Math 470 Assignment 3

Arnold Jiadong Yu January 30, 2018

6.2.1. Prove that each of the following series converges.

a)
$$\sum_{k=1}^{\infty} \frac{2k+5}{3k^3+2k-1}$$

proof: Let $k \geq 1$, then $\frac{2k+5}{3k^3+2k-1} < \frac{2k+5}{3k^3} \leq \frac{3k}{3k^3} = \frac{1}{k^2}$ for $\forall k \geq 5$. By p-series test, $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges. Hence $\sum_{k=1}^{\infty} \frac{2k+5}{3k^3+2k-1}$ converges by Comparison Test.

b)
$$\sum_{k=1}^{\infty} \frac{k-1}{k2^k}$$

proof: Let $k \ge 1$, then $\frac{k-1}{k2^k} < \frac{k}{k2^k} = \frac{1}{2^k} = (\frac{1}{2})^k$. $|\frac{1}{2}| < 1$, then $\sum_{k=1}^{\infty} (\frac{1}{2})^k$ converges by geometric series test. Hence $\sum_{k=1}^{\infty} \frac{k-1}{k2^k}$ converges by Comparison Test.

c)
$$\sum_{k=1}^{\infty} \frac{logk}{k^p}$$
, $p > 1$

proof: Let $k \geq 1$, then $\log k \leq k$ for large k. And $\frac{\log k}{k^p} \leq \frac{k}{k^p} = \frac{1}{k^{p-1}}$, since p > 1, choose p > 2. Then $\sum_{k=1}^{\infty} \frac{1}{k^{p-1}}$ converges by p-series test. Hence $\sum_{k=1}^{\infty} \frac{\log k}{k^p}$ converges by Comparison Test.

d)
$$\sum_{k=1}^{\infty} \frac{k^3 \log^2 k}{e^k}$$

proof: Let $k \geq 1$, then $\log k \leq k$ for large k. This implies $k^3 \log^2 k \leq k^5$. Then $\frac{k^3 \log^2 k}{e^k} \leq \frac{k^5}{e^k}$. Since $\lim_{k \to \infty} \frac{k^5}{e^k} = \lim_{k \to \infty} \frac{5k^4}{e^k} = \lim_{k \to \infty} \frac{20k^3}{e^k} = \lim_{k \to \infty} \frac{60k^2}{e^k} = \lim_{k \to \infty} \frac{120k}{e^k} = \lim_{k \to \infty} \frac{120k}{e^k} = (120) \lim_{k \to \infty} (\frac{1}{e})^k$. Since $|\frac{1}{e}| < 1$, $\sum_{k=1}^{\infty} (\frac{1}{e})^k$ converges by geometric series test. Thus $(120) \sum_{k=1}^{\infty} (\frac{1}{e})^k$ converges. Hence $\sum_{k=1}^{\infty} \frac{k^3 \log^2 k}{e^k}$ converges by Comparison Test.

e)
$$\sum_{k=1}^{\infty} \frac{\sqrt{k+\pi}}{2+\sqrt[5]{k^8}}$$

proof: Let $k \geq 1$, then $\frac{\sqrt{k}+\pi}{2+\sqrt[5]{k^8}} < \frac{\sqrt{k}+\pi}{\sqrt[5]{k^8}} \leq \frac{2\sqrt{k}}{\sqrt[5]{k^8}} = (2)\frac{k^{\frac{1}{2}}}{k^{\frac{1}{5}}} = (2)\frac{1}{k^{\frac{11}{10}}}$ for $\forall k \geq \pi^2$. $\sum_{k=1}^{\infty} \frac{1}{k^{\frac{11}{10}}}$ converges by p-series test. Then $(2)\sum_{k=1}^{\infty} \frac{1}{k^{\frac{11}{10}}}$ converges. Hence $\sum_{k=1}^{\infty} \frac{\sqrt{k}+\pi}{2+\sqrt[5]{k^8}}$ converges by Comparison Test.

f)
$$\sum_{k=1}^{\infty} \frac{1}{k^{logk}}$$

proof: Let $k \geq 1$, then log k > 2 for $k > e^2$. Then $k^{log k} > k^2$ implies $\frac{1}{k^{log k}} < \frac{1}{k^2}$. $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges by p-series test. Hence $\sum_{k=1}^{\infty} \frac{1}{k^{log k}}$ converges by Comparison Test.

6.2.2. Prove that each of the following series diverges.

a)
$$\sum_{k=1}^{\infty} \frac{3k^3+k-4}{5k^4-k^2+1}$$

proof: Let $k \geq 1$, then k-4>0 and $-k^2+1<0$ for large k. This implies $\frac{3k^3+k-4}{5k^4-k^2+1}>\frac{3k^3}{5k^4-k^2+1}>\frac{3k^3}{5k^4}=(\frac{3}{5})(\frac{1}{k})$. $\sum_{k=1}^{\infty}\frac{1}{k}$ diverges since it is a harmonic series. Then $(\frac{3}{5})\sum_{k=1}^{\infty}\frac{1}{k}$ also diverges. Hence $\sum_{k=1}^{\infty}\frac{3k^3+k-4}{5k^4-k^2+1}$ diverges by Comparison Test.

b)
$$\sum_{k=1}^{\infty} \frac{\sqrt[k]{k}}{k}$$

proof: Let $k \geq 1$, then $0 < \frac{1}{k} \leq 1 \Rightarrow -\frac{1}{k} < 0 \Rightarrow 1 - \frac{1}{k} < 1 \Rightarrow k^{1-\frac{1}{k}} < k \Rightarrow \frac{1}{k^{1-\frac{1}{k}}} < \frac{1}{k}$. Then $\frac{\sqrt[k]{k}}{k} = \frac{k^{\frac{1}{k}}}{k} = \frac{1}{k^{1-\frac{1}{k}}} < \frac{1}{k}$. $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges since it is a harmonic series. Hence $\sum_{k=1}^{\infty} \frac{\sqrt[k]{k}}{k}$ diverges by Comparison Test.

$$c)\sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^k$$

proof: Let $k \geq 1$, then $\frac{1}{k} > 0 \Rightarrow \frac{k+1}{k} = 1 + \frac{1}{k} > 1 \Rightarrow (\frac{k+1}{k})^k > 1^k = 1$. $\sum_{k=1}^{\infty} 1$ diverges. Hence $\sum_{k=1}^{\infty} (\frac{l+1}{k})^k$ diverges by Comparison Test.

d)
$$\sum_{k=2}^{\infty} \frac{1}{k log^p k}$$
, $p \leq 1$, $p \leq 1$ proof: Let $k \geq 1$ and $f(k) = \frac{1}{k log^p k}$, then $f'(k) = k^{-1} (log k)^{-p} = -\frac{1}{k^2} (\frac{1}{log^p k} + \frac{p}{log^{p+1}k}) < 0$. Then f is decreasing. k is continuous and $log^p k$ is continuous.

uous, this implies f is continuous for $k \geq 1$. By Integral Test, want to show $\int_2^\infty f(k)dk$ diverges. Let u = log k, then $du = \frac{1}{k}dk$, then $\int_2^\infty f(k)dk > \int_e^\infty f(k)dk = \int_1^\infty \frac{1}{u^p}du = \infty$ by p-series test. Hence $\sum_{k=2}^\infty \frac{1}{klog^p k}$, $p \leq 1$ diverges for $p \leq 1$ by Comparison Test.

6.2.4. Find all $p \ge 0$ such that the following series converges:

$$\sum_{k=1}^{\infty} \frac{1}{k log^p(k+1)}$$

.

proof: Let $k \geq 1$, then $log^p(k+1) \geq log^p k$. This implies $\frac{1}{klog^p(k+1)} \leq \frac{1}{klog^p(k)}$. Since $\sum_{k=1}^{\infty} \frac{1}{klog^p(k)}$ converges when p > 1 by Integral Test in 6.2.2(d). Hence $\sum_{k=1}^{\infty} \frac{1}{klog^p(k+1)}$ converges when p > 1 by Comparison Test.

 $\sum_{k=1}^{\infty} \frac{1}{klog^{p}(k+1)} \text{ converges when } p > 1 \text{ by Comparison Test.}$ $\text{Also } \frac{1}{klog^{p}(k+1)} > \frac{1}{(k+1)log^{p}(k+1)}, \text{ but Integral Test } \sum_{k=1}^{\infty} \frac{1}{(k+1)log^{p}(k+1)} \text{ diverges for } p \leq 1. \text{ Hence } \sum_{k=1}^{\infty} \frac{1}{klog^{p}(k+1)} \text{ diverges for } p \leq 1 \text{ by Comparison Test.}$

6.2.7. Suppose that a_k and b_k are nonnegative for all $k \in \mathbb{N}$. Prove that if $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ converge, then $\sum_{k=1}^{\infty} a_k b_k$ converges.

proof: Assume $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ converge to $A, B \in \mathbb{R}$. Then $(\sum_{k=1}^{\infty} a_k)(\sum_{k=1}^{\infty} b_k) = AB$, it also converges. Since a_k and b_k are nonnegative for all $k \in \mathbb{N}$, then $a_i b_j$ are nonnegative for all $i, j = 1, 2, ..., k \in \mathbb{N}$. $(\sum_{k=1}^{\infty} a_k)(\sum_{k=1}^{\infty} b_k) = (a_1 + a_2 + a_3 + + a_k)(b_1 + b_2 + b_3 + + b_k) = (a_1 + a_2 + a_3 + + a_k)b_1 + (a_1 + a_2 + a_3 + + a_k)b_2 + (a_1 + a_2 + a_3 + + a_k)b_3 + + (a_1 + a_2 + a_3 + + a_k)b_k > a_1b_1 + a_2b_2 + + a_kb_k = \sum_{k=1}^{\infty} a_k b_k$. Hence $\sum_{k=1}^{\infty} a_k b_k$ converges by Comparison Test. Worked with Micheal Roark for 6.2.7.

6.2.10. Find all $p \in \mathbb{R}$, such that

$$\sum_{k=2}^{\infty} \frac{1}{(\log(\log k))^{plogk}}$$

converges.

proof: Let $k \geq 2$, then log k > 0. When p = 0, $\frac{1}{(log(log k))^{plog k}} = 1$ for $\forall k$. It diverges by Divergence Test. When p < 0, plog k < 0. This implies $\frac{1}{(log(log k))^{plog k}} = (log(log k))^{-plog k} \to 0$, since it is increasing positive base with increasing positive exponent. Hence it diverges by Divergence Test. Therefore, when $p \leq 0$, $\sum_{k=2}^{\infty} \frac{1}{(log(log k))^{plog k}}$ diverges. When p > 0, since $a^b := e^{blog a}$. Then $(log(log k))^{plog k} = e^{plog k(log(log(log k)))}$.

 $log(log(logk)) \to \infty$ as $k \to \infty$.

Need to find an A, s.t. $A < e^{plogk(log(log(log(logk))))}$ implies $\frac{1}{A} > \frac{1}{e^{plogk(log(log(logk)))}}$. If $\sum_{k=2)^{\infty}\frac{1}{A}}$ converges, then by Comparison Test $\sum_{k=2}^{\infty}\frac{1}{(log(logk))^{plogk}}$ will converge. This A will help deciding p.