Lab Report 3

Gradient Descent

Goutham Krishnan

21BAI1007

Aim

- 1. Implement 3 different neural networks as listed below
 - 2 layers. 1st layer: ReLU (5 perceptrons), 2nd Layer: Sigmoid (1 perceptron)
 - In the above layers, both sigmoid
 - 4 layers with first three layers : Sigmoid (3) and the last layer : sigmoid (1)
- 2. Change the activation functions and implement the code given.
- 3. Implement a code to compare GD, SGD, Minibatch SGD for any input/neural model of your choice.

Q1. Implementing 3 different neural networks (sigmoid, ReLU)

Q1 extension. Implementing 3 different neural networks (sigmoid, ReLU) for the diabetes.csv Pima dataset


```
## Code + Text

| Connect | Connect
```

Q2. Visualizing gradient descent for tanh and ReLU activation fucntions

Q3. Implementing Gradient Descent, Stochastic gradient descent and mini batch SGD

