

Relatório 10 Programação de Alto Desempenho (HPC) usando GPU/CUDA – Computação Paralela

Cristiano Lopes Moreira

Matrícula: 119103-0

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implement		
Data	Versão	Turma	Nome do arquivo		Página
22/09/2019 1 2º. S		2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_M	oreira.doc	1 (11)

Relatório 10

Sumário

1.	Introdução
2.	Desenvolvimento teórico
2.1.	Descrição do problema:
2.2.	Algoritmo de Monte Carlo com GPU:
3.	Proposta de implementação
4.	Experimentação e Resultados
5.	Conclusão
6.	Referências

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório e implementa		
Data	Versão	Turma	Nome do arquivo		Página
22/09/2019 1 2°.		2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_M	oreira.doc	2 (11)

1. Introdução

A crescente demanda por sistemas de uso em tempo real em conjunto com os limites físicos que delimitam o crescimento da capacidade de processamento dos computadores vem desde 1955, pela iniciativa da IBM com o arquiteto de computadores Gene Amdahl, impulsionando desenvolvimento de tecnologias de Programação de Alto Desempenho (HPC) e possibilitando a interconexão de múltiplos computadores e processadores com suas unidades de memórias para dividir uma tarefa e compartilhar a capacidade de cada unidade de processamento.

Dentre as técnicas HPC desenvolvidas encontra-se a técnica de computação paralela com placa GPU (graphics processing unit) que que possuem milhares de processadores simplificados com grande desempenho em tarefas paralelas.

O objetivo deste trabalho é implementar a tecnologia de computação paralela utilizando GPU/CUDA, verificar e quantificar seus ganhos e perdas na tarefa de cálculo numérico de integral pelo método de Monte Carlo.

2. Desenvolvimento teórico

Como já afirmado por Amdahl (1967), a décadas os profetas expressaram a alegação de que a organização de um único computador atingiu seus limites, e que avanços verdadeiramente significativos podem ser feitos apenas pela interconexão de uma multiplicidade de computadores de maneira a permitir uma solução cooperativa.

Geralmente, métodos de computação paralela têm sido usados para aumentar o desempenho do sistema ou aumentar sua disponibilidade, porém a busca por esta interconexão trilha os desafios de conflitos no uso de recursos simultâneos como memória, discos, i/o. Três pontos são limitantes no progresso da computação com multiprocessadores: custo, facilidade de aplicação e desempenho (RODGERS, 1985).

Aluno		RA/Matrícula	Professor	Tipo			
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi		103-0 Dr Reinaldo Bianchi Relatório implement		
Data	Versão	Turma	Nome do arquivo		Página		
22/09/2019 1		2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_M	oreira.doc	3 (11)		

No que tange a custos, apartado do elevado custo de memória cache (tipicamente integrada direto na CPU), que reduz os problemas de conflitos e colisões no uso de memória entre os processadores; o crescimento da oferta dos elementos de hardware nos anos entre 2017 e 2019 reduziu os valores dos elementos computacionais que não se mostra mais um grande limitante para a computação com multiprocessadores.

No limitante de facilidade de aplicação é possível verificar que as práticas de design de sistemas de hardware e software que produzem um bom desempenho de processador monolítico quando aplicadas a multiprocessadores levam a gargalos de desempenho devido à largura de banda de memória e falta de recursos de serviços do sistema. O próprio sistema operacional gera algumas dependências de serialização, o que limita o desempenho da adição de múltiplos processadores, sendo o ponto mais importante a interação física do sistema de interconexão com o sistema de memória, já que os processadores compartilham estes recursos.

Uma das técnicas utilizadas para contornar o desafio do compartilhamento dos recursos de memória é a arquitetura de endereçamento virtual de memória, mas além de adicionar uma complexidade na gestão de tabelas de indexação de memória, cria uma latência adicional e consequente Overhead de gerenciamento do paralelismo (podendo variar de acordo com o tamanho do problema e número de núcleos utilizados) que culminando em uma redução do desempenho da aplicação [4] e [5].

Outra abordagem, ainda na parte de aplicação, é a definição de arquiteturas para uso da memória e do gerenciamento das aplicações:

Estrutura de conexão de memória por

- Multiprocessadores com barramento compartilhado no tempo
- Multiprocessadores com chave de barra cruzada
- Multiprocessadores com memória multiportas

Gestão das aplicações por

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatóri implemen		
Data	Versão	Turma	Nome do arquivo		Página
22/09/2019 1		2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_M	oreira.doc	4 (11)

- Supervisor separado em cada processador
- Sistema operacional mestre-escravo
- Sistema operacional de supervisor flutuante

De todas as formas os sistemas de multiprocessadores compartilham (memoria, I/O, devices, interrupções de sistemas etc.) e recursos como memória e I/O são atribuídos dinamicamente a processos, e não permanentemente conectados aos processadores (RODGERS, 1985).

Nos estudos realizados por Amdahl (1967) ele já observava que a fração computacional responsável por gerenciamento de memória corresponde cerca de 40%; esse fato somado as instruções que são necessariamente sequencias, como I/O, geram um gargalo a todo o processamento e coloca um limite superior na aceleração

Aceleração
$$S = \frac{1}{r_s + \frac{r_p}{n}}$$
 (1)

Onde $r_s+r_p=1$ (2) e r_s representa a proporção da porção sequencial em um programa.

Levando (2) em (1)
$$S = \frac{1}{(1 - r_p) + \frac{r_p}{n}}$$
 (3)

2.1. Descrição do problema:

Deseja-se calcular o volume do Toroide seccionado, proposto pelo por Press et al. (2007), utilizado a metodologia de Monte Carlo implementada com computação paralela utilizando GPU, e avaliar a eficiência do paralelismo em cudablocks.

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implementa		
Data	Versão	Turma	Nome do arquivo		Página
22/09/2019 1		2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_M	oreira.doc	5 (11)

O objeto é definido pelas seguintes equações [3]:

Toroide
$$z^2 + (\sqrt[2]{x^2 - x^2} - 3)^2 \le 1$$
 (4)

Seccionamento
$$x \ge 1 \text{ e } y \ge 1$$
 (5)

2.2. Algoritmo de Monte Carlo com GPU:

O algoritmo de integração numérica pelo método de Monte Carlo propõe sortear variáveis de sua equação ou ambiente, realizar a interação dessas variáveis sorteadas com o ambiente e/ou função que se deseja obter o resultado estatístico, anotar os resultados e repetir N vezes até que suas amostras sejam suficientes para representar o resultado. A característica essencial do processo é que evitamos lidar com múltiplas integrações e passamos a gerar amostras em uma distribuição uniforme.

Sua integração utilizando GPU é realizada pela divisão da tarefa de gerar múltiplos sorteios e cálculos entre os diversos cuda cores e, na sequência, centralizar as informações geradas na CPU que concluirá o cálculo da integral utilizando todos os dados.

Para realizar a utilização da GPU é necessário alocar memória no dispositivo(GPU) e realizar apontamentos dos valores para as rotinas em cuda.

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatóri implemen		
Data	Versão	Turma	Nome do arquivo		Página
22/09/2019 1		2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_M	oreira.doc	6 (11)

3. Proposta de implementação

Pseudocódigo:

Aloca memória device cuda

Se thread ==0
calcula reduz threads em total
retorna total

reduz cudablocks calcula integral

4. Experimentação e Resultados

Foram executados 5.000.000.000 números aleatórios sendo distribuída a tarefa entre cuda cores paralelos a GPU da seguinte forma: 1 acrescido em 10 até 100 cuda blocks, de 100 acrescido de 1000 até 100 cuda blocks, e de 10000 acrescido de 10000 até 50000 cuda blocks, 100000 e 1000000 cuda blocks; como observação inicial do resultado comparado com a aplicação executada sem nenhuma técnica de paralelismo.

Ambiente:

Processoador model name Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 48 cores

centos:centos:7

2 GPUs Tesla V100-PCIE 5120 Cuda Cores

Alun	0	RA/Matrícula	Professor	Tipo	
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatón impleme		
Data	Versão	Turma	Nome do arquivo		Página
22/09/2019 1		2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_M	oreira.doc	7 (11)

Resultado do cálculo do volume do Toroide pelo método de Monte Carlo

Monte Carlo						
N	Toroide					
50.000.000.000	22.09734318876000003228909918107092380523681640625					

Tempo de execução por CudaBlocks

					5.000.0	00.000 S	orteios				
				Númer	o da Execuç	ão - Res	ultado [segundo	s]		
Processos	1	2	3	4	5	6	7	8	9	10	Média
1	28.2	28.13	28.13	28.16	28.17	28.2	28.15	28.17	28.19	28.16	28.166
2	14.42	14.42	14.43	14.34	14.31	14.32	14.34	14.35	14.34	14.35	14.362
5	6.14	6.08	6.05	6.06	6.06	6.04	6.05	6.06	6.06	6.08	6.068
10	3.31	3.34	3.28	3.28	3.29	3.28	3.3	3.27	3.3	3.3	3.295
20	1.99	1.91	1.9	1.9	1.89	1.92	1.91	1.89	1.89	1.93	1.913
30	1.45	1.43	1.44	1.43	1.43	1.43	1.45	1.43	1.43	1.43	1.435
40	1.2	1.26	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.206
50	1.07	1.06	1.07	1.07	1.07	1.04	1.07	1.07	1.07	1.07	1.066
60	0.98	0.97	1.02	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.976
70	0.99	0.89	0.9	0.9	0.91	0.91	0.91	0.96	0.91	0.9	0.918
80	0.84	0.86	0.85	0.85	0.86	0.86	0.86	0.88	0.85	0.86	0.857
90	0.82	0.81	0.84	0.81	0.88	0.82	0.82	0.83	0.83	0.82	0.828
100	0.8	0.78	0.79	0.8	0.82	0.79	0.79	0.79	0.79	0.78	0.793
200	0.66	0.73	0.66	0.65	0.64	0.65	0.65	0.65	0.64	0.65	0.658
300	0.6	0.63	0.63	0.6	0.6	0.6	0.6	0.62	0.6	0.59	0.607
400	0.58	0.59	0.61	0.63	0.59	0.59	0.59	0.59	0.58	0.61	0.596
500	0.58	0.65	0.6	0.58	0.57	0.57	0.58	0.58	0.58	0.57	0.586
600	0.56	0.57	0.57	0.6	0.57	0.57	0.59	0.58	0.55	0.56	0.572
700	0.56	0.58	0.59	0.58	0.57	0.59	0.59	0.58	0.57	0.57	0.578
800	0.6	0.59	0.57	0.59	0.59	0.56	0.56	0.56	0.57	0.56	0.575
900	0.6	0.57	0.55	0.58	0.55	0.57	0.56	0.58	0.56	0.57	0.569
1000	0.61	0.61	0.56	0.58	0.58	0.56	0.57	0.58	0.56	0.57	0.578
10000	0.69	0.62	0.61	0.62	0.61	0.62	0.62	0.62	0.62	0.65	0.628
20000	1.05	1.05	1.05	1.07	1.05	1.09	1.06	1.06	1.07	1.05	1.06

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implement		
Data	Versão	Turma	Nome do arquivo		Página
22/09/2019 1		2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_Me	oreira.doc	8 (11)

Relatório 10

30000	1.5	1.51	1.5	1.5	1.5	1.5	1.5	1.51	1.51	1.5	1.503
40000	1.97	1.97	1.96	1.97	1.95	1.98	1.96	1.97	1.95	1.97	1.965
50000	2.47	2.41	2.41	2.4	2.41	2.42	2.38	2.44	2.44	2.44	2.422
60000	2.85	2.96	2.88	2.88	2.88	2.86	2.86	2.88	2.86	2.89	2.88
70000	3.41	3.33	3.33	3.35	3.33	3.35	3.35	3.32	3.34	3.33	3.344
80000	3.91	3.82	3.79	3.79	3.81	3.79	3.82	3.8	3.81	3.81	3.815
90000	4.34	4.26	4.26	4.28	4.26	4.26	4.26	4.27	4.25	4.27	4.271
100000	4.87	4.75	4.73	4.72	4.75	4.73	4.75	4.73	4.74	4.76	4.753
200000	12.33	12.32	12.28	12.37	12.38	12.31	12.31	12.29	12.28	12.36	12.32
500000	39.03	39.03	39	38.96	39.04	38.95	39.03	38.97	38.97	38.97	38.99
1000000	84.04	84.9	84.06	84.05	84.05	84.09	84.09	84.13	84.1	84.09	84.16

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo	Página	
22/09/2019	1	2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_Moreira.doc 9 (9 (11)

5. Conclusão

O acréscimo de cuda blocks paralelos até o máximo do número de cuda cores da GPU acelera a execução da tarefa computacional, porém não proporcional à quantidade de cores adicionadas, é observada reduções do acréscimo de aceleração a cada processador adicionado em confirmação da lei de Amdahl, o que mostra que mesmo GPU respeita a lei de Amdahl.

Para acréscimos de cuda blocks acima do número de cuda cores da GPU observa-se que o comportamento é contrário, desacelerando a execução da tarefa computacional de forma exponencial com a quantidade de processos adicionados, o que confirma os custos de Overhead mensurados nos trabalhos de Höfinger e Haunschmid (2017) e Oliveira et al. (2018).

6. Referências

- [1] AMDAHL, Gene M.. Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS SPRING JOINT COMPUTER CONF, 67., 1967, Atlantic City. (**Spring**) **Proceedings of the April 18-20**. Reston: Afips Press, 1967. v. 30, p. 483 485
- [2] RODGERS, David P.. Improvements in Multiprocessor System Design. In: ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, 12., 1985, Boston. ISCA '85 Proceedings. Los Alamitos: Ieee Computer Society Press, 1985. p. 225 - 231.
- [3] PRESS, William H. et al. **Numerical Recipes**: The Art of Scientific Computing. 3. ed. Cambridge, Massachusetts: Cambridge University Press, 2007. Cap. 7. p. 397-401
- [4] HÖFINGER, Siegfried; HAUNSCHMID, Ernst. **Modelling parallel overhead from simple run-time records**. 2017. The Journal of Supercomputing. Disponível em: https://doi.org/10.1007/s11227-017-2023-9. Acesso em: 31 mar. 2017.
- [5] OLIVEIRA, Victor H. F. et al. Application Speedup Characterization: Modeling Parallelization Overhead and Variations of Problem Size and Number of Cores. In: ACM/SPEC INTERNATIONAL CONFERENCE ON PERFORMANCE

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
22/09/2019	1	2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_M	_10_Cristiano_Moreira.doc 10	

Relatório 10

ENGINEERING, 18., 2018, Berlin. Proceeding ICPE '18 Companion of the 2018.

New York: Acm, 2018. p. 43 - 44

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo	Página	
22/09/2019	1	2º. Semestre de 2019	PEL_216_Relatório_10_Cristiano_Me	atório_10_Cristiano_Moreira.doc 11 (1	