Task

Prove that for any natural number n,

$$2 + 2^2 + 2^3 + 2^4 + \ldots + 2^n = 2^{n+1} - 2$$

Solution

Task is equavalent to proving the following theorem:

Theorem.
$$\forall n \in \mathbb{N} : \sum_{i=1}^{n} 2^n = 2^{n+1} - 2$$

Proof. By induction.

Initial step
$$(n = 1)$$
: $\sum_{i=1}^{1} 2^{i} = 2^{1+1} - 2$

$$\Rightarrow 2 = 4 - 2$$
 (by algebra)

$$\Rightarrow$$
 2 = 2, so equality holds.

Induction step:
Assume
$$\sum_{i=1}^{n} 2^{n} = 2^{n+1} - 2$$
.

Then for
$$n+1$$
:
$$\sum_{i=1}^{n+1} 2^{n+1} = \sum_{i=1}^{n} 2^n + 2^{n+1} \text{ (pulling out last member)}$$

$$= 2^{n+1} - 2 + 2^{n+1} \text{ (by induction hypothesis)}$$

$$= 2 \cdot 2^{n+1} - 2$$

$$=2^{n+1}-2+2^{n+1}$$
 (by induction hypothesis)

$$= 2 \cdot 2^{n+1} - 2$$

$$=2^{n+2}-2$$

Thus
$$\sum_{i=1}^{n+1} 2^{n+1} = 2^{n+2} - 2$$
, which is induction hypothesis for $n+1$.

Hence, by principle of induction,
$$\forall n \in \mathbb{N} : \sum_{i=1}^{n} 2^n = 2^{n+1} - 2$$