北京邮电大学 (软件学院) 2011-2012 学年第二学期

《概率论与随机过程》期末考试试题(A) TeXify: Lee E-mail: snowonionlee@gmapil.com Pdf和TeX源文件发布在 github.com/SnowOnion/TeXPractice

一. 填空题 (每小题 3 分,共 45 分	— .	填空题	(每小题	3	分,	共 45	分分
------------------------	------------	-----	------	---	----	------	----

1.	设 A,B 为相互独立的随机事件, $P(A)=0.8, P(B)=0.4,$ 则 $P(A\bar{B})=$						
2.	设 A,B 为两个随机事件,已知 $P(A)=\frac{1}{2},P(B)=\frac{1}{3},P(AB)=\frac{1}{4}$,则 $P(A\cup B)=$						
3.	世上一世中,一世,一世,一世,一世,一世,一世,一世,一世,一世,一世,一世,一世,一世,						
4.	已知随机变量 X 的分布律为 $\frac{X \mid -1 0 1 2}{p_k \mid 0.2 0.1 0.4 0.3}$,设 $Y = 2 X +1$,则 Y 的分布律为						
5.	设随机变量 X 的分布函数为 $F(X)$,概率密度为						
	$f(x) = \begin{cases} 2e^{-2x}, & x > 0, \\ 0, & x \le 0. \end{cases}$						
	则 $F(5)=$						
6.	二维随机变量 (X,Y) 的概率密度为						
	$f(x,y) = \begin{cases} \frac{1}{2}, & 0 \le x \le 1, 0 \le y \le 2, \\ 0, & else. \end{cases}$						
	则 $P{X < Y}$ =						
7.	设随机变量 $X \sim U(0,1)$,则随机变量 $Y = 2X + 1$ 的概率密度 $f(y) = $						
8.	设随机变量 $X \sim \pi(2), Y \sim B(10, 0.5), $ 则 $E(2X + 4Y - 1) = $						
9.	设离散型随机变量X的分布律						
	$P\{X = k\} = \frac{A}{3^k k!} (k = 0, 1, 2,)$						
	,则常数 $A=$						
10.	设随机变量 X,Y 相互独立,且 $X \sim N(1,4), Y \sim N(4,2), 则2X + 4Y + 1 \sim$						
11.	——· 设随机变量 X,Y 满足: $D(X)=1,D(Y)=4,D(3X-2Y+1)=13,$ 则 $\rho_{XY}=$						
12.	一一一 设随机变量 $X_1, X_2,, X_n$ 独立同分布,分布函数为 $F(x)$,求随机变量 $Z = max\{X_1, X_2,, X_n\}$ 的分布函数 $F_Z(z) =$						
13.	设随机过程 $X(t) = Yt, Y \sim N(5,9)$,则均值函数为						
14.	设 $\{N(t), t \geq 0\}$ 服从强度为 λ 的泊松过程,则 $P\{N(5) = 4, N(7) = 6\} =$						

二. (10分)

设随机变量X具有概率密度

$$f(x) = \begin{cases} a\cos x, & |x| < \frac{\pi}{2}, \\ 0, & else. \end{cases}$$

求: (1) 常数a, (2) $P\{0 < X < \frac{\pi}{4}\}$, (3) X的分布函数.

三. (10分)

设二维随机变量(X,Y)具有概率密度

$$f(x,y) = \left\{ \begin{array}{ll} kxy, & 0 < x < y < 1, \\ 0, & else. \end{array} \right.$$

求: (1) 常数k, (2) $P{X + Y < 1}$, (3) 边缘概率密度 $f_X(x)$, $f_Y(y)$.

四. (10分)

设随机变量X, Y相互独立,均服从区间(0,1)上的均匀分布,求: Z = X + Y的概率密度.

五. (15分)

已知齐次马氏链 $\{X_n, n \geq 0\}$, 状态空间为 $I = \{0, 1, 2\}$, 转移矩阵为

$$\mathbf{P} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

,初始分布为 $P_0(0) = \frac{1}{3}, P_1(0) = \frac{1}{3}, P_2(0) = \frac{1}{3}.$

(1) 求二步转移矩阵P(2), (2) 求 $P\{X_2=1,X_4=0,X_5=1\}$, (3) 证明遍历性,并求平稳分布.

六. (10分)

设 $X(t),Y(t),t\geq 0$ 是相互独立的平稳过程,验证Z(t)=X(t)+Y(t)是否是平稳过程.

2