# Rapport de projet OS13 Analyse de politique de maintenance

## TRAN QUOC NHAT HAN & ADRIEN WARTELLE

#### 2 janvier 2019

#### Sommaire

| 1 | Maintenance basant sur l'âge |                                                    |   |
|---|------------------------------|----------------------------------------------------|---|
|   | 1.1                          | Rappel                                             | ] |
|   | 1.2                          | Modéliser la durée de vie du système               | 4 |
| 2 | Annexe                       |                                                    |   |
|   | 2.1                          | L'importation de données de pannes                 |   |
|   | 2.2                          | Le premier histogramme de distribution de pannes   |   |
|   | 2.3                          | Estimer le mixage de la loi Exponentielle et Gamma | ٤ |
|   |                              |                                                    |   |

#### Résumé

Soient des données liées à la fonctionnement de système, nous déterminons un modèle approprié et puis choisir une politique de maintenance optimal.

# 1 Maintenance basant sur l'âge

#### 1.1 Rappel

Considérons un système non maintenu. En l'observant, nous obtenons un liste des dates de panne, grâce auquel nous construirerons une politique de remplacement systématique basée sur l'âge : Nous remplaçons lorsque le système tombe en panne ou qu'il survit une durée  $t_0$ .

Le but est de minimiser le coût moyen cumulé.

$$\mathbb{E}(C) = \frac{\mathbb{E}(C(S))}{\mathbb{E}(S)} \tag{1}$$

Où S est la variable aléatoire représentant la date de remplacement et C(S) est le coût de maintenance cumulé à l'instant S (sachant que C(S) est  $c_c$  si une maintenance corrective et  $c_p$  si préventive).

#### 1.2 Modéliser la durée de vie du système

L'importation de données (l'annexe 2.1) nous montre que les dates de pannes sont de l'ordre grandement variée (300 à 27000) (l'annexe 2.2). Exponentiel des valeurs extrèmes résulteront Inf, ce qui est indésirable. Alors nous devons forcément les réduire en les divisant par un scalaire scale, prenons par example 1000. (Figure 1)

#### Premier histogramme



FIGURE 1 – Le premier histogramme de distribution de pannes

Les pannes se concentrent autour de 2 sommets, l'un à [0;0,5] et l'autre à [4,5;5]. Ceci nous fait penser naturellement à un mixage de deux lois.

Comme les valeurs sont positives, et que l'un sommet se situe auprès de zéro et l'autre à une valeur non nulle, nous essayons d'estimer un mixage de loi Exponentielle et Gamma.

La fonction de densité avec le paramètre  $\theta = (p_1, p_2, \lambda, \alpha, \beta)$ :

$$f_{\theta}(x) = p_1 f_1(x) + p_2 f_2(x)$$

$$= p_1 \lambda e^{-\lambda x} + p_2 \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
(2)

Où  $f_1, f_2$  désignent réspectivement  $exp(\lambda)$  et  $\Gamma(\alpha, \beta)$ ;  $p_1, p_2 > 0$ :  $p_1 + p_2 = 1$ . Nous allons utiliser l'algorithme EM, la méthode la plus efficace pour estimer le MLE de mixage fini.

Soit  $\mathbf{X} = (x_1, ..., x_N)$  le vecteur des données existants.

Soit la matrice de probabilité d'appartenance  $(\zeta_{ki})$ .  $\zeta_{ki}$  vaut la probabilité que  $x_i$  suive la loi  $f_k$ .

$$\zeta_{ki} = \frac{p_k f_k (x_i)}{p_1 f_1 (x_i) + p_2 f_2 (x_i)} \forall k = \overline{1, 2} \forall i = \overline{1, N}$$

La fonction de vraisemblance :

$$\ln \Lambda = \sum_{i=1}^{N} \ln f_{\theta}(x_i) = \sum_{i=1}^{N} \ln (p_1 f_1(x_i) + p_2 f_2(x_i))$$
 (3)

Nous cherchons à maximiser  $\ln \Lambda$  en la dérivant selon  $\lambda, \alpha, \beta$ . Pour  $\lambda$  :

$$\frac{\partial}{\partial \lambda} \ln \Lambda = \sum_{i=1}^{N} \frac{p_1 e^{-\lambda x_i} - p_1 \lambda x_i e^{-\lambda x_i}}{p_1 f_1(x_i) + p_2 f_2(x_i)}$$

$$= \sum_{i=1}^{N} \frac{p_1 f_1(x_i)}{p_1 f_1(x_i) + p_2 f_2(x_i)} \left(\frac{1}{\lambda} - x_i\right)$$

$$= \frac{1}{\lambda} \sum_{i=1}^{N} \zeta_{1i} - \sum_{i=1}^{N} \zeta_{1i} x_i = 0$$

$$\Leftrightarrow \lambda = \frac{\sum_{i=1}^{N} \zeta_{1i}}{\sum_{i=1}^{N} \zeta_{1i} x_i}$$

$$(4)$$

Pour  $\beta$ :

$$\frac{\partial}{\partial \beta} \ln \Lambda = \sum_{i=1}^{N} \frac{p_2 x_i^{\alpha - 1}}{\Gamma(\alpha)} \frac{\alpha \beta^{\alpha - 1} e^{-\beta x_i} - \beta^{\alpha} x_i e^{-\beta x_i}}{p_1 f_1(x_i) + p_2 f_2(x_i)}$$

$$= \sum_{i=1}^{N} \frac{p_2 f_2(x_i)}{p_1 f_1(x_i) + p_2 f_2(x_i)} \left(\frac{\alpha}{\beta} - x_i\right)$$

$$= \frac{\alpha}{\beta} \sum_{i=1}^{N} \zeta_{2i} - \sum_{i=1}^{N} \zeta_{2i} x_i = 0$$

$$\Leftrightarrow \beta = \alpha \frac{\sum_{i=1}^{N} \zeta_{2i}}{\sum_{i=1}^{N} \zeta_{2i} x_i}$$
(5)

$$\frac{\partial}{\partial \alpha} \ln \Lambda = \sum_{i=1}^{N} \frac{p_2 e^{-\beta x_i}}{p_1 f_1(x) + p_2 f_2(x)} \left( \frac{\beta (\ln \beta + \ln x_i) (\beta x_i)^{\alpha - 1}}{\Gamma(\alpha)} - \beta^{\alpha} x^{\alpha - 1} \frac{\Psi(\alpha)}{\Gamma(\alpha)} \right)$$

$$= \sum_{i=1}^{N} \frac{p_2 f_2(x_i)}{p_1 f_1(x) + p_2 f_2(x)} (\ln \beta + \ln x_i - \Psi(\alpha))$$

$$= \left( \sum_{i=1}^{N} \zeta_{2i} \right) \ln \beta + \sum_{i=1}^{N} \zeta_{2i} \ln x_i - \Psi(\alpha) \left( \sum_{i=1}^{N} \zeta_{2i} \right) = 0$$

$$\Leftrightarrow 0 = \ln \alpha + \ln \frac{\sum_{i=1}^{N} \zeta_{2i}}{\sum_{i=1}^{N} \zeta_{2i} \ln x_i} + \frac{\sum_{i=1}^{N} \zeta_{2i} \ln x_i}{\sum_{i=1}^{N} \zeta_{2i}} - \Psi(\alpha)$$

$$\Leftrightarrow 0 = \ln \alpha - \Psi(\alpha) - c$$

$$\Leftrightarrow 0 = \ln \alpha - \Psi(\alpha) - c$$

Où 
$$c = \ln \left( \frac{\sum\limits_{i=1}^{N} \zeta_{2i} x_i}{\sum\limits_{i=1}^{N} \zeta_{2i}} \right) - \frac{\sum\limits_{i=1}^{N} \zeta_{2i} \ln(x_i)}{\sum\limits_{i=1}^{N} \zeta_{2i}}$$
;  $\Psi$  est la fonction digamma.

Selon la méthode de Newton-Rashphon, nous pouvons résoudre  $\alpha$  numériquement avec ce formul itératif :

$$\alpha_{r+1} = \alpha_r - \frac{\ln \alpha_r + \Psi(\alpha_r) - c}{\frac{1}{\alpha_r} - \Psi'(\alpha_r)}$$

[1] propose un autre formule convergeant plus vite:

$$\frac{1}{\alpha_{r+1}} = \frac{1}{\alpha_r} + \frac{\ln(\alpha_r) - \Psi(\alpha_r) - c}{a_r^2 \left(\frac{1}{\alpha_r} - \Psi'(\alpha_r)\right)}$$
(6)

Avec  $\Psi'$  la fonction trigamma. L'itération part avec  $\alpha_0 = \frac{0.5}{c}$ . Au final, pour  $p_k$ :

$$p_k = \frac{\sum_{i=1}^{N} \zeta_{ki}}{N} \forall k = \overline{1,2} \tag{7}$$

Etant donné (4), (5), (6) et (7), nous définissons l'algorithme EM:

- 1. Initialisation : Choisir un  $\theta_{vieux}$
- 2. Etape E : Evaluer  $(\zeta_{ki})$  sachant  $\theta_{vieux}$ .
- 3. Etape M : Calculer  $\theta_{nouveau}$  à l'aide des équations (4), (5), (6) et (7). Note: Pour  $\alpha$ , l'itération se termine quand  $|\alpha_{r+1} - \alpha_r| < \varepsilon_{\alpha}$  où  $\varepsilon_{\alpha}$  est un réel positif fixé à l'initialisation.
- 4. **Evaluation :** Si  $\|\theta_{c+1} \theta_c\| < \varepsilon_{\theta}$  ( $\varepsilon_{\theta}$  est un réel positif fixé à l'initialisation), l'algorithme s'arrête et  $\theta = \theta_{vieux}$ . Sinon, reviens à l'étape E avec  $\theta_{vieux} \leftarrow \theta_{nouveau}$ .

Basé sur le résultat obtenu, nous traçons la fonction de densité  $f_{\theta}$  trouvé (figure 2) et réalisons un test de Kolmogorov-Smirnov qui donne p-value =0,9663111 signifiant 96,63% de nous tromper si nous rejetons ce modèle. Nous l'acceptons alors, quoiqu'il ne génère pas 2 sommets comme la remarque initiale. Le code est trouvable à l'annexe 2.3.

#### Mixage de la loi Exponentielle and Gamma



Figure 2 – Mixage de la loi Exponentielle et Gamma

## 2 Annexe

#### 2.1 L'importation de données de pannes

## 2.2 Le premier histogramme de distribution de pannes

```
1 hist(
2 data,
    breaks = 40,
4 probability = TRUE,
5 xlab = "Date de pannes (mille heures)",
6 ylab = "Densité",
7 main = "Premier histogramme"
8 )
```

## 2.3 Estimer le mixage de la loi Exponentielle et Gamma

```
# Fitting mixture of Exp and Gamma

# Algorithm EM

# Initialisation

k = 2 # number of components

p = c(0.5, 0.5)

lambda = 1
```

```
7 \mid alpha = 5
   beta = 1
f = list(
8
9
10
        '1' = function(x) {
           dexp(x, rate = lambda)
12
        '2' = function(x) {
13
            dgamma(x, shape = alpha, rate = beta)
14
15
16
   epsilon = list(
      alpha = 1e-4,
theta = 1e-4
18
19
20 )
21
   zeta = matrix(
       Ο,
23
       nrow = k,
       ncol = N
24
25 )
26 # Norm
27
   normVec = function(x) sqrt(sum(x^2))
28
   # New value
29 p_new = p
30 alpha_new = alpha
31 beta_new = beta
32 lambda_new = lambda
33
   repeat {
    ## E Step
34
        # Calculate each proba
36
       for (1 in 1:k) {
            zeta[1,] = p[[1]] * f[[1]](data)
37
38
       }
        # Normalize proba
zeta = t(t(zeta) / rowSums(t(zeta)))
## M step
39
40
41
42
        # Lambda
43
        lambda_new = sum(zeta[1,]) / sum(zeta[1,] * data)
44
        # Alpha
        c = log(sum(zeta[2,] * data) / sum(zeta[2,])) - sum(zeta[2,] * log(data))
45
        / sum(zeta[2,])
alpha_new = 0.5 / c
46
        alpha_temp = 0
48
        repeat {
            49
50
51
                 break
            } else {
53
                 alpha_new = alpha_temp
            }
54
55
56
        alpha_new = alpha_temp
57
        beta_new = alpha_new * sum(zeta[2,]) / sum(zeta[2,] * data)
58
59
60
        for (1 in 1:k) {
            p_new[[1]] = mean(zeta[1,])
61
62
63
        ## Evaluation
       if (normVec(c(alpha, beta, lambda, p[[1]], p[[2]]) - c(alpha_new, beta_
    new, lambda_new, p_new[[1]], p_new[[2]])) < epsilon$theta) {</pre>
64
65
            break
66
       } else {
67
            alpha = alpha_new
            beta = beta_new
lambda = lambda_new
68
69
70
            p = p_new
71
        }
72 }
   # Final value update
73
74 alpha = alpha_new
75 beta = beta_new
76 lambda = lambda_new
77 \mid p = p_new
```

```
78
79
    # Illustration
    f_theta = function(x) {
   p[[1]] * f[[1]](x) + p[[2]] * f[[2]](x)
 80
 83 \mid h_{theta} = hist(
        data,
breaks = 40,
probability = TRUE,
main = "Mixage de la loi Exponentielle and Gamma",
xlab = "Dates de panne (mille d'heures)",
ylab = "Densité"
 84
 85
 86
 89
 90 )
 91
    curve(
 92
        f_theta(x),
         add = TRUE,
col = "violet",
 93
 94
         from = min(h_theta$mids),
 95
 96
97
         to = max(h_theta$mids)
101 }
102 test = ks.test(data, F_theta, exact = TRUE)
```

## Références

[1] Minka, Thomas P. (2002). "Estimating a Gamma distribution" https://tminka.github.io/papers/minka-gamma.pdf