

Problem Statement

- Our objective is to analyze the given hotel reviews into sentiments.
- Sentiment Analysis is the process of analyzing text in order to classify the sentiment (positive, negative and neutral) of the expression.
- So our problem is a Multinomial Classification problem.
- It is helpful in getting insights from large volumes of text.

Dataset Description

- Dataset consists of 20k+ hotel reviews from Tripadvisor.
- Tripadvisor is an American travel company that has a website and mobile app for hotel bookings, transportation and other tourism requirements.
- With this dataset it can be explored what makes a good hotel and how to provide a better experience to customers.
- Features in dataset are Reviews and their ratings on the scale of 1 to 5.

Word Count Distribution

Classification

- A classifier maps the input data to the correct target value/class.
- There are different types of classification problems namely Binary (two classes), Multinomial (more than two classes) and Multi-label classification (multiple classes assigned to each input).
- For example: Binary (classes are cat and dog), Multinomial (classes are cat, dog, snake and wolf) and Multi-label (both cat and dog)

Preprocessing

- Raw textual data contains a lot of irrelevant information which is removed before analysis and training can be done.
- Techniques used for preprocessing include stopwords removal, lemmatization, removing punctuations, POS-tagging etc.
- Also, the ratings on the scale 1 to 5 are categorized into sentiments (1-2 is Negative, 3 is Neutral and 4-5 is Positive).
- For training we converted the words to numeric vectors using the TF-IDF vectorizer.

Drawbacks of Stopwords

Before Stopwords	After Stopwords
The product is really very good (Positive)	product really good(Positive)
The products seems to be good. (Positive)	products seems good (Positive)
Good product I really liked it(Positive)	Good product really liked (Positive)
I didn't like the product (Negative)	like product (Positive)
The product is not good (Negative)	product good (Positive)

Good Reviews Wordcloud

Bad Reviews Wordcloud

Neutral Reviews Wordcloud

Models Used

Model	Accuracy Score	Train time
Logistic Regression	85.9%	6.42s
Multi-layer Perceptron	86.3%	34.95s
Gaussian Naïve Bayes	66.4%	2.32s
Multinomial Naïve Bayes	82.9%	0.01s

Cross-Validation on Multi-layer Perceptron

With different no. of Hidden layers and neurons

Hyperparameter (No. Of Neurons)	Mean Validation Accuracy
(50,50)	0.86198663
(100,)	0.86641075
(30,30,30)	0.85801697
(100,100)	0.86127031

Impact of cross-validation on Logistic regression

- Logistic regression score training on entire training data was
 0.85
- With 5 fold cross-validation, mean score is 0.861

Hyperparameter tuning for Logistic Regression

- We chose to change the penalty and see the testing scores
- Score after using L1 penalty: 0.862
- Score after using L2 penalty: 0.859
- Score after using Elasticnet penalty: 0.858
- Score after using no penalty: 0.841

Future Improvements

- Word2vec and Glove embeddings can be used to improve the performance of model.
- Performance on more hyperparameters like values of L2 penalty and different optimizers can be tried to tune the model.
- Fine tuning the model by testing on tools like GridSearchCV and RandomSearchCV.