미국주가

Data-Science stock prediction

2019108078 신민호

CONTENTS

01

개요 및 필요성

02

관련연구

03

데이터 분석 및 모델 학습

04

결론 및 소감

개요

개요

[한국금융신문] 한국인 1070세대 '금융생활지식' 10점 만점에 6.73

2018년 스탠더드앤드푸어스(S&P)가 발표한 '세계 금융이해력 조사'에서 한국은 142개국 중 77위를 차지하며 하위권에 머물렀다.

[문화일보] 한국 국민 경제 이해력 평균 56.3점... 금융 문맹률은 67%에 달해

2021년 기획재정부의 국민 경제 이해력 조사 결과, 국민은 평균 56.3점을 받았다. 2018년 세계 금융 이해력 조사(S&P)에서 한국은 142개국 중 77위를 기록했고, 금융 문맹률이 67% 수준으로 나타났다.

개요

자동화된 의사결정

리스크 관리

관련연구

관련연구

Efficient Market Hypothesis (EMH)

효율적 시장 가설(效率的市場假說)

가격은 상품에 대해 얻을 수 있는 모든 정보를 빠르게 반영하며 이로 인해서 가격 변동을 예측 할 수 없음.

Time-series analysis

시계열 분석(時系列分析)

시계열자료를 분석하고 여러 변수들 간의 인과관계를 분석하는 방법론이다.

Machine Learning

기계분석(機械學習)

03

데이터 분석 & 기계학습


```
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_style("whitegrid")
from pandas.plotting import autocorrelation_plot
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use("ggplot")

#필요한 라이브러리 호출 및 스타일 정의

✓ 0.0s
```

데이터 분석 & 시각화 라이브러리 호출

```
aapl = pd.read_csv("./AAPL.csv")
aapl.head()

    0.0s
```

	Date	Low	Open	Volume	High	Close	Adjusted Close
0	12-12-1980	0.128348	0.128348	469033600	0.128906	0.128348	0.099874
1	15-12-1980	0.121652	0.122210	175884800	0.122210	0.121652	0.094663
2	16-12-1980	0.112723	0.113281	105728000	0.113281	0.112723	0.087715
3	17-12-1980	0.115513	0.115513	86441600	0.116071	0.115513	0.089886
4	18-12-1980	0.118862	0.118862	73449600	0.119420	0.118862	0.092492

데이터 호출

aapl.dtypes					
✓ 0.0s					
Date	object				
Low	float64				
0pen	float64				
Volume	int64				
High	float64				
Close	float64				
Adjusted Close	float64				
dtype: object					

데이터 분석

데이터 기초 통계량 파악

```
plt.figure(figsize=(16,6))
plt.title('AAPL Close Price History')
plt.plot(aapl['Close'])
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()
# 데이터 시작화

✔ 0.4s
```


원본 데이터 시각화

```
data = aapl.filter(['Close'])
# 종가로 필터링

dataset = data.values
# Numpy 배열로 저장

training_data_len = int(np.ceil( len(dataset) * .80 ))
# 트레이닝 데이터 비율 조절

training_data_len

✓ 0.0s
```

훈련 데이터 분리

데이터 스케일링

훈련 데이터 분리

모델 생성(LSTM) 및 훈련

```
test_data = scaled_data[training_data_len - 60: , :]
   x_test = []
   y_test = dataset[training_data_len:, :]
   for i in range(60, len(test_data)):
      x_test.append(test_data[i-60:i, 0])
   x_test = np.array(x_test)
   x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1 ))
   predictions = model.predict(x_test)
   predictions = scaler.inverse_transform(predictions)
   rmse = np.sqrt(np.mean(((predictions - y_test) ** 2)))
   rmse
√ 1.3s
67/67 [=======] - 1s 12ms/step
10.158330477464006
```

데이터 예측 및 성능 확인

예측 데이터 비교 시각화

```
train = data[:training_data_len]
valid = data[training_data_len:]
valid['Predictions'] = predictions
# Visualize the data
plt.figure(figsize-(16,6))
plt.title('AAPL Model')
plt.xlabel('Oate', fontsize-18)
plt.ylabel('Close Price USD ($)', fontsize-18)
plt.plot(train['Close'])
plt.plot(valid[['Close', 'Predictions'])
plt.plot(valid[['Close', 'Predictions'], loc-'lower right')
plt.show()
```



```
plt.figure(figsize=(16,6))
plt.title('AMAZON Close Price History')
plt.plot(amzn['Close'])
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()

0.1s
```


예측 테스트 (동일 모델)

예측 테스트 (동일 모델)

예측 테스트 (추가 학습)

결론 및 소감

결론 및 소감

결론

- 학습되지 않은 데이터에 대해서는 결과의 신뢰도가 떨어짐
- 주식을 시계열 데이터 분석, LSTM을 이용해 기계학습을 하는 것은 합리적이지 않음

소감

- 결과 보다는 경험에 의의
- 생소한 분야에 시야를 넓히게 됨

REFERENCE

Template

• https://slidesgo.com/theme/stock-pitch-deck

Code

- https://www.kaggle.com/code/hajaribrahiem/kagglex-baselines-linear-dense-lstm-cnn-arlstm/input
- https://www.kaggle.com/code/nivmeiri94/data-science-stock-prediction

DataSet

https://slidesgo.com/theme/stock-pitch-deck

Image

- https://time.com/personalfinance/static/f597bfd818ea4639a9e90bda97ac8d63/57e17/Dividend-stocks.jpg
- https://thenounproject.com/icon/money-graph-108601/
- https://www.flaticon.com/kr/free-icon/research_2345221
- https://www.bok.or.kr/portal/bbs/P0000559/view.do?nttld=10076306&menuNo=200690

News

- https://m.weekly.khan.co.kr/view.html?med_id=weekly&artid=202305191125141&code=114
- https://munhwa.com/news/view.html?no=2023112201032005054001