ECE260: Fundamentals of Computer Engineering

Arithmetic for Computers

James Moscola
Dept. of Engineering & Computer Science
York College of Pennsylvania

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Binary Integer Addition

- Benefit of 2's complement integer representation:
 - Same binary addition procedure will work for adding both signed and unsigned numbers
- If result is out of range, **overflow** occurs
 - Adding positive and negative operands
 - No overflow will occur
 - Adding two positive operands
 - Overflow occurred if sign bit of result is 1
 - Adding two negative operands
 - Overflow occurred if sign bit of result is 0

• Example: $7_{ten} + 6_{ten}$

• Example expanded to show carries inline

Binary Integer Subtraction

- Two options:
 - Subtract numbers directly grade school style
 - Negate 2nd operand and perform an addition
- If result is out of range, overflow occurs
 - Subtracting two positive or two negative operands
 - No overflow will occur
 - Subtracting positive from negative operand
 - Overflow occurred if sign bit of result is 0
 - Subtracting negative from positive operand
 - Overflow occurred if sign bit of result is 1

- Example: 7_{ten} 6_{ten}
 - Grade school style

$$0000 \ 0111_{two} = 7_{ten}$$
 $- \ 0000 \ 0110_{two} = 6_{ten}$
 $= \ 0000 \ 0001_{two} = 1_{ten}$

Negate 2nd operand and add

$$0000 \ 0111_{two} = 7_{ten}$$

+ $1111 \ 1010_{two} = -6_{ten}$
= $0000 \ 0001_{two} = 1_{ten}$

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Up to the programmer to address potential overflow issues
- Other languages (e.g., Fortran, Ada) will cause an **exception** if overflow occurs
 - Exception notifies programmer so that overflow can be handled
- In MIPS, overflow behavior is as follows:
 - Signed instructions raise exceptions (e.g. add, addi, sub)
 - Unsigned instructions do not raise exceptions (e.g. addu, addiu, subu)

• The following table summarizes the results that indicate overflow occurred

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A - B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

- Examples:
 - Result = $Op_A + Op_B$ IF $(Op_A \ge 0 \text{ and } Op_B \ge 0 \text{ and Result} < 0)$ THEN overflow occurred
 - Result = Op_A Op_B IF $(Op_A \ge 0 \text{ and } Op_B < 0 \text{ and Result } < 0)$ THEN overflow occurred

Integer Multiplication

- Here's the classic grade school "Times Table"
 - At some point you probably memorized this

×	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

 Multiplying two numbers together looks something like this:

 Note: multiplying N-digit number by M-digit number gives (N+M)-digit result

Binary Integer Multiplication

- Once again, it's the same as grade school multiplication, only easier
- The "Times Table" is significantly smaller

×	0	1
0	0	0
1	0	1

but the process is exactly the same!

Example of multiplying two numbers together:

• **Note**: multiplying two 4-bit numbers together produces an 8-bit result

Multiplication Hardware & Algorithm

- Basic hardware for 32-bit architecture
 - 64-bit registers for multiplicand and product
 - 32-bit register for multiplier
 - 64-bit ALU to perform repeated additions

Multiplication Example

- Multiplication example using basic hardware and 4-bit inputs
 - 4-bit example requires only 4 iterations, not 32
 - Initialize Product register to 0
 - Example: $2_{ten} \times 3_{ten}$

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

Optimized (for size) Multiplication Hardware

- Reduced hardware requirements
 - Multiplicand register and ALU now 32-bit
 - Multiplier no longer has dedicated register
 - Right half of Product register is initialized with multiplier, left half initialized to zero

Multiplication Example #2

- Be sure to try out the previous multiplication example using the optimized hardware!
 - Example: $2_{ten} \times 3_{ten}$

A Faster Multiplier

- Uses multiple adders in a tree structure
 - Requires more silicon but can be pipelined to perform much faster
 - Cost/performance tradeoff

Signed Multiplication

 Recall from grade school arithmetic that the Product is negative if the signs of the Multiplicand and the Multiplier differ

```
positive × positive = positive
negative × negative = positive
positive × negative = negative
```

- Thus, in hardware:
 - Perform the multiplication algorithm for 31 iterations (not 32) (this ignores the sign bit)
 - If the original sign bits differed, then negate the result
 - Be sure to do sign extension during computation when shifting multiplier to the right

Binary Integer Division

- The grade school long-division algorithm works for binary integer division
 - First, ensure that the divisor is not 0
 - IF divisor ≤ dividend THEN
 place a 1 in the quotient and subtract the
 divisor from the dividend

ELSE

- place a 0 in the quotient and expand the dividend to include the next bit
- When dividend is exhausted, whatever is left over is the remainder

• Example of long-division on binary numbers:

 Note: dividing n-bit operands yields an n-bit quotient and an n-bit remainder

Binary Integer Division

- Several different approaches to perform long-division in hardware
 - Restoring division subtracts the divisor from the dividend without comparing them
 - If the result of the subtraction is < 0, then the dividend was smaller than the divisor
 - Insert a 0 into the quotient
 - Restore the dividend to its previous state by adding the divisor back in
 - If the result of the subtraction is ≥ 0 , then the dividend was larger than or equal to the divisor
 - Insert a 1 into the quotient

Division Hardware & Algorithm

- Basic hardware for 32-bit architecture
 - 64-bit registers for divisor and remainder
 - 32-bit register for quotient
 - 64-bit ALU to perform repeated sub/add ops

Division Example

- Division example using basic hardware and 4-bit inputs
 - 4-bit example requires <u>5 iterations</u> (one more than word size)
 - Initialize Quotient register to 0 / Remainder register to dividend / and place divisor in top half of Divisor register
 - Example: $7_{ten} \div 2_{ten}$

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	①110 0111
1	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	①111 0111
2	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	①111 1111
	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	@000 0011
4	2a: Rem ≥ 0 ⇒ sII Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	@000 0001
	2a: Rem ≥ 0 ⇒ sII Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Optimized (for size) Division Hardware

- Reduced hardware requirements
 - Divisor register and ALU now 32-bit
 - Quotient no longer has dedicated register
 - Right half of Remainder register is initialized with dividend, and left half to 0

- When division operation is complete:
 - Left half of Remainder register contains the 32-bit remainder value
 - Right half of the Remainder register contains the 32-bit quotient value
- Only the "shift left" operation is used for the division operation
 - Well, then why is there a "right shift" input?!??!?!

Combined Hardware for Multiplication/Division

- Same hardware can be used for both multiplication and division algorithms
 - Earlier, reduced hardware requirement for each unit when they were optimized for size
 - Now, reusing same hardware for both MUL and DIV further reduces hardware requirements

A Faster Divider

- Multiplication can be parallelized
 - Additional hardware resources can be used to perform multiplication faster
 - Sacrifice size and cost for better performance
- Division cannot be parallelized like multiplication
 - Dividers are slow _ _ _ _
 - Only produce a single bit for the quotient on each iteration
 - Other, faster division algorithms do exist, but we won't cover them here

Signed Division

 Recall from grade school arithmetic that the Quotient is negative if the signs of the Dividend and the Divisor differ

```
positive ÷ positive = positive
negative ÷ negative = positive
positive ÷ negative = negative
```

- Thus, in hardware:
 - Perform the division algorithm
 - If the sign bits of the dividend and the divisor differ, then negate the quotient
 - Set the sign of the remainder to be the same as the dividend

Floating-Point Numbers

- Floating point numbers are numbers that have "floating" decimal points
- Used to represent non-integer numbers, including:
 - Real numbers
 - Examples: 99.2 3.14159265359
 - Very small numbers such as fractions
 - Examples: 0.00187 -0.1211
 - Very large numbers that cannot be represented using using the provided word size
 - Examples: 987.02×10^9 -0.002×10^{-4}
- In many programming languages, declare floating point numbers as using **float** or **double** keyword
 - Two different floating-point representations: single-precision and double-precision

Single-Precision Floating-Point Representation

- Represented using a single 32-bit word
 - Sign bit (s) specifies sign of the floating-point value
 - 0 indicates a positive / 1 indicates a negative
 - Includes 8-bit exponent and 23-bit fraction
 - Value of floating-point number is computed as:
 with a <u>bias of 127</u> for single-precision values

$$x = (-1)^s \times (1 + fraction) \times 2^{(exponent - bias)}$$

Double-Precision Floating-Point Representation

- Represented using a TWO 32-bit words (totaling 64-bits)
 - Sign bit (s) specifies sign of the floating-point value
 - 0 indicates a positive / 1 indicates a negative
 - Includes 11-bit exponent and 52-bit fraction
 - Value of floating-point number is computed as:
 with a <u>bias of 1023</u> for double-precision values

$$x = (-1)^s \times (1 + fraction) \times 2^{(exponent - bias)}$$

32 bits

Bias? What the heck is that?

- Floating-point numbers can be negative AND also have a negative exponent
 - Example: -0.002×10^{-4}
- The sign bit of a floating-point number indicates the sign of the value, not the exponent
- How about embedding a second sign bit in the exponent (bit 30) and storing as 2's complement?
 - Meh .. it would work, but it would make comparing floating-point values difficult
 - Direct comparison of binary floating-point values would not be possible since negative numbers would "appear" larger than positive numbers
- Instead, bias the exponent value by the largest positive value and adjust exponent when interpreting value of floating-point number
 - Enables DIRECT comparison of binary floating-point numbers

Single-Precision Range

- Exponents 0000_0000_{two} and 1111_1111_{two} are reserved
 - 0_{ten} with a fraction of 0_{ten} indicates the value zero
 - 255_{ten} with a fraction of 0_{ten} indicates the value ∞
 - 255_{ten} with a nonzero fraction indicates the value NaN (Not a Number)
- Smallest value in single-precision range:
 - Binary exponent value: 0000_0001_{two}
 - Actual exponent after biasing: $1_{ten} 127_{ten} = -126_{ten}$
 - Binary fraction value: 000_0000_0000_0000_0000_0000
 - Significand: $1_{ten} + 0_{ten} = 1_{ten}$
 - Final value: ± significand × 2actual_exponent
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Single-Precision Range (continued)

• Largest value in single-precision range:

- Binary exponent value: Actual exponent after biasing: $254_{ten} - 127_{ten} = +127_{ten}$
- Binary fraction value: Fraction value: Significand:
- Final value:

```
1111_1110<sub>two</sub>
           111_1111_1111_1111_1111<sub>two</sub>
           \approx 1_{\text{ten}}
           1_{\text{ten}} + 1_{\text{ten}} \approx 2_{\text{ten}}
           ± significand × 2actual_exponent
           \pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}
```

Double-Precision Range

- Exponents 000_0000_0000 and 111_1111_1111_two are reserved
 - 0_{ten} with a fraction of 0_{ten} indicates the value zero
 - 2047_{ten} with a fraction of 0_{ten} indicates the value ∞
 - 2047_{ten} with a nonzero fraction indicates the value NaN (Not a Number)
- Smallest value in double-precision range:
 - Binary exponent value: 000_0000_0001_{two}
 - Actual exponent after biasing: $1_{ten} 1023_{ten} = -1022_{ten}$
 - Binary fraction value: 000_0000_0000 0000_0000_0000 two (52 bits of zeros)
 - Significand: $1_{ten} + 0_{ten} = 1_{ten}$
 - Final value: ± significand × 2actual_exponent
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Double-Precision Range (continued)

• Largest value in double-precision range:

- Binary exponent value: $111_{-1111}_{-1111}_{-1110}_{two}$ Actual exponent after biasing: $2046_{ten} - 1023_{ten} = +1023_{ten}$
- Final value: $\pm \text{ significand} \times 2^{\text{actual_exponent}}$ $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Single-precision
 - Approximately 2-23
 - Can represent a value x and $(x + 2^{-23})$, but not the numbers in between
- Double-precision
 - Approximately 2-52
 - Can represent a value x and $(x + 2^{-52})$, but not the numbers in between

Floating-Point Example

What number is represented by the single-precision floating-point value?

• Sign bit: 1 (negative number)

Exponent: $1000_{0001_{two}} = 129_{ten}$

Fraction: 010_0000_0000_0000_0000_0000_{two}

$$(0 \times 2^{-1}) + (1 \times 2^{-2}) = 0 + (1 \times \frac{1}{4}) = \frac{1}{4} = .25$$

$$x = (-1)^s \times (1 + fraction) \times 2^{(exponent - bias)}$$

= $(-1)^1 \times (1 + .25) \times 2^{(129 - 127)}$
= $-1 \times 1.25 \times 2^2$
= -5.0