MODULE 7.1

Radioactive Chains—Never the Same Again

Prerequisite: Module 2.2, "Unconstrained Growth and Decay."

Introduction

The mass Q(t) of a radioactive substance decays at a rate proportional to the mass of the substance (see the section "Unconstrained Decay" in Module 2.2, "Unconstrained Growth and Decay"). Thus, for positive **disintegration constant**, or **decay constant**, r, we have the following differential equation:

$$dQ/dt = -rQ(t)$$

and its difference equation counterpart:

$$\Delta Q = -rQ(t - \Delta t)\Delta t$$

In this module, we model the situation where one radioactive substance decays into another radioactive substance, forming a chain of such substances. For example, radioactive bismuth-210 decays to radioactive polonium-210, which in turn decays to lead-206. We consider the amounts of each substance as time progresses.

Modeling the Radioactive Chain

If a radioactive substance, *substanceA*, decays into substance *substanceB*, we say that *substanceA* is the **parent** of *substanceB* and that *substanceB* is the **child** of *substanceA*. If *substanceB* is also radioactive, *substanceB* is the parent of another substance, *substanceC*, and we have a **chain** of substances. Figure 7.1.1 depicts the situation where *A*, *B*, and *C* are the masses of radioactive substances, *substanceA*, *substanceB*, and *substanceC*, respectively; and different disintegration constants, *decay_rate_of_A* (*a*) and *decay_rate_of_B* (*b*), exist for each decay.

234 Module 7.1

Figure 7.1.1 Chain of decays

Quick Review Question 1

Suppose A and B are the masses of *substanceA* and *substanceB*, respectively, at time t; ΔA and ΔB are the changes in these masses; and a and b are the positive disintegration constants.

- **a.** Using these constants and variables along with arithmetic operators, such as minus and plus, give the difference equation for the change in the mass of *substanceA*, ΔA .
- **b.** Through disintegration of *substanceA*, *substanceB*'s mass increases, while some of *substanceB* decays to *substanceC*. Give the difference equation for the change in the mass of *substanceB*, ΔB .
- **c.** In Figure 7.1.1, where *A*, *B*, and *C* are the masses of three radioactive substances, give the formula as it appears in a system dynamics tool's equation for the flow *decay_A_to_B*.
- **d.** Give the formula as it appears in a systems dynamics tool's equation for the flow *decay_B_to_C*.

The mass of *substanceA* that decays to *substanceB* is *aA*. Thus, in Figure 7.1.1, the flow $decay_A_to_B$ contains the formula $decay_rate_of_A * A$. What *substanceA* loses, *substanceB* gains. However, *substanceB* decays to *substanceC* at a rate proportional to the mass of *substanceB*, *bB*. Consequently, in Figure 7.1.1, the flow $decay_B_to_C$ contains the mass that flows from one stock to another, $decay_rate_of_B * B$. The total change in the mass of *substanceB* consists of the gain from *substanceA* minus the loss to *substanceC* with the result multiplied by the change in time, Δt :

$$\Delta B = (aA - bB) \Delta t$$

We consider the initial amounts of *substanceB* and *substanceC* to be zero.

Projects

- **1. a.** With a system dynamics tool or a computer program, develop a model for a radioactive chain of three elements, from *substanceA* to *substanceB* to *substanceC*. Allow the user to designate constants. Generate a graph and a table for the amounts of *substanceA*, *substanceB*, and *substanceC* versus time. Answer the following questions using this model.
 - **b.** Explain the shapes of the graphs.
 - **c.** As the decay rate of *A*, *a*, increases from 0.1 to 1, describe how the time of the maximum total radioactivity changes. The total radioactivity is the sum of the change from *substanceA* to *substanceB* and the change from *substanceB* to *substanceC*, or the total number of disintegrations. Why?
 - **d.** (The verification in Part d requires calculus.) With b being the decay rate of B, in several cases where a < b, observe that eventually we have the following approximation:

$$\frac{B}{A} \approx \frac{a}{b-a}$$

With the ratio of the mass of *substanceB* (B) to the mass of *substanceA* (A) being almost constant, a/(b-a), we say the system is in **transient equilibrium**. Eventually, *substanceA* and *substanceB* appear to decay at the same rate. Using the following material, verify this approximation:

Find the exact solution to the differential equation for the rate of change of A with respect to time, dA/dt = -aA (see the section "Analytic Solution" in Module 2.2, "Unconstrained Growth and Decay").

Verify that $B = \frac{aA_0}{b-a}(e^{-at} - b^{-bt})$, where A_0 is the initial mass of *substanceA*, is a solution to the differential equation for the rate of change of B with respect to time (see the difference equation for ΔB). What number does e^{-at} approach as t goes to infinity? For a < b, which is smaller, e^{-at} or e^{-bt} ? Thus, for large t, B is approximately equal to what?

- **e.** Using your model from Part a, observe in several cases where a > b that the ratio of the mass of *substanceB* to the mass of *substanceA* does not approach a number. Thus, transient equilibrium (see Part d) does not occur in this case.
- **f.** (Requires calculus) Verify the observation from Part e analytically using work similar to that in Part d.
- **g.** If a is much smaller than b, we have $A \approx A_0$ and $B \approx \frac{aA_0}{b-a}$. With the two amounts being almost constant, we have a situation called **secular equi-**

librium. Observe this phenomenon for the radioactive chain from radium-226 to radon-222 to polonium-218: $Ra^{226} \rightarrow Rn^{222} \rightarrow Po^{218}$, where the decay rate of Ra^{226} , a, is 0.00000117/da and the decay rate of Rn^{222} , b, is 0.181/da. Using your work from Part a, run the simulation for at least one year.

h. (Requires calculus) Show analytically that the approximations from Part g hold.

- i. In the radioactive chain $Bi^{210} \rightarrow Po^{210} \rightarrow Pb^{206}$ (bismuth-210 to polonium-210 to lead-206), the decay rate of Bi^{210} , a, is 0.0137/da and the decay rate of Po^{210} , b, is 0.0051/da. Assuming the initial mass of Bi^{210} is 10^{-8} g and using your model from Part a, find, approximately, the maximum mass of Po^{210} and when the maximum occurs.
- mum mass of Po²¹⁰ and when the maximum occurs. **j.** (Requires calculus) In Part d, we verified that $B = \frac{aA_0}{b-a}(e^{-at} - b^{-bt})$. Using this result, find analytically the maximum of mass of *substanceB* and when this maximum occurs.
- k. Check your approximations of Part i using your solution to Part j.
- **l.** For the chain in Part g, use your solution to Part j to find when the largest mass of Rn²²² occurs.
- **m.** For the chain in Part g, use your simulation of Part a to approximate the time when the largest mass of Rn²²² occurs. How does your approximation compare with the analytical solution of Part 1?
- **2.** Develop a model for a chain of four elements. Perform simulations, observations, and analyses similar to those before. Discuss your results

Answers to Quick Review Question

- **1. a.** $\Delta A = -aA \Delta t$
 - **b.** $\Delta B = (aA bB)\Delta t$
 - **c.** $decay_A_to_B = decay_rate_of_A * A$
 - **d.** $decay_B_{to}C = decay_{rate}of_B * B$

Reference

Horelick, Brindell, and Sinan Koont. 1979, 1989. "Radioactive Chains: Parents and Children." *UMAP Module 234*. COMAP, Inc.