Contents			6	Theorem	12
-		-		6.1 Fermat's little theorem	12
1	Some definition	1		6.2 Euler's totient function	13
2	Data structure	2		6.3 Dirichlet	13
_	2.1 Mo's algorithm	2		6.4 Pythagorean triple	13
	2.2 Set and map	2		6.5 Legendre's formula	13
	2.3 BIT	2			
	2.4 IT2D	2	7	Other	13
				7.1 Bignum mul	13
3	Graph	3		7.2 Random	13
	3.1 Dinic	3		7.3 Builtin bit function	13
	3.2 Mincost	3		7.4 Pythagorean triples	14
	3.3 HLD	4		7.5 Sieve	14
	3.4 Cầu khớp	4		7.6 Catalan	14
	3.5 Monotone chain	4		7.7 Prime under 100	14
	3.6 MST	5		7.8 Pascal triangle	14
4	String	5		9	
4	4.1 Aho Corasick	5		7.9 Fibo	14
	4.2 Manacher	6	8	Tips	14
	4.3 Suffix Array	6	6	Tips	14
	4.4 Z function	7			
	4.5 KMP	7	1	Some definition	
	4.6 Hash 2D	7	*		
			l		
5	Math			<pre>nclude <bits stdc++.h=""> nclude <random></random></bits></pre>	
	5.1 Derivatives and integrals	7	1	nclude <chrono></chrono>	
	5.2 Sum	8	#i	nclude <ctime></ctime>	
	5.3 Series	8	١		
	5.4 Trigonometric	8	1	lefine N lefine matrix_size 2	
	5.5 Gaussian elimination	8		lefine mod 100000007LL	
	5.6 Geometry	9	#d	lefine eps 1e-8	
	5.7 Miller Rabin	9	#d	efine base 137 // Or 37	
		10	# 4	lefine cross(A, B) (A.x * B.y - A.y * B.x)	
	5.9 Extended Euclid	10		Lefine $dot(A, B)$ (A.x * B.x + A.y * B.y)	
		10 #d		lefine $ccw(A, B, C) (-(A.x * (C.y - B.y) + B.x * (A.y - B.y)))$	С.у
		11) + C.x * (B.y - A.y))) // positive when ccw	
	5.12 PollardRho	12	#d	lefine CROSS(a, b, c, d) (a * d - b * c)	

HCMUS-KMN

2 Data structure

2.1 Mo's algorithm

```
O(N*\sqrt{N}+Q*\sqrt{N})
```

```
S = sqrt(N);
bool cmp(Query A, Query B) // compare 2 queries
{
  if (A.1 / S != B.1 / S) {
    return A.1 / S < B.1 / S;
  }
  return A.r < B.r;
}</pre>
```

2.2 Set and map

Use set.lower_bound() instead of lower_bound(set.begin(), set.end()) for better performance

The same is true for map

2.3 BIT

 \sim

```
void update(int x, int val)
{
  for (; x <= n; x += x & ~x) BIT[x] = min(BIT[x], val);
}
int get(int x)
{
  int res = 1e9;
  for (; x > 0; x -= x & ~x) res = min(res, BIT[x]);
  return res;
}
```

2.4 IT2D

```
int Max[4096][4096];
struct dir {
   int ll, rr, id;
   dir (int L, int R, int X)
```

```
{ ll=L, rr=R, id=X; }
    dir left() const
        { return dir(ll, (ll+rr)/2, id*2); }
    dir right() const
        { return dir((ll+rr)/2+1, rr, id*2+1); }
    inline bool irrelevant(int L, int R) const
        { return 11>R || L>rr || L>R; }
};
void maximize(int &a, int b)
    { a=max(a, b); }
void maximize(const dir &dx, const dir &dy, int x, int y,
   int k, bool only_y) {
    if (dx.irrelevant(x, x) || dy.irrelevant(y, y)) return;
    maximize(Max[dx.id][dy.id], k);
    if (!only_y && dx.ll != dx.rr) {
        maximize(dx.left(), dy, x, y, k, false);
        maximize(dx.right(), dy, x, y, k, false);
    }
    if (dy.ll != dy.rr) {
        maximize(dx, dy.left(), x, y, k, true);
        maximize(dx, dy.right(), x, y, k, true);
}
int max_range(const dir &dx, const dir &dy, int lx, int rx,
   int ly, int ry) {
    if (dx.irrelevant(lx, rx) || dy.irrelevant(ly, ry))
   return 0;
    if (lx<=dx.ll && dx.rr<=rx) {</pre>
        if (ly <= dy.ll && dy.rr <= ry) return Max[dx.id][dy.id
   ];
        int Max1 = max_range(dx, dy.left(), lx, rx, ly, ry);
        int Max2 = max_range(dx, dy.right(), lx, rx, ly, ry)
        return max(Max1, Max2);
   } else {
        int Max1 = max_range(dx.left(), dy, lx, rx, ly, ry);
        int Max2 = max_range(dx.right(), dy, lx, rx, ly, ry)
       return max(Max1, Max2);
```

Graph

3.1 Dinic

```
bool BFS()
       queue<int> q;
       // reset array
       memset(d, 0, sizeof(d));
       memset(Free, true, sizeof(Free));
       q.push(s);
       d[s] = 1;
       while (!q.empty())
         int u = q.front();
         q.pop();
         for (int i = 0; i < adj[u].size(); i++)</pre>
           int v = adj[u][i].fi;
           if (d[v] == 0 && adj[u][i].se > f[u][v])
             d[v] = d[u] + 1;
\circ
             q.push(v);
           }
         }
       }
       return d[t] != 0;
     int DFS(int x, int delta)
     {
       if (x == t)
         return delta;
       Free[x] = false;
       for (int i = 0; i < adj[x].size(); i++)</pre>
       {
         int y = adj[x][i].fi;
         if (d[y] == d[x] + 1 && f[x][y] < adj[x][i].se && Free[y]
        1)
         {
           int tmp = DFS(y, min(delta, adj[x][i].se - f[x][y]));
           if (tmp > 0)
           {
             f[x][y] += tmp;
             f[y][x] -= tmp;
```

```
return tmp;
   }
 return 0;
    Mincost
int calc(int x, int y) { return (x \ge 0) ? y : 0 - y; }
bool findpath()
 for (int i = 1; i <= n; i++) { trace[i] = 0; d[i] = inf; }</pre>
 q.push(n); d[n] = 0;
 while (!q.empty())
 {
   int u = q.front();
   q.pop();
   inq[u] = false;
   for (int i = 0; i < adj[u].size(); i++)</pre>
     int v = adj[u][i];
     if (c[u][v] > f[u][v] && d[v] > d[u] + calc(f[u][v],
   cost[u][v]))
     {
        trace[v] = u;
        d[v] = d[u] + calc(f[u][v], cost[u][v]);
        if (!inq[v])
          inq[v] = true;
          q.push(v);
 }
 return d[t] != inf;
void incflow()
{
 int v = t, delta = inf;
 while (v != n)
 {
   int u = trace[v];
   if (f[u][v] >= 0)
```

```
4
```

```
Page
```

```
delta = min(delta, c[u][v] - f[u][v]);
    else
      delta = min(delta, 0 - f[u][v]);
    v = u:
  v = t;
  while (v != n)
   int u = trace[v];
   f[u][v] += delta;
   f[v][u] -= delta;
    v = u;
3.3 HLD
void DFS(int x,int pa)
  DD[x]=DD[pa]+1; child[x]=1; int Max=0;
  for (int i=0; i<DSK[x].size(); i++)</pre>
   int y=DSK[x][i].fi;
    if (y==pa) continue;
   p[y]=x;
    d[y]=d[x]+DSK[x][i].se;
    DFS(y,x);
    child[x]+=child[v];
    if (child[y]>Max)
      Max=child[y];
      tree[x]=tree[v];
  if (child[x]==1) tree[x]=++nTree;
void init()
  nTree=0:
  DFS(1.1):
  DD[0] = long(1e9);
  for (int i=1; i<=n; i++) if (DD[i]<DD[root[tree[i]]]) root</pre>
   [tree[i]]=i:
}
```

```
int LCA(int u.int v)
  while (tree[u]!=tree[v])
    if (DD[root[tree[u]]] < DD[root[tree[v]]]) v = p[root[tree[v]]]</pre>
    else u=p[root[tree[u]]];
  if (DD[u]<DD[v]) return u; else return v;</pre>
3.4 Cầu khớp
   Nút u là khớp: if (low[v] >= num[u]) arti[u] = arti[u] || p[u] != -1 ||
\text{child}[\mathbf{u}] >= 2;
Canh u, v là cầu khi low[v] >= num[v]
3.5 Monotone chain
void convex hull (vector<pt> & a) {
  if (a.size() == 1) { // Only 1 point
    return;
  }
  // Sort with respect to x and then y
  sort(a.begin(), a.end(), &cmp);
  pt p1 = a[0], p2 = a.back();
  vector<pt> up, down;
  up.push back (p1);
  down.push_back (p1);
  for (size_t i=1; i<a.size(); ++i) {</pre>
    // Add to the upper chain
    if (i==a.size()-1 || cw (p1, a[i], p2)) {
      while (up.size() \ge 2 \&\& !cw (up[up.size() -2], up[up.
   size()-1], a[i]))
        up.pop_back();
      up.push_back (a[i]);
    // Add to the lower chain
    if (i==a.size()-1 || ccw (p1, a[i], p2)) {
```

4.1 Aho Corasick

```
struct Node
 int nxt[26], go[26];
 bool leaf;
 long long val, sumVal;
 int p;
 int pch;
  int link;
};
Node t[N];
int sz;
void New(Node &x, int p, int link, int pch)
{
 x.p = p;
 x.link = link;
 x.pch = pch;
 x.val = 0;
  x.sumVal = -1;
  memset(x.nxt, -1, sizeof(x.nxt));
```

3.6 MST

Prim: remember to have visited array

4 String

```
int id = c - 'A';
    if (t[v].nxt[id] == -1)
      New(t[sz], v, -1, id);
      t[v].nxt[id] = sz++;
    v = t[v].nxt[id];
 t[v].leaf = true;
 t[v].val = val;
int Go(int u, int c);
int Link(int u)
 if (t[u].link == -1)
    if (u == 0 || t[u].p == 0)
      t[u].link = 0;
    else
      t[u].link = Go(Link(t[u].p), t[u].pch);
  return t[u].link;
int Go(int u, int c)
 if (t[u].go[c] == -1)
    if (t[u].nxt[c] != -1)
      t[u].go[c] = t[u].nxt[c];
    else
      t[u].go[c] = (u == 0 ? 0 : Go(Link(u), c));
  return t[u].go[c];
```

memset(x.go, -1, sizeof(x.go));

int v = 0;

for (char c : s)

void AddString(const string &s, int val)

4.2 Manacher

```
void init() {
  cnt = 0;
 t[0] = '~';
 for (int i = 0; i<n; i++) {</pre>
    t[++cnt] = '#';t[++cnt] = s[i];
 t[++cnt] = '#'; t[++cnt] = '-';
void manacher() {
 int n = cnt - 2;
 int r = 1; int C = 1;
 int ans = 0;
 for (int i = 2; i<n; i++) {</pre>
   int i mirror = C * 2 - i;
    z[i] = (r > i) ? min(z[i mirror], r - i) : 0;
    while (t[i + z[i] + 1] == t[i - z[i] - 1]) z[i] ++;
   if (i + z[i] > r) {
    C = i;
      r = i + z[i];
   }
```

4.3 Suffix Array

0

```
struct SuffixArray {
 string s;
 int n;
 vector<int> SA, RA, tempSA, tempRA, LCP;
 int L[N];
 void reset(string st) {
   s = st;
   RA.clear();
   s.push back('$');
   n = s.size();
   RA.resize(n + 1, 0);
    SA = RA, tempSA = tempRA = LCP = RA;
 }
 void BuildSA() {
   REP(i, n) SA[i] = i, RA[i] = s[i];
   for (int k = 1; k < n; k <<= 1) {</pre>
```

```
radix sort(k);
     radix sort(0);
     tempRA[SA[O]] = O;
     for (int i = 1, r = 0; i < n; ++i) {
        if (getRA(SA[i - 1]) != getRA(SA[i]) || getRA(SA[i -
    1] + k) != getRA(SA[i] + k) ++r;
       tempRA[SA[i]] = r;
     REP(i, n) RA[i] = tempRA[i];
     if (RA[SA[n-1]] == n-1) break;
   }
 }
 void BuildLCP() {
   // kasai
   REP(i, n) RA[SA[i]] = i;
   int k = 0;
   REP(i, n) {
     if (RA[i] == n - 1) {
       k = 0; continue;
     }
     int j = SA[RA[i] + 1];
     while (i + k < n &  i + k < n &  s[i + k] == s[j + k])
    ++k;
     LCP[RA[i]] = k;
     if (k) k--;
   }
 }
private:
 inline int getRA(int i) { return (i < n ? RA[i] : 0); }</pre>
 void radix_sort(int k) {
   memset(L, 0, sizeof L);
   REP(i, n) L[getRA(i + k)]++;
   int p = 0;
   REP(i, N) {
    int x = L[i];
    L[i] = p;
     p += x;
   REP(i, n) {
    int &x = L[getRA(SA[i] + k)];
     tempSA[x++] = SA[i];
   REP(i, n) SA[i] = tempSA[i];
 }
```

cin >> s; cin >> t;

for (int i = 0; i < (int)s.length(); ++i)</pre>

while (cur >= 0 && s[i] != t[cur])

build():

{

int cur = 0;

```
4.4 Z function
vector<int> Zfunc(int n, vector<int> &a) {
  vector<int> z(n);
  z[0] = n:
  int 1 = 0, r = 0;
  FOR(i, 1, n - 1) {
    z[i] = (i \le r ? min(r - i + 1, z[i - 1]) : 0);
    while (i + z[i] < n \&\& a[z[i]] == a[i + z[i]]) ++z[i];
    if (i + z[i] > r) {
     r = i + z[i] - 1;
      l = i;
   }
  return z;
4.5 KMP
// SUBSTR spoj
string s, t; int pos[N];
void build()
  pos[0] = -1;
  int pre = -1, cur = 0;
  while (cur < t.length())</pre>
    while (pre >= 0 && t[cur] != t[pre])
     pre = pos[pre];
    pos[++cur] = ++pre;
}
int main()
```

```
cur = pos[cur];
  ++cur;
  if (cur == (int)t.length())
    cout << i - (int)t.length() + 2 << ' ';</pre>
    cur = pos[cur];
}
return 0;
```

4.6 Hash 2D

$$H[i][j] = H[i-1][j] * p + H[i][j-1] * q - H[i-1][j-1] * p * q + s[i][j]$$
 (1)

$$Hash(a,b)(x,y) = H[x][y] - H[a-1][y] * p^{x-a+1} - H[x][b-1]$$

$$* q^{y-b+1} + H[a-1][b-1] * p^{x-a+1} * q^{y-b+1}$$
(2)

5 Math

Derivatives and integrals

$$\frac{d}{dx} \ln u = \frac{u'}{u} \qquad \frac{d}{dx} \frac{1}{u} = -\frac{u'}{u^2}$$

$$\frac{d}{dx} \sqrt{u} = \frac{u'}{2\sqrt{u}}$$

$$\frac{d}{dx} \sin x = \cos x \qquad \frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx} \cos x = -\sin x \qquad \frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx} \tan x = 1 + \tan^2 x \qquad \frac{d}{dx} \arctan x = \frac{1}{1 + x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x \sin ax = \frac{\sin ax - ax \cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \qquad \int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1)$$

5.2 Sum

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

5.3 Series

 ∞

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{2x^3}{32} - \frac{5x^4}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, (-\infty < x < \infty)$$

5.4 Trigonometric

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$

$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$

$$\sin v + \sin w = 2\sin \frac{v+w}{2}\cos \frac{v-w}{2}$$

$$\cos v + \cos w = 2\cos \frac{v+w}{2}\cos \frac{v-w}{2}$$

$$a\cos x + b\sin x = r\cos(x-\phi)$$

$$a\sin x + b\cos x = r\sin(x+\phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

5.5 Gaussian elimination

```
// Gauss-Jordan elimination.
// Returns: number of solution (0, 1 or INF)
     When the system has at least one solution, ans will
   contains
    one possible solution
// Possible improvement when having precision errors:
     - Divide i-th row by a(i, i)
    - Choosing pivoting row with min absolute value (
   sometimes this is better that maximum, as implemented
   here)
// Tested:
// - https://open.kattis.com/problems/equationsolver
// - https://open.kattis.com/problems/equationsolverplus
int gauss (vector < vector < double > > a, vector < double > & ans
  int n = (int) a.size();
  int m = (int) a[0].size() - 1;
  vector<int> where (m, -1);
  for (int col=0, row=0; col<m && row<n; ++col) {</pre>
    for (int i=row; i<n; ++i)</pre>
```

```
if (abs (a[i][col]) > abs (a[sel][col]))
        sel = i:
    if (abs (a[sel][col]) < EPS)</pre>
      continue:
    for (int i=col; i<=m; ++i)</pre>
      swap (a[sel][i], a[row][i]);
    where [col] = row;
    for (int i=0; i<n; ++i)</pre>
      if (i != row) {
        double c = a[i][col] / a[row][col];
       for (int j=col; j<=m; ++j)</pre>
          a[i][j] -= a[row][j] * c;
      }
    ++row;
  ans.assign (m, 0);
  for (int i=0; i<m; ++i)</pre>
    if (where[i] != -1)
      ans[i] = a[where[i]][m] / a[where[i]][i];
  for (int i=0; i<n; ++i) {</pre>
    double sum = 0;
    for (int j=0; j<m; ++j)</pre>
     sum += ans[j] * a[i][j];
    if (abs (sum - a[i][m]) > EPS)
      return 0:
  }
  // If we need any solution (in case INF solutions), we
   should be
  // ok at this point.
 // If need to solve partially (get which values are fixed/
   INF value):
// for (int i=0; i<m; ++i)
     if (where[i] != -1) {
//
       REP(j,n) if (j != i \&\& fabs(a[where[i]][j]) > EPS) {
//
        where [i] = -1;
//
          break;
//
        }
  // Then the variables which has where[i] == -1 --> INF
   values
  for (int i=0; i<m; ++i)</pre>
```

```
if (where[i] == -1)
      return INF:
 return 1:
5.6 Geometry
struct line
  double a,b,c;
  line() {}
  line(double A, double B, double C):a(A),b(B),c(C){}
  line(Point A, Point B)
    a=A.y-B.y; b=B.x-A.x; c=-a*A.x-b*A.y;
};
Point intersect(line AB, line CD)
 AB.c=-AB.c; CD.c=-CD.c;
  double D=CROSS(AB.a,AB.b,CD.a,CD.b);
  double Dx=CROSS(AB.c,AB.b,CD.c,CD.b);
  double Dy=CROSS(AB.a,AB.c,CD.a,CD.c);
  if (D==0.0) return Point(1e9,1e9);
  else return Point(Dx/D,Dy/D);
}
5.7 Miller Rabin
// n < 4,759,123,141
                            3:2,7,61
                            4: 2, 13, 23, 1662803
// n < 1,122,004,669,633
// n < 3,474,749,660,383
                                  6 : pirmes <= 13
// n < 2^64
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
// Make sure testing integer is in range [2, -n2] if
// you want to use magic.
long long power(long long x, long long p, long long mod) {
 long long s = 1, m = x;
  while (p) {
    if (p \& 1) s = mult(s, m, mod);
    p >>= 1;
    m = mult(m, m, mod);
  }
  return s;
```

```
bool witness(long long a, long long n, long long u, int t) {
  long long x = power(a, u, n);
 for (int i = 0; i < t; i++) {
   long long nx = mult(x, x, n);
   if (nx == 1 && x != 1 && x != n - 1) return 1;
   x = nx:
 }
 return x != 1;
bool miller_rabin(long long n, int s = 100) {
 // iterate s times of witness on n
  // return 1 if prime, 0 otherwise
  if (n < 2) return 0;
  if (!(n & 1)) return n == 2;
  long long u = n - 1;
 int t = 0;
  // n-1 = u*2^t
  while (!(u & 1)) {
   u >>= 1;
   t++;
  }
  while (s--) {
   long long a = randll() \% (n - 1) + 1;
   if (witness(a, n, u, t)) return 0;
 }
  return 1;
}
5.8 Chinese Remainer
// Solve linear congruences equation:
// - a[i] * x = b[i] MOD m[i] (mi don't need to be co-prime)
// Tested:
// - https://open.kattis.com/problems/
```

```
// Solve linear congruences equation:
// - a[i] * x = b[i] MOD m[i] (mi don't need to be co-prime)
// Tested:
// - https://open.kattis.com/problems/
    generalchineseremainder
bool linearCongruences(const vector<11> &a, const vector<11> &b,
        const vector<11> &m, ll &x, ll &M) {
    ll n = a.size();
    x = 0; M = 1;
    REP(i, n) {
        ll a_ = a[i] * M, b_ = b[i] - a[i] * x, m_ = m[i];
        ll y, t, g = extgcd(a_, m_, y, t);
        if (b_ % g) return false;
        b_ /= g; m_ /= g;
        x += M * (y * b_ % m_);
```

```
M *= m_;
}
x = (x + M) % M;
return true;
}
```

5.9 Extended Euclid

```
// other pairs are of the form:
// x' = x + k(b / gcd)
// y' = y - k(a / gcd)
// where k is an arbitrary integer.
// to minimize, set k to 2 closest integers near -x / (b / gcd)
// the algo always produce one of 2 small pairs.
int extgcd(int a, int b, int &x, int &y) {
  int g = a; x = 1; y = 0;
  if (b != 0) g = extgcd(b, a % b, y, x), y -= (a / b) * x;
  return g;
}
```

5.10 FFT

```
using cd = complex < double >;
const int MaxN = 1 << 18;
const double PI = acos(-1);
const cd I = (0, 1);
void FFT(vector < cd > & a, const vector < int > & rev, bool invert)
  int n = a.size();
  vector < cd > b(n);
  for (int i = 0; i < n; ++i)
    b[i] = a[rev[i]];
  swap(a, b);
  for (int len = 2; len <= n; len <<= 1)</pre>
  {
    double ang = 2 * PI / len * (invert ? -1 : 1);
    cd wlen(cos(ang), sin(ang));
    for (int i = 0; i < n; i += len)</pre>
    {
      cd w(1):
      for (int j = 0; j < (len >> 1); ++j)
        cd u = a[i + j], v = a[i + j + (len >> 1)] * w;
```

```
a[i + j] = u + v;
        a[i + j + (len >> 1)] = u - v;
        w *= wlen:
      }
   }
  }
  if (invert)
    for (auto& i : a)
      i /= n;
}
vector < long long > polymul(const vector < int > & a, const vector
   \langle int \rangle \& b
{
  int n = max(a.size(), b.size());
  if (__builtin_popcount(n) != 1) n = 1 << (33 -</pre>
   __builtin_clz(n));
  vector < cd > pa(n), pb(n);
  copy(a.begin(), a.end(), pa.begin());
  copy(b.begin(), b.end(), pb.begin());
  vector<int> rev(n);
  rev[0] = 0;
  for (int i = 1; i < n; ++i)
    if (i & 1) rev[i] = rev[i - 1] + (n >> 1);
    else rev[i] = rev[i >> 1] >> 1;
  FFT(pa, rev, false);
  FFT(pb, rev, false);
  transform(pa.begin(), pa.end(), pb.begin(), pa.begin(),
   multiplies < cd > ());
  FFT(pa, rev, true);
  vector<long long> res(n);
  transform(pa.begin(), pa.end(), res.begin(), [&](cd& x) {
   return llround(x.real()); });
  return res;
}
5.11 Hungarian
struct Hungarian {
 long c[N][N], fx[N], fy[N], d[N];
  int mx[N], my[N], trace[N], arg[N];
```

```
queue < int > q;
int start, finish, n, m;
const long inf = 1e18;
void Init(int n, int m) {
 n = n, m = m;
 FOR(i, 1, n) {
   mx[i] = my[i] = 0;
   FOR(j, 1, n) c[i][j] = inf;
 }
}
void addEdge(int u, int v, long cost) { c[u][v] = min(c[u
][v], cost); }
inline long getC(int u, int v) { return c[u][v] - fx[u] -
 fy[v]; }
void initBFS() {
 while (!q.empty()) q.pop();
 q.push(start);
 FOR(i, 0, n) trace[i] = 0;
 FOR(v, 1, n) {
   d[v] = getC(start, v), arg[v] = start;
 }
 finish = 0;
}
void findAugPath() {
 while (!q.empty()) {
   int u = q.front();
   q.pop();
   FOR(v, 1, n) if (!trace[v]) {
     long w = getC(u, v);
     if (!w) {
        trace[v] = u;
       if (!my[v]) { finish = v; return; }
        q.push(my[v]);
     }
     if (d[v] > w) \{ d[v] = w; arg[v] = u; \}
 }
}
void subX addY(){
 long delta = inf;
 FOR(v, 1, n) if (trace[v] == 0 \&\& d[v] < delta) delta =
```

```
d[v]:
 fx[start] += delta;
 FOR(v, 1, n) if (trace[v]) {
   int u = my[v];
   fy[v] -= delta, fx[u] += delta;
 } else d[v] -= delta;
  FOR(v, 1, n) if (!trace[v] && !d[v]) {
    trace[v] = arg[v];
    if (!my[v]) { finish = v; return; }
   q.push(my[v]);
 }
}
void Enlarge() {
 do {
   int u = trace[finish], nxt = mx[u];
    mx[u] = finish, my[finish] = u, finish = nxt;
 } while (finish);
}
long minCost() {
 FOR(u, 1, n) {
   fx[u] = c[u][1];
   FOR(v, 1, n) fx[u] = min(fx[u], c[u][v]);
 }
  FOR(v. 1. n) {
   fv[v] = c[1][v] - fx[1];
   FOR(u, 1, n) fy[v] = min(fy[v], c[u][v] - fx[u]);
 }
  FOR(u, 1, n) {
    start = u;
    initBFS();
    while (finish == 0) {
     findAugPath();
     if (!finish) subX addY();
   }
    Enlarge();
 }
  int res = 0;
 FOR(i, 1, n) res += c[i][mx[i]];
 return res;
```

5.12 PollardRho

};

```
// does not work when n is prime
long long modit(long long x, long long mod) {
 if (x \ge mod) x -= mod;
 //if(x<0) x += mod;
 return x;
long long mult(long long x, long long y, long long mod) {
 long long s = 0, m = x \% mod;
  while (v) {
    if (y \& 1) s = modit(s + m, mod);
    m = modit(m + m, mod);
 return s:
long long f(long long x, long long mod) {
 return modit(mult(x, x, mod) + 1, mod);
long long pollard_rho(long long n) {
 if (!(n & 1)) return 2;
  while (true) {
    long long y = 2, x = random() % <math>(n - 1) + 1, res = 1;
   for (int sz = 2; res == 1; sz *= 2) {
     for (int i = 0; i < sz && res <= 1; i++) {
       x = f(x, n);
       res = \_gcd(abs(x - y), n);
     y = x;
    if (res != 0 && res != n) return res:
 }
}
```

6 Theorem

6.1 Fermat's little theorem

If p is a prime number, then for any number a, $a^p - a$ is an integer multiple of p

$$a^p \equiv a \pmod{p}$$

$$a^{p-1} \equiv 1 \pmod{p}$$

6.2 Euler's totient function

The number of coprime $\leq n$

$$\phi(n) = n \prod (1 - \frac{1}{p})$$

With p is the prime divided by n

6.3 Dirichlet

Given n holes and n+1 pigeons to distribute evenly, then at least 1 hole must have 2 pigeons

6.4 Pythagorean triple

$$a = m^2 - n^2$$
, $b = 2mn$, $c = m^2 + n^2$

where m and n are positive integer with m > n, and with m and n are coprime and not both odd.

6.5 Legendre's formula

Factor n!

$$v_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$$

With p is prime

Other

7.1 Bignum mul

```
string mul(string a, string b)
  int m=a.length(),n=b.length(),sum=0;
 string c="";
  for (int i=m+n-1; i>=0; i--)
    for (int j=0; j<m; j++) if (i-j>0 && i-j<=n) sum+=(a[i]-</pre>
   '0')*(b[i-i-1]-'0'):
    c = (char)(sum %10 + '0') + c;
    sum/=10;
  while (c.length()>1 && c[0]=='0') c.erase(0,1);
  return c;
7.2 Random
// Random using mt19937
mt19937 rng(chrono::steady clock::now().time since epoch().
   count());
// For random long long
mt19937 64 rng(chrono::steady clock::now().time since epoch
   ().count());
// Random shuffle using mt19937 as the generator
shuffle(a.begin(), a.end(), rng);
// Random range
int random(int a, int b)
  return uniform_int_distribution<int>(a, b)(rng);
7.3 Builtin bit function
```

```
__builtin_popcount(x); // number of bit 1 in x
__builtin_popcountll(x); // for long long
__builtin_clz(x); // number of leading 0
__builtin_clzll(x); // for long long
__builtin_ctz(x); // number of trailing 0
__builtin_ctzll(x); // for long long
(x \& ~x): the smallest bit 1 in x
floor(log2(x)) : 31 - \_builtin\_clz(x | 1);
floor(log2(x)) : 63 - _builtin_clzll(x | 1);
```

 $100 \le c \le 300$: (20, 99, 101) (60, 91, 109) (15, 112, 113) (44, 117, 125) (88, 105, 137) (17, 144, 145) (24, 143, 145) (51, 140, 149) (85, 132, 157) (119, 120, 169) (52, 165, 173) (19, 180, 181) (57, 176, 185) (104, 153, 185)(95, 168, 193) (28, 195, 197) (84, 187, 205) (133, 156, 205) (21, 220, 221)(140, 171, 221) (60, 221, 229) (105, 208, 233) (120, 209, 241) (32, 255, 257)(23, 264, 265) (96, 247, 265) (69, 260, 269) (115, 252, 277) (160, 231, 281)(161, 240, 289) (68, 285, 293)

7.5 Sieve

for (int j = i; $j * i <= \lim_{i \to j} ++i$) notPrime[j * i] = true

7.6 Catalan

14

$$\frac{(2n)!}{(n+1)! \, n!} = \prod_{k=2}^{n} \frac{n+k}{k}$$

Prime under 100

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

Pascal triangle

C(n,k)=number from line 0, column 0

1 9 36 84 126 126 84 36 9 1 1 10 45 120 210 252 210 120 45 10 1

7.9 Fibo

 $0\ 1\ 1\ 2\ 3\ 5\ 8\ 13\ 21\ 34\ 55\ 89\ 144\ 233\ 377\ 610\ 987\ 1597\ 2584\ 4181\ 6765$

8 Tips

- Test kĩ trước khi nộp. Code nhìn đúng chưa chắc đúng đâu
- Test conner case
- Có overflow ko?
- Đoc kĩ mô tả test
- Giả sử nó là số nguyên tố đi. Giả sử nó liên quan tới số nguyên tố đi.
- Giả sử nó là số có dang 2^n đi.
- Giả sử chon tối đa là 2, 3 số gì là có đáp án đi.
- Có liên quan gì tới Fibonacci hay tam giác pascal?
- Dãy này đơn điệu không em ei? Hay tổng của 2.3 số fibonacci?
- q ≤ 2
- Sort lai đi, biết đâu thấy điều hay hơn?
- Chia nhỏ ra xem.
- Bỏ hết những thẳng ko cần thiết ra
- Áp đại data struct nào đấy vô
- Random shuffe để AC

Keep Smilling

Gotta solve them all

Fage 1