Eksamen på Økonomistudiet sommer 2018

Lineære Modeller

Tirsdag d.26. juni 2018.

(3-timers prøve med hjælpemidler)

Dette eksamenssæt består af 3 sider incl. denne forside.

OBS: Bliver du syg under selve eksamen på Peter Bangsvej, skal du kontakte et tilsyn for at blive registreret som syg. I den forbindelse skal du udfylde en blanket. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Pas på, du ikke begår eksamenssnyd!

Det er eksamenssnyd, hvis du under prøven

- Bruger hjælpemidler, der ikke er tilladt
- Kommunikerer med andre eller på anden måde modtager hjælp fra andre
- Kopierer andres tekster uden at sætte citationstegn eller kildehenvise, så det ser ud som om det er din egen tekst
- Bruger andres idéer eller tanker uden at kildehenvise, så det ser ud som om det er din egen idé eller dine egne tanker
- Eller hvis du på anden måde overtræder de regler, der gælder for prøven

Du kan læse mere om reglerne for eksamenssnyd på Din Uddannelsesside og i Rammestudieordningens afs. 4.12.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

LM Juni 2018

Eksamen i Lineære Modeller

Tirsdag d.26 juni 2018.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

Vi betragter den lineære afbildning $L: \mathbf{R}^5 \to \mathbf{R}^2$, givet ved

$$L(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_2 - x_3 + x_4, x_1 + x_3 - x_5),$$

m.h.t. standardbaserne i begge rum.

- (1) Bestem en basis for nulrummet for L.
- (2) Bestem en basis for billedrummet, R(L), for L. Er L surjektiv? Hvad siger dimensionsætningen om denne situation?
- (3) Bestem koordinaterne til vektoren (2, -3, 1, 2, 3) med hensyn til den basis for nulrummet som blev bestemt i første spørgsmål.
- (4) En vektor har koordinaterne (a, b, c) m.h.t. den basis for nulrummet som blev bestemt i første spørgsmål. Bestem vektorens koordinater m.h.t. standardbasen.
- (5) Bestem løsningsmængden til ligningen Lx = y, hvor $y = (y_1, y_2)$.

Opgave 2.

Om en 3×3 -matrix A, vides, at den har egenværdierne 2, -2, og 1, med tilhørende egenvektorer $v_1 = (1, 1, 1)$, $v_2 = (1, -1, 0)$ og $v_3 = (1, 1, -2)$.

- (1) Gør rede for at A er symmetrisk.
- (2) Bestem vektoren $A(v_1 + v_2)$.
- (3) Gør rede for at A er invertibel.
- (4) Bestem vektoren $A^{-1}(v_1 + v_2)$.

- (5) Lad p være polynomiet $p(\lambda) = \lambda^2 + \lambda + 1$. Bestem determinanten af matricen $e^{p(A)}e^A$.
- (6) Bestem vektoren $e^{p(A)}v_1$.

Opgave 3.

- (1) Beregn integralet $\int \cos^3(ax)dx$, hvor a er et reelt tal.
- (2) Løs ligningen $\frac{1}{z^2} = \frac{1+i}{2}$. Løsningerne ønskes angivet på rektangulær form a+ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} e^{n(x^3-4x)}.$$

- (1) Bestem de værdier af x, for hvilke funktionen f er veldefineret.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f.
- (4) Bestem værdimængden for funktionen f, og undersøg om funktionen er injektiv.