More F Test Examples (part 1)

In all cases the full model has a separate mean for all 7 judges: μ_1 for judge A, μ_2 for judge B, \cdots μ_6 for judge F, and μ_7 for Spock's judge.

We estimate this model with: fit_full <- lm(Percent ~ Judge, data = juries)

The sample size is n = 46, so the degrees of freedom for the full model is: 46 - 7 = 39

Null Hypothesis	Reduced Model Groups	Reduced df, Extra df	R Code and Output
$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7$	-	Reduced: 46-1=45 Extra: 45 - 39 = 6 7 - 1 = 6	anova(fit_full) Analysis of Variance Table Response: Percent Df Sum Sq Mean Sq F value Pr(>F) Judge 6 1927.1 321.18 6.7184 6.096e-05 *** Residuals 39 1864.5 47.81
$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7$	1 group: • all judges	Reduced: 46-1=45 Extra: 45 - 39 = 6 7 - 1 = 6	<pre>fit_reduced <- lm(Percent ~ 1, data = juries) anova(fit_reduced, fit_full) Analysis of Variance Table Model 1: Percent ~ 1 Model 2: Percent ~ Judge Res.Df RSS Df Sum of Sq F Pr(>F) 1 45 3791.5 2 39 1864.4 6 1927.1 6.7184 6.096e-05 ***</pre>
$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$	2 groups: • A,B,C,D,E,F • Spock's Judge	Reduced: 46-2=44 Extra: 44 - 39 = 5 7 - 2 = 5	<pre>juries <- juries %>% mutate(judges_grouped = ifelse(Judge %in% c("A", "B", "C", "D", "E", "F"), "grouped", Judge)) fit_reduced <- lm(Percent ~ judges_grouped, data = juries) anova(fit_reduced, fit_full) Analysis of Variance Table Model 1: Percent ~ judges_grouped Model 2: Percent ~ Judge Res.Df RSS Df Sum of Sq F Pr(>F) 1</pre>

More F Test Examples (part 2)

In all cases the full model has a separate mean for all 7 judges: μ_1 for judge A, μ_2 for judge B, \cdots μ_6 for judge F, and μ_7 for Spock's judge.

We estimate this model with: fit_full <- lm(Percent ~ Judge, data = juries)

The sample size is n = 46, so the degrees of freedom for the full model is: 46 - 7 = 39

Null Hypothesis	Reduced Model Groups	Reduced df, Extra df	R Code and Output
$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$	3 groups: • A,B,C,D,E • F • Spock's Judge	Reduced: 46-3=43 Extra: 43 - 39 = 4 7 - 3 = 4	<pre>juries <- juries %>% mutate(judges_grouped = ifelse(Judge %in% c("A", "B", "C", "D", "E"), "grouped", Judge)) fit_reduced <- lm(Percent ~ judges_grouped, data = juries) anova(fit_reduced, fit_full) Analysis of Variance Table Model 1: Percent ~ judges_grouped Model 2: Percent ~ Judge Res.Df RSS Df Sum of Sq F Pr(>F) 1 43 2104.7 2 39 1864.5 4 240.28 1.2565 0.3035</pre>
$\mu_1 = \mu_2 = \mu_3 = \mu_4$	4 groups: • A,B,C,D • E • F • Spock's Judge	Reduced: 46-4=42 Extra: 42 - 39 = 3 7 - 4 = 3	<pre>juries <- juries %>% mutate(judges_grouped = ifelse(Judge %in% c("A", "B", "C", "D"), "grouped", Judge)) fit_reduced <- lm(Percent - judges_grouped, data = juries) anova(fit_reduced, fit_full) Analysis of Variance Table Model 1: Percent ~ judges_grouped Model 2: Percent ~ Judge Res.Df RSS Df Sum of Sq F Pr(>F) 1 42 2016.9 2 39 1864.5 3 152.5 1.0633 0.3758</pre>