Online Learning and	Online Convex	Optimization
---------------------	---------------	--------------

Online Learning and Online Convex Optimization

Chapter 2 in Shai Shalev Shwartz / Online Learning and Online convex Optimization

Outline

Online Convex Optimization

Follow The Leader Quadratic Optimization Failure of Follow the Leader

Follow The Regularized Leader

FTRL for linear functions
Online Gradient Descent
Doubling Trick
Strong Convexity
General Theorem regarding FTRL with Strong Convexity
Applications to expert advice

Online Convex Optimization (OCO)

Algorithm

Input: A convex set *S*

For t = 1, 2, ...

- ▶ Predict a vector $w_t \in S$
- Receive a convex loss function $f_t: S \to \mathbb{R}$
- \triangleright Suffer loss $f_t(w_t)$

Regret Definition

Regret of the Algorithm:

Regret_T(u) =
$$\sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(u)$$
. (1)

Regret relative to a set of vectors U:

$$Regret_{\mathcal{T}}(U) = \max_{u \in U} Regret_{\mathcal{T}}(u). \tag{2}$$

Follow-the-Leader Algorithm

FTL Strategy

At round t, select:

$$w_t = \operatorname{argmin}_{w \in S} \sum_{i=1}^{t-1} f_i(w)$$

- Natural approach: Choose best performer on past data
- Simple but can be unstable
- Requires solving optimization problem each round

FTL Regret Analysis

Theorem (Lemma 2.1)

For any $u \in S$:

$$Regret_T(u) = \sum_{t=1}^{T} (f_t(w_t) - f_t(u)) \le \sum_{t=1}^{T} (f_t(w_t) - f_t(w_{t+1})).$$

proof

Step 1: Equivalent to

$$\sum_{t=1}^{T} f_{t}(w_{t+1}) \leq \sum_{t=1}^{T} f_{t}(u)$$

Step 2: By induction on *T*:

- ▶ Base case: T = 1 trivial as $f_1(w_1) f_1(u) \le 0$
- ▶ Inductive step: Assume holds for T-1, then

$$\sum_{t=1}^{T} [f_t(w_t) - f_t(u)]$$

$$= \underbrace{\sum_{t=1}^{T-1} [f_t(w_t) - f_t(u)]}_{\leq \sum_{t=1}^{T-1} [f_t(w_t) - f_t(w_{t+1})]} + [f_T(w_T) - f_T(u)]$$

$$\leq \underbrace{\sum_{t=1}^{T-1} [f_t(w_t) - f_t(w_{t+1})]}_{t=1}$$

using
$$w_{T+1} = \operatorname{argmin}_w \sum_{t=1}^T f_t(w)$$

FTL for Quadratic Optimization

For
$$f_t(w) = \frac{1}{2} ||w - z_t||_2^2$$
:

- FTL update: $w_t = \frac{1}{t-1} \sum_{i=1}^{t-1} z_i$
- ► Regret bound: $O(\log T)$

Regret Calculation for quadratic optimization.

Regret_T(u)
$$\leq \sum_{t=1}^{T} \frac{1}{t} ||w_t - z_t||^2$$

 $\leq \sum_{t=1}^{T} \frac{(2L)^2}{t} = 4L^2(\log T + 1)$

where
$$L = \max_{t} \|z_{t}\|$$

Failure of follow the leader

$$f_t(w) = w \cdot z$$
:

$$z_t = \begin{cases} -0.5 & \text{if } t = 1\\ 1 & \text{if } t \text{ is even}\\ -1 & \text{if } t > 1 \text{ and } t \text{ is odd} \end{cases}$$

- \triangleright $w_t = -1, 1, -1, 1, \dots$
- Cumulative loss is T.
- ► Cumulative loss of 0 is 0
- ► Regret is *T*.
- ▶ **Reason:** prediction is unstable
- ▶ We need to regularize.
- ightharpoonup R(W) penalizes vectors which are large.

Follow-the-Regularized-Leader (FTRL)

$$\forall t, \quad \mathbf{w}_t = \arg\min_{\mathbf{w} \in S} \sum_{i=1}^{t-1} f_i(\mathbf{w}) + R(\mathbf{w})$$

- For bad case above: $w_t = 0, 0, 0, 0, \dots$
- Each step requires solving a minimization problem.

Lemma 2.3: Follow-the-Regularized-Leader

Lemma 2.3. Let $w_1, w_2, ...$ be the sequence of vectors produced by FoReL. Then, for all $u \in S$ we have:

$$\sum_{t=1}^{T} (f_t(\mathsf{w}_t) - f_t(\mathsf{u})) \leq R(\mathsf{u}) - R(\mathsf{w}_1) + \sum_{t=1}^{T} (f_t(\mathsf{w}_t) - f_t(\mathsf{w}_{t+1})).$$

Proof of Lemma 2.3

Proof. Observe that running FoReL on f_1, \ldots, f_T is equivalent to running FTL on f_0, f_1, \ldots, f_T where $f_0 = R$. Using Lemma 2.1, we obtain:

$$\sum_{t=0}^{T} (f_t(w_t) - f_t(u)) \leq \sum_{t=0}^{T} (f_t(w_t) - f_t(w_{t+1})).$$

Rearranging the above and using $f_0 = R$, we conclude our proof.

FTRL for linear functions

FTRL Regret Bound for linear functions

For linear $f_t(w) = \langle w, z_t \rangle$ and $R(w) = \frac{1}{2\eta} ||w||_2^2$ Update rule $w_{t+1} = w_t - \eta z_t$ Then, for all u we have

$$\mathsf{Regret}_{\mathcal{T}}(\mathsf{u}) \leq \frac{1}{2\eta} \|\mathsf{u}\|_2^2 + \eta \sum_{t=1}^{I} \|\mathsf{z}_t\|_2^2.$$

Choice of η and Final Bound for linear functions

Tunings:

- ▶ Define the set $U = \{u : ||u|| \le B\}$.
- Assume that

$$\frac{1}{T} \sum_{t=1}^{T} \|\mathbf{z}_t\|_2^2 \le L^2.$$

 $\blacktriangleright \text{ Set } \eta = \frac{B}{L\sqrt{2T}}.$

Conclusion:

$$Regret_T(U) \leq BL\sqrt{2T}$$
.

From linear functions to Online Gradient Descent

Example (OGD from FTRL)

Consider the OCO setup where the functions f_1, f_2, \ldots are differentiable. Let η be the learning rate.

$$w_{t+1} = w_t - \eta z_t, \quad z_t = \nabla f_t(w_t)$$

Identical to FTRL with regularization: $R(w) = \frac{1}{2\eta} ||w||_2^2$

Regret bound on OGD: From FTRL theorem:

$$\operatorname{Regret} \leq \frac{\|u\|^2}{2\eta} + \eta \sum_{t=1}^{T} \|z_t\|^2$$

$$\leq \frac{B^2}{2\eta} + \eta T L^2$$

Regret Bound for OGD

If we further assume that each f_t is L_t -Lipschitz with respect to $\|\cdot\|_2$, and let L be such that

$$\frac{1}{T}\sum_{t=1}^{T}L_t^2 \leq L^2.$$

Then, for all u, the regret of OGD satisfies

$$\operatorname{Regret}_{\mathcal{T}}(\mathsf{u}) \leq \frac{1}{2\eta} \|\mathsf{u}\|_2^2 + \eta \, TL^2.$$

Bounding the norm of u

In particular, if
$$U=\{\mathbf u:\|\mathbf u\|_2\leq B\}$$
 and $\eta=\frac{B}{L\sqrt{2T}}$ then
$$\mathrm{Regret}_T(U)\leq BL\sqrt{2T}.$$

Practical Considerations

Doubling Trick

- Removes need to know time horizon T
- ▶ Divide time into epochs 2^m , $2^{m+1} 1$
- Regret increases by constant factor:

$$\sum_{m=0}^{\log T} \sqrt{2^m} = O(\sqrt{T})$$

Example (Optimal
$$\eta$$
)
Setting $\eta = \frac{B}{L} \sqrt{\frac{2}{T}}$ gives:

Definition 2.4: Strong Convexity

Strong Convexity

A function $f: S \to \mathbb{R}$ is σ -strongly convex over S with respect to a norm $\|\cdot\|$ if for any $w \in S$ we have:

$$\forall z \in \partial f(w), \quad \forall u \in S, \quad f(u) \geq f(w) + \langle z, u - w \rangle + \frac{\sigma}{2} \|u - w\|^2.$$

Lemma 2.8: Strong Convexity implication

Lemma 2.8

Let S be a nonempty convex set. Let $f: S \to \mathbb{R}$ be a σ -strongly convex function over S with respect to a norm $\|\cdot\|$. Let:

$$w = \arg\min_{v \in S} f(v).$$

Then, for all $u \in S$, we have:

$$f(\mathsf{u}) - f(\mathsf{w}) \ge \frac{\sigma}{2} \|\mathsf{u} - \mathsf{w}\|^2.$$

Strong Convexity Condition

If R is twice differentiable, then it is easy to verify that a sufficient condition for strong convexity of R is that for all \mathbf{w}, \mathbf{x} ,

$$\langle \nabla^2 R(\mathbf{w}) \mathbf{x}, \mathbf{x} \rangle \ge \sigma \|\mathbf{x}\|^2$$

where $\nabla^2 R(w)$ is the Hessian matrix of R at w, namely, the matrix of second-order partial derivatives of R at w [39, Lemma 14].

Example 2.4: Euclidean Regularization

The function

$$R(w) = \frac{1}{2} \|w\|_2^2$$

is 1-strongly-convex with respect to the ℓ_2 norm over \mathbb{R}^d . To see this, simply note that the Hessian of R at any w is the identity matrix.

Example 2.5: Entropic Regularization

The function

$$R(w) = \sum_{i=1}^{a} w[i] \log(w[i])$$

is $\frac{1}{B}$ -strongly-convex with respect to the ℓ_1 norm over the set

$$S = \{ \mathbf{w} \in \mathbb{R}^d : \mathbf{w} > 0 \land \|\mathbf{w}\|_1 \le B \}.$$

In particular, R is 1-strongly-convex over the probability simplex, which is the set of positive vectors whose elements sum to 1.

Strong Convexity

Proof of strong convexity for Entropic Regularization

$$\frac{\partial^2}{\partial w[i]^2} w[i] \log w[i] = \frac{1}{w[i]}$$

$$\langle \nabla^2 R(w) \mathbf{x}, \mathbf{x} \rangle = \sum_i \frac{\mathbf{x}[i]^2}{w[i]}$$

$$= \frac{1}{\|\mathbf{w}\|_1} \left(\sum_i w[i] \right) \left(\sum_i \frac{\mathbf{x}[i]^2}{w[i]} \right)$$

$$\geq \frac{1}{\|\mathbf{w}\|_1} \left(\sum_i \sqrt{w[i]} \frac{\mathbf{x}[i]}{\sqrt{w[i]}} \right)^2 = \frac{\|\mathbf{x}\|_1^2}{\|\mathbf{w}\|_1},$$

where the inequality follows from Cauchy-Schwarz inequality.

Single Step of FTRL with Strong Convexity

Let

$$R:S\to\mathbb{R}$$

be a σ -strongly-convex function over S with respect to a norm $\|\cdot\|$. Let w_1, w_2, \ldots be the predictions of the FoReL algorithm. Then, for all t, if f_t is L_t -Lipschitz with respect to $\|\cdot\|$, then:

$$f_t(\mathsf{w}_t) - f_t(\mathsf{w}_{t+1}) \le L_t ||\mathsf{w}_t - \mathsf{w}_{t+1}|| \le \frac{L_t^2}{\sigma}.$$

Proof (Single Step of FTRL with Strong Convexity)

For all t let

$$F_t(w) = \sum_{i=1}^{t-1} f_i(w) + R(w)$$

and note that the FoReL rule is

$$w_t = \arg\min_{w \in S} F_t(w).$$

Note also that F_t is σ -strongly-convex since the addition of a convex function to a strongly convex function keeps the strong convexity property. Therefore, Lemma 2.8 implies that:

$$F_t(\mathbf{w}_{t+1}) \ge F_t(\mathbf{w}_t) + \frac{\sigma}{2} \|\mathbf{w}_t - \mathbf{w}_{t+1}\|^2.$$

Continuing the Proof (Single Step of FTRL with Strong Convexity)

Repeating the same argument for F_{t+1} and its minimizer w_{t+1} , we get:

$$F_{t+1}(w_t) \ge F_{t+1}(w_{t+1}) + \frac{\sigma}{2} \|w_t - w_{t+1}\|^2.$$

Taking the difference between the last two inequalities and rearranging, we obtain:

$$\sigma \| \mathbf{w}_t - \mathbf{w}_{t+1} \|^2 \le f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}).$$
 (2.7)

Final Steps (Single Step of FTRL with Strong Convexity)

Next, using the Lipschitzness of f_t , we get that:

$$f_t(\mathbf{w}_t) - f_t(\mathbf{w}_{t+1}) \le L_t \|\mathbf{w}_t - \mathbf{w}_{t+1}\|.$$

Combining with Equation (2.7) and rearranging, we get:

$$\|\mathbf{w}_t - \mathbf{w}_{t+1}\| \le L/\sigma$$
.

Together with the above, we conclude our proof.

Main theorem regarding σ -strongly convex regularization functions

Let f_1, \ldots, f_T be a sequence of convex functions such that f_t is L_t -Lipschitz with respect to some norm $\|\cdot\|$. Let L be such that

$$\frac{1}{T}\sum_{t=1}^{T}L_t^2 \leq L^2.$$

Assume that FoReL is run on the sequence with a regularization function which is σ -strongly-convex with respect to the same norm. Then, for all $u \in S$,

$$Regret_T(u) \le R(u) - \min_{v \in S} R(v) + \frac{TL^2}{\sigma}.$$

Corollary for I_2 regularization

Let f_1, \ldots, f_T be a sequence of convex functions such that f_t is L_t -Lipschitz with respect to $\|\cdot\|_2$. Let L be such that

$$\frac{1}{T}\sum_{t=1}^{T}L_t^2 \leq L^2.$$

Assume that FoReL is run on the sequence with the regularization function

$$R(w) = \frac{1}{2\eta} \|w\|_2^2.$$

Then, for all u,

Regret_T(u)
$$\leq \frac{1}{2\eta} \|\mathbf{u}\|_{2}^{2} + \eta T L^{2}$$
.

Applications to expert advice

- Distribution w_t
- Action Losses: $x_t \in [0, 1]^d$
- ▶ Algorithm Loss: $\langle x_t, w_t \rangle$
- ► We want to bound regret.
- ightharpoonup we will compare l_2 regularization with Entropic Regularization.

Applications to expert advice

Experts using l_2 regularization (1)

5 be a convex set and consider running FoReL with the regularization function:

$$R(w) = \begin{cases} \frac{1}{2\eta} \|w\|_2^2 & \text{if } w \in S \\ \infty & \text{if } w \notin S \end{cases}$$

Where S us the d dimensional simplex.

Then, for all $u \in S$,

$$\operatorname{Regret}_{T}(\mathsf{u}) \leq \frac{1}{2\eta} \|\mathsf{u}\|_{2}^{2} + \eta T L^{2}.$$

Experts using l_2 regularization (2)

lf

$$B \ge \max_{u \in S} \|u\|_2$$

Setting

$$B = 1; \ L = \sqrt{d}; \ \eta = \frac{B}{L\sqrt{2T}} = \frac{1}{\sqrt{2dT}}$$

then,

$$\operatorname{Regret}_{T}(S) \leq \sqrt{2dT}$$
.

Entropic Regularization

Let f_1,\ldots,f_T be a sequence of convex functions such that f_t is L_t -Lipschitz with respect to $\|\cdot\|_1$. Let L be such that $\frac{1}{T}\sum_{t=1}^T L_t^2 \leq L^2$. Assume that FoReL is run on the sequence with the regularization function

$$R(w) = \frac{1}{\eta} \sum_{i} w[i] \log(w[i])$$

and with the set

$$S = \{ \mathbf{w} : \|\mathbf{w}\|_1 = \mathbf{B} \land \mathbf{w} > 0 \} \subset \mathbb{R}^d.$$

Then,

$$\operatorname{Regret}_{\mathcal{T}}(S) \leq \frac{B \log(d)}{\eta} + \eta BTL^2.$$

In particular, setting $\eta = \frac{\sqrt{\log d}}{1\sqrt{2T}}$ yields

$$Regret_T(S) \leq BL\sqrt{2\log(d)T}$$
.

Entropic regularization for Experts

The Entropic regularization is strongly convex with respect to the ℓ_1 norm, and therefore the Lipschitzness requirement of the loss functions is also with respect to the ℓ_1 -norm.

For linear functions,

$$f_t(w) = \langle w, x_t \rangle,$$

we have by Hölder's inequality that,

$$|f_t(w) - f_t(u)| = |\langle w - u, x_t \rangle| \le ||w - u||_1 ||x_t||_{\infty}.$$

Therefore, the Lipschitz parameter grows with the ℓ_{∞} norm of x_t rather than the ℓ_2 norm of x_t .

expert advice: B = 1 and L = 1), we obtain the regret bound of

$$\sqrt{2\log(d)T}$$
.

Comparison between regularizations

- entropic regularization vs. ℓ_2 regularization.
- ▶ $\log d$ vs \sqrt{d}
- ▶ L: $||x_t||_{\infty} \ge ||x_t||_2$ Liphsitz condition carries heavier penalty with entropic regularization.
- ▶ $B: ||u||_1 \le ||u||_2$ Comparator length carries heavier penalty with l_2 norm.