Mobile Price Prediction Analysis

Koguru Varshitha

varshitha3110@gmail.com

Intoduction

- The mobile market has a wide range of products with varying features and prices.
- Consumers and manufacturers both benefit from accurate price prediction.
- Goal: Predict price range of smartphones based on specifications using ML.

We want to predict the **price range** of a mobile phone based on its **technical specifications**, **without knowing the actual price**.

This is a **supervised classification problem** where the target (label) is a **categorical variable**.

Why is this useful?

- For consumers: Helps estimate phone price before buying or comparing.
- **For manufacturers**: Supports competitive pricing strategies based on features.
- **For sellers**: Can automate the price categorization for large inventories.

Problem Statement

Dataset Overview

What is the dataset about?

The dataset contains information about various mobile phones and their specifications. Each row represents a unique phone, and each column is a feature (e.g., RAM, battery, screen size).

Dataset Summary:

- Total Records: ~2000 mobile phone entries
- **Total Features**: 20 columns (excluding target variable)
- Target Variable: price_range (values: 0 to 3)

Why this dataset is good:

- Clean: No missing values
- Balanced: Even distribution of price categories
- Ideal for classification tasks
- Offers both **numerical** and **categorical** features

Input Features

- id:ID
- battery power: Total energy a battery can store in one time measured in mAh
- blue:Has bluetooth or not
- clock_speed:speed at which microprocessor executes instructions
- dual sim:Has dual sim support or not
- fc:Front Camera mega pixels
- four g:Has 4G or not
- int memory:Internal Memory in Gigabytes
- m_dep:Mobile Depth in cm
- mobile_wt:Weight of mobile phone
- n_cores:Number of cores of processor
- pc:Primary Camera mega pixels
- px_height:Pixel Resolution Height

- px_width:Pixel Resolution Width
- ram:Random Access Memory in Megabytes
- sc_h:Screen Height of mobile in cm
- sc w:Screen Width of mobile in cm
- talk_time:longest time that a single battery charge will last when you are
- three_g:Has 3G or not
- touch screen: Has touch screen or not
- wifi:Has wifi or not

Exploratory Data Analysis (EDA)

EDA is the process of visually and statistically analyzing the dataset to understand patterns, relationships, and anomalies before applying machine learning.

Purpose of EDA:

- Understand how features are distributed
- Detect outliers or skewed data
- Identify which features impact the target variable (price_range)
- Check correlation between features

What this code does:

- sns.jointplot: Creates a joint plot, which combines a bivariate plot (between x and y) and univariate plots (distributions of x and y) in one figure.
- x='ram': x-axis will show RAM values.
- y='price_range': y-axis will show the price category (0 to 3).
- data=dataset: Uses your DataFrame.
- color='red': Sets the plot color to red.
- kind='kde': Uses a kernel density
 estimate, which shows the probability density
 of data rather than actual points.

What it does:

- X-axis: price categories (0 to 3)
- **Y-axis:** average internal memory (in GB)
- Each point represents the mean int_memory for that price range.
- Error bars show confidence intervals, giving a sense of variation.

Interpretation:

You'll likely see that **internal memory increases as price range increases** — phones in higher price brackets generally have more storage.

Insights found:

- If higher price ranges have boxes shifted upwards, it means more expensive phones generally have higher battery power.
- If lower price ranges have a tighter box and lower median, budget phones may have smaller batteries with less variation.
- Outliers can be detected

What the pie chart tells you:

- Percentage of phones with 4G capability vs without 4G in your dataset.
- Useful for showing how common 4G is across mobile phones analyzed.

What you'll see:

- Overlapping histograms showing how megapixel counts are distributed for front vs primary cameras.
- Usually, the primary camera has a wider and higher megapixel range (more pixels) compared to the front camera.
- Transparency (alpha=0.5) helps you see overlapping areas.

What will I do next?

Enhance my code with present it.

