Энергетический метаболизм микроорганизмов

Метаболизм прокариот

- **Метаболизм** совокупность ферментативных процессов, протекающих в клетке и обеспечивающих её энергетические и биосинтетические потребности.
- Энергетический метаболизм (катаболизм) поток реакций, сопровождающийся мобилизацией энергии и преобразованием её в электрохимическую или химическую форму, которая затем используется во всех энергозависимых процессах.
- Конструктивный метаболизм (биосинтез, анаболизм) поток реакций, в результате которых за счет поступающих извне веществ строится вещество клетки и при этом используется запасённая клеткой энергия.

Энергетический метаболизм прокариот

- поток реакций, сопровождающихся мобилизацией энергии и преобразованием её в электрохимическую (ΔμΗ+) или химическую (АТФ) форму, которая затем может использоваться во всех энергозависимых процессах.

Энергетические ресурсы клетки

биополимеры, а также липиды

мономерные единицы

Энергетический ресурс клетки	Фермент	
Липиды	Липаза	
Крахмал и гликоген	Амилаза	
Целлюлоза	Целлюлаза	
Полисахариды и их производные	Пектиназа, хитиназа, агараза	
Белки	Протеазы	
Нуклеиновые кислоты	Рибо- и дезокси- рибонуклеазы	

Основные катаболические системы прокариотной клетки

- 1. Гликолиз (Эмбдена Мейергофа Парнаса);
- 2. Окислительный пентозофосфатный путь (Варбурга Диккенса Хорекера);
- 3. КДФГ-путь (Энтнера Дудорова);
- 4. Цикл трикарбоновых кислот (Кребса).

Способы получения энергии

В процессах брожения в определенных окислительно-восстановительных реакциях образуются нестабильные молекулы, фосфатная группа которых содержит много свободной энергии.

Субстратное фосфорилирование - реакции, в которых энергия, освобождающаяся на определенных окислительных этапах брожения запасается в молекулах АТФ (внутримолекулярный и межмолекулярный процесс.)

Процесс дыхания - окисление восстановленных веществ с относительно низким окислительно-восстановительным потенциалом (E₀), возникающих в реакциях промежуточного метаболизма или являющихся исходными субстратами (Всегда межмолекулярный процесс).

Три типа фотосинтеза:

- I зависимый от бактериохлорофилла бескислородный фотосинтез, осуществляемый группами зеленых, пурпурных бактерий и гелиобактерий;
- **II** зависимый от хлорофилла кислородный фотосинтез, свойственный цианобактериям и прохлорофитам;
- **III** зависимый от бактериородопсина бескислородный фотосинтез, найденный у экстремально галофильных архебактерий.

Образование АТФ

1. Субстратное фосфорилирование

- I. Субстрат ~ Φ + АД Φ ↔ субстрат + АТ Φ
- II. Субстрат ~ $X + AД\Phi + \Phi_H \leftrightarrow cyбстрат + X + AT\Phi$

2. Мембранзависимое фосфорилирование

образование ATΦ за счет энергии ΔµH+

Количество свободной энергии, высвобождаемой при гидролизе АТФ

АТФ +
$$H_2O \rightarrow AДФ + \Phi_H$$
; $\Delta G_0' = -31.8 кДж/моль;$

АДФ +
$$H_2O \rightarrow AM\Phi + \Phi_H$$
; $\Delta G_0' = -31.8$ кДж/моль;

АМФ +
$$H_2O \rightarrow$$
 аденозин + Φ_H ; $\Delta G_0' = -14,3$ кДж/моль

ΔμH⁺ - вторая универсальная форма клеточной энергии

Схема переноса электронов и протонов по электронтранспортной цепи и протонной АТФ-синтазы.

AH₂ – донор электронов, В – акцептор электронов

АДФ +
$$\Phi_H$$
 + $nH^+_{Hap} \leftrightarrow AT\Phi + H_2O + $nH^+_{BHyTp}$$

Транспортные системы в клетках прокариот

А. система первичного транспорта; Б. система вторичного транспорта

Преобразование энергии в клетках прокариот

Гликолиз (Эмбдена – Мейергофа – Парнаса)

- процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты.

Суммарная реакция гликолиза

Глюкоза + 2НАД⁺ + 2АДФ + 2Ф_H
$$\rightarrow$$
 2 пируват + 2 (НАДН + H⁺) + 2АТФ + 2H₂O

Гликолиз

Гликолиз

Фермент	Обратимость реакции	Кофактор	Изменение свободной энергии (∆G'°, кДж/моль)
Гексокиназа	\rightarrow	Mg ²⁺	-16,7
Фосфоглюкозоизомераза	\longleftrightarrow	Mg ²⁺	1,7
Фосфофруктокиназа	\rightarrow	Mg ²⁺	-20,2
Альдолаза	\leftrightarrow		23,8
Изомераза	\longleftrightarrow		7,5
Фосфатдегидрогеназа	\rightarrow		6,3
Фосфоглицераткиназа	\leftrightarrow	Mg ²⁺	-18,5
Фосфоглицератмутаза	\leftrightarrow	Mg ²⁺	4,4
Енолаза	\leftrightarrow	Mg ²⁺	7,5
Пируваткиназа	\longrightarrow	K+, Mg ²⁺ /Mn ²⁺	-31,4

Пентозофосфатный путь (Варбурга – Диккенса – Хорекера)

- альтернативный путь окисления глюкозы, включает в себя окислительный и неокислительный этапы.

Суммарная реакция ПФП

3 глюкозо-6-фосфат + 6 НАДФ $^+ \rightarrow 3CO_2 +$ 6 (НАДФН + Н $^+$) + 2 фруктозо-6-фосфат + глицеральдегид-3-фосфат

Пентозофосфатный путь

	<u>. </u>			
Стадия	Фермент			
1	Глюкозо-6-фосфатдегидрогеназа			
2	6-Фосфоглюконолактоназа			
3	6-Фосфоглюконатдегидрогеназа			
4	Рибулозо-5-фосфатизомераза			
	Рибулозо-5-фосфат-3-эпимераза			
5	Транскетолаза			
6	Трансальдолаза			
7	Транскетолаза			

КДФГ-путь (Энтнера – Дудорова)

 путь окисления глюкозы, альтернативный гликолизу и пентозофосфатному пути.

Суммарная реакция КДФГ-пути

Глюкоза + НАД $^+$ + НАД $\Phi^+ \rightarrow$ 2 пируват + НАДН + (НАДФН + Н $^+$) + АТФ

КДФГ-путь 6-Фосфоглюконовая кислота H OH c=0c=0H-C-OHH-C-OHOH-C-HOH-C-HH-C-OHH-C-OHH-C-OHH-C-OHПируват H-C-OHH-C-O-PC - OH► H₂O Глюкозо-6-фосфат 2-Кето-3-дезокси-6-C = 0фосфоглюконовая кислота c=0H-C-HOH H-C-OHc=0OH-C-HC=0H-C-OHH-C-HH-C-OHH-C-OHH-C-OHH-C-O-PНАДФ⁺

КДФГ-путь II

Ф1 - гексокиназа; **Ф2** - глюкозо-6-фосфатдегидрогеназа; **Ф3** - 6-фосфоглюконат-дегидратаза; **Ф4** - 2-кето-3-дезокси-6-фосфонат-алолаза; **Ф5** - глицеральдегид-3-фосфатдегидрогеназа; **Ф6** - фосфоглицераткиназа; **Ф7** - фосфоглицеромутаза; **Ф8** - фосфоглицеромутаза; **Ф9** - пируваткиназа.

F хема путей катаболизма глюкозы в клетках прокариот: A – гликолиз; E – путь Энтнера – Дудорова; B – пентозофосфатный путь

Преобразование пирувата

пируват + KoA + HAД $^+$ \rightarrow ацетил-KoA + HAДH + CO $_2$ + H $^+$

пируват + КоА + Фд \rightarrow ацетил-КоА + Фд H_2 + СО2; Фд -ферредоксин

пируват + KoA → ацетил-КоА + формиат

пируват \rightarrow ацетальдегид + CO_2

ЦТК (Кребса)

 ключевой этап дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме.

Суммарная реакция ЦТК

Ацетил-КоА \rightarrow 2 CO₂ + KoA + 8e⁻¹

Функции ЦТК

- 1. **Энергетическая.** Генерация атомов водорода для работы дыхательной цепи, а именно трех молекул НАДН и одной молекулы ФАДН₂, синтез одной молекулы ГТФ.
- 2. **Анаболическая**. В ЦТК образуются предшественник гема сукцинил-SKoA, кетокислоты, способные превращаться в аминокислоты α-кетоглутарат для глутаминовой кислоты, оксалоацетат для аспарагиновой, лимонная кислота, используемая для синтеза жирных кислот, оксалоацетат, используемый для синтеза глюкозы.
- 3. *Катаболическая*. Превращение различных соединений в субстраты цикла.
- 4. *Интегративная*. Цикл является связующим звеном между реакциями анаболизма и катаболизма.

Как запомнить ЦТК

ЩУКа съела ацетат, получается цитрат, Через цисаконитат будет он изоцитрат. Водороды отдав НАД, он теряет СО₂, Этому безмерно рад альфа-кетоглутарат. Окисление грядет — НАД похитил водород, ТДФ, коэнзим A забирают CO₂. А энергия едва в сукциниле появилась, Сразу АТФ родилась и остался сукцинат. Вот добрался он до ФАДа — водороды тому надо, Фумарат воды напился, и в малат он превратился. Тут к малату НАД пришел, водороды приобрел, ЩУКа снова объявилась и тихонько затаилась.

ЦТК, или цикл Кребса

Донор электроно	Источник углерода	Способ существования	Представители прокариот
анические со- ия (Н ₂ , Н ₂ S, , Fe ²⁺ и др.)	CO ₂	хемолитоавто- трофия	нитрифицирующие, тионовые, водород- ные бактерии; аци- дофильные железо- бактерии
неорганические единения (H ₂ , 1 NH ₃ , Fe ²⁺ и д	органические соединения	хемолитогетеро- трофия	метанобразующие архебактерии, водо- родные бактерии
органические соединения	CO ₂	хемоорганоавто- трофия	факультативные метилотрофы, окисляющие муравьиную кислоту
	органические соединения	хемоорганогете- ротрофия	большинство про- кариот*
неорганические со- единения (H ₂ O, H ₂ S, S° и др.)	CO ₂	фотолитоавто- трофия	цианобактерии, пурпурные и зеле- ные бактерии**
	органические соединения	фотолитогетеро- трофия	некоторые циано- бактерии, пурпур- ные и зеленые бак- терии
3 8	CO ₂	фотоорганоавто- трофия	некоторые пурпур- ные бактерии
органические соединения	органические соединения	фотоорганогете- ротрофия	пурпурные и неко- торые зеленые бак- терии, галобакте- рии, некоторые цианобактерии

Энергия химических связей

Свет

Универсальные формы энергии, которые используются в клетке для выполнения разного рода работы: энергия высокоэнергетических химических соединений (химическая) и энергия трансмембранного потенциала ионов водорода (электрохимическая)

Высокоэнергетические соединения

Соединения с высокоэнергетической фосфатной связью: ацилфосфаты, фосфорные эфиры енолов (фосфоенолпируват), нуклеотидди- и трифосфаты, аденозинфосфосульфат

Соединения с высокоэнергетической тиоэфирной связью — ацилтиоэфиры