

# Modelos de regresión

Jose M Sallan

18 de julio de 2018

1 / 58

Jose M Sallan Modelos de regresión 18 de julio de 2018

### Contenidos



- 1 Introducción a la regresión lineal
- Variables categóricas
- Regresión jerárquica
- 4 Análisis de mediación y moderación
- 5 Análisis de residuos y valores atípicos
- Multicolinealidad
- Conclusiones



- 1 Introducción a la regresión lineal
- 2 Variables categóricas
- Regresión jerárquica
- 4 Análisis de mediación y moderación
- 5 Análisis de residuos y valores atípicos
- 6 Multicolinealidad
- Conclusiones

### Regresión lineal



El análisis de regresión consiste en analizar las relaciones entre:

- una variable dependiente (o endogéna, respuesta o criterio) y
- un conjunto de p variables independientes (exógenas, predictoras)  $x_j$

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i \tag{1}$$

# Un ejemplo univariante



Estimando con la media (rojo) o con una recta de regresión (azul):



# Ejemplo multivariante: mtcars 1



mtcars incluye información sobre consumo de gasolina en millas por galón mpg y diez aspectos de diseño y desempeño para 32 automóviles (modelos de 1973-1974).

#### > head(mtcars)

|                   | mpg  | cyl | disp | hp  | drat | wt    | qsec  | ٧s | $\mathtt{am}$ | gear | carb |
|-------------------|------|-----|------|-----|------|-------|-------|----|---------------|------|------|
| Mazda RX4         | 21.0 | 6   | 160  | 110 | 3.90 | 2.620 | 16.46 | 0  | 1             | 4    | 4    |
| Mazda RX4 Wag     | 21.0 | 6   | 160  | 110 | 3.90 | 2.875 | 17.02 | 0  | 1             | 4    | 4    |
| Datsun 710        | 22.8 | 4   | 108  | 93  | 3.85 | 2.320 | 18.61 | 1  | 1             | 4    | 1    |
| Hornet 4 Drive    | 21.4 | 6   | 258  | 110 | 3.08 | 3.215 | 19.44 | 1  | 0             | 3    | 1    |
| Hornet Sportabout | 18.7 | 8   | 360  | 175 | 3.15 | 3.440 | 17.02 | 0  | 0             | 3    | 2    |
| Valiant           | 18.1 | 6   | 225  | 105 | 2.76 | 3.460 | 20.22 | 1  | 0             | 3    | 1    |

# Ejemplo multivariante: mtcars 1



Resultados de la regresión lineal

### Regresión de mpg frente a potencia hp peso wt y aceleración qsec

```
> mtcars01 <- lm(mpg ~ hp + wt + qsec, data=mtcars)
> summary(mtcars01)
Call:
lm(formula = mpg ~ hp + wt + qsec, data = mtcars)
Residuals:
   Min
            10 Median
                                  Max
-3 8591 -1 6418 -0 4636 1 1940 5 6092
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                      8.41993 3.279 0.00278 **
(Intercept) 27.61053
           -0.01782
                      0.01498 -1.190 0.24418
hp
           -4.35880 0.75270 -5.791 3.22e-06 ***
wt
qsec
           0.51083
                      0.43922 1.163 0.25463
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.578 on 28 degrees of freedom
Multiple R-squared: 0.8348, Adjusted R-squared: 0.8171
F-statistic: 47.15 on 3 and 28 DF. p-value: 4.506e-11
```

# Significación global del modelo



- Coeficiente de determinación  $R^2$ : fracción de la variabilidad de y explicada por el modelo de regresión (modelos con  $R^2$  cercano a 1 tienen buen ajuste).
- $R^2$  ajustado: coeficiente ajustado por el número de predictores p.
- **F-statistic**: test de si el modelo de regresión explica y mejor que la media  $\bar{y}$ .

# Significación de los coeficientes de regresión



Nos interesa saber si hay relación entre y y las  $x_j$ , más que el valor del coeficiente.

- **Hipótesis nula** para cada variable: *el coeficiente de regresión es cero* (no hay relación entre  $x_j$  e y).
- Podemos descartar la hipótesis nula si el p-valor es lo bastante pequeño:

$$\begin{array}{lll} . & p < 0.1 \\ * & p < 0.05 \\ ** & p < 0.01 \\ *** & p < 0.001 \end{array}$$

El *p*-valor es la probabilidad de obtener un valor igual o más extremo que el obtenido si la hipótesis nula es cierta.

### Interpretación del modelo mtcars 1



```
> mtcars01 <- lm(mpg ~ hp + wt + qsec, data=mtcars)
> summarv(mtcars01)
Call:
lm(formula = mpg ~ hp + wt + qsec, data = mtcars)
Residuals:
   Min
            10 Median
                                  Max
-3.8591 -1.6418 -0.4636 1.1940 5.6092
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.61053
                      8.41993 3.279 0.00278 **
hp
           -0.01782
                      0.01498 -1.190 0.24418
wt.
           -4.35880 0.75270 -5.791 3.22e-06 ***
qsec
           0.51083
                      0.43922 1.163 0.25463
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 2.578 on 28 degrees of freedom
Multiple R-squared: 0.8348, Adjusted R-squared:
F-statistic: 47.15 on 3 and 28 DF, p-value: 4.506e-11
```

### Interpretación del modelo mtcars 1



#### Ajuste global del modelo:

- El estadístico F muestra que la regresión explica mejor el modelo que la media.
- Coeficiente de determinación elevado  $R_{aj.}^2 = 0,82.$

#### Coeficientes de regresión:

- Expresan la relación entre la variable dependiente y cada una de las independientes.
- En este modelo, sólo son significativos el término independiente y el coeficiente de regresión de wt.
- Cuanto mayor es el peso wt, mayor es el consumo (menor es mpg).



- 1 Introducción a la regresión lineal
- 2 Variables categóricas
- Regresión jerárquica
- 4 Análisis de mediación y moderación
- 5 Análisis de residuos y valores atípicos
- Multicolinealidad
- Conclusiones

# Variables categóricas



En una regresión lineal podemos introducir como variables dependientes variables categóricas, que representan niveles de un determinado factor:

- género (masculino, femenino)
- sector industrial (energía, farmacia, TIC, ...)

Una variable categórica de k niveles se puede representar usando k-1 variables  ${\bf dummy}$  (binarias).

| Sector               | $d_1$ | $d_2$ | $d_3$ |
|----------------------|-------|-------|-------|
| Energía (base level) | 0     | 0     | 0     |
| Farmacia             | 1     | 0     | 0     |
| TIC                  | 0     | 1     | 0     |
| Construcción         | 0     | 0     | 1     |

Si la variable categórica se codifica como factor, **R** genera las variables dummy automáticamente. Los coeficientes de regresión de las variables dummy representan la diferencia de valor de la variable dependiente entre el nivel definido por la dummy y en nivel base.



En este caso, y depende de x y del género de los individuos (azul: hombres, rojo: mujeres).





### ¿Qué poder explicativo añade la variable binaria?

```
> summary(mod.dummy)
Call:
lm(formula = y.dummy ~ x.dummy)
Residuals:
   Min
            10 Median
                                  Max
-3.0556 -1.0599 -0.2609 1.2634 3.9147
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.90376
                      0.57665 1.567
                                         0.125
x.dummv
            0.76241
                      0.08804 8.660 1.59e-10 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 1.573 on 38 degrees of freedom
Multiple R-squared: 0.6637,
                            Adjusted R-squared: 0.6549
F-statistic: 74.99 on 1 and 38 DF, p-value: 1.587e-10
```



### ¿Qué poder explicativo añade la variable binaria?

```
> summarv(mod.dummv4)
Call:
lm(formula = y.dummy ~ x.dummy + dummy)
Residuals:
   Min
            10 Median
                           30
                                  Max
-3.0232 -0.6226 0.1100 0.6344 2.8411
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.07296
                      0.46384 -0.157
x.dummv 0.75183
                      0.06565 11.452 1.01e-13 ***
dummywomen 2.07853
                      0.37098 5.603 2.17e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.173 on 37 degrees of freedom
Multiple R-squared: 0.8181,
                             Adjusted R-squared:
                                                      0.8082
F-statistic: 83.18 on 2 and 37 DF, p-value: 2.035e-14
```



#### Comparando los dos modelos:

El modelo con la variable binaria añade poder explicativo.



- > library(stargazer)
- > stargazer(mod.dummy, mod.dummy4, type = "text")

|                     | Dependent variable: |                             |  |  |  |  |
|---------------------|---------------------|-----------------------------|--|--|--|--|
|                     | y.dummy             |                             |  |  |  |  |
|                     | (1)                 | (2)                         |  |  |  |  |
| x.dummy             | 0.762***            | 0.752***                    |  |  |  |  |
|                     | (0.088)             | (0.066)                     |  |  |  |  |
| dummywomen          |                     | 2.079***                    |  |  |  |  |
| •                   |                     | (0.371)                     |  |  |  |  |
| Constant            | 0.904               | -0.073                      |  |  |  |  |
|                     | (0.577)             | (0.464)                     |  |  |  |  |
|                     |                     |                             |  |  |  |  |
| Observations        | 40                  | 40                          |  |  |  |  |
| R2                  | 0.664               | 0.818                       |  |  |  |  |
| Adjusted R2         | 0.655               | 0.808                       |  |  |  |  |
| Residual Std. Error | 1.573 (df = 38)     | 1.173 (df = 37)             |  |  |  |  |
| F Statistic         | 74.994*** (df = 1;  | 38) 83.182*** (df = 2; 37)  |  |  |  |  |
|                     |                     |                             |  |  |  |  |
| Note:               | *                   | *p<0.1; **p<0.05; ***p<0.01 |  |  |  |  |

### Ejemplo: mtcars 2



Definimos un modelo para evaluar la influencia del número de marchas gears:

```
> levels(as.factor(mtcars$gear))

[1] "3" "4" "5"

> mtcars02 <- lm(mpg ~ wt + hp + factor(gear), data=mtcars)
> coef(summary(mtcars02))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.87245123 2.58015801 13.5156262 1.558098e-13
wt -3.23852439 0.87781636 -3.6892960 1.000770e-03
hp -0.03497069 0.01260201 -2.775090 9.897557e-03
factor(gear)4 1.26489784 1.34083819 0.9433635 3.538604e-01
factor(gear)5 1.87355541 1.86661986 1.0037156 3.244269e-01
```

En este modelo, no se aprecia que gears influya en el consumo de combustible.



- 1 Introducción a la regresión lineal
- 2 Variables categóricas
- Regresión jerárquica
- 4 Análisis de mediación y moderación
- 5 Análisis de residuos y valores atípicos
- Multicolinealidad
- Conclusiones

### Regresión jerárquica



Cuando estudiamos la relación entre una variable **predictora** y una variable **criterio**, queremos estar seguros de controlar fuentes de variabilidad común (variables de **control**).

# Correlación espúrea



#### Relación no espúrea:



### Relación espúrea:



# Correlación espúrea



# Per capita consumption of mozzarella cheese correlates with

#### Civil engineering doctorates awarded



### Regresión jerárquica



En la regresión jerárquica las variables se entran en dos pasos:

- Primer modelo: regresión de la variable criterio con las variables de control.
- Segundo modelo: regresión de la variable criterio con las variables de control y predictora.

### Regresión jerárquica



Para tener seguridad de que no hay relación espúrea:

- El segundo modelo ha de tener más poder explicativo que el primero.
- Los coeficientes de regresión de las variables de control no han de experimentar cambios significativos cuando se introducen las variables predictoras.

# Ejemplo OCB



#### Datos con 602 observaciones:

- Criterio: comportamiento ciudadano (OCB).
- Control: edad (AGE) y género (GEN).
- Predictor: Responsabilidad de cambio constructivo (FRCC), eficacia percibida en el rol (RBSE).

# Ejemplo OCB

# UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Departament d'Organització d'Empreses

#### Correlograma de variables



# Ejemplo OCB



|                     | Dependent variable:     |                           |  |  |  |
|---------------------|-------------------------|---------------------------|--|--|--|
|                     | OCB                     |                           |  |  |  |
|                     | (1)                     | (2)                       |  |  |  |
| AGE                 | 0.015***                | 0.003                     |  |  |  |
|                     | (0.003)                 | (0.002)                   |  |  |  |
| factor(GEN)1        | 0.028                   | 0.020                     |  |  |  |
|                     | (0.063)                 | (0.044)                   |  |  |  |
| FRCC                |                         | 0.128***                  |  |  |  |
|                     |                         | (0.008)                   |  |  |  |
| RBSE                |                         | 0.390***                  |  |  |  |
|                     |                         | (0.032)                   |  |  |  |
| Constant            | 3.151***                | 0.287*                    |  |  |  |
|                     | (0.141)                 | (0.151)                   |  |  |  |
|                     |                         |                           |  |  |  |
| Observations        | 602                     | 602                       |  |  |  |
| R2                  | 0.036                   | 0.544                     |  |  |  |
| Adjusted R2         | 0.033                   | 0.541                     |  |  |  |
| Residual Std. Error | 0.772 (df = 599)        | 0.531 (df = 597)          |  |  |  |
| F Statistic         | 11.331*** (df = 2; 599) | 178.267*** (df = 4; 597)  |  |  |  |
| Note:               | *p                      | <0.1; **p<0.05; ***p<0.01 |  |  |  |



- Introducción a la regresión lineal
- 2 Variables categóricas
- Regresión jerárquica
- 4 Análisis de mediación y moderación
- 5 Análisis de residuos y valores atípicos
- 6 Multicolinealidad
- Conclusiones

### Mediación



Un **mediador** es una variable que actúa como intermediaria entre la relación entre **predictor** y **criterio**:



### Mediación

# UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Departament d'Organització d'Empreses

#### Criterios de Baron y Kenny

#### Existe mediación si:

- variaciones de nivel de la variable independiente explican variaciones de la candidata a mediadora (camino a).
- variaciones en el mediador explican variaciones de la variable dependiente (camino b).
- cuando los caminos a y b están controlados, deja de ser significativa una relación entre variable dependiente e independiente (camino c).

### Simulando una relación mediada



```
> set.seed(3333)
> pred <- rnorm(100, 2, 1)
> med <- 3 + 2*pred + rnorm(100, sd=0.3)
> cri <- 2 + med + rnorm(100, sd=0.2)
> bk01 <- lm(med ~ pred)
> bk02 <- lm(cri ~ pred)
> bk03 <- lm(cri ~ pred + med)</pre>
```

### Simulando una relación mediada



Pr(>|t|)

```
> coef(summary(bk01))
           Estimate Std. Error t value
(Intercept) 3.018608 0.07659320 39.41092 6.544253e-62
```

> coef(summary(bk02))

pred

```
Estimate Std. Error t value
                                            Pr(>|t|)
(Intercept) 5.010529 0.09142991 54.80186 2.493842e-75
pred
           2.006993 0.04009225 50.05938 1.310783e-71
```

2.006344 0.03358632 59.73696 6.803052e-79

> coef(summary(bk03))

```
Estimate Std. Error t value
                                              Pr(>|t|)
(Intercept) 2.10701046 0.22339750 9.4316652 2.264074e-15
pred
           0.07714424 0.14597351 0.5284811 5.983726e-01
           0.96187320 0.07177705 13.4008470 8.487747e-24
med
```

#### Moderación



Un **moderador** es una variable que afecta la dirección o intensidad de la relación entre las variables **predictora** y **criterio**.



Hay moderación cuando el coeficiente del **término de interacción** (producto de predictor y moderador) es significativo.

### Ejemplo: mtcars 3



¿La relación entre consumo de combustible mpg y peso wt depende del tipo de transmisión am (0 automática, 1 manual)? > summary(lm(mpg ~ am\*wt, mtcars)) Call: lm(formula = mpg ~ am \* wt, data = mtcars) Residuals: Min 10 Median Max -3.6004 -1.5446 -0.5325 0.9012 6.0909 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 31.4161 3.0201 10.402 4.00e-11 \*\*\* 14.8784 4.2640 3.489 0.00162 \*\* am wt. -3.7859 0.7856 -4.819 4.55e-05 \*\*\* am·wt. -5.2984 1 4447 -3 667 0 00102 \*\* Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' 1

Residual standard error: 2.591 on 28 degrees of freedom Multiple R-squared: 0.833, F-statistic: 46.57 on 3 and 28 DF, p-value: 5.209e-11

# Ejemplo: mtcars 3





Las millas por galón decrecen más lentamente con el peso cuando se usa transmisión automática.



- Introducción a la regresión lineal
- 2 Variables categóricas
- Regresión jerárquica
- 4 Análisis de mediación y moderación
- 5 Análisis de residuos y valores atípicos
- Multicolinealidad
- Conclusiones

### Residuos



Los **residuos** son la diferencia entre el valor real y la predicción del modelo:  $e_i = y_i - \hat{y}_i$ .

El método más habitual de obtener los estimadores del modelo de regresión es minimizando:

$$\sum (y_i - \hat{y}_i)^2$$

Mínimos cuadrados ordinarios (ordinary least squares OLS).

# Diagnóstico de residuos



Para que los estimadores obtenidos por mínimos cuadrados sean insesgados y de máxima verosimilitud los residuos:

- han de tener media a cero y varianza constante para  $\hat{y}_i$ .
- han de seguir una distribución normal.
- han de ser independientes del tiempo (si aplica).

### Análisis de residuos en mtcars 1



- > par(mfrow=c(1,2), pty="s")
- > plot(mtcars01, which=1, pch=19)
- > plot(mtcars01, which=2, pch=19)



### Varianza de los residuos



Los residuos son **homocedásticos** si su varianza es independiente de  $\hat{y}_i$ , y **heterocedásticos** en caso contrario.



### Varianza de los residuos

> coef(summary(mod.v1))



Comparativa de los coeficientes de x de los modelos 1 (heterocedástico) y 2 (homocedástico). El coeficiente de regresión de población es 1.

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.385123 0.2333131 5.936757 1.984273e-08
x 1.390449 0.2857490 4.865981 2.885719e-06
> coef(summary(mod.y2))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0312575 0.07809141 13.205774 8.432673e-27
x 0.9233003 0.09564205 9.653707 2.100486e=17
```

Para evitar la heterocedasticidad pueden hacerse transformaciones de las variables (logaritmo, raíz cuadrada).

## Valores atípicos





- El punto 1 no es atípico (outlier), el resto sí.
- El punto 2 es de bajo apalancamiento y baja influencia.
- El punto 3 es de alto apalancamiento y baja influencia.
- El punto 4 es de alto apalancamiento y alta influencia.

## Diagnósticos de influencia



Puede accederse a una colección de los diagnósticos de influencia disponibles en **R** escribiendo en la consola ?influence.measures

- cooks.distance La distancia de Cook de la observación i es la variación estandardizada de las predicciones  $\hat{y}_i$  cuando se elimina la observación i.
- dfbeta / dfbetas es el cambio en los coeficientes de regresión no estandarizados y estandarizados cuando se elimina la observación i.

### Distancias de Cook en mtcars 1



> plot(mtcars01, which=4)



### Gráfico dfbeta en mtcars 1



- > library(car)
- > dfbetaPlots(mtcars01)

#### dfbeta Plots









- Introducción a la regresión lineal
- 2 Variables categóricas
- Regresión jerárquica
- 4 Análisis de mediación y moderación
- 5 Análisis de residuos y valores atípicos
- Multicolinealidad
- Conclusiones

### Multicolinealidad



Hay **multicolinealidad** si algunas de las variables independientes  $x_j$  están muy correlacionadas entre sí.

Algunos efectos de añadir variables independientes correlacionadas con las ya añadidas:

- El coeficiente de determinación ajustado  $R_{aj.}^2$  disminuye.
- La varianza de los coeficientes de regresión aumenta.
- Uno o varios coeficientes de regresión dejan de ser significativos.

# Diagnósticos de multicolinealidad



Se obtienen diagnósticos de multicolinealidad (MC) mediante  $R_j^2$ , el coeficiente de determinación de la regresión de  $x_j$  respecto del resto de variables independientes.

- La **tolerancia** de  $x_j$  es  $1 R_j^2$  (valores altos si no hay multicolinealidad).
- El factor de inflación de la varianza es el inverso de la tolerancia (bajo si no hay multicolinealidad).

## Ejemplo: Longley



longley es un conjunto de datos macroeconómicos:

- > library(corrplot)
- > corrplot(cor(longley), method="circle")



# Cálculo de los FIV en longley



### Evaluamos dos modelos:

```
> longley01 <- lm(Employed ~ ., data=longley)</pre>
> library(car)
> vif(longley01)
GNP.deflator
                      GNP
                             Unemployed Armed.Forces Population
                                                                            Year
   135.53244
               1788.51348
                               33.61889
                                             3.58893
                                                         399.15102
                                                                      758.98060
> longley02 <- lm(Employed ~ GNP + Armed.Forces, data=longley)
> vif(longley02)
         GNP Armed Forces
    1,248916
                 1,248916
```

## Comparativa de modelos en Longley



```
> coef(summary(longley01))
```

#### > coef(summary(longley02))

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.683468731 0.804340962 64.2556716 1.164460e-17
GNP 0.034393472 0.001965575 17.4979215 2.036369e-10
Armed.Forces 0.001147955 0.002807338 0.4089122 6.892606e-01
```



- Introducción a la regresión lineal
- 2 Variables categóricas
- Regresión jerárquica
- 4 Análisis de mediación y moderación
- 5 Análisis de residuos y valores atípicos
- Multicolinealidad
- Conclusiones

### Conclusiones



### Ejemplo de aplicación de regresión lineal:

 Wassmer, U., & Meschi, P.-X. (2011). The effect of code-sharing alliance formations and terminations on firm value: The role of co-specialization and scope extension. *Journal of Air Transport Management*, 17(5), 305–308.

# Resultados Wassmer et al. (2011)



U. Wassmer, P.-X. Meschi / Journal of Air Transport Management 17 (2011) 305-308

307

**Table 4**Results for alliance terminations. a, b

| Variables                                 | Hypothesizedsign | Model 1 (controls only) | Model 2            | Model 3            |
|-------------------------------------------|------------------|-------------------------|--------------------|--------------------|
| Alliance co-specialization (A) c          | (-)              |                         | -0.491*            | -0.457*            |
| Alliance extension (B)                    | (-)              |                         | -0.316             | -0.230             |
| $CAR(formation)_{-1,+1}$ (C)              |                  |                         | 0.433              | 0.395 <sup>†</sup> |
| (A)×(C) d                                 | (-)              |                         |                    | 0.033**            |
| Focal firm size c                         |                  | 3.355                   | 3.595              | 1.988              |
| Focal firm debt                           |                  | 0.320 <sup>†</sup>      | 0.357*             | 0.371 <sup>†</sup> |
| Focal firm ROS                            |                  | 8.355                   | 5.085              | 2.315              |
| Alliance experience c                     |                  | -1.114                  | -1.839             | -1.234             |
| Focal firm internationalization           |                  | 5.275 <sup>†</sup>      | 5.571 <sup>†</sup> | 4.161*             |
| Relative partner size                     |                  | 0.055*                  | 0.059*             | $0.042^{\dagger}$  |
| Relative market size                      |                  | 0.002                   | 0.001              | 0.001              |
| Cultural distance                         |                  | 1.182                   | 1.030              | 0.431              |
| Alliance duration                         |                  | 0.236                   | 0.280              | 0.033              |
| $\mathbb{R}^2$                            |                  | 0.150*                  | 0.196**            | 0.385**            |
| VIF test                                  |                  | From 1.13 to 1.56       | From 1.16 to 1.58  | From 1.16 to 1.58  |
| Breusch-Pagan test for heteroskedasticity |                  | 26.14***                | 48.99***           | 6.61*              |

p < 0.1\*p < 0.05\*\*p < 0.01\*\*\*p < 0.001.a Model intercepts are not reported.

b As some sample firms engaged in more than one alliance, we adjusted the standard errors of the regression coefficients using the robust estimates of the standard errors, clustered by firms.

c Logarithmic transformation.

d Variables are centered for interaction terms.

# Interacción en Wassmer et al. (2011)





Fig. 1. Interaction effect of  $CAR(formation)_{-1,+1}$  and the level of alliance cospecialization.

### Conclusiones



- Los modelos de regresión lineal permiten evaluar la existencia de relaciones entre una variable dependiente y variables independientes
- Pueden usarse variables categóricas como variables independientes. Si son variables dependientes deben usarse otros modelos (regresión logística)
- Puede evaluarse el impacto de variables de control usando regresión jerárquica
- También pueden estimarse modelos de mediación y moderación

## Información y contacto



Correo: jose.maria.sallan@upc.edu

Blog: http://josemsallan.blogspot.com/

Documentación: https://github.com/jmsallan/quantitative