Image Segmentation

The problem tackled is segmenting similar parts of an image that for a cluster using unsupervised learning, K-means clustering is the main focus.

1- Downloading the dataset and understanding format:

After discovering the data we found that it is composed of 3 subgroups one for training, one for testing and one for validation.

In each group there is a set of images in jpg format and a corresponding mat file containing ground truth images for each image.

The ground truth images are in 2 shapes: either a grayscale segmentation of each cluster or just a white image with black lines showing boundaries of clusters.

2- Visualizing the image and ground truth segmentation:

0

200

400

200

400

0

3- Segmentation using K-means

The code below represents the kmeans implementation of the library $\mathbf{cv2}$. It is responsible for creating segmented images using given parameters such as number of clusters \mathbf{K} .

```
def images_to_seg_colored(imgs,K):
   imgs_=[]
   for img in imgs:
      Z = img.reshape((-1,3))
```

```
# convert to np.float32
Z = np.float32(Z)

# define criteria, number of clusters(K) and apply kmeans()
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10,
1.0)

ret,label,center=cv2.kmeans(Z,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
#print(label)

# Now convert back into uint8, and make original image
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((img.shape))

imgs_.append(res2)

return imgs_
```


Figure above shows f-measure scores for some images against their segmentations

F-measure

Suppose that the first matrix is that for the image extracted using K-Means for certain number of clusters \mathbf{K} . Also, say that the second matrix is the one that represents the ground truth segmentation image. Accordingly, to evaluate clustering efficiency, we follow these steps:

- 1. If "*" were considered in same cluster in 1st matrix, we keep track of their indices but in second matrix
- 2. After specifying the indices in 2nd matrix, we can now compute purity: for instance, in 2nd matrix, purity here is number of occurrence of "\$", as it represents the maximum frequent sample in cluster, divided by number of samples in cluster.
- 3. For calculating recall, we divide the frequency of "\$" in our cluster by the frequency of "\$" in all clusters
- 4. Now can compute the f-measure of this cluster $\frac{\mathbf{F_i} = (2 \cdot \mathbf{purity_i} \cdot \mathbf{recall_i})}{\mathbf{F_i} = (2 \cdot \mathbf{purity_i} \cdot \mathbf{recall_i})}$
- 5. The overall f-measure \mathbf{F} is average of sum of $\mathbf{F_i}$ of each cluster

Conditional entropy:

1- as described in lecture we compute conditional entropy by determining conditional entropy of T with respect to each cluster

- Conditional Entropy of T with respect to C_i

$$H(\mathcal{T}|C_i) = -\sum_{j=1}^{k} \left(\frac{n_{ij}}{n_i}\right) \log\left(\frac{n_{ij}}{n_i}\right)$$

The we compute the conditional entropy:

– The conditional entropy of T given clustering C $H(\mathcal{T}|\mathcal{C}) = \sum_{i=1}^r \frac{n_i}{n} H(\mathcal{T}|C_i)$

By applying the above rules in the code we compute the conditional entropy for each segmentation

- Best case scenario is having an entropy of zero
- Worst case scenario is having an entropy log(k) where K is number of clusters

After applying all of that we get the below results:

Where the number printed is the number of the conditional entropy for the segment . Here is a simple table showing the average of 10 images using conditional entropy and the over all data set average

	img1	img2	img3	img4	img5	img6	img7	img8	img9	img1 0	Average dataset
K=3	1.49	2.22	2.22	1.457	0.266	0.724	1.20	1.514	2.93	0.78	1.735
K=5	1.308	1.924	1.164	1.38	0.251	0.68	1.13	1.177	2.836	0.76	1.5723
K=7	1.25	1.58	1.1412	1.25	0.239	0.68	1.109	1.1031	2.793 0	0.73	1.4891
K=9	1.489	1.522	1.126	3.538	0.239	0.62	1.105	1.094	2.697	0.707	1.42821
K=11	1.087	1.29	1.29	1.29	0.234	0.628	1.082	1.071	2.65	0.66	1.382

4-Big picture

For image 1:

For img2:

For image3:

For image 4:

For image 5:

Segmentation using Normalized Cut

For image number 0

For segmentation number 0

For K == 5

f-measure: 0.517889426154622 For segmentation number 1

For K == 5

f-measure: 0.6130584077912961

For image number 0

For segmentation number 0

For K == 5

f-measure: 0.39392547461548866 For segmentation number 1

For K == 5

f-measure: 0.371604714052863

The table above shows a **snippet*** of the comparison using k-means segmentation and normalized cut version. Obviously, and **in general**, results using normalized cut segmentation shows better f-measure indicating better clustering efficiency.

Note: Increasing f-measure indicates better clustering. F-measure of "1" represents ideal clustering efficiency.