

INDR 450/550

Spring 2022

Lecture 14: Validation and Model Shrinkage

March 30, 2022

Fikri Karaesmen

Announcements

- Class Exercise at the end of lecture today. If you are participating online, please upload your document under Course Contents/Class Exercises
- HW 2 available with a deadline of April 4 (Labs 3 and 4).
- Lab 5 material (on KNN regression) and a short video are available
- Exam scheduled.

- The first five labs were uploaded. Please follow them.
 - Current HW based on lab2 and lab3

Predictive Analytics

- Remaining topics (to complete at the latest the week after the spring break)
 - Validation
 - Model selection / regularization
 - Non-linear regressions, generalized additive models
 - Tree-based methods

A convention for the classification table

		True class			
		– or Null	+ or Non-null	Total	
Predicted	– or Null	True Neg. (TN)	False Neg. (FN)	N*	
class	+ or Non-null	False Pos. (FP)	True Pos. (TP)	P^*	
	Total	N	P		

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a population.

Name	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	TP/P	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N^*	

TABLE 4.7. Important measures for classification and diagnostic testing, derived from quantities in Table 4.6.

The null hypothesis (more likely outcome) is placed in the top row.

Classification: KNN Classifier

- Same simple principle to KNN regression: find the most similar points (values of predictors) in the training data. The corresponding response is the prediction.
- Let's make a prediction for month 101 using the first three lag differences (-23, 975, 7087) (using Euclidean distances)

95	2401	1	-296	356	395
96	3291	1	986	-429	337
97	334	0	890	1282	-785
98	617	1	-2957	-96	1711
99	1875	1	283	-3847	-1378
100	1852	0	1258	3240	-3751
101	1938	1	-23	975	7087

Classification: KNN Classifier

• If K = 1, the nearest neighbour is month 77

Our prediction for month 101 is 1 ('up')

Classification: KNN Classifier

• If K = 5, the nearest neighbours are months 77, 29, 17, 65, 89

101	1	-23	975	7087
77	1	-130	422	5967
29	1	-185	331	5090
17	1	209	2	5113
65	0	292	146	9467
89	1	-263	-411	4037

- We can now have richer predictions, in 4 of the 5 similar months, the market went up 4 times. We can then write P(Up=4/5).
- If we assign weights to the distances we can compute a weighted estimate for the probability:

$$(P(up) = 1 (w_1 + w_2 + w_3 + w_5) + 0(w_4)),$$

where w_i is the weight for the i'th nearest month.

Classification Example: KNN classifier results

Train set: first 100 months, Test set: last 55 months

For K= 3, we obtain

$$\begin{bmatrix} 10 & 6 \\ 11 & 28 \end{bmatrix} \longrightarrow \begin{bmatrix} 10 & 11 \\ 6 & 28 \end{bmatrix}$$

For K= 5, we obtain

Sklearn: ISL book:
$$\begin{bmatrix} 9 & 5 \\ 12 & 29 \end{bmatrix} \longrightarrow \begin{bmatrix} 9 & 12 \\ 5 & 29 \end{bmatrix}$$

				-	
[[9 5] [12 29]]					
	precision	recall	f1-score	support	
0.0	0.643	0.429	0.514	21	
1.0	0.707	0.853	0.773	34	
accuracy			0.691	55	
macro avg	0.675	0.641	0.644	55	
weighted avg	0.683	0.691	0.674	55	

These appear to be comparable to logistic regression results!

Validation Issues: validation set

- We already talked about separating the training set where the model is fit from the test set where the model is tested and the MSE is calculated.
- Since we have been looking at time series data, the natural split is (1,t) vs (t+1, T).
- But note that if the sequence were not important we could take a completely random sample as the train sample.
- This is known as the simple validation set approach for cross validation.
- The downside is that MSE of the test set may have high variance depending on the split.

Validation Issues: validation set

FIGURE 5.1. A schematic display of the validation set approach. A set of n observations are randomly split into a training set (shown in blue, containing observations 7, 22, and 13, among others) and a validation set (shown in beige, and containing observation 91, among others). The statistical learning method is fit on the training set, and its performance is evaluated on the validation set.

Validation Issues: leave one out cross-validation

- Similar in principle to the validation set approach but improves the robustness.
- In the validation test approach we take part of the data as the training set, and the rest as the test set.
- Here, we separate a single observation which becomes the mini test set, all other observations are the training set.
 - We fit a model on n-1 observations and test it on the single observation for MSE.
 - But then we do this for all individual observations.
 - We obtain n estimators of the error measure
 - Our ultimate estimator is the average of all individual errors.

Validation Issues: LOOCV

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i.$$

FIGURE 5.3. A schematic display of LOOCV. A set of n data points is repeatedly split into a training set (shown in blue) containing all but one observation, and a validation set that contains only that observation (shown in beige). The test error is then estimated by averaging the n resulting MSE's. The first training set contains all but observation 1, the second training set contains all but observation 2, and so forth.

This is material from Chapter 5 of James, Witten, Hastie, Thibshirani

Validation Issues: LOOCV

- LOOCV reduces the variance of the MSE estimator but it's relatively expensive (for a sample of size n, we have to fit n models).
- For a linear regression, it turns out there is a very efficient way to do this (we don't have a fit a regression each time but we fit an initial regression and update it with a simple formula for each different observation).
 - Unfortunately, there is no such easy way around for ARIMA, or logistic regressions.

Validation Issues: k-fold cross validation

- LOOCV reduces the variance of the MSE estimator but it's relatively expensive. K-fold cross validation reduces the computational burden.
- We seperate the data into k groups (folds) of approximately equal size.
 - We fit the model on one of the k-folds and test its error on the other k-1.
 - We repeat this for all of the folds.
 - We then end up with k estimators for the MSE
 - Our ultimate estimator is the average of the k estimators.

Validation Issues: k-fold cross validation

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i.$$

FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is randomly split into five non-overlapping groups. Each of these fifths acts as a validation set (shown in beige), and the remainder as a training set (shown in blue). The test error is estimated by averaging the five resulting MSE estimates.

This is material from Chapter 5 of James, Witten, Hastie, Thibshirani

Validation Issues: k-fold cross validation

- This gives us control over the computational burden.
- If we choose to perform 10-fold cross validation, we fit the model only 10 times.
- This is important when model fitting is computationally hard.
- We still reduce the variance of the MSE estimator due to smoothing (i.e. Averaging multiple independent estimators).

Validation Issues: classification problems

- Recall that the MSE is not the criterion in classification problems.
- But we can apply similar ideas on the classification error rates.

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} Err_i,$$

Model selection and regularization

- Linear regression is fairly robust when the sample size is n is much larger than the number of predictors p.
- But things get more complicated if p is large with respect to n.
 - The variance of the estimators is very high, most ordinary regressions perform poorly on test data
 - in particular, if p > n, then the system is overdetermined. There is not a unique fit.
- But this is the natural framework for applications in data science where we are willing to experiment with a larger number of predictors.
- It turns out that we need ways of shrinking (regularizing) the regression model in such cases.

Model selection and regularization: brute force best subset selection

• If the number of predictors is small, we can evaluate all possible combinations and compare them in terms of error performance.

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

This is material from Chapter 6 of James, Witten, Hastie, Thibshirani

Model selection and regularization: brute force best subset selection example

• We try to predict the quarterly US consumption using four candidate predictors: income, unemployment, production and savings

```
Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.26729
                       0.03721 7.18 1.7e-11 ***
#> Income 0.71448 0.04219 16.93 < 2e-16 ***
#> Production 0.04589 0.02588 1.77 0.078 .
#> Savings -0.04527 0.00278 -16.29 < 2e-16 ***
#> ---
#> Signif. codes:
#> 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 0.329 on 182 degrees of freedom
#> Multiple R-squared: 0.754, Adjusted R-squared: 0.749
#> F-statistic: 139 on 4 and 182 DF, p-value: <2e-16
```

Model selection and regularization: brute force best

subset selection example

Table 5.1: All 16 possible models for forecasting US consumption with 4 predictors.

Income	Production	Savings	Unemployment	CV	AIC	AICc	BIC	AdjR2
1	1	1	1	0.116	-409.3	-408.8	-389.9	0.749
1	0	1	1	0.116	-408.1	-407.8	-391.9	0.746
1	1	1	0	0.118	-407.5	-407.1	-391.3	0.745
1	0	1	0	0.129	-388.7	-388.5	-375.8	0.716
1	1	0	1	0.278	-243.2	-242.8	-227.0	0.386
1	0	0	1	0.283	-237.9	-237.7	-225.0	0.365
1	1	0	0	0.289	-236.1	-235.9	-223.2	0.359
0	1	1	1	0.293	-234.4	-234.0	-218.2	0.356
0	1	1	0	0.300	-228.9	-228.7	-216.0	0.334
0	1	0	1	0.303	-226.3	-226.1	-213.4	0.324
0	0	1	1	0.306	-224.6	-224.4	-211.7	0.318
0	1	0	0	0.314	-219.6	-219.5	-209.9	0.296
0	0	0	1	0.314	-217.7	-217.5	-208.0	0.288
1	0	0	0	0.372	-185.4	-185.3	-175.7	0.154
0	0	1	0	0.414	-164.1	-164.0	-154.4	0.052
0	0	0	0	0.432	-155.1	-155.0	-148.6	0.000

Model selection and regularization: brute force best subset selection example

- The best model contains all four predictors but all models in the top 4 rows have similar performance much better than the rest.
- It appears that income and savings are the most important variables to predict consumption. For prediction purposes we might want to go with one of the models in rows 2, 3 or 4.
- But to determine this we checked all possible models that have up to 4 variables (2^4 =16 possible cases). We cannot possibly do this with 40 variables (2^{40} possible cases).

Model selection and regularization: stepwise selection

- Forward selection: choose one predictor first, the one that results in the highest \mathbb{R}^2 .
 - The next predictor to be added is the one that gives the greatest additional improvement.
 - Stop if the additional improvement is small or complete the list and compare.
- Backward selection: Start with full model (all p predictors).
 - Remove the least useful one (the one that results in the lowest reduction in \mathbb{R}^2).
 - Repeat until a threshold reduction level is reached or the number of desired predictors is reached.

Model selection and regularization: stepwise selection

- Stepwise selection is effective but it is a greedy approach.
- As usual, we can do better by formal global optimization that somehow constraints the number of predictors to be used
 - Seeking a trade-off between the number of predictors and the MSE.

Regularization

Recall the ordinary least squares objective function:

$$\min \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

- The problem with the above formulation is that all coefficients are non-zero at optimality (i.e. optimization suggests using all predictors).
- But we would like to limit the number of predictors that are used.
 - impose a constraint on the number of predictors

Regularization: Constrained Optimization formulation

- Here 's a natural way to control the number of predictors from an Operations Research perspective.
- We use binary variables to distinguish those predictors that will be used at optimality.
- This results in an integer optimization problems.
- Recent advances have made integer optimization extremely powerful.

Regularization: Constrained Optimization formulation

- The optimization formulation is an integer program with a quadratic objective function.
- Today, such problems can be solved to optimality easily.

$$\min \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

subject to

$$-Mz_{j} \leq \beta_{j} \leq Mz_{j} \ \forall j$$

$$\sum_{j=1}^{p} z_{j} \leq k$$

$$z_{j} \in \{0,1\} \ \forall j, \ \beta_{j} \in \Re, \forall j$$

Regularization: Constrained Optimization formulation

- To my knowledge, this formulation is not yet implemented in usual libraries.
- It has some other attractive modeling properties as we will see later
- But let's first look at the statistical learning tools.

Regularization: Ridge regression

- We would like to limit the number of predictors that are used.
- Inspired by lagrangian relaxation formulations of constrained optimization problems here is a way to do that: we add a penalty term to the objective function that penalizes the magnitude of the coefficients and solve:

$$\min \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- where λ plays the role of a lagrange multiplier (i.e. a penalty parameter)
- This formulation seeks a trade-off between the MSE and the size of the coefficients, thereby forcing some of them to zero as λ becomes larger.
- We can then solve this problem for different values of λ to obtain solutions that have different MSEs and a different number of predictors.