

Fit Studies

Laurie McClymont, Di-b-jet Analysis Team

INT Note Update
18 July 2016

2 Introduction - mjj Cut Study

Evidence that fit is performing badly in mbj case at low masses - Seen before

Change mjj range used

- Shown previously that at 1341 GeV fit is improved

Where should we put the cut

- Study p-values against mjj cut off in MC
- Look for plateau in p-values
- Use MC to show us where we expect a stable fit region

Fit to MC

- MC errors, number of MC entries rather than poisson errors
- 'Short' cut off where we expect one event (limits upper mass range)
- Fit using search phase.
- MC 20160713
 - => Fixed b-tagging bug that was discussed in EB meeting
 - => Updated scale factors

>= 1 b-tag : 4-par

- MC errors, number of MC entries rather than poisson errors
- 'Short' cut off where we expect one event (limits upper mass range)
- Fit using search phase.
- MC 20160713
 - => Fixed b-tagging bug that was discussed in EB meeting
 - => Updated scale factors

>= 1 b-tag : 5-par

Fit to MC

- MC errors, number of MC entries rather than poisson errors
- 'Short' cut off where we expect one event (limits upper mass range)
- Fit using search phase.
- MC 20160713
 - => Fixed b-tagging bug that was discussed in EB meeting
 - => Updated scale factors

2 b-tag : 4-par

Fit to MC

- MC errors, number of MC entries rather than poisson errors
- 'Short' cut off where we expect one event (limits upper mass range)
- Fit using search phase.
- MC 20160713
 - => Fixed b-tagging bug that was discussed in EB meeting
 - => Updated scale factors

2 b-tag : 5-par

 χ^2 p-Value

p-Values vs. mjj cut : >= 1 b-tag

MC - 20160713
4 parameter fit function
Inclusive 1 b-tag category
Short @ 10 fib (cut off at 1 event)

Plateau at 1378 GeV

Shows that mjj > 1378 GeV is a stable fitting region

Stable fit region by 1378 GeV

MC - 20160713 4 parameter fit function 2 b-tag category Short @ 10 fib (cut off at 1 event)

Why are p-values lower than 1-tag?

- Errors given by MC stats
- We are sensitive to fluctuations in MC production
- Seems here there are some fluctuations...

We are ok in data-like

- These flucts are smaller than Poisson flucts we will see in data (especially at high mass)
- Spurious signal study shows good fit quality

More on p-Values vs. mjj cut : 2 b-tag

MC - 20160712 4 parameter fit function 2 b-tag category Short @ 10 fib - (cut off at 1 event)

Plateau- at 1378 GeV

Shows that mjj > 1378 GeV is a stable fitting region

Why are p-values lower than 1-tag?

- Errors given by MC stats
- We are sensitive to fluctuations in MC production
- Seems here there are some fluctuations...

We are ok in data-like

- These flucts are smaller than poisson flucts we will see in data (especially at high mass)
- Spurious signal study shows good fit quality

mjj > 1.1 TeV

mjj > 1.378 TeV

- Confirm that fits discrepancies are not significantly occurring
 - Fit discrepancy = A difference in shape between fitting function and background shape
 - Fit discrepancy may hide true signal or create fake signal

- Test fit function by performing fits to background only data-set
 - Use MC for representative background only data-set
 - Create data-like distributions by applying poisson fluctuations
 - Study fit quality BH p-value, Chi2 p-value, Deficit Hunter p-value
 - Search for evidence of spurious signal

11 **Effective Entries**

We want data-like distributions, poisson fluctuations applied to precise background estimate

Where Effective Entries > Scaled: We have enough stats for fit tests

- Know expected entry more precisely than data

We want data-like distributions, poisson fluctuations applied to precise background estimate

Where Effective Entries > Scaled: We have enough stats for fit tests

Know expected entry more precisely than data

Make Data-Like distributions by applying random Poisson fluctuations

- Shown is one particular set of random fluctuations.
- We can fit to the data-like distributions

Many different data-like distributions can be made with different fluctuations

- Gives us a global study of our fitting procedure

13 Spurious Signal: >= 1 b-tag

>= 1 b-tag category 4 para fit function

Data-like background only distributions

- Taken from MC scaled to 10 ifb
- Apply poison fluctuations
- 200 different fluctuations

Fit Range: 1378 - End of Data

Events

 10^{2}

ATLAS Simulation Internal

 \sqrt{s} =13 TeV, 10.0 fb⁻¹

— Simulation

Background fit

BumpHunter interval

14 Spurious Signal: 2 b-tag

2 b-tag category4 para fit function

Data-like background only distributions

- Taken from MC scaled to 10 ifb
- Apply poison fluctuations
- 200 different fluctuations

Fit Range: 1378 - End of Data

Events

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DeficitHunter p-Value

ATLAS Simulation Internal

 \sqrt{s} =13 TeV, 10.0 fb⁻¹

Background fit

BumpHunter interval

Simulation

15 **Conclusions**

- MC 201607<u>13</u>
- => Fixed b-tagging
- => New scale factors
- >= 1 b-tag category
- chi2 and bH p-value plateau @ mjj > 1378 GeV
- No spurious signal, mjj > 1378 GeV
- 2 b-tag category
- chi2 and bH p-value stable @ mjj > 1378 GeV
- No spurious signal, mjj > 1.378 TeV
- Updating INT note now!!

Backup

 χ^2 p-Value

17 p-Values vs. mjj cut : >= 1 b-tag - 5 para. fit func.

MC - 20160713 **5 parameter fit function**Inclusive 1 b-tag category
Short @ 10 fib (cut off at 1 event)

Plateau at 1378 GeV

Shows that mjj > 1378 GeV is a stable fitting region

Event Selection

Pythia8EvtGen MC Di-Jet Sample

- HLT_j380
- 2016 MC
- di-b-jet Ntuple production

Scale to 10ifb

- Will update for final lumi

Standard Dijet Resonance Cuts

- Leading Jet pT > 430 GeV
- Sublead Jet pT > 60 GeV
- $|y^*| < 0.6$
- mjj > 1100 GeV

MV2c10

- Using fixed cut 85% for both jets
- mbb_fix_8585
- mbj_inc_fix_8585