deep-learning 笔记

徐世桐

基本定义 1

label 标签:输出结果, \hat{y} 为计算得到的结果,y 为实际测量结果

feature 特征:用于预测标签的输入变量, $x_i^{(i)}$ 为第 i 组 sample 第 j 号特征

sample 样本:一组特征的取值和对应的标签输出,样本编号集合称 B

hyperparameter 超参数:人为设定的参数。如样本个数(批量大小 batch size)|B|,学习率 η 。少数 情况下通过学习得到

全连接层 fully-connected layer/稠密层 dense layer: 此层所有节点都分别和前一层所有节点连接 $\mathbf{softmax}$ 函数: $softmax(Y) = \frac{exp(y)}{\sum_{y' \in Y} exp(y')}$,将数值输出转化为概率值,1.值为正2.值总和为1 \mathbf{cross} entropy 交叉熵

定义: 分部 p 和分部 q 间的 cross entropy $H(p,q) = -E_p(\log(q))$ 。为 expected value of $\log(q)$ with respect to distribution p

公式: $H(y^{(i)}, \hat{y}^{(i)}) = -\sum_{i \in B} y^{(i)} log(\hat{y}^{(i)})$

使用:联系两个值概率分部间的差异,即可将数值输出 \hat{y} 和分类结果 y 直接做对比,无需 softmax

linear regression 线性回归

平方代价函数: $J(\theta) = \frac{1}{n} \sum_{i=1}^n J^{(i)}(\theta)$, 为所有样本误差的平均值 迭代: $\theta_i = \theta_i - \frac{\eta}{|B|} \sum_{i \in B} \frac{dJ^{(i)}(\theta)}{d\theta_i}$, 即对所有 sample 训练一次,得到 label 差值,对每一参数减斜率 * 学 习率的平均值

当使用平方代价函数:

$$\theta_{i} = \theta_{i} - \frac{\eta}{|B|} \sum_{i \in B} x_{i}^{(j)} (x_{1}^{(j)} \theta_{1} + x_{2}^{(j)} \theta_{2} + \dots + const - y^{(j)}) = \theta_{i} - \frac{\eta}{|B|} \sum_{i \in B} x^{(i)} (\hat{y}^{(j)} - y^{(j)})$$

$$const = const - \frac{\eta}{|B|} \sum_{i \in B} (x_{1}^{(j)} \theta_{1} + x_{2}^{(j)} \theta_{2} + \dots + const - y^{(i)}) = const - \frac{\eta}{|B|} \sum_{i \in B} (\hat{y}^{(j)} - y^{(j)})$$

再共分代別函数:
$$\theta_{i} = \theta_{i} - \frac{\eta}{|B|} \sum_{i \in B} x_{i}^{(j)} (x_{1}^{(j)}\theta_{1} + x_{2}^{(j)}\theta_{2} + \dots + const - y^{(j)}) = \theta_{i} - \frac{\eta}{|B|} \sum_{i \in B} x^{(i)} (\hat{y}^{(j)} - y^{(j)})$$

$$const = const - \frac{\eta}{|B|} \sum_{i \in B} (x_{1}^{(j)}\theta_{1} + x_{2}^{(j)}\theta_{2} + \dots + const - y^{(i)}) = const - \frac{\eta}{|B|} \sum_{i \in B} (\hat{y}^{(j)} - y^{(j)})$$
对样本 i 的偏导数向量为 $\nabla_{\theta}J^{(i)}(\theta) = \begin{bmatrix} x_{1}^{(i)} \\ x_{2}^{(i)} \\ \dots \\ 1 \end{bmatrix} (\hat{y}^{(i)} - y^{(i)})$

交叉熵代价函数: $J(\theta) = \frac{1}{|B|} \sum_{i \in B} H(y^{(i)}, \hat{y}^{(i)})$

softmax 线性回归: 单层神经网络, 使用 softmax 代价函数

过拟合问题

1. 权重衰减: 在代价函数中惩罚高权重的值, 尽可能使所有权重值减小

新代价函数 = $J(\theta) + \frac{\lambda}{2} \sum_{w \in W} w^2$, 即 $J(\theta) + \frac{\lambda}{2}$ * 所有权重的平方和。 λ 为超参数,决定权重衰减 的程度

2. 丢弃法

每一权重(不包括 const)有 p 的几率 $\theta' = 0$,有 1-p 的几率 $\theta' = \frac{\theta}{1-p}$ 为了得到确切的值,在测试模型时较少使用

初始化参数

- **1.MXNet 默认随机初始化**: 所有权重 $\sim N(0,1)$ 的 normal distribution, 所有 const 取 0
- **2.Xavier 随机初始化**: 对一全连接层,输入个数 a,输出个数 b,则所有参数 $\sim U(-\sqrt{\frac{6}{a+b}},\sqrt{\frac{6}{a+b}})$ **预处理数据集**
 - 1. 特征标准化: $x' = \frac{x-\mu}{\sigma}$, 即统计中 z 值
- **2. 离散值转换成指示特征**:对于一个可取值为 A, B, C 的离散输入值,转换成 3 个数值输入。即如果原输入为 A,转换后 3 个数值输入为 1, 0, 0。原离散值为 B 则转换后为 0, 1, 0

3 convolutional neural network 卷积神经网络

互相关运算:

输入一个二维数组,和二维核 kernel 进行互相关运算,得到二维数组

二维核/卷积核/filter 过滤器:在输入数组上滑动,每次和二维数组矩阵一部分按元素相乘,相乘结果求和作为输出矩阵的元素

二维卷积层:

将输入和卷积核做互相关运算,结果加上 const 作为输出

4 Deep Feedforward Network (Deep Learning 第 6 章笔记)

SVM 支持向量机

仍通过 $w^Tx + b$ 得到输出,输出仅表示 identity,正值说明有 identity,负值说明没有

依据: 一个平面的公式为 $\beta_0 + \beta_1 x_1 + \beta_2 x_2 = 0$, 则当计算 $w^T x + b$ 得到值后,>0 则为平面上方的数据点,<0 为下方数据点

kernel trick

kernel method 将数据集表示成相近的两个数据点一组的集合 (x_i, x_j) , kernel method 将一对数据变为单一数据点 $x = k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$

kernel method 使用 ϕ 转换数据的纬度,而点乘化简后无需先计算 $\phi(x_i),\phi(x_j)$ 即可得到新数据点 x manifold hypothesis:

当训练数据集合包含大量无规律的数据,则将其中大部分视为无效数据,并只关心落在一个 manifold 上的数据。

例:生成图像文字声音时数据大多很集中,当像素文字随机分布时生成图像大多无意义

deep feedforward network/feedforward neural network/multilayer perceptrons MLP:

找到 θ 使得 $f(x;\theta)$ 最接近数据 y 值。 f^* 为最理想的 f, 即 $f^*(x) = y$ 。 θ 可为多个参数,如 $f(x;w,b) = x^Tw + b$

$$f^*(x) = f^{(3)}(f^{(2)}(f^{(1)}(x))), \ f^{(1)}$$
 为 network 第一层。每一 $f^{(i)}(x) = \phi(x;\theta)^T w$

神经网络

1. 结构:

输入层没有 weight, 第一 hidden layer 得到所有输入层的值。

hidden layer 和输出层所有输出都为 0/1, 非连续的值

- 2. 一层 hidden layer 计算方法: $f^{(i)}(x; W, c) = \sigma(W^T x + c)$
 - x 为前一层的输出向量,输入层 x 即为训练参数向量。
 - c为此层常数向量

 $z = W^T x$ 为一层 hidden layer 对输入取得的中间值向量,称 logit。 $a = \sigma(z + c)$ 为对 z + c 每一元素取 σ 的结果向量,a 即此层的输出。

W 为此层参数矩阵, 行数 = 前层节点数, 列数 = 当前层节点数

X 为多个参数点的训练集中前一层的输出矩阵,行数为数据点个数,列数为前一层节点数

XW 当 W 对参数集矩阵操作时,每行向量 z_i^T 此时为一层 hidden layer 各节点对第 i 参数点的中间值向量。对每行 $+c^T$ 并分别取 σ 得到输出矩阵, a_{ij} 为当使用第 i 个参数点时此层第 j 节点的输出

cross entropy

分部 p 和分部 q 间的 cross entropy $H(p,q) = -E_p(\log(q))$ 。为 expected value of $\log(q)$ with respect to distribution p

cost function

当使用 maximum likelihood 估计参数时,cost function $J(\theta)$ 为训练输入参数的分部和训练结果参数的分部间 cross-entropy: $J(\theta) = -E_{x,y \sim training_dataset}(log(p_{model}(y|x)))$

对于每一在训练集内的 (x, y),求 $log(p_{model}(y|x))$,并求 expected value。 $p_{model}(y|x)$ 即训练得到的 y 关于 x 的分部

例: 当 model 为 $y = N(f(x; \theta), 1)$ 正则分部时, $J(\theta) = -E_{x, v \sim data}(y - f(x; \theta))^2 + const$

output layer

当输出层的结果和不为 1 时,代表数据没有被准确分到某一类中,使用 exponentiation and normalisation

normalisation 后结果 $p = \frac{\tilde{p}}{\sum \tilde{p'}}$,为 \tilde{p} 在所有结果中占的比例。 \tilde{p} 为未 normalise 值假设输出层结果 $\tilde{P}(y|x)$ 有 $log(\tilde{P}(y|x)) = yz$

 $\tilde{P}(y|x) = exp(yz)$

 $P(y|x) = \frac{exp(yz)}{\sum_{y'=0}^{1} y'z}, \ \ \% \ \ {
m softmax} \ \ {
m function}$

 $P(y|x) = \sigma((2y-1)z)$, y, y' 为训练目标结果, 所以 $\sum_{y'=0}^{1}$ 包含所有 y'

对 softmax function 使用 log likelihood 原因: log $softmax(z)_i = z_i - log \sum_j exp(z_j)$ 。

当 z_i 为 dominant,并对应期望的输出项。 $\log softmax(z)_i = 0$ 。则此项不产生高 cost,否则产生 cost。

hidden unit

代表一个 hidden layer 节点的激发函数。

1. rectified linear unit: g(x) = max(0, x)

无法用于 gradient based learning, 由于一阶导为 0

基于 rectified linear unit 的优化: g(x) = max(0, x) + a * min(0, x)

- a = -1: absolute value rectifier
- a 为极小值: leaky ReLU
- a 为可学习值: Parametric ReLU, PReLU
- 2. Maxout units

将 x 分为多组,每组 h(x) 为组内最高值

backward propagation

一种计算 gradient 的方法,区别于使用 gradient 进行学习的 stochastic gradient descent 算法:

```
After the forward computation, compute the gradient on the output layer: m{g} \leftarrow \nabla_{m{y}} J = \nabla_{m{y}} L(\hat{m{y}}, m{y}) for k = l, l - 1, \ldots, 1 do Convert the gradient on the layer's output into a gradient into the prenonlinearity activation (element-wise multiplication if f is element-wise): m{g} \leftarrow \nabla_{m{a}^{(k)}} J = m{g} \odot f'(m{a}^{(k)}) Compute gradients on weights and biases (including the regularization term, where needed): \nabla_{m{b}^{(k)}} J = m{g} + \lambda \nabla_{m{b}^{(k)}} \Omega(\theta) \nabla_{m{W}^{(k)}} J = m{g} \ h^{(k-1)\top} + \lambda \nabla_{m{W}^{(k)}} \Omega(\theta) Propagate the gradients w.r.t. the next lower-level hidden layer's activations: m{g} \leftarrow \nabla_{h^{(k-1)}} J = m{W}^{(k)\top} m{g} end for
```