# Rendering techniques

Tristan Gouge

# **Contents**

| 1 |     |              | mination is Global illumination            |
|---|-----|--------------|--------------------------------------------|
| 2 | Phy | sics         |                                            |
|   | 2.1 | The p        | hysics behind the images                   |
|   |     |              | Electronic waves, light transport equation |
|   |     | 2.1.2        | Poynting vector, Radiance, Radiant energy  |
|   |     | 2.1.3        | The rendering equation                     |
| 3 | Ren | dering       | techniques                                 |
|   | 3.1 | ed Rendering |                                            |
|   |     | 3.1.1        | The illumination model                     |
|   |     | 3.1.2        | Variations and subtilities                 |

## 1 Global Illumination

## 1.1 What is Global illumination

**Definition 1.1.1** (Global Illumination). *Global illumination* or *indirect illumination* is a set of algorithms that take into account not only direct light (from light sources) but also indirect lights (reflections, diffusion, ...)

## 2 Physics

### 2.1 The physics behind the images

#### 2.1.1 Electronic waves, light transport equation

**Definition 2.1.1** (Electromagnetic radiation). It consists of waves of EM which propagate through space It's behaviour is determined by the Maxwell equations:

- $\operatorname{div} \vec{E} = \frac{\rho}{\epsilon_0}$ ,
- $\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ ,
- $\operatorname{div} \vec{B} = 0$ ,
- rot  $\vec{B} = \mu_0 \left( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$ .

Where  $\vec{j}$  is the current density,  $\rho$  is the charge density.

**Theorem 2.1.1** (Light transport equation). Every solution to Maxwell equation respect the following transport equation

- $\Delta \vec{E} = \frac{1}{c_0^2} \frac{\partial^2 \vec{E}}{\partial t^2}$
- $\Delta \vec{B} = \frac{1}{c_0^2} \frac{\partial^2 \vec{B}}{\partial t^2}$

where  $c_0^2 = \mu_0 \epsilon_0$  and  $\Delta$  is the Laplacian.

### 2.1.2 Poynting vector, Radiance, Radiant energy...

**Definition 2.1.2** (Poynting vector). The Poynting vector is the vector defined by:

$$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}.$$

**Theorem 2.1.2** (Poynting theorem).

$$-\frac{\partial u}{\partial t} = \operatorname{div} \vec{\Pi} + \vec{j} \cdot \vec{E}$$

Where  $u = \frac{1}{2} \left( \epsilon_0 E^2 + \frac{B^2}{\mu_0} \right)$  is the local electromagnetic energy, j is the current density.

**Definition 2.1.3** (Radiant Energy). It is the energy of an electromagnetic radiation, given by The radiant energy flux is given by

$$\Phi_e = \frac{\mathrm{d}Q_e}{\mathrm{d}t}$$

where

$$Q_e = \int_{\Sigma} \vec{\Pi} \cdot \vec{n} \, dA$$

and  $\Sigma$  is a closed surface.

Theorem 2.1.3.

$$\Phi_e \approx \int_\Sigma \left< |\Pi| \right> \cos \alpha \ \mathrm{d}A$$

Where  $\alpha$  is the angle between  $\vec{\Pi}$  and  $\vec{n}$ .

**Definition 2.1.4** (Radiance). The radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area

$$L_{e,\Omega} = \frac{\partial^2 \Phi_e}{\partial \Omega \, \partial (A \cos \theta)}, \label{eq:LeOmega}$$

where  $\Omega$  is the solid angle,  $A\cos\theta$  the projected area.

#### 2.1.3 The rendering equation

**Definition 2.1.5.** The rendering equation is an equation that gives the relation between the outgoing radiance along an output direction  $\omega_o$  at a given point, and the incoming radiance:

$$L_o(\vec{x},\omega_o,t) = L_e(\vec{x},\omega_o,t) + \int_{\Omega} f_r(\vec{x},\omega_i,\omega_o,t) L_i(\vec{x},\omega_i,\omega_o,t) (\omega_i \cdot \vec{n}) \, \mathrm{d}\omega_i.$$

where  $L_o$  is the total outgoind radiance along  $\omega_0$ ,  $\vec{x}$  the position, t the time,  $L_e$  the emitted radiance,  $L_i$  the incoming radiance,  $f_r$  is the BRDF function.

The equation can also be modified to take into account the wavelength

The previous equation has some limitations: it can't model non-linear effects, interference, polarization...

See transient rendering (Definition ??) and volume rendering (Definition ??).

**Definition 2.1.6** (Bidirectional reflectance distribution function — BRDF).

## 3 Rendering techniques

### 3.1 Whitted Rendering

In his 1980 paper [Whi80], J. Turner Whitted introduced the notion of recursive raytracing.

#### 3.1.1 The illumination model

The light from an object to the viewer consist of a specular reflection S, a transmission reflection T and a diffusive component D. Thus the Whitted model is given by the equation

$$I = I_a + \sum_{j} D(\vec{L}_j) + k_s S + k_t T, \tag{3.1}$$

where

- I is the reflected intensity,
- $I_a$  is the reflection due to ambient lighting,
- $k_t$  the transmission coefficient,
- $k_s$  is the specular reflection constant,
- $\overrightarrow{N}$  is the unit surface normal,
- $\vec{R}$  is the reflected direction,
- $\vec{P}$  is the refracted direction,
- $\overrightarrow{L}_j$  is the vector in the direction of the jth light source,
- S is the intensity of light incident from the direction  $\overrightarrow{R}$ ,
- T is the intensity of light incident from the direction  $\overrightarrow{P}$ ,
- Finally,  $D(\vec{a})$  gives the diffuse contribution comming from direction  $\vec{a}$

Note that both  $\overrightarrow{R}$  and  $\overrightarrow{P}$  are computed thanks to the Snell-Descartes formulas.



Figure 3.1: The vectors useful in the Whitted illumination model

To compute S and T, one need to cast rays more rays until a maximum depth has been reached when the ray does not intersect any object.

#### 3.1.2 Variations and subtilities

The function D should check whether path between the object and the light is not obstructed. If so, the light cannot contribute to the illumination. To check whether the contribution of a light should be taken into consideration, a *shadow ray* is cast from the light up to the surface to check intersection with objects.

# **Bibliography**

[Whi80] Turner Whitted. "An improved illumination model for shaded display." In: Communications of the ACM 23.6 (June 1, 1980), pp. 343-349. ISSN: 0001-0782. DOI: 10.1145/358876.358882. URL: https://doi.org/10.1145/358876.358882 (visited on 11/08/2022).