1a $2a$ $3a$ $4a$	$1a 2a 3a 4a 6a \qquad 7a$		7b	7c	12a	12b	13a	13b	14a	14b	14c	26a	26b		
χ_1 1 1 1 1	1	1	1	1	1	1	1	1	1	1	1	1	1		
$\chi_2 \mid 6 -6 0 0$	0 -	-1	-1	-1	0	0	$E(13)^2 + E(13)^5 + E(13)^6 + E(13)^7 + E(13)^8 + E(13)^1$	$E(13) + E(13)^3 + E(13)^4 + E(13)^9 + E(13)^10 + E(13)^12$	1	1	1	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$		
$\chi_3 6 -6 0 0$	0 -	-1	-1	-1	0	0	$E(13) + E(13)^3 + E(13)^4 + E(13)^9 + E(13)^10 + E(13)^12$	$E(13)^2 + E(13)^5 + E(13)^6 + E(13)^7 + E(13)^8 + E(13)^1$	1	1	1	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$		
$\chi_4 \mid 7 7 1 -1$	1	0	0	0	-1	-1	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^11$	0	0	0	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$		
$\chi_5 7 7 1 -1$	1	0	0	0	-1	-1	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$	0	0	0	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$		
$\chi_6 \mid 12 - 12 0 0$	$0 - E(7)^2$	$2 - E(7)^{} 5$	$-E(7)^3 - E(7)^4$	$-E(7) - E(7)^{} 6$	0	0	-1	-1	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	1	1		
$\chi_7 12 12 0 0$	$0 - E(7)^2$	$2 - E(7)^{} 5$	$-E(7)^3 - E(7)^4$	$-E(7) - E(7)^{} 6$	0	0	-1	-1	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	-1	-1		
$\chi_8 12 12 0 0$	0 - E(7) -	$-E(7)^{}6$ -	$-E(7)^2 - E(7)^5$	$-E(7)^3 - E(7)^4$	0	0	-1	-1	$-E(7) - E(7)^{} 6$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	-1	-1		
$\chi_9 \mid 12 -12 0 0$	0 - E(7) -	$-E(7)^{}6$ -	$-E(7)^2 - E(7)^5$	$-E(7)^3 - E(7)^4$	0	0	-1	-1	$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	1	1		
$\chi_{10} \mid 12 - 12 0 0$	$0 - E(7)^{} 3$	$3 - E(7)^4$	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	0	0	-1	-1	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	1	1		
$\chi_{11} 12 12 0 0$	$0 - E(7)^{} 3$	$3 - E(7)^4$	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	0	0	-1	-1	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	-1	-1		
$\chi_{12} 13 13 1 1$	1 -	-1	-1	-1	1	1	0	0	-1	-1	-1	0	0		
$\chi_{13} \mid 14 - 14 2 0$	-2	0	0	0	0	0	1	1	0	0	0	-1	-1		
$\chi_{14} \mid 14 14 -1 -2$	-1	0	0	0	1	1	1	1	0	0	0	1	1		
$\chi_{15} \mid 14 14 -1 2$	-1	0	0	0	-1	-1	1	1	0	0	0	1	1		
$\chi_{16} \mid 14 - 14 - 1 = 0$	1	0	0	0	$E(12)^{} 7 - E(12)^{} 11$	$-E(12)^{}7 + E(12)^{}11$	1	1	0	0	0	-1	-1		
$\chi_{17} \mid 14 - 14 - 1 = 0$	1	0	0	0	$-E(12)^{}7 + E(12)^{}11$	$E(12)^{}7 - E(12)^{}11$	1	1	0	0	0	-1	-1		

Trivial source character table of $C \cong SL(2.13)$ at n=13

Trivial source character table of $G \cong SL(2,13)$ at $p = 13$													
$Normalisers N_i$					$\overline{N_1}$						N_2		
$p-subgroups\ of\ G\ up\ to\ conjugacy\ in\ G$					P_1						P_2		
I = I = I = I = I = I = I = I = I = I =	a $2a$ $3a$ $4a$ $6a$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	7b	7c		12b	14a	14b	14c	1a $2a$ $3a$ $4a$ $4a$ $6a$	6a $12a$	12b	12b $12a$
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} 13 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} 13 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} 13 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} 13 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} 13 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} 13 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{1$. 13 1 1 1 -					1		$-2*E(7) - E(7)^2 - E(7)^3 - E(7)^4 - E(7)^5 - 2*E(7)^4$	7) $^{\circ}6 - E(7) - E(7)^{\circ}2 - 2 * E(7)^{\circ}3 - 2 * E(7)^{\circ}4 - E(7)^{\circ}5 - E(7)^{\circ}6$	0 0 0 0 0 0	0 0	0	0 0
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$		$-E(7)^3 - E(7)^4$	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	$-E(12)^{}7 + E(12)^{}11$	$E(12)^{}7 - E(12)^{}11$		$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$		0 0	0	0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 -1 -2 -1		$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	1	1	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$		0 0	0	0 0
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$			$-E(7)^{} 3 - E(7)^{} 4$	$-E(7) - E(7)^{} 6$	0	0	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$		0 0	0	0 0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \right \ 26 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	$-E(7)^{} 3 - E(7)^{} 4$	-1	-1	$-E(7) - E(7)^{} 6$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$		0 0	0	0 0
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	-26 -1 0 1	-2	-2	-2	$E(12)^{}7 - E(12)^{}11$	$-E(12)^{}7 + E(12)^{}11$		2	2		0 0	0	0 0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \right \ 26 $	26 2 -2 2		$-E(7)^2 - E(7)^5$	$-E(7)^{} 3 - E(7)^{} 4$	-2	-2	$-E(7) - E(7)^{} 6$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$		0 0	0	0 0
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	-26 -1 0 1	$-E(7)^2 - E(7)^5$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7) - E(7)^{} 6$	$E(12)^{}7 - E(12)^{}11$	$-E(12)^{}7 + E(12)^{}11$		$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$		0 0	0	0 0
$\left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \ \right \ 26$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	-1	-1	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$		0 0	0	0 0
$\left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \ \right \ 26 - 3 \cdot \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \ \right \ 26 - 3 \cdot \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \right \ 26 \cdot \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_{17} \right \ 26 \cdot \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_{17} \right \ 26 \cdot \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_{17} \right \ 26 \cdot \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_{17} \right \ 26 \cdot \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_{17} \right \ 26 \cdot \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 $	-26 2 0 -2	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	0	0	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$		0 0	0	0 0
$\left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \right \ 26$	26 -1 -2 -1	$-E(7)^2 - E(7)^5$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7) - E(7)^{} 6$	1	1	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^{} 3 - E(7)^{} 4$		0 0	0	0 0
$\left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} \right \ 26$	-26 -1 0 1	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(12)^{}7 + E(12)^{}11$	$E(12)^{}7 - E(12)^{}11$	$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^{} 2 + E(7)^{} 5$		0 0	0	0 0
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \right] 13 $		-1	-1	-1	1	1	-1	-1	-1		0 0	0	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} = 1$	1 1 1 1	1	1	1	1	1	1	1	1	1 1 1 1 1 1	1 1	1	1 1
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \right \ 14 $	$_{2}$ 14 2 -2 2	0	0	0	-2	-2	0	0	0	1 1 1 1 -1 -1 1	1 -1	-1	-1 -1
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	0	0	1	1	0	0	0	$\begin{bmatrix} 1 & 1 & E(3) & E(3)^2 & -1 & -1 & E(3)^2 \end{bmatrix}$	E(3) $-E(3)$	$-E(3)^2$	$-E(3)$ $-E(3)^2$
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	0	1	1	0	0	0	$1 1 E(3)^2 E(3) -1 -1 E(3)$	$E(3)^{} 2 \qquad -E(3)^{}$	-E(3)	$-E(3)^{} 2 \qquad -E(3)$
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} \ \right \ 14 - 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} \ \right \ 14 - 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} \ \right \ 14 - 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} \ \bigg \ 14 - 0 \cdot \chi_{17} + 0 \cdot \chi_{17}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	$E(12)^{}7 - E(12)^{}11$	$-E(12)^{}7 + E(12)^{}11$	1	0	0	$1 -1 E(3)^2 = E(3) -E(4) = E(4) -E(3)$	$-E(3)^2 - E(12)^2$	$11 - E(12)^{} 7$	$E(12)^{}11 \qquad E(12)^{}7$
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	0	0	$E(12)^{}7 - E(12)^{}11$	$-E(12)^{}7 + E(12)^{}11$	1	0	0	$1 -1 E(3) E(3)^{} 2 E(4) -E(4) -E(3)^{} 2$	$-\dot{E}(3)$ $E(12)^{}$	7 $E(12)^{}11$ -	$-E(12)^{}7 - E(12)^{}11$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} \end{vmatrix} 14 $		0	0	0	$-E(12)^{}7 + E(12)^{}11$	$E(12)^{}7 - E(12)^{}11$. 0	0	0	$1 -1 E(3) E(3)^2 -E(4) E(4) -E(3)^2 2$	-E(3) $-E(12)$	$-E(12)^{1}$	$E(12)^{} 7 \qquad E(12)^{} 11$
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	0	0	$-E(12)^{}7 + E(12)^{}11$	$E(12)^{} 7 - E(12)^{} 11$. 0	0	0	$1 -1 E(3) \hat{\ } 2 E(3) E(4) -E(4) -E(3)$	$-E(3)^{} 2 E(12)^{}$	11 $E(12)^{}7$ -	$-E(12)^{}11 -E(12)^{}7$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} 14 $		0	0	0	-1	-1	0	0	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(3) $E(3)$	$E(3)^{} 2$	$E(3)$ $E(3)^2$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} 14 $			0	0	-1	-1	0	0	0	$1 1 E(3)^2 E(3) 1 1 E(3)$	$E(3)^{} 2 \qquad E(3)^{}$	$2 \qquad \stackrel{\circ}{E(3)}$	$E(3) \hat{} 2$ $E(3)$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} 14 $			0	0	0	0	0	0	0	$\begin{bmatrix} 1 & -1 & 1 & 1 & E(4) & -E(4) & -1 \end{bmatrix}$	-1 $E(4)$	E(4)	-E(4) $-E(4)$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} 14 $		0	0	0	0	0	0	0	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 $-E(4)$	$-\hat{E}(4)$	E(4) $E(4)$

 $P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1, 11, 46, 16, 54, 47, 53, 12, 5, 23, 48, 8, 51)(2, 14, 39, 4, 52, 3, 6, 44, 9, 45, 38, 50, 7)(10, 15, 40, 22, 21, 25, 20, 28, 19, 35, 29, 34, 27)(13, 32, 26, 31, 37, 30, 43, 18, 42, 36, 17, 24, 49)]) \cong C13$

 $N_1 = Group([(2,4,7)(5,8,12)(6,9,14)(10,15,21)(11,16,23)(13,18,26)(17,24,32)(19,27,34)(22,29,25)(28,35,40)(30,36,42)(37,43,49)(38,44,50)(39,45,52)(46,53,47)(48,54,51), (1,2,3,5)(4,6,8,11)(7,10,12,17)(9,13,16,22)(14,19,23,30)(15,20,24,31)(18,25,29,26)(21,28,32,37)(27,33,36,41)(34,38,42,47)(35,39,43,48)(40,46,49,44)(45,51,54,52)(50,55,53,56)]) \cong SL(2,13)$ $N_2 = Group([(2,7,4)(5,12,8)(6,14,9)(10,21,15)(11,23,16)(13,26,18)(17,32,24)(19,34,27)(22,25,29)(28,40,35)(30,42,36)(37,49,43)(38,50,44)(39,52,45)(46,53,47)(48,54,51), (1,2,3,5)(46,54,54,54), (1,2,3,5)(46,54,54), (1,2$