

60

cossac.ozeac

09/555809

COMPACO COMPACO

Trama GSM n. 1

	_			LC 414.11	0.00	office also	1000	charda	Donnlor	ile Alicelon
_	Periferica di	lipo di canale	requency	requency IIVello HF	Commence	muleto mezione	5 2	niai no	nobluci	velocità di
_		-	Inoppling		canale RF	d'arrivo	fading		spectrum type	MS
	T-	portante utlle	SN ON	-50 dBm	126 60°	.09	9	Sil 0		0 km/h
1	TX PROC#2	eco utile	ON	-56 dBm	126		ON	1118	•	0 km/h
1	TX PROC#3	interferente	SI		126	,02 20°	Ç.	56 με		O km/h
				-						
1	TX PROC#16	TX PROC#16 eco interferente N	ON	-70 dBm	127	55°	SI	117 LIS	CLASS	50 km/h

Tab 1

Trama GSM n. 2

velocilà di	MS	0 km/h	0 km/h	0 km/h	:	50 km/h
ve	be	Ö	ŏ	č	:	20
Doppler	spectrum type					CLASS
ritardo		5110	1115	56 με		117 [18
ib odi	fading	Q:	ON:	CN.		<u></u>
numero direzione	d'arrivo	.19	63°	70°		54°
numero	canale RF d'arrivo	126	126	103		127
livello RF		-49 dBm	-58 dBm	60 dBm		68 dBm
frequency	hopping	ON	9 9	SI		9
lipo di canale		portante utile	eco utile	interferente		TX PROC#16 eco Interferente
Periferica di lipo di canale	destinazione	TX PROC#1	TX PROCII2	TX PROC#3		TX PROC#16
Nimero		-	0	3	•	16

Tab 2

Trama GSM n. k

Tab. k

Fig. 7