

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A01N 63/00, A61K 39/395, C12N 15/00, A01N 61/00, C07H 21/02	A1	(11) International Publication Number: WO 99/49735 (43) International Publication Date: 7 October 1999 (07.10.99)
(21) International Application Number: PCT/US99/06644		(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 26 March 1999 (26.03.99)		
(30) Priority Data: 60/079,759 27 March 1998 (27.03.98) US 60/095,153 3 August 1998 (03.08.98) US		Published <i>With international search report.</i>
(71) Applicant (<i>for all designated States except US</i>): FOX CHASE CANCER CENTER [US/US]; 7701 Burholme Avenue, Philadelphia, PA 19111 (US).		
(72) Inventors; and		
(75) Inventors/Applicants (<i>for US only</i>): KRUH, Gary [US/US]; 241 South 6th Street #809, Philadelphia, PA 19106 (US). LEE, Kun [KR/US]; 21 Barrington Drive, Cranbury, NJ 08512 (US). BELINSKY, Martin [US/US]; 625 Parmentier Road, Warminster, PA 18974 (US). BAIN, Lisa [US/US]; 284 Penny Lane, Townville, SC 29689 (US).		
(74) Agents: RIGAUT, Kathleen, D. et al.; Dann, Dorfman, Herrell and Skillman, Suite 720, 1601 Market Street, Philadelphia, PA 19103 (US).		
(54) Title: MPR-RELATED ABC TRANSPORTER ENCODING NUCLEIC ACIDS AND METHODS OF USE THEREOF		
(57) Abstract		
Novel human MOAT genes and their encoded proteins are provided herein. The MRP-related ABC transporters encoded by the disclosed nucleic acid sequences play a pivotal role in the efflux of pharmacologically beneficial reagents from tumor cells. MOAT genes and their encoded proteins provide valuable therapeutic targets for the design of anti-cancer agents which inhibit the aberrant growth of malignant cells.		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon			PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

**MRP-Related ABC Transporter
Encoding Nucleic Acids and Methods of Use Thereof**

Pursuant to 35 U.S.C. §202(c) it is acknowledged that the U.S. Government has certain rights in the invention described herein, which was made in part with funds from the National Institutes of Health, Grant Numbers, CA63173 and CA06927.

FIELD OF THE INVENTION

The present invention relates to the fields of medicine and molecular biology. More specifically, the invention provides nucleic acid molecules and proteins encoded thereby which are involved in the development of resistance to pharmacological and chemotherapeutic agents in tumor cells.

BACKGROUND OF THE INVENTION

Several publications are referenced in this application in parentheses in order to more fully describe the state of the art to which this invention pertains. The disclosure of each of these publications is incorporated by reference herein.

P-glycoprotein, the product of the *MDR1* gene, was the first ABC transporter shown to confer resistance to cytotoxic agents. Pgp functions as an ATP-dependent efflux pump that reduces the intracellular concentration of a variety of chemotherapeutic agents by transporting them across the plasma membrane (1). The multidrug resistance phenotype associated with overexpression of Pgp

is of considerable clinical interest because natural product drugs are second only to alkylating agents in clinical utility, and many effective chemotherapeutic regimens contain more than one natural product agent. More recently, we and others have reported transfection studies indicating that MRP, another ABC family transporter, confers a multidrug resistance phenotype that includes many natural product drugs, but is distinct from the resistance phenotype associated with Pgp (2-6). MRP shares only limited amino acid identity with Pgp, and this is reflected in the different substrate specificities of the two transporters. In contrast to Pgp, MRP can transport a wide range of anionic organic conjugates, including glutathione S-conjugates (7). In addition to Pgp and MRP there may be other transporters that are involved in cytotoxic drug resistance. In the case of natural product drugs, resistant cell lines have been described that display a multidrug resistant phenotype associated with a drug accumulation deficit, but do not overexpress Pgp or MRP (8). ABC transporters have also been linked to cisplatin resistance, and several lines of evidence suggest the possibility that pumps specific for organic anions may be involved: 1) decreased cisplatin accumulation is consistently observed in cisplatin resistant cell lines (9); 2) cisplatin is conjugated to glutathione in the cell, and this anionic conjugate is toxic in an *in vitro* biochemical assay (10); and 3) biochemical studies using membrane vesicle preparations have shown that cisplatin resistant cells lines have enhanced expression of an ATP-dependent transporter of CDDP-glutathione and other glutathione S-conjugates such as the cysteinyl leukotriene LTC₄ (11, 12). These data thus suggest that an organic anion transporter may contribute

to cisplatin resistance by exporting CDDP-glutathione. While MRP is an organic anion transporter, the reported drug resistance profile of MRP-transfected cells does not extend to this agent (5, 6), and to date only one cisplatin resistant cell line has been reported to overexpress MRP (13). This suggests that organic anion transporters other than MRP may contribute to cisplatin resistance. Consistent with this possibility, the canalicular multispecific organic anion transporter, cMOAT, an MRP-related transporter that functions as the major organic anion transporter in liver, has been reported to be overexpressed in cisplatin resistant cell lines (14, 15). A more direct link between cMOAT and cytotoxic drug resistance is suggested by a recent report in which transfection of a cMOAT antisense construct into a liver cancer cell line resulted in sensitization to cisplatin, daunorubicin and other cytotoxic agents (16).

Clearly, a need exists for identifying the essential components and mechanisms giving rise to drug resistance and the transport of anticancer agents out of the tumor cell. The elucidation of these mechanisms may be used to advantage for the design of efficacious chemotherapeutic agents.

SUMMARY OF THE INVENTION

This invention provides novel, biological molecules useful for identification, detection, and/or molecular characterization of components involved in the acquisition of drug resistance in tumor cells. According to one aspect of the invention, an isolated nucleic acid molecule is provided which includes a sequence encoding a protein transporter of a size between about 1300 and 1350 amino acids in length. The encoded protein, referred to herein

as MOAT-B, comprises a multi-domain structure including a tandem repeat of nucleotide binding folds appended C-terminal to a hydrophobic domain that contains several potential membrane spanning helices. Conserved Walker A and B ATP binding sites are present in each of the nucleotide binding folds.

In a preferred embodiment of the invention, an isolated nucleic acid molecule is provided that includes a cDNA encoding a human MOAT-B protein. In a particularly preferred embodiment, the human MOAT-B protein has an amino acid sequence the same as Sequence I.D. No. 2. An exemplary MOAT-B nucleic acid molecule of the invention comprises Sequence I.D. No. 1.

According to another aspect of the invention, a second isolated nucleic acid molecule is provided which includes a sequence encoding a transporter between about 1400 and 1450 amino acids. The encoded protein, referred to herein as MOAT-C contains a multi-domain structure including a tandem repeat of nucleotide binding folds appended C-terminal to a hydrophobic domain that contains several potential membrane spanning helices. Conserved Walker A and B ATP binding sites are present in each of the nucleotide binding folds. While similar in structure to MOAT-B described above, MOAT-C contains distinct sequence differences.

In a preferred embodiment of the invention, an isolated nucleic acid molecule is provided that includes a cDNA encoding a human MOAT-C protein. In a particularly preferred embodiment, the human MOAT-C protein has an amino acid sequence the same as Sequence I.D. No. 4. An exemplary MOAT-C nucleic acid molecule of the invention comprises Sequence I.D. No. 3.

According to yet another aspect of the invention, an

isolated nucleic acid molecule is provided which includes a sequence encoding a protein of a size between about 1500 and 1550 amino acids in length. The encoded protein, referred to herein as MOAT-D, contains a multidomain structure including an N-terminal hydrophobic extension which harbors five transmembrane spanning helices.

In a preferred embodiment of the invention, an isolated nucleic acid molecule is provided that includes a cDNA encoding a MOAT-D protein. In a particularly preferred embodiment, the human MOAT-D protein has an amino acid sequence the same as Sequence I.D. No. 6. An exemplary MOAT-D nucleic acid molecule of the invention comprises Sequence I.D. No. 5.

According to yet another aspect of the invention, an isolated nucleic acid molecule is provided which includes a sequence encoding a protein of a size between about 1480 and 1530 amino acids in length. The encoded protein, referred to herein as MOAT-E, contains a multidomain structure including an N-terminal hydrophobic extension which harbors several transmembrane spanning helices. While similar in structure to MOAT-D described above, MOAT-E contains distinct sequence differences.

In a preferred embodiment of the invention, an isolated nucleic acid molecule is provided that includes a cDNA encoding a MOAT-E protein. In a particularly preferred embodiment, the human MOAT-E protein has an amino acid sequence the same as Sequence I.D. No. 8. An exemplary MOAT-E nucleic acid molecule of the invention comprises Sequence I.D. No. 7.

According to another aspect of the present invention, an isolated nucleic acid molecule is provided, which has a sequence selected from the group consisting of: (1) Sequence I.D. No. 1; (2) a sequence specifically

hybridizing with preselected portions or all of the complementary strand of Sequence I.D. No. 1 comprising nucleic acids encoding amino acids 1-1154 of Sequence ID No. 2; (3) a sequence encoding preselected portions of Sequence I.D. No. 1 within nucleotides 1-3462, (4) Sequence I.D. No. 3; (5) a sequence specifically hybridizing with preselected portions or all of the complementary strand of Sequence I.D. No. 3 comprising nucleic acids encoding amino acids 1-442 of Sequence ID No. 4; (6) a sequence encoding preselected portions of Sequence I.D. No. 3 within nucleotides 1-1326, (7) Sequence I.D. No. 5; (8) a sequence specifically hybridizing with preselected portions or all of the complementary strand of Sequence I.D. No. 5 comprising nucleic acids encoding amino acids 1-1036 of Sequence ID No. 6; (9) a sequence encoding preselected portions of Sequence I.D. No. 5 within nucleotides 1-3108, (1) Sequence I.D. No. 7; (2) a sequence specifically hybridizing with preselected portions or all of the complementary strand of Sequence I.D. No. 7 comprising nucleic acids encoding amino acids 1-998 of Sequence ID No. 8; (3) a sequence encoding preselected portions of Sequence I.D. No. 7 within nucleotides 1-300.

Such partial sequences are useful as probes to identify and isolate homologues of the MOAT genes of the invention. Additionally, isolated nucleic acid sequences encoding natural allelic variants of the nucleic acids of Sequence I.D. Nos., 1, 3, 5 and 7 are also contemplated to be within the scope of the present invention. The term natural allelic variants will be defined hereinbelow.

According to another aspect of the present invention, antibodies immunologically specific for the human MOAT proteins described hereinabove are provided.

In yet another aspect of the invention, host cells comprising at least one of the MOAT encoding nucleic acids are provided. Such host cells include but are not limited to bacterial cells, fungal cells, insect cells, mammalian cells, and plant cells. Host cells overexpressing one or more of the MOAT encoding nucleic acids of the invention provide valuable research tools for assessing transport of chemotherapeutic agents out of cells. MOAT expressing cells also comprise a biological system useful in methods for identifying inhibitors of the MOAT transporters.

Another embodiment of the present invention encompasses methods for screening cells expressing MOAT encoding nucleic acids for chemotherapy resistance. Such methods will provide the clinician with data which correlates expression of a particular MOAT genes with a particular chemotherapy resistant phenotype.

Diagnostic methods are also contemplated in the present invention. Accordingly, suitable oligonucleotide probes are provided which hybridize to the nucleic acids of the invention. Such probes may be used to advantage in screening biopsy samples for the expression of particular MOAT genes. Once a tumor sample has been characterized as to the MOAT gene(s) expressed therein, inhibitors identified in the cell line screening methods described above may be administered to prevent efflux of the beneficial chemotherapeutic agents from cancer cells.

The methods of the invention may be applied to kits. An exemplary kit of the invention comprises MOAT gene specific oligonucleotide probes and/or primers, MOAT encoding DNA molecules for use as a positive control, buffers, and an instruction sheet. A kit for practicing the cell line screening method includes frozen cells

comprising the MOAT genes of the invention, suitable culture media, buffers and an instruction sheet.

In a further aspect of the invention, transgenic knockout mice are disclosed. Mice will be generated in which at least one MOAT gene has been knocked out. Such mice will provide a valuable in biological system for assessing resistance to chemotherapy in an in vivo tumor model.

Various terms relating to the biological molecules of the present invention are used hereinabove and also throughout the specification and claims. The terms "percent similarity" and "percent identity (identical)" are used as set forth in the UW GCG Sequence Analysis program (Devereux et al. NAR 12:387-397 (1984)).

With reference to nucleic acids of the invention, the term "isolated nucleic acid" is sometimes used. This term, when applied to DNA, refers to a DNA molecule that is separated from sequences with which it is immediately contiguous (in the 5' and 3' directions) in the naturally occurring genome of the organism from which it originates. For example, the "isolated nucleic acid" may comprise a DNA or cDNA molecule inserted into a vector, such as a plasmid or virus vector, or integrated into the genomic DNA of a prokaryote or eukaryote.

With respect to RNA molecules of the invention, the term "isolated nucleic acid" primarily refers to an RNA molecule encoded by an isolated DNA molecule as defined above. Alternatively, the term may refer to an RNA molecule that has been sufficiently separated from RNA molecules with which it would be associated in its natural state (i.e., in cells or tissues), such that it exists in a "substantially pure" form (the term "substantially pure" is defined below).

With respect to protein, the term "isolated protein" or "isolated and purified protein" is sometimes used herein. This term refers primarily to a protein produced by expression of an isolated nucleic acid molecule of the invention. Alternatively, this term may refer to a protein which has been sufficiently separated from other proteins with which it would naturally be associated, so as to exist in "substantially pure" form.

The term "substantially pure" refers to a preparation comprising at least 50-60% by weight the compound of interest (e.g., nucleic acid, oligonucleotide, protein, etc.). More preferably, the preparation comprises at least 75% by weight, and most preferably 90-99% by weight, the compound of interest. Purity is measured by methods appropriate for the compound of interest (e.g., chromatographic methods, agarose or polyacrylamide gel electrophoresis, HPLC analysis, and the like). With respect to antibodies of the invention, the term "immunologically specific" refers to antibodies that bind to one or more epitopes of a protein of interest (e.g., MOAT-B, MOAT-C or MOAT-D), but which do not substantially recognize and bind other molecules in a sample containing a mixed population of antigenic biological molecules.

With respect to nucleic acids and oligonucleotides, the term "specifically hybridizing" refers to the association between two single-stranded nucleotide molecules of sufficiently complementary sequence to permit such hybridization under pre-determined conditions generally used in the art (sometimes termed "substantially complementary"). When used in reference to a double stranded nucleic acid, this term is intended to signify that the double stranded nucleic acid has been subjected to denaturing conditions, as is well known to those of

skill in the art. In particular, the term refers to hybridization of an oligonucleotide with a substantially complementary sequence contained within a single-stranded DNA or RNA molecule of the invention, to the substantial exclusion of hybridization of the oligonucleotide with single-stranded nucleic acids of non-complementary sequence.

One common formula for calculating the stringency conditions required to achieve hybridization between nucleic acid molecules of a specified sequence homology (Sambrook et al., 1989) :

$$T_m = 81.5^\circ\text{C} + 16.6 \log [\text{Na}^+] + 0.41(\% \text{ G+C}) - 0.63 (\% \text{ formamide}) - 600/\# \text{bp in duplex}$$

As an illustration of the above formula, using $[\text{Na}^+] = [0.368]$ and 50% formamide, with GC content of 42% and an average probe size of 200 bases, the T_m is 57°C . The T_m of a DNA duplex decreases by $1 - 1.5^\circ\text{C}$ with every 1% decrease in homology. Thus, targets with greater than about 75% sequence identity would be observed using a hybridization temperature of 42°C . Such sequences would be considered substantially homologous to the nucleic acid sequences of the invention.

The nucleic acids, proteins, antibodies, cell lines, methods, and kits of the present invention may be used to advantage to identify targets for the development of novel agents which inhibit the aberrant transport of cytotoxic agents out of tumor cells. The transgenic mice of the invention may be used an in vivo model for chemotherapy resistance.

The human MOAT molecules methods and kits described above may also be used as research tools and will facilitate the elucidation of the mechanism by which tumor

cells acquire a drug resistant phenotype.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the predicted structure of MOAT-B and comparison with human MRP. The vertical lines indicate identical amino acids and the vertical dots indicate conserved amino acids. Gaps are indicated by periods. The overbars indicate potential transmembrane spanning segments as predicted by the TMAP program. The first and second nucleotide binding folds (NBF 1 and NBF 2) are indicated by horizontal arrows. The C-terminal 34 amino acids (residues 1291 - 1325) are replaced in the second class of MOAT-B cDNA clones by the following amino acids: ILQKKLSTYWSH. The Alignment was performed using the GAP program (gap weight 3.0, length weight 0.1) in the Genetics Computer Group Package. H. MRP: human MRP.

Figures 2A and 2B depict a comparison of the nucleotide binding folds and hydropathy profile of MOAT-B with those of other eukaryotic ABC transporters. Fig. 1A shows the comparison of the nucleotide binding folds of MOAT-B. Amino acids that are identical to those of MOAT-B are shaded, and gaps are indicated by periods. Walker A and B motifs, and the ABC transporter family signature sequence C, are underlined. Amino acid positions are indicated to the right. Amino acid sequences were aligned using the PILEUP program (gap weight 3.0, length weight 0.1) in the Genetics Computer Group Package. Fig. 1B shows a comparison of the MOAT-B hydropathy profile. To facilitate comparison, the proteins are aligned so that the N-terminal nucleotide binding folds (NBF) are roughly in register. NBF's are indicated by bars. Values above

and below the horizontal lines indicate hydrophobic and hydrophilic regions, respectively. Hydrophobicity plots were generated using the Kyte-Doolittle algorithm with a window of 7 residues. The transporters shown are: human multidrug-associated protein, H. MRP (P33529); human multispecific organic anion transporter, H. MOAT (U63970); *Saccharomyces cerevisiae* yeast cadmium factor 1, S. YCF1 (P39109); rat sulfonylurea receptor, R. SUR (Q09427); human cystic fibrosis transmembrane conductance regulator, H. CFTR (M28668); Leishmania P-glycoprotein, L. PgpA (P21441) and human mdr1 gene product, H. MDR1 (P08183). Accession numbers are shown in parentheses.

Figure 3 is a Northern blot showing the tissue distribution of MOAT-B transcript. Membranes containing poly (A)+ RNA prepared from human tissues were hybridized with a radiolabeled MOAT-B or GAPDH probe. Top panels show MOAT-B transcript and bottom panels show the control GAPDH transcript. Arrows indicate the position of MOAT-B transcript. Prolonged exposure of the film revealed a low level signal in liver.

Figure 4 shows the chromosomal localization of the gene encoding MOAT-B. Human metaphase spreads were hybridized with a biotin-labeled MOAT-B cDNA probe and detected by FITC-conjugated avidin. Hybridization signals at chromosome 13q32 in two metaphase spreads are indicated by arrows. The inset shows paired hybridization signals at band q32 of chromosome 13 from three other metaphase spreads.

Figures 5A and 5B show the predicted structures of MOAT-C and MOAT-D. Fig. 5A presents the structure of

MOAT-C. Fig. 5B shows the structure of MOAT-D. Numbered overbars indicate potential transmembrane spanning helices. Horizontal arrows indicate the positions of the amino terminal (NBF1) and C-terminal (NBF2) nucleotide binding folds. Walker A and B motifs, and the ABC transporter family signature sequence C are underlined. Bullets indicate the positions of potential N-linked glycosylation sites that are conserved with previously reported N-glycosylation sites in MRP. The indicated MOAT-C transmembrane spanning helices were predicted using the TMAP program and an input alignment of MOAT-B and MOAT-C. The indicated MOAT-D transmembrane helices are based upon inspection of an alignment with MRP.

Figures 6A and 6B show a comparison of the nucleotide binding folds and hydropathy profiles of MOAT-C and MOAT-D with those of other related ABC transporters. Fig. 6A depicts the comparison of the nucleotide binding folds. The alignment was produced using the PILEUP command (gap weight 3.0, length weight 0.1) in the Genetics Computer Group Package Version 9.1. Amino acid positions conserved in at least 4 of the 8 proteins are shaded. Periods indicate gaps in the alignment. Walker A and B, and the ABC transporter family signature sequence C are indicated by underbars. Fig. 6A shows the comparison of hydropathy profiles. To facilitate comparisons, gaps were introduced at the N-termini of some proteins in order to bring the first nucleotide binding folds into register. Nucleotide binding folds are indicated by bars. Values above and below the horizontal lines indicate hydrophobic and hydrophilic regions, respectively. Hydrophobicity plots were generated using the Kyte-Doolittle algorithm with a window of 7 residues. Accession numbers are as follows:

MRP, P33529; cMOAT, U63970, SUR, Q09428; CFTR, P-13569;
MDR1, P08183.

Figure 7 is a Northern blot showing the tissue distribution of MOAT-C and MOAT-D transcripts. Blots containing poly A+ RNA prepared from various human tissues were hybridized with MOAT-C, MOAT-D and actin probes. Arrows indicate the position of the MOAT-C (top panel) and MOAT-D (middle panel) transcripts. The bottom panel shows the control actin transcript.

Figures 8A and 8B show the chromosomal localization of the *MOAT-C* and *MOAT-D* genes. Human metaphase spreads were hybridized with a biotin-labeled MOAT-C and MOAT-D cDNA probes and detected by FITC-conjugated avidin. Fig. 8A shows the localization of *MOAT-C*. Hybridization signals at chromosome 3q27 in two metaphase spreads are indicated by arrows (top). The inset shows paired hybridization signals at band q27 of chromosome 3 from three other metaphase spreads. Fig. 8B shows the localization of *MOAT-D*. Hybridization signals at chromosome 17q21-22 in two metaphase spreads are indicated by arrows (top). The inset shows paired hybridization signals at band q21-22 of chromosome 17 from three other metaphase spreads.

Figure 9 shows predicted amino acid sequence of MOAT-E. Also shown are the location of the potential transmembrane helices (overbars), the potential N-glycosylation site (black dot) and the two nucleotide binding folds (NBF1 and NBF2). Walker A and B motifs, as well as the signature C motif of ABC transporters, are also indicated.

Figure 10 shows a comparison of the hydropathy profile of MOAT-E with other members of the MRP-cMOAT subfamily. The profile reveals that MOAT-E has a hydrophobic N-terminal segment which is absent in MOAT-B and MOAT-C.

Figure 11 is a RNA blot which reveals that MOAT-E is expressed only in the liver and the kidney, suggesting that MOAT-E may participate in the excretion of substances into urine and bile. The lower panel shows hybridization of an actin probe to assess RNA loading.

Figures 12A-12J show the cDNA (SEQ ID NO: 1) and amino acid sequences (SEQ ID NO: 2) encoded by MOATB.

Figures 13A-13K show the cDNA (SEQ ID NO: 3) and amino acid sequences (SEQ ID NO: 4) encoded by MOATC.

Figures 14A-14K show the cDNA (SEQ ID NO: 5) and amino acid sequences (SEQ ID NO: 6) encoded by MOATD.

Figures 15A-15K show the cDNA (SEQ ID NO: 7) and amino acid sequences (SEQ ID NO: 8) encoded by MOATE.

DETAILED DESCRIPTION OF THE INVENTION

MRP and cMOAT are closely related mammalian ABC transporters that export organic anions from cells. Transfection studies have established that MRP confers resistance to natural product cytotoxic agents, and recent evidence suggests the possibility that cMOAT may contribute to cytotoxic drug resistance as well. Based upon the potential importance of these transporters in

clinical drug resistance, and their important physiological roles in the export of the amphiphilic products of phase I and phase II metabolism, we sought to identify other MRP-related transporters. Using a degenerate PCR approach, a cDNA molecule was isolated which encodes a novel ABC transporter designated herein as MOAT-B. The MOAT-B gene was mapped using fluorescence *in situ* hybridization to chromosome band 13q32. Comparison of the MOAT-B predicted protein with other transporters revealed that it is most closely related to MRP, cMOAT, and the yeast organic anion transporter YCF1. While MOAT-B is closely related to these transporters, it is distinguished by the absence of approximately 200 amino acid N-terminal hydrophobic extension that is present in MRP and cMOAT, and which is predicted to encode several transmembrane spanning segments. In addition, the MOAT-B tissue distribution is distinct from MRP and cMOAT. In contrast to MRP, which is widely expressed in most tissues, including liver, and cMOAT, whose expression is largely restricted to liver, the MOAT-B transcript is widely expressed, with particularly high levels in prostate, but is barely detectable in liver. These data indicate that MOAT-B is a ubiquitously expressed transporter that is closely related to MRP and cMOAT, and indicate that it is an organic anion pump relevant to cellular detoxification.

Three additional MRP/cMOAT-related transporters, MOAT-C, MOAT-D and MOAT-E are also disclosed herein. MOAT-C encodes a 1437 amino acid protein that is most closely related to MRP, cMOAT and MOAT-B, among eukaryotic transporters (33% - 37% identity). However, based upon amino acid identity, MOAT-C is considerably less related to MRP and cMOAT than the latter transporters are to each

other (48% identity). In addition, the MOAT-C topology is distinct from that of MRP and cMOAT in that it, like MOAT-B, lacks an N-terminal transmembrane spanning domain. MOAT-D encodes a 1530 amino acid transporter that is highly related to MRP (57% identity) and cMOAT (47% identity). MOAT-E encodes 1503 amino acid transporter that is highly related to MOAT-D, MRP and cMOAT (39-45% identity). The topology of MOAT-D and MOAT-E are quite similar to MRP and cMOAT, in that they have an N-terminal hydrophobic extension that is predicted to harbor five transmembrane spanning helices. *MOAT-C* and *MOAT-D* were mapped to chromosome bands 3q27 and 17q21-22, respectively, by fluorescence *in situ* hybridization.

The expression patterns of MOAT-C, MOAT-D and MOAT-E are distinct from those of MRP, cMOAT and MOAT-B. MOAT-C transcript is widely expressed, with highest levels in skeletal muscle, kidney and testis, but is expressed at barely detectable levels in liver and lung. MOAT-D transcript has a more restricted expression pattern, with high levels in colon, pancreas, liver and kidney. Data presented herein reveal that MOAT-E expression is restricted to liver and kidney.

Based upon degree of amino acid identity, and protein topology, the MRP-related transporters fall into two groups, with the first group consisting of MRP, cMOAT, MOAT-D and MOAT-E, and the second group consisting of MOAT-B and MOAT-C. The isolation of MOAT-C, MOAT-D and MOAT-E thus helps to define the MRP/cMOAT subfamily. The high degree of amino acid identity and topological similarity of MOAT-D and MOAT-E to MRP and cMOAT suggest that they function as organic anion transporters, and play a role in cytotoxic drug resistance. In contrast, the lower degree of amino acid identify and distinct topology

of MOAT-B and MOAT-C suggest the possibility that their substrate specificities and functions may be distinct from that of MRP, cMOAT, MOAT-D and MOAT-E.

The compositions, methods, kits and transgenic mice of the invention disclosed herein will facilitate the identification of drugs that cripple the ability of MOAT genes and proteins encoded thereby to effect the efflux of clinically beneficial pharmacological agents in malignant cells.

I. Preparation of MOAT-Encoding Nucleic Acid Molecules, MOAT Proteins, and Antibodies Thereto

A. Nucleic Acid Molecules

Nucleic acid molecules encoding the MOAT proteins of the invention may be prepared by two general methods: (1) synthesis from appropriate nucleotide triphosphates, or (2) isolation from biological sources. Both methods utilize protocols well known in the art. The availability of nucleotide sequence information, such as cDNAs having Sequence I.D. Nos. 1, 3, 5, or 7 enables preparation of an isolated nucleic acid molecule of the invention by oligonucleotide synthesis. Synthetic oligonucleotides may be prepared by the phosphoramidite method employed in the Applied Biosystems 38A DNA Synthesizer or similar devices. The resultant construct may be purified according to methods known in the art, such as high performance liquid chromatography (HPLC). Long, double-stranded polynucleotides, such as a DNA molecule of the present invention, must be synthesized in stages, due to the size limitations inherent in current oligonucleotide synthetic methods. Thus, for example, a 5 kb double-stranded molecule may be synthesized as several smaller segments of appropriate complementarity. Complementary segments thus

produced may be annealed such that each segment possesses appropriate cohesive termini for attachment of an adjacent segment. Adjacent segments may be ligated by annealing cohesive termini in the presence of DNA ligase to construct an entire 5 kb double-stranded molecule. A synthetic DNA molecule so constructed may then be cloned and amplified in an appropriate vector.

Nucleic acid sequences encoding the MOAT proteins of the invention may be isolated from appropriate biological sources using methods known in the art. In a preferred embodiment, a cDNA clone is isolated from a cDNA expression library of human origin. In an alternative embodiment, utilizing the sequence information provided by the cDNA sequence, human genomic clones encoding MOAT proteins may be isolated. Alternatively, cDNA or genomic clones having homology with MOAT-B, MOAT-C, MOAT-D or MOAT-E may be isolated from other species using oligonucleotide probes corresponding to predetermined sequences within the MOAT encoding nucleic acids.

In accordance with the present invention, nucleic acids having the appropriate level of sequence homology with the protein coding region of Sequence I.D. Nos. 1, 3, 5, and 7 may be identified by using hybridization and washing conditions of appropriate stringency. For example, hybridizations may be performed, according to the method of Sambrook et al., (supra) using a hybridization solution comprising: 5X SSC, 5X Denhardt's reagent, 1.0% SDS, 100 µg/ml denatured, fragmented salmon sperm DNA, 0.05% sodium pyrophosphate and up to 50% formamide. Hybridization is carried out at 37-42°C for at least six hours. Following hybridization, filters are washed as follows: (1) 5 minutes at room temperature in 2X SSC and 1% SDS; (2) 15 minutes at room temperature in 2X SSC and

0.1% SDS; (3) 30 minutes-1 hour at 37°C in 1X SSC and 1% SDS; (4) 2 hours at 42-65° in 1X SSC and 1% SDS, changing the solution every 30 minutes.

Nucleic acids of the present invention may be maintained as DNA in any convenient cloning vector. In a preferred embodiment, clones are maintained in a plasmid cloning/expression vector, such as pBluescript (Stratagene, La Jolla, CA), which is propagated in a suitable *E. coli* host cell.

MOAT-encoding nucleic acid molecules of the invention include cDNA, genomic DNA, RNA, and fragments thereof which may be single- or double-stranded. Thus, this invention provides oligonucleotides (sense or antisense strands of DNA or RNA) having sequences capable of hybridizing with at least one sequence of a nucleic acid molecule of the present invention, such as selected segments of the cDNA having Sequence I.D. No. 1. Such oligonucleotides are useful as probes for detecting or isolating MOAT genes. Antisense nucleic acid molecules may be targeted to translation initiation sites and/or splice sites to inhibit the translation of the MOAT-encoding nucleic acids of the invention. Such antisense molecules are typically between 15 and 30 nucleotides in length and often span the translational start site of MOAT encoding mRNA molecules.

It will be appreciated by persons skilled in the art that variants of these sequences exist in the human population, and must be taken into account when designing and/or utilizing oligos of the invention. Accordingly, it is within the scope of the present invention to encompass such variants, with respect to the MOAT sequences disclosed herein or the oligos targeted to specific locations on the respective genes or RNA transcripts.

With respect to the inclusion of such variants, the term "natural allelic variants" is used herein to refer to various specific nucleotide sequences and variants thereof that would occur in a human population. The usage of different wobble codons and genetic polymorphisms which give rise to conservative or neutral amino acid substitutions in the encoded protein are examples of such variants. Additionally, the term "substantially complementary" refers to oligo sequences that may not be perfectly matched to a target sequence, but the mismatches do not materially affect the ability of the oligo to hybridize with its target sequence under the conditions described.

B. Proteins

Full-length MOAT-B, MOAT-C, MOAT-D and MOAT-E proteins of the present invention may be prepared in a variety of ways, according to known methods. The proteins may be purified from appropriate sources, e.g., transformed bacterial or animal cultured cells or tissues, by immunoaffinity purification. However, this is not a preferred method due to the low amount of protein likely to be present in a given cell type at any time. The availability of nucleic acid molecules encoding MOAT proteins enables production of the proteins using *in vitro* expression methods known in the art. For example, a cDNA or gene may be cloned into an appropriate *in vitro* transcription vector, such as pSP64 or pSP65 for *in vitro* transcription, followed by cell-free translation in a suitable cell-free translation system, such as wheat germ or rabbit reticulocytes. *In vitro* transcription and translation systems are commercially available, e.g., from Promega Biotech, Madison, Wisconsin or Gibco-BRL,

Gaithersburg, Maryland.

Alternatively, according to a preferred embodiment, larger quantities of MOAT proteins may be produced by expression in a suitable prokaryotic or eukaryotic system. For example, part or all of a DNA molecule, such as a cDNA having Sequence I.D. No. 1, 3, 5 or 7 may be inserted into a plasmid vector adapted for expression in a bacterial cell, such as *E. coli*. Such vectors comprise the regulatory elements necessary for expression of the DNA in the host cell positioned in such a manner as to permit expression of the DNA in the host cell. Such regulatory elements required for expression include promoter sequences, transcription initiation sequences and, optionally, enhancer sequences.

The human MOAT proteins produced by gene expression in a recombinant prokaryotic or eukaryotic system may be purified according to methods known in the art. In a preferred embodiment, a commercially available expression/secretion system can be used, whereby the recombinant protein is expressed and thereafter secreted from the host cell, to be easily purified from the surrounding medium. If expression/secretion vectors are not used, an alternative approach involves purifying the recombinant protein by affinity separation, such as by immunological interaction with antibodies that bind specifically to the recombinant protein or nickel columns for isolation of recombinant proteins tagged with 6-8 histidine residues at their N-terminus or C-terminus. Alternative tags may comprise the FLAG epitope or the hemagglutinin epitope. Such methods are commonly used by skilled practitioners.

The human MOAT proteins of the invention, prepared by the aforementioned methods, may be analyzed according to

standard procedures. For example, such proteins may be subjected to amino acid sequence analysis, according to known methods.

The present invention also provides antibodies capable of immunospecifically binding to proteins of the invention. Polyclonal antibodies directed toward human MOAT proteins may be prepared according to standard methods. In a preferred embodiment, monoclonal antibodies are prepared, which react immunospecifically with the various epitopes of the MOAT proteins described herein. Monoclonal antibodies may be prepared according to general methods of Köhler and Milstein, following standard protocols. Polyclonal or monoclonal antibodies that immunospecifically interact with MOAT proteins can be utilized for identifying and purifying such proteins. For example, antibodies may be utilized for affinity separation of proteins with which they immunospecifically interact. Antibodies may also be used to immunoprecipitate proteins from a sample containing a mixture of proteins and other biological molecules. Other uses of anti-MOAT antibodies are described below.

II. Uses of MOAT-Encoding Nucleic Acids, MOAT Proteins and Antibodies Thereto

Cellular transporter molecules have received a great deal of attention as potential targets of chemotherapeutic agents designed to effectively block the export of pharmacological reagents from tumor cells. The MOAT proteins of the invention play a pivotal role in the transport of molecules across the cell membrane.

Additionally, MOAT nucleic acids, proteins and antibodies thereto, according to this invention, may be used as research tools to identify other proteins that are

intimately involved in the transport of molecules into and out of cells. Biochemical elucidation of molecular mechanisms which govern such transport will facilitate the development of novel anti-transport agents that may sensitize tumor cells to conventional chemotherapeutic agents.

A. MOAT-Encoding Nucleic Acids

MOAT-encoding nucleic acids may be used for a variety of purposes in accordance with the present invention. MOAT-encoding DNA, RNA, or fragments thereof may be used as probes to detect the presence of and/or expression of genes encoding MOAT proteins. Methods in which MOAT-encoding nucleic acids may be utilized as probes for such assays include, but are not limited to: (1) *in situ* hybridization; (2) Southern hybridization (3) northern hybridization; and (4) assorted amplification reactions such as polymerase chain reactions (PCR).

The MOAT-encoding nucleic acids of the invention may also be utilized as probes to identify related genes from other animal species. As is well known in the art, hybridization stringencies may be adjusted to allow hybridization of nucleic acid probes with complementary sequences of varying degrees of homology. Thus, MOAT-encoding nucleic acids may be used to advantage to identify and characterize other genes of varying degrees of relation to the MOAT genes of the invention. Such information enables further characterization of transporter molecules which give rise to the chemoresistant phenotype of certain tumors. Additionally, they may be used to identify genes encoding proteins that interact with MOAT proteins (e.g., by the "interaction trap" technique), which should further accelerate

identification of the components involved in the acquisition of drug resistance. The MOAT encoding nucleic acids may also be used to generate primer sets suitable for PCR amplification of target MOAT DNA. Criteria for selecting suitable primers are well known to those of ordinary skill in the art.

Nucleic acid molecules, or fragments thereof, encoding MOAT genes may also be utilized to control the production of MOAT proteins, thereby regulating the amount of protein available to participate in cytotoxic drug efflux. As mentioned above, antisense oligonucleotides corresponding to essential processing sites in MOAT-encoding mRNA molecules may be utilized to inhibit MOAT protein production in targeted cells. Alterations in the physiological amount of MOAT proteins may dramatically affect the ability of these proteins to transport pharmacological reagents out of the cell.

Host cells comprising at least one MOAT encoding DNA molecule are encompassed in the present invention. Host cells contemplated for use in the present invention include but are not limited to bacterial cells, fungal cells, insect cells, mammalian cells, and plant cells. The MOAT encoding DNA molecules may be introduced singly into such host cells or in combination to assess the phenotype of cells conferred by such expression. Methods for introducing DNA molecules are also well known to those of ordinary skill in the art. Such methods are set forth in Ausubel et al. eds., Current Protocols in Molecular Biology, John Wiley & Sons, NY, NY 1995, the disclosure of which is incorporated by reference herein.

The availability of MOAT encoding nucleic acids enables the production of strains of laboratory mice carrying part or all of the MOAT genes or mutated

sequences thereof. Such mice may provide an *in vivo* model for development of novel chemotherapeutic agents.

Alternatively, the MOAT nucleic acid sequence information provided herein enables the production of knockout mice in which the endogenous genes encoding MOAT-B, MOAT-C, MOAT-D or MOAT-E have been specifically inactivated. Methods of introducing transgenes in laboratory mice are known to those of skill in the art. Three common methods include:

1. integration of retroviral vectors encoding the foreign gene of interest into an early embryo;
2. injection of DNA into the pronucleus of a newly fertilized egg; and
3. the incorporation of genetically manipulated embryonic stem cells into an early embryo.

The alterations to the MOAT gene envisioned herein include modifications, deletions, and substitutions. Modifications and deletions render the naturally occurring gene nonfunctional, producing a "knock out" animal. Substitutions of the naturally occurring gene for a gene from a second species results in an animal which produces an MOAT gene from the second species. Substitution of the naturally occurring gene for a gene having a mutation results in an animal with a mutated MOAT protein. A transgenic mouse carrying the human MOAT gene is generated by direct replacement of the mouse MOAT gene with the human gene. These transgenic animals are valuable for use in *in vivo* assays for elucidation of other medical disorders associated with cellular activities modulated by MOAT genes. A transgenic animal carrying a "knock out" of a MOAT encoding nucleic acid is useful for the establishment of a nonhuman model for chemotherapy resistance involving MOAT regulation.

As a means to define the role that MOAT plays in mammalian systems, mice can be generated that cannot make

MOAT proteins because of a targeted mutational disruption of a MOAT gene.

The term "animal" is used herein to include all vertebrate animals, except humans. It also includes an individual animal in all stages of development, including embryonic and fetal stages. A "transgenic animal" is any animal containing one or more cells bearing genetic information altered or received, directly or indirectly, by deliberate genetic manipulation at the subcellular level, such as by targeted recombination or microinjection or infection with recombinant virus. The term "transgenic animal" is not meant to encompass classical cross-breeding or in vitro fertilization, but rather is meant to encompass animals in which one or more cells are altered by or receive a recombinant DNA molecule. This molecule may be specifically targeted to defined genetic locus, be randomly integrated within a chromosome, or it may be extrachromosomally replicating DNA. The term "germ cell line transgenic animal" refers to a transgenic animal in which the genetic alteration or genetic information was introduced into a germ line cell, thereby conferring the ability to transfer the genetic information to offspring. If such offspring in fact, possess some or all of that alteration or genetic information, then they, too, are transgenic animals.

The alteration or genetic information may be foreign to the species of animal to which the recipient belongs, or foreign only to the particular individual recipient, or may be genetic information already possessed by the recipient. In the last case, the altered or introduced gene may be expressed differently than the native gene.

The altered MOAT gene generally should not fully encode the same MOAT protein native to the host animal and

its expression product should be altered to a minor or great degree, or absent altogether. However, it is conceivable that a more modestly modified MOAT gene will fall within the compass of the present invention if it is a specific alteration.

The DNA used for altering a target gene may be obtained by a wide variety of techniques that include, but are not limited to, isolation from genomic sources, preparation of cDNAs from isolated mRNA templates, direct synthesis, or a combination thereof.

A preferred type of target cell for transgene introduction is the embryonal stem cell (ES). ES cells may be obtained from pre-implantation embryos cultured in vitro. Transgenes can be efficiently introduced into the ES cells by standard techniques such as DNA transfection or by retrovirus-mediated transduction. The resultant transformed ES cells can thereafter be combined with blastocysts from a non-human animal. The introduced ES cells thereafter colonize the embryo and contribute to the germ line of the resulting chimeric animal.

One approach to the problem of determining the contributions of individual genes and their expression products is to use isolated MOAT genes to selectively inactivate the wild-type gene in totipotent ES cells (such as those described above) and then generate transgenic mice. The use of gene-targeted ES cells in the generation of gene-targeted transgenic mice is known in the art.

Techniques are available to inactivate or alter any genetic region to a mutation desired by using targeted homologous recombination to insert specific changes into chromosomal alleles. However, in comparison with homologous extrachromosomal recombination, which occurs at a frequency approaching 100%, homologous plasmid-

chromosome recombination was originally reported to only be detected at frequencies between 10^{-6} and 10^{-3} .

Nonhomologous plasmid-chromosome interactions are more frequent occurring at levels 10^5 -fold to 10^2 -fold greater than comparable homologous insertion.

To overcome this low proportion of targeted recombination in murine ES cells, various strategies have been developed to detect or select rare homologous recombinants. One approach for detecting homologous alteration events uses the polymerase chain reaction (PCR) to screen pools of transformant cells for homologous insertion, followed by screening of individual clones. Alternatively, a positive genetic selection approach has been developed in which a marker gene is constructed which will only be active if homologous insertion occurs, allowing these recombinants to be selected directly. One of the most powerful approaches developed for selecting homologous recombinants is the positive-negative selection (PNS) method developed for genes for which no direct selection of the alteration exists. The PNS method is more efficient for targeting genes which are not expressed at high levels because the marker gene has its own promoter. Non-homologous recombinants are selected against by using the Herpes Simplex virus thymidine kinase (HSV-TK) gene and selecting against its nonhomologous insertion with effective herpes drugs such as gancyclovir (GANC) or (1-(2-deoxy-2-fluoro-B-D arabinofluranosyl)-5-iodouracil, (FIAU). By this counter selection, the number of homologous recombinants in the surviving transformants can be increased.

As used herein, a "targeted gene" or "knock-out" is a DNA sequence introduced into the germline or a non-human animal by way of human intervention, including but not

limited to, the methods described herein. The targeted genes of the invention include DNA sequences which are designed to specifically alter cognate endogenous alleles.

Methods of use for the transgenic mice of the invention are also provided herein. Knockout mice of the invention can be injected with tumor cells or treated with carcinogens to generate carcinomas. Such mice provide a biological system for assessing chemotherapy resistance as modulated by a MOAT gene of the invention. Accordingly, therapeutic agents which inhibit the action of these transporters and thereby prevent efflux of beneficial chemotherapeutic agents from tumor cells may be screened in studies using MOAT knock out mice.

As described above, MOAT-encoding nucleic acids are also used to advantage to produce large quantities of substantially pure MOAT proteins, or selected portions thereof.

B. MOAT Proteins and Antibodies

Purified full length MOAT proteins, or fragments thereof, may be used to produce polyclonal or monoclonal antibodies which also may serve as sensitive detection reagents for the presence and accumulation of MOAT proteins (or complexes containing MOAT proteins) in mammalian cells. Recombinant techniques enable expression of fusion proteins containing part or all of MOAT proteins. The full length proteins or fragments of the proteins may be used to advantage to generate an array of monoclonal antibodies specific for various epitopes of MOAT proteins, thereby providing even greater sensitivity for detection of MOAT proteins in cells.

Polyclonal or monoclonal antibodies immunologically specific for MOAT proteins may be used in

a variety of assays designed to detect and quantitate the proteins. Such assays include, but are not limited to: (1) flow cytometric analysis; (2) immunohistochemical localization of MOAT proteins in tumor cells; and (3) immunoblot analysis (e.g., dot blot, Western blot) of extracts from various cells. Additionally, as described above, anti-MOAT antibodies can be used for purification of MOAT proteins and any associated subunits (e.g., affinity column purification, immunoprecipitation).

From the foregoing discussion, it can be seen that MOAT-encoding nucleic acids, MOAT expressing vectors, MOAT proteins and anti-MOAT antibodies of the invention can be used to detect MOAT gene expression and alter MOAT protein accumulation for purposes of assessing the genetic and protein interactions involved in the development of drug resistance in tumor cells.

**C. Methods and Kits Employing the
Compositions of the Present Invention**

From the foregoing discussion, it can be seen that MOAT-encoding nucleic acids, MOAT-expressing vectors, MOAT proteins and anti-MOAT antibodies of the invention can be used to detect MOAT gene expression and alter MOAT protein accumulation for purposes of assessing the genetic and protein interactions giving rise to chemotherapy resistance in tumor cells.

Exemplary approaches for detecting MOAT nucleic acid or polypeptides/proteins include:

- a) comparing the sequence of nucleic acid in the sample with the MOAT nucleic acid sequence to determine whether the sample from the patient contains mutations; or
- b) determining the presence, in a sample from a patient, of the polypeptide encoded by the MOAT gene and,

if present, determining whether the polypeptide is full length, and/or is mutated, and/or is expressed at the normal level; or

c) using DNA restriction mapping to compare the restriction pattern produced when a restriction enzyme cuts a sample of nucleic acid from the patient with the restriction pattern obtained from normal MOAT gene or from known mutations thereof; or,

d) using a specific binding member capable of binding to a MOAT nucleic acid sequence (either normal sequence or known mutated sequence), the specific binding member comprising nucleic acid hybridizable with the MOAT sequence, or substances comprising an antibody domain with specificity for a native or mutated MOAT nucleic acid sequence or the polypeptide encoded by it, the specific binding member being labelled so that binding of the specific binding member to its binding partner is detectable; or,

e) using PCR involving one or more primers based on normal or mutated MOAT gene sequence to screen for normal or mutant MOAT gene in a sample from a patient.

A "specific binding pair" comprises a specific binding member (sbm) and a binding partner (bp) which have a particular specificity for each other and which in normal conditions bind to each other in preference to other molecules. Examples of specific binding pairs are antigens and antibodies, ligands and receptors and complementary nucleotide sequences. The skilled person is aware of many other examples and they do not need to be listed here. Further, the term "specific binding pair" is also applicable where either or both of the specific binding member and the binding partner comprise a part of a large molecule. In embodiments in which the specific

binding pair are nucleic acid sequences, they will be of a length to hybridize to each other under conditions of the assay, preferably greater than 10 nucleotides long, more preferably greater than 15 or 20 nucleotides long.

In most embodiments for screening for alleles giving rise to chemotherapy resistance, the MOAT nucleic acid in biological sample will initially be amplified, e.g. using PCR, to increase the amount of the analyte as compared to other sequences present in the sample. This allows the target sequences to be detected with a high degree of sensitivity if they are present in the sample. This initial step may be avoided by using highly sensitive array techniques that are becoming increasingly important in the art.

The identification of the MOAT gene and its association with a particular chemotherapy resistance paves the way for aspects of the present invention to provide the use of materials and methods, such as are disclosed and discussed above, for establishing the presence or absence in a test sample of a variant form of the gene, in particular an allele or variant specifically associated with chemotherapy resistance. This may be done to assess the propensity of the tumor to exhibit chemotherapy resistance.

In still further embodiments, the present invention concerns immunodetection methods for binding, purifying, removing, quantifying or otherwise generally detecting biological components. The encoded proteins or peptides of the present invention may be employed to detect antibodies having reactivity therewith, or, alternatively, antibodies prepared in accordance with the present invention, may be employed to detect the encoded proteins or peptides. The steps of various useful immunodetection methods have been

described in the scientific literature, such as, e.g., Nakamura et al. (1987).

In general, the immunobinding methods include obtaining a sample suspected of containing a protein, peptide or antibody, and contacting the sample with an antibody or protein or peptide in accordance with the present invention, as the case may be, under conditions effective to allow the formation of immunocomplexes.

The immunobinding methods include methods for detecting or quantifying the amount of a reactive component in a sample, which methods require the detection or quantitation of any immune complexes formed during the binding process. Here, one would obtain a sample suspected of containing a MOAT gene encoded protein, peptide or a corresponding antibody, and contact the sample with an antibody or encoded protein or peptide, as the case may be, and then detect or quantify the amount of immune complexes formed under the specific conditions.

In terms of antigen detection, the biological sample analyzed may be any sample that is suspected of containing the MOAT antigen, such as a tumor tissue section or specimen, a homogenized tissue extract, an isolated cell, a cell membrane preparation, separated or purified forms of any of the above protein-containing compositions.

Contacting the chosen biological sample with the protein, peptide or antibody under conditions effective and for a period of time sufficient to allow the formation of immune complexes (primary immune complexes) is generally a matter of simply adding the composition to the sample and incubating the mixture for a period of time long enough for the antibodies to form immune complexes with, i.e., to bind to, any antigens present. After this time, the sample-antibody composition, such as a tissue

section, ELISA plate, dot blot or Western blot, will generally be washed to remove any non-specifically bound antibody species, allowing only those antibodies specifically bound within the primary immune complexes to be detected.

In general, the detection of immunocomplex formation is well known in the art and may be achieved through the application of numerous approaches. These methods are generally based upon the detection of a label or marker, such as any radioactive, fluorescent, biological or enzymatic tags or labels of standard use in the art. U.S. Patents concerning the use of such labels include U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149 and 4,366,241, each incorporated herein by reference. Of course, one may find additional advantages through the use of a secondary binding ligand such as a second antibody or a biotin/avidin ligand binding arrangement, as is known in the art.

In one broad aspect, the present invention encompasses kits for use in detecting expression of MOAT encoding nucleic acids in biological samples, including biopsy samples. Such a kit may comprise one or more pairs of primers for amplifying nucleic acids corresponding to the MOAT gene. The kit may further comprise samples of total mRNA derived from tissues expressing at least one or a subset of the MOAT genes of the invention, to be used as controls. The kit may also comprise buffers, nucleotide bases, and other compositions to be used in hybridization and/or amplification reactions. Each solution or composition may be contained in a vial or bottle and all vials held in close confinement in a box for commercial sale. In a further embodiment, the invention encompasses a kit for use in detecting MOAT proteins in chemotherapy

resistant cancer cells comprising antibodies specific for MOAT proteins encoded by the MOAT nucleic acids of the present invention.

Another aspect of the present invention comprises screening methods employing host cells expressing one or more MOAT genes of the invention. An advantage of having discovered the complete coding sequenced of MOAT B-E is that cell lines that overexpress MOATB C D or E can be generated using standard transfection protocols. Cells that overexpress the complete cDNA will also harbor the complete proteins, a feature that is essential for biological activity of proteins. The overexpressing cell lines will be useful in several ways: 1)The drug sensitivity of overexpressing cell lines can be tested with a variety of known anticancer agents in order to determine the spectrum of anticancer agents for which the transporter confers resistance; 2)The drug sensitivity of overexpressing cell lines can be used to determine whether newly discovered anticancer agents are transported out of the cell by one of the discovered transporters; 3)Overexpressing cell lines can be used to identify potential inhibitors that reduce the activity of the transporters. Such inhibitors are of great clinical interest in that they may enhance the activity of known anticancer agents, thereby increasing their effectiveness. Reduced activity will be detected by restoration of anticancer drug sensitivity, or by reduction of transporter mediated cellular efflux of anticancer agents. In vitro biochemical studies designed to identify reduced transporter activity in the presence of potential inhibitors can also be performed using membranes prepared from overexpressing cell lines; and 4)Overexpressing cell lines can also be used to

determine whether pharmaceutical agents that are not anticancer agents are transported out of the cell by the transporters.

The following protocols are provided to facilitate the practice of the present invention.

Isolation of MOAT-B cDNA

Forward {CT(A/G/T) GT(A/G/T) GC(A/G/T) GT(A/G/T)
GT(A/G/T) GG(A/G/C/T)} (SEQ ID NO:9) and reverse {(G/A)CT
(A/G/C/T)A(A/G/C) (A/G/C/T)GC (A/G/C/T)(G/C)(T/A)
(A/G/C/T)A(A/G) (A/G/C/T)GG (A/G/C/T)TC (A/G)TC} (SEQ ID
NO:16) degenerate oligonucleotide primers were designed based upon the first nucleotide binding folds of human MRP, CFTR, and MDR1. Bacteriophage DNA isolated from a C200 cDNA library prepared in the λ pCEV27 phagemid vector (17) was used as template in PCR reactions containing 250 ng cDNA, 5 μ M primers, 50 mM KCl, 10 mM Tris-HCl, pH 8.3, 3 mM MgCl₂, .05% gelatin, 0.2 mM dNTP and Taq polymerase (Perkin Elmer Cetus). Five cycles of PCR were performed as follows: 94°C for 1 minute, 40°C for 2 minutes, 72°C for 3 minutes. Twenty five cycles were then performed as follows: 94°C for 1 minute, 55°C for 1 minute, and 72°C for 1 minute. The resulting reaction products were used as template in a second round of PCR, as described above, with nested forward {CGGGATCC AG(A/G) GA(A/G) AA(C/T) AT(A/C/T) CT(A/G/C/T)
TTT GG(A/G/C/T)} (SEQ ID NO:17) and reverse {CGGAATTC
(A/G/T/C)TC (A/G)TC (A/C/T)AG (A/G/C/T)AG (A/G)TA
(A/T/G)AT (A/G)TC} (SEQ ID NO:18) degenerate oligonucleotide primers. PCR reaction products were isolated from an agarose gel and subcloned into the BamHI and EcoRI sites of pBluescript (Stratagene). Nucleotide sequence analysis

was performed on plasmid DNA prepared from ampicillin resistant transformants. Additional cDNA clones were isolated from C200 (ovary) and B5 (breast) cDNA libraries by plaque hybridization using the PCR product as the initial radiolabeled probe.

RNA Blot Analysis

Blots containing polyA⁺ RNA isolated from human tissues (Clontech) were prehybridized at 45°C for 8 hours in 50% formamide, 4X SSC, 4X Denhardt's solution, 0.04 M sodium phosphate monobasic, pH 6.5, 0.8% (w/v) glycine, 0.1 mg/ml sheared denatured salmon sperm DNA.

Hybridization was performed at 45°C with ³²P-labeled MOAT-B or GAPDH probes in a solution containing 50% formamide, 3X SSC, 0.04 M sodium phosphate pH 6.5, 10% dextran sulfate, 0.1 mg/ml sheared denatured salmon sperm DNA. Blots were washed 2 times for 15 min at 65°C in 2X SSC, 5 mM Tris-HCl pH 7.4, 0.5% SDS, 2.5 mM EDTA, 0.1% sodium pyrophosphate pH 8.0, and subsequently washed 2 times for 15 min in 0.1X SSC. Blots were then subjected to autoradiography.

Chromosomal localization

Preparation of metaphase spreads from phytohemagglutinin-stimulated lymphocytes of a healthy female donor, and fluorescence *in situ* hybridization and detection of immunofluorescence were carried out as previously described (18). A 2.2-kb cDNA clone of MOAT-B inserted in pBluescript was biotinylated by nick translation in a reaction containing 1 µg DNA, 20 µM each of dATP, dCTP and dGTP, 1 µM dTTP, 25 mM Tris-HCl, pH 7.5, 5 mM MgCl₂, 10 mM β-mercaptoethanol, 10 µM biotin-16-dUTP (Boehringer Mannheim), 2 units DNA polymerase 1/DNase 1 (GIBCO, BRL) and water to a total volume of 50 µl. The

probe was denatured and hybridized to metaphase spreads overnight at 37°C. Hybridization sites were detected with fluorescein-labeled avidin (Oncor) and amplified by addition of anti-avidin antibody (Oncor) and a second layer of fluorescein-labeled avidin. The chromosome preparations were counterstained with DAPI and observed with a Zeiss Axiophot epifluorescence microscope equipped with a cooled charge coupled device camera (Photometrics, Tucson AZ) operated by a Macintosh computer work station. Digitized images of DAPI staining and fluorescein signals were captured, pseudo-colored and merged using Oncor Image version 1.6 software.

Isolation of MOAT-C and MOAT-D cDNA

MOAT-C and MOAT-D cDNA clones were isolated by plaque hybridization from bacteriophage cDNA libraries using the I.M.A.G.E. clones as the initial probes (ATCC).

RNA blot analysis

Blots containing polyA⁺ RNA isolated from human tissues (Clontech) were purchased from Clontech, and hybridized with radiolabeled MOAT-C, MOAT-D or actin probes according to the manufacturer's directions.

Chromosomal localization

Preparation of metaphase spreads from phytohemagglutinin-stimulated lymphocytes of a healthy female donor, and fluorescence *in situ* hybridization and detection of immunofluorescence were carried out as previously described (18). A MOAT-C probe inserted in pBluescript, or MOAT-D probe inserted in pBluescript, was biotinylated by nick translation in a reaction containing 1 µg DNA, 20 µM each of dATP, dCTP and dGTP, 1 µM dTTP, 25

mM Tris-HCl, pH 7.5, 5 mM MgCl₂, 10 mM β-mercaptoethanol, 10μM biotin-16-dUTP (Boehringer Mannheim), 2 units DNA polymerase 1/DNase 1 (GIBCO, BRL) and water to a total volume of 50 μl. The probe was denatured and hybridized to metaphase spreads overnight at 37°C. Hybridization sites were detected with fluorescein-labeled avidin (Oncor) and amplified by addition of anti-avidin antibody (Oncor) and a second layer of fluorescein-labeled avidin. The chromosome preparations were counterstained with DAPI and observed with a Zeiss Axiophot epifluorescence microscope equipped with a cooled charge coupled device camera (Photometrics, Tucson AZ) operated by a Macintosh computer work station. Digitized images of DAPI staining and fluorescein signals were captured, pseudo-colored and merged using Oncor Image version 1.6 software.

The following examples are provided to illustrate various embodiments of the invention. They are not intended to limit the invention in any way.

EXAMPLE I

Isolation of MOAT-B cDNA.

A degenerate PCR approach was used to isolate MRP-related transporters. Degenerate oligonucleotide primers were prepared based upon the N-terminal nucleotide binding folds of MRP and other eukaryotic transporters, and used in conjunction with DNA prepared from an ovarian cancer cell line bacteriophage library. Nucleotide sequence analysis of one of the resulting PCR products indicated that it encoded a segment of a novel nucleotide binding fold that was most closely related to MRP and cMOAT. Overlapping cDNA clones were isolated from ovarian and breast bacteriophage libraries by plaque hybridization using the PCR product as the initial probe. A total of

5.9 kB of cDNA was isolated. Nucleotide sequence analysis revealed two classes of cDNA clones that were about equally represented among isolates from each of the two bacteriophage libraries. The first class contained an open reading frame of 3975 bp that was bordered by in frame stop codons located at positions -76 and -42 (relative to the putative initiation codon) and 3976, and encoding a predicted protein of 1325 amino acids, which is designated MOAT-B. The open reading frame was followed by approximately 2 kB of 3' untranslated sequences. The most upstream ATG in the open reading frame was located in the sequence context "CAAGATGC". The A at position -3 of the putative translation initiation codon was in agreement with the major feature of the Kozak consensus sequence, but the C at position +4 was divergent from the more usual G. The second class of cDNA clones was identical to the first with the exception of a single nucleotide. These clones harbored an additional T following nucleotide 3872 of the first class of clones, close to the C-terminus of the predicted protein. This additional nucleotide resulted in a frame shift such that the predicted protein of the second class of cDNA clones was 22 residues shorter than that of the first class of cDNA clones, and in which the C-terminal 34 residues of the latter reading frame were replaced by 12 distinct residues. See brief description of Figure 1.

Analysis of the MOAT-B Predicted Structure.

Comparison of the MOAT-B predicted protein with complete coding sequences in protein data bases using the BLAST program indicated that it shared significant similarity with several eukaryotic ABC transporters.

Table I.

Table I. Comparison of peptide domains of MOAT-B with those of other eukaryotic ABC transporters

MOAT-B Domain (peptide)	TM1 (88-376)	NBF1 (428-576)	linker region (577-705)	TM2 (706-992)	NBF2 (1058- 1216)	C- terminus (1217- 1325)	overall identity
percent identity							
MRP human	28.6	55.6	27.9	33.3	61.6	51.6	39.2
YCF1 yeast	27	56	27.9	34	57.2	48.5	38.9
MOAT human	33.2	53.3	32.8	31.4	55.3	44.9	38
CFTR Human	30.5	48	27.9	37.7	44	21	36.3
SUR rat	28.1	41.3	28.2	30	52.8	42.8	32.9
MDR1 human	17.6	39.2	21.1	17.3	32.2	40.3	23.3

^b The indicated domains are, TM1: segment containing the transmembrane spanning domain N-terminal to NBF1; NBF1 and NBF2: nucleotide binding folds 1 and 2; Linker region: segment located between NBF1 and TM2; TM2: segment containing the transmembrane spanning domain located between the two NBFs; C-terminus: segment between NBF2 and the C-terminus of the proteins. Sequence alignments were generated using the PILEUP program of the GCC package. Percent amino acid identity with MOAT-B domains are shown.

Typical features of eukaryotic ABC transporters were present in the predicted MOAT-B protein. See Figure 1. Overall the protein was composed of a tandem repeat of a nucleotide binding fold appended C-terminal to a hydrophobic domain that contained several potential transmembrane spanning helices. Conserved Walker A and B ATP binding sites were present in each of the nucleotide binding folds. See Figure 2A. In addition, a conserved C motif, the signature sequence of ABC transporters, was present in each nucleotide binding fold. Analysis of potential transmembrane motifs using the TMAP program (19) and an input sequence alignment of MOAT-B and MOAT-C, a transporter highly related to MOAT-B⁴, predicted 12 transmembrane helices with 6 transmembrane segments in

each of the two hydrophobic domains. This 6 + 6 configuration of predicted transmembrane helices is in agreement with topological models proposed for MRP and other ABC transporters (20, 21), and is shown in Figure 1. However, alternative predictions of transmembrane segments were obtained using different program parameters or input sequence alignments. For example, when the TMAP program was used with an input sequence alignment consisting of human MRP, rat cMOAT, rat sulfonyl urea receptor (SUR), human cystic fibrosis conductance regulator (CFTR) and human P-glycoprotein, a 6 + 5 configuration was predicted. The only substantial difference between the latter prediction and the structure shown in Figure 1 is that transmembrane segments 9 (829-853) and 10 (855-878) were replaced by a single predicted transmembrane segment spanning amino acids 847 - 875.

Among ABC transporters, the degree of similarity of the nucleotide binding folds is considered to be the best indicator of functional conservation. Comparison of the nucleotide binding folds of MOAT-B with other eukaryotic ABC transporters indicated that it was most closely related to MRP, the yeast cadmium resistance protein (YCF1) and cMOAT (Table I), three transporters that have organic anions as substrates. The MOAT-B NBF1 was 55.6, 56.0 and 53.3 percent identical, and the MOAT-B NBF2 was 61.6, 57.2 and 55.3 percent identical to the first and second nucleotide binding folds of human MRP, YCF1 and human cMOAT, respectively. Aside from the latter transporters, the MOAT-B nucleotide binding folds were most closely related to those of CFTR and SUR. The MOAT-B nucleotide binding folds shared significantly less similarity with those of MDR1. Alignment of the MOAT-B nucleotide binding folds with those of other eukaryotic

transporters is shown in Figure 2A. Analysis of the overall amino acid identity of MOAT-B with other ABC transporters also indicated that it was most closely related to MRP, YCF1 and cMOAT (Table I). Overall MOAT-B was 39.2, 38.9 and 38 percent identical to these transporters, respectively. Figure 2B shows a comparison of the hydropathy profiles of MOAT-B with those of other eukaryotic transporters. This comparison reveals that MOAT-B (1325 amino acids) is approximately 200 amino acids smaller than MRP (1531 residues), cMOAT (1545 residues) and YCF1 (1515 residues), and that this size difference is largely accounted for by the absence in MOAT-B of an amino terminal hydrophobic extension that is present in MRP, cMOAT and YCF1 (22). This N-terminal hydrophobic segment is predicted to harbor several transmembrane spanning segments, and is also present in SUR.

Expression Pattern of MOAT-B in Human Tissues.

To gain insight into the possible function of MOAT-B, its expression pattern in a variety of human tissues was examined by RNA blot analysis. As shown in Figure 3, a MOAT-B transcript of approximately 6 kB was readily detected. The isolation of 5.9 kB of MOAT-B cDNA was consistent with this size. MOAT-B expression was detected in each of the 16 tissues analyzed. Transcript levels were highest in prostate and lowest in liver and peripheral blood leukocytes, for which prolonged exposure of film were required to detect expression. Intermediate levels of expression were observed in other tissues.

Chromosomal Localization of the MOAT-B Gene.

The MOAT-B chromosomal localization was determined by fluorescence *in situ* hybridization. As shown in Figure 4, hybridization of the MOAT-B probe to metaphase spreads revealed specific labeling at human chromosome band 13q32.

Fluorescent signals were detected on chromosome 13 in each of 19 metaphase spreads scored. Of 135 signals observed, 62 (46%) were on 13q. Among these signals, 61 localized at 13q32, near the boundary between 13q31 and 13q32. Paired (on sister chromatids) signals were only seen at band 13q32. In several metaphases, signals on a single chromatid were observed at chromosome bands 6p21 or 4q21, suggesting hybridization to distantly related sequences.

EXAMPLE II

Isolation of MOAT-C and MOAT-D cDNA.

Isolation of the MOAT-B₄ transporter as described above suggested the possibility that there were other MRP/cMOAT-related transporters. A blast search (36) of the nonredundant expressed sequence tag data base using MRP and related yeast transporters revealed two clones with significant similarity to MRP and cMOAT. The first of these sequences (I.M.A.G.E. consortium clone 113196) was 1.2 kb in length, 800 bp of which encoded an MRP-related peptide. A segment of this clone was used as a probe to screen ovarian and hematopoietic bacteriophage libraries. Analysis of these cDNA clones indicated that they contained approximately 2 kb of additional coding sequence not present in clone 113196. An additional 1655 bp of 5' sequence was obtained by several rounds of RACE using the bacteriophage DNA prepared from the ovarian cDNA library as template. The continuity of the sequences obtained by RACE with the cDNA clones isolated from bacteriophage libraries was confirmed by nucleotide sequence analysis of a 2 kb product obtained by RT/PCR using an upstream oligonucleotide primer located at the 5' end of the RACE sequence and a downstream primer located at the 5' end of the cDNA obtained by plaque

hybridization. A total of approximately 5.9 kb of cDNA sequences were isolated. Nucleotide sequence analysis revealed an open reading frame of 4311 bp that was preceded by an in frame stop codon located at positions -93 (relative to the putative initiation codon), and encoding a predicted protein of 1437 amino acids, which is designated MOAT-C herein. The open reading frame was followed by approximately 1.4 kB of 3' untranslated sequences in which a polyadenylation sequence (AAUAAA) was located 20 bp upstream of the poly(A) tail. The most upstream ATG in the open reading frame was located in the sequence context $^{+4}\text{GAAGATGA}^{+4}$. The A at position -3 of the putative translation initiation codon was in agreement with the major feature of the Kozak consensus sequence, but the A at position +4 was divergent from the more usual G (37). The second sequence identified in our data base search (I.M.A.G.E. consortium clone 208097) was 1.2 kb in length, of which 588 bp encoded an MRP-related peptide. A segment of this clone was used as a probe to screen liver and monocyte bacteriophage cDNA libraries, and 5' cDNA segments of the isolated cDNA clones were used in a subsequent round of screening. Together approximately 5.2 kb of cDNA sequence were isolated. Nucleotide sequence analysis revealed an open reading frame of 4570 bp, which is designated MOAT-D herein. The open reading frame was followed by approximately 0.6 kb of 3' untranslated sequences in which a polyadenylation sequence (AAUAAA) was located 12 bp upstream of the poly(A) tail. An upstream in frame stop codon was not present in the MOAT-D cDNA clones, and attempts to obtain additional upstream sequences by RACE using as template cDNA prepared from sources in which MOAT-D is abundant were not successful. The most upstream ATG in the open reading frame

(nucleotide position 5-7), located in the sequence context "ATGGATGG", was therefore designated as the translational initiation site. The G at position +4, was in good agreement with the Kozak consensus sequence, but the T at -3 was divergent from the more usual A (37). Although an upstream in frame stop codon was not identified in the MOAT-D cDNA clones, the size of the encoded protein was within one amino acid of the size of the transporter with which it shares the highest degree of identity (MRP), suggesting that the complete MOAT-D open reading frame was present in the isolated cDNA clones.

Analysis of the MOAT-C and MOAT-D Predicted Proteins.

Comparison of the MOAT-C and MOAT-D predicted proteins with complete coding sequences in protein databases using the BLAST program indicated that they shared significant similarity with several eukaryotic ABC transporters. Typical features of eukaryotic ABC transporters were present in the predicted proteins. See Figure 5. Overall the proteins were composed of hydrophobic domains containing potential transmembrane spanning helices and two nucleotide binding folds. Conserved Walker A and B ATP binding sites, as well as a conserved C motif, the signature sequence of ABC transporters, was present in the nucleotide binding folds. Computer assisted analysis of potential transmembrane helices of MOAT-C using the TMAP program (19) predicted 12 transmembrane helices with 6 transmembrane spanning helices in each of two membrane spanning domains. This 6 + 6 (TM1-TM6 and TM7-TM12) configuration of predicted transmembrane helices is in agreement with topological models proposed for several other ABC transporters (20, 21), and is shown in Figure 5. However, alternative

predictions of transmembrane segments were obtained using different program parameters or input sequence alignments. Comparison of the hydropathy profiles of MOAT-C with other MRP/cMOAT-related transporters (Fig. 6B) indicates that its structure is similar to that of MOAT-B, which also has two membrane spanning domains.

In contrast to MOAT-C, hydrophobicity analysis of MOAT-D indicated that it has three membrane spanning domains. Similar to MRP, cMOAT and the yeast cadmium resistance factor 1 (YCF1), MOAT-D has an additional N-terminal hydrophobic domain that is not present in MOAT-B or MOAT-C (Figs. 5 and 6). A 5+6+6 configuration of transmembrane spanning helices has been proposed for MRP (38), in which the N-terminal extension harbors 5 transmembrane spanning helices, and 6 transmembrane helices are present in the second and third membrane spanning domain. An alignment of the MOAT-D predicted protein with MRP using the GAP program indicated that proposed MRP transmembrane spanning helices were conserved in MOAT-D. This 5+6+6 model for MOAT-D is shown in Fig. 5. Another configuration of transmembrane spanning helices (5+6+4) was predicted using computer assisted analysis. MRP has been reported to have two N-linked glycosylation sites in its N-terminus (Asn-19 and Asn-23) and another site located between the first and second transmembrane spanning helix of its third membrane spanning domain (Asn-1006). The alignment of MOAT-D with MRP indicated that an N-terminal (Asn-21) and a distal N-glycosylation sites (Asn-1008/1009) were conserved in analogous positions in MOAT-D. Only the distal N-glycosylation site of MRP is conserved in MOAT-C (Asn890) (Fig. 5) and MOAT-B⁴ (Asn746/754) .

Among ABC transporters, the degree of similarity of

the nucleotide binding folds is considered to be the best indicator of functional conservation. Comparison of the nucleotide binding folds of MOAT-C and MOAT-D with other eukaryotic ABC transporters indicated that they were most closely related to those of human MRP, human cMOAT and yeast YCF1, three transporters that have organic anions as substrates. As shown in Table 2, among the human transporters, the MOAT-C NBF1 was about equally related to MOAT-D, MRP and cMOAT (55-61% identity), and less similar to MOAT-B (49% identity).

Table II. Amino acid identity: nucleotide binding folds 1 and 2 of MRP/cMOAT sub-family members.

	MOAT-C	MOAT-D	MOAT-B	MRP	cMOAT	YCF1
%IDENTIFY (BNF1/NBF20)						
MOAT-C	-----	57.3/58.9	49.3/59.1	60.0/59.4	61.3/60.6	55.3/58/8
MOAT-D	57.3/58/9	-----	55.3/54.1	70.173.8	67.3/70.0	52.7/61.3
MOAT-B	49.3/59.1	55.3/54.1	-----	57.3/61/6	53.3/55.3	56.0/57.2
MRP	60.0/59.4	70.7/73.7	57.3/61.6	-----	66.0/73.1	53.3/63.8
cMOAT	61/3/60.6	67.3/70.0	53.3/55.3	66.0/73.1	-----	50.7/61/3
YCF1	55.3/58.8	52.7/61.3	56.0/57.2	53.3/63.8	50.7/61.3	-----

The MOAT-C NBF2 shared about equal amino acid identity with the five other transporters in this group (59-61% identity). Overall, the MOAT-C protein was about equally related to the other five transporters in this group, with 33.1-36.5% identity. Aside from these

transporters, MOAT-C is most closely related to CFTR, with which its NBFs shared 44%/42 % identity, and SUR, with which its NBFs shared 49%/51% identity.

The MOAT-D NBFs were clearly most closely related to those of MRP and cMOAT, with which they shared considerable amino acid identity (67.3-73.8%). See Table III. Of the latter two transporters, the MOAT-D NBFs were slightly more related to those of MRP. In contrast, the MOAT-D NBFs shared only 55.3-58.9% identity with those of MOAT-C and MOAT-B. Overall, MOAT-D was again most closely related to MRP (57.3%) and cMOAT (46.9%), but significantly more related to MRP. Consistent with the analysis of NBFs, MOAT-D was much less related to MOAT-C and MOAT-B, with which it shared only 33.1% and 35.3% identity, respectively. Alignment of the MOAT-C and MOAT-D nucleotide binding folds with those of other eukaryotic transporters is shown in Fig. 6.

Table III. Overall amino acid identifying among MRP/cMOAT sub-family members

	MOAT-C	MOAT-D	MOAT-B	MRP	cMOAT	YCF1
%identity						
MOAT-C	----	33.1	36.5	35.8	36.2	33.6
MOAT-D	33.1	----	35.3	57.3	46.9	38.1
MOAT-B	36.4	35.3	----	39.4	36.8	38.8
MRP	35.8	57.3	39.4	----	48.4	46.4
cMOAT	36.3	46.9	36.8	48.8	----	38.8
YCF1	33.6	38.1	38.8	40.4	38.8	----

Expression Pattern of MOAT-C and MOAT-D in Human Tissues.

To gain insight into the possible functions of MOAT-C and MOAT-D, their expression patterns in a variety of human tissues was examined by RNA blot analysis. As

shown in Fig. 7 (upper panels), a MOAT-C transcript of approximately 6.6 kB was readily detected in several tissues. MOAT-C transcript levels were highest in skeletal muscle, with intermediate levels in kidney, testes, heart and brain. Low levels were detected in most other tissues, including spleen, thymus, prostate, ovary, and placenta. Prolonged exposures were required for detection in lung and liver. MOAT-D was expressed as an approximately 6 kb transcript (middle panels). Compared to MOAT-C, the MOAT-D expression pattern was more restricted. MOAT-D was highly expressed in colon and pancreas, with lower levels in liver and kidney. Low levels were detected in small intestine, placenta and prostate. Prolonged exposures were required to detect MOAT-D in testes, thymus, spleen and lung.

Chromosomal localization of the MOAT-C and MOAT-D genes.

The MOAT-C and MOAT-D chromosomal localizations were determined by fluorescence *in situ* hybridization. As shown in Figure 8, hybridization of the MOAT-C probe to metaphase spreads revealed specific labeling at human chromosome band 3q27. Fluorescent signals were detected on chromosome 3q in each of 22 metaphase spreads scored. Of 75 signals observed, 43 (57%) were on 3q. Paired (on sister chromatids) signals were only seen at band 3q27. Hybridization of the MOAT-D probe revealed specific labeling at human chromosome band 17q21.3. Fluorescent signals were detected on chromosome 17 in each of 21 metaphase spreads scored. Of 83 signals observed, 34 (41%) were on 17q21.3. Paired (on sister chromatids) signals were only seen at band 17q21.3.

EXAMPLE III**Isolation of MOAT-E and MOAT-E cDNA.**

Analysis of ara, a reported cDNA sequence that encodes a 453 amino acid transporter, revealed that it is a non-physiological sequence representing a combination of 5' MRP sequences fused to an MRP/cMOAT-related transporter. The MRP sequences extend to codon 8 of the reported predicted protein.

To isolate the complete physiological cDNA, a RT/PCR approach was employed in which primers were designed based upon a reported genomic sequence that encodes exons identical to the reported ara sequence. The MOAT-E cDNA was isolated in three segments. The first segment, spanning residues 1-616, was isolated by PCR using 5' primer ATGGCCGCGCCTGCTGAGC; (SEQ ID NO: 10) and 3' primer GTCTACGACACCAGGGTCAA (SEQ ID NO: 11). The second segment, spanning residues 1815-3187, was isolated by PCR using 5' CTGCCTGGAAGAAGTTGACC (SEQ ID NO: 12) and 3' primer CTGGAATGTCCACGTCAACC (SEQ ID NO: 13). The third segment, spanning residues 3158-1503, was isolated by PCR using 5' primer GGAGACAGACACGGTTGACG (SEQ ID NO: 14) and 3' primer GCAGACCAGGCCTGACTCC (SEQ ID NO: 15). The primer were designed based upon the nucleotide sequence of human genomic BAC clone CIT987SD-962B4. The template for these reactions was random-primed human kidney cDNA prepared from total RNA. Using this approach the physiological cDNA was isolated which is designated MOAT-E herein and set forth as Sequence I.D. No. 7.

Analysis of the MOAT-E Predicted Protein.

MOAT-E encodes a 1503 amino acid transporter. The MOAT-E predicted amino acid sequence is designated Sequence I.D. No. 8. See Figure 9. Also shown is the

location of potential transmembrane helices (overbars), potential N-glycosylation site (black dot) and the two nucleotide binding folds (NBF1 and NBF2). Walker A and B motifs, as well as the signature C motif of ABC transporters are also indicated. Comparison of MOAT-E with ara indicates that the ara predicted protein is not only a fused sequence, but also that it represents only 446 (~30%) of the 1503 MOAT-E residues.

Comparison of MOAT-E with the other members of the MRP/cMOAT subfamily, which include MRP, cMOAT, MOAT-B, MOAT-C and MOAT-E, is shown in Table IV. MOAT-E is highly related to MOAT-D, MRP and cMOAT, with which it shares 39-45% identity. This high degree of identity is also indicated by the high percent identities of the nucleotide binding folds, which range from 55-61%. In contrast, MOAT-E is less related to MOAT-B and MOAT-C, with which it shares ~31% and 34% identity, respectively.

Table IV. Amino acid identity among MRP/cMOAT sub-family members.^a The bold type indicates the percent identity of the overall proteins, and the parentheses indicates the percent identity of the nucleotide binding folds.

	MOAT-E	MOAT-B	MOAT-C	MOAT-D	MRP	cMOAT
% identity ^b						
MOAT-E	---	33.9	30.6	43.6	45.1	38.9
	---	(52.0/56.6)	(50.0/52.5)	(59.3/59.4)	(61.3/61.4)	(55.3/59.4)
MOAT-B	33.9	---	36.4	35.3	39.4	36.8
	(52.0/56.6)	---	(49.3/59.1)	(55.3/54.1)	(57.3/61.6)	(56.0/57.2)
MOAT-C	30.0	36.4	---	33.1	35.8	36.2
	(50.0/52.5)	(49.3/59.1)	---	(57.3/58.9)	(60.6/59.4)	(61.3/60.6)
MOAT-D	43.6	35.3	33.1	---	57.3	46.9
	(59.3/59.4)	(55.3/54.1)	(57.3/58.9)	---	(70.7/73.8)	(67.3/70.0)
MRP	45.1	39.4	35.8	57.3	---	48.4
	(61.3/61.9)	(57.3/61.6)	(60.0/59.4)	(70.7/73.8)	---	(66.0/73.1)
cMOAT	38.9	36.8	36.2	46.9	48.4	---
	(53.1/59.4)	(56.0/57.2)	(61.3/60.6)	(67.3/70.0)	(66.0/73.1)	---

^aoverall amino acid identities are indicated in bold-face, and identities of nucleotide binding folds 1 and 2 are indicated in parentheses (NBF1/NBF2).

^bpercent identity was obtained using the GAP command in the GCG package.

Comparison of the hydropathy profile of MOAT-E with other members of the MRP/cMOAT subfamily if shown in figure 10. The data reveal that MOAT-E has a hydrophobic N-terminal segment that is present in its closest relatives, MOAT-D, MRP and cMOAT. This structural feature is present in all of the currently known organic anion transporters, and suggests that MOAT-E may share substrate specificity with MRP and cMOAT. MOAT-E may also share the drug resistance activity of the latter two proteins. In contrast, MOAT-B and MOAT-C do not have this hydrophobic N-terminal extension.

Expression Pattern of MOAT-E in Human Tissues.

In a Northern blot of RNA isolated from various tissues, MOAT-E expression is restricted to liver and kidney, suggesting that MOAT-E may participate the excretion of substances into the urine and bile. See Figure 11. This figure also shows that MOAT-E is expressed as an ~6 kB transcript. This is in contrast to the ~2.3 kB transcript that was reported for ara, clearly indicating that the fused ara transcript is unique to the cell line from which it was isolated, and is not a physiological transcript. Together, the isolation of MOAT-E and analysis of its sequence and expression pattern suggest that it may be involved in cellular resistance to drugs and/or the excretion of drugs into the urine and bile.

DISCUSSION

The present invention discloses additional MRP/cMOAT-related transporters which were identified by

using a degenerative PCR cloning approach in which the conserved amino terminal ATP-binding domain of known eukaryotic transporters was targeted. Using this approach the complete coding sequences of MOAT-B, MOAT-C, MOAT-D and MOAT-E were obtained. MOAT-B is a protein whose predicted structure indicates that it is a member of the ABC transporter family. Comparison of the MOAT-B predicted protein with other transporters reveals that it is most closely related to MRP, cMOAT and yeast YCF1, and thus extends the number of known full length MRP-related transporters. The similarity of MOAT-B to these transporters suggest that it shares a similar substrate specificity. Transport assays using membrane vesicle preparations indicate that MRP is capable of transporting diverse organic anions, including glutathione S-conjugates such as LTC₄, oxidized glutathione, and glucuronidated and sulfated conjugates of steroid hormones and bile salts (7). Although membrane vesicle transport assays of substrate specificity using cMOAT-transfected cells have not yet been reported, genetic and biochemical studies using TR- and EHBR rat strains, which are defective in the hepatobiliary excretion of glutathione and glucuronate conjugates, indicate that it is also an ATP-dependent transporter of organic anions. cMOAT, which is primarily expressed in the canalicular membrane of hepatocytes, has been reported to be absent in these rat strains, and hepatocyte canalicular membranes prepared from the mutant rats are deficient in the ATP-dependent transport of glutathione and glucuronate conjugates (23, 24). In addition, cMOAT protein has also been reported to be absent in the hepatocytes of patients with Dubin-Johnson syndrome (25), a disorder manifested by chronic

conjugated hyperbilirubinemia. YCF1, a yeast transporter, has also been demonstrated to transport glutathione complexes (26). Thus, based upon the similarity of MOAT-B to these three transporters, it is possible that it also functions to transport organic anions, an activity critical to the cellular detoxification of a wide range of xenobiotics.

MOAT-C, MOAT-D and MOAT-E are three other MRP/cMOAT-related transporters. The isolation of these two transporters extends the number of known full length members of this subfamily to six. Based upon the degree of amino acid similarity and overall topology these six proteins fall into two groups. The first group is composed of MOAT-D, MOAT-E, MRP and cMOAT. These four transporters are highly related, sharing ~39-45% amino acid identity. MOAT-D is more closely related to MRP (57% identity) than is cMOAT (48% identity), and is therefore the closest known relative of MRP. In addition to a high degree of amino acid identity, the similarity between MOAT-D, MRP and cMOAT, also extends to overall topology. Like MRP and cMOAT, MOAT-D and MOAT-E have three membrane spanning domains, including an N-terminal hydrophobic extension that is predicted to harbor ~5 transmembrane helices, and which is absent in transporters such as CTR and MDR1. This N-terminal extension is also present in YCF1, a related yeast transporter that transports glutathione S-conjugates, and SUR, a more distantly related transporter involved in the regulation of potassium channels. The second group of MRP/cMOAT-related transporters is composed of MOAT-B and MOAT-C. These two transporters are distinguished from the first group by their lower level of amino acid similarity and distinct topology. Like MOAT-D and MOAT-E, MOAT-B

and MOAT-C are more closely related to MRP (39% and 36%, respectively) and cMOAT (37% and 36%, respectively) than to other eukaryotic transporters . However, they share considerably less similarity with MRP, cMOAT, MOAT-D and MOAT-E than the latter four transporters share with each other (~39-45% identity). In addition, in contrast to MRP, cMOAT, MOAT-D and MOAT-E, MOAT-B and MOAT-C do not have an N-terminal membrane spanning domain, and their topology is therefore more similar to many other eukaryotic ABC transporters that also have only two membrane spanning domains.

Defining the contributions of MOAT-B, MOAT-C, MOAT-D and MOAT-E to cytotoxic drug resistance will facilitate the design of novel chemotherapeutic agents. The multidrug resistance activity of MRP is well described. While the drug sensitivity pattern of cMOAT-transfected cells has not yet been reported, the possibility that it may also confer resistance to cytotoxic drugs is suggested by a recent report in which transfection of a cMOAT antisense vector was found to enhance the sensitivity of a human liver cancer cell line to both natural product drugs and cisplatin. Since MOAT-D and MOAT-E are more closely related to MRP than is cMOAT, the possibility that they will also confer resistance is particularly intriguing. The availability of the MOAT-B, MOAT-C, MOAT-D and MOAT-E cDNAs will facilitate the analysis of their possible contributions to cytotoxic resistance.

References

1. Gottesman, M. M. and Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter. *Annu. Rev. Biochem.*, 62: 385-427, 1993
2. Kruh, G. D., Chan, A., Myers, K., Gaughan, K., Miki, T., and Aaronson, S. A. Expression complementary DNA library transfer establishes mrp as a multidrug resistance gene. *Cancer Res.*, 54: 1649-52, 1994.
3. Zaman, G. J., Flens, M. J., van Leusden, M. R., de Haas, M., Mulder, H.S., Lankelma, J., Pinedo, H. M., Schepers, R. J., Baas, F., Broxterman, H.J., and Borst, P. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. *Proc. Natl. Acad. Sci. U S A*, 91: 8822-6, 1994.
4. Grant, C. E., Valdimarsson, G., Hipfner, D. R., Almquist, K. C., Cole, S.P., and Deeley, R. G. Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. *Cancer Res.*, 54:357-61, 1994.
5. Breuninger, L. M., Paul, S., Gaughan, K., Miki, T., Chan, A., Aaronson, S. A., and Kruh, G. D. Expression of Multidrug Resistance-associated Protein in NIH/3T3 Cells Confers Multidrug Resistance Associated with Increased Drug Efflux and Altered Intracellular Drug Distribution. *Cancer Res.*, 55: 5342-5347, 1995.
6. Cole, S. P., Sparks, K. E., Fraser, K., Loe, D. W., Grant, C. E., Wilson, G. M., and Deeley, R. G. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. *Cancer Res.*, 54: 5902-10, 1994.
7. Keppler, D., Leier, I., and Jedlitschky, G. Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. *Biol. Chem.*, 378: 787-91, 1997.
8. Lee, J. S., Scala, S., Matsumoto, Y., Dickstein, B., Robey, R., Zhan, Z., Altenberg, G., and Bates, S. E. Reduced drug accumulation and multidrug resistance in human breast cancer cells without associated P-glycoprotein or MRP overexpression. *J. Cell. Biochem.*, 65: 513-26, 1997.
9. Gately, D. P. and Howell, S. B. Cellular accumulation

of the anticancer agent cisplatin: a review. Br. J. Cancer, 67: 1171-6, 1993.

10. Ishikawa, T. and Ali-Osman, F. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J. Biol. Chem., 268: 20116-25, 1993.
11. Ishikawa, T., Wright, C. D., and Ishizuka, H. GS-X pump is functionally overexpressed in cis-diamminedichloroplatinum (II)-resistant human leukemia HL-60 cells and down-regulated by cell differentiation. J. Biol. Chem., 269: 29085-93, 1994.
12. Fujii, R., Mutoh, M., Sumizawa, T., Chen, Z. S., Yoshimura, A., and Akiyama, S. Adenosine triphosphate-dependent transport of leukotriene C₄ by membrane vesicles prepared from cisplatin-resistant human epidermoid carcinoma tumor cells [see comments]. J. Natl. Cancer Inst., 86: 1781-4, 1994.
13. Ishikawa, T., Bao, J. J., Yamane, Y., Akimaru, K., Frindrich, K., Wright, C. D., and Kuo, M. T. Coordinated induction of MRP/GS-X pump and gamma-glutamylcysteine synthetase by heavy metals in human leukemia cells. J. Biol. Chem., 271: 14981-8, 1996.
14. Taniguchi, K., Wada, M., Kohno, K., Nakamura, T., Kawabe, T., Kawakami, M., Kagotani, K., Okumura, K., Akiyama, S., and Kuwano, M. A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res., 56: 4124-9, 1996.
15. Kool, M., de Haas, M., Scheffer, G. L., Schepers, R. J., van Eijk, M. J., Juijn, J. A., Baas, F., and Borst, P. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res., 57: 3537-47, 1997.
16. Koike, K., Kawabe, T., Tanaka, T., Toh, S., Uchiumi, T., Wada, M., Akiyama, S., Ono, M., and Kuwano, M. A canalicular multispecific organic anion transporter (cMOAT) antisense cDNA enhances drug sensitivity in human hepatic cancer cells. Cancer Res., 57: 5475-9, 1997.

17. Miki, T., Fleming, T. P., Crescenzi, M., Molloy, C. J., Blam, S. B., Reynolds, S. H., and Aaronson, S. A. Development of a highly efficient expression cDNA cloning system: application to oncogene isolation. *Proc. Natl. Acad. Sci. U S A*, 88: 5167-71, 1991.
18. Bell, D. W., Taguchi, T., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., Gilks, C. B., Zweidler-McKay, P., Grimes, H. L., Tsichlis, P. N., and Testa, J. R. Chromosomal localization of a gene, GF1, encoding a novel zinc finger protein reveals a new syntenic region between man and rodents. *Cytogenet. Cell. Genet.*, 70: 263-7, 1995.
19. Persson, B. and Argos, P. Prediction of transmembrane segments in proteins utilising multiple sequence alignments. *J. Mol. Biol.*, 237: 182-92, 1994.
20. Bakos, E., Hegedus, T., Hollo, Z., Welker, E., Tusnady, G. E., Zaman, G. J., Flens, M. J., Varadi, A., and Sarkadi, B. Membrane topology and glycosylation of the human multidrug resistance-associated protein. *J. Biol. Chem.*, 271: 12322-6, 1996.
21. Loo, T. W. and Clarke, D. M. Membrane topology of a cysteine-less mutant of human P-glycoprotein. *J. Biol. Chem.*, 270: 843-8, 1995.
22. Tusnady, G. E., Bakos, E., Varadi, A., and Sarkadi, B. Membrane topology distinguishes a subfamily of the ATP-binding cassette (ABC) transporters. *FEBS Lett.*, 402: 1-3, 1997.
23. Paulusma, C. C., Bosma, P. J., Zaman, G. J., Bakker, C. T., Otter, M., Scheffer, G. L., Schepers, R. J., Borst, P., and Oude Elferink, R. P. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. *Science*, 271: 1126-82, 1996.
24. Buchler, M., Konig, J., Brom, M., Kartenbeck, J., Spring, H., Horie, T., and Keppler, D. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. *J. Biol. Chem.*, 271: 15091-8, 1996.
25. Kartenbeck, J., Leuschner, U., Mayer, R., and Keppler, D. Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes

- in Dubin-Johnson syndrome. *Hepatology*, 23: 1061-6, 1996.
26. Li, Z. S., Szczyplka, M., Lu, Y. P., Thiele, D. J., and Rea, P. A. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. *J. Biol. Chem.*, 271: 6509-17, 1996.
27. Wemmie, J. A. and Moye-Rowley, W. S. Mutational analysis of the *Saccharomyces cerevisiae* ATP-binding cassette transporter protein Ycf1p. *Mol. Microbiol.*, 25: 683-94, 1997.
28. Kruh, G. D., Gaughan, K. T., Godwin, A. K., and Chan, A. Expression Pattern of MRP in Human Tissues and Adult Solid Tumor Cell Lines. *J. Natl. Cancer Inst.*, 87: 1256-58, 1995.
29. Longhurst, T. J., O'Neill, G. M., Harvie, R. M., and Davey, R. A. The anthracycline resistance-associated (ara) gene, a novel gene associated with multidrug resistance in a human leukaemia cell line. *Br. J. Cancer*, 74: 1331-5, 1996.
30. Allikmets, R., Gerrard, B., Hutchinson, A., and Dean, M. Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. *Hum. Mol. Genet.*, 5: 1649-55, 1996.
31. Shen, D.-w., Pastan, I., and Gottesman, M. M. Cross-Resistance to Methotrexate and Metals in Human Cisplatin-resistant Cell Lines Results from a Pleiotropic Defect in Accumulation of These Compounds Associated with Reduced Plasma Membrane Binding Proteins. *Cancer Res.*, 58: 268-275, 1998.
32. Naredi, P., Heath, D. D., Enns, R. E., and Howell, S. B. Cross-resistance between cisplatin and antimony in a human ovarian carcinoma cell line. *Cancer Res.*, 54: 6464-8, 1994.
33. Naredi, P., Heath, D. D., Enns, R. E., and Howell, S. B. Cross-resistance between cisplatin, antimony potassium tartrate, and arsenite in human tumor cells. *J. Clin. Invest.*, 95: 1193-8, 1995.
34. Wemmie, J. A., Szczyplka, M. S., Thiele, D. J., and Moye-Rowley, W. S. Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an

ATP-binding cassette transporter-encoding gene, YCF1. J. Biol. Chem., 269: 32592-7, 1994.

35. O'Dwyer, P. J., Johnson, S. W., and Hamilton, T. C. Cisplatin and its Analogues. In: V. T. J. DeVita, S. Hellman, and S. A. Rosenberg (eds.), Cancer Principles and Practice of Oncology, pp. 418-432. Philadelphia: Lippincott-Raven, 1997.

36. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D. J. Basic Local Alignment Search Tool. J. Mol. Biol. 215:403-10, 1990.

37. Kozak, M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nuc. Acids. Res. 12:857-72.

38. Tusnady, G.E., Bakos, J., Varadi, A., Sarkadi, B. Membrane topology distinguishes a subfamily of the ATP-binding cassette (ABC) transporters. FEBS Lett. 402:1-3, 1997.

While certain of the preferred embodiments of the present invention have been described and specifically exemplified above, it is not intended that the invention be limited to such embodiments. Various modifications may be made thereto without departing from the scope and spirit of the present invention, as set forth in the following claims.

What is claimed is:

1. An isolated nucleic acid molecule having the sequence of SEQ ID NO:1, said nucleic acid molecule comprising a nucleotide sequence encoding a MOAT-B transporter protein about 1350 amino acids in length, said encoded transporter protein comprising a multi-domain structure including a tandem repeat of nucleotide binding folds appended C-terminal to a hydrophobic domain, said nucleotide binding folds having Walker A and B ATP binding sites, said C-terminal domain having a plurality of membrane spanning helices.

2. The nucleic acid molecule of claim 1, which is DNA.

3. The DNA molecule of claim 2, which is a cDNA comprising a sequence approximately 5.9 kilobase pairs in length that encodes said MOAT-B transporter protein.

4. The DNA molecule of claim 2, which is a gene comprising introns and exons, the exons of said gene specifically hybridizing with the nucleic acid of SEQ ID NO 1, and said exons encoding said MOAT-B transporter protein.

5. An isolated RNA molecule transcribed from the nucleic acid of claim 1.

6. The nucleic acid molecule of claim 1, wherein said sequence encodes a MOAT-B transporter

protein having an amino acid sequence selected from the group consisting of SEQ ID NO 2 and amino acid sequences encoded by natural allelic variants of said sequence.

7. The nucleic acid molecule of claim 6, which comprises SEQ ID NO 1.

8. An antibody immunologically specific for the protein encoded by the nucleic acid of claim 1.

9. An antibody as claimed in claim 8, said antibody being monoclonal.

10. An antibody as claimed in claim 8, said antibody being polyclonal.

11. An isolated nucleic acid molecule having the sequence of SEQ ID NO: 3, said nucleic acid molecule comprising a sequence encoding a MOAT-C transporter protein about 1450 amino acids in length, said transporter protein having a multi-domain structure including a tandem repeat of nucleotide binding folds, said nucleotide binding foldes having Walker A and B binding sites, and a C-terminal hydrophobic domain that contains several membrane spanning helices.

12. The nucleic acid molecule of claim 11, which is DNA.

13. The DNA molecule of claim 12, which is a cDNA comprising a sequence approximately 6.6 kilobase pairs in length that encodes said MOAT-C transporter protein.

14. The DNA molecule of claim 12, which is a gene comprising introns and exons, the exons of said gene specifically hybridizing with the nucleic acid of SEQ ID NO 3, and said exons encoding said MOAT-C transporter protein.

15. An isolated RNA molecule transcribed from the nucleic acid of claim 11.

16. The nucleic acid molecule of claim 11, wherein said sequence encodes a MOAT-C transporter protein having an amino acid sequence selected from the group consisting of SEQ ID NO 4 and amino acid sequences encoded by natural allelic variants of said sequence.

17. The nucleic acid molecule of claim 11, which comprises SEQ ID NO 3.

18. An antibody immunologically specific for the protein encoded by the nucleic acid of claim 11.

19. An antibody as claimed in claim 18, said antibody being monoclonal.

20. An antibody as claimed in claim 18, said antibody being polyclonal.

21. An oligonucleotide between about 10 and about 200 nucleotides in length, which specifically hybridizes with a protein translation initiation site in a nucleotide sequence encoding amino acids of SEQ ID NO 4.

22. An oligonucleotide between about 10 and about 200 nucleotides in length, which specifically hybridizes with a protein translation initiation site in a nucleotide sequence encoding amino acids of SEQ ID NO 2.

23. An isolated nucleic acid molecule having the sequence of SEQ ID NO: 5, said nucleic acid molecule comprising a sequence encoding a MOAT-D transporter protein about 1550 amino acids in length, said transporter protein having a multi-domain structure including a tandem repeat of nucleotide binding folds, said nucleotide binding foldes having Walker A and B binding sites, and a C-terminal hydrophobic domain that contains several membrane spanning helices.

24. The nucleic acid molecule of claim 23, which is DNA.

25. The DNA molecule of claim 24, which is a cDNA comprising a sequence approximately 6 kilobase pairs in length that encodes said MOAT-D transporter protein.

26. The DNA molecule of claim 24, which is a gene comprising introns and exons, the exons of said gene specifically hybridizing with the nucleic acid of SEQ ID NO 5, and said exons encoding said MOAT-D transporter protein.

27. An isolated RNA molecule transcribed from the nucleic acid of claim 23.

28. The nucleic acid molecule of claim 23, wherein

said sequence encodes a MOAT-D transporter protein having an amino acid sequence selected from the group consisting of SEQ ID NO 6 and amino acid sequences encoded by natural allelic variants of said sequence.

29. The nucleic acid molecule of claim 23, which comprises SEQ ID NO 5.

30. An antibody immunologically specific for the protein encoded by the nucleic acid of claim 23.

31. An antibody as claimed in claim 30, said antibody being monoclonal.

32. An antibody as claimed in claim 30, said antibody being polyclonal.

33. An oligonucleotide between about 10 and about 200 nucleotides in length, which specifically hybridizes with a protein translation initiation site in a nucleotide sequence encoding amino acids of SEQ ID NO 6.

34. An isolated nucleic acid molecule having the sequence of SEQ ID NO:7, said nucleic acid molecule comprising a nucleotide sequence encoding a MOAT-E transporter protein about 1503 amino acids in length, said transporter protein having a multi-domain structure including a tandem repeat of nucleotide binding folds, said nucleotide binding folds having Walker A and B binding sites, and a C-terminal hydrophobic domain that contains several membrane spanning helices.

35. The nucleic acid molecule of claim 34,

which is DNA.

36. The DNA molecule of claim 35, which is a cDNA comprising a sequence approximately 6 kilobase pairs in length that encodes said MOAT-E transporter protein.

37. The DNA molecule of claim 35, which is a gene comprising introns and exons, the exons of said gene specifically hybridizing with the nucleic acid of SEQ ID NO 7, and said exons encoding said MOAT-E transporter protein.

38. An isolated RNA molecule transcribed from the nucleic acid of claim 34.

39. The nucleic acid molecule of claim 34, wherein said sequence encodes a MOAT-E transporter protein having an amino acid sequence selected from the group consisting of SEQ ID NO 8 and amino acid sequences encoded by natural allelic variants of said sequence.

40. The nucleic acid molecule of claim 39, which comprises SEQ ID NO 7.

41. An antibody immunologically specific for the protein encoded by the nucleic acid of claim 34.

42. An antibody as claimed in claim 41, said antibody being monoclonal.

43. An antibody as claimed in claim 41, said antibody being polyclonal.

44. An oligonucleotide between about 10 and about 200 nucleotides in length, which specifically hybridizes with a protein translation initiation site in a nucleotide sequence encoding amino acids of SEQ ID NO 7.

45. A plasmid comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO:7.

46. A vector comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO:7.

47. A retroviral vector comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO:7.

48. A host cell comprising at least one nucleic acid molecule having a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO:7.

49. A host cell as claimed in claim 48, wherein said host cell is selected from the group consisting of bacterial, fungal, mammalian, insect and plant cells.

50. A host cell as claimed in claim 48, wherein said nucleic acid is provided in a plasmid and is operably linked to mammalian regulatory elements which confer high expression and stability of mRNA transcribed from said nucleic acid.

51. A host cell as claimed in claim 48, wherein said nucleic acid is provided in a plasmid and is operably linked to mammalian regulatory control elements in reverse anti-sense orientation.

52. A host animal comprising at least one nucleic acid molecule selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 7.

53. A host animal as claimed in claim 52, wherein said animal harbors a homozygous null mutation in its endogenous MOAT gene wherein said mutation has been introduced into said mouse or an ancestor of said mouse via homologous recombination in embryonic stem cells, and further wherein said mouse does not express a functional mouse MOAT protein.

54. The transgenic mouse of claim 53, wherein said mouse is fertile and transmits said null mutation to its offspring.

55. The transgenic mouse of claim 53, wherein said null mutation has been introduced into an ancestor of said mouse at an embryonic stage following microinjection of embryonic stem cells into a mouse blastocyt.

56. A method for screening a test compound for inhibition of MOAT mediated transport, comprising:

a) providing a host cell expressing at least one MOAT-encoding nucleic acid having a sequence selected from the group consisting of SEQ ID NOS: 1, 3, 5, and 7;

b) contacting said host cell with a compound suspected of inhibiting MOAT-mediated transporter activity; and

c) assessing inhibition of transport mediated by said compound.

57. A method as claimed in claim 56, wherein inhibition of MOAT mediated transport is indicated by restoration of anticancer drug sensitivity.

58. A method as claimed in claim 57, wherein said inhibition of MOAT mediated transport is indicated by a reduction of transporter mediated cellular efflux of anticancer agents.

59. A kit for detecting the presence of MOAT encoding nucleic acids in a sample, comprising:

- a) oligonucleotide primers specific for amplification of MOAT encoding nucleic acids;
- b) polymerase enzyme;
- c) amplification buffer; and
- d) MOAT specific DNA for use as a positive control.

MOAT-B

MRP 1 MALRGFCSDGSDPLWDNNWTNTSNPDFTKCFONTVLWVPCFYLWACFFPYFLYLSRHDRGYIQMTPLNKTAKTALGFLWIVCWADLFYSFWERSRG 100

MOAT-B 1 MLP 3

MRP 101 FLAPVFLVSPTELLGTTFLIQLERRKGVOSSGIMLTFLWVALVCALAIIRSKINTALKEDAQVDFRDTIFVVFYFSLLIQLVLSCSFSDRSPLFSE 200

MOAT-B 4 VYQEVKPNPLQDANICSRVFFWLNPLPKIGHKRRLEEDDMYSLPEDRSQHGEIQCQFWDKEVLRRAENDAQK 77

MRP 201 TIHDNPNCPESSASFLSRITFWITGLIVRGYRQPLEGSDLWSLNKEDTSEQVPPVLUKNWKCEAKTRQPVKVYVSSKDAOPKESKVDANEVEAL 300

MOAT-B 78 PSLTRAIICKYWKSYLVLGIFTLIEEASAKVIOPIFLGKININYFENYDPMDSVALNTAYAYATVLFCTLIL.AILHHHLYFYHVQAGHRL 166

MRP 301 IVKSPQKEWNPSLFKVLYKTFGPYFLMSFFFKAHDLMMFSGPQILKLLKFVNDFKAPDQGY.... FTYVLLFVTACLOTLVLHQYFHICFVSGMRI 395

MOAT-B 167 RVAMCHMIYRKALRLSNMAMGTTTGQIVNLLSNVDNKFDQTVFLHFLWAGPLQIAVTAIIWMEIGTSCLAGMAVLIILFLQSCFGKLFSSLRSKTA 266

MRP 396 KTAVIGAVYRKALVITNSARKSSTVGEIVNLMSVDAQRFMDDAYINMIWASAPLQVILAYLWLNLGSPVLAGVAVMVLMPVNAVMAMTKTYQVAHM 495

MOAT-B 267 TFTDARIRTMNEVITGIRIICKYAWEKSFSNLNITNLRKKEISKILRSCSLRCMNLASFFSASKIIVFVFTFTYVLL..SVITASRVEFAVTLVGAURLT 364

MRP 496 KSKDNRKLMMNEILNGIKVULKLYAWELAFKDVKLAIRQEELKVLKKSAYLSAVGTTFWCTPFLVALCFTFAVYTIDENNILDQTAFVSLALFNLRF 595

MOAT-B 365 VTLFFPSAIERVSEAIVSIRRIOTFLLDDEIS...QRNRQLPSPDGKIKMVHVQDETAFWDKASESETPLLOGSFTVRPGELAVVGPGVACKSSLSSAVLG 460

MRP 596 LNI.LPMVISSIVQASVSLKRLRIFLHSHEELEDPSIERRPVKDGGSNTSITVRNATFTWAR.SDPPTLNQITFSIPEGALVAVVGQVGCGLSLLSALLA 693

MOAT-B 461 ELAPSHGLSVHCRAYVSQOPWUFSCTRLRSNILFGKKYEKERYERKIKACALKDKIQLLEDDDLTVIGDRGTTLSGGQKARVNALARAVYQDADIYLDD 560

MRP 694 EMDKVEGHVIAIKGSVAYVPQQAWIQNDSLRENILFGCOLEPYRSVIOACALLPDEILPSGDRTEIGEKVNLSSGGQKQRVSLARAVYSNADIYLFD 793

MOAT-B 561 PLSAVDAEVSRHLPFELCYCQ...ILHEKITILVTHOLOYLKAASQILILKDGKMKVQKCTYTEFLKSGSIDFGSSLK.....KDNEESEOPPPUGC.... 645

MRP 794 PLSAVDAHVKGKHFENVIGPKGMKLNKTRILVTHSMSYLPOVDVIVVMSGGKISEMOSYQELLARDGAFAEFLRTYASTEQDAEENGVTGVSGPGKEA 893

MOAT-B 646TPTLRRNTFSSESSVWSQSRSPLKDGALESQDT..ENVPTLSEENRSEGKVGFOAYKNYFRACAHWIVFIFLILLNTAAQWAYVLO 731

MRP 894 KQWENGMJUTDAGKQLQRQLSSSSSSYSGDLSRHHNSTAELQKAEEKEETWKLMEAADKAQTCQVQLSVYWDYMKAIICLFISFLSIFLF.MCNHVSALAS 992

MOAT-B 732 DWLSSYWANKQSMLNVTVNGGGNUTEKLDLNWYLCIYSLGTAVTFLGFIARSLIVFVFLVNSQQTQHNMKFESILKAPVLFDRNPIGRILNRFSDIGH 831

MRP 993 NYWLSLWTD....DPFLVNGTQHETKVR....LSVYGAICISQCIAVFGYMSAVSIGGILASRCLIVDLLHSILRSPMSFFERTPSGNLVNRFSKELDT 1082

MOAT-B 832 LDLLLPLTFLDFIQTLLQVGVSVAVAVIPWIAIPVPLVLCIIFTFLRRYFLETSDRVKLESTRSPVFSHLSSSLOGLWITRAYKAERQELFDAHQ 931

MRP 1083 VDSSMIPEVIXMFNGSLFNVIGACIVILLATPIAAIIIPPLGLIYFVQRFYVASSRQLKRLESVSRSPVYSHFNTELLLGVSVIRAFEEQERFIHQSDLKV 1182

MOAT-B 932 DLHSEAWFLPLTTSRWFARLDAICAMFVIIAVFGSLILAKTLDACQVGLALSAYALTLMGHFOWCVRQSAEVENNMISVERVIEYTDLEKEAPWEYQK.R 1030

MRP 1183 DENOKAYYPSIVANRWLAVRLECVGNCIVLFAALFAVISRHSLSAGLVLGSVEYSLQVTTLNWLVRMSSEMCTNIVAVERLKEYSETEKEAPWQIQTRE 1282

MOAT-B 1031 PPPAWPHEGVIIFDNVNFMSPGCPVLUKHLTALKSSEOKVGIVGRTGAGKSSSISALFRLS.PEGKIKWIDKILTEIGLHDLRKKMSIIPQEPVLFTG 1129

MRP 1283 PPSSWPQVGRVEFRNYCLRYREDLDFVLRHINVTINGGEKVGIVGRTGAKSSLTGLFRINESAEGEIIIDGINIAKIGLHDLRFKITIIPQDPVLFSG 1382

MOAT-B 1130 TMRKNLDEFKENTDEELNALOEVOLKETIEDLPGKMDTLEAESGSNFNSVGQRQLVCLARAILRKQNQILIDEATANVDPRTDELQKIREKFAHCTVL 1229

MRP 1383 SLRNLLDPSOYSDEEVWTSLELAHLKDFVSALPDKLHCEACGENLSVGQRQLVCLARALLRKTKILVLDDEATAAVDLEDDLIQSTIRTQFEDCTVL 1482

MOAT-B 1230 TIAHRLNTIIDSDKIMVLDSCRKEYDEPYVLLQNKESLFYKHMVQQLGKAEEAAALTETAKQVYFKRNYHIGHTDHMVTNTSNGOPSTLTIFETAL 1325

MRP 1483 TIAHRLNTIMDYTRVIVLDKGIEQEYGAAPSLLQOR.GLFYNSAKADGLV 1531

Figure 1

SUBSTITUTE SHEET (RULE 26)

2/56

Fig. 2A

Fig. 2B

SUBSTITUTE SHEET (RULE 26)

Figure 3

Figure 4

SUBSTITUTE SHEET (RULE 26)

Fig. 5A

1 MKDIDIGKEY IIPSPGYRSV RERTSTSGTH RDREDSKFR TRPLECQDAL ETAARAEGLS
 61 LDASMHSQLR ILDEEHPKGK YHHGLSALKP IRRTSKHQHP VDNAGLFSCM TFSWLSSLAR
 121 VAHKKGELSM EDVWSLSKHE SSDVNCRRLE RLWQEELNEV GPDAASLRRV VWIFCRTRLI
 TM1
 181 LSIVCLMITQ LAGFSGPAFM VKHLLEYTQA TESNLQYSLL LVLGLLITEI VRSWSLALTW
 TM2
 241 ALNYRTGVRL RGAILTMASK KILKLKNIKE KSLGELINIC SNDGORMFEA AAVGSLLAGG
 TM3
 301 PVVAILGMIY NVIIILGPTGF LGSAVFILFY PAMMFASRLT AYFRRKCVA A DERVKQMNE
 TM4
 361 VLTYIKFIKM YAWVKAFSQS VQKIREEEERR ILEKAGYFQG ITVGVAPIVV VIASVVTFSV
 TM5
 421 HMTLGFDLTA AQAFTVVTVF NSMTFALKVT PFSVKSLSEA SVAVDRFKSL FLMEEVHMIK
 481 NKPASPHIKI EMKNATLAWD SSHSSIQNSP KLTPKMKDK RASRGKKEKV RQLQRTEHQA
 541 VLAEQKGHLL LDSDERPSPE EEEGKHIIHG HRLQRTLHS IDLEIQEGKL VGICGSVGSG
 TM6
 601 KTSLISAILG QMTLLEGSIA ISGTFAYVAQ QAWILNATLR DNILFGKEYD EERYNSVLNS
 661 CCLRPDLAIL PSSDLTEIGE RGANLGGQR QRISLARALY SDRSIYILDD PLSALDAHVG
 NBF1
 721 NHIFNSAIRK HLKSKTVLVF THQLQYLVDC DEVIFMKEGC ITERGTHEEL MNLNGDYATI
 781 FNNLLLGETP PVEINSKKET SGSQKKSQDK GPKTGSVKKE KAVKPEEGQL VOLEEKGOQS
 TM7
 841 VPWSVYGVYI QAAGGPLAFL VIMALFMLNV GSTAFSTWWL SYWIQGSGN TTVTRGNETS
 TM8
 901 VSDSMKDNPB MQYYASIYAL SMAVMLILKA IRGVVFVKGT LRASSRLHDE LFRRILRSPM
 TM9
 961 KFFDTTPTGR ILNRFSKDMQ EVDVRLPFQA EMFIQNVLV FFCVGMIAVG FPWFVAVGP
 TM10
 1021 LVILFSVLEHI VSRLVIRELK RLDNITQSPF LSHITSSIQG LATIHAYNKG QEFLHRYQEL
 TM11
 1081 LDDNQAPFFL FTCAMRWLAV RLDLISIALI TTTGLMIVLM HQQIPPAYAG LAISYAVQLT
 TM12
 1141 GLFQFTVRLA SETEARFTSV ERINHYIKYL SLEAPARIKN KAPSPDWQOE GEVTFENAEM
 NBF2
 1201 RYRENPLVLP KKVSEFTIKPK EKIGIVGRTG SGKSSLGMAL FRLVELSGGC IKIDGVRISD
 A
 1261 IGLADLRSKL SIIPQEPVLF SGTVRSNLDP FNOYTEDQIW DALERTHMKE CIAQLPLKLE
 NBF2
 1321 SEVMENGDNF SVGEROLLCI ARALLRHCKI LILDEATAAM DTETDILLQE TIREAFADCT
 C
 B
 1381 MLTIARLHT VLGSDRIMVL AQGQVVEFDT PSVLLSNDS RFYAMFAAAE NKVAVKG

Fig. 5B

1 MGPMDALCGS GELGSKFWDS NLSVHTENPD LTPCFQNSLL AWVPCIYLWV ALPCYLLYLR
 TM1
 TM2
 61 HHCRGYIILS HLSKLKMLVG VLLWCWSWAD LFYSFHGLVH GRAPAPVFFV TPLVVGVVML
 TM3
 121 LATLIIQYER LQGVQSSGVL IIFWFLCVVC AIVPFRSKIL LAKAEGEISD PFRFTTFYIH
 TM4
 181 FALVLSALIL ACFREKPPFF SAKNVDPNPY PETSVGFLSR LFFFWWFTKMA IYGYRHPLEE
 241 KDLWSLKEED RSQMVVQOLL EAWRKQEKT ARHKASAAPG KNASGEDEVL LGARPRPRKP
 TM6
 301 SFLKALLATF GSSFLISACF KLIQDLSFI NPQLLSILIR FISNPMAPSW WGFLVAGLMF
 TM7
 361 LCSMMQSLIL QHYHYHIFVT GVKFRTGIMG VIYRKALVIT NSVKRASTVG EIVNLMSVDA
 TM8
 421 QRFMDLAPFL NLWSAPLQI ILAIYFLWQN LGPSVLAGVA FMVLLIPLNG AVAVKMRAFQ
 TM9
 481 VKQMKLKDSR IJKLMSEILNG IKVULKLYAWE PSFLKQVEGI RQGELQLLRT AAYLHTTTF
 TM10
 541 TWMCSPFLVT LITLWVYVYV DPNNVLDAAK AFVSVSLFNI LRLPLNMLPQ LISNLTQASV
 TM11
 601 SLKRIQQFLS QEELDPQSVE RKTISPGYAI TIHSGTFTWA QDLPPTLHSL DIQVPKGALV
 →NBF1
 661 AVVGPVGCGK SSLVSALLGE MEKLEGKVHM KGSVAYVPQQ AWIONCTLQE NVLFGKALNP
 A
 721 KRYQQTLEAC ALLADLEMLP GGDQTEIGEK GINLSSGGQRQ RVSLARAVYS DADIFLLDDP
 NBF1 ← C B
 781 LSAVDSEVAK HIFDHVIGPE GVLAKTRVL VTHGISFLPQ TDFIIVLADG QVSEMGYPYA
 841 LLQRNGSFAN FLCNYAPDED QGHLEDSWTA LEGAEDKEAL LIEDTLSNHT DLTDNDPVTY
 901 VVQKQFMRQL SALSSDGEGQ GRPVPRRLHG PSEKVQVTEA KADGALTQEE KAAIGTVELS
 TM12
 961 VFWDYAKAVG LCTTIAICLL YVGOSAAAIG ANWWSAWTN DAMADSRQNN TSLRLGVYAA
 TM13
 1021 LGILQGFLVM LAAMAMAAGG IQAARVLEQA LLENKIRSPQ SFFDTTPSGR ILNCFSKDIY
 TM14 TM15
 1081 VVDEVLAPVI LMILLNSFFNA ISTLVVIMAS TPLFTVVILP LAVLYTLVQR FYAATSRQLK
 1141 RLESVRSRSPY YSHFSETVTG ASVIRAYNRS RDFFEIISDTK VDANQRSCYP YIISNRWLSI
 TM16 TM17
 1201 GVEFGVNCVV LFAALFAVIG RSSLNPGGLVG LSVSYSLQVT FALNWMIIRMM SDLESNIVAV
 →NBF2
 1261 ERVKEYSKTE TEAPWVVEGS RPPEGWPPRG EVEFRNYSVR YRPGLDLVLR DLSLHVHGGE
 1321 KVGIYGRGKA GKSSMTLCLF RILEAAKGEI RIDGLNVADI GLHDLRSQLT IIPQDPILFS
 A
 1381 GTLRMNLDPF GSXSEEDIWW ALELSHLHTF VSSQPAGLDF QCSEGENLNS VGQRQLVCLA
 NBF2 ← C
 1441 RALLRKSRIL VLDEATAAAD LETDNLIQAT IRTQFDTCV LTIAHRLNTI MDYTRVLVLD
 B
 1501 KGVVAEFDSP ANLIAARGIF YGMARDAGLA

7/56

Nucleotide Binding Fold I

MCAT-D	PSHSLDIQVPK	Salvavvavgvccokgsslviva	LCCGEMEKILEK	XK.			HN	KESVAVYVPPQ	AIVCNC	LOE	707
MRF	ENCFPSLIFPE	SALVAVVAVGVCCOKGSSLVIA	LGCGEMEKILEK	XK.			AI	KESVAVYVPPQ	AIVCNC	LOE	724
CMQAT	VROUNLDDNMA	CGAVALVAVGPGSOKGSSLVIA	LGCGEMEKILEK	XK.			AI	KESVAVYVPPQ	AIVCNC	LOE	724
MOAT-C	IHSIDDLQE	AKRAGIGCIGSFS	LSIGHTSLLSA	18GCVTLLS	SI.		TI	KETTAVYVPPQ	SVI	CGICIKD	717
MOAT-B	IQLGLSFITVPR	EGFADAVVNGV	LGAGSSELLNA	VEGGALPASHG	LI.		AI	SETFVAVYVPPQ	AIVCNC	LOE	641
CPTF	LKEKDFNFR	CGAVALVAVGPGSOKGSSLVIA	LGCGEMEKILEK	XK.			SV	HERIAVYVPPQ	PVFGSC	LRS	491
SUR	LSNSLTIRIIPR	CGKGLVQGIVG	LGCGEMEKILEK	XK.			KH	SERISFCFCF	S	MPGCKIK	504
MDR1	IJKGLNLKVSQ	CGTCAVLLGKNS	LGCGEMEKILEK	XK.			NP	PAVPAK	PLA	PLA	486

HOAT-D	NVLFQKA_LN_PKRYQCTTLPQ_CAI_LADLEML_ECCGQFEEIGE_KSINLSLGGQR_QPVSLARAVY_SIAHIDFLDQL_PLSAVLASHVA_KHIDDHV_793
MFP	NILFGCO_LB_SPYRNPSRGA_CAI_LADLEML_ESGRVLLFGE_KGVNLSSGGQR_QRVSLARAVY_SNADILYFLDQL_PLSAVDAHNG_KHIFENWV_811
CMOAT	NILFCOTE_FN_NHVCQCLLSE_CAI_LADLEML_NSGNLALAEIGE_KSINLSLGGQR_QRSILARAVY_ONIDYLFLDQL_PLSAVDAHNG_KHIFENKV_803
HOAT-C	NILFQCE_YD_SEPNNSLNS_CCRPDLAII_JSSPLFEEIGE_RGANLSLGGQR_QRSILARAVY_SNADILYFLDQL_PLSAVDAHNG_NHNSNA_727
HOAT-B	NILFQKK_YE_KERYKHNHA_KAGKQKPLI_EDGSDLFLDIEGK_RGTLSLGGQR_ARVNLRARAVY_QDADILYFLDQL_PLSAVDAHNG_RSFLBELC_577
CFTR	NIIEPVS_YD_BYRYSRKRA_GQEEFLISFK_AERENLVLGE_QSILSLGGQR_ARISLARAVY_KDADILYFLDQL_BFGCVLVLTE_BE_BESC_591
SUR	NIMHEBSP_FN_KNQHNMKPA_ISPQHNSLQH_VHQLVLLGE_RGIVLNLLGE_QHNVVPEL_RHFAELLS_BLMQACRG_RV1
MDR1	JHRSKRENTV_MDELEKAVKE_ANAYDFIMKQ_HSKEDFLVLSGE_RGAQSLGGQR_CPAIAIRLV_RNPKFLVLE_ATSAITSESE_AVVQVAL_573

C _____ **B** _____

Nucleotide Binding Fold I

MOAT-D	IRDLHLVHNG	GEKVGIVGRT	GAGKSSEMTLC	LFRFLIAAKKE	EPRIDQLNVA	DIGLHDURSQ	LPDIPQDHL	FSGGLIANNL	DPEGSYSE	1392
MKP	IRHINIVTNG	GERGVIGVRT	GAGKSSTLGF	LNFRILSAAGG	EPIHDGVNIA	KGLHDLRHE	ITIPDQDPL	FSGGLIANNL	DPEGSYSE	1396
cMOAT	IRHTTCDEGS	MGKLVGVVYR	GAGKSSTLNG	CFNLRIEAGG	CKIDGVNIA	KGSLHDLRHE	ITIPDQDPL	FSGGLIANNL	DPPNNYSD	1403
MOAT-C	IHKVLSFTPKP	GEKVGIVGRT	SIGKSSELMGA	FLFRLVLSGS	CIMKDSVRS	DIGAHDPSA	MSLIPDPLV	FVGIVGNSL	DPPNPFTE	1296
MOAT-B	IKHKLTLAIS	GEKVGIVGRT	GAKKSSELSA	LFRLSLFES	KWIDLT	EULGRDLRHE	MSLIPDPLV	HTWIMKNSL	DRFKH10	1143
SUR	IKNVHNALIS	GEKVGIVGRT	SIGKSSELSA	FLFRLVTFPS	HILDEGDPSA	KLPLTTSRSL	MSLIPDPLV	FSGTIPRHS	DRERKCH10	1447
CPTR	LENIFPSLSP	GEKVGIVGRT	SIGKSSELSA	FLFRLNT	EPIQDVSWD	SPDTCOMKA	PGVLEKVFV	SFSSTPFRN	DRYEWOD	1312
MDRI	IQGLSLLEVKK	MTLALAESS	ECRITVVQI	YFDPYLA	KVLLWKEK	RINWQVDAH	LSVSNEI	EDCSIAEADIA	YGSNSRVVSD	1142

MOAT-D	EDIVWALELS HUHTFVSSQG ACGLDFQCSQEG GNLNSVQGRQ LVCFLARALRLL ESRSLIVLDEA TAAHIDLETTN LIG 1465
MRF	BRIVTSLSLR HHLKDFVSNLDE DLLCFCBACFG GMNLSVQGRQ LVCFLARALRLL ESRSLIVLDEA TAAMDLDETTN LIG 1469
cMOAT	REINHALERLS HHLKSEASVQGQ LCGHSHEVTAQ GNLNSVQGRQ LVCFLARALRLL ESRSLIVLDEA TAAMDLDETTN LIG 1476
MOAT-C	DGI DIALEETT HRECIAQLEL LKESSEVUMEN GDFPSVSEBLRQ LVCFLARALRLL ESRSLIVLDEA TAAMDLDETTN LIG 1369
MOAT-B	BRILNMLREV CERKEETLPLG GMWJLPLAEGS ASEFWNSKGRQ LVCFLARALRLL ESRSLIVLDEA TAAMDLDETTN LIG 1216
SUR	STIHLBALIIS CEFVWKAFLP GGDALAIITPS EGFVFCFQEG LVCFLARAFV MTSFIMDEA TASNOMDPTEFILN IIZ 1385
CFTR	CEILKVADEEV GRCSVIEQH GFLCFVLVDEE CFCVLSHTR QMAMASVSG NAPLCLLDEF SFLCHPPUVO YR 1520
MDP1	ETTVEFLAKFA NIHLASLESQ NYSTVKQDKD GTCFLCGRH RIALAPAVL VQPHRLVLA ESHLTSSEK VVE 1215

—
C **B**

Fig. 6A

Fig. 6B

Figure 7

10/56

Figure 8

1 MAAPAEPCAG QGVWNQTEPE PAATSLSLC FLRTAGVWVP PMYLWVLGPI YLLFIHHHGR
 61 GYLRMSPLFK AKMVLGFALI VICTSSVAVA LWKIQQQTPE APEFLIHPTV WLTTMSFAVF
 121 LIHTERKKGV QSSGVLFGYW LLCFVLPATN AAQQASGAGF QSDPVRHLST YLCLSLVVAQ
 181 FVLSCLADQP PFFPEDPQQS NPCPETGAAF PSKATFWWS GLVWRGYRRP LRPKDLWSLG
 241 RENSSEELVS RLEKEWMRNR SAARRHNKAI AFKRKGGSQM KAPETEPFLR QEGSQWRPLL
 301 KAIWQVFHST FLLGTLSSLII SDVFRFTVPK LLSLFLEFIG DPKPPAWKGY LLAVLMFLSA
 361 CLQTLFEQQN MYRLKVPQMR LRSAITGLVY RKVLALSSGS RKASAVGDVV NLVSVDVQRL
 421 TESVLYLNGL WLPLVWIVVC FVYLWQLLGP SALTAIAVFL SLLPLNFFIS KKRNHHQEEQ
 481 MRQKDSRARL TSSILRNSKT IKFHGWECAF LDRVLGIRGQ ELGALRTSGL LFSVSLVSFQ
 541 VSTFLVALVV FAVHTLVAEN AMNAEKAFVT LTVNLILNKA QAFLPFSIHS LVQARVSFDR
 601 LVTFLCLEEV DPGVVDSSSS GSAAGKDCIT IHSATFAWSQ ESPPCLHRIN LTVPGCLLA
 661 VVGPVGAGKS SLLSALLGEL SKVEGFVSIE GAVAYVPQEA WVQNTSVVEN VCFGQELDPP
 A
 721 WLERVLEACA LQPDVDSFPE GIHTSIGEQG MNLSGGQKQR LSLARAVYRK AAVYLLDDPL
 NBF1 C B
 781 AALDAHVGQH VFNQVIGPGG LLQGTTRILV THALHILPQA DWIIVLANGA IAEMGSYQEL
 841 LQRKGALVCL LDQARQPGDR GEGETEPGTS TKDPRGTSAG RRPELRRERS IKSVPBKDR
 901 TSEAQTEVPL DDPDRAGWPA GKDSIQYGRV KATVHLAYLR AVGTPLCYA LFLFLCQQVA
 961 SFCRGYWLSL WADDPAVGGQ QTQAAALRGGI FGLLGCLQAI GLFASMAAVL LGGARASRLL
 1021 FQRLLWDVVR SPISFFERTP IGHLLNRFSK ETDTVDVDIP DKLRSLIMYA FGLLEVSLVV
 1081 AVATPLATVA ILPLFLLYAG FQSLYVVSSC QLRRLESASY SSVCSHMAET FOGSTVVRAF
 1141 RTQAPFVAQN NARVDESORI SFPRLVADRW LAANVELLGN GLVFAAATCA VLSKAHLSAG
 1201 LVGFSVSAAL QVTQALQWVV RNWTIDLENSI VSVERMQDYA WTPKEAPWRL PTCAAQPPWP
 NBF2
 1261 QGGQIEFRDF GLRYRPELPL AVQGVSLKIH AGEKVGIVGR TGAGKSSLAS GLLRLQEAAE
 A
 1321 GGIWIDGVPI AHVGLHTLRS RISIIPQDPI LFPGSLRMNL DLLQEHSDEA IWAALETVQL
 NBF2
 1381 KALVASLPGQ LOYKCADRGE DLSVGOKOLL CLARALLRKT OILILDEATA AVDPGTELQM
 C B
 1441 QAMLGSWFAQ CTVLLIAHRL RSVMDCARVL VMDKGQVAES GSPAQLLAQK GLFYRLAQES
 1501 GLV

Figure 9

SUBSTITUTE SHEET (RULE 26)

12/56

Figure 10

Figure 11

MOAT B cDNA AND AMINO ACID SEQUENCE ENCODED THEREBY

ATGCTGCCGTGTACCAAGGAGGTGAAGCCCAACCGCTGCAGGACGCGAACATCTGCTCA
 1 -----+-----+-----+-----+-----+-----+ 60
 TACGACGGGCACATGGTCCTCCACTTCGGTTGGCGACGTCCCTGCGCTTAGACGAGT

a M L P V Y Q E V K P N P L G D A N I C S -
 CGCGTGTCTTCTGGTGGCTCAATCCCTGTTAAAATTGGCCATAAACGGAGATTAGAG
 61 -----+-----+-----+-----+-----+-----+ 120
 GCGCACAAAGAACCGACCGAGTTAGGAACAAATTAAACCGGTATTCGCTCTAACTC

a R V F F W W L N P L F K I G H K R R L E -
 GAAGATGATATGTATTCACTGCTGCCAGAAGACCGCTCACAGCACCTGGAGAGGAGTTG
 121 -----+-----+-----+-----+-----+-----+ 180
 CTTCTACTATACATAAGTCACGACGGTCTCTGGCGAGTGTGCGTGGAACCTCTCCTCAAC

a E D D M Y S V L P E D R S Q H L G E E L -
 CAAGGGTTCTGGGATAAAGAAGTTAAGAGCTGAGAATGACGCACAGAACGCTTCTTA
 181 -----+-----+-----+-----+-----+-----+ 240
 GTTCCCAAGACCCATTTCCTCAAAATTCTGACTCTACTGCGTGTTCGGAAGAAAT

a Q G F W D K E V L R A E N D A Q K P S L -
 ACAAGAGCAATCATAAAGTGTACTGGAAATCTTATTTAGTTGGAAATTTACGTTA
 241 -----+-----+-----+-----+-----+-----+ 300
 TGTTCTCGTTAGTATTCACAATGACCTTAGAATAAAATCAAACCCCTAAAAATGCAAT

a T R A I I K C Y W K S Y L V L G I F T L -
 ATTGAGGAAAGTGCCAAAGTAATCCAGCCCATTGGGGAAAAATTATTAATTATTT
 301 -----+-----+-----+-----+-----+-----+ 360
 TAACTCCTTTCACGGTTCTAGGTGGGTATAAAAACCCCTTTAATAATTAATAAAA

a I E E S A K V I Q P I F L G K I I N Y F -
 GAAAATTATGATCCCATGGATTCTGTGGCTTGAACACAGCGTACGCCTATGCCACGGTG

Figure 12A

SUBSTITUTE SHEET (RULE 26)

361 ----- + ----- + ----- + ----- + ----- + 420
 CTTTTAATACTAGGGTACCTAACGACACCGAAACTTGTGTCGATGCGGATACGGTGCAC

a E N Y D P M D S V A L N T A Y A Y A T V -
 CTGACTTTTGACGCTCATTGGCTACTGCATCACTTATATTTTATCACGTTAG
 421 ----- + ----- + ----- + ----- + ----- + 480
 GACTGAAAAACGTGCGAGTAAAACCGATATGACGTAGTGAATATAAAATAGTCAAGTC

a L T F C T L I L A I L H H L Y F Y H V O -
 TGTGCTGGGATGAGGTTACGAGTAGCCATGTGCCATATGATTATCGGAAGGCACCTCGT
 481 ----- + ----- + ----- + ----- + ----- + 540
 ACACGACCCCTACTCCAATGCTCATCGGTACACGGTATACTAAATAGCCTCCGTGAAGCA

a C A G M R L R V A M C H M I Y R K A L R -
 CTTAGTAACATGGCCATGGGAAGACAACCACAGGCCAGATAGTCATCTGCTGTCCAAT
 541 ----- + ----- + ----- + ----- + ----- + 600
 GAATCATTGTACCGGTACCCCTCTGTTGGTGTCCGGTCTATCAGTTAGACGACAGGTTA

a L S N M A M G K T T T G Q I V N L L S N -
 GATGTGAACAAGTTGATCAGGTGACAGTGTCTTACACTTCTGTGGCAGGACACTG
 601 ----- + ----- + ----- + ----- + ----- + 660
 CTACACTTGTCAAACTAGTCCACTGTACAAGAATGTGAAGGACACCCGTCTGGTGAC

a D V N K F D Q V T V F L H F L W A G P L -
 CAGCGATCGCAGTGACTGCCCTACTCTGGATGGAGATAGGAATATCGTCCTGCTGGG
 661 ----- + ----- + ----- + ----- + ----- + 720
 GTCCGCTAGCGTCACTGACGGGATGAGACCTACCTCTATCCTTATAGCACGGAACGACCC

a Q A I A V T A L L W M E I G I S C L A G -
 ATGGCAGTTCTAACATTCTCCTGCCCTTGCAAAGCTGTTGGAAAGTTGTTCTCATCA
 721 ----- + ----- + ----- + ----- + ----- + 780
 TACCGTCAAGATTAGTAAGAGGGACGGGAACGTTCGACAAAACCTTCAACAAAGAGTAGT

a M A V L I I L L P L Q S C F G K L F S S -
 CTGAGGAGTAAACTGCAACTTACGGATGCCAGGATCAGGACCATGAATGAAGTTATA
 781 ----- + ----- + ----- + ----- + ----- + 840

Figure 12B

SUBSTITUTE SHEET (RULE 26)

16/56

GACTCCTCATTTGACGTTGAAAGTGCTACGGTCTAGTCCTGGTACTTACTTCAATAT

a L R S K T A T F T D A R I R T M N E V I -

ACTGGTATAAGGATAATAAAAATGTACGCCCTGGGAAAAGTCATTTCAAATCTTATTACC
841 -----+-----+-----+-----+-----+ 900
TGACCATATT CCTATTATTTTACATGCCGACCCCTTCAGTAAAAGTTAGAATAATGG

a T G I R I I K M Y A W E K S F S N L I T -

AATTTGAGAAAGAAGGAGATTCCAAGATTCTGAGAAGTTCTGCCTCAGGGGGATGAAT
901 -----+-----+-----+-----+-----+ 960
TTAAACTCTTCTTCCCTCTAAAGGTTCTAAGACTCTCAAGGACGGAGTCCCCCTACTTA

a N L R K K E I S K I L R S S C L R G M N -

TTGGCTTCGTTTTCAGTGCAAGCAAAATCATCGTGTGACCTTCACCAACCTACGTG
961 -----+-----+-----+-----+-----+ 1020
AACCGAAGCAAAAGTCACGTTGTTAGTAGCACAAACACTGGAAGTGGTGGATGCAC

a L A S F F S A S K I I V F V T F T T Y V -

CTCCTCGGCAGTGTGATCACAGCCAGCCCGTGTGGCAGTGACGCTGTATGGGCT
1021 -----+-----+-----+-----+-----+ 1080
GAGGAGCCGTACACTAGTGTGGTCGGCGACAAGCACCGTCACTGCGACATAACCCGA

a L L G S V I T A S R V F V A V T L Y G A -

GTGCGGCTGACGGTTACCCCTTCTCCCCTCAGCCATTGAGAGGGTGTAGAGGAATC
1081 -----+-----+-----+-----+-----+ 1140
CACGCCGACTGCCATGGAGAAGAAGGGAGTCGGTAACTCTCCACAGTCTCGTTAG

a V R L T V T L F F P S A I E R V S E A I -

GTCAGCATCCGAAGAATCCAGACCTTTGCTACTTGATGAGATATCACAGCGCAACCGT
1141 -----+-----+-----+-----+-----+ 1200
CAGTCGTAGGCTTAGGTCTGGAAAAACGATGAACTACTCTATAGTGTGGCTGGCA

a V S I R I Q T F L L D E I S Q R N R -

CAGCTGCCGTAGATGGTAAAAGATGGTCATGTGCAGGATTTACTGCTTTGGGAT
1201 -----+-----+-----+-----+-----+ 1260
GTGCACGGCAGTCTACCATTTTCTACCACGTACACGTCTAAAATGACGAAAAACCTA

Figure 12C**SUBSTITUTE SHEET (RULE 26)**

a Q L P S D G K K M V H V Q D F T A F W D -
 AAGGCATCAGAGACCCCAACTCTACAAGGCCTTCCTTACTGTCAGACCTGGCGAATTG
 1261 -----+-----+-----+-----+-----+-----+ 1320
 TTCCGTAGTCTCTGGGTTGAGATGTTCCGGAAAGGAAATGACAGTCTGGACCGCTTAAC

a K A S E T P T L Q G L S F T V R P G E L -
 TTAGCTGTGGTCGGCCCCGTGGAGCAGGGAAAGTCATCACTGTTAAGTGCCGTGCTCGG
 1321 -----+-----+-----+-----+-----+-----+ 1380
 AATCGACACCAGCCGGGGCACCTCGTCCCTCAGTAGTGACAATTACGGCACGAGCCC

a L A V V G P V G A G K S S L L S A V L G -
 GAATTGGCCCCAAGTCACGGCTGGTCAGCGTGATGGAAGAATTGCCTATGTGTCTCAG
 1381 -----+-----+-----+-----+-----+-----+ 1440
 CTTAACCGGGGTTCAAGTGCCGACCAGTCGACGTACCTCTTAACGGATAACAGAGTC

a E L A P S H G L V S V H G R I A Y V S Q -
 CAGCCCTGGGTGTTCTCGGGAACTCTGAGGAGTAATATTTATTTGGAAAGAAATATGAA
 1441 -----+-----+-----+-----+-----+-----+ 1500
 GTCGGGACCCACAAGAGCCCTTGAGACTCCTCATTATAAAATAACCCCTTTACTT

a Q P W V F S G T L R S N I L F G K K Y E -
 AAGGAACGATATGAAAAAGTCATAAAGGCTTGTGCTCTGAAAAAGGATTACAGCTGTTG
 1501 -----+-----+-----+-----+-----+-----+ 1560
 TTCCCTGCTATACTTTTCAGTATTTCCGAACACGAGACTTTCTAAATGTCGACAAC

a K E R Y E K V I K A C A L K K D L Q L L -
 GAGGATGGTATCTGACTGTGATAGGAGATCGGGGAACCACGCTGAGTGGAGGGCAGAAA
 1561 -----+-----+-----+-----+-----+-----+ 1620
 CTCCTACCACTAGACTGACACTATCCTCTAGCCCCCTGGTGCAGTCACCTCCGTCTT

a E D G D L T V I G D R G T T L S G G Q K -
 GCACGGGTAAACCTTGCAAGAGCAGTGTATCAAGATGCTGACATCTATCTCCTGGACGAT
 1621 -----+-----+-----+-----+-----+-----+ 1680
 CGTGCCCATTTGGAACGTTCTCGTCACATAGTTCTACGACTGTAGATAGAGGACCTGCTA

Figure 12D

SUBSTITUTE SHEET (RULE 26)

a A R V N L A R A V Y Q D A D I Y L L D D -

CCTCTCAGTCAGTAGATGCGGAAGTTAGCAGACACTTGTCAACTGTGTATTTGTCAA
 1681 -----+-----+-----+-----+-----+-----+ 1740
 GGAGAGTCACGTCATCTACGCCCTCAATCGTCTGTAAACAAGCTTGACACATAAACAGTT

a P L S A V D A E V S R H L F E L C I C O -

ATTTTGCATGAGAAGATCACAAATTAGTGAUTCATCAGTTGCAGTACCTCAAAGCTGCA
 1741 -----+-----+-----+-----+-----+-----+ 1800
 TAAAACGTACTCTCTAGTGTAAAATCACTGAGTAGTCAACGTCATGGAGTTGACGT

a I L H E K I T I L V T H Q L Q Y L K A A -

AGTCAGATTCTGATATTGAAAGATGGTAAATGGTGCAGAAGGGACTTACACTGAGTTC
 1801 -----+-----+-----+-----+-----+-----+ 1860
 TCAGTCTAACGACTATAACTTCTACCATTACCACTCGTCTCCCTGAATGTGACTCAAG

a S Q I L I L K D G K M V Q K G T Y T E F -

CTAAAATCTGGTATAGATTGGCTCCCTTTAAAGAAGGATAATGAGGAAAGTGAACAA
 1861 -----+-----+-----+-----+-----+-----+ 1920
 GATTTTAGACCATATCTAAAACCGAGGGAAATTCTCTCTTATTACTCCTTCACTTGTT

a L K S G I D F G S L L K K D N E E S E Q -

CCTCCAGTTCCAGGAACCTCCCACACTAAGGAATCGTACCTTCTCAGAGTCTCGGTTGG
 1921 -----+-----+-----+-----+-----+-----+ 1980
 GGAGGTCAAGGTCTTGAGGGTGTGATTCTTAGCATGGAAGAGTCTCAGAACGCAAACC

a P P V P G T P T L R N R T F S E S S V W -

TCTCAACAATCTCTAGACCCCTCCTTGAAAGATGGTCTCTGGAGAGCCAAGATAACAGAG
 1981 -----+-----+-----+-----+-----+-----+ 2040
 AGAGTTGTTAGAAGATCTGGGAGGAACCTTCTACCACGAGACCTCTCGTTCTATGTCTC

a S Q Q S S R P S L K D G A L E S Q D T E -

AATGTCCCAGTTACACTATCAGAGGAGAACCGTTCTGAAGGAAAAGTTGGTTTCAGGCC
 2041 -----+-----+-----+-----+-----+-----+ 2100
 TTACAGGGTCAATGTGATAGTCTCCTCTGGCAAGACTTCCTTCAACCAAAAGTCCGG

a N V P V T L S E E N R S E G K V G F Q A

Figure 12E
SUBSTITUTE SHEET (RULE 26)

TATAAGAATTACTTCAGAGCTGGTGCCTCACTGGATTGTCTTCATTTCTTATTCTCCTA
 2101 -----+-----+-----+-----+-----+-----+ 2160
 ATATTCTTAATGAAGTCTGACCACGAGTGACCTAACAGAAGTAAAAGGAATAAGAGGAT

a Y K N Y F R A G A H W I V F I F L I L L -

AACACTGCAGCTCAGGTTGCCTATGTGCTTCAAGATTGGTGGCTTCATACTGGCAAAC
 2161 -----+-----+-----+-----+-----+ 2220
 TTGTGACGTCGAGTCCAACGGATACACGAAGTTCTAACCCACCGAAAGTATGACCCGTTG

a N T A A Q V A Y V L Q D W W L S Y W A N -

AAACAAAGTATGCTAAATGTCACTGTAAATGGAGGGAGGAAATGTAACCGAGAAGCTAGAT
 2221 -----+-----+-----+-----+-----+ 2280
 TTTGTTTCATACGATTTACAGTGACATTACCTCCTCCTTACATTGGCTTCTGATCTA

a K Q S M L N V T V N G G G N V T E K L D -

CTTAACTGGTACTTAGGAATTATTCAAGGTTAACGTAGCTACCGTTCTTTGGCATA
 2281 -----+-----+-----+-----+-----+ 2340
 GAATTGACCATGAATCCTAAATAAGTCCAAATTGACATCGATGGCAAGAAAAACCGTAT

a L N W Y L G I Y S G L T V A T V L F G I -

GCAAGATCTCTATTGGTATTCTACGTCTTGTAACTCTTCACAAACTTGCACAACAAA
 2341 -----+-----+-----+-----+-----+ 2400
 CGTTCTAGAGATAACCATAAGATGCAGGAACAATTGAGAAGTGTGAAACGTGTTGTT

a A R S L L V F Y V L V N S S Q T L H N K -

ATGTTTGAGTCATTCTGAAAGCTCCGGTATTATTCTTGATAGAAATCCAATAGGAAGA
 2401 -----+-----+-----+-----+-----+ 2460
 TACAAACTCAGTTAAGACTTTCGAGGCCATAATAAGAAACTATCTTAGGTTATCCTTCT

a M F E S I L K A P V L F F D R N P I G R -

ATTTAAATCGTTCTCAAAGACATTGGACACTGGATGATTGCTGCCGCTGACGTTT
 2461 -----+-----+-----+-----+-----+ 2520
 TAAAATTAGCAAAGAGGTTCTGTAACCTGTGAACCTACTAAACGACGGCGACTGCAA

a I L N R F S K D I G H L D D L L P L T F

Figure 12F

SUBSTITUTE SHEET (RULE 26)

20/56

TTAGATTCATCCAGACATTGCTACAAGTGGTGGTGGCTCTGTGGCTGTGGCGTG
 2521 -----+-----+-----+-----+-----+ 2580
 AATCTAAAGTAGGTCTGTAACGATGTTACCAACCACACCAGAGACACCGACACCGGCAC

a L D F I Q T L L Q V V G V V S V A V A V -

ATTCCTGGATCGAATACCCCTGGTCCCCTGGAATCATTTCATTTCTTCGGCGA
 2581 -----+-----+-----+-----+-----+ 2640
 TAAGGAACCTAGCGTTATGGAACCAAGGGAACCTAGTAAAAGTAAAAAGAACGCCGCT

a I P W I A I P I V P L G I I F I F L R R -

TATTTTTGGAAACGTCAAGAGATGTGAAGCGCCTGGAATCTACAACTCGGAGTCCAGTG
 2641 -----+-----+-----+-----+-----+ 2700
 ATAAAAAAACTTGCAGTTCTACACTTCGCGGACCTAGATGTTGAGCCTCAGGTAC

a Y F L E T S R D V K R L E S T T R S P V -

TTTCCCACTTGTATCTCTCCAGGGCTCTGGACCATCCGGCATACAAAGCAGAA
 2701 -----+-----+-----+-----+-----+ 2760
 AAAAGGGTGAACAGTAGAAGAGAGGTCCCCGAGACCTGGTAGGCCGTATGTTCGTCTT

a F S H L S S S L Q G L W T I R A Y K A E -

GAGAGGTGTCAAGAACTGTTGATGCACACCAGGATTACATTAGAGGCTGGTCTT
 2761 -----+-----+-----+-----+-----+ 2820
 CTCTCCACAGTCCTTGACAAACTACGTGTGGTCTAAATGTAAGTCTCCGAACCAAGAAC

a E R C Q E L F D A H Q D L H S E A W F L -

TTTTGACAACGTCCCGCTGGTCGCCGTCGTCTGGATGCCATCTGTGCCATGTTGTC
 2821 -----+-----+-----+-----+-----+ 2880
 AAAAAGTGTGCAGGGCGACCAAGCGGCAGGACACCTACGGTAGACACGGTACAAACAG

a F L T T S R W F A V R L D A I C A M F V -

ATCATCGTTGCCCTGGTCCCTGATTCTGGAAAAACTCTGGATGCCGGCAGGTTGGT
 2881 -----+-----+-----+-----+-----+ 2940
 TAGTAGCAACGGAAACCCAGGGACTAAGACCCTGGTAGACACGGTACAAACAG

a I I V A F G S L I L A K T L D A G Q V G -

TTGGCACTGTCCATGCCCTCACGCTCATGGGATGTTAGTGGTGTGTCGACAAAGT

Figure 12G

SUBSTITUTE SHEET (RULE 26)

2941 -----+-----+-----+-----+-----+-----+ 3000
 AACCGTGACAGGGATACGGGAGTGCAGTACCCCTACAAAGTCACCACACAAGCTGTTCA

a L A L S Y A L T L M G M F Q W C V R Q S .

GCTGAAGTTGAGAATATGATGATCTCAGTAGAAAGGGTCATTGAATAACAGACCTTGAA
 3001 -----+-----+-----+-----+-----+-----+ 3060
 CGACTTCAACTCTTATACTACTAGAGTCATCTTCCCAGTAACTTATGTGTCTGGAACTT

a A E V E N M M I S V E R V I E Y T D L E .

AAAGAACCTTGGGAATATCAGAAACGCCACCACCGCCTGGCCCCATGAAGGGAGTG
 3061 -----+-----+-----+-----+-----+-----+ 3120
 TTTCTTCGTGGAACCCCTTATAGTCTTGGGTGGTGGACCGGGTACTTCCTCAC

a K E A P W E Y Q K R P P P A W P H E G V .

ATAATCTTGACAATGTGAACTTCATGTACAGTCCAGGTGGCCTCTGGTACTGAAGCAT
 3121 -----+-----+-----+-----+-----+-----+ 3180
 TATTAGAAACTGTTACACTTGAAGTACATGTCAAGGCCACCCGGAGACCATGACTTCGTA

a I I F D N V N F M Y S P G G P L V L K H .

CTGACAGCACTCATTAAATCACAAGAAAAGGTTGGCATTGGGAAGAACCGGAGCTGGA
 3181 -----+-----+-----+-----+-----+-----+ 3240
 GACTGTCGTGAGTAATTAGTGTCTTCCAACCGTAACACCCCTCTGGCCTCGACCT

a L T A L I K S Q E K V G I V G R T G A G .

AAAAGTTCCCTCATCTCAGCCCTTTAGATTGTCAGAACCCGAAGGTAATTTGGATT
 3241 -----+-----+-----+-----+-----+-----+ 3300
 TTTCAAGGGAGTAGAGTCGGAAAAATCTAACAGTCTTGGCTTCAACCTAA

a K S S L I S A L F R L S E P E G K I W I .

GATAAGATCTTGACAACGTGAAATTGGACTTCACGATTTAAGGAAGAAAATGTCAATCATA
 3301 -----+-----+-----+-----+-----+-----+ 3360
 CTATTCTAGAACTGTTGACTTAAACCTGAAGTGCTAAATTCTTACAGTTAGTAT

a D K I L T T E I G L H D L R K K M S I I .

CCTCAGGAACCTGTTGTTCACTGGAACATGAGGAAAAACCTGGATCCCTTAAGGAG
 3361 -----+-----+-----+-----+-----+-----+ 3420

Figure 12H

SUBSTITUTE SHEET (RULE 26)

GGAGTCCTTGGACAAAACAAGTGACCTGTTACTCCTTTGGACCTAGGGAAATTCTC
 a P Q E P V L F T G T M R K N L D P F K E -
 CACACGGATGAGGAACGTGGAATGCCTTACAAGAGGTACAACCTAAAGAAACCATTGAA
 3421 -----+-----+-----+-----+-----+-----+ 3480
 GTGTGCCTACTCCTTGACACCTTACGGAATGTTCCATGTTGAATTCTTGGTAACCT
 a H T D E E L W N A L Q E V Q L K E T I E -
 GATCTTCTGGTAAATGGATACTGAATTAGCAGAACATCAGGATCCAATTAGTGTGGA
 3481 -----+-----+-----+-----+-----+-----+ 3540
 CTAGAAGGACCATTACCTATGACTTAATCGTCTAGTCTAGGTTAAAATCACACCT
 a D L P G K M D T E L A E S G S N F S V G -
 CAAAGACAACTGGTGTGCCCTGCCAGGGCAATTCTCAGGAAAAATCAGATATTGATTATT
 3541 -----+-----+-----+-----+-----+-----+ 3600
 GTTTCTGTTGACCACACGGAACGGTCCCCTTAAGAGTCCTTTAGTCTATAACTAATAA
 a Q R Q L V C L A R A I L R K N Q I L I I -
 GATGAAGCGACGGCAAATGTGGATCCAAGAACTGATGAGTTAACACAAAAAAATCCGG
 3601 -----+-----+-----+-----+-----+-----+ 3660
 CTACTTCGCTGCCGTTACACCTAGGTTCTGACTACTCAATTATGTTTTAGGCC
 a D E A T A N V D P R T D E L I Q K K I R -
 GAGAAATTGCCACTGCACCGTGCTAACCATTCACAGATTGAACACCATTATTGAC
 3661 -----+-----+-----+-----+-----+-----+ 3720
 CTCTTAAACGGGTGACGTGGCACGATTGGTAACGTGTCTAACTTGTGGTAATAACTG
 a E K F A H C T V L T I A H R L N T I I D -
 AGCGACAAGATAATGGTTTAGATTAGGAAGACTGAAAGAATATGATGAGCCGTATGTT
 3721 -----+-----+-----+-----+-----+-----+ 3780
 TCGCTGTTCTATTACAAAATCTAAGTCCTCTGACTTTCTTACTACTCGGCATACAA
 a S D K I M V L D S G R L K E Y D E P Y V -
 TTGCTGAAAATAAAGAGAGCCTATTTACAAGATGGTGCAACAACTGGCAAGGCAGAA
 3781 -----+-----+-----+-----+-----+-----+ 3840
 AACGACGTTTATTCCTCGGATAAAATGTTCTACCACGTTGTTGACCCGTTCCGTCTT

Figure 12I

SUBSTITUTE SHEET (RULE 26)

23/56

a L L Q N K E S L F Y K M V Q Q L G K A E .
GCCGCTGCCCTCACTGAAACAGCAAAACAGGTATACTTCAAAAGAAATTATCCACATATT
3841 ----- + ----- + ----- + ----- + ----- + 3900
CGGCGACGGGAGTGACTTTGTCGTTTGTCCATATGAAGTTTCTTAATAGGTGTATAA

a A A A L T E T A K Q V Y F K R N Y P H I .
GGTCACACTGACCACATGGTTACAAACACTTCCAATGGACAGCCCTGACCTTAACATT
3901 ----- + ----- + ----- + ----- + ----- + 3960
CCAGTGTGACTGGTGTACCAATGTTGTGAAGGTTACCTGTCGGGAGCTGGAATTGATAA

a G H T D H M V T N T S N G Q P S T L T I .
TTCGAGACAGCACTG
3961 ----- + 3975
AAGCTCTGTCGTGAC

a F E T A L .

Figure 12J**SUBSTITUTE SHEET (RULE 26)**

MOAT C cDNA AND AMINO ACID SEQUENCE ENCODED THEREBY

ATGAAGGATATCGACATAGGAAAAGAGTATATCATCCCCAGTCCTGGGTATAGAAGTGTG
 1 ----- + ----- + ----- + ----- + ----- + 60
 TACTTCCTATAGCTGTATCCTTTCTCATATAGTAGGGGTCAAGGACCCATATCTTCACAC

a M K D I D I G K E Y I I P S P G Y R S V -
 AGGGAGAGAACCAACCAGCACTTCTGGACGCACAGAGACCGTGAAGATTCCAAGTTCAAGGAGA
 61 ----- + ----- + ----- + ----- + ----- + 120
 TCCCTCTCTGGTCTGAAGACCCCTGCCTGTCTGGCACTTCTAAGGTTCAAGTCCTCT

a R E R T S T S G T H R D R E D S K F R R -
 ACTCGACCGTTGGAATGCCAAGATGCCCTGGAAACAGCAGCCGAGCCGAGGGCCTCTC
 121 ----- + ----- + ----- + ----- + ----- + 180
 TGAGCTGGCAACCTTACGGTTCTACGGAACCTTGTCTCGTCTGGCTGGCTCCGGAGAGA

a T R P L E C Q D A L E T A A R A E G L S -
 CTTGATGCCCTCATGCATTCTCAGCTCAGAACCTGGATGAGGAGCATCCAAAGGGAAAG
 181 ----- + ----- + ----- + ----- + ----- + 240
 GAACTACGGAGGTACGTAAGAGTCGAGTCTAGGACCTACTCTCGTAGGGTTCCCTTC

a L D A S M H S Q L R I L D E E H P K G K -
 TACCATCATGGCTTGAGTGCTCTGAAGCCCATCCGGACTACTTCCAAACACCAGCACCA
 241 ----- + ----- + ----- + ----- + ----- + 300
 ATGGTAGTACCGAACTCACGAGACTTCGGGTAGGCCTGATGAAGGTTGTGGTCTGGT

a Y H H G L S A L K P I R T T S K H Q H P -
 GTGGACAATGCTGGCTTTCTGTATGACTTTCTGGCTTCTCTGGCCCGT
 301 ----- + ----- + ----- + ----- + ----- + 360
 CACCTGTTACGACCCGAAAAAAGGACATACTGAAAAAGCACCGAAAGAAGAGACCGGCA

a V D N A G L F S C M T F S W L S S L A R -
 GTGGCCCACAAGAAGGGGAGCTCTCAATGGAAGACGTGTGGTCTGTCCAAGCACCGAG

Figure 13A

SUBSTITUTE SHEET (RULE 26)

361 ----- + ----- + ----- + ----- + ----- + 420
 CACCGGGTGTCTTCCCCCTGAGAGTTACCTCTGCACACCAGAGACAGGTTCTGCTC

a V A H K K G E L S M E D V W S L S K H E .
 TCTTCTGACGTGAACGTGAGAGACTAGAGAGACTGTGGCAAGAAGAGCTGAATGAAGTT
 421 ----- + ----- + ----- + ----- + ----- + 480
 AGAAGACTGCACCTGACGTCTGATCTCTGACACCCGTTCTCTGACTTACTTCAA

a S S D V N C R R L E R L W Q E E L N E V .
 GGGCCAGACGCTGCTTCCCTGCGAAGGGTTGTGGATCTCTGCCGCACCAGGCTCATC
 481 ----- + ----- + ----- + ----- + ----- + 540
 CCCGGTCTGCGACGAAGGGACGCTTCCAACACACCTAGAACAGACGGGTGGTCCGAGTAG

a G P D A A S L R R V V W I F C R T R L I .
 CTGTCCATCGTGTGCCTGATGATCACCGAGCTGGCTGGCTTCAGTGGACCAGCCTTCATG
 541 ----- + ----- + ----- + ----- + ----- + 600
 GACAGGTAGCACACGGACTACTAGTGCCTGACCGACCAGTCACCTGGTCGGAAGTAC

a L S I V C L M I T Q L A G F S G P A F M .
 GTGAAACACCTTGGAGTATAACCCAGGCAACAGAGTCTAACCTGCAGTACAGCTTGTG
 601 ----- + ----- + ----- + ----- + ----- + 660
 CACTTTGTGGAGAACCTCATATGGTCCGTTGTCAGATTGGACGTATGTCGAACAC

a V K H L L E Y T Q A T E S N L Q Y S L L .
 TTAGTGCTGGCCTCCTGACGGAAATCGTGGCTTGGTCGCTTGCACGTGACTTGG
 661 ----- + ----- + ----- + ----- + ----- + 720
 AATCACGACCCGGAGGAGGACTGCCTTAGCACGCCAGAACAGCGAACGTGACTGAACC

a L V L G L L T E I V R S W S L A L T . W .
 GCATTGAATTACCGAACCGGTGTCCGTTGCGGGGGGCCATCTAACCATGGCATTAAG
 721 ----- + ----- + ----- + ----- + ----- + 780
 CGTAACCTTAATGGCTTGGCACAGGCGAACGCCCGGTAGGATTGGTACCGTAAATTC

a A L N Y R T G V R L R G A I L T M A F K .
 AAGATCCTTAAGTTAAAGAACATTAAGAGAAATCCCTGGGTGAGCTCATCAACATTTGC
 781 ----- + ----- + ----- + ----- + ----- + 840

Figure 13B

SUBSTITUTE SHEET (RULE 26)

TTCTAGGAATTCAATTCTTGTAAATTCTCTTTAGGGACCCACTCGAGTAGTTGTAACG
 a K I L K L K N I K E K S L G E L I N I C -
 TCCAACGATGGGCAGAGAATGTTGAGGCAGCAGCCGTTGGCAGCCTGCTGGCTGGAGGA
 841 -----+-----+-----+-----+-----+-----+ 900
 AGGTTGCTACCCGCTCTTACAAACTCCGTCGTCGGCAACCGTCGGACGACCGACCTCCT
 a S N D G Q R M F E A A A V G S L L A G G -
 CCCGTTGTTGCCATCTTAGGCATGATTATAATGTAATTATTCTGGGACCAACAGGCTTC
 901 -----+-----+-----+-----+-----+-----+ 960
 GGGCAACAACGGTAGAACATCGTACTAAATATTACATTAATAAGACCCCTGGTTGCCGAAG
 a P V V A I L G M I Y N V I I L G P T G F -
 CTGGGATCAGCTGTTTATCCTCTTACCCAGCAATGATGTTGCATCACGGCTACA
 961 -----+-----+-----+-----+-----+-----+ 1020
 GACCCTAGTCGACAAAAATAGGAGAAAATGGGTCGTTACTACAAACGTAGTGCCGAGTGT
 a L G S A V F I L F Y P A M M F A S R L T -
 GCATATTCAGGAGAAAATCGTGGCCGCCACGGATGAACGTGTCCAGAAGATGAATGAA
 1021 -----+-----+-----+-----+-----+-----+ 1080
 CGTATAAAGTCCTCTTACGCACCGGGCGGTGCCTACTTGACAGGTCTTACTTACTT
 a A Y F R R K C V A A T D E R V Q K M N E -
 GTTCTTACTTACATTAATTTATCAAATGTATGCCCTGGGTCAAAGCATTTCAGAGT
 1081 -----+-----+-----+-----+-----+-----+ 1140
 CAAGAATGAATGTAATTAAATAGTTTACATACGGACCCAGTTCGTAAAAGAGTCTCA
 a V L T Y I K F I K M Y A W V K A F S Q S -
 GTTCAGAAAATCCCGAGGAGGAGCGTCGGATATTGGAAAAAGCCGGGTACTTCCAGGGT
 1141 -----+-----+-----+-----+-----+-----+ 1200
 CAAGTCTTTAGGCGCTCCTCTCGCAGCCTATAACCTTTCGGCCATGAAGGTCCC
 a V Q K I R E E E R R I L E K A G Y F Q G -
 ATCACTGTGGGTGTGGCTCCCATGTGGTGGTATTGCCAGCGTGGTACCTCTCTGTT
 1201 -----+-----+-----+-----+-----+-----+ 1260
 TAGTGACACCCACACCGAGGGTAACACCCACACTAACGGTCGCACCACTGGAAGAGACAA

Figure 13C

SUBSTITUTE SHEET (RULE 26)

a IT V G V A P I V V V I A S V V T F S V .

CATATGACCTGGCTTCGATCTGACAGCAGCACAGGTTTACAGTGGTGACAGTCTC
 1261 -----+-----+-----+-----+-----+ 1320
 GTATACTGGGACCCGAAGCTAGACTGTCGTGTCCGAAAGTGTCAACCAGTCAGAAG

a H M T L G F D L T A A Q A F T V V T V F .

AATTCCATGACTTTGCTTGAAAGTAACACCGTTTCAAGTAAAGTCCCTCTCAGAACCC
 1321 -----+-----+-----+-----+-----+ 1380
 TTAAGGTACTGAAAACGAAACTTTCATTGTGGCAAAAGTCATTCAGGGAGAGTCTTCGG

a N S M T F A L K V T P F S V K S L S E A -

TCAGTGGCTGTTGACAGATTAAGAGTTGTTCTAATGGAAGAGGTTCACATGATAAAG
 1381 -----+-----+-----+-----+-----+ 1440
 AGTCACCGACAACGTCTAAATTCTCAAACAAAGATTACCTTCTCCAAGTGTACTATTC

a S V A V D R F K S L F L M E E V H M I K -

AACAAACCAGCCAGTCCTCACATCAAGATAGAGATGAAAAATGCCACCTGGCATGGAC
 1441 -----+-----+-----+-----+-----+ 1500
 TTGTTTGGTCGGTCAGGAGTGTAGTTCTATCTACTTTTACGGTGGAACCGTACCCCTG

a N K P A S P H I K I E M K N A T L A W D -

TCCTCCCACCTCCAGTATCCAGAACTCGCCCAAGCTGACCCCCAAATGAAAAAGACAAG
 1501 -----+-----+-----+-----+-----+ 1560
 AGGAGGGTGAGGTCTAGGTCTTGAGCGGGTTGACTGGGGTTTACTTTCTGTC

a S S H S S I Q N S P K L T P K M K K D K -

AGGGCTTCCAGGGCAAGAAAGAGAAGGTGAGGCAGCTGCAGCGCACTGAGCATCAGGCG
 1561 -----+-----+-----+-----+-----+ 1620
 TCCCGAAGGTCCCCGTTCTTCTTCCACTCCGTGACGTGCGTGACTCGTAGTCCGC

a R A S R G K K E K V R Q L Q R T E H Q A -

GTGCTGGCAGAGCAGAAAGGCCACCTCCTGGACAGTGACGAGCGGCCAGTCCGAA
 1621 -----+-----+-----+-----+-----+ 1680
 CACGACCGTCTCGTCTTCCGGTGGAGGAGGACCTGTCAGTGTCACTGCTCGCCGGTCAGGGCTT

Figure 13D

a V L A E Q K G H L L L D S D E R P S P E -
 GAGGAAGAAGGCAAGCACATCCACCTGGGCCACCTGCGTTACAGAGGACACTGCACAGC
 1681 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1740
 CTCCTTCTTCCGTTCGTAGGTGGACCCGGTGGACGCGAACATGTCCTGTGACGTGTCG

a E E E G K H I H L G H L R L Q R T L H S -
 ATCGATCTGGAGATCCAAGAGGGTAAACTGGTTGGAATCTGGGCAGTGTGGAAAGTGGA
 1741 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1800
 TAGCTAGACCTCTAGGTTCTCCATTGACCAACCTTAGACGCCGTACACCCCTCACCT

a I D L E I Q E G K L V G I C G S V G S G -
 AAAACCTCTCTCATTCAGCCATTTAGGCCAGATGACGCTCTAGAGGGCAGCATTGCA
 1801 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1860
 TTTTGGAGAGAGATAAGTCGGTAAAATCCGGTCTACTGCGAAGATCTCCGTCGTAACGT

a K T S L I S A I L G Q M T L L E G S I A -
 ATCAGTGGAACCTTCGCTTATGTGGGCCAGCAGGCCCTGGATCCTCAATGCTACTCTGAGA
 1861 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1920
 TAGTCACCTTGGAAAGCGAATAACACCGGGTGTCCGGACCTAGGAGTTACGATGAGACTCT

a I S G T F A Y V A Q Q A W I L N A T L R -
 GACAACATCCTGTTGGAAAGGAATATGATGAAGAAAGATAACAACCTGTGCTGAACAGC
 1921 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1980
 CTGTTGTAGGACAAACCTTCCTTATACTACTTCTTCTATGTTGAGACACGACTTGTG

a D N I L F G K E Y D E E R Y N S V L N S -
 TGCTGCCTGAGGCCCTGACCTGGCCATTCTCCAGCAGCGACCTGACGGAGATTGGAGAG
 1981 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 2040
 ACGACGGACTCCGGACTGGACCGGTAAGAAGGGTGTGCTGGACTGCCTTAACCTCTC

a C C L R P D L A I L P S S D L T E I G E -
 CGAGGAGCCAACCTGAGCGGTGGGCAGCGCCAGAGGATCAGCCTTGCCCCGGCCTGTAT
 2041 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 2100
 GCTCCTCGGTTGGACTGCCACCCGTCGCGGTCTCCTAGTCGGAACGGGCCGGAACATA

a R G A N L S G G Q R Q R I S L A R A L Y -

Figure 13E

SUBSTITUTE SHEET (RULE 26)

AGTGACAGGAGCATCTACATCCTGGACGACCCCTCACTGCCTAGATGCCATGTGGC
 2101 +-----+-----+-----+-----+-----+ 2160
 TCACTGTCCTCGTAGATGTAGGACCTGCTGGGGAGTCACGGAATCTACGGGTACACCG
 a S D R S I Y I L D D P L S A L D A H V G .

AACCACATCTCAATAGTGCATCCGAAACATCTCAAGTCCAAGACAGTTCTGTTGTT
 2161 +-----+-----+-----+-----+-----+ 2220
 TTGGTGTAGAAGTTATCACGATAGGCCTTGTAGAGTTCAGGTTCTGTCAAGACAAACAA
 a N H I F N S A I R K H L K S K T V L F V .

ACCCACCAAGTTACAGTACCTGGTTGACTGTGATGAAGTGATCTTCATGAAAGAGGGCTGT
 2221 +-----+-----+-----+-----+-----+ 2280
 TGGGTGGTCAATGTCATGGACCAACTGACACTACTTCACTAGAAGTACTTCTCCGACA
 a T H Q L O Y L V D C D E V I F M K E G C .

ATTACGGAAAGAGGCACCCATGAGGAACGTGATGAATTAAATGGTACTATGCTACCATT
 2281 +-----+-----+-----+-----+-----+ 2340
 TAATGCCTTCTCCGTGGTACTCCTGACTACTAAATTACCACTGATACGATGGTAA

a I T E R G T H E E L M N L N G D Y A T I .

TTAAATAACCTGTTGCTGGAGAGACACCGCCAGTTGAGATCAATTAAAAAGGAAACC
 2341 +-----+-----+-----+-----+-----+ 2400
 AAATTATTGGACAACGACCCTCTGTGGCGGTCAACTCTAGTTAAGTTTTTCTTTGG

a F N N L L L G E T P P V E I N S K K E T .

AGTGGTTCACAGAAGAAGTCACAAGACAAGGGCTAAAACAGGATCAGTAAAGAAGGAA
 2401 +-----+-----+-----+-----+-----+ 2460
 TCACCAAGTGTCTTCAGTGTCTGTGGCCAGGATTTGTCTAGTCATTCTCCCTT

a S G S Q K K S Q D K G P K T G S V K K E .

AAAGCAGTAAAGCCAGAGGAAGGGCAGCTTGTGCAGCTGGAAGAGAAAGGGCAGGGTTCA
 2461 +-----+-----+-----+-----+-----+ 2520
 TTTCGTCACTTCGGTCTCTCCCGTCGAACACGTCGACCTCTCTTCCCCTCCAAAGT

a K A V K P E E G Q L V Q L E E K G Q G S .

Figure 13F

SUBSTITUTE SHEET (RULE 26)

GTGCCCTGGTCAGTATATGGTGTACATCCAGGCTGCTGGGGCCCTTGGCATTCTG
 2521 -----+-----+-----+-----+-----+-----+ 2580
 CACGGGACCAGTCATATACCACAGATGTAGGTCCGACGACCCCCGGGAACCGTAAGGAC

a V P W S V Y G V Y I Q A A G G P L A F L .

GTTATTATGCCCTTTCATGCTGAATGTAGGCAGCACCGCCTCAGCACCTGGTGGTTG
 2581 -----+-----+-----+-----+-----+-----+ 2640
 CAATAATACCGGGAAAAGTACGACTTACATCCGTCGTGGCGGAAGT,CGTGGACCACCAAC

a V I M A L F M L N V G S T A F S T W W L .

AGTTACTGGATCAAGCAAGGAAGCGGGAACACCACTGTGACTCGAGGGAACGAGACCTCG
 2641 -----+-----+-----+-----+-----+-----+ 2700
 TCAATGACCTAGTCGTTCCCTCGCCCTGTGGTACACTGAGCTCCCTGCTCTGGAGC

a S Y W I K Q G S G N T T V T R G N E T S .

GTGAGTGACAGCATGAAGGACAATCCTCATATGCAGTACTATGCCAGCATCTAGCCCTC
 2701 -----+-----+-----+-----+-----+-----+ 2760
 CACTCACTGTCGTACTCCTGTTAGGAGTATACGTATGACGGTCGTAGATGCGGGAG

a V S D S M K D N P H M Q Y Y A S I Y A L .

TCCATGGCAGTCATGCTGATCCTGAAAGCCATTGAGGAGTTGTCTTGCAAGGGCAGC
 2761 -----+-----+-----+-----+-----+-----+ 2820
 AGGTACCGTCAGTACGACTAGGACTTCGGTAAGCTCCTAACAGAACAGTTCCCGTGC

a S M A V M L I L K A I R G V V F V K G T .

CTGCGAGCTCCTCCGGCTGCATGACGAGCTTCCGAAGGATCCTCGAAGCCCTATG
 2821 -----+-----+-----+-----+-----+-----+ 2880
 GACGCTCGAAGGAGGGCCGACGTACTGCTCGAAAAGGCTCCTAGGAAGCTCAGGATAC

a L R A S S R L H D E L F R R I L R S P M .

AAGTTTTTGACACGACCCCCACAGGGAGGATTCTAACAGGTTTCAAAGACATGGAT
 2881 -----+-----+-----+-----+-----+-----+ 2940
 TTCAAAAAACTGTGCTGGGGGTGTCCCTCTAACAGAGTTGTCCTAGGAAGCTCAGGATAC

a K F F D T T P T G R I L N R F S K D M D .

GAAGTTGACGTGCGGCTGCCGTTCCAGGCCGAGATGTCATCCAGAACGTTATCCTGGTG

Figure 13G

SUBSTITUTE SHEET (RULE 26)

2941 -----+-----+-----+-----+-----+ 3000
 CTTCAACTGCACGCCGACGGCAAGGTCCGGCTACAAGTAGGTCTTGAATAGGACAC

a E V D V R L P F Q A E M F I Q N V I L V -
 TTCTTCTGTGTGGAAATGATCGCAGGAGTCTTCCCCTGGTCTGTGGCAGTGGGGCCC
 3001 -----+-----+-----+-----+-----+ 3060
 AAGAAGACACACCCTTAAGCGTCCTCAGAAGGGCACCAAGGAACACCG1CACCCCGGG

a F F C V G M I A G V F P W F L V A V G P -
 CTTGTCATCCTCTTCAGTCCTGCACATTGTCTCCAGGGCTCTGATTGGGAGCTGAAG
 3061 -----+-----+-----+-----+-----+ 3120
 GAACAGTAGGAGAAAAGTCAGGACGTGTAACAGAGGTCCCAGGACTAACGCCCTCGACTTC

a L V I L F S V L H I V S R V L I R E L K -
 CGTCTGGACAATATCACGCAGTCACCTTCCTCTCCCACATCACGTCCAGCATACAGGGC
 3121 -----+-----+-----+-----+-----+ 3180
 GCAGACCTGTTAGTGCGTCAGTGGAAAGGAGAGGGTAGTGCAGGTCGTATGTCCCG

a R L D N I T Q S P F L S H I T S S I Q G -
 CTTGCCACCATCCACGCCCTACAATAAAGGGCAGGAGTTCTGCACAGATACCAGGAGCTG
 3181 -----+-----+-----+-----+-----+ 3240
 GAACGGTGGTAGGTGCGGATGTTATTCCTCAAAGACGTCTATGGCCTCGAC

a L A T I H A Y N K G Q E F L H R Y Q E L -
 CTGGATGACAACCAAGCTCCTTTTTTTGTTACGTGTGCGATGCGGTGGCTGGCTGTG
 3241 -----+-----+-----+-----+-----+ 3300
 GACCTACTGTTGGTTGAGGAAAAAAACAAATGCACACGCTACGCCACCGACCGACAC

a L D D N Q A P F F L F T C A M R W L A V -
 CGGCTGGACCTCATCAGCATGCCCTCATCACACCACGGGGCTGATGATCGTTCTTATG
 3301 -----+-----+-----+-----+-----+ 3360
 GCCGACCTGGAGTAGTCGTAGCGGGAGTAGTGGTGGTCCCCGACTACTAGCAAGAAC

a R L D L I S I A L I T T G L M I V L M -
 CACGGGCAGATCCCCCAGCCTATGCGGGTCTGCCATCTTATGCTGTCCAGTTAACG
 3361 -----+-----+-----+-----+-----+ 3420

Figure 13H**SUBSTITUTE SHEET (RULE 26)**

GTGCCCGTCTAAGGGGGTCGGATACGCCAGAGCGGTAGAGAATACGACAGGTCAATTGC

a H G Q I P P A Y A G L A I S Y A V Q L T -

GGGCTGTTCCAGTTACGGTCAGACTGGCATCTGAGACAGAAGCTCGATTCACCTCGGTG
3421 ----- + ----- + ----- + ----- + ----- + 3480
CCGACACAAGGTCAAATGCCAGTCTGACCGTAGACTCTGTCTCGAGCTAAGTGGAGCCAC

a G L F Q F T V R L A S E T E A R F T S V -

GAGAGGATCAATCACTACATTAAGACTCTGTCCTTGGAAAGCACCTGCCAGAATTAAGAAC
3481 ----- + ----- + ----- + ----- + ----- + 3540
CTCTCCTAGTTAGTGATGTAATTCTGAGACAGGAACCTCGTGGACGGCTTAATTCTTG

a E R I N H Y I K T L S L E A P A R I K N -

AAGGCTCCCTCCCCGACTGGCCCCAGGAGGGAGAGGTGACCTTGAGAACGCAGAGATG
3541 ----- + ----- + ----- + ----- + ----- + 3600
TTCCGAGGGAGGGACTGACCGGGGCTCCCTCCACTGGAAACTCTTGCCTCTAC

a K A P S P D W P Q E G E V T F E N A E M -

AGGTACCGAGAAAACCTCCCTTTGTCCTAAAGAAAGTATCCTCACGATCAAACCTAAA
3601 ----- + ----- + ----- + ----- + ----- + 3660
TCCATGGCTTTGGAGGGAGAACAGGATTCTTCTAGGAAGTGCTAGTTGGATT

a R Y R E N L P L V L K K V S F T I K P K -

GAGAAGATTGGCATTGTGGGGCGGACAGGATCAGGAAGTCCTCGCTGGGATGCCCTC
3661 ----- + ----- + ----- + ----- + ----- + 3720
CTCTTCTAACCGTAACACCCCGCCTGCTAGTCCCTCAGGAGCGACCCCTACCGGGAG

a E K I G I V G R T G S G K S S L G M A L -

TTCCGTCTGGTGGAGTTATCTGGAGGCTGCATCAAGATTGATGGAGTGAGAACAGTGAT
3721 ----- + ----- + ----- + ----- + ----- + 3780
AAGGCAGACCACCTCAATAGACCTCCGACGTAGTTCTAACTACCTCACTCTAGTCACTA

a F R L V E L S G G C I K I D G V R I S D -

ATTGGCCTTGCCTGGACCTCCGAAGCAAACCTCTATCATTCTCAAGAGCCGGTGCTGTT
3781 ----- + ----- + ----- + ----- + ----- + 3840
TAACCGGAACGGCTGGAGGCTTCGTTGAGAGATAGTAAGGAGTTCTCGGCCACGACAAG

Figure 13I

a I G L A D I L R S K L S I I P Q E P V L F .
 AGTGGCACTGTCAGATCAAATTGGACCCCTCAACCAGTACACTGAAGACCAGATTGG
 3841 +-----+-----+-----+-----+-----+-----+ 3900
 TCACCGTGACAGTCTAGTTAACCTGGGAAGTTGGTACGTGACTTCTGGTCTAAACC

a S G T V R S N L D P F N Q Y T E D Q I W .
 GATGCCCTGGAGAGGACACACATGAAAGAATGTATTGCTCAGCTACCTCTGAAACTTGAA
 3901 +-----+-----+-----+-----+-----+-----+ 3960
 CTACGGGACCTCTCCTGTGTACTTTCTTACATAACGAGTCGATGGAGACTTTGAACCT

a D A L E R T H M K E C I A Q L P L K L E .
 TCTGAAGTGATGGAGAATGGGGATAACTTCTCAGTGGGGAACGGCAGCTTGTGCATA
 3961 +-----+-----+-----+-----+-----+-----+ 4020
 AGACTTCACTACCTCTAACCCCTATTGAAGAGTCACCCCTTGCCGTCGAGAACACGTAT

a S E V M E N G D N F S V G E R Q L L C I .
 GCTAGAGCCCTGCTCCGCCACTGTAAGATTCTGATTTAGATGAAGCCACAGCTGCCATG
 4021 +-----+-----+-----+-----+-----+-----+ 4080
 CGATCTCGGGACGAGGCGGTACATTCTAACAGACTAAAATCTACTTCGGTGTGACGGTAC

a A R A L L R H C K I L I L D E A T A A M .
 GACACAGAGACAGACTTATTGATTCAAGAGACCATCCGAGAAGCATTGAGACTGTACC
 4081 +-----+-----+-----+-----+-----+ 4140
 CTGTGTCTCTGTGAATAACTAACAGTTCTGGTAGGCTTCTGTAAACGTCTGACATGG

a D T E T D L L I Q E T I R E A F A D C T .
 ATGCTGACCATTGCCCATCGCCTGCACACGGTTCTAGGCTCCGATAGGATTATGGTGCTG
 4141 +-----+-----+-----+-----+-----+ 4200
 TACGACTGGTAACGGGTAGCGGACGTGTGCCAGATCCGAGGCTATCCTAACACGAC

a M L T I A H R L H T V L G S D R I M V L .
 GCCCAGGGACAGGTGGTGGAGTTTGACACCCCCATCGGTCTCTGTCCAACGACAGTTCC
 4201 +-----+-----+-----+-----+-----+ 4260
 CGGGTCCCTGTCCACCACCTCAAACGTGGGTAGCCAGGAAGACAGGTTGCTGTCAAGG

Figure 13J

SUBSTITUTE SHEET (RULE 26)

34/56

a A Q G Q V V E F D T P S V L L S N D S S -

CGATTCTATGCCATGTTGCTGCTGCAGAGAACAAAGGTCGCTGTCAAGGGCTGA
4261 ----- + ----- + ----- + ----- + ---- 4314
GCTAAGATAACGGTACAAACGACGACGTCTTGTCCAGCGACAGTTCCCGACT

a R F Y A M F A A A E N K V A V K G * -

Figure 13K

SUBSTITUTE SHEET (RULE 26)

MOAT D cDNA AND AMINO ACID SEQUENCE ENCODED THEREBY

ATGGACGCCCTGTGCGGTTCCGGGGAGCTCGGCTCCAAGTCTGGACTCCAACCTGTCT
 1 -----+-----+-----+-----+-----+-----+ 60
 TACCTGCGGGACACGCCAAGGCCCTCGAGCCGAGGTTCAAGACCCTGAGGTTGGACAGA

a M D A L C G S G E L G S K F W D S N L S -

GTGCACACAGAAAACCCGGACCTCACTCCCTGCTTCAGAACTCCCTGCTGGCCTGGGTG
 61 -----+-----+-----+-----+-----+-----+ 120
 CACGTGTGTCTTTGGGCCTGGAGTGAGGGACGAAGGTCTTGAGGGACGACCGGACCCAC

a V H T E N P D L T P C F Q N S L L A W V -

CCCTGCATCTACCTGTGGGTCGCCCTGCCCTGCTACTTGCTCTACCTGCAGGCACCATTGT
 121 -----+-----+-----+-----+-----+-----+ 180
 GGGACGTAGATGGACACCCAGCAGGGACGGGACGATGAACGAGATGGACGCCGTGGTAACA

a P C I Y L W V A L P C Y L L Y L R H H C -

CGTGGCTACATCATCCTCTCCCACCTGTCCAAGCTCAAGATGGCCTGGGTGTCTGCTG
 181 -----+-----+-----+-----+-----+-----+ 240
 GCACCGATGTAGTAGGAGAGGGTGGACAGGTTCGAGTTCTACCAAGGACCCACAGGACGAC

a R G Y I I L S H L S K L K M V L G V L L -

TGGTGCCTCTCCTGGCGGACCTTTTACTCCTTCATGGCCTGGTCCATGGCCGGCC
 241 -----+-----+-----+-----+-----+-----+ 300
 ACCACCGAGAGGACCCGCGCTGGAAAAATGAGGAAGGTACCGGACCAGGTACCGGCCCGG

a W C V S W A D L F Y S F H G L V H G R A -

CCTGCCCTGTTTCTTCACCCCCCTGGTGGTGGGTACCATGCTGCTGGCCACC
 301 -----+-----+-----+-----+-----+-----+ 360
 GGACGGGGACAAAAGAACAGTGGGGAAACCACCCAGTGGTACGACGACCGGTGG

a P A P V F F V T P L V V G V T M L L A T -

CTGCTGATACAGTATGAGCGGCTGCAGGGCGTACAGTCTCGGGGTCTCATTATCTTC

Figure 14A

SUBSTITUTE SHEET (RULE 26)

361 -----+-----+-----+-----+-----+-----+ 420
 GACGACTATGTATACTGCCGACGTCCGCATGTCAGAAGCCCCAGGAGTAATAGAAG

a L L I Q Y E R L Q G V Q S S G V L I I F -
 TGGTTCCCTGTGTGGTCTCGGCCATCGTCCCATTCCGCTCCAAGATCCTTTAGCCAAG
 421 -----+-----+-----+-----+-----+-----+ 480
 ACCAAGGACACACACCAGACGCGGTAGCAGGGTAAGGCAGGTTCTAGGAAAATCGGTTCT

a W F L C V V C A I V P F R S K I L L A K -
 GCAGAGGGTGAGATCTCAGACCCCTCCGCTTCAACCCTTCTACATCCACTTGCCTG
 481 -----+-----+-----+-----+-----+-----+ 540
 CGTCTCCCCTAGAGTCTGGGAAGGCGAAGTGGTGAAGATGTAGGTGAAACGGGAC

a A E G E I S D P F R F T T F Y I H F A L -
 GTACTCTCTGCCCTCATCTTGGCTGCTTCAGGGAGAACCTCCATTTCTCCGCAAAG
 541 -----+-----+-----+-----+-----+-----+ 600
 CATGAGAGACGGGAGTAGAACCGGACGAAGTCCCTCTTGAGGTAAAAAGAGGGCGTTCT

a V L S A L I L A C F R E K P P F F S A K -
 AATGTCGACCTAAACCCCTACCCCTGAGACCAGCGCTGGCTTCTCCGCCTGTTTTC
 601 -----+-----+-----+-----+-----+-----+ 660
 TTACAGCTGGATTGGGATGGGACTCTGGTCGCGACCGAAAGAGAGAGGGCGGACAAAAG

a N V D P N P Y P E T S A G F L S R L F F -
 TGGTGGTTCACAAAGATGGCCATCTATGGCTACCGGCATCCCTGGAGGAGAACCTC
 661 -----+-----+-----+-----+-----+-----+ 720
 ACCACCAAGTGTCTACCGGTAGATACCGATGGCGTAGGGGACCTCCTTCCCTGGAG

a W W F T K M A I Y G Y R H P L E E K D L -
 TGGTCCCTAAAGGAAGAGGACAGATCCCAGATGGTGGTGCAGCAGCTGGAGGCATGG
 721 -----+-----+-----+-----+-----+-----+ 780
 ACCAGGGATTCTCTCTGTCTAGGGTCTACCAACACGTGTCGACGACCTCCGTACCG

a W S L K E E D R S Q M V V Q O L L E A W -
 AGGAAGCAGGAAAAGCAGACGGCACGACACAAGGCTTCAGCAGCACCTGGAAAAATGCC
 781 -----+-----+-----+-----+-----+-----+ 840

Figure 14B

SUBSTITUTE SHEET (RULE 26)

TCCTTCGTCTTTCGTCTGCCGTGCTGTGTTCCGAAGTCGTGCGTGGACCCCTTTACGG

a R K Q E K Q T A R H K A S A A P G K N A -

TCCGGCGAGGACGAGGTGCTGCTGGGTGCCGCCAGGCCCGGAAGCCCTCCTTCCTG
841 ----- + ----- + ----- + ----- + ----- + 900
AGGCCGCTCTGCTCCACGACGACCCACGGGCCGGTCCGGGCCTCGGGAGGAAGGAC

a S G E D E V L L G A R P R P R K P S F L -

AAGGCCCTGCTGCCACCTCGGCTCCAGCTCCTCATCAGTGCTGCTCAAGCTTATC
901 ----- + ----- + ----- + ----- + ----- + 960
TTCCGGGACGACCGGTGGAAGCCGAGGTCGAAGGAGTAGTCACGGACGAAGTCGAATAG

a K A L L A T F G S S F L I S A C F K L I -

CAGGACCTGCTCTCTTCAATCCACAGCTGCTCAGCATCCTGATCAGGTTATCTCC
961 ----- + ----- + ----- + ----- + ----- + 1020
GTCCTGGACGAGAGGAAGTAGTTAGGTGTCGACGAGTCGTAGGACTAGTCCAAATAGAGG

a Q D L L S F I N P O L L S I L I R F I S -

AACCCCATGGCCCCCTCTGGTGGGCTTCTGGTGGCTGGCTGATGTTCTGTGCTCC
1021 ----- + ----- + ----- + ----- + ----- + 1080
TTGGGGTACCGGGGGAGGACCACCCGAAGGACCACCGACCCGACTACAAGGACACGAGG

a N P M A P S W W G F L V A G L M F L C S -

ATGATGCAGTCGCTGATCTAACACTATTACCACTACATCTTGTGACTGGGTGAAG
1081 ----- + ----- + ----- + ----- + ----- + 1140
TACTACGTCAAGCACTAGAATGTTGTATAATGGTGATGTAGAAACACTGACCCACTTC

a M M Q S L I L Q H Y Y H Y I F V T G V K -

TTTCGTACTGGGATCATGGGTGTCATCTACAGGAAGGCTCTGGTTATACCAACTCAGTC
1141 ----- + ----- + ----- + ----- + ----- + 1200
AAAGCATGACCTAGTACCCACAGTAGATGTCCTCCGAGACCAATAGTGGTGAGTCAG

a F R T G I M G V I Y R K A L V I T N S V -

AAACGTGCGTCCACTGTGGGGAAATTGTCACCTCATGTCAGTGGATGCCAGCGCTTC
1201 ----- + ----- + ----- + ----- + ----- + 1260
TTTGCACGCAGGTGACACCCCTTAACAGTTGGAGTACAGTCACCTACGGGTCGCGAAG

Figure 14C

SUBSTITUTE SHEET (RULE 26)

a K R A S T V G E I V N L M S V D A Q R F -

ATGGACCTTGCCTTCCTCAATCTGCTGTGGTCAGCACCCCTGCAGATCATCCTGGCG
1261 -----+-----+-----+-----+-----+-----+ 1320
TACCTGGAACGGGGGAAGGGAGTTAGACGACACCAGTCGTGGGACGCTAGTAGGACCGC

a M D L A P F L N L L W S A P L Q I I L A -

ATCTACTTCCTCTGGCAGAACCTAGGTCCTCTGTCTGGCTGGAGTCGCTTCATGGTC
1321 -----+-----+-----+-----+-----+-----+ 1380
TAGATGAAGGAGACCGCTGGATCCAGGGAGACAGGACCGACCTCAGCGAAAGTACCAAG

a I Y F L W Q N L G P S V L A G V A F M V -

TTGCTGATTCCACTCAACGGAGCTGTGCCGTGAAGATGCGCGCTTCCAGGTAAAGCAA
1381 -----+-----+-----+-----+-----+-----+ 1440
AACGACTAAGGTGAGTTGCCTCGACACCGGCACTTCTACGCGCGGAAGGTCCATTCGTT

a L L I P L N G A V A V K M R A F Q V K Q -

ATGAAATTGAAGGACTCGCGCATCAAGCTGATGAGTGAGATCCTGAACGGCATCAAGGTG
1441 -----+-----+-----+-----+-----+-----+ 1500
TACTTTAACTTCCTGAGCGCGTAGTCGACTACTCACTCTAGGACTTGCGTAGTTCCAC

a M K L K D S R I K L M S E I L N G I K V -

CTGAAGCTGTACGCCCTGGGAGCCCAGCTTCTGAAGCAGGTGGAGGGCATCCGGCAGGGT
1501 -----+-----+-----+-----+-----+-----+ 1560
GACTTCGACATGCGGACCCCTGGTCGAAGGACTTCGTCCACCTCCGTAGGCCGTCCA

a L K L Y A W E P S F L K Q V E G I R Q G -

GAGCTCCAGCTGCTCGCACGGCGGCCTACCTCCACACCAACCACCTCACCTGGATG
1561 -----+-----+-----+-----+-----+-----+ 1620
CTCGAGGTCGACGACGCGTGGCGCCGGATGGAGGTGTGGTGGTGGAGTGGACCTAC

a E L Q L L R T A A Y L H T T T F T W M -

TGCAGCCCTTCTGGTGACCCCTGATCACCCCTGGGTGTACGTGTACGTGGACCCAAAC
1621 -----+-----+-----+-----+-----+-----+ 1680
ACGTCGGGAAAGGACCACTGGACTAGTGGAGACCCACATGCACATGCACCTGGGTTG

Figure 14D

SUBSTITUTE SHEET (RULE 26)

a C S P F L V T L I T L W V Y V Y V D P N -
 AATGTGCTGGACGCCGAGAAGGCCTTGTGTCGTGTCCTGTTAAATATCTTAAGACTT
 1681 ----- + ----- + ----- + ----- + ----- + 1740
 TTACACGACCTGCGGCTTCCGAAACACAGACACAGGAACAAATTATAGAATTCTGAA

a N V L D A E K A F V S V S L F N I L R L -
 CCCCTAACATGCTGCCAGTTAACAGCAACCTGACTCAGGCCAGTGTCTCTGAAA
 1741 ----- + ----- + ----- + ----- + ----- + 1800
 GGGGAGTTGTACGACGGGGTCAATTAGTCGTTGGACTGAGTCCGGTCACACAGAGACTTT

a P L N M L P Q L I S N L T Q A S V S L K -
 CGGATCCAGCAATTCTGAGCCAAGAGGAACCTGACCCCCAGAGTGTGGAAAGAAAGACC
 1801 ----- + ----- + ----- + ----- + ----- + 1860
 GCCTAGGTCTTAAGGACTCGGTTCTCCTGAACCTGGGCTCACACCTTCTTCTGG

a R I Q Q F L S Q E E L D P Q S V E R K T -
 ATCTCCCCAGGCTATGCCATACCATACACAGTGGCACCTCACCTGGCCCAGGACCTG
 1861 ----- + ----- + ----- + ----- + ----- + 1920
 TAGAGGGGTCGATAACGGTAGTGGTATGTGTACCGTGGAAAGTGGACCCGGGCTGGAC

a I S P G Y A I T I H S G T F T W A Q D L -
 CCCCCCACTCTGCACAGCCTAGACATCCAGGTCCGAAAGGGGACTGGTGGCGTGGTG
 1921 ----- + ----- + ----- + ----- + ----- + 1980
 GGGGGGTGAGACGTGCGATCTGTAGGTCCAGGGCTTCCCGTGACCACGGCACAC

a P P T L H S L D I Q V P K G A L V A V V -
 GGGCCTGTGGCTGTGGAAAGTCCTCCCTGGTGTCTGCCCTGCTGGAGAGATGGAGAAG
 1981 ----- + ----- + ----- + ----- + ----- + 2040
 CCCGGACACCCGACACCCCTCAGGAGGGACCACAGACGGGACGACCCCTCTACCTCTC

a G P V G C G K S S L V S A L L G E M E K -
 CTAGAAGGCAAAGTGCACATGAAGGCATGGATCCAGAACTGCACTCTCAGGAAACGTG
 2041 ----- + ----- + ----- + ----- + ----- + 2100
 GATCTTCCGTTCACGTGTACTCCGTACCTAGGTCTTGACGTGAGAAGTCCTTGCAC

a L E G K V H M K A W I Q N C T L Q E N V -

Figure 14E
SUBSTITUTE SHEET (RULE 26)

CTTTCGGCAAAGCCCTGAACCCCAAGCGTACCAAGCAGACTCTGGAGGCCTGTGCCCTG
 2101 -----+-----+-----+-----+-----+-----+ 2160
 GAAAAGCCGTTGGGACTTGGGTTCGCGATGGTCGCTGAGACCTCCGGACACGGAAC

a L F G K A L N P K R Y Q Q T L E A C A L .

CTAGCTGACCTGGAGATGCTGCCTGGTGGGATCAGACAGAGATTGGAGAGAAGGGCATT
 2161 -----+-----+-----+-----+-----+-----+ 2220
 GATCGACTGGACCTCTACGACGGACCACCCCTAGTCTGCTCTAACCTCTTCCGTAA

a L A D L E M L P G G D Q T E I G E K G I .

AACCTGTCTGGGGGCCAGCGGCAGCGGGTCAGTCTGGCTCGAGCTGTTACAGTGATGCC
 2221 -----+-----+-----+-----+-----+-----+ 2280
 TTGGACAGACCCCCGGTCGCCGCCCCAGTCAGACCGAGCTGACAAATGTCACTACGG

a N L S G G Q R Q R V S L A R A V Y S D A .

GATATTTCTTGTGGATGACCCACTGTCCGCGGTGGACTCTCATGTGGCCAAGCACATC
 2281 -----+-----+-----+-----+-----+-----+ 2340
 CTATAAAAGAACGACCTACTGGGTGACAGGCGCCACCTGAGAGTACACCGGTTCGTAG

a D I F L L D D P L S A V D S H V A K H I .

TTTGACCACGTATCGGGCCAGAAGGCCTGCTGGCAGGCAAGACGCGAGTGCTGGTGACG
 2341 -----+-----+-----+-----+-----+-----+ 2400
 AAACTGGTGCAGTAGCCCCGGTCTTCCGCACGACCGTCCGTTCTCGCCTCACGACCACTGC

a F D H V I G P E G V L A G K T R V L V T .

CACGGCATTAGCTTCCCTGCCCCAGACAGACTTCATCATTGTGCTAGCTGATGGACAGGTG
 2401 -----+-----+-----+-----+-----+-----+ 2460
 GTGCCGTAATCGAAGGACGGGGTCTGTCTGAAGTAGTAACACGATCGACTACCTGTCCAC

a H G I S F L P Q T D F I I V L A D G Q V .

TCTGAGATGGGCCGTACCCAGCCCTGCTGCAGCGCAACGGCTCCTTGCCAACCTTCTC
 2461 -----+-----+-----+-----+-----+-----+ 2520
 AGACTCTACCCGGGCATGGTCGGGACGACGTGCGTTGCCAGGAAACGGTTGAAAGAG

a S E M G P Y P A L L Q R N G S F A N F L .

Figure 14F

SUBSTITUTE SHEET (RULE 26)

TGCAACTATGCCCGATGAGGACCAAGGGACCTGGAGGACAGCTGGACCGCGTTGGAA
 2521 -----+-----+-----+-----+-----+-----+ 2580
 ACGTTGATACGGGGCTACTCCTGGTCCCGTGACCTCCTGTCGACCTGGCGAACCTT

a C N Y A P D E D Q G H L E D S W T A L E -

GGTGCAGAGGATAAGGAGGCAGTGCTGATTGAAGACACACTCAGCAACCACACGGATCTG
 2581 -----+-----+-----+-----+-----+-----+ 2640
 CCACGTCTCCTATTCCCTCCGTGACGACTAACTTCTGTGTGAGTCGTTGGTGTGCCTAGAC

a G A E D K E A L L I E D T L S N H T D L -

ACAGACAATGATCCAGTCACCTATGTGGTCCAGAACAGCAGTTATGAGACAGCTGAGTGCC
 2641 -----+-----+-----+-----+-----+-----+ 2700
 TGTCTGTTACTAGGTCACTGGATACACCAGGTCTCGTCAAATACTCTGTCGACTCACGG

a T D N D P V T Y V V Q K Q F M R Q L S A -

CTGTCCTCAGATGGGGAGGGACAGGGTCGGCCTGTACCCCCGGAGGCACCTGGGTCCATCA
 2701 -----+-----+-----+-----+-----+-----+ 2760
 GACAGGAGTCTACCCCTCCCTGTCCCAGCCGGACATGGGCCCTCGTGGACCCAGGTAGT

a L S S D G E G Q G R P V P R R H L G P S -

GAGAAGGTGCAGGTGACAGAGGCGAAGGCAGATGGGGACTGACCCAGGAGGAGAAAGCA
 2761 -----+-----+-----+-----+-----+-----+ 2820
 CTCTCCACGTCCTACTGTCTCCGCTTCCGTCTACCCCGTACTGGGTCTCCTCTTCGT

a E K V Q V T E A K A D G A L T Q E E K A -

GCCATTGGCACTGTGGAGCTCAGTGTGTTCTGGGATTATGCCAAGGCCGTGGGCTCTGT
 2821 -----+-----+-----+-----+-----+-----+ 2880
 CGGTAAACCGTGACACCTCGAGTCACACAAGACCCCTAACCGTTCCGGCACCCGAGACA

a A I G T V E L S V F W D Y A K A V G L C -

ACCACGCTGGCATCTGTCTCCTGTATGTGGTCAAAGTGGCGCTGCCATTGGAGCCAAT
 2881 -----+-----+-----+-----+-----+-----+ 2940
 TGGTGCACCGTAGACAGAGGACATACACCCAGTTCACGCCGACGGTAACCTCGGTTA

a T T L A I C L L Y V G Q S A A A I G A N

GTGTGGCTCAGTGCCTGGACAAATGATGCCATGGCAGACAGTAGACAGAACAACACTTCC

Figure 14G

SUBSTITUTE SHEET (RULE 26)

2941 ----- + ----- + ----- + ----- + ----- + 3000
 CACACCGAGTCACGGACCTGTTACTACGGTACCGTCTGTCACTGTCTTGTGAAGG

a V W L S A W T N D A M A D S R Q N N T S -
 CTGAGGCTGGCGTCTATGCTGCTTAGAATTCTGCAAGGGTTCTGGTATGCTGGCA
 3001 ----- + ----- + ----- + ----- + ----- + 3060
 GACTCCGACCCGCAGATACGACGAAATCCTAACAGACGTTCCAAGAACCAACTACGACCGT

a L R L G V Y A A L G I L Q G F L V M L A -
 GCCATGGCCATGGCAGCGGGTGGCATCCAGGCTGCCGTGTGTCACCAGGCACTGCTG
 3061 ----- + ----- + ----- + ----- + ----- + 3120
 CGGTACCGGTACCGTCGCCACCGTAGGTCCGACGGGACACAACGTGGTCCGTGACGAC

a A M A M A A G G I Q A A R V L H Q A L L -
 CACAACAAGATACTCGCCACAGTCCTCTTGACACCCACACCATCAGGCCGCATCCTG
 3121 ----- + ----- + ----- + ----- + ----- + 3180
 GTGTTGTTCTATGCGAGCGGTGTCAGGAAGAAACTGTGGTGTGGTAGTCCGGCGTAGGAC

a H N K I R S P Q S F F D T T P S G R I L -
 AACTGCTTCTCCAAGGACATCTATGCTGTTGAGGTTCTGGCCCTGTCATCCTCATG
 3181 ----- + ----- + ----- + ----- + ----- + 3240
 TTGACGAAGAGGTTCTGTAGATACAGCAACTACTCCAAGACCGGGGACAGTAGGAGTAC

a N C F S K D I Y V V D E V L A P V I L M -
 CTGCTCAATTCTTCTTCAACGCCATCTCCACTCTGTGGTCATCATGCCAGCACGCCG
 3241 ----- + ----- + ----- + ----- + ----- + 3300
 GACGAGTTAAGGAAGAAGTTGCGGTAGAGGTGAGAACACCAAGTAGTACCGGTCGTGCGGC

a L L N S F F N A I S T L V V I M A S T P -
 CTCTTCACTGTGGTCATCCTGCCCTGGCTGTGCTCTACACCTAGTGCAGCGCTTCTAT
 3301 ----- + ----- + ----- + ----- + ----- + 3360
 GAGAAGTGACACCAAGTAGGACGGGGACCGACACGAGATGTGGAATACGTCGCGAAGATA

a L F T V V I L P L A V L Y T L V Q R F Y -
 GCAGCCACATCACGGCAACTGAAGCGGCTGGAATCAGTCAGCCGCTCACCTATCTACTCC
 3361 ----- + ----- + ----- + ----- + ----- + 3420

Figure 14H

SUBSTITUTE SHEET (RULE 26)

CGTCGGTGTAGTGCCGTTGACTTCGCCGACCTTAGTCAGTCGGCGAGTGGATAGATGAGG

a A A T S R O L K R L E S V S R S P I Y S .

CACTTTCCGGAGACAGTGACTGGTGCCAGTGTCACTCCGGGCCTACAACCGCAGCCGGGAT

3421 -----+-----+-----+-----+-----+-----+ 3480

GTGAAAAGCCTCTGTCACTGACCACGGCACAGTAGGCCGGATGTTGGCGTCGGCCCTA

a H F S E T V T G A S V I R A Y N R S R D .

TTTGAGATCATCAGTGTAACTAAGGTGGATGCCAACAGAGAAGCTGCTACCCCTACATC

3481 -----+-----+-----+-----+-----+-----+ 3540

AAACTCTAGTAGTCACTATGATTCCACCTACGGTTGGTCTTCGACGATGGGATGTAG

a F E I I S D T K V D A N Q R S C Y P Y I .

ATCTCCAACCGGTGGCTGAGCATCGGAGTGGAGTTCGTGGGGACTGCGTGGTGTCTTT

3541 -----+-----+-----+-----+-----+-----+ 3600

TAGAGGTTGCCACCGACTCGTAGCCTCACCTCAAGCACCCCTTGACGCACCACGAGAAA

a I S N R W L S I G V E F V G N C V V L F .

GCTGCACTATTGCCGTATCGGGAGGAGCAGCCTGAACCCGGGCTGGTGGCCTTTCT

3601 -----+-----+-----+-----+-----+-----+ 3660

CGACGTATAAACGGCAGTAGCCCTCCTCGTCGGACTGGGCCCGACCACCCGGAAAGA

a A A L F A V I G R S S L N P G L V G L S .

GTGTCTACTCCTTGCAGGTGACATTGCTCTGAACCTGGATGATACGAATGATGTCAGAT

3661 -----+-----+-----+-----+-----+-----+ 3720

CACAGGATGAGGAACGTCCTACTGTAAACGAGACTTGACCTACTATGCTTACTACAGTCTA

a V S Y S L Q V T F A L N W M I R M M S D .

TTGGAATCTAACATCGTGGCTGTGGAGAGGGTCAAGGAGTACTCCAAGACAGAGACAGAG

3721 -----+-----+-----+-----+-----+-----+ 3780

AACCTTAGATTGTAGCACCGACACCTCTCCAGTTCCCTCATGAGGTTCTGTCTGTCTC

a L E S N I V A V E R V K E Y S K T E T E .

GCGCCCTGGGTGGTGGAAAGGCAGCCGCCCTCCGAAGGTTGGCCCCACGTGGGGAGGTG

3781 -----+-----+-----+-----+-----+-----+ 3840

CGCGGGACCCACCACTCCGTGGCGGGAGGGCTTCCAACCGGGGTGCACCCCTCCAC

Figure 14I

SUBSTITUTE SHEET (RULE 26)

a A P W V V E G S R P P E G W P P R G E V -

GAGTTCCGGAATTATTCTGTGCGCTACCGGCCGGCCTAGACCTGGTCTGAGAGACCTG
 3841 -----+-----+-----+-----+-----+-----+ 3900
 CTCAAGGCCTTAATAAGACACGCGATGGCCGGCCGGATCTGGACCACGACTCTGGAC

a E F R N Y S V R Y R P G L D L V L R D L -

AGTCTGCATGTGCACGGTGGCGAGAAGGTGGGATCGTGGGCCGACTGGGCTGGCAAG
 3901 -----+-----+-----+-----+-----+-----+ 3960
 TCAGACGTACACGTGCCACCGCTTCCACCCCTAGCACCCGGCGTAGCACCCGACCGTTC

a S L H V H G G E K V G I V G R T G A G K -

TCTTCCATGACCCCTTGCCCTGTTCCGCATCCTGGAGGCGGAAAGGGTCAAATCCGCATT
 3961 -----+-----+-----+-----+-----+-----+ 4020
 AGAAGGTACTGGAAACGGACAAGGCGTAGGACCTCCGCCGTTCCACTTTAGGCGTAA

a S S M T L C L F R I L E A A K G E I R I -

GATGGCCTCAATGTGGCAGACATCGGCCTCCATGACCTGCCTCTCAGCTGACCATCATC
 4021 -----+-----+-----+-----+-----+-----+ 4080
 CTACCGGAGTTACACCGTCTGTAGCCGGAGGTACTGGACCGAGAGTCGACTGGTAG

a D G L N V A D I G L H D L R S Q L T I I -

CCGCAGGACCCATCCTGTTCTGGGACCCCTGCGCATGAACCTGGACCCCTCGGCAGC
 4081 -----+-----+-----+-----+-----+-----+ 4140
 GGCGTCTGGGGTAGGACAAGAGCCCTGGGACCGTACTTGGACCTGGGAAGCCGTG

a P Q D P I L F S G T L R M N L D P F G S -

TACTCAGAGGAGGACATTTGGTGGGTTGGAGCTGTCCCACCTGCACACGTTGTGAGC
 4141 -----+-----+-----+-----+-----+-----+ 4200
 ATGAGTCTCCTCCTGTAAACCACCCGAAACCTCGACAGGGTGGACGTGTGCAAACACTCG

a Y S E E D I W W A L E L S H L H T F V S -

TCCCAGCCGGCAGGCCTGGACTTCCAGTGCTCAGAGGGGGGAGAACCTCAGCGTGGC
 4201 -----+-----+-----+-----+-----+-----+ 4260
 AGGGTCGGCCGTCCGGACCTGAAGGTACAGAGTCTCCGCCCTCTAGAGTCGCACCCG

Figure 14J

SUBSTITUTE SHEET (RULE 26)

a S Q P A G L D F Q C S E G G E N L S V G -

CAGAGGCAGCTCGTGTGCCTGGCCCGAGCCCTGCTCCGCAAGAGCCGCATCTGGTTTA
 4261 ----- + ----- + ----- + ----- + ----- + 4320
 GTCTCCGTGAGCACACGGACCAGGGCTCGGGACGAGGCCTCTCGCGTAGGACAAAAT

a Q R Q L V C L A R A L L R K S R I L V L -

GACGAGGCCACACCTGCCATCGACCTGGAGACTGACAACCTCATCCAGGCTACCATCCGC
 4321 ----- + ----- + ----- + ----- + ----- + 4380
 CTGCTCCGGTGTGACCGTAGCTGGACCTCTGACTGTTGGAGTAGGTCCGATGGTAGGCG

a D E A T A A I D L E T D N L I O A T I R -

ACCCAGTTGATACTGCACGTCTGACCATCGCACACCGGCTAACACTATCATGGAC
 4381 ----- + ----- + ----- + ----- + ----- + 4440
 TGGGTCAAACATGGACGTGACAGGACTGGTAGCGTGCGGAATTGTGATAGTACCTG

a T Q F D T C T V L T I A H R L N T I M D -

TACACCAGGGTCTGGCCTGGACAAAGGAGTAGTAGCTGAATTGATTCTCCAGCCAAC
 4441 ----- + ----- + ----- + ----- + ----- + 4500
 ATGTGGTCCCAGGACCAGGACCTGTTCTCATCATCGACTAAACTAAGAGGTCGGTTG

a Y T R V L V L D K G V V A E F D S P A N -

CTCATTGCAGCTAGAGGCATCTTCTACGGATGCCAGAGATGCTGGACTTGCCTAA
 4501 ----- + ----- + ----- + ----- + ----- + 4557
 GAGTAACGTCGATCTCCGTAGAAGATGCCCTACGGTCTACGACCTGAACGGATT

a L I A A R G I F Y G M A R D A G L A * -

Figure 14K

SUBSTITUTE SHEET (RULE 26)

MOAT E cDNA AND AMINO ACID SEQUENCE ENCODED THEREBY

ATGGCCGCGCCTGCTGAGCCCTGCGCGGGCAGGGGTCTGGAACCAGACAGAGCCTGAA
 1 -----+-----+-----+-----+-----+ 60
 TACCGCGCGGACGACTCGGACGCGCCCCGTCCCCAGACCTGGTCTGTCGGACTT

a M A A P A E P C A G Q G V W N O T E P E -

CCTGCCGCCACCAGCCTGCTGAGCCTGTGCTTCCCTGAGAACAGCAGGGTCTGGTACCC
 61 -----+-----+-----+-----+-----+ 120
 GGACGGCGGTGGTCGGACGACTCGGACACGAAGGACTTTGTCGTCCCCAGACCCATGGG

a P A A T S L L S L C F L R T A G V W V P -

CCCATGTACCTCTGGGTCTTGGTCCCCTACCTCCTCTTCATCCACCAACCATGGCCGG
 121 -----+-----+-----+-----+-----+ 180
 GGGTACATGGAGACCCAGGAACCAGGGTAGATGGAGGAGAAGTAGGTGGTGGTACCGGCC

a P M Y L W V L G P I Y L L F I H H H G R -

GGCTACCTCCGGATGTCCCCACTCTCAAAGCCAAGATGGTGCTGGATTGCCCTCATA
 181 -----+-----+-----+-----+-----+ 240
 CCGATGGAGGCCAACAGGGTGACAAGTTCGTTCTACCACGAACCTAACGGGAGTAT

a G Y L R M S P L F K A K M V L G F A L I -

GTCTGTGTACCTCCAGCGTGGCTGTCGCTTTGGAAAATCCAACAGGGAACGCGCTGAG
 241 -----+-----+-----+-----+-----+ 300
 CAGGACACATGGAGGTGCGACCGACAGCGAGAACCTTTAGGTGTCCTTGCAGACTC

a V L C T S S V A V A L W K I Q Q G T P E -

GCCCCAGAATTCTCATTCTACTGTGTGGCTACCAACGATGAGCTTCGCACTGTT
 301 -----+-----+-----+-----+-----+ 360
 CGGGGTCTTAAGGAGTAAGTAGGATGACACACCGAGTGGTACTCGAACCGTCACAAG

a A P E F L I H P T V W L T T M S F A V F -

CTGATTACACCCGAGAGGAAAAAGGGAGTCCAGTCATCTGGAGTGCTGTTGGTTACTGG
 361 -----+-----+-----+-----+-----+ 420
 GACTAAGTGTGGCTCTCTTCCCTCAGGTCAAGACCTCACGACAAACCAATGACC

Figure 15A

SUBSTITUTE SHEET (RULE 26)

a L I H T E R K K G V Q S S G V L F G Y W -
 CTTCTCTGCTTGCTTGCAGCTACCAACGCTGCCAGCAGGCCTCCGGAGCGGGCTTC
 421 -----+-----+-----+-----+-----+-----+ 480
 GAAGAGACGAAACAGAACGGTCATGGTGCACGGGTGTCGGAGGCCTGCCGAAG

a L L C F V L P A T N A A Q Q A S G A G F -
 CAGAGCGACCCCTGTCCGCCACCTGTCCACCTACCTATGCCGTCTGGTGGCACAG
 481 -----+-----+-----+-----+-----+-----+ 540
 GTCTCGCTGGACAGGCGGTGGACAGGTGGATGGATAACGGACAGAGACCACCGTGC

a Q S D P V R H L S T Y L C L S L V V A Q -
 TTTGTGCTGTCCCTGCCTGGCGATCAACCCCCCTTCTCCCTGAAGACCCCAGCAGTCT
 541 -----+-----+-----+-----+-----+-----+ 600
 AAACACGACAGGACGGACCGCCTAGTGGGGGAAGAAGGGACTTCTGGGGTCAGA

a F V L S C L A D Q P P F F P E D P Q Q S -
 AACCCCTGTCCAGAGACTGGGGCAGCCTCCCTCAAAGCCACGTTGGTGGTTCT
 601 -----+-----+-----+-----+-----+-----+ 660
 TTGGGGACAGGTCTCTGACCCCGTCTGGAAAGGGGAGGTTGGTCAAGACCACCAAAGA

a N P C P E T G A A F P S K A T F W W V S -
 GGCCTGGTCTGGAGGGATACAGGAGGCCACTGAGACCAAAAGACCTGGTCGCTGG
 661 -----+-----+-----+-----+-----+-----+ 720
 CCGGACCAGACCTCCCTATGTCCTCCGGTACTCTGGTTCTGGAGACCGCGAACCC

a G L V W R G Y R R P L R P K D L W S L G -
 AGAGAAAACCTCTCAGAAGAACTTGTTCCGGCTTGAAAAGGAGTGGATGAGGAACCGC
 721 -----+-----+-----+-----+-----+-----+ 780
 TCTCTTGAGGAGTCTCTGAACAAAGGGCGAACCTTCTCACCTACTCCTGGCG

a R E N S S E E L V S R L E K E W M R N R -
 AGTGCAGCCGGAGGCACAACAAGGCAATAGCATTTAAAAGGAAAGGCGGCAGTGGCATG
 781 -----+-----+-----+-----+-----+-----+ 840
 TCACGTCGGGCCTCCGTGTTCCGTTATCGTAAATTTCCTTCCGCCGTACCGTAC

Figure 15B

SUBSTITUTE SHEET (RULE 26)

a S A A R R H N K A I A F K R K G G S G M -

AAGGCTCCAGAGACCGAGCCTTCCTACGGCAAGAAGGGAGCCAGTGGCGCCCCTGCTG
841 +-----+-----+-----+-----+-----+ 900
TTCCGAGGTCTCTGGCTCGGGAGGATGCCGTTCTCCCTCGGTACCCGCGGGTGACGAC

a K A P E T E P F L R Q E G S Q W R P L L -

AAGGCCATCTGGCAGGTGTTCCATTCTACCTTCCTGGGGACCCCTAGCCTCATCATC
901 +-----+-----+-----+-----+-----+ 960
TTCCGGTAGACCGTCCACAAGGTAAGATGGAAGGAGGACCCCTGGAGTCGGAGTAGTAG

a K A I W Q V F H S T F L L G T L S L I I -

AGTGATGTCTTCAGGTTCACTGTCCCCAAGCTGCTCAGCCTTCTGGAGTTATTGGT
961 +-----+-----+-----+-----+-----+ 1020
TCACTACAGAACGTCCAAGTGACAGGGGTTGACGGAGTCGGAAAAGGACCTCAAATAACCA

a S D V F R F T V P K L L S L F E F I G -

GATCCAAGCCTCCAGCCTGGAAGGGTACCTCCTCGCCGTGCTGATGTTCTCTCAGCC
1021 +-----+-----+-----+-----+-----+ 1080
CTAGGGTTCGGAGGTCTGGACCTTCCGATGGAGGAGCGGCACGACTACAAGGAGAGTCGG

a D P K P P A W K G Y L L A V L M F L S A -

TGCCTGCAAACGCTGTTGAGCAGCAGAACATGTACAGGCTCAAGGTGCCAGATGAGG
1081 +-----+-----+-----+-----+-----+ 1140
ACGGACGTTTGCACAAACTCGTCGTTGTACATGTCCGAGTTCCACGGCGTCTACTCC

a C L Q T L F E Q Q N M Y R L K V P Q M R -

TTGCGGTGGCCATCACTGGCTGGTACAGAAAGGTCTGGCTCTGTCCAGCGGCTCC
1141 +-----+-----+-----+-----+-----+ 1200
AACGCCAGCGGTAGTGACCGGACCACATGTCTTCCAGGACCGAGACAGGTGCCGAGG

a L R S A I T G L V Y R K V L A L S S G S -

AGAAAGGCCAGTGCAGGGTGGGTGATGTGGTCAATCTGGTGTCCGTGGACGTGCAGCGGCTG
1201 +-----+-----+-----+-----+-----+ 1260
TCTTCCGGTCACGCCACCCACTACACCAAGTTAGACCAAGGGCACCTGCACGTGCCGAC

a R K A S A V G D V V N L V S V D V O R L -

Figure 15C

SUBSTITUTE SHEET (RULE 26)

ACCGAGAGCGTCCTCACCTAACGGGCTGTGGCTGCCTCGTCTGGATCGTGGCTGC
 1261 -----+-----+-----+-----+-----+-----+ 1320
 TGGCTCTCGCAGGAGATGGAGTTGCCGACACCGACGGAGAGCAGACCTAGCACCAGACG

a T E S V L Y L N G L W L P L V W I V V C .

TT CGTCTATCTGGCAGCTCCTGGGGCCCTCCGCCCTACTGCCATCGCTGTCTTCCTG
 1321 -----+-----+-----+-----+-----+-----+ 1380
 AAGCAGATAGAGACCGTCGAGGACCCGGGAGGCGGGAGTGACGGTAGCGACAGAAGGAC

a F V Y L W Q L L G P S A L T A I A V F L .

AG CCTCCTCCCTCTGAATTCTTCATCTCCAAGAAAAGGAACCACCATCAGGAGGAGCAA
 1381 -----+-----+-----+-----+-----+-----+ 1440
 TCGGAGGGAGGAGACTAAAGAAGTAGAGGTTCTTCTGGTAGTCCCTCGTT

a S L L P L N F F I S K K R N H H O E E Q -

ATGAGGCAGAAGGACTCACGGCACGGCTACCAGCTCTATCCTCAGGAACCTCGAACGACC
 1441 -----+-----+-----+-----+-----+-----+ 1500
 TACTCCGTCTCCTGAGTGCCCGTCCGAGTGGTCGAGATAGGAGTCCTTGAGCTTCTGG

a M R Q K D S R A R L T S S I L R N S K T -

ATCAAGTTCCATGGCTGGAGGGAGCCTTCTGGACAGAGTCCTGGCATCCGAGGCCAG
 1501 -----+-----+-----+-----+-----+-----+ 1560
 TAGTTCAAGGTACCGACCCCTCCCTCGAAAGACCTGTCTCAGGACCCGTAGGCTCCGGTC

a I K F H G W E G A F L D R V L G I R G Q -

GAGCTGGCGCCTGCGAACCTCCGGCCTCTCTGTGTCGCTGGTGTCCAA
 1561 -----+-----+-----+-----+-----+-----+ 1620
 CTCGACCCGCGAACGCGCTGGAGGCCGGAGGAGAAGAGACACAGCGACCACAGGAAGGTT

a E L G A L R T S G L L F S V S L V S F Q -

GTGCTACATTCTGGTCGCACTGGTGGTGGTCTGTGTCGCTGGTGTCCAC
 1621 -----+-----+-----+-----+-----+-----+ 1680
 CACAGATGTAAAGACCAGCGTGACCACCAAAACGACAGGTGTGAGACCACCGGCTCTTA

a V S T F L V A L V V F A . V H T L V A E N -

Figure 15D

SUBSTITUTE SHEET (RULE 26)

GCTATGAATGCAGAGAAAGCCTTGTGACTCTCACAGTTCAACATCCTCAACAAGGCC
 1681 -----+-----+-----+-----+-----+-----+ 1740
 CGATACTTACGTCTTTCGGAAACACTGAGAGTGTCAAGAGTTGAGGAGTTCCGG

a A M N A E K A F V T L T V L N I L N K A -

CAGGCTTCTGCCCTCTCCATCCACTCCCTCGTCCAGGGCCGGGTGTCCTTGACCGT
 1741 -----+-----+-----+-----+-----+-----+ 1800
 GTCCGAAAGGACGGGAAGAGGTAGGTAGGGAGCAGGTCGGGCCACAGGAAACTGGCA

a Q A F L P F S I H S L V Q A R V S F D R -

CTGGTCACCTCCCTGCCTGGAAGAAGTTGACCTGGTGTCTAGACTCAAGTTCCCT
 1801 -----+-----+-----+-----+-----+-----+ 1860
 GACCAGTGGAAAGGAGACGGACCTTCTCACTGGACCACAGCATCTGAGTTCAAGGAGA

a L V T F L C L E E V D P G V V D S S S -

GGAAGCGCTGCCGGAAAGGATTGCATCACCATACACAGTGCCACCTCGCCTGGTCCCAG
 1861 -----+-----+-----+-----+-----+-----+ 1920
 CCTTCGCGACGGCCCTCTAACGTAGTGGTATGTGTACGGTGGAAAGCGGACCAGGGTC

a G S A A G K D C I T I H S A T F A W S Q -

GAAAGCCCTCCCTGCCTCACAGAATAAACCTCACGGTCCCCAGGGCTGTCTGGCT
 1921 -----+-----+-----+-----+-----+-----+ 1980
 CTTTCGGGAGGGACGGAGGTGTCTTATGGAGTGCCACGGGTCCCACAGACGACCGA

a E S P P C L H R I N L T V P Q G C L L A -

GTTGTCGGTCCAGTGGGGCAGGGAAAGTCCTCCCTGCTGTCCGCCCTGGGAGCTG
 1981 -----+-----+-----+-----+-----+-----+ 2040
 CAACAGCCAGGTCACCCCCGTCCCTCAGGAGGGACGACAGGCGGGAGGAACCCCTCGAC

a V V G P V G A G K S S L L S A L L G E L -

TCAAAGGTGGAGGGTTCGTGAGCATCGAGGGTGTGTCCTACGTGCCAGGGAGGCC
 2041 -----+-----+-----+-----+-----+-----+ 2100
 AGTTCCACCTCCCCAAGCACTCGTAGCTCCACGACACGGATGCACGGGTCCCGG

a S K V E G F V S I E G A V A Y V P Q E A -

TGGGTGCAGAACACCTCTGTGGTAGAGAAATGTGTGCTCGGGCAGGAGCTGGACCCACCC

Figure 15E

SUBSTITUTE SHEET (RULE 26)

2101 ----- + ----- + ----- + ----- + ----- + 2160
 ACCCACGTCTTGTGGAGACACCATCTCTTACACACGAAGCCCGTCCTGACCTGGGTGGG

a W V Q N T S V V E N V C F G Q E L D P P .

TGGCTGGAGAGAGTACTAGAACGCTGTGCCCTGCAGCCAGATGTGGACAGCTTCCCTGAG
 2161 ----- + ----- + ----- + ----- + ----- + 2220
 ACCGACCTCTCATGATCTCGGACACGGGACGTCGGTCTACACCTGTCGAAGGGACTC

a W L E R V L E A C A L Q P D V D S F P E .

GGAATCCACACTCAATTGGGGAGCAGGGCATGAATCTCTCCGGAGGCCAGAACAGCGG
 2221 ----- + ----- + ----- + ----- + ----- + 2280
 CCTTAGGTGTGAAGTTAACCCCTCGTCCCGTACTTAGAGAGGCCCTCCGGTCTCGTGC

a G I H T S I G E Q G M N L S G G Q K Q R .

CTGAGCCTGGCCCGGGCTGTATAACAGAAAGGCAGCTGTGTACCTGCTGGATGACCCCTG
 2281 ----- + ----- + ----- + ----- + ----- + 2340
 GACTCGGACCGGGCCCCGACATATGTCTTCCGTCGACACATGGACGACACTGGGGGAC

a L S L A R A V Y R K A A V Y L L D D P L .

GCGGCCCTGGATGCCACGTTGCCAGCATGTCTCAACCAGGTCAATTGGGCTGGTGG
 2341 ----- + ----- + ----- + ----- + ----- + 2400
 CGCCGGGACCTACGGGTGCAACCGGTCGTACAGAAGTTGGTCCAGTAACCCGGACCACCC

a A A L D A H V G Q H V F N Q V I G P G G .

CTACTCCAGGGAAACAACACGGATTCTCGTGACGCACGCACCCACATCCTGCCAGGCT
 2401 ----- + ----- + ----- + ----- + ----- + 2460
 GATGAGGTCCCTTGTGTGCCTAACAGAGCACTGCGTGCCTGAGGTGTAGGACGGGGTCCGA

a L L Q G T T R I L V T H A L H I L P Q A .

GATTGGATCATAGTGCCTGGCAAATGGGCCATCGCAGAGATGGGTTCTACCAGGAGCTT
 2461 ----- + ----- + ----- + ----- + ----- + 2520
 CTAACCTAGTATCACGACCGTTACCCGGTAGCGTCTCACCAAGGATGGTCCTCGAA

a D W I I V L A N G A I A E M G S Y Q E L .

CTGCAGAGGAAGGGGGCCCTCGTGTGTCTGGATCAAGCCAGACAGCCAGGAGATAGA
 2521 ----- + ----- + ----- + ----- + ----- + 2580

Figure 15F

SUBSTITUTE SHEET (RULE 26)

GACGTCTCCTCCCCGGGAGCACACAGAAGACETAGTTGGTCTGTCGGCCTCTATCT
 a L Q R K G A L V C L L D O A R Q P G D R -

 GGAGAAGGAGAAACAGAACCTGGGACCAGCACCAAGGACCCAGAGGCACCTCTGCAGGC
 2581 -----+-----+-----+-----+-----+-----+ 2640
 CCTCTTCCTTTGTCTTGGACCCCTGGTGTGGTCTCCGGTCTCCGTGGAGACGTCCG

 a G E G E T E P G T S T K D P R G T S A G -

 AGGAGGGCCCGAGCTTAGACGCGAGAGGTCCATCAAGTCAGTCCTGAGAAGGACCGTACC
 2641 -----+-----+-----+-----+-----+-----+ 2700
 TCCTCCGGGCTCGAATCTGCGCTCTCAGGTAGTTCAAGGACTCTTCCTGGCATGG

 a R R P E L R R E R S I K S V P E K D R T -

 ACTTCAGAAGCCCAGACAGAGGTTCTCTGGATGACCCCTGACAGGGCAGGATGCCAGCA
 2701 -----+-----+-----+-----+-----+-----+ 2760
 TGAAGTCTTCGGGTCTGTCTCCAAGGAGACCTACTGGACTGTCCGTCACGTGGACCGGATGGACGCA

 a T S E A Q T E V P L D D P D R A G W P A -

 GGAAAGGACAGCATCCAATACGGCAGGGTGAAGGCCACAGTCACCTGGCCTACCTGCGT
 2761 -----+-----+-----+-----+-----+-----+ 2820
 CCTTTCTGTCGTAGTTATGCCGTCCACTTCCGGTGTACGTGGACCGGATGGACGCA

 a G K D S I Q Y G R V K A T V H L A Y L R -

 GCCGTGGCACCCCCCTCTGCCTACGCACCTTCCTCTGCCAGCAAGTGGCC
 2821 -----+-----+-----+-----+-----+-----+ 2880
 CGGCACCCGTGGGGGAGACGGAGATGCGTGAGAAGGAGAAGGAGACGGTCGTTACCGG

 a A V G T P L C L Y A L F L F L C Q Q V A -

 TCCTTCTGCCGGGCTACTGGCTGAGCCTGTGGCGGGACGACCCCTGCACTAGGTGGCAG
 2881 -----+-----+-----+-----+-----+-----+ 2940
 AGGAAGACGGCCCCGATGACCGACTCGGACACCCGCCCTGGACGTCATCCACCGTC

 a S F C R G Y W L S L W A D D P A V G G Q -

 CAGACGCAGGCAGCCCTGCGTGGCGGGATCTCAGGCTCCTCGGCTGTCTCCAAGCCATT
 2941 -----+-----+-----+-----+-----+-----+ 3000
 GTCTGCGTCCGTCGGACGCACCGCCCTAGAAGCCCGAGGAGCCGACAGAGGTTGGTAA

Figure 15G

SUBSTITUTE SHEET (RULE 26)

a Q T Q A A L R G I F G L L G C L Q A I .
 GGGCTGTTGCCTCCATGGCTGCGGTGCTCCTAGGTGGGGCCGGCATCCAGGTTGCTC
 3001 -----+-----+-----+-----+-----+-----+ 3060
 CCCGACAAACGGAGGTACCGACGCCACGAGGATCCACCCGGGCCGTAGGTCCAACGAG

a G L F A S M A A V L L G G A R A S R L L .
 TTCCAGAGGCTCCTGTGGATGTGGTGCATCTCCCATCAGCTTCTTGAGCGGACACCC
 3061 -----+-----+-----+-----+-----+-----+ 3120
 AAGGTCTCGAGGAACCCCTACACCACGCTAGAGGGTAGTCGAAGAAACTCGCCTGTGGG

a F Q R L L W D V V R S P I S F F E R T P .
 ATTGGTCACCTGCTAAACCGCTTCTCCAAGGAGACAGACACGGTTGACGTGGACATTCCA
 3121 -----+-----+-----+-----+-----+-----+ 3180
 TAACCACTGGACGATTGGCGAAGAGGTTCTCTGTCTGTGCCAACTGCACCTGTAAGGT

a I G H L L N R F S K E T D T V D V D I P .
 GACAAACTCCGGTCCCTGCTGATGTACGCCTTGGACTCCTGGAGGTCAACCTGGTGGTG
 3181 -----+-----+-----+-----+-----+-----+ 3240
 CTGTTGAGGCCAGGGACGACTACATGCGAACCTGAGGACCTCAGTCGGACCACAC

a D K L R S L L M Y A F G L L E V S L V V .
 GCAGTGGCTACCCCACTGGCCACTGTGGCCATCCTGCCACTGTTCTCCTTACGCTGGG
 3241 -----+-----+-----+-----+-----+-----+ 3300
 CGTCACCGATGGGTGACCGGTGACACCGTAGGACGGTGACAAAGAGGAGATGCGACCC

a A V A T P L A T V A I L P L F L L Y A G .
 TTTCAGAGCCTGTATGTGGTAGCTCATGCCAGCTGAGACGCTGGAGTCAGCCAGCTAC
 3301 -----+-----+-----+-----+-----+-----+ 3360
 AAAGTCTCGGACATACACCAATCGAGTACGGTCACTCTGCGAACCTCAGTCGGTCGATG

F Q S L Y V V S S C Q L R R L E S A S Y .
 TCGTCCTGCTGCCACATGGCTGAGACGTTCCAGGGCAGCACAGTGGTCCGGGCATTG
 3361 -----+-----+-----+-----+-----+-----+ 3420
 AGCAGACAGACGAGGGTGTACCGACTCTGCAAGGTCCCGTGTGTCACCAGGCCGTAAAG

Figure 15H

SUBSTITUTE SHEET (RULE 26)

a S S V C S H M A E T F Q G S T V V R A F -

CGAACCCAGGCCCCCTTGTGGCTAGAACAAATGCTCGCTAGATGAAAGCCAGAGGATC
 3421 -----+-----+-----+-----+-----+-----+ 3480
 GCTTGGGTCCGGGGAGAACACCGAGTCTTACGAGCGCATCTACTTCGGTCTCTAG

a R T Q A P L V A Q N N A R V D E S Q R I -

AGTTTCCCGCAGTGGTGGCTGACAGGTGGCTTGCAGGCCAATGTGGAGCTCCTGGGAAT
 3481 -----+-----+-----+-----+-----+-----+ 3540
 TCAAAGGGCGCTGACCACCGACTGTCCACCGAACGCCGGTACACCTCGAGGACCCCTTA

a S F P R L V A D R W L A A N V E L L G N -

GGCCTGGTGTTCAGCTGCCACGTGTGCTGAGCAAAGCCCACCTCAGTGCTGGC
 3541 -----+-----+-----+-----+-----+-----+ 3600
 CCGGACCACAAACGTCGACGGTGCACACGACACGACTCGTTGGGTGGAGTCACGACCG

a G L V F A A A T C A V L S K A H L S A G -

CTCGTGGGCTTCTGTCTGCTGCCCTCCAGGTGACCCAGGCACTGCAGTGGTTGTT
 3601 -----+-----+-----+-----+-----+-----+ 3660
 GAGCACCCGAAGAGACAGAGACGACGGGAGGTCCACTGGTCCGTGACGTACCCAACAA

a L V G F S V S A A L Q V T Q A L Q W V V -

CGCAACTGGACAGACCTAGAGAACACGACATCGTGTCACTGGAGCGGATGCAGGACTATGCC
 3661 -----+-----+-----+-----+-----+-----+ 3720
 GCGTTGACCTGTCTGGATCTTGTGTAGCACAGTCACCTCGCCTACGTCCGTACGG

a R N W T D L E N S I V S V E R M Q D Y A -

TGGACGCCAAGGAGGCTCCCTGGAGGCTGCCACATGTGCAGCTCAGCCCCCTGGCCT
 3721 -----+-----+-----+-----+-----+-----+ 3780
 ACCTGCGGGTCTCCGAGGGACCTCCGACGGGTGTACACGTCAGTCGGGGGACCGGA

a W T P K E A P W R L P T C A A Q P P W P -

CAGGGCGGGCAGATCGAGTTCCGGGACTTGGCTAAGATACCGACCTGAGCTCCGCTG
 3781 -----+-----+-----+-----+-----+-----+ 3840
 GTCCCGCCCGTCTAGCTAAGGCCCTGAAACCGATTCTATGGCTGGACTCGAGGGCGAC

a Q G G Q I E F R D F G L R Y R P E L P L -

Figure 15I

SUBSTITUTE SHEET (RULE 26)

GCTGTGCAGGGCGTGTCCCTCAAGATCCACGCAGGAGAGAAGGTGGCATGTTGGCAGG
 3841 -----+-----+-----+-----+-----+-----+ 3900
 CGACACGTCCCGCACAGGGAGTTCTAGGTGCGTCCTCTCCACCCGTAGCAACCGTCC

a A V Q G V S L K I H A G E K V G I V G R -

 ACCGGGGCAGGGAAGTCCTCCCTGCCAGTGGCTGCTGCGGCTCAGGAGGCAGCTGAG
 3901 -----+-----+-----+-----+-----+-----+ 3960
 TGGCCCCGTCCCTTCAGGAGGGACCGGTACCCGACGACGCCGAGGTCCCTCGACTC

a T G A G K S S L A S G L L R L Q E A A E -

 GGTGGGATCTGGATCGACGGGTCCCCATTGCCACGTGGGCTGCACACACTGCGCTCC
 3961 -----+-----+-----+-----+-----+-----+ 4020
 CCACCCTAGACCTAGCTGCCCAAGGGTAACGGGTGCACCCGACGTGTGACGCGAGG

a G G I W I D G V P I A H V G L H T L R S -

 AGGATCAGCATCATCCCCAGGACCCCACCTGTTCCCTGGCTCTGCGGATGAACCTC
 4021 -----+-----+-----+-----+-----+-----+ 4080
 TCCTAGTCGTAGTAGGGGTCTGGGTAGGACAAGGGACCGAGAGACGCCTACTGGAG

a R I S I I P Q D P I L F P G S L R M N L -

 GACCTGCTGCAGGAGCACTCGAACGGCTATCTGGCAGCCCTGGAGACGGTGCAGCTC
 4081 -----+-----+-----+-----+-----+-----+ 4140
 CTGGACGACGTCCCTCGTAGGACCTGGGACCTCTGCCACGTCAG

a D L L Q E H S D E A I W A A L E T V Q L -

 AAAGCTTGGTGGCCAGCCTGCCGGCCAGCTGCAGTACAAGTGTGCTGACCGAGGCGAG
 4141 -----+-----+-----+-----+-----+-----+ 4200
 TTTCGGAACCACCGGTCGGACGGGCCGGTCGACGTATGTTACACGACTGGCTCCGCTC

a K A L V A S L P G Q L Q Y K C A D R G E -

 GACCTGAGCGTGGGCCAGAAACAGCTCCTGTGCTGGCACGTGCCCTCTCCGGAAGACC
 4201 -----+-----+-----+-----+-----+-----+ 4260
 CTGGACTCGCACCCGGTCTTGTCGAGGACACAGACCGTGCACGGGAAGAGGCCTCTGG

a D L S V G Q K Q L L C I A R A L L R K T -

Figure 15J

SUBSTITUTE SHEET (RULE 26)

CAGATCCTCATCCTGGACGAGGCTACTGCTGCCGTGGACCCTGGCACGGAGCTGCAGATG
 4261 -----+-----+-----+-----+-----+-----+ 4320
 GTCTAGGAGTAGGACCTGCTCCGATGACGACGGCACCTGGGACCGTGCCTCGACGTCTAC

a Q I L I L D E A T A A V D P G T E L Q M -

CAGGCCATGCTCGGGAGCTGGTTGCACAGTCACGTGCTGCTCATTGCCAACCGCCTG
 4321 -----+-----+-----+-----+-----+-----+ 4380
 GTCCGGTACGAGCCCTGACCAAACGTGTACGTGACACGACGAGTAACGGGTGGCGGAC

a Q A M L G S W F A Q C T V L L I A H R L -

CGCTCCGTATGGACTGTGCCCGGTTCTGGTCATGGACAAGGGCAGGTGGCAGAGAGC
 4381 -----+-----+-----+-----+-----+-----+ 4440
 GCGAGGCACACTACCTGACACGGGCCAAGACCAGTACCTGTTCCCGTCCACCGTCTCTCG

a R S V M D C A R V L V M D K G Q V A E S -

GGCAGCCGGCCCAGCTGCTGGCCCAGAAGGGCTGTTTACAGACTGGCCCAGGAGTCA
 4441 -----+-----+-----+-----+-----+-----+ 4500
 CCGTCGGGCCGGTCGACGACCGGGTCTTCCCGAACAAATGTCTGACCGGGCCTCAGT

a G S P A Q L L A Q K G L F Y R L A Q E S -

GGCCTGGTCTGA
 4501 -----+-- 4512
 CCGGACCAAGACT

a G L V * -

Figure 15K

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

<110> Fox Chase Cancer Center
 Kruh, Gary D.
 Lee, Kun
 Belinsky, Martin G.
 Bain, Lisa J.

<120> MRP-Related ABC Transporter Encoding
 Nucleic Acids and Methods of Use Thereof

<130> FCCC 98-02

<150> 60/079,759
<151> 1998-03-27

<150> 60/095,153
<151> 1998-08-03

<160> 18

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 4231
<212> DNA
<213> Homo sapiens

<400> 1

ggacaggcgt	ggcggccgga	gccccagcat	ccctgcttga	ggtccaggag	cggagcccgc	60
ggccaccgcc	gcctgatca	cgcgaccccg	gcccgcgcc	gcccccccg	gcaagatgct	120
gcccgtgtac	caggaggta	agccaaaccc	gctgcaggac	gcgaacatct	gtcacgcgt	180
gttcttcgttgg	tggctcaatc	ccttgtttaa	aattggccat	aaacggagat	tagaggaaga	240
tgatatgtat	tcagtctgc	cagaagaccg	ctcacagcac	cttggagagg	agtgtcaagg	300
gttctggat	aaaagaagt	taagagctga	gaatgacgca	cagaaggcctt	ctttaacaag	360
agcaatcata	aagtgtact	gaaatctta	tttagtttg	gaaatttta	cgttaatttg	420
gaaaagtgcc	aaagtaatcc	agccatatt	tttggaaaaa	attattaatt	attttgaaaa	480
ttatgatccc	atggattctg	tggettcaa	cacagcgtac	gcctatgcca	cgtgtctgac	540
ttttgcacg	ctcattttgg	ctatactgca	tcacttata	ttttatcagc	ttcagtgtgc	600
tggatgagg	ttacgagtag	ccatgtgcca	tatgatttat	cggaaaggcac	ttcgtcttag	660
taacatggcc	atggggaa	caaccacagg	ccagatagtc	aatctgctgt	ccaatgtatgt	720
gaacaagttt	gatcaggta	cagtgttctt	acacttcctg	tgggcaggac	cactgcaggc	780
gatcgactg	actgcctac	tctggatgga	gataggaata	tcgtgccttg	ctggatggc	840
agttcaatc	attctctgc	ccttgcggaa	ctgtttggg	aagtgttct	catcaactgag	900
gagtaaaact	gcaactttca	cggatccag	gatcaggacc	atgaatgaag	ttataactgg	960
tataaggata	ataaaaatgt	acgcctggaa	aaagtctt	tcaaatctta	ttaccaattt	1020
gagaaaag	gagatttcca	agattctgag	aagtccctgc	ctcaggggga	tgaatttggc	1080
ttcgttttc	agtgcagaca	aaatcatcg	gtttgtgacc	ttcaccac	acgtgtct	1140
cggcagtgt	atcacagcca	gcccgtgtt	cgtggcagtg	acgctgtatg	gggctgtgeg	1200
gctgacggtt	accctttct	tcccctcage	cattgagagg	gtgtcagagg	caatgtcag	1260
catccgaaga	atccagaccc	ttttgtact	tgatgagata	tcacagcga	accgtcagct	1320
gcccgtcagat	gtaaaaaaga	tttgtcgtgt	gcaggatttt	actgctttt	ggataaggc	1380
atcagagacc	ccaaactctac	aaggcttcc	cttactgttc	agacctggcg	aattgttagc	1440
tgtgttcggc	cccggtggag	cagggaaatc	atcactgtta	agtgcgtgc	tccggaaatt	1500
ggccccaagt	cacgggctgg	tcagcgtca	tggaaagatt	gcctatgtt	ctcagcagcc	1560
ctgggtgttc	tcgggaaactc	tgaggagtaa	tattttattt	ggaaagaaat	ataaaaagga	1620
acgatatgaa	aaagtcttac	aggctgtgc	tctgaaaaag	gatttacagc	tgttggagga	1680
tggtgatctg	actgtgatag	gagatgggg	aaccacgctg	agtggagggc	agaaagcacg	1740
ggtaaacctt	gcaagagcg	tgtatcaaga	tgctgacatc	tatctcctgg	acgatccct	1800
cagtgcgt	gatcggaaag	ttagcagaca	cttgcgtca	ctgtgtattt	gtcaaatttt	1860
gcatgagaag	atcacaattt	tagtactca	tcagttgcag	tacctcaaag	ctgcaagtca	1920
gattctgata	tggaaagat	gtaaaatgg	gcagaagggg	acttacactg	agttcctaaa	1980
atctggata	gattttggct	ccctttaaa	gaaggataat	gaggaaatgt	aacaacctcc	2040
agttccagga	actcccacac	taaggaaatcg	taccttctca	gagtcttcgg	tttggtctca	2100

SUBSTITUTE SHEET (RULE 26)

2/19

acaatcttct	agaccctcct	tgaaagatgg	tgctctggag	agccaaagata	cagagaatgt	2160
cccagttaaca	ctatcagagg	agaaccgttc	tgaaggaaaa	gttggtttc	aggccataaa	2220
gaattacttc	agagctggtg	ctcactggat	tgtcttcatt	ttccttattc	tcctaaacac	2280
tgcaagcttag	gttgcctatg	tgcttcaaga	ttggtggctt	tcatactggg	caaacaacaa	2340
aagtatgcta	aatgtcactg	taatggagg	aggaaatgtt	accgagaagc	tagatcttaa	2400
ctggacttta	ggaattttt	caggtttaac	tgttagctacc	gttcttttt	gcatagcaag	2460
atctcttgc	gttattctacg	tccttgcataa	ctcttcacaa	actttgcaca	acaaaatgtt	2520
tgagtcaatt	ctgaaagctc	cggattttt	ctttgataga	aatccaatag	gaagaatttt	2580
aaatcgttt	tccaaagaca	ttggacactt	ggatgattt	ctgcccgtga	cgtttttaga	2640
tttcatccag	acattgtcac	aagtggttgg	tgtggctctt	gtggctgtgg	ccgtgattcc	2700
ttggatcgca	atacccttgg	ttcccttgg	aatcatttt	atttttcttc	ggcgatattt	2760
tttggaaacg	tcaagagatg	tgaagcgcct	ggaatctaca	actcggagtc	cagtgtttc	2820
ccacttgtca	tcttcctcc	agggctctg	gaccatccgg	gcatacaaaag	cagaagagag	2880
gtgtcaggaa	ctgtttgtat	cacaccagga	tttacattca	gagggttgg	tcttggtttt	2940
gacaacgtcc	cgctggttcg	ccgtccgtct	ggatgccatc	tgtgcacatgt	ttgtcatcat	3000
cgttgcctt	gggtccctga	ttctggcaaa	aactctggat	gccggcagg	ttggtttggc	3060
actgtcctat	gcccctcaccgc	tcatgggat	gtttcagtgg	tgtgtcgcac	aaagtgcgtga	3120
agttgagaat	atgtatgtat	cagtagaaag	ggtcattgaa	tacacagacc	ttgaaaaaga	3180
agcaccttgg	gaatatcaga	aaccccacc	accagcctgg	ccccatgaaag	gagtgataat	3240
ctttgacaat	gtgaacttca	tgtacagtcc	aggtggccct	ctggactga	agcatctgac	3300
agcactcatt	aaatcacaag	aaaaggttgg	cattgtggga	agaaccggag	ctggaaaaaaag	3360
ttccctcatac	tcagccctt	tttagattgtc	agaacccgaa	ggtaaaattt	ggattgataa	3420
gatottgaca	actgaaattt	gacttcacga	ttaaggaaag	aaaatgtcaa	tcatacctca	3480
ggaacctgtt	ttgttcactg	gaacaatgag	aaaaaacctg	gatccctta	aggagcacac	3540
ggatgaggaa	ctgtggatg	ccttacaaga	ggtacaactt	aaagaaacca	ttgaagatct	3600
tccttgcataa	atggatactg	aattagcaga	atcaggatcc	aatttttagt	ttggacaaag	3660
acaactggtg	tgccttgcca	gggcatttct	caggaaaaat	cagatattga	ttattgtat	3720
agcgacggca	aatgtggatc	caagaactga	ttagttaata	aaaaaaaaa	tccgggagaaa	3780
atttggccac	tgcacccgtgc	taaccattgc	acacaggatt	aacaccatta	ttgacagcgc	3840
caagataatg	gttttagatt	caggaagact	gaaagaatatt	gatgagccgt	atgttttgct	3900
gcaaaataaa	gagagcctat	tttacaagat	ggtcaacaaa	ctggcaagg	cagaagccgc	3960
tgccttcact	gaaacagcaa	aacaggtata	cttcaaaaga	aattatccac	atattggtca	4020
caactgaccac	atggttacaa	acacttccaa	ttgacagccc	tcgaccttaa	ctatttcga	4080
gacagcactg	tgaatccaac	caaaatgtca	agtccgttcc	gaaggcattt	tccactagtt	4140
tttgactat	gtaaaccaca	ttgtactttt	ttttactttt	gcaacaaata	tttatacata	4200
caagatgcta	gttcatttga	atatttctcc	c			4231

<210> 2
<211> 1325
<212> PRT
<213> Homo sapiens

<400> 2																
Met	Leu	Pro	Val	Tyr	Gln	Glu	Val	Lys	Pro	Asn	Pro	Leu	Gln	Asp	Ala	
1								5					10			15
Asn	Ile	Cys	Ser	Arg	Val	Phe	Phe	Trp	Trp	Leu	Asn	Pro	Leu	Phe	Lys	
								20					25			30
Ile	Gly	His	Lys	Arg	Arg	Leu	Glu	Glu	Asp	Asp	Met	Tyr	Ser	Val	Leu	
								35					40			45
Pro	Glu	Asp	Arg	Ser	Gln	His	Leu	Gly	Glu	Glu	Leu	Gln	Gly	Phe	Trp	
								50					55			60
Asp	Lys	Glu	Val	Leu	Arg	Ala	Glu	Asn	Asp	Ala	Gln	Lys	Pro	Ser	Leu	
								65					70			75
Thr	Arg	Ala	Ile	Ile	Lys	Cys	Tyr	Trp	Lys	Ser	Tyr	Leu	Val	Leu	Gly	
								85					90			95
Ile	Phe	Thr	Leu	Ile	Glu	Glu	Ser	Ala	Lys	Val	Ile	Gln	Pro	Ile	Phe	
								100					105			110
Leu	Gly	Lys	Ile	Ile	Asn	Tyr	Phe	Glu	Asn	Tyr	Asp	Pro	Met	Asp	Ser	
								115					120			125
Val	Ala	Leu	Asn	Thr	Ala	Tyr	Ala	Tyr	Ala	Thr	Val	Leu	Thr	Phe	Cys	
								130					135			140
Thr	Leu	Ile	Leu	Ala	Ile	Leu	His	His	Leu	Tyr	Phe	Tyr	His	Val	Gln	
								145					150			155
Cys	Ala	Gly	Met	Arg	Leu	Arg	Val	Ala	Met	Cys	His	Met	Ile	Tyr	Arg	
								165					170			175
Lys	Ala	Leu	Arg	Leu	Ser	Asn	Met	Ala	Met	Gly	Lys	Thr	Thr	Thr	Gly	

SUBSTITUTE SHEET (RULE 26)

3/19

Gln	Ile	Val	Asn	Leu	Leu	Ser	Asn	Asp	Val	Asn	Phe	Asp	Gln	Val	
180			185				190								
195			195	200			205								
Thr	Val	Phe	Leu	His	Phe	Leu	Trp	Ala	Gly	Pro	Leu	Gln	Ala	Ile	Ala
210					210	215		220							
225					225	230		235				240			
Met	Ala	Val	Leu	Ile	Ile	Leu	Leu	Pro	Leu	Gln	Ser	Cys	Phe	Gly	Lys
245					245	250		255					255		
Leu	Phe	Ser	Ser	Leu	Arg	Ser	Lys	Thr	Ala	Thr	Phe	Thr	Asp	Ala	Arg
260					260	265		270					270		
Ile	Arg	Thr	Met	Asn	Glu	Val	Ile	Thr	Gly	Ile	Arg	Ile	Ile	Lys	Met
275					275	280		285					285		
Tyr	Ala	Trp	Glu	Lys	Ser	Phe	Ser	Asn	Leu	Ile	Thr	Asn	Leu	Arg	Lys
290					290	295		300							
Lys	Glu	Ile	Ser	Lys	Ile	Leu	Arg	Ser	Ser	Cys	Leu	Arg	Gly	Met	Asn
305					305	310		315					320		
Leu	Ala	Ser	Phe	Phe	Ser	Ala	Ser	Lys	Ile	Ile	Val	Phe	Val	Thr	Phe
325					325	330		335							
Thr	Thr	Tyr	Val	Leu	Leu	Gly	Ser	Val	Ile	Thr	Ala	Ser	Arg	Val	Phe
340					340	345		350							
Val	Ala	Val	Thr	Leu	Tyr	Gly	Ala	Val	Arg	Leu	Thr	Val	Thr	Leu	Phe
355					355	360		365							
Phe	Pro	Ser	Ala	Ile	Glu	Arg	Val	Ser	Glu	Ala	Ile	Val	Ser	Ile	Arg
370					370	375		380							
Arg	Ile	Gln	Thr	Phe	Leu	Leu	Leu	Asp	Glu	Ile	Ser	Gln	Arg	Asn	Arg
385					385	390		395					400		
Gln	Leu	Pro	Ser	Asp	Gly	Lys	Lys	Met	Val	His	Val	Gln	Asp	Phe	Thr
405					405	410		415							
Ala	Phe	Trp	Asp	Lys	Ala	Ser	Glu	Thr	Pro	Thr	Leu	Gln	Gly	Leu	Ser
420					420	425		430							
Phe	Thr	Val	Arg	Pro	Gly	Glu	Leu	Leu	Ala	Val	Val	Gly	Pro	Val	Gly
435					435	440		445							
Ala	Gly	Lys	Ser	Ser	Leu	Leu	Ser	Ala	Val	Leu	Gly	Glu	Leu	Ala	Pro
450					450	455		460							
Ser	His	Gly	Leu	Val	Ser	Val	His	Gly	Arg	Ile	Ala	Tyr	Val	Ser	Gln
465					465	470		475					480		
Gln	Pro	Trp	Val	Phe	Ser	Gly	Thr	Leu	Arg	Ser	Asn	Ile	Leu	Phe	Gly
485					485	490		495							
Lys	Lys	Tyr	Glu	Lys	Glu	Arg	Tyr	Glu	Lys	Val	Ile	Lys	Ala	Cys	Ala
500					500	505		510							
Leu	Lys	Lys	Asp	Leu	Gln	Leu	Leu	Glu	Asp	Gly	Asp	Leu	Thr	Val	Ile
515					515	520		525							
Gly	Asp	Arg	Gly	Thr	Pro	Leu	Ser	Gly	Gly	Gln	Lys	Ala	Arg	Val	Asn
530					530	535		540							
Leu	Ala	Arg	Ala	Val	Tyr	Gln	Asp	Ala	Asp	Ile	Tyr	Leu	Leu	Asp	Asp
545					545	550		555					560		
Pro	Leu	Ser	Ala	Val	Asp	Ala	Glu	Val	Ser	Arg	His	Leu	Phe	Glu	Leu
565					565	570		575							
Cys	Ile	Cys	Gln	Ile	Leu	His	Glu	Lys	Ile	Thr	Ile	Leu	Val	Thr	His
580					580	585		590							
Gln	Leu	Gln	Tyr	Leu	Lys	Ala	Ala	Ser	Gln	Ile	Leu	Ile	Leu	Lys	Asp
595					595	600		605							
Gly	Lys	Met	Val	Gln	Lys	Gly	Thr	Tyr	Thr	Glu	Phe	Leu	Lys	Ser	Gly
610					610	615		620							
Ile	Asp	Phe	Gly	Ser	Leu	Leu	Lys	Asp	Asn	Glu	Glu	Ser	Glu	Gln	
625					625	630		635					640		
Pro	Pro	Val	Pro	Gly	Thr	Pro	Thr	Leu	Arg	Asn	Arg	Thr	Phe	Ser	Glu
645					645	650		655							
Ser	Ser	Val	Trp	Ser	Gln	Gln	Ser	Ser	Arg	Pro	Ser	Leu	Lys	Asp	Gly
660					660	665		670							
Ala	Leu	Glu	Ser	Gln	Asp	Thr	Glu	Asn	Val	Pro	Val	Thr	Leu	Ser	Glu
675					675	680		685							
Glu	Asn	Arg	Ser	Glu	Gly	Lys	Val	Gly	Phe	Gln	Ala	Tyr	Lys	Asn	Tyr
690					690	695		700							
Phe	Arg	Ala	Gly	Ala	His	Trp	Ile	Val	Phe	Ile	Phe	Leu	Ile	Leu	Leu

4/19

705	710	715	720
Asn Thr Ala Ala Gln Val Ala Tyr Val Leu Gln Asp Trp Trp Leu Ser			
725	730	735	
Tyr Trp Ala Asn Lys Gln Ser Met Leu Asn Val Thr Val Asn Gly Gly			
740	745	750	
Gly Asn Val Thr Glu Lys Leu Asp Leu Asn Trp Tyr Leu Gly Ile Tyr			
755	760	765	
Ser Gly Leu Thr Val Ala Thr Val Leu Phe Gly Ile Ala Arg Ser Leu			
770	775	780	
Leu Val Phe Tyr Val Leu Val Asn Ser Ser Gln Thr Leu His Asn Lys			
785	790	795	800
Met Phe Glu Ser Ile Leu Lys Ala Pro Val Leu Phe Phe Asp Arg Asn			
805	810	815	
Pro Ile Gly Arg Ile Leu Asn Arg Phe Ser Lys Asp Ile Gly His Leu			
820	825	830	
Asp Asp Leu Leu Pro Leu Thr Phe Leu Asp Phe Ile Gln Thr Leu Leu			
835	840	845	
Gln Val Val Gly Val Val Ser Val Ala Val Ala Val Ile Pro Trp Ile			
850	855	860	
Ala Ile Pro Leu Val Pro Leu Gly Ile Ile Phe Ile Phe Leu Arg Arg			
865	870	875	880
Tyr Phe Leu Glu Thr Ser Arg Asp Val Lys Arg Leu Glu Ser Thr Thr			
885	890	895	
Arg Ser Pro Val Phe Ser His Leu Ser Ser Ser Leu Gln Gly Leu Trp			
900	905	910	
Thr Ile Arg Ala Tyr Lys Ala Glu Glu Arg Cys Gln Glu Leu Phe Asp			
915	920	925	
Ala His Gln Asp Leu His Ser Glu Ala Trp Phe Leu Phe Leu Thr Thr			
930	935	940	
Ser Arg Trp Phe Ala Val Arg Leu Asp Ala Ile Cys Ala Met Phe Val			
945	950	955	960
Ile Ile Val Ala Phe Gly Ser Leu Ile Leu Ala Lys Thr Leu Asp Ala			
965	970	975	
Gly Gln Val Gly Leu Ala Leu Ser Tyr Ala Leu Thr Leu Met Gly Met			
980	985	990	
Phe Gln Trp Cys Val Arg Gln Ser Ala Glu Val Glu Asn Met Met Ile			
995	1000	1005	
Ser Val Glu Arg Val Ile Glu Tyr Thr Asp Leu Glu Lys Glu Ala Pro			
1010	1015	1020	
Trp Glu Tyr Gln Lys Arg Pro Pro Ala Trp Pro His Glu Gly Val			
1025	1030	1035	1040
Ile Ile Phe Asp Asn Val Asn Phe Met Tyr Ser Pro Gly Gly Pro Leu			
1045	1050	1055	
Val Leu Lys His Leu Thr Ala Leu Ile Lys Ser Gln Glu Lys Val Gly			
1060	1065	1070	
Ile Val Gly Arg Thr Gly Ala Gly Lys Ser Ser Leu Ile Ser Ala Leu			
1075	1080	1085	
Phe Arg Leu Ser Glu Pro Glu Gly Lys Ile Trp Ile Asp Lys Ile Leu			
1090	1095	1100	
Thr Thr Glu Ile Gly Leu His Asp Leu Arg Lys Lys Met Ser Ile Ile			
1105	1110	1115	1120
Pro Gln Glu Pro Val Leu Phe Thr Gly Thr Met Arg Lys Asn Leu Asp			
1125	1130	1135	
Pro Phe Lys Glu His Thr Asp Glu Glu Leu Trp Asn Ala Leu Arg Glu			
1140	1145	1150	
Val Gln Leu Lys Glu Thr Ile Glu Asp Leu Pro Gly Lys Met Asp Thr			
1155	1160	1165	
Glu Leu Ala Glu Ser Gly Ser Asn Phe Ser Val Gly Gln Arg Gln Leu			
1170	1175	1180	
Val Cys Leu Ala Arg Ala Ile Leu Arg Lys Asn Gln Ile Leu Ile Ile			
1185	1190	1195	1200
Asp Glu Ala Thr Ala Asn Val Asp Pro Arg Thr Asp Glu Leu Ile Gln			
1205	1210	1215	
Lys Lys Ile Arg Glu Lys Phe Ala His Cys Thr Val Leu Thr Ile Ala			
1220	1225	1230	
His Arg Leu Asn Thr Ile Ile Asp Ser Asp Lys Ile Met Val Leu Asp			

5/19

1235	1240	1245
Ser Gly Arg Leu Lys Glu Tyr Asp Glu Pro Tyr Val		Leu Leu Gln Asn
1250	1255	1260
Lys Glu Ser Leu Phe Tyr Lys Met Val Gln Gln Leu Gly Lys Ala Glu		
1265	1270	1275
Ala Ala Ala Leu Thr Glu Thr Ala Lys Gln Val Tyr Phe Lys Arg Asn		1280
1285	1290	1295
Tyr Pro His Ile Gly His Thr Asp His Met Val Thr Asn Thr Ser Asn		
1300	1305	1310
Gly Gln Pro Ser Thr Leu Thr Ile Phe Glu Thr Ala Leu		
1315	1320	1325

<210> 3
<211> 5838
<212> DNA
<213> Homo sapiens

<400> 3

ccgggcagggt ggctcatgct cgggagcgtg gttgagcgcc tggcgcggtt gtccctggagc	60
aggggcgcag gaattctgtat gtgaaactaa cagtctgtga gccctggAAC ctccgcctcg	120
agaagatgaa ggatatcgac ataggaaaag agtatatacat ccccagtccct gggtagatgaa	180
gtgtgaggga gagaaccaggc acttctggga cgacacagaga ccgtgaagat tccaaggttca	240
ggagaactcg accgttgaa tgccaaagatg ctttggaaac agcagccccg gcccggggcc	300
tctctttaa tgccctccatg cattctcagc tcagaatctt ggtttagggag catcccaagg	360
gaaagtacca tcatggcttg agtgcctgtga agcccatccg gactacttcc aaacaccagg	420
accaggatggc caatgtgtgg cttttttctt gtatgactt ttctgtggct tcttctctgg	480
ccctgtggc ccacaaagaag ggggaggtct caatggaaaga cgtgtggct ctgtccaaagc	540
acgagtcttc tgacgttac acgttgttac tagagact gtggcaagaa gagtgaatg	600
aagttggcc agacgtgtct tccctgcgaa ggggtgtgt gatcttcgtc cgcaccaggc	660
tcatctgtc catcggtgtc ctgatgtatca cgoagctggc tggcttcaatg ggaccagcct	720
tcatgggtaa acaccttctt gaggataatcc aggaaacacaa gtctaacctg cagtagact	780
tgttggtagt gctgggcctc ctccgtacgg aaatcggtcg gttttggctt cttgcactga	840
cttggccatt gaattaccga accgggtgtcc gcttgcgggg ggcattctt accatggcat	900
ttaagaagat ccttaagttt aagaacatca aagagaaatc cctgggttagt ctcatcaaca	960
tttgctccaa cgtatgggcag agaatgtttt aggacggcagc cggtggcagc ctgtggctg	1020
gaggaccgg tttggccatc tttaggtatca ttataatgt aattattctt ggaccaacag	1080
gcttcctggg atcagctgtt tttatccctt tttaccacggc aatgtgtttt gcatacggc	1140
tcacagcata tttcaggaga aatcggtcg ccggccaggaa tgaacgtgtc cagaagatga	1200
atgaagttct tacttacatt aaatttatca aaatgtatgc ctgggtcaaa gcattttctc	1260
agagtgttca aaaaatccgc gaggaggagc gtccgtatatt gaaaaaaagcc gggtaacttcc	1320
agggtatcac tgggggtgtg gctccattt tgggtgtat tgccagcggt tgacacccct	1380
ctgttcatat gaccctggc ttcgatctgtc cagcggcaca ggcttcaca gtggtgacag	1440
tcttcaattt catgactttt gcttggaaag taacaccgtt ttcagtaaag tccctctcg	1500
aaggcttgcgt ggctgtgtac agatttaaa gtttggttt aatggaaagag gttcacatga	1560
taaagaacaa accaggccatc ctcacatca agatagagat gaaaaaaatgc accttggcat	1620
gggactccctc ccactccatc atccagaact cgcccaagct gaaaaaaaaatggggaaaa	1680
acaagaggc ttccaggggc aagaaagaga aggtggggca gtcggcggc actgagcatc	1740
aggcggtgtct ggccggccggc aaaggccacc tcctcctggc cagtggccggc cggccggc	1800
ccgaagagga agaaggcaag cacatccacc tggccaccc ggccttacag aggacactgc	1860
acagcatcga tctggagatc caagagggtt aactgggtt aatctggcc acgtggggaa	1920
gtggaaaaac ctctcttatt tcagccatt tagggccatc gacgcttcta gagggcagca	1980
tttcaatcag tggaaacctt gcttatgtgg cccaggccggc ctggatcttc aatgtactc	2040
tgagagacaa catctgtttt gggaaaggaat atgtgaaga aagataacaac tctgtgtca	2100
acagctgtc cctggggccct gacccggcc ttcttccctt cagccggcc acggagatgt	2160
gagagcggg agccaacatcg agccggggc agccggccagg gatcggccctt gcccggcc	2220
tgtatagtca caggagatc tacatcttgg acggcccccct cagtgccctt gatccccatg	2280
tggcaacca catcttcaat agtgcatacc gggaaacatct cagtgccaa acgtttctgt	2340
tttgttacca ccaggatcac agtgcatacc tacctgggtt actgtgtatca agtgatcttca	2400
gctgttattac gggaaagaggc acccatgagg aactgtatca tttaaatgtt gactatgtca	2460
ccatctttaa taacctgtt cttggggatc caccggccatc tgagatcaat tcaaaaaagg	2520
aaaccaggatgg ttccacagaag aagtccaaag acaagggtcc taaaacagga tcagtaaaga	2580
aggaaaaaaagc agttaaaagcca gggaaaggcc agttgtgtca gctggaaagag aaaggccagg	2640
gttcaggccctt ctgtgtcaat tatgggtt acatccaggc tgctggggcc cccttggcat	2700
ttctgggtat tatggccctt ttcatgtgtca atgtggccat caccggccctt agcacctgg	2760
gggttggatca ctggatcaag caaggaagcc ggaacaccac tggactcga gggaaacgaga	2820
cctcggttagt tgacagcatc aaggacaatc ctcatatgtca gtactatgtcc agcatctacg	2880

6/19

ccctctccat	ggcagtcatg	ctgatcctga	aagccattcg	aggagttgtc	tttgtcaagg	2940
gcacgctgcg	agcttctcc	cggctcatg	acgagcttt	ccgaaggatc	cttcgaagcc	3000
ctatgaagt	tttgacacg	acccccacag	ggaggattct	caacagttt	tccaaagaca	3060
tggatgaagt	tgacgtgcgg	ctgccgttc	aggccgagat	gttcatccag	aacgttatcc	3120
tggtgttctt	ctgtgtggga	atgatcgcag	gagtttccc	gtggttcctt	gtggcagtgg	3180
ggcccttgt	catacctctt	tcagtcctgc	acattgtctc	cagggtctcg	attcgggagc	3240
tgaagcgtct	ggacaataatc	acgcagtcac	cttccctctc	ccacatcacg	tccagcatac	3300
agggcgttc	caccatccac	gcctacaata	aaggccaggaa	gtttctgcac	agataccagg	3360
agctgtggaa	tgacaaccaa	gtccctttt	tttggtttac	gtgtgcgtg	cgtggctgg	3420
ctgtgcggct	ggacactatc	agcatcgccc	tcatcaccac	cacgggctg	atgatcgttc	3480
ttatgcacgg	gcagattccc	ccagccatag	cgggtctcgc	catctttat	gctgtccagt	3540
taacggggct	gttccagttt	acggtcagac	tggcatctga	gacagaagct	cgattcacct	3600
cggtgagag	gatcaatcac	tacattaaga	ctctgtcctt	ggaagcacct	gccagaatta	3660
agaacaaggc	tccctccct	gactggcccc	aggagggaga	ggtgacctt	gagaacgcag	3720
agatgaggt	ccgagaaaaac	ctcccttctt	tcttaaagaa	agtatcctt	acgatcaaac	3780
ctaaagagaa	gattggcatt	gtggggcgg	caggatcagg	gaagtctcg	ctggggatgg	3840
ccctttccg	tctgggtgg	ttatctggag	gtcgcataa	gattgtgga	gtgagaatca	3900
gtatattgg	cctggcgc	ctccgaagca	aactctctat	cattcccaa	gagccgggtc	3960
tgttcagtgg	cactgtcaga	tcaaattttg	acccttctaa	ccagtcact	gaagaccaga	4020
tttggatgc	cctggagagg	acacacatga	aagaatgtat	tgctcagta	cctctgaaac	4080
ttgaatctga	agtatggag	aatggggata	acttctcagt	gggggaacgg	cagctttgt	4140
gcatacgtag	agccctgctc	cgcacactgt	agattctgtat	tttagatgaa	gccacagctg	4200
ccatggacac	agagacagac	ttattgattc	aagagaccat	ccgagaagca	tttcagact	4260
gtaccatgt	gaccattgccc	catcgccctgc	acacggttct	aggctccat	aggattatgg	4320
tgctggccca	gggacagggt	gtggagttt	acacccatc	gttcctctg	tccaacgaca	4380
gttcccgatt	ctatccatgt	tttgcgtctg	cagagaacaa	gttcgcgtc	aagggctgac	4440
tcctccctgt	tgacgaagtc	tctttttt	agagcattgc	cattccctgc	ctggggcggg	4500
ccctccatcg	cgtccctcta	ccgaaacacctt	gcctttctcg	attttattctt	tcgcacagca	4560
gttccggatt	ggcttgcgt	tttactttt	aggagagatc	atattttat	tattgtattt	4620
atccatatt	catgtaaaaca	aaattttat	tttgcattta	attgcactct	aaaagggtca	4680
gggaaccgtt	attataattt	tatcagagac	ctataatgaa	gttttatacg	tgtatctata	4740
tctatata	attctgtaca	tagcctata	ttacagtgaa	aatgtaaat	gttttatttt	4800
tattaaata	agcactgtc	taataacagt	gcataattct	ttctatcatt	tttgcattat	4860
ttgctgtact	agagatctgg	tttgcattt	agactgttag	aagagtagca	tttcattctt	4920
ctctagctgg	tgttttcacg	gtgcacgggt	ttctgggtgt	ccaaaggaaag	acgtgtggca	4980
atagttggcc	ctccgacacg	ccccctctgc	gcctcccccac	agccgcctca	gggtgtggctg	5040
gagacgggtg	ggccggctgg	gaccatcgac	agccgcgtga	gttctcagg	ctoctgcctt	5100
ctgtccctgt	gtcacttact	gttctctgtca	ggagagcagc	ggggcgaacg	ccaggcccc	5160
tttactccca	tccatcaaga	atggggatca	cagagacatt	cctccgagcc	ggggagttc	5220
tttccctgcct	tettctttt	gtctttttt	ctaaacaaga	atcagtcata	ccacagagag	5280
tcccactgccc	tcaggttct	atggctggcc	actgcacaga	gtctccagc	tccaaagaccc	5340
gttggttcca	agccctggag	ccaaactgt	cttttgggg	tggcacttt	tcatttgcct	5400
atcccacac	ctccacagtt	cagtggcagg	gtcaggatt	tcgtgggtct	gttttcttt	5460
ctcaccgcac	tcgtcgccaca	gtctctctct	ctctctccccc	tc当地ctg	caactttaag	5520
cagctttgc	taatcgtgt	tcacactgg	cgtagaagtt	tttgcactgt	aaagagaccc	5580
acctcagggt	gtctgggtgt	gtgtgggtt	gtgtgttccc	gcaaaaccccc	ttttgtgtgt	5640
ggggctggta	gctcagggtt	gctgggttac	tgtgtcata	agttgaatgg	tcagcgttgc	5700
atgtcggtac	caactagacaa	ttctgtcgcc	ttagcatgtt	tgctgaacac	cttggaaag	5760
aaaaaatctg	aaaatgtgaa	taaaattttt	ttggattttt	aaaaaaaaaa	aaaaaaaaaa	5820
aaaaaaaaaa	aaaaaaaaaa					5838

<210> 4
<211> 1437
<212> PRT
<213> Homo sapiens

<400> 4
Met Lys Asp Ile Asp Ile Gly Lys Glu Tyr Ile Ile Pro Ser Pro Gly
1 5 10 15
Tyr Arg Ser Val Arg Glu Arg Thr Ser Thr Ser Gly Thr His Arg Asp
20 25 30
Arg Glu Asp Ser Lys Phe Arg Arg Thr Arg Pro Leu Glu Cys Gln Asp
35 40 45
Ala Leu Glu Thr Ala Ala Arg Ala Glu Gly Leu Ser Leu Asp Ala Ser

SUBSTITUTE SHEET (RULE 26)

7/19

50	55	60
Met His Ser Gln Leu Arg Ile Leu Asp Glu Glu His Pro Lys Gly Lys		
65	70	75
Tyr His His Gly Leu Ser Ala Leu Lys Pro Ile Arg Thr Thr Ser Lys		80
85	90	95
His Gln His Pro Val Asp Asn Ala Gly Leu Phe Ser Cys Met Thr Phe		
100	105	110
Ser Trp Leu Ser Ser Leu Ala Arg Val Ala His Lys Lys Gly Glu Leu		
115	120	125
Ser Met Glu Asp Val Trp Ser Leu Ser Lys His Glu Ser Ser Asp Val		
130	135	140
Asn Cys Arg Arg Leu Glu Arg Leu Trp Gln Glu Glu Leu Asn Glu Val		
145	150	155
Gly Pro Asp Ala Ala Ser Leu Arg Arg Val Val Trp Ile Phe Cys Arg		160
165	170	175
Thr Arg Leu Ile Leu Ser Ile Val Cys Leu Met Ile Thr Gln Leu Ala		
180	185	190
Gly Phe Ser Gly Pro Ala Phe Met Val Lys His Leu Leu Glu Tyr Thr		
195	200	205
Gln Ala Thr Glu Ser Asn Leu Gln Tyr Ser Leu Leu Val Leu Gly		
210	215	220
Leu Leu Leu Thr Glu Ile Val Arg Ser Trp Ser Leu Ala Leu Thr Trp		
225	230	235
Ala Leu Asn Tyr Arg Thr Gly Val Arg Leu Arg Gly Ala Ile Leu Thr		240
245	250	255
Met Ala Phe Lys Lys Ile Leu Lys Leu Lys Asn Ile Lys Glu Lys Ser		
260	265	270
Leu Gly Glu Leu Ile Asn Ile Cys Ser Asn Asp Gly Gln Arg Met Phe		
275	280	285
Glu Ala Ala Ala Val Gly Ser Leu Leu Ala Gly Gly Pro Val Val Ala		
290	295	300
Ile Leu Gly Met Ile Tyr Asn Val Ile Ile Leu Gly Pro Thr Gly Phe		
305	310	315
Leu Gly Ser Ala Val Phe Ile Leu Phe Tyr Pro Ala Met Met Phe Ala		320
325	330	335
Ser Arg Leu Thr Ala Tyr Phe Arg Arg Lys Cys Val Ala Ala Thr Asp		
340	345	350
Glu Arg Val Gln Lys Met Asn Glu Val Leu Thr Tyr Ile Lys Phe Ile		
355	360	365
Lys Met Tyr Ala Trp Val Lys Ala Phe Ser Gln Ser Val Gln Lys Ile		
370	375	380
Arg Glu Glu Glu Arg Arg Ile Leu Glu Lys Ala Gly Tyr Phe Gln Gly		
385	390	395
Ile Thr Val Gly Val Ala Pro Ile Val Val Ile Ala Ser Val Val		400
405	410	415
Thr Phe Ser Val His Met Thr Leu Gly Phe Asp Leu Thr Ala Ala Gln		
420	425	430
Ala Phe Thr Val Val Thr Val Phe Asn Ser Met Thr Phe Ala Leu Lys		
435	440	445
Val Thr Pro Phe Ser Val Lys Ser Leu Ser Glu Ala Ser Val Ala Val		
450	455	460
Asp Arg Phe Lys Ser Leu Phe Leu Met Glu Glu Val His Met Ile Lys		
465	470	475
Asn Lys Pro Ala Ser Pro His Ile Lys Ile Glu Met Lys Asn Ala Thr		480
485	490	495
Leu Ala Trp Asp Ser Ser His Ser Ser Ile Gln Asn Ser Pro Lys Leu		
500	505	510
Thr Pro Lys Met Lys Lys Asp Lys Arg Ala Ser Arg Gly Lys Lys Glu		
515	520	525
Lys Val Arg Gln Leu Gln Arg Thr Glu His Gln Ala Val Leu Ala Glu		
530	535	540
Gln Lys Gly His Leu Leu Asp Ser Asp Glu Arg Pro Ser Pro Glu		
545	550	555
Glu Glu Glu Gly Lys His Ile His Leu Gly His Leu Arg Leu Gln Arg		560
565	570	575
Thr Leu His Ser Ile Asp Leu Glu Ile Gln Glu Gly Lys Leu Val Gly		

8/19

580	585	590
Ile Cys Gly Ser Val Gly Ser Gly Lys Thr Ser Leu Ile Ser Ala Ile		
595	600	605
Leu Gly Gln Met Thr Leu Leu Glu Gly Ser Ile Ala Ile Ser Gly Thr		
610	615	620
Phe Ala Tyr Val Ala Gln Gln Ala Trp Ile Leu Asn Ala Thr Leu Arg		
625	630	635
Asp Asn Ile Leu Phe Gly Lys Glu Tyr Asp Glu Glu Arg Tyr Asn Ser		
645	650	655
Val Leu Asn Ser Cys Cys Leu Arg Pro Asp Leu Ala Ile Leu Pro Ser		
660	665	670
Ser Asp Leu Thr Glu Ile Gly Glu Arg Gly Ala Asn Leu Ser Gly Gly		
675	680	685
Gln Arg Gln Arg Ile Ser Leu Ala Arg Ala Leu Tyr Ser Asp Arg Ser		
690	695	700
Ile Tyr Ile Leu Asp Asp Pro Leu Ser Ala Leu Asp Ala His Val Gly		
705	710	715
Asn His Ile Phe Asn Ser Ala Ile Arg Lys His Leu Lys Ser Lys Thr		
725	730	735
Val Leu Phe Val Thr His Gln Leu Gln Tyr Leu Val Asp Cys Asp Glu		
740	745	750
Val Ile Phe Met Lys Glu Gly Cys Ile Thr Glu Arg Gly Thr His Glu		
755	760	765
Glu Leu Met Asn Leu Asn Gly Asp Tyr Ala Thr Ile Phe Asn Asn Leu		
770	775	780
Leu Leu Gly Glu Thr Pro Pro Val Glu Ile Asn Ser Lys Lys Glu Thr		
785	790	795
Ser Gly Ser Gln Lys Ser Gln Asp Lys Gly Pro Lys Thr Gly Ser		
805	810	815
Val Lys Lys Glu Lys Ala Val Lys Pro Glu Glu Gly Gln Leu Val Gln		
820	825	830
Leu Glu Glu Lys Gly Gln Gly Ser Val Pro Trp Ser Val Tyr Gly Val		
835	840	845
Tyr Ile Gln Ala Ala Gly Gly Pro Leu Ala Phe Leu Val Ile Met Ala		
850	855	860
Leu Phe Met Leu Asn Val Gly Ser Thr Ala Phe Ser Thr Trp Trp Leu		
865	870	875
Ser Tyr Trp Ile Lys Gln Gly Ser Gly Asn Thr Thr Val Thr Arg Gly		
885	890	895
Asn Glu Thr Ser Val Ser Asp Ser Met Lys Asp Asn Pro His Met Gln		
900	905	910
Tyr Tyr Ala Ser Ile Tyr Ala Leu Ser Met Ala Val Met Leu Ile Leu		
915	920	925
Lys Ala Ile Arg Gly Val Val Phe Val Lys Gly Thr Leu Arg Ala Ser		
930	935	940
Ser Arg Leu His Asp Glu Leu Phe Arg Arg Ile Leu Arg Ser Pro Met		
945	950	955
Lys Phe Phe Asp Thr Thr Pro Thr Gly Arg Ile Leu Asn Arg Phe Ser		
965	970	975
Lys Asp Met Asp Glu Val Asp Val Arg Leu Pro Phe Gln Ala Glu Met		
980	985	990
Phe Ile Gln Asn Val Ile Leu Val Phe Phe Cys Val Gly Met Ile Ala		
995	1000	1005
Gly Val Phe Pro Trp Phe Leu Val Ala Val Gly Pro Leu Val Ile Leu		
1010	1015	1020
Phe Ser Val Leu His Ile Val Ser Arg Val Leu Ile Arg Glu Leu Lys		
1025	1030	1035
Arg Leu Asp Asn Ile Thr Gln Ser Pro Phe Leu Ser His Ile Thr Ser		
1045	1050	1055
Ser Ile Gln Gly Leu Ala Thr Ile His Ala Tyr Asn Lys Gly Gln Glu		
1060	1065	1070
Phe Leu His Arg Tyr Gln Glu Leu Leu Asp Asp Asn Gln Ala Pro Phe		
1075	1080	1085
Phe Leu Phe Thr Cys Ala Met Arg Trp Leu Ala Val Arg Leu Asp Leu		
1090	1095	1100
Ile Ser Ile Ala Leu Ile Thr Thr Gly Leu Met Ile Val Leu Met		

9/19

1105	1110	1115	1120
His Gly Gln Ile Pro Pro Ala Tyr Ala Gly Leu Ala Ile Ser Tyr Ala			
1125	1130	1135	
Val Gln Leu Thr Gly Leu Phe Gln Phe Thr Val Arg Leu Ala Ser Glu			
1140	1145	1150	
Thr Glu Ala Arg Phe Thr Ser Val Glu Arg Ile Asn His Tyr Ile Lys			
1155	1160	1165	
Thr Leu Ser Leu Glu Ala Pro Ala Arg Ile Lys Asn Lys Ala Pro Ser			
1170	1175	1180	
Pro Asp Trp Pro Gln Glu Gly Glu Val Thr Phe Glu Asn Ala Glu Met			
1185	1190	1195	1200
Arg Tyr Arg Glu Asn Leu Pro Leu Val Leu Lys Lys Val Ser Phe Thr			
1205	1210	1215	
Ile Lys Pro Lys Glu Lys Ile Gly Ile Val Gly Arg Thr Gly Ser Gly			
1220	1225	1230	
Lys Ser Ser Leu Gly Met Ala Leu Phe Arg Leu Val Glu Leu Ser Gly			
1235	1240	1245	
Gly Cys Ile Lys Ile Asp Gly Val Arg Ile Ser Asp Ile Gly Leu Ala			
1250	1255	1260	
Asp Leu Arg Ser Lys Leu Ser Ile Ile Pro Gln Glu Pro Val Leu Phe			
1265	1270	1275	1280
Ser Gly Thr Val Arg Ser Asn Leu Asp Pro Phe Asn Gln Tyr Thr Glu			
1285	1290	1295	
Asp Gln Ile Trp Asp Ala Leu Glu Arg Thr His Met Lys Glu Cys Ile			
1300	1305	1310	
Ala Gln Leu Pro Leu Lys Leu Glu Ser Glu Val Met Glu Asn Gly Asp			
1315	1320	1325	
Asn Phe Ser Val Gly Glu Arg Gln Leu Leu Cys Ile Ala Arg Ala Leu			
1330	1335	1340	
Leu Arg His Cys Lys Ile Leu Ile Leu Asp Glu Ala Thr Ala Ala Met			
1345	1350	1355	1360
Asp Thr Glu Thr Asp Leu Leu Ile Gln Glu Thr Ile Arg Glu Ala Phe			
1365	1370	1375	
Ala Asp Cys Thr Met Leu Thr Ile Ala His Arg Leu His Thr Val Leu			
1380	1385	1390	
Gly Ser Asp Arg Ile Met Val Leu Ala Gln Gly Gln Val Val Glu Phe			
1395	1400	1405	
Asp Thr Pro Ser Val Leu Leu Ser Asn Asp Ser Ser Arg Phe Tyr Ala			
1410	1415	1420	
Met Phe Ala Ala Ala Glu Asn Lys Val Ala Val Lys Gly			
1425	1430	1435	

<210> 5
<211> 5079
<212> DNA
<213> Homo sapiens

<400> 5

ccccatggac	gccctgtgcg	gttccggggga	gctcggtc	aagtctggg	actccaacct	60
gtctgtgcac	acagaaaacc	cggacctcac	tccctgttc	cagaactccc	tgctggcctg	120
ggtgcctgc	atctacatgt	gggtcgccct	gcccgtcac	ttgtcttacc	tgccggcacca	180
ttgtcggtgc	tacatcatcc	tctccacat	gtccaagctc	aagatggcc	tgggtgtcct	240
gctgtgggtgc	gtctcctggg	cggacccctt	ttactcttc	catggcctgg	tccatggccg	300
ggccctgc	cctgtttct	ttgtcacccc	cttgggtgg	ggggtcacca	tgctgctggc	360
caccctgtg	atacagtatg	agcggctgc	gggcgtacag	tcttcgggg	tcctcattat	420
cttctgttgc	ctgtgtgtgg	tctgcgcct	cgccatcc	cgctccaaaga	tccttttagc	480
caaggcagag	ggtgagatct	cagaccctt	ccgcttcacc	accttctaca	tccactttgc	540
cctggtaactc	tctgcctca	tcttggcctg	cttcaggagg	aaacctccat	tttttccgc	600
aaagaatgtc	gaccctaacc	cctaccctga	gaccagcgct	ggctttctct	cccgccgttt	660
tttctgtgg	ttcacaaaga	tggccatcta	tggctaccgg	catccccctgg	aggagaagga	720
cctctgttgc	ctaaaggaaag	aggacagatc	ccagatggtg	gtgcagcagc	tgctggaggc	780
atggaggaag	caggaaaggc	agacggcacc	acacaaggct	tcagcagcac	ctggaaaaaa	840
tgcctccgc	gaggacgagg	tgctgtggg	tgccggccc	aggccccgg	agccctccct	900
cctgaaggcc	ctgtcggtca	ccttcggctc	cagtttccct	atcagtgcct	gcttcaagct	960
tatccaggac	ctgtcttccct	tcatcaatcc	acagctgctc	agcatctga	tcaggtttat	1020
ctccaacccc	atggcccccct	cctgggtggg	cttcctgg	gctgggctga	tgttccctgt	1080

SUBSTITUTE SHEET (RULE 26)

10/19

tcctcatatgt	cagtcgctga	tcttacaaca	ctattaccac	tacatcttg	tgactgggt	1140
gaagtttcgt	actgggatca	tggtgtcat	ctacaggaag	gctctggta	tcaccaactc	1200
agtcaaacgt	gcgtccactg	tggggaaat	tgtcaacctc	atgtcagtgg	atgcccagcg	1260
cttcatggac	cttccccct	tcctcaatct	gctgtgtca	gcacccctgc	agatcatct	1320
ggcgtatcac	ttctctgtgc	agaacctagg	tcctctgtc	ctggctggag	tcgcttcat	1380
ggtcttgcgt	atcccactca	acggagctgt	ggcgtgaag	atgcgcgcct	tccaggtaaa	1440
gcaaataaaa	ttgaaggact	cgcgcataa	gctgtgagt	gagatccgt	acggcatcaa	1500
ggtctgtcaag	ctgtacgcct	gggagccag	cttctgtaa	cagggtggagg	gcatcaggca	1560
gggtgagctc	cagctgtgc	gcacggggc	ctactccca	accacaaacc	cettacccctg	1620
gatgtgcagc	cccttctgtg	tgaccctgtat	caccctctgg	gtgtacgtgt	acgtggaccc	1680
aaacaatgtg	ctgacgccc	agaaggcctt	tgtgtctgt	tccttgtta	atatcttaag	1740
acttcccctc	aacatgtgc	cccagttaat	cagcaacctg	actcagggca	gtgtgtctct	1800
gaaacggatc	cagaattcc	tgagccaaga	ggaacttgac	ccccagagt	tggaaaagaaa	1860
gaccatctcc	ccaggctatg	ccatcacat	acacagtggc	actttacact	ggggccagga	1920
cctggccccc	actctgcaca	gcctagacat	ccaggtcccg	aaaggggcac	tggggccgt	1980
ggtggggcct	gtgggtgtg	ggaagtctc	cctgggtgtct	gcccctgtgg	gagagatgga	2040
gaagctagaa	ggcaaagtgc	acatgaaggg	ctcgtggcc	tatgtgcccc	agcaggcatg	2100
gatccagaaac	tgactcttc	agggaaacat	gctttcgcc	aaagccctga	acccaaacg	2160
ctaccagcag	actctggagg	cctgtgcctt	gctagctgac	ctggagatgc	tgcctgggt	2220
ggatcagaca	gagattggag	agaaggccat	taacctgtct	ggggccacgc	ggcgcggggt	2280
cagtctggct	cgagctgttt	acagtgtac	cgatatttc	ttgctggatg	acccactgtc	2340
cgcgggtggac	tctatgtgg	ccaagcacat	cttggaccac	gtcateggc	cagaaggcgt	2400
gctggcaggc	aagacgcgag	tgctggtac	gcacggcatt	agtttccgtc	cccagacaga	2460
cttcatcatt	gtgttagctg	atggacaggt	gtctgagatg	ggccctgtacc	cagccctgtct	2520
gcagcgaac	ggctcccttg	ccaaacttct	ctgcaactat	gccccctgat	aggaccaagg	2580
gcacctggag	gacagctgg	ccgcgttgg	aggtgcagag	gataaggagg	cactgtgtat	2640
tgaagacaca	cteacgaac	acacggatct	gacagacata	gatecagtc	cctatgtgt	2700
ccagaagcag	tttatgagac	agcttagtgc	cctgtcctca	gatggggagg	gacagggtcg	2760
gcctgtaccc	cgaggcacc	tgggtccatc	agagaaggt	cagggtacag	aggcgaaggc	2820
agatggggca	ctgaccagg	aggagaaaagc	agccatttgc	actgtggagc	tcagtggtt	2880
ctgggattat	gccaaggccg	tggggctctg	taccacgct	gccatctgtc	tcctgtatgt	2940
gggtcaaaatg	gcccgtgcca	ttggagccaa	tgtgtggctc	agtttctgg	caaatagtgc	3000
catggcagac	agtagacaga	acaacactt	cctgaggctg	ggcgtctatg	ctgtctttagg	3060
aattctgc	gggttcttg	tgatgtgtgc	agccatggcc	atggcagcgg	gtggcatcca	3120
ggctgcccgt	gtgtgcacc	aggcactgt	gcacaaacaa	atacgctc	cacagtctt	3180
ctttgacacc	acaccatcc	ggccatctt	gaaactgttc	tccaaggaca	tctatgtgt	3240
tgatgagggt	ctggcccttg	tcatcctcat	gctgtcaat	tccttcttca	acgccccctc	3300
cactcttgt	gtcatcatgg	ccagcacgcc	gcttttact	gtggcatcc	tgccccctgc	3360
tgtgctctac	accttagtgc	agcgcttca	tgcagccaca	tcacggcaac	tgaagcggct	3420
ggaatcaatc	agccgctcac	ctatctactc	ccactttcg	gagacagtg	ctgggtccag	3480
tgtcatccgg	gcctacaacc	geagccggga	tttttagatc	atcagtgata	ctaagggtgg	3540
tgcccaaccag	agaagactgt	acccttacat	catotccaa	cggtggctga	gcatcggagt	3600
ggagttctgt	ggggaaactgc	tgggtcttct	tgctgacta	tttgcgtca	tcgggaggag	3660
cagcctgaac	ccggggctgg	tggggcttcc	tgtgtctac	tccttgcagg	tgacatttgc	3720
tctgaactgg	atgatacaga	tgatgtca	tttggaaat	aacatgtgg	ctggggagag	3780
ggtcaaggag	tactccaaga	catagacaga	ggcccttgg	gtgggtggaa	gcagccgccc	3840
tcccgaaggt	tggccccccac	gtggggaggt	ggagttccgg	attattctg	tgcgttaccc	3900
gccccggccta	gacctgggtc	tgagagacct	gagttgtcat	gtgcacggt	gcgagaagg	3960
ggggatctgt	ggccgcactg	gggctggcaa	gtcttccat	accctttgcc	tgttccgtat	4020
cctggaggcg	gcaaagggtg	aaatccgat	tgatggctc	aatgtggcag	acatcggt	4080
ccatgacctg	cgcttcagc	tgaccatcat	cccgcaggac	cccatctgt	tctcgccggac	4140
cctgcgcatg	aacctggacc	ccttcggcag	ctactcagag	gaggacattt	ggtggctt	4200
ggagctgtcc	cacctgcaca	cgttggtag	ctcccgccg	gcaggcttgg	acttccagtg	4260
ctcagaggcc	ggggagaata	tcagctgtgg	ccagaggcag	ctcgtgtgg	tggcccgagc	4320
cctgctccgc	aagagccgca	tcctgtttt	agacgaggcc	acatgtgc	tcgacacttgc	4380
gactgacaac	ctcatccagg	ctaccatcc	caccgtt	gatactgtca	ctgtctgtac	4440
catcgacac	cggcttaaca	ctatcatgg	ctacaccagg	gtcctgttcc	tggacaaagg	4500
agtagatgt	gaatttgatt	ctccagccaa	cctcatttgc	gctagaggca	tcttctacgg	4560
gatggccaga	gatgtggac	ttgcctaaaa	tatattctg	agatttccctc	ctggcccttc	4620
ctgggtttca	tcaggaagga	aatgacacca	aatatgtcc	cagaatggac	ttgatagcaa	4680
acactgggg	cacccataga	tttgcaccc	gtaaagtgc	ttacagggt	actgtgtca	4740
atgcgtttaga	tgagaaatg	atccccaaatg	ggtgtatgc	acgcctaaagg	tcacagctag	4800
tttgagccag	ttagactgt	ccccggctt	ccggatccca	actgagtgtt	atttgacac	4860
tgcactgttt	tcaaaaatacg	atttttagaa	atgacccctg	tccttccctt	gatttttcat	4920
attttctaaa	gtttcgtttc	tgttttttaa	taaaaaggctt	ttccctcttg	gaacacaga	4980
cagctgctgg	gtcaggccac	cccttaggaac	tcagtcctgt	actctgggt	gctggctgaa	5040

SUBSTITUTE SHEET (RULE 26)

11/19

tccattaaaa atgggagtag tgatgaaata aaactacag

5079

<210> 6
 <211> 1527
 <212> PRT
 <213> Homo sapiens

<400> 6
 Met Asp Ala Leu Cys Gly Ser Gly Glu Leu Gly Ser Lys Phe Trp Asp
 1 5 10 15
 Ser Asn Leu Ser Val His Thr Glu Asn Pro Asp Leu Thr Pro Cys Phe
 20 25 30
 Gln Asn Ser Leu Leu Ala Trp Val Pro Cys Ile Tyr Leu Trp Val Ala
 35 40 45
 Leu Pro Cys Tyr Leu Leu Tyr Leu Arg His His Cys Arg Gly Tyr Ile
 50 55 60
 Ile Leu Ser His Leu Ser Lys Leu Lys Met Val Leu Gly Val Leu Leu
 65 70 75 80
 Trp Cys Val Ser Trp Ala Asp Leu Phe Tyr Ser Phe His Gly Leu Val
 85 90 95
 His Gly Arg Ala Pro Ala Pro Val Phe Phe Val Thr Pro Leu Val Val
 100 105 110
 Gly Val Thr Met Leu Leu Ala Thr Leu Leu Ile Gln Tyr Glu Arg Leu
 115 120 125
 Gln Gly Val Gln Ser Ser Gly Val Leu Ile Ile Phe Trp Phe Leu Cys
 130 135 140
 Val Val Cys Ala Ile Val Pro Phe Arg Ser Lys Ile Leu Leu Ala Lys
 145 150 155 160
 Ala Glu Gly Glu Ile Ser Asp Pro Phe Arg Phe Thr Thr Phe Tyr Ile
 165 170 175
 His Phe Ala Leu Val Leu Ser Ala Leu Ile Leu Ala Cys Phe Arg Glu
 180 185 190
 Lys Pro Pro Phe Phe Ser Ala Lys Asn Val Asp Pro Asn Pro Tyr Pro
 195 200 205
 Glu Thr Ser Val Gly Phe Leu Ser Arg Leu Phe Phe Trp Trp Phe Thr
 210 215 220
 Lys Met Ala Ile Tyr Gly Tyr Arg His Pro Leu Glu Glu Lys Asp Leu
 225 230 235 240
 Trp Ser Leu Lys Glu Glu Asp Arg Ser Gln Met Val Val Gln Gln Leu
 245 250 255
 Leu Glu Ala Trp Arg Lys Gln Glu Lys Gln Thr Ala Arg His Lys Ala
 260 265 270
 Ser Ala Ala Pro Gly Lys Asn Ala Ser Gly Glu Asp Glu Val Leu Leu
 275 280 285
 Gly Ala Arg Pro Arg Pro Arg Lys Pro Ser Phe Leu Lys Ala Leu Leu
 290 295 300
 Ala Thr Phe Gly Ser Ser Phe Leu Ile Ser Ala Cys Phe Lys Leu Ile
 305 310 315 320
 Gln Asp Leu Leu Ser Phe Ile Asn Pro Gln Leu Leu Ser Ile Leu Ile
 325 330 335
 Arg Phe Ile Ser Asn Pro Met Ala Pro Ser Trp Trp Gly Phe Leu Val
 340 345 350
 Ala Gly Leu Met Phe Leu Cys Ser Met Met Gln Ser Leu Ile Leu Gln
 355 360 365
 His Tyr Tyr His Tyr Ile Phe Val Thr Gly Val Lys Phe Arg Thr Gly
 370 375 380
 Ile Met Gly Val Ile Tyr Arg Lys Ala Leu Val Ile Thr Asn Ser Val
 385 390 395 400
 Lys Arg Ala Ser Thr Val Gly Glu Ile Val Asn Leu Met Ser Val Asp
 405 410 415
 Ala Gln Arg Phe Met Asp Leu Ala Pro Phe Leu Asn Leu Leu Trp Ser
 420 425 430
 Ala Pro Leu Gln Ile Ile Leu Ala Ile Tyr Phe Leu Trp Gln Asn Leu
 435 440 445

SUBSTITUTE SHEET (RULE 26)

12/19

Gly Pro Ser Val Leu Ala Gly Val Ala Phe Met Val Leu Leu Ile Pro
 450 455 460
 Leu Asn Gly Ala Val Ala Val Lys Met Arg Ala Phe Gln Val Lys Gln
 465 470 475 480
 Met Lys Leu Lys Asp Ser Arg Ile Lys Leu Met Ser Glu Ile Leu Asn
 485 490 495
 Gly Ile Lys Val Leu Lys Leu Tyr Ala Trp Glu Pro Ser Phe Leu Lys
 500 505 510
 Gln Val Glu Gly Ile Arg Gln Gly Glu Leu Gln Leu Leu Arg Thr Ala
 515 520 525
 Ala Tyr Leu His Thr Thr Phe Thr Trp Met Cys Ser Pro Phe
 530 535 540
 Leu Val Thr Leu Ile Thr Leu Trp Val Tyr Val Tyr Val Asp Pro Asn
 545 550 555 560
 Asn Val Leu Asp Ala Glu Lys Ala Phe Val Ser Val Ser Leu Phe Asn
 565 570 575
 Ile Leu Arg Leu Pro Leu Asn Met Leu Pro Gln Leu Ile Ser Asn Leu
 580 585 590
 Thr Gln Ala Ser Val Ser Leu Lys Arg Ile Gln Gln Phe Leu Ser Gln
 595 600 605
 Glu Glu Leu Asp Pro Gln Ser Val Glu Arg Lys Thr Ile Ser Pro Gly
 610 615 620
 Tyr Ala Ile Thr Ile His Ser Gly Thr Phe Thr Trp Ala Gln Asp Leu
 625 630 635 640
 Pro Pro Thr Leu His Ser Leu Asp Ile Gln Val Pro Lys Gly Ala Leu
 645 650 655
 Val Ala Val Val Gly Pro Val Gly Cys Gly Lys Ser Ser Leu Val Ser
 660 665 670
 Ala Leu Leu Gly Glu Met Glu Lys Leu Glu Gly Lys Val His Met Lys
 675 680 685
 Gly Ser Val Ala Tyr Val Pro Gln Gln Ala Trp Ile Gln Asn Cys Thr
 690 695 700
 Leu Gln Glu Asn Val Leu Phe Gly Lys Ala Leu Asn Pro Lys Arg Tyr
 705 710 715 720
 Gln Gln Thr Leu Glu Ala Cys Ala Leu Ala Asp Leu Glu Met Leu
 725 730 735
 Pro Gly Gly Asp Gln Thr Glu Ile Gly Glu Lys Gly Ile Asn Leu Ser
 740 745 750
 Gly Gly Gln Arg Gln Arg Val Ser Leu Ala Arg Ala Val Tyr Ser Asp
 755 760 765
 Ala Asp Ile Phe Leu Leu Asp Asp Pro Leu Ser Ala Val Asp Ser His
 770 775 780
 Val Ala Lys His Ile Phe Asp His Val Ile Gly Pro Glu Gly Val Leu
 785 790 795 800
 Ala Gly Lys Thr Arg Val Leu Val Thr His Gly Ile Ser Phe Leu Pro
 805 810 815
 Gln Thr Asp Phe Ile Ile Val Leu Ala Asp Gly Gln Val Ser Glu Met
 820 825 830
 Gly Pro Tyr Pro Ala Leu Leu Gln Arg Asn Gly Ser Phe Ala Asn Phe
 835 840 845
 Leu Cys Asn Tyr Ala Pro Asp Glu Asp Gln Gly His Leu Glu Asp Ser
 850 855 860
 Trp Thr Ala Leu Glu Gly Ala Glu Asp Lys Glu Ala Leu Leu Ile Glu
 865 870 875 880
 Asp Thr Leu Ser Asn His Thr Asp Leu Thr Asp Asn Asp Pro Val Thr
 885 890 895
 Tyr Val Val Gln Lys Gln Phe Met Arg Gln Leu Ser Ala Leu Ser Ser
 900 905 910
 Asp Gly Glu Gly Gln Gly Arg Pro Val Pro Arg Arg His Leu Gly Pro
 915 920 925
 Ser Glu Lys Val Gln Val Thr Glu Ala Lys Ala Asp Gly Ala Leu Thr
 930 935 940
 Gln Glu Glu Lys Ala Ala Ile Gly Thr Val Glu Leu Ser Val Phe Trp
 945 950 955 960
 Asp Tyr Ala Lys Ala Val Gly Leu Cys Thr Thr Leu Ala Ile Cys Leu
 965 970 975

13/19

Leu Tyr Val Gly Gln Ser Ala Ala Ala Ile Gly Ala Asn Val Trp Leu
 980 985 990
 Ser Ala Trp Thr Asn Asp Ala Met Ala Asp Ser Arg Gln Asn Asn Thr
 995 1000 1005
 Ser Leu Arg Leu Gly Val Tyr Ala Ala Leu Gly Ile Leu Gln Gly Phe
 1010 1015 1020
 Leu Val Met Leu Ala Ala Met Ala Met Ala Gly Gly Ile Gln Ala
 1025 1030 1035 1040
 Ala Arg Val Leu His Gln Ala Leu Leu His Asn Lys Ile Arg Ser Pro
 1045 1050 1055
 Gln Ser Phe Phe Asp Thr Thr Pro Ser Gly Arg Ile Leu Asn Cys Phe
 1060 1065 1070
 Ser Lys Asp Ile Tyr Val Val Asp Glu Val Leu Ala Pro Val Ile Leu
 1075 1080 1085
 Met Leu Leu Asn Ser Phe Phe Asn Ala Ile Ser Thr Leu Val Val Ile
 1090 1095 1100
 Met Ala Ser Thr Pro Leu Phe Thr Val Val Ile Leu Pro Leu Ala Val
 1105 1110 1115 1120
 Leu Tyr Thr Leu Val Gln Arg Phe Tyr Ala Ala Thr Ser Arg Gln Leu
 1125 1130 1135
 Lys Arg Leu Glu Ser Val Ser Arg Ser Pro Ile Tyr Ser His Phe Ser
 1140 1145 1150
 Glu Thr Val Thr Gly Ala Ser Val Ile Arg Ala Tyr Asn Arg Ser Arg
 1155 1160 1165
 Asp Phe Glu Ile Ile Ser Asp Thr Lys Val Asp Ala Asn Gln Arg Ser
 1170 1175 1180
 Cys Tyr Pro Tyr Ile Ile Ser Asn Arg Trp Leu Ser Ile Gly Val Glu
 1185 1190 1195 1200
 Phe Val Gly Asn Cys Val Val Leu Phe Ala Ala Leu Phe Ala Val Ile
 1205 1210 1215
 Gly Arg Ser Ser Leu Asn Pro Gly Leu Val Gly Leu Ser Val Ser Tyr
 1220 1225 1230
 Ser Leu Gln Val Thr Phe Ala Leu Asn Trp Met Ile Arg Met Met Ser
 1235 1240 1245
 Asp Leu Glu Ser Asn Ile Val Ala Val Glu Arg Val Lys Glu Tyr Ser
 1250 1255 1260
 Lys Thr Glu Thr Glu Ala Pro Trp Val Val Glu Gly Ser Arg Pro Pro
 1265 1270 1275 1280
 Glu Gly Trp Pro Pro Arg Gly Glu Val Glu Phe Arg Asn Tyr Ser Val
 1285 1290 1295
 Arg Tyr Arg Pro Gly Leu Asp Leu Val Leu Arg Asp Leu Ser Leu His
 1300 1305 1310
 Val His Gly Gly Glu Lys Val Gly Ile Val Gly Arg Thr Gly Ala Gly
 1315 1320 1325
 Lys Ser Ser Met Thr Leu Cys Leu Phe Arg Ile Leu Glu Ala Ala Lys
 1330 1335 1340
 Gly Glu Ile Arg Ile Asp Gly Leu Asn Val Ala Asp Ile Gly Leu His
 1345 1350 1355 1360
 Asp Leu Arg Ser Gln Leu Thr Ile Ile Pro Gln Asp Pro Ile Leu Phe
 1365 1370 1375
 Ser Gly Thr Leu Arg Met Asn Leu Asp Pro Phe Gly Ser Tyr Ser Glu
 1380 1385 1390
 Glu Asp Ile Trp Trp Ala Leu Glu Leu Ser His Leu His Thr Phe Val
 1395 1400 1405
 Ser Ser Gln Pro Ala Gly Leu Asp Phe Gln Cys Ser Glu Gly Gly Glu
 1410 1415 1420
 Asn Leu Ser Val Gly Gln Arg Gln Leu Val Cys Leu Ala Arg Ala Leu
 1425 1430 1435 1440
 Leu Arg Lys Ser Arg Ile Leu Val Leu Asp Glu Ala Thr Ala Ala Ile
 1445 1450 1455
 Asp Leu Glu Thr Asp Asn Leu Ile Gln Ala Thr Ile Arg Thr Gln Phe
 1460 1465 1470
 Asp Thr Cys Thr Val Leu Thr Ile Ala His Arg Leu Asn Thr Ile Met
 1475 1480 1485
 Asp Tyr Thr Arg Val Leu Val Asp Lys Gly Val Val Ala Glu Phe
 1490 1495 1500

14 / 19

Asp Ser Pro Ala Asn Leu Ile Ala Ala Arg Gly Ile Phe Tyr Gly Met
1505 1510 1515 1520
Ala Arg Asp Ala Gly Leu Ala
1525

<210> 7
<211> 4509
<212> DNA
<213> *Homo sapiens*

<400> 7

atggccgcgc	ctgtcgagcc	ctgcccgggg	cagggggtct	ggaaccagac	agagcctgaa
cctccgcca	ccagcctgt	gagccctgtc	ttccctgagaa	cagcaggggt	ctgggtaccc
cccatgtacc	tctgggtct	tggtccccatc	tacccctct	tcatccacca	ccatggccgg
ggctaccc	ggatgtcccc	actcttccaa	gccaagatgg	tgcttggatt	cgcctcata
gttcctgtta	cctccagcgt	ggctgtcgct	cttggaaaa	tccaaacaggg	aacgcctgag
gccccagaat	tcctccatca	tcctactgt	tggctcacca	cgatgagctt	cgcagtgttc
ctgattcaca	ccgagaggaa	aaaggggatc	cagtcacatgt	gagtgtctt	tggtaactgg
cttctctgt	ttgttgc	agctaccaac	gctgcccage	aggcctccgg	agcggggttc
cagagcgtacc	ctgtccgca	cctgtccacc	tacccatgcc	tgtctctgtt	gttgcacag
tttgtgtct	cctgcctggc	ggatcaaccc	cccttcttcc	ctgaagaccc	ccagcagtct
aaccctgtc	cagagactgg	ggcagccctc	ccctccaaag	ccacgttctg	ctgggtttct
ggcctgtct	ggaggggata	caggaggcca	ctgagaccaa	aagacctctg	gtcgcttggg
agagaaaact	cctcagaaga	acttgttcc	cggcttgaaa	aggagtgtat	gaggaaccgc
agtgcagccc	ggagggcaca	caaggcaata	gcatttaaaa	ggaaaggccg	cagtggcatg
aaggctccag	agaccgagcc	cttcctacgg	caagaaggga	gccagtgcg	cccaactgtg
aaggccatct	ggcagggttt	ccattctacc	ttccctctgg	ggacccttag	cctcatcatc
agtgtatgt	tcaggttcc	tgtccccaa	ctgtcagcc	tttctcttga	gtttatttgg
gatcccaagc	cttcagcgt	gaagggctac	cttcctcg	tgctgtatgtt	ctctcagcc
tgccctgcaaa	cgctgtttga	gcagcagaac	atgtacaggc	tcaagggtgc	gcagatgagg
ttgcgggtcg	ccatcaactgg	cctgggttac	agaaaaggcc	tggctctgtc	cagcggctcc
agaaaaggcc	gtgcgggtggg	tgtatgtgtc	aatctgtgt	cctgtggacgt	cgacggctgg
accggagagcg	tcctctaccc	caacgggtg	tggctgcctc	tcgtctggat	cgtgtctgc
ttcgtctata	tctggcagct	cctggggccc	tccgcctca	ctggccatcgc	tgtcttctgt
agcctcc	ctctgaattt	cttcatctcc	aagaaaagga	accaccatca	ggaggagcaa
atgaggcaga	aggactcagc	ggcacggctc	accagctcta	tcctcaggaa	ctcgaaagacc
atcaagtcc	atggctggga	ggggacccctt	ctggacagag	tcctggcat	ccgaggccag
gagctggcg	ccttcggac	ctccggcctc	ctctctctg	tgcgcttgg	gtccttccaa
gtgtctacat	ttctggtc	actgggtgt	tttgcgttcc	acactctgtt	ggccgagaat
gctatgaatg	cagagaaagc	cttgggtact	ctcacaagttc	tcaacatct	caaaaggcc
caggcttcc	tgcccttcc	catccactcc	ctcgccagg	cccggtgtc	ctttgaccgt
ctggtcaccc	tcctctgc	ggaagaagtt	gaccctgg	tgcgtact	aagtctctt
ggaagcgt	ccgggaagga	ttgcatcacc	atacacagt	ccacattcgc	ctggcccag
gaaagccctc	cctgcctca	cagaataaaac	ctcacgggtc	cccagggtg	tctgctggct
gttgcgtc	cagtggggc	agggaaagtcc	tccctgctgt	ccgcctct	tgggagctg
tcaaagggtt	agggggtcgt	gagcatcgag	gggtgtgtt	cctacgtgcc	ccaggaggcc
tggtgcaga	acacctctgt	ggtagagaat	gtgtgttgc	ggcaggagct	ggaccaccc
tggctggaga	gagtaactaga	agcctgtgcc	ctgcagccag	atgtggacag	cttcctctgag
ggaatccaca	cttcaatgg	ggagcagggc	atgaatctt	ccggaggccca	gaagcagcgg
ctgaccc	ccccggctgt	atacagaaag	gcagctgtgt	acctgtcttga	tgacccctgt
cgccccc	atggccacgt	tggccagat	gtcttcaacc	aggtcattgg	gcctgggtgg
ctactccagg	gaacaacacg	gatttcctgt	acgcacgcac	tccacatct	gccccaggct
gattggatca	tagtgcgt	aatatggggcc	atcgcagaga	tgggttccca	ccagagctt
ctgcagagga	agggggccct	cgtgtgttct	ctggatcaag	ccagacagcc	aggagataga
ggagaaggag	aaacagaacc	tgggaccagc	accaggacc	ccagaggcac	ctctgcagcc
aggaggcccg	agcttagacg	cgagagggtcc	atcaagtcc	tccctgagaa	ggaccgtacc
acttcagaag	cccagacaga	gttccctctg	gatgaccctg	acagggcagg	atggccagca
ggaaaaggaca	gcatccaata	cgccagggtg	aaggccacag	tgcacctggc	ctaccgtcg
gcccgtggca	ccccccctcg	cctctacgca	ctctctctt	tcctctgcca	gcaagtggcc
tcctctgtcc	ggggctactg	gctgagccgt	tggggcgtc	accctgtca	aggtggcag
cagacgcagg	cagccctgc	tggccggatc	ttccgggtcc	tcggctgtct	ccaaaggccatt
ggggctgttg	cctccatgc	tgcgggtgtc	ctaggtgggg	cccggtgc	cagggtgtctc
ttccagagggc	tcctgtggg	tgtggtgccg	tctccatca	gttcttttg	gcccggacacc
attggtcacc	tgctaaaccg	cttctccaa	gagacagaca	cggttgacgt	ggacattcca
gacaaaactcc	ggtcctgtct	gatgtacgoc	tttgactcc	tggaggtca	cctgggtgg
gcagtggct	ccccactggc	cactgtggcc	atccctgcca	tgtttctct	ctacgctqqq

SUBSTITUTE SHEET (RULE 26)

15/19

tttcagagcc	tgtatgttgt	tagctcatgc	cagctgagac	gcttggagtc	agccagctac	3360
tcgtctgtct	gctcccacat	ggctgagacg	ttccagggca	gcacagtgg	ccgggcatc	3420
cgaaccagg	cccccttgc	ggctcagaac	aatgtcgcg	tagatgaaag	ccagaggatc	3480
agtttccgc	gactgggtgc	tgacaggtgg	cttgcggcca	atgtggagct	cctgggaaat	3540
ggcctgggt	ttgcagccgc	cacgtgtgc	gtgctgagca	aagcccacct	cagtgtggc	3600
ctcggtggct	tctctgtctc	tgctgccctc	caggtgaccc	agacactgca	gtgggttgtt	3660
cgcaactgga	cagaccta	gaacagcata	gtgtcgtgg	agcggatgca	ggatcatgcc	3720
tggacgcca	aggaggctcc	ctggaggctg	cccacatgt	cagctcagcc	ccctggct	3780
cagggcgggc	agatcgat	cggggactt	gggttaatag	gcccacatg	gtccccgtg	3840
gctgtcagg	gcgtgtcctt	caagatccac	gcaggagaga	agggtggcat	cgttggcagg	3900
accggggcag	ggaagtctct	cctggccagt	gggtgtctgc	ggctccagga	ggcagctgag	3960
ggtgggatct	ggatcgacgg	ggtccccatt	gcccacgtgg	ggctgcacac	actgcgtcc	4020
aggatcagca	tcatccccca	ggacccatc	ctgttccctg	gctctctgcg	gatgaacctc	4080
gacctgtgc	aggagcactc	ggacgagct	atctggcag	ccctggagac	ggtcagctc	4140
aaagccttg	tggccagct	gccccggccag	ctgcagtaca	agtgtgtca	ccgaggcag	4200
gacctgagcg	tggccagaa	acagctctg	tgttggcac	gtgcccttct	ccggaagacc	4260
cagatccca	tcctggacga	ggctactgt	gcccgtggacc	ctggcacgga	gctgcagatg	4320
caggccatgc	tcggagctg	gtttgcacag	tgcactgtc	tgcctatgc	ccaccggctg	4380
cgctccgtga	tggactgtgc	ccgggttctg	gtcatggaca	aggggcaggt	ggcagagagc	4440
ggcagccgg	cccagctgct	ggcccagaag	ggcctgtttt	acagactggc	ccaggagtca	4500
ggcctggtc						4509

<210> 8
<211> 1503
<212> PRT
<213> *Homo sapiens*

<400> 8
 Met Ala Ala Pro Ala Glu Pro Cys Ala Gly Gln Gly Val Trp Asn Gln
 1 5 10 15
 Thr Glu Pro Glu Pro Ala Ala Thr Ser Leu Leu Ser Leu Cys Phe Leu
 20 25 30
 Arg Thr Ala Gly Val Trp Val Pro Pro Met Tyr Leu Trp Val Leu Gly
 35 40 45
 Pro Ile Tyr Leu Leu Phe Ile His His His Gly Arg Gly Tyr Leu Arg
 50 55 60
 Met Ser Pro Leu Phe Lys Ala Lys Met Val Leu Gly Phe Ala Leu Ile
 65 70 75 80
 Val Leu Cys Thr Ser Ser Val Ala Val Ala Leu Trp Lys Ile Gln Gln
 85 90 95
 Gly Thr Pro Glu Ala Pro Glu Phe Leu Ile His Pro Thr Val Trp Leu
 100 105 110
 Thr Thr Met Ser Phe Ala Val Phe Leu Ile His Thr Glu Arg Lys Lys
 115 120 125
 Gly Val Gln Ser Ser Gly Val Leu Phe Gly Tyr Trp Leu Leu Cys Phe
 130 135 140
 Val Leu Pro Ala Thr Asn Ala Ala Gln Gln Ala Ser Gly Ala Gly Phe
 145 150 155 160
 Gln Ser Asp Pro Val Arg His Leu Ser Thr Tyr Leu Cys Leu Ser Leu
 165 170 175
 Val Val Ala Gln Phe Val Leu Ser Cys Leu Ala Asp Gln Pro Pro Phe
 180 185 190
 Phe Pro Glu Asp Pro Gln Gln Ser Asn Pro Cys Pro Glu Thr Gly Ala
 195 200 205
 Ala Phe Pro Ser Lys Ala Thr Phe Trp Trp Val Ser Gly Leu Val Trp
 210 215 220
 Arg Gly Tyr Arg Arg Pro Leu Arg Pro Lys Asp Leu Trp Ser Leu Gly
 225 230 235 240
 Arg Glu Asn Ser Ser Glu Glu Leu Val Ser Arg Leu Glu Lys Glu Trp
 245 250 255
 Met Arg Asn Arg Ser Ala Ala Arg Arg His Asn Lys Ala Ile Ala Phe
 260 265 270
 Lys Arg Lys Gly Gly Ser Gly Met Lys Ala Pro Glu Thr Glu Pro Phe
 275 280 285
 Leu Arg Gln Glu Gly Ser Gln Trp Arg Pro Leu Leu Lys Ala Ile Trp
 290 295 300

SUBSTITUTE SHEET (RULE 26)

16/19

Gln Val Phe His Ser Thr Phe Leu Leu Gly Thr Leu Ser Leu Ile Ile
 305 310 315 320
 Ser Asp Val Phe Arg Phe Thr Val Pro Lys Leu Leu Ser Leu Phe Leu
 325 330 335
 Glu Phe Ile Gly Asp Pro Lys Pro Pro Ala Trp Lys Gly Tyr Leu Leu
 340 345 350
 Ala Val Leu Met Phe Leu Ser Ala Cys Leu Gln Thr Leu Phe Glu Gln
 355 360 365
 Gln Asn Met Tyr Arg Leu Lys Val Pro Gln Met Arg Leu Arg Ser Ala
 370 375 380
 Ile Thr Gly Leu Val Tyr Arg Lys Val Leu Ala Leu Ser Ser Gly Ser
 385 390 395 400
 Arg Lys Ala Ser Ala Val Gly Asp Val Val Asn Leu Val Ser Val Asp
 405 410 415
 Val Gln Arg Leu Thr Glu Ser Val Leu Tyr Leu Asn Gly Leu Trp Leu
 420 425 430
 Pro Leu Val Trp Ile Val Val Cys Phe Val Tyr Leu Trp Gln Leu Leu
 435 440 445
 Gly Pro Ser Ala Leu Thr Ala Ile Ala Val Phe Leu Ser Leu Leu Pro
 450 455 460
 Leu Asn Phe Phe Ile Ser Lys Lys Arg Asn His His Gln Glu Glu Gln
 465 470 475 480
 Met Arg Gln Lys Asp Ser Arg Ala Arg Leu Thr Ser Ser Ile Leu Arg
 485 490 495
 Asn Ser Lys Thr Ile Lys Phe His Gly Trp Glu Gly Ala Phe Leu Asp
 500 505 510
 Arg Val Leu Gly Ile Arg Gly Gln Glu Leu Gly Ala Leu Arg Thr Ser
 515 520 525
 Gly Leu Leu Phe Ser Val Ser Leu Val Ser Phe Gln Val Ser Thr Phe
 530 535 540
 Leu Val Ala Leu Val Val Phe Ala Val His Thr Leu Val Ala Glu Asn
 545 550 555 560
 Ala Met Asn Ala Glu Lys Ala Phe Val Thr Leu Thr Val Leu Asn Ile
 565 570 575
 Leu Asn Lys Ala Gln Ala Phe Leu Pro Phe Ser Ile His Ser Leu Val
 580 585 590
 Gln Ala Arg Val Ser Phe Asp Arg Leu Val Thr Phe Leu Cys Leu Glu
 595 600 605
 Glu Val Asp Pro Gly Val Val Asp Ser Ser Ser Gly Ser Ala Ala
 610 615 620
 Gly Lys Asp Cys Ile Thr Ile His Ser Ala Thr Phe Ala Trp Ser Gln
 625 630 635 640
 Glu Ser Pro Pro Cys Leu His Arg Ile Asn Leu Thr Val Pro Gln Gly
 645 650 655
 Cys Leu Leu Ala Val Val Gly Pro Val Gly Ala Gly Lys Ser Ser Leu
 660 665 670
 Leu Ser Ala Leu Leu Gly Glu Leu Ser Lys Val Glu Gly Phe Val Ser
 675 680 685
 Ile Glu Gly Ala Val Ala Tyr Val Pro Gln Glu Ala Trp Val Gln Asn
 690 695 700
 Thr Ser Val Val Glu Asn Val Cys Phe Gly Gln Glu Leu Asp Pro Pro
 705 710 715 720
 Trp Leu Glu Arg Val Leu Glu Ala Cys Ala Leu Gln Pro Asp Val Asp
 725 730 735
 Ser Phe Pro Glu Gly Ile His Thr Ser Ile Gly Glu Gln Gly Met Asn
 740 745 750
 Leu Ser Gly Gly Gln Lys Gln Arg Leu Ser Leu Ala Arg Ala Val Tyr
 755 760 765
 Arg Lys Ala Ala Val Tyr Leu Leu Asp Asp Pro Leu Ala Ala Leu Asp
 770 775 780
 Ala His Val Gly Gln His Val Phe Asn Gln Val Ile Gly Pro Gly Gly
 785 790 795 800
 Leu Leu Gln Gly Thr Thr Arg Ile Leu Val Thr His Ala Leu His Ile
 805 810 815
 Leu Pro Gln Ala Asp Trp Ile Ile Val Leu Ala Asn Gly Ala Ile Ala
 820 825 830

SUBSTITUTE SHEET (RULE 26).

17/19

Glu Met Gly Ser Tyr Gln Glu Leu Leu Gln Arg Lys Gly Ala Leu Val
 835 840 845
 Cys Leu Leu Asp Gln Ala Arg Gln Pro Gly Asp Arg Gly Glu Gly Glu
 850 855 860
 Thr Glu Pro Gly Thr Ser Thr Lys Asp Pro Arg Gly Thr Ser Ala Gly
 865 870 875 880
 Arg Arg Pro Glu Leu Arg Arg Glu Arg Ser Ile Lys Ser Val Pro Glu
 885 890 895
 Lys Asp Arg Thr Thr Ser Glu Ala Gln Thr Glu Val Pro Leu Asp Asp
 900 905 910
 Pro Asp Arg Ala Gly Trp Pro Ala Gly Lys Asp Ser Ile Gln Tyr Gly
 915 920 925
 Arg Val Lys Ala Thr Val His Leu Ala Tyr Leu Arg Ala Val Gly Thr
 930 935 940
 Pro Leu Cys Leu Tyr Ala Leu Phe Leu Phe Leu Cys Gln Gln Val Ala
 945 950 955 960
 Ser Phe Cys Arg Gly Tyr Trp Leu Ser Leu Trp Ala Asp Asp Pro Ala
 965 970 975
 Val Gly Gly Gln Gln Thr Gln Ala Ala Leu Arg Gly Gly Ile Phe Gly
 980 985 990
 Leu Leu Gly Cys Leu Gln Ala Ile Gly Leu Phe Ala Ser Met Ala Ala
 995 1000 1005
 Val Leu Leu Gly Gly Ala Arg Ala Ser Arg Leu Leu Phe Gln Arg Leu
 1010 1015 1020
 Leu Trp Asp Val Val Arg Ser Pro Ile Ser Phe Phe Glu Arg Thr Pro
 1025 1030 1035 1040
 Ile Gly His Leu Leu Asn Arg Phe Ser Lys Glu Thr Asp Thr Val Asp
 1045 1050 1055
 Val Asp Ile Pro Asp Lys Leu Arg Ser Leu Leu Met Tyr Ala Phe Gly
 1060 1065 1070
 Leu Leu Glu Val Ser Leu Val Val Ala Val Ala Thr Pro Leu Ala Thr
 1075 1080 1085
 Val Ala Ile Leu Pro Leu Phe Leu Leu Tyr Ala Gly Phe Gln Ser Leu
 1090 1095 1100
 Tyr Val Val Ser Ser Cys Gln Leu Arg Arg Leu Glu Ser Ala Ser Tyr
 1105 1110 1115 1120
 Ser Ser Val Cys Ser His Met Ala Glu Thr Phe Gln Gly Ser Thr Val
 1125 1130 1135
 Val Arg Ala Phe Arg Thr Gln Ala Pro Phe Val Ala Gln Asn Asn Ala
 1140 1145 1150
 Arg Val Asp Glu Ser Gln Arg Ile Ser Phe Pro Arg Leu Val Ala Asp
 1155 1160 1165
 Arg Trp Leu Ala Ala Asn Val Glu Leu Leu Gly Asn Gly Leu Val Phe
 1170 1175 1180
 Ala Ala Ala Thr Cys Ala Val Leu Ser Lys Ala His Leu Ser Ala Gly
 1185 1190 1195 1200
 Leu Val Gly Phe Ser Val Ser Ala Ala Leu Gln Val Thr Gln Ala Leu
 1205 1210 1215
 Gln Trp Val Val Arg Asn Trp Thr Asp Leu Glu Asn Ser Ile Val Ser
 1220 1225 1230
 Val Glu Arg Met Gln Asp Tyr Ala Trp Thr Pro Lys Glu Ala Pro Trp
 1235 1240 1245
 Arg Leu Pro Thr Cys Ala Ala Gln Pro Pro Trp Pro Gln Gly Gly Gln
 1250 1255 1260
 Ile Glu Phe Arg Asp Phe Gly Leu Arg Tyr Arg Pro Glu Leu Pro Leu
 1265 1270 1275 1280
 Ala Val Gln Gly Val Ser Leu Lys Ile His Ala Gly Glu Lys Val Gly
 1285 1290 1295
 Ile Val Gly Arg Thr Gly Ala Gly Lys Ser Ser Leu Ala Ser Gly Leu
 1300 1305 1310
 Leu Arg Leu Gln Glu Ala Ala Glu Gly Gly Ile Trp Ile Asp Gly Val
 1315 1320 1325
 Pro Ile Ala His Val Gly Leu His Thr Leu Arg Ser Arg Ile Ser Ile
 1330 1335 1340
 Ile Pro Gln Asp Pro Ile Leu Phe Pro Gly Ser Leu Arg Met Asn Leu
 1345 1350 1355 1360

SUBSTITUTE SHEET (RULE 26)

18/19

Asp Leu Leu Gln Glu His Ser Asp Glu Ala Ile Trp Ala Ala Leu Glu
 1365 1370 1375
 Thr Val Gln Leu Lys Ala Leu Val Ala Ser Leu Pro Gly Gln Leu Gln
 1380 1385 1390
 Tyr Lys Cys Ala Asp Arg Gly Glu Asp Leu Ser Val Gly Gln Lys Gln
 1395 1400 1405
 Leu Leu Cys Leu Ala Arg Ala Leu Leu Arg Lys Thr Gln Ile Leu Ile
 1410 1415 1420
 Leu Asp Glu Ala Thr Ala Ala Val Asp Pro Gly Thr Glu Leu Gln Met
 1425 1430 1435 1440
 Gln Ala Met Leu Gly Ser Trp Phe Ala Gln Cys Thr Val Leu Leu Ile
 1445 1450 1455
 Ala His Arg Leu Arg Ser Val Met Asp Cys Ala Arg Val Leu Val Met
 1460 1465 1470
 Asp Lys Gly Gln Val Ala Glu Ser Gly Ser Pro Ala Gln Leu Leu Ala
 1475 1480 1485
 Gln Lys Gly Leu Phe Tyr Arg Leu Ala Gln Glu Ser Gly Leu Val
 1490 1495 1500

<210> 9
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence source:/note="synthetic construct"

<400> 9
ctdgtdgcg tgdgtgggn

18

<210> 10
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence source:/note="synthetic construct"

<400> 10
atggccgcgc ctgctgagc

19

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence source:/note="synthetic construct"

<400> 11
gtctacgaca ccagggtcaa

20

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence source:/note="synthetic construct"

<400> 12
ctgcctggaa gaaggttgacc

20

<210> 13
<211> 20
<212> DNA

SUBSTITUTE SHEET (RULE 26)

19/19

```

<213> Artificial Sequence
<220>
<223> Sequence source:/note="synthetic construct"
<400> 13
ctggaatgtc cacgtcaacc                                20

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence source:/note="synthetic construct"
<400> 14
ggagacagac acggttgacg                                20

<210> 15
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence source:/note="synthetic construct"
<400> 15
gcagaccagg cctgactcc                                19

<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence source:/note="synthetic construct"
<400> 16
rctnavngcn snarnggnt crtcc                                24

<210> 17
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence source:/note="synthetic construct"
<400> 17
cgggatccag rgaraayath ctnttggn                                29

<210> 18
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence source:/note="synthetic construct"
<400> 18
cggaattcnt crtchagnag rtadatrtc                                29

```

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/06644

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : A01N 63/00, A61K 39/395, C12N 15/00, A01N 61/00, C07H 21/02
US CL : Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 424/93.1, 93.2, 130.1; 435/320.1, 325; 514/1; 536/23.1; 800/13, 18

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, STN, MEDLINE, BIOSIS, CAPLUS, SCISEARCH

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Database GENBANK, Accession No. U66687, ALLIKMETS et al. Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags databases. Hum. Mol. Genet. 5(10), pp. 1649-1655, 26 March 1997.	21
X	Database GENBANK, Accesion No. D77412, NISHIGUCHI. S. et al., A catalogue of genes in mouse embryonal carcinoma F9 cells identified with expressed sequence tags. J. Biochem. 119 (4), pp. 749-767, 04 October 1996.	22

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	*T*	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document published on or after the international filing date	*X*	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	*Y*	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O document referring to an oral disclosure, use, exhibition or other means	*&*	document member of the same patent family
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search	Date of mailing of the international search report
20 MAY 1999	01 JUL 1999
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer SHIN-LIN CHEN Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/06644

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Database GENBANK, Accession No. U66674, ALLIKMETS, R. et al., Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. Hum. Mol. Genet. 16 March 1997, 5 (10), pp. 1649-1655.	33
X	Database GENBANK, Accession No. R97754, HILLIER, L. et al., The WashU-Merk EST project. 11 September 1995.	44
Y	KOIKE et al. A Canalicular Multispecific Organic Anion Transporter (cMOAT) Antisense cDNA Enhances Drug Sensitivity in Human Hepatic Cancer Cells. Cancer Research. 15 December 1997, Vol. 57, No. 24, pages 5475-5479, see entire document.	55-57
A,P	LEE et al. Isolation of MOAT-B, a Widely Expressed Multidrug Resistance-associated Proteins Canalicular Multispecific Organic Anion Transporter-related Transporter. Cancer Research. 01 July 1998, Vol 58, No. 13, pages 2741-2747, see entire document.	1-58
A,P	BELINSKY et al. Characterization of MOAT-C and MOAT-D, New Members of the MRP/cMOAT Subfamily of Transporter Proteins. Natl. Cancer Inst. 18 November 1998, Vol 90, No. 22, pages 1735-1741.	1-58
A	SUZUKI et al. Excretion of GSSG and Glutathione Conjugates Mediated by MRP1 and cMOAT/MRPS. Seminars in Liver Disease. 1998, Vol 18, No. 4, pages 359-376.	1-58

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/06644

A. CLASSIFICATION OF SUBJECT MATTER:
US CL :

424/93.1, 93.2, 130.1; 435/320.1, 325; 514/1; 536/23.1; 800/13, 18