DDS 2

Les ptits devoirs du soir

Xavier Pessoles

Exercice 180 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4} rad et \lambda(t) = 20 \text{ mm}.$

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4} rad et \lambda(t) = -20 \text{ mm}.$

Corrigé voir ??.

Exercice 179 - Quille pendulaire*

B2-07

Le comportement d'un vérin est défini par le modèle continu ci-dessous.

•
$$q(t) = S \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{V}{2R} \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t}$$
 (a);

•
$$q(t) = S \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{V}{2B} \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t}$$
 (a);
• $M \frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = S\sigma(t) - kx(t) - \lambda \frac{\mathrm{d}x(t)}{\mathrm{d}t} - f_R(t)$ (b).

On a:

- $\mathcal{L}(q(t)) = Q(p)$: débit d'alimentation du vérin
- $\mathcal{L}(\sigma(t)) = \Sigma(p)$: différence de pression entre les deux chambres du vérin [Pa];
- $\mathcal{L}(x(t)) = X(p)$: position de la tige du vérin [m];
- $\mathcal{L}(f_R(t)) = F_R(p)$: composante selon l'axe de la tige du vérin de la résultante du torseur d'inter-effort de la liaison pivot entre tige et quille [N].

Les constantes sont les suivantes :

- S: section du vérin [m²];
- k: raideur mécanique du vérin $[N m^{-1}]$;
- *V* : volume d'huile de référence [m³] ;
- B : coefficient de compressibilité de l'huile $[N m^{-2}];$
- *M* : masse équivalente à l'ensemble des éléments mobiles ramenés sur la tige du vérin [kg];
- λ : coefficient de frottement visqueux [N m⁻¹s].

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

Le schéma-blocs de la figure précédente peut se mettre sous la forme suivante.

Question 2 Donner les expressions des fonctions de X(p)transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Question 3

Pour ce vérin non perturbé $(F_R = 0)$, donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des constantes.

Corrigé voir 181.

Xavier Pessoles 1

Exercice 180 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Exercice 179 - Quille pendulaire*

B2-07

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

D'une part, on transforme les équations dans le domaine de Laplace : $Q(p) = SpX(p) + \frac{V}{2R}p\Sigma(p)$ et $Mp^2X(p) = SpX(p)$ $S\Sigma(p) - kX(p) - \lambda pX(p) - F_R(p)$.

En utilisant le schéma-blocs, on a
$$\Sigma(p) = A_2 (A_1 Q(p) - X(p)) = A_1 A_2 Q(p) - A_2 X(p)$$
.
Par ailleurs $\Sigma(p) = \frac{Q(p) - SpX(p)}{\frac{V}{2B}p} = Q(p) \frac{2B}{Vp} - X(p) \frac{S2B}{V}$. On a donc $A_2 = \frac{S2B}{V}$, $A_1 A_2 = \frac{2B}{Vp}$ soit $A_1 = \frac{2B}{Vp} \frac{V}{S2B} = \frac{1}{Sp}$.

On a aussi $X(p) = A_4 \left(-F_R(p) + A_3 \Sigma(p) \right) = -A_4 F_R(p) + A_3 A_4 \Sigma(p)$. Par ailleurs, $X(p) \left(Mp^2 + \lambda p + k \right) = S\Sigma(p) - F_R(p) \Leftrightarrow X(p) = \frac{S\Sigma(p)}{Mp^2 + \lambda p + k} - \frac{F_R(p)}{Mp^2 + \lambda p + k}$. On a donc : $A_4 = \frac{1}{Mp^2 + \lambda p + k}$ et $A_3 = S$. Au final, $A_1 = \frac{1}{Sp}$, $A_2 = \frac{S2B}{V}$, $A_3 = S$ et $A_4 = \frac{1}{Mp^2 + \lambda p + k}$.

Au final,
$$A_1 = \frac{1}{Sp}$$
, $A_2 = \frac{S2B}{V}$, $A_3 = S$ et $A_4 = \frac{1}{Mp^2 + \lambda p + k}$.

Question 2 Donner les expressions des fonctions de transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Méthode 1 : Utilisation des relations précédentes On a $X(p) = (H_1Q(p) - F_R(p))H_2(p)$.

Par ailleurs, on a vu que $X(p) = A_4 \left(-F_R(p) + A_3 \Sigma(p) \right)$ et $\Sigma(p) = A_2 \left(A_1 Q(p) - X(p) \right)$. On a donc $X(p) = A_4 \left(-F_R(p) + A_3 A_2 \left(A_1 Q(p) - X(p) \right) \right) \Leftrightarrow X(p) (1 + A_2 A_3 A_4) = A_4 \left(-F_R(p) + A_3 A_2 A_1 Q(p) \right)$. On a donc $H_1(p) = A_1 A_2 A_3$ et $H_2 = \frac{A_4}{1 + A_2 A_3 A_4}$

Méthode 2 : Lecture directe du schéma-blocs Revient à utiliser la méthode précédente.

Méthode 3 : Algèbre de schéma-blocs Le schéma-blocs proposé est équivalent au schéma suivant.

On retrouve le même résultat que précédemment.

$$A_1 = \frac{1}{Sp}, A_2 = \frac{S2B}{V}, A_3 = S \text{ et } A_4 = \frac{1}{Mp^2 + \lambda p + k}.$$

En faisant le calcul on obtient :
$$H_1(p) = \frac{2BS}{pV}$$
 et $H_2 = \frac{\frac{1}{Mp^2 + \lambda p + k}}{1 + \frac{2BS^2}{V} \frac{1}{Mp^2 + \lambda p + k}} = \frac{1}{Mp^2 + \lambda p + k + \frac{2BS^2}{V}}$.

Ouestion 3

Pour ce vérin non perturbé $(F_R = 0)$, donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des

Dans ce cas,
$$\frac{X(p)}{Q(p)} = H_1(p)H_2(p)\frac{2BS}{p(MVp^2 + \lambda pV + kV + 2BS^2)}$$
.

Xavier Pessoles 2