Iterative Elimination of Dominated Strategies Lecture 3.1

Definition (Strongly Dominated Strategy): Given $T=\langle N, (S_i)_{i\in N}, (w)_{i\in N}\rangle$ a strategy $g_i\in S_i$ for a player $i\in N$ is called a dominated strategy if there exists a mixed strategy $\sigma_i\in \Delta(S_i)$ $g_i\in S_i$ with $g_i\in S_i$ with $g_i\in S_i$ with $g_i\in S_i$ with $g_i\in S_i$ Lemma: In any game $T = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ if a pure strategy $S_i \in S_i$ in strongly dominated, then, in every MSNE $(T_i^*)_{i \in N}$ of T, we have $T_i^*(S_i) = 0$.

Proof: by contradiction; Suppose there exists an MSNE $(\sigma_i^*)_{i \in N}$ of σ_i^* such that $\sigma_i^*(s_i) \neq 0$ and σ_i^* is strongly dominated by a mixed strategy $\sigma_i^* \in \Delta(S_i)$, we have $\sigma_i^* \neq s_i$

Consider a mixed strategy
$$\pi \in \Delta(S_i)$$
 as follows
$$\pi(S_i') = \sigma_i^*(S_i') + \sigma_i^*(S_i) \cdot \sigma_i(S_i') / (-\sigma(S_i)) + S_i' \in S_i'$$

$$\pi(S_i') > 0 + S_i' \in S_i \qquad \pi(S_i') = 0$$

$$\pi(S_i') = \sum_{S_i' \in S_i} (\sigma_i^*(S_i') + \sigma_i^*(S_i)) / (-\sigma_i(S_i))$$

$$= \sum_{S_i' \in S_i} \sigma_i^*(S_i') + \sum_{S_i' \in S_i'} \sigma_i(S_i')$$

$$= \sum_{S_i' \in S_i'} \sigma_i^*(S_i') = 1$$

We have
$$u_{i}(\tau, \tau_{i}^{*}) > u_{i}(\beta_{i}, \tau_{i}^{*}) \quad [\text{by our assumption}]$$

$$u_{i}(\pi, \tau_{i}^{*}) = \sum_{\beta_{i} \in S_{i}} u_{i}(\beta_{i}, \tau_{i}^{*}), \pi(\beta_{i}^{*})$$

$$= \sum_{\beta_{i} \in S_{i}} v_{i}(\beta_{i}^{*}), u_{i}(\beta_{i}^{*}, \tau_{i}^{*}) + \sum_{\beta_{i} \in S_{i}} u_{i}(\beta_{i}^{*}, \tau_{i}^{*}), \tau_{i}^{*}(\beta_{i}^{*})$$

$$= \sum_{\beta_{i} \in S_{i}} v_{i}(\beta_{i}^{*}), u_{i}(\beta_{i}^{*}, \tau_{i}^{*}) + \sum_{\beta_{i} \in S_{i}} u_{i}(\beta_{i}^{*}, \tau_{i}^{*}), \tau_{i}^{*}(\beta_{i}^{*})$$

$$= \sum_{\beta_{i} \in S_{i}} v_{i}(\beta_{i}^{*}), u_{i}(\beta_{i}^{*}, \tau_{i}^{*}) + \sum_{\beta_{i} \in S_{i}} u_{i}(\beta_{i}^{*}, \tau_{i}^{*}), \tau_{i}^{*}(\beta_{i}^{*})$$

$$= \sum_{\beta_{i} \in S_{i}} v_{i}(\beta_{i}^{*}), u_{i}(\beta_{i}^{*}, \tau_{i}^{*}) + \sum_{\beta_{i} \in S_{i}} u_{i}(\beta_{i}^{*}, \tau_{i}^{*}), \tau_{i}^{*}(\beta_{i}^{*})$$

$$= \sum_{\beta_{i} \in S_{i}} u_{i}(\beta_{i}^{*}, \tau_{i}^{*}) + \sum_{\beta_{i} \in S_{i}} u_{i}(\beta_{i}^{*}, \tau_{i}^{*}), \tau_{i}^{*}(\beta_{i}^{*})$$

$$= \sum_{\beta_{i} \in S_{i}} u_{i}(\beta_{i}^{*}, \tau_{i}^{*}) + \sum_{\beta_{i} \in S_{i}} u_{i}(\beta_{i}^{*}, \tau_{i}^{*}), \tau_{i}^{*}(\beta_{i}^{*})$$

$$= \sum_{\beta_{i} \in S_{i}} u_{i}(\beta_{i}^{*}, \tau_{i}^{*}) + \sum_{\beta_{i} \in S_{i}$$

$$= u(\sigma_{i}^{*}, \sigma_{i}^{*}) - \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \frac{\sigma_{i}^{*}(s_{i})}{1 - \sigma_{i}(s_{i})} [u(\sigma_{i}, \sigma_{i}^{*}) - u(s_{i}, \sigma_{i}^{*})]$$

$$= u(\sigma_{i}^{*}, \sigma_{i}^{*}) + u(s_{i}^{*}, \sigma_{i}^{*}) \cdot \sigma_{i}^{*}(s_{i}) - \sigma_{i}^{*}(s_{i}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}(s_{i}) \cdot \sigma_{i}^{*}(s_{i}^{*}).$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*})$$

$$= u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s_{i}^{*}) \cdot u(s_{i}^{*}, \sigma_{i}^{*}) + \sigma_{i}^{*}(s$$

This contradicts our assumption that $(\sigma_i^*)_{i \in N}$ is an MSNE.