Rahul Dharmaji

rdharmaj@uci.edu - linkedin.com/in/rdharmaji

EDUCATION

M.S. Computer Engineering · (GPA: 3.95)	
University of California, Irvine	9/23 - 6/24
Algorithms, Data Structures, Computer Architecture, Operating Systems, Convex Optimization, Control & A	I, Data
Privacy, Deep Learning Compilers, Deep Learning Accelerators	
B.S. Computer Engineering · (GPA: 3.90)	
University of California, Santa Barbara	9/19 - 6/23
·	_

Experience

Embedded & Cyber-Physical Systems Lab / Researcher · Irvine, CA · · · · · · · · · · 6/23-6/24

- LLM4PLC: Harnessing Large Language Models for Verifiable Programming of PLCs in Industrial Control Systems · · · · (ICSE'24 · �)
 - Architected a state-of-the-art Large Language Model pipeline for Siemens Programmable Logic Controllers, with a measured increase in automated code generation ability by 25%
 - Automated a code analysis and formal verification framework for programmatically detecting and correcting errors in LLM-generated PLC code, resulting in an order-of-magnitude decrease in faulty code
 - Evaluated the LLM4PLC pipeline on real-world engineering test cases, resulting in 100-200% gains in a human assessment of code correctness, maintainability, and style
 - Datasets & Tools · GPT-3.5, GPT-4, Code Llama, Loras, OSCAT BASIC
 - Languages · Python, Shell, C, C++, IEC 61131-3/SCL
- - Developed a Machine Learning pipeline to extract audio data from consumer mice using a novel side-channel attack, leading to an 80% speaker classification accuracy, compared to 92% with ground-truth data
 - Spearheaded the creation of a Convolutional Neural Network classifier to categorize speaker identities by reconstructing waveforms from noisy spectrogram images, resulting in a decrease in human-assessed error rate by 83%
 - Ethically engineered a proof-of-concept injectable exploit in real-world software to showcase the viability of the side-channel attack, including a compromised binary for distribution to targetted users.
 - Datasets & Tools · PyTorch, OpenAI Whisper, AudioMNIST, VCTK
 - Languages · Python, Shell, C, C++
- LLM4CVE: Enabling Iterative Automated Vulnerability Repair with Large Language Models · · · (in review @ ASE'24)
 - Architected a state-of-the-art Large Language Model pipeline for programmatically repairing code vulnerabilities using publicly available CVE data, resulting in a 20% gain in code similarity compared to a ground-truth fix
 - Developed Low-Rank-Adaptions for common LLMs (including Llama 3 and Code Llama) with a custom dataset, leading
 to an increase in performance for open-source LLMs in our code-fixing benchmark
 - Performed a thorough evaluation of the LLM4CVE pipeline through both automated and human-centric means, including end-to-end tests with a real-world codebase, and human assessment resulting in an 85% confidence rating in our automated framework (compared to 100% for the ground-truth fix)
 - Datasets & Tools · GPT-3.5, GPT-40, Llama 3, LoRAs, CVEFixes
 - Languages · Python, Shell, C, C++

Projects, Skills & Technologies

Skills & Technologies – C, C++, Python, Rust, LaTeX, Java, Shell, Linux/Unix, Git/GitHub, SQLite, DuckDB, GNU Make, Matlab, ANTLR, PyTorch, TensorFlow, OpenCV, and more