 0.1113 (15)    | 0.0430 (8)  | 0.0541 (9)  | -0.0393 (9)  | -0.0283 (10) | -0.0048 (7)  |
| C51            | 0.0756 (10)    | 0.0437 (7)  | 0.0401 (7)  | -0.0295 (7)  | -0.0189 (7)  | -0.0044 (6)  |
| C52            | 0.0410 (7)     | 0.0385 (7)  | 0.0426 (7)  | -0.0088(5)   | -0.0107 (5)  | -0.0103 (5)  |
| C53            | 0.0476 (8)     | 0.0418 (7)  | 0.0430 (7)  | -0.0038 (6)  | -0.0091 (6)  | -0.0108 (6)  |
| C54            | 0.0635 (11)    | 0.0617 (11) | 0.0612 (10) | -0.0210 (9)  | 0.0015 (8)   | -0.0188 (8)  |
| C55            | 0.0759 (14)    | 0.0783 (14) | 0.0714 (13) | -0.0273 (11) | 0.0134 (10)  | -0.0182 (11) |
| C56            | 0.0928 (17)    | 0.0832 (15) | 0.0558 (11) | -0.0134(13)  | 0.0087 (11)  | -0.0263 (11) |
| C57            | 0.0926 (16)    | 0.0863 (15) | 0.0602 (11) | -0.0065 (12) | -0.0130 (11) | -0.0392 (11) |
| C58            | 0.0647 (10)    | 0.0639 (10) | 0.0544 (9)  | -0.0073 (8)  | -0.0138 (8)  | -0.0250 (8)  |
|                |                |             |             |              |              |              |
| Geometric para | ameters (Å, °) |             |             |              |              |              |
| S1—C23         |                | 1.7614 (13) | C27—        | -H27         | 0.93         | 00           |
| S1—C9          |                | 1.8863 (14) | C28—        | -C29         | 1.38         | 5 (2)        |
| S2—C52         |                | 1.7571 (14) | C28—        | -H28         | 0.93         | 00           |
| S2—C38         |                | 1.8837 (13) | C29—        | -H29         | 0.93         | 00           |
| N1—C8          |                | 1.2748 (18) | C30—        | -C31         | 1.39         | 41 (19)      |
| N1—C1          |                | 1.3997 (19) | C30—        | -C35         | 1.39         | 98 (18)      |
| N2—C6          |                | 1.3964 (17) | C31—        | -C32         | 1.37         |              |
| N2—C9          |                | 1.4360 (17) | C31—        | -H31         | 0.93         | 00           |
| N2—C10         |                | 1.4696 (17) | C32—        | -C33         | 1.37         | 9 (3)        |
| N3—N4          |                | 1.3741 (15) | C32—        | -H32         | 0.93         | 00           |
| N3—C17         |                | 1.4098 (17) | C33—        | -C34         | 1.38         | 1 (2)        |
| N3—C9          |                | 1.4650 (16) | C33—        | -H33         | 0.93         |              |
| N4—C23         |                | 1.2844 (17) | C34—        | -C35         | 1.39         | 61 (19)      |
| N5—C37         |                | 1.2744 (17) | C34—        | -H34         | 0.93         |              |
| N5—C30         |                | 1.4050 (18) | C36—        | -C37         | 1.49         | 79 (19)      |
| N6—C35         |                | 1.3973 (16) | C36—        | -H36A        | 0.96         | 00           |
| N6—C38         |                | 1.4405 (16) | C36—        | -H36B        | 0.96         | 00           |
| N6—C39         |                | 1.4755 (16) | C36—        | -Н36С        | 0.96         | 00           |
| N7—N8          |                | 1.3792 (15) | C37—        | -C38         | 1.52         | 18 (17)      |
| N7—C46         |                | 1.4200 (16) | C39—        | -C40'        | 1.50         | 5 (4)        |
| N7—C38         |                | 1.4674 (15) | C39—        | -C40         | 1.52         |              |
| N8—C52         |                | 1.2810 (18) | C39—        | -H39A        | 0.97         |              |
| C1—C2          |                | 1.390 (2)   |             | -Н39В        | 0.97         | 00           |
| C1—C6          |                | 1.4045 (19) |             | -Н39С        | 0.97         |              |
| C2—C3          |                | 1.373 (3)   |             | -H39D        | 0.97         |              |
| C2—H2          |                | 0.9300      | C40—        |              | 1.39         |              |
| C3—C4          |                | 1.376 (3)   | C40—        |              | 1.39         |              |
| С3—Н3          |                | 0.9300      | C41—        |              | 1.39         |              |
|                |                |             |             |              |              |              |

| C4—C5      | 1.381 (2)   | C41—H41     | 0.9300      |
|------------|-------------|-------------|-------------|
| C4—H4      | 0.9300      | C42—C43     | 1.3900      |
| C5—C6      | 1.393 (2)   | C42—H42     | 0.9300      |
| C5—H5      | 0.9300      | C43—C44     | 1.3900      |
| C7—C8      | 1.493 (2)   | C43—H43     | 0.9300      |
| C7—H7A     | 0.9600      | C44—C45     | 1.3900      |
| C7—H7B     | 0.9600      | C44—H44     | 0.9300      |
| C7—H7C     | 0.9600      | C45—H45     | 0.9300      |
| C8—C9      | 1.5311 (17) | C40'—C41'   | 1.3900      |
| C10—C11    | 1.505 (2)   | C40'—C45'   | 1.3900      |
| C10—H10A   | 0.9700      | C41'—C42'   | 1.3900      |
| C10—H10B   | 0.9700      | C41'—H41'   | 0.9300      |
| C11—C12    | 1.374 (2)   | C42'—C43'   | 1.3900      |
| C11—C16    | 1.389 (2)   | C42'—H42'   | 0.9300      |
| C12—C13    | 1.384 (2)   | C43'—C44'   | 1.3900      |
| C12—H12    | 0.9300      | C43'—H43'   | 0.9300      |
| C13—C14    | 1.377 (3)   | C44'—C45'   | 1.3900      |
| C13—H13    | 0.9300      | C44'—H44'   | 0.9300      |
| C14—C15    | 1.370 (3)   | C45'—H45'   | 0.9300      |
| C14—H14    | 0.9300      | C46—C51     | 1.3906 (18) |
| C15—C16    | 1.381 (2)   | C46—C47     | 1.3930 (19) |
| C15—H15    | 0.9300      | C47—C48     | 1.382 (2)   |
| C16—H16    | 0.9300      | C47—H47     | 0.9300      |
| C17—C22    | 1.392 (2)   | C48—C49     | 1.377 (2)   |
| C17—C18    | 1.398 (2)   | C48—H48     | 0.9300      |
| C18—C19    | 1.385 (2)   | C49—C50     | 1.375 (3)   |
| C18—H18    | 0.9300      | C49—H49     | 0.9300      |
| C19—C20    | 1.374 (3)   | C50—C51     | 1.384 (2)   |
| C19—H19    | 0.9300      | C50—H50     | 0.9300      |
| C20—C21    | 1.377 (3)   | C51—H51     | 0.9300      |
| C20—H20    | 0.9300      | C52—C53     | 1.4699 (19) |
| C21—C22    | 1.381 (2)   | C53—C54     | 1.386 (2)   |
| C21—H21    | 0.9300      | C53—C58     | 1.389 (2)   |
| C22—H22    | 0.9300      | C54—C55     | 1.391 (3)   |
| C23—C24    | 1.4675 (18) | C54—H54     | 0.9300      |
| C24—C29    | 1.387 (2)   | C55—C56     | 1.374 (4)   |
| C24—C25    | 1.3963 (19) | C55—H55     | 0.9300      |
| C25—C26    | 1.379 (2)   | C56—C57     | 1.365 (4)   |
| C25—H25    | 0.9300      | C56—H56     | 0.9300      |
| C26—C27    | 1.375 (3)   | C57—C58     | 1.387 (3)   |
| C26—H26    | 0.9300      | C57—H57     | 0.9300      |
| C27—C28    | 1.374 (3)   | C58—H58     | 0.9300      |
|            |             |             |             |
| C23—S1—C9  | 89.54 (6)   | C32—C31—H31 | 119.6       |
| C52—S2—C38 | 89.22 (6)   | C30—C31—H31 | 119.6       |
| C8—N1—C1   | 119.26 (12) | C31—C32—C33 | 119.40 (15) |
| C6—N2—C9   | 119.25 (11) | C31—C32—H32 | 120.3       |
| C6—N2—C10  | 118.00 (11) | C33—C32—H32 | 120.3       |
| C9—N2—C10  | 116.44 (10) | C32—C33—C34 | 121.01 (15) |
| N4—N3—C17  | 117.47 (10) | C32—C33—H33 | 119.5       |
|            |             |             |             |

| N4—N3—C9     | 117.73 (10) | C34—C33—H33   | 119.5       |
|--------------|-------------|---------------|-------------|
| C17—N3—C9    | 123.78 (11) | C33—C34—C35   | 120.31 (15) |
| C23—N4—N3    | 112.64 (10) | C33—C34—H34   | 119.8       |
| C37—N5—C30   | 118.41 (11) | C35—C34—H34   | 119.8       |
| C35—N6—C38   | 116.56 (10) | C34—C35—N6    | 123.09 (12) |
| C35—N6—C39   | 117.82 (11) | C34—C35—C30   | 118.51 (13) |
| C38—N6—C39   | 115.50 (10) | N6—C35—C30    | 118.40 (11) |
| N8—N7—C46    | 116.60 (10) | C37—C36—H36A  | 109.5       |
| N8—N7—C38    | 116.70 (10) | C37—C36—H36B  | 109.5       |
| C46—N7—C38   | 120.87 (10) | H36A—C36—H36B | 109.5       |
| C52—N8—N7    | 112.79 (11) | C37—C36—H36C  | 109.5       |
| C2—C1—N1     | 118.06 (13) | H36A—C36—H36C | 109.5       |
| C2—C1—C6     | 119.99 (14) | H36B—C36—H36C | 109.5       |
| N1—C1—C6     | 121.93 (12) | N5—C37—C36    | 119.71 (12) |
| C3—C2—C1     | 120.80 (16) | N5—C37—C38    | 122.79 (12) |
| C3—C2—H2     | 119.6       | C36—C37—C38   | 117.38 (12) |
| C1—C2—H2     | 119.6       | N6—C38—N7     | 112.12 (10) |
| C2—C3—C4     | 119.17 (16) | N6—C38—C37    | 111.60 (10) |
| C2—C3—H3     | 120.4       | N7—C38—C37    | 111.89 (10) |
| C4—C3—H3     | 120.4       | N6—C38—S2     | 113.51 (8)  |
| C3—C4—C5     | 121.48 (17) | N7—C38—S2     | 101.45 (8)  |
| C3—C4—H4     | 119.3       | C37—C38—S2    | 105.72 (8)  |
| C5—C4—H4     | 119.3       | N6—C39—C40'   | 115.8 (3)   |
| C4—C5—C6     | 119.91 (16) | N6—C39—C40    | 115.6 (3)   |
| C4—C5—H5     | 120.0       | N6—C39—H39A   | 108.4       |
| C6—C5—H5     | 120.0       | C40—C39—H39A  | 108.4       |
| C5—C6—N2     | 122.65 (13) | N6—C39—H39B   | 108.4       |
| C5—C6—C1     | 118.65 (13) | С40—С39—Н39В  | 108.4       |
| N2—C6—C1     | 118.65 (12) | H39A—C39—H39B | 107.5       |
| C8—C7—H7A    | 109.5       | N6—C39—H39C   | 108.3       |
| C8—C7—H7B    | 109.5       | C40'—C39—H39C | 108.3       |
| H7A—C7—H7B   | 109.5       | C40—C39—H39C  | 109.2       |
| C8—C7—H7C    | 109.5       | N6—C39—H39D   | 108.3       |
| H7A—C7—H7C   | 109.5       | C40'—C39—H39D | 108.3       |
| H7B—C7—H7C   | 109.5       | C40—C39—H39D  | 107.7       |
| N1—C8—C7     | 119.18 (12) | H39C—C39—H39D | 107.4       |
| N1—C8—C9     | 123.41 (12) | C41—C40—C45   | 120.0       |
| C7—C8—C9     | 117.35 (12) | C41—C40—C39   | 121.8 (5)   |
| N2—C9—N3     | 111.50 (11) | C45—C40—C39   | 118.0 (5)   |
| N2—C9—C8     | 112.01 (11) | C40—C41—C42   | 120.0       |
| N3—C9—C8     | 112.22 (11) | C40—C41—H41   | 120.0       |
| N2—C9—S1     | 113.06 (9)  | C42—C41—H41   | 120.0       |
| N3—C9—S1     | 100.67 (8)  | C43—C42—C41   | 120.0       |
| C8—C9—S1     | 106.80 (9)  | C43—C42—H42   | 120.0       |
| N2—C10—C11   | 115.34 (12) | C41—C42—H42   | 120.0       |
| N2—C10—H10A  | 108.4       | C42—C43—C44   | 120.0       |
| C11—C10—H10A | 108.4       | C42—C43—H43   | 120.0       |
| N2—C10—H10B  | 108.4       | C44—C43—H43   | 120.0       |
| C11—C10—H10B | 108.4       | C45—C44—C43   | 120.0       |
|              |             |               |             |

| H10A—C10—H10B              | 107.5       | C45—C44—H44                | 120.0       |
|----------------------------|-------------|----------------------------|-------------|
| C12—C11—C16                | 118.34 (14) | C43—C44—H44                | 120.0       |
| C12—C11—C10                | 123.07 (13) | C44—C45—C40                | 120.0       |
| C16—C11—C10                | 118.52 (14) | C44—C45—H45                | 120.0       |
| C11—C12—C13                | 121.00 (15) | C40—C45—H45                | 120.0       |
| C11—C12—H12                | 119.5       | C41'—C40'—C45'             | 120.0       |
| C13—C12—H12                | 119.5       | C41'—C40'—C39              | 123.1 (5)   |
| C14—C13—C12                | 120.15 (17) | C45'—C40'—C39              | 116.8 (5)   |
| C14—C13—H13                | 119.9       | C42'—C41'—C40'             | 120.0       |
| C12—C13—H13                | 119.9       | C42'—C41'—H41'             | 120.0       |
| C15—C14—C13                | 119.37 (17) | C40'—C41'—H41'             | 120.0       |
| C15—C14—H14                | 120.3       | C41'—C42'—C43'             | 120.0       |
| C13—C14—H14                | 120.3       | C41'—C42'—H42'             | 120.0       |
| C14—C15—C16                | 120.58 (16) | C43'—C42'—H42'             | 120.0       |
| C14—C15—H15                | 119.7       | C42'—C43'—C44'             | 120.0       |
| C16—C15—H15                | 119.7       | C42'—C43'—H43'             | 120.0       |
| C15—C16—C11                | 120.55 (16) | C44'—C43'—H43'             | 120.0       |
| C15—C16—H16                | 119.7       | C45'—C44'—C43'             | 120.0       |
| C11—C16—H16                | 119.7       | C45'—C44'—H44'             | 120.0       |
| C22—C17—C18                | 119.13 (13) | C43'—C44'—H44'             | 120.0       |
| C22—C17—N3                 | 119.04 (12) | C44'—C45'—C40'             | 120.0       |
| C18—C17—N3                 | 121.81 (13) | C44'—C45'—H45'             | 120.0       |
| C19—C18—C17                | 119.57 (15) | C40'—C45'—H45'             | 120.0       |
| C19—C18—H18                | 120.2       | C51—C46—C47                | 118.82 (12) |
| C17—C18—H18                | 120.2       | C51—C46—N7                 | 120.08 (12) |
| C20—C19—C18                | 121.12 (16) | C47—C46—N7                 | 121.08 (11) |
| C20—C19—H19                | 119.4       | C48—C47—C46                | 120.48 (13) |
| C18—C19—H19                | 119.4       | C48—C47—H47                | 119.8       |
| C19—C20—C21                | 119.21 (15) | C46—C47—H47                | 119.8       |
| C19—C20—H20                | 120.4       | C49—C48—C47                | 120.65 (15) |
| C21—C20—H20                | 120.4       | C49—C48—H48                | 119.7       |
| C20—C21—C22                | 121.01 (16) | C47—C48—H48                | 119.7       |
| C20—C21—H21                | 119.5       | C50—C49—C48                | 118.86 (14) |
| C22—C21—H21                | 119.5       | C50—C49—H49                | 120.6       |
| C21—C22—C17                | 119.94 (15) | C48—C49—H49                | 120.6       |
| C21—C22—H22                | 120.0       | C49—C50—C51                | 121.60 (15) |
| C17—C22—H22                | 120.0       | C49—C50—H50                | 119.2       |
| N4—C23—C24                 | 122.09 (11) | C51—C50—H50                | 119.2       |
| N4—C23—S1                  | 115.57 (10) | C50—C51—C46                | 119.56 (15) |
| C24—C23—S1                 | 122.28 (10) | C50—C51—H51                | 120.2       |
| C29—C24—C25                | 119.00 (13) | C46—C51—H51                | 120.2       |
| C29—C24—C23                | 120.89 (12) | N8—C52—C53                 | 122.12 (13) |
| C25—C24—C23                | 120.06 (12) | N8—C52—S2                  | 116.15 (10) |
| C26—C25—C24                | 119.86 (15) | C53—C52—S2                 | 121.72 (11) |
| C26—C25—H25                | 120.1       | C54—C53—C58                | 119.44 (16) |
| C24—C25—H25                | 120.1       | C54—C53—C52                | 120.23 (15) |
| C27—C26—C25                | 120.1       | C54—C53—C52<br>C58—C53—C52 | 120.23 (13) |
| C27—C26—C23<br>C27—C26—H26 | 119.7       | C53—C54—C55                | 119.8 (2)   |
| C25—C26—H26                | 119.7       | C53—C54—C53<br>C53—C54—H54 | 119.8 (2)   |
| C23 —C20—1120              | 117./       | C33—C34—1134               | 120.1       |

| C28—C27—C26   | 119.90 (15)  | C55—C54—H54     | 120.1        |
|---------------|--------------|-----------------|--------------|
| C28—C27—H27   | 120.0        | C56—C55—C54     | 120.3 (2)    |
| C26—C27—H27   | 120.0        | C56—C55—H55     | 119.9        |
| C27—C28—C29   | 120.17 (16)  | C54—C55—H55     | 119.9        |
| C27—C28—H28   | 119.9        | C57—C56—C55     | 120.20 (19)  |
| C29—C28—H28   | 119.9        | C57—C56—H56     | 119.9        |
| C28—C29—C24   | 120.36 (15)  | C55—C56—H56     | 119.9        |
| C28—C29—H29   | 119.8        | C56—C57—C58     | 120.5 (2)    |
| C24—C29—H29   | 119.8        | C56—C57—H57     | 119.8        |
| C31—C30—C35   | 120.04 (13)  | C58—C57—H57     | 119.8        |
| C31—C30—N5    | 117.99 (13)  | C57—C58—C53     | 119.9 (2)    |
| C35—C30—N5    | 121.97 (11)  | C57—C58—H58     | 120.1        |
| C32—C31—C30   | 120.71 (16)  | C53—C58—H58     | 120.1        |
| C17—N3—N4—C23 | 177.09 (11)  | C32—C33—C34—C35 | -0.8 (2)     |
| C9—N3—N4—C23  | -14.02 (16)  | C33—C34—C35—N6  | 179.24 (13)  |
| C46—N7—N8—C52 | 168.27 (12)  | C33—C34—C35—C30 | 0.2 (2)      |
| C38—N7—N8—C52 | 14.87 (16)   | C38—N6—C35—C34  | 154.72 (12)  |
| C8—N1—C1—C2   | 174.26 (14)  | C39—N6—C35—C34  | 10.82 (18)   |
| C8—N1—C1—C6   | -7.0 (2)     | C38—N6—C35—C30  | -26.29 (16)  |
| N1—C1—C2—C3   | 178.70 (16)  | C39—N6—C35—C30  | -170.18 (11) |
| C6—C1—C2—C3   | 0.0 (2)      | C31—C30—C35—C34 | 0.84 (19)    |
| C1—C2—C3—C4   | -0.1 (3)     | N5—C30—C35—C34  | 179.82 (12)  |
| C2—C3—C4—C5   | 0.3 (3)      | C31—C30—C35—N6  | -178.21 (12) |
| C3—C4—C5—C6   | -0.3 (3)     | N5—C30—C35—N6   | 0.78 (18)    |
| C4—C5—C6—N2   | -177.38 (17) | C30—N5—C37—C36  |              |
| C4—C5—C6—C1   | 0.1 (3)      | C30—N5—C37—C38  | 178.37 (13)  |
| C9—N2—C6—C5   | -162.95 (14) | C35—N6—C38—N7   | 2.43 (19)    |
|               |              |                 | 163.42 (10)  |
| C10—N2—C6—C5  | -11.8 (2)    | C39—N6—C38—N7   | -51.84 (14)  |
| C9—N2—C6—C1   | 19.59 (19)   | C35—N6—C38—C37  | 37.00 (14)   |
| C10—N2—C6—C1  | 170.72 (13)  | C39—N6—C38—C37  | -178.26 (10) |
| C2—C1—C6—C5   | 0.0 (2)      | C35—N6—C38—S2   | -82.34 (11)  |
| N1—C1—C6—C5   | -178.63 (14) | C39—N6—C38—S2   | 62.39 (12)   |
| C2—C1—C6—N2   | 177.62 (14)  | N8—N7—C38—N6    | 101.30 (12)  |
| N1—C1—C6—N2   | -1.1 (2)     | C46—N7—C38—N6   | -50.89 (15)  |
| C1—N1—C8—C7   | 179.48 (14)  | N8—N7—C38—C37   | -132.44 (11) |
| C1—N1—C8—C9   | -3.3 (2)     | C46—N7—C38—C37  | 75.37 (14)   |
| C6—N2—C9—N3   | -154.10 (12) | N8—N7—C38—S2    | -20.15 (12)  |
| C10—N2—C9—N3  | 54.32 (16)   | C46—N7—C38—S2   | -172.34 (9)  |
| C6—N2—C9—C8   | -27.40 (17)  | N5—C37—C38—N6   | -26.28 (17)  |
| C10—N2—C9—C8  | -178.98 (12) | C36—C37—C38—N6  | 157.69 (12)  |
| C6—N2—C9—S1   | 93.32 (12)   | N5—C37—C38—N7   | -152.83 (12) |
| C10—N2—C9—S1  | -58.26 (14)  | C36—C37—C38—N7  | 31.14 (16)   |
| N4—N3—C9—N2   | -99.93 (13)  | N5—C37—C38—S2   | 97.58 (13)   |
| C17—N3—C9—N2  | 68.19 (16)   | C36—C37—C38—S2  | -78.45 (13)  |
| N4—N3—C9—C8   | 133.49 (12)  | C52—S2—C38—N6   | -104.98 (9)  |
| C17—N3—C9—C8  | -58.39 (17)  | C52—S2—C38—N7   | 15.49 (9)    |
| N4—N3—C9—S1   | 20.24 (13)   | C52—S2—C38—C37  | 132.37 (9)   |
| C17—N3—C9—S1  | -171.63 (11) | C35—N6—C39—C40' | -74.8(3)     |
| N1—C8—C9—N2   | 20.1 (2)     | C38—N6—C39—C40' | 140.9 (3)    |
|               |              |                 |              |

| C7—C8—C9—N2     | -162.65 (13) | C35—N6—C39—C40      | -73.8 (3)    |
|-----------------|--------------|---------------------|--------------|
| N1—C8—C9—N3     | 146.37 (14)  | C38—N6—C39—C40      | 141.9 (3)    |
| C7—C8—C9—N3     | -36.35 (18)  | N6—C39—C40—C41      | -44.8 (3)    |
| N1—C8—C9—S1     | -104.23 (15) | C40'—C39—C40—C41    | 61 (35)      |
| C7—C8—C9—S1     | 73.06 (15)   | N6—C39—C40—C45      | 139.6 (2)    |
| C23—S1—C9—N2    | 102.97 (9)   | C40'—C39—C40—C45    | -114 (36)    |
| C23—S1—C9—N3    | -16.07 (9)   | C45—C40—C41—C42     | 0.0          |
| C23—S1—C9—C8    | -133.39 (9)  | C39—C40—C41—C42     | -175.5 (4)   |
| C6—N2—C10—C11   | 73.28 (18)   | C40—C41—C42—C43     | 0.0          |
| C9—N2—C10—C11   | -134.78 (13) | C41—C42—C43—C44     | 0.0          |
| N2—C10—C11—C12  | 24.2 (2)     | C42—C43—C44—C45     | 0.0          |
| N2—C10—C11—C16  | -158.88 (14) | C43—C44—C45—C40     | 0.0          |
| C16—C11—C12—C13 | 0.1 (2)      | C41—C40—C45—C44     | 0.0          |
| C10—C11—C12—C13 | 177.07 (16)  | C39—C40—C45—C44     | 175.7 (4)    |
| C11—C12—C13—C14 | -0.7 (3)     | N6—C39—C40'—C41'    | -21.0 (4)    |
| C12—C13—C14—C15 | 0.4(3)       | C40—C39—C40'—C41'   | -95 (35)     |
| C13—C14—C15—C16 | 0.5 (3)      | N6—C39—C40'—C45'    | 162.5 (2)    |
| C14—C15—C16—C11 | -1.1 (3)     | C40—C39—C40'—C45'   | 88 (36)      |
| C12—C11—C16—C15 | 0.8 (2)      | C45'—C40'—C41'—C42' | 0.0          |
| C10—C11—C16—C15 | -176.31 (15) | C39—C40'—C41'—C42'  | -176.4 (5)   |
| N4—N3—C17—C22   | -12.63 (18)  | C40'—C41'—C42'—C43' | 0.0          |
| C9—N3—C17—C22   | 179.22 (12)  | C41'—C42'—C43'—C44' | 0.0          |
| N4—N3—C17—C18   | 168.98 (13)  | C42'—C43'—C44'—C45' | 0.0          |
| C9—N3—C17—C18   | 0.8 (2)      | C43'—C44'—C45'—C40' | 0.0          |
| C22—C17—C18—C19 | -0.9 (2)     | C41'—C40'—C45'—C44' | 0.0          |
| N3—C17—C18—C19  | 177.49 (14)  | C39—C40'—C45'—C44'  | 176.6 (4)    |
| C17—C18—C19—C20 | 0.1 (2)      | N8—N7—C46—C51       | -2.40 (18)   |
| C18—C19—C20—C21 | 0.7 (3)      | C38—N7—C46—C51      | 149.81 (13)  |
| C19—C20—C21—C22 | -0.8 (3)     | N8—N7—C46—C47       | 176.04 (12)  |
| C20—C21—C22—C17 | 0.0 (2)      | C38—N7—C46—C47      | -31.75 (18)  |
| C18—C17—C22—C21 | 0.9 (2)      | C51—C46—C47—C48     | -0.1 (2)     |
| N3—C17—C22—C21  | -177.58 (13) | N7—C46—C47—C48      | -178.54 (13) |
| N3—N4—C23—C24   | 176.09 (11)  | C46—C47—C48—C49     | -1.3 (2)     |
| N3—N4—C23—S1    | -1.33 (15)   | C47—C48—C49—C50     | 1.4 (3)      |
| C9—S1—C23—N4    | 11.29 (11)   | C48—C49—C50—C51     | -0.1 (3)     |
| C9—S1—C23—C24   | -166.12 (11) | C49—C50—C51—C46     | -1.2 (3)     |
| N4—C23—C24—C29  | -175.80 (12) | C47—C46—C51—C50     | 1.3 (2)      |
| S1—C23—C24—C29  | 1.45 (17)    | N7—C46—C51—C50      | 179.77 (15)  |
| N4—C23—C24—C25  | 1.58 (19)    | N7—N8—C52—C53       | -178.98 (12) |
| S1—C23—C24—C25  | 178.82 (11)  | N7—N8—C52—S2        | -0.26 (16)   |
| C29—C24—C25—C26 | 1.0 (2)      | C38—S2—C52—N8       | -9.95 (12)   |
| C23—C24—C25—C26 | -176.42 (14) | C38—S2—C52—C53      | 168.77 (12)  |
| C24—C25—C26—C27 | -0.8 (3)     | N8—C52—C53—C54      | -20.8 (2)    |
| C25—C26—C27—C28 | -0.2 (3)     | S2—C52—C53—C54      | 160.53 (14)  |
| C26—C27—C28—C29 | 1.0 (3)      | N8—C52—C53—C58      | 158.86 (15)  |
| C27—C28—C29—C24 | -0.7 (2)     | S2—C52—C53—C58      | -19.8 (2)    |
| C25—C24—C29—C28 | -0.3 (2)     | C58—C53—C54—C55     | -0.2 (3)     |
| C23—C24—C29—C28 | 177.15 (13)  | C52—C53—C54—C55     | 179.46 (18)  |
| C37—N5—C30—C31  | -169.58 (13) | C53—C54—C55—C56     | -0.4 (3)     |
|                 | ` /          |                     | ( )          |

| C37—N5—C30—C35  | 11.42 (19)  | C54—C55—C56—C57 | 0.6 (4)      |
|-----------------|-------------|-----------------|--------------|
| C35—C30—C31—C32 | -1.4 (2)    | C55—C56—C57—C58 | -0.1 (4)     |
| N5—C30—C31—C32  | 179.57 (14) | C56—C57—C58—C53 | -0.5 (3)     |
| C30—C31—C32—C33 | 0.9(3)      | C54—C53—C58—C57 | 0.7(3)       |
| C31—C32—C33—C34 | 0.2(3)      | C52—C53—C58—C57 | -178.99 (17) |

Fig. 1



Fig. 2

