Use of raw data for diffraction space visualization: What are we missing in an integrated HKL file?

Jim Britten

McMaster University

Canada

Outline

Visualization of area detector scans
Supercells
Incommensurate scattering
Diffuse scattering
Twinning
Texture of thin films
Teaching Crystallography
Other diffraction patterns worth saving

Visualization of area detector scans

Supercells

Incommensurate scattering

Diffuse scattering

Twinning

Texture of thin films

Teaching Crystallography

Other diffraction patterns worth saving

Rotate the sample in the beam and collect 2D frames.

The 2D images can be mapped into reciprocal space – onto the surface of Ewald's Sphere

SCD - 2D image + scan \rightarrow 3D Int vs 2 θ XRD³ - 2D image + scan \rightarrow 3D Int vs 2 θ

From Bob He's book: Two-Dimensional X-Ray Diffraction

Single Crystal With Long *and* Short Range Ordering (LuFe₂O₄)

Y.J. Kim, Toronto

80C 173C

Protein Single Crystal

Alba Guarne Tamiza Nanji

Rigaku R-Axis4++ Image Plate

GdPb₂Cu₃Se₄ 1200°C for 4 hrs (Plates)

XRD pattern from Panalytical X'Pert Pro Diffractometer, Cu $K\alpha_1$

GdPb₂Cu₃Se₄

Pawel Grochulski. Look at a single grain of the powder on a protein beamline.

Canadian Macromolecular Crystallography Facility, 08B1-1 (CMCF-BM) Beamline

Visualization of area detector scans Supercells

Incommensurate scattering
Diffuse scattering

Twinning

Texture of thin films

Teaching Crystallography

Other diffraction patterns worth saving

Supercell

Athena Safa-Sefat Yurij Mozharivskij

Ba-As-Ni

Visualization of area detector scans Supercells

Incommensurate scattering

Diffuse scattering

Twinning

Texture of thin films

Teaching Crystallography

Other diffraction patterns worth saving

Aperiodic Incommensurate Crystal

Bruce Gaulin — Bi Cu Oxide Superconductor
When should small molecule crystallographers
publish raw diffraction data? IUCr21

Visualization of area detector scans
Supercells
Incommensurate scattering
Diffuse scattering

Twinning

Texture of thin films

Teaching Crystallography

Other diffraction patterns worth saving

Mn₅Ni₆Si₄; Marek Niewczas, Sheikh Ahmed

Mn₅Ni₆Si₄; Marek Niewczas, Sheikh Ahmed

HRTEM

Diffuse Scattering

Columns of hexanapthylbenzene are ordered along the stacking axis. The columns have a partial rotational disorder relative to one another. The refined structure shows a multiple orientations for the napthyls. The configuration of the molecule in the ordered stack cannot be determined.

Hexanapthylbenzene. Laura Harrington, Mike McGlinchey

19

Diffuse Scattering

Hexanapthylbenzene. Laura Harrington, Mike McGlinchey

Diffuse Scattering

Visualization of area detector scans Supercells Incommensurate scattering Diffuse scattering

Twinning

Texture of thin films
Teaching Crystallography
Other diffraction patterns worth saving

Small Molecule Twinned Crystal

Bruker Smart Apex2 CCD

3D diffraction pattern from thin film of $InAs_{(1-x)}Sb_x$ nanowires (isolate (111) reflections)

(220) and (311) shells

Diffuse lines connect twins

Figure 3. Twinning by 180° (or $\pm 60^{\circ}$) rotation about the [111] face of $InAs_{1-x}Sb_x$. Regions of multiple layer twinning account for the diffuse scattering observed in the 3D diffraction pattern. Twin planes are indicated by yellow lines.

Goosney, Jarvis, Britten, Lapierre, Infrared Physics and Technology

Visualization of area detector scans
Supercells
Incommensurate scattering
Diffuse scattering
Twinning
Texture of thin films
Teaching Crystallography
Other diffraction patterns worth saving

Multiple (8) Orientations of GaAs NW's on Si Substrate

Ray LaPierre, Vicky Jarvis, McMaster

Visualization of area detector scans
Supercells
Incommensurate scattering
Diffuse scattering
Twinning
Texture of thin films
Teaching Crystallography
Other diffraction patterns worth saving

Everything you have seen here and more . . .

Visualization of area detector scans
Supercells
Incommensurate scattering
Diffuse scattering
Twinning
Texture of thin films
Teaching Crystallography
Other diffraction patterns worth saving

Follow Phase Changes

What do we do with beautiful single crystal data from a quasicrystal?

Al₇₀Pd₂₁Mn₉ - Geetha Balakrishnan, University of Warwick Nathan Armstrong, Tom Timusk, McMaster

 $Al_{70}Pd_{21}Mn_{9}$ - Geetha Balakrishnan, University of Warwick Nathan Armstrong, Tom Timusk, McMaster

Software:

MAX3D: Jim Britten and Weiguang Guan,

McMaster University, Canada

Thank you for your attention.