bbs.eins.mainz Berufsbildende Schule Technik	Vorbereitung	Name:
	Mathematik	Datum:
HBF IT 18A - V	von Punkten erreicht:%	Note:

Allgemeines

- Bei der Bearbeitung ist ein nachvollziehbarer, vollständiger Rechenweg aufzuschreiben.
- Die Bewertung der Klassenarbeit ist nur bei gut lesbarer Schrift möglich.
- Die Lösungen müssen mit dokumentenechtem Stift (Kugelschreiber oder Fine-Liner keine rote Mine) erstellt werden.
- Runden Sie ihre Ergebnisse auf **2 Nachkommastellen**. Wurzelausdrücke müssen nicht berechnet werden (z.B. $\sqrt{10}$).
- Zugelassene Hilfsmittel: Taschenrechner (nicht graphikfähig / programmierbar)
- Bearbeitungszeit: 90 Minuten

Aufgabe 1

Ergänzen Sie alle Eigenschaften, die Sie direkt aus der Funktionsgleichung ableiten können.

(a)
$$f(x) = 4(x+3)(x-6)$$

(c)
$$f(x) = 0, 2(x-5)^2 + 7$$

(b)
$$f(x) = -2x^2 + 8x - 20$$

(d)
$$f(x) = -(x+4)^2 + 1$$

Gleichung	Öffnungs-	Normalparabel/	Scheitelpunkt	Nullstellen	y-AAS
	richtung	gestreckte P./	SP()	$x_1=\ldots,$	$y_s = \dots$
	(oben/unten)	gestauchte P.		$x_2 = \dots$	
(a)					
(b)					
(c)					
(c)					

Aufgabe 2

Über die Entwicklung der Anzahl von Touristen in Rheinland-Pfalz sind folgende Daten bekannt:

\mathbf{x} (eine Einheit $=$ 10 Jahre, 0 $=$	0	3
1980)		
y (in Millionen)	1	8

- (a) **Stellen** Sie die Funktionsgleichung einer quadratischen Funktion **auf**, die den Scheitelpunkt bei (3|8) hat und durch den Punkt (0|1) geht!
- (b) Bescheiben Sie die Bedeutung des Scheitelpunkts für diese Entwicklung!
- (c) Eine andere Entwicklung wird mit $f(x)=-\frac{1}{5}(x+1)(x-11)$ angegeben. Vergleichen Sie diese mit der Entwicklung aus (a)
- (d) Geben Sie die Funktionsgleichung aus (c) in allgemeiner Form an.

Aufgabe 3

Gegeben sind die nachfolgenden Funktionsgleichungen.

(a)
$$f(x) = x(x-1)^2(x+5)$$
 (b) $f(x) = x^3 - 10x + 25x$ (c) $f(x) = x^3 - 4x$

(b)
$$f(x) = x^3 - 10x + 25x$$

(c)
$$f(x) = x^3 - 4x$$

(d)
$$f(x) = -2x^3 + 8x^2$$

(e)
$$f(x) = x^2 + 4$$

- (1) **Bestimmen** Sie *jeweils* die Nullstellen! **Markieren** Sie doppelte Nullstellen¹ entsprechend.
- (2) Geben Sie das Verhalten der Funktionswerte für große x-Beträge der Funktionen (c) (e) an. Nutzen Sie dabei die formale Schreibweise: $f(x) \xrightarrow{x \to -\infty}$? bzw. $f(x) \xrightarrow{x \to \infty}$?

Aufgabe 4

Ordnen Sie die angegebenen Funktionsgleichungen den zugehörigen Graphen zu. Schreiben Sie die entsprechende Funktionsbezeichnung $(f(x), g(x), \ldots)$ an den Graphen. Begründen Sie ihre Entscheidung kurz.

$$f(x) = -x + 2$$

$$g(x) = -x^2 + 4$$

$$h(x) = -x^2 + 4x$$

$$k(x) = -0.5x^4 + 2x^2$$

$$l(x) = 0,25x(x+2)^{2}(x-2)$$

$$l(x) = 0,25x(x+2)^{2}(x-2)$$
 $m(x) = 0,2x^{2}(x+2)3(x-2)$

¹Kommt zweimal vor.

Aufgabe 5

Entscheiden Sie für die folgenden Teilaufgaben, ob eine Lösung möglich ist.

Falls ja, **geben** Sie eine Lösung an.

Falls nein, begründen Sie, warum keine Lösung existiert.

- (a) Geben Sie den Funktionsterm einer ganzrationalen Funktion siebten Grades an, für den gilt: $f(x) \xrightarrow{x \to \infty} -\infty$
- (b) Geben Sie den Funktionsterm einer ganzrationalen Funktion zweiten Grades an, die an der Stelle x=2 eine dreifache Nullstelle hat.
- (c) Geben Sie den Funktionsterm einer ganzrationalen Funktion dritten Grades an, die an der Stelle x=2 eine zweifache Nullstelle hat.