

PEC - Entrega Inicial

Primavera 2024

Pau Morillas Muñoz Roger Ortega Castilló

Universitat Politècnica de Catalunya

Índex

Índex	2
1. Resum processador SISA	3
2. Instruccions implementades	3
3. Controlador de memòria	L

1. Resum processador SISA

Aquesta entrega inclou totes les funcionalitats proposades del processador SISA de 16 bits. Com que aquestes són semblants o idèntiques a les descripcions dels enunciats de les pràctiques, creiem que moltes d'aquestes poden ser omeses.

2. Instruccions implementades

Aquí tenim un llistat de totes les instruccions implementades durant aquestes primeres etapes (de l'etapa 1 fins a l'etapa 4, inclosa). A cada instrucció a la seva dreta indiquem com funcionen a partir del resultat dels jocs de proves simulats i executats en la FPGA:

INSTRUCCIÓ	PROVA
Operacions Lógiques i Aritmétiques	Funciona completament
Comparació amb/sense signe	Funciona completament
Suma amb immediat	Funciona completament
LOAD/LOAD byte	Funciona completament
STORE/STORE byte	Funciona completament
Moure immediat	Funciona completament
Salt condicional relatiu al PC	Funciona completament
Trencament de seqüència mode registre	Funciona completament
Extensió aritmètica	Funciona completament

3. Controlador de memòria

En el controlador de memòria hem de pensar que hi ha dos tipus d'instruccions:

- Loads: llegeixen una posició de memòria.
- Stores: escriuen a una posició de memòria.

Aquí tenim el graf d'estats del SRAMController:

En el cas de lectures només necessitem un estat, l'estat idle que llegirà la posició de memòria indicada. En el cas d'escriptura necessitem tres estats i nosaltres hem escollit el 3 mètode del datasheet.

WR = '0' significa que no tens permís d'escriptura

WR = '1' significa que tens permís d'escriptura

En cas que estiguem a l'estat *idle* i no hi hagi permís d'escriptura, ens quedarem a *idle* esperant. En cas que siguem a l'estat *idle* i tinguem permís d'escriptura, passarem a l'estat *escr*, baixarem el senyal SRAM_WE_N i posarem la dada al bus. Al pròxim tic de rellotge passarem a *espera* (sense importar el permís d'escriptura). Per últim, si estem en estat *espera* haurem de baixar el permís d'escriptura per poder passar a *idle*.