Claim:

Any tournament of 2^n vertices contains an acyclic subtournament of at least n+1 vertices.

Proof:

Prove by induction. Let P(n) be the claim that any tournament of 2^n vertices contains an acyclic subtournament of at least n + 1 vertices.

Base case: P(0) holds because the subtournament of $2^0 = 1$ vertices has 0 + 1 = 1 vertices and is trivially acyclic.

Inductive Hypothesis: Assume that P(n-1) holds for n-1>0.

Inductive Step: Goal, show P(n) holds. Let graph G=(V,E) be a tournament with 2^n vertices. Let v be an arbitrary vertex in G. Partition G into two subtournaments S_1 and S_2 such that $S_1=\{u\in V\setminus v\mid (u,v)\in E\}$ and $S_2=\{w\in V\setminus v\mid (v,w)\in E\}$. Because the in-degree of $v\geq 2^{n-1}$ or the out-degree of $v\geq 2^{n-1}$, S_1 or S_2 contains at least 2^{n-1} vertices. Let S' be a tournament with 2^{n-1} vertices from S_1 or S_2 . S' has 2^{n-1} vertices, hence by the inductive hypothesis, S' is an acyclic subtournament of G with n+1-1 vertices. Let tournament $S^*=S'\cup v$. S^* is acyclic since S' is a subset of S_1 or S_2 which were defined by their having only incoming or outgoing edges with v and v has v has v has v has an acyclic subtournament v with at least v has v has v has v has v has v has an acyclic subtournament v with at least v has v has v has v has v has v has an acyclic subtournament v with at least v has v has