EXERCICE 1 (Tous les résultats doivent être justifiés)

On considère (C_f) la courbe représentative d'une fonction f dans un repère.

Partie A

- 1) Déterminer son ensemble de définition D . L'ensemble de définition est $D=[-3\,;\,4]$.
- 2) Déterminer le maximum et le minimum sur D.

Le maximum de f sur D est 10Le minimum de f sur D est -6.

3) a. Quelle est l'image de 0 ?

L'image de 0 est f(0) = -5.

 ${\bf b.}\ {\bf Quels}$ sont les antécédents de 2 ?

Les antécédents de 2 sont (valeurs approchées) -1.8 et 3.7

4) Résoudre graphiquement les équations

a.
$$f(x) = 1$$
 et

$$f(x) = 1$$
 pour $x \approx 3.6$ et $x \approx -1.6$

b.
$$f(x) = 0$$
.

$$f(x) = 0$$
 pour $x \approx -1.5$ et $x \approx 3.5$

5) Résoudre graphiquement l'inéquation $f(x) \ge -3$.

Par lecture graphique on trouve $S = [-3; -0.7] \cup [2.7; 4]$

6) Dresser la tableau de variation sur D .

x	-3		1		4
	10				3
f(x)		×		7	
			-6		

Partie B

On sait maintenant, en plus, que f est définie par $f(x) = x^2 - 2x - 5$.

1) Déterminer les images de -1, 0 et $\sqrt{2}$.

On a:

$$f(-1) = (-1)^2 - 2 \times (-1) - 5 = -2$$

$$f(0) = 0^2 - 2 \times 0 - 5 = -5$$

$$f(\sqrt{2}) = (\sqrt{2})^2 - 2 \times \sqrt{2} - 5$$

$$= 2 - 2 \times \sqrt{2} - 5$$

$$= -3 - 2\sqrt{2}$$

2 Montrer que $f(x) = (x-1)^2 - 6$.

$$(x-1)^{2}-6 = x^{2}-2x \times 1 + 1^{2}-6$$
$$= x^{2}-2x-5$$
$$= f(x)$$

2) Déterminer les éventuels antécédents de 0; 5 et -5. On donnera les solutions exactes.

Il faut résoudre f(x) = 0:

$$f(x) = 0$$

$$(x-1)^2 - 6 = 0$$

$$(x-1)^2 - (\sqrt{6})^2 = 0$$

$$(x-1-\sqrt{6})(x-1+\sqrt{6}) = 0$$

Donc (propriété équation-produit), comme $1+\sqrt{6}\in D$ et $1-\sqrt{6}\in D$, on a l'ensemble des solutions $S=\{1+\sqrt{6}\,;\,1-\sqrt{6}\}$

Il faut résoudre f(x) = 5:

$$f(x) = 5$$

$$(x-1)^2 - 6 = 5$$

$$(x-1)^2 - 11 = 0$$

$$(x-1)^2 - (\sqrt{11})^2 = 0$$

$$(x-1-\sqrt{11})(x-1+\sqrt{11}) = 0$$

Donc (propriété équation-produit), comme $1+\sqrt{11}\not\in D$ et $1-\sqrt{11}\in D$, on a l'ensemble des solutions $S=\{1-\sqrt{11}\}$

2