Fa17 Instructor: Mihir Bellare January 24, 2017

Problem Set 2

Due: Tuesday January 31, 2017, in class.

By a||b we denote the concatenation of strings $a, b \in \{0, 1\}^*$. (For example 010||01 = 01001.) If E is a family of functions, then T_E denotes the time to compute it. If E is a blockcipher, T_E is also the time to compute E^{-1} . All times are worst case. Justifications are expected for all answers.

Problem 1 [50 points] Let $G: \{0,1\}^k \times \{0,1\}^l \to \{0,1\}^l$ be a family of functions and let $r \ge 1$ be an integer. The r-round Feistel cipher associated to G is the family of functions $G^{(r)}: \{0,1\}^k \times \{0,1\}^{2l} \to \{0,1\}^{2l}$, defined as follows for any key $K \in \{0,1\}^k$ and input $x \in \{0,1\}^{2l}$:

$$\frac{\mathbf{Alg} \ G^{(r)}(K,x)}{L_0 \| R_0 \leftarrow x}$$
For $i = 1, \dots, r$ do
$$L_i \leftarrow R_{i-1} \ ; \ R_i \leftarrow G(K,R_{i-1}) \oplus L_{i-1}$$
Return $L_r \| R_r$

In the first line, we are parsing x as $x = L_0 ||R_0|$ with $|L_0| = |R_0| = l$, meaning L_0 is the first l bits of x and R_0 is the rest.

- 1. [20 points] Show that $G^{(1)}$ is not a secure PRF by presenting in pseudocode a $\mathcal{O}(T_G + k + l)$ time adversary A making one query to its \mathbf{Fn} oracle and achieving $\mathbf{Adv}_{G^{(1)}}^{\mathrm{prf}}(A) = 1 2^{-l}$.
- 2. [30 points] Show that $G^{(2)}$ is not a secure PRF by presenting in pseudocode a $\mathcal{O}(T_G + k + l)$ time adversary A making two queries to its \mathbf{Fn} oracle and achieving $\mathbf{Adv}_{G^{(2)}}^{\mathrm{prf}}(A) = 1 2^{-l}$.

Problem 2 [50 points] Let $k, n \ge 4$ be integers and let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a blockcipher. Let \mathcal{K} be the key-generation algorithm that returns a random 128-bit string as the key K. Let \mathcal{E} be the following encryption algorithm:

$$\frac{\mathbf{Alg}\ \mathcal{E}_K(M)}{M[1]\dots M[m]} \leftarrow M$$
$$R \stackrel{\$}{\leftarrow} \{0,1\}^n \ ; \ C[0] \leftarrow R$$

```
for i = 1, ..., m do W[i] \leftarrow (R+i) \mod 2^n; C[i] \leftarrow E_K(M[i] \oplus W[i]) C \leftarrow C[0]C[1]...C[m] return C
```

Above $W[i] \leftarrow (R+i) \mod 2^n$ means we regard R as an integer, add i to it, take the result modulo 2^n , view this as a n-bit string, and assign it to W[i]. (For example if n=4 and R=1110 and i=3 then W[i]=0001.) The message space is the set of all strings whose length is a positive multiple of n, meaning these are the allowed messages. The first line above indicates that M is broken into n-bit blocks, with M[i] denoting the i-th block and m the number of blocks. (For example if n=4 and M=01101011 then M[1]=0110 and M[2]=1011 and m=2.)

- 1. [10 points] Specify a decryption algorithm \mathcal{D} such that $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is a symmetric encryption scheme satisfying the correct decryption condition of Slide 3.
- 2. [40 points] Show that this scheme is not IND-CPA secure by presenting a $\mathcal{O}(T_E + k + n)$ -time adversary A making one query to its **LR** oracle and achieving $\mathbf{Adv}_{\mathcal{SE}}^{\mathrm{ind-cpa}}(A) = 1$.