SRN						

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE19EC205

DECEMBER 2020: END SEMESTER ASSESSMENT (ESA) B TECH 3rd SEMESTER **UE19EC205-Computer Organization and Digital Design**

lin	ne:	3 Hrs Answer All Questions Max Marks: 100									
1	a)	Convert $(41.6875)_{10} = ()_2$.	T :								
	b)										
	c)	Explain 3-to-8-line Decoder with a neat diagram and Truth table. Construct 4X16 decoder with two 3X8 decoders.									
2	a)	Write the steps involved in flip flop conversions. Convert D Flip-flop into JK Flip-flop.									
	b)	Analyze the following given clocked sequential circuit and answer the questions given below.									
		D D A									
		Clock y									
		 Identify the model of given sequential circuit Write the state equations for the next state Write the state table Draw the state diagram 									
С	;) '	Write a HDL model for 4-bit universal shift register using behavioral modeling	5								

		SRN	
3	a)	With the help of a neat diagram and relevant equations explain 4-bit Carry-Lookahead adder. Construct a 16-bit Carry-Lookahead adder using 4-bit adders.	10
	b)	Perform Bit pair recoding multiplication of (13) X (-6).	5
	c)	Subtract the floating point numbers, F2= (100001110.11) ₂ from F1= (11100000) ₂ . Also represent the result in equivalent binary value with mantissa and exponent.	5
b)	a)	Explain the following a. Byte addressability b. Big endian c. Little endian	6
	b)	Explain about a straight-line sequencing for C= [A] + [B] with a neat diagram.	7
	c)	Differentiate between Von-Neumann and Harvard Architecture.	7
	a)	Explain about connection of the memory to the processor and show how data transfer takes place between memory and a processor with a neat diagram.	8
	b)	Explain the direct mapped cache in mapping function with a neat diagram.	8
	c)	Give a brief note on Write-through protocol & Write-back protocol.	4