General Outline

D. Miranda-Esquivel

2024-01-20

Table of contents

General objective	3
Key Concepts	3
Activities	3
Readings	3
Basic readings	3
Should read	3
Probability	5
General objective	5
Key Concepts	5
Activities	5
Readings	5
Basic readings	5
Should read	5
Likelihood	6
General objective	6
Key Concepts	6
Activities	6
Readings	6
Basic readings	6
Should read	6
Bayes	7
General objective	7
Key Concepts	7
Activities	7
Readings	7
Basic readings	7

Should read	7
LRt - Bayes Factors	8
General objective	8
Key Concepts	
Activities	
Readings	
Basic readings	
Should read	
larkov Chain Monte Carlo	g
General objective	(
Key Concepts	
Activities	
Readings	
Basic readings	
Should read	
ome examples	10
General objective	10
Activities	
Readings	10
Basic readings	
Should read	10

General objective

- In this section, we will review:
 - Basic probability concepts and various probability distributions.
 - Uses of Bayes inference in Ecology.
 - Some criticisms to the use of p-values.

Key Concepts

- Probability basics
- Common probability distributions (binomial, Dirichlet, gamma, exponential, log-normal)
- Time to say good-bye to p-values
- Bayes in Ecology

Activities

- Review: Unit 3. Bodine et al and the ASA statement.
- Read: Bayesian inference in ecology. Ecology Letters (2004) 7: 509-520 doi: 10.1111/j.1461-0248.2004.00603.x
- Find a paper in your area of expertise and revise the use of p-values, write down a short analysis (max 1000 words) of the possible ways to solve the problems you might have detected.

Readings

Basic readings

- Unit 3. Bodine et al Read Online
- Ellison. 2004. Bayesian inference in ecology. Ecology Letters. 7: 509–520 doi: 10.1111/j.1461-0248.2004.00603.x
- ASA statement Read Online

Should read

- Chapter 5. Sokal & Rohlf
- Chapter 1. Anderson's perspective on Science and Experimental design Read Online
- Storopoli (2022). Bayesian Statistics: a graduate course.

• van de Schoot, R., Depaoli, S., King, R. et al. Bayesian statistics and modelling. Nat Rev Methods Primers 1, 1 (2021).

Probability

General objective

- In this section, we will review:
 - Basic probability concepts and various probability distributions.

Key Concepts

- Probability basics
- Common probability distributions (binomial, Dirichlet, gamma, exponential, log-normal)

Activities

- Review:
 - Chapter 2: Introduction: Credibility, Models, and Parameters Kruschke, J. K. (2014). Doing Bayesian data analysis. Academic press.
 - Chapter 4: What is This Stuff Called Probability? Kruschke, J. K. (2014). Doing Bayesian data analysis. Academic press.
- Prepare the exercises in both chapters.
- Review: Chapter 3: Principles of Probability Hobbs, N. (2015). Introduction to statistical thinking. CRC Press.

Readings

Basic readings

- Chapters 2 & 4 Kruschke, J. K. (2014). Doing Bayesian data analysis. Academic press.
- Chapter 3 Hobbs, N. (2015). Introduction to statistical thinking. CRC Press.

Should read

- Unit 3. Bodine et al Read Online
- Chapter 5. Sokal & Rohlf
- Ellison. 2004. Bayesian inference in ecology. Ecology Letters. 7: 509–520 doi: 10.1111/j.1461-0248.2004.00603.x

Likelihood

General objective

- In this section, we will review:
 - Basic likelihood concepts.

Key Concepts

• Likelihood

Activities

• Review: Chapter 4: Likelihood Hobbs, N. (2015). Introduction to statistical thinking. CRC Press.

Readings

Basic readings

• Chapter 4 Hobbs, N. (2015). Introduction to statistical thinking. CRC Press.

Should read

 \bullet Ellison. 2004. Bayesian inference in ecology. Ecology Letters. 7: 509–520 doi: $10.1111/\mathrm{j}.1461\text{-}0248.2004.00603.x}$

Bayes

General objective

- In this section, we will review:
 - Bayes' rule

Key Concepts

- Conditional probability
- Bayes' theorem (or Bayes' rule)

Activities

- Review:
 - Chapter 5: Likelihood Hobbs, N. (2015). Introduction to statistical thinking. CRC Press.
 - Chapter 5: Bayes' Theorem Kruschke, J. K. (2014). Doing Bayesian data analysis.
 Academic press.

Readings

Basic readings

- Chapter 5 Hobbs, N. (2015). Introduction to statistical thinking. CRC Press.
- Chapter 5 Kruschke, J. K. (2014). Doing Bayesian data analysis. Academic press.

Should read

 \bullet Ellison. 2004. Bayesian inference in ecology. Ecology Letters. 7: 509–520 doi: 10.1111/j.1461-0248.2004.00603.x

hLRt - Bayes Factors

General objective

- In this section, we will review:
 - Hierarchical likelihood ratio tests (hLRt) and Bayes factors.

Key Concepts

- Hierarchical likelihood ratio tests (hLRt)
- Bayes factors

Activities

- Review the following Wikipedia pages:
 - Likelihood-ratio test: https://en.wikipedia.org/wiki/Likelihood-ratio test
 - Bayes factor: https://en.wikipedia.org/wiki/Bayes_factor

Readings

Basic readings

• Kass, R. E., & Raftery, A. E. (1995). The Bayes factor. Journal of the Royal Statistical Society. Series B (Methodological), 57

Should read

• Ellison. 2004. Bayesian inference in ecology. Ecology Letters. 7: 509–520 doi: 10.1111/j.1461-0248.2004.00603.x

Markov Chain Monte Carlo

General objective

- In this section, we will review:
 - Markov Chain Monte Carlo (MCMC) methods.

Key Concepts

- Sampling
- Markov Chain Monte Carlo (MCMC)

Activities

- Review:
 - Chapter 7: Markov Chain Monte Carlo Hobbs, N. (2015). Introduction to statistical thinking. CRC Press.
 - Chapter 7: Markov Chain Monte Carlo Kruschke, J. K. (2014). Doing Bayesian data analysis. Academic press.

Readings

Basic readings

- Chapter 7 Hobbs, N. (2015). Introduction to statistical thinking. CRC Press.
- Chapter 7 Kruschke, J. K. (2014). Doing Bayesian data analysis. Academic press.

Should read

 \bullet Ellison. 2004. Bayesian inference in ecology. Ecology Letters. 7: 509–520 doi: 10.1111/j.1461-0248.2004.00603.x

Some examples

General objective

- In this section, we will practice with R and apply concepts of MCMC to ecological examples:
 - Estimating bias in a coin (Kruschke, 2014, Chapter 5.3).
 - Simulating a population growth model (adapted from Kruschke, 2014, Chapter 7.2.1).

Activities

• Review Chapters 5-7: Markov Chain Monte Carlo in Kruschke (2014).

Readings

Basic readings

• Chapters 5-7 Kruschke, J. K. (2014). Doing Bayesian data analysis. Academic press.

Should read

 \bullet Ellison. 2004. Bayesian inference in ecology. Ecology Letters. 7: 509–520 doi: 10.1111/j.1461-0248.2004.00603.x