problem 6 (\Rightarrow) given $\hat{\beta} = \hat{\beta}(i)$ B= arc min & (yk - Bxk)2 P(i) = arc min & (/k - P Xx) Since $\hat{\beta} = \hat{\beta}(i)$, $\sum_{k=1}^{n} (y_k - \hat{\beta} \hat{X}_k)^2 = \sum_{k\neq i}^{n} (y_k - \hat{\beta} \hat{X}_k)^2$ => Yi - \(\hat{\beta} \times 1 = 0\) Therefore observation i lies precisely on the fitted regression line. given $y_i - \hat{\beta} X_i = 0$ B= arc min = (1/k - BXK)2 because $y_i - \hat{\beta} X_i = 0$ $\min_{\beta} \sum_{k \in I} (y_k - \beta x_k)^2 = \min_{\beta} \sum_{k \neq i} (y_k - \beta x_k)^2$ and \(\hat{\beta}(i) = \arc min \(\frac{r}{kh} \) (\frac{r}{k} - \beta \times_k)^2 Therefore $\hat{\beta} = \text{arc min} \sum_{k=1}^{n} (y_k - \beta x_k)^2 = \text{arc min} \sum_{k=1}^{n} (y_k - \beta x_k)^2 = \hat{\beta}_{(i)}$

司 第三角的