SNE3002 Linear Algebra – 2025 Spring

Triangular Matrices

March 26, 2025

Diagonal Matrices

Def. Diagonal Matrices

A square matrix A is diagonal if $A_{ij} = 0$ for $i \neq j$

>
$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Computing the solution of the set of diagonal equations is trivial

-
$$Ax = b \rightarrow x_i = b_i/a_{ii}$$

Diagonal Matrices

> $\det(A) = a_{11}a_{22} \cdots a_{nn}$ - Recall $\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$

Lower Triangular

>
$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$> \det(A) = a_{11}a_{22} \cdots a_{nn}$$

> Q. Solve
$$Ax = b$$
 $A = \begin{bmatrix} 3 & 0 & 0 \\ 2 & -1 & 0 \\ 1 & -2 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 6 \\ -2 \\ 2 \end{bmatrix}$

Upper Triangular

>
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

$$> \det(A) = a_{11}a_{22} \cdots a_{nn}$$

> Q. Solve
$$Ax = b$$
 $A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 6 \\ -2 \\ 4 \end{bmatrix}$

Triangular Matrices

Remark. Inverse of Triangular Matrices

Inverse of a triangular matrix is also a triangular matrix Diagonal elements of inverse matrix is reciprocal of the original's

> Assume a lower triangular matrix

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$A^{-1}A = I$$

Triangular Matrices

- > Inverse of triangular matrices can be easily calculated
- > To find L^{-1} , solve $L x_j = e_j$

> Q.
$$L = \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}$$
, L^{-1} ?

- > What if we multiply a lower triangular matrix by an upper triangular matrix?
- > Form the matrix product of $A = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 2 \\ 0 & -1 \end{bmatrix}$

> Consider a square matrix
$$A = \begin{bmatrix} 2 & 4 & 5 \\ 4 & 11 & 17 \\ 6 & 18 & 58 \end{bmatrix}$$

> We want to find a column vector C_1 and a row vector R_1

s.t.
$$A - C_1 R_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}$$

> Consider a square matrix
$$A = \begin{bmatrix} 2 & 4 & 5 \\ 4 & 11 & 17 \\ 6 & 18 & 58 \end{bmatrix}$$

> We want to find a column vector C_1 and a row vector R_1

s.t.
$$A - C_1 R_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}$$

$$A - C_1 R_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 7 \\ 0 & 6 & 43 \end{bmatrix}$$

> We want to find a column vector C_2 and a row vector R_2

s.t.
$$A - C_1 R_1 - C_2 R_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & * \end{bmatrix}$$

$$A - C_1 R_1 - C_2 R_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 29 \end{bmatrix}$$

> We want to find a column vector C_3 and a row vector R_3

s.t.
$$A - C_1 R_1 - C_2 R_2 - C_3 R_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$> A = C_1R_1 + C_2R_2 + C_3R_3$$

>
$$L = \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
 $U = \begin{bmatrix} R_1 & R_2 & R_3 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 2 & 4 & 5 \\ 0 & 3 & 7 \\ 0 & 0 & 29 \end{bmatrix}$

>A=LU, the product of a lower triangular matrix and an upper triangular matrix

- > We wish to solve the system of linear equations Ax = b
 - $\rightarrow LUx = b$
 - $\rightarrow Ly = b, Ux = y$

- > Can we always perform LU factorization?
- $A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$

> Use row permutation (row switching elementary matrix)

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, PA = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$

- > PA = LU
- > Ax = b

$$\rightarrow PAx = Pb$$

$$\rightarrow$$
 Ly = Pb, Ux = y

Remark. Determinant from LU Factorization

Suppose
$$A = LU$$

$$\det(A) = \det(L) \det(U) = u_{11}u_{22} \cdots u_{nn}$$

If
$$PA = LU$$

$$A = P^{\mathsf{T}}LU$$

$$det(A) = det(P^{T}) det(L) det(U) = \pm det(L) det(U)$$

- > Advantages
 - Numerical stability
 - Faster determinant calculation
 - Efficient inverse computation
 - Useful in sparse matrix computations
 - Reusability