Predicate logic over a type setup

Russell'08: Proof Theory meets Type Theory, Swansea, 15-16 March 2008.

Peter Aczel

petera@cs.man.ac.uk

Manchester University

Type setups and logic enriched type theories

- Dependent type theories often use a fixed interpretation of the logical notions; e.g. props-as-types or some variant.
- Logic enriched type theories leave logic uninterpreted.

Plan of Talk

- Some dependent type theories and their logics
- Some category notions for type dependency
- Type setups
- Logic over a type setup
- The disjunction and existence properties
- Propositions as types

Basic Martin-Lof type theory, with the forms of type

$$(\Pi x : A)B(x), (\Sigma x : A)B(x), A_1 + A_2, N_k(k = 0, 1, ...), I(A, a_1, a_2)$$

with
$$A_1 \to A_2 =_{def} (\Pi_{-} : A_1) A_2$$
, $A_1 \times A_2 =_{def} (\Sigma_{-} : A_1) A_2$.

Propositions-as-Types (à la Curry-Howard) Proposition = Type

Prop		\vdash	$A_1 \supset A_2$	$A_1 \wedge A_2$	$A_1 \vee A_2$
Type	N_0	N_1	$A_1 \rightarrow A_2$	$A_1 \times A_2$	$A_1 + A_2$

Prop	$(\forall x : A)B(x)$	$(\exists x : A)B(x)$	$(a_1 =_A a_2)$
Type	$\Pi x : A)B(x)$	$(\Sigma x : A)B(x)$	$I(A, a_1, a_2)$

Martin-Lof type theory in a logical framework
 This has a predicative type universe of sets/propositions:

Proposition = Set = Datatype

 $(\forall x:A)B(x): Prop \text{ can only be formed if } A: Set.$

- Coq type theory (a calculus of inductive constructions) This has a predicative type universe Set of datatypes and an impredicative type Prop where $(\Pi x : A)B(x) : Prop$ can be formed even when we do not have A : Set.
- The impredicative Russell-Prawitz representation of logic in Prop is used; This representation can be given in terms of the Russell-Prawitz modality, J, where J asigns to each type A the type JA : Prop, where

$$JA \equiv (\Pi p : Prop)((A \rightarrow p) \rightarrow p).$$

Propositions-as-Types (à la Russell-Prawitz) Proposition = type in Prop

Prop	<u>L</u>	T	$A_1 \supset A_2$	$A_1 \wedge A_2$	$A_1 \vee A_2$
Type	JN_0	JN_1	$A_1 \rightarrow A_2$	$J(A_1 \times A_2)$	$J(A_1 + A_2)$

Prop	$(\forall x : A)B(x)$	$(\exists x : A)B(x)$	$(a_1 =_A a_2)$
Type	$\Pi x : A)B(x)$	$J(\Sigma x : A)B(x)$	$JI(A, a_1, a_2)$

$$JA \equiv (\Pi p : Prop)((A \rightarrow p) \rightarrow p).$$

$$JA : Prop$$

- So the propositions-as-types- à-la-Russell-Prawitz representation of intuitionistic logic is the result of applying the propositions-as-types-à-la-Curry-Howard representation of intuitionistic logic followed by the j-translation of intuitionistic logic into itself.
- The j-translation generalises the ¬¬-translation for any unary connective j satisfying the laws

$$\phi \supset \mathsf{j}\phi$$
 and $(\phi \supset \mathsf{j}\psi) \supset (\mathsf{j}\phi \supset \mathsf{j}\psi).$

• Note: For types *A*, *B*,

$$j1:A \rightarrow JA$$
 and $j2:(A \rightarrow JB) \rightarrow (JA \rightarrow JB)$

Logic enriched type theories

These are obtained from type theories by simply adding a logic 'on top', using the types of a type theory as the possible ranges of the free and bound variables.

- Dependently Sorted Logic is obtained as a logic enrichment of an elementary type theory whose types and typed terms are just the sorts and sorted terms built up using sort and term constructors that may be dependent.
- Each sort has the form $F(t_1, \ldots, t_n)$, where F is a sort constructor and t_1, \ldots, t_n are terms whose types match the argument types of F.
- Makkai's FOLDS is dependently sorted logic without function symbols.

Category notions for the semantics of type dependency

- Category with attributes Cartmell 1978, Moggi 1991,
 Type category Pitts 1997
- Contextual category Cartmell 1978, Streicher 1991
- Category with families Dybjer 1996, Hoffman 1997
- Category with display maps (less general) Taylor 1986,
 Lamarche 1987, Hyland and Pitts 1989
- Comprehension category (more general) Jacobs 1991
- other relevant notions: locally cartesian closed categories, fibrations, indexed categories
- Type setups (for syntax) new notion

Category with families (CwF)

- a category Ctxt of contexts Γ and substitutions $\sigma: \Delta \to \Gamma$, with a distinguished terminal object (),
- a functor $T: Ctxt^{op} \to Fam$ mapping

$$\Gamma \mapsto \{Term(\Gamma, A)\}_{A \in Type(\Gamma)}$$

and, if $\sigma:\Delta\to\Gamma$ then

$$A \in Type(\Gamma) \mapsto A\sigma \in Type(\Delta)$$

 $a \in Term(\Gamma, A) \mapsto a\sigma \in Term(\Delta, A\sigma)$

■ an assignment, to each context Γ and each $A \in Type(\Gamma)$, of a comprehension $(\Gamma.A, p_A, v_A)$ such that $p_A : \Gamma.A \to \Gamma$ and $v_A \in Term(\Gamma.A, Ap_A)$;

i.e. a terminal object in the category of (Γ', θ, a) such that $\theta : \Gamma' \to \Gamma$ and $a \in Term(\Gamma', A\theta)$.

The large CwF of sets

- Ctxt = Set and, for each set I,
- $ightharpoonup Term(I, A) = \prod_{i \in I} A_i$ and, if $\sigma: J \to I$ in Set,
- \bullet $a\sigma = \{a_{\sigma j}\}_{j \in J}$, for $a = \{a_i\}_{i \in I}$.
- $I.A = \sum_{i \in I} A_i,$
- ightharpoonup $p_A(i,x)=i$ for $(i,x)\in I.A$,
- $\mathbf{v}_A = \{x\}_{(i,x) \in I.A}$

The notion of a type setup abstracts away from the details of how terms and types are formed, but keeps the following notions.

- ullet contexts Γ ,
- substitutions $\sigma: \Delta \to \Gamma$, between contexts, the contexts and substitutions forming a category Ctxt,
- $\iota_{\Gamma}: \Gamma \to \Gamma$ is the identity on Γ and $\sigma \circ \tau: \Lambda \to \Gamma$ is the composition of $\sigma: \Delta \to \Gamma$ and $\tau: \Lambda \to \Delta$.
- **●** For each context Γ, there is the set $Type(\Gamma)$ of Γ-types A and the set $Term(\Gamma, A)$ of Γ-terms a of type A, for each Γ-type A.
- Substitutions must 'act' on types and terms to give a functor $T: Ctxt^{op} \to Fam$, where Fam is the category of set-indexed families of sets.

For each context Γ

$$T(\Gamma) = \{Term(\Gamma, A)\}_{A \in Type(\Gamma)}$$

 \bullet For each substitution $\sigma:\Delta\to\Gamma$, $T(\sigma):T(\Gamma)\to T(\Delta)$ maps

$$A \in Type(\Gamma) \mapsto A\sigma \in Type(\Delta)$$

 $a \in Term(\Gamma, A) \mapsto a\sigma \in Term(\Delta, A\sigma)$

such that

$$A\iota_{\Gamma}=A$$
 and $a\iota_{\Gamma}=a$

and if also $\tau:\Lambda\to\Delta$ then

$$A(\sigma \circ \tau) = (A\sigma)\tau$$
 and $a(\sigma \circ \tau) = (a\sigma)\tau$.

• Each context Γ is a finite sequence

$$x_1:A_1,\ldots,x_n:A_n$$

of typed variable declarations.

- The empty sequence () is a context.
- If $\Gamma \equiv x_1 : A_1, \dots, x_n : A_n$ then

$$\Gamma' \equiv \Gamma, x : A \equiv x_1 : A_1, \dots, x_n : A_n, x : A \text{ is a context iff}$$

- ightharpoonup Γ is a context,
- x is a variable, not in $\{x_1,\ldots,x_n\}$ and
- \bullet $A \in Type(\Gamma)$.

• If Γ, Δ are contexts, with

$$\Gamma \equiv x_1 : A_1, \dots, x_n : A_n$$

the each substitution $\Delta \to \Gamma$ has the form

$$[x_1 := a_1, \dots, x_n := a_n]_{\Delta \to \Gamma}.$$

• If $\Gamma' \equiv x_1 : A_1, \dots, x_n : A_n, x : A$ is a context then

$$\sigma' \equiv [\sigma, x := a]_{\Delta \to \Gamma'} \equiv [x_1 := a_1, \dots, x_n := a_n, x := a]_{\Delta \to \Gamma'}$$

is a substitution $\Delta \to \Gamma'$ iff

$$\sigma \equiv [x_1 := a_1, \dots, x_n := a_n]_{\Delta \to \Gamma}$$
 is a substitution, and $a \in Term(\Delta, A\sigma)$.

- If $\Gamma \equiv x_1:A_1,\ldots,x_n:A_n$ is a context then, for $i=1,\ldots,n$, $A_i \in Type(\Gamma)$ and $x_i \in Term(\Gamma,A_i)$.
- If $\sigma \equiv [x_1 := a_1, \dots, x_n := a_n]_{\Delta \to \Gamma}$ is a substitution then it is

the unique substitution $\Delta \to \Gamma$ such that, for $i = 1, \ldots, n$,

$$x_i \sigma = a_i$$
.

• If Γ, Δ are contexts such that $\Gamma \subseteq \Delta$ (i.e. every declaration in Γ is also a declaration in Δ) then

$$Type(\Gamma) \subseteq Type(\Delta) \text{ and } Term(\Gamma, A) \subseteq Term(\Delta, A)$$

for each $A \in Type(\Gamma)$.

• Also, if $\Gamma \equiv x_1:A_1,\ldots,x_n:A_n$ then $\iota_{\Delta\to\Gamma} \equiv [x_1:=x_1,\ldots,x_n:=x_n]_{\Delta\to\Gamma}$

is an inclusion substitution; i.e. for $A \in Type(\Gamma)$ and $a \in Term(\Gamma, A)$,

$$A\iota_{\Delta\to\Gamma}=A$$
 and $a\iota_{\Delta\to\Gamma}=a$.

• If $\Gamma' \equiv \Gamma, x : A$ then $(\Gamma', \iota_{\Gamma' \to \Gamma}, x)$ is a comprehension.

Logic over a type setup

- We assume given a type setup with a predicate signature consisting of a set of predicate symbols, each assigned a context as its arity. We define the formulae and inference rules of a formal system of dependently sorted intuitionistic predicate logic with equality, whose sorts are the types of the type setup and whose individual terms are the terms of the setup.
- We use the predicate signature to define the atomic
 Γ-formulae to have the form

$$P(b_1,\ldots,b_m)$$

where P is a predicate symbol of arity

$$\Delta \equiv (y_1: B_1, \dots, y_m: B_m)$$

and b_1, \ldots, b_m are the terms of a substitution

$$[y_1 := b_1, \ldots, y_m := b_m]_{\Gamma \to \Delta}.$$

The Γ -Formulae

- The formulae are inductively generated using the following rules.
- **•** Every atomic Γ-formula $P(b_1, ..., b_m)$ is a Γ-formula.
- If a_1, a_2 are Γ -terms of a Γ -type A then $(a_1 =_A a_2)$ is a Γ -formula.
- ullet \perp and \top are Γ -formulae.
- If ψ_1, ψ_2 are Γ -formulae then so is $(\psi_1 \Box \psi_2)$, where $\Box \in \{\land, \lor, \supset\}$.
- If ψ_0 is a $(\Gamma, x : A)$ -formula then $(\nabla x : A)\psi_0$ is a Γ -formulae where $\nabla \in \{\forall, \exists\}$.

Substitution

We can define substitution into formulae in more or less the usual way by structural recursion on the formula. So, for each Γ -formula ϕ , we associate with each substitution $\tau: \Lambda \to \Gamma$ a Λ -formula $\phi\tau$ using the following equations.

- If $\phi \equiv P(b_1, \dots, b_m)$ then $\phi \tau \equiv P(b_1 \tau, \dots, b_m \tau)$.
- If $\phi \equiv (a_1 =_A a_2)$ then $\phi \tau \equiv (a_1 \tau =_{A\tau} a_2 \tau)$.
- If $\phi \equiv \bot$ or \top then $\phi \tau \equiv \bot$ or \top respectively.
- If $\phi \equiv (\psi_1 \Box \psi_2)$, where $\Box \in \{\land, \lor, \supset\}$, then $\phi \tau \equiv (\psi_1 \tau \Box \psi_2 \tau)$.
- If $\phi \equiv (\nabla x : A)\psi_0$, where $\nabla \in \{\forall, \exists\}$, then $\phi \tau \equiv (\nabla x : A\tau)\psi_0\tau'$, where $\tau' \equiv [\tau, x := x]_{(\Lambda, x : A\tau) \to (\Gamma, x : A)}$.

The rules of Inference, 1

- These are essentially the standard sequent formulation of the natural deduction rules for intuitionistic predicate logic with equality, using sequents of the form $(\Gamma) \Phi \to \phi$ where Γ is a context, Φ is a finite sequence of Γ -formulae and ϕ is a Γ -formula.
- e.g. here are the quantifier rules:

$$(\forall I) \frac{(\Gamma, x : A) \Phi \Rightarrow \psi_0}{(\Gamma) \Phi \Rightarrow (\forall x : A) \psi_0} (\forall E) \frac{(\Gamma) \Phi \Rightarrow (\forall x : A) \psi_0}{(\Gamma, x : A) \Phi \Rightarrow \psi_0[a/x]}$$

$$(\exists I) \frac{(\Gamma) \Phi \Rightarrow \psi_0[a/x]}{(\Gamma) \Phi \Rightarrow (\exists x : A) \psi_0} (\exists E) \frac{(\Gamma) \Phi \Rightarrow (\exists x : A) \psi_0}{(\Gamma, x : A) \Phi, \psi_0 \Rightarrow \phi}$$

$$(\exists E) \frac{(\Gamma) \Phi \Rightarrow (\exists x : A) \psi_0}{(\Gamma) \Phi \Rightarrow \phi}$$

• Here $a \in Term(\Gamma, A)$ and $[a/x] \equiv [\iota_{\Gamma}, x := a]_{\Gamma \to (\Gamma, x : A)}$.

The rules of Inference, 2

• And here are the equality rules:

$$(= I) \frac{(\Gamma)\Phi \Rightarrow (a_1 =_A a_2)}{(\Gamma)\Phi \Rightarrow (a = Aa)} = (= E) \frac{(\Gamma)\Phi \Rightarrow (a_1 =_A a_2)}{(\Gamma)\Phi \Rightarrow \psi_0[a_1/x]}$$

where a, a_1, a_2 are Γ -terms of type A.

Let Φ be a finite sequence of Δ -formulae.

• Φ has the disjunction property if, for all Δ -formulae ψ_1, ψ_2 ,

$$\vdash (\Delta) \Phi \Rightarrow (\psi_1 \lor \psi_2) \text{ implies } \vdash (\Delta) \Phi \Rightarrow \psi_i \text{ for some } i \in \{1, 2\}.$$

• Φ has the existence property if, for all Δ -types A and every $(\Delta, x : A)$ -formula ψ_0 ,

$$\vdash (\Delta) \Phi \Rightarrow (\exists x : A) \psi_0 \text{ implies} \quad \vdash (\Delta) \Phi \Rightarrow \psi_0[a/x]$$
 for some $a \in Term(\Delta, A)$.

- Φ is saturated if it has both properties.

Define (Δ) $\Phi|\psi$ if $\psi \in \mathcal{X}$, for Δ -formulae ψ , is determined recursively using the following, where $\mathcal{X}_0 = \{\psi \mid \vdash (\Delta) \ \Phi \Rightarrow \psi\}$.

- If ψ is atomic, an equality or \bot or \top then $\psi \in \mathcal{X}$ iff $\psi \in \mathcal{X}_0$.
- $(\psi_1 \wedge \psi_2) \in \mathcal{X}$ iff $\psi_1 \in \mathcal{X}$ and $\psi_2 \in \mathcal{X}$.
- $(\psi_1 \vee \psi_2) \in \mathcal{X} \text{ iff } \psi_1 \in \mathcal{X} \text{ or } \psi_2 \in \mathcal{X}.$
- $(\psi_1 \supset \psi_2) \in \mathcal{X}$ iff $\psi_1 \in \mathcal{X}$ implies $\psi_2 \in \mathcal{X}$ and $\psi \in \mathcal{X}_0$.
- $(\forall x: A)\psi_0 \in \mathcal{X} \text{ iff } \psi_0[a/x] \in \mathcal{X} \text{ for all } a \in Term(\Delta, A) \text{ and } \psi \in \mathcal{X}_0.$
- $(\exists x : A)\psi_0 \in \mathcal{X} \text{ iff } \psi_0[a/x] \in \mathcal{X} \text{ for some } a \in Term(\Delta, A).$

Theorem: The following are equivalent:

- 1. Φ is saturated.
- 2. $(\Delta) \Phi | \phi$ for all $\phi \in \Phi$.
- 3. For every Δ -formula ψ

$$\vdash (\Delta) \Phi \Rightarrow \psi \iff (\Delta) \Phi | \psi.$$

e.g. ∅ is saturated

Lemma 1:

- 1. $(\Delta) \Phi | \psi \text{ implies } \vdash (\Delta) \Phi \Rightarrow \psi$,
- 2. If $\vdash (\Delta)\Phi \Rightarrow \phi$ then $[(\Delta)\Phi, \phi|\psi]$ iff $(\Delta)\Phi|\psi]$.

Proof: By structural induction on ψ .

Lemma 2: If $(\Delta, \forall \Gamma)\Phi | \phi$ for all $\phi \in \Phi$ then

$$\vdash (\Delta, \Gamma)\Phi \Rightarrow \psi \text{ implies } (\Delta, \forall \Gamma)\Phi|\psi.$$

Definition: $(\Delta, \forall \Gamma) \Phi | \psi$ iff

$$\vdash (\Delta, \Gamma)\Phi \Rightarrow \psi \text{ and } (\Delta)\Phi\tau|\psi\tau \text{ for all } \tau \in Subst(\Delta, \Gamma),$$

where $Subst(\Delta, \Gamma)$ is the set of all substitutions $\tau : \Delta \to \Delta, \Gamma$ such that $y\tau = y$ for all $y \in var(\Delta)$.

Corollary: If $(\Delta)\Phi|\phi$ for all $\phi \in \Phi$ then

$$\vdash (\Delta)\Phi \Rightarrow \psi \text{ implies } (\Delta)\Phi|\psi.$$

Types as propositions

- Think of a type A as a proposition which is true if there is a term of type A.
- If A_1, \ldots, A_n, A are Δ -types and x_1, \ldots, x_n are distinct variables not declared in Δ so that

$$\Delta' \equiv (\Delta, x_1 : A_1, \dots, x_n : A_n)$$
 is a context we write

$$(\Delta) A_1, \ldots, A_n \Longrightarrow A$$

if there is a Δ' -term of type A.

- Also, for each Δ -type A let !A be the Δ -formula $(\exists _: A) \top$. Theorem: The following are equivalent:
 - 1. $\vdash (\Delta) !A_1, \ldots, !A_n \Rightarrow !A$.
 - 2. $\vdash (\Delta') \Rightarrow !A$.
 - 3. $(\Delta) A_1, \ldots, A_n \Longrightarrow A$

Π -types, 1

• We say that a type setup has Π -types if the standard formation, introduction, elimination and computation rules for Π -types are correct for the type setup; i.e. if $\Gamma' \equiv \Gamma, x : A$ is a context then there are the following assignments:

$$B \in Type(\Gamma') \qquad \mapsto (\Pi x : A)B \in Type(\Gamma),$$

$$b \in Term(\Gamma', B) \qquad \mapsto (\lambda x)b \in Term(\Gamma, (\Pi x : A)B),$$

$$f \in Term(\Gamma, (\Pi x : A)B)$$

$$a \in Term(\Gamma, A) \qquad \Rightarrow app(f, a) \in Term(\Gamma, B[a/x])$$

such that if $f = (\lambda x)b$ then app(f, a) = b[a/x].

Π -types, 2

• These must commute with substitution; i.e. for each $\sigma: \Delta \to \Gamma$,

$$((\Pi x : A)B)\sigma = (\Pi x : A\sigma)B\sigma',$$

$$((\lambda x)b)\sigma = (\lambda x)b\sigma',$$

$$app(f, a)\sigma = app(f\sigma, a\sigma),$$

where $\sigma' \equiv [\sigma, x := x]_{\Delta \to \Gamma'} : \Delta \to \Gamma'$.

• Also, if $y \not\in var(\Gamma)$ then

$$(\Pi x:A)B=(\Pi y:A)B[y/x]$$
 and $(\lambda x)b=(\lambda y)b[y/x].$

 The requirement that the type setup has other forms of type can be explained in a similar way.

- We assume given a type setup with predicate signature that has the forms of type $(\Pi x:A)B, (\Sigma x:A)B$, with the defined forms $A\to B$ and $A\times B$, the forms of type $A_1+A_2, N_k(k=0,1,\ldots)$ and also has associated with each predicate symbol P of arity the context Δ a Δ -type Pr(P).
- Then the propositions-as-types interpretation recursively associates with each Γ -formula ϕ a Γ -type $Pr(\phi)$ using the following rules.
- If ϕ is the atomic Γ -formula $P(b_1, ..., b_m)$ then $Pr(\phi)$ is the Γ -type $Pr(P)\sigma$ where

$$\sigma = [y_1 := b_1, \dots, y_m := b_m]_{\Gamma \to \Delta}.$$

- If ϕ is $(a_1 =_A a_2)$ then $Pr(\phi)$ is the Γ -type $I(A, a_1, a_2)$.
- If ϕ is \bot or \top then $Pr(\phi)$ is N_0 or N_1 respectively.

- If ϕ is $(\psi_1 \square \psi_2)$, where \square is one of \wedge, \vee, \supset then $Pr(\phi)$ is $(Pr(\psi_1)\square'Pr(\psi_2))$ where \square' is the corresponding one of $\times, +, \rightarrow$.
- If ϕ is $(\nabla x : A)\psi_0$ where ∇ is one of \forall , \exists then $Pr(\phi)$ is $(\nabla' x : A)Pr(\psi_0)$ where ∇' is the corresponding one of Π, Σ .

Proposition: The interpretation is sound; i.e. if $\vdash (\Delta) \Phi \Rightarrow \phi$ then $(\Delta)\Phi \Longrightarrow_{Pr} \phi$, where, if $\Phi \equiv \phi_1, \ldots, \phi_k$ then

$$(\Delta)\Phi \Longrightarrow_{Pr} \phi \text{ iff } (\Delta) Pr(\phi_1), \dots, Pr(\phi_k) \Longrightarrow Pr(\phi).$$

 But the interpretation is not complete as the type theoretic axiom of choice holds; i.e.

Proposition: For any context Γ and any distinct variables x,y, not declared in Γ , if A is a Γ -type, B is a $(\Gamma,x:A)$ -type and θ is a $(\Gamma,x:A,y:B)$ -formula then

$$(\Gamma) (\forall x : A)(\exists y : B)\theta$$

$$\Longrightarrow_{Pr} (\exists z : (\Pi x : A)B)(\forall x : A)\theta[app(z, x)/y].$$

- If Σ is a set of sequents we write $\Sigma \vdash (\Gamma) \Phi \Rightarrow \phi$ if the sequent $(\Gamma) \Phi \Rightarrow \phi$ can be derived using the rules of inference for intuitionistic predicate logic and the sequents in Σ as additional axioms.
- Let AC be the set of all sequents

$$(\Gamma) (\forall x : A)(\exists y : B)\theta \Rightarrow (\exists z : (\Pi x : A)B)(\forall x : A)\theta[app(z, x)/y]$$

and let PaT be the set of all sequents having one of the forms $(\Gamma) \phi \Rightarrow !Pr(\phi)$ or $(\Gamma) !Pr(\phi) \Rightarrow \phi$.

Theorem: The following are equivalent

1.
$$(\Delta) \Phi \Longrightarrow_{Pr} \phi$$
,

2.
$$PaT \vdash (\Delta) \Phi \Rightarrow \phi$$
,

3.
$$AC \cup \Sigma \vdash (\Delta) \Phi \Rightarrow \phi$$
,

where Σ is the set of sequents having one of the forms:

$$\bullet$$
 (Δ) $P \Rightarrow !Pr(P)$,

•
$$(\Delta) ! Pr(P) \Rightarrow P$$
,

•
$$(\Gamma) \Rightarrow (\forall \underline{\ }: I(A, a_1, a_2)) \ (a_1 =_A a_2).$$

Here P is a predicate symbol of arity Δ , A, B are Γ -types and