TP 1 - Statistique bayésienne

Franck Corset

Master 2 - SSD

Cas Gaussien

On suppose que $X \sim \mathcal{N}(\mu, \sigma^2)$ avec σ^2 connue.

On prend comme loi a priori sur μ , $\mathcal{N}(\mu_0, \tau^2)$.

Mettre en place un programme permettant de comparer la loi a posteriori et la loi a priori en faisant varier les paramètres du modèle.

Cas Bernoulli

On suppose que $X \sim \mathcal{B}(1, \theta)$ (loi de Bernoulli).

On prend comme loi a priori sur θ , une loi Beta, $\mathcal{B}(a,b)$.

Etudier la loi Beta en faisant varier les paramètres a et b. Donner l'espérance et la variance.

Mettre en place un programme permettant de comparer la loi a posteriori et la loi a priori en faisant varier les paramètres du modèle.

Loi de Poisson

On suppose que $X \sim \mathcal{P}(\theta)$.

On choisit comme loi a priori sur θ , la loi Gamma, notée $\Gamma(a,b)$.

Etudier la loi Gamma en faisant varier les paramètres a et b. Donner l'espérance et la variance.

Mettre en place un programme permettant de comparer la loi a posteriori et la loi a priori en faisant varier les paramètres du modèle.

Loi Exponentielle

On suppose que $X \sim \mathcal{E}(\lambda)$.

On choisit comme loi a priori sur λ , la loi Gamma, notée $\Gamma(a,b)$.

Mettre en place un programme permettant de comparer la loi a posteriori et la loi a priori en faisant varier les paramètres du modèle.

Loi de Weibull

Soit $X \sim \mathcal{W}(\eta, \beta)$ de densité à support sur \mathbb{R}^+

$$f(x) = \frac{\beta}{\eta} \left(\frac{x}{\eta}\right)^{\beta - 1} e^{-\left(\frac{x}{\eta}\right)^{\beta}}$$

On suppose que η est connu. On prend une loi uniforme sur [1,5] pour β .

Ecrire la vraisemblance et donner la loi a posteriori. Mettre en oeuvre un programme permettant de calculer l'estimateur bayésien. Le comparer à l'estimateur du maximum de vraisemblance.

Loi de Cauchy

Soit $X \sim \mathcal{C}(\mu, 1)$ de densité à support sur \mathbb{R}

$$f(x) = \frac{1}{\pi} \frac{1}{(1 + (x - \mu)^2)}$$

Ecrire la vraisemblance et programmer une fonction permettant de caculer l'estimation par maximum de vraisemblance.

Dans un cadre bayésien, on suppose que $\mu \sim \mathcal{N}(\mu_0, \sigma^2)$.

Calculer la densité a posteriori et mettre en place un algorithme permettant de donner l'estimation bayésienne ainsi que des intervalles de crédibilité.