ECE 210 Midterm 1

Presented by Eta Kappa Nu

Complex Numbers

Operation	Rectangular Form	Polar
Addition	Component-wise	Convert to rectangular
Subtraction	Component-wise	Convert to rectangular
Multiplication	FOIL	Magnitudes multiply, angles add
Division	Complex conjugates	Convert to multiplication

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

Sign Convention

Circuit Element	Voltage-Current Law
Resistor	v = iR
Capacitor	$i = C \frac{dv}{dt}$
Inductor	$v = L \frac{di}{dt}$

Resistor Combinations

$$R_{eq} = R_1 + R_2 + ... + R_n$$

Can remove nodes

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Can remove loops

Source Combinations

$$I_{out} = I_1 + I_2 + \dots + I_n$$

$$V_{out} = V_1 + V_2 + \dots + V_n$$

Node Voltage & Loop Current

Node Voltage

- Use KCL at each node
- Use supernodes to consolidate nodes separated by voltage sources

Loop Current

- Use KVL on each loop
- Try to select loops such only one loop goes through a current source

In the end, pick the method with easier equations to solve.

Node Voltage & Loop Current

In the end, pick the method with easier equations to solve.

Superposition

In the end, pick the method with easier equations to solve.

Thevenin Norton Equivalents

 V_{TH} is open circuit voltage I_N is closed circuit current

- If only independent sources, suppress sources and find R_{eq}
- If exist dependent sources, suppress independent sources and use 1 A test current

Maximum power of circuit

 $Set R_L = R_T$

Op Amps

$$v_{-} = v_{+}$$

$$i_{+} = 0$$

$$i_{-} = 0$$

First Order Differential Equations

Given equation, where α and β are constants

$$\frac{dy}{dt} + \alpha y(t) = \beta$$

Then, $y(t) = A + Be^{-\alpha t}$, where A and B are also constants Get A by finding the limit as $t \to \infty$, and B from initial conditions The limit $t \to \infty$ is the steady state

Time constant:
$$\tau = \frac{1}{\alpha}$$

- 1. Homogeneous solution the exponential term
- 2. Particular solution the constant

First Order Circuits

- Zero State Response: Solution to ODE when initial state is 0
- Zero Input Response: Solution to ODE when input is 0

$$y(t) = y_h(t) + y_p(t) = y_{ZSR}(t) + y_{ZIR}(t)$$

- At the steady state,
 - Capacitors act as open circuits
 - Inductors act as wires
- Discontinuous functions of time:
 - Voltage across a capacitor
 - Current through an inductor

Practice Problems (from last year's HW)!

3. Find i_x using nodal analysis

4. Find i_x using loop analysis.

5. In the following circuit, find the open-circuit voltage and the short-circuit current between nodes a and b:

Op-Amps!

5. In the op-amp circuit shown below, determine the voltage V_a , V_R , V_o . Assume the circuit behaves linearly and make use of the ideal op-amp approximation.

RLC with DC sources

2. Assume the switch has been in position A for a long time. It then moves to position B at time t = 0 s, and back to position A at time t = 2 s. Find values L and R such that $i(t) = (1 - e^{-1})$ A at t = 2 s, and $i(t) = (1 - e^{-1}) e^{-1}$ A at t = 6 s.

3. The circuit shown below has been in DC steady-state before the switch opens at t = 0 s. Find and sketch $v_R(t)$, $v_C(t)$, and $i_C(t)$.

