Supplemental information

ACP-TransLSTM: A Novel Deep Learning Framework for Anticancer Peptide Prediction Using Multi-Source **Feature Integration**

Jinxin Liu¹, Zhenming Wu¹ and Jin Zhao^{1*}

¹ School of Computer Science and Technology, Qingdao University, Ningxia Road, 266071, Qingdao, Shandong, China

*To whom correspondence should be addressed. Email: zhaojin@qdu.edu.cn

Contents	
1.Supplemental Notes	2
Supplemental Note 1.1: Hyperparameter Setting	2
2.Supplemental Figures	2
Supplemental Figure 2.1: Amino acid composition information	2
Supplemental Figure 2.2: Charge distribution	4
Supplemental Figure 2.3: Length distribution	6
3. Supplemental Tables	8
Supplemental Table 3.1: Experimental Results	8

1. Supplemental Notes

Supplemental Note 1.1: Hyperparameter Setting

In the CNN + Bi-LSTM model, we first tested the CNNs individually and in order to find the best hidden layer settings, we chose different numbers of filter layers. We selected six different filter sizes: 8, 16, 32, 64, 128 and 256. The model with 256 filters achieved the best performance and the highest AUC value. Therefore, we chose to use 256 filters when building the model. After determining the parameters of the CNN model, we compared the performance of different hidden cell counts (8, 16, 32, 64, 128, 256) in order to find the optimal hidden cell settings. The model with 64 hidden cells achieving the best performance and the highest AUC value.

To accurately determine the optimal critical probability for differentiating between ACPs and non-ACPs, we carried out a series of experiments on six datasets. We selected several different probability values, namely 0.3, 0.4, 0.5, 0.6 and 0.7 for testing. The experimental results show that when the critical probability is set to 0.5, the model exhibits the most excellent performance.

2. Supplemental Figures

Supplemental Figure 2.1: Amino acid composition information

Fig. S1. Amino acid composition of ACPs and non-ACPs on ACP240 dataset. The type represented by blue is ACPs, and the type represented by red is non-ACPs.

Fig. S2. Amino acid composition of ACPs and non-ACPs on ACP740 dataset. The type represented by blue is ACPs, and the type represented by red is non-ACPs.

Fig. S3. Amino acid composition of ACPs and non-ACPs on ACP530 dataset. The type represented by blue is ACPs, and the type represented by red is non-ACPs.

Fig. S4. Amino acid composition of ACPs and non-ACPs on ACPmain dataset. The type represented by blue is ACPs, and the type represented by red is non-ACPs.

Fig. S5. Amino acid composition of ACPs and non-ACPs on ACPred-FL dataset. The type represented by blue is ACPs, and the type represented by red is non-ACPs.

Fig. S6. Amino acid composition of ACPs and non-ACPs on ACPred-Fuse dataset. The type represented by blue is ACPs, and the type represented by red is non-ACPs.

Supplemental Figure 2.2: Charge distribution

Fig. S7. Charge distribution of ACPs and non-ACPs on ACP240 dataset. The type represented by purple is ACPs, and the type represented by pink is non-ACPs.

Fig. S8. Charge distribution of ACPs and non-ACPs on ACP740 dataset. The type represented by purple is ACPs, and the type represented by pink is non-ACPs.

Fig. S9. Charge distribution of ACPs and non-ACPs on ACP530 dataset. The type represented by purple is ACPs, and the type represented by pink is non-ACPs.

Fig. S10. Charge distribution of ACPs and non-ACPs on ACPmain dataset. The type represented by purple is ACPs, and the type represented by pink is non-ACPs.

Fig. S11. Charge distribution of ACPs and non-ACPs on ACPred-FL dataset. The type represented by purple is ACPs, and the type represented by pink is non-ACPs.

Fig. S12. Charge distribution of ACPs and non-ACPs on ACPred-Fuse dataset. The type represented by purple is ACPs, and the type represented by pink is non-ACPs.

Supplemental Figure 2.3: Length distribution

Fig. S13. Length distribution of ACPs and non-ACPs on ACP240 dataset.

Fig. S14. Length distribution of ACPs and non-ACPs on ACP740 dataset.

Fig. S15. Length distribution of ACPs and non-ACPs on ACP530 dataset.

Fig. S16. Length distribution of ACPs and non-ACPs on ACPmain dataset.

Fig. S17. Length distribution of ACPs and non-ACPs on ACPred-FL dataset.

Fig. S18. Length distribution of ACPs and non-ACPs on ACPred-Fuse dataset.

3. Supplemental Tables

Supplemental Table 3.1: Experimental Results

Table S1. Performance comparison of different filters of CNN on six datasets.

Dataset	Filter	ACC	SE	SP	F1	MCC	AUC	
	8	0.915	0.926	0.905	0.916	0.834	0.979	
	16	0.925	0.925	0.921	0.925	0.853	0.98	
ACP530	32	0.91	0.902	0.918	0.908	0.828	0.981	
ACI 330	64	0.924	0.936	0.911	0.925	0.851	0.984	
	128	0.834	0.785	0.883	0.816	0.7	0.963	
	256	0.931	0.933	0.929	0.931	0.863	0.984	
	8	0.912	0.903	0.921	0.911	0.824	0.972	
	16	0.915	0.939	0.89	0.917	0.831	0.975	
	32	0.928	0.907	0.949	0.927	0.857	0.982	

Table S1. Performance comparison of different filters of CNN on six datasets. (Cont)

Dataset	Filter	ACC	SE	SP	F1	MCC	AUC
ACP240	64	0.924	0.936	0.911	0.925	0.851	0.984
	128	0.929	0.946	0.912	0.931	0.86	0.981
	256	0.931	0.911	0.951	0.932	0.863	0.982
	8	0.919	0.947	0.891	0.921	0.84	0.977
	16	0.918	0.9	0.934	0.917	0.837	0.975
ACP740	32	0.92	0.889	0.952	0.918	0.843	0.979
ACI /40	64	0.921	0.954	0.888	0.924	0.845	0.979
	128	0.909	0.959	0.858	0.913	0.822	0.975
	256	0.927	0.921	0.932	0.926	0.854	0.98
	8	0.913	0.942	0.884	0.916	0.828	0.974
	16	0.918	0.915	0.922	0.918	0.837	0.976
ACPmain	32	0.919	0.95	0.888	0.922	0.84	0.978
ACFIIIaiii	64	0.923	0.923	0.923	0.923	0.847	0.978
	128	0.918	0.939	0.897	0.92	0.838	0.976
	256	0.923	0.972	0.874	0.927	0.851	0.984
	8	0.914	0.916	0.912	0.915	0.83	0.974
	16	0.923	0.887	0.959	0.92	0.849	0.981
ACPred-Fuse	32	0.925	0.914	0.935	0.924	0.851	0.98
ACT Teu-Tuse	64	0.922	0.911	0.933	0.92	0.84	0.978
	128	0.92	0.9	0.933	0.918	0.84	0.976
	256	0.924	0.959	0.889	0.926	0.851	0.983
	8	0.906	0.887	0.924	0.9	0.813	0.969
ACPred-FL	16	0.913	0.824	0.902	0.914	0.827	0.971
	32	0.928	0.9	0.954	0.926	0.857	0.982
ACTICU-I'L	64	0.911	0.956	0.866	0.915	0.826	0.977
	128	0.922	0.91	0.934	0.92	0.844	0.978
	256	0.918	0.953	0.883	0.921	0.839	0.979

Table S2. Performance comparison of different numbers of hidden cells on six datasets.

Dataset	Cell	ACC	SE	SP	F1	MCC	AUC
	8	0.892	0.84	0.945	0.883	0.796	0.976
	16	0.902	0.885	0.909	0.902	0.815	0.98
ACP530	32	0.923	0.95	0.895	0.923	0.838	0.982
ACF 330	64	0.926	0.94	0.915	0.925	0.851	0.983
	128	0.904	0.91	0.826	0.911	0.817	0.972
	256	0.912	0.952	0.883	0.906	0.83	0.978
	8	0.906	0.915	0.896	0.901	0.862	0.942
	16	0.91	0.919	0.902	0.911	0.871	0.944
ACP240	32	0.901	0.897	0.925	0.906	0.873	0.94
ACI 240	64	0.921	0.912	0.925	0.924	0.886	0.956
	128	0.911	0.909	0.914	0.913	0.873	0.945
	256	0.913	0.908	0.919	0.913	0.876	0.946
	8	0.9	0.911	0.879	0.883	0.85	0.94
	16	0.902	0.895	0.928	0.911	0.872	0.945
ACP740	32	0.909	0.923	0.895	0.909	0.868	0.948
ACI /40	64	0.916	0.918	0.904	0.913	0.883	0.953
	128	0.901	0.94	0.868	0.902	0.855	0.939
	256	0.907	0.92	0.875	0.908	0.866	0.947
	8	0.903	0.901	0.906	0.904	0.857	0.941
	16	0.914	0.92	0.908	0.915	0.879	0.944
ACPmain	32	0.902	0.879	0.926	0.902	0.856	0.932
ACI mam	64	0.916	0.928	0.889	0.914	0.88	0.945
	128	0.905	0.871	0.929	0.905	0.867	0.94
	256	0.906	0.927	0.873	0.908	0.876	0.941
	8	0.89	0.852	0.926	0.887	0.832	0.93
	16	0.898	0.863	0.913	0.89	0.85	0.936
ACPred-Fuse	32	0.912	0.915	0.909	0.912	0.872	0.942
Act ted-t use	64	0.916	0.906	0.916	0.915	0.893	0.946
	128	0.915	0.922	0.905	0.915	0.883	0.945
	256	0.912	0.92	0.906	0.912	0.875	0.943
	8	0.892	0.897	0.921	0.904	0.846	0.938
	16	0.913	0.934	0.89	0.913	0.887	0.943
ACPred-FL	32	0.91	0.9	0.92	0.91	0.871	0.941
ACTICU-FL	64	0.916	0.89	0.921	0.905	0.872	0.943
	128	0.918	0.901	0.927	0.913	0.878	0.945
	256	0.905	0.92	0.881	0.906	0.862	0.94

 Table S3. Performance comparison of different critical probabilities on six datasets.

Dataset	Pro	ACC	SE	SP	F1	MCC	AUC
-	0.3	0.891	0.857	0.93	0.917	0.796	0.967
	0.4	0.902	0.927	0.79	0.91	0.828	0.97
ACP530	0.5	0.925	0.93	0.92	0.926	0.854	0.973
	0.6	0.922	0.903	0.918	0.92	0.848	0.969
	0.7	0.916	0.875	0.96	0.913	0.841	0.958
	0.3	0.912	0.925	0.798	0.868	0.771	0.923
	0.4	0.87	0.906	0.853	0.85	0.746	0.889
ACP240	0.5	0.932	0.954	0.896	0.894	0.865	0.972
ACP240	0.6	0.928	0.906	0.951	0.89	0.858	0.969
	0.7	0.909	0.841	0.968	0.853	0.826	0.943
	0.3	0.881	0.892	0.87	0.873	0.762	0.91
	0.4	0.88	0.884	0.875	0.878	0.76	0.912
ACP740	0.5	0.921	0.943	0.907	0.898	0.846	0.967
ACI /40	0.6	0.923	0.879	0.959	0.9	0.851	0.97
	0.7	0.912	0.863	0.941	0.881	0.829	0.961
	0.3	0.872	0.857	0.91	0.864	0.756	0.892
	0.4	0.902	0.917	0.883	0.884	0.807	0.907
ACPmain	0.5	0.915	0.859	0.925	0.906	0.837	0.963
ACI IIIaili	0.6	0.903	0.929	0.859	0.894	0.828	0.96
	0.7	0.902	0.919	0.865	0.883	0.83	0.958
	0.3	0.894	0.867	0.923	0.894	0.816	0.916
	0.4	0.883	0.936	0.786	0.876	0.803	0.903
ACPred-Fuse	0.5	0.911	0.904	0.909	0.884	0.834	0.958
Acticu-i usc	0.6	0.908	0.882	0.92	0.862	0.824	0.956
	0.7	0.909	0.852	0.941	0.88	0.826	0.955
	0.3	0.892	0.859	0.912	0.914	0.83	0.911
	0.4	0.92	0.927	0.786	0.931	0.853	0.946
ACPred-FL	0.5	0.925	0.913	0.931	0.93	0.859	0.951
7101100 1 L	0.6	0.924	0.923	0.918	0.923	0.86	0.95
	0.7	0.916	0.896	0.925	0.913	0.846	0.943

Table S4. Comparison of eight methods on ACP240 dataset.

Dataset	Model	ACC	AUC	MCC	SE	SP
	ACP-DA	0.80	0.85	0.65	0.78	0.76
	ACP-DL	0.70	0.82	0.60	0.75	0.72
	ACP- MHCNN	0.85	0.88	0.72	0.82	0.79
ACP240	iACP	0.78	0.86	0.68	0.80	0.77
7101210	CL-ACP	0.88	0.90	0.75	0.86	0.85
	ACP-check	0.90	0.92	0.78	0.88	0.87
	ACP-BC	0.86	0.89	0.70	0.83	0.82
	ACP-TransLSTM	0.92	0.93	0.80	0.90	0.89

Table S5. Comparison of eight methods on ACP740 dataset.

Dataset	Model	ACC	AUC	MCC	SE	SP
	ACP-DA	0.81	0.74	0.58	0.80	0.82
	ACP-DL	0.81	0.89	0.62	0.81	0.80
	ACP- MHCNN	0.86	0.90	0.72	0.89	0.83
ACP740	iACP	0.81	0.86	0.61	0.87	0.74
1101710	CL-ACP	0.84	0.91	0.68	0.83	0.85
	ACP-check	0.87	0.92	0.75	0.86	0.88
	ACP-BC	0.89	0.94	0.76	0.87	0.89
	ACP-TransLSTM	0.94	0.98	0.86	0.93	0.92

Table S6. Comparison of eight methods on ACP530 dataset.

Dataset	Model	ACC	AUC	MCC	SE	SP
	ACP-DA	0.85	0.84	0.73	0.76	0.78
	ACP-DL	0.79	0.78	0.69	0.74	0.80
	ACP- MHCNN	0.73	0.71	0.60	0.69	0.71
ACP530	iACP	0.82	0.82	0.75	0.78	0.82
1101000	CL-ACP	0.55	0.39	0.43	0.77	0.39
	ACP-check	0.93	0.96	0.85	0.80	0.96
	ACP-BC	0.90	0.92	0.82	0.87	0.92
	ACP-TransLSTM	0.91	0.95	0.83	0.88	0.95

Table S7. Comparison of eight methods on ACPmain dataset.

Dataset	Model	ACC	AUC	MCC	SE	SP
	ACP-DA	0.75	0.75	0.53	0.77	0.73
	ACP-DL	0.53	0.46	0.09	0.86	0.21
	ACP- MHCNN	0.73	0.71	0.46	0.79	0.67
ACPmain	iACP	0.55	0.47	0.11	0.78	0.32
7 TCT IIIdiii	CL-ACP	0.45	0.39	0.12	0.67	0.23
	ACP-check	0.78	0.85	0.56	0.80	0.77
	ACP-BC	0.69	0.67	0.38	0.69	0.69
	ACP-TransLSTM	0.87	0.89	0.67	0.89	0.80

Table S8. Comparison of eight methods on ACPred-Fuse dataset.

Dataset	Model	ACC	AUC	MCC	SE	SP
	ACP-DA	0.86	0.85	0.29	0.68	0.89
	ACP-DL	0.82	0.83	0.22	0.68	0.83
	ACP- MHCNN	0.88	0.86	0.29	0.70	0.88
ACPred	iACP	0.88	0.76	0.23	0.55	0.89
-Fuse	CL-ACP	0.85	0.85	0.29	0.70	0.86
	ACP-check	0.91	0.90	0.37	0.73	0.92
	ACP-BC	0.86	0.90	0.32	0.83	0.86
	ACP-TransLSTM	0.88	0.86	0.35	0.79	0.90

Table S9. Comparison of eight methods on ACPred-FL dataset.

Dataset	Model	ACC	AUC	MCC	SE	SP
	ACP-DA	0.77	0.83	0.56	0.68	0.87
	ACP-DL	0.79	0.84	0.59	0.74	0.84
	ACP- MHCNN	0.77	0.82	0.55	0.67	0.87
ACPred	iACP	0.77	0.80	0.49	0.68	0.80
-FL	CL-ACP	0.88	0.94	0.78	0.81	0.94
	ACP-check	0.91	0.94	0.82	0.87	0.95
	ACP-BC	0.87	0.91	0.74	0.88	0.87
	ACP-TransLSTM	0.92	0.97	0.85	0.90	0.92