





## **AGENDA**

- 1. Überwachtes Lernen:
  - Workflow
  - "Simple" Algorithmen
  - Kombinierte Algorithmen/ Ensemble Learning
  - Metriken für überwachtes Lernen
- 2. Case Study



## **WAS HABEN WIR BIS JETZT GEMACHT?**

| ROADMAP     | WAS HABEN WIR GEMACHT?                                                                    |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| Vorlesung 1 | Workflow Data Management, Datentypen und Datenqualität                                    |  |  |  |  |  |
| Vorlesung 2 | Einführung Data Science und Data Science Workflow, Grundlagen Data Management             |  |  |  |  |  |
| Vorlesung 3 | Grundlagen Stochastik: Wahrscheinlichkeitsrechnung, deskriptive und explorative Statistik |  |  |  |  |  |
| Vorlesung 4 | Statistische Inferenz, lineare Regression                                                 |  |  |  |  |  |
| Vorlesung 5 | Einführung Machine Learning, Unüberwachtes Lernen                                         |  |  |  |  |  |





TECHNICAL APPLICATIONS AND DATA MANAGEMENT: SUPERVISED LEARNING | DR. JENS KOHL



## SUPERVISED LEARNING: ÜBERSICHT.

**Ziel**: Wir suchen ein Modell um für beliebige **Eingaben X**<sub>i...n</sub> eine **Zielgröße Y** möglichst genau zu bestimmen oder anzunähern.

### **Ermöglicht**:

- Regression: Vorhersage eines kontinuierlichen Wertes Y (bspw. natürliche oder reelle Zahl).
- Klassifikation: Vorhersage eines diskreten Wertes Y (bspw. wahr/ falsch, Tierart, Personenentdeckung, ....).

#### Was schauen wir uns?

- Gesamter Workflow: von Datenaufbereitung, Trainieren, Testen bis hin zur Anwendung.
- Ausgewählte "simple" Algorithmen für Regression und Klassifikation (weitere Algorithmen im Backup).
- Kombinierte Algorithmen (Ensemble Learning).
- Metriken.



## SUPERVISED LEARNING: REGRESSION.

**Ziel**: Vorhersage eines Wertes aus einer großen Wertemenge (kontinuierliche Variable).

**Ermöglicht**: Prädiktion eines Wertes

#### Aber:

- Hoher Aufwand für das Bestimmen der Zielwerte (Labeln). Dies ist beim unüberwachtem Lernen nicht vorhanden.
- Ist ungenauer als Klassifikation (wir versuchen einen genauen Wert aus einer großen Wertemenge vorherzusagen).
- Oft wird diese zusätzliche "Genauigkeit" nicht benötigt; z.B. reicht im Aktienhandel oft Prädiktion, ob Kursziel überschritten.

#### **Anwendungsbeispiele:**

- Aktienkursvorhersage: Prädiktion eines genauen Kurswertes.
- Biomonitoring: Prädiktion Cholesterin-/ Insulinspiegel.

- ...



## SUPERVISED LEARNING: KLASSIFIKATION

**Ziel**: Vorhersage eines Wertes aus einer kleineren, abzählbaren Menge (diskrete Variable).

### **Ermöglicht**:

Klassifizieren: Einordnen eines Wertes in eine endliche Gruppe bzw. Prädiktion eines endlichen Wertes.

#### Aber:

- Hoher Aufwand für das Bestimmen der Zielwerte (Labeln). Dies ist beim unüberwachtem Lernen nicht vorhanden.
- Genauigkeit hängt von der Größe der Gruppe ab (für sehr große Gruppen haben wir quasi eine Regression).

#### **Anwendungsbeispiele:**

- Online-Werbung: klickt der User die Werbung an oder nicht an?
- Bilderkennung: Erkennen eines bestimmten Tieres, Schriftzeichen, Bildinhalte bewerten, ...
- Übersetzung: Deutsch zu Spanisch, ...
- **–** ...





TECHNICAL APPLICATIONS AND DATA MANAGEMENT: SUPERVISED LEARNING | DR. JENS KOHL



## GENERISCHER ABLAUF SUPERVISED LEARNING. ÜBERSICHT.

- 1. Daten organisieren und hochladen.
- 2. Daten aufbereiten/ Data cleaning.

Das haben wir uns schon in vorigen Vorlesungen angesehen

- 3. Daten aufteilen in Test- und Trainingsmenge (sowie ggf. Validierungsmenge).
- 4. Vorbereitungen: Machine Learning-Algorithmus und Kostenfunktion wählen sowie Modellparameter initialisieren.
- 5. Training: schrittweise Optimierung Modellparameter bis Modell möglichst gute Performance für die Trainingsmenge hat.
- 6. Modell(-güte) validieren anhand der Testmenge. Falls Modellgüte in Ordnung ist, weiter zu Schritt 7. Sonst zu Schritt 5.
- 7. Deployment: Modell einsetzen im "Live"-Betrieb inkl. Kontinuierliches Überprüfen der Modellgüte und ggf. Aktualisierung.

Ziel: Lernen eines möglichst genauen Modells H(Input) = Zielgröße<sup>1</sup>



## VERANSCHAULICHUNG GENERISCHER ABLAUF MACHINE LEARNING ANHAND DES IRIS-DATENSATZ.

- Fisher, "The use of multiple measurements in taxonomic problems" (1936).
- Datenset enthält 50 Samples à 4 Features zu jeder der 3 Irissorten:
  - Sepal length (Kelchblattlänge)
  - Sepal width (Kelchblattweite)
  - Petal length (Blütenblattlänge)
  - Petal Width (Blütenblattweite)
- Datensatz wird sehr häufig als Testdatensatz für Klassifikation verwendet.
- Aber: kleiner Datensatz

Aufgabenstellung: Bestimmen Klasse der Iris anhand Messungen der 4 Features

## Zielgrösse: Klasse der Iris



**Iris Setosa** (Klasse 0)



**Iris versicolor** (Klasse 1)



**Iris virginica** (Klasse 2)



## GENERISCHER ABLAUF SUPERVISED LEARNING. SCHRITT 1 UND SCHRITT 2: DATEN ORGANISIEREN UND AUFBEREITEN.

Hatten wir bereits in der 2. Vorlesung









| elchblatt-<br>länge | Kelchblatt-<br>weite | Blütenblatt-<br>länge | Blütenblatt-<br>weite | Klasse |
|---------------------|----------------------|-----------------------|-----------------------|--------|
| 51                  | 35                   | 14                    | 2                     | 0      |
| 49                  | 30                   | 14                    | 2                     | 1      |
| 47                  | 32                   | 13                    | 2                     | 1      |
| 46                  | 31                   | 15                    | 2                     | 2      |
| 50                  | 36                   | 14                    | 2                     | 0      |
| 54                  | 39                   | 17                    | 4                     | 1      |

from sklearn.model\_selection import train\_test\_split
X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.3, random\_state=0)

- Aufgabe Trainingsset: Lernen/ Optimieren der Parameter des Machine Learning Modells.
- Aufgabe **Testset**: Evaluation, wie gut die Parameter und somit das Modell sind.
- **Zufällige Aufteilung** in Trainings- und Testmenge stellt ähnliche statistische Eigenschaften sicher (sortierte Ausgangsdaten!)
- Oft wird **Validierungsset** zur Optimierung der Parameter des Trainingsprozesses (**Hyperparameter**) gebildet.
- Verhältnis Trainings- zu Testmenge: oft 70% zu 30%. Bei Einsatz Validierungsmenge: 60%-20%-20%.



## GENERISCHER ABLAUF SUPERVISED LEARNING. SCHRITT 4: MODELL WÄHLEN UND INITIALISIEREN

#### 1. Wahl Machine Learning-Modell abhängig von:

- Datentyp: Zahlen, Bilder, Sprache, ....
- Verfügbaren Ressourcen: Rechen-Power, Zeit, Kosten, ...
- Datenmenge: viele oder wenig Daten vorhanden?
- Qualität Daten: fehlende Werte/ Ausreißer stören manche Lernverfahren.
- Anforderungen an Modellgüte.
- Komplexität Algorithmus: komplexe Algorithmen neigen zu hoher Streuung, simple zu hoher Verzerrung.

Bias-/ Variance Tradeoff

### 2. Initialisierung Modellparameter

- Hyperparameter: Parameter Trainingsprozess, bspw. Learning rate Neural Network oder Anzahl Cluster K-Nearest Neighbours
- Modellparameter (Weights w<sub>i</sub> und Bias b): Initialisierung mit zufälligen Werten (für schnelleres Lernen).
- 3. Wahl Loss-Funktion: Bewertungsfunktion für Genauigkeit des Machine Learning Modells (bspw. MSE, Cross-Entropy<sup>1</sup>, ...)

Auswahl ist erfahrungsbasierend. Die meisten Machine Learning Bibliotheken treffen aber standardmäßig gute Vorauswahlen.



## GENERISCHER ABLAUF SUPERVISED LEARNING. SCHRITT 5: TRAINING

1. Feed Forward: Vorhersage Wert je Sample (individuelle Zeile Datensatz)



## 2. Berechnen Modellgüte und Fehler des Modells

- Loss Function: Berechnen Delta zwischen realem und vorhergesagtem Wert je Sample.
- Cost Function: Durchschnitt der Losses für jedes Sample.





## 3. Minimierung Fehler und Anpassen Modellparameter:

- Aufstellen Gleichung für Minimierung Cost Function (erste Ableitung gleich 0 setzen).
- Lösen Gleichung für die Modellparameter.
- Aktualisieren Modellparameter ( $\Delta w_{ij}$  und  $\Delta b_i$ ), um so im nächsten Trainingslauf näher am realen Y-Wert zu landen.
- → Einsatz iterativer Algorithmus bei hochdimensionalen Daten (bspw. Gradient Descent).

| Aktualisiertes ML-Modell mit<br>geänderten Gewichten/ Bias |                 |                  |                          |                 |  |  |
|------------------------------------------------------------|-----------------|------------------|--------------------------|-----------------|--|--|
| $\Delta w_{11}$                                            | $\Delta w_{12}$ | $\Delta w_{13}$  | $\Delta$ W <sub>14</sub> | $\Delta b_1$    |  |  |
|                                                            |                 |                  |                          |                 |  |  |
| $\Delta w_{n1}$                                            | $\Delta w_{n2}$ | ∆w <sub>n3</sub> | $\Delta w_{n4}$          | Δb <sub>n</sub> |  |  |

Durchführen Schritte 1-3 inkl. Update Modellparameter für gesamtes Trainingsset heißt **Epoch**, für Teile Trainingsset **Batch**. Anzahl Durchläufe je Batch/ Epoch erfahrungsabhängig inkl. Abbruchkriterien (ausreichende oder stagnierende Güte)



## GENERISCHER ABLAUF SUPERVISED LEARNING. SCHRITT 6: MODELL TESTEN.

1. Feed Forward: Vorhersage Wert je Sample, d.h. eine individuelle Zeile des Datensatzes



- 2. Berechnen Modellgüte und Fehler des Modells
- Validation Accuracy: Berechnen Delta zwischen realem und vorhergesagtem Wert
- Klassifikationsmetriken: Confusion Matrix
- Regressionsmetriken: MSE, RSME, ...







## GENERISCHER ABLAUF SUPERVISED LEARNING. SCHRITT 6: MODELL TESTEN – WIE BEWERTET MAN DIE GÜTE EINES MODELLS?

### Klassifizierungsmetriken

#### **Confusion Matrix** Vorhergesagt Nein Ja True False **Tatsächlich** Positive Negative False True Nein Positive Negative from sklearn.metrics import confusion\_matrix confusion\_matrix(real\_y, predicted\_y) Accuracy Anzahl richtige Vorhersagen Anzahl aller Vorhersagen from sklearn.metrics import accuracy\_score accuracy\_score(predicted\_y, real\_y)

### Regressionsmetriken

- MAE (Mean absolute error)
- MSE
- RSME
- R-squared
- Adjusted R squared
- Explained Variance

#### **Over- und Underfitting**





## DETAILLIERUNG KLASSIFIZIERUNGSMETRIKEN: CONFUSION MATRIX.

|             |      | Vorhergesagt           |                        |  |
|-------------|------|------------------------|------------------------|--|
|             |      | Ja                     | Nein                   |  |
| Tatsächlich | Ja   | True Positive<br>(TP)  | False Negative<br>(FN) |  |
|             | Nein | False Positive<br>(FP) | True Negative<br>(TN)  |  |

- Recall = wie viele Elemente wurden korrekt vorhergesagt
- **Specifity** = wie viele negative Element korrekt als negativ vorhergesagt wurden
- Precision = wie viele der als "wahr" vorhergesagten Elementen waren wirklich wahr
- Accuracy = die Anzahl korrekt vorhergesagter Elemente geteilt durch die Gesamtzahl
- F1-Score = je höher der F1-Score, desto besser kann das Modell vorhersagen

$$:= (\frac{\text{True positive}}{\text{True Positive} + \text{False negative}})$$

$$:= (\frac{\text{True negative}}{\text{True negative} + \text{False positive}})$$

$$:= (\frac{\text{True positive}}{\text{True Positive} + \text{False positive}})$$

$$:= (\frac{\text{True positive} + \text{True negative}}{\text{Gesamtzahl}})$$

$$:= (\frac{2 * Recall * Precision}{Recall + Precision})$$



## **DETAILLIERUNG REGRESSIONSMETRIKEN**

MAE (Mean absolute error): gemittelte Abweichung des pr\u00e4dizierten vom realen Wert. Gut f\u00fcr Feintuning.
 → je kleiner, desto besser das Modell.

$$\frac{1}{n} \sum_{i=1}^{n} |\widehat{y}_i - y_i|$$

MSE (Mean Squared Error): gibt an, wie weit die Prognosewerte um den erwarteten/ realen Wert streut.
 Durch Quadrierung werden starke Abweichungen besonders "bestraft".

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\widehat{y_i})^2$$

→ Je größer, desto schlechter das Modell.

$$\sqrt{MSE}$$

- RSME (Rooted Mean Squared Error): Wurzel aus Mean Squared Error.
   →Je größer, desto schlechter Modell.
- R-squared = gibt an, wie gut das Modell die Daten erklären kann; d.h. wie gut das Modell die Y-Werte abdeckt. Wert ist zwischen 0 und 1
  - → Wert von 1 bedeutet perfekte Abdeckung, jeder reale Wert wird durch prädizierten Wert abgedeckt.

$$\frac{\sum_{i=1}^{n} (\widehat{y}_i - \overline{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y}_i)^2}$$



## **DETAILLIERUNG OVER- UND UNDERFIT.**



## **Underfitting**

Hoher bias/ Verzerrung: wichtige Abhängigkeiten werden nicht erkannt, da Modell zu simpel ist. → Erkennbar an: schlechter Accuracy Trainingsund Testdaten.

### **Overfitting**

Hohe Varianz: nicht relevante Eigenheiten Trainingsdaten werden gelernt ("Auswendiglernen"), Modell zu komplex → Erkennbar an: Trainings-Accuracy steigt und ist höher als die Test-Accuracy, Test Accuracy stagniert.

Eselsbrücke anhand Prüfungsvorbereitung:

- Lernten Sie zu wenig, dann haben Sie sowohl bei Übungsprüfungen als auch bei realer Prüfung viele Fehler (Sie wissen nicht was wichtig ist).
- Lernten Sie sehr viel anhand von Übungsprüfungen, dann hilft das nur, falls die der realen Prüfung ähneln (Sie lernten nicht was dran kam).



## GENERISCHER ABLAUF SUPERVISED LEARNING. SCHRITT 7: MODELL EINSETZEN (DEPLOYMENT).





# 3. DETAILLIERUNG AUSGEWÄHLTE ALGORITHMEN

TECHNICAL APPLICATIONS AND DATA MANAGEMENT: SUPERVISED LEARNING | DR. JENS KOHL



## DETAILLIERUNG ALGORITHMEN SUPERVISED LEARNING.

Auf den folgenden Folien werden geläufige Algorithmen an zwei Beispielen: veranschaulicht.

- Regression: Vorhersage der Werte einer Sinuskurve. Dabei ist die Sinuskurve an bestimmten Stellen manuell geändert, um die Vorhersage zu erschweren.
- Klassifikation: anhand des Beispiels Iris-Datensatz. Da dieser Datensatz 4 Features/ Dimensionen hat, läßt er sich schwer
   graphisch darstellen. Zur Veranschaulichung wurde der Datensatz deshalb auf die 2 Sepal-Werte reduziert.

Eine Übersicht bekannter Algorithmen finden Sie bspw. hier: Link





#### **Regression kontinuierliche Variable**



### Klassifizierung diskrete Variable



#### Vorteile:

- Leicht verständlicher Algorithmus und Ergebnisse.
- Leicht implementierbar.

#### Nachteile:

- Probleme mit Ausreißern.
- Benötigt Zusammenhang/
   Abhängigkeit zwischen Variablen.
- Probleme mit komplexen/ hochdimensionalen Daten.

Lineare Regression versucht, die Zielvariable durch ein lineares Modell (Gerade) zu beschreiben. Die Gerade/n ist/sind dabei so konstruiert, daß sie möglichst geringen Abstand von den Punkten des Datensatzes hat.



## SUPERVISED LEARNING: SUPPORT VECTOR MACHINE.

#### **Regression kontinuierliche Variable**



### Klassifizierung diskrete Variable



#### **Vorteile:**

- Robust auch bei hochdimensionalen Features.
- Einsetzbar für Klassifikation und Regression.
- Einsetzbar auch für Klassifikation Bilder.

#### Nachteile:

- Viele Hyperparameter, deshalb Tuning notwendig.
- Längere Trainingszeit bei großen Datenmengen.
- Erklärbarkeit Ergebnisse schwierig (Hyperebene n-dimensionaler Raum).

Klassifikation: Algorithmus bestimmt "Hyperebene"<sup>1</sup>, die Datensatz am besten in die gewünschte Anzahl Klassen einteilt.

Dabei wird die Hyperebene so gelegt, daß die Grenze zwischen den Klassen möglichst breit ist.

Regression: Algorithmus bestimmt "Hyperebene" und nimmt Punkt, der möglichst nah an der Hyperebene liegt

## SUPERVISED LEARNING: DECISION TREE.



#### **Regression kontinuierliche Variable**





## Klassifizierung diskrete Variable





#### **Vorteile:**

- Einfach verständliche Ergebnisse.
- Einsetzbar für Regression und Klassifikation.
- Weniger Aufwand Datenaufbereitung (keine Skalierung/ Normierung).
- Robust bei fehlenden Daten.
- Robuster auch bei vieldimensionalen Features.

#### **Nachteile:**

- Nicht stabil gegenüber Updates (dann muß erneut trainiert werden).
- Schlechte Übertragbarkeit auf ähnliche Daten.
- Höherer Zeit-/ Ressourcenbedarf für Training.

Klassifikation: wiederholtes Aufteilen Datenset in zwei Untermengen anhand des Features mit höchstem Informationsgehalt. Regression: erfolgt durch Bestimmen des Durchschnitts über die y-Werte des finalen Endknoten.





TECHNICAL APPLICATIONS AND DATA MANAGEMENT: SUPERVISED LEARNING | DR. JENS KOHL



## SUPERVISED LEARNING: ENSEMBLE LEARNING

Ziel: Verbesserte Performance durch die Kombination einzelner Lernverfahren (und Ausgleichen deren Schwächen).

### **Ermöglicht**:

- Höherere Genauigkeit (Reduktion Streuung und Verzerrung).
- Mehr Anwendungsfelder können abgedeckt werden.

**Aber**: Höherer Ressourcenbedarf für Training.

### Häufigst eingesetzte Verfahren:

- Bagging: Kombination verschiedener Lernverfahren und gleiche Gewichtung (bspw. Durchschnitt) → Random Forest.
- Boosting: Kombination "schwacher" Lernverfahren per performance-abhängiger Gewichtung → XGBoost.





#### **Regression kontinuierliche Variable**



### Für diskrete, mehrere Klassen



#### Vorteile:

- Parallelisierbarkeit Training.
- Feature Importance: Algorithmus liefert Aussage, was die wichtigsten Features für die Vorhersage sind.
- Einsetzbar für hochdimensionale Daten.
- Höhere Genauigkeit als Entscheidungsbäume (Reduziert Overfitting durch Gewichtung mehrerer Entscheidungsb.).

#### Nachteile:

- Komplexer als Entscheidungsbäume.
- Nicht mehr so leicht interpretierbar.
- Schlechtere Performance bei Regression.
- Schlechtere Laufzeit-Performance.

Einsatz verschiedener Entscheidungsbäume und danach Kombination der Entscheidungsbäum. Dabei wird jeder Entscheidungsbaum gleich gewichtet, d. h. hat gleichen Einfluß auf das Ergebnis.

## SUPERVISED LEARNING: XGBOOST.



#### **Regression kontinuierliche Variable**



#### Für diskrete, mehrere Klassen



#### Vorteile:

- Hervorragende Performance für strukturierte Daten.
- Sehr hohe Genauigkeit.
- Parallelisierbarkeit Training.
- Feature Importance (was sind die wichtigsten Features f
  ür Vorhersage?).

#### **Nachteile:**

- Erklärbarkeit Algorithmus.
- Arbeitet nur mit numerischen Werten (Kategorische Variablen müssen in 1-dimensionale Features je Wert umgewandelt werden).
- Hyperparameter-Tuning notwendig für Vermeiden Overfitting.

Einsatz mehrerer Modelle mit dem Ziel, durch die Hinzunahme zusätzlicher Modelle die Fehlklassifikationen der bisherigen Modelle zu reduzieren (Start mit Modell 1, dann trainiere Modell 2 auf Fehler von Modell 1, ...).





TECHNICAL APPLICATIONS AND DATA MANAGEMENT: SUPERVISED LEARNING | DR. JENS KOHL



## GEGENÜBERSTELLUNG ERGEBNISSE ALGORITHMEN AM BEISPIEL VON DREI DATENSÄTZEN.

Kein Tuning Parameter eingesetzt, Source Code liegt im Github.

| ALGORITHMUS                          | REGRESSION<br>MODIFIZIERTE<br>SINUS-KURVE | IRIS CLASSIFICATION<br>AUF 2 SEPAL-FEATURES<br>(SEHR KLEINE DATENMENGE) | IRIS CLASSIFICATION<br>AUF 4 FEATURES<br>(KLEINE DATENMENGE) | TITANIC CLASSIFICATION (KLEINE DATENMENGE)          |
|--------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|
| Lineare Regression                   | 0.43                                      | 0.82                                                                    | 0.98                                                         | 0.80                                                |
| Naive Bayes                          | 0.43                                      | 0.78                                                                    | 1.0                                                          | 0.79                                                |
| Entscheidungsbaum                    | 0.76                                      | 0.93                                                                    | 0.98                                                         | 0.79                                                |
| K-Nearest Neighbours                 | 0.80                                      | 0.83                                                                    | 0.98                                                         | 0.81                                                |
| Support Vector Machine/<br>Regressor | 0.77                                      | 0.82                                                                    | 0.98                                                         | 0.79 Nächste Woche(n):<br>Verfahren für große/ sehr |
| Random Forest                        | 0.91                                      | 0.93                                                                    | 0.98                                                         | große Datenmengen                                   |
| XGBoost                              | 0.99                                      | 0.82                                                                    | 0.98                                                         | 0.79                                                |

Man weiß sehr häufig nicht im Voraus, welche Algorithmen am besten für einen Datensatz performen. Deshalb Empfehlung: verschiedene Algorithmen ausprobieren und deren Parameter tunen





TECHNICAL APPLICATIONS AND DATA MANAGEMENT: SUPERVISED LEARNING | DR. JENS KOHL

## FRESENIUS UNIVERSITY OF APPLIED SCIENCES

## **CASE STUDY IN GRUPPENARBEIT**

- 1. Erstellen Sie ein Notebook in Google Colab.
- 2. Laden Sie die Standard-Bibliotheken (vgl. Notebooks "VL 6 Supervised Learning-Update" und "Case Study supervised").
- Laden Sie den Datensatz per Pandas-Funktion read\_csv().
- 4. Wenden Sie den gelernten Workflow des Supervised learnings auf den Datensatz an.
  - 1. Probieren Sie verschiedene Verteilungen Trainings- und Testmengen aus. Wie ändern sich die Ergebnisse?
  - 2. Wählen Sie 2 verschiedene "simple" Algorithmen des überwachten Lernens an.
    - Welcher Algorithmus liefert die höchste Genauigkeit?
    - Wie ändern sich die Ergebnisse, falls Sie die Hyperparameter des Algorithmus ändern?
  - Wenden Sie XGBoost und RandomForest an.
    - Gibt es Unterschiede bzgl. Genauigkeit?
    - Wie sind die Unterschiede zu den "simplen" Algorithmen?
- 5. Stellen Sie Ihre Ergebnisse, Hypothesen und Plots vor.





TECHNICAL APPLICATIONS AND DATA MANAGEMENT: SUPERVISED LEARNING | DR. JENS KOHL





#### **Vorteile:**

- Wir erhalten "bewertete" Ergebnisse.
- Eigenständiges Handeln des Algorithmus möglich.

#### Nachteile:

- Bestimmen Zielvariable (Labeln) wichtig und aufwendig.
- Datenqualität sehr wichtig.
- Kein Algorithmus perfekt, Tuning notwendig (v.a. Hyperparameter).



## LITERATUR UND WEITERE QUELLEN (AUSZUG).

### Künstliche Intelligenz:

- Gröner, Heinecke: Kollege KI
- Burkov: The Hundred-Page Machine Learning Book, online verfügbar unter <u>Link</u>
- Nielsen: Neural Networks and Deep Learning, online verfügbar unter <u>Link</u>
- Russel, Norvig: Artificial Intelligence a modern approach
- Produktentwicklung mit AI:
  - Ameisen: Building Machine Learning Powered
     Applications: Going from Idea to Product
  - Ng: Machine Learning Yearning, online verfügbar unter <u>Link</u>

### **Kostenfreie Online-Kurse (bei Interesse)**:

- Python-Kurse
  - Python for Everybody (<u>Link</u>)
  - Udacity Python Course (<u>Link</u>)
  - Coursera Course Deep Learning (<u>Link</u>)
  - FAST AI (<u>Link</u>)







## DETAILLIERUNG KLASSIFIZIERUNGSMETRIKEN. ROC/ AUC.

## **Perfekter Klassifikator** (100% true pos., 0% false pos.)



- ROC(Receiver-Operating-Characteristics): Darstellung prozentuales Verhältnis zwischen den richtig und falsch als wahr prädizierten Werten.
- AUC(Area under ROC Curve): Integral der ROC-Kurve. Je höher AUC-Fläche, desto besser der Klassifikator.



## INTEGRATION MACHINE LEARNING IN PRAXIS AM BEISPIEL FRAUD DETECTION.







#### **Regression kontinuierliche Variable**

## Klassifizierung diskrete Variable



#### Vorteile:

- Kann gut mit hochdimensionalen Daten umgehen.
- Wenig Trainingsdaten notwendig.
- Schnell berechenbarer Algorithmus.
- Oft bessere Genauigkeit als kompliziertere Modelle (aber nur falls Variablen statistisch unabhängig).

#### Nachteile:

- Annahme bedingte Unabhängigkeit nicht immer gegeben.
- Bei großen Datenmengen liefern andere Algorithmen bessere Ergebnisqualität (wegen Bayes-Regel für Updates).

Nutzt Bayes-Theorem für das Berechnen der Zugehörigkeit eines Features zu einer Klasse und ordnet das Feature der Klasse zu, für die die berechnete Wahrscheinlichkeit am höchsten ist.





#### **Regression kontinuierliche Variable**



## Klassifizierung diskrete Variable



#### **Vorteile:**

- Einfach verständlich.
- Einsetzbar für Regression und Klassifikation.
- Ohne Labels und ohne Training einsetzbar.
- Nur 1 Hyperparameter.

#### Nachteile:

- Lernt nicht aus Trainingsdaten.
- Hoher Speicherbedarf (ganzer Datensatz wird in Speicher abgelegt).
- Ausreißer/ fehlende Daten haben großen Einfluß auf Algorithmus.
- Probleme mit hochdim. Daten.
- Selten eingesetzt für Regression.

Klassifikation eines Punktes erfolgt anhand Mehrheitsvotum seiner k-Nachbarn. Regression erfolgt anhand Bilden des gewichteten Durchschnitt der Zielwerte der k-Nachbarn.