8. Całka oznaczona

Całki niewłaściwe pierwszego rodzaju

Definicja

Niech $f:[a,+\infty)\to R$. Niech f bedzie całkowalna na każdym przedziale $[a,\beta]$, gdzie $\beta<+\infty$. Całką niewłaściwą (pierwszego rodzaju) z funkcji f na $[a,+\infty)$ nazywamy granicę (o ile istnieje)

$$\lim_{\beta \to +\infty} \int_{a}^{\beta} f(x) dx.$$

Całkę taką oznaczamy przez

$$\int_{a}^{+\infty} f(x) dx.$$

Jeżeli powyższa granica jest skończona, to mówimy, ze całka jest zbieżna, a funkcja f jest całkowalna w danym przedziale.

Jeżeli powyższa granica jest niewłaściwa lub nie istnieje, to całkę nazywamy rozbieżną.

Całki niewłaściwe pierwszego rodzaju

Zakładamy, że rozważane funkcje sa lokalnie całkowalne, to znaczy są całkowalne na dowolnym domkniętym przedziale zawartym w ich dziedzinie.

$$\int_{a}^{+\infty} f(x)dx := \lim_{\beta \to +\infty} \int_{a}^{\beta} f(x)dx.$$

Analogicznie:

$$\int_{-\infty}^{b} f(x)dx := \lim_{\alpha \to -\infty} \int_{\alpha}^{b} f(x)dx.$$
$$\int_{-\infty}^{+\infty} f(x)dx := \int_{-\infty}^{a} f(x)dx + \int_{-\infty}^{+\infty} f(x)dx.$$

Całki niewłaściwe drugiego rodzaju

Definicja

Niech $f:(a,b]\to R$ będzie nieograniczona na pewnym $S(a^+)$. Całką niewłaściwą (drugiego rodzaju) z funkcji f na (a,b] nazywamy granicę (o ile istnieje)

$$\lim_{\alpha \to a^+} \int_{\alpha}^{b} f(x) dx.$$

Całkę taką oznaczamy przez

$$\int_{a}^{b} f(x) dx.$$

Całki niewłaściwe drugiego rodzaju

Zatem

$$\int_a^b f(x)dx := \lim_{\alpha \to a^+} \int_\alpha^b f(x)dx.$$

Analogicznie dla funkcji f:[a,b) o R nieograniczonej na pewnym $S(b^-)$:

$$\int_{a}^{b} f(x)dx := \lim_{\beta \to b^{-}} \int_{a}^{\beta} f(x)dx.$$

$$\int_{-\infty}^{+\infty} f(x)dx := \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx.$$