GLEICHUNGSSYSTEME - ZEICHNERISCHES VERFAHREN

Beispiel:

Wenn man die linearen Gleichungen nach y umstellt, erhält man zwei Geradengleichungen, also zwei lineare Funktionen. Dann kann man mit Hilfe einer Wertetabelle oder mit Hilfe des y-Achsenabschnittes und der Steigung die beiden Geraden in ein Koordinatensystem zeichnen. An der Stelle, an der sich beide Geraden schneiden kann man dann den x- und den Y-Wert ablesen.

I
$$2x + y = 1$$

II $-x + y = -2$

Wir stellen beide Gleichungen nach y um:

I
$$2x + y = 1 | -2x$$

I(neu) $y = -2x + 1$

II
$$-x + y = -2 | + x$$

II(neu) $y = x - 2$

Danach zeichnen wir und untersuchen auf Schnittpunkte.

Wir können ablesen, dass sich die Geraden bei (1|-1) schneiden, also x = 1 und y = -1.

GLEICHUNGSSYSTEME - EINSETZUNGSVERFAHREN

Beispiel:

(I)
$$y - 7 = -2x$$

(II)
$$2y + 13 = 5x$$

1. Schritt: Löse eine der beiden Gleichungen nach einer Variablen auf.

(Ia)
$$y = -2x + 7$$

(IIa)
$$2y + 13 = 5x$$

2. Schritt: Setze die umgeformte Gleichung in die andere Gleichung ein.

$$2 \cdot (-2x + 7) + 13 = 5x$$

3. Schritt: Löse die Gleichung nach der Variablen auf.

$$2 \cdot (-2x + 7) + 13 = 5x$$
 | Termumformung
 $-4x + 14 + 13 = 5x$ | Termumformung
 $-4x + 27 = 5x$ | $+ 4x$
 $27 = 9x$ | $: 9$
 $3 = x$

4. Schritt: Setze das Ergebnis in die anfangs umgeformte Gleichungen ein und bestimme so den fehlenden Wert. Gib anschließend die Lösungsmenge an.

$$x = 3$$
 in Gleichung (Ia) einsetzen:

$$y = -2.3 + 7 = -6 + 7 = 1$$

Lösungsmenge $L = \{ (3 \mid 1) \}$

- 5. Schritt: Mache die Probe mit beiden Ausgangsgleichungen.
- (I) 1 7 = -2.3 wahr
- (II) 2.1 + 13 = 5.3 wahr

GLEICHUNGSSYSTEME - GLEICHSETZUNGSVERFAHREN

Beispiel:

(I)
$$y = -2x + 7$$

(II)
$$y + 14 = 5x$$

1. Schritt: Löse beide Gleichungen nach derselben Variablen auf.

(Ia)
$$y = -2x + 7$$

(IIa)
$$y = 5x - 14$$

2. Schritt: Setze beide Gleichungen gleich. (Beide y sollen ja den gleichen Wert haben.)

$$-2x + 7 = 5x - 14$$

3. Schritt: Löse die Gleichung nach der Variablen auf.

$$-2x + 7 = 5x - 14$$
 $I + 2x$

$$7 = 7x - 14$$

$$7 = 7x - 14$$
 | +14
21 = 7x | : 7

$$3 = x$$

4. Schritt: Setze das Ergebnis in eine der beiden Gleichungen ein und bestimme so den fehlenden Wert. Gib anschließend die Lösungsmenge an.

$$x = 3$$
 in Gleichung (I) einsetzen:

$$y = -2.3 + 7 = -6 + 7 = 1$$

Lösungsmenge
$$L = \{ (3 \mid 1) \}$$

- 5. Schritt: Mache die Probe mit beiden Ausgangsgleichungen.
- 1 = -2.3 + 7 wahr (I)
- 1 + 14 = 5.3 wahr (II)

GLEICHUNGSSYSTEME - ADDITIONSVERFAHREN

Beispiel:

$$(I) \qquad -y = 2x - 7$$

(II)
$$2y + 13 = 5x$$

1. Schritt: Multipliziere eine der Gleichungen mit einer Zahl, so dass vor x oder y Zahlen (Koeffizienten) mit gleichem Betrag, aber entgegengesetzten Vorzeichen stehen.

(Ia)
$$-2y = 4x - 14$$

(IIa)
$$2y + 13 = 5x$$

2. Schritt: Addiere die linken und die rechten Seiten beider Gleichungen. Dabei fällt die Variable mit dem entgegengesetzten Koeffizienten weg.

$$-2y + 2y + 13 = 4x - 14 + 5x$$

 $13 = 4x - 14 + 5x$

3. Schritt: Löse die Gleichung nach der Variablen auf.

$$13 = 4x - 14 + 5x$$
 | Termumformung

$$13 = 9x - 14$$
 | +14

$$3 = x$$

4. Schritt: Setze das Ergebnis in eine der beiden Gleichungen ein und bestimme so den fehlenden Wert. Gib anschließend die Lösungsmenge an.

$$x = 3$$
 in Gleichung (I) einsetzen:

$$-y = 2.3 - 7$$

$$-y = -1$$

$$y = 1$$

Lösungsmenge
$$L = \{ (3 \mid 1) \}$$

5. Schritt: Mache die Probe mit beiden Ausgangsgleichungen.

(I)
$$-1 = 2.3 - 7$$
 wahr

(II)
$$2 \cdot 1 + 13 = 5 \cdot 3$$
 wahr