Condition of the Atmosphere

Dry Adiabatic Lapse Rate $\sim -1^{\circ}$ C/100m

Eloyation (m)	Temperature (°C)					
Elevation (m)	Case 1	Case 2	Case 3			
0	25	25	25			
100	24	23	24.5			
200	23	21	24			
300	22	19	23.5			
400	21	17	23			
500	20	15	22.5			
600	19	13	22			
700	18	11	21.5			
800	17	9	21			
900	16	7	20.5			
1000	15	20				

Plume from Stacks

GAUSSIAN DISPERSION MODELING

Instantaneous and Time-averaged Plume

- At any given time, the plume looks rather turbulent and does not have a well defined shape
- However, under steady wind condition and averaged over sufficient time, the plume shows well defined shape

Plume photographs (a) instantaneous 1/50s exposure, (b) 5-min time exposure (Slade, 1968) – Walton J.C. (2008)

Fig 4-3, p.44 in Martin et al

Pollutant Concentration Profile

Gaussian Distribution of Pollutant Concentration

□ Time-averaged pollutant concentration follows Gaussian distribution:

$$C(y) \propto \frac{1}{s\sqrt{2\pi}} \exp\left(-\frac{y^2}{2\sigma^2}\right)$$
 is: Plume spread

s: Plume spread

Distance away from the center

More about Sy and Sz

- Called "plume spread parameter"
- □ Function of downwind distance (x)
 - The further downwind, the greater the spread parameter values
- Function of atmospheric stability
 - The more unstable the larger the parameter values
- \square S_z usually smaller than S_y

Gaussian Dispersion Equation to Estimate Surface Concentrations

$$C(x, y, 0) = \frac{E}{2\pi S_y S_z U} \exp(-\frac{y^2}{2S_y^2}) \exp(-\frac{H_e^2}{2S_z^2})$$

E= Emission rate of the pollutant from the stack (g/s)

S_v and S_z are plume spread parameters

U= Wind speed (m/s)

H_e=Height of the plume central line (m)

The Pasquill Stability Classes

Stability class	Definition	Stability class	Definition
Α	very unstable	D	neutral
В	unstable	Е	slightly stable
С	slightly unstable	F	stable

Meteorological Conditions Define the Pasquill Stability Classes

Surface wind speed Day			ne incomin radiation	g solar	Nighttime cloud cover		
m/s	mi/h	Strong	Moderate	Slight	> 50%	< 50%	
< 2	< 5	Α	A A – B		Е	F	
2 – 3	5 – 7	A – B	В	С	Е	F	
3 – 5	7 – 11	В	B – C	С	D	Е	
5 – 6	11 - 13	С	C – D	D	D	D	
> 6	> 13	С	D	D	D	D	

Note: Class D applies to heavily overcast skies, at any wind speed day or night

Determine Solar Radiation Strength

- ☐ As a rule of thumb
 - Strong: Solar intensity > 700 W/m²
 - Moderate: Solar intensity > 350 W/m²
 - Slight: Solar intensity > 100 W/m²
 - Solar intensity < 100 W/m² but still day hours → neutral

S_y, S_z Charts

Equations to Estimate S_y and S_z

$$S_y = a \times x^{0.894}$$

$$S_z = c \times x^d + f$$

a, c, d, f are parameters. They are functions of stability classes and distance downwind (x). NOTE: x' should be in units of x'.

		x<1km			<u>x>1km</u>		
Stability	а	С	d	f	С	d	f
Α	213	440.8	1.941	9.27	459.7	2.094	-9.6
В	156	106.6	1.149	3.3	108.2	1.098	2
С	104	61	0.911	0	61	0.911	0
D	68	33.2	0.725	-1.7	44.5	0.516	-13
E	50.5	22.8	0.678	-1.3	55.4	0.305	-34
F	34	14.35	0.74	-0.35	62.6	0.18	-48.6

Example Problem

Given:

- E=127 g/s
- x=850 m
- *y=0*
- $H_e = 101 \text{ m}$
- *U=4.5 m/s*
- Strong solar radiation

 $C(x, y, 0) = \frac{E}{2\pi S_y S_z U} \exp(-\frac{y^2}{2S_y^2}) \exp(-\frac{H_e^2}{2S_z^2})$

Step 1 Estimate Plume Spread parameters

Surface wind speed Dayti			ne incomin radiation	g solar	Nighttime cloud cover		
m/s	mi/h	Strong	Strong Moderate Slight			< 50%	
< 2	< 5	Α	A A – B		Е	F	
2 – 3	5 – 7	A – B	В	С	Е	F	
3 – 5	7 – 11	В	B – C	С	D	Е	
5 – 6	11 - 13	C	C – D	D	D	D	
> 6	> 13	С	D	D	D	D	

Note: Class D applies to heavily overcast skies, at any wind speed day or night

$$S_y = a \times x^{0.894}$$

$$S_y = 134.9 \text{ m}$$

$$S_z = c \times x^d + f$$

$$S_z = 91.7 \text{ m}$$

		<u>x<1km</u>			<u>x>1km</u>		
Stability	а	С	d	f	С	d	f
Α	213	440.8	1.941	9.27	459.7	2.094	-9.6
<u>B</u>	<u>156</u>	<u>106.6</u>	<u>1.149</u>	<u>3.3</u>	108.2	1.098	2
С	104	61	0.911	0	61	0.911	0
D	68	33.2	0.725	-1.7	44.5	0.516	-13
E	50.5	22.8	0.678	-1.3	55.4	0.305	-34
F	34	14.35	0.74	-0.35	62.6	0.18	-48.6

Step 2 Estimate Surface Concentration using Gaussian Dispersion Equation

$$C(x, y, 0) = \frac{E}{2\pi S_y S_z U} \exp(-\frac{y^2}{2S_y^2}) \exp(-\frac{H_e^2}{2S_z^2})$$

$$C=424 \mu g/m^3$$