Национальный исследовательский университет «МЭИ»

Институт радиотехники и электроники Кафедра радиотехнических систем

КУРСОВАЯ РАБОТА

по дисциплине

Аппаратура потребителей спутниковых радионавигационных систем «Разработка модуля расчет координат спутника Beidou»

ΦИО СТУДЕНТА: САЛИН Г.А.
Группа: ЭР-15-16
Вариант №:20
Дата:
Подпись:

ФИО преподавателя: Корогодин И.В.
Оценка:

Содержание

Введение	3
1 Использование сторонних средств	4
1.1 Описание этапа	4
1.2 CelesTrak	4
1.3 Trimble GNSS Planning Online	6
1.4 Эфемериды в сигнале Beidou B11	8
1.5 Заключение по результатам использования сторонних	средств 10

Введение

Название проекта: Разработка модуля расчёта координат спутника Beidou.

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
- моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юнит-тестирование в Check.

Этапы курсовой работы отличаются осваиваемыми инструментами.

1 Использование сторонних средств

1.1 Описание этапа

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Harxon HX-CSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B11, выдавая по интерфейсам соответствующие потоки данных — наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года, доступны в рабочем репозитории (директория logs) в нескольких форматах.

Во-первых, это дам бинарного потока данных от приемника в формате NVS BINR.

Во-вторых, текстовый файл данных пакета 0хF7, полученный из данного дампа.

1.2 CelesTrak

Определение формы орбиты и положения спутника на ней на начало рассматриваемого интервала времени (на 18:00 МСК 16 февраля 2021 года) по данным сервиса CelesTrak.

Для определения имя и ID спутника воспользуемся таблицей из ru.wikipedia.org/wiki/Бэйдоу.

Nº ≑	Спутник 💠	PRN ÷	Дата (UTC)	Ракета 💠	NSSDC ID +	SCN ÷	Орбита 💠	Статус 💠
24	Бэйдоу-3 М1	C19	05.11.2017 11:44			43001₺	<u>СОО,</u> ~21 500 км	действующий
25	Бэйдоу-3 М2	C20	05.11.2017 11.44			43002년	<u>COO</u> , ~21 500 км	действующий

Рисунок 1 – Часть таблицы со списком спутников

Как видно из таблицы, спутник с номером 20 (PRN C20) имеет порядковый номер 25, имя спутника – Бэйдоу-3 М2 и ID 43002 (SCN в таблице).

Теперь зайдем на сайт celestrak.com. Выберем спутник Beidou-3 M2 с ID 43002, и установим заданное время. В сервисе используется время по UTC, которое отличается от времени по МСК на 3:00 часа, поэтому установим следующее время: 15:00:00 2021:02:16. Результаты приведены на рисунках 2 и 3.

Рисунок 2 – Орбита спутника

Рисунок 3 – Подспутниковая точка

По рисунку 2 видно, что орбита у спутника Beidou-3 M2 круговая.

По рисунку 3 видно, что подспутниковая точка на заданное время находилась в районе островов Филиппин.

1.3 Trimble GNSS Planning Online

Расчет графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online на интервале времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года.

Зайдем на сайт gnssplanning.com. По заданному интервалу и расположению приемной антенны устанавливаем следующие настройки (рисунок 4).

Рисунок 4 – Настройки сервиса Trimble GNSS Planning Online

Зная из предыдущего пункта имя спутника, выберем его и построим график угла места (рисунок 5), график SkyView (рисунок 6) и, для проверки, карту мира с траекторией движения спутника (рисунок 7).

Рисунок 5 – График угла места

По рисунку 5 видно, что спутник попал в поле зрения приемной антенны в 16:00 по UTC (19:00 МСК) и пропал в 18:30 UTC (21:30 МСК). Угол места изменялся от 11.03 до 22.57 градусов.

Рисунок 6 – График SkyView

График SkyView показывает, что спутник был виден антенной в азимуте от 0 до 90 градусов.

Рисунок 7 – Карта мира с траекторией движения спутника

В тот момент, когда спутник попал в поле зрения приемной антенны (19:00 МСК), его ПТ находилась чуть выше Филиппин, а когда исчез из поля зрения (21:30 МСК) — чуть восточнее полуострова Камчатка.

1.4 Эфемериды в сигнале Beidou B11

Формирование списка и описание параметров, входящих в состав эфемерид в сигнале Beidou B11.

Воспользуемся ИКД BeiDou: Navigation Satellite System Signal In Space, Interface Control Document, Open Service Signal B1I (Version 3.0), China Satellite Navigation Office, February 2019. Находим там таблицы 5-9 и 5-10, объединяем их и формируем таблицу с описанием параметров эфемерид.

Таблица 1 – Описание параметров, входящих в состав эфемерид Beidou.

Parameter	Definition	Units		
t_{oe}	Ephemeris reference time	S		
\sqrt{A}	Square root of semi-major axis	m ^{1/2}		
e	Eccentricity	-		
ω	Argument of perigee	π		
Δη	Mean motion difference from computed value	π/s		
M_0	Mean anomaly at reference time	π		
Ω_0	Longitude of ascending node of orbital of plane computed according to reference time			
Ω	Rate of right ascension	π/s		
i_0	Inclination angle at reference time	π		
IDOT	Rate of inclination angle	π/s		
C_{uc}	Amplitude of cosine harmonic correction term to the argument of latitude	rad		
C_{us}	Amplitude of sine harmonic correction term to the argument of latitude	rad		
C_{rc}	Amplitude of cosine harmonic correction term to the orbit radius	m		
C_{rs}	Amplitude of sine harmonic correction term to the orbit radius	m		
C_{ic}	Amplitude of cosine harmonic correction term to the angle of inclination	rad		

C_{is}	Amplitude of sine harmonic correction term to the angle of inclination	rad	
----------	--	-----	--

Формирование таблицы эфемерид спутника с подписанными размерностями.

Для этого откроем файл binr_0x00F7_BdsB1I.txt из директории logs/, найдем эфемериды спутника, и сведем их в таблицу 2.

Таблица 2 – Эфемериды спутника Beidou C20.

Параметр	Обозначение переменной	Единица измерения	Значение
PRN	SatNum	-	20
t_{oe}	toe	мс	226800000.000
C_{rs}	Crs	М	-7.39218750000000000e+01
Δn	Dn	рад/с	3.97195124013371981e-12
M_0	m0	рад	8.71704768059675339e-01
C_{uc}	Cuc	рад	-3.64007428288459778e-06
е	е	-	6.97147799655795097e-04
C_{us}	Cus	рад	5.95534220337867737e-06
\sqrt{A}	sqrtA	M ^{1/2}	5.28262682533264160e+03
C_{ic}	Cic	рад	-7.49714672565460205e-08
Ω_0	Omega0	рад	-2.82333800290329728e-01
C_{is}	Cis	рад	-6.84522092342376709e-08
i_0	i0	рад	9.65664043486355039e-01
C_{rc}	Crc	M	2.44500000000000000e+02
ω	omega	рад	-7.73836711576575076e-01
Ω	OmegaDot	рад/мс	-7.00779190266137795e-12

IDOT	iDot	π/c	-1.97151069276238744e-13
T_{GD}	Tgd	мс	2.3000000000000000e+05
t_{oc}	toc	мс	2.2680000000000000e+08
a_{f2}	af2	MC/MC ²	0.00000000000000000e+00
a_{f1}	af1	мс/мс	-4.24460466774689849e-12
a_{f0}	af0	мс	-9.16242361068725586e-01
URA	URA	-	0
IODE	IODE	-	257
IODC	IODC	-	1
codeL2	codeL2	-	0
L2P	L2P	-	0
WN	WN	-	789

1.5 Заключение по результатам использования сторонних средств

В результате использования сторонних средств, такие как сервисы CelesTrak и Trimble GNSS Planning Online, а также данных от приемника Clonicus, были получены следующие результаты:

- Определена форма орбиты и положение собственного спутника на ней на 18:00 МСК 16 февраля 2021 года.
- Получены график угла места и диаграмма угла места и азимута (SkyView) собственного спутника на интервале времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля.
- Сформированы таблица со списком и описанием параметров, входящих в состав
 эфемерид спутника Beidou, и таблица эфемерид собственного спутника Beidou.