Naïve Bayes Classifier

Classification Setting Revisited

- Given a set of rows/instances/examples
 - Each row is a set of cols/features
 - Learn a function
 - class = f(instance)
 - And classify
 - New instances (test dataset) into a class
- Across domains there are different names for these components

X ₁	X ₂	 Xn	У
			y ₁
			y2
			y2
			Y3
			y1

Alternative Terms for Rows

Alternative Terms for Columns

X ₁	X ₂	 X _n

- attributes
- properties
- features
- dimensions
- variables
- fields
- signal

Alternative Terms for Input Variables

X ₁	X ₂	 X _n

- independent variable
- predictor
- regressor (regression problem)
- covariate
- manipulated variable
- explanatory variable
- exposure variable (reliability theory)
- risk factor (see medical statistics),
- feature (in machine learning and pattern recognition)
- control variable (econometrics)
- exogenous (economics)

Alternative Terms for Output variable

- dependent variable
- response variable
- regressand (regression)
- criterion
- predicted variable
- measured variable
- explained variable
- experimental variable
- outcome variable
- target
- class
- label
- endogenous (economics)

Some Types of classifiers

- Rule-based
 - Decision tree (M1)
- Probabilistic
 - Naïve Bayes classifier (M2)
- Max-margin classifier
 - SVM (M5)
- Neural network (M8)

Applying NBC in practice

Classical example: text classification

- Instances are text samples
 - emails
 - paragraphs
 - sentences
 - documents
 - tweets
 - posts
 - comments
 - reviews
- Classes are {spam, ~spam}

Applying NBC in practice

- Real time prediction
 - Fast to learn
- Sentiment analysis
- Can be used in multi-class prediction
 - Pr(Class|instance)
- Need less training data

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability: $P(Y|X) = \frac{P(X,Y)}{P(X)}$

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes theorem:

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

Using Bayes Theorem for Classification

- Consider each attribute and class label as random variables
- Given a record with attributes (X₁, X₂,..., X_d), the goal is to predict class Y
 - Specifically, we want to find the value of Y that maximizes $P(Y|X_1, X_2,..., X_d)$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Can we estimate P(Y| X₁,
 X₂,..., X_d) directly from data?

Bayesian Classifier: Using Bayes Theorem for Classification

Approach:

– compute posterior probability $P(Y \mid X_1, X_2, ..., X_d)$ using the Bayes theorem

$$P(Y | X_1 X_2 ... X_n) = \frac{P(X_1 X_2 ... X_d | Y) P(Y)}{P(X_1 X_2 ... X_d)}$$

Maximum a-posteriori (MAP): Choose Y that maximizes

$$P(Y | X_1, X_2, ..., X_d)$$

- MAP classification rule
- Equivalent to choosing value of Y that maximizes $P(X_1, X_2, ..., X_d|Y) P(Y)$
- How to estimate P(X₁, X₂, ..., X_d | Y)?

Two Types of Probabilistic Classification

Discriminative model

 Directly estimates the conditional class probability given the features

$$P(Y | X_1, X_2, ..., X_d)$$

Generative model

 Estimates the conditional joint probability of features given the class variable

$$P(X_1, X_2, ..., X_d | Y)$$

Generative vs Discriminative Classifiers

NBC is a generative classifier

- because it models $P(X_1, X_2, ..., X_n \mid c)$
- Allows generate new instances by drawing samples the learned joint distribution
 - One can use the Naïve Bayes classifier to "generate" a document for a given class
- A discriminative classifier, in contrast, will model P(class|instance), not P(instance| class)
 - Example: logistic regression classifier, coming later

Why is Bayesian Classifier not Feasible in Practice?

- Consider 3 classes, 10 features, each with 6 possible discrete instantiations
 - We need 3*6¹⁰ + 3 parameters to be estimated
 ≈181 million!

Enters Naïve Bayes

Conditional Independence Assumption

- X and Y are conditionally independent given Z if
 P(X|Y,Z) = P(X|Z)
- Example: Arm length and reading skills
 - Young child has shorter arm length and limited reading skills, compared to adults
 - If age is fixed, no apparent relationship between arm length and reading skills
 - Arm length and reading skills are conditionally independent given age

Disclaimer: By all accounts, Rev. Thomas Bayes was pretty smart. Naivete is on our part, not Bayes!

Naïve Bayes Classifier

- Assume independence among attributes X_i when class is given:
 - $-P(X_1, X_2, ..., X_d | Y_i) = P(X_1 | Y_i) P(X_2 | Y_i)... P(X_d | Y_i)$
 - Now we can estimate $P(X_i|Y_j)$ for all X_i and Y_j combinations from the training data
 - New point is classified to Y_j if $P(Y_j) \prod P(X_i | Y_j)$ is maximal.

Why is this a big deal?

- Back to the Bayesian classifier: 3 classes, 10 features, each with 6 possible discrete instantiations
 - Requires 181 million parameters:
- Naïve Classifier:
 - Requires 3*60 + 3 = 183 parameters!

Example Data

Given a Test Record:

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$X = (Refund = No, Divorced, Income = 120K)$$

We need to estimate

In the following we will replace

Evade = Yes by Yes, and

Evade = No by No

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Using Bayes Theorem:

$$P(Yes \mid X) = \frac{P(X \mid Yes)P(Yes)}{P(X)}$$

$$P(No \mid X) = \frac{P(X \mid No)P(No)}{P(X)}$$

How to estimate P(X | Yes) and P(X | No)?

Naïve Bayes on Example Data

Given a Test Record:

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$X = (Refund = No, Divorced, Income = 120K)$$

Estimate Probabilities from Data

			_	
Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

P(y) = fraction of instances of class y

- e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

For categorical attributes:

$$P(X_i = c | y) = n_c / n$$

- where |X_i =c| is number of instances having attribute value X_i =c and belonging to class y
- Examples:

Estimate Probabilities from Data

For continuous attributes:

- Discretization: Partition the range into bins:
 - Replace continuous value with bin value
 - Attribute changed from continuous to ordinal
- Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability P(X_i|Y)

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(X_i | Y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(X_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (X_i,Y_i) pair
- For (Income, Class=No):
 - If Class=No
 - ◆ sample mean = 110
 - ◆ sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Naïve Bayes Classifier:

```
P(Refund = Yes | No) = 3/7
P(Refund = No | No) = 4/7
P(Refund = Yes | Yes) = 0
P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/7
P(Marital Status = Divorced | No) = 1/7
P(Marital Status = Married | No) = 4/7
P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3
P(Marital Status = Married | Yes) = 0
```

For Taxable Income:

```
If class = No: sample mean = 110
sample variance = 2975
If class = Yes: sample mean = 90
sample variance = 25
```

```
P(X | No) = P(Refund=No | No)

× P(Divorced | No)

× P(Income=120K | No)

= 4/7 × 1/7 × 0.0072 = 0.0006
```

```
Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)

=> Class = No
```

Make Prediction with Partial Information in the Test Set

Even in absence of information about any attributes, we can use Apriori Probabilities of Class Variable:

Naïve Bayes Classifier:

```
P(Refund = Yes | No) = 3/7
P(Refund = No | No) = 4/7
P(Refund = Yes | Yes) = 0
P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/7
P(Marital Status = Divorced | No) = 1/7
P(Marital Status = Married | No) = 4/7
P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3
P(Marital Status = Married | Yes) = 0
```

```
For Taxable Income:

If class = No: sample mean = 110

sample variance = 2975

If class = Yes: sample mean = 90

sample variance = 25
```

```
P(Yes) = 3/10
   P(N_0) = 7/10
If we only know that marital status is Divorced, then:
   P(Yes \mid Divorced) = 1/3 \times 3/10 / P(Divorced)
   P(No \mid Divorced) = 1/7 \times 7/10 / P(Divorced)
If we also know that Refund = No, then
   P(Yes | Refund = No, Divorced) = 1 \times 1/3 \times 3/10 /
                    P(Divorced, Refund = No)
   P(No \mid Refund = No, Divorced) = 4/7 \times 1/7 \times 7/10 /
                                   P(Divorced, Refund =
   No)
If we also know that Taxable Income = 120, then
   P(Yes | Refund = No, Divorced, Income = 120) =
```

P(No | Refund = No, Divorced Income = 120) =

 $1.2 \times 10^{-9} \times 1 \times 1/3 \times 3/10 /$

 $0.0072 \times 4/7 \times 1/7 \times 7/10$

P(Divorced, Refund = No, Income = 120)

P(Divorced, Refund = No, Income = 120)²⁶

Issues with Naïve Bayes Classifier

Consider the table with Tid = 7 deleted

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Naïve Bayes Classifier:

Given X = (Refund = Yes, Divorced, 120K)

$$P(X \mid No) = 2/6 \times 0 \times 0.0083 = 0$$

$$P(X | Yes) = 0 X 1/3 X 1.2 X 10^{-9} = 0$$

Naïve Bayes will not be able to classify X as Yes or No!

Issues with Naïve Bayes Classifier

- If one of the conditional probabilities is zero, then the entire expression becomes zero
- Need to use other estimates of conditional probabilities than simple fractions
- Probability estimation:

original:
$$P(X_i = c|y) = \frac{n_c}{n}$$

Laplace Estimate:
$$P(X_i = c|y) = \frac{n_c + 1}{n + v}$$

m – estimate:
$$P(X_i = c|y) = \frac{n_c + mp}{n + m}$$

n: number of training instances belonging to class *y*

 n_c : number of instances with $X_i = c$ and Y = y

v: total number of attribute values that X_i can take

p: initial estimate of $(P(X_i = c|y) \text{ known apriori})$

m: hyper-parameter for our confidence in *p*

Sklearn naïve Bayes

 https://scikitlearn.org/stable/modules/naive baye s.html

```
naive_bayes.BernoulliNB(*
[, alpha, ...])

Naive Bayes classifier for multivariate Bernoulli models.

Naive_bayes.CategoricalNB(*
[, alpha, ...])

Naive Bayes classifier for categorical features

The Complement Naive Bayes classifier described in Rennie et al.

naive_bayes.GaussianNB(*
[ priors, ...])

Naive Bayes (GaussianNB)

Naive Bayes.MultinomialNB(*
[, alpha, ...])

Naive Bayes classifier for multinomial models
```

Conclusions

Naïve Bayes based on the independence assumption

- Training is very easy and fast; just requiring considering each attribute in each class separately
 - Works with less data
- Test is straightforward; just looking up tables or calculating conditional probabilities with normal distributions

A popular generative model

- Performance competitive to most of state-of-the-art classifiers even in presence of violating independence assumption
- Many successful applications, e.g., spam mail filtering
- Apart from classification, naïve Bayes can do more...