Search for Contact Interactions using Inclusive Jet Production Cross Sections @ 13 TeV

Suman Beri 1 , Suneel Dutt, Bipen Kotwal 2 , and Harrison B. Prosper 3

¹Panjab University, ²Shoolini University ³Florida State University

October 24, 2017

- 1 Introduction
- 2 Strategy
- 3 Preliminary Results
- Mear Term Plans

Search for Contact Interactions

Look for deviations in the high- $p_{\rm T}$ tail of the inclusive jet $p_{\rm T}$ spectrum at 13 TeV from the predictions of QCD and interpret deviations as potential evidence of new QCD-like interactions that cannot be resolved at LHC energies.

Assumptions

• At LHC energies, the Lagrangian L can be written as

$$L = L_{SM}^{(0)} + \frac{1}{\Lambda}L^{(1)} + \frac{1}{\Lambda^2}L^{(2)} + \cdots,$$

with $L^{(2)}$ a sum $2\pi \sum_{i=1}^6 \kappa_i \, O_i$ over dim-6 operators $O_{1,2} \sim \bar{\psi}_L \gamma_\mu \psi_L \, \bar{\psi}_L \gamma^\mu \psi_L, \, O_{3,4} \sim \bar{\psi}_L \gamma_\mu \psi_L \, \bar{\psi}_R \gamma^\mu \psi_R.$ $O_{5,6} \sim \bar{\psi}_R \gamma_\mu \psi_R \, \bar{\psi}_R \gamma^\mu \psi_R$ that describe contact interactions (CI). κ_i are additional free parameters¹.

¹J. Gao, Comput.Phys.Commun. 184 (2013) 2362.

- 1 Introduction
- 2 Strategy
- 3 Preliminary Results
- Mear Term Plans

Strategy

• Given observed jet counts, N_i in M $p_{\rm T}$ bins, construct a multinomial likelihood

$$p(D | \lambda, \kappa, \nu) = \prod_{i=1}^{M} \left(\frac{\sigma_i}{\sigma}\right)^{N_i},$$

where $\lambda \equiv 1/\Lambda^2$, σ_i is the predicted cross section in the $i^{\rm th}$ bin, $\sigma = \sum_{i=1}^{M} \sigma_i$, and ν denotes the nuisance parameters.

② Given a prior density $\pi(\lambda, \kappa, \nu) = \pi(\nu \mid \lambda, \kappa)\pi(\lambda \mid \kappa)\pi(\kappa)$, compute the marginal likelihood

$$p(D \mid \lambda, \kappa) = \int p(D \mid \lambda, \kappa, \nu) \pi(\nu \mid \lambda, \kappa) d\nu,$$

and then the posterior density $p(\lambda|D) \sim p(D|\lambda, \kappa)\pi(\lambda|\kappa)$ from which we estimate λ or set limits.

Cross Section The cross section per p_T bin can be written as

$$\sigma = \sigma_{QCD}$$

$$+ \lambda \sum_{i=1}^{6} \kappa_{i}(b_{i} + a_{i}g + a_{i}f)$$

$$+ \lambda^{2} \sum_{i=1}^{6} \kappa_{i}^{2}(b_{i} + a_{i}g + a_{i}f)$$

$$+ \lambda^{2} \sum_{i=1,3,5} \kappa_{i}\kappa_{i+1}(b_{ii+1} + a_{ii+1}g + a_{ii+1}f)$$

$$+ \lambda^{2} \sum_{i=1,2,5,6} \kappa_{i}\kappa_{4}(b_{i4} + a_{i4}g + a_{i4}f),$$

where $f = \ln(\sqrt{k/\lambda})$ and the 57 coefficients are independent of λ .

Any inference based on the high- $p_{\rm T}$ tail (> 700 ${\rm TeV}$) of the inclusive jet spectrum is sensitive to uncertainties in the predictions. In principle, we need to take into account the uncertainties in

- the parton-level cross sections,
- the parton density functions (PDF),
- the jet energy scale (JES),
- the jet energy resolution (JER),
- 5 the non-perturbative corrections (NP), and
- the electroweak corrections (EWK).

In practice, we account for uncertainties in 1 and 2, which are considered together, and 3 and 4.

The main task is modeling the prior $\pi(\nu \mid \lambda, \kappa)$:

- Use hessian2replicas in LHAPDF6.1.6 to generate an ensemble of PDF sets.
- ② For each PDF set, and 7 combinations of renormalization and factorization scales, use fastNLO to compute the QCD cross section and CIJET1.1 to compute the 57 coefficients. Do this for each of the M p_T bins.
- Randomly select a consistent set of CI coefficients and QCD cross sections and randomly select a jet response function JRF. Convolve the 58 differential distributions with the (JRF).
- Repeat 1 and 2 a few hundred times.

This above procedure yields a point set representation of the prior in terms of the QCD cross sections and CI coefficients.

- 1 Introduction
- Strategy
- Preliminary Results
- Mear Term Plans

Below is the inclusive jet spectrum at 13 TeV (using $\mathcal{L}=71.5\,\mathrm{pb}^{-1}$ of integrated luminosity)²:

PDF + JES + JER (Summer15 V5) uncertainties

²Many thanks to members of the Inclusive Jet $p_{\rm T}$ Group, especially Paolo Gunnellini.

— QCD

— median

68%

3000

Jet p₊ (GeV)

95%

Data vs. LL Model ($\Lambda = 20$ TeV)

PDF + JES + JER (Summer15 V5) uncertainties

Constructive

Limits @ 95% CL

 $L = 0.072 \text{ fb}^{-1}$ $L = 2.6 \text{ fb}^{-1}$ AN-16-338 AN-15-245*

Model	Observed (TeV)	Expected (TeV)	Expected (TeV)
$\Lambda^+(LL/RR)$	10.5	9.9	12.1
$\Lambda^{-}(LL/RR)$	15.1	13.7	17.3
$\Lambda^+(VV)$	12.0	11.5	13.9
$\Lambda^{-}(VV)$	19.5	17.5	22.2
$\Lambda^+(AA)$	12.1	11.5	13.9
$\Lambda^{-}(AA)$	19.3	17.5	22.1
$\Lambda^+(V-A)$	8.7	8.0	9.5
Λ -(V-A)	8.7	8.0	9.5

^{*}Search for quark contact interactions and extra spatial dimensions in the dijet angular distributions at 13 TeV, AN-15-245, L. Apanasevich *et al*.

These plots suggest that we can use up to $\sim 20/\text{fb}$ for

constructive interference models and up to $\sim 2/\text{fb}$ for destructive interference models with 2014 PDFs.

Pileup Studies The plot, based on $2.6 \,\mathrm{fb}^{-1}$, show ratios of the AK7 jet $p_{\rm T}$ spectra in different vertex multiplicity bins for jets with $|y| < 0.5, p_{\rm T} >$ 600 GeV. The data are collected with the Jet450 trigger. The binning is uniform.

- 1 Introduction
- 2 Strategy
- 3 Preliminary Results
- 4 Near Term Plans

Near Term Plans (\sim 2 weeks)

- Compute preliminary expected limits for models defined by different combinations of κ. Use the existing QCD cross sections computed with fastnlo_toolkit-2.3.1pre-1871 and InclusiveNjets_fnl5332g_v23_fix.tab, and the Cl coefficients computed with CIJet-1.1. For now, do this only for CT14nlo.
- Update our smearing code to use the current JES and JER functions and NP and EWK corrections.
- To proceed, we need:
 - observed jet counts for all bins above $\sim 600\,\mathrm{GeV}$;
 - non-perturbative correction histogram;
 - · electroweak correction histogram, and
 - detailed description of current JES and JER functions.