

Computer Vision

Hough Transform - Circle and Line Detection

Discord Link in Description

Hough Transform Overview

- Hough Transform Lines
- Hough Transform Circles
- Hough Generalised

- Direct transformation from image space to probability of the existence of some feature
 - Lines, Circles and Generalised shapes

- Equations that represents lines
 - Lines in Hough space
 - Sinusoidal curves
 - Cartesian or polar coordinates

- a. In the Cartesian coordinate system: Parameters: (m,b).
- b. In the **Polar coordinate system:** Parameters: (r, θ)

$$r = x \cos \theta + y \sin \theta$$

Hough Transform - Line Detection

Hough Transform for lines:

```
vector<Vec2f> hough_lines;
HoughLines( binary_edge_image, hough_lines, 1, PI/200.0, 60);
```

Probabilistic Hough Transform for line segments

- Roughly same approach as with lines
- A line was defined by 2 parameters
- For a circle we need 3 parameters
- OpenCV uses Hough Gradient Method
 - More efficient
 - Divided in two stages
 - Edge Detection and finding possible circle centers
 - Finding the best radius for each candidate center

 $C:(x_{center},y_{center},r)$

- Equation of a circle
- Transform from image space to Hough Space
- Apply the Algorithm:
 - o accumulator = 0
 - for every edge point
 - increment cells in accumulator corresponding to all possible circle centers
 - Search for Maximums

Circle Detection in OpenCV

Hough Transform for circles


```
vector<Vec3f> circles;
HoughCircles( gray_image, circles, CV_HOUGH_GRADIENT,
2,20,300,20,5,15);
```

Examples of Hough in OpenCV

