Evolutionary Algorithms: Convergence Time & Population Size

October 30, 2019
Prof. Chang Wook Ahn

Meta-Evolutionary Machine Intelligence (MEMI) Lab.
Electrical Eng. & Computer Sci.
Gwangju Inst. Sci. & Tech. (GIST)

Convergence Time from Population genetics

Convergence Time (1)

Convergence Time

- Time (i.e., number of generations) until the population is converged.
- > Assumptions
 - \checkmark Two alternatives: 0 and 1
 - ✓ OneMax problem is assumed.
 - ✓ Uniform crossover is used, and no mutation is employed.

Convergence Time:

But it does not say anything for the optimality!

Convergence Time (2)

- * Why are the Assumptions Reasonable?
 - > If we successfully discover BBs, any problem can be interpreted as OneMax Problem at the level of BBs
 - > Otherwise, it offers useful bounds of how quickly solutions are expected to take

Convergence Time (3)

❖ Fisher's Theorem & Proportional Selection

 \succ We calculate the change in expected fitness in a population as a function of the current average fitness (μ_t) and the fitness variance (σ_t^2) as follows:

$$\mu_{t+1} - \mu_t = \sigma_t^2 / \mu_t$$

Convergence Time for the OneMax problem

> The Fisher's theorem yields a linear difference equation

$$p_{t+1} - p_t = n^{-1}(1 - p_t)$$

> The exact solution to the equation is given as follows:

$$p_t = 1 - (1 - p_0)(1 - n^{-1})^t$$

 \triangleright By an approximation of $(1 - r/k)^k \cong e^{-r}$, we obtain the following

$$p_t = 1 - (1 - p_0) \exp(-t/n)$$

 \triangleright Getting to $p_t=1-\epsilon$, the convergence time is given as follows:

$$t_c = -n \ln \frac{\mathcal{E}}{1 - p_0} = O(n)$$

OneMax Problem

N: Pop. size

n: Indiv. length

$$\mu_t = \mathbf{n} \cdot \mathbf{p}_t$$

$$\sigma_t^2 = \mathbf{n} \cdot \mathbf{p}_t \cdot (1 - \mathbf{p}_t)$$

Convergence Time (4)

❖ Selection Intensity & Ordinal Selection

- > Ordinal selection makes selections based on the ranking in the population
 - we need a somewhat different analysis for such schemes
- > The distribution of fitness values may often be assumed to be Gaussian.
- > Ordinal selection may be envisioned as truncating the Gaussian distribution and shifting the fitness to a somewhat higher value in the next generation.
- \succ The shift is measured with the fitness variance σ_t^2 and the selection intensity I

$$\mu_{t+1} = \mu_t + I \cdot \sigma_t$$

Note: Different selection schemes have different I values as a function of their parameters

 \triangleright **E.g.**, the s-wise tournament selection has the following selection intensity:

$$I = \mu_{s:s} = s \int_{-\infty}^{\infty} x \phi(x) \left(\int_{-\infty}^{x} \phi(z) dz \right)^{s-1} dx$$

$$I \approx \sqrt{2(\ln s - \ln \sqrt{4.14 \ln s})}$$

Convergence Time (5)

OneMax Problem

n: Indiv. length

 $\sigma_t^2 = \mathbf{n} \cdot \mathbf{p}_t \cdot (1 - \mathbf{p}_t)$

N: Pop. size

Convergence Time for the OneMax Problem

> The previous equation yields a difference equation:

$$p_{t+1} - p_t = I / \sqrt{n \cdot p_t \cdot (1 - p_t)}$$

> It can be approximated by a differential equation, and yields the following:

$$p_t = \frac{1}{2} \left[1 + \sin \left(\frac{I}{\sqrt{n}} t - \arcsin(2p_0 - 1) \right) \right]$$

 \succ The time to full convergence (i.e., $p_t=1.0$) can be obtained as follows:

$$t_c = \left(\frac{\pi}{2} - \arcsin(2p_0 - 1)\right) \frac{\sqrt{n}}{I}$$

- > For the initial condition, i.e., randomly generated individuals,
 - $\sqrt{p_0}=0.5$ and thus the arcsin term is zero

$$t_c = \frac{\pi}{2} \frac{\sqrt{n}}{I} = O(\sqrt{n})$$

Convergence Time (6)

Experimental Investigation

- > Theoretical model is well matched with Experimental results
- \triangleright Convergence time(tc) is proportional to sqrt(problem size); tc ∞ sqrt(n)
- \triangleright tc is inversely proportional to the selection intensity I; tc $\propto 1/I$ problem size: n
- > tc is nearly independent of the population size N;
 - ✓ It implies that parallelism is embedded in GA!

Population Size of GAs

Population Size (1)

❖ Population Size of GA

- > How many individuals do we need to discover the solution of interest?
- > Why important? We can optimize the solution quality and the computation cost.
- > Assumptions: similar to those in the convergence time analysis
 - ✓ OneMax-type problem is considered.
 - ✓ Pair-wise tournament selection is used.
 - ✓ Uniform crossover is used, and No mutation is employed.

Large Population

Small Population

- It can discover the optimum
- But, it wastes computation cost

Population Size (2)

Gambler's Ruin Model

> Population behavior of GA can be represented by the Gambler's ruin model

- P_{BB} is the prob. that population corresponding to each BB is successfully converged
- P_{BB}(i) is the prob. that the population starting from the i-th state (i.e., i correct BBs) is converged.
- P(i) is the prob. that the population has i correct BBs.
- k is the number of bits of each BB.

$$P_{BB} = \sum_{i=0}^{N} P_{BB}(i) P(i) = \sum_{i=0}^{N} \left[\frac{1 - (q/p)^{i}}{1 - (q/p)^{N}} \right] {N \choose i} \left(\frac{1}{2^{k}} \right)^{i} \left(1 - \frac{1}{2^{k}} \right)^{N-i}$$

$$P_{BB} = \frac{1 - \left(1 - \frac{2p-1}{2^{k}p}\right)^{N}}{1 - (q/p)^{N}}$$

$$N = \frac{\ln(1 - P_{BB})}{\ln\left(1 - \frac{2p - 1}{2^k p}\right)} \approx -2^k \ln(\alpha) \frac{p}{2p - 1}$$

where $\alpha=1-P_{BB}$ (i.e., failure probability)

Population Size (3)

Decision Making Model

> The state transition prob. of GA can be represented by the decision making model

$$f_1 \sim N(\mu_{H_1}, \sigma_{H_1})$$
 $f_2 \sim N(\mu_{H_2}, \sigma_{H_2})$
 $p = P[H_1 \text{ propagates}] = P[f_1 > f_2] = P[f_1 - f_2 > 0]$

Since f_1 and f_2 are normally distributed, f_1-f_2 is also normally distributed with with mean $\mu_{\rm H1}-\mu_{\rm H2}$ and variance $\sigma^2_{\rm H1}+\sigma^2_{\rm H2}$

$$p = \Phi\left(\frac{\mu_{H1} - \mu_{H2}}{\sqrt{\sigma_{H1}^2 + \sigma_{H2}^2}}\right) = \Phi\left(\frac{d}{\sqrt{2(m-1)}\sigma_{BB}}\right)$$

By the approximations, $p = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \frac{d}{\sigma_{BB} \sqrt{2(m-1)}}$

$$N = -2^{k-1} \ln(\alpha) \left(\frac{\sigma_{BB} \sqrt{\pi(m-1)}}{d} + 1 \right)$$

Population Size (4)

Experimental Verification

#BBs (i.e., m) is proportional to problem size (i.e., individual length n)!

- > Theoretical results agree to experiments quite well.
- > Pop. size(N) is proportional to sqrt(m)
- \triangleright Pop. size(N) is proportional to BB noise, σ_{BB}

$$N = -2^{k-1} \ln(\alpha) \left(\frac{\sigma_{BB} \sqrt{\pi(m-1)}}{d} + 1 \right)$$

Results for OneMax Problem (100 bits)

Pairwise tournament selection Uniform crossover

Results for 4-bit Deceptive Problem (80 bits)

Pairwise tournament selection 2-point crossover

Automatic Population Size (1)

* What's Wrong with the Theoretical Population-Sizing Model?

- > The model says that population size should be
 - ∞ sqrt(problem length) and BB's SNR ratio

 But the model is difficult to annly in practice $N = -2^{k-1} \ln(\alpha) \left(\frac{\sigma_{BB} \sqrt{\pi(m-1)}}{d} + 1 \right)$
- > But the model is difficult to apply in practice
 - ✓ Due to several assumptions that may not hold for real problems

How to estimate?

* What are Users actually doing to solve a problem with a GA?

- > Start by trying a small population size and then try a larger one...
- > In the end, user has tried several different population sizes to have a feeling of ✓ how the problem responds to different population settings
- → Why not design the algorithm that does this steps automatically?

Automatic Population Size (2)

- * How about Establishing a Race among multiple populations?
 - > It gives smaller populations more function evaluations, thereby converging faster
 - > If a larger population has an average fitness better than that of a smaller one
 - The smaller population is eliminated due to no reason in continuing it.

Automatic Population Size (3)

Experimental Verification

- > The automatic population-sizing scheme does not require much computing resources comparing to the optimal population setting.
 - > If problem is harder, their performances are similar

Results for OneMax Problem (100 bits)

Results for 4-bit Deceptive Problem (40 bits)

Summary

- Two Issues of GAs have been investigated!
 - Convergence Time; i.e., #generations until the population is converged
 - Population Size; i.e., #individuals required for the specific quality of solution
- **Convergence Time** (i.e., #generations until convergence)
 - Proportional selection: O(n), Ordinal selection: $O(\sqrt{n})$ where n is the problem size
 - It is inversely proportional to the selection intensity
 - It is not dependent on the population size! -> Parallelism
- Population Size (i.e., #individuals to get a desired quality of solution)
 - It is proportional to sqrt(problem size)
 - > It is inversely proportional to signal-to-noise ratio

When running GAs, we can set the population size required for obtaining a certain quality of solution, and estimate its required computing costs!