

Aufgaben zu Riemannsche Flächen - WS 2025/26

2. Blatt - Abgabe 29.10, Übung 30.10

Aufgabe 4: Seien \mathcal{F} und \mathcal{G} Garben auf einem topologischen Raum X und $\alpha: \mathcal{F} \to \mathcal{G}$ ein Garbenmorphismus. Zeigen Sie, dass die Zuordnung

$$\ker \alpha : U \mapsto \ker \alpha(U) : \mathcal{F}(U) \to \mathcal{G}(U)$$

eine Garbe definiert, die wir mit $\ker \alpha$ bezeichnen.

Aufgabe 5: Wir betrachten die konstante Garbe, wie in der Vorlesung definiert. Genauer: Sei A eine abelsche Gruppe. Wir definieren die konstante Garbe (mit Werten in A) durch

$$\underline{A}: U \mapsto \underline{A}(U) := \{f: U \to A \mid f \text{ stetig}\},\$$

wobei A die diskrete Topologie trägt, d.h. $\forall a \in A : \{a\} \subset A$ offen.

Beschreibe die Schnitte dieser Garbe. Wieso heißt diese Garbe konstante Garbe?

Aufgabe 6: Sei X eine Riemannsche Fläche. Zeigen Sie, dass

$$\underline{2\pi i \mathbb{Z}} = \ker \Big(\exp : \mathcal{O}_X \to \mathcal{O}_X^{\times} \Big)$$

gilt, wobei \exp der durch $\exp(f)=e^f$ induzierte Garbenmorphismus sei und $2\pi i \mathbb{Z}$ die konstante Garbe zur abelschen Gruppe $2\pi i \mathbb{Z}$ ist.

Aufgabe 7: Sei X ein topologischer Raum und A eine abelsche Gruppe. Zeigen Sie, dass für $x \in X$

$$\underline{A}_x = A$$

kanonisch gilt.