Design and Analysis of Algorithms

Lecture 01: Introduction

Running Time Analysis

- 2 techniques:
 - Experimental Studies
 - Theoretical Analysis

1. Big-Oh Notation (O)

- The function T(n) is O(F(n)) if there exist constants c and N such that T(n) ≤ c.F(n) for all n ≥ N.
- As n increases, T(n) grows no faster than F(n) or in the long run (for large n) T grows at most as fast as F
- It computes the tight upper bound of T(n)
- \bigcirc Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and N = 10

1. Big-Oh Notation

- **•** Example: the function n^2 is not O(n)
 - $n^2 \le cn$
 - \blacksquare $n \leq c$
 - The above inequality cannot be satisfied since *c* must be a constant

Properties of Big-Oh Notation

- ◆ If T(n) is O(h(n)) and F(n) is O(h(n)) then T(n) + F(n) is O(h(n)).
- The function a.nk is O(nk) for any a and k
- The function logan is O(logbn) for any positive numbers a and b ≠1
- The big-O notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-O notation to rank functions according to their growth rate

Big-Oh Notation

- Exercise:
- \bullet Find F(n) such that T(n) = O(F(n)) for T(n) = 3n+5

2. Big – Omega

- ♦ The function T(n) is Ω(F(n)) if there exist Constants c and N such that $T(n) \ge c.F(n)$ for all $n \ge N$.
- As n increases T(n) grows no slower than F(n) or in the long run (for large n) T grows at least as fast as F
- It computes the tight lower bound of T(n).

3. Big Theta Notation

- ♦ The function T(n) is $\Theta(F(n))$ if there exist constants c1, c2 and N such that c1.F(n) ≤ T(n) ≤ c2.F(n) for all n ≥ N.
- As n increases, T(n) grows as fast as F(n)
- It computes the tight optimal bound of T(n).
- Example:

Find F(n) such that T(n) = $\Theta(F(n))$ for T(n)=2n².

Solution: $c1n2 \le 2n^2 \le c2n^2$

F(n)= n^2 because for c1=1 and c2=3, $n2 \le 2n2 \le 3n2$ for all n.

4. Little notation

- The function T(n) is o(F(n)) if T(n) is O(F(n)) but T(n) is not $\Theta(F(n))$ or for some constants c, N: if T(n) < cF(n) for all n > = N
- As n increases F(n) grows strictly faster than T(n).
- It computes the non-tight upper bound of T(n)

Example:

• Find F(n) such that T(n) = o(F(n)) for Solution: n2 < c n2

F(n)=n2 because for c=2, n2<2n2 for all n>=1

Big-Oh Rules

- ◆ If f(n) is a polynomial of degree d, then f(n) is O(nd), i.e.,
 - Drop lower-order terms
 - Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is O(n²)"
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Summary 1

Big-Oh

f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

f(n) is Ω (g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta

f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to g(n)

little-oh

f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega

f(n) is w(g(n)) if is asymptotically strictly greater than g(n)

Summary 2

T(n)	Complexity Category Function (F(n))	Big Oh of T(n)
10log(n+5)	Logn	$T(n)=O(\log n)$
C where C is constant	1	T(n) = O(1)
5√n+5 5/3(n)+21ogn+2	√n N	$T(n) = \bigcirc(\sqrt{n})$ $T(n) = \bigcirc(n)$
10nlogn+2n+2	nlogn	T(n)=O(nlogn)
3 n ² +2n+2	n ² l	$T(n)=O(n^2)$
5n³ 3	n ³	$T(n) = O(n^3)$
$8n^n + 2^n n^2$	n ⁿ	$T(n)=O(\underline{n}^n)$

Summary 3 Time Complexity Comparison

 A fast algorithm has a small time complexity, while a slow algorithm has large time complexity.

Comparison of algorithm speed (fastest to slowest):

Constant \approx 1 (fastest) Logarithmic \approx log n Linear \approx n N-Log-N \approx n log n Quadratic \approx n² Cubic \approx n³ Exponential \approx 2ⁿ (slowes

Exercise 1: Finding Big O of given Algorithm

```
for (i=1;i<=n;i++)
      Cout<<i;
      T(n) = 1+n+1+n+n
      =3n+2
      T(n) = O(n)
2. For (i=1;i<=n;i++)
      For(j=1;j<=n;j++)
      Cout<<i;
      T(n)=1+n+1+n+n(1+n+1+n+n)
      =3n2 + 4n + 2
      T(n)=O(n2)
```

Exercise 1: Finding Big O of given Algorithm

```
3. for (i=1; i<=n; i++)
Cout<<i;
T(n) = 1+n+1+n+n
=3n+2
```

$$T(n) = O(n)$$

Thank You