Lyapunov functions: useful for determining stability of equilibria, when you can find or build them. Can sometimes be used for global stability

Recall Lyapunov stability for x^{+} :

For any $\varepsilon>0$, there is a $\delta\varepsilon(0,\varepsilon)$ sit $\varphi_{\varepsilon}(x) \in \beta_{\varepsilon}(x^{+})$ for all $\varepsilon>0$ provided $\varepsilon=0$

start in Bo(x*). Stay in Be(x*). True for any e

A continuous function LiPP = R is a (strong) Lyapunov function for any equilibrium X* of the flow the on 12" if

· L(x+)=0

• \exists a neighborhood \cup of x^{*} s.t. $\forall x \in \cup$, $x \neq x^{*}$, L(x) > 0, and $L(\varphi_{t}(x)) < L(x) \forall t > 0$ weak Lyapunov function: $L(\varphi_{t}(x)) \leq L(x)$

Lecture 9 p.2

Thm. If L is a weak Lyapunov Function for X*, then X* is Lyapunov stable. If L is a strong Lyapunov Function for X*, then X* is asymptotically

Note: If L is C' then we can check $L(\varphi_t(x)) < L(x)$, $\forall t > 0$. by computing

 $L = \frac{d}{dt} \left(L(q_t(x)) \right) = \nabla L \cdot \frac{d}{dt} \left(q_t(x) \right) = \nabla L \cdot f$

if VL. F < 0 then L is decreasing (non-increasing)

(=0) on trajectory

VL "opposes the flow" generated by f

L needs to be decreasing (or non-increasing) function along trajectories in neighborhood

I'dea of proof in weak case!

Choose & so that BE(x*) C U

Let $m = \min \{ L(x) : |x-x^*| = \epsilon \}$

m > 0

Lecture 9 p.3

Since L(x) is continuous and $L(x^*)=0$, there is a $\partial \in (0, \varepsilon)$ s.t. L(x) < m $\forall x \in B_{\Gamma}(x^*)$,

Since $L(\varphi_t(x))$ can't increase for too to reach m, the trajectory can't escape from $B_{\varepsilon}(x^*)$.

2-examples: XER"

 $\dot{x} = -\nabla V(x)$ "gradient flow"

try L=V(x)

 $x = -\nabla V(x)$ $x = -\nabla V(x)$ $x = -\nabla V(x)$ $x = -\nabla V(x)$ $y = -\nabla V(x)$ $y = -\nabla V(x)$ $y = -\nabla V(x)$

assume there is a neighborhood of x* where it's the wright treatpt unique affical pt. For V(x)

 $\nabla V(x^*) = 0$ $\nabla V(x) > 0 \quad \text{for} \quad x \neq x^* \quad x \in U$ $\nabla V(x^*) = 0 \quad (w, l, v, g, t)$

Note that x* is unique local min of V(x) so V(x) >0 for x ≠ x*, x ∈ U

Ex.1 x=-VV "gradient flow"

 $L(t) = V(\chi(t))$

 $L = \nabla V(x(t)) \circ \dot{X} = -|\nabla V|^2 < 0 \text{ for } x \neq X^*$

V(x) is a strong Lyapunov Function for x* => x* is asymptotically stable

Side note: gradient flows can't have experiorists since if they did we'd have $(4+(x_0)) = x_0$ which would contradict $(4+(x_0)) < V(x_0)$

$$E_{V,2}$$
 $X = -\nabla V$, me chan céal system $F = mq$, where $F = -\nabla V$

re-write as first order egns.

$$\hat{p} = -\nabla_{x}V$$

$$\hat{p} = -\nabla_{x}V$$

$$2n - dim \ phase space$$

$$N - dim \ gradien +$$

We can write this in terms of a "Hamiltonian" & Hamiltonian $(x,p) = \frac{1}{2} |p|^2 + V(x)$

$$(4) \begin{cases} \dot{x}_i = \frac{\partial \dot{x}_i}{\partial \dot{x}_i} \\ \dot{\beta}_i = -\frac{\partial \dot{x}_i}{\partial \dot{x}_i} \end{cases}$$

• under our assumptions we have that $(x,p)=(x^{+},0)$ is a critical pt. of H Since $\frac{\partial H}{\partial pi} = \frac{\partial H}{\partial xi} = 0$ i=1,--,n $\lim_{n \to \infty} \frac{\partial H}{\partial pi} = \lim_{n \to \infty} \frac{\partial H}{\partial xi} = 0$ is the an equilibrium for $(x^{+},0)$

$$1+(x^*,0)=0$$

Lecture 9 pi6

We assumed that X* is a local min of V(x) so D2V(x*) is a posstive definite matrix [xTD2V x > 0 for x ≠ X*,]

\[
\begin{align*}
\frac{3^2V}{3^{1/2}} & \frac{3^2V}{3^2V} & \frac{3^2V}{3^

 $D^{2}V = \begin{cases} \frac{\partial^{2}V}{\partial x_{i}^{2}} & \frac{\partial^{2}V}{\partial x_{i}\partial x_{2}} \\ \frac{\partial^{2}V}{\partial x_{i}\partial x_{2}} & \frac{\partial^{2}V}{\partial x_{i}\partial x_{2}} \end{cases}$ $= \begin{cases} \frac{\partial^{2}V}{\partial x_{i}\partial x_{2}} & \frac{\partial^{2}V}{\partial x_{i}\partial x_{2}} \\ \frac{\partial^{2}V}{\partial x_{i}\partial x_{2}} & \frac{\partial^{2}V}{\partial x_{i}\partial x_{2}} \\ \frac{\partial^{2}V}{\partial x_{i}\partial x_{2}} & \frac{\partial^{2}V}{\partial x_{i}\partial x_{2}} \end{cases}$

It follows that Hessian of H is also positive definite at $(x,p)=(x^*,p)$

 $D^{2}V$ $D^{2}V$ $D^{2}V$ $D^{2}V$

(x*,0) is a local min of H

Use II to obtain a Lyapuhov function

H is constant on trajectories so we abtain that $(x^*, 0)$ is Lyapunov stable using it as a Lyapunov function side that is a weak Lyapunovs function H=0?

Let's see what happens if we add linear dumping. Asymptotic stability?

x=p p=-V,V-8p

Y≥O (8=0 is undamped)

Let $L(x,p) = H(x,p) - H(x^*,0)$ energy

at tixed $(x^*,0)$

• $L(x^*, 0) = 0$

· L(x(p) > 0 for

(x*, p) \$\phi(x*, p) in neighbor hood U of (x*, 0) since it's a local Min.

 $\frac{dL}{dt} = \sum_{i=1}^{\infty} \frac{\partial H}{\partial x_i} \frac{\dot{x}_i + \partial H}{\partial p_i} \frac{\dot{p}_i}{\dot{p}_i} = -8|p|^2 \le 0$

Lecture 9 p.8

Thus (x*,0) is Lyapunov stable,

Ale 2 wer can't get as 4

Note: typpo. It a miltonian only serves as a weak Lyaponor Function since -8/p1=0

However, if we restrict to p=0, we find p=-7xV<0 for $x\neq x^{+}$, so p=0 doesn't stay on subspace p=0 of our phase space — it is not an invariant subspace.

Can use "La Salle's Invariance Principle" to prove asymptotic statility in the case 8>0.

LaSalle's Invariance Principle! Suppose X*

is a weak Lyaponow function (L' = 0)

of X* on some compact forward
invariant neighborhood U of X*.

Let Z = {X \in U: \frac{d}{d} = 0}. If {X*} is the
largest forward in variant subset of
Z is is a sympto fically stable &

affracts every pt. in U

Forward invariant neighborhood U of X+:
if $x \in U$, then $Q_{t}(x) \in U$ $\forall t > 0$

U= subset of Euclidean space, then compact means closed & bounded.

by in damped Hamiltonian problem $Z = \{(x,p) \in U : p = 0\}$

 $\dot{p} = -8p - \nabla_{x}V \implies \dot{p}|_{Z} = -\nabla_{x}V$

and the state of the

andra de la companya La companya de la co

en de la composition La composition de la

which is nonzero for $x\neq x^*$, so largest flow forward invariant subset of Z is just (x^*, o) , which is asymptotically stable.