

National Aeronautics and
Space Administration

A Novel Triple-Pulsed 2- μm Lidar for Simultaneous and Independent CO₂ and H₂O Column Measurement

Jirong Yu, Upendra Singh, Mulugeta Petros, Tamer Refaat

NASA Langley Research Center

OSA Imaging and Applied Optics
June 9, 2015

Acknowledgement: NASA Earth Science Technology Office (ESTO)

Outline

- **Introduction**
- **2-micron double pulsed IPDA lidar methodology**
- **Spectroscopy and IPDA simulation**
- **2-micron double pulsed IPDA lidar**
- **IPDA lidar Airborne Demonstration**
- **2-micron triple pulsed IPDA lidar methodology**
- **Triple pulsed lidar performance model**
- **Summary and Conclusions**

Introduction

- ❖ The study of global warming needs precisely and accurately measuring greenhouse gases concentrations in the atmosphere. CO₂ and H₂O are important greenhouse gases that significantly contribute to the carbon cycle and global radiation budget on Earth
- ❖ NRC Decadal Survey recommends a mission for Active Sensing of Carbon Dioxide (CO₂) over Nights, Days and Seasons (ASCENDS)
- ❖ 2 micron laser is a viable IPDA transmitter to measure CO₂ and H₂O column density from space
- ❖ The objective is to demonstrate a first airborne direct detection 2 micron IPDA lidar for CO₂ and H₂O measurements.

2μm Pulsed Lidar Approach

- Unambiguously defines the optical path of the detected signal; eliminate contamination from aerosols and clouds to yield high accuracy measurements
- Auxiliary altimetry lidar may not needed
- The weighting function in the 2- μm region is most favorable for making CO₂ measurements near the surface and PBL, where the sources and sinks of CO₂ are located
- Straightforward data analysis
- The pulse approach can potentially determine CO₂ concentrations as a function of distance, a valuable data product that is not easily available

Principle of IPDA Measurement Using Surface Targets

Transmit and receive near nadir-pointing laser beams with on and off-line wavelength channels

- Ground surface reflection (land and sea)
- Measure difference in integrated path absorption at these two wavelengths

Methodology

- IPDA lidar relies on the Hard Target Lidar Equation

$$E_T = \eta_r \cdot \varphi_r \cdot \frac{A_t}{\Delta R^2} \cdot E_M \cdot \frac{\rho}{\pi} \cdot \exp[-OD(\lambda, R_G)]$$

- Double-pulse tuning defines CO₂ differential optical depth, the main IPDA product

$$DAOD_{cd} = \int_0^R 2 \cdot \Delta\sigma_{cd} \cdot N_{cd} \cdot dr \approx \ln \left(\frac{E_{T,off} \cdot E_{M,on}}{E_{M,off} \cdot E_{T,on}} \right)$$

- Other IPDA products include ranging and surface reflectivity.

Modeling: XCO₂ Extraction

- Provided availability of meteorological data, differential optical depth can be converted into dry mixing ration (XCO₂)

$$XCO_2 = \frac{DAOD_{cd}}{\int_0^R 2 \cdot \Delta\sigma_{cd} \cdot N_{dry} \cdot dr} = \frac{N_{cd}}{N_{dry}}$$

$$N_{dry} = N_{air} - N_{wv}$$

$$N_{wv} = fn(RH)$$

$$N_{air} = \frac{P}{k \cdot T}$$

Modeling: Spectroscopy

$$\Delta\sigma_{cd} = fn(\lambda, P, T)$$

- Calculated using HITRAN 2012 database targeting CO₂ R30 line
- Voigt line profile was assumed
- Calculation includes 5550 CO₂ neighboring lines from 2044.22 nm to 2059.57 nm
- Calculation includes 1816 H₂O neighboring lines from 2022.21 nm to 2080.36 nm
- US Standard Atmospheric model was assumed

Modeling: Products

- **Using Standard Models**

IPDA lidar modeling products includes estimates for optical depth, return pulse strength, signal-to-noise ratio and random and systematic errors for any operating condition

- **Using meteorological data**

IPDA lidar modeling derives weighting functions required for XCO₂ derivation

Airborne Pressure-Based Weighting- Functions

System Schematic

Data Acquisition & Display

Telescope & Receiver

Transmitter

Integrated IPDA Lidar

2-micron double pulsed IPDA lidar in airplane

10 Flights in March & April 2014

Date	Purpose	Duration	Location
March 20	Instrument Check Flight	2.1 hr	VA
March 21	Engineering	2.7 hr	VA
March 24	Engineering	3.0 hr	VA
March 27	Early morning	3.0 hr	VA
March 27	Mid-afternoon	2.5 hr	VA
March 31	Inland-Sea	2.5 hr	VA, NC
April 02	Power Station	2.4 hr	NC
April 05	With NOAA	3.7 hr	NJ
April 06	Power Station	3.0 hr	NC
April 10	Late afternoon	2.3 hr	VA

- Aircraft had temperature, pressure, humidity sensors, LiCor and GPS
- Some of the flights were supported by balloon launches

IPDA Lidar Capability

- **Ranging**
- **Cloud Slicing**
- **Signals at various ground condition**
- **DAOD**
- **Power Station**
- **Flight data comparison with NOAA flights which collects a flask at multiple altitudes to obtain vertical profile**
- **Lidar Sensitivity**

Ranging Capability

Cloud Slicing

	Alt. m	DAOD Lidar	DAOD Model	dDAO D
Ocean	6805	1.072	1.094	
Cloud	5631	0.757	0.782	
Lidar				0.315
Model				0.312

IPDA Airborne Lidar: Sample Return Signals

	Lidar Signal	SNR (peak)	SNR (power)	DAOD Model	DAOD w/mon.
Veg/Soil	1.89	398	485	1.0551	1.0550
Sea	0.552	111	139	1.0551	1.0883
Cloud	1.78	328	452	0.7805	0.757

Power Station Roxboro

DAOD

36° 28'52.79"N 79° 04'08.97"W

Methodology

- With proper wavelength selection, independent H_2O & CO_2 measurement is achieved

$$\begin{bmatrix} dOD_{1,2} \\ dOD_{2,3} \end{bmatrix} = \begin{bmatrix} \ln\left(\frac{\textcolor{blue}{E}_{T,2} \cdot \textcolor{green}{E}_{M,1}}{\textcolor{blue}{E}_{M,2} \cdot \textcolor{green}{E}_{T,1}}\right) \\ \ln\left(\frac{\textcolor{red}{E}_{T,3} \cdot \textcolor{blue}{E}_{M,2}}{\textcolor{red}{E}_{M,3} \cdot \textcolor{blue}{E}_{T,2}}\right) \end{bmatrix} = \begin{bmatrix} iWF_{wv}^{1,2} & 0 \\ 0 & iWF_{cd}^{2,3} \end{bmatrix} \cdot \begin{bmatrix} X_{wv} \\ X_{cd} \end{bmatrix}$$

Methodology

- IPDA lidar relies on the Hard Target Lidar Equation

$$E_T = \eta_r \cdot \varphi_r \cdot \frac{A_t}{\Delta R^2} \cdot E_M \cdot \frac{\rho}{\pi} \cdot \exp[-OD(\lambda, R_G)]$$

Methodology

- Triple-pulse tuning defines H₂O & CO₂ differential optical depth, the main IPDA product, simultaneously

$$dOD_{1,2} = \int_0^R 2 \cdot (\Delta\sigma_{wv}^{1,2} \cdot N_{wv} + \Delta\sigma_{cd}^{1,2} \cdot N_{cd}) \cdot dr = \ln \left(\frac{E_{T,2} \cdot E_{M,1}}{E_{M,2} \cdot E_{T,1}} \right)$$

$$dOD_{2,3} = \int_0^R 2 \cdot (\Delta\sigma_{wv}^{2,3} \cdot N_{wv} + \Delta\sigma_{cd}^{2,3} \cdot N_{cd}) \cdot dr = \ln \left(\frac{E_{T,3} \cdot E_{M,2}}{E_{M,3} \cdot E_{T,2}} \right)$$

Methodology

- H_2O & CO_2 weighted-average column dry-air volume-mixing ratios can be determined, assuming proper definition of the weighting functions

$$\begin{bmatrix} dOD_{1,2} \\ dOD_{2,3} \end{bmatrix} = \begin{bmatrix} \ln\left(\frac{\textcolor{blue}{E}_{T,2} \cdot \textcolor{green}{E}_{M,1}}{\textcolor{blue}{E}_{M,2} \cdot \textcolor{green}{E}_{T,1}}\right) \\ \ln\left(\frac{\textcolor{red}{E}_{T,3} \cdot \textcolor{blue}{E}_{M,2}}{\textcolor{red}{E}_{M,3} \cdot \textcolor{blue}{E}_{T,2}}\right) \end{bmatrix} = \begin{bmatrix} iWF_{wv}^{1,2} & iWF_{cd}^{1,2} \\ iWF_{wv}^{2,3} & iWF_{cd}^{2,3} \end{bmatrix} \cdot \begin{bmatrix} X_{wv} \\ X_{cd} \end{bmatrix}$$

Methodology

- With other wavelength selection, independent and simultaneous CO₂ measurement is achieved using two different weighting functions

$$\begin{bmatrix} dOD_{1,2} \\ dOD_{2,3} \end{bmatrix} = \begin{bmatrix} \ln\left(\frac{\mathbf{E}_{T,2} \cdot \mathbf{E}_{M,1}}{\mathbf{E}_{M,2} \cdot \mathbf{E}_{T,1}}\right) \\ \ln\left(\frac{\mathbf{E}_{T,3} \cdot \mathbf{E}_{M,2}}{\mathbf{E}_{M,3} \cdot \mathbf{E}_{T,2}}\right) \end{bmatrix} = \begin{bmatrix} 0 & iWF_{cd}^{1,2} \\ 0 & iWF_{cd}^{2,3} \end{bmatrix} \cdot \begin{bmatrix} X_{wv} \\ X_{cd} \end{bmatrix}$$

Technology Requirement

	Wavelength	Energy	Pulse Width
	$\lambda_1=2050.5094$ nm	50 mJ	30 nsec
	$\lambda_2=2051.0590$ nm	15 mJ	60 nsec
	$\lambda_3=2051.1915$ nm	5 mJ	100 nsec
Transmitter	Repetition Rate	50 Hz	
	Beam Quality	2.0 (M^4)	
	Beam Divergence	150 μ rad	
	Laser Line-Width	<i>Transform Limited</i>	
	Frequency Control Accuracy	< 1 MHz	
	Spectral Purity	99.9%	
	Wall-Plug Efficiency	2%	
	Beam Expansion	x10	
Receiver	Optical Efficiency	65%	
	Telescope Diameter	40 cm	
	Optical Filter Spectral Width	1.6 nm	
	Field-of-View	300 μ rad	
Detector ^{a)}	Operating Temperature	-20°C	
	Bias Voltage	300 mV	
	Quantum Efficiency	67.75%	
	Dark Current	3.7 nA	
	Capacitance	29.3 pF	
TIA ^{b)}	Gain	10^6 V/A	
	Bandwidth	3.5 MHz	
	Noise Current Spectral Density	450 fA/Hz $^{1/2}$	
	Noise Voltage Spectral Density	2.8 nV/Hz $^{1/2}$	
Env.	Background Solar Irradiance	0.5 mW/m 2 .nm.sr	
	Surface Reflectivity (vegi/ocean)	0.09/0.08	
	Aircraft Speed	100 m/s	

^{a)}InGaAs pin, Hamamatsu Inc., G5853-203. ^{b)}FEMTO, DHPCA-100

New Technology

- 2-μm triple-pulse laser
- Individual pulse switching, tuning and locking
- Sufficient pulse energy
- High repetition rate for averaging
- Better detection and proper characterization

Repurposed Technology

- Receiver telescope and optics
- Updated operational software
- Updated analysis algorithms
- Testing facilities

IPDA Lidar Performance

- Triple-pulse H₂O & CO₂ IPDA lidar modeling assuming airborne operation from 8km altitude
- Focus on return signal simulation and estimates on dominant error sources

Error Budget

- Atmospheric systematic error, ε_A , include
 - Molecular interference, $\varepsilon_{A,m}$
 - Temperature uncertainty, $\varepsilon_{A,t}$
 - Pressure uncertainty, $\varepsilon_{A,p}$
 - Relative humidity uncertainty, $\varepsilon_{A,h}$

$$\varepsilon_A = \sqrt{\varepsilon_{A,t}^2 + \varepsilon_{A,p}^2 + \varepsilon_{A,h}^2 + \varepsilon_{A,m}^2}$$

Error Budget

- Transmitter systematic error, ε_T , include
 - On- and off-line jitters, $\varepsilon_{j,on}$ and $\varepsilon_{j,off}$
 - On- and off-line laser line width, $\varepsilon_{p,on}$ and $\varepsilon_{p,off}$

$$\varepsilon_T = \sqrt{\varepsilon_{j,on}^2 + \varepsilon_{j,off}^2 + \varepsilon_{p,on}^2 + \varepsilon_{p,off}^2}$$

Error Budget

$$\boldsymbol{\varepsilon} = \frac{\delta[dOD]}{dOD} = \boldsymbol{\varepsilon}_R / \sqrt{s} + \sqrt{\boldsymbol{\varepsilon}_A^2 + \boldsymbol{\varepsilon}_T^2}$$

- Random error, $\boldsymbol{\varepsilon}_R$, include all fixed and signal-dependent noise sources
- Triple-pulse IPDA lidar simulation resulted in 0.5% and 0.2% differential optical depth errors with 10 s average assuming 8 km flight altitude for water vapor and carbon dioxide, respectively.

Summary (Double Pulsed Lidar)

- Developed a 2- μm double-pulsed laser transmitter and IPDA lidar system for CO₂ measurement
- Completed simulation and modeling of the 2- μm IPDA lidar instrument projected performance and science data retrieval algorithms
- Successful airborne IPDA lidar operation demonstrating robust integration and reliability
- Demonstrated airborne IPDA return signals obtained through different weighting functions and ground conditions, including soil, vegetation, ocean, sand and snow, beside cloud slicing capability all with high single-shot signal-to-noise ratio exceeding 100
- Airborne off-off-line testing applied to quantify both systematic (bias) and random (sensitivity) errors
- Bias and sensitivity verified through DAOD measurement
- Analysis of water vapor interference on CO₂ measurement indicated minimal error contribution due to precise selection, tuning and locking of the selected operational wavelengths.

Summary (Triple Pulsed Lidar)

- Feasibility of 2- μm triple-pulse IPDA lidar for simultaneous and independent X_{cd} and X_{wv} measurements from an airborne platform was analyzed.
- Unique capabilities include weighting the measurements toward the surface, the ABL or the free troposphere.
- Study is based on the planned development of the 2.0- μm triple-pulse laser technology, with independent tuning and locking at three different wavelengths.
- Integrated receiver and detection system developed at NASA LaRC is assumed in the analysis.
- Availability of mobile lidar laboratory at NASA LaRC provides instrument testing, characterization and evaluation, beside future field deployments.
- X_{wv} & X_{cd} IPDA instrument simulation resulted in 0.5% and 0.2% differential optical depth errors with 10 s average assuming 8 km flight altitude for water vapor and carbon dioxide, respectively.
- Development of a new remote sensing capability for investigating the distributions and variability of atmospheric H_2O and CO_2 will enable a better understanding of the carbon and water cycles of the ecosystems.