Solution Section 2.2 – Future Value of an Annuity

Exercise

Recently, Guaranty Income Life offered an annuity that pays 6.65% compounded monthly. If \$500 is deposited into this annuity every month, how much is in the account after 10 years? How much of this is interest?

Solution

Given:
$$PMT = 500$$
 $r = 6.65\% = .0665$ $m = 12$ $t = 10$

$$i = \frac{r}{m} = \frac{.0665}{12} \quad n = mt = 12(10) = 120$$

$$FV = PMT \frac{(1+i)^n - 1}{i}$$

$$= 500 \frac{\left(1 + \frac{.0665}{12}\right)^{120} - 1}{\frac{.0665}{12}}$$

$$= $84,895.10$$

Total deposits: 500(120) = \$60,000.00

Interest =
$$FV - Deposits$$

= $84,895.40 - 60,000$
= $$24,895.40$

Exercise

Recently, USG Annuity Life offered an annuity that pays 4.25% compounded monthly. If \$1,000 is deposited into this annuity every month, how much is in the account after 15 years? How much of this is interest?

Given:
$$PMT = 1,000$$
 $r = 4.25\% = .0425$ $m = 12$ $t = 15$ $i = \frac{r}{m} = \frac{.0425}{12}$ $n = mt = 12(15) = 180$ $FV = PMT \frac{(1+i)^n - 1}{i}$ $= 1000 \frac{\left(1 + \frac{.0425}{12}\right)^{180} - 1}{\frac{.0425}{12}}$ $= $251,185.76$

Total deposits:
$$1,000(180) = $180,000.00$$

$$Interest = FV - Deposits$$

= 251,185.76 - 180,000
= \$71,185.76

In order to accumulate enough money for a down payment on a house, a couple deposits \$300 per month into an account paying 6% compounded monthly. If payments are made at the end of each period, how much money will be in the account in 5 years?

Solution

Given:
$$PMT = 300$$
 $r = 6\% = .06$ $m = 12$ $t = 5$

$$i = \frac{r}{m} = \frac{.06}{12} = 0.005$$
 $n = mt = 12(5) = 60$

$$FV = PMT \frac{(1+i)^n - 1}{i}$$

$$= 300 \frac{(1+.005)^{60} - 1}{.005}$$

$$= $20,931.01$$

Exercise

A self-employed person has a Keogh retirement plan. (This type of plan is free of taxes until money is withdrawn.) If deposits of \$7,500 are made each year into an account paying 8% compounded annually, how much will be in the account after 20 years?

Given:
$$PMT = 7,500$$
 $r = 8\% = .08$ $m = 1$ $t = 20$

$$i = \frac{r}{m} = \frac{.08}{1} = 0.08$$
 $n = mt = 1(20) = 20$

$$FV = PMT \frac{(1+i)^n - 1}{i}$$

$$= 7,500 \frac{(1+.08)^{20} - 1}{.08}$$

$$= $343,214.73$$

Sun America recently offered an annuity that pays 6.35% compounded monthly. What equal monthly deposit should be made into this annuity in order to have \$200,000 in 15 years?

Solution

Given:
$$FV = 200,000$$
 $r = 6.35\% = .0635$, $m = 12$, $t = 15$

$$i = \frac{r}{m} = \frac{.0635}{12} \quad n = mt = 12(15) = 180$$

$$PMT = FV \frac{i}{(1+i)^n - 1}$$

$$= 200,000 \frac{.0635}{12} \frac{1}{(1+.0635)^{180}} - 1$$

$$= $667.43 \quad per month$$

$$200000 (.0635/12) / ((1+.0635/12)^{^180} - 1)$$

Exercise

Recently, The Hartford offered an annuity that pays 5.5% compounded monthly. What equal monthly deposit should be made into this annuity in order to have \$100,000 in 10 years?

Given:
$$FV = 100,000 \quad r = 5.5\% = .055, \quad m = 12, \quad t = 10$$

$$i = \frac{r}{m} = \frac{.055}{12} \quad n = mt = 12(10) = 120$$

$$PMT = FV \frac{i}{(1+i)^n - 1}$$

$$= 100,000 \frac{\frac{.055}{12}}{\left(1 + \frac{.055}{12}\right)^{120} - 1}$$

$$= \$626.93 \quad per month$$

$$100000 (.055/12) / ((1+.055/12)^{^1} - 100000)$$

Compu-bank, an online banking service, offered a money market account with an APY of 4.86%.

- a) If interest is compounded monthly, what is the equivalent annual nominal rate?
- b) If you wish to have \$10,000 in the account after 4 years, what equal deposit should you make each month?

Solution

Given:
$$APY = 4.86\% = .0486$$

 $APY = \left(1 + \frac{r}{m}\right)^m - 1$
a) $m = 12$
 $.0486 = \left(1 + \frac{r}{12}\right)^{12} - 1$ Add1 on both sides
 $1.0486 = \left(1 + \frac{r}{12}\right)^{12}$
 $(1.0486)^{1/12} = 1 + \frac{r}{12}$
 $\frac{r}{12} = (1.0486)^{1/12} - 1$
 $r = 12\left[(1.0486)^{1/12} - 1\right]$
 ≈ 0.0475

The equivalent annual nominal rate r = 4.75%

b) Given:
$$FV = \$10,000 \quad r = .0475, \quad m = 12, \quad t = 4$$

$$i = \frac{r}{m} = \frac{.0475}{12} \quad n = mt = 12(4) = 48$$

$$PMT = FV \frac{i}{(1+i)^n - 1}$$

$$= 10,000 \frac{.0475}{12}$$

$$\left(1 + \frac{.0475}{12}\right)^{48} - 1$$

$$= \$189.58 \quad per month$$

$$10000 (.0475/12) / ((1 + .0475/12) ^60 - 1)$$

American Express's online banking division offered a money market account with an APY of 5.65%.

- a) If interest is compounded monthly, what is the equivalent annual nominal rate?
- b) If you wish to have \$1,000,000 in the account after 8 years, what equal deposit should you make each month?

Solution

Given:
$$APY = 5.65\% = .0565$$

 $APY = \left(1 + \frac{r}{m}\right)^m - 1$
a) $m = 12$
 $.0565 = \left(1 + \frac{r}{12}\right)^{12} - 1$ Add1 on both sides
 $1.0565 = \left(1 + \frac{r}{12}\right)^{12}$
 $\left(1.0565\right)^{1/12} = 1 + \frac{r}{12}$
 $\frac{r}{12} = \left(1.0565\right)^{1/12} - 1$
 $r = 12\left[\left(1.0565\right)^{1/12} - 1\right]$
 ≈ 0.0551

The equivalent annual nominal rate r = 5.51%

b) Given:
$$FV = \$1,000,000 \quad r = .0551, \quad m = 12, \quad t = 8$$

$$i = \frac{r}{m} = \frac{.0551}{12} \quad n = mt = 12(8) = 96$$

$$PMT = FV \frac{i}{(1+i)^n - 1}$$

$$= 1,000,000 \frac{.0551}{12}$$

$$= 1,000,000 \frac{.0551}{(1+.0551)^{96}} - 1$$

$$= \$8,312.47 \quad per month$$

Find the future value of an annuity due if payments of \$500 are made at the beginning of each quarter for 7 years, in an account paying 6% compounded quarterly.

Solution

Given:
$$PMT = 500$$
 $r = 6\% = .06$ $m = 4$ $t = 7$ $i = \frac{r}{m} = \frac{.06}{4} = 0.015$ $[\underline{n} = mt + 1 = 4(7) + 1 = \underline{29}]$

Since you put money at the beginning of each month, we need to add the first payment.

$$FV = PMT \frac{(1+i)^n - 1}{i}$$

$$= 500 \frac{(1+.015)^{29} - 1}{.015}$$

$$= $17,499.35$$

Exercise

A 45 year-old man puts \$2500 in a retirement account at the end of each quarter until he reaches the age of 60, then makes no further deposits. If the account pays 6% interest compounded quarterly, how much will be in the account when the man retires at age 65?

Solution

For the 15 years
$$(60-45=15)$$
:

$$PMT = 2,500 \quad r = 6\% = .06 \quad m = 4 \quad t = 15$$

$$i = \frac{r}{m} = \frac{.06}{4} = 0.015 \quad n = mt + 1 = 4(15) = 60$$

$$FV = PMT \frac{(1+i)^n - 1}{i}$$

$$= 2,500 \frac{(1+.015)^{60} - 1}{.015}$$

$$= $240,536.63$$

For the remaining 5 years, the FV amount is the present amount (P) at 6% compounded quarterly.

$$A = P(1+i)^{n}$$

$$= 240,536.63(1+.015)^{4(5)}$$

$$= $323,967.96$$
240536.63(1+.015)^\(\cdot\)(5*4)

A father opened a savings account for his daughter on the day she was born, depositing \$1000. Each year on her birthday he deposits another \$1000, making the last deposit on her 21st birthday. If the account pays 5.25% interest compounded annually, how much is in the account at the end of the day on his daughter's 21st birthday? How much interest has been earned?

Solution

Given:
$$PMT = 1,000 \quad r = 5.25\% = .0525 \quad m = 1 \quad t = 21$$

$$i = \frac{r}{m} = \frac{.0525}{1} = 0.0525 \quad |\underline{n} = mt + 1 = 1(21) + 1 = \underline{22}|$$

Since you put money at the beginning of each year, we need to add the first payment.

$$FV = PMT \frac{(1+i)^n - 1}{i}$$

$$= 1,000 \frac{(1+.0525)^{22} - 1}{.0525}$$

$$= $39,664.40$$

The Total contribution: 1000(22) = \$22,000.00

The interest earned: 39,664.40 - 22,000 = \$17,664.40

Exercise

You deposits \$10,000 at the beginning of each year for 12 years in an account paying 5% compounded annually. Then you put the total amount on deposit in another account paying 6% compounded semi-annually for another 9 years. Find the final amount on deposit after the entire 21-year period.

Solution

Given:
$$PMT = 10,000 \quad r = 5.\% = .05 \quad m = 1 \quad t = 12$$

$$i = \frac{r}{m} = \frac{.05}{1} = 0.05 \quad |\underline{n} = mt + 1 = 12 + 1 = 13|$$

$$FV_{12} = PMT \frac{(1+i)^n - 1}{i}$$

$$= 10,000 \frac{(1+.05)^{13} - 1}{.05}$$

$$= \$177,129.83|$$

$$10000 ((1+.05)^{^13} - 1)/.05$$

Since the last deposit did mature yet when roll over, then:

$$P = 177,129.83 - 10,000 = $167,129.83$$

$$i = \frac{r}{m} = \frac{.06}{.00} = 0.03$$
 $[\underline{n} = 9(2) = 18]$

$$A = P(1+i)^{n}$$

$$= 167,129.83(1+.03)^{18}$$

$$= $284,527.35|$$
167129.83(1.03)^18

You need \$10,000 in 8 years.

- a) What amount should be deposit at the end of each quarter at 8% compounded quarterly so that he will have his \$10,000?
- b) Find your quarterly deposit if the money is deposited at 6% compounded quarterly.

a) Given:
$$FV = 10,000 \quad r = 8\% = .08, \quad m = 4, \quad t = 8$$

$$i = \frac{r}{m} = \frac{.08}{4} = .02 \quad n = mt = 4(8) = 32$$

$$PMT = FV \frac{i}{(1+i)^n - 1}$$

$$= 10,000 \frac{.02}{(1+.02)^{32} - 1}$$

$$= $226.11 \quad each quarter$$

b) Given:
$$FV = 10,000 \quad r = 6\% = .06, \quad m = 4, \quad t = 8$$

$$i = \frac{r}{m} = \frac{.06}{4} = .015 \quad n = 4(8) = 32$$

$$PMT = FV \frac{i}{(1+i)^n - 1}$$

$$= 10,000 \frac{.015}{(1+.015)^{32} - 1}$$

$$= $245.77 \mid each quarter$$

You want to have a \$20,000 down payment when you buy a car in 6 years. How much money must you deposit at the end of each quarter in an account paying 3.2% compounded quarterly so that you will have the down payment you desire?

Solution

Given:
$$FV = 20,000 \quad r = 3.2\% = .032, \quad m = 4, \quad t = 6$$

$$i = \frac{r}{m} = \frac{.032}{4} = .008 \quad n = 4(6) = 24$$

$$PMT = FV \frac{i}{(1+i)^n - 1}$$

$$= 20,000 \frac{.008}{(1+.008)^{24} - 1}$$

$$= \$759.21 \quad quarterly$$

$$100000 (.055/12) / ((1+.055/12)^{^120} - 1)$$

Exercise

You sell a land and then you will be paid a lump sum of \$60,000 in 7 years. Until then, the buyer pays 8% simple interest quarterly.

- a) Find the amount of each quarterly interest payment on the \$60,000
- b) The buyer sets up a sinking fund so that enough money will be present to pay off the \$60,000. The buyer will make semiannual payments into the sinking fund; the account pays 6% compounded semiannually. Find the amount of each payment into the fund.

Given:
$$P = 60,000 \quad r = 8\% = .08, \quad m = 4, \quad t = 7$$

a) $I = Prt$

$$= 60,000 (.08) \left(\frac{1}{4}\right)$$

$$= \$1,200.00$$
b) Given: $FV = 60,000 \quad r = 6\% = .06, \quad m = 2, \quad t = 7$

$$i = \frac{r}{m} = \frac{.06}{2} = .03 \quad n = 2(7) = 14$$

$$PMT = FV \frac{i}{(1+i)^n - 1}$$

$$= 60,000 \frac{.03}{(1+.03)^{14} - 1}$$

$$= \$3511.58$$

 $i = \frac{.06}{2} = .03$ (Balance) i = .03(Balance)

Pmt #	Deposit Amount	I = .03*Balance	Interest Earned		Balance
1	\$3,511.58		\$0		\$3,511.58
2	\$3,511.58	.03 * 3,511.58	\$105.35	2(3,511.58)+105.35	\$7,128.51
3	\$3,511.58	.03 * 7128.51	\$213.86	7128.51 + 3, 511.58 + 213.86	\$10,853.95
4	\$3,511.58	.03 * 10853.95	\$325.62	10853.95 + 3511.58 + 325.62	\$14,691.15
5	\$3,511.58	.03 * 14691.15	\$440.73	14691.15 + 3511.58 + 440.73	\$18,643.46
6	\$3,511.58	.03 * 18643.46	\$559.30	18643.46 + 3511.58 + 559.30	\$22,714.34
7	\$3,511.58	.03 * 22714.34	\$681.43	22714.34 + 3511.58 + 681.43	\$26,907.35
8	\$3,511.58	.03 * 26907.35	\$807.22	26907.35 + 3511.58 + 807.22	\$31,226.15
9	\$3,511.58	.03 * 31226.15	\$936.78	31226.15 + 3511.58 + 936.78	\$35,674.51
10	\$3,511.58	.03 * 35674.51	\$1,070.24	35674.51 + 3511.58 + 1070.24	\$40,256.33
11	\$3,511.58	.03 * 40256.33	\$1,207.69	40256.33 + 3511.58 + 1207.69	\$44,975.60
12	\$3,511.58	.03 * 44975.60	\$1,349.57	44975.60 + 3511.58 + 1349.57	\$49,843.13
13	\$3,511.58	.03 * 49.843.13	\$1,495.09	49843.13 + 3511.58 + 1495.09	\$54,843.13
14	\$3,511.58	.03 * 54843.13	\$1,645.29	54843.13 + 3511.58 + 1645.29	\$60,000.00