## Minimization of DFA

Beulah A.

AP/CSE

### Myhill Nerode Theorem

### begin

```
for p in F and q in Q–F do mark (p, q);
  for each pair of distinct states (p, q) in F \times F or (Q-F) \times (Q-F) do
  if for some input symbol a, (\delta(p, a), \delta(q, a)) is marked then
  begin
        mark (p, q);
        recursively mark all unmarked pairs on the list for (p, q) and on
        the lists of other pairs that are marked at this step.
  end
  else /* no pair (\delta(p, a), \delta(q, a)) is marked */ for all input symbols a
```

put (p, q) on the list for  $(\delta(p, a), \delta(q, a))$  unless  $\delta(p, a) = \delta(q, a)$ 

do



#### Pass #0

1. Mark accepting states ≠ non-accepting states

#### Pass #1

- 1. Compare every pair of states
- 2. Distinguish by one symbol transition
- 3. Mark = or  $\neq$  or blank(tbd)

#### Pass #2

- 1. Compare every pair of states
- 2. Distinguish by up to two symbol transitions (until different or same or tbd)

. . .

(keep repeating until table complete)

| Α | = |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|
| В | = | = |   |   |   |   |   |   |
| С | X | X | = |   |   |   |   |   |
| D | X | X | X | = |   |   |   |   |
| Е | X | X | X | X | = |   |   |   |
| F | X | X | X | X | X | = |   |   |
| G | X | X | X | = | X | X | = |   |
| Н | X | X | = | X | X | X | X | = |
|   | Α | В | С | D | Е | F | G | Н |



| Α |   |   |    |   |   |   |   |   |
|---|---|---|----|---|---|---|---|---|
| В |   | Ш |    |   |   |   |   |   |
| С |   |   | II |   |   |   |   |   |
| D |   |   |    | Ш |   |   |   |   |
| Е |   |   |    |   | Ш |   |   |   |
| F |   |   |    |   |   | Ш |   |   |
| G |   |   |    |   |   |   | = |   |
| Н |   |   |    |   |   |   |   | = |
|   | Α | В | С  | D | Е | F | G | Н |





- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

| Α | =        |   |   |   |   |   |   |   |
|---|----------|---|---|---|---|---|---|---|
| В |          | = |   |   |   |   |   |   |
| С | X        |   | = |   |   |   |   |   |
| D | X        |   |   | = |   |   |   |   |
| Е | X        | X | X | X | = |   |   |   |
| F |          |   |   |   | X | = |   |   |
| G | X        |   |   |   | X |   | = |   |
| Н | X        |   |   |   | X |   |   | = |
|   | Α        | В | С | D | Е | F | G | Н |
|   | <b>†</b> | • | • | • |   |   |   |   |



- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

| Α | = |          |   |    |   |   |   |   |
|---|---|----------|---|----|---|---|---|---|
| В |   | =        |   |    |   |   |   |   |
| С | X | X        | Ш |    |   |   |   |   |
| D | X | X        |   | II |   |   |   |   |
| Е | X | X        | X | X  | = |   |   |   |
| F |   |          |   |    | X | = |   |   |
| G | X | X        |   |    | X |   | Ш |   |
| Н | X | X        |   |    | X |   |   | = |
|   | Α | В        | С | D  | Е | F | G | Н |
|   | • | <b>†</b> | - | -  | • | • | - | - |



- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

| Α | = |   |          |   |   |   |   |   |
|---|---|---|----------|---|---|---|---|---|
| В |   | = |          |   |   |   |   |   |
| С | X | X | =        |   |   |   |   |   |
| D | X | X | X        | = |   |   |   |   |
| Е | X | X | X        | X | = |   |   |   |
| F |   |   | X        |   | X | = |   |   |
| G | X | X | X        |   | X |   | Ш |   |
| Н | X | X | =        |   | X |   |   | Ш |
|   | Α | В | С        | D | Е | F | G | Н |
|   | • | • | <b>†</b> | • | • | • |   |   |



- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

| Α | = |   |   |          |   |   |   |   |
|---|---|---|---|----------|---|---|---|---|
| В |   | = |   |          |   |   |   |   |
| С | X | X | = |          |   |   |   |   |
| D | X | X | X | =        |   |   |   |   |
| Ε | X | X | X | X        | = |   |   |   |
| F |   |   | X | X        | X | = |   |   |
| G | X | X | X | =        | X |   | = |   |
| Н | X | X | = | X        | X |   |   | = |
|   | Α | В | С | D        | Е | F | G | Н |
|   | - | - | - | <b>↑</b> | - | - | - | - |



- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

| Α | = |   |   |   |   |    |    |   |
|---|---|---|---|---|---|----|----|---|
| В |   | = |   |   |   |    |    |   |
| С | X | X | = |   |   |    |    |   |
| D | X | X | X | = |   |    |    |   |
| Е | X | X | X | X | Ш |    |    |   |
| F |   |   | X | X | X | II |    |   |
| G | X | X | X | = | X | X  | II |   |
| Н | X | X | = | X | X | X  |    | Ш |
|   | Α | В | С | D | Е | F  | G  | Н |



- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

| A |   |   |   |   |   |   |          |   |
|---|---|---|---|---|---|---|----------|---|
|   |   |   |   |   |   |   |          |   |
| В |   | = |   |   |   |   |          |   |
| С | X | X | = |   |   |   |          |   |
| D | X | X | X | = |   |   |          |   |
| Е | X | X | X | X | = |   |          |   |
| F |   |   | X | X | X | = |          |   |
| G | X | X | X | = | X | X | II       |   |
| Н | X | X | = | X | X | X | X        | = |
|   | Α | В | С | D | E | F | <b>₽</b> | Н |



- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings
- 3. Look 2-hops away for distinguishing states or strings

| Α | = |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|
| В | Ш | = |   |   |   |   |   |   |
| С | X | X | = |   |   |   |   |   |
| D | X | X | X | = |   |   |   |   |
| Ε | X | X | X | X | = |   |   |   |
| F | X | X | X | X | X | = |   |   |
| G | X | X | X | = | X | X | = |   |
| Н | X | X | = | X | X | X | X | = |
|   | Α | В | С | D | Е | F | G | Н |



- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings
- 3. Look 2-hops away for distinguishing states or strings

| Α  | = |    |    |   |   |   |   |   |
|----|---|----|----|---|---|---|---|---|
| В( |   |    |    |   |   |   |   |   |
| С  | X | X  | Ш  |   |   |   |   |   |
| D  | X | X  | X  | = |   |   |   |   |
| E  | X | X  | X  | X | = |   |   |   |
| F  | X | X  | X  | X | X | = |   |   |
| G  | X | X  | X  | = | X | X | = |   |
| Н  | X | X( | =  | X | X | X | X | = |
|    | Α | В  | () | D | Е | F | G | Н |

#### **Equivalences:**

- A=B
- C=H
- D=G



Retrain only one copy for each equivalence set of states

#### **Equivalences**:

- A=B
- C=H
- D=G



Q) What happens if the input DFA has more than one final state?

Can all final states initially be treated as equivalent to one another?

## Construction of $\Pi_{\text{final}}$ from $\Pi$

Algorithm: Minimizing the number of states of a DFA

- Input. A DFA M with set of states S, set of inputs  $\sum$ , transitions defined for all states and inputs, start state  $s_0$ , and a set of accepting states F.
- $\bullet$  Output. A DFA  $M^{'}$  accepting the same language as M and having as few states as possible.
- Method.
  - 1. Construct an initial partition  $\prod$  of the set of states with two groups: the accepting states F and non-accepting states S-F.
  - 2. Partition  $\prod$  to  $\prod_{new}$ .
  - 3. If  $\prod_{new} = \prod$ , let  $\prod_{final} = \prod$  and go to step (4). Otherwise, repeat step (2) with  $\prod := \prod_{new}$ .
  - 4. Choose one state in each group of the partition  $\prod_{final}$  as the representative for that group.
  - 5. Remove dead states.

# Construction of $\Pi_{\text{final}}$ from $\Pi$

### for each group G of $\Pi$ do begin

partition G into subgroups such that two states s and t of G are in the same subgroup if and only if for all input symbols a, states s and t have transitions on a to states in the same group of  $\Pi$ ;

/\* at worst, a state will be in a subgroup by itself \*/
replace G in  $\Pi_{\text{new}}$  by the set of all subgroups formed

end

# Summary

Procedure to minimize a DFA using Myhill – nerode algorithm

### Test Your Knowledge

- Are the given two patterns equivalent?
  - (1) gray | grey
  - $(2) gr(a \mid e)y$
- Conversion of a regular expression into its corresponding NFA:
  - a) Thompson's Construction Algorithm
  - b) Powerset Construction
  - c) Kleene's algorithm
  - d) None of the mentioned

### Reference

\*Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008