Material de estudo

@ivansnpmaster

20 de Janeiro de 2019

1 Álgebra linear

1.1 Autovalores e autovetores

Seja $A=(a_{ij})\in \mathbb{M}_n(\mathbb{R})$. Dizemos que um valor $\lambda\in\mathbb{R}$ é um autovalor de A se o sistema

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 (1)

tiver uma solução não nula. Para um tal autovalor λ , cada solução de (1) será chamada de autovetor de A associado a λ (ou simplesmente, um autovetor de A).

Notação: Se λ for um autovalor de uma matriz A, indicamos por $V(\lambda)$ ao conjunto de todos os autovetores de A associados a λ (isto é, o conjunto solução do sistema (1)).

Exemplo: Considere uma matriz
$$A = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$$

Queremos encontrar um valor $\lambda \in \mathbb{R}$ (se isso for possível) tal que o sistema

$$\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \tag{2}$$

tenha soluções não nulas. Observe que podemos escrever

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Daí, a relação (2) pode ser escrita como

$$\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Com isso.

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
\begin{bmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} - \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
\begin{pmatrix} \lambda + 1 & -2 \\ -2 & \lambda + 4 \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{3}$$

Nosso problema se reduz a encontrar um valor $\lambda \in \mathbb{R}$ tal que o sistema (3) tenha uma solução não nula. Existe um teorema que diz que um tal sistema homogêneo tem solução não nula se e somente se o determinante de sua matriz de coeficientes for zero. Com isto, existirá um λ como queremos se e somente se

$$0 = \det \begin{pmatrix} \lambda + 1 & -2 \\ -2 & \lambda + 4 \end{pmatrix} = (\lambda + 1) \cdot (\lambda + 4) - 2 \cdot 2 = \lambda(\lambda + 5)$$

isto é, quando $\lambda = 0$ ou $\lambda = -5$. Esses valores serão os autovalores de A. Para cada autovalor deve-se achar os autovetores correspondentes. Substitui-se o respectivo valor de λ encontrado em (3) e resolve-se os sistemas correspondentes.

Para $\lambda = 0$, o sistema (3) será:

$$\begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

ou

$$\begin{cases} x_1 - 2x_2 = 0 \\ -2x_1 + 4x_2 = 0 \end{cases}$$

Como a $2^{\underline{a}}$ equação é a $1^{\underline{a}}$ multiplicada por -2, a solução do sistema é a resolução da $1^{\underline{a}}$ equação. Não é difícil ver que o conjunto solução desse sistema é $\{(2a,\ a):a\in\mathbb{R}\}.$

Para $\lambda = -5$, o sistema (3) será:

$$\begin{pmatrix} -4 & -2 \\ -2 & -1 \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

ou

$$\begin{cases}
-4x_1 - 2x_2 = 0 \\
-2x_1 - x_2 = 0
\end{cases}$$

que tem conjunto solução igual a $\{(a, -2a) : a \in \mathbb{R}\}.$

1.2 Polinômio característico

Um autovalor real de uma matriz $A=(a_{ij})\in \mathbb{M}_n(\mathbb{R}),\ n\geqslant 1$, é um valor $\lambda\in\mathbb{R}$ tal que o sistema

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$(4)$$

tenha uma solução não nula. Inicialmente, observe que

$$\lambda \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \lambda \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Com isso, tem-se que (4) é equivalente a

$$\begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} - \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

ou

$$\begin{pmatrix} \lambda - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \dots & \lambda - a_{nn} \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
(5)

A matriz de coeficientes do sistema (5) pode então ser escrita como $(\lambda \cdot I - A)$ que obviamente pertence a $\mathbb{M}_n(\mathbb{R})$. O sistema (5) terá uma solução não nula se e somente se $\det(\lambda \cdot I - A) = 0$.

O polinômio característico de uma matriz $A\in \mathbb{M}_n(\mathbb{R})$ é o polinômio $p_a(t)=\det(t\cdot I-A).$

O problema de encontrar os autovalores de uma matriz A transforma-se em achar as possíveis raízes do polinômio $p_a(t)$. Como sabe-se que um polinômio de grau n possui no máximo n raízes distintas, conclui-se que uma matriz $A \in \mathbb{M}_n(\mathbb{R})$ possui no máximo n autovalores distintos. Uma vez encontradas as raízes de $p_a(t)$, o cálculo dos autovetores associados a elas se reduz à solução de sistemas lineares.

Exemplo: Calcule os autovalores e os autovetores da matriz:

$$A = \begin{pmatrix} -1 & 3 & 0 \\ -3 & 5 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$

Primeiramente, seu polinômio característico:

$$p_a(t) = \det \begin{pmatrix} t+1 & -3 & 0 \\ 3 & t-5 & 0 \\ -1 & -1 & t-2 \end{pmatrix} = (t+1) \cdot (t-5) \cdot (t-2) - [-9 \cdot (t-2)] =$$

$$= (t-2) \cdot [(t+1) \cdot (t-5) + 9] = (t-2) \cdot (t^2 - 5t + t - 5 + 9) =$$

$$(t-2) \cdot (t^2 - 4t + 4) = (t-2) \cdot (t-2)^2 = (t-2)^3$$

Logo, o único autovalor da matriz A é 2 (pois 2 é a raíz tripla de $p_a(t)$). Agora, calcula-se os autovetores associados a 2, isto é, a solução do sistema:

$$\begin{pmatrix} 3 & -3 & 0 \\ 3 & -3 & 0 \\ -1 & -1 & 0 \end{pmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

ou

$$\begin{cases} 3x - 3y = 0 \\ 3x - 3y = 0 \\ -x - y = 0 \end{cases}$$

Escalonando o sistema, tem-se:

$$\begin{cases} 3x - 3y = 0 \\ -6y = 0 \end{cases}$$

O que implica em x = y = 0.

Observa-se que qualquer valor de $z \in \mathbb{R}$ induz uma solução do sistema do tipo (0, 0, z) = z(0, 0, 1). Logo, os autovetores associados a 2 são os múltiplos de (0, 0, 1).

Exemplo: Considere uma matriz quase idêntica à do exemplo anterior (a diferença está no valor a_{31}).

$$A = \begin{pmatrix} -1 & 3 & 0 \\ -3 & 5 & 0 \\ -1 & 1 & 2 \end{pmatrix}$$

Seu polinômio característico é (também) $p_a(t) = (t-2)^3$. Já que na multiplicação nas diagonais onde está o a_{31} existe o número zero. Logo, 2 é o único autovalor de A. Para o cálculo dos autovetores, tem-se:

$$\begin{pmatrix} 3 & -3 & 0 \\ 3 & -3 & 0 \\ 1 & -1 & 0 \end{pmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

ou

$$\begin{cases} 3x - 3y = 0 \\ 3x - 3y = 0 \\ x - y = 0 \end{cases}$$

É fácil ver que o conjunto solução do sistema será o conjunto solução da equação x-y=0, o que implica que x=y. De novo, o valor de z pode ser

qualquer e portanto, tem-se que os autovetores de A são vetores do tipo $(x,\ x,\ z)=x(1,\ 1,\ 0)+z(0,\ 0,\ 1),$ com $x,z\in\mathbb{R}.$