

BACKGROUND & RELATED WORK

VIDEO EDITING

Manual assessment of video quality is hard.

ON

ONLY TECHNICAL

VQAs usually check for blurs and distortions.

Content & composition preference may differ.

MP4

COMPUTER GRAPHICS

As a novelty, computer graphics videos are assessed.

STUDY
RQs and Methodology

RESULTS
Graphs and Tables

VQA METHODS
and Datasets

CONCLUSION and Discussion

01 STUDY

Research Question and Plan

Research Question

How is the performance of video quality assessment (VQA) methods on computer graphic (CG) videos (e.g. animation, gaming) compared to mean opinion scores (MOS) on videos?

VQA METHODS

and Datasets

Chosen VQA and Why?

The main VQA method I choose to work with is the **Disentangled Objective Video Quality Evaluator (DOVER)**. Because:

- Uses View Decomposition strategy
 - Separate the video in two views: Aesthetic view and Technical view

DATASET

27 High quality reference videos 262 Distorted videos:

- AVC/H.264 compression
- HEVC/H.265 compression
- MPEG-2 compression

Provides:

CG Animation Dataset

- Animation videos
- Gaming videos
- MOS for each video

Items in front of Simple Background (ISB)

Gorgeous Special Effects (GSE)

Multiplayer Online Battle Arena (MOBA)

Scenery and Architecture (SA)

RESULTS

Comparison and Analysis

SCATTER PLOT ANALYSIS

Spearman's Rank Correlation: 82% (High)

COMPARISON TABLE ANALYSIS

Method	CF	GSE	SA	ISB	MOBA	Overall
PSNR [6]	0.83021	0.5599	-0.14103	0.6087	0.4414	0.31273
SSIM [23]	0.75001	0.49208	-0.01444	0.47698	0.66604	0.31056
VMAF [47]	0.87226	0.79211	0.4292	0.80942	0.73926	0.57745
DOVER [37]	0.7842	0.7946	0.9317	0.8095	0.9161	0.8239

PSNR: Peak Signal-to-Noise Ratio

SSIM: Structural Similarity

Check pixel-wise differences

- Good at capturing repeating patterns, well-defined structures
- Not good at capturing details and textures

Correlation: ~31% (Not good)

VMAF: Video Multi-method Assessment Fusion

Checks spatial, temporal and motion information

Not good at capturing semantics in scenes

Correlation: ~58% (Fair/Good)

DOVER: Disentangled Objective Video Quality Evaluator

Checks both technical and aesthetic aspects

Good at capturing semantics in scenes

Correlation: ~82% (Very good)

CONCLUSION

And Discussion

DISCUSSION

Research Question

How is the performance of VQA methods on CG videos (e.g. animation, gaming) compared to mean opinion scores (MOS) on videos?

Content-aware
VQA has better
correlation with
human
perception.

Questions

Thanks!

References

[1]Haoning Wu,Erl iZhang,Liang Liao,Chaofeng Chen,Jingwen Hou,AnnanWang, Wenxiu Sun, Qiong Yan, and Weisi Lin. 2023. Exploring Video Quality Assessment on User Generated Contents from Aesthetic and Technical Perspectives. http://arxiv.org/abs/2211.04894 arXiv:2211.04894

[2]Haoning Wu,Chaofeng Chen,Jingwen Hou,Liang Liao,Annan Wang,Wenxiu Sun, Qiong Yan, and Weisi Lin. 2022. FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling. https://arxiv-org.ezproxy2.utwente. nl/abs/2207.02595v1

- The backbone of the technical branch is Video Swin Transformer Tiny with Gated Relative Position Biases (GRPB).
 - O a pure-transformer backbone architecture for video recognition that is found to surpass the factorized models in efficiency.
- And the aesthetic backbone is Conv-next Tiny pre-trained with AVA which is an aesthetic assessment dataset.

Out-of-scope Information

Fig. 4: The pipeline for sampling *fragments* with Grid Mini-patch Sampling (GMS), including grid partition, patch sampling, patch splicing, and temporal alignment. After GMS, the *fragments* are fed into the FANet (Fig. 5).

Fig. 5: The overall framework for FANet, including the Gated Relative Position Biases (GRPB) and Intra-Patch Non-Linear Regression (IP-NLR) modules. The input *fragments* come from Grid Mini-patch Sampling (Fig. 4).

SRCC

- Performance calculated by Spearman correlation coefficient
 - Calculate difference between VQA score and MOS for each video
 - Square the differences
 - Sum the squared differences
 - Calculate the correlation coefficient:

$$\rho = 1 - (6 * \Sigma d^2) / (n * (n^2 - 1))$$

where ρ is the Spearman correlation coefficient, d is the difference in ranks, and n is the number of data points.