Solving Congruences

Rosen Section 4.4

Tom Michoel

MNF130V2020 - Week 9

Relative prime

Definition

Two integers m and n are **relatively prime** if they have *no* common positive divisor other than 1, that is, if gcd(m, n) = 1.

Theorem

For m a positive integer and a, b, n integers, if an \equiv bn (mod m) and gcd(m, n) = 1, then $a \equiv b \pmod{m}$.

If a, b, c are positive integers such that gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.

If a, b, c are positive integers such that gcd(a, b) = 1 and a $\mid bc$, then a $\mid c$.

Proof.

▶ If gcd(a, b) = 1 then there exist integers s, t such that

$$sa + tb = 1$$

 $sac + tbc = c$

If a, b, c are positive integers such that gcd(a, b) = 1 and a $\mid bc$, then a $\mid c$.

Proof.

▶ If gcd(a, b) = 1 then there exist integers s, t such that

$$sa + tb = 1$$

 $sac + tbc = c$

 \blacktriangleright We have $a \mid sac$, and by the assumption that $a \mid bc$ also $a \mid tbc$.

If a, b, c are positive integers such that gcd(a, b) = 1 and a $\mid bc$, then a $\mid c$.

Proof.

▶ If gcd(a, b) = 1 then there exist integers s, t such that

$$sa + tb = 1$$

 $sac + tbc = c$

- \blacktriangleright We have $a \mid sac$, and by the assumption that $a \mid bc$ also $a \mid tbc$.
- \blacktriangleright Hence $a \mid (sac + tbc) = c$.

For m a positive integer and a, b, n integers, if an \equiv bn (mod m) and $\gcd(m,n)=1$, then $a\equiv b\pmod{m}$.

For m a positive integer and a, b, n integers, if an \equiv bn (mod m) and gcd(m,n)=1, then $a\equiv b\pmod{m}$.

Proof.

▶ If $an \equiv bn \pmod{m}$, then by definition $m \mid (an - bn) = (a - b)n$.

For m a positive integer and a, b, n integers, if an \equiv bn (mod m) and gcd(m, n) = 1, then $a \equiv b \pmod{m}$.

- ▶ If $an \equiv bn \pmod{m}$, then by definition $m \mid (an bn) = (a b)n$.
- ▶ By the previous lemma, gcd(m, n) = 1 and $m \mid (a b)n$ implies that $m \mid (a b)$, and hence $a \equiv b \pmod{m}$.

Linear congruences

A linear conruence is an equation

$$ax \equiv b \pmod{m}$$
 (1)

in an integer variable x, with m a positive integer and a, b integers.

Linear congruences

A linear conruence is an equation

$$ax \equiv b \pmod{m}$$
 (1)

in an integer variable x, with m a positive integer and a, b integers.

Example

The linear congruence with $2x \equiv 1 \pmod{3}$ has the solution $x \equiv 2 \pmod{3}$.

Figure 1: Linear congruence with a = 2, b = 1 and m = 3.

Definition

An **inverse of an integer a modulo m** is an integer \bar{a} such that $a\bar{a} \equiv 1 \pmod{m}$.

Theorem

If integers a, m are relatively prime, gcd(a, m) = 1, then there exists a unique inverse of a modulo m.

Definition

An inverse of an integer a modulo m is an integer \bar{a} such that $a\bar{a} \equiv 1 \pmod{m}$.

Theorem

If integers a, m are relatively prime, gcd(a, m) = 1, then there exists a unique inverse of a modulo m.

Proof.

If gcd(a, m) = 1, then there exist integers s, t such that sa + tm = 1, and hence $sa + tm \equiv 1 \pmod{m}$.

Definition

An inverse of an integer a modulo m is an integer \bar{a} such that $a\bar{a} \equiv 1 \pmod{m}$.

Theorem

If integers a, m are relatively prime, gcd(a, m) = 1, then there exists a unique inverse of a modulo m.

- If gcd(a, m) = 1, then there exist integers s, t such that sa + tm = 1, and hence $sa + tm \equiv 1 \pmod{m}$.
- ▶ Because $tm \equiv 0 \pmod{m}$, it follows that $sa \equiv 1 \pmod{m}$, and s is an inverse of a modulo m.

Definition

An inverse of an integer a modulo m is an integer \bar{a} such that $a\bar{a} \equiv 1 \pmod{m}$.

Theorem

If integers a, m are relatively prime, gcd(a, m) = 1, then there exists a unique inverse of a modulo m.

- If gcd(a, m) = 1, then there exist integers s, t such that sa + tm = 1, and hence $sa + tm \equiv 1 \pmod{m}$.
- ▶ Because $tm \equiv 0 \pmod{m}$, it follows that $sa \equiv 1 \pmod{m}$, and s is an inverse of a modulo m.
- Assume there exists another inverse r of a modulo m. Because $sa \equiv 1 \pmod{m}$, there exists q such that sa = qm + 1. Likewise there exists p such that ra = pm + 1.

Definition

An inverse of an integer a modulo m is an integer \bar{a} such that $a\bar{a} \equiv 1 \pmod{m}$.

Theorem

If integers a, m are relatively prime, gcd(a, m) = 1, then there exists a unique inverse of a modulo m.

- If gcd(a, m) = 1, then there exist integers s, t such that sa + tm = 1, and hence $sa + tm \equiv 1 \pmod{m}$.
- ▶ Because $tm \equiv 0 \pmod{m}$, it follows that $sa \equiv 1 \pmod{m}$, and s is an inverse of a modulo m.
- Assume there exists another inverse r of a modulo m. Because $sa \equiv 1 \pmod{m}$, there exists q such that sa = qm + 1. Likewise there exists p such that ra = pm + 1.
- ightharpoonup Hence (s-r)a=(q-p)m and $m\mid (s-r)a$.

Definition

An inverse of an integer a modulo m is an integer \bar{a} such that $a\bar{a} \equiv 1 \pmod{m}$.

Theorem

If integers a, m are relatively prime, gcd(a, m) = 1, then there exists a unique inverse of a modulo m.

- If gcd(a, m) = 1, then there exist integers s, t such that sa + tm = 1, and hence $sa + tm \equiv 1 \pmod{m}$.
- ▶ Because $tm \equiv 0 \pmod{m}$, it follows that $sa \equiv 1 \pmod{m}$, and s is an inverse of a modulo m.
- Assume there exists another inverse r of a modulo m. Because $sa \equiv 1 \pmod{m}$, there exists q such that sa = qm + 1. Likewise there exists p such that ra = pm + 1.
- \blacktriangleright Hence (s-r)a=(q-p)m and $m\mid (s-r)a$.
- ▶ Because gcd(a, m) = 1 it follows that $m \mid (s r)$, or $s \equiv r \pmod{m}$. That is, s is unique modulo m.

Do 7 and 6 have inverses modulo 8?

Do 7 and 6 have inverses modulo 8?

► Test all possible values for an inverse:

 $6 \mod 8 = 7$ $2 \cdot 6 \mod 8 = 4$

 $3 \cdot 6 \mod 8 = 2$

 $4 \cdot 6 \mod 8 = 0$

	1	mou	0 —	1
2	. 7	mod	8 =	6

$$3 \cdot 7 \mod 8 = 5$$

 $7 \mod 9 - 7$

$$4 \cdot 7 \bmod 8 = 4$$

$$5 \cdot 7 \mod 8 = 3$$

$$6\cdot 7 \text{ mod } 8 = 2$$

$$7 \cdot 7 \mod 8 = 1$$

$$8 \cdot 7 \mod 8 = 0$$

Do 7 and 6 have inverses modulo 8?

► Test all possible values for an inverse:

 $6 \mod 8 = 7$ $2 \cdot 6 \mod 8 = 4$

 $3 \cdot 6 \mod 8 = 2$

 $4 \cdot 6 \mod 8 = 0$

7	mod	8 =	7
2.7	mod	8 —	6

$$3 \cdot 7 \mod 8 = 5$$

$$4 \cdot 7 \bmod 8 = 4$$

$$5\cdot 7 \text{ mod } 8 = 3$$

$$6 \cdot 7 \mod 8 = 2$$

$$7 \cdot 7 \mod 8 = 1$$

$$8 \cdot 7 \mod 8 = 0$$

▶ Once we reach 0, the numbers repeat.

Do 7 and 6 have inverses modulo 8?

► Test all possible values for an inverse:

$7 \mod 8 = 7$	$6 \mod 8 =$
$2\cdot 7 \bmod 8 = 6$	$2\cdot 6 \text{ mod } 8 =$
$3 \cdot 7 \mod 8 = 5$	$3\cdot 6 \; mod \; 8 =$
$4 \cdot 7 \mod 8 = 4$	$4 \cdot 6 \mod 8 =$
$5 \cdot 7 \mod 8 = 3$	
$6 \cdot 7 \mod 8 = 2$	
$7 \cdot 7 \mod 8 = 1$	
$8 \cdot 7 \mod 8 = 0$	

0

▶ Once we reach 0, the numbers repeat.

Intuition

If $\gcd(a, m) = 1$, all values $0 \le r < m$, including r = 1, are encountered in this process, but if $\gcd(a, m) > 1$ the process terminates early and r = 1 is not encountered.

We can make this argument more precise: Let a and m be arbitrary positive integers.

Let a and m be arbitrary positive integers.

▶ Because $(x + m)a \equiv xa \pmod{m}$, an inverse \bar{a} of a modulo m must satisfy $\bar{a} \in \{1, \dots, m-1\}$.

- ▶ Because $(x + m)a \equiv xa \pmod{m}$, an inverse \bar{a} of a modulo m must satisfy $\bar{a} \in \{1, \dots, m-1\}$.
- ▶ If gcd(a, m) = 1, then none of xa for $x \in \{1, ..., m 1\}$ are a multiple of m, and all values of xa mod m are different.

- ▶ Because $(x + m)a \equiv xa \pmod{m}$, an inverse \bar{a} of a modulo m must satisfy $\bar{a} \in \{1, ..., m-1\}$.
- ▶ If gcd(a, m) = 1, then none of xa for $x \in \{1, ..., m 1\}$ are a multiple of m, and all values of xa mod m are different.
- ▶ Because the only values in \mathbb{Z}_m are $\{0, \ldots, m-1\}$, $xa \mod m$ for $x \in \{1, \ldots, m-1\}$ must take all non-zero values in \mathbb{Z}_m , including 1, and an inverse of $a \mod m$ exists.

- ▶ Because $(x + m)a \equiv xa \pmod{m}$, an inverse \bar{a} of a modulo m must satisfy $\bar{a} \in \{1, \ldots, m-1\}$.
- ▶ If gcd(a, m) = 1, then none of xa for $x \in \{1, ..., m-1\}$ are a multiple of m, and all values of $xa \mod m$ are different.
- ▶ Because the only values in \mathbb{Z}_m are $\{0,\ldots,m-1\}$, xa mod m for
- $x \in \{1, \dots, m-1\}$ must take all non-zero values in \mathbb{Z}_m , including 1, and an inverse of a modulo m exists.
- ▶ If gcd(a, m) = c > 1, there exist integers k and l such that a = kcand m = lc, with k and l in $\{2, ..., |m/2|\}$.

- ▶ Because $(x + m)a \equiv xa \pmod{m}$, an inverse \bar{a} of a modulo m must satisfy $\bar{a} \in \{1, \ldots, m-1\}$.
- ▶ If gcd(a, m) = 1, then none of xa for $x \in \{1, ..., m-1\}$ are a multiple of m, and all values of $xa \mod m$ are different.
- ▶ Because the only values in \mathbb{Z}_m are $\{0,\ldots,m-1\}$, xa mod m for $x \in \{1, \dots, m-1\}$ must take all non-zero values in \mathbb{Z}_m , including 1,
- and an inverse of a modulo m exists.
- ▶ If gcd(a, m) = c > 1, there exist integers k and l such that a = kcand m = lc, with k and l in $\{2, ..., |m/2|\}$.
- ▶ This means that la = klc = km is a multiple of m, or $la \equiv 0$ (mod m).

- ▶ Because $(x + m)a \equiv xa \pmod{m}$, an inverse \bar{a} of a modulo m must satisfy $\bar{a} \in \{1, \ldots, m-1\}$.
- If gcd(a, m) = 1, then none of xa for $x \in \{1, ..., m-1\}$ are a multiple of m, and all values of xa mod m are different.
- Because the only values in \mathbb{Z}_m are $\{0,\ldots,m-1\}$, $xa \mod m$ for $x \in \{1,\ldots,m-1\}$ must take all non-zero values in \mathbb{Z}_m , including 1, and an inverse of a modulo m exists
- x ∈ {1,...,m-1} must take all non-zero values in Z_m, including 1, and an inverse of a modulo m exists.
 If gcd(a, m) = c > 1, there exist integers k and l such that a = kc
- and m = lc, with k and l in {2,..., [m/2]}.
 This means that la = klc = km is a multiple of m, or la ≡ 0 (mod m).
- ▶ Hence $xa \mod m$ for $x \in \{1, ..., m-1\}$ does **not** take all values in $\{1, ..., m-1\}$.

- ▶ Because $(x + m)a \equiv xa \pmod{m}$, an inverse \bar{a} of a modulo m must satisfy $\bar{a} \in \{1, \dots, m-1\}$.
- ▶ If gcd(a, m) = 1, then none of xa for $x \in \{1, ..., m 1\}$ are a multiple of m, and all values of xa mod m are different.
- Because the only values in \mathbb{Z}_m are $\{0, \ldots, m-1\}$, $xa \mod m$ for $x \in \{1, \ldots, m-1\}$ must take all non-zero values in \mathbb{Z}_m , including 1, and an inverse of a modulo m exists.
- If gcd(a, m) = c > 1, there exist integers k and l such that a = kc and m = lc, with k and l in $\{2, \ldots, \lfloor m/2 \rfloor\}$.
- This means that la = klc = km is a multiple of m, or $la \equiv 0 \pmod{m}$.
- ▶ Hence $xa \mod m$ for $x \in \{1, ..., m-1\}$ does **not** take all values in $\{1, ..., m-1\}$.
- In particular, $xa \mod m$ will never be equal to 1, because $xa \mod m = 1$ implies that there exists an integer q such that xa = qm + 1, or (xk ql)c = 1, or $c \mid 1$, which is a contradiction.

If a has an inverse \bar{a} modulo m, then the solutions to the linear congruence $ax \equiv b \pmod{m}$ are all integers x such that $x \equiv \bar{a}b \pmod{m}$.

If a has an inverse \bar{a} modulo m, then the solutions to the linear congruence $ax \equiv b \pmod{m}$ are all integers x such that $x \equiv \bar{a}b \pmod{m}$.

Proof.

Let x be a solution to $ax \equiv b \pmod{m}$. Then

$$\bar{a}b \mod m = (\bar{a} \mod m)(b \mod m) \mod m$$

$$= (\bar{a} \mod m)(ax \mod m) \mod m$$

$$= \bar{a}ax \mod m$$

$$= (\bar{a}a \mod m)(x \mod m) \mod m$$

$$= (x \mod m) \mod m$$

$$= x \mod m$$

or $x \equiv \bar{a}b \pmod{m}$

The Chinese remainder theorem

The **Chinese remainder theorem** states that when the moduli of a system of linear congruences are pairwise relatively prime, then there is a unique solution of the system modulo the product of the moduli.

It is named after the Chinese heritage of problems involving systems of linear congruences.

Example (Sun-Tsu, 1st century)

There are certain things whose number is unknown. When divided by 3, the remainder is 2; when divided by 5, the remainder is 3; and when divided by 7, the remainder is 2. What will be the number of things?

The Chinese remainder theorem

The **Chinese remainder theorem** states that when the moduli of a system of linear congruences are pairwise relatively prime, then there is a unique solution of the system modulo the product of the moduli.

It is named after the Chinese heritage of problems involving systems of linear congruences.

Example (Sun-Tsu, 1st century)

There are certain things whose number is unknown. When divided by 3, the remainder is 2; when divided by 5, the remainder is 3; and when divided by 7, the remainder is 2. What will be the number of things?

Answer: 23

The Chinese remainder theorem

THE CHINESE REMAINDER THEOREM Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

```
x \equiv a_2 \pmod{m_2},
\vdots
\vdots
x \equiv a_n \pmod{m_n}
```

 $x \equiv a_1 \pmod{m_1}$,

has a unique solution modulo $m = m_1 m_2 \cdots m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

The Chinese remainder theorem (special case)

Theorem

Let a, m_1, m_2 be integers and $gcd(m_1, m_2) = 1$. Then

$$x \equiv a \pmod{m_1 m_2}$$

is a solution to the system of linear congruences

$$x \equiv a \pmod{m_1}$$

$$x \equiv a \pmod{m_2}$$

The Chinese remainder theorem (special case)

Theorem

Let a, m_1, m_2 be integers and $gcd(m_1, m_2) = 1$. Then

$$x \equiv a \pmod{m_1 m_2}$$

is a solution to the system of linear congruences

$$x \equiv a \pmod{m_1}$$

$$x \equiv a \pmod{m_2}$$

Remark

 $x \equiv a \pmod{m_1 m_2}$ is in fact the **unique** solution to this system of linear congruences, but we will not prove this fact.

▶ Because $gcd(m_1, m_2) = 1$, there exist integers s and t such that $sm_1 + tm_2 = 1$.

- ▶ Because $gcd(m_1, m_2) = 1$, there exist integers s and t such that $sm_1 + tm_2 = 1$.
- ▶ Hence $sm_1 \equiv 1 \pmod{m_2}$ and $tm_2 \equiv 1 \pmod{m_1}$.

- ▶ Because $gcd(m_1, m_2) = 1$, there exist integers s and t such that $sm_1 + tm_2 = 1$.
- ▶ Hence $sm_1 \equiv 1 \pmod{m_2}$ and $tm_2 \equiv 1 \pmod{m_1}$.
- $\blacktriangleright \text{ Let } x \equiv a \text{ (mod } m_1 m_2).$

- ▶ Because $gcd(m_1, m_2) = 1$, there exist integers s and t such that $sm_1 + tm_2 = 1$.
- ▶ Hence $sm_1 \equiv 1 \pmod{m_2}$ and $tm_2 \equiv 1 \pmod{m_1}$.
- $\blacktriangleright \text{ Let } x \equiv a \text{ (mod } m_1 m_2).$
- ▶ Then $x = a + km_1m_2$ for some integer k.

- ▶ Because $gcd(m_1, m_2) = 1$, there exist integers s and t such that $sm_1 + tm_2 = 1$.
- ▶ Hence $sm_1 \equiv 1 \pmod{m_2}$ and $tm_2 \equiv 1 \pmod{m_1}$.
- $\blacktriangleright \text{ Let } x \equiv a \text{ (mod } m_1 m_2).$
- ▶ Then $x = a + km_1m_2$ for some integer k.
- ► Hence $x = a(sm_1 + tm_2) + km_1m_2$, and $x \mod m_1 = (atm_2) \mod m_1 = [(a \mod m_1)((tm_2) \mod m_1))] \mod m_1$ = $a \mod m_1$

- ▶ Because $gcd(m_1, m_2) = 1$, there exist integers s and t such that $sm_1 + tm_2 = 1$.
- ▶ Hence $sm_1 \equiv 1 \pmod{m_2}$ and $tm_2 \equiv 1 \pmod{m_1}$.
- $\blacktriangleright \text{ Let } x \equiv a \text{ (mod } m_1 m_2).$
- ▶ Then $x = a + km_1m_2$ for some integer k.
- ▶ Hence $x = a(sm_1 + tm_2) + km_1m_2$, and $x \mod m_1 = (atm_2) \mod m_1 = [(a \mod m_1)((tm_2) \mod m_1))] \mod m_1$ = $a \mod m_1$
- Likewise

```
x \mod m_2 = (asm_1) \mod m_2 = [(a \mod m_2)((sm_1) \mod m_2)] \mod m_2
= a \mod m_2
```

- ▶ Because $gcd(m_1, m_2) = 1$, there exist integers s and t such that $sm_1 + tm_2 = 1$.
- ▶ Hence $sm_1 \equiv 1 \pmod{m_2}$ and $tm_2 \equiv 1 \pmod{m_1}$.
- $\blacktriangleright \text{ Let } x \equiv a \text{ (mod } m_1 m_2).$
- ▶ Then $x = a + km_1m_2$ for some integer k.
- Hence $x = a(sm_1 + tm_2) + km_1m_2$, and $x \mod m_1 = (atm_2) \mod m_1 = \left[(a \mod m_1)((tm_2) \mod m_1) \right] \mod m_1$ $= a \mod m_1$
- Likewise

$$x \mod m_2 = (asm_1) \mod m_2 = [(a \mod m_2)((sm_1) \mod m_2)] \mod m_2$$

= $a \mod m_2$

▶ Hence $x \equiv a \pmod{m_1 m_2}$ is a solution to the system of congruences.

Practice makes perfect

Solve Practice Quiz "Ch 04- Modular inverses and linear congruences":

https://mitt.uib.no/courses/21678/quizzes/10439