	算法	最好序列	最坏序列	平均时间	空间	稳 定
交换	冒泡	有序 O(n)	逆序 O(n²)	O(n²)	O(1)	\
	快速(首元素为基准) 每趟找一个基准,low, high移动	基准元素为均 匀划分	有序	O(nlog₂n)	最好/最坏 O(log ₂ n) O(n)	×
插入	直接插入	有序 O(n)	逆序 O(n²)	O(n²)	O(1)	>
	折半插入	比较次数减少 移动次数不变	比较次数减少 移动次数不变	O(n²)	O(1)	>
	希尔 给增量使其先部分有序 再全局有序	顺序(取决于 增量 d)	逆序(取决于 增量 d)	O(n ^{1.3~2})	O(1)	×
选择	简单选择 每一趟找最小的加入序列	有序 移动少,比较次数 (n-1)n/2	逆序 移动多,比较次数 (n-1)n/2	O(n²)	O(1)	×
	锦标赛	/	/	O(nlog₂n)	O(n)	×
	堆 建最大(增)或最小堆	建堆 O(n) 排序 O(nlog ₂ n)	建堆比较 4n 次 排序 O(nlog ₂ n)	O(nlog₂n)	O(1)	×
归并	两路归并	有序,每趟 n 归并趟数 log ₂ n	逆序,每趟 n 归并趟数 log ₂ n	O(nlog₂n)	O(n)	>
	递归归并	有序,每趟 n 归并趟数 log ₂ n	逆序,每趟 n 归并趟数 log ₂ n	O(nlog₂n)	O(n) 递归为 O(log₂n)	>
基数	基数排序 (分配+收集)	- 关键字可拆分为 d 元组 - r 较小 - n 较大	n 较小,d,r 较大	O(d(n+r)) d趟,每趟n次分 配,r次收集	O(n+2r) n 表示队列中 开辟空间,r表 示一个队列的 两个指针	>

基于比较的,至少比较 log₂(n!)向上取整次 希尔排序:

追求元素部分有序再逼近全局有序

d1 = n/2, d2 = d1/2.....

快速排序:

找一个元素作为基准,一趟后找到它的最终位置。Low 和 high 移动,补空位。时间复杂度: O(n*递归深度),空间复杂度: O(递归深度)

最深 n, 最浅 log₂(n+1)向上取整

基数排序:

1. 不是基于比较的

排序算法选择:

- 1. 排序规模
- 2. 关键字分布
- 3. 稳定性要求
- 规模较小(<50), 直接插入或选择。前者比后者移动次数多, 故选择优先
- 规模较大:
 - 关键字分布随机: 快速排序、堆(不会出现快排最坏情况)
 - 接近有序: 希尔(若不有序,移动次数多)
 - 需要稳定: 先用插入排序得到<50的有序段再归并。
- 基本有序: 插入类或冒泡
- 规模很大但关键字位数少,基数排序

4. RL 平衡旋转 如果是因为在A的右孩子B的左子树上插入新结点,使A的平衡因子由1变成2,

8.5.3 平衡二叉树中插入结点

在平衡二叉树中插入一个新结点后,如果二叉排序树中某个结点的平衡因子的绝对值[10]-1,则出现了不平衡,这时需要根据平衡旋转的类型立即进行平衡化处理,使得二叉排序树中各结点重新平衡。平衡二叉树插入结点的算法思想如下。

- 1) 按二叉排序树的性质插入结点。
- 2) 如果種入结点之后出現不平衡的结点,则转步骤3); 否则插入完成。
- 3) 找到失去平衡的最小子树。

4) 判断平衡旋转的类型作相应平衡化处理。 4) 判断了侧架转的夹型作相应了侧化处理。 在此算法中,步骤 1) 是比较简单的。但如何发现插入后出现不平衡的结点呢? 何确定失去平衡的最小子树呢?又如何判断平衡旋转的类型呢?由平衡二叉树的定。 何确定失去平衡的最小子树呢?又如何判断平衡旋转的类型呢?由平衡二叉树序树已 知,在插入之后如果树上出现平衡因子绝对值大于 1 的结点,则说明二叉排序树已 知,在插入之后如果树上出现平衡因子绝对值大于 1 的结点,则说明二叉排序树已 知,在插入之后如果两上出现平衡因于绝对阻入于1的运点。则说明一天环行构已 衙。这时失去平衡的最小于树的根结点必为离插入结点最近,而且插入之前平衡医 彻值为1的结点。为此,要解决上述三个问题可以作如下处理。 对值为1的结点。的插入位置的过程中,记下从根结点到插入位置的路径上离。 1)在查找结点x的插入位置的过程中,记下从根结点到插入位置的路径上离。

置最近的且平衡因子绝对值为 1 的结点,并令指针 a 指向该结点;如果此路径上 置取足 中衡因子绝对值为 1 的结点,则指针 a 指向根结点。

2) 对于从 a 结点到 x 结点的路径上的每一个结点 (不包括结点 x), 根据