МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Студентка гр. 0383	Куртова К. А.
Преподаватель	Ефремов М. А

Санкт-Петербург

Цель работы.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k),

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Вариант 12:

$$f2 = \begin{cases} -(4i+3), a > b \\ 6i-10, a \le b \end{cases}$$

$$f7 = \begin{cases} -(4i-5), a > b \\ 10-3i, a \le b \end{cases}$$

$$f4 = \begin{cases} \min(|i_1-i_2|, 2), k < 0 \\ \max(-6, -i_2), k \ge 0 \end{cases}$$

Ход работы.

Для программы прописано три сегмента — сегмент стека, сегмент данных, в котором хранится информация о переменных a, b, I, k, i₁, i₂, res, для каждого из которых выделено слово (word) в памяти. Описан сегмент кода, в котором находится головная процедура Main, в которой и производятся основные вычисления.

В ходе выполнения работы были использованы условные (jmp) и безусловные (jle, lge, jl) переходы. Вычисление функций было выполнено без использования отдельных процедур, только с использованием переходов, которые переходят к указанным лейблам. Код программы представлен в приложении A, листинг программы представлен в приложении Б.

Тестирование программы.

В таблице 1 представлен результат тестирования программы.

Таблица 1 — Результат тестирования программы

Входные данные	Результирующие	Проверка	
	данные		
a = 5	i1 = FFF5 = -11	Верно.	
b = 3	i2 = FFFD = -3	i1 = -(8+3) = -11	
i = 2	res = 0002 = 2	i2 = -(8-5) = -3	
k = -1		$ -11 + 3 > 2 \Rightarrow res = 2$	
a = 3	i1 = 000E = 14	Верно.	
b = 5	i2 = i2 = FFFE = -2	i1 = 24 - 10 = 14	
i = 4	res = 0002 = 2	i2 = 10 - 12 = -2	
k = -1		$ 14 + 2 > 2 \Rightarrow res = 2$	
a = 3	i1 = 000E = 14	Верно.	
b = 5	i2 = i2 = FFFE = -2	i1 = 24 - 10 = 14	
i = 4	res = 0002 = 2	i2 = 10 - 12 = -2	
k = 1		$-6 < 2 \Rightarrow res = 2$	
a = 3	i1 = 0005 = 5	Верно.	
b = -5	i2 = 000D = 13	i1 = -(-8 + 3) = 5	
i = -2	res = FFFA = -6 $i2 = -(-8 - 5) = 13$		
k = 1		-6 > -13 = res = -6	

Выводы.

В ходе лабораторной работы были изучены представление и обработка целых чисел. Также были рассмотрены условные и безусловные переходы, и с их помощью была разработана программа, которая по заданным значениям переменных вычисляет значение нескольких функций.

приложение А

Текст разработанной программы lab3.txt

EOL EQU '\$
;Стек программы
AStack SEGMENT STACK
DW 32 DUP(?)
AStack ENDS
п
;Данные программы
DATA SEGMENT
buffer DB 128 DUP(?)
a DW 3
b DW -5
i DW -2
k DW 1
i1 DW ?
i2 DW ?
res DW ?
DATA ENDS
;Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
:Головная процедура
Main PROC FAR
push ds
sub ax, ax
push ax
mov ax, DATA
mov ds, ax

; Вычисляем f1

f1:

```
mov ax, i
             ; Умножаем і на 4
 shl ax, 1
 shl ax, 1
 mov bx, a
            ; Сравниваем а и b
 cmp bx, b
 jle f1_case2; Если a <= b, перейти к f2_case2
f1_case1:
                 ; a > b
 add ax, 3; 4i + 3
 neg ax
 mov cx, ax ; cx: -4i - 3
 jmp f1_end
f1_case2:
                   ; a \le b
 mov bx, ax; bx = ax = 4i
 shr bx, 1
          ; bx = 2i
 add ax, bx ; ax = 4i + 2i = 6i
 mov cx, ax ; cx = 6i
 sub cx, 10; cx = 6i - 10
f1_end:
 mov i1, cx ; i1 = f1(a, b, i)
                   ; Вычисляем f2
f2:
 mov ax, i
 mov bx, a
 cmp bx, b
 jle f2_case2; Если a <= b, перейти к f2_case2
f2_case1:
             ; Умножаем і на 4
 shl ax, 1
 shl ax, 1
 sub ax, 5; ax = 4i - 5
```

```
ax = -4i + 5
 neg ax
 mov cx, ax
 jmp f2_end
f2_case2:
 mov bx, ax ; bx = i
          ; ax = 2i
 shl ax, 1
 add ax, bx; ax = 3i
 mov bx, ax; bx = 3i
 mov ax, 10; ax = 10
 sub ax, bx ; ax = 10 - 3i
 mov cx, ax
f2_end:
 mov i2, cx
f3:
                   ; Вычисляем f3
 mov bx, k
 cmp bx, 0
 jge f3_case2
                   ; Если k >= 0, перейти к f3_case2
f3_case1:
 mov ax, i1
 mov bx, i2
 sub ax, bx
            ; i1-i2
 cmp ax, 0
             ; Если i1 - i2 < 0, найдём модуль выражения
 jl abs
 jmp min
                   ; Больше 0, перейти к поиску минимального числа в паре
abs:
 neg ax
min:
 mov bx, 2
 cmp ax, 2
```

```
jle absmin ; Если |i1 - i2| \le 2, перейти к absmin
twomin:
mov cx, 2
jmp f3_end
absmin:
mov cx, ax
jmp f3_end
f3_case2:
mov ax, i2
neg ax
cmp ax, -6
jge i2max
           ; Если -i2 >= -6, перейти к i2max
neg6max:
mov cx, 6
neg cx
jmp f3_end
i2max:
mov cx, ax
f3_end:
 mov res, cx
 ret
Main ENDP
CODE ENDS
END Main
```

приложение б

Файл листинга программы lab3.lst

Microsoft (R) Macro Assembler Version 5.10 11/2/21 13:16:09

Page 1-1

= '\$	EOL EQU '\$			
	;PЎС,ек РїСЪРsРiСЪР°РjРjС<			
0000 0000 0020[????	AStack SEGMENT STACK DW 32 DUP(?)			
0040	AStack ENDS			
	;P"P°PSPSC∢Pμ PïCЂPsPiCЂP°PjPjC∢			
0000 0000 0080[??	DATA SEGMENT buffer DB 128 DUP(?)			
J				
0080 0003 0082 FFFB 0084 FFFE 0086 0001 0088 0000 008A 0000 008C 0000 008E	a DW 3 b DW -5 i DW -2 k DW 1 i1 DW ? i2 DW ? res DW ? DATA ENDS			
0000	;PљPsPr PïСЂPsPiСЂP°PjPjC< CODE SEGMENT			

ASSUME CS:CODE, DS:DATA, SS:AStack

;-----P"PsP»PsPIPSP°CĻI PïCЪPsC†P μ PrCŕCЪP°---

0000 Main PROC FAR

0000 1E push ds

0001 2B C0 sub ax, ax

0003 50 push ax

0004 B8 ---- R mov ax, DATA

0007 8E D8 mov ds, ax

0009 f1: ; P'C<C‡PëCΓ́P»CЏΡμΡj f1

0009 A1 0084 R mov ax, i

000C D1 E0 shl ax, 1 ; PJPjPSPsP¶P°PμPj i PS

P° 4

000E D1 E0 shl ax, 1

0010 8B 1E 0080 R mov bx, a

0014 3B 1E 0082 R cmp bx, b ; PЎСЪавниваеРј

a Pë b

0018 7E 0A jle f1_case2 ; P•CΓP»Pë a <= b, PïPμ

CЂPμP№C,Pë Pε f2 case2

001A $f1_{case1}$: ; a > b

 $001A \ 05 \ 0003$ add ax, 3 ; 4i + 3

001D F7 D8 neg ax

Microsoft (R) Macro Assembler Version 5.10 11/2/21 13:16:09

Page 1-2

001F 8B C8 mov cx, ax ; cx: -4i - 3

0021 EB 0C 90 jmp f1_end

0024 f1_case2: ; a <= b

0024 8B D8 mov bx, ax; bx = ax = 4i

```
0026 D1 EB
                            shr bx, 1; bx = 2i
0028 03 C3
                            add ax, bx ; ax = 4i + 2i = 6i
002A 8B C8
                            mov cx, ax ; cx = 6i
002C 83 E9 0A
                                  sub cx, 10 ; cx = 6i - 10
002F
                       f1_end:
002F 89 0E 0088 R
                                  mov i1, cx ; i1 = f1(a, b, i)
                                        ; P'C<C‡PëCΓ́P»CЏPμPj f2
0033
                       f2:
0033 A1 0084 R
                            mov ax, i
0036 8B 1E 0080 R
                                  mov bx, a
                                  cmp bx, b
003A 3B 1E 0082 R
                            jle f2_case2; P•CΓP»Pë a <= b, PïPμ
003E 7E 0E
                 CЂPμP№C,Pë Pε f2 case2
0040
                       f2 case1:
0040 D1 E0
                             shl ax, 1 ; PJPjPSPsP¶P°PμPj i PS
                 P° 4
0042 D1 E0
                             shl ax, 1
0044 2D 0005
                                  sub ax, 5; ax = 4i - 5
0047 F7 D8
                                             ax = -4i + 5
                             neg ax
0049 8B C8
                             mov cx, ax
004B EB 10 90
                                  jmp f2_end
004E
                       f2 case2:
004E 8B D8
                            mov bx, ax; bx = i
0050 D1 E0
                             shl ax, 1; ax = 2i
0052 03 C3
                            add ax, bx ; ax = 3i
0054 8B D8
                            mov bx, ax; bx = 3i
0056 B8 000A
                                  mov ax, 10; ax = 10
0059 2B C3
                             sub ax, bx ; ax = 10 - 3i
005B 8B C8
                            mov cx, ax
```

005D f2 end: 005D 89 0E 008A R mov i2, cx ; P'C<C‡PëCΓP»CUPμPj f3 0061 f3: 0061 8B 1E 0086 R mov bx, k 0065 83 FB 00 cmp bx, 0 ; $P \cdot C \Gamma P \rightarrow P \ddot{e} k >= 0$, $P \ddot{i} P \mu$ 0068 7D 26 ige f3_case2 CЂPμP№C,Pë Pε f3 case2 006A f3_case1: 006A A1 0088 R mov ax, i1 006D 8B 1E 008A R mov bx, i2 0071 2B C3 sub ax, bx ; i1-i2 cmp ax, 0 0073 3D 0000 ; $P \cdot C \Gamma P \rightarrow P \ddot{e} i1 - i2 < 0$, 0076 7C 03 il abs 11/2/21 13:16:09 Microsoft (R) Macro Assembler Version 5.10 Page 1-3 PSP°P№PrC'Pj PjPsPrCŕP»CH PIC‹CЪP°P¶PµPSPëCЏ 0078 EB 03 90 ; P'PsP»CHC€Pμ 0, PïPμC jmp min ЂΡμΡ№C, Pë Pe PïPsPëCΓPeCr PjPëPSPëPjP°P»CHSPSPsP iPs C‡PëCΓ́P»P° PI PïP°CЂPμ 007B abs: 007B F7 D8 neg ax 007D min: 007D BB 0002 mov bx, 2 0080 3D 0002 cmp ax, 2 ile absmin ; P•CΓP»Pë |i1 - i2| <= 0083 7E 06 2, PïPμCЪPμP№C,Pë Pε absmin 0085 twomin: 0085 B9 0002 mov cx, 2 0088 EB 1A 90 jmp f3_end

absmin:

008B

008B 8B C8 mov cx, ax

008D EB 15 90 jmp f3_end

0090 f3_case2:

0090 A1 008A R mov ax, i2

0093 F7 D8 neg ax

0095 3D FFFA cmp ax, -6

0098 7D 08 jge i2max ; $P \cdot C \Gamma P \rightarrow P \ddot{e} - i2 >= -6$, P

ïPμCЪPμP№C,Pë Pε i2max

009A neg6max:

009A B9 0006 mov cx, 6

009D F7 D9 neg cx

009F EB 03 90 jmp f3_end

00A2 i2max:

00A2 8B C8 mov cx, ax

00A4 f3_end:

00A4 89 0E 008C R mov res, cx

00A8 CB ret

00A9 Main ENDP

00A9 CODE ENDS

END Main

Microsoft (R) Macro Assembler Version 5.10 11/2/21 13:16:09

Symbols-1

Segments and Groups:

N a m e Length AlignCombine Class

ASTACK...... 0040 PARA STACK

CODE 00A9 PARA NONE

DATA 008E PARA NONE

Symbols:

N a m e	Type Valu	ıe	Attr	
A	L WORD	0080	DATA	
ABS	L NEAR	007B	CODE	
ABSMIN	. L NI	EAR	008B COD	E
В	L WORD	0082	DATA	
BUFFER	L BY	TE	0000 DAT	A Length = 0080
EOL	TEXT '\$			
F1	L NEAR	0009	CODE	
F1_CASE1	. L NI	EAR	001A COD	E
F1_CASE2	. L NI	EAR	0024 COD	E
F1_END	L NEAR	002F	CODE	
F2	L NEAR	0033	CODE	
F2_CASE1	. L NI	EAR	0040 COD	E
F2_CASE2	. L NI	EAR	004E COD	E
F2_END	L NEAR	005D	CODE	
F3	L NEAR	0061	CODE	
F3_CASE1	. L NI	EAR	006A COD	E
F3_CASE2	. L NI	EAR	0090 COD	E
F3_END	L NEAR	00A4	CODE	
I	L WORD	0084	DATA	
I1	L WORD	0088	DATA	
I2	L WORD	008A	DATA	
I2MAX	L NEAR	00A2	CODE	
K	L WORD	0086	DATA	
MAIN	F PROC	0000	CODE	Length = 00A9

MIN L NEAR 007D CODE

NEG6MAX L NEAR 009A CODE

RES L WORD 008C DATA

TWOMIN L NEAR 0085 CODE

@CPU TEXT 0101h

@FILENAME TEXT lab3

@VERSION TEXT 510

Microsoft (R) Macro Assembler Version 5.10 11/2/21 13:16:09

Symbols-2

126 Source Lines

126 Total Lines

36 Symbols

47970 + 457240 Bytes symbol space free

- 0 Warning Errors
- 0 Severe Errors