

带、链传动
一、 选择题 1、带传动中,若 v_1 为主动带轮基准直径上的圆周速度, v_2 为从动带轮基准直径上的圆周速度, v_3 为带速,则三者之间的关系是()。 A. $v_1=v_2=v$ B. $v_1< v< v_2$ C. $v_1> v> v_2$ D. $v_1=v_2> v$
2、在初拉力相同的条件下, V 带的承载能力比平带高, 是因为 V 带 ()。 A. 强度高 B. 尺寸小 C. 有楔形增压作用 D. 没有接头
3、V 带传动在正常工作时,必有()。 A. 弹性滑动存在 B. 打滑存在 C. 打滑和弹性滑动同时存在 D. 强烈的振动与噪声
4、链传动设计中,一般链轮最多齿数限制为 z _{max} =120,是为了()。 A. 减小链传动的运动不均匀性
5、带传动工作时松边带速 () 紧边带速。 A. 小于 B. 大于 C. 等于 D. 可能大于、小于或等于
6、带传动采用张紧装置的目的是 ()。 A. 减轻带的弹性滑动 B. 提高带的寿命 C. 改变带的运动方向 D. 调节带的初拉力
7、在普通 V 带传动设计中,小带轮直径 <i>d</i> ₁ 若过小,则带的()将过大而导致带的寿命降低。 A. 拉应力 B. 离心拉应力 C. 弯曲应力 D. 长度
8、设计链传动时,可通过取()来减小速度不均匀性。 A. 较少的小链轮齿数和较大的节距 B. 较多的小链轮齿数和较大的节距 C. 较少的小链轮齿数和较小的节距 D. 较多的小链轮齿数和较小的节距
9、带传动中,若小带轮为主动轮,则带的最大应力发生在带()处。 A. 进入主动轮 B. 进入从动轮 C. 退出主动轮 D. 退出从动轮
10、V 带轮的最小直径取决于 ()。 A. 带的型号 B. 带的速度 C. 主动轮转速 D. 传动比
11、在普通 V 带传动设计中,小带轮包角应不小于 120°, 主要是为了()。 A. 减小弹性滑动 B. 减小离心拉力 C. 减小弯曲应力 D. 增大摩擦力
12、设计链传动时,链条的节数最好取 ()。 A. 偶数 B. 奇数 C. 3 的倍数 D. 链轮齿数的整数倍

13、带传动作减速传动时,带的最大应力 σ_{max} 等于 ()。

A. $\sigma_1 + \sigma_{b1} + \sigma_c$ B. $\sigma_1 + \sigma_{b2} + \sigma_c$ C. $\sigma_2 + \sigma_{b1} + \sigma_c$ D. $\sigma_2 + \sigma_{b2} + \sigma_c$

14、	在有张紧轮装置的带传动中,当张紧轮装在带内侧时应安装在()。 A. 两带轮的中间 B. 靠近小带轮 C. 靠近大带轮 D. 任何处都没关系
15、	设计 V 带传动设计时,选择小带轮基准直径 $d_1 \ge d_{min}$,其主要目的是为了()。 A. 使传动的包角不致过小 B. 防止带的弯曲应力不致过大 C. 增大带与带间的摩擦力 D. 便于带轮的制造
16、	链传动张紧的目的主要是()。 A. 使链轮轮齿受力均匀 B. 提高链传动的工作能力 C. 增大包角 D. 避免松边垂度过大而引起啮合不良和链条振动
17、	普通 V 带的楔角为 40°, 而 V 带轮楔角应 () 40°。 A. 大于 B. 等于 C. 小于 D. 不小于
18、	带传动设计的主要依据是()。 A. 保证不打滑 B. 保证带不产生疲劳破坏 C. 保证不打滑,不产生弹性滑动 D. 保证不打滑,具有一定的疲劳强度和寿命
19、	带传动打滑的原因是 ()。 A. 紧边拉力 F_1 大于极限摩擦力 B. 松边拉力 F_2 大于极限摩擦力 C. 有效圆周力 F 大于极限摩擦力 D. $(F_1+F_2)/2$ 大于极限摩擦力
20、	链传动中,限制链轮最少齿数的目的之一是为了 ()。 A. 减小链传动的运动不均匀性和动载荷 B. 防止链节磨损后脱链 C. 使小链轮轮齿受力均匀 D. 限制传动比
21,	带传动的主动轮与从动轮的两轴线位于同一水平面内,为使传递功率增大,应使()在上。A. 松边 B. 紧边 C. 条件不足无法判断 D. 哪边在上与传递功率大小无关
22,	在带传动中,用()的方法可以使小带轮的包角加大。 A. 增大小带轮的直径 B. 减小小带轮的直径 C. 增大大带轮的直径 D. 减小中心距
23,	V 带传动工作时, () 与带轮轮槽接触。 A. 带的底面 B. 带的顶面 C. 带的两侧面 D. 带的两侧面和底面
24,	与带传动相比,链传动的主要特点之一是 ()。 A. 缓冲、减振 B. 过载保护 C. 无打滑 D. 瞬时传动比固定
25、	带传动工作时产生弹性滑动的原因是()。 A. 带的预紧力不够 B. 带的紧边和松边拉力不等 C. 带与带轮间摩擦力不够 D. 带绕过带轮时有离心力
26,	带传动中,当初拉力增大时,带的承载能力和寿命()。 A. 分别降低和提高 B. 分别提高和降低 C. 均降低 D. 均提高

27、一定型号 V 带的弯曲应力大小与 () 成反比。 A. 带轮的基准直径 B. 包角 C. 传动比 D. 带的线速度
28、滚子链传动中,链节数应尽量避免采用奇数,这主要是因为采用过渡链节后()。 A. 制造困难 B. 要使用较长的销轴 C. 不便于装配 D. 链板要产生附加的弯曲应力
29、带传动正常工作时不能保证准确的传动比是因为 ()。 A. 带的材料不符合虎克定律 B. 带容易变形和磨损 C. 带在带轮上打滑 D. 带的弹性滑动
30、带传动中,小带轮直径 d ₁ 不能取得太小,主要是因为 ()。 A. 会使带轮孔径太小,制造困难 B. 小带轮包角太小 C. 使带中弯曲应力过大 D. 带轮强度不够
31、带传动工作时,弹性滑动 ()。 A. 在张紧力足够时可以避免 B. 在传递功率较小时可以避免 C. 在小带轮包角足够大时可以避免 D. 是不可避免的
32、链传动作用在轴和轴承上的载荷比带传动小,这主要是由于 ()。 A. 链传动只用来传递小功率 B. 链速较高,在传递相同功率时,圆周力小 C. 链的质量大,离心力也大 D. 啮合传动需要的张紧力小
二、填空题 1、带传动中,若 v_1 为主动带轮基准直径上的圆周速度, v_2 为从动带轮基准直径上的圆周速度, 为带速,则三者之间的关系是()。 A. $v_1=v_2=v$ B. $v_1< v< v_2$ C. $v_1> v> v_2$ D. $v_1=v_2> v$
1、带传动中,若 v_1 为主动带轮基准直径上的圆周速度, v_2 为从动带轮基准直径上的圆周速度,为带速,则三者之间的关系是()。
1、带传动中,若 v_1 为主动带轮基准直径上的圆周速度, v_2 为从动带轮基准直径上的圆周速度,为带速,则三者之间的关系是()。 A. $v_1 = v_2 = v$ B. $v_1 < v < v_2$
1、带传动中,若 v_1 为主动带轮基准直径上的圆周速度, v_2 为从动带轮基准直径上的圆周速度,为带速,则三者之间的关系是()。 A. $v_1 = v_2 = v$ B. $v_1 < v < v_2$ C. $v_1 > v > v_2$ D. $v_1 = v_2 > v$ 2、V 带传动是靠带与带轮接触面间的力工作的。
 1、帯传动中,若v₁为主动帯轮基准直径上的圆周速度, v₂ 为从动帯轮基准直径上的圆周速度, 为帯速, 则三者之间的关系是()。 A. v₁=v₂=v B. v₁<v<v<sub>2</v<v<sub> C. v₁>v>v₂ D. v₁=v₂>v 2、V 帯传动是靠帯与帯轮接触面间的 力工作的。 3、设计 V 帯传动时, V 帯的型号是根据 选取的。
 市传动中,若v₁为主动带轮基准直径上的圆周速度, v₂为从动带轮基准直径上的圆周速度, 为带速,则三者之间的关系是()。 A. v₁=v₂=v B. v₁<v<v<sub>2</v<v<sub> C. v₁>v>v₂ D. v₁=v₂>v 2、V 带传动是靠带与带轮接触面间的力工作的。 3、设计 V 带传动时, V 带的型号是根据
 お传动中,若 ν₁ 为主动带轮基准直径上的圆周速度, ν₂ 为从动带轮基准直径上的圆周速度, 为带速,则三者之间的关系是()。 A. ν₁ = ν₂ = ν B. ν₁ < ν < ν₂ C. ν₁ > ν > ν₂ D. ν₁ = ν₂ > ν 2、V 帯传动是靠带与带轮接触面间的
 お传动中,若 v₁ 为主动带轮基准直径上的圆周速度, v₂ 为从动带轮基准直径上的圆周速度, 为带速, 则三者之间的关系是 ()。 A. v₁ = v₂ = v B. v₁ < v < v₂ C. v₁ > v > v₂ D. v₁ = v₂ > v 2、V 带传动是靠带与带轮接触面间的
 お帯传动中,若v₁为主动帯轮基准直径上的圆周速度,v₂为从动帯轮基准直径上的圆周速度,为帯速,则三者之间的关系是()。 A. v₁=v₂=v B. v₁<v<v<sub>2</v<v<sub> C. v₁>v>v₂ D. v₁=v₂>v 2、V 帯传动是靠帯与帯轮接触面间的力工作的。 3、设计 V 帯传动时, V 帯的型号是根据选取的。 4、帯传动的传动比不准确,是因为帯传动中存在着不可避免的

三、简答题

- 1、带传动的弹性滑动是怎样产生的?它对带传动有何影响?弹性滑动是否可以避免?
- 2、带传动的打滑是怎样产生的?它对带传动有何影响?打滑是否都可以避免?
- 5、带传动工作时,带上所受应力有哪几种?最大应力在何处?画图及文字表示。

四、分析题

1、对于图示 V 带传动的四种布置方案, 试分析比较其张紧轮位置的合理性, 要求说明理由。

2、对于图示链传动的四种布置形式,当小链轮为主动轮时,它们按什么方向旋转比较合理?要求说明理由。

3、一链传动,已知主动链轮转速 n_1 =970r/min,从动链轮转速 n_2 =323r/min,平均链速 v=5.85m/s,链节距 p=19.05mm,求链轮齿数 z_1 、 z_2 和两链轮分度圆直径 d_1 、 d_2 。

(8 points) In a roller chain drive shown in Fig. 3, the rotating speed of driving sprocket 1 is $n_1 = 970$ r/min, the rotating speed of driven sprocket 2 is $n_2 = 323$ r/min. The average chain speed is v = 5.85m/s. The chain pitch is p = 19.05mm. Find the numbers of sprocket teeth z_1 , z_2 and the reference-circle diameters d_1 , d_2 .

4、(12)

An ordinary V-belt drive shown in Fig. 3 is to be designed to transmit power P = 7.5kW, belt speed v = 10m/s, the tight side tension is twice as large as that of the loose side, namely $F_1 = 2F_2$. Find the tight side tension F_1 , the loose side tension F_2 and the initial tension F_0 .

V 带传动的传动功率 P=7.5 kW,带速 v=10 m/s,紧边拉力是松边拉力的两倍,即 $F_1=2F_2$,试求 紧边拉力 F_1 ,有效拉力 F 及初拉力 F_0 。