

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS

Fall 2009 Lab 1

September 14, 2009

Dr. Harrison H. Chin

Formal Labs

1. Microcontrollers

- Introduction to microcontrollers
- Arduino microcontroller kit

2. Sensors and Signals

- Analog / Digital sensors
- Data acquisition
- Data processing and visualization

3. GPS and Data Logging

- GPS receiver and shield
- Data logging
- Visualization of data

4. Motor Control

- Motors
- Encoders
- Position control

Why Arduino

- Popular
- Open source
- Low cost
- Large user community
- Easy to use development environment

Arduino Hardware

Photos by SparkFun Electronics.

Photos by SparkFun Electronics.

Bluetooth Photos by SparkFun Electronics.

Courtesy of Adafruit Industries. Used with permission.

many different variations to suite your needs Photos by SparkFun Electronics.

"Stamp"-sized

Arduino Duemilanove Microcontroller

http://www.arduino.cc/

Courtesy of Arduino.cc. Used with permission.

Expandable by stacking add-on modules for data storage, wireless, GPS, audio, motor drive,... etc.

Microcontroller	8-bit ATmega328 (by ATMEL)		
Operating Voltage	5V		
Input Voltage (recommended)	7-12V		
Input Voltage (limits)	6-20V		
Digital I/O Pins	14 (of which 6 provide PWM output)		
Analog Input Pins	6		
DC Current per I/O Pin	40 mA		
DC Current for 3.3V Pin	50 mA		
Flash Memory	32 KB (ATmega328) of which 2 KB used by bootloader		
SRAM	2 KB (ATmega328)		
EEPROM	1 KB (ATmega328)		
Clock Speed	16 MHz		

Arduino Components

Test LED (Pin 13)

Digital I/O and PWM Output Pins

Courtesy of Arduino.cc. Used with permission.

Power Pins

Analog Input Pins

Arduino Circuit Diagram

Arduino Programming Environment

- Open source
- Simplified C++ like development environment that is easy to program and to upload the code
- Several examples are included that demonstrate various I/O capabilities
- Built-in libraries that simplify data I/O tasks
- Large user community

Resources

- http://arduino.cc/
- http://ladyada.net/learn/arduino/
- http://todbot.com/blog/category/arduino/
- http://freeduino.org/
- http://adafruit.com/
- http://sparkfun.com/
- · Books:
 - "Arduino Programming Notebook", Brian W. Evans
 - "Physical Computing", Dan O'Sullivan & Tom Igoe
 - "Making Things Talk", Tom Igoe
 - "Hacking Roomba", Tod E. Kurt

Labs 1& 2: The Arduio Kit Experiments

- {CIRC01} Getting Started (Blinking LED)
- {CIRC02} 8 LED Fun (Multiple LEDs)

Lab 1

- {CIRC03} Spin Motor Spin (Transistor and Motor)
- {CIRC04} A Single Servo (Servos)
- {CIRC05} 8 More LEDs (74HC595 Shift Register)
- {CIRC06} Music (Piezo Elements)
- {CIRC07} Button Pressing (Pushbuttons)
- {CIRC08} Twisting (Potentiometers)

Lab 1

- {CIRC09} Light (Photo Resistors)
- {CIRC10} Temperature (TMP36 Temperature Sensor) Lab 2
- {CIRC11} Larger Loads (Relays)

Resistor Color Code Chart

Color	1st-band Digit	2nd-band Digit	3rd-band Digit	4th-band Digit
Black	0	0	10 ⁰ - 1	
Brown	1	1	10 ¹ - 10	1%
Red	2	2	10 ² - 100	2%
Orange	3	3	10 ³ - 1000	3%
Yellow	4	4	10 ⁴ - 10000	4%
Green	5	5	10 ⁵ - 100000	
Blue	6	6	10 ⁶ - 1000000	
Violet	7	7	10 ⁷ - 10000000	
Gray	0	0	10 ⁸ - 100000000	
White	9	9	10 ⁹ - 1000000000	
Gold				5%
Silver				10%
None				20%

red green brown gold $250 \Omega 5\%$

Figure by MIT OpenCourseWare.

2.017J Design of Electromechanical Robotic Systems Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.