

- () (GAAITICIPAAAAIAGCAAIAACITITITGAGAACAICAGAITITBIGIRCACGCAIAGGACA	09
61	CATACCTITITATITIACTIAAAGGAAAATGAACGAGTCTAAAITCTITCCACATGITATATG	120
121	AGCAAAACAICAAITITITCIAAAITAGAITCGIITAAAICAGAACAIAITAAIGIGAGIT	180
181	TCTTAAATTAGATTTTTAATATCTATATACGTAAGAATACTTCTTATGTTTTAAAATA	240
241	AAAAAIAGAAIACITICAICITITICCIAAAITITIIAAGCCAAIRAICAAITITITIAIA	300
301	AICTAAGAIGAAGAAAICCCTICAACICTCTITITICGITCTTAATTAICTCCAICAITCT	360
361	CICACAIGGIITIGIAITITICAICTIAATAIATTIGCATATAGIAAITICCAIAATAAAITICA S H G	420
421	TIATACIAAAATITIGACITITTAAAATATIGICAACCCCCATATAATAATITITATITAACT	480
481	ATATAAAACATAGCATTAAATTATCTCTTTTGTGTAAAATTCATAACTTTGCAGAAGGCTA	540
541	CAAAATTGATAGTATAGTCAGAAATGTTTGCGTTAAAATTGAAAGGATCAACCATGGA	009
601	GIAITIAAAIGITITITAIACITITAIGCCALTITAIAAITITITIAAAIGIAIGGGITTAIA	099
661	TENTERACE ACTIVATER AND ARTE AND	720

1320	ATAAAAAIGAITIIGIAACIGCGCIIGIAAGIAAGGGIICICACIAAGIGIIAIGAAICI STOP	1261
1260	TCCAACTATATGTTTGGATATGTGTAGGAAGCAACATGGAACTGTTGGTAGTTGTGGGA PTICLDMCKKQHGT	1201
1200	GECAGATGCGCAGNAAAAAATTGTCCTCATAAAATTCCAATAAAAGGAAGTTATTGTGC A D A Q K K N C P H K I P I K G S Y C A	1141
1140	AAAICIAAAIRITITITAACAAITAAAAITITGAAAITTITTATAICITACAGGAAIGAI M M	1081
1080	ACGITTEAAAAAAAATGITAATTAAACAITITITTGCTGATAAAAAAATTTTATATTTCATA	1021
1020	ACCAAACGAIAIGCICAITITITITAITITACIAGCAAAAIAITITICITITICITIACITIA	196
096	CGIAAIKTITAITAATAIKCACACAATIKTITAAAACCATAITITITAAAAAATAATGIGI	901
006	TAAITIIGIIATGCTITITCCAALACALACAGTAGITGITAITLAAAATAICAAAATTITAALA	841
840	ACTATAGCICTTACGTAAATTTAITTTGATATTTTTTAAATTTTATATTTATATTTTATATTTTTT	781
780	AIGAACAITITIGICCIGCACAIACAAAIGAITITAACCAACAITITITAAIAAIAIGGAIGA	A(2) 721

L	Ċ	7/2	1321	AGIAAIIGICCAACCAAAGIIIITAIAIIIIICIIIIIAACAAIBAAGICIAAAIGIIIIGICI	1380
i_	5	G. 34(3)	1381	CAGAITTGIGGATCTAITTATAATAATAATAATAATGAATGITAAATAAAAAAATGTG	1440
		,	1441	TAAAACAAGAGTGGACTATTAATAAATATATGATTACATTATTGITAGAAGTAACCAAT	1500
			1501	ATTACGTGTAAAATCAAAATCTTAAGACAAGTTAAAAAGATTGAGATGAAATCACAACCA	1560
			1561	ATATITIAAATGTGAGATAATCAACTAACATGTAATTITTGTACACATTGTAAAAAAAAAA	1620
			1621	AGCAAGAGTITCATTATCAAACAAGAAGTGTTAGAAAGAGCAACAGATTCATTGCAAGGG	1680
			1681	CAGICIAGGITCAAITGGCITGACAIAGGGAAAAITGAAAGCACTGITTCIGAACAIGAC	1740
			1741	AACGCTTGGTCAGGAAAGAATCTCACAACCAGAGTTTTGGGTAGATTTCTCCAATGTC	1800
			1801	ATTAICAGGTACGAGTTAICAGACTTCATCCACAICTCAGTCCCAGTTCCCTTCTCAGGA	1860
			1861	AGITITCCITICAGGAAGGAGGITATIACAGAAAGCIAAGITACAICAGCCIGACALAICAT	1920
			1921	GCAAGGGCAGTCCCAACAAGAAATGTTAGAAAGAGCAACATATCATGCAAGGACAGTCC	1980
			1981	AGGITTGAATTGGCTTGACAGAIGGITTGCAGACAIGCCAICTGAAGGICCIACAAACTC	2040
			2041	AICAGACAACGAAGGAAAAITGATAGCAITGITTICTGAACATGACAAAACTCTAGTCAGG	2100

1		ליכ
•	$\widehat{\Box}$	
	<u>4</u>	
	3A	
	S	
	_	

2820	TIACGIGIGGGACAICCACCIAAIAAACIAIAAAITITAAAIAAAAIGITIIGAAAAGGAI	2761
2760	ACCAATTAAAGGITTITGAITAAATACATACTAATTITTITAATATATAATCITATAAGTTATG	2701
2700	TAGITTAACTITTICATGCTTCTAAGATTAATATGTTCCTCCTAACTTCTTGTCAACATGAAAG	2641
2640	ACATACAAGITIGGTATCAAGGCTGFIGCAAIGTTGFTTGFTTTGACCACTTTTATTATTTAA	2581
2580	CTAAATACACACAAAACACTGATTTATAGATACATAAGCAACTTCTGTGTAIGTTCTTTT	2521
2520	AGAAGGIAAAGTGAACAICGITICAITAAITCAITAAAGCAITICAACACCIIGAIGGIT	2461
2460	GCAACCAGCAGAGTTATCTATATCCACATGCTCAAGTAACAAGGAAAAATATGTGGGCAA	2401
2400	AGICCATGICTTACAACGAAGATGTGAATGTAAAGCGTTGTGCATGTTCGGATCCATCTT	2341
2340	AGAGACGAITAACCAITAITCITCAICITTITIGICCCAAAAICACTGITITGAAAAGAAAC	2281
2280	AAAGAGGITATTACAGAAAGCCAAGITACATGAGCCTAACACAATCTATCAAAGCTAAGA	2221
2220	AGTICAAAGACTICATCCACATCTTAGTCCCCATTCTCTTCTC	2161
2160	APGAAGAATCTCACAACCAAAGTTTTGGGTAGAGCICCTCCAATGICATCATCAGCTACG 2160	2101

2821	TITATICACATICCITIAAAIAAAIICATAATITITAAAAIAGCGATAACITITIGAAAA	2880
2881	CAICAGAAITAIGIACACGCAGAGGACACAIACCIITIIITAITIACTIATAGGAAAAIGAA	2940
2941	CGAGICTAAAGCTICCACAIGITATAIGAGCAAAACAIGGAITIIIITCIAAAITAGAITICG	3000
3001	ITTAAAICAGAACAIAIIAAIGIAAGITITCITAAAITAGAITITITAAIAIGIATAITATAIT	3060
3061	GEAAAAAEACITCITITITITITITITICICAICAGCAITACAGATITICTAAATAAGITAC	3120
3121	TICITATGITTTAACAAATAGAATACTTICATCTTTTCCTAAAITTTTAAGICAATATCAA	3180
3181	ICCAITICIAIBAICCGAAGAIGAAGAAICCCIICCAICICIAGAAAAAAAGGGICAGAAA	3240
3241	GITITICCGITAAAATITCAAAGGAICAICCTGAAGIAITITATITITITITITITITITIT	3300
3301	AGICCAITAATAITITITAATGIATGGGITTATATATGATTAAGAACITCCAIGATAAA	3360
3361	ATAATATTAAATAGTTITTAITTICITAATCTATTITAICAACGITIGITCCIGCACACAC	3420
3421	AAAIKAITITAACCAACAITITITCAIAAIBIGGAIBAACIAIAGIIICITAIGIAAAITIBAI	3480
3481	GIGATATITTAATTAGATITTATATATTATAGGDAATCTATTATGCTITTCCAALACATA	3540
3541	CAGIAGITGITCITAAAACAICAAAITITITAIAIGIAAIGITIAITAAIAIGCACACAAI	3600

4320	TAATCAACTAACATATATTTTGTTATTTGTAAGATAAAATAAAATAAAATTAAAA	4261
4260	AAAGCTTAAGACGAGTTAAAAAGATAGAGATGAAAITCACAITCCAATATCTAAATGTGAGA	4201
4200	TTAATAAAAAAATGATCACATTATTAGATGTAACCAATATTGTGTATAAGATCGTA	4141
4140	TATAATAAATAATAATATGAATGTTAAATAAAAAAAATGTGTAAAAAA	4081
4080	TIGIATATATITITITAACAATAAAIGITCTAAAIGITITGICTCAGAITITGIGAATCTAIT	4021
4020	TIGIGCTIGIAAGIAAGGGIICICACIAAGIGITIAIGAAICIAAIAAIGICCAACCAAAG	3961
3960	GGCTATGTGTAAGAAGCAACATGGAACTCTTGGTAGTTGTCCGGAAAAAAAA	3901
3900	AAATAATTGTCITCATAAAATTCCAATAAAAGGAAGCIAGIGCAITCCAAATAAATGTTT	3841
3840	TITCAAACAATIAAAAITIKGGITITITAIAICIAACATAAAIGAIGGCAGAAGCACASAA	3781
3780	AAAATTATTAAAACAGITTTTTGTTGATAAATAAGITTTTTATATTITCAGAAAAIGTAITATAT	3721
3720	TICITIATTIACCGGCAAAAACCAITICTCCATITITITTAACTITATAACGCTIAAGAIAAA	3661
3660	TCTTBAAACAATATTTTCACAACATAAAAAAATAATGTTTGACCAAACCATATGCTCATT	3601

1	4321	PGCAAGAGITGAITAICAAACAAGAAGTAITIAGAAAGAGCAACAGATCAIGCAAGAAGA	4380
16. 5A(7)	4381	GTCCATGTTTGAATTTTTCTTGACAGATGGGTTGCAGACAAGTCATGGGAAGGTCATACAA	444C
	4441	ACTCATCAGACAAGGAAAATTGATAGCACAGTTTCTGAACATGACAAGCTCTGG	4500
	4501	TCATGAAGAACAATCTCACAAGCAGAGTTTTGGGTAGACCTCCTCCAATGICATCATCAG	4560
	4561	CIACGAGCICICAGACTICATCCACATCICAGTCCTCAGITICITCCCAGGAAGITICCT	4620
	4621	IGAGGAAGGAGGTIATIACAGAAAICCAAGIIIACAIGAGCCIGGCAAAAICTAICAAAGC	468(
	4681	TAAGCAGAGATGATCACGGTAITCITCATCGTCTTCTTCCAAAAACCIGGITTGAGAAAAA	474(
	4741	ACAAICCAIGICIIACAACAGAGGIGIAAAIGIAAAGIGIIIGIGIIIIGIGGIICGAICAAIC	480(
	4801	TIGCAACCAGIGGAGIGAICTATAICGACCGGIICAAGTAACAAGGAGAACTAIGIGGGA	486
	4861	AAGAGGCTAAATTAAACATCGTTTCATCAAAGATTGTTGCAATGTTGTTTGT	492
	4921	TIGALLALTIAALAATIAACITCGGAIGCITCIGAGACAAICIGITCCICCCAITITITIG	498
	4981	TCAATATGAAAGAAGAATGCTTCATCTTTAGACATGAAAAGCCATTTAAATGACCA	504
	5041	AATAACATAGITTATACCAAAGCITCCITATAAATTITTACCCGTTCTAAAAATTGCTCTT	510

(0) / 2	5101	ACTATICA A A A TICE A A A TICA A TITICA A TITICA CONTINUA CA	5160
0 10	5161	AICACIATITIAAIGIATAAAACIATAAAAATAAAITAAATACITACIAAATITITIAGAIT	5220
	5221	TAATCCATAAATTATATTACAGTTCAGATTTCATCCACATTTCAGTCCCCAGTCCCTT	5280
	5281	ACICATTAAATTTTCCTCAGGAAGGAGGTTATACAGAAAGTCAACTTACATGAGCCTTAC	5340

CCATITIAAGTAGAAACAGTATATGTCTTACAACGGTGATGTGAAATGTAAAGGGTTGTGCT

GGTTCGGAGTAGACTGATCTATATCCACCAGTGCAAGGAACATGGAGGCATATGTGGGCT

TCAAICIAICAAAGCIAAGAAGAGAIGICAGGIIICIICIICAICIIICIGIICCACAICA

5820	5761 TCATOCITAGACAIGAAAGGCITIAITAAAIGACCAAAIAACAIAGITIAGACGAAAGCIT	5761
5760	AICITICIGAGACAATAIGITCCICITATITICITGICAATAIGAAACCAAGAGCAAAGTT	5701
5700	TAGITIIGAAGACACAAIGIIGIIIGIITIGGCCACIIIIGAITAAITIAAITAATIAACTICIG	5641
5640	ALACATAAATGGATTATAGGITATTGAAGCCAITGTTGTATATGTTTTCTTACTTATAAT	5581
5580	AAAAAAAACATCATTAACTGAATCTTTAAAGCACTTTCAACAICTTGTTGGTTCCATGAA	5521

6540	ATTATACTAAACITIIGACITIIDAAATATIGIAAACCCCCCAIATAATATITIALITIA	6481
6480	ICICACAAGGIIIGIAIIIBCAICIIBAAAAIIGCAIAIAGIAAIICCAIAAAAIIG S Q	6421
6420	AAICCAAGAIGAAGAAAICCCIICAACICICGIIIBAGGIICITAAIIAICICCAICAITIC M K K S L Q L S F T F L I I S I I L	6361
6360	AAAAAATAGAATACTTTAICTCTTTCCTAAATTTTTAAGCCCAATATCAATTCTAT	6301
00E9	TITCTTAAATTAGAITTTTAATATGTATATATACGTAAGAATACTTCTTAJGTTTAAAAA	6241
6240	TCAGCAAAACAIGGAITITICIAAAITAGAITCGITTIAAAICAGAACAIAITAAIGIGAG	6181
6180	CACATACCTITITIAITIACTTAAAGGAAAAIGAACGAGICIAAAGCIICCACAIGIIAIC	6121
6120	CAIDAAITICIAAAAAIAGCAAIAACIIIITIIGAAAACAICAGAITIIAIGIACACGCAIAGGA	1909
0909	CCIATTAATTTDAATAGTAATATTTGAAAATATTTTTATTGACATTGTTTTAATAATT	6001
0009	TTACTATTTTTTTCATATAATCTTATAAATTATGTTACGTGTGGGACATCCACCTAATAA	5941
5940	TATTATATACTITITICATTITITICATTTTATTICAAIGEAAAAAATTTAATTAAAAAC	5881
2880	CCIAAIBAAAITIAIICICACIAICIBAAICIBAAACIGAAITICAAITICAICIBICIGAI	5821

6541 CIATATAAAACATAGCATTAAATTAICTCTTTGIGTAAAATTCATAACTTT	6601 BAGABATATTGABAGTATGTCAGABATGTTTGAGABATATTGABAGAP
CTATATAAAACATAGCATT	AAGAAATATAGAAAGTAT
6541	6601
_	F G. 54(10)

7200	TAAAAICIATATATITITCIAACAATTAAAAITITGAAATITITAATATATITIACAGGAAIG	7141
7140	TAACGITTAAAAIGAAAIGITAITAAACATTITTIGCTGATAAATAAATTITTCTATTICA	7081
7080	AACGALAIGCICAITIITIITIAIAIACIGGCAAAAIAIAITIICIIIIIIIIII	7021
702C	TAATATCCACACAATTCTTAAAACCATATTTTTCACAAAATAAAAATAAAGTGTGAACCA	6961
0969	CITITICCAATACATACAGTAGTIGITCTTAAAATATCAAAATTITTATACGTAATGTITAT	6901
0069	GAACTATAGITICITACGIAAAITITAATTITGATATITITAACTAATITITATATTITITAAIG	6841
6840	TIACGAACATTITGICTIGCACATACAAAIGATITAACCGACATITITCATAATAIGGAT	6781
6780	TATATGATGAAGAGCTATTATGATAAATAATTAATAATAGITTCATTTITATCATCTAT	6721
6720	AAGIATITAACIGITITITAAACITITAAIGCCALITAAAAITITITIAAAIGTAIGGGITTA	6661
0999	AAGAAAATATAGAAAGTATGGTCAGAAATGTTTGCGTTAATATTGGAAAGAATCAACCCTG	6601
0099	CTATATAAAACATAGCATTAAATTATCTCTTTTGTBAAATTCATAACTTTGCAGAAGGG	6541

7260

7201 AIGGCAGAIGCGCAGAAAAAAAAIIIGICCICGIAAAAIICCAAIAAAAGGAAGCIAIIGI

C **>**--ഗ G × H Дi H ĸ ø ρι ပ z ĸ 呂 Ø Ø ۵ M

7320	7380	7440	7500	7560	7620	7680	7740	7800	7860	7920
GCTCCAACTATATGTTTGGATAAGTGTAAGAAGCAACATGGAACTGTTGGTAGTTGTGCG A P T I C L D K C K K Q H G T V G S C A	GAAGAAAAGGATITIGIAACIGCGCTIGIAAGIAAGAGITCICACIAAGIGIAAIGAAI E E K G F C N C A C K STOP	CTAGTAATGICCAACCAAAGITITTATATTATTTCTTTTAACAATAAGICTAAATGITTGT	CICAGAITITGIGGAICIAITTAIAATAATAITAAIAITGAAIGIIAAAIAAAAAAATTG	TATAAAACAAGAGIGGACIATIAATAAAATATATGATCACAGTATIGITAGAAGTAACCA	ATATTACGIGTAAAAICAAAAGCTTAAGACTAGITAAAAATATAGAGAIGAAAITCACAAC	CAATAITITAAAIGITAIAAACAACTAACAIGIAAITITIGIACACAITGIAAAAAAAAA	AAAAAAAAAAAAAGCAAGAGTTGATTAACAAACAAGAAAGTGTTAGAAAGAGCAACAGA	ICAIGCAAGAGCAGICIAGGITTGAATTGGCTTTGACAGAIGTGTTGTTGCAGACATGCCATGA	GGAAGICITACAAACTCATCAGACAACACACAGAAAATIGATAGCAITGITITCTGAACAT	GACAAAGCICIGGICAIGAAGAAAATTICACAGCCAAAGITITIGGIAGACCITCTCCA
7261	7321	7381	7441	7501	7561	7621	7681	7741	7801	7861
G. 3A(11)										
11.										

)
[2]
3A(
/n
11

7981	CITTAGGGAAGAGGITAITACAGAAAGCCAAGITACAIGAACCIAACACAAICIAICAAA	8040
8041	GGTAAGAAGAGACGATCAACCAGTATTCTTCATCTTCTTGTTCCGAAATCACTGTTTCAA	8100
8101	AAGAAACAGTCAATGTCTTACAACGAAGAIGTGAATGTAAAGTGTTGTGCATGTTCGGAT	8160
8161	CCAICTTGCACCCAGTGGAATGATCTATATCTACATGCTCAAGTAACAAGGAGAAATATG	8220
8221	TGGGCAAAGAAGCTAAAGIAAACAITGTTTCATTAAAICTTTAAAGCATTICAACACCTT	828(
8281	GAGAGITCIAAAAACACACACAAAAIACCGATTTATAGAIAIAIAAGCAACTICTAIGIAI	834(
8341	GIICIITIACAIACGAGIIAGIAIGAAGACIGCIGCAAIGIIGIITIGACCAITITIA	840(
8401	TEATTTAATAGTTAACTTCTGATGCTTCTAAAATAATATGTTCTTCCCAACTCTTGTCAA	846
8461	TAIGAAACCAAGAGCAAAGIIITAATIIITAGACATGAAAAGCCTATIAAAIGACCAAATA	852
8521	ACALAGITTAGACGAAAACTTCCTAALAAAATTTATTCTCACTATCTAAAICTAAAACTG	828
8581	AAIIC 8585	

FIG. 3B(1)

- ITTANAATCCAAAATASCCAAATTCTCAAAGACATGGAAACCAAAAGCCCAAAAATTAGAAAAAGGGAGAAAATGTTAAGAG TITICGAGITIAAGICACIAICITICITICAITITICITICAICIAIGITITICITITIGITIGGCCGCGAAIACAATGAIGIGGCGGG IGAACTICITGAAATACATTCAAGTITIAIGICTATAACTTAITCACGIGACTAATAGATITITTCICICAGAGTAITCT AAACTAAAAACACTAATAATAATAGGGAGAGGGTTAAACTTICAATGTTICCCAAATATGGAAATGAATAGGGAAATTGAGAGGAGA CCCCGAAACAIDAACCAAAIDAAAAIAAAAITAAIACCCCCACAAAAACACAIAITGCGAGGGGTIDAAACIAITGGCCGC TINICIACGACICATCCTIACITAICITAACCAAAATAITAITAITAAATTCCATAATCCATCATCGGTTIAGCTGCTAAG GCCAAAGAAAATCAGAAAAAGCAGTCTTAAAAAACCC<u>TATA</u>AAAAACGTCCTCAAGCAITTTCACAACT<u>C</u>GAAATTCAAA ITITITICCAAAACGAAACACALAIIAITEGGAGOCAGCNNCIAITCACCCITCCGCCAOGIGCACAAGGAICAACITCTITAAGCITC BACICCCAAGGIGGCICCGIIGCAIAIGCICIIAIBAAACIITAAGIIGCCGCCIAAACGGICGIGIAIACCAITIII G -389 -309 -229 957 -.69 -629 -549 -469
- TECCTCTACCTGGCCGCAGCCGCAACGGTGGTCCATGCCGAAGACCCTTACTTCCACCACGTATGGAAGGTCACCTA 工 Ω ш Æ, 工 > > > <u>-</u>-ø 35
- TGGAACOGCTTCTCCTCTAGGCGTTCCACAACAAGTCATTCTAATCAACGGCCAATTCCCTGGTCCTAACATCAACTCAA Z z ρι U ρı بنا Ø U Z Н ᆸ Н > O Ø а > Ç H ы ഗ 172
- CCICCAACAACAATGICAICAACATCIACAACATCIACAACCTIGAIGAACCCIIICCICCICACIIGGIAAIAIIAALAAACAA H 口 ы D, ្រា l z z Ĺ > Z Н 1-1 > z Z 252
- CATAAACATAAGGAGTCTCGATCATTTACATTATTAATAAGTTTATTATATATTTTTTGCATTTTTAGGAATGGAATCCAGCAC 332

FIG. 3B(2)

- AGGAAGAACIGIIGGCAAGAIGGAACTCCGGGGACTAIGIGICICCGAICAIGCCGGGACCAACIACACIIACACIIIACCAIIICCA G GIMCPIM ы ტ Ø 492
- GCCIPAAGAICAGAIAGGAAGCIACTICIACIIAICICACCACACAGAGAIGCACGGIGCGGCIGGIGGAIAIGGIGGACICC . П ပ B G æ ഷ = Z U E~ ; }-1 Ĺ y y U 572
- CASTGAACAGCCGTCTCCTCATCCCGGTCCCTTACCCTGATCCCGAAGATGACTACACTGTCCTCATCGGTGACTGGTAC VLI ⊱ D Z ы ρı YAD P V P RLLI z > 652
- ACTAAGAGCCACACCAGITGAAGAAGITCCTCGAGGGTGGTCGTACTATTGGTCGTCCAGAGGGTATTGTCATCAACGG Ω e e ტ H ĸ <u>ი</u> △ Ĺij **对** T Q L 732
- AAAGICCCCAAAAACGICATGCATCAGACGCCCCCCTTTCACCTTCAAGCCTGCAAAGACTTACAGGGTTAGCAICTIGTA ĸ GKTY L K P E۲ P T A O ഗ U <u>م</u> 812
- ACCICCOTICIONACATICIATICAACTITIAGGATTICACAATICACAAGGATGAAGCTCGTTGAAATGGAAGGATCGCACGTT ы 口 × Σ 呂 Щ Z Ø H K (L) z S 892
- CTICAPAACGAITIACGACTCITCITCACGITCACGITGGCCAGTGCTTTTGGCACCATCGITACGGCGAATCAACAACTAA ٤٦ > H ⊢ Ü Įц U O U ь ы > Δ H S
- AGAITACIACAIGGITGCAICCICIFGGITCTICAAGACGGITAICACAACAACGGACITCTCCGCIACGAGGGAGGA ď تر n D **[--**1. H Þ Ы 云 LI LI N N נט ഗ æ > Σ 1052
- Æ Z G П Ø 1132

FIG. 3B(3)

- AACTIGACCGCIPAGIGCAGCIPAGGCCICAAGGCAICTIPACCATIPAIGGAAAGAICAACAICACAGCACAAAAAAA z X H ט × Ħ S RPNPOG Ø ď
- GCTCGTGAACACTCAAGGCAAGGTGCATGGTAAGCTTTAGGTTTTGCATTGAACGGAGTCTCCCACACAGAACTGAAGACCC I S > ט A L N K Lu ᆸ ഗ ഷ I > * G Ø 1292
- CICTGAAGCIGGCCGAALACTITTGGIATTICCGACAAGGIGTTTAAGIAIGALACCATCACGGATGACCCTACCCGGAA €⊸ı н ĘΗ Δ **;**--× Ĺι 곳 > 0 S Н Ġ بىرا × ្រា Ø 1372
- CAGATCAAAAACAICCAAGAICGAGCCITAACGITCIIAACAICACICACGGIACCIICGICGAGGIGGIGIIIGAGAACCA > Ы > بدا . [--œ 正 Н z u > z ы ப Н × Н z 1452
- CCAGAAGAGIGIICAGICIIGGCACIIGGAIGGIIAIICIIITCIITCIICGGIAGGIAAAGAAAAAAAACACIIIGI > ഗ Ĺ Ń >4 ڻ Ω u 田 3 ഗ ഗ 1532
- TICTICCAICACAAGIAACICITCAINGIAACCIAAGITITCACITITIACIANCITITIAAAGIGITICAGCAAGGACTICG G 1612
- ACCOCAGAGAAGAAGAACTFACAACTICTTGGATGCAGTGAGGAGAACACACACAGTTCAAGTCTFACCAAAGTGCTGGGC > 田 以 S > Ø U O **,_**7 z z 公 വ 1692
- u <u>~</u> ப ۲ Z ្រា ഗ œ > Z B Σ U ပ z Ω 1772
- AGITITACGCCAGIGICITICITCCAGAGAAAICACITIAGAGAIGAAIAAAACAAGCCICAGACAAGCCITCAAATGIGGIC ഗ Ø α ĸ H z Σ Ø

F16. 3B(4)

× Н 口 z П I 1932

GICLAIACCITITLAAGLAAITITITCITITCAAGAAGCAITAGICITCICITITITITITITITITAACITITITITAA ITACAATAAAAGTAITICICTATAGCCTAGAACCAIGTATGATGATAACAAAACCCTICTICTTAGTCTGAGCCTTTTTC GAGACGCAAICTICAAGIAAICGAAACAGCICAACGICGCCAGAIIICICAGIIDAICAGGICCGAAICAAAAICICAGCI CITCCCCGACACAACCTCCAGAAGTATAACCCCGTACCTATACACATCTCCTTTTCGTCGTCCTCCACCTGAAACTCTCGTAAT ACTOTOGOGGAACGIAACCGGGAGITTCCCGCGAGCGIGTCACGCTCAAATGCGIGTCCAGAGCGCTCACAGGCCTTCACCAGGCCTTCACCAG ACAAITATGTAATGTATGTATCCGATAATCTTCGATGAAATAAGCAAAGGGATCTTAITTCTCCCAAAAAAAAACT IAAGGCICITIAICICGIGGIICTICCACCAAGGAAGIITICCITGAGAGAAGICAICGAGGCIAICAITCAITCICIGI ATOGACCTGAACAAACTCTTTGAACAICG3CAITACTTGAAICATAGFTGGTCTTTTGAAGGGTCGATCGTCCAGACAACT NICITCICITICAINICAAAAITAAIINCIAAAAITAIAGGIITTACICGIATAIACAIGGAANIGAAAAIGIAIGIAIGI IACCENAGICCGAGACGCGICCICICANAGICITCGICIAGA 2852 2012 2492 2572 2652 2732 2812 2092 21.5 2332 2412 2252

FIG. 3c(1)

- GAAITICCICAACANNIGAITICICAICAACGGACAGITICCCIGGICCIBACCIAAAACITCAACAACAACAAIGITGGIC Z ഗ ഗ z z D D LINGOFP Н × ×
- AICAAIGITITCAACAACCITGACGAGCCITITCCICTTGACCTGGITAGTCACCAITITCCTCTCATITITALAGGCALTCT 3 TIT Ĺτι Д កា I. D 81
- **AAAAAGAAATITTAAACACATITTTGACTCAGTITTTAAGALTIGGITTATATTATCCACAAGTAATTATGCTAGTCTTCA** TIGCAAAITIIAAACACAITITIAACIFAIGIGGGIICGGIGACAICGC<u>AG</u>GAGIGGICICCAGCACAACAAGAACICAIGGC GITIICEAAAIITEAAAIGAIRAITITEAAAGCEACEAAIITITITITITICAIITITEAAAIRAEAAAGGTIGITITEAAAAGGCCAAA PATTGAAAACAAAAACTTTTGGATCGTTAAICCAAAAICTTCTTPATTTTAAAIGTTATATTATATTTCACATAATTAC I 241. 481 561 641 321 401
- PAGATGGTGTGACCGGAACCTCATGCCCAATCCCAGCAGCACCAACTACACTTACCATTTCCAGCCTAAGGACCAGATC Ξ × z Æ а ሷ ပ S ტ 721
- > ы G v Ŀ ტ U S ш ď ü 口 A Н ഗ **>**4 801
- CONCARCOCONICCONTRACCONCARCOCOCOGRAGATICACCACCATCCTCATCAACCAACCACTGGTACAACCAAAGACCCACAACACCA 3 Ω z 口 H ப Ы Ω Ø × 881
- CTCTCAAGACCTTCACAGCGGCCGCACTCTTGGTTCCCCTCACGGTGTCCTCATCAACGGAAAGTCCGGTAAAGTC U z > ഗ Ω Α 961

F16, 3c(2)

- GENGGACARARACATCTCTTCACCATGAAGCCAGGAAAGACCTACAAGTACAAATCTGTAAGGTTGGGTTCAAATC KTYKYR TMKPG 드 公
- CACTOTTAACTITCAGGAITCCAAGGACACACAAGAITGAAGCTITGITGAGAITGGAAGGAITCITCAGGAITCTCCAGAACGACTACG Γ Ξ ഗ G ្រា Σ ា HKMKLV တ Ø Н ĸ 1121
- ĸ Æ ĿΊ α Ω AVLVTA V G Q S F
- S X E STVGVM E V F L K
- TGTCCTTCCCAAGGCTCCAGTTGGATGGGCTTGGTCTCTTAACCAGTTCAGATCATTCAGATGGAACTTAACGCCAGGG X X လ ĸ . Ч S 3 K M G Р æ
- CGGCTAGGCCTAACCCGCAAGGATCTTACCAITTACGGAAAGATCAACATCACACGTACCATCAACATCAACACCAAG R Ė , |---| Z × G H K ഗ U Ø 1441
- AACTTOSTGSACGGTAAGGTCAGGTTTGGGCTTAACGGTGTATCACACGTTCACACCNAGACTCCCTTGAAGCTTGCTGA P L K HVDTX S GINGV KVRF ပ
- GIACTICNAGATGICCCAGNAGGICTICAAATACAATGICALCAAGGACGAACCAGCAGCOAGATCACTACACTAACG > > 1601

FIG. 3C(3)

- TIGACCUPATGICCTIPACAICACTITCCGPACCTITIGITGAAATCGTCTTCGAGAACCACGAGAAGAGCATGCAATCA F V E I E E
- TICCATTIGGALGGITACICCTICTICTICTGGGGAAGCTICATTAATAACICTATAGGCCAAGGTTTCACTTANTAN لىز ഗ ψ 1761
- GCCCAGAACCGGCGTGATCTTTTACTTCAGATATAAGATTCCTAACAATTTTTTTAATATTTTTTCAACAGTTCTCACCC
- AGGAACAIGGACACCAGAGAGAGAAAAAACAACIIACAACTIGCICCAIGCGGICAGCAGACACACCGIGCAAGINITCCCCA . > Ξ α ഗ > Æ Ω YNLL Z z α. 公 (T)
- z z កា ഗ M. M W M ט a z [I] ⊱ AILL ഗ 2001
- TICGGACAGCAAAIGIACGICAGIGIICTIICCCCIGAGAAAICACIAAGAGACGAAIACAACAICCCACICAACACCAA Ω ഗ 比 ្រា ഗ H > S Σ 2081
- വ ۵ K G L 2161
- TAITTAITTGAIPIPIGIAAAAITCIACITITIACAAGIGAGIGIAITACGIGACIAAITAACCITITCCIAAITICAA

FIG. 3c(4)

AGTICITITGITGIAITITCITCTICTICGIGGACAICTGACCIGIAAAICAGAGAIAIAAICCCACCAAACCCAAGGIT INGACACTACAACTIGNITIAAATAAAAACGCTANTIGTAATGTATTTCTTAGAATATAGACTIGCAAGTIGAIGAGAACTC ACTERIGERAGICITEGICATETITICATETRAGGICACAGERACAGRETITIRATGIATICITARAATATAGATTITEC CCCAAAAAAAAAGICICGGITAACAAGGAAAATAACGIGIGITITIGITACGCCGICCAICGACGICTICITITATA CCCAGAGAGAIAGAAAGCIGAGICICCAGIICIAIGCIICCAAAICAAAIIICGAIIICAICIICICCAAAICAAAIC A OCCONTINICACITIA TO A DA DA DO COCTO A TOCTO CA CATO A DA TOCTATO CATO TATO SA TICA A A COTTO CAGO COC <u> PAGGGAGGAAGAAGAIGACITITACITIGTGAACCAGACTGTGCCTAAAATTCAACAAAAGAAACGATGGCAATTGGAAAT</u> 188 041 77 881

OCTGGTTTAATT 3293

FIG. 3D(1)

ALACTACITICALITITICACCAAAAITITAAALAIAIAIAGGACALAAITTAIAITITICICAAAIGAAITIGAGITITIGAGIG CATTCATGITITGAGIAACACCATAGAIGACACAAITTITCTTACTACCACTAATAGAIGACACAAITGICITTIGITACATG ITGIAGIGICCGAITIAATITIGGGAGAAGAIGAGAACICTCGAIGAGAACTITIAGAAACAIGCAITITACTITICGIT SCICCIGAAAAGAIGAIICCAGCIIIICAAIIIIIACAAIIOCIGGGICAACCCCCCCAAGIAIIAITCGIIAIAAAAAAIAC PALDADADALTADADAGACTAACTITICCAICCITAAGITBACTICITTATITITAGIPAICGAAGCIACACCICTIGAICA 3GACAAAGACATAATCAAATCATCTTGTGGTGAATAATTTTTDAATCTCAAATCCAATATTTGATTAGAGAAGTTTCAGCC TATTGGTTNAATGTTTTCGGALACAIGICCIACGICAAACAAAAIBATIGIGCAITTTTTCAIAIATTTCAICAIGAAA CAAGGCGAIIGIIITAAAAIIGIACCCCGCIIIICICGIIICIGGIAGGIATAAAIACAGIGAAAIAACAIIICCIAIGIAIAGI VICAACCICAAAGIAITAITGIIGAITIACAITAATIAIIITGAIAGACCIIIGAIAACICGAACAAAITAIACIAICGAACAAA STITICALATATITICATCAUGAAACCATCCATTITICTITICCTTGTCCCCGGGACTTGTCAACATTCAACGAACCTTGTA IACTGTTGGGAAGAATCTAAGCAGTAATAGGTATGATGTGTTTJAATGGTTTGAAAACTATTTTTAAGAGGTTTGGTATCA ACGCATGCATTTTCGACATCATTGCAAAGGATATATTAATGCAAAIGTGAGTTTTTTTATAAGTTTTTGAATTGCACAAA ATGTCGATCATGGGGTACCATTGGACTTGTTTTGGATGATATTGATGATAAATGTAAGGAAAGGAANTGGAGACTGGGAT 45GTGAAACTTBACGAGGAAGACACTTCGCCCCAACGCCCACCATTGTCGRAATTATTACTACTGATTAAAATGAAT ITCTCTIAITAITCATCACCACAACAGCAACGGCTGCACCCAAAGCCAAAAGGCAGGAACIACCITITTCACACGAAGIACIACA AAASCAGTCGCGGAATAIGCACIGIIGICCIAACAAACACAGICCAIGCIGIAAAACCCIIIAAACACGIIICCIAACACGAI SACCCIAICGAAITGAICCGAGCGITAGCGGCIGCGACTGAAICTICTGTGAAAAAAAGAGIGIGGIITITCCICICGAGAI ATTICACTGATTITTGGAACGCTATGGGAAAGATGTAAAGACGTTGGCTCATAACTATTICACGTGTAAGAAGTTA BEATCCGTTCCTTTCCGGTCALTITCTCTCTCCGTCCATAGGAGAACATCCGATCATGATCACGATCAGATCAAAACTAGCT :1542 3462 -1862 1782 -1.702 1622

FIG. 3D(2)

- ATTCAACTACCTAAAATGTCTCCCTCCATGCAAAGCTCATGCGAACCTAATTTTAGAAACTACAAGTTCTATAAGAATCT
- GCGGTCGGGAAAAITGTGAITATCAGTGGCATCCATGCTTCTAGTGGTGGGTGTTGCCATAGGAGTTGTCACCTTTGTTAA G > Σ ഗ > S 139
- TRANGETGETGCTGCAGGTGGCGACAAGACTCTGAACTCGCATCAGAAAGCGGTTTGAGTCACTTTTGTGCGTCAGCCACAG ഗ > Æ X Ø 王 S z ¥ ပ ပ 219
- ACAAAGGIITCAIIGGGCAAAAACACIIIGACCCAGICAAAAAGCGACGAICCAAGIAAACIIIAICAAAGCTITCAIGIIIACCI ഗ S \times > 299
- Σ G z 379
- CAPAGECOSTICITICATITACTICEAAGAGAGTECTICATICITACGETICITICAGACCATTIGITICAAGAAATGGGTIC G H ď Σ ĸ × 459
- AAGAICITCAGCAGAGTGGGAGINAGAIGGACCAGCITPAACAAIGGITBAACGGGAGITITIIPAITACCAAACCGAITIGI O. z ſъ O ٢ L 3 Ø × O \Box Σ Ś 539
- ATTGATGATATTGAAGAATCGGAACTAAGAAAAGTCATGGGCGAAGGAATCGCTCACTCCAAGATTTTGTCCAGTAACGC ڻ Σ ø, 619

FIG. 3D(3)

- TATOCATATICTTCCATGCTCTAACCACCGCAATGTCCCAAATGAATGTTTAAGGTCGATGACATGAAGAAAGGGAACCTCG Σ > ·> Z Z O ഗ Z K Н 耳 669
- GAGAAACTICCAGCTCCTGATCGTGATCTTGAAGACTTGGACCAAAAAAGGATTACCTAAAATGGCATTCTGACAAAAGAC Ξ, 3 × G L P × O D D L ធា H ы Ω C, Д М Æ 0,00
- *NGGAAGCTTATIGGCTCAGGCCGGACGCCCTGGTGCACCTGGTGATGAAGGTATCGGTGAAGGCGGCGGGGGGTGGTGGTGGCGGTAA* U Ú O ы В មា Æ Ωı Ø G 저 ტ Æ Ø 620
- GAICAAGCCCACTCAIGIGGIGGCIAAGGACGGAAGIGGACAGITILAAGACGATITICIGAGGCGGTIAAAGCTIGICCCG ы Ф A. ک ک កា ഗ H ¥ SGOF ഗ VVAKD 二
- × Н > Ø ĿЛ X ≻ > ტ K X >-Н Н ပ 民 c.
- AACCITITICATICITITICGIGATICSTGCAACACAGACAATCATTACTITITICACAGAAGICITICGTCTTAGCCCTGGAACCAC ပ > Ŋ ĸ Ω ĹIJ ۲ ۲ Ø Н Ø G 6601
- IACTICACICAGIGGCACCGI IC<u>GI</u>AAGICICAITIAAIIBAATCIIGICITIBAITITICCIAICIBAACIAAALIGCAC 1179
- 1259
- AGGITGAATCIGAGGGAITCAIGGCGAAATGGAICGGGTITICAGAACACIGCIGGICCAITIAGGACACCAAGCIGICGG ტ z O ග 3 æ Σ U Ŀί 1339

FIG. 3D(4)

- TICCGIGIGAACGGAGACCGIGCGGICAIAITCAACIGCAGAITITCACGGITACCAAGACACGCICTACGICDAACAACGG z z H I F N C R F 1419
- ACGICAGIICIACAGGAACAIIGIIGIATCOGGIACAGICGAITIICAICIICGGAAAAICIGCGACCGIGAIIICAAAACI Ø. ഗ S R [±4 Ĺ G T V D ഗ RNIVV 007H
- 丷 ធា z v Ω æ [-> 耳 z Ø ۻ щ S U 军 1579
- AAGAITIGGIAITCGITICICCATAACTGCCGIAICAICGCGGACAAAGAGCTCGAAGCTGACAGGCTAACGTCAAAICAIA 火 묘 Ω K ĮIJ D K E L NCRHM 二 口 1659.
- CCITIGGACGGCCGTGGAAACCAITITGCCACCACCACTIAITCGGAAACTGAGAITGGCGAITTGAITCAACCGACAGGAT . Υ I I O ט EJ FJ O AVI ATT سا M M Z 1739
- GGAACGAATGGCAAGGAGAAAATTCCAITTGACAGCTACATATGTTGAGTICAATAACCGTGGACCAGGAGCTAAACACT G E Z ធា > Ţ HLTA Ŀ ပ 1819
- GCTGCGAGGGTTCCTTGGGCTAAGATGGCTAAGTCTGCTGAGGTTGAACGTTTCACGGTCGCTGGTTGACTTGACTCC z z Ø ø, Ŀij > 山 Ø æ ഗ K M A K ď, Z 6681
- S EANVPVQL α 1979
- ATATATAGIATGAGATCATGTAAAAAGGTAACGATACGACCTCGTCTCCGGGATCAGGGCTCTTTTGGTTATTAGT

FIG. 3D(5)

PACECATGGACCTGATGCTGCTAGTAGAGTCATAAAAGATGCATCGGCTAAAGCAGTTGTCTCTTACTATCAATTGTTAA AGAITCCIAAGGIGCIGCIAIITGGAIGAAGCAACAAGIITCCCIAGACGCCIAAITGGGACIAIGIGGICCAAGAIITCACIGG CAAACGIGACATTAICTICTICTICTAIGGCIGTITCCTTAACCAAAGTAAACAGAGICCAAAICCAACTTCCAAACCAA SALAGAAGITILAIGAGGACAGAGAIGACIAITGGCAAALAITBAIGAGAAGIGIGAGAIAIGIIAICAITITAICAAAAAAAA 3CAAGCCCTATATTACCAAATCAAATCTCACTTCAAAGCGAAGCTGCCCATTGATGATCTCACCAATATTTCACACATTA CCCATICATCITATIGGGAICTGICCITGAICGAIAACPITCCGGITITIAAGAIGITITCGCAAGGACAAIBCAICICTT AACATGATAAATATAACTIYCAAACTAATACCCIAGTAAAAATATATAAACAAAAAAATACITAIGIAAGATIATGIGGAA 3CAIGGCICAACAAATAIAACIIIIAIAAAAAGIIIIGCAIIPAIIGCIAIGIIITAIAIAIAIGAIIGCIAIAIGIAAGIAIGI SCITCIAGGCGITTITGGGATGAIGITTTGIAIAAGAITGCTTTTTGITTTCACATGCAAAACAIAIAIATACAAAAIATCITAIT ACCGGGTTATGGTTGAC 9859 2539 2619 2699 6/10 2459 8027 979

100	200	300	400		
AAAAAAAAAAAAAAAAAAAATACTTTTCTAAATTTTTAAGCCAATATCAATCCATTTCTATAATCCAAG <u>ATG</u> AAGAAATCCCTTCAACTCTCGTTTA 100 T T A A A	COTTCITAATTATCTCCATCATCTCTCTCACAAGGAATGATGGCAGAAAAAAAA	TCCAACTATATGTTTGGATAAGTGTAAGAACAACATGGAACTGTTGGTAGTTGTGCGGAAAAAAGGATTTTGTAACTGCGCTTGTAAG <u>TAA</u> GAGTTC 300 TAA IGA B A A A A	AACAATAAGICTAAATGITTGICTCAGAITTGIGGAICTAITTA	ገጉ ጉ ጉጉ ጉ ጉ	
AAAAAAAAATAGAATACTTTATCTCTTTCCTAAATTT T	GTTCTTAATTATCTCCATCATTCTCTCACAAGGA <u>ATG</u> T *			£+	TAATAAATAATATGAATGTTAAAT 427 T polyA polyA T T polyA
0 C m m m m 2 4 C C			0.81 1.08 0.040	GB 105	040 040 08 401 08 405 08 405

F1G. 6

88

3GTTGAATCTGAGGGATTCATGGCGAAATGGATCGGGTTTCAGAACACTGGTGGTCGATEAGGACACGAAGCTGTCGCG TICCGTGTCAACGGAGACCGTCCGGCCATAITCAACTGCAGAITTGACGGTTACCAAGACACGCTCTACGTCAACAACA SACGICAGIICIACAGGAACAIIGIIGIAIICGGGIACAGICGALTIICAICTICGGAAAAICIGCGACGGIGAIICAAAA SCCGACTCATGTGGTGGCTAAGGAGGGAAGTJGACAGTTTAAGACGATTTTCTGAGGGGGGTTAAAGCTTGTCGGAGAAA VATCCTISCACGTTICCATTATTATATATATATACCTISCTICTACAAGGAACAAGTCACTATCCCTAAGAAGGTAAACAACG ITITICATETITICGIGALGSTGCAACACACACAATCATTACTITITICACAGAAGIGITIGGCCTIGGAACCACTAC TCACTCAGTGGCACCGTTCGTAAGTCTCAITTAATTAATCTTGTCTTTTAATTTTTTCCTAATCTAAACTAAATTGCACCG GIGAAGAITIGGIAICGITICICCALAACIGCCGIAICAIGGCGGACAAAAAGAGICICGÀAGCIGACAGGCIAAACGICTAAAI CAIDACCTIGGACGGCCGIGGAAACCAITIIGCCACCACCACGCIAGIIIAICGGAACIGAGAIIIGGCGAIITIGAITICAACCGAAC AGGAIGGAACGAAIGGCAAGGAGAAAAAIICCAIIIGACAGCIACAIAIGIIGAGIICAAIAACCGIGGACCAGGAGCI AACACTGCTGCGAGGGTTCCTTTGGGGTBAGAITGGCTBAGTCTGCTGCTGAGGTTTGAACGTTTCACGGTCGCTBACTTGGT IGACTICCTECTAACTIGGAITICAAGAAGCCAACGTITCCTGTICCAGCTITGGAITBAIBAGAAAACTAACTAACAAAAITATAT TIATESCTCASSCSSACSCSCTGSTSCTSCTSCTSATSAASSTATCGSTSAASGSCSSCGSTGGTGGCGTAAGATSAA CCAGCTCCTGATCGTGATCTTCTTGAAGACTTGGACCAAAAAAGGATTACCTAAATGGCATTCTGACAAAGACAGAAGC PAGAGTGGGAGTAAGATGGACCAGCTTAAACAATGGTTAACCGGGAGTTTTTAATTACCAAACCGATTGTATTGATGATA ITGAAGAAITGGGAACIAAGAAAAGICAIGGGGGAAGGAAITCGCICAACICCAAGAIIIIIGICCAGIAAGGIAAICGCIAITGGAIAI CTICCAIGCICIBACCACCGCAAIGICCCAAAIGAAIGITBAGGICGAIGACAIGAAGAAAGAAACCICGGAGAAACI 3GAAAAITGTGALAICAGTGGCAICCAIGCITCIAGTGGTGGGTGTTCCCAIAGGAGITGTCACCTTTGTTAALAAAGG ICATGCGCAAAAGACTIGACCCAGICAAAAGCGAICCAAGIAAACIIIAICAAAGCCÁTCAIGTIAGCIACAAAAGAIG IGATTACTGCAAGAGAGTGCTGATGTACGCTCTCGAGGATCTTGAGACCAITGTTGAAGAAATGGGTGAAGAACTTCTTCAG IGGIGGIGCAGGIGGCGAGACICTGAACICGCAICAGAAAGCGGIIGAGICACIIITGIGCGICAGCCAGAGAAAAGGI TISTCACAAAAICCACAAACIICACGGCIICAACGGAAGAAGGIAIGGGGAAAAAIIAAGGCGACGAGGAAAAGCGTICI

FIG. 7B

FIG. 7C

FIG. 7E

FIG. II

POOL, CUT WITH SST I,LIGATE SELECT FOR LENGTH BY BAM HI DIGEST AND GEL ANALYSIS

FIG. 13

FIG. 14

FIG. 15A

FIG. 15B

FIG. 16

FIG. 17

HYBRID SEED PRODUCTION USING BINARY CRYPTOCYTOTOXICITY

LINE A PLANT

LINE A PLANT

INTEGRATE GENE 1

GENE 1

INTEGRATE GENE 2

RECOVER TRANSFORMANT WITH GENE 1 ON CHROMOSOME Z RECOVER TRANSFORMANT WITH GENE 2 ON CHROMOSOME Z

1

CONVERSION TO HOMOZYGOUS LINES BY SELFING AND SELECTION FOR THE INSERTED GENES BY CHEMICAL RESISTANCE PHENOTYPE OR GENOTYPE

MAINTAIN BY SELFING IN ISOLATION

MAINTAIN BY SELFING IN ISOLATION

MALE FERTILE ISOGENIC LINE A1 MALE FERTILE ISOGENIC LINE A2

FIG. 18

SEGREGATION OF BINARY CRYPTOCYTOTOXICITY GENES IF BOTH GENES ARE LOCATED ON THE SAME CHROMOSOME OF A CHROMOSOME PAIR IN THE ISOGENIC MALE STERILE LINE

FIG. 19

PROMOTERLESS VERSION OF GENE 2 THE IAMH GENE