中級統計学:復習テスト25

2024年1月22日

注意: すべての質問に解答しなければ提出とは認めない.正答に修正した上で,復習テスト 21~26 を順に重ねて左上でホチキス止めし,定期試験実施日(1 月 26 日の予定)に提出すること.			
1. 2 変量データを $((y_1,x_1),\ldots,(y_n,x_n))$ とする. y_i の x_i 上への定数項のない古典的線形回帰モデルは			
$y_i = eta x_i + u_i$			
$\mathrm{E}(u_i) = 0$			
$\operatorname{var}(u_i) = \sigma^2$			
$cov(u_i, u_j) = 0$ for $i \neq j$			
eta の OLS 推定量を b とする.			
(a) b を式で与えなさい.			
(b) b の期待値を求めなさい.			

(c) *b* の分散を求めなさい.

2.	2 変量データを $((y_1,x_1),\ldots,(y_n,x_n))$ とする.	y_i の x_i 上への定数項のない古典的正規線形回帰モデ
	ルは	

$$y_i = \beta x_i + u_i$$
$$\{u_i\} \sim \text{IN}\left(0, \sigma^2\right)$$

 β の OLS 推定量を b とする. σ^2 を既知として次の片側検定問題を考える.

$$H_0: \beta = c \quad \text{vs} \quad H_1: \beta > c$$

(a) b の分布を求めなさい.

(b) 検定統計量を与えなさい.

(c) 検定統計量の H_0 の下での分布を与えなさい.

(d) 有意水準5%の検定の棄却域を定めなさい.

(e) 検定統計量の値が 2.0 のとき p 値を求めなさい.

解答例

1. (a)

$$b = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

(b) 前問の式に回帰式 $y_i = \beta x_i + u_i$ を代入すると

$$b = \frac{\sum_{i=1}^{n} x_i (\beta x_i + u_i)}{\sum_{i=1}^{n} x_i^2}$$

$$= \frac{\beta \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} x_i u_i}{\sum_{i=1}^{n} x_i^2}$$

$$= \beta + \frac{\sum_{i=1}^{n} x_i u_i}{\sum_{i=1}^{n} x_i^2}$$

期待値の線形性より

$$E(b) = E\left(\beta + \frac{\sum_{i=1}^{n} x_i u_i}{\sum_{i=1}^{n} x_i^2}\right)$$
$$= \beta + \frac{\sum_{i=1}^{n} x_i E(u_i)}{\sum_{i=1}^{n} x_i^2}$$
$$= \beta$$

(c) u_1, \ldots, u_n は無相関で分散が均一なので

$$var(b) = var\left(\beta + \frac{\sum_{i=1}^{n} x_{i} u_{i}}{\sum_{i=1}^{n} x_{i}^{2}}\right)$$

$$= var\left(\frac{\sum_{i=1}^{n} x_{i} u_{i}}{\sum_{i=1}^{n} x_{i}^{2}}\right)$$

$$= \frac{var(x_{1} u_{1} + \dots + x_{n} u_{n})}{(\sum_{i=1}^{n} x_{i}^{2})^{2}}$$

$$= \frac{var(x_{1} u_{1}) + \dots + var(x_{n} u_{n})}{(\sum_{i=1}^{n} x_{i}^{2})^{2}}$$

$$= \frac{x_{1}^{2} var(u_{1}) + \dots + x_{n}^{2} var(u_{n})}{(\sum_{i=1}^{n} x_{i}^{2})^{2}}$$

$$= \frac{x_{1}^{2} \sigma^{2} + \dots + x_{n}^{2} \sigma^{2}}{(\sum_{i=1}^{n} x_{i}^{2})^{2}}$$

$$= \frac{\sigma^{2} \sum_{i=1}^{n} x_{i}^{2}}{(\sum_{i=1}^{n} x_{i}^{2})^{2}}$$

$$= \frac{\sigma^{2} \sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} x_{i}^{2}}$$

$$= \frac{\sigma^{2} \sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} x_{i}^{2}}$$

2. (a) b は (y_1,\ldots,y_n) の線形変換だから正規分布. $\mathrm{Q1}(\mathrm{b})(\mathrm{c})$ より

$$b \sim N\left(\beta, \frac{\sigma^2}{\sum_{i=1}^n x_i^2}\right)$$

(b) 前問の結果を標準化すると

$$\frac{b-\beta}{\sqrt{\sigma^2/\sum_{i=1}^n x_i^2}} \sim \mathcal{N}(0,1)$$

 $H_0: \beta = c$ を代入すると、検定統計量は

$$Z := \frac{b - c}{\sqrt{\sigma^2 / \sum_{i=1}^n x_i^2}}$$

(c) H_0 の下で

$$Z \sim N(0, 1)$$

(d) 標準正規分布表より H_0 の下で

$$\Pr[Z \ge 1.65] = .05$$

したがって棄却域は $[1.65,\infty)$.

(e) 標準正規分布表より H_0 の下で

$$\Pr[Z \ge 2.00] = .02275$$

したがって p 値=.02275.