Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning

Presenter: Xinyu Lian

Big Models Become Prominent

Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance

Introducing Llama 3.1: Our most capable models to date

July 23, 2024 · ③ 15 minute read

Big Models: The Core Challenge

How to train and serve big models?

Using parallelization.

Inter-operator parallelism

- Pipeline execution on both forward and backward paths
- GPUs can be on the same machine or different machines

Intra-operator parallelism

High-level idea: The tensor is split up into multiple chunks

- Instead of having the whole tensor reside on a single GPU, each shard of tensor reside on its designated GPU.
- Each shard is processed separately and in parallel on different GPUs.
- The results are synchronized at the end of the step

Intra-operator parallelism

Intra-operator parallelism

Dive Deeper: DL Computation as Graph

$$L = \mathrm{MSE}(w_2 \cdot \mathrm{ReLU}(w_1 x), \, y)$$

Operator / its output tensor → Data flowing direction

Dive Deeper: DL Computation as Graph

Figure from [Mirhoseini et al., ICML 2017]

Dive Deeper: Device Cluster

A typical GPU cluster topology

Partitioning Computation Graph on Device Cluster

How to partition the computational graph on the device cluster? Fast connections w2 w1 Slow connections matmul relu **⊢**matmul node node GPU relu' matmul ► MSE, matmul matmul node node GPU sub sub

Inter-op and Intra-op Parallelism: Characteristics

Inter-op parallelism: Requires point-to-point communication but results in device idle

Intra-op parallelism: Devices are busy but requires collective communication

Inter-op and Intra-op Parallelism: Characteristics

Device 1

Device 2

Inter-op and Intra-op Parallelism: Characteristics

Device 2

Question:

What's the best way to execute the graph subject to memory and communication constraints?

Alpa: Hierarchical Optimization

Alpa: Inter-op Parallelism

or

Alpa: Inter-op Parallelism

Alpa: Inter-op Parallelism + Device Cluster

Alpa: Inter-op Parallelism + Device Cluster

Question: How to find the best Op-Stage-Device Mapping?

Pipeline parallelism. For a given time, this figure shows the micro-batches (colored boxes) that a partitioned device cluster and a sliced computational graph (e.g., stage 1, 2, 3) is processing.

$$T^* = \min_{\substack{s_1, \dots, s_S; \ (n_1, m_1), \dots, (n_S, m_S)}} \left\{ \sum_{i=1}^S t_i + (B-1) \cdot \max_{1 \le j \le S} \{t_j\} \right\}.$$

Pipeline parallelism. For a given time, this figure shows the micro-batches (colored boxes) that a partitioned device cluster and a sliced computational graph (e.g., stage 1, 2, 3) is processing.

$$F(s,k,d;t_{max})$$

$$= \min_{\substack{k \le i \le K \\ n_s \cdot m_s \le d}} \begin{cases} t_{intra}((o_k, \dots, o_i), Mesh(n_s, m_s), s) \\ + F(s-1, i+1, d-n_s \cdot m_s; t_{max}) \\ |t_{intra}((o_k, \dots, o_i), Mesh(n_s, m_s), s) \le t_{max} \end{cases},$$
(3)

 $F(s,k,d;t_{max})$ represents the minimal total latency when slicing operators o_k to o_K into s stages and putting them onto d devices so that the latency of each stage is less than t_{max} .

For a given t_{max}

For a given t_{max}

 $F(s, k, d; t_{max}) = F(s-1, k-1, d-4; t_{max}) + t_{intra}(o_{softmax}, Mesh(1, 4))$

 $F(s, k, d; t_{max}) = F(s-1, k-1, d-4; t_{max}) + t_{intra}(o_{softmax}, Mesh(2, 2))$

 $F(s, k, d; t_{max}) = F(s-1, k-3, d-4; t_{max}) + t_{intra}(o_{relu+matmul+softmax}, Mesh(2, 2))$

However, the complexity of this DP algorithm is $O(K^5NM(N + \log(m))^2)$

Optimization:

- **Early pruning**: Enumerate t_{max} from small to large, when $B*t_{max}$ larger than the current best T^* , stop the enumeration.
- Operator clustering: Many operators in a computational graph are not computationally intensive (e.g., ReLU), it is not worth to partition those to different stages, cluster those operators.

Alpa: Intra-op Parallelism

Stage with intra-operator parallelization

Parallelize One Operator

Element-wise operators

No dependency on the two for-loops.

Can arbitrarily split the for-loops on different devices.

Parallelize loop n

Parallelize both loop n and loop d

a lot of other variants

• • •

Parallelize One Operator

Matrix multiplication No dependency on the two spatial forloops. for i in range(0, N): Can arbitrarily split the for-loops on for j in range(0, M): different Acquires lation on this reduction loop. for k in range(0, K):◄ -- Have to accumulate partial results if $C[i,j] = C[i,j] + A[i,k] \times B[k,j]$ we split this for-loop device device device device replicat ed Parallelize loop i

Parallelize One Operator

Matrix multiplication No dependency on the two spatial forloops. for i in range(0, N):⁴ Can arbitrarily split the for-loops on for j in range(0, M):⁴ different Acquires lation on this reduction loop. for k in range(0, K): ←------- Have to accumulate partial results if $C[i,j] = C[i,j] + A[i,k] \times B[k,j]$ we split this for-loop device device replicat device device ed Parallelize loop k k (got by all-reduce)

Alpa: Intra-op Parallelism

	Device 0	Device 1	Device 2	Device 3
Replicate				
Shard1				
Shard2				
Shard3				

Re-partition Communication Cost

Different operators' parallelization strategies require different partition format of the same tensor

Parallelize All Operators in a Graph

Problem

Minimiz Node costs (computation + communication) + Edge costs (re-partition e communication)

Solution

Manual design
Randomized search
Dynamic programming
Integer linear programming

Alpa: Intra-op Parallelism

Minimize Computation cost + Communication cost

Evaluation: Comparing with Previous Works

GPT (up to 39B)

Match specialized manual systems.

GShard MoE (up to 70B)

Outperform the manual baseline by up to 8x.

Wide-ResNet (up to 13B)

Generalize to models without manual plans.

Evaluation

Case Study: Wide-ResNet Partition on 16 GPUs.

Reducing Energy Bloat in Large Model Training

Jiahao Fang, Zhiyu Wu Sept. 23rd, 2024

Zuckerberg's Meta Is Spending Billions to Buy 350,000 Nvidia H100 GPUs

In total, Meta will have the compute power equivalent to 600,000 Nvidia H100 GPUs to help it develop next-generation AI, says CEO Mark Zuckerberg.

(David Paul Morris/Bloomberg via Getty Images)

Data Center Planning

A couple considerations

- Land
- Building
- Racks
- Cooling
- Power delivery

350,000 H100 GPUs?

- One GPU's TDP is 700 W
- 245 MW in total
- 200,000 average households
- Five UIUC Campuses

Power and Energy are Both Problems

What Perseus hopes to achieve

- Let's reduce energy without slowing down iteration time
- That will also reduce average power consumption

Energy Bloat

Not all Joules count

- A portion of energy doesn't contribute to throughput
- Removing such energy bloat doesn't affect throughput

Two sources of energy bloat

- Intrinsic to one training pipeline
- Extrinsic to one training pipeline

Intrinsic Energy Bloat

Intrinsic Energy Bloat

F = Forward, B = Backward Drawn to scale for GPT-3, measured on NVIDIA A40 GPUs.

Intrinsic Energy Bloat

F = Forward, B = Backward Drawn to scale for GPT-3, measured on NVIDIA A40 GPUs.

Extrinsic Energy Bloat

Extrinsic Energy Bloat

Extrinsic Energy Bloat

Iteration Time-Energy Pareto Frontier

An Iterative Solution

Only leave *critical* edges (computations)

Only leave *critical* edges (computations)

Only leave *critical* edges (computations)

Any *s-t cut* represents a way to reduce the DAG's end-to-end execution time by 1

Any s-t cut represents a way to reduce the DAG's end-to-end execution time by 1

Any *s-t cut* represents a way to reduce the DAG's end-to-end execution time by 1

Edge cut capacity \(\Rightarrow \) Energy increase

Perseus architecture and workflow

Perseus in Action

Evaluations

Evaluations

Evaluations

