Funções - Composição

José Antônio O. Freitas

MAT-UnB

19 de setembro de 2020

Sejam $f: A \rightarrow B$

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C$

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C \ funções.$

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C \ funções$. Definimos a **função composta**

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x)$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$ para todo $x \in A$.

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$ para todo $x \in A$.

1) Sejam $f: \mathbb{R} \to \mathbb{R}$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1.

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1. Assim podemos definir $g \circ f$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1. Assim podemos definir $g \circ f$ e $f \circ g$ e:

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1. Assim podemos definir $g \circ f$ e $f \circ g$ e:

2) $f: \mathbb{R}_- \to \mathbb{R}_+^*$

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^* \ e \ g: \mathbb{R}_+^* \to \mathbb{R}$$

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^*$$
 e $g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^*$$
 e $g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ e $g(x) = \ln x$.

2) $f: \mathbb{R}_- \to \mathbb{R}_+^* \ e \ g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ e $g(x) = \ln x$. Nesse caso só podemos definir $g \circ f: \mathbb{R}_- \to \mathbb{R}$ e:

2) $f: \mathbb{R}_- \to \mathbb{R}_+^* \ e \ g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ e $g(x) = \ln x$. Nesse caso só podemos definir $g \circ f: \mathbb{R}_- \to \mathbb{R}$ e:

Se $f: A \rightarrow B$

Se $f: A \rightarrow B \ e \ g: B \rightarrow C$

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras,

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras, então $g \circ f$:

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova:

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 ,

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados $x_1, x_2 \in A$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1)$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$.

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora,

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1)$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$.

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora,

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese,

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese, daí $x_1 =$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese, daí $x_1 = x_2$, como queríamos.

7/8

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese, daí $x_1 = x_2$, como queríamos. Portanto $g \circ f$ é injetora.

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese, daí $x_1 = x_2$, como queríamos. Portanto $g \circ f$ é injetora.

Se $f: A \rightarrow B$

Se $f: A \rightarrow B \ e \ g: B \rightarrow C$

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções sobrejetoras,

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova:

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora,

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f \colon A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$,

8/8

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$.

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$.

8/8

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora,

8/8

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in B$

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in B$ tal que g(z) = y.

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in B$ tal que g(z) = y. Mas $z \in B$

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in B$ tal que

g(z) = y. Mas $z \in B$ e $f: A \to B$

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in B$ tal que g(z) = y. Mas $z \in B$ e $f : A \to B$ é sobrejetora. Assim existe $x \in A$ tal que f(x) = z. Logo

 $(g \circ f)(x)$

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

$$(g\circ f)(x)=g(f(x))$$

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

$$(g \circ f)(x) = g(f(x)) = g(z)$$

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

$$(g \circ f)(x) = g(f(x)) = g(z) = y.$$

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in B$ tal que g(z) = y. Mas $z \in B$ e $f : A \to B$ é sobrejetora. Assim existe $x \in A$ tal que f(x) = z. Logo

$$(g\circ f)(x)=g(f(x))=g(z)=y.$$

Portanto $g \circ f$

8/8

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f: A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g: B \to C$ é sobrejetora, existe $z \in B$ tal que g(z) = y. Mas $z \in B$ e $f: A \to B$ é sobrejetora. Assim existe $x \in A$ tal que f(x) = z. Logo

$$(g \circ f)(x) = g(f(x)) = g(z) = y.$$

Portanto $g \circ f$ é sobrejetora.

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f: A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g: B \to C$ é sobrejetora, existe $z \in B$ tal que g(z) = y. Mas $z \in B$ e $f: A \to B$ é sobrejetora. Assim existe $x \in A$ tal que f(x) = z. Logo

$$(g\circ f)(x)=g(f(x))=g(z)=y.$$

Portanto $g \circ f$ é sobrejetora.

8/8