Service Manua

Cassette Deck

RS-M51

(Silver Face)

Metal Tape Compatible Stereo Cassette Deck with Autorec Sensor, Auto-Tape Selector.

Peak-Hold 2-Color FL Meters and Soft-Touch Controls

This is the Service Manual for the following areas. N For Asia, Latin America, Middle East and Africa areas. ······ For Australia. 🗉 ······ For Asian PX.

□ ······· For European PX.

RS-M24 MECHANISM SERIES

Specifications

Track system: 4-track 2-channel stereo recording and playback

Tape speed: $4.8 \, \text{cm/s} (1-7/8 \, \text{ips.})$

Wow and flutter: 0.045% (WRMS), $\pm 0.13\%$ (DIN)

20 - 18,000 Hz Frequency response: Metal tape;

 $30-17.000 \, \text{Hz} \pm 3 \, \text{dB}$

CrO₂/Fe-Cr tape; 20 – 18,000 Hz $30-16,000 \, \text{Hz} \pm 3 \, \text{dB}$

 $20 - 17,000 \, \text{Hz}$ Normal tape: $30-15,000 \text{ Hz } \pm 3 \text{ dB}$

Signal-to-noise ratio: Dolby* NR in; 67 dB (above 5 kHz)

Dolby NR out; 57 dB (signal level = max. record-

ing level, Fe-Cr/CrO₂ type tape)

Fast forward and

rewind time: Approx. 90 seconds with C-60 cassette tape

MIC; sensitivity $0.25\,\text{mV}$, input impedance $7.6\,\text{k}\Omega$ Inputs:

applicable microphone impedance 400 Ω –

 $10 k\Omega$

LINE; sensitivity 60 mV, input impedance $98 k\Omega$

LINE; output level 700 mV, output impedance

 $2.5 \, k\Omega$ or less load impedance $22 \, k\Omega$ over

HEADPHONE; output level 125 mV, load imped-

ance $8/125\Omega$

75 kHz Bias frequency:

Motor: Electrical control DC governor motor

Heads: 2-head system:

1-MX head for record/playback

1-sendust/ferrite double-gap head for erasure

Power requirements: AC; 110/125/220/240 V, 50-60 Hz

(240V: only for Australia)

Power consumption: 17W

Dimensions:

Outputs:

 $43.0 \text{cm}(W) \times 11.9 \text{cm}(H) \times 27.0 \text{cm}(D)$ $(16-7/8"(W) \times 4-3/4"(H) \times 10-5/8"(D))$

6kg(13 lbs 3 oz)

Specifications are subject to change without notice.

* 'Dolby' and the double-D symbol are trademarks of Dolby Laboratories.

Technics

Matsushita Electric Trading Co., Ltd. P.O. Box 288, Central Osaka Japan

Weight:

Panasonic Tokyo Matsushita Electric Industrial Co., Ltd. 17-15, 6-chome, Shinbashi, Minato-ku, Tokyo 105 Japan

CONTENTS

ITEM PA	AGE
LOCATION OF CONTROLS AND COMPONENTS	
DISASSEMBLY INSTRUCTIONS	. 2
DISASSEMBLY NOTES (MECHANISM UNIT)	
ASSEMBLY INSTRUCTIONS	. 4
OPERATING PRINCIPLE OF AUTOMATIC INPUT CHANGEOVER MECHANISM	
TECHNICAL INFORMATION OF AUTO-REC SENSOR·······	
MEASUREMENT AND ADJUSTMENT METHODS	. 8
SCHEMATIC DIAGRAM (MAIN AMP AND DIGITAL VR SECTION) ····································	
CIRCUIT BOARDS (MAIN AMP AND EQUALIZER CIRCUIT BOARD)	· 14
SCHEMATIC DIAGRAM (DIGITAL VR CONTROL, POWER SUPPLY AND FL METER SECTION)	· 15
CIRCUIT BOARDS (DIGITAL VR CONTROL POWER SUPPLY AND FL METER CIRCUIT BOARD)	· 16
ELECTRICAL PARTS LOCATION	· 16
WIRING CONNECTION DIAGRAM	
MECHANICAL PARTS LOCATION	
CABINET PARTS ······	. 19

LOCATION OF CONTROLS AND COMPONENTS

- 1 Power switch (power)
- ② Cassette holder
- 3 Tape selector indicators (normal/CrO2/Metal/Fe-Cr)
- 4 Tape counter and Reset button (tape counter)
- ⑤ Microphone indicator (mic)
- 6 Dolby noise reduction indicator (Dolby NR)
- ⑦ Recording indicator (rec)
- ® Recording level setting indicator (level sensor read-out)
- 9 FL (fluorescent level) meters
- 10 Headphones jack (phones)
- ⊕ Eject button (▲ eject)
- Record button (rec)
- Rewind/Review button (◀◀ rew/rev)
- (5) Play button (▶ play)
- (Stop button (stop)

- ① Pause button (|| pause)
- ® Record-muting button (rec mute)
- Dolby noise-reduction switch (Dolby NR)
- 20 Recording level variation button [level fine adjust (down/up)]
- (2) Recording level detection indicator (search)
- 22 Recording level automatic setting button [autorec sensor (autorec level sensor)]
- Recording level setting complete indicator (level set)
- Microphone jacks (L mic R)
- 25 Output level control (OUTPUT LEVEL)
- **® Remote-control connector (REMOTE CONTROL)**
- ② Line output jacks (LINE OUT) (R · L)
- 28 Line input jacks (LINE IN) (R · L)
- 29 Tape selector [tape select auto (Metal/CrO2/normal)/ manual (Fe-Cr/Metal)]
- 30 Voltage selector (VOLTAGE SELECTOR)

(FJ ······ For PX.
N ······· For Asia, Latin America, Middle East and Africa areas.)

DISASSEMBLY INSTRUCTIONS

Ref. No.	Procedure	To remove ——.	Remove —— .	Shown in fig. ——.
1	1	Case cover	• 4 screws (A)	1
2	2	Bottom cover	• 4 red screws (B)	2
3	1→3	Front panel	Cassette lid(C) 11 screws	1 3, 4, 5
4	1 → 4	FL meter and FL meter circuit board	• 4 screws(E)	3
5	1→5	Equalizer circuit board	• 1 screw(F)	3
6	1→6	Power supply and digital volume control circuit board	• 3 red screws(G)	3
7	$1 \rightarrow 4 \rightarrow 7$	Digital volume scaler circuit board	• 1 screw (H)	3
8	$1 \rightarrow 2 \rightarrow 5 \rightarrow 8$	Main amp circuit board	• 2 red screws · · · · · (1) • 6 solder points · · · · (J)	4
9	1-3-9	Mechanism unit	• 4 screws (K)	5
10	$1 \rightarrow 3 \rightarrow 9 \rightarrow 10$	Operation button assembly	Cassette holder (L) 2 screws (M)	5 6

DISASSEMBLY NOTES (MECHANISM UNIT)

• Precautions for removal of the motor

When removing the motor, follow the procedure given below.

- 1. Remove screw (A), and then detach flywheel retainer (M44) by pulling it in the direction of the arrow as in fig. 1.
- 2. After removing screws (B), detach takeup belt (M78) and capstan belt (M76), and then sub chassis assembly (M72) can be removed. (fig. 1, 2)
- 3. When screws (C) is removed after detaching fast forward belt (M77), motor assembly (M71) can be removed. (fig. 2)

Head base plate (M57) and upper base plate (M83) removing procedure

- With screw (D) removed, head base plate pressure spring (M66) can be detached.
 In this case, take care not to lose steel ball (M65).
 (fig. 3)
- With head release spring (M68) removed, head base plate (M57) can be detached. (fig. 3, 4)
 In this case, take care not to lose steel ball (M65) and roller (M64) (fig. 4)
- 3. After removing pressure roller release spring (M25), remove pressure roller assembly (M40). (fig. 4)
- 4. Remove screw (E), and then upper base plate (M83) can be detached. (fig. 4)

Fig. 3

Fig. 4

Mechanism section

- For repair, measurement or adjustment with the mechanism removed from the unit be sure to ground the lower base plate of the mechanism.
- 2. For grounding, connect a extension cord to the mechanism's lower base plate and the lug terminal from earth plate-A (fig. 5).
- 3. Without grounding, the amplifier does not operate properly.

Fig. 5

ASSEMBLY INSTRUCTIONS

Belt mounting

Check that each belt is free of damage or grease on the surface, after that, set the belt as illustrated, and mount it on the lower base plate (M84) after that, set the takeup belt (M78) on the fast forward connection pulley assembly (M82) (fig. 1).

Positioning the takeup reel table assembly

When installing the takeup reel table assembly, be sure to mount the auto-stop friction hub (shown in fig. 3), as illustrated in fig. 2.

If the takeup reel table is positioned incorrectly at any place other than that shown in fig. 2, the auto-stop mechanism remains operative at all times.

Fig. 2 Fig. 3

Mounting the operation button assembly

Before mounting the operation button assembly on the mechanism body, be sure to lift the main control lever in the direction of the arrow using a screwdriver, as shown in fig. 4, until it locks in place.

If it is not mounted in this manner, the hub of the playback button assembly during playback catches on the main control lever, making it impossible to release playback mode.

Fig. 4

• How to install the flywheel retainer

- 1. Insert the thrust retainer into the hole (A) of the flywheel retainer as shown in fig. 5.
- 2. Hold the thrust retainer with the thumb as shown in fig. 6.
- 3. Engage the parts (B) and (C) of the flywheel retainer with the lower base plate as shown in fig. 7.
- 4. Shift down the flywheel retainer, supported at points (D), in the direction of the arrow as illustrated fig. 8.
- 5. Attach the screw (A) in the position as shown in fig. 1 on page 3.

OPERATING PRINCIPLE OF AUTOMATIC INPUT CHANGEOVER MECHANISM

This unit uses an automatic input changeover mechanism.

Automatic input changeover of this unit is built-in the MIC jack.

With the microphone plug inserted into the microphone jack, the mechanism automatically changes an input source from LINE IN to the MIC.

Fig. 1 Fig. 2

The automatic input changeover mechanism is simplified as shown in fig. 1.

With the microphone unplugged, the contact is positioned as shown in fig. 1, where an input source is at the LINE IN. Inserting the microphone plug into the jack causes an automatic contact changeover (shown in fig. 2).

The input source is changed from the LINE IN to the MIC, turning on the transistor (Q5) to cause the LED (D620) to light up, thus indicating that the input has been changed from the LINE IN to the MIC.

NOTE:

Even the microphone plug is inserted into the jack of a single channel alone, an input source at both channels is changed to the microphone, and the microphone display LED (D620) lights up.

TECHNICAL INFORMATION OF AUTO-REC SENSOR

The recording input control of this unit is of a digital control attenuator system based on the electronic circuitry.

An ordinary tape deck using a manual variable resistor system monitors the peak level of input signal by a level meter for correct recording level setting.

In contract, however, this unit is equipped with a function that can set the recording level automatically with a single touch of a button. Furthermore, fine adjustment is possible to any required recording level.

INPUT/OUTPUT CHARACTERISTICS OF AUTO-REC SENSOR

STANDARD RECORDING LEVEL ($-24\pm3.5\,\mathrm{dB}$)

Fig. 1

Fig. 1 shows the record monitor output level at LINE OUT after operation of the Auto-Rec Sensor, with 1 kHz sine wave signal applied to LINE IN.

As shown in fig. 1, when the input level is less than the standard input level of LINE IN $-24\,dB$, the output level decrease in proportion to the input. Also, the input applied is over $+6\,dB$ (2 V), no signal is generated on the output side. This is because the digital volume level is minimized by the Auto-Rec Sensor when the input is excessive.

Also, the Auto-Rec Sensor in the working input operation range is adjusted so that the amount of attenuation is automatically increased by 2 dB every time the input signal level increases by 2 dB, compared with the standard level as shown in fig. 1. For example, when -8 dB input signal, 16 dB higher than the standard recording level, is applied to LINE IN, it is automatically attenuated by 16 dB by the auto record level setting circuit. This causes the output level at LINE OUT to become $0.7 \, \text{V} \, (-3 \, \text{dB})$. Displayed on the LEVEL SENSOR READ-OUT at this time is 7.

The output level after setting the recording level by the Auto-Rec Sensor, is in the range of $0.7\,V - 0.9\,V$ (Level meter display: $0\,dB - + 2\,dB$) as shown in fig. 1.

MEASUREMENT AND ADJUSTMENT METHODS

• Circuit boards and adjustment parts location

Fig. 2

NOTES 1: Tape selector

This unit employs an auto tape select mechanism. This mechanism, as shown in fig. 3, automatically selects the circuits for metal/ CrO_2 /normal modes by using the tape detection holes provided above the cassette tape half.

However, another type of test tape is not provided with these tape detection holes. Therefore, when it is necessary to change over the electric circuit to metal/CrO₂/normal/Fe-Cr mode for the measurement and adjustment, take the following measures according to the types of the test tapes.

Setting it to the metal tape mode:

- When the tape used is provided with metal tape mode detection hole, set the tape selector located at the back of the set to auto position (fig. 4).
- When the tape used is not provided with the metal tape detection hole, set the tape selector to metal-manual position (fig. 5).

• Set the tape selector located at the back of the set to auto position (fig. 4).

• Set the tape selector located at the back of the set to Fe-Cr-manual position (fig. 6).

Setting it to the CrO2 tape mode:

- When the tape used is provided with CrO_2 tape mode detection hole, set the tape selector located at the back of the set to auto position (fig. 4).
- When the tape used is not provided with the CrO₂ tape detection hole, set the tape selector to auto position as shown in fig. 4, and pull out the 6 pin socket-G, and short-circuit the terminal of the 6 pin post-G as shown in fig. 7, then the circuit is set to CrO₂ mode.

Fig. 4

Fig. 5

Fig. 6

NOTES 2: Keep good condition, set switches and controls in the following positions, unless otherwise specified.

- Make sure heads are clean.
- Make sure capstan and pressure roller are clean.
- Judgeable room temperature: 20±5°C (68±9°F)
- Dolby NR switch: OUT

- Tape selector: Auto position
- Output level control: Maximum
- Level fine adjust: Maximum

ITEM **MEASUREMENT & ADJUSTMENT** A Head position (The head adjusting plate is provided to adjust the tape Head Adjusting Plate adjustment touch of the head in cue or review mode.) 1. Press the playback button and pause button. Condition: Measure the space between the pinch roller and the * Playback and pause mode canstan ressure Roller Standard value: 0.5±0.3 mm Space (adjustable) 3. If the measured value is not within the standard value. untighten screw (A), and slide the head adjusting plate in the direction of arrow (B) for adjustment (Fig. 8). Fig. 8 Record/ B Head azimuth Record/playback head azimuth adjustment playback head LINE OUT adjustment 1. Test equipment connection is shown in fig. 9. Condition: Playback azimuth tape (QZZCFM 8kHz). Playback mode Test tape Adjust record/playback head angle adjustment screw (B) in * Playback mode Fig. 9 fig. 10 so that output level at LINE OUT becomes Equipment: maximum * VTVM * Oscilloscope Measure both channels, and adjust levels for equal output. * Test tape (azimuth) Record/playback head After adjustment lock head adjustment screw with lacquer. ··· QZZCFM * Test tape (tape path viewer) Erase head azimuth adjustment ... QZZCRD 1. Test equipment connection is the same above but use the tape path viewer (QZZCRD) instead of test tape (QZZCFM). Fig. 10 2. Playback this tape. 3. Adjust screw (C) shown in fig. 11 so that the tape may not get curled or malformed by tape guide of the erase head. 4. After adjustment, lock head adjust screw with lacquer. Tape speed Record/playback head Tape speed accuracy and the same of th Condition: Test equipment connection is shown in fig. 12. Playback test tape (QZZCWAT 3,000 Hz), and supply * Playback mode Playback mode Digital electronic counter playback signal to frequency counter. Test tape Equipment: Fig. 12 Measure this frequency. * Digital electronic counter or 4. On the basis of 3,000 Hz, determine value by following formula: frequency counter Tape speed accuracy = $\frac{f - 3,000}{2,000} \times 100$ (%) where, f = measured value * Test tape ··· QZZCWAT 3.000 5. Take measurement at middle section of tape. Standard value: ±1.5% Adjustment method 1. Playback the test tape (middle). Adjust so that frequency becomes 3,000 Hz. 3. Tape speed adjustment VR shown in fig. 1. **Note:** Please use non metal type screwdriver when you adjust tape speed accuracy on this unit. Tape speed fluctuation Make measurements in same manner as above (beginning, middle and end of tape), and determine the difference between maximum and minimum values and calculate as follows: $\frac{f_1 - f_2}{2.000} \times 100$ (%) $f_1 = \text{maximum value}, f_2 = \text{minimum value}$ Tape speed fluctuation = Standard value: Less than 1% Playback frequency 1. Test equipment connection is shown in Playback frequency response chart response fig. 9. Place UNIT into playback mode. Condition: Playback the frequency response test 125 Hz 200 Hz * Playback mode 500 Hz 1 kHz tape (QZZCFM). + 2.5 dB * Normal tape mode 4. Measure output level at 315 Hz, 12.5 kHz, * Output level control \cdots MAX 0 dB 8 kHz, 4 kHz, 1 kHz, 250 Hz, 125 Hz and 0 dB Equipment: 63 Hz and compare each output level 315 Hz * VTVM * Oscilloscope with the standard frequency 315 Hz, at 63 Hz 125 Hz 200 Hz * Test tape · · · QZZCFM LINE OUT. 5. Make measurement for both channels. Fig. 13

ITEM **MEASUREMENT & ADJUSTMENT** 6. Make sure that the measured value is within the range specified in the frequency response chart (Fig. Adjustment method 1. If the measured value decreases at high frequency range, as shown in fig. 14, P.C.B. connection points (A) (L-CH) and (A') (R-CH) should be shorted (Fig. 18). Compensation value 4 kHz 6kHz 8kHz 10 kHz 12.5 kHz around around around around around Fig. 14 $+0.1 \, dB$ $+0.2 \, dB$ $+0.5 \, dB$ +0.8dB $+1.2\,\mathrm{dB}$ 2. If the measured value increases at high frequency range, as shown in fig. 15, P.C.B. connection points (A) (L-CH) and (A') (R-CH) should be opened (Fig. 18). Compensation value 4 kHz 6kHz 8kHz 10 kHz 12.5 kHz around around around around around $-0.5\,\mathrm{dB}$ $-0.2 \, dB$ $-0.8 \, dB$ $-1.2\,\mathrm{dB}$ $-0.1 \, dB$ Fig. 15 3. If the measured value decreases at middle frequency range, as shown in fig. 16, P.C.B. connection points (B) (L-CH) and (B') (R-CH) should be opened (Fig. 18). Compensation value 700 Hz 1 kHz 2 kHz 4 kHz 10 kHz around around around around around $+0.1 \, dB$ $+0.2 \, dB$ $+0.5 \, dB$ +0.6dB $+0.8 \, dB$ Fig. 16 4. If the measured value increases at middle frequency range, as shown in fig. 17, P.C.B. connection points (B) (L-CH) and (B') (R-CH) should be shorted (Fig. 18) Compensation value 10 kHz 700 Hz 1 kHz 2 kHz 4 kHz around around around around around Fig. 17 $-0.1 \, dB$ $-0.2 \, dB$ $-0.5\,\mathrm{dB}$ $-0.6 \, dB$ $-0.8 \, dB$ Connection point (B) Connection point (A) Connection point (B') Connection point (A') Main amp circuit board J4 Fig. 18 Playback gain Test equipment connection is shown in fig. 9. 2. Playback standard recording level portion on test tape (QZZCFM 315 Hz), and using VTVM measure Condition: the output level at LINE OUT * Plavback mode 3. Make measurement for both channels. * Normal tape mode * Output level control ··· MAX Standard value: around 0.7 V Equipment: * VTVM * Oscilloscope Adjustment * Test tape ··· QZZCFM 1. If measured value is not standard, adjust VR1 (L-CH), VR2 (R-CH) (See fig. 1). 2. After adjustment, check " Playback frequency response" again.

RS-M51 RS-M51

ITEM	MEASUREMENT & ADJUSTMENT
 ₱ Bias leakage Condition: * Record mode * Metal tape mode Equipment: * VTVM * Oscilloscope 	 Test equipment connection is shown in fig. 19. Place UNIT into record mode. Adjust trap coil L1 (L-CH), L2 (R-CH) so that measured value on VTVM becomes minimum. Take adjustment for both channels.
© Erase current Condition: * Record mode * Metal tape mode Equipment: * VTVM * Oscilloscope	 Test equipment connection is shown in fig. 20. Place UNIT into record mode and measure voltage at test point 7. Determine erase current with the following formula: Erase current (A) = Voltage across both ends of R201 1 (Ω) Standard value: 95±5mA (Tape selector ··· Metal) If measured value is not within standard, adjust VR203.
 ♣ Bias current Condition: Record mode Normal tape mode Fe-Cr tape mode CrO₂ tape mode Metal tape mode Output level control ··· MAX Equipment: VTVM Oscilloscope 	 Test equipment connection is shown in fig. 21. Set UNIT into record mode, and normal tape mode. Read voltage on VTVM and calculate bias current by following formula: Bias current (A) = Value read on VTVM (V) 10 (Ω) TP1 (R3) TP2 (R4) VTVM Oscilloscope If measured value is not within standard, adjust VR201 (L-CH) and VR202 (R-CH). Set the tape selector to each position. Make sure that the measured value is within standard. Standard value: around 380 μA (Fe-Cr tape mode), around 450 μA (CrO2 tape mode), around 700 μA (Metal tape mode)
Overall frequency response Condition: * Record/playback mode * Normal tape mode * Fe-Cr tape mode * Metal tape mode * Level fine adjust ··· MAX * Output level control ··· MAX * Standard input level; MIC ······ − 72 ± 3.5 dB LINE IN ··· − 24 ± 3.5 dB Equipment: * VTVM * Oscilloscope * ATT * AF oscillator * Resistor (600 Ω) * Test tape (reference blank tape) ··· QZZCRA for Normal ··· QZZCRX for CrO₂ ··· QZZCRZ for Metal	* This chart indicates the standard values for the former type of QZZCRA when in use. The new type of QZZCRA is marked as shown in fig. 23. Former type OZZCRA Marking
	Fig. 23

ITEM	MEASUREMENT & ADJUSTMENT
	Measurement 1. Test equipment connection is shown in fig. 22. 2. Place the test tape (QZZCRA) in the cassette holder. 3. Set UNIT into record mode, and normal tape mode. 4. Supply 1kHz signal from AF oscillator through ATT to LINE IN. 5. Adjust ATT so that input level is — 20dB below standard recording level (standard level (st
Overall gain Condition: Record/playback mode Normal tape mode Level fine adjust ··· MAX Output level control ··· MAX Standard input level; MIC ······ − 72 ± 3.5 dB LINE IN ··· − 24 ± 3.5 dB Equipment: VTVM	 Test equipment connection is shown in fig. 22. Place UNIT into record mode, and normal tape mode. Supply 1 kHz signal (-24 dB) from AF oscillator, through ATT to LINE IN. Adjust ATT until monitor level at LINE OUT becomes 0.7 V. Using test tape, make recording. Playback recorded tape, and make sure the value at LINE OUT on VTVM becomes 0.7 V. If measured value is not 0.7 V, adjust VR3 (L-CH), VR4 (R-CH) (See fig. 1). Repeat from step (2).
© Fluorescent meter Condition: * Record mode * Level fine adjust ··· MAX * Output level control ··· MAX Equipment: * VTVM * AF oscillator * ATT * Oscilloscope * Resistor (600 Ω)	 Test equipment connection is shown in fig. 22. As shown in fig. 27, connecting the base of Q402 (Point ①, see fig. 1 on page 8) and ground stops the oscillation of the astable multivibrator comprising Q402 and Q403. Supply 1 kHz signal (-24 dB) to the LINE IN jack, then press the record button. Adjust the ATT so that the output level at LINE OUT jack becomes 0.7 V (The input level at this condition is termed the standard input level).

● Dolby N

Condition:

* Record m

* Dolby NR

* Level fine

Equipment:
* VTVM
* ATT

* Resistor (

Digital in controlle

Condition:

* Record m

* Level fine

··· Indicat and "1

Equipment:
* VTVM
* ATT

* Resistor * DC voltm

ape mode),

n in use. hen in use.

arking

ITEM	MEASUREMENT & ADJUSTMENT
ITEM	Measurement 1. Test equipment connection is shown in fig. 22. 2. Place the test tape (QZZCRA) in the cassette holder. 3. Set UNIT into record mode, and normal tape mode. 4. Supply 1 kHz signal from AF oscillator through ATT to LINE IN. 5. Adjust ATT so that input level is — 20 dB below standard recording level = 0 VU). 6. At this time, LINE OUT level indicates 0.07 V. 7. Record each frequency 50 Hz, 70 Hz, 600 Hz, 1 kHz, 2 kHz, 8 kHz, 10 kHz, and 12 kHz (14 kHz for CrO₂, Fe-Cr and Metal). 8. Playback and express in dB the difference between playback output level of each frequency based on playback output level of 1 kHz. 9. Make sure that the measured value is within the range specified in the overall frequency response chart (Shown in fig. 24). 10. Change test tape to Fe-Gr (QZZCRY), CrO₂ (QZZCRX) and Metal (QZZCRZ). 11. Set UNIT into each tape mode. 12. Measure as same as manner from step (3) to step (8). 13. Make sure that the measured value is within the range specified in the overall frequency response chart for Fe-Cr, CrO₂ and Metal tape shown in fig. 25.
Overall gain Condition: * Record/playback mode * Normal tape mode * Level fine adjust ··· MAX * Output level control ··· MAX * Standard input level; MIC ······ 72 ± 3.5 dB	12/4-
LINE IN··· - 24±3.5 dB Equipment: * VTVM	1. Test equipment connection is shown in fig. 22. 2. As shown in fig. 27, connecting the base of Q402 (Point ①, see fig. 1 on page 8) and ground stops the oscillation of the astable multivibrator comprising Q402 and Q403. 3. Supply 1 kHz signal (-24 dB) to the LINE IN jack, then press the record button. 4. Adjust the ATT so that the output level at LINE OUT jack becomes 0.7 V (The input level at this condition is termed the standard input level).

ITEM	MEASUREMENT & ADJUSTMENT
	5. Adjust the ATT so that input level is $-20 dB$ below standard recording level. B. Adjust VR401 so that the $-20 dB$ segment lights up in the $-20 \pm 0.8 dB$ range (L-CH only) (See fig. 28). 6. Adjust the ATT so that the output level at LINE OUT jack becomes 0.7 V (The input level at this condition is termed the standard input level). B. Adjust VR402 so that the $+1 dB$ segment lights up in the $0 \pm 0.2 dB$ range of the standard input level (See fig. 29). 7. Repeat twice between steps (5) and (6) above. 8. Adjust ATT and check that all segments light up when an input signal level is increased to $10 dB$ higher than the standard input level (See fig. 30).
Dolby NR circuit Condition: Record mode Dolby NR switch···IN/OUT Level fine adjust··· MAX Equipment: VTVM AF oscillator ATT Oscilloscope Resistor (600 Ω)	 Test equipment connection is shown in fig. 31. Place UNIT into record mode, set the Dolby NR switch to OUT position and supply to LINE IN to obtain — 34.5 dB at TP9 (L-CH), TP10 (R-CH) (frequency 5 kHz). Confirm that the value at IN position is 8 (±2.5) dB greater than the value at OUT position of Dolby NR switch. Fig. 31 Oscilloscope
Digital input level controller Condition: Record mode Level fine adjust ··· Indication number "3" and "15" Equipment: VTVM	1. Increase the output level of the oscillator to 10 dB. Notes: The adjustment of this circuit is performed by applying about 1.25 V, 26 dB higher than the standard recording level (-24 ± 3 5 dB), and the input signal of about 0.08 V, 2 dB higher than the standard recording level, to LINE IN. Normally, the output of the oscillator is adjusted so that the output from the attenuator is 1 V when the attenuator is set to 0 dB. However, this does not generate an output higher than 1 V, and requires the output of the oscillator to be increased by 10 dB. In this case, the output level from the attenuator is around 3.2 V (Fig. 32). 2. Test equipment connection is shown in fig. 33. 3. Place the test tape in the cassette holder. 4. Press the record button and pause button. 5. Push the level fine adjust button so that the level sensor read-out display is 15. 6. Supply 1 kHz signal from AF oscillator, through ATT to LINE IN. 7. Adjust ATT until monitor level at LINE OUT becomes 0.7 V. The attenuation of ATT at this time is the standard recording level. (Since the output level of the AF oscillator has been increased by 10 dB, the attenuation of ATT is at around -34 dB.) 8. Apply 1 kHz signal (around 1.25 V), 26 dB higher than the standard recording level, to LINE IN. (Apply it simultaneously to LEFT and RIGHT channels.) 9. Push the level fine adjust button so that the level sensor read-out display is "3". 10. Connect the DC voltmeter or oscilloscope (DC display) to TP11 (Fig. 34). 11. Slowly turn VR502 clockwise and stop it when the DC voltmeter display changes from L (0V) to H (about 5 V). 12. Next, apply 1 kHz signal (around 0.08 V), 2 dB higher than the standard recording level, to LINE IN. 13. Push the level fine adjust button so that the level sensor read-out display is "3". 14. Slowly turn VR502 clockwise and stop it when the DC voltmeter display changes from L (0V) to H (about 5 V). 15. Repeat steps (8) to (14) above several times.

RS-M51 RS-M51

TERMINATION (BOTTOM VIEW)

Q1-4, 5, 7-34, 201-212

EQUIVALENT CIRCUIT

SPECIFICATIONS

* Level fine adjust · · · MAX

5. Lon 1071110110 * 01	atput level control - 1-1/00
Playback S/N ratio * Test tape ··· QZZCFM	More than 46 dB (without NAB filter)
Overall distortion * Test tape QZZCRA for Normal QZZCRX for CrO ₂ QZZCRY for Fe-Cr	Less than 3% (Normal) Less than 3.5% (Fe-Cr, CrO ₂ , Metal)
Overall S/N ratio * Test tape ··· Q77CRA	More than 43 dB (without NAB filter)

RS-M51

24 25 26 27 28 29 30 31 NO . 21 22 23 20

O309-312 O313, 314 Q315, 316

2SC945 (P, Q) 2SC1400 (E, U) 2SC945 (P, Q)
DIGITAL VR DRIVE BUFFER AMP DIGITAL VR DRIVE Q301, 302 Q303-306 2SC1400 (E, U) 2SC945 (P, Q) BUFFER AMP DIGITAL VR DRIVE Q307, 308 2SC1400 (E, U) BUFFER AMP TO MAIN AMP R351 * 0315 0.7V TO MAIN AMP - 2 0316 0.7V TO MAIN AMP TO MAIN AMP -3 3.0V 3.8V 3.0V 5 TO DIGITAL VR CONTROL & POWER SUPPLY SECTION TO DIGITAL VR CONTROL & POWER SUPPLY SECTION

TERMINATION (BOTTOM VIEW)

EQUIVALENT CIRCUIT

Q1-4,5,7-34,201-212

SPECIFICATIONS

* Level fine adjust ··· MAX * Output level control · · · MAX

Playback S/N ratio *Test tape ··· QZZCFM	More than 46dB (without NAB filter)	
Overall distortion * Test tape QZZCRA for Normal QZZCRX for CrO ₂ QZZCRY for Fe-Cr	Less than 3% (Normal) Less than 3.5% (Fe-Cr, CrO ₂ , Metal)	
Overall S/N ratio * Test tape ··· QZZCRA	More than 43dB (without NAB filter)	

OTES: RESISTORS	CAPACITORS	
ERD · · · Carbon	ECG □ ····· Ceramic	ECE ☐ N ··· Non polar electrolyti
ERG · · · Metal-oxide	ECK ☐ ····· Ceramic	ECOS ······ Polystyrene
ERS ··· Metal-oxide	ECC □ ····· Ceramic	ECS□ ····· Tantalum
ERO · · · Metal-film	ECF □ ····· Ceramic	QCS ······ Tantalum
ERX · · · Metal-film	ECQM ····· Polyester film	•
ERQ ··· Fuse type metallic	ECQE Polyester film	
ERC ··· Solid	ECQF ····· Polypropylene	
ERF ···· Cement	ECE □ ····· Electrolytic	

Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.
		R213	ERD25TJ224	R518		ļ	
RES	ISTORS	R214	ERD251J224 ERD25FJ103	R519	ERD25FJ222 ERD25FJ472	C35, 36	ECFWD104KXY
R1, 2	ERD25TJ563	R215	ERD25FJ472	R520	ERD257J123	C37, 38	ECQM1H472JZ
R3, 4	ERD25FJ100	R216	ERD25TJ223	11.320	LND2313123	C39, 40	ECQM1H562JZ
R5, 6	ERD25TJ123		LINDESTIGES	l		C41, 42	ECEA1HS100
R9, 10	ERD25FJ101	R217	ERD25FJ332	R521	ERD25TJ823	C43, 44	ECEA1JS4R7
R11, 12	ERD25FJ560	R218	ERD257J332	R522	ERD25TJ474	C45, 46	ECQP1471JZ
R13, 14, 15,		R219	ERD25FJ103	R523, 524, 5	25, 526, 527	C47, 48	ECEA1HS100
113, 14, 13,		R220	ERD25TJ473	l	ERD25TG2003	C49, 50	ECQM1H473KZ
17 10	ERD25TJ104	R221	ERD251J473	R528, 529, 5		C51, 52	ECEA1HS100
R17, 18	ERD25FJ822				ERD25TG1003	C53, 54	ECKD1H152KB
R19, 20	ERD25TJ563	R222	ERD25FJ103	R531, 532, 5	33, 534, 535	C55, 56	ECCW1H151K0
R21, 22	ERD25FJ472	R223	ERD25FJ221		ERD25FJ562	C57, 58	ECEA50ZR68
23, 24	ERD25fJ104	R224	ERD25FJ272	R537	ERD25FJ471	C59, 60	ECEA2AS010
		R225	ERD25TJ224	R538	ERD25FJ122	l	
25, 26	ERD25FJ472	R226, 227	ERD25TJ683	R540	ERD25FJ121	C61, 62	ECEA50ZR1
27, 28	ERD25FJ821	l		R541	ERD25FJ391	C63, 64	ECEA1CS330
29, 30	ERD25TJ124	R228	ERD25FJ182	R542	ERD25TJ183	C65, 66	ECQV05224JZ
R31	ERD25FJ152	R229	ERD25TJ393	1		C67, 68	ECQM1H473JZ
R33, 34	ERD25FJ472	R230	ERD25FJ222	R543, 544	ERD25FJ122	C69, 70	ECQM1H823KZ
35, 36	ERD25FJ103	R231	ERD25FJ392	R545	ERD25TJ223	C71, 72, 73,	74
R37, 38	ERD25FJ562	R232	ERD25FJ102	R546	ERD25FJ332		ECQM1H183KZ
R39, 40	ERD25FJ103	R233	ERD25TJ394	R547	ERD25TJ223	C75, 76	ECQM1H273KZ
R41, 42	ERD25TJ224	R234	ERD25FJ332	R548	ERD25FJ222	C77, 78	ECEA1HS100
143	ERD25FJ152	R235	ERD25FJ222	R549, 550	ERD25TJ223	C79, 80	ECEA1JS4R7
		R236	ERD25TJ223	R551	ERD25FJ471	C81	ECEA1CS221
R45, 46	ERD25FJ102	R237	ERD25FJ152	R552	ERD25TJ223	1	
R47	ERC12GJ101			R553	ERD25FJ222	C83, 84	ECEA2AS010
849, 50, 51,		R238	ERD25FJ102		57, 558, 559	C85	ECEA1ES101
ĺ	ERD25FJ102	R239, 240	ERD25FJ122	1	ERD25TJ123	C87, 88	ECEA1HS100
853, 54	ERD25FJ332	R242	ERD25FJ272	1	2.102013123	C89, 90, 91	ECEA1CS221
855, 56	ERD25TG2003	R301, 302	ERD25TJ563	R560	ERD25FJ562	C93, 94	ECQM1H183K2
57, 58	ERD25TJ474	R303, 304	ERD25FJ101	R561	ERD25FJ362 ERD25FJ103	C201, 202	ECCW1H181K
859, 60	ERD25FJ181	R305, 306	ERD25TJ684	R562		C201, 202	ECQF4333KZH
861, 62	ERD25TJ274	R307, 308	ERD25FJ392		ERD25FJ102 ERD25FJ222	C203	ECFWD104KXY
863, 64	ERD25TJ473		ERD25TJ123	R563		C204 C205, 206	
865, 66, 67, 6		R311, 312, 3		R564, 565	ERD25TJ473	C205, 206	ECQM1H822KZ
	ERD25TJ333	1.011,012,0	ERD25FJ103	R566	ERD25TJ333	10207	ECQM1H682KZ
	21102013000	R315, 316	ERD25FJ182	R567	ERD25FJ470	0000	F0F4F07033
69, 70	ERD25TJ394		2	R568	ERD25TJ153	C208	ECEA50ZR33
71,72	ERD25FJ272	R317, 318	ERD25FJ103		ERD25FJ102	C209	ECFWD104KXY
	ERD25FJ392	R319, 320	ERD25FJ101	R570	ERD50FJ100	C210, 211, 2	
75, 76, 77, 7		R321, 322	ERD25TJ684	l			ECEA1HS100
		R323, 324	ERD25FJ392	R571, 572		C213	ECEA1ES101
	ERD25FJ102 ERD25TJ684	R325, 326	ERD25TJ123		ERD25FJ821	C214	ECEA1VS101
	ERD25FJ272	R327, 328	ERD25FJ122		ERD50FJ470	C215	ECEA2AS3R3
	ERD25FJ681	R329, 330	ERD25FJ103	R574	ERD25FJ122	C216	ECEA1VS221
		R331, 332	ERD25FJ472	R575	ERD25TJ393	C217	ECEA2AS3R3
	ERD25FJ470	R333, 334	ERD25TJ333	R576	ERD25TJ224	C218	ECEA2AS010
R87, 88 R89, 90, 91, 9	ERD25FJ150	R335, 334		R578, 579	ERD25TJ223	C219	ECEA1VS330
	ERD25TJ223	M333, 330	ERD25FJ103	R580	ERD25TJ473		i
	LND2313223	D227 220	EDDOETIOOO	R581	ERD25TJ223	C220	ECKD1H102KB
R95, 96	EDD 255 1021	R337, 338	ERD25TJ223	R590	ERD25FJ471	C221	ECEA2AS010
	ERD 25FJ821	R339, 340	ERD25FJ101	R591	ERD25FJ561	C301, 302	ECQM1H682KZ
	ERD25TJ223	R341, 342	ERD25TJ684			C303, 304	ECEA16M10R
	ERD25FJ102	R343, 344	ERD25FJ392	R592	ERD25FJ471	C305, 306	ECEA50Z1
	ERD25FJ472	R345, 346	ERD25FJ332	R593, 594	ERD25FJ391	C307, 308	ECEA16M10R
R103, 104, 10		R347, 348	ERD25TJ123	R595	ERD25FJ471	C309, 310	ECEA50Z1
	ERD25FJ182	R349, 350	ERD25FJ103	R596, 597	ERD25FJ121	C311, 312	ECEA16M10R
	ERD25FJ272	R351, 352	ERD25FJ472	R601	ERD25FJ222	C313, 314	ECEA1JS4R7
	ERD25TJ223	R353, 354	ERD25TJ333	R602	ERD25TJ223	C401, 402	ECEA50ZR22
	ERD25FJ101	R401	ERD25TJ153	R603	ERD25FJ271		
,	ERD25FJ103	1		R701	ERD25FJ181	C403, 404	ECEA2AS3R3
115, 116	ERD25TJ563	R403	ERD25FJ220	R702	ERD25FJ151	C405, 404	ECOM1H393KZ
		R407, 408, 4		l		C405	ECEA1HS100
	ERD25TJ123		ERD25TJ223	VARIABI		C406	ECEATHS100
	ERD25FJ152	R411, 412	ERD25TG2702		RESISTORS	C407	ECFWD104KXY
	ERD25FJ561	R413, 414	ERD25TJ104	VR1, 2, 3, 4	EVNK4AA00B24	C501, 502	ECEA1JS4R7
	ERD25TJ153	R415, 416	ERD25TG1003	VR5	EWKENAK15A14	C501, 502	ECEA2AS3R3
	ERD25FJ102	R417, 418	ERD25FJ331	VR201, 202		C503 C504, 505	
	ERD25FJ471	R419, 420	ERD25TJ224	VR203	EVNK4AA00B14	C504, 505	ECQM1H333KZ
	ERD25TJ683	R421, 422	ERD25FJ102	VR401	EVNK4AA00B52		ECEATHS100
	ERD25FJ122	R423	ERD25TJ223	VR401 VR402	EVNK4AA00B14	C508, 509	ECKD1H103PF
	ERD25TJ473	R425	ERD25FJ151	VR501	EVNK4AA00B24		
137, 138	ERD25TJ104			VR502	EVNK4AA00B23	C510	ECEA1AS221
		DAGE	EDDOEEILOS			C511	ECEA1CS330
	ERD25FJ332	R426	ERD25FJ103	CAP	ACITORS	C512	ECEA1HS100
	ERD25FJ392	R427	ERD25TJ332	C1, 2	ECEA16M10R	C513	ECFWD104KXY
	45, 146, 147, 148	R428	ERD25FJ102		l .	C515	ECEA1AS470
	ERD25FJ102	R429, 430	ERD25TJ684	C3, 4	ECKD1H471KB	C516	ECEA1AS471
	ERD25FJ101	R501, 502	ERD25TJ223	C5, 6	ECKD1H221KB	C517 ▲	ECET16R103S
151, 152, 15		R503, 504, 5		C7	ECEA1ES101	C518	ECEA50Z1
	ERD25FJ220	l	ERD25FJ102	C9, 10	ECKD1H102KB	C519	ECEA1ES101
	ERD25FJ102	R507	ERD25FJ561	C11, 12	ECEA1CS330		ECEA1ES101
	ERD25FJ390	R508	ERD25TJ105	C13, 14	ECCW1H470K		
	ERD25FJ1R0	R509	ERD25FJ102	C15, 16	ECEA1CS330	0521	FOEA 11/0100
		R510	ERD25FJ330	C17, 18	ECQM1H273JZ	C521	ECEA1VS102
	ERD25TJ683			C19, 20	ECEA1HS100	C522	ECKD1H103PF
204, 205	ERD25FJ560	P511	EDD2EC1102			C523	ECEA1ES331
i		R511	ERD25FJ103	C21, 22	ECQM1H123KZ		ECEA1VS331
'	ERD25TJ104	R512	ERD25FJ122	C23, 24	ECEA50MR33R	C525 ▲	ECEA1VS102
	ERD25FJ471	R513	ERD25FJ822	C25, 24	ECEASOMICS ST		ECEA1CS222
		R514	ERD25TJ183	C25 C27, 28		C527, 528	ECKF1E473ZV
208	ERD25TJ223	11314		11.27.28	ECEA1AS221	2027, 320	
208 209	ERD25TJ223 ERD25TJ333	R515	ERD25FJ102		E00M****	C529	ECEA1AS470
208 209 210	ERD25TJ333		ERD25FJ102 ERD25FJ332	C29, 30	ECQM1H273JZ	C529	ECEA1AS470
208 209 210 211		R515			ECQM1H273JZ ECEA1HS100 ECEA50ZR33	C529 C550, 551, 5	

• Nor ··· Normal tape mode

• CrO2····· CrO2 tape mode

··· Metal tape mode

nicrofarads (μ F) unless specified otherwise.

ohms (Ω) , 1/4 watt unless specified otherwise.

·· Erase current adjustment VR (for metal tape).

ows test point. e.g. V=Test point 1.

s shown in circuitry are under no signal condition and record mode with minimum position.

Bias leakage adjustment coil. s (A), (A'), (B) and (B') For playback frequency response adjustment

use VTVM.

 $1,000\,k\Omega.$

NOTE: ⚠ indicates that only parts specified

by	by the manufacturer be used for safety.					
Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.	
C554, 555, 5	56, 557, 558, 559,	Q209	2SC945	D404, 405	MA161	
	ECKD1H681KB	Q210, 211	2SA999E	D501, 502, 5	03, 504, 505, 506,	
		Q212	2SC945	507, 508, 5	09, 510, 511, 512	
C561, 562	ECKD1H103PF	Q301, 302	2SC1400E	İ	MA161	
	ECEA1AS470	Q303, 304, 3	05, 306	D513 △	RD22EB1	
C564, 565, 5			2SC945	D514 △	RD20EB3	
0304, 303, 3	ECKD1H103PF	Q307, 308	2SC1400E	D515, 516, 5	17, 518, 519, 520,	
C567	ECKF1E473ZV	-		521,522		
	ECKD1H103PF	Q309, 310, 3	11, 312	Δ	SM112	
C569	ECKD1H103FF		2SC945	D523	SM112	
		0313, 314	2SC1400E	D601, 602, 6	03, 604, 605, 606,	
C570 △ C701	ECKD1H103PF		2SC945	607, 608, 6	09, 610, 611, 612,	
	ECQM6103MZ	0317, 318, 3	19. 320. 321	613, 614, 6	15	
*For PX	ECQM6103MZ	(000)	2SA999E		TLR205	
	atin America.	0401, 402, 4		D616	TLY205	
			2SC945	D618	LN220RP	
Wildule Eas	t and Africa areas.	0501, 502, 5	03. 504	D619, 620	LN320GP	
COMBIN	ATION		2SC945			
CONIDIN	PARTS	0505	2SA999E	D701	SLR54URC	
001.0		0506, 507, 5		D702	SLR54GC	
CR1, 2	EXRP681K682	1	2SC1847			
CR3, 4	EXRP122K682	0509. 510	2SC945	INTEGRA	i 	
LPF1, 2	QLM9Z6K	0601, 602, 6		INTEGRA	CIRCUITS	
XR501	RM5222K	1001,001,0	2SC2021			
TRAN	ISISTORS			IC1, 2	NE646B	
		0701, 702	2SC2021	IC401	AN6552	
Q1, 2, 3, 4	2SC1400E	(7,01,702	2002021	IC402	AN6870	
Q5	2SC945	DIODES	&	IC501, 502, 5		
Q7, 8, 9, 10	2SC945		RECTIFIERS		AN6552	
Q11, 12	2SD592NCS	D1, 2, 3, 4	MA161	IC511	M74LS00P	
	16, 17, 18, 19, 20,		03, 204, 205, 206,	IC512	M74LS04P	
21, 22, 23,		207, 208, 2		IC513	M74LS00P	
	2SC945	207, 200, 2	MA161	IC521	M74LS04P	
	2SD592NCS	D210	RD22EB1	IC522	M53202P	
Q29, 30, 31,		D210	SM112	IC523	M74LS221P	
	2SC945		MV121			
					M74LS193P	
Q33, 34	2SA999E	D212		IC531	M/4L3193P	
Q201, 202	2SA999E 2SD592NCS	D213, 214	MA161	IC532	M74LS08P	
	2SA999E	D213, 214 D215	MA161 TLY208	IC532 IC533		
Q201, 202	2SA999E 2SD592NCS	D213, 214	MA161 TLY208 18	IC532 IC533 IC541	M74LS08P	
Q201, 202 Q203 Q204	2SA999E 2SD592NCS	D213, 214 D215 D216, 217, 2	MA161 TLY208 18 TLG208	IC532 IC533	M74LS08P M74LS00P	
Q201, 202 Q203	2SA999E 2SD592NCS 2SA999E	D213, 214 D215 D216, 217, 2 D401, 402	MA161 TLY208 18 TLG208 MA161	IC532 IC533 IC541	M74LS08P M74LS00P M74LS20P	
Q201, 202 Q203 Q204	2SA999E 2SD592NCS 2SA999E 2SC1384	D213, 214 D215 D216, 217, 2	MA161 TLY208 18 TLG208	IC532 IC533 IC541 IC542	M74LS08P M74LS00P M74LS20P M53275P	

Ref. No.	Part No.	Part Name & Description	
	TRAN	SFORMER	
T701			
	QLPD58EME	Power Transformer	
∗For PX.			
★For Asia , L	atin America, Middl	e East and Africa areas.	
	QLPA57ELE	"	
*For Austra	lia.		
COILS			
L1. 2	0L0X1032W	Bias Trap Coil	
L3, 4	QLQX1032W QLQX2421Y	Peaking Coil	
L201	QLB0194K	Bias Oscillation Coil	
L201	QLQX2421Y	RF Trap Coil	
1202		·	
	sw	ITCHES	
S1	QSSE204T	Slide Switch	
		(Record/Playback Selector)	
S2	QSW4207	Push Switch	
		(Dolby IN/OUT Selector)	
S3	QSW1111H	Push Switch (Rec-Mute ON/OFF)	
\$4	QSB0253M	Leaf Switch (Auto Tape Selector)	
S5	QSM0067	Micro Switch (Auto Tape Selector)	
S6	QSS1048	Slide Switch	
		(Tape Select Manual/Auto)	
S7	QSB02511	Leaf Switch	
		(Fast Wind Muting Switch)	
\$8	QSB02511	Leaf Switch	
		(Playback Muting Switch)	
S701, 702, 7			
	QSW1111H	Push Switch (Level Fine Adjust UP/	
		DOWN and Auto-Rec Sensor)	
S704			
	RSH1A11ZAS	Push Switch (Power ON/OFF)	
∗For PX.			
		e East and Africa areas.	
	RSH1B04ZAS	"	
*For Austra	lia.		
S705	000110711		
	QSR1407H	Rotary Switch	
*For PX.		(AC Power Voltage Selector)	
* ror Asia, L	atin America, Middi 	e East and Africa areas.	
	<u>F</u>	USE	
F1 △	XBA2E03NS5	Fuse (0.3 A)	
	<u>J</u>	ACKS	
J1, 2	OJA0253	Microphone Jack	
J3	0JA0255H	Headphones Jack	
J4	QEJ5003S	Jack Board (LINE IN/OUT Jack)	
J5	QJS1956H	Remote Control Jack	
	422120011		

RS-M51 RS-M51

CIRCUIT BOARDS MAIN AMP CIRCUIT BOARD

EQUALIZER (

Q15, 16 2SC945 (P, Q) С Е

MICROPHO

NOTES:

• Nor ·· • CrO2..... <u>, 27 , 26 , 25 , 24 , 23 , 22 , 21 , 20 , 19 , 18 , 17 , 16 , 15 , 14 , 13 , 12 , 11 , 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1</u>

RDS

EQUALIZER CIRCUIT BOARD

MICROPHONE JACK CIRCUIT BOARD

REC-MUTE CIRCUIT BOARD

NOTES:

- Nor ····· Normal tape mode
- CrO₂······ CrO₂ tape mode
- Met ····· Metal tape mode

NOTES:

- The circuit shown in some on the conductor is +B (bias) circuit.
- \bullet The circuit shown in $\ensuremath{\text{Sign}}$ on the conductor indicates printed circuit on the back
- side of the printed circuit board.
- Values indicated in are DC voltage between the ground and electrical parts
- The voltage indicates are measured during record mode.

RS-M51 RS-M51

14

CIRCUIT BOARDS

POWER SUPPLY AND DIGITAL VOLUME CONTROL CIRCUIT BOARD

, 20 , 19 , 18 , 17 , 16 , 15 ,

NOTES:

- The circuit shown in some on the conductor is +B (bias) circuit.
- The circuit shown in the conductor indicates printed circuit on the back side of the printed circuit board.
- Values indicated in _____ are DC voltage between the ground and electrical parts.
- The voltage indicates are measured during record mode.

FL METER CIRCUIT BOARD

DIGITAL VOLUME SCALER CIRCUIT BOARD

RECORDING LEVEL CONTROL CIRCUIT BOARD

RS-M51 RS-M51

IC551 UPC78M05H

1 10.5 V

Q507 2SC1847 (P, Q)

B 21.0V

C 26.0 V

E 22.0 V

Q508 2SC1847 (P, Q)

B 19.5 V

C 26.0 V

0 V

5.0 V

2

CIRCUIT BOARD

Q502

Q505 2SA999 (E, F)

B 4.9V

E 4.9V

2SC945 (P. Q)

B 0.2V

C 4.9V

E 0V

12 .

11

RS-M51

DIGITAL VOLUME SCALER CIRCUIT BOARD

RECORDING LEVEL CONTROL CIRCUIT BOARD

ELECTRICAL PARTS LOCATION

NOTE: ∆ indicates that only parts specified by the manufacturer be used for safety.

NOTES:

Number of Asia, Latin America, Middle East and Africa areas.

A For Australia.

F贝 ······For PX.

RS-M51

RS-M51

12

24

35 , 36 , 37 , 38

30

31 32 33

18

MECHANICAL PARTS LOCATION

Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description
-			M40	0XL1381	Pressure Roller Assembly	M77	QDB0273	Fast Forward Belt
	MECHANICAL PARTS			1		M78	QDB0274	Takeup Belt
M1	QBP1874	Cassette Pressure Spring	M41	QBN1743	Pressure Roller Spring	1		
M2	QDG1201	Main Gear	M42	QML3588	Fast Forward Lever	M79	QXL1360	Record/Playback Selection Arm
M3	ODG1202	Sub Gear	M43	QBN1748	Fast Forward Spring	1		Assembly
M4	OMB1336	Supply Reel Table Hub	M44	QXA1042	Flywheel Retainer	M80	QML3580	Record/Playback Selection Leve
M5	ODR1139	Supply Reel Table	M45	QML3607	Pause Driving Lever	M81	QBT1895	Record/Playback Selection Leve
M6	OMF2118	Fast Forward Arm Bracket	M46	QBW2083	Snap Ring	1		Spring
M7	OML3581	Sub Control Lever	M47	OME0157	Plunger	M82	QXP0607	Fast Forward Connection Pulley
M8	QML3583	Main Control Lever	M48	OBC1358	Plunger Release Spring	1		Assembly
M9	OML3584	Record Operation Lever	M49	OXF0164	Flywheel Assembly	M83	QMK1838	Upper Base Plate
M10	OML3586	Head Base Plate Lift Lever	M49-1	OBW2049	Poly Washer	M84	QXK2276	Lower Base Plate
	QE0000	Tiodd Dass Field Life Estat	1		'	M85	QDP1828	Fast Forward Pulley
M11	OML3494	Auto-Stop Release Arm	M49-2	QBW2026	Washer	M86	QXH0341	Chassis Cover Assembly
M12	QML3603	Erase Safety Lever	M50	0XD1143	Takeup Reel Table Assembly	M87	QXC0064	Tape Counter
M13	OML3604	Auto-Stop Driving Lever	M51	0XL1382	Idler Lever Assembly	M88	QDB0169	Counter Belt
M14	OML3605	Auto-Stop Detection Lever	M52	OXI0111	Takeup Idler Assembly	l	-	
M15	OML3592	Change Lever	M53	OBT1893	Takeup Idler Spring	M89	QMAM0126	Counter Angle
M16	OMR1820	Record Rod	M54	0XI0113	Fast Forward Idler Assembly	M90	хwсзв	Washer 3¢
M17	OMR1821	Auto-Stop Connection Rod	M55	0XI0112	Rewind Idler Assembly	M91	XSN3+6S	Screw ⊕3×6
M18	OMR1822	Eject Rod	M56	0XL1383	Fast Forward Arm Assembly	M92	XTN2+6B	Tapping Screw ⊕2×6
M19	OMR1824	Control Rod	M57	OMK1840	Head Base Plate	м93	XTN26+6B	Tapping Screw ⊕2.6×6
M20	OMZ1239	Flywheel Thrust Retainer	M58	QMZ1241	Head Spacer	M94	XTN26+10B	Tapping Screw ⊕2.6×10
	QMIZIZSS	Trywheel Thrust Netunier	1	4		M95	XTN26+12B	Tapping Screw ⊕2.6×12
M21	OBC1357	Lock Pin Pressure Spring	M59	OBN1740	Head Pressure Spring	M96	XTN3+10B	Tapping Screw ⊕3×10
M22	OBT1682	Auto-Stop Connection Rod Spring	M60	QBC1278	Head Spring	M97	XTN3+24B	Tapping Screw ⊕3×24
M23	OBT1894	Main Lever Spring	1	QUUILIO	(for Record/Playback Head)	M98	XSN26+3S	Screw ⊕2.6×3
M24	QBN1739	Selection Lever Spring	M61	QBCA0008	Head Spring (for Erase Head)			
M25	QBN1739 QBN1742	Pressure Roller Release Spring	M62	OML3591	Brake Arm	м99	XSN2+10	Screw +2×10
M25 M26	OBN1744	Sub Gear Spring	M63	OMZ1240	Sub Head Base Plate	M100	OBN 1741	Change Lever Spring
M27	OBN1745	Main Gear Spring	M64	OMN2550	Roller	M101	XWA2	Washer 2¢
M27 M28	OBN1746	Auto-Stop Lever Spring	M65	ODK1017	Steel Ball 2¢	M102	OML3644	Tape Detection Lever-A
M28 M29	OBN1747	Connection Spring	M66	QBP1873	Head Base Plate Pressure Spring	1	Q	(for Metal Tape)
M29 M30	OBS1128	Lock Pin	M67	OBT1597	Brake Arm Spring	M103	QML3645	Tape Detection Lever-B
III 3U	QB31120	LOCK FIN	M68	QBT1892	Head Release Spring		Q20010	(for CrO ₂ Tape)
M31	OBC1372	Reel Table Spring	1,4100	QD11032	Tread Release Spring	M104	OMA3920	Detection Lever Angle
M31 M32	0BW2008	Poly Washer 2¢	M69	OMA3858	Head Adjustment Plate	M105	OMS2546	Detection Lever Shaft
M32 M33	XUB4FT	Stop Ring 4φ	M70	0XG1047	Takeup Gear Assembly	M106	OMF1682	Switch Retaining Plate
м 33 М 34	XUB3FT	Stop Ring 4¢	M71	0XU0170	Motor Assembly	M107	XWC26B	Washer 2.6¢
M34 M35	0BW2012	Poly Washer	M72	QXK2286	Sub Chassis Assembly	M108	XSN26+6	Screw $\pm 2.6 \times 6$
M35 M36	QBW2012 0XL1354	Sub Lever Assembly	M73	ODG1199	Auto-Stop Gear	1		SS. S. JE.ONO
м 36 М 37	QXL1354 QXL1355	Main Lever Assembly	M74	QDG1199	Cam Gear	M109	XSN2+6	Screw ⊕2×6
M3/ M38	QXL1355 QML3582	Pause Lock Lever	M75	QDG1200 QDP1823	Connection Pulley	M110	XSN3+10S	Screw +3×10
			M76	ODB0281	Capstan Belt	M111	OKJM0042	Spacer (for Counter)
M39	QBT1896	Lever Release Spring	I m / 6	Angorot	Capstall Delt	1111	41/311100-12	opacer (for counter)

CABINET PARTS

QPG1985