Bioinformatics Workshop

Session #16

Bisulfite Sequencing and Analysis

Chris Miller

Epigenetics

DNA Methylation

NH₂ NH₂ CH₃

- Mostly happens at CpGs
- About 25 million CpGs in human genome

https://en.wikipedia.org/wiki/CpG_site#/media/File:CpG_vs_C-G_bp.svg

DNA Methylation

- CpG Islands
- Length >= 200 bpGC% > 50%o/e CpG ratio > 60%
- Selective pressure/Evolutionary constraint

DOI: 10.1007/s00018-003-3088-6

Islands, shores, and shelves

What does DNA methylation do?

- The short answer: It depends!
- X-chromosome inactivation
- Silencing of transposable elements
- Cellular differentiation

Cancer - hypo/hypermethylation

MGMT and Temozolomide

- TMZ is an alkylating agent damages DNA, causes cell death
- MGMT "cleans up" the damage

 Methylation of the MGMT promoter is linked to better outcomes!

Methylation Patterns

Methyltransferases that act locally

Methylation Patterns

Methyltransferases that act locally

Other alterations (or treatments)
 that act globally

Bisulfite sequencing

5-methylcytosine

Bisulfite sequencing

Bisulfite sequencing

```
Watson >>ACmGTTCGCTTGAG>>
                                               methylated
                                            C Un-methylated
               << TGC AAGCGAACTC <<
          Crick
         1) Denaturation
Watson >>ACmGTTCGCTTGAG>>
                                Crick << TGC AAGCGAACTC <<
         2) Bisulfite Treatment
    >>ACmGTTUGUTTGAG>>
                                    <<TGC"AAGUGAAUTU<<
BSW
         3) PCR Amplification
    >>AC"GTTTGTTTGAG>>
                                    <<TGC"AAGTGAATTT<<
                                BSCR >>ACG TTCACTTAAA>>
BSWR <<TG CAAACAAACTC<<
```

Whole-genome Bisulfite Sequencing (WGBS)

- Need a special aligner has to expect many C > T mismatches!
- BSMAP
- bismark
- BWA-meth
- biscuit

Methylation calling

- Determine methylation fraction at each site in the genome
 - Count the Cs and Ts, taking strandedness into account
 - Some tools account for SNPs while doing this

_

Methylation calling

- Determine methylation fraction at each site in the genome
 - Count the Cs and Ts, taking strandedness into account
 - Some tools account for SNPs while doing this

Why isn't every position 0%, 50% or 100%?

Methylation calling

- Determine methylation fraction at each site in the genome
 - Count the Cs and Ts, taking strandedness into account
 - Some tools account for SNPs while doing this

- Why isn't every position 0%, 50% or 100%?
 - we're sequencing a population of cells!

Workflow/File formats

- Aligning: FASTQ > BAM/CRAM
- Pileup: BAM/CRAM > VCF
 - (entries for every site, allele frequencies)
- VCF > bedgraph
 - chr, start, stop, beta_value (methylation fraction)
- bedgraph > bigwig (for visualization in IGV)
- We have a workflow for this!

IGV visualization

Differentially methylated regions

Comparing two groups to find changes

 Finding DMRs is a segmentation problem

We use a tool called metilene

Differentially methylated regions

Number of samples matters!

DMRs called for various downsampled analysis

Heatmaps

Canyon Plots

DNMT3A deficiency

DNMT3A deficiency

- Mouse models (and human data)
- Looking at context, effects, and reversibility

DNMT3A deficiency

- Mouse models (and human data)
- Looking at context, effects, and reversibility

ChIP-seq/ATAC-seq

- Alterations of DNA state or accessibility
- Wrapped around histones
- Bound by transcription factors
- etc

ChIP-seq

ATAC-seq

Peak-calling

MACS2, HOMER, SEACR, etc

Proteins bind in different ways

Transcription factor – tight, highly-peaked binding region

RNA PolII – enriched at TSS but bound throughout gene body

Interpretation

