Package 'shinymapR'

Index

6

2 corrMap

cor

Correlation based cell type mapping wrapper

Description

Correlation based cell type mapping wrapper

Usage

```
cor(...)
```

Arguments

nGenes

Value

Correlation mapping results

corrMap

Correlation based mapping

Description

Correlation based mapping

Usage

```
corrMap(GEXRef, query.data)
```

Arguments

GEXRef A reference taxonomy object.

query.data A logCPM normalized matrix to be annotated.

Value

Correlation mapping results as a data.frame.

loadGEXRef 3

loadGEXRef Read in a reference data set in Allen taxonomy format
--

Description

Read in a reference data set in Allen taxonomy format

Usage

```
loadGEXRef(
    refFolder = "/allen/programs/celltypes/workgroups/rnaseqanalysis/shiny/10x_seq/human_BGplus_20
    sample_field = "sample_id",
    nGenes = 2000,
    hGenes = NULL,
    sub.sample = 1000
)
```

Arguments

refFolder Directory containing the Shiny taxonomy.

nGenes Number of variable genes to compute.

hGenes User supplied variable gene vector.

sub.sample Number of cells to keep per cluster.

sample_name_field

Field in reference taxonomy that defines the sample_id.

Value

Organized reference object ready for mapping against.

seuratMap Seurat based mapping

Description

Seurat based mapping

Usage

```
seuratMap(GEXRef, query.data, dims = 30, k.weight = 15)
```

Arguments

GEXRef A reference taxonomy object.

query.data A logCPM normalized matrix to be annotated.

Value

Seurat mapping results as a data.frame.

4 taxonomy_mapping

subsampleCells

' Function to subsample cells

Description

' Function to subsample cells

Usage

```
subsampleCells(cluster.names, subSamp = 25, seed = 5)
```

Arguments

cluster.names A vector of cluster names in the reference taxonomy.

subSamp Number of cells to keep per cluster. seed Random seed used for subsampling.

Value

Boolean vector of cells to keep (TRUE) and cells to remove (FALSE)

taxonomy_mapping

Cell type annotation and initial QC

Description

Perform initial mapping using three methods: Correlation-based, tree-based, and Seurat based, and will calculate some QC metrics.

Usage

```
taxonomy_mapping(
  GEXRef,
  query.data,
  corr.map = TRUE,
  tree.map = TRUE,
  seurat.map = TRUE,
  label.cols = c("cluster_label", "subclass_label", "class_label"),
  dims = 30,
  k.weight = 15
)
```

treeMap 5

Arguments

 ${\tt GEXRef}$ A reference taxonomy object. query.data A logCPM normalized matrix to be annotated. corr.map Should correlation mapping be performed? tree.map Should tree mapping be performed? Should seurat mapping be performed? seurat.map Column names of annotations to map against label.cols Number of PCA dimensions for Seurat mapping. dims k.weight K neighborhood weight for Seurat mapping.

Value

Mapping results from all methods.

	treeMap	Tree based mapping	
--	---------	--------------------	--

Description

Tree based mapping

Usage

```
treeMap(GEXRef, query.data)
```

Arguments

GEXRef A reference taxonomy object.

query.data A logCPM normalized matrix to be annotated.

Value

Tree mapping results as a data.frame.

Index

```
cor, 2
corrMap, 2
loadGEXRef, 3
seuratMap, 3
subsampleCells, 4
taxonomy_mapping, 4
treeMap, 5
```