| පිහලු ම හිමිකම් ඇවිරිණි / (மුඟුப්) பதிப்புரிமையுடையது / | All Rights | Reserved] |
|---------------------------------------------------------|------------|-----------|
|---------------------------------------------------------|------------|-----------|

# (නව නිඊදේශය/பුනිய பாடத்திட்டம்/New Syllabus)

நிறை අදහර්තුවේ ලී ලංකා විභාග අදහර්තුලේ කිල් ලෙකා විභාග අදහර්තුවේ ලී ලංකා විභාග අදහර්තුවේ ලී ලංකා විභාග අදහර්තුවේ තිතාගත්තනාර இலங்கைப் பரிக்கத் தின்னர்களில் இலங்கைப் பரிக்கத் தின்னர்களில் நின்னர்களில் இலங்கைப் பரிக்கத் தினைக்களில் ons, Sri Lanka Department **இலந்தைப், Stij இன்ற இன்ற எனின்னர்**றை, Sri Lanka Department of Examinations, Sri Lanka கேற்றுව ලී ලංකා විභාග දෙනර්තුවේ ලී ලංකා විභාග අදහර්තුවේ වී ලංකා විභාග අදහර්තුවේ ලී ලංකා විභාග අදහර්තුවේ ලී ලංකා විභාග අදහර්තුවේ කිල

> අධානයන පොදු සහතික පනු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

රසායන විදහාව I **இ**ரசாய**னவியல் I** Chemistry I



## 16.08.2019 / 0830 - 1030

පැය දෙකයි **இரண்டு மணித்தியாலம்** Two hours

#### அறிவுறுத்தல்கள்:

- \* ஆவர்த்தன அட்டவணை வழங்கப்பட்டுள்ளது.
- 🔆 இவ்வினாத்தாள் 09 பக்கங்களைக் கொண்டுள்ளது.
- 🔆 எல்லா வினாக்களுக்கும் விடை எழுதுக.
- 🛪 கணிப்பானைப் பயன்படுத்த இடமளிக்கப்படமாட்டாது.
- 🛪 விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது சுட்டெண்ணை எழுதுக.
- 🛠 விடைத்தாளின் மறுபக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களைக் கவனமாக வாசித்துப் பின்பற்றுக.
- \* 1 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1),(2),(3),(4),(5) என இலக்கமிடப்பட்ட விடைகளில் சரியான அல்லது மிகப் பொருத்தமான விடையைத் தெரிந்தெடுத்து, அதனைக் குறித்து நிற்கும் இலக்கத்தைத் தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய விடைத்தாளில் புள்ளடி (x) இடுவதன் மூலம் காட்டுக.

அகில வாயு மாறிலி  $R=8.314\,\mathrm{J~K^{-1}\,mol^{-1}}$  அவகாதரோ மாறிலி  $N_A=6.022\times10^{23}\,\mathrm{mol^{-1}}$  பிளாங்கின் மாறிலி  $h=6.626\times10^{-34}\,\mathrm{J~s}$  ஒளியின் வேகம்  $c=3\times10^8\,\mathrm{m~s^{-1}}$ 

- 1. பின்வரும் கூற்றுகள் I ஐயும் II ஐயும் கருதுக.
  - I. அணுக்களினால் உறிஞ்சப்படும் அல்லது காலப்படும் சக்தி சொட்டாக்கப்படுகின்றது.
  - II. சிறிய துணிக்கைகள் உகந்த நிலைமைகளின் கீழ் அலை இயல்புகளைக் காட்டுகின்றன. கூற்றுகள் I இனாலும் II இனாலும் தரப்படும் கொள்கைகளை முன்மொழிந்த இரு விஞ்ஞானிகள் முறையே
  - (1) லூயி டி புரோக்லியும் அல்பேட் ஐன்ஸ்ரைனும் ஆவர்.
  - (2) மாக்ஸ் பிளாங்கும் லூயி டி புரோக்லியும் ஆவர்.
  - (3) மாக்ஸ் பிளாங்கும் ஏணெஸ்ற் இரதபோட்டும் ஆவர்.
  - (4) நீல்ஸ் போரும் லூயி டி புரோக்லியும் ஆவர்.
  - (5) லூயி டி புரோக்லியும் மாக்ஸ் பிளாங்கும் ஆவர்.
- **2.** ஓர் அணுவின் முதன்மைச் சக்திச் சொட்டெண் n=3 உடன் இணைந்த **இலத்திரன் சோடிகளின்** உயர்ந்தபட்ச எண்ணிக்கை
  - (1) 3
- (2) 4
- (3) 5
- (4) 8
- (5) 9
- 3. ஓக்சலேற்று அயன்  $\left[ {\rm C_2O_4^{2-}}/{\left({\rm O_2C-CO_2}\right)^{2-}} \right]$  இற்கு வரையத்தக்க உறுதியான பரிவுக் கட்டமைப்புகளின் எண்ணிக்கை
  - (1) 2
- (2) 3
- (3) 4
- (4) 5
- (5)

4. பின்வரும் சேர்வையின் IUPAC பெயர் என்ன?

HOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CCH<sub>2</sub>NH<sub>2</sub>

- (1) 5-hydroxy-2-oxo-1-pentanamine
- (2) 1-amino-5-hydroxy-2-oxopentane
- (3) 1-amino-5-hydroxy-2-pentanone
- (4) 5-hydroxy-1-amino-2-pentanone

- (5) 5-amino-4-oxo-1-pentanol
- 5. மின்னெதிர்த்தன்மைகளில் **மிகப் பெரிய** வேறுபாடு உள்ள மூலகச் சோடியை இனங்காண்க.
  - (1) Bஉம்Alஉம்
- (2) Be உம் Al உம்
- (3) B உம் Si உம்

- (4) Bஉம்Cஉம்
- (5) Al உம் C உம்

**6.**  $H_2NNO$ மூலக்கூறில் உள்ள (அடிப்படைக் கட்டமைப்பு : H— $N^1$ — $N^2$ —O ) இரு நைதரசன் அணுக்களையும் சுந்்நி ( $\operatorname{N}^1$  எனவும்  $\operatorname{N}^2$  எனவும் பெயரிடப்பட்டுள்ளது) உள்ள இலத்திரன் சோடிக் கேத்திரகணிதமும் வடிவமும் முறையே

|     | P           | $\sqrt{1}$  | N <sup>2</sup> |             |  |  |  |
|-----|-------------|-------------|----------------|-------------|--|--|--|
| (1) | நான்முகி    | கூம்பக      | தள முக்கோணி    | கோண         |  |  |  |
| (2) | சூம்பக      | தள முக்கோணி | தள முக்கோணி    | கோண         |  |  |  |
| (3) | தள முக்கோணி | கூம்பக      | தள முக்கோணி    | தள முக்கோணி |  |  |  |
| (4) | நான்முகி    | கூம்பக      | கோண            | தள முக்கோணி |  |  |  |
| (5) | நான்முகி    | கோண         | தள முக்கோணி    | தள முக்கோணி |  |  |  |

- 7. பின்வரும் கூற்றுகளில் பென்சீன் பற்றிய **தவறான** கூற்று யாது?
  - (1) பென்சீனின் பரிவுக் கலப்பினம் பின்வருமாறு காட்டப்படுகின்றது.

Q = Q

- (2) பென்சீனின் எல்லா ஆறு காபன் அணுக்களும் sp<sup>2</sup> கலப்பாக்கப்பட்டுள்ளன.
- (3) பென்சீனின் எவையேனும் இரு காபன் அணுக்களுக்கிடையே உள்ள பிணைப்பு நீளங்கள் ஒரே பெறுமானத்தைக் கொண்டுள்ளன.
- (4) பென்சீனின் எல்லா C—C—C பிணைப்புக் கோணங்களும் C—C—H பிணைப்புக் கோணங்களும் ஒரே பெறுமானத்தைக் கொண்டுள்ளன.
- (5) பென்சீனின் எல்லா ஐதரசன் அணுக்களும் ஒரே தளத்தில் உள்ளன.
- 8. உயர் வெப்பநிலையில்  $\mathrm{TiCl}_{_{A}}(\mathbf{g})$  ஆனது திரவ மகனீசிய உலோகம்  $(\mathrm{Mg}(\mathit{l}))$  உடன் தாக்கம் புரிந்து  $\mathrm{Ti}(\mathbf{s})$ உலோகத்தையும்  $\operatorname{MgCl}_2(l)$  ஐயும் தருகின்றது.  $\operatorname{TiCl}_4(\mathsf{g})$  இன்  $0.95\ \mathrm{kg}$  ஐ  $\operatorname{Mg}(l)$  இன்  $97.2\ \mathrm{g}$  உடன் தாக்கம் புரியச் செய்யும்போது முற்றாகச் செலவிடப்படும் தாக்கியும் (இது எல்லைப்படுத்தும் தாக்கியாகப் பொதுவாக அழைக்கப்படும்) Ti(s) உலோகம் உண்டாகும் அளவும் முறையே

மூலர்த் திணிவு:  $TiCl_4 = 190 \text{ g mol}^{-1}$ ;  $Mg = 24.3 \text{ g mol}^{-1}$ ;  $Ti = 48 \text{ g mol}^{-1}$ )

- (1) TiCl<sub>4</sub>, 96 g ஆகம்.
- (2) Mg, 96 g ஆகும்.
- (3) Mg, 48 g ஆகும்.

- (4) TiCl<sub>4</sub>, 192 g ஆகும்.
- (5) Mg, 192 g ஆகும்.
- 9. இலட்சிய வாயுச் சமன்பாட்டினை வடிவம்  $P=
  horac{RT}{M}$  இல் எடுத்துரைக்கலாம்; இங்கு ho ஆனது வாயுவின் அடர்த்தியும்

M ஆனது வாயுவின் மூலர்த் திணிவு  $(\operatorname{g} \operatorname{mol}^{-1})$  உம் P ஆனது அமுக்கம்  $(\operatorname{Pa})$  உம் T ஆனது வெப்பநிலை

(K) உம் ஆகும். R இன் அலகுகள்  $\operatorname{J}\operatorname{mol}^{-1}K^{-1}$  எனின், இச்சமன்பாட்டில் ho இன் அலகு

- (1) kg m $^{-3}$
- (2)  $g m^{-3}$  (3)  $g cm^{-3}$
- (4) g dm $^{-3}$
- (5) kg cm<sup>-3</sup>
- ${f 10.}$  பின்வரும் நீர்க் கரைசல்களின்  ${f H_2O}$  உள்ளடங்கலாக கடத்துதிறன் **குறையும்** வரிசை 0.01 M KCl, 0.1 M KCl, 0.1 M HAC; (HAC = அசற்றிக் அமிலம்; M = mol dm<sup>-3</sup>)
  - (1) H<sub>2</sub>O
- > 0.1 M HAC > 0.1 M KCl > 0.01 M KCl
- (2) 0.01 M KCl > 0.1 M HAC > 0.1 M KCl >  $H_2O$
- (3) 0.01 M KCl > 0.1 M KCl > 0.1 M HAC >  $H_2O$
- (4) 0.1 M KCl > 0.01 M KCl > 0.1 M HAC  $> H_2O$
- (5) 0.1 M HAC  $> H_2O$
- > 0.01 M KCl > 0.1 M KCl
- $11.~\mathrm{SO_2},\mathrm{SO_3},\mathrm{SO_3^{2-}},\mathrm{SO_4^{2-}},\mathrm{SCl_2}$  என்னும் இரசாயன இனங்கள் கந்தக (S) அணுவின் மின்னெதிர்த்தன்மை அதிகரிக்கும் வரிசையில் ஒழுங்குபடுத்தப்படும்போது சரியான விடை

More Past Papers at tamilguru.lk

| 12. | பின்வரும் விடைகளில் எது 25 °C இல் உள்ள ஓர் 1.775 mol dm <sup>-3</sup> MgCl <sub>2</sub> நீர்க் கரைசலில் இருக்கத்தக்க |
|-----|----------------------------------------------------------------------------------------------------------------------|
|     | உயர்ந்தபட்ச ஐதரொட்சைட்டுச் செறிவைத் தருகின்றது? இவ்வெட்டநிலையில் ${ m Mg}({ m OH})_2$ இன் கரைதிறன் பெருக்கம்         |
|     | $7.1 \times 10^{-12} \mathrm{mol}^3 \mathrm{dm}^{-9}$ ஆகும்,                                                         |

- (1)  $4.0 \times 10^{-6} \text{ mol dm}^{-3}$
- (2)  $2.0 \times 10^{-6} \text{ mol dm}^{-3}$
- (3)  $1.775 \times 10^{-12} \,\mathrm{mol}\,\mathrm{dm}^{-3}$

- (4)  $\sqrt{7.1} \times 10^{-6} \text{ mol dm}^{-3}$
- (5)  $1.0 \times 10^{-6} \text{ mol dm}^{-3}$
- 13. பின்வரும் தாக்கத்தின் பிரதான விளைபொருள் யாது?

$$\begin{array}{c} \text{CO}_{2}^{-}\text{Na}^{+} \\ \text{Na}^{+}\text{O} & \text{CH}_{2}\text{O}^{-}\text{Na}^{+} \end{array}$$

(2) 
$$CO_2^-Na^+$$
 $Na^+O^-CH_2OH$ 

$$(3) \qquad \begin{array}{c} \text{CO}_{2}^{-}\text{Na}^{+} \\ \text{HO} \qquad \begin{array}{c} \text{CH}_{2}\text{O}^{-}\text{Na}^{+} \end{array}$$

$$\begin{array}{c} \text{CO}_{2}^{-}\text{Na}^{+} \\ \text{HO} \end{array}$$

$$\begin{array}{c} \text{(5)} & \text{CO}_2\text{H} \\ \text{Na}^+\text{O}^- & \text{CH}_2\text{OH} \end{array}$$

- 14. பின்வருவனவற்றில் சரியான கூற்றை இனங்காண்க.
  - (1)  ${
    m NF_3}$  இன் பிணைப்புக் கோணம்  ${
    m NH_3}$  இன் பிணைப்புக் கோணத்திலும் பெரியது.
  - (2) கூட்டம் 17 (அல்லது 7A) இல் உள்ள மூலகங்கள் ஒட்சியேற்ற நிலைகளை —1 தொடக்கம் +7 வரைக்கும் வெளிக்காட்டுகின்றன.
  - (3) அறை வெப்பநிலையில் கந்தகத்தின் மிகவும் உறுதியான பிறதிருப்ப வடிவம் ஒருசரிவுக் கந்தகமாகும்.
  - (4) காரீயத்தின் (பென்சிற்கரி) அடர்த்தி வைரத்தின் அடர்த்தியிலும் கூடியது.
  - (5) வாயு நிலையில் அலுமினியங் குளோரைட்டு அட்டக விதியைத் திருப்தியாக்குகின்றது.
- 15. மின்னிரசாயனக் கலம்  $Mn(s) \left| Mn^{2+}(aq) \right| Br^{-}(aq) \left| Br_{2}(g) \right| Pt(s)$  இன் நியம மின்னியக்க விசை 2.27~V ஆகும்.  $Br_{2}(g) \left| Br^{-}(aq) \right|$  இன் நியமத் தாழ்த்தல் அழுத்தம் 1.09~V ஆகும்.  $Mn^{2+}(aq) \left| Mn(s) \right|$  இன் நியமத் தாழ்த்தல் அழுத்தம்
  - (1) -3.36 V
- (2) -1.18 V
- (3) 0.59 V
- (4) 1.18 V
- (5) 3.36 V
- **16.** ஒரு திரவத்தின் ஆவியாக்கலின் வெப்பவுள்ளுறை மாற்றமும் ஆவியாக்கலின் எந்திரப்பி மாற்றமும் முறையே  $45.00~{
  m kJ~mol}^{-1}, 90.0~{
  m J~K}^{-1}~{
  m mol}^{-1}$  ஆகும். திரவத்தின் கொதிநிலை
  - (1) 45.0 °C
- (2) 62.7 °C
- (3) 100.0 °C
- (4) 135.0 °C
- (5) 227.0 °C

- **17.** C<sub>6</sub>H<sub>5</sub>N ≡NCl பற்றிய **தவறான** கூற்று யாது?
  - (1) அனிலீனை  $\mathrm{HNO_2}\left(\mathrm{NaNO_2}/\mathrm{HCl}\right)$  உடன் 0-5 °C இல் தாக்கம் புரியச் செய்வதன் மூலம்  $\mathrm{C_6H_5}^+\mathrm{N}\equiv\mathrm{NCl}$  ஐப் பெறலாம்.
  - (2)  $C_6H_5^{-1}$   $\equiv$  NCl ஆனது KI உடன் தாக்கம் புரிந்து அயடோபென்சீனைத் தருகின்றது.
  - (3)  $C_6 H_5 N \equiv N$  அயன் ஓர் இலத்திரன்நாடியாகத் தாக்கம் புரியலாம்.
  - (4)  $C_6H_5N \equiv NCl$  இன் ஒரு நீர்க் கரைசலை வெப்பமாக்கும்போது அது பிரிகையடைந்து பென்சீனைத் தருகின்றது.
  - (5)  $C_6^{+} N \equiv NCl$  ஒரு கார ஊடகத்தில் பினோல்களுடன் தாக்கம் புரிந்து நிறச் சேர்வைகளைத் தருகின்றது.
- 18.  $H_2S(g)$  ஆனது  $O_2(g)$  உடன் தாக்கம் புரிந்து நீராவி  $(H_2O(g))$  ஐயும்  $SO_2(g)$  ஐயும் மாத்திரம் விளைபொருள்களாகத் தருகின்றது. மாறா வளிமண்டல அமுக்கத்திலும்  $250\,^{\circ}C$  இலும்  $H_2S(g)$  இன்  $4\,\mathrm{dm}^3$  ஆனது  $O_2(g)$  இன்  $10\,\mathrm{dm}^3$  உடன் தாக்கம் புரியும்போது கலவையின் இறுதிக் கனவளவு
  - $(1) 6 dm^3$
- (2) 8 dm<sup>3</sup>
- $(3) 10 \text{ dm}^3$
- $(4) 12 \text{ dm}^3$
- (5) 14 dm<sup>3</sup>

| 19. | ஒரு வெற்றிடமாக்கப்பட்ட விறைத்த பாத்திரத்தினுள்ளே $A(g)$ இனதும் $D(g)$ இனதும் ஒரு கலவை வெப்ப | பநிலை              |
|-----|---------------------------------------------------------------------------------------------|--------------------|
|     | $T$ இல் புகுத்தப்பட்டது. இவ்வெப்பநிலையில் $A(g),\ D(g)$ ஆகிய இரண்டும் கீழே தரப்பட்டுள்ள முத | <del>ர்</del> மைத் |
|     | தாக்கங்களுக்கேற்பப் பிரிகையடைகின்றன.                                                        |                    |

$$2A(g) \rightarrow B(g) + 3C(g)$$
; வீத மாறிலி  $k_1$   
 $D(g) \rightarrow B(g) + 2C(g)$ 

பாத்திரத்தின் தொடக்க அமுக்கம் P ஆனது இரு தாக்கிகளும் முற்றாகக் கூட்டப்பிரிகையடைந்த பின்னர்  $2.7\,P$  ஆக மாறியது. இவ்வெப்பநிலையில்  ${f A}({f g})$  இன் பிரிகையடைதலின் தொடக்க வீதம் (R ஆனது அகில வாயு மாறிலியாகும்)

(1) 
$$1.7k_1\left(\frac{P}{RT}\right)$$

$$(2) \quad 2.7k_1\left(\frac{P}{RT}\right)$$

$$(3) \quad 0.09k_1 \left(\frac{P}{RT}\right)^2$$

$$(4) \quad 2.89k_1 \left(\frac{P}{RT}\right)^2$$

$$(5) \quad 7.29k_1 \left(\frac{P}{RT}\right)^2$$

 $oldsymbol{20.}$  ஒரு சேதனச் சேர்வை  $(\mathbf{X})$  ஆனது புரோமீன் நீரை  $(\mathrm{Br_{_{\! 2}}}/\mathrm{H_{_{\! 2}}}\mathrm{O})$  நிறம்நீக்குகின்றது.  $\mathbf{X}$  ஆனது அமோனியாசேர்  $\mathrm{CuCl}$  உடன் ஒரு வீழ்படிவைத் தருவதில்லை.  $\overline{\mathbf{X}}$  ஆனது ஓர் அமில  $\mathrm{K_{2}Cr_{2}O_{2}}$  கரைசலுடன் பரிகரிக்கப்படும்போது ஒரு பச்சை நிறக் கரைசல் பெறப்படுகின்றது. 🗓 ஆனது

$$\begin{array}{ccc} \text{(1)} & & \text{OH} \\ & & | \\ & \text{CH}_3\text{CHCH}_2\text{C} \equiv \text{C--H} \end{array}$$



$$\begin{array}{cccc} & \text{OH} & & \text{OH} \\ & & & \text{OH} \\ & \text{CH}_3\text{CCH}_2\text{C} \equiv \text{C} - \text{CH}_3 & & \text{CH}_3\text{CHCH}_2\text{CH} = \text{CHCH}_3 \\ & & & \text{CH} \end{array}$$

- **21.** ஒரு  $0.10\,\mathrm{mol}\,\mathrm{dm}^{-3}$  ஒருமூல மென்னமிலக் கரைசலையும் இவ்வமிலத்தின் சோடியம் உப்பின் ஒரு  $0.10\,\mathrm{mol}$  ${
  m dm}^{-3}$  கரைசலையும் சம கனவளவுகளில் கலப்பதன்மூலம் pH ஆனது 5.0ஆகவுள்ள ஒரு தாங்கற் கரைசல் தயாரிக்கப்பட்டுள்ளது. இத்தாங்கற் கரைசலின்  $20.00~{
  m cm}^3$  ஐயும்  $0.10~{
  m mol}~{
  m dm}^{-3}$  மென்னமிலக் கரைசலின்  $90.00~{
  m cm}^3$  ஐயும் கலக்கும்போது உண்டாகும் கரைசலின் pH பெறுமானம்
- (3) 4.5
- (4) 5.5
- (5) 6.0

- 22. பின்வரும் முன்று நீர்க் கரைசல்களையும் கருதுக.
  - P ஒரு மென்னமிலம்
  - Q மென்னமிலத்தினதும் அதன் சோடியம் உப்பினதும் ஒரு சமமுலர்க் கரைசல்
  - மென்னமிலத்தினதும் ஒரு வன் மூலத்தினதும் நியமிப்பின் சமவலுப் புள்ளியில் கிடைக்கும் நியமிப்புக்

ஒவ்வொரு கரைசலும் மாறா வெப்பநிலையில் ஒரே அளவினால் ஐதாக்கப்படுகையில்  ${f P,\,Q,R}$  ஆகியவற்றின் pH பெறுமானங்கள் முறையே

- (1) குறையும், அதிகரிக்கும், மாறமாட்டாது. (2) அதிகரிக்கும், மாறமாட்டாது, குறையும்.
- (3) அதிகரிக்கும், மாறமாட்டாது, மாறமாட்டாது. (4) அதிகரிக்கும், மாறமாட்டாது, அதிகரிக்கும்.
- (5) அதிகரிக்கும், அதிகரிக்கும், அதிகரிக்கும்.

# ${f 23.}\ \ {f HOCl}, {f HClO}_2, {f HClO}_3, {f HClO}_4$ என்னும் குளோரீனின் ஒக்சோ அமிலங்கள் பற்றிய **தவறான** கூற்று

- (1)  $\mathrm{HClO}_2, \mathrm{HClO}_3, \mathrm{HClO}_4$  ஆகியவற்றில் குளோரீனைச் சுற்றி உள்ள வடிவங்கள் முறையே கோணம், கும்பகம், நான்முகி ஆகும்.
- (2)  $\mathrm{HOCl}$ ,  $\mathrm{HClO}_2$ ,  $\mathrm{HClO}_3$ ,  $\mathrm{HClO}_4$  ஆகியவற்றில் குளோரீனின் ஒட்சியேற்ற நிலைகள் முறையே +1, +3, +5, +7 ஆகும்.
- (3) ஒக்சோ அமிலங்களின் அமில வலிமை  $\mathrm{HOCl} < \mathrm{HClO}_2 < \mathrm{HClO}_3 < \mathrm{HClO}_4$  என வேறுபடுகின்றது.
- (4) இந்த ஒக்சோ அமிலங்கள் எல்லாவற்றிலும் குறைந்தபட்சம் ஓர் இரட்டைப் பிணைப்பேனும் இருக்கும்.
- (5) இந்த ஒக்சோ அமிலங்கள் எல்லாவற்றிலும் குறைந்தபட்சம் ஓர் OH கூட்டமேனும் இருக்கும்.
- **24.**  $25\,^{\circ}\mathrm{C}$  இல் ஓர் அமில நீர்க் கரைசலின் அடர்த்தி  $1.0\,\mathrm{kg}\,\mathrm{dm}^{-3}$  ஆகும். இக்கரைசலின் pH பெறுமானம்  $1.0\,$ எனின், அதன்  $H^{\dagger}$  செறிவு ppm இல்
  - (1) 0.1
- (2) 1
- (3) 100
- (4) 1000
- (5) 10,000

25. ஓசோன்  $(\mathrm{O_2})$  ஐக் கொண்ட மாசடைந்த வளியின் ஓர்  $25.0~\mathrm{g}$  மாதிரியானது மிகையான  $\mathrm{KI}$  ஐக் கொண்ட ஓர் அமிலக் கரைசலுடன் பரிகரிக்கப்படுகின்றது. இத்தாக்கத்தில் ஓசோனானது  $O_2$  ஆகவும்  $H_2O$  ஆகவும் மாற்றப்படுகின்றது. விடுவிக்கப்படும் அயடின்  $0.002~{
m mol~dm}^{-3}~{
m Na}_2{
m S}_2{
m O}_3$  கரைசலுடன் நியமிப்புச் செய்யப்படுகின்றது. தேவையான  ${
m Na}_2{
m S}_2{
m O}_3$  இன் கனவளவு  $25.0~{
m cm}^3$  ஆகும். வளி மாதிரியில் உள்ள  ${
m O}_3$ இன் திணிவுச் சதவீதம் (O = 16) (3)  $9.6 \times 10^{-3}$  (4)  $1.0 \times 10^{-2}$  (5)  $3.2 \times 10^{-2}$ 

(2)  $6.4 \times 10^{-3}$ 

- **26.** NaCl(s) ஐத் தயாரிப்பதற்குரிய (formation) போர்ன் ஹேபர் சக்கரத்தில் **இடம்பெறாத** தாக்கப் படிமுறை பின்வருவனவற்றில் யாது?

(1)  $Na^{+}(aq) + Cl^{-}(aq) \longrightarrow NaCl(aq)$  (2)  $Na(s) \longrightarrow Na(g)$ 

(3)  $Cl_2(g) \longrightarrow 2Cl(g)$ 

(4)  $Cl(g) + e \longrightarrow Cl(g)$ 

- (5)  $Na^+(g) + Cl^-(g) \longrightarrow NaCl(s)$
- **27.**  $A(g)+B(g)\longrightarrow C(g)$  என்னும் முதன்மைத் தாக்கத்தின் ஏவற் சக்தி  $\it Ea$  ஆகும். உலோகம்  $\it M$ இனால் இத்தாக்கம் ஊக்குவிக்கப்படுகின்றது. ஊக்குவிக்கப்படும் தாக்கத்தின் சக்தி வரிப்படம் கீழே தரப்பட்டுள்ளது. சக்தி



இத்தாக்கம் தொடர்பாகப் பின்வருவனவற்றில் எது எப்போதும் சரியானது?

- (1)  $Ea < E_1$
- (2)  $Ea = E_1 + E_2 + E_3 \Delta H_1$  (3)  $Ea < E_1, Ea < E_2, Ea < E_3$

(4)  $Ea > E_1 + E_2$  (5)  $Ea > \Delta H_1 + E_2$ 

- ஒரு மென்னமிலத்திற்கு  $F=rac{$  அமிலத்தின் கூட்டப்பிரிகையடைந்த அளவு எனத் தரப்படலாம். Log F அமிலத்தின் கூட்டப்பிரிகையடையாத அளவு (மடக்கை F) இற்கும் pH பெறுமானத்திற்குமிடையே உள்ள தொடர்புடைமையைப் பின்வரும் எவ்வரைபு காட்டுகின்றது?



- 29. பல்பகுதியங்கள் பற்றிய பின்வரும் கூற்றுகளில் சரியானது யாது?
  - (1) நைலோன் ஒரு கூட்டற் பல்பகுதியமாகும்.
  - (2) ரெப்லோன் ஓர் ஒடுங்கற் பல்பகுதியமாகும்.
  - (3) பேக்லைற் ஒரு நேர்கோட்டுப் பல்பகுதியமாகும்.
  - (4) இயற்கை இறப்பரின் மீள்வரும் அலகில் (மறிதரும் அலகு) 4 காபன் அணுக்கள் உள்ளன.
  - (5) ஒருபகுதியங்கள் சேர்ந்து ஒடுங்கற் பல்பகுதியங்களை உண்டாக்கும்போது சிறிய பங்கீட்டுவலு முலக்கூறுகள் நீக்கப்படுகின்றன.
- 30. ஒன்றோடொன்று தாக்கம் புரியாத இரு இலட்சிய வாயுக்கள் ஒரு திருகுப்பிடியினால் வேறாக்கப்பட்டு ஒரு விறைத்த பாத்திரத்தில் வைக்கப்பட்டுள்ளன. இத்தொகுதி மாறா வெப்பநிலையிலும் அமுக்கத்திலும் பேணப்படுகின்றது. திருகுப்பிடி திறக்கப்பட்ட பின்னர் தொகுதியின் கிப்ஸ் சக்தி, வெப்பவுள்ளுறை, எந்திரப்பி ஆகியவற்றில் உள்ள மாற்றத்தை முறையே பின்வருவனவற்றில் எது சரியாக விவரிக்கின்றது?
  - (1) குறைகின்றது, குறைகின்றது, குறைகின்றது
  - (2) குறைகின்றது, குறைகின்றது, அதிகரிக்கின்றது
  - (3) குறைகின்றது, மாறுவதில்லை, அதிகரிக்கின்றது
  - (4) குறைகின்றது, அதிகரிக்கின்றது, அதிகரிக்கின்றது
  - (5) அதிகரிக்கின்றது, அதிகரிக்கின்றது, அதிகரிக்கின்றது

- $oldsymbol{31}$  தொடக்கம்  $oldsymbol{40}$  வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (a),(b),(c),(d) என்னும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளைத் தேர்ந்தெடுக்க.
  - (a),(b) ஆகியன மாத்திரம் திருத்தமானவையெனில் (1) இன் மீதும்
  - (b),(c) ஆகியன மாத்திரம் திருத்தமானவையெனில் (2) இன் மீதும்
  - (c),(d) ஆகியன மாத்திரம் திருத்தமானவையெனில் (3) இன் மீதும்
  - (d),(a) ஆகியன மாத்திரம் திருத்தமானவையெனில் (4) இன் மீதும்

**வேறு** தெரிவுகளின் எண்ணோ சேர்மானங்களோ <u>திருத்த</u>மானவையெனில் (5) இன் மீதும் உமது விடைத்தாளில் கொடுக்கப்பட்ட அறிவுறுத்தல்களுக்கமைய விடையைக் குறிப்பிடுக.

#### மேற்கூறிய அறிவுறுத்தற் சுருக்கம்

| (1)                         | (2)                                           | (3)                                           | (4)                                           | (5)                                           |
|-----------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| (a), (b) ஆகியன<br>மாத்திரம் | ( <i>b</i> ), ( <i>c</i> ) ஆகியன<br>மாத்திரம் | ( <i>c</i> ), ( <i>d</i> ) ஆகியன<br>மாத்திரம் | ( <i>d</i> ), ( <i>a</i> ) ஆகியன<br>மாத்திரம் | <b>வேறு</b> தெரிவுகளின்<br>எண்ணோ சேர்மானங்களோ |
| திருத்தமானவை                | திருத்தமானவை                                  | திருத்தமானவை                                  | திருத்தமானவை                                  | திருத்தமானவை                                  |

- 31. ஒட்சிசன் அணுக்களையும் கந்தக அணுக்களையும் கொண்ட எளிய பங்கீட்டுவலு மூலக்கூறுகள் பற்றிப் பின்வரும் கூற்றுகளில் எது/எவை சரியானது /சரியானவை?
  - (a) H<sub>2</sub>O ஆனது ஈரியல்பான இயல்புகளைக் காட்டுகின்றது.
  - (b)  $\mathrm{H_{2}O_{2}}$  இன் கொதிநிலை  $\mathrm{H_{2}O}$  இன் கொதிநிலையிலும் உயர்ந்தது.
  - (c) ஓர் அமில ஊடகத்தில் மாத்திரம்  $\mathrm{H_2O_2}$ ஓர் ஓட்சியேற்றக் கருவியாகத் தாக்கம் புரியலாம்.
  - (d)  $\operatorname{H}_2\mathrm{S}$  ,  $\operatorname{SO}_2$  ஆகிய இரண்டும் தாழ்த்தும் கருவிகளாகத் தாக்கம் புரியும் ஆற்றலை மாத்திரம்
- f 32. பின்வரும் கூற்றுகளில் எது/எவை ஐதரோக்காபன்கள் பற்றிச் சரியானது /சரியானவை?
  - (a) எல்லா ஐதரோக்காபன்களும் மிகையான  $\mathrm{O}_2$ உடன் முற்றாகத் தாக்கம் புரியச் செய்யப்படும்போது  $\mathrm{CO}_2$ ஐயும்  $H_2^{}{\rm O}$  ஐயும் தருகின்றன.
  - (b) எல்லா அல்கைன்களும் கிறீனாட் சோதனைப் பொருள்களுடன் தாக்கம் புரிந்து அல்கைனைல் மக்னீசியம் ஏலைட்டுகளைத் தருகின்றன.
  - (c) ஒரு கிளைத்த அல்கேனின் கொதிநிலை அதே சார் மூலக்கூற்றுத் திணிவு உள்ள ஒரு கிளைக்காத அல்கேனின் கொதிநிலையிலும் உயர்ந்தது.
  - (d) ஐதரோக்காபன் எதுவும் நீர் NaOH உடன் தாக்கம் புரிவதில்லை.
- 33. ஓர் அகவெப்பத் தாக்கம் மாறா வெப்பநிலையிலும் அமுக்கத்திலும் சுயமாக நடைபெற்றால்,

  - (a) தொகுதியின் வெப்பவுள்ளுறை குறையும். (b) தொகுதியின் எந்திரப்பி அதிகரிக்கும்.
  - (c) தொகுதியின் வெப்பவுள்ளுறை அதிகரிக்கும். (d) தொகுதியின் எந்திரப்பி மாறமாட்டாது.
- **34.** உலோக அயன்களின் நீர்க் கரைசல்களினுள்ளே  $H^{}_2S(g)$  ஐ அனுப்புவதன் மூலம் அவ்வயன்களை வீழ்படியச் செய்தல் பற்றிப் பின்வரும் கூற்றுகளில் எது/எவை சரியானது/சரியானவை?
  - (a)  $H_2S(g)$  இல் அமுக்கம் குறைக்கப்படும்போது சல்பைட்டு அயன் செறிவு அதிகரிக்கின்றது.
  - (b) வெப்பநிலையை அதிகரிக்கச் செய்யும்போது சல்பைட்டு அயன் செறிவு குறைகின்றது.
  - (c) கரைசலுடன்  $\mathrm{Na_2S(s)}$  ஐச் சேர்க்கும்போது கரைந்த  $\mathrm{H_2S(aq)}$  இன் கூட்டப்பிரிகை குறைகின்றது.
  - (d) கரைசலின் pH பெறுமானம் அதிகரிக்கையில் சல்பைட்டு அயன் செறிவு குறைகின்றது.
- 35. பின்வருவனவற்றில் எது/எவை கருநாட்டப் பிரதியீட்டுத் தாக்கம்/தாக்கங்கள் ஆகும்?

$$(a) CH_3C-H + HCN \longrightarrow CH_3CHCN$$

$$(b) CH_2CH_2OH + PCl_3 \longrightarrow CH_2CH_2C$$

(b) 
$$CH_3CH_2OH + PCI_3 \longrightarrow CH_3CH_2CI$$
  
(c)  $CH_3CHCI + NaOH \longrightarrow CH_3CHOH$   
 $CH_3 \longrightarrow CH_3$ 

(d) 
$$CH_3CHCH_3 + Cl_2 \xrightarrow{hv} CH_3CCH_3$$
  
 $CH_3$ 

More Past Papers at tamilguru.lk

- **36.** வளிமண்டலத்தில் காபனீரொட்சைட்டு மட்டம் உயர்தல் தொடர்பாகப் பின்வரும் எக்கூற்று/எக்கூற்றுகள் சரியானது/சரியானவை?
  - (a) அது கடல் நீரின் அமிலத்தன்மை அதிகரிப்பதில் பங்களிப்புச் செய்கின்றது.
  - (b) அது நீர்நிலைகளின் வன்மையைக் குறைக்கின்றது.
  - (c) அது சூரியனிலிருந்து வரும்  ${\sf UV}$  கதிர்ப்பை வலிமையாக உறிஞ்சுகின்றது.
  - (d) அது அமில மழைக்குப் பங்களிப்புச் செய்வதில்லை.
- $oxed{37.}$  3d-தொகுப்பு மூலகங்கள் தொடர்பாகப் பின்வரும் எக்கூற்று/கூற்றுகள் சரியானது/சரியானவை?
  - (a) 3d-தொகுப்பு மூலகங்களிடையே Zn இற்கு அதியுயர் முதலாம் அயனாக்கச் சக்தி உண்டு.
  - (b) பிரதான கூட்டத்தில் உள்ள (s, p-தொகுப்பு) பெரும்பாலான மூலகங்களின் அயன்கள் போலன்றி 3d-தொகுப்பின் உலோக அயன்கள் விழுமிய வாயு நிலையமைப்பை அரிதாகவே பெறுகின்றன.
  - (c) 3d-தொகுப்பு மூலகங்களின் மின்னெதிர்த்தன்மைகள் ஒத்த s-தொகுப்பு மூலகங்களின் மின்னெதிர்த்தன்மைகளிலும் உயர்ந்தனவாக இருக்கின்றபோதிலும் அவற்றின் அணு ஆரைகள் ஒத்த s-தொகுப்பு மூலகங்களின் அணு ஆரைகளிலும் குறைந்தனவாகும்.
  - (d) நிறமந்த சேர்வைகளை உண்டாக்கும் 3d-தொகுப்பு மூலகங்கள்  ${
    m Ti}$  ,  ${
    m Zn}$  ஆகியனவாகும்.
- 38. முறையே  $P_A^{\circ}$ ,  $P_B^{\circ}$   $\left(P_A^{\circ} \neq P_B^{\circ}\right)$ என்னும் நிரம்பலாவி அமுக்கங்களை உடைய **A**, **B** என்னும் ஆவிப்பறப்புள்ள திரவங்கள் ஓர் இலட்சியக் கரைசலை உண்டாக்குகின்றன. ஓர் அடைத்த பாத்திரத்தில் **A**, **B** ஆகிய திரவங்களின் ஒரு கலவை அவற்றின் ஆவி அவத்தையுடன் சமநிலையில் உள்ளது. பாத்திரத்தின் கனவளவை அதிகரிக்கச் செய்து அதே வெப்பநிலையில் சமநிலையை மீளத்தாபிக்கும்போது பின்வரும் கூற்றுகளில் எது / எவை சரியானது / சரியானவை?
  - (a) A, B ஆகியவற்றின் குறித்த அளவு ஒன்று வாயு அவத்தைக்குச் செல்லும் அதே வேளை திரவ அவத்தையின் அமைப்பு மாறாமல் இருக்கின்றது.
  - (b) **A**, **B** ஆகியவற்றின் குறித்த அளவு ஒன்று வாயு அவத்தைக்குச் செல்லும் அதே வேளை வாயு அவத்தையின் அமைப்பு மாறாமல் இருக்கின்றது.
  - (c) **A**, **B** ஆகியவற்றின் குறித்த அளவு ஒன்று வாயு அவத்தைக்குச் செல்லும் அதே வேளை திரவ அவத்தையின் அமைப்பு மாறுகின்றது.
  - (d) **A**, **B** ஆகியவற்றின் குறித்த அளவு ஒன்று வாயு அவத்தைக்குச் செல்லும் அதே வேளை வாயு அவத்தையின் அமைப்பு மாறுகின்றது.
- **39.** ஒரு மென்னமிலத்தின் ஒரு நீர்க் கரைசல் தொடர்பாகப் பின்வரும் எக்கூற்று / கூற்றுகள் சரியானது / சரியானவை?
  - (a) மென்னமிலத்தின் செறிவு குறையும்போது கரைசலின் கடத்துதிறன் அதிகரிக்கின்றது.
  - (b) வெப்பநிலை அதிகரிக்கும்போது கரைசலின் கடத்துதிறன் அதிகரிக்கின்றது.
  - (c) கரைசலுடன் மேலதிக நீரைச் சேர்க்கும்போது கரைசலின் கடத்துதிறன் குறைகின்றபோதிலும் மென்னமிலத்தின் கூட்டப்பிரிகையடைந்த பின்னம் அதிகரிக்கின்றது.
  - (d) மென்னமிலக் கரைசலில் NaCl(s) ஐக் கரைக்கும்போது கடத்துதிறன் குறைகின்றது.
- $oldsymbol{40.}$  சேர்வை  $oldsymbol{A}$  தொடர்பாகப் பின்வரும் எக்கூற்று / கூற்றுகள் சரியானது / சரியானவை?



- (a) A ஆனது கேத்திரகணிதச் சமபகுதிச்சேர்வைக் காட்டுகின்றது.
- (b)  $\mathbf A$  ஆனது ஒளியியற் சமபகுதிச்சேர்வைக் காட்டுவதில்லை.
- (c) A ஐப் பிரிடீனியம் குளோரோகுரோமேற்று (PCC) உடன் தாக்கம் புரியச் செய்யும்போது கிடைக்கும் விளைபொருள் ஒளியியற் சமபகுதிச்சேர்வைக் காட்டுகின்றது.
- (d) A ஐப் பிரிடீனியம் குளோரோகுரோமேற்றுடன் தாக்கம் புரியச் செய்யும்போது கிடைக்கும் விளைபொருள் கேத்திரகணிதச் சமபகுதிச்சேர்வைக் காட்டுவதில்லை.

41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுகள் தரப்பட்டுள்ளன. அட்டவணையில் உள்ள (1),(2),(3),(4),(5) ஆகிய தெரிவுகளிலிருந்து ஒவ்வொரு வினாவுக்கும் தரப்பட்டுள்ள கூற்றுகளுக்கு மிகவும் சிறப்பாகப் பொருந்தும் தெரிவைத் தெரிந்து பொருத்தமாக விடைத்தாளிற் குறிப்பிடுக.

| தெரிவு | முதலாம்<br>கூற்று |          |         | இரண்டா  | ம் கூற்று    |            |              |        |
|--------|-------------------|----------|---------|---------|--------------|------------|--------------|--------|
| (1)    | உண்மை             | உண்மையாக | இருந்து | முதலாம் | கூற்றுக்குத் | திருத்தமான | விளக்கத்தைத் | தருவது |
| (2)    | உண்மை             | உண்மையாக | இருந்து | முதலாம் | கூற்றுக்குத் | திருத்தமான | விளக்கத்தைத் | தராதது |
| (3)    | உண்மை             | பொய்     |         |         |              |            |              |        |
| (4)    | பொய்              | உண்மை    |         |         |              |            |              |        |
| (5)    | பொய்              | பொய்     |         |         |              |            |              |        |

|     | முதலாம் கூற்று                                                                                                                                                                         | இரண்டாம் கூற்று                                                                                                                                            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41. | அலசன்களிடையே ${ m I_2}$ ஒரு திண்மமாக இருக்கும்<br>அதே வேளை ${ m Br}_2$ ஒரு திரவமாகும்.                                                                                                 | மூலக் கூற்று மேற்பரப்புப் பரப்பளவு<br>அதிகரிக்கும்போது இலண்டன் விசைகள் வலிமை<br>கூடியனவாக இருக்கும்.                                                       |
| 42. | ஒரு தரப்பட்ட அமுக்கத்தில் வெப்பநிலை<br>அதிகரிக்கும்போது N <sub>2</sub> உம் H <sub>2</sub> உம் தாக்கம் புரிந்து<br>NH <sub>3</sub> ஐ உண்டாக்கும் தாக்கத்தின் சுயவியல்பு<br>குறைகின்றது. | NH <sub>3</sub> ஐத் தரும் N <sub>2</sub> இற்கும் H <sub>2</sub> இற்குமிடையே<br>உள்ள தாக்கத்தின் எந்திரப்பி மாற்றம் எதிர்<br>(மறை) ஆகும்.                   |
| 43. | சாற்றுத் தைலங்கள் (essential oils) தாவரத்<br>திரவியங்களிலிருந்து பொதுவாகக் கொதிநீராவிமுறை<br>வடித்தல் மூலம் பிரித்தெடுக்கப்படுகின்றன.                                                  | சாற்றுத் தைலங்கள் நீரில் உயர் கரைதிறனை<br>உடையன.                                                                                                           |
| 44. | ஒரு சுய தாக்கத்திற்கு நிலைமைகள் எவையாக<br>இருந்தபோதிலும் எப்போதும் ஓர் எதிர் (மறை)க்<br>கிப்ஸ் சக்தி மாற்றம் உண்டு.                                                                    | ஒரு தாக்கம் நடைபெறும் திசையை<br>எதிர்வுகூறுவதற்கு மாறா வெப்பநிலை, மாறா<br>அமுக்க நிலைமைகளின் கீழ் மாத்திரம் கிப்ஸ்<br>சக்தி மாற்றத்தைப் பயன்படுத்தலாம்.    |
| 45. | நீரில் 1-பியூந்றனோலின் கரைதிறனானது நீரில்<br>மெதனோலின் கரைதிறனிலும் குறைவாகும்.                                                                                                        | முனைவுத்தன்மையுள்ள OH கூட்டம் சார்பாக<br>முனைவுத்தன்மையில்லாத அல்கைல்<br>கூட்டத்தின் பருமன் அதிகரிக்கும்போது நீரில்<br>அற்ககோல்களின் கரைதிறன் குறைகின்றது. |
| 46. | தாக்கம் $CH_3$ – $CH$ = $CH_2$ $\xrightarrow{HBr}$ $CH_3$ $\xrightarrow{CH}$ $CH_3$ $\xrightarrow{Br}$ இரு கருநாட்டக் கூட்டல் தாக்கமாகும்.                                             | ஒரு துணைக் காபோகற்றயன் பின்வரும் தாக்கத்தில்<br>ஒரு தாக்க இடையாக உண்டாகின்றது. $CH_3$ - $CH$ = $CH_2$ $\xrightarrow{HBr}$ $> CH_3$ - $CH$ - $CH_3$         |
|     | go againeta oneeto giladellos.                                                                                                                                                         | Br                                                                                                                                                         |
| 47. | பல கைத்தொழிற் செயன்முறைகளில் கற்கரி<br>(coke) பயன்படுத்தப்படுகின்றது.                                                                                                                  | கைத்தொழில்ரீதியாகக் கற்கரி (coke) ஓர்<br>எரிபொருளாக மாத்திரம் பயன்படுத்தப்படுகின்றது.                                                                      |
| 48. | ஒரு கீற்றோனின் காபனைல் காபன் அணுவும்<br>அதனுடன் பிணைந்த ஏனைய அணுக்களும் ஒரே<br>தளத்தில் இருக்கும்.                                                                                     | ஒரு கீற்றோனின் காபனைல் காபன் அணு sp <sup>2</sup><br>கலப்பாக்கம் செய்யப்பட்டுள்ளது.                                                                         |
| 49. | ஒரே வெப்பநிலையில் எவையேனும் இரண்டு<br>இலட்சிய வாயுக்களுக்கு ஒரே சராசரி<br>இயக்கப்பண்புச் சக்திகள் உண்டு.                                                                               | ஒரு தரப்பட்ட வெப்பநிலையில் வாயு<br>மூலக்கூறுகளின் சராசரிக் கதி அவந்றின்<br>திணிவுகளுக்கேற்ப அமைந்துகொள்ளும்.                                               |
| 50. | CFC ஆனது ஓசோன் படை நலிவடைதலுக்குப்<br>பங்களிப்புச் செய்கின்றபோதிலும் HFC இன்<br>பங்களிப்பு புறக்கணிக்கத்தக்கதாகும்.                                                                    | மேல் வளிமண்டலத்தை அடைவதற்கு முன்னர்<br>HFC முற்றாகப் பிரிகைக்கு உட்படுகின்றது.                                                                             |

#### ஆவர்த்தன அட்டவணை

|   | 1  |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 2   |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | H  |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | He  |
|   | 3  | 4  |     |     |     |     |     |     |     |     |     |     | 5   | 6   | 7   | 8   | 9   | 10  |
| 2 | Li | Be |     |     |     |     |     |     |     |     |     |     | В   | C   | N   | 0   | F   | Ne  |
|   | 11 | 12 |     |     |     |     |     |     |     |     |     |     | 13  | 14  | 15  | 16  | 17  | 18  |
| 3 | Na | Mg |     |     |     |     |     |     |     |     |     |     | Al  | Si  | P   | S   | Cl  | Ar  |
|   | 19 | 20 | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  |
| 4 | K  | Ca | Sc  | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr  |
|   | 37 | 38 | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  |
| 5 | Rb | Sr | Y   | Zr  | Nb  | Mo  | Te  | Ru  | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Te  | I   | Xe  |
|   | 55 | 56 | La- | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  |
| 6 | Cs | Ba | Lu  | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | Tl  | Pb  | Bi  | Po  | At  | Rn  |
|   | 87 | 88 | Ac- | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 |
| 7 | Fr | Ra | Lr  | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh  | FI  | Mc  | Lv  | Ts  | Og  |

| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er  | Tm  | Yb  | Lu  |
| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Ac | Th | Pa | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |

More Past Papers at tamilguru.lk

# (නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

රසායන විදාහව II **இரசாயனவியல் II** Chemistry II



## 19.08.2019 / 0830 - 1140

ஜக තුනයි **மூன்று மணித்தியாலம்** Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි **ගෙහනුය வாசிப்பு நேரம் - 10 நிமிடங்கள்** Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

- \* ஆவர்த்தன அட்டவணை பக்கம் 16 இல் வழங்கப்பட்டுள்ளது.
- \* கணிப்பாணப் பயன்படுத்த இடமளிக்கப்படமாட்டாது.
- \* அகில வாயு மாறிலி  $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- \* அவகாதரோ மாறிலி  $N_A = 6.022 \times 10^{23} \,\mathrm{mol}^{-1}$
- \* இவ்வினாத்தாளுக்கு விடை எழுதும்போது அற்கைற் கூட்டங்களைச் சுருக்கமான விதத்தில் காட்டலாம்.

**உதாரணம்** : H———— С—— கூட்டத்தை 
$$\mathrm{CH_3CH_2}$$
 — எனக் காட்டலாம்.

- $\square$  பகுதி A அமைப்புக் கட்டுரை (பக்கங்கள் 2 8)
- 🛠 எல்லா வினாக்களுக்கும் இவ்வினாத்தாளிலேயே விடை எழுதுக.
- ※ ஒவ்வொரு வினாவுக்குக் கீழும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக. கொடுக்கப்பட்டுள்ள இடம் விடைகளை எழுதுவதற்குப் போதுமானது என்பதையும் விரிவான விடைகள் எதிர்பார்க்கப்படவில்லை என்பதையும் கவனிக்க.
  - $\square$  பகுதி B உம் பகுதி C உம் கட்டுரை (பக்கங்கள் 9 15)
- \* ஒவ்வொரு பகுதியிலிருந்தும் **இரண்டு** வினாக்களைத் தெரிவுசெய்து எல்லாமாக **நான்கு** வினாக்களுக்கு விடை எழுதுக. உமக்கு வழங்கப்படும் எழுதும் தாள்களை இதற்குப் பயன்படுத்துக.
- st இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேர முடிவிலே பகுதி f A மேலே இருக்கும்படியாக f A, B, C ஆகிய மூன்று பகுதிகளின் விடைத்தாள்களையும் ஒன்றாகச் சேர்த்துக் கட்டியபின் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- \* வினாத்தாளின் B, C ஆகிய பகுதிகளை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

#### பரீட்சகர்களின் உபயோகத்திற்கு மட்டும்

| பகுதி | வினா இல. | புள்ளிகள் |
|-------|----------|-----------|
|       | 1        |           |
| A     | 2        |           |
| A.    | 3        |           |
|       | 4        |           |
|       | 5        |           |
| В     | 6        |           |
|       | 7        |           |
|       | 8        |           |
| C     | 9        |           |
|       | 10       |           |
| (     | மாத்தம்  |           |

| $\sim$ | •      |     |
|--------|--------|-----|
| 8_111  | NY IT  | T10 |
| பெ     | ALC: O | שות |
|        |        |     |

| இலக்கத்தில் |  |
|-------------|--|
| எழுத்தில்   |  |

குறியீட்டெண்கள்

| வினாத்தாள் பரீட்சகர் 2<br>புள்ளிகளைப் பரீட்சித்தவர் :<br>மேற்பார்வை செய்தவர் : | வினாத்தாள் பரீட்சகர் 1      |  |
|--------------------------------------------------------------------------------|-----------------------------|--|
|                                                                                | வினாத்தாள் பரீட்சகர் 2      |  |
| மேற்பார்வை செய்தவர் :                                                          | புள்ளிகளைப் பரீட்சித்தவர் : |  |
|                                                                                | மேற்பார்வை செய்தவர் :       |  |

#### பகுதி A - அமைப்புக் கட்டுரை

**நான்கு** வினாக்களுக்கும் விடைகளை இத்தாளிலேயே எழுதுக. (ஒவ்வொரு வினாவின் விடைக்கும் **100** புள்ளிகள் வழங்கப்படும்.) னிசுமி! எரிசித்த விசுவண்ர் இராவிஜ்ரி

- 1. (a) பின்வரும் வினாக்கள் ஆவர்த்தன அட்டவணையின் இரண்டாம் ஆவர்த்தனத்தில் உள்ள மூலகங்களுடன் தொடர்புபட்டவை. (i) தொடக்கம் (vi) வரையுள்ள பகுதிகளுக்கு விடை எழுதும்போது வழங்கப்பட்டுள்ள வெளியில் மூலகத்தின் **குறியீட்டை** எழுதுக.
  - (i) மிகக் கூடிய மின்னெதிர்த்தன்மை உள்ள மூலகத்தை இனங்காண்க (விழுமிய வாயுவைப் புறக்கணிக்க).
  - (ii) மின்னைக் கடத்தும் பிறதிருப்ப வடிவம் உள்ள மூலகத்தை இனங்காண்க. ......
  - (iii) அளவில் மிகப் பெரிய ஓரணு அயனை உண்டாக்கும் மூலகத்தை இனங்காண்க (இவ்வயன் உறுதியான அயனாக இருக்க வேண்டும்). .......
  - (iv) *p* இலத்திரன்கள் **இல்லாத**, ஆனால் ஓர் உறுதியான *s* நிலையமைப்பு உள்ள மூலகத்தை இனங்காண்க.
  - (v) மிகக் கூடிய முதலாம் அயனாக்கச் சக்தி உள்ள மூலகத்தை இனங்காண்க.

(24 புள்ளிகள்)

(b) (i) மூலக்கூறு SO<sub>3</sub>F<sub>2</sub> இற்கு மிகவும் ஏற்றுக்கொள்ளத்தக்க லூயியின் புள்ளி-கோட்டுக் கட்டமைப்பை வரைக. அதன் அடிப்படைக் கட்டமைப்பு கீழே தரப்பட்டுள்ளது.

(ii) மூலக்கூறு H<sub>3</sub>N<sub>3</sub>O இற்கு மிகவும் உறுதியான லூயியின் புள்ளி-கோட்டுக் கட்டமைப்பு கீழே காட்டப்பட்டுள்ளது. இம்மூலக்கூறுக்கு மேலும் இரண்டு லூயியின் புள்ளி-கோட்டுக் கட்டமைப்புகளை (பரிவுக் கட்டமைப்புகளை) வரைக. நீர் வரைந்த மிக உறுதியற்ற கட்டமைப்பின் கீழ் 'உறுதியற்றது' என எழுதுக.

$$H$$
 $\stackrel{\circ}{-}$  $\stackrel{\circ}{N}$  $\stackrel{\circ}{-}$  $\stackrel{\circ}{N}$  $\stackrel{\circ}{-}$  $\stackrel{\circ}{H}$ 

- (iii) பின்வரும் லூயியின் புள்ளி-கோட்டுக் கட்டமைப்பை அடிப்படையாய்க் கொண்டு அட்டவணையில் தரப்பட்டுள்ள C, N, O அணுக்களின்
  - I. அணுவைச் சுற்றி உள்ள VSEPR சோடிகள்
  - II. அணுவைச் சுற்றி உள்ள இலத்திரன் சோடிக் கேத்திரகணிதம்
  - III. அணுவைச் சுற்றி உள்ள வடிவம்
  - IV. அணுவின் கலப்பாக்கம்

ஆகியவற்றைக் குறிப்பிடுக.

..⊖ அணுக்கள் பின்வருமாறு இலக்கமிடப்பட்டுள்ளன. : O:

|              | $O_2$         |
|--------------|---------------|
|              |               |
| $F-O^1-N^2-$ | $-C^3-N^4-CI$ |

|      |                                | $O^1$ | $N^2$ | C³ | N <sup>4</sup> |
|------|--------------------------------|-------|-------|----|----------------|
| I.   | VSEPR சோடிகள்                  |       |       |    |                |
| II.  | இலத்திரன் சோடிக் கேத்திரகணிதம் | ,     |       |    |                |
| III. | வடிவம்                         |       |       |    |                |
| IV.  | கலப்பாக்கம்                    |       |       |    |                |

|   | 2 |  |
|---|---|--|
| _ | 3 |  |

| சுட்டெண் | : |  |
|----------|---|--|

| (iv)        |                                                                      | டாவதுடன்                                                                                                                                             |                                                                              |                                                                                                                         |                                                                                                                                               |                                                 |                                                          |                                                                 |                                                      |                                                      |                                                          |
|-------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|
|             | -                                                                    |                                                                                                                                                      | i) இல் s                                                                     | உள்ளவாறாகு                                                                                                              | 5D).                                                                                                                                          |                                                 |                                                          |                                                                 |                                                      |                                                      |                                                          |
|             | I. F                                                                 | -O1                                                                                                                                                  |                                                                              |                                                                                                                         |                                                                                                                                               | $O_1$                                           | •••••                                                    |                                                                 |                                                      | •                                                    |                                                          |
|             | II. C                                                                | $N^{1}$ — $N^{2}$                                                                                                                                    | $O^1$                                                                        | • • • • • • • • • • • • • • • •                                                                                         | **********                                                                                                                                    | $N^2$                                           |                                                          |                                                                 |                                                      | •                                                    |                                                          |
|             | III. N                                                               | $V^2$ — $C^3$                                                                                                                                        | $N^2$                                                                        | • • • • • • • • • • • • • • • • • • • •                                                                                 | *****                                                                                                                                         | $C_3$                                           |                                                          |                                                                 |                                                      |                                                      |                                                          |
|             | IV. C                                                                | $^{3}-N^{4}$                                                                                                                                         | $C^3$                                                                        |                                                                                                                         |                                                                                                                                               | $N^4$                                           |                                                          |                                                                 |                                                      |                                                      |                                                          |
|             | V. N                                                                 | V <sup>4</sup> —O <sup>5</sup>                                                                                                                       | $N^4$                                                                        |                                                                                                                         | •••••                                                                                                                                         | $O^5$                                           |                                                          |                                                                 | • • • • • • • • •                                    |                                                      |                                                          |
|             | VI. N                                                                | √4—Cl                                                                                                                                                | $N^4$                                                                        |                                                                                                                         |                                                                                                                                               | Cl                                              |                                                          |                                                                 | · · · · · · · · · · · ·                              |                                                      |                                                          |
| (v)         | உண்                                                                  |                                                                                                                                                      | சம்பந்த                                                                      | 5ப்ப <b>டு</b> ம் அணு                                                                                                   | புள்ளி-கோட்<br>ப ஓபிற்றல்கன                                                                                                                   | _                                               |                                                          |                                                                 | -                                                    |                                                      | -                                                        |
|             | I. N                                                                 | $I^2$ — $C^3$                                                                                                                                        | N <sup>2</sup>                                                               |                                                                                                                         |                                                                                                                                               | $C_3$                                           |                                                          | • • • • • • • •                                                 |                                                      | • •                                                  |                                                          |
|             | II. C                                                                | $N^{4}$ $N^{4}$                                                                                                                                      | $\mathbb{C}^3$                                                               |                                                                                                                         | ••••                                                                                                                                          | $N^4$                                           |                                                          |                                                                 |                                                      |                                                      |                                                          |
| (vi)        |                                                                      |                                                                                                                                                      |                                                                              |                                                                                                                         | ாயியின் புள்ல<br>லப்பட்டிருக்குப்                                                                                                             |                                                 | ட்டுக்                                                   | கட்டபை                                                          | <b>மப்பி</b> ல்                                      | <b>Q</b> G !                                         | <b>இரட்டை</b> ட்                                         |
|             | <br>குறி                                                             | <u>ഉ</u>                                                                                                                                             | மது உ                                                                        | தாரணத்தில்                                                                                                              |                                                                                                                                               | ந்பட்ட<br>ந்தள்                                 | அணு<br>ஆவர்த                                             | க்கள் இ<br>ந்தன அ                                               | )டம்பெற<br>ட்டவகை                                    | க்கூடா                                               | து.                                                      |
| (i)         | n, l, m                                                              | <u>உ</u><br>இர<br>ர என்னும்                                                                                                                          | .மது உ<br>ரண்டாம்<br>மூன்று                                                  | தாரணத்தில்<br>ஆவர்த்தன<br>சக்திச் செ                                                                                    | 3 இற்கு மே                                                                                                                                    | ற்பட்ட<br>ங்கள்<br>_்டுப்படு<br>                | அணு<br>ஆவர்?<br>த்தப்ட<br>அணு                            | க்கள் இ<br>ந்தன அ<br>பட வேல<br>ஓபிற்றவ்                         | )டம்பெற<br>ட்டவகை<br>எடும்.<br>் விவரில              | க்கூடா<br>னயின்<br>( <b>52</b> ட<br>க்கப்ப(          | து.<br>முதலாம்<br><b>ள்ளிகள்</b> )<br>செிறது.            |
| (i)         | n, l, m                                                              | <u>உ</u><br>இர<br>ர என்னும்                                                                                                                          | .மது உ<br>ரண்டாம்<br>மூன்று                                                  | தாரணத்தில்<br>ஆவர்த்தன<br>சக்திச் செ                                                                                    | ் 3 இற்கு மே<br>உள்ள மூலச<br>ங்களுக்கு ம<br>ரட்டெண்களில்                                                                                      | ற்பட்ட<br>ங்கள்<br>_்டுப்படு<br>                | அணு<br>ஆவர்;<br>த்தப்ப<br>அணு<br>பரையுப்                 | க்கள் இ<br>ந்தன அ<br>பட வேல<br>ஓபிற்றவ்                         | டம்பெற<br>ட்டவகை<br>எடும்.<br>உவிவரிக<br>நம் பெட்ட   | க்கூடா<br>னயின்<br>( <b>52</b> ட<br>க்கப்ப(          | து.<br>முதலாம்<br><b>ள்ளிகள்</b> )<br>செிறது.            |
| (i)         | n, l, m                                                              | <u>உ</u><br>இர<br>ர என்னும்<br>சக்திச் செ                                                                                                            | .மது உ<br>ரண்டாம்<br>மூன்று                                                  | தாரணத்தில்<br>ஆவர்த்தன<br>சக்திச் செ<br>ர்களையும் அ                                                                     | 3 இந்கு மே<br>உள்ள மூலச<br>ங்களுக்கு ம<br>ரட்டெண்களில்<br>பூணு ஓபிற்றலில்                                                                     | ற்பட்ட<br>ங்கள்<br>_்டுப்படு<br>                | அணு<br>ஆவர்த்<br>தத்தப்ப<br>அணு<br>பரையும்<br><b>அணு</b> | க்கள் இ<br>ந்தன அ<br>பட வேல<br>ஓபிற்றல்<br>பின்வமு              | டம்பெற<br>ட்டவகை<br>எடும்.<br>உவிவரிக<br>நம் பெட்ட   | க்கூடா<br>னயின்<br>( <b>52</b> ட<br>க்கப்ப(          | து.<br>முதலாம்<br><b>ள்ளிகள்</b> )<br>செிறது.            |
| (i)         | n, l, n<br>உரிய                                                      | <u>உ</u><br>இர<br>ர என்னும்<br>சக்திச் செ                                                                                                            | .மது உ<br>ரண்டாம்<br>மூன்று                                                  | தாரணத்தில்<br>ஆவர்த்தன<br>சக்திச் செ<br>ர்களையும் அ                                                                     | ் 3 இற்கு மே<br>உள்ள மூலக<br>ங்களுக்கு ம<br>ரட்டெண்களின்<br>அணு ஓபிற்றலின்<br><i>m<sub>1</sub></i>                                            | ற்பட்ட<br>ங்கள்<br>_்டுப்படு<br>                | அணு<br>ஆவர்த்<br>தத்தப்ப<br>அணு<br>பரையும்<br><b>அணு</b> | க்கள் இ<br>ந்தன அ<br>பட வேல<br>ஓபிற்றல்<br>ஓபிற்றல்             | டம்பெற<br>ட்டவகை<br>எடும்.<br>உவிவரிக<br>நம் பெட்ட   | க்கூடா<br>னயின்<br>( <b>52</b> ட<br>க்கப்ப(          | து.<br>முதலாம்<br><b>ள்ளிகள்</b> )<br>செிறது.            |
| (i)         | <i>n, l, m</i><br>உரிய<br>I.                                         | <u>உ</u><br>இர<br>சக்திச் செ<br><b>n</b>                                                                                                             | .மது உ<br>ரண்டாம்<br>மூன்று                                                  | தாரணத்தில்<br>ஆவர்த்தன<br>சக்திச் சொ<br>ர்களையும் அ                                                                     | 3 இற்கு மே<br>உள்ள மூலக<br>ங்களுக்கு ம<br>எட்டெண்களில்<br>புணு ஓபிற்றலில்<br><i>m<sub>i</sub></i><br>+1                                       | ற்பட்ட<br>ங்கள்<br>_்டுப்படு<br>                | அணு<br>ஆவர்த்<br>தத்தப்ப<br>அணு<br>பரையும்<br><b>அணு</b> | க்கள் இ<br>ந்தன அ<br>பட வேல<br>ஓபிற்றல்<br>ஓபிற்றல்             | டம்பெற<br>ட்டவகை<br>எடும்.<br>உவிவரிக<br>நம் பெட்ட   | க்கூடா<br>னயின்<br>( <b>52</b> ட<br>க்கப்ப(          | து.<br>முதலாம்<br><b>ள்ளிகள்</b> )<br>செிறது.            |
| (i)<br>(ii) | <i>n, l, n</i><br>உரிய<br>I.<br>II.<br>அடை                           | உ<br>இர<br>சக்திச் செ<br><b>n</b><br>                                                                                                                | .மது உ<br>ரண்டாம்<br>மூன்று<br>எட்டென                                        | தாரணத்தில்<br>ஆவர்த்தன<br>சக்திச் சொ<br>ள்களையும் அ<br>பூ                                                               | 3 இற்கு மே<br>உள்ள மூல்க<br>ங்களுக்கு ம<br>எட்டெண்களின்<br>டிணு ஓபிற்றலின்<br>#1<br>+1<br>-2                                                  | ற்பட்ட<br>ங்கள்<br>ட்டுப்படு<br>இர் ,<br>ன் பெட | அணு<br>ஆவர்<br>இத்தப்ப<br>அணு<br>பரையும்<br><b>அண</b>    | க்கள் இ<br>ந்தன அ<br>நட வேல<br>ஓபிற்றல்<br>ஓபிற்ற<br>3 <i>p</i> | டுடம்பெற<br>ட்டவலை<br>எடும்.<br>உவிவரில<br>நம் பெட்ட | க்கூடா<br>ஸபின்<br><b>(52</b> ட<br>க்கப்ப(<br>ழகளில் | து.<br>முதலாம்<br><b>ள்ளிகள்</b> ,<br>த்கிறது.<br>எழுதுக |
| (ii)        | n, l, n<br>உரிய<br>I.<br>II.<br>அடை<br>ஒழுங்கு                       | உ<br>இர<br>சக்திச் செ<br><b>n</b><br>                                                                                                                | .மது உ<br>ரண்டாம்<br>மூன்று<br>எட்டென<br>எர்ல் கர<br>(காரண                   | தாரணத்தில்<br>அவர்த்தன<br>சக்திச் சொ<br>ள்களையும் அ<br>ப<br>2<br>                                                       | 3 இற்கு மே<br>உள்ள மூல்க<br>ங்களுக்கு ம<br>எட்டெண்களின்<br>டிணு ஓபிற்றலின்<br>#1<br>+1<br>-2                                                  | ற்பட்ட<br>ங்கள்<br>ட்டுப்படு<br>இர் ,<br>ன் பெட | அணு<br>ஆவர்<br>இத்தப்ப<br>அணு<br>பரையும்<br><b>அண</b>    | க்கள் இ<br>ந்தன அ<br>நட வேல<br>ஓபிற்றல்<br>ஓபிற்ற<br>3 <i>p</i> | டுடம்பெற<br>ட்டவலை<br>எடும்.<br>உவிவரில<br>நம் பெட்ட | க்கூடா<br>ஸபின்<br><b>(52</b> ட<br>க்கப்ப(<br>ழகளில் | து.<br>முதலாம்<br><b>ள்ளிகள்</b> ,<br>த்கிறது.<br>எழுதுக |
| (ii)        | n, l, n<br>உரிய<br>I.<br>III.<br>அடை<br>ஒழுங்கு<br>I. LiI            | உ<br>இர<br>சக்திச் செ<br><b>ா</b><br>ப்புக்குறிக்<br>குபடுத்துக<br>ச, LiI, KF                                                                        | மது உ<br>ரண்டாம்<br>மூன்று<br>எட்டென<br>எட்டென<br>(காரண்<br>(உருடு           | தாரணத்தில்<br>அவர்த்தன<br>சக்திச் சொ<br>ள்களையும் அ<br>ப<br>2<br>                                                       | 3 இற்கு மே<br>உள்ள மூல்க<br>ங்களுக்கு ம<br>பட்டெண்களில்<br>புணு ஓபிற்றலில்<br><i>m<sub>i</sub></i><br>+1<br>—2<br>எட்டுயல்பு உ<br>சியமில்லை). | ற்பட்ட<br>ங்கள்<br>ட்டுப்படு<br>இர் ,<br>ன் பெட | அணு<br>ஆவர்<br>இத்தப்ப<br>அணு<br>பரையும்<br><b>அண</b>    | க்கள் இ<br>ந்தன அ<br>நட வேல<br>ஓபிற்றல்<br>ஓபிற்ற<br>3 <i>p</i> | டுடம்பெற<br>ட்டவலை<br>எடும்.<br>உவிவரில<br>நம் பெட்ட | க்கூடா<br>ஸபின்<br><b>(52</b> ட<br>க்கப்ப(<br>ழகளில் | து.<br>முதலாம்<br><b>ள்ளிகள்</b> ,<br>த்கிறது.<br>எழுதுக |
| (ii)        | n, l, n<br>உரிய<br>I.<br>II.<br>அடை<br>ஒழுங்<br>I. LiI               | உ<br>இர<br>சக்திச் செ<br><b>ா</b><br>ப்புக்குறிகள<br>தபடுத்துக<br>F, LiI, KF                                                                         | . மது உ<br>ரண்டாம்<br>மூன்று<br>எட்டென<br>எட்டென<br>(காரண<br>( உரு           | தாரணத்தில்<br>அவர்த்தன<br>சக்திச் சொ<br>ர்களையும் அ<br>ப<br>2<br>பட்டப்பட்டுள்ள<br>எங்கள் அவக<br>தநிலை)                 | 3 இற்கு மே<br>உள்ள மூலக<br>ஙக்களுக்கு ம<br>எட்டெண்களின்<br>அணு ஓபிற்றலின்<br><i>m<sub>1</sub></i><br>+1<br>—2<br>எ இயல்பு உ<br>சியமில்லை).    | ற்பட்ட<br>ங்கள்<br>ட்டுப்படு<br>இர் ,<br>ன் பெட | அணு<br>ஆவர்<br>இத்தப்ப<br>அணு<br>பரையும்<br><b>அண</b>    | க்கள் இ<br>ந்தன அ<br>நட வேல<br>ஓபிற்றல்<br>ஓபிற்ற<br>3 <i>p</i> | டுடம்பெற<br>ட்டவலை<br>எடும்.<br>உவிவரில<br>நம் பெட்ட | க்கூடா<br>ஸபின்<br><b>(52</b> ட<br>க்கப்ப(<br>ழகளில் | து.<br>முதலாம்<br><b>ள்ளிகள்</b> ,<br>த்கிறது.<br>எழுதுக |
| (ii)        | n, l, n<br>உரிய<br>I.<br>II.<br>அடை<br>ஒழுங்<br>I. LiI<br>           | உ<br>இர<br>சக்திச் செ<br><b>n</b><br>3<br>ப்புக்குறிக்க<br>தபடுத்துக<br>F, LiI, KF<br><                                                              | மது உ<br>ரண்டாம்<br>மூன்று<br>எட்டென<br>(காரண<br>( உருஞ<br>, NF <sub>5</sub> | தாரணத்தில்<br>அவர்த்தன<br>சக்திச் சொ<br>ள்களையும் அ<br>ப<br>ப<br>2<br>ப<br>பட்டப்பட்டுள்ள<br>எங்கள் அவச                 | 3 இற்கு மே<br>உள்ள மூலக<br>ங்களுக்கு ம<br>எட்டெண்களின்<br>சுணு ஓபிற்றலில்<br>$m_t$<br>+1<br>—2<br>எ இயல்பு உ<br>சியமில்லை).                   | ற்பட்ட<br>ங்கள்<br>ட்டுப்படு<br>இர் ,<br>ன் பெட | அணு<br>ஆவர்<br>இத்தப்ப<br>அணு<br>பரையும்<br><b>அண</b>    | க்கள் இ<br>ந்தன அ<br>நட வேல<br>ஓபிற்றல்<br>ஓபிற்ற<br>3 <i>p</i> | டுடம்பெற<br>ட்டவலை<br>எடும்.<br>உவிவரில<br>நம் பெட்ட | க்கூடா<br>ஸபின்<br><b>(52</b> ட<br>க்கப்ப(<br>ழகளில் | து.<br>முதலாம்<br><b>ள்ளிகள்</b> ,<br>த்கிறது.<br>எழுதுக |
| (ii)        | n, l, n<br>உரிய<br>I.<br>II.<br>அடை<br>ஒழுங்<br>I. LiI<br>           | உ<br>இர<br>சக்திச் செ<br><b>n</b><br>3<br>ப்புக்குறிக்க<br>தபடுத்துக<br>F, LiI, KF<br><<br>O <sub>2</sub> , NO <sub>4</sub> <                        | மது உ<br>ரண்டாம்<br>மூன்று<br>எட்டென<br>(காரண<br>( உரும<br>, NF <sub>5</sub> | தாரணத்தில்<br>அவர்த்தன<br>சக்திச் சொ<br>ள்களையும் அ<br>ப<br>ப<br>2<br>ப<br>பட்டப்பட்டுள்ள<br>எங்கள் அவச<br>குநிலை)<br>< | 3 இற்கு மே<br>உள்ள மூலக<br>ங்களுக்கு ம<br>எட்டெண்களின்<br>சுணு ஓபிற்றலில்<br>$m_t$<br>+1<br>—2<br>எ இயல்பு உ<br>சியமில்லை).                   | ற்பட்ட<br>ங்கள்<br>ட்டுப்படு<br>இர்<br>ன் பெய   | அணு<br>ஆவர்<br>இத்தப்ப<br>அணு<br>பரையும்<br><b>அண</b>    | க்கள் இ<br>ந்தன அ<br>நட வேல<br>ஓபிற்றல்<br>ஓபிற்ற<br>3 <i>p</i> | டுடம்பெற<br>ட்டவலை<br>எடும்.<br>உவிவரில<br>நம் பெட்ட | க்கூடா<br>ஸபின்<br><b>(52</b> ட<br>க்கப்ப(<br>ழகளில் | து.<br>முதலாம்<br><b>ள்ளிகள்</b> ,<br>த்கிறது.<br>எழுதுக |
| (ii)        | n, l, n<br>உரிய<br>I.<br>II.<br>அடை<br>ஒழுங்<br>I. LiI<br><br>II. NO | <sup>2</sup><br>இர<br>சக்திச் செ<br><b>n</b><br>3<br>ப்புக்குறிக்க<br>தபடுத்துக<br>F, LiI, KF<br><<br>O <sub>2</sub> , NO <sub>4</sub> <<br>OCI, NOC | மது உரண்டாம் மூன்று<br>எட்டென<br>கோரண<br>, NF <sub>5</sub>                   | தாரணத்தில்<br>அவர்த்தன<br>சக்திச் சொ<br>ள்களையும் அ<br>ப<br>ப<br>2<br>ப<br>பட்டப்பட்டுள்ள<br>எங்கள் அவச<br>குநிலை)<br>< | 3 இற்கு மே<br>உள்ள மூல்க<br>ங்களுக்கு மு<br>எட்டெண்களில்<br>இயற்றலில்<br>ரா<br>+1<br>-2<br>எ இயல்பு உ<br>சியமில்லை).                          | ற்பட்ட<br>ங்கள்<br>ட்டுப்படு<br>இர்<br>ன் பெய   | அணு<br>ஆவர்<br>இத்தப்ப<br>அணு<br>பரையும்<br><b>அண</b>    | க்கள் இ<br>ந்தன அ<br>நட வேல<br>ஓபிற்றல்<br>ஓபிற்ற<br>3 <i>p</i> | டுடம்பெற<br>ட்டவலை<br>எடும்.<br>உவிவரில<br>நம் பெட்ட | க்கூடா<br>ஸபின்<br><b>(52</b> ட<br>க்கப்ப(<br>ழகளில் | து.<br>முதலாம்<br><b>ள்ளிகள்</b> ,<br>த்கிறது.<br>எழுதுக |

| இப்பகுதியில |
|-------------|
| எத்கையும்   |
| ஈழுதுதல்    |
| ஆங்கு.      |

| இர<br>ஆன<br>உ ன<br>புரிய | என்பது ஆவர்த்தன அட்டவணையில் உள்ள ஓர் s-தொகுப்பு மூலகமாகும். X இன் முதலாம், ண்டாம், மூன்றாம் அயனாக்கச் சக்திகள் kJ mol <sup>-1</sup> இல் முறையே 738, 1451, 7733 ஆகும். X ஈது வெந்நீருடன் மெதுவாகத் தாக்கம் புரிந்து $H_2(g)$ ஐ விடுவித்து அதன் ஐதரொட்சைட்டையும் ண்டாக்குகிறது. அந்த ஐதரொட்சைட்டு ஒரு மூலமாகும். X ஆனது ஐதான அமிலங்களுடன் தாக்கம் பும்போதும் $H_2(g)$ ஐ விடுவிக்கின்றது. X ஆனது வளியில் ஒரு பிரகாசமான வெள்ளொளியுடன் கின்றது. நீரின் வன்மைக்கு X இன் கற்றயன் பங்களிப்புச் செய்கின்றது. |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)                      | X 恕 இனங்காண்க. X:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (ii)                     | f X இன் தரை நிலை இலத்திரன் நிலையமைப்பை எழுதுக.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (iii)                    | X ஆனது வளியில் எரியும்போது உண்டாகும் <b>இரண்டு</b> சேர்வைகளின் இரசாயனச் சூத்திரங்களை<br>எழுதுக.                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          | ஆகியன.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (iv)                     | ஆவர்த்தன அட்டவணையில் 🗴 அடங்கும் கூட்டத்தில் உள்ள மூலகங்களின் தரப்பட்ட<br>சேர்வைகளைக் கருதுக. கூட்டத்தில் கீழ்நோக்கிச் செல்கையில் காட்டப்பட்டுள்ள இயல்பு<br><b>அதிகரிக்கின்றதா, குறைகின்றதா</b> எனத் தரப்பட்டுள்ள பெட்டிகளில் எழுதுக.                                                                                                                                                                                                                                                                |
|                          | I. நீரில் சல்பேற்றுகளின் கரைதிறன்                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | II. நீரில் ஐதரொட்சைட்டுகளின் கரைதிறன்                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | III. உலோகக் காபனேற்றுகளின் வெப்ப உறுதிநிலை                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | III இல் உள்ள உமது விடைக்குக் காரணங்களைத் தருக.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (v)                      | $H_2(g),O_2(g),N_2(g)$ ஆகியவற்றுடன் $X$ ஐ ஒத்த ஒரு விதத்தில் தாக்கம் புரியும், ஆனால் $X$ அடங்கும் கூட்டத்திற்கு உரியதாக <b>அமையாத</b> ஆவர்த்தன அட்டவணையின் $s$ -தொகுப்பின் மூலகத்தை இனங்காண்க.                                                                                                                                                                                                                                                                                                      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (vi)                     | நீரின் வன்மைக்குப் பங்களிப்புச் செய்யும் வேறோர் <b>உலோக அயனை</b> இனங்காண்க.                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (vii)                    | நீரின் வன்மையை அகற்றுவதற்குப் பெரும்பாலும் பயன்படுத்தப்படும் சேர்வையை இனங்காண்க.                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (viii)                   | சேதன இரசாயனவியலில் நன்றாக அறியப்பட்ட ஒரு சோதனைப் பொருளின் ஒரு கூறு <b>X</b><br>ஆகும். இச்சோதனைப் பொருளின் <b>பெயரைத்</b> தருக.                                                                                                                                                                                                                                                                                                                                                                      |
|                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| சோதனைக் குழாய்                                    | கரைசலின் தோற்றம்                        | ОПТИ                                                |
|---------------------------------------------------|-----------------------------------------|-----------------------------------------------------|
| A                                                 |                                         | வாயு                                                |
| B                                                 | நிறமற்றது                               | நிறமும் மணமும் இல்லை                                |
| C                                                 | நிறமற்றது                               | செங்கபில நிறமும் காரமான மணமும் உண்டு                |
| D                                                 | நிறமற்றது<br>கலங்கற்றன்மை உள்ளது        | நிறமற்றது; கூழ்முட்டையின் மணம் உள்ளது               |
| E                                                 | நிறமற்றது                               | நிறமற்றது; காரமான மணம் உண்டு<br>வெளிவருவதில்லை      |
| இனங்காண்க.                                        |                                         | தழாய்கள் ஒவ்வொன்றிலும் உள்ள கரைசல்களை<br><b>E</b> : |
| B:                                                | <b>D</b> :                              | ***************************************             |
| இரசாயனச் சமக                                      | ர்பாடுகளை எழுதுக.                       | ல் நடைபெறும் தாக்கங்களுக்குரிய சமன்படுத்திய         |
| <b>B</b> இல் :                                    |                                         |                                                     |
| C 奧的 :                                            | • • • • • • • • • • • • • • • • • • • • |                                                     |
| D இல் :                                           | • • • • • • • • • • • • • • • • • • • • |                                                     |
| இரசாயனச் சோ <sub>?</sub><br><b>குறிப்பு :</b> அவத | தனை வீதம் எழுதுக.<br>எனிப்புகளும் தேவை. | க்கள் ஒவ்வொன்றையும் இனங்காண்பதற்கு ஓர்              |
| <br>C <b>奧</b> 畝 :                                |                                         |                                                     |
| <b>D</b> இல் :                                    |                                         |                                                     |
| •••                                               | **************************              | (50 புள்ளிகள்)                                      |
|                                                   | அடன் தொடர்புபட்ட வெப்ப மா               | · · · · · · · · · · · · · · · · · · ·               |

| (ii)   |                                                                                                                                                                                                                                                                                                               | இடித்<br>எருஇத்த<br>எஜ்லைந் |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|        |                                                                                                                                                                                                                                                                                                               |                             |
| (iii)  | தாக்கம் $MX(s) + H_2O(l) \longrightarrow M^+(aq) + X^-(aq)$ உடன் தொடர்புபட்ட வெப்பவுள்ளுறை மாற்றத்தை $(kJ \ mol^{-1} \ \ gai)$ கணிக்க.                                                                                                                                                                        |                             |
|        |                                                                                                                                                                                                                                                                                                               |                             |
|        |                                                                                                                                                                                                                                                                                                               |                             |
| (iv)   | 200.00 cm³ நீரைப் பயன்படுத்தி இப்பரிசோதனை செய்யப்பட்டால், வெப்பநிலை மாற்றம் மேற்குறித்த<br>பெறுமானத்திலும் கூடியதாக இருக்குமென நீர் எதிர்பார்க்கின்றீரா? உமது விடையை விளக்குக.                                                                                                                                |                             |
|        |                                                                                                                                                                                                                                                                                                               |                             |
| (v)    | தொகுதியின் (கரைசலின்) வெப்பநிலை மாறும் விதத்தை வெப்பநிலை - நேர வளையியை வரைவதன்<br>மூலம் காட்டுக.                                                                                                                                                                                                              |                             |
|        | <b>குறிப்பு :</b> இறுதியில் தொகுதி அறை வெப்பநிலைக்கு (25.0 °C) வருகின்றது.<br>வெப்பநிலை ∤                                                                                                                                                                                                                     |                             |
|        |                                                                                                                                                                                                                                                                                                               |                             |
|        | > நேரம்                                                                                                                                                                                                                                                                                                       |                             |
| (vi)   | இப்பரிசோதனையில் உலோகக் கிண்ணத்திற்குப் பதிலாகப் பிளாத்திக்குக் கிண்ணம் ஏன்<br>பயன்படுத்தப்படுகின்றதென விளக்குக.                                                                                                                                                                                               |                             |
|        |                                                                                                                                                                                                                                                                                                               |                             |
|        |                                                                                                                                                                                                                                                                                                               |                             |
| (vii)  | 25.0°C வெப்பநிலையிலும் 1.0 atm அமுக்கத்திலும் நீரில் $MX(s)$ கரைவதற்குக் கிப்ஸ் சக்தி மாற்றம் $(\Delta G)$ ஆனது $-26.0  \text{kJ mol}^{-1}$ எனக் கணிக்கப்பட்டது. மேலே கணிக்கப்பட்ட வெப்பவுள்ளுறை மாற்றத்தைப் பயன்படுத்தி 25.0°C இலே நீரில் $MX(s)$ இன் கரைதலுக்கு எந்திரப்பி மாற்றம் $(\Delta S)$ ஐக் கணிக்க. |                             |
|        |                                                                                                                                                                                                                                                                                                               |                             |
|        |                                                                                                                                                                                                                                                                                                               |                             |
|        |                                                                                                                                                                                                                                                                                                               |                             |
|        |                                                                                                                                                                                                                                                                                                               |                             |
| (viii) | வெப்பநிலை அதிகரிக்கும்போது MX(s) இன் கரைதிறன் அதிகரிக்கும் அல்லது குறையும் என நீர்<br>எதிர்பார்ப்பீரா? உமது விடைக்குக் காரணங்களைத் தருக.                                                                                                                                                                      |                             |
|        |                                                                                                                                                                                                                                                                                                               | <b>/</b> /                  |
|        |                                                                                                                                                                                                                                                                                                               |                             |
|        |                                                                                                                                                                                                                                                                                                               | 100                         |

| <b>இப்பகு</b> தியில் |
|----------------------|
| எதனையும்             |
| எருதுதல்             |
| ANLASTEN.            |

| புரியச் செ | ன்கள் உண்டாகின்றல<br>ப்யப்பட்டு, கிடைக்குட<br><b>G</b> கிடைக்கும் அதே | b ഖിബൈபொரு                              | ள்கள் நீர்ப்பகு <u>ப</u> ் | புச் செய்யப்பட் | டபோது சேர்       | വൈ E       |
|------------|-----------------------------------------------------------------------|-----------------------------------------|----------------------------|-----------------|------------------|------------|
|            | சோதனைப் பொருளு<br>சோதனைப் பொருளுட<br>யதில்லை                          |                                         |                            |                 |                  |            |
|            | ஆகியவற்றின் கட்ட<br>                                                  | ന്ഥப്புகளை வ                            | ரைக.                       | <del></del>     |                  |            |
|            |                                                                       |                                         |                            |                 |                  |            |
|            |                                                                       |                                         |                            |                 |                  |            |
|            | G                                                                     |                                         | H                          |                 |                  |            |
| (ii) A, C  | , E, F ஆகியவற்றின்                                                    | கட்டமைப்புகன                            |                            | <del></del>     |                  |            |
|            |                                                                       |                                         |                            |                 |                  |            |
|            |                                                                       |                                         |                            |                 |                  |            |
|            |                                                                       |                                         | ·····                      |                 |                  |            |
|            | <u> </u>                                                              |                                         | С                          |                 |                  |            |
|            |                                                                       | *************************************** |                            |                 |                  |            |
|            |                                                                       | *************************************** |                            |                 |                  |            |
|            | E                                                                     |                                         | F                          |                 |                  |            |
| செறிந்த F  | $ m Al_2O_3$ உடன் வெப் $ m H_2SO_4$ உடன் தாக்க                        | ம் புரியச் செய்                         |                            |                 |                  |            |
| -          | ராது G கிடைக்கின்றது<br>, I ஆகியவற்றின் கட்ட                          |                                         | வரைக.                      |                 |                  |            |
|            |                                                                       |                                         |                            |                 |                  |            |
|            |                                                                       |                                         |                            | ****            |                  |            |
|            |                                                                       |                                         |                            |                 |                  |            |
| (iv) A sou | <b>B</b><br>பும் <b>B</b> ஐயும் வேறுபடுத்                             | கி இனங்கா <i>ண்</i> ப                   | <b>D</b><br>குக்கரிய கை சே | 'சாகளையை / ச    | I<br>எக்கக்கை வி | ]வரிக்க.   |
| (iv) A gu  | ர் <b>ு ந</b> ஐள்ள சவரிப்படுத்                                        | 5) Saminonia                            |                            |                 |                  | <u>-</u> . |

| $(b)$ $(i)$ பின்வரும் தாக்கத் தொடரிகளில் $\mathbf{J},\mathbf{K},\mathbf{L},\mathbf{M}$ ஆகியவற்றின் கட்டமைப்புகளைத் த $\mathbf{CH}_3\mathrm{COCl}$ $\xrightarrow{\mathrm{CH}_3\mathrm{COCl}}$ $\mathbf{J}$ $\xrightarrow{\mathrm{CH}_3\mathrm{C}\cong\mathrm{CMgBr}}$ $\mathbf{J}$ $\xrightarrow{\mathrm{CH}_3\mathrm{C}\cong\mathrm{CMgBr}}$ $\mathbf{J}$ $\xrightarrow{\mathrm{H}^+/\mathrm{H}_2\mathrm{O}}$ $\mathbf{K}$ $\xrightarrow{\mathrm{BaSO}_4/\mathrm{guiloso}}$ $\mathbf{K}$ $\xrightarrow{\mathrm{BaSO}_4/\mathrm{guiloso}}$ $\mathbf{K}$ |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | தருக.           |
| (தாக்கம் I) (தாக்கம் II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ——→ L<br>ராலின் |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 777             |
| J K L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |

(ii) **I,II,III** ஆகிய தாக்கங்களில் நடைபெறும் தாக்கத்தின் வகையைப் பின்வரும் பட்டியலிலிருந்து தெரிந்தெடுத்து எழுதுக.

M

கருநாட்டக் கூட்டல், கருநாட்டப் பிரதியீடு, இலத்திரன்நாட்டக் கூட்டல், இலத்திரன்நாட்டப் பிரதியீடு, நீக்கல்

 $CH_3$ — $C=CH_2$  செறிந்த  $H_2SO_4$  M  $CH_3$  (தாக்கம் III)

(iii) அற்கீன்களுக்கும் HBr இற்குமிடையே உள்ள தாக்கத்தின் பொறிமுறை பற்றிய உமது அறிவைப் பயன்படுத்தித் தாக்கம் **III** இன் பொறிமுறையைத் தருக.

\* \*

(50 புள்ளிகள்)

100

இப்பத்தியில் எத்னைபும் எத்னைபும் ପିପତ୍ର ଡି ରିଡିଲଡି ଫ୍ରମ୍ମିର୍ଫ । (மୂ(ହୁର୍ଘ । பதிப்புரிமையுடையது ।  $All\ Rights\ Reserved$  )

# ( இது இத்தேருபுகிய பாடத்திட்டம்/New Syllabus

இது நடித்தில் முறிய முற

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

II රසායන විදාහව II இரசாயனவியல் II Chemistry



\* அகில வாயு மாறிலி  $R=8.314~\mathrm{J~K}^{-1}~\mathrm{mol}^{-1}$  \* அவகாதரோ மாறிலி  $N_A=6.022\times 10^{-23}~\mathrm{mol}^{-1}$ 

பகுதி B — கட்டுரை

இரண்டு வினாக்களுக்கு மாத்திரம் விடை எழுதுக. ஒவ்வொரு வினாவின் விடைக்கும் 150 புள்ளிகள் வீதம் வழங்கப்படும்.

5. (a) ஒரமில மென்முல **B** (0.15 mol dm 3) இற்கும் HCl (0.10 mol dm 3) இற்குமிடையே உள்ள ஒரு நியமிப்பு கீழே விவரிக்கப்பட்டுள்ளவாறு ஓர் உகந்த காட்டியைப் பயன்படுத்தி மேற்கொள்ளப்பட்டது. HCl கரைசல்  $(25.00~{
m cm}^3)$  நியமிப்புக் குடுவையில் வைக்கப்பட்டு, ஓர் அளவியைப் பயன்படுத்தி மென்மூலம்  ${f B}$ , சேர்க்கப்பட்டது.  $25~{
m ^{\circ}C}$  இல் மென்மூலத்தின் கூட்டப்பிரிகை மாறிலி  $K_{
m b}$  ஆனது  $1.00 \times 10^{-5} \,\mathrm{mol}\,\,\mathrm{dm}^{-3}$ ஆகும். எல்லாப் பரிசோதனைகளும்  $25\,^{\circ}\mathrm{C}$  இல் செய்யப்பட்டன.

(i) மூலம்  ${f B}$  ஐச் சேர்ப்பதற்கு முன்னர் நியமிப்புக் குடுவையில் உள்ள அமிலக் கரைசலின் pH

பெறுமானத்தைக் கணிக்க.

- பெறுபானத்தைக் கண்கை.  $_3$ (ii)  ${f B}$  இன் கரைசலின்  $10.00\,{
  m cm}$  ஐச் சேர்த்த பின்னர் நியமிப்புக் குடுவையில் உள்ள கரைசலின்  ${
  m pH}$ பெறுமானத்தைக் கணிக்க. நியமிப்புக் குடுவையில் உள்ள கரைசல் ஒரு தாங்கற் கரைசலாகச் செயற்படுமா? உமது விடையை விளக்குக.
- (iii) சமவலுப் புள்ளியை அடைவதற்குத் தேவையான மென்மூலக் கரைசலின் கனவளவைக் கணிக்க.
- (iv) சமவலுப் புள்ளியை அடைந்த பின்னர் மென்மூலத்தின் வேநொரு  $10.00~{
  m cm}^3$  கனவளவு நியமிப்புக் குடுவையில் சேர்க்கப்பட்டது. நியமிப்புக் குடுவையில் உள்ள கரைசலின் pH பெறுமானத்தைக் கணிக்க.
- (v) மேலே (iv) இற் கிடைத்த கரைசல் ஒரு தாங்கற் கரைசலாகச் செயற்படுமா? உமது விடையை விளக்குக.
- (vi) சேர்க்கப்படும் மென்மூலக் கரைசலின் கனவளவுடன் நியமிப்புக் குடுவையில் உள்ள கலவையின் pHபெறுமானம் மாறும் விதத்தை (நியமிப்பு வளையி) ஒரு பரும்படிப் படத்திற் காட்டுக. அச்சுக்களைப் பெயரிடுக. y- அச்சு மீது pH ஐயும் x-அச்சு மீது சேர்க்கப்படும் மென்முலக் கரைசலின் கனவளவையும் குறிக்க. சமவலுப் புள்ளியை அண்ணளவாகக் குறிக்க. [சமவலுப் புள்ளியில் pH பெறுமானத்தைக் கணித்தல் எதிர்பார்க்கப்படவில்லை.]

(75 山前前田 西前)

- (b) ஓர் இலட்சியக் கரைசலை உண்டாக்கும்  ${f C},{f D}$  என்னும் ஆவிப்பறப்புள்ள திரவங்களைப் பயன்படுத்திப் பின்வரும் இரு பரிசோதனைகளும் ஒரு மாறா வெப்பநிலையில் செய்யப்பட்டன.
  - **பரிசோதனை I** : C,D ஆகிய திரவங்கள் ஒரு வெற்றிடமாக்கப்பட்ட விறைத்த பாத்திரத்தில் புகுத்தப்பட்டுச் சமநிலையை அடைய விடப்பட்டன. தொகுதி சமநிலையில் இருக்கும்போது திரவ அவத்தையில்  $(L_1)$  C, D ஆகியவற்றின் மூல் பின்னங்கள் முறையே 0.3 , 0.7 என அவதானிக்கப்பட்டன. பாத்திரத்தின் மொத்த அமுக்கம்  $2.70 \times 10^4 \, \mathrm{Pa}$  ஆக இருந்தது.
  - **பரிசோதனை II** : **C, D** ஆகியவற்றின் வெவ்வேறு அளவுகளைப் பயன்படுத்தி இப்பரிசோதனை செய்யப்பட்டது. சமநிலை ஏற்பட்ட பின்னர் திரவ அவத்தையில்  $(L_{_{
    m II}})\,{f C},{f D}$  ஆகியவற்றின் முல் பின்னங்கள் முறையே 0.6 , 0.4 என அவதானிக்கப்பட்டன. பாத்திரத்தின் மொத்த அமுக்கம்  $2.40 \times 10^4 \, \mathrm{Pa}$  ஆக இருந்தது.
    - (i) ஆவி அவத்தையில்  ${f C}$  இன் பகுதியமுக்கம்  $(P_{f C})$ , அதன் நிரம்பலாவி அமுக்கம்  $(P_{f C}^\circ)$ , அதன் திரவ அவத்தையில் மூல் பின்னம்  $(X_{f C})$  ஆகியவந்றுக்கிடையே உள்ள தொடர்பை  $\stackrel{\backprime}{\circ}$  ஒரு சமன்பாட்டு வடிவத்தில் தருக.

இச்சமன்பாடு பௌதிக இரசாயனவியலில் பொதுவாகப் பயன்படுத்தப்படும் ஒரு விதியை எடுத்துரைக்கின்றது. இவ்விதியின் பெயரை எழுதுக.

(ii) C, D ஆகியவற்றின் நிரம்பலாவி அமுக்கங்களைக் கணிக்க.

- (iii) பரிசோதனை I இன் ஆவி அவத்தை ( ${
  m V_I}$ ) இல்  ${
  m C}$  ,  ${
  m D}$  ஆகியவற்றின் மூல் பின்னங்களைக் கணிக்க.
- (iv) பரிசோதனை II இன் ஆவி அவத்தை  $(\hat{V_n})$  இல் C , D ஆகியவற்றின் மூல் பின்னங்களைக் கணிக்க.
- (v) மாநா வெப்பநிலையில் வரையப்பட்ட ஓர் அமுக்க அமைப்பு அவத்தை வரிப்படத்தில் மேற்குநித்த இரு பரிசோதனைகளினதும் திரவ, ஆவி அவத்தைகளின் ( $L_{\rm I}$  ,  $L_{\rm II}$  ,  $V_{\rm I}$  ,  $V_{\rm II}$  ) அமைப்புகளையும் **(75 புள்ளிகள்)** உரிய அமுக்கங்களையும் காட்டுக.

6. (a) ஒரு சேதனக் கரைப்பானும் (org-1) நீரும் (aq) ஒன்றோடொன்று கலக்காத அதே வேளை அவை ஓர் ஈரவத்தைத் தொகுதியை உண்டாக்குகின்றன. வெப்பநிலை T இல் org-1 இற்கும் நீருக்குமிடையே X இன்

யரம்பலுக்கான பங்கீட்டுக் குணகம் 
$$K_{\rm D} = \frac{[{\bf X}]_{\rm org-1}}{[{\bf X}]_{\rm aq}} = 4.0$$
 ஆகும்.

org-1 இன்  $100.00\ \mathrm{cm}^3$  ஐயும் நீரின்  $100.00\ \mathrm{cm}^3$  ஐயும் கொண்ட ஒரு தொகுதியுடன்  $\mathbb{X}$  இன்  $0.50\ \mathrm{mol}$  சேர்க்கப்பட்டது. தொகுதி வெப்பநிலை  $\mathbb{T}$  இல் சமநிலையை அடைய விடப்பட்டது.

- (i) org-1 இல் X இன் செறிவைக் கணிக்க.
- (ii) நீரில் X இன் செறிவைக் கணிக்க.

(20 புள்ளிகள்)

(b) சேர்வை Y ஆனது நீர் அவத்தையில் மாத்திரம் கரையத்தக்கது. நீர் அவத்தையில் X உம் Y உம் தாக்கம் புரிந்து Z ஐ உண்டாக்குகின்றன. Y , Z ஆகியன இருத்தல் org-1 இற்கும் நீருக்குமிடையே X இன் பரம்பலைப் பாதிப்பதில்லை.

org-1 ஐயும் நீரையும் கொண்ட ஓர் ஈரவத்தைத் தொகுதித் தொடர் தயாரிக்கப்பட்டது. அதன் பின்னர் X இன் பல்வேறு அளவுகள் இந்த ஈரவத்தைத் தொகுதிகளில் பரம்பலடையச் செய்யப்பட்டு, தொகுதிகள் சமநிலையை அடைய விடப்பட்டன. இந்த ஈரவத்தைத் தொகுதிகளின் நீர் அவத்தையுடன் Y சேர்க்கப்பட்ட பின்னர் X இற்கும் Y இற்குமிடையே நீர் அவத்தையில் நடைபெறும் தாக்கத்தின் தொடக்க வீதம் அளக்கப்பட்டது. வெப்பநிலை T இல் நடைபெற்ற இப்பரிசோதனைகளின் பேறுகள் அட்டவணையில் தரப்பட்டுள்ளன.

| பரிசோதனை<br>எண் | நீரக்<br>கனவளவு<br>(cm <sup>3</sup> ) | org-1 இன்<br>கனவளவு-<br>(cm <sup>3</sup> ) | சேர்த்த X<br>இன் மொத்த<br>அளவு<br>(mol) | சேர்த்த<br>Y இன் மொத்த<br>அளவு<br>(mol) | தாக்கத்தின்<br>தொடக்க வீதம்<br>(mol dm <sup>-3</sup> s <sup>-1</sup> ) |  |  |
|-----------------|---------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------|--|--|
| 1               | 100.00                                | 100.00                                     | 0.05                                    | 0.02                                    | $2.00 \times 10^{-6}$                                                  |  |  |
| 2               | 100.00                                | 100.00                                     | 0.10                                    | 0.04                                    | $1.60 \times 10^{-5}$                                                  |  |  |
| 3               | 50.00                                 | 50.00                                      | 0.25                                    | 0.02                                    | $4.00 \times 10^{-4}$                                                  |  |  |

- ${f X}$  ,  ${f Y}$  ஆகியன குறித்துத் தாக்க வரிசைகள் முறையே m , n ஆகும். வெப்பநிலை  ${f T}$  இல் தாக்க வீத மாறிலி k ஆகும்.
- (i) நீர் அவத்தையில் X , Y ஆகியவற்றின் செறிவுகள் முறையே  $[X]_{aq}$  ,  $[Y]_{aq}$  எனத் தரப்பட்டிருப்பின், தாக்கத்திற்கான வீதக் கோவையை  $[X]_{aq}$  ,  $[Y]_{aq}$  m,n,k ஆகியவற்றின் சார்பில் எழுதுக.
- (ii) ஒவ்வொரு பரிசோதனையிலும் நீர் அவத்தையில்  ${f X}$  இன் தொடக்கச் செறிவைக் கணிக்க.
- (iii) ஒவ்வொரு பரிசோதனையிலும் நீர் அவத்தையில் ¥ இன் தொடக்கச் செநிவைக் கணிக்க.
- $({
  m iv})$   ${
  m X}$  ,  ${
  m Y}$  ஆகியன குறித்து முறையே தாக்க வரிசைகள் m , n ஆகியவற்றைக் கணிக்க.
- (v) தாக்கத்தின் வீத மாறிலியைக் கணிக்க.
- (vi) மேலே தரப்பட்ட பங்கீட்டுக் குணகத்தைப் பயன்படுத்தித் தாக்க வீதத்தின் மீது வெப்பநிலையின் விளைவைப் பரிசீலிப்பதற்காக ஒரு பரிசோதனை திட்டமிடப்பட்டுள்ளது. தாக்க வீதத்தின் மீது வெப்பநிலையின் விளைவைப் பரிசீலிப்பதற்கு இது ஓர் உகந்த பரிசோதனையா? உமது விடையை விளக்குக.

(105 புள்ளிகள்)

(c) சேதனக் கரைப்பான்  $\operatorname{org-2}$  உம் நீரும் ஒன்றோடொன்று கலக்காத அதே வேளை ஓர் ஈரவத்தைத் தொகுதியை உண்டாக்குகின்றன.  $\operatorname{org-2}$  இன்  $100.00\,\operatorname{cm}^3$  உம் நீரின்  $100.00\,\operatorname{cm}^3$  உம் அடங்கும் ஒரு தொகுதியுடன்  $\mathbf X$  (0.20 mol) சேர்க்கப்பட்டு வெப்பநிலை  $\mathbf T$  இல் சமநிலையை அடைய விடப்பட்டது. அதன் பின்னர்  $\mathbf Y$  (0.01 mol) ஆனது நீர் அவத்தையுடன் சேர்க்கப்பட்டு, தாக்கத்தின் தொடக்க வீதம் அளக்கப்பட்டது.  $\operatorname{org-2}$  இல்  $\mathbf Y$  கரைவதில்லை.  $\mathbf X$  இந்கும்  $\mathbf Y$  இந்குமிடையே நீர் அவத்தையில் நடைபெறும் தாக்கத்தின் தொடக்க வீதம்  $6.40 \times 10^{-7}\,\mathrm{mol\,dm}^{-3}\,\mathrm{s}^{-1}$  எனக் காணப்பட்டது.

org-2 இற்கும் நீருக்குமிடையே X இன் பரம்பலுக்கான பங்கீட்டுக் குணகம்  $\dfrac{[X]_{\text{org-2}}}{[X]_{\text{aq}}}$  ஐக் கணிக்க.

 $\left[ \mathbf{X} 
ight]_{\mathrm{org-2}}$  ஆனது  $\mathrm{org-2}$  அவத்தையில்  $\mathbf{X}$  இன் செறிவாகும்.

**(25 புள்ளிகள்)** 

7. (a) உலோகம் M இன் சார் அணுத் திணிவைக் காண் பதற்கு உருவில் காட்டப் பட்டுள்ள ஒழுங்கமைப்பு பயன்படுத்தப்பட்டது. ஒரு மாறா ஓட்டத்தைப் பயன்படுத்தி 10 நிமிடத்திற்கு மின்பகுப்புச் செய்யப்பட்டது. இந்நேர வீச்சில் கலம் A இன் கதோட்டின் திணிவு 31.75 mg இனால் அதிகரித்திருக்கும் அதே வேளை கலம் B இன் கதோட்டின் திணிவு 147.60 mg இனால் அதிகரித்திருந்தது. (கலங்கள் A இலும் B இலும் நீரின் மின்பகுப்பு நடைபெறுவதில்லை எனக் கொள்க.)



- (i) A , B ஆகிய கலங்கள் ஒவ்வொன்றிலும் அனோட்டையும் கதோட்டையும் (0,2,3,4) ஆகிய எண்களின் சார்பில்) இனங்காண்க.
- (ii) ஒவ்வொரு கலத்திலும் ஒவ்வொரு மின்வாயிலும் நடைபெறும் அரைத் தாக்கத்தை எழுதுக.
- (iii) மின்பகுப்பில் பயன்படுத்தப்பட்ட மாறா ஓட்டத்தைக் கணிக்க.
- (iv) உலோகம் **M** இன் சார் அணுத் திணிவைக் கணிக்க.

(75 புள்ளிகள்)

(b) (i) A, B, C ஆகியன இணைப்புச் சேர்வைகளாகும். அவற்றுக்கு ஓர் எண்முகக் கேத்திர கணிதம் உண்டு. ஒவ்வொரு சேர்வையிலும் இணையிகளின் இரண்டு வகைகள் உலோக அயனுடன் இணைந்துள்ளன. சேர்வைகளின் மூலக்கூற்றுச் சூத்திரங்கள் (வரிசையிலன்றி):

NiCl<sub>2</sub>H<sub>12</sub>N<sub>4</sub>, NiI<sub>2</sub>H<sub>16</sub>N<sub>4</sub>O<sub>2</sub>, NiCl<sub>2</sub>H<sub>15</sub>N<sub>3</sub>O<sub>3</sub>.

சேர்வைகளின் நீர்க் கரைசல்கள்  ${
m Pb}({
m CH_3COO})_2({
m aq})$  உடன் பரிகரிக்கப்பட்டபோது கிடைத்த அவதானிப்புகள் கீழே தரப்பட்டுள்ளன.

| சேர்வை | Pb(CH <sub>3</sub> COO) <sub>2</sub> (aq)   |  |  |  |  |  |  |  |  |  |  |  |
|--------|---------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| A      | வெந்நீரில் கரையும் ஒரு வெண்ணிற வீழ்படிவு    |  |  |  |  |  |  |  |  |  |  |  |
| В      | வீழ்படிவு இல்லை                             |  |  |  |  |  |  |  |  |  |  |  |
| С      | வெந்நீரில் கரையும் ஒரு மஞ்சள் நிற வீழ்படிவு |  |  |  |  |  |  |  |  |  |  |  |

- I. A, B, C ஆகியவற்றின் கட்டமைப்புகளைத் தருக.
- $II.\ Pb(CH_3COO)_2(aq)$  உடன் சேர்வைகள் பரிகரிக்கப்பட்டபோது கிடைத்த வீழ்படிவுகளின் இரசாயனச் சூத்திரங்களை எழுதுக.

(**குறிப்பு** : சேர்வையையும் சோதனைப் பொருளையும் குறிப்பிடுக.)

III. மேலே தரப்பட்ட சேர்வைகளில் உலோக அயனுடன் இணையாத அனயன்/அனயன்கள் இருந்தால், அந்த அனயன்கள் ஒவ்வொன்றையும் இனங்காண்பதற்கான இரசாயனச் சோதனை வீதம் அவதானிப்புடன் குறிப்பிடுக.

(**குறிப்பு** : நீர் தரும் சோதனைகள் இங்கு குறிப்பிடப்பட்ட ஒரு சோதனையாக இருத்தலாகாது.)

(ii) ஒரு தாண்டல் உலோகம் **M** ஆனது நீர் ஊடகத்தில் ஒரு நிறச் சிக்கலயன் **P** ஐ உண்டாக்குகின்றது. அதற்குப் பொதுச் சூத்திரம்  $[M(H_2O)_n]^{m+}$  உண்டு. அது கீழே தரப்பட்டுள்ள தாக்கங்களுக்கு உட்படுகின்றது.



(கடும் நீல நிறமுள்ள கரைசல்)

- I. உலோகம் M ஐ இனங்காண்க. சிக்கலயன் P இல் உள்ள M இன் ஒட்சியேற்ற நிலையைத் தருக.
- ${f II.}$  சிக்கலயன்  ${f P}$  இல் உள்ள  ${f M}$  இன் இலத்திரன் நிலையமைப்பைத் தருக.
- III. n , m ஆகியவற்றின் பெறுமானங்களைத் தருக.
- IV. P இன் கேத்திர கணிதத்தைத் தருக.
- V. Q, R, S ஆகியவற்றின் கட்டமைப்புகளைத் தருக.
- VI. P. R. S ஆகிய சிக்கலயன்களின் IUPAC பெயர்களைத் தருக.

(75 புள்ளிகள்)

#### பகுதி C — கட்டுரை

(**இரண்டு** வினாக்களுக்கு மாத்திரம் விடை எழுதுக. (ஒவ்வொரு வினாவுக்கும் **150 புள்ளிகள்** வீதம் வழங்கப்படும்)

8. (a) ஒரே சேதன ஆரம்பிக்கும் பொருளாக C<sub>6</sub>H<sub>5</sub>CO<sub>2</sub>CH<sub>3</sub> ஐயும் பட்டியலில் தரப்பட்டுள்ளவற்றை மாத்திரம் சோதனைப் பொருள்களாகவும் பயன்படுத்தி, ஏழு (7) இற்கு மேற்படாத படிமுறைகளில் பின்வரும் சேர்வையை எங்ஙனம் தொகுப்பீரெனக் காட்டுக.

சோதனைப் பொருள்களின் பட்டியல்  $\mathrm{PCl}_3$ ,  $\mathrm{Mg/2}$ உலர் ஈதர்,  $\mathrm{H}^+/\mathrm{H}_2\mathrm{O}$ ,  $\mathrm{LiAlH}_4$ , செறிந்த  $\mathrm{H}_2\mathrm{SO}_4$ 

(60 புள்ளிகள்)

(b) பின்வரும் மாற்றல்கள் ஒவ்வொன்றையும் **மூன்றுக்கு (3) மேற்படாத** படிமுறைகளைப் பயன்படுத்தி எங்ஙனம் நிறைவேற்றுவீர் எனக் காட்டுக.



(60 புள்ளிகள்)

(c) பின்வரும் தாக்கம் இரண்டு விளைபொருள்களைத் தருகின்றது.

$$CH_3CH_2CH_2Br \xrightarrow{C_2H_5O^-}$$

- (i) இவ்விரு விளைபொருள்களினதும் கட்டமைப்புகளை எழுதுக.
- (ii) இவ்விரு விளைபொருள்களையும் உண்டாக்குவதற்குரிய பொறிமுறைகளை எழுதுக. (30 புள்ளிகள்)
- (a) கரைசல் X இல் நான்கு உலோகக் கற்றயன்கள் அடங்கியுள்ளன. இக்கற்றயன்களை இனங்காண்பதற்குப் பின்வரும் சோதனைகள் நிறைவேற்றப்பட்டன.

|          | சோதனை                                                                                                                                                                          | அவதானிப்பு                               |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 0        | ${f X}$ இன் ஒரு சிறிய பகுதியுடன் ஐதான HCl சேர்க்கப்பட்டது.                                                                                                                     | வீழ்படிவு இல்லை                          |
| 2        | மேலே ① இல் கிடைக்கும் கரைசலினூடாக $ m H_2S$<br>குமிழிகளாக செல்ல விடப்பட்டது.                                                                                                   | ஒரு கருமை நிற வீழ்படிவு $(\mathbf{P_i})$ |
| 3        | ${f P}_1$ வடிகட்டி வேறாக்கப்பட்டது. ${f H}_2{f S}$ ஐ நீக்குவதற்காக வடிதிரவம் கொதிக்க வைக்கப்பட்டு, குளிர்ச்சியாக்கப்பட்டு, ${f NH}_4{f Cl}$ ${f /NH}_4{f OH}$ சேர்க்கப்பட்டது. | ஒரு பச்சை நிற வீழ்படிவு $(\mathbf{P}_2)$ |
| 4        | ${f P}_2$ வடிகட்டி வேறாக்கப்பட்டு, வடிதிரவத்தினூடாக ${f H}_2{f S}$ குமிழிகளாகச் செல்ல விடப்பட்டது.                                                                             | ஒரு வெண்ணிற வீழ்படிவு $(\mathbf{P}_3)$   |
| <b>⑤</b> | ${f P}_3$ வடிகட்டி வேறாக்கப்பட்டது ${f H}_2{f S}$ ஐ நீக்குவதற்காக வடிதிரவம் கொதிக்க வைக்கப்பட்டு, குளிர்ச்சியாக்கப்பட்டு ${ m (NH}_4)_2{ m CO}_3$ சேர்க்கப்பட்டது.             | ஒரு வெண்ணிற வீழ்படிவு $(\mathbf{P}_4)$   |

# ${f P}_1, \, {f P}_2, \, {f P}_3$ , ${f P}_4$ ஆகிய வீழ்படிவுகளுக்குப் பின்வரும் சோதனைகள் நிறைவேற்றப்பட்டன.

| ល្បិ្ជកាក់ថា   | சோதனை                                                                                                                                                                     | அவதானிப்பு                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| P <sub>1</sub> | <b>P</b> <sub>1</sub> ஆனது வெப்பமான ஐதான HNO <sub>3</sub> இல்<br>கரைக்கப்பட்டு, செறிந்த NH <sub>4</sub> OH மிகையாகச்<br>சேர்க்கப்பட்டது.                                  |                                  |
| P <sub>2</sub> | * $\mathbf{P}_2$ உடன் ஐதான NaOH மிகையாகச் சேர்க்கப்பட்டு<br>பின்னர் $\mathrm{H_2O_2}$ சேர்க்கப்பட்டது.<br>* <b>கரைசல் 2</b> உடன் ஐதான $\mathrm{H_2SO_4}$ சேர்க்கப்பட்டது. | ( கரைசல் 2)                      |
| P <sub>3</sub> | <ul> <li>* P<sub>3</sub> ஆனது ஐதான HCl இற் கரைக்கப்பட்டு, ஐதான NaOH படிப்படியாகச் சேர்க்கப்பட்டது.</li> <li>* ஐதான NaOH ஐச் சேர்த்தல் தொடர்ந்து நடைபெற்றது</li> </ul>     | 7                                |
| P <sub>4</sub> | P <sub>4</sub> ஆனது செறிந்த HCl இல் கரைக்கப்பட்டு,<br>சுவாலைச் சோதனைக்கு உட்படுத்தப்பட்டது.                                                                               | ஒரு செங்கட்டிச் சிவப்புச் சுவாலை |

- (i) கரைசல் X இல் உள்ள **நான்கு** உலோகக் கற்றயன்களை இனங்காண்க. **(காரணங்கள் அவசியமல்ல.)**
- (ii)  $P_1, P_2, P_3, P_4, P_5$  ஆகிய வீழ்படிவுகளையும் 1, 2, 3, 4 ஆகிய **கரைசல்களின்** நிறங்களுக்குக் காரணமான இரசாயன இனங்களையும் இனங்காண்க.

(குறிப்பு : இரசாயனச் சூத்திரங்களை மாத்திரம் எழுதுக.)

(75 புள்ளிகள்)

(b) நீர் மாதிரி  $\mathbf{Y}$  இல்  $\mathrm{SO}_3^{2-}$  ,  $\mathrm{SO}_4^{2-}$  ,  $\mathrm{NO}_3^-$  என்னும் அனயன்கள் அடங்கியுள்ளன. நீர் மாதிரியில் அடங்கும் அனயன்களை அளவறிமுறையாகப் பகுப்பாய்வு செய்வதற்குப் பின்வரும் நடைமுறைகள் நிறைவேற்றப்ட்டன.

#### நடைமுறை 1

மாதிரி Y இன் 25.00 cm<sup>3</sup>உடன் மிகையான ஓர் ஐதான BaCl<sub>2</sub> கரைசல் கொண்டு கலக்கிக் சேர்க்கப்பட்டது. அதன்பின்னர் உண்டாகிய வீழ்படிவுடன் கார மணமுள்ள மேலும் வெளிவிடப்படாமல் இருக்கும் வரைக்கும் கலக்கிக் கொண்டு ஐதான HCl மிகையாகச் சேர்க்கப்பட்டது. கரைசல் 10 நிமிடங்களுக்கு ഖിடப்பட்டு வடிகட்டப்பட்டது. வீழ்படிவு காய்ச்சி வடித்த நீரினால் ஒரு மாறாத் வரைக்கும் 105 °C இல் கனல(டுப்பில் கமுவப்பட்டு, திணிவு கிடைக்கும் ஒரு திணிவு 0.174 g ஆக இருந்தது. கிடைத்த மேலதிக உலர்த்தப்பட்டது. வீழ்படிவின் வடிதிரவம் பகுப்பாய்வுக்காக வைக்கப்பட்டது. (**நடைமுறை 3 ஜப் பார்க்க.**)

#### நடைமுறை 2

மாதிரி  $\mathbf{Y}$  இன்  $25.00~\mathrm{cm}^3$ உடன் மிகையாக ஐதான  $\mathbf{H_2SO_4}$  உம் அமிலமாக்கிய  $5\%~\mathrm{KIO_3}$  கரைசல்களும் சேர்க்கப்பட்டன. மாப்பொருளைக் காட்டியாகப் பயன்படுத்தி, ஒரு  $0.020~\mathrm{mol}~\mathrm{dm}^{-3}~\mathrm{Na_2S_2O_3}$  கரைசலுடன் விடுவிக்கப்படும்  $\mathbf{I_2}$  ஆனது உடனடியாக நியமிப்புச் செய்யப்பட்டது. பயன்படுத்திய  $\mathrm{Na_2S_2O_3}$  இன் கனவளவு  $20.00~\mathrm{cm}^3$  ஆக இருந்தது. (இந்நடைமுறையில்  $\mathrm{SO_3^{2-}}$  அயன்கள் வளிமண்டலத்திற்கு வெளியேறாமல் சல்பேற்று அயன்கள்  $\left(\mathrm{SO_4^{2-}}\right)$  ஆக ஒட்சியேற்றப்படுகின்றன எனக் கொள்க.)

#### நடைமுறை 3

**நடைமுறை 1** இற் கிடைத்த வடிதிரவத்தை ஐதான NaOH உடன் நடுநிலையாக்கி, அதனுடன் மிகையாக Al தூளும் ஐதான NaOH உம் சேர்க்கப்பட்டன. கரைசல் வெப்பமாக்கப்பட்டு, விடுவிக்கப்பட்ட வாயு ஒரு  $0.11~\text{mol}~\text{dm}^{-3}~\text{HCl}~\text{கரைசலின் ஓர்}~20.00~\text{cm}^3~\text{கனவளவிற்கு அளவறிமுறையாக அனுப்பப்பட்டுத் தாக்கம்புரியச் செய்யப்பட்டது. தாக்கம் பூரணமடைந்தமை பாசிச்சாயத்துடன் சோதிக்கப்பட்டது. வெளிவிடப்பட்ட வாயுவுடன் தாக்கம் புரிந்த பின்னர் எஞ்சியிருக்கும் HCl ஒரு <math>0.10~\text{mol}~\text{dm}^{-3}~\text{NaOH}$  கரைசலுடன் மெதையிற் செம்மஞ்சளைக் காட்டியாகப் பயன்படுத்தி, நியமிப்புச் செய்யப்பட்டது. தேவைப்பட்ட NaOH இன் கனவளவு  $10.00~\text{cm}^3~\text{ஆக இருந்தது.}$ 

- (i) **நடைமுறைகள் 1,2,3** ஆகியவற்றில் நடைபெறும் தாக்கங்களுக்கான சமன்படுத்திய அயன்/அயனல்லாத சமன்பாடுகளை எழுதுக.
- (ii) நீர் மாதிரி Y இல்  $SO_3^{2-}$  ,  $SO_4^{2-}$  ,  $NO_3^-$  ஆகியவற்றின் செறிவுகளைத் (mol dm $^{-3}$ ) துணிக. (Ba = 137; S = 32; O = 16)
- (iii) **நடைமுறைகள் 2,3** ஆகியவற்றின் நியமிப்புகளில் அவதானிக்கத்தக்க நிற மாற்றத்தைத் தருக. (**குறிப்பு** : பகுப்பாய்வுக்குத் தடையாக இருக்கத்தக்க வேறு அயன்கள் மாதிரி  $\mathbf{Y}$  இல் இல்லையெனக் கொள்க.)

(75 புள்ளிகள்)

# More Past Papers at tamilguru.lk

**10**. (a)



டௌச் செயன்முறையைப் (Dow process) பயன்படுத்தி மகனீசியம் (Mg) உலோகத்தை உற்பத்தி செய்தலை மேற்குறித்த பாய்ச்சற் கோட்டுப்படம் காட்டுகின்றது.

பாய்ச்சற் கோட்டுப்படத்தை அடிப்படையாகக் கொண்டு பின்வரும் வினாக்களுக்கு விடை எழுதுக.

- (i) ஆரம்பிக்கும் பொருள் A ஐ இனங்காண்க.
- (ii) **B,C,D,E,F,G** ஆகியவற்றிற் பயன்படுத்தப்படும் செயன்முறைகளைக் கீழே உள்ள பட்டியலிலிருந்து இனங்காண்க.

ஆவியாகல், கரைதல், வெப்பப் பிரிகை, மின்பகுப்பு, ஒரு சோதனைப் பொருளின் மீள்சுழற்சி, வீழ்படிவாக்கம்.

- (iii) **B** இற் பயன்படுத்தப்படும் இரசாயனச் சேர்வையை இனங்காண்க.
- (iv) P, Q, R, T ஆகிய இரசாயன இனங்களை இனங்காண்க.
- (v)  ${f B,C,D,F}$  ஆகியவற்றில் நடைபெறும் செயன்முறைகளுக்குச் சமன்படுத்திய இரசாயனச் சமன்பாடுகளை / அரைத் தாக்கங்களைத் தருக.

(**குறிப்ப**: அரைத் தாக்கங்களை எழுதுகையில் உரிய சந்தர்ப்பங்களில் அனோட்டையும் கதோட்டையும் இனங்காண்க.)

(vi) G இல் நடைபெறும் தாக்கத்தின் முக்கியத்துவத்தைக் குறிப்பிடுக.

(50 புள்ளிகள்)

(b) (i) கீழே தரப்பட்டுள்ள கைத்தொழில்களைக் கருதுக.

நிலக்கரி வலு நிலையங்கள் குளிரேற்றலும் வளிச்சீராக்கமும் போக்குவரத்து விவசாயம் விலங்கு வேளாண்மை

- I. மேலே தரப்பட்டுள்ள எல்லா ஐந்து கைத்தொழில்களும் பூகோள வெப்பமாதலுக்குப் பங்களிப்புச் செய்கின்றன. பூகோள வெப்பமாதலுக்குப் பங்களிப்புச் செய்யும் இக்கைத்தொழில்கள் ஒவ்வொன்றுடனும் தொடர்புபட்ட வாயு நிலையிலுள்ள இரசாயன இனங்களை இனங்காண்க.
- II. பூகோள வெப்பமாதல் காரணமாக ஏற்படத்தக்க **மூன்று** பாதகமான காலநிலை மாற்றங்களைக் குறிப்பிடுக.

- (ii) மேலே (i) இல் தரப்பட்டுள்ள கைத்தொழில்களில்
  - I. ஒளியிரசாயனப் புகாருக்கு
  - II. அமில மழைக்கு
  - III. நற்போசணையாக்கத்திற்குப் பங்களிப்புச் செய்யும் முக்கிய கைத்தொழிலை / கைத்தொழில்களை இனங்காண்க.
- (iii) இலங்கையில் மழைவீழ்ச்சி குறைவதன் விளைவாக நீரமின்னைப் பிறப்பிப்பதற்குப் பயன்படுத்தப்படும் நீரத்தேக்கங்களின் நீரேந்து பிரதேசங்களுக்கு அண்மையில் செயற்கை மழையை உண்டாக்குதல் சோதிக்கப்பட்டது. இச்செயன்முறையில் நீராவியை ஒடுங்கச் செய்து முகில்கள் உண்டாதலைத் தூண்டுவதற்கு ஈரங்காட்டும் (hygroscopic) உப்புகளின் (NaCl, CaCl<sub>2</sub>, NaBr) நுண் துணிக்கைகள் சிவிறப்படுகின்றன.

இவ்வுப்புகள் நீரேந்து பிரதேசங்களைச் சுற்றி உள்ள நீரினுள்ளே புகுவதன் விளைவாக நேரடியாகப்

- I. பாதிக்கப்படும்
- II. பாதிக்கப்படாத

நீர்ப் பண்புச் சாராமாறிகளைப் பின்வரும் பட்டியலிலிருந்து தெரிந்தெடுக்க. உமது தெரிவுக்கான காரணங்களைச் சுருக்கமாகத் தருக.

நீரின் பண்புச் சாராமாறிகளின் பட்டியல்:

pH, கடத்துதிறன் கலங்கற்றன்மை, கரைந்த ஒட்சிசன்

(50 புள்ளிகள்)

More Past Papers at

tamilguru.lk

- (c) பின்வரும் வினாக்கள் உயிர்டீசல் உற்பத்தியை அடிப்படையாகக் கொண்டவை.
  - (i) உயிர்டீசல் உற்பத்தியில் பயன்படுத்தப்படும் மூலப்பொருள்களைக் குறிப்பிடுக.
  - (ii) அம்மூலப்பொருள்கள் ஒவ்வொன்றிலும் உள்ள முக்கிய இரசாயனச் சேர்வையைப் பொருத்தமான சந்தர்ப்பங்களிற் குறிப்பிடுக.
  - (iii) பாடசாலை இரசாயன ஆய்கூடத்தில் உயிர்டீசல் உற்பத்தியில் ஊக்கியாகப் பயன்படுத்தப்படும் இரசாயனச் சேர்வையைக் குறிப்பிடுக.
  - (iv) மேலே (ii) இற் குறிப்பிட்ட இரசாயனச் சேர்வைகளைப் பயன்படுத்தி உயிர்டீசல் தொகுக்கப்படுவதைக் காட்டுவதற்கு ஒரு சமன்படுத்திய இரசாயனச் சமன்பாட்டைத் தருக.
  - (v) ஊக்கி மிகையாகப் பயன்படுத்தப்பட்டால், நடைபெறத்தக்க ஒரு பக்கத் தாக்கத்தை அதன் விளைபொருள்களுடன் இனங்காண்க. (50 புள்ளிகள்)

\* \* \*

# ஆவர்த்தன அட்டவணை

|   | 1  | ]  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 2   |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | H  |    | _   |     |     |     |     |     |     |     |     |     |     |     |     |     |     | He  |
|   | 3  | 4  |     |     |     |     |     |     |     |     |     |     | 5   | 6   | 7   | 8   | 9   | 10  |
| 2 | Li | Be |     |     |     |     |     |     |     |     |     |     | В   | С   | N   | 0   | F   | Ne  |
|   | 11 | 12 |     |     |     |     |     |     |     |     |     |     | 13  | 14  | 15  | 16  | 17  | 18  |
| 3 | Na | Mg |     |     |     |     |     |     |     |     |     |     | Al  | Si  | P   | S   | Cl  | Ar  |
|   | 19 | 20 | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  |
| 4 | K  | Ca | Sc  | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr  |
|   | 37 | 38 | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  |
| 5 | Rb | Sr | Y   | Zr  | Nb  | Mo  | Te  | Ru  | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Te  | I   | Xe  |
|   | 55 | 56 | La- | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  |
| 6 | Cs | Ba | Lu  | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | TI  | Pb  | Bi  | Po  | At  | Rn  |
|   | 87 | 88 | Ac- | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 |
| 7 | Fr | Ra | Lr  | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh  | FI  | Mc  | Lv  | Ts  | Og  |

| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| La | Ce | Pr | Nd | Pm | Sm | Eu | Gđ | Tb | Dy | Ho | Er  | Tm  | Yb  | Lu  |
| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Ac | Th | Pa | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |