Decision Tree

Nazerfard, Ehsan nazerfard@aut.ac.ir

Decision Boundary

What kind of Decision Boundary for this data?

Decision Tree Classifier

Decision Tree Classifier (cont.)

What are the challenges?

Decision Tree Properties

- How interpretable is DT?
- □ Non-Parametric
- Bias-Variance tradeoff

Controlling Complexity

Maximum depth cutoff

Figures © Alex Ihler, Lecture on Decision Trees, UCI

Controlling Complexity (cont.)

Minimum # parent data

Figures © Alex Ihler, Lecture on Decision Trees, UCI

The Akinator

□ What would be the most important question to ask first?

Figure © en.akinator.com

Entropy

- Entropy → Information Gain
- Entropy is a measure of randomness
- Example:
 - Communicating fair coin tosses:

HTTHTHHHTTHTT...

- Communicating my daily lottery results
 0 0 0 0 0 0 ...
- The latter, takes less work to communicate. Why?

Entropy (cont.)

Formal Definition

$$o H(X) = \sum_{i} p(x_i) \log_2^{\frac{1}{p(x_i)}}$$

- Shannon got the letter H from Boltzmann's H-theorem
- $\square E(X)$ measures the randomness of random variable X.

$$E(X) = -\sum_{i} p(x_i) \log_2^{p(x_i)}$$

Entropy (cont.)

$$E(X) = -(\log_2 1 + 0 \times \log_2 0) = 0$$

$$E(X) =$$
 $-(0.75 \log_2 0.75 + 0.25 \log_2 0.25) = 0.81$

Entropy (cont.)

- \square E(S) measures the impurity of set S.
- □ Given a collection of S, containing positive and negative examples of some target concept, the entropy of S relative to this boolean classification is:

$$E(S) = -(p_{\bigoplus}log_2^{p_{\bigoplus}} + p_{\bigoplus}log_2^{p_{\bigoplus}})$$

 p_{\oplus} refers to the proportion of positive examples.

Entropy Function

□ The entropy function relative to a boolean classification, as p_{\oplus} varies between 0 and 1.

Figure © Tom Mitchell, Machine Learning, 1997

Which Feature is more Effective*?

How Come?

 $IG([29+, 35-], F_1) = 0.26$

$$IG([29+, 35-], F_2) = 0.12$$

IG (Information Gain)

Information Gain

- Information Gain measures the expected reduction in entropy.
- □ Formally, the information gain, Gain(S, F) of a feature F, relative to a collection of examples S, is defined as:

$$Gain(S, F) = Entropy(S) - \sum_{v \in Values(F)} \frac{|S_v|}{|S|} Entropy(S_v)$$

• where Values(F) is the set of all possible values for feature F, and S_v is the subset of S for which feature F has value v.

The PlayTennis/Weather Data

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

The Wind Feature

$$Values(Wind) = Weak, Strong$$

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-]$$

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (8/14) Entropy(S_{Weak})$$

$$- (6/14) Entropy(S_{Strong})$$

$$= 0.940 - (8/14)0.811 - (6/14)1.00$$

$$= 0.048$$

Which Feature is more Effective?

Gain (S, Humidity) = .940 - (7/14).985 - (7/14).592 = .151

Gain(S, Humidity) = 0.151

$$Gain(S, Wind) = 0.048$$

Which Feature is the most Effective?

Gain (S, Humidity) = .940 - (7/14).985 - (7/14).592 = .151

Gain(S, Humidity) = 0.151

Gain(S, Outlook) = 0.246

Gain (S, Wind) = .940 - (8/14).811 - (6/14)1.0 = .048

Gain(S, Wind) = 0.048

Gain(S, Temp) = 0.029

The Outlook Feature is the Best

Gain (S, Humidity) = .940 - (7/14).985 - (7/14).592 = .151

Gain(S, Humidity) = 0.151

Gain(S, Outlook) = 0.246

$$Gain(S, Wind) = 0.048$$

$$Gain(S, Temp) = 0.029$$

What about the Next Feature

What about the Next Feature

Which attribute should be tested here?

$$S_{sunny} = \{D1,D2,D8,D9,D11\}$$

 $Gain(S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$
 $Gain(S_{sunny}, Temp) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$
 $Gain(S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

The Humidity Feature

Which attribute should be tested here?

```
S_{sunny} = \{D1,D2,D8,D9,D11\}
Gain (S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970
Gain (S_{sunny}, Temp) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570
Gain (S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019
```

Hypothesis Space Search

□ ID3 algorithm

The Final Decision Tree

Figure © Tom Mitchell, Machine Learning, 1997

The Weather Data

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Observations

- The Weather example by Weka
- Observations?
 - Where has the Temperature feature gone?
 - Dealing with random noise in the training data:

```
D_{15} = (< Outlook = Sunny, Temperature = Hot, Humidity = Normal, Wind = Strong >, Play = No)
```

Regarding the Day feature

C4.5 (J48 in Weka)

□ C4.5 vs. ID3

	ID3	C4.5
Pruning	×	V
Features	nominal	nominal + numeric
missing values	×	٧
Gain	Basic Info Gain	Gain Ratio

The C4.5 Algorithm

□ C4.5 vs. ID3

	ID3	C4.5
Pruning	×	٧
Features	nominal	nominal + numeric
missing values	×	٧
Gain	Basic Info Gain	Gain Ratio

MDLPC

Temp:	40	48	60	72	80	90
Play:	_	_	+	+	+	-

The C4.5 Algorithm

□C4.5 vs. ID3

	ID3	C4.5
Pruning	×	٧
Features	nominal	nominal + numeric
missing values	×	٧
Gain	Basic Info Gain	Gain Ratio

$$GainRatio(S,F) = \frac{Gain(S,F)}{SplitEntropy(S,F)}$$

$$SplitEntropy(S,F) = -\sum_{i=1}^{|Values F|} \frac{|S_i|}{|S|} log^{\frac{|S_i|}{|S|}}$$

Further Reading

- The CART algorithm
 - Classification and Regression Tree
- □ Gini index
- Random Forest (later on in this course)

Source

□ Tom Mitchell, Machine Learning, McGraw-Hill, 1997