

Practical Network Defense

Master's degree in Cybersecurity 2018-19

OpenVPN activity

Angelo Spognardi spognardi di.uniroma 1.it

Dipartimento di Informatica Sapienza Università di Roma

Lab setting

- You can use pnd-lab2-es1 topology
 - Remember to start udhcp

STATE OF THE STATE

Aim of the lab

- 1) Highlight the tunneling concept
- 2) Use Openvpn to make the boundary to be the VPN tunnel end-point
 - The kali/host will have the access to the internal subnet passing through an encrypted channel
 - Two scenarios
 - Static key configuration
 - Dynamic key configuration
 - Using certificates

Fundamentals: simple tunneling

- Universal tun/tap drive
 - Creates a virtual interface that encapsulates network traffic
- Any application can use that interface without any need to change its code
- Usually identified with names tun* or tap*
- tun* encapsulate IP layer
- tap* encapsulate Ethernet layer

Universal tun driver (L3)

Create a tunnel (host-boundary or pc1-boundary)

Let's check our local interfaces

ifconfig -a

Create a new tun virtual interface (use root user)

ip tunnel add tun0 mode ipip remote <ipaddressR> local <ipaddressL>

- ipaddressR is the IP address of the remote machine
- ipaddressL is the IP address of our local machine
- Let's check again our local interfaces

ifconfig -a

Let's activate the new interface

ifconfig tun0 up 10.0.0.1/30 mtu 1500

- the IP address of the remote machine MUST be different!!

Analyze the traffic

- Open wireshark to sniff the traffic
 - If pc1: use tcpdump
- Generate some traffic in the tunnel
 - ping 10.0.0.2
- What do you notice?
 - See the difference between tun0 and the eth0
- Can you see the basic principle of a VPN?

OpenVPN

- apt install openvpn
- Open-source software to realize VPN, namely encrypted tunnels
- Usually uses UDP with one single port
 - Can also use TCP
- Can be used also through firewalls or NAT
- OpenSSL based
- Multiple modes
 - Static: symmetric shared key
 - Dynamic: Public Key Infrastructure

OpenVPN static key

- The endpoints share a key generated with openvpn command
- Very easy to configure
- No CA or certificates
- NOTE: requires a secure channel to exchange the keys
- The key never changes: no forward secrecy

OpenVPN static key: keys

- Uses 4 independent keys:
 - K_AB (to encrypt A -> B)
 - HMAC_AB (to authenticate A -> B)
 - K_BA (to encrypt B -> A)
 - HMAC_BA (to authenticate B -> A)
- This is required to reduce the risks of Replay and DoS attacks

OpenVPN static key: traffic exchange

Standard crypto

Blowfish

Block cipher: **64-bit block**

Key length: **32 bits to 448 bits**Designed by **Bruce Schneier**Much **faster** than DES and IDEA **Unpatented** and royalty-free
No license required

Free source code available

- OpenVPN standard
- 128 bit keys
- CBC (Cipher-block Chaining)
- You can choose the default with the cipher option in the configuration file
- Many others available
 - openvpn --show-ciphers

SHA-1

Published: 1995

Designed by: **NSA**

Output length: 160 bit

- OpenVPN standard
- Uses a different key than the encryption one

OpenVPN static key: key generation

- Generate the shared key on one side of the tunnel (say Alice)
 - openvpn --genkey --secret secret.key
- Exchange the secret.key file with scp
- OR, if you don't send it with scp:
 - Encrypt the key (because we'll use an insecure channel)
 - openssl enc -aes-128-cbc -e -a -in secret.key -out secret.key.enc
 - Exchange the shared key
 - Prepare to receive the shared key on the other side of the tunnel (say Bob):
 - nc -l -p 9000 > secret.key.enc
 - Send the shared key
 - nc <BoblPaddress> -p 9000 < secret.key.enc</p>
 - Decrypt the key on the other side of the channel
 - openssl enc -aes-128-cbc -d -a -in secret.key.enc -out secret.key

OpenVPN static key: file conf

port 1194
proto udp
dev tun
secret secret.key 1
ifconfig 10.10.10.1 10.10.10.2

remote <AlicelPaddress>
port 1194 BOB
proto udp
dev tun
secret secret.key 0
ifconfig 10.10.10.2 10.10.10.1

- Alice plays the role of the passive actor → waits for connections
- Create a new file alice.conf/bob.conf and use the above conf
 - You can check the path /usr/share/doc/openvpn/examples/

OpenVPN static key: file conf

- Start openvpn
 - boundary# openvpn --config alice.conf
 - host# openvpn --config bob.conf
- Check the connectivity on the new interfaces and analyze the traffic with wireshark
- To give visibility to bob of the alice subnet (namely the internal network), add to bob.conf
 - route 192.168.10.16 255.255.255.248

OpenVPN dynamic key

- Uses SSL/TLS and certificates for authentication and key exchange
- Certificates for both endpoints
- If the certificates are valid
 - HMAC and encryption keys are dynamicly generated with OpenSSL
 - This assures Forward Secrecy
- Both parties contribute to key generation

OpenVPN dynamic key: cert generation

- We should have a certification authority issuing the certs...
 - This should be done in kali with the easy-rsa scripts
- BUT, we'll use the ones provided by openvpn for test purposes, instead...
- We should have
 - {client,server}.crt : CA signed public key
 - {client,server}.key: CA signed private key
 - dh2048.pem: Diffie-Hellman key exchange parameters

OpenVPN dynamic key: file conf

- Use the sample-conf
- boundary:
 - sample-conf/server.conf
 - sample-key with the needed crypto material
- client:
 - sample-conf/client.conf
 - sample-key with the needed crypto material
 - change the "remote" option with the ipaddress of the server

OpenVPN dynamic key: run

- Start openvpn
- Server:
 - openvpn --config server.conf
- Client:
 - openvpn --config client.conf
- Check the connectivity on the new interfaces and analyze the traffic with wireshark

That's all for today

- Questions?
- See you tomorrow
- Resources:
 - https://openvpn.net/community-resources/how-to/
 - Chapter 24 textbook
 - Virtual private networking, Gilbert Held, Wiley ed.
 - Guide to IPsec VPNs, NIST800-77
 - Guide to SSL VPNs, NIST-SP800-113
 - http://www.tcpipguide.com/free/t_IPSecurityIPSecProtocols.htm