ENGR-3000:

Renewable Energy, Technology, and Resource Economics

Energy in Fuels

S. David Dvorak. Ph.D, P.E.

5 June 2019 Ísafjörður, Iceland

Combustion Reactions, General Form

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + Heat$$

Energy Stored in Chemical Bonds

- Breaking a bond is an endothermic process: you must put energy into the system to break a bond
- Forming a bond is an exothermic process: energy is released into the surroundings when a bond is formed
- Estimate the change in enthalpy (ΔH) for a chemical reaction as follows:

 $\Delta H = (Energy of bonds broken) - (energy of bonds formed)$

The "Heating Value" of Combustion Reactions

- Start with reactants at standard state (25°C, 1 Bar)
- Allow reaction to occur (at constant pressure)
- Allow products to return to standard state (25°C, 1 Bar)
- Track change in enthalpy from initial state (at standard conditions) to final state (at standard conditions):

Higher and Lower Heating Values

- When fuel is burned one product is water.
 - If water vapor exits stack then its energy is lost, about 2440 kJ per kg of water vapor (1060 BTU/lb)
- Heat of Combustion for fuels
 - Higher Heating Value (HHV) gross heat, accounts for latent heat in water vapor
 - Lower Heating Value (LHV) net heat, assumes latent heat in water vapor is not recovered

Atomic Weights

Hydrogen: 1g/mole; Carbon: 12g/mole; Oxygen 16g/mole

Calculating Lower Heating Value

Propane gas, \uparrow CO₂, oxygen Reaction at 25°C \uparrow at 25°C

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O(g) + 2044 \text{ kJ/mol}$$

$$MW_{Propane} = (3) \left(\frac{12g}{mol}\right) + (8) \left(\frac{1g}{mol}\right) = 44 \frac{grams}{mole}$$

$$LHV = \left(2044 \frac{kJ}{mol}\right) \left(\frac{mol}{44g}\right) \left(\frac{1000g}{kg}\right) = 46450 \frac{kJ}{kg}$$

Calculating Higher Heating Value

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O(g) + 2044 \text{ kJ/mol}$$

 $H_2O(g) \rightarrow H_2O(L) + 44 \text{ kJ/mol}$

 $\Delta H = 2044 \text{ kJ/mol} + 4(44 \text{ kJ/mol}) = 2220 \text{ kJ/mol}$

$$HHV = \left(2220 \frac{kJ}{mol}\right) \left(\frac{mol}{44g}\right) \left(\frac{1000g}{kg}\right) = 50450 \frac{kJ}{kg}$$

Higher and Lower Heating Values

- Conventional Multifuel Boiler: Smith Series 19 HE
 - fuel = natural gas or #2 oil
 - stack temp = 370° F
 - Efficiency = 83%

- Condensing Boiler: Vitodens 200 WB2
 - fuel = natural gas
 - stack temp = 104° F
 - Efficiency = 95%

Combustion Reactions (HHV)

Hydrogen

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O(L) + 285.8 \text{ kJ/mol}$$

Methane

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O(L) + 891 \text{ kJ/mol}$$

Ethanol

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O(L) + 1366 \text{ kJ/mol}$$

Gasolene (Trimethylpentane)

$$C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O(L) + 5463 \text{ kJ/mol}$$

Diesel (hexadacane, or cetane)

$$C_{16}H_{34} + 24\frac{1}{2}O_2 \rightarrow 16CO_2 + 17H_2O(L) + 10698 \text{ kJ/mol}$$

Comparison of Fuels

Specific Energy, Energy Density & CO2

Fuel	Specific Energy kj/g	Density KWH/gal	Chemical Formula	lbs CO2/gal
Ethanol	29.7	24.7	C2H5OH	13
Gasoline	46.5	36.6	C7H16	20
Diesel	45.8	40.6	C12H26	22
Biodiesel	39.6	35.0	C18H32O2	19
Methane	55.8	27.0	CH4	3
Oil	47.9	40.5	C14H30	20
Wood	14.9	11.3	approx weight	9
Coal	30.2	22.9	approx weight	19
Hydrogen	141.9	10.1	H2	0

Source: DOE, Stanford University, College of the Desert, & Green Econometrics research

Energies based on <u>higher heating values</u>

Percent Hydrogen vs. Specific Energy

Example: Diesel and Gas Engine

- Estimate the fuel consumption (in liter/hr) and overall efficiency of a 2MW diesel generator operating at its rated power.
 - Specific fuel consumption = 200g/kWh_m.
 - Generator efficiency = 96%
 - Energy content of #2 diesel (HHV) = 44.8 MJ/kg
 - density of #2 diesel = 0.85kg/liter

Mechanical Output

$$\eta_{\text{Gen}} = \frac{P_{\text{Elec}}}{P_{\text{Shaft}}} \implies P_{\text{Shaft}} = \frac{P_{\text{Elec}}}{\eta_{\text{Gen}}} = \frac{2MW_e}{0.96} = 2.083MW_m$$

Fuel Flow Rate

$$\dot{\mathbf{m}}_{\text{Fuel}} = (\text{SFC})(\mathbf{P}_{\text{Shaft}}) = \left(\frac{200g/h}{kW}\right)(2083kW)$$

$$\dot{m}_{\text{Fuel}} = 416.6 \times 10^3 \, \frac{\text{g}}{\text{h}} \left(\frac{\text{kg}}{10^3 \, \text{g}} \right) = 417 \, \frac{\text{kg}}{\text{h}}$$

Fuel Consumption

$$Q_{\text{Fuel}} = 417 \frac{\text{kg}}{\text{hr}} \left(\frac{\text{liter}}{0.85 \text{kg}} \right) = 490 \frac{\text{liter}}{\text{hr}}$$

Rate of Heat Addition

$$P_{In} = \left(\frac{\dot{m}_{Fuel}}{m_{Fuel}}\right) \left(\frac{\dot{m}_{Fuel}}{m_{Fuel}}\right) \left(\frac{417 \frac{kg}{hr}}{m_{Fuel}}\right) \left(\frac{44.8 MJ}{kg}\right) = 18612 \frac{MJ}{hr}$$

$$P_{In} = \left(18612 \frac{MJ}{hr}\right) \left(\frac{hr}{3600 s}\right) = 5.19 \frac{MJ}{hr} = 5.19 MW_{th}$$

Diesel Engine Efficiency

$$\eta_{\text{Diesel}} = \frac{P_{\text{Shaft}}}{P_{\text{In}}} = \frac{2.08 MW_{\text{m}}}{5.19 MW_{\text{th}}} = 0.40$$

CO₂ Emission from Diesel Fuel

- Estimate the production of CO₂ (in g CO₂/kWh).
 - Use Cetane ($C_{16}H_{34}$) as a model reaction for diesel combustion. $\Delta H = 10,700 \text{kJ/mol}$

$$C_{16}H_{34} + 24\frac{1}{2}O_2 \rightarrow 16CO_2 + 17H_2O$$

- Atomic weights,
 - Carbon = 12g/mol,
 - Hydrogen = 1 g/mol
 - Oxygen = 16g/mol
- Reference: CO₂ emission from coal ≅ 325 gCO₂/kWh

Molecular weight of CO₂

$$\frac{12g}{\text{mole}} + 2\left(\frac{16g}{\text{mole}}\right) = \frac{44g}{\text{mole}}$$

There are 16 moles of CO₂ produced per mole of Cetane:

$$\frac{16\left(\frac{44g}{\text{mole}}\right)}{10700\frac{\text{kJ}}{\text{mole}}} = \frac{65.8 \times 10^{-3} \text{gCO}_2}{\text{kJ}} \left(\frac{3600 \text{kJ}}{\text{kWh}}\right) = 237 \frac{\text{gCO}_2}{\text{kWh}}$$

> Determine the Carbon intensity of the electricity generation

$$\begin{array}{c|c}
237 & \underline{gCO_2} \\
\hline
kWh & Diesel \\
\hline
 & \eta = 38.4\%
\end{array}$$

$$\begin{array}{c}
237 & \underline{gCO_2} \\
\hline
 & kWh \\
\hline
 & 0.384
\end{array}$$

$$\begin{array}{c}
1 \\
\hline
 & 0.384
\end{array}$$

$$\begin{array}{c}
617 & \underline{gCO_2} \\
\hline
 & kWh
\end{array}$$

Exercise, Gas Engine

- If we replaced the diesel generator in the previous example with a natural gas generator with the same efficiency, would the CO₂ emissions change?
 - Use methane (CH₄) as the model reaction for natural gas combustion. $\Delta H = 891 \text{ kJ/mol}$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Carbon Intensity of Electricity

Generated from Coal:

Generated from Natural Gas

178
$$\frac{\text{gCO}_2}{\text{kWh}}$$
Natural Gas
Power Plant
 $\eta = 44.4\%$

178 $\frac{\text{gCO}_2}{\text{kWh}} \left(\frac{1}{0.444}\right) = 401 \frac{\text{gCO}_2}{\text{kWh}}$

➤ Average Electrical Grid Carbon Intensity = 430 gCO₂/kWh_e

Carbon Intensity of Electricity: Europe

Carbon Intensity of Electricity: USA

