TD 1 : ESPACES L^p

Exercice 1. Soit (E, \mathcal{E}) un espace mesurable et soit $f: E \to \mathbb{R}_+$ une fonction mesurable positive. Montrer qu'il existe une suite de fonctions étagées mesurables $(s_n)_n$ telle que

- (1) $0 \le s_1 \le s_2 \le \ldots \le f$,
- (2) s_n converge simplement vers f sur E.

Exercice 2. (Inégalité de Hölder généralisée)

Soient $p, q \in [1, +\infty]$ et r défini par $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. Montrer que pour $f \in L^p(E, \mu; \mathbb{K})$ et $g \in L^q(E, \mu; \mathbb{K})$ on a :

$$||fg||_r \leq ||f||_p ||g||_q$$
.

Exercice 3. Soit (E, \mathcal{E}, μ) un espace mesuré tel que $\mu(E) < \infty$. Soient $1 \le p \le q \le +\infty$. Montrer que l'injection canonique $j: L^q \to L^p$ est une application linéaire continue et calculer sa norme.

Exercice 4. (1) Soit E un espace de Banach. On suppose qu'il existe une famille $(\mathcal{O}_i)_{i\in I}$ telle que :

- (a) pour tout $i \in I$, \mathcal{O}_i est un ouvert non vide de E,
- (b) $\mathcal{O}_i \cap \mathcal{O}_j = \emptyset \text{ si } i \neq j$,
- (c) I n'est pas dénombrable.

Montrer que E n'est pas séparable. (Indication : raisonner par l'absurde).

(2) Pour tout $x \in \mathbb{R}^d$, on pose $f_x = \chi_{\mathcal{B}(x,1)}$ où $\mathcal{B}(x,1) \subset \mathbb{R}^d$ est la boule fermée de centre x et de rayon 1. En utilisant la famille d'ouverts $(\mathcal{O}_x)_{x \in \mathbb{R}^d}$ avec

$$\mathcal{O}_x = \left\{ f \in L^{\infty}(\mathbb{R}^d, \lambda_d), ||f - f_x||_{\infty} < \frac{1}{2} \right\},\,$$

montrer que $L^\infty(\mathbb{R}^d,\lambda_d)$ n'est pas séparable.

Exercice 5. Soit $1 \leq p < \infty$. Soit $(f_n)_{n \in \mathbb{N}}$ une suite dans $L^p(E, \mu; \mathbb{K})$ qui converge simplement presque partout vers une fonction f de $L^p(E, \mu; \mathbb{K})$. Montrer que la suite $(f_n)_{n \in \mathbb{N}}$ converge vers f dans $L^p(E, \mu; \mathbb{K})$ si et seulement si $\lim_{n \to \infty} ||f_n||_p = ||f||_p$.

Exercice 6. Pour une fonction $f: \mathbb{R} \to \mathbb{C}$ et pour $h \in \mathbb{R}$, on définit la fonction $\tau_h f$ par $(\tau_h f)(x) = f(x+h)$.

- (1) Soit $p \in [1, \infty[$.
 - (a) Montrer que pour tout $h \in \mathbb{R}$, τ_h définit une isométrie de $L^p = L^p(\mathbb{R}, \lambda)$.
 - (b) Soient $g \in C_c(\mathbb{R})$ une fonction continue à support compact. Montrer que

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall (a,b) \in \mathbb{R}^2, \ |a-b| < \delta \Rightarrow ||\tau_a g - \tau_b g||_p < \varepsilon.$$

(c) En utilisant la densité de $C_c(\mathbb{R})$ dans L^p , montrer que si $f \in L^p$, on a $\lim_{h\to 0} ||\tau_h f - f||_p = 0$.

Auteur: Simona ROTA NODARI simona.rotanodari@univ-cotedazur.fr

- (2) Donner un contre-exemple simple qui montre que le résultat (c) n'est pas valable pour L^{∞} . **Exercice 7.** Soient $1 \leq p < +\infty$ et $1 < q \leq +\infty$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. On suppose $f \in L^p(\mathbb{R}, \lambda)$ et $g \in L^q(\mathbb{R}, \lambda)$ avec λ la mesure de Lebesgue.
 - (1) Montrer que le produit de convolution de f et g est une fonction bornée sur \mathbb{R} qui vérifie $\|f \star g\|_{\infty} \leq \|f\|_{p} \|g\|_{q}.$
 - (2) Montrer que $f \star g$ est uniformément continue sur \mathbb{R} .

Exercice 8. Soient $f \in L^p(\mathbb{R}, \lambda)$ et $g \in L^q(\mathbb{R}, \lambda)$ avec $1 \leq p, q \leq +\infty$ tels que 1/p + 1/q = 1 + 1/r, avec $1 \leq r \leq +\infty$, et λ la mesure de Lebesgue. Montrer que pour presque tout $x \in \mathbb{R}$, la fonction $y \mapsto f(x-y)g(y)$ est intégrable sur \mathbb{R} et que le produit de convolution de f et g défini par

$$f \star g(x) = \int_{\mathbb{R}} f(x - y)g(y) \, dy$$

est commutatif, appartient à $L^r(\mathbb{R},\lambda)$ et vérifie

$$||f \star g||_p \le ||f||_1 ||g||_p$$

Exercice 9. Soient $\alpha, \beta \in \mathbb{R}$ tels que $\alpha < \beta$. On pose $f = \mathbb{1}_{[-\alpha,\alpha]}$ et $g = \mathbb{1}_{[-\beta,\beta]}$.

- (1) Montrer que le produit de convolution de f et g est bien défini.
- (2) Calculer $f \star g$ pour tout $x \in \mathbb{R}$.
- (3) Étudier la régularité de f, g et $f \star g$.

Exercice 10. (1) Soient $f \in L^1(\mathbb{R}^d, \lambda)$ et $g \in L^p(\mathbb{R}^d, \lambda)$ avec $p \in [1, \infty[$. Montrer que $\operatorname{supp}(f \star g) \subset \overline{\operatorname{supp} f + \operatorname{supp} g}$.

(2) Soit $\rho \in \mathcal{C}_c^{\infty}(\mathbb{R}^d)$ avec $\operatorname{supp} \rho \subset \overline{B(0,1)}$, $\rho \geq 0$ sur \mathbb{R}^d et $\|\rho\|_1 = \int_{\mathbb{R}^d} \rho \, d\lambda > 0$. On pose $\rho_n(x) = Cn^d \rho(nx)$

avec $C = \|\rho\|_1^{-1}$.

- (a) Soit $f \in \mathcal{C}(\mathbb{R}^d)$. Montrer que $\rho_n \star f$ converge uniformément vers f sur tout compact de \mathbb{R}^d .
- (b) Soit $f \in \mathcal{C}_c(\mathbb{R}^d)$. Montrer que $\lim_{n\to\infty} \|\rho_n \star f f\|_p = 0$.
- (c) En déduire que $C_c^{\infty}(\mathbb{R}^d)$ est dense dans $L^p(\mathbb{R}^d, \lambda)$ pour $p \in [1, \infty[$. Indication : on pourra utiliser la densité de $C_c(\mathbb{R}^d)$ dans $L^p(\mathbb{R}^d, \lambda)$.