CHAPTER 2

IMPACT OF TECHNOLOGY

- TRANSISTOR BASICS
- POWER ISSUES
 - DYNAMIC
 - STATIC
- RELIABILITY
 - ACE
 - NBTI
 - EM
 - TDDB

nMOS TRANSISTOR OPERATION

- Gate voltage controls current by changing the thickness of conduction channel

 - V_{GS} < 0 then holes populate between source and drain V_{GS} > V_{th} minority carriers (electrons) are attracted to the gate forming a conduction channel

 - $V_{GS} > V_{th}$ leaves positive potential between drain and
 - source and electrons move from source to drain
 - V_{DS} > V_{th} then I_{DS} increases but V_{GD} decreases; when V_{GD} < V_{th} channel is pinched off

THREE REGIONS OF OPERATION

- Cut-off/sub-threshold region
 - V_{GS}
 V_{th} when no current flows
- Linear region
 - V_{GS} V_{th} & V_{GS} V_{DS} V_{th}
 - I_{DS} proportional to $\beta^*(V_{GS} V_{th})^*V_{DS}$
 - β is transistor gain factor = $\mu^*C_{ox}^*(W/L)$
- Saturation regions
 - V_{GS} V_{th} & V_{GS} V_{DS} V_{th}
 - $I_{DS} = (\beta/2)*(V_{GS} V_{th})^2$

TECHNOLOGY SCALING

Feature/Voltage	Variable
Channel Length	L
Channel Width	W
Oxide Thickness	t _{ox}
Junction Depth	X
Supply Voltage	V_{dd}
Threshold Voltage	V_{th}
Wire width, space, height	w,s,h

Moore's Law: All these features scale by 1/5, S=SQRT(2) every 2 years

IMPACT OF SCALING ON CHARACTERISTICS

Device Characteristics	Feature Dependence	Scaling
Transistor Gain (β)	W/(L. t _{ox})	S
Current (I _{ds})	$\beta(V_{dd}-V_{th})^2$	S
Resistance	V_{dd}/I_{ds}	1
Gate Capacitance	(W.L)/t _{ox}	1/S
Gate delay	R.C	1/S
Clock Frequency	1/(R.C)	S
Circuit Area	W.L	1/S ²
Wire Resistance	1/(w.h)	S ²
Wire Capacitance	h/s	1

BENEFITS OF SCALING

- Scaling dimensions doubles device density
- Frequency increases by 41%
- Scaling voltage simultaneously keep the power constant
- If voltage is not scaled then clock frequency can scale even faster but dynamic power grows!
- Threshold voltage scaling causes gate leakage power growth!

CMOS INVERTER

- Dynamic power is consumed when device changes ON->OFF and OFF->ON
 - 1->0 current flows to move charge to the capacitance
 - 0->1 current flows from capacitance to ground
- Charging and discharging of capacitance causes power dissipation

SCALING DYNAMIC POWER

- $P_{dynamic} = \alpha C V_{dd}^2 f$
 - a is fraction of clock cycles when gate switches (at most $\frac{1}{2}$)
- C and V_{dd} scale 1/5 and f scales 5. Hence $P_{dynamic}$ scales like 1/5²
- Number of transistor in unit area grow 5²
- Hence power density (power/area) stays constant with scaling
- If V_{dd} does not scale then power density grows
 - Has become a serious issue in recent years since voltage can not reduce very much beyond current levels
- If chip size grows then total power grows
 - Also a major issue in server chips as the size of the chip grows to accommodate new functionality
- Power dissipation leads to heat generation
 - When heat is not removed at the same rate it causes thermal emergencies

REDUCING DYNAMIC POWER

Reduce a

- Power gating cuts off power from idle units
- Clock gating cuts off power-hungry clock

REDUCING DYNAMIC POWER

- Reduce V_{dd} most effective approach
 - Voltage scaling
 - For correct circuit operation it also requires simultaneous reduction in frequency since transistor becomes slower at lower voltage
- Reducing V_{dd} and f reduces power cubically
 - Reduction comes at the cost of performance

Scaling INTELLIGENTLY is the key to preserve performance

OTHER SCALING APPROACHES

- Reduces V_{dd} and V_{th} simultaneously so frequency does not need to scale
 - Causes leakage power growth
- Use multiple threshold CMOS devices (MTCMOS)
 - Selectively use high leakage (but faster) devices when speed is critical, else use low leakage devices on non critical paths
- Use multiple voltage/frequency domains
 - Already used to some extent where caches run at a different voltage than logic

POWER OF PARALLELISM

- Two choices for the same design
 - Pipeline the design so each of the two stages runs at the same frequency but does half the work
 - Divide the work into two parallel units each running at half the frequency
 - In both scenarios, reduce supply voltage by $\frac{1}{2}$ for $\frac{1}{4}$ th power consumption

STATIC POWER

- When V_{GS} drops below V_{th} , I_{DS} still exists leading to static power dissipation
- The current in sub-threshold region is exponentially dependent on V_{th} as well as the operating temperature.
- Hence as V_{th} decreases static power increases exponentially
- Techniques to reduce static power are similar to dynamic power
- HOWEVER, from a static power point of view, pipelining is better than parallelism

METRICS

- Power is good metric for deciding on the thermal envelope of the processor
- Energy is good metric in battery constrained environments
 - Task executed at $\frac{1}{2}$ speed but $\frac{1}{4}$ power means $\frac{1}{2}$ the energy (2T * $\frac{1}{4}$ P = $\frac{1}{2}$ E)
 - 2X battery life!
- Energy*Delay metric gives higher weight to performance
 - Same example above, ED ((2T)² * $\frac{1}{4}$ P) stays same
- Energy*Delay² gives even more weight to performance
 - Same example above shows that $\frac{1}{2}$ speed is 2X worse on ED² metric

PROCESS SCALING AND VARIABILTY

- Process scaling to smaller dimensions leads to
 - Increased magnitude of within-die parameter variations
 - Greater susceptibility to soft errors
 - More rapid wear-out

FAULT vs. ERROR

AN ERROR DUE TO A FAULT IS CONFINED TO A CONTEXT EG, CACHE

WHEN AN ERROR AFFECT COORECT EXECUTION IT BECOMES A FAILURE

DEFINITIONS

- SDC = Silent Data Corruption
- DUE = Detected and unrecoverable error
- SER = Soft Error Rate = SDC + DUE
- Failure are measured as
 - MTTF = Mean Time to Failure
 - FIT = Failure in Time; 1 FIT = 1 failure in billion hours
 - 1 year MTTF = 1 billion/(24*365)= 114,155 FIT
- FIT is commonly used because FIT is additive
- Vulnerability Factor = fraction of faults that become errors
 - Also called derating factor or soft error sensitivity

FAULT CONTAINMENT

EXAMPLE: CACHES

AN SDC OR A DUE BECOMES A FAILURE IF IT AFFECTS PROGRAM EXECUTION

LIFETIME FAILURE RATES

- Failure rate follows bathtub curve
 - Higher failure rates at the initial stage of the manufacturing and operation Long useful life
- Finally ageing-related wear-out errors
 Burn-in testing removes early failure components

SINGLE EVENT UPSETS

- High energy neutron strike
 - Creates electron-hole pairs by splitting silicon nucleus
 - The charge from the pairs travels toward gate diffusion region
 - Causes the transistor charge to flip
 - Causes a bit to flip
 - Both 0 or 1 stored can be flipped (depending on holes or electron interactions)

BIT SOFT ERROR RATES

- SER (λ) = k*flux *bit_area * eQcritical/Qcollect
 - Flux depends on altitude
 - Bit_area is process technology dependent
 - Q_{collect} is charge collection efficiency also technology dependent
 - Charge needed to flip a bit Q_{critical}
 - Q_{critical} a C_{node} * V_{dd}
 - According to scaling rules both C and V decrease and hence Q decreases rapidly

Probability of a soft error in a clock cycle

- $P_{SE} = \sum e^{-\lambda} T_c(\lambda T_c)^k / k!$ for all odd k
- Tc and bit_area decrease, but λ depends exponentially on 1/Qcritical
- Hence probability of soft error is largely dependent on Qcritical

AVF(ARCHITECTURAL VULNERABILITY FACTOR)

- AVF_{bit} = Probability that bit matters
 = # of Errors visible to user / Total # of Bit Flips
- FIT_{bit} = intrinsic FIT_{bit} * AVF_{bit}
- Intrinsic FIT of a bit is P_{SE} and is roughly estimated to be 0.001-0.01 FIT/bit
- If we assume AVF = 100% then we will be over-designing the system.
- Need to estimate AVF to optimize the system design for reliability.

MOORE'S LAW AND SDCs

- Even though fit rate per bit is constant, increasing transistor count raises the system fit rate dramatically
- In 2005, we could meet the target SDC FIT by:
 - With 100% AVF, protect 80% of the bits (20% remain vulnerable)
 - With an AVF of 10%, no protection necessary
- In 2010 we can meet the target SDC FIT with
 - With 100% AVF target SDC is unattainable,
 - With 10% AVF protect 80% of the bits

ACE/unACE BITS IN UARCHITECTURE

- Computing AVF requires identifying ACE (Architecturally Correct Execution) and unACE bits
- Microarchitectural unACE bits:
 - Idle/Invalid State: instructions where the opcode bits do not matter or reserved opcode bits
 - Mis-Speculated State: instructions that are being executed speculatively and are not going to retire due to mis-speculation (or exceptions)
 - All forms of predictors: Branch predictor, RAS
 - Dead Bits: Physical registers that have been read by the last consumer but are not deallocated

ARCHITECTURAL unACE BITS

- NOP instructions: Plenty of them around (particularly in VLIW style processors)
 - Only opcode must be protected everything else is a don't care
- Performance-enhancing instructions: Prefetch, Hint bits
- Predicated-false instructions: Itanium ISA supports predication to remove branch prediction (only predicate is ACE)
- Dynamically dead instructions: due to compiler inefficiencies
- Logical masking: Bit masking operations

ELECTROMIGRATION

- Wire width decreases with scaling
 - But current density increases
 - Nearly 1000 amps can move through a wire
- Metal atoms in wire gather momentum and move with the electron flow
- Leads to shorts and opens in the wires

EM IN SRAM CELLS

Both the BL and BL-bar have unidirectional current causing EM effects

NBTI

+: interface trap

H: hydrogen

←: electric field

NBTI IMPACT

- NBTI affects when a negative bias is applied on PMOS
- The effect goes away when the bias is removed
 - Partially recovers
- Potential to fully recover if the bias is flipped to positive

• Yet, only partially recovery is possible

