DD2424

Deep Learning in Data Science Assignment 1 Bonus Points

Franco Ruggeri, fruggeri@kth.se

May 6, 2020

1 Improvements

I tried the following improvements:

- (a) Coarse-to-fine random search also for step size (n_s) and number of cycles (n_{cycles}) , besides for the amount of regularization penalty (λ) .
- (b) More hidden nodes.
- (c) Model ensemble "on the cheap", that is built with snapshots taken at the end of each cycle.
- (d) Dropout. I implemented it as inverted dropout (i.e. compensation during training) and, as suggested in [1], with different parameters for the probabilities of keeping active inputs and hidden nodes, respectively called p_x and p_h .

To analyze the benefits systematically, I enabled one improvement at a time and I compared the result with the one got without improvement. Then I trained the final network, without using explicitly the improvement (a) for reasons of training time, but setting n_s and n_{cycles} based on the result got using it alone. The results are shown in table 1. Note that λ was always adjusted with a coarse-to-fine random search, a part from test cases 3 and 10 which were used to analyze in isolation ($\lambda = 0$) the effect of dropout isolated.

We can summarize the analysis as follows:

- The most useful enhancement is the use of more hidden nodes (compare test cases 1 and 5-8).
- Building a model ensemble taking snapshots during the training can give a small boost without much computational cost (compare test cases 2 and 9).
- Dropout helps preventing over-fitting, i.e. is a regularization technique (compare test cases 3 and 11 and see figure 1). In case of high number of hidden nodes, dropout can be added to the regularization penalty and improve the generalization (compare test cases 11-12).
- There is not really a correlation with number of hidden nodes and over-fitting. This can be seen by looking at λ and m: the best value of λ (found with cross-validation) does not necessary increase when increasing m. This confirms what has been discussed during the lecture 5: over-fitting and generalization are not so well understood in neural networks.

The optimization worked very fine. The accuracy was increased from 52.30% to 58.04% (final network, test case 12).

TC	λ	n_s	n_{cycles}	p_x	p_h	m	Improvements	Accuracy (%)
1	0.002584	980	3	1	1	50	-	52.30
2	0.002584	980	5	1	1	50	-	52.25
3	0	980	5	1	1	50	-	49.34
4	0.003848	2450	5	1	1	50	(a)	52.56
5	0.000012	980	3	1	1	100	(b)	53.32
6	0.002290					200	(b)	55.27
7	0.002608					500	(b)	56.09
8	0.000510					1000	(b)	56.80
9	0.002584	980	5	1	1	50	(c)	52.58
10	0	980	5	0.8	0.8	50	(d)	51.75
11	0.000510	2450	5	0.8	0.8	1000	(b)+(c)	57.14
12	0.000510	2450	5	0.8	0.8	1000	(b)+(c)+(d)	58.04

Table 1: Accuracy for several parameter settings and improvements.

2 LR range test

As explained in [2], it is possible to estimate reasonable boundary values for the learning rate $(\eta_{min}$ and $\eta_{max})$ with a single training run of several epochs. Briefly, the strategy is to increase the learning rate linearly for the whole training and plot the accuracy versus the learning rate. Then, η_{min} should be set to the

Figure 1: Learning curves for test case 3 (a) which clearly has over-fitting, and 11 (b) in which dropout is applied and prevents over-fitting.

Figure 2: Accuracy as a function of the learning rate for the LR range test.

Figure 3: Learning curves for the final network, using the provided $\eta_{min} = 1e - 5$ and $\eta_{max} = 1e - 1$ (on the left) and the found $\eta_{min} = 1e - 5$ and $\eta_{max} = 0.045$ (on the right).

value when the accuracy starts to increase and η_{max} to the value when the accuracy becomes ragged or starts to fall.

I implemented the LR range test by running a 8-epoch half cycle $(n_{cycles} = 0.5 \text{ and } n_s = 8 \ floor(n/n_{batch}))$ with $\eta_{min} = 1e - 6$ and $\eta_{max} = 1e - 1$. As shown in figure 2, the accuracy starts immediately to increase, so a good value for η_{min} is 1e-5, while peaks and drops become significant after $\eta = 0.045$, which is then a good value for η_{max} . The comparison of the learning curves is shown in figure 3. The test accuracy obtained with the new boundary values is 57.6%, very similar to the previous one, confirming that the proposed LR range test is valuable.

Finally, this test is the reason of a big advantage of cyclical learning rates: they remove much of the trial-and-error associated with finding a good learning rate and some of the costly hyper-parameter optimization for adaptive learning rates, as stated in the instructions.

References

- [1] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. http://www.deeplearningbook.org. Cambridge, MA, USA: MIT Press, 2016.
- [2] Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks. 2015. arXiv: 1506.01186 [cs.CV].