Bài 3. CÁC KHÁI NIỆM MỞ ĐẦU

A. TÓM TẮT LÍ THUYẾT

1. Khái niệm vectơ

7 ĐỊNH NGHĨA 3.1. Vectơ là một đoạn thẳng có hướng.

Vectơ có điểm đầu là A, điểm cuối là B được kí hiệu là \overrightarrow{AB} , đọc là "vectơ \overrightarrow{AB} ". Để vẽ vectơ \overrightarrow{AB} ta vẽ đoạn thẳng AB và đánh dấu mũi tên ở đầu mút B (Hình 1).

Đối với vecto $AB,\,\mathrm{ta}$ goi

 $\ensuremath{ \bigodot}$ Độ dài đoạn thẳng AB là độ dài của vector AB, kí hiệu là $|\overrightarrow{AB}|.$

2. Hai vectơ cùng phương, cùng hướng, bằng nhau

 \P Định Nghĩa 3.2. Hai vectơ \overrightarrow{AB} , \overrightarrow{CD} bằng nhau nếu chúng cùng hướng và cùng độ dài, kí hiệu: $\overrightarrow{AB} = \overrightarrow{CD}$.

Khi không cần chỉ rõ điểm đầu và điểm cuối của vectơ, vectơ còn được kí hiệu là \vec{a} , \vec{b} , \vec{u} , \vec{v} , ... (Hình 5). Độ dài của vectơ \vec{a} được kí hiệu là $|\vec{a}|$.

Nhận xét

- $oldsymbol{\Theta}$ Hai vecto \overrightarrow{a} , \overrightarrow{b} bằng nhau nếu chúng cùng hướng và cùng độ dài, kí hiệu là $\overrightarrow{a} = \overrightarrow{b}$.
- $oldsymbol{\Theta}$ Khi cho trước vect
ơ \overrightarrow{a} và điểm O, thì ta luôn tìm được một điểm A duy nhất sao cho
 $\overrightarrow{OA} = \overrightarrow{a}$.

3. Vecto không

 $\frac{1}{2}$ Định nghĩa 3.3. vectơ không là vectơ có điểm đầu và điểm cuối trùng nhau, kí hiệu là 0.

Với các điểm bất kì A, B, C ta có $\overrightarrow{0} = \overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{CC}$. vectơ \overrightarrow{AA} nằm trên mọi đường thẳng đi qua A. Ta quy ước $\overrightarrow{0}$ (vectơ không) cùng phương và cùng hướng với mọi vectơ; hơn nữa $|\overrightarrow{0}| = 0$.

Nhận xét: Hai điểm A, B trùng nhau khi và chỉ khi $\overrightarrow{AB} = \overrightarrow{0}$.

B. CÁC DẠNG TOÁN

Dạng 1. Xác định một vectơ, độ dài vectơ

- ❷ vectơ là một đoạn thẳng có hướng, nghĩa là, trong hai điểm mút của đoạn thẳng, đã chỉ rõ điểm đầu, điểm cuối.
- ❷ Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó.

1. Ví dụ minh hoạ

 \overrightarrow{V} I DỤ 1. Cho tứ giác ABCD. Hãy chỉ ra các vectơ khác vectơ không có điểm đầu và điểm cuối là các đỉnh của tứ giác.

VÍ Dụ 2. Cho hình vuông ABCD với cạnh có độ dài bằng 1. Tính độ dài các vectơ \overrightarrow{AB} , \overrightarrow{BD} , \overrightarrow{DB} .

VÍ DỤ 3. Cho tam giác đều ABC có cạnh bằng a. Gọi M là trung điểm của BC tính độ dài vecto \overrightarrow{AM} .

	2		
IJI.	\mathbf{F}	NΛ	•

"It's not how much time you have, it's how you use it."

\cap T	117	\sim T \sim	\mathbf{T}	\mathbf{C}	7
ωu	ш	$\mathbb{C}\mathbf{K}$	TA.	U.	

♥ VNPmath - 0962940819 ♥
QUICK NOTE

2. Bài tập tự luận

BÀI 1. Cho lục giác đều ABCDEF có cạnh bằng a.

- a) Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các đỉnh của ngũ giác?
- b) Tính độ dài các vectơ \overrightarrow{AD}

BÀI 2. Cho tạm giác ABC vuông tại A có BC=2a. Gọi M là trung điểm của BC tính độ dài vecto \overrightarrow{AM} .

Dạng 2. Hai vectơ cùng phương, cùng hướng và bằng nhau

Sử dụng các định nghĩa

- ❷ Hai vecto cùng phương nếu chúng có giá song song hoặc trùng nhau.
- ❷ Hai vecto cùng phương thì cùng hướng hoặc ngược hướng.
- ❷ Hai vectơ bằng nhau nếu chúng cùng độ dài và cùng hướng.

1. Ví dụ minh hoạ

VÍ DŲ 1.

Cho hình vẽ, hãy chỉ ra các vectơ cùng phương, các cặp vectơ ngược hướng và các cặp vectơ bằng nhau

VÍ DỤ 2. Cho hình bình hành ABCD có tâm là O . Hãy tìm các cặp vectơ khác $\overrightarrow{0}$, bằng nhau và

- a) có điểm đầu và điểm cuối trong các điểm A , B , C và D .
- b) có điểm đầu là O hoặc điểm cuối là O.

2. Bài tập tự luận

BÀI 1.

Cho hình vẽ, hãy chỉ ra các vectơ cùng phương, các cặp vectơ ngược hướng và các cặp vectơ bằng nhau

BÅI 2. Cho tam giác đều ABC, hãy chỉ ra mối quan hệ về độ dài, phương và hướng giữa cặp vecto \overrightarrow{BA} và \overrightarrow{CA} . Hai vecto có bằng nhau không?

BÀI 3.

Cho hình lục giác đều ABCDEF có tâm O.

- a) Hãy tìm các vectơ khác $\overrightarrow{0}$ và bằng với \overrightarrow{AB} .
- b) Hãy vẽ vectơ bằng với \overrightarrow{AE} và có điểm đầu là B.
- c) Hãy vẽ vectơ bằng với \overrightarrow{AE} và có điểm đầu là C.

BÀI 4. Chứng minh ba điểm A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB}, \overrightarrow{AC}$ cùng phương.

C. CÂU HỎI TRẮC NGHIỆM

CÂU 1. Chọn khẳng định đúng trong các khẳng định sau.

- (A) vecto là một đường thẳng có hướng.
- (**B**)vecto là một đoạn thẳng.
- (C) vecto là một đoan thẳng có hướng.
- (**D**)vectơ là một đoạn thẳng không phân biệt điểm đầu và điểm cuối.

CÂU 2. Cho tam giác ABC có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C?

- (**A**) 2.
- **(B)**3.
- $(\mathbf{C})_{4.}$
- $(\mathbf{D})6.$

CÂU 3. Cho hai điểm phân biệt A, B. Số vectơ (khác $\overrightarrow{0}$) có điểm đầu và điểm cuối lấy từ các điểm A, B là

- $(\mathbf{A})2.$
- $(\mathbf{C})13.$
- (**D**)12.

CÂU 4. Cho tam giác đều ABC. Mệnh đề nào sau đây sai?

 $(\mathbf{A})\overrightarrow{AB} = \overrightarrow{BC}.$

 $(\mathbf{B})\overrightarrow{AC} \neq \overrightarrow{BC}.$

 $\mathbf{C} |\overrightarrow{AB}| = |\overrightarrow{BC}|.$

 $(\mathbf{D})\overrightarrow{AC}$ không cùng phương \overrightarrow{BC} .

CÂU 5. Khẳng định nào dưới đây là sai?

- (A) Mỗi vectơ đều có một độ dài, đó là khoảng cách giữa điểm đầu và điểm cuối của vectơ
- **(B)**Đô dài của vectơ \vec{a} được kí hiệu là $|\vec{a}|$.
- $|\overrightarrow{PQ}| = \overrightarrow{PQ}.$
- $(\mathbf{D})|\overrightarrow{AB}| = AB = BA.$

CÂU 6. Cho tam giác ABC. Goi M, N lần lượt là trung điểm các canh AB, AC. Mênh đề nào sau đây sai?

- $(\mathbf{A})\overrightarrow{BC} = 2\overrightarrow{NM}.$

CÂU 7. Cho hai vecto không cùng phương \vec{a} và \vec{b} . Khẳng định nào sau đây đúng?

- (A) Không có vectơ nào cùng phương với cả hai vectơ \vec{a} và \vec{b} .
- **B**)Có vô số vectơ cùng phương với cả hai vectơ \vec{a} và \vec{b} .
- (**C**)Có một vectơ cùng phương với cả hai vecto \vec{a} và \vec{b} .
- (**D**)Có hai vecto cùng phương với cả hai vecto \vec{a} và \vec{b} .

CÂU 8. Cho 3 điểm phân biệt A, B, C. Khi đó khẳng định nào sau đây sai?

- $(\mathbf{A})A$, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB} và \overrightarrow{AC} cùng phương.
- $(\mathbf{B})A$, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB} và \overrightarrow{BC} cùng phương.
- $(\mathbf{C})A$, B, C thẳng hàng khi và chỉ khi \overrightarrow{AC} và \overrightarrow{BC} cùng phương.
- $(\mathbf{D})A$, B, C thẳng hàng khi và chỉ khi AC = BC.

CÂU 9. Mênh đề nào sau đây đúng?

- (A)Có duy nhất một vectơ cùng phương với mọi vectơ.
- (B)Có ít nhất hai vectơ cùng phương với mọi vectơ.
- (C)Có vô số vecto cùng phương với mọi vecto.

•																

QUICK NOTE	D Không có vectơ	nào cùng phương	với mọi vecto.	
	CÂU 10. Khẳng định	nào sau đây đún	ıg?	
		*	ectơ thứ ba thì cùng phươn	ng.
	Hai vecto cùng j	phương với một v	ectơ thứ ba khác $\overrightarrow{0}$ thì cùr	ng phương.
	C vectơ không là v			
	D)Điều kiện đủ để	hai vecto bằng n	hau là chúng có độ dài bằn	g nhau.
	CÂU 11. Cho lục giá	ác đều <i>ABCDEF</i>	tâm O. Số các vectơ khác	$\overrightarrow{0}$ cùng phương với \overrightarrow{OC}
	có điểm đầu và điểm	cuối là các đỉnh c	ủa lục giác bằng	
	(A) 6.	B)7.	(C)8.	(D) 4.
	CÂU 12. Cho ba điể	m A, B, C phân l	biệt. Khi đó	
	A Điều kiện cần và	à đủ để A,B,C t	hẳng hàng là \overrightarrow{AC} cùng ph	ương với \overrightarrow{AB} .
	l ~		àng là \overrightarrow{CA} cùng phương vớ	
	~		nàng là \overrightarrow{CA} cùng phương v	ới \overrightarrow{AB} .
	DĐiều kiện cần và	à đủ để A,B,C t	hẳng hàng là $\overrightarrow{AB} = \overrightarrow{AC}$.	
	CÂU 13. Cho vecto	$\overrightarrow{MN} \neq \overrightarrow{0}$. Số vect	sơ cùng hướng với vectơ \overline{M}	\overrightarrow{N} là
	A vô số.	B 1.	© 3.	\bigcirc 2.
	CÂU 14. Gọi <i>C</i> là tr	ung điểm của đọc	an AB . Hãy chọn khẳng đị	nh đúng trong các khẳng
	định sau.	ung diem eda doe	m 112. Hay ençir knang di	in dang trong cae khang
	$(\overrightarrow{A}) \overrightarrow{CA} = \overrightarrow{CB}.$		$\bigcirc B \overrightarrow{AB}$ và \overrightarrow{AC} cùn	g hướng.
	$\bigcirc \overrightarrow{AB}$ và \overrightarrow{CB} ngượ	ge hướng.	$\left \overrightarrow{AB} \right = \overrightarrow{CB}.$	
	CÂU 15. Cho ba điể	m = M = N = P thẩn	g hàng, trong đó điểm N	nằm giữa hai điểm M và
	P. Khi đó các cặp veo		g?	non grad nor drem m va
	$ \mathbf{A} \overrightarrow{MP} \text{ và } \overrightarrow{PN}. $	$\bigcirc B \overrightarrow{MN}$ và \overrightarrow{PN}	\overrightarrow{V} . $\bigcirc \overrightarrow{NM}$ và \overrightarrow{NP} .	$\bigcirc \overrightarrow{MN}$ và \overrightarrow{MP} .
	CÂU 16. Phát biểu 1	nào sau đâv đúngʻ	?	
			ộ dài của chúng không bằn	g nhau.
	B Hai vecto không	g bằng nhau thì đó	ộ dài của chúng không cùn	g phương.
	Hai vecto bằng	nhau thì có giá tr	ùng nhau hoặc song song r	nhau.
	Hai vectơ có độ	dài không bằng n	hau thì không cùng hướng	
	CÂU 17. Cho vecto	$\vec{a} \neq \vec{0}$. Mênh đề	nào sau đây đúng?	
	(A) Có vô số vectơ		B Có duy nhất m	$\hat{\text{ot}} \ \overrightarrow{u} \ \text{mà} \ \overrightarrow{u} = \overrightarrow{a}.$
	Có duy nhất mệ	ot \vec{u} mà $\vec{u} = -\vec{a}$.	×	\vec{u} nào mà $\vec{u} = \vec{a}$.
	CÂU 18 Cho hình h	sình hành $ARCD$. Đẳng thức nào sau đây s a	a i ?
	$ \overrightarrow{A} \overrightarrow{AD} = \overrightarrow{BC} .$	$\mathbf{B} \left \overrightarrow{BC} \right = \left \overrightarrow{D} \right $		$\mathbf{D} \left \overrightarrow{AC} \right = \left \overrightarrow{BD} \right .$
		1 1 1		
			tâm O. Ba vecto bằng vec	
	$igathboldsymbol{igathboldsymbol{A}} \overrightarrow{OF}, \overrightarrow{DE}, \overrightarrow{OC}.$	$\bigcirc \overrightarrow{B}\overrightarrow{CA},\overrightarrow{OF},\overrightarrow{B}$	\overrightarrow{DE} . $\bigcirc \overrightarrow{OF}$, \overrightarrow{DE} , \overrightarrow{CO} .	$(\mathbf{D})\overrightarrow{OF}, \overrightarrow{ED}, \overrightarrow{OC}.$
	CÂU 20. Cho đoạn t	thẳng AB , I là trư	ung điểm của AB . Khi đó	
	$\overrightarrow{\mathbf{A}}\overrightarrow{BI} = \overrightarrow{AI}.$		$lackbox{$oldsymbol{B}$} \overrightarrow{BI}$ cùng hướng	\overrightarrow{AB} .
	$\left \mathbf{C} \right \overrightarrow{BI} \right = 2 \left \overrightarrow{IA} \right .$		$\left \overrightarrow{BI} \right = \left \overrightarrow{IA} \right .$	
	CÂU 21. Cho hình t	họi $ABCD$ canh a	$a \text{ và } \widehat{BAD} = 60^{\circ}. \text{ Dắng thứ}$	tc nào sau đây đúng?
	$(\overrightarrow{A})\overrightarrow{BC} = \overrightarrow{DA}.$	$(\mathbf{B})\overrightarrow{AB} = \overrightarrow{AD}.$	$\overrightarrow{\textbf{C}}\overrightarrow{BD} = \overrightarrow{AC}$.	$ \overrightarrow{\mathbf{D}} \overrightarrow{BD} = a.$
			rong các đẳng thức dưới đây	
	$ \overrightarrow{\mathbf{A}}\overrightarrow{AB} = \overrightarrow{CD}. $	$\overrightarrow{\mathbf{B}}\overrightarrow{AD} = \overrightarrow{BC}.$	$(\mathbf{C})\overrightarrow{AC} = \overrightarrow{BD}.$	$(\mathbf{D})\overrightarrow{BC} = \overrightarrow{DA}.$
	CÂU 23. Cho tam gi	ác ABC với trung	g tuyến AM và trọng tâm	G . Khi đó $ \overrightarrow{GA} $ bằng
	$\frac{1}{2} \overrightarrow{AM} .$	$\bigcirc \mathbf{B} \stackrel{2}{\overrightarrow{3}} \overrightarrow{GM} .$	$\bigcirc 2 \overrightarrow{GM} .$	$\mathbf{D} - \frac{2}{3} \overrightarrow{MA} .$
	'	Э		Э

Bài 4. TỔNG VÀ HIỆU CỦA HAI VÉC-TƠ

A. CÁC DẠNG TOÁN

Dạng 1. Tính tổng, hiệu hai véc-tơ

- ❷ Ghép các véc-tơ lại thích hợp.
- ❷ Dùng các quy tắc cộng véc-tơ để tính.
- **BÀI 1.** Tính tổng $\overrightarrow{MN} + \overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR}$.
- **BÀI 2.** Cho tạm giác ABC với M, N, P lần lượt là trung điểm của BC, CA, AB. Tính tổng $\overrightarrow{AP} + \overrightarrow{BM} + \overrightarrow{CN}$.
- **BÀI 3.** Cho hai hình bình hành ABCD và AB'C'D' có chung đỉnh A. Tính $\overrightarrow{u} = \overrightarrow{B'B} + \overrightarrow{CC'} + \overrightarrow{D'D}$.
- **BÀI 4.** Cho tam giác ABC, gọi D, E, F, G, H, I theo thứ tự là trung điểm các cạnh AB, BC, CA, DF, DE, EF. Tính véc-tơ $\overrightarrow{u} = \overrightarrow{BE} \overrightarrow{GH} \overrightarrow{AI} + \overrightarrow{FE}$?

BÀI 5.

Cho lục giác đều ABCDEF tâm O. Rút gọn véc-tơ $\overrightarrow{v}=\overrightarrow{AF}+\overrightarrow{BC}+\overrightarrow{DE}?$

- **BÀI 6.** Gọi O là tâm của tam giác đều ABC. Tính $\overrightarrow{u} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.
- **BÀI 7.** Cho hình bình hành ABCD. Trên các đoạn thẳng DC, AB theo thứ tự lấy các điểm M,N sao cho DM = BN. Gọi P là giao điểm của AM,DB và Q là giao điểm của CN,DB. Tính $\overrightarrow{u} = \overrightarrow{DP} \overrightarrow{QB}$.

Dạng 2. Xác định vị trí của một điểm từ đẳng thức véc-tơ

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho tam giác ABC. Điểm M thỏa mãn điều kiện $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$. Mệnh đề nào sau đây đúng?

- $(\mathbf{A})M$ là điểm sao cho tứ giác BAMC là hình bình hành.
- $(\mathbf{B})M$ là điểm sao cho tứ giác ABMC là hình bình hành.
- $(\mathbf{C})M$ là trọng tâm tam giác ABC.
- $(\mathbf{D})M$ thuộc đường trung trực của AB.

2. Bài tâp tư luân

- **BÀI 1.** Cho tam giác ABC. Xác định điểm M thỏa mãn điều kiện $\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$.
- **BÀI 2.** Cho hình bình hành ABCD. Xác định điểm M thỏa mãn điều kiện $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{AD}$
- **BÀI 3.** Cho hình bình hành ABCD. Xác định điểm M thỏa mãn điều kiện $\left| \overrightarrow{MB} + \overrightarrow{CD} \right| = \left| \overrightarrow{MC} + \overrightarrow{DA} \right|$.

Dang 3. Tính đô dài véc-tơ

				_
\boldsymbol{a}	W	CK	Ν	П.
•	w	$\mathbf{L} \cdot \mathbf{N}$	II N	

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho tam giác đều ABC có cạnh AB=a, xác định và tính độ dài của véc-tơ

a)
$$\vec{x} = \overrightarrow{AB} + \overrightarrow{BC}$$
.

b)
$$\vec{y} = \overrightarrow{AB} + \overrightarrow{AC}$$
.

VÍ DỤ 2. Cho hình vuông ABCD tâm O có cạnh AB=2, xác định và tính độ dài của véc-tơ $\overrightarrow{v}=\overrightarrow{OA}-\overrightarrow{CD}$.

2. Bài tâp tư luân

BÀI 1. Cho tạm giác ABC vuông tại A có AB = 2, AC = 4, xác định và tính độ dài của véc-tơ $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{AC}$.

BÀI 2. Cho hình chữ nhật ABCD có $AC=5,\,AB=3,\,$ xác định và tính độ dài của véc-tơ

a)
$$\vec{a} = \overrightarrow{AD} - \overrightarrow{AC}$$
.

b)
$$\overrightarrow{b} = \overrightarrow{AB} + \overrightarrow{AC}$$
.

BÀI 3. Cho hình thang ABCD có $\widehat{A}=\widehat{D}=90^\circ,\,AB=AD=3,\,CD=5,\,$ xác định và tính độ dài của véc-tơ

a)
$$\vec{x} = \overrightarrow{AB} - \overrightarrow{AC}$$
.

b)
$$\vec{y} = \overrightarrow{DB} + \overrightarrow{DC}$$
.

Dạng 4. Ứng dụng của véc-tơ trong vật lý

BÀI 1

Cho hai lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 lần lượt là 300 (N) và 400 (N) và $\widehat{AMB} = 90^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

A0 (N).

D500 (N).

BÀI 2.

Cho hai lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\overrightarrow{AMB} = 60^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

(B)300 (N).

$$(\mathbf{C})300\sqrt{3} \text{ (N)}.$$

(D)500 (N).

B. CÂU HỔI TRẮC NGHIỆM

CAU 1. Cho ba điểm phân biệt A, B, C. Đẳng thức nào sau đây đúng?

$$\overrightarrow{A} \overrightarrow{CA} - \overrightarrow{BA} = \overrightarrow{CB}. \quad \overrightarrow{B} \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{CB}. \quad \overrightarrow{C} \overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{BC}. \quad \overrightarrow{D} \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{BC}.$$

CÂU 2. Rút gọn biểu thức véc-tơ $\overrightarrow{AM} + \overrightarrow{MB} - \overrightarrow{AC}$ ta được kết quả đúng là

$$(A) \overrightarrow{MB}$$
.

$$(\mathbf{B})BC$$
.

$$\overrightarrow{\mathbf{C}}\overrightarrow{CB}$$

$$(\mathbf{D})\overline{AB}$$
.

CÂU 3. Gọi O là tâm hình vuông ABCD. Tính $\overrightarrow{OB} - \overrightarrow{OC}$.

$$(\mathbf{A})\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{BC}.$$

$$(\mathbf{B})\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{DA}.$$

$$(\mathbf{C})\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{OD} - \overrightarrow{OA}.$$

$$(\mathbf{D})\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{AB}.$$

CÂU 4. Cho bốn điểm A, B, C, D phân biệt và $\vec{u} = \overrightarrow{AD} + \overrightarrow{CD} - \overrightarrow{CB} - \overrightarrow{BD}$. Khẳng định nào sau đây đúng?

$$(\mathbf{A})\,\vec{u}=\vec{0}.$$

$$(\mathbf{B})\vec{u} = \overrightarrow{AD}.$$

$$(\mathbf{C})\vec{u} = \overrightarrow{CD}.$$

$$(\mathbf{D})\vec{u} = \overrightarrow{AC}.$$

CÂU 5.

Cho hình bình hành ABCD tâm O . Hỏi véc-tơ $\overrightarrow{AO}-\overrightarrow{DO}$ bằng véc-tơ nào trong các véc-tơ sau?

$$(\vec{\mathbf{A}})\overrightarrow{BA}$$
.

$$(\mathbf{B})\overline{BC}.$$

$$(\mathbf{C})\overrightarrow{DC}$$
.

$$(\mathbf{D})\overrightarrow{AC}$$
.

CÂU 6. Cho tạm giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Tổng $\overrightarrow{MP} + \overrightarrow{NP}$ bằng vec-tơ nào?

$$(\overrightarrow{\mathbf{A}})\overrightarrow{PA}.$$

$$(\mathbf{B})\overrightarrow{AM}$$
.

$$(\mathbf{C})\overrightarrow{PB}.$$

$$(\mathbf{D})\overrightarrow{AP}$$
.

CÂU 7.

Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây \mathbf{sai} ?

$$(\mathbf{A})\overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OE} = \overrightarrow{0}.$$

$$(\mathbf{B})\overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OB} = \overrightarrow{EB}.$$

$$(\mathbf{C})\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EF} = \overrightarrow{0}.$$

$$(\vec{\mathbf{D}})\overrightarrow{BC} + \overrightarrow{EF} = \overrightarrow{AD}.$$

CÂU 8. Cho hình bình hành \overrightarrow{ABCD} . Véc-tơ $\overrightarrow{BC} - \overrightarrow{AB}$ bằng véc-tơ nào dưới đây?

$$(\mathbf{A})\overrightarrow{DB}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{BD}$$
.

$$(\mathbf{C})\overrightarrow{AC}$$
.

$$\overrightarrow{(\mathbf{D})}\overrightarrow{CA}$$
.

CÂU 9.

Cho hình bình hành ABCD. Gọi G là trọng tâm của tam giác ABC. Mệnh đề nào sau đây đúng?

$$(\mathbf{A})\overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{BD}.$$

$$(\mathbf{B})\overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{CD}.$$

$$(\mathbf{C})\overrightarrow{GA} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{O}.$$

$$(\overrightarrow{\mathbf{D}})\overrightarrow{GA} + \overrightarrow{GD} + \overrightarrow{GC} = \overrightarrow{CD}.$$

CÂU 10. Chọn mệnh đề sai trong các mệnh đề sau.

(A) Nếu
$$\vec{a} + \vec{b} = \vec{c} \, \text{thì} \, |\vec{a}| + |\vec{b}| = |\vec{c}|.$$

$$(\mathbf{B})\overrightarrow{FY} - \overrightarrow{BY} = \overrightarrow{FB} \text{ với } B, F, Y \text{ bất kì.}$$

$$(\mathbf{C})$$
 Nếu $ABCD$ là hình bình hành thì $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$.

$$(\overrightarrow{\mathbf{D}})\overrightarrow{AM} + \overrightarrow{MH} = \overrightarrow{AH}$$
 với A, M, H bất kì.

CÂU 11. Trong mặt phẳng cho bốn điểm bất kì A,B,C,O. Đẳng thức nào sau đây là đúng?

$$\overrightarrow{A}\overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OA}. \quad \overrightarrow{B}\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{BC}. \quad \overrightarrow{C}\overrightarrow{OA} = \overrightarrow{CA} - \overrightarrow{CO}. \quad \overrightarrow{D}\overrightarrow{OA} = \overrightarrow{OB} - \overrightarrow{BA}.$$

CÂU 12. Cho ba điểm
$$A, B, C$$
 phân biệt. Đẳng thức nào sau đây là **sai**? $(\mathbf{A})\overrightarrow{AC} + \overrightarrow{AB} = \overrightarrow{CB}$. $(\mathbf{B})\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. $(\mathbf{C})\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$. $(\mathbf{D})\overrightarrow{AC} - \overrightarrow{BC} = \overrightarrow{AB}$.

CÂU 13. Tổng
$$\overrightarrow{MN} + \overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR}$$
 bằng

$$(\mathbf{A})\overrightarrow{MR}.$$

$$(\mathbf{B})\overrightarrow{MN}$$
.

$$(\mathbf{C})\overrightarrow{MP}.$$

$$(\mathbf{D})\overrightarrow{MQ}$$
.

CÂU 14. Cho 4 điểm bất kì A, B, C, D. Đẳng thức nào sau đây sai?

$$(\mathbf{A})\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{BC}.$$

$$(\mathbf{B})\overrightarrow{DA} = \overrightarrow{BD} - \overrightarrow{CD}.$$

$$(\mathbf{C})\overrightarrow{AB} = \overrightarrow{DB} - \overrightarrow{DA}.$$

$$(\mathbf{D})\overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{DC}.$$

CÂU 15. Cho bốn điểm A, B, C. Tính $\overrightarrow{AB} - \overrightarrow{AC}$.

$$(\mathbf{A})\overrightarrow{CA}$$
.

$$(\mathbf{B})2 \cdot \overrightarrow{AC}$$
.

$$(\mathbf{c})\vec{0}$$
.

$$(\mathbf{D})\overrightarrow{AC}$$
.

CÂU 16. Cho tam giác ABC và điểm M bất kỳ, chọn đẳng thức **đúng**.

$$(\mathbf{A})\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{BC}.$$

$$\mathbf{(B)}\overline{M}A + \overline{B}M = \overline{A}B.$$

$$(\mathbf{C})\overrightarrow{MB} - \overrightarrow{MC} = \overrightarrow{CB}.$$

$$(\overrightarrow{\mathbf{D}})\overrightarrow{AA} - \overrightarrow{BB} = \overrightarrow{AB}.$$

CÂU 17. Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm BC và AD. Tổng của \overrightarrow{NC} và \overrightarrow{MC} là

 $(\mathbf{A})\vec{0}$.

 $(\mathbf{B})\overrightarrow{MN}$.

 $(\mathbf{C})\overrightarrow{NM}$.

 $(\mathbf{D})\overrightarrow{AC}$.

CÂU 18. Cho hình bình hành ABCD. Gọi I, J lần lượt là trung điểm BC và AD. Tính $\overrightarrow{JC}-\overrightarrow{IC}$ không bằng

 $(\mathbf{A})\overrightarrow{DC}$.

 $(\mathbf{B})\overrightarrow{JI}$.

 $(\mathbf{C})\overrightarrow{AB}$.

 $(\mathbf{D})\overrightarrow{AC}$.

CÂU 19. Cho hình bình hành ABCD. Điểm M thỏa mãn điều kiện $\overrightarrow{MB} - \overrightarrow{BC} + \overrightarrow{BO} = \overrightarrow{DO}$. Khẳng định nào sau đây đúng?

 $(\mathbf{A})M$ trùng với A.

 $(\mathbf{B})M$ trùng với B.

 $(\mathbf{C})M$ trùng với O.

 $(\mathbf{D})M$ trùng với C.

QUICK NOTE		nh bình hành <i>ABCI</i> Khẳng định nào sau c		hỏa mãn điều kiện $OM =$
	(A - OB + DC)	_	$(\mathbf{B})M$ trùng với	D.
	C M trùng với		$(\mathbf{D})M$ trùng với	
				thỏa mãn điều kiện \overrightarrow{MC} +
	$\overrightarrow{MD} = \overrightarrow{AD} + \overrightarrow{BC}.$	Khẳng định nào sau	đây đúng?	
	\bigcirc \bigcirc M là trung \bigcirc	điểm CD .	$lackbox{\textbf{B}}M$ là trung d	$ ext{tiểm }AB.$
	C M là trung o	điểm AD .	$\bigcirc M$ là trung \overleftarrow{a}	$ m ti m e^{2}M$
	CÂU 22. Cho cá	c điểm phân biệt Ą,	B, C, D, E, F. Biết đ	iểm M thỏa mãn điều kiện
	$M\acute{C} + M\acute{E} + M\acute{F}$	$\hat{f} = A\hat{C} + B\hat{E} + D\hat{F}.$	Khẳng định nào sau đây	dúng?
		tâm t am g iác ABC .	$(\mathbf{B})M$ là trọng t	-
		tâm tam giác ABD .		âm tam giác ACD .
	CÂU 23. Cho hìr	nh bình hành $ABCL$	O có E là trung điểm A	B. Điểm M thỏa mãn điều
		\overrightarrow{BC} . Khẳng định nào		*: ² CD
	$ \begin{array}{c c} (A) M & \text{là trung o} \\ \hline (C) M & \text{là trung o} \\ \end{array} $		$(\mathbf{B})M$ là trung $(\mathbf{D})M$ là trung $(\mathbf{D})M$	
	1		cạnh bằng a . Tìm tập h	nợp điểm M thỏa mãn điều
	$\left \begin{array}{c} \text{kiện} \left \overrightarrow{MC} \right = \left \overrightarrow{AB} \right \end{array} \right $	ı	_	
		ờng tròn tâm A bán l	_	
	$lackbox{\textbf{B}} M$ thuộc đư	ờng tròn tâm C bán l	kính $\frac{a\sqrt{3}}{2}$.	
		ờng tròn tâm B bán i	Δ	
		ờng tròn tâm C bán $:$		
				Tho $AB=2a,CD=a.O$ là
	trung điểm của Ai	D. Khi đó.	ib song song voi Cb. C	10 1D = 2a, CD = a. C
	$ \overrightarrow{A} \overrightarrow{OB} + \overrightarrow{OC} $	$=\frac{3a}{2}$.	$(\mathbf{B}) \overrightarrow{OB} + \overrightarrow{OC} =$	=a.
	$ \begin{array}{ c c c } \hline \textbf{A} & \overrightarrow{OB} + \overrightarrow{OC} \\ \hline \hline \textbf{C} & \overrightarrow{OB} + \overrightarrow{OC} \\ \hline \end{array} $	$\frac{2}{-2a}$		-3a
	l _		1	
	I .	-	eân tại A có $BC = a\sqrt{2}$,	M là trung điểm của BC
	Khẳng định nào sa	ů –		$a\sqrt{2}$
	$ \mathbf{A} \overrightarrow{BA} + \overrightarrow{BM} $	_	$ig \overrightarrow{BA} + \overrightarrow{BM} ig $	
	$ \mathbf{C} \overrightarrow{BA} + \overrightarrow{BM} $	$=\frac{a\sqrt{3}}{2}$.	\bigcirc $ \overrightarrow{BA} + \overrightarrow{BM} $	$=\frac{a\sqrt{6}}{2}$.
		=		_
	$\vec{u} = \overrightarrow{AB} + \overrightarrow{OD} - \vec{x}$	\overrightarrow{BC} vuong \overrightarrow{ABCD} of	canh a tam O. Tinh tan	theo a độ dài của véc-to
	$\mathbf{A} \frac{a\sqrt{2}}{2}.$	$\mathbf{B} \frac{3a\sqrt{2}}{2}.$	\mathbf{C} $a\sqrt{2}$.	$(\mathbf{\overline{D}})a$.
	$\frac{2}{2}$.	$\bigcirc {2}$.	\mathbf{O} $a \vee 2$.	
	CÂU 28. Cho hìr	nh vuông $ABCD$ có c	cạnh bằng a . Khi đó \overline{AI}	$\overrightarrow{D} + \overrightarrow{AB}$ bằng
	(A) 2a.	\mathbf{B}) $a\sqrt{2}$.	$\bigcirc \frac{\sqrt{3}}{2}$.	$\mathbf{D} \frac{a\sqrt{2}}{2}$.
	_	<u> </u>	Z	
		_	ân tại C , $AB = \sqrt{2}$. Tín	
	$(\mathbf{A})\sqrt{5}.$	(B) $2\sqrt{5}$.	$\mathbf{C}\sqrt{3}$.	(D) $2\sqrt{3}$.
		nh bình hành $ABCD$	colonized DA = 2cm, AB = 4cm	n và đường chéo $BD=5\mathrm{cm}$
	Tính $ \overrightarrow{BA} - \overrightarrow{DA} $.		_	_
	A 2cm.	B 4cm.	© 5cm.	D 6cm.
	CÂU 31. Cho hìr	nh thang $ABCD$ có h	nai đáy $AB = a, CD = 2$	a. Gọi M, N là trung điểm
		đó $ \overrightarrow{MA} + \overrightarrow{MC} - \overrightarrow{M} $		~
	$\mathbf{A} \frac{a}{2}$.	\mathbf{B} 3 a .	\mathbf{C} a.	$(\mathbf{D})2a.$
		<u> </u>	_	
				$\underbrace{a\ A}_{MD}$, song song với BD . Gọi \underbrace{MD}_{MD} nhỏ nhất. Tính theo a
	$d\hat{\phi}$ dài véc-tơ \overrightarrow{MD}	•	1110 1110 1	I III 01100 0

$$\mathbf{A}$$
 $a\sqrt{2}$.

$$\bigcirc a$$
.

$$\bigcirc \frac{a\sqrt{5}}{2}$$

CÂU 33.

Cho hai lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$ cùng tác động vào một vật tại điểm M cường độ hai lực \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 300 (N) và $\widehat{AMB} = 120^{\circ}$. Tìm cường độ của lực tổng hợp tác động vào

CÂU 34.

Cho ba lực $\overrightarrow{F}_1 = \overrightarrow{MA}, \ \overrightarrow{F}_2 = \overrightarrow{MB}, \ \overrightarrow{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \overrightarrow{F}_1 , \overrightarrow{F}_2 đều bằng 25 (N) và góc $\widehat{AMB} = 60^{\circ}$. Khi đó cường độ lực của \overrightarrow{F}_3 là

(A) $25\sqrt{3}$ (N).

B)
$$50\sqrt{3}$$
 (N).

$$\bigcirc 50\sqrt{2} \text{ (N)}.$$

D)
$$100\sqrt{3}$$
 (N).

CÂU 35.

Cho ba lực $\overrightarrow{F}_1 = \overrightarrow{MA}$, $\overrightarrow{F}_2 = \overrightarrow{MB}$, $\overrightarrow{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M cường độ hai lực $\overrightarrow{F}_1, \overrightarrow{F}_2$ đều bằng 300(N) và $\overrightarrow{F}_3 = 400$ (N). Lại có $\widehat{AMB} = 120^{\circ}$ và $\widehat{AMC} = 60^{\circ}$. Tìm cường độ của lực tổng hợp tác động vào vật.

CÂU 36.

Cho ba lực $\vec{F}_1 = \overrightarrow{MA}$, $\vec{F}_2 = \overrightarrow{MB}$, $\vec{F}_3 = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M cường độ hai lực F_1 , F_2 đều bằng 300 (N) và $F_3 = 400$ (N). Lại có $\widehat{AMB}=120^\circ$ và $\widehat{AMC}=150^\circ$. Tìm cường độ của lực tổng hợp tác động vào vật.

(B)700 (N).

(C)100 (N).

 $(\mathbf{D})500 \text{ (N)}.$

Bài 5. TÍCH CỦA MỘT VECTƠ VỚI MỘT SỐ

A. TÓM TẮT LÍ THUYẾT

1. Tích của một vectơ với một số

9 Định nghĩa 5.1.

- $m{\Theta}$ Tích của một vecto $\vec{a} \neq \vec{0}$ với một số k > 0 là một vecto, kí hiệu là $k\vec{a}$, cùng hướng với vecto \vec{a} và có độ dài bằng $k|\vec{a}|$.
- $\ensuremath{\boldsymbol{\Theta}}$ Tích của một vecto $\overrightarrow{a}\neq\overrightarrow{0}$ với một số k<0là một vecto, kí hiệu là $k\vec{a}$, ngược hướng với vecto \vec{a} và có đô dài bằng $(-k)|\vec{a}|$.

Ta quy ước $k\vec{a} = \vec{0}$ nếu $\vec{a} = \vec{0}$ hoặc k = 0.

2. Các tính chất của phép nhân vectơ với một số

Với hai vecto \vec{a} , \vec{b} và hai số thực k, t, ta luôn có

• $k(t\vec{a}) = (kt)\vec{a}$;

- $(k+t)\vec{a} = k\vec{a} + t\vec{a}$:
- $k(\vec{a} \pm \vec{b}) = k\vec{a} \pm k\vec{b}$;
- $1\vec{a} = \vec{a}$; $(-1)\vec{a} = -\vec{a}$.

			-
ΔШ			
ΘU	-	ION	
1)	_

	•	•	•	•	•											•	•	•	•	•	•											
•	•	•	•																													
	•																								•	•	•				 •	
•	•	•	•	•	•	•	•	•	•	•		•				•	•	•	•	•	•	•	•		•	•	•				 •	
	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				 •	
	•	•																													 •	
•	•	•																												•	 •	
•	•																															
•	•																												•		 •	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	

♥ VNPmath - 0962940819 ♥	
QUICK NOTE	$lack lack ext{ } ext{ } $
	\bigcirc Chọ tạm giác ABC, điểm G là trọng tâm của tạm giác ABC khi và chỉ khi $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.
	Cho hai vectơ không cùng phương \vec{a} và \vec{b} . Khi đó, mọi vectơ \vec{u} đều biểu thị (phân tích) được một các duy nhất theo hai vectơ \vec{a} và \vec{b} , nghĩa là có duy nhất cặp số (x,y) sao cho $\vec{u} = x\vec{a} + y\vec{b}$.
	\overrightarrow{b}
	B. CÁC DẠNG TOÁN
	Dạng 1. Xác định vectơ tích, tính độ dài vectơ
	vecto $k\vec{a}$ có độ dài bằng $ k \vec{a} $ và
	• cùng hướng với \vec{a} nếu $k \geq 0$; • ngược hướng với \vec{a} nếu $\begin{cases} \vec{a} \neq \vec{0} \\ k < 0 \end{cases}$
	1. Ví dụ minh họa
	VÍ DỤ 1. Cho đoạn thẳng AB và M là một điểm nằm trên đoạn AB sao cho $AM = \frac{1}{5}AB$.
	Tìm k trong các đẳng thức sau
	a) $\overrightarrow{AM} = k\overrightarrow{AB}$. b) $\overrightarrow{MA} = k\overrightarrow{MB}$. c) $\overrightarrow{MA} = k\overrightarrow{AB}$.
	VÍ DỤ 2. Cho tam giác ABC đều cạnh bằng 1, trọng tâm G . Tính độ dài vecto \overrightarrow{AG} .
	VÍ DỤ 3. Cho hình vuông $ABCD$ có cạnh bằng a , I là trung điểm của cạnh BC . Tính độ dài vectơ $\overrightarrow{AB} + \overrightarrow{AC}$.
	2. Bài tập áp dụng
	BÀI 1. Trên đoạn thẳng AB , gọi C là trung điểm AB và D là điểm đối xứng của C qua A .
	Tìm k trong các đẳng thức sau
	a) $\overrightarrow{AC} = k\overrightarrow{AB}$. b) $\overrightarrow{AD} = k\overrightarrow{AB}$.
	BÀI 2. Cho tam giác ABC vuông cân tại A , cạnh $BC = 2$. Gọi M , N lần lượt là trung
	điểm của cạnh AB và BC . Tính độ dài \overline{MN} .
	BÀI 3. Cho hình thơi $ABCD$ có $AC = 2a$, $BD = a$. Tính độ dài vecto $\overrightarrow{AC} + \overrightarrow{BD}$.
	3. Bài tập trắc nghiệm
	CÂU 1. Cho hai vecto \overrightarrow{AB} và \overrightarrow{CD} trong hình bên. A B
	Khẳng định nào sau đây đúng?
	$\bigcirc \overrightarrow{AB} = 2\overrightarrow{CD}.$ $\bigcirc \overrightarrow{D}\overrightarrow{CD} = -3\overrightarrow{AB}.$
	CÂU 2. Cho vecto \vec{a} (khác $\vec{0}$) và vecto $\vec{b}=k\vec{a}$, $(k\neq 0)$. Khẳng định nào sau đây là
	đúng?
	$igapha \vec{a}$ cùng phương \vec{b} nếu $k>0$.
	\bigcirc \overrightarrow{a} cùng hướng \overrightarrow{b} nếu $k < 0$. \bigcirc \bigcirc \overrightarrow{a} cùng hướng \overrightarrow{b} nếu $k > 0$.
	CÂU 3. Cho hai vectơ \vec{a} , \vec{b} bất kì và số thực k . Ta có $k \left(\vec{a} + \vec{b} \right)$ bằng

 $\boxed{ \pmb{A} } \, | \, \overrightarrow{a} | = - \frac{1}{2} \, \Big| \, \overrightarrow{b} \, \Big|.$

 $(\mathbf{c})\vec{a}$ cùng hướng với \vec{b} .

CÂU 5. Cho vecto \vec{u} có độ dài bằng 2 và vecto $\vec{v} = -3\vec{u}$. Khẳng định nào sau đây là

- (**A**) vecto \vec{v} có độ dài bằng -6 và cùng hướng với \vec{u} .
- (\mathbf{B}) vectơ \overrightarrow{v} có độ dài bằng -6 và ngược hướng với \overrightarrow{u} .
- (**c**) vecto \vec{v} có đô dài bằng 6 và cùng hướng với \vec{u} .
- (\mathbf{D}) vecto \overrightarrow{v} có đô dài bằng 6 và ngược hướng với \overrightarrow{u} .

CÂU 6. Cho $\vec{a} = -2\vec{b}$. Khẳng định nào sau đây đúng?

- $(\mathbf{A})\vec{a}$ và \vec{b} là hai vecto bằng nhau.
- (\mathbf{B}) \overrightarrow{a} và \overrightarrow{b} là hai vecto đối nhau.
- $(\mathbf{C})\vec{a}$ và \vec{b} ngược hướng.
- $(\mathbf{D})\vec{a}$ và \vec{b} cùng hướng.

CÂU 7. Cho vectơ \vec{q} có độ dài bằng 27. Hỏi độ dài của vectơ $\vec{x} = -\frac{1}{0}\vec{q}$ là bao nhiêu?

- **(A)** 243.

CÂU 8.

Cho đoạn thẳng AB và điểm I thuộc đoạn thẳng AB như hình vẽ bên. Mệnh đề nào sau đây đúng?

CÂU 9. Đẳng thức nào mô tả đúng hình vẽ bên?

- $(\mathbf{A})3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}.$
- $(\mathbf{B})3\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}.$

- $(\mathbf{C})\overrightarrow{BI} + 3\overrightarrow{BA} = \overrightarrow{0}.$
- $(\mathbf{D})\overrightarrow{AI} + 3\overrightarrow{AB} = \overrightarrow{0}.$

CÂU 10. Cho M là một điểm trên đoạn AB sao cho $AM = \frac{1}{3}AB$. Khẳng định nào sau đây sai?

- $\overrightarrow{A}\overrightarrow{MB} = -\frac{2}{3}\overrightarrow{AB}.$ $\overrightarrow{B}\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB}.$ $\overrightarrow{C}\overrightarrow{MA} = -\frac{1}{2}\overrightarrow{MB}.$ $\overrightarrow{D}\overrightarrow{MB} = 2\overrightarrow{AM}.$

CÂU 11. Cho đoạn thẳng AB và M là một điểm trên đoạn AB sao cho AB = 5AM. Mệnh đề nào sau đây sai?

CÂU 12. Cho đoạn thẳng AB, M là một điểm trên đoạn thẳng AB sao cho $AM = \frac{1}{4}AB$. Khẳng định nào sau đây sai?

- $\overrightarrow{\mathbf{A}} \overrightarrow{MA} = \frac{1}{3} \overrightarrow{MB}.$
- $\mathbf{B})\overrightarrow{BM} = \frac{3}{4}\overrightarrow{BA}. \qquad \mathbf{C})\overrightarrow{AM} = \frac{1}{4}\overrightarrow{AB}.$
- $(\mathbf{D})\overrightarrow{MB} = -3\overrightarrow{MA}.$

CÂU 13. Cho hình bình hành ABCD có tâm O. Mệnh đề nào sau đây \mathbf{sai} ?

- $(\mathbf{A})\overrightarrow{OD} = \frac{1}{2}\overrightarrow{BD}.$
- $(\mathbf{B})\overrightarrow{AC} = 2\overrightarrow{OC}.$
- $(\mathbf{C})\overrightarrow{AC} = 2\overrightarrow{OA}.$
- $(\mathbf{D})\overrightarrow{AB} = \overrightarrow{DC}.$

CÂU 14. Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó, vecto \overrightarrow{GA} bằng với vectơ nào sau đây?

- $(\mathbf{A})2GM$.
- $\mathbf{B} \frac{2}{3}\overrightarrow{AM}$. $\mathbf{C} \cdot \frac{2}{3}\overrightarrow{GM}$.
- $(\mathbf{D}) \frac{1}{2} \overrightarrow{AM}$.

CÂU 15. Cho tam giác ABC có G là trọng tâm, M là trung điểm của BC. Đẳng thức nào sau đây đúng?

 $(\mathbf{A})\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GM}.$

 $(\mathbf{B})\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AG}.$

 $(\mathbf{C})\overrightarrow{GA} = 2\overrightarrow{GM}.$

 $\overrightarrow{\mathbf{D}}\overrightarrow{MG} = -\frac{1}{2}\overrightarrow{MA}.$

CÂU 16. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC. Khẳng định nào sau đây là sai?

- $(\mathbf{A}) \overrightarrow{MN} = \frac{1}{2} \overrightarrow{BC}.$
- $\mathbf{B} \overrightarrow{MN} = -\frac{1}{2} \overrightarrow{BC}.$ $\mathbf{C} \overrightarrow{BC} = -2 \overrightarrow{NM}.$
- $(\mathbf{D})\overrightarrow{BC} = 2\overrightarrow{MN}.$

CÂU 17. Cho tam giác ABC có trọng tâm G và trung tuyến BM. Khẳng định nào sau đâv là **sai**?

- $\overrightarrow{\mathbf{A}}\overrightarrow{AM} = -\frac{1}{2}\overrightarrow{CA}.$
- $(\mathbf{B})\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$

	•				_
ဂ	ш	_	Ν	-	т
w	•	Λ.	1	v	

$$\overrightarrow{\mathbf{D}}\overrightarrow{GB} = \frac{2}{3}\overrightarrow{BM}.$$

CÂU 18. Cho tam giác đều ABC với đường cao AH. Mệnh đề nào sau đây đúng?

$$(\mathbf{A}) \overrightarrow{AB} = \overrightarrow{AC}.$$

$$\begin{array}{c|c} \textbf{ B} & |\overrightarrow{AH}| = \frac{\sqrt{3}}{2} \left| \overrightarrow{HC} \right|. \\ \textbf{ D} & |\overrightarrow{AC}| = 2 \left| \overrightarrow{HC} \right|. \end{array}$$

$$(\mathbf{C})\overrightarrow{HB} = \overrightarrow{HC}.$$

$$\left| \overrightarrow{AC} \right| = 2 \left| \overrightarrow{HC} \right|.$$

CÂU 19. Cho hình vuông ABCD cạnh a. Giá trị của $|\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}|$ bằng

$$\mathbf{A}$$
 $A\sqrt{2}$.

$$(\mathbf{B})2a.$$

$$\mathbf{C}$$
) $2a\sqrt{2}$.

$$\mathbf{D}$$
3 a .

CÂU 20. Cho tam giác ABC đều cạnh a. Khi đó, giá trị $|\overrightarrow{AB} + \overrightarrow{AC}|$ bằng

$$\bigcirc$$
 $\frac{a\sqrt{3}}{2}$.

$$\bigcirc 2a.$$

$$\frac{a\sqrt{3}}{3}$$

CÂU 21. Cho tam giác đều ABC cạnh bằng 4. Độ dài $\overrightarrow{AB} + \overrightarrow{AC}$ là

$$\bigcirc$$
 $2\sqrt{3}$.

$$(\mathbf{B})\sqrt{5}$$
.

$$(\mathbf{C})\sqrt{6}$$
.

$$\mathbf{D}$$
) $4\sqrt{3}$.

CÂU 22. Cho tam giác ABC vuông tại A và AB=2, AC=3. Độ dài của vecto $\overrightarrow{BC}+\overrightarrow{AC}$ bằng

$$(\mathbf{A})$$
5.

(B)40.

$$(\mathbf{C})\sqrt{13}$$
.

D
$$2\sqrt{10}$$
.

CÂU 23. Cho hình vuông ABCD có cạnh bằng a. Tính $|\overrightarrow{AB} + \overrightarrow{DB}|$ theo a.

$$\mathbf{B}$$
 a .

$$\mathbf{C}$$
) $a\sqrt{5}$.

$$\bigcirc$$
 $a\sqrt{3}$.

CÂU 24.

Cho ba lực $\overrightarrow{F_1} = \overrightarrow{MA}$, $\overrightarrow{F_2} = \overrightarrow{MB}$, $\overrightarrow{F_3} = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ đều bằng 100N và $\widehat{AMB} = 60^{\circ}$. Khi đó, cường độ lực của $\overrightarrow{F_3}$ bằng

$$\mathbf{A}$$
)50 $\sqrt{2}$ N.

$$(\mathbf{B})50\sqrt{3}N.$$

(c)
$$25\sqrt{3}$$
N.

D
$$100\sqrt{3}$$
N.

CÂU 25. Cho tam giác ABC là tam giác đều cạnh 2a với G là trọng tâm. Tính $|\overline{GB} + \overline{GC}|$.

$$\mathbf{B} \frac{a\sqrt{3}}{2}$$
.

$$\bigcirc \frac{a\sqrt{3}}{3}$$
.

$$\bigcirc a\sqrt{3}$$
.

CÂU 26. Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC=12. vectơ $\overrightarrow{GB}-\overrightarrow{CG}$ có độ dài bằng bao nhiêu?

(A)
$$4$$
.

(B)
$$2\sqrt{3}$$
.

$$(\mathbf{C})_{8.}$$

$$(\mathbf{D})_2$$
.

CÂU 27. Tam giác ABC có AB = AC = a, $\widehat{ABC} = 120^\circ$. Độ dài vectơ tổng $\overrightarrow{AB} + \overrightarrow{AC}$

$$\bigcirc$$
 $2a$.

$$\mathbf{B}$$
) $a\sqrt{3}$.

$$\bigcirc a$$
.

$$\bigcirc$$
 $3a.$

CÂU 28. Cho hình thoi ABCD cạnh a, tâm O và $\widehat{B}A\widehat{D}=60^{\circ}$. Độ dài vectơ $\overrightarrow{OB}-\overrightarrow{CD}$

$$\mathbf{A} \frac{a\sqrt{7}}{2}$$
.

$$\bigcirc 2a$$
.

$$(\mathbf{D})a\sqrt{3}$$
.

CÂU 29. Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính $|\overrightarrow{CA} - \overrightarrow{HC}|$

$$\mathbf{A} \frac{2\sqrt{3}a}{3}.$$

$$\bigcirc \mathbf{B} \frac{a\sqrt{7}}{2}$$
.

$$\mathbf{C}$$
 $\frac{a}{2}$.

$$\bigcirc \frac{3a}{2}$$
.

CÂU 30. Cho tam giác OAB vuông cân tại O với OA = OB = a. Tính độ dài vectơ $\vec{u} = 8O\hat{A} - 6O\hat{B}.$

$$\bigcirc$$
 $2a$.

(B)
$$14a$$
.

$$(\mathbf{C})_{16a}$$
.

CÂU 31. Cho tam giác ABC vuông tại A có AB=3, AC=4. Tính độ dài vec-tơ $\overrightarrow{u}=$ $2\overrightarrow{AB} + 3\overrightarrow{AC}$.

$$|\overrightarrow{u}| = 18.$$

$$\mathbf{B}|\vec{u}| = 6\sqrt{5}.$$

$$(\mathbf{C})|\vec{u}| = 9.$$

$$(\mathbf{D})|\vec{u}| = 5\sqrt{6}.$$

CÂU 32. Gọi G là trọng tâm của tam giác ABC. Tập hợp điểm M trong mặt phẳng chứa tam giác ABC sao cho $|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}| = 6$ là

- (\mathbf{A}) đường tròn ngoại tiếp tam giác ABC.
- (\mathbf{B}) đường tròn tâm G bán kính bằng 1.
- (\mathbf{C}) đường tròn tâm G bán kính bằng 2.
- (**D**)đường tròn tâm G bán kính bằng 6.

CẦU 33. Cho tam giác đều ABC có cạnh bằng 2a và G là trọng tâm của tam giác. Khi đó, giá trị |AB - GC| là

- $\bigcirc a\sqrt{3}$
- \bigcirc $\frac{2a\sqrt{3}}{2}$.
- \bigcirc $\frac{4a\sqrt{3}}{3}$.

CÂU 34. Cho ba lực \vec{F}_1 , \vec{F}_2 , \vec{F}_3 có cùng điểm đặt tại O. Trong đó, có hai lực \vec{F}_1 , \vec{F}_2 có phương hợp với nhau một góc 90° và lực \vec{F}_3 ngược hướng với lực \vec{F}_1 . Ba lực \vec{F}_1 , \vec{F}_2 , \vec{F}_3 có cường độ lần lượt là 100 N, 200 N và 300 N. Cường độ lực tổng hợp của ba lực \vec{F}_1 , \vec{F}_2 , \vec{F}_3

- (**A**)400 N.
- **(B)** $100\sqrt{2}$ N.
- (**C**)600 N.
- **(D)** $200\sqrt{2}$ N.

CÂU 35. Cho hình vuông ABCD có cạnh bằng 1. Độ dài của vecto $\vec{u} = 12\overrightarrow{AC} - 7\overrightarrow{AB}$

- $(\mathbf{A})|\overrightarrow{u}| = 17.$
- $(\mathbf{B})|\vec{u}| = 5.$
- $(\mathbf{C})|\vec{u}| = 13.$
- $(\mathbf{D})|\vec{u}| = 12\sqrt{2} 7.$

CÂU 36. Cho hình vuông ABCD có cạnh bằng 1. Độ dài của vecto $\overrightarrow{u} = 3\overrightarrow{AC} - 7\overrightarrow{AB}$ là

- $(\mathbf{A})|\overrightarrow{u}| = 5.$
- **(B)** $|\vec{u}| = 12\sqrt{2} 7$. **(C)** $|\vec{u}| = 17$.
- $(\mathbf{D})|\vec{u}| = 13.$

Dạng 2. Chứng minh đẳng thức vecto, thu gọn biểu thức

Phương pháp giải

- ❷ HƯỚNG 1. Biến đổi một về thành về còn lai. Khi đó
 - a) Nếu xuất phát từ về phức tạp ta cần thực hiện việc đơn giản biểu thức.
 - b) Nếu xuất phát từ vế đơn giản ta cần thực hiện việc phân tích vecto.
- ❷ HƯỚNG 2. Biến đổi cả hai vế thành một vectơ hoặc biểu thức vecto.
- O HƯỚNG 3. Biến đổi đẳng thức cần chứng minh tương đương với một đẳng thức vecto đã biết đúng.
- HƯỚNG 4. Xuất phát từ một đẳng thức vectơ đã biết đúng biến đổi thành đẳng thức vecto cần chúng minh.

Khi thực hiện các phép biến đổi cần lưu ý

- a) Quy tắc ba điểm: Với ba điểm A, B, C bất kì ta luôn có $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$.
- b) Quy tắc hình bình hành: Với hình bình hành ABCD ta luôn có $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$.
- c) Quy tắc hiệu vectơ: Với ba điểm A, B, O bất kì ta luôn có $\overrightarrow{OB} \overrightarrow{OA} = \overrightarrow{AB}$.
- d) Tính chất trung điểm của đoạn thẳng: Cho đoạn thẳng AB ta có

I là trung điểm của $AB \Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$ $\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}, M$ là điểm bất kì.

e) Tính chất trọng tâm tam giác: Cho tam giác ABC ta có

 $\Leftrightarrow \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$ G là trong tâm tam giác ABC $\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}, M$ là điểm bất kì

f) Các tính chất của phép cộng, trừ vectơ và phép nhân một số với một vectơ.

1. Ví du minh họa

VÍ DU 1. Cho tam giác ABC với trọng tâm G. Chứng minh rằng $\overrightarrow{CA} + \overrightarrow{CB} = 3\overrightarrow{CG}$.

			•			
ည၊	Ш	/	M	$\boldsymbol{-}$	т	
-			N	O	11	

	VÍ DŲ 2.	Cho hình	n bình h	ành A	BCD.	Gọi	G là	trọng	tâm	tam	giác	ABD.	Chứng	min
=	rằng													

$$\overrightarrow{AB} + \overrightarrow{2AC} + \overrightarrow{AD} = 9\overrightarrow{AG}$$
.

VÍ DỤ 3. Cho tứ giác ABCD. Gọi M và N lần lượt là trung điểm các đoạn thẳng AB và CD. Chứng minh rằng $\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{MN}$.

VÍ DỤ 4. Cho tam giác ABC. Lần lượt lấy các điểm M, N, P trên các đoạn thẳng AB, BC và CA sao cho $AM = \frac{1}{3}AB, BN = \frac{1}{3}BC, CP = \frac{1}{3}CA$. Chứng minh rằng

$$\overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \overrightarrow{0}.$$

VÍ DỤ 5. Cho hình bình hành ABCD có tâm O. Gọi M là một điểm bất kì. Chứng minh rằng

a)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$$
.

b)
$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO}$$

VÍ DỤ 6. Cho hình bình hành ABCD. Gọi M là trung điểm CD. Lấy N trên đoạn BM sao cho BN=2MN. Chứng minh rằng

a)
$$3\overrightarrow{AB} + 4\overrightarrow{CD} = \overrightarrow{CM} + \overrightarrow{ND} + \overrightarrow{MN}$$
,

b)
$$4\overrightarrow{AB} + 2\overrightarrow{BD} = 3\overrightarrow{AN}$$
.

2. Bài tập áp dụng

BÀI 1. Cho hình bình hành ABCD có tâm O. Chứng minh rằng

$$\overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BD} = 4\overrightarrow{OD}$$

BÀI 2. Gọi G và G' lần lượt là trọng tâm của tam giác ABC và A'B'C'. Chứng minh rằng

$$\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{GG'}.$$

BÀI 3. Cho tứ giác ABCD. Gọi $M,\ N,\ I$ lần lượt là trung điểm của $AC,\ BD$ và MN. Chứng minh rằng

a)
$$\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{0}$$
,

b)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OI}$$
 (với O là điểm bất kì).

BÀI 4. Cho tam giác ABC không vuông. Gọi G, H, O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC. Gọi D là điểm đối xứng của A qua O và M là trung điểm của canh BC. Chứng minh

a)
$$\overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HD}$$
.

d)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$$
.

b)
$$\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HO}$$
.

e)
$$\overrightarrow{OH} = 3\overrightarrow{OG}$$
.

c)
$$\overrightarrow{HA} - \overrightarrow{HB} - \overrightarrow{HC} = 2\overrightarrow{OA}$$
.

f)
$$\overrightarrow{AH} = 2\overrightarrow{OM}$$
.

BÀI 5. Dựng bên ngoài tứ giác ABCD các hình bình hành ABEF, BCGH, CDIJ, DAKL.

- a) Chứng minh rằng $\overrightarrow{KF} + \overrightarrow{EH} + \overrightarrow{GJ} + \overrightarrow{IL} = \overrightarrow{0}$.
- b) Chứng minh rằng $\overrightarrow{EL} \overrightarrow{HI} = \overrightarrow{FK} \overrightarrow{GJ}$.

BÀI 6. Cho đường tròn (I) nội tiếp tam giác ABC có AB=c, AC=b, BC=a. Chứng minh rằng

$$a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC} = \overrightarrow{0}$$
.

BÀI 7. Cho tam giác ABC và một điểm M bất kì nằm trong tam giác ABC. Đặt $S_{MBC}=S_a,\,S_{MCA}=S_b,\,S_{MAB}=S_c.$ Chứng minh rằng

$$S_a \overrightarrow{MA} + S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \overrightarrow{0}$$
.

•
_

- a) Cho M trùng với trọng tâm G của tam giác ABC, ta được $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.
- b) Cho M trùng với tâm đường tròn nội tiếp I của tam giác ABC, ta được kết quả

$$a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC} = \overrightarrow{0}$$
.

c) Nếu tam giác ABC đều thì với điểm M bất kì trong tam giác, Ta có

$$x\overrightarrow{MA} + y\overrightarrow{MB} + z\overrightarrow{MC} = \overrightarrow{0},$$

trong đó x,y,z lần lượt là khoảng cách từ M đến các cạnh BC,CA và AB.

- d) Khi M nằm ngoài tam giác ABC, ta có các kết quả như sau
 - (a) Nếu M thuộc góc \widehat{BAC} và góc đối đỉnh của nó thì

$$-S_a \overrightarrow{MA} + S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \overrightarrow{0}.$$

(b) Nếu M thuộc góc \widehat{ABC} và góc đối đỉnh của nó thì

$$S_a \overrightarrow{MA} - S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \overrightarrow{0}.$$

(c) Nếu M thuộc góc \widehat{ACB} và góc đối đỉnh của nó thì

$$S_a \overrightarrow{MA} + S_b \overrightarrow{MB} - S_c \overrightarrow{MC} = \overrightarrow{0}.$$

3. Bài tập điền khuyết

CÂU 1. Cho tạm giác ABC. Gọi M là điểm trên cạnh BC sao cho MB = 2MC. Biết rằng $\overrightarrow{AB} + 2\overrightarrow{AC} = x\overrightarrow{AM}$. Tìm x.

Đáp án:

CÂU 2. Cho tứ giác ABCD. Gọi M,N lần lượt thuộc các đoạn thẳng AB,CD sao cho MB=2MA và NC=2ND. Biết rằng $2\overrightarrow{AD}+\overrightarrow{BC}=x\overrightarrow{MN}$. Tìm x.

Đáp án:

CÂU 3. Cho tam giác đều ABC tâm O. Lấy M là một điểm bất kì trong tam giác. Gọi D, E, F lần lượt là hình chiếu của M trên BC, CA, AB. Biết rằng $\overrightarrow{MD} + \overrightarrow{ME} + \overrightarrow{MF} = x\overrightarrow{MO}$, tìm x.

Đáp án:

CÂU 4. Cho hình bình hành ABCD có tâm O và E là trung điểm AD. Tìm các số thực x và y biết rằng

- a) $\overrightarrow{EA} + \overrightarrow{EB} + 2\overrightarrow{EC} = x\overrightarrow{AB}$. Dáp án:
- b) $\overrightarrow{EB} + 2\overrightarrow{EA} + 4\overrightarrow{ED} = y\overrightarrow{EC}$. Dáp án:

CÂU 5. Cho tam giác \overrightarrow{ABC} . Dựng bên ngoài tam giác các hình bình hành \overrightarrow{ABIF} , \overrightarrow{BCPQ} , \overrightarrow{CARS} . Biết rằng $\overrightarrow{RF} + \overrightarrow{IQ} + \overrightarrow{PS} = x(\overrightarrow{AB} + \overrightarrow{AC})$. Tìm x.

Đáp án:

4. Bài tập trắc nghiệm

CÂU 6. Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm AB. Chọn mệnh đề sai trong các mệnh đề sau:

- $(\overrightarrow{\mathbf{A}})\overrightarrow{CM} = -3\overrightarrow{MG}.$
- $(\mathbf{B})\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{AC}.$
- $(\overrightarrow{\mathbf{C}})\overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG}.$
- $\overrightarrow{\mathbf{D}}\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}$, O là điểm bất kì.

CÂU 7. Cho hình bình hành ABCD tâm O. Khẳng định nào sau đây là **đúng**?

 $(\mathbf{A})\overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AC}.$

 $\overrightarrow{\mathbf{B}}\overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AO}.$

 $(\overrightarrow{\mathbf{C}})\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{CA}.$

15 GV.VŨ NGOC PHÁT

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

QUICK NOTE	CÂU 8. Cho I là trung điểm của đoạn th	
		$ \begin{array}{ccc} $
	CÂU 9. Cho G là trọng tâm của tam giá	ác ABC . Với mọi điểm M , ta luôn có:
	$ \overrightarrow{A} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{MG}. $	$\bigcirc \overrightarrow{B}\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{MG}.$
	$\bigcirc \overrightarrow{\mathbf{C}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}.$	
	CÂU 10. Cho $\triangle ABC$ có G là trọng tâm	n, I là trung điểm BC . Đẳng thức nào đúng?
	$\overrightarrow{\mathbf{A}}\overrightarrow{GA}=2\overrightarrow{GI}.$	$lackbox{m{B}}\overrightarrow{IG}=-rac{1}{3}\overrightarrow{IA}.$
	$\mathbf{C}\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}.$	$(\overrightarrow{\mathbf{D}})\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$
		\mathbf{g} phải là điều kiện cần và đủ để G là trọng tâm
	ΔABC , với M là trung điểm của BC và	
	$\overrightarrow{\mathbf{A}}\overrightarrow{AG} = \frac{1}{3}\left(\overrightarrow{AB} + \overrightarrow{AC}\right).$	$ \overrightarrow{\mathbf{B}} \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + 3\overrightarrow{OG} = \overrightarrow{0}. $
	$\mathbf{C}\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}.$	$(\mathbf{D})\overrightarrow{GM} = -\frac{1}{2}\overrightarrow{GA}.$
	CÂU 19 Cha I là truma điểm của đoạn	thẳng AB . Với M là một điểm bất kỳ, tìm đẳng
	thức đúng .	thang AD. voi M ia một diem bat kỳ, tim dang
	$\overrightarrow{\mathbf{A}}\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}.$	$\bigcirc \overrightarrow{B} \overrightarrow{MA} + \overrightarrow{MB} = \frac{1}{2} \overrightarrow{MI}.$
	$(\mathbf{C})\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MI}.$	$(\mathbf{D})\overrightarrow{MA} + \overrightarrow{MB} = \overset{2}{2IM}.$
	sau đây sai?	âm G và M là trung điểm của AB . Mệnh đề nào
	$ \overrightarrow{A}\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}. $	$(\mathbf{B})\overrightarrow{GA} + \overrightarrow{GB} = 2\overrightarrow{GM}.$
	$\bigcirc \overrightarrow{\mathbf{C}} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}.$	
	CẬU 14. Cho $\triangle ABC$ có M, Q, N lần lư	ượt là trung điểm của $AB,BC,CA.$ Khi đó vectơ
	$\overrightarrow{AB} + \overrightarrow{BM} + \overrightarrow{NA} + \overrightarrow{BQ}$ là vecto nào sau \overrightarrow{BBC} .	đây? $(\widehat{\mathbf{C}})\overrightarrow{AQ}$. $(\widehat{\mathbf{D}})\overrightarrow{CB}$.
	1 0	an $\overrightarrow{IA} = 3\overrightarrow{IB}$. Mệnh đề nào sau đây đúng ?
	$ \overrightarrow{A}\overrightarrow{CI} = \frac{1}{2}\overrightarrow{CA} - \frac{3}{2}\overrightarrow{CB}. $	
	$\overrightarrow{C}\overrightarrow{CI} = \frac{3}{2}\overrightarrow{CB} - \frac{1}{2}\overrightarrow{CA}.$	$\mathbf{\widehat{D}}\overrightarrow{CI} = 3\overrightarrow{CB} - \overrightarrow{CA}.$
	CÂU 16. Cho tam giác ABC có G là trọ	ong tâm. Mênh đề nào sau đây sai ?
	$ \overrightarrow{A} \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG} \text{ với mọi } $	
	$\overrightarrow{\mathbf{B}}\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$	
	$\overrightarrow{\mathbf{C}}\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GA}.$	
	CÂU 17. Khẳng định nào sau đây sai?	
	Nếu $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC} \text{ thì } ABCD \text{ là}$	
	$lackbox{\textbf{B}}$ Nếu O là trung điểm của AB thì vớ	
	C Nếu G là trọng tâm của tam giác A	
	$lackbox{\textbf{D}}$ Với 3 điểm bất kì I, J, K ta có \overrightarrow{IJ}	
	CÂU 18. Cho hình bình hành ABCD. E	Dẳng thức nào sau đây đúng ?
	$\overrightarrow{A}\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AB}.$	$\overrightarrow{\mathbf{B}}\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AC}.$
	$\overrightarrow{\mathbf{C}}\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AD}.$	
	CÂU 19. Cho tam giác ABC biết I là tru giác, M là điểm bất kỳ. Hãy chọn khẳng G	ung điểm của đoạn thẳng AB , G là trọng tâm tam định đứng
	grac, M is them but ky. Hay chon knang G $(A) \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{MG}$.	$(\mathbf{B})\overrightarrow{BI} + \overrightarrow{IC} = \overrightarrow{0}.$
l l	, <u>, , , , , , , , , , , , , , , , , , </u>	\ - / \ \ \ \ \ \ \ \ \

 $(\mathbf{C})\overrightarrow{MA} + \overrightarrow{MB} = 3\overrightarrow{MI}.$

 $\mathbf{A} 2\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}.$ $\mathbf{B} \overrightarrow{IA} - \overrightarrow{IB} = \overrightarrow{0}.$

 $(\mathbf{D})\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}.$

CÂU 20. Cho I là trung điểm của đoạn thẳng AB. Hỏi đẳng thức nào **đúng**?

CÂU 21. Cho hình bình hành ABCD. Đẳng thức nào sau đây **đúng**?

$$(\mathbf{A})\overrightarrow{AC} - \overrightarrow{BD} = \overrightarrow{0}.$$

$$(\mathbf{B})\overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{AB}.$$

$$(\mathbf{C})\overrightarrow{AC} - \overrightarrow{AD} = \overrightarrow{CD}.$$

$$(\mathbf{D})\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}.$$

CÂU 22. Cho G là trọng tâm tam giác ABC và I là trung điểm cạnh BC. Mệnh đề nào sau đây sai?

$$(\mathbf{A})\overrightarrow{GA} = -2\overrightarrow{GI}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{IG} = -\frac{1}{3}\overrightarrow{AI}$$

$$(\mathbf{C})\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}.$$

CÂU 23. Cho tam giác ABC có trọng tâm G và M là trung điểm cạnh AC. Khẳng định nào sau đây sai?

$$\mathbf{A}BG = \frac{2}{3}BM.$$

$$(\mathbf{B})\overrightarrow{GA} + \overrightarrow{GC} = \overrightarrow{BG}.$$
 $(\mathbf{C})\overrightarrow{MG} = \frac{1}{3}\overrightarrow{BM}.$ $(\mathbf{D})GM = \frac{1}{2}GB.$

$$\bigcirc \overrightarrow{\mathbf{C}} \overrightarrow{MG} = \frac{1}{3} \overrightarrow{BM}.$$

$$\bigcirc GM = \frac{1}{2}GB.$$

CÂU 24. Cho tam giác ABC. Gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Đẳng thức nào sau đây **đúng**?

$$(\mathbf{A})\overrightarrow{GA} = 2\overrightarrow{GM}.$$

$$(\mathbf{B})\overrightarrow{GA} + 2\overrightarrow{GM} = \overrightarrow{0}. \quad (\mathbf{C})\overrightarrow{AM} = 2\overrightarrow{AG}.$$

$$(\mathbf{C})\overrightarrow{AM} = 2\overrightarrow{AG}$$

$$(\mathbf{D})\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$$

CÂU 25. Cho G là trọng tâm tam giác ABC, gọi I là trung điểm của BC. Đẳng thức nào sau đây đúng?

$$(\overrightarrow{A})\overrightarrow{\overrightarrow{GA}} = 2\overrightarrow{GI}.$$

$$(\mathbf{C})\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}.$$

CÂU 26. Cho tam giác ABC và một điểm M tùy ý. Hãy chọn hệ thức đúng.

$$(\mathbf{A}) 2 \overrightarrow{MA} + \overrightarrow{MB} - 3 \overrightarrow{MC} = \overrightarrow{AC} + 2 \overrightarrow{BC}.$$

$$(\mathbf{B})2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} = 2\overrightarrow{AC} + \overrightarrow{BC}.$$

$$(\mathbf{C})2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} = 2\overrightarrow{CA} + \overrightarrow{CB}.$$

$$(\mathbf{D})2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} = 2\overrightarrow{CB} - \overrightarrow{CA}.$$

CÂU 27. Cho tam giác ABC. Gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Đẳng thức nào sau đây đúng?

$$(\mathbf{A})\overrightarrow{GA} = 2\overrightarrow{GM}.$$

$$(\mathbf{B})\overrightarrow{GA} + 2\overrightarrow{GM} = \overrightarrow{0}. \quad (\mathbf{C})\overrightarrow{AM} = 2\overrightarrow{AG}.$$

$$(\mathbf{C})\overrightarrow{AM} = 2\overrightarrow{AG}$$

$$(\mathbf{D})\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}.$$

CÂU 28. Ba trung tuyến AM, BN, CP của tam giác ABC đồng quy tại G. Hỏi vecto $\overrightarrow{AM} + \overrightarrow{BN} + \overrightarrow{CP}$ bằng vectơ nào?

$$\bigcirc$$
 $\frac{3}{2} (\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{CG}).$

$$(\mathbf{C})$$
 $\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{AC}).$

$$\bigcirc \vec{0}$$

CÂU 29. Cho hình chữ nhật ABCD, I và K lần lượt là trung điểm của BC, CD. Hệ thức nào sau đây đúng?

$$(\mathbf{A})\overrightarrow{AI} + \overrightarrow{AK} = 2\overrightarrow{AC}.$$

$$(\mathbf{B})\overrightarrow{AI} + \overrightarrow{AK} = \overrightarrow{AB} + \overrightarrow{AD}.$$

$$(\mathbf{C})\overrightarrow{AI} + \overrightarrow{AK} = \overrightarrow{IK}.$$

$$\overrightarrow{\mathbf{D}}\overrightarrow{AI} + \overrightarrow{AK} = \frac{3}{2}\overrightarrow{AC}.$$

CÂU 30. Cho tam giác ABC có M là trung điểm của cạnh BC. Các điểm D, E thỏa mãn các đẳng thức: $\overrightarrow{BD} = 4\overrightarrow{BA}$, $\overrightarrow{AE} = 3\overrightarrow{AC}$. Khẳng định nào sau đây đúng?

$$(\mathbf{A}) \overrightarrow{AM} = \frac{1}{3} \overrightarrow{DE}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{AM} = \frac{1}{6}\overrightarrow{DE}.$$

$$\overrightarrow{\mathbf{C}}\overrightarrow{AM} = \frac{1}{2}\overrightarrow{DE}.$$

$$\overrightarrow{\mathbf{D}}\overrightarrow{AM} = \frac{3}{4}\overrightarrow{DE}$$

CÂU 31. Cho tứ giác ABCD. Gọi M, N là trung điểm AB và DC. Lấy các điểm P, Q lần lượt thuộc các đường thẳng AD và BC sao cho $\overrightarrow{PA} = -2\overrightarrow{PD}$, $\overrightarrow{QB} = -2\overrightarrow{QC}$. Khẳng định nào sau đây đúng?

$$\overrightarrow{\mathbf{A}} \overrightarrow{MN} = \frac{1}{2} \left(\overrightarrow{AD} + \overrightarrow{BC} \right).$$

$$(\mathbf{B})\overrightarrow{MN} = \overrightarrow{MP} + \overrightarrow{MQ}.$$

$$(\mathbf{D})\overrightarrow{MN} = \frac{1}{4} \left(\overrightarrow{MD} + \overrightarrow{MC} + \overrightarrow{NB} + \overrightarrow{NA} \right).$$

CÂU 32. Cho hình bình hành ABCD. Đẳng thức nào đúng?

$$(\mathbf{A})\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{AB}.$$

$$(\overrightarrow{\mathbf{C}})\overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{CD}.$$

$$(\overrightarrow{\mathbf{D}})\overrightarrow{AC} - \overrightarrow{AD} = \overrightarrow{CD}.$$

CÂU 33. Cho G là trọng tâm của tam giác ABC. Trong các mệnh đề sau, tìm mệnh đề đúng?

$$\overrightarrow{\mathbf{A}}\overrightarrow{AB} + \overrightarrow{AC} = \frac{2}{3}\overrightarrow{AG}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{BA} + \overrightarrow{BC} = 3\overrightarrow{BG}.$$

$$(\mathbf{C})\overrightarrow{CA} + \overrightarrow{CB} = \overset{3}{\overrightarrow{CG}}.$$

$$(\mathbf{D})\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{0}.$$

QUICK NOTE

ຄ	Ш	CK	Ν	OI	-
	u	$-\kappa$		v.	-

CÂU 34. Cho hình vuông ABCD có tâm là O. Trong các mệnh đề sau, tìm mệnh đề sai?

$$(\mathbf{A})\overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AO}.$$

$$\mathbf{B}\overrightarrow{AD} + \overrightarrow{DO} = -\frac{1}{2}\overrightarrow{CA}.$$

$$\overrightarrow{\mathbf{C}}\overrightarrow{OA} + \overrightarrow{OB} = \frac{1}{2}\overrightarrow{CB}.$$

$$(\mathbf{D})\overrightarrow{AC} + \overrightarrow{DB} = 4\overrightarrow{AB}.$$

CÂU 35. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Khi đó $\overrightarrow{AC} + \overrightarrow{BD}$ bằng

$$(\mathbf{A})\overrightarrow{MN}$$
.

$$(\mathbf{B}) 2 \overrightarrow{MN}.$$

$$(\mathbf{C})3\overrightarrow{MN}.$$

$$(\mathbf{D}) - 2\overrightarrow{MN}$$
.

CÂU 36. Cho hình bình hành ABCD tâm O và điểm M bất kì. Khẳng định nào sau đây đúng?

$$(\overrightarrow{A})\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{MO}.$$

$$(\mathbf{B})\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 2\overrightarrow{MO}.$$

$$(\overrightarrow{\mathbf{C}})\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 3\overrightarrow{MO}.$$

$$(\overrightarrow{\mathbf{D}})\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO}.$$

CÂU 37. Cho năm điểm A, B, C, D, E. Khẳng định nào đúng?

$$(\mathbf{A})\overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = 2(\overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB}).$$

$$(\mathbf{B})\overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = 3(\overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB}).$$

$$(\mathbf{C})\overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = \frac{\overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB}}{4}.$$

$$(\mathbf{D})\overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = \overrightarrow{AE} - \frac{4}{\overrightarrow{DB}} + \overrightarrow{CB}.$$

$$(\mathbf{D})\overrightarrow{AC} + \overrightarrow{CD} - \overrightarrow{EC} = \overrightarrow{AE} - \overrightarrow{DB} + \overrightarrow{CB}.$$

CÂU 38. Cho tứ giác ABCD. Gọi G là trọng tâm của tạm giác ABD, I là điểm trên GCsao cho IC = 3IG. Với mọi điểm M ta luôn có $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}$ bằng

$$(\mathbf{A})2\overrightarrow{MI}.$$

$$(\mathbf{B})3\overrightarrow{MI}.$$

$$\bigcirc$$
 $4\overrightarrow{MI}$.

$$\bigcirc 5\overrightarrow{MI}$$
.

CÂU 39. Cho tam giác ABC. Gọi M là điểm trên cạnh AB sao cho MA = 2MB và N là trung điểm của AC. Gọi P là trung điểm của MN. Khi đó

$$\overrightarrow{\mathbf{A}}\overrightarrow{AP} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$

$$(\mathbf{B})\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC}$$

CÂU 40. Cho tam giác ABC nội tiếp trong đường tròn tâm O. Gọi H, G lần lượt là trực tâm, trọng tâm của tam giác. Trong các khẳng định sau, khẳng định nào đúng?

$$(\mathbf{A})\overrightarrow{OH} = 4\overrightarrow{OG}.$$

$$(\mathbf{B})\overrightarrow{OH} = 3\overrightarrow{OG}.$$

$$\overrightarrow{\mathbf{C}}\overrightarrow{OH} = 2\overrightarrow{OG}.$$

$$(\mathbf{D})3\overrightarrow{OH} = \overrightarrow{OG}.$$

CÂU 41. Cho $\triangle ABC$. Trên các cạnh AB, BC và CA lấy các điểm D, E, F sao cho DA = 2DB, EB = 2EC, FC = 2FA. Chọn mệnh đề đúng trong các mệnh đề sau đây.

$$(\mathbf{A})\overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}.$$

$$(\mathbf{B})\overrightarrow{AD} - \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}.$$

$$\overrightarrow{\mathbf{C}}$$
 $\overrightarrow{AD} + \overrightarrow{AE} - \overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$.

$$(\mathbf{D})\overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AB} - \overrightarrow{AC}$$

CÂU 42. Cho tứ giác ABCD và điểm G thảo mãn $\overrightarrow{GA} + \overrightarrow{GB} + 2\overrightarrow{GC} + k\overrightarrow{GD} = \overrightarrow{0}$. Gọi I, Jlần lượt là trọng tâm tam giác các ACD, BCD. Gọi M, N lần lượt là trung điểm các cạnh CD, AB. Tìm k sao cho G là trung điểm của IJ.

$$\bigcirc k - 1$$

$$(\mathbf{B})k=2.$$

$$(\mathbf{C})k = 3.$$

$$(\mathbf{D})k = 4.$$

CÂU 43. Cho ngũ giác ABCDE có M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DE. Gọi I, J lần lượt là trung điểm của MP, NQ. Biết $\overrightarrow{IJ} = k\overrightarrow{EA}$, tìm k.

$$(A)k = -\frac{1}{2}.$$

$$\mathbf{B}k = \frac{1}{2}.$$

$$(\mathbf{c})k = -\frac{1}{4}.$$

Dạng 3. Xác định điểm thỏa mãn đẳng thức vector

Phương pháp giải

Bài toán: Xác định điểm M thỏa đẳng thức vecto cho trước

- ② Bước 1. Ta biến đổi đẳng thức đã cho (bằng chèn điểm, quy tắc ba điểm, qui tắc hình bình hành, tính chất trung điểm, trọng tâm,...) về dạng: $\overrightarrow{OM} = \overrightarrow{v}$. Trong đó điểm O và vecto \overrightarrow{v} cho trước.
- Θ Bước 2. Nếu muốn dựng điểm M, ta lấy điểm O làm gốc, dựng một vecto bằng vecto \overrightarrow{v} , khi đó điểm ngọn của vecto này chính là điểm M.

A

- **②** Lưu ý 1. Thông thường, biểu thức $\overrightarrow{OM} = \overrightarrow{v}$ là những biểu thức đặc biệt (trung điểm, trọng tâm, điểm chia đoạn thẳng theo tỉ lệ $\overrightarrow{a} = k \overrightarrow{b}$, hình bình hành,... Ta dựa vào biểu thức này để dựng.
- ② Lưu ý 2. Một số cách chứng minh thường dùng.
 - $D\vec{e}$ chứng minh I là trung điểm của đoạn thẳng AB, ta cần chứng minh một trong các hệ thức sau

$$+ \overrightarrow{IA} = \overrightarrow{IB}.$$

$$\overrightarrow{+}$$
 $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$.

$$+$$
 $2\overrightarrow{IA} = \overrightarrow{AB}$.

$$+ 2\overrightarrow{OI} = \overrightarrow{OA} + \overrightarrow{OB} (O \ b\acute{a}t \ ki).$$

— Để chứng minh điểm G là trọng tâm của $\triangle ABC$, ta cần chứng minh một trong các hệ thức sau

$$+ \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$$

- + Với I là trung điểm của cạnh BC thì $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AI}$.
- + Với O là điểm bất kì trong mặt phẳng thì: $3\overrightarrow{OG} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.
- Tứ giác ABCD là hình bình hành $\Leftrightarrow \begin{bmatrix} \overrightarrow{AB} = \overrightarrow{DC} \\ \overrightarrow{AD} = \overrightarrow{BC} \end{bmatrix}$
- Để chứng minh hai điểm A_1 và A_2 trùng nhau ta có thể chứng minh một trong các hệ thức sau

$$+ \overrightarrow{A_1 A_2} = \overrightarrow{0}.$$

$$+ \overrightarrow{OA_1} = \overrightarrow{OA_2} \ v \acute{o}i \ O \ là \ diểm \ bất \ \grave{y}.$$

— Điều kiện cần và đủ để $\triangle ABC$ và $\triangle A'B'C'$ có cùng trọng tâm là

$$\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = \overrightarrow{0}$$
.

— Nếu $\overrightarrow{MB} = k \cdot \overrightarrow{MC} \ (k \neq 1) \ thì \ \overrightarrow{AM} = \frac{\overrightarrow{AB} - k \cdot \overrightarrow{AC}}{1 - k} \ (hay \ \text{diểm} \ M$ chia đoạn AB theo tỉ số $k \neq 1$).

1. Ví dụ minh họa

VÍ DỤ 1. Cho hai điểm A và B. Xác định điểm M thỏa mãn $2\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{0}$.

VÍ DỤ 2. Cho tam giác ABC. Gọi M là trung điểm của AB và N thuộc cạnh AC, sao cho NC=2NA. Hãy xác định K và D khi

a)
$$3\overrightarrow{AB} + 2\overrightarrow{AC} - 12\overrightarrow{AK} = \overrightarrow{0}$$
.

b)
$$3\overrightarrow{AB} + 4\overrightarrow{AC} - 12\overrightarrow{KD} = \overrightarrow{0}$$
.

VÍ DỤ 3. Cho hình bình hành ABCD.

- a) Hãy dựng các điểm M, N thỏa mãn $\overrightarrow{MA} \overrightarrow{MB} \overrightarrow{MC} = \overrightarrow{AD}$ và $\overrightarrow{NC} + \overrightarrow{ND} \overrightarrow{NA} = \overrightarrow{AB} + \overrightarrow{AD} \overrightarrow{AC}$.
- b) Chứng minh rằng $\overrightarrow{MN} = \overrightarrow{BA}$.

VÍ DỤ 4. Cho trước hai điểm A, B và hai số thực α, β thỏa mãn $\alpha + \beta \neq 0$

- a) Chứng minh rằng tồn tại duy nhất điểm I thỏa mãn $\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} = \overrightarrow{0}$.
- b) Từ đó suy ra với điểm M bất kỳ, ta luôn có: $\alpha \cdot \overrightarrow{MA} + \beta \cdot \overrightarrow{MB} = (\alpha + \beta) \cdot \overrightarrow{MI}$.

A Lời bình 3

- $m{\Theta}$ Nếu $\alpha = \beta = 1$ thì điểm I chính là trung điểm của AB.
- **②** Bài toán trên được mở rộng cho ba điểm A, B, C và bộ 3 số thực α , β , γ cho trước thỏa mãn $\alpha + \beta + \gamma \neq 0$, nghĩa là:
 - Tồn tại điểm I duy nhất thỏa mãn $\alpha \cdot \overrightarrow{IA} + \beta \cdot \overrightarrow{IB} + \gamma \cdot \overrightarrow{IC} = \overrightarrow{0}$

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	٠	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

		•															
		•															

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·

QUICK NOTE	— <i>Tù</i> (α	$(do suy \ ra \ với \ diểm \ M + eta + \gamma) \cdot \overrightarrow{MI}$. Khi $\alpha =$	$\begin{array}{l} \emph{bắt kỳ, ta luôn có } \alpha \\ \beta = \gamma = 1 \ \emph{thì I là trọn} \end{array}$	$\overrightarrow{IA} + \beta \cdot \overrightarrow{IB} + \gamma \cdot \overrightarrow{IC} = g \ t \hat{a} m \ c \hat{u} a \ \triangle ABC.$
	$igotimes Bài toán mãn \sum_{i=1}^n$	n trên vẫn đúng với n đi $lpha_i eq 0$	ểm $A_i \ (i=\overline{1,n})$ và bộ s	ố thực $lpha_i$ $(i=\overline{1,n})$ thỏa
		\mathring{a} $tr\hat{e}n$ $d\grave{u}ng$ $gi\mathring{a}i$ $b\grave{a}i$ $to\acute{a}$ $th\mathring{o}a$ $m\~{a}n$ $\sum_{i=1}^{n}lpha_{i} eq0$. If		
	thức vec 2. Bài tập áp ($cto\sum_{i=1}^{n}lpha_{i}\overrightarrow{MA_{i}}=k\cdot\overrightarrow{MI}$	thỏa mãn với mọi điểm	. М".
		nh bình hành <i>ABCD</i> và	ACEF	
		m M , N sao cho $\overrightarrow{EM} =$		
			DD, $FN = DD$.	
	b) Chứng minh d	CA = MN.		
	BÀI 2. Cho tam gi			
	a) Chứng minh	với mọi điểm M , ta luôn	n có $\overrightarrow{MA} + 2\overrightarrow{MB} - 3\overrightarrow{MG}$	$\overrightarrow{C} = \overrightarrow{CA} + 2\overrightarrow{CB}.$
	b) Hãy dựng điể	m D sao cho $\overrightarrow{DA} + 2\overrightarrow{DB}$	$\overrightarrow{B} - 3\overrightarrow{DC} = \overrightarrow{CA} + 2\overrightarrow{CB}.$	
		c $ABCD$, M là điểm từ; o cho đẳng thức vectơ sa		
	a) $2\overrightarrow{MA} + \overrightarrow{MB} =$	$=k\cdot\overrightarrow{MI}.$		
	· ·	$2 \cdot \overrightarrow{MC} = k \cdot \overrightarrow{MJ}.$		
	,	$\overrightarrow{MC} + 3 \cdot \overrightarrow{MD} = k \cdot \overrightarrow{MD}$,	
	DA . Chứng minh \triangle	c lồi $ABCD$. Gọi $M, N, \Delta ANP$ và ΔCMQ có củ		điểm của AB, BC, CD
	3. Bài tập trắc	c nghiệm		
	CÂU 1. Cho điểm A Duy nhất mộ	A và vecto \vec{u} . Có bao rt. $\textcircled{\textbf{B}}$ Hai.	nhiêu điểm M thoả mãn \bigcirc Không có.	$\overrightarrow{AM} = \overrightarrow{u}$? \bigcirc Vô số.
		bình hành $ABCD$, điển	n M thỏa mãn $4\overrightarrow{AM} = 1$	$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$. Khi đớ
	M là A trung điểm A	C . (\mathbf{B}) điểm C .	(\mathbf{c}) trung điểm AB .	\bigcirc trung điểm AD .
		ecto \vec{a} và \vec{b} khác $\vec{0}$ và l		
		$ec{b}$ cùng phương. Khi đớ		
	$\mathbf{A} \frac{1}{2}$.	B $-\frac{3}{2}$.	$\mathbf{c} - \frac{1}{2}$.	$\bigcirc \frac{3}{2}$.
		iểm phân biệt A, B và l	nai số thực α , β khác 0	thoả mẫn $\alpha + \beta = 0$. Cá
	bao nhiêu điểm M	thoả mãn $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB}$	$\vec{\beta} = \vec{0}$?	
	(A) 0.	(B)1.	© 2.	D 3.
		ểm không thẳng hàng A	, B , C và M là điểm tho	å mãn $\overrightarrow{AB} = \overrightarrow{CM}$. Chọn
	khẳng định đúng. $(\mathbf{A})ABMC \text{ là hìn}$	nh bình hành.	$(\mathbf{B})ABCM$ là hình	bình hành.
		àm của tam giác ABC .	\simeq	yến của tam giác ABC .
		iểm phân biệt A, B và		
	nhiệu điểm M thoả	$\min \alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = 0$	$\vec{0}$?	
	(A) 0.	(B)1.	© 2.	D 3.
	CÂU 7. Cho hai đ $ th$ day $ AB $ là	iểm phân biệt A và B . I	Diếu kiện cần và đủ để $\it I$	là trung điểm của đoạn
		$\overrightarrow{\mathbf{B}}\overrightarrow{IA} = -\overrightarrow{IB}.$	$(\mathbf{C})\overrightarrow{IA} = \overrightarrow{IB}.$	$(\mathbf{D})\overrightarrow{AI} = \overrightarrow{BI}.$

CÂU 8. Cho tam giác ABC, điểm I là trung điểm BC. Điểm G có tính chất nào sau đây thì G là trọng tâm tam giác ABC?

 $(\mathbf{A})\overrightarrow{GI} = -\frac{1}{3}\overrightarrow{AI}.$

- $(\mathbf{B})GA = 2GI.$
- $(\mathbf{C})\overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}.$
- $(\mathbf{D})\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}.$

CÂU 9. Cho đoạn thẳng AB, hình nào sau đây biểu diễn đúng điểm M thỏa mãn \overrightarrow{MA} + $4\overrightarrow{MB} = \overrightarrow{0}$.

- (**A**) Hình 1.
- **(B)**Hình 2.
- (**C**)Hình 3.
- (\mathbf{D}) Hình 4.

CÂU 10. Cho đoạn thẳng AB có trung điểm I. Tìm điểm M thỏa mãn $3\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$.

 $(\mathbf{A})M$ trùng với I.

- $(\mathbf{B})M$ là trung điểm của BI.
- $(\mathbf{C})M$ là trung điểm của AI.
- $(\mathbf{D})M$ trùng với A hoặc M trùng với B.

CÂU 11. Trên đường thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác định trong hình vẽ nào sau đây?

- (A) Hình 1.
- (B) Hình 2.
- **(C)**Hình 3.
- (\mathbf{D}) Hình 4.

CÂU 12. Trên đưuờng thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác đinh đúng theo hình vẽ nào sau đây.

CÂU 13. Cho tam giác ABC với I là trung điểm của AB. Tìm điểm M thỏa mãn hệ thức $\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$.

- $(\mathbf{A})M$ là trung điểm của IC.
- $(\mathbf{B})M$ là trung điểm của IA.
- $(\mathbf{C})M$ là điểm trên cạnh IC sao cho IM = 2MC.
- $(\mathbf{D})M$ là trung điểm của BC.

CÂU 14.

Đẳng thức nào sau đây mô tả đúng hình vẽ bên?

- $(\mathbf{B})3\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}.$
- $(\mathbf{A})3\overrightarrow{AI} + \overrightarrow{AB} = \overrightarrow{0}.$ $(\mathbf{C})\overrightarrow{BI} + 3\overrightarrow{BA} = \overrightarrow{0}.$
- $(\mathbf{D})\overrightarrow{AI} + 3\overrightarrow{AB} = \overrightarrow{0}$.

CẬU 15. Trong mặt phẳng Oxy, tam giác ABC có trọng tâm G là điểm M thỏa mãn

- $\overrightarrow{AB} + \overrightarrow{AC} + 6\overrightarrow{AG} = 6\overrightarrow{AM}$. Vị trí của điểm M là $(\mathbf{A})M$ là trung điểm của AC.
 - $(\mathbf{B})M$ là trung điểm của BC.
 - $({f C})M$ là điểm thứ tư của hình bình hành ABCM.
 - $(\mathbf{D})M$ là trung điểm của AB.

CÂU 16. Cho tam giác ABC. Để điểm M thỏa mãn điều kiện $\overrightarrow{MA} + \overrightarrow{BM} + \overrightarrow{MC} = \overrightarrow{0}$ thì M phải thỏa mãn

- $(\mathbf{A})M$ là trọng tâm tam giác ABC.
- $(\mathbf{B})M$ là điểm sao cho tứ giác ABMC là hình bình hành.
- $(\mathbf{C})M$ thuộc trung trực của AB.
- $(\mathbf{D})M$ là điểm sao cho tứ giác BAMC là hình bình hành.

QUICK NOTE	CÂU 17. Cho tứ giác $ABCD$ và M là đi khẳng định đúng. (A) M là giao điểm hai đường chéo của t	iểm thoả $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{0}$. Chọn cứ giác \overrightarrow{ABCD}
		nổi hai trung điểm hai cạnh đối diện của tứ giác
	$lackbox{\textbf{c}} M$ là tâm đường tròn ngoại tiếp tứ g	iác $ABCD$.
	$lackbox{$lackbox{$lackbox{}}$} M$ là tâm đường tròn nội tiếp tứ giáo	$c\ ABCD$.
	CÂU 18. Cho tam giác ABC , gọi M là đó,	điểm thoả mãn $\overrightarrow{MA} - 2\overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$. Khi
	lack ABCM là hình bình hành.	
	$lackbox{\textbf{B}} ABMC$ là hình bình hành.	
	\bigcirc $ABCM$ là hình bình thang có đáy lớ	n AM.
	\bigcirc \triangle	m BC.
		âm của hai tam giác ABC và $A^{\prime}B^{\prime}C^{\prime}$. Tìm điều
	kiện cần và đủ để $G \equiv G'$.	
	$ \begin{array}{c c} $	$(\mathbf{B})AA' + BB' + CC' = 3GG'.$
	$\mathbf{C} AA' + BB' + CC' - 3G'G = 0.$	$(\mathbf{D})AA' + BB' + CC' = 3G'G.$
	CÂU 20. Cho tam giác ABC có I là	trung điểm BC . Gọi M là điểm thoả mãn
	$2\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$. Xác định vị trí c (A)M là trọng tâm tam giác ABC .	úa điệm M .
	(B) M là trung điểm AI.	
	$\mathbf{C}M$ là điểm thuộc đoạn thẳng AI tho	A MA = 2MI
	$(\mathbf{D})M$ là điểm thuộc đoạn thẳng AI tho	
		\overrightarrow{A} m M thỏa $4\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}$. Khi đó điểm
	M là	AB + AC + AD. Kill do diem
	lack Atrung điểm AC . $lack B$ điểm C .	\bigcirc trung điểm AB . \bigcirc trung điểm AD .
	CÂU 22. Cho tam giác ABC Gọi D E là	, các điểm xác định bởi $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB}, \overrightarrow{AE} = \frac{2}{5}\overrightarrow{AC}$
		inh bởi $\overrightarrow{BM} = x\overrightarrow{BC}$. Tìm giá trị thực của x sac
	cho A, K, M thẳng hàng.	$\frac{1}{1}$ $\frac{1}$
	$\mathbf{A} \cdot \frac{3}{8}$. $\mathbf{B} - \frac{4}{3}$.	$\mathbf{C} \frac{8}{3}$. $\mathbf{D} - \frac{3}{4}$.
	CAU 23. Cho tam giác ABC . Gọi D là $\overrightarrow{IA} + 2\overrightarrow{IB} + 3\overrightarrow{IC} = \overrightarrow{0}$. Mệnh đề nào dưới c	trung điểm cạnh AC và I là điểm thỏa mãn đây đúng?
	lacksquare I là trực tâm tam giác BCD .	
	lacksquare I là trọng tâm tam giác ABC .	
	$lackbox{\rotate{C}}I$ là trọng tâm tam giác CDB .	
	$lackbox{\textbf{D}} I$ là tâm đường tròn nội tiếp tam giá	c ABC.
	CÂU 24. Cho đoạn thẳng AB và M là	một điểm nằm trên đường thẳng AB sao cho
	$\overrightarrow{MA} = -\frac{1}{5}\overrightarrow{AB}$. Khẳng định nào sau đây là	
	.,,	$\overrightarrow{\mathbf{C}}\overrightarrow{AM} = \frac{1}{5}\overrightarrow{AB}. \qquad \overrightarrow{\mathbf{D}}\overrightarrow{MA} = -\frac{1}{4}\overrightarrow{MB}.$
	$MB = -4MA. \qquad \textbf{b} MB = -\frac{7}{5}AB$	$AM = \frac{1}{5}AB. \qquad \textbf{D}MA = -\frac{1}{4}MB.$
	CÂU 25. Cho tam giác ABC . Hãy xác địn	th vị trí điểm M thỏa mãn $2\overrightarrow{MA} - 3\overrightarrow{MB} = \overrightarrow{0}$.
		\bigcirc
	\bigcirc \bigcirc M là trung điểm AB .	$(\mathbf{D})M$ không thuộc đoạn AB .
	CÂU 26. Cho tam giác ABC, N là trui	ng điểm $AB,\ M$ là điểm thỏa mãn đẳng thức
	$\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC}$. Kết luận nào dưới đây	dúng?
	$\mathbf{A}M$ đối xứng với C qua A .	$(\mathbf{B})A$ đối xứng với M qua C .
	$lue{\mathbf{C}}C$ đối xứng với A qua M .	$lue{f D}M$ là điểm tùy ý.
		T thỏa mãn $\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{AB}$. Tìm vị trí điểm
	M.	whose main $mD + mO = mD$. This vi til them
	lack A M là điểm thứ tư của hình bình hàn	h $ABCM$.

- $(\mathbf{B})M$ là trung điểm của AB.
- $(\mathbf{C})M$ là trung điểm của BC.
- $(\mathbf{D})M$ là trung điểm của AC.

CÂU 28. Cho tam giác ABC, I là trung điểm AC. Vị trí điểm N thỏa mãn $\overrightarrow{NA} + 2\overrightarrow{NB} = \overrightarrow{CB}$ xác định bởi hệ thức

$$(\mathbf{A})\overrightarrow{BN} = \frac{1}{3}\overrightarrow{BI}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{BN}=2\overrightarrow{BI}.$$

$$\overrightarrow{\textbf{c}}\overrightarrow{BN} = \frac{2}{3}\overrightarrow{BI}.$$

$$\bigcirc \overrightarrow{BN} = \overrightarrow{BI}.$$

CÂU 29. Cho đoạn thẳng AB, hình nào sau đây biểu diễn đúng điểm M thỏa mãn $\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0}$.

$$\begin{array}{c|c} & \text{Hình 1} \\ A & & M & B \\ \hline & & & & \end{array}$$

Hìn

Hình 4

(A) Hình 1.

(B) Hình 2.

(C)Hình 3.

(D)Hình 4.

CÂU 30. Cho đoạn thẳng AB có trung điểm I. Tìm điểm M thỏa mãn $3\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$.

 \bigcirc \bigcirc M trùng với I.

- $(\mathbf{B})M$ là trung điểm của BI.
- \bigcirc M là trung điểm của AI.
- $(\mathbf{D})M$ trùng với A hoặc M trùng với B.

CÂU 31. Trên đường thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác định trong hình vẽ nào sau đây?

(A) Hình 1.

(B)Hình 2.

(C)Hình 3.

(D)Hình 4.

CÂU 32. Trên đưường thẳng MN lấy điểm P sao cho $\overrightarrow{MN} = -3\overrightarrow{MP}$. Điểm P được xác định đúng theo hình vẽ nào sau đây.

CÂU 33.

Đẳng thức nào sau đây mô tả đúng hình vẽ bên?

- $(\mathbf{B})3\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}.$
- $\overrightarrow{\mathbf{C}}\overrightarrow{BI} + 3\overrightarrow{BA} = \overrightarrow{0}.$ $\overrightarrow{\mathbf{D}}\overrightarrow{A}$
 - $\mathbf{D}\overrightarrow{AI} + 3\overrightarrow{AB} = \overrightarrow{0}.$

CÂU 34. Trong mặt phẳng Oxy, tam giác ABC có trọng tâm G là điểm M thỏa mãn $\overrightarrow{AB} + \overrightarrow{AC} + 6\overrightarrow{AG} = 6\overrightarrow{AM}$. Vị trí của điểm M là

- $(\mathbf{A})M$ là trung điểm của AC.
- $(\mathbf{B})M$ là trung điểm của BC.
- $(\mathbf{C})M$ là điểm thứ tư của hình bình hành ABCM.
- $(\mathbf{D})M$ là trung điểm của AB.

Dạng 4. Biểu diễn vectơ theo hai vectơ không cùng phương

Phương pháp giải : Ta có thể chọn 1 trong 2 hướng giải sau

Hướng 1: Từ giả thiết xác định được tính chất hình học, rồi từ đó khai triển vectơ cần biểu diễn bằng quy tắc ba điểm, quy tắc hình bình hành, tính chất

QUICK NOTE	trung điểm, trọng tâm,
	Hướng 2: Từ giả thiết, ta lập được mối quan hệ vectơ giữa các đối tượng, rồi từ đó khai triển biểu thức bằng quy tắc ba điểm, quy tắc hình bình hành, tính chất trung điểm, trọng tâm,
	timi chat trung tichi, tiying tani,
	1. Ví dụ minh họa
	VÍ DỤ 1. Cho $\triangle ABC$, gọi G là trọng tâm của tam giác và B_1 là điểm đối xứng của B qua G . Gọi M là trung điểm của BC . Hãy biểu diễn các vecto
	a) $\overrightarrow{CB_1}$ và $\overrightarrow{AB_1}$ theo \overrightarrow{AB} , \overrightarrow{AC} . b) $\overrightarrow{MB_1}$ theo \overrightarrow{AB} , \overrightarrow{AC} .
	VÍ DỤ 2. Cho $\triangle ABC$. Gọi I là điểm trên cạnh BC sao cho $2CI=3BI$ và J là điểm trên BC kéo dài sao cho $5JB=2JC$. Gọi G là trọng tâm $\triangle ABC$.
	a) Tính \overrightarrow{AI} , \overrightarrow{AJ} theo \overrightarrow{AB} , \overrightarrow{AC} . b) Tính \overrightarrow{AG} theo \overrightarrow{AI} và \overrightarrow{AJ} .
	VÍ DỤ 3. Cho $\triangle ABC$ và hai điểm D, E thỏa mãn $\overrightarrow{DB} = k \cdot \overrightarrow{DC}, \overrightarrow{EB} = \frac{1}{k} \overrightarrow{EC}$ (với $k \neq 1$).
	a) Biểu diễn các vectơ \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{DE} theo các vectơ \overrightarrow{AB} , \overrightarrow{AC} .
	b) Điểm F , I thỏa mãn $\overrightarrow{FA} = k \cdot \overrightarrow{FB}$, $\overrightarrow{IC} = k \cdot \overrightarrow{IA}$. Chứng minh $\overrightarrow{AD} + \overrightarrow{BI} + \overrightarrow{CF} = \overrightarrow{0}$.
	2. Bài tập áp dụng
	BÀI 1. Cho $\triangle ABC$ có M,D lần lượt là trung điểm của AB,BC và N là điểm trên cạnh
	AC sao cho $\overrightarrow{AN} = \frac{1}{2} \cdot \overrightarrow{NC}$. Gọi K là trung điểm của MN . Hãy tính các vectơ \overrightarrow{AK} , \overrightarrow{KD}
	theo \overrightarrow{AB} , \overrightarrow{AC} .
	BÀI 2. Cho $\triangle ABC$. Trên hai cạnh AB và AC lấy hai điểm D và E sao cho $\overrightarrow{AD} = 2\overrightarrow{DB}$, $\overrightarrow{CE} = 3\overrightarrow{EA}$. Gọi M , I lần lượt là trung điểm của DE và BC . Hãy tính vecto \overrightarrow{AM} , \overrightarrow{MI} theo \overrightarrow{AB} , \overrightarrow{AC} .
	BÀI 3. Cho $\triangle ABC$, lấy điểm M , N , P sao cho $\overrightarrow{MB} = 3\overrightarrow{MC}$, $\overrightarrow{NA} + 3\overrightarrow{NC} = \overrightarrow{0}$, $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{0}$. Phân tích \overrightarrow{PM} , \overrightarrow{PN} theo \overrightarrow{AB} , \overrightarrow{AC} .
	BÀI 4. Cho hình bình hành $ABCD$ có tâm là O . Hãy tính các vectơ sau theo vectơ \overrightarrow{AB} và \overrightarrow{AD} .
	a) \overrightarrow{AI} với I là trung điểm của \overrightarrow{BO} .
	b) \overrightarrow{BG} với G là trọng tâm $\triangle OCD$.
	BÀI 5. Cho $\triangle ABC$ có hai đường trung tuyến BN , CP . Hãy biểu thị các vectơ \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} theo các vectơ \overrightarrow{BN} , \overrightarrow{CP} .
	BÀI 6. Cho $\triangle ABC$ có trọng tâm G . Gọi I , J nằm trên cạnh BC và BC kéo dài sao cho $2CI=3BI,5JB=2JC.$
	a) Tính \overrightarrow{AI} , \overrightarrow{AJ} theo \overrightarrow{AB} , \overrightarrow{AC} . b) Tính \overrightarrow{AG} theo \overrightarrow{AB} , \overrightarrow{AC} .
	BÀI 7. Cho $\triangle ABC$ có G là trọng tâm tam giác và I là điểm đối xứng của B qua G . M là trung điểm của BC . Hãy tính \overrightarrow{AI} , \overrightarrow{CI} , \overrightarrow{MI} theo \overrightarrow{AB} , \overrightarrow{AC} .
	BÀI 8. Cho $\triangle ABC$ có trọng tâm là G và các đường trung tuyến $AM,BP.$ Gọi G' là điểm đối xứng với điểm G qua $P.$
	a) Hãy biểu diễn các vectơ $\overrightarrow{AG'},$ $\overrightarrow{CG'}$ theo $\overrightarrow{AB},$ $\overrightarrow{AC}.$
	b) Chứng minh hệ thức: $5\overrightarrow{AC} - 6\overrightarrow{AB} = 6\overrightarrow{MG'}$.
	BÀI 9. Cho hình bình hành $ABCD$. Gọi M , N theo thứ t ự là trung điểm của các cạnh BC , CD . Hãy biểu diễn các vectơ \overrightarrow{BC} , \overrightarrow{CD} theo các vectơ \overrightarrow{AM} , \overrightarrow{AN} .
	BÀI 10. Cho tứ giác \overrightarrow{ABCD} có \overrightarrow{M} , \overrightarrow{N} theo thứ tự là trung điểm của các cạnh \overrightarrow{AD} , \overrightarrow{BC} . Hãy biểu diễn vecto \overrightarrow{MN} theo \overrightarrow{AB} , \overrightarrow{DC} và theo \overrightarrow{AC} , \overrightarrow{DB} .

BÀI 11. Cho $\triangle ABC$. Goi I là điểm đối xứng của trong tâm G qua B.

- a) Chứng minh $\overrightarrow{IA} 5\overrightarrow{IB} + \overrightarrow{IC} = \overrightarrow{0}$.
- b) Đặt $\overrightarrow{AG} = \overrightarrow{a}$, $\overrightarrow{AI} = \overrightarrow{b}$. Tính \overrightarrow{AB} , \overrightarrow{AC} theo \overrightarrow{a} , \overrightarrow{b} .

BÀI 12. Cho $\triangle ABC$. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Tính các vecto \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} theo các vecto \overrightarrow{BN} , \overrightarrow{CP} .

BÀI 13. Cho $\triangle ABC$. Gọi I là điểm trên cạnh BC kéo dài sao cho IB = 3IC.

- a) Tính \overrightarrow{AI} theo \overrightarrow{AB} , \overrightarrow{AC} .
- b) Gọi J và K lần lượt là các điểm thuộc cạnh AC, AB sao cho JA=2JC và KB=3KA. Tính \overrightarrow{JK} theo \overrightarrow{AB} , \overrightarrow{AC} .
- c) Tính \overrightarrow{BC} theo \overrightarrow{AI} và \overrightarrow{JK} .

3. Bài tập trắc nghiệm

CÂU 1. Cho tam giác ABC có M là trung điểm của đoạn BC. Tìm mệnh đề đúng.

$$\overrightarrow{\mathbf{A}} \overrightarrow{AM} = -\frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}.$$

$$(\mathbf{B})\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC}.$$

$$\mathbf{C}\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}.$$

$$(\mathbf{D})\overrightarrow{AM} = -\frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC}.$$

CÂU 2. Cho hình bình hành ABCD, gọi I là trung điểm của CD, đặt $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$. Biểu diễn vecto BI theo các vecto \vec{a} , \vec{b} .

$$\overrightarrow{\textbf{A}}\overrightarrow{BI} = -\frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{BI} = \overrightarrow{a} + \overrightarrow{b}.$$

$$\mathbf{\widehat{C}}\overrightarrow{BI} = -\frac{1}{2}\overrightarrow{a} + \frac{2}{\overrightarrow{b}}.$$

$$(\overrightarrow{\mathbf{D}}) \overrightarrow{BI} = \frac{1}{2} \overrightarrow{a} + \overrightarrow{b} .$$

CÂU 3. Cho tạm giác \overrightarrow{ABC} và một điểm M thỏa mãn $\overrightarrow{BM} = k\overrightarrow{BC}$. Biểu diễn vecto \overrightarrow{AM} theo các vecto \overrightarrow{AB} , \overrightarrow{AC} .

$$(\mathbf{A})\overrightarrow{AM} = (1-k)\overrightarrow{AB} + k\overrightarrow{AC}.$$

$$(\mathbf{B})\overrightarrow{AM} = k\overrightarrow{AB} + k\overrightarrow{AC}.$$

$$(\mathbf{C})\overrightarrow{AM} = k\overrightarrow{AB} + (1-k)\overrightarrow{AC}.$$

$$(\overrightarrow{\mathbf{D}})\overrightarrow{AM} = (1-k)\overrightarrow{AB} + (1-k)\overrightarrow{AC}.$$

CÂU 4. Cho hình bình hành ABCD. Gọi I là điểm trên cạnh BC được xác định bởi $\overrightarrow{BI} = k\overrightarrow{BC} \ (k \neq 1)$. Tìm hệ thức liên hệ giữa $\overrightarrow{DI}, \overrightarrow{DB}, \overrightarrow{DC}$.

$$(\mathbf{A})\overrightarrow{DI} = (k-1)\overrightarrow{DB} - k\overrightarrow{DC}.$$

$$(\mathbf{B})\overrightarrow{DI} = (1-k)\overrightarrow{DB} + k\overrightarrow{DC}.$$

$$(\mathbf{C})\overrightarrow{DI} = (1+k)\overrightarrow{DB} - k\overrightarrow{DC}.$$

$$(\mathbf{D})\overrightarrow{DI} = (1+k)\overrightarrow{DB} + k\overrightarrow{DC}.$$

CÂU 5. Cho tam giác ABC có M là trung điểm của BC. Tính \overrightarrow{AB} theo \overrightarrow{AM} và \overrightarrow{BC} .

$$(\mathbf{A})\overrightarrow{AB} = \overrightarrow{AM} + \frac{1}{2}\overrightarrow{BC}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{AB} = \overrightarrow{BC} + \frac{1}{2}\overrightarrow{AM}.$$

$$\mathbf{C}\overrightarrow{AB} = \overrightarrow{AM} - \frac{1}{2}\overrightarrow{BC}.$$

$$(\mathbf{D})\overrightarrow{AB} = \overrightarrow{BC} - \frac{1}{2}\overrightarrow{AM}.$$

CÂU 6. Cho tam giác ABC có M là trung điểm của BC, I là trung điểm của AM. Khẳng định nào sau đây đúng?

$$\mathbf{\widehat{A}}\overrightarrow{AI} = \frac{1}{4} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$$

$$egin{aligned} egin{aligned} \overrightarrow{B}\overrightarrow{AI} &= rac{1}{A}\left(\overrightarrow{AB} - \overrightarrow{AC}
ight) \end{aligned}$$

$$(\mathbf{A}) \overrightarrow{AI} = \frac{1}{4} \left(\overrightarrow{AB} + \overrightarrow{AC} \right).$$

$$(\mathbf{C}) \overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}.$$

CÂU 7. Cho tam giác ABC. Hai điểm M, N chia cạnh BC theo ba phần bằng nhau $BM = MN = NC. \text{ Tính } \overrightarrow{AM} \text{ theo } \overrightarrow{AB} \text{ và } \overrightarrow{AC}.$ $(\mathbf{A})\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}.$ $(\mathbf{C})\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}.$

$$(\mathbf{A})\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}.$$

$$(\mathbf{B})\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$$

$$\overrightarrow{\mathbf{C}}\overrightarrow{AM} = \frac{3}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC}$$

$$(\mathbf{B}) \overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB} + \frac{2}{3} \overrightarrow{AC}.$$

$$(\mathbf{D}) \overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB} - \frac{2}{3} \overrightarrow{AC}.$$

CÂU 8. Cho tam giác ABC có G là trọng tâm tam giác. Trong các mệnh đề sau, mệnh đề

$$(\mathbf{A})\overrightarrow{GA} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}.$$

$$(\mathbf{B})\overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG}.$$

$$(\overrightarrow{\mathbf{C}})\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AG}.$$

$$(\vec{\mathbf{D}})2\overrightarrow{AB} + \overrightarrow{BC} = 2\overrightarrow{AG}.$$

CÂU 9. Cho $\triangle ABC$ có M là trung điểm của BC. Trong các mệnh đề sau, mệnh đề nào

$$\mathbf{\widehat{A}} 2\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}.$$

$$\mathbf{B})2\overrightarrow{AM} = 2\overrightarrow{AB} + \overrightarrow{BC}.$$

$$(\mathbf{C})2\overrightarrow{AM} = 2\overrightarrow{AC} - \overrightarrow{BC}$$

$$\mathbf{D}2\overrightarrow{AM} = 2\overrightarrow{AC} + \overrightarrow{BC}.$$

		_	_		
വ	Ш	\sim v		1	
		CK	I O	"	

CÂU 10. Cho $\triangle ABC$ và I thỏa mãn $\overrightarrow{IA} = 3\overrightarrow{IB}$. Phân tích \overrightarrow{CI} theo \overrightarrow{CA} và \overrightarrow{CB} .

$$(\mathbf{A})\overrightarrow{CI} = \frac{1}{2} \left(\overrightarrow{CA} - 3\overrightarrow{CB} \right).$$

$$(\mathbf{B})\overrightarrow{CI} = \overrightarrow{CA} - 3\overrightarrow{CB}.$$

$$\mathbf{C}\overrightarrow{CI} = \frac{1}{2} \left(3\overrightarrow{CB} - \overrightarrow{CA} \right).$$

CÂU 11. Cho hình bình hành ABCD có N là trung điểm AB và G là trọng tâm $\triangle ABC$.

Phân tích
$$\overrightarrow{GA}$$
 theo \overrightarrow{BD} và \overrightarrow{NC} .

$$(A) \overrightarrow{GA} = -\frac{1}{3} \overrightarrow{BD} + \frac{2}{3} \overrightarrow{NC}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{GA} = \frac{1}{2}\overrightarrow{BD} - \frac{4}{2}\overrightarrow{NC}.$$

$$\overrightarrow{\textbf{C}}\overrightarrow{GA} = \frac{1}{3}\overrightarrow{BD} + \frac{2}{3}\overrightarrow{NC}.$$

CÂU 12. Cho $\triangle ABC$ có AK, BM là hai trung tuyến. Đặt $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{BM} = \overrightarrow{b}$. Hãy biểu diễn \overrightarrow{BC} theo \overrightarrow{a} và \overrightarrow{b} là

$$\overrightarrow{\mathbf{A}}\overrightarrow{BC} = \frac{2}{3}\overrightarrow{a} + \frac{4}{3}\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{BC} = \frac{2}{2}\overrightarrow{a} - \frac{4}{2}\overrightarrow{b}$$
.

$$\overrightarrow{\mathbf{C}}\overrightarrow{BC} = -\frac{2}{3}\overrightarrow{a} + \frac{4}{3}\overrightarrow{b}.$$

$$(\mathbf{B}) \overrightarrow{BC} = \frac{2}{3} \overrightarrow{a} - \frac{4}{3} \overrightarrow{b}.$$

$$(\mathbf{D}) \overrightarrow{BC} = \frac{1}{3} \overrightarrow{a} + \frac{4}{3} \overrightarrow{b}.$$

CÂU 13. Cho $\triangle ABC$ với trọng tâm G. Đặt $\overrightarrow{CA} = \overrightarrow{a}$, $\overrightarrow{CB} = \overrightarrow{b}$. Biểu thị vecto \overrightarrow{AG} theo hai vecto \vec{a} và \vec{b} ta được

$$(\mathbf{A}) \overrightarrow{AG} = \frac{2\overrightarrow{a} - \overrightarrow{b}}{3}.$$

$$\mathbf{B} \overrightarrow{AG} = \frac{-2\overrightarrow{a} + \overrightarrow{b}}{3}. \quad \mathbf{C} \overrightarrow{AG} = \frac{2\overrightarrow{a} + \overrightarrow{b}}{3}. \quad \mathbf{D} \overrightarrow{AG} = \frac{\overrightarrow{a} - 2\overrightarrow{b}}{3}.$$

$$\mathbf{C}\overrightarrow{AG} = \frac{2\overrightarrow{a} + \overrightarrow{b}}{3}$$

$$\mathbf{D}\overrightarrow{AG} = \frac{\overrightarrow{a} - 2\overrightarrow{b}}{3}$$

CÂU 14. Cho tam giác ABC. Gọi M trên cạnh BC sao cho MB = 3MC. Khi đó, biểu diễn vectơ \overrightarrow{AM} theo vectơ \overrightarrow{AB} và vectơ \overrightarrow{AC} là

$$\overrightarrow{\mathbf{A}}\overrightarrow{AM} = \frac{1}{4}\overrightarrow{AB} + 3\overrightarrow{AC}.$$

$$\mathbf{B}\overrightarrow{AM} = \frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}.$$

$$\mathbf{C}\overrightarrow{AM} = \frac{\overset{4}{1}}{\overset{4}{AB}} + \frac{1}{6}\overrightarrow{AC}.$$

$$\bigcirc \mathbf{B} \frac{2\vec{u} + \vec{v}}{3}$$

$$\mathbf{c}$$
 $\frac{\vec{u}-2\vec{v}}{3}$

$$\bigcirc \frac{-2\vec{u} + \vec{v}}{3}.$$

CÂU 16. Cho tam giác ABC có G là trọng tâm tam giác. Điểm N trên BC sao cho $\overrightarrow{CN} = \frac{1}{2}\overrightarrow{BC}$. Biểu diễn vectơ \overrightarrow{AC} theo các vecto \overrightarrow{AC} và \overrightarrow{AN} .

$$\overrightarrow{A}\overrightarrow{AC} = \frac{2}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}$$

$$\overrightarrow{A}\overrightarrow{AC} = \frac{2}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}.$$

$$\overrightarrow{C}\overrightarrow{AC} = \frac{4}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}.$$

CÂU 17. Cho $\triangle ABC$ với G là trọng tâm. Đặt $\overrightarrow{CA} = \overrightarrow{a}$, $\overrightarrow{CB} = \overrightarrow{b}$. Khi đó \overrightarrow{AG} được biểu diễn theo hai vecto \vec{a} và \vec{b} là

$$\overrightarrow{\mathbf{A}}\overrightarrow{AG} = \frac{1}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b}.$$

$$\mathbf{B} \overrightarrow{AG} = \frac{2}{3} \overrightarrow{a} + \frac{1}{3} \overrightarrow{b}.$$

$$\widehat{\mathbf{A}} \overrightarrow{AG} = \frac{1}{3} \overrightarrow{a} - \frac{2}{3} \overrightarrow{b} .$$

$$\widehat{\mathbf{C}} \overrightarrow{AG} = \frac{2}{3} \overrightarrow{a} - \frac{1}{3} \overrightarrow{b} .$$

$$\overrightarrow{\mathbf{B}} \overrightarrow{AG} = \frac{2}{3} \overrightarrow{a} + \frac{1}{3} \overrightarrow{b}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{AG} = -\frac{2}{3} \overrightarrow{a} + \frac{1}{3} \overrightarrow{b}.$$

CÂU 18. Gọi \vec{Q} là trọng tâm tam giác ABC. Đặt $\overrightarrow{GA} = \vec{a}$, $\overrightarrow{GB} = \vec{b}$. Tìm các giá trị thực của $m, n \, \text{để } \overrightarrow{BC} = m \, \overrightarrow{a} + n \, \overrightarrow{b}.$

$$(A)m = 1; n = 2.$$

$$\mathbf{B}$$
) $m = -1$: $n = -2$.

$$(\mathbf{B})m = -1; n = -2. \quad (\mathbf{C})m = -2; n = -1. \quad (\mathbf{D})m = 2; n = 1.$$

$$(\mathbf{D})m = 2; n = 1$$

CÂU 19. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD và BC. Hãy tìm

$$\mathbf{A}m = \frac{1}{2}, n = \frac{1}{2}.$$

B
$$m = -\frac{1}{2}, n = \frac{1}{2}.$$

$$\mathbf{c}$$
 $m = \frac{2}{2}, n = -\frac{1}{2}.$

CÂU 20. Gọi G là trọng tâm của $\triangle ABC$. Đặt $\overrightarrow{GA} = \overrightarrow{a}$, $\overrightarrow{GB} = \overrightarrow{b}$. Hãy tìm m, n để có $\overrightarrow{BC} = m\overrightarrow{a} + n\overrightarrow{b}.$

$$(A)m = 1, n = 2.$$

(B)
$$m = -1, n = -2.$$
 (C) $m = 2, n = 1.$

$$(\mathbf{C})m = 2, n =$$

$$\bigcirc m = -2, n = -1.$$

CÂU 21. Cho tứ giác ABCD (với AB, CD không song song). Gọi M, N lần lượt là trung điểm của AD và BC. Tìm m, n để $\overline{MN} = m\overline{AB} + n\overline{DC}$

$$\bigcirc m = \frac{1}{2}, \, n = \frac{1}{2}.$$

B
$$m = -\frac{1}{2}, n = \frac{1}{2}$$

$$\mathbf{C}m = \frac{2}{2}, n = -\frac{1}{2}.$$

CÂU 22.

Cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của BC và CD. Đặt $\overrightarrow{a} = \overrightarrow{AM}, \ \overrightarrow{b} = \overrightarrow{AN}$. Hãy

biểu diễn
$$\overrightarrow{AO}$$
 theo \overrightarrow{a} và \overrightarrow{b} .

$$(\mathbf{A})\overrightarrow{AO} = \frac{1}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}.$$

$$(\mathbf{C})\overrightarrow{AO} = \frac{1}{3}\overrightarrow{a} + 2\overrightarrow{b}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{AO} = \frac{1}{6}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}.$$

$$(\mathbf{C})\overrightarrow{AO} = \frac{1}{3}\overrightarrow{a} + 2\overrightarrow{b}$$

$$(\mathbf{D})\overrightarrow{AO} = \overrightarrow{a} + 3\overrightarrow{b}$$

CÂU 23. Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NC = 2NA. Goi K là là điểm trên canh MN sao cho KN = 3KM. Kết quả nào dưới đây đúng?

$$\overrightarrow{A}\overrightarrow{AK} = -\frac{3}{8}\overrightarrow{AB} + \frac{1}{12}\overrightarrow{AC}.$$

$$\overrightarrow{\mathbf{D}}\overrightarrow{AK} = \frac{3}{8}\overrightarrow{AB} - \frac{1}{12}\overrightarrow{AC}.$$

CÂU 24. Cho tứ giác ABCD. Trên cạnh AB, CD lần lượt lấy các điểm M, N sao cho $3\overrightarrow{AM} = 2\overrightarrow{AB}$ và $3\overrightarrow{DN} = 2\overrightarrow{DC}$. Tính vecto \overrightarrow{MN} theo hai vecto \overrightarrow{AD} , \overrightarrow{BC} .

$$\overrightarrow{\mathbf{A}} \overrightarrow{MN} = \frac{1}{3} \overrightarrow{AD} + \frac{1}{3} \overrightarrow{BC}.$$

$$\mathbf{B}\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AD} - \frac{2}{2}\overrightarrow{BC}$$

CÂU 25. Cho tam giác đều ABC và điểm I thỏa mãn $\overrightarrow{IA} = 2\overrightarrow{IB}$. Mệnh đề nào sau đây đúng?

$$(\mathbf{A})\overrightarrow{CI} = \frac{\overrightarrow{CA} - 2\overrightarrow{CB}}{3}.$$

$$(\mathbf{C})\overrightarrow{CI} = -\overrightarrow{CA} + 2\overrightarrow{CB}.$$

CÂU 26. Cho tạm giác \overrightarrow{ABC} có G là trọng tâm tạm giác. Lấy các điểm P, Q sao cho $\overrightarrow{PA} = 2\overrightarrow{PB}$, $3\overrightarrow{QA} + 2\overrightarrow{QC} = \overrightarrow{0}$. Biểu diễn vectơ \overrightarrow{AG} theo các vectơ \overrightarrow{AP} , \overrightarrow{AQ} .

$$\overrightarrow{\mathbf{A}}\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AP} + \frac{5}{6}\overrightarrow{AQ}.$$

$$(\mathbf{B})\overrightarrow{AG} = \frac{5}{c}\overrightarrow{AP} + \frac{1}{c}\overrightarrow{AQ}$$

$$\begin{array}{c} \textbf{(B)} \overrightarrow{AG} = \frac{5}{6}\overrightarrow{AP} + \frac{1}{6}\overrightarrow{AQ}. \\ \textbf{(D)} \overrightarrow{AG} = \frac{1}{2}\overrightarrow{AP} + \frac{1}{3}\overrightarrow{AQ}. \end{array}$$

CAU 27. Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J thuộc BC kéo dài sao cho 5JB=2JC. Gọi G là trọng tâm tam giác ABC. Biểu diễn vecto AGtheo các vecto $A\hat{I}$, $A\hat{J}$.

$$\overrightarrow{A}\overrightarrow{AG} = \frac{35}{48}\overrightarrow{AI} - \frac{1}{16}\overrightarrow{AJ}$$

$$(\mathbf{B})\overrightarrow{AG} = \frac{35}{48}\overrightarrow{AI} + \frac{1}{16}\overrightarrow{AJ}$$

(a)
$$\overrightarrow{AG} = \frac{35}{48}\overrightarrow{AI} - \frac{1}{16}\overrightarrow{AJ}$$
.
(b) $\overrightarrow{AG} = \frac{25}{16}\overrightarrow{AI} - \frac{3}{16}\overrightarrow{AJ}$.

$$(\mathbf{B}) \overrightarrow{AG} = \frac{35}{48} \overrightarrow{AI} + \frac{1}{16} \overrightarrow{AJ}.$$

$$(\mathbf{D}) \overrightarrow{AG} = \frac{25}{16} \overrightarrow{AI} + \frac{3}{16} \overrightarrow{AJ}.$$

CÂU 28. Cho tam giác ABC. Gọi G là trọng tâm tam giác và H là điểm đối xứng của Bqua G. Gọi M là trung điểm BC. Biểu diễn vecto \overrightarrow{MH} theo các vecto \overrightarrow{AB} , \overrightarrow{AC} .

$$(\overrightarrow{A}) \overrightarrow{MH} = \frac{5}{6} \overrightarrow{AB} + \frac{1}{6} \overrightarrow{AC}.$$

$$(\mathbf{B})\overrightarrow{MH} = -\frac{1}{6}\overrightarrow{AB} + \frac{5}{6}\overrightarrow{AC}.$$

$$\mathbf{C}\overrightarrow{MH} = -\frac{5}{6}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{AC}.$$

$$\mathbf{D}\overrightarrow{MH} = \frac{1}{6}\overrightarrow{AB} + \frac{5}{6}\overrightarrow{AC}.$$

CÂU 29. Cho góc $\widehat{xOy} = 60^{\circ}$. Các điểm A, B nằm trên tia Ox, các điểm C, D nằm trên tia Oy sao cho AB = CD = 2. Gọi I, J lần lượt là trung điểm các đoạn AC, BD. Biết Anằm giữa O và B, C nằm giữa O và D, tính IJ.

$$\bigcirc IJ = \sqrt{3}.$$

$$\mathbf{D}IJ = 2\sqrt{3}.$$

CÂU 30. Cho tam giác ABC, N là điểm xác định bởi $\overrightarrow{CN} = \frac{1}{2}\overrightarrow{BC}$. Gọi G là trọng tâm tam giác ABC. Hệ thức tính \overrightarrow{AC} theo \overrightarrow{AG} và \overrightarrow{AN} là

$$\overrightarrow{\mathbf{A}}\overrightarrow{AC} = \frac{2}{3}\overrightarrow{AG} + \frac{1}{2}\overrightarrow{AN}.$$

$$(\mathbf{B})\overrightarrow{AC} = \frac{4}{2}\overrightarrow{AG} - \frac{1}{2}\overrightarrow{AN}$$

QUICK NOTE

QUICK NOTE	Dạng 5. Chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hai điểm trùng nhau
	$oldsymbol{\Theta}$ Để chứng minh 3 điểm A, B, C thẳng hàng, ta chứng minh: $\overrightarrow{AB} = k\overrightarrow{AC}$ (1). Để nhận được (1), ta lựa chọn một trong hai hướng sau:
	— Sử dụng các quy tắc biến đổi vectơ.
	— Xác định (tính) vectơ \overrightarrow{AB} và \overrightarrow{AC} thông qua một tổ hợp trung gian.
	Chú ý:
	— Cho ba điểm A, B, C . Điều kiện cần và đủ để A, B, C thẳng hàng là: $\overrightarrow{MC} = \alpha \overrightarrow{MA} + (1-\alpha)\overrightarrow{MB}$ với điểm M tùy ý và số thực α bất k". Đặc biệt khi $0 \le \alpha \le 1$ thì $C \in AB$. Kết quả trên còn được sử dụng để tìm điều kiện của tham số k (hoặc m) cho ba điểm A, B, C thẳng hàng.
	— Nếu không dễ nhận thấy k trong biểu thức $\overrightarrow{AB} = k\overrightarrow{AC}$, ta nên quy đồng biểu thức phân tích vectơ \overrightarrow{AB} và \overrightarrow{AC} để tìm ra số k .
	$m{\Theta}$ Để chứng minh $AB \parallel CD$ ta cần chứng minh $\overrightarrow{AB} = k\overrightarrow{DC}$.
	1. Ví dụ minh họa
	VÍ DỤ 1. Cho hình bình hành $ABCD$, tâm O . Gọi M , N theo thứ tự là trung điểm của
	AB, CD và P là điểm thỏa mãn hệ thức $\overrightarrow{OP} = -\frac{1}{3}\overrightarrow{OA}$. Chứng minh 3 điểm B, P, N thẳng
	hàng.
	VÍ Dụ 2. Cho bốn điểm phân biệt A, B, C, D thỏa: $2\overrightarrow{AB} + 3\overrightarrow{AC} = 5\overrightarrow{AD}$. Chứng minh B C, D thẳng hàng.
	VÍ DỤ 3. Cho $\triangle ABC$, lấy điểm M, N, P sao cho $\overrightarrow{MB} = 3\overrightarrow{MC}, \overrightarrow{NA} + 3\overrightarrow{NC} = \overrightarrow{0}, \overrightarrow{PA} + \overrightarrow{MB}$
	$\overrightarrow{PB} = \overrightarrow{0}$.
	a) Tính \overrightarrow{PM} , \overrightarrow{PN} theo \overrightarrow{AB} , \overrightarrow{AC} .
	b) Chứng minh ba điểm: M, N, P thẳng hàng.
	VÍ DỤ 4. Cho $\triangle ABC$ có I là trung điểm của trung tuyến AM và D là điểm thỏa hệ thức $\overrightarrow{3AD} = \overrightarrow{AC}$. Biểu diễn vectơ \overrightarrow{BD} , \overrightarrow{BI} theo \overrightarrow{AB} , \overrightarrow{AC} và chứmg minh ba điểm B , I , D thẳng hàng.
	2. Bài tập áp dụng
	BÀI 1. Cho $\triangle ABC$.
	a) Dựng các điểm K , L sao cho $\overrightarrow{KA} + 2\overrightarrow{KB} + 3\overrightarrow{KC} = \overrightarrow{0}$, $2\overrightarrow{LB} + 3\overrightarrow{LC} = \overrightarrow{0}$
	b) Chứng minh ba điểm A, K, L thẳng hàng.
	BAI 2. Cho hình bình hành $ABCD$. Gọi I là trung điểm của AB và E là điềm thoả hệ thức $3\overrightarrow{IE} = \overrightarrow{ID}$. Chứmg minh ba điểm A, C, E thẳng hàng.
	BÀI 3. Cho $\triangle ABC$.
	a) Dựng các điểm K , L sao cho $\overrightarrow{KA} + 2\overrightarrow{KB} + 3\overrightarrow{KC} = \overrightarrow{0}$ và $2\overrightarrow{LB} + 3\overrightarrow{LC} = \overrightarrow{0}$
	b) Chứng minh ba điểm A, K, L thẳng hàng.
	BÀI 4. Cho $\triangle ABC$. Gọi M là trung điểm của cạnh AB , N và P là hai điểm thỏa mãn hệ thức $\overrightarrow{NA} + 2\overrightarrow{NC} = \overrightarrow{0}$, $\overrightarrow{PB} - 2\overrightarrow{PC} = \overrightarrow{0}$. Chứng minh ba điểm M , N , P thẳng hàng.
	BÀI 5. Cho $\triangle ABC$. Hai điểm M, N được xác định bởi $3\overrightarrow{MA} + 4\overrightarrow{MB} = \overrightarrow{0}, \overrightarrow{NB} - 3\overrightarrow{NC} = \overrightarrow{0}$ Chứng minh MN đi qua trọng tâm $\triangle ABC$.
	BÀI 6. Cho $\triangle ABC$.
	a) Dựng các điểm D, E thỏa các hệ thức $\overrightarrow{AD} = \frac{3}{2}\overrightarrow{AB}, \overrightarrow{DE} = \frac{3}{2}\overrightarrow{BC}$.
	b) Chứng minh ba điểm A, C, E thẳng hàng.

BÀI 7. Cho hình bình hành ABCD. Goi I là trung điểm của canh BC và E là điểm xác định bởi $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AC}$. Chứng minh ba điểm D, E, I thẳng hàng.

BÀI 8. Cho $\triangle ABC$ có trung tuyến AD và M là trung điểm AD. Điểm N được lấy trên AC sao cho 3AN = AC. Chứng minh ba điểm B, M, N thẳng hàng.

BÀI 9. Cho $\triangle ABC$ có M là trung điểm BC và O là trung điểm của AM. Trên AB lấy điểm I, AC lấy điểm J sao cho $\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB}$ và $\overrightarrow{AJ} = \frac{2}{5}\overrightarrow{AC}$. Chứng minh ba điểm I, J, Othẳng hàng.

BÀI 10. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi O là giao điểm của MP và NQ, G là trọng tâm của tam giác BCD. Chứng minh rằng ba điểm A, O, G thẳng hàng.

BÀI 11. Cho tứ giác ABCD. Gọi M, N là hai điểm di động trên AB, CD sao cho $\frac{MA}{MB} =$ $\frac{ND}{NC}$ và hai điểm $I,\,J$ lần lượt là trung điểm của $AD,\,BC.$

- a) Tính \overrightarrow{IJ} theo \overrightarrow{AB} và \overrightarrow{DC} .
- b) Chứng minh trung điểm P của MN nằm trên IJ.

BÀI 12. Cho $\triangle ABC$. Gọi P, Q, R là các điểm thỏa các đẳng thức :

$$3\overrightarrow{PB} + 4\overrightarrow{PC} = \overrightarrow{0}, \quad \overrightarrow{AQ} = 2\overrightarrow{QC}, \quad k\overrightarrow{RA} = \overrightarrow{RB}, \ k \neq 1.$$

- a) Chúng minh rằng: $21\overrightarrow{PQ} = 2\overrightarrow{BC} + 7\overrightarrow{BA}$.
- b) Chứng minh rằng: $\overrightarrow{RP} = \frac{k}{1-k}\overrightarrow{BA} + \frac{4}{7}\overrightarrow{BC}$.
- c) Tìm k sao cho P, Q, R thẳng hàng.

BÀI 13. Cho hình bình hành ABCD.

a) Gọi I, F, K là các điểm thỏa mãn $\overrightarrow{AI} = \alpha \overrightarrow{AB}, \overrightarrow{AF} = \beta \overrightarrow{AC}, \overrightarrow{AK} = \gamma \overrightarrow{AD}$. Chứng minh điều kiện cần và đủ đề I, F, K thẳng hàng là

$$\frac{1}{\beta} = \frac{1}{\alpha} + \frac{1}{\gamma} \quad (\alpha, \ \beta, \ \gamma \neq 0).$$

b) Gọi M, N là hai điểm lần lượt trên đoạn AB, CD sao cho $\frac{AM}{AB} = \frac{1}{3}, \frac{CN}{CD} = \frac{1}{2}$. Gọi G là trọng tâm $\triangle M NB$. Tính $\overrightarrow{AN}, \overrightarrow{AG}$ theo \overrightarrow{AB} và \overrightarrow{AC} . Gọi H là điểm xác định bởi $\overrightarrow{BH} = k \cdot \overrightarrow{BC}$. Tính \overrightarrow{AH} theo \overrightarrow{AB} , \overrightarrow{AC} và k. Tìm k để đường thẳng \overrightarrow{AH} đi qua điểm G.

3. Bài tấp trắc nghiệm

CÂU 1. Cho ba điểm A, B, C phân biệt. Điều kiện cần và đủ để ba điểm thẳng hàng là

 $(\mathbf{A})AB = AC.$

 $(\mathbf{B})\exists k \in \mathbb{R}^* : \overrightarrow{AB} = k \cdot \overrightarrow{AC}.$

 $(\mathbf{C})\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}.$

 $(\mathbf{D})\overrightarrow{MA} + \overrightarrow{MB} = 3\overrightarrow{MC}, \forall \text{ diểm } M.$

CÂU 2. Khẳng định nào sau đây sai?

- (\mathbf{A}) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB} = k\overrightarrow{BC}, k \neq 0$.
- $(\vec{\textbf{B}})$ Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AC} = k\overrightarrow{BC}, \ k \neq 0$.
- (\mathbf{C}) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB} = k\overrightarrow{AC}, k \neq 0$.
- (\mathbf{D}) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi $\overrightarrow{AB} = k\overrightarrow{AC}$.

CÂU 3. Phát biểu nào là sai?

- $igathbox{A}$ Nếu $\overrightarrow{AB} = \overrightarrow{AC}$ thì $|\overrightarrow{AB}| = |\overrightarrow{AC}|$.
- $(\mathbf{B})\overrightarrow{AB} = \overrightarrow{CD}$ thì A, B, C, D thẳng hàng.
- (\mathbf{C}) Nếu $3\overrightarrow{AB} + 7\overrightarrow{AC} = \overrightarrow{0}$ thì A, B, C thẳng hàng.
- $(\mathbf{D})\overrightarrow{AB} \overrightarrow{CD} = \overrightarrow{DC} \overrightarrow{BA}.$

				_
\boldsymbol{a}	W	CK	Ν	П.
•	w	$\mathbf{L} \cdot \mathbf{N}$	II N	

QUICK NOTE	CAO 4. Cho hai ve	cto a va v knong cung	phuong. Har vecto hac	sau day ia cung pindong:
	$ \mathbf{A} \vec{u} = 2\vec{a} + 3\vec{b} $	và $\vec{v} = \frac{1}{2}\vec{a} - 3\vec{b}$. và $\vec{v} = 2\vec{a} - 9\vec{b}$.	$\mathbf{B})\vec{u} = \frac{3}{5}\vec{a} + 3\vec{b}$	$va \vec{v} = 2\vec{a} - \frac{3}{5}\vec{b}.$
	$\mathbf{C}\vec{u} = \frac{2}{3}\vec{a} + 3\vec{b}$	$\overrightarrow{v} \approx \overrightarrow{v} = 2\overrightarrow{a} - 9\overrightarrow{b}.$	$\mathbf{D}\vec{u} = 2\vec{a} - \frac{3}{2}\vec{b}$	$\overrightarrow{v} = -\frac{1}{2}\overrightarrow{a} + \frac{1}{4}\overrightarrow{b}.$
			-	g hai vecto $2\vec{a} - 3\vec{b}$ và
	$\vec{a} + (x-1) \ \vec{b} \ \text{cùng}$	phương. Khi đó giá trị	của x là	
	$igar{igatharpoonup} rac{1}{2}$.	$lackbox{\textbf{B}} - rac{3}{2}.$	$\mathbf{C} - \frac{1}{2}$.	$\bigcirc \frac{3}{2}$.
	CÂU 6. Cho \vec{a}, \vec{b}	không cùng phương, \vec{x}	$=-2\vec{a}+\vec{b}$. vecto cù	ng hướng với \vec{x} là
	$\bigcirc 2\vec{a} - \vec{b}$.	$(\mathbf{B}) - \vec{a} + \frac{1}{2}\vec{b}$.	$\bigcirc 4\vec{a} + 2\vec{b}$.	$(\mathbf{D}) - \vec{a} + \vec{b}$.
	CÂU 7. Biết rằng	hai vector \vec{a} và \vec{b} khô	ng cùng phương nhưn	g hai vecto $3\vec{a} - 2\vec{b}$ và
	$(x+1)\vec{a} + 4\vec{b}$ cùng	g phương. Khi đó giá tr	i của x là	_
	$igatheref{A}$ -7 .	B)7.	© 5.	D 6.
		hai vecto \vec{a} và \vec{b} khô phương. Khi đó giá trị		g hai vecto $2\vec{a} - 3\vec{b}$ và
	$\begin{array}{c c} a + (x - 1) b \text{ cung} \\ \hline \bullet \frac{1}{2}. \end{array}$	phuong. Kin do gia tri $\mathbf{B} - \frac{3}{2}.$		\bigcirc $\frac{3}{2}$.
	4	2	2	2
	_	rung điểm đoạn thẳng Δ	1	
	A 1.	$\bigcirc \mathbf{B} \stackrel{1}{2}.$	$\mathbf{c} - \frac{1}{2}$.	(\mathbf{D}) -2.
				$\text{th rằng vecto } \overrightarrow{v} = \overrightarrow{MA} + $
	·	ác định vị trí của điểm ở tư của hình bình hành		
		í tư của hình bình hành		
	$igcolon{igcup}{igcolon} D$ là trọng târ	m của tam giác ABC .		
	$lackbox{\textbf{D}}D$ là trực tâm	của tam giác ABC .		
	CÂU 11. Cho tam	giác ABC . Hai điểm M	, N được xác định bởi cá	ác hệ thức $\overrightarrow{BC} + \overrightarrow{MA} = \overrightarrow{0}$,
	$AB - NA - 3AC = $ $AMN \perp AC.$	0. Trong các khẳng đị	nh sau, khẳng định nà	o đúng?
	$(\mathbf{B})MN//AC.$			
	\bigcirc M nằm trên đ	đường thẳng AC .		
	D Hai đường thẳ	$\stackrel{ m d}{ m ang}\ MN$ và AC trùng r	nhau.	
	CÂU 12. Cho tam	giác ABC có trọng târ	m G . Các điểm $M,\ N$ t	thỏa mãn $7\overrightarrow{MG} = 3\overrightarrow{GC}$ –
	$\overrightarrow{GB}; \overrightarrow{GN} = \frac{1}{2} \left(3\overrightarrow{GC} \right)$	(\overline{GB}) . Khẳng định n	ào dưới đây là đúng?	
	A Đường thẳng .	MN đi qua G .	$lackbox{f B}$ Đường thẳng $\it M$	AN đi qua A .
	© Đường thẳng .	MN đi qua B .	$lackbox{ extbf{D}}$ Đường thẳng $\it M$	MN đi qua C .
		-1		A, B, C sao cho $\overrightarrow{AB} =$
	$2\vec{a} - 3\vec{b}; \vec{AC} = m\vec{a}$	$\vec{t} - \frac{1}{2} \vec{b}$. Khi A, B, C th	ẳng hàng thì khẳng địn	nh nào sau đây đúng?
	$\mathbf{A}m \in (2;3).$	B $m \in (1; 2).$	$\bigcirc m \in (-1;0).$	$\bigcirc m \in (0;1).$
				$= \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}$. Khi
		N luôn đi qua một điển	n cố định I . Khẳng địn	h nào sau đây đúng?
		n của tam giác <i>ABC</i> . Tường tròn ngoại tiếp tạ	am giác <i>ABC</i>	
		của tam giác ABC .	6100 1120.	
		I là hình bình hành.		
	CÂU 15. Cho tam	giác ABC. Các điểm I	M,N thỏa mãn $\overrightarrow{MN}=$	$\overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC}$. Khi
	đó, đường thẳng M .	$\stackrel{\circ}{N}$ luôn đi qua một điển	n cố định I . Khẳng địn	h nào sau đây đúng?
	$ \overrightarrow{\mathbf{A}}\overrightarrow{IC} = \frac{1}{2}\overrightarrow{AB}. $	$(\mathbf{B})\overrightarrow{IC} = \frac{1}{2}\overrightarrow{BA}.$	$\bigcirc \overrightarrow{IB} = \frac{1}{2}\overrightarrow{AC}.$	$(\mathbf{D})\overrightarrow{IB} = \frac{1}{2}\overrightarrow{CA}.$

CÂU 16. Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Các điểm M, N thỏa mãn $\overrightarrow{MN} = \overrightarrow{MA} + 2\overrightarrow{MB} + 3\overrightarrow{MC}$. Khi đó, đường thẳng MN luôn đi qua một điểm cố định I. Khẳng định nào sau đây đúng?

- $(\mathbf{A})I$ là trong tâm của tam giác OBC.
- $(\mathbf{B})I$ là tâm của đường tròn ngoại tiếp tam giác ABC.
- $(\mathbf{C})I$ là trung điểm của canh DC.
- (\mathbf{D}) Tứ giác ABCI là hình bình hành.

CÂU 17. Cho tam giác ABC có trọng tâm G. Gọi P, Q là các điểm sao cho $\overrightarrow{PA} = 2\overrightarrow{PB}$, $\overrightarrow{AQ} + k\overrightarrow{AC} = \overrightarrow{0}$ với $k \in \mathbb{R}$. Tìm k để P, Q G thẳng hàng. $(\mathbf{A})k = \frac{2}{5}.$ $(\mathbf{B})k = \frac{2}{3}.$ $(\mathbf{C})k = -\frac{2}{5}.$

$$(\mathbf{c})k = -\frac{2}{5}.$$

CÂU 18. Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn $\overrightarrow{BM} = 3\overrightarrow{BC} - 2\overrightarrow{AB}, \overrightarrow{CN} =$ $k\overrightarrow{AC} + 2\overrightarrow{BC}$. Tìm k để A, M, N thẳng hàng.

$$\mathbf{A} k = -\frac{3}{2}.$$

B
$$k = -\frac{1}{2}$$
.

$$(\mathbf{C})k = \frac{1}{2}.$$

CÂU 19. Cho tam giác ABC có I là trung điểm của BC. Gọi M, N, P lần lượt là các điểm xác định bởi $\overrightarrow{AM} = m\overrightarrow{AB}$; $\overrightarrow{AN} = n\overrightarrow{AI}$; $\overrightarrow{AP} = p\overrightarrow{AC}$, với $mnp \neq 0$. Tìm điều kiện của $m, n, p \stackrel{\circ}{\text{de}} M, N, P \text{ thẳng hàng.}$

 $(\mathbf{A})mp = mn + np.$

$$\mathbf{B})2mn = mp + np.$$

(B)
$$2mn = mp + np$$
. **(C)** $2np = mn + mp$. **(D)** $2mp = mn + np$.

$$\mathbf{(D)}2mp = mn + np$$

CÂU 20. Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn $\overrightarrow{BD} = \frac{2}{2}\overrightarrow{BC}$; $\overrightarrow{AE} = \frac{1}{4}\overrightarrow{AC}$. Điểm K trên AD thỏa mãn $\overrightarrow{AK} = \frac{a}{b}\overrightarrow{AD}$ (với $\frac{a}{b}$ là phân số tối giản) sao cho 3 điểm B, K, E thẳng hàng. Tính $P = a^2 + b^2$.

 $(\mathbf{A})P = 5.$

$$(\mathbf{B})P = 13.$$

$$\bigcirc P = 29$$

$$\mathbf{D}P = 10.$$

Bài 6. TÍCH VÔ HƯỚNG CỦA HAI VÉC-TƠ

A. TÓM TẮT LÝ THUYẾT

1. Góc giữa hai véc-tơ

Cho $\vec{a}, \vec{b} \neq \vec{0}$. Từ một điểm O bất kì vẽ $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}$. Khi đó số đo của góc \widehat{AOB} được gọi là số đo góc giữa hai véc-tơ \vec{a} và \vec{b} hay đơn giản là góc giữa hai véc-tơ \vec{a} , \vec{b} . Kí hiệu $(\vec{a}, \vec{b}) = AOB$.

A

- $oldsymbol{\Theta}$ Quy ước rằng góc giữa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} có thể nhận một giá trị tùy ý từ O°
- \bigcirc $(\vec{a}, \vec{b}) = 180^{\circ} \Leftrightarrow \vec{a}, \vec{b}$ ngược hướng.
- $m{\Theta}$ Nếu $(\vec{a}, \vec{b}) = 90^{\circ}$ thì ta nói rằng \vec{a} và \vec{b} vuông góc với nhau, kí hiệu $\vec{a} \perp \vec{b}$

Dặc biệt $\overrightarrow{0}$ được coi là vuông góc với mọi véc-tơ.

2. Tích vô hướng của hai véc-tơ

 \raiset Định nghĩa 6.1. Tích vô hướng của hai véc-tơ \vec{a} và \vec{b} là một số, kí hiệu $\vec{a} \cdot \vec{b}$, được xác định bởi công thức sau

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\vec{a}, \vec{b}).$$

- $\mathbf{\Theta}$ Ta có $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$.
- $oldsymbol{\Theta}$ $\vec{a} \cdot \vec{a}$ còn được viết là \vec{a}^2 được gọi là bình phương vô hướng của véc-tơ \vec{a} . Ta $c\acute{o} \ \overrightarrow{a}^2 = |\overrightarrow{a}| \cdot |\overrightarrow{a}| \cdot \cos 0^\circ = |\overrightarrow{a}|^2.$

	• • • • •	 	
• • •		 	
• • •	• • • • •	 	
• • •	• • • • •	 	

•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•			•

•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠

ΩΙ			
ы	ΚГ	М	

B. CÁC DẠNG TOÁN

Dạng 1. Tính tích vô hướng của hai véc-tơ và xác định góc

Để tính tích vô hướng của hai véc-tơ ta có thể lưa chon một trong các hướng sau đây:

- $oldsymbol{eta}$ Đưa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} về chung gốc để xác định chính xác góc giữa hai véc-tơ rồi áp dụng định nghĩa $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cos (\overrightarrow{a}, \overrightarrow{b})$.
- ❷ Sử dụng các tính chất và các hằng đẳng thức của tích vô hướng của hai véc-tơ.
- $m{\Theta}$ Sử dụng dạng tọa độ nếu $\vec{a}=(a_1;a_2),\ \vec{b}=(b_1;b_2)$ thì

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2.$$

⊘ Sử dụng công thức hình chiếu Cho hai véc-tơ \overrightarrow{OA} , \overrightarrow{OB} . Gọi B' là hình chiếu của B trên đường thẳng OA. Khi đó $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \overrightarrow{OB'}$.

Chứng minh: Thật vậy, ta có $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \left(\overrightarrow{OB'} + \overrightarrow{B'B} \right) = \overrightarrow{OA} \cdot \overrightarrow{OB'}$.

Để xác định góc giữa hai véc-tơ ta có thể lựa chọn một trong các hướng sau đây:

- $oldsymbol{\Theta}$ Đưa hai véc-tơ \overrightarrow{a} và \overrightarrow{b} về chung gốc rồi xác định góc theo định nghĩa.
- **②** Sử dụng các tính chất và các hằng đẳng thức để tính tích vô hướng của hai véc-tơ rồi sau đó áp dụng công thức $\cos\left(\overrightarrow{a};\overrightarrow{b}\right) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$

Cần lưu ý một số kết quả đặc biệt sau:

$$\Theta$$
 $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a}).$

- $m{\Theta}$ Nếu $(\vec{a}, \vec{b}) = \alpha$ thì $(\vec{a}, -\vec{b}) = 180^{\circ} \alpha$.
- $\mbox{\boldmath Θ}$ Nếu \overrightarrow{a} và \overrightarrow{b} cùng hướng thì $\left(\overrightarrow{a},\overrightarrow{b}\right)=0^{\circ}.$
- $m{\Theta}$ Nếu \vec{a} và \vec{b} ngược hướng thì $(\vec{a}, \vec{b}) = 180^{\circ}$.

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho tam giác \overrightarrow{ABC} vuông tại \overrightarrow{A} và có $\widehat{B} = 50^{\circ}$. Hãy tính các góc $(\overrightarrow{BA}, \overrightarrow{BC})$; $(\overrightarrow{AB}, \overrightarrow{BC})$; $(\overrightarrow{AC}, \overrightarrow{CB})$; $(\overrightarrow{AC}, \overrightarrow{BC})$; $(\overrightarrow{AC}, \overrightarrow{CB})$; $(\overrightarrow{AC}, \overrightarrow{BA})$.

VÍ DỤ 2. Cho tam giác đều \overrightarrow{ABC} có cạnh a và trọng tâm G. Tính các tích vô hướng $\overrightarrow{AB} \cdot \overrightarrow{AC}$; $\overrightarrow{AC} \cdot \overrightarrow{CB}$; $\overrightarrow{AG} \cdot \overrightarrow{AB}$; $\overrightarrow{GB} \cdot \overrightarrow{GC}$; $\overrightarrow{BG} \cdot \overrightarrow{GA}$; $\overrightarrow{GA} \cdot \overrightarrow{BC}$.

VÍ Dụ 3. Cho tam giác ABC vuông tại A có AB = a, BC = 2a và G là trọng tâm. Tính giá trị của các biểu thức sau:

- a) $\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB}$
- b) $\overrightarrow{GA} \cdot \overrightarrow{GB} + \overrightarrow{GB} \cdot \overrightarrow{GC} + \overrightarrow{GC} \cdot \overrightarrow{GA}$.

VÍ DỤ 4. Cho hình vuông ABCD cạnh a. M là trung điểm của AB, G là trọng tâm tam giác ADM. Tính giá trị của các biểu thức sau:

- a) $(\overrightarrow{AB} + \overrightarrow{AD})(\overrightarrow{BD} + \overrightarrow{BC})$.
- b) $\overrightarrow{CG}\left(\overrightarrow{CA} + \overrightarrow{DM}\right)$.

VÍ DỤ 5. Cho hai véc-tơ \vec{a} và \vec{b} có $\left| \vec{a} \right| = 7$, $\left| \vec{b} \right| = 12$ và $\left| \vec{a} + \vec{b} \right| = 13$. Tính cosin của góc giữa hai véc-tơ \vec{a} và $\vec{a} + \vec{b}$.

2. Bài tập tự luận

BÀI 1. Cho tam giác ABC vuông cân có AB = AC = a và AH là đường cao. Tính các tích vô hướng sau

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$
;

b)
$$\overrightarrow{AH} \cdot \overrightarrow{BC}$$
;

c)
$$\overrightarrow{AC} \cdot \overrightarrow{CB}$$
 và $\overrightarrow{AB} \cdot \overrightarrow{BC}$.

BÀI 2. Cho tam giác ABC đều cạnh a và AM là trung tuyến của tam giác. Tính các tích vô hướng sau

a)
$$\overrightarrow{AC} \left(2\overrightarrow{AB} - 3\overrightarrow{AC} \right);$$

c)
$$\overrightarrow{AM} \cdot \overrightarrow{AB}$$
;

b)
$$\overrightarrow{AC} \left(\overrightarrow{AC} - \overrightarrow{AB} \right)$$
;

d)
$$(\overrightarrow{CA} + \overrightarrow{BC}) (\overrightarrow{CA} + \overrightarrow{CB})$$
.

BÀI 3. Cho hình chữ nhật ABCD có $AB = a\sqrt{2}, AD = 2a$. Gọi K là trung điểm của cạnh AD.

- a) Phân tích $\overrightarrow{BK}, \overrightarrow{AC}$ theo \overrightarrow{AB} và \overrightarrow{AD} .
- b) Tính tích vô hướng $\overrightarrow{BK} \cdot \overrightarrow{AC}$.

BÀI 4. Cho tam giác ABC có AB=5, AC=8, BC=7. Tính tích vô hướng $\overrightarrow{AC} \cdot \overrightarrow{AB}$.

BÀI 5. Cho hai véc-tơ \vec{a} và \vec{b} có độ dài bằng 1 và thỏa mãn điều kiện $|2\vec{a} - 3\vec{b}| = \sqrt{7}$. Tính $\cos(\vec{a}, \vec{b})$.

BÀI 6. Cho tam giác ABC vuông tại A có $BC = a\sqrt{3}$, M là trung điểm của BC. Biết rằng $\overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{a^2}{2}$. Hãy tính AB, AC.

BÀI 7. Cho hai véc-tơ \vec{a} và \vec{b} có độ dài bằng 1 và góc tạo bởi hai véc-tơ đó bằng 60°. Xác định cosin góc giữa hai véc-tơ \vec{u} và \vec{v} với $\vec{u} = \vec{a} + 2\vec{b}$, $\vec{v} = \vec{a} - \vec{b}$.

BÀI 8. Cho hai véc-tơ \vec{a} , \vec{b} thỏa mãn $|\vec{a}| = |\vec{b}| = 1$ và véc-tơ $\vec{x} = \vec{a} + 2\vec{b}$ vuông góc với véc-tơ $\vec{y} = 5\vec{a} - 4\vec{b}$. Tính góc giữa hai véc-tơ \vec{a} và \vec{b} .

BÀI 9. Cho các véc-tơ \vec{a} và \vec{b} thỏa mãn $|\vec{a}| = 2$, $|\vec{b}| = 1$ và $(\vec{a}, \vec{b}) = 60^{\circ}$. Tính góc giữa véc-tơ \vec{c} và véc-tơ $\vec{c} = \vec{a} - \vec{b}$.

BÀI 10. Cho hình chữ nhật ABCD có $\overrightarrow{AB} = 2$. M là điểm được xác định bởi $\overrightarrow{AM} = 3\overrightarrow{MB}$; G là trọng tâm tam giác ADM. Tính $\overrightarrow{MB} \cdot \overrightarrow{GC}$.

BÀI 11. Cho hình chữ nhật ABCD có cạnh $AB=a,\,AD=b.$ Tính theo a,b các tích vô hướng sau:

- a) $\overrightarrow{AB} \cdot \overrightarrow{AC}$; $\overrightarrow{BD} \cdot \overrightarrow{AC}$; $\left(\overrightarrow{AC} \overrightarrow{AB}\right) \left(\overrightarrow{AC} + \overrightarrow{AD}\right)$;
- b) $\overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD}$ với điểm M thuộc đường tròn ngoại tiếp hình chữ nhật ABCD.

Dạng 2. Chứng minh đẳng thức tích vô hướng hay độ dài

- Với các biểu thức về tích vô hướng ta sử dụng định nghĩa hoặc tính chất của tích vô hướng. Cần đặc biệt lưu ý phép phân tích véc-tơ để biến đổi (quy tắc ba điểm, quy tắc trung điểm, quy tắc hình bình hành,...).
- $m{\Theta}$ Với các công thức về độ dài ta thường sử dụng $AB^2 = \overrightarrow{AB}^2 = \overrightarrow{AB} \cdot \overrightarrow{AB}$. Cần nắm vững tính chất của các hình cơ bản.

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho đoạn thẳng AB và I là trung điểm của AB. Chứng minh rằng với mỗi điểm O ta có

a)
$$\overrightarrow{OI} \cdot \overrightarrow{IA} + \overrightarrow{OI} \cdot \overrightarrow{IB} = 0$$
.

b)
$$\overrightarrow{OI} \cdot \overrightarrow{AB} = \frac{1}{2} \left(\overrightarrow{OB}^2 - \overrightarrow{OA}^2 \right)$$

VÍ Dụ 2. Cho điểm M thay đổi trên đường tròn tâm O bán kính R ngoại tiếp tam giác đều ABC cho trước. Chứng minh $MA^2 + MB^2 + MC^2 = 6R^2$.

٠.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	
٠.																																	
٠.																																	
٠.																																	

.....

.....

.....

.....

.....

$oldsymbol{\Omega}$	Ш	\frown	Ν	\mathbf{C}	-	

VÍ DU 3. Cho hình chữ nhật ABCD có tâm O, M là điểm bất kì. Chứng minh

- a) $MA^2 + MC^2 = MB^2 + MD^2$ (1);
- b) $\overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD}$ (2).

2. Bài tấp tư luân

BÀI 1. Cho $\triangle ABC$, chứng minh $AB^2 + \overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{AB} \cdot \overrightarrow{CA} = 0$.

BÀI 2. Cho $\triangle ABC$ nhọn, đường cao AH, Chứng minh rằng

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AH} = \overrightarrow{AC} \cdot \overrightarrow{AH}$$
;

b)
$$\overrightarrow{AB} \cdot \overrightarrow{BC} = \overrightarrow{HB} \cdot \overrightarrow{BC}$$
.

BÀI 3. Chứng minh rằng với mọi tam giác ABC ta có $S_{ABC} = \frac{1}{2} \sqrt{\overrightarrow{AB}^2 \cdot \overrightarrow{AC}^2 - \left(\overrightarrow{AB} \cdot \overrightarrow{AC}\right)^2}$.

BÀI 4. Cho $\triangle ABC$ có trong tâm G. Chứng minh rằng với mỗi điểm M ta có

$$MA^2 + MB^2 + MC^2 = 3MG^2 + GA^2 + GB^2 + GC^2$$
.

BÀI 5. Cho hình chữ nhật ABCD có tâm O, M là điểm bất kì. Chứng minh

$$MA^2 + \overrightarrow{MB} \cdot \overrightarrow{MD} = 2\overrightarrow{MA} \cdot \overrightarrow{MO}.$$

BÀI 6. Cho hình chữ nhật ABCD nội tiếp trong đường tròn tâm O, bán kính R. Chứng minh rằng với mọi M thuộc đường tròn (O) ta có

$$\overrightarrow{MA} \cdot \overrightarrow{MC} + \left(\overrightarrow{MB} + \overrightarrow{MD}\right)\left(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}\right) = 8R^2.$$

BÁI 7. Chứng minh rằng với mọi điểm A, B, C, M ta luôn có

$$\overrightarrow{MA} \cdot \overrightarrow{BC} + \overrightarrow{MB} \cdot \overrightarrow{CA} + \overrightarrow{MC} \cdot \overrightarrow{AB} = 0$$
. (hệ thức Euler).

BÀI 8. Cho $\triangle ABC$ các đường trung tuyến AD, BE, CF. Chứng minh rằng

$$\overrightarrow{AD} \cdot \overrightarrow{BC} + \overrightarrow{BE} \cdot \overrightarrow{CA} + \overrightarrow{CF} \cdot \overrightarrow{AB} = 0.$$

BÀI 9. Cho $\triangle ABC$ đường cao AH, trung tuyến AI. Chứng minh rằng $|AB^2 - AC^2| =$ $2BC \cdot HI$.

Dạng 3. Điều kiện vuông góc

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0.$$

1. Ví dụ minh hoạ

VÍ DỤ 1. Cho hai véc-tơ \overrightarrow{a} và \overrightarrow{b} vuông góc với nhau và $|\overrightarrow{a}|=1,$ $|\overrightarrow{b}|=\sqrt{2}$. Chứng minh hai véc-tơ $(2\vec{a} - \vec{b})$ và $(\vec{a} + \vec{b})$ vuông góc với nhau.

BÀI 1. Cho $\triangle ABC$ vuông tại A có AB=c, AC=b. Tính $\overrightarrow{BA} \cdot \overrightarrow{BC}$ theo b và c.

BÀI 2. Cho hai véc-tơ \vec{a} và \vec{b} thỏa mãn $|\vec{a}| = |\vec{b}| = 1$ và hai véc-tơ $\vec{u} = \frac{2}{5}\vec{a} - 3\vec{b}$ và $\vec{v} = \vec{a} + \vec{b}$ vuông góc với nhau. Xác định góc giữa hai véc-to \vec{a} và \vec{b} .

🖶 Dạng 4. Tập hợp điểm và chứng minh bất đẳng thức

Ta sử dụng các kết quả cơ bản sau:

- a) Cho A, B là các điểm cố định, M là điểm di động
 - $oldsymbol{\Theta}$ Nếu $|\overrightarrow{AM}|=k$ với k là số thực dương cho trước thì tập hợp các điểm M là đường tròn tâm A, bán kính R = k.
 - \bullet Nếu $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ thì tập hợp các điểm M là đường tròn đường kính AB.

- $oldsymbol{\Theta}$ Nếu $\overrightarrow{MA} \cdot \overrightarrow{a} = 0$ với $\overrightarrow{a} \neq \overrightarrow{0}$ cho trước thì tập hợp các điểm M là đường thẳng đi qua A và vuông góc với giá của vecto \vec{a} .
- b) Các bất đẳng thức vecto
 - $\odot \vec{a}^2 > 0 \ \forall \vec{a}$. Dấu "=" xảy ra khi $\vec{a} = \vec{0}$.
 - $\odot \vec{a} \cdot \vec{b} \leq |\vec{a}| \cdot |\vec{b}|$. Dấu "=" xảy ra khi $\vec{a} = k \vec{b}$, k > 0.

VÍ DỤ 1. Cho hai điểm A, B cố định có độ dài bằng a, vecto \vec{a} khác $\vec{0}$. Tìm tập hợp điểm M sao cho

a)
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = \frac{3a^2}{4}$$

b)
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = MA^2$$

VÍ DỤ 2. Cho tam giác ABC. Tìm tập hợp điểm M sao cho

$$\left(\overrightarrow{MA} + 2\overrightarrow{MB} + 3\overrightarrow{CB}\right)\overrightarrow{BC} = 0.$$

VÍ DU 3. Cho tam giác ABC. Chứng minh rằng

a)
$$\cos A + \cos B + \cos C \le \frac{3}{2}$$
.

b)
$$\cos 2A + \cos 2B + \cos 2C \ge -\frac{3}{2}$$
.

1. Bài tập tự luận

BÀI 1. Cho đoạn thẳng AB và số thực k. Tìm tập hợp điểm M trong mỗi trường hợp sau

a)
$$2MA^2 = \overrightarrow{MA} \cdot \overrightarrow{MB}$$
.

b)
$$MA^2 + 2MB^2 = k$$
, $k > c$ $\overrightarrow{AM} \cdot \overrightarrow{a} = k$.

BẢI 2. Cho tứ giác ABCD, I, J lần lượt là trung điểm của AB và CD. Tìm tập hợp điểm M sao cho $\overrightarrow{MA} \cdot \overrightarrow{MB} + \overrightarrow{MC} \cdot \overrightarrow{MD} = \frac{1}{2}IJ^2$.

BÁI 3. Cho tam giác ABC, góc A nhọn, trung tuyến AI. Tìm tập hợp những điểm M di đồng trong góc \widehat{BAC} sao cho $AB \cdot AH + AC \cdot AK = AI^2$, trong đó H và K theo thứ tư là hình chiếu vuông góc của M lên AB và AC.

BÁI 4. Cho tam giác ABC và k là số thực cho trước. Tìm tập hợp những điểm M sao cho

$$MA^2 - MB^2 = k.$$

BÁI 5. Cho hình vuông ABCD cạnh a và số thực k cho trước. Tìm tập hợp điểm M sao

$$\overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD} = k.$$

BÀI 6. Cho tam giác ABC và các số thực x, y, z. Chứng minh rằng

$$xy\cos A + yz\cos B + zx\cos C \leq \frac{x^2 + y^2 + z^2}{2}.$$

2. Câu hỏi trắc nghiệm

CÂU 1. Cho \vec{a} , \vec{b} khác $\vec{0}$. Kí hiệu (\vec{a}, \vec{b}) là góc giữa hai véc-tơ \vec{a} và \vec{b} . Khẳng định nào sau đây là đúng?

$$(\mathbf{A})(\vec{a}, \vec{b}) = -(\vec{b}, \vec{a}).$$

B Nếu
$$(\vec{a}, \vec{b}) = 0^{\circ}$$
 thì \vec{a}, \vec{b} có giá trùng nhau.

$$(\vec{c})(\vec{a}, -\vec{b}) = -(\vec{a}, \vec{b}).$$

$$(\mathbf{D})(k\vec{a},\vec{b}) = (\vec{a},\vec{b})$$
 với mọi $k \in \mathbb{R}^+$.

CÂU 2. Cho tam giác ABC vuông tại A và có $\widehat{B} = 60^{\circ}$. Góc giữa \overrightarrow{CA} và \overrightarrow{CB} bằng (C)90°. $(A)60^{\circ}$. **(D)** 45° .

CÂU 3. Cho tam giác ABC vuông cân tại A, góc

$$(\overrightarrow{A})(\overrightarrow{AB},\overrightarrow{BC}) = 45^{\circ}.$$

$$(\mathbf{B})(\overrightarrow{AB},\overrightarrow{BC}) = 60^{\circ}$$

$$(\overrightarrow{\textbf{c}})(\overrightarrow{AB},\overrightarrow{BC}) = 120^{\circ}.$$

$$(\mathbf{D})(AB,BC) = 135^{\circ}$$

QUICK NOTE

c giữa AB và BC là	
$)(\overrightarrow{AB},\overrightarrow{BC})=60^{\circ}.$	
$(\overrightarrow{AB}, \overrightarrow{BC}) = 135^{\circ}.$	
	l .

♥ VNPmath - 0962940819 ♥				☑ VECTO - PH	ÉP TOÁN VECTO
QUICK NOTE		$ \cdot \overrightarrow{b} $.	ung hướng và đều khác $\overrightarrow{B} \overrightarrow{a} \cdot \overrightarrow{b}$		sau đây đúng?
	$\mathbf{C} \vec{a} \cdot \vec{b} = -1$		_		
		n giác đều ABC cạ	nh bằng a và H là tr	rung điểm BC . Ti	$ \overrightarrow{AH} \cdot \overrightarrow{CA} $.
	$\mathbf{A} \frac{3a^2}{4}$.	$\mathbf{B} \frac{-3a^2}{4}$.	$\bigcirc \frac{3a^2}{2}$.	D	$\frac{-3a^2}{2}$.
	4	4	2		2
	0		$A, \hat{A} = 120^{\circ} \text{ và } AB$		
	$\mathbf{A} \frac{a^2}{2}.$	$(\mathbf{B})-\frac{a}{2}$.	$\bigcirc \frac{a^2\sqrt{3}}{2}$. (D)	$-\frac{a^2\sqrt{3}}{2}$.
	CÂU 7. Cho tar	n giác ABC vuông	tại A có $\widehat{B}=60^\circ,~A$	$AB = a$. Tính \overrightarrow{AC}	$\cdot \overrightarrow{CB}$.
	\bigcirc	(B) $-3a^2$.	© 3a.	(D)	
	CÂU 8. Cho hìr	uh vuông <i>ABCD c</i> a	anh a . Tính tích vô hu	tớng của hai véc-t	\overrightarrow{AR} và \overrightarrow{AC}
			$\overrightarrow{C} = 2a.$ (C) $\overrightarrow{AB} \cdot \overrightarrow{B}$		
		_	_	0	
	$\vec{a} \cdot \vec{b} = - \vec{a} \cdot \vec{b} $	\overrightarrow{b} vec-to a va b	khác $\overrightarrow{0}$. Xác định go	oc α giữa hai ve	c-to a va b khi
			$\mathbf{C}\alpha = 9$	0° (D)	$\alpha = 45^{\circ}$
		<u> </u>	_		
	mệnh đề đúng?	am giác ABC vuố	ng tại A và có góc \hat{I}	3 = 50°. Mệnh c	lẽ nào sau dây là
		ai véc-to \overrightarrow{AC} , \overrightarrow{CB}	bằng 140°.		
		ai véc-to \overrightarrow{AB} , \overrightarrow{BC}	~		
	1 ~	ai véc-to \overrightarrow{BC} , \overrightarrow{AC}			
		ai véc-to \overrightarrow{AB} , \overrightarrow{CB}	-		
			A và có $BC = 2AC$.	Tính $\cos\left(\overrightarrow{AC}, \overrightarrow{C}\right)$	\vec{R}
				` _	<i>D</i>).
		<u> </u>		$\overrightarrow{AC}, \overrightarrow{CB} = -\frac{1}{2}.$	
	$\mathbf{C}\cos\left(\overrightarrow{AC}, \overrightarrow{C}\right)$	$(\overrightarrow{B}) = \frac{\sqrt{3}}{2}.$	\bigcirc $\cos(A$	$\overrightarrow{AC}, \overrightarrow{CB} = -\frac{\sqrt{3}}{2}.$	
	CÂU 12.				
		BC như hình vẽ. I	Mệnh đề nào sau	C	
	đây là đúng?	. (=	→ →\		
	(A)(BC,AB)	$= 40^{\circ}. \qquad \mathbf{B} \left(\overline{BC} \right) $ $= 80^{\circ}. \qquad \mathbf{D} \left(\overline{AC} \right) $	$(C, BA) = 140^{\circ}.$	80°	
	$(\mathbf{C})(AC,CB)$	$=80^{\circ}.$ (D) (AC)	$(\hat{C}, B\hat{A}) = 120^{\circ}.$		
				600	
				$A \sim 60^{\circ}$	B
	CÂU 13. Cho h	ình vuông ABCD.	tính $\cos\left(\overrightarrow{AB},\overrightarrow{CA}\right)$.		
	1		\ <u>/</u>		$\sqrt{2}$
	$\mathbf{A} \frac{1}{2}$.	$(\mathbf{B}) - \frac{1}{2}$.	\mathbf{C} $\frac{\sqrt{2}}{2}$.	(D)	$-\frac{\sqrt{2}}{2}$.
	CÂU 14. Cho ta	am giác đều ABC . T	$\Gamma \inf P = \cos\left(\overrightarrow{AB}, \overrightarrow{BC}\right)$	\overrightarrow{C})+cos $(\overrightarrow{BC}, \overrightarrow{CA})$	$)+\cos\left(\overrightarrow{CA},\overrightarrow{AB}\right).$
			•	, ,	,
		$\mathbf{B}P = \frac{3}{2}.$	$\bigcirc P = -$	$-\frac{3}{2}$.	$P = -\frac{3\sqrt{3}}{2}.$
	CÂU 15 Cha h	inh mina APCD	canh a Tính $(\overrightarrow{AB} +$	\overrightarrow{AD}) $(\overrightarrow{DC} + \overrightarrow{DD})$	<u> </u>
	_		cạnh a . Tính $(\overrightarrow{AB} +$	/ \	,
	$-2a^2$.	\bigcirc a^2 .	$\bigcirc 2a^2$.	D	$-\frac{a^2}{\sqrt{2}}$.
	CÂU 16 Cha /	ARC đầu canh hà	ng 3. Trên các cạnh A	AR AC lần lượt l	v – áv các điểm M N
			ng 5. Trên các cạnh 1 Giá trị của tích vô hu		ay cac diem M, N
	$\mathbf{A} \frac{7}{2}$.	$\mathbf{B} - \frac{7}{2}$.	$\mathbf{c}^{\frac{11}{2}}$.		$-\frac{11}{2}$.
		2	2		<u> </u>
	CAU 17. Cho ta	am giác ABC vuôn	g tại A có $AB = a, B$	BC = 2a. Tính Bc	$C \cdot CA + BA \cdot AC$

theo a. \overrightarrow{A} $\overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = -a\sqrt{3}$.

 $\overrightarrow{\mathbf{C}}\overrightarrow{BC}\cdot\overrightarrow{CA}+\overrightarrow{BA}\cdot\overrightarrow{AC}=a\sqrt{3}.$

 $\label{eq:BR} \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{BA} \cdot \overrightarrow{AC} = -3a^2.$

✓ VECTO - PHÉP TOÁ	ÁN VECTO			♥ VNPmath - 0962940819 ♥
sau đây là sai ?	ác ABC vuông tại A , c		và $AB = a$. Kết quả nào	QUICK NOTE
$\overrightarrow{A}\overrightarrow{B}\cdot\overrightarrow{AC}=0.$ $\overrightarrow{C}\overrightarrow{AB}\cdot\overrightarrow{BC}=-a^2.$		$ \overrightarrow{B} \overrightarrow{CA} \cdot \overrightarrow{CB} = 3a^2. $ $ \overrightarrow{D} \overrightarrow{AC} \cdot \overrightarrow{CB} = -3\sqrt{2}. $	$\sqrt{2}a^2$.	
CÂU 19. Cho M là tr $\overrightarrow{A} \overrightarrow{MA} \cdot \overrightarrow{AB} = -M$ $\overrightarrow{C} \overrightarrow{AM} \cdot \overrightarrow{AB} = AM$	$A \cdot AB$.	nh đề sai .		
CÂU 20. Cho 2 véc-to	\overrightarrow{a} và \overrightarrow{b} thỏa $\left \overrightarrow{a} + \overrightarrow{b} \right =$	2 và có độ lớn bằng 1	. Hãy tính $\left(3\vec{a}-4\vec{b}\right)\left(2\vec{a}\right)$	$+5\overrightarrow{b}$:
A 7.	B 5.	C)-7.	D -5.	
CÂU 21. Cho hình the $\mathbf{(A)} - 9a^2$.	ang vuông $ABCD$ có o \mathbf{B}) $15a^2$.	đường cao $AD = 3a$.	Tính $\overrightarrow{DA} \cdot \overrightarrow{BC}$. $(\mathbf{D})9a^2$.	
CÂU 22. Chọ tam giá	<u> </u>		pi M là trung điểm cạnh	
BC . Tính $\overrightarrow{AM} \cdot \overrightarrow{BC}$. $(A) \overrightarrow{AM} \cdot \overrightarrow{BC} = \frac{b^2 - b^2}{2}$	$\frac{c^2}{c}$.	$\overrightarrow{\mathbf{B}}\overrightarrow{AM}\cdot\overrightarrow{BC}=\frac{c^2}{2c^2}$	$\frac{+b^2}{2}$.	
$\overrightarrow{\mathbf{C}}\overrightarrow{AM}\cdot\overrightarrow{BC} = \frac{c^2 + c^2}{2}$	$\frac{b^2 + a^2}{3}.$		$\frac{a^2+b^2-a^2}{2}$.	
CÂU 23. Cho hình vu		(,	
\mathbf{A} $P = 2\sqrt{2}a$. CÂU 24. Cho hình v	$egin{aligned} egin{aligned} egin{aligned} egin{aligned} B P = 2a^2. \end{aligned}$ uông $ABCD$ canh a .	0	$(\mathbf{D})P = -2a^2.$ ứng của D qua C . Tính	
$\overrightarrow{AE} \cdot \overrightarrow{AB}$. $\overrightarrow{AE} \cdot \overrightarrow{AB} = 2a^2$.		$\overrightarrow{\mathbf{B}}\overrightarrow{AE}\cdot\overrightarrow{AB}=\sqrt{3}a$		
$\overrightarrow{\mathbf{C}}\overrightarrow{AE}\cdot\overrightarrow{AB}=\sqrt{5}a^2$		$\overrightarrow{\mathbf{D}}\overrightarrow{AE}\cdot\overrightarrow{AB}=5a^2.$		
CÂU 25. Biết \vec{a} , \vec{b} \neq \vec{a} và \vec{b} cùng hươ	ớng.	•		
$(\mathbf{B}) \overrightarrow{a}$ và \overrightarrow{b} nằm trên $(\mathbf{C}) \overrightarrow{a}$ và \overrightarrow{b} ngược hư	n hai dường thẳng hợp đơng.	với nhau một góc 80°	o .	
~ ~	n hai dường thẳng hợp	với nhau một góc 60°	·.	
CÂU 26. Cho tam giá BC . Tính cô-sin góc gi	ác ABC vuông tại A , A iữa hai véc-tơ \overrightarrow{MA} và \overrightarrow{I}	$\overrightarrow{AB} = a, AC = a\sqrt{3}.$ (3)	Gọi M là trung điểm của	
$(\mathbf{A})\cos\left(\overrightarrow{MA},\overrightarrow{BC}\right) =$	4 _	$lackbox{f B}\cos\left(\overrightarrow{MA},\overrightarrow{BC} ight)$	- _	
$\bigcirc \cos \left(\overrightarrow{MA}, \overrightarrow{BC} \right) =$	$=\frac{\sqrt{3}}{2}$.	\bigcirc $\cos\left(\overrightarrow{MA},\overrightarrow{BC}\right)$	$=-rac{\sqrt{3}}{2}.$	
CÂU 27. Cho tam giá	ác ABC . Tính tổng $(\overline{A}$ $\textcircled{\textbf{B}})360^{\circ}$.	$(\overrightarrow{B},\overrightarrow{BC}) + (\overrightarrow{BC},\overrightarrow{CA})$ $(\mathbf{C})270^{\circ}.$	` ′	
(A) 180°. CÂU 28. Tam giác A			$(\mathbf{D})120^{\circ}.$ Tính tổng $(\overrightarrow{HA}, \overrightarrow{HB}) +$	
$\left(\overrightarrow{HB},\overrightarrow{HC}\right) + \left(\overrightarrow{HC},\overrightarrow{HC}\right)$	′ 〜			
(A) 360°.	B)180°.	© 80°.	(D)160°.	
-			$(\overrightarrow{AD}, \overrightarrow{CB}) + (\overrightarrow{CO}, \overrightarrow{DC}).$	
A 45°.	B 405°.	© 315°.	D 225°.	
CÂU 30. Cho tam giá của góc \widehat{ABC} . Tính co	($\hat{A} = 20^{\circ}$. Gọi BM 1	à đường phân giác trong	
$\mathbf{A} \frac{1}{2}$.	$\mathbf{B} \frac{-\sqrt{2}}{2}.$	\mathbf{C} $\frac{\sqrt{2}}{2}$.	$\bigcirc \frac{-1}{2}$.	
2	2	4	$2 \cdot AB = AD = a, CD = 2a.$	
Tính $\cos\left(\overrightarrow{BD},\overrightarrow{CB}\right)$.			= 222 a, cD = 2a.	
$\mathbf{A} \frac{\sqrt{2}}{2}$.	$\mathbf{B} \frac{-1}{2}.$	© 0.	$lue{\mathbf{D}} \frac{-\sqrt{2}}{2}.$	
37 GV.VŨ NGỌC	PHÁT ————			

			_	_
ວບ		(N		
51U	ICI	(I)	ЮІ	

CÂU 32. Cho hình thoi ABCD cạnh a, góc $\widehat{ABC} = 120^{\circ}$. Gọi G là trọng tâm của tam giác BCD và α là góc giữa hai đường thẳng DA và BG. Tính $\sin \alpha$.

$$\mathbf{\hat{A}}\sin\alpha = \frac{1}{2}.$$

$$\mathbf{B}\sin\alpha = \frac{\sqrt{3}}{2}.$$

$$\mathbf{C}\sin\alpha = \frac{\sqrt{2}}{2}.$$

$$(\mathbf{D})\sin\alpha = 1.$$

CÂU 33. Cho tam giác ABC có các cạnh bằng a, b, c. Tính tích vô hướng $\overrightarrow{AB} \cdot \overrightarrow{AC}$ theo a, b, c.

$$\overrightarrow{\mathbf{A}}\overrightarrow{AB}\cdot\overrightarrow{AC}=\frac{1}{2}(a^2+b^2-c^2).$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{AB}\cdot\overrightarrow{AC} = \frac{1}{2}(a^2 + c^2 - b^2).$$

$$\overrightarrow{\mathbf{C}}\overrightarrow{AB}\cdot\overrightarrow{AC} = \frac{1}{2}(b^2 + c^2 + a^2).$$

CÂU 34. Cho nửa đường tròn tâm O, có đường kính AB = 2R. Gọi M, N là hai điểm thuộc nửa đường tròn sao cho hai dây cung AM và BN cắt nhau tại I. Khẳng định nào sau đây là khẳng định đúng?

$$(\mathbf{A})\overrightarrow{AI} \cdot \overrightarrow{AM} = \overrightarrow{AI} \cdot \overrightarrow{AB}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{AI}\cdot\overrightarrow{AM}=\overrightarrow{AN}\cdot\overrightarrow{AB}$$

$$(\mathbf{C})\overrightarrow{AI}\cdot\overrightarrow{AM}=\overrightarrow{AI}\cdot\overrightarrow{AN}.$$

$$\overrightarrow{\mathbf{D}}\overrightarrow{AI}\cdot\overrightarrow{AM}=\overrightarrow{AI}\cdot\overrightarrow{BA}.$$

CÂU 35. Cho hai điểm M, N nằm trên đường tròn đường kính AB = 2r. Gọi I là giao điểm của hai đường thẳng AM và BN. Tính theo r giá trị biểu thức $P = \overline{AM} \cdot \overline{AI} + \overline{BN} \cdot \overline{BI}$.

$$(\mathbf{A})P = 4r^2.$$

$$\mathbf{B})P = 2r^2.$$

$$\bigcirc P = r^2.$$

CÂU 36. Cho hình vuông ABCD có cạnh là a. Giá trị của biểu thức $\left(\overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BA}\right) \left(\overrightarrow{AC} - \overrightarrow{AB}\right)$

là

(B) $2a^2$.

 $(\mathbf{C})-2a^2$.

(D) $-2\sqrt{2}a^2$.

CÂU 37. Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho $AM = \frac{AC}{A}$. Gọi N là trung điểm của đoạn thẳng DC. Tính $\overrightarrow{MB} \cdot \overrightarrow{MN}$.

$$(\mathbf{A}) \overrightarrow{MB} \cdot \overrightarrow{MN} = -4. \quad (\mathbf{B}) \overrightarrow{MB} \cdot \overrightarrow{MN} = 0.$$

$$(\mathbf{B})\overrightarrow{MB}\cdot\overrightarrow{MN}=0.$$

$$(\mathbf{C})\overrightarrow{MB}\cdot\overrightarrow{MN}=4.$$

$$(\mathbf{D})\overrightarrow{MB}\cdot\overrightarrow{MN}=16.$$

CÂU 38. Cho hình thơi \overrightarrow{ABCD} có $\overrightarrow{AC} = 8$. Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

$$\overrightarrow{A}\overrightarrow{AB} \cdot \overrightarrow{AC} = 24.$$
 $\overrightarrow{B}\overrightarrow{AB} \cdot \overrightarrow{AC} = 26.$

$$\overrightarrow{\mathbf{B}}\overrightarrow{AB}\cdot\overrightarrow{AC}=26$$

$$\overrightarrow{\textbf{C}} \overrightarrow{AB} \cdot \overrightarrow{AC} = 28.$$

$$(\mathbf{D})\overrightarrow{AB} \cdot \overrightarrow{AC} = 32.$$

CÂU 39. Cho hình chữ nhật ABCD có AB = a và $AD = a\sqrt{2}$. Gọi K là trung điểm của cạnh AD. Tính $\overrightarrow{BK} \cdot \overrightarrow{AC}$.

$$\label{eq:BK} \boxed{\pmb{A}} \overrightarrow{BK} \cdot \overrightarrow{AC} = 0.$$

$$(\mathbf{B})\overrightarrow{BK}\cdot\overrightarrow{AC} = -a^2\sqrt{2}.$$

$$\overrightarrow{\mathbf{C}}\overrightarrow{BK}\cdot\overrightarrow{AC}=a^2\sqrt{2}.$$

$$\overrightarrow{\mathbf{D}}\overrightarrow{BK}\cdot\overrightarrow{AC}=2a^2.$$

CÂU 40. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau tại M và \overline{MA} \overline{MC} = $\overline{MB} \cdot \overline{MD}$. Gọi P là trung điểm của AD. Góc giữa hai đường thẳng MP và BC là

(**B**)60°.

 $(\mathbf{C})45^{\circ}.$

CẦU 41. Cho hình vuông ABCD cạnh a. Gọi M và N lần lượt là trung điểm của BC và CD. Tính $\cos\left(\overrightarrow{AM}, \overrightarrow{NA}\right)$

 $\mathbf{C}^{\frac{3}{5}}$.

CÂU 42. Cho hình vuông ABCD. Gọi M là trung điểm của cạnh BC. Tính góc giữa hai véc-to \overrightarrow{AM} và $\overrightarrow{DA} + \overrightarrow{DB}$.

(A) 45° .

(B)30°.

(**C**)135°.

(**D**)90°.

CÂU 43. Cho hình vuông ABCD. Trên cạnh AD, AB lần lượt lấy hai điểm E, F sao cho AE = AF. Gọi H là hình chiếu vuông góc của A lên đường thẳng BE. Tính $\cos(\overline{FH}, \overline{CH})$.

 (\mathbf{A}) 0.

 \bigcirc $\frac{\sqrt{3}}{2}$.

 \mathbf{c}^{-1} .

CÂU 44. Cho hai điểm A và B, O là trung điểm của AB và M là điểm tùy ý, biết rằng $\overrightarrow{MA} \cdot \overrightarrow{MB} = OM^2 + kOA^2$. Khẳng định nào sau đây đúng?

$$(\mathbf{A})k = 1.$$

$$(\mathbf{B})k = -1.$$

$$(\mathbf{c})_k = 2$$

$$(\mathbf{D})k = -2.$$

CÂU 45. Cho *I* là trung điểm AB, M là điểm tùy ý. Biết rằng $\overrightarrow{MI} \cdot \overrightarrow{AB} = k (MB^2 - MA^2)$. Khẳng định nào sau đây là đúng?

$$\mathbf{B}k = \frac{1}{2}$$

CÂU 46. Cho I là trung điểm AB, M là điểm tùy ý. Biết rằng $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 + kAB^2$. Khẳng định nào sau đây là đúng?

CÂU 47. Khẳng định nào sau đây là đúng?

$$(\mathbf{A})(\vec{a}\cdot\vec{b})\vec{c}=\vec{a}(\vec{b}\cdot\vec{c}).$$

$$(\mathbf{B})(\vec{a}\cdot\vec{b})^2 = \vec{a}^2\cdot\vec{b}^2.$$

$$(\mathbf{C})\vec{a}\cdot\vec{b} = |\vec{a}|\cdot |\vec{b}|\sin(\vec{a},\vec{b}).$$

$$(\vec{\mathbf{D}})\vec{a}\cdot(\vec{b}-\vec{c})=\vec{a}\cdot\vec{b}-\vec{a}\cdot\vec{c}.$$

CÂU 48. Cho hai véc-tơ \vec{a} và \vec{b} . Đẳng thức nào sau đây sai?

$$\overrightarrow{\mathbf{A}} \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{4} \left(\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 - \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 \right).$$

(A)
$$\vec{a} \cdot \vec{b} = \frac{1}{4} \left(\left| \vec{a} + \vec{b} \right|^2 - \left| \vec{a} - \vec{b} \right|^2 \right)$$
. (B) $\vec{a} \cdot \vec{b} = \frac{1}{2} \left(\left| \vec{a} + \vec{b} \right|^2 - \left| \vec{a} - \vec{b} \right|^2 \right)$.

$$(\mathbf{C})\vec{a}\cdot\vec{b} = \frac{1}{2}\left(\left|\vec{a} + \vec{b}\right|^2 - |\vec{a}|^2 - \left|\vec{b}\right|^2\right).$$

$$(\vec{\mathbf{c}})\vec{a}\cdot\vec{b} = \frac{1}{2}\left(\left|\vec{a} + \vec{b}\right|^2 - |\vec{a}|^2 - \left|\vec{b}\right|^2\right).$$

$$(\vec{\mathbf{p}})\vec{a}\cdot\vec{b} = \frac{1}{2}\left(\left|\vec{a}\right|^2 + \left|\vec{b}\right|^2 - \left|\vec{a} - \vec{b}\right|^2\right).$$

CÂU 49. Cho hình thoi ABCD có cạnh bằng a và $\widehat{A} = 60^{\circ}$, điểm M tùy ý. Biết rằng $MA^2 - MB^2 + MC^2 - MD^2 = ka^2$. Khẳng định nào sau đây đúng?

$$(\mathbf{A})k = 1.$$

$$(\mathbf{B})k=2.$$

$$(\mathbf{C})k = 4.$$

$$(\mathbf{D})k = 6$$

CÂU 50. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo AC và BD, Mlà điểm tuỳ ý. Biết rằng $M\acute{A}\cdot M\acute{C}=MO^2+kBD^2$. Khẳng định nào sau đây đúng?

$$\mathbf{B}$$
 $k=2.$

$$\bigcirc k = 4$$

CÂU 51. Cho tam giác ABC, gọi H là trực tâm của tam giác và M là trung điểm của canh BC. Đẳng thức nào sau đây **đúng**?

$$\overrightarrow{\mathbf{A}} \overrightarrow{MH} \cdot \overrightarrow{MA} = \frac{1}{2}BC^2.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{MH}\cdot\overrightarrow{MA}=-\frac{1}{4}BC^2.$$

$$\overrightarrow{\mathbf{C}}\overrightarrow{MH}\cdot\overrightarrow{MA}=\frac{1}{4}BC^2.$$

$$\overrightarrow{\mathbf{D}}\overrightarrow{MH}\cdot\overrightarrow{MA} = \frac{1}{5}BC^2.$$

CÂU 52. Cho điểm M thay đổi trên đường tròn tâm O bán kính R ngoại tiếp tam giác đều \overrightarrow{ABC} cho trước. Biết rằng $\overrightarrow{MA^2} + 2\overrightarrow{MB} \cdot \overrightarrow{MC} = kR^2$. Khẳng định nào sau đây đúng?

(A)k = 2.

$$(\mathbf{C})k = 4.$$

$$(\mathbf{D})k = 6.$$

CÂU 53. Cho \vec{a} , \vec{b} có $(\vec{a} + 2\vec{b})$ vuông góc với véc-tơ $(5\vec{a} - 4\vec{b})$ và $|\vec{a}| = |\vec{b}|$. Khi đó

$$(\mathbf{A})\cos\left(\vec{a},\vec{b}\right) = \frac{\sqrt{2}}{2}.$$

$$(\mathbf{B})\cos\left(\overrightarrow{a},\overrightarrow{b}\right) = 90^{\circ}.$$

$$(\mathbf{c})\cos\left(\vec{a},\vec{b}\right) = \frac{\sqrt{3}}{2}.$$

$$(\overrightarrow{\textbf{D}} \cos \left(\overrightarrow{a}, \overrightarrow{b} \right) = \frac{1}{2}.$$

CÂU 54. Cho tam giác ABC. Tập hợp điểm M thỏa mãn $\overrightarrow{MA} \cdot \overrightarrow{BC} = 0$ là

- (\mathbf{A}) Đường trung trực đoạn BC.
- (\mathbf{B}) Đường tròn có tâm A.
- (**C**) Đường thẳng đi qua A và vuông góc với BC.
- (**D**)Đường thẳng đi qua A song song với BC.

CÂU 55. Cho đoạn thẳng AB. Tập hợp điểm M thỏa mãn $\overline{MA} \cdot \overline{MB} = 0$ là

- (\mathbf{A}) Đường trung trực đoạn AB.
- (**B**)Đường tròn.
- (\mathbf{C}) Đường thẳng đi qua A và vuông góc với AB.
- (\mathbf{D}) Đường thẳng đi qua B và vuông góc với AB.

CÂU 56. Cho tam giác ABC. Tập hợp các điểm M thỏa $(\overline{MA} - \overline{MB})(2\overline{MB} - \overline{MC}) = 0$

- (\mathbf{A}) Đường thẳng vuông góc với AB.
- (\mathbf{B}) Đường thẳng vuông góc với AC.
- (\mathbf{C}) Đường thẳng vuông góc với BC.
- (**D**)Đường tròn.

CÂU 57. Cho tam giác ABC. Tập hợp các điểm M thỏa $(\overrightarrow{MA} + 2\overrightarrow{MB})$ $(\overrightarrow{MB} + 2\overrightarrow{MC}) = 0$

- - (\mathbf{A}) Đường thẳng vuông góc với AB.
- (**B**)Đoạn thẳng.
- (\mathbf{C}) Đường thẳng song song với AB.
- (**D**)Đường tròn.

CÂU 58. Cho tam giác ABC. Tập hợp các điểm M thỏa $2MA^2 + \overrightarrow{MA} \cdot \overrightarrow{MB} = \overrightarrow{MA} \cdot \overrightarrow{MC}$

QUICK NOTE	 Dường thẳng. Dường tròn đi	qua A .	B Đường tròn (D) Đường tròn (đường kính BC . đi qua B .
	CÂU 59. Cho hình	vuông $ABCD$ cạnh a .	TÌm tập hợp các đi	ểm M thỏa mãn
		(MA + MB + MC)	\overrightarrow{C}) $\left(\overrightarrow{MC} - \overrightarrow{MB}\right) = 3$	30-
			<u> </u>	
	A Đường thẳng v		~	g song song với BC .
	© Đường tròn đư		<u> </u>	đường kính AC .
	CÂU 60. Cho tam g	giác ABC . Giá trị lớn n	nhất của biểu thức P	$=2\cos A+6\cos B+3\cos C$
	bằng	B 10.	© 7.	D 6.
	(A)11.	b) 10.	C 1.	D /0.

Bài 3.	Các khái niệm mở đầu	1
A	Tóm tắt lí thuyết	1
B	Các dạng toán	1
	► Dạng 1.Xác định một vectơ, độ dài vectơ	
	Dạng 2.Hai vectơ cùng phương, cùng hướng và bằng nhau	2
	Câu hỏi trắc nghiệm	3
Bài 4.	Tổng và hiệu của hai véc-tơ	5
A	Các dạng toán	5
•	Dạng 1.Tính tổng, hiệu hai véc-tơ	5
	 Dạng 2.Xác định vị trí của một điểm từ đẳng thức véc-tơ Dạng 3.Tính độ dài véc-tơ 	
	Dạng 4.Ứng dụng của véc-tơ trong vật lý	6
B	Câu hỏi trắc nghiệm	6
Bài 5.	Tích của một vectơ với một số	9
A	Tóm tắt lí thuyết	9
B	Các dạng toán	10
	Dạng 1.Xác định vectơ tích, tính độ dài vectơ	10
	Dạng 2.Chứng minh đẳng thức vectơ, thu gọn biểu thức	13
	Dạng 3.Xác định điểm thỏa mãn đẳng thức vecto	
	Dang 4.Biểu diễn vectơ theo hai vectơ không cùng phương	
	Dang 5.Chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hai điểm trùng nhau.	28
Bài 6.	Tích vô hướng của hai véc-tơ	31
A	Tóm tắt lý thuyết	31
B	Các dạng toán	32
<u> </u>	Dạng 1.Tính tích vô hướng của hai véc-tơ và xác định góc	32
	Dạng 2.Chứng minh đẳng thức tích vô hướng hay độ dài	
	Dạng 3.Điều kiện vuông góc	
	Dạng 4. Tập hợp điểm và chứng minh bất đẳng thức	34

