

AOD2606/AOI2606

60V N-Channel MOSFET

General Description

- Trench Power MV MOSFET technology
- Low R_{DS(ON)} Low Gate Charge
- Optimized for fast-switching applications

Product Summary

60V I_D (at V_{GS} =10V) 46A $R_{DS(ON)}$ (at V_{GS} =10V) < 6.8mΩ

100% UIS Tested 100% Rg Tested

Applications

Synchronous Rectification in DC/DC and AC/DC Converters

Industrial and Motor Drive applications

TO-252 DPAK TO-251A IPAK **Top View Top View Bottom View Bottom View**

Orderable Part Number	Package Type	Form	Minimum Order Quantity		
AOD2606	TO-252	Tape & Reel	2500		
AOI2606	TO-251A	Tube	4000		

Absolute Maximum Ratings T _A =25°C unless otherwise noted					
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	60	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain	T _C =25°C		46		
Current ^G	T _C =100°C	I _D	36	A	
Pulsed Drain Current ^c		I _{DM}	184		
Continuous Drain	T _A =25°C		14	A	
Current	T _A =70°C	IDSM	11	A	
Avalanche Current ^C	•	I _{AS}	60	A	
Avalanche energy	L=0.1mH	E _{AS}	180	mJ	
V _{DS} Spike	10µs	V _{SPIKE}	72	V	
	T _C =25°C		150	W	
Power Dissipation B	T _C =100°C	P _D	75	VV	
	T _A =25°C	В	2.5	W	
Power Dissipation A	T _A =70°C	P _{DSM}	1.6	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	В	16	20	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	41	50	°C/W	
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.8	1.0	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Min	Тур	Max	Units
STATIC I	PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		60			V
Zoro Coto Voltago Droin Cu	Zero Gate Voltage Drain Current	V_{DS} =60V, V_{GS} =0V				1	μA
I _{DSS}	Zero Gate Voltage Drain Current		T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS, I_D}=250\mu A$		2.5	3.0	3.5	V
D	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =20A			5.6	6.8	mΩ
R _{DS(ON)}			T _J =125°C		8.8	10.6	11122
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =20A			75		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V
Is	Maximum Body-Diode Continuous Cur	rent ^G			46	Α	
DYNAMI	C PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =30V, f=1MHz			4050		pF
Coss	Output Capacitance				345		pF
C_{rss}	Reverse Transfer Capacitance				16.8		pF
R_g	Gate resistance	f=1MHz		0.3	0.65	1.0	Ω
SWITCH	NG PARAMETERS						
Q _g (10V)	Total Gate Charge				53	75	nC
Q _g (4.5V)	Total Gate Charge	\/ -10\/ \/ -20\/	1, 10,4,34, 20,4,1, 20,4		22	31	nC
Q_{gs}	Gate Source Charge	-V _{GS} =10V, V _{DS} =30V, I _D =20A			17		nC
Q_{gd}	Gate Drain Charge				5		nC
t _{D(on)}	Turn-On DelayTime				18		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_L =1.5 Ω , R_{GEN} =3 Ω			20		ns
$t_{D(off)}$	Turn-Off DelayTime				33		ns
t _f	Turn-Off Fall Time				4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs			26		ns
Q_{rr}	Body Diode Reverse Recovery Charge	_F I _F =20A, dI/dt=500A/μs			125		nC

A. The value of R_{QJA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R _{0JA} and the maximum allowed junction temperature of 150 ° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

Rev.1.1: December 2023 www.aosmd.com Page 2 of 6

B. The power dissipation P_D is based on T_{J(MAX)}=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =175 $^{\circ}$ C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 $V_{\rm DS}$ (Volts) Figure 1: On-Region Characteristics (Note E)

120

V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

 $\label{eq:ldots} {\rm I_D}\left({\rm A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature (Note E)

V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

www.aosmd.com Rev.1.1: December 2023 Page 3 of 6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Rev.1.1: December 2023 **www.aosmd.com** Page 4 of 6

1000

100

0.01

0.001 0.0001

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

10

0.1

Single Pulse

0.01

0.001

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

