Presentazione del corso

Numeri finiti

Introduzione

Algebra lineare numerica

Laboratorio 1: introduzione a Python

Laboratorio 2: Sistemi Lineari

Laboratorio 3:

Approssimazione dati ai minimi quadrati & SVD

Equazioni non lineari (o zeri di funzione)

Ottimizzazione

Laboratorio 4: Zeri di funzione ed ottimizzazione

Imaging

Progetto Esame

Laboratorio 5: Imaging

Esame 14 Gennaio 2022

Iniziato venerdì, 14 gennaio 2022, 09:38

Stato Completato

Terminato venerdì, 14 gennaio 2022, 09:58

Tempo impiegato 20 min.

Valutazione 10,00 su un massimo di 15,00 (67%)

Domanda 1

Risposta corretta

Punteggio ottenuto 1,00 su 1.00

Contrassegna domanda Nel sistema Floating Point $\mathcal{F}(10,2,-2,2)$, se $x=\pi,w=e$, e z=fl(x)*fl(w), allora:

NAVIGAZIONE QUIZ

1 2 3 4 5

11 12 13 14 15

Visualizza una pagina alla

Fine revisione

Scegli un'alternativa:

$$oldsymbol{0}$$
 a. $fl(z) = 0.837 \times 10^{1}$.

$$\circ$$
 b. $fl(z) = 0.0837 \times 10^2$.

$$c. fl(z) = 0.84 \times 10^1.$$

La risposta corretta è: $fl(z) = 0.84 \times 10^1$.

Domanda 2

Risposta non data

Punteggio max.: 1,00

Contrassegna domanda Sia x_k una successione generata da un metodo iterativo, $x_k \to x^*$. Il metodo ha convergenza lineare se:

Scegli un'alternativa:

$$\bigcirc$$
 a. $\left| x_k - x^*
ight| \leq c \left| x_{k-1} - x^*
ight|^p \quad c > 1, 0$

$$\bigcirc$$
 b. $|x_k-x^*|\leq c|x_{k-1}-x^*|$ $c>1$

$$\odot$$
 c. $|x_k-x^*| \leq c|x_{k-1}-x^*|$ $c<1$

La risposta corretta è: $|x_k - x^*| \leq c |x_{k-1} - x^*| \quad c < 1$

Domanda 3

Calcolo Numerico

Partecipanti

T Badge

Sezioni

Introduzione

Presentazione del corso

Numeri finiti

Algebra lineare numerica

Laboratorio 1: introduzione a Python

Laboratorio 2: Sistemi Lineari

Laboratorio 3:

Approssimazione dati ai minimi quadrati & SVD

Equazioni non lineari (o zeri di funzione)

Ottimizzazione

Laboratorio 4: Zeri di funzione ed ottimizzazione

Imaging

Progetto Esame

Laboratorio 5: Imaging

Esame 14 Gennaio 2022

Domanda 3

Risposta errata Punteggio ottenuto 0,00 su

1,00

Contrassegna domanda

Un metodo di discesa garantisce:

Scegli un'alternativa:

$$\bigcirc$$
 a. $f(x_k) = f(x_{k+1}) \quad orall \ k$

b. Nessuna delle precedenti.

 \bigcirc c. $f(x_k) < f(x_{k+1}) \quad \forall \ k$

La risposta corretta è: $f(x_k) < f(x_{k+1}) \quad orall \; k$

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

I valori singolari di una matrice A sono uguali: .

Scegli un'alternativa:

- \odot a. Agli autovalori di $A^{-1}A$ al quadrato.
- \bigcirc b. Agli autovalori di A^TA .
- $\$ c. Agli autovalori di A^TA al quadrato.

La risposta corretta è: Agli autovalori di $A^T A$ al quadrato.

Domanda 5

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Se

 $A = egin{bmatrix} 2 & 0 \ 0 & 1 \end{bmatrix}$

×

Calcolo Numerico

Partecipanti

P Badge

Sezioni

Introduzione

Presentazione del corso

Numeri finiti

Algebra lineare numerica

Laboratorio 1: introduzione a Python

Laboratorio 2: Sistemi Lineari

Laboratorio 3:

Approssimazione dati ai minimi quadrati & SVD

Equazioni non lineari (o zeri di funzione)

Ottimizzazione

Laboratorio 4: Zeri di funzione ed ottimizzazione

Imaging

Progetto Esame

Laboratorio 5: Imaging

Esame 14 Gennaio 2022

Domanda 5

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Se

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Allora:

Scegli un'alternativa:

- $\ \ \,$ a. $\ \, A$ è simmetrica e definita positiva.
- \odot b. A è non simmetrica e definita positiva.
- \odot c. A è simmetrica ma non definita positiva.

La risposta corretta è: A è simmetrica e definita positiva.

Domanda 6 Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Se A è una matrice quadrata $n \times n$, allora:

Scegli un'alternativa:

- $ext{ } ext{ } ext$
- b. Sono entrambe esatte.
- \bigcirc c. $||A||_2 = \max_i \sum_{j=1}^n |a_{ij}|$.

La risposta corretta è: $||A||_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$.

Esame 14 Gennaio 2022

La risposta corretta e: $||A||_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$. Domanda 7 Se A è una matrice n imes n tale che det(A) = 0 allora: Risposta corretta Punteggio Scegli un'alternativa: ottenuto 1,00 su 1,00 \bigcirc a. A è non singolare. n b. A è singolare. Contrassegna domanda o. A è simmetrica. La risposta corretta è: A è singolare. Domanda 8 Quale delle seguenti affermazioni è vera: Risposta corretta Punteggio Scegli un'alternativa: ottenuto 1.00 su 1,00 igcup a. La fattorizzazione di Gauss senza pivoting (PA=LR) è stabile. ${ extttlelight$ Contrassegna domanda o c. Nessuna delle precedenti. La risposta corretta è: La fattorizzazione di Gauss con pivoting (PA=LR) è stabile. Domanda 9 Un sistema lineare Ax = b, con A $n \times n$ non singolare, ammette **sempre**: Risposta corretta Punteggio

Scegli un'alternativa:

a. nessuna soluzione.

ottenuto 1,00 su

Calcolo Numerico Partecipanti T Badge **Ⅲ** Valutazioni Sezioni Introduzione Presentazione del corso Numeri finiti Algebra lineare numerica Laboratorio 1: introduzione a Python Laboratorio 2: Sistemi Lineari Laboratorio 3: Approssimazione dati ai minimi quadrati & SVD Equazioni non lineari (o zeri di funzione) Ottimizzazione Laboratorio 4: Zeri di funzione ed ottimizzazione Imaging

Progetto Esame

Laboratorio 5: Imaging

Esame 14 Gennaio 2022

La risposta corretta è: La fattorizzazione di Gaus

Press F11 to exit full screen

Domanda 9

Risposta corretta

Punteggio ottenuto 1,00 su 1.00

Contrassegna domanda

Un sistema lineare Ax=b, con A n imes n non singolare, ammette **sempre**:

Scegli un'alternativa:

- a. nessuna soluzione.
- b. una e una sola soluzione.
- c. infinite soluzioni.

La risposta corretta è: una e una sola soluzione.

Domanda 10

Risposta errata Punteggio ottenuto 0,00 su 1,00

Contrassegna domanda

Usando la notazione scientifica normalizzata con base $\beta=10$, se x=282.94, allora:

Scegli un'alternativa:

- \odot a. La mantissa di x è 2.8294 e la parte esponenziale è 10^2 .
- b. Nessuna delle precedenti.
- \circ c. La mantissa di x è 0.28294 e la parte esponenziale è 10^3 .

La risposta corretta è: La mantissa di x è 0.28294 e la parte esponenziale è 10^3 .

Domanda 11

Risposta corretta

Punteggio

Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=x_1e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(1,1)^T$ e $\alpha=\frac{1}{2}$, allora:

×

Ⅲ Valutazioni

Sezioni

Introduzione

Presentazione del corso

Numeri finiti

Algebra lineare numerica

Laboratorio 1: introduzione a Python

Laboratorio 2: Sistemi Lineari

Laboratorio 3:

Approssimazione dati ai minimi quadrati & SVD

Equazioni non lineari (o zeri di funzione)

Ottimizzazione

Laboratorio 4: Zeri di funzione ed ottimizzazione

Imaging

Progetto Esame

Laboratorio 5: Imaging

Esame 14 Gennaio 2022

La risposta corretta è: La mantissa di x è 0.28294 e la parte esponenziale è 10^3 .

Domanda 11

Risposta corretta

Punteggio ottenuto 1,00 su 1.00

Contrassegna domanda

Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=x_1e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(1,1)^T$ e $lpha=rac{1}{2}$, allora:

Scegli un'alternativa:

$$ext{ a. } x^{(1)} = (1 - rac{e}{2}, 1 - rac{e}{2})^T.$$

$$oldsymbol{0}$$
 b. $x^{(1)} = (1 + rac{e}{2}, 1 + rac{e}{2})^T$.

$$\odot$$
 c. $x^{(1)} = (\frac{1}{2} - \frac{e}{2}, \frac{1}{2} - \frac{e}{2})^T$.

La risposta corretta è: $x^{(1)} = (1 - \frac{e}{2}, 1 - \frac{e}{2})^T$.

Domanda 12

Risposta errata Punteggio

ottenuto 0,00 su

Contrassegna domanda

Se $A = U \Sigma V^T$ è la decomposizione SVD di una matrice $A \ m imes n$, allora:

Scegli un'alternativa:

$$\bigcirc$$
 a. $A^TA = V^T\Sigma^2V$.

$$\blacksquare$$
 b. $A^TA = U\Sigma^2U^T$.

 \bigcirc c. $A^TA = V\Sigma^2V^T$.

La risposta corretta è: $A^TA = V\Sigma^2V^T$.

Domanda 13 Risposta errata

Sia $A \in \mathbb{R}^{m \times n}$, m > n , con r = rg(A) , allora:

×

