

 $\label{eq:2.1} {\rm Jian~Tang^{1*}~and~Tse-Chun~Wang^{1\dagger}}$ $^{1}School~of~Physics,~Sun~Yat-Sen~University,~Guangzhou~510275,~China$

^{*} tangjian5@mail.sysu.edu.cn

[†] wangzejun@mail.sysu.edu.cn

I. INTRODUCTION

updating The discovery of neutrino oscillations points out the fact that neutrinos have mass, and provides evidence beyond the Standard Model (BSM). This phenomenon is successfully described by a theoretical framework with the help of three neutrino mixing angles $(\theta_{12}, \theta_{13}, \theta_{23})$, two mass-square splittings $(\Delta m_{21}^2, \Delta m_{31}^2)$, and one Dirac CP phase (δ) [1–4]. Thanks to the great efforts in the past two decades, we almost have a complete understanding of such a neutrino oscillation framework. More data in the neutrino oscillation experiments is needed to determine the sign of Δm_{31}^2 , to measure the value of $\sin \theta_{23}$, to discover the potential CP violation in the leptonic sector and even to constrain the size of δ [4]. For these purposes, the on-going long baseline experiments (LBLs), such as the NuMI Off-axis ν_e Appearance experiment (NO ν A) [5] and the Tokai-to-Kamioka experiment (T2K) [6], can answer these questions with the statistical significance $\gtrsim 3\sigma$ in most of the parameter space. Based on the analysis with their data, the normal mass ordering ($\Delta m_{31}^2 > 0$), the higher θ_{23} octant ($\theta_{23} > 45^{\circ}$), and $\delta \sim 270^{\circ}$ are preferred so far [4]. The future LBLs, Deep Underground Neutrino Experiment (DUNE) [7], Tokai to Hyper-Kamiokande (T2HK) [8], and the medium baseline reactor experiment, the Jiangmen Underground Neutrino Observatory (JUNO) [9, 10] will further complete our knowledge of neutrino oscillations.

Flavour symmetry models are used to explain the origin of the neutrino mixing, and to predict the value of oscillation parameters (some of useful review articles are [11–17]). These models are motivated by some interesting features, such as $\theta_{12} \sim 33^{\circ}$, and $\theta_{23} \sim 45^{\circ}$. Before the discovery of non-zero θ_{13} measurement by Daya Bay experiment [18], the 'tri-bi-maximal' neutrino mixing (TBM) ansatz, which was proposed in 2002 by Horrison, Perkins, and Scott [19], fitted with the experimental data in a good agreement:

$$U_{\text{TBM}} = \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2}\\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}.$$

With the fact that $\theta_{13} \approx 8^{\circ}$, several ways to obtain such non-zero value of θ_{13} are proposed. One of popular proposals is to correct the tri-bi-maximal neutrino mixing such that

$$\sin \theta_{12} = (1+s)/\sqrt{3}$$
, $\sin \theta_{13} = r/\sqrt{2}$, and $\sin \theta_{23} = (1+a)/\sqrt{2}$.

Th neutrino mixing ansatz can be realised by high-energy symmetries G_f . The symmetry

of discrete groups G_f , preserved at the high energy but slightly broken at the lower energy, predicts the neutrino mixing, mass-square splittings, and the CP violation phase (Dirac and Majorana phases), with reduced degrees of freedom. The symmetries need to be broken at the low energy. Otherwise, the flavour of leptons cannot be distinguished. There are several approaches for the symmetry breaking, including the direct, indirect, and semi approaches. Direct approach preserves the residual symmetries of G_f in the charged-lepton or neutrino sector. On the other hand, there is no residual symmetry preserved in neither charged-lepton nor neutrino sector in the indirect approach. In the semi approach, the charged-lepton and neutrino sectors preserve different residual symmetries, respectively. This symmetry is broken by extending the Higgs sector or introducing the flavons. To achieve the δ prediction, many models are based on a discrete family symmetry G_f together with a non-commuting CP symmetry H_{CP} . Broken in different approaches, the symmetry $G_f \otimes H_{CP}$ can predict different patterns for the neutrino mixing. For example, in the semi-direct approach, S_4 is preserved in the leading order, and leads the bimaximal (MB) or tri-bimaximal (TB) neutrino mixing, while the higher order terms bring the correction to the neutrino mixing.

Currently, some works discuss on how the future experiments can be used for testing these flavour symmetry models in the phenomenological point of view, e.g. Ref. [20–23]. A large number of these works are based on the c-library – General Long Baseline Experiment Simulator (GLoBES) [24, 25], which is a convenient simulation tool to simulate neutrino oscillation experiments via the Abstract Experiment Definition Language (AEDL). Some AEDL files for experiments are also available on GLoBES website, while the working group of DUNE experiment also releases their AEDL files [26]. GLoBES can be taken as one of popular and useful tools in the community of neutrino oscillation physics. However, it has not yet to be extended for the purpose of analysing flavour symmetry models. In this work, we will present our simulation tool Flavour Symmetry Embedded - GLoBES (FaSE-GloBES) that is a simulation code based on GLoBES library for studying the flavour symmetry. FaSE is a supplemental tool for GLoBES, written in c/c++ language, and FASE-GLoBES allows the user to assign the flavour symmetry model and analyse how a flavour symmetry model can be excluded by the simulated neutrino oscillation experiment.

II. OVERVIEW FASE-GLOBES

Flavor Symmetry Embedded (FaSE) is a supplemental tool for General Long Baseline Experiment Simulator (GLoBES) in order to analyse how a leptonic flavour symmetry model can be tested in neutrino oscillation experiments. FaSE is written in the c/c++ language, and consist with two codes FASE_GLoBES.c and model-input.c. The user defines the model in to model-input.c, while FASE_GLoBES.c does not need to be touched.

Figure 1: A scheme to correlate the model parameters with standard neutrino oscillation parameters. The error propagation is implemented in the simulation code up to the spectra analysis.

The concept of **FaSE-GLoBES** is shown in Fig. 1, in which three parts are shown: 1. **the** parameter translation, 2. giving oscillation-parameter values, and 3. the χ^2 -value

calculation. The idea behind this flow chart in Fig. 1 is that given a set of model parameters $\vec{\theta}_{Model}$, the corresponding values in standard oscillation parameters $\vec{\theta}_{OSC}$ are obtained by a translation function, which is assigned by the user in **model-input.c**. And then, through **FASE_GLoBES.c** these oscillation-parameter values are passed into **GLoBES** library to simulate the event spectra so that we can perform physics analysis in the newly-defined χ^2 .

API functions in **FaSE** are listed:

```
1. MODEL_init(N_{para}),
```

- FASE_glb_probability_matrix,
- 3. FASE_glb_set_oscillation_parameters,
- 4. FASE_glb_get_oscillation_parameters,
- 5. FASE_prior_OSC,
- 6. FASE_prior_model.

The first one is to initialise **FaSE** with the number of input parameters N_{para} . The next three functions need to be included to replace the default **GLoBES** probability engine by the one that can read the output from **model-input.c**, as follows.

```
glbRegisterProbabilityEngine(6,
&FASE_glb_probability_matrix,
&FASE_glb_set_oscillation_parameters,
&FASE_glb_get_oscillation_parameters,
NULL);
```

This probability engine can work with oscillation or model parameters. It can be set by the user with the parameter PARA. If PARA=STAN (PARA=MODEL) the probability engine works with oscillation (model) parameters. The final two items on the API list are prior functions. Once the user gives the prior in oscillation (model) parameters, the user needs to call FASE_prior_OSC (FASE_prior_model) as follows.

```
glbRegisterPriorFunction(FASE_prior_OSC, NULL, NULL, NULL);
or
glbRegisterPriorFunction(FASE_prior_model, NULL, NULL, NULL);
```

We note that except for setting the probability engine and the prior function, the other parts in the main code should follow with the GLoBES manual.

In the following, we give more details about using **FASE-GLoBES**. In Sec. II A, we will give the instruction to download and install **GLoBES** and **FASE**. Then, in Sec. II B, we will introduce how to compile and run the code. More complicated is setting the model, and the way to do this will be described in Sec. II C. Finally, we will discuss how to set up the prior in Sec. II D.

A. Download and Installation

download and install GLoBES and FASE-GLoBES

[will fill in after the code ready on Github]

B. Compile and Run

As FaSE works based on GLoBES, the user should use the GLoBES Makefile, but include the binary file of FaSE. To do so, we include the script in the Makefile,

```
{makefile_execution}: my_program.o FASE_GLoBES.o model-input.o
gcc my_program.o FASE_GLoBES.o model-input.o -o my_executable $(LDFLAGS)
$(local_LDFLAGS)
```

where {compile_execusion} is the makefile commend for the program my_program.o and the execution my_executable is the output. After giving this script in the GLoBES Makefile, the user needs to makefile the program my_program on the terminal.

```
makefile {makefile_execution}
```

And, the user can execute the program by typing the following commend on the terminal.

./my_executable

The user can also compile the program without the **GLoBES** Makefile with the following script.

```
gcc my_program.o FASE_GLoBES.o model-input.o -lglobes -LGLB_DIR/lib/ -o
my_executable
```

And, the execution is also in the same way: ./my_executable.

Finally we need to initialize **FaSE** by giving N_{para} which is the number of model parameters. To do so, we need to include the following script in the main code.

MODEL_init(N_{para});

C. Model setting

The function MtoS can do the translator from model parameters $\vec{\theta}_{Model}$ to oscillation parameters $\vec{\theta}_{OSC}$. After the user gives the array $\vec{\theta}_{Model}$ to the function MtoS, the output is the corresponding oscillation parameter $\vec{\theta}_{OSC}$, of which components are θ_{12} , θ_{13} , θ_{23} , δ , Δm_{21}^2 , and Δm_{31}^2 . For the first four components, values are given in the unit of **rad**, while the other two are in **eV**². These values will be passed in to **FaSE_GLoBES** to simulate the experimental spectra and compute the prior value.

To do the translation from $\vec{\theta}_{Model}$ to $\vec{\theta}_{OSC}$, the user can assign the relation between the oscillation and model parameter sets, or define the mass matrix in model parameters, which will be diagonalised by the function STAN_OSC to obtain the corresponding oscillation-parameter values. In the way of directly giving the relation between oscillation and model parameter sets, the user needs to provide

$$\vec{\theta}_{Model} = \vec{f}(\vec{\theta}_{OSC}) \tag{1}$$

in the function MtoS.

The oscillation parameters can also be obtained in the way based on

$$U^{\dagger} \mathcal{M} \mathcal{M}^{\dagger} U = \mathbf{M}^2$$
, where $\mathbf{M}_{\alpha\beta}^2 = m_{\alpha}^2 \delta_{\alpha\beta}$, (2)

where \mathcal{M} (M) is the neutrino mass matrix in the flavour (mass) state. The matrix \mathcal{M} is given by user with model parameters $\vec{\theta}_{Model}$. The matrix U is the neutrino mixing matrix, and can be used for getting mixing angles. The difference between any two diagonal elements of \mathbf{M} ($\mathbf{M}_{ii} - \mathbf{M}_{jj} = m_i^2 - m_j^2$) is the mass-squared difference (Δm_{ij}^2). This diagnolisation Eq. (2) can be done with the function STAN_OSC, which outputs directly the vector $\vec{\theta}_{OSC}$. The user needs to call it in MtoS with

STAN_OSC($\{M\}$, $\{\vec{\theta}_{OSC}\}$);

where $\{M\}$ and $\{\vec{\theta}_{OSC}\}$ are the input neutrino mass matrix and the output array of oscillation parameter values, respectively. More details about how to assign a model will be introduced in Sec. III A.

D. Prior setting

Given a set of values for model parameters, FASE_GLoBES.c will obtain the corresponding oscillation-parameter values from model-input.c, and will pass these values to simulate event spectra and to compute the prior value. Two gaussian prior functions are provided in FaSE: FASE_prior_OSC and FASE_prior_model. These two functions are for different purposes. If the user give the prior in oscillation (model) parameters, the user should register FASE_prior_OSC (FASE_prior_model) with the GLoBES function glbRegisterPriorFunction, as we introduced in the beginning of this section. The user also needs to assign the parameter PARA=STAN (PARA=Model), when the user prefers to give the prior in oscillation (model) parameters. The Gaussian prior is

$$\chi_{prior}^2 = \sum_i \frac{(\theta_i - \theta_i^c)^2}{\sigma_i^2},\tag{3}$$

where θ_i is one of parameters constrained by prior, θ_i^c (σ_i) is the central value (Gaussian width) of the prior for θ_i . We note that θ_i can be either model ($\vec{\theta}_{Model}$) or oscillation parameters ($\vec{\theta}_{OSC}$). The values of θ_i^c and σ_i need to be given by the user through three arrays: Central_prior, UPPER_prior, and LOWER_prior, in which there are six components. To treat asymmetry of width for upper ($\theta_i > \theta_i^c$) and lower ($\theta_i < \theta_i^c$) Gaussian widths, we give values in two arrays UPPER_prior, and LOWER_prior, respectively. If the user gives the prior in model parameters, the order of each component follows with the setup of input for the probability engine. If the user gives the prior in oscillation parameters, the six components in order are θ_{12} , θ_{13} , θ_{23} , δ , Δm_{21}^2 , and Δm_{31}^2 . The first four parameter are in rad, and the final two are in \mathbf{eV}^2 .

Finally, some restrictions are imposed by the studied flavour symmetry model. We set up these restrictions in the function model_restriction in model_input.c. In the function model_restriction, the user needs to return 1 once the restriction is broken. For example, if the normal ordering is imposed, we give "if (DMS31<0) { return 1;} "in

model_restriction, where DMS31 is the variable for Δm_{31}^2 . If there is no any restrictions, we simply return 0 in model_restriction as follows.

double model_restriction(double model []){ return 0;}

E. The definition of χ^2 function

The user can use **FaSE-GLoBES** to constrain model parameters. Suppose we have the measurement \vec{x} and the likelihood function $L(\vec{\theta}) = P(\vec{x}|\vec{\theta})$ for a set of parameters $\vec{\theta} = (\theta_1, ..., \theta_N)$, where $P(\vec{x}|\vec{\theta})$ is the probability function for data \vec{x} in favour of the hypothesis $\vec{\theta}$. The constraint of model parameters can be obtained with the statistis parameter $\chi^2 \equiv \ln L(\vec{\theta})$. The expression χ^2 is used as the default **GLoBES** setting. In more detail, the χ^2 function, following the Poisson distribution, is constructed based on a log-likelihood ratio,

$$\chi^{2}(\vec{\theta}^{hyp}, \xi_{s}, \xi_{b}) = 2\sum_{i} \left(\eta_{i}(\vec{\theta}^{hyp}, \xi_{s}, \xi_{b}) - n_{i} + n_{i} \ln \frac{n_{i}}{\eta_{i}(\vec{\theta}^{hyp}, \xi_{s}, \xi_{b})} \right) + p(\xi_{s}, \sigma_{s}) + p(\xi_{b}, \sigma_{b}) + \chi^{2}_{prior},$$

$$(4)$$

where i runs over the number of bins, $\eta_i(\vec{\theta}, \xi_s, \xi_b)$ is the assumed event rate in the ith bin and E_i is the central value in this energy bin. The vector $\vec{\theta}$ consists of model or oscillation parameters. The parameters ξ_s and ξ_b are introduced to account for the systematic uncertainties in the normalisation for the signal (subscript $_s$) and background (subscript $_b$) components of the event rate, and are allowed to vary in the fit as nuisance parameters. For a given set of parameters $\vec{\theta}$, the event rate in the ith energy bin is calculated as

$$\eta_i(\vec{\theta}^{hyp}, \xi_s, \xi_b) = (1 + \xi_s) \times s_i + (1 + \xi_b) \times b_i, \tag{5}$$

where s_i and b_i are the expected number of signal and background events in *i*th energy bin, respectively. The nuisance parameters are constrained by the Gaussian prior $p(\xi, \sigma) = \xi^2/\sigma^2$ with corresponding uncertainties σ_s and σ_b for the signal and background, respectively. Finally, χ^2_{prior} is a set of Gaussian priors for hypothesis, and is expressed as Eq. (3). After doing all minimisations, the user obtains the χ^2 value for a specific hypothesis $\vec{\theta}^{hyp}$, $\chi^2(\vec{\theta}^{hyp})$.

Based on the χ^2 function Eq. (4), we can study how model parameters can be constrained and whether a flavour-symmetry neutrino model is excluded by simulated experiments. In the following we will demonstrate how it works.

Applications

The user of **FaSE-GLoBES** is able to study how model parameters can be constrained by the simulated experiments. To do so, the user needs to simulate the true event spectrum n_i with a set of model $(\vec{\theta}_{Model}^{true})$ or oscillation parameters $(\vec{\theta}_{OSC}^{true})$, i.e. set up $n_i(\vec{\theta}_{Model}^{true})$ or $n_i(\vec{\theta}_{OSC}^{true})$. The hypothesis $\vec{\theta}_{Model}^{hyp}$ predicts the tested event spectrum $\eta_i(\vec{\theta}_{Model}^{hyp}, \xi_s, \xi_b)$. With the default settings for χ^2 function as Eq. (3) in **FaSE-GLoBES**, the user computes the statistical quantity,

$$\chi^2(\vec{\theta}_{Model}^{hyp})$$
, with $n_i(\vec{\theta}_{Model}^{true})$ or $n_i(\vec{\theta}_{OSC}^{true})$. (6)

We note that the minimum of χ^2 in the whole parameter space $(\chi^2_{min.})$ may not be 0. Therefore, to get the precision of model parameters, the user should use the value $\Delta\chi^2(\vec{\theta}^{hyp}_{Model}) \equiv \chi^2(\vec{\theta}^{hyp}_{Model}) - \chi^2_{min.}$, instead of $\chi^2(\vec{\theta}^{hyp}_{Model})$ itself. By varying different hypotheses $\vec{\theta}^{hyp}_{Model}$, we will obtain the allowed region of model parameters with the statistical quantity $\Delta\chi^2(\vec{\theta}^{hyp}_{Model})$.

The user can also study how well a flavour symmetry model explains the computed data, or predict whether the simulated experiment can exclude this model or not. In other words, the user studies the minimum of χ^2 for the flavour symmetry model $\vec{\theta}_{Model}$ as a hypothesis, by assuming different true oscillation values, *i.e.* different $\vec{\theta}_{OSC}^{true}$. To do so, one can compute the same statistical quantity in Eq. (6), while the true spectrum is varied with different true values $\vec{\theta}_{OSC}^{true}$. All model parameters are allowed to be varied with the user-defined prior. Finally, the user might adopt Wilk's theorem to interpret results [32]. When we compare nested models, the $\Delta\chi^2$ test statistics is a random variable asymptotically distributed as a χ^2 -distribution with the number of degrees of freedom, which is equal to the difference in the number of free model parameters.

In Secs. III D and III E, we will present examples to demonstrate how the user can do with **FaSE-GLoBES** to constrain the model parameter and to exclude a model by the simulated experiment configuration, respectively.

Table I: A summary of the relation between oscillation parameters and TDLS model parameters [30]. Two requirements are imposed by TDLS: the smallest mass state $m_1 = 0$ and the normal mass ordering. The sign of $\sin \delta$ depends on the sign of $x \cos \psi$: "+" ("-") is for $x \cos \psi > 0$ (< 0).

model parameters	x, η, r, m_a		
combinations of model parameters	$y = \frac{5x^2 + 2x + 2}{2(x^2 + x + 1)}(m_a + e^{i\eta}m_s),$		
	$z = -\frac{\sqrt{5x^2 + 2x + 2}}{2(x^2 + x + 1)} \left[(x + 2)m_a - x(2x + 1)e^{i\eta}m_s \right],$		
	$w = \frac{1}{2(x^2+x+1)} \left[(x+2)^2 m_a + x^2 (2x+1)^2 e^{i\eta} m_s \right],$		
	$\sin \psi = \frac{\Im(y^*z + wz^*)}{ y^*z + wz^* }, \cos \psi = \frac{\Re(y^*z + wz^*)}{ y^*z + wz^* }.$		
	$\sin 2\theta = \frac{2 y^*z + wz^* }{\sqrt{(w ^2 - y ^2)^2 + 4 y^*z + wz^* ^2}},$		
	$\cos 2\theta = \frac{ w ^2 - y ^2}{\sqrt{(w ^2 - y ^2)^2 + 4 y^*z + wz^* ^2}}.$		
oscillation parameters	$\Delta m_{21}^2 = m_2^2 = \frac{1}{2} \left[y ^2 + w ^2 + 2 z ^2 - \frac{ w ^2 - y ^2}{\cos \theta} \right],$		
	$\Delta m_{31}^2 = m_3^2 = \frac{1}{2} \left[y ^2 + w ^2 + 2 z ^2 + \frac{ w ^2 - y ^2}{\cos \theta} \right],$		
	$\sin^2 \theta_{12} = 1 - \frac{3x^2}{3x^2 + 2(x^2 + x + 1)\cos^2 \theta},$		
	$\sin^2 \theta_{13} = \frac{2(x^2 + x + 1)\sin^2 \theta}{5x^2 + 2x + 2},$		
	$\sin^2 \theta_{23} = \frac{1}{2} + \frac{x\sqrt{3(5x^2 + 2x + 2)}\sin 2\theta \sin \psi}{2[3x^2 + 2(x^2 + x + 1)\cos^2 \theta]},$		
	$\cos \delta = \frac{\cot 2\theta_{23} \left[3x^2 - \left(4x^2 + x + 1 \right) \cos^2 \theta_{13} \right]}{\sqrt{3} x \sin \theta_{13} \sqrt{(5x^2 + 2x + 2) \cos^2 \theta_{13} - 3x^2}},$		
	$\sin \delta = \pm \csc 2\theta_{23} \sqrt{1 + \frac{(x^2 + x + 1)^2 \cot^2 \theta_{13} \cos^2 2\theta_{23}}{3x^2 [3x^2 \tan^2 \theta_{13} - 2(x^2 + x + 1)]}}.$		

III. EXAMPLES

We now take the tri-direct littlest seesaw (TDLS) [27–29] as an example, and simulate the event spectra for DUNE and the MuOn-decay MEdium baseline NeuTrino beam experiment (MOMENT) [31] by GLoBES. In this flavour model, the atmospheric and solar flavon vacuum alignments are $\langle \phi_{\rm atm} \rangle \propto (1, \omega^2, \omega)^T$ and $\langle \phi_{\rm sol} \rangle \propto (1, x, x)^T$, where ω stands for a cube root of unity and the parameter x is real because of the imposed CP symmetry. Under this model, the light left-handed Majorana neutrino mass matrix is given by

$$m_{\nu} = m_a \begin{pmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{pmatrix} + e^{i\eta} m_s \begin{pmatrix} 1 & x & x \\ x & x^2 & x^2 \\ x & x^2 & x^2 \end{pmatrix}, \tag{7}$$

where x, η , m_a , and the ratio $r \equiv m_s/m_a$ are four parameters and will be constrained by experimental data. And based on Eq. (7), the relation between the model and oscillation parameters are predicted as Table. I. We note that from Eq. (7), $m_1 = 0$ and the normal mass ordering are imposed, and will need to be imposed in **FaSE-GLoBES**. Therefore, the restrictions in this model are $m_a > 0$ and r > 0.

In the following, all examples are presented for TDLS. However, we remind the user that though we use TDLS as an example, **FaSE-GLoBES** should not be limited in any flavour model. We therefore in the **FaSE** distribution, show the warped flavour symmetry (WSF) for the other example, which will not be further introduced in this manual.

A. Setup for a model

If the user prefers to assign the model with the mass matrix, the user will need to define the complex matrix Mass_Matrix with Eq. (7) in the function MtoS. The user can therefore assign the model as follows.

```
int MtoS(double OSC_PARAMS[6], double M_para[])
{
double x=M_para[0];
double eta=M_para[1];
double r=M_para[2];
double ma=M_para[3];
double ms=ma*r;
        double complex Mass_Matrix[] = {ma+ms*(cos(eta) + I*sin(eta)),
\max(\cos(6.6666e-1*M_PI) + I*\sin(6.6666e-1*M_PI))+x*ms*(\cos(eta) + I*ma*(cos(eta)) + I*ma*(cos(eta)) + I*ma*(eta) + 
I*sin(eta)), ma*(cos(6.6666e-1*M_PI) + I*sin(6.6666e-1*M_PI))*(cos(6.6666e-1*M_PI)
+ I*sin(6.6666e-1*M_PI))+x*ms*(cos(eta) + I*sin(eta)),
\max(\cos(6.6666e-1*M_PI) + I*\sin(6.6666e-1*M_PI))+x*ms*(\cos(eta) +
I*sin(eta)), ma*(cos(6.6666e-1*M_PI) + I*sin(6.6666e-1*M_PI))*(cos(6.6666e-1*M_PI))
+ I*sin(6.6666e-1*M_PI))+x*x*ms*(cos(eta) + I*sin(eta)),
ma+x*x*ms*(cos(eta) + I*sin(eta)), ma*(cos(6.6666e-1*M_PI) +
I*sin(6.6666e-1*M_PI))*(cos(6.6666e-1*M_PI) + I*sin(6.6666e-1*M_PI))+x*ms*(cos(eta))
```

```
+ I*sin(eta)), ma+x*x*ms*(cos(eta) + I*sin(eta)), ma*(cos(6.6666e-1*M_PI) +
I*sin(6.6666e-1*M_PI))+x*x*ms*(cos(eta) + I*sin(eta));
  STAN_OSC(Mass_Matrix,OSC_PARAMS);
  return 0;
}
  The user can also provide the relation between model and oscillation parameters Eq. (1),
such as Table. I. The user, who prefers to do so, can assign a model as follows.
  double MtoS(double osc_para[6], double M_para[])
{
/*example: tri-direct*/
double x=M_para[0];
double eta=M_para[1];
double r=M_para[2];
double ma=M_para[3];
osc_para[0]=TDth12(x,eta,r, ma);
osc_para[1]=TDth13(x,eta,r, ma);
osc_para[2]=TDth23(x,eta,r, ma);
osc_para[3]=TDdCP(x,eta,r, ma);
osc_para[4]=TDdm21(x,eta,r, ma);
osc_para[5]=TDdm31(x,eta,r, ma);
return 0;
}
```

The functions TDth12, TDth13, TDth23, TDdCP, TDdm21, and TDdm31 are included for obtaining the value of θ_{12} , θ_{13} , θ_{23} , δ , Δm_{21}^2 , and Δm_{31}^2 according to Table I, respectively.

The restrictions $m_a > 0$ and r > 0 need to be setup in model_restriction as follows.

```
double model_restriction(double model [])
{
  double x=model[0];
  double eta=model[1];
  double r=model[2];
  double ma=model[3];

if(ma<0) {return 1;}

if(r<0) {return 1;}</pre>
```

B. Initialise the code

In the beginning of main code, we need to initialise **GLoBES** and **FaSE**, and to include the AEDL file for MOMENTas follows.

```
glbInit(argv[0]);
glbInitExperiment("exp/MOMENT_FIX_FLUX_150KM_addATM_NC.glb",&glb_experiment_list[0],
&glb_num_of_exps);
MODEL_init(4);
Then we register the probability engine.
glb_init_probability_engine();
glbRegisterProbabilityEngine(6,
&FASE_glb_probability_matrix,
&FASE_glb_set_oscillation_parameters,
&FASE_glb_get_oscillation_parameters,
NULL);
```

In the following we define the model-parameter values $(x, \eta, r, \text{ and } m_a)$, and set the true value in model parameters true_values to simulated the true event spectrum. Here we

note that for setting up the true spectrum with model (oscillation) parameters, the user needs to make PARA equal to MODEL (STAN).

```
float x_true,eta_true,r_true,ma_true;
x_true=-3.65029; eta_true=1.13067*M_PI; r_true=0.511325;
ma_true=3.71199e-3;
glb_params true_values = glbAllocParams();
glbDefineParams(true_values,x_true,eta_true,r_true,ma_true,0,0);
glbSetDensityParams(true_values,1.0,GLB_ALL);
PARA=MODEL;
glbSetOscillationParameters(true_values);
glbSetRates();
```

C. Prior setup

To set up the prior, we need to register the prior function. As mentioned, when we use the prior in oscillation and model parameters, we register FASE_prior_OSC and FASE_prior_model, respectively. Here we present an example setting up priors in oscillation parameters according to NUFIT4.0 Table II.

Parameter	$ heta_{12}/^\circ$	$ heta_{13}/^\circ$	$ heta_{23}/^\circ$	$\delta/^\circ$	$\Delta m_{21}^2 / 10^{-5} \text{eV}^2$	$\Delta m_{31}^2 / 10^{-3} \text{eV}^2$
best fit	33.82	8.61	49.6	215	7.39	2.525
3σ Range	31.61 - 36.27	8.22 - 8.99	40.3 - 52.4	125 - 392	6.79 - 8.01	2.47 - 2.625

Table II: The best fit and 3σ uncertainty, in the results of NuFit4.0 [4].

We therefore register FASE_prior_OSC for the prior function as follows.

```
glbRegisterPriorFunction(FASE_prior_OSC,NULL,NULL,NULL);
```

And, then we give the value for the central values, and upper and lower Gaussian widths as follows.

```
UPPER_prior[0]=36.27*degree; LOWER_prior[0]=31.61*degree;
Central_prior[0]=33.82*degree;
```

```
UPPER_prior[1]=8.99*degree; LOWER_prior[1]=8.22*degree;
Central_prior[2]=52.4*degree; LOWER_prior[2]=40.3*degree;
Central_prior[2]=49.6*degree;
UPPER_prior[3]=392*degree; LOWER_prior[3]=125*degree;
UPPER_prior[3]=215*degree;
UPPER_prior[4]=8.01e-5; LOWER_prior[4]=6.79e-5; Central_prior[4]=7.39e-5;
UPPER_prior[5]=2.625e-3; LOWER_prior[5]=2.427e-3; Central_prior[5]=2.525e-3;
int i;
for (i=0;i<6;i++) {UPPER_prior[i]=fabs(UPPER_prior[i]-Central_prior[i])/3;}
LOWER_prior[i]=fabs(LOWER_prior[i]-Central_prior[i])/3;}
for (i=0; i<6; i++) glbSetOscParams(centers,0,i);
glbSetDensityParams(centers,1.0,GLB_ALL); glbCopyParams(centers,input_errors);
glbSetCentralValues(centers); glbSetInputErrors(input_errors);</pre>
```

D. Constraint of model parameters

Figure 2: Examples for using **FaSE-GLoBES** to obtain the constraints of model parameters for tri-direct littlest seesaw, with simulated DUNE and MOMENT data. The result is assumed the normal ordering. And, the dot denotes the model prediction with with NuFit4.0 results.

We show an example for how the model parameter can be constrained by MOMENT experiment, assuming the true model values x = -3.65, $\eta = 1.13\pi$, r = 0.511, and $m_a = 3.71$ meV. To get the constraint of x and η , we need to compute the minimum of χ^2 value as the following script in the main code.

```
glbSetProjection(free);
float res0=glbChiNP(true_values,NULL,GLB_ALL);
```

The **GLoBES** projector free allows all model parameters to vary, in order to find the value of res0, which is for χ^2_{min} . Then, we set two loops varying different values of x and η in $\vec{\theta}^{hyp}_{Model}$ to get $\Delta \chi^2$ values for different hypotheses. We note here there is degenerate solutions where $x \sim -8$, $\eta \sim 1.8\pi$, $r \sim 0.1$, and $m_a \sim 3.8$ meV. To find this degenerate solutions we set the entry with r = 0.

```
float x,eta,r,ma,dx,deta;
float lower_x,upper_x,lower_eta,upper_eta;
FILE* File=fopen("data/constraint_x_eta.dat", "w");
lower_x=-9; upper_x=-3; lower_eta=0.8*M_PI; upper_eta=2*M_PI;
dx=(upper_x-lower_x)/100; deta=(upper_eta-lower_eta)/100;
glbSetProjection(projection);
for (x=lower_x;x<=upper_x;x=x+dx){</pre>
for (eta=lower_eta;eta<=upper_eta;eta=eta+deta){</pre>
glbSetOscParams(test_values,x,0); glbSetOscParams(test_values,eta,1);
glbSetOscParams(test_values,r_true,2);
float res=glbChiNP(test_values,NULL,GLB_ALL);
glbSetOscParams(test_values,0.,2);
float res2=glbChiNP(test_values,NULL,GLB_ALL);
if(res2<res) {res=res2;}</pre>
fprintf(File, "%f %f %f \n", x, eta/M_PI, res-res0);
} fprintf(File,"\n");}
```

The **GLoBES** projector projection fixes values of x and η , but allows the other parameters to vary. The output (data/contraint_x_eta.dat) is a set of $\Delta \chi^2(\vec{\theta}^{hyp})$ (the third

column) values with the changed x (the first column), η (the second column). We use these data, and obtain the predicted 1σ , 2σ , and 3σ constraints of x and η by MOMENT shown in Fig. ??. The code for this example is provided as \mathbf{x} eta.c in the FaSE distribution.

E. Model testing

Figure 3: Examples for using **FaSE-GLoBES** to obtain the 2-D exclusion contour at 99% C.L. on the plane of true values of θ_{23} and δ for sub-models of TDLS with DUNE and MOMENT. The result is assumed the normal ordering. And, the dot (star) denotes the model prediction with NuFit4.0 results (best fit of NuFit4.0).

The user can also study how well a flavour symmetry model explains the computed data as predicting how the simulated experiment can exclude this model. As an example, we present testing sub-models of TDLS, assuming various true values of θ_{23} and δ . The code for this example is provided as **th23_delta.c** in the **FaSE** distribution. We compute the minimal χ^2 value for the model with r and m_a , varied with the prior in Eq. (3) according to NuFit4.0 results. Two parameters x and η are fixed at the best fit. The studied statistics function is exactly Eq. (4), but the true event rate n_i is predicted by a set of oscillation parameters, which will be varied in the code. And all four model parameter can be varied with the prior given by Eq. (3). Except for θ_{23} and δ , which are varied between $40^{\circ} < \theta_{23} < 52^{\circ}$ and $125^{\circ} < \delta < 392^{\circ}$, we fix the other oscillation parameters at $\theta_{12} = 36.25^{\circ}$, $\theta_{13} = 8.63^{\circ}$, $\Delta m_{21}^2 = 7.39 \times 10^{-5} \text{ eV}^2$ and $2.525 \times 10^{-3} \text{ eV}^2$ predicted by the model x = -3.65, $\eta = 1.13\pi$, r = 0.511, and $m_a = 3.71$ meV. Finally, in the code we adopt Wilk's theorem

```
[32]: textttgsl cdf chisq Qinv(gsl cdf chisq Q(fabs(res),dof),1).
float th23,dCP,dth23,ddCP,lower_th23,upper_th23,lower_dCP,upper_dCP;
FILE* File=fopen("data/ModelTest_th23_dCP_test.dat", "w");
lower_th23=40; upper_th23=52; lower_dCP=125; upper_dCP=392;
dth23=(upper_th23-lower_th23)/100; ddCP=(upper_dCP-lower_dCP)/100;
glbSetProjection(free);
for (th23=lower_th23;th23<=upper_th23;th23=th23+dth23){
for (dCP=lower_dCP;dCP<=upper_dCP;dCP=dCP+ddCP){</pre>
glbSetOscParams(true_values,th23*degree,GLB_THETA_23);
glbSetOscParams(true_values,dCP*degree,GLB_DELTA_CP);
PARA=STAN;
glbSetOscillationParameters(true_values);
glbSetRates();
PARA=MODEL;
float res=glbChiNP(test_values,NULL,GLB_ALL);
fprintf(File, "%f %f %f \n", th23, dCP,
gsl_cdf_chisq_Qinv(gsl_cdf_chisq_Q(fabs(res),dof),1));
} fprintf(File,"\n");
}
```

The output data/ModelTest_th23_dCP_test.dat contains true values of θ_{23} (the first column) and δ (the second column) with χ^2_{min} for TDLS (the third column). With these data, we then have the results shown in Fig. 3.

IV. SUMMARY AND CONCLUSIONS

[updating] We have presented FaSE, which is a supplemental simulation tool for GLoBES to study the leptonic flavour symmetry with neutrino oscillation experiments in a user-friendly way. FaSE contains two c-codes: model-input.c and FASE_GLoBES.c. Shown in Fig. 1, FASE_GLoBES, which calls functions in model-input.c, plays a role as a bridge between FaSE and GLoBES to simulate the event spectrum and compute the prior value. It can be left to be untouched by users. However, all inputs from the user

needs to be given in **model-input.c**. The user can provide the relation between model and oscillation parameters, or simply give the mass matrix predicted by the studied model. The prior can be assigned as a Gaussian distribution in model or oscillation parameters. Central values and widths are given by the user in the main code through three arrays. Given a set of model parameters $\vec{\theta}_{Model}$, with **GLoBES**, the output can be the χ^2 value for the hypothesis $\vec{\theta}_{Model}$ in the simulated experiments.

We also present demonstrate examples for **FaSE-GLoBES** with the flavour symmetry model – tri-direct littlest seesaw (TDLS) – and the future neutrino oscillation experiment – MOMENT. We demonstrate how to use **FaSE-GLoBES** to obtain the constraint of any two of model parameters, and to study the ability to TDLS by MOMENT experiment.

Finally, **GLoBES** is a popular and powerful simulation tool to analyse the neutrino oscillation experiments in a simple language (AEDL), without losing too much detail. Considering the success of the flavour symmetry theory to explain the neutrino oscillations, **FaSE-GLoBES** should benefit model builders of leptonic flavour symmetry and phenomenologists for neutrino oscillation physics. We leave the flexibility for the user, and some other improvements and extensions can be expected in the future.

Bibliography

- [1] B. Pontecorvo, Sov. Phys. JETP **26**, 984 (1968), [Zh. Eksp. Teor. Fiz.53,1717(1967)].
- [2] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962), [,34(1962)].
- [3] B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958), [Zh. Eksp. Teor. Fiz.34,247(1957)].
- [4] I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, and T. Schwetz, JHEP 01, 106 (2019), 1811.05487.
- [5] D. S. Ayres et al. (NOvA) (2007).
- [6] K. Abe et al. (T2K), Nucl. Instrum. Meth. A659, 106 (2011), 1106.1238.
- [7] R. Acciarri et al. (DUNE) (2015), 1512.06148.
- [8] K. Abe et al. (Hyper-Kamiokande Working Group) (2014), 1412.4673.
- [9] Z. Djurcic et al. (JUNO) (2015), 1508.07166.
- [10] F. An et al. (JUNO), J. Phys. **G43**, 030401 (2016), 1507.05613.
- [11] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701 (2010), 1002.0211.

- [12] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010), 1003.3552.
- [13] S. F. King and C. Luhn, Rept. Prog. Phys. **76**, 056201 (2013), 1301.1340.
- [14] S. F. King, A. Merle, S. Morisi, Y. Shimizu, and M. Tanimoto, New J. Phys. 16, 045018 (2014), 1402.4271.
- [15] S. F. King, J. Phys. **G42**, 123001 (2015), 1510.02091.
- [16] S. F. King, Nucl. Part. Phys. Proc. **265-266**, 288 (2015).
- [17] S. F. King, Prog. Part. Nucl. Phys. 94, 217 (2017), 1701.04413.
- [18] F. P. An et al. (Daya Bay), Phys. Rev. Lett. 112, 061801 (2014), 1310.6732.
- [19] P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. **B530**, 167 (2002), hep-ph/0202074.
- [20] P. Ballett, S. F. King, S. Pascoli, N. W. Prouse, and T. Wang, JHEP 03, 110 (2017), 1612.01999.
- [21] S. S. Chatterjee, P. Pasquini, and J. Valle, Phys. Lett. B 771, 524 (2017), 1702.03160.
- [22] G.-J. Ding, Y.-F. Li, J. Tang, and T.-C. Wang, Phys. Rev. **D100**, 055022 (2019), 1905.12939.
- [23] J. Tang and T. Wang, Nucl. Phys. B **952**, 114915 (2020), 1907.01371.
- [24] P. Huber, M. Lindner, and W. Winter, Comput. Phys. Commun. 167, 195 (2005), hep-ph/0407333.
- [25] P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter, Comput. Phys. Commun. 177, 432 (2007), hep-ph/0701187.
- [26] T. Alion et al. (DUNE) (2016), 1606.09550.
- [27] S. F. King, JHEP **07**, 137 (2013), 1304.6264.
- [28] S. F. King, JHEP **02**, 085 (2016), 1512.07531.
- [29] S. F. King and C. Luhn, JHEP **09**, 023 (2016), 1607.05276.
- [30] G.-J. Ding, S. F. King, and C.-C. Li, JHEP 12, 003 (2018), 1807.07538.
- [31] J. Cao et al., Phys. Rev. ST Accel. Beams 17, 090101 (2014), 1401.8125.
- [32] S. S. Wilks, Annals Math. Statist. 9, 60 (1938).