1. Calcula els límits següents quan $n \to +\infty$

(a)
$$\lim \left[\frac{2n-1}{n+4} - \frac{3n^2+n}{6n^2+4n-1} \right]$$
 (sol: $\frac{3}{2}$)

(b)
$$\lim \left[\frac{3n+1}{4n-2} \cdot \frac{4n^2+1}{3n^2-4}\right]$$
 (sol: 1)

(c)
$$\lim \left[\frac{2n^2+4}{n+2} + \frac{n^2+3n}{2n+5} \right]$$
 (sol: $+\infty$)

(c)
$$\lim \left[\frac{2n^2+4}{n+2} + \frac{n^2+3n}{2n+5} \right]$$
 (sol: $+\infty$)
(d) $\lim \left[\frac{2n^3-1}{3n^3+4n} \cdot \frac{n^2+n}{3n-1} \right]$ (sol: $+\infty$)

(e)
$$\lim 3^{\frac{6n-1}{2n}}$$
 (sol: 27)

(f)
$$\lim \sqrt{\frac{2n+1}{n+5}}$$
 (sol: $\sqrt{2}$)

(g)
$$\lim 2^{\frac{n-5}{n^2+1}}$$
 (sol: 1)

(h)
$$\lim \left(\frac{2n-1}{2n+n}\right)^{\frac{5n-3}{2n+1}}$$
 (sol: $\frac{4}{9}\sqrt{\frac{3}{2}}$)

(i)
$$\lim \left(\sqrt{\frac{4n^2+3n}{n^2-5n}}\right)^{\frac{2n+1}{3n-4}}$$
 (sol: $\sqrt[3]{4}$)

(j)
$$\lim \left(\frac{n-2}{n+2}\right)^5$$
 (sol: 1)

(k)
$$\lim \left(\frac{n-2}{n+2}\right)^{\frac{5}{n}}$$
 (sol: 1)

(1)
$$\lim \left(n + \frac{1}{n^2}\right)^6$$
 (sol: $+\infty$)

(m)
$$\lim \left[\frac{3n^2+2}{6n^2+3n+1} - \frac{n+1}{n}\right]^2$$
 (sol: $\frac{1}{4}$)

(n)
$$\lim \left[\frac{-3n^3+2n^2-n+1}{4n^3-n^2+7n-5}\right]^2$$
 (sol: $\frac{9}{16}$)

(o)
$$\lim \left[\frac{n^5 + 3n^2 + 1}{2n^3 + 4n^2 - n - 2} \right]^{-3}$$
 (sol: 0)

(p)
$$\lim \left[\frac{2n^2+3n-1}{4n^4+2n^3-n^2+n+5}\right]^{-1}$$
 (sol: $+\infty$)

(q)
$$\lim_{n^2-(3n-1)^2} (\text{sol: } \frac{-1}{16})$$

(r)
$$\lim \ \frac{a+2a+3a+\ldots+na}{(a+n)^2}$$
 , $a\in R$ (sol: $\frac{a}{2})$

(s)
$$\lim \frac{1+2+3+...+2n}{3n^2}$$
 (sol: $\frac{1}{3}$)

(t)
$$\lim \sqrt[n]{2}$$
 (sol: 1)

(u)
$$\lim_{n \to \infty} \sqrt[2n+1]{\frac{2n+1}{n+1}}$$
 (sol: 1)

2. Donades les successions: $a_n=\frac{n^2-2n}{n^3+n}$ i $b_n=\frac{n^3-4n}{n^2+2n}$ calcula:

(a)
$$lim \quad a_n \text{ (sol: 0)}$$

(b)
$$\lim b_n \text{ (sol: } +\infty)$$

Institut de Vilafant. Matemàtiques 1 batxillerat científic

- (c) $\lim a_n \cdot b_n$ (sol: 1)
- (d) $\lim \frac{a_n}{b_n}$ (sol: 0)
- (e) $\lim a_n b_n$ (sol: $-\infty$)
- 3. Donades les successions: $a_n = \frac{n^2+1}{n}$ i $b_n = \frac{2n-1}{n+2}$ calcula:
 - (a) Calcula els seus límits (sol: $+\infty$ i 2)
 - (b) $\lim a_n + b_n$ (sol: $+\infty$)
 - (c) $\lim a_n b_n$ (sol: $+\infty$)
 - (d) $\lim a_n \cdot b_n$ (sol: $+\infty$)
 - (e) $\lim \frac{a_n}{b_n}$ (sol: $+\infty$)
- 4. Calcula els límits següents:

(a)
$$\lim \left(\frac{7n^12 - 8n^8 + n^5 - 3n}{2n^10 + 4n^9 - n^7 + 2n^5 + 4}\right) \cdot \left(\frac{-n^5 + 2n^4 - n^3 + 7n^2 - 1}{3n^7 + n^6 - 4n^3 - 5n + 2}\right)$$
 (sol: ind)

(b)
$$\lim_{n \to 1} \frac{1 + \frac{n}{1 - n}}{\frac{n - 1}{n + 1} - \frac{n + 1}{n - 1}}$$
 (sol: $\frac{1}{4}$)

(c)
$$\lim \frac{(3n+1)^3 - (3n-1)^3}{2n^2 + 2}$$
 (sol: 27)

(d)
$$\lim \left[\frac{2n^2+3n-1}{3n^2+n+2}\right]^{\frac{n+1}{2n-3}}$$
 (sol: $\sqrt{\frac{2}{3}}$)

(e)
$$\lim \left[\frac{2n^2+1}{4n^2+1}\right]^{\frac{3n^2+1}{4n}}$$
 (sol: 0)

(f)
$$\lim \left[\frac{n^3 - 3n^2 + 7}{3n^3 + 4n^2 + 5n + 1}\right]^{\frac{1 + n - 2n^2}{4n + 3}}$$
 (sol: $+\infty$)

(g)
$$\lim \left[\frac{2n+1}{-n+3}\right]^{\frac{n+1}{2n-3}}$$
 (sol: \nexists)

(h)
$$\lim \left[3 + \frac{4}{n^2 + 1}\right]^{\frac{n^2 + 1}{2n}}$$
 (sol: $+\infty$)

(i)
$$\lim \frac{\sqrt{n^2+1}-n}{\sqrt{n^2+n-1}}$$
 (sol: 0)

(j)
$$\lim \frac{(n+2)^2 + \sqrt{n^3 + n + 1}}{\sqrt{n^4 + 2n^2}}$$
 (sol: 1)

(k)
$$\lim \frac{\sqrt{n^3+1}-\sqrt{n}}{n+\sqrt{3}n^3}$$
 (sol: $\frac{\sqrt{3}}{3}$)

(l)
$$\lim \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}}$$
 (sol: 0)

(m)
$$\lim \left(\frac{n+1}{n^2} \cdot \frac{n^2+1}{n}\right)$$
 (sol: 1)

(n)
$$\lim \frac{(2n+n^2)^3-n^4}{n^5+n-2}$$
 (sol: $+\infty$)

(o)
$$\lim \frac{\sqrt{n+1}-\sqrt{n+4}}{\sqrt{n-5}}$$
 (sol: 0)

(p)
$$\lim_{n \to \infty} \frac{(n+1)^3 - 3n^2 + 2}{n^4 + (1-n)^3}$$
 (sol: 0)

(q)
$$\lim \frac{\sqrt{n^3+2n+1}-n^2}{\sqrt{2+n^4}}$$
 (sol: -1)

(r)
$$\lim \frac{\sqrt{n^5+4n}+(n+5)^3}{\sqrt{n^7+2n^2+4}}$$
 (sol: 0)

(q)
$$\lim \frac{\sqrt{n^3+2n+1}-n^2}{\sqrt{2+n^4}}$$
 (sol: -1)
(r) $\lim \frac{\sqrt{n^5+4n}+(n+5)^3}{\sqrt{n^7+2n^2+4}}$ (sol: 0)
(s) $\lim \left[3+\frac{4}{n^2+1}\right]^{\frac{1-n^2}{3n+2}}$ (sol: 0)

(t)
$$\lim \left[n^3 + 4n^2 - 3n + 7 \right]^{1+2n-n^2-3n^3}$$
 (sol: 0)

(u)
$$\lim \left[\frac{2n^2+1}{4n^3+2n}\right]^{-7n^2+1}$$
 (sol: $+\infty$)

(v)
$$\lim \left[\frac{1}{\sqrt{n+1}}\right]^{n+1}$$
 (sol: 0)

(v)
$$\lim \left[\frac{1}{\sqrt{n+1}}\right]^{n+1}$$
 (sol: 0)
(w) $\lim \left[\frac{\sqrt{1+2n}}{1+8n} \cdot \sqrt[5]{\frac{3n^3+2n^2+n-2}{96n^3+10}}\right]$ (sol: $\frac{1}{4}$)

(x)
$$\lim \frac{(-1)^n \cdot n}{2n^2 + 3}$$
 (sol: 0)

(y)
$$\lim \left[\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n}{n^2}\right]$$
 (sol: $\frac{1}{2}$)

5. Calcula els límits següents:

(a)
$$\lim \frac{(-1)^n \cdot (2n^2+3)}{n^4+n^3+1}$$
 (sol: 0)

(b)
$$\lim \frac{\sqrt{n+3}}{3n+7}$$
 (sol: 0)

(c)
$$\lim_{n \to \infty} \frac{\sqrt{n+1} + \sqrt{n-1}}{2n+1}$$
 (sol: 0)

(d)
$$\lim \left(\sqrt{(n+1)(n+2)} - \sqrt{n^2+1}\right)$$
 (sol: $\frac{3}{2}$)

(e)
$$\lim \left(\sqrt{3n^2 + 4n + 7} - \sqrt{3n^2 - 5n + 2}\right)$$
 (sol: $\frac{3\sqrt{3}}{2}$)

(f)
$$\lim \left(\sqrt{2n^2 + 1} - \sqrt{n^2 + 1} \right)$$
 (sol: $+\infty$)

(g)
$$\lim \left(\sqrt{n(n+1)} - n\right)$$
 (sol: $\frac{1}{2}$)

(h)
$$\lim \left(\sqrt{(n+1)(n+2)} - n \right)$$
 (sol: $\frac{3}{2}$)

(i)
$$\lim \left(\sqrt{n^2 - 10n + 8} - (n+3)\right)$$
 (sol: -2)

(j)
$$\lim \left(5n - \sqrt{1 + n + 2n^2}\right)$$
 (sol: $+\infty$)

(k)
$$\lim \frac{\sqrt{n^2+a^2}-a}{\sqrt{n^2+b^2}-b}$$
, $a,b\in R$ (sol: 1)

(1)
$$\lim_{n \to \infty} \frac{\sqrt{2+n}-3}{n}$$
 (sol: 0)

6. Calcula els límits següents:

(a)
$$\lim \left[1 + \frac{1}{n}\right]^{3n}$$
 (sol: e^3)

(b)
$$\lim \left[1 + \frac{1}{n}\right]^{2n^2 + 3}$$
 (sol: $+\infty$)

(c)
$$\lim \left[1 + \frac{1}{n}\right]^{\frac{n^2 + 1}{2n - 1}}$$
 (sol: \sqrt{e})

(d)
$$\lim \left[1 + \frac{1}{n+3}\right]^{n+4}$$
 (sol: e)

(e)
$$\lim \left[1 + \frac{1}{n^2 + 3n + 1}\right]^{2n^2 - n + 1}$$
 (sol: e^2)

(f)
$$\lim \left[1 - \frac{2}{n}\right]^{2n}$$
 (sol: $\frac{1}{e^4}$)

(g)
$$\lim \left[1 - \frac{3}{n+1}\right]^{n+3}$$
 (sol: $\frac{1}{e^3}$)

(h)
$$\lim \left[\frac{n+1}{n-1}\right]^n$$
 (sol: e^2)

(i)
$$\lim \left[\frac{2n-3}{2n+7}\right]^{5n-4}$$
 (sol: $\frac{1}{e^{25}}$)

(j)
$$\lim \left[\frac{5n+4}{5n}\right]^{5n}$$
 (sol: e^4)

(k)
$$\lim \left[\frac{n^2+3}{n^2}\right]^{4n^2}$$
 (sol: e^{12})

(l)
$$\lim \left[\frac{1-5n}{3-5n}\right]^{n+1}$$
 (sol: $\sqrt[5]{e^2}$)

(m)
$$\lim \left[\frac{n^2+2n+1}{n^2+3n+2}\right]^{7n+1}$$
 (sol: $\frac{1}{e^7}$)

7. Indica quins valors ha de tenir a per obtenir els límits següents:

(a)
$$\lim ((a^2-1)n^3-3n^2+1)=+\infty$$
 (sol: $a\in\mathbb{R}-[-1,1]$)
(b) $\lim \frac{3an^2-7n+1}{(a+1)n^2+3}=2$ (sol: $a=2$)

(b)
$$\lim \frac{3an^2-7n+1}{(a+1)n^2+3} = 2$$
 (sol: $a=2$)

(c)
$$\lim (\sqrt{n^2 + an + 1} - \sqrt{n^2 - 1}) = 2$$
 (sol: $a = 4$)

(d)
$$\lim \left[\frac{2n+1}{2n-1}\right]^{an-3} = e^{-4} \text{ (sol: } a = -4\text{)}$$

8. Calcula a i b perquè es compleixin:

(a)
$$\lim_{n \to \infty} \frac{(1-a)n^3 + 2bn^2 + 3n - 1}{(n^2 - 1)} = 3$$
 (sol: $a = 1, b = \frac{3}{2}$)

(b)
$$\lim \left[\frac{an+1}{3n+2}\right]^{bn-3} = e^5 \text{ (sol: } a = 3, b = -15)$$

9. Calcula els límits següents:

(a)
$$\lim \left[\frac{1-n-3n^2}{4+5n-3n^2}\right]^{2n^2-3n+1}$$
 (sol: 0)

(b)
$$\lim \left[\frac{3n^2+1}{3n^2-1}\right]^{\frac{n}{n^2+1}}$$
 (sol: 1)

Institut de Vilafant. Matemàtiques 1 batxillerat científic

(c)
$$\lim \left[\frac{\sqrt{n}}{n+2}\right]^{\frac{-3n}{n+2}}$$
 (sol: $+\infty$)

(d)
$$\lim \left[\frac{n^3 + n^2 + 2}{n^2 + 2} \right]^{\frac{8n^2 - 1}{n^2 + 1}}$$
(sol: $+\infty$)

(d)
$$\lim_{n \to \infty} \left[\frac{n^3 + n^2 + 2}{n^2 + 2} \right]^{\frac{8n^2 - 1}{n^2 + 1}}$$
(sol: $+\infty$)
(e) $\lim_{n \to \infty} \left[\sqrt{n+1} - \sqrt{n-1} \right]^{1 - \sqrt{n+1}}$ (sol: $+\infty$)

(f)
$$\lim \left[\frac{4n+3}{1-4n}+2\right]^{\sqrt{n^2+1}}$$
 (sol: $\frac{1}{e}$)