Modeling CMC Microstructures Using Segmented Fiber Data

Integrity ★ Service ★ Excellence

Collin Blake
Contractor
AFRL/RXCC
Air Force Research Laboratory

MOTIVATION

- Desire to better understand microstructure and its effects on material properties at macro scale
- Quantify structure properties that induce and drive damage within microstructures
- Create a database of reoccurring micro structures with high damage probabilities

Difficulties

- Combining coatings and separation of clusters in BSAM
- Accurate and robust surface selection algorithm
- Proper mesh seeding/size
- Optimization with respect to time

BACKGROUND

- Matlab script that gives geometric fiber data (i.E. X- and y-coordinates, major and minor axis, angle of rotation, etc.) From fiber-matrix scan
- ➤ Need to produce a model that can be executed using BSAM

SEGMENTATION AND DIVISION

- > Analyze one layer at a time, using Matlab script to identify and describe fibers
- > Data is then divided into sub-sections using a separate Matlab script file

BLAKE

MODELING

Start with coordinates and radius of each fiber (idealized model)

- Data given in elliptical format, for now we assume idealized circles
- Assumption is due to image given has angled fiber orientation, therefore radius should be minor axis of fibers given

Using Abaqus with a Python script file, coatings are added and combined

- Difficulties arise for combining coatings
- Discussion in next slide

COMBINING COATINGS

Single cluster for all coatings

- Combine geometries at sketch level
- Using circle intersection formula to find intersection points and create arcs

Single cluster per coating

- Combine geometries at the part level
- Simple Boolean command in Abaqus with renaming of part instance

MODELING (CONT'D)

An assembly is created to mesh

- Matrix template is created and is then cut by fiber and coatings
- Assembly is then created by inserting part instances into the assembly for meshing
- Complex geometries require mesh refinement around intersections

MODELING

Start with coordinates and radius of each fiber (idealized model)

- Assume radius is the minor axis, eccentricity to be added later
- Fibers are not allowed to overlap

Using Abaqus with a Python script file, coatings are added and combined

- Coatings as a single cluster leads to suppression of crack insertion
- Later changed to separate clusters for crack initiation

An assembly is created to mesh

Refinement of seed to ensure matrix meshing and mesh compatibility

Single cluster for all coatings

Individual cluster for each coating

MESHING GEOMETRIES

Complex geometries require mesh refinement around intersections

- Sharp points are created from intersection of coatings
- ➤ High refinement needed in this area to mesh without error
- Will look for better refinement options in the future

SURFACE SELECTION

In order to use BSAM connection properties for interfaces, connecting surfaces must be found

- > Use bounding cylinder around coating node to select nodes in matrix that correlate to nodes on each coating
- Take found nodes and determine connecting elements
- Save found elements for connection element sets in BSAM

MODELING (CONT'D)

- Resulting mesh is saved in Abaqus
- In order to use BSAM connection properties for interfaces, connecting surfaces must be found
- Surface selection is much more difficult for individual coatings

INPUT AND ANALYSIS

Once connections are established, an input file is created and then run using BSAM

- File includes output for loading along boundary conditions for load-displacement curves
- Allows for Mesh Independent cracking along with separation between interfaces
- Looking for modes of damage propagation

CURRENTLY

Reworking selection algorithms for efficiency and speed

> Implementation of advanced searching algorithms and rewrite of output portion of script

Modifying surface selection for robustness

Additional consideration for fiber connection orientations and patterns

Finalizing modifiable parameters and callable arguments

Includes thickness, separation factor for fibers, and mesh seed value

FUTURE TASKS

- Further improve fiber identification method and speed of model creation further
- Collect numerical data from simulations and being quantitative characterization
- Add ability to have eccentricities in coatings, fiber shape, and possible void insertion
- Create macro to fully compile models for all subsections in a given picture larger than one layer

Questions?

BLAKE

