$N^{\circ}94p153$

1. On peut construire l'arbre de probabilité ci-dessous.

D'après la formule des probabilités totales, on a :

$$p_{n+1} = P(A_{n+1}) = P(A_{n+1} \cap A_n) + P(A_{n+1} \cap \bar{A}_n) = P_{A_n}(A_{n+1}) \times p(A_n) + P_{\bar{A}_n}(A_{n+1}) \times p(\bar{A}_n) = p_n \times 0.9 + (1 - p_n) \times 0.4 = 0.5p_n + 0.4.$$

2. (a) Soit $n \in \mathbb{N}^*$. On note P_n la proposition : « $p_n > 0.8$ ». On souhaite démontrer que P_n est vraie pour tout $n \in \mathbb{N}^*$.

Initialisation : Pour n = 1.

 $p_1 = 1 > 0.8$. On en déduit que P_1 est vraie.

Hérédité: On considère un entier naturel $k \ge 1$ quelconque tel que P_k est vraie (hypothèse de récurrence), autrement dit tel que $p_k > 0.8$. On souhaite démontrer que P_{k+1} est vraie, autrement dit que $p_{k+1} > 0.8$.

Par hypothèse de récurrence, on a $p_k > 0.8$.

D'où $0.5p_k > 0.4 \Leftrightarrow 0.5p_k + 0.4 > 0.8 \Leftrightarrow p_{k+1} > 0.8$.

Ainsi, P_1 est vraie et, pour un tout entier k, lorsque P_k est vraie, alors P_{k+1} est vraie aussi. Par le principe de récurrence, on en déduit que, pour tout $n \in \mathbb{N}^*$, P_n est vraie donc $p_n > 0.8$.

(b) Pour tout entier $n \ge 1$, on a $p_{n+1} - p_n = 0.5p_n + 0.4 - p_n = -0.5p_n + 0.4$. Or, $p_n > 0.8 \Leftrightarrow -0.5p_n < -0.4 \Leftrightarrow -0.5p_n + 0.4 < 0$.

Donc $p_{n+1} - p_n < 0$ et alors la suite (p_n) est décroissante.

- (c) La suite (p_n) est décroissante et minorée par 0,8 donc elle converge vers un réel ℓ .
- 3. (a) Pour tout entier $n \ge 1$, on a $v_{n+1} = p_{n+1} 0.8 = 0.5p_n + 0.4 0.8$ = $0.5p_n - 0.4 = 0.5(p_n - 0.8) = 0.5v_n$.

Donc la suite (v_n) est géométrique de raison q = 0.5 et de premier terme $v_1 = p_1 - 0.8 = 0.2$.

- (b) On a alors $v_n = v_1 \times q^{n-1} = 0.2 \times 0.5^{n-1}$. D'où $p_n = 0.8 + v_n = 0.8 + 0.2 \times 0.5^{n-1}$.
- (c) Comme -1 < 0.5 < 1 alors $\lim_{n \to +\infty} 0.5^{n-1} = 0$. Ainsi, par produit, $\lim_{n \to +\infty} 0.2 \times 0.5^{n-1} = 0$. Et donc, par somme, $\lim_{n \to +\infty} p_n = 0.8$.

1