Решение задачи Коши для ОДУ 1 порядка методами Рунге-Кутты

- 1. Дана задача Коши (по варианту) и ее точное решение
- 2. На заданном отрезке построить равномерную сетку
- 3. Найти численное решение задачи Коши на построенной сетке
 - а. методом Эйлера (1 порядка)
 - б. методом Эйлера-Коши (2 порядка)
 - в. Модифицированным методом Эйлера (2 порядка)
 - г. Методом 3 порядка, коэф=1/2
 - д. Методом 3 порядка коэф=1/3
 - е. Методом 4 порядка, коэф=1/2
 - ж. Методом 4 порядка коэф=1/3
- 4. Получить решения для двух значений шага и построить
 - 1. Графики точного и полученных решений на отрезке
 - 2. График ошибки на заданном отрезке

На 7 баллов

На 10 баллов

- 5. Построить график зависимости фактической точности от величины шага. График дополнить линией h^p , где p порядок метода
- 5. Построить графики зависимости от заданной точности (заданная точность достигается по правилу Рунге)
 - 1. фактической точности (норма разности точного и вычисленного решений). На графике отметить линию биссектрисы
 - 2. числа итераций (максимальное число разбиений отрезка равномерной сетки)
- 6. **Тестовый пример** выполнить по своему варианту вычислив значения решения y(a+0.2) при шаге 0,2 и 0,1
- 7. Внести в начальное условие возмущение. Построить график зависимости нормы ошибки от величины возмущения при фиксированной точности (шаге).

Замечание. Число разбиений отрезка на графиках представлять в виде степени 2

Варианты

Таблица 9.1

Nº п/п	Уравнение	a	b	y(a)	Точное решение
1.	$y' + y \operatorname{tg} x = \sec x$	0	1.5	month and	$y = \sin x + \cos x$
2.	$x^2y' + xy + 1 = 0$	1	3	1	$xy = 1 - \ln x $
3.	(2x+1)y'=4x+2y	0	4	1 1	$y = (2x+1) \ln 2x+1 +1$
4.	$x(y'-y)=\mathrm{e}^x$	1	3	е	$y = e^x(\ln x + 1)$
5.	$y = x(y' - x\cos x)$	$\pi/2$	2π	$\pi/2$	$y = x \sin x$
6.	$y' = 2x(x^2 + y)$	1	2	e-2	$y = e^{x^2} - x^2 - 1$
7.	$(xy'-1)\ln x=2y$	1	3	0	$y = \ln^2 x - \ln x$
8.	$xy' + (x+1)y = 3x^2 e^{-x}$	1	5	1/e	$y = x^2 e^{-x}$
9.	$y' + 2y = y^2 e^x$	-1	1	е	$y = e^{-x}$
10.	$(x+1)(y'+y^2) = -y$	1	5	$1/(2\ln 2)$	$y(x+1)\ln x+1 =1$
11.	$xy^2y'=x^2+y^3$	1	3	0	$y^3 = 3x^2(x-1)$
12.	$xy' - 2x^2\sqrt{y} = 4y$	1	2	0	$y = x^4 \ln^2 x$
13.	$xy' + 2y + x^5y^3 e^x = 0$	1	2	1/√2 e	$2y^2x^4 e^x = 1$
14.	$2y'-x/y=(xy)/(x^2-1)$	1.1	4	$\sqrt{0.21}$	$y^2 = x^2 - 1$
15.	$(x^2+1)y'-2xy=(x^2+1)^2$	0	2	0	$y = x(x^2 + 1)$