Teoria da Computação

Forma Normal de Chomsky

Thiago Alves Rocha

Introdução

- Formas normais são úteis para construir algoritmos mais facilmente
- Vamos usar a forma normal de Chomsky

- Uma GLC está na forma normal de Chomsky se toda regra é as forma
 - $A \rightarrow BC$
 - A → a
- Em que
 - a é terminal
 - A,B e C são variáveis
 - B e C não são a variável inicial

- Uma GLC está na forma normal de Chomsky se toda regra é as forma
 - $A \rightarrow BC$
 - $A \rightarrow a$
- Para permitir que a GLC derive a string vazia permitimos a regra
 - $S \rightarrow \epsilon$
 - Em que S é variável inicial

Será que podemos converter qualquer GLC em uma GLC na forma normal de Chomsky?

$$egin{array}{l} S
ightarrow ASA \mid \mathtt{a}B \ A
ightarrow B \mid S \ B
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} \end{array}$$

Como tirar o símbolo inicial do lado direito das regras?

$$egin{array}{l} S
ightarrow ASA \mid \mathtt{a}B \ A
ightarrow B \mid S \ B
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} \end{array}$$

- Como tirar o símbolo inicial do lado direito das regras?
- Criar um novo símbolo inicial

$$egin{array}{l} S
ightarrow ASA \mid \mathtt{a}B \ A
ightarrow B \mid S \ B
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} \end{array}$$

$$egin{array}{l} oldsymbol{S_0}
ightarrow oldsymbol{S} \ S
ightarrow ASA \mid \mathtt{a}B \ A
ightarrow B \mid S \ B
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} \end{array}$$

Como remover regras com ε no lado direito da regra em que o lado esquerdo não seja a variável inicial?

$$egin{array}{l} oldsymbol{S_0}
ightarrow oldsymbol{S} \ S
ightarrow ASA \mid \mathtt{a}B \ A
ightarrow B \mid S \ B
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} \end{array}$$

- Removemos produção V → ε, em que V não é a inicial
- ◆Para cada ocorrência de V no lado direito de uma produção, adicionamos uma nova regra com a ocorrência deletada

- Se R → uVx é uma regra, adicionamos R → ux.
- Regras do tipo R → uVxVw nos faz adicionar R → uxVw, R → uVxw e R → uxw.
- ◆Se temos a regra R → V, adicionamos R → ε, a menos que já tenha sido removida

Remover B → ε

$$egin{array}{l} oldsymbol{S_0}
ightarrow oldsymbol{S} \ S
ightarrow ASA \mid \mathtt{a}B \ A
ightarrow B \mid S \ B
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} \end{array}$$

$$S_0
ightarrow S$$
 $S
ightarrow ASA \mid aB \mid a$
 $A
ightarrow B \mid S \mid \epsilon$
 $B
ightarrow b$

Remover A → ε

$$S_0
ightarrow S \ S
ightarrow ASA \mid aB \mid a \ A
ightarrow B \mid S \mid oldsymbol{arepsilon} \ B
ightarrow b$$

$$S_0 o S$$
 $S o ASA\mid$ a $B\mid$ a \mid $SA\mid$ $AS\mid$ S $A o$ $B\mid$ S

Remover regras unitárias da forma
 V₁ → V₂

$$S_0 o S$$

 $S o ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \mid S$
 $A o B \mid S$
 $B o \mathtt{b}$

- \bullet Se A → B e B → aC
 - Podemos fazer A → aC
- ◆Para toda regra unitária V₁ → V₂
 - Removemos a regra
 - E para toda regra do tipo V₂ → u
 - Criamos a regra V₁ → u, a menos que esta regra seja unitária já removida

◆Remover S → S

$$S_0 o S$$
 $S o ASA\mid$ a $B\mid$ a \mid $SA\mid$ $AS\mid$ S $A o$ $B\mid$ S $B o$ b

$$S_0
ightarrow S \ S
ightarrow ASA \mid aB \mid a \mid SA \mid AS \ A
ightarrow B \mid S \ B
ightarrow b$$

♦ Remover $S_0 \rightarrow S$

$$S_0 o S$$

 $S o ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS$
 $A o B \mid S$
 $B o \mathtt{b}$

$$S_0
ightarrow ASA \mid \mathbf{a}B \mid \mathbf{a} \mid SA \mid AS$$

 $S
ightarrow ASA \mid \mathbf{a}B \mid \mathbf{a} \mid SA \mid AS$
 $A
ightarrow B \mid S$
 $B
ightarrow \mathbf{b}$

◆Remover A → B

$$S_0
ightarrow ASA \mid \mathbf{a}B \mid \mathbf{a} \mid SA \mid AS$$

 $S
ightarrow ASA \mid \mathbf{a}B \mid \mathbf{a} \mid SA \mid AS$
 $A
ightarrow B \mid S$
 $B
ightarrow \mathbf{b}$

$$S_0
ightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S
ightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A
ightarrow S \mid \mathbf{b}$
 $B
ightarrow \mathbf{b}$

◆Remover A → S

$$S_0
ightarrow ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS$$
 $S
ightarrow ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS$ $A
ightarrow S \mid \mathbf{b}$ $B
ightarrow \mathtt{b}$

$$S_0
ightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S
ightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A
ightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $B
ightarrow b$

- Temos que modificar regras da forma
 - $V \rightarrow u_1 u_2 u_3 \dots u_k$
 - Em que k ≥ 3 e cada u_i é variável ou terminal
- E da forma
 - $V \rightarrow u_1 u_2$
 - Em que u₁ ou u₂ é terminal

- $\bullet V \rightarrow u_1 u_2 u_3 \dots u_k$
- Trocamos pelas regras:
 - $V \rightarrow u_1V_1$
 - $V_1 \rightarrow u_2V_2$

 - $V_{k-2} \rightarrow u_{k-1}u_k$
 - Cada V_i é uma nova variável

- $\bullet V \rightarrow u_1 u_2$
- ◆Se u₁ for terminal trocamos por:
 - $V \rightarrow U_1 u_2$
 - $U_1 \rightarrow U_1$

◆Análogo para u₂ terminal

- Remover regras da forma
 - $V \rightarrow V_1V_2V_3 \in V \rightarrow tV_1$

$$S_0
ightarrow ASA \mid$$
 a $B \mid$ a \mid $SA \mid$ AS $S
ightarrow ASA \mid$ a $B \mid$ a \mid $SA \mid$ AS $A
ightarrow$ b \mid $ASA \mid$ a $B \mid$ a \mid $SA \mid$ AS $B
ightarrow$ b

- Removidas regras da forma
 - $V \rightarrow V_1V_2V_3 \in V \rightarrow tV_1$
 - E simplificação

$$S_0 \rightarrow AA_1 \mid UB \mid \mathtt{a} \mid SA \mid AS$$

$$S \rightarrow AA_1 \mid UB \mid \mathtt{a} \mid SA \mid AS$$

$$A \rightarrow \mathtt{b} \mid AA_1 \mid UB \mid \mathtt{a} \mid SA \mid AS$$

$$A_1 \rightarrow SA$$

$$U \rightarrow \mathtt{a}$$

$$B \rightarrow \mathtt{b}$$

Converter para a forma normal de Chomsky

$$\begin{array}{c} A \to BAB \mid B \mid \varepsilon \\ B \to 00 \mid \varepsilon \end{array}$$

Criar novo inicial

$$\begin{array}{c} A \to BAB \mid B \mid \varepsilon \\ B \to 00 \mid \varepsilon \end{array}$$

$$S_0 \to A$$

$$A \to BAB \mid B \mid \epsilon$$

$$B \to 00 \mid \epsilon$$

Remover B → ε

$$S_0 \to A$$

$$A \to BAB \mid B \mid \epsilon$$

$$B \to 00 \mid \epsilon$$

$$S_0 \rightarrow A$$

$$A \rightarrow BAB \mid BA \mid AB \mid A \mid B \mid \epsilon$$

$$B \rightarrow 00$$

Remover A → ε

$$S_0 \rightarrow A$$

$$A \rightarrow BAB \mid BA \mid AB \mid A \mid B \mid \epsilon$$

$$B \rightarrow 00$$

$$S_0 \rightarrow A \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid A \mid B$
 $B \rightarrow 00$

◆Remover A → A

$$S_0 \rightarrow A \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid A \mid B$
 $B \rightarrow 00$

$$S_0 \rightarrow A \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid B$
 $B \rightarrow 00$

♦ Remover $S_0 \rightarrow A$

$$S_0 \rightarrow A \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid B$
 $B \rightarrow 00$

$$S_0 \rightarrow BAB \mid BB \mid BA \mid AB \mid B \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid B$
 $B \rightarrow 00$

◆Remover A → B

$$S_0 \rightarrow BAB \mid BB \mid BA \mid AB \mid B \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid B$
 $B \rightarrow 00$

$$S_0 \rightarrow BAB \mid BB \mid BA \mid AB \mid B \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid 00$
 $B \rightarrow 00$

♦ Remover $S_0 \rightarrow B$

$$S_0 \rightarrow BAB \mid BB \mid BA \mid AB \mid B \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid 00$
 $B \rightarrow 00$

$$S_0 \rightarrow BAB \mid BB \mid BA \mid AB \mid 00 \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid 00$
 $B \rightarrow 00$

♦ Remover $S_0 \rightarrow BAB$

$$S_0 \rightarrow BAB \mid BB \mid BA \mid AB \mid 00 \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid 00$
 $B \rightarrow 00$

$$S_0 \rightarrow BD_1 \mid BB \mid BA \mid AB \mid 00 \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid 00$
 $B \rightarrow 00$
 $D_1 \rightarrow AB$

◆Remover A → BAB

$$S_0 \rightarrow BD_1 \mid BB \mid BA \mid AB \mid 00 \mid \epsilon$$

 $A \rightarrow BAB \mid BB \mid BA \mid AB \mid 00$
 $B \rightarrow 00$
 $D_1 \rightarrow AB$

$$S_0 \to BD_1 \mid BA \mid AB \mid 00 \mid \epsilon$$

 $A \to BD_2 \mid BB \mid BA \mid AB \mid 00$
 $B \to 00$
 $D_1 \to AB$
 $D_2 \to AB$

◆Remover $S_0 \rightarrow 00$

$$S_0 \rightarrow BD_1 \mid BA \mid AB \mid 00 \mid \epsilon$$

 $A \rightarrow BD_2 \mid BB \mid BA \mid AB \mid 00$
 $B \rightarrow 00$
 $D_1 \rightarrow AB$
 $D_2 \rightarrow AB$

```
S_0 \rightarrow BD_1 \mid BB \mid BA \mid AB \mid C_1C_2 \mid \epsilon

A \rightarrow BD_2 \mid BB \mid BA \mid AB \mid 00

B \rightarrow 00

D_1 \rightarrow AB

D_2 \rightarrow AB

C_1 \rightarrow 0

C_2 \rightarrow 0
```

◆Remover A → 00, B → 00 e simplificar

```
S_0 \rightarrow AB \mid CC \mid BA \mid BD \mid BB \mid \varepsilon
A \rightarrow AB \mid CC \mid BA \mid BD \mid BB
B \rightarrow CC
C \rightarrow 0
D \rightarrow AB
```