Lecture 14: Central Limit Theorem

4 April, 2018

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Theorem 14.1 (Central Limit Theorem) Let X_1, X_2, \cdots be a sequence of independent and identically distributed random variables, each having finite mean μ and non-zero variance σ^2 . Define

$$S_n := X_1 + X_2 + \dots + X_n, \quad Z_n := \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

Then

$$\lim_{n \to \infty} P(Z_n \le x) = N(x), \ \forall x \in \mathbb{R},$$

where
$$N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
.

Another frequently used notation for $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$ is $\Phi(x)$.

The central limit theorem is surprisingly general. Besides independence, and the implicit assumption that the mean and variance are finite, it places no other requirement on the distribution of the X_i , which could be discrete, continuous, or mixed.

To get a feeling for the CLT, let us look at some examples.

Example 14.2 Let X_i 's be independent Bernoulli(p). Then $EX_i = p, Var(X_i) = p(1-p)$. Also, $S_n = X_1 + X_2 + \cdots + X_n$ has Binomial(n, p) distribution. Thus,

$$Z_n = \frac{S_n - np}{\sqrt{np(1-p)}}.$$

We plot the PMF of Z_n for different values of n by choosing $p = \frac{1}{3}$.

As you see, the shape of the PMF gets closer to a normal PDF curve as n increases. Hence, the CDF of Z_n will converges to the standard normal CDF.

$$F_{Z_n}(x) = \sum_{z \in R_{Z_n}: z \le x} f_{Z_n}(z) \to N(x) \text{ or } \Phi(x)$$

That what the CLT states.

Example 14.3 Let X_i 's be independent Uniform(0,1). Then $EX_i = \frac{1}{2}, Var(X_i) = \frac{1}{12}$. Let $S_n = X_1 + X_2 + \cdots + X_n$. In this case,

$$Z_n = \frac{S_n - \frac{n}{2}}{\sqrt{n/12}}.$$

We have derived a general formula for the pdf of sum of two independent random variables with pdf's. Hence random variable Z_n has pdf. We plot the PDF of Z_n for different values of n

As you see, the shape of the PDF gets closer to a normal PDF curve as n increases. Hence, the CDF of Z_n will converges to the standard normal CDF.

$$F_{Z_n}(x) = \int_{-\infty}^x f_{Z_n}(z)dz \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}}dz.$$

That what the CLT states.

Normal Random variable A normal random variable X with zero mean and unit variance is said to be a standard normal. It's distribution function is denoted by $N(\cdot)$:

$$N(x) = P(X \le x) = P(X < x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

We can not get closed form for N(x). One use numerical technique to find the approximate values of N(x). It is recorded in a table and is a very useful tool for calculating various probabilities involving normal random variables. Note that the table only provides the values of N(x) for x > 0, because the omitted values can be found using the symmetry of the pdf. For example, if X is a standard normal random variable, for x > 0 we have

$$N(-x) = P(X \le -x) = P(X \ge x) = 1 - P(X < x) = 1 - N(x).$$

TABLE 1 Values of the standard normal distribution function

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5363	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7703	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9430	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9648	.9656	.9664	.9671	.9678	.9686	.9693	.9700	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9762	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9874	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.	.9987	.9990	.9993	.9995	.9997	.9998	.9998	.9999	.9999	1.0000

Let X be a normal random variable with mean μ and variance σ^2 . We define a new random variable $Z := \frac{X - \mu}{\sigma}$. Then Z is a linear function of X hence normal. Also Z mean zero and variance is one. To see this,

$$E[Z] = \frac{E[X] - \mu}{\sigma} = \frac{\mu - \mu}{\sigma} = 0.$$
$$var(Z) = \frac{var(X - \mu)}{\sigma^2} = \frac{var(X)}{\sigma^2} = \frac{\sigma^2}{\sigma^2} = 1$$

Thus Z is a standard normal random variable. This fact allows us to calculate the probability of any event defined in term of X: we redefine the event in terms of Z, then use the standard normal normal table. This is how it is done:

$$P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{x - \mu}{\sigma}\right) = N\left(\frac{x - \mu}{\sigma}\right)$$

Normal Approximation Based on the Central Limit Theorem: The central limit theorem allows us to calculate probabilities related to Z_n as if Z_n were normal, CLT says $P(Z_n \leq x) \approx N(x)$ for large values of n. Note that $S_n = \sigma \sqrt{n} Z_n + n\mu$. Since normality is preserved under linear transformations, Sicne $Z_n \sim N(0,1)$, this is equivalent to treating S_n as a normal random variable with mean $n\mu$ and variance $n\sigma^2$.

Let $S_n = X_1 + \cdots + X_n$, where the X_i are independent identically distributed random variables with mean μ and variance σ^2 . If n is large, the probability $P(S_n \leq c)$ can be approximated by treating S_n as if it were normal, according to the following procedure.

Step 1 Calculate the mean $n\mu$ and the variance $n\sigma^2$ of S_n .

Step 2 Use the approximation

$$P(S_n \le c) \approx N\left(\frac{c - n\mu}{\sigma\sqrt{n}}\right)$$

Example 14.4 We load on a plane 100 packages whose weights are independent random variables that are uniformly distributed between 5 and 50 kg. What is the probability that the total weight will exceed 3000 kg?

Solution: Let us translate the problem in probabilistic model. Let X_i denotes the weight of *i*th packages. X_1, X_2, \dots, X_{100} are iid uniform random variables with density

$$f(x) = \begin{cases} \frac{1}{45}, & \text{if } 5 \le x \le 50\\ 0, & \text{otherwsie} \end{cases}$$

Let $S = X_1 + X_2 + \cdots + X_{100}$ denote the total weight. Then question is to calculate the P(S > 3000). Let f, g, and h be functions on the reals, and suppose the convolutions (f * g) * h and f * (g * h) exist. Then we have (f * g) * h = f * (g * h). Using this result and S is sum of independent random variable we can see that pdf of S is 100-fold convolution of f. It is not easy to calculate this one. Hence it is very difficult to find the desired probability, but an approximate answer can be quickly obtained using the central limit theorem. Treat S as normal random variable. So now we find it's mean and variance, which is 100μ and $100\sigma^2$ where $\mu = E[X_i], \sigma^2 = var(X_i)$.

$$E(X_i) = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \frac{1}{45} \int_{5}^{50} x dx$$

$$= \frac{5+50}{2} = 27.5$$

$$E(X_i^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

$$= \frac{1}{45} \int_{5}^{50} x^2 dx$$

$$= \frac{(50)^3 - 5^3}{3 \times 45}$$

$$= \frac{(50)^2 + 50 \times 5 + 5^2}{3}$$

$$= 925$$

$$var(X_i) = 925 - (27.5)^2 = 925 - 756.25 = 168.75$$

Now

$$P(S > 3000) = 1 - P(S \le 3000) = 1 - N\left(\frac{3000 - 2750}{10\sqrt{168.75}}\right) = 1 - N(1.92)$$