G9T2-MS

Grade 9 Term 2 Maths Skills Pub 3

- 1. 解下列有关直线与抛物线问题:
- (1) 判断直线 y = 2x + 1 与抛物线 $y = x^2 3x + 1$ 的交点个数;
- (2) 若直线 y = 2x + b 与抛物线 $y = x^2$ 有两个不同的交点,求b 的取值范围。

2. 如图,正方形 EFMN 的四个项点在正方形 ABCD 的四条边上,已知 AB=1,问:正方形 EFMN 的面积最小时,EF 的长是多少?

- 3. 如图,在 Rt \triangle ABC 中, \angle ACB = 90 $^{\circ}$,AC=BC=1,点 D、E 分别在 BC、AB 边上运动(都不运动到线段的端点)。
- (1) 若点 D 固定, $BD=\frac{1}{3}$,则点 E 位于何处时,CE 与 DE 之和最小?并求出这个最小值;
- (2) 求 CE与 DE之和的最小值的取值范围。

- 4. 如图,O 为正三角形 ABC 的中心,连接 AO 并延长交 BC 于 M 点,设正三角形 ABC 的边长为a,求:
- (1) 正三角形的面积 S;
- (2) 正三角形的外接圆半径 R;
- (3) 正三角形的内切圆面积 S_内。

- 5. 已知关于x的方程 $x^2-(k+1)x+\frac{1}{4}k^2+1=0$,根据下列条件,分别求k的值。
- (1) 方程两实根的积为 5;
- (2) 方程的两实根 x_1 , x_2 , 满足 $\left|x_1\right|=x_2$ 。

6. 已知 a 、 b 、 c 为正数,且 $a^2+b^2=c^2$,求证: $2(\sqrt{2}-1) \le \frac{c(a+b-c)}{ab} < 1$ 。(提示:可考虑构造直角三角形加以证明)