Instructor: Tatsunari Watanabe	Name:	
--------------------------------	-------	--

TA: Carlos Salinas

MA 26500 Quiz 7

July 13, 2016

- 1. For the following problems write T for true, F for false. You do not need to justify your answers.
 - (a) (3 points) For all $m \times n$ matrices A and B, nullity (A + B) = nullity A + nullity B.
 - (b) (3 points) For all $n \times n$ matrices A and B, nullity (AB) = (nullity A)(nullity B).
 - (c) (3 points) For all $n \times n$ matrices A and B, where A is an elementary matrix, nullity (AB) = nullity B.
 - (d) (3 points) If \mathbf{x}_p is a solution to the system $A\mathbf{x} = \mathbf{b}$, then $\mathbf{y} + \mathbf{x}_p$ is also a solution to $A\mathbf{x} = \mathbf{b}$ for any $\mathbf{y} \in \text{Nullspace } A$.

2. (8 points) Prove that if \mathbf{u} , \mathbf{v} and \mathbf{w} are in \mathbb{R}^3 and \mathbf{u} is orthogonal to both \mathbf{v} and \mathbf{w} , then \mathbf{u} is orthogonal to every vector in span $\{\mathbf{v}, \mathbf{w}\}$.

[*Hint*: What does it mean for a vector \mathbf{x} to be in span $\{\mathbf{v}, \mathbf{w}\}$ and what does it mean for two vectors to be orthogonal?]