1 Résolution des systèmes linéaires

Considérons un systèmes d'équations linéaires de la forme $A\mathbf{x} = \mathbf{b}$ avec A une matrice inversible connue de dimension $n \times n$, \mathbf{b} un vecteur connu et \mathbf{x} le vecteurs des inconnues :

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Il existe deux grandes familles de méthodes de résolution :

- \Re Les **méthodes directes** qui permettent de résoudre le système exactement soit par triangularisation, soit par factorisation de la matrice A. Les principales méthodes sont :
 - Le pivot de Gauss,
 - \blacksquare La factorisation LU,
 - La factorisation de Cholesky,
 - \bullet Les factorisations de Householder et QR.
- Les **méthodes itératives** qui introduisent une notion de convergence vers la solution. Les principales méthodes sont :
 - Méthode de Jacobi,
 - Méthode de Gauss-Seidel,
 - Méthode du gradient.

Nous détaillerons les avantages et inconvénients de chacune de ces méthodes, mais avant toutes choses voici quelques rappels d'algèbre linéaire (M4).

1.1 Rappels d'algèbre linéaire

Dans cette partie nous rappelons les éléments de base d'algèbre linéaire que nous utiliserons dans le reste du cours.

1.1.1 Espaces vectoriels

Commençons par définir l'espace dans lequel nous travaillerons toujours.

Définition 1.1 (Espace vectoriel). On dit que V est un espace vectoriel sur un corps \mathbb{K} (\mathbb{R} ou \mathbb{C}) si c'est un ensemble non-vide muni de deux opérations : l'addition $(+:V^2\to V)$ et la multiplication de \mathbb{K} ($\cdot:\mathbb{K}\times V\to V$), qui vérifient les propriétés suivantes :

- (i) l'**addition** est commutative et associative : $\forall v_1, v_2, v_3 \in V, \ v_1 + v_2 = v_2 + v_1 \quad \text{et} \quad (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3);$
- (ii) il existe un élément neutre (vecteur nul) : $\exists 0_V \in V : \forall v \in V, \ v + 0_V = v;$
- (iii) il existe un élément opposé : $\forall v \in V \ \exists (-v) \in V : \ v + (-v) = 0_V;$

(iv) la **multiplication** est associative :

 $\forall \lambda, \mu \in \mathbb{K} \quad \forall v \in V \ (\lambda \mu) \cdot v = \lambda(\mu \cdot v);$

- (v) on a $\forall v \in V$, $1 \cdot v = v$, et $0 \cdot v = 0_V$, où 0, 1 sont les éléments neutre additif et neutre multiplicatif de corps \mathbb{K}
- (vi) les lois de distributivité suivantes sont vérifiées :

$$\forall \lambda \in \mathbb{K} \quad \forall v_1, v_2 \in V \ \lambda(v_1 + v_2) = \lambda v_1 + \lambda v_2$$

$$\forall \lambda, \mu \in \mathbb{K} \quad \forall v \in V \ (\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$$

Exemple.

Définition 1.2 (Sous espace vectoriel). On dit qu'une partie non-vide W du K-ev V est un sous-espace vectoriel si et seulement si W est un espace vectoriel sur \mathbb{K} .

Définition 1.3. La famille $(v_k)_{1 \le k \le n}$ de vecteurs de V est une base de V si

(i)
$$(e_k)_{1 \le k \le n}$$
 est une famille libre : $\sum_{k=1}^n \lambda_k e_k = 0 \iff \lambda_k = 0 \ \forall k \in [1, \dots, n],$

(ii)
$$(e_k)_{1 \le k \le n}$$
 est une famille génératrice : $\forall v \in V \ \exists (\lambda_k)_{1 \le k \le n} \in \mathbb{K} : v = \sum_{k=1}^n \lambda_k e_k$.

Propriété 1.4. Soit V est un e.v. qui admet une base de n vecteurs, alors toute famille libre de vecteurs de V compte au plus n éléments. Ainsi la dimension de V, noté dim(V), qui est définie comme le nombre de vecteurs de sa base, est égale à n. Si, au contraire, $\forall n \in \mathbb{N}$ il existe une famille libre de V, V est un espace de dimension infinie.

Matrices $\mathbb{M}_{n\times n}(\mathbb{K})$ 1.1.2

Définition 1.5. On appelle une matrice un tableau des éléments de \mathbb{K} :

$$A = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ & \ddots & \ddots \\ a_{n1} & \dots & a_{np} \end{pmatrix} \quad \text{avec } a_{ij} \in \mathbb{K}.$$

Si n = p, alors A est une matrice carrée.

Dans ce cours, on s'intéressera à l'espace des matrices de taille $n \times p$ (n est le nombre de lignes, p est le nombre de colonnes) à coefficients dans \mathbb{K} , noté $\mathbb{M}_{n\times p}(\mathbb{K})$. On munit l'espace $\mathbb{M}_{n\times p}(\mathbb{K})$ de deux opérations de base :

 $\forall A \in \mathbb{M}_{n \times p}(\mathbb{K}), \forall B \in \mathbb{M}_{n \times p}(\mathbb{K}), A + B \in \mathbb{M}_{n \times p}(\mathbb{K}) \text{ est une matrice avec des}$

Multiplication par un scalaire:

 $\overline{\forall \lambda \in \mathbb{K}}, \forall A \in \mathbb{M}_{n \times p}(\mathbb{K}), \lambda A \in \mathbb{M}_{n \times p}(\mathbb{K})$ est une matrice avec des éléments :

Exercice. Montrez que $\mathbb{M}_{n\times p}(\mathbb{K})$ avec les opérations définies ci-dessus est un espace vectoriel sur \mathbb{K} , donnez sa dimension et une base.

La structure de l'ensemble des matrices est plus riche que celle d'un simple espace vectoriel, car on peut définir le produit de deux matrices.

<u>Produit matriciel</u>: On peut définir le produit de $A = (a_{ij}) \in \mathbb{M}_{n \times p}(\mathbb{K})$ et $B = (b_{ij}) \in \mathbb{M}_{p \times m}(\mathbb{K})$ par :

avec $AB \in \mathbb{M}_{n \times m}(\mathbb{K})$

Remarque. En général, le produit matriciel n'est pas commutatif $AB \neq BA$. De plus, même si AB a un sens, rien ne garantit que BA en ait un.

<u>Matrice transposée</u>: On définit $\forall A \in \mathbb{M}_{n \times p}(\mathbb{R})$ sa matrice transposée, notée A^t , telle que $A^t \in \mathbb{M}_{p \times n}(\mathbb{R})$: $a_{ij}^t := a_{ji}$:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ & \ddots & \\ a_{n1} & \dots & a_{np} \end{pmatrix} \qquad A^t = \begin{pmatrix} a_{11} & \dots & a_{n1} \\ & \ddots & \\ a_{1p} & \dots & a_{np} \end{pmatrix}$$

Généralisation à \mathbb{C} : On définit une matrice adjointe A^* (ou A^H) définie par

$$a_{ii}^H := \overline{a_{ii}} := \Re(a_{ii}) - i\Im(a_{ii})$$

Proposition 1.6. $\forall A \in \mathbb{M}_{n \times p}(\mathbb{R})$ les propriétés suivantes sont vérifiées :

Définition 1.7 (Inverse d'une matrice). Soit $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ matrice $B \in \mathbb{M}_{n \times n}(\mathbb{R})$ est une matrice inverse de A si AB = BA = I (ou I est la matrice identité). Si B existe, A est appelée inversible, et on note $B = A^{-1}$.

Proposition 1.8. Soit $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ et $B \in \mathbb{M}_{n \times n}(\mathbb{R})$ deux matrices inversibles. Les propriétés suivantes sont vérifiées :

Démonstration.

Proposition 1.9. Soit $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ est inversible, alors $(A^{-1})^t = (A^t)^{-1} =: A^{-t}$

Définition 1.10. On appelle matrice A symétrique si $A = A^t$, et antisymétrique si $A = -A^t$. Enfin, matrice A est appelée orthogonale si $A^tA = AA^t = I$ (donc si $A^{-1} = A^t$).

Exercice. Montrez que $A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ est inversible, donnez son inverse, et montrez qu'elle est orthogonale.

1.1.3 Matrices et applications linéaires

 $D\'{e}monstration.$

Dans cette sous-section on établit qu'une matrice correspond à une application linéaire. Cela nous permet (entre autre) de définir le noyau, l'image et le rang d'une matrice.

Définition 1.11. \mathcal{A} est une application linéaire $\mathbb{R}^n \to \mathbb{R}^n$ si :

$$\forall (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}^n \quad \forall (\alpha, \beta) \in \mathbb{R}^2 \quad \mathcal{A}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathcal{A}(\mathbf{x}) + \beta \mathcal{A}(\mathbf{y})$$

Proposition 1.12. Soit A est une application linéaire : $\mathbb{R}^n \to \mathbb{R}^n$. Alors, $\exists ! A \in \mathbb{M}_{n \times n}(\mathbb{R})$ tel que

$$\forall \mathbf{x} \in \mathbb{R}^n : \quad \mathcal{A}(\mathbf{x}) = A\mathbf{x}.$$

Remarque.

1. La matrice A est définie uniquement pour une base fixée $(e_k)_{1 \leq k \leq n}$. Si A est la matrice associé à A dans la base $(e_k)_{1 \leq k \leq n}$ et $P: e \to \tilde{e}$, alors $\tilde{A} = PAP^{-1}$ est la matrice dans la base $(\tilde{e}_k)_{1 \leq k \leq n}$.

2. On peut vérifier que $\mathcal{A} \to A$ est une isomorphisme de $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ vers $\mathbb{M}_{n \times n}(\mathbb{R})$.

3. On peut généraliser cette proposition aux matrices rectangulaire de $\mathbb{M}_{n\times p}(\mathbb{R})$ Dans ce cas $A\in \mathbb{M}_{n\times p}(\mathbb{R})$ est associée à une application $\mathbb{R}^p\to\mathbb{R}^n$.

Exemple. L'espace des polynôme de degré au plus 3 sur \mathbb{R} , noté $\mathbb{R}_3[X]$, est un espace vectoriel. On définit l'application linéaire $\mathcal{A}: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ par

$$\mathcal{A}(P) = X^2 P'' + P(1).$$

Dans la base canonique $\{1,X,X^2,X^3\}$ de $\mathbb{R}_3[X]$ l'application $\mathcal A$ est représentée par :

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix}$$

Définition 1.13 (Image et Noyau). Soit \mathcal{A} est une application linéaire $\mathbb{R}^n \to \mathbb{R}^n$ et A est sa matrice associée :

(i) L'image de A est l'ensemble :

$$\operatorname{Im}(\mathcal{A}) = \{ \mathbf{y} \in \mathbb{R}^n \mid \exists x \in \mathbb{R}^n \ \mathcal{A}(\mathbf{x}) = \mathbf{y} \} = \{ \mathbf{y} \in \mathbb{R}^n \mid \exists x \in \mathbb{R}^n \ A\mathbf{x} = \mathbf{y} \},$$

(ii) Le noyau de A est l'ensemble :

$$Ker(\mathcal{A}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathcal{A}(\mathbf{x}) = \mathbf{0} \} = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}.$$

Exercice. Déterminer Im(A) et Ker(A) pour les applications définies par les matrices :

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \text{ et } A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Définition 1.14. Une application linéaire $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n$ est dite

injective si $Ker(A) = \{0\},\$

surjective si $\operatorname{Im}(A) = \mathbb{R}^n$,

bijective si elle est injective et surjective.

Définition 1.15. $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ est une matrice inversible si l'application associée est bijective (cette définition est équivalente à : $\exists A^{-1} \in \mathbb{M}_{n \times n}(\mathbb{R}) : A^{-1}A = AA^{-1} = I$).
Theorem 1.16 (du rang). Pour toute application linéaire $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n$ on a $\dim(Ker(A)) + \dim(Im(A)) = n$.
Démonstration.

Corollaire 1.17. Si une application linéaire A est injective, donc $\dim(Ker(A)) = 0$ alors $\dim(Im(A)) = n$, et donc A est surjective, et ainsi A est bijective. Ou encore, si A est surjective, alors elle est bijective.

Définition 1.18 (Rang). La dimension de Im(A) correspond au rang de la matrice dim(Im(A)) = rg(A).

Propriété 1.19. Soit $A \in \mathbb{M}_{n \times n}(\mathbb{R})$, les propriétés suivantes sont équivalentes :

- (i) A est inversible
- (ii) $Ker(A) = \{0\}$
- (iii) rg(A) = n
- (iv) les lignes (et les colonnes) de A sont linéairement indépendants.
- (v) $det(A) \neq 0$

1.1.4 Déterminant et ses propriétés

Définition 1.20. Pour toute $A = (a_{ij}) \in \mathbb{M}_{n \times n}(\mathbb{R})$ on définie son déterminant (noté $\det(A)$)

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{i,j}) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(M_{i,j})$$

où $M_{i,j}$ est la matrice A à laquelle on a enlevé la ligne i et la colonne j, son déterminant $\det(M_{i,j})$ est appelé mineur.

Exemple.

Propriété 1.21. Soit $A \in \mathbb{M}_{n \times n}(\mathbb{R})$

$$\det(A) = \det(A^t), \quad \det(AB) = \det(A)\det(B), \quad \det(A^{-1}) = \frac{1}{\det(A)},$$
$$\det(A^*) = \overline{\det(A)}, \quad \det(\alpha A) = \alpha^n \det(A), \ \forall \alpha \in \mathbb{K}$$

Propriété 1.22. Soit $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ alors on a les propriétés suivantes :

- (i) Si A est telle que deux colonnes ou deux lignes coïncident, alors $\det(A) = 0$.
- (ii) Si l'on permute deux lignes (ou deux colonnes) de A, alors le signe du déterminant change.
- (iii) Si $A = \operatorname{diag}(d_1, \ldots, d_n)$, alors le déterminant est $\operatorname{det}(A) = \prod_{i=1}^n d_i$.
- (iv) A est inversible si et seulement si $det(A) \neq 0$.
- (v) Si A est inversible alors $A^{-1} = \frac{1}{\det(A)}C$, où $c_{ij} = (-1)^{i+j}\det(M_{j,i})$.

Theorem 1.23 (Formule de Cramer). Soit $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ est inversible, et $\mathbf{b} \in \mathbb{R}^n$ alors la solution $\mathbf{x} \in \mathbb{R}^n$ d'un système linéaire $A\mathbf{x} = \mathbf{b}$ est définie par la formule d'Eramer :
où $A_i(b)$ est la matrice carrée formée en remplaçant la k -ème colonne de A par vecteur colonne b .
Démonstration.

1.1.5 Produit scalaire

Définition 1.24. Produit scalaire sur un \mathbb{K} -e.v. V est défini comme une application $(\cdot, \cdot): V \times V \to \mathbb{K}$ qui est

- (i) linéaire par rapport aux vecteurs de $V: \forall v_1, v_2, v_3 \in V, \ \forall \gamma, \lambda \in \mathbb{K} \ (\gamma v_1 + \lambda v_2, v_3) = \gamma(v_1, v_3) + \lambda(v_2, v_3);$
- (ii) hermitienne $\forall v_1, v_2 \in V, (v_1, v_2) = \overline{(v_2, v_1)};$
- (iii) définie positive $\forall v \in V, (v, v) \ge 0$ et $(v, v) = 0 \iff v = 0_V.$

Exemple.

▼
Proposition 1.25. Pour toute matrice $A \in \mathbb{M}_{n \times p}(\mathbb{K})$ et $\forall \mathbf{x}, \mathbf{y} \in \mathbb{K}^n$:
$(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A^*\mathbf{y}).$
En particulier, la proposition 1.25 pour toute matrice unitaire $Q \in \mathbb{M}_{n \times n}(\mathbb{K})$ (c'est à dire $Q : Q^{-1} = Q^*$) donne $(Q\mathbf{x}, Q\mathbf{y}) = (\mathbf{x}, Q^*Q\mathbf{y})$ et on obtient
Propriété 1.26. Une matrice unitaire préserve le produit scalaire euclidien : $\forall Q \in \mathbf{U}(n)$, on a $(Q\mathbf{x}, Q\mathbf{y}) = (\mathbf{x}, \mathbf{y})$.
1.1.6 Matrice symétrique définie positive
Définition 1.27. $A \in \mathbb{M}_{n \times n}(\mathbb{K})$ est définie positive si $\forall x \in \mathbb{R}^n \setminus \{0\}$ $(Ax, x) > 0$. Si l'inégalité est large, on appelle la matrice A semi-définie positive.
Exemple.
▼
Mais les matrices symétriques définies positives ont une propriété très utile :
Theorem 1.28. Une matrice symétrique définie positive est inversible.
$D\'{e}monstration.$

1.1.7 Normes et conditionement

Définition 1.29 (Norme). Une norme d'une matrice est une application $\|\cdot\|: \mathbb{M}_{n\times n}(\mathbb{R}) \to \mathbb{R}^+$ tel que

- (i) $||A|| \ge 0$ et $||A|| = 0 \iff$ A est la matrice nulle;
- (ii) $\|\alpha A\| = |\alpha| \|A\| \ \forall \alpha \in \mathbb{R}, \ \forall A \in \mathbb{M}_{n \times n}(\mathbb{R});$
- (iii) $||A + B|| \le ||A|| + ||B|| \ \forall A \in \mathbb{M}_{n \times n}(\mathbb{R}), \ \forall B \in \mathbb{M}_{n \times n}(\mathbb{R});$

Exercice. Le déterminant est-il une norme sur l'ensemble des matrices inversibles?

Les normes d'intérêt pratique pour ce cours ont deux propriétés en plus :

- (i) Une norme matricielle est compatible à une norme vectorielle $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}^+$ si $\forall x \in \mathbb{R}^n \quad \|Ax\| \leq \|A\| \|x\|$ (Remarque. Ici on utilise la même notation $\|\cdot\|$ pour deux objets différents)
- (ii) Une norme matricielle est sous-multiplicative si

Remarque. Il existe des normes matricielles qui ne sont pas sous-multiplicative, par exemple la norme infinie sur $\mathbb{M}_{2\times 2}(\mathbb{R})$ (i.e. l'application qui à une matrice associe le max de la valeur absolue de ses coefficients). **Exercice.** Montrez que c'est une norme. Trouvez 2 matrices pour lesquelles l'inégalité de sous-multiplicativité n'est pas vérifiée.

Si une norme matricielle est sous-multiplicative, il existe toujours une norme vectorielle compatible. Rappelons les normes vectorielles classiques sur $\mathbb{R}^n \|\cdot\|_q$, $q = (1, 2, \infty)$:

Soit
$$\mathbf{x} \in \mathbb{R}^n$$
: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$, $\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$, $\|\mathbf{x}\|_{\infty} = \max_{i \in \{1, n\}} |x_i|$.

On définit la norme q d'une matrice A à la façon suivante :

Définition 1.30 (Norme matricielle subordonnée à une norme vectorielle $\|\cdot\|_q$).

$$||A||_q = \sup_{\|\mathbf{x}\| \neq 0} \frac{||A\mathbf{x}||_q}{\|\mathbf{x}\|_q}$$

On peut démontrer que cette application définie une norme compatible avec $\|\cdot\|_q$ et sous-multiplicative :

$$\left\|A\mathbf{x}\right\|_{q} \leq \left\|A\right\|_{q} \left\|\mathbf{x}\right\|_{q}, \quad \left\|AB\right\|_{q} \leq \left\|A\right\|_{q} \left\|B\right\|_{q}.$$

Enfin une norme subordonnée vérifie toujours $||I||_q = 1$.

Proposition 1.31. (cf TD) Soit $A \in \mathbb{M}_{n \times n}(\mathbb{R})$, on peut définir les normes subordonnées :

(i)
$$||A||_q = \sup_{\|\mathbf{x}\|_q=1} ||A\mathbf{x}||_q$$

(ii)
$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}| \quad ||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|$$

Définition 1.32. On appelle conditionnement d'une matrice carré inversible le nombre

Le conditionnement d'une matrice mesure la "difficulté" à inverser une matrice.

Remarque. Le conditionnement nous permet d'étudier la *sensibilité* du problème, c'est à dire l'influence de petites perturbations des données sur la solution du problème. Considérons un système linéaire :

$$A\mathbf{x} = \mathbf{b}, \quad \mathbf{x}, \mathbf{b} \in \mathbb{R}^n, \quad A \in \mathbb{M}_{n \times n}(\mathbb{R})$$

si on admet une erreur $\delta \mathbf{b}$ dans le second membre \mathbf{b} , c'est à dire qu'on résout un système $A(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$, alors on peut estimer l'erreur dans solution obtenue par (cf TD) :

$$\frac{\|\delta \mathbf{x}\|_q}{\|\mathbf{x}\|_q} \le \operatorname{cond}_q(A) \frac{\|\delta b\|_q}{\|b\|_q}.$$

Si au contraire on modifie la matrice A par δA et on cherche $\mathbf{x} + \delta \mathbf{x} : (A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}$, alors

$$\frac{\|\delta \mathbf{x}\|_q}{\|\mathbf{x} + \delta \mathbf{x}\|_q} \le \operatorname{cond}_q(A) \frac{\|\delta A\|_q}{\|A\|_q}.$$

En conclusion si $\operatorname{cond}(A) \gg 1$, même des petites perturbations des données (A ou \mathbf{b}) peut conduire à une énorme perturbation de la solution, dans ce cas on dit que le problème est $\operatorname{mal\ conditionn\acute{e}}$.

Exemple. Considérons un exemple de résolution d'un système 2×2 qui permet de définir l'intersection entre deux fonctions affines en 2D.

On remarque sur la figure 4 une explosion de $\operatorname{cond}_q(A)$ avec diminution de l'angle entre les droites!

FIGURE 4 – Evolution du conditionement de la matrice A

Exemple. Un exemple connu d'une matrice mal conditionnée est la matrice de Hilbert définie par :

$$(H_n)_{i,j} = \frac{1}{i+j-1}, 1 \le i, j \le n;$$

$$H_4 = \begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 \\ 1/2 & 1/3 & 1/4 & 1/5 \\ 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \end{pmatrix},$$

avec $\operatorname{cond}_2(H_4) \approx 1.6 \times 10^4$, et même $\operatorname{cond}_2(H_8) \approx 1.5 \times 10^{10}$.