Pattern avoidance

Jain, Narayanan and Zhang

Introduction

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S₃

Conjectures on S

Avoidance in T_i

Pattern avoidance

An explanation and proof

Yajit Jain, Deepak Narayanan and Leon Zhang

November 19, 2014

Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S3

Conjectures on S

Avoidance in T

A permutation of a finite set $\{1, \dots, n\}$ is some *ordering* of the elements.

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S_3

Conjectures on S

Avoidance in T_n

A permutation of a finite set $\{1, \dots, n\}$ is some *ordering* of the elements.

54123 is a permutation of $\{1, 2, 3, 4, 5\}$.

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S_3

Conjectures on S

Avoidance in T_n

A permutation of a finite set $\{1, \dots, n\}$ is some *ordering* of the elements.

54123 is a permutation of $\{1, 2, 3, 4, 5\}$.

 S_n is the set of permutations on $\{1, \dots, n\}$.

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S_3

Conjectures on S

Avoidance in T_t

A permutation of a finite set $\{1, \dots, n\}$ is some *ordering* of the elements.

54123 is a permutation of $\{1, 2, 3, 4, 5\}$.

 S_n is the set of permutations on $\{1, \dots, n\}$.

Pattern avoidance

Jain, Narayanan and Zhang

Introduction

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S₂

Conjectures on .

Avoidance in T_r

	includes $\begin{cases} 123\\ 312\\ 4312 \end{cases}$
--	---

 $\begin{array}{c} 54123 \\ \text{avoids} \end{array} \qquad \left\{ \begin{array}{c} 132 \\ 312 \\ 213 \\ 231 \end{array} \right.$

Avoidance in *S_n*Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in *S*₃

Conjectures on S

Avoidance in T_n

Let $\pi = 312 \in S_3$.

- Question: How many permutations avoid π ? (a lot)
- Better Question: How many permutations in S_n avoid π ?

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S₃

Conjectures on 3

A....: damas : ... 7

• How many permutations in S_1 avoid π ?

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S₃

Conjectures on 3

A....: damas : ... T

• How many permutations in S_1 avoid π ? 1

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm.
Avoidance of other
permutations in S₃

Conjectures on S

- How many permutations in S_1 avoid π ? 1
- How many permutations in S_2 avoid π ?

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S₃

Conjectures on S

- How many permutations in S_1 avoid π ? 1
- How many permutations in S_2 avoid π ? 2

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S₃

Conjectures on S

- How many permutations in S_1 avoid π ? 1
- How many permutations in S_2 avoid π ? 2
- How many permutations in S_3 avoid π ?

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S₃

Conjectures on S

- How many permutations in S_1 avoid π ? 1
- How many permutations in S_2 avoid π ? 2
- How many permutations in S_3 avoid π ? 5

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S₃

Conjectures on S

- How many permutations in S_1 avoid π ? 1
- How many permutations in S_2 avoid π ? 2
- How many permutations in S_3 avoid π ? 5
- How many permutations in S_4 avoid π ?

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S₃

Conjectures on 3

- How many permutations in S_1 avoid π ? 1
- How many permutations in S_2 avoid π ? 2
- How many permutations in S_3 avoid π ? 5
- How many permutations in S_4 avoid π ? ???????

Permutations in S_4 that avoid $\pi = 312$?

Introduction

How many permutations in S_4 avoid π ?

Permutations in S_4 that avoid $\pi = 312$?

Introduction

How many permutations in S_4 avoid π ?

```
1234
      1243
            1324
                   1342
                          1423
                                1432
2134
      2143
            2314
                   2341
                          2413
                                2431
3124
      3142
             3214
                   3241
                          3412
4123
      4132
             4213
                   4231
                          4312
                                4321
```

Introduction

Avoidance in S₁
Avoidance of 312
The Reversing
Lemma
The Flipping Lem
Avoidance of othe

Conjectures on

Avoidance in 7

How many permutations in S_4 avoid π ? 14

```
1234
      1243
            1324
                   1342
                          1423
                                 1432
2134
      2143
             2314
                   2341
                          2413
                                2431
3124
      3142
             3214
                   3241
                          3412
4123
      4132
             4213
                   4231
                          4312
                                 4321
```

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S₃

Conjectures on S

Avoidance in T.

Definition

Let $a_n(\pi)$ be the number of permutations in S_n that avoid π .

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on S

Avoidance in T_t

Definition

Let $a_n(\pi)$ be the number of permutations in S_n that avoid π .

We want to compute the sequences $(a_n(\pi))$ for some $\pi \in S_k$.

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S_3

Conjectures on S

Avoidance in T_r

Definition

Let $a_n(\pi)$ be the number of permutations in S_n that avoid π .

We want to compute the sequences $(a_n(\pi))$ for some $\pi \in S_k$.

Example: $(a_n(312)) = 1, 2, 5, 14,$

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on *S*

Avoidance in T_r

Definition

Let $a_n(\pi)$ be the number of permutations in S_n that avoid π .

We want to compute the sequences $(a_n(\pi))$ for some $\pi \in S_k$.

Example: $(a_n(312)) = 1, 2, 5, 14, 42, 132, 429, ...$

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S₃

Conjectures on S

Avoidance in T

Theorem

For $\pi \in S_3$, $(a_n(\pi))$ is equal to the Catalan numbers:

$$(a_n(\pi)) = 1, 2, 5, 14, 42, 132, 429...$$

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other

Conjectures on S

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \end{cases}$$

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other

Conjectures on S

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \\ B := 1, 2, 6, 23, 103, 513, 2761, 15767, 94359... \end{cases}$$

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other

Conjectures on S

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \\ B := 1, 2, 6, 23, 103, 513, 2761, 15767, 94359... \\ C := 1, 2, 6, 23, 103, 513, 2762, 15793, 94776... \end{cases}$$

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
Permutations in So

Conjectures on S

A...: damas : ... T

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \\ B := 1, 2, 6, 23, 103, 513, 2761, 15767, 94359... \\ C := 1, 2, 6, 23, 103, 513, 2762, 15793, 94776... \end{cases}$$

????

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other

Conjectures on S

Avoidance in 7

Let's first look at some examples of permutations that don't avoid 312!

Introduction

Avoidance in S_n Avoidance of 312

The Reversing Lemma

The Flipping Lemm

Avoidance of other permutations in So

Conjectures on S

Avoidance in T

Let's first look at some examples of permutations that don't avoid 312!

Example

1 2 6 5 3 4

Introduction

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other

Conjectures on S

Avoidance in T

Let's first look at some examples of permutations that don't avoid 312!

Example

1 2 6 5 3 4 \implies 126534 does not avoid 312

Introduction

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on S

Avoidance in T

Let's first look at some examples of permutations that don't avoid 312!

Example

1 2 6 5 3 4 \Longrightarrow 126534 does not avoid 312

Example

1 5 6 3 2 4

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other

Conjectures on S

Avoidance in T

Let's first look at some examples of permutations that don't avoid 312!

Example

1 2 6 5 3 4 \Longrightarrow 126534 does not avoid 312

Example

1 5 6 3 2 4 \implies 156324 does not avoid 312

Avoidance of 312

Jain, Narayanar and Zhang

Introduction

Avoidance in S_n

Avoidance of 312

The Flipping Lemm

Conjectures on S

Avoidance in 7

How about some permutations that do avoid 312?

meroduction

Avoidance in S_n

Avoidance of 312 The Reversing

The Flipping Lem
Avoidance of othe

Conjectures on S

Avoidance in T_i

How about some permutations that do avoid 312? Example

1 2 3 6 5 4

Introduction

Avoidance in S_n

Avoidance of 312

The Flipping Lem

Conjectures on S

Avoidance in T

How about some permutations that do avoid 312? Example

1 2 3 6 5 4 \Longrightarrow 123654 avoids 312

Introduction

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma

The Flipping Lem Avoidance of other permutations in S

Conjectures on S

Avoidance in T_i

How about some permutations that do avoid 312? Example

1 2 3 6 5 4 \Longrightarrow 123654 avoids 312

Example

2 1 4 5 6 3

Introduction

Avoidance in S_i
Avoidance of 312
The Reversing
Lemma

Avoidance of oth permutations in S

Conjectures on 3

Avoidance in T_i

How about some permutations that do avoid 312? Example

1 2 3 6 5 4 \Longrightarrow 123654 avoids 312

Example

 $2 \quad 1 \quad 4 \quad 5 \quad 6 \quad 3 \implies 214563 \text{ avoids } 312$

Introduction

Avoidance in S_t Avoidance of 312

The Reversing

The Flipping Lemn Avoidance of other permutations in S₃

Conjectures on .

Avoidance in T

Avoidance of 312

Jain, Narayanar and Zhang

Introduction

Avoidance in S_t Avoidance of 312

The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in So

Conjectures on .

Avoidance in 7

Do the permutations that avoid 312 have any special properties?

1

2

3

6

5

4

Introduction

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemi

Conjectures on 3

Avoidance in T_i

Do the permutations that avoid 312 have any special properties?

AII < 4, and avoid 312

Introduction

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other

Conjectures on .

Avoidance in T

Introduction

Avoidance in S_n

Avoidance of 312

The Reversing
Lemma
The Flipping Lemm
Avoidance of other
Avoidance in So

Conjectures on .

Avoidance in T

Introduction

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on .

Avoidance in T_i

Introduction

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on

Avoidance in T_t

Introduction

Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other

Conjectures on 3

Avoidance in 7

What happens with permutations that don't have this property?

Introduction

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other

Conjectures on .

Avoidance in T

What happens with permutations that don't have this property?

1 2 6 5 3 4

Introduction

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on

Avoidance in T

What happens with permutations that don't have this property?

1 2 6 5 3 4

Introduction

Avoidance in *S*_n

Avoidance of 312

The Reversing
Lemma

The Flipping Lemm

Avoidance of other

Conjectures on .

Avoidance in T

What happens with permutations that don't have this property?

1 2 6 5 3

Introduction

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_2

Conjectures on .

Avoidance in T

What happens with permutations that don't have this property?

1 2 6 5 3

Doesn't avoid 312 anymore!

Avoidance of 312
The Reversing
Lemma
The Flipping Lemi
Avoidance of othe
permutations in S

Conjectures on S

Avoidance in T

Lemma

The permutations of $\{1, 2, ..., k, k+1\}$ ending in i that avoid the pattern 312 are precisely those of the form,

$$\pi_1\pi_2i$$

the concatenation of π_1, π_2 , and i, where π_1 is a permutation of $\{1, 2, ..., i-1\}$ that avoids the pattern 312 and π_2 is a permutation of $\{i+1, ..., k+1\}$ that avoids the pattern 312.

Avoidance in S_n
Avoidance of 312
The Reversing

The Flipping Let Avoidance of otl permutations in

Conjectures on S

Avoidance in T_i

Definition

The Catalan numbers are the sequence of positive integers C_i defined as follows,

$$C_0 = 1, \ C_{n+1} = \sum_{i=0}^n C_i C_{n-i} \text{ for } n \ge 0$$

Avoidance in S_n

Avoidance of 312

The Flipping Lemm Avoidance of other

Conjectures on S

Avoidance in T_t

Theorem

The n^{th} term of the sequence $a_n(312)$ is equal to C_n , the n^{th} Catalan number, for n > 0.

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on S

Avoidance in T

Proof.

Assume that for all i from 1 to k, the number of permutations of $\{1,2,...,i\}$ that avoid 312 is C_i . It follows from the above lemma that the total number of permutations π avoiding 312 and ending in i is

$$C_{i-1} \cdot C_{k-i+1}$$

Summing over all possible values of i, the total number of permutations of $\{1,2,...,k+1\}$ that avoid 312 is equal to,

$$\sum_{i=1}^{k+1} C_{i-1} \cdot C_{k-i+1} = \sum_{i=0}^{k} C_i \cdot C_{k-i} = C_{k+1}$$

Introduction

Avoidance in S₁
Avoidance of 312
The Reversing
Lemma
The Flipping Lem

Conjectures on S

Avoidance in T

Definition (Reversing)

We define the *reverse* of a permutation $b_1 \cdots b_n$ to be the permutation $b_n \cdots b_1$. The reversing operator is denoted by \mathcal{R} .

Avoidance in S_I
Avoidance of 312
The Reversing
Lemma
The Flipping Lem

Avoidance of oth permutations in

Conjectures on S

Avoidance in T_i

Definition (Reversing)

We define the *reverse* of a permutation $b_1 \cdots b_n$ to be the permutation $b_n \cdots b_1$. The reversing operator is denoted by \mathcal{R} .

Example

$$\mathcal{R}(1324) = 4231.$$

Avoidance in S₁
Avoidance of 312
The Reversing
Lemma

Avoidance of or permutations in

Conjectures on 3

Avoidance in T_i

Definition (Reversing)

We define the *reverse* of a permutation $b_1 \cdots b_n$ to be the permutation $b_n \cdots b_1$. The reversing operator is denoted by \mathcal{R} .

Example

$$\mathcal{R}(1324) = 4231.$$

Example

$$\mathcal{R}(1243) = 3421.$$

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma

Avoidance of otle permutations in

Conjectures on S

Avoidance in T

Lemma (Reversing Lemma)

The permutation σ avoids the permutation π iff $\mathcal{R}(\sigma)$ avoids $\mathcal{R}(\pi)$.

Corollary

For a permutation π , $a_n(\pi) = a_n(\mathcal{R}(\pi))$.

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other

Conjectures on S

Avoidance in T_n

Definition (Flipping)

We define the *flip* of a sequence b as the sequence c with the same elements as b, but with the largest element swapped with the smallest element, the second largest element swapped with the second smallest element, etc. The flipping operator is denoted by \mathcal{F} .

3

$$\mathcal{F}(1234) = 4321$$

Jain, Narayana and Zhang

Introduction

Avoidance in S_n Avoidance of 312 The Reversing

The Flipping Lemma
Avoidance of other
permutations in S₂

Conjectures on 3

Avoidance in 7

Example

3

2

1

$$\mathcal{F}(1234) = 4321$$

Example

$$\Longrightarrow$$

$$\mathcal{F}(1243) = 4312$$

Introduction

Avoidance in S_t Avoidance of 312
The Reversing

The Flipping Lemma Avoidance of other permutations in S₂

Conjectures on 3

Avoidance in T

$$\mathcal{F}(1234) = 4321$$

Jain, Narayanar and Zhang

Introduction

Avoidance in S_n Avoidance of 312 The Reversing Lemma

The Flipping Lemma Avoidance of other permutations in S₃

Conjectures on S

Avoidance in T_n

$$\mathcal{F}(1234) = 4321$$

$$\mathcal{F}(1234) = 4321$$

$$\mathcal{F}(1234) = 4321$$

Jain, Narayanai and Zhang

Introductio

Avoidance in S_t Avoidance of 312
The Reversing
Lemma

The Flipping Lemma Avoidance of other permutations in S₃

Conjectures on

A...:Janaa in 7

Avoidance in S_n Avoidance of 312 The Reversing Lemma

The Flipping Lemma Avoidance of other permutations in S₃

Conjectures on S

Avoidance in T_i

Lemma (Flipping Lemma)

The permutation σ avoids the permutation π iff $\mathcal{F}(\sigma)$ avoids $\mathcal{F}(\pi)$.

Corollary

For a permutation π , $a_n(\pi) = a_n(\mathcal{F}(\pi))$.

Avoidance of other permutations in So

Avoidance of other permutations in S_3

- From the Flipping Lemma and Reversing Lemmas, the sequences $(a_n(213)), (a_n(132))$ and $(a_n(231))$ are the sequence of Catalan numbers as well.
- However, it is much harder to prove that the sequences $(a_n(123))$ and $(a_n(321))$ are the sequence of Catalan numbers

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S₂

Conjectures on S₄

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \\ B := 1, 2, 6, 23, 103, 513, 2761, 15767, 94359... \\ C := 1, 2, 6, 23, 103, 513, 2762, 15793, 94776... \end{cases}$$

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S₃

Conjectures on S_4

1234	1243	1324	1342	1423	1432
2134	2143	2314	2341	2413	2431
3124	3142	3214	3241	3412	3421
4123	4132	4213	4231	4312	4321

Conjectures on S_A

Flipping and reversing buckets

```
{1243, 4312, 2134, 3421}, {2413, 3142},
{1432, 4123, 2341, 3214}, {1234, 4321},
{4132, 1423, 2314, 3241}, {2143, 3412},
{4213, 1342, 3124, 2431}, {4231, 1324}.
```

Introduction

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S₂

Conjectures on S₄

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \\ B := 1, 2, 6, 23, 103, 513, 2761, 15767, 94359... \\ C := 1, 2, 6, 23, 103, 513, 2762, 15793, 94776... \end{cases}$$

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on S₄

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \\ B := 1, 2, 6, 23, 103, 513, 2761, 15767, 94359... \\ C := 1, 2, 6, 23, 103, 513, 2762, 15793, 94776... \end{cases}$$

	В	Α	C
Ī	{1243, 4312,	{4132, 1423,	{4231, 1324}
	2134, 3421},	2314, 3241},	
	{1432, 4123,	{4213, 1342,	
	2341, 3214},	3124, 2431},	
	{2143, 3412},	{2413, 3142}	
	{1234, 4321}		

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on S₄

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \\ B := 1, 2, 6, 23, 103, 513, 2761, 15767, 94359... \\ C := 1, 2, 6, 23, 103, 513, 2762, 15793, 94776... \end{cases}$$

В	Α	C
{1243, 4312,	{4132, 1423,	{4231, 1324}
2134, 3421},	2314, 3241},	
{1432, 4123,	{4213, 1342,	
2341, 3214},	3124, 2431},	
{2143, 3412},	{2413, 3142}	
{1234, 4321}		

Introduction

Avoidance in S_n Avoidance of 312 The Reversing Lemma The Flipping Lemm Avoidance of other permutations in S_3

Conjectures on S₄

Avoidance in T.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$$

$$\sigma = 45213$$

$$\sigma = (14)(253)$$

Introduction

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S₃

Conjectures on S₄

Avoidance in T

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$$

$$\sigma = 45213$$

$$\sigma = (14)(253)$$

Introduction

Avoidance in S_n Avoidance of 312 The Reversing Lemma The Flipping Lemm Avoidance of other permutations in S_3

Conjectures on S_4

Avoidance in T_n

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$$

$$\sigma = 45213$$

$$\sigma = (14)(253)$$

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on S_4

Avoidance in T_n

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$$

$$\sigma = 45213$$

$$\sigma = (14)(253)$$

Conjectures on S₄

Buckets in cycle notation

```
\{(34), (12), (1423), (1324)\}, \{(1243), (1342)\},
\{(24), (13), (1432), (1234)\}, \{(1)(2)(3)(4), (14)(23)\},\
  \{(142), (243), (123), (134)\}, \{(12)(34), (13)(24)\},
      \{(143), (234), (132), (124)\}, \{(14), (23)\}.
```

Conjectures on S_A

Cycle decomposition

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \\ B := 1, 2, 6, 23, 103, 513, 2761, 15767, 94359... \\ C := 1, 2, 6, 23, 103, 513, 2762, 15793, 94776... \end{cases}$$

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemma
Avoidance of other
permutations in S_3

Conjectures on S₄

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \\ B := 1, 2, 6, 23, 103, 513, 2761, 15767, 94359... \\ C := 1, 2, 6, 23, 103, 513, 2762, 15793, 94776... \end{cases}$$

В	Α	C
{(34), (1423),	{(142), (243),	{(14), (23)}
(12), (1324)},	(123), (134)},	
{(24), (1432),	{(143), (234),	
(13), (1234)},	(132), (124)},	
{(12)(34), (13)(24)},	{(1243), (1342)}	
$\{(1)(2)(3)(4), (14)(23)\}$		

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on S_4

Avoidance in T_i

Conjecture.

- There are three possible sequences for $(a_n(\pi))$.
- Given two F&R buckets that look the same up to the cycle decompositions of their elements, they generate the same sequence.

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S₃

Conjectures on S₄

$$(a_n(\pi)) = \begin{cases} A := 1, 2, 6, 23, 103, 512, 2740, 15485, 91245... \\ B := 1, 2, 6, 23, 103, 513, 2761, 15767, 94359... \\ C := 1, 2, 6, 23, 103, 513, 2762, 15793, 94776... \end{cases}$$

- Many fewer buckets than expected
- Different growth rates?

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemi
Avoidance of othe
permutations in S

Conjectures on S

Avoidance in T_n

Definition

Let m be a positive integer. The set T_{2m} is defined as all permutations in S_{2m} such that:

- the odd numbers appear in increasing order,
- each even number 2i appears to the right of 2i 1.

Example

The set S_2 is $\{12,21\}$. The set T_2 is just $\{12\}$.

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on S

1234	1243	1324	1342	1423	1432
2134	2143	2314	2341	2413	2431
3124	3142	3214	3241	3412	3421
4123	4132	4213	4231	4312	4321

Avoidance in S_n
Avoidance of 312
The Reversing
Lemma
The Flipping Lemi
Avoidance of othe
permutations in S

Conjectures on S

Avoidance in T_n

Definition

Given a permutation $\pi \in S_k$, we define $b_m(\pi)$ as

$$b_m(\pi) = \#\{\sigma \in T_{2m} \mid \sigma \text{ avoids } \pi\}.$$

Problem

Let $\pi \in S_3$, and m an arbitrary positive integer. Compute $b_m(\pi)$.

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on S

π	m = 1	m=2	m = 3	m = 4	m = 5
123	1	0	0	0	0
132	1	1	1	1	1
213	1	2	4	8	16
231	1	2	4	8	16
312	1	3	12	55	273
321	1	3	12	55	273

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on S

Avoidance in T_n

π	m=1	m=2	m = 3	m = 4	m = 5
123	1	0	0	0	0
132	1	1	1	1	1
213	1	2	4	8	16
231	1	2	4	8	16
312	1	3	12	55	273
321	1	3	12	55	273

Pick any $\sigma \in T_{2m}$ with $m \ge 2$. Then:

- 3 comes after 1
- 4 comes after 3
- So 134 is a subsequence of σ .

Avoidance in S_n Avoidance of 312 The Reversing Lemma The Flipping Lemm Avoidance of other permutations in S_3

Conjectures on .

Avoidance in T_n

π	m=1	m=2	m=3	m=4	m = 5
123	1	0	0	0	0
132	1	1	1	1	1
213	1	2	4	8	16
231	1	2	4	8	16
312	1	3	12	55	273
321	1	3	12	55	273

Let $m \ge 2$, and pick any $\sigma \in T_{2m}$ avoiding 132. Then:

- 1 always comes first
- Each even integer 2i must come before 2i + 1
- So σ must be 1234 . . . (2m).

Avoidance in S_n Avoidance of 312
The Reversing
Lemma
The Flipping Lemm
Avoidance of other
permutations in S_3

Conjectures on 3

Avoidance in T_n

π	m=1	m=2	m=3	m=4	m=5
123	1	0	0	0	0
132	1	1	1	1	1
213	1	2	4	8	16
231	1	2	4	8	16
312	1	3	12	55	273
321	1	3	12	55	273

Theorem

$$b_m(213) = 2^{m-1}$$
, and $b_m(231) = 2^{m-1}$.

Avoidance in S_n Avoidance of 312 The Reversing Lemma The Flipping Lemm Avoidance of other permutations in S_3

Conjectures on S

Avoidance in T_n

		_			
π	m=1	m=2	m=3	m=4	m=5
123	1	0	0	0	0
132	1	1	1	1	1
213	1	2	4	8	16
231	1	2	4	8	16
312	1	3	12	55	273
321	1	3	12	55	273

Theorem

$$b_m(312) = b_m(321).$$

Conjecture.

$$b_m(312) = \binom{3m}{m} \cdot \frac{1}{2m+1}.$$