EXERCISE SHEET 2

RUNLIN ZHANG

截止日期:最迟在4.19提交作业。

评分标准:取 sup-norm ——只要做对一小道题,就能得到满分。当然,你也可以尝试说明题目出错了。

提示: 你可以自由使用序号靠前习题的结果来解答序号靠后的习题。

如对习题 (陈述,定义等)有任何的疑问,请联系我。

CONTENTS

1.	(C,α) -good functions	1
2.	Non-commensurable lattices in $SL_2(\mathbb{R})$, I	2
3.	Totally geodesic hyperbolic planes in \mathbb{H}^3 , I	3
4.	Nondivergence in rank 1, a number field example	3
5.	A more geometric take on horocycles	4

1. (C, α) -GOOD FUNCTIONS

Let $C, \alpha > 0$ and J be an interval in \mathbb{R} , recall a function $f : J \to \mathbb{R}$ is said to be (C, α) -good on J iff for every interval $I \subset J$ of finite length and every $\rho \in (0, 1)$,

$$\frac{1}{|I|} \operatorname{Leb} \left\{ t \in I \mid \left| f(t) \right| \le \rho M_I \right\} \le C \rho^{\alpha}. \tag{1}$$

where $M_I := \sup_{t \in I} |f(t)|$.

In this set of exercises we show that there are constants (C, α) such that every polynomial of degree at most three is (C, α) -good on \mathbb{R} . The general case would follow from the same proof with some constant depending only on the degree.

Given four distinct points $\mathbf{v} = (v_0, v_1, v_2, v_3)$ in \mathbb{R} , for k = 0, 1, 2, 3, define

$$L_{\boldsymbol{v}}^{k}(x) := \prod_{i \neq k} \frac{x - v_i}{v_k - v_i}.$$

Exercise 1.1. Fix such a v as above. Prove that for any choice of four real numbers (w_0, w_1, w_2, w_3) , there exists at most one polynomial p of degree at most 3 such that $p(v_i) = w_i$.

Exercise 1.2. Same assumption as in last exercise. Show that $p(x) := \sum_{k=0}^{3} w_k \cdot L_{\boldsymbol{v}}^k(x)$ satisfies $p(v_i) = w_i$ for every i = 0, 1, 2, 3.

Date: 2022.03.

Exercise 1.3. Same assumption as in last exercise. Let $\varepsilon, \delta > 0$ be two positive real numbers. Assume further that $|v_i - v_j| \ge \delta$ for every pair (i, j) with $i \ne j$. Also assume $|w_i| \le \varepsilon$ for all i. Show that for every $x \in [0,1]$, $|p(x)| \le 4\varepsilon\delta^{-3}$ where p is as in the last exercise.

Exercise 1.4. Let $I \subset [0,1]$ be a measurable subset with Leb $(I) = 9\delta > 0$. Show that there exists four points (v_0, v_1, v_2, v_3) in I such that $|v_i - v_j| \ge \delta$ for every pair (i, j) with $i \ne j$.

Exercise 1.5. Find $C, \alpha > 0$ such that for every polynomial of degree at most three and $\rho \in (0,1)$, Equa. 1 holds when I = [0,1].

Exercise 1.6. Show that every polynomial of degree at most three is (C, α) -good on \mathbb{R} with C, α same as in the last exercise.

Let J be an interval of finite length. Let

$$\mathcal{A} := \{ f = ae^x + be^{-x}, a, b \in \mathbb{R} \}.$$

Exercise 1.7. Show that there exist $C, \alpha > 0$ (depending on J and \mathcal{A}) such that for every function $f \in \mathcal{A}$ is (C, α) -good on J.

Exercise 1.8. If f_1, f_2 are (C, α) -good on J, then $x \mapsto \max\{|f_1(x)|, |f_2(x)|\}$ is also (C, α) good on J.

2. Non-commensurable lattices in $SL_2(\mathbb{R})$, I

We apply ideas in Lec.4 to a different example. Our ultimate goal is to show that two cocompact lattices in $SL_2(\mathbb{R})$ is either commensurable or their product is dense in $SL_2(\mathbb{R})$, which will (hopefully) be achieved in the next set of exercises.

Notations:

- $G := SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$, $H := \Delta(SL_2(\mathbb{R}))$ and Γ is a cocompact lattice in G;
- g := Lie(G) and h := Lie(H);
- $\bullet \ \ A := \left\{ \left(\left[\begin{array}{cc} e^t & 0 \\ 0 & e^{-t} \end{array} \right], \left[\begin{array}{cc} e^t & 0 \\ 0 & e^{-t} \end{array} \right] \right), \ t \in \mathbb{R} \right\} = \{\Delta \boldsymbol{a}_t, \ t \in \mathbb{R}\};$
- $\bullet \ \ U := \left\{ \left(\left[\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right] \right), \ t \in \mathbb{R} \right\} = \left\{ \Delta \boldsymbol{u}_{t}, \ t \in \mathbb{R} \right\};$ $\bullet \ \ V := \left\{ \left(\left[\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & -t \\ 0 & 1 \end{array} \right] \right), \ t \in \mathbb{R} \right\} = \left\{ \boldsymbol{v}_{t}, \ t \in \mathbb{R} \right\};$
- $V^+ := \{ \boldsymbol{v}_t, t \ge 0 \}, V^- := \{ \boldsymbol{v}_t, t \le 0 \};$
- $W := AUV, W^+ := AUV^+, W^- := AUV^-.$

Exercise 2.1. Show that W is a group and W^+ , W^- are semigroups.

Exercise 2.2. Let

$$\mathfrak{h}^{\perp} := \{ (X, -X) \mid X \in \mathfrak{sl}_2(\mathbb{R}) \} \subset \mathfrak{g}.$$

Show that $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}^{\perp}$ and this decomposition is preserved by Ad(H).

Now take $\Lambda_0 \in G/\Gamma$ such that $H.\Lambda_0$ is not closed. Define $Y_0 := \overline{H.\Lambda_0}$ and

$$\mathcal{O} := \{ y \in Y_0 \mid H. y \text{ is open in } Y_0 \}.$$

Exercise 2.3. *Show that* $\emptyset \neq Y_0$.

Let Y_1 be a nonempty *U*-minimal set in $Y_0 \setminus \mathcal{O}$.

Exercise 2.4. Show that Y_1 is not a closed U-orbit.

Exercise 2.5. Assume Y_1 is not preserved by A. Show that Y_0 contains a W-orbit.

(Hint: consider $Aut(Y_1)$.)

Exercise 2.6. Assume Y_1 is preserved by A. Show that Y_0 contains a W^+ -orbit or a W^- -orbit.

(Hint: consider Map (Y_0, Y_1) .)

3. Totally geodesic hyperbolic planes in \mathbb{H}^3 , I

We apply ideas in Lec.4 to yet another example. Our ultimate goal (hopefully achieved in the next set of exercises) is to show that the image of a totally geodesic immersion of a hyperbolic plane in a closed hyperbolic three manifold is either closed or dense.

Notations:

- $G := SL_2(\mathbb{C})$, $H := SL_2(\mathbb{R})$ and Γ is a cocompact lattice in G;
- $\mathfrak{g} := \text{Lie}(G)$ and $\mathfrak{h} := \text{Lie}(H)$;

•
$$A := \left\{ \begin{bmatrix} e^t & 0 \\ 0 & e^{-t} \end{bmatrix}, t \in \mathbb{R} \right\} = \{\boldsymbol{a}_t, t \in \mathbb{R}\};$$

•
$$U := \left\{ \left[\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right], \ t \in \mathbb{R} \right\} = \left\{ \boldsymbol{u}_t, \ t \in \mathbb{R} \right\};$$

•
$$V := \left\{ \begin{bmatrix} 1 & it \\ 0 & 1 \end{bmatrix}, t \in \mathbb{R} \right\} = \{ \boldsymbol{v}_t, t \in \mathbb{R} \};$$

- $V^+ := \{ \boldsymbol{v}_t, \ t \ge 0 \}, \ V^- := \{ \boldsymbol{v}_t, \ t \le 0 \};$
- $W := AUV, W^+ := AUV^+, W^- := AUV^-;$

Exercise 3.1. Let $\mathfrak{h}^{\perp} := \{i \cdot X, X \in \mathfrak{sl}_2(\mathbb{R})\}$. Show that $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}^{\perp}$. Moreover, this decomposition is preserved by the Ad(H)-action.

Exercise 3.2. Let $H.\Lambda_0$ be a non-closed H-orbit in G/Γ . Show that $Y_0 := \overline{H.\Lambda_0}$ contains a W^+ or a W^- -orbit.

4. Nondivergence in rank 1, a number field example

In these set of exercises, it is more convenient to write \mathbb{R}^4 as $\mathbb{R}^2 \oplus \mathbb{R}^2$.

Exercise 4.1. Show that $\mathbb{Z}[\sqrt{2}]$ is a principal ideal domain.

Thus every torsion free (finitely generated) $\mathbb{Z}[\sqrt{2}]$ -module is free.

Fix an embedding of $\mathbb{Q}(\sqrt{2})$ in \mathbb{R} . Let σ be the other embedding of $\mathbb{Q}(\sqrt{2})$ in \mathbb{R} . Consider the action of $\mathbb{Q}(\sqrt{2})$ on $\mathbb{R}^2 \oplus \mathbb{R}^2$ given by

$$x.(v, w) := (x.v, \sigma(x).w).$$

Exercise 4.2. This is a linear action. Write down the matrix representation of this action. Namely, for every $x = a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, write down a 4-by-4 matrix representing the action of x on $\mathbb{R}^2 \oplus \mathbb{R}^2$ with respect to the standard basis.

Let Δ be a rank-1 $\mathbb{Z}[\sqrt{2}]$ -submodule in $\mathbb{R}^2 \oplus \mathbb{R}^2$. We may write $\Delta = \mathbb{Z}[\sqrt{2}].(v, w)$. Let $\|\Delta\| := \|v\| \cdot \|w\|$.

Exercise 4.3. Show that $\|\Delta\|$ is independent of the choice of generator for the $\mathbb{Z}[\sqrt{2}]$ -module Δ .

Define

$$X_4'(\mathbb{Z}[\sqrt{2}]) := \left\{ \Lambda \leq \mathbb{R}^2 \oplus \mathbb{R}^2 \text{ lattice , } \Lambda \text{ is preserved by } \mathbb{Z}[\sqrt{2}] \right\}.$$

Exercise 4.4. Show that such a lattice is a rank-2 $\mathbb{Z}[\sqrt{2}]$ -module.

Thus for $\Lambda \in X_4'(\mathbb{Z}[\sqrt{2}])$, we can find a $\mathbb{Z}[\sqrt{2}]$ -basis (v_1, w_1) and (v_2, w_2) in $\mathbb{R}^2 \oplus \mathbb{R}^2$. Define $\|\Lambda\| := \|v_1 \wedge v_2\| \cdot \|w_1 \wedge w_2\|$. Define $\det(\Lambda) := (v_1 \wedge v_2, w_1 \wedge w_2) \in (\mathbb{R} \oplus \mathbb{R})/\mathbb{Z}[\sqrt{2}]^{\times}$. Here $\mathbb{Z}[\sqrt{2}]^{\times}$ denotes the invertible elements in this ring $\mathbb{Z}[\sqrt{2}]$.

Exercise 4.5. Show that indeed, the value of $\det(\Lambda)$ in $(\mathbb{R} \oplus \mathbb{R})/\mathbb{Z}[\sqrt{2}]^{\times}$ is independent of the choice of bases. Thus $\|\Lambda\|$ is also independent of the choice of bases.

Exercise 4.6. Find the relation between this newly defined $\|\Lambda\|$ and the old $\|\Lambda\|_{\text{old}}$ defined as the volume of \mathbb{R}^4/Λ .

Define

$$X_4(\mathbb{Z}[\sqrt{2}]) := \left\{ \Lambda \in X_4'(\mathbb{Z}[\sqrt{2}]) \,\middle|\, \det \Lambda = 1 \right\}.$$

Here "1" is the image of (1,1) in $(\mathbb{R} \oplus \mathbb{R})/\mathbb{Z}[\sqrt{2}]^{\times}$. Equip $X_4(\mathbb{Z}[\sqrt{2}])$ with the Chabauty topology, viewing it as a collection of closed subgroups of $\mathbb{R}^2 \oplus \mathbb{R}^2$.

Exercise 4.7. Show that the free $\mathbb{Z}[\sqrt{2}]$ -module with basis $\{(e_1, e_1), (e_2, e_2)\}$ (denote this module as Λ_0) belongs to $X_4(\mathbb{Z}[\sqrt{2}])$ and that $g \mapsto g.\Lambda_0$ induces a homeomorphism

$$\operatorname{SL}_2(\mathbb{R}) \times \operatorname{SL}_2(\mathbb{R}) / \operatorname{SL}_2(\mathbb{Z}[\sqrt{2}]) \cong \operatorname{X}_4(\mathbb{Z}[\sqrt{2}]).$$

For $\Lambda \in X_4(\mathbb{Z}[\sqrt{2}])$, define

$$\operatorname{sys}_{\mathbb{Z}[\sqrt{2}]}(\Lambda) := \inf_{\Lambda \le \Lambda} \|\Delta\|$$

where Δ varies over all rank-1 $\mathbb{Z}[\sqrt{2}]$ -submodule of Λ . For every $\varepsilon > 0$, let

$$\mathscr{C}_{\varepsilon} := \left\{ \Lambda \in X_4(\mathbb{Z}[\sqrt{2}]) \, \middle| \, \operatorname{sys}_{\mathbb{Z}[\sqrt{2}]}(\Lambda) \ge \varepsilon \right\}.$$

Exercise 4.8. For every $\varepsilon > 0$, $\mathscr{C}_{\varepsilon}$ is a compact subset of $X_4(\mathbb{Z}[\sqrt{2}])$.

Exercise 4.9. Conversely, every compact subset of $X_4(\mathbb{Z}[\sqrt{2}])$ is contained in $\mathscr{C}_{\varepsilon}$ for some $\varepsilon > 0$.

Exercise 4.10. For $\varepsilon > 0$ small enough, for every $\Lambda \in X_4(\mathbb{Z}[\sqrt{2}])$, the set

$$\{(v, w) \in \Lambda \mid ||v|| ||w|| < \varepsilon\}$$

is either $\{0\}$ or generates a rank-1 $\mathbb{Z}[\sqrt{2}]$ -submodule of Λ .

Let
$$\boldsymbol{u}_t := \left(\begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \right)$$
 and $U := \{\boldsymbol{u}_t, t \in \mathbb{R}\}.$

Exercise 4.11. Prove the following. For every $\varepsilon > 0$, there exists $\delta > 0$ such that for every $\Lambda \in X_4(\mathbb{Z}[\sqrt{2}])$,

- either Λ contains a $\mathbb{Z}[\sqrt{2}]$ -submodule preserved by U with norm smaller than ε ,
- 01'

$$\limsup_{T \to +\infty} \frac{1}{T} \operatorname{Leb} \{ t \in [0, T] \mid \boldsymbol{u}_{t}.\Lambda \notin \mathscr{C}_{\delta} \} \leq \varepsilon.$$

5. A MORE GEOMETRIC TAKE ON HOROCYCLES

I assume you have some familiarity with geometry on the upper half space in this section.

Notations:

- $\mathbb{H}^2 := \{(x, y) \in \mathbb{R}^2, y > 0\}$ equipped with the metric $\frac{dx^2 + dy^2}{y^2}$ and the left action of $SL_2(\mathbb{R})$ via fractional linear transformations;
- $T^1(\mathbb{H}^2)$ is the unit tangent bundle of \mathbb{H}^2 ;

- ∂ℍ² := {(x,0) ∈ ℝ², x ∈ ℝ}⊔{∞} be the boundary of ℍ²; The topology on {(x, y), x ∈ ℝ, y ≥ 0} is the natural topology and the topology on ℍ² := ℍ² ⊔ ∂ℍ² is the one-point compactification topology. The action of SL₂(ℝ) extends continuously to ℍ².
- Let Γ_0 be a discrete subgroup of $SL_2(\mathbb{Z})$ such that $\Gamma_0 \backslash \mathbb{H}^2$ is a closed surface of genus $g \geq 2$;
- Let $\Gamma_0' := [\Gamma_0, \Gamma_0]$, recall that Γ_0' is a normal subgroup of Γ_0 and $\Gamma_0/\Gamma_0' \cong \mathbb{Z}^{2g}$;
- For $x \in \mathbb{H}^2$ and a discrete subgroup Γ of $SL_2(\mathbb{R})$, define the limit set $Limit_x(\Gamma) := \overline{\Gamma.x} \setminus \Gamma.x$ in $\overline{\mathbb{H}^2}$.

Exercise 5.1. Limit_x(Γ) $\subset \partial \mathbb{H}^2$ for every discrete subgroup Γ of $SL_2(\mathbb{R})$ and every $x \in \mathbb{H}^2$.

Exercise 5.2. For every $x, y \in \mathbb{H}^2$ and discrete subgroup Γ of $SL_2(\mathbb{R})$, Limit_x $(\Gamma) = Limit_{y}(\Gamma)$.

Thus the limit set is independent of the choice of base point and we henceforth denote it by $\text{Limit}(\Gamma)$.

Exercise 5.3. Let Γ be a discrete subgroup of $SL_2(\mathbb{R})$. Show that $Limit(\Gamma)$ is a Γ -minimal set.

(A Γ -set is said to be Γ -minimal iff either it is empty or for every x in this set, $\Gamma . x$ is dense in this set. Actually Limit(Γ), if infinite, is the unique nonempty Γ -minimal set)

Recall that for every geodesic Y (or closed convex subset) on \mathbb{H}^2 and every $x \in \mathbb{H}^2$, there is a unique point, denoted as $\pi_Y(x)$, in Y such that

$$dist(x, Y) = dist(x, \pi_Y(x)).$$

For every $x \in T^1(\mathbb{H}^2)$, let $x^+ := \lim_{t \to +\infty} g_t . x$ and $x^- := \lim_{t \to -\infty} g_t . x$ where g_t denotes the geodesic flow. Let $\widehat{x^-x^+}$ be the unique geodesic in $T^1\mathbb{H}^2$ connecting x^- and x^+ . By abuse of notation we also let $\widehat{x^-x^+}$ denote its projection to \mathbb{H}^2 . Fix some point $o \in \mathbb{H}^2$ (say, take o = (0,1)), and $x \in T^1\mathbb{H}^2$, let $t = t_o(x)$ be the unique real number such that

$$x = g_t \cdot \pi_{\widehat{x}^- x^+}(o)$$
.

(a priori, $\pi_{\widehat{x^-x^+}}(o)$ is just an element in \mathbb{H}^2 but we identify it with the unique element on $\widehat{x^-x^+} \subset T^1\mathbb{H}^2$ whose projection to \mathbb{H}^2 is $\pi_{\widehat{x^-x^+}}(o)$)

Exercise 5.4. The map $\Phi_o: T^1\mathbb{H}^2 \to (\partial \mathbb{H}^2 \times \partial \mathbb{H}^2 \setminus \Delta \partial \mathbb{H}^2) \times \mathbb{R}$ defined by

$$x \mapsto \Phi_{o}(x) := (x^{-}, x^{+}, t_{o}(x))$$

is a homeomorphism.

This is the so-called Hopf coordinate.

Exercise 5.5. *Check that* $\Phi_o(g_t.x) = (x^-, x^+, t_o(x) + t)$.

Exercise 5.6. Check that for $\gamma \in SL_2(\mathbb{R})$, $\Phi_o(\gamma.x) = (\gamma.x^-, \gamma.x^+, *)$ for some real number *.

Thus the orbits of Γ on $T^1\mathbb{H}^2/\{g_t\}_{t\in\mathbb{R}}$ corresponds to the orbits of Γ on $\partial\mathbb{H}^2\times\partial\mathbb{H}^2\setminus\Delta\partial\mathbb{H}^2$.

Exercise 5.7. Let Γ be a discrete subgroup of $SL_2(\mathbb{R})$. Using the fact that g_t -action on $\Gamma \setminus T^1 \mathbb{H}^2$ is not minimal, show that the action of Γ on $\partial \mathbb{H}^2 \times \partial \mathbb{H}^2 \setminus \Delta \partial \mathbb{H}^2$ is not minimal.

This action is still quite chaotic, at least when Γ is a lattice, but if we take one step further, it becomes totally discontinuous.

Let FAT Δ be the "fat diagonal" in $\partial \mathbb{H}^2 \times \partial \mathbb{H}^2 \times \partial \mathbb{H}^2$, i.e.

$$FAT\Delta := \{(x_1, x_2, x_3) \in (\partial \mathbb{H}^2)^3, x_i = x_j, \exists i \neq j\}.$$

Exercise 5.8. Let Γ be a subgroup of $SL_2(\mathbb{R})$. Show that the diagonal Γ -action on $(\partial \mathbb{H}^2)^3 \setminus FAT\Delta$ is conjugate to the Γ -action on \mathbb{H}^2 .

Now turn to the special Γ_0 , Γ'_0 we defined. Recall in Lec 2 we have shown that Limit(Γ_0) is the full $\partial \mathbb{H}^2$. Show that also

Exercise 5.9. Limit(Γ'_0) = $\partial \mathbb{H}^2$.

(Hint: use Exer 5.2 and the fact that Γ_0' is a normal subgroup)

Exercise 5.10. Use this and the "thin" property of hyperbolic space to show that closed geodesics are dense in $\Gamma'_0 \setminus T^1 \mathbb{H}^2$.

(In Lec.3 we established denseness of closed geodesics on $SL_2(\mathbb{R})/SL_2(\mathbb{Z})$ by constructing an explicit one and then considering commensurable lattices)

For a point v on $\partial \mathbb{H}^2$ and $x \in \mathbb{H}^2$, let $\mathcal{H}_v(x)$ be the unique horocycle – the unique Euclidean circle tangent to $\partial \mathbb{H}^2$ at $v(\neq \infty)$ and passing through x (when $v = \infty$, $\mathcal{H}_v(x)$ is a horizontal line passing through x). We shall think of $\mathcal{H}_v(x)$ as a subset of $T^1\mathbb{H}^2$ by equipping every point $\mathcal{H}_v(x)$ with the unique unit tangent vector that is orthogonal to $\mathcal{H}_v(x)$ and pointing towards v.

In Lec.2 we have shown that the projection of every horocycle is dense in $\Gamma_0 \setminus T^1 \mathbb{H}^2$. Here is a more geometric approach following Hedlund's paper.

Exercise 5.11. Show that for every nonempty open interval $I \subset \partial \mathbb{H}^2$ and $x \in \mathbb{H}^2$, the set

$$\bigcup_{v\in I}\mathcal{H}_v(x)$$

is dense in $\Gamma'_0 \setminus T^1 \mathbb{H}^2$.

(Hint: use Exer.5.10)

Exercise 5.12. Let $v \in \partial \mathbb{H}^2$, show that if there exists $x \in \mathbb{H}^2$ such that $\mathcal{H}_v(x)$ is dense in $\Gamma_0' \setminus T^1 \mathbb{H}^2$, then $\mathcal{H}_v(y)$ is dense in $\Gamma_0' \setminus T^1 \mathbb{H}^2$ for every $y \in \mathbb{H}^2$.

Exercise 5.13. The set of v such that $\mathcal{H}_v(x)$ is dense in $\Gamma_0' \setminus T^1 \mathbb{H}^2$ is dense in $\partial \mathbb{H}^2$.

Let \mathcal{D} be a Dirichlet fundamental domain for Γ'_0 . Accept the fact that if Γ'_0 were finitely generated, then \mathcal{D} would have only finitely many sides.

Exercise 5.14. *Show that* Γ'_0 *is not finitely generated.*

Exercise 5.15. Let $v \in \partial \mathbb{H}^2 \cap \overline{\mathcal{D}}$, then $\mathcal{H}_v(x)$ is not dense in $\Gamma_0 \setminus T^1 \mathbb{H}^2$.

(Hint: without loss of generality assume $v = \infty$, argue that, fixing a base point o, there is an upper bound for the y-coordinate of γ .o as γ varies in Γ'_0 .)

Since $\mathcal{H}_v(x)$ is not compact in $\Gamma'_0 \setminus T^1 \mathbb{H}^2$, we have demonstrated an orbit of the horocycle flow that is neither dense nor compact.

Exercise 5.16. Take some $y \in T^1 \mathbb{H}^2$ such that $\{g_t,y\}$ is compact in $\Gamma_0 \setminus T^1 \mathbb{H}^2$. Show that $\mathcal{H}_{\gamma^+}(x)$ is dense in $\Gamma_0 \setminus T^1 \mathbb{H}^2$.

(Hint: approximate some dense horocycle in $T^1\mathbb{H}^2$)

Exercise 5.17. Let $v \in \partial \mathbb{H}^2$ and fix some $x \in \mathbb{H}^2$. Suppose the Euclidean radius of γ . $\mathcal{H}_v(x)$ can be arbitrarily large as γ varies in Γ_0 . Then $\mathcal{H}_v(x)$ is dense in $\Gamma_0 \setminus T^1 \mathbb{H}^2$.

(When the horocycle is based at infinity, by saying the Euclidean radius is large, we mean that the horocycle could be very low) (Hint: show that you can approximate every periodic geodesic)

EXERCISE SHEET 2

7

Exercise 5.18. Show that indeed, since $\Gamma_0 \setminus T^1 \mathbb{H}^2$ is compact, that the Euclidean radius of $\gamma \mathscr{H}_{\nu}(x)$ can be arbitrarily large as γ varies in Γ_0 for every pair $\nu \in \partial \mathbb{H}^2$ and $x \in \mathbb{H}^2$.

(Hint: use the fact that the some (well, in the current case, every) geodesic stemming from ν is bounded in $\Gamma_0 \setminus T^1 \mathbb{H}^2$)