Topics to discuss

Master Theorem / Master Method

Master Theorem or Master Method: General Form, $T(n) = aT(\frac{n}{b}) + f(n)$, where $f(n) = \theta(n^k \log^k n)$ So, it become, $T(n) = aT(\frac{n}{b}) + \theta(n^k \log^n n)$ where, az1, b>1, kz0 and p is real number. Case T: If a7bk, then T(n) = O(n loga) a) If $\beta > -1$ then $T(n) = \theta(n \log a \log n)$ b) If $\beta = -1$ then $T(n) = \theta(n \log a \log \log n)$ c) If $\beta < -1$ then $T(n) = \theta(n \log a)$ case $II : I_b = a = b^k$

Case III: If
$$a < b^k$$

a) If $b \ge 0$ then $T(n) = \theta(n^k \log^p n)$

b) If $b < 0$ then $T(n) = \theta(n^k)$

Solve $T(n) = 2T(\frac{n}{2}) + 1$ Using Master Theorem. Solution: $T(n) = aT(\frac{n}{b}) + f(n)$ $= aT\left(\frac{n}{b}\right) + \Theta\left(n^{k} \log^{p} n\right)$ Here, a=2, b=2 $f(n) = \Theta(n^k \log^p n) = \Theta(1)$ = Θ (n^0 logon) = $\Theta(1)$ So, K=0 and p=0 $b^{K} = 2^{\circ} = 1 = 7 \quad a > b^{K} = \ case T$ $T(n) = \theta(n^{\log a}) = \theta(n^{\log 2})$

= 0 (n')

$$T(n) = \Theta(n)$$

Follow Now

Start Practicing

i._am._arfin

Arfin Parween