선분의 내분점과 외분점

▶ Start ▶ End

$$\overline{AP} : \overline{BP} = 3 : 2$$

A B

▶ Start ▶ End

$$\overline{AP} : \overline{\overline{BP}} = 3:2$$

$$A \xrightarrow{P_1} P_1$$

$$B \xrightarrow{P_1} P_1$$

$$2 \times k_1$$

$$A P_1 B$$

$$\overline{AP} : \overline{BP} = 1 : 1$$

Internal Divison

A B

▶ Start ▶ End

$$\overline{AP}: \overline{BP} = 1:1$$

$$A \xrightarrow{P_1} P_1$$

$$1 \times k_1$$

$$B \xrightarrow{P_1} P_1$$

$$1 \times k_1$$
Internal Divison
$$A \xrightarrow{P_1} B$$

▶ Start ▶ End

$$\overline{AP} : \overline{BP} = 1 : 1$$

$$A \xrightarrow{P_1} P_1$$

$$B \xrightarrow{P_1} P_1$$

$$1 \times k_1$$

Internal Divison

 $A P_1 B$

$$A \bullet 1 \times k_2$$

$${\bf B} \bullet 1 \times k_2$$

$$\overline{AP} : \overline{BP} = 1 : 2$$

Internal Divison

A B

▶ Start ▶ End

$$\overline{AP} : \overline{BP} = 1 : 3$$

Internal Divison

A B

▶ Start ▶ End

▶ Start ▶ End AP : BP = 1 : 3 $A P_1$ $1 \times k_1$ \mathbf{P}_{\bullet} $3 \times k_1$ Internal Divison $A \stackrel{\mathbf{P}_2}{\longrightarrow} P_2$

$$\overline{AP} : \overline{BP} = 2 : 1$$

Internal Divison

АВ

▶ Start ▶ End

$$\overline{AP} : \overline{BP} = 2 : 2$$

Internal Divison

A B

▶ Start ▶ End

$$\overline{\mathrm{AP}}:\overline{\mathrm{BP}}=2:2$$
 $A \hspace{-1.5em} \stackrel{\mathrm{P_1}}{\underset{2\times k_1}{\longrightarrow}} P_1$
 $B \hspace{-1.5em} \stackrel{\mathrm{P_1}}{\underset{2\times k_1}{\longrightarrow}} P_1$
Internal Divison

▶ Start ▶ End

$$\overline{AP} : \overline{BP} = 2 : 2$$

$$A \xrightarrow{P_1} P_1$$

$$B \xrightarrow{P_1} P_1$$

$$2 \times k_1$$

Internal Divison

 $A P_1 B$

$$A \bullet 2 \times k_2$$

$${}^{\mathbf{B}\bullet}_{2\times k_{2}}$$

$$\overline{AP} : \overline{BP} = 2 : 3$$

Internal Divison

A B

▶ Start ▶ End

$$\overline{\mathrm{AP}}:\overline{\mathrm{BP}}=2:3$$
 $A \longrightarrow P_1$
 $B \longrightarrow P_1$
 $A \times P_1$
 $A \times P_1$
 $A \times P_1$
 $B \longrightarrow P_1$
 $B \longrightarrow P_1$
 $A \times P_1$
 $B \longrightarrow P_1$

$$\overline{AP} : \overline{BP} = 3 : 1$$

Internal Divison

A B

▶ Start ► End AP : BP = 3 : 1 $A \longrightarrow P_1$ $3 \times k_1$ $B P_1$ $1 \times k_1$ Internal Divison $A \bullet 3 \times k_2$ P_2 $\mathbf{B} \overset{\mathbf{P}_2}{\underbrace{1 \times k_2}}$

$$\overline{AP} : \overline{BP} = 3 : 2$$

Internal Divison

A B

 $\overline{\mathrm{AP}}:\overline{\mathrm{BP}}=3:2$

Internal Divison

 $A \dots P_1 B$

 $2 \times k_1$

$$\overline{AP} : \overline{BP} = 3 : 3$$

Internal Divison

A B

▶ Start ▶ End

$$\overline{\mathrm{AP}}:\overline{\mathrm{BP}}=3:3$$
 $A \longrightarrow P_1$
 $B \longrightarrow P_1$
 $3 \times k_1$
 $B \longrightarrow P_1$
 $3 \times k_1$
Internal Divison
 $A \longrightarrow P_1 \longrightarrow B$

▶ Start ▶ End

$$\overline{AP} : \overline{BP} = 3 : 3$$

$$A \xrightarrow{S} P_1$$

$$B \xrightarrow{S} P_1$$

$$3 \times k_1$$

Internal Divison

 $A P_1 B$

$${f A} ullet \ 3 imes k_2$$

$$3 \times k_2$$

Theorem

수직선 위의

► Home ► Start ► End

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여

► Home ► Start ► End

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를

► Home ► Start ► End

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m:n으로

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m:n으로

(1) 내분하는 점

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m:n으로

(1) 내분하는 점
$$P_1\left(\frac{mx_2+nx_1}{m+n}\right)$$

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m:n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right) (m \neq n)$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)(m\neq n)$

Theorem

좌표평면 위의

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)(m \neq n)$

Theorem

좌표평면 위의 두 점 $A(x_1, y_1), B(x_2, y_2)$ 에 대하여

→ Start → End

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right) (m \neq n)$

Theorem

→ Start → End

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right) (m \neq n)$

Theorem

→ Start → End

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)(m\neq n)$

Theorem

좌표평면 위의 두 점 $A(x_1, y_1)$, $B(x_2, y_2)$ 에 대하여 \overline{AB} 를 m: n 으로

(1) 내분하는 점

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)(m\neq n)$

Theorem

(1) 내분하는 점
$$P_1\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$ $(m \neq n)$

Theorem

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$
- (2) 외분하는 점

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)(m\neq n)$

Theorem

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2 nx_1}{m n}, \frac{my_2 ny_1}{m n}\right)$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)(m\neq n)$

Theorem

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n},\frac{my_2-ny_1}{m-n}\right)(m\neq n)$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)(m\neq n)$

Theorem

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n},\frac{my_2-ny_1}{m-n}\right)(m\neq n)$

Github:

https://min7014.github.io/math20210506001.html

Click or paste URL into the URL search bar, and you can see a picture moving.