# Python

Une introduction au langage Python







Son nom fut choisi en hommage aux Monty Python et leur émission à la radio: "The Monty Python's Flying Circus"



- Python a été créé au début des années 1990 par Guido van Rossum
- Successeur d'un langage appelé "ABC"
- Guido reste, à ce jour, l'auteur principal bien que le langage intègre les contributions de bien d'autres
- En mai 2000, Guido et l'équipe de développement principale intègrent "BeOpen" pour former l'équipe "BeOpen PythonLabs"
- En octobre 2000, l'équipe "PythonLabs" part chez "Digital Creations" ("Zope Corporation" aujourd'hui)
- En 2001, la "Python Software Foundation" est créée pour gérer tous les aspects de la propriété intellectuelle de Python

- Python est un langage de développement puissant et facile à apprendre
- Il intègre des structures de données de haut niveau
- Il à une approche simple mais efficace de la programmation orientée objet (POO)
- Sa syntaxe élégante, son typage dynamique et sa nature interprétée en font un langage idéal pour le scripting et le développement rapide d'applications, dans de nombreux domaines et sur de multiples plateformes

- L'interpréteur Python et sa vaste bibliothèque standard sont disponibles librement, sous forme de sources ou de binaires, pour toutes les plateformes majeures, depuis le site Internet <a href="http://www.python.org/">http://www.python.org/</a> et peuvent être librement redistribués.
- Le même site distribue et contient des liens vers des modules, des programmes et des outils tiers ainsi que vers de la documentation supplémentaire.
- L'interpréteur Python peut être facilement étendu par de nouvelles fonctions et types de données implémentés en C ou C++ (ou tout autre langage appelable depuis le C).
- Python est également adapté comme langage d'extension pour personnaliser des applications.

### Le "Zen" de Python

- Le beau est préférable au laid.
- L'explicité est préférable à l'implicite.
- Le simple est préférable au complexe.
- Le complexe est préférable au compliqué.
- L'horizonțal est préférable à l'imbriqué.
- L'aéré est préférable au dense.
- La lisibilité compte. Les cas spéciaux ne le sont pas assez pour transgresser les règles.
- Sauf si le cas pratique bat le cas théorique.
- Les erreurs ne devraient jamais arriver silencieusement.
- Sauf si on les a explicitement rendues silencieuses.

- En cas de doute, ne tentez pas de deviner.
- Il devrait y avoir une, et de préférence une seule, manière évidente de le faire.
- Même si cette manière peut ne pas sembler évidente au premier abord sauf si vous êtes néerlandais.
- Ce qui est fait maintenant est préférable à ce qui ne sera jamais fait.
- Même si jamais est souvent mieux que tout de suite.
- Si l'implémentation est difficile à expliquer, c'est que c'est une mauvaise idée.
- Si l'implémentation est facile à expliquer, c'est que c'est peut-être une bonne idée.
- Les espaces de noms sont une brillante idée, créons-en plus!

## Le "Zen" de Python (import this)

```
>>> import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
```

## Invoquer l'interpréteur Python

- L'interpréteur Python se trouve en général dans /usr/local/bin/python3.6 sur les machines où il est disponible
- Ajouter /usr/local/bin au chemin de recherche de votre Shell Unix rend possible de le lancer en tapant la commande :

## Invoquer l'interpréteur Python

- Sur les machines Windows, l'installation Python est habituellement placée dans C:\Python36, même si vous pouvez changer cela lorsque vous lancez l'installateur
- Pour ajouter ce dossier à votre chemin de recherche, vous pouvez taper la commande suivante dans un prompt de commande d'une machine DOS



## Invoquer l'interpréteur Python

- Taper un caractère de fin de fichier (Ctrl-D sous Unix, Ctrl-Z sous Windows) à la suite d'une invite de commande primaire provoque la fermeture de l'interpréteur avec un statut d'erreur nul
- Si cela ne fonctionne pas, vous pouvez fermer l'interpréteur en tapant la commande quit()
- L'interpréteur opère de façon similaire au Shell Unix
- Lorsqu'il est appelé avec l'entrée standard connectée à un périphérique tty, il lit et exécute les commandes de façon interactive
- Lorsqu'il est appelé avec un nom de fichier en argument ou avec un fichier comme entrée standard, il lit et exécute un script depuis ce fichier
- Quand un fichier de script est utilisé, il est parfois utile de pouvoir lancer le script puis d'entrer dans le mode interactif après coup. Cela est possible en passant -i avant le script

### Passage d'arguments

- Lorsqu'ils sont connus de l'interpréteur, le nom du script et les arguments additionnels sont représentés sous forme d'une liste assignée à la variable argv du module sys
- Vous pouvez y accéder en exécutant import sys
- La liste contient au minimum un élément
- Quand aucun script ni aucun arguments ne sont donnés, sys.argv[0] est une chaine vide
- Quand '-' (qui représente l'entrée standard) est passé comme nom de script, sys.argv[0] contient '-'
- Quand -c commande est utilisé, sys.argv[0] contient '-c'
- Enfin, quand -m module est utilisé, le nom complet du module est assigné à sys.argv[0]
- Les options trouvées après -c commande ou -m module ne sont pas lues comme options de l'interpréteur Python mais laissées dans sys.argv pour être utilisée par le module ou la commande

#### Mode interactif

- Lorsque des commandes sont lues depuis un tty, l'interpréteur est dit être en mode interactif
- Dans ce mode, il demande la commande suivante avec le prompt primaire, en général trois signes plus-grand-que (>>>)
- Pour les lignes de continuation, il affiche le prompt secondaire, par défaut trois points (...)
- L'interpréteur affiche un message de bienvenue indiquant son numéro de version et une notice de copyright avant d'afficher le premier prompt

```
D:\pythonworkspace\learning-python>python
Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:54:40) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> la_terre_est_plate = True
>>> if la_terre_est_plate:
... print("Attention à ne pas tomber!")
...
Attention à ne pas tomber!
>>>
```

### Encodage du code source

- Par défaut Python considère que ses fichiers source sont encodés en UTF-8
- Dans cet encodage, les caractères de la plupart des langues peuvent être utilisés ensemble dans les chaînes de caractères, identifiants, et commentaires, bien que la bibliothèque standard n'utilise que des caractères ASCII dans ses identifiants, une bonne habitude que tout code portable devrait suivre
- Pour afficher correctement tous ces caractères, votre éditeur doit reconnaître que le fichier est en UTF-8, et utiliser une fonte de caractère qui comprend tous les caractères utilisés dans le fichier
- Pour annoncer un encodage différent de l'encodage par défaut, une ligne de commentaire particulière doit être ajoutée à la première ligne du fichier
- Sa syntaxe est la suivante : # -\*- coding: encoding -\*- , ou encoding est un des codecs supportés par Python (par exemple: cp-1252 pour Windows)

### Encodage du code source

- Une exception à la règle précédente est lorsque la première ligne est un shebang UNIX
- Dans ce cas, la déclaration de l'encodage doit être placé sur la seconde ligne du fichier..
- Par exemple :

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
```

#### Introduction informelle

- Dans les exemples qui suivent, les entrées et sorties se distinguent par la présence ou l'absence d'invite (>>> et ...)
- Pour reproduire les exemples, vous devez taper tout ce qui est après l'invite, au moment où celle-ci apparaît
- Les lignes qui n'affichent pas d'invite sont les sorties de l'interpréteur
- Notez qu'une invite secondaire (...) affichée seule sur une ligne dans un exemple indique que vous devez entrer une ligne vide
- Ceci est utilisé pour terminer une commande multi-lignes

#### Introduction informelle

- Beaucoup d'exemples, même ceux saisis à l'invite de l'interpréteur, incluent des commentaires
- Les commentaires en Python commencent avec un caractère dièse, #, et s'étendent jusqu'à la fin de la ligne
- Un commentaire peut apparaître au début d'une ligne ou à la suite d'un espace ou de code, mais pas à l'intérieur d'une chaîne de caractères littérale
- Un caractère dièse à l'intérieur d'une chaîne de caractères est juste un caractère dièse
- Comme les commentaires ne servent qu'à expliquer le code et ne sont pas interprétés par Python, ils peuvent être ignorés lorsque vous tapez les exemples

```
>>>
>>>
>>> # C'est le premier commentaire
... spam = 1 # Et c'est le second commentaire
>>> text ="# Ce n'est pas un commentaire... C'est entre quotes!"
>>> []
```

- L'interpréteur agit comme une simple calculatrice
- Vous pouvez lui entrer une expression et il vous affiche la valeur. La syntaxe des expressions est simple
- Les opérateurs +, -, \* et / fonctionnent comme dans la plupart des langages
- Les parenthèses peuvent être utilisées pour faire des regroupements

```
>>> 2 + 2
4
>>> 50 - 5*6
20
>>> (50 - 5*6) / 4
5.0
>>> 8 / 5 # La division retourne toujours un nombre décimal
1.6
>>>
```

- Les nombre entiers (comme 2, 4, 20) sont de type *int*, alors que les décimaux (comme 5.0, 1.6) sont de type *float*
- Les divisions (/) donnent toujours des float
- Utilisez l'opérateur // pour effectuer des divisions entières, et donc obtenir un résultat entier
- Pour obtenir le reste de cette division entière, utilisez l'opérateur %
- Avec Python il est possible de calculer des puissances avec l'opérateur \*\*

```
>>> 17 / 3 # La division classique retourne un nombre décimal (float) 5.6666666666667
>>> 17 // 3 # La division entière retourne la partie entière 5
>>> 17 % 3 # L'opérateur % retourne le reste de la division 2
>>> 5 * 3 + 2 # partie entière * diviseur + reste 17
>>>
```

```
>>> 5 ** 2 # 5 au carré
25
>>> 2 ** 7 # 2 puissance 7
128
>>>
```

- Le signé égal (=) est utilisé pour affecter une valeur à une variable
- Après cela, aucun résultat n'est affiché avant l'invite suivante
- Si une variable n'est pas « définie » (si aucune valeur ne lui a été affecté), l'utiliser engendrera une erreur
- y a un support complet des nombres à virgule flottante
- Les opérateurs avec des types d'opérandes mélangés convertissent l'opérande entier en virgule flottante

```
>>> largeur = 20
>>> hauteur = 5 * 9
>>> largeur * hauteur
900
>>> une_variable
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
NameError: name 'une_variable' is not defined
>>> 4 * 3.75 - 1
14.0
```

- En mode interactif, la dernière expression affichée est affectée à la variable\_
- Ce qui signifie que lorsque vous utilisez Python comme calculatrice, il est parfois plus simple de continuer des calculs
- Cette variable doit être considérée comme une variable en lecture seule par l'utilisateur
- Ne/ui affectez pas de valeur explicitement
- Yous créeriez ainsi une variable locale indépendante avec le même nom qui masquerait la variable native et son fonctionnement magique
- ★ En plus des int et des float, il existe les Decimal et les Fraction
- Python gère aussi les nombre complexes, en utilisant le suffixe j ou J pour indiquer la partie imaginaire (tel que: 3+5j)

```
>>> taxe = 12.5 / 100
>>> prix = 100.50
>>> prix * taxe
12.5625
>>> prix + _
113.0625
>>> round(_,2)
113.06
```

### Les chaines de caractères