MA 353: Elliptic Curves Assignment-1

Irish Debbarma, 16696

due: 19th February, 2023

1.	V/\mathbb{Q} is the variety $V:5X^2+6XY+2Y^2=2YZ+Z^2$
	Claim: $V(\mathbb{Q}) = \emptyset$.
	Proof.
2.	For each prime $p\geq 3$, let $V_p\subseteq \mathbb{P}^2$ be the variety corresponding to the curve
	$V_p: X^2 + Y^2 = pZ^2$
	(a) Claim: $V_p \cong \mathbb{P}^1$ over \mathbb{Q} iff $p \equiv 1 \pmod 4$
	Proof.
	(b) Claim: For $p \equiv 3 \pmod{4}$, no two V_p s are isomorphic.
	Proof.
3.	Let $F(x,y,x)\in k[x,y,z]$ be a homogeneous polynomial polynomial of degree $d\geq 1$ and the curve corresponding to F is non-singular.
	Claim: $\mathfrak{g}(C) = \frac{(d-1)(d-2)}{2}$
	Proof.

- 4. (a) L: 2x + 5y 1 = 0
 - (b) $C: x^2 4xy + 3y^2 3x + 5y 10 = 0$
- 5. Given $f(x,y) = y^2 x^3 ax^2 bx$
- 6. Suppose E is an elliptic curve given by the Weierstrass equation $y^2 = x^3 + ax^2 + bx + c$ and P = (x, y) a point on E.

(a)

(b)

7. Given $E: y^2 = x^3 + 17$ is an elliptic curve over $\mathbb Q$

- (a) P=(-1,4), Q=(2,5). We wish to find P+Q
- (b) P=(-2,3), Q=(2,5). We wish to find -P+2Q