Functions, Linear Forms

LATEX

November 20, 2023

Functions

- 1. Let *R* be the relation defined in *N*, as $R = \{(x, y) : 2x + 3y = 15, x, y \in N\}$, then $R = \{\underline{\hspace{1cm}}, \underline{\hspace{1cm}}\}$.
- 2. If the function $f(x) = \begin{cases} \frac{k \cos x}{\pi 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 2, & \text{if } x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then the value of k is _____.
- 3. Show that the relation R in the set \mathbb{R} of all real numbers, defined as $\mathbb{R} = \{(a,b) : a \leq b^2\}$ is neither reflexive nor symmetric.
- 4. Find the value of $\tan^{-1} \left[2 \cos \left(2 \sin^{-1} \left(\frac{1}{2} \right) \right) \right]$
- 5. Let a function $f: \mathbb{R} \left\{\frac{-4}{3}\right\} \to \mathbb{R}$ be defined as $f(x) = \frac{4x}{3x+4}$. To show that f is one-one function. Hence, find the inverse of the function $f: \mathbb{R} \left\{\frac{-4}{3}\right\} \to \mathbb{R}$ ange of f.
- 6. If $f: R \to R$ be given by $f(x) = (3 x^3)^{1/3}$, then find $(f \circ f)(x)$.
- 7. Let W denote the set of words in the English dictionary. Define the relation R by $R = (x, y) \in W \times W$ such x and y have at least one letter in common. Show that this relation R is reflexive and symmetric, but not transitive.
- 8. Find the inverse of the function $f(x) = \left(\frac{4x}{3x+4}\right)$