

# **Bank Churn Prediction**

AIML course - Neural Networks

Azin Faghihi

Role: Data Scientist

March 2025

# **Contents / Agenda**



- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
- Appendix

# **Executive Summary**



- Our modeling parameter, **Exited** is an **imbalance class**. Hence, we will try oversampling and undersampling to address this issue.
- By conducting exploratory data analysis (univariate and bivariate) we explore relationships between all the variables (categorical & numerical)
  - We conclude that Exited is affected by Age, NumOfProducts, Balance, ...
  - Due to the nature of the problem at hand, we chose **Recall** as the score to maximize.
- We try different combinations of Neural Network layers, regularization, optimizers to select a model that does not overfit and also has the highest Recall score.



# **Business Problem Overview and Solution Approach**

- Problem Overview: Banks must address customer churn, where customers switch to competitors. Identifying key service factors influencing this decision helps management focus on targeted improvements.
- Objective: Based on the gathered data, we aim to build a neural network based classifier that can determine whether a customer will leave the bank or not in the next 6 months.
- **Solution Approach:** We divide the data into three partitions: train, validation, and test. Various models are trained using Neural Networks on the train set, and their performance is evaluated by comparing recall scores between the train and validation sets. The model with the highest recall and minimal overfitting is then selected.

## **Data**



- There are 10,000 ( $\sim 10$ K) rows and 13 columns in the dataset.
- The *memory usage* is approximately 1015.8 KB.
- There are **no missing values** in the data.
- There are **no duplicated rows** in the data.

| Memory Usage           | 1015.8 KB |
|------------------------|-----------|
| #                      |           |
| Rows                   | 10000     |
| Columns                | 13        |
| Null Values            | 0         |
| <b>Duplicated Rows</b> | 0         |





| Column          | Data Type | Description                                                                                         | # unique |
|-----------------|-----------|-----------------------------------------------------------------------------------------------------|----------|
| CustomerId      | int64     | Unique ID which is assigned to each customer                                                        | 10000    |
| Surname         | object    | Last name of the customer                                                                           | 2932     |
| CreditScore     | int64     | It defines the credit history of the customer                                                       | 460      |
| Geography       | object    | Customer's location                                                                                 | 3        |
| Gender          | object    | It defines the gender of the customer                                                               | 2        |
| Age             | int64     | Age of the customer                                                                                 | 70       |
| Tenure          | int64     | Number of years for which the customer has been with the bank                                       | 11       |
| Balance         | float64   | Account balance                                                                                     | 6382     |
| NumOfProducts   | int64     | Refers to the number of products that a customer has purchased through the bank                     | 4        |
| HasCrCard       | int64     | It is a categorical variable which decides whether the customer has credit card or not              | 2        |
| IsActiveMember  | int64     | Is is a categorical variable which decides whether the customer is active member of the bank or not | 2        |
| EstimatedSalary | float64   | Estimated salary                                                                                    | 9999     |
| Exited          | int64     | Whether or not the customer left the bank within six month, 0 = No, 1 = Yes                         | 2        |

## Data

(K)



top freq

5014

5457

5084

7055

5151

7963

**Outliers** 

unique

2

Object/Categorical Column

Geography

Gender

**NumOfProducts** 

**HasCrCard** 

**IsActiveMember** 

**Exited** 

Outliers Outliers

- The following tables show the summary information of our variables.
  - **Categorical**: unique counts, most common value and its corresponding frequency
  - Numerical: mean, median, standard

| d    | eviation, | minimu | ım, maxi | mum, o | utlier |
|------|-----------|--------|----------|--------|--------|
| C    | ounts,    |        |          |        |        |
| mear | std       | min    | 25%      | 50%    | 75%    |

|                     | illean | stu  |           | 25%       | 50%        | 75%        | IIIGA     | IQI        | (Upper) | (Lower) | <b>Outliers</b> | %   |
|---------------------|--------|------|-----------|-----------|------------|------------|-----------|------------|---------|---------|-----------------|-----|
| Numerical<br>Column |        |      |           |           |            |            |           |            |         |         |                 |     |
| CreditScore         | 650.5  | 96.7 | 350.00000 | 584.00000 | 652.000000 | 718.000000 | 850.00000 | 134.000000 | 0       | 16      | 16              | 0.2 |
| Age                 | 38.9   | 10.5 | 18.00000  | 32.00000  | 37.000000  | 44.000000  | 92.00000  | 12.000000  | 411     | 0       | 411             | 4.1 |
| Tenure              | 5.0    | 2.9  | 0.00000   | 3.00000   | 5.000000   | 7.000000   | 10.00000  | 4.000000   | 0       | 0       | 0               | 0.0 |
| Balance (K)         | 76.5   | 62.4 | 0.00000   | 0.00000   | 97.198540  | 127.644240 | 250.89809 | 127.644240 | 0       | 0       | 0               | 0.0 |
| EstimatedSalary     | 100.1  | 57.5 | 0.01158   | 51.00211  | 100.193915 | 149.388247 | 199.99248 | 98.386137  | 0       | 0       | 0               | 0.0 |

max

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

# EDA Results Categorical



- About 80% of the customers have not left the bank within the past 6 months. (Exited)
- More than half (54.6%) of the customers are male. (Gender)
- Half of the customers live in France. (Geography)
- About 70% of the customers have credit cards. (HasCrCard)
- More than half ( $\sim$ 52%) of the customers are active members of the bank. (IsActiveMember)
- About half ( $\sim$ 51%) of the customers have 1 product through the bank followed by 46% of them who have 2 products. (NumOfProducts)

#### **EDA Results**





- The customer age is positively skewed with mean of 39 years old and median of 37 years old. (Age)
- The non-zero balance is almost normally distributed. The median balance is ~ \$98K.
   (Balance)
- Credit score is slightly negatively skewed with median of 652 and it is likely close to normal distribution. (CreditScore)
- Estimated Salary is slightly positively skewed with average of \$100 K. (EstimatedSalary)
- The average number of years the customers have been with the bank is about 5 years. (Tenure)



#### **EDA Results**

#### Correlations and Effects - Categorical vs Categorical

- Number of products a customer have could have an effect on their decision to leave the bank. (NumOfProducts, Exited)
- Customer's location could have an effect on their decision to leave the bank. (Geography, Exited)
- Whether a customer is active or not could have an effect on their decision to leave the bank. (IsActiveMember, Exited)
- The gender of the customer could have an effect on their decision to leave the bank.
   (Gender, Exited)
- It seems like the customer's location, gender, and being an active member affect the number of products. (Geography/Gender/IsActiveMember, NumOfProducts)
- It seems like how active customers are could vary with their gender. (Gender, IsActiveMember).
- It seems like the gender proportions might vary with the customer location. (Geography, Gender)





### Correlations and Effects - Numerical vs Categorical

(using One-Way ANOVA F-test or Two-Sample T-Test)

- The customer location could have an effect on their account balance. (Geography, Balance)
- The customer's account balance could be related to the number of products they have through the bank. (NumOfProducts, Balance)
- The customer age and their decision to leave the bank could be related. (Age, Exited)
- The customer age could be related to the number of products they own with the bank.
   (Age, NumOfProducts)
- The account balance could be related to the customer's decision to leave the bank.
   (Balance, Exited)
- The age and being an active member could be related. (Age, IsActiveMember)
- Customers of different age groups might have different gender proportions. (Gender, Age)



#### **EDA Results**

## Correlations and Effects - Numerical vs Categorical - continued

(using One-Way ANOVA F-test or Two-Sample T-Test)

- The number of the years a customer has been with the bank could be related to them being active members or not. (IsActiveMember, Tenure)
- The credit score and the customer being an active member could be related. (CreditScore, IsActiveMember)
- The number of years a customer has been with the bank could be related to whether they have a credit card. (HasCrCard, Tenure)
- The customer credit score might be related to their decision to leave the bank or not.
   (CreditScore, Exited)

## **EDA - Univariate - Exited**



About 80% of the customers have not left the bank within the past 6 months.



# **EDA - Univariate - Gender**



More than half (54.6%) of the customers are male.



# **EDA** - Univariate - Geography



Half of the customers live in France.



# **EDA - Univariate - HasCrCard**



About 70% of the customers have credit cards.

## Count Plot of 'Has Credit Card'



# **EDA - Univariate - IsActiveMember**



• More than half ( $\sim$ 52%) of the customers are active members of the bank.

#### Count Plot of 'Is Active Member'



# **EDA - Univariate - NumOfProducts**



• About half ( $\sim$ 51%) of the customers have 1 product through the bank followed by 46% of them who have 2 products.

#### Count Plot of 'Num of Products'



# **EDA - Univariate - Age**



The customer age is positively skewed with mean of 39 years old and median of 37 years old.



Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

## **EDA - Univariate - Account Balance**



ullet The non-zero balance is almost normally distributed. The median balance is  $\sim$  \$98K.



Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

# **EDA - Univariate - Estimated Salary**



Estimated Salary is slightly positively skewed with average of \$100 K.



## **EDA - Univariate - Credit Score**



 Credit score is slightly negatively skewed with median of 652 and it is likely close to normal distribution.



## **EDA - Univariate - Tenure**



The average number of years the customers have been with the bank is about 5 years.



# **EDA - Bivariate - Numerical Variables**



We do not observe significant correlation amongst the numerical variables.



# **EDA - Bivariate - Categorical Variables**



By conducting  $\chi^2$  test of independence we observe that the following variables have effects on each other:

| Category 1     | Category 2     | p-value |
|----------------|----------------|---------|
| Exited         | NumOfProducts  | 0.0e+00 |
| Exited         | Geography      | 3.8e-66 |
| Exited         | IsActiveMember | 8.8e-55 |
| Exited         | Gender         | 2.2e-26 |
| Geography      | NumOfProducts  | 6.7e-09 |
| Gender         | NumOfProducts  | 1.3e-04 |
| IsActiveMember | NumOfProducts  | 6.4e-04 |
| Gender         | IsActiveMember | 2.5e-02 |
| Gender         | Geography      | 3.1e-02 |



# **EDA - Bivariate - Exited vs IsActiveMember**



 The proportion of non-active members is higher amongst customers who leave the bank.



# **EDA - Bivariate - Exited vs NumOfProducts**



 The tendency to leave the bank is different amongst the customers who have 1, 2, 3, or 4 bank products.



# EDA - Bivariate - Exited vs HasCrCard



• Having credit cards or not does not seem to affect the customer's decision to leave the bank or not.



# **EDA - Bivariate - Exited vs Geography**



 The proportions of customers in different locations is different amongst those customers who leave the bank and those who do not.



# **EDA - Bivariate - Exited vs Gender**



The proportion of female customers is higher among those who leave the bank.



# **EDA - Bivariate - Categorical-Numerical Variables**



- By conducting One-Way ANOVA F-test we observe that the following variables have effects on each other:
  - In the following slides, we take a look at some of these relationships.

| Category       | Numerical   | p-value  |
|----------------|-------------|----------|
| Geography      | Balance (K) | 0.0e+00  |
| NumOfProducts  | Balance (K) | 3.7e-315 |
| Exited         | Age         | 1.2e-186 |
| NumOfProducts  | Age         | 5.2e-33  |
| Exited         | Balance (K) | 1.3e-32  |
| IsActiveMember | Age         | 1.1e-17  |
| Geography      | Age         | 5.6e-06  |
| IsActiveMember | Tenure      | 4.6e-03  |
| Gender         | Age         | 5.9e-03  |
| Exited         | CreditScore | 6.7e-03  |
| IsActiveMember | CreditScore | 1.0e-02  |
| HasCrCard      | Tenure      | 2.4e-02  |

# **EDA - Bivariate - Exited vs Age**



It looks like older customer have a higher tendency for leaving the bank.



Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

## **EDA - Bivariate - Exited vs Account Balance**



• The customers with higher account balance seem to have more tendency to leave the bank.



# **EDA - Bivariate - Exited vs Credit Score**



 There's a slight more tendency within the customers with lower credit scores to leave the bank.



# **EDA - Bivariate - Exited vs Estimated Salary**



The average salary of the customers who leave the bank is slightly higher.



# **EDA - Bivariate - Exited vs Tenure**



• The years at the bank do not seem to have a relationship with the customer's decision to leave the bank.



# **EDA - Bivariate - Age vs Gender**



The mean age range amongst female customers is slightly higher.



#### **EDA - Bivariate - Balance vs Gender**



The average account balance is very slightly higher amongst male customers.



#### **EDA - Bivariate - Credit Score vs Gender**



 The credit score distribution seems to be very similar amongst male and female customers.



# **EDA - Bivariate - Salary vs Gender**



• The median estimated salary amongst the female customers is slightly higher than the male customers.











**Great** 

POWER AHEAD









Great



Estimated

Salary

(K)





**Great** 





Has Credit Card

\_\_\_\_(

1











400





800

600

Credit

Score





Has Credit Card

\_\_\_\_(

# **EDA - Bivariate - Salary vs Having Credit Cards**



The salary distribution of customers with credit cards is similar to that of those without.
 However, the average salary is slightly higher for customers who do not have credit cards.



# EDA - Bivariate - Age vs IsActiveMember



The average age of active customers is higher than that of non-active members.



#### EDA - Bivariate - Balance vs IsActiveMember



 The active and non-active members seem to have similar distributions of account balance.



#### **EDA - Bivariate - Credit Score vs IsActiveMember**



The non-active members seem to have slightly lower credit scores on average.



#### **EDA - Bivariate - Tenure vs IsActiveMember**



 The customers who on average have stayed longer with the bank tend to be less active members.



# EDA - Bivariate - Salary vs IsActiveMember



Active and on-active members tend to have similar salaries.



# **EDA - Bivariate - Age vs # of Products**



The customers who have more than two bank products are on average older.



#### **EDA - Bivariate - Account Balance vs # of Products**



The customers who have 4 bank products on average have a higher median account balance.



#### **EDA - Bivariate - Credit Score vs # of Products**



The customers who have 4 bank products on average have a higher credit score.



#### **EDA - Bivariate - Tenure vs # of Products**



 The customers who have 4 bank products on average have stayed longer with the bank.



# **EDA - Bivariate - Salary vs # of Products**



The customers who have 4 bank products tend to have a higher salary.



#### **EDA - Bivariate - All the variables**



- We can convert the categorical variables into dummy variables and construct the correlation matrix for all the columns
- This confirms our previous observations.



wum of Products win of Products Has Cledit Card is Active Member

#### **Data Preprocessing**



- There are no duplicates in the original data.
- Missing values: There are no missing values in the original data.
- Outliers: The outliers are a small percentage and we won't need to treat them.
- **Feature engineering:** An optional data conversion of the dollar values by dividing them by 1000 for simpler visualization.
- The fields Surname and CustomerId are dropped before modeling.

|    | Age    |     | NumOfProducts |     | CreditScore |
|----|--------|-----|---------------|-----|-------------|
|    | o<br>Q | 4.0 | ٥             | 800 | Т           |
| 80 |        | 3.5 |               |     |             |
|    | 1      | 3.0 | Т             | 700 |             |
| 60 |        | 2.5 |               | 600 | Ш           |
| 40 |        | 2.0 | $\vdash$      | 500 |             |
|    |        | 1.5 |               | 400 |             |
| 20 |        | 1.0 |               | 400 | Û           |
|    |        |     |               |     | 1           |

Outlier %

| Column        |     |
|---------------|-----|
| Age           | 3.6 |
| NumOfProducts | 0.6 |
| CreditScore   | 0.2 |





- Dummy variables are added for the categorical/string variables
- The numerical values are normalized using sklearn.preprocessing.StandardScaler
- Below we have some sample data before we start the modeling process.

| Age       | Balance (K) | CreditScore | EstimatedSalary (K) | HasCrCard | IsActiveMember | NumOfProducts | Tenure    | Gender_Male | Geography_Germany | Geography_Spain |
|-----------|-------------|-------------|---------------------|-----------|----------------|---------------|-----------|-------------|-------------------|-----------------|
| 3.516577  | 0.925750    | -0.556600   | -1.505216           | 1.0       | 1.0            | -0.914333     | 1.380964  | 0.0         | 0.0               | 1.0             |
| 0.956282  | -1.219862   | -0.370472   | 1.614655            | 1.0       | 0.0            | 0.797901      | -1.376312 | 1.0         | 0.0               | 0.0             |
| 2.189016  | -0.194773   | -2.118010   | -0.405078           | 1.0       | 1.0            | -0.914333     | -1.376312 | 1.0         | 0.0               | 1.0             |
| 0.102850  | -1.219862   | -1.094304   | 1.067959            | 0.0       | 1.0            | -0.914333     | 0.691645  | 0.0         | 0.0               | 0.0             |
| -0.181627 | -1.219862   | 0.994469    | 0.756245            | 1.0       | 0.0            | 0.797901      | -1.031652 | 1.0         | 0.0               | 0.0             |

# Model Building Train, Validation, Test split



- The data is split into train, validation and test sets.
- Since we have an imbalanced class, we also conduct oversampling and undersampling.
- Here are the dimensions of the data partitions in original/over-sampled/under-sampled data.

|                      | Rows               | Columns       | Class Proportions %                  |
|----------------------|--------------------|---------------|--------------------------------------|
| Under-Sampled        |                    |               |                                      |
| X Train              | 3,260              | 11            | {0: 50.0, 1: 50.0}                   |
| X Validation         | 406                | 11            | {0: 50.0, 1: 50.0}                   |
|                      |                    |               |                                      |
|                      | Rows               | Columns       | Class Proportions %                  |
| Over-Sampled         | Rows               | Columns       | Class Proportions %                  |
| Over-Sampled X Train | <b>Rows</b> 12,740 | Columns<br>11 | Class Proportions % {0:50.0, 1:50.0} |

|                 | Rows  | Columns | Proportion % | Class Proportions %  |
|-----------------|-------|---------|--------------|----------------------|
| <b>Original</b> |       |         |              |                      |
| X Train         | 8,000 | 11      | 80           | {0: 79.62, 1: 20.38} |
| X Validation    | 1,000 | 11      | 10           | {0: 79.7, 1: 20.3}   |
| X Test          | 1,000 | 11      | 10           | {0: 79.6, 1: 20.4}   |

# Model Building NN Modeling



We build our NN model sequentially using keras.models.Sequential. We try the following combinations:

- Adding Dense layers with various number of neurons.
- Adding propout layers to the hidden layers for guarding against the overfitting.
- We also try different optimizers such as SGD and Adam with various learning rates and momentum.
- We try different activation functions such as 'ReLu' and 'tanh'.
- We compute the recall score for training and validation sets.
- We try modeling on over-sampled and under-sampled data.

# Model Performance Summary Model Evaluation Criterion



Our model can make wrong predictions in two ways:

- False Positive: Predicting that a customer will not leave the bank when they will.
  - If minimized, it improves the precision.
- False Negative: Predicting that a customer will stay at the bank while they would leave.
  - If minimized, it improves the recall.

In our problem, we are more interested in reducing the false negative and thus minimizing the **Recall**.

#### **Model Performance Summary**



Here we have the summary information of the 14 trained models. We select Model #11 as our best model. It has the best train and valid recall scores while their difference is smaller than the other models. It takes about an hour to train this model. It has [64, 32, 16, 8] neurons in its hidden layers and 3 dense layers. We are using the Stochastic Gradient Descent with momentum .95 and learning rate of 1e-3.

|    | Sampling | # Neurons           | Activation Function                | # Dropout<br>Layers | #<br>Epochs | Batch<br>Size | Optimizer | Learning<br>Rate | lomentum | Weight<br>Init. | Reg.                                        | Train<br>Loss | Validation<br>Loss | Train<br>Recall | Valid<br>Recall | Train - Valid <br>Recall | Time<br>(min) |
|----|----------|---------------------|------------------------------------|---------------------|-------------|---------------|-----------|------------------|----------|-----------------|---------------------------------------------|---------------|--------------------|-----------------|-----------------|--------------------------|---------------|
| 0  | Original | 64, 32, 1           | relu, relu, sigmoid                | 0                   | 120         | 32            | SGD       | 0.0010           | 0.0      | GlorotUniform   |                                             | 0.371278      | 0.379614           | 0.361963        | 0.334975        | 0.026988                 | 25.33         |
| 1  | Original | 64, 32, 1           | relu, relu, sigmoid                | 0                   | 120         | 32            | adam      | 0.0010           | *        | GlorotUniform   |                                             | 0.241684      | 0.418014           | 0.653988        | 0.487685        | 0.166303                 | 36.75         |
| 2  | Original | 32, 16, 8, 4, 1     | relu, relu, relu, relu, sigmoid    | 2                   | 100         | 32            | adam      | 0.0010           | -        | GlorotUniform   | Dropout(0.2), Dropout(0.1)                  | 0.320479      | 0.347207           | 0.504294        | 0.463054        | 0.041240                 | 53.69         |
| 3  | Over     | 32, 16, 8, 1        | relu, relu, relu, sigmoid          | 0                   | 100         | 32            | SGD       | 0.0100           | 0.0      | GlorotUniform   |                                             | 0.353260      | 0.496989           | 0.845683        | 0.638645        | 0.207038                 | 31.67         |
| 4  | Under    | 32, 16, 8, 1        | relu, relu, relu, sigmoid          | 0                   | 100         | 32            | adam      | 0.0010           | -        | GlorotUniform   |                                             | 0.372198      | 0.522871           | 0.799387        | 0.704434        | 0.094953                 | 14.88         |
| 5  | Over     | 32, 16, 8, 1        | relu, relu, relu, sigmoid          | 0                   | 100         | 32            | adam      | 0.0010           | =        | GlorotUniform   |                                             | 0.306442      | 0.554419           | 0.875824        | 0.742785        | 0.133039                 | 61.58         |
| 6  | Over     | 32, 16, 8, 1        | relu, relu, relu, sigmoid          | 2                   | 100         | 32            | adam      | 0.0010           | -        | GlorotUniform   | Dropout(0.2), Dropout(0.1)                  | 0.390816      | 0.454033           | 0.827159        | 0.754078        | 0.073081                 | 65.15         |
| 7  | Over     | 32, 16, 8, 1        | relu, relu, relu, sigmoid          | 2                   | 100         | 32            | adam      | 0.0010           | -        | GlorotUniform   | Dropout(0.2), Dropout(0.1)                  | 0.390816      | 0.454033           | 0.827159        | 0.754078        | 0.073081                 | 64.92         |
| 8  | Over     | 32, 16, 8, 1        | relu, tanh, tanh, sigmoid          | 2                   | 100         | 32            | adam      | 0.0010           | =        | GlorotUniform   | Dropout(0.2), Dropout(0.1)                  | 0.391210      | 0.458709           | 0.822920        | 0.772898        | 0.050022                 | 63.58         |
| 9  | Over     | 32, 16, 8, 1        | tanh, tanh, tanh, sigmoid          | 2                   | 150         | 32            | adam      | 0.0010           | 5        | GlorotUniform   | Dropout(0.2), Dropout(0.1)                  | 0.416945      | 0.457552           | 0.797488        | 0.767880        | 0.029609                 | 91.36         |
| 10 | Over     | 64, 32, 16, 8,<br>1 | relu, tanh, tanh, tanh,<br>sigmoid | 3                   | 100         | 32            | adam      | 0.0010           | -        | GlorotUniform   | Dropout(0.2), Dropout(0.1),<br>Dropout(0.1) | 0.348860      | 0.499543           | 0.861538        | 0.759097        | 0.102442                 | 68.68         |
| 11 | Over     | 64, 32, 16, 8,<br>1 | relu, tanh, tanh, tanh,<br>sigmoid | 3                   | 100         | 32            | SGD       | 0.0010           | 0.95     | GlorotUniform   | Dropout(0.2), Dropout(0.1),<br>Dropout(0.1) | 0.390957      | 0.446063           | 0.821821        | 0.796738        | 0.025083                 | 56.70         |
| 12 | Over     | 64, 32, 16, 8,<br>1 | relu, tanh, tanh, tanh,<br>sigmoid | 3                   | 100         | 32            | SGD       | 0.0010           | 0.9      | GlorotUniform   | Dropout(0.2), Dropout(0.1),<br>Dropout(0.1) | 0.415607      | 0.446772           | 0.803768        | 0.775408        | 0.028360                 | 61.50         |
| 13 | Over     | 64, 32, 16, 8,<br>1 | relu, tanh, tanh, tanh,<br>sigmoid | 3                   | 100         | 32            | SGD       | 0.0001           | 0.95     | GlorotUniform   | Dropout(0.3), Dropout(0.2),<br>Dropout(0.1) | 0.476278      | 0.474513           | 0.770330        | 0.761606        | 0.008724                 | 62.40         |

#### **Model Performance Summary**

Great Learning

- For the selected model, we are plotting the loss and recall scores against the number of epochs.
- Here we have the prediction results on the test data in the confusion matrix and also tabulated.
- The recall score on the test data is around .76.





|            | Accuracy | Recall | Precision | F1    |
|------------|----------|--------|-----------|-------|
| Train      | 0.841    | 0.841  | 0.841     | 0.841 |
| Validation | 0.792    | 0.792  | 0.792     | 0.792 |
| Test       | 0.782    | 0.759  | 0.697     | 0.714 |



# **APPENDIX**



**Happy Learning!** 

