ゼロから作る
Deep Learning 4
機械学習編
1章 バンディット問題

ゼロから作る

強化学習編

斎藤 康毅

23/11/16(木)

バンディット問題 Bandit Problem

Bandit(盗賊,山賊):スロットマシン

・レバーを引くとランダムに絵柄が変わる

・絵柄によりコインが(0~n)枚もらえる

問題設定

- ・1 本レバースロットマシンが複数台ある
- ・スロットマシン毎に絵柄の出方が異なる
- ・プレイヤーはスロットマシンの情報を何も

知らない

(例えば)1000回 プレイ後の得た コインの枚数を 最大化したい

用語

環境 Environment:スロットマシン

エージェント Agent :プレイヤー

行動 Auction : 1 台選んでプレイする

報酬 Reward :スロットマシンから出るコイン

良いスロットマシンとは?

良いスロットマシン⇔期待値が高い

・スロットマシン毎にもらえるコインの 確率分布が異なる

期待値の高いスロットマシンを毎回 選べばよい

coin	0	1	5	10
Р	0.7	0.15	0.12	0.03

coin	0	1	5	10
Р	0.5	0.4	0.09	0.01

良いスロットマシンとは?

良いスロットマシン⇔期待値が高い

・スロットマシン毎にもらえるコインの 確率分布が異なる

 SM_a : $\mu_a = 0 \times 0.7 + 1 \times 0.15 + 5 \times 0.12 + 10 \times 0.03$ = 1.05 期待値の高いスロットマシンを毎回 選べばよい

 SM_b : $\mu_b = 0 \times 0.5 + 1 \times 0.4 + 5 \times 0.09 + 10 \times 0.01$ = 0.95

coin	0	1	5	10
Р	0.7	0.15	0.12	0.03

coin	0	1	5	10	
Р	0.5	0.4	0.09	0.01	

良いスロットマシンとは?

良いスロットマシン⇔期待値が高い

・スロットマシン毎にもらえるコインの確率分布が異なる

。期待値の高いスロットマシンを毎回 選べばよい

coin	0	1	5	10
Р	0.7	0.15	0.12	0.03

coin	0	1	5	10
Р	0.5	0.4	0.09	0.01

報酬 Reward :スロットマシンから出るコイン

価値 Value :報酬の期待値

行動価値 Action Value: 行動に対して得られる報酬の期待値

 $R_t \in \{0,1,5,10\}$:t回目に得られる報酬

 $A_t \in \{a,b\}$:t回目の行動(SMの種類)

数式 記号

式	式の意味
E[R]	報酬Rの期待値
E[R A]	Aという行動をした場合のRの期待値
E[R A = a] = E[R a]	aという行動をした場合のRの期待値
q(A) = E[R A]	行動価値:Quality,行動Aの価値
q(A)	真の値←エージェントは知らない
Q(A)	推定值

行動価値推定アルゴリズム

エージェントはスロットマシンの価値を知らない

→各スロットマシンの価値を推定する必要がある

SM	1回目	SMの価値
а	0	0
b	1	1

SM	1回目	2回目	3回目	SMの価値
a	0	1	5	2
b	1	0	0	0.333

$$Q(A = a) = 0, Q(A = b) = 1$$

$$Q(A = a) = 2$$
, $Q(A = b) = 0.333$

この期待値Q(A)は推定値だけどSM。の方が価値が高そう

↑標本平均:大数の法則より無限回のサンプリングで真の値に一致する

実装の注意点① 平均値の実装

RI, Rz,, Rn & B Qn Estiblis.	
単に平均すると ht (回目の行動で	RHI を得たとき RI~ RMI も再度 必要てしてしまう。
一种人也的比较的	
Qn-1 = R1+ + Rn-1	$Q_n = \frac{1}{n} \left(R_1 + \dots + R_{n-1} + R_n \right)$
n-1 $n-1$	$=\frac{1}{n}\left((n-1)\Omega_{n-1}+R_n\right)$
R, + + Pn-1 = (n-1) Qn-1	= (1- 1) Qu-1+ 1 Rn
	= Qn-1+ n(Rn-Qn-1)
$Q_n = Q_{n-1} + \frac{1}{n} (R_n - Q_{n-1})$	
父そりも時間も小さ	eci

実装の注意点① 平均値の実装

プレイヤーの戦略

・greedy(貪欲) 各SMの価値の推定値が最大のものを常に選ぶ

実験が少なく推定値の大小と

真の値の大小が一致しないかも

・実験 SM*a*

SMの価値を精度よく推定するため 価値が低いものでも様々なSMを選択する

プレイヤーの戦略

活用Exploitation

経験から最善な行動をする

(greedy)

真の最善をみのがしているかもしれないから

探索Exploration

Greedyでない行動を試す

プレイヤーの戦略 ε-greedy法

強化学習は活用と探索のバランスを以下に取るかが難しい

そこで, ε-greedy法

確率ε で探索 (ランダムな行動)

確率1-εで活用

多腕パンディット問題 実験①

問題設定①

- ・1 本レバースロットマシンが10台ある
- ・スロットマシン毎に絵柄の出方が異なる
- ・プレイヤーはスロットマシンの情報を何も知らない
- ・1000回プレイ後の得たコインの枚数を最大化したい
- ϵ =0.1で探索(ランダム)

多腕バンディット問題 実験①

問題設定①

・スロットマシンiは確率reta[i]で コインを1枚返し、それ以外で0枚返す

・reta[i]自体も初めにランダムに決めておく

多腕バンディット問題 実装①

https://github.com/cijb-7724/deep-learning-4-in-cpp/tree/main/ch01

ch01/ch01_fig13_bandit.cpp ch01/make_graph.py

多腕パンディット問題 実験①

結果①

rate=0.77くらいに収束している

初めに決めたrate[i]の最大値が 0.77くらいでそこに収束してると考 えられる

多腕パンディット問題 実験①

結果①

初めに決めたrate[i]の最大値が 0.77くらいでそこに収束してると考 えられる

実際は0.85だから 収束しきっていない

多腕バンディット問題 実験② 平均的な性質

問題設定②

①では各SMの勝率(コインを 1 枚もらえる確率) は初めに 1 回ランダムに決めただけだった

②では①自体を200回実験し,その平均での各ステップでの勝率を計算する

多腕バンディット問題 実験② 平均的な性質

問題設定②

②では①自体を200回実験し,その平均での各ステップでの勝率を計算する

	1	2	3		1000
1回目の実験	1.0	0.5	0.333		0.913
2回目の実験	0.0	0.0	0.0	1)3353	0.821
				(#007) Ac (111,000) :	on at c
200 回目の実験	1.0	1.0	1.0	ine po	0.615
平均	0.493	0.497	0.504	elagi us r	0.838

多腕バンディット問題 実験② 平均的な性質

結果②

ステップを重ねるたびに急速に 勝率が上がってる (600stepほどで頭打ち)

多腕バンディット問題 実験③ εの比較

問題設定③

②の平均的な勝率はε=0.1であった.

εを変化させたとき勝率の収束の仕方を考える

 ϵ =0.01, 0.1, 0.3

の3つを試す

その他の設定は①と同じ

多腕バンディット問題 実験③ εの比較

結果③

ε=0.01:探索のしなさすぎで 適切な行動を選択できていない

ε=0.3:探索のしすぎで 適切な行動をとり続けていない

ε=0.1:5ょうどよく見える

しかし!!

多腕バンディット問題 実験③ εの比較

結果③

1000回プレイできるとき ϵ =0.1が 適切だとわかったが, 100回しかプレイできないとき ϵ =0.3が適切とも捉えられる

∴問題設定によってε-greedy法のεを変化させる必要がある

定常問題:報酬の確率分布が定常

1000回のプレイが終わるまでは スロットマシンの勝率は変化しなかった

非定常問題:報酬の確率分布が非定常

毎プレイで勝率が変化する

非定常問題:報酬の確率分布が非定常 毎プレイで勝率が変化する

```
int NonStatBandit::play(int arm) {
   double rate = this->rates[arm];
   for (int i=0; i<this->arms; ++i) this->rates[i] += 0.1 * rand_double(-1, 1); //ノイズを追加
   if (rate > rand_double(0, 1)) return 1;//rewardの値を返り
   else return 0;
}
//
```

	重,Rn:率足图州·
Q . = ·	$\frac{R_1 + \dots + R_n}{n} = \frac{1}{n} R_1 + \frac{1}{n} R_2 + \dots + \frac{1}{n} R_n$
OC N	n n n n n n
定	
非定	
Qn = 0	LRn+α(1-α)Rn-1+α(1-α)2Rn-2+···+α(1-α)n-1R1+(1-α)nQn
	Ria Rno指数(加重)移動平均

多腕パンディット問題 実験4 非定常問題

問題設定④

②の問題設定において、毎プレイで勝率が変化する

```
int NonStatBandit::play(int arm) {
   double rate = this->rates[arm];
   for (int i=0; i<this->arms; ++i) this->rates[i] += 0.1 * rand double(-1, 1); //ノイズを追加
   if (rate > rand double(0, 1)) return 1;//rewardの値を返す
   else return 0;
```

このときエージェント目線での各スロットマシンの価値Qを 以下の2つの更新式で実装し違いを観察する

定常
$$Q_n = Q_{n+1} + f(R_n - Q_{n-1})$$

非定常 $Q_n = Q_{n+1} + d(R_n - Q_{n-1})$ $\alpha = 0.8$

多腕バンディット問題 実験④ 非定常問題

結果④

直近の報酬を重要視して 過去の報酬を(ほぼ)無視する ことで、非定常問題にも対応する ことができた