ASSIGNMENT HPC-2

Roll No: 41205

Problem Statement:

Design & implementation of Parallel (CUDA) algorithm to Add two large Vector, Multiply Vector and Matrix and Multiply two $N \times N$ arrays using n^2 .

Objective:

- 1. To perform matrix operations using CUDA
- 2. Compare performance of algorithms sequentially and parallelly

Outcome: One will be able to write and compare more complex algorithms such as matrix multiplication parallelly.

Pre-requisites:

- 1. 64-bit Linux OS
- 2. Programming Languages: C/C++

Hardware Specification:

- 1. x86 64 bit
- 2. 2/4 GB DDR RAM
- 3. 80 500 GB SATA HD
- 4. 1GB NIDIA TITAN X Graphics Card

Software Specification:

- 1. Ubuntu 14.04
- 2. GPU Driver 352.68
- 3. CUDA Toolkit 8.0
- 4. CUDNN Library v5.0

Theory:

- Operations such as addition and multiplication of matrices take at least quadratic time, cubic for multiplication.
- This is feasible for smaller sized matrices, but the time is too high for matrices of large sizes such as 1000x1000.
- Since the operations of indices are independent of each other, these operations can be performed parallelly.
- Unlike vectors where blocks are used, we can use grid systems for matrix operations as they have a structure similar to matrices.

Syntax:

```
__global__ void function(args) {
    int i = blockIdx.x;
    int j = blockIdx.y;
    int idx = i * M + j;
    // operations
}
dim3 grid(N, M);
function<<<<grid, 1>>>(args);
```

Test Cases:

#	Input	Expected Output	Actual Output	Result
1	Add to matrices	Sum calculated	Sum calculated properly	Success
		properly	CPU: 905 microseconds	
		GPU faster than CPU	GPU: 145 microseconds	
2	Multiply two matrices	Product calculated	Product calculated	Success
		properly	properly	
		GPU faster than CPU	CPU: 1205479	
			microseconds	
			GPU: 145 microseconds	

Output:

Matrix Addition

```
MATRIX ADDITION:

CPU STATISTICS:
Time taken: 905 microseconds
GPU STATISTICS:
Time taken: 145 microseconds
```

Matrix Multiplication

```
MATRIX MULTIPLICATION:

CPU STATISTICS:
Time taken: 1205479 microseconds
GPU STATISTICS:
Time taken: 202 microseconds
```

Conclusion: Thus, we have performed matrix addition and multiplication operations parallelly using CUDA