## Attention, please

7 May, 2020

Alexey Zaytsev, head of Laboratory LARSS, PhD

Foundations of Data Science



#### **Machine translation**

Translate a sentence from one language to another

source language

target language

X



y

A la guerre comme a la guerre

На войне как на войне



#### Early machine translation, 50s

## Cold war child: Russian to English IBM 701 Translator

Doctor Dostert predicted that "five, perhaps three years hence, interlingual meaning conversion by electronic process in important functional areas of several languages may well be an accomplished fact." (1954)

Mostly rule-based approach, uses a dictionary to map Russian words to English





### **Statistical machine translation, 90s-2010s**

Learn probabilistic model from data

To translate: for input English sequence x find the most probable Russian sentence y

$$p(y|x) \to \max_{y}$$

Bayesian perspective:

$$p(y|x) \sim \frac{p(x|y)p(y)}{p(x|y)}$$

Translation model: learn from parallel corpus

Language model: learn from monolingual corpus



### Learning translation model

Learn translation model from data

- Large amount of parallel data
- Alignment

correspondence between words in different languages

#### Alignment types:

- one-to-one
- spurious words
- one-to-many
- Many-to-one

на войне как на войне
а
la
guerre
comme
a
la
guerre

Many problems on the way



## **Decoding**

The optimization problem is hard

$$p(y|x) \to \max_{y}$$

- Full search is not possible
- Heuristic search algorithm to search for the best translation: look through a tree of possible options



### The best SMT systems are very complex

- Language itself is very complex
- Many details we don't even mention
- Separately designed subcomponents
- Tricky feature engineering
- Extra information
- The language changes we need to maintain the system

All difficulties we saw about pre-Neural approaches to sequence processing multiplied x100!



Our goal is to do machine translation with one Neural network

It works with two RNNs

Sequence to sequence **seq2seq** architecture



Our goal is to do machine translation with one Neural network

It works with two RNNs

Sequence to sequence **seq2seq** architecture



Logits for



Our goal is to do machine translation with one Neural network

It works with two RNNs

Sequence to sequence **seq2seq** architecture





Our goal is to do machine translation with one Neural network

It works with two RNNs

Sequence to sequence **seq2seq** architecture



Our goal is to do machine translation with one Neural network

It works with two RNNs

Sequence to sequence **seq2seq** architecture



Language model



## New world of seq2seq models

Summarization: long text – text summary

Dialogue: one phrase – another phrase

Parsing: input – output parse as a sequence

Code generation: task description – python code



Language model



## NMT directly models the conditional language model

Learn probabilistic model from data

$$p(\mathbf{y}|\mathbf{x}) = p(y_T|y_1, y_2, ..., y_{T-1}, \mathbf{x}) p(y_{T-1}|y_1, y_2, ..., y_{T-2}, \mathbf{x}) ... p(y_1|\mathbf{x})$$

Each term is an RNN block

Loss function: compare logits to true words, now we have a logloss if we have a parallel corpus





#### Beam search decoding

#### **Problem:**

We generate tokens one by one from the very beginning Wrong decision at some step leads to wrong translation as a whole

#### **Solution:**

"Beam search": Keep a population of solutions and select the most probable sequences at each step





#### Beam search decoding: practical implementation

#### **Stopping criteria:**

- Generated <END> token
- Reached maximum sequence length

We have  $\{y_1, y_2, ..., y_m\}$  after beam search

#### **Selection criterion:**

Compare normalized  $\tilde{p}(y_i|x)$  instead of  $p(y_i|x)$ 

$$\tilde{p}(\mathbf{y}|\mathbf{x}) = \frac{1}{|\mathbf{y}|} p(\mathbf{y}|\mathbf{x})$$



## **Advantages of NMT**

- Better performance compared to SLT
- Single end2end neural network
- Much less human engineering effort
  - No feature engineering
  - Same method for all language pairs



#### **Evaluations of Machine Translation: BLEU**

"the closer a machine translation is to a professional human translation, the better it is"

**Precision**: share of words from  $\widehat{y}$  that appear in y

| True $y$                   | the | cat | is  | on  | the | mat | Unigram precision is 6/6 = 1 |
|----------------------------|-----|-----|-----|-----|-----|-----|------------------------------|
| Candidate $\widehat{m{y}}$ | the | the | the | the | the | the |                              |

Limit with number of words from references: there are 2 "the" in y

Unigram precision is 2/6 = 0.33

In practice we use n-gram modified precision with n = 4 that "best correlates to human judgement".

**Recall** is also important



#### **Evaluations of Machine Translation**





## NMT: success story for deep learning

**2014:** first seq2seq paper published

**2016:** Google translate switches from SMT to NMT

**SMT:** hundreds of engineers for many years

**NMT:** handful of engineers in a few months



## **Disadvantages of NMT**

- NMT is less interpretable
  - no alignment
- Difficult to control
  - hard to enforce specific translation rules
  - No guidelines or rules for translation
  - Safety concerns



## Any other problems with NMT?

- Out-of-vocabulary words
- Domain mismatch: training and test data
- Context over longer texts
- Low-resource language pairs



#### **Common sense**





## NMT picks up biases in training data





## **Strange things**





# New state of the art: attention is all we need

#### English German Translation quality



BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to German translation

#### **English French Translation Quality**



BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to French translation



#### Bottleneck in seq2seq models



All information about the sequence is in this vector



#### **Attention**

- Solution to the bottleneck problem
- Direction connection between parts of input and output sequence



Sequence 2 sequence with attention (no formulas now)

Attention output

Attention distribution





Decoder

#### Sequence 2 sequence with attention





#### Sequence 2 sequence with attention





#### Attention: formulas

- First RNN produces encoder hidden states  $m{h}_1$ , ...,  $m{h}_{T_x} \in \mathbb{R}^h$
- Decoder hidden state  $s_t \in \mathbb{R}^h$  at time step t
- Attention scores for step t:

$$oldsymbol{e^t} = [oldsymbol{s_t^T} oldsymbol{h}_1, \dots, oldsymbol{s_t^T} oldsymbol{h}_{T_x}] \in \mathbb{R}^{T_x}$$

 Softmax to get attention distribution: all values are positive, sum of all values is 1:

$$\boldsymbol{\alpha^t} = \operatorname{softmax}(\boldsymbol{e^t}) \in \mathbb{R}^{T_x}$$

• Attention output  $a_t$  is a weighted sum of hidden states:

$$\boldsymbol{a}_t = \sum_{i=1}^{T_{\mathcal{X}}} \alpha_i^t \boldsymbol{h}_i \in \mathbb{R}^h$$

• We concatenate the attention output  $a_t$  with the decoder hidden state  $s_t$  and proceed to the non-attention part of our seq2seq model

$$[\boldsymbol{a}_t, \boldsymbol{s}_t] \in \mathbb{R}^{2h}$$



#### Attention is just great

- Significantly improves performance of NMT
- Solves the bottleneck problem
  - All encoder tokens are connected to all decoder tokens
- No more vanishing gradients
  - All to All connection
- Provides some interpretability
  - see alignment figure
- Similar to RNN seq2seq, but greater!

#### **English French Translation Quality**



BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to French translation





#### Attention is a general deep learning idea

We can use attention in many architectures and many tasks

- Other NLP problems
- Graph Neural networks

#### Key value interpretation:

 $S_i$  - query to a database Hidden state of the decoder

 $k_i$  - keys in the database Hidden state of the encoder

 $h_i$  - values in the database Hidden state of the encoder

We calculate correspondence  $e(s_i, k_i)$ 

Then we extract information as weighted sum of values  $\sum_{i=1}^{T_x} \alpha_i^t \boldsymbol{h}_i$ 



#### Sources

- Stanford CS224N: NLP with Deep Learning | Winter 2019 | Lecture 8 –
   Translation, Seq2Seq, Attention
- https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

