Probabilités MP*4

29 janvier 2019

1 Révisions : Variables finies

1.1

Soient E et F deux ensemble finis non vides, $\Omega = F^E$. Déterminer le cardinal moyen de l'image de $f \in \Omega$. On pourra introduire une probabilité uniforme sur Ω et, pour $i \in F$, la VA X_i donnée par $X_i(f) = 1$ ssi $i \in f(E)$.

1.2

Loi de succession de Laplace Considérons m+1 urnes U_0,\ldots,U_m et supposons que, pour tout $k,\ U_k$ contient k boules bleues et m-k boules rouges. On choisit une des urnes et l'on y effectue n tirages avec remise. Quelle est la probabilité, sachant que n tirages ont donné de boules bleues, qu'il en soit de même du n+1-ième?

1.3

17

Dans un jeu de pile où face, A gagne si PP sort en premier, et B si PF sort en premier. Qui est le mieux placé pour gagner?

2 Variables aléatoires discrètes, lois usuelles

2.1

Un DM comporte quatre fautes de frappe. A chaque relecture, la probabilité pour qu'une faute soit corrigée est 1/3, les corrections de fautes distinctes sont supposées indépendantes. On note X_i la VA à valeurs dans N^* qui donne la probabilité de correction de la faute i à l'instant n.

a) Déterminer la loi de X_i .

b) Combien faut-il de relectures pour que la probabilité pour qu'il ne subsiste aucune erreur soit supérieure à 0,9?

2.2 Loi binomiale négative

Soient r un entier ≥ 1 n $p \in]0,1[$. La Loi binômiale négative est celle de la variable aléatoire du premier instant où l'on a enregistré r succès. Montrer que celle-ci est donnée par :

$$P(X = n) = 0$$
 si $n < r$, $(X = r) = p^r$ et pour $n > r$, $P(X = n) = \binom{n-1}{r-1}p^r(1-p)^{n-r}$, $P(X = +\infty) = 0$.

2.3 Le problème des allumettes de Banach

Un fumeur B a dans chacune de ses poches une boite contenant N allumettes; il choisit au hasard l'une des deux poches G-D avec la même probabilité $\frac{1}{2}$; trouver la probabilité pour que, au moment ou B s'aperçoit que l'une des poches est vide, il reste a allumettes dans la poche droite.

2.4

Soit X_n une suite de VAI de même loi géométrique de paramètre $p=1-e^{-\lambda},$ $\lambda>0.$ On pose

$$Y = \limsup \frac{X_n}{\ln n}.$$

Le but est de prouver que $Y = \frac{1}{\lambda}$ presque sûrement.

a) Montrer que, pour tout réel $\alpha \geq 0$, $(Y > \alpha)$ est un événement et que

$$(Y > \alpha) \subset \bigcap_{k=0}^{+\infty} (\bigcup_{n \ge k} (X_n \ge \alpha \ln n)) \subset (Y \ge \alpha).$$

En déduire que l'on a presque sûrement $Y \ge \frac{1}{\lambda}$.

b) Montrer que, pour tout $\varepsilon>0,\ P(Y>\frac{1+\varepsilon}{\lambda})$ est négligeable. Conclure.

3 Espérance, variance

3.1 Avec Borel - Cantelli

Soit X_n une suite de VA indépendantes à valeurs dans N, de même loi. On note

$$F = \{ \omega \in \Omega \mid \exists (n_k) \uparrow \in \mathbf{N}^{\mathbf{N}}, X_{n_k}(\omega) > n_k \}.$$

On pose $A_n = (X_n > n)$; montrer que $F = \limsup A_n$ puis que P(F) vaut 0 ou 1. selon la valeur de $E(X_1)$.

Inégalité de Jensen

Soit f une fonction convexe définie sur \mathbb{R} , et une $VA(\mathbb{D})$ X. On suppose que X et f(X) sont intégrables. Montrer que

$$f(E(X)) \le E(f(X))$$

Etudier le cas d'égalité lorsque f est strictement convexe.

3.3

Soit Y une VA positive, non négligeable. Montrer que
$$P(Y>0) \leq \frac{E(X^2)}{E(Y)^2} \qquad \frac{E(X^2)}{E(Y)^2}$$

Markov, Tchebychev, loi des grands nombres

4.1

Soient [a, b] un segment de \mathbb{R} , $f \in C([a, b], \mathbb{R})$.

- a) On suppose f croissante. Montrer que f est limite uniforme sur [a,b]d'une suite de polynômes croissants.
- b) On suppose f convexe. Montrer que f est limite uniforme sur [a,b] d'une suite de polynômes convexes.

4.2

Soit $n \in \mathbb{N}^*$. On extrait n fois avec remise une boule dans une urne composée de deux boules vertes et de six boules blanches. Soit X_n la VA associée au nombre de boules vertes obtenues lors des n tirages. On pose $F_n = \frac{X_n}{n}$.

- 1. Donner la loi de X_n . En déduire l'espérance et la variance de X_n puis de
- 2. On suppose dans cette question que n=10000. Donner une borne inférieure pour la probabilité de $\{F_n \in]0.22; 0.26[\}$.

4.3

Soit X_n une suite de VAI de Bernoulli de paramètre $p \in]0,1[$. Soit $Y_n =$ $X_n X_{n+1}, n \in \mathbb{N}^*$. Déterminer l'espérance et la variance de $S_n = \frac{1}{n} \sum_{k=1}^n Y_k$ puis la convergence en probabilité de $|S_n - p^2|$.

4.4

Soit X_n une suite de VAIID centrée d'écart type fini $\sigma>0.$ On note $S_n=$

a) Montrer que, pour $\alpha > \frac{1}{2}$, $\frac{S_n}{n^{\alpha}}$ converge en probabilité vers 0. b) Montrer qu'il n'existe pas de variable aléatoire X telle que $\frac{S_n}{\sqrt{n}}$ converge vers X en probabilité.

Soit X_n une suite de VAI suivant des lois de Poisson de paramètre $\lambda_n>0$

Fonctions génératrices

5.1 Somme de loi géométriques = loi binomiale négative

Prouver que $X = \sum_{i=1}^r Z_i$ où les Z_i sont des variables géométriques indépendantes de même paramètre p, suit une loi binomiale négative. Retrouver alors l'espérance et la variance de celle-ci.

5.2

Soient X et Y deux VAI à valeurs dans Z telles que Z = X + Y soit p.s. constante; montrer qu'il en va de même de X et Y. On commencera par le cas de variance finie.

9 Etude des modes de convergence

9.1 Convergence en probabilité

Soit X_n une suite de VA $\Omega \to \mathbb{R}^d$. On dit que la suite X_n converge en probabilité vers la VA X lorsque, pour tout $\varepsilon > 0$, la suite $P(|X_n - X| \ge \varepsilon)$ tend vers 0. La loi faible des grands nombres exprime ainsi :

Soit X_n une suite de variables aléatoires indépendantes de même loi admettant un moment d'ordre deux. Si $S_n = \sum_{k=1}^n X_k$ et $m = E(X_1)$ on a , pour tout $\varepsilon > 0$, S_n/n converge vers m en probabilité.

9.2 Convergence presque sûre

On dit que la suite X_n converge presque sûrement s'il existe une variable aléatoire X et un sous-ensemble O de Ω tel que P(O) = 1 et X_n converge simplement vers X sur O. On se propose de montrer que, si X_n converge vers X presque sûrement vers X, elle converge en probabilité vers X.

a) On se ramène au cas où $O=\Omega$ (comment?). Lorsque $(n,p)\in \mathbb{N}^{*2}$, on définit

$$F_{n,p} = \{ x \in \Omega \mid \forall m \ge n, |X_n - X| \le \frac{1}{p}.$$

Vérifier que les $F_{n,p}$ sont mesurables, et que, pour $p \in \mathbb{N}^*$ et donner leur réunion.

tynonter qu'il existe n(p) tel que le complémentaire de $F_{n(p),p}$ ait une probabilité inférieure à 2^{-p} . Monter que X_n converge en probabilité vers X.

a) Soit X_n une suite de VA et un réel c tels que

$$\forall \varepsilon > 0, \sum P(|X_n - c| > \varepsilon)(*)$$

converge. Montrer que X_n converge p.s. vers c. Etablir la réciproque lorsque les X_n sont indépendantes.

On suppose désormais que les X_n forment une suite IID, centrée, uniformémennt bornée et que X_1 possède une variance σ^2 . On note $S_n = \frac{X_1 + \dots + X_n}{n}$, et $Y_n = S_{n^2}$.

- b) Montrer que Y_n converge presque sûrement vers 0.
- c) Soient $\varepsilon > 0$ et $n \in \mathbb{N}^*$. Estimer, pour $n^2 + 1 \le k \le (n+1)^2$, la probabilité $P(|S_k Y_n| \ge \varepsilon)$, puis montrer que S_k converge presque sûrement vers 0.

9.4 Convergence en loi

Rappel: Soit X_n une suite de VA à valeurs dans $D \subset \mathbf{R}$. On dit que X_n converge en loi vers X lorsque, pour tout $k \in \mathbf{N}$, la suite $P(X_n = k)$ converge vers P(X = k).

- a) On suppose $D=\mathbf{Z}.$ Montrer que la convergence en probabilité entraı̂ne la convergence en loi.
- igodelightarrow D On suppose que X_n converge en probabilité vers X. Montrer que, pour tout fonction continue bornée de \mathbb{R} vers \mathbb{R} , $E(g(X_n)$ converge vers E(g(X)).

On suppose que X_n converge en probabilité vers X. Montrer que, en tout point de continuité de la fonction de répartition F_X de X, la suite F_{X_n} converge vers $F_X(x)$.

9.5 Convergence dans L^1

Soit X_n une suite de VA à valeurs dans N. On dit que X_n converge dans L^1 vers X lorsque la suite $E((|X-X_n|)$ tend vers 0. Montrer que la convergence de X_n vers X dans L^1 entraı̂ne sa convergence vers X en probabilité.

9.6 Comparaison

Montrer par des exemples que toutes les réciproques des implications précédentes sont fausses.

9.7 Lien avec les fonctions génératrices

Soit $g_n = \sum_{k=0}^{+\infty} a_k(g_n)x^n$ une suite de séries entières dont les coefficients sont bornés par 1.

a) On suppose que la suite g_n converge simplement sur]0,1] vers une série entière $g = \sum_{k=0}^{+\infty} a_k(g) x^n$ dont les coefficients sont bornés par 1. Montrer que, pour tout $k \in \mathbb{N}$, $a_k(g_n)$ tend vers $a_k(g)$ lorsque n tend vers $+\infty$.

b) On suppose que, pour tout $k \in \mathbb{N}$, $a_k(g_n)$ tend vers a_k . Montrer que $g_n = \sum_{k=0}^{+\infty} a_k(g_n) x^n$ converge simplement vers $g = \sum_{k=0}^{+\infty} a_k(g) x^n$ sur]-1,1[, uniformément sur les compacts.

Application. Soit X_n une suite de VA à valeurs dans N, Montrer que X_n converge en loi vers une VA X ssi la suite G_{X_n} converge simplement vers une FSE sur [0,1].

10 Grandes déviations

Données. Dans tout ce qui suit, X_n est une suite de VAIID,

$$S_n = X_1 + \dots + X_n.$$

On suppose les X_i sommables ainsi que l'existence d'un nombre $\theta_0>0$ tel que $e^{\theta_0X_1}$ et $e^{-\theta_0X_1}$ soient sommables.

10.1

Soit a un nombre réel. On pose $\pi_n = 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n - 1 < n$

utilisera une intersection bien choisie.

10.2

On suppose que X_1 n'est pas presque sûrement constante.

a) Montrer que, pour $a > \mu$ et proche de μ , $P(X_1 > a) > 0$.; ce que l'on suppose désormais.

b) Montrer que γ_n est sur-additive et que la suite $\frac{\gamma_n}{n}$ converge, de limite $\gamma(a)$.

c) Montrer que γ est concave et lipschitzienne sur les segments de l'intérieur de l'ensemble où elle est à valeurs finies.

10.3

a) Montrer que $e^{t|X|}$ est sommable pour $|t| < \theta_0$, puis que X possède des moments de tous ordres.

b) Prouver que, pour $|t| \leq \theta_0$, $\phi(t) = E(e^{tX}) = \sum_{n=0}^{+\infty} \frac{t^n}{n!} E(X^n)$.

10.4

On pose désormais $I =]-\theta_0, \theta_0[$.

Soit a un nombre réel. Prouver que, pour tout entier $n \geq 1$ et tout nombre $\theta \in I, P(S_n \ge na) \le e^{-n\theta a} \phi(\theta)^n$.

10.5

On suppose désormais X_1 finie ou à valeur dans ${\bf N}.$

- a) Montrer que $k(\theta) = \log \phi(\theta)$ est dérivable sur I et calculer k'(0).
- b) En déduire que $a\theta k(\theta) > 0$ pour θ assez petit puis que $P(S_n \ge na)$ tend vers 0 de façon exponentielle.
- c) Etudier et optimiser les cas où : X_1 est de Bernoulli de paramètre $p \in]0,1[$; X_1 est de Rademacher ; X_1 est de Poisson de paramètre $\lambda>0$.