0.5

EXERCICE1 :(8 points)

Partie I- On considère la fonction f définie sur l'intervalle $I =]-\infty,1[$ par :

$$f(x) = \ln(1-x)$$

Soit (C) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j})

- 0.25 1-a) Montrer que la fonction f est continue sur I
- 0.25 b) Montrer que la fonction f est strictement décroissante sur I
- 0.75 c) Calculer $\lim_{x \to 1^-} f(x)$, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to \infty} \frac{f(x)}{x}$
- 0.5 d) Interpréter graphiquement les résultats obtenus
- 0.25 e) Donner le tableau de variations de f
- 0.25 2-a) Montrer que la courbe (C) est concave.
- 0.25 b) Représenter graphiquement la courbe (C) dans le repère (O, \vec{i}, \vec{j})
- 3- a) Montrer que f est une bijection de I vers ℝ
 On note f⁻¹ sa bijection réciproque.
- 0.25 b) Déterminer $f^{-1}(x)$ pour $x \in \mathbb{R}$
- 0.25 c) Vérifier que : $f^{-1}(-1) = 1 e^{-1}$

Partie II- Pour tout réel x et pour tout entier nature $n \ge 2$, on pose :

$$P_n(x) = x + \frac{x^2}{2} + \dots + \frac{x^n}{n}$$

1- Montrer que pour tout entier $n \ge 2$, il existe un unique réel $x_n \in]0,1[$ tel que :

$$P_{x}(x_{x}) = 1$$

- 0.5 2- Déterminer le réel $\alpha = x_2$ et vérifier que : $0 < \alpha < 1$
- 0.5 3- a) Montrer que : pour tout entier $n \ge 2$, on a : $P_{n+1}(x_n) > 1$
- 0.5 b) En déduire que la suite $(x_n)_{n\geq 2}$ ainsi définie est strictement décroissante.
- 0.25 c) Montrer que pour tout entier $n \ge 2$, on a : $x_n \in]0, \alpha]$
- 0.25 d) Montrer que la suite $(x_n)_{n\geq 2}$ est convergente.
 - 4- pour tout réel $x \in I$ et pour tout entier $n \ge 2$, on pose :

$$f_{\bullet}(x) = f(x) + P_{\bullet}(x)$$

0.5 a) Montrer que : $(\forall x \in I)$; $(\forall n \ge 2)$ $f'_n(x) = \frac{-x^n}{1-x}$

- 0.25
- b) Montrer que : $(\forall x \in [0, \alpha])$; $(\forall n \ge 2)$ $|f'_n(x)| \le \frac{\alpha^n}{1-\alpha}$
- 0.5
- c) En déduire que : $(\forall x \in [0, \alpha])$; $(\forall n \ge 2)$ $|f_n(x)| \le \frac{\alpha^n}{1-\alpha}$
- 0.5
- d) Montrer que : $(\forall n \ge 2) |f(x_n) + 1| \le \frac{\alpha^n}{1-\alpha}$
- 0.5
- e) En déduire la valeur de $\lim_{n\to+\infty} x_n$

EXERCICE2 :(4 points)

On considère la fonction F définie sur \mathbb{R} par : $F(x) = \int_{0}^{x} e^{t-\frac{t^{2}}{2}} dt$

- 1- a) Déterminer le signe de F(x) en fonction de x0.5
- b) Montrer que F est dérivable sur R et calculer sa dérivée première F'(x) 1
- 2-a) En utilisant la méthode d'intégration par partie, montrer que : 0.5

$$\int_{0}^{1} F(x) dx = \int_{0}^{1} (1-x) e^{x-\frac{x^{2}}{2}} dx$$

- 0.5
- b) Calculer $\int_{0}^{1} F(x) dx$
- 3- On considère la suite (u_n)_{n≥1} définie par :

$$(\forall n \in \mathbb{N}^*)$$
 $u_n = \frac{1}{n} \sum_{k=0}^{k-n-1} \left[(n-k) \int_{\frac{k}{n}}^{\frac{k+1}{n}} e^{x-\frac{x^2}{2}} dx \right]$

- 0.5
- a) Vérifier que :

$$(\forall n \in \mathbb{N}^*)$$
 $u_n = \frac{1}{n} \sum_{k=0}^{k=n-1} (n-k) F\left(\frac{k+1}{n}\right) - \frac{1}{n} \sum_{k=0}^{k=n-1} (n-k) F\left(\frac{k}{n}\right)$

- 0.5
- b) Montrer que : $(\forall n \in \mathbb{N}^*)$ $u_n = \frac{1}{n} \sum_{i=1}^{n} F\left[\frac{k}{n}\right]$
- 0.5
- c) En déduire que la suite $(u_n)_{n\geq 1}$ est convergente et déterminer sa limite.

EXERCICE3: (4 points)

m est un nombre complexe différent de 2 et de -i

Le plan complexe est rapporté à un repère orthonormé direct (O; u, v)

On considère dans l'ensemble C l'équation d'inconnue z :

$$(E): z^2 - (m-i)z - im = 0$$

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2021 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

- 0.5
- 1-a) Vérifier que le discriminant de l'équation (E) est $(m+i)^2$
- 0.5
- b) Déterminer z_1 et z_2 les deux solutions de (E)
- 0.75
- c) Sachant que $m = e^{i\frac{\pi}{8}}$; écrire le nombre $z_1 + z_2$ sous forme exponentielle.
- 2- On considère les points A, B et M d'affixes respectifs 2, -i et m et soit M' le symétrique de M par rapport à l'axe imaginaire.
- 0.5
- a) Déterminer en fonction de m l'affixe de M'
- 0.75
- b) Déterminer en fonction de m l'affixe du point N tel que le quadrilatère ANM 'B soit un parallélogramme.
- 1
- c) Montrer que les deux droites (AM) et (BM') sont perpendiculaires si et seulement si $Re((2-i)m) = Re(m^2)$

EXERCICE4: (4 points)

Soit a un entier naturel supérieur ou égal à 2 et soit $A = 1 + a + a^2 + a^3 + a^4 + a^5 + a^6$ Soit p un nombre premier impair tel que : p divise A

- 1
- 1-a) Montrer que $a^7 \equiv 1$ [p], en déduire que $\forall n \in \mathbb{N}$; $a^{7n} \equiv 1$ [p]
- 1
- b) Montrer que a et p sont premiers entre eux, en déduire que :

$$\forall m \in \mathbb{N}$$
 ; $a^{(p-1)m} \equiv 1 [p]$

- 0.5
- a) Montrer que : $a \equiv 1 [p]$

2- On suppose que 7 ne divise pas p-1

- 0.5
- b) En déduire que : p=7
- 1
- 3- Montrer que si p un nombre premier impair tel que : p divise A alors : p = 7 ou p ≡ 1 [7]