Chapter 6

Turing Machine

Alan Turing -- 1912 - 1954

 Founder of computer science, mathematician, philosopher, codebreaker, strange visionary and a gay man before his time.

Influential

- development of computer sciences
- provided an influential formalisation
 - of the concept of the algorithm
 - and computation with the
 - Turing Machine
 - Turing Test contribute to the debate of AI
 - Can machines think?
- http://www.turing.org.uk/turing/

 $a^nb^nc^n$

WW

Context-Free Languages

Push Down Automata

$$a^nb^n$$

 WW^{K}

Regular Languages

Finite Automata

a*b*

A Turing Machine

- A TM consists of an infinite length tape, on which input is provided as a finite sequence of symbols.
- A head reads the input tape.
- The TM starts at start state s_0 .
- On reading an input symbol it optionally replaces it with another symbol, changes its internal state and moves one cell to the right or left.

4

A Turing Machine...

Tape - No boundaries -- infinite length

Read-Write head - The head moves Left or Right

Control Unit

- The head at each transition (time step):
 - 1. Reads a symbol
 - 2. Writes a symbol
 - 3. Moves Left or Right

Time 0

•••••		a	b	a	С		•••••
				↑			

Time 1

1. Reads

2. Writes

- 3. Moves Left

Time 1

Time 2

1. Reads

b

2. Writes

f

3. Moves Right

The Input String

Head starts at the leftmost position of the input string

States & Transitions

Time 1

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

Time 1

Time 2

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

Time 1

Time 2

$$\begin{array}{ccc}
 & a \rightarrow b, L \\
\hline
 & q_1
\end{array}$$

Time 1

Time 2

$$\begin{array}{c|c}
 & \Diamond \to g, R \\
\hline
 & q_1
\end{array}$$

A Turing Machine...

Turing Machines are deterministic

No lambda transitions allowed

Partial Transition Function

Example:

Allowed:

No transition for input symbol $\c C$

Halting

• The machine *halts* in a state if there is no transition to follow.

Halting...

Example

Accepting States

- Accepting states have no outgoing transitions.
- The machine halts and accepts.

Acceptance...

Accept Input string

If machine halts in an accept state

Reject Input string

If machine halts in a **non-accept state**

or

If machine enters an *infinite loop*

A Turing Machine... Example

Input alphabet

$$\Sigma = \{a,b\}$$

Accepts the language:

$$a*$$

Time 0

Time 1

Time 2

Time 3

Time 4

Rejection Example

Time 0

Rejection Example...

Time 1

No possible Transition

Infinite Loop Example

A Turing machine for language

$$a*+b(a+b)*$$

Time 0

Time 1

Time 2

Infinite Loop....

Because of the infinite loop:

- The accepting state cannot be reached.
- The machine never halts.
- The input string is rejected.

A Turing Machine... Example

Turing machine for the language:

$$\{a^nb^n\}$$

$$n \ge 1$$

A Turing Machine... Example

Basic Idea: Algorithm

```
Match a's with b's:
Repeat:
replace leftmost a with x
find leftmost b and replace it with y
Until there are no more a's or b's
```

If there is a remaining a or b reject

Time 10

Time 11

Time 12

Time 13

Halt & Accept

A Turing Machine... Example

Observation:

If we modify the machine for the language

$$\{a^nb^n\}$$

We can easily construct a machine for the language

$$\{a^nb^nc^n\}$$

A Turing Machine: Formal Definition

Transition Function

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
\hline
 & q_2
\end{array}$$

$$\delta(q_1, a) = (q_2, b, R)$$

A Turing Machine: Formal Definition

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

A Turing Machine: Formal Definition

A Turing Machine...Configuration

Instantaneous description: $ca q_1 ba$

A move:

$$q_2 xayb \succ x q_0 ayb$$

(yields in one mode)

 $q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation: $q_2 xayb \succ xxy q_1 b$

Initial configuration:

Input string

The Accepted Language

For any Turing Machine M

$$L(M) = \{ w : q_0 \ w \succ x_1 \ q_f \ x_2 \}$$
Initial state Accept state

The Accepted Language...

- If a language \mathcal{L} is accepted by a Turing machine \mathcal{M} then we say that \mathcal{L} is:
 - Turing Recognizable

- Other names used:
 - Turing Acceptable
 - Recursively Enumerable

Turing Machine as Transducers:

Computing Functions with Turing Machines

A function f(w) has:

- A function may have many parameters:
- Example: Addition function

$$f(x,y) = x + y$$

5

Integer Domain

Decimal:

Binary: 101

Unary: 11111

We prefer unary representation:

easier to manipulate with Turing machines

Definition: A function **f** is computable if there is a Turing Machine **M** such that:

Initial configuration

Final configuration

For all
$$w \in D$$
 Domain

In other words: A function **f** is computable if there is a Turing Machine **M** such that:

For all
$$w \in D$$
 Domain

Example:

The function
$$f(x, y) = x + y$$
 is computable

 \mathcal{X}, \mathcal{Y} are integers

Turing Machine:

Input string: x0y unary

Output string: $\chi y 0$ unary

The 0 is the delimiter that separates the two numbers

Start

The 0 here helps when we use the result for other operations

Finish

Turing machine for function f(x, y) = x + y

Execution Example:

$$x = 11$$
 (=2)

$$y = 11$$
 (=2)

Final Result

Time 0

Time 3

Time 6

Time 7

Time 10 \Diamond 1 1 1 0 \Diamond q_3

Exercise

The function
$$f(x) = 2x$$
 is computable.

Design a Turing Machine that computes the above function.

Reading (Self Study)

- Turing Thesis
- Universal Turing Machine.

Group Assignment: Due date: June 7, 2022

- Form a group of five members and prepare a report not more than five pages on the following topics.
- Complexity Theory
 - Introduction
 - Polynomial- Time Algorithm
 - Non- Deterministic Polynomial Time Algorithm
 - NP Problems
- Copying from one another is prohibited and will nullify your mark.
- Prepare a presentation for evaluation.
- Submission: The section representatives will collect from all groups and submit a zipped file which contains all groups assignment report.

87