UNIVERSIDAD DEL CEMA Buenos Aires Argentina

Serie **DOCUMENTOS DE TRABAJO**

Área: Ingeniería Informática

MODELOS Y SIMULACIÓN PARA APROXIMAR EL VALOR DE PI

Gastón A. Addati, Fernando Celano y Juan Churruarín

Agosto 2016 Nro. 591

UCEMA: Av. Córdoba 374, C1054AAP Buenos Aires, Argentina ISSN 1668-4575 (impreso), ISSN 1668-4583 (en línea) Editor: Jorge M. Streb; asistente editorial: Valeria Dowding <jae@cema.edu.ar>

Modelos y Simulación para Aproximar el valor de PI

Gastón A. Addati, Fernando Celano y Juan Churruarín*

ABSTRACT

El valor de Pi, se sabe que es un valor irracional. Este valor, de infinitas cifras decimales, ha despertado el interés particular de muchos científicos y personas en todo el mundo, sobre todo a lo largo de la historia.

Parecería ser que encontrar nuevas cifras decimales del valor de Pi, se ha vuelto a lo largo del tiempo, un desafío más que interesante para muchos matemáticos.

En el presente trabajo se diseñarán simulaciones para estimar el valor del número Pi. Se describirán y se utilizarán los modelos denominados: "de agujas de Buffon" y el método de Monte Carlo para ejecutar simulaciones considerando diferentes tamaños o valores como entrada, utilizando números pseudoaleatorios generados por computadora. Una vez obtenidos los resultados, se compararán con el valor real de Pi, para determinar qué tan buenas son las aproximaciones, en función del tamaño de la muestra generada.

1

^{*} Los puntos de vista expresados en este trabajo son de exclusiva responsabilidad de sus autores y no necesariamente expresan la posición de la Universidad del CEMA.

Introducción:

En este trabajo se lleva a cabo una descripción de los métodos de simulación para estimar el valor del número Pi, partiendo de la base del conocimiento del significado de un sistema. A partir de la complejización de los sistemas de información y de la información en sí, las personas comenzaron a pensar en la forma adecuada de "maquetar" los hechos y sus ecosistemas, de manera que dichos resultados se acerquen de forma certera a la realidad. Este proceso de "maqueta" se refiere al diseño y armado de un modelo que brinde determinadas respuestas en función de los parámetros establecidos como "entradas" al sistema.

Se desea aprovechar el poder de cálculo que provee la computación moderna, para poder modelar, e implementar (simular) utilizando un lenguaje visual de programación, los experimentos que permitirán estimar el tan conocido y utilizado valor de Pi.

Algunos Conceptos Preliminares a considerar

Sistemas

Muchas veces al intentar identificar el significado de sistema, nos encontramos con una concepción colectiva inclinada a "un método o conjunto de métodos ordenados para alcanzar una solución a un determinado problema". Para el campo que estamos analizando, la simulación de sistemas, encontramos definiciones más específicas de sistema. Aracil y Gordillo (1997) define a un sistema como:

"Un objeto formado por un conjunto de partes entre las que se establece alguna forma de relación que las articula en la unidad que es precisamente el sistema. Un sistema se nos manifiesta como un aspecto de la realidad dotado de cierta complejidad precisamente por estar formado por partes en interacción. Esta interacción coordina a las partes dotando al conjunto de una entidad propia. Las partes y la interacción entre ellas, son los elementos básicos en esta concepción de sistema".

La forma de representar la porción de realidad que nos rodea, las partes relacionadas que conforman nuestro sistema a estudiar, es posible gracias a la abstracción. La concepción de la realidad puede variar para cada uno de los observadores de la realidad a la cual nos enfrentamos. La principal dificultad que se nos presenta es el dimensionamiento de la realidad que queremos representar con nuestro sistema.

La forma de dimensionar una porción de realidad, es modelizar la porción de realidad que nos encontramos analizando. Para poder entender la modelización debemos conocer de qué trata un modelo.

"Un modelo es una representación de la realidad desarrollado con el propósito de estudiarla. En la mayoría de los análisis no es necesario considerar todos los detalles de la realidad, entonces, el modelo no sólo es un sustituto de la realidad sino también una simplificación de ella".

Modelos

Los modelos son una herramienta fundamental en el estudio de diversas disciplinas, ya que son el medio de comprensión de los sistemas que se encuentren involucrados en el análisis. De acuerdo al campo que nos encontremos examinando desarrollaremos un modelo acorde a las necesidades que demande.

Existen diferentes formas de modelización:

- Modelos verbales: descripciones de los conceptos relacionados de forma lógica, representándolas a través de gráficos, diagramas, etc.
- Modelos físicos: representación del modelo a través del maquetado o la implementación de simuladores.
- Modelos de estructura: representación de aspectos específicos que son relativos o causales propios del modelo.
- Modelos de comportamiento: figuran las reacciones del sistema a estímulos externos.

Además de los modelos anteriormente nombrados, existen otros que son más especializados de acuerdo al nivel de complejidad y al ámbito de estudio. Pueden diferenciarse en modelos abstractos (compuestos por conceptos, planes, hipótesis e ideas. Aquí, los símbolos representan atributos y objetos, que muchas veces sólo existen en el pensamiento de las personas) o físicos (compuestos por equipos, por maquinaria y por objetos y cosas reales. Pueden ser descritos en términos cuantitativos de desempeño). Ackoff (1971) marca la diferencia entre ambos modelos:

"Un sistema abstracto es aquel en que todos sus elementos son conceptos. Un sistema concreto es aquel en el que por lo menos dos de sus elementos son objetos".

Además de la diferenciación entre modelos abstractos y físicos los modelos pueden diferenciarse en continuos (cambian de forma continua con el paso del tiempo) o discretos (cambia de estado en una cantidad numerable de instantes de tiempo), y en determinísticos (modelos cuya solución para determinadas condiciones, es única y siempre la misma) o estocásticos (representan sistemas donde los hechos suceden al azar, lo cual no es representativo. Se conoce la probabilidad de ocurrencia y su distribución de probabilidad).

Simulación

A partir de la complejidad de emular los estados y los ambientes de comportamientos a analizar, es que nace la simulación de sistemas. Robert Shannon (1975) explica:

"La simulación es el diseñar y desarrollar un modelo computarizado de un sistema o proceso y conducir experimentalmente con este modelo con el propósito de entender el comportamiento del sistema del mundo real o evaluar varias estrategias con los cuales puedan operar el sistema."

La simulación ha ganado terreno gracias a la aparición de herramientas computacionales. El desarrollo de software de gran complejidad ha permitido acercarnos cada vez más resultados más congruentes con la realidad. ¿Cuál es la ventaja de la simulación a la hora de sacar conclusiones? Thomas H. Naylor enumera una serie de ventajas acerca de la simulación:

- Se puede estudiar el efecto de los cambios internos y externos del sistema, al hacer alteraciones en el modelo del sistema y observando los efectos de esas alteraciones en el comportamiento del sistema.
- Otorga una observación detallada del sistema, permitiendo un mejor entendimiento del sistema y por tanto sugerir estrategias que mejoren la operación y eficiencia del sistema.
- Se puede utilizar como instrumento pedagógico para educar a los estudiantes en campos como el análisis estadístico.

- Se puede usar para experimentar acerca de eventos de los cuales se tiene poca información y anticipar resultados no previstos.
- Puede prestar ayuda para el entrenamiento personal en determinados ambientes donde se precisan determinadas características de representación y así lograr la experiencia requerida.
- Realizar una evaluación exhaustiva del sistema para su correcto entendimiento y posteriormente sugerir estrategias que mejoren su operación y eficiencia.

Por otra parte, realizar una simulación presenta las siguientes desventajas:

- Son difíciles de ser aceptados.
- Pueden dar un erróneo sentimiento de seguridad.
- Si bien muchas veces los resultados son cercanos, no son óptimos.
- Las simulaciones a través de computadoras son muy costosas y requieren mucho tiempo para desarrollarse y validarlas.
- Al tener que repetirse una determinada cantidad de veces para optimizar el resultado produce que los costos de simulación sean elevados.

Proceso de desarrollo de una simulación

- Definición del sistema: Descripción del modelo o del sistema.
- Análisis del sistema: Descripción de las interacciones lógicas entre las variables de decisión.
- Formulación de un modelo: Definición completa del sistema a través de código lógico matemático de la interacción de las variables.
- Selección del lenguaje: Utilización del lenguaje que mejor se adapte a las necesidades de la simulación.
- Codificación del modelo: Generar instrucciones necesarias para que el modelo sea llevado adelante.
- Validación del modelo: Determinar qué nivel de representación de la realidad tiene un modelo.
- Experimentación: Determinar las distintas alternativas que pueden ser evaluadas, distinguiendo las distintas variables de entrada, optimizando de esta forma el acercamiento a las variables de respuesta del sistema real.

Ejemplos de simulación

Dentro del ámbito de la simulación existen distintas disciplinas que experimentan usualmente con procesos de simulación, y de ellos podemos extraer claro ejemplos:

- Simulación de un sistema de colas: Estudio y análisis de colas cuya representación matemática sería muy difícil de analizar.
- Simulación de estado de inventarios: Analizar de manera más sencilla y concreta sistemas de inventario donde todos sus parámetros son estocásticos.
- Simulación de un proyecto de inversión: Evaluar el efecto de cierto tipo de decisiones en las demás variables macroeconómicas.
- Simulación de estados financieros: Analizar estrategias de crecimiento para alcanzar los objetivos y metas de corto, mediano y largo plazo.

Definición del modelo para estimar el valor de Pi

Modelo de agujas de Buffon

Este modelo de estimación fue desarrollado por Buffon en 1977 (Cheney, W. y Kincaid, D. 1985). El modelo consiste en arrojar agujas en una superficie plana con líneas dibujadas, igualmente espaciadas, donde el espacio que separa a las líneas es mayor que el largo de las agujas. Determinando la probabilidad de que una aguja cualquiera corte a alguna de las líneas de la superficie, se puede estimar el valor de Pi.

Tomando el largo de las agujas igual a la distancia que separa las líneas, se simplifican los cálculos para la deducción de la relación entre la probabilidad de corte y el valor de Pi.

Para definir si una aguja de largo L corta a alguna de las líneas separadas por una distancia d, se considera el punto medio de la aguja, m, y su distancia x hacia la línea más cercana. Además, se considera el ángulo θ entre las líneas y la aguja.

Como las agujas se arrojan al azar, determinando m y θ al azar, queda determinada la posición de la aguja. Por definición, m varía entre en 0 y d/2, y θ varía entre 0 y π . Como ambas variables aleatorias siguen una distribución uniforme, la densidad de probabilidad para cada caso será:

$$f(m) = \begin{cases} 2/d, & 0 \le m \le d/2 \\ 0, & \forall otro m \end{cases}$$
 (E.1)

$$f(\theta) = \begin{cases} 2/\pi, & 0 \le \theta \le \pi/2 \\ 0, & \forall \text{ otro } \theta \end{cases}$$
 (E.2)

Como las variables aleatorias son independientes, la densidad conjunta de probabilidad será el producto de las variables:

$$f(x) = \begin{cases} 4/d\pi, & 0 \le \theta \le \pi/2 \ y \ 0 \le m \le d/2 \\ 0, & \forall \ otro \ m, \theta \end{cases}$$
 (E.3)

Esta distribución describe la probabilidad de ubicación de la aguja en el plano. Utilizando trigonometría básica, puede verse que una aguja cortará a una línea cuando:

$$m \le \frac{L}{2} \operatorname{sen}(\theta) \tag{E.4}$$

Entonces puede obtenerse la probabilidad de corte de manera analítica, considerando ese límite para *m*:

$$P_{Corte} = \int_{\theta=0}^{\pi/2} \int_{m=0}^{L/2} sen(\theta) \frac{4}{d\pi} dm d\theta = \frac{2L}{d\pi}$$
 (E.5)

De esta manera, se puede estimar el valor de Pi, estimando el valor de P_{Corte} utilizando los valores de la simulación, donde:

$$P_{Corte} \approx {}^{C}/N$$
 (E.6)

Donde *c* es la cantidad de agujas que cortan a las líneas, y *N* es la cantidad de agujas totales. A partir de las ecuaciones 5 y 6 se obtiene:

$$\pi \approx \frac{N2L}{dc} \tag{E.7}$$

La Ecuación 7 se puede simplificar aún más, si se considera que la distancia entre líneas es el doble que el largo de las agujas. En ese caso, la estimación de Pi resulta:

$$\pi \approx N/c$$
 (E.8)

Modelo con el método de Monte Carlo

Bajo el nombre de Método Monte Carlo o Simulación Monte Carlo se agrupan una serie de procedimientos que analizan distribuciones de variables aleatorias usando simulación de números aleatorios. En el caso de la estimación de Pi, se usan valores aleatorios para aproximar un valor determinístico.

El uso del método de Monte Carlo para aproximar el valor de Pi consiste en dibujar un cuadrado, y dentro de ese cuadrado, dibujar un círculo con diámetro de igual medida que uno de los lados del cuadrado. Luego se dibujan puntos de manera aleatoria sobre la superficie dibujada. Los puntos que están fuera del círculo y los que están dentro, sirven como estimadores de las áreas internas y externas del círculo.

El área total del cuadrado con lado L es:

$$A_T = L^2 (E.9)$$

El área total del círculo dentro del cuadrado es:

$$A_C = \pi * (L/2)^2 (E.10)$$

La relación de áreas entonces es:

$${}^{A_C}/_{A_T} = {}^{\pi}/_4 \tag{E.11}$$

A partir de una estimación de esta relación, se multiplica por 4, y se obtiene el estimador de Pi.

Para la simulación, se usan números pseudoaleatorios con distribución uniforme. A partir de esos números se forman las coordenadas de los puntos que se van a dibujar dentro del cuadrado. Una vez dibujados una cantidad suficiente de puntos, se estimará Pi mediante la fórmula:

$$\pi \approx 4 * \frac{Puntos_{interiores}}{Puntos_{totales}}$$
 (E.12)

Ejecución de las simulaciones

Las simulaciones se realizaron utilizando una aplicación específicamente programada para calcular aproximaciones de Pi con los métodos de Buffon y el método geométrico de Monte Carlo. La herramienta calcula automáticamente m cantidad de simulaciones con muestras de tamaño n, para cada método, y registra los resultados en archivos, para ser analizados posteriormente.

Para ejecutar simulaciones individuales, se usan ventanas con gráficos, para facilitar la comprensión del modelo que se está simulando.

En la caso del método de Buffon, se muestra un gráfico con una grilla, en donde se dibujan las "agujas" posicionadas al azar. En rojo se dibujan las agujas que cortan las divisiones de la grilla, en azul las que no cortan - Ver Figura 1 -

Figura 1 - Resultado gráfico de una simulación de las agujas de Buffon.

Figura 2 - Resultado gráfico de una simulación con el método de Monte Carlo.

Para el método de Monte Carlo, se muestra un gráfico con el cuadrante superior derecho de un círculo de radio 1 - ver figura 2 -, en donde se marcan los puntos posicionados al azar en el gráfico.

En este ejemplo, se contabilizan los puntos que se encuentran debajo del área formada por la curva (puntos internos) al igual que los puntos externos, que corresponden a puntos aleatorios que no se encuentran dentro del área estipulada.

En el Apéndice A se encuentra el código fuente utilizado para simular valores de muestras y calcular en valor de las estimaciones. Estos valores son los que se utilizan para calcular analíticamente la aproximación, por el método de Monte Carlo, del valor de Pi.

Resultados y análisis

Se simularon ambos métodos con diferentes cantidades de muestras. Para un determinado tamaño de muestra, la simulación se ejecutó 50 veces, y se tomaron los promedios de la estimación en cada caso.

En la Tabla 1 se muestran los resultados de las simulaciones, ordenados por el tamaño de la muestra:

Muestra	Buffon	Diferencia	Monte	Diferencia	
		Pi	Carlo	Pi	
100	3.154195	0.012603	3.164000	-0.022408	
500	3.168686	0.027094	3.161920	-0.020328	
1000	3.189029	0.047437	3.143680	-0.002088	
5000	3.163424	0.021832	3.144736	-0.003144	
10000	3.155944	-0.014352	3.140760	0.000832	
30000	3.159373	-0.017781	3.141712	-0.000120	

Tabla 1 - Valores promedio de la estimación de Pi para muestras de diferentes tamaños.

Ambos métodos arrojan resultados similares con respecto al tamaño de la muestra que se utilice. Incluso cuando la muestra es relativamente chica, las estimaciones de Pi logran resultados exactos hasta el primer dígito decimal, y resultados cercanos al exacto en el segundo dígito.

En la Tabla 1, pueden observarse los diferentes valores de muestra que se utilizaron y los respectivos valores obtenidos, para ambas simulaciones. Como es de esperar, a medida que el tamaño de la muestra aumenta, los resultados mejoran.

Analizando los resultados de las simulaciones individuales (ver Apéndice B), también se observa que cuanto más grande es la muestra, la distancia entre los resultados extremos mayor y menor de las simulaciones comienza a disminuir. Esa menor variabilidad significa que, en caso de que se realice una sola simulación, será conveniente tomar una muestra lo más grande posible, para asegurarse que el resultado no se alejará demasiado del valor real de Pi, o en todo caso, será necesario definir un intervalo de confianza, para poder calcular el tamaño estadísticamente el número exacto de la muestra a elegir.

Conclusiones

Luego de modelar los sistemas, utilizando para ellos un lenguaje de programación visual, se logró aproximar el valor de Pi mediante el método de las agujas de Buffon y el método de Monte Carlo.

El proceso para obtener estos resultados, los cuales fueron registrados en las tablas correspondientes, consistió en:

- Planteo de los Modelos
- Programación de los modelos (codificación en lenguaje visual)
- Ejecución de Experimentos (se ejecutaron múltiples simulaciones)
- Análisis de Resultados.

La conclusión más importante a la que se puede arribar, es que para que las aproximaciones sean buenas, se debe usar una muestra con tamaño 100 como mínimo, y que a medida que se aumenta el tamaño de la muestra, los resultados mejoran. Es decir, cuanto más grande sea la muestra, mejor serán los resultados obtenidos.

Apéndice A – Código Fuente

Para programar la aplicación, se usó el lenguaje C# versión 5

Código C# para el método de Buffon:

Por comodidad, se define una clase que representa a una aguja posicionada en un plano:

```
public class Aguja
{
    public double X1 { get; set; }
    public double X2 { get; set; }
    public double Y1 { get; set; }
    public double Y2 { get; set; }
    public bool Corte { get; set; }
}
```

Luego se define una clase que representa al método de Buffon, donde se generan agujas y se lleva un registro de la cantidad generada, y cuántas de ellas cortan a alguno de las líneas, ya que solo esos 2 datos serán suficientes para calcular la estimación de Pi:

```
public class Buffon
{
    private double _cortes = 0;
    private double _agujas = 0;
    private Random _random;
    ...
}
```

Dentro de la clase Buffon, se define código para generar agujas:

```
private Aguja GenerarAguja()
{
       var largoAguja = 1;
       var aguja = new Aguja() { Corte = false };
       var minY = 2;
       var maxY = 8;
       var maxX = 20;
       // Coordenada y1 al azar entre Y mínimo y máximo.
       aguja.Y1 = _random.NextDouble() * (maxY - minY) + minY;
       // Coordenada x1 al azar entre X mínimo y máximo.
       aguja.X1 = random.NextDouble() * maxX;
       // Coordenada y2 al azar entre y1 ± largo aguja.
       // y2 se posiciona aleatoramente arriba o abajo de y1.
       aguja.Y2 = aguja.Y1 + largoAguja*_random.NextDouble()*Signo();
       // Coordenada x2 determinada por las demás coordenadas, usando Pitágoras.
       // x2 se posiciona aleatoramente a la izquierda o a la derecha de x1.
       aguja.X2= aguja.X1+Math.Sqrt(largoAguja*largoAguja-(aguja.Y2-aguja.Y1)*
                 (aguja.Y2-aguja.Y1))*Signo();
       // Para cada línea, determinar si la aguja la corta.
       for (var linea = 2; linea <= 8; linea += 2)</pre>
       {
               if (aguja.Y2 > aguja.Y1)
               {
                      // Si la aguja corta la línea
                      if (aguja.Y2 >= linea && aguja.Y1 <= linea)</pre>
                      {
                             aguja.Corte = true;
                             break;
                     }
```

Función auxiliar para generar 1 o -1 de manera aleatorea:

```
private int Signo()
{
    return (_random.NextDouble() < 0.5 ? 1 : -1);
}</pre>
```

Luego de ejecutar n simulaciones, se calcula la estimación de Pi, utilizando la Fórmula 8:

```
public double CalcularPi()
{
    return _cortes > 0 ? _agujas / _cortes : 0;
}
```

Código C# para el método de Monte Carlo:

Por comodidad, se define una clase que representa a un punto posicionado en entre los límites 0 y 1 de ambos ejes:

```
public class Punto
{
    public double X { get; set; }
    public double Y { get; set; }
    public bool Interior { get; set; }
}
```

Luego se define una clase que representa al método de Monte Carlo, donde se generan puntos y se lleva un registro de la cantidad de puntos internos y externos al círculo unitario, ya que solo esos 2 datos serán suficientes para calcular la estimación de Pi:

```
public class MonteCarlo
{
    private int _puntosInternos = 0;
    private int _puntosExternos = 0;
    private Random _random;
    ...
}
```

Dentro de la clase MonteCarlo, se define código para generar puntos:

```
private Punto GenerarPunto()
```

```
{
       var punto = new Punto();
       // Coordenada x entre 0 y 1.
       punto.X = _random.NextDouble();
       // Coordenada y entre 0 y 1.
       punto.Y = _random.NextDouble();
       var hipotenusa = Math.Sqrt(punto.X * punto.X + punto.Y * punto.Y);
       // Punto interno del círculo con radio 1.
       if (hipotenusa < 1.0)</pre>
       {
              _puntosInternos++;
              punto.Interior = true;
       }
       else
       {
              _puntosExternos++;
              punto.Interior = false;
       }
       return punto;
}
Luego de ejecutar n simulaciones, se calcula la estimación de Pi, utilizando la fórmula 5:
public double CalcularPi()
{
       Var puntosTotales = _puntosExternos + _puntosInternos;
```

return (puntosTotales > 0) ? 4.0 * _puntosInternos / puntosTotales : 0;

}

Apéndice B – Resultados de todas las simulaciones

	Buffon				Montecarlo			
Muestra	Corte	Agujas	Pi	Internos	Puntos	Pi		
100	43	100	2.325581	69	100	2.76		
100	43	100	2.325581	69	100	2.76		
100	40	100	2.500000	70	100	2.80		
100	39	100	2.564103	72	100	2.88		
100	39	100	2.564103	72	100	2.88		
100	39	100	2.564103	73	100	2.92		
100	38	100	2.631579	73	100	2.92		
100	38	100	2.631579	73	100	2.92		
100	38	100	2.631579	73	100	2.92		
100	38	100	2.631579	74	100	2.96		
100	37	100	2.702703	74	100	2.96		
100	36	100	2.777778	75	100	3.00		
100	35	100	2.857143	75	100	3.00		
100	35	100	2.857143	76	100	3.04		
100	34	100	2.941176	76	100	3.04		
100	34	100	2.941176	76	100	3.04		
100	34	100	2.941176	76	100	3.04		
100	34	100	2.941176	77	100	3.08		
100	34	100	2.941176	78	100	3.12		
100	34	100	2.941176	78	100	3.12		
100	33	100	3.030303	78	100	3.12		
100	33	100	3.030303	78	100	3.12		
100	33	100	3.030303	79	100	3.16		
100	33	100	3.030303	79	100	3.16		
100	32	100	3.125000	79	100	3.16		
100	32	100	3.125000	79	100	3.16		
100	32	100	3.125000	79	100	3.16		
100	32	100	3.125000	80	100	3.20		
100	31	100	3.225806	80	100	3.20		
100	31	100	3.225806	80	100	3.20		
100	31	100	3.225806	80	100	3.20		
100	31	100	3.225806	80	100	3.20		
100	30	100	3.333333	82	100	3.28		
100	30	100	3.333333	82	100	3.28		
100	30	100	3.333333	82	100	3.28		
100	30	100	3.333333	82	100	3.28		
100	29	100	3.448276	82	100	3.28		
100	29	100	3.448276	84	100	3.36		
100	29	100	3.448276	84	100	3.36		
100	28	100	3.571429	84	100	3.36		
100	28	100	3.571429	85	100	3.40		
100	27	100	3.703704	85	100	3.40		
100	27	100	3.703704	85	100	3.40		
100	26	100	3.846154	85	100	3.40		
100	26	100	3.846154	86	100	3.44		
100	26	100	3.846154	86	100	3.44		
100	26	100	3.846154	86	100	3.44		
100	26	100	3.846154	87	100	3.44		
100	24			88	100	3.48		
100	23	100	4.166667 4.347826	90	100	3.52		
100	23	100	4.34/826	90	100	3.00		

Tabla A1.1 - Resultados de las simulaciones para muestras de tamaño 100.

		Buffon			Montecarlo	
Muestra	Corte	Agujas	Pi	Internos	Puntos	Pi
500	177	500	2.824859	380	500	3.04
500	177	500	2.824859	382	500	3.056
500	176	500	2.840909	383	500	3.064
500	171	500	2.923977	384	500	3.072
500	169	500	2.958580	384	500	3.072
500	169	500	2.958580	384	500	3.072
500	169	500	2.958580	386	500	3.088
500	169	500	2.958580	387	500	3.096
500	168	500	2.976190	388	500	3.104
500	167	500	2.994012	389	500	3.112
500	166	500	3.012048	389	500	3.112
500	166	500	3.012048	390	500	3.12
500	165	500	3.030303	390	500	3.12
500	164	500	3.048780	391	500	3.128
500	164	500	3.048780	391	500	3.128
500	163	500	3.067485	392	500	3.136
500	163	500	3.067485	392	500	3.136
500	162	500	3.086420	393	500	3.144
500	161	500	3.105590	393	500	3.144
500	160	500	3.125000	393	500	3.144
500	159	500	3.144654	393	500	3.144
500	159	500	3.144654	393	500	3.144
500	159	500	3.144654	394	500	3.152
500	159	500	3.144654	394	500	3.152
500	158	500	3.164557	395	500	3.16
500	158	500	3.164557	395	500	3.16
500	158	500	3.164557	395	500	3.16
500	157	500	3.184713	396	500	3.168
500	157	500	3.184713	399	500	3.192
500	156	500	3.205128	399	500	3.192
500	156	500	3.205128	399	500	3.192
500	155	500	3.225806	399	500	3.192
500	155	500	3.225806	399	500	3.192
500	154	500	3.246753	400	500	3.2
500	154	500	3.246753	400	500	3.2
500	153	500	3.267974	400	500	3.2
500	153	500	3.267974	400	500	3.2
500	151	500	3.311258	400	500	3.2
500	151	500	3.311258	401	500	3.208
500	151	500	3.311258	401	500	3.208
500	150	500	3.333333	401	500	3.208
500	150	500	3.333333	401	500	3.208
500	149	500	3.355705	401	500	3.208
500	148	500	3.378378	403	500	3.224
500	148	500	3.378378	404	500	3.232
500	147	500	3.401361	404	500	3.232
500	147	500	3.401361	408	500	3.264
500	146	500	3.424658	409	500	3.272
500	142	500	3.521127	409	500	3.272
500	131	500	3.816794	409	500	3.272
500	T 11 440 D	500	3.0107 74	707	300	J.474

Tabla A1.2 - Resultados de las simulaciones para muestras de tamaño 500.

		Buffon			Montecarlo	
Muestra	Corte	Agujas	Pi	Internos	Puntos	Pi
1000	357	1000	2.801120	760	1000	3.04
1000	342	1000	2.923977	761	1000	3.044
1000	341	1000	2.932551	762	1000	3.048
1000	338	1000	2.958580	763	1000	3.052
1000	332	1000	3.012048	768	1000	3.072
1000	331	1000	3.021148	768	1000	3.072
1000	330	1000	3.030303	770	1000	3.08
1000	329	1000	3.039514	770	1000	3.08
1000	328	1000	3.048780	773	1000	3.092
1000	328	1000	3.048780	774	1000	3.096
1000	327	1000	3.058104	775	1000	3.1
1000	326	1000	3.067485	776	1000	3.104
1000	325	1000	3.076923	776	1000	3.104
1000	324	1000	3.086420	777	1000	3.108
1000	323	1000	3.095975	778	1000	3.112
1000	323	1000	3.095975	780	1000	3.12
1000	320	1000	3.125000	782	1000	3.128
1000	319	1000	3.134796	783	1000	3.132
1000	317	1000	3.154574	785	1000	3.14
1000	316	1000	3.164557	785	1000	3.14
1000	316	1000	3.164557	785	1000	3.14
1000	315	1000	3.174603	786	1000	3.144
1000	314	1000	3.184713	787	1000	3.148
1000	314	1000	3.184713	787	1000	3.148
1000	313	1000	3.194888	787	1000	3.148
1000	312	1000	3.205128	787	1000	3.148
1000	312	1000	3.205128	788	1000	3.152
1000	312	1000	3.205128	788	1000	3.152
1000	312	1000	3.205128	789	1000	3.156
1000	312	1000	3.205128	789	1000	3.156
1000	311	1000	3.215434	791	1000	3.164
1000	310	1000	3.225806	791	1000	3.164
1000	310	1000	3.225806	791	1000	3.164
1000	310	1000	3.225806	792	1000	3.168
1000	309	1000	3.236246	792	1000	3.168
1000	308	1000	3.246753	793	1000	3.172
1000	308	1000	3.246753	793	1000	3.172
1000	307	1000	3.257329	794	1000	3.176
1000	306	1000	3.267974	795	1000	3.18
1000	305	1000	3.278689	795	1000	3.18
1000	304	1000	3.289474	795	1000	3.18
1000	300	1000	3.333333	796	1000	3.184
1000	298	1000	3.355705	797	1000	3.188
1000	296	1000	3.378378	799	1000	3.196
1000	294	1000	3.401361	801	1000	3.204
	292					
1000 1000	292	1000 1000	3.424658 3.472222	801 803	1000 1000	3.204 3.212
					1000	
1000	286	1000	3.496503	808		3.232
1000	285	1000	3.508772	808	1000	3.232
1000	281	1000	3.558719	822	1000	3.288

Tabla A1.3 - Resultados de las simulaciones para muestras de tamaño 1000.

		Buffon			Montecarlo	
Muestra	Corte	Agujas	Pi	Internos	Puntos	Pi
5000	1674	5000	2.986858	3864	1136	3.0912
5000	1655	5000	3.021148	3871	1129	3.0968
5000	1630	5000	3.067485	3884	1116	3.1072
5000	1625	5000	3.076923	3885	1115	3.1080
5000	1615	5000	3.095975	3885	1115	3.1080
5000	1614	5000	3.097893	3886	1114	3.1088
5000	1612	5000	3.101737	3890	1110	3.1120
5000	1609	5000	3.107520	3892	1108	3.1136
5000	1607	5000	3.111388	3896	1104	3.1168
5000	1607	5000	3.111388	3897	1103	3.1176
5000	1605	5000	3.115265	3899	1101	3.1192
5000	1601	5000	3.123048	3901	1099	3.1208
5000	1600	5000	3.125000	3903	1097	3.1224
5000	1600	5000	3.125000	3904	1096	3.1232
5000	1598	5000	3.128911	3906	1094	3.1248
5000	1597	5000	3.130870	3910	1090	3.1280
5000	1597	5000	3.130870	3910	1090	3.1280
5000	1593	5000	3.138732	3914	1086	3.1312
5000	1592	5000	3.140704	3914	1086	3.1312
5000	1589	5000	3.146633	3916	1084	3.1328
5000	1586	5000	3.152585	3922	1078	3.1376
5000	1585	5000	3.154574	3924	1076	3.1392
5000	1585	5000	3.154574	3926	1074	3.1408
5000	1584	5000	3.156566	3926	1074	3.1408
5000	1583	5000	3.158560	3928	1072	3.1424
5000	1583	5000	3.158560	3933	1067	3.1464
5000	1580	5000	3.164557	3933	1067	3.1464
5000	1577	5000	3.170577	3942	1058	3.1536
5000	1574	5000	3.176620	3943	1057	3.1544
5000	1573	5000	3.178640	3944	1056	3.1552
5000	1573	5000	3.178640	3946	1054	3.1568
5000	1571	5000	3.182686	3947	1053	3.1576
5000	1571	5000	3.182686	3951	1049	3.1608
5000	1571	5000	3.182686	3952	1048	3.1616
5000	1571	5000	3.182686	3953	1047	3.1624
5000	1570	5000	3.184713	3954	1046	3.1632
5000	1568	5000	3.188776	3957	1043	3.1656
5000	1568	5000	3.188776	3957	1043	3.1656
5000	1567	5000	3.190810	3958	1042	3.1664
5000	1560	5000	3.205128	3960	1040	3.1680
5000	1560	5000	3.205128	3960	1040	3.1680
5000	1559	5000	3.207184	3963	1037	3.1704
5000	1556	5000	3.213368	3963	1037	3.1704
5000	1535	5000	3.257329	3970	1030	3.1760
5000	1532	5000	3.263708	3971	1029	3.1768
5000	1529	5000	3.270111	3972	1028	3.1776
5000	1527	5000	3.274394	3975	1025	3.1800
5000	1519	5000	3.291639	3977	1023	3.1816
5000	1513	5000	3.304693	3987	1013	3.1896
5000	1512	5000	3.306878	4025	975	3.2200

Tabla A1.4 - Resultados de las simulaciones para muestras de tamaño 5000.

		Buffon			Montecarlo	
Muestra	Corte	Agujas	Pi	Internos	Puntos	Pi
10000	3252	10000	3.075031	7771	10000	3.1084
10000	3250	10000	3.076923	7772	10000	3.1088
10000	3245	10000	3.081664	7795	10000	3.118
10000	3235	10000	3.09119	7796	10000	3.1184
10000	3227	10000	3.098853	7799	10000	3.1196
10000	3226	10000	3.099814	7801	10000	3.1204
10000	3219	10000	3.106555	7803	10000	3.1212
10000	3218	10000	3.10752	7803	10000	3.1212
10000	3217	10000	3.108486	7803	10000	3.1212
10000	3213	10000	3.112356	7809	10000	3.1236
10000	3213	10000	3.112356	7809	10000	3.1236
10000	3204	10000	3.121099	7810	10000	3.124
10000	3204	10000	3.121099	7815	10000	3.126
10000	3201	10000	3.124024	7824	10000	3.1296
10000	3200	10000	3.125	7826	10000	3.1304
10000	3200	10000	3.125	7830	10000	3.132
10000	3197	10000	3.127932	7831	10000	3.1324
10000	3187	10000	3.137747	7834	10000	3.1336
10000	3186	10000	3.138732	7834	10000	3.1336
10000	3186	10000	3.138732	7836	10000	3.1344
10000	3181	10000	3.143666	7836	10000	3.1344
10000	3180	10000	3.144654	7842	10000	3.1368
10000	3179	10000	3.145643	7844	10000	3.1376
10000	3179	10000	3.145643	7847	10000	3.1388
10000	3178	10000	3.146633	7849	10000	3.1396
10000	3169	10000	3.15557	7852	10000	3.1408
10000	3165	10000	3.159558	7853	10000	3.1412
10000	3160	10000	3.164557	7860	10000	3.144
10000	3158	10000	3.166561	7861	10000	3.1444
10000	3155	10000	3.169572	7862	10000	3.1448
10000	3152	10000	3.172589	7864	10000	3.1456
10000	3150	10000	3.174603	7865	10000	3.146
10000	3148	10000	3.17662	7873	10000	3.1492
10000	3147	10000	3.177629	7877	10000	3.1508
10000	3144	10000	3.180662	7878	10000	3.1512
10000	3137	10000	3.187759	7881	10000	3.1524
10000	3136	10000	3.188776	7882	10000	3.1528
10000	3131	10000	3.193868	7890	10000	3.156
10000	3130	10000	3.194888	7892	10000	3.1568
10000	3128	10000	3.196931	7893	10000	3.1572
10000	3122	10000	3.203075	7896	10000	3.1584
10000	3122	10000	3.203075	7897	10000	3.1588
10000	3122	10000	3.203075	7898	10000	3.1592
10000	3120	10000	3.205128	7900	10000	3.16
10000	3106	10000	3.219575	7906	10000	3.1624
10000	3102	10000	3.223727	7908	10000	3.1632
10000	3101	10000	3.224766	7910	10000	3.164
10000	3096	10000	3.229974	7918	10000	3.1672
10000	3092	10000	3.234153	7924	10000	3.1696

Tabla A1.5 - Resultados de las simulaciones para muestras de tamaño 10000.

		Buffon			Montecarlo	
Muestra	Corte	Agujas	Pi	Internos	Puntos	Pi
30000	9726	30000	3.084516	23432	30000	3.124267
30000	9656	30000	3.106877	23453	30000	3.127067
30000	9637	30000	3.113002	23454	30000	3.127200
30000	9633	30000	3.114295	23457	30000	3.127600
30000	9625	30000	3.116883	23470	30000	3.129333
30000	9612	30000	3.121099	23471	30000	3.129467
30000	9599	30000	3.125326	23478	30000	3.130400
30000	9592	30000	3.127606	23489	30000	3.131867
30000	9575	30000	3.133159	23493	30000	3.132400
30000	9561	30000	3.137747	23501	30000	3.133467
30000	9559	30000	3.138404	23507	30000	3.134267
30000	9559	30000	3.138404	23509	30000	3.134533
30000	9552	30000	3.140704	23517	30000	3.135600
30000	9546	30000	3.142678	23526	30000	3.136800
30000	9543	30000	3.143666	23530	30000	3.137333
30000	9538	30000	3.145313	23532	30000	3.137600
30000	9533	30000	3.146963	23533	30000	3.137733
30000	9532	30000	3.147293	23536	30000	3.138133
30000	9529	30000	3.148284	23537	30000	3.138267
30000	9524	30000	3.149937	23542	30000	3.138933
30000	9519	30000	3.151592	23546	30000	3.139467
30000	9518	30000	3.151923	23553	30000	3.140400
30000	9514	30000	3.153248	23553	30000	3.140400
30000	9509	30000	3.154906	23554	30000	3.140533
30000	9505	30000	3.156234	23558	30000	3.141067
30000	9504	30000	3.156566	23568	30000	3.142400
30000	9494	30000	3.15989	23570	30000	3.142667
30000	9486	30000	3.162555	23577	30000	3.143600
30000	9484	30000	3.163222	23580	30000	3.144000
30000	9478	30000	3.165225	23580	30000	3.144000
30000	9476	30000	3.165893	23581	30000	3.144133
30000	9466	30000	3.169237	23585	30000	3.144667
30000	9462	30000	3.170577	23589	30000	3.145200
30000	9458	30000	3.171918	23589	30000	3.145200
30000	9453	30000	3.173596	23592	30000	3.145600
30000	9447	30000	3.175611	23598	30000	3.146400
30000	9445	30000	3.176284	23598	30000	3.146400
30000	9441	30000	3.177629	23599	30000	3.146533
30000	9438	30000	3.17864	23612	30000	3.148267
30000	9438	30000	3.17864	23622	30000	3.149600
30000	9435	30000	3.17965	23622	30000	3.149600
30000	9415	30000	3.186405	23630	30000	3.150667
30000	9414	30000	3.186743	23632	30000	3.150933
30000	9391	30000	3.194548	23636	30000	3.151467
30000	9388	30000	3.195569	23640	30000	3.152000
30000	9365	30000	3.203417	23652	30000	3.153600
30000	9358	30000	3.205813	23666	30000	3.155467
30000	9316	30000	3.220266	23693	30000	3.159067
30000	9312	30000	3.221649	23696	30000	3.159467
30000	9262	30000	3.239041	23704	30000	3.160533
55555				ra muoetrae do ta		0.100000

Tabla A1.6 - Resultados de las simulaciones para muestras de tamaño 30000.

Referencias

Ackoff, Russell L. (1971) - Towards a system of systems concepts – p. 662

Arcil Javier y Gordillo Francisco (1997) - Dinámica de Sistemas - pp. 11-12

Azarang, Mohammad R. (1998) - Simulación y análisis de modelos estocásticos - p. 8

Cheney, W. and Kincaid, D. (1985). Numerical Mathematics and Computing. 2nd Ed. Pace Grove,

California: Brooks/Cole Publishing Company pp. 354-354

Shannon, Robert (1975) - Systems simulation: the art and science -