Optimization for Deep Learning

Lecture 1-1: Introduction

Kun Yuan

Peking University

Class policy

[To be added]

Main contents in the class

• Part I: Fundamental algorithms for optimization

Gradient descent; projected gradient descent; proximal gradient descent; Nesterov acceleration; quasi-Newton algorithms; zeroth-order methods

• Part II: Fundamental algorithms for deep learning

Stochastic gradient descent (SGD); SGD stability; momentum SGD; adaptive SGD; variance reduction

Part III: Advanced algorithms for deep learning

Mixed precision training; gradient clipping; adversarial learning; multi-task learning; meta learning; bilevel optimization

Part IV: Distributed algorithm for deep learning

Communication compression; federated learning; decentralized learning; asynchronous SGD; Byzantine learning;

Optimization

The general optimization problem

$$\begin{array}{ll}
\text{minimize} & f(x) \\
x \in \mathbb{R}^d & x \in \mathcal{X}
\end{array}$$
subject to $x \in \mathcal{X}$

- x is a continuous optimization variable
- f(x) is the objective function
- $x \in \mathcal{X}$ is the constraint

Optimization variable, objective function, and constraint are three pillar elements in optimization problems

Optimization is everywhere

Optimization is used everywhere

machine learning, big data, statistics, finance, logistics, planning, control theory, robotics, energy, aeronautics, signal processing, etc.

The procedure to solve real-world problems with optimizaiton

- mathematical modeling: formulate into an optimization problem
- computational methods: develop efficient numerical algorithms
- implementations: write codes and solve the problem

Core philosophy in our class

Libraries are available, algorithms treated as "black box" by most practitioners

Not here! In our class, we will

- Understand why an algorithm work and the insight behind it
- Understand how fast the algorithm can converge
- Develop novel algorithms to solve new problems

Let's preview the main contents of our class in following slides

Optimization algorithms: Gradient descent

• Consider the following smooth and unconstrained optimization

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x) \tag{1}$$

• Gradient descent (GD) is very effective to solve problem (1)

$$x_{k+1} = x_k - \gamma \nabla f(x_k), \quad \forall k = 0, 1, \cdots$$

where γ is the larning rate (or step size)

- We will explore the following questions in lectures
 - Under what condition can GD converge to the desired solution?
 - o How fast can GD converge?
 - \circ How to tune γ and how does it affect the convergece rate?

Optimization algorithms: Gradient descent

[Insert an illustrative figure to show how GD works]

Optimization algorithms: Projected gradient descent

• Consider a smooth but constrained optimization problem

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x) \qquad \text{subject to} \quad x \in \mathcal{X}$$
 (2)

- Several examples are:
 - \circ non-negative constraint: $\mathcal{X} = \{x | x \ge 0\}$
 - \circ probability simplex constraint: $\mathcal{X} = \{x | x \geq 0 \text{ and } 1^{\mathsf{T}} x = 1\}$
 - $\circ \ \ell_1$ ball constraint: $\mathcal{X} = \{x | ||x||_1 \le c\}$
- A simple yet effective algorithm to solve problem (2) is projected GD

$$y_k = x_k - \gamma \nabla f(x_k)$$
 (Gradient descent)
$$x_{k+1} = \Pi_{\mathcal{X}}(y_k) := \operatorname*{arg\,min}_{x \in \mathcal{X}} \|x - y_k\|^2 \quad \text{(Projection)}$$

Optimization algorithms: Projected gradient descent

[Add a figure to illustrate the projection (check Jaggi)]

We will explore the following questions in lectures

- Can projected GD converge to the desired solution and how fast?
- How the projection step affect its convergence rate?
- In what scenario can the projection step easy to calculate?

Optimization algorithms: Proximal gradient descent

Consider a non-smooth and unconstrained optimization problem

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x) + R(x) \tag{3}$$

where f(x) is a smooth loss function but R(x) is a non-smooth regularizer

- Several examples are:
 - \circ ℓ_1 regularizer: $R(x) = \|x\|_1$ is to promote spartsity in variable x
 - o nuclear norm regularizer: $R(X) = ||X||_{tr} = \sum_{i=1}^{r} \sigma_i(X)$
 - $\quad \text{o Indicator function regularizer } R(x) = \delta_{\mathcal{X}}(x)$
- A simple yet effective algorithm to solve problem (3) is proximal GD

$$y_k = x_k - \gamma \nabla f(x_k) \qquad \qquad \text{(Gradient descent)}$$

$$x_{k+1} = \operatorname{Prox}_R(y_k) := \operatorname*{arg\,min}_{x \in \mathcal{X}} \{\frac{1}{2\gamma} \|x - y_k\|^2 + R(x)\} \quad \text{(Projection)}$$

Optimization algorithms: Proximal gradient descent

We will explore the following questions in lectures

- Can proximal GD converge to the desired solution and how fast?
- How the proximal step affect its convergence rate?

Gradient descent can be very slow for ill-conditioned problems

Figure: GD converges slow for ill-conditioned problem

- We have to alleviate the "Zig-Zag" to accelerate the algorithm
- Polyak's momentum gradient descent

$$x_t = x_{t-1} - \gamma \nabla f(x_{t-1}) + \beta (x_{t-1} - x_{t-2})$$

where $\beta \in (0,1)$ is the momentum parameter

Figure: Momentum can alleviate the "Zig-Zag"

- We have to alleviate the "Zig-Zag" to accelerate the algorithm
- Polyak's momentum gradient descent

$$x_t = x_{t-1} - \gamma \nabla f(x_{t-1}) + \beta (x_{t-1} - x_{t-2})$$

where $\beta \in (0,1)$ is the momentum parameter

Figure: Momentum can alleviate the "Zig-Zag"

- We have to alleviate the "Zig-Zag" to accelerate the algorithm
- Nesterov accelerated gradient (NAG) method

$$y_{t-1} = x_{t-1} + \beta(x_{t-1} - x_{t-2})$$
$$x_t = y_{t-1} - \gamma \nabla f(y_{t-1})$$

where $\beta \in (0,1)$ is the momentum parameter

Figure: Nesterov method can alleviate the "Zig-Zag"

We will explore the following questions in lectures

- Can accelerated GD converge to the desired solution?
- Can we theoretically prove that accelerated GD gets faster in rate?
- Does accelerated GD achieve the optimal rate? Can we further improve it with more history states?

Optimization algorithms: Preconditioned GD

 Another way to accelerate GD is to use preconditioning. Consider a general ill-conditioned optimization problem

$$\min_{x \in \mathbb{R}^d} \quad f(x)$$

- We let $x=P^{\frac{1}{2}}w$ so that $g(w)=f(P^{\frac{1}{2}}w)$ is a nice function, where P is a positive definite matrix
- Use gradient descent to minimize g(w), i.e.,

$$w_{k+1} = w_k - \gamma \nabla g(w_k) = w_k - \gamma P^{\frac{1}{2}} \nabla f(P^{\frac{1}{2}} w_k)$$

• Left-multiplying $P^{\frac{1}{2}}$ to both sides, we achieve

$$\begin{split} P^{\frac{1}{2}}w_{k+1} &= P^{\frac{1}{2}}w_k - \gamma P\nabla f(P^{\frac{1}{2}}w_k)\\ \iff & x_{k+1} = x_k - \gamma P\nabla f(x_k) \quad \text{(Preconditioned GD)} \end{split}$$

where P is called the **preconditioning matrix**.

Optimization algorithms: Preconditioned GD

Figure: Left: an ill-conditioned problem f(x). Right: a benign problem g(w) after transformation.(From Prof. Chris De Sa's lecture notes)

Minimizing g(w) is much easier than minimizing f(x), which is the main insight behind preconditioned GD

Optimization algorithms: Newton method

• The preconditioned GD algorithm

$$x_{k+1} = x_k - \gamma P \nabla f(x_k)$$

- ullet It is critical to choose the preconditioning matrix P
- If $P = [\nabla^2 f(x_k)]^{-1}$, then preconditioned GD reduces to **Newton method**
- Newton method converge much faster than gradient descent

Optimization algorithms: Newton method

Figure: Convergence comparison between GD and Newton.

Optimization algorithms: Newton method

We will explore the following questions in lectures

- Can Newton method converge to the desired solution and how fast?
- Is Newton method provably faster than GD or even accelerated GD?
- Construct $P = [\nabla^2 f(x_k)]^{-1}$ is very expensive. Is there any efficient strategy to construct effective P?

Optimization algorithms: Zeroth-order method

• Consider an unconstrained optimization problem

$$\min_{x \in \mathbb{R}^d} \quad f(x)$$

- The gradient of $\nabla f(x)$ cannot be easily computed in certain scenarios
 - the objective function is implicit: hyper-parameter tuning; adversarial attacks on neural networks
 - o too expansive to compute the gradient
 - o save memory: no need of backpropagation in DNN training
- Evaluate the gradient with zeroth-order information

$$\widehat{\nabla f}(x) = \sum_{i=1}^{d} \frac{f(x + \epsilon e_i) - f(x - \epsilon e_i)}{2\epsilon} e_i$$

Optimization algorithms: Zeroth-order method

• Zeroth-order optimization

$$x_{k+1} = x_k - \gamma \widehat{\nabla f}(x_k)$$

- We will explore the following questions in lectures
 - o Any smarter approaches to evaluate the gradient?
 - o Can zeroth-order methods converge to the solution and how fast?
 - \circ How does the variable dimension d influence the rate?

Summary

- Optimization is used everywhere
- We focus on the theoretical understanding of optimization algorithms
- We previewed fundamental optimization algorithms covered in our lectures.
 They are: GD, Projected GD, Proximal GD, Accelerated GD, Preconditioned GD, Newton method, zeroth-order algorithms
- In the next lecture, we will preview fundamental deep learning algorithms

Reference

Optimization for Machine Learning, EPFL Class CS-439 Martin Jaggi and Nicolas Flammarion

Advanced Machine Learning Systems, Cornell CS6787 Chris De Sa