ЛАЬОРАТОРНАЯ РАБОТА №1

ТЕМА: «Определение удельной теплоты плавления льда»

Установка моделирует лабораторную работу «Определение удельной теплоты плавления льда».

Цель работы: поместив кусочек льда в калориметр с теплой водой, вычислить удельную теплоту плавления льда, закрепление ряда понятий термодинамики (фазовые переходы, уравнение теплового баланса).

1.1 Краткие теоретические сведения

В зависимости от условий, одно и то же вещество может находиться в одном из трех агрегатных состояний: в твердом (кристаллическом), жидком и газообразном состояниях или фазах. Переход из одного состояния в другое (фазовый переход) зависит от многих факторов, например, от температуры, давления или под воздействием каких-либо других внешних факторов (например, магнитных или электрических полей). Данные превращения сопровождаются быстрым изменением плотности, теплоемкости, энтропии электропроводности и других физических свойств тела и называются фазовыми переходами 1-го рода.

К ним относятся пары взаимообратных процессов:

- 1) плавление и кристаллизация;
- 2) испарение и конденсация.

При плавлении и испарении совершается поглощение, а при кристаллизации и конденсации — выделение такого же количества тепла.

Теплота плавления - это физическая величина, количеством теплоты, которое следует подвести веществу в равновесном изобарно-изотермическом процессе, для превращения его из твёрдого (кристаллического) состояния в жидкое. Такое же количество теплоты выделяется при затвердевании вещества. Данный фазовый переход (из твердого состояния в жидкое и обратно) выполняется для любого вещества при строго определенной температуре, которая называется температура (кристаллизации). Для определения теплоты плавления (кристаллизации) применяют формулу:

$$Q_{nn} = \lambda \cdot m. \tag{1.1}$$

где λ — удельная теплота плавления льда, равная количеству тепла, которое необходимо для превращения 1 кг льда в жидкое состояние. Такая же энергия в виде теплоты выделяется при затвердевании 1 кг воды (λ = 334 кДж/кг).

Теплота испарения (конденсации) рассчитывается аналогично:

$$Q_{ucn} = r \cdot m , \qquad (1.2)$$

где r — удельная теплота парообразования.

Изм.	Лист	№ докум.	Подпись	Дата	МиТОМ.ТМПиМ.Лр.№1.2020.Отчет					
Разра	аб.	Савченко С.А.			«Определение удельной теплоты плавления		lum.	Лист	Листов	
Пров	ер.	Астапенко И.В.						1	4	
Реце	нз.									
Н. Контр.					льда» ГГТУ гр. МД-3			МД-31		
Утв.								_		

Определить удельную теплоту плавления льда можно одним из следующих методов. В калориметре имеется теплая вода объемом $V_{\rm B}$ с температурой $t_{\rm B}$, поместим в нее лед массой $m_{\rm A}$ при температуре $t_{\rm A}$, то при расплавлении всего льда при температуре $t_{\rm B}$ температура $t_{\rm B}$, установившаяся в калориметре, определим следующим уравнением:

$$m_{_{\Pi}}c_{_{\Pi}}(t_{_{0}}-t_{_{\Pi}})+m_{_{\Pi}}\lambda_{_{\Pi}}+m_{_{\Pi}}c_{_{B}}(t-t_{_{0}})=\rho_{_{B}}V_{_{B}}c_{_{B}}(t_{_{B}}-t)+m_{_{K}}c_{_{K}}(t_{_{B}}-t)$$
(1.3)

где $\lambda_{\rm J}$ - удельная теплота плавления льда, $c_{\rm B}$ — теплоёмкость воды, $m_{\rm K}$ - масса калориметра, $c_{\rm K}$ - теплоемкость калориметра, $t_{\rm K}$ - начальная температура калориметра (комнатная), $t_{\rm O}$ - температура плавления льда, равная 0° С. Считается, что температуры калориметра и воды всегда имеют одинаковое значение.

Осуществление опыта и расчета возможно упростить, в случае, если осуществить опыт таким образом, чтобы начальное и конечное значение температуры калориметра имели одинаковое значение.

Из последнего уравнения удельная теплота плавления льда равна:

$$\lambda_{\pi} = \frac{\left[\rho_{B} V_{B} c_{B} + m_{K} c_{K}\right] (t_{0} - t) - m_{\pi} c_{\pi} (t_{0} - t_{\pi}) - m_{\pi} c_{B} (t - t_{0})}{m_{\pi}}$$
(1.4)

1.2 Ход выполнения работы

1. Запустить виртуальный стенд.

Рисунок 1.1 - Лабораторная установка

						Лист
					МиТОМ.ТМПиМ.Лр.№1.2020.Отчет	
Изм.	Лист	№ докум.	Подпись	Дата	-	

- 2. Установить параметры льда в таблице, которая находится сверху в правом углу m_{π} , t_{π} .
 - 3. Установить массу и удельную теплоемкость калориметра $m_{\rm k}$, $c_{\rm k}$.
- 4. Установить параметры воды $V_{\rm B}$, t_0 . Температура воды в измерительном цилиндре t_0 должна быть выше комнатной температуры приблизительно на 40° C.
- 5. Кусочек льда поместить в теплую воду в калориметре и следите за показаниями термометра.
- 6. После того, как лед полностью растает, измерить конечную установившуюся температуру воды t.
- 7. Определить удельную теплоту плавления льда по формуле (1.4). Итоги вычислений занести в таблицу.
- 8. Определить оценку абсолютной и относительной погрешности измерения.
 - 9. Сформулировать выводы.

1	2	3	4	5	6	7	8
$m_{\scriptscriptstyle m J},$ КГ	$t_{\scriptscriptstyle m I}, \ m K$	$c_{\scriptscriptstyle \Pi},$ Дж/кг \cdot К	$V_{\rm B}$, M^3	<i>t</i> ₀ , K	<i>с</i> _в , Дж/кг∙К	$m_{ ext{ iny K}},$	<i>с</i> _к , Дж/кг∙К
9	10	11	12	13			
t,	λэ, кДж/кг	λ,	Δλ кДж/кг	ελ,			
К	кДж/кг	кДж/кг	кДж/кг	%			

1.3 Экспериментальная часть

Пример 1

- 1. Приготовьте некоторое количество льда. Подержите лёд некоторое время при комнатной температуре, чтобы его температура стала 0°С. При этом часть льда должна растаять.
- 2. Налейте 100 мл (и, следовательно, m_I =100 г) теплой воды в измерительный цилиндр. Измерьте температуру t_I , теплой воды в измерительном цилиндре. Температура теплой воды должна превышать комнатную температуру примерно на 40°C. Вылейте теплую воду во внутренний стакан калориметра.
- 3. Возьмите небольшой кусок льда, осущите его фильтровальной бумагой и опустите в теплую воду в калориметре. Воду постоянно перемешивайте и следите за показаниями термометра. После полного расплавления первого куска льда положите в воду второй и так далее до тех пор, пока температура воды в калориметре не достигнет значения t_3 , равного температуре воздуха в комнате.
- 4. Перелейте воду из стакана калориметра в измерительный цилиндр. По увеличению объема воды ΔV найдите массу m_2 растаявшего льда.

						Лист
					МиТОМ.ТМПиМ.Лр.№1.2020.Отчет	
Изм.	Лист	№ докум.	Подпись	Дата		

- 5. Вычислите удельную теплоту плавления льда. Результаты вычислений занесите в тетрадь.
- 6. Пренебрегая погрешностью определения массы льда m_2 и воды m_2 , оцените относительную погрешность измерений:

$$\delta\lambda = \frac{2\Delta t}{t_1 - t_3} + \frac{2\Delta t}{t_3 - t_2},$$

где Δt – максимальная абсолютная погрешность, равная 1,5 градуса.

Далее исходя из определения относительной погрешности $\delta \lambda = \frac{\Delta \lambda}{\lambda}$, получите оценку абсолютной погрешности величины λ :

$$\Delta \lambda = \delta \lambda \cdot \lambda$$
.

6. Запишите результат в стандартном виде, сравните его с табличным значением λ =334 кДж/кг и сформулируйте вывод.

Упражнение 2*.

Проделайте упражнение 1, используя вместо воды в калориметре раствор поваренной соли концентрацией 10%, или смесь спирта с глицерином. Прокомментируйте полученные результаты.

1.3 Контрольные вопросы

- 1. Что такое фазовые переходы 1 рода?
- 2. Определение понятия теплоемкости тела и удельной теплоемкости вещества.
 - 3. С помощью какого закона составляют уравнения теплового баланса?
 - 4. Чем пренебрегли в выражении (1.3)?
- 5. Какая значимость помешивания воды в калориметре при проделывании работы?
- 6. Какова, причина того, что в данной работе не учитывалась теплоемкость калориметра?
- 7. В каком случае погрешность измерений в данной работе будет меньше, при быстром выполнении всех опреаций или при медленном? Почему?
- 8. На рисунке (1.2) представлен график зависимости абсолютной температуры T воды массой m от времени t при осуществлении теплоотвода с постоянной мощностью P.

					МиТОМ.ТМП
Изм.	Лист	№ докум.	Подпись	Дата	

В момент времени t=0 вода находилась в газообразном состоянии. Как по данным графика определить удельную теплоту плавления льда?

- 9. Дайте понятие обледенения воздушных судов? В Чем его угроза для полетов воздушных судов?
 - 10. Какие методы борьбы с обледенением вы знаете?
- 11. Обход облаков, при полете в которых велика вероятность обледенения, осуществляется сверху в зимний, и снизу в летний период. Как вы считаете, почему?
- 12. Запишите основные приборы и оборудование, необходимые для проведения данной работы.

1.4 Список литературы

- 1. Курс физики. Т. 1: Механика. Молекулярная физика / И.В. Савельев. М.: Наука, 1989.
 - 2. Молекулярная физика / А.К. Кикоин, И.К. Кикоин. М.: Наука, 1976.
- 3. Лабораторный практикум по физике / Под ред. А.С. Ахматова М: «Высшая школа», 1980.
 - 4. Техническое описание экспериментальной установки ФПТ1-8.
- 5. Практические рекомендации по обработке результатов измерений: Методические указания / Сост.: Л.П. Муркин, Н.В. Мышкина. Куйбышев: КуАИ, 1992.

Температура плавления и удельная теплота плавления (кри- сталлизации) некоторых веществ (при нормальном атмосферном давлении)

Вещество	Температура плавления	Удельная теплота
	<i>t</i> _{пл} ,°С	плавления λπл, Дж/кг
Вольфрам	3387	$1,84 \times 10^5$
Платина	1772	$1,13 \times 10^5$
Железо	1539	$2,7 \times 10^5$
Сталь	1500	$8,4 \times 10^4$
Медь	1085	$2,1 \times 10^5$
Золото	1064	$6,7 \times 10^4$
Серебро	962	$8,7 \times 10^4$
Алюминий	660	$3,9 \times 10^{5}$
Свинец	327	$2,47 \times 10^4$
Олово	232	$6,03 \times 10^4$
Лед	0	$3,33 \times 10^{5}$
Ртуть	-39	$1,18 \times 10^4$
Cnupm	-114	$1,1 \times 10^4$
Азот	-210	$2,55 \times 10^4$
Кислород	-219	$1,4 \times 10^4$
Водород	-259	$5,82 \times 10^4$

Изм.	Лист	№ докум.	Подпись	Дата