ALGEBRA 2 TEST 3 Directions: Complete as many problems as you can in the 30 minutes allotted to you. No calculators! 1. In a Cartesian coordinate system, in what quadrant does (-2,3) exist? (**A**) I **(B)** II (**D**) IV (**E**) V 2. $\frac{4}{xyz} + \frac{3}{zyx} =$ **(D)** $\frac{7}{2x^2v^2r^2}$ **(B)** $\frac{7}{2xyz}$ $(\mathbf{A}) \ \frac{7}{xvz}$ (C) $\frac{7}{x^2 v^2 z^2}$ **(E)** $\frac{12}{2xyz}$ 3. If x + 1 is an even integer, which is the next consecutive even integer? **(D)** x+4**(E)** x + 5**(B)** x+2(C) x+34. $\sqrt{m} + \sqrt{m} =$ **(D)** $2\sqrt{m}$ (C) \sqrt{m} (A) m (\mathbf{B}) 2m5. If a+b < c, c < d, and e < 0, which of the following must be false? **(D)** a+b+6 < d+6 **(E)** $\frac{a+b}{2} > \frac{d}{2}$ (A) e(a+b) > ce(C) e(a+b) > ed(B) ec > ed6. Which term is equivalent to $\frac{a^5}{k^{-3} \cdot 5}$? (E) $\frac{c^{-5}}{b^{-3}a^5}$ (A) $\frac{1}{h^{-3}c^5a^5}$ (C) $\frac{b^3c^{-5}}{a^{-5}}$ (D) $\frac{b^{-3}a^5}{a^5}$ **(B)** $a^5b^3c^5$ 7. Which number is the largest? (C) $2\sqrt{6}$ **(D)** $\sqrt{23}$ **(B)** $3\sqrt{2}$ **(A)** $2\sqrt{5}$ 8. $\sqrt{\frac{9}{100} + \frac{4}{25}} =$ (A) $\frac{3}{10} \times \frac{2}{5}$ **(B)** $\frac{3}{10} \div \frac{2}{5}$ **(C)** $\frac{3}{10} - \frac{2}{5}$ $(\mathbf{D}) \ \frac{1}{2}$ **(E)** $\frac{7}{10}$ $9. \ \frac{1}{\left(\sqrt{7\frac{2}{9}}\right)^7} \times \left(\sqrt{\frac{65}{9}}\right)^9 =$ (C) $\left(\sqrt{7\frac{2}{9}}\right)^{-2}$ **(D)** $\left(\sqrt{7\frac{2}{9}}\right)^{7}$ (E) $\left(\sqrt{7\frac{2}{9}}\right)^{10}$ **(B)** $7\frac{2}{9} \times 7\frac{2}{9}$ (A) $7\frac{2}{9}$ 10. Solving the following system for m by substitution would yield which equation in the process? (C) 5m-21m-24=6(A) 5m+21m+24=6**(B)** 5m-21m+24=6**(D)** 5m+21m-24=6(E) 5m-21m+18=611. If the largest of three consecutive integers is $\frac{x+7}{9}$, what is the smallest of the three integers?

(A) $\frac{x-11}{9}$

12. When $3x^3 + 5$ is divided by x + 1, what is the remainder? (A) -8

(B) -2**(C)** 2

(C) $\frac{x+4}{9}$

(D) $\frac{x-20}{9}$

(E) $\frac{x+25}{9}$

$12(x+y)^3 - 6(x+y)^2$							
13. $\frac{12(x+y)^3 - 6(x+y)^2}{6(x+y)^2}$	=						
(A) $12(x+y)^3$	(B) $12(x+y)^3-1$	(C) $2(x+y)$	(D) $2(x+y)-1$	$\mathbf{(E)} \ 6(x+y)-1$			
14. What is the value of k if $kj^5 - 7j^2 + 5 = 0$ when $j + 1 = 0$?							
(A) −12	(B) −2	(C) $-\frac{2}{5}$	(D) 2	(E) 12			
15. Find the distance between $(-x, y)$ and $(x, -y)$.							
(A) $2x^2$	(B) $2x + 2y$	(C) $2(x-y)$	(D) $2\sqrt{x^2 + y^2}$	(E) $2\sqrt{x^2 - y^2}$			
16. Find the quotient for $\frac{x^2}{x}$	$\frac{+6x+8}{x^3-16x} \sqrt{\frac{x^2+8x+12}{x^2+2x-24}}$						
(A) <i>x</i>	(B) $\frac{1}{x}$	(C) $x+1$	(D) 0	(E) 1			
17. If $ax^2 + bx + c = 0$, find the value of $\frac{ax^2}{c} + \frac{bx}{c} + 3$ assuming $c \neq 0$.							
(A) 0	(B) 1	(C) 2	(D) 3	(E) 4			
18. If $\frac{a^7b^4}{c^6} < 0$, which of the following <i>must</i> be negative?							
(A) $b^2c^4a^6$	(B) $b^3c^4a^3$	(C) $c^3b^4a^5$	(D) $c^9b^7a^{11}$	(E) $b^6c^4a^{13}$			
19. $\frac{3}{a} + \frac{2}{a} =$							
$(\mathbf{A}) \ \frac{5}{2a}$	(B) $\frac{5}{a}$	(C) $\frac{5}{x^2}$	(D) $\frac{6}{a}$	$(\mathbf{E}) \ \frac{6}{a^2}$			
20. What value(s) can <i>a</i> have (A) -9	а	\boldsymbol{a}	(D) 3	a (E) 9			
21. You have x dollars made	` '	•					
describe this problem where d represents the number of dimes and q represents the number of quarters? (A) $ \begin{cases} d = q + 4 \\ q + d = x \end{cases} $ (B) $ \begin{cases} 25q + 10d = x \\ d = q - 4 \end{cases} $ (C) $ \begin{cases} 25q + 10d = 100x \\ d = q - 4 \end{cases} $ (D) $ \begin{cases} 25q + 10d = 100x \\ d = q + 4 \end{cases} $ (E) $ \begin{cases} 25q + 10d = x \\ d = q + 4 \end{cases} $							
$ \begin{array}{l} (\mathbf{A}) & \begin{cases} a = q + 4 \\ q + d = x \end{cases} \end{array} $	$ \begin{array}{ll} \mathbf{(B)} & \begin{cases} 23q + 10a = x \\ d = q - 4 \end{cases} \end{array} $	$ (C) \begin{cases} 23q + 10d = 100x \\ d = q - 4 \end{cases} $	(D) $\begin{cases} 23q + 10a = 100x \\ d = q + 4 \end{cases}$	$ (E) \begin{cases} 23q + 10a = x \\ d = q + 4 \end{cases} $			
22. If $wxyz = \sqrt{r}$ and x, y, z , and $r > 1$, then $\frac{w}{xy} = \frac{w}{xy}$							
$(\mathbf{A}) \ \frac{\sqrt{r}}{x^2 y^2 z}$	(B) $\frac{\sqrt{r}}{z}$	(C) $\frac{\sqrt{r}}{xyz}$	(D) $\frac{z}{\sqrt{r}}$	$(\mathbf{E}) \ \frac{xyz}{\sqrt{r}}$			
23. If $y = mx + b$, find the value of $x + \frac{b}{m}$.							
$(\mathbf{A}) \ \frac{y}{m}$	$\mathbf{(B)} \frac{y+b}{m}$	(C) $\frac{y-b}{m}$	(D) $\frac{m}{y}$	$(\mathbf{E}) \ \frac{m+b}{y}$			
24. What value can f have if $r = -2$ and $\frac{fr^4 - r^3}{r^{16}} = r^{-15}$.							
(A) $-\frac{8}{5}$			(D) $\frac{3}{8}$	(E) $\frac{8}{3}$			
25. Given $14 - \frac{y+z}{3} \le 6$, what is known about the sum of y and z?							

This test is property of Mathfax. Permission is granted to copy for your school only for the 2017-2018 school year.

(D) > 24

 $(\mathbf{E}) \geq 24$

(C) ≤11

(A) < 24

 $(\mathbf{B}) \leq 24$

ALGEBRA 2 TEST 3 ANSWERS

1. B	2. A	3. C	4. D	5. E
6. C	7. E	8. D	9. A	10. B
11. A	12. C	13. D	14. B	15. D
16. A	17. C	18. E	19. B	20. E
21. D	22. A	23. A	24. B	25. E

1. II
$$2. \frac{4}{xyz} + \frac{3}{zyx} = \frac{7}{xyz}$$

3.
$$x+1+2=x+3$$
 4. $2\sqrt{m}$

5. Choices A, B, C, and D are all true since multiplying both sides by a negative number will switch the direction of the sign. Since a+b < c and c < d, then a+b < d. Therefore $\frac{a+b}{3} < \frac{d}{3}$ proving E false.

6.
$$\frac{b^{3}c^{-5}}{a^{-5}}$$
7.
$$5\sqrt{1} = \sqrt{25}$$
9.
$$\frac{1}{\left(\sqrt{7\frac{2}{9}}\right)^{7}} \times \left(\sqrt{\frac{65}{9}}\right)^{9} = \left(\sqrt{7\frac{2}{9}}\right)^{2} = 7\frac{2}{9}$$

10.
$$5m-3(7m-8)=6 \rightarrow 5m-21m+24=6$$

8. $\sqrt{\frac{9}{100}} + \frac{4}{25} = \sqrt{\frac{9}{100}} + \frac{16}{100} = \sqrt{\frac{25}{100}} = \frac{1}{2}$

11.
$$\frac{x+7}{9} - 2 = \frac{x+7}{9} - \frac{18}{9} = \frac{x-11}{9}$$
 12. $(3x^3 + 5) \div (x+1) = 3x^2 - 3x + 3 + \frac{2}{x+1}$

13.
$$\frac{12(x+y)^3 - 6(x+y)^2}{6(x+y)^2} = \frac{6(x+y)^2 2(x+y) - 1}{6(x+y)^2} = 2(x+y) - 1$$

14.
$$k(-1)^5 - 7(-1)^2 + 5 = 0 \rightarrow -k - 7 + 5 = 0 \rightarrow k = -2$$

15.
$$d = \sqrt{(x - x)^2 + (-y - y)^2} = \sqrt{4x^2 + 4y^2} = \sqrt{4(x^2 + y^2)} = 2\sqrt{x^2 + y^2}$$

7. $5\sqrt{1} = \sqrt{25 \times 1} = \sqrt{25}$

16.
$$\frac{x^2 + 8x + 12}{x^2 + 2x - 24} \div \frac{x^3 - 16x}{x^2 + 6x + 8} = \frac{(x+6)(x+2)}{(x+6)(x-4)} \cdot \frac{x(x+4)(x-4)}{(x+4)(x+2)} = x$$

17. Dividing
$$ax^2 + bx + c = 0$$
 by c yields $\frac{ax^2}{c} + \frac{bx}{c} + 1 = 0$ or $\frac{ax^2}{c} + \frac{bx}{c} = -1$. Therefore $\frac{ax^2}{c} + \frac{bx}{c} + 3 = -1 + 3 = 2$.

18. b^4 and c^6 must be positive. Since $\frac{a^7b^4}{c^6} < 0$, therefore a must be negative. Since it cannot be determined if b and c are positive or negative, the only choice that must be negative is $b^6c^4a^{13}$.

19.
$$\frac{3}{a} + \frac{2}{a} = \frac{5}{a}$$

20.
$$-a+6+3=0 \rightarrow a=9$$

21. D

22.
$$\frac{wxyz}{x^2y^2z} = \frac{\sqrt{r}}{x^2y^2z} = \frac{w}{xy}$$

23. Dividing each term by *m* results in
$$\frac{y}{m} = x + \frac{b}{m}$$

24. Multiplying both sides by r^{16} results in $fr^4 - r^3 = r$. Substituting -2 in for r and simplifying results in 16f + 8 = -2. Therefore $f = -\frac{5}{9}$.

25. Subtracting 14 from both sides and multiplying both sides by -3 results in $y+z \ge (6-14)(-3) \rightarrow 24$