Министерство образования Республики Беларусь Учреждение образования

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Инженерно-экономический факультет Кафедра экономической информатики

ОТЧЕТ

по предмету «Статистика»

Тема №5 «Средние величины и показатели вариации» Вариант 13

Сделал.	Купреева С. И. группа 872302
Проверил:	Журавлев В. А.

Спепап:

Задание 5.13: используя способ моментов, исчислите среднюю урожайность и среднее квадратичное отклонение по следующим данным:

Урожайность, ц/га	15	18	21	24	27	30
Площадь посева, % к итогу	11	19	30	27	8	5

Исчислите также моду и медиану.

Решение:

- 1. Группируем исходную урожайность в 6 равных интервалов с длиной в 2,5 ц/га. Каждому интервалу соответствует заданная частота площадь посева.
- 2. Средняя арифметическая методом моментов вычисляется по следующей формуле:

$$x'=im_1+A,$$

где x' – средняя арифметическая, i – размер интервала, m_1 – момент первого порядка, A – постоянное число (лучше всего взять его равным варианте, у которой наибольшая частота).

- 3. Для данных интервалов i = 2,5. Наибольшая частота (f) у интервала 20-22,5 и равна 30, следовательно за А принимаем соответствующую данному интервалу середину интервала, т.е. A = 21,25.
- 4. Определяем момент первого порядка по следующей формуле:

$$m_1 = \frac{\sum x_i f}{\sum f} = \frac{17}{100} = 0,17,$$

где $x_i = \frac{x-A}{i}$, а f — частота, равная площади посева.

5. Вычисляем значение средней арифметической:

$$x' = im_1 + A = 2.5 * 0.17 + 21.25 = 21.68.$$

6. Для вычисления среднего квадратического отклонения методом моментов, используем следующую формулу:

$$\sigma = i\sqrt{m_2 - m_1^2},$$

где m_2 — момент второго порядка.

7. Определяем момент второго порядка по следующей формуле:

$$m_2 = \frac{\sum x_i^2 f}{\sum f} = \frac{167}{100} = 1,67.$$

8. Высчитываем среднее квадратическое отклонение:

$$\sigma = i\sqrt{m_2 - m_1^2} = 2.5 * \sqrt{1.67 - 0.17^2} = 3.2.$$

9. Все шаги, описанные выше отображены в Таблице 1.

Группировка по урожайности, ц/га	Площадь посева, % к итогу (f)	Середина интервала (x)	х-А	x _i =(x-A)/i	x _i f	x _i ²	x _i ² f
15-17,5	11	16,25	-5	-2	-22	4	44
17,5-20	19	18,75	-2,5	-1	-19	1	19
20-22,5	30	21,25	0	0	0	0	0
22,5-25	27	23,75	2,5	1	27	1	27
25-27,5	8	26,25	5	2	16	4	32
27,5-30	5	28,75	7,5	3	15	9	45
Итого:	100	-	-	-	17	-	167

i	2,5
f _{max}	30
А	21,25
m ₁	0,17
m_2	1,67

x'	21,68
σ^2	10,26
σ	3,20

Таблица 1 — Расчет средней арифметической и среднего квадратичного отклонения методом моментов

- 10. Далее рассчитаем моду и медиану.
- 11. В дискретных рядах модой является варианта с наибольшей частотой. Наибольшая частота — 30, следовательно мода равна 21.
- 12. Для вычисления медианы определим сумму частот ряда ($\sum f = 100$), затем рассчитаем полусумму ($\frac{\sum f}{2} = \frac{100}{2} = 50$).
- 13. Так как сумма накопленных частот 11+19+30=60 превышает полусумму (60 > 50), то варианта, имеющая значение 21 и соответствующая этой накопленной сумме частот, и есть медиана.
- 14. Шаги 10-13 описаны в Таблице 2.

Урожайность, ц/га	Площадь посева, % к итогу (f)
15	11
18	19
21	30
24	27
27	8
30	5
Итого:	100

f_{max}	30
Mo	21

Σf/2	50
$f_1+f_2+f_3$	60
M_{e}	21

Таблица 2 – Расчет моды и медианы