Final report

Ismailov Nijat

19.01.2022

Problem 1: N, O, F atoms

Figure 1: Electron configuration of nitrogen (N) atom

- ▶ Nitrogen (N) atom
 - ightharpoonup Electron configuration $2s^22p^3$
 - ► Main term ⁴S
- Oxygen (O) atom
 - \triangleright Electron configuration $2s^22p^4$
 - ► Main term ³P
- ▶ Fluorine (F) atom
 - ightharpoonup Electron configuration $2s^22p^5$
 - Main term 2P

Figure 2: Electron configuration of oxygen (O) atom

Figure 3: Electron configuration of fluorine (F) atom

Determinig the point group of a molecule

Let's calculate the ground states of our atoms. At the beginning, we need to determine a molecule's point group.

Figure 4: Flowchart for determining the point group of a molecule

It's difficult to determine point group of atom with this table, but MOLPRO says, that point group for N, O and F is D_{2h} .

Character table

MOLPRO writes irreducible representations of point groups in a different order, than in the reference materials. Let's show the table for D_{3h} as MOLPRO imagines it.

D_{2h}	E	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$
A_g	1	1	1	1	1	1	1	1
B_{3u}	1	-1	-1	1	-1	1	1	-1
B_{2u}	1	-1	1	-1	-1	1	-1	1
B_{1g}	1	1	-1	-1	1	1	-1	-1
B_{1u}	1	1	-1	-1	-1	-1	1	1
B_{2g}	1	-1	1	-1	1	-1	1	-1
B_{3g}	1	-1	-1	1	1	-1	-1	1
A_u	1	1	1	1	-1	-1	-1	-1

Table 1: Character table for D_{2h} point group

As we can see, the 1s and 2s states are described by A_g irreducible representation, $2p_x$ is described by B_{3u} , $2p_y$ is described by B_{2u} , $2p_z$ is described by B_{1u} .

Determining irreducible representation for nitrogen N ground state

For nitrogen (N) atom we have

$$B_{3u}\otimes B_{2u}\otimes B_{1u}$$

We calculate this case in detail.

B_{3u}	1	-1	-1	1	-1	1	1	-1
B_{2u}	1	-1	1	-1	-1	1	-1	1
B_{2u} $B_{3u}\otimes B_{2u}$	1	1	-1	-1	1	1	-1	-1

As we can see, $B_{3u} \otimes B_{2u} = B_{1g}$

As we can see, $B_{3u} \otimes B_{2u} \otimes B_{1u} = B_{1g} \otimes B_{1u} = A_u$.

MOLPRO code for ground state of nitrogen (N) atom

```
1 ***, Nitrogen
2
2 geometry={n}
4 basis=vdz
5 {hf
6 wf, 7, 8, 3};
7 {casscf
8 wf, 7, 8, 3};
```

- ▶ 7 is the number of electrons
- ▶ 8 is the number (in character table) of the irreducible representation for the state we are considering
- ▶ 3 defines the spin symmetry

Ground states for fluorine (F) and oxygen (O) atoms

Analogically for oxygen (O) we have

$$B_{3u}\otimes B_{3u}\otimes B_{2u}\otimes B_{1u}=B_{3g}$$

For fluorine (F) we have

$$B_{3u} \otimes B_{3u} \otimes B_{2u} \otimes B_{2u} \otimes B_{1u} = B_{1u}$$

```
1 ***, Oxygen
2
2
3 geometry={o}
4 basis=vdz
5 {hf
6 wf, 8, 7, 2};
7 {casscf
8 wf, 8, 7, 2};
```

```
1 ***, Fluorine
2
3 geometry={f}
4 basis=vdz
5 {hf
6 wf, 9, 5, 1};
7 {casscf
8 wf, 9, 5, 1};
```

Excited states for nitrogen N atom

```
1 ***, Nitrogen
2
3 geometry={n}
4 basis=vdz
5 {hf
6 wf, 7, 3, 1};
7 {casscf
8 wf, 7, 3, 1};
```

```
1 ***, Nitrogen
2
3 geometry={n}
4 basis=vdz
5 {hf
6 wf, 7, 7, 3};
7 {casscf
8 wf, 7, 7, 7, 3};
```

```
1 ***, Nitrogen
2
3 geometry={n}
4 basis=vdz
5 {hf
6 wf, 7, 1, 1};
7 {casscf
8 wf, 7, 1, 1};
```


Figure 5: First excited state

Figure 6: Second excited state

Figure 7: Third excited state

Excited states for oxygen O atom

```
1 ***, Oxygen
2
3 geometry={o}
4 basis=vdz
5 {hf
6 wf, 8, 1, 0};
7 {casscf
8 wf, 8, 1, 0};
```

```
1 ***, Oxygen
2
2
3 geometry={o}
4 basis=vdz
5 {hf
6 wf, 8, 5, 2};
7 {casscf
8 wf, 8, 5, 2};
```

```
\begin{array}{c|cccc} \hline 1 & \hline 1 & \hline \\ 2p_x & 2p_y & 2p_z \\ \hline \hline 1 & \\ 2s & \\ \end{array}
```

Figure 8: First excited state

Figure 9: Second excited state

Excited states for fluorine F atom

```
1 ***, Fluorine
2
3 geometry={f}
4 basis=vdz
5 {hf
6 wf, 9, 1, 1};
7 {casscf
8 wf, 9, 1, 1};
```

```
1 ***, Fluorine
2
2 geometry={f}
4 basis=vdz
5 {hf
6 wf, 9, 7, 3;
7 occ, 3, 1, 1, 0, 1, 0, 0, 0};
8 {cassof
9 occ, 3, 1, 1, 0, 1, 0, 0, 0;
10 wf, 9, 7, 3}
```

```
\begin{array}{c|cccc}
\hline{1} & \hline{1} & \hline{1} & \hline{1} \\
2p_x & 2p_y & 2p_z \\
\hline{1} & \\
2s & & & \\
\end{array}
```

Figure 10: First excited state

Figure 11: Second excited state

Excited states for fluorine F atom

```
1 ***, Fluorine
2
3 geometry={f}
4 basis=vdz
5 {hf
6 wf, 9, 8, 3;
7 occ, 3, 1, 1, 0, 1, 0, 0, 0};
8 {casscf
9 occ, 3, 1, 1, 0, 1, 0, 0, 0;
10 wf, 9, 8, 3}
```


Figure 12: Third excited state

Calculated energies

► Basis: VDZ

► Method: CASSCF

N	Energy (eV)
Ground state $(2s^22p_x^12p_y^12p_z^1 \text{ or } ^4S)$	0
First excited state $(2s^22p_x^22p_y^1 \text{ or }^2S)$	2.876692
Second excited state $(2s^12p_x^22p_y^12p_z^1 \text{ or } ^4P)$	11.240083
Third excited state $(2s^12p_x^22p_y^2 \text{ or }^2S)$	16.965493

0	Energy (eV)
Ground state $(2s^22p_x^22p_y^12p_z^1 \text{ or } ^3P)$	0
First excited state $(2s^22p_x^22p_y^2 \text{ or }^1S)$	2.231114
Second excited state $(2s^12p_x^22p_y^22p_z^1 \text{ or } ^3P)$	17.129585

F	Energy (eV)
Ground state $(2s^22p_x^22p_y^22p_z^1 \text{ or }^2P)$	0
First excited state $(2s^12p_x^22p_y^22p_z^2 \text{ or }^2S)$	24.098432
Second excited state $(2s^22p_x^22p_y^12p_z^13s^1 \text{ or } ^4P)$	45.079899
Third excited state $(2s^22p_x^12p_y^12p_z^13s^2 \text{ or } ^4S)$	93.413827

Problem 2 - diatomic molecules

Let's start with a simple case. For example, consider a nitrogen molecule N₂.

Figure 13: N₂ molecular orbital diagram - ground state

Nitrogen molecule N₂

Each linear molecule has a $C_{2\nu}$ symmetry point group. But Molpro defines symmetry as D_{2h} . We can write the ground state of nitrogen molecule N_2 as

$$1\sigma_{\mathrm{g}}^21\sigma_{\mathrm{u}}^22\sigma_{\mathrm{g}}^22\sigma_{\mathrm{u}}^23\sigma_{\mathrm{g}}^21\pi_{\mathrm{u},\mathrm{x}}^21\pi_{\mathrm{u},\mathrm{y}}^2$$

And, for example, consider excited state

$$1\sigma_{g}^{2}1\sigma_{u}^{2}2\sigma_{g}^{2}2\sigma_{u}^{2}3\sigma_{g}^{1}3\sigma_{u}^{2}1\pi_{g,x}^{1}1\pi_{g,y}^{2}$$

```
1 do i = 1, #rs
2     r = rs(i) Ang
3     {hf
4          wf, 14, 6, 2};
5          e_hf(i) = energy
6          {casscf
7          wf, 14, 6, 2};
8          e_cas(i) = energy
9          endo
10
11          {table,rs,e_hf,e_cas}
12          head,r,HF,CASSCF
13          save,
14          N2_molecule_term_eighth_excited_data.dat
          }
```

Nitrogen molecule N₂

		r, Å	E, eV
	$1\Sigma_g$	1.116	0
1	Σ_g , exp.	1.098	0
	$3\Delta_g$	1.682	11.35
3	Δ_g , exp.	1.611	10.90
	$3\Pi_g$	1.233	7.78
3	Π_g , exp.	1.213	7.39

Table 2: Calculated and experimental results for N₂ molecule

Figure 14: N₂ molecule terms

	Energy $(r \to \infty)$, eV	Total atomic energy, eV
$N(^{4}S) + N(^{4}S)$	0	0
$N(^4S) + N(^2S)$	2.892592	2.876692
$N(^4S) + N(^4P)$	11.295647	11.240083
$N(^4P) + N(^4P)$	22.129523	22.480166

Table 3: Comparison of the energy of a term at infinity with the energy of atoms

Nitric oxide molecule NO

Nitric oxide molecule NO

This molecule has a $C_{2\nu}$ symmetry point group. Let's consider two states: ground and excited. We can write the ground state of nitric oxide molecule NO as

$$1\sigma_{g}^{2}1\sigma_{u}^{2}2\sigma_{g}^{2}2\sigma_{u}^{2}3\sigma_{g}^{2}1\pi_{u,x}^{2}1\pi_{u,y}^{2}1\pi_{g,x}^{1}$$

And, for example, excited state

$$1\sigma_{\rm g}^21\sigma_{\rm u}^22\sigma_{\rm g}^22\sigma_{\rm u}^23\sigma_{\rm g}^11\pi_{\rm u,x}^21\pi_{\rm u,y}^21\pi_{\rm g,x}^11\pi_{\rm g,y}^1$$

```
1 do i = 1, #rs
2     r = rs(i) Ang
3     {hf
4     wf, 15, 4, 3};
5     e_hf(i) = energy
6     {casscf
7     wf, 15, 4, 3};
8     e_cas(i) = energy
9     enddo
10
11 {table, rs, e_hf, e_cas
12     head, r, HF, CASSCF
13     save,
14 NO_molecule_term_second_excited_data.dat
    }
```

Nitric oxide molecule NO

	r, Å	E, eV
$^{2}\Pi$	1.164	0
$^{2}\Pi$, exp.	1.151	0
U.term	1.328	7.928
U.term, exp.	1.302	7.484
$^{4}\Pi$	1.305	6.042
⁴ Π, exp.	_	_

Table 4: Calculated and experimental results for NO molecule

Figure 16: NO molecule terms

	Energy $(r \to \infty)$, eV	Total atomic energy, eV
$N(^{4}S) + O(^{3}P)$	0	0
$N(^4S) + O(^1S)$	2.229535	2.231114
$N(^2S) + O(^3P)$	2.876692	2.876692
$N(^4P) + O(^3P)$	11.231929	11.240083

Table 5: Comparison of the energy of a term at infinity with the energy of atoms

Water molecule H₂O

- ▶ Bond length r = 0.967Å
- First angle $\theta = 102.50383^{\circ}$
- Symmetry group: $C_{2\nu}$

```
1 ***, H20 molecule
2
3 basis=avdz
4
5 geometry=
6 {0;
7 H1,0,R;
H2,0,R,H1,THETA}
9
0 R=0.96 Ang
11 Theta=104
12
13 hf;
14 mp4;
15 optg;
16
17 frequencies;
```


Figure 17: Water molecule (H₂O)

Water molecule H₂O

Let's find the vibrational modes of the water molecule H_2O . First, we write a table for $C_{2\nu}$ group, then we find the number of atoms that do not change their position during symmetry transformations, and multiply the character of the element by the number of unchanged atoms.

C_{2v}	E	C_2	$\sigma_v(xz)$	$\sigma'_{v}(yz)$
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1
χ	3	-1	1	1
$\Gamma = \chi \cdot N$	9	-1	3	1

Table 6: Character table for $C_{2\nu}$ point group

Let us find a decomposition in terms of irreducible representations:

$$N_{\mu} = \frac{1}{h} \sum_{\mathbf{R}} \chi_{\mu} \left(\mathbf{R} \right) \chi(\mathbf{R}) = \frac{1}{h} \sum_{\mathbf{C}} g \left(\mathbf{C} \right) \chi_{\mu} \left(\mathbf{C} \right) \chi \left(\mathbf{C} \right)$$

Water molecule H₂O

$$\begin{split} N_{\mu} &= \frac{1}{4} \left(1 \cdot 1 \cdot 9 + 1 \cdot 1 \cdot (-1) + 1 \cdot 1 \cdot 3 + 1 \cdot 1 \cdot 1 \right) A_{1} + \\ &\quad + \frac{1}{4} \left(1 \cdot 1 \cdot 9 + 1 \cdot 1 \cdot (-1) + 1 \cdot (-1) \cdot 3 + 1 \cdot (-1) \cdot 1 \right) A_{2} + \\ &\quad + \frac{1}{4} \left(1 \cdot 1 \cdot 9 + 1 \cdot (-1) \cdot (-1) + 1 \cdot 1 \cdot 3 + 1 \cdot (-1) \cdot 1 \right) B_{1} + \\ &\quad + \frac{1}{4} \left(1 \cdot 1 \cdot 9 + 1 \cdot (-1) \cdot (-1) + 1 \cdot (-1) \cdot 3 + 1 \cdot 1 \cdot 1 \right) B_{2} = \\ &\quad = 3A_{1} + A_{2} + 3B_{1} + 2B_{2} \end{split}$$

As a result we have

All motions	Translation	Rotation	Vibration
$3A_1$	A_1		$2A_1$
A_2		A_2	
$3B_1$	B_1	B_1	B_1
$2B_2$	B_2	B_2	

Table 7: Distribution of representations by motion type for water molecule H₂O

Methane molecule CH₄

- ▶ Bond length r = 1.11Å
- First angle $\theta = 109.47122^{\circ}$
- ightharpoonup Second angle $\phi = 120^{\circ}$
- ightharpoonup Symmetry group: T_d

```
1 geometry=
2 {H1;
3 C1, H1, R;
4 H2, C1, R, H1, THETA;
5 H3, C1, R, H1, THETA, H2, PHI;
6 H4, C1, R, H1, THETA, H3, PHI;
7 }
8
9 R = 1.09 Ang
10 Theta = 109.471220
11 Phi = 120;
```


Figure 18: Methane molecule (CH₄)

Methane molecule CH₄

Let's find the vibrational modes of the water molecule H_2O . First, we write a table for $C_{2\nu}$ group, then we find the number of atoms that do not change their position during symmetry transformations, and multiply the character of the element by the number of unchanged atoms.

T_d	E	8 <i>C</i> ₃	$3C_{2}$	$6S_4$	$6\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1
χ	3	0	-1	-1	1
$\Gamma = \chi \cdot N$	15	0	-1	-1	3

Table 8: Character table for $C_{2\nu}$ point group

Let us find a decomposition in terms of irreducible representations:

$$N_{\mu} = \frac{1}{h} \sum_{\mathbf{R}} \chi_{\mu} \left(\mathbf{R} \right) \chi(\mathbf{R}) = \frac{1}{h} \sum_{\mathbf{C}} g \left(\mathbf{C} \right) \chi_{\mu} \left(\mathbf{C} \right) \chi \left(\mathbf{C} \right)$$

Methane molecule CH₄

$$N_{\mu} = \frac{1}{24} (1 \cdot 1 \cdot 15 + 8 \cdot 1 \cdot 0 + 3 \cdot 1 \cdot (-1) + 6 \cdot 1 \cdot (-1) + 6 \cdot 1 \cdot 3) A_{1} + \frac{1}{24} (1 \cdot 1 \cdot 15 + 8 \cdot 1 \cdot 0 + 3 \cdot 1 \cdot (-1) + 6 \cdot (-1) \cdot (-1) + 6 \cdot (-1) \cdot 3) A_{2} + \frac{1}{24} (1 \cdot 2 \cdot 15 + 8 \cdot (-1) \cdot 0 + 3 \cdot 2 \cdot (-1) + 6 \cdot 0 \cdot (-1) + 6 \cdot 0 \cdot 3) E + \frac{1}{24} (1 \cdot 3 \cdot 15 + 8 \cdot 0 \cdot 0 + 3 \cdot (-1) \cdot (-1) + 6 \cdot 1 \cdot (-1) + 6 \cdot (-1) \cdot 3) T_{1} + \frac{1}{24} (1 \cdot 3 \cdot 15 + 8 \cdot 0 \cdot 0 + 3 \cdot (-1) \cdot (-1) + 6 \cdot (-1) \cdot (-1) + 6 \cdot 1 \cdot 3) T_{2} = A_{1} + E + T_{1} + 3T_{2}$$

All motions	Translation Rotation		Vibration	
A_1			A_1	
E			E	
T_1		T_1		
T_2	T_2		$2T_2$	

Table 9: Distribution of representations by motion type for methane molecule CH₄

Frequency results for water H_2O and methane CH_4

Symmetry	A_1	A_1	B_2
Frequency, cm ⁻¹	1630.75	3778.17	3901.53
Frequency(fund. exp. data), cm ⁻¹	1595	3657	3756
Frequency(harm. exp. data), cm ⁻¹	1649	3832	3943

Table 10: Harmonic frequencies for water molecule ${\rm H_2O}$

Symmetry	A_1	E	T_2	T_2
Frequency, cm ⁻¹	3023.17	1537.98	3155.23	1320.55
Frequency(fund. exp. data), cm ⁻¹	2917	1534	3019	1306
Frequency(harm. exp. data), cm ⁻¹	3025.5	1582.7	3156.8	1367.4

Table 11: Harmonic frequencies for methane molecule CH₄