CHEM	132	Dr	Kutai
	134	DI.	Nutai

Name:			
maille.			

Ch 12 Kinetics #3 Numeric values must be accompanied by units

Determining Order of Reaction from graphical analysis + Time/Concentration Problems

Determining Activation Energy, Ea, from graphical analysis

1. Dinitrogen pentoxide decomposes to form nitrogen dioxide and oxygen.

t (s)	Dinitrogen pentoxide concentration, M	
0	0.91	
300	0.75	
600	0.64	
1200	0.44	
3000	0.16	

- a. Write the balanced equation of the reaction (include states).
- b. Determine order of the reaction by linearizing and graphing the linearized the data. ______(No need to record data from the calculator here.)
- c. Sketch a graph of the linearized data. Label axis.
- d. What is the equation of the best fit line? ______ Indicate the r^2 value: $r^2 =$ _____
- e. What is the rate constant?
- 2. The conversion of cyclopropane to propene in the gas phase is a first-order reaction with a rate constant of 6.7 x 10⁻⁴ s⁻¹ at 500 °C. The initial concentration of cyclopropane was 0.25 M.
 - a. Write the balanced equation of the reaction (include states).
 - b. What is the concentration after 8.8 min?

c. How many minutes will it take for the concentration to decrease from 0.25 M to 0.15 M?

d. How many minutes will it to convert 74% of the starting material?

3.	A su	A substance decomposes according to a first-order rate law, with a constant of $3.65 \times 10^{-4} \text{ s}^{-1}$. a. Calculate the half life of the substance.	
	b.	The initial concentration is 0.482 M. Calculate the concentration after 1537 sec.	
4.	Stroi calci yr ⁻¹ .		
	a.	Calculate the time required for 0.774 g of Sr-90 to decay to 4.76 % of its original amount.	
	1		
	b.	If 15.84 g of Sr-90 remain after 12.5 years, calculate the amount of materials that was present initially.	

5. The rate constants for the decomposition of acetaldehyde $CH_3CHO_{(g)} \rightarrow CH_{4(g)} + CO_{(g)}$ were measured at five different temperatures. (The reaction has been determined to be 3/2 order; therefore, k has units of $1/M^{1/2}$ ·s.)

$K(1/M^{1/2}\cdot s)$	T(K)
0.011	700
0.035	730
0.105	760
0.343	790
0.789	810

Determine the activation energy, in kJ/mol) by plotting the appropriate data. Indicate the equation of the line of best fit and the r² value.