Homework 2

Aiden Kenny STAT GR5205: Linear Regression Models Columbia University October 5, 2020

Question 1 Supposed for $\mathbf{x}, \mathbf{y}, \boldsymbol{\epsilon}, \mathbf{1} \in \mathbb{R}^n$, where $\mathbf{x}, \mathbf{1}$ are fixed vectors and $\mathbf{y}, \boldsymbol{\epsilon}$ are random vectors, the simple linear regression model

$$\mathbf{y} = \beta_0 \mathbf{1} + \beta_1 \mathbf{x} + \boldsymbol{\epsilon}$$

holds, with $\mathbb{E}[\epsilon] = \mathbf{0}$, $\operatorname{Var}[\epsilon] = \sigma^2 \mathbf{I}$, and $\mathbb{E}[\mathbf{y}] = \mathbb{E}[\beta_0 \mathbf{1} + \beta_1 \mathbf{x} + \epsilon] = \beta_0 \mathbf{1} + \beta_1 \mathbf{x}$. The least-squares estimators are given by

$$\hat{\beta}_1 = \frac{(\mathbf{x} - \bar{x}\mathbf{1})^T(\mathbf{y} - \bar{y}\mathbf{1})}{\|\mathbf{x} - \bar{x}\mathbf{1}\|^2}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1\bar{x}, \quad \text{and} \quad \hat{\sigma}^2 = \frac{1}{n-2} \left\|\mathbf{y} - \hat{\beta}_0\mathbf{1} - \hat{\beta}_1\mathbf{x}\right\|^2.$$

(a) We first show that

Question 2