DS203-2025-S1: E1

- **Submissions due by:** Aug 12, 2025; 23:55 Hrs.
- Follow the submission guidelines given at the end of this document.
- Late / non-submissions: (-1) mark will be added to your account.
- **Copied / fraudulent submissions:** (-10) marks will be added to your account. Blank and woefully inadequate / irrelevant submissions will be considered fraudulent.

Part A

• Review <u>Simple Linear Regression Derivation.pdf</u> (uploaded to Moodle)

Part B

Note: All steps in Part B should be completed using a spreadsheet such as Excel, LibreOffice, etc.

- 1. Download the dataset *E1.csv* uploaded to Moodle. Review and create a description of the data in terms of its size (rows and columns), the type of data it contains including the *level of measurement* that can be associated with each column.
- 2. Create a scatter plot to visualize the data and comment on the suitability of a *Simple Linear Regression* model for the data.
- 3. Using the data, calculate the regression coefficients β_0 and β_1 . All calculations should be entirely done using a spreadsheet.
- 4. The equation of the resulting regression model (line) will be: $\hat{y}_i = \beta_0 + \beta_1 \cdot x_i$; using this regression line, predict \hat{y}_i corresponding to every x_i .
- 5. Create a plot by superimposing the predicted points (x_i, \hat{y}_i) over the scatter plot of (x_i, y_i) created earlier.

- 6. For every y_i calculate the prediction error $e_i = (y_i \hat{y}_i)$, and follow it up by calculating the following error metrics:
 - a. SSE (Sum of Squared Errors)
 - b. MSE (Mean Squared Error)
 - c. RMSE (Root Mean Squared Error)
 - d. MAE (Mean Absolute Error)

(Find out the contexts and applications in which these error metrics are used)

- 5. Create a scatter plot of e_i v/s x_i and record your observations.
- 6. Create a histogram of the errors e_i , and comment on the shape of the histogram. Is it a good regression from the error analysis point of view?
- 7. How to find out if the distribution is normal? Deduce it based on an analysis of the **skewness** and **kurtosis** values of e_i .
- 8. Compute ${\cal R}^2$ for this regression and comment on the goodness of fit based on its value.
- 9. As discussed in class, sometimes (when?) we are only interested in the slope of the regression line and we do not need the intercept . In such cases we are interested in a simple linear regression model which can be expressed as: $\hat{y}_i = \beta_1 \cdot x_i$;
 - $\circ\,$ a. Derive the expression for eta_1
 - b. Using the resulting model create the following plots:
 - \circ c. \hat{y}_i v/s x_i
 - \circ d. e_i v/s x_i
 - \circ e. Calculate the following error merics: e_i , SSE, MSE, RMSE, MAE for this model.
 - f. Compare these plots and metrics with the corresponding plots and metrics of the earlier model and record your conclusions based on this analysis.

(Note: Stating obvious facts is NOT analysis!)

Submission Guidelines

- 1. Create a properly formatted **report** covering all the above steps.
- 2. List down your **main learnings** from this exercise.
- 3. Upload the following files to the E1 submission point on Moodle (**Note:** The file names should start with **E1-YourRollNo**).
 - The **spreadsheet** containing the dataset and all calculations done in the spreadsheet.
 - PDF of your report.

000000000