Metoda Błądzenia Losowego

Implementacja algorytmu optymalizacyjnego w języku Julia

Emanuela Cybulska

SPIS TREŚCI

- 1. Opis projektu
 - 1.1 Ogólny opis
 - 1.2 Opis algorytmu w jednym wymiarze
- 2. Harmonogram prac
- 3. Bibliografia
 - 3.1 Linki
 - 3.2 Literatura

1. Opis projektu

1.1 Ogólny opis

Błądzenie losowe to pojęcie z zakresu matematyki i fizyki określające ruch losowy: w kolejnych chwilach czasu cząstka ("chodziarz") przemieszcza się z aktualnego położenia do innego, losowo wybranego. Błądzenie losowe jest przykładem prostego procesu stochastycznego.

Przykładami procesów, które można modelować za pomocą błądzenia losowego są: ruch molekuły w cieczy czy gazie, zmiany ceny wybranego towaru na giełdzie, zmiany finansów gracza w kasynie.

Metoda błądzenia losowego polega na generowaniu przybliżenia minimum poprzez znalezienie serii poprawiających się przybliżeń minimum. Korzystamy tutaj bezpośrednio z przytoczonej wcześniej definicji kroku

$$x_{i+1} = x_i + \lambda_i u_i$$

gdzie u_i jest losowo generowanym wektorem

1.2 Opis algorytmu w jednym wymiarze

- 1. Należy rozpocząć wybraniem punktu x1 z pewnym krokiem λ, minimalnym krokiem ε i maksymalną liczbą iteracji N.
- 2. Znajdź wartość funkcji w punkcie f1 = f(x1).
- 3. Ustaw numer iteracji i = 1
- 4. Wygeneruj liczbę losową z przedziału [−1, 1] i utwórz wektor u. Ponieważ kierunek wygenerowany przy pomocy powyższego równania faworyzuje diagonale hipersześcianu ograniczającego dziedzinę konieczne jest sprawdzanie czy wektor R jest akceptowany tylko wtedy, gdy zachodzi R ≤ 1. W wypadku sprawdzania tego warunku wektor nie jest zaburzony w żadnym kierunku
- 5. Oblicz nowy wektor x = x1 + u i odpowiadającą mu wartość funkcji f = f(x)
- 6. Porównaj wartość f z f1. Jeśli f < f1 ustaw nowe warto±ci x1 = x i f1 = f i wróć do kroku 3. Jeżeli f ≥ f1 przejdź do kroku 7.
- 7. Jeżeli i ≤ N ustaw nowy krok iteracji i = i + 1 i przejdź do punktu 4. Jeżeli i > N, przejdź do kroku 8.
- 8. Oblicz now_i zredukowaną długość kroku jako $\lambda = /2$. Jeżeli nowa wartość kroku jest mniejsza lub równa przejdź do kroku 9. Jeśli nie wróć do kroku 4.
- 9. Zakończ procedurę przyjmujic Xopt ≈ x1 i Fopt = F.

2. Harmonogram Prac

Cel	Termin
Stworzenie specyfikacji projektu	10.05.19
Utworzenie nie generycznej funkcji	24.05.19
Ukończenie funkcji generycznej	10.06.19
Ukończenie dokumentacji projektu	14.06.19

3. Bibliografia

3.1 Linki

- https://en.wikipedia.org/wiki/Random_walk
- http://www2.hawaii.edu/~yuxian/phys305/a5/
- https://pl.wikipedia.org/wiki/B%C5%82%C4%85dzenie_losowe

3.2 Literatura

Wykład V z Metod Optymalizacji, mgr inż. Tymon Kilich