BASIC CATEGORY	PHYS I CAL FEATURE	METHOD AND/OR MED!UM	MERITS	DEMERITS (DRAWBACKS OF THE RELATED ART)
	CONTACT	DIRECT CONTACT BY CONDUCTOR	SIMPLE, ECONOMICAL	CONTACT, SHORT IN SERVICE LIFE LARGE LIMITATION OF COMMUNICATION RANGE
PROX IMITY COMMUNICATION	174	PHYSICAL 0SC1LLATION	SIMPLE, ECONOMICAL	CONTACT, SHORT IN SERVICE LIFE LARGE LIMITATION OF COMMUNICATION RANGE
		ELECTROMAGNETIC WAVE (RADIO)	SMALL LIMITATION OF COMMUNICATION RANGE COMMUNICATION AT HIGH SPEED, POSSIBLE	LARGE INTERFERENCE WITH ELECTRONIC CIRCUIT LOW SECURITY
	NONCONTACT	SPATIAL TRANSMISSION OF LIGHT	SMALL INTERFERENCE WITH ELECTRIC CIRCUIT COMMUNICATION AT ULTRA-HIGH SPEED, POSSIBLE HIGH SECURITY	LARGE LIMITATION OF COMMUNICATION RANGE
		AIR VIBRATION (SOUND)	SMALL INTERFERENCE WITH ELECTRIC CIRCUIT	COMMUNICATION AT HIGH SPEED, NOT POSSIBLE
	501	FIG. 1 (F	FIG. 1 (Prior Art)	

DEMERITS (DRAWBACKS OF THE RELATED ART)	HIGH-SPEED COMMUNICATION INTERFERENCE DEPENDS UPON WITH ELECTRIC COMMUNICATION DISTANCE CIRCUIT		COUPLINGS, DIFFICULT	LARGE INTERFERENCE WITH ELECTRONIC CIRCUIT	LOW SECURITY	LARGE LIMITATION OF COMMUNICATION RANGE	NOISES FROM SURROUNDING EQUIPMENT	COMMUNICATION RANGE, SHORT	COMMUNICATION AT HIGH SPEED, NOT POSSIBLE
MERITS	SIMPLE, ECONOMICAL, COMMON	SMALL INTERFERENCE WITH ELECTRIC CIRCUIT COMMUNICATION	AT ULIRA-HIGH SPEED, POSSIBLE	SMALL LIMITATION OF COMMUNICATION RANGE	SIMPLE, ECONOMICAL, COMMON	SMALL INTERFERENCE WITH ELECTROMAGNETIC WAVE	HIGH SECURITY	SIMPLE, ECONOMICAL	SMALL INTERFERENCE WITH ELECTRIC CIRCUIT
METHOD AND/OR MEDIUM	CONDUCTOR OR CABLE OPTICAL FIBER		ELECTROMAGNETIC WAVE (RADIO) SPATIAL TRANSMISSION OF LIGHT		AIR VIBRATION (SOUND)				
PHYSICAL FEATURE	CONTACT		NONCONTACT						
BASIC CATEGORY	TELECOMMUNICATION								

FIG.2(Prior Art)

BRUSH IS FORCED TO SLIP RING WITH A MEASURE OF PRESSURE

FIG.3(Prior Art)

OPTICAL PROXIMITY SPATIAL TRANSMISSION SYSTEM, Tomohiro Ikegami Docket No. S01459.70055.US

FIG.4A(Prior Art)

FIG.4B(Prior Art)

FIG.5

FIG.6

OPTICAL PROXIMITY SPATIAL TRANSMISSION SYSTEM, Tomohiro Ikegami Docket No. S01459.70055.US

FIG.7

FIG.8

FIG.9

FIG. 10

FFP : ELLIPTIC (GENERALLY, θ // \rightleftharpoons 10 °, θ \bot \rightleftharpoons 30°)

FIG.11A

FFP : CIRCULAR (GENERALLY, $\theta = 10^{\circ}$)

FIG.11B

l	0	0		
×	FOR SYSTEM IN WHICH OSCILLATION IN DIRECTION OF OFF-AXIS DEVIATION IS SMALL	FOR SYSTEM IN WHICH OSCILLATION IN DIRECTION OF OFF-AXIS DEVIATION IS LARGE		
l	abla	0		
ı	0	∇		
ı	0	7		
l		◁		
TYPE A: LD AND PD ARE DIRECTLY OPPOSITE TO EACH OTHER (IMPRACTICAL)	TYPE B: LD WITH LENS IS OPPOSITE TO PD	TYPE C: LD IS OPPOSITE TO PD WITH LENS		
Type A	Type B	Type C		
	A LD AND PD ARE DIRECTLY OPPOSITE TO EACH OTHER (IMPRACTICAL)	TYPE 4:		

FIG. 12

ECONOM!CAL EFF!C!ENCY	Q	◁	٥		
APTITUDE	FOR SYSTEM IN WHICH SPATIAL TRANSMISSION DISTANCE IS LONG	FOR SYSTEM IN WHICH SPATIAL TRANSMISSION DISTANCE IS LONG AND ALSO OSCILLATION IN DIRECTION OF OFF-AXIS	FOR SYSTEM IN WHICH SPATIAL TRANSMISSION DISTANCE IS LONG AND ALSO OSCILLATION IN DIRECTION OF OFF-AXIS		
Y- AND Z-AXIAL PHOTODETECTION WIDTH	۵	0	0		
X-AX!AL PHOTODETECTION WIDTH	0	0	0		
SPATIAL TRANSMISSION DISTANCE	0	0	0		
EFFICIENCY	0	◁	0		
	TYPE D: LD WITH LENS IS OPPOSITE TO PD WITH LENS	TYPE E: LD WITH LENS IS OPPOSITE TO PD WITH LENS (SPOT DIAMETER A LD IS LARGER THAN DIAMETER OF LENS AT PD)	TYPE F: LD WITH LENS IS OPPOSITE TO PO WITH LENS (SPOT DIAMETER AT LD IS SMALLER THAN DIAMETER OF LENS AT PD)		
	Type D	Type E	Type F		

FIG. 13

OPTICAL PROXIMITY SPATIAL TRANSMISSION SYSTEM, Tomohiro Ikegami Docket No. S01459.70055.US

FIG.14

FIG.16

Copied from 10629529 on 21-01-2004

OPTICAL PROXIMITY SPATIAL TRANSMISSION SYSTEM, Tomohiro Ikegami Docket No. S01459.70055.US

FIG.18

FIG.19

Copied from 10629529 on 21-01-2004

FIG.21

OPTICAL PROXIMITY SPATIAL TRANSMISSION SYSTEM, Tomohiro Ikegami Docket No. S01459.70055.US

FIG.22

Copied from 10629529 on 21-01-2004

FIG.25

