# 01 - Caracterización de Sistemas Distribuidos

Cristian Ruz - cruz@ing.puc.cl

Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile

Semestre 2-2020

### Contenidos

- Introducción
  - Motivación
- 2 Caracterización de Sistemas Distribuidos
- 3 Diseño de Sistemas Distribuidos
- Tipos de sistemas distribuidos

### Contenidos

- Introducción
  - Motivación
- 2 Caracterización de Sistemas Distribuidos
- 3 Diseño de Sistemas Distribuidos
- 4) Tipos de sistemas distribuidos



3 / 47

 Individualmente, elija 2 sistemas distribuidos que conozca o use



4 U > 4 🗗 > 4 E > 4 E > E 990

- Individualmente, elija 2 sistemas distribuidos que conozca o use
- Individualmente, ¿Cuál es la mayor dificultad (técnica) que tendría si tuviera que implementar estos sistemas?



- Individualmente, elija 2 sistemas distribuidos que conozca o use
- Individualmente, ¿Cuál es la mayor dificultad (técnica) que tendría si tuviera que implementar estos sistemas?
- En grupo, escojan 2 y determinen la(s) mayor(es) dificultad(es) técnica(s) que tendrían que resolver si tuvieran que implementarlos.



- Individualmente, elija 2 sistemas distribuidos que conozca o use
- Individualmente, ¿Cuál es la mayor dificultad (técnica) que tendría si tuviera que implementar estos sistemas?
- En grupo, escojan 2 y determinen la(s) mayor(es) dificultad(es) técnica(s) que tendrían que resolver si tuvieran que implementarlos.
- En grupo, ¿qué características comparten los sistemas que escogieron?



- Individualmente, elija 2 sistemas distribuidos que conozca o use
- Individualmente, ¿Cuál es la mayor dificultad (técnica) que tendría si tuviera que implementar estos sistemas?
- En grupo, escojan 2 y determinen la(s) mayor(es) dificultad(es) técnica(s) que tendrían que resolver si tuvieran que implementarlos.
- En grupo, ¿qué características comparten los sistemas que escogieron?
- **5** Uno por grupo, comparte el resumen.



# ¿Dónde no hay sistemas distribuidos?

- Internet, WWW
- Streaming, YouTube, UStream,
- Juegos multiplayer
- Multicores, tarjetas gráficas
- Servicios remotos ..., Facebook, Twitter, Instagram
- Teléfonos móviles, vehículos,



### Desde lo secuencial . . .

- Una CPU, un thread, un flujo de instrucciones
- ullet También hay multitasking o múltiples  $\it{threads}$





### ... hacia lo distribuido

 Muchas CPUs, muchos threads, muchos flujo de instrucciones





↓□▶ ↓□▶ ↓ □▶ ↓ □▶ ↓ □ ♥ ♀ ○

7 / 47

### ... hacia lo distribuido

- Muchas CPUs, muchos threads, muchos flujo de instrucciones
- Multitasking real
  - Threads ejecutan simultáneamente





### ... hacia lo distribuido

- Muchas CPUs, muchos threads, muchos flujo de instrucciones
- Multitasking real
  - Threads ejecutan simultáneamente
  - ¿Cómo se coordinan?
  - ¿Memoria compartida o paso de mensajes?





7 / 47

 Individualmente, elabore una definición de un sistema distribuido.



- Individualmente, elabore una definición de un sistema distribuido.
- En grupo, compartir la definición y elaborar una grupal



- Individualmente, elabore una definición de un sistema distribuido.
- En grupo, compartir la definición y elaborar una grupal
- Uno por grupo, comparte la definición.



John decide proveer un servicio de venta de tickets para conciertos, eventos deportivos, etc.

Tres simples pasos: Usted nos llama, hacemos su reserva y cuando desee retira su entrada.



Adaptación del ejemplo publicado en: http://ksat.me/a-plain-english-introduction-to-cap-theorem/

> C.Ruz (PUC) IIC2523

2/2020

9 / 47

¡Implementémoslo!

#### Dos servicios:

- Reserva de puestos
- Entrega de entradas

#### Versión 1

- John recibe llamadas telefónicas
- John anota reservas en un cuaderno
- John entrega entradas

¡Sistema centralizado!, pero funciona



2/2020

10 / 47

C.Ruz (PUC)

¡Implementémoslo!

#### Dos servicios:

- Reserva de puestos
- Entrega de entradas

#### Versión 1

C.Ruz (PUC)

- John recibe llamadas telefónicas
- John anota reservas en un cuaderno
- John entrega entradas

¡Sistema centralizado!, pero funciona



¡Implementémoslo!

#### Dos servicios:

- Reserva de puestos
- Entrega de entradas

#### Versión 1

- John recibe llamadas telefónicas
- John anota reservas en un cuaderno
- John entrega entradas

¡Sistema centralizado!, pero funciona



¡Implementémoslo!

#### Dos servicios:

- Reserva de puestos
- Entrega de entradas

#### Versión 1

- John recibe llamadas telefónicas
- John anota reservas en un cuaderno
- John entrega entradas

¡Sistema centralizado!, pero funciona



¡Implementémoslo!

#### Dos servicios:

- Reserva de puestos
- Entrega de entradas

#### Versión 1

- John recibe llamadas telefónicas
- John anota reservas en un cuaderno
- John entrega entradas

¡Sistema centralizado!, pero funciona



¡Implementémoslo!

#### Dos servicios:

- Reserva de puestos
- Entrega de entradas

#### Versión 1

- John recibe llamadas telefónicas
- John anota reservas en un cuaderno
- John entrega entradas

¡Sistema centralizado!, pero funciona



¡Implementémoslo!

#### Dos servicios:

- Reserva de puestos
- Entrega de entradas

#### Versión 1

- John recibe llamadas telefónicas
- John anota reservas en un cuaderno
- John entrega entradas

¡Sistema centralizado!, pero funciona



¿Cómo atender la demanda?  $\rightarrow$  Sistema distribuido

Servicio muy popular



4□ ト 4 昼 ト 4 差 ト 差 り Q ○

11 / 47

¿Cómo atender la demanda? 

Sistema distribuido

- Servicio muy popular
- Jaime llama, pero John está ocupado atendiendo a Yadran



4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

11 / 47

¿Cómo atender la demanda? 

Sistema distribuido

- Servicio muy popular
- Jaime llama, pero John está ocupado atendiendo a Yadran
- Jaime se queja del mal servicio



◄□▶◀圖▶◀불▶◀불▶ 불 ∽٩०

11 / 47

¿Cómo atender la demanda? 

Sistema distribuido

- Servicio muy popular
- Jaime llama, pero John está ocupado atendiendo a Yadran
- Jaime se queja del mal servicio

### ¡Baja disponibilidad (availability)!



◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かくで

11 / 47

¿Cómo atender la demanda? 

Sistema distribuido

- Servicio muy popular
- Jaime llama, pero John está ocupado atendiendo a Yadran
- Jaime se queja del mal servicio

¡Baja disponibilidad (availability)! Versión 2



IIC2523

# **Book Your Concert!**

¿Cómo atender la demanda? 

Sistema distribuido

- Servicio muy popular
- Jaime llama, pero John está ocupado atendiendo a Yadran
- Jaime se queja del mal servicio

### ¡Baja disponibilidad (availability)! Versión 2

- John contrata a Raúl
- Ambos anotan reservas, entregan entradas y llevan sus registros
- Un pbx balancea las llamadas



11 / 47

C.Ruz (PUC)

¿Cómo atender la demanda? 

Sistema distribuido

- Servicio muy popular
- Jaime llama, pero John está ocupado atendiendo a Yadran
- Jaime se queja del mal servicio

### ¡Baja disponibilidad (availability)! Versión 2

- John contrata a Raúl
- Ambos anotan reservas, entregan entradas y llevan sus registros
- Un pbx balancea las llamadas



11 / 47

¿Cómo atender la demanda? 

Sistema distribuido

- Servicio muy popular
- Jaime llama, pero John está ocupado atendiendo a Yadran
- Jaime se queja del mal servicio

### ¡Baja disponibilidad (availability)! Versión 2

- John contrata a Raúl
- Ambos anotan reservas, entregan entradas y llevan sus registros
- Un pbx balancea las llamadas



2/2020

11 / 47

C.Ruz (PUC) IIC2523

¿Cómo atender la demanda? 

Sistema distribuido

- Servicio muy popular
- Jaime llama, pero John está ocupado atendiendo a Yadran
- Jaime se queja del mal servicio

### ¡Baja disponibilidad (availability)! Versión 2

- John contrata a Raúl
- Ambos anotan reservas, entregan entradas y llevan sus registros
- Un pbx balancea las llamadas

### ¡Sistema ha escalado al doble de su capacidad!



¡Clientes descontentos!



¡Clientes descontentos!

• John entrega a Jaime puesto P9



C.Ruz (PUC) IIC2523 2/2020 12 / 47

#### ¡Clientes descontentos!

- John entrega a Jaime puesto P9
- Raúl entrega a Yadran puesto
   P9



C.Ruz (PUC) IIC2523

#### ¡Clientes descontentos!

- John entrega a Jaime puesto P9
- Raúl entrega a Yadran puesto
   P9
- Jaime y Yadran se quejan del mal servicio



C.Ruz (PUC) IIC2523

#### ¡Clientes descontentos!

- John entrega a Jaime puesto P9
- Raúl entrega a Yadran puesto P9
- Jaime y Yadran se quejan del mal servicio

#### ¡No hay consistencia!



C.Ruz (PUC) IIC2523 2/2020

#### ¡Clientes descontentos!

- John entrega a Jaime puesto P9
- Raúl entrega a Yadran puesto P9
- Jaime y Yadran se quejan del mal servicio

¡No hay consistencia! Versión 3



#### ¡Clientes descontentos!

- John entrega a Jaime puesto P9
- Raúl entrega a Yadran puesto P9
- Jaime y Yadran se quejan del mal servicio

#### ¡No hay consistencia! Versión 3

- Cuando uno recibe una solicitud de reserva, primero debe avisar al otro.
- Después de eso la venta continúa.



C.Ruz (PUC) IIC2523

¡Clientes descontentos!

- John entrega a Jaime puesto P9
- Raúl entrega a Yadran puesto P9
- Jaime y Yadran se quejan del mal servicio

#### ¡No hay consistencia! Versión 3

- Cuando uno recibe una solicitud de reserva, primero debe avisar al otro.
- Después de eso la venta continúa.

# John Raúl Baúl B

¡Consistencia solucionada!

C.Ruz (PUC) IIC2523 2/2020 12 / 47

¿Y si uno no llega a trabajar?

- Raúl usa el Transantiago.
- John no puede hacer reservas mientras Raúl no llegue.



C.Ruz (PUC) IIC2523 2/2020 13 / 47

¿Y si uno no llega a trabajar?

- Raúl usa el Transantiago.
- John no puede hacer reservas mientras Raúl no llegue.
- Jaime y Yadran se quejan del mal servicio



C.Ruz (PUC) IIC2523

¿Y si uno no llega a trabajar?

- Raúl usa el Transantiago.
- John no puede hacer reservas mientras Raúl no llegue.
- Jaime y Yadran se quejan del mal servicio

¡No hay disponibilidad!



¿Y si uno no llega a trabajar?

- Raúl usa el Transantiago.
- John no puede hacer reservas mientras Raúl no llegue.
- Jaime y Yadran se quejan del mal servicio

¡No hay disponibilidad! Versión 4



C.Ruz (PUC) IIC2523 2/2020 13 / 47

¿Y si uno no llega a trabajar?

- Raúl usa el Transantiago.
- John no puede hacer reservas mientras Raúl no llegue.
- Jaime y Yadran se quejan del mal servicio

#### ¡No hay disponibilidad! Versión 4

- John hace reservas y guarda un registro
- Cuando Raúl llega, le informa de los reservas hechas



13 / 47

C.Ruz (PUC) IIC2523 2/2020

¿Y si uno no llega a trabajar?

- Raúl usa el Transantiago.
- John no puede hacer reservas mientras Raúl no llegue.
- Jaime y Yadran se quejan del mal servicio

#### ¡No hay disponibilidad! Versión 4

a John hace reservas y gu

- John hace reservas y guarda un registro
- Cuando Raúl llega, le informa de los reservas hechas



C.Ruz (PUC)

¿Y si uno no llega a trabajar?

- Raúl usa el Transantiago.
- John no puede hacer reservas mientras Raúl no llegue.
- Jaime y Yadran se quejan del mal servicio

## ¡No hay disponibilidad!

Versión 4

- John hace reservas y guarda un registro
- Cuando Raúl llega, le informa de los reservas hechas

#### ¡Disponibilidad y consistencia!



¡Oficina remota!

- Se pierde capacidad
- Misma disponiblidad que con sistema centralizado



14 / 47

C.Ruz (PUC) IIC2523 2/2020

¡Oficina remota!

- Se pierde capacidad
- Misma disponiblidad que con sistema centralizado

¡No hay tolerancia a particiones!



C.Ruz (PUC) IIC2523

¡Oficina remota!

- Se pierde capacidad
- Misma disponiblidad que con sistema centralizado

¡No hay tolerancia a particiones! Versión 5



14 / 47

C.Ruz (PUC) IIC2523 2/2020

¡Oficina remota!

- Se pierde capacidad
- Misma disponiblidad que con sistema centralizado

#### ¡No hay tolerancia a particiones! Versión 5

- Raúl trabaja remotamente
- Cada uno anota sus reservas y guarda un registro



C.Ruz (PUC) IIC2523

¡Oficina remota!

- Se pierde capacidad
- Misma disponiblidad que con sistema centralizado

#### ¡No hay tolerancia a particiones! Versión 5

- Raúl trabaja remotamente
- Cada uno anota sus reservas y guarda un registro
- Al final del día intercambian los registros



14 / 47

C.Ruz (PUC) IIC2523 2/2020

¡Oficina remota!

- Se pierde capacidad
- Misma disponiblidad que con sistema centralizado

#### ¡No hay tolerancia a particiones! Versión 5

- Raúl trabaja remotamente
- Cada uno anota sus reservas y guarda un registro
- Al final del día intercambian los registros

## ¡Disponibilidad y tolerancia a particiones!



C.Ruz (PUC) IIC2523 2/2020 14/47

Pero perdimos consistencia . . .

- Jaime reserva con John
- Yadran reserva con Raúl



C.Ruz (PUC) IIC2523 2/2020 15 / 47

Pero perdimos consistencia . . .

- Jaime reserva con John
- Yadran reserva con Raúl
- Reciben la misma entrada, pero no se sabe hasta que se intercambian registros.



C.Ruz (PUC) IIC2523 2/2020 15 / 47

Pero perdimos consistencia . . .

- Jaime reserva con John
- Yadran reserva con Raúl
- Reciben la misma entrada, pero no se sabe hasta que se intercambian registros.
- Jaime y Yadran se quejan del mal servicio



C.Ruz (PUC) IIC2523

Pero perdimos consistencia . . .

- Jaime reserva con John
- Yadran reserva con Raúl
- Reciben la misma entrada, pero no se sabe hasta que se intercambian registros.
- Jaime y Yadran se quejan del mal servicio

#### ¡Perdimos la consistencia!



Pero perdimos consistencia . . .

- Jaime reserva con John
- Yadran reserva con Raúl
- Reciben la misma entrada, pero no se sabe hasta que se intercambian registros.
- Jaime y Yadran se quejan del mal servicio

#### ¡Perdimos la consistencia! Versión 6



Pero perdimos consistencia . . .

- Jaime reserva con John
- Yadran reserva con Raúl
- Reciben la misma entrada, pero no se sabe hasta que se intercambian registros.
- Jaime y Yadran se quejan del mal servicio

#### ¡Perdimos la consistencia! Versión 6

 Registros se envían inmediatamente: chat. whatsapp, email, teléfono



C.Ruz (PUC) IIC2523 2/2020

Pero perdimos consistencia . . .

- Jaime reserva con John
- Yadran reserva con Raúl
- Reciben la misma entrada, pero no se sabe hasta que se intercambian registros.
- Jaime y Yadran se quejan del mal servicio

#### ¡Perdimos la consistencia! Versión 6

 Registros se envían inmediatamente: chat, whatsapp, email, teléfono

## envían



¡Consistencia y tolerancia a particiones!

C.Ruz (PUC) IIC2523 2/2020 15 / 47

Pero ahora cada uno depende de la comunicación con el otro ...

• Red puede fallar.



C.Ruz (PUC) IIC2523 2/2020 16 / 47

Pero ahora cada uno depende de la comunicación con el otro . . .

- Red puede fallar.
- Mensajería es asíncrona (problema de consistencia)

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩€

C.Ruz (PUC) IIC2523 2/2020 16 / 47

Pero ahora cada uno depende de la comunicación con el otro ...

- Red puede fallar.
- Mensajería es asíncrona (problema de consistencia)
- Se pueden perder mensajes (problema de consistencia)

C.Ruz (PUC) IIC2523 2/2020 16 / 47

Pero ahora cada uno depende de la comunicación con el otro ...

- Red puede fallar.
- Mensajería es asíncrona (problema de consistencia)
- Se pueden perder mensajes (problema de consistencia)
- Teléfono es síncrono, pero requiere esperar que el otro esté desocupado (problema de disponibilidad)

16 / 47

C.Ruz (PUC) IIC2523 2/2020

Pero ahora cada uno depende de la comunicación con el otro ...

- Red puede fallar.
- Mensajería es asíncrona (problema de consistencia)
- Se pueden perder mensajes (problema de consistencia)
- Teléfono es síncrono, pero requiere esperar que el otro esté desocupado (problema de disponibilidad)

¡Perdemos disponibilidad o consistencia!



C.Ruz (PUC) IIC2523 2/2020 16 / 47

Pero ahora cada uno depende de la comunicación con el otro ...

- Red puede fallar.
- Mensajería es asíncrona (problema de consistencia)
- Se pueden perder mensajes (problema de consistencia)
- Teléfono es síncrono, pero requiere esperar que el otro esté desocupado (problema de disponibilidad)

¡Perdemos disponibilidad o consistencia!

Varias soluciones ...

2/2020

16 / 47

C.Ruz (PUC) IIC2523

Pero ahora cada uno depende de la comunicación con el otro ...

- Red puede fallar.
- Mensajería es asíncrona (problema de consistencia)
- Se pueden perder mensajes (problema de consistencia)
- Teléfono es síncrono, pero requiere esperar que el otro esté desocupado (problema de disponibilidad)

#### ¡Perdemos disponibilidad o consistencia!

Varias soluciones ...

Volvemos a V4: Consistencia y disponibilidad

2/2020

16 / 47

C.Ruz (PUC) IIC2523

Pero ahora cada uno depende de la comunicación con el otro ...

- Red puede fallar.
- Mensajería es asíncrona (problema de consistencia)
- Se pueden perder mensajes (problema de consistencia)
- Teléfono es síncrono, pero requiere esperar que el otro esté desocupado (problema de disponibilidad)

#### ¡Perdemos disponibilidad o consistencia!

Varias soluciones ...

- Volvemos a V4: Consistencia y disponibilidad
- Volvemos a V5: Disponibilidad y tolerancia a partición

2/2020

16 / 47

C.Ruz (PUC) IIC2523

Pero ahora cada uno depende de la comunicación con el otro ...

- Red puede fallar.
- Mensajería es asíncrona (problema de consistencia)
- Se pueden perder mensajes (problema de consistencia)
- Teléfono es síncrono, pero requiere esperar que el otro esté desocupado (problema de disponibilidad)

#### ¡Perdemos disponibilidad o consistencia!

Varias soluciones ...

- Volvemos a V4: Consistencia y disponibilidad
- Volvemos a V5: Disponibilidad y tolerancia a partición
- Volvemos a V6: Consistencia y tolerancia a partición

C.Ruz (PUC)

2/2020

16 / 47

IIC2523

## Teorema CAP

- 2000: Eric Brewer introduce la noción de un trade-off inevitable entre Consistencia, disponibilidad (Availability), y tolerancia a Particiones.
- 2002: Seth Gilbert y Nancy Lynch formalizan el Teorema CAP

#### Teorema CAP

In a network subject to communication failures, it is impossible for any web service to implement an atomic read/write shared memory that guarantees a response to every request.

En la práctica, un sistema distribuido solo puede proveer dos de estas características:

- Consistencia
- Disponibilidad (Availability)
- Tolerancia a Particiones

4日 → 4 日 → 4 目 → 4 目 → 9 Q G

C.Ruz (PUC)

IIC2523

### Teorema CAP

#### Referencias:

- Seth Gilbert and Nancy Lynch. Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News, 33(2):58-51, June 2002.
- Seth Gilbert and Nancy A. Lynch. Perspectives on the CAP Theorem. Computer, 45(2):30-35, 2012. IEEE.

2/2020 18 / 47

### Contenidos

- Introducción
  - Motivación
- Caracterización de Sistemas Distribuidos
- 3 Diseño de Sistemas Distribuidos
- 4 Tipos de sistemas distribuidos

Hay muchas pero . . .

Según Tanenbaum, Van Steen ...

A distributed system is a collection of autonomous computing elementos that appears to its users as a single coherent system.

<ロ > < 個 > < 重 > < 重 > 重 ● の Q で

Hay muchas pero . . .

Según Tanenbaum, Van Steen ...

A distributed system is a collection of autonomous computing elementos that appears to its users as a single coherent system.

<ロ > < 個 > < 重 > < 重 > 重 ● の Q で

Hay muchas pero . . .

#### Según Tanenbaum, Van Steen ...

A distributed system is a collection of autonomous computing elementos that appears to its users as a single coherent system.

• Computing elements: nodos (hardware, software). Tenemos que identificarlos y comunicarlos entre sí.

4□ > 4□ > 4 = > 4 = > = 90

Hay muchas pero . . .

#### Según Tanenbaum, Van Steen ...

A distributed system is a collection of autonomous computing elementos that appears to its users as a single coherent system.

- Computing elements: nodos (hardware, software). Tenemos que identificarlos y comunicarlos entre sí.
- autonomous: se comportan de manera independiente. Pueden fallar de manera independiente. No poseen un reloj común. Hay que sincronizarlos.

Hay muchas pero . . .

#### Según Tanenbaum, Van Steen ...

A distributed system is a collection of autonomous computing elementos that appears to its users as a single coherent system.

- Computing elements: nodos (hardware, software). Tenemos que identificarlos y comunicarlos entre sí.
- autonomous: se comportan de manera independiente. Pueden fallar de manera independiente. No poseen un reloj común. Hay que sincronizarlos.
- appears as a single coherent system: tiene que coordinarse y mantener algún nivel de consistencia. Transparencia de distribución.

### **Middlewares**



# Esconde (hasta cierto punto) diferencias entre *hardware* y sistemas operativos

- Comunicación entre aplicaciones
- Seguridad y accountability
- Enmascaramiento y recuperación de errores

#### **Middlewares**



# Esconde (hasta cierto punto) diferencias entre *hardware* y sistemas operativos

- Comunicación: invocaciones remotas, RPC
- Transacciones distribuidas, propiedades ACID
- Composición de servicios: web-services, mashups
- Reliability: mensajes son recibidos por todos o por ninguno

### Contenidos

- Introducción
  - Motivación
- Caracterización de Sistemas Distribuidos
- 3 Diseño de Sistemas Distribuidos
- 4) Tipos de sistemas distribuidos

# Falacias de la programación distribuida

Peter Deutsch (Sun Microsystems) planteó<sup>1</sup> (1991):

- The network is reliable
- 2 Latency is zero
- Bandwidth is infinite
- The network is secure
- Topology doesn't change
- There is one administrator
- Transport cost is zero
- The network is homogeneous

## Diseño de sistemas distribuidos

Solo porque se pueda construir un sistema distribuido, no significa que sea una buena idea.

- Sistema debe soportar resource sharing
- La distribución debe ser transparente
- El sistema debe ser abierto
- El sistema deber ser escalable

# Resource sharing

Software para trabajo colaborativo: groupware

#### Algunos ejemplos

- Almacenamiento en la nube
- Servicios de streaming peer-to-peer (P2P)
- Sistemas de correo compartido (outsource)
- Sistemas web compartidos (Content Distribution Networks)

#### Cita

"The network is the computer"

John Gage, Sun Microsystems

| Transparency | Description                                                           |  |
|--------------|-----------------------------------------------------------------------|--|
| Access       | Hide differences in data representation and how an object is accessed |  |
| Location     | Hide where an object is located                                       |  |
| Relocation   | Hide that an object may be moved to another location while in use     |  |
| Migration    | Hide that an object may move to another location                      |  |
| Replication  | Hide that an object is replicated                                     |  |
| Concurrency  | Hide that an object may be shared by several independent users        |  |
| Failure      | Hide the failure and recovery of an object                            |  |

1 U P 1 UP 1 E P 1 E P 2 P 3 P 4 P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1 E P 1

| Transparency | Description                                                           |
|--------------|-----------------------------------------------------------------------|
| Access       | Hide differences in data representation and how an object is accessed |
| Location     | Hide where an object is located                                       |
| Relocation   | Hide that an object may be moved to another location while in use     |
| Migration    | Hide that an object may move to another location                      |
| Replication  | Hide that an object is replicated                                     |
| Concurrency  | Hide that an object may be shared by several independent users        |
| Failure      | Hide the failure and recovery of an object                            |

¿Cuánta transparencia es "buena"?

4日ト4回ト4至ト4至ト 至 かなの

El grado de transparencia es importante.

### ¿Quiero transparencia de distribución?

- Si usamos servicios que aprovechan geolocalización
- Si tenemos componentes/usuarios en distintas zonas horarias
- Para entender la razón de un efecto o falla

El grado de transparencia es importante.

#### ¿Quiero transparencia de distribución?

- Si usamos servicios que aprovechan geolocalización
- Si tenemos componentes/usuarios en distintas zonas horarias
- Para entender la razón de un efecto o falla

### ¿Siempre transparente? (nunca intrasparente)

El grado de transparencia necesario depende la aplicación.

- No podemos ocultar toda la latencia
- No podemos ocultar todas las fallas
- Balance entre grado de transparencia y rendimiento

4D > 4A > 4B > 4B > B 990

## Sistema debe ser abierto

Sistema debe ser capaz de interactuar con otros a pesar de los detalles internos.

#### Sistemas abiertos

- Sistema debe proveer y cumplir con interfaces definidas
- Sistema debe ser capaz de interoperar con otros
- Sistema debe soportar portabilidad de aplicaciones
- Sistema debe ser extensible

## Sistema debe ser escalable

¿En qué sentido debe escalar?

#### Componentes de escalamiento

- Número de usuario y procesos: escalabilidad de tamaño
- Máximo distancia entre componentes: escalabilidad geográfica
- Número de dominios administrativos: escalabilidad administrativa

¿Y en qué topamos?

#### Límites a la escalabilidad

- CPUs limitan la escalabilidade computacional
- Transferencia CPU/disco limita la escalabilidad del almacenamiento
- La red entre el usuario y un servicio centralizado

## Sistema debe ser escalable

¿Y en qué topamos?

#### Límites a la escalabilidad

- CPUs limitan la escalabilidade computacional
- Transferencia CPU/disco limita la escalabilidad del almacenamiento
- La red entre el usuario y un servicio centralizado

¿Cómo lo resolvemos?

## Sistema debe ser escalable

### ¿Y en qué topamos?

#### Límites a la escalabilidad

- CPUs limitan la escalabilidade computacional
- Transferencia CPU/disco limita la escalabilidad del almacenamiento
- La red entre el usuario y un servicio centralizado

#### ¿Cómo lo resolvemos?

#### Escondiendo la latencia

- Comunicación asíncrona
- Uso de threads/handlers para manejar respuestas
- Particionar datos y dominios
- Sistemas decentralizados de ubicación e información
- Ejecución local
- Replicación

### Contenidos

- Introducción
  - Motivación
- 2 Caracterización de Sistemas Distribuidos
- 3 Diseño de Sistemas Distribuidos
- Tipos de sistemas distribuidos

# Sistemas distribuidos para cómputo de alto rendimiento

El cómputo de alto rendimiento dsitrbiuido empezó con el cómputo paralelo

Multiprocesadores y multicore, versus multicomputadores



¿Cómo programar en multiprocesadores?

# Cómputo en Cluster

#### Computadores conectados a una LAN

- Homogéneos: mismo S.O., y hardware
- Nodo de administración (master)



- Ej: Linux-based Beowulf clusters
- Master con un resource manager (middleware)
- Ej: MOSIX. Single-system image. Migración de trabajos. Transparencia.

# Cómputo en Grid

#### Clusters federados

- Heterogéneos
- Dispersos a través de múltiples organizaciones
- Accesible mediante WANs

La administración se lleva a cabo mediante **virtual organization** (VO), que controlan el acceso a los recursos.



Foster et al, 2001

C.Ruz (PUC) IIC2523

# Cómputo en Grid



- Fabric. Interfaz de acceso a recursos locales (estado, locking, ...) de un sitio.
- Connectivity. Autenticación y transferencia de datos entre sitios.
- Resource. Administración de cada recurso
- Collective. Administración de conjuntos de recursos: discovery, allocation, scheduling, ...)
- Aplications. Aplicaciones ejecutando sobre una VO.

#### Connectivity + Resource + Collective = **Grid Middleware**

• OGSA: Open Grid Services Architecture. Foster et al. 2006.

# Cómputo en Cloud

## **Utility Computing**

- Conjunto de recursos virtualizados a distintos niveles
- Configurables dinámicamente, y escalabilidad
- Pay-per-use y Service Level Agreements: SLAs.



Zhang et al, 2010

# Sistemas distribuidos para información

Sistemas construidos para integración de múltiples servicios preexistente en red.

Atacan el problema de la interoperabilidad

#### Sistemas de integración distribuida

- Conjunto de clientes y un servidor
- Integración (inicial) simple: servidor administra solicitud de múltiples clientes, y ofrece visión coherente al usario
- EAI: Enterprise Application Integration

# Enterprise Application Integration: Transacciones anidadas

| Primitive         | Description                                     |
|-------------------|-------------------------------------------------|
| BEGIN_TRANSACTION | Mark the start of a transaction                 |
| END_TRANSACTION   | Terminate the transaction and try to commit     |
| ABORT_TRANSACTION | Kill the transaction and restore the old values |
| READ              | Read data from a file, a table, or otherwise    |
| WRITE             | Write data to a file, a table, or otherwise     |



#### Transacciones distribuidas: todo o nada

- Atomic: ocurren de manera indivisible
- Consistente: no viola invariantes del sistema
- Isolated: no interfiere con otras transaciones
- Durable: commits son permanentes

2/2020

39 / 47

C.Ruz (PUC) IIC2523

# TPM: Transaction Processing Monitor



TP Monitor funciona como coordinador.

# Middleware y EAI



# Middlware provee medios de integración

- RPC. Remote Procedure Call. Modelo request/reply
- MOM. Message Oriente Middleare. Modelo publish/subscribe

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕久で

2/2020

41 / 47

# Sistemas distribuidos "pervasivos"

## Nodos pequeños y móviles dentro sistemas grandes

- Sistema naturalmente integrado con el entorno
- Cómputo ubicuo. "Pervasive" y contínuamente presentes
- Cómputo móvil. "Pervasive", pero inherentemente móviles
- Redes de sensores. "Pervasive", con enfoque en interacción con el ambiente a través de sensores y actuadores

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < @

## Sistemas distribuidos ubicuos

#### Elementos principales

- Están distribuidos, con transparencia de acceso
- Interactúan naturalmente de forma liviana
- Context Awareness. Conocen el contexto del usuario.
- Autónomos. No necesitan intervención humana.
- Inteligentes. Amplia gama de acciones.

## Sistemas distribuidos móviles

Se espera que la ubicación del usuario pueda cambiar.



Algoritmos especial de flooding para encontrar ubicación dinámicamente.

44 / 47

C.Ruz (PUC) IIC2523

# Sistemas distribuidos móviles



C.Ruz (PUC) IIC2523 2/2020 45 / 47

Displacement

## Redes de sensores

#### Elementos principales

- Muchos nodos (10's-1000's)
- Pequeños y simples (memoria, procesador, red)
- Dependiente de baterías

## Redes de sensores

