Elementos de Probabilidades e Teoria de Números

Teste - Teoria de Números

	dur	ação: 2 hor	as	
Nome:		Número:		
Grupo I				
	rupo, cada resposta correta tem a cotação de 0,75 valores e cada resposta erra A cotação mínima do grupo é de 0 valores.		nta (V) ,25 F
1.	O resto da divisão de 2380 por -26 é 14 .	[
2.	Para quaisquer $a,b,c\in\mathbb{N}$, se $a\mid b$ e $a\nmid c$, então $a\nmid b+c$.	[
3.	O conjunto $\{5,3,11,9,-4,7,-1\}$ é um sistema completo de resíduos módulo 7 .	[
4.	Para quaisquer $a,b\in\mathbb{N}, \text{ m.d.c.}(a,b)\mid 3a+7b.$	[
5.	O inteiro 4444 é combinação linear de 8 e 24.	[
6.	Para quaisquer $a,b\in\mathbb{N}, \ \mathrm{m.m.c.}(a,b)>b.$	[
7.	Seja $a \in \mathbb{N}$. Se p é um número primo e $p \mid a^2$ então $p^2 \mid a^2$.	[
8.	Qualquer que seja $n\in\mathbb{N}$ tal que $1< n< 830$, se n não admite um divisor d t $1< d\leq 22$, então n é um número primo.	al que [
9.	Para todo o inteiro a , se $2a \equiv_{14} 8$ então $a \equiv_{14} 4$.	[
10.	A congruência linear $33x \equiv_{18} 12$ tem 3 soluções inteiras no intervalo $[1,18].$	[

Grupo II

Indique a sua resposta no espaço disponibilizado a seguir à questão. Neste grupo, respostas sem a apresentação dos cálculos justificativos têm a cotação de 0 valores.

1. Considere as seguintes divisões:

Indique o m.d.c. (1252,268) e exprima-o como combinação linear de 1252 e 268.

2. Sabendo que (20,9) é uma solução da equação diofantina 189x-369y=459, determine todas as soluções da congruência linear $189x\equiv_{369}459$, no intervalo [200,400].

3. Determine o resto da divisão de $22^{126}+1$ por 17.

4. Determine todos os inteiros da forma $\overline{36y7x}$ que sejam divisíveis por 9 e tenham resto 1 na divisão por 4.

Grupo III

Resolva cada uma das questões deste grupo na folha de exame. Neste grupo, respostas sem a apresentação dos cálculos justificativos têm a cotação de 0 valores.

- 1. Considere a equação diofantina: 23x+27y=29. Use o Algoritmo de Euclides, ou congruências, para encontrar uma solução da equação e indique a sua solução geral.
- 2. Resolva a congruência linear $16x \equiv_{108} 260$ e indique a menor solução positiva.
- 3. Determine a solução geral do seguinte sistema de congruências lineares e indique a maior solução negativa:

$$\begin{cases} x & \equiv_7 & 3 \\ x & \equiv_8 & 2 \\ x & \equiv_9 & 4 \end{cases}$$

Cotações: Grupo I: $10 \times 0,75$. Grupo II: $4 \times 1,5$. Grupo III: 2+2+2,5.