Application No.: 09/847391 Docket No.: MWS-069

AMENDMENTS TO THE CLAIMS

I. (Currently Amended) A method for operating a computer system comprising: receiving in the system a description of a finite state machine <u>model</u>, the description including a temporal logic operator for defining a temporal logic condition; and generating code for emulating the described finite state machine <u>model</u>.

2. (Currently Amended) The method of claim 1, wherein:

the received description comprises at least two state definitions and at least one definition of a transition between states; and wherein

the received description comprises a conditional expression associated with a first state of the finite state machine <u>model</u>, the conditional expression comprising a first temporal logic condition defined by a first temporal logic operator operating on an event, the conditional expression defining a logical condition for taking a first action specified in the description; and wherein

generating code for emulating the described finite state machine <u>model</u> comprises generating code for evaluating the conditional expression during emulation.

3. (Currently Amended) The method of claim 2, wherein generating code for evaluating the conditional expression comprises:

generating code for declaring a counter variable that is not otherwise specified in the description of the finite state machine model;

generating code for initializing the counter variable upon entry into said first state; generating code for incrementing the counter variable when said first event occurs;

Docket No.: MWS-069

generating code for performing a first test associated with said first temporal logic operator on the counter variable when said first state is active; and

generating code for taking a first specified action based on the result of said first test.

- The method of claim 3, wherein the conditional expression is part of a conditional 4. (original) action expression in the definition of said first state, and wherein said first specified action is defined in the conditional action expression.
- The method of claim 3, wherein the conditional expression is part of the definition 5. (original) of a transition from said first state to a second state and wherein said first specified action is defined by said transition.
- The method of claim 3, wherein the description of the finite state 6. (Currently Amended) machine model further comprises a second conditional expression associated with a second state of the finite state machine, the second conditional expression comprising a second temporal logic condition defined by a second temporal logic operator operating on said event, the second conditional expression defining a logical condition for taking a second action specified in the description and wherein generating code for emulating the finite state machine model further comprises:

generating code for initializing the counter variable upon entry into said second state; generating code for performing a second test associated with said second temporal logic operator on the counter variable when; said second state is active; and

Docket No.: MWS-069

test.

generating code for taking a second specified action based on the result of said second

- 7. (Currently Amended) The method of claim 1, wherein the description of a finite state machine model is a graphical description.
- 8. (Previously presented) The method of claim 2, wherein said first temporal logic operator operates on an event (E) and a threshold (T) and is true when the event (E) has occurred at least T times during the current activation of said first state.
- 9. (Previously presented) The method of claim 2, wherein said first temporal logic operator operates on an event (E) and a threshold (T) and is true when the event (E) has occurred at less than T times during the current activation of said first state.
- 10. (Previously presented) The method of claim 2, wherein said first temporal logic operator operates on an event (E) and a threshold (T) and is true when the event (E) has occurred exactly T times during the current activation of said first state.
- 11. (Previously presented) The method of claim 2, wherein said first temporal logic operator operates on an event (E) and a threshold (T) and is true when the event (E) has occurred a positive integral multiple of T times during the current activation of said first state.
- 12. (original) The method of claim 7, wherein the graphical representation is a Stateflow® diagram.

Application No.: 09/847391 Docket No.: MWS-069

13. (Currently Amended) The method of claim 7, wherein the conditional expression is part of a conditional action expression which is graphically represented as a textual expression within a node representing a state of the finite state machine model.

14. (original) The method of claim 7, wherein the conditional expression is part of the definition of a transition from said first state to a second state and the conditional expression is graphically represented as a textual expression that is proximate to a line connecting nodes representing the first and second states.

15. (original) The method of claim 1, wherein the generated code is source code in human readable form.

16. (Currently Amended) A method for operating a computer system comprising:

receiving in the system a description of finite state machine <u>model</u>, the description including a temporal logic operator for defining a temporal logic condition; and emulating the described finite state machine <u>model</u>.

17. (Currently Amended) The method of claim 16, wherein

the received description comprises at least two state definitions and at least one definition of a transition between states; and wherein

the received description comprises a conditional expression associated with a first state of the finite state machine model, the conditional expression comprising a first temporal logic

Docket No.: MWS-069

Application No.: 09/847391

condition defined by a first temporal logic operator operating on an event, the conditional expression defining a logical condition for taking a first action specified in the model; and wherein emulating the described finite state machine model comprises evaluating the conditional expression during emulation.

18. (original) The method of claim 17, wherein the emulating step further comprises: allocating a counter variable that is not otherwise specified in the description of the finite state machine model;

initializing the counter variable upon entry into said first state; incrementing the counter variable when said first event occurs; performing a first test associated with said first temporal logic operator on the counter

taking a first specified action based on the result of said first test.

variable when said first state is active; and

- 19. (Currently Amended) A computer programming system, comprising: means for receiving in the system a description of a finite state machine <u>model</u>, the description including a temporal logic operator defining a temporal logic condition; and means for generating code for emulating the described finite state machine <u>model</u>.
- 20. (Currently Amended) A computer programming system comprising: means for receiving in the system a description of a finite state machine model, the description including a temporal logic operator defining a temporal logic condition; and means for emulating the described finite state machine model.

Docket No.: MWS-069

- 21. (Currently Amended) A computer programming system, comprising:
- a graphical user interface for receiving in the system a description of a finite state machine model, the description including a temporal logic operator defining a temporal logic condition; and a code generator for generating code for emulating the finite state machine model.
- 22. (Currently Amended) A computer programming system comprising:
- a graphical user interface for receiving in the system a description of a finite state machine <u>model</u>, the description including a temporal logic operator defining a temporal logic condition; and

an interpreter for interpreting the received description to emulate the finite state machine model.

23. (Currently Amended) A computer software product residing on a computer readable medium, the software product comprising instructions for causing a computer system to:

receive in the system a description of a finite state machine <u>model</u>, the description including a temporal logic operator defining a temporal logic condition; and

generate code for emulating the described finite state machine model.

24. (Currently Amended) A computer software product residing on a computer readable medium, the software product comprising instructions for causing a computer system to:

receive in the system a description of a finite state machine <u>model</u>, the description including a temporal logic operator defining a temporal logic condition; and

emulate the described finite state machine model.

Docket No.: MWS-069

- 25. (Currently Amended) A computer programming system comprising:
 - a central processing unit;
 - a mass storage subsystem;
- a program editor capable of receiving from a user a description of a finite state machine model, the description including a temporal logic operator for defining a temporal logic condition, and storing the description on the mass storage subsystem;
- a code generator capable of receiving the stored description and generating code for emulating the described finite state machine <u>model</u>.
- 26. (Currently Amended) A computer programming system comprising:
 - a central processing unit;
 - a mass storage subsystem;
- a program editor capable of receiving from a user a description of a finite state machine model, the description including a temporal logic operator defining a temporal logic condition, and storing the description on the mass storage subsystem; and
- an emulator capable of receiving the stored description and emulating the described finite state machine <u>model</u>.
- 27. (Previously presented) A method for modeling a system in a modeling environment, comprising:

building a graphical representation of the system using graphical elements provided in the modeling environment; and

Docket No.: MWS-069

incorporating a temporal logic operator into the graphical representation of the system, wherein the temporal logic operator defines a temporal logic condition for operating the system on temporal logic.

- 28. (Previously presented) The method of claim 27 further comprising: generating code for the graphical representation of the system.
- 29. (Previously presented) The method of claim 28 wherein the temporal logic operator is interpreted into the temporal logic condition when generating code for the graphical representation of the system.
- 30. (Previously presented) The method of claim 27 wherein the graphical representation of the system includes a finite state machine representation.
- 31. (Previously presented) The method of claim 30 wherein the finite state machine representation includes a Stateflow® diagram.
- 32. (Previously presented) The method of claim 28 wherein the generated code is written in a human readable programming language.
- 33. (Previously presented) The method of claim 27 wherein the temporal logic operator operates on an event and an occurrence number of the event.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.