HW6

1. Chap 10 Prob. 1 (c)

$$|G(j\omega)| = \frac{\sqrt{4+\omega^2}\sqrt{16+\omega^2}}{\omega\sqrt{1+\omega^2}\sqrt{9+\omega^2}}; \ \angle G(j\omega) = tan^{-1}\frac{\omega}{2} + tan^{-1}\frac{\omega}{4} - 90^{\circ} - tan^{-1}\omega - tan^{-1}\frac{\omega}{3}$$

2. Chap 10 Prob. 4System 3

3. Chap 10 Prob. 8System2and Prob. 9(b) for Prob. 8System 2

8. System 2: For K = 1,

The Nyquist diagram intersects the real axis at -0.720. Thus K can be increased to 1.39 before there are encirclements of -1.

There are no poles encircles by the contour. Thus P = 0. Hence, Z = P - N, Z = 0 + 0 if K < 1.39; Z = 0 - (-2) if K > 1.39. Therefore stability if 0 < K < 1.39.

When K = 50 only the System 1 is closed loop stable, for the other two systems the gain margin and phase margin do not exist.

4. Chap 10 Prob. 19System 1

The Bode plot is:

The phase margin is 34.2°. The open loop response is -7dB with -156° at approximately 14 rad/sec which is the Bandwidth of the closed loop system. Using Figure 10.48 $\zeta=0.34$, so $\%OS=100e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}=32.1\%$. Using Eq. (10.55) $T_s=1.197$ sec and Eq. (10.56) yields $T_p=0.34$ sec.

5. Chap 10 Prob. 22

- **a.** From the Bode plots: Gain margin \cong 20 dB; phase margin \cong 55°; 0 dB frequency \cong 1 rad/s; -180° frequency \cong 4.5 rad/s; bandwidth (@-7 dB point) \cong 2 rad/s.
- **b.** From Eq. (10.73) $\zeta = 0.55$; from Eq. (4.38) %OS = 12.6; from Eq. (10.55) Ts = 4.41 s; from Eq. (10.56) Tp = 2.28 s.