任课教师:	专业:	年级:	学号:	姓名:	成组
得分 一、填空	E 题(本题共24分, 每:	空2分).			
t → → \t\t \t	$X \sim \Gamma(\alpha, \lambda)$,则其 t	概率密度函数为 :		_, α称为	参数,其特
(2) 设 $m > n, \alpha$	$\in (0,1), \ \mathbb{N}F(m,n)$	与 $F(n,m)$ 的上侧分位	立数之间的关系为:	$F_{\alpha}(m,n) = \underline{\hspace{1cm}}$	
$(3) ~ $ 设 $X \sim \chi^2(n)$),则当 $n \to \infty$ 时,	$\underbrace{X-a_n}_{b_n} \xrightarrow{\mathcal{L}}$	上,其中 $(a_n,b_n)=($).	
(4) 设 X_1,\ldots,X_n	n为来自正态总体 N	$(0,\sigma^2)$ 的iid样本,记	$T_1 = \sum_{i=1}^n X_i^2, T_2 =$	$= \sum_{i=1}^{n} (X_i - \bar{X})^2,$	
则 $Var(T_1)=$ _	, $\operatorname{Var}(T_2)$)=			
(5) 设 X_1, X_2, \cdots	\cdot, X_n 为来自总体累 π	积分布函数布为F(x)	的 iid 样本,记 $F_n(x)$;)为其经验分布函	数,则对于
给定的x, nF	$V_n(x) \sim $, 其极限分布形	式为:	·	
(6) 对于足够小的	的 α (< 0.01), $t(n)$ 的	上侧 α 分位 $t_{\alpha}(n)$ 与 u_{α}	的大小关系为: t_{α}	(n) u_{α} .	
得分 二、(25% 数, α,β)	分) 设 <i>n</i> 个样本Y ₁ , 为未知参数.	\ldots, Y_n 相互独立,且	$Y_i \sim N(\alpha + \beta x_i)$	1),	"为给定常
(i). (5½	f)求关于参数 (α, β)	的似然函数;			
(ii). (10	$分)$ 求 α , β 的极大似统	然估计;			
(iii). (10	分)上述极大似然估	计是UMVUE吗?说	明理由.		

草稿区

年级:

学号:

姓名:

草稿区

第2页共7页

草稿区

姓名:

得分

三、(10分)设 X_1, X_2, \ldots, X_n 是来自正则分布族 $\mathcal{F} = \{f(x, \theta) : \theta \subset \Theta\}$ 的iid样本. 证明: θ 的无偏估计的方差达到C-R下界的充要条件是 \mathcal{F} 为指数型分布族.

草稿区

得分

四、(10分) 设 X_1,\ldots,X_m 与 Y_1,\ldots,Y_n 相互独立,且均为来自 $E(\lambda)$ 的iid样本,求 \bar{X}/\bar{Y} 所服从的分布.

得 分

- (i). $(5\%)S_k^2 = S_{k-1}^2 + \frac{k-1}{k}(X_k \bar{X}_{k-1})^2$;
- (ii). (10分) Y₁,...,Y_n独立且服从正态分布.

年级:

学号:

姓名:

草稿区

年级: 学号: 姓名:

草稿区

得 分

六、(8分)设T(X)是参数 θ 的充分统计量, $\hat{\theta}(X)$ 是 θ 的极大似然估计,证明: $\hat{\theta}(X)$ 是充分统计量T(X)的函数.

得分

七、(8分) 设 X_1,\ldots,X_n 为来自总体均值与方差为 (μ,σ^2) 的iid样本, $\sigma^2<\infty$. 证明 $\hat{\mu}=\frac{2}{n(n+1)}\sum_{i=1}^n iX_i$ 是 μ 的相合估计.

年级:

学号:

姓名:

草稿区