K přípravě na zápočtový test jsem vyplodil 3 typy příkladů, každý ve dvou variantách, na 3 typy úloh. Za jejich vypracování dávám možnost získat body za aktivitu (celkově až 3 body za 3 splněné úkoly). Pozor! Vyberte si prosím vždy pouze jednu z variant příkladu (např. u příkladu 1 pouze 1a nebo pouze 1b), ale máte možnost výběru varianty u každého příkladu (tedy např. vypracujete 1a, 2b, 3a). Posílejte mi domácí úkoly nejlépe napsané čitelně ale ručně (na papír, na tablet,...) a pak oskenované nebo vyfocené. Deadlinem nechť je přespříští cvičení, ale samozřejmě by bylo ideální odevzdat to do příštího cvičení, kdy budeme psát zápočtový test. V případě možných přehlédnutí v zadání nebo nejasností, nepochopení či zásadními obtížemi s vypracováním příkladů, mi prosím pište na email <u>munzavoj@fel.cvut.cz</u>.

1 Tečné a normálové zrychlení

- Těleso se pohybuje po trajektorii:

(1a)
$$x(t) = \alpha e^{\beta t} \cos(\beta t)$$
, $y(t) = \alpha e^{\beta t} \sin(\beta t)$, $z(t) = \gamma t^4$
(1b) $x(t) = B \ln(At)$, $y(t) = \sqrt{Ct}$, $z(t) = B e^{\sin(At)}$

- Nalezněte rychlost v, celkové zrychlení a, tečné zrychlení a_t a alespoň formálně napište normálové zrychlení a_n .
- Určete rozměry konstant

(1a)
$$[\alpha], [\beta], [\gamma].$$
 (1b) $[A], [B], [C].$

2 Eulerovo diferenční schéma

- Sestavte pohybovou rovnici pro pohyb částice ve směru x způsobený silou

(2a)
$$F = -kx^3$$

$$(2b) F = -kv^2$$

kde k je konstanta, v je rychlost ve směru x. Mocniny u x a v_x při zadání na hodině mohly lišit. Použijte mocniny, které se Vám líbí.

- Navrhněte tvar Eulerova diferenčního schématu pro její řešení a rozepište, jak budou vypadat jednotlivé iterace startující na počáteční podmínce $x_0 = L$, $v_0 = 0$.

3 Mechanická práce po křivce

- Vypočtěte mechanickou práci vykonanou částicí v silovém poli $m{F}$ při pohybu po křivce Γ :

(3a) $F = (\alpha y, \beta z^2, \gamma x^3)$, kde x, y, z jsou prostorové souřadnice a α, β, γ jsou konstanty.

Γ je průsečíkem ploch $y=\frac{2\beta}{\alpha}x^2$, z=-x. Pohyb probíhá z bodu A=[0,?,?] do bodu B=[L,?,?].

(3b) $F = \left(\alpha\sqrt{x}, \beta y^3, -\frac{\alpha^2}{\beta}z^4\right)$, kde x, y, z jsou prostorové souřadnice a α, β jsou konstant. Γ je šroubovice s poloměrem R a výškou závitu $2\pi b$. Osou šroubovice je osa z. Na počátku je částice v A = [R, 0, 0] pak na šroubovici vykoná čtvrt obrátky v kladném směru z, takže na konci pohybu je částice v bodě $B = [0, R, \frac{b\pi}{2}]$.

X Rozměrová analýza

V rámci přípravy přidávám i dva převzaté příklady na rozměrovou analýzu. Tu už jsme si procvičili v písemce na začátku jedné z hodin, takže za tyto příklady body nebudou. Slouží jen k přípravě, proto přidávám i jejich výsledky.

Přesýpací hodiny

Přesýpací hodiny odměřují čas pomocí doby, kterou se sype jemný písek úzkým hrdlem o ploše S z horní do dolní nádobky. Experimentálně můžeme zjistit, že rychlost sypání $\Delta m/\Delta t$ (hmotnost přesypaná za jednotku času) závisí na průřezu otvoru S mezi nádobami, hustotě zrnek písku ρ a (zřejmě) na tíhovém zrychlení g. Naopak, nezávisí na velikosti zrnek a množství písku. Pomocí rozměrové analýzy odhadněte vztah pro určení rychlosti sypání $\Delta m/\Delta t$ písku v hodinách.

 $\frac{\Delta m}{\Delta t} = k\rho g^{1/2} S^{5/4},$

Tlak v nitru Země a Slunce

Nemáme-li k dispozici další bližší informace, odhadujeme, že tlak v nitru hvězdy (planety) může záviset na její hmotnosti M, poloměru R, a jelikož jistě souvisí s gravitačními účinky hmoty, i na gravitační konstantě $\mathbf{G}=6,672\times 10^{-11}\,\mathrm{N\,m^2\,kg^{-2}}$ Newtonova gravitačního zákona. Pomocí rozměrové analýzy odhadněte vzorec pro výpočet tlaku v nitru hvězdy (planety) a odhadněte konkrétní hodnotu pro Slunce ($M_\mathrm{S}=1,99\times 10^{30}\,\mathrm{kg},\,R_\mathrm{S}=696\,000\,\mathrm{km}$) a Zemi ($M_\mathrm{Z}=5,97\times 10^{24}\,\mathrm{kg},\,R_\mathrm{Z}=6\,378\,\mathrm{km}$).

$$p \propto G \frac{M^2}{R^4}$$
.

Dosazením příslušných hodnot dostaneme odhady pro tlak v nitru Slunce a Země jako $p_{\rm S}\approx 10^{15}\,{\rm Pa}$ a $p_{\rm Z}\approx 10^{12}\,{\rm Pa}$. Současné udávané odhady tlaku v nitru Slunce a Země jsou $p_{\rm S}=2\times 10^7\,{\rm GPa},\, p_{\rm Z}=3,5\times 10^5\,{\rm MPa},$ odkud je vidět, že odhad pomocí rozměrové analýzy není špatný.