Network (N, A)
minimize the sum of weights on arcs in path
Nij = { 1, if pare of path
$\pi = \begin{cases} 1 & \text{if part of path} \\ 0 & \text{not} \end{cases}$ $\pi = \begin{cases} 1 & \text{if part of path} \\ 0 & \text{not} \end{cases}$ $\pi = \begin{cases} 1 & \text{if part of path} \\ 0 & \text{not} \end{cases}$
$min \geq wij \chi ij$.
S.t. $\sum \chi_{sj} - \sum \chi_{is} = 1$ (# Leaving $s - \#$ entering $s = 1$)
$\frac{\sum \chi_{it} - \sum \chi_{ti} = 1 \ (\text{# entering } t - \text{# leaving } t = 1)}{(i.t) \in A}$
$\frac{\sum \chi_{pj} - \sum \chi_{ip} = 0}{\langle p,j \rangle \in A} = 0 p \in N, p \neq s, t.$
(P,j) & A (i,p) & A
dual: mex Us - Ut.
Ui-Uj ≤ Wij. (i,j) ∈ A
Caivon initial 11*
(DRP): $\max_{i} V_s - V_z$ the see that $sh^{i,s}f^{i,e,s}$ S.t. $V_i - V_j \leq 0$. (i, j) $\in \mathbb{J}$
$S.t. V_i - V_j \leq O. (i,j) \in \mathcal{J}$
Vi ≤1 for all i.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
otherwise $V_S - V_L = 0$).

Optimul solution to DRP is . I if i is reachable from s using arcs in J. O if t is reachable from i using arcs in J. otherwise. Then $t = \min \{W_{ij} - (u_i - u_j)\}$ S.t. Vi-V; >0 U= UttV. => repent find the nodes reachable from s? find the modes reach t => J=6 no constraints are tight. $\mathcal{U} = (0,0,0,0,0,0).$ V = (/, /, /, /, /, 0) o only (b,t), (d,t) satisfy Vi-Vj >0. i.e (i.j) €J. => $t = min\{2-0, 5-0\} = 2$.

arc (b,t)

$$\mathcal{U} = (2, 2, 2, 2, 2, 0) = 0$$

$$t = min \{3-0, 5-2, 2-0\} = 2.$$

are (d,b).

$$V = (1110000)$$

are (a,b) (c,d).

$$J = \{(b,t),(d,b)\}$$

$$V = (/, 0, 0, 0, 0, 0)$$

arc: (5, c).

