Condición de Integrabilidad de Riemann

Alex David Montero Garay y Erick Herández Peón

20 de marzo de 2025

1. Equivalencias de Integrabilidad Riemann

Sea $f:[a,b]\to\mathbb{R}$ una función acotada. Las siguientes proposiciones son equivalentes:

- 1. f es Riemann integrable en [a, b].
- 2. Para todo $\varepsilon > 0$, existe una partición P_{ε} tal que para toda partición más fina $P' \supseteq P_{\varepsilon}$ y cualquier elección de puntos χ :

$$|\sigma(f, P', \chi) - I| < \varepsilon,$$

donde $\sigma(f,P',\chi)$ es una suma de Riemann y $I=\int_a^b f(x)\,dx.$

3. La integral superior e inferior coinciden:

$$\overline{I} = I$$

Demostración de las equivalencias

 $Demostración~(1) \Rightarrow (2)$. Supongamos que f es Riemann integrable. Por el criterio de Darboux, para todo $\varepsilon > 0$, existe una partición P_{ε} tal que:

$$U(P_{\varepsilon}, f) - L(P_{\varepsilon}, f) < \varepsilon.$$

Si $P' \supseteq P_{\varepsilon}$, entonces:

$$L(P_{\varepsilon}, f) \le L(P', f) \le \sigma(f, P', \chi) \le U(P', f) \le U(P_{\varepsilon}, f).$$

Como $I = \int_a^b f(x) dx$, se cumple:

$$|\sigma(f, P', \chi) - I| \le U(P', f) - L(P', f) < \varepsilon.$$

 $Demostraci\'on~(2) \Rightarrow~(3).$ Dado $\varepsilon>0,$ por hipótesis existe P_ε tal que para todo $P'\supseteq P_\varepsilon$:

$$I - \varepsilon < \sigma(f, P', \chi) < I + \varepsilon.$$

Tomando supremo e ínfimo sobre las sumas de Riemann:

$$I-\varepsilon \leq L(P',f) \leq \underline{(I)} \leq \overline{(I)} \leq U(P',f) \leq I+\varepsilon.$$

Como ε es arbitrario, se concluye:

$$\overline{I} = \underline{I} = I$$
.

 $Demostración~(3) \Rightarrow$ (1). Por definición, fes Riemann integrable si y solo si:

$$\overline{I} = I$$
.

La igualdad en (3) implica directamente la integrabilidad, con $I=\int_a^b f(x)\,dx$. \square

 $\begin{array}{|c|c|c|c|c|}\hline 1 & \Longrightarrow 2 & \Longrightarrow 3 & \Longrightarrow 1\\\hline \text{Equivalencia completa.} \end{array}$