Санкт-Петербургский Политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

ЛАБОРАТОРНАЯ РАБОТА №1

Сравнение распределений выборок для различных функций распределения с теоретическими оценками

по дисциплине "Математическая статистика"

Выполнил студент гр. 33631/1 Лансков.Н.В.

 ${
m Caнкт} ext{-}\Pi{
m e} ext{тербург}\ 2019$

Содержание

1	Постановка задачи	3
2	Теория	3
	2.1 Нормальное распределение	3
	2.2 Распределение Коши	į
	2.3 Распределение Лапласа	٤
	2.4 Равномерное распределение	
	2.5 Распределение Пуассона	,
3	Реализация	4
4	Результаты	4
5	Обсуждение	(
	5.1 Выводы	(
6	Литература	(

Список иллюстраций

1	Нормальное распределение	4
2	Распределение Коши	4
3	Распределение Лапласа	5
4	Равномерное распределение	5
5	Распределение Пуассона	6

1 Постановка задачи

Сравнить графики распределения выборок случайных чисел, сгенерированных при помощи различных функций распределения, с теоретическими кривыми распределения для выборок мощностями 10, 50, 100.

2 Теория

Рассмотрим использованные распределения подробней.

2.1 Нормальное распределение

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{1}$$

2.2 Распределение Коши

$$f(x) = \frac{1}{\pi} \left[\frac{1}{x^2 + 1} \right] \tag{2}$$

2.3 Распределение Лапласа

$$f(x) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}x} \tag{3}$$

2.4 Равномерное распределение

$$f(x) = \begin{cases} \frac{1}{2\sqrt{3}}, |x| \le \sqrt{3} \\ 0, |x| > \sqrt{3} \end{cases}$$
 (4)

2.5 Распределение Пуассона

$$P(7) = \frac{7^k}{k!}e^{-7} \tag{5}$$

3 Реализация

Выполнено средствами python с применением библиотек numpy, scipy and matplotlib

4 Результаты

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Равномерное распределение

Рис. 5: Распределение Пуассона

5 Обсуждение

5.1 Выводы

В результате работы были построены графики для трёх выборок разных мощностей для каждого из рассматриваемых распределений. Из графиков видно, что с увеличением мощности выборки, диаграмма всё менее отклоняется от теоретического значения. Это иллюстрирует факт того, что при стремлении можности выборки к бесконечности диаграмма выборки будет оцениваться теоретической кривой с любой интересующей нас точностью.

Конечно, за счёт того что размеры выборок довольно малы, то могут наблюдаться некоторые "выбросы" в конкретных точках (особенно заметно на самых левых графиках для мощности 10). Это объясняется тем, что значения выборки генерируются случайным образом и данных на такой мощности для построения теоретических оценок оказывается недостаточно.

6 Литература

- 1. Конспекты
- 2. Википедия