Leveraging Online Formative **Assessments to Enhance Predictive** Learning Analytics Models

Okan Bulut¹ Seyma Nur Yildirim-Erbasli¹ Guher Gorgun¹ 27956.04

Yizhu Gao¹

Tarid Wongvorachan¹

Ka Wing Lai¹

Jinnie Shin²

¹University of Alberta ²University of Florida

Learning Analytics → Prediction of Academic Performance

[Some] Predictors of Student Learning

"Black-Box" Models of Learning

Learning analytics must be about learning (Gašević et al., 2015).

[Online] Formative Assessments

Monitoring students' progress

Providing students with feedback

Adjusting instructional strategies

Grades/completion records
Frequency of test attempts
Time spent on formative assessments
Progress throughout the semester

Our Study

An asynchronous, undergraduate course for preservice teachers

- Instructor A (Fall 2020, n = 198)
 - 10 online formative quizzes (2-point scale)
- Instructor A (Fall 2021, n = 234)
 - 11 online formative quizzes (4-point scale)
- Instructor B (Fall 2021, n = 123)
 - 5 formative quizzes (auto-scored, unlimited attempts) + 5 learning activities (self-graded)

Feature Extraction & Statistical Modeling

Goal: To predict students' final course performance using extracted features **Method:** Stepwise regression with forward selection (for each class)

Results (1)

Extracted Features	Instructor A (Fall 2020)	Instructor A (Fall 2021)	Instructor B (Fall 2021)
	(n = 198)	(n = 234)	(n = 123)
Formative assessment performance (M)	0.69	0.71	0.73
Formative assessment performance (SD)	-0.52	-0.55	-0.22
Total clicks	0.32	0.22	0.22
Time difference before due date (M)	0.24	0.31	0.40
Time difference after quiz availability (M)	-0.40	-0.32	-0.37
Time taken to complete the quiz (M)	-0.03	-0.04	0.07
Number of attempts (M)	0.08	0.02	0.17

Note: *M* = Mean values. *SD* = Standard deviation values.

Results (2)

Instructor A with formative quizzes (graded)

- 1. Average formative assessment scores ($R^2 = 0.48 0.51$)
- 2. Number of clicks in formative assessments ($R^2 = 0.49$)

Instructor B with formative quizzes/activities (auto-scored or self-graded)

- 1. Average formative assessment scores ($R^2 = 0.49$)
- 2. Time difference between first attempt and due date ($R^2 = 0.55$)
- 3. Number of clicks in formative assessments ($R^2 = 0.56$)

Final Remarks

Conclusions:

- Online formative assessments predict final course performance very well.
- The number of clicks (i.e., engagement with formative assessments) is an important secondary predictor.
- Time-related predictors become more important when course materials are released sequentially (rather than all course materials are released at once).

Future Directions:

- Using performance by content areas in prediction LA models (to better inform instructors)
- Impact of accessing (formative) exam reports on final course performance (Bulut et al., 2019)
- Using predictive LA models to inform students' feedback-based action plan

Thank You!

https://bit.ly/LAK22Formative

