CÁLCULO III	1 ^{er} Apellido:	13/11/2020
Matemáticas e Informática Curso 2020/2021	2º Apellido:	Tiempo: 2h
Dpto. Matemática Aplicada ETSI Informáticos Universidad Politécnica de Madrid	Nombre: Número de matrícula:	Calificación:

PRIMER PARCIAL

- 1. (a) (1 punto) Demuestra que son integrables Riemann las funciones continuas $f: R \longrightarrow \mathbb{R}$, con $R \subset \mathbb{R}^n$ un rectángulo.
 - (b) (1 punto) Enuncia el teorema de Lebesgue y úsalo para estudiar si es integrable Riemann la función $f: [0, 1]^2 \longrightarrow \mathbb{R}$ definida por:

$$f(x,y) = \begin{cases} y & , \text{ si } y \notin \mathbb{Q} \\ x^2 & , \text{ si } y \in \mathbb{Q} \end{cases}$$

En caso afirmativo, ¿cuál es el valor de la integral?

- 2. (2 puntos) Calcula la masa de la placa $S=\left\{(x,y):1\leq x^2+y^2\leq 2\right\}$ con densidad puntual $\delta(x,y)=\frac{x^2}{\sqrt{x^2+y^2}}$.
- 3. (2 puntos) Calcula el valor de la integral de la función $f(x,y)=x^2+y^2$ sobre el recinto acotado en $z \ge 0$ comprendido entre el cono $x^2+y^2=z^2$ y el paraboloide $x^2+y^2=2-z$.
- **4.** (2 puntos) Calcula el volumen del recinto acotado limitado en el semiespacio $z \ge 0$ por la superficie $(x^2+y^2+z^2)^2=z^2\sqrt{x^2+y^2}$.
- **5.** (2 puntos) Se considera la curva γ parametrizada por $\alpha(t) = (\sin t + \cos t, \sin t \cos t, t^2), 0 \le t \le 2\pi$.
 - (a) Calcula la masa de un cable con la forma de γ y densidad puntual $\delta(x,y,z)=\sqrt{z}$.
 - (b) Suponiendo el campo de fuerzas $F(x,y,z) = x\mathbf{i} + y\mathbf{j} + (x+y)\mathbf{k}$, calcula el trabajo necesario para que una partícula de masa unidad recorra la curva γ en el sentido indicado por ella.

Observaciones:

- Para que sean valorados, todos los resultados obtenidos deben estar debidamente justificados.
- No está permitido el uso de calculadoras o móviles.
- Esta hoja con los enunciado hay que entregarla junto con el resto de hojas del examen, todas ellas con el nombre del alumno.
- Los problemas se pueden resolver en cualquier orden, pero sin mezclarse unos con otros.

SOLUCIONES

- (1) (b) No es integrable Riemann porque el conjunts de discultimidades de f no tiene medide cero.
- (2) $m(s) = \iint_{S} \frac{x^2}{\sqrt{x^2+y^2}} dx dy = \int_{0}^{2\pi} d\theta \int_{1}^{\sqrt{2}} \frac{e^2 co^2 \theta}{\rho} \cdot \rho d\rho = \dots = \frac{(2\sqrt{2}-1)\pi}{3}$
- (3) $\Omega = \{(x,y,z) : x^2 + y^2 \le 1, \sqrt{x^2 + y^2} \le 2 \le 2 x^2 y^2\}$ $\iiint_{X} (x^2 + y^2) dx dy dz = \iiint_{X^2 + y^2} dx dy \begin{cases} (x^2 + y^2) dz = - = \frac{4\pi}{15} \\ x^2 + y^2 \le 1 \end{cases}$
- (4) $(x^{2}+y^{2}+z^{2})^{2}=z^{2}\sqrt{x^{2}+y^{2}}$ = $z^{2}\sqrt{x^{2}+y^{2}}$ =
- (5) $x(t) = (xint + cont, xint cont, t^2), 0 \le t \le 2\pi$ $x'(t) = (cont - xint, cont + xint, 2t); ||x'(t)|| = \sqrt{2 + 4t^2}$
 - a) $m = \int \sqrt{2} \cdot ds = \int \frac{2\pi}{t \cdot \sqrt{2 + 4 t^2}} dt = = \frac{(2 + 16\pi^2)^{3/2} 2\sqrt{2}}{12}$
 - b) $W = \int_{X} x dx + y dy + (x+y) dz = --- = -8\pi$