Graf

STIMKK106 Matematika Diskrit

Last Week Recap

Translasi Matriks

Jika diketahui sebuah titik P(2,3) dan akan ditranslasi sebanyak (4,-1) unit,
 maka untuk menghitungnya dapat dilakukan dengan cara berikut:

$$\begin{array}{ccc}
\begin{bmatrix}
1 & 0 & 4 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{bmatrix} \mathbf{x} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$$

Sumber: https://graphicmaths.com/pure/matrices/matrix-2d-transformations/

Rotasi Matriks

 Jika diketahui sebuah titik Q(1,1) akan dirotasikan sebesar 90° berlawanan arah jarum jam, maka:

$$\circ \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Refleksi Matriks

- Jika diketahui sebuah segi lima dengan koordinat sebagai berikut dipantulkan berdasarkan sumbu y:
 - o A (2,4)
 - o B (4,3)
 - o C (4,0)
 - o D (2,-1)
 - o E (0,2)
- Maka dapat diselesaikan dengan:

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} \begin{bmatrix} 2 & 4 & 4 & 2 & 0 \\ 4 & 3 & 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & -4 & -4 & -2 & 0 \\ 4 & 3 & 0 & -1 & 2 \end{bmatrix}$$

Latihan

$$A = \begin{bmatrix} 7 \\ 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}$

Tentukan hasil transformasi matriks jika:

- A ditranslasikan sebesar T(-4,3) lalu dirotasi 90 derajat searah jarum jam.
- B Ditranslasikan sebesar T(2,-2) lalu direfleksikan berdasarkan sumbu y.
- C dirotasikan sebesar 90 derajat berlawanan arah jarum jam, kemudian direfleksikan berdasarkan sumbu x.
- D dirotasikan sebesar 90 derajat searah jarum jam, kemudian direfleksikan berdasarkan sumbu y.

TYPE OF ROTATION	Matrix to be multiplied
Rotation of 90° (clock wise)	$ \left[\begin{array}{ccc} 0 & 1 \\ -1 & 0 \end{array} \right] $
Rotation of 90° (counter clock wise)	$ \left[\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right] $
Rotation of 180° (clock wise & counter clock wise)	-1 0 0 -1
Rotation of 270° (clock wise)	$ \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] $
Rotation of 270° (counter clock wise)	$ \left[\begin{array}{ccc} 0 & 1 \\ -1 & 0 \end{array} \right] $

Garis pantulan	Nilai matriks
Sumbu x	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Sumbu y	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Sumbu x = y	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

- Graf merupakan suatu diagram yang memuat informasi tertentu jika diinterpretasikan secara tepat.
- Graf digunakan sebagai visualisasi objek-objek agar lebih mudah dimengerti.
- Suatu Graf G yang terdiri dari 2 himpunan berhingga dimana G = (V,E)
 dapat dijabarkan sebagai berikut:
 - \lor V = Himpunan tidak kosong dari simpul-simpul (vertices) = $\{V_1, V_2, V_3, ..., V_n\}$
 - \circ E = Himpunan sisi (edges) yang menghubungkan sepasang simpul = {E₁, E₂, E₃, ..., E_n}

- Setiap garis berhubungan dengan satu atau dua titik, yang dapat disebut sebagai titik ujung.
- Garis yang berhubungan dengan satu titik disebut loop.
- Dua garis yang berbeda yang menghubungkan titik yang sama disebut garis paralel.
- Dua titik dapat dikatakan berhubungan (adjacent) jika ada garis yang menghubungkan keduanya.
- Titik yang tidak memiliki garis yang berhubungan dengannya disebut titik terasing (isolating point).
- Graf yang tidak memiliki titik disebut graf kosong.

- Jika semua garis dalam graf memiliki arah, maka graf dapat disebut sebagai graf berarah (Directed Graph).
- Jika semua garisnya tidak berarah, maka graf dapat disebut graf tidak berarah (Undirected Graph)

Contoh Graf

- Terdapat 7 kota (A, ..., G) yang beberapa diantaranya dapat dihubungkan secara langsung dengan jalan darat. Hubungan-hubungan langsung yang dapat dilakukan adalah sebagai berikut:
 - A dengan B dan D
 - B dengan D
 - C dengan B
 - E dengan F
- Buatlah graf yang menunjukkan keadaan transportasi di 7 kota tersebut!

Contoh Graf

- Visual dalam graf dapat memiliki perbedaan walaupun himpunan penyusunnya sama, seperti contoh berikut.
- Gambarlah graf G dengan titik $V(G) = \{v_1, v_2, v_3, v_4\}$ dengan garis $E(G) = \{e_1, e_2, e_3, e_4, e_5\}$ dengan titik ujung:

Garis	Titik Ujung
e ₁	$\{v_1, v_3\}$
e ₂	$\{v_2, v_4\}$
e ₃	{v ₁ }
e ₄	$\{v_2, v_4\}$
e ₅	{v ₃ }

Graf Tak Berarah

Graf Tidak Berarah

- Graf tidak berarah memiliki beberapa bagian, yaitu:
 - Graf Sederhana Bipartite
 - Graf Komplemen
 - Sub-Graf
 - Derajat
 - Path dan Sirkuit
 - Sirkuit Euler
 - Graf Terhubung dan tidak terhubung
 - Sirkuit Hamilton
 - Isomorfisma

Graf Sederhana dan Bipartite

- Graf Sederhana (Simple Graph) adalah graf yang tidak memiliki loop ataupun garis paralel.
- Suatu graf dapat disebut Graf Bipartite apabila V(G) merupakan gabungan dari 2 himpunan tak kosong V_1 dan V_2 dan setiap garis dalam G menghubungkan suatu titik dalam V_1 dengan titik dalam V_2 .
- Apabila dalam graf bipartite setiap titik dalam V1 berhubungan dengan setiap titik dalam V2, maka grafnya disebut graf bipartite lengkap.

Graf Sederhana dan Bipartite

Sumber: https://www.geeksforgeeks.org/mathematics-graph-theory-basics/

Graf Komplemen

 Graf komplemen adalah graf yang memiliki titik yang sama dengan sebuah graf, namun memiliki garis yang tidak dimiliki oleh graf aslinya.

Sumber: https://bermatematika.net/2016/05/20/graf-dan-komplemennya/

Sub-Graf

- Konsep subgraf sama dengan konsep himpunan bagian.
- Sebuah graf dapat dikatakan subgraf apabila graf tersebut merupakan bagian dari graf yang lebih besar.

Sumber: https://mathcyber1997.com/materi-soal-operasi-graf-subgraf/

Derajat

- Derajat menunjukkan jumlah garis yang terhubung dengan suatu titik.
- Garis dalam suatu loop dihitung dua kali.

Path (lintasan) dan Sirkuit

- Lintasan adalah garis yang melalui titik-titik yang telah ditentukan.
- Misalnya:
 - Pada g₁: lintasan 1, 2, 4, 3 adalah lintasan yang terdiri dari garis (1,2), (2,4), (4,3) sehingga dapat dikatakan memiliki panjang lintasannya adalah 3.
- Sirkuit merupakan lintasan yang berawal dan berakhir pada titik atau simpul yang sama.

Sirkuit Euler

- Sirkuit Euler adalah sirkuit dimana setiap titik pada suatu graf muncul paling sedikit sekali dan setiap garis G muncul tepat satu kali.
- Ciri dari sirkuit Euler adalah:
 - Seluruh titik yang bukan derajat 0 saling terhubung,
 - Seluruh titik memiliki derajat berjumlah genap

The graph has Eulerian Cycles, for example "2 1 0 3 4 0 2" Note that all vertices have even degree

Graf Terhubung dan Tidak Terhubung

- Apabila G adalah suatu graf, maka:
 - Dua titik v dan w dalam G dikatakan terhubung bila dan hanya bila ada walk (jalan) dari v ke w.
 - Graf G dikatakan terhubung bila dan hanya bila setiap 2 titik dalam G terhubung.
 - Graf G dikatakan tidak terhubung bila dan hanya bila ada 2 titik dalam G yang tidak terhubung.

Sirkuit Hamilton

- Suatu graf terhubung G disebut Sirkuit Hamilton bila ada sirkuit yang mengunjungi tiap titiknya tepat satu kali.
- Sirkuit Euler memperbolehkan titiknya muncul atau dilewati lebih dari satu kali tetapi melalui garis yang berbeda, sedangkan Sirkuit Hamilton hanya mengijinkan sebuah titik dan garis dilewati satu kali.

degree(2) = 3 degree(3) = 3 degree(1) = 3 degree(5) = 4

degree(1) + degree(4) = 6 >= 5

Isomorfisma

- Isomorfisme adalah graf yang memiliki bentuk dan sifat geometri yang sama.
- Kedua graf yang dibandingkan hanya berbeda dalam hal pemberian label titik dan garisnya saja

Isomorfisma

Terima Kasih!

Thank you!

