FORMULARIO.md 11/25/2021

Prodotti notevoli

OPERAZIONE	FORMULA
quadrato di un trinomio	\$\$(a+b+c)^3= a^2 + b^2 + c^2 + 2ab + 2ac + 2bc\$\$
particolari prodotti notevoli	\$\$(a+b)(a^2-ab+b^2)=a^3+b^3\$\$ \$\$(a-b)(a^2+ab+b^2)=a^3-b^3\$\$

Operazioni con i radicali

OPERAZIONE	FORMULA	
semplificazione	$\$ \sqrt[mn]{a^n} = \sqrt[m]{a}\\$	
potenza radicale	$\$ (\sqrt[n]{a})^m = \sqrt[n]{a^m}\$\$	
razionalizzazione	\$\$\frac{b}{\sqrt{a}}=\frac{b}{\sqrt{a}} \cdot \frac{\sqrt{a}}{a} = \frac{b \sqrt{a}}{a}\$\$ \$\$\frac{b}{\sqrt[n]{a^m}}=\frac{b}{\sqrt[n]{a^m}} \cdot \frac{\sqrt[n]{a^{n-m}}}{\sqrt[n]} {a^{n-m}}} = \frac{b \sqrt[n]{a^{n-m}}}{a}\$\$ \$\$\frac{Q}{\sqrt{a} + \sqrt{b}}=\frac{Q}} {\sqrt{a} + \sqrt{b}} \cdot \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} - \sqrt{b}} \cdot \frac{Q} \sqrt{a} - \sqrt{b}} \cdot \frac{Q}{\sqrt{a} - \sqrt{b}} \frac{Q}{\sqrt{a} - \sqrt{b}} \cdot \frac{Q}{\sqrt{a} - \sqrt{b}} \cdot \frac{Q}{\sqrt{a} - \sqrt{b}} \cdot \frac{Q}{\sqrt{a} - \sqrt{b}} \frac{Q}{\sqrt{a} - \s	
potenza radicale	\$\$(\sqrt[n]{a})^m = \sqrt[n]{a^m}\$\$	

Limiti notevoli

FUNZIONE	LIMITE
logaritmo naturale	$\$ \lim_{x\to\ 0} \frac{\ln(1+x)}{x}=1\$\$
funzione logaritmica	\$\$\lim_{x\to\ 0} \frac{log_a{(1+x)}}{x}= \frac{1}{ln(a)}\$\$
funzione esponenziale	\$\$\lim_{x\to\ 0} \frac{e^x -1}{x}=1\$\$
funzione esponenziale con base arbitraria	\$\$\lim_{x\to\ 0} \frac{a^x -1}{x}=ln(a)\$\$ \$\$con a>0\$\$
numero di Nepero	$\$ \lim_{x\to\infty} \bigg(1+ \frac{1}{x} \bigg)^x=e\$\$
potenza con differenza	$\ \int_{x\to 0} \frac{x\to 0} \int_{x\to 0}^{c-1}{x}=c$ \$\$\\\ \mathbb{R} \$\$
funzione sin	\$\$\lim_{x\to\ 0} \frac{\sin(x)}{x}=1\$\$
funzione cos	\$\$\lim_{x\to\ 0} \frac{1-cos(x)}{x^2}= \frac{1}{2}\$\$
funzione tan	\$\$\lim_{x\to\ 0} \frac{tan(x)}{x}=1\$\$
arcsin	$\sum_{x\to 0} \frac{x\to 0}{x}=1$

FORMULARIO.md 11/25/2021

FUNZIONE		
arctan	$\$ \lim_{x\to\ 0} \frac{\arctan(x)}{x}=1\$\$	
sin parabolico	$\$ \lim_{x\to\ 0} \frac{\sinh(x)}{x}=1\$\$	
cos parabolico	$\$ \lim_{x\to0} \frac{\cosh(x)-1}{x^2} = \frac{1}{2}	
tan parabolico	\$\$\lim_{x\to\ 0} \frac{tanh(x)}{x}=1\$\$	

Derivate fondamentali

Derivata	f(x)	f'(x)
costante	f(x) = costante	\$\$f'(x)=0\$\$
х	\$\$f(x) = x\$\$	\$\$f'(x)=1\$\$
potenza	$f(x) = x^s, ; s \in \mathbb{R}$	\$\$f'(x)=sx^{s-1}\$\$
esponenziale	\$\$f(x) = x\$\$	\$\$f'(x)=1\$\$
\$e^x\$	$f(x) = e^x$	\$\$f'(x)=e^x\$\$
logaritmo	$f(x) = \log_a{x}$	\$\$f'(x)= \frac{1}{x \ ln(a)}\$\$
sin	$f(x) = \sin(x)$	\$\$f'(x)=cos(x)\$\$
cos	f(x) = cos(x)	\$\$f'(x)=-sin(x)\$\$
tan	f(x) = tan(x)	\$\$f'(x)= \frac{1}{cos^2(x)}\$\$
cot	$f(x) = \cot(x)$	\$\$f'(x)= - \frac{1}{\sin^2(x)}\$\$
arcsin	$f(x) = \arcsin(x)$	\$\$f'(x)= \frac{1}{ \sqrt{1-x^2}}\$\$
arccos	f(x) = arccos(x)	\$\$f'(x)= - \frac{1}{ \sqrt{1-x^2}}\$\$
arctan	f(x) = arctan(x)	\$\$f'(x)= \frac{1}{1+x^2}\$\$
arccot	$f(x) = \operatorname{arccot}(x)$	\$\$f'(x)= - \frac{1}{1+x^2}\$\$
sinh	$f(x) = \sinh(x) = \frac{e^x-e^{-x}}{2}$	\$\$f'(x)= cosh(x)\$\$
cosh	$f(x) = \cosh(x) = \frac{e^x+e^{-x}}{2}$	\$\$f'(x)= sinh(x)\$\$