Hopf on the Bloch: From Fiber Bundles to Qubits

Wayne D. Pooley

Outline

- What is the Bloch Sphere and why do we care?
 - Qubits and Spin
 - Projective space and physical states
- The Topology Behind the Scenes
 - ▶ Normalizing C: the 3-sphere
 - ▶ Global phase \rightarrow quotienting by U(1)
 - Fiber bundles and linked circles
- The Hopf Fibration
 - Visualizing the linked fibers
 - ▶ The map $S^3 o S^2$
 - Why $S^3 \not\cong S^2 \times S^1$

What is the Bloch Sphere?

¹Smite-Meister at Wikimedia Commons, Published under the Creative Commons Attribution-Share Alike 3.0 Unported license

Bit of history

Spin Story: Stern-Gerlach Experiment

Figure: SG Experiment Apparatus

Image by Tatoute, licensed under CC BY-SA 4.0

Spin Interlude (*Spin-terlude?*)

State Space

Two independent states: $|+\rangle$ and $|-\rangle$, called spin up and spin down.

State Space

Two independent states: $|+\rangle$ and $|-\rangle$, called spin up and spin down. $|+\rangle$ and $|-\rangle$ scalable by complex coeficients α and β in $\mathbb C$.

State Space

Two independent states: $|+\rangle$ and $|-\rangle$, called spin up and spin down. $|+\rangle$ and $|-\rangle$ scalable by complex coeficients α and β in \mathbb{C} .

Thus our state space is
$$\mathbb{C}^2$$
 and $|\psi\rangle=\begin{pmatrix} \alpha \\ \beta \end{pmatrix}\in\mathbb{C}^2$.

The Topology Behind the Scenes

Normalizing $\mathbb{C} \to S^3$

Motivation from probability theory, we want our vectors $|\psi\rangle$ in the state space \mathbb{C}^2 :

$$|\psi\rangle \mapsto \frac{|\psi\rangle}{\|\,|\psi\rangle\,\|}$$

The Topology Behind the Scenes

Normalizing $\mathbb{C} \to S^3$

Motivation from probability theory, we want our vectors $|\psi\rangle$ in the state space \mathbb{C}^2 :

$$|\psi\rangle \mapsto \frac{|\psi\rangle}{\|\,|\psi\rangle\,\|}$$

Effectively, taking the us from 4 real-dimensions ($\mathbb{C}^2 \cong \mathbb{R}^4$ as vector spaces) to 3-real dimensional surface, resulting in the hypersphere S^3 .

The Topology Behind the Scenes

Normalizing $\mathbb{C} o S^3$

Motivation from probability theory, we want our vectors $|\psi\rangle$ in the state space \mathbb{C}^2 :

$$|\psi\rangle \mapsto \frac{|\psi\rangle}{\|\,|\psi\rangle\,\|}$$

Effectively, taking the us from 4 real-dimensions ($\mathbb{C}^2 \cong \mathbb{R}^4$ as vector spaces) to 3-real dimensional surface, resulting in the hypersphere S^3 . Multiple states are mapped to the same normalized state, called a normalized spinor.

We are now in S^3 ! But... we have some coordinate-redundancy

Global phase equivalence

Multiple normalized spinors correspond to the same physical state under the Born rule.

Example: For two states $|\psi\rangle\,, |\varphi\rangle$ defined to be $|\psi\rangle = e^{i\theta}\,|\varphi\rangle$. We have

$$\|\left\langle \psi|\psi\right\rangle\|^2 = \|\left\langle \varphi\right| e^{-i\theta} \cdot e^{i\theta} \left|\varphi\right\rangle\|^2 = \|\left\langle \varphi|\varphi\right\rangle\|^2$$

Global phase \rightarrow quotienting by U(1)

We aim to set up an equivalence between states that differ by a phase factor:

$$|\psi\rangle\sim e^{i heta}\,|\psi
angle$$

To do this, we can quotient out by all elements $e^{i\theta}$.

Definition: The Unitary Group of dimension 1 (U(1))

$$U(1) := \{ z \in \mathbb{C} : |z| = 1 \}$$

Global phase \rightarrow quotienting by U(1)

We aim to set up an equivalence between states that differ by a phase factor:

$$|\psi\rangle\sim e^{i heta}\,|\psi
angle$$

To do this, we can quotient out by all elements $e^{i\theta}$.

Definition: The Unitary Group of dimension 1 (U(1))

$$U(1) := \{z \in \mathbb{C} : |z| = 1\}$$

Projective Line Crash Course

Train tracks meeting.

Projective Line Crash Course

Definition: Projective Space

Set of equivalence classes under the equivalence relation \sim defined by $x \sim y$ if $x = \lambda y$ for some λ in the field.

To reach our destination, S^2 , we need to see the road ahead of us.

To reach our destination, S^2 , we need to see the road ahead of us.

"To go far, we must see far."

To reach our destination, S^2 , we need to see the road ahead of us.

"To go far, we must see far."
- Wayne Pooley

Definition: Topological Space

Let X be a set, we define a topology on this set τ_X to be the collection of open sets contained in X. Together, these form the topological space (X, τ_X) .

Definition: Fiber Bundles

Let E, B, and F be topological spaces.

- E is our total space.
- B is our base space.
- F is called the fiber.
- A map π from E to B is called the projection of the fiber.

Altogether, these form a *fiber bundle*: (E, B, π, F) .

We shall see that the desired fiber bundle will be

$$(S^3, S^2, \pi, S^1)$$

where $\pi:S^3\to S^2$.

There are two main valid ways to get from S^3 to S^2 : The direct way π , is called the *Hopf fibration*.

Property: Local Triviality

Open sets in E are homeomorphic to open sets in the product space B.

$$\varphi: V \to U \times F$$

where V open in E open and U open in B.

Connecting to S^3 and S^2 :

- Product space is $S^2 \times S^1$.
- U open in S^2 and $U \times S^1$ open in $S^2 \times S^1$.

These form the following commutative diagram:

One of the main differences is what the fibers/circles are doing.

The circles of the S^3 are mutually linked. The simplest link that between two circles is called the Hopf link.

Every circle is Hopf linked to every other circle exactly once.

The circles of the S^3 are mutually linked. The simplest link that between two circles is called the Hopf link.

Every circle is Hopf linked to every other circle exactly once.

Why $S^3 \ncong S^2 \times S^1$

The circles of the $S^2 \times S^1$ are not linked and do not intersect. Thus the topology is trivially projects to the 2-sphere via projection to the first factor.

Visualizing the linked fibers

The interactive Hopf map visualizer by Nico Belmonte (@philogb) https://philogb.github.io/page/hopf/

Different topologies

Image source: Breaking Bad

To quotient S^3 by the U(1), we need to identify it with a group:

Definition: The Special Unitary Group of dimension 2 (SU(2))

$$SU(2):=\{U\in \mathsf{Mat}_{2\times 2}: U^\dagger U=1, \det U=1\}$$

The elements take the form of
$$U=\begin{pmatrix} \alpha & -\beta^* \\ \beta & \alpha^* \end{pmatrix}$$
 .

To quotient S^3 by the U(1), we need to identify it with a group:

Definition: The Special Unitary Group of dimension 2 (SU(2))

$$SU(2):=\{U\in\mathsf{Mat}_{2 imes2}:U^\dagger U=1,\det U=1\}$$

The elements take the form of $U = \begin{pmatrix} \alpha & -\beta^* \\ \beta & \alpha^* \end{pmatrix}$.

To see the connection between S^3 and SU(2) clearly, we establish a bijection:

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha & -\beta^* \\ \beta & \alpha^* \end{pmatrix}$$

We identify SU(2) with S^3 and it can inherit its topology as a smooth manifold.

Thus our quotient SU(2)/U(1) removes our fibers.

But how do we know that this quotient group can be identified with S^2 ?

But how do we know that this quotient group can be identified with S^2 ? We bridge these concepts with the complex projective line $\mathbb{C}P^1$.

The map $S^3 o S^2$

Figure: Riemann Sphere

Quotienting by U(1) sends matrix in SU(2) through the chain

$$\begin{pmatrix} \alpha & -\beta^* \\ \beta & \alpha^* \end{pmatrix} \mapsto [\alpha, \beta] \mapsto \begin{cases} \left[\frac{\alpha}{\beta} : 1\right] \mapsto \frac{\alpha}{\beta} & \text{if } \beta \neq 0 \\ [1 : 0] \mapsto \infty & \text{otherwise} \end{cases}$$

Which gets mapped to equivalence classes in $\mathbb{C}P^1$ (i.e. a physical state) and a point on the Riemann sphere.

The Riemann sphere has the topology of the 2-sphere- which was our goal! We have reached the Bloch sphere!

Interpretation and Physical Insight

Recall what this did was remove the fibers of our S^3 giving us the *physical* states, which visualize nicely as S^2 or the Bloch sphere.

Explicit Hopf Fibration

Recall:

$$S^{3} = \{(z_{1}, z_{2}) \in \mathbb{C}^{2} : |z_{1}|^{2} + |z_{2}|^{2}\}$$

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} : x^{2} + y^{2} + z^{2} = 1\}$$

Explicit Hopf Fibration

Define map $\pi: S^3 o S^2$ to be

$$\pi(z_1, z_2) = (2\text{Re}(z_1\bar{z_2}), 2\text{Im}(z_1\bar{z_2}), |z_1|^2 - |z_2|^2)$$

