

On Automorphisms and Subtowers of an asymptotically optimal Tower of Function Fields

Thorsten Lagemann*

May 2007

Abstract

In this article we investigate the automorphism group of an asymptotically optimal tower of function fields introduced by Garcia and Stichtenoth. In particular we provide a detailed description of the decomposition group of some rational places. This group acts on the algebraic-geometric standard codes obtained by the Garcia-Stichtenoth tower exceeding the Gilbert-Varshamov bound. The fields fixed by the decomposition groups form an asymptotically optimal non-Galois subtower, which has been first found by Bezerra and Garcia and yields an improvement for computing codes above the Gilbert-Varshamov bound. In this article we also describe its proportionality to the Garcia-Stichtenoth tower and obtain new precise results on its rational places and their Weierstraß semigroups.

Introduction

The celebrated theorem of Tsfasman, Vladut and Zink (1982) states the existence of modular curves with optimal asymptotic quotient of the number of rational places to genus, but the proof was not constructive. Only in the nineties Garcia and Stichtenoth discovered explicit descriptions of towers of function fields with this asymptotically optimal behaviour [4, 5]. In coding theory these towers are of great interest because one can obtain (asymptotically) long codes strictly above the Gilbert-Varshamov bound. In this article we deal with the norm-trace tower $T_m = K(x_0, \dots, x_m)$ introduced in [5] with constant field $K = \mathbb{F}_{q^2}$ defined by the relations

$$x_i^q + x_i = \frac{x_{i-1}^q}{x_{i-1}^{q-1} + 1} \quad \text{for } i = 1, \dots, m.$$

The rational pole \mathfrak{P}_∞ of x_0, \dots, x_m is in the focus of coding theoretic applications, because one can obtain the above mentioned codes by using the Riemann-Roch spaces $\mathcal{L}(\mathfrak{P}_\infty^t)$ with $t \in \mathbb{N}$. A subgroup of the automorphism group of these codes is given by the decomposition group

$$G_m(\mathfrak{P}_\infty) = \{\sigma \in \text{Aut}(T_m/K) : \sigma(\mathfrak{P}_\infty) = \mathfrak{P}_\infty\}$$

*Universität Paderborn, lagemann@math.uni-paderborn.de

of \mathfrak{P}_∞ . In this article we will compute $G_m(\mathfrak{P}_\infty)$ and a subgroup of $\text{Aut}(T_m/K)$ properly containing $G_m(\mathfrak{P}_\infty)$ which we conjecture to be the entire automorphism group of the norm-trace tower. For $m = 1$ this coincides with the result of Aleschnikov [1]. In this article we verify our conjecture for $m = 2$ in odd characteristic and $m = 2, 3, 4$ in even characteristic. Furthermore we describe the subtower formed by the fixed fields of $G_m(\mathfrak{P}_\infty)$ which has some interesting applications in coding theory.

This article is organized as follows. In sections 2, 3 and 5 we compute the automorphism group $G_m := \text{Aut}(T_m/K)$ via its action on the rational places in T_m/K . First we determine the stabilizer of \mathfrak{P}_∞ which is the decomposition group $G_m(\mathfrak{P}_\infty)$. It turns out that its order and its structure do not depend on m (at least for $m \geq 2$).

Theorem 0.1. *The decomposition group $G_m(\mathfrak{P}_\infty)$ has order*

$$|G_m(\mathfrak{P}_\infty)| = \begin{cases} q(q-1) & \text{for } q \text{ odd or } m = 1 \\ q^2(q-1) & \text{for } q \text{ even and } m \geq 2. \end{cases}$$

Then we determine several conjugated places \mathfrak{Q} of \mathfrak{P}_∞ and the corresponding automorphisms τ with $\tau(\mathfrak{Q}) = \mathfrak{P}_\infty$. These places can be described easily and in combination with Theorem 0.1 we can establish a lower bound for the cardinality of $\text{Aut}(T_m/K)$.

Theorem 0.2. *All rational places supporting $x_0^q + x_0$ are conjugated to \mathfrak{P}_∞ . In particular, the order of $\text{Aut}(T_m/K)$ is bounded by*

$$|\text{Aut}(T_m/K)| \geq \begin{cases} 2q^2(q-1) & \text{for } q \text{ odd or } m = 1 \\ q^3(q^2-1) & \text{for } q \text{ even and } m = 2 \\ 2q^4(q-1) & \text{for } q \text{ even and } m \geq 3. \end{cases}$$

Thus we have specified a subgroup of G_m properly containing $G_m(\mathfrak{P}_\infty)$ which we conjecture to be the entire automorphism group of the norm-trace tower T_m/K . For $m = 1$ and $q \neq 2$ this is the result of Aleschnikov [1]. In the final section 5 we present our proof for the sharpness of the bounds of Theorem 0.2 for $m = 2$ and $m = 2, 3, 4$ for even q respectively. In summary we obtain

Theorem 0.3. *The automorphism group of the norm-trace tower T_m/K of height $1 \leq m \leq 4$ has order*

$$|\text{Aut}(T_m/K)| = \begin{cases} 2q^2(q-1) & \text{for } q \geq 4 \text{ odd and } m = 1, 2 \\ 2q^2(q-1) & \text{for } q \geq 4 \text{ even and } m = 1 \\ q^3(q^2-1) & \text{for } q \geq 4 \text{ even and } m = 2 \\ 2q^4(q-1) & \text{for } q \geq 4 \text{ even and } m = 3, 4. \end{cases}$$

In order to establish the proof of Theorem 0.3, we investigate the fixed fields of the exhibited automorphisms, which are interesting in their own right. The focus is on the subtower Z_m/K of T_m/K , which is formed by the fixed fields of $G_m(\mathfrak{P}_\infty)$. It is also an asymptotically optimal tower since all subtowers of T_m/K are optimal by [5]. First it has been found and described by Bezerra and Garcia in 2004 [3] and then independently by the author in 2006 [6], who has not been aware of [3]. Both descriptions of Z_m/K differs in their approach. Bezerra and Garcia gave a recursion formula for an asymptotically optimal non-Galois tower

and stated its relation to the norm-trace tower at the end with [3, Remark 1]. Vice versa the author used the Galois correspondence to obtain the description of Z_m/K . Anyway, the author choose to provide a complete presentation of the latter approach in section 4 for those readers, who might have interests in it. Theorem 4.4 and most results of Proposition 4.2 are already proven in [3]. But we will obtain more precise results on the number of rational places with Theorem 4.3 and their Weierstraß semigroups with Theorem 4.5, which both are not given in [3]. In particular we observe the following proportionality of the here-called decomposition tower to the norm-trace tower.

Theorem 0.4. *The fixed fields of $G_m(\mathfrak{P}_\infty)$ form an asymptotically optimal tower Z_m/K with $Z_m = K(x_0^{q-1}, \dots, x_m^{q-1})$ and*

$$T_m^{G_m(\mathfrak{P}_\infty)} = Z_{m-\varepsilon} \quad \text{for } \varepsilon = \begin{cases} 1 & \text{for } q \text{ odd or } m = 1 \\ 2 & \text{for } q \text{ even and } m \geq 2. \end{cases}$$

We call Z_m/K decomposition tower of height m . It has properties that are proportional with factor $q - 1$ to the corresponding properties of the norm-trace tower T_m/K as follows.

- (a) The genus of Z_m/K is $g(Z_m/K) = g(T_m/K)/(q - 1)$.
- (b) The number of rational places in Z_m/K is

$$N_1(Z_m/K) = q^{m+1} + q^2 - q + 2 + \varepsilon_m^*$$

with $\varepsilon_m^* = 0$ for odd q or $m = 1$, $\varepsilon_2^* = q$ and $\varepsilon_m^* = 2q$ for even q and $m \geq 3$. For $m \gg 0$ this number satisfies $N_1(Z_m/K) \sim N_1(T_m/K)/(q - 1)$.

- (c) An integer n is a pole number of \mathfrak{P}_∞ in Z_m/K if and only if $n \cdot (q - 1)$ is a pole number of \mathfrak{P}_∞ in T_m/K .

The ratio $N_1(Z_m/K)/g(Z_m/K)$ of the number of rational places and the genus is slightly better than $N_1(T_m/K)/g(T_m/K)$ and significantly better for $m = 1, 2$. Therefore the standard codes in Z_m/K lie above the Gilbert-Varshamov bound and are also better than the codes in T_m/K . Furthermore the codes in Z_m/K can be computed faster than those in T_m/K since the genus of Z_m/K is smaller than the genus of T_m/K .

1 Notation and Preliminaries

We assume that the reader is familiar with [5, 7, 2], because many assertions are deduced by properties of the norm-trace tower exhibited in these articles. Throughout this article K denotes a finite field \mathbb{F}_{q^2} of quadratic order. The fibres $\{a \in K : a^q + a = c\}$ of c by the trace from K to \mathbb{F}_q is denoted by A_c . For $c = 0$ we write $A = A_0$ and $A^\times = A \setminus \{0\}$. The ramification index, relative degree and decomposition index (the number of extensions) of a place $\mathfrak{P}|\mathfrak{P} \cap F$ in an extension E/F are denoted by $e_{\mathfrak{P}}(E/F)$, $f_{\mathfrak{P}}(E/F)$ and $r_{\mathfrak{P}}(E/F)$ respectively. In order to avoid some case distinctions we define $\varepsilon = 1$ for odd q or $m = 1$ and $\varepsilon = 2$ for even q and $m \geq 2$.

Proposition 1.1 (Ramification and genus of the norm-trace tower).

The extensions $T_m/K(x_i)$ are unramified outside $x_0^q + x_0$ for $0 \leq i \leq m$. All ramified places of T_m/T_0 are listed in the statements (a) and (b).

- (a) All places supporting $x_0^{q-1} + 1$ are totally ramified in T_m/T_0 . These places are the only ones being totally ramified in T_m/T_0 .
- (b) The zeros of $x_i - a$ with $a \in A^\times$ are completely decomposed in T_i/T_0 , unramified in T_{2i}/T_i and totally ramified in T_m/T_{2i} . For odd q these zeros have a non-trivial relative degree in T_{i+1}/T_i . For even q these zeros are completely decomposed in T_{i+1}/T_i and - in case of $i \geq 2$ - have a non-trivial relative degree in T_{i+2}/T_{i+1} .
- (c) The norm-trace tower T_m/K of height m has genus

$$g_m = \begin{cases} (q^{\frac{m+1}{2}} - 1)^2 & \text{for } m \equiv 1 \pmod{2} \\ (q^{\frac{m}{2}} - 1)(q^{\frac{m+2}{2}} - 1) & \text{for } m \equiv 0 \pmod{2}. \end{cases}$$

- (d) All zeros of $x_m^q + x_m$ are totally ramified in $T_m/K(x_m)$.

For the proof of Proposition 1.1 see [5]. Statement (d) is of interest in conjunction with Proposition 5.3. We denote the pole of $x_0^{q-1} + 1 = \prod_{a \in A^\times} (x_0 - a)$ by \mathfrak{P}_∞ and its zeros by \mathfrak{P}_a . For each $m \geq 0$ there is exactly one pole of x_0 and exactly one zero of $x_0 - a$ with $a \in A^\times$ respectively. If we intend to stress the membership of these places in T_m we denote these places with an additional index m , i.e. $\mathfrak{P}_{\infty,m}$ or $\mathfrak{P}_{a,m}$. The zero of $x_m - b$ for $b \in A$ is totally ramified in $T_m/K(x_m)$ and is denoted by $\mathfrak{Q}_{b,m}$. In odd characteristic these places are the only rational places supporting $x_0^q + x_0$.

Proposition 1.2 (Rational places of the norm-trace tower).

- (a) All zeros of $x_0^{q^2} - x_0$ outside $x_0^q + x_0$ are completely decomposed in $T_m/K(x_i)$ for $0 \leq i \leq m$.
- (b) The norm-trace tower of height $m \geq 1$ has

$$N_1(T_m/K) = q^{m+2} - q^{m+1} + 2q + \varepsilon_m$$

rational places with $\varepsilon_m = 0$ for odd q or $m = 1$, $\varepsilon_2 = q(q-1)$ and $\varepsilon_m = 2q(q-1)$ for even q and $m \geq 3$.

Statement (a) is proved in [5]. A proof of statement (b) for odd characteristic and further references are given in [2].

Proposition 1.3 (Weierstraß semigroups of \mathfrak{P}_∞).

- (a) The place $\mathfrak{P}_{\infty,m}$ has the (inductively defined) Weierstraß semigroup $\mathbb{H}_m = q \cdot \mathbb{H}_{m-1} \cup \{n \geq c_m\}$ with $\mathbb{H}_0 := \mathbb{N}$ and conductor

$$c_m = \begin{cases} q^{m+1} - q^{\frac{m+1}{2}} & \text{for } m \equiv 1 \pmod{2} \\ q^{m+1} - q^{\frac{m+2}{2}} & \text{for } m \equiv 0 \pmod{2}. \end{cases}$$

- (b) The Riemann-Roch spaces $\mathcal{L}(\mathfrak{P}_{\infty,m}^t)$ with $0 \leq t \leq q^m(q-1)$ are generated by polynomials in x_0 of degree $\leq tq^{-m}$.

For the proof of Proposition 1.3 see [7].

2 The Decomposition Group of \mathfrak{P}_∞

For the rest of the article we present the new results on the automorphism group of T_m/K . In this section we determine the decomposition group of \mathfrak{P}_∞ .

Theorem 2.1 (Decomposition group of \mathfrak{P}_∞).
The decomposition group $G_m(\mathfrak{P}_\infty)$ of $\mathfrak{P}_{\infty,m}$ has order

$$|G_m(\mathfrak{P}_\infty)| = q^\varepsilon(q-1) = \begin{cases} q(q-1) & \text{for } q \text{ odd or } m=1 \\ q^2(q-1) & \text{for } q \text{ even and } m \geq 2. \end{cases}$$

It is isomorphic to a semi-direct product $A^\varepsilon \rtimes \mathbb{F}_q^\times$, where its structure is determined by the form of its elements given below. Any $\sigma \in G_m(\mathfrak{P}_\infty)$ satisfies

$$\sigma(x_m) = cx_m + a \quad \text{and} \quad \sigma(x_i) = cx_i \quad \text{for } i = 0, \dots, m-1$$

with $a \in A$ and $c \in \mathbb{F}_q^\times$ for odd q or $m=1$. For even q and $m \geq 2$ any $\sigma \in G_m(\mathfrak{P}_\infty)$ is given by

$$\sigma(x_{m-1}) = cx_{m-1} + a \quad \text{and} \quad \sigma(x_i) = cx_i \quad \text{for } i = 0, \dots, m-2$$

and

$$\sigma(x_m) = cx_m + \frac{a^2}{cx_{m-2}} + b$$

with $a \in A = \mathbb{F}_q$, $b^q + b = a$ and $c \in \mathbb{F}_q^\times$.

Proof. One easily verifies that the stated maps are automorphisms of T_m/K and that they form a semi-direct product as specified. So it remains to verify that every automorphism of T_m/K fixing \mathfrak{P}_∞ is of the form above.

Let σ be an automorphism with $\sigma(\mathfrak{P}_\infty) = \mathfrak{P}_\infty$. Then the Riemann-Roch space $\mathcal{L}(\mathfrak{P}_\infty^{q^m})$ is also invariant under the action of σ . By Proposition 1.3 it is spanned by 1 and x_0 . So we get

$$\sigma(x_0) = cx_0 + d \quad \text{with } c \in K^\times, d \in K.$$

Furthermore the divisor of $x_0^{q-1} + 1$ is invariant under the action of σ as well, because its support contains exactly the totally ramified places of T_m/T_0 by Proposition 1.1. Indeed, every place $\sigma(\mathfrak{P}_a)$ satisfies

$$q^m = e_{\mathfrak{P}_a}(T_m/T_0) = v_{\mathfrak{P}_a}(x_0 - a) = v_{\sigma(\mathfrak{P}_a)}(cx_0 + d - a) = e_{\sigma(\mathfrak{P}_a)}(T_m/T_0)$$

and therefore $\sigma(\mathfrak{P}_a)$ is totally ramified in T_m/T_0 and hence also a zero of $x_0^{q-1} + 1$. So $\sigma(x_0^{q-1} + 1)$ is a nontrivial function of $\mathcal{L}(\mathfrak{P}_\infty^{q^m(q-1)} \prod \mathfrak{P}_a^{-q^m}) = \langle x_0^{q-1} + 1 \rangle$ and we get

$$\sigma(x_0^{q-1} + 1) = e(x_0^{q-1} + 1) \quad \text{with } e \in K^\times.$$

Comparing the coefficients of

$$\begin{aligned} ecx_0^q + edx_0^{q-1} + ecx_0 + ed &= e(x_0^{q-1} + 1)(cx_0 + d) = \sigma(x_0^{q-1} + 1)\sigma(x_0) \\ &= \sigma(x_0)^q + \sigma(x_0) = c^q x_0^q + cx_0 + d^q + d \end{aligned}$$

we get $ed = 0$ and $c^q = ec = c$ which implies $d = 0$ and $c^{q-1} = e = 1$. So every automorphism $\sigma \in G_m(\mathfrak{P}_\infty)$ has the properties

$$\sigma(x_0) = cx_0 \quad \text{with } c \in \mathbb{F}_q^\times.$$

and

$$\sigma(x_1^q + x_1) = \sigma\left(\frac{x_0^q}{x_0^{q-1} + 1}\right) = \frac{\sigma(x_0)^q}{\sigma(x_0)^{q-1} + 1} = c \frac{x_0^q}{x_0^{q-1} + 1} = c(x_1^q + x_1).$$

Hence we get

$$\sigma(x_1) - cx_1 = cx_1^q - \sigma(x_1)^q = (cx_1 - \sigma(x_1))^q.$$

This function is constant and equals a constant a satisfying $a^q + a = 0$. Hence we get

$$\sigma(x_1) = cx_1 + a \quad \text{with } a \in A.$$

In particular we have proved our hypothesis for $m = 1$.

Case I: Let q be odd and $m \geq 2$. Suppose $a \neq 0$. Then $\sigma(x_1)$ has only non-rational zeros, because $c^{-1}a \in A^\times$ holds and all zeros of $x_1 - c^{-1}a$ have a non-trivial relative degree in T_2/T_1 by 1.1(b). But x_1 has rational zeros, as for example, the zeros of $x_m^{q-1} + 1$ are (rational) zeros of x_1 . Therefore a cannot be an element of A^\times and hence $a = 0$ holds. This yields

$$\sigma(x_1) = cx_1 \quad \text{if } m \geq 2.$$

Inductively we get

$$\sigma(x_i) = cx_i \quad \text{for } i = 1, \dots, m-1.$$

Actually $\sigma(x_{i-1}) = cx_{i-1}$ implies $\sigma(x_i^q + x_i) = c(x_i^q + x_i)$ and therefore $\sigma(x_i) = cx_i + a$ with $a \in A$. The zeros of $cx_i + a$ with $a \in A^\times$ are non-rational because of their non-trivial relative degree in T_{i+1}/T_i and x_i has rational zeros. So only $\sigma(x_i) = cx_i$ is possible. For $i = m$ however $a \neq 0$ is possible. Actually the Galois group of T_m/T_{m-1} contains the maps with $x_m \mapsto x_m + a$. Finally we get

$$\sigma(x_m) = cx_m + a \quad \text{with } a \in A.$$

Case II.1: Let q be even and $m = 2$. The above argument cannot be applied here, because all zeros of $cx_1 + a$ are completely decomposed in T_2/T_1 . But in this case $A = \mathbb{F}_q$ holds and we get

$$\begin{aligned} \sigma(x_2^q + x_2) &= \frac{\sigma(x_1)^{q+1}}{\sigma(x_1^q + x_1)} = \frac{(cx_1^q + a)(cx_1 + a)}{c(x_1^q + x_1)} = \frac{c^2 x_1^{q+1} + ca(x_1^q + x_1) + a^2}{c(x_1^q + x_1)} \\ &= c(x_2^q + x_2) + a + \frac{a^2}{c} \frac{1}{x_1^q + x_1} \\ &= c(x_2^q + x_2) + a + \frac{a^2}{c} \left(\left(\frac{1}{x_0} \right)^q + \frac{1}{x_0} \right) \\ &= \left(cx_2 + \frac{a^2}{cx_0} + b \right)^q + \left(cx_2 + \frac{a^2}{cx_0} + b \right) \quad \text{with } b \in A_a. \end{aligned}$$

Hence it follows that

$$\sigma(x_2) - \left(cx_2 + \frac{a^2}{cx_0} \right) \in b + A = A_a.$$

This is just the property as stated for even characteristic.

Case II.2: Let q be even and $m \geq 3$. Because of

$$\sigma(x_1^q + x_1) = c(x_1^q + x_1)$$

σ permutes the zeros of $x_1^q + x_1$. But the zeros of x_1 are completely decomposed in T_3/T_2 and the zeros of $x_1^{q-1} + 1$ are totally ramified in T_m/T_2 . Therefore the cardinality of the support of x_1 and $cx_1 + a$ with $a \in A^\times$ differs. Consequently the zerodivisor of x_1 is invariant under σ and also the zerodivisor of $x_1^{q-1} + 1$. We obtain $\sigma(x_1) = cx_1$. Now we can use the argument of case I, because the zeros of $cx_i + a$ have a non-trivial relative degree in T_{i+2}/T_{i+1} . By induction we get

$$\sigma(x_i) = cx_i \quad \text{for } i = 1, \dots, m-2.$$

As in case II.1 we conclude

$$\sigma(x_{m-1}) = cx_{m-1} + a \quad \text{with } a \in A$$

and

$$\sigma(x_m) = cx_m + \frac{a^2}{cx_{m-2}} + b \quad \text{for } b \in A_a.$$

This finishes the proof. \square

3 Decomposition of \mathfrak{P}_∞

The automorphism group $G_m = \text{Aut}(T_m/K)$ acts on the rational places of the norm-trace tower T_m/K . In the preceding section we have established the stabilizer of \mathfrak{P}_∞ . Now we just need to determine the conjugated places of \mathfrak{P}_∞ in order to quantify the cardinality of G_m . Of course the number of these conjugated places is the decomposition index $r_\infty := r_{\mathfrak{P}_\infty}(T_m/T_m^{G_m})$ and $|G_m| = r_\infty \cdot |G_m(\mathfrak{P}_\infty)|$ holds.

Proposition 3.1. *All rational places supporting $x_0^q + x_0$ are conjugated to \mathfrak{P}_∞ . In particular, the decomposition index r_∞ of \mathfrak{P}_∞ is bounded by*

$$r_\infty \geq \begin{cases} 2q & \text{for } q \text{ odd or } m = 1 \\ q(q+1) & \text{for } q \text{ even and } m = 2 \\ 2q^2 & \text{for } q \text{ even and } m \geq 3. \end{cases}$$

Proof. We present automorphisms T_m/K which send the above mentioned places to \mathfrak{P}_∞ . For the zero \mathfrak{P}_a of $x_0 - a$ with $a \in A^\times$ we find the automorphism τ with

$$\tau(x_0) = \frac{ax_0}{x_0 + b}, \quad \tau(x_i) = ab^{-1}x_i \quad \text{for } i = 1, \dots, m-2$$

and

$$\tau(x_{m-1}) = ab^{-1}x_{m-1}, \quad \tau(x_m) = ab^{-1}x_m + d \quad \text{for odd } q$$

or

$$\tau(x_{m-1}) = ab^{-1}x_{m-1} + d, \quad \tau(x_m) = ab^{-1} + \frac{d^2}{ab^{-1}x_{m-2}} + e \quad \text{for even } q$$

respectively with $b \in A^\times, d \in A$ and $e \in A_d$, which sends \mathfrak{P}_a to \mathfrak{P}_∞ . With these properties we can describe all automorphisms with $\tau(\mathfrak{P}_a) = \mathfrak{P}_\infty$.

A rational zero $\mathfrak{Q}_{b,m}$ of x_0 is uniquely determined as zero of $x_m - b$ with $b \in A$. An automorphism with $\tau(\mathfrak{Q}_{b,m}) = \mathfrak{P}_\infty$ is given by

$$\tau(x_m) = \frac{c + bx_0}{x_0} \quad \text{and} \quad \tau(x_i) = \frac{c}{x_{m-i}} \quad \text{for } i = 0, \dots, m-1$$

with $c \in \mathbb{F}_q^\times$. (This automorphism reflects the pyramide of the norm-trace tower.) Therefore $\mathfrak{Q}_{b,m}$ is conjugated to \mathfrak{P}_∞ . For odd characteristic we have considered all rational places supporting $x_0^q + x_0$.

For even characteristic $x_0^q + x_0$ has also rational zeros that are zeros of $x_1^{q-1} + 1$ or $x_{m-1}^{q-1} + 1$ respectively. A zero \mathfrak{Q} of $x_{m-1} + a$ is uniquely determined by

$$\tilde{x}_m = x_m + \frac{a^2}{x_{m-2}} + b \in \mathfrak{Q} \quad \text{with } b \in A_a.$$

This holds by the proof of [5, Lemma 3.4]. We can find some automorphism σ of $G_m(\mathfrak{P}_\infty)$ sending \tilde{x}_m to x_m and hence $\mathfrak{Q}_{0,m}$ to \mathfrak{Q} . Therefore $\mathfrak{P}_\infty, \mathfrak{Q}_{0,m}$ and \mathfrak{Q} are conjugated. A zero \mathfrak{Q} of $x_1 + a$ is uniquely determined by

$$\tilde{x}_2 = x_2 + \frac{a^2}{x_0} + b \in \mathfrak{Q} \quad \text{with } b \in A_a.$$

We find an automorphism ρ with $\rho(\mathfrak{Q}_{0,m}) = \mathfrak{Q}$ as following. First we choose a mapping σ of $G_m(\mathfrak{P}_\infty)$ with

$$\sigma(x_m) = \tilde{x}_m = a^2 x_m + \frac{1}{x_{m-2}} + b.$$

The above described automorphism τ with $\tau(\mathfrak{Q}_{0,m}) = \mathfrak{P}_\infty$ and $c = 1$ sends \tilde{x}_m to

$$\tau(\tilde{x}_m) = \frac{a^2}{x_0} + x_2 + b = \tilde{x}_2 \in \mathfrak{Q}.$$

The composition $\rho = \tau \circ \sigma$ satisfies $\rho(\mathfrak{Q}_{0,m}) = \mathfrak{Q}$ as desired.

Finally we get the bounds of r_∞ by counting the rational places in the support of $x_0^q + x_0$. \square

4 The Decomposition Tower

In this section we investigate some fixed fields of the automorphisms presented in Theorem 2.1 and Proposition 3.1. We will see that the decomposition fields of \mathfrak{P}_∞ form a subtower Z_m/K of the norm-trace tower T_m/K which is generated by a Kummer descent of degree $q-1$. This subtower inherits good properties of the norm-trace tower and it turns out that its genus, number of rational places and pole numbers of \mathfrak{P}_∞ are proportional with factor $q-1$ to those in T_m/K .

Theorem 4.1 (Decomposition tower Z_m/K).
The fixed fields of $G_m(\mathfrak{P}_\infty)$ form a subtower of the norm-trace tower which we call the decomposition tower Z_m/K . It is generated by the $(q-1)$ -th power of x_0, \dots, x_m , i.e.

$$Z_m = K(z_0, \dots, z_m) \quad \text{with } z_i = x_i^{q-1}.$$

Following assertions hold:

- (a) *The decomposition field of $\mathfrak{P}_{\infty,m}$ in $T_m/T_m^{G_m}$ is*

$$T_m^{G_m(\mathfrak{P}_\infty)} = Z_{m-\varepsilon} \quad \text{for } m \geq 1.$$

- (b) The fixed field of the group $G_m(\mathfrak{P}_\infty \prod \mathfrak{P}_a)$ generated by the automorphisms of T_m/K permuting the support of $x_0^{q-1} + 1$ is

$$Z_{m-\varepsilon-1}^1 = K(z_1, \dots, z_{m-\varepsilon}) \quad \text{for } m \geq 1 + \varepsilon.$$

- (c) The defining relations for z_0, \dots, z_m are

$$z_{i+1}(z_{i+1} + 1)^{q-1} = \frac{z_i^q}{(z_i + 1)^{q-1}}.$$

- (d) The decomposition tower Z_m/K satisfies the equalities

$$Z_m = Z_{m-1}\left(\frac{x_m}{x_{m-1}}\right) = Z_0\left(\frac{x_1}{x_0}, \dots, \frac{x_m}{x_{m-1}}\right) = K(x_0^{q-1}, \frac{x_1}{x_0}, \dots, \frac{x_m}{x_{m-1}}).$$

The minimal relation for the extension Z_{i+1}/Z_i is

$$\left(\frac{x_{i+1}}{x_i}\right)^q + \frac{1}{z_i} \left(\frac{x_{i+1}}{x_i}\right) = \frac{1}{z_{i+1}}$$

and the minimal relation for $Z_{i+1}/K(z_1, \dots, z_{i+1})$ is

$$\left(\frac{x_{i+1}}{x_i}\right)^q + z_{i+1} \left(\frac{x_{i+1}}{x_i}\right) = \frac{z_{i+1}}{z_{i+1} + 1}.$$

In particular $T_m = Z_m(x_i)$ holds for $0 \leq i \leq m$ and Z_m/K is a subtower of the norm-trace tower of index $[T_m : Z_m] = q - 1$.

Proof. (a) The decomposition field $T_m^{G_m(\mathfrak{P}_\infty)}$ of $\mathfrak{P}_{\infty,m}$ contains $Z_{m-\varepsilon}$ because of

$$\sigma(z_i) = \sigma(x_i)^{q-1} = c^{q-1} x_i^{q-1} = z_i$$

for $\sigma \in G_m(\mathfrak{P}_\infty)$ and $i = 0, \dots, m - \varepsilon$. The reverse inclusion follows by (d) due to dimension reasons, i.e.

$$[T_m : Z_{m-\varepsilon}] = q^\varepsilon(q - 1) = |G_m(\mathfrak{P}_\infty)|.$$

- (b) Any automorphism τ of $G_m(\mathfrak{P}_\infty \prod \mathfrak{P}_a) \setminus G_m(\mathfrak{P}_\infty)$ has the properties

$$\tau(x_0) = \frac{ax_0}{x_0 + b} \quad \text{and} \quad \tau(x_i) = ab^{-1}x_i \quad \text{for } i = 1, \dots, m - \varepsilon$$

with $a, b \in A^\times$. Hence we obtain $\tau(z_i) = z_i$ for $1 \leq i \leq m - \varepsilon$ by $(ab^{-1})^{q-1} = 1$ and therefore $Z_{m-\varepsilon}$ is contained in the fixed field of $G_m(\mathfrak{P}_\infty \prod \mathfrak{P}_a)$. The reverse inclusion also follows by (d) due to

$$[T_m : Z_{m-\varepsilon-1}] = q^{\varepsilon+1}(q - 1) = |G_m(\mathfrak{P}_\infty \prod \mathfrak{P}_a)|.$$

- (c) We get relative relations for z_0, \dots, z_m due to the $(q - 1)$ -th power of the relations of the norm-trace tower

$$z_{i+1}(z_{i+1} + 1)^{q-1} = (x_{i+1}^q + x_{i+1})^{q-1} = \left(\frac{x_i^q}{x_i^{q-1} + 1}\right)^{q-1} = \frac{z_i^q}{(z_i + 1)^{q-1}}.$$

In particular we get $[Z_{i+1} : Z_i] \leq q$ and $[T_0 : Z_0] = q - 1$.

(d) The stated equalites are obtained by

$$\begin{aligned}\frac{x_i}{x_{i-1}} &= \frac{x_i^q + x_i}{x_i^{q-1} + 1} \cdot \frac{1}{x_{i-1}} = \frac{x_{i-1}^q}{x_{i-1}^{q-1} + 1} \cdot \frac{1}{x_{i-1}} \cdot \frac{1}{x_i^{q-1} + 1} \\ &= \frac{x_{i-1}^{q-1}}{(x_i^{q-1} + 1)(x_{i-1}^{q-1} + 1)} = \frac{z_{i-1}}{(z_i + 1)(z_{i-1} + 1)}\end{aligned}$$

and

$$z_i = x_i^{q-1} = \left(\frac{x_i}{x_{i-1}} \right)^{q-1} \cdot x_{i-1}^{q-1} = \left(\frac{x_i}{x_{i-1}} \right)^{q-1} \cdot z_{i-1}.$$

In particular $[Z_{i+1} : Z_i] = q$ and $[T_i : Z_i] = q - 1$ follows. \square

Figure 1 shows parts of the Galois correspondence of the norm-trace tower or the decomposition tower respectively.

Figure 1: Pyramide structure of the decomposition tower

Proposition 4.2. *Every rational place of Z_0/K has a rational extension in Z_m/K . The following assertions hold:*

- (a) *The pole and the numerator of $z_0 + 1$ totally ramify in Z_m/Z_0 .*
- (b) *The zeros of $z_0 - d$ with $d = b^{q-1} \neq 0, 1$ completely decompose in Z_m/Z_0 .*
- (c) *The zerodivisor of $z_0 - d$ with $d \neq b^{q-1}$ has exactly one rational extension \mathfrak{R} in Z_m/K and $z_m \not\equiv b^{q-1} \pmod{\mathfrak{R}}$ holds for all $b \in K$.*
- (d) *The functions z_0, \dots, z_{m-1} have exactly two common rational zeros $\mathfrak{Q}_{0,m}^*$, $\mathfrak{Q}_{-1,m}^*$ in Z_m/K and $z_m \equiv b \pmod{\mathfrak{Q}_{b,m}^*}$ holds. For odd q these are the only rational zeros of z_0 . For even q and $m \geq 2$ the set of rational zeros of x_0 also includes q rational zeros of $z_1 + 1$ and q rational zeros of $z_{m-1} + 1$.*

Proof. (See also [3]) (a) This statement is clear, because the support of $z_0 + 1$ is totally ramified in T_m/T_0 . The pole $\mathfrak{P}_{\infty,m}$ is even totally ramified in T_i/Z_i for $i = 0, \dots, m$.

(b) Let \mathfrak{R} be a zero of $z_0 - d$ in Z_m/K . The primitive element x_0 of T_i/Z_i is integral over $\mathfrak{R} \cap Z_i$ for $i = 0, \dots, m$ and its minimal polynomial decomposes modulo $\mathfrak{R} \cap Z_i$ in

$$T^{q-1} - z_0 \equiv T^{q-1} - d = \prod_{c \in \mathbb{F}_q^\times} (T - cb) \pmod{\mathfrak{R} \cap Z_i}.$$

The factors are pairwise different and hence \mathfrak{R} is completely decomposed in T_i/Z_i by the Theorem of Kummer (see [8, Theorem III.3.7]). The zeros of $x_0 - cb$ are completely decomposed in T_m/T_0 because of $cb \notin A$. Therefore \mathfrak{R} is completely decomposed in Z_m/Z_0 .

(c) Let \mathfrak{R} be a rational zero of $z_0 - d$ in Z_m/K . We consider the minimal polynomial of x_1/x_0 modulo $\mathfrak{R} \cap Z_0$

$$\varphi_0(T) = T^q + d^{-1}T - (d+1)^{-1}.$$

We claim that $\tilde{d} = s \cdot (d+1)^{-1} \cdot (d^q + 1)^{-1}$ is the only zero of $\varphi_0(T)$ contained in K . It is an element of K , because $d/\tilde{d} = (d+1)(d^q + 1)$ is equal to its q -th power. It is a zero of $\varphi_0(T)$ due to

$$(d+1)\varphi_0(\tilde{d}) = (d+1)(\tilde{d}^q + d^{-1}\tilde{d}) - 1 = (d+1) \frac{\tilde{d}}{d} (d^q + 1) - 1 = 0.$$

Then

$$0 = \frac{\varphi_0(\tilde{d}) - \varphi_0(d')}{\tilde{d} - d'} = (\tilde{d} - d')^{q-1} + d^{-1}$$

for some other zero $d' \in \overline{K}$ of $\varphi_0(T)$ not equal to d . Hence d is a $(q-1)$ -th power of $(\tilde{d} - d')^{-1}$. With our assumption $d \neq b^{q-1}$ for $b \in K$ we conclude that \tilde{d} is the only zero of $\varphi_0(T)$ contained in K . By the Theorem of Kummer we get exactly one rational extension and several non-rational extensions of $(z_0 - d)_0$ in Z_1/K . The rational extension \mathfrak{R}_1 satisfies

$$z_1 = \left(\frac{x_1}{x_0} \right)^{q-1} \cdot z_0 \equiv \tilde{d}^{q-1} \cdot d \pmod{\mathfrak{R}_1}.$$

The constant $d_1 := \tilde{d}^{q-1}d$ is a $(q-1)$ -th power in K if and only if d is a $(q-1)$ -th power in K . Hence we get $d_1 \neq b^{q-1}$ for all $b \in K$ and the minimal polynomial of x_2/x_1 reduced by \mathfrak{R}_1

$$\varphi_1(T) = T^q + d_1^{-1}T - (d_1+1)^{-1} \equiv T^q + z_1^{-1}T - (z_1+1)^{-1} \pmod{\mathfrak{R}_1}$$

also has exactly one zero contained in K . Therefore \mathfrak{R}_1 has exactly one rational extension \mathfrak{R}_2 in Z_2/K . Proceeding inductively as above we conclude the proof of (c).

(d) Every zero of $z_0 = x_0^{q-1}$ is a zero of x_0 and so it is either a common zero of x_0, \dots, x_m or a common zero of x_0, \dots, x_{i-1} and $x_i - a$ for some $1 \leq i \leq m$ and $a \in A^\times$. So every zero of z_0 is either a common zero of z_0, \dots, z_m or a common zero of z_0, \dots, z_{i-1} and $z_i + 1 = z_i - a^{q-1}$. We verify inductively that

the common zero of z_0, \dots, z_{i-1} has exactly two extension $\mathfrak{Q}_{0,i}^*$ and $\mathfrak{Q}_{-1,i}^*$ in Z_i/Z_{i-1} with $z_i \equiv b \pmod{\mathfrak{Q}_{b,m}^*}$ and

$$e_{\mathfrak{Q}_{0,i}^*}(Z_i/Z_{i-1}) = 1 \quad \text{and} \quad e_{\mathfrak{Q}_{-1,i}^*}(Z_i/Z_{i-1}) = q - 1.$$

This assertion is trivially true for $i = 0$. For the induction step $i - 1$ to i we assume that the assertion is true for $k \leq i - 1$ with $i \geq 1$. Obviously $\mathfrak{Q}_{0,i-1}^* \cap Z_0$ totally ramifies in T_0/Z_0 as zero of z_0 . With our induction assumption we get the ramification diagram as in Figure 2.

Figure 2: Ramification diagram of $\mathfrak{Q}|Q_{0,i-1}^*$

There are q extensions $\mathfrak{Q}_{b,i}$ of $\mathfrak{Q}_{0,i-1}^*$ in T_i/K with $b \in A$ and $z_i = x_i^{q-1} \equiv b^{q-1} \pmod{\mathfrak{Q}_{b,i}}$. The places $\mathfrak{Q}_{a,i}$ with $a \in A^\times$ are extensions of a zero of $z_i^{q-1} + 1$ by the Theorem of Kummer. Therefore we get $e_{\mathfrak{Q}_{a,i}}(T_i/F_i) = 1$ and

$$e_{\mathfrak{Q}_{a,i}}(F_i/F_{i-1}) = e_{\mathfrak{Q}_{a,i}}(T_i/F_i) \cdot e_{\mathfrak{Q}_{a,i}}(F_i/F_{i-1}) = e_{\mathfrak{Q}_{a,i}}(T_i/F_{i-1}) = q - 1.$$

By the arithmetic formula $n = \sum e_j f_j$ (see [8, Theorem III.1.11]) we conclude $e_{\mathfrak{Q}_{0,i}}(F_i/F_{i-1}) = 1$ and $e_{\mathfrak{Q}_{0,i}}(T_i/F_i) = q - 1$. In particular $\mathfrak{Q}_{0,i-1}^*$ has exactly two extensions $\mathfrak{Q}_{0,i}^*$ and $\mathfrak{Q}_{-1,i}^*$ in Z_i/K with $z_i \equiv b \pmod{\mathfrak{Q}_{b,i}^*}$. This proves our assertion.

The places $\mathfrak{Q}_{0,m}|\mathfrak{Q}_{0,m}^*$ and $\mathfrak{Q}_{a,m}|\mathfrak{Q}_{-1,m}^*$ are rational in T_m/K and hence $\mathfrak{Q}_{0,m}^*$ and $\mathfrak{Q}_{-1,m}^*$ are rational in Z_m/K . The places $\mathfrak{Q}_{-1,i}^*$ with $1 \leq i \leq m - 1$ completely decompose in T_{i+k}/Z_{i+k} by the Theorem of Kummer due to $T_{i+k} = Z_{i+k}(x_i)$ with $k \geq 0$. Hence the inertia indices of $\mathfrak{Q}_{-1,i}^*$ equal the inertia indices of their extensions in the norm-trace tower. This proves our statement. \square

Now we can establish the number of rational places and the genus of Z_m/K .

Theorem 4.3 (Rational places of the decomposition tower).

The decomposition tower Z_m/K of height $m \geq 1$ has

$$N_1(Z_m/K) = q^{m+1} + q^2 - q + 2 + \varepsilon_m^*$$

rational places with $\varepsilon_m^* = \varepsilon_m/(q - 1)$. (See Proposition 1.2 for the definition of ε_m .)

Proof. Proposition 4.2 yields a complete view over the rational places of Z_m/K . In the parts (a) and (d) we find $4 + \varepsilon_m^*$ rational places. It remains to consider the rational zeros of $z_0 - d$ with $d \neq 0, -1$. The zero divisor of $z_0 - d$ with $d = b^{q-1}$ for some $b \in K$ is completely decomposed in Z_m/Z_0 and has q^m rational prime divisors. For $b \neq b^{q-1}$ there is just one rational place dividing $(z_0 - d)_0$. With $s := \#\{d \in K : d = b^{q-1} \neq 0, -1\}$ we get

$$N_1(Z_m/K) = s \cdot q^m + (q^2 - 2 - s) + 4 + \varepsilon_m^*.$$

Due to $(b^{q-1})^{q+1} = b^{q^2-1} = 1$ a $(q-1)$ -th power is a zero of

$$T^q - T^{q-1} + T^{q-2} \mp \dots + T - 1 = \frac{T^{q+1} - 1}{T + 1} \mid (T^{q+1})^{q-1} - 1 = \prod_{b \in K^\times} (T - b).$$

Hence $s = q$ fulfills. This finishes the proof. \square

Theorem 4.4 (Genus of the decomposition tower).

The decomposition tower Z_m/K of height m has genus $g_m/(q-1)$, where g_m denotes the genus of the norm-trace tower.

Proof. (See also [3, Lemma 4]) By the Hurwitz formula we obtain the genus g_m^* of Z_m/K due to

$$[T_m : Z_m](g_m^* - 1) = g_m - \frac{\mathfrak{D}(T_m/Z_m)}{2} - 1.$$

According to the theory of Kummer extensions (see [8, Proposition III.7.3]) only poles and zeros of z_0 ramify in T_m/Z_m with index

$$e_{\mathfrak{P}}(T_m/Z_m) = \frac{[T_m : Z_m]}{\gcd([T_m : Z_m], v_{\mathfrak{P} \cap Z_m}(z_0))}$$

where $\gcd(\cdot, \cdot)$ denotes the positive greatest common divisor. The resulting different exponent is

$$d_{\mathfrak{P}}(T_m/Z_m) = e_{\mathfrak{P}}(T_m/Z_m) - 1.$$

The pole \mathfrak{P}_∞ of z_0 is totally ramified in T_m/Z_0 and has different exponent $d_{\mathfrak{P}_\infty} = q - 2$. The only zero of z_0 with $\gcd([T_m : Z_m], v_{\mathfrak{Q} \cap Z_m}(z_0)) \neq q - 1$ is $\mathfrak{Q}|_{\mathfrak{Q}_{0,m}^*}$ because the other zeros are ramified in Z_1/Z_0 with index $q - 1$ by Proposition 4.2. Hence $d_{\mathfrak{Q}}(T_m/Z_m) = q - 2$ and

$$\deg(\mathfrak{D}(T_m/Z_m)) = d_{\mathfrak{P}_\infty}(T_m/Z_m) + d_{\mathfrak{Q}}(T_m/Z_m) = 2(q - 2).$$

Hence we get $g_m^* = g_m/[T_m : Z_m] = g_m/(q - 1)$. \square

Theorem 4.5 (Weierstraß semigroup of $\mathfrak{P}_\infty^* = \mathfrak{P}_\infty \cap Z_m$).

The place \mathfrak{P}_∞^* has the Weierstraß semigroup $\mathbb{H}_m^* = q \cdot \mathbb{H}_{m-1} \cup \{n \geq c_m^*\}$ with conductor $c_m^* = c_m/(q - 1)$, where c_m denotes the conductor of the Weierstraß semigroup of \mathfrak{P}_∞ in the norm-trace tower.

Proof. First of all the number of gaps \tilde{g}_m^* in \mathbb{H}_m^* coincides with the genus g_m^* . This can be checked as in [7] by substituting $g_m \mapsto g_m^* = g_m/(q-1)$ and $c_m \mapsto c_m^* = c_m/(q-1)$. Therefore \mathbb{H}_m^* comes into consideration for the Weierstraß semigroup of \mathfrak{P}_∞^* . For the rest of the proof it remains to show that \mathbb{H}_m^* contains all pole numbers of \mathfrak{P}_∞^* . We show that an integer n is contained in \mathbb{H}_m^* if and only if $n(q-1)$ is contained in \mathbb{H}_m .

For $m = 0$ there is nothing to show. Using induction we assume that the assertion is valid for $m-1$ with $m > 0$. The integer n is contained in \mathbb{H}_m^* if and only if $n/q \in \mathbb{H}_{m-1}^*$ or $n \geq c_m^* = c_m/(q-1)$ holds. By the induction hypothesis this is equivalent to $n(q-1)/q \in \mathbb{H}_{m-1}$ or $n(q-1) \geq c_m$. Either way, $n(q-1)$ is contained in \mathbb{H}_m and the induction is complete.

Now we can conclude that every pole number is contained in \mathbb{H}_m^* . For any pole number t of \mathfrak{P}_∞^* we have $t(q-1) \in \mathbb{H}_m$, because \mathfrak{P}_∞^* totally ramifies in T_m/Z_m with index $q-1$. With the above we finally get $t \in \mathbb{H}_m^*$. \square

Remark 4.6. *The following assertions hold for all intermediate towers S_m/K with $T_m \geq S_m \geq Z_m$.*

- (a) *There is a divisor r of $q-1$ with $S_m = K(x_0^r, \dots, x_m^r)$ and $r = [T_m : S_m]$. For $s_i := x_i^r$ the intermediate tower S_m/K is generated by*

$$s_{i+1} \cdot \left(s_{i+1}^{(q-1)/r} + 1 \right)^r = \frac{s_i^q}{(s_i^{(q-1)/r} + 1)^r} \quad \text{for } i = 0, \dots, m-1.$$

- (b) *The tower S_m/K of height m has genus g_m/r .*

- (c) *The tower S_m/K of height m has*

$$N_1(S_m/K) = (q^{m+1} + \varepsilon_m^*) \cdot (q-1)/r + k$$

rational places with $2q \leq k \leq q^2 - q + 2$.

- (d) *An integer n is a pole number of \mathfrak{P}_∞ in S_m/K if and only if $n \cdot r$ is a pole number of \mathfrak{P}_∞ in T_m/K .*

5 The Full Automorphism Group

In the sections 2 and 3 we have computed a subgroup of $G_m = \text{Aut}(T_m/K)$ which we conjecture to be the entire automorphism group of T_m/K .

Conjecture 5.1. *The automorphism group of the norm-trace tower with height $m \geq 1$ has order*

$$|\text{Aut}(T_m/K)| = \begin{cases} 2q^2(q-1) & \text{for } q \geq 3 \text{ odd or } m = 1 \\ q^3(q^2-1) & \text{for } q \geq 4 \text{ even and } m = 2 \\ 2q^4(q-1) & \text{for } q \geq 4 \text{ even and } m \geq 3. \end{cases}$$

This extends Aleschnikov's result for $m = 1$ in [1]. He proved that every rational place of T_1/K outside $x_0^q + x_0$ has gap number q and hence these places cannot be conjugated to \mathfrak{P}_∞ . For $m \geq 2$ and $q \geq 3$ it might also hold that q^m is a gap number of the rational places outside $x_0^q + x_0$, but their Weierstraß groups are still unknown. With the computer algebra system MAGMA we checked that q^m

is a gap number outside $x_0^q + x_0$ for $m = 2$ and $q = 3, \dots, 9$. In contrast we also checked that q^m is a pole number outside $x_0^q + x_0$ for $q = 2$ and $m = 1, 2, 3$. Therefore $q = 2$ is conjecturally an exceptional case. For $(m, q) = (1, 2)$ the norm-trace tower is elliptic and hence its automorphism group is known and does not coincide with our exhibited group. For $m = 2, 3$ we queried MAGMA and received the result that T_2/\mathbb{F}_4 has 168 automorphisms and T_3/\mathbb{F}_4 has 96 automorphisms.

In this section we present a proof that the exhibited automorphisms generate the full automorphism group of the norm-trace tower with height $m = 2$ in odd characteristic and $m = 2, 3, 4$ in even characteristic respectively. We will use the Hurwitz formula for the relative genus [8, Theorem III.4.12] of $T_m/T_m^{G_m}$ in order to achieve bounds for the decomposition index r_∞ . First we consider the ramification of the field extensions

$$T_m \geq T_{m-\varepsilon} \geq Z_{m-\varepsilon} = T_m^{G_m(\mathfrak{P}_\infty)} \geq T_m^{G_m(\mathfrak{P}_\infty \Pi \mathfrak{P}_a)} = Z_{m-\varepsilon-1}^1.$$

Proposition 5.2. *The extension $T_m/Z_{m-\varepsilon-1}^1$ is unramified outside $x_0^q + x_0$ for $m \geq 1 + \varepsilon$.*

Proof. We already know that this assertion is true for the extension $T_m/Z_{m-\varepsilon}$ by Proposition 1.1 and the proof of Theorem 4.3. Hence it remains to consider the extension $Z_{m-\varepsilon}/Z_{m-\varepsilon-1}^1$. For abbreviation we substitute $m - \varepsilon \mapsto m$ and define $T_{m-1}^1 := K(x_1, \dots, x_m)$. This field is isomorphic to T_{m-1} as well as Z_{m-1} is isomorphic to Z_{m-1}^1 under the map $x_{i-1} \mapsto x_i$ for $1 \leq i \leq m$. By the proof of Theorem 4.3 the ramifying places of T_{m-1}/Z_{m-1} are the pole of z_0 and the common zero of z_0, \dots, z_{m-1} . Using the isomorphism above we obtain that the pole of z_1 and the common zero of z_1, \dots, z_m are the ramifying places of T_{m-1}^1/Z_{m-1}^1 . These places are contained in the support of $x_0^q + x_0$. Hence Z_{m-1}/Z_{m-1}^1 is unramified outside $x_0^q + x_0$, because T_{m-1}/T_{m-1}^1 is unramified outside $x_0^q + x_0$ by Proposition 1.1. \square

By this proof we also get a key statement for the proof of Theorem 5.5.

Corollary 5.3. *There is at least one wildly ramified place in $T_m/T_m^{G_m}$ not conjugated to \mathfrak{P}_∞ for $m \geq 2\varepsilon$.*

Proof. A zero \mathfrak{R} of $x_{m-\varepsilon}^{q-1} + 1$ is totally ramified in $T_{m-\varepsilon}/T_{m-\varepsilon-1}^1$ and has a non-trivial relative degree in T_m/T_{m-1} by Proposition 1.1. Since \mathfrak{R} is unramified in $T_{m-\varepsilon}/Z_{m-\varepsilon}$ as well as in $T_{m-\varepsilon-1}^1/Z_{m-\varepsilon-1}^1$ by the above proof, it is totally ramified in $Z_{m-\varepsilon}/Z_{m-\varepsilon-1}^1$. Hence the place \mathfrak{R} is wildly ramified in $T_m/T_m^{G_m}$. Also it cannot be conjugated to \mathfrak{P}_∞ , because \mathfrak{P}_∞ has relative degree 1 in $T_m/T_m^{G_m}$. \square

Now we collect bounds for r_∞ obtained by the results of section 4.

Proposition 5.4. *The decomposition index r_∞ of \mathfrak{P}_∞ has one of the following properties:*

- (a) $r_\infty = 2q$ or $q^2(q-1) \leq r_\infty \leq N_1(T_m)$ for odd q and $m \geq 2$.
- (b) $r_\infty = q(q+1)$ or $q^2(q-1) \leq r_\infty \leq N_1(T_m)$ for even q and $m = 2$.
- (c) $r_\infty = 2q^2$ or $q^3(q-1) \leq r_\infty \leq N_1(T_m)$ for even q or $m \geq 3$.

Proof. We assume that \mathfrak{P}_∞ is conjugated to a rational place \mathfrak{R} outside $x_0^q + x_0$. Then r_∞ is as large as the decomposition index of \mathfrak{R} in $T_m/T_m^{G_m}$ and of course it is at most as large as the number of all rational places.

(a),(c) By Proposition 5.2 we obtain that \mathfrak{R} is unramified and hence completely decomposed in $T_m/Z_{m-\varepsilon-1}^1$. Therefore the decomposition index of \mathfrak{R} is at least $[T_m : Z_{m-\varepsilon-1}^1] = q^{\varepsilon+1}(q-1)$.

(b) For even q and $m = 2$ we did not calculate the fixed field of $G_m(\mathfrak{P}_\infty \prod \mathfrak{P}_a)$. So we only use the fact that \mathfrak{R} is completely decomposed in T_2/Z_0 . \square

Theorem 5.5. *In nearly all cases Conjecture 5.1 is true for $m = 1, 2$. In even characteristic it is also true for $m = 3, 4$. The only exceptional case beside $q = 2$ may occur for $(m, q) = (2, 3)$.*

Proof. Let \mathfrak{P} be a place of the fixed field $T_m^{G_m}$ ramifying in $T_m/T_m^{G_m}$. All its extensions have the same ramification index $e_{\mathfrak{P}}$ and different exponent $d_{\mathfrak{P}}$. The different degree of these extensions is $|G_m| \deg(\mathfrak{P})d_{\mathfrak{P}}/e_{\mathfrak{P}}$. So by the Hurwitz formula we get

$$\begin{aligned} 2g_m - 2 &= [T_m : T_m^{G_m}](2g_G - 2) + \deg(\mathfrak{D}(T_m/T_m^{G_m})) \\ &= |G_m|(2g_G - 2 + \sum_{\mathfrak{P}} \delta_{\mathfrak{P}} \deg(\mathfrak{P})) \end{aligned}$$

where g_G denotes the genus of $T_m^{G_m}/K$ and $\delta_{\mathfrak{P}} = d_{\mathfrak{P}}/e_{\mathfrak{P}}$ denotes the ratio of the different exponent $d_{\mathfrak{P}}$ and ramification index $e_{\mathfrak{P}}$ of a place \mathfrak{P} in $T_m^{G_m}$. For any wildly ramifying place \mathfrak{P} we have $\delta_{\mathfrak{P}} \geq 1$ and for any tamely ramifying place \mathfrak{P} we have $1/2 \leq \delta_{\mathfrak{P}} < 1$.

The place \mathfrak{P}_∞ is wildly ramified with $\delta_{\mathfrak{P}_\infty} = \delta_\infty = (q^{\varepsilon+1} - 2)/(q^\varepsilon(q-1))$. In the following we will collect upper bounds for r_∞ in several cases.

Case 1: It is $g_G \geq 1$. Then we get $2g_m - 2 \geq |G_m|\delta_\infty = r_\infty d_\infty$ and hence

$$r_\infty \leq (2g_m - 2)/(q^{\varepsilon+1} - 2). \quad (1)$$

Case 2: It is $g_G = 0$. Because of $g_m > 0$ it follows that $\delta = \sum_{\mathfrak{P}} \delta_{\mathfrak{P}} \deg(\mathfrak{P}) > 2$ and $\delta - \delta_\infty > 0$ by the Hurwitz formula. Consequently any other place \mathfrak{Q} not conjugated to \mathfrak{P}_∞ is ramified in $T_m/T_m^{G_m}$.

Case 2(a): In this case \mathfrak{Q} is either a wildly ramified place or a tamely ramified non-rational place. We also include the case that there are two tamely ramified rational places of $T_m^{G_m}$. Either way, $\delta - \delta_\infty \geq 1$ holds. This implies $|G_m|(\delta - 2) \geq r_\infty(q^\varepsilon - 2)$ and

$$r_\infty \leq (2g_m - 2)/(q^\varepsilon - 2). \quad (2)$$

Case 2(b): In the last case \mathfrak{Q} is the only tamely ramified rational place of $T_m^{G_m}$ and there are no ramified places other than \mathfrak{P}_∞ and \mathfrak{Q} . So it holds $\delta = \delta_\infty + \delta_{\mathfrak{Q}} > 2$ with $\delta_{\mathfrak{Q}} = (e-1)/e$. By this inequality we can estimate the ramification index e of \mathfrak{Q} and $e \geq q$ results for even q and $e \geq q+2$ holds for odd q resp. $e \geq 6$ for $q = 3$. Actually $e = q$ is impossible because \mathfrak{Q} is tamely ramified. Hence $e \geq q+1$ and $\delta \geq \delta_\infty + q/(q+1)$. For even q we conclude $|G_m|(\delta - 2) \geq |G_m|(2q^2 - 2q - 2)/(q^2(q^2 - 1))$ and

$$r_\infty \leq q(g_m - 1)/(q^2 - q - 1). \quad (3)$$

We omit the calculations for odd q in this case since we will see that they are unnecessary.

Comparing the inequalities (1), (2) and (3) with the inequalities in Proposition 5.4 we can prove our hypothesis. For $m = 2$ we have $2g_2 - 2 = 2q^3 - 2q^2 - 2q$ and $g_G = 0$ (see Theorem 4.1). So case 2 holds. For odd q case 2(a) actually holds by Corollary 5.3. We get $r_\infty \leq 2q^2 + 2q + 2 + 4/(q-2)$. This proves the hypothesis for odd $q \neq 3$ and $m = 2$. For even q and $m = 2, 3$ all cases imply our hypothesis. For even q and $m = 4$ case 2(b) is impossible by Corollary 5.3, while the other cases leads to the verification of our hypothesis. \square

Remark 5.6. *We queried MAGMA for the automorphisms of the decomposition tower. It seems that Z_m/K has only two automorphisms namely those generated by the "reflection" automorphism $z_i \mapsto 1/z_{m-i}$.*

Acknowledgement. I am deeply grateful to Bernd Heinrich Matzat for his support of my studium and my diploma thesis. Many thanks to Florian Heß for his helpful comments on this article.

I acknowledge the support of the BERLIN MATHEMATICAL SCHOOL, which is funded by the German Science Foundation (DFG) as a Graduate School in the framework of the "Excellence Initiative".

References

- [1] Ilia Aleschnikov. *Ganzheitsbasen in einem Turm algebraischer Funktionenkörper: Ein Beitrag zur Konstruktion asymptotisch guter algebraisch-geometrischer Codes*. PhD thesis, FB Mathematik und Informatik der Universität GH Essen, 2000.
- [2] Ilia Aleschnikov, Vijay Kumar, Kenneth Shum, and Henning Stichtenoth. On the splitting of places in a tower of function fields meeting the Drinfeld-Vladut bound. *IEEE Transactions on Information Theory*, 47(4):1613–1619, 2001.
- [3] Juscelino Bezerra and Arnoldo Garcia. A tower with non-Galois steps which attains the Drinfeld-Vladut bound. *J. Number Theory*, 106:142–154, 2004.
- [4] Arnoldo Garcia and Henning Stichtenoth. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound. *Inv. Math.*, 121:211–222, 1995.
- [5] Arnoldo Garcia and Henning Stichtenoth. On the behaviour of some towers of functions fields over finite fields. *J. Number Theory*, 61:248–273, 1996.
- [6] Thorsten Lagemann. Codes und Automorphismen optimaler Artin-Schreier-Türme. *Diplomarbeit an der Universität Heidelberg*, 2006.
- [7] Ruud Pellikaan, Henning Stichtenoth, and Fernando Torres. Weierstrass semigroups in an asymptotically good tower of function fields. *Finite Fields Appl.*, 4:381–392, 1998.
- [8] Henning Stichtenoth. *Algebraic Function Fields and Codes*. Springer Verlag, 1993.