

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología I Examen III

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Topología I.

Curso Académico 2023-24.

Grado en Matemáticas.

Grupo B.

Profesor Miguel Ortega Titos.

Descripción Parcial 1.

Fecha 30 de octubre de 2023.

En \mathbb{R} , se considera la topología de Sorgenfrey, \mathcal{T}_S . En \mathbb{R}^2 , se considera la topología producto $\mathcal{T} = \mathcal{T}_S \times \mathcal{T}_S$.

Ejercicio 1. Dado el conjunto $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, x + y \leq 0\}$, calcula:

1. (2 puntos) El interior de A.

Representemos en primer lugar el conjunto A:

Figura 1: Representación de A.

Tenemos que, dado $(x,y) \in \mathbb{R}^2$, una base de entornos de (x,y) en $(\mathbb{R}^2,\mathcal{T})$ es:

$$\beta_{(x,y)} = \{ [x, x + \varepsilon[\times [y, y + \varepsilon'[\mid \varepsilon, \varepsilon' \in \mathbb{R}^+] \}$$

Por tanto, demostraremos que $A^{\circ} = \widetilde{A}$, con:

$$\widetilde{A} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, x + y < 0\}$$

 \supset) Veamos en primer lugar que $\mathcal{T}_u \subset \mathcal{T}$. Una base de \mathcal{T} es:

$$\mathcal{B}_S = \{ [a, b[\times [c, d[\mid a, b, c, d \in \mathbb{R}, a < b, c < d] \}] \}$$

Una base de $(\mathbb{R}^2, \mathcal{T}_u)$ es:

$$\mathcal{B}_u = \{]a, b[\times]c, d[\mid a, b, c, d \in \mathbb{R}, a < b, c < d \}$$

Sea $]a, b[\times]c, d[\in \mathcal{B}_u, y \text{ sea } (x, y) \in]a, b[\times]c, d[$. Entonces, como $\mathcal{T}_u \subset \mathcal{T}_S$, $\exists [a', b'[, [c', d'[\text{ tal que } x \in [a', b'[\subset]a, b[\text{ y } y \in [c', d'[\subset]c, d[$. Por tanto, $(x, y) \in [a', b'[\times[c', d'[\subset]a, b[\times]c, d[$. Por tanto, $\mathcal{T}_u \subset \mathcal{T}$.

Como $\widetilde{A} \in \mathcal{T}_u$ por ser intersección de dos abiertos, $\widetilde{A} \in \mathcal{T}$. Además, como $\widetilde{A} \subset A$, tenemos que $\widetilde{A} \subset A^{\circ}$.

 \supset) Veremos que, dado $(x,y) \in A \setminus \widetilde{A}$, entonces $(x,y) \notin A^{\circ}$. Como $(x,y) \in A \setminus \widetilde{A}$, entonces $x^2 + y^2 < 1$ y x + y = 0, es decir, y = -x. Veamos que $(x,-x) \notin A^{\circ}$.

Supongamos que $\exists V \in \beta_{(x,y)}$ tal que $V \subset A$. Entonces, $\exists \varepsilon, \varepsilon' \in \mathbb{R}^+$ tal que:

$$V = [x, x + \varepsilon[\ \times \ [y, y + \varepsilon'[= [x, x + \varepsilon[\ \times \ [-x, -x + \varepsilon'[\ \subset A$$

De esta forma, $\left(x+\frac{\varepsilon}{2},-x+\frac{\varepsilon'}{2}\right)\in V\subset A$, pero:

$$x + \frac{\varepsilon}{2} + \left(-x + \frac{\varepsilon'}{2}\right) = \frac{\varepsilon + \varepsilon'}{2} > 0$$

Por tanto, llegamos a una contradicción, y $(x,y) \notin A^{\circ}$. De esta forma, $A^{\circ} \subset \widetilde{A}$.

2. (2 puntos) La frontera de A.

Para calcular la frontera de A, calcularemos primero el cierre de A. Para ello, veremos que $\overline{A} = \widehat{A}$, con:

$$\widehat{A} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leqslant 1, x + y \leqslant 0\}$$

- C) Veamos que $\overline{A} \subset \widehat{A}$. Como $\widehat{A} \in C_{\mathcal{T}_u}$ y $\mathcal{T}_u \subset \mathcal{T}$, entonces $\widehat{A} \in C_{\mathcal{T}}$. Por tanto, como además $A \subset \widehat{A}$, se tiene que $\overline{A} \subset \widehat{A}$.
- ⊃) Veamos que $\widehat{A} \subset \overline{A}$. Dado $(x,y) \in \widehat{A}$, veremos que $\forall V \in \beta_{(x,y)}, V \cap A \neq \emptyset$. Como $A \subset \widehat{A}$, tomaremos $(x,y) \in \widehat{A} \setminus A$, ya que en el primer caso es trivial que $(x,y) \in V \cap A \neq \emptyset$. Por tanto, sea $(x,y) \in \widehat{A} \setminus A$. Entonces, $x^2 + y^2 = 1$ y x + y < 0. Veamos que $(x,y) \in \overline{A}$.

Sea $V \in \beta_{(x,y)}$, por lo que $V = [x, x + \varepsilon[\times [y, y + \varepsilon']] \subset \mathbb{R}^2$ con $\varepsilon, \varepsilon' \in \mathbb{R}^+$. Buscamos ver que $V \cap A \neq \emptyset$, algo que intuitivamente es claro, como se ve en el dibujo:

Figura 2: Representación de A y de los entornos de $(x,y) \in \widehat{A} \setminus A$.

En la Figura 2, se representa A y los entornos de $(x,y) \in \widehat{A} \setminus A$, y se ve claramente que $\forall V \in \beta_{(x,y)}, V \cap A \neq \emptyset$. Por tanto, veremos que $(x,y) \in \overline{A}$. Si y < 0, tomaremos un punto de corte que consista en desplazarnos en el eje vertical, mientras que si $y \geqslant 0$, tomaremos un punto de corte que consista en desplazarnos en el eje horizontal.

a) Supongamos y < 0. Entonces, veamos que $\exists \delta \in \mathbb{R}^+$, $0 < \delta < \varepsilon'$ tal que $(x, y + \delta) \in V \cap A$. Veamos que pertenece a A:

$$x^{2} + (y + \delta)^{2} = x^{2} + y^{2} + 2y\delta + \delta^{2} = 1 + 2y\delta + \delta^{2} < 1 \iff$$
$$\iff \delta(2y + \delta) < 0 \iff \delta < -2y$$
$$x + y + \delta \leqslant 0 \iff \delta \leqslant -x - y = -(x + y)$$

Como y < 0, entonces -2y > 0, y como x + y < 0, entonces sea $\delta = \min\{-2y, -(x + y)\}$, y sin pérdida de generalidad suponemos $\delta < \varepsilon'$, que en caso contrario tomaríamos $0 < \delta' < \varepsilon' \leqslant \delta$ y se tendría.

b) Supongamos $y \ge 0$. Entonces, veamos que $\exists \delta \in \mathbb{R}^+$, $0 < \delta < \varepsilon$ tal que $(x + \delta, y) \in V \cap A$. Como x + y < 0 e $y \ge 0$, entonces x < 0. Entonces, para que pertenezca a A:

$$(x+\delta)^2 + y^2 = x^2 + y^2 + 2x\delta + \delta^2 = 1 + 2x\delta + \delta^2 < 1 \iff \delta(2x+\delta) < 0 \iff \delta < -2x$$
$$x+y+\delta \leqslant 0 \iff \delta \leqslant -x-y = -(x+y)$$

De manera análoga, tomando $\delta = \min\{-2x, -(x+y)\}$ y suponiendo $\delta < \varepsilon$, tenemos que pertenece a $A \cap V$.

Por tanto, $\forall V \in \beta_{(x,y)}, \ V \cap A \neq \emptyset$, y por tanto $(x,y) \in \overline{A}$.

Por tanto, tenemos que:

$$\partial A = \overline{A} \setminus A^{\circ} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, x + y = 0\}$$

Ejercicio 2 (1 punto). Estudia si el espacio topológico (\mathbb{R}^2 , \mathcal{T}) es o no T2.

Veamos que $(\mathbb{R}^2, \mathcal{T})$ sí es T2. Sean $(x, y), (x', y') \in \mathbb{R}^2$ con $(x, y) \neq (x', y')$. Entonces, como $(\mathbb{R}^2, \mathcal{T}_u)$ es T2, $\exists U, V \in \mathcal{T}_u$ tales que $(x, y) \in U, (x', y') \in V$ y $U \cap V = \emptyset$. Entonces, como $\mathcal{T}_u \subset \mathcal{T}, U, V \in \mathcal{T}$, y por tanto $(\mathbb{R}^2, \mathcal{T})$ es T2.

Ejercicio 3 (1.5 puntos). Encuentra un subconjunto $B \subset \mathbb{R}^2$ tal que la topología inducida \mathcal{T}_B sea la discreta en B, pero la topología $(\mathcal{T}_u^2)_B$ no sea la discreta.

Sea $B = \{(x,y) \in \mathbb{R}^2 \mid x+y=0\}$. Entonces, dado $(x,y) \in B$, tenemos que es de la forma (x,-x). Veamos que $\{(x,-x)\} \in \mathcal{T}_B$. Para ello, sea $U = [x,x+1] \in \mathcal{T}_S$, $V = [-x,-x+1] \in \mathcal{T}_S$. Entonces, $U \times V \in \mathcal{T}$, y tenemos que:

$$(U\times V)\cap B=([x,x+1[\times[-x,-x+1[)\cap B=\{(x,-x)\}$$

Por tanto, tenemos que $\{(x,y)\}\in \mathcal{T}_B$ para todo $(x,y)\in B$. Como la unión de abiertos es abierta, entonces $\mathcal{T}_B=\mathcal{P}(B)$, y por tanto \mathcal{T}_B es la topoloía discreta en B.

Veamos ahora que $\mathcal{T}_B \neq (\mathcal{T}_u^2)_B$. Para ello, veamos que $\{(x,-x)\} \notin (\mathcal{T}_u^2)_B$. Para ello, supongamos que $\exists U \in \mathcal{T}_u$ tal que $\{(x,-x)\} = U \cap B$. Como $(x,-x) \in U \in \mathcal{T}$, entonces U es entorno de dicho punto, por lo que $\exists \varepsilon \in \mathbb{R}^+$ tal que $B[(x,-x),\varepsilon] \subset U$. Consideramos ahora $v = (x,-x) + \frac{\varepsilon}{4}(1,-1) = (x+\frac{\varepsilon}{4},-x-\frac{\varepsilon}{4})$. Veamos que $v \in B[(x,-x),\varepsilon]$:

$$d(v,(x,-x)) = \sqrt{\left(x + \frac{\varepsilon}{4} - x\right)^2 + \left(-x - \frac{\varepsilon}{4} + x\right)^2} = \sqrt{\frac{\varepsilon^2}{8} + \frac{\varepsilon^2}{8}} = \frac{\varepsilon}{2} < \varepsilon$$

Por tanto, $v \in B[(x, -x), \varepsilon] \subset U$, y claramente $v \in B$. Por tanto, $v \in U \cap B$, pero $v \neq (x, -x)$, lo que es una contradicción, por lo que $\{(x, -x)\} \notin (\mathcal{T}^2_u)_B$.

Ejercicio 4. Estudia si el espacio topológico es:

- 1. (1 punto) 1AN. Como ($\mathbb{R}, \mathcal{T}_S$) es 1AN, entonces el producto ($\mathbb{R}^2, \mathcal{T}$) es 1AN.
- 2. (1 punto) 2AN.

De forma análoga, como $(\mathbb{R}, \mathcal{T}_S)$ no es 2AN, entonces el producto $(\mathbb{R}^2, \mathcal{T})$ no es 2AN. Otra forma de verlo es por contradicción. Supongamos que sí lo es. Entonces, como ser 2AN es hereditario, (B, \mathcal{T}_B) sería 2AN, pero como la topología es la discreta y B es no numerable, entonces (B, \mathcal{T}_B) no es 2AN, lo que es una contradicción.

Ejercicio 5 (1.5 puntos). Un subconjunto C se dice frontera si $C \subset \partial C$. Encuentra un subconjunto $C \subset \mathbb{R}^2$ que sea frontera, infinito y que no esté incluido en B.

Veamos en primer lugar que, si $C^{\circ} = \emptyset$, entonces C es frontera. En efecto, si $C^{\circ} = \emptyset$, entonces $C \subset \partial C = \overline{C}$.

Por tanto, buscamos $C \subset \mathbb{R}^2$ tal que $C^{\circ} = \emptyset$, C sea infinito y $C \not\subset B$. Sea $C = \mathbb{Q} \times \mathbb{Q}$. Veamos que $C^{\circ} = \emptyset$. Supongamos $(x,y) \in C^{\circ}$. Entonces, $\exists \varepsilon, \varepsilon' \in \mathbb{R}^+$ tal que $[x, x + \varepsilon[\times [y, y + \varepsilon'[\subset C]] \in C]$. No obstante, por la densidad de $\mathbb{R} \setminus \mathbb{Q}$ en \mathbb{R} , dicha inclusión no es posible, por lo que llegamos a una contradicción, y $C^{\circ} = \emptyset$ y, por tanto, C es frontera.

Veamos que $C' = \mathbb{R} \times \{0\}$ también sirve. Supongamos $(x,0) \in (C')^{\circ}$. Entonces, $\exists \varepsilon, \varepsilon' \in \mathbb{R}^+$ tal que $[x, x + \varepsilon[\times [0, \varepsilon'[\subset C'], de lo que deducimos que <math>\varepsilon' = 0$, lo que es una contradicción. Por tanto, $(C')^{\circ} = \emptyset$ y, por tanto, C' es frontera.