Matemática Numérica Paralela

Pedro H A Konzen

14 de março de 2021

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados tópicos sobre computação paralela aplicada a métodos numéricos. Como ferramentas computacionais de apoio, exploramos exemplos de códigos em C/C++ usando as interfaces de programação de aplicações OpenMP, OpenMPI e o pacote de computação científica GSL.

Agradeço a todos e todas que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

Sumário

Capa				i
Licença Prefácio				
1	Introdução			1
2	Multiprocessamento (MP)			4
	2.1	Olá, N	$egin{aligned} ext{Mundo!} & \dots & \dots & \dots \end{aligned}$	4
	2.2		rutores básicos	
		2.2.1	Variáveis privadas e variáveis compartilhadas	9
		2.2.2	Laço e Redução	10
		2.2.3	Sincronização	15
	2.3	Resolu	ução de Sistema Linear Triangular	23
	2.4	Decomposição LU		
	2.5	Métodos iterativos para Sistemas Lineares		
		2.5.1	Método de Jacobi	36
		2.5.2	Método tipo Gauss-Seidel	40
		2.5.3	Método do Gradiente Conjugado	43
	2.6	Métoc	los iterativos para problemas não lineares	52
		2.6.1	Método de Newton	53
		2.6.2	Método do acorde	53
		2.6.3	Métodos <i>quasi</i> -Newton	
\mathbf{R}	espos	stas do	os Exercícios	57

SUMÁRIO v

Referências Bibliográficas

58

Capítulo 1

Introdução

A computação paralela e distribuída é uma realidade em todas as áreas de pesquisa aplicadas. À primeira vista, pode-se esperar que as aplicações se beneficiam diretamente do ganho em poder computacional. Afinal, se a carga (processo) computacional de uma aplicação for repartida e distribuída em $n_p > 1$ processadores (**instâncias de processamentos**, threads ou cores), a computação paralela deve ocorrer em um tempo menor do que se a aplicação fosse computada em um único processador (em serial). Entretanto, a tarefa de repartir e distribuir (**alocação de tarefas**) o processo computacional de uma aplicação é, em muitos casos, bastante desafiadora e pode, em vários casos, levar a códigos computacionais menos eficientes que suas versões seriais.

Repartir e distribuir o processo computacional de uma aplicação sempre é possível, mas nem sempre é possível a computação paralela de cada uma das partes. Por exemplo, vamos considerar a iteração de ponto fixo

$$x(n) = f(x(n-1)), \quad n \ge 1,$$
 (1.1)

$$x(0) = x_0, (1.2)$$

onde $f: x \mapsto f(x)$ é uma função dada e x_0 é o ponto inicial da iteração. Para computar x(100) devemos processar 100 vezes a iteração (1.1). Se tivéssemos a disposição $n_P = 2$ processadores, poderíamos repartir a carga de processamento em dois, distribuindo o processamento das 50 primeiras iterações para o primeiro processador (o processador 0) e as demais 50 para o segundo processador (o processador 1). Entretanto, pela característica do processo iterativa, o processador 1 ficaria ocioso, aguardando o processador 0 computar x(50). Se ambas instâncias de processamento compartilharem

a mesma memória computacional (**memória compartilhada**), então, logo que o processador 0 computar x(50) ele ficará ocioso, enquanto que o processador 1 computará as últimas 50 iterações. Ou seja, esta abordagem não permite a computação em paralelo, mesmo que reparta e distribua o processo computacional entre duas instâncias de processamento.

Ainda sobre a abordagem acima, caso as instâncias de processamento sejam de **memória distribuída** (não compartilhem a mesma memória), então o processador 0 e o processador 1 terão de se comunicar, isto é, o processador 0 deverá enviar x(50) para a instância de processamento 1 e esta instância deverá receber x(50) para, então, iniciar suas computações. A **comunicação** entre as instâncias de processamento levantam outro desafio que é necessidade ou não da **sincronização** () eventual entre elas. No caso de nosso exemplo, é a necessidade de sincronização na computação de x(50) que está minando a computação paralela.

Em resumo, o design de métodos numéricos paralelos deve levar em consideração a alocação de tarefas, a comunicação e a sincronização entre as instâncias de processamentos. Vamos voltar ao caso da iteração (1.1). Agora, vamos supor que $x = (x_0, x_1), f : x \mapsto (f_0(x), f_1(x))$ e a condição inicial $x(0) = (x_0(0), x_1(0))$ é dada. No caso de termos duas instâncias de processamentos disponíveis, podemos computar as iterações em paralelo da seguinte forma. Iniciamos distribuindo x às duas instâncias de processamento 0 e 1. Em paralelo, a instância 0 computa $x_0(1) = f_0(x)$ e a instância 1 computa $x_1(1) = f_1(x)$. Para computar a nova iterada x(2), a instância 0 precisa ter acesso a $x_1(1)$ e a instância 1 necessita de $x_0(1)$. Isto implica na sincronização das instâncias de processamentos, pois uma instância só consegui seguir a computação após a outra instância ter terminado a computação da mesma iteração. Agora, a comunicação entre as instâncias de processamento, depende da arquitetura do máquina. Se as instâncias de processamento compartilham a mesma memória (memória compartilhada), cada uma tem acesso direto ao resultado da outra. No caso de uma arquitetura de memória distribuída, ainda há a necessidade de instruções de comunicação entre as instância, i.e. a instância 0 precisa enviar $x_0(1)$ à instância 1, a qual precisa receber o valor enviado. A instância 1 precisa enviar $x_1(1)$ à instância 0, a qual precisa receber o valor enviado. O processo segue análogo para cada iteração até a computação de x(100).

A primeira parte destas notas de aula, restringe-se a implementação de métodos numéricos paralelos em uma arquitetura de memória compartilhada. Os exemplos computacionais são apresentados em linguagem C/C++ com a

interface de programação de aplicações (API, Application Programming Interface) OpenMP. A segunda parte, dedica-se a implementação paralela em arquitetura de memória distribuída. Os códigos C/C++ são, então, construídos com a API OpenMPI.

Capítulo 2

Multiprocessamento (MP)

Neste capítulo, vamos estudar aplicações da computação paralela em arquitetura de memória compartilhada. Para tanto, vamos discutir código C/C++ com a API OpenMP.

2.1 Olá, Mundo!

A computação paralela com MP inicia-se por uma instância de processamento **thread master**. Todas as instâncias de processamento disponíveis (**threads**) leem e escrevem variáveis compartilhadas. A ramificação (*fork*) do processo entre os *threads* disponíveis é feita por instrução explícita no início de uma região paralela do código. Ao final da região paralela, todos os *threads* sincronizam-se (*join*) e o processo segue apenas com o *thread master*. Veja a Figura 2.1.

Figura 2.1: Fluxograma de um processo MP.

Vamos escrever nosso primeiro programa MP. O Código ola.cc inicia uma

região paralela e cada instância de processamento escreve "Olá" e identificase.

Código: ola.cc

```
1
   #include <stdio.h>
2
3
   // OpenMP API
   #include <omp.h>
4
5
6
   using namespace std;
7
8
   int main(int argc, char *argv[]) {
9
10
     // região paralela
     #pragma omp parallel
11
12
       // id da instância de processamento
13
       int id = omp_get_thread_num();
14
15
16
       printf("Processo %d, olá!\n", id);
17
     }
18
19
     return 0;
   }
20
```

Na linha 4, o API OpenMP é incluído no código. A região paralela vale dentro do escopo iniciado pela instrução

pragma omp parallel

i.e., entre as linhas 12 e 17. Em paralelo, cada *thread* registra seu número de identificação na variável id, veja a linha 14. Na linha 16, escrevem a saudação, identificando-se.

Para compilar este código, digite no terminal

\$ g++ -fopenmp ola.cc

Ao compilar, um executável a . out será criado. Para executá-lo, basta digitar no terminal:

\$ a.out

Ao executar, devemos ver a saída do terminal como algo parecido com¹

Processo 0, olá! Processo 3, olá! Processo 1, olá! Processo 2, olá!

A saída irá depender do número de *threads* disponíveis na máquina e a ordem dos *threads* pode variar a cada execução. Execute o código várias vezes e analise as saídas!

Observação 2.1.1. As variáveis declaradas dentro de uma região paralela são privadas de cada *threads*. As variáveis declaradas fora de uma região paralela são globais, sendo acessíveis por todos os *threads*.

Exercícios resolvidos

ER 2.1.1. O número de instâncias de processamento pode ser alterado pela variável do sistema OMP_NUM_THREADS. Altere o número de *threads* para 2 e execute o Código ola.cc.

Solução. Para alterar o número de threads, pode-se digitar no terminal

```
$ export OMP NUM THREADS=2
```

Caso já tenha compilado o código, não é necessário recompilá-lo. Basta executá-lo com

\$./a.out

A saída deve ser algo do tipo

```
Olá, processo 0
Olá, processo 1
```

 \Diamond

¹O código foi rodado em uma máquina Quadcore com 4 threads.

ER 2.1.2. Escreva um código MP para ser executado com 2 threads. O master thread deve ler dois números em ponto flutuante. Então, em paralelo, um dos threads deve calcular a soma dos dois números e o outro thread deve calcular o produto.

Solução.

Código: sp.cc

```
1
   #include <iostream>
2
3
   // OpenMP API
   #include <omp.h>
4
5
6
   using namespace std;
7
8
   int main(int argc, char *argv[]) {
9
10
     double a,b;
     printf("Digite o primeiro número: ");
11
12
     scanf("%lf", &a);
13
14
     printf("Digite o segundo número: ");
15
     scanf("%lf", &b);
16
17
     // região paralela
   #pragma omp parallel
18
     {
19
20
       // id do processo
       int id = omp_get_thread_num();
21
22
23
       if (id == 0) {
24
         printf("Soma: %f\n", (a+b));
25
       else if (id == 1) {
26
27
         printf("Produto: %f\n", (a*b));
28
29
     }
30
31
     return 0;
```

32 | }

 \Diamond

Exercícios

- E 2.1.1. Defina um número de *threads* maior do que o disponível em sua máquina. Então, rode o código ola.cc e analise a saída. O que você observa?
- **E 2.1.2.** Modifique o código ola.cc de forma que cada *thread* escreva na tela "Processo ID de NP, olá!", onde ID é a identificação do *thread* e NP é o número total de *threads* disponíveis. O número total de *threads* pode ser obtido com a função OpenMP

omp_get_num_threads();

- **E 2.1.3.** Faça um código MP para ser executado com 2 threads. O master thread deve ler dois números a e b não nulos em ponto flutuante. Em paralelo, um dos thread de computar a b e o outro deve computar a/b. Por fim, o master thread deve escrever (a b) + (a/b).
- **E 2.1.4.** Escreva um código MP para computar a multiplicação de uma matriz $n \times n$ com um vetor de n elementos. Inicialize todos os elementos com números randômicos em ponto flutuante. Ainda, o código deve ser escrito para um número arbitrário m > 1 de instâncias de processamento. Por fim, compare o desempenho do código MP com uma versão serial do código.
- **E 2.1.5.** Escreva um código MP para computar o produto de uma matriz $n \times m$ com uma matriz de $m \times n$ elementos, com $n \geq m$. Inicialize todos os elementos com números randômicos em ponto flutuante. Ainda, o código deve ser escrito para um número arbitrário m > 1 de instâncias de processamento. Por fim, compare o desempenho do código MP com uma versão serial do código.

2.2 Construtores básicos

2.2.1 Variáveis privadas e variáveis compartilhadas

Vamos analisar o seguinte código.

Código: vpc.cc

```
#include <stdio.h>
1
2
   #include <omp.h>
3
4
   int main(int argc, char *argv[]) {
5
6
     int tid, nt;
7
8
     // região paralela
9
   #pragma omp parallel
10
     {
11
       tid = omp get thread num();
12
       nt = omp_get_num_threads();
13
       printf("Processo %d/%d\n", tid, nt);
14
15
     printf("%d\n",nt);
16
17
     return 0;
18
  }
```

Qual seria a saída esperada? Ao rodarmos este código, veremos uma saída da forma

```
Processo 0/4
Processo 2/4
Processo 3/4
Processo 3/4
```

Isto ocorre por uma situação de **condição de corrida** (**race condition**) entre os *threads*. As variáveis **tid** e **nt** foram declaradas antes da região paralela e, desta forma, são **variáveis compartilhadas** (**shared variables**) entre todos os *threads* na região paralela. Os locais na memória em que estas as variáveis estão alocadas é o mesmo para todos os *threads*.

A condição de corrida ocorre na linha 11. No caso da saída acima, as instâncias de processamento 1 e 3 entraram em uma condição de corrida no registro da variável tid.

Observação 2.2.1. Devemos estar sempre atentos a uma possível condição de corrida. Este é um erro comum no desenvolvimento de códigos em paralelo.

Para evitarmos a condição de corrida, precisamos tornar a variável tid privada na região paralela. I.e., cada *thread* precisa ter uma variável tid privada. Podemos fazer isso alterando a linha 9 do código para

#pragma omp parallel private(tid)

Com essa alteração, a saída terá o formato esperado, como por exemplo

Processo 0/4

Processo 3/4

Processo 2/4

Processo 1/4

Faça a alteração e verifique!

Observação 2.2.2. A diretiva #pragma omp parallel também aceita as instruções:

- default(private|shared|none): o padrão é shared;
- shared(var1, var2, ..., varn): para especificar explicitamente as variáveis que devem ser compartilhadas.

2.2.2 Laço e Redução

Vamos considerar o problema de computar

$$s = \sum_{i=0}^{99999999} 1 \tag{2.1}$$

em paralelo com *np threads*. Começamos analisando o seguinte código

Código: soma0.cc

```
#include <omp.h>
2
   #include <stdio.h>
   #include <math.h>
3
4
5
   int main(int argc, char *argv[]) {
6
7
     int n = 999999999;
8
9
     int s = 0;
     #pragma omp parallel
10
11
12
       int tid = omp_get_thread_num();
13
       int nt = omp_get_num_threads();
14
       int ini = n/nt*tid;
15
       int fin = n/nt*(tid+1);
16
       if (tid == nt-1)
17
18
          fin = n;
19
       for (int i=ini; i<fin; i++)</pre>
20
          s += 1;
21
22
     printf("%d\n",s);
23
     return 0;
24
   }
```

Ao executarmos este código com nt > 1, vamos ter saídas erradas. Verifique! Qual o valor esperado?

O erro do código está na **condição de corrida** (*race condition*) na linha 20. Esta é uma operação, ao ser iniciada por um *thread*, precisa ser terminada pelo *thread* antes que outro possa iniciá-la. Podemos fazer adicionando o construtor

#pragma omp critical

imediatamente antes da linha de código
s+=i;. O código fica como segue, verifique!

Código: soma1.cc

```
#include <omp.h>
1
  #include <stdio.h>
   #include <math.h>
4
5
   int main(int argc, char *argv[]) {
6
7
     int n = 999999999;
8
9
     int s = 0;
10
     #pragma omp parallel
11
12
       int tid = omp get thread num();
13
       int nt = omp_get_num_threads();
14
15
       int ini = n/nt*tid;
       int fin = n/nt*(tid+1);
16
       if (tid == nt-1)
17
18
         fin = n;
19
       for (int i=ini; i<fin; i++)</pre>
20
         #pragma omp critical
21
         s += 1;
22
23
     printf("%d\n",s);
24
     return 0;
25
   }
```

Esta abordagem evita a condição de corrida e fornece a resposta esperada. No entanto, ela acaba serializando o código, o qual é será muito mais lento que o código serial. Verifique!

Observação 2.2.3. A utilização do construtor

#pragma omp critical

reduz a performance do código e só deve ser usada quando realmente necessária.

Uma alternativa é alocar as somas parciais de cada *thread* em uma variável privada e, ao final, somar as partes computadas. Isto pode ser feito com o seguinte código. Verifique!

Código: soma2.cc

```
#include <omp.h>
   #include <stdio.h>
2
3
  #include <math.h>
4
5
   int main(int argc, char *argv[]) {
6
7
     int n = 999999999;
8
9
     int s = 0;
     #pragma omp parallel
10
11
12
       int tid = omp_get_thread_num();
       int nt = omp_get_num_threads();
13
14
15
       int ini = n/nt*tid;
16
       int fin = n/nt*(tid+1);
       if (tid == nt-1)
17
18
         fin = n;
19
20
       int st = 0;
21
       for (int i=ini; i<fin; i++)</pre>
22
          st += 1;
23
24
       #pragma omp critical
25
       s += st;
     }
26
27
     printf("%d\n",s);
28
     return 0;
   }
29
```

Este último código pode ser simplificado usando o construtor

#pragma omp for

Com este construtor, o laço do somatório pode ser automaticamente distribuindo entre os *threads*. Verifique o seguinte código!

Código: somafor.cc

```
|#include <omp.h>
1
  #include <stdio.h>
   #include <math.h>
4
5
   int main(int argc, char *argv[]) {
6
7
     int n = 99999999;
 8
9
     int s = 0;
10
     #pragma omp parallel
11
12
       int st = 0;
13
14
       #pragma omp for
15
       for (int i=0; i<n; i++)
16
          st += 1;
17
18
       #pragma omp critical
19
       s += st;
20
     }
21
     printf("%d\n",s);
22
     return 0;
   }
23
```

Mais simples e otimizado, é automatizar a operação de redução (no caso, a soma das somas parciais) adicionado

reduction(+: s)

ao construtor que inicializa a região paralela. Verifique o seguinte código!

Código: soma.cc

```
#include <omp.h>
#include <stdio.h>
#include <math.h>

int main(int argc, char *argv[]) {

int n = 99999999;
```

```
8
     int s = 0;
9
10
     #pragma omp parallel for reduction(+: s)
     for (int i=0; i<n; i++)
11
12
       s += 1;
13
     printf("%d\n",s);
14
15
     return 0;
16
  }
```

Observação 2.2.4. A instrução de redução pode ser usada com qualquer operação binária aritmética (+, -, /, *), lógica (&, |) ou procedimentos intrínsecos (max, min).

2.2.3 Sincronização

A sincronização dos *threads* deve ser evitada sempre que possível, devido a perda de performance em códigos paralelos. Atenção, ela ocorre implicitamente no término da região paralela!

Barreira

No seguinte código, o *thread* 1 é atrasado em 1 segundo, de forma que ele é o último a imprimir. Verifique!

Código: sinc0.cc

```
1
   #include <stdio.h>
2
   #include <ctime>
3
   #include <omp.h>
4
5
   int main(int argc, char *argv[]) {
6
7
     // master thread id
8
     int tid = 0;
9
     int nt;
10
     #pragma omp parallel private(tid)
11
12
     {
```

```
13
       tid = omp_get_thread_num();
14
       nt = omp_get_num_threads();
15
       if (tid == 1) {
16
17
          // delay 1s
18
         time_t t0 = time(NULL);
         while (time(NULL) - t0 < 1) {
19
20
          }
21
       }
22
       printf("Processo %d/%d.\n", tid, nt);
23
24
     }
25
     return 0;
26
   }
```

Agora, podemos forçar a sincronização dos threads usando o construtor

#pragma omp barrier

em uma determinada linha do código. Por exemplo, podemos fazer todos os *threads* esperarem pelo *thread* 1 no código acima. Veja a seguir o código modificado. Teste!

Código: sinc1.cc

```
#include <stdio.h>
1
2
  #include <ctime>
3
  #include <omp.h>
4
   int main(int argc, char *argv[]) {
5
6
     // master thread id
     int tid = 0;
8
9
     int nt;
10
     #pragma omp parallel private(tid)
11
12
       tid = omp_get_thread_num();
13
14
       nt = omp_get_num_threads();
15
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

```
16
       if (tid == 1) {
17
          // delay 1s
         time_t t0 = time(NULL);
18
          while (time(NULL) - t0 < 1) {
19
20
          }
       }
21
22
23
       #pragma omp barrier
24
25
       printf("Processo %d/%d.\n", tid, nt);
26
     }
27
     return 0;
   }
28
```

Seção

O construtor **sections** pode ser usado para determinar seções do código que deve ser executada de forma serial apenas uma vez por um único *thread*. Verifique o seguinte código.

Código: secao.cc

```
#include <stdio.h>
2
  #include <ctime>
  #include <omp.h>
4
5
   int main(int argc, char *argv[]) {
6
7
     // master thread id
8
     int tid = 0;
9
     int nt;
10
11
     #pragma omp parallel private(tid)
12
13
       tid = omp_get_thread_num();
14
       nt = omp_get_num_threads();
15
16
       #pragma omp sections
17
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

```
18
          // seção 1
19
          #pragma omp section
20
            printf("%d/%d exec seção 1\n", \
21
22
                    tid, nt);
          }
23
24
25
          // seção 2
26
          #pragma omp section
27
28
            // delay 1s
29
            time t t0 = time(NULL);
            while (time(NULL) - t0 < 1) {
30
31
            printf("%d/%d exec a seção 2\n", \
32
33
                    tid, nt);
          }
34
       }
35
36
37
       printf("%d/%d terminou\n", tid, nt);
     }
38
39
40
     return 0;
41
   }
```

No código acima, o primeiro thread que alcançar a linha 19 é o único a executar a seção 1 e, o primeiro que alcançar a linha 25 é o único a executar a seção 2.

Observe que ocorre a sincronização implícita de todos os *threads* ao final do escopo **sections**. Isso pode ser evitado usando a cláusula **nowait**, i.e. alterando a linha 16 para

pragma omp sections nowait

Teste!

Observação 2.2.5. A clausula nowait também pode ser usada com o construtor for, i.e.

#pragma omp for nowait

Para uma região contendo apenas uma seção, pode-se usar o construtor

```
#pragma omp single
Isto é equivalente a escrever
#pragma omp sections
    #pragma omp section
```

Exercícios Resolvidos

ER 2.2.1. Escreva um código MP para computar o produto escalar entre dois vetores de n pontos flutuantes randômicos.

Solução. Aqui, vamos usar o suporte a vetores e números randômicos do pacote de computação científica GSL. A solução é dada no código a seguir.

Código: prodesc.cc

```
#include <omp.h>
1
  #include <stdio.h>
3
  #include <ctime>
4
  // GSL vector suport
  #include <gsl/gsl vector.h>
6
  #include <gsl/gsl rng.h>
7
8
9
   int main(int argc, char *argv[]) {
10
     int n = 999999999;
11
12
     // vetores
13
     gsl vector *a = gsl vector alloc(n);
14
     gsl vector *b = gsl vector alloc(n);
15
16
17
     // gerador randômico
18
     gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
19
     gsl_rng_set(rng, time(NULL));
20
21
     // inicializa os vetores
```

```
22
     #pragma omp parallel for
23
     for (int i=0; i<n; i++) {
24
       gsl_vector_set(a, i, gsl_rng_uniform(rng));
25
       gsl vector set(b, i, gsl rng uniform(rng));
     }
26
27
28
     // produto escalar
29
     double dot = 0;
30
     #pragma omp parallel for reduction(+: dot)
     for (int i=0; i<n; i++)
31
32
       dot += gsl_vector_get(a, i) * \
         gsl vector get(b, i);
33
34
     printf("%f\n",dot);
35
36
37
     gsl vector free(a);
     gsl_vector_free(b);
38
39
     gsl_rng_free(rng);
40
41
     return 0;
42
   }
```

Para compilar o código acima, digite

```
$ g++ -fopenmp prodesc.cc -lgsl -lgslcblas
```

 \Diamond

ER 2.2.2. Faça um código MP para computar a multiplicação de uma matriz $A \ n \times n$ por um vetor de n elementos (pontos flutuantes randômicos). Utilize o construtor omp sections para distribuir a computação entre somente dois threads.

Solução. Vamos usar o suporte a matrizes, vetores, BLAS e números randômicos do pacote de computação científica GSL. A solução é dada no código a seguir.

Código: AxSecoes.cc

```
1 | #include <omp.h>
```

```
2 | #include <stdio.h>
3 | #include <ctime>
4
5 | #include < gsl/gsl_matrix.h>
6 | #include <gsl/gsl vector.h>
7 | #include <gsl/gsl_rng.h>
8 | #include < gsl/gsl blas.h>
9
10 | int main(int argc, char *argv[]) {
11
12
     int n = 9999;
13
     // vetores
14
15
     gsl_matrix *a = gsl_matrix_alloc(n,n);
     gsl_vector *x = gsl_vector_alloc(n);
16
17
     gsl vector *y = gsl vector alloc(n);
18
19
     // gerador randômico
20
     gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
21
     gsl_rng_set(rng, time(NULL));
22
23
     // inicialização
24
     for (int i=0; i<n; i++) {
       for (int j=0; j<n; j++) {
25
26
         gsl_matrix_set(a, i, j, gsl_rng_uniform(rng));
       }
27
28
       gsl_vector_set(x, i, gsl_rng_uniform(rng));
29
     }
30
31
     //gsl_blas_dgemv(CblasNoTrans, 1.0, a, x, 0.0, y);
32
33
     // y = A * x
34
     #pragma omp parallel sections
35
36
       #pragma omp section
37
38
         gsl_matrix_const_view as1
39
           = gsl_matrix_const_submatrix(a,
```

```
40
                                            0,0,
41
                                            n/2,n);
42
         gsl_vector_view ys1
43
            = gsl_vector_subvector(y,0,n/2);
44
         gsl_blas_dgemv(CblasNoTrans,
45
                          1.0, &as1.matrix, x,
                          0.0, &ys1.vector);
46
47
       }
48
49
       #pragma omp section
50
          gsl matrix const view as2
51
52
            = gsl_matrix_const_submatrix(a,
53
                                            n/2,0,
54
                                            (n-n/2), n);
55
          gsl vector view ys2
            = gsl_vector_subvector(y,n/2,(n-n/2));
56
57
         gsl_blas_dgemv(CblasNoTrans,
58
                          1.0, &as2.matrix, x,
59
                          0.0, &ys2.vector);
60
       }
     }
61
62
     //for (int i=0; i<n; i++)
63
64
     //printf("%f\n", gsl_vector_get(y,i));
65
     gsl_matrix_free(a);
66
     gsl_vector_free(x);
67
68
     gsl_vector_free(y);
69
     gsl_rng_free(rng);
70
71
     return 0;
72
   }
```

 \Diamond

Exercícios

E 2.2.1. Considere o seguinte código

```
int tid = 10;
pragma omp parallel private(tid)

tid = omp_get_thread_num();

printf("%d\n", tid);
```

Qual o valor impresso?

E 2.2.2. Escreva um código MP para computar uma aproximação para

$$I = \int_{-1}^{1} e^{-x^2} dx \tag{2.2}$$

usando a regra composta do trapézio com n subintervalos uniformes.

E 2.2.3. Escreva um código MP para computar uma aproximação para

$$I = \int_{-1}^{1} e^{-x^2} dx \tag{2.3}$$

usando a regra composta de Simpson com n subintervalos uniformes. Dica: evite sincronizações desnecessárias!

- **E 2.2.4.** Escreva um código MP para computar a multiplicação de uma matriz $A n \times n$ por um vetor x de n elementos (pontos flutuantes randômicos). Faça o código de forma a suportar uma arquitetura com $n_p \ge 1$ threads.
- **E 2.2.5.** Escreva um código MP para computar o produto de duas matrizes $n \times n$ de pontos flutuantes randômicos. Utilize o construtor omp sections para distribuir a computação entre somente dois *threads*.
- **E 2.2.6.** Escreva um código MP para computar o produto de duas matrizes $n \times n$ de pontos flutuantes randômicos. Faça o código de forma a suportar uma arquitetura com $n_p \ge 1$ threads.

2.3 Resolução de Sistema Linear Triangular

Nesta seção, vamos discutir sobre a uma implementação em paralelo do método da substituição para a resolução de sistemas triangulares. Primeira-

mente, vamos considerar A uma matriz triangular inferior quadrada de dimensões $n \times n$, i.e. $A = [a_{i,j}]_{i,j=0}^{n-1}$ com $a_{i,j} = 0$ para i < j. Ainda, vamos considerar que A é invertível.

Neste caso, um sistema linear Ax = b pode ser escrito na seguinte forma algébrica

$$a_{1,1}x_1 = b_1 (2.4)$$

$$\vdots (2.5)$$

$$a_{i,1}x_1 + a_{i,2}x_2 + \dots + a_{i,i-1}x_{i-1} + a_{i,i}x_i = b_i$$
 (2.6)

$$\vdots (2.7)$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{i,i}x_i + \dots + a_{n,n}x_n = b_n$$
 (2.8)

O algoritmo serial do método da substituição (para frente) resolve o sistema começando pelo cálculo de x_1 na primeira equação, então o cálculo de x_2 pela segunda equação e assim por diante até o cálculo de x_n pela última equação. Segue o pseudocódigo serial.

1. Para
$$i = 0, ..., n - 1$$
:

(a) Para
$$j = 0, ..., i - 1$$
:
i. $b_i = b_i - A_{i,j}x_j$
(b) $x_i = \frac{b_i}{A_{i,j}}$

Implemente!

Para o algoritmo paralelo, vamos considerar uma arquitetura MP com $n_p \geq 1$ instâncias de processamento. Para cada instância de processamento $1 \leq p_{id} < n_p - 1$ vamos alocar as seguintes colunas da matriz A

$$t_{ini} = p_{id} \left[\frac{n}{n_p} \right] \tag{2.9}$$

$$t_{fim} = (p_{id} + 1) \left| \frac{n}{n_p} \right| - 1$$
 (2.10)

e, para $p_{id} = n_p - 1$ vamos alocar as últimas colunas, i.e.

$$t_{ini} = p_{id} \left[\frac{n}{n_p} \right] \tag{2.11}$$

$$t_{fim} = n - 1 \tag{2.12}$$

Segue o pseudocódigo em paralelo.

- 1. Para i = 0, ..., n-1
 - (a) s = 0
 - (b) Região paralela

i. Para
$$j \in \{t_{ini}, \dots, t_{fim}\} \land \{0, \dots, i-1\}$$

A. $s = s + a_{i,j}x_j$
(c) $x_i = \frac{b_i - s}{a_{i,i}}$

O código MP C/C++ que apresentaremos a seguir, faz uso do construtor threadprivate

```
#pragma omp threadprivate(list)
```

Este construtor permite que a lista de variáveis (estáticas) list seja privada para cada thread e seja compartilhada entre as regiões paralelas. Por exemplo:

```
x = 0
#pragma omp parallel private(x)
  x = 1
#pragma omp parallel private(x)
  x vale 0
```

Agora, com o construtor threadprivate:

```
static x = 0
#pragma omp threadprivate(x)
#pragma omp parallel
  x = 1
#pragma omp parallel private(x)
  x vale 1
```

Ainda, apenas para efeito de exemplo, vamos considerar que $a_{i,j} = (-1)^{i+j}(i+j)/(ij+1)$ para i < j, $a_{i,i} = 2[(i-n/2)^2 + 1]/n$ e $b_i = (-1)^i/(i+1)$ para i = 0, ..., n-1.

Segue o código paralelo para a resolução direta do sistema triangular inferior. Verifique!

Código: sistria1dcol.cc

```
1 | #include <omp.h>
2 | #include <stdio.h>
3 | #include <ctime>
4 | #include <algorithm>
5
6 | #include <gsl/gsl spmatrix.h>
7 | #include < gsl/gsl_vector.h>
  #include <gsl/gsl rng.h>
10 | int np, pid;
  int ini, fim;
11
12
   #pragma omp threadprivate(np,pid,ini,fim)
13
14
  int main(int argc, char *argv[]) {
15
16
     int n = 9999;
17
     // vetores
18
19
     gsl_spmatrix *a = gsl_spmatrix_alloc(n,n);
20
     gsl_vector *b = gsl_vector_alloc(n);
21
     gsl_vector *x = gsl_vector_alloc(n);
22
23
     // inicialização
24
     printf("Inicializando ... \n");
25
26
     for (int i=0; i<n; i++) {
27
       for (int j=0; j<i; j++) {
28
         gsl_spmatrix_set(a, i, j,
29
                            pow(-1.0,i+j)*(i+j)/(i*j+1));
       }
30
       gsl_spmatrix_set(a, i, i,
31
32
                          (pow(i-n/2,2)+1)*2/n);
33
       gsl_vector_set(b, i,
34
                       pow(-1.0,i)/(i+1));
     }
35
36
```

```
37
     printf("feito.\n");
38
39
     printf("Executando em paralelo ... \n");
40
41
     time t t = time(NULL);
42
     #pragma omp parallel
43
44
       np = omp get num threads();
45
       pid = omp_get_thread_num();
46
47
       ini = pid*n/np;
       fim = (pid+1)*n/np;
48
       if (pid == np-1)
49
         fim = n;
50
     }
51
52
53
     for (int i=0; i<n; i++) {
       double s = 0;
54
55
       #pragma omp parallel reduction(+: s)
56
57
         for (int j=std::max(0,ini); j<i and j<fim; j++)</pre>
58
            s += gsl_spmatrix_get(a,i,j) *
                 gsl vector get(x,j);
59
60
       }
       gsl_vector_set(x, i,
61
62
                        (gsl vector get(b,i) - s) /
63
                        gsl spmatrix get(a,i,i));
64
     }
65
66
     t = time(NULL) - t;
67
     printf("feito. %ld s\n", t);
68
69
70
71
     gsl_spmatrix_free(a);
72
     gsl_vector_free(b);
73
     gsl_vector_free(x);
74
```

```
75 | return 0;
76 |}
```

Exercícios resolvidos

ER 2.3.1. Seja Ax = b um sistema triangular inferior de dimensões $n \times n$. O seguinte pseudocódigo paralelo é uma alternativa ao apresentado acima. Por que este pseudocódigo é mais lento que o anterior?

1. Região paralela

(a) Para
$$j = 0, ..., n - 1$$

i. Se $j \in \{t_{ini}, ..., t_{fim}\}$
A. $x_j = \frac{b_j}{a_{j,j}}$
ii. Para $i \in \{t_{ini}, ..., t_{fim}\} \land \{j + 1, ..., n - 1\}$
A. $b_i = b_i - a_{i,j}x_j$

Solução. Este código tem um número de operações semelhante ao anterior, seu desempenho é afetado pelo chamado compartilhamento falso ($false\ sharing$). Este é um fenômeno relacionado ao uso ineficiente da memória cache de cada thread. O último laço deste pseudocódigo faz sucessivas atualizações do vetor b, o que causa sucessivos recarregamentos de partes do vetor b da memória RAM para a memória cache de cada um dos threads. Verifique!

 \Diamond

ER 2.3.2. Seja A uma matriz triangular inferior e invertível de dimensões $n \times n$. Escreva um pseudocódigo MP para calcular a matriz inversa A^{-1} usando o método de substituição direta.

Solução. Vamos denotar $A = [a_{i,j}]_{i,j=1}^{n-1}$ e $A^{-1} = [x_{i,j}]_{i,j=1}^{n-1}$. Note que x's são as incógnitas. Por definição, $AA^{-1} = I$, logo

$$a_{1,1}x_{1,k} = \delta_{1,k} \tag{2.13}$$

$$\cdots$$
 (2.14)

$$a_{i,1}x_{1,k} + \dots + a_{i,i-1}x_{i-1,k} + a_{i,i}x_{i,k} = \delta_{i,k}$$
 (2.15)

$$\cdots$$
 (2.16)

$$a_{n-1,1}x_{1,k} + \dots + a_{n-1,n-1}x_{n-1,k} = \delta_{n-1,k}$$
 (2.17)

onde, k = 0, ..., n-1 e $\delta_{i,j}$ denota o Delta de Kronecker. Ou seja, o cálculo de A^{-1} pode ser feito pela resolução de n sistemas triangulares inferiores tendo A como matriz de seus coeficientes.

Para construirmos um pseudocódigo MP, podemos distribuir os sistemas lineares a entre os *threads* disponíveis. Então, cada *thread* resolve em serial seus sistemas. Segue o pseudocódigo, sendo $x_k = (x_{1,k}, \ldots, x_{n-1,k})$ e $b_k = (\delta_{1,k}, \ldots, \delta_{n-1,k})$.

- 1. Região paralela
 - (a) Para $k \in \{t_{ini}, \dots, t_{fim}\}$ i. resolve $Ax_k = b_k$

Exercícios

- **E 2.3.1.** Implemente um código MP do pseudocódigo discutido no ER 2.3.1. Compare o tempo computacional com o do código sistrialdcol.cc.
- **E 2.3.2.** Implemente um código MP para computar a inversa de uma matriz triangular inferior de dimensões $n \times n$.
- **E 2.3.3.** Implemente um código MP para computar a solução de um sistema linear triangular superior de dimensões $n \times n$.
- **E 2.3.4.** Implemente um código MP para computar a inversa de uma matriz triangular superior de dimensões $n \times n$.

2.4 Decomposição LU

Nesta seção, vamos discutir sobre a paralelização da decomposição LU para matrizes. A decomposição LU de uma matriz A com dimensões $n \times n$ é

$$A = LU \tag{2.18}$$

onde L é uma matriz triangular inferior e U é uma matriz triangular superior, ambas com dimensões $n \times n$.

Para fixar as ideais, vamos denotar $A = [a_{i,j}]_{i,j=0}^{n-1}$, $L = [l_{i,j}]_{i,j=0}^{n-1}$ sendo $l_{i,i} = 1$ e $l_{i,j} = 0$ para i > j, e $U = [u_{i,j}]_{i,j=0}^{n}$ sendo $u_{i,j} = 0$ para i < j. O pseudoalgoritmo serial para computar a decomposição LU é

```
1. U = A, L = I

2. Para k = 0, ..., n - 2

(a) Para i = k + 1, ..., n - 1

i. l_{i,k} = u_{i,k}/u_{k,k}

ii. Para j = k, ..., n - 1

A. u_{i,j} = u_{i,j} - l_{i,k}u_{k,j}
```

A forma mais fácil de paralelizar este algoritmo em uma arquitetura MP é paralelizando um de seus laços (itens 2., 2.(a) ou 2.(a)ii.). O laço do item 2. não é paralelizável, pois a iteração seguinte depende do resultado da iteração imediatamente anterior. Agora, os dois laços seguintes são paralelizáveis. Desta forma, o mais eficiente é paralelizarmos o segundo laço 2.(a).

O seguinte código é uma versão paralela da decomposição LU. A matriz A é inicializada como uma matriz simétrica de elementos randômicos (linhas 19-41), sendo que a decomposição é computada nas linhas 43-61.

Código: parallelLU.cc

```
#include <omp.h>
1
2
  #include <stdio.h>
  #include <ctime>
3
4
   #include <algorithm>
5
6
   #include <gsl/gsl_matrix.h>
7
   #include <gsl/gsl vector.h>
   #include <gsl/gsl_rng.h>
8
   #include <gsl/gsl blas.h>
9
10
   int main(int argc, char *argv[]) {
11
12
13
     int n = 5;
14
15
     gsl matrix *a = gsl matrix alloc(n,n);
     gsl matrix *u = gsl matrix alloc(n,n);
16
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

```
gsl_matrix *l = gsl_matrix_alloc(n,n);
17
18
19
     // gerador randômico
20
     gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
21
     gsl rng set(rng, time(NULL));
22
23
     // inicialização
24
     printf("Inicializando ... \n");
25
     for (int i=0; i<n; i++) {
       for (int j=0; j<i; j++) {
26
27
         int sig = 1;
28
         if (gsl rng uniform(rng) >= 0.5)
29
            sig = -1;
30
         gsl_matrix_set(a, i, j,
31
                          sig*gsl_rng_uniform(rng));
32
         gsl_matrix_set(a, j, i,
33
                         gsl_matrix_get(a, i, j));
       }
34
35
       int sig = 1;
       if (gsl_rng_uniform(rng) >= 0.5)
36
37
         sig = -1;
38
       gsl_matrix_set(a, i, i,
39
                         sig*gsl rng uniform pos(rng));
40
     }
     printf("feito.\n");
41
42
43
     //U = A
     gsl_matrix_memcpy(u,a);
44
45
     // L = I
46
     gsl_matrix_set_identity(1);
47
48
     for (int k=0; k< n-1; k++) {
       #pragma omp parallel for
49
       for (int i=k+1; i<n; i++) {
50
51
         gsl_matrix_set(1, i, k,
52
                         gsl_matrix_get(u, i, k)/
53
                         gsl_matrix_get(u, k, k));
54
         for (int j=k; j < n; j++) {
```

```
55
            gsl_matrix_set(u, i, j,
56
                             gsl_matrix_get(u, i, j) -
57
                             gsl_matrix_get(l, i, k) *
                             gsl matrix get(u, k, j));
58
59
          }
       }
60
     }
61
62
63
     gsl_matrix_free(a);
64
     gsl matrix free(u);
     gsl_matrix_free(1);
65
     gsl rng free(rng);
66
67
68
     return 0;
   }
69
```

Exercícios Resolvidos

ER 2.4.1. Faça um código MP para computar a solução de um sistema linear Ax = b usando a decomposição LU. Assuma A uma matriz simétrica $n \times n$ de elementos randômicos, assim como os elementos do vetor b.

Solução. A decomposição LU da matriz A nos fornece as matrizes L (matriz triangular inferior) e U (matriz triangular superior), com

$$A = LU \tag{2.19}$$

Logo, temos

$$Ax = b (2.20)$$

$$\Rightarrow (LU)x = b \tag{2.21}$$

$$\Rightarrow L(Ux) = b \tag{2.22}$$

Denotando Ux = y, temos que y é solução do sistema triangular inferior

$$Ly = b (2.23)$$

e, por conseguinte, x é solução do sistema triangular superior

$$Ux = y. (2.24)$$

Em síntese, o sistema Ax = b pode ser resolvido com o seguinte pseudocódigo:

- 1. Computar a decomposição LU, A=LU.
- 2. Resolver Ly = b.
- 3. Resolver Ux = b.

Cada passo acima pode ser paralelizado. O código MP fica de exercício, veja E 2.4.1.

 \Diamond

ER 2.4.2. Considere a decomposição LU de uma matriz $A n \times n$. Em muitas aplicações, não há necessidade de guardar a matriz A em memória após a decomposição. Além disso, fixando-se que a diagonal da matriz L tem todos os elementos iguais a 1, podemos alocar seus elementos não nulos na parte triangular inferior (abaixo da diagonal) da própria matriz A. E, a matriz U pode ser alocada na parte triangular superior da matriz A. Faça um código MP para computar a decomposição LU de uma matriz A, alocando o resultado na própria matriz A.

Solução. O seguinte código faz a implementação pedida. Neste código, é necessário alocar apenas a matriz A, sem necessidade de locar as matrizes L e U. Da linha 17 à 39, apenas é gerada a matriz randômica A. A decomposição é computada da linha 41 a 54.

Código: parallelLU2.cc

```
#include <omp.h>
1
  #include <stdio.h>
2
  #include <ctime>
4
  #include <algorithm>
5
6
  #include <gsl/gsl matrix.h>
7
  #include <gsl/gsl vector.h>
  #include <gsl/gsl rng.h>
   #include <gsl/gsl_blas.h>
9
10
11
   int main(int argc, char *argv[]) {
12
13
     int n = 5;
14
```

```
15
     gsl_matrix *a = gsl_matrix_alloc(n,n);
16
17
     // gerador randômico
18
     gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
19
     gsl_rng_set(rng, time(NULL));
20
21
     // inicialização
22
     printf("Inicializando ... \n");
23
     for (int i=0; i<n; i++) {
24
       for (int j=0; j<i; j++) {
25
         int sig = 1;
26
         if (gsl rng uniform(rng) >= 0.5)
27
            sig = -1;
28
         gsl_matrix_set(a, i, j,
29
                          sig*gsl_rng_uniform(rng));
30
         gsl_matrix_set(a, j, i,
31
                          gsl_matrix_get(a, i, j));
       }
32
33
       int sig = 1;
34
       if (gsl_rng_uniform(rng) >= 0.5)
35
         sig = -1;
36
       gsl_matrix_set(a, i, i,
37
                          sig*gsl rng uniform pos(rng));
38
     }
39
     printf("feito.\n");
40
41
     for (int k=0; k< n-1; k++) {
42
       #pragma omp parallel for
43
       for (int i=k+1; i<n; i++) {
44
         gsl matrix set(a, i, k,
45
                          gsl matrix get(a, i, k)/
46
                          gsl_matrix_get(a, k, k));
         for (int j=k+1; j < n; j++) {
47
48
            gsl matrix set(a, i, j,
49
                            gsl_matrix_get(a, i, j) -
50
                            gsl_matrix_get(a, i, k) *
                            gsl_matrix_get(a, k, j));
51
52
         }
```

Este algoritmo demanda substancialmente menos memória computacional que o código parallellu.cc visto acima. Por outro lado, ele é substancialmente mais lento, podendo demandar até o dobro de tempo. Verifique!

O aumento no tempo computacional se deve ao mau uso da memória *cache* dos processadores. A leitura de um elemento da matriz, aloca no *cache* uma sequência de elementos próximos na mesma linha. Ao escrever em um destes elementos, a alocação do *cache* é desperdiçada, forçando o *cache* a ser atualizado. Note que o código parallelLU.cc requer menos atualizações do *cache* que o código parallelLU2.cc.

Exercícios

- E 2.4.1. Implemente o código MP discutido no ER 2.4.1.
- **E 2.4.2.** Implemente um código MP para computar a inversa de uma matriz simétrica de elementos randômicos usando decomposição LU.
- **E 2.4.3.** Considere o pseudoalgoritmo serial da composição LU apresentado acima. Por que é melhor paralelizar o laço 2.(a) do que o laço o 2.(a)ii.?
- **E 2.4.4.** Use o código MP discutido no ER 2.4.2 para resolver um sistema Ax = b de n equações e n incógnitas. Assuma que a matriz A seja simétrica.
- **E 2.4.5.** Um algoritmo paralelo mais eficiente para computar a decomposição LU pode ser obtido usando-se a decomposição LU por blocos. Veja o vídeo https://youtu.be/E8aBJsC0bY8 e implemente um código MP para computar a decomposição LU por blocos.

2.5 Métodos iterativos para Sistemas Lineares

Nesta seção, vamos discutir sobre a paralelização MP de alguns métodos iterativos para sistemas lineares

$$Ax = b (2.25)$$

com $A = [a_{i,j}]_{i,j=0}^{n-1}, x = (x_i)_{i=0}^{n-1} \in b = (b_i)_{i=0}^{n-1}.$

2.5.1 Método de Jacobi

Nós podemos escrever a i-ésima equação do sistema Ax = b como

$$\sum_{j=1}^{n} a_{i,j} x_j = b_i. {(2.26)}$$

Isolando x_i , obtemos

$$x_{i} = -\frac{1}{a_{i,i}} \left[\sum_{j \neq i} a_{i,j} x_{j} - b_{i} \right]. \tag{2.27}$$

Nesta última equação, temos que x_i pode ser diretamente calculado se todos os elementos x_j , $j \neq i$, forem conhecidos. Isso motiva o chamado método de Jacobi que é dado pela seguinte iteração

$$x_i(0) = \text{aprox. inicial},$$
 (2.28)

$$x_i(t+1) = -\frac{1}{a_{i,i}} \left[\sum_{j \neq i} a_{i,j} x_j(t) - b_i \right], \qquad (2.29)$$

para cada i = 0, 1, ..., n-1 e t = 0, 1, 2, ... O número máximo de iterações t_{max} e o critério de parada podem ser escolhidos de forma adequada. O pseudocódigo serial para o método de Jacobi pode ser escrito como segue

- 1. Alocar a aproximação inicial x^0 .
- 2. Para $t = 0,1,2,\cdots,t_{\text{max}}$:
 - (a) Para $i = 0, 1, 2, \dots, n$:

i.
$$x_i = -\frac{1}{a_{i,i}} \left[\sum_{j \neq i} a_{i,j} x_j^0 - b_i \right].$$

- (b) Verificar o critério de parada.
- (c) x0 = x.

A paralelização MP no método de Jacobi pode ser feita de forma direta e eficaz pela distribuição do laço 2.(a) do pseudocódigo acima. O seguinte código é uma implementação MP do método de Jacobi. Os vetores b e x0 são inicializados com elementos randômicos (0,1). A matriz A é inicializada como uma matriz estritamente diagonal dominante² com elementos randômicos (-1,1). O critério de parada é

$$||x - x^0||_2 < \text{tol},$$
 (2.30)

onde tol é a tolerância.

Código: pJacobi.cc

```
#include <omp.h>
1
  #include <stdio.h>
3
  #include <time.h>
4
  #include <gsl/gsl_matrix.h>
5
  #include <gsl/gsl vector.h>
7
  #include <gsl/gsl_blas.h>
8
  #include <gsl/gsl rng.h>
9
  // random +/- 1
10
   double randsig(gsl rng *rng);
11
12
   int main(int argc, char *argv[]) {
13
14
15
     int n = 999;
     int tmax = 50;
16
17
     double tol = 1e-8;
18
     gsl matrix *a = gsl matrix alloc(n,n);
19
```

²O método de Jacobi é convergente para matriz estritamente diagonal dominante.

```
20
     gsl_vector *b = gsl_vector_alloc(n);
21
22
     gsl_vector *x = gsl_vector_alloc(n);
     gsl_vector *x0 = gsl_vector_alloc(n);
23
24
25
     // gerador randômico
26
     gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
27
     gsl rng set(rng, time(NULL));
28
29
     // Inicializacao
30
     // Matriz estritamente diagonal dominante
     printf("Inicializacao ... \n");
31
32
     double sig;
33
     for (int i=0; i<n; i++) {
       double s = 0;
34
35
       for (int j=0; j < n; j++) {
         double aux = gsl_rng_uniform(rng);
36
37
         gsl_matrix_set(a, i, j,
38
                          randsig(rng)*aux);
39
         s += aux;
40
       }
41
       gsl_matrix_set(a, i, i,
42
                        randsig(rng) * s);
43
       gsl_vector_set(b, i,
44
                        randsig(rng) *
45
                        gsl_rng_uniform(rng));
46
       gsl_vector_set(x0, i,
47
                        randsig(rng) *
48
                        gsl rng uniform(rng));
49
     }
     printf("feito.\n");
50
51
52
     // Jacobi
53
     for (int t=0; t<tmax; t++) {</pre>
54
       #pragma omp parallel for
55
       for (int i=0; i<n; i++) {
         double s = 0;
56
         for (int j=0; j < i; j++)
57
```

```
58
            s += gsl_matrix_get(a, i, j) *
              gsl vector get(x0, j);
59
60
         for (int j=i+1; j < n; j++)
           s += gsl_matrix_get(a, i, j) *
61
62
              gsl_vector_get(x0, j);
63
         gsl_vector_set(x, i,
                          (gsl vector get(b, i) - s) /
64
65
                          gsl matrix get(a, i, i));
       }
66
67
       // criterio de parada
68
       // ||x-x0|| 2 < tol
       gsl blas daxpy(-1.0, x, x0);
69
       double e = gsl blas dnrm2(x0);
70
       printf("Iter. %d: %1.0e\n", t, e);
71
72
       if (e < tol)
73
         break;
74
       gsl_vector_memcpy(x0, x);
     }
75
76
77
     gsl_matrix_free(a);
78
     gsl vector free(b);
79
     gsl vector free(x);
     gsl vector free(x0);
80
81
     gsl rng free(rng);
82
83
     return 0;
84
   }
85
86
   double randsig(gsl rng *rng)
87
   {
88
     double signal = 1.0;
     if (gsl rng uniform(rng) >= 0.5)
89
90
            signal = -1.0;
91
     return signal;
92
   }
```

2.5.2 Método tipo Gauss-Seidel

No algoritmo serial, observamos que ao calcularmos x_i pela iteração de Jacobi(2.27), as incógnitas x_j , j < i, já foram atualizadas. Isto motivo o método de Gauss-Seidel, cujo algoritmo é descrito no seguinte pseudocódigo:

- 1. Alocar a aproximação inicial x^0 .
- 2. Para $t = 0, 1, 2, \dots, t_{\text{max}}$:
 - (a) Para $i = 0, 1, 2, \dots, n$:

i.
$$x_i = -\frac{1}{a_{i,i}} \left[\sum_{j < i} a_{i,j} x_j + \sum_{j > i} a_{i,j} x_j^0 - b_i \right].$$

- (b) Verificar o critério de parada.
- (c) x0 = x.

Embora este método seja normalmente muito mais rápido que o método de Jacobi, ele não é paralelizável. Isto se deve ao fato de que o cálculo da incógnita x_i depende dos cálculos precedentes das incógnitas x_j , j < i.

No entanto, a paralelização do método de Gauss-Seidel pode ser viável no caso de matrizes esparsas. Isto ocorre quando o acoplamento entre as equações não é total, podendo-se reagrupar as equações em blocos com base nos seus acoplamentos. Com isso, os blocos podem ser distribuídos entre as instâncias de processamento e, em cada uma, o método de Gauss-Seidel é aplicado de forma serial.

Uma alternativa baseada no Método de Gauss-Seidel, é utilizar o dado atualizado x_j loco que possível, independentemente da ordem a cada iteração. A iteração do tipo Gauss-Seidel pode-se ser escrita da seguinte forma

$$x_{i} = -\frac{1}{a_{i,i}} \left[\sum_{\hat{j} \neq i} a_{i,\hat{j}} x_{\hat{j}} + \sum_{j \neq i} a_{i,j} x_{j}^{0} - b_{i} \right], \tag{2.31}$$

onde arbitrariamente \hat{j} correspondem aos índices para os quais $x_{\hat{j}}$ já tenham sido atualizados na iteração corrente e j corresponde aos índices ainda não atualizados. O pseudocódigo MP deste método pode ser descrito como segue:

- 1. Alocar a aproximação inicial x.
- 2. Para $t = 0, 1, 2, \dots, t_{\text{max}}$:

- (a) $x^0 = x$.
- (b) distribuição de laço em paralelo:

i. Para
$$i = 0, 1, 2, \dots, n$$
:
$$A. x_i = -\frac{1}{a_{i,i}} \left[\sum_{j \neq i} a_{i,j} x_j - b_i \right].$$

(c) Verificar o critério de parada.

Este método tipo Gauss-Seidel converge mais rápido que o método de Jacobi em muitos casos. Veja [1, p. 151–153], para alguns resultados sobre convergência.

A implementação MP do pseudocódigo acima é apresentada no código abaixo. Os elementos dos vetores b, x^0 e da matriz A são inicializados da mesma forma que no código pJacobi.cc acima.

Código: pGSL.cc

```
#include <omp.h>
1
2
  #include <stdio.h>
3
  #include <time.h>
4
5
  #include <gsl/gsl matrix.h>
6
  #include <gsl/gsl vector.h>
7
  #include <gsl/gsl blas.h>
  #include <gsl/gsl rng.h>
8
9
  // random +/- 1
10
   double randsig(gsl rng *rng);
11
12
   int main(int argc, char *argv[]) {
13
14
     int n = 999;
15
16
     int tmax = 50;
     double tol = 1e-8;
17
18
19
     gsl_matrix *a = gsl_matrix_alloc(n,n);
     gsl_vector *b = gsl_vector_alloc(n);
20
21
22
     gsl vector *x = gsl vector alloc(n);
```

```
23
     gsl_vector *x0 = gsl_vector_alloc(n);
24
25
     // gerador randômico
     gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
26
27
     gsl_rng_set(rng, time(NULL));
28
29
     // Inicializacao
30
     // Matriz estritamente diagonal dominante
31
     printf("Inicializacao ... \n");
32
     double sig;
33
     for (int i=0; i<n; i++) {
       double s = 0;
34
35
       for (int j=0; j< n; j++) {
36
         double aux = gsl_rng_uniform(rng);
37
         gsl_matrix_set(a, i, j,
38
                          randsig(rng)*aux);
39
         s += aux;
       }
40
41
       gsl_matrix_set(a, i, i,
42
                        randsig(rng) * s);
43
       gsl_vector_set(b, i,
44
                        randsig(rng) *
45
                        gsl_rng_uniform(rng));
46
       gsl_vector_set(x, i,
47
                        randsig(rng) *
48
                        gsl rng uniform(rng));
49
     }
50
     printf("feito.\n");
51
52
     // Random Gauss-Seidel
53
     for (int t=0; t<tmax; t++) {</pre>
54
       gsl vector memcpy(x0, x);
       #pragma omp parallel for
55
       for (int i=0; i<n; i++) {
56
57
         double s = 0;
58
         for (int j=0; j<i; j++)
59
            s += gsl_matrix_get(a, i, j) *
60
              gsl_vector_get(x, j);
```

```
61
         for (int j=i+1; j<n; j++)
62
            s += gsl matrix get(a, i, j) *
63
              gsl_vector_get(x, j);
          gsl vector set(x, i,
64
                          (gsl_vector_get(b, i) - s) /
65
                          gsl_matrix_get(a, i, i));
66
       }
67
68
       // criterio de parada
69
       // ||x-x0||_2 < tol
70
       gsl blas daxpy(-1.0, x, x0);
71
       double e = gsl_blas_dnrm2(x0);
72
       printf("Iter. %d: %1.0e\n", t, e);
       if (e < tol)
73
74
         break;
     }
75
76
77
     gsl_matrix_free(a);
78
     gsl_vector_free(b);
79
     gsl vector free(x);
     gsl vector free(x0);
80
81
     gsl rng free(rng);
82
83
     return 0;
   }
84
85
86
   double randsig(gsl rng *rng)
87
   {
     double signal = 1.0;
88
     if (gsl rng uniform(rng) >= 0.5)
89
90
            signal = -1.0;
91
     return signal;
   }
92
```

2.5.3 Método do Gradiente Conjugado

O Método do Gradiente Conjugado pode ser utilizado na resolução de sistemas lineares Ax = b, onde A é uma matriz simétrica e positiva definida.

No caso de sistemas em gerais, o método pode ser utilizado para resolver o sistema equivalente A'Ax = A'b, onde A é uma matriz inversível, com A' denotando a transposta de A.

O pseudocódigo deste método é apresentado como segue:

- 1. Alocar a aproximação inicial x.
- 2. Calcular o resíduo r = Ax b.
- 3. Alocar a direção d = r.
- 4. Para $t = 0, 1, \dots, t_{\text{max}}$:

(a)
$$\alpha = -\frac{r \cdot d}{d \cdot Ad}$$
.

(b)
$$x = x + \alpha d$$
.

(c)
$$r = Ax - b$$
.

(d)
$$\beta = \frac{r \cdot Ad}{d \cdot Ad}$$
.

(e)
$$d = -r + \beta d$$

Uma versão MP deste método pode ser implementada pela distribuição em paralelo de cada uma das operações de produto escalar, multiplicação matrizvetor e soma vetor-vetor. O seguinte código é uma implementação MP do Método do Gradiente Conjugado. Os elementos do vetor b e da matriz A são inicializados de forma randômica e é garantida que matriz é simétrica positiva definida.

Código: pGC.cc

```
#include <omp.h>
#include <stdio.h>
#include <time.h>
#include <math.h>

#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_rng.h>
```

```
11 | int n = 999;
12 \mid \text{int tmax} = 50;
13 double tol = 1e-8;
14
15 // inicialização
16 | void init(gsl_matrix *a,
              gsl vector *b);
17
18
19 | // random +/- 1
20
  double randsig(gsl_rng *rng);
21
22 // residuo
23 | void residuo(const gsl_matrix *a,
24
                 const gsl_vector *x,
25
                 const gsl_vector *b,
26
                 gsl vector *r);
27
   // Metodo do Gradiente Conjugado
29 | void pGC(const gsl_matrix *a,
30
             const gsl_vector *b,
31
             gsl vector *x);
32
33 | int main(int argc, char *argv[]) {
34
35
     // sistema
36
     gsl_matrix *a = gsl_matrix_alloc(n,n);
37
     gsl_vector *b = gsl_vector_alloc(n);
38
39
     // incognita
40
     gsl_vector *x = gsl_vector_alloc(n);
41
42
     // inicializacao
     init(a, b);
43
44
45
     // Método do Gradiente Conjugado
46
     pGC(a, b, x);
47
48
     gsl_matrix_free(a);
```

```
49
    gsl_vector_free(b);
50
    gsl vector free(x);
51
52
    return 0;
53 | }
54
  /****************
56 | Inicializacao
  void init(gsl_matrix *a,
58
59
             gsl_vector *b)
60 | {
61
    printf("Inicializacao ... \n");
    // gerador randômico
62
63
    gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
    gsl rng set(rng, time(NULL));
64
65
66
    // C - Matriz estritamente diagonal positiva
67
    double sig;
    gsl_matrix *c = gsl_matrix_alloc(n,n);
68
69
    #pragma omp parallel for
70
    for (int i=0; i<n; i++) {
71
      double aux;
72
      double s = 0;
73
      for (int j=0; j < n; j++) {
74
        aux = gsl rng uniform(rng);
75
        gsl_matrix_set(c, i, j,
76
                       randsig(rng) * aux);
77
        s += aux;
78
79
      gsl matrix set(c, i, i,
                     randsig(rng) * s);
80
81
      gsl_vector_set(b, i,
82
                      randsig(rng) *
83
                     gsl_rng_uniform(rng));
84
    }
85
    // A = C'C: Simétrica positiva definida
86
    #pragma omp parallel for
```

```
87
     for (int i=0; i<n; i++)
      for (int j=0; j<n; j++) {
88
89
        double s;
        gsl vector const view ci =
90
91
          gsl matrix const column(c, i);
92
        gsl_vector_const_view cj =
          gsl matrix const column(c, j);
93
94
        gsl blas ddot(&ci.vector, &cj.vector, &s);
95
        gsl_matrix_set(a, i, j, s);
      }
96
97
98
     gsl rng free(rng);
     gsl_matrix_free(c);
99
100
101
     printf("feito.\n");
102
103
   104
105
   /*************
  Sinal randomico
106
107
   108
   double randsig(gsl_rng *rng)
109
110
     double signal = 1.0;
     if (gsl_rng_uniform(rng) >= 0.5)
111
          signal = -1.0;
112
113
     return signal;
114
   115
116
117 /***************************
118
   **************************************
119
120 void residuo(const gsl matrix *a,
121
              const gsl_vector *x,
122
              const gsl_vector *b,
123
              gsl vector *r)
124 | {
```

```
125
     #pragma omp parallel for
     for (int i=0; i<n; i++) {
126
127
       double s = 0;
       for (int j=0; j < n; j++)
128
129
         s += gsl matrix get(a, i, j) *
           gsl_vector_get(x, j);
130
131
       gsl vector set(r, i,
132
                       s - gsl vector get(b, i));
     }
133
   }
134
135
   136
137
   /*************
   Metodo do Gradiente Conjugado
138
   **********************************
139
140
   void pGC(const gsl matrix *a,
141
            const gsl_vector *b,
142
            gsl vector *x)
143 | {
144
     gsl_vector *r = gsl_vector_alloc(n);
145
     gsl vector *d = gsl vector alloc(n);
146
     gsl_vector *ad = gsl_vector_alloc(n);
147
148
     // x = 0
149
     gsl_vector_set_zero(x);
150
151
     // r = Ax - b
152
     residuo(a, x, b, r);
153
     // d = r
154
     gsl vector memcpy(d, r);
155
156
157
     for (int t=0; t < tmax; t++) {
158
       // r.d, Ad, dAd
159
       double rd = 0;
160
       double dAd = 0;
161
       #pragma omp parallel for reduction(+:rd,dAd)
       for (int i=0; i<n; i++) {
162
```

```
163
          rd += gsl_vector_get(r, i) *
164
             gsl vector get(d, i);
          double adi = 0;
165
          for (int j=0; j < n; j++)
166
             adi += gsl matrix get(a, i, j) *
167
               gsl_vector_get(d, j);
168
          gsl vector set(ad, i, adi);
169
170
          dAd += gsl vector get(d, i) * adi;
        }
171
172
173
        // alpha
174
        double alpha = rd/dAd;
175
176
        // x = x - alpha*d
177
        #pragma omp parallel for
178
        for (int i=0; i<n; i++)
          gsl vector_set(x, i,
179
180
                           gsl_vector_get(x, i) -
181
                           alpha *
182
                           gsl_vector_get(d, i));
183
184
        // residuo
185
        residuo(a, x, b, r);
186
187
        // rAd
        double rAd = 0;
188
189
        #pragma omp parallel for reduction(+:rAd)
190
        for (int i=0; i<n; i++)
          rAd += gsl vector get(r, i) *
191
             gsl vector get(ad, i);
192
193
194
        // beta
195
        double beta = rAd/dAd;
196
197
        // d
198
        #pragma omp parallel for
199
        for (int i=0; i<n; i++)
          gsl vector set(d, i,
200
```

```
201
                         beta *
202
                         gsl vector get(d, i) -
                         gsl_vector_get(r, i));
203
204
205
       // criterio de parada
206
       // ||r||_2 < tol
       double crt = 0;
207
208
       #pragma omp parallel for reduction(+: crt)
209
       for (int i=0; i<n; i++)
210
         crt += gsl vector get(r, i) *
211
            gsl_vector_get(r, i);
212
       crt = sqrt(crt);
213
       printf("Iter. %d: %1.1e\n", t, crt);
214
       if (crt < tol)
215
         break;
216
     }
217
218
     gsl_vector_free(r);
219
     gsl_vector_free(d);
220
     gsl_vector_free(ad);
221
222
223
```

Exercícios Resolvidos

ER 2.5.1. Faça uma implementação MP para computar a inversa de uma matriz A usando o Método de Gauss-Seidel. Assuma que A seja uma matriz estritamente diagonal dominante de dimensões $n \times n$ (n grande).

Solução. A inversa da matriz A é a matriz B de dimensões $n \times n$ tal que

$$AB = I \tag{2.32}$$

Denotando por b_k , k = 0,1,...,n, as colunas da matriz B, temos que o problema de calcular B é equivalente a resolver os seguintes n sistemas lineares

$$Ab_k = i_k, \quad k = 0, 1, \dots, n,$$
 (2.33)

onde i_k é a j-ésima coluna da matriz identidade I. Podemos usar o método de Gauss-Seidel para computar a solução de cada um destes sistemas lineares. Embora o método não seja paralelizável, os sistemas são independentes um dos outros e podem ser computados em paralelo. O pseudocódigo pode ser escrito como segue:

- 1. Alocar a matriz A.
- 2. (início da região paralela)
 - (a) Para k = 0,1,...,n (laço em paralelo):
 - i. Alocar i_k .
 - ii. Inicializar b_k .
 - iii. Resolver pelo Método de Gauss-Seidel

$$Ab_k = i_k \tag{2.34}$$

A implementação fica como Exercício E 2.5.2.

 \Diamond

ER 2.5.2. Faça uma implementação MP do método de sobre-relaxação de Jacobi (método JOR) para computar a solução de um sistema linear Ax = b, com A matriz estritamente diagonal dominante de dimensões $n \times n$ (n grande).

Solução. O método JOR é uma variante do método de Jacobi. A iteração JOR é

$$x_i(0) = \text{aprox. inicial},$$
 (2.35)

$$x_i(t+1) = (1-\gamma)x_i(t) - \frac{\gamma}{a_{i,i}} \left[\sum_{j \neq i} a_{i,j} x_j(t) - b_i \right],$$
 (2.36)

para cada $i=0,1,\ldots,n-1$ e $t=0,1,2,\ldots$, com $0<\gamma<1$. Note que se $\gamma=1$, então temos o Método de Jacobi.

A implementação MP do Método JOR pode ser feita de forma análoga a do Método de Jacobi (veja o código pJacobi.cc na Subseção 2.5.1). A implementação fica como exercício E 2.5.1.

Exercícios

E 2.5.1. Complete o ER 2.5.2.

E 2.5.2. Complete o ER 2.5.1.

E 2.5.3. O Método de Richardson para o cálculo da solução de um sistema linear Ax = b de dimensões $n \times n$ tem a seguinte iteração

$$x(0) = \text{aprox. inicial},$$
 (2.37)

$$x(t+1) = x(t) - \gamma [Ax(t) - b],$$
 (2.38)

onde γ é uma parâmetro escalar de relaxação e $t=0,1,2,\ldots$ Faça uma implementação MP deste método.

E 2.5.4. O Método das Sucessivas Sobre-relaxações (SOR) é uma variante do Método de Gauss-Seidel. A iteração SOR é

$$x_i(0) = \text{aprox. inicial},$$
 (2.39)

$$x_i(t+1) = (1-\gamma)x_i(t) - \frac{\gamma}{a_{i,i}} \left[\sum_{j < i} a_{i,j} x_j(t+1) + \sum_{j > i} a_{i,j} x_j(t) - b_i \right], \quad (2.40)$$

onde
$$0 < \gamma < 1$$
, $i = 0,1,\ldots,n-1$ e $t = 0,1,2,\ldots$

Este método não é paralelizável, mas ele pode ser adaptado pela distribuição paralela do cálculo das incógnitas a cada iteração conforme o Método tipo Gauss-Seidel apresentado na Subseção 2.5.2. Faça a adaptação do Método SOR e implemente em MP.

E 2.5.5. Faça a implementação do método do Gradiente Conjugado para computar a inversa de uma matriz A simétrica positiva definida de dimensões $n \times n$ (n grande).

2.6 Métodos iterativos para problemas não lineares

Vamos considerar um sistema de equações não lineares

$$F(x) = 0, (2.41)$$

onde $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ e $F : \mathbb{R}^n \mapsto \mathbb{R}^n$, $n \ge 1$.

2.6.1 Método de Newton

Supondo que F é duas vezes diferenciável, a solução de (2.41) pode ser computada pela iteração de Newton:

$$x(0) = \text{aprox. inicial},$$
 (2.42)

$$x(t+1) = x(t) - \gamma J_F^{-1}(x(t)) F(x(t)),$$
 (2.43)

onde $\gamma > 0$ é o tamanho do passo escolhido,

$$J_F(\cdot) = \left[\frac{\partial F_i}{\partial x_j}(\cdot)\right]_{i,j=1}^{n,n} \tag{2.44}$$

denota a jacobiana de F, e t = 1,2,3,...

Observamos que, em geral, a iterada de Newton (2.43) não é trivialmente paralelizável, devido a acoplamentos entre as n equações. Por outro lado, podemos reescrever (2.43) como segue:

$$x(t+1) = x(t) + \gamma s(t),$$
 (2.45)

onde s(t) é o passo de Newton, dado como a solução do seguinte sistema linear

$$J_F(x(t)) s(t) = -F(x(t)).$$
 (2.46)

Desta forma, a cada iteração de Newton t, devemos computar a solução do sistema linear (2.46). A aplicação da paralelização no método de Newton dá-se pela utilização de métodos paralelizáveis para a resolução de sistemas lineares. Na Seção 2.4 e, principalmente, na Seção 2.5, discutimos sobre a paralelização de métodos para sistemas lineares.

No caso de um sistema de grande porte e uma vez computada s(t), a atualização (2.45) também pode ser trivialmente paralelizada. Ainda, as computações da função objetivo F e de sua jacobiana J_F também são paralelizáveis.

2.6.2 Método do acorde

Em problemas de grande porte, o cálculo da jacobina J_F é, em muitos casos, o passo computacionalmente mais custoso na aplicação do método de Newton. Uma alternativa é o chamado método do acorde, no qual a jacobiana é

computada apenas na iteração inicial. Segue a iteração deste método

$$x(0) = \text{aprox. inicial},$$
 (2.47)

$$J_{F,0} = F_F(x(0)), (2.48)$$

$$x(t+1) = x(t) + \gamma s(t),$$
 (2.49)

$$J_{F,0}s(t) = -F(x(t)), (2.50)$$

onde t = 0, 1, 2, ...

Enquanto a taxa de convergência do método de Newton é quadrática, o método do acorde tem convergência linear. Portanto, este só é vantajoso quando o custo de computar a jacobiana é maior que o custo de se computar várias iterações a mais.

Além das paralelizações triviais na computação de (2.48) e (2.54), vamos observar a computação da direção s(t) (2.55). Como a jacobiana $J_{F,0}$ é fixada constante, a utilização de métodos iterativos para computar s(t) pode não ser o mais adequado. Aqui, a utilização de método direto, como a decomposição LU torna-se uma opção a ser considerada. Neste caso, a iteração ficaria como segue

$$x(0) = \text{aprox. inicial},$$
 (2.51)

$$J_{F,0} = J_F(x(0)), (2.52)$$

$$LU = J_{F,0},$$
 (2.53)

$$x(t+1) = x(t) + \gamma s(t),$$
 (2.54)

$$LUs(t) = -F(x(t)), (2.55)$$

onde t = 0, 1, 2, ...

2.6.3 Métodos quasi-Newton

Baseados em aproximações na computação do passo de Newton

$$J_F(x(t)) s(t) = -F(x(t)),$$
 (2.56)

uma série de métodos quasi-Newton são derivados. A aplicação de cada uma dessas tais variantes precisa ser avaliada caso a caso. Em todas elas, buscase abrir mão da convergência quadrática em troca de um grande ganho no tempo computacional em se computar s(t).

Uma das alternativas é uma variante do método do acorde. A ideia é estimar a taxa de convergência p entre as iterações e atualizar a jacobiana quando a taxa estimada é menor que um certo limiar p_l considerado adequado (este limiar pode ser escolhido com base nos custos computacionais de se recomputar a jacobiana versus o de se computar várias iterações a mais). A convergência é da ordem p quando

$$||F(x(t+1))|| \approx K||F(F(x(t)))||^p,$$
 (2.57)

com $K>0,\,\|F\left(x(t)\right)\|\to 0$ quando $t\to\infty.$ Assim sendo, é razoável esperar que

$$p \approx \frac{\log(\|F(x(t+1))\|)}{\log(\|F(x(t))\|)}$$
 (2.58)

- . Com isso, o pseudocódigo segue
 - 1. Aproximação inicial: x(0), t = 0.
 - 2. Jacobiana: $J_F = J_F(x(t))$.
 - 3. Enquanto ||F(x(t))|| > tol:
 - (a) $J_F s(t) = -F(x(t))$.
 - (b) $x(t+1) = x(t) + \gamma s(t)$.
 - (c) $p = \log(\|F(x(t+1))\|) / \log(\|F(x(t))\|)$
 - (d) Se $p < p_l$, então:

i.
$$J_F = J_F(x(t+1))$$
.

(e)
$$t = t + 1$$
.

Outra alternativa que pode ser considerada em determinados casos, é a de se computar s(t) por

$$J_F(x(t)) s(t) = -F(x(t))$$
(2.59)

de forma aproximada. No contexto de métodos iterativos para sistemas lineares, pode-se truncar a resolução do sistema acima fixando um número pequeno de iterações. Desta forma, s(t) não seria computada de forma precisa, mas a aproximação computada pode ser suficientemente adequada. Do ponto de vista de paralelização em MP, estas variantes do método de Newton apresentam potenciais e requerem cuidados similares ao método original.

Exercícios

E 2.6.1. Implemente um código MP para computar a solução de

$$\operatorname{sen}(x_1 x_2) - 2x_2 - x_1 = -4.2 \tag{2.60}$$

$$3e^{2x_1} - 6ex_2^2 - 2x_1 = -1 (2.61)$$

usando o método de Newton. Use a inversa da jacobiana exata e aproximação inicial x(0) = (2,2).

E 2.6.2. Considere o seguinte problema de Poisson não-linear

$$-\frac{\partial}{\partial x} \left[\left(1 + u^2 \right) \frac{\partial u}{\partial x} \right] = \cos(\pi x), \quad x \in (-1, 1), \tag{2.62}$$

$$u(0) = 1, \quad \left. \frac{\partial u}{\partial x} \right|_{x=1} = 0. \tag{2.63}$$

Use o método de diferenças finitas para discretizar este problema de forma a aproximá-lo como um sistema algébrico de equações não lineares. Implemente um código MP para computar a solução do sistema resultante aplicando o método de Newton.

- **E 2.6.3.** No Exercício 2.6.2, faça uma implementação MP do método do acorde e compare com o método de Newton clássico.
- **E 2.6.4.** No Exercício 2.6.2, faça uma implementação MP da variante do método do acorde com atualização da jacobiana com base na estimativa da taxa de convergência.

Resposta dos Exercícios

Referências Bibliográficas

- [1] D.P. Dimitri and J.N. Tsitsiklis. *Parallel and Distributed Computation:* Numerical Methods. Athena Scientific, 2015.
- [2] A. Grama, A. Grupta, G. Karypis, and V. Kumar. *Introduction to Parallel Computing*. Addison Wesley, 2. edition, 2003.