Armazenamento e Indexação

Banco de Dados: Teoria e Prática

André Santanchè e Patrícia Cavoto Instituto de Computação - UNICAMP Setembro de 2015

Recomendações de Leitura

- (Silberschatz, 2006, cap. 11)
- (Ramakrishnan, 2003, cap. 8)
- (Elmasri, 2011, cap. 11 e 12)

Onde Armazenamos Dados?

Onde Armazenamos Dados?

- Memória RAM
- Disco
 - HD
 - CD / DVD
- Fita magnética
- Solid State Drive (SDD)
 - usa circuitos integrados como a memória sem partes mecânicas
 - retém os dados sem a necessidade de energia
 - Interface equivalente a de um disco

Exercício 1

- Para cada item abaixo, liste suas vantagens e desvantagens como opção de tecnologia para armazenamento de dados num SGBD. Dê exemplos de dados que se adequariam à tecnologia.
 - a) Memória RAM
 - b) Disco Magnético
 - c) Fita Magnética

Hierarquia de Armazenamento

- Armazenamento Primário
 - Operado diretamente pela CPU
 - Exemplos: memória RAM, cache
- Armazenamento Secundário
 - Usualmente mais barato e mais lento
 - Não operado diretamente pela CPU
 - Exigem intermediação de armazenamento primário
 - Exemplos: disco, fita magnética

(Elmasri, 2011)

Estrutura do Disco

By Surachit [http://en.wikipedia.org/w/index.php?title=File:Hard_drive-en.svg]

Estrutura do Disco Trilha

- Círculos magnéticos sobre a superfície
- Local onde são armazenados os dados

Estrutura do Disco Setor

- Unidades de divisão da trilha
- Menor unidade de leitura/gravação

Setor
Divisão por Ângulo Fixo
seto

Setor Divisão por Densidade Constante

Bloco de Disco ou Página

- Organização feita pelo SO sobre o disco
- Unidade de trabalho para o SO

Armazenamento Secundário intermediado pelo Primário

Operação de Leitura Como Abstraímos

ler(X)

Operação de Leitura Como Acontece

- ler(X)
 - encontra bloco X no disco
 - copia bloco para buffer da memória principal (se ainda não estiver lá)
 - copia o item X do buffer para a variável X da memória principal

(Elmasri, 2010)

Operação de Gravação Como Abstraímos

gravar(X)

30

Operação de Gravação Como Acontece

- gravar(X)
 - encontra bloco X no disco
 - copia bloco para buffer da memória principal (se ainda não estiver lá)
 - copia variável X da memória principal para o buffer
 - atualiza o buffer no disco
 (Elmasri, 2010)

Arquivos e Registros

 Um arquivo de registros - abstração para SGBD (Ramakrishnan, 2003)

- Arquivo: abstração criada pelo SO para os blocos de disco
- Registro: abstração de subdivisão do arquivo criada pela aplicação ou SGBD para o arquivo

Organização de Arquivos

- Heap
 - sem ordenação
 - gravação em qualquer posição
- Sequencial
 - gravação em ordem sequencial
- Hash
 - uso de função de hash

(Silberschatz, 2006)

Hashing

Índice

Índice

- Estrutura de dados
- Organiza registros
- Otimiza certas operações de recuperação (Ramakrishnan, 2003)

Exercício 2

- Nas aulas anteriores, discutimos sobre redundância de informação e seus potenciais problemas. Índices são estruturas que introduzem redundância no banco de dados. Descreva o impacto da introdução deste tipo de redundância em termos de:
 - a) Consistência dos dados
 - b) Velocidade de leitura
 - c) Velocidade de gravação

Arquivos e Indexação

- Entrada de índice (data entry) → registros armazenados em um índice
 - entrada de índice: k*
 - chave: k
- Alternativas para k*
 - (1)registro completo de chave k
 - $(2)(k, rid) \rightarrow rid = id do registro de chave k$
 - $(3)(k, rid-list) \rightarrow rid-list = lista de registros de chave k$

(Ramakrishnan, 2003)

Exercício 3

Como este índice seria criado em SQL?

CREATE CONSTRAINT ON (p:PATO) ASSERT p.id IS UNIQUE

Índice Único

Índice cujas chaves não tem duplicatas

Índices de Agrupamento (Clustering)

- chave de busca (índice) => ordem dos registros (arquivo)
- modelo (1): k* é o registro de dados

Índices Primários e Secundários

- Índice primário
 - indice de agrupamento com chave primária
 - indice único
- Índice secundário
 - indice de não agrupamento
 - indice não necessariamente único

Índices Densos e Esparsos

Denso

um registro associado a cada entrada do índice

Esparso

 mais de um registro associado a cada entrada do índice

Exercício 4

Em uma relação com 5 atributos, qual o número máximo possível de índices de agrupamento? Justifique. Índice Mapa de Bits

Índice de Hash

Hashing Extensivel

Índices Multiníveis

Hashing Dinâmico

buckets

Perfect Hashing

(Demaine, 2003)

Árvores B

Árvores B

- Árvores *n*-árias: mais de um registro por nodo.
- Em uma árvore B de ordem m:
 - página raiz: 1 e 2m registros.
 - demais páginas: no mínimo m registros e m+1 descendentes e no máximo 2m registros e 2m+1 descendentes.
 - páginas folhas: aparecem todas no mesmo nível.
- Registros em ordem crescente da esquerda para a direita.
- Extensão natural da árvore binária de pesquisa.
- Árvore B de ordem m=2 com três níveis:

(Almeida, 2010)

Exemplo de árvore B de ordem 5

Neste caso, cada nó tem no mínimo dois e no máximo cinco registros de informação.

B-Tree Example

50

B-Tree Example (cont)

51

Números mínimos e máximos de registros

Árvore B de ordem 255:

	mínimo		máximo	
nível	nós	registros	nós	registros
1	1	1	1	1×255
2	2	2×127	256^{1}	$256^{1} \times 255$
3	2×128^{1}	$2 \times 128^1 \times 127$	256^{2}	$256^{2} \times 255$
4	2×128^2	$2 \times 128^2 \times 127$	256^{3}	$256^{3} \times 255$
5	2×128^3	$2 \times 128^3 \times 127$	256^{4}	$256^4 \times 255$
Total	4.227.331	536.870.911	4.311.810.305	1.099.511.627.775

Variantes de árvores B

- Árvores B*: o número de registros ocupados de um nó é no mínimo $\frac{2}{3}$ da sua capacidade.
- ► Árvores B⁺:
 - nós internos com chaves apenas para orientar o percurso
 - pares (chave, valor) apenas nas folhas
 - regra de descida:
 - subárvore esquerda: menor
 - subárvore direita: maior ou igual
 - apontadores em lugar de valores tornando mais eficiente a movimentação dos registros durante inserções e remoções
 - ligações facilitando percurso em ordem de chaves

Variantes de árvores B (cont.)

Exemplo de árvore B⁺ de ordem 3:

Setas tracejadas indicam apontadores para os valores da informação. A lista ligada das folhas permite percurso simples e eficiente em ordem de chaves.

Exercício 5

- Considere a relação Aluno(ra, curso, idade) que armazene estes dados para todos os alunos da Unicamp. Para cada uma das questões a seguir, defina qual o tipo de índice mais indicado.
 - a) select * from Aluno where ra=5.
 - b) select * from Aluno where idade<70.
 - c) select * from Aluno where idade>27 and B<30.
 - d) select avg(idade) from Aluno.
 - e) select idade, count(*) from aluno where curso="Computação" group by idade

Referências

- Almeida, Charles Ornelas, Guerra, Israel; Ziviani, Nivio
 (2010) Projeto de Algoritmos (transparências aula).
- Demaine, Erik. 6.897: Advanced Data Structures Lecture
 2 (notas de aula). Fevereiro, 2003.
- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2011) Sistemas de Bancos de Dados. Addison-Wesley, 6ª edição em português.

Referências

- Ramakrishnan, Raghu; Gehrke, Johannes (2003) Database
 Management Systems. McGraw-Hill, 3rd edition.
- Sedgewick, Robert; Wayne, Kevin (2008) Princeton University: Algorithms. Maio, 2008.
- Silberschatz, Abraham; Korth, Henry F.; Sudarshan, S.
 (2006) Sistema de Banco de Dados. Elsevier, Tradução da 5a edição.

Agradecimentos

- Luiz Celso Gomes Jr (professor desta disciplina em 2014) pela contribuição na disciplina e nos slides.
- Luana Loubet Borges pelos exercícios.

André Santanchè

http://www.ic.unicamp.br/~santanche

Licença

- Estes slides são concedidos sob uma Licença Creative
 Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link:

http://creativecommons.org/licenses/by-nc-sa/3.0/

 Fotografia da capa e fundo por http://www.flickr.com/photos/fdecomite/
 Ver licença específica em http://www.flickr.com/photos/fdecomite/1457493536/