Exercises in Introduction to Mathematical Statistics (Ch. 8)

Tomoki Okuno

August 29, 2022

Note

- Not all Solutions are provided: exercises that are too simple or not very important to me are skipped.
- Texts in red are just attentions to me. Please ignore them.

8 Optimal Tests of Hypotheses

Note that I use the reverise definition:

$$\frac{L(\theta''; \mathbf{x})}{L(\theta'; \mathbf{x})} \ge k$$

because I learned this in a class.

8.1. Most Powerful Tests

Let k > 0 and K > 0 in this section.

8.1.1. In Example 8.1.2 of this section, let the simple hypotheses read $H_0: \theta = \theta' = 0$ and $H_1: \theta = \theta'' = -1$. Show that the best test of H_0 against H_1 may be carried out by use of the statistic \overline{X} , and that if n = 25 and $\alpha = 0.05$, the power of the test is 0.9996 when H_1 is true.

Solution.

$$\frac{L(-1)}{L(0)} = \exp\left[-\sum x_i - \frac{n}{2}\right] \ge k \implies \sum_{i=1}^{n} x_i \le -\log k - \frac{n}{2} = k' \implies \overline{x} \le c.$$

Hence, the best critical region is

$$C = \{ \mathbf{x} : \overline{x} \le c \} .$$

When n = 25 and $\alpha = 0.05$, since $\overline{X} \sim N(0, 1/25)$ under H_0 ,

$$0.05 = P_{H_0}(\overline{X} \le c) = P_{H_0}(5\overline{X} \le 5c) = \Phi(5c) \implies 5c = -1.645 \implies c = -0.329.$$

On the other hand, since $\overline{X} \sim N(-1, 1/25)$ under H_1 ,

$$1 - \beta = P_{H_1} \left(\overline{X} \le 0.329 \right) P_{H_1} \left(5(\overline{X} + 1) \le 3.355 \right) = \Phi(3.355) = 0.9996.$$

8.1.2. Let the random variable X have the pdf $f(x;\theta) = (1/\theta)e^{-x/\theta}$, $0 < x < \infty$, zero elsewhere. Consider the simple hypothesis $H_0: \theta = \theta' = 2$ and the alternative hypothesis $H_1: \theta = \theta'' = 4$. Let X_1, X_2 denote a random sample of size 2 from this distribution. Show that the best test of H_0 against H_1 may be carried out by use of the statistic $X_1 + X_2$.

Solution.

$$\frac{L(4)}{L(2)} \ge k \implies x_1 + x_2 \ge c = \chi_{4,1-\alpha}^2.$$

because $X_1 + X_2 \sim \Gamma(2, 2) = \chi^2(4)$ under $H_0 : \theta = 2$.

8.1.3. Repeat Exercise 8.1.2 when $H_1: \theta = \theta'' = 6$. Generalize this for every $\theta'' > 2$.

Solution.

Show only the general case: $\theta'' > 2$.

$$\frac{L(\theta'')}{L(2)} \ge k \implies (\theta'' - 2)(x_1 + x_2) \ge k' \implies x_1 + x_2 \ge c = \chi_{4, 1 - \alpha}^2$$

under H_0 , which is consistent with the precious exercise.

8.1.4. Let $X_1, X_2, ..., X_{10}$ be a random sample of size 10 from a normal distribution $N(0, \sigma^2)$. Find a best critical region of size $\alpha = 0.05$ for testing $H_0: \sigma^2 = 1$ against $H_1: \sigma^2 = 2$. Is this a best critical region of size 0.05 for testing $H_0: \sigma^2 = 1$ against $H_1: \sigma^2 = 4$? against $H_1: \sigma^2 = \sigma_1^2 > 1$?

Solution.

Show only the general case: $\sigma^2 = \sigma_1^2 > 1$.

$$\frac{L(\sigma_1^2)}{L(1)} \ge k \implies (\sigma_1^2 - 1) \sum_{i=1}^{10} x_i^2 \ge k' \implies \sum_{i=1}^{10} x_i^2 \ge c = \chi_{10, 0.95}^2 = 18.30$$

because $X_i \sim N(0,1) \Rightarrow \sum_{i=1}^{10} X_i^2 \sim \chi_{10}^2$ under H_0 .

8.1.5. If $X_1, X_2, ..., X_n$ is a random sample from a distribution having pdf of the form $f(x; \theta) = \theta x^{\theta - 1}$, 0 < x < 1, zero elsewhere, show that a best critical region for testing $H_0: \theta = 1$ against $H_1: \theta = 2$ is $C = \{(x_1, x_2, ..., x_n): c \leq \prod_{i=1}^n x_i\}$.

Solution.

$$\frac{L(2)}{L(1)} = 2^n \prod_{1}^n x_i \ge k \implies \prod_{1}^n x_i \ge c,$$

where $c = 2^{-n}k$.

8.1.6. Let $X_1, X_2, ..., X_{10}$ be a random sample from a distribution that is $N(\theta 1, \theta 2)$. Find a best test of the simple hypothesis $H_0: \theta_1 = \theta_1' = 0, \theta_2 = \theta_2' = 1$ against the alternative simple hypothesis $H_1: \theta_1 = \theta_1'' = 1, \theta_2 = \theta_2'' = 4$.

Solution.

$$\frac{L(1,4)}{L(0,1)} \ge k \implies \sum_{i=1}^{10} (3x_i - 1)(x_i + 1) \ge c \text{ or } \sum_{i=1}^{10} (3x_i^2 + 2x_i) \ge c'.$$

8.1.8. If $X_1, X_2, ..., X_n$ is a random sample from a beta distribution with parameters $\alpha = \beta = \theta > 0$, find a best critical region for testing $H_0: \theta = 1$ against $H_1: \theta = 2$.

Solution.

$$\frac{L(2)}{L(1)} = K \prod_{i=1}^{n} x_i (1 - x_i) \ge k \implies \prod_{i=1}^{n} x_i (1 - x_i) \ge c,$$

where K = B(1,1)/B(2,2) that we do not have to compute.

8.1.9. Let $X_1, X_2, ..., X_n$ be iid with pmf $f(x; p) = p^x (1-p)^{1-x}$, x = 0, 1, zero elsewhere. Show that $C = \{(x_1, ..., x_n) : \sum_{1}^{n} x_i \leq c\}$ is a best critical region for testing $H_0 : p = \frac{1}{2}$ against $H_1 : p = \frac{1}{3}$. Use the Central Limit Theorem to find n and c so that approximately $P_{H_0}(\sum_{1}^{n} X_i \leq c) = 0.10$ and $P_{H_1}(\sum_{1}^{n} X_i \leq c) = 0.80$.

Solution.

$$\frac{L(1/3)}{L(1/2)} = \frac{(1/3)^{\sum x_i} (2/3)^{n-\sum x_i}}{(2/3)^{\sum x_i} (1/3)^{n-\sum x_i}} = 2^n 4^{-\sum x_i} \ge k \implies \sum_{i=1}^n x_i \le c.$$

Since $\sum_{i=1}^{n} X_i \sim b(n,p)$, using the CLT to obtain $\sum_{i=1}^{n} X_i \stackrel{D}{\sim} N(np,np(1-p))$. We can find n and c by solving

$$\frac{c-n/2}{\sqrt{n/4}} = -1.28, \quad \frac{c-n/3}{\sqrt{2n/9}} = 0.84.$$

In fact, $n = 38.6 \approx 39$ and $c = 15.34 \approx 15$.

8.1.10. Let $X_1, X_2, ..., X_{10}$ denote a random sample of size 10 from a Poisson distribution with mean θ . Show that the critical region C defined by $\sum_{1}^{10} x_i \geq 3$ is a best critical region for testing $H_0: \theta = 0.1$ against $H_1: \theta = 0.5$. Determine, for this test, the significance level α and the power at $\theta = 0.5$. Use the R function ppois.

Solution.

$$\frac{L(0.5)}{L(0.1)} = e^{-4} 5^{\sum_{i=1}^{10} x_i} \ge k \implies \sum_{i=1}^{10} x_i \ge c.$$

Given that c = 3 and $\sum_{i=1}^{10} X_i \sim \text{Poisson}(10\theta)$,

$$\alpha = P_{H_0}\left(\sum_1^{10} X_i \ge 3\right) = \texttt{1 - ppois(2,1)} = 0.08$$

$$1 - \beta = P_{H_1}\left(\sum_1^{10} X_i \ge 3\right) = \texttt{1 - ppois(2,5)} = 0.875.$$

8.2 Uniformly Most Powerful Tests

8.2.1. Let X have the pmf $f(x;\theta) = \theta^x (1-\theta)^{1-x}$, x = 0, 1, zero elsewhere. We test the simple hypothesis $H_0: \theta = \frac{1}{4}$ against the alternative composite hypothesis $H_1: \theta < \frac{1}{4}$ by taking a random sample of size 10 and rejecting $H_0: \theta = \frac{1}{4}$ if and only if the observed values $x_1, x_2, ..., x_{10}$ of the sample observations are such that $\sum_{1}^{10} x_i \leq 1$. Find the power function $\gamma(\theta), 0 < \theta \leq \frac{1}{4}$, of this test.

Solution.

Use NP theorem to obtain. Let $\theta' < \frac{1}{4}$.

$$\frac{L(\theta')}{L(1/4)} = \dots = K \left(\frac{3\theta'}{1 - \theta'} \right)^{\sum_{i=1}^{10} x_i} \ge k \implies \sum_{i=1}^{10} x_i \log \left(\frac{3\theta'}{1 - \theta'} \right) \ge \log k - \log K$$

$$\Rightarrow \sum_{i=1}^{10} x_i \le c \quad \text{since } 0 < \frac{3\theta'}{1 - \theta'} < 1 \left(\theta' < \frac{1}{4} \right).$$

Let $\Omega = \{\theta \leq \frac{1}{4}\}$. Then $Y = \sum_{i=1}^{10} x_i \sim b(10, \theta)$ under Ω , when c = 1,

$$r(\theta) = P_{\Omega}(Y \le 1) = P_{\Omega}(Y = 0) + P_{\Omega}(Y = 1) = (1 - \theta)^{10} + 10\theta(1 - \theta)^{9} = (1 - \theta)^{9}(1 + 9\theta).$$

8.2.2. Let X have a pdf of the form $f(x;\theta) = 1/\theta$, $0 < x < \theta$, zero elsewhere. Let $Y_1 < Y_2 < Y_3 < Y_4$ denote the order statistics of a random sample of size 4 from this distribution. Let the observed value of Y_4 be Y_4 .

We reject $H_0: \theta = 1$ and accept $H_1: \theta \neq 1$ if either $y_4 \leq \frac{1}{2}$ or $y_4 > 1$. Find the power function $\gamma(\theta)$, $0 < \theta$, of the test.

Solution.

By the previous exercise, we have

$$F_{Y_4}(y_4) = \frac{y_4^4}{\theta^4}, \ 0 < y_4 < \theta.$$

Hence,

$$\gamma(\theta) = P\left(Y_4 \le \frac{1}{2}\right) + P\left(Y_4 > 1\right) = F_{Y_4}(1/2) + (1 - F_{Y_4}(1)) = 1 - \frac{15}{16\theta^4}, \ \theta > 0.$$

8.2.6. If, in Example 8.2.2 of this section, $H_0: \theta = \theta'$, where θ' is a fixed positive number, and $H_A: \theta \neq \theta'$, show that there is no uniformly most powerful test for testing H_0 against H_1

Solution.

If $\theta'' > \theta$, then we want to use a critical region of the from $\sum x_i^2 > c$. If $\theta'' < \theta$, the critical region is like $\sum x_i^2 < c$. That is, we cannot find one test that will be best for each type of alternative.

8.2.7. Let $X_1, X_2, ..., X_{25}$ denote a random sample of size 25 from a normal distribution $N(\theta, 100)$. Find a uniformly most powerful critical region of size $\alpha = 0.10$ for testing $H_0: \theta = 75$ against $H_1: \theta > 75$.

Solution.

Let $\theta' > 75$. Use NP theorem:

$$\frac{L(\theta')}{L(75)} = \exp\left[\sum (x_i - 75)^2 / 200 - \sum (x_i - \theta')^2 / 200\right]$$
$$= \exp\left[(\theta' - 75) \sum (2x_i - 75 - \theta') / 200\right] \ge k.$$

Hence,

$$(\theta' - 75) \sum (2x_i - 75 - \theta')/200 \ge \log k$$

$$\Rightarrow \sum (2x_i - 75 - \theta') \ge 200 \log k/(\theta' - 75)$$

$$\Rightarrow \sum 2x_i \ge 200 \log k/(\theta' - 75) + n(75 + \theta')$$

$$\Rightarrow \sum x_i \ge 100 \log k/(\theta' - 75) + n(75 + \theta')/2 = k'$$

$$\Rightarrow \overline{x} \ge c$$

for every $\theta' > 75$. Hence $C = \{\mathbf{x} : \overline{x} \ge c\}$ is the UMP critical region. Furthermore, since $\overline{X} \sim N(75, 4)$,

$$\overline{X} \ge c \implies \frac{\overline{X} - 75}{2} \ge \frac{c - 75}{2} \implies \frac{c - 75}{2} = z_{0.90} = 1.28 \implies c = 75 + 2.56 = 77.56.$$

That is H_0 is rejected if $\overline{x} \geq 77.56$.

8.2.12. Let X have the pdf $f(x;\theta) = \theta^x (1-\theta)^{1-x}$, x = 0, 1, zero elsewhere. We test $H_0: \theta = \frac{1}{2}$ against $H_1: \theta < \frac{1}{2}$ by taking a random sample $X_1, X_2, ..., X_5$ of size n = 5 and rejecting H_0 if $Y = \sum_{i=1}^{n} X_i$ is observed to be less than or equal to a constant c.

(a) Show that this is a uniformly most powerful test.

Solution.

Use NP theorem to obtain. Let $\theta' < \frac{1}{2}$.

$$\frac{L(\theta')}{L(1/2)} = \dots = K \left(\frac{\theta'}{1-\theta'}\right)^{\sum_{i=1}^{5} x_i} \ge k \implies \sum_{i=1}^{5} x_i \log\left(\frac{\theta'}{1-\theta'}\right) \ge \log k - \log K$$

$$\Rightarrow \sum_{i=1}^{5} x_i \le c \quad \text{since } 0 < \frac{\theta'}{1-\theta'} < 1 \left(\theta' < \frac{1}{2}\right).$$

(b) Find the significance level when c = 1.

Solution.

Since $Y = \sum_{1}^{5} x_i \sim b(5, 1/2)$ under H_0 ,

$$P_{\theta=1/2}(Y \le 1) = P_{\theta=1/2}(Y = 0) + P_{\theta=1}(Y = 0) = \frac{1}{32} + \frac{5}{32} = \frac{6}{32}.$$

(c) Find the significance level when c = 0.

Solution.

$$P_{\theta=1/2}(Y \le 0) = P_{\theta=1/2}(Y = 0) = \frac{1}{32}.$$

(d) By using a randomized test, as discussed in Example 4.6.4, modify the tests given in parts (b) and (c) to find a test with significance level $\alpha = \frac{2}{32}$.

Solution.

If y=0, the test rejects H_0 . If y=1, then the test rejects H_0 with probability p, where

$$\frac{1}{36} + \frac{5}{36}p = \frac{2}{32} \implies p = \frac{1}{5}.$$

8.2.13. Let $X_1, ..., X_n$ denote a random sample from a gamma-type distribution with $\alpha = 2$ and $\beta = \theta$. Let $H_0: \theta = 1$ and $H_1: \theta > 1$.

(a) Show that there exists a uniformly most powerful test for H_0 against H_1 , determine the statistic Y upon which the test may be based, and indicate the nature of the best critical region.

Solution.

Use NP theorem to obtain. Let $\theta' > 1$.

$$\frac{L(\theta')}{L(1)} = \dots = K \exp\left[\frac{\theta' - 1}{\theta'} \sum x_i\right] \ge k \implies \frac{\theta' - 1}{\theta'} \sum_{i=1}^{n} x_i \ge \log k - \log K$$

$$\Rightarrow \sum_{i=1}^{n} x_i \ge c$$

for every $\theta'>1$. Hence, the UMP critical region $C=\{\mathbf{x}: \sum_{1}^{n}x_{i}\geq c\}$ defines a UMP test. If $Y=\sum_{1}^{n}X_{i}$, then $Y\sim\Gamma(2n,1)$ or $2Y\sim\Gamma(2n,2)=\chi^{2}(4n)$ under H_{0} .

(b) Find the pdf of the statistic Y in part (a). If we want a significance level of 0.05, write an equation that can be used to determine the critical region. Let $\gamma(\theta)$, $\theta \geq 1$, be the power function of the test. Express the power function as an integral.

Solution.

$$f_Y(y) = \frac{1}{\Gamma(2n)} x^{2n-1} e^{-x}, \ 0 < x < \infty.$$

Hence,

$$0.05 = P_{H_0}(Y \ge c) = \int_{c}^{\infty} \frac{1}{\Gamma(2n)} x^{2n-1} e^{-x} dx.$$

Or, $2c = \chi^2_{4n,0.95} \Rightarrow c = \chi^2_{4n,0.95}/2$. Finally, the power function is given by

$$\gamma(\theta) = P_{\Omega}(Y \ge c) = \int_{c}^{\infty} \frac{1}{\Gamma(2n)\theta^{2n}} x^{2n-1} e^{-x/\theta} dx.$$

8.3. Likelihood Ratio Tests

8.3.2. Verify Equations (8.3.2) of Example 8.3.1 of this section.

Solution.

Since

$$\ell(\omega) = -\frac{n+m}{2}\log(2\pi\theta_3) - \frac{1}{2\theta_3} \left[\sum_{i=1}^{n} (x_i - \theta_1)^2 + \sum_{i=1}^{m} (y_i - \theta_1)^2 \right],$$

the derivative with respect to θ_1 and θ_3 are, respectively,

$$\frac{\partial \ell(\omega)}{\partial \theta_1} = \frac{1}{\theta_3} \left[\sum_{i=1}^n (x_i - \theta_1) + \sum_{i=1}^m (y_i - \theta_1) \right] = \frac{1}{\theta_3} \left[\sum_{i=1}^n x_i + \sum_{i=1}^m y_i - (n+m)\theta_1 \right],$$

$$\frac{\partial \ell(\omega)}{\partial \theta_3} = -\frac{n+m}{2\theta_3} + \frac{1}{2\theta_3^2} \left[\sum_{i=1}^n (x_i - \theta_1)^2 + \sum_{i=1}^m (y_i - \theta_1)^2 \right].$$

u and w are, indeed, solutions for θ_1 and θ_3 that satisfy that these derivatives are zero.

8.3.3. Verify Equations (8.3.3) of Example 8.3.1 of this section.

Solution.

Since

$$\ell(\Omega) = -\frac{n+m}{2}\log(2\pi\theta_3) - \frac{1}{2\theta_3} \left[\sum_{i=1}^{n} (x_i - \theta_1)^2 + \sum_{i=1}^{m} (y_i - \theta_2)^2 \right],$$

the derivative with respect to θ_1 , θ_2 , and θ_3 are, respectively,

$$\begin{split} &\frac{\partial \ell(\Omega)}{\partial \theta_1} = \frac{1}{\theta_3} \left[\sum_1^n (x_i - \theta_1) \right] = \frac{1}{\theta_3} \left[\sum_1^n x_i - n\theta_1 \right], \\ &\frac{\partial \ell(\Omega)}{\partial \theta_2} = \frac{1}{\theta_3} \left[\sum_1^n (y_i - \theta_2) \right] = \frac{1}{\theta_3} \left[\sum_1^m x_i - m\theta_2 \right], \\ &\frac{\partial \ell(\Omega)}{\partial \theta_3} = -\frac{n+m}{2\theta_3} + \frac{1}{2\theta_3^2} \left[\sum_1^n (x_i - \theta_1)^2 + \sum_1^m (y_i - \theta_2)^2 \right]. \end{split}$$

 $u_1, u_2, \text{ and } w'$ are, indeed, the solutions for $\theta_1, \theta_2, \text{ and } \theta_3$ that satisfy that these derivatives are zero.

8.3.4. Let $X_1, ..., X_n$ and $Y_1, ..., Y_m$ follow the location model

$$X_i = \theta_1 + Z_i, \quad i = 1, ...n$$

 $Y_i = \theta_2 + Z_{n+i}, \quad i = 1, ...m,$

where $Z_1, ..., Z_{n+m}$ are iid random variables with common pdf f(z). Assume that $E(Z_i) = 0$ and $Var(Z_i) = \theta_3 < \infty$.

(a) Show that $E(X_i) = \theta_1$, $E(Y_i) = \theta_2$, and $Var(X_i) = Var(Y_i) = \theta_3$.

Solution.

$$E(X_i) = E(\theta_1) + E(Z_i) = \theta_1, \quad E(Y_i) = E(\theta_2) + E(Z_{n+i}) = \theta_2,$$

 $Var(X_i) = Var(Z_i) = \theta_3, \quad Var(Y_i) = Var(Z_{n+i}) = \theta_3.$

because all parameters are fixed.

(b) Consider the hypotheses of Example 8.3.1, i.e.,

$$H_0: \theta_1 = \theta_2 \text{ versus } H_1: \theta_1 \neq \theta_2.$$

Show that under H_0 , the test statistic T given in expression (8.3.4) has a limiting N(0,1) distribution.

Solution.

Since we know that the T has a t-distribution with n+m-2 degrees of freedom, it converges to the standard normal as $n, m \to \infty$.

(c) Using part (b), determine the corresponding large sample test (decision rule) of H_0 versus H_1 . (This shows that the test in Example 8.3.1 is asymptotically correct.)

Solution.

The decision rule is $\alpha = P(|T| \ge z_{\alpha/2})$. If, for instance, $\alpha = 0.05$, then $z_{\alpha/2} = 1.96$, which is not far from $c = \mathsf{qt}(0.975, 14) = 2.1448$ as shown on page 491 of the textbook as an example.

8.3.7. Show that the likelihood ratio principle leads to the same test when testing a simple hypothesis H_0 against an alternative simple hypothesis H_1 , as that given by the Neyman–Pearson theorem. Note that there are only two points in Ω .

Solution.

When $H_0: \theta = \theta_0$ against $H_0: \theta = \theta_1$, $\Omega = \{\theta', \theta''\}$, the likelihood ratio is

$$\Lambda = \frac{L(\widehat{\theta})}{L(\theta')} = \begin{cases} \frac{L(\theta'')}{L(\theta')} & L(\theta'') \ge L(\theta') \\ 1 & L(\theta'') < L(\theta') \end{cases}.$$

If $\Lambda = 1$, H_0 is not rejected; otherwise, $\Lambda \geq k$ is the same critical region by The Neyman–Pearson theorem.

8.3.9. Let $X_1, X_2, ..., X_n$ be iid $N(\theta_1, \theta_2)$. Show that the likelihood ratio principle for testing $H_0: \theta_2 = \theta_2'$ specified, and θ_1 unspecified, against $H_1: \theta_2 \neq \theta_2'$, θ_1 unspecified, leads to a test that rejects when $\sum_{1}^{n} (x_i - \overline{x})^2 \leq c_1$ or $\sum_{1}^{n} (x_i - \overline{x})^2 \geq c_2$, where $c_1 < c_2$ are selected appropriately.

Solution.

The LRT statistic is

$$\Lambda = \frac{L(\widehat{\theta}_1, \widehat{\theta}_2)}{L(\widehat{\theta}_{10}, \theta_2')}.$$

On the whole space Ω , the mles of θ_1 and θ_2 are, respectively,

$$\hat{\theta}_1 = \overline{X}, \quad \hat{\theta}_2 = n^{-1} \sum_{1}^{n} (X_i - \hat{\theta}_1) = n^{-1} \sum_{1}^{n} (X_i - \overline{X}),$$

while, under H_0 , $\widehat{\theta}_{10} = \overline{X}$. Hence, let $w = \sum_{1}^{n} (x_i - \overline{x})/\theta_2'$,

$$\Lambda = \frac{L(\widehat{\theta}_1, \widehat{\theta}_2)}{L(\widehat{\theta}_{10}, \theta'_2)} = \frac{(2\pi\widehat{\theta}_2)^{-n/2}e^{-\sum(x_i - \overline{x})/2\widehat{\theta}_2}}{(2\pi\theta'_2)^{-n/2}e^{-\sum(x_i - \overline{x})/2\theta'_2}} = \left(\frac{n}{ew}\right)^{n/2}e^{w/2} = Kg(w),$$

where $g(w) = w^{-n/2}e^{w/2}$. Consider $\log g(w) = -n/2\log w + w/2$.

$$[\log g(w)]' = -\frac{n}{2w} + \frac{1}{2} \implies [\log g(n)]' = 0$$
$$[\log g(w)]'' = \frac{n}{2w^2} > 0$$

indicates that g(w) is convex with a minimum at w = n. Thus,

$$\Lambda \ge k \implies w \le k_1, \ w \ge k_2 \implies \sum_{i=1}^{n} (x_i - \overline{x})^2 \le c_1, \ \sum_{i=1}^{n} (x_i - \overline{x})^2 \ge c_2.$$

8.3.12. Let $Y_1 < Y_2 < \cdots < Y_5$ be the order statistics of a random sample of size n=5 from a distribution with pdf $f(x;\theta) = \frac{1}{2}e^{-|x-\theta|}$, $-\infty < x < \infty$, for all real θ . Find the likelihood ratio test Λ for testing $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$.

Solution.

We know that the mle of θ is $\hat{\theta} = Y_3$ under Ω . Hence, the LRT statistic is

$$\Lambda = \frac{L(\widehat{\theta})}{L(\theta_0)} = \exp\left[\sum_{1}^{5} |x_i - \theta_0| - \sum_{1}^{5} |x_i - y_3|\right]$$

Since $\sum_{1}^{5} |x_i - \theta_0| = |y_3 - \theta_0| + \sum_{1}^{5} |x_i - y_3|$, $\Lambda = |y_3 - \theta_0| \ge c$ is a critical region.

8.3.13. A random sample $X_1, X_2, ..., X_n$ arises from a distribution given by

$$H_0: f(x;\theta) = \frac{1}{\theta}, \ 0 < x < \theta, \ \text{zero elsewhere},$$

or

$$H_1: f(x;\theta) = \frac{1}{\theta}e^{-x/\theta}, \ 0 < x < \infty, \text{ zero elsewhere.}$$

Determine the likelihood ratio (Λ) test associated with the test of H_0 against H_1 .

Solution.

The mle of θ is $\widehat{\theta}_0 = Y_n$ under H_0 , while the mle of θ is $\widehat{\theta} = \overline{X}$ or Y_n under Ω . If $\widehat{\theta} = Y_n$, we do not reject H_0 . If $\widehat{\theta} = \overline{X}$, then the LRT statistic is

$$\Lambda = \frac{L_{\Omega}(\widehat{\theta})}{L_{H_{0}}(\widehat{\theta_{0}})} = \frac{L_{\Omega}(\overline{X})}{L_{H_{0}}(Y_{n})} = \frac{(1/\overline{x})^{n}e^{-n}}{(1/y_{n})^{n}} \ge k \ \Rightarrow \ \left(\frac{y_{n}}{\overline{x}}\right)^{n} \ge k' \ \Rightarrow \ \frac{y_{n}}{\overline{x}} \ge c$$

because \overline{x} and y_n are both positive.

8.3.14. Consider a random sample $X_1, X_2, ..., X_n$ from a distribution with pdf $f(x; \theta) = \theta(1 - x)^{\theta - 1}, 0 < x < 1$, zero elsewhere, where $\theta > 0$.

(a) Find the form of the uniformly most powerful test of $H_0: \theta = 1$ against $H_1: \theta > 1$.

Solution.

Suppose $H_1: \theta = \theta' > 1$ and use the NP theorem.

$$\frac{L(\theta')}{L(1)} = \theta'^n \prod (1 - x_i)^{\theta' - 1} = \theta'^n \left[\prod (1 - x_i) \right]^{\theta' - 1} \ge k \implies \prod (1 - x_i) \ge c$$

for every $\theta' > 1$. Hence, $C = \{\mathbf{x} : \prod (1 - x_i) \ge c\}$ is the UMP critical region, setting the UMP test.

(b) What is the likelihood ratio Λ for testing $H_0: \theta = 1$ against $H_1: \theta \neq 1$? Solution.

By the previous exercise, we obtain the mle:

$$\widehat{\theta} = -n/\log \prod (1 - x_i).$$

Hence, the LRT statistic is

$$\Lambda = \frac{L(\widehat{\theta})}{L(1)} = \widehat{\theta}^n \left[\prod (1 - x_i) \right]^{\widehat{\theta} - 1}.$$