Quick Sort and Full History Recurrences

Subhabrata Samajder

IIIT, Delhi Summer Semester, 9th May, 2022

Quicksort

Motivation

Recall:

- Mergesort needs extra storage.
- It is not possible to predict where each element will end up in the final order.

Motivation

Recall:

- Mergesort needs extra storage.
- It is not possible to predict where each element will end up in the final order.

Question: Can we somehow perform a different divide and conquer so that the position of the elements can be determined?

Motivation

Recall:

- Mergesort needs extra storage.
- It is **not** possible to **predict** where each element will end up in the final order.

Question: Can we somehow perform a different divide and conquer so that the position of the elements can be determined?

Basic Idea of Quicksort:

- Spend most of the effort in the divide step and
- very little in the conquer step!

The Divide and Combine Step

• The Divide Step:

- Suppose that we know a number x such that *one-half* of the elements are > x and the *other-half* of the elements are $\le x$.
- Compare all elements to x.
- Partition the sequence into two parts according to the answer.
- This partition requires n-1 comparisons.
- One part can occupy the first half of the array and the other the second half.
- : can be done *in-place*.

The Divide and Combine Step

• The Divide Step:

- Suppose that we know a number x such that *one-half* of the elements are > x and the *other-half* of the elements are $\le x$.
- Compare all elements to x.
- Partition the sequence into two parts according to the answer.
- This partition requires n-1 comparisons.
- One part can occupy the first half of the array and the other the second half.
- : can be done *in-place*.
- Then sort each subsequence recursively.

The Divide and Combine Step

• The Divide Step:

- Suppose that we know a number x such that *one-half* of the elements are > x and the *other-half* of the elements are $\le x$.
- Compare all elements to x.
- Partition the sequence into two parts according to the answer.
- This partition requires n-1 comparisons.
- One part can occupy the first half of the array and the other the second half.
- .: can be done in-place.
- Then sort each subsequence recursively.
- The Combine Step: Trivial!
 - The two parts already occupy the correct positions in the array.
 - Therefore, no additional space is required.

How To Find x?

- ullet Till now, it was assumed that the value of x is known.
- However, *x* is usually unknown.

How To Find *x*?

- Till now, it was assumed that the value of x is known.
- However, x is usually unknown.
- **Note:** It is easy to see, that the same algorithm will work no matter which number is used for the *partition*.
- Call the number x as the pivot.

How To Find *x*?

- Till now, it was assumed that the value of x is known.
- However, x is usually unknown.
- **Note:** It is easy to see, that the same algorithm will work no matter which number is used for the *partition*.
- Call the number x as the pivot.
- Our purpose is to partition the array into two parts,
 - one with numbers > than the pivot and
 - the other with numbers ≤ the pivot.
- This is achieved via the partitioning algorithm.

The Partition Algorithm

- Use two pointers to the array, L and R.
- Initially,
 - L points to the left side of the array and
 - *R* points to the right side of the array.

- The pointers "move" in opposite directions toward each other.
- Swap(x_L, x_R): If $x_L > pivot$ and $x_R \le pivot$.

- [
- 1		_	۱ ۵	-	10		12	۱ .	15	-	2	12	4	11	16	1.4
- 1	О	2	Ö	ס ן	10	9	12	I	15	/	3	13	4	11	10	14
- 1			l			l					l			l		

Recursive Phase:

Recursive Phase:

6	2		-	10	۱ ۵	10	-1	15	7	2	12	4	11	16	1.4
0	2	Ö	ס ן	10	9	12	1	15	/	3	13	4	11	10	14
		l			l								l		

1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14	
l .											l				ĺ	ı

①	2	4 5	3	6	12	9	15	7	10	13	8	11	16	14	
----------	---	-----	---	---	----	---	----	---	----	----	---	----	----	----	--

1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14	
---	---	---	---	---	---	----	---	----	---	----	----	---	----	----	----	--

Recursive Phase:

Note: When a single number appears between two pivots it is obviously in the right position.

Recursive Phase:

Home Work: Write the Quicksort algorithm and implement it in C.

Correctness

• Guaranteed by the following *loop invariant*:

"At step k of the algorithm, $pivot \ge x_i$ for all i such that i < L, and $pivot < X_j$ for all j such that j > R".

Correctness

• Guaranteed by the following *loop invariant*:

"At step k of the algorithm, $pivot \ge x_i$ for all i such that i < L, and $pivot < X_j$ for all j such that j > R".

Home Work: Prove it using mathematical induction.

Correctness

• Guaranteed by the following *loop invariant*:

"At step k of the algorithm, $pivot \ge x_i$ for all i such that i < L, and $pivot < X_j$ for all j such that j > R".

Home Work: Prove it using mathematical induction.

• **Termination:** When L = R.

Choosing a Good Pivot

- Divide-and-conquer algorithms work best when the parts have equal sizes.
- : the closer the pivot is to the middle, the faster the algorithm.
- It is possible to find the median of the sequence (using the Median finding algorithm), but it is not worth the effort.
- In fact, choosing a uniform random element suffices.
- If the sequence is in a *uniformly random order*, then we might as well choose the first element as the pivot.

- Running time: Depends on the input sequence and pivot.
- If the pivot always partitions the list into two equal parts, then

$$T(n) = 2T(n/2) + \mathcal{O}(n), \quad T(2) = 1,$$

 $\Rightarrow T(n) = \mathcal{O}(n \log n).$

- Running time: Depends on the input sequence and pivot.
- If the pivot always partitions the list into two equal parts, then

$$T(n) = 2T(n/2) + \mathcal{O}(n), \quad T(2) = 1,$$

 $\Rightarrow T(n) = \mathcal{O}(n \log n).$

• But we can get $O(n \log n)$ even under much weaker conditions!

- Running time: Depends on the input sequence and pivot.
- If the pivot always partitions the list into two equal parts, then

$$T(n) = 2T(n/2) + \mathcal{O}(n), \quad T(2) = 1,$$

 $\Rightarrow T(n) = \mathcal{O}(n \log n).$

- But we can get $O(n \log n)$ even under much weaker conditions!
- However, if the pivot is very close to one side of the sequence, then the running time is much higher.

- Running time: Depends on the input sequence and pivot.
- If the pivot always partitions the list into two equal parts, then

$$T(n) = 2T(n/2) + \mathcal{O}(n), \quad T(2) = 1,$$

 $\Rightarrow T(n) = \mathcal{O}(n \log n).$

- But we can get $O(n \log n)$ even under much weaker conditions!
- However, if the pivot is very close to one side of the sequence, then the running time is much higher.

Example:

- If the sequence is already sorted.
- Time Complexity: $\mathcal{O}(n^2)$.

Cost Analysis (Cont.)

- . . .
- The quadratic worst case for (almost) sorted sequences can be eliminated
 - by comparing the first, last, and middle elements,
 - and then taking their median (the second largest) as the pivot.

Cost Analysis (Cont.)

-
- The quadratic worst case for (almost) sorted sequences can be eliminated
 - by comparing the first, last, and middle elements,
 - and then taking their median (the second largest) as the pivot.
- Safer method: Choose the pivot randomly from among the elements in the sequence.
- Worst-case complexity: $\mathcal{O}(n^2)$ (since there is still a chance that the pivot is the smallest element in the sequence.)

Cost Analysis (Cont.)

- . . .
- The quadratic worst case for (almost) sorted sequences can be eliminated
 - by comparing the first, last, and middle elements,
 - and then taking their median (the second largest) as the pivot.
- Safer method: Choose the pivot randomly from among the elements in the sequence.
- Worst-case complexity: $\mathcal{O}(n^2)$ (since there is still a chance that the pivot is the smallest element in the sequence.)
- However, the likelihood that this worst case occur is very small.

Average-case Complexity

Given a sequence x_1, \ldots, x_n , assume that each of the x_i has the same probability of being selected as the pivot.

Average-case Complexity

Given a sequence x_1, \ldots, x_n , assume that each of the x_i has the same probability of being selected as the pivot.

Running time when i^{th} smallest element is the pivot:

$$T(n) = \underbrace{n-1}_{\text{partitioning}} + T(i-1) + T(n-i).$$

Average-case Complexity

Given a sequence x_1, \ldots, x_n , assume that each of the x_i has the same probability of being selected as the pivot.

Running time when i^{th} smallest element is the pivot:

$$T(n) = \underbrace{n-1}_{\text{partitioning}} + T(i-1) + T(n-i).$$

The average-case time complexity is then given by

$$T(n) = n - 1 + \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i))$$

$$= n - 1 + \frac{2}{n} \sum_{i=0}^{n-1} T(i) \quad [Full history recurrence]$$

Full History Recurrences

Full History Recurrence

Definition

A full-history recurrence relation is one that depends on all the previous values of the function, not just on a few of them.

Consider

$$T(n) = c + \sum_{i=1}^{n-1} T(i),$$

where c is a constant and T(1) is given.

Consider

$$T(n) = c + \sum_{i=1}^{n-1} T(i),$$

where c is a constant and T(1) is given.

Solution:

• We use a method that cancels most of the intermediate terms.

Consider

$$T(n) = c + \sum_{i=1}^{n-1} T(i),$$

where c is a constant and T(1) is given.

- We use a method that cancels most of the intermediate terms.
- Sometimes called *elimination of history*.

Consider

$$T(n) = c + \sum_{i=1}^{n-1} T(i),$$

where c is a constant and T(1) is given.

- We use a method that cancels most of the intermediate terms.
- Sometimes called *elimination of history*.
- Compare T(n+1) with T(n) and subtract to get

$$T(n+1)-T(n) = T(n) \Rightarrow T(n+1) = 2T(n) \Rightarrow T(n+1) = T(1)2^{n}$$
.

Consider

$$T(n) = c + \sum_{i=1}^{n-1} T(i),$$

where c is a constant and T(1) is given.

- We use a method that cancels most of the intermediate terms.
- Sometimes called *elimination of history*.
- Compare T(n+1) with T(n) and subtract to get

$$T(n+1)-T(n) = T(n) \Rightarrow T(n+1) = 2T(n) \Rightarrow T(n+1) = T(1)2^{n}.$$

- Note:
 - The claim is true for T(1), $T(1) = T(0+1) = T(1)2^0 = T(1)$.

Consider

$$T(n) = c + \sum_{i=1}^{n-1} T(i),$$

where c is a constant and T(1) is given.

- We use a method that cancels most of the intermediate terms.
- Sometimes called *elimination of history*.
- Compare T(n+1) with T(n) and subtract to get

$$T(n+1)-T(n) = T(n) \Rightarrow T(n+1) = 2T(n) \Rightarrow T(n+1) = T(1)2^{n}$$
.

- Note:
 - The claim is true for T(1), $T(1) = T(0+1) = T(1)2^0 = T(1)$.
 - **Induction step:** If the claim is true for T(n), then

$$T(n+1) = 2T(n) = T(1)2^n$$
.

Correct?

Correct? No!!

Correct? No!!

Example: Set T(1) = 1 and c = 5, s.t., $T(2) = 6 \neq 2T(1) = 2$.

Correct? No!!

Example: Set T(1) = 1 and c = 5, s.t., $T(2) = 6 \neq 2T(1) = 2$.

Reason:

• This is an example of carelessly going through an induction proof *ignoring the base case*.

Correct? No!!

Example: Set T(1) = 1 and c = 5, s.t., $T(2) = 6 \neq 2T(1) = 2$.

- This is an example of carelessly going through an induction proof ignoring the base case.
- Note: The proof does not work for T(2), since T(2) T(1) = c may not be equal to T(1).

Correct? No!!

Example: Set T(1) = 1 and c = 5, s.t., $T(2) = 6 \neq 2T(1) = 2$.

- This is an example of carelessly going through an induction proof *ignoring the base case*.
- Note: The proof does not work for T(2), since T(2) T(1) = c may not be equal to T(1).
- Warning: One should be very suspicious when a parameter (c in this case) that appears in the expression does not appear in the final solution.

Correct? No!!

Example: Set T(1) = 1 and c = 5, s.t., $T(2) = 6 \neq 2T(1) = 2$.

- This is an example of carelessly going through an induction proof ignoring the base case.
- Note: The proof does not work for T(2), since T(2) T(1) = c may not be equal to T(1).
- Warning: One should be very suspicious when a parameter (c in this case) that appears in the expression does not appear in the final solution.
- Correct Solution: Note that T(2) = T(1) + c (by definition), and that the proof above is correct for all $n \ge 2$.

Correct? No!!

Example: Set T(1) = 1 and c = 5, s.t., $T(2) = 6 \neq 2T(1) = 2$.

- This is an example of carelessly going through an induction proof *ignoring the base case*.
- Note: The proof does not work for T(2), since T(2) T(1) = c may not be equal to T(1).
- Warning: One should be very suspicious when a parameter (c in this case) that appears in the expression does not appear in the final solution.
- Correct Solution: Note that T(2) = T(1) + c (by definition), and that the proof above is correct for all $n \ge 2$.
- $T(n+1) = (T(1)+c)2^{n-1}$.

$$T(n) = n - 1 + \frac{2}{n} \sum_{i=1}^{n-1} T(i)$$
, (for $n \ge 2$); $T(1) = 0$.

$$T(n) = n - 1 + \frac{2}{n} \sum_{i=1}^{n-1} T(i)$$
, (for $n \ge 2$); $T(1) = 0$.

• Idea: Use the shifting and canceling terms technique, s.t., most of the T(i) terms gets canceled out.

Multiplying both sides by n, we get:

$$nT(n) = n(n-1) + 2\sum_{i=1}^{n-1} T(i),$$

 $(n+1)T(n+1) = n(n+1) + 2\sum_{i=1}^{n} T(i).$

Multiplying both sides by n, we get:

$$nT(n) = n(n-1) + 2\sum_{i=1}^{n-1} T(i),$$

 $(n+1)T(n+1) = n(n+1) + 2\sum_{i=1}^{n} T(i).$

$$(n+1)T(n+1) - nT(n) = n(n+1) - n(n-1) + 2T(n)$$

Multiplying both sides by n, we get:

$$nT(n) = n(n-1) + 2\sum_{i=1}^{n-1} T(i),$$

$$(n+1)T(n+1) = n(n+1) + 2\sum_{i=1}^{n} T(i).$$

$$(n+1)T(n+1) - nT(n) = n(n+1) - n(n-1) + 2T(n)$$

= $2n + 2T(n)$

Multiplying both sides by n, we get:

$$nT(n) = n(n-1) + 2\sum_{i=1}^{n-1} T(i),$$

$$(n+1)T(n+1) = n(n+1) + 2\sum_{i=1}^{n} T(i).$$

$$(n+1)T(n+1) - nT(n) = n(n+1) - n(n-1) + 2T(n)$$

$$= 2n + 2T(n)$$

$$\Rightarrow T(n+1) = \frac{n+2}{n+1}T(n) + \frac{2n}{n+1}$$

Multiplying both sides by n, we get:

$$nT(n) = n(n-1) + 2\sum_{i=1}^{n-1} T(i),$$

$$(n+1)T(n+1) = n(n+1) + 2\sum_{i=1}^{n} T(i).$$

$$(n+1)T(n+1) - nT(n) = n(n+1) - n(n-1) + 2T(n)$$

$$= 2n + 2T(n)$$

$$\Rightarrow T(n+1) = \frac{n+2}{n+1}T(n) + \frac{2n}{n+1}$$

$$\leq \frac{n+2}{n+1}T(n) + 2 \text{ (A close approx.)}$$

$$T(n) \le 2 + \frac{n+1}{n} \left[2 + \frac{n}{n-1} \left[2 + \frac{n-1}{n-2} \left[\cdots \frac{4}{3} \right] \right] \right]$$

$$T(n) \leq 2 + \frac{n+1}{n} \left[2 + \frac{n}{n-1} \left[2 + \frac{n-1}{n-2} \left[\cdots \frac{4}{3} \right] \right] \right]$$

$$= 2 \left[1 + \frac{n+1}{n} + \frac{n+1}{n} \cdot \frac{n}{n-1} + \frac{n+1}{n} \cdot \frac{n}{n-1} \cdot \frac{n-1}{n-2} + \frac{n+1}{n} \cdot \frac{n}{n-1} \cdot \frac{n-1}{n-2} \cdots \frac{4}{3} \right]$$

$$T(n) \leq 2 + \frac{n+1}{n} \left[2 + \frac{n}{n-1} \left[2 + \frac{n-1}{n-2} \left[\cdots \frac{4}{3} \right] \right] \right]$$

$$= 2 \left[1 + \frac{n+1}{n} + \frac{n+1}{n} \cdot \frac{n}{n-1} + \frac{n+1}{n} \cdot \frac{n}{n-1} \cdot \frac{n-1}{n-2} + \cdots + \frac{n+1}{n} \cdot \frac{n}{n-1} \cdot \frac{n-1}{n-2} \cdots \frac{4}{3} \right]$$

$$= 2 \left[1 + \frac{n+1}{n} + \frac{n+1}{n-1} + \frac{n+1}{n-2} + \cdots + \frac{n+1}{3} \right]$$

$$T(n) \leq 2 + \frac{n+1}{n} \left[2 + \frac{n}{n-1} \left[2 + \frac{n-1}{n-2} \left[\cdots \frac{4}{3} \right] \right] \right]$$

$$= 2 \left[1 + \frac{n+1}{n} + \frac{n+1}{n} \cdot \frac{n}{n-1} + \frac{n+1}{n} \cdot \frac{n}{n-1} \cdot \frac{n-1}{n-2} + \cdots + \frac{n+1}{n} \cdot \frac{n}{n-1} \cdot \frac{n-1}{n-2} \cdots \frac{4}{3} \right]$$

$$= 2 \left[1 + \frac{n+1}{n} + \frac{n+1}{n-1} + \frac{n+1}{n-2} + \cdots + \frac{n+1}{3} \right]$$

$$= 2(n+1) \left[\frac{1}{n+1} + \frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \cdots + \frac{1}{3} \right]$$

Expanding, we get

$$T(n) \leq 2 + \frac{n+1}{n} \left[2 + \frac{n}{n-1} \left[2 + \frac{n-1}{n-2} \left[\cdots \frac{4}{3} \right] \right] \right]$$

$$= 2 \left[1 + \frac{n+1}{n} + \frac{n+1}{n} \cdot \frac{n}{n-1} + \frac{n+1}{n} \cdot \frac{n}{n-1} \cdot \frac{n-1}{n-2} + \cdots + \frac{n+1}{n} \cdot \frac{n}{n-1} \cdot \frac{n-1}{n-2} \cdots \frac{4}{3} \right]$$

$$= 2 \left[1 + \frac{n+1}{n} + \frac{n+1}{n-1} + \frac{n+1}{n-2} + \cdots + \frac{n+1}{3} \right]$$

$$= 2(n+1) \left[\frac{1}{n+1} + \frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \cdots + \frac{1}{3} \right]$$

$$= 2(n+1)(H(n+1) - 1.5);$$

where $H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n}$ is the Harmonic series.

Harmonic Series Approximation

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} > \int_{1}^{n+1} \frac{dx}{x} = \ln(n+1)$$
 and

Harmonic Series Approximation

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} > \int_{1}^{n+1} \frac{dx}{x} = \ln(n+1)$$
 and $H(n) = 1 + \left(\frac{1}{2} + \dots + \frac{1}{n}\right) < 1 + \int_{1}^{n} \frac{dx}{x} = 1 + \ln(n).$

Harmonic Series Approximation

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} > \int_{1}^{n+1} \frac{dx}{x} = \ln(n+1)$$
 and $H(n) = 1 + \left(\frac{1}{2} + \dots + \frac{1}{n}\right) < 1 + \int_{1}^{n} \frac{dx}{x} = 1 + \ln(n).$

Combining: $\ln(n+1) < H(n) < 1 + \ln(n)$.

Let $\delta_n = H(n) - \ln n$.

Let
$$\delta_n = H(n) - \ln n$$
. Then,
$$\ln(1+1/n) < H(n) - \ln n < 1, \text{ and }$$

Let
$$\delta_n = H(n) - \ln n$$
. Then,
$$\ln(1+1/n) < H(n) - \ln n < 1, \text{ and }$$

$$\delta_n - \delta_{n+1} = (H(n) - \ln n) - (H(n+1) - \ln(n+1))$$

Let
$$\delta_n = H(n) - \ln n$$
. Then,
$$\ln(1+1/n) < H(n) - \ln n < 1, \text{ and }$$

$$\delta_n - \delta_{n+1} = (H(n) - \ln n) - (H(n+1) - \ln(n+1))$$

= $\ln(n+1) - \ln n - \frac{1}{n+1}$

Let
$$\delta_n = H(n) - \ln n.$$
 Then,
$$\ln(1+1/n) < H(n) - \ln n < 1, \text{ and }$$

$$\begin{split} \delta_n - \delta_{n+1} &= (H(n) - \ln n) - (H(n+1) - \ln(n+1)) \\ &= \ln(n+1) - \ln n - \frac{1}{n+1} \\ &= \int_n^{n+1} \frac{dx}{x} - \frac{1}{n+1} > 0 \quad \text{(See the picture!)}, \end{split}$$

i.e., δ_n is monotone decreasing.

Let $\delta_n = H(n) - \ln n$. Then, $\ln(1+1/n) < H(n) - \ln n < 1, \text{ and }$

$$\begin{split} \delta_n - \delta_{n+1} &= (H(n) - \ln n) - (H(n+1) - \ln(n+1)) \\ &= \ln(n+1) - \ln n - \frac{1}{n+1} \\ &= \int_{n}^{n+1} \frac{dx}{x} - \frac{1}{n+1} > 0 \quad \text{(See the picture!)}, \end{split}$$

i.e., δ_n is monotone decreasing. Therefore δ_n converges and let

$$\gamma = \lim_{n \to \infty} \delta_n = \lim_{n \to \infty} (H(n) - \ln n).$$

Let $\delta_n = H(n) - \ln n$. Then, $\ln(1+1/n) < H(n) - \ln n < 1, \text{ and }$

$$\delta_{n} - \delta_{n+1} = (H(n) - \ln n) - (H(n+1) - \ln(n+1))$$

$$= \ln(n+1) - \ln n - \frac{1}{n+1}$$

$$= \int_{-\infty}^{n+1} \frac{dx}{x} - \frac{1}{n+1} > 0 \text{ (See the picture!)},$$

i.e., δ_n is monotone decreasing. Therefore δ_n converges and let

$$\gamma = \lim_{n \to \infty} \delta_n = \lim_{n \to \infty} (H(n) - \ln n).$$

 $\gamma \approx 0.5772$ is called the **Euler constant** (Euler, 1735).

Let $\delta_n = H(n) - \ln n$. Then, $\ln(1+1/n) < H(n) - \ln n < 1, \text{ and}$

$$\begin{split} \delta_n - \delta_{n+1} &= (H(n) - \ln n) - (H(n+1) - \ln(n+1)) \\ &= \ln(n+1) - \ln n - \frac{1}{n+1} \\ &= \int_n^{n+1} \frac{dx}{x} - \frac{1}{n+1} > 0 \quad \text{(See the picture!)}, \end{split}$$

i.e., δ_n is monotone decreasing. Therefore δ_n converges and let

$$\gamma = \lim_{n \to \infty} \delta_n = \lim_{n \to \infty} (H(n) - \ln n).$$

 $\gamma \approx 0.5772$ is called the **Euler constant** (Euler, 1735). $\therefore H(n) \approx \ln n + \gamma$.

Using the Harmonic series approximation, we get

$$T(n) \leq 2(n+1)(H(n+1)-1.5)$$

Using the Harmonic series approximation, we get

$$T(n) \le 2(n+1)(H(n+1)-1.5)$$

 $\approx 2(n+1)(\ln n + \gamma - 1.5) + \mathcal{O}(1)$

Using the Harmonic series approximation, we get

$$T(n) \le 2(n+1)(H(n+1)-1.5)$$

 $\approx 2(n+1)(\ln n + \gamma - 1.5) + \mathcal{O}(1)$
 $= \mathcal{O}(n \log n).$

Using the Harmonic series approximation, we get

$$T(n) \le 2(n+1)(H(n+1)-1.5)$$

 $\approx 2(n+1)(\ln n + \gamma - 1.5) + \mathcal{O}(1)$
 $= \mathcal{O}(n \log n).$

... Quicksort is indeed quick on the average!!

• In practice, quicksort is very fast, so it well deserves it's name.

• In practice, quicksort is very fast, so it well deserves it's name.

• Reason:

- Many elements are compared against the same pivot element.
- : the pivot can be stored in a register.
- It is an in-place algorithm.

• In practice, quicksort is very fast, so it well deserves it's name.

- Many elements are compared against the same pivot element.
- : the pivot can be stored in a register.
- It is an in-place algorithm.
- Improvement: By choosing the base of the induction wisely.

• In practice, quicksort is very fast, so it well deserves it's name.

- Many elements are compared against the same pivot element.
- : the pivot can be stored in a register.
- It is an in-place algorithm.
- **Improvement:** By choosing the base of the induction wisely.
 - The idea is to start the induction not always from 1.
 - Use, simple sorting techniques, like insertion sort or selection sort for small sequences.
 - **Note:** The efficiency of quicksort shows only for large sequences.
 - Define the base case for quicksort to be of size larger than 1 (10 to 20 is a good size).
 - Handle the base case by insertion sort or selection sort.

Books Consulted

• Chapter 6, Section 4.3 & 4.4 of *Introduction to Algorithms: A Creative Approach* by Udi Manber.

Thank You for your kind attention!