TEMA №19

Матрици

Съдържание

Тема 19: Матрици

- Матрици и геометрии
- Транслация
- Мащабиране
- Ротация

Матрици и геометрии

Употреба на матрици

- Моделиране на трансформации (транслация, ротация, мащабиране)
- Анимация чрез матрици
- Проекция и перспектива
- Контрол на гледната точка

Матриците

Направо за 3D пространство

- 2D трансформациите са частни случаи
- Хомогенни координати (т.е. 4x4)

$$M = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

– Да припомним: точка $P(p_x, p_y, p_z)$ в хомогенни координати е $P(p_x, p_y, p_z, 1)$

Видове матрици

Базисни матрици

- Базисните трансформации и анимации се моделират с базисни матрици
- Сложните трансформации и анимации се моделират със съставни матрици

Получаване на съставни матрици

— Чрез умножение на базисни матрици $M = M_1 M_2 M_3 \dots M_n$

Единична матрица

– Запазва непроменен обекта

$$egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

 Всички базисни матрици са леко изменени единични матрици

Характеристики

Преимущества

- Почти всичко се прави с матрици
- Лесно и еднотипно изчисляване
- Вместо няколко базисни матрици се ползва направо съставната им
- Налични са в много графични системи

Недостатъци

– Всяват страх у непросветените

Геометрии

Геометрии в Компютърната графика

- Конгруентна геометрия

 (еднаквостна геометрия, напр. Евклидовата)
- Конформална геометрия (геометрия на подобностите)
- Афинна геометрия
- Проективна геометрия
- Топологична геометрия

Различните геометрии

Да ги видим

 Плочка се деформации според свойствата на различни геометрии

Сравнение

Сравнение на геометриите

 В някои геометрии само някои трансформации (т.е. матрици) са приложими

	Транслация и ротация	Промяна на мащаб	Скосяване	Централна проекция	Сферично отражение
Конгруентна	ДА				
Конформална	ДА	ДА			
Афинна	ДА	ДА	ДА		
Проективна	ДА	ДА	ДА	ДА	
Топологична*	ДА	ДА	ДА	ДА	ДА

Също и само някои свойства се запазват в някои геометрии

	Дължини	Ъгли	Успоредност	Линейност	Инцидентност
Конгруентна	ДА	ДА	ДА	ДА	ДА
Конформална		ДА	ДА	ДА	ДА
Афинна			ДА	ДА	ДА
Проективна				ДА	ДА
Топологична					ДА

Мощност

Друг факултет

Мощност на геометриите

Пример с трансформационна матрица

- Ако има коефициенти за скосяване
- Не е подходяща за афинни трансформации
- Използването ѝ ще развали ъглите
 (В компютърната графика "използване на матрица" означава умножение на вектори или матрици с тази матрица)

Транслация

Транслация

Транслация без матрица

– Стандартно събиране на вектори $P + \vec{v} = (p_x + v_x, p_v + v_v, p_z + v_z)$

Транслация с матрица

Транслация по осите X, Y и Z

— Базисни матрици $T_{\mathcal{X}}$, $T_{\mathcal{Y}}$ и $T_{\mathcal{Z}}$ при транслация на разстояние d

$$T_{x}(d) = \begin{pmatrix} 1 & 0 & 0 & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, T_{y}(d) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, T_{z}(d) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

— Матрица T при транслация с вектор \vec{v} $T(\vec{v}) = T_x(v_x)T_v(v_v)T_z(v_z)$

– да намерим явен вид на
$$I(v)$$

- Да намерим явен вид на
$$T(\vec{v})$$
- $T(\vec{v}) = T_x(v_x)T_y(v_y)T_z(v_z)$

$$= \begin{pmatrix} 1 & 0 & 0 & v_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & v_y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & v_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & v_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Да намерим явен вид на
$$T(\vec{v})$$
- $T(\vec{v}) = T(v)T(v)T(v)$

– Да намерим явен вид на
$$T(\vec{v})$$

- Да намерим явен вид на
$$T(ec{v})$$

– Да намерим явен вид на
$$T(\vec{v})$$

– Да намерим явен вид на
$$T(ec{v})$$

– Да намерим явен вид на
$$T(ec{v})$$

Пример

Пример с транслация

- Точка (4, -2,0)
- Преместваме с вектор (2,3, -1)

$$\begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ -2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ -1 \\ 1 \end{pmatrix} = (6,1,-1)$$

Реализация

Реализация на транслация по вектор

– Пример за транслация

Мащабиране

Мащабиране

Мащабиране без матрица

– Приемаме в общия случай за 3D мащаб да се задава с вектор $\overrightarrow{m} \big(m_{\chi}, m_{y}, m_{z} \big)$

Реализация

– Чрез умножение на координатите

```
q_x = m_x p_x
q_y = m_y p_y
q_z = m_z p_z
```

- При конформалната геометрия мащабът трябва да е един: $m_\chi = m_\gamma = m_Z$
- При афинната може да е различен по осите
- Бонус 3т: а при конгруентна геометрия?

Мащабиране с матрица

Мащабирания по осите X, Y и Z

— Базисни матрици $S_{\mathcal{X}}$, $S_{\mathcal{Y}}$ и $S_{\mathcal{Z}}$ при мащаб с коефициент m

$$S_{x}(m) = \begin{pmatrix} m & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, S_{y}(m) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & m & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, S_{z}(m) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & m & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

– Матрица S при мащабиране с вектор \vec{v}

$$-S(\vec{v}) = S_x(v_x)S_y(v_y)S_z(v_z)$$

– Да намерим явен вид на
$$S(ec{v})$$

— да намерим явен вид на
$$S(v)$$

$$-S(\vec{v}) = S_{\mathcal{X}}(v_{\mathcal{X}})S_{\mathcal{Y}}(v_{\mathcal{Y}})S_{\mathcal{Z}}(v_{\mathcal{Z}})$$

$$= \begin{pmatrix} v_{\mathcal{X}} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & v_{\mathcal{Y}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & v_{\mathcal{Z}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{bmatrix} v_{\mathcal{X}} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\vec{v}(v_x, vy, vz)$

$$=\begin{pmatrix} \boldsymbol{v_x} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \boldsymbol{v_y} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \boldsymbol{v_z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Пример

Пример с мащабиране

- Точка (4, -2,5)
- Мащабираме с вектор (0.5,1.5,0.8)

$$\begin{pmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 1.5 & 0 & 0 \\ 0 & 0 & 0.8 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ -2 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 4 \\ 1 \end{pmatrix} = (2, -3.4)$$

Конформалност

Конформалност в мащабирането

- Мащабите по осите са равни
- Ползват се и хомогенни координати

$$S(m)P = (mp_x, mp_y, mp_z) = (mp_x, mp_y, mp_z, 1) = \left(p_x, p_y, p_z, \frac{1}{m}\right)$$

$$S(m) = \begin{pmatrix} m & 0 & 0 & 0 \\ 0 & m & 0 & 0 \\ 0 & 0 & m & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{m} \end{pmatrix}$$

Съставно мащабиране

Мащабиране спрямо 3D точка

- Базисното мащабиране е винаги спрямо (0,0,0)

Алгоритъм

- Транслираме така, че точката спрямо която мащабираме да попадне в (0,0,0)
- Мащабираме
- Връщаме точката с обратна транслация

Илюстрация

Реализация

Реализация на мащабиране

- Еднакъв мащаб
- С хомогенни координати
- С мащабиращ вектор

Ротация

Ротация

Ротация без матрица

- Рядко се прилага в 3D, по-често в 2D
- От $|\vec{p}|$, α и β лесно намираме Q

$$\begin{vmatrix} q_x = p_x \cos \alpha - p_y \sin \alpha \\ q_y = p_x \sin \alpha + p_y \cos \alpha \end{vmatrix}$$

С матрица

$$Q = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} P$$

Ротация с матрица

Базисни ротации в 3D

- Около оста Z

(това е същото въртене като в предходния 2D пример)

$$R_{\mathbf{z}}(\alpha) = egin{pmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \ \sin \alpha & \cos \alpha & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$
 Kato B 2D

– Проверяваме и получаваме очакваното

$$R_z(\alpha)P = (p_x \cos \alpha - p_y \sin \alpha, p_x \sin \alpha + p_y \cos \alpha, p_z)$$

Ротация около другите оси

- Получават се аналогично
- Ротация около Х

$$R_{\chi}(\alpha) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 Kato в 2D

Ротация около Y

$$R_{y}(\alpha) = egin{pmatrix} \cos \alpha & 0 & \sin \alpha & 0 \ 0 & 1 & 0 & 0 \ -\sin \alpha & 0 & \cos \alpha & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$
 Почти като в 2D 3ащо?!?

– Да проверим къде отива \vec{X} при ъгъл $\alpha=\frac{\pi}{2}$

$$R_{y}\left(\frac{\pi}{2}\right)\vec{X} = \begin{pmatrix} \mathbf{0} & 0 & \mathbf{1} & 0 \\ 0 & 1 & 0 & 0 \\ -\mathbf{1} & 0 & \mathbf{0} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix} = -\vec{Z}$$

– т.е. $R_{\mathcal{V}}$ върти "надолу", от \vec{Z} към \vec{X}

– При обратно въртене, от \vec{X} към \vec{Z} или $\alpha = -\frac{\pi}{2}$, матрицата ще е както очаквахме

Да проверим

– Матрица за въртене от $ec{X}$ към $ec{Z}$

$$\overline{R_y}(\alpha) = \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ \sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

– А ето и при обратен ъгъл

$$-R_{y}(-\alpha) = \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ \sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \overline{R_{y}}(\alpha)$$

Та ето затова!

Ако в някой източник намерите матриците по по-различен начин, проверете следните неща:

- Дали са за лява или за дясна координатна система
- Дали се умножават пред или зад векторите
- Дали редът на осите е XYZ
- Дали няма печатна грешка

Обобщена матрица

Не става в общия случай

- При транслации редът на прилагане на T_{χ} , T_{y} и T_{z} може да е произволен
- При ротации редът на прилагане на R_{χ} , R_{y} и R_{z} не може да е произволен

Пример с въртене на 90 градуса

- Вариант 1: около \vec{X} , около \vec{Y} , около \vec{Z}
- Вариант 2: около \vec{Y} , около \vec{Z}

Точка (0,1,0)

- При вариант 1: (0,1,0) → (0,1,0)
- При вариант 2: (0,1,0) → (0,0,1)

ПАК ВАЖНО

Ако прилагаме първо матрица M_1 , после M_2 и накрая M_3 :

- Общата матрица е $M = M_3 M_2 M_1$
- Редът е обратен първата приложена трансформация записваме последна
- Помни се, като че ли M_i са функции: $MA = M_3 M_2 M_1 A = M_3 \left(M_2 \left(M_1 (A) \right) \right)$

Съставна ротация

Ротация в 2D около точка

- Базисната ротация в 2D е винаги около точката (0,0)

Алгоритъм

- Транслираме така, че точката около която въртим да попадне в (0,0)
- Въртим около (0,0)
- Връщаме точката с обратна транслация

Илюстрация

Реализация

Реализация на ротация около точка

– Пример за 2D ротация ... в 3D

Снимка: Щефан Биневийс, http://www.capella-observatory.com

Въртене около права

Дадена е права от точка L и вектор $ec{v}$

- Въртим друга точка P около тази права
- Използваме само базисни матрици, но за сметка на

Алгоритъм

Алгоритъм на въртене

- 1. Транслираме $L \to \text{точката } (0,0,0)$
- 2. Въртим около Z, че $\vec{v}
 ightarrow$ равнината XZ
- 3. Въртим около Y, че $\vec{v} \rightarrow$ оста Z
- 4. Въртим P около Z на желания ъгъл
- 5. Правим обратното на 3
- 6. Правим обратното на 2
- 7. Правим обратното на 1

Матрици M_1 и M_7

Първата и последната матрици – транслации

- Ако $\vec{p}=\overrightarrow{OP}$, то P се транслира в O с $T(-\vec{p})$
- Обратната транслация е $T(\vec{p})$

$$M_1 = T(-\vec{p}) = \begin{pmatrix} 1 & 0 & 0 & -p_x \\ 0 & 1 & 0 & -p_y \\ 0 & 0 & 1 & -p_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad M_7 = T(\vec{p}) = \begin{pmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Матрици M_2 и M_6

Въртене без да знаем ъгъла

- Въртим $ec{v}$ около Z, за да попадне в равнината XZ

$$R_{z}(-?) = \begin{pmatrix} \cos? & \sin? & 0 & 0 \\ -\sin? & \cos? & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Y
$$\cos? = \frac{v_x}{\sqrt{v_x^2 + v_y^2}} \quad \sin? = \frac{v_y}{\sqrt{v_x^2 + v_y^2}}$$

- Така за матрица M_2 получаваме

$$M_2 = egin{pmatrix} v_x & v_y & v_y & 0 & 0 \ \hline \sqrt{v_x^2 + v_y^2} & \sqrt{v_x^2 + v_y^2} & 0 & 0 \ \hline \sqrt{v_x^2 + v_y^2} & \sqrt{v_x^2 + v_y^2} & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$
 Разликата е само в тези минуси

— За M_6 въртенето е в обратна посока $\begin{pmatrix} v_x & -v_y & 0 & 0 \end{pmatrix}$

- За
$$M_6$$
 въртенето е в обра
$$M_6 = \begin{pmatrix} \frac{v_x}{\sqrt{v_x^2 + v_y^2}} & \frac{-v_y}{\sqrt{v_x^2 + v_y^2}} & 0 & 0 \\ \frac{v_y}{\sqrt{v_x^2 + v_y^2}} & \frac{v_x}{\sqrt{v_x^2 + v_y^2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Матрици M_3 и M_5

Аналогично на M_2 и M_6

– Завъртаме \vec{v} около Y, за да попадне върху оста Z

$$R_{y}(-\dot{\epsilon}) = \begin{pmatrix} \cos \dot{\epsilon} & 0 & -\sin \dot{\epsilon} & 0 \\ 0 & 1 & 0 & 0 \\ \sin \dot{\epsilon} & 0 & \cos \dot{\epsilon} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\cos \xi = \frac{v_x}{\sqrt{v_x^2 + v_y^2 + v_z^2}} \quad \sin \xi = \frac{\sqrt{v_x^2 + v_y^2}}{\sqrt{v_x^2 + v_y^2 + v_z^2}}$$

— Така за матрица
$$M_3$$
 и M_5 получаваме
$$\begin{pmatrix} v_z & -\sqrt{v_x^2+v_y^2} & 0 \\ \sqrt{v_x^2+v_y^2+v_z^2} & 0 & \sqrt{v_x^2+v_y^2+v_z^2} \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
 $M_3 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \sqrt{v_x^2+v_y^2+v_z^2} & 0 & 0 \end{pmatrix}$

$$M_{3} = \begin{pmatrix} v_{z} & -\sqrt{v_{x}^{2} + v_{y}^{2}} & 0 \\ \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}} & \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}} & 0 \\ 0 & 1 & 0 & 0 \\ \sqrt{v_{x}^{2} + v_{y}^{2}} & 0 & \frac{v_{z}}{\sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}} & 0 \\ \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}} & 0 & \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $M_5 =$

$$M_{3} = \begin{pmatrix} v_{z} & -\sqrt{v_{x}^{2} + v_{y}^{2}} & \sqrt{v_{x}^{2} + v_{y}^{2}} & \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}} & \sqrt{v_{x}^{2} + v_{y}^{2}} & \sqrt{v_{z}^{2} + v_{y}^{2} + v_{z}^{2}} & \sqrt{v_{z}^{2} + v_{z}^{2} + v_{z}^{$$

Матрица М4

Остава матрица M_4

- Въртене около Z на желания ъгъл lpha

$$M_4 = R_z(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 & 0\\ \sin \alpha & \cos \alpha & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Цялостната трансформация е $M=M_7M_6M_5M_4M_3M_2M_1$
- Можем да ги умножим ръчно и да видим как изглежда M, но резултатът е ... франкенщайново-квазимодов

Затова

- Нека оставим умножението на софтуера
- Често може да се намери пълното изписване на M, но за частен случай, като например за единичен вектор \vec{v}

Реализация

Реализация на ротация около линия

Пример за ротация в 3D

Въпроси?

Повече информация

[AGO1]	стр. 67-71	[LENG]	стр. 71-80
[ALZH]	гл. 3	[MORT]	стр. 47-68
[BAGL]	стр. 135-136	[PARE]	стр. 39-42
[GRIM]	стр. А11-А22	[SEAK]	стр. 31-33
[KLAW]	стр. 100-104	[VINC]	стр. 51-73
[KLRO]	стр. 13-15	[ZHDA]	стр. 209-224

А също и:

 Rotation About an Arbitrary Axis in 3 Dimensions http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/

Край