Advanced Calculus

Samuel Lindskog

December 12, 2024

Test 1

Definition 1.1 (Relation). A relation between A and B is any subset R of $A \times B$. If $(a,b) \in R$, then we say aRb.

Definition 1.2 (Equivalence Relation). A relation R on a set S is an equivalence relation if it has the following properties for all x, y, z in S:

- 1. *xRx* (reflexive property)
- 2. $xRy \Rightarrow yRx$ (Symmetric property)
- 3. $xRy \land yRz \Rightarrow xRz$ (Transitive property)

A partition of a set S is a collection \mathcal{P} of nonempty subsets such that

- 1. $x \in S \Rightarrow x \in \bigcup_{A \in \mathscr{P}} A$
- 2. $\forall A, B \in \mathscr{P}, A \neq B \Rightarrow A \cap B = \emptyset$

Definition 1.3 (Function). Let A and B be sets. A function from A to B is a nonempty relation $f \subseteq A \times B$ that satisfies the following two conditions:

- 1. $\forall a \in A, \exists b \in B, (a, b) \in f$
- **2.** $(a,b) \in f \land (a,c) \in f \Rightarrow b = c$

Definition 1.4 (Upper bound). Let $S \subseteq \mathbb{R}$. If there exists a real number m such that $m \ge s$ for all $s \in S$, then m is an upper bound of S

Definition 1.5 (Maximum). If an upper bound m of S is a member of S, then m is called the maximum of S.

Definition 1.6 (Supremum). Let S be a nonempty subset of \mathbb{R} . If S is bounded above, then the least upper bound of S is called the supremum. Thus $m = \sup S$ iff

- 1. $\forall s \in S, m > s$
- 2. $m' < m \Rightarrow \exists s' \in S, s' > m'$

Axiom 1.1 (Completeness of \mathbb{R}). Every nonempty subset S of \mathbb{R} that is bounded above has a least upper bound, i.e. $\sup S$ exists.

Definition 1.7 (Open and closed set). Let $S \subseteq \mathbb{R}$. If bd $S \subseteq S$, then Sis said to be closed. If $bd S \subset \mathbb{R} \setminus S$, then S is said to be open.

Definition 1.8 (Accumulation point). Let S be a subset of \mathbb{R} . A point x in \mathbb{R} is an accumulation point of S if every deleted neighborhood of x contains a point of S.

Test 2

Definition 1.9 (Convergence). A sequence (s_n) is said to converge to the real number s provided that

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow |s_n - s| < \epsilon.$$

If (s_n) converges to s, then s is called the limit of the sequence (s_n) , and we write $\lim_{n\to\infty} s_n = s$. If a sequence does not converge it diverges.

Theorem 1.1. Let (s_n) and (a_n) be sequences of real numbers and let $s \in \mathbb{R}$. If for some k > 0 and some $m \in \mathbb{N}$ we have

$$|s_n - s| \le k|a_n|$$
, for all $n \ge m$,

and if $\lim a_n = 0$, then it follows that $\lim s_n = s$.

Theorem 1.2. Every convergent sequence is bounded.

Theorem 1.3. If a sequence converges, its limit is unique.

Definition 1.10 (Monotone sequence). A sequence (s_n) of real numbers is increasing if $s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$ and is decreasing if $s_n \ge s_{n+1}$ for all $n \in N$. A sequence is monotone if it is increasing or decreasing.

Definition 1.11 (Liminf and limsup). Let (s_n) be a bounded sequence. A subsequential limit of (s_n) is any real number that is the limit of some subsequence of (s_n) . If S is the set of all subsequential limits of (s_n) , then we define the limit superior of (s_n) to be

$$\lim \sup s_n = \sup S.$$

The limit inferior of (s_n) is

$$\lim\inf s_n=\inf S.$$

Test 3

Definition 1.12 (Limit). Let $f: D \to \mathbb{R}$, c be an accumulation point of D, and $x \in D$. We say that a real number L is a limit of f at c if

$$\forall \epsilon > 0 \,\exists \delta > 0 \, (0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon)$$

Definition 1.13 (Right-hand limit). Let $f : \mathbb{R} \to \mathbb{R}$, a be an accumulation point of (a, b), and $x \in (a, b)$. L is a right hand limit of f, denoted $\lim_{x\to a^+} f(x) = L$ if $g:(a,b)\to \mathbb{R}$ with g((a,b)) = f((a,b))and $\lim_{x\to a} g(x) = L$.

Definition 1.14 (Continuity). Let $f: D \to \mathbb{R}$ and let $c \in D$. We say that *f* is continuous at *c* if

$$\forall \epsilon > 0, \ \exists \delta > 0, \ (|x - c| < \delta \Rightarrow |f(x) - f(c)| < \epsilon).$$

If f is continuous at each point of a subset S of D, then f is said to be continuous on S. If f is continuous on its domain D, then f is said to be a continuous function.

Theorem 1.4. Let D be a compact subset of \mathbb{R} and suppose that $f: D \to \mathbb{R}$ is continuous. Then f(D) is compact.

Proof: Let \mathscr{B} be an open cover of f(D), and let $U \in \mathscr{B}$. Suppose to the contrary that $f^{-1}(U)$ is not open in D. Then there exists a sequence (x_n) in $(f^{-1}(U))^c$ which converges to a point a in $f^{-1}(U)$. Because f is continuous we know that $\lim_{n\to\infty} f(x_n) = f(a)$, a contradiction because $(f(x_n))$ is a sequence in U^c . From this result define an open cover of D, $\mathcal{T} = \{ f^{-1}(U) \mid U \in \mathcal{B} \}$. If a finite subcover of \mathcal{T} exists, then clearly a finite subcover of f(D) exists.

Theorem 1.5 (Intermediate value theorem). Suppose that $f:[a,b] \rightarrow$ \mathbb{R} is continuous. If k is any value between f(a) and f(b) then there exists $c \in (a, b)$ such that f(c) = k.

Definition 1.15 (Uniform continuity). Let $f: D \to \mathbb{R}$. We say that f is uniformly continuous on D if

$$\forall \epsilon > 0, \ \exists \delta > 0 \ (|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon)$$

Theorem 1.6. Suppose $f: D \to \mathbb{R}$ is continuous on compact set D. Then f is uniformly continuous on D.

Theorem 1.7. Let $f: D \to \mathbb{R}$ be uniformly continuous on D and suppose that (x_n) is a Cauchy sequence in D. Then $(f(x_n))$ is a Cauchy sequence.

Theorem 1.8. A function $f:(a,b)\to\mathbb{R}$ is uniformly continuous on (a,b) iff it can be extended to a function \overline{f} that is continuous on [a,b]. **Definition 1.16** (differentiability). Let *f* be a real-valued function defined on an open interval I containing the point c. We say that f is differentiable at c if the limit

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists and is finite. We denote the derivative of f at c by f'(c) so that

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$

If the function f is differentiable at each point of the set $S \subseteq I$, then f is said to be differentiable at each point of the set $S \subseteq I$, then f is said to be differentiable on S, and the function $f': S \to \mathbb{R}$ is called the derivative of f on S.

Theorem 1.9. If f is differentiable on an open interval (a, b) and if f assumes its maximum or minimum at a point $c \in (a, b)$, then f'(c) = 0.

Theorem 1.10 (Rolle's theorem). Let *f* be a continuous function on [a, b] that is differentiable on (a, b) and such that f(a) = f(b). Then there exists at least one point c in (a, b) such that f'(c) = 0.

Theorem 1.11 (MVT). Let f be a continuous function on [a, b] that is differentiable on (a, b). Then there exists at least one point $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 1.12 (IVT for derivatives). Let f be differentiable on [a, b]and suppose that k is a number between f'(a) and f'(b). Then there exists a point $c \in (a, b)$ such that f'(c) = k.

Theorem 1.13 (Cauchy MVT). Let f and g be functions that are continuous on [a, b] and differentiable on (a, b). Then there exists at least one point $c \in (a, b)$ such that

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

Theorem 1.14 (Chain rule). Let *I* and *J* be intervals in \mathbb{R} , let $f: I \to \mathbb{R}$ \mathbb{R} and $g: j \to \mathbb{R}$, where $f(I) \subseteq J$, and let $c \in I$. If f is differentiable at *c* and *g* is differentiable at f(c), then the composite function $g \circ f$ is differentiable at c and

$$(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$$

Theorem 1.15 (L'Hospital's rule). Let f and g be continuous on [a, b]and differentiable on (a, b). Suppose that $c \in [a, b]$ and that f(c) =

g(c) = 0. Suppose also that $g'(x) \neq 0$ for $x \in U$, where U is the intersection of (a, b) and some deleted neighborhood of c. If

$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = L \quad \text{with } L \in \mathbb{R}$$

then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

Definition 1.17 (limit). Let $f:(a,\infty)\to\mathbb{R}$. We say that $L\in\mathbb{R}$ is the limit of f as $x \to \infty$, and we write

$$\lim_{x \to \infty} f(x) = L,$$

provided that for all $\epsilon > 0$ there exists a real number N > a such that x > N implies that $|f(x) - L| < \epsilon$.

Definition 1.18. Let $f:(a,\infty)\to\mathbb{R}$. We say that f tends to ∞ as $x \to \infty$ and we write

$$\lim_{x\to\infty}f(x)=\infty,$$

provided that for all $\alpha \in \mathbb{R}$, there exists a real number N > a such that x > N implies that $f(x) > \alpha$.

Theorem 1.16 (lhop rule2).

Theorem 1.17 (Taylor's theorem).