第5讲S

组合数学

计数的基本原则

1. 相等规则

如果 A 和 B 是有限集合,且存在从 A 到 B 的双射,则 |A|=|B|

示例

有 5 种冰淇淋

和7种饮料

选择其中一样东西有多少种方法?

加法规则

如果 A 和 B 是不相交的有限集合(即 $A\cap B=\emptyset$),则 $|A\cup B|=|A|+|B|$ 。

乘法规则

如果 A 和 B 是有限集合,则 $|A \times B| = |A| \cdot |B|$ 。

为了证明乘法规则, 我们考虑两个集合

$$A = \{a_1, a_2, ..., a_n\}$$
, $B = \{b_1, b_2, ..., b_k\}$.

我们构建一个决策树来选择 $(x,y) \in A \times B$ 。

根节点包含问题"x 等于什么?"

从根节点出发有 n 个箭头,对应可能的答案 $a_1, a_2, ..., a_n$ 。这些箭头指向第一层节点。

每个第一层节点包含问题: "y 等于什么?"从这些节点出发有 k 个箭头,对应可能的答案 $b_1,b_2,...,b_k$ 。这些箭头指向第二层节点,即叶子节点。

每个叶子节点对应 $A \times B$ 中的一个对。

有 n 个第一层节点,每个节点有 k 个出射箭头。因此,树中有 nk 个叶子节点。

叶子节点和 $A \times B$ 中的对之间存在——对应关系。因此,对的数量等于 $nk = |A| \cdot |B|$ 。

示例: $A = \{a, b, c, d\}$, $B = \{0, 1\}$

这两个规则可以推广到任意数量的集合。

如果 $A_1, A_2, ..., A_k$ 是互不相交的有限集合,则

$$|A_1 \cup A_2 \cup ... \cup A_k| = |A_1| + |A_2| + ... + |A_k|$$
 .

如果 $A_1, A_2, ..., A_k$ 是有限集合,则

$$|A_1 imes A_2 imes ... imes A_k| = |A_1|\cdot |A_2|\cdot ...\cdot |A_k|$$
 ,

作为乘法规则的一个特例,当 $A_1 = A_2 = ... = A_k$ 时,我们得到:

定理:由集合 A(基数为 k)的元素组成的长度为 n的序列的数量等于 k^n 。

顺序选择原理

设序列 $x_1, x_2, ..., x_k$ 是通过依次选择元素 $x_1, x_2, ..., x_k$ 形成的,其中:

- 元素 x_1 可以通过 n_1 种方式选择;
- 对于任意 x_1 , 元素 x_2 可以通过 n_2 种方式选择;
- 对于任意 x_1, x_2 , 元素 x_3 可以通过 n_3 种方式选择;

...

• 对于任意 $x_1, x_2, ..., x_{k-1}$, 元素 x_k 可以通过 n_k 种方式选择。

那么,整个序列可以通过 $n_1 \cdot n_2 \cdot ... \cdot n_k$ 种方式选择。

这个原理可以通过决策树来证明。

词语

字母表是一组字母(符号)的集合。

通过按某种顺序写出字母, 我们得到一个词。

例如,从字母表 $A = \{a, b, c\}$ 中,我们可以形成词:acb, aaaa, bab, cca, b 等。

存在一个**空词**,不包含任何字母。它用 λ 表示。

实际上,词是一个不带括号和逗号的符号序列。

有时, "词"这个术语也被称为"字符串"。

词的**长度**是指它包含的字母数量。

字母表 A 中所有长度为 n 的词的集合记为 A^n 。

特别地, $A^0 = \{\lambda\}$, $A^1 = A$ 。

在基数为 k 的字母表中,长度为 n 的词的数量等于相应序列的数量,即 k^n 。

字母表 A 中所有词的集合记为 A^* 。

因此, $A^* = A^0 \cup A^1 \cup A^2 \cup ... \cup A^n \cup ...$

二进制词的表示

字母表 $\{0,1\}$ 中的词(二进制词)可以用二叉树表示。字母 0 和 1 与从节点出发的两个箭头相对应。

左箭头始终为 0,右箭头始终为 1。沿着从根到某个节点的路径移动,可以读出一个词。这个词由该节点表示。

所有二进制词的集合由一个无限二叉树表示。对于每个词,树中都有一个唯一的节点表示该词。

利用树可以表示任意字母表中的单词。如果字母表由 k 个字母组成,则使用 k 叉树,其中每个节点有 k 个分支,分别用不同的字母标记。

字典序

为什么在世界国家列表中,澳大利亚(Australia)排在奥地利(Austria)之前? 这是因为列表是按字母顺序排列的。这意味着什么呢?

设 A 是一个有限字母表,其上定义了线性顺序(字母表上的字母顺序)。

我们用 < 表示这个顺序。

如果 $x \le y$ 且 $x \ne y$, 则写作 x < y。

字典序是将字母顺序扩展到集合 A^* 上。

对于字典序,我们使用相同的符号 \leq , < 。

首先,我们为相同长度的单词定义字典序。

设 $\alpha=a_1a_2...a_n$ 和 $\beta=b_1b_2...b_n$ 是 A^n 中的单词。

单词 α 在字典序中小于单词 β , 记作

$$\alpha < \beta$$
 .

如果存在某个 i:

$$a_1 = b_1, a_2 = b_2, ..., a_{i-1} = b_{i-1}, \ a_i < b_i$$

传递性证明: $\alpha \leq \beta, \beta \leq \gamma \Rightarrow \alpha \leq \gamma$

如果 $\alpha = \beta$ 或 $\beta = \gamma$, 结论显然成立。

假设 $\alpha \neq \beta$ 且 $\beta \neq \gamma$ 。

设 $lpha=a_1a_2...a_n$, $eta=b_1b_2...b_n$, $\gamma=c_1c_2...c_n$ 。

那么:

 $\alpha \leq \beta \Rightarrow$ 存在 i , 使得 $a_1a_2...a_{i-1} = b_1b_2...b_{i-1}$ 且 $a_i < b_i$,

 $\beta \leq \gamma \Rightarrow$ 存在 k, 使得 $b_1b_2...b_{k-1} = c_1c_2...c_{k-1}$ 且 $b_k < c_k$ 。

考虑两种情况: i < k 和 i > k 。

当 i < k 时:

$$a_1 = b_1 = c_1$$
,

$$a_2 = b_2 = c_2$$
 ,

...,

$$a_{i-1}=b_{i-1}=c_{i-1}$$
 ,

$$a_i < b_i \le c_i$$

因此,
$$a_1 = c_1$$
 , ..., $a_{i-1} = c_{i-1}$, $a_i < c_i$,

所以 $\alpha < \gamma$ 。

• 当 i > k 时, 类似地:

$$a_1=b_1=c_1$$
 ,

$$a_2 = b_2 = c_2$$
,

...,

$$a_{k-1}=b_{k-1}=c_{k-1}$$
 ,

$$a_k = b_k < c_k$$

再次得到 $\alpha < \gamma$ 。

字典序是一个线性顺序。

让我们按字典序列出长度为 3 的二进制单词:

单词	编号
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

编号
$$(a_1a_2a_3) = 4a_1 + 2a_2 + a_3 = a_1 \cdot 2^2 + a_2 \cdot 2^1 + a_3 \cdot 2^0$$

一般情况:长度为 n 的二进制单词

与单词 $\alpha=a_1a_2...a_n$ 关联的整数为:

$$egin{aligned} N(lpha) &= a_1 \cdot 2^{n-1} + a_2 \cdot 2^{n-2} + ... + a_{n-1} \cdot 2^1 + a_n \cdot 2^0 \ &= \sum\limits_{i=1}^n 2^{n-i} \cdot a_i \end{aligned}$$

最小值为

$$N(000...0) = 0$$
,

最大值为

$$N(111...1) = 2^{n-1} + 2^{n-2} + ... + 2^1 + 2^0 = 2^n - 1$$
.

定理: 函数 N 是从 $\{0,1\}^n$ 到 $\{0,1,...,2^n-1\}$ 的双射。

证明: 首先证明单射性。

更准确地说,我们证明如果 $\alpha < \beta$,则 $N(\alpha) < N(\beta)$ 。

确实,设 $\alpha = a_1 a_2 ... a_n$, $\beta = b_1 b_2 ... b_n$ 且 $\alpha < \beta$ 。

那么存在 k ,使得 $a_1a_2...a_{k-1}=b_1b_2...b_{k-1}$,

$$a_k < b_k$$
,即 $a_k = 0$, $b_k = 1$ 。

那么

$$\begin{split} N(\alpha) - N(\beta) &= (a_1 \cdot 2^{n-1} + \dots + a_n \cdot 2^0) - (b_1 \cdot 2^{n-1} + \dots + b_n \cdot 2^0) \\ &= (a_{k+1} \cdot 2^{n-k-1} + \dots + a_n \cdot 2^0) - (2^{n-k} + b_{k+1} \cdot 2^{n-k-1} + \dots + b_n \cdot 2^0) \\ &\leq (2^{n-k-1} + \dots + 2^0) - 2^{n-k} = 2^{n-k} - 1 - 2^{n-k}) = 1 \end{split}$$

因此,

$$N(\alpha) < N(\beta)$$

所以,函数 N 是单射的。

集合 $\{0,1\}^n$ 和 $\{0,1,...,2^n-1\}$ 有相同的基数 2^n 。

由此可以推断,这个函数是满射的。

计算 N^{-1} 函数

如何根据单词的编号计算单词本身?

需要找到 $a_1, a_2, ..., a_n$, 如果已知 x。

假设单词的编号为

$$x = N(\alpha) = a_1 \cdot 2^{n-1} + a_2 \cdot 2^{n-2} + ... + a_{n-1} \cdot 2^1 + a_n \cdot 2^0$$

需要找到 $a_1, a_2, ..., a_n$, 如果已知 x 。

实际上,这涉及计算数字 x 的二进制表示。

我们从第一个字母 a_1 开始。

如果 $a_1 = 0$, 那么 $N(\alpha) < 2^{n-2} + \cdots + 2^0 = 2^{n-1} - 1$,

如果 $a_1=1$,

因此,我们通过比较 x 和 2^{n-1} 来确定 a_1 :

如果 $x \geq 2^{n-1}$,则 $a_1 = 1$,否则 $a_1 = 0$ 。

然后,我们从 x 中减去 $a_1 \cdot 2^{n-1}$,并以类似的方式通过与 2^{n-2} 比较来确定 a_2 ,以此类推。

对于 n=3, 这个算法可以用决策树表示:

在一般情况下,可以用伪代码描述如下:

输入: $n\in\mathbb{N}$, $x\in\mathbb{N}_0$, $x<2^n$

输出: $a_1,a_2,...,a_n$, $a_i \in \{0,1\}$ 对于 i=1,2,...,n

for
$$i = 1$$
 to n do
if $x < 2^{n-i}$
then $a_i := 0$
else $\{a_i := 1; x := x - 2^{n-i}\}$

例如: x=11, n=4

i	问题	a_i	x
1	11 < 8 ?	1	3
2	3 < 4 ?	0	3
3	3 < 2 ?	1	1
4	1 < 1 ?	1	0

字典序的一般定义

对于任意(可能不同)长度的单词,字典序定义如下:

单词 $\alpha=a_1a_2...a_n$ 在字典序中小于单词 $\beta=b_1b_2...b_m$,如果:

存在 i , 使得 $a_1 = b_1$, ..., $a_{i-1} = b_{i-1}$, $a_i < b_i$

或者 n < m 且 $a_1 = b_1$, ..., $a_n = b_n$ 。

例如: $A = \{a,b,c\}$, a < b < c 。那么:

bcabc < bcccaab,

acca < accabca.