## Analyse von Pflanzenwachstum auf Basis von 3D-Punktwolken

Jakob Görner

HSNR - Master Arbeit - Vortrag jakob.goerner@stud.hn.de

December 6, 2021

#### Inhalt

| Ziele |  |  |  |
|-------|--|--|--|
|       |  |  |  |

Generierung von Punktwolken

Segmentierung

Registrierung

Server

Demo

Quellen

#### Ziele

- Analyse von Pflanzen mittels 3D-Punktwolken
  - Größe
  - Volumen
  - Wachstum
  - Anzahl Blätter
  - **.**.
- Kernprobleme
  - Generierung von Punktwolken auf Basis von Bildern
  - Es muss ein Registrierung durchgeführt werden, da der Maßstab der Punktwolken unbekannt ist.
  - Segmentierung der Pflanze
  - Entfernung des Hintergrundes
- REST-Interface zum einspielen von Datensätzen und ansteuern der Funktionalitäten.
- ▶ Datenübertragung zum Server sollte gering gehalten werden.

- Einsatz von spezieller Hardware sollte nicht nötig sein.
  - Hohe Anschaffungskosten
  - Bedienung ist nicht trivial
  - Daher Structure from Motion (SfM)
  - SfM ermöglicht die Generierung von Punktwolken aus einer Menge an Bildern.
- ▶ Da es viele bestehende Lösungen für SfM existieren, wird auf eine existierende Implementationen zurück gegriffen.
- Voraussetzungen an die Implementation
  - Möglichst wenig Bilder sollten reichen für gute Ergebnisse.
  - Möglichst wenig Rechenkapazitäten zur Berechnung der Punktwolken.
  - Keine Information über Kameraposition und Ausrichtung.
  - Gegebenenfalls keine Information über die Reihenfolge der Bilder.

- Evaluation mehrerer Implementationen
  - Open Drone Map(ODM) [1]
  - Colmap [2]
  - AliceVision (Meshroom) [3]
  - OpenMVG [4]
  - OpenCV SfM Pipeline [5]
- ODM und Colmap liefern gute Ergebnisse.
- Colmap liefert die bessere Auflösung.
- ▶ ODM ist wesentlich performanter als Colmap (schnellere Berechnung bei weniger Ressourcen-Verbrauch).
- ▶ ODM ermittelt eine bessere Abdeckung der Oberfläche.
- ODM liefert zusätzlich eine Schätzung der Normalen für jeden Punkt.
- Colmap enthält manchmal Rauschen.



Figure: ODM Figure: Colmap



Figure: OpenMVG

Figure: OpenCV

- Ansatz 1: Entscheidung auf Basis der Krümmung eines Punktes
- ▶ Je höher die Krümmung eines Punktes ist, desto wahrscheinlicher gehört dieser zu einem Stiel.

$$f(p_i) = \begin{cases} 1 & k(p_i) \ge T \\ 0 & \text{sonst} \end{cases}$$
 (1)

- Problem: Es muss eine gute Parametrisierung für alle Pflanzen-Arten gefunden werden.
- Problem: Blätter haben teilweise ähnliche Krümmung wie Stiele.
- Nachteil: Entfernung des Hintergrundes bleibt offen.
- Nachteil: Es liegt lediglich ein binärer Classifier vor. Es können nur die Stiele von dem Rest der Pflanze differenziert werden.
- Nachteil: Es müssen Normalen bekannt sein.



Figure: Avocado Ansatz 1



Figure: Zimmerpflanze Ansatz 1

- ► Ansatz 2: Nutzung von Neuronalen Netzen (PointNet++ [6])
- Erstellen eines Trainings-Datensatzes aus 144 individuellen Punktwolken, mit bis zu 20 Subsamples je Punktwolke.
- Nutzung des Datensatzes in verschiedenen Trainings-Szenarien.
  - Mit und ohne Hintergrund
  - Hintergrund mit und ohne Zentrum
  - Mit und ohne Normalen
  - Mit und ohne Normalisierung
  - Mit und ohne zufällige Rotationen
- Vorteil: Neben Stielen können weitere Klassen segmentiert werden.
- ► Nachteil: Erstellen der Trainings-Daten sehr Zeit aufwendig + Daten müssen verfügbar sein.



Figure: Avocado Ansatz 2



Figure: Zimmerpflanze Ansatz 2

## Segmentierung - Hintergrund

- ► Auch hier wurde PointNet++ verwendet.
- ▶ Problem: Ergebnisse der Hintergrundsegmentierung sind durch den großen Anteil der Hintergrund-Punkte teilweise fehlerhaft.
- Lösung: Nur Bereich um das Zentrum der Punktwolke betrachten und Nachbearbeitung des Segmentierungs-Ergebnisses.
- ▶ Problem: Pflanzen, die ungewollt mit in der Szene enthalten sind, werden mit in die Analyse aufgenommen.
- Potentielle Lösung: Szenen-Analyse
  - ► Einzelne Pflanzen sollen in der Szene erkannt werden.
  - Isolieren der einzelnen Pflanzen
  - Wenn nötig Hintergrund-Segmentierung
  - Pflanze klassifizieren um Unkräuter auszublenden
  - ► Segmentierung einzelner Pflanzen

## Segmentierung - Hintergrund



Figure: Hintergrundsegmentierung Bananenpflanze



Figure: Avocado-Pflanze in Szene



Figure: Ohne Hintergrund



Figure: Mit Hintergrund



Figure: Hintergrund nur Zentrum



Figure: Ohne Normalen



Figure: Ohne Normalisierung ohne Hintergrund



Figure: Ohne Normalisierung mit Hintergrund



Figure: Mit zufälliger Rotation ohne Hintergrund



Figure: Mit zufälliger Rotation mit Hintergrund

## Segmentierung - Evaluation

|             | t11   | t6    | t10   | t13    | t4    | t7    | t12   | t9    |
|-------------|-------|-------|-------|--------|-------|-------|-------|-------|
| Loss        | 0,044 | 0,056 | 0,079 | 0, 127 | 0,038 | 0,054 | 0,051 | 0,05  |
| Genauigkeit | 0,98  | 0,976 | 0,969 | 0, 95  | 0,986 | 0,981 | 0,98  | 0,982 |
| mloU        | 0,925 | 0,908 | 0,893 | 0,827  | 0,813 | 0,788 | 0,841 | 0,811 |

Table: Evaluations-Ergebnisse der verschiedenen Modelle. Links ohne Hintergrund (t11, t6, t10, t13). Rechts mit Hintergrund (t9, t4, t7, t12).

#### Registrierung

- Problem: Da beim Erstellen der Punktwolke mit SfM der Maßstab nicht ermittelt werden kann, liegen verschiedene Punktwolken derselben Szene in unterschiedlichen Maßstäben vor.
- ▶ Lösung: Punktwolken mit einer Hintergrund-Punktwolke registrieren, um alle Punktwolken einer Messreihe im selben Maßstab vorliegen zu haben.

$$\underset{R,t}{\operatorname{argmin}} \left( \sum_{i=1}^{N} \| R p_{s_i} + t - p_{t_i} \|^2 \right) \tag{2}$$

▶ Problem: Die meisten Registrierungsverfahren berücksichtigen nicht die Skalierung.

$$\underset{R,t,s}{\operatorname{argmin}} \left( \sum_{i=1}^{N} \| R(sp_{s_i}) + t - p_{t_i} \|^2 \right)$$
 (3)

Es wurden mehrere Ansätze untersucht dieses Problem zu lösen.

## Registrierung - ICP mit Schätzung der Skalierung

- In der Bibliothek Point Cloud Libary (PCL) wird eine Implementation, die auch einen Wert für die Skalierung liefert, bereit gestellt.
- Problem: ICP benötigt gute Initialisierung.
- Initialisierung finden:
  - Punktwolken an der XY-Ebene ausrichten.
  - Bereich um Zentrum entnehmen.
  - Punktwolken auf dieselbe Größe bringen.
  - Störung herausfiltern.
  - Initiale Registrierung mit ausgewählten Punkten.
- Nach Schätzung der Skalierung folgt abschließende Registrierung.
- Problem: Ansatz funktioniert nur bedingt für einige Punktwolken.

## Registrierung - DCP anpassen

- Deep Closest Points (DCP)[7] ist ein Neuronales Netz, welches das Registrierungsproblem löst, aber keine Schätzung der Skalierung liefert.
- SVD-Head anpassen und Eingabe mit Einsen erweitern.
- Resultat der SVD ist nun eine 4 × 4 Matrix.
- ▶ Die Annahme, dass diese Matrix als Transformations-Matrix interpretiert werden kann, hat sich nicht bestätigt.
- Besser: Berechnung der Skalierung auf Basis der Rotation wie in [8].

## Registrierung - Iterative Schätzung der Skalierung

- ► Iteratives durchlaufen verschiedener Skalierungen mit anschließender Registrierung.
- Wahl der besten Iteration durch Messen des Abstands zwischen den Punktwolken oder Nutzung des Fehlermaßes der einzelnen Implementationen.
- Einsatz von verschiedenen Registrierungsverfahren möglich.
  - ► PointNetLK [9]
  - ► DCP [7]
  - ► RPM-Net [10]
  - ► ICP (open3d) [11]
  - ► RICP [12]
- ▶ RPM-Net und ICP haben sich hier als robust erwiesen.
- ► Relativ gute Ergebnisse, aber auch hier kommt es immer wieder zu Ausreißern.

## Registrierung - Iterative Schätzung der Skalierung



Figure: Registrierungsergebnisse für drei Zeitpunkte einer Pflanze

## Registrierung - Iterative Schätzung der Skalierung



Figure: Registrierungsergebnisse für generierte Oberflächen

## Segmentierung - Evaluation

|         | DCP    | RPM-Net | PointNetLK | ICP    | RICP   |
|---------|--------|---------|------------|--------|--------|
| Banane  | 0,0585 | 0,0129  | 0, 1673    | 0,0117 | 0,0178 |
| Avocado | 0,0721 | 0,012   | 0, 2235    | 0,0122 | 0,0245 |

Table: Evaluations-Ergebnisse der verschiedenen Registrierungsverfahren

#### Server - Pipelines und Jobs



Figure: Übersicht über die einzelnen Pipelines und die darin enthaltenen Jobs.

#### Server - Schnittstelle

- Fünf Schnittstellen um Anwendung zu nutzen.
  - POST /detail/{Messreihe}/{Zeitstempel}
  - PUT /detail/{Messreihe}/{Zeitstempel}
  - ► GET /detail/{Messreihe}/{Zeitstempel}
  - GET /listing/{Messreihe}
  - GET /result/{Messreihe}/{Zeitstempel}
- Bearbeitung einzelner Jobs im Hintergrund.
- Zugriffe auf geteilte Ressourcen werden über Mutexe geschützt.
  - Job-Queue
  - Status
  - Result

#### Demo



Figure: Hintegrund-Segmentierung

Figure: Planzen-Segmentierung

Figure: Blatt-Segmentierung

#### Referenzen I

- pierotofy, "Open drone map a command line toolkit to generate maps, point clouds, 3d models and dems from drone, balloon or kite images.," 2020.
- J. L. Schönberger and J.-M. Frahm, "Structure-from-motion revisited," 2016.
- P. Moulon, P. Monasse, and R. Marlet, "Adaptive structure from motion with a contrario model estimation," in *Proceedings of the Asian Computer Vision Conference (ACCV 2012)*, pp. 257–270, Springer Berlin Heidelberg, 2012.
- P. Moulon, P. Monasse, R. Perrot, and R. Marlet, "Openmyg: Open multiple view geometry," in *International Workshop on Reproducible Research in Pattern Recognition*, pp. 60–74, Springer, 2016.
- alalek, "Structure from motion module," 2016.

#### Referenzen II

- C. R. Qi, L. Yi, H. Su, and L. J. Guibas, "Pointnet++: Deep hierarchical feature learning on point sets in a metric space," arXiv preprint arXiv:1706.02413, 2017.
- Y. Wang and J. M. Solomon, "Deep closest point: Learning representations for point cloud registration," in *The IEEE International Conference on Computer Vision (ICCV)*, October 2019.
- T. Zinßer, J. Schmidt, and H. Niemann, "Point set registration with integrated scale estimation," in *Point Set Registration with Integrated Scale Estimation*, 2005.
- Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey, "Pointnetlk: Robust and efficient point cloud registration using pointnet," 2019.

#### Referenzen III

- Z. J. Yew and G. H. Lee, "Rpm-net: Robust point matching using learned features," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2020.
- Q.-Y. Zhou, J. Park, and V. Koltun, "Open3d: A modern library for 3d data processing," arXiv preprint arXiv:1801.09847, 2018.
- J. Zhang, Y. Yao, and B. Deng, "Fast and robust iterative closest point," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2021.