- 1. (a) Comme 20 % du médicament est éliminé par minute, il en reste 80 %; prendre 80 % d'un nombre c'est multiplier par $C_{\rm M}=0,8$ donc pour tout entier naturel n on a $u_{n+1}=0,8$ u_n : u_{n+1} s'écrit sous la forme $q\times u_n$ avec q=0,8 ce qui prouve que la suite (u_n) est géométrique de raison 0,8 et de premier terme $u_0=10$.
 - (b) $\forall n \in \mathbb{N}, u_n = u_0 \times q^n$ c'est-à-dire, $u_n = 10 \times 0, 8^n$.
 - (c) La quantité de médicament est inférieure à 2 % de la quantité initiale quand $u_n < \frac{2}{100} \times u_0$ c'està-dire $u_n < 0, 2$.

```
1 def seuil():
2    n=0
3    u=10
4    while u>0.2:
5         u=0.8*u
6         n=n+1
7    return(n)
```

En utilisant un tableau de valeurs de la suite (u_n) , on trouve à la calculatrice que $u_{17} \simeq 0$, 115 > 0, 2 et $u_{18} \simeq 0$, 092 < 0, 2 c'est donc au bout de 18 minutes que la quantité de médicament dans le sang devient inférieure à 2 % de la quantité initiale.

2. (a) Le tableau ci-dessous donne la quantité restante de médicament minute par minute :

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
v_n	10	8	6,4	5,12	8,10	6,48	5,18	8,15	6,52	5,21	8,17	6,54	5,23	8,18	6,55	5,24

- (b) Les 15 premières minutes, le patient a absorbé 10 mL au début, puis 4 mL les minutes 4, 7, 10 et 13 soit 16 mL; ce qui fait un total de 26 mL.
- (c) On programme la machine afin qu'elle injecte 2 mL de produit lorsque la quantité de médicament dans le sang est inférieure ou égale à 6 mL et qu'elle s'arrête au bout de 30 minutes.
- 3. (a) Comme $20\,\%$ du médicament est éliminé chaque minute, il en reste $80\,\%$ donc on multiplie par 0.8. De plus, toutes les minutes, on rajoute 1~mL.

On peut donc dire en déduire que pour tout entier naturel n, $w_{n+1} = 0, 8w_n + 1$.

(b) Pour tout entier naturel n, on pose $z_n = w_n - 5$, donc $w_n = z_n + 5$.

$$z_{n+1} = w_{n+1} - 5$$

$$= 0,8w_n + 1 - 5$$

$$= 0,8(z_n + 5) - 4$$

$$= 0,8z_n + 4 - 4$$

$$= 0,8z_n$$

 $z_0 = w_0 - 5$; or à l'instant 0, on injecte 10 mL donc $w_0 = 10$. On a donc $z_0 = 5$.

La suite (z_n) est donc la suite géométrique de premier terme $z_0 = 5$ et de raison q = 0, 8.

- (c) $\forall n \in \mathbb{N}, z_n = z_0 \times q^n \text{ donc } z_n = 5 \times 0, 8^n.$ Or $w_n = z_n + 5 \text{ donc, pour tout entire naturel } n, w_n = 5 \times 0, 8^n + 5.$
- (d) $\lim_{n \to +\infty} 0, 8^n$ car -1 < 0, 8 < 1, par suite on a donc $\lim_{n \to +\infty} 5 \times 0, 8^n + 5 = 5$. Ainsi la suite (w_n) est convergente et a pour limite 5.

Cela veut dire que, si on poursuit ce traitement, la quantité de médicament présente dans le sang du patient se limitera à 5 mL.