Листочек 6. Снова многомерный. Математический анализ. Решения.

Глеб Минаев @ 102 (20.Б02-мкн)

23 сентября 2021 г.

Содержание		Задача б	7
		Задача 7	7
Базовые задачи	1	Задача 8	7
Задача 1	1		
Задача 2	1	Рейтинговые задачи	8
Задача 3	2	Задача 9	8
Лемма 1	2	Задача 10	8
Лемма 2	4	Задача 11	8
Задача 4	5	Задача 12	8
Задача 5	6	Задача 13	8
Лемма 3	6	Задача 14	8

Базовые задачи

Задача 1. Пусть $\mathfrak A$ — сигма-алгебра над X. Давайте введём отношение \sim неразличимости по $\mathfrak A$: для всяких $x,y\in X$

$$x \sim y \iff \forall A \in \mathfrak{A}: x \in A \Leftrightarrow y \in A.$$

В таком случае мы можем заменить X на X/\sim (склеить неразличимые с точки зрения $\mathfrak A$ точки) и соответствующим образом изменить $\mathfrak A$. Заметим также, что мощность $\mathfrak A$ не изменилась. Таким образом мы просто имеем, что все элементы X попарно различимы:

$$\forall A \in \mathfrak{A}: x \in A \Leftrightarrow y \in A.$$

Если X конечно, то $|\mathfrak{A}| \leq |2^X| \in \mathbb{N}$. Т.е. если искомая сигма-алгебра существует, то $|X| \geqslant |\mathbb{N}|$. Выделим какой-нибудь счётный набор $Y := \{y_i\}_{i \in \mathbb{N}}$ элементов из X. Поскольку y_i и y_j отделимы по определению, то есть множество $S_{i|j} \in \mathfrak{A}$, что

$$y_i \in S_{i|j}, \quad y_j \notin S_{j|i}.$$

Тогда определим

$$I_i := \bigcap_{j \in \mathbb{N} \setminus \{i\}} S_{i|j}.$$

По определению сигма-алгебры $I_i \in \mathfrak{A}$, а при этом $y_k \in I_i$ тогда и только тогда, когда k=i. Тогда для всякого $A \subseteq Y$ можем определить

$$I_A := \bigcup_{y_i \in A} I_i.$$

Опять же $I_A \in \mathfrak{A}$, а $Y \cap I_A = A$. Поскольку $|2^Y| = |2^{\mathbb{N}}|$, то у нас определено $|2^{\mathbb{N}}|$ множеств Y_A и все они попарно различно. Значит

$$|\mathfrak{A}| \geqslant |2^{\mathbb{N}}|.$$

Т.е. сигма-алгебры бывают либо конечные, либо хотя бы континуальные.

Задача 2. ТВР

Задача 3.

Лемма 1. Пусть имеется множество A меры a $(a < +\infty)$. Тогда его можно разбить в объединение двух множеств $A = B \sqcup C$, что

$$\max(\mu(B), \mu(C)) \leqslant \frac{2}{3}.$$

Доказательство. Рассмотрим множество

$$\Sigma := \{ (B; C) \mid B \cap C \wedge B \cup C = A \wedge \mu(B) \geqslant \mu(C) \}.$$

Введём на ∑ отношение ≤:

$$(B_1; C_1) \leqslant (B_2; C_2) \Longleftrightarrow B_2 \subseteq B_1.$$

Заметим следующие утверждения.

•

$$(B_1; C_1) \leqslant (B_2; C_2) \iff C_1 \subseteq C_2.$$

- Рефлексивность \leqslant . Поскольку $C \subseteq C$, то $(B; C) \leqslant (B; C)$.
- Транзитиваность \leqslant . Если $(B_1; C_1) \leqslant (B_2; C_2) \leqslant (B_3; C_3)$, то

$$C_1 \subseteq C_2 \subseteq C_3, \Longrightarrow C_1 \subseteq C_3,$$

откуда имеем, что $(B_1; C_1) \leqslant (B_3; C_3)$.

• Антисимметричность \leqslant . Поскольку $(B_1; C_1) \leqslant (B_2; C_2) \leqslant (B_1; C_1)$, то $C_1 \subseteq C_2 \subseteq C_1$. Таким образом $C_1 = C_2$, а значит

$$B_1 = A \setminus C_1 = A \setminus C_2 = B_2,$$

и наконец $(B_1; C_1) = (B_2; C_2)$.

$$C' := \bigcup_{(B;C) \in \Phi} C, \qquad B' := A \setminus C' = \bigcap_{(B;C) \in \Phi} B.$$

Несложно видеть, что

$$\mu(C') = \sup_{(B;C)\in\Phi} \mu(C').$$

При этом для всех $(B;C)\in \Sigma$ по определению $\mu(C)\leqslant \mu(B)$, т.е. $\mu(C)\leqslant \frac{1}{2}\mu(A)$. Таким образом $\mu(C')\leqslant \frac{1}{2}\mu(A)$, а значит $\mu(C')\leqslant \mu(B')$. Таким образом $(B';C')\in \Sigma$ и для всякого $(B;C)\in \Phi$

$$(B';C')\geqslant (B;C).$$

Таким образом (B'; C') есть верхняя грань Φ .

Таким образом ≤ — частичный порядок, что у всякой не более чем счётной цепи есть верхняя грань.

Определим функцию

$$\tau: \Sigma \to \mathbb{R}_{\geqslant 0}, (B; C) \mapsto \frac{\mu(C)}{\mu(A)}.$$

Мы знаем, что множество значений τ является подмножеством $[0; \frac{1}{2}]$. Тогда построим последовательность $((\Lambda_i; a_i))_{i \in \mathbb{N}}$ $(\Lambda_i \in \Sigma, a_i \in \mathbb{R})$ рекуррентно следующим образом. Возьмём в качестве Λ_0 случайный элемент Σ , а $a_0 := \sup_{\Sigma} \tau$. Далее определим

$$A_{n+1} := \{ \Lambda \in \Sigma \mid \Lambda \geqslant \Lambda_n \}, \qquad a_{n+1} := \sup_{\Lambda \geqslant \Lambda_n} \tau(\Lambda) = \sup_{A_{n+1}} \tau,$$

а в качестве Λ_{n+1} возьмём случайный элемент из A_{n+1} , что

$$\tau(\Lambda_{n+1}) \geqslant \frac{a_{n+1} + \tau(\Lambda_n)}{2}.$$

Если в какой-то момент цепь не продолжается, то значит мы случайно взяли в качестве Λ_i некоторый максимальный элемент $\widehat{\Lambda}$. Т.е. нет в Σ другого Λ , что

$$\Lambda \geqslant \widehat{\Lambda}$$
 и $\tau(\Lambda) \geqslant \tau(\widehat{\Lambda})$.

Иначе таким образом получаем счётную цепь $\{\Lambda_i\}_{i\in\mathbb{N}}$. Тогда у неё есть верхняя грань $\widehat{\Lambda}$. При этом

$$\{\Lambda \in \Sigma \mid \forall i \in \mathbb{N} \ \Lambda_i \leqslant \Lambda\} = \bigcap_{i \in \mathbb{N}} A_i;$$

и $\widehat{\Lambda}$ лежит в этом множестве, т.е. данное множество непусто. Следовательно, так как $A_i \supseteq A_{i+1}$, и значит $a_i \geqslant a_{i+1}$, то

$$\sup\{\tau(\Lambda) \in \Sigma \mid \forall i \in \mathbb{N} \ \Lambda_i \leqslant \Lambda\} = \lim_{i \to +\infty} a_i.$$

Но заметим, что $a_{i+1} \geqslant \tau(\Lambda_i)$ по определению, а тогда $\tau(\Lambda_{n+1}) \geqslant \tau(\Lambda_n)$. И при этом

$$0 \leqslant a_{n+1} - \tau(\Lambda_{n+1}) \leqslant a_{n+1} - \frac{a_{n+1} + \tau(\Lambda)}{2} = \frac{a_{n+1} - \tau(\Lambda_n)}{2} \leqslant \frac{a_n - \tau(\Lambda_n)}{2}.$$

Значит

$$\lim_{i \to +\infty} a_i = \lim_{i \to +\infty} \tau(\Lambda_i).$$

Значит

$$\sup\{\tau(\Lambda) \in \Sigma \mid \forall i \in \mathbb{N} \ \Lambda_i \leqslant \Lambda\} = \lim_{i \to +\infty} \tau(\Lambda_i) = \sup_{i \in \mathbb{N}} \tau(\Lambda_i),$$

что означает, что для всякого Λ не меньшего всех Λ_i верно, что

$$\tau(\Lambda) = \sup_{i \in \mathbb{N}} \tau(\Lambda_i).$$

Таким образом для $\widehat{\Lambda}$ нет в Σ другого Λ , что

$$\Lambda\geqslant \widehat{\Lambda} \qquad \text{ if } \qquad \tau(\Lambda)\geqslant \tau(\widehat{\Lambda}).$$

Пусть $\widehat{\Lambda}=(B;C)$. По условию задачи B можно разбить в объединение $B=S\sqcup T$, что $\mu(S)\geqslant \mu(T)>0$. Тогда если $\mu(T)+\mu(C)\leqslant \mu(S)$, то можем взять

$$\Lambda := (S; T \cup C) \in \Sigma,$$

и тогда $\Lambda \geqslant \widehat{\Lambda}$, а

$$\tau(\Lambda) = \tau(\widehat{\Lambda}) + \frac{\mu(T)}{\mu(A)} > \tau(\widehat{\Lambda})$$

— противоречие с определением $\widehat{\Lambda}$. Значит

$$\mu(T) + \mu(C) > \frac{\mu(A)}{2} > \mu(S).$$

Тогда $\mu(C) \geqslant \mu(C)$, так как иначе по аналогии можно получить противоречие с $\Lambda := (T \cup C; S)$. Таким образом $\mu(C) \geqslant \mu(S) \geqslant \mu(T)$. И при этом

$$\mu(S) + \mu(T) = \mu(B) \geqslant \mu(C),$$

т.е. для $\mu(C)$, $\mu(S)$ и $\mu(T)$ выполнены (все 3) нестрогие неравенства треугольника, а также

$$\mu(S) + \mu(T) + \mu(C) = \mu(B) + \mu(C) = \mu(A).$$

Значит

$$3\mu(C) \geqslant \mu(S) + \mu(T) + \mu(C) = \mu(A) \geqslant 2\mu(C).$$

T.e.

$$\frac{\mu(C)}{\mu(A)} \in \left[\frac{1}{3}; \frac{1}{2}\right], \qquad \frac{\mu(B)}{\mu(A)} \in \left[\frac{1}{2}; \frac{2}{3}\right].$$

Лемма 2. Пусть имеется множество A бесконечной меры. Тогда у него есть подмножество B сколь угодно большой, но конечной меры.

Доказательство. Предположим противное, т.е. есть константа P > 0, что для всякого $B \subseteq A$ верно, что либо $\mu(B) = +\infty$, либо $\mu(B) \leqslant P$.

Тогда обозначим

$$S := \sup_{\substack{B \subseteq A \\ \mu(B) < +\infty}} \mu(B).$$

Понятно, что S определено (так как есть представитель $B-\varnothing$, и есть ограничение сверху, т.е. $S \leq P < +\infty$). Тогда есть последовательность множеств $(B_i)_{i=0}^{\infty}$, что

$$\lim_{i \to \infty} \mu(B_i) = S.$$

Рассмотрим

$$\widehat{B} := \bigcup_{i=0}^{\infty} B_i.$$

Понятно, что $\widehat{B}\subseteq A$, $\mu(\widehat{B})\geqslant\sup_{i\in\mathbb{N}}\mu(B_i)=S$. Тогда у $A\setminus\widehat{B}$ есть подмножество C, что $0<\mu(C)<+\infty$. Таким образом определим $B':=\widehat{B}\cup C$. Тогда

$$\mu(B') = \mu(C) + \mu(\widehat{B}) \in (S; +\infty)$$

— противоречие с определением S.

Теперь решим нашу задачу. Если $\alpha = \infty$, то достаточно взять A = X, поэтому рассматриваем только $\alpha < +\infty$. Если $\mu(X) = +\infty$, то по лемме 2 без потери общности можно просто заменить X на подмножество конечной меры, большей α . Таким образом $X < +\infty$.

Построим последовательность $((B_i,\alpha_i,X_i))_{i=0}^\infty$ рекурсивно следующим образом. Начальный член определяется как

$$B_0 := \varnothing, \quad \alpha_0 := \alpha, \quad X_0 := X.$$

Далее для всякого n определим n+1-ый член через n-ый. по лемме 1 есть разбиение $X_n = Y \sqcup Z$, что

 $\mu(Y), \mu(Z) \in \left[\frac{\mu(X)}{3}; \frac{2\mu(X)}{3}\right].$

Тогда есть два случая:

1. Если $\mu(Y) \leqslant \alpha_n$, то определим

$$B_{n+1} := B_n \cup Y, \quad \alpha_{n+1} = \alpha_n - \mu(Y), \quad X_{n+1} = Z.$$

2. Если $\mu(Y) > \alpha_n$, то определим

$$B_{n+1} := B_n, \quad \alpha_{n+1} = \alpha_n, \quad X_{n+1} = Y.$$

Несложно видеть (показать по индукции), что

- \bullet $B_n \subseteq B_{n+1}$,
- $B_n \cap X_n = \emptyset$,
- $\mu(B_n) + \alpha_n = \alpha$,
- $\alpha_n \leqslant \mu(X_n)$,
- $\mu(X_{n+1}) \leqslant \frac{2}{3}\mu(X_n)$.

Определим

$$A := \bigcup_{n=0}^{\infty} B_n.$$

Понятно, что

$$\mu(A) = \lim_{n \to \infty} \mu(B_n) = \alpha - \lim_{n \to \infty} \alpha_n = \alpha,$$

так как $\alpha_n \in [0; (2/3)^n \mu(X)]$. Так мы нашли то самое A.

Задача 4. Заметим, что канторово множество C имеет меру Лебегу 0. Действительно, для всякого n и $\varepsilon>0$ семейство интервалов

$$\{(\frac{a_1}{3} + \dots + \frac{a_n}{3^n} - \varepsilon; \frac{a_1}{3} + \dots + \frac{a_n}{3^n} + \frac{1}{3^n} + \varepsilon) \mid a_1, \dots, a_n \in \{0; 2\}\}$$

есть открытое покрытие A суммарной длины $(2/3)^n + 2^{n+1}\varepsilon$. Следовательно есть накрытия такого типа суммарной длины сколь угодно близкой к 0, что и означает равенство внешней меры Лебега 0 (отсюда внутренняя мера Лебега тоже равна 0).

Тогда всякое подмножество C измеримо по Лебегу (имеет меру 0). Но C континуально, а значит множество его подмножеств гиперконтинуально (т.е. мощности $2^{\text{континуум}}$). Следовательно, измеримых по Лебегу множеств не менее чем гиперконтинуум. При этом подмножеств прямой тоже гиперконтинуально, значит измеримых по Лебегу ровно гиперконтинуально.

Задача 5. Для всякого множества S индексов из $I := \{1; \dots; n\}$ определим множество

$$E_S := \{ x \in X \mid x \in A_i \Leftrightarrow i \in S \} = \bigcap_{i \in S} E_i \cap \bigcap_{i \notin S} (X \setminus E_i).$$

Лемма 3. Если $S \neq T$, то $E_S \cap E_T = \emptyset$.

Доказательство. Если есть $j \in S \setminus T$, то

$$E_S \subseteq E_j$$
 U $E_T \subseteq X \setminus E_j$,

откуда следует, что $E_S \cap E_T = \emptyset$. Значит если $E_S \cap E_T \neq \emptyset$, то $S \setminus T = \emptyset$ и $T \setminus S = \emptyset$, т.е. S = T. Отсюда следует доказываемое утверждение.

Несложно видеть, что

$$E_1 \cup \dots \cup E_n = \bigsqcup_{\substack{S \subseteq I \\ S \neq \emptyset}} E_S, \qquad E_i = \bigsqcup_{\{i\} \subseteq S \subseteq I} E_S, \qquad E_i \cup E_j = \bigsqcup_{\substack{S \subseteq I \\ \{i;j\} \cap S \neq \emptyset}} E_S,$$

откуда сразу следует, что

$$\eta(E_1 \cup \dots \cup E_n) = \sum_{\substack{S \subseteq I \\ S \neq \emptyset}} \eta(E_S), \qquad \eta(E_i) = \sum_{\substack{\{i\} \subseteq S \subseteq I \\ \{i;j\} \cap S \neq \emptyset}} \eta(E_S), \qquad \eta(E_i \cup E_j) = \bigsqcup_{\substack{S \subseteq I \\ \{i;j\} \cap S \neq \emptyset}} \eta(E_S).$$

Таким образом левая и правая части доказываемого неравенства представляются в виде суммы различных $\eta(E_S)$. Чтобы доказать неравенство, покажем, что коэффициент при каждом $\eta(E_S)$ с левой стороны не меньше чем с правой.

Пусть дано множество индексов $S \subseteq I$. Тогда понятно, что слева $\eta(E_S)$ входит с коэффициентом $[S \neq \varnothing]$ (это скобка Айверсона), так как слева она используется (и когда используется, то с коэффициентом 1) тогда и только тогда, когда $S \neq \varnothing$.

При этом справа $\eta(E_S)$ используется в членах $\eta(E_i)$ с коэффициентом 1 и в членах $-\eta(E_i \cup E_j)$ с коэффициентом -1. Членов первого типа, очевидно, |S|, а второго типа $\binom{n}{2} - \binom{n-|S|}{2}$ (так как всего неупорядоченных пар $\{i;j\}$ ровно $\binom{n}{2}$, а неподходящих, т.е. таких, что $i,j \notin S$, $-\binom{n-|S|}{2}$). Таким образом нужно доказать для всех $k \in \{0; \ldots; n\}$ неравенство

$$[k \neq 0] \geqslant k - \left(\binom{n}{2} - \binom{n-k}{2} \right).$$

Очевидно, что при k=0 достигается равенство и этот случай можно не учитывать; поэтому заменим $[k \neq 0]$ на просто 1 и перенесём его в правую сторону. Несложно видеть, что

$$-1+k-\binom{n}{2}-\binom{n-k}{2} = \frac{-2+2k-n(n-1)+(n-k)(n-k-1)}{2}$$
$$=\frac{-2+2k-n(n-1)+n(n-1)-(2n-1)k+k^2}{2}$$
$$=\frac{k^2-(2n-3)k-2}{2}$$

Данная функция (от k) является параболой с ветвями вверх. При при k=1 значение равно

$$\frac{1 - (2n - 3) - 2}{2} = \frac{-(2n - 2)}{2} = \frac{-2(n - 1)}{2} \leqslant 0,$$

а при k = n значение равно

$$\frac{n^2 - (2n - 3)n - 2}{2} = \frac{n^2 - 2n^2 + 3n - 2}{2} = -\frac{n^2 - 3n + 2}{2} = -\frac{(n - 1)(n - 2)}{2} \leqslant 0.$$

Значит во всех точках между 1 и n функция тоже достигает неотрицательные значения. Отсюда следует требуемое неравенство.

Задача 6. Заметим, что если $E_1 \cap \cdots \cap E_n = \emptyset$, то

$$X = X \setminus \emptyset = X \setminus \bigcap_{i=1}^{n} E_i = \bigcup_{i=1}^{n} X \setminus E_i.$$

Но

$$\sum_{i=1}^{n} P(X \setminus E_i) = \sum_{i=1}^{n} 1 - P(E_i) = n - \sum_{i=1}^{n} P(E_i) < 1,$$

а из предыдущего равенства мы получаем, что

$$\sum_{i=1}^{n} P(X \setminus E_i) \geqslant P\left(\bigcup_{i=1}^{n} X \setminus E_i\right) = P(X) = 1.$$

Значит $E_1 \cap \cdots \cap E_n \neq \emptyset$.

Задача 7. ТВР

Задача 8. Давайте в качестве A возьмём самое стандартное канторово множество. Покажем, что сумма Минковского A + A равна [0; 2]. Как известно,

$$A = \{ \frac{a_1}{3} + \frac{a_2}{3^2} + \dots \mid a_i \in \{0; 2\} \}.$$

Тогда

$$A + A = \{x + y \mid x \in A \land y \in A\}$$

$$= \{2(\frac{x}{2} + \frac{y}{2}) \mid x \in A \land y \in A\}$$

$$= \{2(\frac{a_1 + b_1}{2 \cdot 3} + \frac{a_2 + b_2}{2 \cdot 3^2} + \dots) \mid a_i, b_i \in \{0; 2\}\}$$

$$= \{2(\frac{c_1}{3} + \frac{c_2}{3^2} + \dots) \mid c_i \in \{0; 1; 2\}\}$$

$$= \{2\alpha \mid \alpha \in [0; 1]\}$$

$$= [0; 2]$$

При этом мера Лебега канторова множества A равна 0, так как для всякого n и $\varepsilon>0$ семейство интервалов

$$\{(\frac{a_1}{3} + \dots + \frac{a_n}{3^n} - \varepsilon; \frac{a_1}{3} + \dots + \frac{a_n}{3^n} + \frac{1}{3^n} + \varepsilon) \mid a_1, \dots, a_n \in \{0; 2\}\}$$

есть открытое покрытие A суммарной длины $(2/3)^n + 2^{n+1}\varepsilon$. Следовательно есть накрытия такого типа суммарной длины сколь угодно близкой к 0, что и означает равенство внешней меры Лебега 0 (отсюда внутренняя мера Лебега тоже равна 0).

