Announcements Nov 22

- Masks → Thank you!
- WeBWorK 5.6 & 6.1 due Tue @ midnight
- Office hrs: Tue 4-5 Teams
- Cumulative Final exam Tue Dec 14 6-8:50 pm on Teams.
- Many TA office hours listed on Canvas
- PLUS sessions: Tue 6–7 GT Connector, Thu 6–7 BlueJeans
- Indoor Math Lab: Mon-Thu 11-6, Fri 11-3 Clough 246 + 252

, next week.

- Outdoor Math Lab: Tue–Thu 2–4 Skiles Courtyard
- Virtual Math Lab https://tutoring.gatech.edu/drop-in/
- Section M web site: Google "Dan Margalit math", click on 1553
 future blank slides, past lecture slides, advice
- Old exams: Google "Dan Margalit math", click on Teaching
- Tutoring: http://tutoring.gatech.edu/tutoring
- Counseling center: https://counseling.gatech.edu
- Use Piazza for general questions
- You can do it!

Chapter 6

Orthogonality

Where are we?

We have learned to solve Ax = b and $Av = \lambda v$.

Spotify!

We have one more main goal.

What if we can't solve Ax = b? How can we solve it as closely as possible?

The answer relies on orthogonality.

Section 6.1

Dot products and Orthogonality

Outline

- Dot products
- Length and distance
- Orthogonality

Dot product

Say $u=(u_1,\ldots,u_n)$ and $v=(v_1,\ldots,v_n)$ are vectors in \mathbb{R}^n

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$
 Used when $u \cdot v = \sum_{i=1}^{n} u_i v_i$ multiplying $u \cdot v = u_1 v_1 + \dots + u_n v_n$ matrices, $u \cdot v = u^T v$

Example. Find $(1, 2, 3) \cdot (4, 5, 6)$.

Dot product

Some properties of the dot product

- $u \cdot v = v \cdot u$
- $\bullet \ (u+v) \cdot w = u \cdot w + v \cdot w$
- $\bullet (cu) \cdot v = c(u \cdot v)$
- $u \cdot u \ge 0$
- $\boxed{u \cdot u = 0 \Leftrightarrow u = 0}$

$$(-1,-2,3)\cdot(-1,-2,3)$$

= $(-1)^2+(-2)^2+3^2$ 70

Length

Let
$$v$$
 be a vector in \mathbb{R}^n

$$\begin{aligned} \|v\| &= \sqrt{v \cdot v} \\ &= \text{length of} \end{aligned}$$

$$|v|| = \sqrt{v \cdot v}$$
 $= \text{length of } v$

Why? Pythagorean Theorem Fact.
$$\|cv\| = |c| \|v\|$$

$$v$$
 is a unit vector of $||v|| = 1$

$$v$$
 is a unit vector of $||v|| = 1$

Problem. Find the unit vector in the direction of (17273,4). (
$$\frac{1}{3}$$
)

Scale so length is 1.

$$||(1,2,3,4)|| = \sqrt{1^2 + 2^2 + 3^2 + 4^2} = \sqrt{30}$$

$$||(1,2,3,4)|| = \sqrt{1^2 + 2^2 + 3^2 + 4^2} = \sqrt{30}$$

$$V \cdot V = 3^2 + 4^2 = 25$$

Distance

The distance between v and w is the length of v-w (or w-v!).

Problem. Find the distance between (1,1,1) and (1,4,-3).

$$V - W = \begin{pmatrix} 0 \\ -3 \\ 4 \end{pmatrix}$$

 $\|V - W\| = \sqrt{0 + 3^2 + 4^2} = \sqrt{25} = 5$

Orthogonality

Fact.
$$u \perp v \Leftrightarrow u \cdot v = 0$$

Why? Pythagorean theorem again!

$$u \perp v \Leftrightarrow ||u||^2 + ||v||^2 = ||u - v||^2 \qquad (u - v) \cdot (u - v)$$

$$\Leftrightarrow u \cdot u + v \cdot v = u \cdot u - 2u \cdot v + v \cdot v$$

$$\Leftrightarrow u \cdot v = 0$$

Problem. Find a vector in \mathbb{R}^3 orthogonal to (1,2,3).

$$(1,2,3).(-1,-1,1) = 0$$

Summary of Section 6.1

- $u \cdot v = \sum u_i v_i$
- $u \cdot u = ||u||^2$ (length of u squared)
- The unit vector in the direction of v is $v/\|v\|$.
- The distance from u to v is $\|u-v\|$
- $u \cdot v = 0 \Leftrightarrow u \perp v$

Outline of Section 6.2

- Orthogonal complements
- Computing orthogonal complements

 $W = \text{subspace of } \mathbb{R}^n$ $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W\}$

Question. What is the orthogonal complement of a line in \mathbb{R}^3 ? What about the orthogonal complement of a plane in \mathbb{R}^3 ?

$$W = \text{subspace of } \mathbb{R}^n$$

 $W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$

Facts.

- 1. W^{\perp} is a subspace of \mathbb{R}^n (it's a null space!)
- 2. $(W^{\perp})^{\perp} = W$
- 3. $\dim W + \dim W^{\perp} = n$ (rank-nullity theorem!)
- 4. If $W = \operatorname{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
- 5. The intersection of W and W^{\perp} is $\{0\}$.

For items 1 and 3, which linear transformation do we use?

Finding them

Problem. Let $W = \text{Span}\{(1,1,-1)\}$. Find the equation of the plane W^{\perp} . line.

$$(X_1, X_2, X_3) \cdot (1,1,-1) = 0$$

Find a basis for W^{\perp} .

W' is the set of solns.

Finding them

plane.

Problem. Let $W=\mathrm{Span}\{(1,1,-1),(-1,2,1)\}$. Find a system of equations describing the line W^{\perp} .

$$(x,y,z) \cdot (1,1,-1) = 0$$

$$(x,y,z) \cdot (-1,2,1) = 0$$

$$(x+y-z=0) \quad \text{Nul}(-1,2,1)$$

$$-x+2y+z=0.$$

Find a basis for W^{\perp} .

Finding them

Recipe. To find (basis for) W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

See last 2 examples.

Finding them

Recipe. To find (basis for) W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of $A = Span \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\}$

In other words:

Theorem.
$$A=m\times n$$
 matrix
$$(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A \qquad \qquad \text{w}^{\perp}=\operatorname{Nul} \left(\begin{smallmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \end{smallmatrix}\right)$$

Geometry \leftrightarrow Algebra

(The row space of A is the span of the rows of A.)

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = v_W + v_{W^{\perp}}$$

where v_W is in W and $v_{W^{\perp}}$ is in W^{\perp} .

Why?

Next time: Find v_W and $v_{W^{\perp}}$.

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as

 $v = v_W + v_{W^\perp}$ where v_W is in W and v_{W^\perp} is in W^\perp .

Why? Say that $w_1 + w_1' = w_2 + w_2'$ where w_1 and w_2 are in W and w_1' and w_2' are in W^{\perp} . Then $w_1 - w_2 = w_2' - w_1'$. But the former is in W and the latter is in W^{\perp} , so they must both be equal to 0.

Next time: Find v_W and $v_{W^{\perp}}$.

Many applications, including:

Summary of Section 6.2

- $W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$
- Facts:
 - 1. W^{\perp} is a subspace of \mathbb{R}^n
 - 2. $(W^{\perp})^{\perp} = W$
 - 3. $\dim W + \dim W^{\perp} = n$
 - 4. If $W = \operatorname{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
 - 5. The intersection of W and W^{\perp} is $\{0\}$.
- To find W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find the null space.
- \bullet Every vector v can be written uniquely as $v=v_W+v_{W^\perp}$ with v_W in W and v_{W^\perp} in W^\perp

Typical Exam Questions 6.2

- What is the dimension of W^{\perp} if W is a line in \mathbb{R}^{10} ?
- What is W^{\perp} if W is the line y = mx in \mathbb{R}^2 ?
- If W is the x-axis in \mathbb{R}^2 , and $v=\left(\begin{smallmatrix}7\\-3\end{smallmatrix}\right)$, write v as $v_W+v_{W^\perp}$.
- If W is the line y=x in \mathbb{R}^2 , and $v=\left(\begin{smallmatrix}7\\-3\end{smallmatrix}\right)$, write v as $v_W+v_{W^\perp}$.
- Find a basis for the orthogonal complement of the line through $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ in \mathbb{R}^3 .
- Find a basis for the orthogonal complement of the line through $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ in \mathbb{R}^4 .
- What is the orthogonal complement of x_1x_2 -plane in \mathbb{R}^4 ?

Section 6.3

Orthogonal projection

Outline of Section 6.3

- Orthogonal projections and distance
- A formula for projecting onto any subspace
- A special formula for projecting onto a line
- Matrices for projections
- Properties of projections

Let b be a vector in \mathbb{R}^n and W a subspace of \mathbb{R}^n .

The orthogonal projection of b onto W the vector obtained by drawing a line segment from b to W that is perpendicular to W.

Fact. The following three things are all the same:

- ullet The orthogonal projection of b onto W
- The vector b_W (the W-part of b) algebra!
- The closest vector in W to b geometry!

Theorem. Let $W = \operatorname{Col}(A)$. For any vector b in \mathbb{R}^n , the equation

$$A^T A x = A^T b$$

is consistent and the orthogonal projection b_W is equal to Ax where x is any solution.

Theorem. Let $W = \operatorname{Col}(A)$. For any vector b in \mathbb{R}^n , the equation

$$A^T A x = A^T b$$

is consistent and the orthogonal projection b_W is equal to Ax where x is any solution.

Why? Choose \widehat{x} so that $A\widehat{x} = b_W$. We know $b - b_W = b - A\widehat{x}$ is in $W^{\perp} = \operatorname{Nul}(A^T)$ and so

$$0 = A^{T}(b - A\widehat{x}) = A^{T}b - A^{T}A\widehat{x}$$
$$\leadsto A^{T}A\widehat{x} = A^{T}b$$

Theorem. Let $W = \operatorname{Col}(A)$. For any vector b in \mathbb{R}^n , the equation

$$A^T A x = A^T b$$

is consistent and the orthogonal projection b_W is equal to Ax where x is any solution.

What does the theorem give when $W = \operatorname{Span}\{u\}$ is a line?

Orthogonal Projection onto a line

Special case. Let $L = \operatorname{Span}\{u\}$. For any vector b in \mathbb{R}^n we have:

$$b_L = \frac{u \cdot b}{u \cdot u} u$$

Find
$$b_L$$
 and $b_{L^{\perp}}$ if $b=\begin{pmatrix} -2\\ -3\\ -1 \end{pmatrix}$ and $u=\begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix}$.