```
import numpy as py
#creating array
arr=np.array([1,2,3,4,5])
print(arr)
zeros_arr=np.zeros((3,3),dtype=int)
print(zeros_arr)
ones_arr=np.ones((2,2),dtype=int)
print(ones_arr)
arange_arr=np.arange(10)
print(arange_arr)
#manuplating array
reshaped_arr=arr.reshape(5,1)
print(reshaped_arr)
sliced_arr=arr[2:4]
print(sliced_arr)
a1=np.array([1,2,3,4])
a2=np.array([1,2,3,4])
a3=np.vstack(a1+a2)
print(a3)
a3=np.stack(a1+a2)
print(a3)
b=np.split(a1,2)
print(b)
n=np.array([[1,2],[3,4]])
c=n.T
print(c)
#linear algebra with numpy
v1=np.array([[1,2],[3,4]])
v2=np.array([[5,6],[7,8]])
v3=np.dot(v1,v2)
print(v3)
v4=np.linalg.eig(v3)
print(v4)
[1 2 3 4 5]
     [[0 0 0]]
      [0 0 0]
      [0 0 0]]
     [[1 1]
      [1 1]]
     [0 1 2 3 4 5 6 7 8 9]
     [[1]
      [2]
      [3]
      [4]
      [5]]
     [3 4]
     [[2]
      [4]
      [6]
      [8]]
     [2 4 6 8]
     [array([1, 2]), array([3, 4])]
     [[1 3]
     [2 4]]
     [[19 22]
      [43 50]]
     (array([5.80198014e-02, 6.89419802e+01]), array([[-0.75781077, -0.40313049],
            [ 0.65247439, -0.91514251]]))
a1=np.array([1,2,3,4])
a2=np.array([1,2,3,4])
a3=np.add(a1,a2)
print(a3)
a1=np.array([1,2,3,4])
print(a1+3)
     [4 5 6 7]
a1=np.array([[1,2,3],[4,5,6]])
b=np.sum(a1)
a2=np.array([[1,2,3],[4,5,6]])
print(b)
b=np.sum(a1+a2)
print(b)
print(np.sum(a1,axis=0))
print(np.sum(a1,axis=0))
```

#statistical operations

```
a1=np.array([1,2,3,4,5])
m=np.mean(a1)
m2=np.median(a1)
v1=np.var(a1)
sd=np.std(a1)
print(m,m2,v1,sd)
d=np.loadtxt("/content/1 2 3.txt")
d=np.savetxt("/content/date.txt",d)
print(d)
             3.0 3.0 2.0 1.4142135623730951
            None
import matplotlib.pyplot as plt
a=np.array([1,2,3,4,5,6,7,8,9,10])
plt.plot(a)
#importing pandas
import pandas as pd
a=["vasanthi","dhana","lalitha","vani","usha","devi"]
r=pd.Series(a,index=[44,45,33,42,41,23])
print(r)
\label{lem:df-pd-read_csv} $$ df=pd.read\_csv("/content/Rohit-Sharma-All-International-Cricket-Centuries.csv", sep=" , ") $$ df=pd.read\_csv("/content/Rohit-Sharma-Cricket-Centuries.csv", sep=" , ") $$ df=pd.read\_csv("/content/Rohit-Sharma-Cricket-Centuries.csv
print(df)
import pandas as pd
f=pd.read csv("/content/txtfile (1).txt")
print(f)
import pandas as pd
f=pd.read_csv("/content/txtfile (1).txt")
print(f.loc[1])#which row ,col
df=pd.read_excel("/content/Historicalinvesttemp.xlsx")
print(df)
                   Unnamed: 0
                                                                                                     Unnamed: 1 Unnamed: 2 Unnamed: 3
             0
                                    NaN
                                                                                                                      NaN
                                                                                                                                                 NaN
                                                                                                                                                                           NaN
                                                                                                                                                 NaN
                                                                                                                                                                            NaN
             1
            2
                                    NaN
                                                                                                                                                 NaN
                                                                                                                                                                           NaN
                                                                                                                                                                           NaN
             3
                                    NaN
                                                                                                                      NaN
                                                                                                                                                 NaN
                                    NaN Annual Returns on Investments in
            4
                                                                                                                                                                           NaN
                                                                                                                                                 NaN
                                  2007
                                                                                                               0.0549
                                                                                                                                          0.0988
                                                                                                                                                                    0.0466
             85
            86
                                  2008
                                                                                                                  -0.37
                                                                                                                                          0.2587
                                                                                                                                                                      0.016
             87
                                  2009
                                                                                                               0.2646
                                                                                                                                          -0.149
                                                                                                                                                                       0.001
             88
                                    NaN
                                                                                                               stocks
                                                                                                                                          tbills
                                                                                                                                                                       bonds
             89
                        averages
                                                                                                                       NaN
                                                                                                                                                 NaN
                                                                                                                                                                           NaN
             [90 rows x 4 columns]
df=pd.read_excel("/content/Historicalinvesttemp.xlsx",sheet_name=1)
print(df)
                Unnamed: 0 Annual Returns on Investments in Unnamed: 2 Unnamed: 3
             0
                                Year
                                                                                                          Stocks
                                                                                                                                  T.Bills
                                                                                                                                                             T.Bonds
                                1928
                                                                                                          0.4381
                                                                                                                                     0.0308
                                                                                                                                                               0.0084
             1
                                1929
                                                                                                          -0.083
                                                                                                                                     0.0316
                                                                                                                                                                  0.042
            3
                                1930
                                                                                                         -0.2512
                                                                                                                                     0.0455
                                                                                                                                                               0.0454
            4
                                1931
                                                                                                         -0.4384
                                                                                                                                    0.0231
                                                                                                                                                              -0.0256
            5
                                1932
                                                                                                         -0.0864
                                                                                                                                     0.0107
                                                                                                                                                               0.0879
                                                                                                          0.4998
                                                                                                                                     0.0096
                                                                                                                                                                0.0186
             6
                                1933
                                                                                                         -0.0119
                                                                                                                                       0.003
                                                                                                                                                                0.0796
                                1934
            8
                               1935
                                                                                                          0.4674
                                                                                                                                    0.0023
                                                                                                                                                               0.0447
```

```
df=pd.read_csv("/content/csvfile.csv")
mv=df['Data_value'].mean()
df=df.fillna(mv)
print(df)
df=pd.read_csv("/content/csvfile (1).csv")
print(df)
df.shape
df=pd.read_csv("/content/csvfile (1).csv")
true=df.tail(10)
for i in range(22188,22178,-1):
 df.drop([i],axis=0, inplace=True) #removing those 10 values from original dataset
true.to_csv("manual_testing.csv")
ma=pd.read_csv("/content/manual_testing.csv")
print(ma.groupby(['Subject'])['UNITS'].count())
df=pd.read_csv("/content/csvfile (1).csv")
df=df.drop_duplicates()
print(df)
df.head(2)
_pip install numpy
from google.colab import drive
drive.mount('/content/drive')
import numpy as np
import matplotlib.pyplot as plt
runs=np.array([41,42,43,44,45,63,51,18,11,12])
w=np.array([1,2,3,4,5,6,7,8,9,10])
plt.scatter(runs,w,color='orange')
plt.title('INDvsAUS_SCORE')
plt.show()
```



```
import numpy as np
import matplotlib.pyplot as plt
overs=np.arange(5,50,5)
overs_a=np.arange(5,30,5)
runs_i=np.array([25,51,84,131,160,189,220,250,267])
runs_a=np.array([15,41,94,110,151])
wickets=np.array([12,32,96])
plt.subplot(2,1,2)#row,col,index
plt.plot(overs,runs_i,color='blue',label='India')
plt.legend(loc='best')
plt.subplot(2,1,1)

plt.plot(overs_a,runs_a,color='yellow',label='Aus')
plt.legend(loc='best')
plt.show()
```



```
import matplotlib.pyplot as plt
a=[230,568,780,127,128]
b=[200,160,270,127,400]
years=[1,2,3,4]
profit_a=[(a[i]-a[i-1]) for i in range(1,len(a))]
profit_b=[(b[i]-b[i-1]) for i in range(1,len(b))]
plt.subplot(2,1,2)
plt.plot(years,profit_a,color='hotpink',linewidth='3',label='CompanyA',marker='X',ms='15',mec='r')
plt.subplot(2,1,1)
plt.plot(years,profit_b,color='black',linestyle='dotted',label='CompanyB',marker='H')
```

[<matplotlib.lines.Line2D at 0x7f18b53538b0>]


```
import numpy as np
import matplotlib.pyplot as plt
tiger=np.linspace(-2*np.pi, 2*np.pi, 50)
print(tiger)
plt.plot(tiger,np.sin(tiger),color='black')#x,y,color,lable
plt.title("sinx")
```



```
a=np.array([23,2,4,25])
labe=["AIML","PYTHON","NUMPY","PANDAS"]
col=["black","violet","yellow","pink"]
explo=[0,0.3,0,0]
plt.pie(a,labels=labe,explode=explo,startangle=360,colors=col,textprops={'fontsize' : 21})
plt.show()
```



```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
d=pd.read_excel('/content/ex.xlsx')
print(d)
mv=d['Temp'].mean()
print("the mean of the temperstures is"mv)
c=np.max(d['Temp'])
a=d.loc[d['Temp'].idxmax(),'Day']
print("the max temp is ",c,"on the day",a)
e=np.min(d['Temp'])
l=d.loc[d['Temp'].idxmin(),'Day']
\label{print("the max temp is ",e,"on the day",l)} print("the max temp is ",e,"on the day",l)
threshold=17
v=(d['Temp']>threshold).sum()
print(v)
plt.plot(d['Day'],d['Temp'],color='black',marker='*')
plt.title('Temperature analysis (deg cel)')
plt.xlabel('Day')
plt.ylabel('Temperature')
plt.show()
```

	Unnamed: 0	Unnamed: 1	Unnamed: 2	Day	Temp
0	NaN	NaN	NaN	1	12
1	NaN	NaN	NaN	2	14
2	NaN	NaN	NaN	3	15
3	NaN	NaN	NaN	4	17
4	NaN	NaN	NaN	5	18
5	NaN	NaN	NaN	6	20
6	NaN	NaN	NaN	7	22
7	NaN	NaN	NaN	8	23
8	NaN	NaN	NaN	9	21
9	NaN	NaN	NaN	10	19
10	NaN	NaN	NaN	11	18
11	NaN	NaN	NaN	12	16
12	NaN	NaN	NaN	13	14
13	NaN	NaN	NaN	14	13
14	NaN	NaN	NaN	15	11
15	NaN	NaN	NaN	16	10
16	NaN	NaN	NaN	17	9
17	NaN	NaN	NaN	18	8
18	NaN	NaN	NaN	19	7
19	NaN	NaN	NaN	20	9
20	NaN	NaN	NaN	21	10
21	NaN	NaN	NaN	22	12
22	NaN	NaN	NaN	23	14
23	NaN	NaN	NaN	24	15
24	NaN	NaN	NaN	25	17
25	NaN	NaN	NaN	26	18
26	NaN	NaN	NaN	27	20
27	NaN	NaN	NaN	28	22
28	NaN	NaN	NaN	29	23
29	NaN	NaN	NaN	30	21
15.	6				
the	max temp is	23 on the	dav 8		

the max temp is 23 on the day 8 the max temp is 7 on the day 19 12


```
2/14/24, 2:25 PM
   import seaborn as sns
   import matplotlib.pyplot as plt
   TimestampSeries=sns.load_dataset("tips")
   print(a.head(10))
   sns.scatterplot(x="",y="Day",data=tips)
   plt.title("scatter plot of total bill vs tip")
   plt.xlabel("total bill ($)")
   plt.ylabel("tip ($)")
   plt.show()
        ValueError
                                                   Traceback (most recent call last)
        <ipython-input-20-1696f60c398b> in <cell line: 3>()
              1 import seaborn as sns
              2 import matplotlib.pyplot as plt
        ---> 3 ex=sns.load_dataset("/content/ex.xlsx")
              4 sns.scatterplot(x="Temp",y="Day",data=ex)
              5 plt.title("scatter plot of total bill vs tip")
        /usr/local/lib/python3.10/dist-packages/seaborn/utils.py in load_dataset(name,
        cache, data_home, **kws)
571 if not os.path.exists(cache_path):
            572
                            if name not in get_dataset_names():
                                raise ValueError(f"'{name}' is not one of the example
         --> 573
        datasets.")
                            urlretrieve(url, cache_path)
            574
                        full_path = cache_path
            575
        ValueError: '/content/ex.xlsx' is not one of the example datasets.
   import seaborn as sns
   import matplotlib.pyplot as plt
   tips=sns.load_dataset("tips")
   print(tips.head(10))
   sns.violinplot(x="day",y="total_bill",data=tips)
   plt.title("scatter plot of total bill vs tip")
   plt.xlabel("total bill ($)")
   plt.ylabel("tip ($)")
   plt.show()
           total_bill
                       tip
                                sex smoker
                                            dav
                                                    time size
        0
                16.99 1.01
                             Female
                                        No
                                            Sun Dinner
        1
                10.34 1.66
                               Male
                                        No
                                            Sun Dinner
                                                             3
        2
                21.01
                       3.50
                               Male
                                        No
                                            Sun
                                                 Dinner
                                                             3
        3
                23.68 3.31
                               Male
                                        No
                                            Sun Dinner
                                                             2
        4
                24.59
                       3.61
                             Female
                                        No
                                            Sun
                                                 Dinner
                25.29 4.71
        5
                               Male
                                        No
                                            Sun Dinner
        6
                 8.77
                       2.00
                                            Sun Dinner
                                                             2
                               Male
                                        No
        7
                26.88
                       3.12
                               Male
                                        No
                                            Sun Dinner
                                                             4
        8
                15.04
                               Male
                                            Sun Dinner
                                                             2
                      1.96
                                        No
        9
                14.78 3.23
                               Male
                                        No Sun Dinner
                                                             2
                                scatter plot of total bill vs tip
            60
```


Sat

total bill (\$)

Sun

```
iris=sns.load_dataset("iris")
print(iris.head(10))
correlation matrix=iris.corr()
sns.heatmap(correlation_matrix,annot=True,cmap="coolwarm")
plt.title("correlation heatmap of iris dataset")
plt.show()
```

Thur

```
sepal_length sepal_width petal_length petal_width species
0
            5.1
                          3.5
                                         1.4
                                                      0.2
                                                           setosa
            4.9
                          3.0
                                         1.4
                                                       0.2
                                                            setosa
2
            4.7
                          3.2
                                         1.3
                                                      0.2
                                                            setosa
3
            4.6
                          3.1
                                                      0.2
                                         1.5
                                                            setosa
4
5
            5.0
                          3.6
                                                      0.2
                                         1.4
                                                            setosa
            5.4
                          3.9
                                         1.7
                                                      0.4
                                                            setosa
6
                                                      0.3
            4.6
                          3.4
                                         1.4
                                                            setosa
7
            5.0
                          3.4
                                                      0.2
                                                            setosa
                                         1.5
8
                          2.9
                                                      0.2
            4.4
                                         1.4
                                                            setosa
9
            4.9
                          3.1
                                         1.5
                                                      0.1
                                                            setosa
```

<ipython-input-34-45a840667c33>:3: FutureWarning: The default value of numeric_only i
 correlation_matrix=iris.corr()

attention=sns.load_dataset("attention")
print(attention.head(10))
correlation_matrix=attention.corr()
sns.heatmap(correlation_matrix,annot=True,cmap="coolwarm")
plt.title("correlation heatmap of attention dataset")
plt.show()

	Unnamed:	0	subject	attention	solutions	score
0		0	1	divided	1	2.0
1		1	2	divided	1	3.0
2		2	3	divided	1	3.0
3		3	4	divided	1	5.0
4		4	5	divided	1	4.0
5		5	6	divided	1	5.0
6		6	7	divided	1	5.0
7		7	8	divided	1	5.0
8		8	9	divided	1	2.0
9		9	10	divided	1	6.0

<ipython-input-37-795b41a4264db:3: FutureWarning: The default value of numeric_only i
 correlation_matrix=attention.corr()</pre>


```
import seaborn as sns
import matplotlib.pyplot as plt
a=sns.load_dataset("anagrams")
print(a.head(10))
sns.scatterplot(x="subidr",y="num1",data=a)
plt.title("anagrams")
plt.xlabel("subidr")
plt.ylabel("num1")
plt.show()
       subidr
                 attnr num1 num2
                                  num3
     0
            1 divided
                         2
                              4.0
     1
            2 divided
                              4.0
                                      5
                          3
     2
            3 divided
                          3
                              5.0
                         5
     3
            4 divided
                              7.0
                                      5
     4
            5 divided
                          4
                              5.0
                              5.0
     5
            6 divided
                          5
                                      6
     6
               divided
                          5
                              4.5
     7
            8 divided
                          5
                              7.0
                                      8
     8
            9 divided
                          2 3.0
           10 divided
                              5.0
                                      6
                                    anagrams
```