ABBREVIATIONS

These are included for reference only - do not try to memorise them!

 α = slope of the component of the plasma concentration / time curve attributable to distribution. Used for predicting C

A = the intercept of this line on the Y axis. Used for predicting C,

AUC = area under the plasma concentration / time curve

 AUC_{0-inf} = area under the plasma concentration / time curve extrapolated to infinity

 $AUC_{0.12}$ = area under the plasma concentration / time curve for the first 12 hours

AUMC = area under the moment curve. A theoretical concept used for deriving the MRT.

 β = slope of the component of the plasma concentration / time curve attributable to elimination. Used for predicting C

 $\mathbf{C}_{_{t}}$ \mathbf{B} = the intercept of this line on the Y axis. Used for predicting $\mathbf{C}_{_{t}}$

bsa = body surface area. Corresponds more closely to metabolic rate than weight, especially important with drugs with a low therapeutic ratio. Used for extrapolating doses from big animals to small ones and vice versa.

 $C = C_p$ = plasma concentration of drug. Units usually μ g/mL (M rarely used).

Css = Cpss = plasma concentration at a steady state, ie, the amount of drug going in is the same as the amount of drug going out.

CL = clearance = the volume of blood cleared of drug per unit time. Units usualy mL/min/kg

 $CL_{\text{systemic}} = CL_{\text{total}} = \text{the sum of } CL_{\text{hepatic}}, CL_{\text{renal}}, \text{ etc}$ $C_{\text{max}} = \text{maximum plasma concentration reached after a}$

 C_{max} = maximum plasma concentration reached after a dose of drug.

 $\mathbf{D} = \mathbf{Q} = \text{dose}$ or quantity, ie, amount of drug given.

F = bioavailability (fraction of dose reaching the systemic circulation).

 $\mathbf{k_a}$ = absorption rate constant

kel = elimination rate constant - slope of the plasma concentration / time curve in a single compartment model. Used in deriving the half life and other parameters.

Ln = natural logarithm

 λz = slope of the terminal elimination phase in a multicompartment model (corresponding to k_{el} in a single compartment model)

MRT = mean residence time = $AUMC_{0-inf}$ / AUC_{0-inf} Gives some indication of how long a drug persists in the body. nb - covers absorption as well as distribution and elimination.

 $\mathbf{t}_{1/2}$ = half life = the time it takes for drug concentration to fall by half.

 $\mathbf{t}_{1/2\alpha}$ = half life of the distribution phase

 $\mathbf{t}_{1/2\beta}$ = half life of the elimination phase

 \overrightarrow{Vd} = volume of distribution = the volume the drug would occupy if it was evenly distributed at the concentration found in the plasma. Gives some idea of where the drug goes.

 \mathbf{Vd}_{c} = volume of distribution of the central compartment

 Vd_{ss} = volume of distribution at a steady state

 $Vd_{\lambda z} = Vd_{\beta} = Vd_{area} = volume$ of distribution during the terminal elimination phase.