Topic 13

13 Review on semiconductor physics

- 13.1 Introduction
- 13.2 Energy Band
- 13.3 Effective-mass Approximation
- 13.4 Indirect and Direct Bandgap
- 13.5 Density of States
- 13.6 Hetero-structures

 $\sin \theta_m = m \lambda / d$, (d: period of grating): $\sin \theta_m - \sin \theta_{m+1} \sim 1 / d$ for a fixed λ

The interaction between light and a periodic structure:

- Only certain angles (discrete) are allowed for observing light
- The angles between these "allowed" angles: "forbidden" for the light

Conclusion:

- Generate a series of discrete "allowed" angles, and "forbidden" angles
- The angle separation is determined by the period of grating (1/d)

Introduction (2)

Crystalline: Similar to "grating structure", a periodic structure

(period parameter: lattice constant)

Semiconductor: electrons of the outermost shell are "free" within it (RT)

The interaction between these "free" electrons and the periodic structure:

- (1) A series of discrete energy levels, allowing electrons to stay; and the energy gaps between them do not allow electrons to stay
- (2) Conduction and valence band: the two highest energy levels, allowing electrons to stay. The energy gap between them: "forbidden gap", which is called the bandgap.

Band Structure

- Energy distribution depends strongly on interatomic distance, and also relies on crystallographic direction
- Valence band: existence of subbands due to spin-orbit interaction
- Minimum of conduction band and maximum of valence band:
 - (i) Ge and Si: along different directions
 - (ii) GaAs: along the same direction

Effective-mass Approximation

- It is extremely difficult to describe the motion of electrons, as it contains 10²²-10²³ electrons cm⁻³
- We need to know all forces that any electrons receive:

 (i) Its kinetic energy;
 (ii) interaction between the electron and any other of 10²²-10²³ electrons cm⁻³;
 (iii) interaction between the electron and all positively charged ions (nucleus)
 It is almost impossible. An approximation is necessary.

An very useful model which can simplify the issue **Effective-mass Approximation**

Key points:

- (1) Electron or hole is treated as a free particle,
- (2) Electron or hole is with an effective mass
- (3) The effective mass:

All forces that any electrons receive from all the ions and all the other electrons.

Effective-mass

III-nitrides:

	AIN	GaN	InN
Band gap (eV)	5.96	3.42	0.7
Effective Mass of m _e	0.48	0.20	0.11

III-As:

	AlAs	GaAs	InAs
Band gap (eV)	2.15	1.424	0.36
Effective Mass of m _e	0.1	0.067	0.027

III-Sb:

	AlSb	GaSb	InSb
Band gap (eV)	1.615	0.75	0.17
Effective Mass of m _e	0.12	0.042	0.027

III-P:

	AIP	GaP	InP
Band gap (eV)	2.45	2.272	1.344
Effective Mass of m _e	?	?	0.073

In general

Bandgap ↑
Effective mass ↑

Effective mass plays an important role in device design

Temp. Dependent Bandgap and Refractive Index

- Temperature
- (1) increase temperature and the lattice expands reducing the bandgap energy
- (2) reduce temperature and the lattice shrinks increasing the bandgap energy

$$E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$$

(3) n^4E_{gap} =constant

Bandgap energy (E) increases; refractive index (n) decreases

Direct and indirect Semiconductors

Radiative Recombination Process

Radiative recombination: an electron recombines with a hole, releasing the energy as a photon.

Direct bandgap: This process is easy to occur, thus efficiency is high.

The radiative lifetime is short. (Good for emitters)

Indirect bandgap: Due to the conservation of crystal momentum, the process must involve the absorption of a phonon (the phonon momentum difference between electron and hole)

The efficiency is low.

The radiative lifetime is long. (not Good for emitters)

"Bulk" Semiconductor Density of States

Definition: g(E) dE, the number of quantum states per unit volume of the crystal between E and E + dE (DOS)

Following Fermi-Dirac statistics and Pauli exclusion principle: start from low energy states; prevents more than one electron occupying an identical state

Calculate the number of carriers and carrier distribution (electrical &

optical properties)

$$g(E)dE = [N(E+dE)-N(E)]V$$

$$g(E) = \left(\frac{4\pi}{h^3}\right) (2m)^{3/2} E^{1/2}$$

DOS:

- Strongly depends on dimension

Materials For Optical Communications

0.85 μ m – GaAs Based, 1.31 μ m & 1.55 μ m – Traditionally InP Based – But current research on GaAs based long wavelength materials – Dilute Nitrides and QDs $_{11}$

Band-Structure Engineering

The offsets of the valence-band and conduction bands are different for different materials – need to refer to common datum line (vacuum level)

Carrier Confinement

Double heterostructure:

two large bandgap materials sandwich a narrow band-gap material, generating carrier confinement due to the energy barrier

Optical Confinement

A heterostructure:

two large bandgap semiconductors with small refractive indices sandwich a narrow bandgap material with a large refractive index, generating confinement for both the carriers and photons

Low dimensional semiconductors

Double heterostructure: two layers with large E_g sandwich a layer with low E_g

If the low E_g layer is on a nanometer scale, electrons/holes will have extra energy generated due to quantum confinement. (The carriers can not move along z direction). This is quantum well structure.

DOS and Energy: will be changed, (significantly affect optical & electrical properties)

III-V: III-N (all direct band gap, covering from infrared to deep UV)

III-As & III-Sb (infrared, direct or indirect), III-P (indirect except In-P)

II-VI: Visible or UV, but with mechanical problems

Others: SiC (visible; indirect); Si and Ge (infrared, indirect)

Tutorial Questions

T13.1 What is a direct and indirect bandgap semiconductor?

T13.2 Sketch the band structure of a "bulk" semiconductor in the region of k=0, and the density of states, labelling and describing the band-gap, and form of the conduction and valence bands. Sketch the relative hole and electron density at a "high" and "low" temperature.