

CE 311S: PROBABILITY AND STATISTICS

Discussion session

F 2:00 – 3:00 PM

CARLIN LIAO

Teaching Assistant, The University of Texas at Austin

Usual Details

- Reading response due Monday 7:00 AM
- Homework 3 due after spring break
- Mid-semester teaching evaluation over the weekend
- Office hours W 4:00 PM 5:00 PM ECJ 6.406 or by appt

Name of special distribution (X)	Properties	What X represents and its range (R_X)	Para meter s	PDF $f(x)$	F(x)	Expected value $E(X)$	Variance Var(X)
Uniform distribution	 Identical density (probability) for any value between a and b 	R_X : $[a,b]$	a,b	$\begin{cases} \frac{1}{b-a} & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} \frac{x-a}{b-a} & \text{for } x \in [a,b) \\ 0 & \text{otherwise} \end{cases}$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)$
Gamma distribution special cases: exponential chi-squared	 α determines the shape λ determines the scale α=1 is the exponential distribution Exponential distribution is memoryless n exponentials with λ is gamma For v degrees of freedom, α=v/2 and λ=1/2 is the chi-squared distribution 	Total time waited for α events occurring with rate λ R_X : $[0, \infty)$	α, λ	$\frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}$ Exponential PDF $\lambda e^{-\lambda x}$	Involves another special function we haven't learned	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
Normal distribution (aka Gaussian)	 Bell-shaped μ determines the center σ determines width 	R_X : $(-\infty,\infty)$	μ, σ	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	No closed-form solution (No neat formula)	μ	σ^2