---TECHNICAL REPORT---

13815 No.

THE NATION'S LABORATORY FOR ADVANCED AUTOMOTIVE TECHNOLOGY

Defining Paths for Driver Models with Hermite Parametric Curves

> W. Bylsma $\mathbf{B}\mathbf{y}$

Approved for public release; distribution is unlimited.

U.S. Army Tank-Automotive Research, Development, and Engineering Center **Detroit Arsenal** Warren, Michigan 48397-5000

Form Approved

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	JUNE 2002	MAY - JUNE 2002	
4. TITLE AND SUBTITLE DEFINING PATHS FOR DRITCURVES	VER MODELS WITH HERMIT	E PARAMETRIC 5. FUNDING N	NUMBERS
6. AUTHOR(S)			
Wesley Bylsma			
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)	8. PERFORMIN REPORT NU	IG ORGANIZATION IMBER
U.S. Army Tank-automotive and			
Armaments Command/National			
Automotive Center		13815	
ATTN: AMSTA-TR-N/MS157		13013	
Warren, MI 48397-5000	OFNOV NAME(C) AND ADDRESSE	C) 10 CDONCOD	INIO / MONITORINO
9. SPONSORING / MONITORING A	GENCY NAME(S) AND ADDRESS(E		ING / MONITORING REPORT NUMBER
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY Approved for public re-		s unlimited	12b. DISTRIBUTION CODE
A method (MATLAB function) to define continuous smooth and nonsmooth paths using Hermite parametric curves is presented. The defined path can be used as a reference signal in a driver model for feedback control of vehicle position. Four input formats are allowed that encompass two and three dimensional paths. The formulation can account for path crossover and provides a method to deal with the nonlinear relationship relating path distance and path parameter values.			
14. SUBJECT TERMS path creation, driver model, hermite parametric curves		15. NUMBER OF PAGES	
		ric curves	15 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	Unclassified

Table of Contents

ABSTRACT	1
INTRODUCTION	1
PATH DEFINITION	1
IMPLEMENTATION	2
PATH FILE FORMATS	3
RESULTS	3
CONCLUSION	4
CONTACT	4
REFERENCES	4
DEFINITIONS, ACRONYMS, ABBREVIATIONS	
APPENDIX A - Coefficient Matrix Inverse	5
APPENDIX B - Lane Path Example Output Files	8
APPENDIX C - Square Path Example Output Files	10
APPENDIX D - Program Listing	12

Defining Paths for Driver Models with Hermite Parametric Curves

W. Bylsma

U.S. Army Tank-automotive and Armaments Command Research, Development and Engineering Center National Automotive Center Warren, Michigan 48397-5000

ABSTRACT

A method (MATLAB function) to define continuous smooth and nonsmooth paths using Hermite parametric curves is presented. The defined path can be used as a reference signal in a driver model for feedback control of vehicle position. Four input formats are allowed that encompass two and three dimensional paths. The formulation can account for path crossover and provides a method to deal with the nonlinear relationship relating path distance and path parameter values.

INTRODUCTION

determining ground vehicle dynamic performance it is generally accepted that comparisons between simulated and test results will be compared for precision and accuracy. The test environment will define a particular course(s) that will be used to define the excitation to the vehicle. In the simulation environment the same course(s) must be replicated to excite the dynamics of the model. Each course used may, for usefulness will, have different characteristics that excite the dynamics in different ways to obtain a complete spectrum of inputs to the system. The broader the spectrum the better characterization of the system. In the simulation environment driver models developed to ensure that the vehicle model is traversing the desired course(s) in the same manner as in the test environment for vehicle parameters (speed, steering, etc.).

A path must be defined for each course that represents the desired vehicle trajectory and will be used as a reference signal in the driver model for feedback control to maintain the vehicle parameters (speed, steering, etc.). Ideally, each position on the path should be uniquely identifiable.

To satisfy these desired conditions each position on the path is defined by a point. A parametric curve is then defined through these points which will allow one parameter to define a unique position on the path. This formulation also provides for path crossover.

The number of points required and the method of interpolation between them to accurately represent the trajectory are issues that depend on the resolution required.

PATH DEFINITION

Hermite Cubic (similar to Catmull-Rom curves but tangents are specified and not inferred from neighboring points) are used here to represent the path because 1) they can be parameterized, 2) they have the desired property of passing directly through each point interpolating between, 3) they can be made to be continuous at each point, and 4) the tangent vectors can be explicitly specified.

Each spatial coordinate is specified as (y and z are the same)

$$x(t) = at^{3} + bt^{2} + ct + d$$
(1)

a third order polynomial (cubic) whose derivative is

1

$$\dot{x}(t) = 3at^2 + 2bt + c \tag{2}$$

where the parameter

$$t \in [0,1]$$
. (3)

The solution for the four coefficients requires four equations. Equations (1) and (2) are evaluated at both limits of (3) to get the solution for the coefficients in (1) as

$$\begin{bmatrix} x(0) \\ x(1) \\ \dot{x}(0) \\ \dot{x}(1) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}.$$
(4)

Taking the inverse (see Appendix A) gives

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ \dot{x}(0) \\ \dot{x}(1) \end{bmatrix}$$
(5)

The coefficients for each segment (between points) is defined by equations (1) and (3).

Since the parameter gives a unique position on the path it is important to relate this to the spatial domain in terms of knowing how far the vehicle has traveled on the path or what value of the parameter is needed to get to a certain distance on the path. Any point on a segment of the path is

$$r = r(t) = (x(t), y(t), z(t)), a \le t \le b$$
 (6)

where the coefficients are different for each segment, but the limits in (6) on the parameter may be the same. From this the distance is related to the integral of the path speed

$$\dot{r}(t) = (\dot{x}(t), \dot{y}(t), \dot{z}(t)) \tag{7}$$

(8)

$$ds = |d\dot{r}| = |\dot{r}(t)|dt = vdt$$

$$s = \int_{a}^{b} |\dot{r}(t)| dt = \int_{a}^{b} \sqrt{\dot{x}^{2}(t) + \dot{y}^{2}(t) + \dot{z}^{2}(t)} dt$$
(9)

where (9) is over all path segments. The relationship in (9) is clearly nonlinear. A value of the parameter can easily be related to the path distance, but the path distance cannot easily be related to the parameter. However, since the parameter and distance along the path are both monotonically increasing values, a lookup table can be generated that can be used to lookup a value of the parameter for a particular path distance. With this solution the nonlinear relationship between distance and path parameter can easily be handled.

IMPLEMENTATION

Creation of a path requires points defining positions on the path and tangent vectors at each point to define the orientation of the path passing through that point.

Consideration is also given to the ability to create smooth or non-smooth ("sharp") paths. This is accomplished by allowing two tangent vectors to be specified for each point. The first is used if the point is at the end of a segment, the second if at the beginning of a segment. This allows "reorientation" at that point for the next segment of the path.

Consideration is also given for three dimensional as well as two dimensional paths. The three dimensional capability will allow better control for traversing a path with different elevations.

In the MATLAB implementation, a path is "created" by calling the function

where "input.path" is the path definition file name, "output.coef" is the coefficient output file name, "output.tbl" is the parameter versus path distance file name, dp is the parameter increment used to generate the internal p and s relationship, and ds is the distance increment used to generate parameter versus path distance file "output.tbl" for equally spaced points on the path.

PATH FILE FORMATS

All files, input and output, are ASCII text files. The path input file, "input.path", is a sequence of points and tangent vectors defining the path. Any line that starts with a "%" or "#" or "*" is a comment. There are four possible input formats:

2D

Each line contains three values

[x y theta]

where the tangent vector is assumed to be

Note that for the 2D format the magnitude of the tangent vector is assumed to be unity.

2D BRK

Each line contains four values

[x y theta theta1]

where the tangent vectors are assumed to be

if at the end of a segment and

if at the beginning of a segment.

3D

Each line contains six values

where the tangent vector is

<u> 3D BRK</u>

Each line contains nine values

where the tangent vectors are assumed to be

if at the end of a segment and

if at the beginning of a segment.

The "output.coef" file has the form of

```
[0; ax; bx; cx; dx; ay; by; cy; dy; az; bz; cz; dz]
[1; ax; bx; cx; dx; ay; by; cy; dy; az; bz; cz; dz]
[2; ax; bx; cx; dx; ay; by; cy; dy; az; bz; cz; dz]
```

where the first line is the point number then three sets of four lines for x, y, and z coefficient values respectively.

The "output.tbl" file has the form of

RESULTS

The following will illustrate the usage for smooth and nonsmooth paths.

The smooth path example is one typical of a lane change for a vehicle. The path is described as follows

```
---BOF---
%lane
%3D format but 2D curve
0 0 0 5 0 0
5 0 0 5 0 0
10 5 0 5 1 0
15 5 0 5 -1 0
20 0 0 5 0 0
25 0 0 5 0 0
---EOF---
```

See Appendix B for the "output.coef" and "output.tbl" files. Figure 1 shows the continuous path generated from the input points above.

Figure 1 - Smooth Path

Figure 2 shows the nonlinear relationship between the path distance and parameter.

Figure 2 - Distance versus Parameter (S)

The nonsmooth path example is a three sided square and line segment that demonstrates path crossover. The path is described as follows

```
---BOF---
%square with crossover
%2D format
0 0 90
0 5 90 0
5 5 0 -90
5 0 -90 135
-10 10 135
---EOF---
```

See Appendix C for the "output.coef" and "output.tbl" files. Figure 3 shows the continuous path generated from the input points above for the nonsmooth path.

Figure 3 - Nonsmooth Path

Figure 4 shows the nonlinear relationship between the path distance and parameter for the nonsmooth crossover path.

Figure 4 - Distance versus Parameter (NS)

CONCLUSION

The results demonstrate the utility of Hermite parametric curves for input to driver models and their versatility by being able to describe smooth/nonsmooth and multiple crossover paths with ease.

Due to the monotonic nature of the path parameter and distance a lookup table can be used to relate the two path parameters as shown in Figures 2 and 4. For the lane and square path examples the end distance and parameter values are 29.7 and 4.98, 33.0 and 3.96 respectively (dp = 0.01, ds= 0.1). These values correlate with the number and displacement of the points in the respective example input file.

CONTACT

The author is a an engineer at the U.S. Army Tank-automotive and Armaments Command, Research, Development and Engineering Center (TACOM-TARDEC). Interested parties can contact the author at the U.S. Army Tank-automotive and Armaments Command, ATTN: AMSTA-TR-N/MS157, Warren, Michigan 48397-5000, bylsmaw@tacom.army.mil.

REFERENCES

Fundamentals of Interactive Computer Graphics, J.D. Foley and A. Van Dam. Addison-Wesley, 1984. ISBN 0-201-14468-9

DEFINITIONS, ACRONYMS, ABBREVIATIONS

S - Smooth, NS - Nonsmooth, TACOM - U.S. Army Tankautomotive and Armaments Command, TARDEC - TACOM Research, Development and Engineering Center, NAC - National Automotive Center.

APPENDIX A - Coefficient Matrix Inverse

Each point is numbered, starting from zero, so the parameter varies from 0 to 1, starting at p_n to p_{n+1} where p_n of the next point will equal p_{n+1} of the previous point. For each interval between points then

$$x(p-p_n) = a(p-p_n)^3 + b(p-p_n)^2 + c(p-p_n) + d$$

and

$$\dot{x}(p-p_n) = 3a(p-p_n)^2 + 2b(p-p_n) + c$$

where these two equations are evaluated at

$$x(p - p_n)|_{p = p_n}$$

 $x(p - p_n)|_{p = p_{n+1}}$
 $\dot{x}(p - p_n)|_{p = p_n}$
 $\dot{x}(p - p_n)|_{p = p_{n+1}}$

gives

$$\begin{bmatrix} x(p-p_n)|_{p=p_n} \\ x(p-p_n)|_{p=p_{n+1}} \\ \dot{x}(p-p_n)|_{p=p_n} \\ \dot{x}(p-p_n)|_{p=p_{n+1}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Now

$$[A^{-1}]_{ij} = \frac{1}{\det A} Cofactor(A^{T}_{ij})$$

where

$$Cofactor(A_{ij}) = (-1)^{i+j} D_{ij}$$

and D_{ij} =subdeterminant is formed by deleting the ith row and the jth column of D_{ij} and taking the determinant.

$$\det A = 0(-1)^{1+1}D_{11} + 0(-1)^{1+2}D_{12} + 0(-1)^{1+3}D_{13} + 1(-1)^{1+4}\begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 3 & 2 & 1 \end{vmatrix} = (-1)^{1+4}(-1)^{2+3}\begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = (-1)(-1)(2-3) = -1$$

$$C_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 0 \end{vmatrix} = (-1)^{1+1} (1)(-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = (1)(1)(1)(0-2) = -2$$

$$C_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 3 & 1 & 0 \end{vmatrix} = (-1)^{1+2} (1)(-1)^{1+3} \begin{vmatrix} 0 & 1 \\ 3 & 1 \end{vmatrix} = (-1)(1)(1)(0-3) = 3$$

$$C_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 3 & 2 & 0 \end{vmatrix} = (-1)^{1+3} (1)(-1)^{1+3} \begin{vmatrix} 0 & 0 \\ 3 & 2 \end{vmatrix} = (1)(1)(1)(0) = 0$$

$$C_{14} = (-1)^{1+4} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 3 & 2 & 1 \end{vmatrix} = (-1)^{1+4} (1)(-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = (-1)(1)(-1)(2-3) = -1$$

$$C_{21} = (-1)^{2+1} \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 0 \end{vmatrix} = (-1)^{2+1} (1)(-1)^{1+3} \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = (-1)(1)(1)(0-2) = 2$$

$$C_{22} = (-1)^{2+2} \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 3 & 1 & 0 \end{vmatrix} = (-1)^{2+2} (1)(-1)^{1+3} \begin{vmatrix} 0 & 1 \\ 3 & 1 \end{vmatrix} = (1)(1)(1)(0-3) = -3$$

$$C_{23} = (-1)^{2+3} \begin{vmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 3 & 2 & 0 \end{vmatrix} = (-1)^{2+3} (1)(-1)^{1+3} \begin{vmatrix} 0 & 0 \\ 3 & 2 \end{vmatrix} = (-1)(1)(1)(0-0) = 0$$

$$C_{24} = (-1)^{2+4} \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 3 & 2 & 1 \end{vmatrix} = (-1)^{2+4} (0) = 0$$

$$C_{31} = (-1)^{3+1} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{vmatrix} = (-1)^{3+1} (1)(-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = (1)(1)(1)(1-2) = -1$$

$$C_{32} = (-1)^{3+2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 0 \end{vmatrix} = (-1)^{3+2} (1)(-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} = (-1)(1)(1)(1-3) = 2$$

$$C_{33} = (-1)^{3+3} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 2 & 0 \end{vmatrix} = (-1)^{3+3} (1)(-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = (1)(1)(1)(2-3) = -1$$

$$C_{34} = (-1)^{3+4} \begin{vmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{vmatrix} = (-1)^{3+4} (0) = 0$$

$$C_{41} = (-1)^{4+1} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = (-1)^{4+1} (1)(-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = (-1)(1)(1)(1-0) = -1$$

$$C_{42} = (-1)^{4+2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = (-1)^{4+2} (1)(-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = (1)(1)(1)(1-0) = 1$$

$$C_{43} = (-1)^{4+3} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix} = (-1)^{4+3}(0) = 0$$

$$C_{44} = (-1)^{4+4} \begin{vmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = (-1)^{4+4}(0) = 0$$

$$[A^{-1}]_{ij} = \frac{1}{-1} \begin{bmatrix} -2 & 3 & 0 & -1 \\ 2 & -3 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix}^{T} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

APPENDIX B - Lane Path Example Output Files

BOF"output.coef"	BOF"output.tbl"	7.200000 1.327620	14.500000 2.417160
0.000000	0.000000 0.000000	7.300000 1.339957	14.600000 2.437152
0.000000	0.100000 0.010000	7.400000 1.352142	14.700000 2.457132
0.000000	0.200000 0.030000	7.500000 1.364208	14.800000 2.477147
5.000000	0.300000 0.050000	7.600000 1.376166	14.900000 2.497147
0.00000	0.400000 0.070000	7.700000 1.388025	15.000000 2.517147
0.00000	0.500000 0.090000	7.800000 1.399795	15.100000 2.537145
0.00000	0.600000 0.110000	7.900000 1.411478	15.200000 2.557141
0.000000	0.700000 0.130000	8.000000 1.423091	15.300000 2.577132
0.000000	0.800000 0.150000	8.100000 1.434644	15.400000 2.597119
0.000000	0.900000 0.170000	8.200000 1.446144	15.500000 2.617098
0.000000	1.000000 0.190000	8.300000 1.457600	15.600000 2.637070
0.000000	1.100000 0.210000	8.400000 1.469019	15.700000 2.657033
0.000000	1.200000 0.230000	8.500000 1.480408	15.800000 2.676986
1.000000	1.300000 0.250000	8.600000 1.491774	15.900000 2.696927
0.000000	1.400000 0.270000	8.700000 1.503126	16.000000 2.716856
0.000000	1.500000 0.290000	8.800000 1.514473	16.100000 2.736770
5.000000	1.600000 0.310000	8.900000 1.525819	16.200000 2.756670
5.000000	1.700000 0.330000	9.000000 1.537174	16.300000 2.776553
-9.000000	1.800000 0.350000	9.100000 1.548543	16.400000 2.796418
14.000000	1.900000 0.370000	9.200000 1.559935	16.500000 2.816265
0.000000	2.000000 0.390000	9.300000 1.571360	16.600000 2.836091
0.000000	2.100000 0.410000	9.400000 1.582823	16.700000 2.855897
0.000000	2.200000 0.430000	9.500000 1.594332	16.800000 2.875680
0.00000	2.300000 0.450000	9.600000 1.605896	16.900000 2.895441
0.00000	2.400000 0.470000	9.700000 1.617521	17.000000 2.915177
0.00000	2.500000 0.490000	9.800000 1.629216	17.100000 2.934887
2.00000	2.600000 0.510000	9.900000 1.640998	17.200000 2.954571
0.000000	2.700000 0.530000	10.000000 1.652874	17.300000 2.974227
0.00000	2.800000 0.550000	10.100000 1.664851	17.400000 2.993855
5.000000	2.900000 0.570000	10.200000 1.676938	17.500000 3.003429
10.000000	3.000000 0.590000	10.300000 1.689147	17.600000 3.022622
0.00000	3.100000 0.610000	10.400000 1.701502	17.700000 3.041290
-1.000000	3.200000 0.630000	10.500000 1.714014	17.800000 3.059384
1.000000	3.300000 0.650000	10.600000 1.726687	17.900000 3.076882
		10.700000 1.720007	18.000000 3.070032
5.000000	3.400000 0.670000		
0.000000	3.500000 0.690000	10.800000 1.752605	18.100000 3.110276
0.00000	3.600000 0.710000	10.900000 1.765891	18.200000 3.126189
0.00000	3.700000 0.730000	11.000000 1.779404	18.300000 3.141677
0.000000	3.800000 0.750000	11.100000 1.793209	18.400000 3.156733
3.000000	3.900000 0.770000	11.200000 1.807295	18.500000 3.171425
0.000000	4.000000 0.790000	11.300000 1.821699	18.600000 3.185752
	4.100000 0.810000		18.700000 3.199791
0.000000		11.400000 1.836469	
5.000000	4.200000 0.830000	11.500000 1.851610	18.800000 3.213510
15.000000	4.300000 0.850000	11.600000 1.867189	18.900000 3.226983
9.000000	4.400000 0.870000	11.700000 1.883225	19.000000 3.240228
-13.000000	4.500000 0.890000	11.800000 1.899742	19.100000 3.253232
-1.000000	4.600000 0.910000	11.900000 1.916831	19.200000 3.266048
5.000000	4.700000 0.930000	12.000000 1.934468	19.300000 3.278691
		12.100000 1.952676	
0.000000	4.800000 0.950000		19.400000 3.291164
0.000000	4.900000 0.970000	12.200000 1.971451	19.500000 3.303480
0.000000	5.000000 0.990000	12.300000 1.990744	19.600000 3.315666
0.00000	5.100000 1.000000	12.400000 2.000355	19.700000 3.327732
4.000000	5.200000 1.019925	12.500000 2.019990	19.800000 3.339690
0.00000	5.300000 1.039573	12.600000 2.039652	19.900000 3.351538
0.000000	5.400000 1.058784	12.700000 2.059342	20.000000 3.363298
5.000000	5.500000 1.077465	12.800000 2.079058	20.100000 3.374979
20.000000	5.600000 1.095575	12.900000 2.098799	20.200000 3.386592
0.000000	5.700000 1.113117	13.000000 2.118565	20.300000 3.398145
0.00000	5.800000 1.130114	13.100000 2.138353	20.400000 3.409644
0.00000	5.900000 1.146542	13.200000 2.158164	20.500000 3.421096
0.00000	6.000000 1.162500	13.300000 2.177995	20.600000 3.432511
0.000000	6.100000 1.178001	13.400000 2.197845	20.700000 3.443898
0.000000	6.200000 1.178001	13.500000 2.197843	20.800000 3.443898
0.000000	6.300000 1.207782	13.600000 2.237601	20.900000 3.466617
0.000000	6.400000 1.222136	13.700000 2.257504	21.000000 3.477963
EOF"output.coef"	6.500000 1.236166	13.800000 2.277422	21.100000 3.489310
	6.600000 1.249930	13.900000 2.297353	21.200000 3.500665
	6.700000 1.263398	14.000000 2.317297	21.300000 3.512036
	6.800000 1.276642	14.100000 2.337252	21.400000 3.523431
	6.900000 1.289679	14.200000 2.357217	21.500000 3.534857
	7.000000 1.302496	14.300000 2.377191	21.600000 3.546321
	7.100000 1.315137	14.400000 2.397172	21.700000 3.557830

21.800000 3.569394	23.900000 3.846946	26.000000 4.244294	28.100000 4.664294
21.900000 3.581024	24.000000 3.863506	26.100000 4.264294	28.200000 4.684294
22.000000 3.592729	24.100000 3.880586	26.200000 4.284294	28.300000 4.704294
22.100000 3.604516	24.200000 3.898256	26.300000 4.304294	28.400000 4.724294
22.200000 3.616392	24.300000 3.916503	26.400000 4.324294	28.500000 4.744294
22.300000 3.628369	24.400000 3.935309	26.500000 4.344294	28.600000 4.764294
22.400000 3.640459	24.500000 3.954625	26.600000 4.364294	28.700000 4.784294
22.500000 3.652687	24.600000 3.974343	26.700000 4.384294	28.800000 4.804294
22.600000 3.665049	24.700000 3.994294	26.800000 4.404294	28.900000 4.824294
22.700000 3.677560	24.800000 4.004294	26.900000 4.424294	29.000000 4.844294
22.800000 3.690233	24.900000 4.024294	27.000000 4.444294	29.100000 4.864294
22.900000 3.703111	25.000000 4.044294	27.100000 4.464294	29.200000 4.884294
23.000000 3.716183	25.100000 4.064294	27.200000 4.484294	29.300000 4.904294
23.100000 3.729464	25.200000 4.084294	27.300000 4.504294	29.400000 4.924294
23.200000 3.743013	25.300000 4.104294	27.400000 4.524294	29.500000 4.944294
23.300000 3.756821	25.400000 4.124294	27.500000 4.544294	29.600000 4.964294
23.400000 3.770911	25.500000 4.144294	27.600000 4.564294	29.700000 4.984294
23.500000 3.785350	25.600000 4.164294	27.700000 4.584294	EOF"output.tbl"
23.600000 3.800109	25.700000 4.184294	27.800000 4.604294	
23.700000 3.815298	25.800000 4.204294	27.900000 4.624294	
23.800000 3.830876	25.900000 4.224294	28.000000 4.644294	

APPENDIX C - Square Path Example Output Files

	1	1	
BOF"output.coef"	BOF"output.tbl"	7.300000 1.464337	14.700000 2.862677
0.00000	0.000000 0.000000	7.400000 1.478652	14.800000 2.891253
0.00000	0.100000 0.052260	7.500000 1.492943	14.900000 2.925869
0.000000	0.200000 0.089609	7.600000 1.507231	15.000000 2.975631
0.000000			15.100000 3.022848
	0.300000 0.119547	7.700000 1.521536	
0.000000	0.400000 0.145507	7.800000 1.535880	15.200000 3.043864
-8.000000	0.500000 0.169006	7.900000 1.550278	15.300000 3.059505
12.000000	0.600000 0.190678	8.000000 1.564763	15.400000 3.072380
1.000000	0.700000 0.210989	8.100000 1.579342	15.500000 3.083757
0.000000	0.800000 0.230256	8.200000 1.594059	15.600000 3.094082
0.000000	0.900000 0.248655	8.300000 1.608919	15.700000 3.103613
0.000000	1.000000 0.266356	8.400000 1.623973	15.800000 3.112527
0.00000	1.100000 0.283490	8.500000 1.639228	15.900000 3.120953
0.000000	1.200000 0.300150	8.600000 1.654754	16.000000 3.128921
1.000000	1.300000 0.316362	8.700000 1.670553	16.100000 3.136503
-8.000000	1.400000 0.332239	8.800000 1.686720	16.200000 3.143816
12.000000	1.500000 0.347808	8.900000 1.703279	16.300000 3.150903
1.000000	1.600000 0.363115	9.000000 1.720293	16.400000 3.157693
0.000000	1.700000 0.378205	9.100000 1.737899	16.500000 3.164283
0.000000	1.800000 0.393101	9.200000 1.756174	16.600000 3.170740
0.000000	1.900000 0.407841	9.300000 1.775259	16.700000 3.176959
0.00000	2.000000 0.422447	9.400000 1.795355	16.800000 3.183057
5.000000	2.100000 0.436945	9.500000 1.816733	16.900000 3.189037
0.000000	2.200000 0.451362	9.600000 1.839773	17.000000 3.194837
0.000000	2.300000 0.465712	9.700000 1.865262	17.100000 3.200581
0.00000	2.400000 0.480025	9.800000 1.894291	17.200000 3.206153
0.000000	2.500000 0.494314	9.900000 1.929616	17.300000 3.211670
2.000000	2.600000 0.508603	10.000000 1.982566	17.400000 3.217066
0.000000	2.700000 0.522912	10.100000 2.043514	17.500000 3.222389
0.000000	2.800000 0.537259	10.200000 2.083135	17.600000 3.227626
0.00000	2.900000 0.551666	10.300000 2.114115	17.700000 3.232784
5.000000	3.000000 0.566158	10.400000 2.140778	17.800000 3.2327876
8.000000	3.100000 0.580749	10.500000 2.164629	17.900000 3.242892
-12.000000	3.200000 0.595479	10.600000 2.186608	18.000000 3.247853
-1.000000	3.300000 0.610352	10.700000 2.207162	18.100000 3.252745
5.00000	3.400000 0.625429	10.800000 2.226605	18.200000 3.257585
0.00000	3.500000 0.640706	10.900000 2.245164	18.300000 3.262371
0.000000	3.600000 0.656258	11.000000 2.263006	18.400000 3.267101
0.000000	3.700000 0.672096	11.100000 2.280259	18.500000 3.271792
0.00000	3.800000 0.688285	11.200000 2.296974	18.600000 3.276421
3.000000	3.900000 0.704894	11.300000 2.313276	18.700000 3.281030
28.585786	4.000000 0.721968	11.400000 2.329222	18.800000 3.285567
-42.878680	4.100000 0.739608	11.500000 2.344836	18.900000 3.290102
-0.707107	4.200000 0.757959	11.600000 2.360204	19.000000 3.294554
5.000000	4.300000 0.777135	11.700000 2.375320	19.100000 3.299007
-18.585786	4.400000 0.797339	11.800000 2.390260	19.200000 3.303399
27.878680	4.500000 0.818846	11.900000 2.405019	19.300000 3.307773
0.707107	4.600000 0.842128	12.000000 2.419655	19.400000 3.312113
0.00000	4.700000 0.867846	12.100000 2.434168	19.500000 3.316416
0.000000	4.800000 0.897329	12.200000 2.448599	19.600000 3.320709
0.000000	4.900000 0.933661	12.300000 2.448399	19.700000 3.324947
0.000000	5.000000 0.990400	12.400000 2.477279	19.800000 3.329185
0.000000	5.100000 1.048000	12.500000 2.491571	19.900000 3.333375
EOF"output.coef"	5.200000 1.086372	12.600000 2.505859	20.000000 3.337553
	5.300000 1.116831	12.700000 2.520160	20.100000 3.341709
	5.400000 1.143143	12.800000 2.534501	20.200000 3.345833
	5.500000 1.166817	12.900000 2.548893	20.300000 3.349956
	5.600000 1.188653	13.000000 2.563369	20.400000 3.354031
	5.700000 1.209089	13.100000 2.577940	20.500000 3.358105
	5.800000 1.228434	13.200000 2.592639	20.600000 3.362154
	5.900000 1.246909	13.300000 2.607488	20.700000 3.366183
	6.000000 1.264681	13.400000 2.622517	20.800000 3.370209
	6.100000 1.281874	13.500000 2.637758	20.900000 3.374197
	6.200000 1.298563	13.600000 2.653251	21.000000 3.378184
	6.300000 1.314819	13.700000 2.669023	21.100000 3.382151
			21.200000 3.386102
	6.400000 1.330735	13.800000 2.685155	
	6.500000 1.346322	13.900000 2.701663	21.300000 3.390052
	6.600000 1.361660	14.000000 2.718643	21.400000 3.393969
	6.700000 1.376762	14.100000 2.736191	21.500000 3.397886
	6.800000 1.391680	14.200000 2.754389	21.600000 3.401790
	6.900000 1.406430	14.300000 2.773384	21.700000 3.405677
	7.000000 1.421052	14.400000 2.793372	21.800000 3.409565
	7.100000 1.435557	14.500000 2.814620	21.900000 3.413429
	7.200000 1.449983	14.600000 2.837501	22.000000 3.417291
	1	1	

22.100000 3.421145	24.900000 3.527162	27.700000 3.636197	30.500000 3.762666
22.200000 3.424984	25.000000 3.530944	27.800000 3.640274	30.600000 3.767903
22.300000 3.428823	25.100000 3.534734	27.900000 3.644398	30.700000 3.773236
22.400000 3.432648	25.200000 3.538524	28.000000 3.648521	30.800000 3.778632
22.500000 3.436467	25.300000 3.542321	28.100000 3.652680	30.900000 3.784158
22.600000 3.440285	25.400000 3.546124	28.200000 3.656858	31.000000 3.789730
22.700000 3.444088	25.500000 3.549927	28.300000 3.661051	31.100000 3.795485
22.800000 3.447891	25.600000 3.553746	28.400000 3.665290	31.200000 3.801297
22.900000 3.451688	25.700000 3.557565	28.500000 3.669528	31.300000 3.807277
23.000000 3.455478	25.800000 3.561392	28.600000 3.673824	31.400000 3.813388
23.100000 3.459267	25.900000 3.565230	28.700000 3.678127	31.500000 3.819608
23.200000 3.463049	26.000000 3.569069	28.800000 3.682471	31.600000 3.826079
23.300000 3.466828	26.100000 3.572925	28.900000 3.686846	31.700000 3.832687
23.400000 3.470606	26.200000 3.576786	29.000000 3.691242	31.800000 3.839477
23.500000 3.474378	26.300000 3.580652	29.100000 3.695694	31.900000 3.846582
23.600000 3.478150	26.400000 3.584540	29.200000 3.700149	32.000000 3.853917
23.700000 3.481920	26.500000 3.588427	29.300000 3.704686	32.100000 3.861523
23.800000 3.485688	26.600000 3.592333	29.400000 3.709223	32.200000 3.869492
23.900000 3.489456	26.700000 3.596250	29.500000 3.713837	32.300000 3.877947
24.000000 3.493222	26.800000 3.600168	29.600000 3.718466	32.400000 3.886895
24.100000 3.496988	26.900000 3.604119	29.700000 3.723163	32.500000 3.896466
24.200000 3.500755	27.000000 3.608069	29.800000 3.727894	32.600000 3.906839
24.300000 3.504523	27.100000 3.612039	29.900000 3.732685	32.700000 3.918276
24.400000 3.508290	27.200000 3.616026	30.000000 3.737525	32.800000 3.931322
24.500000 3.512060	27.300000 3.620014	30.100000 3.742424	32.900000 3.947092
24.600000 3.515832	27.400000 3.624042	30.200000 3.747385	33.000000 3.968562
24.700000 3.519604	27.500000 3.628071	30.300000 3.752408	EOF"output.tbl"
24.800000 3.523383	27.600000 3.632123	30.400000 3.757500	

APPENDIX D - Makepath Listing

```
% Make Path (makepath.m)
% Usage:
% makepath [input] [output.coef] [output.tbl] [dp] [ds]
% Example: makepath('input.path', 'output.coef', 'output.tbl', 0.01, 0.1);
% where input format is
% 2D = [x y theta] where x'=cos(theta), y'=sin(theta)
% 2D BRK = [x y theta theta1]
% 3D = [x y z x' y' z']
% 3D BRK = [x y z x' y' z' x' y' z']
% for each point.
% If 2nd set of tangents is encountered it will restart at the same
% point with the new tangent vector.
% Comment lines start with '%' or '#' or '*'
% dp = parameter increment, ds = distance increment
function [A] = makepath(in, out, tbl, dp, ds);
LINE LEN= 1024; % line length
MAX PTS= 1000; % max number of points
PI = 4.0*atan(1.0);
DEG2RAD= PI/180.0;
FLG 2D =3;
FLG 2D BRK= 4;
FLG 3D= 6;
FLG 3D BRK= 9;
mh = [2.0, -2.0, 1.0, 1.0; -3.0, 3.0, -2.0, -1.0; 0.0, 0.0, 1.0, 0.0; 1.0, 0.0, 0.0, 0.0]; % transform matrix
fprintf('\n\n\nMake Path\n\n');
%---open files and process
fin = fopen(in,'rt');
fout = fopen(out,'w');
fout1 = fopen(tbl,'w');
fprintf('Processing %s ...\n',in);
num pts = 1;
val = 0;
line = fgetl(fin);
while (line(1) == '%' | line(1) == '#' | line(1) == '*'),
 line = fgetl(fin);
while (line \sim = -1),
  fprintf('[%s]\n',line);
  val = sscanf(line,'%f %f %f %f %f %f %f %f %f %f'); % &x, &y, &z, &xp, &yp, &zp, &xpn, &ypn, &zpn);
 lval = length(val);
 val = [val', [zeros(9-length(val),1)']]';
 x = val(1):
  y = val(2);
  z = val(3);
  xp = val(4);
  yp = val(5);
  zp = val(6);
  xpn = val(7);
  ypn = val(8);
  zpn = val(9);
  if (val == -1)
   break;
  end
  switch (lval)
    case {FLG 2D}
     %---2D = [x y theta] where x'=cos(theta), y'=sin(theta)
      pts.flg(num pts) = FLG 2D;
```

```
pts.x(num pts) = x;
     pts.y(num_pts) = y;
     pts.z(num_pts) = 0.0;
     pts.zp(num pts) = z;
     pts.xp(num pts) = cos(DEG2RAD*pts.zp(num pts));
     pts.yp(num_pts) = sin(DEG2RAD*pts.zp(num_pts));
     pts.zp(num_pts) = 0.0;
     pts.xpn(num_pts) = 0.0;
     pts.ypn(num_pts) = 0.0;
     pts.zpn(num_pts) = 0.0;
       fprintf('--%d-%f %f %f %f %f %f %f %f %f %f \n', pts.flg(num pts),...
                                                       pts.x(num_pts), pts.y(num_pts), pts.z(num_pts),...
용
                                                       pts.xp(num_pts), pts.yp(num_pts), pts.zp(num_pts),...
                                                       pts.xpn(num_pts), pts.ypn(num_pts), pts.zpn(num_pts));
    case {FLG 2D BRK}
      *---2D BRK = [x y theta theta1]
     pts.flg(num pts) = FLG 2D BRK;
     pts.x(num_pts) = x;
     pts.y(num_pts) = y;
     pts.z(num_pts) = \overline{0.0};
     pts.zp(num_pts) = z;
     pts.zpn(num_pts) = xp;
     pts.xp(num pts) = cos(DEG2RAD*pts.zp(num pts));
     pts.yp(num_pts) = sin(DEG2RAD*pts.zp(num_pts));
     pts.zp(num_pts) = 0.0;
     pts.xpn(num_pts) = cos(DEG2RAD*pts.zpn(num_pts));
     pts.ypn(num pts) = sin(DEG2RAD*pts.zpn(num pts));
     pts.zpn(num_pts) = 0.0;
       fprintf('--%d-%f %f %f %f %f %f %f %f %f %f \n', pts.flg(num_pts),...
용
                                                     pts.x(num_pts), pts.y(num_pts), pts.z(num_pts),...
                                                     pts.xp(num_pts), pts.yp(num_pts), pts.zp(num_pts),.
                                                     pts.xpn(num_pts), pts.ypn(num_pts), pts.zpn(num_pts));
   case {FLG_3D}
     \$---3D = [x y z x' y' z']
     pts.flg(num_pts) = FLG 3D;
     pts.x(num_pts) = x;
     pts.y(num_pts) = y;
     pts.z(num_pts) = z;
     pts.xp(num_pts) = xp;
     pts.yp(num_pts) = yp;
     pts.zp(num_pts) = zp;
     pts.xpn(num_pts) = 0.0;
     pts.ypn(num_pts) = 0.0;
     pts.zpn(num pts) = 0.0;
    case {FLG 3D BRK}
      %---3D BRK = [x y z x' y' z' x' y' z']
     pts.flg(num_pts) = FLG_3D_BRK;
     pts.x(num pts) = x;
     pts.y(num_pts) = y;
     pts.z(num_pts) = z;
     pts.xp(num_pts) = xp;
     pts.yp(num_pts) = yp;
     pts.zp(num\_pts) = zp;
     pts.xpn(num pts) = xpn;
     pts.ypn(num_pts) = ypn;
     pts.zpn(num_pts) = zpn;
    otherwise
      fprintf('Error: Undefined number of values for point [%d]\n',k);
      exit(1);
 end
%fprintf(fout,'%d-%f %f %f %f %f %f %f \n', pts.flg(num_pts),....
                                                   pts.x(num_pts), pts.y(num_pts), pts.z(num_pts),...
용
                                                   pts.xp(num_pts), pts.yp(num_pts), pts.zp(num_pts),....
                                                   pts.xpn(num_pts), pts.ypn(num_pts), pts.zpn(num_pts));
 num_pts = num_pts + 1;
 if (num_pts >= MAX PTS)
    fprintf('Error: MAX PTS=%d exceeded\n', MAX PTS);
    stop;
```

end

```
line = fgetl(fin);
 while (line(1) == '%' | line(1) == '#' | line(1) == '*'),
   line = fgetl(fin);
end
fclose(fin);
fprintf('---Read in %d points\n', num pts);
fprintf('Processing %s ...\n',out);
%---create coefficients
for i = 1 : num_pts - 2,
  %---set vector to get coefficients between points
  %---X
 inv.a = pts.x(i);
  inv.b = pts.x(i+1);
  if ((pts.flg(i) == FLG_2D_BRK) | (pts.flg(i) == FLG_3D_BRK))
    inv.c = pts.xpn(i);
  else
   inv.c = pts.xp(i);
  end
  inv.d = pts.xp(i+1);
 cx(i,:) = [mh*[inv.a;inv.b;inv.c;inv.d]]';
  inv.a = pts.y(i);
  inv.b = pts.y(i+1);
  if ((pts.flg(i) == FLG 2D BRK) | (pts.flg(i) == FLG 3D BRK))
    inv.c = pts.ypn(i);
  else
   inv.c = pts.yp(i);
  end
  inv.d = pts.yp(i+1);
  cy(i,:) = [mh*[inv.a;inv.b;inv.c;inv.d]]';
  %---z
  inv.a = pts.z(i);
  inv.b = pts.z(i+1);
  if ((pts.flg(i) == FLG 2D BRK) | (pts.flg(i) == FLG 3D BRK))
    inv.c = pts.zpn(i);
  else
   inv.c = pts.zp(i);
  end
  inv.d = pts.zp(i+1);
  cz(i,:) = [mh*[inv.a;inv.b;inv.c;inv.d]]';
  %--- print out coefficients
  fprintf(fout, '%f\n', i-1);
  fprintf(fout,'%f\n%f\n%f\n',cx(i,1),cx(i,2),cx(i,3),cx(i,4));
  fprintf(fout, '%f\n%f\n%f\n',cy(i,1),cy(i,2),cy(i,3),cy(i,4));
  fprintf(fout, '%f\n%f\n%f\n',cz(i,1),cz(i,2),cz(i,3),cz(i,4));
end
fclose(fout) ;
%---create p,s table at same time
sump(1,1)=0.0; % start at 0.0
sump(1,2)=0.0;
cnt = 2;
for i = 1 : num pts - 2,
 for j = 0 : d\bar{p} : 1,
   ptx(cnt) = [j^3 j^2 j 1]*cx(i,:)';
   ptvx(cnt) = [3*j^2 2*j 1 0]*cx(i,:)';
   pty(cnt) = [j^3 j^2 j 1]*cy(i,:)';
   ptvy(cnt) = [3*\dot{1}^2 2*\dot{1} 1 0]*cy(\dot{1},:)';
    ptz(cnt) = [j^3 j^2 j 1]*cz(i,:)';
    ptvz(cnt) = [3*j^2 2*j 1 0]*cz(i,:)';
    sump(cnt,1) = (i-1)+j;
    sump(cnt, 2) = sqrt(ptvx(cnt)^2 + ptvy(cnt)^2 + ptvz(cnt)^2) * dp;
    cnt = cnt + 1;
 end
end
```

```
%---make plots
figure(1);
clf;
cnt=1;
for j = 0: ds: sum(sump(:,2)),
  p = interp1(cumsum(sump(:,2)),sump(:,1),j,'linear');
  fprintf(fout1,'%f %f\n',j,p);
  i = floor(p) + 1;
  p = mod(p, 1);
  ptx(cnt) = [p^3 p^2 p 1]*cx(i,:)';
  ptvx(cnt) = [3*p^2 2*p 1 0]*cx(i,:)';
  pty(cnt) = [p^3 p^2 p 1]*cy(i,:)';
  ptvy(cnt) = [3*p^2 2*p 1 0]*cy(i,:)';
  ptz(cnt) = [p^3 p^2 p 1]*cz(i,:)';
  ptvz(cnt) = [3*p^2 2*p 1 0]*cz(i,:)';
  cnt = cnt + 1;
end
fclose(fout1);
h = plot(ptx(1:cnt-1),pty(1:cnt-1),'r');
% print('-djpeg99',[char(gg(i)) '.jpg'])
% print -dps2 -Past4000tn %see help print
set(gca,'FontSize',12);
set(gca,'FontWeight','bold');
set(h,'LineWidth',3);
axis equal
figure(2);
clf;
h = plot(cumsum(sump(:,2)),sump(:,1))
set(gca,'FontSize',12)
set(gca,'FontWeight','bold');
set(h,'LineWidth',3);
xlabel('distance');
ylabel('p');
figure(3);
clf;
h=plot(sump(:,1),sump(:,2))
set(gca,'FontSize',12)
set(gca,'FontWeight','bold');
set(h,'LineWidth',3);
xlabel('p');
ylabel('vel');
%end
```