Given an n x m board, starting from the top left, you can only move right one square or down one square.

How many unique ways can you get to the bottom right square?

Diagram

let's start small: n=1, $m=1 \longrightarrow f(1,1)=0$

n=1, m=2

n=2, m=1

ST

?) If n \(m \), do they

produce different answers

if flipped? (is it

symmetric?)

f(1,2)=1

f(2,1)=1

n=2, m=2

n=2, m=3

n=3, n=2

f(2,2)=2

f(7,3) = 3

f(3,2)=3

judging from this, it seems the answer is no?

n=3, m=3

f(3,3)=6

n=3, m=4

f(3,4)=10

in comparison to (n=3, m=3), the addition of the I on one side increased the paths by 3 going down and 1 going right.

- This problem seems similar to the stairs problem, and may have a recurrence relation.
 - can we model the problem with a tree?

- · each node can only be (2) or (5)
 (for right 2 down)
- the outermost nodes on the left a right branches should be null because they are not possible moves on the board

the answer would be the total number of paths, or nodes without children

3 x 3 board, 6 paths f(3,3) = 6 2 PR PR

4x3 board, 10 paths f(4,3)=10

the neight of the subtrees must

> match the size

of the corresponding

side of the board

Lh=m-1

Rh=n-1

If we can model the grid by using the properties of a bingry tree, the formula to give the total number of unique pouths is:

$$2^{(m-1)} - 1 + 2^{(n-1)} - 1 = answer$$