Lokal kompakte abelsche Gruppen und die Faltungsalgebra

Jannik Daun

February 19, 2025

Contents

1	Lokal kompakte abelsche Gruppen	1
2	Haar Maß	2
3	Gleichmäßige Stetigkeit und Translation	3
4	Faltungs-Algebra	4

1 Lokal kompakte abelsche Gruppen

Definition 1.1 (topologische Gruppe). Sei (G, +) eine abelsche Gruppe und τ eine Topologie auf G. Dann heißt $(G, +, \tau)$ eine topologische Gruppe, falls die Abbildungen

- 1. $(G,\tau) \times (G,\tau) \ni (x,y) \mapsto x+y \in (G,\tau)$ (Addition)
- 2. $(G, \tau) \ni x \mapsto -x \in (G, \tau)$ (Inversion)

stetig sind und (G,τ) ein Hausdorff Raum ist. Ist (G,τ) zusätzlich (lokal) kompakt, so heißt $(G,+,\tau)$ eine (lokal) kompakte abelsche Gruppe.

Example 1.2. $(\mathbb{Z},+)$ mit diskreter Topologie. $(\mathbb{R},+)$ mit der standard Topologie.

Proposition 1.3. Sei $(G, +, \tau)$ eine topologische Gruppe. Dann gelten

- 1. $\forall x \in G$: ist die Translation $t_x : G \to G$, $t_x(g) := g + x$ ein Homöomorphismus.
- 2. $G \ni x \mapsto -x \in G$ ist ein Homöomorphismus.
- 3. $\forall A \in \tau$, $B \subset G$: $A + B \in \tau$
- 4. $A, B \subset G$ kompakt $\Rightarrow A + B$ kompakt

Proof. Zu "1.": t_x ist die Komposition der stetigen Abbildung $g\mapsto (x,g)$ und + (stetig da Komposition mit projektionen stetig). Das Inverse von t_x ist t_{-x} und damit wegen dem Gezeigten auch stetig. Zu "2.": Klar da inversion selbstinvers und inversion nach definition stetig ist. Zu "3.": $A+B=\bigcup_{b\in B}A+b$. Zu "4.": $A+B=+(A\times B)$ und Produkte kompakter Mengen sind kompakt.

Definition 1.4. Eine Menge $M \subset G$ heißt symmetrisch, falls -M = M.

Proposition 1.5. Ist $(G, +, \tau)$ eine topologische abelsche Gruppe so hat der Umgebungsfilter von 0 eine Basis die aus symmetrischen und offenen Mengen besteht. Ist $(G, +, \tau)$ LKA Gruppe so hat der Umgebungsfilter von 0 eine Basis die aus symmetrischen und kompakten Mengen besteht.

Proof. $-U \cap U$ ist offene Nullumgebung für jede offene Nullumgebung U. Im Ika fall: Basis von kompakten gibt es wegen Thm 2.7 im Papa Rudin (mit $K = \{0\}$, und U einer offenen Nullumgebung). $-K \cap K$ ist kompakte Nullumgebung für jede kompakte Nullumgebung K (Schnitte kompakter sind kompakt in HD raum).

Proposition 1.6. G lca. Sei $W \subset G$ eine Nullumgebung. Dann existiert eine symmetrische und kompakte/offene Nullumgebung V mit $V+V \subset W$.

Proof. + ist stetig und 0+0=0. Also existiert eine Umgebung $U\subset G\times G$ von (0,0) mit $+(U)\subset W$. Nun existieren $U_1,U_2\subset G$ offene Umgebungen von 0 mit $U_1\times U_2\subset U$ (Eigenschaft der Produkttopologie). Sei $U_3:=U_1\cap U_2$. Dann ist U_3 offene Nullumgebung. Wegen Proposition 1.5 existiert kompakte/offene, symmetrische Nullumgebung V mit $V\subset U_3$ und insgesamt

$$V + V = +(V \times V) \subset +(U) \subset W$$
.

Proposition 1.7 (Quotientengruppe). $(G,+,\tau)$ lca. $H\subset G$ abgeschlossene Untergruppe. Betrachte Quotientengruppe G/H. Sei $\pi:G\to G/H$ die Projektion. Sei

$$\tau_q := \{ V \subset G/H : \pi^{-1}(V) \in \tau \}.$$

Dann ist $(G/H, +, \tau_q)$ eine LKA Gruppe und π ein stetiger, surjektiver, offener Gruppenhomomorphismus.

Example 1.8 (Torus). Betrachten $\mathbb R$ als Ica Gruppe. Dann ist $2\pi\mathbb Z$ eine abgeschlossene Untergruppe. Definiere den Torus

$$\mathbb{T} := \mathbb{R}/2\pi\mathbb{Z}$$

als die Quotientengruppe.

2 Haar Maß

Definition 2.1 (Borel σ -Algebra). (X, τ) topologischer Raum. Borel σ -Algebra $\mathfrak{B}(X) := \text{die kleinste } \sigma$ -Algebra die τ enthält.

Definition 2.2 (Radon Maß). Sei (X,τ) ein topologischer Raum. Ein Maß μ auf $\mathfrak{B}(X)$ heißt *Radon Maß*, falls

1. μ ist endlich auf kompakten Mengen:

$$\forall K \subset X \text{ kompakt } : \mu(K) < \infty.$$

2. μ ist von außen regulär:

$$\forall E \in \mathfrak{B}(X): \mu(E) = \inf_{\substack{E \subset U \\ U \text{ offen}}} \mu(U).$$

3. μ ist für offene Mengen von innen regulär:

$$\forall U \in \tau: \mu(U) = \sup_{\substack{K \subset U \\ K \text{ kompakt}}} \mu(K).$$

Proposition 2.3. Sei (X, τ) ein lokal kompakter topologischer Raum und μ ein Radon Maß auf $\mathfrak{B}(X)$ und $p \in [1, \infty)$. Dann ist $C_c(X)$ dicht in $L^p(\mu)$.

Definition 2.4 (Haarsches Maß). Sei $(G,+,\tau)$ lka Gruppe. Ein Maß μ auf $\mathfrak{B}(G)$ heißt *Haarsches Maß*, falls

- 1. $\mu \neq 0$.
- 2. μ ist ein Radon Maß.
- 3. μ ist translationsinvariant:

$$\forall x \in G, S \in \mathfrak{B}(G) : \mu(x+S) = \mu(S).$$

Remark 2.5. Ist G kompakt so ist jedes Haarsches Maß auf G endlich, ist G σ -kompakt (abzählbare vereinigung von Kompakta) so ist jedes Haarsche Maß auf G σ -endlich.

Theorem 2.6 (Existenz und Eindeutigkeit vom Haar Maß). Jede Ika Gruppe hat ein Haar Maß. Sind μ, ν Haarsche Maße, dann existiert $c \in (0, \infty)$ mit $\mu = c\nu$.

Example 2.7. Auf diskreten abelschen Gruppen ist das Zählmaß das Haarsche Maß. Auf $\mathbb R$ ist das Lebesgue-Maß λ das Haarsche Maß. Auf $\mathbb T$ ist

$$\mu(B) := \lambda([0, 2\pi) \cap \pi^{-1}(B))$$

das Haarsche Maß.

Proposition 2.8 (Einfache Eigenschaften von Haarschen Maßen). Sei $(G,+,\tau)$ Ika Gruppe und μ Haarsches Maß. Dann gelten:

1. $\forall f \in \mathcal{L}^1(G), y \in G$

$$\int_{G} f(\bullet + y) d\mu = \int_{G} f d\mu,$$

- 2. $\varnothing \neq V \in \tau \Rightarrow \mu(V) > 0$,
- 3. sind $f,g \in C(G)$ μ a.e. gleich, so sind sie gleich,
- 4. $\forall S \in \mathfrak{B}(G) : \mu(-S) = \mu(S)$,
- 5. für alle $f \in \mathcal{L}^1(G)$: $\int_G f(-x)d\mu(x) = \int_G f(x)d\mu(x)$.

Proof. Zu "1.": Sei t die Translation um y. Dann gilt $t_*\mu = \mu(\bullet - y) = \mu$. Wegen der Transformationsformel gilt daher

$$\int_{G} f(\bullet + y) d\mu = \int_{G} f d(t_* \mu) = \int_{G} f d\mu.$$

 $\underline{\text{Zu "2.":}}$ Beweis durch Widerspruch: Sei $\varnothing \neq V \in \tau$ und $\mu(V) = 0$. Obda ist V eine Nullumgebung (sonst translation um ein Element von V). Sei $K \subset G$ kompakt. Dann ist $K \subset \bigcup_{k \in K} k + V$. Also existieren $k_1, \ldots, k_n \in K$ mit $K \subset \bigcup_{i=1}^n k_i + V$ und daher

$$\mu(K) \le \sum_{i=1}^{n} \mu(k_i + V) = \sum_{i=1}^{n} \mu(V) = 0.$$

Daraus folgt (da μ Radon Maß) $\mu = 0$.

 $\underline{\operatorname{Zu}}$ "4.": Definiere $\nu(S):=\mu(-S)$. Analog zu oben folgt, dass ν ein Radon Maß ist. Außerdem gilt alle $x\in G$:

$$\nu(x+S) = \mu(-(x+S)) = \mu(-S) = \nu(S).$$

Also ist ν ein Haarsches Maß und daher existiert $c\in(0,\infty)$ mit $\nu=c\mu$. Wählt man eine symmetrische offene Nullumgebung $U\subset G$ die in einem Kompaktum enthalten ist so folgt $c\mu(U)=\nu(U)=\mu(-U)=\mu(U)$. Also c=1, da $\infty>\mu(U)>0$.

Zu "5.": Folgt aus der Transformationsformel.

3 Gleichmäßige Stetigkeit und Translation

Sei G abelsche topologische Gruppe und (X, d) ein metrischer Raum.

Definition 3.1 (gleichmäßig stetig). Sei $E \subset G$ und $f: E \to X$. Dann heißt f gleichmäßig stetig, falls $\forall \varepsilon > 0$ existiert eine Nullumgebung V mit $\forall x,y \in E$:

$$x - y \in V \Rightarrow d(f(x), f(y)) < \varepsilon.$$

Proposition 3.2 (stetige Funktionen sind gleichmäßig stetig auf Kompakta). Sei $K \subset G$ kompakt und $f: K \to X$ stetig. Dann ist f gleichmäßig stetig.

Proof. Sei $\varepsilon > 0$. Für $x \in K$ sei W(x) := eine Umgebung von 0 mit $\forall y \in K \cap W(x) + x : d(f(x), f(y)) < \varepsilon$. So ein W existiert, da f stetig und translation homöomorph. Für $x \in K$ sei V(x) := offene Umgebung von x mit $V(x) + V(x) \subset W(x)$. Da K kompakt existieren $x_1, \ldots, x_n \in K$ mit $K \subset \bigcup_{j=1}^n x_j + V(x_j)$. Sei $U := \bigcap_{j=1}^n V(x_j)$. Dann ist U eine offene Nullumgebung. Seien $x, y \in K$ mit $y - x \in U$. Dann existiert $j \in \{1, \ldots, n\}$ mit $x \in x_j + V(x_j) \subset x_j + W(x_j)$. Also $d(f(x), f(x_j)) < \varepsilon$. Per Annahme ist

$$y \in x + U \subset x_j + V(x_j) + U \subset x_j + V(x_j) + V(x_j) \subset x_j + W(x_j).$$

Also $d(f(x_i), f(y)) < \varepsilon$ und damit insgesamt

$$d(f(x), f(y)) \le d(f(x), f(x_j)) + d(f(x_j), f(y)) < 2\varepsilon.$$

Theorem 3.3 (Translationen sind gleichmäßig stetig). G LKA Gruppe, μ Haarsches Maß. Sei $p \in [1, \infty)$ und $f \in L^p(G)$. Dann ist $G \ni x \mapsto f(\bullet - x)$ gleichmäßig stetig.

Proof. Sei $\varepsilon \in (0,\infty)$. Sei $g \in C_c(G)$ mit $\|g-f\|_p < \varepsilon$. So ein g existiert, da $C_c(G)$ dicht in $L^p(G)$ ist. Sei K_1 der support von g. Sei K_2 eine kompakte Nullumgebung. Sei V eine Nullumgebung mit $V \subset K_2$ so, dass für alle $x \in V$: $\|g-g(\bullet-x)\|_{\infty} < \varepsilon \mu (K_1+K_2)^{-p}$. Dann gilt für alle $x \in V$:

$$||g - g(\bullet - x)||_p^p = \varepsilon^p \mu (K_1 + K_2)^{-1} \mu (K_1 + K_2).$$

Also gilt für alle $x \in V$:

$$||f - f(\bullet - x)||_p \le ||f - g||_p + ||g - g(\bullet - x)||_p + ||g(\bullet - x) - f(\bullet - x)||_p < 3\varepsilon.$$

Seien nun $x, y \in G$ mit $x - y \in V$. Dann gilt (shift um y)

$$||f(\bullet - y) - f(\bullet - x)||_p = ||f - f(\bullet - (x - y))||_p < \varepsilon.$$

4 Faltungs-Algebra

Seien X,Y lokal kompakte Hausdorff-Räume und μ,ν Radon Maße auf X bzw. Y.

Theorem 4.1 (Produkt für Radon-Maße). Dann existiert ein eindeutiges Radon Maß ρ auf $X \times Y$ mit

$$\forall f \in C_c(X), g \in C_c(Y): \int f \otimes g \ d\rho = \int f d\mu \int f d\nu.$$

 ρ wird das Radon Produkt von μ und ν genannt.

Theorem 4.2 (Fubini). Ist $h \in \mathcal{L}^1(X \times Y)$. Dann ist $y \mapsto h(x,y)$ in $\mathcal{L}^1(Y)$ für fast alle $x \in X$ und die fast überall definierte Funktion $x \mapsto \int h(x,y) d\nu(y)$ ist in $\mathcal{L}^1(X)$ sowie

$$\int h = \int \int h(x,y)d\nu(y)d\mu(x).$$

Theorem 4.3 (Tonelli). Sei $h: X \times Y \to \mathbb{K}$ messbar mit den folgenden Eigenschaften:

- h=0 außerhalb einer σ -kompakten Teilmenge,
- $y \mapsto |h(x,y)| \in \mathcal{L}^1(Y)$ für fast alle $x \in X$,
- die fast überall definierte Funktion $x \mapsto \int |h(x,y)| d\nu(y)$ ist in $\mathcal{L}^1(X)$.

Dann ist $h \in \mathcal{L}^1(X \times Y)$.

In weiteren Verlauf dieses Abschnittes sei G eine σ -kompakte LKA Gruppe und μ ein Haarsches-Maß auf G.

Theorem 4.4 (Konvolutions Algebra). Definiere $*: L^1(G) \times L^1(G) \to L^1(G)$ durch

$$(f * g)(x) := \int f(x - y)g(y)d\mu(y)$$

im fast überall Sinn. Definiere $\ ^*:L^1(G)\to L^1(G)$ durch

$$f^*(x) := \overline{f(-x)}$$

Dann ist $(L^1(G), *, *)$ eine kommutative Banach-*-Algebra.

Proof. Zur Wohldefiniertheit: Sei $f,g\in \mathcal{L}^1(G)$. Es ist zu zeigen, dass das Integral in der Definition von f*g fast überall existiert. Definiere $h:G\times G\to \mathbb{K}$ durch h(x,y):=f(x-y)g(y). Dann ist h messbar, da h das Produkt messbarer Funktionen ist, denn $(x,y)\mapsto x-y$ und $(x,y)\mapsto y$ sind stetig. Es gilt

$$\int \int |h(x,y)| d\mu(x) d\mu(y) = ||f|| ||g||.$$

Daher impliziert der Satz von Tonelli $h \in \mathcal{L}^1(G \times G)$. Der Satz von Fubini impliziert nun, dass $y \mapsto h(x,y) \in \mathcal{L}^1(G)$ für fast alle $x \in G$ und, dass die fast überall definierte Funktion $x \mapsto \int h(x,y) d\mu(y)$ in $L^1(G)$ ist. Zur Submultiplikativität der Norm: Wegen Fubini:

$$\int |\int h(x,y)d\mu(y)|d\mu(x) \le \int \int |h(x,y)|d\mu(y)d\mu(x) = \int \int |h(x,y)|d\mu(x)d\mu(y) = ||f|| ||g||.$$

<u>Zur Kommutativität:</u> Für fast alle $x \in G$:

$$(f * g)(x) = \int f(x - y)g(y)d\mu(y) = \int f(-y)g(y + x)d\mu(y) = \int f(y)g(x - y)d\mu(y) = (g * f)(x),$$

wobei Shiftinvarianz und Inversionsinvarianz verwendet wurden.

<u>Zur Assoziativität:</u> Seien $f, g, h \in L^1(G)$. Dann gilt für fast alle $x \in G$:

$$(f*(g*h))(x) = \int f(x-z)(g*h)(z)d\mu(z)$$
$$= \int \int f(x-z)g(z-y)h(y)d\mu(y)d\mu(z)$$

Sei $x\in G$ in der fast überall Menge. Wegen dem für die Wohldefiniertheit gezeigtem: Die Funktion $k:G\times G\to \mathbb{C}$, k(y,z):=f(x-z)g(z-y)h(y) ist messbar und die Funktion $y\mapsto |k(y,z)|$ ist in $\mathscr{L}^1(G)$ für fast alle $z\in G$. Die fast überall definierte Funktion $z\mapsto \int |k(y,z)|d\mu(y)$ ist in $L^1(G)$. Daher impliziert Tonelli, dass $k\in \mathscr{L}^1(G\times G)$ und Fubini impliziert

$$(f * (g * h))(x) = \int \int f(x - z)g(z - y)h(y)d\mu(z)d\mu(y)$$

= $\int \int f(x - z - y)g(z)h(y)d\mu(z)d\mu(y)$
= $\int (f * g)(x - y)h(y)d\mu(y) = ((f * g) * h)(x).$

Zur Bilinearität: Ist trivial.

$$(f*g)^*(x) = \int \overline{f(-x-y)g(y)} d\mu(y) = \int \overline{f(y-x)g(-y)} d\mu(y) = (f^**g^*)(x).$$

Definition 4.5 (Charakter und Duale Gruppe). $\gamma:G\to\mathbb{C}$ heißt *Charakter*, falls

- für alle $x \in G : |\gamma(x)| = 1$,
- für alle $x, y \in G : \gamma(x+y) = \gamma(x)\gamma(y)$.

Definiere die duale Gruppe \hat{G} als die Menge aller stetiger Charaktäre (ist abelsche Gruppe mit punktweiser Multiplikation).

Theorem 4.6. Sei Γ die Menge aller nicht-null Algebrahomomorphismen $L^1(G) \to \mathbb{C}$. Definiere $J : \hat{G} \to \Gamma$ durch

 $J(\gamma)f := \int f(x)\gamma(x)d\mu(x).$

Dann ist J bijektiv.

Proof. Zur Wohldefiniertheit: Sei $\gamma \in \hat{G}$. Da $\gamma \in L^{\infty}(G)$ ist $J(\gamma)$ als Funktional wohldefiniert. $J(\gamma) \neq 0$, da $|\gamma| = 1$. Es bleibt die Multiplikativität zu überprüfen. Wegen Fubini:

$$J(\gamma)(f*g) = \int (f*g)(x)\gamma(x)d\mu(x) = \int f(x-y)g(y)d\mu(y)\gamma(x)d\mu(x)$$
$$= \int \int f(x-y)\gamma(x-y)d\mu(x)g(y)\gamma(y)d\mu(y)$$
$$= J(\gamma)fJ(\gamma)g.$$

Zur Injektivität: Die Abbildung $\Phi: L^\infty(G) \to (L^1(G))'$ definiert durch $\Phi(g)f = \int gf\mu$ ist ein isometrischer Isomorphismus. Seien $\gamma_1, \gamma_2 \in \hat{G}$ mit $J(\gamma_1) = J(\gamma_2)$. Dann folgt $\gamma_1 = \gamma_2$ fast überall und wegen Proposition von oben + Stetigkeit die Gleichheit.

Zur Surjektivität: Sei $\varphi: L^1(G) \to \mathbb{C}$ ein nicht-null Algebrahomomorphismus. Dann ist φ stetig und $\|\varphi\| \le 1$. Es existiert $g \in L^{\infty}(G)$ mit $\Phi(g) = \varphi$ und $\|g\|_{\infty} \le 1$. Für alle $f, h \in L^1(G)$ gilt (mit Fubini):

$$\begin{split} \varphi(f) \int gh &= \varphi(f)\varphi(h) = \varphi(f*h) \\ &= \int \int f(x-y)h(y)d\mu(y)g(x)d\mu(x) \\ &= \int \int f(x-y)g(x)d\mu(x)h(y)d\mu(y) \\ &= \int \varphi(f(\bullet-y))h(y)d\mu(y). \end{split}$$

Daraus folgt für fast alle $y \in G$:

$$\varphi(f)g(y) = \varphi(f(\bullet - y)).$$

Sei $k \in L^1(G)$ mit $\varphi(k) \neq 0$. Die stetige (da Translationen stark stetig) Funktion $y \mapsto \varphi(k)^{-1} \varphi(k(\bullet - y))$ representiert also g und wir gehen gleich zu ihr über. Dann gilt für alle $f \in L^1(G)$ und $g \in G$:

$$\varphi(f)g(y) = \varphi(f(\bullet - y)).$$

Sei $x, y \in G$. Dann gilt

$$\varphi(k)g(x+y) = \varphi(k(\bullet - x - y)) = \varphi(k(\bullet - x))g(y) = \varphi(k)g(x)g(y).$$

Da $\varphi(k) \neq 0$ also folgt also für alle $x,y \in G: g(x+y) = g(x)g(y)$. Aus der Funktionalgleichung folgt g(0) = g(0+0) = g(0)g(0), also g(0) = 1 oder g(0) = 0. Außerdem folgt aus der Funktionalgleichung für alle $x \in G: g(-x)g(x) = g(0)$. Daraus folgt g(0) = 1 da sonst g = 0 und daher $\forall x \in G: g(-x) = (g(x))^{-1}$. Da $|g| \leq 1$ folgt daraus |g| = 1. Also ist g ein Charakter.