Estatística descritiva (1ed) Apostilas de aula com exemplos em R

Djuri Vieira Luis Francisco Gómez López

2023-12-19

Índice

В	em-vindos	1
Pr	refácio	3
Ι	Estatística e dados	5
1	Visão geral	7
2	Dados	9
II	Visualização de dados	11
3	Tabelas	13
4	Gráficos 2D	15
II	I Medidas-resumo	17
5	Medidas de tendência central	19
6	Medidas de posição	21
7	Medidas de dispersão	23
8	Medidas de forma	25
IV	7 Probabilidad	27
9	Experimento aleatório e espaço de probabilidade	29
10	Interpretações da Probabilidade	31

iv	ÍND	ICE			
11 (Consequências dos axiomas de probabilidade	33			
12 I	12 Independência e probabilidade condicional				
13 F	Regras de contagem	37			
\mathbf{V}	Variáveis aleatórias	39			
14 Distribuições de probabilidade discretas					
15 Distribuições de probabilidade contínuas					
Referências					
$\mathbf{A}\mathbf{p}$	êndices	47			
A I	ntrodução ao R	47			
E E	Ceoria ingênua dos conjuntos 3.1 Conjuntos	49 49 51 53			

Bem-vindos

2 Bem-vindos

Prefácio

4 Prefácio

Parte I Estatística e dados

Visão geral

Dados

Parte II Visualização de dados

Tabelas

Gráficos 2D

Parte III Medidas-resumo

Medidas de tendência central

Medidas de posição

Medidas de dispersão

Medidas de forma

Parte IV

Probabilidad

Experimento aleatório e espaço de probabilidade

 $30 CAPÍTULO 9. \ EXPERIMENTO ALEATÓRIO E ESPAÇO DE PROBABILIDADE$

Interpretações da Probabilidade

Consequências dos axiomas de probabilidade

34 CAPÍTULO~11.~~CONSEQUÊNCIAS~DOS~AXIOMAS~DE~PROBABILIDADE

Independência e probabilidade condicional 36CAPÍTULO 12. INDEPENDÊNCIA E PROBABILIDADE CONDICIONAL

Regras de contagem

Parte V Variáveis aleatórias

Distribuições de probabilidade discretas 42 CAPÍTULO 14. DISTRIBUIÇÕES DE PROBABILIDADE DISCRETAS

Distribuições de probabilidade contínuas 44 CAPÍTULO 15. DISTRIBUIÇÕES DE PROBABILIDADE CONTÍNUAS

Referências

Halmos, Paul R. 1974. *Naive Set Theory*. Editado por S. Axler, F. W. Gehring, e K. A. Ribet. Undergraduate Texts em Mathematics. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4757-1645-0.

46 Referências

Apêndice A

Introdução ao R

Apêndice B

Teoria ingênua dos conjuntos

A teoria dos conjuntos é um ramo da matemática que lida com coleções chamadas conjuntos. Compreender a teoria dos conjuntos é essencial, pois ela forma a base fundamental da teoria da probabilidade, que por sua vez é crucial para o estudo de estatísticas. No entanto, um entendimento básico da teoria dos conjuntos é suficiente para compreender os princípios essenciais da probabilidade e estatística, evitando a necessidade de usar um formalismo excessivo ¹.

B.1 Conjuntos

Definição B.1 (Conjunto). Um **conjunto** é uma coleção não ordenada de elementos únicos, ou pode ser uma coleção vazia, sem nenhum elemento.

Podemos denotar um conjunto usando uma letra arbitrária como A e descrevêlo listando seus elementos entre chaves. Por exemplo, $A = \{1,2\}$ é o conjunto cujos elementos são os números 1 e 2. Com base em Definição B.1 e na notação anterior, é importante fazer as seguintes observações:

- $A = \{1,2\}$ e $B = \{2,1\}$ são o mesmo conjunto porque conjuntos são coleções não ordenadas onde a ordem não é definida.
- $C = \{1, 1, 2, 2\}$ não está bem definido porque um conjunto contém elementos únicos, onde a especificação correta seria $C = \{1, 2\}$.
- Existe um conjunto, denotado por $\emptyset = \{\}$, chamado conjunto vazio, que não possui elementos.

¹Para uma apresentação detalhada e clara da teoria dos conjuntos usando um sistema de axiomas, você pode consultar (Halmos 1974)

• É possível que os elementos de um conjunto sejam eles próprios conjuntos. Por exemplo, $D=\{\{1,2\},3\}$ é um conjunto que contém o conjunto $\{1,2\}$ e o número 3

O pacote R sets pode ser usado para ilustrar as ideias mencionadas acima para entender o conceito de conjunto. Primeiramente, podemos criar dois conjuntos e verificar se os dois conjuntos são iguais:

```
library(sets)
A <- set(1, 2)
A
#> {1, 2}
B <- set(2, 1)
B
#> {1, 2}
A == B
#> [1] TRUE
```

Também podemos verificar a propriedade de elementos únicos em um conjunto:

```
C <- set(1, 1, 2, 2)
C
#> {1, 2}
```

Além disso, podemos criar um conjunto vazio:

```
empty_set <- set()
empty_set
#> {}
```

Por último, podemos definir um conjunto cujos elementos podem ser conjuntos:

```
D <- set(A, 3)
D
#> {3, {1, 2}}
```

Definição B.2 (Relação de pertença). Se a é um elemento de A, expressamos essa condição como $a \in A$. Caso contrário, expressamos que a não é um elemento de A com $a \notin A$. Na teoria dos conjuntos, \in é conhecido como a relação "é um elemento de".

Por exemplo, se $A = \{1, 2\}$ então $1 \in A$ e $3 \notin A$. Em R, podemos verificar se um elemento pertence a um conjunto usando o operador %e% do pacote sets, que representa a relação \in :

```
1 %e% A

#> [1] TRUE

3 %e% A

#> [1] FALSE
```

Às vezes, não é possível listar os elementos de um conjunto porque os elementos

são infinitos ou porque não sabemos exatamente quais são. No entanto, se sabemos a propriedade que cada elemento deve ter, podemos usar uma notação matemática conhecida como **notação construtor de conjuntos** para descrever o conjunto. Essa notação é especificada como $\{x: P(x)\}$, onde x é um elemento genérico com a propriedade P(x). Por exemplo:

- $E = \{x : x \text{ \'e um cachorro}\}$ onde E 'e o conjunto que cont'em todos os x que são cachorros. Nesse caso, P(x) refere-se a ter a propriedade de ser um cachorro.
- $F = \{x : x > 5 \text{ and } x \in \mathbb{N}\}$ onde F contém todos os números maiores que 5 que são números naturais. Nesse caso, P(x) refere-se a todos os x maiores que 5 e pertencentes aos números naturais.

Infelizmente, o R só pode manipular objetos que podem ser representados como números e que são finitos. Portanto, o uso de pacotes como sets não permite representar conjuntos como E ou F no R.

Definição B.3 (Subconjunto). Um conjunto A é um **subconjunto** de um conjunto B se todos os elementos de A também sejam elementos de B. Essa condição pode ser expressa através da notação $A \subseteq B$. Por outro lado, se algum elemento de A não pertencer a B, o que pode ser representado por $A \nsubseteq B$. Na teoria dos conjuntos, \subseteq é conhecido como a relação de "inclusão".

Por exemplo, se $A = \{1, 2\}$ e $G = \{1, 2, 3\}$ então $A \subseteq G$ porém $G \nsubseteq A$ porque $3 \in G$ e $3 \notin A$. Em R, podemos verificar se um conjunto é um subconjunto de um conjunto usando o operador \leq do pacote sets, que representa a relação \subseteq :

```
G <- set(1, 2, 3)
G
#> {1, 2, 3}
A <= G
#> [1] TRUE
G <= A
#> [1] FALSE
```

Definição B.4 (Igualdade de conjuntos). Com base em Definição B.3 podemos estabelecer uma definição equivalente para a igualdade de conjuntos. Dois conjuntos, A e B, são considerados iguais, A = B, se e somente se $A \subseteq G$ e $G \subseteq A$. Em outras palavras, ambos os conjuntos devem conter exatamente os mesmos elementos para serem considerados iguais.

B.2 Operações com conjuntos

Definição B.5 (União de conjuntos). A união de dois conjuntos A e B, denotada por $A \cup B$, é o conjunto de todos os elementos que estão em A ou em B. $A \cup B$ também é um conjunto e pode ser definido usando notação construtor de conjuntos como $A \cup B = \{x : x \in A \text{ ou } x \in B\}$

Por exemplo, se $A = \{1,2\}$ e $H = \{2,3\}$, então $A \cup H = \{1,2,3\}$. Em R, utilizando o pacote **sets**, o operador | é utilizado para representar a união, \cup , de dois conjuntos da seguinte maneira:

```
H <- set(2, 3)
A | H
#> {1, 2, 3}
```

Definição B.6 (Interseção de conjuntos). A interseção de dois conjuntos A e B, denotada por $A \cap B$, é o conjunto de todos os elementos que estão em A e em B. $A \cap B$ também é um conjunto e pode ser definido usando notação construtor de conjuntos como $A \cap B = \{x : x \in A \ \mathbf{e} \ x \in B\}$.

Por exemplo, se $A = \{1,2\}$ e $H = \{2,3\}$, então $A \cap H = \{2\}$. Em R, utilizando o pacote sets, o operador & é utilizado para representar a interseção, \cap , de dois conjuntos da seguinte maneira:

```
A & H
#> {2}
```

Definição B.7 (Diferença de conjuntos). A diferença de dois conjuntos A e B, denotada por $A \setminus B$, é o conjunto de todos os elementos que pertencem a A, mas não a B. $A \setminus B$ também é um conjunto e pode ser definido usando notação construtor de conjuntos como $A \setminus B = \{x : x \in A \text{ e } x \notin B\}$.

Por exemplo, se $A = \{1, 2\}$ e $H = \{2, 3\}$, então $A \setminus H = \{1\}$ e $H \setminus A = \{3\}$. Em R, utilizando o pacote **sets**, o operador – é utilizado para representar a diferença, \setminus , de dois conjuntos da seguinte maneira:

```
A - H

#> {1}

H - A

#> {3}
```

Definição B.8 (Complemento de um conjunto). Se $A \in \Omega$ são conjuntos, onde $A \subseteq \Omega$, o complemento de A, denotado por A^c , é o conjunto $\Omega \setminus A$. Ou seja, $\Omega \setminus A = \{x : x \in \Omega \text{ e } x \notin A\}$.

Por exemplo, se $A=\{1,2\}$ e $\Omega=\{1,2,3,4\}$, então $\Omega \setminus A=\{3,4\}$. Em R, utilizando o pacote **sets**, podemos determinar A^c da seguinte maneira:

```
omega <- set(1, 2, 3, 4)
omega
#> {1, 2, 3, 4}
A <= omega
#> [1] TRUE
omega - A
#> {3, 4}
```

B.3 O conjunto vazio e o conjunto potência