Thm: (Chernoff's bound) Let X; be independent random variables such that E[X:]=0 and IX: < 1 almost surely. Define $\sigma_i^2 = F[X_i^2]$ and $\sigma^2 = \sum_{i=1}^{n} \sigma_i^2$. Then $\mathbb{P}\left(\sum_{i}X_{i}\geqslant t\right) \leq \max\left(\frac{-t/4\sigma^{2}}{e},\frac{-t/2}{e^{1/2}}\right)$ Note: Let $X = \sum_{i} X_{i}$. If applying chebyshov's inequality: $P(1) \neq 0^2$ "weak." Roof of Chernoff's bound. $P(\sum X_i \geqslant t) = P(\lambda \sum X_i \geqslant \lambda t)$ for $\lambda \geqslant 0$. $= \mathbb{P}(e^{2\sum_{i}X_{i}} \geqslant e^{2t})$ because ex is monotone.

\[
\begin{align*}
\text{E[e^7\fixi]} & \text{by Markov's}
\end{align*} - Til E[eaxi] Now, for $x \in [0,1]$, we have (my?) $e^{x} \leq 1 + x + x^{2}$ E[ax] + E[ax] + E[ax] $= 1 + \gamma^2 E[\chi^2]$ $= 1 + \gamma^2 \sigma^2$

Example application: 1) coin tossing.

Suppose we have a pair coin.

Let
$$S_n =$$
 the numbers of heads from the first n terms $E[S_n] = \frac{n}{2}$ and $Vac[S_n] = \frac{n}{4}$.

Applying Chebyshovs Inequality:

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq \frac{n}{4\varepsilon^2}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq \frac{n}{1}$$
For example, take $\varepsilon = \frac{n}{4}$.

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq \frac{n}{4\varepsilon^2}$$
For example, take $\varepsilon = \frac{n}{4}$.

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq \frac{n}{2} = \frac{n}{2}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$Take S = \frac{1}{2}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

$$P(\begin{array}{c|c} S_n - \frac{1}{2} & \geq \varepsilon \end{array}) \leq 2e^{-\frac{n}{2}S^2/4}$$

*	2) Set balancina
	Given an nxm matrix A with entries in [0,1],
	look for a vector B with entries in [-1, 1] that minimizes
	A B _∞ .
	In designing statistical experiments, each column op
	the matrix A represents a subject and each row represents
	a secture. Goal: the vector B partitions the subject into two disjoint groups, so that each seature is roughly
	as balanced as possible between two groups.
	randomized algo: choose entries of B with
	$P(b_i = 1) = P(b_i = -1) = \frac{1}{2}$
	and by are independents
	Thm: For a random vector B with entires chosen
	independently and equal prob. from the set {-1,1},
	$P(1 AB) \ge \sqrt{4m \ln n} \le 2$
	n
	Pf: Exercise.