

Systemy Analagowe i Cyfrowe

LAB nr 6

Przerzutnik monostabilny z wykorzystaniemukładu typu "555"

Autorzy:	Aleksander Łyskawa 275462 Kacper Karkosz 275495
Wydział i kierunek studiów:	W12N, Automatyka i Robotyka
Termin zajęć:	pon 13:15-15:30
Prowadzący:	dr inż. Marek Kukawczyński
Data:	05.05.2024

1 Temat ćwiczenia

Zadaniem do wykonania było zaprojektowanie przerzutnika monostabilnego opartego o układ typu "555"i dobór właściwych wartości elementów RC dla zadanych wartości:

- $T = 60 \mu s$
- $U_{cc} = 5V$

Następnie przeprowadzono pomiary na zmontowanym układzie, aby zbadać:

- zależność czasu trwania impulsu od napięcia zasilającego
- częstotliwość maksymalną
- średnią wartość napięcia na wyjściu w zależności od częstotliwości sygnału na wejściu
- zależność długości impulsu od wartości napięcia modulującego

1.1 Prohjekt w LTSpice

Na Rysunku 1 przedstawiono schemat układu, zaprojektowany w programie LTSpice. Na Rysunku 2 przedstawiono przebieg czasowy wygenerowany symulacyjnie w tym samym programie.

Rys. 1: Schemat układu w programie LTSpice

Rys. 2: Przebieg czasowy w LTSpice: na wyjściu układu (niebieski), oraz na kondensatorze C (czerwony)

Z wykresu na Rysunku 2 można odczytać, że czas pojedynczego impulsu to około $55\mu s$ (wartość zmierzona przy pomocy kursorów), co z rozsądną dokładnością spełnia założenia projektowe. Ponadto impuls osiąga zadaną wartość 5V, co również spełnia te założenia.

2 Dobór elementów RC

2.1 Obliczenia

Zakładam wartość kondensatora C = 8, 2nF.

Wiadomo, że chwilową wartość czasu trwania impulsu można obliczyć ze wzoru:

$$T = R_A \cdot C \cdot ln\left(\frac{V_{cc}}{V_{cc} - V(5)}\right),\,$$

stąd:

$$T = R_A \cdot C \cdot ln\left(\frac{V_{cc}}{V_{cc} - \frac{2}{3}V_{cc}}\right) \approx 1, 1R_A \cdot C,$$

Po przekształceniu wzoru otrzymujemy:

$$R_A = \frac{T}{1, 1C}$$

Podstawiam dane i zaokrąglam wynik do wartości z szeregu:

$$R_A = \frac{60\mu s}{1, 1 \cdot 8, 2nF} \approx 6, 2k\Omega$$

2.2 Rzeczywiste wartości elementów RC

Rzeczywiste wartości elementów RLC zostały zmierzone przy użyciu multimetru, i wynosiły odpowiednio:

- C = 8, 1 [nF]
- $R_A = 6,072 [k\Omega]$

3 Zależność trwania impulsu od napięcia zasilającego

Rysunek 3 przedstawia wykres zależności czasu trwania impulsu od napięcia zasilającego. Rysunek 4 przedstawia zależność ilorazu od napięcia zasilającego. Pomiary wykorzystane do wyznaczenia charakterystyk znajdują się w Tabeli 1.

Rys. 3: Wykres zależności czasu trwania impulsu od napięcia zasilającego

Rys. 4: Wykres zależności δ od napięcia zasilającego

Tab. 1: Pomiary i obliczenia do charakterystyk na Rysunkach 3 i 4

V_{cc}	au	δ
[V]	$[\mu s]$	%
2,997	55,00	0,347
3,996	54,91	0,182
4,997	54,810	0,000
5,998	54,76	-0,091
6,996	54,65	-0,292
7,998	54,58	-0,420
8,997	54,53	-0,511
9,997	54,50	-0,566
10,996	54,48	-0,602
11,997	54,48	-0,602
12,999	54,49	-0,584
13,996	54,51	-0,547
14,997	54,56	-0,456

Do obliczenia δ wykorzystano wzór:

$$\delta = \frac{\tau - \tau_5}{\tau_5} \cdot 100\%$$

4 Zależność średniej wartości napięcia wyjściowego od częstotliwości sygnału wejściowego

Rysunek 5 przedstawia wykres zależności średniej wartości napięcia wyjściowego od częstotliwości sygnału na wejściu. Pomiary wykorzystane do wyznaczenia charakterystyki znajdują się w Tabeli 2.

Rys. 5: Wykres zależności średniej wartości napięcia na wyjściu od częstotliwości sygnału na wejściu

Tab. 2: Pomiary do wyznaczenia charakterystyki na Rysunku 5

$U_{\pm r}$
[V]
0,048
0,260
0,509
0,739
0,996
1,21
1,48
1,72
1,96
2,24
2,45
2,77
3,01
3,25
3,48
3,72
3,96

5 Zależność długości impulsu od wartości napięcia modulującego

Rysunek 6 przedstawia wykres zależności długości impulsu od wartości napięcia modulującego. Do wyznaczenia charakterystyki wykorzystano pomiary znajdujące się w Tabeli 3.

Rys. 6: Wykres zależności długości impulsu od wartości napięcia modulującego

Tab. 3: Pomiary do charakterystyki na Rysunku 6

U_{MOD}	au
[V]	$[\mu s]$
1,0	15,03
1,5	19,14
2,0	26,46
2,5	35,38
3,0	46,23
3,5	79,25
4,0	80,68
4,5	114,80
5,0	174,40

6 Wnioski

- Wykres zależności czasu trwania impulsu od wartości zasilania potwierdza teorię, że
 czas trwania impulsu nieznacznie maleje wraz ze wzrostem wartości zasilania. Ta zgodność z naszą wiedzą teoretyczną świadczy o poprawności przeprowadzonych pomiarów.
- Badanie maksymalnej częstotliwości pracy doprowadziło nas do wniosku, że częstotliwość ta jest mniejsza od odwrotności czasu trwania impulsu. Ten wynik potwierdza, że poprawnie odczytaliśmy maksymalną częstotliwość pracy układu.
- Wykres zależności czasu trwania impulsu od wartości napiecia modulującego pokazuje, że im większa wartość napiecia modulującego, tym dłuższy czas trwania impulsu. Ta obserwacja zgadza się z naszą teorią, co świadczy o poprawności pomiarów.
- Wszystkie wykresy pokazują zgodność z naszymi oczekiwaniami, co potwierdza poprawność projektu przerzutnika monostabilnego, oraz prawidłowe dobranie wartości elementów.