ID Generic contributions to the CMB spectrum

We know from the previous section that S(k,q) receives 3 contributions: Sachs Wolfe (SW) term in $G_0 + \Phi$, Doppler term in G_0/k , and Integrated Sachs-Wolfe (ISW) in $S_0 d\eta$ (\$\Psi + \Psi'). These terms all combine with each other in the final G_0 's. The phenomenology of the ISW is different from the other ones, so we will first study this term separately.

V.4.A) Integrated Sochs-Wolfe contribution

We focus on $S(k_{N})^{TSW} = [\Psi'(k_{N}) + \Phi'(k_{N})] e^{-2}(S(k))$ (we can assume that all participations are computed from IC[S(k)] = I[and dropit])
giving raise to: $\Delta e^{-1}(k_{N}) = \int_{0}^{15W} dk_{N} \int_{0}^{15W} e^{-1}(k_{N}) dk_{N} dk_{N$

and to: Ce = 2 Sak (Se (k, ye)) Sa(k)

Instantaneous decoupling => Selvino) ~ San (4'+4) je(kno-20)

Limber approximation (not accorde, but ox for qualitative description) => Ze(kno)~ (TE 元 (41+中))k, york for york >note (10 for note >note) (10 for note >note)

Things get more dear by changing variable (from k to conformal time): $N = N_0 - \frac{1}{k}$, $\frac{dk}{dk} = -\frac{dN}{N_0 - N}$ Then:

Between you and η_0 , do we have variations of 4 and 4? We know that 4 and 4 are constant during μD , so the contribation is expected to come from $\eta_n \leq \eta_0 \leq \eta_0$. M/Λ equality.

However, at n=ndec, 4 and & are not fully stabilized because R/M equality took place recently, and the photon pressure cannot be completely neighbored, leading to \$144 \$0 on sub-horizon scales.

In (km) space, regions where (+'+4') does not vanish:

(see Chapter III

The integral most be carried along lines with $K(y) = \frac{\rho}{2\pi e^{-y}}$:

A reasonable based on the time-evolution and kdependence of \$\frac{\psi + \psi}{\infty}\$ (constant for scales kacadethous,
decreasing with k on larger k's) lead to the conclusion
that \$C_{e}^{\mathrm{ISW}}\$ is significant. For two cases:

Enzma, kn of Eliste ISW" (LISW)

and Enander, kn of C" Early ISW" (EISW)

For En No-nder a 800

Male

Final result:

P²Ce

LISW

EISW

Man

Pagion

Fagion

Fagion

V.4.B) Sadus- V	Volfe cartri	Extian	For SMAI	
The non-	15W piece	non-1sw in Sara	reads	8m/ + 00] 2,	x + (8= 06)/
		,			R)
	013	_	. 66	· - 1	

Setting Q(R) to one and using the instrutaneous decoupling approximation,

Delk, MD 2 [Do ++] K, Mac Se (K(No-Year) + K [OD] K, Mac Se (K(No Year))

We know that dominant contribution to $\hat{g}e(x)$ and $\hat{g}e(x)$ comes from $X \sim G(R)$; so, here, for fixed R, $|Q_{R}(k,m_{0})|$ peaks near $k \sim \frac{R}{N_{0} - M_{0} R}$

So Ce = 2 S dr (Se (K, No) Se(k) depends

mainly on [Do+4](P) and [Db](P) and [Db](Pondec) rdec)

which just reflect the relation between angles and comoving distances on the last scattering surface:

We have $\overline{K} = \Gamma ss \overline{\xi} = (\eta_0 - \eta_0 dec) \overline{\xi} \Rightarrow k = \frac{\varrho}{\eta_0 - \eta_0 dec}$

So, small e's only receive a contribution from small h's; In particular, from he adac Holec = I note that a remember the notes.

remember that comoving horizon ~ Sat ~ M nearly equal to comoving Hubble cadius at

So, for Ce's with & G-100 we can use the results of Chapter II for super-Hubble scales at the time of decoupling (during MD):

* $\Theta_0 + \phi = \frac{1}{5} S_0 + \phi = \left(-\frac{2}{5} + \frac{3}{5}\right) \mathcal{R} = \frac{1}{5} \mathcal{R}$

* Ob plays negligible role (note: Einstein $\Rightarrow \frac{\Theta_{\text{tot}}}{K} \sim \frac{k}{\alpha H} + \Phi$)

So $\triangle e(k, N_0) \simeq \frac{1}{5} \hat{\beta} e(k(n_0 - N_0 dec))$ $\Rightarrow \hat{C}_e = \frac{1}{2\pi^2} \hat{S}_K^{ak} = \frac{1}{25} \hat{\beta} e(k(n_0 - N_0 dec)) \hat{S}_R(k)$

Exact solution for $S_{\mathcal{R}}(k) = \text{cte}(n_{s}=1, \text{ Harrison 2el'dovitch})$. $C_{e} = \frac{1}{4\pi^{2}} \frac{S_{e}}{2s} S_{x}^{2s} \frac{\delta^{2}(x)}{\delta^{2}(x)} = \frac{1}{4\pi^{2}} \frac{S_{e}}{2s} \frac{1}{201040}$

So lead Con-ISW = Se JOOTTZ

If n=1, l(fl+1)(e gets a non-zero slope as a function of l.

V4.0) Sadra-Wolfe and Doppler contribution: large 1's:

We need Got and Gb at the time of decorpting for ky adactide (knyder 7-1), ie for modes experiencing accoustic oscillations.

D First guess:

We start from a very crude approach: we take the results of Chapter II for the sub- Hubble evolution during RD (based on a tightly coupled photon-baryon fluid with Pb copy and cost and extrapolate them till decoupling! We know that at fixed n (say, neg) we then have:

- * En = 1 St goes from constat on smallk to cos(kgN)

 for ky 31
- * & goes from constant on small k to cos(kgn) for ky?
- * until decoupling, $\Theta_b = \Theta_8$, so $\Theta_b = \Theta_8 \left(= -3 \Theta_4 \right)$ goes from zero to sin (KG_8N) (since $\Theta_8 \propto S_8^2$) a comes from

The Ce's depend on the square of this qualities (actually, not the Ce's, but eller) Ce, due to the Bessel Functions); with the correspondence kes honder:

Adding ISW:

This picture is wrong for 2 reasons (mainly):

(i) we treated 846 as fluid with QLECQ8 (leading to Plot Stat = Proby and G=3) and self-gravitating (wrong after equality)

(ii) we frested decoupling as instantaneous
We can overcome (i) with our knowledge of exact coupled equations

photon-baryon fluid in 1st order Hight coopling

approximation

Beltzmenn:
$$(2)$$
 + k (4)

$$\Theta_{k} - \frac{k}{3} \Theta_{0} + \frac{2k}{3} \Theta_{1} = \frac{k}{3} \Phi + \tau' \left(\frac{\theta L}{3k} + \Theta_{1} \right)$$
 (2)

$$(3)$$

Ewler For boryons:
$$\Theta_b^2 = -\frac{2}{6}(\Theta_b - \lambda^2 \Phi + \frac{7}{6}(\Theta_b + 3\lambda \Theta_b))$$
 (4)

with $R = \frac{3eb}{4e8} \propto a$

$$(3) \Rightarrow (2) = \frac{1}{2} (2) + \cdots$$

(4) =>
$$\Theta_b = -3k \Theta_1 + \frac{P}{C} (\Theta_b^2 + \frac{Q}{2} \Theta_b + k^2 \Phi)$$
 (6)

* Solution at order 0 in z^{-1} : taking $z^{-1} = 0$ in (5,6) we get $\Theta_z = 0$ and $\Theta_b = -3k\Theta_t$.

4 Solution at order 1 in zrt: insert above solutions

Replace in (2):

$$(\Omega_1)^{-\frac{1}{3}} (\Omega_0) + \frac{1}{3}(1)^{-\frac{1}{3}} = \frac{1}{3} + \frac{1}{3} \frac{1}{4} (-3k (\Omega_1)^2 - 3k (\Omega_1)^2 + k^2 + k^2$$

We can replace of using (1): Of = (41-00)/k; finally:

Equation way more complicated than simplistic equation for $S_8 = S_7$ in Chapter II. Let us stress a few important differences:

* effective mass $\frac{kZ}{3(4R)} = RC_3^2$ is not constant (RP, c_3Z) .

Oscillation depend on $cos[Skc_3dy]$

= KSdrcs = k ds

* baryon damp fluctuations (friction term) when RZ-1,

* zero-point of oscillations, given by \(\Pi_b'=0\) (neglecting

Zero-point of oscillations, given by \$\Po'=0 (neglecting \$\Po'), depends on complicated evolution of \$\phi\$ and \$\Ps. Assuming \$\Phi\$ and \$\Ps.\$ be constant at decoupling. The zero-point is given by

 $\frac{k^2}{3(4+R)}$ $\Theta_{S}^{eq} = -\frac{k^2}{3} + (5) \Theta_{S}^{eq} = -(4+R) +$

Sachs-Wolfe term @o+& oseilbles around -R&!! Baryon lift zero-point from O!

Interpretation: Raffeds balance between gravity and pressure in Fluid. RA: more gravity, more compression in potential wells...

Consequence for Ce's:

Taking into account (ii) (the fact that decoupling is not instantaneous) requires to work at higher order in z.1. In summary, Boltzmann gives:

As long as k < z', ω_{ezz} remains zero. But z' decreases when k > z', ω_{ezz} remains zero. But z' decreases when k > z', ω_{ezz} remains zero. But z' decreases transfer of power from small ℓ 's to large ℓ 's, starting from largest k. Consequence: near M_{dec} , ω_{ezz} for largest k (effect equivalent to multiplying by $e^{-k/k}$ where k' and "damping horizon" but from z' . This effect is called "Silk damping".

physical interpretation of Silk damping photon mean free path of time η : $\lambda = \text{velacity} \times [\text{scattering rate}]^{-1} \sim C/Z'$

So, I goes gradually from O to so near y dec.

* When Lac size of ST Cluctuations, observer can only see monopole and dipole:

x : point where photon seen in last scattered

* when \> size of ST fluctuations, monopole averaged to zero, high & populated:

observer sees many cold /hot spots under angle depending on structure size devided by mean free path

The damping of Ce's for large I's can be understood as a loss of coherence:

@ Summary of contributions to CHB spectrum:

where we took into account =

- early ISW
- oble ISW
- -0 Sachs-Wolfe with asymptory due to baryons, and Silk damping for large e's
- Doppler effect