Recap from last class

- Basic compilation optimization
 - Expression simplification
 - Dead code elimination
 - Function inlining
 - Loop optimizations
 - Register allocation
- Optimization for embedded systems
 - Optimizing for execution time
 - Optimizing for energy/power
 - Measurement, sources of energy consumption, cache
 - Optimizing for program size
 - Reduce data size and code size

ECE 1175 Embedded System Design

Power Management - I

Wei Gao

The Power Problem

- Microprocessors improve performance at the cost of power!
 - Performance/watt remains low.
- Solutions
 - Microprocessors offer features (hardware support) for controlling power consumption.
 - Software performs power management.

Outline

- Hardware support
- Power management policy
- Power manager
- Holistic approach

Types of Power Consumption

Startup

 SRAM devices have startup transients but flash and antifuse do not

Static

- Very thin oxide layer leak current when transistors are not switching
- Increases exponentially with temperature
- Major contributor in low-speed antifuse designs (e.g. >50% in a RTAX2000 running at 10MHZ)
- Minor contributor in typical flash-based designs (e.g. 0.2% in example IGLOO design)

Types of Power Consumption

Dynamic

- Design-Specific
- When both transistors in a logic gate are temporarily turned on during switching, get very small current surge.
 With millions of transistors...
- P = f * C * V^2 (Each component power = frequency * capacitive load * voltage swing squared)
- Increases with frequency, logic utilization, toggle rates
- Decreases with lower voltage levels

Types of Power Consumption

System-Dependent

CMOS Power Consumption

CMOS technology

- CMOS: Complementary Metal-Oxide Semiconductor
- A common technology for constructing integrated circuits

Voltage drops

 Power consumption of a CMOS is proportional to the square of the power supply voltage (V²).

Toggling

CMOS uses higher power when having more activity

Leakage

 Even when CMOS is inactive, some charge leaks out of the circuit's nodes

General Power-Saving Features

To deal with toggling

- Run at lower clock frequency (slower)
- Reduce activity by disabling function units when not in use.

To deal with leakage

Eliminate leakage current by disconnecting parts from power supply when not in use.

To deal with voltage drops

- ➡ Reduce power supply voltage to the lowest level that provides required performance
 - Pentium MMX: 2.8v
 - → i7: ~1.5v
 - ▶ Cortex A8: 1.2v

Clock Gating

- Applicable to clocked digital components
 - Processors, controllers, memories
- Stop the clock

 stop signal propagation in circuits
- Pros
 - Simple
 - Very short transition time if only clock distribution is stopped while clock generation is not stopped
- Cons
 - Clock itself still consumes energy
 - Cannot prevent power leaking exist as long as power supply is connected

Dynamic Voltage Scaling

- Why voltage scaling?
 - Power $\propto V^2$
 - Reduce power supply voltage → save energy
 - Lower clock frequency allows lower voltage
 - Tradeoff between performance and battery lifetime
 - Overclocking? Raise voltage for better stability
- Why dynamic?
 - Power consumption is not a constant.
 - Depending on current workloads.

Have to be dynamic to respond to power consumption variations.

Dynamic Voltage Scaling

- Changing voltage takes time
 - Need to stabilize power supply and clock
- Continuous and discrete voltage are both possible
 - Many microprocessors have discrete power modes
 - Pentium: discrete voltage levels at 0.1v

Outline

- Hardware support
- Power management policy
- Power manager
- Holistic approach

Power Management Styles

- Static Power Management
 - Does not depend on activity.
 - Example: user-activated power-down mode.
 - Laptop monitor changes to low-power state when unplugged
- Dynamic Power Management (DPM)
 - Automatic action based on activity.
 - Example: automatically disabling function units.
 - Monitor automatically turns off after no activity for a certain period of time

Dynamic Power Management

- Goals: Energy conservation AND good performance
 - Need tradeoff between conflicting goals!
- Fundamental premises
 - Systems have varying workloads during operation
 - Running workloads: higher power and better performance
 - Idling: lower power and worse performance
 - It is possible to predict the fluctuations of workload with some degree of accuracy
 - Daytime vs. nighttime
- Performed by a Power Manager
 - React to or predict workload variations

Problem Formulations of Dynamic Power Management

- Minimize power under performance constraints
 - Real-time constraint

OR

- Optimize performance under power constraints
 - Battery lifetime constraint
 - Best server performance within the capacity of the power supply and cooling facilities

Cost of Dynamic Power Management

- Power management is not free
- Going into/out of an inactive mode costs:
 - time;
 - energy.
- Must determine if going into mode is worthwhile.
- Can model CPU power states with Power State Machine (PSM)

PSM Example: SA-1100

- SA-1100 is a StrongARM processor from Intel
 - Designed to provide sophisticated power management capabilities controlled by the on-chip power manager
- Three power modes:
 - Run: normal operation.
 - Idle: stops CPU clock, with I/O logic still powered.
 - Sleep: shuts off most of chip activity

SA-1100 SLEEP

- RUN → SLEEP
 - (30 μs) Flush to memorize CPU states (registers)
 - (30 μs) Reset processor state and wakeup event
 - (30 μs) Shut down clock
- SLEEP → RUN
 - (10 ms) Ramp up power supply
 - (150 ms) Stabilize clock
 - (negligible) CPU boot
- Overhead of sleep to run is much larger

SA-1100 Power State Machine

Reading

 Sections I, II, III.A, III.B, IV of
 L. Benini, A. Bogliolo and G. De Micheli, "A Survey of Design Techniques for System-Level Dynamic Power Management," IEEE Transactions on VLSI, pp. 299-316, June 2000.