#### Out[3]:

|     | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mean | compactness_mean | concavity_mean | poir |
|-----|----------|-----------|-------------|--------------|----------------|-----------|-----------------|------------------|----------------|------|
| 0   | 842302   | М         | 17.99       | 10.38        | 122.80         | 1001.0    | 0.11840         | 0.27760          | 0.30010        |      |
| 1   | 842517   | М         | 20.57       | 17.77        | 132.90         | 1326.0    | 0.08474         | 0.07864          | 0.08690        |      |
| 2   | 84300903 | М         | 19.69       | 21.25        | 130.00         | 1203.0    | 0.10960         | 0.15990          | 0.19740        |      |
| 3   | 84348301 | М         | 11.42       | 20.38        | 77.58          | 386.1     | 0.14250         | 0.28390          | 0.24140        |      |
| 4   | 84358402 | М         | 20.29       | 14.34        | 135.10         | 1297.0    | 0.10030         | 0.13280          | 0.19800        |      |
|     |          |           |             |              |                |           |                 |                  |                |      |
| 564 | 926424   | М         | 21.56       | 22.39        | 142.00         | 1479.0    | 0.11100         | 0.11590          | 0.24390        |      |
| 565 | 926682   | М         | 20.13       | 28.25        | 131.20         | 1261.0    | 0.09780         | 0.10340          | 0.14400        |      |
| 566 | 926954   | М         | 16.60       | 28.08        | 108.30         | 858.1     | 0.08455         | 0.10230          | 0.09251        |      |
| 567 | 927241   | М         | 20.60       | 29.33        | 140.10         | 1265.0    | 0.11780         | 0.27700          | 0.35140        |      |
| 568 | 92751    | В         | 7.76        | 24.54        | 47.92          | 181.0     | 0.05263         | 0.04362          | 0.00000        |      |

569 rows × 33 columns

In [4]: df.head()

Out[4]:

| id diagnosis radius\_mean texture\_mean perimeter\_mean area\_mean smoothness\_mean compactness\_mean concavity\_mean points
| 0 842302 M 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0

132.90

130.00

77.58

135.10

1326.0

1203.0

386.1

1297.0

0.08474

0.10960

0.14250

0.10030

0.07864

0.15990

0.28390

0.13280

0.0869

0.1974

0.2414

0.1980

0

0

0

0

5 rows × 33 columns

842517

**2** 84300903

**3** 84348301

4 84358402

М

М

Μ

20.57

19.69

11.42

20.29

17.77

21.25

20.38

14.34

In [5]: df.tail

Out[5]: <bound method NDFrame.tail of</pre> id diagnosis radius mean texture mean perimeter mean area mean 17.99 0 842302 Μ 10.38 122.80 1001.0 \ 842517 20.57 132.90 1326.0 1 Μ 17.77 21.25 1203.0 84300903 Μ 19.69 130.00 11.42 20.38 77.58 386.1 84348301 Μ 1297.0 84358402 Μ 20.29 14.34 135.10 . . . . . . . . . . . . . . . . . . . . 21.56 22.39 142.00 1479.0 564 926424 Μ 926682 Μ 20.13 28.25 131.20 1261.0 565 858.1 926954 16.60 28.08 566 Μ 108.30 567 927241 Μ 20.60 29.33 140.10 1265.0 92751 В 7.76 24.54 47.92 181.0 568 compactness mean concavity mean smoothness mean concave points mean 0 0.27760 0.11840 0.30010 0.14710 \ 1 0.08474 0.07864 0.08690 0.07017 0.15990 0.19740 2 0.10960 0.12790 0.14250 0.28390 0.24140 0.10520 3 0.10030 0.13280 0.19800 0.10430

```
In [6]: plt.scatter(df["radius_mean"],df["texture_mean"])
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[6]: Text(0, 0.5, 'texture\_mean')



In [7]: from sklearn.cluster import KMeans
 km=KMeans()
 km

Out[7]: 

\* KMeans

KMeans()

```
In [8]: y predicted=km.fit predict(df[["radius mean","texture mean"]])
        y predicted
        C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
        ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
        ress the warning
          warnings.warn(
Out[8]: array([2, 7, 7, 6, 7, 2, 7, 3, 5, 5, 3, 2, 4, 3, 5, 1, 3, 3, 7, 2, 2, 0,
               2, 4, 3, 2, 3, 7, 5, 2, 4, 6, 3, 4, 3, 3, 3, 6, 5, 5, 5, 5, 4, 3,
               5, 7, 6, 6, 0, 5, 5, 2, 6, 7, 3, 6, 7, 3, 6, 0, 0, 6, 5, 0, 5, 5,
               6, 6, 6, 2, 7, 0, 4, 2, 6, 3, 0, 2, 4, 6, 5, 2, 4, 4, 0, 7, 3, 4,
               5, 2, 5, 3, 2, 6, 3, 4, 6, 6, 0, 3, 5, 0, 6, 6, 6, 2, 6, 6, 7, 5,
               6, 5, 3, 6, 0, 5, 0, 2, 3, 3, 0, 7, 7, 0, 2, 2, 5, 7, 2, 4, 0, 3,
               3, 2, 3, 5, 6, 0, 2, 0, 0, 3, 6, 2, 0, 0, 6, 3, 2, 6, 5, 6, 0, 0,
               2, 6, 3, 3, 0, 0, 6, 7, 7, 5, 7, 3, 0, 3, 4, 2, 0, 6, 2, 0, 0, 0,
               6, 3, 5, 0, 7, 4, 3, 0, 3, 0, 7, 6, 6, 2, 5, 5, 6, 1, 5, 2, 5, 3,
               7, 3, 6, 3, 4, 5, 6, 2, 6, 3, 5, 2, 7, 6, 7, 4, 5, 2, 6, 6, 7, 4,
               2, 2, 6, 3, 2, 2, 0, 2, 5, 5, 3, 1, 1, 4, 0, 3, 4, 7, 1, 1, 2, 0,
               6, 5, 4, 6, 6, 0, 5, 0, 4, 6, 7, 2, 7, 2, 4, 2, 3, 1, 4, 3, 3, 3,
               3, 4, 6, 5, 2, 6, 2, 0, 7, 0, 4, 6, 0, 7, 6, 2, 4, 0, 7, 3, 2, 6,
               5, 0, 6, 6, 3, 3, 2, 6, 0, 2, 0, 6, 2, 5, 7, 6, 4, 6, 6, 5, 2, 0,
               0, 0, 6, 2, 0, 0, 6, 6, 0, 7, 6, 6, 0, 7, 0, 7, 0, 6, 2, 6, 3, 3,
               2, 6, 6, 0, 6, 3, 2, 7, 6, 4, 2, 6, 0, 7, 0, 0, 6, 2, 0, 0, 6, 3,
               7, 5, 0, 6, 6, 2, 0, 6, 6, 5, 6, 3, 2, 7, 4, 6, 7, 7, 3, 2, 7, 7,
```

5, 5, 1, 5, 1, 1, 6, 1, 5, 5, 1, 1, 1, 4, 7, 4, 1, 4, 5])

```
In [9]: df["cluster"]=y_predicted
    df.head()
```

# Out[9]:

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mean | compactness_mean | concavity_mean | points |
|---|----------|-----------|-------------|--------------|----------------|-----------|-----------------|------------------|----------------|--------|
| 0 | 842302   | М         | 17.99       | 10.38        | 122.80         | 1001.0    | 0.11840         | 0.27760          | 0.3001         | 0      |
| 1 | 842517   | М         | 20.57       | 17.77        | 132.90         | 1326.0    | 0.08474         | 0.07864          | 0.0869         | 0      |
| 2 | 84300903 | М         | 19.69       | 21.25        | 130.00         | 1203.0    | 0.10960         | 0.15990          | 0.1974         | 0      |
| 3 | 84348301 | М         | 11.42       | 20.38        | 77.58          | 386.1     | 0.14250         | 0.28390          | 0.2414         | 0      |
| 4 | 84358402 | М         | 20.29       | 14.34        | 135.10         | 1297.0    | 0.10030         | 0.13280          | 0.1980         | 0      |

5 rows × 34 columns

```
In [10]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["radius_mean"],df1["texture_mean"],color="pink")
    plt.scatter(df2["radius_mean"],df2["texture_mean"],color="violet")
    plt.scatter(df3["radius_mean"],df3["texture_mean"],color="skyblue")
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[10]: Text(0, 0.5, 'texture mean')



### Out[11]:

|   |   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mean | compactness_mean | concavity_mean | points |
|---|---|----------|-----------|-------------|--------------|----------------|-----------|-----------------|------------------|----------------|--------|
| - | 0 | 842302   | М         | 17.99       | 0.022658     | 122.80         | 1001.0    | 0.11840         | 0.27760          | 0.3001         | 0      |
|   | 1 | 842517   | М         | 20.57       | 0.272574     | 132.90         | 1326.0    | 0.08474         | 0.07864          | 0.0869         | 0      |
|   | 2 | 84300903 | М         | 19.69       | 0.390260     | 130.00         | 1203.0    | 0.10960         | 0.15990          | 0.1974         | 0      |
|   | 3 | 84348301 | М         | 11.42       | 0.360839     | 77.58          | 386.1     | 0.14250         | 0.28390          | 0.2414         | 0      |
|   | 4 | 84358402 | М         | 20.29       | 0.156578     | 135.10         | 1297.0    | 0.10030         | 0.13280          | 0.1980         | 0      |

5 rows × 34 columns

◂

```
In [12]: scaler.fit(df[["radius_mean"]])
    df["radius_mean"]=scaler.transform(df[["radius_mean"]])
    df.head()
```

### Out[12]:

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mean | compactness_mean | concavity_mean | points |
|---|----------|-----------|-------------|--------------|----------------|-----------|-----------------|------------------|----------------|--------|
| ( | 842302   | М         | 0.521037    | 0.022658     | 122.80         | 1001.0    | 0.11840         | 0.27760          | 0.3001         | 0      |
| • | 842517   | М         | 0.643144    | 0.272574     | 132.90         | 1326.0    | 0.08474         | 0.07864          | 0.0869         | 0      |
| 2 | 84300903 | М         | 0.601496    | 0.390260     | 130.00         | 1203.0    | 0.10960         | 0.15990          | 0.1974         | 0      |
| ; | 84348301 | М         | 0.210090    | 0.360839     | 77.58          | 386.1     | 0.14250         | 0.28390          | 0.2414         | 0      |
| 4 | 84358402 | М         | 0.629893    | 0.156578     | 135.10         | 1297.0    | 0.10030         | 0.13280          | 0.1980         | 0      |

5 rows × 34 columns

```
In [13]: y predicted=km.fit predict(df[["radius mean","texture mean"]])
         y predicted
         C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
         ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
         ress the warning
           warnings.warn(
Out[13]: array([1, 2, 2, 6, 2, 1, 2, 3, 3, 0, 3, 1, 7, 3, 3, 0, 3, 3, 2, 1, 1, 4,
                1, 5, 3, 2, 3, 2, 3, 1, 7, 6, 7, 7, 1, 3, 3, 6, 3, 3, 3, 6, 7, 3,
                3, 2, 4, 6, 4, 3, 6, 1, 6, 2, 3, 6, 2, 3, 6, 4, 4, 6, 3, 4, 3, 3,
                6, 6, 6, 1, 2, 4, 7, 1, 6, 3, 1, 2, 7, 6, 6, 1, 5, 7, 4, 2, 3, 7,
                3, 1, 3, 3, 1, 6, 3, 7, 6, 6, 4, 3, 0, 4, 6, 6, 6, 1, 6, 6, 5, 6,
                6, 6, 3, 6, 4, 6, 4, 1, 3, 2, 4, 2, 5, 1, 1, 1, 3, 2, 1, 7, 4, 3,
                3, 1, 2, 3, 6, 4, 1, 4, 4, 1, 6, 1, 4, 4, 6, 3, 1, 1, 3, 6, 4, 4,
                1, 6, 2, 2, 4, 4, 6, 2, 2, 3, 5, 3, 4, 2, 7, 1, 4, 3, 1, 4, 4, 4,
                6, 3, 3, 1, 5, 7, 3, 4, 3, 4, 2, 6, 6, 4, 3, 3, 6, 0, 3, 1, 3, 2,
                2, 3, 6, 2, 5, 3, 6, 1, 6, 2, 3, 1, 2, 6, 5, 7, 3, 1, 6, 6, 2, 7,
                1, 1, 6, 3, 1, 1, 4, 1, 3, 3, 2, 0, 0, 7, 4, 3, 5, 2, 0, 7, 1, 4,
                6, 3, 7, 6, 1, 1, 0, 4, 7, 6, 2, 2, 2, 1, 7, 1, 3, 0, 7, 2, 2, 3,
                2, 7, 6, 3, 1, 6, 1, 4, 5, 4, 7, 6, 4, 2, 1, 1, 7, 4, 2, 2, 1, 6,
                6, 1, 6, 6, 3, 3, 1, 6, 1, 1, 4, 6, 1, 6, 2, 6, 7, 6, 6, 0, 1, 4,
                1, 1, 6, 1, 1, 4, 6, 6, 4, 2, 6, 6, 4, 2, 1, 2, 4, 6, 1, 6, 3, 3,
```

1, 6, 6, 4, 6, 2, 1, 2, 6, 5, 1, 4, 4, 2, 4, 4, 6, 1, 4, 4, 6, 3, 5, 3, 4, 6, 6, 1, 4, 6, 6, 3, 6, 2, 1, 2, 7, 6, 2, 5, 3, 1, 2, 2, 1, 1, 6, 0, 1, 6, 4, 4, 3, 6, 1, 3, 4, 1, 4, 7, 4, 4, 3, 5, 6, 1, 6, 6, 4, 6, 2, 4, 6, 1, 4, 6, 1, 3, 2, 6, 6, 6, 6, 6, 3, 0, 6, 6, 3, 4, 6, 6, 1, 4, 3, 6, 6, 4, 6, 6, 6, 3, 6, 2, 2, 1, 3, 6, 1, 3, 1, 6, 7, 1, 6, 2, 0, 7, 1, 3, 2, 6, 7, 0, 1, 6, 0, 0, 0, 0, 0, 0, 7, 5, 0, 6, 6, 3, 3, 6, 7, 6, 6, 0, 1, 0, 4, 1, 3, 1, 4, 3, 6, 3, 1, 1, 1, 1, 1, 2, 4, 2, 3, 1, 2, 4, 3, 3, 6, 6, 2, 2, 1, 3, 1, 5, 4, 4, 6, 6, 1, 3, 4, 1, 3, 1, 3, 6, 2, 2, 6, 1, 4, 5, 6, 3, 4, 4, 6, 4, 1, 4, 6, 6, 1, 2, 6, 2, 3, 0, 0, 0, 0, 4, 3, 3, 0, 3, 3, 4, 4, 6, 0,

6, 6, 0, 6, 0, 0, 6, 0, 3, 0, 0, 0, 0, 7, 5, 7, 7, 7, 0])

```
In [14]: df["New Cluster"]=y_predicted
df.head()
```

# Out[14]:

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mean | compactness_mean | concavity_mean | points |
|---|----------|-----------|-------------|--------------|----------------|-----------|-----------------|------------------|----------------|--------|
| 0 | 842302   | M         | 0.521037    | 0.022658     | 122.80         | 1001.0    | 0.11840         | 0.27760          | 0.3001         | 0      |
| 1 | 842517   | M         | 0.643144    | 0.272574     | 132.90         | 1326.0    | 0.08474         | 0.07864          | 0.0869         | 0      |
| 2 | 84300903 | M         | 0.601496    | 0.390260     | 130.00         | 1203.0    | 0.10960         | 0.15990          | 0.1974         | 0      |
| 3 | 84348301 | M         | 0.210090    | 0.360839     | 77.58          | 386.1     | 0.14250         | 0.28390          | 0.2414         | 0      |
| 4 | 84358402 | М         | 0.629893    | 0.156578     | 135.10         | 1297.0    | 0.10030         | 0.13280          | 0.1980         | 0      |

5 rows × 35 columns

```
In [15]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["radius_mean"],df1["texture_mean"],color="violet")
    plt.scatter(df2["radius_mean"],df2["texture_mean"],color="pink")
    plt.scatter(df3["radius_mean"],df3["texture_mean"],color="skyblue")
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[15]: Text(0, 0.5, 'texture mean')



In [17]: k\_rng=range(9,18)
sse=[]

```
In [18]: for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit(df[["radius_mean","texture_mean"]])
    sse.append(km.inertia_)
    #km.inertia_ will give you the value of sum of square error
    print(sse)
    plt.plot(k_rng,sse)
    plt.xlabel("K")
    plt.ylabel("Sum of Squared Error")
```

```
C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
ress the warning
 warnings.warn(
C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
ress the warning
  warnings.warn(
C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
ress the warning
 warnings.warn(
C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
ress the warning
  warnings.warn(
C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
ress the warning
 warnings.warn(
C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
ress the warning
  warnings.warn(
C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
 warnings.warn(
C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
ress the warning
 warnings.warn(
[3.9941024777495455, 3.6003589099561735, 3.405871765572136, 3.084009457613388, 2.8508517363326518, 2.669059544369050
6, 2.4795265570116567, 2.362426282566991, 2.151726953386543]
C:\Users\chait\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarni
ng: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
ress the warning
 warnings.warn(
```

Out[18]: Text(0, 0.5, 'Sum of Squared Error')



# **Conclusion:**

In [ ]: for the given dataset we can use multiple models, for that models we get different types of accuracies but that accuracies is not good so, that's why we will take it as a clustering and done with K-Means Clustering