Systemic Risk and Financial Connectedness: Empirical Evidence

Mateusz Dadei

Phd. student at Universita degli Studi di Brescia, ITA Visiting researcher at Universität Mannheim, DE

Forecasting Financial Markets Conference 2024 Worcester College, University of Oxford

- "Robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015, provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - When the shocks are small, the damages are dissipated through large number of financial institutions.
 - When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

- "Robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015, provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - When the shocks are small, the damages are dissipated through large number of financial institutions.
 - When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

- "Robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015, provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - When the shocks are small, the damages are dissipated through large number of financial institutions.
 - When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

- "Robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015, provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - When the shocks are small, the damages are dissipated through large number of financial institutions.
 - When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

- "Robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015. provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - When the shocks are small, the damages are dissipated through large number of financial institutions.
 - When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - ullet High shock regime: Higher connectedness o more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - ullet High shock regime: Higher connectedness o more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - ullet High shock regime: Higher connectedness o more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - ullet High shock regime: Higher connectedness o more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - ullet High shock regime: Higher connectedness o more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - \bullet High shock regime: Higher connectedness \to more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

(Financial) network estimation from time series

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ x_{31} & x_{32} & \dots & x_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T1} & x_{T2} & \dots & x_{Tn} \end{pmatrix} \qquad f : \mathbb{R}^{T \times n} \to \mathbb{R}^{n \times n} \qquad \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Time series matrix X of size $T \times n$

Adjacency matrix $\mathbf{A} \times \mathbf{n}$.

Graph representation of matrix A.

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- ② $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
- For each of stock pair estimate:
 - $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k \beta_{c+2} x_{c,t} + \epsilon_k$
 - The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } \beta_2 \text{ is significant} \\ 0 & \text{otherwise} \end{cases} \forall i \neq i$
 - As with before we calculate average connectedness: $\frac{\sum_{i\neq j}^{n}\sum_{j\neq i}^{n}G_{ij}}{N\times(N-1)}$

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- ② $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
- For each of stock pair estimate:
 - $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k \beta_{c+2} x_{c,t} +$
 - The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } p_2 \text{ is significant } \forall i \neq j \\ 0 & \text{otherwise} \end{cases}$
- As with before we calculate average connectedness: $\frac{\sum_{i\neq j}\sum_{j\neq i}c_{i}}{N\times(N-1)}$

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- 2 $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
 - For each of stock pair estimate: $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k^s \beta_{c+2} x_{c,t} + \epsilon_t$
 - The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } \beta_2 \text{ is significant} \\ 0 & \text{otherwise} \end{cases} \forall i \neq j$
 - As with before we calculate average connectedness: $\frac{\sum_{i\neq j}^{N}\sum_{j\neq i}^{N}G_{i,j}}{N\times(N-1)}$

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- 2 $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
 - For each of stock pair estimate:

$$r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k^s \beta_{c+2} x_{c,t} + \epsilon_t$$

- The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } \beta_2 \text{ is significant} \\ 0 & \text{otherwise} \end{cases} \forall i \neq j$
- As with before we calculate average connectedness: $\frac{\sum_{i\neq j}^{N}\sum_{j\neq i}^{N}G_{i,j}}{N\times(N-1)}$

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- 2 $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
 - For each of stock pair estimate: $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k^s \beta_{c+2} x_{c,t} + \epsilon_t$
 - ullet The "causality" matrix is set as: $G_{i,j} = egin{cases} 1 & ext{if } eta_2 ext{ is significant} \ 0 & ext{otherwise} \end{cases} orall if eta_j$
 - As with before we calculate average connectedness: $\frac{\sum_{i\neq j}^{N}\sum_{j\neq i}^{N}G_{i,j}}{N\times(N-1)}$

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- 2 $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
 - For each of stock pair estimate: $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k^s \beta_{c+2} x_{c,t} + \epsilon_t$
 - ullet The "causality" matrix is set as: $G_{i,j} = egin{cases} 1 & ext{if } eta_2 ext{ is significant} \ \forall i
 eq j \end{cases}$
 - As with before we calculate average connectedness: $\frac{\sum_{i\neq j}^{N}\sum_{j\neq i}^{N}G_{i,j}}{N\times(N-1)}$

Connectedness measures results

Figure: Standardized time series of connectedness measures for a rolling window of 63 trading days (quarter)

Modeling the regime-dependent effect of connectedness

Mean specification of the model:

$$r_{b,t} = \beta_0 + \underbrace{\beta_1 r_{b,t-1}}_{\text{Banking index}} + \underbrace{\beta_2 r_{m,t-1}}_{\text{Broad market index}} + \epsilon_t$$

The Markov-switching ARCH specification is:

$$\sqrt{\epsilon_t^2} = \alpha_{0,s} + \underbrace{\alpha_{1,s}\kappa_{t-1}}_{\text{connectedness}} + \underbrace{\sum_{i=1}^p \alpha_{i+1}\sqrt{\epsilon_{t-i}^2}}_{\text{Lag controls}}$$

With regime changes according to Markov process:

$$P(S_t = i | S_{t-1} = j) = \begin{bmatrix} \pi_1 & 1 - \pi_2 \\ 1 - \pi_1 & \pi_2 \end{bmatrix}$$

Estimation results

EU banking sector and 252 trading days (year) rolling window

Connectedness measure		Regime 1		Regime 2	
		Estimate	S.E.	Estimate	S.E.
Correlation-based	α_0	0.466*	0.019	1.988*	0.06
	α_1	0.017	0.009	0.22*	0.043
	η	0.435	0.009	1.4	0.012
	$\pi_{i,i}$	78.6%		52%	
Eigenvalue-based	α_{0}	0.458*	0.018	1.975*	0.061
	α_1	-0.002	0.008	0.052	0.048
	η	0.435	0.009	1.42	0.012
	$\pi_{i,i}$	90%		67.2%	
Granger-based	α_0	0.468*	0.018	1.984*	0.059
	α_1	0.018*	0.008	0.276*	0.05
	η	0.433	0.009	1.394	0.013
* coefficient with 5% static	$\pi_{i,i}$	78.5%		52.5%	

^{*} coefficient with 5% statistical significance

US banking sector and 63 trading days (year) rolling window

Connectedness measure		Regime 1		Regim	Regime 2	
		Estimate	S.E.	Estimate	S.E.	
Correlation-based	α_{0}	0.402*	0.013	1.517*	0.054	
	α_1	0.027*	0.007	0.239*	0.044	
	η	0.373	0.007	1.268	0.017	
	$\pi_{i,i}$	89.4%		67%		
Eigenvalue-based	α_0	0.416*	0.014	1.554*	0.057	
	α_1	0.041*	0.007	0.194*	0.046	
	η	0.38	0.006	1.304	0.016	
	$\pi_{i,i}$	90%		67.2%		
Granger-based	α_{0}	0.379*	0.013	1.472*	0.047	
	α_1	0.009	0.007	0.205*	0.032	
	η	0.356	0.006	1.161	0.013	
* coefficientith E0/ ctati	$\pi_{i,i}$	87.4%		65%		

^{*} coefficient with 5% statistical significance

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data
 - I use financial statement data from Orbis database
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - N banks: $51 \rightarrow 30$. T observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - I use financial statement data from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - N banks: $51 \rightarrow 30$. T observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - I use financial statement data from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - *N* banks: $51 \rightarrow 30$. *T* observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - I use financial statement data from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - N banks: $51 \rightarrow 30$. T observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - I use financial statement data from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - N banks: $51 \rightarrow 30$. T observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - I use financial statement data from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - *N* banks: $51 \rightarrow 30$. *T* observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - I use financial statement data from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - *N* banks: $51 \rightarrow 30$. *T* observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

Robustness check - results

Results for EU banks with a rolling window of 52 weeks

Granger-based		Regin	ne 1	Regime 2				
		Estimate	S.E.	Estimate	S.E.			
Correlation-based	α_0	1.554*	0.206*	4.44*	0.59			
	α_1	0.106	0.108	0.843*	0.45			
	η	1.084	0.034	2.52	0.086			
	$\pi_{i,i}$	88.6%		57%				
* coefficient with 5% statistical significance								

- The theory is confirmed to some degree the connectedness effect is indeed regime dependent.
- The effect is asymmetric the connectedness is more important in the high shock regime.
- Further research
 - should control for firm specific balance sheet (preliminarily, the results hold)
 - Possible application of Gaussian graphical models to estimate the connectedness measures
- contact: m.dadej@unibs.it Thank you!

- The theory is confirmed to some degree the connectedness effect is indeed regime dependent.
- The effect is asymmetric the connectedness is more important in the high shock regime.
- Further research
 - should control for firm specific balance sheet (preliminarily, the results hold)
 - Possible application of Gaussian graphical models to estimate the connectedness measures
- contact: m.dadej@unibs.it Thank you!

- The theory is confirmed to some degree the connectedness effect is indeed regime dependent.
- The effect is asymmetric the connectedness is more important in the high shock regime.
- Further research
 - should control for firm specific balance sheet (preliminarily, the results hold)
 - Possible application of Gaussian graphical models to estimate the connectedness measures
- contact: m.dadej@unibs.it Thank you!

- The theory is confirmed to some degree the connectedness effect is indeed regime dependent.
- The effect is asymmetric the connectedness is more important in the high shock regime.
- Further research
 - should control for firm specific balance sheet (preliminarily, the results hold)
 - Possible application of Gaussian graphical models to estimate the connectedness measures
- contact: m.dadej@unibs.it Thank you!

- The theory is confirmed to some degree the connectedness effect is indeed regime dependent.
- The effect is asymmetric the connectedness is more important in the high shock regime.
- Further research
 - should control for firm specific balance sheet (preliminarily, the results hold)
 - Possible application of Gaussian graphical models to estimate the connectedness measures
- contact: m.dadej@unibs.it Thank you!

- The theory is confirmed to some degree the connectedness effect is indeed regime dependent.
- The effect is asymmetric the connectedness is more important in the high shock regime.
- Further research
 - should control for firm specific balance sheet (preliminarily, the results hold)
 - Possible application of Gaussian graphical models to estimate the connectedness measures
- contact: m.dadej@unibs.it Thank you!

Thank you!
The working paper is available at
m-dadej.github.io/files/connectedness.pdf

References I

```
Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi (Feb.
   2015). "Systemic Risk and Stability in Financial Networks". In:
   American Economic Review 105.2, pp. 564–608. DOI:
   10.1257/aer.20130456. URL:
   https://www.aeaweb.org/articles?id=10.1257/aer.20130456.
```

- Billio, Monica et al. (2012). "Econometric measures of connectedness and systemic risk in the finance and insurance sectors". In: Journal of Financial Economics 104, pp. 535–559.
- Granger, C. W. J. (1969). "Investigating Causal Relations by Econometric Models and Cross-spectral Methods". In: *Econometrica* 37.3, pp. 424–438. ISSN: 00129682, 14680262. URL:

http://www.jstor.org/stable/1912791 (visited on 01/09/2024).

References II

- Haldane, Andrew G. (Apr. 2009). Rethinking the financial network. Speech delivered at the Financial Student Association, Amsterdam. URL: https://www.bankofengland.co.uk/speech/2009/rethinkingthe-financial-network.
- Ledoit, Olivier and Michael Wolf (2003). "Honey, I shrunk the sample covariance matrix". In: *UPF economics and business working paper* 691.