SISTEMI OPERATIVI - SSRI

Docente: Andrea Lanzi

Appello Teoria -03/02/2021

Domanda 1) (3 punti)

Descrivere tutte le operazioni che occorrono, durante un context switch da un processo A ad un processo B con uno modello con timer interrupt. Descrivere precisamente il soggetto delle operazioni (e.g. chi fa cosa), HW, OS, processo e quali sono le operazioni coinvolte (3 punti)

Domanda 2) (2 punti)

Cosa succede durante un interrupt HW, cos'è un trap-handler e chi informa dove sono i trap handler all'HW? Descrivere accuratamente i vari passi della gestione dell'interrupt HW

Domanda 3) (4 punti)

Calcolare turnaround time, response time per ogni job considerato dall'algoritmo di scheduling FIFO

```
ARG policy FIFO
ARG jobs 4
ARG maxlen 10
```

Qui la lista dei job con il tempo di esecuzione per ogni job:

```
Job 0 (length = 8)
Job 1 (length = 3)
Job 2 (length = 8)
Job 3 (length = 10)
```

Domanda 4) (4 punti)

Calcolare turnaround time, response time per ogni job considerato dall'algoritmo di scheduling Round Robin

```
ARG policy RR
ARG jobs 3
ARG maxlen 10
```

Qui la lista dei job con il tempo di esecuzione per ogni job:

```
Job 0 (length = 8)
Job 1 (length = 3)
Job 2 (length = 8)
```

Domanda 5) (4 punti)

Calcolare dati gli indirizzi virtuali fisici su un address space così organizzato e descrivere qual è la procedura per ricavare il valore della PFN.

```
address space size 16K
phys mem size 64k
page size 4k
```

Page Table (from entry 0 down to the max size)

- [0] 0x800000c
- [1] 0x00000000
- [2] 0x00000000
- [3] 0x80000006

Se il bit è a 1, il resto della entry è PFN.

se il bit è a 0, la pagina risulta non valida.

```
VA 0x00003229 (decimal: 12841) -> PA or invalid address? VA 0x00001369 (decimal: 4969) -> PA or invalid address? VA 0x00001e80 (decimal: 7808) -> PA or invalid address? VA 0x00002556 (decimal: 9558) -> PA or invalid address? VA 0x00003a1e (decimal: 14878) -> PA or invalid address?
```

Domanda 6) (4 punti)

Scrivere lo pseudocodice di uno spin-lock implementato tramite test-and-set instruction. Spiegare come funziona la primitiva test-and-set e descrivere come funziona lo spinlock implementato.

Domanda 8) (3 punti)

Spiegare in quali casi può succedere che il reference count nella tabella open file table sia maggiore di 1.

Domanda 9) (2 punti)

Quali sono le differenze principali tra symbolic link ed hard link nell'ambito dei file? (2 punti)

Domanda 7) (4 punti)

Nella seguente implementazione del produttore/consumatore c'è un race condition. Descrivere in quale caso si verifica, e descrivere come si può risolvere (4 punti)

```
int buffer[MAX];
int fill = 0;
int use = 0;
void put(int value)
    buffer[fill] = value; //Line F1
    fill = (fill + 1) % MAX; //Line F2
}
int get()
    int tmp = buffer[use]; //Line G1
    use = (use + 1) \% MAX;
return tmp;
}
sem t empty;
sem_t full;
void *producer(void *arg)
{
    int i;
    for (i = 0; i < loops; i++)
        sem_wait(&empty); //Line P1
        put(i);
                            //Line P2
        sem_post(&full); //Line P3
    }
}
void *consumer(void *arg)
    int tmp = 0;
    while (tmp != -1)
        sem_wait(&full)
            tmp = get();
        sem_post(&empty);
        printf("%d\n", tmp);
    }
}
int main(int argc, char *argv[])
{
    // ...
    sem_init(&empty, 0, MAX);
    sem_init(&full, 0, 0);
    //...
}
```