# Chapitre I: Intégrales aux sens de Riemann

## Mohamed CH-Chaoui Department de Mathématiques, FP Khouribga.

Email: mohamed.chchaoui@gmail.com

## 18 avril 2020

## Table des matières

|   | Introduction                                                  |      |     |
|---|---------------------------------------------------------------|------|-----|
| 2 | Fonctions en escaliers 2.1 Subdivision d'un ségment           |      |     |
|   | 2.2 Fonctions en escaliers                                    |      |     |
| 3 | Propriétés de l'intégrale d'une fonction en escaliers         |      | 4   |
|   |                                                               |      |     |
| 4 | Fonctions continues par morceaux                              |      | ţ   |
| 4 | Fonctions continues par morceaux 4.1 Définition et propriétés |      |     |
| 4 |                                                               |      |     |
| 4 | 4.1 Définition et propriétés                                  | er . | . ( |
| 4 | <ul> <li>4.1 Définition et propriétés</li></ul>               | er . | . ( |

## 1 Introduction

La notion d'intégrale a été bien formalisée au  $19^e$  siecle grace au Riemann qui s'est intéréssé à une fonction f donnée sur un segment [a, b] et essaie d'approcher l'aire  $\mathcal{A}$  sous le graphe de f par les aires  $\mathcal{S}^-$  et  $\mathcal{S}^+$  de deux familles de réctangle qui approche par defaut et par excès l'aire  $\mathcal{A}$ , comme le montre le graphe 1.



Figure 1 – à gauche somme inférieurs  $S^-$ , et à droite somme inférieurs  $S^+$ 

Une fonction est intégrable au sens de Riemann si la différence des aies  $\mathcal{S}^-$  et  $\mathcal{S}^+$  tend vers 0 quand le pas de subdivision (la largeur des réctangles considérés) tend vers 0.

Par la suite, on s'intérresera à une classe de fonctions plus simples que celles étudiée dans l'intégrale de Riemann : Les fonctions continues par morceaux.

Plus particulier, pour un segment [a, b] et une fonction  $f: [a, b] \mapsto \mathbb{R}^+$  positive, on essayera de répondre aux deux questions :



FIGURE 2 – Aire sous une courbe

- 1. Quelle conditions doit-on-imposer à f pour que l'aire sous la courbe doit ètre bien définie? (voire Figure 2)
- 2. Comment calculer cette aire?

Commençons par les fonctions en escaliers qui constituent un cas particulier des fonctions continues par morceaux :

## 2 Fonctions en escaliers

#### 2.1 Subdivision d'un ségment

Définition 2.1. Subdivision d'un ségment (voire Figure 3)

On appelle subdivision du ségment [a,b] toute famille  $\tau = (x_k)_{1 \le k \le n}$  de réels tels que

$$a = x_0 < x_1 < \dots < x_n = b$$

Le pas de la subdivision  $\tau$  est donnée par  $\max_{i \in [0,n-1]} | x_{i+1} - x_i |$ . Une subdivision de [a,b] est régulière si tous les  $x_{i+1} - x_i$  sont égaux.

#### Définition 2.2. Subdivision plus fine qu'une autre

Considérons  $\tau$  et  $\tau'$  deux subdivisions d'un ségment [a,b]. On dit que  $\tau'$  est plus fine que  $\tau$  si et seulement si tout élément de la famille  $\tau$  est élément de la famille  $\tau'$ . (ou simplement  $\tau \subset \tau'$ )

**Proprété 1.** Soient  $\tau$  et  $\tau'$  deux subdivisions d'un ségment [a,b]. Il existe une subdivision de [a,b] plus fine que  $\tau$  et  $\tau'$ 



Figure 3 – Subdivision d'un segment



FIGURE 4 – Fonctions en escalier

**Preuve.** Il suffit de considérer la famille  $\tau$ " =  $(x_k)_{1 \le k \le N}$  dont les éléments sont ceux de  $\tau$  et ceux de  $\tau'$  ordonnés dans l'ordre croissant et où N est le cardinal de la famille ainsi construite.  $\tau$ " est plus fine que  $\tau$  et  $\tau'$ .

#### 2.2 Fonctions en escaliers

**Définition 2.3.** Une fonction  $\phi : [a, b] \mapsto \mathbb{R}$  est une fonction en escalier sur le segment [a, b] (figure ??) s'il existe une subdivision  $\tau : a = x_0 < ... < x_n = b$  du segment [a, b] telle que  $\phi$  est constante sur chaque intervalle  $]x_k, x_{k+1}[$ .

$$\forall 0 \le k \le n-1, \ \exists c_k \in \mathbb{R}, \ \forall x \in ]x_k, x_{k+1}[, \ \phi(x) = c_k]$$

- La subdivision  $\tau$  est dite subordonnée à la fonction  $\phi$ .
- On notera  $\mathcal{E} \in ([a,b],\mathbb{R})$  l'ensemble des fonctions en escalier sur [a,b] à valeurs réelles.

Remarque 2.1. -  $Si \tau$  est une subdivision subordonnée à  $\phi$  alors toute subdivision plus fine est encore subordonnée à  $\phi$ .

- Une fonction constante est une fonction en escalier

**Proprété 2.** Toute fonction  $\phi \in \mathcal{E}([a,b],\mathbb{R})$  est borné sur [a,b].

**Preuve.** Soient  $\phi$  une fonction en escalier et  $\tau = x_0 < ... < x_n = b$  une subdivision qui lui est subordonnée. On a donc :

$$\forall k \in [0, n-1], \ \exists c_k \in \mathbb{R}, \ \forall x \in ]x_k, x_{k+1}[, \ \phi(x) = c_k.$$

En posant  $m = \max_{0 \le k \le n-1} |c_k|$  puis  $M = \max(m, |\phi(x_0)|, ..., |\phi(x_n)|)$ .

On a

$$\forall x \in [a, b], | \phi(x) | \leq M.$$

#### 2.3 Intégrale d'une fonction en escalier

#### Définition 2.4. Intégrale d'une fonction en escalier

Supposons que a < b. Soit une fonction en escalier  $\phi \in \mathcal{E}([a,b],\mathbb{R})$  et  $\tau : a = x_0 < ... < x_n = b$  une subdivision subordonnée à  $\phi$ . Soient  $c_0, ..., c_{n-1} \in \mathbb{R}$  tels que :

$$\forall k \in [0, n-1], \ \forall x \in ]x_k, x_{k+1}[\ \phi(x) = c_k :$$

On définit l'intégrale de la fonction en escalier  $\phi$  entre a et b comme étant le nombre réel

$$\int_{[a,b]} \phi = \sum_{k=0}^{n-1} c_k (x_{k+1} - x_k)$$

## 3 Propriétés de l'intégrale d'une fonction en escaliers

**Proprété 3.** La liéarité de l'intégrale Soient  $\phi_1$ ,  $\phi_2 \in \mathcal{E}([a.b], \mathbb{R})$  deux fonctions en escalier sur le segment [a, b]. Pour tout  $\alpha$ ,  $\beta \in \mathbb{R}$ , on a

$$\int_{[a,b]} \alpha \phi_1 + \beta \phi_2 = \alpha \int_{[a,b]} \phi_1 + \beta \int_{[a,b]} \phi_2$$

**Preuve.** Soient  $\tau_1$  une subdivision subordonnée à  $\phi_1$ , et  $\tau_2$  une subdivision subordonnée à  $\phi_2$  et soit  $\tau$  une subdivision plus fine que  $\tau_1$  et  $\tau_2$ . Elle est donc subordonnée àla fois à  $\phi_1$  et à  $\phi_2$ . Supposons que  $\tau_1 = x_0 < x_1 < ... < x_n = b$  et que

$$\forall i \in [0, n-1], \ \phi_1|_{]x_i, x_{i+1}[} = c_i \ et \ \phi_2|_{]x_i, x_{i+1}[} = d_i$$

On a alors

$$\int_{[a,b]} \alpha \phi_1 + \beta \phi_2 = \sum_{i=0}^{n-1} (\alpha c_i + \beta d_i)(x_{i+1} - x_i)$$

$$= \alpha \sum_{i=0}^{n-1} c_i (x_{i+1} - x_i) + \beta \sum_{i=0}^{n-1} d_i (x_{i+1} - x_i)$$

$$= \alpha \int_{[a,b]} \phi_1 + \beta \int_{[a,b]} \phi_2$$

#### Proprété 4. L'intégrale d'une fonction en escalier positive est positive

Soit  $\phi \in \mathcal{E}([a,b],\mathbb{R})$  une fonction en escalier sur le segment [a,b]. Si  $\phi$  est positive sur [a,b] alors  $\int_{[a,b]} \phi \geq 0$ .

**Preuve.** Soit  $\tau : a = x_0 < x_1 < ... < x_n = b$  une subdivision subordonnée à

$$\phi: \forall i \in [0, n-1], \ \phi_1|_{[x_i, x_{i+1}]} = c_i \in \mathbb{R}.$$

Comme  $\phi$  est positive, pour tout  $i \in [0, n-1]$ , on a  $c_i \geq 0$ . Par conséquent,

$$\int_{[a,b]} \phi = \sum_{i=0}^{n-1} c_i (x_{i+1} - x_i) \ge 0.$$

Corollaire 1. Soit  $\phi_1$ , et  $\phi_2$  deux fonctions en escaliers, On a

$$\phi_1 \le \phi_2 \Rightarrow \int_{[a,b]} \phi_1 \le \int_{[a,b]} \phi_2$$

**Preuve.** Il suffit d'appliquer le résultat précédent à la fonction en escalier  $\phi = \phi_2 - \phi_1$  et d'utiliser la linéarité de l'intégrale.

#### Proprété 5. Relation de Chasles

Soit  $\phi$  une fonction en escalier sur le segment [a,b] et  $c \in [a,b]$ . Alors

$$\int_{[a,b]} \phi = \int_{[a,c]} \phi + \int_{[c,b]} \phi$$

Preuve. Exercices.

# 4 Fonctions continues par morceaux

## 4.1 Définition et propriétés

#### Définition 4.1. Fonction continue par morceaux sur un segment

Soit [a,b] un segment. On dit qu'une fonction  $\phi:[a,b] \to \mathbb{R}$  est une fonction continue par morceaux sur [a,b] (Figure ??) lorsqu'il existe une subdivision  $\tau:a=x_0 < x_1 < ... < x_n = b$  du segment [a,b] telle que

- 1. Pour tout  $k \in [0, n-1]$ , la restriction de  $\phi$  à  $[x_k, x_{k+1}]$  est continue.
- 2. Pour tout  $k \in [0, n-1]$ , la restriction de  $\phi$  à  $]x_k, x_{k+1}[$  est prolongeable par continuité sur  $]x_k, x_{k+1}[$ , autrement dit,  $\phi$  restreinte à  $]x_k, x_{k+1}[$  admet une limite finie strictement à droite en  $x_k$  et strictement à gauche en  $x_{k+1}$ .

Une telle subdivision est dite adaptée ou subordonnée à φ

**Remarque 4.1.** — Toute fonction en escalier sur [a,b] est continue par morceaux sur [a,b].

— Comme pour les fonctions en escaliers, si  $\tau$  est une subdivision de [a,b] subordonnée à  $\phi$  continue par morceaux sur [a,b] et si  $\tau'$  est une autre subdivision de  $\phi$  de [a,b] plus fine que  $\tau$  alors  $\tau'$  est aussi subordonnée à  $\phi$ .



Figure 5 – Fonctions continues par morceaux

**Proprété 6.** Si  $\phi$  une fonction continue par morceaux sur un segment [a,b] alors  $\phi$  est bornée sur [a,b]

**Preuve.** Soit  $\phi$  une fonction continue par morceaux sur [a,b] et soit  $a = x_0 < x_1 < ... < x_n = b$  une subdivision subordonnée à  $\phi$ .

Pour tout  $i \in [0, n-1]$ , la fonction  $\phi_{]x_i, x_{i+1}[}$  est continue et se prolonge en une fonction  $\overline{\phi}_i$  continue sur le segment  $[x_i, x_{i+1}]$ .

Sachant que (Analyse 1) toute fonction continur sur un férmé borné est bornée et atteint ses bornes.

 $\overline{\phi}_i$  est bornée sur le segment  $[x_i, x_{i+1}]$ . Posons  $M = \max_{i \in [0, n-1]} \{M_i, |\phi(x_i)|\} \bigcup \{|\phi(b)|\}$ .

Alors

$$\forall x \in [a, b], \mid \phi(x) \mid \leq M.$$

# 4.2 Approximation des fonctions continues par morceaux par les fonctions en escalier

Théorème 1. Approximation des fonctions continues par morceaux par les fonctions en escalier

Soit f une fonction continue sur le segment [a,b] et  $\epsilon > 0$ . Alors, il existe une fonction en escalier  $\phi$  telle que

$$|| f - \phi ||_{\infty} = \sup_{x \in [a,b]} |f(x) - \phi(x)| \le \epsilon$$

**Notation**: La quantité  $\sup_{x \in [a,b]} |L(x)|$  se note  $||L||_{\infty}$  et se lit : norme infini de f sur l'inetrvalle [a,b].



FIGURE 6 – Toute fonction continues par morceaux est somme d'une fonction en escalier et une fonction continue

**Preuve.** Puisque la fonction f est continue sur le segment [a,b], elle est uniformément continue sur ce segment(théorème de Heine), il existe donc  $\eta > 0$  tel que  $\forall (x,y) \in [a,b]^2$ ,  $|x-y| \leq \eta \Rightarrow |f(x) - f(y)| \leq \epsilon$ .

Considérons alors un entier n suffisemment grand pour que  $(b-a)/n \le \eta$  et définissant la subdivision de pas constant  $h = (b-a)/n \le \eta$ ,  $x_i = a+ih$ , pour  $i \in [0, n-1]$ .

Définissant ensuite la fonction en escalier  $\phi$  en posant  $\forall i \in [0, n-1]$ ,  $\forall x \in [x_i, x_{i+1}[, \phi(x) = f(x_i)$  et  $\phi(b) = f(b)$ . Soit  $x \in [a, b]$ , il existe  $i \in [0, n-1]$  tel que  $x_i \leq x < x_{i+1}$  et comme  $|x - x_i| \leq \eta$ ,  $|f(x) - \phi(x)| = |f(x) - f(x_i)| \leq \epsilon$ .

Si x = b, on a également  $| f(b) - \phi(b) | = 0 \le \epsilon$ . En passant à la borne supérieure, on a bien  $|| f - \phi ||_{\infty} \le \epsilon$ .

**Lemme 4.1.** Une fonction continue par morceaux est la somme d'une fonction continue et d'une fonction en escalier (figure ??) Soit f une fonction continue par morceaux sur le segment [a,b], il existe une fonction g continue sur [a,b] et une fonction  $\psi$  en escalier sur [a,b] telles que

$$f = q + \psi$$
.

**Preuve.** Considérons une subdivision  $a = x_0 < x_1 < ... < x_n = b$  subordonnée à la fonction en escalier f. Comme f est continue par morceaux, sa restriction à  $]x_0, x_l[$  possède une limite finie à droite en  $x_0$  et une limite finie à gauche en  $x_1, f(x)_{x \to x_0^+} \to l$  et  $f(x)_{x \to x_l^-} \to L$ .

Posons  $\forall x \in ]x_0, x_1[$ ,  $g(x) = f(x), g(x_0) = L$  et  $\psi(x_0) = f(x_0) - l$ ,  $\forall x \in ]x_0, x_1[$ ,  $\psi(x) = 0$  et  $\psi(x_1) = f(x_1) - L$ . On a bien g continue sur  $[x_0, x_1]$  et  $\forall x \in [x_0, x_1]$ ,  $f(x) = g(x) + \psi(x)$ . On recommence ce procédé sur  $[x_1, x_2]$ ... pour définir les fonctions g et  $\psi$  sur [a, b].

# Corollaire 2. Approximation uniforme d'une fonction continue par morceaux par une fonction en escalier

Soit f une fonction continue par morceaux sur le segment [a,b] et  $\epsilon > 0$ , Il existe une fonction  $\psi$  en escalier sur [a,b] telle que  $||f-\phi||_{\infty} \leq \epsilon$ 

**Preuve.** D'après le lemme précédent, il existe une fonction g continue sur [a,b] et une fonction  $\psi$  en escalier sur [a,b] telles que  $f=g+\psi$ . D'après le théorème précédent, il existe une fonction  $\chi$  sur

[a,b] telle que  $\parallel g-\chi\parallel_{\infty}\leq\epsilon$ . Posons alors  $\phi=\psi+\chi$  . C'est une fonction en escalier et on a bien  $\parallel f-\phi\parallel_{\infty}=\parallel g-\chi\parallel_{\infty}\leq\epsilon$ 

Corollaire 3. Encadrement d'une fonction continue par morceaux par deux fonctions en escalier Soit f une fonction continue par morceaux sur le segment [a,b] et  $\varepsilon > 0$ . Il existe deux fonctions en escalier  $\phi, \psi \in \mathcal{E}([a,b],\mathbb{R})$  vérifiant

$$\phi \le f \le \psi$$
 et  $\psi - \phi \le \epsilon$ 

**Preuve.** D'après le corollaire 2, il existe une fonction en escalier  $\chi$  sur [a,b] vérifiant  $\forall x \in [a,b]$ ,  $-\frac{\epsilon}{2} \leq f(x) - \chi(x) \leq \frac{\epsilon}{2}$ . Définissant les fonctions en escalier  $\phi = \chi - \frac{\epsilon}{2}$  et  $\psi = \chi + \frac{\epsilon}{2}$ . Elles vérifient bien  $\phi \leq f \leq \psi$  et  $\psi - \phi = \epsilon$ 

#### 4.3 Intégrale d'une fonction continue par morceaux

**Proprété 7.** Soit une fonction f continue par morceaux sur un segment [a,b]. On considère les ensembles

$$\mathcal{I}^{-}(f) = \left\{ \int_{[a,b]} \varphi/\varphi \text{ est en escalier sur } [a,b] \text{ et } \varphi \leq f \right\}$$
$$\mathcal{I}^{+}(f) = \left\{ \int_{[a,b]} \varphi/\varphi \text{ est en escalier sur } [a,b] \text{ et } \varphi \geq f \right\}$$

On a les propriétés suivantes,

- $\mathcal{I}^-(f)$  admet une borne supérieure.
- $\mathcal{I}^+(f)$  admet une borne inférieure.
- $-\sup \mathcal{I}^{-}(f) = \inf \mathcal{I}^{+}(f).$

**Preuve.** On définit les ensembles  $\mathcal{E}^+$  et  $\mathcal{E}^-$  par

$$\mathcal{E}^- = \{ \varphi \text{ est en escalier sur } [a,b] \text{ et } \varphi \leq f \} \,, \quad \mathcal{E}^+ = \{ \varphi \text{ est en escalier sur } [a,b] \text{ et } \varphi \geq f \} \,$$

- Comme la fonction f est continue par morceaux, elle est bornée et donc il existe  $m, M \in \mathbb{R}$  vérifiant  $m \leq f \leq M$ . On en déduit que l'ensemble  $\mathcal{E}^-$  est non vide car  $\varphi = m$  est élément de  $\mathcal{E}^-$  et par suite l'ensemble  $\mathcal{I}^-$  est non vide. De même,  $I^+ \neq \emptyset$ .
- De plus, pour tout  $\varphi \in \mathcal{E}^-$  , on a  $\varphi \leq f \leq M$  donc

$$\int_{[a,b]} \varphi \le \int_{[a,b]} (M) = M(b-a)$$

Ainsi l'ensemble  $\mathcal{I}^-$  est majorée par M(b-a). Finalement  $\mathcal{I}^-$  est une partie de  $\mathbb{R}$  non vide et majorée donc  $\alpha = \sup \mathcal{I}^-$  existe.

- De même  $\beta = \inf \mathcal{I}^+$  existe car  $\mathcal{I}^+$  est une partie de  $\mathbb{R}$  non vide et minorée par m(b-a). Il reste à montrer  $\alpha = \beta$ 
  - Pour tout  $\varphi \in \mathcal{I}^-$ ,  $\psi \in \mathcal{I}^+$  on a  $\varphi \leq f \leq \psi$  donc  $\varphi \leq \psi$  puis  $\int_{[a,b]} (\varphi) \leq \int_{[a,b]} (\psi)$ . Par suite  $\int_{[a,b]} (\varphi)$  est un minorant de  $\mathcal{I}^+$  et donc  $\int_{[a,b]} (\varphi) \leq \beta$ . Ainsi  $\beta$  est un majorant de  $\mathcal{I}^-$ t donc  $\alpha \leq \beta$

— D'autre part, pour  $\varepsilon > 0$ , il existe  $\varphi, \psi \in \mathcal{E}([a,b],\mathbb{R})$  telles que  $\varphi \leq f \leq \psi$  et  $\psi - \varphi \leq \varepsilon$ . Puisque  $\varphi \in \mathcal{I}^-$  et  $\psi \in \mathcal{I}^+$  on a  $\int_{[a,b]} (\varphi) \leq \alpha$  et  $\beta \leq \int_{[a,b]} (\psi)$ .

De plus  $\psi \leq \varphi + \varepsilon$  donc

$$\int_{[a,b]} (\psi) \le \int_{[a,b]} (\varphi) + \int_{[a,b]} (\varepsilon)$$

On en déduit  $\beta \leq \alpha + \varepsilon(b-a)$ .

Cette relation valant pour tout  $\varepsilon > 0$ , on obtient  $\beta \leq \alpha$ . Finalement  $\alpha = \beta$ .

**Définition 4.2.** Cette valeur commune est appelée intégrale de f sur [a,b] et on la note :

$$\int_{[a,b]} f = \int_a^b f(x)dx = \sup \mathcal{I}^-(f) = \inf \mathcal{I}^+(f)$$

#### 4.4 Sommes de Riemann

**Définition 4.3.** Soit f une fonction définie et continue sur [a,b] et soit  $\pi = \{a = x_0 < x_1 < ..... < x_{n-1} < x_n = b\}$  une subdivision de [a,b] et  $\alpha_k \in ]x_{k-1}, x_k[$  pour k = 1, ...., n un réel choisit au hasard

On appelle somme de Riemann associée à f,  $\pi$  et  $\alpha_k$  le nombre

$$S(f, \pi, \alpha_k) = \sum_{k=1}^{n} (x_k - x_{k-1}) f(\alpha_k)$$

**Théorème 2.** Soit f une fonction continue sur [a,b]. Pour tout  $n \in \mathbb{N}^*$ , on considère les deux sommes de Riemann suivantes

$$S_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right), \qquad S_n' = \frac{b-a}{n} \sum_{k=1}^n f\left(a + k \frac{b-a}{n}\right).$$

Alors l'intégrale de f est le nombre

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} S'_{n} = \lim_{n \to +\infty} S_{n}.$$

#### 4.5 Propriétés de l'intégrale

**Proprété 8.** Soient f et g deux fonctions continues par morceaux sur [a,b] alors on a:

- 1.  $\int_a^b (\alpha f + \beta g)(x) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx, \quad \forall \alpha, \beta \in \mathbb{R}.$
- 2. Si  $f(x) \le g(x)$  alors  $\int_a^b f(x)dx \le \int_a^b g(x)dx$ .
- 3. Relation de chasles :  $\int_a^c f(x)dx + \int_c^b f(x)dx = \int_a^b f(x)dx$ ,  $\forall c \in [a,b]$
- 4. Formule de la moyenne Soient f une fonction continue sur [a,b]. Alors il existe  $c \in [a,b]$  tel que

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Si de plus f est bornée alors

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a),$$

$$avec \ m = \inf_{x \in [a,b]} f(x) \ et \ M = \sup_{x \in [a,b]} f(x),$$

**Preuve.** Soit  $\varepsilon > 0$ . Il existe des fonctions en escalier  $\varphi_1, \varphi_2, \phi_1, \phi_2$  définies sur [a, b] telles que

$$\varphi_1 \le f \le \phi_1, \ \phi_1 - \varphi_1 \le \varepsilon_1 \quad et \quad \varphi_2 \le g \le \phi_2, \ \phi_2 - \varphi_2 \le \varepsilon_1$$

On a donc

$$\alpha \varphi_1 + \beta \varphi_2 \le \alpha f + \beta g \le \alpha \phi_1 + \beta \phi_2$$
 et  $\alpha \phi_1 + \beta \phi_2 - (\alpha \varphi_1 + \beta \varphi_2) \le \varepsilon$ 

Il vient alors

$$\int_{[a,b]} \alpha(\varphi_1 - \phi_1) + \beta(\varphi_2 - \phi_2) \le I - (\alpha I_1 + \beta I_2) \le \int_{[a,b]} \alpha(\phi_1 - \varphi_1) + \beta(\phi_2 - \varphi_2)$$

avec 
$$I = \int_{[a,b]} (\alpha f + \beta g), I_1 = \int_{[a,b]} f \text{ et } I_2 = \int_{[a,b]} g. \text{ Donc}$$

$$\int_{[a,b]} -\varepsilon(\alpha+\beta) \le I - (\alpha I_1 + \beta I_2) \le \int_{[a,b]} \varepsilon(\alpha+\beta)$$

alors

$$-\varepsilon_1(\alpha+\beta)(b-a) \le I - (\alpha I_1 + \beta I_2) \le \varepsilon_1(\alpha+\beta)(b-a)$$

En choisissant  $\varepsilon_1 = \frac{\varepsilon}{(\alpha + \beta)(b - a)}$ , on trouve

$$|I - (\alpha I_1 + \beta I_2)| \le \varepsilon, \quad \forall \varepsilon > 0$$

ce qui prouve la propriété (1).

**Théorème 3.** Soit une fonction  $f:[a,b] \longrightarrow \mathbb{R}$  continue et positive sur [a,b]. Alors

$$\int_{a}^{b} f(x)dx = 0 \Longrightarrow f = 0$$

En particulier:

$$\left(\int_{a}^{b} |f(x)| dx = 0\right) \Longrightarrow (f = 0), \qquad \left(\int_{a}^{b} f^{2}(x) dx = 0\right) \Longrightarrow (f = 0).$$

**Preuve.** Par l'absurde, supposons que la fonction f n'est pas nulle. Alors il existe  $c \in [a,b]$  tel que f(c) > 0. Pour simplifier la rédaction, supposons que  $c \in ]a,b[$  et f(c) > 0 (les autres cas se traitent de la même façon). Posons  $\varepsilon = f(c)/2$ . Puisque la fonction f est continue au point c, on peut trouver un voisinage  $]c - \eta, c + \eta[$  de c avec  $\eta > 0$  inclus dans [a,b] tel que  $\forall x \in ]c - \eta, c + \eta[$ ,  $-\varepsilon \leq f(x) - f(c) \leq \varepsilon$  c'est à dire  $f(x) \geq \varepsilon$ . On a donc par la relation de Chasles,

$$\int_{a}^{b} f(x)dx = \int_{a}^{c-\eta} f(x)dx + \int_{c-\eta}^{c+\eta} f(x)dx + \int_{c+\eta}^{b} f(x)dx$$

$$\leq \int_{c-\eta}^{c+\eta} f(x)dx \ (car \ f \geq 0)$$

$$> \int_{c-\eta}^{c+\eta} \varepsilon dx = 2\eta\varepsilon > 0$$

ce qui est en contradiction avec  $\int f = 0$ . f est donc nulle sur [a, b].

## Proprété 9. Inégalités remarquables

 $Soient \ f \ et \ g \ des \ fonctions \ continues \ par \ morceaux \ sur \ le \ segment \ [a,b]. \ On \ a \ les \ in\'egalit\'es \ suivantes$ 

- Inégalité de Cauchy-Schwartz

$$\int_{a}^{b} |f(x)g(x)| dx \le \left( \int_{a}^{b} |f(x)|^{2} dx \right)^{1/2} \cdot \left( \int_{a}^{b} |g(x)|^{2} dx \right)^{1/2}$$

— Inégalité de Minkowski En notant 
$$||f||_2 = \sqrt{\int_a^b f^2(x)dx}$$
,

$$||f + g||_2 \le ||f||_2 + ||g||_2$$