Visualização de dados

Unidade III

Cristiane Neri Nobre

Distribuições

Relacionamentos

Vamos explorar agora os gráficos para visualizar distribuições

Visualizando distribuições

Qual os tipos de gráficos mais comuns para visualizar **distribuição dos dados**?

- 1. Histograma
- 2. Gráficos de densidade
- 3. Boxplot
- 4. Violino

Visualizando distribuições Histograma

Frequentemente encontramos a situação em que gostaríamos de entender como uma determinada variável é **distribuída** em um conjunto de dados

Número de passageiros com idade conhecida no Titanic.

Faixa etária	Contar
0–5	36
6 a 10	19
11-15	18
16-20	99
21-25	139
26-30	121

Faixa etária	Contar
31-35	76
36-40	74
41-45	54
46-50	50
51-55	26
56-60	22

Faixa etária	Contar
61-65	16
66-70	3
71-75	3

Fonte: (Wilke, 2019)

Número de passageiros com idade conhecida no Titanic.

Faixa etária	Contar	Faixa etária	Contar
0–5	36	31-35	76
6 a 10	19	36-40	74
11-15	18	41-45	54
16-20	99	46-50	50
21-25	139	51-55	26
26-30	121	56-60	22

Faixa etária	Contar
61-65	16
66-70	3
71-75	3

Neste tipo de gráfico é importante observar a amplitude de classe

Para a distribuição de idade dos passageiros do Titanic, podemos ver que amplitude de classe de 1 ano é **muito pequena** e de 15 anos é **muito grande**, enquanto de amplitude de três a cinco anos **funcionam bem**

Amplitude de classe de (a) um ano; (b) três anos; (c) cinco anos; (d) quinze anos. Fonte: (Wilke, 2019)

Podemos também fazer gráficos de densidade

• Importante também analisar a amplitude de classe, além da kernel (gaussiano, retangular, etc)

No site: http://shiny.leg.ufpr.br/walmes/density/

Você consegue visualizar o efeito de trocarmos a função e a amplitude da classe.

Experimente!

Imagine a situação:

Gostaríamos de ver como as idades dos passageiros do Titanic são distribuídas entre homens e mulheres

• Homens e mulheres eram da mesma idade ou havia diferença de idade entre os sexos?

Neste gráfico, onde exatamente as barras começam. Elas começam onde a cor muda ou devem começar do zero?

Fonte: (Wilke, 2019)

Podemos resolver esses problemas fazendo com que todas as barras comecem em zero e tornando-as parcialmente transparentes

Mas nesta solução, onde as barras azuis começam?

Há dois grupos ou 3?

Uma solução é fazer gráfico de densidade

Mas ficará difícil observar que as distribuições de idade para passageiros do sexo masculino e feminino são quase idênticas até por volta dos 17 anos

Uma solução que funciona bem para este conjunto de dados é mostrar as distribuições de idade de passageiros do sexo masculino e feminino separadamente, cada um como uma proporção da distribuição geral de idade

Esta visualização mostra de forma **intuitiva** e **clara** que havia muito menos mulheres do que homens na faixa etária de **20 a 50 anos** no Titanic

Visualizando várias distribuições ao mesmo tempo Age pyramid

No entanto, quando queremos visualizar exatamente duas distribuições, podemos também fazer dois histogramas separados, girá-los 90 graus e fazer com que as barras de um histograma apontem na direção oposta do outro

• Este gráfico é chamado de Age Pyramid

Fonte: (Wilke, 2019)

Finalmente,

- Histograma não é adequado para distribuições múltiplas, a menos que sejam feitos separados (utilize o recurso de pequenos múltiplos)
- Neste caso, é melhor usar o gráfico de densidade, desde que as distribuições sejam um tanto distintas e contíguas.

Porcentagem de gordura da manteiga entre vacas de quatro raças diferentes de gado. Fonte: (Wilke, 2019)

Visualizando muitas distribuições de uma vez

Existem ainda muitos cenários em que desejamos visualizar várias distribuições ao mesmo tempo

Dados meteorológicos

Gráficos indicados:

- 1. Boxplots criado por John Tukey em 1970
- 2. Plotagens de violino

Visualizando muitas distribuições de uma vez Boxplots

PUC Minas Virtual

Visualizando muitas distribuições de uma vez Boxplots

Em dezembro, podemos ver que a temperatura está altamente distorcida (a maioria dos dias são moderadamente frios e alguns são extremamente frios) e não muito distorcida em alguns outros meses, por exemplo, em julho

PUC Minas Virtual

Visualizando muitas distribuições de uma vez Violino

Gráficos violino são equivalentes às estimativas de densidade, giradas em 90 graus e depois espelhada

- A parte mais grossa do violino corresponde à densidade de pontos mais alta no conjunto de dados
- Em particular, os gráficos de violino representarão com precisão os dados bimodais, enquanto um boxplot não
- Muito apropriado para grande quantidade de dados

Visualizando muitas distribuições de uma vez Violino

 o mês de novembro parece ter tido dois clusters de temperatura, um em torno de 50 graus e outro em torno de 35 graus

Fonte: (Wilke, 2019)

Leitura recomendada

Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures, 2019

Livros e Links:

- 1. CLAUS O. Wilke, Fundamentals of Data Visualization. https://clauswilke.com/dataviz/
- 2. R visualization workshop: https://stulp.gmw.rug.nl/26-04-2018/ggplotworkshop/
- 3. http://www.sthda.com/english/articles/32-r-graphics-essentials/129-visualizing-multivariate-categorical-data/
- 4. https://www.arbelatech.com/insights-resources/white-papers/zero-to-beautiful-choosing-charts-for-data-visualization
- 5. https://www.klipfolio.com/resources/articles/what-is-data-visualization
- 6. https://aniruhil.org/courses/mpa6020/handouts/module02.html
- 7. https://coggle.it/diagram/X2VVUk4r0hGyP1Ic/t/s%C3%A9ries-temporais-1