METODE MAUT

(Multi Attribute Utility Theory)

Saifur Rohman Cholil, S.Kom., M.Kom.

- Metode MAUT adalah suatu metode yang digunakan untuk melakukan perbadingan kuantitatif untuk mengkombinasikan perkiraan dan biaya resiko keuntungan yang berbeda.
- ☐ Kriteria yang terdapat pada alternatif dapat membantu memecahkan suatu permasalahan, untuk mencari suatu alternatif yang diinginkan oleh seseorang maka dapat dilakukan suatu perkalian terhadap nilai unggul yang sudah ditetapkan.

☐ Metode MAUT menggunakan nilai numerik berskala 0-1 untuk mengganti beberapa kepentingan, 0 mewakili pilihan terburuk dan 1 untuk pilihan terbaik.

☐ Tahapan metode MAUT :

- Mengambil nilai keputusan dengan dimensi yang berbeda
- 2. Menentukan nilai dari bobot alternatif kepada setiap dimensi
- 3. Normalisasi Matrik
- 4. Input nilai utility dari tiap alternatif sesuai dengan atributnya
- 5. Melakukan perkalian utility dengan bobotnya masing-masing untuk memperoleh nilai alternatifnya

- Mengambil nilai keputusan dengan dimensi yang berbeda.
 - Pada tahap ini mendefinisikan alternatif, kriteria dan menentukan nilai kriteria dari masing-masing alternatif.
- 2. Menentukan nilai dari bobot alternatif kepada setiap dimensi.

Memberikan bobot pada masing-masing kriteria dengan ketentuan $\sum w = 1$.

menggunakan persamaan:

$$U(x) = \frac{x - xi^-}{xi^+ - xi^-}$$

Dimana:

4. Input nilai utility dari tiap alternatif sesuai dengan atributnya.

Normalisasi matrik menghasilkan nilai utility dari tiap alternatif seseuai dengan atributnya.

5. Melakukan perkalian utility dengan bobotnya masing-masing untuk memperoleh nilai alternatifnya.

menggunakan persamaan:

$$V(x) = \sum_{i=1}^{n} W_i. v_i(x)$$

Dimana:

V(x) = evaluasi total dari alternatif ke-x

w_i = bobot kriteria ke-i

 $v_i(x)$ = hasil evaluasi kriteria ke-i dari alternatif ke-x

i = indeks kriteria

Contoh:

- ☐ Sebuah perusahaan akan melakukan rekrutmen kerja terhadap 5 calon pekerja untuk posisi operator mesin.
- □ Posisi yang dibutuhkan hanya 2 orang.
- □ Kriteria :
 - ✓ Pengalaman kerja (disimbolkan C1)
 - ✓ Pendidikan (C2)
 - ✓ Usia (C3)
 - ✓ Status perkawinan (C4)
 - ✓ Alamat (C5)

Jawab:

1. Menentukan kriteria dan alternatif

Kriteria Benefit:

- Pengalaman kerja (disimbolkan C1)
- > Pendidikan (C2)
- ➤ Usia (C3)

kriteria Cost:

- Status perkawinan (C4)
- > Alamat (C5)

- □ Ada lima orang yang menjadi kandidat (alternatif) yaitu :
 - ✓ Doni Prakosa (disimbolkan A1)
 - ✓ Dion Pratama (A2)
 - ✓ Dina Ayu Palupi(A3)
 - ✓ Dini Ambarwati (A4)
 - ✓ Danu Nugraha (A5)

☐ Penilaian alternatif untuk setiap kriteria

Alternatif	kriteria				
	C1	C2	C3	C4	C5
A1	0,5	1	0,7	0,7	0,8
A2	0,8	0,7	1	0,5	1
A3	1	0,3	0,4	0,7	1
A4	0,2	1	0,5	0,9	0,7
A5	1	0,7	0,4	0,7	1

2. Pembobotan (w) $\sum w = 1$

Kriteria	Bobot
C1	0,3
C2	0,2
C3	0,2
C4	0,15
C5	0,15
Total	1

$$x^- = 0.2$$
 $x^+ = 1$

Kriteria C1:

$$A_{11} = \frac{0.5 - 0.2}{1 - 0.2} = \frac{0.3}{0.8} = 0.375$$

$$A_{21} = \frac{0.8 - 0.2}{1 - 0.2} = \frac{0.6}{0.8} = 0.75$$

$$A_{31} = \frac{1 - 0.2}{1 - 0.2} = \frac{0.8}{0.8} = 1$$

$$A_{41} = \frac{0,2-0,2}{1-0,2} = \frac{0}{0,8} = 0$$

$$A_{51} = \frac{1 - 0.2}{1 - 0.2} = \frac{0.8}{0.8} = 1$$

$$U(x) = \frac{x - xi^-}{xi^+ - xi^-}$$

Alternatif	kriteria				
	C1	C2	C3	C4	C5
A1	0,5	1	0,7	0,7	0,8
A2	0,8	0,7	1	0,5	1
А3	1	0,3	0,4	0,7	1
A4	0,2	1	0,5	0,9	0,7
A5	1	0,7	0,4	0,7	1

$$x^- = 0.3$$
 $x^+ = 1$

Kriteria C2:

$$A_{12} = \frac{1 - 0.3}{1 - 0.3} = \frac{0.7}{0.7} = 1$$

$$0.7 - 0.3 \qquad 0.4$$

$$A_{22} = \frac{0.7 - 0.3}{1 - 0.3} = \frac{0.4}{0.7} = 0.571$$

$$A_{32} = \frac{0,3-0,3}{1-0,3} = \frac{0}{0,7} = 0$$

$$A_{42} = \frac{1 - 0.3}{1 - 0.3} = \frac{0.7}{0.7} = 1$$

$$A_{42} = \frac{1 - 0.3}{1 - 0.3} = \frac{0.7}{0.7} = 1$$

$$A_{52} = \frac{0.7 - 0.3}{1 - 0.3} = \frac{0.4}{0.7} = 0.571$$

$$U(x) = \frac{x - xi^-}{xi^+ - xi^-}$$

Alternatif		kriteria				
	C1	C2	C3	C4	C5	
A1	0,5	1	0,7	0,7	0,8	
A2	0,8	0,7	1	0,5	1	
А3	1	0,3	0,4	0,7	1	
A4	0,2	1	0,5	0,9	0,7	
A5	1	0,7	0,4	0,7	1	

$$x^- = 0.4$$
 $x^+ = 1$

Kriteria C3:

$$A_{13} = \frac{0,7 - 0,4}{1 - 0,4} = \frac{0,3}{0,6} = 0,5$$

$$A_{23} = \frac{1 - 0.4}{1 - 0.4} = \frac{0.6}{0.6} = 1$$

$$A_{33} = \frac{0.4 - 0.4}{1 - 0.4} = \frac{0}{0.6} = 0$$

$$A_{43} = \frac{0.5 - 0.4}{1 - 0.4} = \frac{0.1}{0.6} = 0.167$$

$$A_{53} = \frac{047 - 0.4}{1 - 0.4} = \frac{0}{0.6} = 0$$

$$U(x) = \frac{x - xi^-}{xi^+ - xi^-}$$

Alternatif		kriteria				
	C1	C2	C3	C4	C5	
A1	0,5	1	0,7	0,7	0,8	
A2	0,8	0,7	1	0,5	1	
А3	1	0,3	0,4	0,7	1	
A4	0,2	1	0,5	0,9	0,7	
A5	1	0,7	0,4	0,7	1	
	-//	1111	W / 1958	100	a	

$$x^- = 0.5$$
 $x^+ = 0.9$

Kriteria C4:

$$A_{14} = \frac{0.7 - 0.5}{0.9 - 0.5} = \frac{0.2}{0.4} = 0.5$$

$$A_{24} = \frac{0.5 - 0.5}{0.9 - 0.5} = \frac{0}{0.4} = 0$$

$$A_{34} = \frac{0.7 - 0.5}{0.9 - 0.5} = \frac{0.2}{0.4} = 0.5$$

$$A_{44} = \frac{0.9 - 0.5}{0.9 - 0.5} = \frac{0.4}{0.4} = 1$$

$$A_{54} = \frac{0.7 - 0.5}{0.9 - 0.5} = \frac{0.2}{0.4} = 0.5$$

$$U(x) = \frac{x - xi^-}{xi^+ - xi^-}$$

Alternatif		kriteria				
	C1	C2	C3	C4	C5	
A1	0,5	1	0,7	0,7	0,8	
A2	0,8	0,7	1	0,5	1	
А3	1	0,3	0,4	0,7	1	
A4	0,2	1	0,5	0,9	0,7	
A5	1	0,7	0,4	0,7	1	
			98.000		7	

$$x^- = 0.7$$
 $x^+ = 1$

Kriteria C5:

$$A_{15} = \frac{0.8 - 0.7}{1 - 0.7} = \frac{0.1}{0.3} = 0.333$$

$$A_{25} = \frac{1 - 0.7}{1 - 0.7} = \frac{0.3}{0.3} = 1$$

$$A_{35} = \frac{1 - 0.7}{1 - 0.7} = \frac{0.3}{0.3} = 1$$

$$A_{45} = \frac{0,7 - 0,7}{1 - 0,7} = \frac{0}{0,3} = 0$$

$$A_{55} = \frac{1 - 0.7}{1 - 0.7} = \frac{0.3}{0.3} = 1$$

$$U(x) = \frac{x - xi^-}{xi^+ - xi^-}$$

Alternatif		kriteria					
	C1	C2	C3	C4	C5		
A1	0,5	1	0,7	0,7	0,8		
A2	0,8	0,7	1	0,5	1		
A3	1	0,3	0,4	0,7	1		
A4	0,2	1	0,5	0,9	0,7		
A5	1	0,7	0,4	0,7	1		

4. Memasukkan nilai utility dari tiap alternatif sesuai dengan atributnya.

A1	0,375	1,000	0,500	0,500	0,333
A2	0,750	0,571	1,000	0,000	1,000
A3	1,000	0,000	0,000	0,500	1,000
A4	0,000	1,000	0,167	1,000	0,000
A 5	1,000	0,571	0,000	0,500	1,000

5. $V(x) = \sum_{i=1}^{n} W_i \cdot v_i(x)$

A1	0,375	1,000	0,500	0,500	0,333
A2	0,750	0,571	1,000	0,000	1,000
А3	1,000	0,000	0,000	0,500	1,000
A4	0,000	1,000	0,167	1,000	0,000
A5	1,000	0,571	0,000	0,500	1,000
Bobot	0,3	0,2	0,2	0,15	0,15

5. $V(x) = \sum_{i=1}^{n} W_i \cdot v_i(x)$

ALTERNATIF	C1	C2	С3	C4	C 5	TOTAL
A1	0,113	0,200	0,100	0,075	0,050	0,538
A2	0,225	0,114	0,200	0,000	0,150	0,689
А3	0,300	0,000	0,000	0,075	0,150	0,525
A4	0,000	0,200	0,033	0,150	0,000	0,383
A5	0,300	0,114	0,000	0,075	0,150	0,639

Bobot	0,3	0,2	0,2	0,15	0,15
A5	1,000	0,571	0,000	0,500	1,000
A4	0,000	1,000	0,167	1,000	0,000
А3	1,000	0,000	0,000	0,500	1,000
A2	0,750	0,571	1,000	0,000	1,000
A1	0,375	1,000	0,500	0,500	0,333

Alternatif	Total	RANKING
A1	0,538	3
A2	0,689	1
A3	0,525	4
A4	0,383	5
A5	0,639	2

- □ Nilai terbesar ada pada $A_2 = 0,689$ dan $A_5 = 0,639$ sehingga Dion Pratama dan Danu Nugraha adalah alternatif yang terpilih sebagai alternatif terbaik.
- ☐ Dengan kata lain, Dion Pratama dan Danu Nugraha terpilih untuk posisi operator mesin.