Probability & Statistics. Assignment 3

1. Let us consider a circle of radius R centered at O. Point M is chosen at random inside this circle. Random variable ξ is equal to the length of OM. Find the expected value and variance of ξ .

8.2 from 1

Answer:
$$E\xi = \frac{2R}{3}$$
, $\operatorname{Var} \xi = \frac{R^2}{18}$.

2. Let us consider a sphere of radius R centered at O. Point M is chosen at random inside this circle. Random variable ξ is equal to the length of OM. Find the cumulative distribution function, probability density, expected value and variance of ξ .

8.3 from 1

Answer:
$$F_{\xi}(x) = \begin{cases} 0, & x \leq 0, \\ 1 - \frac{(R-x)^3}{R^3}, & 0 < x \leq R, \\ 1, & x > R; \end{cases}$$
 $f_{\xi}(x) = \begin{cases} \frac{3(R-x)^2}{R^3}, & 0 < x \leq R, \\ 0, & \text{otherwise;} \end{cases}$ $E\xi = \frac{R}{4}, \quad \text{Var } \xi = \frac{3R^2}{4}$

3. Find all values of C such that function $F(x) = \begin{cases} 0, & x \leq 1, \\ 1 - \frac{C}{x}, & x > 1 \end{cases}$ can be a cumulative distribution function for some random variable ζ . Find the probability density and expected value of ζ .

Answer:
$$C = 1$$
, $f(x) = \begin{cases} \frac{1}{x^2}, & x > 1, \\ 0, & x \leq 1; \end{cases}$ the expected value does not exist.

4. Is it possible that for some value of C the functions below are probability density functions of random variables? If it is so, indicate the values of C and find expected values and variances for these random variables.

(a)
$$f(x) = \begin{cases} Ce^{-2x}, & x > 0, \\ 0, & x < 0; \end{cases}$$
 (b) $f(x) = Ce^{-|x|}, x \in \mathbb{R}.$

Answer: (a)
$$C = 2$$
, $E\xi = 0.5$, $Var \xi = 0.25$; (b) $C = 0.5$, $E\xi = 0$, $Var \xi = 2$.

- 5. (a) Find such value of C that function $f(x) = \frac{C}{1+x^2}$ is probability density of a random variable.
 - (b) Give an example of a random variable whose probability density function is even, but that does not meet the condition $E\xi = 0$.

Answer: (a) $C = \pi$; (b) random variable from (a) satisfies this task.

6. Let ξ be uniformly distributed on [0; 4]. Calculate: (a) $P\{\xi < E\xi\}$; (b) $P\{\xi > \sqrt{D\xi}\}$; (c) $P\{-5 \le \xi \le 5\}$.

8.9 from 1

Answer: (a) 0.5; (b)
$$1 - \frac{1}{2\sqrt{3}}$$
; (c) 1.

7. Random variable Y has a uniform distribution on interval (a; b), and EY = Var Y = 3. Find a and b.

Answer: a = 0, b = 6.

8. Random variable ξ is uniformly distributed on an interval, and $P\{\xi < 1\} = \frac{1}{2}$, $P\{\xi < 2\} = \frac{2}{3}$. Find the cumulative distribution function, probability density function, expected value and variance of ξ .

Answer:
$$F_{\xi}(x) = \begin{cases} 0, & x \leq -2, \\ \frac{x+2}{6}, & -2 < x \leq 4, \\ 1, & x > 4; \end{cases}$$
 $f_{\xi}(x) = \begin{cases} \frac{1}{6}, & -2 < x < 4, \\ 0, & \text{otherwise;} \end{cases}$ $E\xi = 1; \quad \text{Var } \xi = 3.$

9. What is the maximum value of variance of random variable Z uniformly distributed on an interval given that $F_Z(1) = \frac{1}{3}$, $F_Z(4) = 1$?

Answer: $\frac{27}{16}$.

10. Random variable Z is uniformly distributed on an interval, and $P\{0 < Z < 1\} = \frac{2}{3}$, $P\{1 < Z < 2\} = \frac{1}{3}$. (a) What is the smallest possible value of EZ? (b) What is the largest possible value of Var Z?

Answer: (a) $\frac{3}{4}$, (b) $\frac{3}{16}$.

11. It is known that $X \sim U(-a; a)$. What is the distribution of |X|?

8.24 from 1

Answer: U(0; a).

12. Random variable η is uniformly distributed on [a;b]. Find the distribution of $\xi = \frac{\eta - E\eta}{\sqrt{\text{Var}\eta}}$.

Answer: $U\left(-\sqrt{3};\sqrt{3}\right)$.

13. Random variable ξ is uniformly distributed on [-1; 5]. Find $E((\xi - 1)(3 - \xi))$.

8.29 from 1

Answer: -2.

14. Random variable θ is exponentially distributed with parameter λ . Calculate the probabilities that θ belongs to intervals $(0; 1), (1; 2), \ldots, (n-1; n), \ldots$ and show that these probabilities form a geometric sequence. What is the common ratio of this sequence?

Answer: .

15. Is it possible that $P\{2 < Z < 3\} = \frac{4}{27}$ for an exponentially distributed random variable Z? If it is possible, specify the value of $E\xi$.

Answer: $\frac{1}{\ln 1.5}$.

16. Calculate the probability $P\{|\xi - E\xi| < 3\sqrt{\operatorname{Var}\xi}\}$ for an exponentially distributed random variable ξ .

8.37 from 1

Answer: $1 - e^{-4} \approx 0.982$.

17. Let $\xi \sim \text{Exp}(\lambda)$ and $\eta = e^{-\xi}$. Find $E\eta$ and $\text{Var }\eta$.

Answer: $E\eta = \frac{\lambda}{\lambda+1}$, $\operatorname{Var} \eta = \frac{\lambda}{(\lambda+1)^2(\lambda+2)}$.

18. Let ξ be exponentially distributed random variable and t and τ be positive numbers. Prove that $P\{\xi > t + \tau | \xi > t\} = P\{\xi > \tau\}.$

8.42 from 1

19. Let ξ be a normally distributed random variable, and $E\xi = 1$, $\text{Var } \xi = 4$. Find the probabilities that ξ belongs to the following intervals: (a) (-3;1); (b) $(-\infty;-2)$; (c) $3;+\infty$).

8.46 from 1

Answer: (a) $\Phi_0(0) + \Phi_0(2) \approx 0.477$; (b) $0.5 - \Phi_0(1.5) \approx 0.067$; (c) $0.5 - \Phi_0(1) \approx 0.136$.

20. Let $\xi \sim N(-1; 1)$. Find the approximate values of x that satisfy the following equalities: (a) $P\{x < \xi < 1\} = 0.8$; (b) $P\{0 < \xi < x\} = 0.8$; (c) $P\{-1 - x < \xi < -1 + x\} = 0.8$.

Answer: (a) $x \approx -1.92$; (b) the value of x does not exist; (c) $x \approx 1.28$.

21. Let $\xi \sim N(0; \sigma^2)$. Arrange the following probabilities in ascending order: $P\{-2 < \xi < 2\}$, $P\{-1 < \xi < 3\}$, $P\{0 < \xi < 4\}$, $P\{-1.5 < \xi < 2.5\}$.

8.50 from 1

Answer: $P\{0 < \xi < 4\} < P\{-1 < \xi < 3\} < P\{-1.5 < \xi < 2.5\} < P\{-2 < \xi < 2\}.$

22. It is known that ξ is normally distributed random variable, and $P\{|\xi - E\xi| < 1\} = 0.3$. Find the probability that $|\xi - E\xi| < 2$.

8.53 from 1

Answer: ≈ 0.56 .

23. Random variable ξ is normally distributed, and $E\xi = 1$, $\text{Var } \xi = 5$. Find the shortest interval (a; b) such that $P\{a < \xi < b\} = 0.95$.

8.55 from 1

Answer: approximately (-3.38; 5.38).

24. Find the expected value and variance of a normally distributed random variable ξ given that $P\{1 < \xi < 7\} = P\{7 < \xi < 13\} = 0.18$.

Answer: $E\xi = 7$, $Var \xi \approx 163$.

25. Let $\eta \sim N(1; \sigma^2)$ where $\sigma > 0$. Which value of σ yields maximum to $P\{2 < \xi < 4\}$.

Answer: $\sigma = \frac{2}{\sqrt{\ln 3}}$.

26. Random variable ζ is normally distributed, and $E\zeta = -2$, $\operatorname{Var} \zeta = 9$. Find $E((3-\zeta)(\zeta+5))$.

8.62 from 1

Answer: 6.

27. Let $\xi \sim N(\mu; \sigma^2)$, and $a \neq 0$ an arbitrary number. Find the distribution of $\eta = a\xi + b$.

8.63 from 1

Answer: $N(a\mu + b, a^2\sigma^2)$.

28. Let $\xi \sim N(0; \sigma^2)$. Find $E|\xi|$ and $Var|\xi|$.

Answer: $\sqrt{\frac{2}{\pi}}\sigma$, $\operatorname{Var}\left(1-\frac{2}{\pi}\right)\sigma^2$.

29. Find the probability density function of random variable η if $\eta = \sin \xi$ and (a) $\xi \sim U\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$; (b) $\xi \sim U(0; \pi)$.

8.69 from 1

Answer: (a) $f(x) = \begin{cases} \frac{1}{\pi}, & |x| < \frac{\pi}{2}, \\ 0, & |x| > \frac{\pi}{2}; \end{cases}$ (b) $\begin{cases} \frac{1}{\pi\sqrt{1-x^2}}, & |x| < 1, \\ 0, & |x| \geqslant 1. \end{cases}$

30. Find the positive value of λ that yields maximum to probability $P\{\lambda < \xi < 2\lambda\}$ given that ξ is a random variable with Cauchy distribution.

Answer: $\lambda = \frac{1}{\sqrt{2}}$.

31. Prove that if random variable ξ has Cauchy distribution, then random variable $\eta = \frac{1}{\xi}$ also has Cauchy distribution.