• Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.

Profesor: Román Contreras

- Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.
- Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la manera más clara posible, no es necesario que utilices símbolos lógicos.

| Pregunta | 1 | 2 | 3  | 4  | Total |
|----------|---|---|----|----|-------|
| Puntos   | 4 | 4 | 12 | 10 | 30    |
| Puntaje  |   |   |    |    |       |

Nombre:

En lo sucesivo, fijemos una base ortonormal  $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ . Además, fijemos el volumen V que cumple que  $V(\vec{w}_1, \vec{w}_2, \vec{w}_3) = 1$ .

- 1. (4 Puntos) Sean  $\vec{v}, \vec{w}, \vec{z}$  tres vectores. Demuestra que si  $V(\vec{v}, \vec{w}, \vec{z}) \neq 0$  entonces cualquier otro vector es combinación lineal de  $\vec{v}, \vec{w}, \vec{z}$ .
- 2. (4 Puntos) Sea T una isometría que fija al origen, es decir,  $T(\vec{0}) = \vec{0}$ . Demuestra que el conjunto  $\{T(\vec{w}_1), T(\vec{w}_2), T(\vec{w}_3)\}\$  es una base ortonormal
- 3. Sea  $\vec{v}_1 = \frac{1}{\sqrt{2}}(\vec{w}_1 + \vec{w}_2)$ .
  - (a) (3 Puntos) Encuentra dos vectores  $\vec{v}_2$  y  $\vec{v}_3$ tales que  $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$  es una base ortonormal

y además  $V(\vec{v}_1, \vec{v}_2, \vec{v}_3) > 0$ .

- (b) Sea T la rotación cuyo eje de rotación es la recta generada por  $\vec{v}_1$  y con ángulo de rotación  $\alpha$ , en el sentido de  $\vec{v}_2$  hacia  $\vec{v}_3$ .
  - I. (1 Pt) Calcula  $T(\vec{v}_1)$
  - II. (1 Pt) Calcula  $T(\vec{v}_2)$
  - III. (1 Pt) Calcula  $T(\vec{v}_3)$
  - IV. (1 Pt) Calcula  $T(\vec{w}_1)$
  - v. (1 Pt) Calcula  $T(\vec{w}_2)$
  - VI. (1 Pt) Calcula  $T(\vec{w}_3)$
- (c) (3 Puntos) Calcula  $V(\vec{w_1}, \vec{w_2}, T(\vec{w_3}))$

Véase la figura 1.

- 4. Determina si las siguientes afirmaciones son verdaderas o falsas:
  - (a) (1 Pt) **V F** Dados tres vectores  $\vec{v}_1, \vec{v}_2, \vec{v}_3, V(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \pm ||\vec{v}_1|| ||\vec{v}_2|| ||\vec{v}_3||$
  - (b) (1 Pt) V F Toda isometría es una función biyectiva
  - (c) (1 Pt) V F Toda transformación lineal es una función biyectiva
  - (d) (1 Pt) **V F** Si T es una transformación tal que  $T(\vec{0}) = \vec{0}$ , entonces T es lineal
  - (e) (1 Pt) **V F** Si el conjunto  $\{\vec{v}, \vec{w}, \vec{z}\}$  es linealmente independiente, entonces el conjunto  $\{\vec{v}, \vec{w}\}$  también
  - (f) (1 Pt) **V F** Si T es una isometría y  $\vec{v}$  es un vector tal que  $T(\vec{v}) = \vec{0}$  entonces  $\vec{v} = \vec{0}$
  - (g) (1 Pt) **V F** Dados tres vectores  $\vec{v}_1, \vec{v}_2, \vec{v}_3$  y  $\lambda \in \mathbb{R}$ , se cumple que  $V(\lambda \vec{v}_1, \lambda \vec{v}_2, \lambda \vec{v}_3) = \lambda V(\vec{v}_1, \vec{v}_2, \vec{v}_3)$
  - (h) (1 Pt) **V F** Si T es una transformación tal que  $T(\vec{0}) = \vec{0}$  y además, dado cualquier vector  $\vec{v}$  se cumple que  $||T(\vec{v})|| = ||\vec{v}||$ , entonces T es lineal.
  - (i) (1 Pt) **V F** Si  $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$  es una base ortonormal, entonces  $V(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \pm 1$
  - (j) (1 Pt) V F Si  $V(\vec{v}_1, \vec{v}_2, \vec{v}_3) = 1$ , entonces  $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$  es una base ortonormal

Fin del examen

Geometría Analítica II 10 de abril de 2018



Figura 1: La rotación con eje de rotación  $\vec{v}_1$