## $O\Pi$ «Политология», 2021-22

Введение в ТВиМС

Тренировочные задания по блоку «Теория вероятностей»

Не является типовым вариантом контрольной работы! (3 модуль)

А. А. Макаров, А. А. Тамбовцева, П. В. Ревина

**Задача 1.** Дан ряд распределения случайной величины X:

| X | -1  | 0   | 2 | 6   | 7   |
|---|-----|-----|---|-----|-----|
| p | 0.2 | 0.5 | ? | 0.1 | 0.1 |

- а. Найдите  $P(X \le 2)$ , P(X < 5.5), P(X > 7).
- b. Найдите математическое ожидание X.
- с. Найдите дисперсию X.
- d. Найдите стандартное отклонение X.
- е. Найдите E(4X + 3) и D(4X + 3).

**Задача 2.** X и Y – случайные величины. Известно, что Cov(X,Y)=1. При этом E(X)=4, D(X)=9, E(Y)=-2, D(Y)=16. Найдите математическое ожидание и дисперсию следующих величин:

- a.  $W_1 = 2X$ .
- b.  $W_2 = 2X 3$ .
- c.  $W_3 = 4X + 5Y$ .
- d.  $W_4 = 3X 7Y + 6$ .

Найдите корреляцию между  $W_2$  и  $W_3$ .

## Задача 3.

- а. W бинарная случайная величина с параметром p=2/3. Найдите математическое ожидание и дисперсию случайной величины W.
- b. U биномиальная случайная величина с параметрами  $p=4/5,\, n=7.$  Найдите математическое ожидание и дисперсию случайной величины U.

Задача 4. Посиделки студентов-политологов редко обходятся без горячих политических дебатов. Известно, что в 30 случаях из 40 спокойные посиделки политологов перерастают в бурные дискуссии на политическую тематику, причем известно, что это соотношение не изменяется от посиделок к посиделкам, и наличие дискуссий на одних посиделках никак не влияет на наличие дискуссий на других. Определите, с какой вероятностью из 10 посиделок:

- а. более 8 закончатся политическими дебатами;
- b. менее 3 закончатся политическими дебатами;
- с. не менее 2 закончатся политическими дебатами.

В скольких случаях, в среднем, посиделки политологов перерастают в дискуссии на политическую тематику?

**Задача 5.** Закон совместного распределения дискретных величин X и Y задан следующей таблицей:

| $X \setminus Y$ | -2   | 0   | 3    |
|-----------------|------|-----|------|
| -2              | 0.1  | 0.2 | 0.05 |
| 3               | 0.05 | 0.3 | ?    |

- а. Запишите маргинальные распределения случайных величин X и Y.
- b. Проверьте, являются ли случайные величины X и Y независимыми.
- с. Найдите Cov(X,Y) и Cor(X,Y). Проинтерпретируйте полученные результаты.

**Задача 6.** Закон совместного распределения дискретных величин X и Y задан следующей таблицей:

| $X \backslash Y$ | 1    | 3    | 4    |
|------------------|------|------|------|
| 9                | 0.03 | 0.15 | 0.12 |
| 10               | 0.07 | 0.35 | 0.28 |

Найдите  $P(X = 9 \mid Y = 3)$  и  $P(Y = 4 \mid X = 10)$ .

**Задача 7.** Случайная величина X задается следующим рядом распределения (с пропущенной вероятностью):

| X | -1  | 0   | 2 | 6   |
|---|-----|-----|---|-----|
| p | 0.2 | 0.5 | ? | 0.1 |

Случайная величина Y задается следующим рядом распределения (с пропущенной вероятностью):

Известно, что случайные величины X и Y независимы. Постройте таблицу совместного распределения X и Y.

**Задача 8.** Известно, что график функции плотности вероятности случайной величины X выглядит следующим образом:



- а. Найдите f(0), f(-1).
- b. Найдите P(-1 < X < 0.5).
- с. Найдите F(1.5), где F функция распределения.

**Задача 9.** Известно, что доля сторонников партии «Бобры и демократия» (выраженная в процентах) имеет нормальное распределение со средним значением 12 процентов и стандартным отклонением 4 процента.

- а. Найдите вероятность того, что процент сторонников этой партии в некотором случайно выбранном районе будет менее 20%.
- b. Найдите вероятность того, что процент сторонников этой партии в некотором случайно выбранном районе будет лежать в интервале от 10% до 25%.
- с. Найдите вероятность того, что процент сторонников этой партии в некотором случайно выбранном районе будет более 40%.

**Задача 10.** Случайная величина Z имеет стандартное нормальное распределение.

- а. Найдите P(Z < 1.34).
- b. Найдите P(1.2 < Z < 2.32).
- с. Найдите P(Z > 2.56).

- d. Найдите P(-1 < Z < 0.37).
- е. Найдите квантиль уровня 0.591.

**Задача 11.** Случайная величина X имеет нормальное распределение со следующими параметрами:  $X \sim N(-2, \sigma^2 = 4)$ .

- а. Найдите квантиль уровня 0.9564.
- b. Найдите квантиль уровня 0.8.
- с. Найдите квантиль уровня 0.64.
- d. Найдите квантиль уровня 0.0708.
- е. Найдите квантиль уровня 0.35.

**Задача 12.** Случайная величина X имеет равномерное распределение на отрезке [-10; 8]. Найдите:

- a. P(-2 < X < 2).
- b. Медиану распределения.
- с. Верхний квартиль распределения.

Задача 13. Согласно результатам опроса, проведённого Всероссийским центром изучения общественного мнения в январе 2022 года, 17% респондентов проголосовали бы за партию КПРФ, если бы в ближайшее воскресенье состоялись выборы в Государственную Думу. Найдите вероятность того, что при организации опроса на выборке объёма 1600 человек, в выборке окажется более 350 сторонников КПРФ.

Задача 14. Известно, что длина тела ящериц (в см), обитающих в некоторой местности, имеет равномерное распределение на отрезке [15, 25]. Случайным образом для наблюдения было выбрано 100 ящериц. Найдите вероятность того, что средняя длина тела ящериц в полученной выборке будет больше 18 см.

**Подсказка:** для равномерного распределения на отрезке [a,b]:

$$E(X) = \frac{a+b}{2};$$

$$D(X) = \frac{(b-a)^2}{12}.$$