MH1820 Week 9

Population, random samples, statistics and sampling distribution

2 Law of large numbers and CLT

3 Parameter Estimation: Point Estimation

MH1820 1 / 58

Population, random samples, statistics and sampling distribution

MH1820 2 / 58

In statistics, a **population** is a set of objects or a certain kind of experiment that generates certain outcomes. A specific property of these objects is analyzed statistically.

Examples:

Population	Property
Undergraduate students in NTU	CGPA
Stars in the universe	Luminosity
Chess players in Singapore	Elo rating
Rolling a dice repeatedly	outcomes of rolls

MH1820 3 / 58

- Instead of the whole population, often only a random subset is selected (easier, more efficient) for measurements of the property of interest.
- These measurements $x_1, x_2, ..., x_n$ (also called **observations/data**) can be modelled by random variables $X_1, X_2, ..., X_n$ (called **random sample**), which are assumed to be i.i.d (identically independently distributed),
- The distribution of the random variables X_i is called **population** distribution. ($\mathbb{E}[X_i]$ is called the **population mean**; $Var[X_i]$ is called the **population variance**).

...[continued]

4 D F 4 D F 4 E F 4 E F E *) Q (*

MH1820 4 / 58

- *n* is called the **sample size**.
- x_1, \ldots, x_n can be viewed as realizations of i.i.d random variables X_1, \ldots, X_n .

MH1820 5 / 58

MH1820 6 / 58

Example 1

- Population: Undergraduate students at NTU
- Property: CGPA
- Population Distribution: $N(\mu, \sigma^2)$
- Random sample: *n* randomly chosen NTU students X_1, \ldots, X_n
- Observation/Data: $x_1, \ldots, x_n \in [0, 5]$
- Statistical model: X_1, \ldots, X_n i.i.d $\sim N(\mu, \sigma^2)$.

Example 2

- Population: Tossing a fair coin 10 times
- Property: Number of heads among the 10 tosses.
- Population Distribution: Binomial (10, 0.5)
- Random sample: n repetitions of 10 tosses.
- Observation/Data: $x_1, \ldots, x_n \in \{0, 1, \ldots, 10\}$
- Statistical model: X_1, \ldots, X_n i.i.d $\sim Binomial(10, 0.5)$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

MH1820 8 / 58

Let X_1, \ldots, X_n be a random sample.

- A real valued function $T(X_1, ..., X_n)$ is called a **statistic**.
- The distribution of a statistic is called a **sampling distribution**.

Example 3

Let X_1, \ldots, X_n be a random sample. Some examples of statistics.

- $T_1 = \sum_{i=1}^n X_i^2$
- $T_2 = \min\{X_1, \dots, X_n\}$
- $T_3 = X_1$

$$T_4 = \frac{x_1 + x_2 + \dots + x_n}{n} \qquad T_5 = \int_{-\infty}^{\infty} \frac{\sum (x_1 - \overline{x})^2}{n - 1}$$

Let X_1, \ldots, X_n be an i.i.d random sample.

• **Population distribution**: distribution of X_i

• **Sampling distribution**: distribution of a <u>statistic</u> based on X_1, \ldots, X_n

T(X1, ..., Xn)

estimate of some
parameter like mean, variance,
median etc.

MH1820 a 10 / 5

X: ~ Populate distrible.

Example 4

Let X_1, \ldots, X_n be a random sample.

- Sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$.

Note that \overline{X} and S^2 are statistics. Their distributions are examples of sampling distributions.

MH1820 11 /

Theorem 5 (Random sample from Normal distribution)

Let X_1, \ldots, X_n be observations of a random sample of size n from the normal distribution $N(\mu, \sigma^2)$. Then the sample mean \overline{X} and sample variance S^2 are independent, and

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \chi^2(\underline{n-1}).$$

$$Z_i \sim \mathcal{N}(0,1)$$
 inid
 $Z_i \sim \mathcal{N}(0)$ $\sum_{i=1}^n Z_i^2 \sim \mathcal{N}(n)$.

MH1820 12 / 58

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$\frac{(n-1)S^{2}}{S^{2}} = \sum_{i=1}^{n} \left(\frac{x_{i} - \bar{x}}{S} \right)^{2}$$

$$= \sum_{i=1}^{n} Z_{i}^{2} \qquad Z_{i} \sim N(0,1)$$

$$\sim \chi^{2}(n-1) \qquad \sum_{i=1}^{n} Z_{i} = 0$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

MH1820 13 / 58

$$\frac{2(x_{i}-\overline{x})}{6} = \frac{1}{6} \underbrace{\sum_{i=1}^{n} (x_{i}-\overline{x})}_{i=1}^{n}$$

$$= \frac{1}{6} \underbrace{\left(\sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} \overline{x}\right)}_{i=1}^{n}$$

$$= \frac{1}{6} \binom{n}{n} - \binom{n}{n}$$

$$= 0$$

$$\frac{2}{n} + \frac{2}{n} + \frac{2}{n} + \dots + \frac{2}{n} = 0$$

◆□ ト ◆□ ト ◆ ≧ ト ◆ ≧ ト ◆ ② へ ○

MH1820 14 / 58

Theorem 6 (Random sample from Normal distribution)

Let X_1, \ldots, X_n i.i.d $\sim N(\mu, \sigma^2)$. The sampling distribution of the sample mean X is given by

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
.

This implies that the standardized sample mean $\frac{\overline{(X-\mu)}}{\sigma/\sqrt{n}} \sim N(0,1)$.

$$\frac{(\overline{X}-\mu)}{\sigma/\sqrt{n}} \sim N(0,1)$$

MH1820 16 / 58

Recall:
$$(X \sim N(\mu) \sigma^2)$$

$$MGF of X = M_X(t) = e^{\mu t + \sigma^2 t^2/2}$$

- $M_{a\times}(t) \stackrel{\rightleftharpoons}{=} M_{\times}(at)$
- $M_{X+Y}(t) = M_X(t) M_Y(t)$

MH1820

$$M_{\frac{1}{N}}(t) = M_{\frac{1}{n}(x_{1}+...+x_{n})}(t)$$

$$= M_{\frac{1}{n}+...+x_{n}}(\frac{1}{n}t) \qquad \text{by} \qquad M_{\frac{1}{n}}(t)$$

$$= M_{\frac{1}{n}+...+x_{n}}(\frac{1}{n}t) \qquad M_{\frac{1}{n}+...+x_{n}}(\frac{1}{n}t) \qquad M_{\frac{1}{n}+...+x_{n}}(\frac{1}{n}t)$$

$$= (e^{M_{\frac{1}{n}+}^{\frac{1}{n}}}(e^{M_{\frac{1}{n}+}^$$

MH1820 = 18 /-58

$$S_{\circ} = \overline{X} \sim N(\mu, \frac{\sigma^{2}}{n}).$$

or equivalently

$$\frac{\overline{X}-\mu}{5\pi} \sim N(0,1)$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ かへで

MH1820 19 / 58

Summany:

$$X_{(1)} \times X_{2}, \dots \times X_{n}$$

$$X_{($$

MH1820 20 / 58

Q: what if populate distribute is unknown 2.

MH1820 21 / 58

Remark: For increasing sample size n, the variance $\frac{\sigma^2}{n}$ tends to 0, and so the distribution of the sample mean \overline{X} tends to the distribution of the constant μ . It turns out that this is true even if the random sample is not from a normal distribution!

MH1820 24 / 58

of statistic $T(X_1, X_n)$ if $T(x_{1,-},x_{n}) = Sample near = \overline{X}$ then sampling distribution of \(\int = distribution of \(\int \)

Law of large numbers and CLT

MH1820 25 / 58

True mean
$$\mu = 1.\frac{1}{6} + 2.\frac{1}{6}$$

+3.\frac{1}{6} + \frac{1}{6}

An experiment:

- Roll a fair dice n times. = 3
- Compute average $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ where $x_i \in \{1, 2, ..., 6\}$ is the outcome of the *i*th roll.
- Repeat this 1000 mes to get 1000 observations for \overline{X} .
- Plot a histogram of these 1000 observations to visualize the distribution of the average.

generate sampling distribute of X.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

26 / 58

Distribution of \bar{X} (average result of rolling dice n times)

MH1820 28 / 58

Distribution of \bar{X} (average result of rolling dice n times)

MH1820 29 / 58

Distribution of \bar{X} (average result of rolling dice n times)

From this experiment, when n increases, the probability that \overline{X} is close to the population mean $\mathbb{E}[X_i] = 3.5$ is getting higher. This fact is formalized by the Law of Large Numbers.

MH1820 30 / 58

Theorem 7 (Law of Large Numbers)

Let X_1, \ldots, X_n be i.i.d such that $\mu = \mathbb{E}[X_i]$ exists. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

$$\mathbb{P}(|\overline{X} - \mu| < \epsilon) \to 1$$
, as $n \to \infty$,

for all $\epsilon > 0$.

In other words, for increasing sample size, the distribution of the sample mean \overline{X} tends to the distribution of the constant μ .

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

MH1820 31 / 58

- In practice, we often encounter i.i.d random samples which are not normally distributed.
- The population distribution may even be totally unknown.
- In this situation, the exact distribution of \overline{X} cannot be determined.
- For large samples, however, the Central Limit Theorem provides an approximation to the distribution of \overline{X} .

MH1820 32 / 58

Theorem 8 (Central Limit Theorem (CLT))

Let X_1, \ldots, X_n i.i.d with $\mathbb{E}[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$. Then

$$\mathbb{P}\left(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \le x\right) \to \Phi(x) \text{ for } n \to \infty.$$

Here, $\Phi(x)$ is the CDF of standard normal.

This means for large n, the standardized sample mean $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ approximately has a standard normal distribution.

$$\frac{\overline{x}-\mu}{\sqrt[9]{50}} \approx N(0,1)$$

n lage

MH1820 ______ 33 / 58

The CLT is often used to approximate probabilities of sum of i.i.d:

$$\mathbb{P}(a \leq \sum_{i=1}^{n} X_{i} \leq b) = \mathbb{P}\left(\frac{a}{n} \leq \overline{X} \leq \frac{b}{n}\right) \sim \mathbb{N}\left(\mathbf{0}\right)$$

$$= \mathbb{P}\left(\frac{a - n\mu}{n} \leq \overline{X} - \mu \leq \frac{b - n\mu}{n}\right)$$

$$= \mathbb{P}\left(\frac{a - n\mu}{\sqrt{n}} \leq \sqrt{n}(\overline{X} - \mu) \leq \frac{b - n\mu}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(\frac{a - n\mu}{\sigma\sqrt{n}} \leq \sqrt{n}(\overline{X} - \mu) \leq \frac{b - n\mu}{\sigma\sqrt{n}}\right)$$

$$\approx \Phi\left(\frac{b - n\mu}{\sigma\sqrt{n}}\right) - \Phi\left(\frac{a - n\mu}{\sigma\sqrt{n}}\right),$$

by CLT when n is large.

- 4 日 ト 4 昼 ト 4 差 ト - 差 - かり()

MH1820 34 / 5

$$M = P = 0.8$$

Example 9

 X_1, \ldots, X_{100} i.i.d $\sim Bernoulli(0.8)$. Approximate

$$\mathbb{P}(70 \le X_1 + \cdots + X_{100} \le 90).$$

Solution.
$$P(70 \le \frac{2}{100} \times 10^{-10} \le 90)$$

$$= P(\frac{70}{100} \le \frac{1}{100} \times 10^{-10} \times 10^{-10} \times 10^{-10})$$

$$= P(\frac{70}{100} \le \frac{1}{100} \times 10^{-10} \times 10^{-10})$$

$$= P(\frac{0.7 - 10}{100} \le \frac{1}{100} \times 10^{-10})$$

$$\approx P(\frac{0.7 - 0.8}{10.8(0.25)/5100} \le 2 \le \frac{0.9 - 0.8}{50.8(0.25)/5100})$$
(LT)

MH1820 35 / 58

$$= \overline{+}(2.5) - \overline{+}(-2.5)$$

MH1820 36 / 58

Example 10

Let X_1, X_2, \ldots, X_{20} be a i.i.d random sample of size 20 from the uniform distribution U(0,1). Let $Y=X_1+X_2+\cdots+X_{20}$. Use CLT to approximate the following probabilities.

- (a) $\mathbb{P}(Y \leq 9.1)$;
- (b) $\mathbb{P}(8.5 \le Y \le 11.7)$.

Solution. Note that $\mathbb{E}[X_i] = 1/2$ and $\operatorname{Var}[X_i] = 1/12$ for $i = 1, \dots, 20$.

$$\mu = \frac{1}{4} - \frac{1}{4} = \left(\frac{x^3}{3}\right)_0^2 - \frac{1}{4}$$

$$\mathbf{e}^{-1} = \mathbf{E}(x^{2}) - \mathbf{E}(x)^{2}$$

$$= \int_{0}^{1} x^{2} dx - \left(\frac{1}{2}\right)^{2}$$

MH1820 38 / 58

$$P(Y \leq 9.1) = P(\frac{20}{5} \times 1 \leq 9.1)$$

$$= P(\frac{1}{20} \times 1 \leq \frac{9.1}{20})$$

MH1820 39 / 58

$$\mathbb{P}(Y \le 9.1) \approx \Phi\left(\frac{9.1 - 20(1/2)}{\sqrt{1/12}\sqrt{20}}\right) = \Phi(-0.6971)0.2429.$$

$$\mathbb{P}(8.5 \le Y \le 11.7) \approx \Phi\left(\frac{11.7 - 20(1/2)}{\sqrt{1/12}\sqrt{20}}\right) - \Phi\left(\frac{8.5 - 20(1/2)}{\sqrt{1/12}\sqrt{20}}\right)$$
$$= \Phi(-1.162) - \Phi(1.317) = 0.7835.$$

MH1820 42 / 58

Recall:
$$MGF \times \sim Poisson(2)$$

$$M_{\times}(+) = e^{2(e^{t}-1)}$$

Example 11

Explain how a Poisson distribution with mean $\lambda=20$ can be approximated with the use of a normal distribution.

MH1820 43 / 58

Let
$$Y_i \sim Poisson(\mathcal{N}=1)$$

$$M_{Y_i t \dots + Y_{20}} (t) = M_{Y_i}(t) \dots M_{Y_{2i}}(t)$$

$$= e^{l \cdot (e^t - 1)} = e^{l \cdot (e^t - 1)}$$

$$= e^{(e^t - 1) \times 20}$$

$$= M_{Y_i}(t) \qquad Y \sim Poisson(20)$$

MH1820 44 / 58

By CLT:
$$Y \sim P_{0}ism(2=1)$$

 $Y = Y_{1} + \cdots + Y_{20}$.
 $Y \sim M \approx N(0,1)$.
 $\frac{Y}{6/5n} \approx N(0,1)$.
 $\frac{Y}{6/5n} \approx N(0,1)$.
 $\frac{Y}{6/5n} \approx N(0,1)$ $\frac{Y}{6} = Var[Y;] = 1$
 $\frac{Y}{5n} = \frac{Y}{5n} = \frac{Y}$

MH182

$$\begin{array}{ll}
Q.Y & \int_{20} \left(\frac{1}{10} - 1 \right) \sim N(0,1) \\
P(Y \leq \alpha) &= P(\frac{1}{20} \leq \frac{\alpha}{20}) \\
&= P(\frac{1}{30} - 1 \leq \frac{\alpha}{30} - 1) \\
&= P(\int_{20} \left(\frac{1}{30} - 1 \right) \leq \int_{20} \left(\frac{\alpha}{30} - 1 \right) \\
&\approx \Phi\left(\int_{30} \left(\frac{\alpha}{30} - 1 \right) \right).
\end{array}$$