1.3-Programar Arduino para leer los valores RGB y mostrar el color detectado.

Análisis

El código utilizado permite detectar colores mediante el uso del sensor conectado a una placa Arduino. En primer lugar, configuramos los pines necesarios para controlar el sensor y leer la salida de frecuencia. Luego tenemos una calibración previa donde se definen valores máximos para los componentes rojo, verde y azul, obtenidos manualmente. Esta calibración es importante, ya que permite normalizar las lecturas actuales de color, adaptándolas a una escala de 0 a 255. El sensor filtra secuencialmente cada componente RGB, y la lectura se realiza midiendo el tiempo entre pulsos. A partir de estas lecturas, el programa calcula los valores normalizados de rojo, verde y azul, y luego determina qué color es predominante mediante simples comparaciones entre ellos. Finalmente, el color identificado se muestra a través del monitor serial, lo que permite observar en tiempo real la detección realizada por el sistema. (Evidencia en el video)

Podemos concluir que, la actividad se realizó con éxito, logrando detectar colores mediante la lectura de componentes RGB normalizados. La calibración previa fue esencial para adaptar el sistema a las condiciones de iluminación y a las características del sensor, permitiendo una detección más precisa. El código demuestra un correcto manejo del sensor y una aplicación práctica de lo aprendido.

La funcionalidad se comprobó satisfactoriamente en el video adjunto en el readme.