Теми за Държавен Изпит

1 август 2024 г.

Линейна алгебра

Симетрични оператори в крайномерни евклидови пространства. Основни свойства. Теорема за диагонализация.

Нека Е е евклидово пространство и $\varphi: E \to E$

Дефиниция φ е симетричен оператор, ако е линеен оператор и $\forall x, y \in E$ е изпълнено $(\varphi(x), y) = (x, \varphi(y))$

Дефиниция A е симетрична матрица, ако $A = A^t \iff a_{ij} = a_{ji}$ за $i, j \in \{1..n\}$

Свойства

- Симетричните матрици образуват подпространство на линейното пространство $M_n(\mathbb{R})$
- Ако A е обратима симетрична матрица, то A^{-1} също е симетрична матрица.
- Ако A и B са симетрични матрици и AB = BA, то AB също е симетрична матрица.

Теорема

 $\overline{\text{Нека }E \text{ е }E\Pi}$ и $e_1...e_n$ е ортонормиран базис на E. Нека $\varphi:E\to E$ е линеен оператор с матрица A спрямо този базис. $(e_i, e_j) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$ Тогава φ е симетричен оператор \iff A е симетрична матрица

$$\emph{Доказателство}.$$
 Нека $A=egin{pmatrix} a_{11}\dots a_{1n}\\ \dots\\ a_{n1}\dots a_{nn} \end{pmatrix}$. Имаме, че $\varphi(e_i)=a_{1i}e_1+\dots+a_{ni}e_n$ Базисът $e_1...e_n$ е ортонормиран $\implies x=x_1e_1+\dots+x_ne_n, y=y_1e_1+\dots+y_ne_n$

 $u (x,y) = x_1 y_1 + \dots + x_n y_n$

$$a_{ji} = (\varphi(e_i), e_j) = (a_{1i}e_1 + \ldots + a_{ji}e_j + \ldots + a_{ni}e_n, e_j) = a_{1i}(e_1, e_j) + \ldots + a_{ji}(e_j, e_j) + \ldots + a_{ni}(e_n, e_j) \Longrightarrow a_{ji} = (\varphi(e_i), e_j) \stackrel{\varphi \text{ сим.}}{=} (e_i, \varphi(e_j)) = a_{ij} \Longrightarrow a_{ji} = aij \Longrightarrow A$$
е симетрична матрица

Нека φ е линеен оператор и A е матрица на φ . $A = A^t$ спрямо ортонормирания базис. От $a_{ji} = (\varphi(e_i), e_j)$ и $a_{ij} = (\varphi(e_j), e_i) \Longrightarrow (\varphi(e_i), e_j) = (\varphi(e_j), e_i)$ Нека $x = x_1e_1 + ... + x_ne_n \in E$ и $y = y_1e_1 + ... + y_ne_n \in E$

$$(\varphi(x), y) = (\varphi(\sum_{i} x_{i}e_{i}), \sum_{j} y_{j}e_{j}) = (\sum_{i} x_{i}\varphi(e_{i}), \sum_{j} y_{j}e_{j}) = \sum_{i} x_{i}(\varphi(e_{i}), \sum_{j} y_{j}e_{j})$$

$$= \sum_{i} \sum_{j} x_{i}y_{j}(\varphi(e_{i}), e_{j}) = \sum_{i} \sum_{j} x_{i}y_{j}(e_{i}, \varphi(e_{j})) = (\sum_{i} x_{i}e_{i}, \sum_{j} y_{j}\varphi(e_{j})) = (x, \varphi(\sum_{j} y_{j}e_{j})) = (x, \varphi(y))$$

Теорема

Всички характеристични корени на симетрична матрица са реални числа.

Доказателство. Нека $A=(a_{ij})_{nxn}$ е симетрична матрица и λ е (комплексен) характеристичен корен на A. Ще докажем, че $\lambda \in \mathbb{R}$. Имаме $f_A(\lambda)=det(A-\lambda E)=0 \Longrightarrow$ хомогенната система с матрица $A-\lambda E$ има ненулево решение $(x_1,...,x_n)\in\mathbb{C}^n$, т.е. е в сила:

$$\begin{vmatrix} (a_{11} - \lambda)x_1 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{n1}x_1 + \dots + (a_{nn} - \lambda)x_n = 0 \end{vmatrix}$$
 или
$$\begin{vmatrix} a_{11}x_1 + \dots + a_{1n}x_n = \lambda x_1 \\ \dots \\ a_{n1}x_1 + \dots + a_{nn}x_n = \lambda x_n \end{vmatrix}$$

Като умножим първото равенство с $\overline{x_1}$, а второто с $\overline{x_2}$ и т.н., n-тото с $\overline{x_n}$ и ги съберем получаваме

$$\sum_{i,j=1}^{n} a_{ij} x_j \overline{x_i} = \lambda \sum_{i=1}^{n} x_i \overline{x_i} = \lambda \sum_{i=1}^{n} |x_i|^2$$

Да означим $u=\sum_{i,j=1}^n a_{ij}x_j\overline{x_i}, v=\sum_{i=1}^n |x_i|^2$. Числото $v\in\mathbb{R}>0$. Използваме, че A е симетрична матрица $(a_{ij}=a_{ji})$ и получаваме $\overline{u}=\sum_{i,j=1}^n \overline{a_{ij}x_j\overline{x_i}}=\sum_{i,j=1}^n a_{ij}\overline{x_j}x_i=\sum_{i,j=1}^n a_{ji}\overline{x_j}x_i=u$. Тогава $\overline{u}=u\implies u\in\mathbb{R}$ и $\lambda=\frac{u}{v}\in\mathbb{R}$

Следствие Всички характеристични корени на симетричен оператор $\in \mathbb{R}$

Твърдение Всеки два собствени вектора, съответстващи на различни собствени стойности на симетричен оператор, са ортогонални помежду си.

Доказателство. Нека φ е симетричен оператор, λ_1 и λ_2 са различни собствени стойности на φ и v_1 и v_2 са съответстващи им собствени вектори на φ . Имаме $(\varphi(v_1), v_2) = (v_1, \varphi(v_2))$, откъдето $(\lambda v_1, v_2) = (v_1, \lambda_2 v_2) \Longrightarrow \lambda(v_1, v_2) = \lambda_2(v_1, v_2) \Longrightarrow (\lambda_1 - \lambda_2)(v_1, v_2) = 0$. От $\lambda_1 \neq \lambda_2$, то $(v_1, v_2) = 0$

2

Теорема (диагонализация)

Нека $\varphi: E \to E$ е симетричен оператор в крайномерно ЕП - E. Тогава съществува ортонормиран базис на E, в които матрицата на φ е диагонална (по главния й диагонал стоят собствените стойности на φ , а базисните вектори са собствени вектори на φ)

Доказателство. Трябва да докажем, че пространството E притежава ортонормиран базис $v_1,...,v_n$, състоящ се от собствени вектори на φ , т.е. $\varphi(v_1)=\lambda_1v_1,...,\varphi(v_n)=\lambda_nv_n(\lambda_1,...,\lambda_n\in\mathbb{R})$. Тогава матрицата D на φ в този базис е

$$D = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

където T е матрица на прехода и λ_i - собствени ст-ти на e_i

Прилагаме индукция по n = dimE

Нека n=1 \Longrightarrow твърдението е очевидно.

Нека n > 1 и доп., че теоремата е доказана за по-малки стойности за n.

Нека λ_1 е собствена стойност на φ и v_1' е собствен вектор на φ , съответстващ на λ_1 (хар. корени на φ са реални числа $\Longrightarrow \varphi$ притежава собствена стойност). Заменяйки v_1' вектора $v_1 = \frac{1}{|v_1'|}v_1'$ получаваме собствен вектор на φ , съответстващ на λ_1 , който е с дължина 1.

 φ , съответстващ на λ_1 , който е с дължина 1. Да означим $U=l(v_1)$ и нека U^\perp е ортогоналното допълнение на U, т.е. $U^\perp=\{v\in E|(v,v_1)=0\}$. Ще докажем, че подпространството U^\perp е φ -инвариантно, т.е. ако един вектор $v\in U^\perp$, то и $\varphi(v)\in U^\perp$.

Нека $v \in U^{\perp}$, т.е. $(v, v_1) = 0$. Използваме, че φ е симетричен оператор, т.е. $(\varphi(v), v_1) = (v, \varphi(v_1)) = (v, \lambda_1 v_1) = \lambda_1 (v, v_1) = 0 \implies \varphi(v) \in U^{\perp}$

Така φ съпоставя на всеки вектор от U^{\perp} вектор, който също лежи в U^{\perp} , т.е. φ е симетричен оператор, действащ в пространството U^{\perp} . Знаем, че $E=U\otimes U^{\perp}$ и $dimU=1\implies dimU^{\perp}=n-1$ и според ИП, U^{\perp} притежава ортонормиран базис $v_2,...,v_n$, състоящ се от собствени вектори на φ , т.е. $\varphi(v_2)=\lambda_2v_2,...,\varphi(v_n)=\lambda_nv_n(\lambda_2,...,\lambda_n\in\mathbb{R})$. Освен това, векторите $v_2,...,v_n$ са от U^{\perp} и значи са ортогонални на вектора v_1 .

Тогава $v_1,...,v_n$ е базис на E, който е ортонормиран и $\varphi(v_i)=\lambda_i v_i$ за i=1,2,...n \Longrightarrow матрицата D на φ в този базис е диагонална и по главния ѝ диагонал стоят числата $\lambda_1,...,\lambda_n$

$$\begin{pmatrix} \alpha & & & 0 \\ & \lambda_1 & & \\ & & \ddots & \\ 0 & & & \lambda_{n-1} \end{pmatrix} = T^{-1}AT = T^tAT$$

Висша алгебра

Симетрична и алтернативна група. Теорема на Кейли. Теорема за хомоморфизмите на групи.

Дефиниция Нека $M \neq \emptyset$ и $S(M) = \{\varphi | \varphi : M \to M, \varphi \text{ е биекция} \}$. Множеството от биекциите разглеждаме с операцията композиция на изображения: $\varphi \circ \psi(x) = \varphi(\psi(x)), \forall x \in M$. Тогава ако $\forall M \neq \emptyset, S(M)$ разглеждано с операцията композиция е група, то тя се нарича **симетрична група** на M.

Дефиниция Нека $i_1, i_2, ..., i_k$ са различни числа от Ω_n , а σ е пермутация, действаща по правилото: $\sigma(i_1) = i_2, \sigma(i_2) = i_3, ..., \sigma(i_k) = i_1$ и всички останали числа остават на място под действието на σ . Такава пермутация наричаме **цикъл**, а числото k - дължина на цикъла.

<u>Дефиниция</u> Казваме, че циклите $(i_1,...,i_k)$ и $(j_1,...,j_s)$ са **независими**, ако $\{i_1,...,i_k\} \cap \{j_1,...,j_s\} = \emptyset$

Твърдение

Всяка пермутация $\sigma \in S_n$ се представя като произведение на независими цикли. Това представяне е единствено с точност до реда на множителите.

Доказателство. Нека i_1 е произволно число от Ω_n . Разглеждаме числата $i_1, i_2 = \sigma(i_1), ..., i_k = \sigma(i_{k-1})$, където k е най-голямото естествено число, за което тези числа са различни. Тогава $\sigma(i_k)$ е някое от тях. Твърдим, че $\sigma(i_k) = i_1$. Това е изпълнено при k = 1, а ако k > 1 и например $\sigma(i_k) = i_2$, то $i_k \neq i_1$, но $\sigma(i_k) = \sigma(i_1)$, което е противоречие.

Нека $\sigma=(i_1...i_k)$ и j_1 е число от Ω_n , което не участва в записа на σ_1 . По аналогичен начин получаваме цикъл $\sigma_2=(j_1...j_s)$. Циклите σ_1 и σ_2 са независими. Продължаваме по този начин, докато изчерпим всички числа от Ω_n . Очевидно σ е произведение на получените независими цикли.

Нека $\sigma=\sigma_1...\sigma_t=\sigma_1'...\sigma_m'$ са две разлагания на σ в произведение на независими цикли. Всяко число от Ω_n участва в записа на някой цикъл и в двете разлагания. Нека дадено число участва в записа на σ_1 и в записа на σ_1' . Тогава $\sigma=\sigma_1'$. Като умножим σ отляво със σ_1^{-1} , получаваме равенството $\sigma_2...\sigma_t=\sigma_2'...\sigma_m'$. Прилагайки към получената пермутация неколкократно аналогични разсъждения, получаваме t=m и $\sigma_2=\sigma_2'...\sigma_t=\sigma_t'$.

Пример
$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 2 & 1 & 4 \end{pmatrix} = (15)(264)(3) = (15)(264)$$

<u>Дефиниция</u> Нека (G,.) е група и $a,b,g \in G$. Казваме, че b е **спрегнат** с a, ако $b=gag^{-1}$

Дефиниция Цикъл с дължина 2 наричаме транспозиция.

Твърдение

Всяка пермутация $\sigma \in S_n$ може да се представи като произведение на транспозиции, т.е. S_n се поражда от всички транспозиции.

Доказателство. Следва от горното твърдение и от равенството $(i_1i_2...i_{t-1}i_t) = (i_{t-1}i_t)(i_{t-2}i_t)...(i_2i_t)(i_1i_t)$, което се проверява непосредствено.

Дефиниция Множеството $A_n=\{\varphi\in S_n|\varphi$ е четна $\}$ наричаме алтернативна група.

Твърдение

 $\overline{\Gamma_{\text{рупата }}A_n}(n\geqslant 3)$ се поражда от всички тройни цикли.

Доказателство. Следва от факта, че всяка четна пермутация е произведение на четен брой транспозиции и равенствата (ij)(kl)=(jkl)(ilj) и (ij)(il)=(ilj)

Теорема (Кейли)

Всяка крайна група G от ред n е изоморфна на подгрупа на симетричната група S_n

Доказателство. Нека $a \in G$ и $\varphi_a : G \to G : \varphi_a(x) = ax$

$$1.\varphi_a$$
 е биекция $\Longrightarrow \varphi_a \in S(G) = S_n$ $\varphi_a(x) = \varphi_a(y) \iff ax = ay \iff a^{-1}(ax) = a^{-1}(ay) \iff x = y$ $x \in G: x = \varphi_a(a^{-1}x) = a(a^{-1}x) = x$

 $2.\varphi_a \in S(G)$ и нека $G' = \{\varphi_a | a \in G\} \subset S(G)$

- $(\varphi_a \circ \varphi_b)(x) = \varphi_a(\varphi_b(x)) = a(bx) = (ab)x = \varphi_{ab}(x) \implies \varphi_a \circ \varphi_b = \varphi_{ab} \in S(G)$
- $\varphi_e(x) = x \implies \varphi_e = id \in G'$
- $\varphi_a\circ\varphi_{a^{-1}}=\varphi_{aa^{-1}}=id\implies \varphi_{a^{-1}}\in G'$ и $\varphi_{a^{-1}}=(\varphi a)^{-1}$

$$\implies G' < S(G)$$

$$3.\varphi:G\to G':\varphi(a)=\varphi_a$$

- $\varphi(ab) = \varphi_{ab} = \varphi_a \circ \varphi_b = \varphi(a) \circ \varphi(b)$
- $\varphi(a) = \varphi(b) \iff \varphi_a x = \varphi_b x, \forall x \iff ax = bx \iff a = b$

$$\Longrightarrow \varphi$$
 е изоморфизъм $\Longrightarrow G \cong G' < S(G) = S_n$

Нека $(G,*),(L,\circ)$ са групи и $\varphi:G\to L$ е изображение от G в L

<u>Дефиниция</u> Казваме, че изображението φ е **хомоморфизъм**, ако $\overline{\varphi(a*b)=\varphi(a)}\circ\varphi(b)$

<u>Дефиниция</u> Казваме, че изображението φ е изоморфизъм, ако $\overline{\varphi}$ е хомоморфизъм и биекция.

Дефиниция Ядро на φ наричаме $Ker\varphi = \{a \in G | \varphi(a) = e_L\} \subset G$

Дефиниция Образ на φ наричаме $Im\varphi=\varphi(G)=\{\varphi(x)|x\in G\}\subset L$

<u>Дефиниция</u> Подгрупата H < G е **нормална подгрупа** $(H \lhd G)$, ако $gH = Hg, \forall g \in G$

Дефиниция Нека $H \lhd G \implies G \bigcup_{g \in G} gH$. Множеството $G/H = \{gH | g \in G\}$ наричаме факторгрупа.

Теорема (хомоморфизми при групи)

 $\overline{\text{Нека }G}$ и L са групи и $\varphi:G\to L$ е хомоморфизъм. Тогава $Ker \varphi\lhd G$ и $Im \varphi\cong G/Ker \varphi$

Доказателство. Нека $H = Ker\varphi$.

$$1.\varphi(t) = \varphi(g) \iff t \in gH \iff t \in Hg.$$

Разглеждаме $\psi: G/H \to Im\varphi < L \ \psi(gH) = \varphi(g)$.

От 1. \Longrightarrow ако tH=gH \Longrightarrow $\varphi(t)=\varphi(g)$ \Longrightarrow ψ е коректно дефинирано

$$2.\psi(gH.uH)=\psi((gu)H)=\varphi(gu)=\varphi(g).\varphi(u)=\psi(gH).\psi(uH)\implies \psi$$
 е хомоморфизъм

 $3.Im\psi = Im\varphi \implies \psi$ е сюрекция

4. От 1.
$$\Longrightarrow \psi(tH) = \psi(gH) \iff \varphi(t) = \varphi(g) \iff t \in gH \iff tH = gH \implies \psi$$
 е инекция

$$\implies \varphi$$
 е изоморфизъм, $G/Ker\varphi \cong Im\varphi$

Диференциално и интегрално смятане

Теорема на Ферма. Теореми за средните стойности (Рол, Лагранж и Коши). Формула на Тейлър.

Дефиниция Нека $f: D \to \mathbb{R}$. Казваме, че f има локален минимум в точката x_0 , ако $\exists \delta > 0: (x_0 - \delta, x_0 + \delta) \subset D$ и $f(x_0) \leqslant f(x), \forall x \in (x_0 - \delta, x_0 + \delta)$. Аналогично, ако при горните условия $f(x_0) \geqslant f(x), \forall x \in (x_0 - \delta, x_0 + \delta)$, то f има локален максимум в x_0 .

Теорема (Ферма)

Нека $f: D \to \mathbb{R}$ и x_0 е точка на локален екстремум за f, като f е диференцируема в x_0 . Тогава $f'(x_0) = 0$.

Доказателство. БОО считаме, че x_0 е точка на локален максимум, т.е. $\exists \delta > 0: (x_0 - \delta, x_0 + \delta) \subset D$ и $f(x_0) \geqslant f(x), \forall x \in (x_0 - \delta, x_0 + \delta)$. Разглеждаме $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$. Имаме два случая - x да клони към x_0 отляво и отдясно.

- Ako $x \in (x_0, x_0 + \delta)$, to $\frac{f(x) f(x_0)}{x x_0} \le 0 \implies f'(x_0) \le 0$.
- Ako $x \in (x_0 \delta, x_0)$, to $\frac{f(x) f(x_0)}{x x_0} \geqslant 0 \implies f'(x_0) \geqslant 0$.

Получихме, че в x_0 стойността на производната трябва да бъде 0.

Нека f е непрекъсната в затворения интервал [a,b] и притежава производна поне в отворения интервал (a,b)

Теорема (Рол)

 $\overline{\text{A KO } f(a)} = f(b), \text{ TO } \exists c \in (a,b) : f'(c) = 0$

Доказателство. Имаме, че f е непрекъсната върху $[a,b] \Longrightarrow$ можем да приложим $T_{\text{Вайершрас}}$ (всяка непрекъсната функция върху краен затворен интервал достига своите минимум и максимум). Получаваме, че f е ограничена върху [a,b] и достига НГС в някое x_{max} и НМС в някое x_{min} : $\exists x_{max} \in [a,b]: f(x_{min}) \geqslant f(x), \forall x \in [a,b]$ и $\exists x_{min} \in [a,b]: f(x_{min}) \leqslant f(x), \forall x \in [a,b]$ Поне един от случаите е в сила:

- $x_{min} \in (a,b) \implies x_{min}$ е локален минимум за $f \stackrel{T_{\Phi \text{ ерма}}}{\Longrightarrow} f'(x_{min}) = 0$
- $x_{max} \in (a,b) \implies x_{max}$ е локален максимум за $f \stackrel{T_{\Phi \text{ерма}}}{\Longrightarrow} f'(x_{max}) = 0$
- $x_{min}, x_{max} \in \{a, b\}$. Тъй като f(a) = f(b), то $f(x_{max}) = f(x_{min})$, откъдето получаваме, че f е константа $\implies \forall \xi \in (a, b) : f'(\xi) = 0$

Теорема (Лагранж)

 $\overline{\text{Съществува}}$ с такова, че f(b) - f(a) = f'(c)(b-a)

Доказателство. Да разгледаме функцията g(x) = f(x) - kx, където искаме да изберем числото k така, че g да удовлетворява условията на $T_{\text{Рол}}$. Дотук g е диференцируема в (a,b) и непрекъсната в точките a и b, защото f и линейното събираемо са такива. За да е налице g(a) = g(b), трябва f(a) - ka = f(b) - kb, откъдето избираме $k = \frac{f(b) - f(a)}{b - a}$. От $T_{\text{Рол}} \implies \exists \xi \in (a,b): g'(\xi) = 0$. Тъй като g'(x) = f'(x) - k от правилата за диференциране получаваме: $0 = g'(\xi) = f'(\xi) - k \implies f'(\xi) = k = \frac{f(b) - f(a)}{b - a}$.

Теорема (Коши)

Ако функцията g е непрекъсната в затворения интервал [a,b] и притежава производна поне в отворения интервал (a,b) като $g'(x) \neq 0, x \in (a,b)$, то $\exists c \in (a,b) : \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$

Доказателство. Нека дефинираме функцията h(x) = f(x) - kg(x), като искаме да изберем числото k така, че h(a) = h(b). Тоест искаме $f(a) - kg(a) = f(b) - kg(b) \iff k(g(b) - g(a)) = f(b) - f(a)$. Ако допуснем, че g(a) = g(b), то ще бъдат изпълнени всички условия на $T_{\text{Рол}}$ за $g \implies \exists x \in (a,b): g'(x) = 0$. Противоречие с третото условие. Получихме, че $g(a) \neq g(b)$, следователно можем да изберем $k = \frac{f(b) - f(a)}{g(b) - g(a)}$

Формула (Тейлър)

Формула на Тейлър за f около a с остатъчен член във форма на Лагранж:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-a)^{n+1}$$

Определен интеграл. Дефиниция и свойства. Интегруемост на непрекъснатите функции. Теорема на Нютон - Лайбниц.

Дефиниция Разбиване τ на интервала [a,b] наричаме система от точки $\{x_i\}_{i=0}^n$ такива, че: $a=x_0 < x_1 < ... < x_{n-1} < x_n = b$. Това означава да разделим интервала [a,b] на n подинтервала: $[a,x_1],[x_1,x_2],...,[x_{n-1},b]$ където дължината на интервала i е $\Delta x_i = x_i - x_{i-1}$

Дефиниция Нека f(x) е ограничена в интервала [a,b] и \tilde{x} е разбиване на [a,b] на система от точки $\{x_i\}_{i=0}^n$. Тогава сумата

$$\underline{\underline{s}}(f, [a, b], \widetilde{x}) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

където m_i е точната долна граница на стойностите на f(x) в интервала $[x_{i-1},x_i](m_i=inf_{x\in[x_{i-1},x_i]}f(x))$ се нарича малка сума на Дарбу

Дефиниция Нека f(x) е ограничена в интервала [a,b] и \tilde{x} е разбиване на [a,b] на система от точки $\{x_i\}_{i=0}^n$. Тогава сумата

$$\overline{S}(f, [a, b], \widetilde{x}) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

където M_i е точната горна граница на стойностите на f(x) в интервала $[x_{i-1},x_i](M_i=\sup_{x\in[x_{i-1},x_i]}f(x))$ се нарича голяма сума на Дарбу

Теорема

 $\overline{\Phi_{\rm УНКЦИЯ}}$ е интегруема по Риман $\iff \forall \varepsilon > 0 \quad \exists s, S : S - s < \varepsilon$

Доказателство.

$$\underline{s}(f,\tau) \leqslant \int_{\overline{a}}^{b} f(x)dx \leqslant \int_{a}^{b} f(x)dx \leqslant \overline{S}(f,\tau)$$

Тогава $0\leqslant \int_a^b f(x)dx-\int_{\overline{a}}^b f(x)dx\leqslant \underline{S}(f,\tau)-\overline{s}(f,\tau)<\varepsilon \implies \int_a^b f(x)dx=\int_{\overline{a}}^b f(x)dx$, понеже можем да изберем ε произволно малко.

 \Rightarrow) Да допуснем, че f(x) е интегруема по Риман в интервала [a,b] и нека $\varepsilon>0$. От определенията за долен и горен интеграл на Дарбу, числото $\int_a^b f(x) - \frac{\varepsilon}{2}$ не е горна граница за долните суми на Дарбу и числото $\int_a^b f(x) + \frac{\varepsilon}{2}$ не е долна граница за горните суми на Дарбу, можем да намерим такива разбивания τ_1, τ_2 , че:

$$\int_{a}^{b} f(x)dx - \frac{\varepsilon}{2} < \underline{s}(f, \tau_{1}) \leqslant \int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x)dx + \frac{\varepsilon}{2} > \overline{S}(f, \tau_{2}) \geqslant \int_{a}^{b} f(x)dx$$

Нека $au_3 = au_1 \cup au_2$. От свойствата на сумите на Дарбу и последните две съотношения:

$$\int_{a}^{b} f(x)dx - \frac{\varepsilon}{2} < \underline{s}(f, \tau_{1}) \leq \underline{s}(f, \tau_{3}) \leq \int_{a}^{b} f(x)dx \leq \overline{S}(f, \tau_{3}) \leq \overline{S}(f, \tau_{2}) < \int_{a}^{b} f(x)dx + \frac{\varepsilon}{2}$$

$$\implies \overline{S}(f, \tau) - \underline{s}(f, \tau) < \varepsilon$$

Теорема (Кантор)

Всяка непрекъсната функция в краен и затворен интервал е равномерно непрекъсната.

Теорема

Всяка непрекъсната функция в краен и затворен интервал е интегруема по Риман.

Доказателство. Нека функцията f(x)е непрекъсната в интервала [a,b]. Тогава съгласно $T_{\text{Кантор}}$ тя е ограничена и равномерно непрекъсната. Нека $\varepsilon > 0$. Тогава от равномерната непрекъснатост $\exists \delta > 0 : |f(x_1) - f(x_2)| < \frac{\varepsilon}{2(b-a)}$, когато $|x_1 - x_2| < \delta$ за $x_1, x_2 \in [a,b]$. Нека разбиването τ е избрано с единствено изискване $d(\tau) < \delta$.

Да разгледаме разликата $\overline{S}(f,\tau)-\underline{s}(f,\tau)=\sum_{k=1}^n(M_k-m_k)\Delta x_k$. Понеже f(x) е непрекъсната, тя достига най-малката и най-голямата си стойност във всеки интервал $[x_{k-1},x_k], k=0,1,...,n \Longrightarrow M_k=\sup_{x\in [x_{k-1},x_k]}f(x)$ и $m_k=\inf_{x\in [x_{k-1},x_k]}f(x)$. Тогава $M_k-m_k<\frac{\varepsilon}{2(b-a)}\Longrightarrow$ при този избор на разбиването τ имаме $\overline{S}(f,\tau)-\underline{s}(f,\tau)\leqslant \sum_{k=1}^n\frac{\varepsilon}{2(b-a)}\Delta x_k=\frac{\varepsilon}{2(b-a)}\sum_{k=1}^n\Delta x_k=\frac{\varepsilon}{2(b-a)}(b-a)<\varepsilon$

Основни свойства на Римановия интеграл:

$$1. \int_a^b f(x)dx = \int_a^b f(t)dt$$

$$2. \int_a^a f(x) dx = 0$$

$$3. \int_a^b f(x) dx = -\int_b^a f(x) dx$$

4. Ако f(x) и g(x) са интегруеми в [a,b] и $\lambda-const$, то f(x)+g(x) и $\lambda f(x)$ също са интегруеми в [a,b] и

$$\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$$

$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

5. Ако f(x) е интегруема в [a,b], то и |f(x)| също е интегруема в [a,b] и $|\int_a^b f(x)dx| \leqslant \int_a^b |f(x)|dx$

6. Ако f(x) е интегруема в [a,b] и $c\in (a,b)$, то $\int_a^b f(x)dx=\int_c^a f(x)dx+\int_b^c f(x)dx$

7. Ако $f(x)\geqslant 0$ и f(x)е непрекъсната в [a,b], то $\int_a^b f(x) dx\geqslant 0$

8. Ако $f(x) \leqslant g(x)$ и $a \leqslant b$, то $\int_a^b f(x) dx \leqslant \int_a^b g(x) dx$

9. Ако f(x) е интегруема в [a,b] и m и M са такива, че $\forall x \in [a,b]: m \leqslant f(x) \leqslant M$, то

$$m(b-a) \leqslant \int_{a}^{b} f(x)dx \leqslant M(b-a)$$

Теорема (за средните стойности)

 $\overline{\text{Ако }f \text{ е н}}$ епрекъсната в [a,b], то $\exists c \in [a,b]$:

$$\int_{a}^{b} f(x)dx = f(c)(b-a)$$

Доказателство. От $T_{\text{Вайерщрас}}, f(x)$ достига най-голямата M и най-малката m си стойност в [a,b]. Нека $m=f(x_1)$ и $M=f(x_2), x_1, x_2 \in [a,b]$.

От св. 9 $\Longrightarrow m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a) \Longrightarrow m \leqslant \frac{\int_a^b f(x) dx}{b-a} \leqslant M.$ От $T_{\text{Волцано}} \Longrightarrow$ \exists поне една т. $c \in [x_1, x_2]$, а значи и от [a, b] такава, че

$$f(c) = \frac{\int_{a}^{b} f(x)dx}{b-a}$$

Теорема (Нютон-Лайбниц)

 $\overline{\text{A ко } f}$ е непрекъсната в [a,b], то $\forall x \in [a,b]$:

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Доказателство. Тъй като f(t) е непрекъсната в интервала [a,b], то f(t) е непрекъсната в интервала $[a,x]\subseteq [a,b], x\in [a,b] \implies f(t)$ е интегруема в интервала [a,x]. Да означим $F(x)=\int_a^x f(t)dt$ и да дефинираме h такова, че $x+h\in [a,b]$. Разглеждаме диференчното частно:

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left(\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right) = \frac{1}{h} \left(\int_{a}^{x+h} f(t) dt + \int_{x}^{a} f(t) dt \right) = \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

От $T_{\text{ср. стойности}} \Longrightarrow \int_x^{x+h} f(t) dt = ((x+h)-x)f(\xi) = hf(\xi)$, където ξ е от интервала с краища x и x+h. Получихме, че $\frac{F(x+h)-F(x)}{h} = \frac{f(\xi)h}{h} = f(\xi)$. Нека $h \to 0$. Тъй като $x \leqslant \xi \leqslant x+h$, то $\xi \to x$ и тогава: $\lim_{h\to 0} \frac{F(x+h)-F(x)}{h} = \lim_{h\to 0} f(\xi) = f(x)$. От дефиницията за производна $\Longrightarrow F'(x) = f(x)$

Формула (Нютон-Лайбниц)

Нека f(x) е непрекъсната в интервала [a,b] и F(x) е нейна примитивна, т.е. $F'(x) = f(x), \forall x \in [a,b]$. Тогава:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)|_{a}^{b}$$

Аналитична геометрия

Уравнения на права и равнина. Формули за разстояния.

Нека $K=O_{xy}$ - афинна координатна система в равнината

Параметрични уравнения

$$O\vec{M}_0=\vec{r_0}$$
 и $O\vec{M}=\vec{r}$ са радиус-вектори $\vec{p}\neq\vec{0}$ - даден вектор $\exists!$ права $g:\begin{cases}zM_0\\||\vec{p}\end{cases}$

За произволна т.M от g е в сила $\vec{M_0M}|\vec{p} \implies \exists !s \in \mathbb{R} : \vec{M_0M} = s.\vec{p}$ - установява взаимно-еднозначно съответствие между $s \in \mathbb{R}$ и т. $M \in g$

1.
$$\vec{M_0M} = \vec{OM} - \vec{OM_0} = \vec{r} = \vec{r_0} \implies \vec{r} - \vec{r_0} = s.\vec{p}$$

1.
$$M_0M = OM - OM_0 = r = r_0 \implies r - r_0 = s.p$$
 $g: \vec{r} = \vec{r_0} + s.\vec{p}, s \in \mathbb{R}$ - векторно параметрично уравнение
2. Нека $M_0(x_0, y_0), M(x, y), \vec{p}(p_1, p_2) \implies g: \begin{cases} x = x_0 + s.p_1 \\ y = y_0 + s.p_2 \end{cases}$, $s \in \mathbb{R}$

- координатни (скаларни) параметрични уравнени

Общо уравнение на права

Теорема

 $\overline{\text{Всяка права в равнината има спрямо } K$ уравнение от вида Ax + By + C = $(0, (A, B) \neq (0, 0)$. Обратно, всяко уравнение от вида $Ax + By + C = 0, (A, B) \neq 0$ (0,0) определя права в равнината.

$$g: Ax + By + C = 0, (A, B) \neq (0, 0)$$
 $g \parallel \vec{p}(-B, A)$

Условие за колинеарност на g и вектор $\vec{q}(q_1, q_2)$:

$$\vec{q}(q_1,q_2) \parallel g \parallel \vec{p}(-B,A) \iff \begin{vmatrix} q_1 & -B \\ q_2 & A \end{vmatrix} \iff Aq_1 + Bq_2 = 0$$

Декартово уравнение на права

Разглеждаме $g:Ax+By+C=0, B\neq 0$, т.е. $g\not\parallel 0_y\implies g:y=-\frac{A}{B}x-\frac{C}{B}$ Полагаме: $-\frac{A}{B}=k,\frac{C}{B}=n$ $g:y=kx+n, k=\operatorname{tg}\alpha, \alpha=\not<(0_x^+,g),\ (0,n)$ - пресечна точка на g и 0_y

Взаимно положение на две прави

$$g_1: A_1x + B_1y + C_1 = 0$$
 $g_2: A_2x + B_2y + C_2 = 0$

1сл
$$r \begin{pmatrix} A_1 B_1 \\ A_2 B_2 \end{pmatrix} = 2 \implies g_1 \cap g_2 = \text{ т.} P$$
 - единствена обща точка

$$1$$
сл $r \begin{pmatrix} A_1B_1 \\ A_2B_2 \end{pmatrix} = 2 \implies g_1 \cap g_2 = \text{ т.}P$ - единствена обща точка 2 сл $r \begin{pmatrix} A_1B_1 \\ A_2B_2 \end{pmatrix} = 1$ и $\begin{pmatrix} A_1B_1C_1 \\ A_2B_2C_2 \end{pmatrix} = 2 \iff \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2} \implies g_1 \parallel g_2$,

$$3$$
сл $rigg(A_1B_1C_1\hrace{A_1B_1C_1}{A_2B_2C_2}igg)=1\implies g_1\equiv g_2,\ rac{A_1}{A_2}=rac{B_1}{B_2}=rac{C_1}{C_2}$ - точките съвпадат

Нормално уравнение на права

$$g:Ax+By+C=0,g \parallel \vec{p}(-B,A),g\perp \vec{n_g}(A,B)$$
 - нормален вектор $|\vec{n_g}|=\sqrt{A^2+B^2}\implies \vec{n_1}(rac{A}{\sqrt{A^2+B^2}},rac{B}{\sqrt{A^2+B^2}})$ - единичен нормален в-р на g

Всички общи уравнения на g имат вида: $(\lambda.A).x + (\lambda.B).y + \lambda.C = 0$

Търсим
$$\lambda$$
 така, че $\vec{n_1}(\lambda.A,\lambda.B)$ да е единичен $\vec{n_1}^2=(\lambda.A)^2+(\lambda.B)^2=1 \implies \lambda^2=\frac{1}{A^2+B^2} \implies \lambda=\frac{\pm 1}{\sqrt{A^2+B^2}}$

 $g:\pm rac{A.x+B.y+C}{\sqrt{A^2+B^2}}=0$ - всяка права има точно две нормалния уравнения Ако означим: $A_1=rac{A}{\sqrt{A^2+B^2}}, B_1=rac{B}{\sqrt{A^2+B^2}}, C_1=rac{C}{\sqrt{A^2+B^2}}$, то $A_1=\cos \not\prec (\vec{e_1},\vec{n_1}), B_1=\cos \not\prec (\vec{e_2},\vec{n_1}), C_1=\delta(\mathbf{r}.O;g)$

Разстояние от точка до права

$$g:A_1x+B_1y+C_1=0$$
 е нормално уравнение, $A_1^2+B_1^2=1$

Нека т. $M_0(x_0,y_0)$ е точка в равнината и т.H е орт. проекция на M_0 в g $H\vec{M}_0 \parallel \vec{n_1} \implies \exists ! \delta : H\vec{M}_0 = \delta . \vec{n_1}$ т. $H(x_H,y_H)$ лежи на

$$g \begin{cases} x_0 - x_H = \delta.A_1 \\ y_0 - y_H = \delta.B_1, \end{cases} \implies \begin{cases} x_H = x_0 - \delta.A_1 \\ y_H = y_0 = \delta.B_1 \end{cases}$$

Заместваме в уравнението на $g:A_1.x+B_1.y+C_1=0\Longrightarrow A_1(x_0-\delta.A_1)+B_1(y_0-\delta.B_1)+C_1=0\Longrightarrow A_1.x_0+B_1.y_0+C_1-\delta(A_1^2+B_1^2)=0\Longrightarrow \delta=A_1.x_0+B_1.y_0+C_1=\frac{A.x_0+B.y_0+C}{\sqrt{A^2+B^2}}$ - разстояние от т. M_0 до права g

Общо уравнение на равнина

Теорема

Всяка равнина π има спрямо K уравнение от вида $Ax + By + Cz + D = 0, (A, B, C) \neq (0, 0, 0)$. Обратно, всяко уравнение от вида $Ax + By + Cz + D = 0, (A, B, C) \neq (0, 0, 0)$ е уравнение на точно една равнина

Взаимно положение на две равнини

$$\pi_1: A_1.x + B_1.y + C_1.z + D_1 = 0$$
 $\pi_2: A_2.x + B_2.y + C_2.z + D_2 = 0$

$$1 cл \ r \begin{pmatrix} A_1B_1C_1 \\ A_2B_2C_2 \end{pmatrix} = 2 \implies \pi_1 \cap \pi_2 = g \text{ - пресечница}$$

$$2 cл \ r \begin{pmatrix} A_1B_1C_1 \\ A_2B_2C_2 \end{pmatrix} = 1 \ \text{и} \ \begin{pmatrix} A_1B_1C_1D_1 \\ A_2B_2C_2D_2 \end{pmatrix} = 2 \iff \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2} \implies \pi_1 \parallel \pi_2$$

$$3 cл \ r \begin{pmatrix} A_1B_1C_1D_1 \\ A_2B_2C_2D_2 \end{pmatrix} = 1 \implies \pi_1 \equiv \pi_2$$

Нормално уравнение на равнина

ОКС,
$$k=O_{xyz}$$
 $\pi:A.x+B.y+C.z+D_1=0$ $\vec{n_\pi}(A,B,C)$ - нормален вектор на π

$$ec{p}(a,b,c) \parallel \pi \iff (ec{n_{\pi}}.ec{p}) = 0$$
 $ec{n_1} = \frac{ec{n_{\pi}}}{|n_{\pi}|} \implies ec{n_1}(\frac{A}{\sqrt{A^2+B^2+C^2}}, \frac{B}{\sqrt{A^2+B^2+C^2}}, \frac{C}{\sqrt{A^2+B^2+C^2}})$ е единичен нормален вектор на π

 $\pi:\frac{A.x+B.y+C.z}{\pm\sqrt{A^2+B^2+C^2}}=0$ е нормално уравнение на π

Разстояние от точка до равнина

Нека
$$\pi:A_1.x+B_1.y+C_1.z+D_1=0$$
, където $A_1=\frac{A}{\sqrt{A^2+B^2+C^2}},B_1=\frac{B}{\sqrt{A^2+B^2+C^2}},C_1=\frac{C}{\sqrt{A^2+B^2+C^2}},D_1=\frac{D}{\sqrt{A^2+B^2+C^2}}$

Разглеждаме т. $M_0(x_0,y_0,z_0)$. Нека т.H е орт. пр. на M_0 в равнината π

$$H\vec{M}_0 \parallel \vec{n_1} \implies \exists ! \delta : H\vec{M}_0 = \delta . \vec{n_1} \iff \begin{cases} x_0 - x_H = \delta . A_1 \\ y_0 - y_H = \delta . B_1, \\ z_0 - z_H = \delta . C_1 \end{cases} \implies \begin{cases} x_H = x_0 - \delta . A_1 \\ y_H = y_0 - \delta . B_1, \\ z_H = z_0 - \delta . C_1 \end{cases}$$

Заместваме в уравнението на π и търсим

$$A_1(x_0 - \delta A_1) + B_1(y_0 - \delta B_1) + C_1(z_0 - \delta C_1) + D_1 = 0$$

$$A_1.x_0 + B_1.y_0 + C_1.z_0 + \delta.1 = 0$$

 $A_1.x_0+B_1.y_0+C_1.z_0+\delta.1=0$ Извод: $\delta(M_0;\pi)=rac{Ax_0+By_0+Cz_0+D}{\sqrt{A^2+B^2+C^2}}$ - разстояние от точка до равнина

Числен анализ

Итерационни методи за решаване на нелинейни уравнения.

<u>Дефиниция</u> Нека φ е изображение. Казваме, че ξ е **неподвижна точка** за изображение φ , ако $\xi=\varphi(\xi)$

<u>Дефиниция</u> Казваме, че функцията g удовлетворява **условието на Лип- шиц** с константа q в [a,b], ако $|g(x)-g(y)|\leqslant q|x-y|$ $x,y\in [a,b]$

<u>Дефиниция</u> Изображение, което изпълнява условието на Липшиц с константа < 1, се нарича **свиващо изображение**

Лема

Ако φ е непрекъснато изображение на интервала [a,b] в себе си, то φ има неподвижна точка в [a,b]

Доказателство. Нека $g(x)=\varphi(x)-x$. Изпълнено е, че $g(a)=\varphi(a)-a\geqslant 0$ и $g(b)=\varphi(b)-b\leqslant 0$. Ако g(a)=0 или g(b)=0, тогава очевидно или a, или b е неподвижна точка. Иначе g(x) е непрекъсната функция в [a,b] и си сменя знака \Longrightarrow се нулира по $T_{\text{Вайершрас}}$

Теорема

Нека φ е непрекъснато изображение на [a,b] в себе си, което удовлетворява условието на Липшиц с константа q < 1. Тогава:

- 1. Уравнението $x = \varphi(x)$ има единствен корен ξ в [a,b]
- 2. Редицата $\{x_n\}$ клони към ξ при $n \to \infty$. Нещо повече, $|x_n \xi| \le (b-a)q^n$, $\forall n$

Доказателство. 1. От Лема $\Longrightarrow \varphi$ има поне една подвижна точка. Да допуснем, че са повече от една. Нека $\xi_1=\varphi(\xi_1)$ и $\xi_2=\varphi(\xi_2)$ за някои ξ_1,ξ_2 от [a,b]. Тогава при $\xi_1\neq \xi_2, \ |\xi_1-\xi_2|=|\varphi(\xi_1)-\varphi(\xi_2)|\leqslant q|\xi_1-\xi_2|$ (усл. на Липщиц) $<|\xi_1-\xi_2|$ (защото q<1). Това е абсурд $\Longrightarrow \xi_1=\xi_2$

2.
$$|x_n - \xi| = |\varphi(x_n - 1) - \varphi(\xi)| \leqslant q|x_{n-1} - \xi| = q|\varphi(x_n - 2) - \varphi(\xi)| \leqslant q^2|x_{n-2} - \xi|... \leqslant q^n|x_0 - \xi|$$
. Тъй като $x_0 \in [a,b]$ и $\xi \in [a,b]$, то $|x_0 - \xi| < b - a$

Следствие Нека ξ е корен на уравнението $x = \varphi(x)$. Да предположим, че φ има непрекъсната производна в околност \mathcal{U} на ξ и $|\varphi'(\xi)| < 1$. Тогава при достатъчно добро начално приближение x_0 итерационният процес, породен от φ е сходящ. Нещо повече, съществуват константи C > 0 и 0 < q < 1: $|x_n - \xi| \leqslant Cq^n, \forall n$

Доказателство. Тъй като $\varphi'(t)$ е непрекъсната функция в \mathcal{U} и $|\varphi'(\xi)| < 1$, то $\exists q < 1, \exists \varepsilon > 0$ такива, че $|\varphi'(t)| \leqslant q, \forall t \in [\xi - \varepsilon, \xi + \varepsilon]$. Освен това, при $t \in [\xi - \varepsilon, \xi + \varepsilon]$ имаме $|\varphi(t) - \xi| \leqslant q |t - \xi| \leqslant q \varepsilon < \varepsilon$, т.е. $\varphi(t) \in [\xi - \varepsilon, \xi + \varepsilon] \Longrightarrow \varphi$ е свиващо изображение на интервала $[\xi - \varepsilon, \xi + \varepsilon]$ в себе си. Тогава всички твърдения на следствието следват от Теоремата по-горе.

<u>Дефиниция</u> Казваме, че итерационният процес $x_0, x_1, ...$ има **ред на сходимост** p > 1, ако \exists положителни константи C и q > 1 : $|x_n - \xi| \leqslant Cq^{p^n}$

Метод на хордите

Геометрична илюстрация:

Формула за последователните приближения: $x_{n+1} = x_n - \frac{f(x_n)}{f(b) - f(x_n)}(b - x_n)$ Ред на сходимост:

Теорема

При метода на хордите сходимостта е със скоростта на геометричната прогресия (при условие, че коренът е отделен в достатъчно малък интервал).

Доказателство. Методът на хордите е итерационен процес, породен от функцията $\varphi(x) = x - \frac{f(x)}{f(b) - f(x)}(b-x)$. При $x \in (a,b)$ уравнението $x = \varphi(x)$ е еквивалентно с f(x) = 0. За да приложим Следствието към φ , ще ни е нужно $\varphi'(\xi)$. Имаме

$$\varphi'(\xi) = 1 - f'(\xi) \left[\frac{b - \xi}{f(b) - f(\xi)} \right] - f(\xi) \left(\frac{b - x}{f(b) - f(x)} \right)' |_{x = \xi}$$

Тъй като $f(\xi) = 0$, то $\varphi'(\xi) = 1 - f'(\xi) \frac{b - \xi}{f(b)} = \frac{f(b) - f'(\xi)(b - \xi)}{f(b)}$. Като заместим f(b) по формула на Тейлър с

$$f(b) = f(\xi) + f'(\xi)(b - \xi) + \frac{f''(\eta_1)}{2}(b - \xi)^2$$
 в числител

$$f(b) = f(\xi) + f'(\eta_2)(b - \xi)$$
 в знаменател

където η_1 и η_2 са точки от (a,b), получаваме

$$\varphi'(\xi) = \frac{f''(\eta_1)(b-\xi)}{2f'(\eta_2)}$$

Да означим $M:=\max_{t\in[a,b]}|f''(t)|$ и $m=\min_{t\in[a,b]}|f'(t)|$. По условие f'(t)>0 в [a,b], то m>0. Тогава $|\varphi'(\xi)|\leqslant \frac{M}{2m}|b-\xi|$ и $|\varphi'(\xi)|$ може да е <q<1, ако $b-\xi$ да е достатъчно малко ([a,b] да е достатъчно малък). Ако ξ е в достатъчно малък интервал [a,b], то $|\varphi'(\xi)|< q<1$. От Следствие \Longrightarrow итерационният процес, породен от φ , е сходящ със скоростта на геометрична прогресия

$$|x_n - \xi| \leqslant const.q^n$$

Метод на секущите

Геометрична илюстрация:

Формула за последователните приближения: $x_{n+1} = x_n - \frac{f(x_n)}{f(x_{n-1}) - f(x_n)} (x_{n-1} - x_n)$

Ред на сходимост: $|x_n - \xi| \leqslant Cq^{r^n}, r = \frac{1+\sqrt{5}}{2}, \forall n$

Метод на Нютон

Геометрична илюстрация:

Формула за последователните приближения: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Ред на сходимост: $|x_n - \xi| \le Cq^{2^n}, \forall n$

Вероятности и статистика

Дискретни разпределения. Равномерно, биномно, геометрично и Поасоново разпределение. Задачи, в които възникват. Моменти – математическо очакване и дисперсия.

<u>Дефиниция</u> Нека Ω е множество и \mathcal{A} е съвкупност от множествата на Ω . Казваме, че \mathcal{A} е **сигма алгебра**, ако:

- $\varnothing \in \mathcal{A}$ и $\Omega \in \mathcal{A}$
- Ако $A \in \mathcal{A}$, то $\overline{A} \in \mathcal{A}$
- Ако $A_1,A_2,...\in\mathcal{A},$ то $\bigcup_{i=1}^\infty A_i\in\mathcal{A}$ и $\bigcap_{i=1}^\infty A_i\in\mathcal{A}$

<u>Дефиниция</u> Вероятността P е функция, дефинирана върху сигма алгебрата \mathcal{A} от подмножества на Ω , която удовлетворява аксиомите:

- **Неотрицателност**: $P(A) \geqslant 0$, за всяко събитие $A \in \mathcal{A}$
- Нормираност: $P(\Omega) = 1$
- Адитивност: Ако $AB = \emptyset$, то $P(A \cup B) = P(A) + P(B)$
- Монотонност: За всяко монотонно намаляваща редица $A_1\supset A_2\supset\dots A_n\supset\dots$ клоняща към \varnothing е изпълнено $\lim_{n\to\infty}P(A_n)=0$

Нека Х е случайна величина.

Дефиниция Математическо очакване наричаме числото

$$EX = \sum_{j} x_j p_j$$
 $p_j = P(X = x_j)$

Дефиниция Дисперсия наричаме числото

$$DX = E(X - EX)^2 = EX^2 - (EX)^2$$

 \sqrt{DX} наричаме **стандартно отклонение**.

Свойства

- Ec = c
- E(cX) = cEX
- E(X + Y) = EX + EY
- $X \perp \!\!\! \perp Y \implies E(XY) = EXEY$
- $DX \geqslant 0$
- Dc = 0
- $D(cX) = c^2 DX$
- $X \perp \!\!\! \perp Y \implies D(X+Y) = DX + DY$

<u>Дефиниция</u> Нека $H_j, j=1,2,...$ е някое разлагане на $\Omega,$ а x_j са произволни различни реални числа. **Дискретна случайна величина** наричаме:

$$X(\omega) = \sum_{j} x_{j} \mathbf{I}_{H_{j}}(\omega)$$

където $\mathbf{I}_{H_j}(\omega)$ е индикатора на множеството H_j

Дефиниция Разпределение на ДСВ наричаме таблицата:

X	x_1	x_2	•••	x_n	•••
P	p_1	p_2		p_n	•••

където x_i са стойностите на сл.в. които могат да бъдат краен или изброим брой, а $p_j = P(X=x_j)$ са вероятностите с които сл.в. взема съответните стойности

$$g_X(s) = \sum_{k=0}^{\infty} P(X=k)s^k$$

Твърдение

 $\overline{\text{Нека }X\text{ и }Y}$ са независими сл.в. и $\exists g_X(s), \exists g_Y(s)$. Тогава

$$g_{X+Y}(s) = g_X(s)g_Y(s)$$

Твърдение

 $\overline{\text{Нека сл.в. }X}$ е неотрицателна, целочислена и $\exists EX$. Тогава

$$EX = g_X'(1)$$

Твърдение

 $\overline{\text{Нека сл.в. }X}$ е неотрицателна, целочислена и $\exists DX$. Тогава

$$DX = g_X''(1) + g_X'(1) - (g_X'(1))^2$$

Дефиниция (Равномерно разпределение)

Казваме, че сл.в. X е равномерно разпределена с параметри a и b, т.е.

$$X \in U(a,b) \iff P(X=k) = \frac{1}{b-a+1}$$

$$EX = \frac{a+b}{2}$$

$$DX = \frac{(b-a+1)^2 - 1}{12}$$

Възниква в задачи, при които търсим брой при извършване на n независими опита, всеки от които с еднаква вероятност $\frac{1}{n}$

Дефиниция (Биномно разпределение)

Казваме, че сл.в. X е биномно разпределена с параметри n и p т.е.

$$X \in Bi(np) \iff P(X = k) = C_n^k p^k (1 - p)^{n - k} = \binom{n}{k} p^k q^{n - k}$$

$$EX = E(X_1 + \dots + X_n) = EX_1 + \dots + EX_n = np$$

$$DX = D(X_1 + \dots + X_n) = DX_1 + \dots + DX_n = npq$$

Възниква в задачи, при които търсим брой успехи при извършване на n независими опита, всеки от които с вероятност p.

Дефиниция (Геометрично разпределение)

Казваме, че сл.в. X е геометрично разпределена с параметър p, т.е.

$$X \in Ge(p) \iff P(X = k) = (1 - p)^k p = q^k p$$

$$EX = g_X'(1) = \frac{pq}{(1 - qs)^2}|_{s=1} = \frac{q}{p}$$

$$DX = g_X''(1) + g_X'(1) - (g_X'(1))^2 = \frac{2q^2}{p^2} + \frac{q}{p} - \frac{q^2}{p^2} = \frac{q}{p^2}$$

Възниква в задачи, при които търсим брой неуспехи до първи успех, всеки от които с вероятност p.

Дефиниция (Поасоново разпределение)

 $\overline{\text{Казваме, че сл.в. }}X$ е Поасоново разпределена с параметър λ , т.е.

$$X \in Po(\lambda) \iff P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \qquad k=0,1,2...,\lambda>0 \text{ е константа}$$

$$EX = g_X'(1) = \lambda e^{\lambda(s-1)}|_{s=1} = \lambda$$

$$DX = g_X''(1) + g_X'(1) - (g_X'(1))^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Възниква в задачи, при които търсим среден брой наблюдавани независими събития за единица време - λ .