68

Si

$$A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix},$$

entonces $\mathbf{x}\mapsto A\mathbf{x}$ de \mathbb{R}^3 en \mathbb{R}^4 es la aplicación definida por

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} x_1 + 3x_3 \\ -x_1 + x_3 \\ 2x_1 + x_2 + 2x_3 \\ -x_1 + 2x_2 + x_3 \end{bmatrix}.$$

Ejemplo 8

A continuación se ilustra lo que le ocurre a un punto específico cuando se le aplica una matriz 4×3 :

$$A\mathbf{e}_2 = \begin{bmatrix} 4 & 2 & 9 \\ 3 & 5 & 4 \\ 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 2 \\ 1 \end{bmatrix} = \text{segunda columna de } A.$$

Propiedades de las matrices

En general, la multiplicación de matrices no es ${\it conmutativa}$: si A y B son matrices $n\times n,$ entonces, como demuestran los Ejemplos 4, 5 y 6, generalmente

$$AB \neq BA$$
.

Se dice que una matriz $n \times n$ es *invertible* si existe una matriz $n \times n$, B, tal que $AB = BA = I_n$, donde

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

es la matriz identidad $n \times n$: I_n tiene la propiedad de que $I_n C = C I_n = C$ para cualquier matriz $n \times n$ C. Denotamos B por A^{-1} y llamamos a A^{-1} la inversa de A. La inversa, cuando existe, es única.

Ejemplo 9

Si

$$A = \begin{bmatrix} 2 & 4 & 0 \\ 0 & 2 & 1 \\ 3 & 0 & 2 \end{bmatrix}, \quad \text{entonces} \quad A^{-1} = \frac{1}{20} \begin{bmatrix} 4 & -8 & 4 \\ 3 & 4 & -2 \\ -6 & 12 & 4 \end{bmatrix},$$

ya que $AA^{-1} = I_3 = A^{-1}A$, como se puede comprobar mediante la multiplicación de matrices.