

Computer Tomography (CT) is often used to evaluate:

- Presence, size and location of tumors
- Organs in the pelvis, chest and abdomen
- Colon health (CT colongraphy)
- Vascular condition/blood flow
- Pulmonary embolism (CT angiography)
- Abdominal aortic aneurysms (CT angiography)
- Bone injuries
- Cardiac tissue
- Traumatic injuries
- Cardiovascular disease

Magnetic Resonance Imaging (MRI) is often used to evaluate:

- Blood vessels
- Abnormal tissue
- Breasts
- Bones and joints
- Organs in the pelvis, chest and abdomen (heart, liver, kidney, spleen)
- Spinal injuries
- Tendon and ligament tears

Positron Emission Tomography (PET) is often used to evaluate:

- Neurological diseases such as Alzheimer's and Multiple Sclerosis
- Cancer
- Effectiveness of treatments
- Heart conditions

Ultrasound is often used to evaluate:

- Pregnancy
- Abnormalities in the heart and blood vessels
- Organs in the pelvis and abdomen
- Symptoms of pain, swelling and infection

X-Ray is typically used to evaluate:

- Broken bones
- Cavities
- Swallowed objects
- Lungs
- Blood vessels
- Breast (mammography)

Data for Project 1 (available on Moodle)

Input

CT scans of size: 512 x 512 x depth (varying)

Label (Primaries mask)

- 0: background
- 1: primary

Dataset

- Training data: 100 3D CT scans ("imagesTr", "labelsTr")
- Testing data: 26 3D CT scans ("imagesTs")

Colon cancer CT scan slice example

Image segmentation method

- Simple Linear Iterative Clustering (SLIC)
- Markov random field (MRF)

U-net

Traditional Convolutional Neural Network

U-Net

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

Up-conv

or transposed convolution

Segmentation evaluation metric

Intersection over Union (IoU, also called Jaccard index)

 measures the intersection over the union of the labelled segments for each class and reports the average

$$IoU = \frac{groundtruth \cap prediction}{groundtruth \cup prediction}$$

• limitation: it evaluates the amount of pixels correctly labelled, but not necessarily how accurate the segmentation boundaries are.

Intersection over Union (IoU)

Example

Tasks for Project 1

- Train a U-net to segment colon cancer CT scan images into background/primary
- Try several set of hyperparameters, and use cross-validation to find an optimal set of hyperparameters
- Produce the predicted masks for testing data and save as pickle or npz file(s). (need to include the id details)
- Report the training IoU performance from your best model
- Write a max. 2-page report on the model construction/cross-validation/evaluation details.

Deliverables:

- Report (Detailing the contribution of the individual member as well)
- Testing segmentation masking images
- Environment/Code/README.txt (document the usage of each script in details)

Deadline: 22.03.2021 (Please submit on Moodle. If the submission file is too big send the zip file to xinrui.lyu@inf.ethz.ch)

Recommended API

- Tensorflow: e.g. Pix2Pix
- Keras

