Numbers to Keep in Mind

- $R_{\odot} \sim 7 \times 10^{10} \text{ cm}$
- $M_{\odot} \sim 2 \times 10^{33} \text{ gm}$
- $L_{\odot} \sim 4 \times 10^{33}$ ergs/sec
- $T_{\rm eff} \odot \sim 5780^{\circ}$
- *X*~ 0.75
- $Y \sim 0.23$
- $Z \sim 0.02$
- $M_{\odot}(bol) = +4.74$
- $\rho_{\odot} \sim 1.4 \text{ gm/cm}^3$
- $T_c \odot \sim 15,000,000^{\circ} \text{ K}$
- ρ_c $\sim 1400 \text{ gm/cm}^3$

Stellar Luminosities from Parallax

Stellar luminosities come from distance measurements. The best way to perform such measurements is through parallax.

Ground-based measurements produce relative parallaxes; Space-based observations can produce absolute parallaxes by referring to stars ~90° away.

GAIA Survey

V	10	11	12	13	14	15	16	17	18	19	20	21
σ (μ arcsec)	4.0	4.0	4.2	6.0	9.1	14.3	23.1	38.8	69.7	138	312	1786

Gaia DR2 was last year; there will be 5 data releases

Stellar Temperatures come from spectra

Stellar Abundances also come from spectra

Stellar Sizes and Mass primarily come from Binary Stars

The HR Diagram

Most (>90%) stars lie on the "main sequence". A few stars are cool and extremely bright, so, by $L = 4 \pi R^2 \sigma T^4$, they must be extremely large. A few stars are hot, but extremely faint, so they must be very small.

The HR Diagram

Most (>90%) stars lie on the "main sequence". (But most stars you know are giant stars.) You can see them much further away!

$$f \propto \frac{L}{d^2} \implies L \propto d^2$$
 $N_{\text{obj}} \propto V \propto d^3 \implies N_{\text{obj}} \propto L^{3/2}$

The HR Diagram with Iso-Radius Lines

Stellar Masses and the Main Sequence

Measurements of main-sequence stars demonstrate that there is a mass-luminosity relationship, i.e., $L \propto M^{\eta}$. For M > 1 M_{\odot} $\eta \sim 3.88$, while at lower masses, the relation flattens out. A good rule-of-thumb is $L \propto M^{\eta}$, with $\eta \sim 3.5$.

Main Sequence Mass-Radius Relation

There is also a mass-radius relation for main-sequence stars. When parameterized via a power law, $R \propto M^{\xi}$, $\xi \sim 0.57$ for M > 1 M_{\odot} , and $\xi \sim 0.8$ for M < 1 M_{\odot} .

Stellar Masses for White Dwarfs

The masses of white dwarf stars are all less than 1.4 M_{\odot} . Most are $\sim 0.59 M_{\odot}$.

There is also an inverse mass-radius relation for white dwarfs. The simple theory says $M \propto R^{\alpha}$, with $\alpha = -1/3$.

Ages (in clusters) from Main Sequence Turnoff

Finally, we know the ages of stars in clusters from simple energy production arguments:

$$au \propto rac{M}{L} \propto rac{M}{M^{lpha}} \propto M^{1-lpha} \propto M^{-2.5}$$

