Lista de Exercícios - P1 Inteligência Artificial

Valdinei Freire

2022

Nos exercícios abaixo, considere os seguintes dados de treinamento para um problema de classificação binária:

x_1	x_2	y	x_1	x_2	y	x_1	x_2	y
0.40	1.34	1	1.07	0.96	1	0.23	0.36	0
-1.77	-1.44	1	1.01	-0.12	0	0.03	-0.35	0
0.39	1.13	1	1.31	0.52	0	-1.55	-0.82	1
-1.75	-1.18	1	-0.86	-1.52	$\mid 1 \mid$	0.33	0.91	1
-1.20	-1.24	1	1.26	1.63	1	1.43	0.33	0

1. Plano Cartesiano:

- (a) Represente os dados em um plano cartesiano com símbolos ou cores diferentes para cada categoria (0 e 1).
- (b) Defina uma regra que classifique corretamente os exemplos da tabela.

2. Árvore de Decisão:

- (a) Calcule a entropia do conjunto de treinamento.
- (b) Considere a pergunta $x_1 \geq 0$ e calcule a entropia média após obter a resposta a essa pergunta.
- (c) Considere a pergunta $x_2 \ge 0$ e calcule a entropia média após obter a resposta a essa pergunta.
- (d) Calcule os ganhos de informação obtidos para as duas perguntas anteriores.
- (e) Escolha a pergunta com maior ganho de informação para ser a raíz da árvore e complete a árvore para classificar corretamente todos os exemplos da tabela.

3. Otimização:

- (a) Considere a seguinte parábola $x_1 3(x_2)^2 + 1 = 0$, e a esboce no plano cartesiano da questão 1. Note que essa parábola separa perfeitamente os exemplos dos dados de treinamento.
- (b) Fazendo uso dessa parábola, construa um classificador que classifique corretamente todos exemplos da tabela.

(c) Utilizando a distância euclidiana, encontre o ponto da parábola mais próximo do ponto $(x_1 = 0, x_2 = 1)$. Utilize o algoritmo de Newton.

4. Redes Neurais:

- (a) Considere uma Rede Neural com: dois atributos na entrada, uma camada escondida com 2 neurônios e uma camada de saída com 1 neurônio. Desenhe o esquema dessa rede neural (não esqueça da entrada de viés).
- (b) Considere que w_0 representa o peso para o viés e que os pesos dos neurônios da camada escondida são dados por:

	w_1	w_2	w_0
Neurônio 1	0.309	-3.438	1.984
Neurônio 2	1.628	3.428	2.851

e na camada de saída são dados por:

	w_1	w_2	w_0
Neurônio saída	2.9992	3.5103	-4.9397

Coloque os pesos no esquema que você gerou no item anterior.

- (c) Considere que a função de ativação de todos neurônios é a função logística. Para cada neurônio da camada escondida, especifique regiões de ativação (saída próxima de 1) e de não ativação (saída próxima de 0).
- (d) Quais combinações de ativação dos neurônios da cama escondida ativam o neurônio da camada de saída?
- (e) Calcule a saída da rede neural quando $(x_1 = 0.5, x_2 = -1)$.

5. k-Vizinhos mais Próximos:

- (a) Considere a classificação com base em votação e esboce as regiões referentes a cada categoria quando k=1.
- (b) Repita o item anterior quando k = 3.

6. Medidas de Desempenho:

- (a) Os exemplos da tabela não podem ser separados de forma perfeita por uma única reta. Encontre a reta que obtém revocação 1.0 e maximiza a precisão.
- (b) No item anterior, calcule a precisão obtida.
- (c) Encontre a reta que obtém precisão 1.0 e maximiza a revocação.
- (d) No item anterior, calcule a revocação obtida.