

# Artificial Intelligence Machine Learning (2)

**Unsupervised Learning** 

Nacim Ihaddadene Junia ISEN / M1 / 2024-2025

### Machine learning problems



### Dimensionality Reduction

 summarization of data (n examples) with many dimensions (m attributes) by a smaller set of (p) derived (synthetic, composite) dimension

### Why?

- Data compression (with less loss of information)
- Structure Discovery
- Reducing training time and cost
- Effective visualization



### Dimensionality Reduction



**EXAMPLE 1** 

**EXAMPLE 2** 

### Dimensionality Reduction

- Multiple methods : **PCA**, ICA, LLE, Isomap, ...
- Manifold Learning

#### Example:

https://scikit-learn.org/stable/auto\_examples/manifold/plot\_lle\_digits.html -2



### **Tutorial**

Apply PCA algorithm to IRIS dataset...

### Machine learning problems

**Supervised learning Unsupervised learning** Clustering Classification Continuous **Dimensionality** Regression reduction

Intelligence is also the ability to recognize similar objects and group them!



### The Problem of Clustering

Given a set of unlabeled items (in n-dimensions), with a notion of distance between items, group the points into some number of clusters, so that members of a cluster are in some sense as nearby as possible.



**Data without labels** 



### Example: Clustering news

### Winter storm moves north: Fast snowfall shocks forecasters as flights canceled, power outages continue

USA TODAY · 1 hour ago



Fox News · 1 hour ago



CNN · 3 hours ago

PHOTOS: Snow continues to fall over the Pittsburgh area

WPXI Pittsburgh · 19 hours ago

Winter storm pounds Eastern US

■ CBS News · 4 hours ago





^

### The enormous Tonga volcano eruption was a once-in-a-millennium event

CNN · 2 hours ago · Opinion



■ Guardian News • 9 hours ago

· San Diego native overseeing Tsunami Advisory alerts

10News · 14 hours ago

· Massive underwater volcano triggers tsunami, causing damage in Tonga

■ CBS News • 1 hour ago

 Missionaries in Tonga Nuku'alofa Mission safe; no contact yet with Tonga Outer Island Mission

ksltv.com · 2 hours ago

 A massive volcanic eruption and tsunami hit Tonga and the Pacific. Here's what we know

CNN · 14 minutes ago

View Full Coverage



Example: Clustering people Six degrees of separation **Small-world experiment** powered by

**TouchGraph** 

### Example: Clustering countries



### **Example**: Clustering images



# **Example**: Clustering pixels



### Example: Clustering items for recommendation



### Examples

What is the distance/similarity between :

- Two articles in news feeds?
- Two images in a gallery?
- Two pixels in a photo?
- Two shows in a VOD service?
- Two products in an e-commerce website?
- Two persons in a social network?
- Two ADN sequences ?

# Grouping items with different colors and shapes



# Based on color similarity $\rightarrow$ 4 groups



# Based on shape similarity $\rightarrow$ 3 groups



### The distance function

#### **Distance axioms:**

- The distance from a point to itself is null: d(x,x) = 0
- Positivity: d(x,y) >= 0
- Symmetry: d(x,y) = d(y,x)
- Triangle inequality:  $d(x,z) \le d(x,y) + d(y,z)$
- Simplest case: one numeric attribute A

Distance(X,Y) = 
$$A(X) - A(Y)$$

Several numeric attributes:

Distance(X,Y) = Euclidean distance between X,Y

Nominal attributes:

distance is set to 1 if values are different, 0 if they are equal

### Examples of Euclidean Distances



### Distance / Similarity

How instances and samples are related or close to each other?

Different ways to measure depending on the nature of data and the problems

https://docs.scipy.org/doc/scipy/reference/spatial.distance.html

You can also define your own distance for your specific problem



### Some Clustering Algorithms

- K-means
  - Fix K. Iteratively re-assign points to the nearest cluster



- Agglomerative/Hierarchical clustering
  - Each point is a cluster. Iteratively merge the closest clusters



- Mean-shift clustering
  - Based on Kernel Density Estimation (KDE)



- EM Algorithm
  - Expectation of likelihood, Maximizing parameters

50 Curation

And many others...

### Simple Clustering: K-means

- Works with numeric data only
- Pick a number (K) of cluster centers (at random)
- Assign every item to its nearest cluster center (e.g. using Euclidean distance)
- Move each cluster center to the mean of its assigned items
- Repeat steps 2,3 until convergence (change in cluster assignments less than a threshold)

### K-means example





Assign each point to the closest cluster center



Move each cluster center to the mean of each cluster



Reassign
points
closest to a different
new cluster center

Q: Which points are reassigned?



### K-means example, step 4 ...







# K-means example, iterate...



### K-Means pros and cons

#### Pros

- Finds cluster centers that minimize conditional variance
- Simple and fast
- Easy to implement
- ...

#### Cons

- Need to choose K
- Sensitive to outliers
- All clusters have the same parameters
- •

### k-means assumptions

Situations where k-means will produce unintuitive and possibly unexpected clusters

Importance of dataviz



- Clustering in 2D looks easy
- Clustering small amounts of data look easy too

Many applications involve more than 2D (Ex. > 10000 dimensions)
 with huge amounts of data







https://www.knime.com/

### **Machine Learning**

