实验八 有源滤波器的设计

姓名: 夏卓 学号: 2020303245

一、实验任务

- (1) 根据所给元器件,设计一个低通有源滤波器,截至频率约为 159. 2Hz,通带电压增益为 2,其中函数信号发生器输出正弦波, Vpp=1V。
- (2) 通过示波器观察输入输出波形,并利用点频法画出该低通有源滤波器的幅频特性曲线(8 个点以上)。
- (3) 在(1) 的基础上设计后续电路实现一个带通有源滤波器,其中函数信号发生器输出正弦波, Vpp=1V。要求通带范围约: 159. 2Hz-1592. 4Hz(通带电压增益为 4)。
- (4) 通过示波器观察输入输出波形,并利用点频法画出该带通有源滤波器的幅频特性曲线(8个点以上)。

二、实验原理

1、无源滤波器与有源滤波器的比较

无源滤波器: 仅由无源元件(R、L和C)组成的滤波器,它是利用电容和 电感元件的电抗随频率的变化而变化的原理构成的;

优点是: 电路比较简单,不需要直流电源供电,可靠性高,成本低廉; 缺点是: 通带内的信号有能量损耗,负载效应比较明显,使用电感元件 时容易引起电磁感应,当电感 L 较大时滤波器的体积和重量都比较大,在低 频域不适用。

有源滤波器:由无源元件(R和C)和有源器件(如集成运算放大器)组成。 优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应 不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤 波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(因为不使用电感元件);

缺点是: 通带范围受有源器件的带宽限制, 需要直流电源供电, 可靠性不如无源滤波器高, 在高压、高频、大功率的场合不适用。

2、有源滤波器的设计原理

常用的四种有源滤波器幅频特性曲线如下图所示:

一阶有源低通滤波器设计电路

一阶有源高通滤波器设计电路

截至频率为: $f_c = \frac{1}{2\pi RC}$

通带电压增益: $A_u = 1 + \frac{R_2}{R_1}$

截至频率为: $f_c = \frac{1}{2\pi RC}$

通带电压增益: $A_u = 1 + \frac{R_f}{R_1}$

带通滤波器设计电路:

可以看成是由一个低通滤波器串联一个高通滤波器而成。

其中低通特征角频率为 $\omega_1 = \frac{1}{R_1C_1}$, 高通特征角频率为 $\omega_2 = \frac{1}{R_2C_2}$, 且必

须满足 $\omega_2 < \omega_1$

三、实验电路方案

低通有源滤波器:

带通有源滤波器:

四、测试与分析

1. 测试用仪器

仪器名称	数量
直流稳压电源	2
函数信号发生器	1
示波器	1
面包板	1
电容箱	2

LM324 模块	1
1KΩ电阻	1
10KΩ电阻	5
	若干

2. 测试步骤

- (1) 根据实验电路图连接电路,构成一个低通有源滤波器,因为截至频率需约为 159. 2Hz,通带电压增益为 2,因此令 R=10k Ω , C=0. 1 μ F, R1=R2 即可。调节函数信号发生器输出正弦波,Vpp=1V。
- (2) 通过示波器观察输入输出波形,记录不同频率下输出电压的大小,并利用点频法画出幅频特性曲线。
- (3) 在(1)的基础上根据实验电路图连接电路,构成一个带通有源滤波器,因为要求通带范围约 159. $2Hz^{\sim}1592.4Hz$,通带电压增益为 4,因此令低通滤波器中 $R=1k\Omega$, $C=0.1\mu$ F, R1=R2;高通滤波器中 $R=10k\Omega$, $C=0.1\mu$ F, R1=R2即可。
- (4) 通过示波器观察输入输出波形,记录不同频率下输出电压的大小,并利用点频法画出幅频特性曲线。

3. 数据记录

(1) 低通有源滤波器波形

(2) 不同输入频率下对应的输出电压

频率/Hz	50	100	159. 2	200	500	800	1000	2000
幅度/V	1. 98	1. 78	1. 52	1. 36	0. 632	0. 416	0. 340	0. 188

(3) 带通有源滤波器波形

(4) 不同输入频率下对应的输出电压

频率/Hz	50	100	159. 2	500	1000	1592	2000	3000
幅度/V	1. 44	2. 27	2. 73	3. 72	3. 56	2. 87	2. 52	1. 88

五、分析与结论

1、思考如何取测数据才能正确的测出电路的幅频特性?

答:采用点频法测量幅频特性曲线时,可以在输出电压变化快的频率段选取更多的采样点,在输出电压变化慢的频率段只需选取具有代表性的少数几个点即可,这样可以使得曲线拟合的更好。

2、根据测试数据和波形,分析测试结果总结相关内容。

答:由测试所得频率特性曲线可知,设计电路基本满足设计要求,成功实现了低通有源滤波器,并在此基础上串联了一个高通滤波器得到了带通滤波器。实际滤波器的幅频特性曲线都存在一个过渡带,与理想滤波器之间存在一定误差,设计一个好的滤波器即是尽可能使得过渡带变窄。通过本次实验,我感受到了设计一个满足需求的电路的基本思路,通过将平常积累的简单电路模型进行搭接即可得到新的电路模型。