Transparent Hybrid User-adjustable Recipe Recommender System

THURSDAY

CS 4675/6675 Group 8 Shiyi W. Taichang Z. Shuangyue C. Shuyan L. Haoran Z.

Background

BACKGROUND

- People use RS for suggestions
- Business example: Kurashiru founded in 2016
 - Top Japanese cooking video app downloaded by 21 million users
- Reason for success
 - Kurashiru recipes + search engine using Amazon SageMaker

Related Work

Different Recommender systems

Neural CF

Pros: improve accuracy **Cons**: learn from users interactions instead of user preference (can be noisy)

Dynamic Next basket

Pros: reveal user dynamic interests at different time and sequential features of all baskets of the user over time

Stereos-typing

Pros: once stereotype is established, requires little computation power

Cons: may pigeonhole

users

Different Recommender systems

Content based

Pros: individual based recommendation

Cons: more computation more than stereotyping

Collaborative

Pros: involve human,more accurate

Cons: low motivation of users to provide feedbacks

Co-occurrence

Pro: focus on relatedness rather than similarity

Cons: not personalized

Rising popularity for hybrid

To solve these two pain points:

- Lack of user-controlled Flexibility
- Lack of recommender system **Transparency**

Thursday:
Transparent
Hybrid
User-Adjustable
Recipe
Recommender
System

System Design

System Design Overview

KNN

- K-Nearest Neighbors algorithm
- Collaborative Filtering
 - Birds of the same feather flock together.
- Advantages
 - Simplicity (Occam's razor)
 - Non-parametric
- Disadvantages
 - Lazy Learning Algorithm
 - Efficiency performance drops as dataset size grows

KNN Code Walkthrough

```
def recommend(userId, num_similar_users, num_recipes_recommended):
    print("User " + str(userId) + " has rated the following recipes: ")
    pprint(list(data[data['user_id'] == userId]['name']))
    print("\n")
    neigh users dist, neigh users ind = findSimilarUsers(userId, num similar users)
    weighted_user_neigh_dist = neigh_users_dist / np.sum(neigh_users_dist)
    # Broadcasting
    weighted user_neigh dist = weighted_user_neigh_dist[:, np.newaxis] + np.zeros(len(tmat.columns))
    # Calculate the average rating
    avg rating = (weighted user neigh dist * tmat.values[neigh users ind]).sum(axis=0)
    print("Based on other users rating, we recommend:")
    getRecommendations(num_recipes_recommended, avg_rating, userId)
```

SYD

- Singular Value decomposition
- Collaborative Filtering
 - Matrix factorization
 - Reduce the # of features of by reducing space dimensions
- Advantages
 - Optimize model performance by minimizing RMSE error
- Disadvantages
 - Transformed data may be difficult to understand.

SVD Code Walkthrough

```
import numpy as np
import pickle
file = open("../data/SVD_algo.pkl", 'rb')
SVD algo = pickle.load(file)
file = open("../data/processed_data.pkl", 'rb')
rep_U = pickle.load(file)
def get_n_predictions(iids, algo=SVD_algo, n=10, uid=3787):
    iid_to_test = [iid for iid in range(139684) if iid not in iids]
    test_set = [[uid, iid, 4.] for iid in iid_to_test]
    predictions = algo.test(test_set)
    pred_ratings = [pred.est for pred in predictions]
    top_n = np.argpartition(pred_ratings, 1)[-n:]
    return top_n
```

Content-Based

Word2vec:

 A model that converts words into vectors. Vectors with similar meanings are close to each other, and there is a well-known equation:

'king' - 'man' +'woman' ≈'queen'

- Comparing with one-hot vectorization, the word2vec occupies less space and it's a dense vector.
- Remove stop words (non-alpha, measuring units and common words)
- Embedding the input words and dataset:
 - Average embedding: Simply average the word vectors
 - TF-IDF embedding (usually higher score): Use TF-IDF value of the word as the weight for weighted average
- Compute the cosine similarity of the embedded input and each record from the dataset
- List top N results

Content-based Code Walkthrough

```
def __init__(self, data_path='RAW_recipes.csv'):
   data = pd.read_csv(data_path)
   data['parsed'] = data.ingredients.apply(self.ingredient_parser)
   self.data=data.iloc[:100000]
   corpus = self.get_and_sort_corpus(data)
   print(f"Length of corpus: {len(corpus)}")
   #train and save CBOW Word2Vec model
   model_path=pathlib.Path('model_cbow.bin')
   if model_path.is_file():
       print('Find trained model.')
       self.model_cbow=Word2Vec.load("model_cbow.bin")
        model_cbow = Word2Vec(
           corpus, sq=0, workers=1, window=self.qet_window(corpus), min_count=1,
        filepath = Path('model_cbow.model')
        filepath.parent.mkdir(parents=True, exist_ok=True)
        MODELPATH = 'model_cbow.model'
        if model_cbow.save('model_cbow.bin'):
           print("Word2Vec model successfully trained")
        self.model_cbow=model_cbow
```

Content-based Code Walkthrough

```
def get_recommendations(self,N, scores)
    df_recipes = self.data
    top = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:N]
    recommendation = pd.DataFrame(columns=["id","recipe", "ingredients", "score", "n_steps","steps"])
    count = 0
    for i in top:
        recommendation.at[count, "id"] = df_recipes["id"][i]
        recommendation.at[count, "recipe"] = self.title_parser(df_recipes["name"][i])
        recommendation.at[count, "ingredients"] = self.ingredient_parser_final(
            df_recipes["ingredients"][i]
        recommendation.at[count, "score"] = f"{scores[i]}"
        recommendation.at[count, "n_steps"] = df_recipes["n_steps"][i]
        recommendation.at[count, "steps"] = df_recipes["steps"][i]
        count += 1
    return recommendation
```

Content-based Code Walkthrough

```
def get_recs(self,ingredients, N=5, mean=False)
    model = self.model cbow
   model.init_sims(replace=True)
   if model:
       print("Successfully loaded model")
   corpus = self.get_and_sort_corpus(self.data)
    if mean:
       mean_vec_tr = MeanEmbeddingVectorizer(model)
       doc_vec = mean_vec_tr.transform(corpus)
       doc_vec = [doc.reshape(1, -1) for doc in doc_vec]
       assert len(doc vec) == len(corpus)
       tfidf_vec_tr = TfidfEmbeddingVectorizer(model)
       tfidf_vec_tr.fit(corpus)
       doc_vec = tfidf_vec_tr.transform(corpus)
       doc_vec = [doc.reshape(1, -1) for doc in doc_vec]
       assert len(doc_vec) == len(corpus)
    input = ingredients
    input = input.split(",")
   input = self.ingredient_parser(input)
    if mean:
       input_embedding = mean_vec_tr.transform([input])[0].reshape(1, -1)
       input_embedding = tfidf_vec_tr.transform([input])[0].reshape(1, -1)
   cos_sim = map(lambda x: cosine_similarity(input_embedding, x)[0][0], doc_vec)
    scores = list(cos_sim)
    recommendations = self.get_recommendations(N, scores)
    return recommendations
```

Hybrid - User Experience Flow

Pre-questionnaire

Please r

New User! User_id Created: 3787

Eggplant Aubergine Kuku Persian Eggplant

0 0 0 0 •
1 2 3 4 5

Black Beans With Mango Sauce

0 • 0 0 0
1 2 3 4 5

Warm Spinach Salad

○ ○ ○ ● ○
1 2 3 4 5

Roasted Asparagus Shiitake Mushrooms

0 0 0 0 0

Hybrid - User Experience Flow

I might want ingredients..

"Winter squash, mexican seasoning, mixed spice, honey butter"

Ingredients that I absolutely don't want..

"Onion, garlic, chicken"

How likely I want to see other users' recipe with a similar taste with me..

API Demo

Demo 3 cases

Evaluation Metrics

Content based Evaluation Metrics

Output from TF-IDF embedding

id		recipe	ingredien	ntscore	n_steps	steps													
0	277928	chinese d	whole chi	c 0. 9727307		6 ['place y	our chicke	en in the	crock pot',	'mix toge	ther soy sa	auce , mar	malade and	d ketchup ,	and pour	over the ch	icken', '	then add gar	rlic and c
1	496912	crispy ch	niwhole chi	0. 9360085		9 ['preheat	oven to 3	375 degree	s', 'cook r	ice accord	ing to pacl	kage and t	coss with	the butter	and choppe	d raw carro	ts', 'spr	ead the rice	e mixture
2	25778	ginger or	raorange ma	u 0. 9252164		3 ['in a sm	all saucer	oan , stir	together m	armalade,	soy sauce	, lemon	juice , gar	clic , ging	erroot , a	nd salt and	pepper t	o taste , bi	ring to bo
3	342810	chicken m	nawhole chi	c 0. 9240618		6 ['cut up	chicken',	'mix oran	ge juice ,	soy sauce	, orange ma	armalade,	peach pre	eserves , p	epper and	salt togeth	er', 'mar	inate chicke	en in mixt
4	171716	grilled p	ocpork tend	le 0. 9212876	1	4 ['marinat	e meat in	refrigera	tor overnig	ht and dur	ing the day	y', 'turn	over in th	ne morning'	, 'or , ma	rinate at r	oom tempe	rature 4 hou	urs', 'tur
5	250833	old ladie	eschicken p	oi 0. 9171191		8 ['skin ch	icken, it	desired'	, 'arrange	chicken on	a foil-li	ned 13x9x2	2-inch bak	ing pan', '	set aside'	, 'in a sma	11 bowl ,	combine man	rmalade,

Output from Average embedding

id		recipe	ingredien	tscore	n_steps	steps													
0	292180	apricot	mu boneless	s 0. 9307807	(6 ['in a la	rge no-sti	ck skillet	, combine	the water	, mustard	, preserve	s , soy s	auce , and	scallions	', 'mix th	noroughly',	'add chic	ken', 'br
1	147350	apricot	glboneless	s 0. 9124004		5 ['place o	hicken in	a baking d	ish spraye	d with nons	tick spray	', 'combin	ne the jam	, soy sau	ce , and wa	ater', 'bl	lend well',	'pour ove	r chicken
2	293439	chicken	irchicken 1	€ 0. 9107031		['place o	hicken in	a baking d	ish', 'mix	plum sauce	with soy	sauce', 'a	add sauce	to cover t	he chicken	', 'put ir	the oven	and cook u	ntil chic
3	425574	beijing	cl frying ch	i 0. 9036562	10	0 ['rinse o	hicken pie	ces and pa	t dry with	paper towe	ls', 'plac	e in large	, plasti	c bag', 'c	ombine ter	iyaki saud	ce , sherry	, ginger	, fennel
4	367070	east wes	t chicken p	i 0. 9000423	15	2 ['place o	hicken in	zip lock b	ag', 'seas	on with sal	t and pepp	er', 'plac	e mustard	in small	bowl', 'wh	isk in ora	ange juice	, oil and	pepper fl
5	168258	bbq marm	alorange ma	0.8979467	24	4 ['in a me	dium-size	microwave-	safe bowl	, stir marr	nalade with	soy sauce	', 'micro	wave , unc	overed , or	n high unt	til softene	d , 1 minu	te', 'orı

Content based Evaluation Metrics

CF Evaluation Metrics

- Preliminary Benchmark Evaluation Metrics
 - o RMSE, Fit time, Test time, Long Tail Plot
- Model-specific Evaluation Metrics
 - Precision & Recall Rates, Mar@k Plot, Precision Recall Curve
 - Coverage Plot, Classification Probability Plot
 - ROC AUC Plot
- Cross-model Evaluation Metrics
 - Coverage, Personalization, Intralist Similarity Score

Dataset Evaluation

Benchmark Evaluation

Precision Recall Rates Mar@k Plot

Precision Recall Curve

Coverage Plot

Classification Probability Plot

ROC AUC Plot

Cross-model Evaluation Metric

- Coverage Score
 - Percent of items that is able to recommend
- Personalization Score
 - Dissimilarity b/w user's lists of recs

• Calculate the cosine similarity b/w the items in a list of recs

Cross-model Evaluation Metric

Summary & Future Steps

Summary and Lesson learned

- Technical Skills
 - Full Stack development
- User Awareness
 - Learned how to simulate the user's scenario and do the research on what exactly the user need in our design
 - Learned how compromise the users' need with our technical skills
- Project Management
 - Learned how to build up a one-semester timeline for project
 - Learned how to adjust the timeline with our current process

Future Steps

- Create Ingredients Object Detection module
- Upgrading 3 control units to a NLP module interpreting sentences
- Implement Deep Learning recommender systems
- Develop advanced features
 - Search time estimation, recipe uploads, user profile creations
- Optimize Frontend UI Design
- Generalize hybrid algorithm into **Independent API** for arbitrary dataset and backend RS algorithms choices

Reference

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural Collaborative Filtering. *Proceedings of the 26th International Conference on World Wide Web*. https://doi.org/10.1145/3038912.3052569

Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2015). Research-paper recommender systems: a literature survey. *International Journal on Digital Libraries*, *17*(4), 305–338. https://doi.org/10.1007/s00799-015-0156-0

Mango Black Bean Salsa. (n.d.). [Photograph].

https://Www.Tasteofhome.Com/Recipes/Mango-Black-Bean-Salsa/.

Kuku Eggplant Persian Frittata. (n.d.). [Photograph].

https://Foodschmooze.Org/Recipe/Eggplant-Kuku-Persian-Frittata/.

Warm Spanich. (n.d.). [Photograph].

https://www.tasteofhome.com/recipes/spinach-salad-with-warm-bacon-dressing/

Asparagus With Shiitake Mushrooms. (n.d.). [Photograph].

https://www.thebittenword.com/thebittenword/2013/05/stir-fried-asparagus-with-shiitake-mushrooms.html

THANKS!

DO YOU HAVE ANY QUESTIONS?

CS 4675/6675 Group 8

Shiyi W. Taichang Z. Shuangyue C. Shuyan L. Haoran Z.

https://github.com/Shiyi-Wang/recipeRecSys

https://youtu.be/7YzpjJDKZXw

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**