Algebraic Geometry II: Exercises for Lecture 9 – 4 April 2019

[RdBk] refers to Mumford's Red Book, [HAG] to Hartshorne's Algebraic Geometry.

Exercise 1. Let $f: Y \to X$ be a map of topological spaces, and let \mathcal{F} be a sheaf on X. Whenever $f(V) \subset U$ for opens $V \subset Y$ and $U \subset X$ we have a natural map $\mathcal{F}(U) \to (f^{-1}\mathcal{F})(V)$. Verify this.

- **Exercise 2.** A quick reminder of some commutative algebra: let $f: R \to S$ be a ring morphism, and M an R-module. Let $\mathfrak{q} \in \operatorname{Spec} S$. Show that $(M \otimes_R S)_{\mathfrak{q}} = M \otimes_R S_{\mathfrak{q}}$. Let $\mathfrak{p} \in \operatorname{Spec} R$ and let N be an $R_{\mathfrak{p}}$ -module. Show that $M \otimes_R N = M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} N$. Conclude that $(M \otimes_R S)_{\mathfrak{q}} = M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} S_{\mathfrak{q}}$.
- **Exercise 3.** (i) Let $\phi: R \to S$ be a ring homomorphism, let M be an R-module, and let N be an S-module. We write $\phi^*M := M \otimes_R S$, viewed as an S-module. We write ϕ_*N for the abelian group N, viewed as an R-module via ϕ . Show that there is a natural bijection $\operatorname{Hom}_S(\phi^*M, N) \to \operatorname{Hom}_R(M, \phi_*N)$.
 - (ii) Translate the above commutative algebra result into the following result about sheaves of modules on schemes. Let $f: Y \to X$ be a morphism of schemes. Let \mathcal{F} be an \mathcal{O}_Y -module, and let \mathcal{G} be an \mathcal{O}_X -module. Show that there is a natural bijection $\operatorname{Hom}_{\mathcal{O}_Y}(f^*\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{G}, f_*\mathcal{F})$. In fact, f_* and f^* are adjoint functors.

Exercise 4. Verify that the pullback of a quasi-coherent module is quasicoherent. It may be useful to note the following: let $f: Y \to X$ and $g: Z \to Y$ be morphisms of schemes, and let \mathcal{F} be an \mathcal{O}_X -module. Then $(f \circ g)^*\mathcal{F} = g^*f^*\mathcal{F}$ canonically. Verify that the pullback of a locally free sheaf of rank n is a locally free sheaf of rank n.

Exercise 5. (Projection formula) Let $f: Y \to X$ be a morphism of schemes, let \mathcal{F} be an \mathcal{O}_Y -module, and let \mathcal{G} be an \mathcal{O}_X -module. Recall that f_* and f^* are adjoint functors (cf. Exercise 3).

- (i) Show that there exists a natural morphism of \mathcal{O}_Y -modules $f^*f_*\mathcal{F} \to \mathcal{F}$.
- (ii) Show that there exists a natural morphism of \mathcal{O}_Y -modules $f_*\mathcal{F}\otimes\mathcal{G}\to f_*(\mathcal{F}\otimes f^*\mathcal{G})$.
- (iii) Assume that \mathcal{G} is locally free. Show that the morphism of (ii) is an isomorphism.

Exercise 6. Compute Pic X for $X = \operatorname{Spec} \mathbb{Z}$ and for $X = \mathbb{A}^1_k$ where k is a field.

Exercise 7. Describe pullback of invertible sheaves in terms of cocycles.

Exercise 8. Let X be a topological space and let \mathcal{F} be a sheaf on X. The *support* of \mathcal{F} is the subset Supp $\mathcal{F} = \{x \in X : \mathcal{F}_x \neq (0)\}$ of X.

(i) Prove the following statement: let X be a scheme, and let \mathcal{F} be an \mathcal{O}_X -module, such that there exists an open covering $\{U_i\}_{i\in I}$ of X with affine open subschemes with for all $i\in I$ an isomorphism $\mathcal{F}|_{U_i}\cong \widetilde{M}_i$ with M_i a finitely generated $\Gamma(U_i,\mathcal{O}_X|_{U_i})$ -module. (For example, a coherent sheaf on a noetherian scheme X). Then $\operatorname{Supp} \mathcal{F}$ is a closed subset of X.

Hint: let $x \in X$ with $\mathcal{F}_x = (0)$. Show there exists an open neighborhood U of x such that $\mathcal{F}|_U = (0)$. It follows that the complement of $\operatorname{Supp} \mathcal{F}$ is open. Some more background: applying this to $X = \operatorname{Spec} R$ and M a finitely generated R-module we recover the statement that $\operatorname{Supp} M = \{\mathfrak{p} \in X : M_{\mathfrak{p}} \neq (0)\}$ is a closed subset of X. See Exercise 3.19 of Atiyah-MacDonald, "Introduction to commutative algebra".

(ii) Use the result just found to prove the following statement. Let X be a scheme, let \mathcal{L} be an invertible sheaf on X, and let s be a global section of \mathcal{L} . Write X_s for the set of $x \in X$ such that the germ s_x of s at x generates \mathcal{L}_x as an $\mathcal{O}_{X,x}$ -module. Then X_s is an open subset of X.

Hint: consider the quotient sheaf $\mathcal{F} = \mathcal{L}/(\mathcal{O}_X \cdot s)$. The support of \mathcal{F} is the complement of X_s . Warning: it is not in general true that the support of a sheaf on a topological space is closed.

Exercise 9. Let $f: Y \to X$ be a morphism of schemes. Let \mathcal{L} be an invertible sheaf on X, and let $\{s_i\}_{i\in I}$ be a collection of global sections of \mathcal{L} that generates \mathcal{L} . Show that $\{f^*s_i\}_{i\in I}$ is a collection of global sections of $f^*\mathcal{L}$ that generates $f^*\mathcal{L}$.

Exercise 10. Let S be a scheme and let \mathbb{P}^n_S denote projective n-space over S. Let X be a scheme. Show that to give a morphism $X \to \mathbb{P}^n_S$ is to give a morphism $X \to S$ and an (n+1)-decorated invertible sheaf on X.

Exercise 11. Work through [HAG], Chapter II, Example 7.1.1 and generalize this to show that Aut $\mathbb{P}_k^n = \operatorname{PGL}_{n+1}(k)$ for any field k.

Exercise 12. Let X be a scheme. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open covering of X. Let $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ denote the product $\prod_{(i,j)\in I\times I}\mathcal{O}_X^{\times}(U_i\cap U_j)$. Note that $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is a multiplicative abelian group with multiplication defined coordinatewise. Let $Z^1(\mathcal{U}, \mathcal{O}_X^{\times})$ denote the subset of $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ consisting of tuples $(u_{ij})_{i,j}$ such that (1) for each $i \in I$ we have $u_{ii} = 1$, (2) for each $i, j \in I$ we have $u_{ij} = u_{ji}^{-1}$, (3) on each triple intersection $U_i \cap U_j \cap U_k$ we have the 1-cocycle condition $u_{ji} \cdot u_{kj} \cdot u_{ik} = 1$. Verify that $Z^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is a subgroup of $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$. We call an element $(u_{ij})_{i,j}$ of $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ a 1-coboundary if there exist $f_i \in \mathcal{O}_X^{\times}(U_i)$ for all $i \in I$ such that for all $i, j \in I$ we have $u_{ij} = f_i/f_j$ on $\mathcal{O}_X^{\times}(U_i \cap U_j)$. The set of 1-coboundaries in $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is denoted by $B^1(\mathcal{U}, \mathcal{O}_X^{\times})$. Verify that $B^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is a subgroup of $Z^1(\mathcal{U}, \mathcal{O}_X^{\times})$. Assume that $(u_{ij})_{i,j} \in C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is a 1-coboundary. Let \mathcal{L} denote the invertible sheaf determined by the 1-cocycle $(u_{ij})_{i,j}$. Show that \mathcal{L} is a trivial invertible sheaf, that is, there exists an isomorphism $\psi \colon \mathcal{L} \xrightarrow{\sim} \mathcal{O}_X$. On the other hand, assume an invertible sheaf \mathcal{L} is given which is trivial. Show that any 1-cocycle determined by \mathcal{L} on \mathcal{U} is a 1-coboundary.

Exercise 13. We continue with the notation of the previous exercise. The quotient group $Z^1(\mathcal{U}, \mathcal{O}_X^{\times})/B^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is traditionally denoted by $\check{H}^1(\mathcal{U}, \mathcal{O}_X^{\times})$. A refinement of \mathcal{U} is by definition a covering $\mathcal{V} = \{V_j\}_{j \in J}$ together with a map $\lambda \colon J \to I$ of sets, such that for each $j \in J$ we have $V_j \subset U_{\lambda(j)}$. Assume that \mathcal{V} is a refinement of \mathcal{U} with map $\lambda \colon J \to I$. Describe a natural group homomorphism $\lambda^1 \colon \check{H}^1(\mathcal{U}, \mathcal{O}_X^{\times}) \to \check{H}^1(\mathcal{V}, \mathcal{O}_X^{\times})$ induced by λ . The open coverings of X form a partially ordered set under refinement, and any pair of open coverings has a common refinement (verify this). Hence it makes sense to take the filtered colimit (ie, direct limit) $\varinjlim \check{H}^1(\mathcal{U}, \mathcal{O}_X^{\times})$ over all open coverings \mathcal{U} of X. The result is denoted by $\check{H}^1(X, \mathcal{O}_X^{\times})$. Exhibit a group isomorphism $\mathrm{Pic}\,X \xrightarrow{\sim} \check{H}^1(X, \mathcal{O}_X^{\times})$.

Exercise 14. Let k be an algebraically closed field. In Algebraic Geometry 1 (Exercises 3.6.4, 3.6.5 and 6.6.1 of the syllabus), the Segre map $\Psi \colon \mathbb{P}^1_k \times \mathbb{P}^1_k \to \mathbb{P}^3_k$ (where \mathbb{P}^n_k now denotes projective space as a variety over k) was given as the map of point sets

$$((a_0:a_1),(b_0:b_1)) \mapsto (a_0b_0:a_0b_1:a_1b_0:a_1b_1).$$

Note that a morphism of schemes is hardly ever given as a map of the underlying point sets. Describe the Segre map $\Psi \colon \mathbb{P}^1_k \times \mathbb{P}^1_k \to \mathbb{P}^3_k$ as a morphism of schemes, using the interpretation of the functor of points of \mathbb{P}^n_k , and Yoneda's lemma. Bonus exercise: show that the Segre map (viewed as a morphism of schemes) is a closed immersion. For assistance, see for example The Stacks Project, TAG 01WD.

Exercise 15. Let U_0, \ldots, U_n denote the standard affine opens of \mathbb{P}^n . Consider the global sections X_0, \ldots, X_n of $\mathcal{O}(1)$. The aim of this exercise is to show that $U_i = \mathbb{P}^n_{X_i}$. The inclusion $U_i \subset \mathbb{P}^n_{X_i}$ is clear. Now take $x \in \mathbb{P}^n$ with $x \notin U_i$. Our task is to show that $X_i \in \mathfrak{m}_{X,x}\mathcal{O}(1)_x$. Take k such that $x \in U_k$. Then X_k generates $\mathcal{O}(1)_x$, and $X_i = X_{ik} \cdot X_k$ in $\mathcal{O}(1)_x$.

- (i) Recall that $U_k = \operatorname{Spec} \mathbb{Z}[\dots, X_{jk}, \dots]$. Then $U_i \cap U_k = \operatorname{Spec} \mathbb{Z}[\dots, X_{jk}, \dots, X_{ik}^{-1}] = (U_k)_{X_{ik}}$. Thus $U_i \cap U_k = \{\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[\dots, X_{jk}, \dots] : X_{ik} \notin \mathfrak{p}\}$.
- (ii) Assume that $x \in U_k$ corresponds to the prime ideal \mathfrak{q} of $\mathbb{Z}[\ldots, X_{jk}, \ldots]$. Show that $X_{ik} \in \mathfrak{q}$.
- (iii) Show that $X_{ik} \in \mathfrak{m}_{X,x}$.
- (iv) Deduce that $X_i \in \mathfrak{m}_{X,x}\mathcal{O}(1)_x$.