MA0505 - Análisis I Lección XII: La Medida Exterior

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

Motivación

Definición de Medida Exterior

La Longitud de un segmento

Considere el segmento

$$\underbrace{[a,b[}$$

La longitud del segmento es

$$b-a = \text{longitud}([a, b[) = \ell([a, b[).$$

Si tenemos intervalos disjuntos

Entonces su longitud es $\sum_{i=1}^{n} b_i - a_i$.

¿Cuál es la Longitud de un Punto?

Si tenemos $\{a\} \subseteq [a, a + \varepsilon[$, entonces

$$\ell(a) \leqslant \varepsilon$$

para $\varepsilon > 0$. De manera que la longitud del punto es cero.

Los Racionales

Sea $\mathbb{Q} \cap [0,1] = \{ q_n \}_{n=1}^{\infty}$, entonces

$$\ell\left(\bigcup_{i=1}^n \{q_i\}\right) = \sum_{i=1}^n \ell(\{q_i\}) = 0.$$

Entonces, ¿cuál es la longitud de $\mathbb{Q} \cap [0, 1]$? Note que

$$\int_a^b \mathrm{d}x = b - a.$$

Unas Observaciones

De hecho si $[a, b] \subseteq [0, 1]$, entonces

(I)
$$b-a=\int_{0}^{1}\mathbf{1}_{[a,b[}(x)\mathrm{d}x.$$

(II)
$$\sum_{i=1}^{n} b_i - a_i = \int_{0}^{1} \sum_{i=1}^{n} \mathbf{1}_{[a_i,b_i[}(x) dx = \int_{0}^{1} \mathbf{1}_{\bigcup_{i=1}^{n} [a_i,b_i[}(x) dx.$$

(III)
$$0 = \int_{0}^{1} \mathbf{1}_{\{a\}}(x) dx$$
.

Volviendo a la Pregunta

En este caso
$$\int_{0}^{1} \mathbf{1}_{\bigcup_{i=1}^{n} \{q_{i}\}}(x) dx = 0$$
. Note que

$$\mathbf{1}_{[0,1[\cap \mathbb{Q}]} = \lim_{n \to \infty} \mathbf{1}_{\bigcup_{i=1}^n \{q_i\}}.$$

 $\mathbf{1}_{[0,1[\cap\mathbb{Q}]} = \lim_{n \to \infty} \mathbf{1}_{\bigcup_{i=1}^n \{q_i\}}.$ Luego si $\mathbf{1}_{[0,1[\cap\mathbb{Q}]}$ fuese integrable y se pudieren tomar límites, tenemos que

$$\int_{0}^{1} \mathbf{1}_{\mathbb{Q} \cap [0,1]}(x) \mathrm{d}x = \lim_{n \to \infty} \int_{0}^{1} \mathbf{1}_{\bigcup_{i=1}^{n} \{ q_{i} \}}(x) \mathrm{d}x = 0.$$

¿Qué integral estamos usando? Recordemos que $\mathbf{1}_{\mathbb{O}\cap[0,1]}$ no es Riemann integrable.

Consideremos las familias

- $S = \{ [a, b[: a < b] \cup \{] -\infty, b] : b \in \mathbb{R} \} \cup \{ [a, \infty[: a \in \mathbb{R}] \cup \emptyset. \}$
- $\bullet \ \mathcal{S}_1 = \bigg\{ \bigcup_{i=1}^n I_i; \ I_i \in \mathcal{S}, \ 1 \leqslant i \leqslant n \bigg\}.$

Note que $[a,b] \notin \mathcal{S}_1$, pero $\mathbb{R} = [-\infty,b[\,\cup\,]b,\infty] \in \mathcal{S}_1$. Por lo tanto, dado $A \subseteq \mathbb{R}$, existe $B \in \mathcal{S}_1$ tal que $A \subseteq B$.

La Definición

Definimos $m: \mathcal{S}_1 \to \mathbb{R}$ por:

- 1. $m([a, b]) = b a \operatorname{si} a < b$.
- 2. $m([a,\infty[)=m(]-\infty,b])=\infty$.
- 3. $m\left(\bigcup_{i=1}^{k} I_i\right) = \sum_{i=1}^{k} b_i a_i$ para $I_i = [a_i, b_i]$ que satisface $]a_i, b_i[\cap]a_j, b_j[=\emptyset \text{ si } i \neq j.$

¿Está bien definida?

Resumen

- Una definición de longitud de intervalo que nos lleva a preguntas nuevas.
- La primera definición de medida 9.

Ejercicios

■ Lista 12

•

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.