

الابمتحان الوطنى الموحد

لنيل شهادة البكالوريا

الدورة العادية 2007

استعمال الحاسبة الغير القابلة للبرمجة مسموح به

التمرين الأول: (4,5 ن)

$$a\perp b=a+b-ab\sqrt{2}$$
 : نضع E^2 نضع . $E=\mathbb{R}\setminus\left\{rac{1}{\sqrt{2}}
ight\}$ لیکن (I)

$$a \perp b = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} (a\sqrt{2} - 1)(b\sqrt{2} - 1)$$
 : \mathbb{E}^2 من (a, b) من (a, b) تحقق أن لكل زوج (a, b) من (a, b)

- E استنتج ان \pm قانون تركيب داخلي في \pm .
 - رمرة تبادلية . (E, \bot) نمرة تبادلية .
- . 2 هي مجموعة المصفوفات المربعة من الرتبة $\mathscr{M}_2(\mathbb{R})$

$$I = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$$
 : خکر أن $\mathscr{M}_2(\mathbb{R}), +, imes$ حلقة واحدية وحدتها نذکر

و نذکر أن : $(\mathcal{M}_2(\mathbb{R}),+,\cdot)$ فضاء متجهي حقيقي .

$$\mathrm{M}(\mathrm{a}) = rac{1}{\sqrt{2}}inom{\sqrt{2}-\mathrm{a}}{\mathrm{a}}$$
 ; $\mathrm{a}\in\mathrm{E}$; $\mathrm{a}\in\mathrm{E}$) نتكن $\mathrm{A}\in\mathrm{E}$; $\mathrm{a}\in\mathrm{E}$; $\mathrm{a}\in\mathrm{E}$) نتكن $\mathrm{A}_2(\mathbb{R})$ مجموعة المصفوفات من

$$A(a) = 1 + \frac{a}{\sqrt{2}}A$$
 : و أن $A^2 = -2A$ تحقق أن $A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$ نضع $A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$ نضع ن

$$(\mathscr{M}_2(\mathbb{R}), \times)$$
 : جزء مستقر من F بين أن F بين أن G

$$\varphi: (E, \bot) \longrightarrow (F, \times)$$

$$a \longrightarrow \varphi(a) = M(a)$$
: \bullet
: \bullet

- بين أن التطبيق φ تشاكل تقابلي . (j)
 - (F,\times) استنتج بنیه (F,\times)

-i و ناف المحددين i و كددا عقديا مخالفا للعددين i و التمرين الثانى:

.
$$(E): z^2 - (1+a)(1+i)z + (1+a^2)i = 0$$
 حل للمعادلة $u = a + i$ حل العدد العقدي نا نالعدد العقدي $u = a + i$ حل المعادلة العدد العقدي نا نالعدد العقدي العدد الع

- . (E) عدد v الحل الثاني للمعادلة v حدد v
 - . |a|=1 نفترض أن 2
 - $\frac{u}{v} \in \mathbb{R}$: بين أن 0.25

$$u^2 = a[(a - \overline{a}) + 2i]$$
 : نحقق أن 0.25

$$arg(u) = \frac{1}{2}arg(a) + \frac{\pi}{4}[\pi]$$
 : نا نتنج أن نا \mathfrak{C} ناستنتج أن نا \mathfrak{C}

$$|u| + |v| \ge 2$$
 بين أن 3 0,50

الأجوية من اقتراح الأستاذ بدر الدين الفاتحي -

الصفحة: 94

. $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$ mith on its nature of its nature of (II)اليكن M(a) عددا حقيقيا أكبر قطعا من 2 . و (E_m) مجموعة النقط M(a) من المستوى العقدي بحيث |u| + |v| = m. \mathcal{O} بين أن (E_m) إهليلج مركزه أصل المعلم (E_m) 0,50 نا دان حقیقیان . $\alpha = x + iy$ عددان حقیقیان .

.
$$(E_m)$$
 بين أن $x^2 + \left(1 - \frac{4}{m^2}\right)y^2 = \frac{m^2}{4} - 1$ بين أن $y^2 = \frac{m^2}{4} - 1$ بين أن $y^2 = \frac{m^2}{4} - 1$ بين أن $y^2 = \frac{m^2}{4} - 1$

 (E_4) أنشىء الإهليلج (Φ) 0,25 نا

.
$$\left(E_{\frac{8}{\sqrt{7}}}\right)$$
 و $A(\sqrt{3})$ و $B(2i)$ و $B(2i)$ و $A(\sqrt{3})$ بين أن المستقيم $B(2i)$ مماس للإهليلج $B(2i)$

|E(E): 195x - 232y = 1| نعتبر المعادلة: |E(E): 195x - 232y = 1|

(أ) حدد 132 ٨ 195 0,50 ن

$$\mathcal{S}=\{(163+232k\,;137+195k)\;\;;\;\;k\epsilon\mathbb{Z}\,\}\;\;$$
ين أن مجموعة حلول المعادلة (E) هي (E) عين أن مجموعة حلول المعادلة و (E)

$$0 \leq d \leq 232$$
 . الوحيد الذي يحقق $0 \leq d \leq 232$ و $0 \leq d \leq 1$. $0 \leq d \leq 1$

(2) بين أن العدد 233 عدد أولي. 0,25 ن

$$A$$
 نحو A مجموعة الأعداد الصحيحة الطبيعية المحصورة بين 0 و 232 . نعتبر التطبيق a من a نحو a المعرف بما يلي : مهما يكن a من a فإن a فإن a هو باقي القسمة الإقليدية للعدد a^{195} على a .

. $\forall a \in A \setminus \{0\}$: $a^{232} \equiv 1[233]$: نقبل أن

$$a=b$$
 : فإن الكل عنصرين a و b من المجموعة a ، إذا كان b فإن فين أن لكل عنصرين a و b من المجموعة b

.
$$b$$
 عنصرين من المجموعة A بحيث a عنصرين من المجموعة a بحيث a ليكن a ليكن a عنصرين من المجموعة a

. f^{-1} استنتج أن التطبيق f تقابل ثم حدد تقابله العكسى \mathfrak{E} 0,50 ن

. $g(x) = 1 + (x-1)e^x$: ين الرابع : g المعرفة على $\mathbb R$ المعرفة على التمرين الرابع : (10,5) انعتبر الدالة العددية

 $g(x) \geq 0$: \mathbb{R} من (I) بين أن لكل (I) بين أن لكل عن

g(x)=0 : هو الحل الوحيد للمعادلة x=0 بين أن $(\widehat{2})$ 0,25 ن

$$f(x) = \frac{x}{e^x + 1}$$
 ; $\forall x \neq 0$: الدالة العددية المعرفة على \mathbb{R} بما يلي : $f(0) = 1$

و ليكن ((\mathcal{C})) المنحنى الممثل للدالة f في معلم متعامد ممنظم $(\mathcal{C},ec{\imath},ec{\jmath})$.

$$\lim_{x \to +\infty} (f(x) + x)$$
 و $\lim_{x \to +\infty} f(x)$: أحسب النهايتين (1)

0 بين أن الدالة f متصلة في (2)0,25 ن

.
$$\mathbb{R}^*$$
 من أجل كل عنصر x من أجل أجل $f'(x)$ أحسب أ (\mathfrak{j}) من أجل كل عنصر

رب استنتج تغيرات الدالة (\mathbf{q}) 0,25 ن

. عدد حقیقی
$$\chi$$
 عدد حقیقی $J(x)=\int_0^x te^{-t}dt$: عدد حقیقی 4

$$J(x) = e^{-x}(e^x - 1 - x)$$
 : ن باستعمال المكاملة بالأجزاء بين أن ن باستعمال المكاملة بالأجزاء بين أن

$$\frac{x^2}{2}e^{-\left(\frac{x+|x|}{2}\right)} \le J(x) \le \frac{x^2}{2}e^{-\left(\frac{x-|x|}{2}\right)} \qquad : \mathbb{R}$$
 بين أن لكل x من x عن x بين أن لكل x بين أن لكل x من

لأجوبه من افتراح الأستاذ بدر الدين الفاتحى -

$$\frac{1}{2}e^{\frac{x-|x|}{2}} \le \frac{e^x - 1 - x}{x^2} \le \frac{1}{2}e^{\frac{x+|x|}{2}}$$
 : \mathbb{R}^* بين أن لكل x من x

$$f'(0)=rac{-1}{2}$$
 استنتج أن الدالة f قابلة للإشتقاق في 0 و أن 0.75

$$f''(x) = \frac{e^x}{(e^x - 1)} (e^x (x - 1) + 2 + x)$$
 : \mathbb{R}^* بين أن لكل x من (5)

.
$$\mathbb{R}$$
 اکل x من $e^x(x-2)+2+x$ اکل x من $e^x(x-2)+2+x$

$$f''(x)>0$$
 : \mathbb{R}^* من x من x استنتج أن لكل x من x

$$egin{pmatrix} u_{n+1} = f(u_n) \;; \;\; orall n \epsilon \mathbb{N} \ u_n = 1 \end{bmatrix}$$
 : يعتبر المنتالية العددية $(u_n)_{n \epsilon \, \mathbb{N}}$ المعرفة بما يلي $(u_n)_{n \epsilon \, \mathbb{N}}$

$$f(x)=x$$
 بين أن $x=\ln 2$ هو الحل الوحيد للمعادلة $x=\ln 2$

$$|f'(x)| \leq \frac{1}{2}$$
 : \mathbb{R}^* من x من (\hat{j}) بين أن لكل ي

$$|u_{n+1} - \ln 2| \le \frac{1}{2}|u_n - \ln 2|$$
 : N ن من n نين أن لكل n بين أن لكل n بين أن لكل n

استنتج أن المتتالية :
$$(u_n)_{n\in\mathbb{N}}$$
 متقاربة و حدد نهايتها.

$$F(x) = \int_{x}^{2x} \frac{t}{e^{t}-1} dt$$
; $\forall x \neq 0$: يلي \mathbb{R} بما يلي \mathbb{R} بما يلي : $F(0) = 0$

$$\frac{2x^2}{e^{2x}-1} \le F(x) \le \frac{x^2}{e^x-1}$$
 : \mathbb{R}^* من x نان لکل x بین أن لکل ن

ين أن الدالة
$$F$$
 متصلة في 0 .

$$F'(0) = 1$$
: وأن الدالة F قابلة للإشتقاق في 0 وأن بين أن الدالة $F'(0) = 1$

$$F^{'}(x) = \frac{3 - e^{x}}{e^{x} + 1} f(x)$$
 : \mathbb{R}^{*} من x من x و أن لكل x من \mathbb{R}^{*} قابلة للإشتقاق على \mathbb{R}^{*} و أن لكل x من \mathbb{R}^{*} و أن أن لكل x من \mathbb{R}^{*} و أن \mathbb{R}^{*} و أن لكل x من \mathbb{R}^{*} و أن لكل

جوية من افتراح الأستاد بدر الدين الفاتحي - <u>- رمضان 2012 -</u>

<u> التمرين الأول: (3,0 ن)</u>

—(j)(1)(I) ■

 $(\forall x \in E)$; $x \perp e = e \perp x = x$;

E في \pm العنصر المحايد للقانون \pm في

 $\iff (\forall x \in E) \; ; \; x + e - xe\sqrt{2} = x$

 \Leftrightarrow $(\forall x \in E)$; $e(1 - x\sqrt{2}) = 0$ $x \neq \frac{1}{\sqrt{2}}$: فإن $x \in E$: و بما أن

e=0 : و بالتالي $1-x\sqrt{2}$

و بما أن $\in E$ فإن 0 هو العنصر المحايد للقانون $\in E$ في 0

E منصرا من χ

 \perp و ليكن y مماثل x في E بالنسبة لـ

 $x \perp y = y \perp x = 0$

$$\Leftrightarrow x + y - xy\sqrt{2} = 0$$

$$\Leftrightarrow y(1 - x\sqrt{2}) = -x$$

$$\Leftrightarrow y = \frac{-x}{(1 - x\sqrt{2})} = \frac{x}{(x\sqrt{2} - 1)}$$

$$\frac{x}{(x\sqrt{2} - 1)} \neq \frac{1}{\sqrt{2}} : 0$$

 $x\sqrt{2} = x\sqrt{2} - 1$: نفتر ض التساوي إذن

و منه : 1-=0 و هذا تناقض واضح.

و من تم فإن : $\frac{x}{(x\sqrt{2}-1)} \in E$: و من تم فإن : $\frac{x}{(x\sqrt{2}-1)}$: يعني أن كل عنصر x من x يقبل مماثلا و هو : x

 \perp من E بالنسبة للقانون

خلاصة : (E, \perp) زمرة تبادلية.

·(i)(1)(II)■

$$A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$
 : لدينا

$$A^2=\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}=\begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$
 : إِذِنَ

$$\Leftrightarrow A^2 = -2\begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix} = -2A$$

 $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} (a\sqrt{2} - 1)(b\sqrt{2} - 1)$: لدينا $=\frac{1}{\sqrt{2}}-\left(a-\frac{1}{\sqrt{2}}\right)\left(b\sqrt{2}-1\right)$ $=\frac{1}{\sqrt{2}}-\left(ab\sqrt{2}-a-b+\frac{1}{\sqrt{2}}\right)$ $= a + b - ab\sqrt{2}$

 E^2 ينصرا من (a,b) عنصرا من

-(÷)(1)(I) **■**

 $\forall (a,b) \in E^2 \; ; \; a \perp b \in E \; :$ يكفى أن نبين أن

 E^2 الزوج (a,b) عنصرا من

$$a \neq \frac{1}{\sqrt{2}}$$
 و $b \neq \frac{1}{\sqrt{2}}$: يعني

 $a\sqrt{2}-1\neq 0$, $b\sqrt{2}-1\neq 0$: و منه

$$(a\sqrt{2}-1)(b\sqrt{2}-1) \neq 0$$
 : و منه

$$\frac{-1}{\sqrt{2}}(a\sqrt{2}-1)(b\sqrt{2}-1)\neq 0$$
 : و منه

$$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} (a\sqrt{2} - 1)(b\sqrt{2} - 1) \neq \frac{1}{\sqrt{2}}$$
 : إذْن

 $a \perp b \neq \frac{1}{\sqrt{2}}$: إذن

 $a \perp b \in \mathbb{R} \setminus \left\{ \frac{1}{\sqrt{2}} \right\}$: أي

 $a \perp b \in E$: أي

و بالتالي \perp قانون تركيب داخلي في \perp

لكي تكون (E, \bot) مرة تبادلية يكفي أن يكون (E, \bot) و تجميعيا و أن يقبل عنصر ا محايدا في E وأن يقبل كل E مماثلا من عنصر من عنصر من

. E^2 عنصرا من الزوج

$$a \perp b = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} (a\sqrt{2} - 1)(b\sqrt{2} - 1)$$

$$\Leftrightarrow a \perp b = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} (b\sqrt{2} - 1)(a\sqrt{2} - 1)$$

$$\Leftrightarrow a \perp b = b \perp a$$

. E و منه \pm تبادلي في

أجوبة الدورة العادية 2007 الصفحة: 97) رمضان 2012 من إعداد الأستاذ بدر الدين الفاتحى: (

$$| \Leftrightarrow \varphi(a) \times \varphi(b) = I + \frac{b}{\sqrt{2}}A + \frac{a}{\sqrt{2}}A + \frac{ab}{2}A^2$$

$$\Leftrightarrow \quad \varphi(a) \times \varphi(b) = I + \frac{b}{\sqrt{2}}A + \frac{a}{\sqrt{2}}A - \frac{ab}{2}A$$

$$\Leftrightarrow \quad \varphi(a) \times \varphi(b) = I + \frac{(a+b-ab)}{\sqrt{2}} A$$

$$\Leftrightarrow$$
 $\varphi(a) \times \varphi(b) = M(a \perp b)$

$$\Leftrightarrow$$
 $\varphi(a) \times \varphi(b) = \varphi(a \perp b)$

:F مصفوفة من F .إذن حسب تعريف المجموعة ا

$$(\exists a \in E) ; S = M(a)$$

 $(\exists \ a \in E) \; ; \; S = \varphi(a) \; : \varphi$ و منه حسب تعریف التطبیق φ تطبیق شمولی من (E, \bot) نحو φ تطبیق شمولی من φ

arphi(a)=arphi(b): ليكن a عنصرين من E بحيث a عنصرين

 $M(a)=M(b): \varphi$ إذن حسب تعريف التطبيق

$$\left(I + \frac{a}{\sqrt{2}}A\right) = \left(I + \frac{b}{\sqrt{2}}A\right)$$
 : يعني : $a = b$ و منه :

 (F, \times) و بالتالي φ تطبيق تبايني من φ نحو

. (F, \times) نحو (E, \bot) نحو غالک نحو (F, \times) نحو خلاصه خلاصه نحو

-(-(-(2)(II)■

نعلم أن التشاكل التقابلي يحافظ على بنية الزمرة .

و بما أن (E, \bot) زمرة تبادلية عنصرها المحايد بالقانون \pm هو \pm و كل عنصر \pm من \pm يقبل مماثلا و \pm

فإن (F,\times) زمرة تبادلية عنصرها المحايد بالقانون \times هو

$$\varphi\left(rac{y}{y\sqrt{2}-1}
ight)$$
 و كل عنصر y من F من عنصر و $\varphi(0)$

$$\varphi(0) = I + \frac{0}{\sqrt{2}}A = I$$
 : و لدينا

$$\varphi\left(\frac{y}{y\sqrt{2}-1}\right) = I + \frac{y}{\sqrt{2}(y\sqrt{2}-1)}A = I + \frac{y}{2y-\sqrt{2}}A$$

$$= \begin{pmatrix} \frac{\sqrt{2} - y}{\sqrt{2} - 2y} & \frac{y}{2y - \sqrt{2}} \\ \frac{y}{2y - \sqrt{2}} & \frac{\sqrt{2} - y}{\sqrt{2} - 2y} \end{pmatrix} = M \left(\frac{y}{y\sqrt{2} - 1} \right)$$

$$M(a) = rac{1}{\sqrt{2}} inom{\sqrt{2} - a}{a} rac{a}{\sqrt{2} - a}$$
 : و لدينا كذلك :

$$\iff M(a) = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} -a & a \\ a & -a \end{pmatrix}$$

$$\iff M(a) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{a}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\iff \boxed{M(a) = I + \frac{a}{\sqrt{2}}A}$$

 $(\forall M(a)\epsilon F), (\forall M(b)\epsilon F) ; M(a) \times M(b) \epsilon F$

في البداية نلاحظ أن M(a) مصفوفة مربعة من الرتبة 2 و ذات معاملات حقيقية

 $\mathscr{M}_2(\mathbb{R})$ إذن المجموعة F جزء من

 $(a,b) \in E^2$: غنصرين من F بحيث M(b) و M(a)

$$M(a) \times M(b) = \left(I + \frac{a}{\sqrt{2}}A\right)\left(I + \frac{b}{\sqrt{2}}A\right)$$
 : لينا

$$\iff$$
 $M(a) \times M(b) = I + \frac{b}{\sqrt{2}}A + \frac{a}{\sqrt{2}}A + \frac{ab}{2}A^2$

$$\Leftrightarrow$$
 $M(a) \times M(b) = I + \frac{b}{\sqrt{2}}A + \frac{a}{\sqrt{2}}A - \frac{ab}{2}A$

$$\iff$$
 $M(a) \times M(b) = I + \frac{(a+b-ab)}{\sqrt{2}}A$

$$\iff$$
 $M(a) \times M(b) = M(a \perp b)$

 $a\perp b$ عنصر امن F يكفي أن يكون $M(a\perp b)$ اكي تكون المصفوفة عنصرا من E

. $b\epsilon E$ و $a\epsilon E$ و يالفعل $a\perp b$ و $a\perp b$ و كانون تركيب داخلي في و $a\perp b$ و

 $M(a) \times M(b) \in F$: إذن نحصل على

 $(\mathscr{M}_2(\mathbb{R}), imes)$ و بالتالي F جزء مستقر من

—(j)(2)(II)■

لكي يكون التطبيق ϕ تشاكلاً من (E, \bot) نحو (F, \times) يكفي أن نتأكد من

 $\forall (a,b) \in E^2 ; \varphi(a) \times \varphi(b) = \varphi(a \perp b) : \dot{0}$

 $_{\circ}$ و لكي يكون التطبيق ϕ تقابلا يكفي أن يكون شموليا و تباينيا

E و b عنصرین من a

$$\Leftrightarrow \quad \varphi(a) \times \varphi(b) = M(a) \times M(b)$$

$$\Leftrightarrow \varphi(a) \times \varphi(b) = \left(I + \frac{a}{\sqrt{2}}A\right)\left(I + \frac{b}{\sqrt{2}}A\right)$$

أجِوبة الدورة العادية 2001 من إعداد الأستاذ بدر الدين الفاتحي: () رمضان 2012 الصفحة: 98

(j)(2)(I)**■**

نعلم أن كل عدد حقيقي يكون دائما مساويا لمرافقه و سوف نستغل هذه الخاصية لكي نبر هن على أن $\frac{u}{v}$ عدد حقيقي .

$$\overline{\left(rac{u}{v}
ight)}=\overline{\left(rac{a+i}{ai+1}
ight)}=rac{ar{a}-i}{1-iar{a}}$$
 : لدينا

$$|a|=\sqrt{a\overline{a}}=1$$
 : فإن $|a|=1$: بما أن

$$\bar{a} = \frac{1}{a}$$
 : إذن

$$\overline{\left(\frac{u}{v}\right)} = \frac{\overline{a} - i}{1 - \overline{a}i} = \frac{\frac{1}{a} - i}{1 - \frac{1}{a}i} = \frac{1 - ai}{a - i} \quad : \text{e. a. }$$

نضرب بسط و مقام النتيجة الأخيرة في العدد العقدي i نحصل على :

$$\overline{\left(\frac{u}{v}\right)} = \frac{1 - ai}{a - i} = \frac{a + i}{ai + 1} = \frac{u}{v}$$

$$\overline{\left(\frac{u}{v}\right)} = \frac{u}{v}$$
 : إذن نستنتج مما سبق أن

يعني أن العدد $\frac{u}{v}$ عدد حقيقي.

—(÷)(2)(I) ■

$$u^2 = (a+i)^2 = a^2 + 2ai - 1$$
 الدينا
$$\Leftrightarrow u^2 = a\left(a + 2i - \frac{1}{a}\right)$$

$$\Leftrightarrow u^2 = a(a + 2i - \bar{a})$$

$$\Leftrightarrow u^2 = a[(a - \bar{a}) + 2i]$$

_<u>(ह</u>(<u>2</u>)(<u>1</u>)■

 $z-ar{z}=2i\Im m(z)$ فإن $z=\Re e(z)+i\Im m(z)$: فإن

$$u^2=a[(a-ar{a})+2i]$$
 : لدينا حسب السؤال

 2π إذن عمدة الطرف الأيمن يوافق عمدة الطرف الثاني بترديد

$$2Arg(u) \equiv Arg(a((a-\bar{a})+2i))[2\pi]$$
 : ξ !

 $2Arg(u) \equiv Arg(a) + Arg((a - \bar{a}) + 2i)[2\pi]$ يعنى :

$$a - \bar{a} + 2i = 2i\Im m(a) + 2i = 2i(\Im m(a) + 1)$$
: لينا

 $Arg(a - \bar{a} + 2i) \equiv Arg(2i) + Arg(\Im m(a) + 1)$: و منه

$$Arg(2i)\equiv rac{\pi}{2}[2\pi]$$
: لدينا 2 i عدد تخيلي صرف. إذن

 $Arg(\Im m(a)+1)\equiv 0[2\pi]$ عدد حقیقی. إذن $(\Im m(a)+1)$ عدد حقیقی النا كذلك

$$2Arg(u) \equiv Arg(a) + \frac{\pi}{2}[2\pi]$$
 و بالنالي :

$$Arg(u) \equiv \frac{1}{2}Arg(a) + \frac{\pi}{4}[\pi]$$
 : و منه

و للتأكد :

$$M(y) \times M\left(\frac{y}{y\sqrt{2}-1}\right) = \left(I + \frac{y}{\sqrt{2}}A\right)\left(I + \frac{y}{2y-\sqrt{2}}A\right)$$

$$= I + \frac{y}{\sqrt{2}}A + \frac{y}{2y-\sqrt{2}}A + \frac{y^2}{\sqrt{2}(2y-\sqrt{2})}A^2$$

$$= I + \frac{y}{\sqrt{2}}A + \frac{y}{\sqrt{2}(\sqrt{2}y-1)}A - \frac{2y^2}{2(\sqrt{2}y-1)}A$$

$$= I + \left(\frac{2(\sqrt{2}y-1)y + 2y - 2\sqrt{2}y^2}{2(\sqrt{2}y-1)\sqrt{2}}\right)A$$

$$= I + \left(\frac{2\sqrt{2}y^2 - 2y + 2y - 2\sqrt{2}y^2}{2(\sqrt{2}y-1)\sqrt{2}}\right)A$$

$$= I + 0$$

التمرين الثاني: (3,5 ن)

-(j)(1)(I) ■

يكفي أن نبين أن:

$$(a+i)^2 - (1+a)(1+i)(a+i) + i(1+a^2) = 0$$

و للوصول إلى ذلك ننشر أو نعمل. نختار تقنية التعميل.

$$(a+i)^2 + i(1+a^2) = (a+i)^2 + i(a^2 - i^2)$$
 ليبنا:
$$= (a+i)(a+i) + i(a-i)(a+i)$$

$$= (a+i)(a+i) + (ai+1)(a+i)$$

$$= (a+i)(a+i+ai+1)$$

$$= (a+i)(a+1)(i+1)$$

و منه : (a+i) حل للمعادلة (a+i)

—(•)(I)∎

 $ax^2 + bx + c = 0$: تذكير : إذا كان u و v هما حلا المعادلة : -b

$$u+v=rac{-b}{a}$$
 و $uv=rac{c}{a}$: فإن

. (E) هما حلا المعادلة v و u

$$u + v = \frac{(1+a)(1+i)}{1}$$
 : إذن

$$(i+a) + v = (1+a)(1+i)$$
 : نعوض u بقیمته نحصل علی

$$v = (1+a)(1+i) - (i+a)$$
 و منه $v = 1+i+a+ai-i-a$ $\Leftrightarrow v = 1+ai$

أجوية الدورة العادية 2007 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان

-(-)(2)(II) ■

: هليلج يتميز بالعناصر التالية (E_4)

- مرکزہ *0*
- D(0,-2) و C(0,2) و $B(-\sqrt{3},0)$ و $A(\sqrt{3},0)$ و \bullet
 - . $\overline{H}(0,-1)$ و H(0,1) .
 - $e = \frac{c}{b} = \frac{1}{2}$: تباعده المركزي

(3)(II) **■**

B(2i) في المجموعة $A(\sqrt{3})$: لدينا

B(0,2) و $A(\sqrt{3},0)$: إذن في المجموعة \mathbb{R}^2 لدينا

لنحدد معادلة المستقيم (AB) و التي تكتب في شكلها المختصر كالتالي :

$$(AB): y = px + q$$

بحيث p هو الميل و q هو الأرتوب عند الأصل.

$$p = \frac{y_B - y_A}{x_B - x_A} = \frac{2}{-\sqrt{3}} = \frac{-2\sqrt{3}}{3}$$

(AB) :
$$y = \frac{-2\sqrt{3}}{3}x + q$$
 إذن :

و لدينا : B(0,2) نقطة من (AB) .

$$b=2$$
 : و منه $2=\frac{-2\sqrt{3}}{3}\times 0+b$: إذن

$$(AB): y = \frac{-2\sqrt{3}}{3}x + 2$$
 و بالتالي :

لكي يكون (AB) مماسا للإهليلج $\left(\frac{E_8}{\sqrt{7}}\right)$ يكفي أن نحدد نقطة تقاطع يكون $\left(\frac{E_8}{\sqrt{7}}\right)$ ثم نحدد بعد ذلك معادلة المماس لـ $\left(\frac{E_8}{\sqrt{7}}\right)$ في تلك النقطة و نبين أن تلك المعادلة ما هي إلا معادلة المستقيم (AB) .

_____(1)(II) **=**

i صورة العدد العقدي H

-i و لتكن \overline{H} صورة العدد العقدي

a صورة العدد العقدي M

$$|a+i|+|ai+1|=m$$
 : لدينا $|u|+|v|=m$ يعني

$$|ai + 1| = |a - i|$$
 : ننبین أن

$$ai+1=i(a-i)$$
: لدينا

$$|ai+1| = |i(a-i)|$$
 : e ais

$$|ai+1| = |i||a-i|$$
 : يعني

$$|ai + 1| = 1|a - i| = |a - i|$$
 :

$$|a+i|+|a-i|=m$$
 : إذن

$$|a - (-i)| + |a - i| = m$$
:

$$\overline{H}M + HM = m$$
 : أي

 $\overline{H}H \leq m$: إهليلج يكفي أن نتحقق من أن (E_m) إهليلج يكفي أن نتحقق من أن

$$\overline{H}H = |i - (-i)| = |2i| = 2$$
: لدينا

 $m \geq \overline{H}H$: إذن $m \geq 2$ إذن المعطيات

 $\mathcal O$ و بالتالي (E_m) إهليلج مركزه هو منتصف القطعة

-(j)(2)(II) ■

بما أن (E_m) إهليلج.

 $(E_m): \frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$: فإن معادلته الديكارتية تكتب على الشكل

. b و a لنحدد الآن قيمتى العددين

$$b=rac{m}{2}$$
 لدينا $2b=m$ لدينا

$$b^2 = \frac{m^2}{4} \quad :$$

$$c^2 = b^2 - a^2$$
 و نعلم كذلك أن : $c = \frac{HH}{2} = 1$ و نعلم

$$a^2 = b^2 - c^2$$
 : اذن

: (E_m) المعادلة الديكارتية للإهليلج المعادلة الديكارتية الإهليلج

$$(E_m): \frac{x^2}{\left(\frac{m^2}{4}-1\right)} + \frac{y^2}{\left(\frac{m^2}{4}\right)} = 1$$

$$(E_m)$$
 : $x^2 + \left(1 - \frac{4}{m^2}\right)y^2 = \left(\frac{m^2}{4} - 1\right)$: يعني

 $\frac{3\sqrt{3}}{7}x + \frac{9}{16}y\frac{8}{7} = \frac{9}{7}$: إذن معادلة المماس هي $\frac{3\sqrt{3}}{7}x + \frac{9}{14}y = \frac{9}{7}$ $\Leftrightarrow y = 2 - \frac{2\sqrt{3}}{3}x$

 $_{0}$ هذه الكتابة الأخيرة هي بالفعل معادلة المستقيم (AB) .

.
$$\left(\frac{3\sqrt{3}}{7},\frac{8}{7}
ight)$$
 : في النقطة ($\left(\frac{8}{\sqrt{7}}
ight)$ هو المماس لـ $\left(\frac{8}{\sqrt{7}}
ight)$

التمرين الثالث: (3,0 ن)

·(j)(1) ■

نُدير خوارزمية أقليدس و نوقف محركاتها فور الحصول على باقي منعدم.

المرحلة الأولى: 37 غير منعدم إذن واصل. 37 عير منعدم إذن واصل.

المرحلة الثانية : 10 | 37 | 10 غير منعدم إذن واصل.

 على بركة الله، لدينا حسب السؤال (2):

$$\left(\left(E_{\frac{8}{\sqrt{7}}}\right): x^2 + \left(1 - \frac{4}{\left(\frac{8}{\sqrt{7}}\right)^2}\right)y^2 = \left(\frac{\left(\frac{8}{\sqrt{7}}\right)^2}{4} - 1\right)$$

$$\left(E_{\frac{8}{\sqrt{7}}}\right): x^2 + \frac{9}{16}y^2 = \frac{9}{7} : \varphi^{\dagger}$$

النظمة التالية : النظمة التالية ($E_{rac{8}{\sqrt{7}}}$) و (AB) نحل النظمة التالية

$$\begin{cases} x^2 + \frac{9}{16}y^2 = \frac{9}{7} \\ y = \frac{-2\sqrt{3}}{3}x + 2 \end{cases}$$

: على نحوض $\left(E_{\frac{8}{\sqrt{7}}}\right)$ نحصل على ينعوض y

$$x^2 + \frac{9}{16} \left(\frac{-2\sqrt{3}}{3} x + 2 \right)^2 = \frac{9}{7}$$

$$\iff x^2 + \frac{9}{16} \left(\frac{4}{3} x^2 + 4 - \frac{8\sqrt{3}}{3} x \right) = \frac{9}{7}$$

$$\iff x^2 + \frac{3}{4}x^2 + \frac{9}{4} - \frac{3\sqrt{3}}{3}x = \frac{9}{7}$$

$$\Leftrightarrow \quad \frac{7}{4}x^2 - \frac{3\sqrt{3}}{3}x + \frac{27}{28} = 0$$

نضرب طرفي المعادلة في العدد 28 نحصل على:

$$|\Leftrightarrow (7x)^2 - 2(7x)(3\sqrt{3}) + (3\sqrt{3})^2 = 0$$

$$\iff \left(7x - 3\sqrt{3}\right)^2 = 0$$

$$\iff (7x - 3\sqrt{3}) = 0$$

$$\iff \left(x = \frac{3\sqrt{3}}{7} \right)$$

: نعوض χ في معادلة (AB) نجد

$$y = \frac{-2\sqrt{3}}{3} \cdot \frac{3\sqrt{3}}{7} + 2 = \frac{8}{7}$$

 $\left(\frac{3\sqrt{3}}{7},\frac{8}{7}\right)$ في النقطة أخرى لدينا معادلة المماس لـ $\left(E_{\frac{8}{\sqrt{7}}}\right)$ في النقطة

$$xx_0 + \frac{9}{16}yy_0 = \frac{9}{7}$$
 : نكتب على شكل

$$x_0 = \frac{3\sqrt{3}}{7}$$
 و $y_0 = \frac{8}{7}$:

أجوبة الدورة العادية 2007 من إعداد الأستاذ بدر الدين الفاتحي : (الصفحة : 101

إذن الحل الخاص للمعادلة هو الزوج: (58-,69-)

(E) سوف نحدد الآن صيغة الحل العام للمعادلة

195x - 232y = 1 : يعني

و لدينا : 1 = (58) – 232 (-58) و لدينا

ننجز عملية الفرق بين هاتين المتساويتين نحصل على :

195(x+69) - 232(y+58) = 0

(*) 195(x+69) = 232(y+58) : يعني

195 / 232(y + 58) : إذن

 $195 \land 232 = 1$: لأن حسب (Gauss) ((y + 58)) ((Gauss) لأن

 $(\exists k' \in \mathbb{Z})$; y + 58 = 195k' : و منه

y = 195k' - 58: يعني

المعادلة (*) نحصل على يالمعادلة (*) نحصل على يالمعادلة (*) نحصل المعادلة (*) نحصل على يالمعادلة (*) نحصل على

195(x+69) = 232(195k')

x = 232k' - 69 : يعني

 $(\exists k \epsilon \mathbb{Z}) \; ; \; k^{'} = k+1 \; :$ بما أن k' عدد نسبي فإن

x = 232(k+1) - 69 : e ais

x = 232k + 163:

y = 195k' - 58 : و لدينا كذلك

y = 195(k+1) - 58 :

y = 195k + 137): و منه

و بالتالى مجموعة حلول المعادلة (E) هي :

 $S = \{(232k + 163; 195k + 137) / k \in \mathbb{Z}\}\$

(€)(1) ■

 $195d \equiv 1[232]$: ننطلق من الشرط

الذي يعنى : (195*d* – 1) : الذي

 $(\exists b \in \mathbb{Z})$: 232b = 195d - 1 : و منه

195d - 232b = 1 :

و منه : (d,b) حل للمعادلة و

(S) عنصر من عنصر (d,b)

الصفحة: 102

 $(\exists k \in \mathbb{Z})$; $\begin{cases} d = 163 + 232k \\ b = 137 + 195k \end{cases}$: و منه

) رمضان 2012

 $\frac{1}{1 + \frac{1}{3}}$ منعدم إذن توقف.

إذن القاسم المشترك الأكبر للعددين 232 و 195 هو آخر باقي غير منعدم أي : 1

و بالتالي : [1 = 232 ۸ 195

في البداية يجب علينا أن نبحث عن الحل البديهي (أو الحل الخاص) لـ (E) .

لدينا حسب خوارزمية أقليدس الواردة في السؤال السابق:

المرحلة الأولى: 195 × 1 - 232 = 37

 $10 = 195 - 5 \times 37$: المرحلة الثانية

 $7 = 37 - 3 \times 10$: المرحلة الثالثة

 $3 = 10 - 1 \times 7$: المرحلة الرابعة

 $1 = 7 - 2 \times 3$: المرحلة الخامسة

الطريقة هي كالتالي:

(+)(1) ■

 $1 = 7 - 2 \times 3$: ننطلق من المرحلة الخامسة

• ثم نعوض 3 بقيمتها ثم نبسط

ثم نعوض 7 بقيمتها ثم نبسط

• ثم نعوض 10 بقيمتها ثم نبسط

• ثم نعوض 37 بقيمتها ثم نبسط

 $1 = 7 - 2 \times 3$ إلى العمل : لدينا

نعوض 3 في هذا التعبير لنحصل على التعبير الجديد التالي:

 $1 = 3 \times 7 - 2 \times 10$

نعوض 7 في هذا التعبير الأخير لنحصل على التعبير الجديد التالي:

 $1 = 3 \times 37 - 11 \times 10$

نعوض 10 في هذا التعبير الأخير لنحصل على التعبير الجديد التالي:

 $1 = 58 \times 37 - 11 \times 195$

نعوض 37 في هذا التعبير الأخير لنحصل على التعبير الجديد التالى:

 $1 = 58 \times 232 - 69 \times 195$

أجوبة الدورة العادية 2007 من إعداد الأستاذ بدر الدين الفاتحى: (

 ${\hspace{-0.1cm}\langle} {\hspace{-0.1cm}\langle} {\hspace{$

(€)(3) ■

f(a) = b: ليكن a و b عنصرين من a بحيث a

 $a^{195} \equiv f(a)[233]$: لدينا

 $a^{195}\equiv b[233]$: فإن f(a)=b : و بما أن

(3) $a^{195d} \equiv b^d [233]$: و منه

 $a^{232}\equiv 1$ [233] : (Fermat) من جهة أخرى لدينا حسب مبر هنة

(4) $\left[a^{-232k} \equiv 1[233]\right]$: إذن

: نضرب المتوافقتين (3) و (4) طرفا بطرف نحصل على : $a^{195d-232k} \equiv b^d [233]$

و منه : $a^1 \equiv b^{163}$ [233] لأن 163 $d \in A$ هو المعدد الوحيد الذي يحقق الشرطين [232] $d \in A$ و منه .

و منه : $a \equiv b^{163}[233]$ هو الجواب الأخير.

 $233 \, / \, (a-b^{163}) \, :$ كما يمكن إظافة ما يلي

 $(\exists k \epsilon \mathbb{Z})$; $(a-b^{163})=233k$: يعني

 $a = b^{163} + 233k$; $k \in \mathbb{Z}$: أي

نستنتج من نتيجة السؤال (3):

A أن f تطبيق تبايني من f نحو

 $(\mathbf{\hat{\varphi}})$ كما نستنتج من نتيجة السؤال

A نحو A أن التطبيق أA شمولي من A نحو

إذن f تقابل من A نحو A و تقابله العكسي f^{-1} نستنتجه من جواب السؤ ال ϕ :

 $f: A \to A$ $a \to f(a) \equiv a^{195}[233]$

 $\begin{cases} f^{-1}: A \to A \\ b \to f^{-1}(b) \equiv b^{163}[233] \end{cases}$

 $0 \le d \le 232$ لدينا الشرط الآخر

 $0 \le 163 + 232k \le 232$: يعني

 $0.7 \le k \le 0.2$: و منه

العدد الصحيح النسبي الوحيد المحصور بين 0.2 و 0.7 هو

 $d = 163 + 232 \times 0 = 163$: إذن

يكفي : أن نتحقق من أن جميع الأعداد الأولية الأصغر من أو تساوي $\sqrt{233}$ لا تقسم العدد 233 .

و تلك الأعداد الأولية هي : 2 و 3 و 5 و 7 و 11 و 13

·(į)(3)**■**

. f(a) = f(b) : بحیث $A \setminus \{0\}$ عنصرین من $a \setminus \{0\}$ بحیث

 $\begin{cases} a^{195} \equiv f(a)[233] \\ b^{195} \equiv f(b)[233] \end{cases}$: لينا

 $a^{195} \equiv b^{195}[233]$: فإن f(a) = f(b) بما أن $a^{195d} \equiv b^{195d}[233]$. و منه

195d = 232k + 1 : يعني يا $195d \equiv 1$

 $a^{232k+1} \equiv b^{232k+1}[233]$: نِن

 $a^{232} \equiv 1$ من جهة أخرى لدينا حسب مبرهنة فيرما : من جهة

 $(1) \left[\ a^{232k+1} \equiv a[233] \right]$: و منه $a^{232k} \equiv 1[233]$: إذن

(2) $b^{232k+1} \equiv b[233]$: بنفس الطريقة نجد

 $a \equiv b[233]$: فإن $a^{232k+1} \equiv b^{232k+1}[233]$: بما أن

و ذلك باستعمال النتيجتين (1) و (2)

. |a-b| و منه : 233 يقسم

 $b\epsilon A$ و $a\epsilon A$

 $0 < b \le 232$ و $0 < a \le 232$: يعنى

 $|a - b| \le 232$: e a = b

|a-b|=0 : نلاحظ أن 233 يقسم عددا أصغر منه و هو المان يقدم عددا أصغر

a = b : و بالتالي

من إعداد الأستاذ بدر الدين الفاتحى: (

أجوبة الدورة العادية 2007

الصفحة : 103

) رمضان 2012

<u>لتمرين الرابع: (10,5 ن)</u>

-(1)(I) ■

 $_{ ext{.}}$ ليكن χ عنصرا من

$$g^{'}(x) = e^{x} + e^{x}(x-1) = xe^{x}$$
 : لينا

 $(\forall x \in \mathbb{R})$; $e^x > 0$: نما أن

. x متعلقة فقط بإشارة g'(x) فإن إشارة

$$g^{'}(x) = 0$$
 فإن $x = 0$ إذا كان $g^{'}(x) > 0$ فإن $x > 0$ إذا كان $g^{'}(x) < 0$ فإن $x < 0$ إذا كان $x < 0$ فإن $x < 0$

$$\lim_{x\to -\infty} xe^x = 0$$
 و لدينا : $\lim_{x\to -\infty} e^x = 0$

$$\lim_{x \to -\infty} g(x) = 1 :$$
إذن

 $\lim_{x \to +\infty} g(x) = +\infty$: و لدينا كذلك

نلخص النتائج المحصل عليها في الجدول التالي:

0 هي g الجدول أن القيمة الدنوية للدالة

. $\mathbb R$ دالة متصلة على g

 $(\forall x \in \mathbb{R}) \; ; \; g(x) \ge 0 \; :$ إذن

—(2)(I)■

 $]-\infty$, 0 دالة تناقصية قطعا على المجال g دالة تناقصية

 $(\forall x < 0) ; g(x) > 0 :$ اِذْن

 $[0, +\infty]$ و لدينا [a] دالة تز ايدية قطعا على المجال

 $(\forall x > 0)$; g(x) > 0 : إذن

g(0)=0 : إذن $\,0\,$ و لدينا العنصر الوحيد الذي صورته بالدالة $\,g\,$ منعدمة هو

—(<u>1</u>)(II)■

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x}{e^x - 1} \right)$$

$$\Leftrightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{\frac{e^x}{x} - \frac{1}{x}} \right) = \frac{1}{(+\infty) - 0} = 0$$

$$\lim_{x\to +\infty} (f(x)+x)=0+(+\infty)=+\infty$$

 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{x}{e^x - 1} \right) = \lim_{x \to 0} \left(\frac{1}{\frac{e^x - e^0}{e^x}} \right)$: لاينا

$$\lim_{x \to 0} \left(\frac{e^x - e^0}{x - 0} \right) = e^0 = 1 \quad :$$
بما أن

$$\lim_{x \to 0} f(x) = \frac{1}{1} = 1 = f(0)$$
 : فإن

و منه f دالة متصلة في الصفر.

$$f'(x) = \left(\frac{x}{e^x - 1}\right)' = \frac{(e^x - 1) - xe^x}{(e^x - 1)^2}$$

$$\Leftrightarrow f'(x) = \frac{-1 - e^x(x - 1)}{(e^x - 1)^2} = \frac{-g(x)}{(e^x - 1)^2}$$

 $f'(x) = \frac{-g(x)}{(e^x - 1)^2}$ لاينا حسب السؤال

 $(orall x \epsilon \mathbb{R}^*)$; $0 < (e^x - 1)^2$ بما أن

g(x) قان إشارة f'(x) تتعلق فقط بإشارة

(2)لاينا (1) تنعدم في نقطة واحدة أفصولها (1) و ذلك حسب السؤال (2)

x=0 إذن f'(x) تنعدم إذا كان

 $(orall x \in \mathbb{R}) \; ; \; g(x) \geq 0 \quad \textcircled{1}(I)$ و لدينا كذلك حسب السؤال

 $(\forall x \in \mathbb{R}^*)$; $f'(x) \leq 0$: إذن

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x}{e^x - 1} \right) = \frac{-\infty}{0 - 1} = +\infty \quad \text{: ولاينا :}$$

 $\lim_{x \to +\infty} f(x) = 0$: (II)السؤاللانا كذلك حسب السؤاللانا

و من هذه الدراسة نستنتج جدول تغيرات الدالة f كما يلي :

الصفحة : 104

من إعداد الأستاذ بدر الدين الفاتحى: () رمضان 2012

أجوية الدورة العادية 2007

$$J(x) = \int_0^x t e^{-t} dt$$
 : لينا

$$u^{'}(t)=1$$
 : نضع $u(t)=t$

$$v(t) = -e^{-t}$$
 : و نضع $v'(t) = e^{-t}$: و نضع $J(x) = [uv]_0^x - \int_0^x u'v \, dt$: و منه

$$\Leftrightarrow J(x) = [t(-e^{-t})]_0^x - \int_0^x (-e^{-t}) dt$$

$$\iff J(x) = [-te^{-t}]_0^x + [-e^{-t}]_0^x$$

$$\Leftrightarrow J(x) = -xe^{-x} - e^{-x} + 1$$

$$\Leftrightarrow \int J(x) = e^{-x}(e^x - x - 1)$$

 $\Leftrightarrow \frac{-x^2}{2}e^{-x} \le -J(x) \le \frac{-x^2}{2}$ $\Leftrightarrow \frac{x^2}{2} \le J(x) \le \frac{x^2}{2}e^{-x}$ $\Leftrightarrow \frac{x^2}{2}e^{-\left(\frac{x+|x|}{2}\right)} \le J(x) \le \frac{x^2}{2}e^{-\left(\frac{x-|x|}{2}\right)}$

J(0)=0 : أذا كان x منعدم فإن الثالثة إذا كان

$$\left(\frac{x^2}{2}e^{-\left(\frac{x+|x|}{2}\right)} \le J(x) \le \frac{x^2}{2}e^{-\left(\frac{x-|x|}{2}\right)}\right) : e^{-\lambda x}$$
 و منه :

 $0 \le 0 \le 0 \ge 0$

<u>خلاصة</u>

$$(\forall x \in \mathbb{R}) \; ; \quad \frac{x^2}{2} e^{-\left(\frac{x+|x|}{2}\right)} \le J(x) \le \frac{x^2}{2} e^{-\left(\frac{x-|x|}{2}\right)}$$

_(₹)(4)(II) ■

لدينا حسب السؤال

$$(\forall x \in \mathbb{R}) \ ; \quad \frac{x^2}{2} e^{-\left(\frac{x+|x|}{2}\right)} \le J(x) \le \frac{x^2}{2} e^{-\left(\frac{x-|x|}{2}\right)}$$

و منه حسب السؤال(أ)

$$\frac{x^2}{2}e^{-\left(\frac{x+|x|}{2}\right)} \le e^{-x}(e^x - 1 - x) \le \frac{x^2}{2}e^{-\left(\frac{x-|x|}{2}\right)}$$

 $\frac{e^x}{x^2}$ نفترض أن $x \neq 0$ ثم نضرب أطراف هذا التأطير في العدد الموجب علم غلم أن هذا الترتيب سوف لن يتغير نحصل على :

$$\frac{1}{2}e^{x}e^{-\left(\frac{x+|x|}{2}\right)} \le \frac{(e^{x}-1-x)}{x^{2}} \le \frac{1}{2}e^{x}e^{-\left(\frac{x-|x|}{2}\right)}$$

و بالتالي بعد تبسيط طرف اليمين و طرف اليسار نحصل على :

$$\frac{1}{2}e^{\left(\frac{x-|x|}{2}\right)} \le \frac{\left(e^x - 1 - x\right)}{x^2} \le \frac{1}{2}e^{\left(\frac{x+|x|}{2}\right)}$$

ا)(4)(II)=

لدينا حسب نتيجة السؤال

$$\underbrace{\left(\frac{1}{2}e^{\left(\frac{x-|x|}{2}\right)}}_{x} \le \frac{(e^{x}-1-x)}{x^{2}} \le \underbrace{\frac{1}{2}e^{\left(\frac{x+|x|}{2}\right)}}_{x}\right)}_{x}$$

$$\left[\lim_{x\to 0} \left(\frac{e^x - 1 - x}{x^2}\right) = \frac{1}{2}\right] \quad : \dot{\psi}$$

: عددا حقیقیا الفصل بین ثلاث حالات χ

|x|=x : المالكة الأولمي : إذا كان x موجب فإن

$$x - |x| = 0$$
 و منه : $|x| + x = 2x$ و منه : $e^{-x} \le e^{-t} \le e^0$ ابن $0 \le t \le x$ ليكن

$$te^{-x} \le te^{-t} \le t$$
 : و منه

ندخل التكامل على الترتيب نحصل على :

$$\int_0^x te^{-x} dt \le \int_0^x te^{-t} dt \le \int_0^x t dt$$

$$e^{-x} \left[\frac{t^2}{2} \right]_0^x \le J(x) \le \left[\frac{t^2}{2} \right]_0^x \quad : \text{ يعني }$$

$$\frac{x^2}{2}e^{-x} \le J(x) \le \frac{x^2}{2}$$
 ومنه:

$$\left(\frac{x^2}{2}e^{-\left(\frac{x+|x|}{2}\right)} \le J(x) \le \frac{x^2}{2}e^{-\left(\frac{x-|x|}{2}\right)}\right)$$
 و بالتالي : و بالتالي

|x|=-x : إذا كان x سالب فإن

$$|x - x| = 2x$$
 و منه : $|x| + x = 0$

$$e^0 \le e^{-t} \le e^{-x}$$
 ليكن $x \le t \le 0$ ليكن

و منه : $te^{-x} \leq te^{-t} \leq t$ عدد سالب) و منه

ندخل التكامل على الترتيب نحصل على:

$$\int_{x}^{0} te^{-x} dt \le \int_{x}^{0} te^{-t} dt \le \int_{x}^{0} t dt$$

$$\Leftrightarrow e^{-x} \left[\frac{t^{2}}{2} \right]_{x}^{0} \le -J(x) \le \left[\frac{t^{2}}{2} \right]_{x}^{0}$$

أستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 5

أجوبة الدورة العادية 2007

-(-)(5)(II)■

 \mathbb{R} ال ϕ دالة تزايدية على

. \mathbb{R} و لدينا : $\phi(0)=0$ و $\phi(0)=0$

 $\varphi(x) \ge \varphi(0) = 0$: فإن $x \ge 0$ اذا كان $0 \le x \ge 0$

 $\varphi(x) \le \varphi(0) = 0$: فإن $x \le 0$

_(<u>5</u>)(<u>11</u>)■

$$f''(x) = \frac{e^x}{(e^x - 1)^3} \left(e^x (x - 2) + (x + 2) \right)$$
 : Light
$$f''(x) = \frac{e^x}{(e^x - 1)^2} \times \frac{\varphi(x)}{(e^x - 1)}$$

 $(orall x \epsilon \mathbb{R}^*)$; $e^x > 0$ و $(e^x - 1)^2 > 0$: لدينا

 (e^x-1) و $\varphi(x)$ و باشارة g''(x) و إذن إشارة و أنتعلق باشارة أنتعلق أنتعلق باشارة أنتعلق باشارة أنتعلق باشارة أنتعلق باشار

 $e^x>e^0$ اِذَا كَانَ 0>0 : فإن x>0 و $\phi(x)>0$ اِذَن اِذَن :

 $e^x < e^0$ و $\varphi(x) < 0$ فإن x < 0 و إذا كان $f^{''}(x) > 0$.

 $(\forall x \in \mathbb{R}^*) \; ; \; f^{''}(x) > 0 \; :$ و في كلتا الحالتين نلاحظ أن عنحنى الدالة f محدب

و لدينا من جهة أخرى :

$$\lim_{x \to 0^+} \left(\frac{f(x) - f(0)}{x - 0} \right) = \lim_{x \to 0^+} \left(\frac{x - e^x + 1}{x e^x - x} \right)$$

$$: خاول إظهار الكمية $\left(\frac{e^x - 1 - x}{x^2} \right)$ نحصل على
$$\lim_{x \to 0^+} - \left(\frac{e^x - 1 - x}{x^2} \right) \left(\frac{x}{e^x - 1} \right) = \lim_{x \to 0^+} - \left(\frac{e^x - 1 - x}{x^2} \right) f(x)$$$$

0 لدينا حسب السؤال (II) متصلة في

$$\lim_{x \to 0} \left(\frac{x}{e^x - 1} \right) = \lim_{x \to 0} f(x) = f(0) = 1 \quad \text{(iii)}$$

$$\lim_{x \to 0} \left(\frac{f(x) - f(0)}{x - 0} \right) = \frac{-1}{2} \times 1 = \boxed{\frac{-1}{2}}$$
: و بالتالي نستنتج أن

$$f^{'}(0)=rac{-1}{2}$$
 و الصفر المشتقاق في الصفر و

__(j)(5)(II) ■

$$f'(x) = \frac{-g(x)}{(e^x - 1)^2}$$
 : لاينا

$$\Rightarrow f''(x) = \frac{-g'(x)(e^x - 1)^2 + g(x)(2(e^x - 1)e^x)}{(e^x - 1)^4}$$

$$=\frac{-xe^{x}(e^{x}-1)^{2}+(1+(x-1)e^{x})(2(e^{x}-1)e^{x})}{(e^{x}-1)^{4}}$$

$$=\frac{-xe^{x}(e^{x}-1)^{2}+2(e^{x}-1)e^{x}+2(x-1)(e^{x}-1)e^{2x}}{(e^{x}-1)^{4}}$$

$$=\frac{-xe^{x}(e^{x}-1)+2e^{x}+2(x-1)e^{2x}}{(e^{x}-1)^{3}}$$

$$=\frac{e^x(-xe^x+x+2+2xe^x-2e^x)}{(e^x-1)^3}$$

من إعداد الأستاذ بدر الدين الفاتحى: (

$$=\frac{e^x(xe^x + x + 2 - 2e^x)}{(e^x - 1)^3}$$

$$=\frac{e^x(e^x(x-2)+(x+2))}{(e^x-1)^3}$$

أجوبة الدورة العادية 2007

<u></u>

$$\iff \frac{x}{e^x - 1} = x$$

$$\Leftrightarrow x = xe^x - x$$

$$\Leftrightarrow e^x = 2$$

$$\Leftrightarrow x = \ln x$$

f(x) = x إذن ln 2 هو الحل الوحيد للمعادلة

$$\frac{-1}{2} \le f'(x) \le \frac{1}{2}$$
 : يكفي أن نبين أن

 $(\forall x \in \mathbb{R}^*)$; $f^{''}(x) > 0$ (ق)(5)(II) لدينا حسب السؤال

 \mathbb{R}^* اذن f' دالة تزايدية على

$$f^{'}(x) \geq f^{'}(0)$$
 : فإن $x > 0$

$$(1)$$
 $f'(x) \ge \frac{-1}{2}$: يعني

$$f'(x) = \frac{-g(x)}{(e^x - 1)^2} \le 0$$
 : لدينا من جهة أخرى

$$(orall x \in \mathbb{R}) \; ; \; g(x) \geq 0 \; :$$
 و ذلك لأن

$$f^{'}(x) \leq 0 \leq \frac{1}{2}$$
 : نستنتج أن $f^{'}(x) \leq 0$ إذن من الكتابة

$$(2) f'(x) \leq \frac{1}{2} :$$
و منه و

 $(\forall x \in \mathbb{R}^*)$; $\frac{-1}{2} \le f'(x) \le \frac{1}{2}$: من (1) و (2) من (1) من

$$(\forall x \in \mathbb{R}^*)$$
 ; $|f'(x)| \leq \frac{1}{2}$: يعني

(+)(2)(III)**■**

بما أن الدالة f قابلة للاشتقاق على \mathbb{R} فإنه بإمكاننا تطبيق مبر هنة التزايدات . u_n و $\ln 2$ المنتهية على أي مجال من $\mathbb R$. نختار المجال الذي طرفاه

: محصور بین u_n و u_n بحیث اپنی یوجد عدد c محصور بین

$$\frac{f(u_n) - f(\ln 2)}{u_n - \ln 2} = f'(c)$$

$$\Rightarrow \left| \frac{f(u_n) - f(\ln 2)}{u_n - \ln 2} \right| = |f'(c)|$$

$$\Rightarrow |f(u_n) - f(\ln 2)| = |f'(c)||u_n - \ln 2|$$

 $(\forall x \in \mathbb{R}^*)$; $f'(x) \leq \frac{1}{2}$: بما أن

$$|f'(c)| \le \frac{1}{2}$$
 و منه : $|f'(c)| \le \frac{1}{2}$ و منه : $|f'(c)| \le \frac{1}{2}$

$$(\forall n \in \mathbb{N})$$
 ; $|f(u_n) - f(\ln 2)| \le \frac{1}{2}|u_n - \ln 2|$. و بالنالي

$$\Leftrightarrow$$
 $\left[(\forall n \in \mathbb{N}) \; ; \; |u_{n+1} - \ln 2| \le \frac{1}{2} |u_n - \ln 2| \right]$

_(2)(III) **=**

لدينا حسب السؤال (ب

$$(\forall n \in \mathbb{N}) \; ; \; |u_{n+1} - \ln 2| \le \frac{1}{2} |u_n - \ln 2|$$

$$|u_{n} - \ln 2| \le \frac{1}{2} |u_{n-1} - \ln 2|$$

$$\le \left(\frac{1}{2}\right)^{2} |u_{n-2} - \ln 2|$$

$$\le \left(\frac{1}{2}\right)^{3} |u_{n-3} - \ln 2|$$

$$\vdots \qquad \vdots$$

$$\le \left(\frac{1}{2}\right)^{n} |u_{n-n} - \ln 2|$$

نستنتج إذن أن :

$$(\forall n \epsilon \mathbb{N}) \ ; \ |u_n - \ln 2| \le \left(\frac{1}{2}\right)^n |1 - \ln 2|$$

$$-1$$
 متتالية هندسية أساسها $\frac{1}{2}$ محصور بين 1 و $\left(\frac{1}{2}\right)^n$

$$\lim_{n \to \infty} \left(\frac{1}{2}\right)^n = 0 \quad : \frac{1}{2}$$

$$\lim_{n \to \infty} |u_n - \ln 2| = 0$$
 : و منه

$$\lim_{n \to \infty} u_n = \ln 2$$
 : يعني

.
$$\ln 2$$
 و بالتالي : $(u_n)_{n\in\mathbb{N}}$ متتالية متقاربة و تؤول إلى

(i)(1)(IV)**■**

باستعمال البر هان بفصل الحالات نفصل بين حالتين:

x > 0 الحالة الأولى: إذا كان

$$F(x) = \int_{x}^{2x} f(t) dt :$$
لاينا

مع العلم أن
$$f$$
 دالة تناقصية على $\mathbb R$ و ذلك حسب السؤال $\mathfrak S(\mathbf I)$

$$x \le t \le 2x$$
: ليكن

$$f(x) \ge f(t) \ge f(2x)$$
 : يعني

الصفحة : 107

) رمضان 2012

أجوبة الدورة العادية 2007 من إعداد الأستاذ بدر الدين الفاتحي: (

$$\lim_{x \to 0} \left(\frac{F(x)}{x} \right) = \lim_{x \to 0} \left(\frac{F(x) - F(0)}{x - 0} \right) = 1 = F'(0) \quad \text{(a)}$$

ندخل التكامل على هذا الترتبب نحصل على:

$$\int_{x}^{2x} \left(\frac{x}{e^{x}-1}\right) dt \ge \int_{x}^{2x} \left(\frac{t}{e^{t}-1}\right) dt \ge \int_{x}^{2x} \left(\frac{2x}{e^{2x}-1}\right) dt$$

$$\left(\frac{x^2}{e^x - 1}\right) \ge F(x) \ge \left(\frac{2x^2}{e^{2x} - 1}\right)$$
 : و منه

x < 0 الحالة الثانية : إذا كان

$$2x \le t \le x$$
: ليكن

$$f(2x) \ge f(t) \ge f(x)$$
 : يعنى

$$\int_{2x}^{x} f(2x) \, dt \ge \int_{2x}^{x} f(t) \, dt \ge \int_{2x}^{x} f(x) \, dt$$

$$-\int_{x}^{2x} f(2x) dt \ge -\int_{x}^{2x} f(t) dt \ge -\int_{x}^{2x} f(x) dt$$
$$-xf(2x) \ge -F(x) \ge -xf(x)$$

$$xf(2x) \le F(x) \le xf(x)$$

$$\left(\left(\frac{2x^2}{e^{2x} - 1} \right) \le F(x) \le \left(\frac{x^2}{e^x - 1} \right) \right)$$

$$(\forall x \in \mathbb{R}^*)$$
 ; $\left(\frac{2x^2}{e^{2x}-1}\right) \leq F(x) \leq \left(\frac{x^2}{e^x-1}\right)$: غلاصة

$(\forall x \in \mathbb{R}^*)$; $\left(\frac{2x^2}{e^{2x}-1}\right) \leq F(x) \leq \left(\frac{x^2}{e^x-1}\right)$: نعلم أن

$$\lim_{x \to 0} \left(\frac{2x^2}{e^{2x} - 1} \right) = \lim_{x \to 0} \left(\frac{x}{\frac{e^{2x} - e^0}{2x - 0}} \right) = \left(\frac{0}{e^0} \right) = 0 \quad \text{: و لدينا }$$

$$\lim_{x \to 0} \left(\frac{x^2}{e^x - 1} \right) = \lim_{x \to 0} \left(\frac{x}{\frac{e^x - e^0}{x - 0}} \right) = \left(\frac{0}{e^0} \right) = 0$$
 و لدينا كذلك:

$$\lim_{x \to 0} F(x) = 0 = F(0)$$
 : و بالتالي

0 دالة متصلة في F

■(IV)(ع)−

$$(\forall x \in \mathbb{R}^*)$$
 ; $\left(\frac{2x^2}{e^{2x}-1}\right) \le F(x) \le \left(\frac{x^2}{e^x-1}\right)$: لينا

$$\Leftrightarrow \underbrace{\left(\frac{2x}{e^{2x}-1}\right)}_{x} \le \underbrace{\frac{F(x)}{x}}_{x} \le \underbrace{\left(\frac{x}{e^{x}-1}\right)}_{x}$$

 $x \in \mathbb{R}^*$ مع [x,2x] مع الدينا الدالة [x,2x] مع الدينا الدالة الدالة الدالة الدينا الدينا الدالة الدينا ال F(x) = h(2x) - h(x) : بحيث h بحيث أصلية f بحيث أصلية أصلية أحديث أ x o 2x و x o h(x) دالتين قابلتين للإشتقاق على x o 2xإذن (2x) o h دالة قابلة للإشتقاق على \mathbb{R}^* لأنها مركب دالتين

$$F(x) = h(2x) - h(x) : و لدينا$$

$$F'(x) = 2h'(2x) - h'(x) :$$

$$\Leftrightarrow F'(x) = 2f(2x) - f(x)$$

قابلتين للإشتقاق على * ال

$$\Leftrightarrow$$
 $F'(x) = 2\left(\frac{2x}{e^{2x} - 1}\right) - \left(\frac{x}{e^x - 1}\right)$

و بما أنك تلميذ من السنة الثانية بكالوريا علوم رياضية فإنك تستطيع الوصول إلى النتيجة انطلاقا من التعبير أعلاه.

$$\iff \left(F'(x) = \left(\frac{3 - e^x}{e^x + 1} \right) f(x) \right) \quad : 4$$

(-)(2)(IV) ■

لدينا حسب جدول إشارة f في السؤال(II)(2)

 $(\forall x \in \mathbb{R}) ; f(x) > 0$

و ذلك لأن f متصلة و تناقصية قطعا على $\mathbb R$ و قيمتها الدنوية هي : 0

 $(3 - e^x)$ متعلقة فقط بإشارة F'(x) متعلقة

 $(\forall x \in \mathbb{R})$; $e^x + 1 > 0$: لأن

نستنتج إذن جدول تغيرات F كما يلى :

x	$-\infty$	0		ln 3	+∞
F'(x)	+	1	+	ф	_
F	-8			$F(\ln 3)$	

و الحمد لله رب العاملين

من إعداد الأستاذ بدر الدين الفاتحى: (الصفحة: 108 أجوبة الدورة العادية 2007