Теоретичний матеріал до лабораторної роботи №1 МАТЕМАТИЧНИЙ НЕЙРОН

Математичний нейрон був запропонований американськими вченими *Уорреном Мак-Каллоком* і *Вальтером Пітт*сом у 1943р.

Математичний нейрон – це математична модель біологічного нейрона мозку. Його зображують у вигляді кружечка зі стрілками, які позначають входи і вихід. На рис.1 математичний нейрон має J входів і один вихід.

Рис. 1. Математичний нейрон Мак-Каллока – Піттса

Через входи математичний нейрон приймає вихідні сигнали x_j , які сумуються, множачи кожен вихідний сигнал на деякий ваговий коефіцієнт w_i :

$$S = \sum_{j=1}^{J} w_j x_j. \tag{1}$$

Після цього, математичний нейрон формує свій вихідний сигнал відповідно до правила:

$$y = \begin{cases} 1, & \text{если } S \ge \theta \\ 0, & \text{если } S < \theta \end{cases}$$
 (2)

де величину θ називають порогом чутливості нейрона.

Таким чином, математичний нейрон може існувати у двох станах. Якщо зважена сума вхідних сигналів S менша ніж поріг чутливості θ , то його вихідний сигнал y дорівнює нулю. В цьому випадку говорять, що нейрон не збуджений. Якщо ж вхідні сигнали досить інтенсивні та їх зважена сума досягає порогу чутливості θ , то нейрон переходить у збуджений стан і на його виході, у відповідності до формули (2), формується сигнал y=1.

Вагові коефіцієнти w_j імітують електропровідність нервових волокон – силу синаптичних зв'язків між нейронами. Чим ці сили вищі, тим більша ймовірність переходу нейрона у збуджений стан. З іншої сторони, ймовірність переходу нейрона у збуджений стан збільшується при зменшенні порогу чутливості θ .

Рис. 2. Активаційна функція нейрона: «сходинка»

З допомогою математичного нейрона можна моделювати різні логічні функції, наприклад функцію логічного множення «І» («AND»), функцію логічного додавання «АБО» («OR») і функцію логічного заперечення «НІ» («NOT»). Таблиці істинності цих логічних функцій приведені на рис.3.

X 1	X2	У		X 1	^x 2	У			
0	0	0		0	0	0		X	У
0	1	0		0	1	1		0	1
1	0	0		1	0	1		1	0
1	1	1		1	1	1			
«I»			«АБО»			«HI»			

Рис. 3. Таблиці істинності логічних функцій

Логічна функція (2) називається активаційною функцією нейрона. Її графічне зображення має вигляд, представлений на рис. 2. За цей вигляд її іноді називають «функцією-сходинкою».

3 допомогою даних таблиць і формул (1)-(2) не складно переконатись, що математичний нейрон, який має два входи з одиничними силами синаптичних зв'язків $w_I = w_2 = 1$, моделює логічну функцію логічного множення «І» при θ =2. Цей же нейрон моделює функцію логічного додавання «АБО» при заданні θ =1. Математичний нейрон з одним входом моделює функцію «НІ» при заданні w = -1 і θ = 0.

Рис.4. Математичні нейрони, що моделюють логічні функції.

Однак, існують логічні функції, які неможливо моделювати з допомогою математичного нейрона Мак-Каллока-Питтса. Такою логічною функцією ϵ «Виключаюче АБО», таблиця істинності якої приведена на рис.5.

X_{l}	X 2	У
0	0	0
0	1	1
1	0	1
1	1	0

Рис.5. Таблиця істинності функції «Виключаюче АБО»

Задачі, які, як і проблема «Виключного АБО», з допомогою персептрона вирішити неможливо, називають лінійно нероздільними задачами. У свій час учені потратили багато сил і засобів, намагаючись вирішити такі задачі, помилково вважаючи, що причина їх невдач полягає в недостатній потужності існуючих комп'ютерів та в недостатній кількості зроблених спроб.

Ймовірно, щось подібне може трапитись і з вами при виконанні лабораторної роботи №1. Підібравши значення синаптичних ваг w_I , w_2 і порога θ , ви успішно справитесь з моделюванням логічних функцій «І» та «АБО», тоді як спроби моделювання функції «Виключаюче АБО» до успіху не приводять. Поясненню цього явища і подоланню проблеми «Виключаючого АБО» буде присвячена лабораторна робота №5.

На завершення відзначимо, що в сучасній літературі іноді замість поняття порога чутливості нейрона θ використовують термін *нейронне зміщення b*, яке відрізняється від порога θ лише знаком: $b = -\theta$. Якщо величину b додати до суми (1):

$$S = \sum_{j=1}^{J} w_{j} x_{j} + b ,$$
 (3)

то порогова активаційна функція нейрона прийме вигляд:

$$y = \begin{cases} 1, & \text{если } S \ge 0; \\ 0, & \text{если } S < 0, \end{cases}$$
 (4)

Графічне представлення цієї активаційної функції приведено на рис. 6, а.

Рис. 6. Порогові активаційні функції нейрона, задані формулами: a - (4); $\delta - (5)$.

Ще більш симетричний вигляд, представлений на рис. 6, δ , активаційна функція нейрона набуває при використанні формули:

$$y = \begin{cases} 1, & \text{если } S \ge 0; \\ -1, & \text{если } S < 0, \end{cases}$$
 (5)

У формулі (3) нейронне зміщення b можна розглядати, як вагу w_0 деякого додаткового вихідного сигналу x_0 , величина якого завжди рівна одиниці:

$$S = \sum_{j=1}^{J} w_j x_j + w_0 x_0 = \sum_{j=0}^{J} w_j x_j$$

Нейрон з додатковим входом х₀ зображений на рис. 7.

Рис. 7. Нейронне зміщення b інтерпретується як вага додаткового входу w_0 , сигнал якого x_0 завжди рівний 1.