GRAPH OF TRIGONOMETRIC FUNCTIONS TRIGONOMETRIC FUNCTION OF ANGLES

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Graph of Trigonometric Functions

Amplitude and Period of Sine Function

GRAPH OF TRIGONOMETRIC FUNCTIONS

SINE FUNCTION

$f(x) = \sin x$

x	f(x)
0	
$\pi/6$	
$\pi/4$	
$\pi/3$	
$\pi/2$	
$2\pi/3$	
$3\pi/4$	
$5\pi/6$	
π	

x	f(x)
$7\pi/6$	
$5\pi/4$	
$4\pi/3$	
$3\pi/2$	
$5\pi/3$	
$7\pi/4$	
$11\pi/6$	
2π	

Graph of $\sin x$

<u>Domain:</u> All real numbers (-∞, ∞)

<u>Range:</u> [-1,1]

COSINE FUNCTION

$f(x) = \cos x$

x	f(x)
0	
$\pi/6$	
$\pi/4$	
$\pi/3$	
$\pi/2$	
$2\pi/3$	
$3\pi/4$	
$5\pi/6$	
π	

x	f(x)
$7\pi/6$	
$5\pi/4$	
$4\pi/3$	
$3\pi/2$	
$5\pi/3$	
$7\pi/4$	
$11\pi/6$	
2π	
·	·

Graph of $\cos x$

<u>Domain:</u> All real numbers (-∞, ∞)

<u>Range:</u> [-1,1]

TANGENT FUNCTION

$f(x) = \tan x$

x	f(x)
0	
$\pi/6$	
$\pi/4$	
$\pi/3$	
$\pi/2$	
$2\pi/3$	
$3\pi/4$	
$5\pi/6$	
π	

Graph of $\tan x$

<u>Domain:</u> All real numbers except odd multiples of $\pi/2$

Range: $[-\infty, \infty]$

COTANGENT FUNCTION

$$f(x)=\cot x$$

x	f(x)
0	
$\pi/6$	
$\pi/4$	
$\pi/3$	
$\pi/2$	
$2\pi/3$	
$3\pi/4$	
$5\pi/6$	
π	
,	

X	f(x)
$7\pi/6$	
$5\pi/4$	
$4\pi/3$	
$3\pi/2$	
$5\pi/3$	
$7\pi/4$	
$11\pi/6$	
2π	

Graph of cot *x*

<u>Domain:</u> All real numbers except integer multiples of π

Range: $[-\infty, \infty]$

SECANT FUNCTION

$$f(x) = \sec x$$

x	f(x)
0	
$\pi/6$	
$\pi/4$	
$\pi/3$	
$\pi/2$	
$2\pi/3$	
$3\pi/4$	
$5\pi/6$	
π	

x	f(x)
$7\pi/6$	
$5\pi/4$	
$4\pi/3$	
$3\pi/2$	
$5\pi/3$	
$7\pi/4$	
$11\pi/6$	
2π	

Graph of $\sec x$

<u>Domain:</u> All real numbers except odd multiples of $\pi/2$

 $\underline{Range:} (-\infty, -1] \cup [1, \infty)$

COSECANT FUNCTION

$$f(x)=\csc x$$

x	f(x)
0	
$\pi/6$	
$\pi/4$	
$\pi/3$	
$\pi/2$	
$2\pi/3$	
$3\pi/4$	
$5\pi/6$	
π	

x	f(x)
$7\pi/6$	
$5\pi/4$	
$4\pi/3$	
$3\pi/2$	
$5\pi/3$	
$7\pi/4$	
$11\pi/6$	
2π	

Graph of $\csc x$

 $\underline{\text{Domain:}} \text{ All real numbers except odd multiples of } \pi$

 $\underline{Range:} (-\infty, -1] \cup [1, \infty)$

AMPLITUDE AND PERIOD OF SINE FUNCTION

AMPLITUDE

$$f(x) = a \sin x$$

Let the amplitude a = 2

x	sin x	$2\sin x$
0		
$\pi/4$		
$\pi/2$		
$3\pi/4$		
π		
$5\pi/4$		
$3\pi/2$		
$7\pi/4$		
2π		

Graph of $2 \sin x$

What would be the graph of $3 \sin x$?

PERIOD

$$f(x) = \sin bx$$

$$\underline{\text{Let }}b=2$$

x	sin x	sin 2x
0		
$\pi/4$		
$\pi/2$		
$3\pi/4$		
π		
$5\pi/4$		
$3\pi/2$		
$7\pi/4$		
2π		

Graph of $\sin 2x$

$$period = \frac{2\pi}{b}$$

AMPLITUDE AND PERIOD

$$f(x) = a \sin bx$$

$$\underline{\text{Let}} \, \mathbf{a} = 2 \, , b = 10$$

x	sin x	$2\sin 10x$
0		
$\pi/4$		
$\pi/2$		
$3\pi/4$		
π		
$5\pi/4$		
$3\pi/2$		
$7\pi/4$		
2π		

Graph of $\sin 10x$

$$period = \frac{2\pi}{b}$$

EXERCISE

The average temperature (in °F) at Mould Bay, Canada, can be approximated by the function

$$f(x) = 34 \sin \left[\frac{\pi}{6} (x - 4.3) \right]$$

where x is the month and x = 1 corresponds to January, x = 2 to February, and so on.

<u>Using this model:</u>

- a. What is the maximum temperature predicted?
- b. What is the period of the temperature cycle?
- c. What is the average temperature in May?

Solution

EXERCISE

The light from the moon, in lux, on the night of the day t^{th} of 2016, is

Solution

$$L(t) = 0.25 - sin\left(\frac{2\pi(t-2)}{28.5}\right)$$

What is the period of the light from the moon?

EXERCISE

The solar constant S is the amount of energy per unit area that reaches Earth's atmosphere from the sun. It is equal to 1367 watts per m^2 but varies slightly throughout the seasons. This fluctuation ΔS in S can be calculated using the formula

$$\Delta S = 0.034S \sin \left[\frac{2\pi (82.5 - N)}{365.25} \right]$$

In this formula, N is the day number covering a fouryear period, where N = 1 corresponds to January 1 of a leap year and N = 1461 corresponds to December 31 of the fourth year.

- a. Calculate ΔS for N=80, which is the spring equinox in the first year.
- b. Calculate ΔS for N=1268, which is the summer solstice in the fourth year.
- c. What is the maximum value of ΔS ?
- d. Find a value for N where ΔS is equal to 0.

SEATWORK

