BM 305 Biçimsel Diller ve Otomatlar (Formal Languages and Automata)

Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

Nondeterministic Finite Automata

- Nondeterministic finite automata durum geçişlerinde sadece mevcut durum ve giriş bilgilerini kullanmaz.
- Aynı giriş bilgisi ve aynı durum için birden fazla sonraki durum olabilir.
- Bu durumlardan herhangi birine geçebilir, bu yüzden nondeterministic olarak adlandırılır.
- Bilgisayarların gerçek modellenmesinde kullanılmazlar.
- Automata tanımlamasını basitleştirmek için kullanılır.
- Her nondeterministic automata'nın deterministic karşılığı vardır.

Nondeterministic Finite Automata

 $L = (ab \cup aba)^*$ dilini tanıyan deterministic automaton

• Her node'dan a ve b olmak üzere iki çıkış vardır.

Nondeterministic Finite Automata

Aynı dil $L = (ab \cup aba)^*$, aşağıdaki nondeterministic automata tarafından tanımlanabilir.

- Bir strıng başlangıç durumundan bir sonuç durumuna geçişi sağlayabiliyorsa kabul edilir.
- Nondeterministic automaton tarafından *e* string içinde geçiş tanımlanabilir.

4

Nondeterministic Finite Automata

Definition:

Bir NFA quintuple olarak tanımlanır. $M = (K, \Sigma, \Delta, s, F)$

K sonlu sayıda durumlar kümesi

 Σ alfabe

△ transition relation (fonksiyon değil) $KX(\Sigma \cup \{e\})$ dan K'ya

 $s \in K$ başlangıç durumu (sadece bir tane)

 $F \subseteq K$ final state(s) kümesi

• Her $(q, u, p) \in \Delta$ üçlüsü M'in geçişi olarak adlandırılır.

Nondeterministic Finite Automata

- M'nin configuration'ı $K \times \Sigma^*$ dır. $(q, w) \models_M (q', w')$ geçişi için w = uw', $u \in \Sigma \cup \{e\}$ ve $(q, u, q') \in \Delta$ olmak zorundadır.
- Bir string $w \in \Sigma^*$ kabul edilir, eğer sadece ve sadece $(s, w) \models_{\mathbf{M}}^* (q, e)$ ve $q \in F$ ise
- Sonuç olarak bir M otomatı tarafından tanınan dil L(M) şeklinde gösterilir ve tüm kabul edilen string'ler kümesidir.

Nondeterministic Finite Automata

Örnek:

M bir NFA ve $M = (K, \Sigma, \Delta, s, F)$ şeklinde tanımlanmıştır ve içerisinde bb veya bab substring'i bulunduran stringleri tanır.

$$\begin{split} K &= \{q_0, \, q_1, \, q_2, \, q_3, \, q_4\} \\ \Sigma &= \{a, \, b\}, \\ s &= q_0 \\ F &= \{q_4\} \end{split} \qquad \Delta = \{(q_0, \, a, \, q_0), \, (q_0, \, b, \, q_0), \, (q_0, \, b, \, q_1), \\ (q_1, \, b, \, q_2), \, (q_1, \, a, \, q_3), \, (q_2, \, e, \, q_4), \\ (q_3, \, b, \, q_4), \, (q_4, \, a, \, q_4), \, (q_4, \, b, \, q_4)\} \\ a, b \end{split}$$

a, b

Nondeterministic Finite Automata

 $(q_0, bababab)$

Örnek:(Devam) bababab string'ini tanırmı?

 $\begin{array}{l}
-_{M}(q_{1}, ababab) \\
-_{M}(q_{3}, babab) \\
-_{M}(q_{4}, abab) \\
-_{M}(q_{4}, bab) \\
-_{M}(q_{4}, ab) \\
-_{M}(q_{4}, b) \\
-_{M}(q_{4}, e) \\
-_{M}(q_{0}, ababab) \\
-_{M}(q_{0}, babab) \\
-_{M}(q_{0}, bab) \\
-_{M}(q_{0}, ab) \\
-_{M}(q_{0}, ab) \\
-_{M}(q_{0}, b) \\
-_{M}(q_{0}, b) \\
-_{M}(q_{0}, e)
\end{array}$

4

Nondeterministic Finite Automata

Örnek:

M bir NFA ve $M = (K, \Sigma, \Delta, s, F)$ şeklinde tanımlanmıştır. M otomatı $L(M) = \{w \in \Sigma^* : w \text{ string 'i alfabedeki en az bir elemanı bulundurmaz} \}$ dilini tanır.

$$K = \{s, q_1, q_2, q_3\}$$

 $\Sigma = \{a_1, a_2, a_3\},$
 $F = \{q_1, q_2, q_3\}$

 (s, e, q_i) initial transitions (q_i, a_j, q_i) main transitions $i \neq j$

 $e, a_1, a_2, a_1a_1a_3a_1 \in L$ $a_3a_1a_3a_1a_2 \notin L$

Nondeterministic Finite Automata

- Deterministic automata'da δ transition $Kx\Sigma$ 'dan K'ya bir fonksiyondur.
- Deterministic automata'da $(q, e, p) \notin \delta$ ve her $q \in K$ ve $a \in \Sigma$ için sadece bir tane $p \in K$ vardır ve $(q, a, p) \in \delta$ 'dır.
- Bir nondeterministic automata'nın kendisine eşit bir deterministic karşılığı bulunabilir.
- İki automata M_1 ve M_2 eşittir sadece ve sadece $L(M_1) = L(M_2)$ ise

Nondeterministic Finite Automata

Örnek:

Aşağıdaki nondeterministic automaton hangi stringleri kabul eder.

b

bab

e

aa

abab

 $ab(aba)^*$

abaab

abaaa

abb

Nondeterministic Finite Automata

Örnek:

 $((ab)^*(ba)^*) \cup aa^*$ dilini tanıyan nondeterministic automata'nın state diagram'ını çiziniz.

Hangi girişler için hata oluşur?

Problemleri çözünüz 2.2.1, 2.2.2, 2.2.3, 2.2.6(a) (sayfa 73-63)