Exercise A: Least square problems

 $\mathbf{A1}$

 $\mathbf{A2}$

A3

Exercise B: Low-rank approximation

B1

B2

Let $x \in \mathbb{R}^{m \times n}$ be such that $|X_{ij}| \leq \varepsilon$ for all $i \in \{1, \dots, m\}$ and $j \in \{1, \dots, n\}$. Let $||X||_2$ be the 2-norm of X and let $||X||_F$ be its Frobenius norm. We show that $||X||_2 \leq ||X||_F \leq \sqrt{mn}\varepsilon$.

Proof. First, we show the first inequality. We know from the lecture notes that

$$||X||_2 = \sigma_{\text{max}},$$

$$||X||_F = \left[\sum_i \sigma_i\right]^{1/2},$$

where σ_i are the singular values of X. From this, it is immediately clear that $||X||_2 \leq ||X||_F$. Next, we use an equivalent form of the Frobenius norm to show the second inequality:

$$||X||_F = \left[\sum_{i,j} |X_{ij}|^2\right]^{1/2}.$$

Knowing that $|X_{ij}| \leq \varepsilon$, it is immediate that $||X||_F \leq \left[\sum_{i,j} \varepsilon^2\right]^{1/2} = \left[mn\varepsilon^2\right]^{1/2} = \sqrt{mn\varepsilon}$. This concludes the proof.

We also give an example where these bounds are tight. Indeed, consider the matrix $X = I_1 \in \mathbb{R}^{1 \times 1}$. Clearly, we have $|X_{ij}| \leq \varepsilon = 1$ for all i, j (only one value is possible for each). We know that the only singular value of this matrix is 1, and hence

$$||X||_2 = ||X||_F = \sqrt{1 \cdot 1}\varepsilon = 1.$$

B3

Exercise C: Low-rank approximation

Discussion

Bonus question