Matrix Operations

September 16, 2025

Contents

1	Matrix Addition	1
2	Matrix Multiplication2.1 Multiplication Properties2.2 Identity	
3	Matrix Transposition 3.1 Transposition Properties	

1 Matrix Addition

If we think of two matrices as linear transformations, **matrix addition** will only be defined if their codomain and domain are the same; in other words, A + B is only defined if A and B are the same size.

If
$$A = [a_{ij}]$$
 and $B = [b_{ij}]$,

$$A + B = [a_{ij} + b_{ij}]$$
 (1)

2 Matrix Multiplication

If A and B are matrices, then we can consider their associated linear transformations T and S. We define **matrix multiplication** to be analogous to the composition of two transformations, i.e. $T \circ S$.

This requires the codomain of S to be the domain of T. In other words, if A is an $m \times n$ matrix, B must be $n \times p$.

We know that multiplying a matrix by a column vector is done by forming a new matrix where each entry in each row is the dot product between the corresponding row in the matrix and the column vector. For matrix-matrix multiplication, we extend that by considering B to be a matrix of columns b_1, b_2, \ldots, b_p . Then,

$$AB = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$$
 (2)

2.1 Multiplication Properties

Matrix multiplication is **associative**:

$$A(BC) = (AB)C \tag{3}$$

However, matrix multiplication is *not commutative*:

$$AB \neq BA$$
 (4)

We can understand this through the analogue of the composition of two transformation functions. It can be seen that given two functions f and g, $f \circ g \neq g \circ f$.

2.2 Identity

The $n \times n$ identity matrix I_n is the matrix that implements the identity transformation:

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & & \\ 0 & & & 1 \end{bmatrix}$$

The identity matrix has 1s on the diagonal and 0s everywhere else. It satisfies the following equality for any $n \times n$ matrix A:

$$A \cdot I_n = I_n \cdot A = A \tag{5}$$

3 **Matrix Transposition**

The **transpose** A^T of a matrix A is A with the rows and columns switched. Thus, if A was a $m \times n$ matrix, then A^T would be a $n \times m$ matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad A^T = \begin{bmatrix} a_{11} & \cdots & a_{m1} \\ a_{12} & \cdots & a_{m2} \\ \vdots & & & \\ a_{1n} & \cdots & a_{mn} \end{bmatrix}$$
(6)

Transposition Properties 3.1

Two useful properties of transpose:

$$(A+B)^T = A^T + B^T$$

$$(AB)^T = B^T A^T$$
(8)

$$(AB)^T = B^T A^T \tag{8}$$