

CLASSIFYING PATENT APPLICATIONS

BY HEMESH TALLURI

Supervised by Diego Moll'a-Aliod

DATE: 9 NOVEMBER 2018

GOAL OF THE PROJECT

- To automate the classification of patent documents into various sections of the primary IPC mark using machine learning algorithms.
- The intention of classification is to enable quick search for patent documents and to track the trends in patent applications.

BACKGROUND AND LITERATURE REVIEW

- Document Classification can be broadly classified into two categories:
 - Supervised
 - Unsupervised
- Factors contributing to classification: Feature Extraction and Topic ambiguity.
- Techniques employed: Expedition maximization, Naïve Bayes classifier, Support Vector Machine, Decision Trees, Neural Network, etc.
- Benzineb K., Guyot J. (2011) Automated Patent Classification. In: Lupu M., Mayer K., Tait J., Trippe A. (eds) Current Challenges in Patent Information Retrieval. The Information Retrieval Series, vol 29. Springer, Berlin, Heidelberg
- Seneviratne D., Geva S., Zuccon G., Ferraro G., Chappell T., Meireles M. (2015) A Signature Approach
 to Patent Classification. In: Zuccon G., Geva S., Joho H., Scholer F., Sun A., Zhang P. (eds) Information
 Retrieval Technology. AIRS 2015. Lecture Notes in Computer Science, vol 9460. Springer, Cham

RESEARCH QUESTION

- How Exploratory Data Analysis helps to summarise the characteristics of the dataset?
- How to categorise the documents using machine learning techniques?
- Which machine learning algorithm provides better performance and accuracy for text classification?

MACHINE LEARNING PROCESS

Step 1
Gathering data from various sources

Step 2
Cleaning data to have homogeneity

Model Building-Model Building-Selecting the right ML algorithm **Step 4**Gaining insights from the model's results

Step 5
Data VisualizationTransforming results
into visuals graphs

DATA SET

- Around 1000 patent documents are considered to be classified.
- The documents are to be classified into 8 sections which are given symbols from A to H, each representing a category as follows:
 - A: Human necessities
 - B: Performing operations, transporting
 - C: Chemistry, metallurgy
 - D: Textiles, paper
 - E: Fixed constructions
 - F: Mechanical engineering,
 - G: Physics
 - H: Electricity

DESCRIPTION

- The sample patent documents are collected from Kaggle.
- Pre-Processing Phase: Tokenization, Stop words removal, TFIDF Vectorizer.
- Training Phase: Trained with an algorithm. Ex: Naïve Bayes classifier, Support Vector Machine, Decision Trees, SGD Classifier, Random Forest.
- **Testing Phase**: Testing the trained classifier and evaluating its capability for the usage.
- **Evaluation:** The performance of a classifier is evaluated by comparing the predicted sections with the actual sections.
- **Usage Phase:** The classifier in this phase is successfully trained, tested and evaluated and ready for classification of new data whose sections are unknown.

TOOLS EMPLOYED

PANDAS:

Data analysis tools for the Python programming language

• NLTK:

Text processing libraries for classification, tokenization, stemming, tagging and parsing.

SCIKIT-LEARN:

To build the classification model in this project.

MATPLOT:

For data-visualization purpose in this project.

TRAINING PHASE

- For training purpose, labelled documents → 3972
- For usage purpose, unlabelled documents → 1000
- After pre-processing phase, various algorithms are used for training the data.
- Table shows the accuracy (F1) obtained for each classifier:

Classifier	F1_Score
Decision Tree	0.4650253883880472
Naïve Bayes	0.512331313307886
Random Forest Classifier	0.5848495679872141
SGD	0.7044207445578385
k-Nearest Neighbor	0.6512946324677934
Gradient Boosting Classifier	0.5770175258881318

IPC Sections	Number of Documents
A	1303
G	781
C	637
В	442
Н	330
E	287
\mathbf{F}	178
D	14

EVALUATION PHASE

- Evaluation of high performer classifier i.e., SGD Classifier -
- Splitting the train data (3972 documents) into test data (20%) and train data (80%)
- Accuracy obtained in SGD classifier is 0.6966019090315566

IPC Sections	Number of Documents
A	1050
G	615
\mathbf{C}	506
В	351
Н	273
E	237
F	133
D	12

INPUT DATA (80%)FOR SGD CLASSIFIER

EVALUATION PHASE

- Now, predicting the test data (20%):
- Building a confusion matrix based on actual data and predicted data.

USAGE PHASE

Using SGD Classifier, the unlabelled documents are classified.

IPC Section	Number of Documents
A	384
G	230
C	163
В	76
H	70
E	53
F	24
D	0

PREDICTED OUTPUT FOR UNLABELLED DOCUMENTS

TESTING THE TOOL

1000 documents are tested.

IPC Section	Number of Documents
G	506
A	210
C	95
Н	87
В	54
E	28
F	18
D	2

PREDICTED OUTPUT FOR UNLABELLED DOCUMENTS

CONCLUSION

- Various algorithms are tested on trained data for accuracy.
- SGD Classifier is evaluated by confusion matrix.
- The unlabelled patent documents are automatically classified into the first character of the primary IPC mark i.e., the section symbol (A to H) IPC classification.
- The working of the tool is tested on different set of documents.

