MFE 431: Statistical Arbitrage Problem Set 3

Group Québec

Group members: Chong CAO, Yufan WEI

Problem1 Risk Model

The optimum shrinkage intensities (60×1) are defined as the weight placed on shrinkage target ($\bar{\sigma}I$). Therefore, we have

Shrinkage Intensity = $1 - \hat{\beta}$

The shrinkage estimators and shrink intensities are stored as follows

shrink × 60x1 double				covariance × 1x60 struct with 1 field		
	1	2	Fields	⊡ cov		
1	0.0941		1	175x175 double		
2	0.0955		2	179x179 double		
3	0.0940		3	180x180 double		
4	0.1032		4	183x183 double		
5	0.0973		5	182x182 double		
6	0.0939		6	183x183 double		
7	0.0854		7	180x180 double		
8	0.0852		8	176x176 double		
9	0.0753		9	176x176 double		
10	0.0631		10	178x178 double		

The evolution of shrinkage intensity on each trading day is shown below

Problem2 Alphas

The alphas have been cross-sectionally demeaned, standardized and windsorized everyday before and after blending up.

$$\alpha = \sum_{i=1}^{4} w_i \alpha_i$$

where α_i represent short-term contrarian (mean-eversion alpha), short-term procyclical (analyst recommendation alpha), long-term contrarian (value) and long-term procyclical (momentum alpha).

Problem3 Beta Neutral

The "Europe_3_Factors_Daily.csv" is downloaded from Kenneth French Data Library online. The market return and risk-free rate data have been used to estimate market beta for each active stock on each trading day.

1	This file wa	as created	using the 20	01907 Bloo	mberg data	base.				
2										
3	Missing data are indicated by -99.99.									
4										
5										
6										
7		Mkt-RF	SMB	HML	RF					
3	19900702	0.99	0.05	-0.53	0.03					
9	19900703	0.33	-0.12	-0.03	0.03					
0	19900704	0.24	-0.01	-0.14	0.03					
1	19900705	-0.64	0.19	0.06	0.03					
2	19900706	0.08	-0.19	0.14	0.03					
3	19900709	0.49	0.03	-0.27	0.03					
4	19900710	0.01	0.36	-0.39	0.03					
5	19900711	-0.34	-0.49	-0.05	0.03					
6	19900712	0.61	-0.16	-0.02	0.03					
7	19900713	0.48	-0.61	0.03	0.03					
8	19900716	0.31	-0.21	-0.22	0.03					
9	19900717	0.55	0.15	0.26	0.03					
0	19900718	0.12	-0.08	-0.03	0.03					
1	19900719	-0.13	0.3	-0.19	0.03					
2	19900720	0.34	-0.1	0.11	0.03					
13	19900723	-0.07	0.66	-0.01	0.03					
4	19900724	-0.38	0	0.17	0.03					

Problem4 Optimization and Back Test

The first trading day starts on $t_0 = 246$. The optimization parameters controlling turnover and book size have been chosen as $\lambda = 0.001$ and $\mu = 0.1$.

The annualized Sharpe Ratio is obtained as 1.44.