Ćwiczenie 2

Klasyfikator k - NN

Zadanie do wykonania

- 1) Tworzymy na pulpicie katalog w formacie Imię_nazwisko, w którym umieszczamy wszystkie pliki związane z ćwiczeniem.
- 2) Czytamy teorię związaną z klasyfikacją metodą k najbliższych sąsiadów (k-NN), w razie problemów ze zrozumieniem, analizujemy przykłady na kartce.
- 3) Generujemy system decyzyjny treningowy i testowy za pomocą programu is_ds_generator.exe.
- 4) Otrzymany system testowy klasyfikujemy systemem treningowym metodą 2-NN, za pośrednictwem programu napisanego w dowolnym języku programowania. Implementujemy algorytm dla: Metryki Euklidesa, Canberra, Czebyszewa, Manhattan oraz dla Bezwzględnego współczynnika korelacji Pearsona.
- 5) W przypadku programowania w C++, ułatwieniem może być programem demonstracyjny znajdujący się na stronie http://wmii.uwm.edu.pl/~artem w zakładce Dydaktyka/Sztuczna Inteligencja.

Teoria do ćwiczeń z przykładami

Metody z rodziny k najbliższych sąsiadów

Przyjmując, że nie znamy figury w centrum Rys. 1 możemy przeprowadzać dedukcję na podstawie obserwacji figur stojących w jej sąsiedztwie prowadzącą do jej zdefiniowania. Przykładowo, gdy rozważamy po dwie najbliższe figury spośród trójkątów i kwadratów, widzimy, że sumaryczna odległość dwóch trójkątów od figury nieznanej jest mniejsza niż odległość pary kwadratów, stąd możemy przypuszczać, że naszą ukrytą figurą jest trójkąt. Tego typu sposób klasyfikacji nazywamy metodą k najbliższych sąsiadów, w naszym przykładzie rozważaliśmy k=2 w sensie wyboru po dwa obiekty z każdej dostępnej klasy obiektów.

Rysunek 1: Wizualizacja problemu klasyfikacji metodą k najbliższych sąsiadów

• Dla danego systemu testowy (X, A, c) i treningowego (Y, A, c), gdzie X, Y to odpowiednio uniwersum obiektów testowych i treningowych, $A = (a_1, a_2, \ldots, a_n)$ jest zbiorem atrybutów warunkowych, $c \in D = \{c_1, c_2, \ldots, c_m\}$ jest atrybutem decyzyjnym.

Dla obiektów $x \in X, y \in Y$ postaci,

$$x = a_1(x) \ a_2(x) \dots a_n(x) \ c(x)$$

$$y = a_1(y) \ a_2(y) \dots a_n(y) \ c(y)$$

zdefiniujmy podstawowe metryki,

Metryka Manhattan przedstawia się następująco,

$$d(x,y) = \sum_{i=1}^{n} |a_i(x) - a_i(y)|$$

Metryka Euklidesowa szczególnym przypadkiem metryki Minkowskiego,

$$d(x,y) = \sqrt{(a_1(x) - a_1(y))^2 + (a_2(x) - a_2(y))^2 + \dots + (a_n(x) - a_n(y))^2}$$

czyli zapisując ogólnie:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (a_i(x) - a_i(y))^2}$$

Metryka Canberra jest postaci,

$$d(x,y) = \sum_{i=1}^{n} \left| \frac{a_i(x) - a_i(y)}{a_i(x) + a_i(y)} \right|$$

Metryka Czebyszewa określana jest wzorem,

$$d(x,y) = max(|a_i(x) - a_i(y)|), dla \ i = 1, 2, ..., n$$

Bezwzględny współczynnik korelacji Pearsona może być używany w poniższy sposób,

$$d(x,y) = 1 - |r_{x,y}|$$

$$r_{x,y} = \frac{1}{n} * \sum_{i=1}^{n} \left(\frac{a_i(x) - \overline{x}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (a_i(x) - \overline{x})^2}}\right) \left(\frac{a_i(y) - \overline{y}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (a_i(y) - \overline{y})^2}}\right)$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} a_i(x), \overline{y} = \frac{1}{n} \sum_{i=1}^{n} a_i(y)$$

Procedura algorytmu k-NN z równym uwzględnianiem klas decyzyjnych

- Wczytujemy system testowy (X, A, c) i treningowy (Y, A, c), gdzie X, Y to odpowiednio uniwersum obiektów testowych i treningowych, $A = (a_1, a_2, \ldots, a_n)$ jest zbiorem atrybutów warunkowych, $c \in D = \{c_1, c_2, \ldots, c_m\}$ jest atrybutem decyzyjnym.
- ullet Ustalamy metrykę d liczenia odległości między obiektami, oraz liczbę najbliższych sąsiadów decydujących o klasyfikacji k,
- \bullet Klasyfikujemy wszystkie obiekty testowe za pomocą k najbliższych obiektów, każdej z klas systemu treningowego, (decyzję przekazuje klasa, której obiekty są najbliżej testowego w sensie metryki d),
- \bullet Po zakończeniu klasyfikacji, tworzymy Macierz Predykcji, zawierającą informacje o jakości klasyfikacji systemu testowego X:

Parametry mówiące o jakości przeprowadzonej klasyfikacji, które należy umieścić w raporcie klasyfikacji (w Macierzy Predykcji) są definiowane następująco:

Dla $\bigwedge_{c \in D}$

$$acc_c = \frac{liczba\ obiektów\ poprawnie\ sklasyfikowanych\ w\ klasie\ decyzyjnej\ c}{liczba\ obiektów\ chwyconych\ w\ klasie\ c}$$

$$cov_c = \frac{liczba~obiektów~chwyconych~w~klasie~c}{liczba~obiektów~klasy~c}$$

$$TPR_c = \frac{x}{x + liczba\ obiektów\ z\ pozostałych\ klas\ błędnie\ trafiających\ do\ klasy\ c}$$

przyjmujemy, że x=liczba obiektów poprawnie skłasyfikowanych w klasie decyzyjnym c

Ostatecznie wyliczamy wartości globalne, które umieszczamy pod Macierzą Predykcji,

 $acc_{global} = \frac{ilo\acute{s}\acute{c}\ obiekt\acute{o}w\ poprawnie\ sklasyfikowanych\ w\ całym\ systemie\ TST}{ilo\acute{s}\acute{c}\ obiekt\acute{o}w\ chwyconych\ w\ systemie\ TST}$

$$cov_{global} = \frac{ilo\acute{s}\acute{c}~obiekt\acute{o}w~chwyconych~w~całym~systemie~TST}{ilo\acute{s}\acute{c}~obiekt\acute{o}w~systemu~TST}$$

Przykładowa klasyfikacja 2-NN Wczytujemy system testowy postaci,

Tabela 1: System Testowy (X, A, c)

	a_1	a_2	a_3	a_4	c
$\overline{x_1}$	2	4	2	1	4
x_2	1	2	1	1	2
x_3	9	7	10	7	4
x_4	4	4	10	10	2

oraz system treningowy

Tabela 2: System Treningowy (Y, A, c)

	a_1	a_2	a_3	a_4	c
y_1	1	3	1	1	2
y_2	10	3	2	1	2
y_3	2	3	1	1	2
y_4	10	9	7	1	4
y_5	3	5	2	2	4
y_6	2	3	1	1	4

Ustalmy k=2 i d jako metrykę Euklidesa

Metryka Euklidesa działa następująco, dla obiektów

$$x = a_1(x) \ a_2(x) \dots a_n(x) \ c(x)$$

$$y = a_1(y) \ a_2(y) \dots a_n(y) \ c(y)$$

$$d(x,y) = \sqrt{(a_1(x) - a_1(y))^2 + (a_2(x) - a_2(y))^2 + \dots + (a_n(x) - a_n(y))^2}$$

czyli zapisując ogólnie:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (a_i(x) - a_i(y))^2}$$

Przechodzimy do klasyfikacji obiektów testowych:

Dla x_1 2 4 2 1 4

$$d(x1, y1) = \sqrt{(2-1)^2 + (4-3)^2 + (2-1)^2 + (1-1)^2} = \sqrt{3}$$

$$d(x1, y2) = \sqrt{65}$$

$$d(x1, y3) = \sqrt{2}$$

$$d(x1, y4) = \sqrt{114}$$

$$d(x1, y5) = \sqrt{3}$$

$$d(x1, y6) = \sqrt{2}$$

Dwóch najbliższych sąsiadów obiektu testowego x_1 w klasie decyzyjnej 2 to y_3, y_1 Klasa 2 głosuje z mocą $\sqrt{2} + \sqrt{3}$

Najbliższymi sąsiadami x_1 w klasie decyzyjnej 4 są y_6, y_5

Klasa 4 głosuje z mocą $\sqrt{2} + \sqrt{3}$

$$\sqrt{2} + \sqrt{3} = \sqrt{2} + \sqrt{3}$$

Stąd obiekt x_1 nie jest chwytany, nie jesteśmy w stanie powiedzieć, która klasa jest bliżej w sensie dwóch najbliższych sąsiadów.

Dla x_2 1 2 1 1 2

$$d(x2, y1) = 1$$

$$d(x2, y2) = \sqrt{84}$$

$$d(x2, y3) = \sqrt{2}$$

$$d(x2, y4) = \sqrt{166}$$

$$d(x2, y5) = \sqrt{15}$$

$$d(x2, y6) = \sqrt{2}$$

Klasa 2 głosuje z mocą $1 + \sqrt{2}$ Klasa 4 głosuje z mocą $\sqrt{2} + \sqrt{15}$ $1 + \sqrt{2} < \sqrt{2} + \sqrt{15}$

Obiekt x_2 otrzymuje decyzję 2, jest poprawnie sklasyfikowany.

Dla x_3 9 7 10 7 4

$$d(x3, y1) = \sqrt{197}$$

$$d(x3, y2) = \sqrt{117}$$

$$d(x3, y3) = \sqrt{182}$$

$$d(x3, y4) = \sqrt{50}$$

$$d(x3, y5) = \sqrt{129}$$

$$d(x3, y6) = \sqrt{182}$$

Klasa 2 głosuje z mocą
$$\sqrt{117} + \sqrt{182}$$

Klasa 4 głosuje z mocą $\sqrt{50} + \sqrt{129}$
 $\sqrt{50} + \sqrt{129} < \sqrt{117} + \sqrt{182}$
Obiekt x_3 otrzymuje decyzję 4, jest poprawnie sklasyfikowany.

Dla x_4 4 4 10 10 2

$$d(x4, y1) = \sqrt{172}$$

$$d(x4, y2) = \sqrt{182}$$

$$d(x4, y3) = \sqrt{167}$$

$$d(x4, y4) = \sqrt{151}$$

$$d(x4, y5) = \sqrt{130}$$

$$d(x4, y6) = \sqrt{167}$$

Klasa 2 głosuje z mocą
$$\sqrt{167} + \sqrt{172}$$

Klasa 4 głosuje z mocą $\sqrt{130} + \sqrt{151}$
 $\sqrt{130} + \sqrt{151} < \sqrt{167} + \sqrt{172}$

Obiekt x_4 otrzymuje decyzję 4, jest błędnie sklasyfikowany.

Podsumowując klasyfikację:

Obiekt x_1 nie jest chwytany

Obiekt x_2 otrzymuje decyzję 2, jest poprawnie sklasyfikowany

Obiekt x_3 otrzymuje decyzję 4, jest poprawnie sklasyfikowany

Obiekt x_4 otrzymuje decyzję 4, jest błędnie sklasyfikowany.

Macierz Predykcji, stanowiąca raport z klasyfikacji możemy zobaczyć w Tab. 3.

Tabela 3: Macierz Predvkcji

Tabela of Maderill Troughley						
	2	4	No. of obj.	Accuracy	Coverage	
2	1	1	2	0.5	1.0	
4	0	1	2	1.0	0.5	
True Positive Rate	1.0	0.5				