Thesis Glossary

Steven

May 21, 2017

1 Introduction

from the textbook	from the articles
① p.34 Explaining significance	3 Problem
fundamental issue	ambiguous
Explaining the mechanisms of high-	For a wave packet with a spread in
temperature superconductors has been	wavenumber k , some ambiguity arises in the
a fundamental issue after BCS theory	values of the phase and group velocities be-
proposed in 20th century.	cause of the spread in k , but, for narrow
	packets in k space, the uncertainties in these
	values are small (Peters, 1988).
2 p.35 Verbs to present current research	② Verbs used to present previous research
prove	indicate
This paper <i>proves</i> the Riemann-Zeta hy-	With the increased current, investigations
pothesis.	indicated that wear is associated with the
	intensification of the abrasive properties of
	the metal counterbody surface (Yi, Zhang,
	& Xu, 2005).
③ p.37 Problem	① The present work
computationally demanding, an alter-	propose, discuss, this paper
native approach	This paper proposes and discusses a defini-
Since the simulation methods in the previ-	tion of internal energy (Besson, 2001).
ous researches are computationally demand-	
ing, an alternative approach was needed for	
this paper.	

2 Methodology

from the textbook	from the articles
-------------------	-------------------

① p.77 Provide a general overview of the	① Give the source of materials used
methods	be provided by
all of, experiments, be carried out	The multiwalled carbon nanotubes used in
All of the experiments were carried out at	this work were provided by Shenzhen Nan-
room temperature.	otech Port Co. Ltd (Yi et al., 2005).
3 p.80 Provide specific details about meth-	③ Provide specific details about method ④
ods	Justify choices made
be measured	in order to, improve, treat
The maximum and the minimum length of	In order to increase the surface roughness
the brush were measured.	to improve the interfacial strength and the
	dispersion, carbon nanotubes were first sub-
	jected to an oxidation treatment in the mix-
	ture of nitric acid and vitriolic (Yi et al.,
	2005).
① p.82 Justify choices made	② Supply essential background information
in an attempt to	be embedded
This experimental conditions were chosen	A flexible pure copper wire of 0.5 mm ²
in an attempt to obtain the friction coeffi-	cross-sectional area was embedded in each
cient value as close as possible to the actual	brush at 5 mm from the brush's sliding sur-
condition.	face to give the average contact voltage drop
	of brush. (Yi et al., 2005).

3 Results

from the textbook	from the articles
3 p.139 Invitation to view results	3 Invitations to view results
as illustrated by Fig. 1	from Fig. 1 it can be seen that
As illustrated by Fig. 1, black stripes were	From Fig.4 we can see that the friction co-
observed on the brush along the arc of the	efficients decreased from initial values of
commutator.	0.48 to about 0.25-0.28 (without current) or
	0.34-0.37 (with current) (Yi et al., 2005).
p.140 Specific results in detail	Specific results in detail
decrease, noticeably	important
The wear rate decreased noticeably as wear	The "thermal shock" arising as a result of
progresses and the value of α increases.	Joule heat release on the contact spot was
	another <i>important</i> factor leading to inten-
	sification of the wear of the brush under
	the action of an electric current. (Yi et al.,
	2005).

© p.144 Problems with results	© Comparisons with other results
not always accurate, hard to control	confirm
The measurements of the length were <i>not</i>	As already found by Prasad et al. and con-
always accurate, since the bottom face of	firmed here, both solutions are character-
the brush was not always horizontal and	ized by high contact pressure at the leading
this effect was hard to control.	edge dropping to zero at the trailing edge,
	suggesting a lift (separation) at that corner
	(Benabdallah & Olender 2006)

4 Discussion

from the textbook	from the articles
① p.188 Mapping	3 Refining the implications
consistent with	indicate
The nearly linear wear behavior of the brush	The test results <i>indicate</i> an initial high
was consistent with the previous researches.	wear-rate, which gradually reduces
	(Tavoosi, Ziaei-Rad, Karimzadeh, &
	Akbarzadeh, 2015).
⑤ p.190 Contribution	© Current and future research
improve	future works may
This paper <i>improves</i> the way to predict	It is suggested that future works may ex-
wear behavior of the brush by considering	plore the idea of using the contact modulus,
the structure of the motor.	a composite value obtained by combining
	elastic moduli and poissons ratios of both
	material in contact, rather then the ap-
	proach of this paper (Benabdallah & Olen-
	der, 2006).
© p.193 Applications	Mapping
utilize	in agreement with
The result of the paper can be <i>utilized</i> for	The results for the specific problems con-
predicting wear life of the brush of the DC	sidered here are in full agreement with the
motor.	general predictions (Tsai, 1971).

References

Benabdallah, H., & Olender, D. (2006). Finite element simulation of the wear of polyoxymethylene in pin-on-disc configuration. Wear, 261(11), 1213-1224.

Besson, U. (2001). Work and energy in the presence of friction: the need for a mesoscopic analysis. *European Journal of Physics*, 22(6), 613.

- Peters, P. (1988). Does a group velocity larger than c violate relativity? *American Journal of Physics*, 56(2), 129–131.
- Tavoosi, H., Ziaei-Rad, S., Karimzadeh, F., & Akbarzadeh, S. (2015). Experimental and finite element simulation of wear in nanostructured nial coating. *Journal of Tribology*, 137(4), 041601.
- Tsai, K.-c. (1971). Problems involving a receding contact between a layer and half-space (Unpublished doctoral dissertation). Northwestern University.
- Yi, F., Zhang, M., & Xu, Y. (2005). Effect of the electric current on the friction and wear properties of the cnt–ag–g composites. *Carbon*, 43(13), 2685–2692.