

Action Recognition

Hai Vu

Nội dung

- Giới thiệu bài toán phân tích và nhận dạng hoạt động của người
- Phương pháp phân tích và nhận dạng hoạt động của người
 - Sử dụng đặc trưng không gian-thời gian (Spatiotemporal)
 - Sử dụng đặc trưng về khung xương (skeleton)
 - Một số bộ CSDL nhận dạng hoạt động của người
- Úng dụng: bài toán phát hiện hành vi bất thường (fighting)

 Nhận dạng hoạt động của người có ứng dụng trong rất nhiều lĩnh vực

Game, giải trí, sức khỏe

Robotics

Phát hiện sự kiện bất thường (ngã) trong bệnh viện

Trong mạng camera giám sát

Giới thiệu

Có rất nhiều hướng tiếp cận

Stereo Vision Depth Map

Giới thiệu

- Có rất nhiều bài toán con cần giải quyết
 - Theo bám (Tracking)
 - Phân đoạn hoạt động từ video liên tục (action spotting)
 - Nhận dạng hoạt động của nhóm người hay 1 người
 - Định nghĩa các loại hoạt động (bình thường vs. bất thường)

Giới thiệu

- Một số khó khăn
 - Nếu chỉ dựa vào đặc trưng trực quan (visual) ->
 không bất biến
 - Nếu chỉ dựa vào đặc trưng khung xương → nhiễu, giá trị không ổn định theo thời gian
 - Hoạt động đa dạng, môi trường đa dạng, các góc nhìn/quan sát khác nhau
 - Dữ liệu xử lý lớn (video >> image)
 - Nhầm lẫn khi định nghĩa hoạt động

Một số phương pháp

Spatial descriptions

Spatio-temporal descriptions

Deep learning-based techniques

Giới thiệu đặc trưng STIP

Do Ivan Laptev (2005)
 phát triển

- Kết hợp các đặc trưng không gian và thời gian

STIP Detector (giống Harris Corner 3-D)

- Looks for distinctive neighborhood in the video
 - High image variation in space and time
 - Describe it using distribution of gradient and optical flow

$$H = egin{pmatrix} L_{xx} & L_{xy} & L_{xt} \ L_{xy} & L_{yy} & L_{yt} \ L_{xt} & L_{yt} & L_{tt} \end{pmatrix}$$
 Where L_{ij} is $\frac{\partial L}{\partial i \partial j}$

Any (x, y, t) location in the video is STIP if

$$\det(H) + \alpha * trace^3(H) > TH$$

Algorithm Details: STIP Descriptor

- Small spatio-temporal neighborhood extracted
- Divided into 3x3x2 tiles

Al Academy Vietnam

Kết quả phát hiện STIPs

Phương pháp nhận dạng hoạt vơ động sử dụng STIP

- 1. Sử dụng BoW
- Xây dựng mạng Bayesian Networks → phản ánh trạng thái (state) của mỗi hình trạng
- Học và so sánh Dynamic Shape sử dụng lý thuyết đa tạp (Manifolds)
- → Làm chi tiết ở bài thực hành (sử dụng BoW)

 Ví dụ minh họa về 6 hoạt động biểu diễn bằng 3 features (sau khi dùng PCA của STIP)

Biểu diễn bằng đa tạp (manifolds)

Hoạt động ném bóng (môn cricket)

Hoạt động ném bóng (môn bóng rổ)

Hoạt d

Hoạt động xuất phát (môn chạy)

Phương pháp sử dụng khung xương

- Advantages of skeletal feature:
 - © Visual human appearance independence
 - More discriminative
 - ©Low computational time
 - ©Less storage

Phương pháp sử dụng skeleton

 An experiment on motion perception is conducted by [G. Johansson 1971]

→ Specific joints engage an action.

Cách trích chọn khung xương

- Sử dụng các bộ Motion capture (gồm các markers đính trên người)
- Trích chọn khớp từ dữ liệu hình ảnh (độ sâu) như: kinect
- Sử dụng các mô hình invert Kinectics

Source: http://mocap.cs.cmu.edu/tools.php

Skeleton-based approaches (VIII)

[Hussein2013]: Covariance Descriptor

• [Ofli2012]: SMIJ

- Key idea: using Covariance Descriptors on Most Informative Joints.
- Main contributions:
 - Detection of most informative joints
 - Add temporal information into Covariance descriptors

- The Most Informative Joints
 - Purpose: Identify the most informative joints (MIJ) on each action.
 - Most informative joints are defined as the joints with highest variation in 3D positions

Process

- Step 1: Detecting candidates of most informative joints of each action for each people
- Step 2: Detecting the most informative joints of each action

 Step 1: Detecting candidates of most informative joints of each action for each people

- Step 2: Detecting the most informative joints of each action
 - For each action performed by each subject other people, a set of the MIJ is determined by Step 1
 - Determining the MIJ for the to-be-considered action through voting scheme on the sets of MIJ of all peoples

Voting

 Key idea: using Covariance Descriptors on Most Informative Joints

Covariance Descriptors(Cov3Dy) Vietnam

- Original work by Hussein et al. in JICAl'13
- Main ideas:
 - Using Covariance Descriptor for action representation
 - Using Temporal Hierarchy for action representation at different levels
- Advantages:
 - Compact representation (a vector of 1830 dimensions for each skeletal sequence at one layer of skeleton with 20 joints)
 - Taking into account the order of motion in time
 - Efficient on MSRAction 3D, MSRC12, HMD05 datasets

This method employs information of all joints. However, the engagement of the joints in the actions is different.

Covariance Descriptor (Cov3DJ)

$$S = [X_1, X_2, ..., X_k, Y_1, Y_2, ..., Y_k, Z_1, Z_2, ..., Z_k]'$$

$$C(S) = \frac{1}{T - 1} \sum_{t=1}^{T} (S - \overline{S})(S - \overline{S})'$$

x, y, z are coordinate of k joints at time t k is number MIJ

Al Academy Vietnam

Temporal Hierrachy

- Compute Covariance Descriptor at different levels
- Two options: overlapping and non-overlapping

Concatenate Covariance Descriptor at all levels final vector for action representation

Non-overlapping

Overlapping

Most Informative Joint Detection

Hand Clap (MSRAction 3D Dataset)

Most Informative Joint Detection

Golf Swing (MSRAction 3D Dataset)

Hạn chế

 Hai hoạt động khác nhau nhưng lại được biểu diễn giống nhau (qua local joint)

Nhận dạng hoạt động bất thường ki Academy

Normal event

Abnormal

Normal event

Strict area

Airport

Hall

THE PAPER BY THE BY THE PAPER BY THE BY

ATM

#2011 =11 -14 :

Entra nce Gate

Một số CSDL

- Action Datasets: CAVIAR, BEHAVE, UT-Interaction, UCF101
- Dedicated violence datasets: Hockey, Movies, Violent Scenes, Violent Flows

Punching

Pushing

Pointing

Dataset	Color	Audio	Labels	BB	Sub
CAVIAR	✓	X	✓	✓	×
BEHAVE	✓	X	✓	✓	X
UT	✓	X	✓	✓	X
_ <u>UCF101</u>		_		_ x _	_ X _
Hockey	✓	X	✓	X	X
Movies	✓	X	✓	×	X
VSD	✓	✓	✓	✓	✓
Violent-Flows	✓	X	✓	X	X

Features of each Datasets (Taken from [5])

Khung công việc

- Using short input clips from the long sequences
- Formulated as binary classification: violence vs. nonviolence)

- Feature extraction:
 - Investigating features extracted at different levels of 3-D Convolution Neuron Network
- Classification
 - Investigating performances of different classifiers: SVM, MLP, RF, Adaboosts.

- Proposed by [Tran15]:
 - 8 Conv. Layers by 3-D Convolution
 - 5 max pooling, 2 Fully connected layers

3-D Conv.

Dimension of features extracted at FC6 and FC7: 4096
 → cover both spatial and temporal information

C3D Network training

- Utilizing a pre-trainned model of C3D on sport-1M
- For fine-tuning:
 - Five 2-sec. clips are extracted randomly
 - 16 frames clip is randomly cropped to procedure 16x128x171 volumme inputs to network for training

- Examining performances of 6 classifiers
 - K-Nearest Neighbor (K-NN), Linear and non-Linear (BRF) SVM, Decision tree, Random Forest, Neural Net Multiple Perception (MLP), Adaboost.

Hockey Datasets

- JUULIUU IIGITUI IIGITUI IIGITUI IIG
- Violence clips: fighting, pushing, beating of players
- Non-fighting clips: hockey or isolated movements

Movies dataset

- 200 clips
- 100:100 fighting/non-fighting
- 100 Violence clips: extracted from movies or sport
- 100 non-fighting clips: extracted from public action recognition datasets

Comparative results of deep-learning based feature Vietnam hand-designed ones (in existing works)

TABLE I. COMPARISION OF THE STUDIED METHOD WITH EXISTING ONES ON HOCKEY DATASET

Features	Classifier	Accuracy	AUC
STIP(HOG) [7]	SVM-HIK	91.7	-
STIP(HOF) [7]	SVM-HIK	88.6	-
MoSIFT [7]	SVM-HIK	90.9	-
IVF [14]	SVM	93.70	-
3D CNN [9]	Softmax	91.00	
Our studied method	K-NN	93.39	98.00
(Features extracted	SVM (Linear)	95.50	99.00
from FC6 layer of	SVM - RBF	48.30	49.00
C3D)	Decision Tree	87.70	85.00
	Random Forest	82.50	89.00
	Neural Net MLP	95.50	99.00
	Adaboost	92.50	98.00

TABLE II. COMPARISION OF THE STUDIED METHOD WITH EXISTING ONES ON MOVIE DATASET

Features	Classifier	Accuracy	AUC
STIP(HOG) [7]	SVM+HIK	49.0	-
STIP(HOF) [7]	SVM+HIK	59.0	-
MoSIFT [7]	SVM+HIK	89.5	-
IVF [14]	SVM	99.5	-
Our studied method	K-NN	97.90	100.0
(Features extracted	SVM (Linear)	98.94	100.0
from FC7 layer of	SVM - RBF	45.35	50.00
C3D)	Decision Tree	88.01	87.00
	Random Forest	93.18	99.00
	Neural Net MLP	98.94	100.0
	Adaboost	97.39	99.00

On Hockey Dataset

On Movie Dataset

- The C3D-based features are efficient than hand-crafted ones: HOG, HOF or MoSIFT
- Performances are stable on both datasets
 - Robust to viewpoint and scale.
 - Depending on variation of fighting: e.g., in movies dataset is higher than Hockey datasets

Classifier performances vs. computation Al Academy time

C3D -based Features extraction /videos (s)	Classification computational time (s)/video			
	K-NN	4		
	SVM (Linear)	0.8		
4.273	SVM-RBF	3.1		
	Decision tree	0.01		
	Random Forest	0.01		
	Neural Net MLP	0.01		
	Adaboost	0.05		

- Linear SVM and Neural Net obtain highest results
- K-NN and adaboost have comparable results
- RBF SVM is the worst

Phát hiện hoạt động bất thường từ vide vide sử dụng học không giam sát

Hướng tiếp cận Unsupervised Vietnam

- Xây dựng bộ từ điển đã định nghĩa về các hoạt động
- Tìm các cụm "hoạt động" có sự đồng xuất hiện các "từ"
- Đánh giá sự khác biệt giữa các cụm
 Các đoạn video có thể overlap

Sơ đồ tổng quát

- ❖Nhận diện vật thể có chuyển động trong video
- Xây dựng bộ từ điển hoạt động cơ bản
- *Xây dựng ma trận trọng số của biểu đồ
- ❖Áp dụng thuật toán Normalized Cut

Trích chọn đặc trưng chuyển đông

- ❖ Sử dụng dense optical flow [Gunner Farneback's algorithm]
- ❖Sử dụng các trích chọn từ C3D

- ❖ Ngoài đặc trưng chuyển động có thể sử dụng
 - ❖ Các đặc trưng về màu sắc (color), texture
 - ❖ Sự biến đổi các đặc trưng theo thời gian

- * Xây dựng các "từ" mô tả chuyển động
- Mỗi frame ảnh được đưa về biểu đồ không thời gian có size 10x10:

- * Xây dựng ma trận đồng xuất hiện:
- Phân tách video thành các phân đoạn trượt video với tốc độ 60 frame ảnh 1 phân đoạn và độ chồng lấp giữa 2 phân đoạn là 30 frame ảnh

- Xây dựng ma trận đồng peuất hiện pgiữa phận đoạn video prođặ petính cơ bản:

Segment 1	1	1	0		0
Segment 2	0	1	1	•••	1
	•••	•••		•••	
Segment N	0	1	1	0	0

❖ Xây dựng ma trận trọng số:

	Seg1	Seg2	 Prt1	Prt2	•••
Seg1					
Seg2		I		C	
Prt1					
Prt2		C^T		β.S	
				-	

Ma trận trọng số W biểu hiện mối quan hệ giữa các nodes trong graph G

Trong đó:

I: ma trận đơn vị biểu diễn quan hệ giữa các phân đoán

S: ma trận biểu diễn quan hệ giữa các prototype features với nhau, được đo bằng thử nghiệm chi-square

* Thuật toán Graph-cut:

Lý thuyết xây dựng đồ thị:

"Các điểm trong không gian dữ liệu hay các pixel trong bức ảnh có thể được biểu diễn dưới dạng các nodes thuộc đồ thị G = (V, E). Giữa các

assoc(B.V)

- Thuật toán Graph-cut:
- Giả thuyết:
 - Đã xây dựng được đồ thị G = (V, E)

- Độ không tương đồng giữa 2 tập con:

$$cut(A,B) = \sum_{u \in A, v \in B} w(u,v)$$

=> Bài toán tối ưu hóa chính là cắt sao cho giá trị cut(A, B) là nhỏ nhất.

Kết quả phát hiện

- * Áp dụng thuật toán Normalized Cut với biểu đồ:
- $x: V \cup P \to \mathbb{R}^N$ thể hiện vị trí sắp xếp của các phân đoạn video và đặc tính cơ bản ở không gian 1 chiều
- xác định trị riêng nhỏ nhất khác 0 và vector riêng tương ứng của phương trình đặc trưng:

$$(D - W)x = \lambda Dx$$

Tiếp tục sử dụng thuật toán K-Mean để xác định phân đoạn nào là khác biệt nhất

Một số kết quả

Al Academy Vietnam

Nội dung thực hành

- Chọn video từ dataset (gồm 1 sự kiện bất thường)
- Trích chọn đặc trựng motion dense
- Xây dựng bộ từ điển và định nghĩa các "từ" (là các thành phần của chuyển động)
- Chia các đoạn video thành segment (có overlap)
- Xây dựng ma trận đồng xuất hiện (từ segment)
- Xây dựng ma trận similar giữa các từ
- Xây dựng ma trận W (graph) thể hiện quan hệ giữa các từ và thời điểm xảy ra, với trọng số tương ứng
- Thực hiện thuật toán Normalized cut để cut các đoạn thành các cụm
- Tính khoảng cách giữa các cụm