<pre>In [3]: Out[3]: In [4]: In [5]:</pre>	0 0 0 1.399007 0.072712 2830347 1.375155 0.338521 0.462388 0.239999 0.098088 0.363787 0.0120307 0.277838 0.110474 0.006028 0.128539 0.208115 0.123539 0.10 0.110119 0.125539 0.10 0.110119 0.125539 0.008213 0.008213 0.008213 0.125309 0.008213 0
<pre>In [6]: Out[6]: Out[7]: In [8]:</pre>	Time
In [9]:	Figure 1, respecting (signature) (200 (signature) (100 (signature)) (200 (signature)
In [11]: In [12]:	x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=20) print(x_train) print(y_train) V3 213718 -2.207794 212769 0.288451 183893 -0.972378 125908 0.596302 196626 -0.858383 124308 1.807926 178569 -0.501296 31962 2.418973 220060 -1.6084193 37135 0.051301 [170884 rows x 1 columns] class 213718 0 1212769 0 183893 0 125908 0 125908 0 125908 0
In [13]: Out[13]: In [14]: Out[14]: In [16]: Out[17]: In [18]: In [19]: Out[19]: In [20]: In [21]:	(17884, 1) x test.shape (113923, 1) log = LogisticRegression() log.fit(x.train,y.train) * LogisticRegression LogisticRegression() Testing of Data log.score(x_test,y_test) 0.9985077640160459 y_pred=log.predict(x_test) accuracy_score(y_test,y_pred) 0.9985077640160459 precision_score(y_test,y_pred) 0.529417647058024
In [22]: Out[22]: In [23]: Out[24]:	# Confusion Matrix cm = confusion_matrix(y_test,y_pred) # Confusion Matrix cm = confusion_matrix(y_test,y_pred) # Confusion Matrix cm = confusion_matrix(y_test,y_pred) conf_matrix = pd. DataFrame(data = cm,columns = ['predected:0', 'predected:1'], index=['actual:0', 'actual:1']) sns.heatmap(conf_matrix, annot = True, fmt = '1f', cmap = "crest", linewidth=.5)
In [25]: In [26]: In [27]: In [28]:	classfier = RandomForestClassifier(criterion = 'gini', max_depth =10, min_samples_split = 5, min_samples_leaf = 1) classfier. fit(x_train,y_train) **RandomForestClassifier RandomForestClassifier(max_depth=10, min_samples_split=5) /*y_pred=classfier.predict(x_test) **Confusion Matrix cm = confusion_matrix(y_test,y_pred) conf matrix = pd. DataFrame(data = cm.columns =['predected:8', 'predected:1'], index=['actual:8', 'actual:1']) plt.figure(figsize(8,6)) sns.heatmap(conf matrix, annot = True, fmt = 'If', cmap = "crest", linewidth=.6) **AvesSubplot:>** -100000 -00000
In [29]: In [30]: In [34]:	precision recall f1-score support 0 1.00 1.00 1.00 1.3756 1 0.59 0.13 0.21 173 accuracy 1.00 113923 macro avg 0.80 0.56 0.60 113923 weighted avg 1.00 1.00 113923 HANDLING INBALANCED DATA SET Python -m pip install imbalanced-learn Requirement already satisfied: imbalanced-learn in c:\users\majid aslam\anaconda3\lib\site-packages (6.9.1) Requirement already satisfied: scikit-learn>=1.1.0 in c:\users\majid aslam\anaconda3\lib\site-packages (from imbalanced-learn) (1.3.2) Requirement already satisfied: numpy>=1.17.3 in c:\users\majid aslam\anaconda3\lib\site-packages (from imbalanced-learn) (1.22.4) Requirement already satisfied: joblib>=1.0.0 in c:\users\majid aslam\anaconda3\lib\site-packages (from imbalanced-learn) (1.3.2) Requirement already satisfied: threadpolctl>=2.0.0 in c:\users\majid aslam\anaconda3\lib\site-packages (from imbalanced-learn) (1.3.2) Requirement already satisfied: scip>=1.3.2 in c:\users\majid aslam\anaconda3\lib\site-packages (from imbalanced-learn) (2.1.0) Requirement already satisfied: scip>=1.3.2 in c:\users\majid aslam\anaconda3\lib\site-packages (from imbalanced-learn) (2.1.0) Requirement already satisfied: scip>=1.3.2 in c:\users\majid aslam\anaconda3\lib\site-packages (from imbalanced-learn) (2.1.0) Requirement already satisfied: scip>=1.3.2 in c:\users\majid aslam\anaconda3\lib\site-packages (from imbalanced-learn) (2.1.0)
In [44]: In [40]: In [50]: Out[50]:	<pre>roc=RandomOverSampler(random_state=1) x_train_rs, y_train_rs=roc.fit_resample(x_train, y_train) classifier = RandomForestClassifier(n_estimators=100, max_depth=10) classifier.fit(x_train_rs, y_train_rs) v</pre>
In [52]:	0.9971823073479456
In [76]:	Collecting ada-boost Downloading ada_boost-0.0.1-py3-none-any.whl (1.7 kB) Requirement already satisfied: pytz in c:\users\majid aslam\anaconda3\lib\site-packages (from ada-boost) (2021.1) Installing collected packages: ada-boost Successfully installed ada-boost-0.0.1
	Collecting ada-boost Downloading ada_boost-0.0.1-py3-none-any.whl (1.7 kB) Requirement already satisfied: pytz in c:\users\majid aslam\anaconda3\lib\site-packages (from ada-boost) (2021.1) Installing collected packages: ada-boost Successfully installed ada-boost-0.0.1 RANDOM_STATE = 2020 NUM_ESTIMATIORS = 100 target = 'class' predectiors = ['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15',