Basic Networking Topology Implementation

Design and implement a basic networking topology:

- > Set up two VMs with private IPs.
- > Configure one VM as a web server and the other as a client.
- ➤ Use SSH to securely transfer files between them.

I created the Virtual private cloud (VPC) with 1 public subnet and 1 private subnet to ensure network isolation and secure communication between the instances.

Three EC2 instances were created:

- Bastion Host (Public IP): An EC2 instance created in the public subnet, with a public IP for access.
- Web Server (Private IP): An EC2 instance created in the private subnet, configured as a web server.
- Client (Private IP): Another EC2 instance created in the private subnet, configured as the client.
- **Bastion Host** 🗸 🌔 vpcs | 💆 Laund 🔯 In 🗴 🔞 ChatG | in (25) Fr | 🚧 Inbox | 🚱 (48) Vi | 🚱 Filki - | G Wond | G Get In | 📝 Murf - | 🕨 Editor | 😯 Open aws | III Q Search EC2 > Instances > i-0bd88b9e195fa9015 Instance summary for i-0bd88b9e195fa9015 (basition) Info C Connect Instance state ▼ Actions ▼ EC2 Global View Updated less than a minute ago Events Instance ID Public IPv4 address Private IPv4 addresses **▼** Instances i-0bd88b9e195fa9015 7 3.80.129.112 open address 3 10.0.0.7 Instances IPv6 address Instance state Public IPv4 DNS compute-1.amazonaws.com|
 open address [2] Instance Types Launch Templates Private IP DNS name (IPv4 only)
 ip ip-10-0-0-7.ec2.internal Hostname type IP name: ip-10-0-0-7.ec2.internal Savings Plans Reserved Instances Elastic IP addresses Answer private resource DNS name Instance type t2.micro Dedicated Hosts Capacity Reservations Auto-assigned IP address
 3.80.129.112 [Public IP] VPC ID **AWS Compute Optimizer finding ▼** Images pc-0ba0a683607deef69 (project-vpc) IAM Role Auto Scaling Group name Subnet ID ▼ Flastic Block Store Volumes subnet-0b62655e2c11279ae (project-subnet-public1-us-Snapshots east-1a) [7 Lifecycle Manager IMDSv2 Instance ARN arn:aws:ec2:us-east-1:519397520425:instance/i-0bd8

Web server

• Client

- SSH keys were securely transferred from the local machine to the bastion host using SCP.
- The bastion host used as an intermediary to access the private instances (web server and client), bypassing the lack of public IPs on those machines.

• Nginx was installed on the web server, and the appropriate firewall rules (HTTP/80) were added to the security group, enabling the client to access the web page hosted on the server.

Security Groups

Web server virtual machine

```
≥ ubuntu@ip-10-0-0-137: ~

      J@ip-10-0-0-137: $ nginx -v
nginx version: nginx/1.24.0 (Ubuntu)
   intu@ip-10-0-0-137: $ curl 10.0.0.137
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
If you see this page, the nginx web server is successfully installed and
 orking. Further configuration is required.
For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.
<em>Thank you for using nginx.</em>
</body>
</html>
 buntu@ip-10-0-0-137: 💲 🕳
```

· Client virtual machine.

• The file transfer process was carried out using SCP, both from the client to the server and vice versa. This demonstrated the use of secure file transfer over SSH.

Basic Architecture

