

Kommunikationstechnik KOTE / Netzwerkgrundlagen 3. Unit

Übersicht der einzelnen Modulblöcke (roter Faden)

Grundlagen aus relevanten Kapiteln Cisco CCNA 200-301 Volume 1+2

Modulaufgaben
Vorbereitung und
Vertiefung

Simulationsübungen mit dem CISCO Pakettracer und mit Wireshark

Stoffumfang KOTE: CCNA1/ Kap. 1 – 6 / 8 /

CCNA1/Kap. 1 - 6 / 8 / 9 / 11 - 14 / 18

CCNA2/ Kap. 1 + 13

NPDO - Netzwerk, Planung, Design und
Optimierung
NIUS - Netzwerkinstallation und Störungsbehebung

ipso

NetAcad/Kap. 1

NetAcad/Kap. 3

NetAcad/Kap. 10

NetAcad/Kap. 9

NetAcad/Kap. 6

NetAcad/Kap. 7

NetAcad/Kap. 8

NetAcad/Kap. 4

NetAcad/Kap. 5

Lernziele des 3. Modulblocks

Du kannst...

- 1. ...wichtige Standards und Gremien, wie ISOC, IANA, RFC, IEEE usw. erklären.
- ...die grundlegenden Funktionen der Anwendungsschicht, der Transportschicht und der Vermittlungsschicht anhand von TCP/IP-basierenden Protokollen mittels Wireshark analysieren.
- 3. ...den Aufbau des Domain Name System (DNS) beschreiben.
- 4. ...grundlegende technische Funktionen von TCP und UDP einordnen.

Agenda

«Kurztest»

Ablauf Kurztest

- Ergänze nachfolgend in den Folien die Lücken.
 Du hast jeweils 3 Minuten Zeit pro Folie.
 Danach kommt die nächste Aufgabe.
- Schreibe die Grundlagen sinnvoll auf ein Blatt, so dass eine Korrektur möglich ist.
- Es handelt sich hier um eine Einzelarbeit!
- Wir besprechen am Schluss kurz die Ergebnisse. Es gibt keine Note!

Aufgabe zu den Grundlagen der technischen Kommunikation

- Ein Multiport Repeater läuft imDuplex Modus. Dagegen läuft eine Multiport Bridge imDuplex Modus. Eine Multiport Bridge wird auch genannt.
- Mit dem Netzwerktool können Netzwerkverbindungen aufgezeichnet werden. Ein solches Programm wird generell als bezeichnet.

Aufgabe zu den Grundlagen der Netzwerktechnik

- Schreiben Sie die 7 Schichten des ISO/OSI-Modells in Deutsch und in der richtigen Reihenfolge auf.
- Welche Schichten gehören dabei zu den transportorientierten und welche zu den anwendungsorientierten (sowohl OSI- als auch TCP/IP-Modell)

1. Aufgabe Musterlösung zu den Grundlagen der technischen Kommunikation

- Ein Multiport Repeater läuft im Halb Duplex Modus. Dagegen läuft eine Multiport Bridge im Voll Duplex Modus. Eine Multiport Bridge wird auch Switch genannt.
- Mit dem Netzwerktool Wireshark können Netzwerkverbindungen aufgezeichnet werden. Ein solches Programm wird generell als Sniffer bezeichnet.
- Ein wichtiges Sicherungsschichtprotokoll für WAN-Standleitungen ist HDLC (High-Level Data Link Control).

2. Aufgabe Musterlösung

	OSI-Schicht	Einordnung	DoD-Schicht	Protokollbeispiel	Einheiten		
7	Anwendungen (Application)	Anwendungs- orientiert		HTTP FTP			
6	Darstellung (Presentation)		- 4	Anwendungs- orientiert	Anwendung	HTTPS SMTP	Daten
5	Sitzung (Session)				LDAP NCP		
4	Transport (Transport)	Transport- orientiert	Transport	TCP UDP SCTP SPX	TCP = Segmente UDP = Datagramme		
3	Vermittlung (Network)		Vermittlung	ICMP IGMP IP IPsec IPX	Pakete		
2	Sicherungsschicht (Data Link)		Netzzugriff	Ethernet Token Ring	Rahmen (Frames)		
1	Bitübertragung (Physical)		rvetzzugrill	FDDI ARCNET	Bits		

Quelle: wikipedia.org

Agenda

«Repetition Blöcke 1 und 2»

Gruppenarbeit Repetition Block 2

Auftrag: Jede Gruppe bereitet eines der folgenden 5 Themen soweit vor, dass sie es den Kollegen im Anschluss erklären können.

Form: keine Vorgabe

Zeit: Vorbereitung ca. 25 Minuten

Themen:

- 1. Erklärung der Grundlagen des Schichtenmodells TCP/IP (aktualisiert)
- 2. Erklärung des Kapselungs- und Fragmentierungsprozesses über alle Schichten
- 3. Erklärung der Vor- und Nachteile der verschiedenen Übertragungsmedien
- 4. Erklärung der WAN-Anschlusstechnologien

Repetition Block 2

Fragen zur Vertiefung:

- CCNA1 Kapitel 1 «Introduction to TCP/IP Networking»
- CCNA1 Kapitel 2 «Fundamentals of Ethernet LANs»

Praxistransfer: Besprechung in den Gruppen

Zeit: 30 Minuten

Gruppenarbeit WAN-Anschlusstechnologien

WAN-Technologie	Kurzbeschreibung und Einsatzzweck
DSL (ADSL/VDSL)	
Breitbandkabel (Cable)	
Fiber to the Home FTTH	
Standleitung «Dark Fiber o. Dark Copper»	

Aufgabe in Zweiergruppen:

Nennt die gängigen Datentechniken für WAN-Verbindungen und wann diese für ein Projekt zu priorisieren sind? Nützliche Quellen sind eure Unterlagen und das Internet.

Zeit: 10 Minuten

Musterlösung

WAN-Technologie	Beschreibung
Modem Analog oder ISDN	Noch teilweise für Wartung und Fernüberwachung im Einsatz
DSL (ADSL/VDSL)	Bestehende Telefonverbindung kann genutzt werden. Relativ günstig und schnell aber ohne Servicelevel (DSL-Business) nicht ausfallsicher.
Breitbandkabel (Cable)	Bestehende Fernsehverbindung kann genutzt werden. Relativ günstig und in der Regel schneller als DSL.
Fiber to the Home FTTH	Verbindung über schnelle Glasfaserleitungen. Auch hier ist auf SLAs zu achten.
Standleitung «Dark Fiber o. Dark Copper»	Nur Leitung wird gemietet, Geräte müssen selber beschafft werden (daher Dark).

Repetition Der Kapselungsprozess (Encapsulation)

^{*}Protocol Data Unit

^{***}Maximum Transmission Unit (Bezieht sich hier auf max. Nutzdatenteil bei Ethernet.)

^{**}Trailer / CRC-Prüfsumme

Repetition Der Übertragungsprozess

Agenda

«GrundlagenTCP/IP Standards»

Wichtige Organisationen (ISOC)

In Anlehnung an Darstellung auf Wikipedia - http://de.wikipedia.org/wiki/ISOC

RFC (Request for Comments)

RFC Status (RFC 2026)	Beschreibung
Proposed Standard	Ein Vorschlag für einen Standard
Draft Standard	Entwurf zur Begutachtung nach erfolgreichen Implementierungen
Internet Standard	Implementierter offizieller Standard
Informational	Hinweis oder Idee
Experimental	Zum Ausprobieren, Potentieller neuer Standard im Anfangsstadium
Historic	Wird nicht mehr benutzt oder ist abgelöst

Die Weiterentwicklung von Internetstandards mit neuen RCFs ist dynamisch. Mehr dazu auf www.rfc-editor.org

Weitere wichtige technische Standards

Standardgremien	Beschreibung
ITU – International Telecommunication Union www.itu.int	Sonderorganisation der UNO . Beschäftigt sich mit technischen Aspekten (Standards) der weltweiten Telekommunikation.
IEEE – Institute of Electrical and Electronics Engineers www.ieee.org	Ein weltweiter Berufsverband von Elektrotechnik und Informationstechnik Ingenieuren. Hier werden unter anderem die IEEE-Standards festgelegt.
W3C – World Wide Web Consortium www.w3.org	Gremium zur Festlegung der World Wide Web «Standards». Gibt Empfehlungen (Recommendations) heraus (z.B. HTML, XHTML, CSS, RSS, XML,). Gründer und Vorsitzender ist niemand geringerer als Tim Berners-Lee, Erfinder des WWW.

Agenda

«Anwendungsschicht»

CCNA2 Kapitel 1 «Introduction to TCP/IP Transport and Applications»

Einordnung der Anwendungsschicht

Application Layer Anwendungsschicht

Transport Layer Transportschicht

Internet Layer Vermittlungsschicht

Data Link Layer Sicherungsschicht

Physical Layer
Bitübertragungsschicht

ICT-Grundlagen Netzwerkstrukturen (Aufbau)

- Peer-to-Peer Netzwerk
 - File-Distribution (BitTorrent)
 - Internettelefonie (Skype)
 - File-Sharing (eMule, LimeWire)

- Client-Server-Netzwerk
 - Internethandel (Amazon)
 - Webmail (Hotmail)
 - Suchmaschine (Google)

ICT-Grundlagen Three Tier Architecture

Präsentation (Front End)

Geschäftslogik

(Funktion, Middle Tier)

Datenhaltung
(Datenbank)

ICT-Grundlagen Beispiele für verteilte Systeme

Thin-Client Remote Presentation

Präsentation (Front End)

Geschäftslogik (Funktion)

Datenhaltung (Datenbank)

Client Server

Daten-Server Remote Datamanagement

Präsentation (Front End)

Geschäftslogik (Funktion)

Datenhaltung (Datenbank)

Fat-Client Distributed Database

Präsentation (Front End)

Geschäftslogik (Funktion)

Datenhaltung (Datenbank)

Datenhaltung

Die Anwendungsschicht im Überblick

- Hier sind die Anwendungsschichtprotokolle beheimatet:
 - HTTP (Anzeigen von Webseiten)
 - DNS (Auflösen von Hostnamen in IP-Adressen)
 - FTP (Einfacher Datentransfer)
 - SMTP (Übermittlung von E-Mails)
 - POP3 (Abholen von E-Mails beim Hoster/ISP)
 - DHCP (Verteilen von Netzwerkkonfigurationen wie IPs)
- Die Informationspakete heissen Nachricht

Agenda

«Beispiel HTTP Anwendungsprotokoll»

HTTP GET (Anfordern von Webseiten) HTTP-Aufzeichnung mit Wireshark

HTTP 200 OK (Daten vom Server zum Client und OK-Meldung) HTTP-Aufzeichnung mit Wireshark

Agenda

«Domain Name System»

CCNA2 Kapitel 1 «Introduction to TCP/IP Transport and Applications»

Namensauflösungsmöglichkeiten

Namensauflösung	Kurzbeschreibung
Hosts-Datei Obwohl die Hosts-Datei sehr nützlich sein kann, ist sie nicht für groß angelegte oder dynamische Netzwerkanwendungen geeignet. Sie muss manuell gepflegt werden, was in großen Netzwerken oder bei häufigen Änderungen unpraktisch ist. Moderne DNS-Dienste bieten dynamische, skalierbare und automatisch verwaltete Lösungen, die für die heutigen Internet- und Netzwerkanforderungen besser geeignet sind.	 Einfache Textdatei zur Zuordnung von IP-Adressen zu Hostnamen Zum Beispiel: 127.0.0.1 localhost Achtung vor Hackermanipulation
WINS (Windows Internet Naming Service) NetBIOS wurde ursprünglich in den 1980er Jahren entwickelt und war eine Schlüsselkomponente in den LAN-Manager- und späteren Windows-Netzwerken. Mit der Zeit wurde es jedoch durch modernere Technologien wie das Domain Name System (DNS) verdrängt, das dynamischere und skalierbare Netzwerklösungen bietet, insbesondere im Internet.	 Wurde von Microsoft entwickelt Auflösungen von NetBIOS-Namen Wird im Gegensatz zu DNS nur im internen Netzwerk verwendet WINS sollte nicht mehr eingesetzt werden
DNS (Domain Name System)	 Wird in IP-basierenden Netzwerken im LAN und Internet zur Namensauflösung verwendet. (RFC 1034 und RFC 1035) Auflösung URL in IP-Adresse

DNS-Hierarchie in der Übersicht (Auflösung URL in IP-Adresse)

Verantwortung trägt die **ICANN*** für die DNS-Root-Server und Top Level Domains (TLD)

^{*}Internet Corporation for Assigned Names and Numbers

DNS-Root-Server in der Übersicht

http://www.internic.net/domain/named.root

13 DNS-Root-Server

- A. Verisign, Dulles (USA)
- B. USC-ISI Marina del Rey (USA)
- C. Cogent, Herndon und Los Angeles (USA)
 - D. U Maryland College Park (USA)
 - E. NASA, Mt. View (USA)
- F. Internet Software C., Palo Alto und 36 weitere Standorte (USA)
 - G. US DoD Vienna (USA)
 - H. ARL Aberdeen (USA)
 - Autonomica, Stockholm und 28 andere Standorte (EU)
 - J. Verisign und 21 Standorte (USA)
 - K. RIPE, London und 16 weitere Standorte (EU)
 - L. ICANN, Los Angeles (USA)
 - M. WIDE Tokyo und Seoul, Paris, San Francisco

Quelle: James F. Kurose, Keith W. Ross, Pearson Deutschland GmbH, Computernetzwerke, Der Top-Down-Ansatz, S.165

Vergabe Second-Level-Domains (SLD)

- Die Vergabe von SLD übernehmen Registrierungsfirmen
- Zum Beispiel wird .ch und .li in der Schweiz durch die Registrare vergeben (nic.ch)
 - Dort werden dann auch die DNS-Server für die eigene Domäne eingetragen (mind. 2)

Wichtiges zu DNS

Bezeichnung	Kurzbeschreibung
FQDN – Fully Qualified Domain Name z.B. www.google.ch	Absolute eindeutige Adresse
Resolver (Programm auf lokalem Gerät, zur Anfrage an DNS Server)	 Es braucht dazu mindestens einen DNS-Server-Eintrag Iterativ (immer weitergeleitet von Server zu Server, z.B. DNS-Server) Rekursiv direkte Antwort der IP-Adresse oder Name nächster DNS Server
Ressource Records (RR) DNS- Objekte (Beinhalten die Antwort vom DNS Server) (siehe auch nächstes Slide)	 Z.B. mit einem Resource Record «A» wird einem DNS-Namen eine IPv4-Adresse zugeordnet Diese werden in einer Zonendatei gespeichert (z.B. Hosts)

Funktion DNS-Abfrage

Die DNS-Datenbank (Zonendatei)

Resource Records Typen	Kurzbeschreibung
SOA	Startpunkt der Zone
NS	Verknüpfungen der Nameserver der Domain
Α	Host-Adresse mit IPv4
AAAA	Host-Adresse mit IPV6
CNAME	Verweis auf einen anderen Namen (Aliase)
MX	Mailserver (SMTP)
PTR	 Reverse Lookup (IP in Hostnamen) IN-ADDR.ARPA. IPv4, IP6.ARPA. IPv6

Gruppenarbeit DNS-Abfrage aufzeichnen

- Gruppenarbeit zu zweit:
 - Zeichnet zusammen eine DNS-Abfrage mit Wireshark auf.
 - Wie läuft eine Abfrage ab?

Zeit: 10 Minuten

DNS-Query DNS-Aufzeichnung mit Wireshark

DNS-Response DNS-Aufzeichnung mit Wireshark

Agenda

«Transportschicht»

CCNA2 Kapitel 1 «Introduction to TCP/IP Transport and Applications»

Einordnung der Transportschicht

Application Layer Anwendungsschicht

Transport Layer Transportschicht

Network Layer Netzwerkschicht

Data Link Layer Sicherungsschicht

Physical Layer Bitübertragungsschicht

Verbindung Anwendung mit Transportschicht (OSI-Layer 4)

Socket = Port-Nummer + IP-Adresse für eindeutige Zuordnung zu einem Prozess

In Anlehnung an Quelle:

Kurose J. F., Keith W. R., S.193, Computernetzwerke. 5. akt. Auflage. Pearson Deutschland GmbH

Die Transportschicht im Überblick

- Überträgt die Nachrichten der Anwendungsschicht mit TCP oder UDP zwischen den Endpunkten der Anwendung
 - Es entsteht eine logische Kommunikation

Unterschiede TCP und UDP

TCP - Transmission Control Protocol	UDP - User Datagram Protocol
Verbindungsorientiert	Verbindungslos
Garantiert Übermittlung	Garantiert Übermittlung nicht
TCP stellt garantierte Übermittlung der Anwendungsschicht bereit	Anwendungen sind für Übermittlung selber verantwortlich
Nur Punkt-zu-Punkt	Punkt-zu-Punkt wie auch Punkt-zu- Multipunkt
Verwendet Ports für die Kommunikation	Verwendet Ports für die Kommunikation
Anwendungsprotokolle über TCP: - FTP (20 und 21) - HTTP (80) - SMTP (25) - POP3 (110)	Anwendungsprotokolle über UDP: - DNS (53) - DHCP (67, 68)

Port-Nummern

Ein Port wird benötigt um den Datenstrom einem Prozess/Programm zuzuordnen

Port-Arten	Port-Nummern
Well-Known-Ports (Sind für Dienste und Anwendungen reserviert)	0 - 1023
Registrierte Ports (Werden Benutzerprozessen oder Benutzeranwendungen zugeordnet)	1024 - 49151
Dynamische oder private Ports (Werden dynamisch Clientanwendungen zugewiesen)	49152 - 65535

Socket = Port-Nummer + IP-Adresse für eindeutige Zuordnung zu einem Prozess

Multiplexing mit Portnummern

Anmerkung:

Verbindungen können mit dem Befehl netstat angezeigt werden (inkl. Port).

*The netstat command is a Command Prompt command used to display very detailed information about how your computer is communicating with other computers or network devices.

Die wichtigsten Anwendungen und deren Ports 1. Teil

Dienstbezeichnung	Protokoll	Ports
Dateifreigabe (Serverdienste)	SMB 2.1 (Win 7 / Win Server 2008 R2) SMB 3.0 (Win 8 / Win Server 2012) SMB 3.1.1 (Win 10 / Win Server 2016)	TCP 445
WWW-Webdienste	HTTP HTTPS (SSL/TLS)	TCP 80 TCP 443
E-Mail-Dienste	SMTP (Mailversand) SMTPS (SSL/TLS) POP3 (Mailempfang) POP3S (SSL/TLS) IMAP (Mailempfang) IMAPS (SSL/TLS)	TCP 25 TCP 465 TCP 110 TCP 995 TCP 143 TCP 993
Namensauflösung	DNS (Domain-Namen in IP-Adressen)	UDP 53
Automatische IP-Vergabe	DHCP (Server oder Relay-Agent) DHCP (Client Anfragen)	UDP 67 UDP 68

Die wichtigsten Anwendungen und deren Ports 2. Teil

Dienstbezeichnung	Protokoll	Ports
Datenübermittlung	FTP (Datenübertragung) FTP (Kontrollport)	TCP 21 TCP 20
Zeitsynchronisierung	NTP (Network Time Protocol)	UDP 123
Verzeichnisdienste	LDAP LDAPS (SSL/TLS)	TCP/UDP 389 TCP/UDP 636
IP-Telefonie VoiP	SIP (SSL/TLS)	UDP 5060 (TCP) TCP 5061
Netzwerkverwaltung	SNMPv3 SNMPv3 (Trap)	UDP 161 UDP 162
VPN Site-to-Site	IPSEC, IKE	UDP 500
Konsolenverbindung (Fernwartung)	SSH (Secure Shell)	TCP 22

User Datagram Protocol UDP-Header

32 Bit

0-15	16-31
Source Port	Destination Port
Packet Länge	Checksumme

- Unzuverlässig (keine Kontrolle)
- Weniger Overhead als TCP
- UDP überwacht keine Sequenznummern
 - Setzt deshalb Datagramme nicht in der richtigen
 Reihenfolge zusammen. Anwendung muss dies tun.

UDP-Header UDP/DNS-Aufzeichnung mit Wireshark

Transmission Control Protocol TCP-Header

Quelle: Wikipedia.org, Appaloosa, 23:04, 6. Jul. 2007 (CEST)

http://de.wikipedia.org/w/index.php?title=Datei:TCP_Header.svg&filetimestamp=20070706210301

TCP Verbindung aufbauen und gewährleisten (three-way-handshake)

3. SYN wurde empfangenVerbindung aufgebaut
Sende ACK
(SEQ=101, ACK=301,
CTL=ACK)

Empfange SYN
Sende SYN-ACK
(SEQ=300, ACK=101,
CTL=SYN, ACK)

http://de.wikipedia.org/ wiki/Drei-Wege-Handschlag

1. Three-Way-Handshake SYN-Aufzeichnung mit Wireshark

2. Three-Way-Handshake SYN-Aufzeichnung mit Wireshark

3. Three-Way-Handshake ACK-Aufzeichnung mit Wireshark

TCP Verbindung abbauen TCP teardown process (ordentlich)

Filter setzen oder rechte Maustaste auf TCP-Paket und Folgen - TCP Stream

TCP teardown process (ordentlich) Aufzeichnung mit Wireshark

TCP Verbindung abbrechen Reset / RST-Flag

CTL Werte (Flags)

CTL-Wert	Beschreibung
URG	Urgent, dringend (selten gebraucht)
ACK	Acknoledgement (Bestätigung des TCP-Segment Empfangs)
PSH	Push (kleinere Segemente werden gesandt, vorher und nachher gepuffert)
RST	Reset (Abbruch der Verbindung, Probleme oder Abweisung)
SYN	Synchronize (Synchronisation von Sequenznummern)
FIN	Finish (Schlussflag, keine Daten kommen mehr)

Nützliches zu TCP ist auf Wikipedia.org zu finden.

http://de.wikipedia.org/wiki/Transmission Control Protocol

TCP-Header TCP/HTTP-Aufzeichnung mit Wireshark

Datenflusssteuerung TCP Receive Window-Size (Empfangsfenster)

- Mit der Window-Size ist TCP in der Lage mehrere Pakete zu senden ohne bei jedem versandten Paket die Bestätigung ACK abwarten zu müssen.
- Dazu wird eine Window-Size, also ein Empfangsfenster bestimmt.
- Dies ist dann auch das Maximum, welches ohne Empfangsbestätigung ACK gesandt werden kann.
- So ist sichergestellt, dass der Empfangsspeicher (Puffer) nicht überläuft.

netstat in Linux

Mit NESTAT laufende Sessions anzeigen:

```
# netstat -an (Zeigt alle Sockets an)
# netstat -tan (Zeigt aktive Verbindungen an)
# netstat -anep (Alles mit Benutzern und Prozess-IDs)
# netstat -an | grep ":80" (Nur Sessions auf Port 80)
# netstat -r (Zeigt die Routingtable an)
# netstat -i (Zeigt Paketstatistik der Interfaces an)
# netstat -s (Zeigt Statistik an)
# netstat -at (Nur alle TCP)
# netstat -au (Nur alle UDP)
```


Agenda

«Vermittlungsschicht»

Einordnung der Vermittlungsschicht

Application Layer Anwendungsschicht

Transport Layer Transportschicht

Network Layer Vermittlungsschicht

Data Link Layer Sicherungsschicht

Physical Layer Bitübertragungsschicht

Aufgaben der Netzwerkschicht OSI-Vermittlungsschicht

- Übernimmt Segmente der Transportschicht
- Fügt IP-Header der PDU zu (Die zu transportierenden Nachrichten werden Transport Protocol Data Units genannt)
- Stellt Host zu Host Verbindung her
 - Source- und Destination-Adresse
- Leitet die Pakete ins Zielnetzwerk weiter (Routing → Layer 3)
- Die Netzwerkschicht (IP → Layer 3) ist verbindungslos und ungesichert, dies übernimmt die Transport-schicht (TCP) → Layer 4

Grundlagen IPv4

IPv4 Paket Header

32 Bit

0–3	4–7	8–13	14–15	16–18	19–23	24–27	28–31
Version	IHL	DSCP	ECN	Gesamtlänge			
Identifikation			Flags	Fra	gment Offse	t	
T	ΓL	Protokol	I	Header-Prüfsumme			
Quell-IP-Adresse							
Ziel-IP-Adresse							
evtl. Optionen							

Version = V4/V6 IHL= IP Header Length DSCP/ECN = Priorisierung (vorher TOS)

Paketlänge = gesamtes Paket inkl. Kopfdaten Kennung = Fragmente erkennen

Flags = 0,1,2 Fragementierung Kontroll-Schalter Fragmentoffset = Aufteilung

TTL = Lebensdauer des Pakets (Anzahl Hops, Max. 255)

Header Checksumme = sichert Header

https://de.wikipedia.org/wiki/IPv4

Protokoll = Folgeprotokoll (TCP/UDP)
Optionen/Füllbits = Zusatzinfos

insol

Selber aufzeichnen / IPv4-Header IPv4-Aufzeichnung mit Wireshark

Agenda

«Sicherungsschicht»

Einordnung der Sicherungsschicht

Application Layer Anwendungsschicht

Transport Layer Transportschicht

Network Layer Vermittlungsschicht

Data Link Layer Sicherungsschicht

Physical Layer Bitübertragungsschicht

Grundlagen ICT Beispiel Ethernet Frame

• Frames (Ethernet IEEE 802.3) Header-Länge = 18 Bytes

- Prämambel / Start Frame Delimiter (aus Kompatibilitätsgründen, diente der Synchronisation)
- VLAN-Tag f
 ür die Definition von VLANs
- Type Feld für die Definition des folgenden Protokolls auf höherer Schicht
- PAD Feld dient der Definition der Mindestgrösse von 64 Byte
- CRC Prüfsumme

Quelle Grafik: Wikipedia.org

Die MAC-Adresse

Wert	Beschreibung
MAC-Adresse	 Genannt auch: Ethernet Adresse, Physische Adresse, NIC-Adresse, LAN-Adresse Burned-In-Adresse, weil fest vom Hersteller zugewiesen
Syntax	 Beispiel: 00:60:2f:84:61:0a Erste 24 Bit (00:60:2f) sind OUI (Organizationally Unique Identifier) und bezeichnen den Hersteller (hier Cisco) Letzten 24 Bit (84:61:0a) werden einmalig vom Hersteller vergeben
Darstellung	Darstellung mit - oder . also 00-60-2f-84-61-0a oder 00:60:2f:84:61:0a Unicast-Adresse: 00:60:2f:84:61:0a Broadcast-Adresse: ff:ff:ff:ff:ff Multicast-Adressen: 01:00:5e:00:00:00 bis 01:00:5e:7f:ff:ff und 00:00:5e:00:01:ID für VRRP (Virtual Router Redundancy Protocol)

Deine Hausaufgaben

Stoff Nachbearbeitung 3. Modul:

- Repetition der Folieninhalte des Modulblocks: Ergänzen deiner individuellen Zusammenfassung.
- Lernstoff Vertiefung:
 - CCNA2 Kapitel 1 «Introduction to TCP/IP Transport and Applications»
 - «https://de.wikipedia.org/wiki/Transmission_Control_Protocol»
 - «https://de.wikipedia.org/wiki/User_Datagram_Protocol»
 - «https://de.wikipedia.org/wiki/Domain_Name_System»
 - Network Academy: https://www.netacad.com/portal Cisco NetAcademy Kapitel 9 und 10
- Analysiere die DNS-Zone der Domain deiner Firma mittels dig und beantworte die nachfolgenden Fragen. Bringe die Ergebnisse und die genutzten Befehlszeilen deiner Analyse zur Besprechung in den Unterricht mit:
 - Wie lautet der A-Record Eintrag?
 - Wie lautet der AAAA-Record Eintrag für IPv6?
 - Mit welchen dig Optionen kannst du direkt nur die IP-Adresse des A-Record als Ausgabe anzeigen?
 - Hat es für den A-Record einen «in-addr.arpa» Eintrag?
 - Wie lauten die MX-Einträge?
 - Welche IP-Adressen sind im MX enthalten?
 - Ist ein SPF-Eintrag gesetzt?
 - Welche TXT-Einträge sind in der Zone enthalten?
 - Ist ein DMARC-Eintrag gesetzt?
 - Wird DNSSEC verwendet?
- · Vorbereitung auf das nächste Modul:
 - CCNA1 Buch Kapitel 11 «Perspectives on IPv4 Subnetting»

