

VV 285 MID 1 Part II Inner Product Space

SUN YAN

Overview

- Inner Product Space (slide 77-78)
- Induced Norm (slide 79-81)
- Orthogonality\Orthonormal Basis (slide 85-87)
- Projection (slide 92)
- Gram-Schmidt Orthonormalization (slide 100-103)

Definition-Inner Product

- Whether a map $\langle \cdot, \cdot \rangle : V \times V \rightarrow F$ can be a inner product:
- Verify for all u,v,w ∈V and all λ ∈F :

$$1.\langle v,v\rangle \ge 0$$
 and $\langle v,v\rangle = 0$ if and only if $v = 0$

$$2.\langle u,v+w\rangle = \langle u,v\rangle + \langle u,w\rangle$$

$$3.\langle u, \lambda v \rangle = \lambda \langle u, v \rangle$$

$$4.\langle u,v\rangle = \langle \overline{v,u}\rangle$$

We call the pair $(V,\langle \cdot, \cdot \rangle)$ inner product space;

Definition-Induced Norm

1.3.4. Definition. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. The map

$$\|\cdot\|\colon V\to\mathbb{R}$$
,

$$\|v\| = \sqrt{\langle v, v \rangle}$$

is called the *induced norm* on V.

1.3.6. Cauchy-Schwarz Inequality. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product vector space. Then

$$|\langle u, v \rangle| \leq ||u|| \cdot ||v||$$

for all
$$u, v \in V$$

where $\|\cdot\|$ is the induced norm.

1.3.7. Corollary. The induced norm is actually a norm, i.e., it satisfies

- (i) $||v|| \ge 0$, $||v|| = 0 \Leftrightarrow v = 0$,
- (ii) $\|\lambda v\| = |\lambda| \cdot \|v\|$,
- (iii) $||u+v|| \le ||u|| + ||v||$

for all $u, v \in V$ and $\lambda \in \mathbb{F}$.

Definition-Orthogonal and Orthonormal

- 1.3.11. Definition. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product vector space.
 - (i) Two vectors $u, v \in V$ are called **orthogonal** or **perpendicular** if $\langle u, v \rangle = 0$. We then write $u \perp v$.
 - (ii) We call

$$M^{\perp} := \left\{ v \in V \colon egin{array}{c} orall_{m \in M} \langle m, v \rangle = 0
ight\}$$

the *orthogonal complement* of a set $M \subset V$.

For short, we sometimes write $v \perp M$ instead of $v \in M^{\perp}$ or $v \perp m$ for all $m \in M$.

iv) Let $A \in \text{Mat}(n \times n, \mathbb{C})$. Show that

$$(\operatorname{ran} A)^{\perp} = \ker A^*,$$

$$(\ker A)^{\perp} = \operatorname{ran} A^*.$$

(2 Marks)

Definition-Orthogonal and Orthonormal

1.3.14. Definition. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product vector space. A tuple of vectors $(v_1, ..., v_r) \subset V$ is called a *(finite) orthonormal system* if

$$\langle v_j, v_k \rangle = \delta_{jk} := \begin{cases} 1 & \text{for } j = k, \\ 0 & \text{for } j \neq k, \end{cases}$$
 $j, k = 1, ..., r,$

i.e., if $||v_k|| = 1$ and $v_i \perp v_k$ for $j \neq k$.

Exercise 2.2

Let

$$U = \{x \in \mathbb{R}^4 \colon x_1 + x_2 + x_3 = 0, \ x_1 + 3x_2 = x_4\}, \qquad V = \{x \in \mathbb{R}^4 \colon x_1 = x_4\}.$$

ii) Give orthonormal bases for U, V and U + V. (2 Marks)

Definition-Projection

1.3.21. Projection Theorem. Let $(V, \langle \cdot, \cdot \rangle)$ be a (possibly infinite-dimensional) inner product vector space and $(e_1, ..., e_r)$, $r \in \mathbb{N}$, be an orthonormal system in V. Denote $U := \text{span}\{e_1, ..., e_r\}$.

Then for every $v \in V$ there exists a unique representation

$$v = u + w$$

where $u \in U$ and $w \in U^{\perp}$

and
$$u = \sum_{i=1}^{r} \langle e_i, v \rangle e_i$$
, $w := v - u$.

1.3.22. Definition. The vector

$$\pi_U v := \sum_{i=1}^r \langle e_i, v \rangle e_i$$

is called the *orthogonal projection of* v *onto* U. The projection theorem essentially states that $\pi_U v$ always exists and is independent of the choice of the orthonormal system (it depends only on the span U of the system).

Gram-Schmidt Orthonormalization

We set

$$w_1 := rac{v_1}{\|v_1\|}$$
 $w_k := rac{v_k - \sum_{j=1}^{k-1} \langle w_j, v_k \rangle w_j}{\|v_k - \sum_{j=1}^{k-1} \langle w_j, v_k \rangle w_j\|}, \qquad k = 2, ..., n,$

And hence obtain an orthonormal system as desired

Think about it.

Suppose n is a positive integer. Prove that

$$\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \dots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\sin nx}{\sqrt{\pi}}$$

is an orthonormal list of vectors in $C[-\pi, \pi]$, the vector space of continuous real-valued functions on $[-\pi, \pi]$ with inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$$

Reference

Hohberger, Horst. "VV285_main.pdf"

Axler, Sheldon. Linear Algebra Done Right. Springer, 2017.

Lang, Serge. Linear Algebra, 1987

Thank You