Учреждение образования «Белорусский Государственный Университет Информатики и Радиоэлектроники» Кафедра информатики

Отчет по лабораторной работе №11 Решение краевых задач. Методы коллокаций, наименьших квадратов и Галеркина, стрельбы и разностных аппроксимаций

Выполнил: студент гр. 153505 Власенко Тимофей Павлович

Руководитель: Доцент Анисимов Владимир Яковлевич

СОДЕРЖАНИЕ

Цель работы	3
Теоретические сведения	
Тестовые примеры	
Решение индивидуального варианта	
Выволы	

Цель работы:

- изучить методы коллокаций, наименьших квадратов и Галеркина, стрельбы и разностных аппроксимаций составить алгоритмы методов и программы их реализаций, составить алгоритм решения краевых задач указанными методами, применимыми для организации вычислений на ПЭВМ;
- составить программу решения краевых задач по разработанным алгоритмам;
- выполнить тестовые примеры и проверить правильность работы программ.
- получить численное решение заданной краевой задачи.

Краткие теоретические сведения

Будем рассматривать дифференциальное уравнение второго порядка [3].

$$y'' + p(x)y' + q(x)y = f(x), (2.1)$$

где p(x), q(x), f(x) — заданные непрерывные на отрезке [a, b] функции.

Напомним, что задача Коши для уравнения (2.1) сводится к нахождению решения y(x), удовлетворяющего начальным условиям:

$$\begin{cases} y(a) = A \\ y'(a) = A_1. \end{cases}$$

Kраевой задачей называется задача нахождения решения y(x), удовлетворяющего граничным условиям:

$$\begin{cases} y(a) = A, \\ y(b) = B. \end{cases}$$

Краевая задача отличается от задачи Коши непредсказуемостью. Ее решение может существовать, не существовать, быть единственным, может быть бесконечно много решений.

Часто вместо граничных условий используют обобщенные граничные условия:

$$\begin{cases} \alpha_1 y(a) + \beta_1 y'(a) = A, \\ \alpha_2 y(b) + \beta_2 y'(b) = B. \end{cases}$$

Граничные условия называются однородными, если A = B = 0.

Соответственно, краевая задача называется *однородной*, если у нее однородные граничные условия и правая часть уравнения $f(x) \equiv 0$. Следующая теорема имеет важное теоретическое значение.

Теорема. Краевая задача имеет решение, причем единственное тогда и только тогда, когда соответствующая ей однородная краевая имеет только нулевое решение (тривиальное решение однородной краевой задачи).

Способы решения краевой задачи

Поскольку достаточно хороших аналитических методов нет, то для отыскания решения краевой задачи используются приближенные методы. Приближенное решение строят в виде линейной комбинации функций [4]:

$$y_n(x) = \varphi_0(x) + a_1\varphi_1(x) + ... + a_n\varphi_n(x),$$
 (2.2)

где $\varphi_0(x)$ удовлетворяет граничному условию, а функции $\varphi_1(x),...,\varphi_n(x)$ – линейно независимы на [a, b] и удовлетворяют однородным граничным условиям.

Такая система дважды непрерывно дифференцируемых функций $\varphi_0(x), \varphi_1(x), ..., \varphi_n(x)$ называется базисной системой. Задача сводится к выбору коэффициентов $a_1, ..., a_n$ таких, чтобы функция $y_n(x)$ удовлетворяла граничному условию и была в некотором смысле близкой к точному решению.

Подставим приближенное решение (2.2) в уравнение (2.1). Полученное выражение

$$\psi(x, a_1, ..., a_n) = y_n''(x) + p(x)y_n'(x) + q(x)y_n(x) - f(x)$$
(2.3)

называют невязкой. Очевидно, что, если бы $\psi(x, a_1, ..., a_n) \equiv 0$, то $y_n(x)$ было бы точным решением. К сожалению, так бывает очень редко. Следовательно, необходимо выбрать коэффициенты таким образом, чтобы невязка была в некотором смысле минимальной.

Метод коллокаций

На отрезке [a, b] выбираются точки $x_1,...,x_m \in [a,b]$ $(n \ge m)$, которые называются точками коллокации. Точки коллокации последовательно подставляются в невязку. Считая, что невязка должна быть равна нулю в точках коллокации, в итоге получаем систему уравнений для определения коэффициентов $a_1,...,a_n$.

$$\begin{cases} \psi(x_1, a_1, ..., a_n) = 0, \\ ... \\ \psi(x_m, a_1, ..., a_n) = 0. \end{cases}$$

Обычно m=n. Получается система из n линейных уравнений с n неизвестными (коэффициентами $a_1,...,a_n$):

$$\begin{cases} \psi(x_1, a_1, ..., a_n) = 0, \\ ... \\ \psi(x_n, a_1, ..., a_n) = 0. \end{cases}$$

Решая эту систему, найдем приближенное решение $y_n(x)$. Для повышения точности расширяем систему базисных функций. В значительной степени успех в применении метода зависит от удачного выбора базисной системы.

Тестовый пример 2.1

Пусть

$$y'' + (1 + x^2)y = -1,$$
 $-1 \le x \le 1,$

$$y(-1) = 0$$
, $y(1) = 0$.

Выберем базисную систему:

$$\varphi_0(x) = 0$$
,

$$\varphi_1(x) = 1 - x^2$$

$$\varphi_{2}(x) = x^{2}(1-x^{2}).$$

Поскольку $\frac{\varphi_1}{\varphi_2} = \frac{1}{x^2} \neq \text{const}$, функции $\varphi_1(x)$ и $\varphi_2(x)$ линейно независимы.

Строим приближенное решение:

$$y_{1}(x) = a_{1}(1-x^{2}) + a_{1}(x^{2}-x^{4}).$$

Выберем точки коллокации:

$$x_1 = -\frac{1}{2},$$
 $x_2 = 0,$ $x_3 = \frac{1}{2}.$

Получаем систему уравнений:

$$\begin{cases} \psi\left(-\frac{1}{2}, a_1, a_2\right) = \frac{17}{16}a_1 + \frac{49}{64}a_2 - 1 = 0, \\ \psi\left(0, a_1, a_2\right) = a_1 - 2a_2 - 1 = 0, \\ \psi\left(\frac{1}{2}, a_1, a_2\right) = \frac{17}{16}a_1 + \frac{49}{64}a_2 - 1 = 0. \end{cases}$$

Решая ее, получим

$$y_2(x) = 0.957(1-x^2) - 0.022(x^2-x^4)$$
.

Метод наименьших квадратов (МНК)

 Интегральный МНК. Как и в методе коллокаций, приближенное решение строится по базисной системе. Но для нахождения коэффициентов при базисных функциях минимизируется интеграл от квадрата невязки [5]

$$I(a_1,...,a_n) = \int_{-\infty}^{\infty} \psi^{\perp}(x,a_1,...,a_n)dx$$
. (2.4)

Для нахождения минимума интеграла $I(a_1,...,a_n)$ вычисляем первые производные от интеграла по параметрам и, приравнивая их нулю, строим систему нормальных уравнений:

$$\begin{cases} \frac{\partial I}{\partial a_1} = 2 \int_a^b \psi(x, a_1, ..., a_n) \frac{\partial \psi(x, a_1, ..., a_n)}{\partial a_1} dx = 0, \\ ... \\ \frac{\partial I}{\partial a_n} = 2 \int_a^b \psi(x, a_1, ..., a_n) \frac{\partial \psi(x, a_1, ..., a_n)}{\partial a_n} dx = 0. \end{cases}$$
(2.5)

Решая ее, находим $a_1,...,a_n$.

 Дискретный МНК. Выбирают N>n точек и решают задачу минимизации суммы:

$$S = \sum_{i=1}^{N} \psi^{2}(x_{i}, a_{1}, ..., a_{n}) \rightarrow \min.$$

Для ее решения строится система нормальных уравнений:

$$\begin{cases} \frac{\partial S}{\partial a_1} = 0, \\ \dots \\ \frac{\partial S}{\partial a_n} = 0. \end{cases}$$

Тестовый пример 2.2

Рассмотрим краевую задачу

$$y'' + (1 + x^2)y = -1,$$
 $-1 \le x \le 1,$
 $y(-1) = 0,$
 $y(1) = 0.$

Выберем базисную систему:

$$\varphi_0(x) = 0,$$
 $\varphi_1(x) = 1 - x^2,$
 $\varphi_2(x) = x^2(1 - x^2).$

Применяя метод наименьших квадратов, можно найти

$$y_2(x) = 0.985(1-x^2) - 0.078(x^2 - x^4).$$

Метод Галеркина

По базисной системе вновь строим приближенное решение в виде

$$y_{*}(x) = \varphi_{0}(x) + a_{1}\varphi_{1}(x) + ... + a_{*}\varphi_{*}(x)$$
.

Рассматриваем невязку $\psi(x, a_1, ..., a_s)$ и для определения коэффициентов при базисных функциях строим систему

$$\begin{cases} \int_{a}^{b} \psi(x, a_1, ..., a_n) \varphi_1(x) dx = 0, \\ ... \\ \int_{a}^{b} \psi(x, a_1, ..., a_n) \varphi_n(x) dx = 0. \end{cases}$$

Решая данную систему, находим значение $a_1,...,a_\kappa$.

Тестовый пример 2.3

Рассмотрим краевую задачу

$$y'' + y = x$$
, $0 \le x \le 1$,
 $y(0) = y(1) = 0$

Возьмем

$$\varphi_0 = 0,$$

$$\varphi_i(x) = x^i(1-x), i = 1, 2, ...$$

Тогда, применяя метод Галеркина, получим

$$y_1(x) = \frac{5}{18}x(x-1),$$

$$y_2(x) = \frac{71}{360}x(1-x) + \frac{7}{41}x^2(1-x).$$

Сравним значения точного решения y(x) со значениями приближенных решений $y_1(x)$ и $y_2(x)$ в отдельных точках.

x_i	y(x)	y 1(x)	y 2(x)
0,25	0,044	0,052	0,044
0,5	0,07	0,069	0,062
0,75	0,06	0,052	0,06

Разностный метод решения краевых задач

Рассмотрим краевую задачу

$$\begin{cases} y'' = f(x, y, y'), & x \in [a, b], \\ y(a) = A, \\ y(b) = B. \end{cases}$$
 (2.6)

Разобьем отрезок [a, b] на n одинаковых частей с шагом $h = \frac{b-a}{n}$ точками:

$$a = x_0 < x_1 < ... < x_* = b$$
.

Заменим производные на разностные отношения

$$y'(x_k) \approx \frac{y_{k+1} - y_k}{2h},$$

 $y''(x_k) \approx \frac{y_{k+1} - 2y_k + y_{k-1}}{h^2},$ $k = \overline{1, n-1},$

где $y_k = y(x_k)$.

Получим для любого внутреннего узла x_k , $k=\overline{1,n-1}$ уравнение

$$\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} = f\left(x_k, y_k, \frac{y_{k+1} - y_{k-1}}{2h}\right)$$
 2.7)

и для граничных узлов

$$y_0 = A$$
, $y_n = B$.

То есть, мы имеем систему из (n+1) уравнений с (n+1) неизвестными y_k . Ее решение дает нам приближенное решение краевой задачи. Рассмотрим частный случай линейной краевой задачи:

$$y'' - p(x)y = f(x),$$
 $p(x) > 0,$ $a \le x \le b,$ (2.8)
 $y(a) = A,$ $y(b) = B.$

В этом случае получаем

$$\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} - p(x_k)y_k = f(x_k), \qquad k = \overline{1, n-1},$$
 (2.9)

$$y_0 = A$$
, $y_n = B$.

Домножая (2.9) на h^2 , получим трехдиагональную систему линейных уравнений

$$y_{k-1} - (2 + h^2 p(x_k))y_k + y_{k+1} = h^2 f(x_k),$$
 $k = \overline{1, n-1},$

в которой выполнено условие преобладания диагональных элементов

$$2 + p(x_k) > 1 + 1$$
.

Такая система легко решается методом прогонки.

Тестовые примеры

Тест 1.

$$y'' + (1 + x^2) * y = -1, -1 \le x \le 1, y(-1) = 0, y(1) = 0$$

Ответ методом коллокаций:

$$-0.1 * x^2(1-x^2) - x^2 + 1$$

Ответ методом Галеркина:

$$-\frac{55 * x^2 * (1 - x^2)}{662} - x^2 + 1$$

Ответ интегральным МНК:

$$-\frac{28431 * x^2 * (1 - x^2)}{348722} - x^2 + 1$$

Ответ дискретным МНК:

$$-0.0980392156862745 * x^2 * (1 - x^2) - x^2 + 1$$

Сравним графики полученных решений:

Как видим, полученные решения очень близки.

Решение индивидуальных заданий

Задание 1. (Вариант 7) Методами коллокаций, галеркина, интегральным и дискретным методами наименьших квадратов получить численное решение краевой задачи.

ДУ:

$$sin(7) * y'' + (1 + cos(7) * x^2)y = -1,$$

 $y(-1) = 0, y(1) = 0$

Во всех методах количество искомых коэффициентов равнялось 3 Метод коллокаций:

Решение:

$$2.080560*(1-x^2)+0*x*(1-x^2)-0.263902*x^2*(1-x^2)$$

Метод Галеркина:

Решение:

$$2.405709 * (1 - x^2) + 0 * x * (1 - x^2) - 0.243709 * x^2 * (1 - x^2)$$

МНК интегральный:

$$2.385148*(1-x^2)+0*x*(1-x^2)-0.278170*x^2*(1-x^2)$$

МНК дискретный:

$$2.376590 * (1 - x^2) + 0 * x * (1 - x^2) - 0.291736 * x^2 * (1 - x^2)$$

Задание 2. (Вариант 7) Составить разностную схему и получить численное решение краевой задачи с точностью 0.001.

$$sin(7) * y'' + (1 + cos(7) * x^2) * y = -1, -1 \le x \le 1,$$

 $y(-1) = 0, y(1) = 0$

Напишем функцию, решающую линейную краевую задачу вида $y''-p(x)y=f(x), p(x)>0, a\leq x\leq b, y(a)=A, y(b)=B.$

Раздедим отрезок [a,b] на $n=\frac{b-a}{h}$ частей. Заменим $y''(x_k)=\frac{y_{k+1}-2y_k+y_{k-1}}{h^2}, k=1,n-1.$ Получаем $y_{k+1}-(2+h^2p(x_k))y_k+y_{k-1}=h^2f(x_k), k=1,n-1.$

Получили трехдиагональную систему из n-1 уравнений с n-1 неизвестными. Решая систему методом прогонки, найдем приближенное решение краевой задачи.

Найдем p(x) и f(x) для второго случая.

Разделим все уравнение на a и преобразуем. Получим $y''+\frac{1+bx^2}{a}y=-\frac{1}{a}$. Тогда $p(x)=-\frac{1+bx^2}{a}$, $f(x)=-\frac{1}{a}$, или $p(x)=-\frac{1+cos(k)x^2}{sin(k)}$, $f(x)=-\frac{1}{sin(k)}$

Минимальное значение для второго случая: -0.35302352039274937

Задание 3.(вариант 7) Методом конечных разностей найти приближенное решение указанной в индивидуальном варианте краевой задачи с точностью 0.001 и построить график. Решение найти методом прогонки.

$$y'' - 3y' + \frac{y}{x} = 1$$
7)
$$\begin{cases} y(0,4) = 2\\ y(0,7) + 2y'(0,7) = 0,7 \end{cases}$$

7	237	224247
/	4.3.1,	2.2.4, 2.4.7,

Задание 5. (вариант 4) Методом конечных разностей найти решение указанной в индивидуальном варианте краевой задачи с точностью 0.001 и построить график.

№ задания	p(x)	q(x)	f(x)	а	b	U_A	U_B	3	
2.2.4	e^{-2x}	$16/(1+x^2)$	$e^{3x}(2-x^2)$	0	1	1	3	0.05	

Итоговое разбиение = 768

Задание 6. (вариант 7) Методом конечных разностей найти приближенное решение указанной в индивидуальном варианте краевой задачи с точностью 0.03 и построить график.

2.3.7
$$u'' - 4xu' + 5u = 2x$$
$$u'(2) = 0$$
$$u(4) - 3u'(4) = 2$$

Задание 7. (вариант 7) Методом конечных разностей найти приближенное решение указанной в индивидуальном варианте краевой задачи с точностью 0.001 и построить график.

No		31		k(x)		q (x)		
задания	a	a b	b c a	a <x<c< th=""><th>c < x < b</th><th>a<x<c< th=""><th>c<x<b< th=""><th>f(x)</th></x<b<></th></x<c<></th></x<c<>	c < x < b	a <x<c< th=""><th>c<x<b< th=""><th>f(x)</th></x<b<></th></x<c<>	c <x<b< th=""><th>f(x)</th></x<b<>	f(x)
2.4.7	0	3.0	1.875	1.5	0.6	8.3	12	$7e^{-0.5x}$

Выводы

В ходе лабораторной работы мною были изучены методы коллокаций, наименьших квадратов и Галёркина и разностный метод.

Также были составлены алгоритмы методов и программы их реализаций. После были составлены алгоритм решения краевых задач методами, применимыми для организации вычислений на ПЭВМ и программа решения краевых задач по разработанным алгоритмам.

В итоге было получено численное решение заданной краевой задачи. Из решения видно, что при увеличении количества базисных функций растет точность вычислений.

При этом для оптимизации памяти и скорости в каждом из классов разностная схема хранится в виде трех векторов-диагоналей, решение трехдиагональной системы происходит при помощи метода прогонки.

Я получил численное решение заданных краевых задач с заданными точностями, при этом ошибка вычисляется по правилу Рунге с указанием требуемой метрики.

Также я разработал и выполнил тестовую задачу, сравнил результаты работы алгоритмов с аналитическими формулами решения задачи, тем самым проверил корректность работы программного продукта.