Algoritmo de minimización de autómatas

Clase 11

IIC2223 / IIC2224

Prof. Cristian Riveros

Outline

Colapsar estados (recordatorio)

Autómata cuociente

Algoritmo de minimización

Outline

Colapsar estados (recordatorio)

Autómata cuociente

Algoritmo de minimización

Minimización de estados

Estrategia: "reducir" nuestro autómata colapsando estados.

Función de transición extendida

Definición

Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA.

Se define la función de transición extendida

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

inductivamente como:

$$\begin{array}{ccc} \hat{\delta}(q,\epsilon) & \stackrel{\mathsf{def}}{\equiv} & q \\ \\ \hat{\delta}(q,w\cdot a) & \stackrel{\mathsf{def}}{\equiv} & \delta(\hat{\delta}(q,w),a) \\ \end{array}$$

¿cuándo podemos colapsar dos estados?

Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA y $p, q \in Q$.

Definición

Decimos que p y q son indistinguibles $(p \approx_{\mathcal{A}} q)$ si:

$$p \approx_{\mathcal{A}} q$$
 ssi $(\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F)$, para todo $w \in \Sigma^*$.

Decimos que p y q son **distinguibles** si NO son indistinguibles $(p \not *_{\mathcal{A}} q)$.

(Paréntesis): relaciones de equivalencia

(Paréntesis): relaciones de equivalencia

Definición

Una relación \approx sobre un conjunto X se dice de equivalencia si:

- reflexiva: $\forall p \in X$. $p \approx p$
- simétrica: $\forall p, q \in X$. si $p \approx q$ entonces $q \approx p$.
- **transitiva**: $\forall p, q, r \in X$. si $p \approx q$ y $q \approx r$, entonces $p \approx r$.

Para un elemento $p \in X$ se define su clase de equivalencia según \approx como:

$$[p]_{\approx} = \{q \mid q \approx p\}$$

Una función $f: X \to X$ se dice bien definida sobre \approx si:

$$p \approx q$$
 entonces $f(p) \approx f(q)$

La relación $\approx_{\mathcal{A}}$ es una relación de equivalencia

Definición

Decimos que p y q son indistinguibles $(p \approx_{\mathcal{A}} q)$ si:

$$p \approx_{\mathcal{A}} q$$
 ssi $(\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F)$, para todo $w \in \Sigma^*$

Propiedades

- $\blacksquare \approx_{\mathcal{A}}$ es una relación de equivalencia entre estados.
- Cada estado $p \in Q$ esta en exactamente una clase de equivalencia:

$$[p]_{\approx_{\mathcal{A}}} = \{q \mid q \approx_{\mathcal{A}} p\}$$

■ Para todo $a \in \Sigma$ la función $\delta(\cdot, a) : Q \to Q$ esta bien definida sobre \approx_A .

$$p \approx_{\mathcal{A}} q$$
 entonces $\delta(p, a) \approx_{\mathcal{A}} \delta(q, a)$

Outline

Colapsar estados (recordatorio)

Autómata cuociente

Algoritmo de minimización

El autómata cuociente

Para un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ se define el DFA:

$$\mathcal{A}/\approx = (Q_{\approx}, \Sigma, \delta_{\approx}, q_{\approx}, F_{\approx})$$

- $\bullet \delta_{\approx}([p]_{\approx_{\mathcal{A}}},a) = [\delta(p,a)]_{\approx_{\mathcal{A}}}$
- $F_{\approx} = \{ [p]_{\approx_{\mathcal{A}}} \mid p \in F \}$

¿cuál es el autómata cuociente para \mathcal{A} ?

El autómata cuociente

Para un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ se define el DFA:

$$\mathcal{A}/\approx = (Q_{\approx}, \Sigma, \delta_{\approx}, q_{\approx}, F_{\approx})$$

- $\bullet \delta_{\approx}([p]_{\approx_{\mathcal{A}}},a) = [\delta(p,a)]_{\approx_{\mathcal{A}}}$
- $F_{\approx} = \{ [p]_{\approx_{\mathcal{A}}} \mid p \in F \}$

; está A/ ≈ bien definido? ; depende la definición de δ ≈ de p?

Para un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ se define el DFA:

$$\mathcal{A}/\approx = (Q_{\approx}, \Sigma, \delta_{\approx}, q_{\approx}, F_{\approx})$$

- $\bullet \delta_{\approx}([p]_{\approx_{\mathcal{A}}},a) = [\delta(p,a)]_{\approx_{\mathcal{A}}}$
- $F_{\approx} = \{ [p]_{\approx_{\mathcal{A}}} \mid p \in F \}$

Teorema

Para todo autómata finito determinista ${\cal A}$ se cumple que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}/\approx)$$

Demostración

Sea
$$w = a_1 a_2 \dots a_n \in \Sigma^*$$
.

PD:
$$w \in \mathcal{L}(A) \iff w \in \mathcal{L}(A/\approx)$$

Existe una ejecución ρ de \mathcal{A} sobre w:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} \dots \stackrel{a_n}{\rightarrow} p_n$$

- $p_0 = q_0$
- $\delta(p_i, a_{i+1}) = p_{i+1} \quad \forall i \in \{0, \ldots, n-1\}.$

Existe una ejecución ρ_{\approx} de \mathcal{A}/\approx sobre w:

$$\rho_{\approx}: X_0 \stackrel{a_1}{\to} X_1 \stackrel{a_2}{\to} \dots \stackrel{a_n}{\to} X_n$$

- $X_0 = q_{\approx}$.
- $\delta_{\approx}(X_i,a_{i+1})=X_{i+1} \quad \forall i\in\{0,\ldots,n-1\}.$

¿qué relación hay entre p_i y X_i ?

Demostración

PD:
$$[p_i]_{\approx \Delta} = X_i \quad \forall i \in \{0,\ldots,n\}$$

Por inducción sobre i.

Caso base: $[p_0]_{\approx A} = [q_0]_{\approx A} = q_{\approx} = X_0$

Caso inductivo: Suponemos que
$$[p_i]$$

Caso inductivo: Suponemos que
$$[p_i]_{\approx_{\mathcal{A}}} = X_i$$
.

aso inductivo: Suponemos que
$$[p_i]_{\approx i}$$

Y. . . -
$$\delta(X_i, x_i, x_i)$$

$$X_{i+1} = \delta_{\approx}(X_i, a_{i+1})$$
 (definición ρ_{\approx})

$$= \delta_{\approx}([p_i]_{\approx_{\mathcal{A}}}, a_{i+1}) \quad \text{(defined}$$

$$= \delta_{\approx}([p_i]_{\approx_{\mathcal{A}}}, a_{i+1}) \quad \text{(HI)}$$

$$= [\delta(p_i, a_{i+1})]_{\approx_{\mathcal{A}}}$$
 (definición δ_{\approx})
$$= [\rho_{i+1}]_{\approx_{\mathcal{A}}}$$
 (definición ρ)

(por definición)

(HI)

$$= [\delta(p_i, a_{i+1})]_{\approx_{\mathcal{A}}} \quad (\text{definición } \delta_{\approx})$$
$$= [p_{i+1}]_{\approx_{\mathcal{A}}} \quad (\text{definición } \rho)$$

Demostración

PD:
$$[p_i]_{\approx_{\mathcal{A}}} = X_i \quad \forall i \in \{0,\ldots,n\}$$

PD:
$$p_n \in F$$
 si, y solo si, $[p_n]_{\approx_A} \in F_{\approx}$

$$(⇒)$$
 Definición de $F_{≈}$.

(
$$\Leftarrow$$
) Suponemos que $\lceil p_n \rceil_{\approx_A}$ ∈ F_{\approx} .

Existe
$$p \in F$$
 tal que $[p_n]_{\approx_{\mathcal{A}}} = [p]_{\approx_{\mathcal{A}}}$.

Como $p_n \approx_{\mathcal{A}} p$, entonces:

$$(\hat{\delta}(p_n, w) \in F \iff \hat{\delta}(p, w) \in F)$$
, para todo $w \in \Sigma^*$.

(definición F_{\approx})

Si escogemos
$$w = \epsilon$$
: $(\hat{\delta}(p_n, \epsilon) = p_n \in F \iff \hat{\delta}(p, \epsilon) = p \in F)$.

Como
$$p \in F$$
, concluimos que $p_n \in F$.

Por lo tanto, $w \in \mathcal{L}(A)$ si, y solo si, $w \in \mathcal{L}(A/\approx)$.

Outline

Colapsar estados (recordatorio)

Autómata cuociente

Algoritmo de minimización

Buscamos los pares que son distingibles.

Busqueda de clase de estados distingibles

- 1. Construya una tabla con los pares $\{p,q\}$ inicialmente sin marcar.
- 2. Marque $\{p, q\}$ si $p \in F$ y $q \notin F$ o viceversa.
- 3. Repita este paso hasta que no hayan mas cambios:
 - Si $\{p,q\}$ no están marcados y $\{\delta(p,a),\delta(q,a)\}$ estan marcados para algún $a \in \Sigma$, entonces marque $\{p,q\}$.
- 4. Al terminar, $p \not\models_A q$ ssi la entrada $\{p, q\}$ está marcada.

1. Construya una tabla con los pares $\{p,q\}$ inicialmente sin marcar.

1. Construya una tabla con los pares $\{p,q\}$ inicialmente sin marcar.

- 3. Repita este paso hasta que no hayan mas cambios:
 - Si $\{p,q\}$ no están marcados y $\{\delta(p,a),\delta(q,a)\}$ estan marcados para algún $a \in \Sigma$, entonces marque $\{p,q\}$.

- 3. Repita este paso hasta que no hayan mas cambios:
 - Si $\{p,q\}$ no están marcados y $\{\delta(p,a),\delta(q,a)\}$ estan marcados para algún $a \in \Sigma$, entonces marque $\{p,q\}$.

- 3. Repita este paso hasta que no hayan mas cambios:
 - Si $\{p,q\}$ no están marcados y $\{\delta(p,a),\delta(q,a)\}$ estan marcados para algún $a \in \Sigma$, entonces marque $\{p,q\}$.

- 3. Repita este paso hasta que no hayan mas cambios:
 - Si $\{p,q\}$ no están marcados y $\{\delta(p,a),\delta(q,a)\}$ estan marcados para algún $a \in \Sigma$, entonces marque $\{p,q\}$.

- 3. Repita este paso hasta que no hayan mas cambios:
 - Si $\{p,q\}$ no están marcados y $\{\delta(p,a),\delta(q,a)\}$ estan marcados para algún $a \in \Sigma$, entonces marque $\{p,q\}$.

- 3. Repita este paso hasta que no hayan mas cambios:
 - Si $\{p,q\}$ no están marcados y $\{\delta(p,a),\delta(q,a)\}$ estan marcados para algún $a \in \Sigma$, entonces marque $\{p,q\}$.

- 3. Repita este paso hasta que no hayan mas cambios:
 - Si $\{p,q\}$ no están marcados y $\{\delta(p,a),\delta(q,a)\}$ estan marcados para algún $a \in \Sigma$, entonces marque $\{p,q\}$.

Los pares indistinguibles serán todas las entradas NO marcadas.

Algunos detalles del algoritmo

- ¿siempre termina el algoritmo anterior?
- ¿és el algoritmo anterior correcto?
- icómo construimos nuestro autómata cuociente?
- ¿cuál es el tiempo del algoritmo en relación a la cantidad de estados?

Demostración: ejercicio.

Cierre de clase

En esta clase vimos:

- Autómata cuociente.
- 2. Demostramos que es equivalente al autómata inicial.
- 3. Algoritmo de minimización encontrando estados distinguibles.

Varias preguntas sin resolver sobre minimización:

- ¿cómo sabemos si el autómata del algoritmo es un mínimo?
- Dado *L*, ¿existe un único autómata mínimo?
- Dado un A, ¿és posible construir un autómata mínimo equivalente?

Próximas clases responderemos estas preguntas.