Memory Network For Question Answering

Virgile Audi Nicolas Drizard

TF: Sam Wiseman May, 3rd 2015

Outline

- Motivation
 - Questions
 - Intuition
- 2 Baseline Model
- 3 End-to-end Memory Network
 - Architecture
 - Parameters Tying
 - Implementation Details
- Result
- 5 Future Steps

- Motivation
 - Questions
 - Intuition
- 2 Baseline Model
- 3 End-to-end Memory Network
 - Architecture
 - Parameters Tying
 - Implementation Details
- 4 Result
- Future Steps

Supporting Facts

Story

Mary went to the bathroom. John moved to the hallway. Mary travelled to the office.

Q Where is Mary? **A** office **Story**

John picked up the apple. John went to the office. John went to the kitchen. John dropped the apple.

Q Where was the apple before the kitchen? **A** office

Reasoning

Story

Sheep are afraid of wolves. Cats are afraid of dogs. Mice are afraid of cats. Gertrude is a sheep.

Q What is Gertrude afraid of? **A** wolves **Story**

Lily is a swan. Lily is white. Bernhard is green. Greg is a swan.

Q What color is Greg? **A** white

Intuition

How do Humans build their answer?

- Type of question
- Occurrence of the words from the question
- Associations of words (memory)
- Meaning of words (reasoning, interpretation)

- Motivation
 - Questions
 - Intuition
- 2 Baseline Model
- 3 End-to-end Memory Network
 - Architecture
 - Parameters Tying
 - Implementation Details
- 4 Result
- Future Steps

Count Based Model

Prediction based on two features:

$$\hat{y}(X,Q) = argmax(\log(f_1(X)) + \log(f_2(Q)))$$

with

- (X, Q) tuple story, question
- $f_1(X)$: answer words counts in the story (weighted by order of appearance)
- $f_2(Q)$: embedding of the question based on possible answers question word

- Motivation
 - Questions
 - Intuition
- 2 Baseline Model
- 3 End-to-end Memory Network
 - Architecture
 - Parameters Tying
 - Implementation Details
- 4 Result
- 5 Future Steps

Single Hop Architecture

Figure: Single Hop architecture

Multiple Hops Architecture

Figure: Multiple Hops architecture

Parameters Tying

Two Approaches to reduce the number of parameters:

Adjacent

•
$$A^{k+1} = C^k$$

•
$$B = A^1$$

RNN-like

•
$$A^1 = A^2 = ... = A^k$$

•
$$C^1 = C^2 = ... = C^k$$

•
$$u^{k+1} = Hu^k + o^k$$

Implementation Tricks

- bag-of-words representation $x_i = \{x_{i1}, ..., x_{is}\}$ becomes $m_i = \sum_i Ax_{ij}$
- Temporal encoding $m_i = \sum_i Ax_{ij} + T_A(i)$
- high variance, best model over several training

- Motivation
 - Questions
 - Intuition
- 2 Baseline Model
- 3 End-to-end Memory Network
 - Architecture
 - Parameters Tying
 - Implementation Details
- Result
- Future Steps

Train Results

Task	MemNN 1 hop	MemNN 3 hops	Baseline
	adjacent	adjacent	
1: 1 supporting fact	100	99	50
2: 2 supporting facts	16	90	40
3: 3 supporting facts	25	85	26
4: Two arg relation	71	79	34
5: Three arg relation	86	89	48
6: Yes/No	51	97	50
7: Counting	87	80	49
8: Lists/Sets	90	90	0
9: Simple Negation	64	86	64
10: Indefinite Knowledge	61	85	44
11: Basic coreference	80	87	63
12: Conjunction	100	100	60
13: Compound Coref	93	93	68
14: Time Reasoning	72	94	29
15: Basic Deduction	39	39	14
16: Basic Induction	50	54	52
17: Size Reasoning	53	62	48
18: Positional Reasoning	61	63	53
19: Path Finding	24	24	0
20: Agent's Motivation	92	92	52
TOTAL	66	82	

- Motivation
 - Questions
 - Intuition
- 2 Baseline Model
- 3 End-to-end Memory Network
 - Architecture
 - Parameters Tying
 - Implementation Details
- Result
- 5 Future Steps

- Positional Encoding
- MC Test dataset
- Dynamic Memory