Divide and Conquer 4: FFT

Polynomial Multiplication

- 1. Multiplying polynomials using Fast Fourier Transform
 - Polynomials A(x) and B(x)

$$- A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$- B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

• Want C(x) = A(x)B(x)

$$- C(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{2n-2} x^{2n-2}$$

 $- c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0$

- Given $a = (a_0, a_1, \dots, a_{n-1})$ and $b = (b_0, b_1, \dots, B_{n-1})$
 - Compute $c = a * b = (c_0, c_1, ..., c_{n-1})$
 - Convolution of a and b

Quiz: PM Example

- 1. $A(x) = 1 + 2x + 3x^2$
 - a = (1, 2, 3)
- 2. $B(x) = 2 x + 4x^2$
 - b = (2, -1, 4)
- 3. c = a * b = (2,3,8,5,12)

PM: General Problem

- 1. Given $a=(a_0,\,a_1,\,\ldots,\,a_{n-1})$ and $b=(b_0,\,b_1,\,\ldots,\,B_{n-1})$
 - Compute $c=a\ ^*\ b=(c_0,\,c_1,\,\ldots,\,c_{n-1})$
 - Convolution of a and b
- 2. Naive solution: O(k) time for $c_k => O(n^2)$ total time
 - FFT: O(nlogn)

Convolution Applications

- 1. Filtering: data $y = (y_1, \ldots, y_n)$
 - Applications: Reducing noise, adding effects
 - Mean filtering: Replace value with moving mean of surrounding values
 - Gaussian filtering: Replace value with Gaussian weighting of surrounding values
 - Gaussian blur: 2-dim Gaussian filter

Polynomials Basics

- 1. Polynomial $A(x) = a_0 + a_1x + a_2x^2 + ... + a_{n-1}x^{n-1}$
 - Two natural representations for A(x):
 - Coefficients $a = (a_0, a_1, \ldots, a_{n-1})$
 - Values: $A(x_1)$, $A(x_2)$, ..., $A(x_n)$
 - Lemma: Polynomial of degree n-1 is uniquely determined by its values at any n distinct points
 - FFT converts from coefficients to values and values to coefficients
 - For particular x_1, \ldots, x_n

PM: Values

- 1. Key idea: Multiplying polynomials is easy in values representation
 - Given $A(x_1), \ldots, A(x_{2n})$ and $B(x_1), \ldots, B(x_{2n})$
 - for $i = 1 -> 2n C(x_i) = A(x_i)B(x_i)$
 - O(1) time for each

- O(n) total time

FFT: Opposites

- 1. Given $a=(a_0,\,a_1,\,\ldots,\,a_{n\text{-}1})$ for polynomial $A(x)=a_0+a_1x+a_2x^2+\ldots\,+a_{n\text{-}1}x^{n\text{-}1}$
 - Want to compute $A(x_1)$, $A(x_2)$, $A(x_{2n})$ for 2n points x_1, \ldots, x_{2n} that we choose
- 2. Key: Suppose x_1, \ldots, x_n are opposite of x_{n+1}, \ldots, x_{2n}
 - So: $x_{n+1} = -x_1, x_{n+2} = -x_2$
 - Plus/minus property

FFT: Splitting A(x)

- 1. Plus/minus property: x_1, \ldots, x_n are opposite of x_{n+1}, \ldots, x_{2n}
 - Look at $A(x_i)$ and $A(x_{n+i}) = A(-x_i)$
 - Even terms $a_{2k}x^{2k}$ same
 - Odd terms $a_{2k+1}x^{2k+1}$ opposite
 - Let $a_{\text{even}} = (a_0, a_2, a_4, \dots, a_{n-2})$
 - Let $a_{odd} = (a_1, a_3, a_5, \dots, a_{n-1})$

FFT: Even and Odd

- 1. Given $a=(a_0,\,a_1,\,\ldots,\,a_{n\text{-}1})$ for polynomial $A(x)=a_0+a_1x+a_2x^2+\ldots\,+\,a_{n\text{-}1}x^{n\text{-}1}$
 - Let $a_{\text{even}} = (a_0, a_2, a_4, \dots, a_{n-2})$
 - Let $a_{odd} = (a_1, a_3, a_5, \dots, a_{n-1})$
- 2. $A_{even}(y) = a_0 + a_2 y + a_4 y^2 + \dots + a_{n-2} y^{(n-2)/2}$
- 3. $A_{\text{odd}}(y) = a_1 + a_3 y + a_5 y^2 + \dots + a_{n-1} y^{(n-2)/2}$
- 4. A_{even} and A_{odd} are degree n/2 1
- 5. Note: $A(x) = A_{even}(x^2) + xA_{odd}(x^2)$

FFT: Recursion

- 1. $A(x) = A_{even}(x^2) + xA_{odd}(x^2)$
 - Plus/minus property: $x_1,\,\ldots,\,x_n$ are opposite of $x_{n+1},\,\ldots,\,x_{2n}$
 - $A(x_i) = A_{even}(x_i^2) + x_i A_{odd}(x_i^2)$
 - $A(x_{n+i}) = A(-x_i) = A_{even}(x_i^2) x_i A_{odd}(x_i^2)$
- 2. Given $A_{even}(y_1) \dots, A_{even}(y_n)$ and $A_{odd}(y_1), \dots, A_{odd}(y_n)$
 - for $y_1 = x_1^2, \dots, y_n = x_n^2$
 - Takes O(n) time to get $A(x_1),\,\ldots,\,A(x_{2n})$

FFT: Summary

- 1. To get A(x) of degree \leq n-1 at 2n points x_1, \ldots, x_{2n}
 - Define $A_{\text{even}}(y)$ and $A_{\text{odd}}(y)$ of degree $\leq n/2$ 1
 - Recursively evaluate at n points
 - $y_1 = x_1^2 = x_{n+1}^2$ $y_2 = x_2^2 = x_{n+2}^2$ $y_n = x_n^2 = x_{2n}^2$
 - In O(n) time, get A(x) at x_1, \ldots, x_{2n}
- 2. T(n) = 2T(n/2) + O(n)
 - Evaluates to O(nlogn)

FFT: Recursive Problem

- 1. Choose: $x_{n+1} = -x_1, x_{n+2} = -x_2, x_{2n} = -x_n$
 - $\bullet \ \ \mathrm{Next\ level:}\ y_1=x_1{}^2,\,\ldots,\,y_n=x_n{}^2$

$$-y_1 = -y_{n/2+1} <=> x_1^2 = -x_{n/2+1}^2$$

 $-y_1=-y_{n/2+1}<=>x_1{}^2=-x_{n/2+1}{}^2$ • For real numbers, the square of a number is always positive, so $x_1{}^2=-x_{n/2+1}{}^2$ will never be true - Need to use complex numbers

Review: Complex Numbers

- 1. $z = a + b_i$
 - z = (a,b)
 - Alternatively, z = (r, theta) in polar coordinates
 - (a,b) = (rcos(theta), rsin(theta))
 - Euler's formula: $r(cos(theta) + isin(theta)) = re^{itheta}$

1. Polar is convenient for multiplication

Multiplying in Polar

• $z_1z_2 = (r_1r_2, theta_1 + theta_2)$

Complex Number Multiplication

Complex Roots

- 1. nth complex roots of unity
 - What number raised to the nth power equals 1?
 - n = 2: 1, -1
 - n = 4: 1, -1, i, -i
 - z where $z^n = 1$

Roots: Graphical View

- 1. z where $z^n = 1 = (1,2pij)$ for integer j
 - z = (r, theta)

nth Roots

Roots: Notation

1.
$$(1,2pin/j)$$
 for $j = 0, 1, ..., n-1$

- theta = 2pi/n
- Let $w_n = (1, 2pi/n) = e^{2ipi/n}$
- 2. nth roots of unity:
 - $\begin{array}{lll} \bullet & {w_n}^0, \, {w_n}^1, \, \dots, \, {w_n}^{n\text{-}1} \\ \bullet & {w_n}^j = e^{2ipij/n} \end{array}$

Roots: Examples

- 1. n = 2: 1, -1
- 2. n = 4: 1, i, -1, -i
- 3. $(n^{th} \text{ roots})^2 = n/2 \text{ roots}$
 - $w_{16}^{2'} = w_8$
 - Plus/minus property $w_n^{j} = -w_n^{j+n/2}$

Complex Roots Practice

- 1. Consider the n^{th} roots of unity for n = 16
 - What is w_{16} in polar coordinates?
 - (1, pi/8)
- 2. Consider w_{16} . For what power k is $(w_{16})^k = -1$?
 - k = 8
 - -1 = (1,pi) and if z = (r,theta) then zk = (rk,kthetha)
- 3. Consider w_{16} . For what power k is $(w_{16})^k = -w_{16}$?
 - k = 9
- 4. Consider w_{16} . For what power k is $(w_{16})^{-1} = -w_{16}^{k}$?
- 5. Consider w_{16} . For what power k is $(w_{16})^k = -w_8^2$?
 - k = 4

Key Property: Opposites

- 1. Properties of nth roots of unity:
 - For even n: Satisfy plus/minus property
 - First n/2 are opposite of last n/2

 * $w_n^0 = -w_n^{n/2}$ * $w_n^1 = -w_n^{n/2+1}$ * $w_n^{n/2-1} = -w_n^{n-1}$

Key Property: Squares

- 1. Properties of nth roots of unity:
 - For $n = 2^k$:
 - $-(n^{th} \text{ roots})^2 = n/2 \text{ roots}$

Properties of nth roots of unity:

2. For
$$n=2^k$$
:

 $(n^{th} roots)^2 = \frac{n}{2} \frac{n}{n} roots$
 $(\omega_n^{i})^2 = (1, \frac{2\pi}{n})^2 = (1, \frac{2\pi}{n})^2 = \omega_{n}^{i}$
 $(\omega_n^{i})^2 = (-\omega_n^{i})^2 = \omega_{n}^{i}$

nth Roots Squared