Problem 1

Let $x_n = (-1)^n \left(\frac{n+1}{n}\right)$ for $n \in \mathbb{N}$. Calculate $\limsup_{n \to \infty} x_n$.

Proof. Let $u_n = \sup\{x_k : k \ge n\} = \sup\{x_n, x_{n+1}, x_{n+2}, ...\}$. Let $y_n = \frac{n+1}{n} = 1 + \frac{1}{n}$ with arbitrary $n \in \mathbb{N}$.

We know that 1 > 0, adding n to both sides gets n + 1 > n. Now, taking the multiplicative inverse of both sides and flipping the side gets us $\frac{1}{n+1} < \frac{1}{n}$. We can add one to both sides now to get $\frac{1}{n+1} + 1 < \frac{1}{n} + 1$, thus we have shown that $y_{n+1} < y_n \ \forall n \in \mathbb{N}$ and therefore y_n is decreasing.

Now for u_n , we know $x_k = (-1)^k \left(\frac{k+1}{k}\right) = (-1)^k \left(1 + \frac{1}{k}\right) = (-1)^k \cdot y_k$ for $k \ge n$, so when k is odd $(-1)^k = -1$ then $x_k = -y_k$ and when k is odd we $(-1)^k = 1$ then $x_n = y_k$. So, when n is odd, the first term of x_k is x_k and since we know that y_n decreases then the first positive number, the first even k, in the sequence will the be supremum of u_n which would be x_{n+1} . Now, when n is even, that means x_n is already the largest positive number in the sequence being the first, so the supremum of $u_n = x_n$. Then if $u_n = \sup\{x_k : k \ge n\}$ is x_{n+1} or x_n , $x_{n+1} \le x_n$, and since we know that $x_{n+1} > 0$ and $x_n > 0$, then

$$1 \le u_n \le x_{n+1} \le x_n$$

$$\implies 1 \le u_n \le x_n$$

$$\implies 1 \le u_n \le 1 + (1/n) \qquad (i)$$

We know that $\lim_{n\to\infty} 1 = 1$ and $\lim_{n\to\infty} 1/n = 0$, then $\lim_{n\to\infty} (1+1/n) = \lim_{n\to\infty} 1 + \lim_{n\to\infty} 1/n = 1 + 0 = 1$ Thus,

$$\lim_{n \to \infty} 1 = \lim_{n \to \infty} (1 + 1/n) = 1$$
 (ii)

Using (i) and (ii) with the squeeze theorem get us $\lim_{n\to\infty} u_n = 1$. Then by the definition of u_n , $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \sup\{x_k : k \ge n\} = 1$ for some $n \in \mathbb{N}$. Then by the definition of $\limsup_{n\to\infty} x_n = 1$.

Problem 2

Let $\{x_n\}$ be a sequence such that $\limsup_{n\to\infty}(|x_n|^{1/n})<1$. Prove that $\lim_{n\to\infty}x_n=0$.

Proof. Let $L = \limsup_{n \to \infty} (|x_n|^{1/n}) = \lim_{n \to \infty} \sup\{|x_k|^{1/k} : k \ge n\}$, we can use this as a substitution in $\limsup_{n \to \infty} (|x_n|^{1/n}) < 1$ to get L < 1. Now, we can subtract both sides of the inequality by L to get 0 < 1 - L and then divide both sides by 2 to get $0 < \frac{1-L}{2}$. Let $\epsilon_0 = \frac{1-L}{2}$ m then $\epsilon_0 > 0$. Now, by the definition of limit with $\lim_{n \to \infty} \sup\{|x_k|^{1/k} : k \ge n\}$, $\exists K_0 \in \mathbb{N}$ such that

$$|\sup\{|x_k|^{1/k} : k \ge n\} - L| < \varepsilon_0. \qquad n \ge K_0$$

$$\implies -\varepsilon_0 < \sup\{|x_k|^{1/k} : k \ge n\} - L < \varepsilon_0.$$

$$\implies \sup\{|x_k|^{1/k} : k \ge n\} - L < \varepsilon_0.$$

Adding L to both sides and substituting for ε_0 :

$$\implies \sup\{|x_k|^{1/k} : k \ge n\} < \frac{1-L}{2} + L.$$

$$\implies \sup\{|x_k|^{1/k} : k \ge n\} < \frac{1-L}{2} + \frac{2L}{2} = \frac{2L-L+1}{2} = \frac{L+1}{2}.$$

So we have

$$\sup\{|x_k|^{1/k}: k \ge n\} < \frac{L+1}{2}. \qquad \forall n \ge K_0$$
 (1)

Now the by the definition of supremum and since $|x_n|^{1/n} \in \{|x_k|^{1/k} : k \ge n\}, \forall n \in \mathbb{N},$

$$|x_n|^{1/n} \le \sup\{|x_k|^{1/k} : k \ge n\}. \qquad \forall n \in \mathbb{N}$$
 (2)

Then combining (1) and (2) we get

$$|x_n|^{1/n} \le \sup\{|x_k|^{1/k} : k \ge n\} < \frac{L+1}{2}.$$
 $\forall n \ge K_0$

Thus we have

$$|x_n|^{1/n} < \frac{L+1}{2}. \qquad \forall n \ge K_0$$

$$\implies |x_n - 0|^{1/n} < \frac{L+1}{2}.$$

Taking the power of n on both sides gets us

$$|x_n - 0| < \left(\frac{L+1}{2}\right)^n \qquad \forall n \ge K_0$$

We know that $|x_k| \ge$ the $|x_k|^{\frac{1}{k}} \ge 0$. Then know that $\sup\{|x_k|^{1/k} : k \ge n\} \ge 0$ by definition of supremum and taking the limit of both sides gets

$$\lim_{n \to \infty} \sup\{|x_k|^{1/k} : k \ge n\} \ge \lim_{n \to \infty} 0.$$

We know that $\lim_{n\to\infty} \sup\{|x_k|^{1/k}: k\geq n\} = L$ and $\lim_{n\to\infty} 0 = 0$ so

$$L \geq 0$$
.

Now, since we know that $0 \le L < 1$, adding 1 to all sides gets $1 \le L + 1 < 2$. Dividing by 2 gets $1/2 \le \frac{L+1}{2} < 1$. We know 0 < 1/2 so $0 < \frac{L+1}{2} < 1$. Then by definition of absolute value $\left|\frac{L+1}{2}\right| < 1$. Thus by Theorem 30, $\lim_{n\to\infty} \left(\frac{L+1}{2}\right)^n = 0$. Now by theorem 25 with $|x_n - 0| < 1 \cdot \left(\frac{L+1}{2}\right)^n$, $C_0 = 1$, and $\lim_{n\to\infty} \frac{L+1}{2} = 0$, $\lim_{n\to\infty} x_n = 0$.

Problem 3

Let $\{a_n\}$ and $\{b_n\}$ be sequences such that $\lim_{n\to\infty}b_n=0$. Suppose that

$$|a_n - a_q| \le b_q$$

holds whenever $n, q \in \mathbb{N}$ and $n \geq q$. Prove that $\{a_n\}$ is a Cauchy sequence.

Proof. Since we are given that $\lim_{n\to\infty} b_q = 0$, b_q is convergent and by the definition of limit, $\forall \varepsilon > 0 \ \exists K \in \mathbb{N}$ such that

$$|b_q - 0| < \varepsilon$$
 $n \ge K$.
 $\implies |b_q| < \varepsilon$
 $\implies -\varepsilon < b_q < \varepsilon$

Thus,

$$b_q < \varepsilon$$
 $n \ge K$ (A.)

Case 1 (n \geq m): Let q = m, using this with $|a_n - a_q| \leq b_q$ and (A.) gets us $|a_n - a_m| \leq b_m$ and $b_m < \varepsilon$, combing the two gets us

$$|a_n - a_m| \le \varepsilon$$
 $n, m \ge K$.

Case 1 (n \leq m): Let q = n, using this with $|a_n - a_q| \leq b_n$ gets us $|a_n - a_m| \leq b_n$, then by definition of absolute value we have $|-(a_n - a_m)| = |-a_n + a_m| = |a_m - a_n|$. Now using $|a_m - a_n| \leq b_n$ with $b_n < \varepsilon$ gets us

$$|a_m - a_n| \le \varepsilon$$
 $n, m \ge K$.

Thus for all n, m in \mathbb{N} , we have proved by the definition of a Cauchy sequence, $\{a_n\}$ is a Cauchy sequence.

Problem 4

Let $\{x_n\}$ be a sequence and $0 < \lambda < 1$. Suppose that

$$|x_n - x_{n-1}| \le \lambda |x_{n-1} - x_{n-2}|$$

holds for all $n \geq 3$. Prove that $\{x_n\}$ is a Cauchy sequence (and hence a convergent sequence). You may use the result of Extra Problem 1 below without proof, if needed.

Proof. Let P(n) be " $|x_{n+1} - x_n| \le \lambda^{n-1} |x_2 - x_1|$ " for $n \in \mathbb{N}$.

Base Case: When n = 1. On the LHS of P(1) we have $|x_2 - x_1|$ and on the RHS we have $\lambda^0 |x_2 - x_1| = |x_2 - x_1|$ thus $|x_2 - x_1| \le |x_2 - x_1|$ holds, P(1) holds and the base case holds. **Inductive Hypothesis:** Assume P(k) holds for arbitrary $k \in \mathbb{N}$.

Inductive Step: We know that $|x_n - x_{n-1}| \le \lambda |x_{n-1} - x_{n-2}|$ for $n \ge 3$, then we can have $n = k + 2, k + 2 \ge 3$, so that

$$|x_{k+2} - x_{k+1}| \le \lambda |x_{k+1} - x_k|.$$

Dividing both sides by $|x_{k+1} - x_k|$ gives us

$$\frac{|x_{k+2} - x_{k+1}|}{|x_{k+1} - x_k|} \le \lambda.$$
 (4)

By our inductive hypothesis we know that

$$|x_{k+1} - x_k| \le \lambda^{k-1} |x_2 - x_1|$$

holds, so multiplying the left hand side by the left hand side of \clubsuit and the right and ride by the right hand of \clubsuit gets us

$$\frac{|x_{k+2} - x_{k+1}|}{|x_{k+1} - x_k|} \cdot |x_{k+1} - x_k| \le \lambda \cdot \lambda^{k-1} |x_2 - x_1|.$$

Simplifying both sides gets us

$$|x_{k+2} - x_{k+1}| \le \lambda^k |x_2 - x_1|.$$

Thus we have shown that P(k+1) hold for all $k \in \mathbb{N}$. Therefore by the Principle of Mathematical induction, P(n), i.e.

$$|x_{n+1} - x_n| \le \lambda^{n-1} |x_2 - x_1|$$
 (\heartsuit)

hold for all $n \in \mathbb{N}$.

For $n, m \in \mathbb{N}$ and n > m

$$|x_n - x_m| = |(x_n - x_{n-1}) + (x_{n-1} - x_n - 2) + \dots + (x_{m+1} - x_m)|.$$

Using the triangle inequality gets us

$$|(x_n - x_{n-1}) + (x_{n-1} - x_n - 2) + \dots + (x_{m+1} - x_m)|$$

$$\leq |x_n - x_{n-1}| + |x_{n-1} - x_n - 2| + \dots + |x_{m+1} - x_m|.$$

Then by using \heartsuit we get

$$|x_n - x_{n-1}| + |x_{n-1} - x_n - 2| + \dots + |x_{m+1} - x_m|$$

$$\leq \lambda^{n-2}|x_2 - x_1| + \lambda^{n-3}|x_2 - x_1| + \dots + \lambda^{m-1}|x_2 - x_1|$$

We can factor out a λ^{m-1} and a $|x_2 - x_1|$ to get

$$\lambda^{m-1}(1+\lambda+...+\lambda^{n-m-1})|x_2-x_1|.$$

Thus

$$|x_n - x_m| \le \lambda^{m-1} (1 + \lambda + \dots + \lambda^{n-m-1}) |x_2 - x_1|.$$

Let $s_n = 1 + \lambda + ... + \lambda^{n-m-1}$, then $\lambda s_n = \lambda + \lambda^2 + ... + \lambda^{n-m}$. Now, $s_n - \lambda s_n = 1 - \lambda^{n-m}$, factoring out a s_n on the left hand sides gets us $s_n(1-\lambda) = 1 - \lambda^{n-m}$, now dividing both sides by $(1-\lambda)$ gives us $s_n = \frac{1-\lambda^{n-m}}{(1-\lambda)}$. Substituting in for s_n in to the inequality gets us

$$|x_n - x_m| \le \lambda^{m-1} \frac{1 - \lambda^{n-m}}{(1 - \lambda)} |x_2 - x_1|.$$

Now, we know that $1 > \lambda \ge 0$, taking the power of n - m > 0 of both sides gets

$$\lambda^{n-m} > 0.$$

Multiplying by -1 gets us

$$-\lambda^{n-m} < 0,$$

adding one to both sides gets

$$1 - \lambda^{n-m} < 1.$$

Now we also know that $1 - \lambda > 0$, so $\frac{1}{1 - \lambda} > 0$. So multiplying both sides of $1 - \lambda^{n-m} \le 1$ by $\frac{1}{1 - \lambda}$ gets us

$$\frac{1 - \lambda^{n-m}}{1 - \lambda} \le \frac{1}{1 - \lambda}.$$

Thus we can us the right hand side of the previous line as a substitution for $\frac{1-\lambda^{n-m}}{1-\lambda}$ in \diamondsuit and the inequality still holds to get

$$|x_n - x_m| \le \lambda^{m-1} \frac{1}{1-\lambda} |x_2 - x_1|.$$

Let $b_q = \lambda^{q-1} \frac{1}{1-\lambda} |x_2 - x_1|$ for arbitrary $q \in \mathbb{N}$, let q = m, and $n \geq q$, so we have

$$|x_n - x_q| \le b_q.$$

Now lets take out a λ^{-1} from b_n and take the limit of b_n so that

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \lambda^n \lambda^1 \frac{1}{1 - \lambda} |x_2 - x_1|.$$

We can split the limit by multiplication:

$$\lim_{n \to \infty} \lambda^n \lim_{n \to \infty} \lambda^{-1} \lim_{n \to \infty} \frac{1}{1 - \lambda} \lim_{n \to \infty} |x_2 - x_1|.$$

We know that $|\lambda| < 1$, so by Theorem 30 $\lim_{n \to \infty} \lambda^n = 0$. So

$$\lim_{n \to \infty} \lambda^n \lim_{n \to \infty} \lambda^{-1} \lim_{n \to \infty} \frac{1}{1 - \lambda} \lim_{n \to \infty} |x_2 - x_1|$$

$$= 0 \cdot \lim_{n \to \infty} \lambda^{-1} \lim_{n \to \infty} \frac{1}{1 - \lambda} \lim_{n \to \infty} |x_2 - x_1|$$
$$= 0$$

Thus, $\lim_{n\to\infty} b_n = 0$. Then by Problem 3 of this homework $\{x_n\}$ is a Cauchy equence.

Problem 5

Let $\{x_n\}$ be defined by $x_1 = 2$, $x_2 = 7$ and

$$x_n = \frac{x_{n-1}}{3} + \frac{2x_{n-2}}{3} \ \forall \ n \ge 3$$

Prove that $\{x_n\}$ is convergent.

Proof. Lets start with $|x_n - x_{n-1}|$, we can substitute x_n with the given definition of x_n to get

 $\left| \left(\frac{x_{n-1}}{3} + \frac{2x_{n-2}}{3} \right) - x_{n-1} \right|.$

We can get a common denominator with the right term and add the two left terms to get

$$\left| \frac{x_{n-1} + 2x_{n-2}}{3} - \frac{3x_{n-1}}{3} \right|.$$

Adding the two resulting terms gets

$$\left| \frac{-2x_{n-1} + 2x_{n-2}}{3} \right|.$$

By the definition of absolute value we can have

$$\left| -\left(\frac{-2x_{n-1} + 2x_{n-2}}{3}\right) \right| = \left| \frac{2x_{n-1} - 2x_{n-2}}{3} \right|.$$

Distributing out a 2 and taking out the 1/3 get us

$$|(2/3)(2x_{n-1}+x_{n-2})|.$$

Thus we showed that

$$|x_n - x_{n-1}| = |(2/3)(2x_{n-1} + x_{n-2})|.$$

So then we can also say that

$$|x_n - x_{n-1}| \le |(2/3)(2x_{n-1} + x_{n-2})|.$$

Thus since $0 < \lambda = 2/3 < 1$, $\{x_n\}$ is contractive by the definition of contractive. Then by Theorem 35, contractive sequences are convergent thus $\{x_n\}$ is convergent. Alternatively, by problem 4, $\{x_n\}$ is a Cauchy Sequence and thus convergent.

Problem 6

Define the sequence x_n by $x_1 = 2$ and

$$x_{n+1} = \frac{3}{2 + x_n}$$

for $n \in \mathbb{N}$. Prove that $\{x_n\}$ is convergent and find its limit.

Proof. Let P(n) be " $x_n > 0$ " for all $n \in \mathbb{N}$.

Base Case: When n = 1. $x_1 = 1$ and 1 > 0 thus base case holds.

Inductive Hypothesis: Suppose P(k) holds for arbitrary $k \in \mathbb{N}$.

Inductive Step: From our inductive hypothesis we know that $x_k > 0$ holds. We know that 2 > 0 and adding 2 to both sides of $x_k > 0$ gets us $2 + x_k > 2 > 0$. We know that 3 > 0 so diving both sides by $2 + x_k$ gets us $\frac{3}{2+x_k} > 0$, then by your inductive definition we have $x_{k+1} > 0$. Thus P(k+1) holds. Therefore P(n) hold for all $n \in \mathbb{N}$ by the Principle of Mathematical induction. Now lets use $|x_n - x_{n-1}|$ to get

$$\left| \frac{3}{2 + x_{n-1}} - \frac{3}{2 + x_{n-2}} \right|$$

Multiply the terms to get a common denominator:

$$= \left| \frac{3}{2+x_{n-1}} \cdot \frac{2+x_{n-2}}{2+x_{n-2}} - \frac{3}{2+x_{n-2}} \cdot \frac{2+x_{n-1}}{2+x_{n-1}} \right| = \left| \frac{3(2+x_{n-2})}{(2+x_{n-1})(2+x_{n-2})} - \frac{3(2+x_{n-1})}{(2+x_{n-1})(2+x_{n-2})} \right|$$

Adding the terms together gets

$$= \left| \frac{3(2+x_{n-2}) - 3(2+x_{n-1})}{(2+x_{n-1})(2+x_{n-2})} \right|.$$

We can distribute out a 3 and subtract the numerator:

$$= |3| \left| \frac{(2+x_{n-2}) - (2+x_{n-1})}{(2+x_{n-1})(2+x_{n-2})} \right| = 3 \left| \frac{x_{n-2} - x_{n-1}}{(2+x_{n-1})(2+x_{n-2})} \right|$$

Now lets also take out the denominator so that

$$= 3 \cdot \frac{1}{|(2+x_{n-1})(2+x_{n-2})|} |x_{n-2} - x_{n-1}| = \frac{3}{|2+x_{n-1}||2+x_{n-2}|} |x_{n-2} - x_{n-1}|$$

So we have got that

$$|x_n - x_{n-1}| = \frac{3}{|2 + x_{n-1}||2 + x_{n-2}|} |x_{n-2} - x_{n-1}|.$$

Now since we know that $x_n < 0$ for all $n \in \mathbb{N}$, lets add 2 to both sides to get $0 < x_n + 2 < 2$, taking the multiplicative inverse of both sides gets $\frac{1}{x_n+2} > \frac{1}{2}$. So we can say that $\frac{1}{x_n+2} \ge \frac{1}{2}$ and we can use this as substitutions for $|2 + x_{n-1}|$ and $|2 + x_{n-2}|$ to get the inequality

$$|x_n - x_{n-1}| \le 3 \cdot \frac{1}{2} \cdot \frac{1}{2} |x_{n-2} - x_{n-1}|.$$

$$\implies |x_n - x_{n-1}| \le \frac{3}{4}|x_{n-2} - x_{n-1}|.$$

Thus $\{x_n\}$ is contractive since $0 \le \frac{3}{4} \le 1$, then since contractive sequences converge, $\{x_n\}$ converges, so the limit of $\{x_n\}$ exists. Now let $L = \lim_{n \to \infty} x_n$, and since x_{n+1} is a subsequence of x_n , $\lim_{n \to \infty} x_{n+1} = L$. Now using the recursive definition, $x_{n+1} = \frac{3}{2+x_n}$, we can multiply both sides by $2 + x_n$ to get

$$x_{n+1}(2+x_n) = 3.$$

Now taking the limit of both sides gets us

$$\lim_{n \to \infty} x_{n+1}(2+x_n) = \lim_{n \to \infty} 3.$$

Splitting by multiplication and them by addition (Theorem 27) get us

$$\lim_{n \to \infty} x_{n+1} \lim_{n \to \infty} (2 + x_n) = \lim_{n \to \infty} 3.$$

$$\implies \lim_{n \to \infty} x_{n+1} (\lim_{n \to \infty} 2 + \lim_{n \to \infty} x_n) = \lim_{n \to \infty} 3.$$

Then using what we established before we substitute in our L's and the limit of a constant is said constant to get

$$L(2+L) = 3.$$

Distributing:

$$2L + L^2 = 3.$$

Subtracting 3 on both sides:

$$-3 + 2L + L^2 = 0.$$

Factoring:

$$(L+3)(L-1) = 0.$$

So either L+3=0 and L=-3, or L-1=0 and L=1. We know that $\{x_n\}>0$ so taking the limit of both sides get us

$$\lim_{n \to \infty} \{x_n\} > \lim_{n \to \infty} 0.$$

$$\implies L > 0.$$

Thus the only possible solution is when L=1, therefore $L=\lim_{n\to\infty}\{x_n\}=1$.

Problem 7

Find the limit of the sequence $\{x_n\}$ defined in Problem 5. Show details of your calculation/argument.

Proof. Let P(n) be " $x_{n+1} = (-2/3)x_n + 25/3$ " for all $n \in \mathbb{N}$

Base Case: When n = 1, then on the LHS of P(1) we have $x_2 = 7$ and on the LHS we have $(-2/3)x_1 + 25/3 = (-2/3)2 + 25/3 = -4/3 + 25/3 = 21/3 = 7$ thus the LHS and RHS equal so P(1) holds and the base case holds.

Inductive Hypothesis: Assume for arbitrary $k \in \mathbb{N}$, P(k) hold.

Inductive Step: By our inductive hypothesis we know that $x_{k+1} = (-2/3)x_k + 25/3$ holds i.e. $x_{k+1} = x_{k+1}$. We can multiply both sides by (-2/3) to get

$$(-2/3)x_{k+1} = (-2/3)x_{k+1}.$$

Then adding 25/3 on both sides gets

$$(-2/3)x_{k+1} + 25/3 = (-2/3)x_{k+1} + 25/3.$$

We know that $x_{k+2} = (-2/3)x_{k+1} + 25/3$, so using this to substitute on the right hand side to get $x_{k+2} = (-2/3)x_{k+1} + 25/3$. Thus P(k+1) holds, and our inductive step is complete. Therefore by the principle of mathematical induction, P(n) holds for all $n \in \mathbb{N}$.

Now from problem 5, we know that the limit of $\{x_n\}$ exists, so let $x = \lim_{n \to \infty} x_n$. Now lets take the limit of both sides of $x_{n+1} = (-2/3)x_n + 25/3$ to get

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} ((-2/3)x_n + 25/3).$$

We can split the right hand side by addition and then the term by multiplication to get

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (-2/3) x_n + \lim_{n \to \infty} 25/3$$

$$\implies \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (-2/3) \lim_{n \to \infty} x_n + \lim_{n \to \infty} 25/3.$$

We know that the limit of constants are said constant. And since x_{n+1} is a subsequence of x_n , $\lim_{n\to\infty} x_{n+1} = \lim_{n\to\infty} x_n = x$, thus we get

$$x = (-2/3)x + 25/3.$$

Multiplying both sides by 3 gives us

$$3x = -2x + 25.$$

Adding 2x to both sides gets us

$$5x = 25.$$

Diving both sides gets us

$$x = 5.$$

Therefore $x = \lim_{n \to \infty} x_n = 5$.