Visual Question Answering with Graph Matching and Reasoning

Anonymous ICCV submission

Paper ID ****

Abstract

xxx.

1. Reasoning

1.1. Inference Graph

In this section, we briefly introduce the construction of inference graph to infer the hidden attributes. The inference graph is constructed using Bayesian network described by a pair $\mathfrak{B}=<\mathcal{G}, \Theta_{\mathcal{G}}>$. Specifically, the notation \mathcal{G} is a directed acyclic graph, of which the i-th vertex corresponds to a random variable X_i , and the connected edge in \mathcal{G} between two vertexes indicates the dependency. The second item $\Theta_{\mathcal{G}}$ is a set of parameters used to quantify the dependencies of \mathcal{G} . We use the notation $\theta_{X_i|\mathrm{Pa}(X_i)}=P_{\mathfrak{B}}(X_i|\mathrm{Pa}(X_i))$ to denote the parameter of X_i , of which $\mathrm{Pa}(X_i)$ is the attributes of the parents of X_i . The joint probability distribution of Bayesian network is given by:

$$P_{\mathfrak{B}}(X_1, \cdots, X_n) = \prod_{i=1}^n P_{\mathfrak{B}}(X_i | \operatorname{Pa}(X_i)) = \prod_{i=1}^n \theta_{X_i | \operatorname{Pa}(X_i)}$$
(1)

The role of Bayesian network is to predict the object class when given the attributes $\{X_i\}_{i=1}^n$ as input. In the sense of probability, the object class is also a variable. Let $Y = X_0$ be the class variable, the network now has one extra vertex Y. According to the Bayesian rule, the network can be rewritten as:

$$P_{\mathfrak{B}}(Y|X) = \frac{P_{\mathfrak{B}}(Y)P_{\mathfrak{B}}(X|Y)}{P_{\mathfrak{B}}(X)}$$

$$= \frac{\theta_{Y|P_{\mathfrak{A}}(X_{0})} \prod_{i=1}^{n} \theta_{X_{i}|Y,P_{\mathfrak{A}}(X_{i})}}{\sum_{y' \in \mathcal{Y}} \theta_{y'|P_{\mathfrak{A}}(X_{0})} \prod_{i=1}^{n} \theta_{X_{i}|y',P_{\mathfrak{A}}(X_{i})}}$$
(2)

where \mathcal{Y} is the set of class.

In the context of Naïve Bayes, the significance of $P_{\mathfrak{B}}(Y|X)$ is stressed by taking the class variables as the

root, and all attributes are conditionally independent when making the class as a condition. As a consequence, the calculation can be simplified as:

$$P_{\mathfrak{B}}(Y|X) = c \cdot \theta_Y \prod_{i=1}^n \theta_{X_i|Y}$$
 (3)

where c is constant: $c = \sum_{y' \in \mathcal{Y}} \theta_{y'} \prod_{i=1}^{n} \theta_{X_i|y'}$.

References