Pevné směrové spoje

- Absorpce atmosférickými plyny
- Troposférická refrakce
- Změny indexu lomu v troposféře
- Srážky
- Rozptyl
- Vícecestné šíření
- _n Difrakce
- □ Odraz

Slidy byly vytvořeny jako podpora při sledování výkladu přednášky. Proto je jejich využití pro samostudium či jako podklad k přípravě na zápočtový text velmi omezené, neboť některé klíčové poznatky a ukázkové příklady jsou vysvětlovány na tabuli a většina obrázků vyžaduje slovní doprovod. Pro samostudium je na Moodlu k dispozici samostatný učební text.

B2B17TBK – Pavel Pechač – FEL ČVUT v Praze, elmag.org

Přízemní prostorová vlna v troposféře

Fermatův princip

Obr. 11. Jak nejrychleji zachránit tonoucího anebo jak se lámou elektromagnetické vlny.

Troposférická refrakce

Refraktivita

$$N = (n-1) \cdot 10^6$$

Časový vývoj dN/dh

- Příklad z dlouhodobého měření v Poděbrade
 - Standardní refrakce
 - Superrefrakce

Časový vývoj dN/dh

- Příklad z dlouhodobého měření v Poděbradech
 - Standardní refrakce
 - Subrefrakce

150 -

vyska [m]

Namerena data 11.10.2008

Mapa průměrné hodnoty výškového gradientu refraktivity v N/km (ITU-R Rec.P.453-8)

Statistika výškového gradientu N

Percentage (%)	(d <i>N</i> /d <i>h</i>) (km ⁻¹)	
1	-196.7	
10	-83.2	
50	-42.6	
90	-20.7	
99	13.5	

Standardní refrakce

$$R_{k} = \frac{1}{-\frac{dn}{dh}} = \frac{10^{6}}{-\frac{dN}{dh}}$$

$$R_{k} = \frac{10^{6}}{4 \cdot 10^{-2}} = 2,5 \cdot 10^{7} \text{ m} = 25000 \text{ km} \approx 4R_{Z}$$

$$(R_{Z} = 6378 \text{ km})$$

subrefrakce dN/dh > -40 N/km

standardní refrakce dN/dh = -40 N/km

superrefrakce dN/dh < -40 N/km

Transformace zakřiveného paprsku a) na rovný paprsek b) a na rovinnou zemi c)

Efektivní poloměr Země

c)

$$\frac{1}{R_{\rm z}} - \frac{1}{R_{\rm k}} = \frac{1}{R_{\rm e}} - \frac{1}{\infty}$$

$$R_{\rm e} = \frac{R_{\rm z}}{1 - \frac{R_{\rm z}}{R_{\rm k}}} = k_e R_{\rm z}$$

$$k_{\rm e} = \frac{R_{\rm e}}{R_{\rm z}} = \frac{1}{1 + R_{\rm z} \frac{\mathrm{d}N}{\mathrm{d}h} 10^{-6}}$$

$$k_{\rm e} = \frac{R_{\rm e}}{R_{\rm z}} = \frac{1}{1 + R_{\rm z} \frac{dN}{dh} 10^{-6}}$$
 $k_{\rm e} = \frac{4}{3}$
 $R_{\rm e} = \frac{4}{3} R_{\rm z} = \frac{4}{3} 6378 \cong 8500$

Vyvýšený vlnovodný kanál

Specifický útlum dešťovými srážkami (dB/km)

Závislost pravděpodobnosti překročení daného útlumu deštěm 5 km dlouhého spoje na frekvenci 42 GHz (horizontální polarizace) pro různé oblasti, resp. různé hodnoty parametru $R_{0.01}$ (mm/h)

Difrakce

Fresnelovy zóny

$$(x_1 + x_2) - (d_1 + d_2) = n \frac{\lambda}{2}$$

$$\sqrt{d_1^2 + b_n^2} + \sqrt{d_2^2 + b_n^2} - d_1 - d_2 = n \frac{\lambda}{2}$$

$$\sqrt{d_{1,2}^2 + b_n^2} \approx d_{1,2} + \frac{b_n^2}{2d_{1,2}} \qquad b_n = \sqrt{\frac{d_1 d_2 n \lambda}{d_1 + d_2}} \qquad b_1 = \sqrt{\frac{d_1 d_2 \lambda}{d_1 + d_2}}$$

$$b_1 = \sqrt{\frac{d_1 d_2 \lambda}{d_1 + d_2}}$$

Odraz od země

$$R_{H} = \frac{\sin \varphi - \sqrt{\varepsilon_{kr} - \cos^{2} \varphi}}{\sin \varphi + \sqrt{\varepsilon_{kr} - \cos^{2} \varphi}}$$

$$R_{V} = \frac{\varepsilon_{kr} \sin \varphi - \sqrt{\varepsilon_{kr} - \cos^{2} \varphi}}{\varepsilon_{kr} \sin \varphi + \sqrt{\varepsilon_{kr} - \cos^{2} \varphi}}$$

Závislost a) amplitudy; b) fáze koeficientu odrazu na úhlu dopadu pro dobře vodivou zem ($\sigma = 0.03$ Sm-1, $\varepsilon_r = 40$; plná čára) a špatně vodivou zem ($\sigma = 0.0001$ Sm-1, $\varepsilon_r = 3$; přerušovaná křivka); frekvence 450 MHz

Brewsterův polarizační úhel

$$\sin \theta_{iBR} = \frac{1}{\sqrt{1 + \frac{\mathcal{E}_1}{\mathcal{E}_2}}}$$

Difrakce na ostré překážce

$$v = h \sqrt{\frac{2}{\lambda} \left(\frac{1}{d_1} + \frac{1}{d_2} \right)}$$

$$\left|\frac{E}{E_0}\right| = \frac{1}{2\pi\nu}$$

ITU-R P.526 (ν > -0,7)

$$L_d = 6.9 + 20 \log \left(\sqrt{(\nu - 0.1)^2 + 1} + \nu - 0.1 \right)$$

Pevný směrový spoj

- _n Geometrie
 - Kritérium volného profilu
- Výkonová rozvaha
 - Základní výkonová bilance
 - Úniky
 - Plánování/analýza rezervy na únik

Mechanizmy rušení

Poloměr 1. Fresnelovy zóny

R2R17TRK – Pavel Pechač – FFI ČVLIT v Praze, elman on

Kritérium volného profilu – vliv atmosférické refrakce

B2B17TBK – Pavel Pechač – FEL ČVUT v Praze, elmag.org

Vliv zakřivení Země na terénní profil

Vliv refrakce / efektivního poloměru Země

(vypocet rusivych signalu)

B2B17TBK – Pavel Pechač – FEL ČVUT v Praze, elmag.org

ALCOMA

7.3 TECHNICKÉ PARAMETRY

B2B17TBK -

Kmitočet vysílače - dolní část pásma (/A) - horní část pásma (/B) Minimální ladicí krok kanálování Rozteč kanálů Stabilita kmitočtu lepší než Vysílaný výkon základní varianty Maska snektra vysílače Typ (ma Mikrovlnný datový spoj AL24F MP165	24 000 ÷ 24 060 MHz 24 190 ÷ 24 250 MHz 50 kHz viz tabulka 9 ±10 × 10 ⁻⁶
Minimální ladicí krok kanálování Rozteč kanálů Stabilita kmitočtu lepší než Vysílaný výkon základní varianty Maska snektra vysílače Typ	50 kHz viz tabulka 9
Rozteč kanálů Stabilita kmitočtu lepší než Vysílaný výkon základní varianty Maska snektra vysílače Typ	viz tabulka 9
Stabilita kmitočtu lepší než Vysílaný výkon základní varianty Maska snektra vysílače Typ	
Vysílaný výkon základní varianty Maska snektra vysílače Typ	+10 v 10 ⁻⁶
Maska snektra vysílače Typ Mikrovlopý dotová spoi AL24F MD155	210 ∧ 10
Typ	max. 5 dBm ATPC⁴
Typ (ma Mikrovlnný datový spoj AL24F MP165	FTSI 301 751
Uži	
7.2 MODULACE, PRAHOVÉ CITLIVOSTI A PŘEM	NOSOVÉ KAPACITY SPO
Vst Spoj AL24F MP165 lze nastavit na různé přenosové l Spo Jednotlivé přenosové kapacity jsou spjaty s různou prahovou	
(do Nejvyšší interní přenosová rychlost spoje včetně obslužné ko Ma	omunikace spoje je 165 Mbit/s

Тур Kompaktní mikrovlnné antény AL1-24/ME AL2-24/ME AL3-24/MP AL4-24/MP Průměr paraboly Ø 0,35 m Ø 0,65 m Ø 0,90 m Ø 1,20 m Zisk antény Gant 36 dB 41 dB 45 dB 47 dB ±1,3° Hlavní lalok 3 dB ±0,75° ±0,5° ±0,4° Horizontální nastavení ±180° ±7° Vertikální nastavení antény ±25° ±25° ±15°6 ±15°6 Hmotnost kompaktních 5,6 kg 8,3 kg 26 kg 36 kg antén Průměr montážního Ø 38 mm Ø 48 mm Ø 73 mm Ø 101 mm stojanu7 min. Ø 115 mm max.

Tabulka 15 Parametry antén ME, MP

7.2 MODULACE, PRAHOVÉ CITLIVOSTI A PŘENOSOVÉ KAPACITY SPOJE

Spoj AL24F MP165 lze nastavit na různé přenosové kapacity podle použité modulace a šířky kanálu. Jednotlivé přenosové kapacity jsou spjaty s různou prahovou citlivostí, viz. tabulka 11.

Celková bitová rychlost [Mbit/s]	Modulace	Typická prahová citlivost pro BER = 10 ⁻⁶ [dBm]	Šířka přenášeného spektra [MHz]
10	QPSK	-92	•
19	16	-87	7
25	32	-83	-
17	QPSK	-88	•
39	16 QAM	-84	-
50	32 QAM	-80	14
61	64 QAM	-77	-
72	128 QAM	-72	-
34	QPSK	-87	•
77	16 QAM	-80	-
100	32 QAM	-77	- 28
123	64 QAM	-75	

Zdroj: www.alcoma.cz

Úniky

ukázka

- Interferenční únikyvícecestné šíření
- Stav bez úniků
- Ploché, absorpční únikydešťové srážky

Fig. 2 Time series of relative received power level measured in different heights on June 26, 2008.

Plochý absorpční únik (dešťové srážky)

Požadovaná rezerva na únik pro dosažení 99.99 % pohotovosti spoje na frekvenci 42 GHz (horizontální polarizace) pro různé oblasti, resp. různé hodnoty parametru $R_{0.01}$ (mm/h)

Úniky způsobené změnami Nv troposféře

Slabé frekvenčně selektivní úniky

Silné frekvenčně selektivní úniky

Plochý únik způsobený subrefrakcí => zastínění / ztráty difrakcí

Plánování/analýza rezervy na únik

