Niveau 3

IP - ARP - ICMP

Protocoles – ARP – IP – TCP / UDP

- MAC Address Ethernet
- IP Address Subnet Mask Gateway Address
- Unicast Multicast Broadcast (IP et MAC)
- TCP / UDP Port
- ARP: correspondance entre une adresse de niveau 3 et une adresse de niveau 2.
- RARP
- ICMP

Adresse IP (v4)

- Aujourd'hui (années 1990 2015) on est majoritairement en IPv4 (voir plus loin pour IPv6).
- 4 chiffres décimaux compris entre 0 et 255, séparés par des points.
- Exemple: 192.168.0.1 ou 15.125.42.89
- Normalement, une adresse par interface physique (ou logique)

ARP

- Address Resolution Protocol
- Utilisé pour établir le lien (unique et univoque) entre une adresse de niveau 2 (MAC) et une adresse de niveau 3, connaissant l'adresse de niveau 3!
- Le client envoie un 'ARP request', broadcast, à tout le monde
- La machine concernée répond par un 'ARP Reply'. C'est un unicast, destiné uniquement à la machine qui a envoyé l'ARP request
- Ethertype: 0x806

Paquet ARP

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Hardware Type		Protocol type		
Hardware address length Protocol address length		Opcode		
Source Hardware Address				
Source Protocol Address				
Destination Hardware Address				
Destination Protocol Address				

ARP – HW type – référence

1: Ethernet.

2: Experimental Ethernet.

3: Amateur Radio AX.25.

4: Proteon ProNET Token Ring.

5: Chaos.

6: IEEE 802.

7: ARCNET.

8: Hyperchannel.

9: Lanstar.

10: Autonet Short Address.

11: LocalTalk.

12: LocalNet (IBM PCNet or SYTEK LocalNET).

13: Ultra link.

14: SMDS.

15: Frame Relay.

16: ATM, Asynchronous Transmission Mode.

17: HDLC.

18: Fibre Channel.

19: ATM, Asynchronous Transmission Mode.

20: Serial Line.

21: ATM, Asynchronous Transmission Mode.

22: MIL-STD-188-220.

23: Metricom.

24: IEEE 1394.1995.

25: MAPOS.

26: Twinaxial.

27: EUI-64.

28: HIPARP.

29: IP and ARP over ISO 7816-3.

30: ARPSec.

31: IPsec tunnel.

32: Infiniband.

ARP – Opcode – référence

- 1 Request.
- **2** Reply.
- **3** Request Reverse.
- **4** Reply Reverse.
- **5** DRARP Request.
- **6** DRARP Reply.
- 7 DRARP Error.
- **8** InARP Request.
- 9 InARP Reply.
- 10 ARP NAK.
- 11 MARS Request.
- 12 MARS Multi.
- 13 MARS MServ.
- 14 MARS Join.
- 15 MARS Leave.
- 16 MARS NAK.

- •17 MARS Unserv.
- •18 MARS SJoin.
- •19 MARS SLeave.
- •20 MARS Grouplist Request.
- •21 MARS Grouplist Reply.
- •22 MARS Redirect Map.
- •23 MAPOS UNARP.

Protocol Type: 0x800 = IP

ARP – Fonctionnement

- 1: ARP REQUEST (Broadcast): Qui connaît 192.168.0.1 ???
- 2: ARP REPLY (Unicast): Moi! La MAC est 00-dd-01-FF-AD-D6
- 3: ICMP ECHO REQUEST: Ouh ouh? Es-tu là???
- 4: ICMP ECHO REPLY: Oui, je suis là !!!

Cf: suite du cours...

ARP-Exemple

•	No. Time	Source	Destination	Protoco	ol Info
•	1 0.000000	192.168.0.35	Broadcast	ARP	Who has 192.168.0.254? Tell 192.168.0.35
•	2 0.000419	192.168.0.254	192.168.0.35	ARP	192.168.0.254 is at 00:0a:e4:02:50:43
•	3 0.000440	192.168.0.35	10.10.10.10	ICMP	Echo (ping) request

Proxy ARP

- Par défaut, les routeurs ne laissent pas passer les broadcasts
- Du proxy ARP peut être nécessaire si un broadcast domain est interrompu par un routeur
- Mauvais design réseau!

Proxy ARP – Exemple

RARP

- Reverse Address Resolution Protocol
- Utilisé pour établir le lien (unique et univoque) entre une adresse de niveau 2 (MAC) et une adresse de niveau 3, connaissant l'adresse de niveau 2!
- Ethertype: 0x8035
- Nettement plus rare que ARP!
- Peut être utilisé pour obtenir une adresse IP automatiquement (comme BOOTP ou DHCP), mais UNIQUEMENT l'adresse IP... pas les autres paramètres. Utilisé donc uniquement sur un LAN.

Paquet IP

IP = « Best Effort »

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Version	IHL	Type of Service	Total length		
Identification			Flags	Fragment Offset	
Time	To Live	Protocol ID	Header Checksum		
Source Address					
Destination Address					
Options et données					

Default Gateway

- Quand une machine veut envoyer un paquet, elle doit comparer l'adresse destination avec sa propre adresse grâce au subnet mask (ET logique)
- Si les deux machines sont sur le même réseau, on envoie directement (ARP)
- Si les deux machines ne sont pas sur le même réseau, on s'adresse au default gateway (ARP aussi!)

Le champ ToS - 1

- Défini dans la RFC 1349
- 3 bits de précédence (définit le PHB, utilisé pour la gestion des queues)
 - 111: network control (protocoles de routage)
 - 110: Internetwork control
 - 101: Critic / ECP
 - 100: Flash override
 - 011: Flash
 - 010: Immediat
 - 001: Priorité
 - 000: Routine (BE)

Le champ ToS - 2

- 4 bits de Type of Service (Rarement implémenté, complexe, beaucoup de CPU)
 - 1000: D : Minimiser le délai
 - 0100: T : Maximiser le débit
 - 0010: R : Maximiser la fiabilité
- 1 2 3 4 5 6 7 8

 Prec DTRC 0
- 0001: C: Minimiser le coût financier
- 0000: Service normal
- 1111: Maximiser la sécurité

Le champ FLAG

- Le champ FLAG est composé de 3 bits:
 - 0: Pas utilisé!
 - -1:0 = may fragment, 1 = don't fragment
 - 2: 0 = last fragment, 1 = other fragment coming...

ICMP

- Internet Control Message Protocol
- Application 'ping', 'traceroute' et autres...
- RFC 792
- Tourne sur IP: Protocol ID numéro 1!
- Utilité: problèmes de base!

Paquet ICMP

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Туре	Code	ICMP Header Checksum	
ICMP DATA			

- •Le type détermine le type de paquet
- •Le code est déterminé par le type

ICMP – Type – Référence

- •0: Echo reply
- •3: Destination unreachable
- •4: Source quench
- •5: Redirect
- •8: Echo request
- •9: Router advertisement
- •10: Router solicitation
- •11: TTL exceeded
- •12: Parameter problem
- •13: Timestamp request

- •14: Timestamp reply
- •15: Information request
- •16: Information reply
- •17: Address mask request
- •18: Address mask reply
- •30: Traceroute
- •31: Conversion error
- •32: Mobile host redirect
- •33: IPv6 Where-are-you
- •34: IPv6 I-am-here

- •35: Mobile registration request
- •36: Mobile registration reply
- •37: Domain name request
- •38: Domain name reply
- •39: SKIP protocol
- •40: Security failures

ICMP – Exemple 1

```
MS-DOS Prompt
          🖸 📖 🖺 🖺 🚰 🗛
   Auto
Microsoft(R) Windows 98
   (C)Copyright Microsoft Corp 1981-1998.
C:\WINDOWS>ping 15.15.15.15
Pinging 15.15.15.15 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 15.15.15.15:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\WINDOWS>
```

ICMP – Exemple 2

Traceroute

- Qu'est ce que c'est?
- Application basée sur ICMP.
- Comment ça marche?
- On envoie des paquets vers la même destination avec des TTL de plus en plus grand, en partant de 1!
- Parfois (souvent) limité à 32 hops, diamètre maximum de l'Internet de nos jours...

Traceroute – Exemple théorique

!!! IP ne garantit pas le chemin utilisé !!!

Yves Gancberg Internet – Intranet – v 6.3 Slide 24 / 26

Traceroute – Exemple

```
🎇 MS-DOS Prompt
   Auto
C:\WINDOWS>tracert www.cisco.com
Tracing route to www.cisco.com [198.133.219.25]
over a maximum of 30 hops:
                          17 ms
                                 1.193-136-217.ads].skynet.be [217.136.193.1]
       14 ms
                15 ms
                         17 ms
                                 194.78.255.221
       17 ms
                16 ms
                16 ms
                         16 ms
                                 g1-1-0.intl1.02bnc.skynet.be [195.238.2.141]
       16 ms
                                 gigabitethernet9-1.ipcolo2.Brussels1.Level3.net
       18 ms
                19 ms
                          16 ms
212.3.234.21]
       17 ms
                17 ms
                         17 ms
                                 unknown.Level3.net [212.3.239.161]
                                 so-3-0-0.mp1.Amsterdam1.Level3.net [212.187.128.
       19 ms
                21 ms
                          22 ms
14]
                                 gige1-1.core1.Amsterdam1.Level3.net [213.244.165
       22 ms
                21 ms
                          21 ms
. 691
                                 sl-bb20-ams-1-0.sprintlink.net [213.206.131.45]
       51 ms
                          49 ms
                48 ms
                                 sl-bb21-ams-15-0.sprintlink.net [217.149.32.34]
                          64 ms
       55 ms
                57 ms
                                 sl-bb20-ham-14-0.sprintlink.net [213.206.129.50]
 10
       72 ms
                73 ms
                          70 ms
       55 ms
                57 ms
                          53 ms
 :\WINDOWS>
  \WINDOWS>
```

Contrôle du TTL

```
C Command
Reply from 213.189.188.54: bytes=32 time=9ms TTL=55
Reply from 213.189.188.54: bytes=32 time=8ms TTL=55
Reply from 213.189.188.54: bytes=32 time=8ms TTL=55
Reply from 213.189.188.54: bytes=32 time=8ms TTL=55
Ping statistics for 213.189.188.54:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 8ms, Maximum = 9ms, Average = 8ms
C:\WINDOWS\system32>pin<mark>y</mark> -i 3 (ww.ipl.be
Pinging ipl.be [213.189.188.54] with 32 bytes of data:
Reply from 212.100.161.2: TTL expired in transit.
Ping statistics for 213.189.188.54:
    Packets: Sent = 4. Received = 4. Lost = 0 (0% loss).
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\WINDOWS\system32>
```