國立清華大學 超大型積體電路設計 VLSI Design

Homework 1

學號:111063548

姓名:蕭方凱

目錄

1.	Ple	ease use the combination of CMOS to sketch the transistor-level schematic and stick	(
diag	gran	n of the following compound gate function from those inputs A, B, C and D	. 4
(6	a)	$Y = A \cdot B \cdot C + D$. 4
	i.	Schematic	. 4
	ii.	Stick diagram	. 5
	iii.	spice code	. 6
	iv.	waveview result	. 6
(k	o)	Y = (A+B)·(C+D)	. 7
	i.	Schematic	. 7
	ii.	Stick diagram	. 8
	iii.	Spice code	. 9
	iv.	Waveview result	. 9
(0	:)	Y = A·C+B·C'	10
	i.	Schematic	10
	ii.	Stick diagram	11
	iii.	Spice code	12
	iv.	Waveview result	12
(0	d)	$Y = A \oplus B \oplus C$, \oplus stands for XOR gate	13
	i.	Schematics	13
	ii.	Stick diagram	14
	iii.	Spice code	15
	iv.	Waveview result	16
2.	Ва	sed on problem 1(a),1(b), please finish DRC and LVS verification. You must attach th	ıe
pict	ure	s on your report which contain layout, DRC result and LVS result	18
(a)	Y =	= A·B·C+D	18
	i.	Layout	18
	ii.	DRC result	19

	iii.	LVS result	. 19
(b)		= (A+B)·(C+D)	
` ,		Layout	
	ii.	DRC result	
		LVS result	
(c)		ain what DRC rules do you learn, please list them	
		the fabrication steps of an inverter (cross section).	
э.	DIAN	/ LITE TADITICALIUM SLEDS OF AN INVENIEN ICTUSS SECTIONS	

- Please use the combination of CMOS to sketch the transistor-level schematic and stick diagram of the following compound gate function from those inputs A, B, C and D.
- (a) $Y = A \cdot B \cdot C + D$
 - i. Schematic

iii. spice code

iv. waveview result

(b) $Y = (A+B)\cdot(C+D)$

i. Schematic

iii. Spice code

```
*Library Name: HW|

*Cell Name: 1_b

*View Name: schematic

*prot

Lib 'cicol8.1' TT

Lumprot

Lemp 25

.option post acout=0 runlvl=6

*.SUBCKT 1_b A_B C_D VDD VSS Y

*.PININFO A:1_B:1_C:1_D:1_VDD:1_Y:0_VSS:B

MMO Y_mets2_VSS_VSS_N_18_W=1u_1=180_00n_m=1

MMS_mets4_B VSS_VSS_N_18_W=1u_1=180_00n_m=1

MMS_mets4_B vSS_VSS_N_18_W=1u_1=180_00n_m=1

MMS_mets5_D net44_VSS_N_18_W=1u_1=180_00n_m=1

MMS_mets5_D net5_VDD_P 18_W=3u_1=180_00n_m=1

MMN_mets6_D vDD_VDD_P 18_W=3u_1=180_00n_m=1

MMN_mets6_D vDD_VDD_P 18_W=3u_1=180_00n_m=1

MNN_mets6_D vDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_mets6_D vDD_D vDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_mets6_D vDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_mets6_D vDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_mets6_D vDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_mets6_D vDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_mets5_D vDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_mets6_D vDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_mets6_D vDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_mets6_D vDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_mets6_D vDD_VDD_VDD_P 18_V=3u_1=180_00n_m=1

MNN_m
```

iv. Waveview result

(c) $Y = A \cdot C + B \cdot C'$

i. Schematic

iii. Spice code

iv. Waveview result

(d) $Y = A \oplus B \oplus C$, \oplus stands for XOR gate

i. Schematics

iii. Spice code

```
*.SUBCKT 1_d A B C VDD VSS Y

*.PININFO A:1 B:1 C:1 Y:0 VDD:B VSS:B

MM25 net0170 A net11 net11 N_18 W=1u L=180.00n m=1

MM24 net11 B net15 net15 N_18 W=1u L=180.00n m=1

MM23 net15 C VSS VSS N_18 W=1u L=180.00n m=1

MM22 net19 C_bar VSS VSS N_18 W=1u L=180.00n m=1

MM20 net0170 A net23 net19 net19 N_18 W=1u L=180.00n m=1

MM20 net0170 A net23 net23 N_18 W=1u L=180.00n m=1

MM19 net0170 A_bar net35 net35 N_18 W=1u L=180.00n m=1

MM19 net0170 A_bar net35 net35 N_18 W=1u L=180.00n m=1

MM19 net0170 A_bar Net39 N_18 W=1u L=180.00n m=1

MM19 net0170 VSS VSS N_18 W=1u L=180.00n m=1

MM31 Y net0170 VSS VSS N_18 W=1u L=180.00n m=1

MM6 net47 B_bar net43 net43 N_18 W=1u L=180.00n m=1

MM5 net0170 A_bar net47 net47 N_18 W=1u L=180.00n m=1

MM29 C_bar C VSS VSS N_18 W=1u L=180.00n m=1

MM29 C_bar C VSS VSS N_18 W=1u L=180.00n m=1

MM29 C_bar C VSS VSS N_18 W=1u L=180.00n m=1

MM10 net0170 A_bar net48 net48 M=1u L=180.00n m=1

MM10 net0170 A_bar net48 net88 P=18 W=3u L=180.00n m=1

MM11 net0170 A_bar net88 net88 P=18 W=3u L=180.00n m=1

MM11 net0170 B_bar net88 net88 P=18 W=3u L=180.00n m=1

MM11 net0170 C_net68 net68 P=18 W=3u L=180.00n m=1

MM11 net68 A_bar net88 net88 P=18 W=3u L=180.00n m=1

MM11 net68 A_bar net88 net88 P=18 W=3u L=180.00n m=1

MM11 net68 A_bar net92 net92 P=18 W=3u L=180.00n m=1

MM10 net88 B_bar net88 net88 P=18 W=3u L=180.00n m=1

MM10 net88 B_bar net92 net92 P=18 W=3u L=180.00n m=1

MM10 net88 B_bar net92 net92 P=18 W=3u L=180.00n m=1

MM10 net88 B_bar net92 net92 P=18 W=3u L=180.00n m=1

MM11 net62 A_bar NDD VDD P=18 W=3u L=180.00n m=1

MM3 net92 B_bar VDD VDD P=18 W=3u L=180.00n m=1

MM4 net92 C_VDD VDD P=18 W=3u L=180.00n m=1

MM2 net92 A_bar VDD VDD P=18 W=3u L=180.00n m=1

MM2 net92 A_bar VDD VDD P=18 W=3u L=180.00n m=1

MM2 net92 A_bar VDD VDD P=18 W=3u L=180.00n m=1

MM2 net92 A_bar VDD VDD P=18 W=3u L=180.00n m=1

MM2 net92 A_bar VDD VDD P=18 W=3u L=180.00n m=1

MM2 net92 B_bar VDD VDD P=18 W=3u L=180.00n m=1

MM2 net93 A_bar A_VDD VDD P=18 W=3u L=180.00n m=1

MM2 net94 A_bar A_VDD VDD P=1
          MMO B_bar B VDD VDD P_18 W=3u L=180.00n m=1
         VDD vdd 0 dc 1.5
VSS vss gnd dc 0
         VAP A gnd PULSE 0 1.5 0 0.1n 0.1n 150n 300n VBP B gnd PULSE 0 1.5 50n 0.1n 0.1n 100n 200n VCP C gnd PULSE 0 1.5 100n 0.1n 0.1n 50n 100n
          .tran 0.1ns 1000n
```

iv. Waveview result

Comments

本次作業我在畫 layout 時嘗試兩種畫法,雖然這是基礎觀念但仍然獲得很直接的感受。下圖以第一題 a 小題為例。

將每個 mos 分開(面積較大)

串並 mos(面積較小)

兩者使用面積差了約39%

- 2. Based on problem 1(a),1(b), please finish DRC and LVS verification. You must attach the pictures on your report which contain layout, DRC result and LVS result.
- (a) $Y = A \cdot B \cdot C + D$
 - i. Layout

ii. DRC result

iii. LVS result

- (b) $Y = (A+B)\cdot(C+D)$
 - i. Layout

ii. DRC result

iii. LVS result

- (c) Explain what DRC rules do you learn, please list them.
- 1. Minimum width of Metal line is 0.23um when transistor channel length is 0.18um.
- 2. If the same layer cross each other, it makes a contact.
- 3. If the different layer just cross, it doesn't make contact but if contact has to be made, we should mark it.
- 4. Minimum area of contact should be 0.23u x 0.23u when transistor channel length is 0.18um.
- 5. We should draw N-WELL contact to enclose PMOS and VDD(positive source).
- 6. Minimum distance between different layers is 0.25u.
- 7. Minimum NWELL overlap N+ diffusion is 0.25um
- 8. Minimum space between two Poly regions on field area is 0.25um.
- 9. Gate at 90 degree angle is not allowed. (merge them to solve)
- 10. Minimum PO1 width for 1.8V NMOS or PMOS or interconnect is 0.18um
- 11. Minimum space between two NPlus regions is 0.45um
- 12. Minimum space between ME1 regions is 0.24um where MET1 width < 10um

3. Draw the fabrication steps of an inverter (cross section).

