Задание 4 (І курс, весенний семестр 2010г.)

Задача 1.

В вершинах равностороннего треугольника проводятся измерения, по которым методом кригинга прогнозируется значение поля в центре треугольника. Пусть поле стационарно, то есть дисперсия его значения в любой точке постоянна, а корреляционная функция зависит только от расстояния между двумя точками. Вычислить величину прогнозируемого методом кригинга значения поля в центре треугольника и дисперсию этого значения.

Задача 2.

Записать ковариационную матрицу для оценки методом гребневой регрессии по данным, искажённым независимой помехой с нулевым средним значением и дисперсией, равной 2.

Задача 3.

Записать математическое ожидание квадрата уклонения от истинной величины для оценки методом гребневой регрессии по данным, искажённым независимой помехой с нулевым средним значением и дисперсией, равной 2.

Задача 4.

Случайные точки из двух классов располагаются на n-мерной сфере. Точки класса 0 с вероятностью 1 располагаются на полусфере x1>0, точки класса 1 с вероятностью 1 располагаются на полусфере $x1\le 0$. Точки классифицируются на два класса с помощью произвольных выпуклых множеств (точки, принадлежащие множеству, относятся к классу 0, остальные к классу 1).

Можно ли гарантировать, что при достаточно большом числе обучающих примеров будет достигаться минимум среднего числа ошибок классификации на всех множествах, минимизирующих число ошибок на обучающей выборке? Ответ обосновать.

Задача 5.

Пусть коэффициенты разложения $f(x) = a_0 + \sum_{k=1}^{25} (a_k \sin(2pkx) + b_k \cos(2pkx))$ являются независимыми нормально распределёнными величинами со средними значениями 0 и дисперсиями $\mathbf{s}_k^2 = \frac{1}{1+0.12k}$, k=0,...,25. Сгенерировать значения одной реализации функции f(x) на равномерной сетке с узлами $x_i = -1 + \frac{i}{50}$, i=1,...,100. Вычислить вектор u с элементами $u_i = f(t_i) + x_i$, для $t_i = -1 + \frac{i}{25}$ i=1,...,50, где x_i - случайные нормально распределённые величины, имеющие средние значения 0 и дисперсию $\mathbf{s}_x^2 = 0.09$. Вычислить квадратичное уклонение $F(\mathbf{s}) = \sum_{i=1}^{50} (f(z_i) - f_i^{-s})^2$, где $f(z_i)$ - значения сгенерированной ранее реализации функции f(x) в точках $z_i = -1 + \frac{2i-1}{50}$, i=1,...,50, f_i^s -

апостериорное среднее значение случайной величины $f(z_i)$, при наблюдённом векторе u, s^2 - дисперсия возмущения x_i , которая считается неизвестной. Вычислить величину F(s) при различных значениях s, включая s=0.3.

- Построить график F(s) в зависимости от s.
- Описать процедуру определения величины s среднеквадратичного уклонения шума x_i , используя комбинированный подход: максимум правдоподобия Байес (материал лекции от 19.02.2010 г.). Найти оценку s, максимизирующую правдоподобие.
- Сравнить значения F(s) для s = 0.3 и при оценке s, найденной, используя комбинированный подход.
- Повторить вычисления для различных реализаций коэффициентов разложения.
- Сделать выводы.

Задача 6.

Регрессионная зависимость приближается с помощью только одного члена ряда Фурье путём минимизации по a и по k эмпирического риска $J_e(a,k) = \frac{1}{l}\sum_{i=1}^l \left(y_i - af_k(x_i)\right)^2$, где $\left(x_1,y_1,...,x_l,y_l\right)$ - независимая выборка значений пары (x,y), имеющей распределение $P(x,y),\ f_k(x)$ - k – ый член ряда Фурье.

Можно ли утверждать, что при достаточно большом числе l минимум эмпирического риска $J_e(a^*,k^*)=\min_{a,k}J_e(a,k)$ сколь угодно близок к величине среднего риска $J_m(a^*,k^*)=\int (y-a^*f_{k^*}(x))^2dP(x,y)?$ Ответ обосновать.