Esercizi di Algebra Lineare, corso A

Enrico Berni

06/02/2025

Provate a svolgere i seguenti esercizi in maniera autonoma, eventualmente confrontandovi con dei compagni. Le soluzioni saranno discusse durante il tutorato di giovedì 6 febbraio.

1. Sia φ il prodotto scalare su \mathbb{R}^4 rappresentato nella base canonica dalla matrice

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & -1 & 0 & 3 \\ 2 & 0 & 2 & 4 \\ 1 & 3 & 4 & -1 \end{bmatrix}.$$

- Calcolare la segnatura di φ .
- Determinare un sottospazio W di dimensione massima tale che $\mathbb{R}^4 = W \oplus W^{\perp}$.
- 2. Sia $V = \mathbb{R}_2[x]$, dotato del prodotto scalare $\varphi(p,q) = p(0)q(0) + p(1)q(1) + p(2)q(2)$. Sia R la mappa di φ -rappresentazione, i.e. l'unica mappa definita implicitamente da

$$R: V^* \to V, \quad f(v) = \varphi(R(f), v)$$

per ogni $v \in V$.

Data la base $\mathcal{B} = \{x, 1+x, x+x^2\}$ di V, determinare $\mathfrak{M}_{\mathcal{B}}^{\mathcal{B}^*}(R)$.

- 3. Sia V uno spazio vettoriale su \mathbb{K} , dotato di una forma bilineare b. È sempre possibile dire che esistono due funzionali f e $g \in V^*$ tali che $\varphi(v, w) = f(v)g(w)$?
- 4. Siano $f_1, \ldots, f_k, g \in V^*$ dei funzionali lineari su uno spazio vettoriale V. Mostrare che g è linearmente dipendente dagli $\{f_j\}$ se e solo se Ker $f_j \subseteq \text{Ker } g$ per ogni j.
- 5. Sia V uno spazio vettoriale su \mathbb{K} , e sia φ un prodotto scalare non degenere su V. Diciamo che φ è anisotropo se $\varphi(v,v)=0$ implica v=0. Dimostrare che:
 - (a) Se $\mathbb{K} = \mathbb{R}$, φ è anisotropo se e solo se è definito (positivo o negativo).
 - (b) Se $\mathbb{K} = \mathbb{C}$, φ è anisotropo se e solo se V ha dimensione 1.