HOJA DE EJERCICIOS PARA EL 18 DE SEPTIEMBRE

Problema 1. Sea $A = (a_{ij})_{\substack{1 \le i \le M \\ 1 \le j \le N}}$ una matriz $M \times N$. No suponemos A cuadrada y, si es cuadrada, no la suponemos invertible. Interpretándola como un operador $A : (\mathbf{R}^N, ||\cdot||_2) \to (\mathbf{R}^M, ||\cdot||_2)$, demuestra que

$$||A|| = \sqrt{\lambda^*}$$
, $\lambda^* = \text{el mayor de los autovalores de } A^t A$.

Indicación: considera una base ortonormal de \mathbb{R}^N que diagonalice A^tA .

Problema 2. Consider las matrices $A(a) = \begin{bmatrix} 1 & 0 \\ a & 2 \end{bmatrix}$ como operadores $(\mathbb{R}^2, \|\cdot\|_2) \to (\mathbb{R}^2, \|\cdot\|_2)$.

Demuestra que $||A(a)|| \ge \sqrt{1+a^2}$ (examina las imágenes de la base estándar).

¿Cuáles son los autovalores de A(a)? ¿Se puede estimar la norma de un operador a partir de sus autovalores?

<u>Problema</u> 3. Sea (X,d) un espacio métrico. Demuestra las propiedades siguientes, válidas para cualesquiera $a,b,c\in X$ y r,s>0:

- a) |d(a,b) d(b,c)| < d(a,c).
- b) Si $a, b \in B(c, r)$, entonces d(a, b) < 2r.
- c) Si $B(a,r) \cap B(b,s) \neq \emptyset$, entonces d(a,b) < r + s.

Problema 4. (Este ejemplo se suele conocer por *French railway metric*. Dada la estructura de su red de ferrocarriles, los franceses suelen bromear diciendo que la mejor manera de ir de la ciudad A a la ciudad B es siempre pasar por París y hacer transbordo. La métrica siguiente reproduce esta idea.) Definimos en \mathbb{R}^2 :

$$d(x,y) = ||x-y||_2$$
, si x,y son linealmente dependientes,

$$d(x,y) = ||x||_2 + ||y||_2$$
, si x,y son linealmente independientes.

- a) Comprobar que d es una métrica en \mathbb{R}^2 .
- b) Representar gráficamente la bola B(x,r) asociada a esa métrica, para cada $x \in \mathbf{R}^2$ y para cada r > 0.

Problema 5. Comprueba que $d(x,y) = \min\{1, |x-y|\}$ define una distancia en \mathbb{R} , y que los abiertos asociados a d son los mismos que los asociados a la distancia usual |x-y|.

<u>Problema</u> 6. Sea $(\mathbb{V}, \|\cdot\|)$ un espacio normado. Para $A, B \subset \mathbb{V}$, se define $A + B = \{a + b : a \in A, b \in B\}$. Demuestra que si A es abierto entonces A + B es abierto, no importa cómo sea B.

<u>Problema</u> 7. Dados $A \subset \mathbb{R}^2$ e $y \in \mathbb{R}$, definimos $A_y = \{x \in \mathbb{R} : (x,y) \in A\}$. Demuestra que si A es abierto en el plano entonces A_y es abierto en \mathbb{R} , y que si A es cerrado en el plano entonces A_y es cerrado en \mathbb{R} .

<u>Problema</u> 8. Para cada uno de los siguientes conjuntos, discutir si es abierto o si es cerrado en el espacio métrico que se indica. Determinar su interior, su cierre y su frontera en dicho espacio métrico.

a)
$$\bigcap_{k=1}^{\infty} \left[-1, \frac{1}{k} \right)$$
 en \mathbb{R} .

- b) $(0,1) \cap \mathbb{Q}$ en \mathbb{R} .
- c) $\{(x, y) \in \mathbb{R}^2 : 0 < x < y\}$ en \mathbb{R}^2 .

d)
$$\left\{\frac{1}{n}: n \in \mathbf{N}, n \ge 1\right\}$$
 en \mathbf{R} .

e)
$$\bigcup_{n \in \mathbf{Z}} (n, n+1)$$
 en \mathbf{R} .

f)
$$\bigcup_{n=1}^{\infty} \left(\frac{1}{n+1}, \frac{1}{n} \right)$$
 en **R**.

- g) $\mathbf{Q} \times [0,1] \text{ en } \mathbf{R}^2$.
- h) Una variedad afín en \mathbb{R}^n .
- i) Una cónica en \mathbb{R}^2 .
- j) Una cuádrica en \mathbb{R}^3 .
- k) El grafo $\{(x, f(x)): x \in \mathbf{R}^n\}$ en \mathbf{R}^{n+m} de una función continua $f: \mathbf{R}^n \to \mathbf{R}^m$.

Problema 9. Demuestra las siguientes propiedades del cierre:

- 1) Si $A \subset B$ entonces $\overline{A} \subset \overline{B}$.
- 2) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Problema 10. Dado $A \subset \mathbb{R}^N$, la **distancia a A** es la siguiente función:

$$d(\cdot, A) : \mathbb{R}^N \longrightarrow \mathbb{R}$$
 , $\mathbb{R}^N \ni x \longmapsto d(x, A) = \inf\{||x - y|| : y \in A\}.$

a) Demostrar que para cualesquiera $x, y \in \mathbb{R}^N$ se cumple

$$|d(x, A) - d(y, A)| \le ||x - y||.$$

- b) Dado $\epsilon > 0$, prueba que $A_{\epsilon} = \{x \in \mathbb{R}^N \mid d(x,A) < \epsilon\}$ es abierto y que $A^{\epsilon} = \{x \in \mathbb{R}^N \mid d(x,A) \le \epsilon\}$ es cerrado. c) Demuestra que $\overline{A} = \bigcap_{\epsilon > 0} A_{\epsilon} = \bigcap_{n=1}^{\infty} A_{1/n}$.

Problema 11. Discutir cuáles de los siguientes conjuntos son compactos

$$A = \{(x, y) \in \mathbf{R}^2 : |x| + |y| < 1\}$$

$$B = \{(x, y) \in \mathbf{R}^2 : |x| + |y| = 1\}$$

$$C = \{(x, y) \in \mathbf{R}^2 : |x| + |y| \ge 1\}$$

<u>Problema</u> 12. Sean $S^{N-1} = \{x \in \mathbb{R}^N : ||x||_2 = 1\}$ y $f: S^{N-1} \to \mathbb{R}$ una función continua. Para cada una de las afirmaciones siguientes, estudiar si es cierta o falsa:

- 1. $f(S^{N-1})$ es acotado.
- 2. $f(S^{N-1})$ es un abierto.

Si además se sabe que $f(S^{N-1}) \subset \mathbb{Q}$, estudiar qué se puede decir de f.

Problema 13. Sea $\{x_k\}_{k=1}^{\infty}$ una sucesión de puntos en \mathbf{R}^N y supongamos que existe un $r \in (0,1)$ tal que para todo k,

$$||x_{k+1} - x_k|| \le r||x_k - x_{k-1}||.$$

Demuestra que $\{x_k\}_{k=1}^{\infty}$ es convergente.