Contents

1	Задачі першого дня (ДП)	1
	А. «Комп'ютерна гра (платформи)»	1
	В. «Комп'ютерна гра (платформи) з відновленням шляху»	2
	С. «Комп'ютерна гра (платформи) — квадратичні стрибки» .	2
	D. «MaxSum (базова)»	3
	Е. «MaxSum (з кількістю шляхів)»	3
	F. «MaxSum (непарна сума)»	4
	G. «МахSum (усі стовпчики)»	4
	Н. «Банкомат–1»	5
	I. «Банкомат–2 (з відновленням)»	5
	J. «Банкомат–3 (з обмеженнями кількостей, з відновленням)»	6

1 Задачі першого дня (ДП)

Цей комплект задач доступний для on-line перевірки на сайті https://ejudge.ckipo.edu.ua/, змагання № 64.

Значна частина задач цього комплекту — класичні, справжнє авторство яких встановити вже важко. Такими є, зокрема, задачі А (платфоми-базова), D (MaxSum-базова), I (банкомат-базова). Деякі з істотних модифікацій цих задач розроблені укладачем цього комплекту І. Порубльовим — зокрема, задача С (аналіз того, як зміна вартості стрибків може змінити задачу А). Ідея розширень серії підзадач давно відома, але послідовність задач D, F, G, де така потреба виникає просто і природньо, розроблялася укладачем (конкретно в G використано також ідею Є. Поліщука).

Задача А «Комп'ютерна гра (платформи)»

Пропускаємо, задача точно є в іншому комплекті

Задача В «Комп'ютерна гра (платформи) з відновленням шляху»

Пропускаємо, задача точно є в іншому комплекті

Задача С «Комп'ютерна гра (платформи) квадратичні стрибки»

У старих іграх можна зіткнутися з такою ситуацією. Герой стрибає по платформах, які висять у повітрі. Він повинен перебратися від одного краю екрана до іншого. При стрибку з платформи на сусідню, герой витрачає $(y_2-y_1)^2$ енергії, де y_1 і y_2 — висо́ти, на яких розташовані ці платформи. Крім того, є суперприйом, що дозволяє перескочити через платформу, але на це витрачається $3\cdot(y_3-y_1)^2$ енергії. (Суперприйом *можна* застосовувати багатократно.)

Відомі висо́ти платформ у порядку від лівого краю до правого. Знайдіть мінімальну кількість енергії, достатню, щоб дістатися з 1-ої платформи до n-ої (останньої).

Вхідні дані

Перший рядок містить кількість платформ N ($2 \leqslant N \leqslant 100000$), дру́гий — N цілих чисел, значення яких не перевищують за модулем 4000 — висо́ти платформ.

Результати

У єдиному рядку виведіть єдине число — мінімальну кількість енергії.

Приклади

Вхідні дані	Результати
4	731
1 2 3 30	
5	0
1 1 1 1 1	
10	9801
1 100 1 100 1 100 1 100 1 100	

Задача D «MaxSum (базова)»

Пропускаємо, задача точно є в іншому комплекті

Задача E «MaxSum (з кількістю шляхів)»

Є прямокутна таблиця розміром N рядків на M стовпчиків. У кожній клітинці записано ціле число. По ній потрібно пройти згори донизу, починаючи з будь-якої клітинки верхнього рядка, далі переходячи щоразу в одну з «нижньо-сусідніх» і закінчити маршрут у якій-небудь клітинці нижнього рядка. «Нижньо-сусідня» означає, що з клітинки (i,j) можна перейти у (i+1,j-1), або у (i+1,j), або у (i+1,j+1), але не виходячи за межі таблиці (при j=1 перший з наведених варіантів стає неможливим, а при j=M — останній).

Напишіть програму, яка знаходитиме максимально можливу суму значень пройдених клітинок серед усіх допустимих шляхів, *а також кількість різних шляхів*, *на яких ця сума досягається*.

Вхідні дані

У першому рядку записані N і M — кількість рядків і кількість стовпчиків ($1\leqslant N, M\leqslant 200$); далі у кожному з наступних N рядків записано рівно по M розділених пробілами цілих чисел (кожне не перевищує за модулем 10^6) — значення клітинок таблиці.

Гарантовано, що при перевірці будуть використані тільки такі вхідні дані, для яких шукана кількість шляхів з максимальною сумою не перевищує 10^9 (мільярд).

Результати

Вивести в одному рядку два цілі числа, розділені пробілом: максимально можливу суму за маршрутами зазначеного вигляду та кількість різних маршрутів, уздовж яких досягається ця максимальна сума.

Приклад

Вхідні дані	Результати
4 3	42 1
1 15 2	
9 7 5	
9 2 4	
6 9 -1	
3 3	111 3
1 1 100	
1 1 10	
10 1 1	

Примітка

У першому тесті, максимальне значення 42 можна набрати уздовж лише одного шляху (15+9+9+9). А у другому, максимальне значення 111 можна набрати трьома способами: aбо a[1][3]=100, a[2][2]=1, a[3][1]=10, aбо a[1][3]=100, a[2][3]=10, a[3][2]=1, aбо a[1][3]=100, a[2][3]=10, a[3][3]=1.

Задача F «MaxSum (непарна сума)»

Пропускаємо, задача точно є в іншому комплекті

Задача G «MaxSum (усі стовпчики)»

Є прямокутна таблиця розміром N рядків на M стовпчиків. У кожній клітинці записано ціле число. По ній потрібно пройти згори донизу, починаючи з будь-якої клітинки верхнього рядка, далі переходячи щоразу в одну з «нижньо-сусідніх» і закінчити маршрут у якій-небудь клітинці нижнього рядка. «Нижньо-сусідня» означає, що з клітинки (i,j) можна перейти у (i+1,j-1), або у (i+1,j), або у (i+1,j+1), але не виходячи за межі таблиці (при j=1 перший з наведених варіантів стає неможливим, а при i=M — останній).

Динамічне програмування (дні Іллі Порубльова) Школа «Бобра» з програмування, Львів, 03.10.2018

Напишіть програму, яка знаходитиме максимально можливу суму значень пройдених клітинок серед усіх допустимих шляхів ходами, що проходять хоча б по одному разу через кожен зі стовпчиків.

Вхідні дані

У першому рядку записані N і M — кількість рядків і кількість стовпчиків ($1\leqslant N\leqslant 1024,\ 1\leqslant M\leqslant N$); далі у кожному з наступних N рядків записано рівно по M розділених пробілами цілих чисел (кожне не перевищує за модулем 10^6) — значення клітинок таблиці.

Результати

Вивести єдине ціле число — знайдену максимальну серед сум за маршрутами зазначеного вигляду. Оскільки гарантовано, що $M\leqslant N$, відповідь існує завжди.

Приклад

Вхідні дані	Результати
4 3	28
1 15 2	
9 7 5	
9 2 4	
6 9 -1	

Примітки

Відповідь дорівнює 28 = 15 + 5 + 2 + 6, бо всі шляхи з більшою сумою проходять не через усі стовпчики.

Також зверніть увагу, що в задачі дуже великий розмір вхідних даних. Може бути важливим (зокрема, для часу виконання програми) вибраний спосіб їх читання.

Задача Н «Банкомат-1»

Пропускаємо, задача точно є в іншому комплекті

Задача I «Банкомат-2 (з відновленням)»

Пропускаємо, задача точно є в іншому комплекті

Динамічне програмування (дні Іллі Порубльова) Школа «Бобра» з програмування, Львів, 03.10.2018

Задача Ј «Банкомат-З (з обмеженнями кількостей, з відновленням)»

Пропускаємо, задача точно є в іншому комплекті