UFRGS - Dept. Informática Aplicada Fundamentos de Computação Gráfica Exercícios Preparatórios Primeira Prova (2010/1)

1. Suponha uma transformação de escala bidimensional em relação à origem onde os fatores de escala S_X e S_Y são especificados pela tabela abaixo:

, ,	$s_x > 1$	$s_x < -1$
$s_y > 1$	Situação A	situação B
$s_y < -1$	Situação C	situação D

Desenhe a figura abaixo esquematicamente, supondo-se que ela sofreu transformações do tipo das descritas nas situações A, B, C e D acima.

Na situação A a figura deve aparecer maior do que a original. Nas outras situações, o aluno deve dar-se conta de que escalas negativas refletem o objeto.

2. A figura abaixo ilustra um triângulo definido pelos pontos I, J e K dentro do Diagrama de Cromaticidade.

Pergunta-se:

- ✓ Qual a utilidade deste triângulo quando trabalhamos com cores?
- √ Suponha um triângulo dado por outras três coordenadas A, B e C. Suponha ainda que o triângulo IJK está associado a uma marca de TV e o triângulo ABC está associado a outra marca de TV concorrente. Caso os 2 triângulos tenham a mesma área, o que significa?
- ✓ Como você decidiria qual TV deveria ser comprada considerando-se a qualidade das cores? (suponha que elas tenham o mesmo preço).

O triângulo define o gamut (espaço de cores) disponíveis do dispositivo associado ao triângulo.

Significa que ambas TVs conseguem exibir o MESMO número total de cores.

Como elas têm o mesmo número total de cores, compraria a TV que tivesse um gamut (triângulo) melhor distribuído ao redor do ponto branco marcado no Diagrama de Cromaticidades.

3. Abaixo apresenta-se o pseudo-código para o algoritmo de z-buffer conforme discutido em aula:

```
1 void Zbuffer( void )
2 {
3
      //inicializacao
      for (y = 0; y < ymax; y++) {
4
        for (x = 0; x < xmax; x++) {
          writePixel(x, y, corDeFundo);
7
          writeZ(x, y, 1); // Z no intervalo [0,1]
8
        }
9
      }
      // Zbuffer propriamente dito
10
11
       for (cada poligono) {
12
         for(cada pixel projetado do poligono){
           pz = valor "z" do poligono na posicao (x, y);
13
14
           if(pz < read(x, y) {
15
               writeZ (x, y, pz);
               writePixel(x, y, corDoPoligono);
16
17
           }
18
         }
19
       }
20 }
```

Dados os 3 polígonos A, B e C representados abaixo, pergunta-se qual a cor que será armazenada no *Frame Buffer* para o pixel P quando os polígonos forem processados na ordem A, B e C, nos 3 casos a seguir:

```
(a) Linha 14 como está no pseudo-código acima
```

Polígono A, cor (0,0,1)

(b) Linha 14 substituída por if (pz < = read(x,y))
Polígono B, cor (1,0,0)</pre>

(c) Linha 14 substituída por if (pz > read(x,y))

Cor de Fundo

...- \-,-,.,

- 4. Suponha um triângulo com cores RGB nos vértices C0 = (0.2, 0.2, 0.2), C1 = (0.3, 0.7, 0.4) e C2 = (0, 0, 0) e as seguintes afirmações:
- I. A cor C = (1,1,1) não aparece em nenhum pixel interno a este triângulo caso renderizarmos com modelo de Gouraud

TRUE

II. Supondo um ponto P interno ao triângulo com coordenadas baricêntricas iguais a (1/3, 1/3, 1/3), a cor deste ponto é C = (0.167, 0.3, 0.2)

TRUE

```
R = 0.2*1/3 + 0.3*1/3 + 0*1/3 = 0.167
G = 0.2*1/3 + 0.7*1/3 + 0*1/3 = 0.3
B = 0.2*1/3 + 0.4*1/3 + 0*1/3 = 0.2
```

III. O modelo de Phong tem um custo computacional no mínimo 3 vezes maior do que o modelo de Gouraud FALSE. Não há como estimar este custo numa situação tão genérica

IV. O aumento do número de polígonos garante, no limite, que o resultado de sombreamento de Phong se aproxima do sombreamento de Gouraud

FALSE. É o contrário

Marque a resposta correta:

() II e IV são verdadeiras

(X) le II são verdadeiras

- () todas são falsas() III e IV são verdadeiras() I, II e III são verdadeiras
- **5.** Uma aplicação interessante em computação gráfica é a exibição de desenhos esquemáticos de objetos em geral para fabricação industrial. Estes desenhos normalmente apresentam texto para identificar as peças componentes do objeto. Para ter-se uma leitura clara, o texto não deve se sobrepor ao objeto. Uma maneira de prevenir isto é recortar qualquer componente gráfica de dentro do retângulo mínimo que encapsula o texto (veja imagens abaixo, da esquerda sem o recorte e da direita com o recorte que melhora a legibilidade).

Explique como você modificaria o algoritmo de recorte de Cohen-Sutherland visto em aula para conseguir este resultado. Você pode utilizar diagramas ou pseudo-código como apoio na sua resposta.

Este problema requer o entendimento do aluno de que, enquanto o algoritmo de recorte de Cohen-Sutherland é utilizado para recorte de linhas em segmentos que resultam DENTRO da janela de recorte, a solução requerida aqui exige manter apenas aquelas partes que estão FORA da janela de recorte.

O objetivo aqui é o recorte inverso, prevenindo qualquer primitiva de aparecer na janela. As regras abaixo, inverso das regras usuais, devem ser sequidas:

- se ambos endpoints têm bitcode 0000, a linha é interna e deve ser descartada;
- se o and lógico dos bitcodes não é 0000, a linha não precisa ser recortada;
- senão, pode ser que a linha precisa ser recortada conforme o algoritmo.
- **6.** Proponha uma maneira de combinar os modelos de Phong e Gouraud para produzir um modelo meio-termo, ou seja, nem tão caro computacionalmente quanto Phong mas com qualidade melhor do que Gouraud (OBS: Apesar de não haver uma resposta correta e única aqui, sua resposta deverá estar sustentada nos conceitos da disciplina).

Uma possibilidade é subdividir o triângulo, aplicar Phong no centróide e aplicar Gouraud em cada um dos subtriângulos.

7. Explique os experimentos realizados pela CIE (Commission Internationale de l'Eclairage) para determinação de todas as cores visíveis no espectro.

O objetivo do experimento foi determinar se apenas 3 cores primárias seriam suficientes para obter todas as cores do espectro visível. Dentro do intervalo de 360 a 830nm, as cores foram apresentadas em intervalos de 5 em 5 nm. A tarefa dos sujeitos do experimento era manipular 3 cores primárias (Vermelho, Azul e Verde) ate obter uma cor satisfatoriamente igual a cor padrão. As curvas que correspondem às leituras dos controles de cores RGB compões as denominadas Funções de Reconstrução de Cor.

8. Dado um monitor com fósforos com coordenadas de cromaticidade iguais a R(0.6,0.3), G(0.25,0.55) e B (0.15,0.1), prove que a cor com coordenadas de cromaticidade (0.3,0.7) não pode ser exibida de modo preciso neste monitor. A sua prova não precisa ser matemática, uma prova geométrica é suficiente.

Provar que o ponto com coordenadas (0.3, 0.7) está fora do triângulo. Existe uma prova matemática mais elaborada mas uma prova visual desenhando os pontos no diagrama está ok também.

9. Qual a diferença entre fluorescência e fosforescência?

Tempo de decaimento. Materias fosforescentes têm maior tempo de decaimento.

- **10.** Verdadeiro ou Falso? Marque a opção V ou F, ao lado de cada sentença. Se for FALSO, re-escreva a sentença de modo a torná-la verdadeira e justifique.
- I. O aumento do expoente especular de Phong diminui o tamanho do highlight.

VERDADEIRO

II.Não existe diferença no efeito final de iluminação de uma cena, caso a fonte de luz troque de pontual para direcional.

FALSO. EXISTE diferença no efeito final de iluminação de uma cena, caso a fonte de luz troque de pontual para direcional. Justificativa:

Os cálculos de iluminação modificam, já que o vetor iluminação será diferente

III.A parcela de luz Difusa no modelo de iluminação simples visto em aula respeita a Lei de Lambert, e varia conforme a posição do observador.

FALSO. ... respeita a Lei de Lambert e NÃO varia conforme a posição do observador Justificativa:

O efeito difuso é independente do observador

IV. A projeção ortográfica é normalmente escolhida para a câmera sintética em projetos de manufatura auxiliado por computador, por exemplo, por permitir medidas exatas.

VERDADEIRO