Errata

for *A Logic of Finite Syntactic Epistemic States* (submitted version)

Thomas Ågotnes agotnes@ii.uib.no

June 4, 2004

The following are the most significant corrections made in the final print version. The corrections are either of misprints or, in one case, relocation of a definition which was used before introduced. In addition, the text is slightly some places in order to make it clearer and/or gramatically correct.

The only *addition* is two figures on p. 132, representing the systems S and S' described in the text. There is no information in the figures compared to the text.

Of course, the content of the thesis has not changed.

Legend: tn (bn) means line number n from the top (bottom). "A \mapsto B" means that A should be replaced with B.

Chapter 1

p. 8 b14: ..model from Part III \mapsto ..model from Part II

Chapter 2

p. 10 PC: ..is a valid propositional formula → ..is a substitution instance of a propositional tautology

p. 13 b13: most general → strongest condition

p. 20 t14: $d_a(q) \le 1 \mapsto d_a(q) \ge 1$

p. 21 b13: $\pi(q) \mapsto \pi'(q)$

Chapter 3

p. 28 After ".. finite states.", insert the sentence: "The resulting logic is called *Static Syntactic Epistemic Logic* (SSEL).".

p. 36 b15,b16: $\mathcal{M}^{\mathbf{T_i}} \mapsto mod(\mathbf{T_i})$

p. 37 b3: $\mathcal{M}^{T_i} \mapsto mod(T_i)$

Chapter 4

p. 39 t9: → → ⇒

p. 47 t6: Lemma $4.1.2 \mapsto Corollary 4.1.2$

p. 48 Proof of Th. 4.1: The case for E5 is missing. It is trivial.

p. 49 t5–t9: $\nabla_i S[T]$ and $\nabla_i S[U] \mapsto \nabla_i S[U]$ and $\nabla_i S[T]$

p. 49 t1: $\phi \in \Gamma' \mapsto \Gamma' \vdash \phi$

p. 49 t1: $\neg \phi \in \Gamma' \mapsto \Gamma' \vdash \neg \phi$

Chapter 5

p. 54 b12: Insert the sentence "The model class of $\Gamma \subseteq EL$, w.r.t. \mathcal{M}_{fin} , is $mod^f(\Gamma) = \{M \in \mathcal{M}_{fin} : M \models_f \Gamma\}$."

p. 54 b20: $\wp^{fin}(OL) \mapsto \mathcal{S}^f = \wp^{fin}(OL)$

p. 57 b15,b18: $\mathcal{M}^{\Phi} \mapsto mod(\Phi)$

p. 57 b13,b17: $\mathcal{M}^{\Phi,f} \mapsto mod^f(\Phi)$

Chapter 6

p. 61 End of Sec. 6.1: Replace the last sentence with: "Agents are still assumed to be finite, as described by KSSs \mathcal{M}_{fin} with possible epistemic states \mathcal{S}^f (Def 5.1). However, the more general semantics, GKSSs \mathcal{M} with possible epistemic states \mathcal{S} (Def. 3.8), will be very useful in this chapter. Henceforth the superscript f will be used to denote the finite restriction of a set $\mathcal{M}' \subseteq \mathcal{M}$ or a set $S \subseteq \mathcal{S}$: $\mathcal{M}'^f = \mathcal{M}' \cap \mathcal{M}_{fin}$ and $S^f = S \cap \mathcal{S}^f$.

p. 62 b2:
$$\mathcal{M}^{\Phi f}$$
: $\mathcal{M}^{\Phi f} = \mathcal{M} \cap \mathcal{M}_{fin} \mapsto mod^f(\Phi)$

p. 64 b1:
$$\wp(OL) \mapsto \mathcal{S}$$

p. 69 t2:
$$\wp^{fin}(s \cup \{\alpha_{i,S}^{\phi,s}\}) \mapsto \wp^{fin}(\hat{s} \cup \{\alpha_{i,S}^{\phi,s}\})$$

p. 69 t3:
$$AL \mapsto OL$$

p. 72 b11:
$$s_i \mapsto s_i^{\Phi}$$

p. 73 Proof of Lemma 6.9: The case for Def. 6.8.2c) is missing. It is trivial.

p. 73 b2:
$$\beta \mapsto \{\beta\}$$

p. 73 b1:
$$S \cap \wp^{fin}(s) \mapsto \bigcup (S \cap \wp^{fin}(s))$$

p. 74 t2:
$$\beta \mapsto \{\beta\}$$

p. 74 t3,t8:
$$S \cap \wp^{fin}(s \cup \{\alpha\}) \mapsto \bigcup (S \cap \wp^{fin}(s \cup \{\alpha\}))$$

p. 74 b4:
$$\wp^{fin}(s) \mapsto \bigcup \wp^{fin}(s)$$

p. 76 b12,b6:
$$AL \mapsto OL$$

p. 77 t1:
$$K \mapsto D$$

p. 77 t8,t14:
$$AL \mapsto OL$$

Chapter 7

p. 89 b10:
$$\pi \mapsto \pi'$$

p. 93 t12:
$$\phi \in \pi \mapsto \pi(p) = \text{true}$$

p. 96 t21:
$$R_i \mapsto R_i$$

p. 98 b21:
$$[T^R] \mapsto [T_i^R]$$

p.99/100 Example 7.3: the validity proof contains some confusing notation and has been cleaned up a bit.

p. 101 t6:
$$pFin \mapsto \wp^{fin}(OL)$$

p. 102 b23: the whole line \mapsto then $s \subseteq r$ and $s' \in [T^R](s)$ implies that there is a $r' \in [T^R](r)$ such that $s' \subseteq r'$

p. 104 t8:
$$\overset{\leadsto}{\triangle}_{ij} \mapsto \overset{\leadsto}{\bigtriangledown}_{ii}$$

p. 107 b9: Prop2
$$\mapsto$$
 Prop3

Chapter 9

p. 129 t6:
$$\triangle_i X \mapsto \nabla_i X$$

p. 129 b7:
$$\delta(q, a) \mapsto \delta(q_k, a)$$

p. 131 eq. (9.9):
$$q \mapsto q_1$$

p. 132 t4:
$$q_4 \mapsto \pi(q_4)$$

p. 132 eq. (9.12):
$$S \mapsto S'$$

p. 134 t8:
$$\overset{\leadsto}{\triangle}_{ii} \mapsto \overset{\leadsto}{\triangle}_{ii}$$