

Number Theory

Chapter 4

Edited by: Dr. Meshal Alfarhood

Divisibility and Modular Arithmetic

Section 4.1

Section Summary

Division

Division Algorithm

Modular Arithmetic

Division

Definition: If a and b are integers with $a \ne 0$, then a divides b if there exists an integer c such that b = ac.

- The notation $a \mid b$ denotes that $a \mid b$.
- If a does not divide b, we write $a \nmid b$.
- If $a \mid b$, then $\frac{b}{a}$ is an integer.

Examples: 3∤7 and 3 | 12.

Properties of Divisibility

Theorem: Let a, b, and c be integers, where $a \ne 0$.

- i. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- ii. If **a**|**b**, then **a**|**bc** for all integers c;
- iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof of (i):

- **Direct proof:** Suppose $a \mid b$ and $a \mid c$. Then, there are integers s and t with b=as and c=at.
- Hence, b+c = as+at = a(s+t). Therefore, $a \mid (b+c)$

Division Algorithm

Division Algorithm: If $\frac{a}{r}$ is an integer and $\frac{d}{r}$ a positive integer, then there are unique integers $\frac{d}{r}$ and $\frac{d}{r}$, with $0 \le r < d$, such that $\frac{d}{r} = dq + r$.

- *a* is called the *dividend*.
- *d* is called the *divisor*.
- q is called the quotient.
- *r* is called the *remainder*.

$$q = a \operatorname{div} d = \lfloor a/d \rfloor$$

 $r = a \operatorname{mod} d = a - d \lfloor a/d \rfloor$

Examples:

- 1. What are the quotient and remainder when 101 is divided by 11?
 - The quotient = 101 div 11 = $[^{101}/_{11}] = 9$.
 - The remainder = 101 mod 11 = $101 11[^{101}/_{11}] = 101 99 = 2$.
 - $101 = 9 \cdot 11 + 2$.
- 2. What are the quotient and remainder when -11 is divided by 3?
 - The quotient = -11 div 3 = $[-11/_3] = -4$.
 - The remainder = -11 mod 3 = -11 3[-11/3] = -11 (-12) = 1.
 - $-11 = (-4) \cdot 3 + 1$.

Modular Arithmetic

Definition: If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a - b.

- The notation $a \equiv b \pmod{m}$ says that $a \in b \pmod{m}$.
- If a is not congruent to b modulo m, we write $a \not\equiv b \pmod{m}$
- Two integers are congruent mod m if and only if they have the same remainder when divided by m. ($a \mod m = b \mod m$).

Example: Determine whether 17 is congruent to 5 modulo 6? and whether 24 and 14 are congruent modulo 6?

Solution:

- 17 \equiv 5 (mod 6) \rightarrow because 6 divides 17 5 = 12.
- 24 $\not\equiv$ 14 (mod 6) \rightarrow because 6 does not divide 24 14 = 10.

More on Congruence Relation

Theorem: Let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if there is an integer k such that a = b + km.

Proof:

- If $a \equiv b \pmod{m}$, then $m \mid a b$. (by the definition of congruence) Hence, there is an integer k such that $a-b=km \rightarrow a=b+km$. (by the definition of division)
- Also, if there is an integer k such that a=b+km, then a-b=km. Hence, $m \mid a-b$ and $a \equiv b \pmod{m}$.

Congruence of Sums and Products

Theorem: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a+c \equiv b+d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Proof:

- $a \equiv b \pmod{m} \rightarrow a = b + k_1 m$
- $c \equiv d \pmod{m} \rightarrow c = d + k_2 m$.
- Therefore,
 - $a + c = (b + k_1 m) + (d + k_2 m)$ $a + c = (b + d) + m(k_1 + k_2)$ $(a + c) - (b + d) = m(k_1 + k_2) \rightarrow m | ((a + c) - (b + d)) \rightarrow a + c \equiv b + d \pmod{m}$

Example: Because $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$, it follows from the previous Theorem that:

$$18 \equiv 3 \pmod{5}$$
$$77 \equiv 2 \pmod{5}$$

Algebraic Manipulation of Congruences

- Multiplying both sides of a valid congruence by an integer preserves validity. $a \cdot c \equiv b \cdot c \pmod{m}$
- Adding an integer to both sides of a valid congruence preserves validity. $a+c \equiv b+c \pmod{m}$
- Dividing a congruence by an integer does not always produce a valid congruence.
 - Example: The congruence 14

 8 (mod 6) holds. But dividing both sides by 2 does not produce a valid congruence since 7

 4 (mod 6).

Exercise

Exercise 1: Find the remainder of the following:

1.
$$3 \mod 7 = 3$$
 $[3 = 0 \cdot 7 + 3]$

2. 13 mod 7 = 6
$$[13 = 1 \cdot 7 + 6]$$

3.
$$-3 \mod 7 = 4$$
 [-3 = (-1) · 7 + 4]

4. -13 mod 7 = 1
$$[-13 = (-2) \cdot 7 + 1]$$

Exercise 2: Is $112233 \equiv 123 \pmod{10}$?

• Yes. Both numbers have the same remainder (=3) when divided by 10.

Exercise 3: Find the integer $\underline{\mathbf{a}}$ such that $\mathbf{a} \equiv 43 \pmod{23}$, and $-22 \le \mathbf{a} \le 0$.

•
$$a - 43 = 23k$$

- $a = 43+23k \rightarrow This$ is the general solution of the value of **a**.
- Since the question asks for $[-22 \le a \le 0]$:

•
$$a = 43 + 23(-2) = -3$$