第三章 滤、理想与无界闭集

"每个自然数是四个平方数的和"比"存在一个不可达基数"更是真的吗?我认为不是[它只是更显然],但又不完全确定。

罗伯特·索洛维

3.1 布尔代数

给定任意集合 X, X 的幂集 $\mathcal{P}(X)$ 在 \cap , \cup , - 运算下,形成一个代数结构,这个结构是所谓"布尔代数"的最直观最典型的代表。

定义 3.1.1. 令 $\mathcal{B} = (B, +, \cdot, -, 0, 1)$ 为一个结构,其中 B 是非空集合, $+, \cdot$ 是二元函数, - 是一元函数, 0, 1 为常量。如果 \mathcal{B} 满足以下公理:

- (1) 结合律: a + (b + c) = (a + b) + c, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$;
- (2) 交換律: a + b = b + a, $a \cdot b = b \cdot a$;
- (3) 吸收律: $a + (a \cdot b) = a$, $a \cdot (a + b) = a$;
- (4) 分配律: $a \cdot (b+c) = (a \cdot b) + (a \cdot c), \ a + (b \cdot c) = (a+b) \cdot (a+c);$
- (5) x + (-x) = 1, $x \cdot (-x) = \emptyset$.

则称 3 为布尔代数。

例 3.1.2. 显然, $(\mathcal{P}(X), \cup, \cap, -, X, \emptyset)$ 是一个布尔代数。称为 X 上的集合代数。 如果 $X = \emptyset$,则 $\mathcal{P}(X)$ 只有一个元素 \emptyset ,它也是一个布尔代数。只有一个元素的布尔代数是平凡的。

一个非平凡的布尔代数至少有两个元素 $\{0,1\}$,例如对任意非空集合 X, $\{X,\emptyset\}$ 是一个布尔代数。

令 $B = \{T, F\}$ 为命题真值的集合,则 B 在命题逻辑联结词 \lor 、 \land 和 ¬ 下是一个布尔代数。

例 3.1.3. 令 \mathcal{L} 为命题逻辑的语言, T 为 \mathcal{L} 中的理论。

• 对任意公式 α , β , 定义一个二元关系:

$$\alpha \sim \beta \Leftrightarrow T \vdash \alpha \leftrightarrow \beta$$
.

• 令 $B = \{ [\alpha]_{\sim} \mid \alpha$ 是一个公式 $\}$, 定义 B 上的运算:

$$[\alpha] + [\beta] = [\alpha \lor \beta]$$

$$[\alpha] \cdot [\beta] = [\alpha \land \beta]$$

$$-[\alpha] = [\neg \alpha]$$

$$0 = [\alpha \land \neg \alpha]$$

$$1 = [\alpha \lor \neg \alpha].$$

• $\mathcal{B}(T) = (B, +, \cdot, -, 0, 1)$ 是一个布尔代数。

定义 3.1.4. 如果 A, B 是布尔代数, $f: A \to B$ 映射, 如果 f 满足:

- (1) $f(0_{\mathcal{A}}) = 0_{\mathcal{B}}, \ f(0_{\mathcal{A}}) = 0_{\mathcal{B}};$
- (2) $f(a_1+a_2) = f(a_1) + f(a_2)$, $f(a_1 \cdot a_2) = f(a_1) \cdot f(a_2)$, f(-a) = -f(a)。 就称 f 是 A 到 B 的同态。

如果同态 f 是单射,就称 f 是 A 到 B 的嵌入。 如果 f 还是双射,就称 f 是 A 到 B 的同构。

如果 \mathcal{B} 是一个布尔代数, $A\subseteq B$,并且等同映射 $\mathrm{id}:A\to B$ 是一个嵌入 (注意,这要求 $0,1\in A$ 并且 A 在 \mathcal{B} 的运算下也是一个布尔代数),就称 \mathcal{A} 是 \mathcal{B} 的子代数。

例 3.1.5. 对任意集合 X, $\{X,\emptyset\}$ 是 $\mathcal{P}(X)$ 的子代数。

令 $B = \{T, F\}$, 则 f(T) = X, f(F) = 0 是到 $\mathcal{P}(X)$ 的嵌入, 其中 $X \neq \emptyset$ 为任意非空集合。

所有单点集 $\{a\}$, $f(a) = \emptyset$ 都是到 $\mathcal{P}(X)$ 的嵌入。

今后,我们称 $\mathcal{P}(X)$ 的子代数为**集合代数**。并且,我们会证明,任何布尔代数都同构于一个集合代数。

练习 3.1.6. 令 X 为任意集合, $Y \subseteq X$ 称为在 X 中是余有穷的,如果 X - Y 是有穷集合。对任意集合 X,令 $B = \{Y \subseteq X \mid Y$ 是有穷的或余有穷的},则 $X,\emptyset \in B$ 。证明 B 对 $\cap, \cup, -$ 封闭,所以 \mathcal{B} 是一个布尔代数,是一个集合代数。

练习 3.1.7. 证明不存在基数为 3 的布尔代数。思考一下,一个有穷的布尔代数,其基数需要满足什么条件?

定义 3.1.8. 令 **3** 为任意布尔代数,对任意 $a,b \in B$,我们定义二元关系 a < b 为 $\exists c (c \neq 0 \land a + c = b)$ 。 $a \leq b$ 当且仅当 a < b 或者 a = b。

例 3.1.9. 对任意布尔代数 \mathcal{B} , 我们显然有以下事实: 对任意 $a,b \in \mathcal{B}$,

- $a \le a + b$, $b \le a + b$;
- $a \cdot b < a$, $a \cdot b < b$;
- 对任意 $a \in B$, $0 \le a \le 1$ 。

练习 3.1.10. 令 **3** 为任意布尔代数,

- (1) 证明任意布尔代数 \mathcal{B} 在关系 \leq 下是一个偏序集。
- (2) 证明如果 \mathcal{B} 是一个集合代数,则 < 就是集合上的子集关系 \subset 。

- (3) 对任意 $a, b \in B$, $a \le b$ 当且仅当 $-b \le -a$,
- (4) 对任意 $a, b \in \mathcal{B}$, $a \cdot (-b) = 0$ 当且仅当 $a \le b$ 。(当且仅当 -a + b = 1)。
- **定义 3.1.11.** 对任意布尔代数 \mathcal{B} , 如果一个非零元素 $a \in B$ 满足: 不存在 $b \in B$ 使得 0 < b < a, 就称 $a \notin \mathcal{B}$ 的原子。
 - 一个布尔代数 \mathcal{B} 如果没有原子, 就称 \mathcal{B} 是无原子的。

如果对任意 $b \in \mathcal{B}$,都存在一个原子 $a \in \mathcal{B}$ 使得 $a \leq b$,就称 \mathcal{B} 是原子 化的。

例 3.1.12. 对任意集合 X, X 的有穷子集和余有穷子集构成的布尔代数是原子化的,每个单点集 $\{x\}$ 都是一个原子。

练习 3.1.13. 任何有穷的布尔代数都是原子化的。

引理 3.1.14. 令 \mathcal{B} 为布尔代数, $a \in B$, 则以下命题等价:

- (1) a 是原子。
- (2) 对任意 $b \in B$, $a \le b$ 或 $a \le -b$, 但不能同时成立。
- (3) 0 < a, 并且如果a < b + c, 则a < b或a < c。

证明. (1)⇒(2). 如果 $a \cdot b = c \neq 0$,则 $a = c \leq b$,否则 c < a,与 a 是原子矛盾。如果 $a \cdot b = 0$,则 $a \cdot (-b) \neq 0$,同理 $a \leq -b$ 。如果 $a \leq b$ 且 $a \leq (-b)$,令 $c_1, c_2 \in B$ 为见证 \leq 的元素。我们有 $a + c_1 = -(a + c_2)$,所以 $a \cdot (a + c_1) = 0$,这蕴涵着 a = 0,矛盾。

- (2)⇒(3). 0 < a 是显然的。假设 $a \le b + c$ 并且 $a \not\le b$,则根据(2), $a \le -b$,所以 $a \le (-b) \cdot (b + c) \le (-b) \cdot c \le c$,所以 $a \le c$ 。
- (3)⇒(1). 反设 a 不是原子,令 0 < b < a,并且令 $c \neq 0$ 为见证这一点的元素,则 a = b + c。由于 b 也不为 0,所以 c < a。这样, $a \not\geq b$ 并且 $a \not\geq c$,与(3)矛盾。

定理 3.1.15. 令 \mathcal{B} 为布尔代数, 令 $A \subseteq \mathcal{B}$ 为 \mathcal{B} 中全体原子的集合。定义 $f: \mathcal{B} \to \mathcal{P}(A)$ 为: 对任意 $b \in \mathcal{B}$,

$$f(b) = \{ a \in A \mid a \le b \}, \tag{3.1}$$

则 f 是一个同态映射。如果 B 是原子化的,则 f 是一个嵌入。

证明. 检查 f 是一个同态映射并不困难, 我们留作练习。

练习 3.1.16. 证明 f 是同态映射。

下面我们证明:如果 \mathcal{B} 是原子化的,则 f 是一一映射。注意到,如果 \mathcal{B} 是原子化的,则对任意 $a \in \mathcal{B}$,如果 $a \neq 0$,则 $f(a) \neq \emptyset$ 。现在假设 $b_1 \neq b_2$,则 $b_1 \cdot (-b_2) \neq 0$ 或者 $(-b_1) \cdot b_2 \neq 0$ 。不妨设前者为 $c \neq 0$,则 $f(c) = f(b_1) \cap f(-b_2) = f(b_1) \cap (A - f(b_2)) \neq \emptyset$,所以 $f(b_1) \neq f(b_2)$ 。 \square

推论 3.1.17. 任何原子化的布尔代数都同构于一个集合代数。

注记 3.1.18. 这是斯通表示定理的一个特殊版本。

定义 3.1.19. 对任意的布尔代数 \mathcal{B} , 令 \leq 为 \mathcal{B} 上的标准偏序, $\mathcal{X} \subseteq \mathcal{B}$ 是 \mathcal{B} 的非空子集。

- (1) 如果存在 $u \in \mathcal{B}$ 满足:
 - (a) 对任意 $x \in X$, x < u,
 - (b) 如果有 $b \in B$ 满足对任意 $x \in X$ 都有 $x \le b$,则 $u \le b$ 。

就称 $u \in X$ 的上确界, 一般记作 $\sum X$ 。

- (2) 如果存在 $l \in \mathcal{B}$ 满足:
 - (a) 对任意 $x \in X$, $l \le x$,
 - (b) 如果有 $b \in B$ 满足对任意 $x \in X$ 都有 $b \le x$,则 $b \le l$ 。

就称 $l \in X$ 的下确界,一般记作 $\prod X$ 。

如果对布尔代数 \mathcal{B} 的任意非空子集 X, 都有 $\sum X \in \mathcal{B}$ 并且 $\prod X \in \mathcal{B}$, 就称 \mathcal{B} 是完全的。

练习 3.1.20. 如果 $B = \mathcal{P}(X)$,则对任意 $Y \subseteq B$, $\sum Y = \bigcup Y$, $\prod Y = \bigcap Y$ 。 $\mathcal{P}(X)$ 是完全的布尔代数。

练习 3.1.21. 如果 \mathcal{B} 是一个集合代数并且是完全的,则存在 X , $\mathcal{B} \cong \mathcal{P}(X)$ 。

练习 3.1.22. 在定理3.1.15中,如果 $\mathcal B$ 还是完全的,则 f 是一个同构。所以,如果 $\mathcal B$ 是一个完全的原子化的布尔代数,则存在集合 X , $\mathcal B \cong \mathcal P(X)$ 。【证明:如果 A 是全体原子的集合, $Y \subseteq A$,则 $f(\sum Y) = Y$,所以 f 是一个满射。】

3.2 滤与理想

定义 3.2.1. 令 (P, \leq) 为任意偏序集, $F \subseteq P$, 如果 F 满足

- (1) $F \neq \emptyset$;
- (2) 如果 $p,q \in F$, 存在 $r \in F$, $r \leq p$ 并且 $r \leq q$;
- (3) 如果 $p \in F$ 并且 $p \leq q$,则 $q \in F$,

就称 F 是偏序集 P 上的滤。

定义 3.2.2. \diamondsuit (P, \leq) 为任意偏序集, $I \subseteq P$, 如果 I 满足

- (1) $I \neq \emptyset$;
- (2) 如果 $p, q \in I$, 存在 $r \in I$, $p \le r$ 并且 $q \le r$;
- (3) 如果 $p \in I$ 并且 $q \leq p$,则 $q \in I$,

就称 I 是偏序集 P 上的理想。

例 3.2.3. 偏序集 P 本身是自己上的滤。如果 $p \in P$,则集合 $\{q \in P \mid p \leq q\}$ 是一个滤,称为 p 生成的滤。由一个元素生成的滤称为主滤。

不等于P自身的滤称为"真滤"。

任意布尔代数 \mathcal{B} 上都有一个标准的偏序,因此任意布尔代数上都可以定义滤。如果 $F \subseteq B$ 是滤,则 $1 \in F$ 。

练习 3.2.4. 令 \mathcal{B} 是布尔代数, $F\subseteq B$ 是 \mathcal{B} 上的滤,则 $F\neq B$ 当且仅当 $0\not\in F$ 。

练习 3.2.5. 如果 F 是布尔代数 \mathcal{B} 上的滤, $I = \{-a \mid a \in F\}$ 是 \mathcal{B} 上理想,并且 $F \cup I$ 是 \mathcal{B} 的子代数。

注记 3.2.6. 因此,今后考虑布尔代数上的滤时,我们要求 $0 \notin F$,即,布尔代数上的滤指的是真滤。

引理 3.2.7. 令 \mathcal{B} 为布尔代数, $F \subset B$, 则以下命题等价:

- (1) F 是 B 上的滤;
- (2) F 满足以下条件:
 - (a) $0 \notin F$, $F \neq \emptyset$;
 - (b) 如果 $a,b \in F$,则 $a \cdot b \in F$;
 - (c) 如果 $a \in F$ 并且 $a \leq b$, $b \in F$ 。

证明. 习题。

例 3.2.8. 对任意非空集合 X, $\mathcal{P}(X) - \{\emptyset\}$ 是 $(\mathcal{P}(X), \subseteq)$ 上的滤。 $\{X\}$ 也是 $\mathcal{P}(X)$ 上的滤,称为平凡的。习惯上,如果 $F \subseteq \mathcal{P}(X)$ 是滤,我们更经常地 称其为"X 上的滤"而不称其为" $(\mathcal{P}(X), \subseteq)$ 上的滤"。

定义 3.2.9. 对任意布尔代数 \mathcal{B} ,它的子集 $G \subseteq B$ 如果满足:对任意 $n \in \omega$,任意 $g_1, \dots, g_n \in G$,它们的积不为 0,即, $g_1 \cdot g_2 \cdots g_{n-1} \cdot g_n > 0$,就称 G有**穷交**性质。

练习 3.2.10. 如果 $G \subseteq B$ 有有穷交性质, $a \in B$,则 $G \cup \{a\}$ 或 $G \cup \{-a\}$ 有 有穷交性质。

引理 3.2.11. 令 \mathcal{B} 是布尔代数, $G \subseteq B$ 有有穷交性质, 则

$$F = \{b \in B \mid \exists g \in G(g \le b)\}\tag{3.2}$$

是B上的滤、称为G生成的滤。

练习 3.2.12. 如果 F 是由 G 生成的滤,则 F 是包含 G 的最小的滤,即, $G \subseteq F$ 并且如果 $F' \supseteq G$ 也是滤,则 $F \subseteq F'$ 。

定义 3.2.13. 令 \mathcal{B} 为布尔代数, $F \subseteq B$ 是滤。如果对任意的 $b \in B$,b 和 -b 有且只有一个属于 F,就称 F 是 \mathcal{B} 上的超滤。

引理 3.2.14. 令 \mathcal{B} 是布尔代数, F 是 \mathcal{B} 上的滤。以下命题等价:

- (1) F 是超滤;
- (2) F 是极大滤: 不存在滤 F' 使得 $F \subseteq F'$ 。
- (3) F 是素的:对任意 $a,b \in B$,如果 $a+b \in F$,则 $a \in F$ 或者 $b \in F$ 。

证明. (1) \Rightarrow (2). 反设 F 不是极大滤,F' 是 F 的真扩张。令 $b \in F - F'$ 。由于 $b \notin F$ 而 F 是超滤,所以 $-b \in F \subseteq F'$,这样 $b \cap (-b) = 0 \in F'$,矛盾。

(2)⇒(3). 首先,我们验证,如果 F 是极大滤,而 $a \notin F$,则至少存在一个 $c \in F$, $c \cdot a = 0$: 否则, $F \cup \{a\}$ 有有穷交性质,因而生成一个滤 F',它是 F 的真扩张。

现在假设 a, b 都不属于 F, 令 $c_1, c_2 \in F$ 见证这一点, 即 $c_1 \cdot a = c_2 \cdot b = 0$ 。 所以 $c_1 \cdot c_2 \cdot (a + b) = 0$ 。由于 $c_1 \cdot c_2 \in F$,所以 $a + b \notin F$ 。

(3)⇒(1). 对任意 $b \in B$,如果 $b \notin F$,因为 $b + (-b) = 1 \in F$,所以由 (3), $-b \in F$ 。

练习 3.2.15. 如果 $a \neq b$,则存在超滤 U, $a \in U$ 但 $b \notin U$ 。

练习 3.2.16. 令 F 是 B 上的滤,令 ({0,1},+,·,-,0,1) 为两个元素的布尔代数。定义 $f: B \to \{0,1\}$ 为

$$f(b) = \begin{cases} 1, & b \in F; \\ 0, & b \notin F. \end{cases}$$

$$(3.3)$$

即,f 是 F 的特征函数。证明: F 是超滤当且仅当 f 是布尔代数 \mathcal{B} 到 $\{0,1\}$ 的同态映射。

定理 3.2.17 (超滤存在定理). 布尔代数 \mathcal{B} 上的任意滤 F , 都存在 \mathcal{B} 上的超滤 U 使得 $F \subseteq U$ 。

证明. 令 $\mathcal{F} = \{U \mid U \neq \mathcal{B} \perp \text{的滤并且} F \subseteq U\}$ 。 \mathcal{F} 在关系 \subseteq 下是一个偏序集,并且它的每个链都有上界。根据佐恩引理, \mathcal{F} 有极大元 U。显然,U 是极大滤,因而是超滤,而且 $F \subseteq U$ 。

定义 3.2.18. 今后我们用 $Ult(\mathcal{B})$ 表示布尔代数 \mathcal{B} 上所有超滤的集合,以下定义的函数 $f: \mathcal{B} \to \mathcal{P}(Ult(\mathcal{B}))$ 称为斯通映射:

$$f(b) = \{ U \in \text{Ult}(\mathcal{B}) \mid b \in U \}. \tag{3.4}$$

定理 3.2.19 (斯通表示定理). 对任意布尔代数 \mathcal{B} , 存在集合 X , \mathcal{B} 同构于 $\mathcal{P}(X)$ 的一个子代数。

证明. 令 $X = \text{Ult}_{(\mathcal{B})}$, $f : B \to \mathcal{P}(X)$ 为斯通映射。我们证明 f 是嵌入,这样 f[B] 就是 $\mathcal{P}(X)$ 的子代数,并且与 B 同构。

由于 0 不属于任何滤而 1 属于任何滤,所以 $f(0) = \emptyset$, f(1) = X。如果 $a \cdot b \in U$,则一定有 $a \in U$ 并且 $b \in U$,反之亦然,所以 $f(a \cdot b) = f(a) \cap f(b)$ 。 另外,任意超滤 U 都是素的,所以 $a + b \in U$ 当且仅当 $a \in U$ 或者 $b \in U$,所以 $f(a + b) = f(a) \cup f(b)$ 。这就验证了 f 是同态。

最后,假设 $a \neq b$,不妨设 $a \cdot (-b) = c \neq 0$,则 $c \cdot b = 0$ 。令 U_c 和 U_b 分别为 c 和 b 生成的超滤,则 $c \notin U_b$ 且 $b \notin U_c$ 。但是 $a \in U_c$,所以 $f(a) \neq f(b)$ 。所以 f 是一个嵌入。

定义 3.2.20. 令 (*P*, <) 是偏序集,

- (1) 如果 $D \subseteq P$ 满足: 对任意 $p \in P$,总存在 $d \in D$ 使得 $p \le d$,就称 D 是 P 的稠密子集。
- (2) 如果 \mathcal{D} 是 P 的稠密子集的族,F 是 P 上的超滤,如果对任意 $D \in \mathcal{D}$,如果 $F \cap D \neq \emptyset$,则就称 F 是 \mathcal{D} -脱殊的。

定义 3.2.21. 令 \mathcal{B} 是布尔代数, U 是 \mathcal{B} 上的超滤:

- (1) 令 $D \subseteq B$ 并且 $\sum D$ 存在。我们称 U 是D-完全的 ,或者称 U 保持 $\sum D$,如果 $\sum D \in U$ 蕴涵存在 $d \in D$, $d \in U$ 。
- (2) 如果 \mathcal{D} 是 \mathcal{B} 的子集的族,对任意 $\mathcal{D} \in \mathcal{D}$, $\sum \mathcal{D}$ 都存在。我们称 \mathcal{U} 是 \mathcal{D} -完全的,如果对任意 $\mathcal{D} \in \mathcal{D}$, \mathcal{U} 都是 \mathcal{D} -完全的。
- **练习 3.2.22.** 定义3.2.21中的 (1) 可以替换为以下条件: $D \subseteq U$ 蕴涵 $\prod D \in U$ 。 **练习 3.2.23.** 对于任意偏序集 (P, \leq) ,我们也可以定义相应的概念:
 - (1) 如果 $D \subseteq P$ 满足:对任意 $p \in P$,总存在 $d \in D$ 使得 $d \leq p$,就称 D 是 P 的稠密子集。
 - (2) 如果 \mathcal{D} 是 P 的稠密子集的族,U 是 P 上的超滤,如果对任意 $D \in \mathcal{D}$, $U \cap D \neq \emptyset$,就称 U 是 \mathcal{D} -脱殊的。

证明:如果将 \mathcal{B} 看做偏序集,U 是 \mathcal{D} -完全的当且仅当 U 是 \mathcal{D} -脱殊的。

引理 3.2.24 (Rasiowa-Sikorski 引理). 令 \mathcal{B} 为布尔代数, \mathcal{D} 是 \mathcal{B} 的子集的族, 并且 \mathcal{D} 是可数的,则存在 \mathcal{B} 上的滤超滤 \mathcal{U} , \mathcal{U} 是 \mathcal{D} -完全的。

证明. 令 $\{D_0, D_1, \dots\}$ 为 \mathcal{D} 的一个枚举。我们如下递归定义 $G = \{g_0, g_1, \dots\} \subseteq B - \{0\}$:

- (1) $g_0 = 1$;
- (2) 假设 g_n 已定义,如果 $g_n \cdot \sum D_n = 0$,则令 $g_{n+1} = g_n$;否则,一定存在 $d \in D_n$, $g_n \cdot d > 0$,任取这样的一个 $d_n \in D$,令 $g_{n+1} = g_n \cdot d_n$ 。对任意 $g_i \in G$,都有 $g_{i+1} \leq g_i$,所以 G 有有穷交性质。最后,令 U 为 G 生成的超滤。我们以下证明 U 是 \mathcal{D} -完全的。

对任意 $D_n \in \mathcal{D}$,如果 $\sum D_n \in U$,则 $g_n \cdot \sum D_n > 0$,所以存在 $d_n \in D$, $g_{n+1} = g_n \cdot d_n$ 。由于 $g_{n+1} \in U$ 并且 $g_{n+1} \leq d_n$,所以 $d_n \in U$ 。