

Cambridge IGCSE[™](9–1)

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

6727644093

COMPUTER SCIENCE

0984/12

Paper 1 Theory

May/June 2021

1 hour 45 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

- 1 A denary value can be converted into hexadecimal and binary.
 - (a) Complete the table to show the hexadecimal and 8-bit binary values of the given denary values.

Denary	Hexadecimal	8-bit binary
49		
123		
200		

	[6]
	Working space
(b)	Give two benefits, to users, of converting binary values to hexadecimal.
	Benefit 1
	Benefit 2
	[2]
(c)	Hexadecimal is used to represent Hypertext Markup Language (HTML) colour codes in computer science.
	Identify three other ways that hexadecimal is used in computer science.
	1
	2
	3[3]

- 2 Data storage can be magnetic, solid state or optical.
 - (a) Six statements are given about data storage.

Tick (\checkmark) to show if the statement applies to magnetic, solid state or optical storage. Some statements may apply to more than one type of storage.

Statement	Magnetic (✓)	Solid state (✓)	Optical (✔)
no moving parts are used to store data			
pits and lands are used to store data			
data is stored on platters			
flash memory is used to store data			
parts are rotated to store data			
data can be stored permanently			

			[6]
(b)	(i)	Give one example of magnetic storage.	
			[1]
	(ii)	Give one example of optical storage.	
			[1]
	(iii)	Identify which type of storage would be the most suitable for use in a web server a justify your choice.	nd
		Type of storage	
		Justification	
			 [3]
(c)	Des	scribe the operation of USB flash memory and how it stores data.	[Ο]
(0)	Doc	solibe the operation of GGB hadri memory and new it otores data.	
			[2]

3 Consider the logic statement:

$$X = ((((NOT A AND B) OR C) AND B) NOR (B OR C))$$

(a) Draw a logic circuit to represent the given logic statement.

Do **not** attempt to simplify the statement. All logic gates must have a maximum of **two** inputs.

(b) Consider the completed truth table for the given logic statement.

Row number	A	В	С	Working space	х
1	0	0	0		1
2	0	0	1		1
3	0	1	0		1
4	0	1	1		0
5	1	0	0		1
6	1	0	1		0
7	1	1	0		1
8	1	1	1		1

There are four errors in the truth table in the output (X) column.

Identify the **four** incorrect outputs.

Write the row number to identify each incorrect output.

Row
Row
Row
Row

- 4 Three types of Internet security risk are virus, spyware and denial of service (DoS) attack.
 - (a) Six statements are given about Internet security risks.

Tick (\checkmark) to show whether the statement applies to virus, spyware or denial of service. Some statements may apply to more than one Internet security risk.

Statement	Virus (✓)	Spyware (✓)	Denial of service (✓)
captures all data entered using a keyboard			
can be installed onto a web server			
prevents access to a website			
is malicious code on a computer			
is self-replicating			
damages the files on a user's hard drive			

	[6]
(b)	Identify three other types of Internet security risks.
	1
	2
	3
	[3]
(c)	Some Internet security risks can maliciously damage data. Data can also be damaged accidentally.
	State three ways that data could be accidentally damaged.
	1
	2
	3

[3]

5

	ecurity light system is used by a factory. The light only comes on when it is dark and when vement is detected. The light will stay on for 1 minute before switching off.
Ser	nsors and a microprocessor are used to control the security light system.
(a)	Identify two sensors that would be used in the security light system.
	Sensor 1
	Sensor 2
(b)	Describe how the sensors and the microprocessor control the security light system.
	[8]

Cod	okies can be used to store a user's personal data and online browsing habits.
(a)	A cookie could be used to automatically enter a user's payment details when the user makes a purchase online.
	Describe how cookies can be used to store and automatically enter a user's payment details.
	[3]
(b)	Explain why a user may be concerned about their personal data and online browsing habits being stored in cookies.
(b)	
(b)	being stored in cookies.

(a)	(i)	Give one example of HTML structure.
	(ii)	Give two examples of HTML presentation.
	(11)	1
		2
		2
(b)	Exp	lain why Jolene separates the HTML into structure and presentation.
арр	•	ate terms from the given list. Not all terms in the list need to be used. Binary Breaks Calculated Character
A ke	• • • • eybo	Circuit Current Information Network Press Processor Signal Switch ard has a key matrix underneath the keys. When a key is pressed, it presses a
	• • • eybo	Current Information Network Press Processor Signal Switch
	eybo	Current Information Network Press Processor Signal Switch ard has a key matrix underneath the keys. When a key is pressed, it presses a
	eybo	Current Information Network Press Processor Signal Switch ard has a key matrix underneath the keys. When a key is pressed, it presses a that completes a
	eybo	Current Information Network Press Processor Signal Switch ard has a key matrix underneath the keys. When a key is pressed, it presses a that completes a
	eybo	Current Information Network Press Processor Signal Switch ard has a key matrix underneath the keys. When a key is pressed, it presses a that completes a

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.