Lecture 26 Error, Power And Sample Size Estimation

BIO210 Biostatistics

Xi Chen

Spring, 2022

School of Life Sciences
Southern University of Science and Technology

One-sample Hypothesis Testing For Variance

Significance level α : never 0!

Types of Errors

Diagnostic testing

Hypothesis testing

	'	0
Truth	Population	
Decision	H_0 is true	H_0 is false
Reject H_0	Type I Error	√
Do not reject H_0	√	Type II Error

Probability of Making Different Errors

- $P(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = ?$
- $P(\text{reject } H_0 \mid H_0 \text{ is true}) = ?$

When H_0 is true:

Type I error is also called the rejection error or α error.

- $P(\mathsf{Type}\;\mathsf{II}\;\mathsf{Error}) = ?$
- $P(\text{Do not reject } H_0 \mid H_0 \text{ is false}) = \beta$
- ullet 1-eta is more useful in reality

Definition

The Power of the test is defined as $P(\text{reject } H_0 \,|\, H_0 \text{ is false}) = 1 - \beta$

- Serum cholesterol level for 20- to 74-year-old males
- Truth about the whole population: normally distributed, mean 200 mg/100ml ($\mu=200$), standard deviation 46 mg/100ml ($\sigma=46$): we don't know this!
- A subpopulation (20- to 24-year-old males): normally distributed, mean 180 mg/100ml ($\mu=180$), standard deviation 46 mg/100ml ($\sigma=46$): we do know this from a previous study!
- ullet Now we are interested in serum cholesterol level for 20- to 74-year-old males, and a random sample of size (n=25) is drawn from the 20- to 74-year-old male population. We conduct a hypothesis testing about the mean.

 We have reasons to believe that the mean serum cholesterol level of 20- to 74-year-old male should be higher than 180 mg/100ml.

-
$$H_0: \mu \leqslant \mu_0 = 180 \ mg/100ml$$

-
$$H_1: \mu > \mu_0 = 180 \ mg/100ml$$

- Truth:

$$H_1: \mu = \mu_1 = 200 \ mg/100ml$$

$$\bar{x}_{\text{reject}} = 180 + 1.645 \times \frac{46}{\sqrt{25}} = 195.1$$

What we want to calculate: Power $(1 - \beta)$: $P(\text{reject } H_0 \mid H_0 \text{ is false})$

Truth: $H_1: \mu = \mu_1 = 200 \ mg/100ml$

$$\beta = P(\text{do not reject } H_0 \mid H_0 \text{ is false})$$

$$= P\left(\bar{x} \leqslant 195.1 \mid \mu_{\bar{x}} = \mu_1 = 200, \ \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{25}} = \frac{46}{5} = 9.2\right)$$

$$P\left(z \leqslant \frac{195.1 - 200}{9.2}\right) = P(z \leqslant -0.53) = 0.298$$

Power:
$$1 - \beta = 1 - 0.298 = 0.702$$

How To Increase Power

The universe where H_0 is true

The universe where H_1 is true

Increasing the power of the test

- 1. Shift \bar{x}_{reject} to the left
- 2. μ_0 shifts to the left, or μ_1 shifts to the right.
- 3. Make the sampling distribution narrower

Ways of achieving the goal

- 1. Increase α
- 2. Increase $|\mu_0 \mu_1|$
- 3. Decrease $\sigma_{\bar{x}} \Leftrightarrow \text{Increase } n$

Sample Size Estimation

In the previous example about the serum cholesterol level, suppose we want a significance level of 0.01 and a power of 0.95. What is the minimum sample size needed for the test?

 $\alpha=0.01, \beta=0.05, \text{power}=0.95$: when H_0 is true, we want to risk a 1% chance of rejecting it; when H_0 is false, we want to risk a 5% chance of failing to reject it. The power of the test is 95%.

Sample Size Estimation

- 1. The minimum sample mean to reject H_0 : $\bar{x}_{\text{reject}} = 180 + 2.32 \times \frac{46}{\sqrt{n}}$
- 2. Calculate β :

$$\beta = P(\bar{x} \leqslant \bar{x}_{\text{reject}} \mid H_0 \text{ is false}) = P(\bar{x} \leqslant \bar{x}_{\text{reject}} \mid \mu_{\bar{x}} = 200, \sigma_{\bar{x}} = \frac{46}{\sqrt{n}})$$

$$= P\left(z \leqslant \frac{180 + 2.32 \times \frac{46}{\sqrt{n}} - 200}{\frac{46}{\sqrt{n}}}\right) = 0.05 \implies n = 83.165$$

Sample Size Estimation For One Sided Test For The Mean

- 1. The minimum sample mean to reject H_0 : $\bar{x}_{\text{reject}} = \mu_0 + Z_\alpha \times \frac{\delta}{\sqrt{n}}$
- 2. Calculate β :

$$\beta = P(\bar{x} \leqslant \bar{x}_{\text{reject}} \mid \underline{H_0} \text{ is false}) = P(\bar{x} \leqslant \bar{x}_{\text{reject}} \mid \underline{\mu_{\bar{x}}} = \underline{\mu_1}, \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}})$$

$$= P\left(z \leqslant \frac{\mu_0 + Z_\alpha \times \frac{\sigma}{\sqrt{n}} - \mu_1}{\frac{\sigma}{\sqrt{n}}}\right) \Rightarrow n = \left[\frac{(Z_\alpha + Z_\beta)\sigma}{\mu_1 - \mu_0}\right]^2$$

Sample Size Estimation For One Sided Test For The Proportion

- 1. The minimum sample mean to reject H_0 : $p_{\text{reject}} = \pi_0 + Z_\alpha \times \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$
- 2. Calculate β :

$$\beta = P(p \leqslant p_{\text{reject}} \mid H_0 \text{ is false}) = P\left(p \leqslant p_{\text{reject}} \mid \mu_p = \pi_1, \sigma_p = \sqrt{\frac{\pi_1(1 - \pi_1)}{n}}\right)$$

$$\Rightarrow n = \left[\frac{Z_\alpha \sqrt{\pi_0(1 - \pi_0)} + Z_\beta \sqrt{\pi_1(1 - \pi_1)}}{\pi_1 - \pi_0}\right]^2$$