1.1. ФОТОЭФФЕКТ

Хурсик Екатерина

1 Цель работы

Экспериментально проверить уравнение Эйнштейна для фотоэффекта и определить постоянную Планка.

2 Немного теории

Фотоэффект – испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Рис. 1: Схема фотоэффекта

Фотоны (до столкновения с электроном фотокатода) обладают энергией $\hbar\omega$ и импульсом $\frac{\hbar\omega}{c}$. При столкновении фотона с электроном фотокатода энергия фотона полностью передаётся электрону. Для вылетающих электронов энергетический баланс можно описать уравнением

$$\hbar\omega = E_{max} + W,\tag{1}$$

где E_{max} - максимальная кинетическая энергия электрона после выхода из фотокатода, W - работа выхода электрона из катода.

Чтобы измерить энергии вылетевших фотоэлектронов вблизи фотокатода располагается второй электрод – анод, на который подаётся потенциал (V < 0 - задерживающий, V > 0 - ускоряющий).

Рис. 2: Зависимость фототока от напряжения на аноде фотоэлемента

При достаточно больших ускоряющих напряжениях фототок достигает насыщения (рис.2): все испущенные электроны попадают на анод. При задерживающих потенциалах на анод попадают лишь электроны, обладающие достаточно большой кинетической энергией, в то время как медленно движущиеся электроны заворачиваются полем и возвращаются на катод. При некотором значении $V = -V_0 - nomenциал запирания – даже наиболее быстрые электроны не могут достичь анода.$

Максимальная кинетическая энергия E_{max} электронов связана с запирающим потенциалом V_0 соотношением

$$E_{max} = eV_0. (2)$$

Подставляя это соотношение в (1), мы получаем уравнение Эйнштейна для фотоэффекта:

$$eV_0 = \hbar\omega - W \tag{3}$$

3 Метод достижения цели

В работе изучается зависимость фототока из фотоэлемента от величины задерживающего потенциала V для различных частот света ω , лежащих в видимой области спектра. С целью экспериментальной проверки уравнения Эйнштейна определяются потенциалы запирания V_0 при разных частотах света и строится зависимость $V_0(\omega)$, которая, как это следует из (2), должна иметь вид

$$V_0(\omega) = \frac{(\hbar\omega - W)}{e} \tag{4}$$

Потенциал запирания V_0 для любого катода линейно зависит от частоты света ω . По наклону прямой на графике $V_0(\omega)$ (рис.3)

Рис. 3: Зависимость запирающего потенциала от частоты света

можно определить постоянную Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e}. (5)$$

4 Вывод

Как показывает формула (5), угол наклона прямой $V_0(\omega)$ не зависит от рода вещества, но зависит величина фототока, работа выхода W и форма кривой I(V) (рис. 2).