

Faculty of Veterinary and Agricultural Sciences

Nerve Conduction I: The neuron, membrane potentials, and action potentials

Dr Babatunde Ayodele awodeleb@unimelb.edu.au

Nerves send discrete messages to and from the brain

- Sensory or afferent neurons
- Motor neurons or efferent neurons

How are signals transmitted by neurons?

Membrane potential

Ionic Basis of Membrane Potential

Intra- and extracellular Ion concentrations

Ion	Extracellular Concentration*	Intracellular Concentration*
Na+	150	15
K ⁺	5	150
\mathbf{A}^{-}	0	65

^{*}Concentration expressed in millimoles per liter, mM

Diffusion of solutes across a biological membrane

Permeability of cell membranes

Ion	Relative Permeability
Na+	1
K ⁺	25–30
\mathbf{A}^{-}	0

Developing membrane potential

RP223 10

Electrochemical equilibrium

Electrochemical equilibrium occurs when the chemical force of concentration gradient is equal to the opposing electrical force

Resting membrane potential = −70 mV

Action potential

A rapid transient change in the membrane potential (electrical activity) of the cell membrane.

- Sudden
- Rapid
- All or none event
- Uniform amplitude.

Membrane potential during an action potential

Threshold

Ionic basis of the action potential

- 1. Resting potential
- 2. Slow depolarisation
- 3. Rapid depolarisation
- 4. Repolarisation
- 5. Hyperpolarisation

Resting membrane potential (pre-threshold)

Resting state

Membrane potential pre-threshold (slow depolarisation)

Slow depolarisation

Membrane potential post-threshold (depolarisation)

Depolarisation after threshold is reached

Cell Interior now more positive due to increased [Na⁺]

Membrane potential during repolarisation

Repolarization

The cell interior becomes more negative due to K⁺ leaving the cell

Membrane potential during hyperpolarisation

The voltage gated K+ channels close slowly causing hyperpolarisation of the membrane prior to returning to resting membrane potential by Na+ - K+ pump

Na⁺ - K⁺ pump

Na+ 150 mM outside cell

K+ 150 mM inside cell

Action Potential (Summary)

The propagation of action potentials

Propagation of action potentials in one direction

Refractory period

- Minimum time during which the neuron is unresponsive to further stimulation
- 1st phase called absolute refractory period
 Voltage gated Na⁺ channels have become inactivated and are incapable of being opened until resting membrane potential is reached
- 2nd phase called the relative refractory period
 Some but not all Na+ channels are responsive to further stimulus and are capable of being partially opened

Action potential refractory period

Refractory period helps propagate action potentials in one direction

Action potential propagation

- Unidirectional electrical flow (one way)
- Constant stimulus strength (self perpetuating)
- Signals can be passed on to other neurons and effector organs (e.g.muscles, glands etc)

Velocity of propagation of action potentials

Larger axons propagate action potentials at faster velocities

The effects of myelination on AP speed

Myelinated nerves

Myelination increases the speed of action potential propagation

How is sensory information converted to a language that the CNS can understand?

The sensory receptor and nerve endings

fluttering

touch

movement touch

and very

gentle touch

How sensory receptors work

(a) Receptor potential in specialized afferent ending

(b) Receptor potential in separate receptor cell

The Pacinian receptor

Signals change in pressure and vibration

The stimulation of the Pacinian receptor

Compression

Sensory signal intensity & AP frequency

Receptor signals

The intensity of stimulus is directly proportional to the frequency of AP. A stronger stimulus generates a greater receptor potential which is then transduced into more impulses of AP's per second

In conclusion...

- All cells have membrane potentials, due to differences in the ion concentration between the ECF and ICF.
- When messages are sent along neurons, a rapid transient change in resting membrane potentials called action potentials can be generated.
- Action potentials result from temporary changes in permeability to Na+, then K+ ions,
- Action potentials
 - a) are unidirectional
 - b) do not lose amplitude along an axon,
 - c) messages are capable of being sent long distances,
 - d) message intensity is sent via the frequency of action potentials
- The refractory period refers to a short time interval when the axonal membrane is no longer receptive to stimulus
- Myelinated and larger diameter axons have greater velocity of action potential propagation than unmyelinated and small diameter axons.