

THE MECHANICAL ENGINEER'S REFERENCE BOOK

A HAND-BOOK OF
TABLES, FORMULAS, AND METHODS
FOR ENGINEERS, STUDENTS, AND DRAFTSMEN

BY

HENRY HARRISON SUPLEE, B.Sc., M.E.

MEMBER AMERICAN SOCIETY OF MECHANICAL ENGINEERS
MEMBRE DE LA SOCIÉTÉ DES INGÉNIEURS CIVILS DE FRANCE
MITGLIED DES FERENCS DEUTSCHER INGENIEURE
MEMBER OF TEL FRANKLIN INSTITUTE

PHILADELPHIA & LONDON

J. B. LIPPINCOTT COMPANY

TA 151

COPYRIGHT, 1903,
BY
J B. LIPPINCOTT COMPANY

PREFACE

In preparing a hand-book for engineering reference it is necessary to select from among a great mass of detailed information the matter which shall be most generally available. Naturally, the differentiation which has taken place in the science of engineering makes it desirable that some one department of work shall predominate, and, as indicated in the title, this book is devoted principally to the presentation of tables, formulas, and reference data for mechanical engineers. It is, therefore, purposely full in the portions relating to machine design and to such information as will render it useful in the drawing room and in the designing department, the intention being to render it available broadly in furnishing a record of general principles, as well as of detailed methods.

The many and varying rules and formulas existing in this connection have been carefully examined, and only those which in the judgment of the author are most generally applicable have been given, since the presentation of a mass of data, much of it contradictory, throws the burden of selection upon the user. In this portion of the work the author has sought to relieve the user of the necessity of selecting from among a mass of contradictory information the matter of the most general value, leaving special work to be conducted—as it should be—under the control of special investigation.

In view of the fact that the metric system has been under active discussion of late, a number of the tables have been presented in both British and metric units, so that those engineers who are desirous of using the latter system may do so. Among these tables may be mentioned the metric steam tables, which render it convenient for steam computations to be made in the metric system.

This work is intended to be a successor to the well-known pocket-book written many years ago by the late John W. Nystrom, and published by Messrs. J. B. Lippincott Company. The plates and stock of that valuable work having been destroyed by fire in 1899, certain of the information therein contained has been utilized, with such modifications as are necessary to meet engineering problems and needs of the present.

Among the valuable works to which acknowledgments are due in the preparation of this hand-book may be mentioned Reuleaux's "Constructor," Unwin's "Machine Design," Weisbach's "Ingenieur," "Des Ingenieurs Taschenbuch Hütte," the Smithsonian Physical Tables, and the hand-books of the Pencoyd Iron Works and the Passaic Steel Company, as well as the various authorities mentioned in the text.

HENRY HARRISON SUPLEE.

CONTENTS

		PAGE
Λa	thematics	. 5
	Factor Table	. 7
	Powers and Roots	. 24
	Interest	. 56
	Weights and Measures	. 58
	Monetary Systems	. 61
	Metric System	. 63
	Metric Conversion Tables	. 64
	Algebra	. 76
	Binomial Theorem	. 76
	Arithmetical Progression	. 77
	Geometrical Progression	. 77
	Equations	. 78
	Logarithms	. 79
	Table of Logarithms	. 82
	Geometry	. 105
	Table of Chords	. 107
	Table of Polygons	. 108
	The Circle.	. 109
	Tables of Circles	. 110
	Arcs and Segments of Circles	. 117
	The Ellipse	. 122
	The Parabola	. 124
	The Hyperbola	. 126
	Areas of Plane Figures	. 127
	Sumfaces of Calida	100

Mathematics.—Continued.	PAGE
Volumes of Solids	
Trigonometry	
Trigonometric Tables	
Natural Trigonometric Functions	
Logarithmic Trigonometric Functions	
Differential and Integral Calculus	
Differential and Integral Calculus	. 200
Mechanics	. 234
Statics	. 234
Funicular Polygons	
Centre of Gravity	
Statics of Framed Structures	
Wind Stresses	
Framed Beams	
Bridge Trusses	
Motion	
Falling Bodies	
Accelerated Motion	
Retarded Motion	
Tables of Falling Bodies	. 262
Leverage	
Dynamics	
Revolving Bodies	
Radius of Gyration	
Central Forces	
Pendulum	. 276
Impact	. 278
Frietion	
Journal Friction	
Materials of Engineering	. 282
Specific Gravity	
Weight of Iron	

Ma	terials of Engineering.—Continued.	PAGE
	Weight of Sheet-metal	294
	Weight of Spheres	297
	Weight of Cast-iron Pipe	299
	Weight of Rivets	301
	Weight of Bolts	302
	Screw Threads	304
	Pipe Dimensions	308
	Boiler Tubes	311
	Wire Gauges	312
	Weight of Wire	313
	Chain	315
	Glass	316
	Slate	317
	Tin Plate	318
	Lead Pipe	319
	Corrugated Iron	320
	Timber	321
	Board Measure	322
	Spikes and Nails	328
	Screws	324
	Extra Strong Pipe	325
	Riveted Hydraulic Pipe	327
	Standard Flanges	329
	Cast-iron Pipe Fittings	331
	Angle, Globe, and Check Valves	335
	Gate Valves	336
	Pipe Unions	337
	Eye Bars	340
	Wire Rope	342
	Steel Wire	345
Str	ength of Materials	346
	Tonsion	940

Str	ength of Materials.—Continued.	PAGE
	Compression	 350
	Shearing	 350
	Bending	 . 351
	Elements of Rolled Sections	 . 353
	Structural Sections	 . 356
	Rolled Beams	 . 360
	Rolled Channels	 . 362
	Bending Moments of Beams	 . 364
	Struts	 . 368
	Z-Bars	 . 376
	Tee Bars	 . 379
	Angle Bars	 . 380
	Cast-iron Columns	 . 391
	Torsion	 . 393
	Internal Pressure	 . 397
	Springs	 . 399
	Specifications for Structural Steel	 . 403
	Timber	 . 405
	Wooden Beams	 . 408
	Wooden Pillars	 . 410
	Tables of Strength of Materials	 . 411
Ma	chine Design	 . 416
	Riveting	
	Bolts	
	Keyed Fastenings	 . 423
	Journals	
	Pivots	
	Shafting	
	Bearings	
	Couplings	
	Levers	
	Cranks	441

Machine Design.—Continued.	PAGE
Connecting Rods	. 442
Eccentrics	. 445
Cross-heads	. 447
Gearing	. 448
Belts and Pulleys	. 467
Rope Transmission	. 478
Heat	. 481
Thermometers	. 488
Coefficients of Expansion	. 486
Fusing-points	. 489
Expansion of Gases	. 489
Heat Units	. 490
Specific Heat	. 495
Latent Heat	. 496
Radiation	. 497
Heat Emission	. 499
Air	. 500
Compression and Expansion of Air	. 501
Air Transmission	. 504
Compressed Air	. 505
Flow of Air	. 508
Movement of Air	. 509
Air Friction	. 510
Atmospheric Pressure	. 514
Barometric Tables	. 515
Water	. 519
Tables of Properties of Water	. 520
Water-heads and Pressures	. 525
Water-heads and Velocities	. 528
Flow of Water through Pipes	. 529

Wa	ter.—Continued.	PAGE
	Flow of Water in Open Channels	 535
	Weir Measurement of Water	 539
	Miner's Inch	 541
	Water Power	 542
	Contents of Pipes	 543
	Tank Measurement	 545
	Water-wheels	 545
	Turbines	 551
	Pumps	 554
	Duty Trials of Pumping Engines	 560
	Hydraulic Ram	 564
	Hydrometers	 564
	Hydrostatics	 565
	Hydraulic Transmission of Power	 569
Fu	el	 572
	Calorific Values of Fuels	 573
	Heating Values of Coals	 574
	Liquid Fuels	 579
	Gas Fuels	 581
+		
Ste	eam	 581
	Steam Tables	 583
	Flow of Steam	 588
	Moisture in Steam	 591
Ste	eam Boilers	 592
	Factors of Evaporation	 594
	Boiler Trials	 595
	Chimneys	 605
	Chimney Flues	 608
	Draft Pressures	 610
	Steam-boiler Details	 611

at Date Court 1	
Steam Boilers.—Continued.	PAGE
Boiler Pressures	
Boiler Specifications	
Safety Valves	
Incrustation in Boilers	635
Steam Engines	638
Hyperbolic Logarithms	640
Expansion of Steam	
Economical Point of Cut-off.	
Multiple-expansion Engines	649
Indicator Diagrams	650
Engine Performance	653
Steam-engine Testing.	655
Steam-engine Performances	675
Valve Gears	678
Link Motions	680
Slide Valves	681
Condensers	684
Internal=combustion Motors	687
Gas Engines	688
Gas-engine Testing	690
Electric Power	698
Electric Cables	701
Wire Tables	702
National Electric Code	704
Wiring Formulas	733
Standardization	736
Electric Driving	749
Power Required for Tools	750
Electric Cranes	753
Choice of Motors and Systems	755

Electric Power.—Continued.	PAGE
Speed Variations	756
Motor Tests	760
The Cost of Power	771
Water-power Plant Costs	771
Water-power Costs	772
Summary of Boiler Tests	772
Summary of Engine Tests	773
Steam-plant Costs	
Steam-power Costs	
Gas-power Systems	
Gas-power Costs	
Electric-power Costs	
Works Management	780
Cost Keeping	781
General Expense	
Depreciation	
Appendix	789
Index	803

The

Mechanical Engineer's Reference Book

MATHEMATICS.

THE engineer should use mechanical appliances for mathematical computations whenever possible, including the slide-rule in some of its various modifications, but the following tables will also be found useful:

MULTIPLICATION TABLE.

By the use of the following table products of numbers from 1 to 10 by numbers from 1 to 100 may be obtained directly, and of larger numbers by successive operations, as follows:

$$67 \times 489 = 67 \times 400 + 67 \times 80 + 67 \times 9 = \begin{cases} 26800 \\ 5360 \\ 603 \end{cases} = 32763.$$

If both factors consist of more than three figures, one of the factors may be modified and the operation performed as follows:

$$854 \times 279 = 850 \times 279 + 4 \times 279$$
.

Here we subtract 4 from 854 and then get the product of 850 by 279 from the table, and add to this the product of 4 by 279, also readily taken from the table; thus:

$$850 \times 279 + 4 \times 279 = \begin{cases} 170000 \\ 59500 \\ 7650 \end{cases} + \begin{cases} 800 \\ 280 \\ 36 \end{cases}$$
$$= 237150 + 1116 = 238266.$$

1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0
1	2	3	4	5	6	7	8	9
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

1	2	3	4	5	6	7	8	9
10	20	30	40	50	60	70	80	90
11	22	33	44	55	66	77	88	99
12	24	36	48	60	72	84	96	108
13	26	39	52	65	78	91	104	117
14	28	42	56	70	84	98	112	126
15	30	45	60	75	90	105	120	135
16	32	48	64	80	96	112	128	144
17	34	51	68	85	102	119	136	153
18	36	54	72	90	108	126	144	162
19	38	57	76	95	114	133	152	171
20	40	60	80	100	120	140	160	180
21	42	63	84	105	126	147	168	189
22	44	66	88	110	132	154	176	198
23	46	69	92	115	138	161	184	207
24	48	72	96	120	144	168	192	216
25	50	75	100	125	150	175	200	225
26	52	78	104	130	156	182	208	234
27	54	81	108	135	162	189	216	243
28	56	84	112	140	168	196	224	252
29	58	87	116	145	174	203	232	261
30	60	90	120	150	180	210	240	270
31	62	93	124	155	186	217	248	279
32	64	96	128	160	192	224	256	288
33	66	99	132	165	198	231	264	297
34	68	102	136	170	204	238	272	306
35	70	105	140	175	210	245	280	315
36	72	108	144	180	216	252	288	324
37	74	111	148	185	222	259	296	333
38	76	114	152	190	228	266	304	342
39	78	117	156	195	234	273	312	351
40	80	120	160	200	240	280	320	360
41	82	123	164	205	246	287	328	369
42	84	126	168	210	252	294	336	378
43	86	129	172	215	258	301	344	387
44	88	132	176	220	264	308	352	396
45	90	135	180	225	270	315	360	405
46	92	138	184	230	276	322	368	414
47	94	141	188	235	282	329	376	423
48	96	144	192	240	288	336	384	432
49	98	147	196	245	294	343	392	441
50	100	150	200	250	300	350	400	450
51	102	153	204	255	306	357	408	459
52	104	156	208	260	312	364	416	468
53	106	159	212	265	318	371	424	477
54	108	162	216	270	324	378	432	486
55	110	165	220	275	330	385	440	495
56	112	168	224	280	336	392	448	504
57	114	171	228	285	342	399	456	513
58	116	174	232	290	348	406	464	522
59	118	177	236	295	354	413	472	531
60	120	180	240	300	360	420	480	540
61	122	183	244	305	366	427	488	549
62	124	186	248	310	372	434	496	558
63	126	189	252	315	378	441	504	567
64	128	192	256	320	384	448	512	576

-											
1 .	2	3	4	5	6	7	8	9			
65	130	195	260	325	390	455	520	585			
66	132	198	264	330	396	462	528	594			
67	134	201	268	335	402	469	536	603			
68	136	204	272	340	408	476	544	612			
69	138	207	276	345	414	483	552	621			
70	140	210	280	350	420	490	560	630			
71	142	213	284	355	426	497	568	639			
72	144	216	288	360	432	504	576	648			
73	146	219	292	365	438	511	584	657			
74	148	222	296	370	444	518	592	666			
75	150	225	300	375	450	525	600	675			
76	152	228	304	380	456	532	608	684			
77	154	231	308	385	462	539	616	693			
78	156	234	312	390	468	546	624	702			
79	158	237	316	395	474	553	632	711			
80	160	240	320	400	480	560	640	720			
81	162	243	324	405	486	567	648	729			
82	164	246	328	410	492	574	656	738			
83	166	249	332	415	498	581	664	747			
84	168	252	336	420	504	588	672	756			
85	170	255	340	425	510	595	680	765			
86	172	258	344	430	516	602	688	774			
87	174	261	348	435	522	609	696	783			
88	176	264	352	440	528	616	704	792			
89	178	267	356	445	534	623	712	801			
90	180	270	360	450	540	630	720	810			
91	182	273	364	455	546	637	728	819			
92	184	276	368	460	552	644	736	828			
93	186	279	372	465	558	651	744	837			
94	188	282	376	470	564	658	752	846			
95	190	285	380	475	570	665	760	855			
96	192	288	384	480	576	672	768	864			
97	194	291	388	485	582	679	776	873			
98	196	294	392	490	588	686	784	882			
99	198	297	396	495	594	693	792	891			

FACTOR TABLE.

It is often desirable to know whether a number is a prime number or a product of two or more factors. The following table gives the factors of all numbers not divisible by 2, 3, or 5 up to 9599, and shows all prime numbers up to 9595.

If the last figure of a number is divisible by 2, the whole number is divisible by 2. Thus 26154 is divisible by 2.

If the sum of the digits of which a number is composed is divisible by 3, the number is divisible by 3. Thus the sum of the digits of 26154 is equal to 18, which is divisible by 3; hence the whole number is divisible by 3.

Any number ending with 0 or 5 is divisible by 5.

It is therefore possible to discover by inspection whether a number is divisible by 2, 3, or 5, and such a division will bring most large numbers not prime numbers—within the compass of the table.

To use the table, look along the top lines of the successive sections for the hundreds, and in the vertical columns at the left for the units and tens. The factors will be found at the intersection. If no factors are given, the number is a prime.

Thus given the number 5203, which is not divisible by 2, 3, or 5, according to the above rules, we find under 5200, and opposite 3, the factors $11 \times 11 \times 43 = 5203$. In like manner we see that 5233 is a prime number, and

so on for any other number.

N		0 300				600			900		
1 7 11			.7	:	43	13		47	17		53
13 17									11 7		83 131
19 23 29			11 17 7		29 19 47	7 17		89 37	13		71
31 37						7 .	7 .	13	7	. 7	. 19
41 43 47			11 7 .	7	31		•		23	•	41
49 53	7	. 7				11		59	13		73
59 61 67		• • •.	19		19	23	· ·	29	7 31		137 31
71 73 77	7	. 11	7		53 29	11		61	7		139
79 83						7		97	11		89
89 91 97	7	. 13	17	· ·	23	13	· ·	53	23		43
N	10	00		400			700			1000)
1 3 7 9			13 11 7	:	31 37 59	19 7 23		37 .01	7 . 17 19	11	. 13 59 53
19 21 27 31	7 11	. 17 . 11	7		61	7		.03	13		79
33 37	7	. 19	19		23	.11		67	17		61
39 43 49 51	11	. 13	11		41	7		.07	7		149

N	100	400	700	1000
57 61 63 67	7 . 23		7 . 109 13 . 59	7 . 151
69 73 79 81 87 91 93	13 . 13 	7 . 67 11 . 43 . 13 . 37 	19 . 41 11 . 71 	29 . 37 13 . 83 23 . 47
99 ——— N	200	500	800	1100
3 9 11 17 21	7 . 29 11 . 19 	7 . 73 11 . 47	11 . 73 	11 . 101 . 19 . 59
23 27 29 33 39		17 . 31 23 . 23 13 . 41 7 . 7 . 11	7 . 7 . 17	7 . 7 . 23
41 47 51 53	13 . 19 	19 . 29 7 . 79	29 . 29 7 . 11 . 11 23 . 37	7 . 163 31 . 37
57 59 63 69	7 . 37	13 . 43	11 . 79	13 . 89 19 . 61
71 77 81 83	:	7 . 83 11 . 53	13 . 67	11 . 107
87 89 93 99	7 . 41 17 . 17 	19 . 31	7 . 127 19 . 47 29 . 31	29 . 41

N	1200	1500	1800	2100
1		19 . 79		11 . 191
7	17 . 71	11 . 137	13 . 139	7 . 7 . 43
11	7 . 173			
13		17 . 89	7 . 7 . 37	
17		37 . 41	23 . 79	29 . 73
19	23 . 53	7 . 7 . 31	17 . 107	13 . 163
23				11 . 193
29		11 . 139	31 . 59	
31				
37		29 . 53	11 . 167	
41	17 . 73	23 . 67	7 . 263	
43	11 . 113		19 . 97	
47	29 . 43	7 . 13 . 17		19 . 113
49			43 . 43	7 . 307
53	7 . 179		17 . 109	
59			11 . 13 . 13	17 . 127
61	13 . 97	7 . 223		
67	7 . 181			11 . 197
71	31 . 41			13 . 167
73	19 . 67	11 . 11 . 13	:	41 . 53
77		19 . 83		7 . 311
79				
83		•	7 . 269	37 . 59
89		7 . 227	7 . 209	11 . 199
91	1	37 . 43	31 . 61	7 . 313
97			7 . 271	13 . 13 . 13
N	1300	1600	1900	2200
1				31 . 71
1 3		7 . 229	. 173	31 . 71
3 7	:	7 . 229		
3 7 9	7 . 11 . 17	7 . 229	11 . 173 	
3 7	7 . 11 . 17 13 . 101	7 . 229 		
3 7 9		7 . 229		
3 7 9 13		7 . 229	23 . 83	47 . 47
3 7 9 13 19 21 27	13 . 101	: : : :	23 . 83	47 . 47
3 7 9 13 19 21 27 31	13 . 101	· · · · · · · · · · · · · · · · · · ·	23 . 83 	47 . 47
3 7 9 13 19 21 27	13 . 101	:	23 . 83 	47 . 47
3 7 9 13 19 21 27 31	13 . 101	· · · · · · · · · · · · · · · · · · ·	23 . 83 	47 . 47
3 7 9 13 19 21 27 31 33	13 . 101 	· · · · · · · · · · · · · · · · · · ·	23 . 83 	47 . 47
3 7 9 13 19 21 27 31 33	13 . 101		23 . 83 	47 . 47
3 7 9 13 19 21 27 31 33 37 39	13 . 101	7 . 233 23 . 71	23 . 83 	47 . 47

-				
N	1300	1600	1900	2200
57 61 63 67	23 . 59 	11 . 151	19 . 103 37 . 53 13 . 151 7 . 281	37 . 61 7 . 17 . 19 31 . 73
69 73 79	37 . 37 	7 . 239 23 . 73	11 . 179	43 . 53
81 87 91 93	19 . 73 13 . 107 7 . 199	41 . 41 7 . 241 19 . 89	7 . 283	29 . 79
97 99	11 . 127	•	•	11 . 11 . 19
N	1400	1700	2000	2300
3 9 11 17 21	23 . 61 17 . 83 13 . 109 7 . 7 . 29	13 . 131 . 29 . 59 17 . 101	7 . 7 . 41	7 . 7 . 47
23 27 29 33 39	i	11 . 157 7 . 13 . 19 47	7 . 17 . 17	23 . 101 13 . 179 17 . 137
41 47 51 53	11 . 131	17 . 103	13 . 157 23 . 89 7 . 293	13 . 181
57 59 63 69	31 . 47 	7 . 251 41 . 43 29 . 61	11 . 11 . 17 29 . 71	7 . 337 17 . 139 23 . 103
71 77 81 83	7 . 211	7 . 11 . 23 	19 . 109 31 . 67	
87 89 93 99	:	11 . 163 7 . 257	7 . 13 . 23	7 . 11 . 31

FACTOR TABLE.				
N	2400	2700	3000	3300
1 7	7.7.7.7	37 . 73	31 . 97	
11	29 . 85		31 . 97	7 . 11 . 43
13	19 . 127		23 . 131	
17		11 . 13 . 19	7 . 431	31 . 107
19	41 . 59			
23	7 . 347	7 . 389	13 . 233	•
29 31	11 . 13 . 17	:	7 . 433	
37		7 . 17 . 23		47 . 71
41				13 . 257
43	7 . 349	13 . 211	17 . 179	
47		41 . 67	11 . 277	17 .
49	31 . 79			17 . 197
53	11 . 223		43 . 71	7 . 479
59 61	23 . 107	31 . 89 11 . 251	7 . 19 . 23	
67	. 107	. 201		7 . 13 . 37
71	7 . 353	17 . 163	37 . 83	
73		47 . 59	7 . 439	
77			17 . 181	11 . 307
79	37 . 67	7 . 397		31 . 109
83	13 . 191	11 . 11 . 23		17 . 199
89 91	19 . 131 47 . 53	•	11 . 281	
97	11 . 227		19 . 163	43 . 79
N	2500	2800	3100	3400
1	41 . 61		7 . 443	19 . 179
3			29 . 107	41 . 83
7 9	23 . 109 13 . 193	7 . 401 53 . 53	13 . 239	7 . 487
13	13 . 359	29 . 97	11 . 283	, 407
19	11 . 229			13 . 263
21	. 223	7 . 13 . 31		11 . 311
27	7 . 19 . 19	11 . 257	53 . 59	23 . 149
31		19 . 149	31 . 101	47 . 73
33	17 . 149		13 . 241	
37	43 . 59	17 107	49 770	7 . 491 19 . 181
39 43		17 . 167	43 . 73 7 . 449	19 . 181 11 . 313
49		7 . 11 . 37	47 . 67	. 013
51			23 . 137	7 . 17 . 29

N	2500	2800	3100	3400
57 61 63 67 69 73 79 81 87	13 . 197 11 . 233 17 . 151 7 . 367 31 . 83 . 29 . 89 13 . 199		7 . 11 . 41 29 . 109 	23 . 151 7 . 7 . 71 59 . 59 11 . 317
97 99	7 . 7 . 53 23 . 113	13 . 223	23 . 139 7 . 457	13 . 269
N	2600	2900	3200	3500
3 9 11 17 21	19 . 137 373 	41 . 71 	13 . 13 . 19	31 . 113 11 . 11 . 29
23 27 29 33 39	43 . 61 37 . 71 11 . 239 7 . 13 . 29	37 . 79 29 . 101 7 . 419	11 . 293 7 . 461 	13 . 271
41 47 51 53	19 . 139 11 . 241 7 . 379	17 . 173 7 . 421 13 . 227	7 . 463 17 . 191	53 . 67 11 . 17 . 19
59 63 69	17 . 157	11 . 269	13 . 251 7 . 467	7 . 509 43 . 83
71 77 81 83	7 . 383	13 . 229 11 . 271 19 . 157	29 . 113 17 . 193 7 . 7 . 67	7 . 7 . 73
87 89 93 99		29 . 103 7 . 7 . 61 41 . 73	19 . 173 11 . 13 . 23 37 . 89	17 . 211 37 . 97

N	3600	3900	4200	4500
1 7	13 . 277	47 . 83	7 . 601	7 . 643
11	23 . 157			13 . 347
13		7 . 13 . 43	11 . 383	
17				•
19 23	7 . 11 . 47		41 . 103	
29	19 . 191		. 100	7 . 647
31				23 . 197
37		31 . 127	19 . 223	13 . 349
41	11 . 331	7 . 563		19 . 239
43 47	7 . 521		31 . 137	7 . 11 . 59
49	41 . 89	11 . 359	7 . 607	
53	13 . 281	59 . 67		29 . 157
59	1	37 . 107		47 . 97
61 67	7 . 523 19 . 193	17 . 233	17 . 251	
	19 . 190		17 . 201	
71 73	•	11 . 19 . 19 29 . 137	·	7 . 653 17 . 269
77		41 . 97	7 . 13 . 47	23 . 199
79	13 . 283	23 . 173	11 . 389	19 . 241
83	29 . 127	7 . 569		
89 91	7 . 17 . 31	13 . 307	7 . 613	13 . 353
97		7 . 571	. 615	:
		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
N	3700	4000	4300	4600
1			11 . 17 . 23	43 . 107
3	7 . 23 . 23		13 . 331	
7 9	11 . 337	19 . 211	59 . 73 31 . 139	17 . 271 11 . 419
13	47 . 79	. 211	19 . 227	7 . 659
19			7 . 617	31 . 149
21	61 . 61		29 . 149	
27		. 100		7 . 661
31 33	7 . 13 . 41	29 . 139 37 . 109	61 . 71 7 . 619	11 . 421 41 . 113
37	37 . 101	11 . 367	525	
39	. 101	7 . 577		
43	19 . 197	13 . 311	43 . 101	
49	23 . 163		19 . 229	
51				

N	3700	4000	4300	4600
57 61 63 67 69 73 79 81 87 91 93	13 . 17 . 17 53 . 71 	31 . 131 17 . 239 7 . 7 . 83 13 . 313 	7 . 7 . 89 	59 . 79 13 . 359 7 . 23 . 29
99	29 . 131	. 211	53 . 83	37 . 127
N	3800	4100	4400	4700
3 9 11 17 21	13 . 293 37 . 103 11 . 347	11 . 373 7 . 587 	7 . 17 . 37 . 11 . 401 7 . 631	17 . 277 7 . 673 53 . 89
23 27 29 33 39	43 . 89 7 . 547 	7 . 19 . 31	19 . 233 43 . 103 11 . 13 . 31 23 . 193	29 . 163
41 47 51 53	23 . 167	41 . 101 11 . 13 . 29 7 . 593	61 . 73	11 . 431 47 . 101 7 . 7 . 97
57 59 63 69	7 . 19 . 29 17 . 227 	23 . 181 11 . 379	7 . 7 . 7 . 13 41 . 109	67 . 71
71 77 81 83	7 . 7 . 79 	43 . 97 	17 . 263 11 . 11 . 37	13 . 367 17 . 281 7 . 683
87 89 93 99	13 . 13 . 23 17 . 229 7 . 557	53 . 79 59 . 71 7 . 599 13 . 17 . 19	7 . 641 67 . 67 	

N	4800	5100	5400	5700
1 7 11 13 17	11 . 19 . 23 17 . 283	19 . 269 . 7 . 17 . 43	11 . 491 7 . 773	13 . 439
19 23 29 31 37	61 . 79 7 . 13 . 53 11 . 439 . 691	. 47 . 109 23 . 223 7 . 733 11 . 467	11 . 17 . 29 61 . 89	7 . 19 . 43 59 . 97 17 . 337 11 . 521
41 43 47 49 53	47 . 103 29 . 167 37 . 131 13 . 373 23 . 211	53 . 97 37 . 139 . 19 . 271	13 . 419 7 . 19 . 41	7 . 821
59 61 67 71 73	43 . 113 	7 . 11 . 67 13 . 397 	53 . 103 43 . 127 7 . 11 . 71 	13 . 443 7 . 823 73 . 79 29 . 199 23 . 251
77 79 83 89 91	7 . 17 . 41 19 . 257 . 67 . 73	31 . 167 		53 . 109
97 ————————————————————————————————————	59 . 83	5200	23 . 239 ====================================	11 . 17 . 31 ====================================
1 3 7 9 13	13 . 13 . 29 7 . 701 17 . 17 . 17	7 . 743 11 . 11 . 43 41 . 127 	7 . 787 37 . 149	7 . 829 37 . 157
19 21 27 31 33	7 . 19 . 37 13 . 379	17 . 307 23 . 227		11 . 23 . 23 7 . 7 . 7 . 17 19 . 307
37 39 43 49 51	11 . 449 	13 . 13 . 31 7 . 7 . 107 29 . 181 59 . 89	7 . 7 . 113 29 . 191 -23 . 241 31 . 179 7 . 13 . 61	13 . 449

N	4900	5200	5500	5800
57 61 63 67 69	11 . 11 . 41 7 . 709	7 . 751 . 19 . 277 23 . 229 11 . 479	67 . 83 . 19 . 293	11 . 13 . 41
73 79 81 87 91 93 97 99	13 . 383 17 . 293 		7 . 797 . 37 . 151 	7 . 839
N	5000	5300	5600	5900
3 9 11 17 21 23 27 29 33 39	29 . 173 		13 . 431 71 . 79 31 . 181 41 . 137 7 . 11 . 73 	19 . 311 23 . 257 61 . 97 31 . 191
41 47 51 53 57 59 63 69	71 . 71 7 . 7 . 103 	7 . 7 . 109	7 . 809	13 . 457 19 . 313 11 . 541
71 77 81 83	11 . 461 	41 . 131 19 . 283 7 . 769	53 . 107 7 . 811 13 . 19 . 23	7 . 853 43 . 139
89 93 99	7 . 727 11 . 463	17 . 317	41 . 139	53 . 113 13 . 461 7 . 857

N	6000	6300	6600	6900
				0900
1	17 . 353		7 . 23 . 41	67 . 103
7		7 . 17 . 53		
11 13	7 . 859	59 . 107	11 . 601 17 . 389	31 . 223
17	11 . 547	39 . 107	13 . 509	51 . 225
			10 . 000	
19 23	13 . 463 19 . 317	71 . 89	37 . 179	11 . 17 . 37 7 . 23 . 43
29	19 . 517		7 . 947	13 . 13 . 41
31	37 . 163	13 . 487	19 . 349	29 . 239
37				7 . 991
41	7 . 863	17 . 373	29 . 229	11 . 631
43			7 . 13 . 73	53 . 131
47		11 . 577	17 . 17 . 23	
49	23 . 263	7 . 907	61 . 109	
53 -				17 . 409
59	73 . 83			
61	11 . 19 . 29			•
67			59 . 113	•
71	13 . 467	23 . 277	7 . 953	
73	59 . 103	7 . 911	11 . 607	19 . 367
77 79	59 . 103	7 . 911	11 . 607	7 . 997
		10 401	,	
83 89	7 . 11 . 79	13 . 491	41 . 163	29 . 241
91	:	7 . 11 . 83	<u>.</u>	29 . 241
97	7 . 13 . 67		37 . 181	
N	6100	6400	6700	7000
1		37 . 173		
3	17 . 359	19 . 337		47 . 149
7	31 . 197	43 . 149	19 . 353	7 . 7 . 11 . 13
9	41 . 149	13 . 17 . 29	7 . 7 . 137	43 . 163
13	·	11 . 11 . 53	7 . 7 . 137	
19	29 . 211	7 . 7 . 131		
21	11 . 557		11 . 13 . 47 7 . 31 . 31	7 .~17 . 59
27 31	11 . 557	59 . 109	53 . 127	79 . 89
33		7 . 919		13 . 541
37	17 . 19 . 19	41 . 157		31 . 227
39	7 . 877	47 . 137	23 . 293	
43		17 . 379	11 . 613	
49	11 . 13 . 43		17 . 397	7 . 19 . 53
51			43 . 157	11 . 641

N	6100	6400	6700	7000
57 61 63 67 69	47 . 131 61 . 101 	11 . 587 7 . 13 . 71 23 . 281 29 . 223	29 . 233 	23 . 307 7 . 1009 37 . 191
73 79 81 87 91 93 97 99	37 . 167 7 . 883 23 . 269 41 . 151 11 . 563	. 11 . 19 . 31 499 	13 . 521 	11 . 643
N	6200	6500	6800	7100
3 9 11 17 21	7· . 887	7 . 929 23 . 283 17 . 383 7 . 7 . 7 . 19	11 . 619 7 . 7 . 139 17 . 401 19 . 359	13 . 547 11 . 647
23 27 29 33 39	7 . 7 . 127 13 . 479 . 23 . 271 17 . 367	11 . 593 61 . 107 	7 . 977	17 . 419 · 7 . 1019 11 . 11 . 59
41 47 51 53	79 . 79 7 . 19 . 47 13 . 13 . 37	31 . 211	41 . 167 13 . 17 . 31 7 . 11 . 89	37 . 193 7 . 1021 23 . 311
57 59 63 69	11 . 569	79 . 83 7 . 937	19 . 19 . 19	17 . 421
71 77 81 83	11 . 571 61 . 103	29 . 227	13 . 23 . 23 7 . 983	71 . 101
87 89 93 99	19 . 331 7 . 29 . 31	7 . 941 11 . 599 19 . 347	71 . 97 83 . 83 61 . 113	7 . 13 . 79 23 . 313

N	7200	7500	7800	8100
1 7 11 13 17	19 . 379	13 . 577 · . 29 . 37 11 . 683	29 . 269 37 . 211 73 . 107 13 . 601	11 . 11 . 67 . 19 . 61
19 23 29 31 37	31 . 233 	73 . 103 	7 . 1117 	23 . 353 . 11 . 739 47 . 173 79 . 103
41 43 47 49	13 . 557 . 659	19 . 397	11 . 23 . 31 7 . 19 . 59 47 . 167	7 . 1163 17 . 479
53 59 61 67	7 . 17 . 61 53 . 137 13 . 13 . 43	7 . 13 . 83	29 . 271 7 . 1123	31 . 263 41 . 199
71 73 77 79	11 . 661 7 . 1039 19 . 383 29 . 251	67 . 113	17 . 463	11 . 743 13 . 17 . 37
83 89 91 97	37 . 197 23 . 317	71 . 107	7 . 7 . 7 . 23 13 . 607 53 . 149	7 . 7 . 167 19 . 431 . 7 . 1171
N	7300	7600	7900	8200
1 3 7 9	7 . 7 . 149 67 . 109 	11 . 691	7 . 1129 	59 . 139 13 . 631 29 . 283
19 21 27 31 33	13 . 563 17 . 431	19 . 401 . 29 . 263 13 . 587 17 . 449	89 . 89 	19 . 433
37 39 43 49 51	11 . 23 . 29 41 . 179 7 . 1049	7 . 1091 	17 . 467 13 . 13 . 47	7 . 11 . 107

N	7300	7600	7900	8200
57 61 63 67 69	7 . 1051 17 . 433 37 . 199 53 . 139	13 . 19 . 31 47 . 163 79 . 97 11 . 17 . 41	73 . 109 19 . 419 . 31 . 257 13 . 613 7 . 17 . 67	23 . 359 11 . 751 7 . 1181
79 81 87 91 93 97 99	47 . 157 11 . 11 . 61 83 . 89 19 . 389 	7 . 1097 	79 . 101 23 . 347 7 . 7 . 163 61 . 131 	17 . 487 7 . 7 . 13 . 13
N	7400	7700	8000	8300
3 9 11 17 21 23 27 29 33	11 . 673 31 . 239 		53 . 151 	19 . 19 . 23 7 . 1187
39 41 47 51 53	43 . 173 7 . 1063 11 . 677 	71 . 109 	11 . 17 . 43 13 . 619 83 . 97	31 . 269 19 . 439 17 . 491 7 . 1193
57 59 63 69	17 . 439 7 . 11 . 97	7 . 1109 17 . 457	7 . 1151	61 . 137 13 . 643
71 77 81 83	31 . 241 	19 . 409 7 . 11 . 101 31 . 251 43 . 181	7 . 1153 41 . 197 	11 . 761 17 . 17 . 29 83 . 101
87 89 93 99	59 . 127	13 . 599	7 . 13 . 89	7 . 11 . 109 37 . 227

N	8400	8700	9000	9300
1 7	31 . 271 7 . 1201	7 . 11 . 113	:	71 . 131 41 . 227
11	13 . 647	31 . 281		, 100
13 17	47 . 179 19 . 443	23 . 379	71 . 127	67 . 139 7 . 11 . 11 . 11
19			29 . 311	
23		11 . 13 . 61	7 . 1289	
29 31	•	7 . 29 . 43	. 11 . 821	19 . 491 7 . 31 . 43
37	11 . 13 . 59		7 . 1291	. 31 . 43
41	23 . 367			
43		7 . 1249	. 100	
47 49	7 . 17 . 71	13 . 673	83 . 109	13 . 719
53	79 . 107		11 . 823	47 . 199
59	11 . 769	19 . 461		7 . 7 . 191
61 67	·	. 11 . 797	13 . 17 . 41	11 . 23 . 37 17 . 19 . 29
	40 107		47 100	17 . 19 . 29
71 73	43 . 197 37 . 229	7 . 7 . 179 31 . 283	47 . 193 43 . 211	7 . 13 . 103
77	7 . 7 . 173	67 . 131	29 . 313	
79	61 . 139		7 . 1297	83 . 113
83 89	17 . 499 13 . 653		31 . 293 61 . 149	11 . 853 41 . 229
91	7 . 1213	59 . 149		. 223
97	29 . 293	19 . 463	11 . 827	
N	8500	8800	9100	9400
1		13 . 677	19 . 479	7 . 17 . 79
3	11 . 773		. 1001	
7	47 . 181 67 . 127	23 . 383	7 . 1301	23 . 409 97 . 97
13		7 . 1259	13 . 701	
19	7 . 1217		11 . 829	
21 27	•	7 . 13 . 97	7 . 1303	11 . 857
31	19 . 449	. 10 . 57	23 . 397	
33	7 . 23 . 53	11 . 11 . 73		
37				
39 43		37 . 239	13 . 19 . 37 41 . 223	7 . 19 . 71
49	83 . 103		7 . 1307	11 . 859
51	17 . 503	53 . 167		13 . 727

N	8500	8800	9100	9400
57	43 . 199	17 . 521		7 . 7 . 193
61	7 . 1223			
63			7.7.11.17	
67	13 . 659		89 . 103	•
69	11 . 19 . 41	7 . 7 . 181	53 . 173	17 . 557
73		19 . 467		
79	23 . 373	13 . 683	67 . 137	
81	•	83 . 107	•	19 . 499
87	31 . 277			53 . 179
91	11 . 11 . 71	17 . 523	7 . 13 . 101	
93	13 . 661		29 . 317	11 . 863
97		7 . 31 . 41	17 . 541	
99		11 . 809		7 . 23 . 59
			_	
N	8600	8900	9200	9500
	7 . 1229	29 . 307		13 . 17 . 43
3	7 . 1229	29 . 307 59 . 151	•	13 . 17 . 43 37 . 257
11	79 . 109	7 . 19 . 67	61 . 151	51 . 201
17	79 . 109	37 . 241	13 . 709	31 . 307
21	37 . 233	11 . 811	10 . 709	31 , 307
21	37 . 200	11 . 011	·	·
23	•		23 . 401	89 . 107
27		79 . 113		7 . 1361
29	•		11 . 839	13 . 733
33	89 . 97		7 . 1319	
. 39	53 . 163	7 . 1277	•	•
41				7 . 29 . 47
47		23 . 389	7 . 1321	
51	41 . 211		11 . 29 . 29	
53	17 . 509	7 . 1279	19 . 487	41 . 233
57	11 . 787	13 . 13 . 53		19 . 503
59	7 . 1237	17 . 17 . 31	47 . 197	11 . 11 . 79
63	1 . 1201	17 . 17 . 51	59 . 157	73 . 131
69	·		13 . 23 . 31	7 . 1367
	·	· ·		
71	13 . 23 . 29		73 . 127	17 . 563
77		47 . 191		61 . 157
		7 . 1283		11 . 13 . 67
81	19 . 457	13 . 691	•	7 . 37 . 37
81 ,83	13 . 407			
	7 . 17 . 73	11 . 19 . 43	37 . 251	
.83		11 . 19 . 43 89 . 101	37 . 251 7 . 1327	43 . 223
,83 87				43 . 223 53 . 181

FRACTIONS.

There are two methods of indicating subdivisions in general use,—one by continual bisection, as on the common foot-rule, in which the inch is divided into halves, quarters, eighths, sixteenths, etc., the other by division into tenths, hundredths, thousandths, etc. Since the latter is based on the same principle as our system of numeration, it is desirable for general use, and the following conversion table will enable the common fractions to be converted into their equivalent decimals.

Fractions Reduced to Equivalent Decimals.

64	.015625	17	.265625	33 64	.515625	49 64	.765625
32	.03125	9 32	.28125	$\frac{17}{32}$.53125	25 32	.78125
3 64	.046875	19	.296875	35 64	.546875	51 64	.796875
16 16	.0625	<u>5</u>	.3125	9 16	.5625	13	.8125
5 64	.078125	21 64	.328125	37 64	.578125	53	.828125
3 32	.09375	$\frac{1}{3}\frac{1}{2}$.34375	19 32	.59375	$\frac{27}{32}$.84375
7 64	.109375	23 64	.359375	39 64	.609375	55 64	.859375
1/8	.125	3/8	.375	5/8	.625	7/8	.875
9 64	.140625	25 64	.390625	41	.640625	57	.890625
$\frac{5}{32}$.15625	13 32	.40625	21 32	.65625	29 32	.90625
11 64	.171875	27 64	.421875	43 64	.671875	59 64	.921875
3 16	.1875	7 16	.4375	11 16	.6875	15 16	.9375
13 64	.203125	29 64	.453125	4.5 64	.703125	61	.953125
$\frac{7}{32}$.21875	$\frac{15}{32}$.46875	23 32	.71875	3 <u>1</u> 32	.96875
15 64	.234375	31 64	.484375	47	.734375	63 64	.984375
1/4	.25	1/2	.5	3/4	.75	1	1.

Any common fraction may be converted into its equivalent decimal by dividing the numerator by the denominator, a fraction really being merely a form of indicating division, and the decimal being the result of the performance of the division thus indicated.

POWERS AND ROOTS.

Any number multiplied by itself is said to be raised to its second power, or squared; any number multiplied by itself twice is said to be raised to its third power, or cubed, etc. It is clear from this that every squared number, or second power, is composed of two equal factors, and either one of these equal factors is called the square root of the number. In like manner every cubed number is composed of the product of three equal factors, and any one of these equal factors is called the cube root of the number.

Since squares, cubes, square roots, and cube roots are much used, the following table is given for all numbers up to 1600. If much work is to be done in this line, reference may be made to Barlow's Tables (Spon), which give the squares, cubes, square roots, and cube roots of all numbers up to 1000.

In the right-hand column of the following table the reciprocals of the numbers in the first column are given, these being the quotients resulting from the division of unity by the given numbers.

Number.	Squares.	Cubes.	VRoots.	Noots.	_ Reciprocals.
1	i	1	1.000 0000	1.000 0000	1.000 000 000
2	4	8	1.414 2136	1.259 9210	.500 000 000
3	- 9	27	1.732 0508	1.442 2496	.333 333 333
4	16	64	2.000 0000	1.587 4011	.250 000 000
5	25	125	2.236 0680	1.709 9759	.200 000 000
6	36	216	2,449 4897	1.817 1206	.166 666 667
7	49	343	2.645 7513	1.912 9312	.142 857 143
8	64	512	2.828 4271	2.000 0000	.125 000 000
9	81	729	3.000 0000	2.080 0837	.111 111 111
10	100	1 000	3.162 2777	2.154 4347	.100 000 000
11	121	1 331	3.316 6248	2.223 9801	.090 909 091
12	144	1 728	3.464 1016	2.289 4286	.083 333 333
13	169	2 197	3.605 5513	2.351 3347	.076 923 077
14					
	196	2 744	3.741 6574	2.410 1422	.071 428 571
15	225	3 375	3.872 9833	2.466 2121	.066 666 667
16	256	4 096	4.000 0000	2.519 8421	.062 500 000
17	289	4 913	4.123 1056	2.571 2816	.058 823 529
18	324	5 832	4.242 6407	2.620 7414	.055 555 556
19 .	361	6 859	4.358 8989	2.668 4016	.052 631 579
20	400	8 000	4.472 1360	2.714 4177	.050 000 000
21	441	9 261	4.582 5757	2.758 9243	.047 619 048
22	484	10 648	4.690 4158	2.802 0393	.045 454 545
23	529	$12\ 167$	4.795 8315	2.843 8670	.043 478 261
24	576	13 824	4.898 9795	2.884 4991	.041 666 667
25	625	15 625	5.000 0000	2.924 0177	.040 000 000
26	676	17 576	5.099 0195	2.962 4960	.038 461 538
27	729	19 683	5.196 1524	3.000 0000	.037 037 037
28	784	21 952	5.291 5026	3.036 5889	.035 714 286
29	841	24 389	5.385 1648	3.072 3168	.034 482 759
30	900	27 000	5.477 2256	3.107 2325	.033 333 333
31	961	29 791	5.567 7644	3.141 3806	.032 258 065
32	1 024	32 768	5.656 8542	3.174 8021	.031 250 000
33	1 089	35 937	5.744 5626	3.207 5343	.030 303 030
34	1 156	39 304	5.830 9519	3.239 6118	.029 411 765
35	1 225	42 875	5.916 0798	3.271 0663	.028 571 429
36	1 296	46 656	6.000 0000	3.301 9272	.027 777 778
37	1 369	50 653	6.082 7625	3.332 2218	.027 027 027
38	1 444	54 872	6.164 4140	3.361 9754	.026 315 789
39	1 521	59 319			
			6.244 9980	3.391 2114	.025 641 026
40	1 600	64 000	6.324 5553	3.419 9519	.025 000 000
41	1 681	68 921	6.403 1242	3.448 2172	.024 390 244
42	1 764	74 088	6.480 7407	3.476 0266	.023 809 524
43	1 849	79 507	6.557 4385	3.503 3981	.023 255 814
44	1 936	85 184	6.633 2496	3.530 3483	.022 727 273
45	2 025	91 125	6.708 2039	3.556 8933	.022 222 222
46	2 116	97 336	6.782 3300	3.583 0479	.021 739 130
47	2 209	103 823	6.855 6546	3.608 8261	.021 276 600
48	2 304	110 592	6.928 2032	3.634 2411	.020 833 333
49	2 401	117 649	7.000 0000	3.659 3057	.020 408 163
50	2 500	125 000	7.071 0678	3.684 0314	.020 000 000
51	2 601	132 651	7.141 4284	3.708 4298	.019 607 843
52	2 704	140 608	7.211 1026	3.732 5111	.019 230 769

Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
53	2 809	148 877	7.280 1099	3.756 2858	.018 867 925
54	2 916	157 464	7.348 4692	3.779 7631	.018 518 519
55	3 025	166 375	7.416 1985	3.802 9525	.018 181 818
56	3 136	175 616	7.483 3148	3.825 8624	.017 857 143
57	3 249	185 193	7.549 8344	3.848 5011	.017 543 860
58	3 364	195 112	7.615 7731	3.870 8766	.017 241 379
59	3 481	205 379	7.681 1457	3.892 9965	.016 949 153
60	3 600	216 000	7.745 9667	3.914 8676	.016 666 667
61	3 721	226 981	7.810 2497	3.930 4972	.016 393 443
62	3 844	238 328	7.874 0079	3.957 8915	.016 129 032
63	3 969	250 047	7.937 2539	3.979 0571	.015 873 016
64	4 096	262 144	8.000 0000	4.000 0000	.015 625 000
65	4 225	274 625	8.062 2577	4.020 7256	.015 384 615
66	4 356	287 496	8.124 0384	4.041 2401	.015 151 515
67	4 489	300 763	8.185 3528	4.061 5480	.014 925 373
68	4 624	314 432	8.246 2113	4.081 6551	.014 705 882
69	4 761	328 509	8.306 6239	4.101 5661	.014 492 754
70	4 900	343 000	8.366 6003	4.121 2853	.014 285 714
71	5 041	357 911	8.426 1498	4.140 8178	.014 084 517
72	5 184	373 248	8.485 2814	4.160 1676	.013 888 889
73	5 329	389 017	8.544 0037	4.179 3390	.013 698 630
74	5 476	405 224	8.602 3253	4.198 3364	.013 513 514
75	5 625	421 875	8,660 2540	4.217 1633	.013 333 333
76	5 776	438 976	8.717 7979	4.235 8236	.013 157 895
77	5 929	456 533	8.774 9644	4.254 3210	.012 987 013
78	6 084	474 552	8.831 7609	4.272 6586	.012 820 513
79	6 241	493 039	8.888 1944	4.290 8404	.012 658 228
80	6 400	512 000	8.944 2719	4.308 8695	.012 500 000
81	6 561	531 441	9.000 0000	4.326 7487	.012 345 679
82	6 724	551 368	9.055 3851	4.344 4815	.012 195 122
83	6 889	571 787	9.110 4336	4.362 0707	.012 048 193
84	7 056	592 704	9.165 1514	4.379 5191	.011 904 762
85	7 225	614 125	9.219 5445	4.396 8296	.011 764 706
86	7 396	636 056	9.273 6185	4.414 0049	.011 627 907
87	7 569	658 503	9.327 3791	4.431 0476	.011 494 253
88	7 744	681 472	9.380 8315	4.447 9692	.011 363 636
89	7 921	704 969	9.433 9811	4.464 7451	.011 235 955
90	8 100	729 000	9.486 8330	4.481 4047	.011 111 111
91	8 281	753 571	9.539 3920	4.497 9414	.010 989 011
92	8 464	778 688	9.591 6630	4.514 3574	.010 869 565
93	8 649	804 357	9.643 6508	4.530 6549	.010 752 688
94	8 836	830 584	9.695 3597	4.546 8359	.010 638 298
95	9 025	857 375	9.746 7943	4.562 9026	.010 526 316
96	9 216	884 736	9.797 9590	4.578 8570	.010 416 667
97	9 409	912 673	9.848 8578	4.594 7009	.010 309 278
98	9 604	941 192	9.899 4949	4.610 4363	.010 204 082
99	9 801	970 299	9.949 8744	4.626 0650	.010 101 010
100	10 000	1 000 000	10.000 0000	4.641 5888	.010 000 000
101	10 201	1 030 301	10.049 8756	4.657 0095	.009 900 990
102	10 404	1 061 208	10.099 5049	4.672 3287	.009 803 922
103	10 609	1 092 727	10.148 8916	4.687 5482	.009 708 738
104	10 816	1 124 864	10.198 0390	4.702 6694	.009 615 385

	10112110 2210 200101						
Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.		
105	11 025	1 157 625	10.246 9508	4.717 6940	.009 523 810		
106	11 236	1 191 016	10.295 6301	4.732 6235	.009 433 962		
107	11 449	1 225 043	10.344 0804	4.747 4594	.009 345 794		
108	11 664	1 259 712	10.392 3048	4.762 2032	.009 259 259		
109	11 881	1 295 029	10.440 3065	4.776 8562	.009 174 312		
110	12 100	1 331 000	10.488 0885	4.791 4199	.009 090 909		
111	12 321	1 367 631	10.535 6538	4.805 8995	.009 009 009		
112	12 544	1 404 928	10.583 0052	4.820 2845	.008 928 571		
113	12 769	1 442 897	10.630 1458	4.834 5881	.008 849 558		
114	12 996	1 481 544	10.677 0783	4.848 8076	.008 771 930		
115	13 225	1 520 875	10.723 8053	4.862 9442	.008 695 652		
116	13 456	1 560 896	10.770 3296	4.876 9990	.008 620 690		
117	13 689	1 601 613	10.816 6538	4.890 9732	.008 547 009		
118	13 924	1 643 032	10.862 7805	4.904 8681	.008 474 576		
119	14 161	1 685 159	10.908 7121	4.918 6847	.008 403 361		
120	14 400	1 728 000	10.954 4512	4.932 4242	.008 333 333		
121	14 641	1 771 561	11.000 0000	4.946 0874	.008 264 463		
122	14 884	1 815 848	11.045 3610	4.959 6757	.008 196 721		
123	15 129	1 860 867	11.090 5365	4.973 1898	.008 130 081		
124	15 376	1 906 624	11.135 5287	4.986 6310	.008 064 516		
125	15 625	1 953 125	11.180 3399	5.000 0000	.008 000 000		
126	15 876	2 000 376	11.224 9722	5.013 2979	.007 936 508		
127	16 129	2 048 383	11.269 4277	5.026 5257	.007 874 016		
128	16 384	2 097 152	11.313 7085	5.039 6842	.007 812 500		
129	16 641	2 146 689	11.357 8167	5.052 7743	.007 751 938		
130	16 900	2 197 000	11.401 7543	5.065 7970	.007 692 308		
131	17 161	2 248 091	11.445 5231	5.078 7531	.007 633 588		
132	17 424	2 299 968	11.489 1253	5.091 6434	.007 575 758		
133	17 689	2 352 637	11.532 5626	5.104 4687	.007 518 797		
134	17 956	2 406 104	11.575 8369	5.117 2299	.007 462 687		
135	18 225	2 460 375	11.618 9500	5.129 9278	.007 407 407		
136	18 496	2 515 456	11.661 9038	5.142 5632	.007 352 941		
137	18 769	2 571 353	11.704 6999	5.155 1367	.007 299 270		
138	19 044	2 628 072	11.747 3401	5.167 6493	.007 246 377		
139	19 321	2 685 619	11.789 8261	5.180 1015	.007 194 245		
140	19 600	2 744 000	11.832 1596	5.192 4941	.007 142 857		
141	19 881	2 803 221	11.874 3421	5.204 8279	.007 092 199		
142	20 164	2 863 288	11.916 3753	5.217 1034	.007 042 254		
143	20 449	2 924 207	11.958 2607	5.229 3215	.006 993 007		
144	20 736	2 985 984	12.000 0000	5.241 4828	.006 944 444		
145	21 025	3 048 625	12.041 5946	5.253 5879	.006 896 552		
146	21 316	3 112 136	12.083 0460	5.265 6374	.006 849 315		
147	21 609	3 176 523 3 241 792	12.124 3557	5.277 6321	.006 802 721		
148	21 904		12.165 5251	5.289 5725	.006 756 757		
149	22 201	3 307 949 3 375 000	12.206 5556 12.247 4487	5.301 4592 5.313 2928	.006 711 409		
150	22 500			5.313 2928 5.325 0740	.006 666 667		
151	22 801 23 104	3 442 951 3 511 008	12.288 2057 12.328 8280	5.336 8033	.006 578 947		
152 153	23 104 23 409	3 581 577	12.328 8280	5.348 4812	.006 578 947		
154	23 716	3 652 264	12.409 6736	5.360 1084	.006 493 506		
155	24 025	3 723 875	12.449 8996	5.371 6854	.006 451 613		
156	24 025	3 796 416	12.449 89960	5.383 2126	.006 410 256		
100	21 000	3 7 7 3 1 1 3	12.100 0000	0.000 2120	.000 110 200		

Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
157	24 649	3 869 893	12.529 9641	5.394 6907	.006 369 427
158	24 964	3 944 312	12.569 8051	5.406 1202	.006 329 114
159	25 281	4 019 679	12.609 5202	5.417 5015	.006 289 308
160	25 600	4 096 000	12.649 1106	5.428 8352	.006 250 000
161	25 921	4 173 281	12.688 5775	5.440 1218	.006 211 180
162	26 244	4 251 528	12.727 9221	5.451 3618	.006 172 840
163	26 569	4 330 747	12.767 1453	5.462 5556	.006 134 969
164	26 896	4 410 944	12.806 2485	5.473 7037	.006 097 561
165	27 225	4 492 125	12.845 2326	5.484 8066	.006 060 606
166 '	27 556	4 574 296	12.884 0987	5.495 8647	.006 024 096
167	27 889	4 657 463	12.922 8480	5.506 8784	.005 988 024
168	28 224	4 741 632	12.961 4814	5.517 8484	.005 952 381
169	28 561	4 826 809	13.000 0000	5.528 7748	.005 917 160
170	28 900	4 913 000	13.038 4048	5.539 6583	.005 882 353
171	29 241	5 000 211	13.076 6968	5.550 4991	.005 847 953
172	29 584	5 088 448	13.114 8770	5.561 2978	.005 813 953
173	29 929	5 177 717	13.152 9464	5.572 0546	.005 780 347
174	30 276	5 268 024	13.190 9060	5.582 7702	.005 747 126
175	30 625	5 359 375	13.228 7566	5.593 4447	.005 714 286
176	30 976	5 451 776	13.266 4992	5.604 0787	.005 681 818
177	31 329	5 545 233	13.304 1347	5.614 6724	.005 649 718
178	31 684	5 639 752	13.341 6641	5.625 2263	.005 617 978
179	32 041	5 735 339	13.379 0882	5.635 7408	.005 586 592
180 181	32 400 32 761	5 832 000 5 929 741	13.416 4079 13.453 6240	5.646 2162 5.656 6528	.005 555 556
182	33 124		13.490 7376		
183	33 489	6 028 568 6 128 487	13.527 7493	5.667 0511 5.677 4114	.005 494 505
184	33 856	6 229 504	13.564 6600	5.687 7340	.005 434 783
185	34 225	6 331 625	13.601 4705	5.698 0192	.005 405 405
186	34 596	6 434 856	13.638 1817	5.708 2675	.005 376 344
187	34 969	6 539 203	13.674 7943	5.718 4791	.005 347 594
188	35 344	6 644 672	13.711 3092	5.728 6543	.005 319 149
189	35 721	6 751 269	13.747 7271	5.738 7936	.005 291 005
190	36 100	6 859 000	13.784 0488	5.748 8971	.005 263 158
191	36 481	6 967 871	13.820 2750	5.758 9652	.005 235 602
192	36 864	7 077 888	13.856 4065	5.768 9982	.005 208 333
193	37 249	7 189 517	13.892 4400	5.778 9966	.005 181 347
194	37 636	7 301 384	13.928 3883	5.788 9604	.005 154 639
195	38 025	7 414 875	13.964 2400	5.798 8900	.005 128 205
196	38 416	7 529 536	14.000 0000	5.808 7857	.005 102 041
197	38 809	7 645 373	14.035 6688	5.818 6479	.005 076 142
198	39 204	7 762 392	14.071 2473	5.828 4867	.005 050 505
199	39 601	7 880 599	14.106 7360	5.838 2725	.005 025 126
200	40 000	8 000 000	14.142 1356	5.848 0355	.005 000 000
201	40 401	8 120 601	14.177 4469	5.857 7660	.004 975 124
202	40 804	8 242 408	14.212 6704	5.867 4673	.004 950 495
203	41 209	8 365 427	14.247 8068	5.877 1307	.004 926 108
204	41 616	8 489 664	14.282 8569	5.886 7653	.004 901 961
205	42 025	8 615 125	14.317 8211	5.896 3685	.004 878 049
206	42 436	8 741 816	14.352 7001	5.905 9406	.004 854 369
207	42 849	8 869 743	14.387 4946	5.915 4817	.004 830 918
208	43 264	8 998 912	14.422 2051	5.924 9921	.004 807 692

	TOWERS AND ROOTS. 29					
Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.	
209	43 681	9 129 329	14.456 8323	5.934 4721	.004 784 689	
210	44 100	9 261 000	14.491 3767	5.943 9220	.004 761 905	
211	44 521	9 393 931	14.525 8390	5.953 3418	.004 739 336	
212	44 944	9 528 128	14 560 2198	5.962 7320	.004 716 981	
213	45 369	9 663 597	14.594 5195	5.972 0926	.004 694 836	
214	45 796	9 800 344	14.628 7388	5.981 4240	.004 672 897	
215	46 225	9 938 375	14.662 8783	5.990 7264	.004 651 163	
216	46 656	10 077 696	14.696 9385	6.000 0000	.004 629 630	
217	47 089	10 218 313	14.730 9199	6.009 2450	.004 608 295	
218	47 524	10 360 232	14.764 8231	6.018 4617	.004 587 156	
219	47 961	10 503 459	14.798 6486	6.027 6502	.004 566 210	
220	48 400	10 648 000	14.832 3970	6.036 8107	.004 545 455	
221	48 841	10 793 861	14.866 0687	6.045 9435	.004 524 887	
222	49 284	10 941 048	14.899 6644	6.055 0489	.004 504 505	
22 3	49 729	11 089 567	14.933 1845	6.064 1270	.004 484 305	
224	50 176	11 239 424	14.966 6295	6.073 1779	.004 464 286	
225	50 625	11 390 625	15.000 0000	6.082 4020	.004 444 444	
226	51 076	11 543 176	15.033 2964	6.099 1994	.004 424 779	
227	51 529	11 697 083	15.066 5192	6.100 1702	.004 405 286	
228	51 984	11 852 352	15.099 6689	6.109 1147	.004 385 965	
229	52 441	12 008 989	15.132 7460	6.118 0332	.004 366 812	
230	52 900	12 167 000	15.165 7509	6.126 9257	.004 347 826	
231	53 361	12 326 391	15.198 6842	6.135 7924	.004 329 004	
232	53 824	12 487 168	15.231 5462	6.144 6337	.004 310 345	
233	54 289	12 649 337	15.264 3375	6.153 4495	.004 291 845	
234	54 756	12 812 904	15.297 0585	6.162 2401	.004 273 504	
235	55 225	12 977 875	15.329 7097	6.171 0058	.004 255 319	
236	55 696	13 144 256	15.362 2915	6.179 7466	.004 237 288	
237	56 169	13 312 053	15.394 8043	6.188 4628	.004 219 409	
238	56 644	13 481 272	15.427 2486	6.197 1544	.004 201 681	
239	57 121	13 651 919	15.459 6248	6.205 8218	.004 184 100	
240	57 600	13 824 000	15.491 9334	6.214 4650	.004 166 667	
241	58 081	13 997 521	15.524 1747	6.223 0843	.004 149 378	
242	58 564	14 172 488	15.556 3492	6.231 6797	.004 132 231	
243	59 049	14 348 907	15.588 4573	6.240 2515	.004 115 226	
244	59 536	14 526 784	15.620 4994	6.248 7998	.004 098 361	
245	60 025	14 706 125	15.652 4758	6.257 3248	.004 081 633	
246	60 516	14 886 936	15.684 3871	6.265 8266	.004 065 041	
247	61 009	15 069 223	15.716 2336	6.274 3054	.004 048 583	
248	61 504	15 252 992	15.748 0157	6.282 7613	.004 032 258	
249	62 001	15 438 249	15.779 7338	6.291 1946	.004 016 064	
250	62 500	15 625 000	15.811 3883	6.299 6053	.004 000 000	
251	63 001	15 813 251	15.842 9795	6.307 9935	.003 984 064	
252	63 504	16 003 008	15.874 5079	6.316 3596	.003 968 254	
253	64 009	16 194 277	15.905 9737	6.324 7035	.003 952 569	
254	64 516	16 387 064	15.937 3775	6.333 0256	.003 937 008	
255	65 025	16 581 375	15.968 7194	6.341 3257	.003 921 569	
256	65 536	16 777 216	16.000 0000	6.349 6042	.003 906 250	
257	66 049	16 974 593	16.031 2195	6.357 8611	.003 891 051	
258	66 564	17 173 512	16.062 3784	6.366 0968	.003 875 969	
259	67 081	17 373 979	16.093 4769	6.374 3111	.003 861 004	
260	67 600	17 576 000	16.124 5155	6.382 5043	.003 846 154	

Number.	Squares.	Cubes.	VRoots.	Noots.	Reciprocals.
261	68 121	17 779 581	16.155 4944	6.390 6765	.003 831 418
262	68 644	17 984 728	16.186 4141	6.398 8279	.003 816 794
263	69 169	18 191 447	16.217 2747	6.406 9585	.003 802 281
264	69 696	18 399 744	16.248 0768	6.415 0687	.003 787 879
265	70 225	18 609 625	16.278 8206	6.423 1583	.003 773 585
266	70 756	18 821 096	16.309 5064	6.431 2276	.003 759 398
267	71 289	19 034 163	16.340 1346	6.439 2767	.003 745 318
268	71 824	19 248 832	16.370 7055	6.447 3057	.003 731 343
269	72 361	19 465 109	16.401 2195	6.455 3148	.003 717 472
270	72 900	19 683 000	16.431 6767	6.463 3041	.003 703 704
271	73 441	19 902 511	16.462 0776	6.471 2736	.003 690 037
272	73 984	20 123 643	16.492 4225	6.479 2236	.003 676 471
273	74 529	20 346 417	16.522 7116	6.487 1541	.003 663 004
274	75 076	20 570 824	16.552 9454	6.495 0653	.003 649 635
275	75 625	20 796 875	16.583 1240	6.502 9572	.003 636 364
276	76 176	21 024 576	16.613 2477	6.510 8300	.003 623 188
277	76 729	21 253 933	16.643 3170	6.518 6839	.003 610 108
278	77 284	21 484 952	16.673 3320	6.526 5189	.003 597 122
279	77 841	21 717 639	16.703 2931	6.534 3351	.003 584 229
280	78 400	21 952 000	16.733 2005	6.542 1326	.003 571 429
281	78 961	22 188 041	16.763 0546	6.549 9116	.003 558 719
282	79 524	22 425 768	16.792 8556	6.557 6722	.003 546 099
283	80 089	22 665 187	16.822 6038	6 565 4144	.003 533 569
284	80 656	22 906 304	16.852 2995	6.573 1385	.003 521 127
285	81 225	23 149 125	16.881 9430	6.580 8443	.003 508 772
286	81 796	23 393 656	16.911 5345	6.588 5323	.003 496 503
287	82 369	23 639 903	16.941 0743	6.596 2023	.003 484 321
288	82 944	23 887 872	16.970 5627	6.603 8545	.003 472 222
289	83 521	24 137 569	17.000 0000	6.611 4890	.003 460 208
290	84 100	24 389 000	17.029 3864	6.619 1060	.003 448 276
291	84 681	24 642 171	17.058 7221	6.626 7054	.003 436 426
292	85 264	24 897 088	17.088 0075	6.634 2874	.003 424 658
293	85 849	25 153 757	17.117 2428	6.641 8522	.003 412 969
294	86 436	25 412 184	17.146 4282	6.649 3998	.003 401 361
295	87 025	25 672 375	17.175 5640	6.656 9302	.003 389 831
296	87 616	25 934 836	17.204 6505	6.664 4437	.003 378 378
297	88 209	26 198 073	17.233 6879	6.671 9403	.003 367 003
298	88 804	26 463 592	17.262 6765	6.679 4200	.003 355 705
299	89 401	26 730 899	17.291 6165	6.686 8831	.003 344 482
300	90 000	27 000 000	17.320 5081	6.694 3295	.003 333 333
301	90 601	27 270 901	17.349 3516	6.701 7593	.003 322 259
302	91 204	27 543 608	17.378 1472	6.709 1729	.003 311 258
303	91 809	27 818 127	17.406 8952	6.716 5700	.003 301 330
304	92 416	28 094 464	17.435 5958	6.723 9508	.003 289 474
305	93 025	28 372 625	17.464 2492	6.731 3155	.003 278 689
306	93 636	28 652 616	17.492 8557	6.738 6641	.003 267 974
307	94 249	28 934 443	17.521 4155	6.745 9967	.003 257 329
308	91 864	29 218 112	17.549 9288	6.753 3134	.003 246 753
309	95 481	29 503 609	17.578 3958	6.760 6143	.003 236 246
310	96 100	29 791 000	17.606 8169	6.767 8995	.003 225 806
311 312	96 721 97 344	30 080 231	17.635 1921	6.775 1690	.003 215 434
312	97 344	30 371 328	17.663 5217	6.782 4229	.003 203 128

		1 0 11 2110	1/-	<i>y</i>	
Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
31 3	97 969	30 664 297	17.691 8060	6.789 6613	.003 194 888
314	98 596	30 959 144	17.720 0451	6.796 8844	.003 184 713
315	99 225	31 255 875	17.748 2393	6.804 0921	.003 174 603
316	99 856	31 554 496	17.776 3888	6.811 2847	.003 164 557
317	100 489	31 855 013	17.804 4938	6.818 4620	.003 154 574
318	101 124	32 157 432	17.832 5545	6.825 6242	.003 144 654
319	101 761	32 461 759	17.860 5711	6.832 7714	.003 134 796
320	102 400	32 768 000	17.888 5438	6.839 9037	.003 125 000
321	103 041	33 076 161	17.916 4729	6.847 0213	.003 115 265
322	103 684	33 386 248	17.944 3584	6.854 1240	.003 105 590
323	104 329	33 698 267	17.972 2008	6.861 2120	.003 095 975
324	104 976	34 012 224	18.000 0000	6.868 2855	.003 086 420
325	105 625	34 328 125	18.027 7564	6.875 3433	.003 076 923
326	106 276	34 645 976	18.055 4701	6.882 \$888	.003 067 485
327	106 929	34 965 783	18.083 1413	6.889 4188	.003 048 104
328	107 584	35 287 552	18.110 7703	6.896 4345	.003 048 780
329	108 241	35 611 289	18.138 3571	6.903 4359	.003 039 514
330	108 900	35 937 000	18.165 9021	6.910 4232	.003 030 303
331	109 561	36 264 691	18.193 4054	6.917 3964	.003 021 148
332	110 224	36 594 368	18.220 8672	6.924 3556	.003 012 048
333	110 889	36 926 037	18.248 2876	6.931 3088	.003 003 003
334	111 556	37 259 704	18.275 6669	6.938 2321	.002 994 012
335	112 225	37 595 375	18.303 0052	6.945 1496	.002 985 075
336	112 896	37 933 056	18.330 3028	6.952 0533	.002 976 190
337	113 569	38 272 753	18.357 5598	6.958 9434	.002 967 359
338	114 244	38 614 472	18.384 7763	6.965 8198	.002 958 580
339	114 921	38 958 219	18.411 9526	6.972 6826	.002 949 853
340	115 600	39 304 000	18.439 0889	6 979 5321	.002 941 176
341	116 281	39 651 821	18.466 1853	6.986 3681	.002 932 551
342	116 964	40 001 688	18.493 2420	6.993 1906	.002 923 977
343	117 649	40 353 607	18.520 2592	7.000 0000	.002 915 452
344	118 336	40 707 584	18.547 2370	7.006 7962	.002 906 977
345	119 025	41 063 625	18.574 1756	7.013 5791	.002 898 551
346	119 716	41 421 736	18.601 0752	7.020 3490	.002 890 173
347	120 409	41 781 923	18.627 9360	7.027 1058	.002 881 844
348 349	121 104 121 801	42 144 192 42 508 549	18.654 7581	7.033 8497 7.040 5860	.002 873 563
350	121 801	42 875 000	18.681 5417 18.708 2869	7.047 2987	.002 857 143
351	123 201	43 243 551	18.734 9940	7.054 0041	.002 849 003
352	123 201	43 614 208	18.761 6630	7.060 6967	.002 849 003
353	124 609	43 986 977	18.788 2942	7.067 3767	.002 832 861
354	125 316	44 361 864	18.814 8877	7.074 0440	.002 824 859
355	126 025	44 738 875	18.841 4437	7.080 6988	.002 816 901
356	126 736	45 118 016	18.867 9623	7.087 3411	.002 808 989
357	127 449	45 499 293	18.894 4436	7.093 9709	.002 801 120
358	128 164	45 882 712	18.920 8879	7.100 5885	.002 793 296
359	128 881	46 268 279	18.947 2953	7.100 3003	.002 785 515
360	129 600	46 656 000	18.973 6660	7.113 7866	.002 777 778
361	130 321	47 045 831	19.000 0000	7.120 3674	.002 770 083
362	131 044	47 437 928	19.026 2976	7.126 9360	.002 762 431
363	131 769	47 832 147	19.052 5589	7.133 4925	.002 754 821
364	132 496	48 228 544	19.078 7840	7.140 0370	.002 747 253

Number.	Squares.	Cubes.	VRoots.	Noots.	Reciprocals.
365	133 225	48 627 125	19.104 9732	7.146 5695	.002 739 726
366	133 956	49 027 896	19.131 1265	7.153 0901	.002 732 240
367	134 689	49 430 863	19.157 2441	7.159 5988	.002 724 796
368	135 424	49 836 032	19.183 3261	7.166 0957	.002 717 391
369	136 161	50 243 409	19.209 3727	7.172 5809	.002 710 027
370	136 900	50 653 000	19.235 3841	7.179 0544	.002 702 703
371	137 641	51 064 811	19.261 3603	7.185 5162	.002 695 418
372	138 384	51 478 848	19.287 3015	7.191 9663	.002 688 172
373	139 129	51 895 117	19.313 2079	7.198 4050	.002 680 965
374	139 876	52 313 624	19.339 0796	7.204 8322	.002 673 797
375	140 625	52 734 375	19.364 9167	7.211 2479	.002 666 667
376	141 376	53 157 376	19.390 7194	7.217 6522	.002 659 574
377	142 129	53 582 633	19.416 4878	7.224 0450	.002 652 520
378	142 884	54 010 152	19.442 2221	7.230 4268	.002 645 503
379	143 641	54 439 939	19.467 9223	7.236 7972	.002 638 521
380	144 400	54 872 000	19.493 5887	7.243 1565	.002 631 579
381	145 161	55 306 341	19.519 2213	7.249 5045	.002 624 672
382	145 924	55 742 968	19.544 8203	7.255 8415	.002 617 801
383	146 689	56 181 887	19.570 3858	7.262 1675	.002 610 966
384	147 456	56 623 104	19.595 9179	7.268 4824	.002 604 167
385	148 225	57 066 625	19.621 4169	7.274 7864	.002 597 403
386	148 996	57 512 456	19.646 8827	7.281 0794	.002 590 674
387	149 769	57 960 603	19.672 3156	7.287 3617	.002 583 979
388	150 544	58 411 072	19.697 7156	7.293 6330	.002 577 320
389	151 321	58 863 869	19.723 0829	7.299 8936	.002 570 694
390	152 100	59 319 000	19.748 4177	7.306 1436	.002 564 103
391	152 881	59 776 471	19.773 7199	7.312 3828	.002 557 545
392	153 664	60 236 288	19.798 9899	7.318 6114	.002 551 020
393	154 449	60 698 457	19.824 2276	7.324 8295	.002 544 529
394	155 236	61 162 984	19.849 4332	7.331 0369	.002 538 071
395	156 025	61 629 875	19.874 6069	7.337 2339	.002 531 646
396	156 816	62 099 136	19.899 7487	7.343 4205	.002 525 253
397	157 609	62 570 773	19.924 8588	7.349 5966	.002 518 892
398	158 404	63 044 792	19.949 9373	7.355 7624	.002 512 563
399	159 201	63 521 199	19.974 9844	7.361 9178	.002 506 266
400	160 000	64 000 000	20.000 0000	7.368 0630	.002 500 000
401	160 801	64 481 201	20.024 9844	7.374 1979	.002 493 766
402	161 604	64 964 808	20.049 9377	7.380 3227	.002 487 562
403	162 409	65 450 827	20.074 8599	7.386 4373	.002 481 390
404	163 216	65 939 264	20.099 7512	7.392 5418	.002 475 248
405	164 025	66 430 125	20.124 6118	7.398 6363	.002 469 136
406	164 836	66 923 416	20.149 4417	7.404 7206	.002 463 054
407	165 649	67 419 143	20.174 2410	7.410 7950	.002 457 002
408	166 464	67 917 312	20.199 0099	7.416 8595	.002 450 980
409	167 281	68 417 929	20.223 7484	7.422 9142	.002 444 988
410	168 100	68 921 000	20.248 4567	7.428 9589	.002 439 024
411	168 921	69 426 531	20.273 1349	7.434 9938	.002 433 090
412	169 744	69 934 528	20.297 7831	7.441 0189	.002 427 184
413	170 569	70 444 997	20.322 4014	7.447 0343	.002 421 308
414	171 396	70 957 944	20.346 9899	7.453 0399	.002 415 459
415	172 225	71 473 375	20.371 5488	7.459 0359	.002 409 639
416	173 056	71 991 296	20.396 0781	7.465 0223	.002 400 840

	TOWERS AND ROOTS.					
Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.	
521	271 441	141 420 761	22.825 4244	8.046 6030	.001 919 386	
522	272 484	142 236 648	22.847 3193	8.051 7479	.001 915 709	
523	273 529	143 055 667	22.869 1933	8.056 8862	.001 912 046	
524	274 576	143 877 824	22.891 0463	8.062 0180	.001 908 397	
525	275 625	144 703 125	22.912 8785	8.067 1432	.001 904 762	
526	276 676	145 531 576	22.934 6899	8.072 2620	.001 901 141	
527	277 729	146 363 183	22.956 4806	8.077 3743	.001 897 533	
528	278 784	147 197 952	22.978 2506	8.082 4800	.001 893 939	
529	279 841	148 035 889	23.000 0000	8.087 5794	.001 890 359	
530	280 900	148 877 001	23.021 7289	8.092 6723	.001 886 792	
531	281 961	149 721 291	23.043 4372	8.097 7589	.001 883 239	
532	283 024	150 568 768	23.065 1252	8.102 8390	.001 879 699	
533	284 089	151 419 437	23.086 7928	8.107 9128	.001 876 173	
534	285 156	152 273 304	23.108 4400	8.112 9803	.001 872 659	
535	286 225	153 130 375	23.130 0670	8.118 0414	.001 869 159	
536	287 296	153 990 656	23.151 6738	8.123 0962	.001 865 672	
537	288 369	154 854 153	23.173 2605	8.128 1447	.001 862 197	
538	289 444	155 720 872	23.194 8270	8.133 1870	.001 858 736	
539	290 521	156 590 819	23.216 3735	8.138 2230	.001 855 288	
540	291 600	157 464 000	23.237 9001	8.143 2529	.001 851 852	
541	292 681	158 340 421	23.259 4067	8.148 2765	.001 848 429	
542	293 764	159 220 088	23.280 8935	8.153 2939	.001 845 018	
543	294 849	160 103 007	23.302 3604	8.158 3051	.001 841 621	
544	295 936	160 989 184	23.323 8076	8.163 3102	.001 838 235	
545	297 025	161 878 625	23.345 2351	8.168 3092	.001 834 862	
546	298 116	162 771 336	23.366 6429	8.173 3020	.001 831 502	
547	299 209	163 667 323	23.388 0311	8.178 2888	.001 828 154	
548	300 304	164 566 592	23.409 3998	8.183 2695	.001 824 818	
549	301 401	165 469 149	23.430 7490	8.188 2441	.001 821 494	
550	302 500	166 375 000	23.452 0788	8.193 2127	.001 818 182	
551	303 601	167 284 151	23.473 3892	8.198 1753	.001 814 882	
552	304 704	168 196 608	23.494 6802	8.203 1319	.001 811 594	
553	305 809	169 112 377	23.515 9520	8.208 0825	.001 808 318	
554	306 916	170 031 464	23.537 2046	8.213 0271	.001 805 054	
555	308 025	170 953 875	23.558 4380	8.217 9657	.001 801 802	
556 557	309 136 310 249	171 879 616 172 808 693	23.579 6522	8.222 8985	.001 798 561	
558	311 364	173 741 112	23.600 8474 23.622 0236	8.227 8254 8.232 7463	.001 793 552	
559		174 676 879				
560	312 481 313 600	174 676 879	23.643 1808 23.664 3191	8.237 6614 8.242 5706	.001 788 909	
561	314 721	176 558 481	23.685 4386	8.242 5700	.001 782 531	
562	315 844	177 504 328	23.706 5392	8.252 3715	.001 779 359	
563	316 969	178 453 547	23.727 6210	8.257 2635	.001 776 199	
564	318 096	179 406 144	23.748 6842	8.262 1492	.001 770 199	
565	319 225	180 362 125	23.769 7286	8.267 0294	.001 769 912	
566	320 356	181 321 496	23.790 7545	8.271 9039	.001 766 784	
567	321 489	182 284 263	23.811 7618	8.276 7726	.001 763 668	
568	322 624	183 250 432	23.832 7506	8.281 6255	.001 760 563	
569	323 761	184 220 009	23.853 7209	8.286 4928	.001 757 469	
570	324 900	185 193 000	23.874 6728	8.291 3444	.001 754 386	
571	326 041	186 169 411	23.895 6063	8.296 1903	.001 751 313	
572	327 184	187 149 248	23.916 5215	8.301 0304	.001 748 252	

36		10112110			
Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
573	328 329	188 132 517	23.937 4184	8.305 8651	.001 745 201
	329 476	189 119 224	23.958 2971	8.310 6941	.001 742 160
574 575	330 625	190 109 375	23.979 1576	8.315 5175	.001 739 130
	331 776	191 102 976	24.000 0000	8.320 3353	.001 736 111
576	332 927	192 100 033	24.020 8243	8.325 1475	.001 733 102
577	334 084	193 100 552	24.041 6306	8.329 9542	.001 730 104
578	335 241	194 104 539	24.062 4188	8.334 7553	.001 727 116
579	336 400	195 112 000	24.083 1891	8.339 5509	.001 724 138
580	337 561	196 122 941	24.103 9416	8.344 3410	.001 721 170
581	338 724	197 137 368	24.124 6762	8.349 1256	.001 718 213
582	339 889	198 155 287	24.145 3929	8.353 9047	.001 715 266
583	341 056	199 176 704	24.166 0919	8.358 6784	.001 712 329
584		200 201 625	24.186 7732	8.363 4466	.001 709 402
585	342 225	201 230 056	24.207 4369	8.368 2095	.001 706 485
586	343 396	202 262 003	24.228 0829	8.372 9668	.001 703 578
587	344 569	203 297 472	24.248 7113	8.377 7188	.001 700 680
588	345 744	204 336 469	24.269 3222	8.382 4653	.001 697 793
589	346 921	205 379 000	24.289 9156	8.387 2065	.001 694 915
590	348 100	206 425 071	24.310 4996	8.391 9428	.001 692 047
591	349 281	207 474 688	24.331 0501	8.396 6729	.001 689 189
592	350 464		24.351 5913	8.401 3981	.001 686 341
593	351 649	208 527 857	24.372 1152	8,406 1180	.001 683 502
594	352 836	209 584 584	24.392 6218	8.410 8326	.001 680 672
595	354 025	210 644 875	24.413 1112	8,415 5419	.001 677 852
596	355 216	211 708 736	24.433 5834	8,420 2460	.001 675 042
597	356 409	212 776 173	24.454 0385	8.424 9448	.001 672 241
598	357 604	213 847 192	24.474 4765	8.429 6383	.001 669 449
599	358 801	214 921 799	24.474 4703	8.434 3267	.001 666 667
600	360 000	216 000 000		8.439 0098	.001 663 894
601	361 201	217 081 801	24.515 3013	8.443 6877	.001 661 130
602	362 404	218 167 208	24.535 6883 24.556 0583	8.448 3605	.001 658 375
603	363 609	219 256 227		8.453 0281	.001 655 629
604	364 816	220 348 864	24.576 4115 24.596 7478	8.457 6906	.001 652 893
605	366 025	221 445 125		8.462 3479	.001 650 16
606	367 236	222 545 016	24.617 0673	8.467 0001	.001 647 44
607	368 449	223 648 543	24.637 3700	8.471 6471	.001 644 73
608	369 664	224 755 712	24.657 6560	8.476 2892	.001 642 03
609	370 881	225 866 529	24.677 9254	8.480 9261	.001 639 34
610	372 100	226 981 000	24.698 1781	8.485 5579	.001 636 66
611	373 321	228 099 131	24.718 4142	8.490 1848	.001 633 98
612	374 544	229 220 928	24.738 6338	8.494 8065	.001 631 32
613	375 769	230 346 397	24.758 8368	8.499 4233	.001 628 66
614	376 996	231 475 544	24.779 0234		.001 626 01
615	378 225	232 608 375	24.799 1935	1	.001 623 37
616	379 456	233 744 896	24.819 3473		.001 620 74
617	380 689	234 885 113	24.839 4847		.001 618 12
618	381 924	236 029 032			.001 615 50
619	383 161	237 176 659			
620	384 400	238 328 000			
621	385 641	239 483 061			
622	386 884				
623	388 129	241 804 367			
624	389 376		24.979 992	8.040 3176	.001 002 0

POWERS AND ROOTS. 51					
Number.	Squares.	Cubes.	VRoots.	Noots.	Reciprocals.
625	390 625	244 140 625	25.000 0000	8.549 8797	.001 600 000
626	391 876	245 134 376	25.019 9920	8.554 4372	.001 597 444
627	393 129	246 491 883	25.039 9681	8.558 9899	.001 594 896
628	394 384	247 673 152	25.059 9282	8.563 5377	.001 592 357
629	395 641	248 858 189	25.079 8724	8.568 0807	.001 589 825
630	396 900	250 047 000	25.099 8008	8.572 6189	.001 587 302
631	398 161	251 239 591	25.119 7134	8.577 1523	.001 584 786
632	399 424	252 435 968	25.139 6102	8.581 6809	.001 582 278
633	400 689	253 636 137	25.159 4913	8.586 2247	.001 579 779
634	401 956	254 840 104	25.179 3566	8.590 7238	.001 577 287
635	403 225	256 047 875	25.199 2063	8.595 2380	.001 574 803
636	404 496	257 259 456	25.219 0404	8.599 7476	.001 572 327
637	405 769	258 474 853	25.238 8589	8.604 2525	.001 569 859
638	407 044	259 694 072	25.258 6619	8.608 7526	.001 567 398
639	408 321	260 917 119	25.278 4493	8.613 2480	.001 564 945
640	409 600	262 144 000	25.298 2213	8.617 7388	.001 562 500
641	410 881	263 374 721	25.317 9778	8.622 2248	.001 560 062
642	412 164	264 609 288	25.337 7189	8.626 7063	.001 557 632
643	413 449	265 847 707	25,357 4447	8.631 1830	.001 555 210
644	414 736	267 089 984	25.377 1551	8.635 6551	.001 552 795
645	416 025	268 336 125	25.396 8502	8.640 1226	.001 550 388
646	417 316	269 585 136	25.416 5302	8.644 5855	.001 547 988
647	418 609	270 840 023	25.436 1947	8.649 0437	.001 545 595
648	419 904	272 097 792	25.455 8441	8.653 4974	.001 543 210
649	421 201	273 359 449	25.475 4784	8.657 9465	.001 540 832
650	422 500	274 625 000	25.495 0976	8.662 3911	.001 538 462
651	423 801	275 894 451	25.514 7013	8.666 8310	.001 536 098
652	425 104	277 167 808	25.534 2907	8.671 2665	.001 533 742
653	426 409	278 445 077	25.553 8647	8.675 6974	.001 531 394
654	427 716	279 726 264	25.573 4237	8.680 1237	.001 529 052
655	429 025	281 011 375	25.592 9678	8.684 5456	.001 526 718
656	430 336	282 300 416	25.612 4969	8.688 9630	.001 524 390
657	431 649	283 593 393	25.632 0112	8.693 3759	.001 522 070
658	432 964	284 890 312	25.651 5107	8.697 7843	.001 519 757
659	434 281	286 191 179	25.670 9953	8.702 1882	.001 517 451
660	435 600	287 496 000	25.690 4652	8.706 5877	.001 515 152
661	436 921	288 804 781	25.709 9203	8.710 9827	.001 512 859
662	438 244	290 117 528	25.729 3607	8.715 3734	.001 510 574
663	439 569	291 434 247	25.748 7864	8.719 7596	.001 508 296
664	440 896	292 754 944	25.768 1975	8.724 1414	.001 506 024
665	442 225	294 079 625	25.787 5939	8.728 5187	.001 503 759
666	443 556	295 408 296	25.806 9758	8.732 8918	.001 501 502
667	444 889	296 740 963	25.826 3431	8.737 2604	.001 499 250
668	446 224	298 077 632	25.845 6960	8.741 6246	.001 497 006
669	447 561	299 418 309	25.865 0343	8.745 9846	.001 494 768
670	448 900	300 763 000	25.884 3582	8.750 3401	.001 492 537
671	450 241	302 111 711	25.903 6677	8.754 6913	.001 490 313
672	451 584	303 464 448	25.922 9628	8.759 0383	.001 488 095
673	452 929	304 821 217	25.942 2435	8.763 3809	.001 485 884
674	454 276	306 182 024	25.961 5100	8.767 7192	.001 483 680
675	455 625	307 546 875	25.980 7621	8.772 0532	.001 481 481
676	456 976	308 915 776	26.000 0000	8.776 3830	.001 479 290

Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
677	458 329	310 288 733	26.019 2237	8.780 7084	.001 477 105
678	459 684	311 665 752	26.038 4331	8.785 0296	.001 474 926
679	461 041	313 046 839	26.057 6284	8.789 3466	.001 472 754
680	462 400	314 432 000	26.076 8096	8.793 6593	.001 470 588
681	463 761	315 821 241	26.095 9767	8.797 9679	.001 468 429
682	465 124	317 214 568	26.115 1297	8.802 2721	.001 466 276
683	466 489	318 611 987	26.134 2687	8.806 5722	.001 464 129
684	467 856	320 013 504	26.153 3937	8.810 8681	.001 461 988
685	469 225	321 419 125	26.172 5047	8.815 1598	.001 459 854
686	470 596	322 828 856	26.191 6017	8.819 4474	.001 457 726
687	471 969	324 242 703	26.210 6848	8.823 7307	.001 455 604
688	473 344	325 660 672	26.229 7541	8.828 0099	.001 453 488
689	474 721	327 082 769	26.248 8095	8.832 2850	.001 451 379
690	476 100	328 509 000	26.267 8511	8.836 5559	.001 449 275
691	477 481	329 939 371	26.286 8789	8.840 8227	.001 447 178
692	478 864	331 373 888	26.305 8929	8,845 0854	.001 445 087
693	480 249	332 812 557	26.324 8932	8.849 3440	.001 443 001
694	481 636	334 255 384	26.343 8797	8.853 5985	.001 440 922
695	483 025	335 702 375	26.362 8527	8.857 8489	.001 438 849
696	484 416	337 153 536	26.381 8119	8.862 0952	.001 436 782
697	485 809	338 608 873	26.400 7576	8.866 3375	.001 434 720
698	487 204	340 068 392	26.419 6896	8.870 5757	.001 432 665
699	488 601	341 532 099	26,438 6081	8.874 8099	.001 430 615
700	490 000	343 000 000	26.457 5131	8.879 0400	.001 428 571
701	491 401	344 472 101	26.476 4046	8.883 2661	.001 426 534
701	492 804	345 948 408	26.495 2826	8.887 4882	.001 424 501
702	494 209	347 428 927	26.514 1472	8.891 7063	.001 424 301
703	495 616	348 913 664	26.532 9983	8.895 9204	.001 422 475
704	497 025	350 402 625	26.551 8361	8.900 1304	.001 420 433
706	498 436	351 895 816	26.570 6605	8.904 3366	.001 416 431
707	499 849	353 393 243	26.589 4716	8.908 5387	.001 410 431
707	501 264	354 894 912	26.608 2694	8.912 7369	.001 412 429
700	502 681	356 400 829	26.627 0539	8.916 9311	.001 412 429
710	504 100	357 911 000	26,645 8252	8.921 1214	.001 408 451
710	505 521	359 425 431			
711	506 944		26.664 5833	8.925 3078 8.929 4902	.001 406 470
712	508 369	360 944 128 362 467 097	26.683 3281 26.702 0598	8.933 6687	.001 404 494
713	508 509	363 994 344	26.702 0598	8.937 8433	.001 402 525
714	511 225	-365 525 875	26.739 4839	8.942 0140	.001 400 560
716	511 225	367 061 696	26.758 1763	8.942 0140	.001 398 601
710	514 089	368 601 813	26.776 8557	8.950 3438	.001 396 648
717	515 524	370 146 232	26.776 8337	8.954 5029	.001 394 700
719 720	516 961 518 400	371 694 959 373 248 000	26.814 1754 26.832 8157	8.958 6581 8.962 8095	.001 390 821
720 721	519 841	373 248 000	26.852 8157	8.966 9570	.001 388 889
721	521 284	376 367 048	26.870 0577	8.971 1007	.001 386 963
723	522 729	377 933 067	26.888 6593	8.975 2406	.001 383 042
724	524 176	379 503 424		8.979 3766	.001 383 126
725	525 625	381 078 125	26.907 2481 26.925 8240	8.983 5089	.001 381 213
726	527 076	382 657 176	26.925 8240 26.944 3872	8.987 6373	.001 379 310
727	528 529	384 240 583		8.991 7620	.001 377 410
728	528 529 529 529 984		26.962 9375		
120	329 904	385 828 352	26.981 4751	8.995 8899	.001 373 626

		POWERS	AND ROOTS.		39
Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
729	531 441	387 420 489	27.000 0000	9.000 0000	.001 371 742
730	532 900	389 017 000	27.018 5122	9.004 1134	.001 369 863
731	534 361	390 617 891	27.037 0117	9.008 2229	.001 367 989
732	535 824	392 223 168	27.055 4985	9.012 3288	.001 366 120
733	537 289	393 832 837	27.073 9727	9.016 4309	.001 364 256
734	538 756	395 446 904	27.092 4344	9.020 5293	.001 362 398
735	540 225	397 065 375	27.110 8834	9.024 6239	.001 360 544
736	541 696	398 688 256	27.129 3199	9.028 7149	.001 358 696
737	543 169	400 315 553	27.147 7149	9.032 8021	.001 356 852
738	544 644	401 947 272	27.166 1554	9.036 8857	.001 355 014
739	546 121	403 583 419	27.184 5544	9.040 9655	.001 353 180
740	547 600	405 224 000	27.202 9140	9.045 0419	.001 351 351
741	549 081	406 869 021	27.221 3152	9.049 1142	.001 349 528
742	550 564	408 518 488	27.239 6769	9.053 1831	.001 347 709
743	552 049	410 172 407	27,258 0263	9.057 2482	.001 345 895
744	553 536	411 830 784	27.276 3634	9.061 3098	.001 344 086
745	555 025	413 493 625	27.294 6881	9.065 3677	.001 342 282
746	556 516	415 160 936	27.313 0006	9.069 4220	.001 340 483
747	558 009	416 832 723	27.331 3007	9.073 4726	.001 338 688
748	559 504	418 508 992	27.349 5887	9.077 5197	.001 336 898
749	561 001	420 189 749	27.367 8644	9.081 5631	.001 335 113
750	562 500	421 875 000	27.386 1279	9.085 6030	.001 333 333
751	564 001	423 564 751	27.404 3792	9.089 6352	.001 331 558
752	565 504	425 259 008	27.422 6184	9.093 6719	.001 329 787
753	567 009	426 957 777	27.440 8455	9.097 7010	.001 328 021
754	568 516	428 661 064	27.459 0604	9.101 7265	.001 326 260
755	570 025	430 368 875	27.477 2633	9.105 7485	.001 324 503
756	571 536	432 081 216	27.495 4542	9.109 7669	.001 322 751
757	573 049	433 798 093	27.513 6330	9.113 7818	.001 321 004
758	574 564	435 519 512	27.531 7998	9.117 7931	.001 319 261
759	576 081	437 245 479	27.549 9546	9.121 8010	.001 317 523
760	577 600	438 976 000	27.568 0975	9.125 8053	.001 315 789
761	579 121	440 711 081	27.586 2284	9.129 8061	.001 314 060
762	580 644	442 450 728	27.604 3475	9.133 8034	.001 312 336
763	582 169	444 194 947	27.622 4546	9.137 7971	.001 310 616
764	583 696	445 943 744	27.640 5499	9.141 7874	.001 308 901
765	585 225	447 697 125	27.658 6334	9.145 7742	.001 307 190
766	586 756	449 455 096	27.676 7050	9.149 7576	.001 307 130
767	588 289	451 217 663	27.694 7648	9.153 7375	.001 303 781
768	589 824	452 984 832	27.712 8129	9.157 7139	.001 302 083
769	591 361	454 756 609	27.730 8492	9.161 6869	.001 300 390
770	592 900	456 533 000	27.748 8739	9.165 6565	.001 298 701
771	594 441	458 314 011	27.766 8868	9.169 6225	.001 297 017
772	595 984	460 099 648	27.784 8880	9.173 5852	.001 295 337
773	597 529	461 889 917	27.802 8775	9.177 5445	.001 293 661
774	599 076	463 684 824	27.820 8555	9.181 5003	.001 291 990
775	600 625	465 484 375	27.838 8218	9.185 4527	.001 290 323
776	602 176	467 288 576	27.856 7766	9.189 4018	.001 288 660
777	603 729	469 097 433	27.874 7197	9.193 3474	.001 287 001
778	605 284	470 910 952	27.892 6514	9.197 2897	.001 285 347
779	606 841	472 729 139	27.910 5715	9.201 2286	.001 283 697
780	608 400	474 552 000	27.928 4801	9.205 1641	.001 282 051
	300 103	2,2002 000	27.020 2001	0,200 1071	.001 202 001

Number.	Camana	Chalter	VRoots.	Noots.	Designation
	Squares.	Cubes.			Reciprocals.
781	609 961	476 379 541	27.946 3772	9.209 0962	.001 280 410
782	611 524	478 211 768	27.964 2629	9.213 0250	.001 278 772
783	613 089	480 048 687	27.982 1372	9.216 9505	.001 277 139
784	614 656	481 890 304	28.000 0000	9.220 8726	.001 275 510
785	616 225	483 736 625	28.017 8515	9.224 7914	.001 273 885
786	617 796	485 587 656	28.035 6915	9.228 7068	.001 272 265
787	619 369	487 443 403	28.053 5203	9.232 6189	.001 270 648
788	620 944	489 303 872	28.071 3377	9.236 5277	.001 269 036
789	622 521	491 169 069	28.089 1438	9.240 4333	.001 267 427
790	624 100	493 039 000	28.106 9386	9.244 3355	.001 265 823
791	625 681	494 913 671	28.124 7222	9.248 2344	.001 264 223
792	627 264	496 793 088	28.142 4946	9.252 1300	.001 262 626
793	628 849	498 677 257	28.160 2557	9.256 0224	.001 261 034
794	630 436	500 566 184	28.178 0056	9.259 9114	.001 259 446
795	632 025	502 459 875	28.195 7444	9.263 7973	.001 257 862
796	633 616	504 358 336	28.213 4720	9.267 6798	.001 256 281
797	635 209	506 261 573	28.231 1884	9.271 5592	.001 254 705
798	636 804	508 169 592	28.248 8938	9.275 4352	.001 253 133
799	638 401	510 082 399	28.266 5881	9.279 3081	.001 251 564
800	640 000	512 000 000	28.284 2712	9.283 1777	.001 250 000
801	641 601	513 922 401	28.301 9434	9.287 0444	.001 248 439
802	643 204	515 849 608	28.319 6045	9.290 9072	.001 246 883
803	644 809	517 781 627	28.337 2546	9.294 7671	.001 245 330
804	646 416	519 718 464	28.354 8938	9.298 6239	.001 243 781
805	648 025	521 660 125	28.372 5219	9.302 4775	.001 242 236
806	649 636	523 606 616	28.390 1391	9.306 3278	.001 240 695
807	651 249	525 557 943	28.407 7454	9.310 1750	.001 239 157
808 809	652 864	527 514 112	28.425 3408	9.314 0190	.001 237 624
810	654 481	529 475 129	28.442 9253	9.317 8599	.001 236 094
811	656 100 657 721	531 441 000	28.460 4989	9.321 6975 9.325 5320	.001 234 568
812	659 344	533 411 731 535 387 328	28.478 0617 28.495 6137	9.329 3634	.001 233 046
813	660 969	537 367 797	28.513 1549	9.333 1916	.001 231 327
814	662 596	539 353 144	28.530 6852	9.337 0167	.001 228 501
815	664 225	541 343 375	28.548 2048	9.340 8386	.001 226 994
816	665 856	543 338 496	28.565 7137	9.344 6575	.001 225 499
817	667 489	545 338 513	28.583 2119	9.348 4731	.001 223 990
818	669 124	547 343 432	28.600 6993	9.352 2857	.001 222 494
819	670 761	549 353 259	28.618 1760	9.356 0952	.001 221 001
820	672 400	551 368 000	28.635 6421	9.359 9016	.001 219 512
821	674 041	553 387 661	28.653 0976	9.363 7049	.001 218 027
822	675 684	555 412 248	28.670 5424	9.367 5051	.001 216 545
823	677 329	557 441 767	28.687 9716	9.371 3022	.001 215 067
824	678 976	559 476 224	28.705 4002	9.375 0963	.001 213 592
825	680 625	561 515 625	28.722 8132	9.378 8873	.001 212 121
826	682 276	563 559 976	28.740 2157	9.382 6752	.001 210 654
827	683 929	565 609 283	28.757 6077	9.386 4600	.001 209 190
828	685 584	567 663 552	28.774 9891	9.390 2419	.001 207 729
829	687 241	569 722 789	28.792 3601	9.394 0206	.001 206 273
830	688 900	571 787 000	28.809 7206	9.397 7964	.001 204 819
831	690 561	573 856 191	28.827 0706	9.401 5691	.001 203 369
832	692 224	575 930 368	28.844 4102	9.405 3387	.001 201 923

Number.	Squares.	Cubes.	VRoots.	Noots.	Reciprocals.
833	693 889	578 009 537	28.861 7394	9.409 1054	.001 200 480
834	695 556	580 093 704	28.879 0582	9.412 8690	.001 199 041
835	697 225	582 182 875	28.896 3666	9.416 6297	.001 197 605
836	698 896	584 277 056	28.913 6646	9.420 3873	.001 196 172
837	700 569	586 376 253	28.930 9523	9.424 1420	.001 194 743
838	702 244	588 480 472	28.948 2297	9.427 8936	.001 193 317
839	703 921	590 589 719	28.965 4967	9.431 6423	.001 191 895
840	705 600	592 704 000	28.982 7535	9.435 3800	.001 190 476
841	707 281	594 823 321	29.000 0000	9.439 1307	.001 189 061
842	708 964	596 947 688	29.017 2363	9.442 8704	.001 187 648
843	710 649	599 077 107	29.034 4623	9.446 6072	.001 186 240
844	712 336	601 211 584	29.051 6781	9.450 3410	.001 184 834
845	714 025	603 351 125	29.068 8837	9.454 0719	.001 183 432
846	715 716	605 495 736	29.086 0791	9.457 7999	.001 182 033
847	717 409	607 645 423	29.103 2644	9.461 5249	.001 180 638
848	719 104	609 800 192	29.120 4396	9.465 2470	.001 179 245
849	720 801	611 960 049	29.137 6046	9.468 9661	.001 177 856
850	722 500	614 125 000	29.154 7595	9.472 6824	.001 176 471
851	724 201	616 295 051	29.171 9043	9.476 3957	.001 175 088
852	725 904	618 470 208	29.189 0390	9.480 1061	.001 173 709
853	727 609	620 650 477	29.206 1637	9.483 8136	.001 172 333
854	729 316	622 835 864	29.223 2784	9.487 5182	.001 170 960
855	731 025	625 026 375	29.240 3830	9.491 2200	.001 169 591
856	732 736	627 222 016	29.257 4777	9.494 9188	.001 168 224
857	734 449	629 422 793	29.274 5623	9.498 6147	.001 166 861
858	736 164	631 628 712	29.291 6370	9.502 3078	.001 165 501
859	737 881	633 839 779	29.308 7018	9.505 9980	.001 164 144
860	739 600	636 056 000	29.325 7566	9.509 6854	.001 162 791
861	741 321	638 277 381	29.342 8015	9.513 3699	.001 161 440
862	743 044	640 503 928	29.359 8365	9.517 0515	.001 160 093
863 864	744 769	642 735 647	29.376 8616	9.520 7303	.001 158 749
	746 496 748 225	644 972 544	29.393 8769	9.524 4063	.001 157 407
865 866	749 956	647 214 625	29.410 8823	9.528 0794	.001 156 069
867	749 956 751 689	649 461 896 651 714 363	29.427 8779	9.531 7497	.001 154 734
868		653 972 032	29.444 8637	9.535 4172	
869	753 424 755 161	656 234 909	29.461 8397 29.478 8059	9.539 0818 9.542 7437	.001 152 074
870	756 900	658 503 000	29.495 7624	9.546 4027	.001 130 748
871	758 641	660 776 311	29.512 7091	9.550 0589	.001 149 425
872	760 384	663 054 848	29.529 6461	9.553 7123	.001 148 106
873	762 129	665 338 617	29.546 5734	9.557 3630	.001 145 475
874	763 876	667 627 624	29.563 4910	9.561 0108	.001 143 475
875	765 625	669 921 875	29.580 3989	9.564 6559	.001 144 165
876	767 376	672 221 376	29.597 2972	9.568 2782	.001 142 557
877	769 129	674 526 133	29.614 1858	9.571 9377	.001 141 353
878	770 884	676 836 152	29.631 0648	9.575 5745	.001 138 952
879	772 641	679 151 439	29.647 9342	9.579 2085	.001 137 656
880	774 400	681 472 000	29.664 7939	9.582 8397	.001 136 364
881	776 161	683 797 841	29.681 6442	9.586 4682	.001 135 074
882	777 924	686 128 968	29.698 4848	9.590 0937	.001 133 787
883	779 689	688 465 387	29.715 3159	9.593 7169	.001 132 503
884	781 456	690 807 104	29.732 1375	9.597 3373	.001 131 222
			23.0	2,007, 007,0	

Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
885	783 225	693 154 125	29.748 9496	9.600 9548	.001 129 944
886	784 996	695 506 456	29.765 7521	9.604 5696	.001 128 668
887	786 769	697 864 103	29.782 5452	9.608 1817	.001 127 396
888	788 544	700 227 072	29.799 3289	9.611 7911	.001 126 126
889	790 321	702 595 369	29.816 1030	9.615 3977	.001 124 859
890	792 100	704 969 000	29.832 8678	9.619 0017	.001 123 596
891	793 881	707 347 971	29.849 6231	9.622 6030	.001 122 334
892	795 664	707 932 288	29.866 3690	9.626 2016	.001 121 076
893	797 449	712 121 957	29.883 1056	9.629 7975	.001 119 821
894	799 236	714 516 984	29.899 8328	9.633 3907	.001 118 568
895	801 025	716 917 375	29.916 5506	9.636 9812	.001 117 818
896	802 816	719 323 136	29.933 2591	9.640 5690	.001 116 071
897	804 609	721 734 273	29.949 9583	9.644 1542	.001 114 827
898	806 404	724 150 792	29.966 6481	9.647 7367	.001 113 586
899	808 201	726 572 699	29.983 3287	9.651 3166	.001 112 347
900	810 000	729 000 000	30.000 0000	9.654 8938	.001 111 111
901	811 801	731 432 701	30.016 6621	9.658 4684	.001 109 878
902	813 604	733 870 808	30.033 3148	9.662 0403	.001 108 647
903	815 409	736 314 327	30.049 9584	9.665 6096	.001 107 420
904	817 216	738 763 264	30.066 5928	9.669 1762	.001 106 195
905	819 025	741 217 625	30.083 2179	9.672 7403	.001 104 972
906	820 836	743 677 416	30.099 8339	9.676 3017	.001 103 753
907	822 649	746 142 643	30.116 4407	9.679 8604	.001 102 536
908	824 464	748 613 312	30.133 0383	9.683 4166	.001 101 322
909	826 281	751 089 429	30.149 6269	9.686 9701	.001 100 110
910	828 100	753 571 000	30.166 2063	9.690 5211	.001 098 901
911	829 921	756 058 031	30.182 7765	9.694 0694	.001 097 695
912	831 744	758 550 828	30.199 3377	9.697 6151	.001 096 491
913	833 569	761 048 497	30.215 8899	9.701 1583	.001 095 290
914	835 396	763 551 944	30.232 4329	9.704 6989	.001 094 092
915	837 225	766 060 875	30.248 9669	9.708 2369	.001 092 896
916	839 056	768 575 296	30.265 4919	9.711 7723	.001 091 703
917	840 889	771 095 213	30.282 0079	9.715 3051	.001 090 513
918	842 724	773 620 632	30.298 5148	9.718 8354	.001 089 325
919	844 561	776 151 559	30.315 0128	9.722 3631	.001 088 139
920	846 400	778 688 000	30.331 5018	. 9.725 8883	.001 086 957
921	848 241	781 229 961	30.347 9818	9.729 4109	.001 085 776
922	850 084	783 777 448	30.364 4529	9.732 9309	.001 084 599
923	851 929	786 330 467	30.380 9151	9.736 4484	.001 083 423
924	853 776	788 889 024	30.397 3683	9.739 9634	.001 082 251
925	855 625	791 453 125	30.413 8127	9.743 4758	.001 081 081
926	857 476	794 022 776	30.430 2481	9.746 9857	.001 079 914
927	859 329	796 597 983	30.446 6747	9.750 4930	.001 078 749
928	861 184	799 178 752	30.463 0924	9.753 9979	.001 077 586
929	863 041	801 765 089	30.479 5013	9.757 5002	.001 076 426
930	864 900	804 357 000	30.495 9014	9.761 0001	.001 075 269
931	866 761	806 954 491	30.512 2926	9.764 4974	.001 074 114
932	868 624	809 557 568	30.528 6750	9.767 9922	.001 072 961
933	870 489	812 166 237	30.545 0487	9.771 4845	.001 071 811
934	872 356	814 780 504	30.561 4136	9.774 9743	.001 070 664
935	874 225	817 400 375	30.577 7697	9.778 4616	.001 069 519
936	876 096	820 025 856	30.594 1171	9.781 9466	.001 068 376

TOWERS AND ROOTS,					
Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
937	877 969	822 656 953	30.610.4557	9.785 4288	.001 067 236
938	879 844	825 293 672	30.626 7857	9.788 9087	.001 066 098
939	881 721	827 936 019	30.643 1069	9.792 3861	.001 064 963
940	883 600	830 584 000	30.659 4194	9.795 8611	.001 063 830
941	885 481	833 237 621	30.675 7233	9.799 3336	.001 062 699
942	887 364	835 896 888	30.692 0185	9.802 8036	.001 061 571
943	889 249	838 561 807	30.708 3051	9.806 2711	.001 060 445
944	891 136	841 232 384	30.724 5830	9.809 7362	.001 059 322
945	893 025	843 908 625	30.740 8523	9.813 1989	.001 058 201
946	894 916	846 590 536	30.757 1130	9.816 6591	.001 057 082
947	896 809	849 278 123	30.773 3651	9.820 1169	.001 055 966
948	898 704	851 971 392	30.789 6086	9.823 5723	.001 054 852
949	900 601	854 670 349	30.805 8436	9.827 0252	.001 053 741
950	902 500	857 375 000	30.822 0700	9.830 4757	.001 052 632
951	904 401	860 085 351	30.838 2879	9.833 9238	.001 051 525
952	906 304	862 801 408	30.854 4972	9.837 3695	.001 050 420
953	908 209	865 523 177	30.870 6981	9.840 8127	.001 049 318
954	910 116	868 250 664	30.886 8904	9.844 2536	.001 048 218
955	912 025	870 983 875	30.903 0743	9.847 6920	.001 047 120
956	913 936	873 722 816	30.919 2477	9.851 1280	.001 046 025
957	915 849	876 467 493	30.935 4166	9.854 5617	.001 044 932
958	917 764	879 217 912	30.951 5751	9.857 9929	.001 043 841
959	919 681	881 974 079	30.967 7251	9.861 4218	.001 042 753
960	921 600	884 736 000	30.983 8668	9.864 8483	.001 041 667
961	923 521	887 503 681	31.000 0000	9.868 2724	.001 040 583
962	925 444	890 277 128	31.016 1248	9.871 6941	.001 039 501
963	927 369	893 056 347	-31.032 2413	9.875 1135	.001 038 422
964	929 296	895 841 344	31.048 3494	9.878 5305	.001 037 344
965	931 225	898 632 125	31.064 4491	9.881 9451	.001 036 269
966	933 156	901 428 696	31.080 5405	9.885 3574	.001 035 197
967	935 089	904 231 063	31.096 6236	9.888 7673	.001 034 126
968	937 024	907 039 232	31.112 6984	9.892 1749	.001 033 058
969	938 961	909 853 209	31.128 7648	9.895 5801	.001 031 992
970	940 900	912 673 000	31.144 8230	9.898 9830	.001 030 928
971	942 841	915 498 611	31.160 8729	9.902 3835	.001 029 866
972	944 784	918 330 048	31.176 9145	9.905 7817	.001 028 807
973	946 729	921 167 317	31.192 9479	9.909 1776	.001 027 749.
974	948 676	924 010 424	31.208 9731	9.912 5712	.001 026 694
975	950 625	926 859 375	31.224 9900	9.915 9624	.001 025 641
976	952 576	929 714 176	31.240 9987	9.919 3513	.001 024 590
977	954 529	932 574 833	31.256 9992	9.922 7379	.001 023 541
978	956 484	935 441 352	31.272 9915	9.926 1222	.001 022 495
979	958 441	938 313 739	31.288 9757	9.929 5042	.001 021 450
980	960 400	941 192 000	31.304 9517	9.932 8839	.001 020 408
981	962 361	944 076 141	31.320 9195	9.936 2613	.001 019 168
982	964 324	946 966 168	31.336 8792	9.939 6363	.001 018 330
983	966 289	949 862 087	31.352 8308	9.943 0092	.001 017 294
984	968 256	952 763 904	31.368 7743	9.946 3797	.001 016 260
985	970 225	955 671 625	31.384 7097	9.949 7479	.001 015 228
986	972 196	958 585 256	31.400 6369	9.953 1138	.001 014 199
987	974 169	961 504 803	31.416 5561	9.956 4775	.001 013 171
988	976 144	964 430 272	31.432 4673	9.959 8389	.001 012 146
,					

		# 0 11 Earling		•	
Number.	Squares.	Cubes.	VRoots.	Noots.	Reciprocals.
989	978 121	967 361 669	31.448 3704	9.963 1981	.001 011 122
990	980 100	970 299 000	31.464 2654	9.966 5549	.001 010 101
991	982 081	973 242 271	31.480 1525	9.969 9055	.001 009 082
992	984 064	976 191 488	31.496 0315	9.973 2619	.001 008 065
993	986 049	979 146 657	31.511 9025	9.976 6120	.001 007 049
994	988 036	982 107 784	31.527 7655	9.979 9599	.001 006 036
995	990 025	985 074 875	31.543 6206	9.983 3055	.001 005 025
996	992 016	988 047 936	31.559 4677	9.986 6488	.001 004 016
997	994 009	991 026 973	31.575 3068	9.989 9900	.001 003 009
998	996 004	994 011 992	31.591 1380	9.993 3289	.001 002 004
999	998 001	997 002 999	31.606 9613	9.996 6656	.001 001 001
1000	1 000 000	1 000 000 000	31.622 7766	10.000 0000	.001 000 000
1001	1 002 001	1 003 003 001	31.638 5840	10.003 3222	.000 999 0010
1002	1 004 004	1 006 012 008	31.654 3866	10.006 6622	.000 998 0040
1003	1 006 009	1 009 027 027	31.670 1752	10.009 9899	.000 997 0090
1004	1 008 016	1 012 048 064	31.685 9590	10.013 3155	.000 996 0159
1005	1 010 025	1 015 075 125	31.701 7349	10.016 6389	.000 995 0249
1006	1 012 036	1 018 108 216	31.717 5030	10.019 9601	.000 994 0358
1007	1 014 049	1 021 147 343	31.733 2633	10.023 2791	.000 993 0487
1008 1009	1 016 064	1 024 192 512 1 027 243 729	31.749 0157 31.764 7603	10.026 5958 10.029 9104	.000 992 0635
1009	1 018 081	1 030 301 000	31.780 4972	10.029 9104	.000 991 0803
1010	1 020 100	1 030 301 000	31.796 2262	10.036 5330	.000 990 0990
1011	1 022 121	1 036 433 728	31.811 9474	10.039 8410	.000 988 1423
1012	1 024 144	1 030 433 728	31.827 6609	10.043 1469	.000 987 1668
1014	1 028 196	1 042 590 744	31.843 3666	10.046 4506	.000 986 1933
1015	1 030 225	1 042 530 744	31.859 0646	10.049 7521	.000 985 2217
1016	1 030 225	1 048 772 096	31.874 7549	10.053 0514	.000 984 2520
1017	1 034 289	1 051 871 913	31.890 4374	10.056 3485	.000 983 2842
1018	1 036 324	1 054 977 832	31.906 1123	10.059 6435	.000 982 3183
1019	1 038 361	1 058 089 859	31.921 7794	10.062 9364	.000 981 3543
1020	1 040 400	1 061 208 000	31.937 4388	10.066 2271	.000 980 3922
1021	1 042 441	1 064 332 261	31.953 0906	10.069 5156	.000 979 4319
1022	1 044 484	1 067 462 648	31.968 7347	10.072 8020	.000 978 4736
1023	1 046 529	1 070 599 167	31.984 3712	10.076 0863	.000 977 5171
1024	1 048 576	1 073 741 824	32.000 0000	10.079 3684	.000 976 5625
1025	1 050 625	1 076 890 625	32.015 6212	10.082 6484	.000 975 6098
1026	1 052 676	1 080 045 576	32.031 2348	10.085 9262	.000 974 6589
1027	1 054 729	1 083 206 683	32.046 8407	10.089 2019	.000 973 7098
1028	1 056 784	1 086 373 952	32.062 4391	10.092 4755	.000 972 7626
1029	1 058 841	1 089 547 389	32.078 0298	10.095 7469	.000 971 8173
1030	1 060 900	1 092 727 000	32.093 6131	10.099 0163	.000 970 8738
1031	1 062 961	1 095 912 791	32.109 1887	10.102 2835	.000 969 9321
1032 1033	1 065 024	1 099 104 768	32.124 7568	10.105 5487	.000 968 9922
1033	1 067 089 1 069 156	1 102 302 937 1 105 507 304	32.140 3173 32.155 8704	10.108 8117 10.112 0726	.000 968 0542
1034	1 009 136	1 103 307 304	32.171 4159	10.112 0726	.000 966 1836
1036	1 071 225	1 111 934 656	32.171 4159	10.113 5314	.000 965 2510
1037	1 075 290	1 111 954 656	32.202 4844	10.113 3882	.000 964 3202
1038	1 073 303	1 118 386 872	32.218 0074	10.125 0953	.000 963 3911
1039	1 079 521	1 121 622 319	32,233 5229	10.128 3457	.000 962 4639
1040	1 081 600	1 124 864 000	32.249 0310	10.131 5941	.000 961 5385

	POWERS AND ROOTS.				
Number.	Squares.	Cubes.	VRoots.	₹ Roots.	Reciprocals.
1041	1 083 681	1 128 111 921	32.264.5316	10.134 8403	.000 960 6148
1042	1 085 764	1 131 366 088	32.280 0248	10.138 0845	.000 959 6929
1043	1 087 849	1 134 626 507	32.295 5105	10.141 3266	.000 958 7728
1044	1 089 936	1 137 893 184	32.310 9888	10.144 5667	.000 957 8544
1045	1 092 025	1 141 166 125	32.326 4598	10.147 8047	.000 956 9378
1046	1 094 116	1 144 445 336	32.341 9233	10.151 0406	.000 956 0229
1047	1 096 209	1 147 730 823	32.357 3794	10.154 2744	.000 955 1098
1048	1 098 304	1 151 022 592	32.372 8281	10.157 5062	.000 954 1985
1049	1 100 401	1 154 320 649	32.388 2695	10.160 7359	.000 953 2888
1050	1 102 500	1 157 625 000	32.403 7035	10.163 9636	.000 952 3810
1051	1 104 601	1 160 935 651	32.419 1301	10.167 1893	.000 951 4748
1052	1 106 704	1 164 252 608	32.434 5495	10.170 4129	.000 950 5703
1053	1 108 809	1 167 575 877	32.449 9615	10.173 6344	.000 949 6676
1054	1 110 916	1 170 905 464	32.465 3662	10.176 8539	.000 948 7666
1055	1 113 025	1 174 241 375	32.480 7635	10.180 0714	.000 947 8673
1056	1 115 136	1 177 583 616	32,496 1536	10.183 2868	.000 946 9697
1057	1 117 249	1 180 932 193	32.511 5364	10.186 5002	.000 946 0738
1058	1 119 364	1 184 287 112	32.526 9119	10.189 7116	.000 945 1796
1059	1 121 481	1 187 648 379	32.542 2802	10.192 9209	.000 944 2871
1060	1 123 600	1 191 016 000	32.557 6412	10.196 1283	.000 943 3962
1061	1 125 721	1 194 389 981	32.572 9949	10.199 3336	.000 942 5071
1062	1 127 844	1 197 770 328	32.588 3415	10.202 5369	.000 941 6196
1063	1 129 969	1 201 157 047	32.603 5807	10.205 7382	.000 940 7338
1064	1 132 096	1 204 550 144	32.619 0129	10.208 9375	.000 939 8496
1065	1 134 225	1 207 949 625	32.634 3377	10.212 1347	.000 938 9671
1066	1 136 356	1 211 355 496	32.649 6554	10.215 3300	.000 938 0863
1067	1 138 489	1 214 767 763	32.664 9659	10.218 5233	.000 937 2071
1068	1 140 624	1 218 186 432	32.680 2693	10.221 7146	.000 936 3296
1069	1 142 761	1 221 611 509	32.695 5654	10.224 9039	.000 935 4537
1070	1 144 900	1 225 043 000	32.710 8544	10.228 0912	.000 934 5794
1071	1 147 041	1 228 480 911	32.726 1363	10.231 2766	.000 933 7068
1072	1 149 184	1 231 925 248	32.741 4111	10.234 4599	.000 932 8358
1073	1 151 329	1 235 376 017	32.756 6787	10.237 6413	.000 931 9664
1074	1 153 476	1 238 833 224	32.771 9392	10.240 8207	.000 931 0987
1075	1 155 625	1 242 296 875	32.787 1926	10.243 9981	.000 930 2326
1076	1 157 776	1 245 766 976	32.802 4398	10.247 1735	.000 929 3680
1077	1 159 929	1 249 243 533	32.817 6782	10.250 3470	.000 928 5051
1078	1 162 084	1 252 726 552	32.832 9103	10.253 5186	.000 927 6438
1079	1 164 241	1 256 216 039	32.848 1354	10.256 6881	.000 926 7841
1080	1 166 400	1 259 712 000	32.863 3535	10.259 8557	.000 925 9259
1081	1 168 561	1 263 214 441	32.878 5644	10.263 0213	.000 925 0694
1082	1 170 724	1 266 723 368	32.893 7684	10.266 1850	.000 924 2144
1083	1 172 889	1 270 238 787	32.908 9653	10.269 3467	.000 923 3610
1084	1 175 056	1 273 760 704	32.924 1553	10.272 5065	.000 922 5092
1085	1 177 225	1 277 289 125	32.939 3382	10.275 6644	.000 921 6590
1086	1 179 396	1 280 824 056	32.954 5141	10.278 8203	.000 920 8103
1087	1 181 569	1 284 365 503	32.969 6830	10.281 9743	.000 919 9632
1088	1 183 744	1 287 913 472	32.984 8450	10.285 1264	.000 919 1176
1089	1 185 921	1 291 467 969	33.000 0000	10.288 2765	.000 918 2736
1090	1 188 100	1 295 029 000	33.015 1480	10.291 4247	.000 917 4312
1091	1 190 281	1 298 596 571	33.030 2891	10.294 5709	.000 916 5903
1092	1 192 464	1 302 170 688	33.045 4233	10.297 7153	.000 915 7509

40		CHAWOI	AND ROOTS	•	
Number.	Squares.	Cubes.	V Roots.	₹ Roots.	Reciprocals.
1093	1 194 649	1 305 751 357	33.060 5505	10.300 8577	.000 914 9131
1094	1 196 836	1 309 338 584	33.075 6708	10.303 9982	.000 914 0768
1095	1 199 025	1 312 932 375	33.090 7842	10.307 1368	.000 913 2420
1096	1 201 216	1 316 532 736	33.105 8907	10.310 2735	.000 912 4008
1097	1 203 409	1 320 139 673	33.120 9903	10.313 4083	.000 911 5770
1098	1 205 604	1 323 753 192	33.136 0830	10.316 5411	.000 910 7468
1099	1 207 801	1 327 373 299	33.151 1689	10.319 6721	.000 909 9181
1100	1 210 000	1 331 000 000	33.166 2479	10.322 8012	.000 909 0909
1101	1 212 201	1 334 633 301	33.181 3200	10.325 9284	.000 908 2652
1102	1 214 404	1 338 273 208	33.196 3853	10.329 0537	.000 907 4410
1103	1 216 609	1 341 919 727	33.211 4438	10.332 1770	.000 906 6183
1104	1 218 816	1 345 572 864	33.226 6955	10.335 2985	.000 905 7971
1105	1 221 025	1 349 232 625	33.241 5403	10.338 4181	.000 904 9774
1106	1 223 236	1 352 899 016	33.256 5783	10.341 5358	.000 904 1591
1107	1 225 449	1 356 572 043	33.271 6095	10.344 6517	.000 903 3424
1108	1 227 664	1 360 251 712	33.286 6339	10.347 7657	.000 902 5271
1109	1 229 881	1 363 938 029	33.301 6516	10.350 8778	.000 901 7133
1110	1 232 100	1 367 631 000	33.316 6625	10.353 9880	.000 900 9009
1111	1 234 321	1 371 330 631	33.331 6666	10.357 0964	.000 900 0900
1112	1 236 544	1 375 036 928	33.346 6640	10.360 2029	.000 899 2806
1113	1 238 769	1 378 749 897	33.361 6546	10.363 3076	.000 898 4726
1114	1 240 996	1 382 469 544	33.376 6385	10.366 4103	.000 897 6661
1115	1 243 225	1 386 195 875	33.391 6157	10.369 5113	.000 896 8610
1116	1 245 456	1 389 928 896	33.406 5862	10.372 6103	.000 896 0753
1117	1 247 689	1 393 668 613	33.421 5499	10.375 7076	.000 895 2551
1118	1 249 924	1 397 415 032	33.436 5070	10.378 8030	.000 894 4544
1119	1 252 161	1 401 168 159	33.451 4573	10.381 8965	.000 893 6550
1120	1 254 400	1 404 928 000	33.466 4011	10.384 9882	.000 892 8571
1121	1 256 641	1 408 694 561	33.481 3381	10.388 0781	.000 896 0607
1122	1 258 884	1 412 467 848	33.496 2684	10.391 1661	.000 892 2656
1123	1 261 129	1 416 247 867	33.511 1921	10.394 2527	.000 890 4720
1124	1 263 376	1 420 034 624	33.526 1092	10.397 3366	.000 889 6797
1125	1 265 625	1 423 828 125	33.541 0196	10.400 4192	.000 888 8889
1126	1 267 876	1 427 628 376	33.555 9234	10.403 4999	.000 888 0995
1127	1 270 129	1 431 435 383	33.570 8206	10.406 5787	.000 887 3114
1128	1 272 384	1 435 249 152	33.585 7112	10.409 6557	.000 886 5248
1129	1 274 641	1 439 069 689	33.600 5952	10.412 7310	.000 885 7396
1130	1 276 900	1 442 897 000	33.615 4726	10.415 8044	.000 884 9558
1131	1 279 161	1 446 731 091	33.630 3434	10.418 8760	.000 884 1733
1132	1 281 424	1 450 571 968	33.645 2077	10.421 9458	.000 883 3922
1133	1 283 689	1 454 419 637	33.660 0653	10.425 0138	.000 882 6125
1134	1 285 956	1 458 274 104	33.674 9165	10.428 0800	.000 881 8342
1135	1 288 225	1 462 135 375	33.689 7610	10.431 1443	.000 881 0573
1136	1 290 496	1 466 003 456	33.704 5991	10.434 2069	.000 880 2817
1137	1 292 769	1 469 878 353	33.717 4306	10.437 2677	.000 879 5075
1138	1 295 044	1 473 760 072	33.734 0556	10.440 3677	.000 878 7346
1139	1 297 321	1 477 648 619	33.749 0741	10.443 3839	.000 877 9631
1140	1 299 600	1 481 544 000	33.763 8860	10.446 4393	.000 877 1930
1141	1 301 881	1 485 446 221	33.778 6915	10.449 4929	.000 876 4242
1142	1 304 164	1 489 355 288	33.793 4905	10.452 5448	.000 875 6567
1143	1 306 449	1 493 271 207	33.808 2830	10.455 5948	.000 874 8906
1144	1 308 736	1 497 193 984	33.823 0691	10.458 6431	.000 874 1259

Number Squares Cubes VRoots VRoots Reciprocals	POWERS AND ROUTS. 4					41
1146	Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
1146	1145	1 311 025	1 501 123 625	33.837 8486	10.461 6896	.000 873 3624
1147						.000 872 6003
1148					10.467 7773	.000 871 8396
1149						
1150						
1151						
1152						
1153						
1154						
1155						
1156						
1157						
1158						
1159						
1160						
1161						
1162 1 350 244 1 568 983 528 34.088 1211 1 0.513 2109 .000 860 5852 1163 1 352 569 1 573 037 747 34.012 7858 10.516 2259 .000 859 8452 1164 1 354 896 1 577 989 944 34.117 4442 10.519 2391 .000 859 1065 1165 1 357 225 1 581 167 125 34.132 0963 10.522 2506 .000 858 3691 1166 1 359 556 1 585 242 296 34.146 7422 10.525 2604 .000 857 6329 1167 1 361 889 1 589 324 463 34.161 3817 10.528 2685 .000 856 8980 1168 1 364 224 1 593 413 632 34.176 0150 10.531 2749 .000 856 1644 1169 1 366 561 1 597 509 809 34.190 6420 10.534 2795 .000 855 4320 1170 1 368 900 1 601 613 000 34.295 8677 10.540 2837 .000 853 7010 1171 1 373 584 1 609 840 448 34.234 855 10.540 2810 .000 852 243 1173 1 378 527 1 618 096 024 34.263 6834 10.540 2810 .000 8						
1163 1 352 569 1 573 037 747 34.012 7858 10.516 2259 .000 859 8452 1164 1 354 896 1 577 098 944 34.117 4442 10.519 2391 .000 859 1065 1165 1 357 225 1 581 167 125 34.132 0963 10.522 2506 .000 856 3691 1166 1 359 556 1 589 224 296 34.146 7422 10.525 2604 .000 857 6329 1167 1 361 889 1 589 824 463 34.161 3817 10.522 2665 .000 856 8980 1168 1 364 224 1 593 413 632 34.176 0150 10.531 2749 .000 856 1644 1169 1 366 561 1 597 509 809 34.190 6420 10.534 2795 .000 856 4320 1170 1 368 900 1 601 613 000 34.205 2627 10.537 2825 .000 853 9710 1171 1 373 584 1 609 840 448 34.219 8773 10.540 2837 .000 853 2423 1173 1 375 929 1 618 096 024 34.263 6834 10.549 2771 .000 851 6888 1175 1 380 625 1 622 234 375 34.278 2730 10.552 2715 .000						
1164 1 354 896 1 577 098 944 34.117 4442 10.519 2391 .000 859 1065 1165 1 357 225 1 581 167 125 34.132 0963 10.522 2566 .000 858 3691 1166 1 359 556 1 585 242 296 34.146 7422 10.525 2604 .000 857 6329 1167 1 361 889 1 589 324 463 34.161 3817 10.525 2685 .000 856 8980 1168 1 364 224 1 593 413 632 34.176 0150 10.531 2749 .000 856 8980 1170 1 368 900 1 601 613 000 34.205 2627 10.534 2795 .000 854 4709 1171 1 373 584 1 609 840 448 34.219 8773 10.540 2837 .000 853 9710 1172 1 373 584 1 609 840 448 34.234 4855 10.543 2832 .000 853 2423 1173 1 375 929 1 618 096 024 34.263 6834 10.549 2771 .000 851 6888 1174 1 382 976 1 618 096 024 34.292 8564 10.552 2715 .000 851 6888 1175 1 380 625 1 622 374 776 34.292 864 10.552 2715 .000 8						
1165 1 357 225 1 581 167 125 34.132 0963 10.522 2506 .000 858 3691 1166 1 359 556 1 585 242 296 34.146 7422 10.525 2604 .000 857 6329 1167 1 361 889 1 589 324 463 34.161 3817 10.528 2685 .000 856 8880 1168 1 364 224 1 593 413 632 34.176 0150 10.531 2749 .000 856 1644 1169 1 366 561 1 597 509 809 34.190 6420 10.531 2749 .000 856 1644 1170 1 368 900 1 601 613 000 34.205 2627 10.537 2825 .000 854 7009 1171 1 371 241 1 605 723 211 34.219 8773 10.540 2837 .000 853 9710 1172 1 373 584 1 609 840 448 34.234 4855 10.543 2832 .000 852 5149 1173 1 375 929 1 618 096 024 34.249 0875 10.546 2810 .000 851 7688 1174 1 382 625 1 622 334 375 34.278 2730 10.552 2715 .000 851 7688 1175 1 385 629 1 636 532 233 34.307 4336 10.552 2715 .000						
1166 1 359 556 1 585 242 296 34.146 7422 10.525 2604 .000 857 6329 1167 1 361 889 1 589 224 463 34.161 3817 10.528 2685 .000 856 8980 1168 1 364 224 1 593 413 632 34.176 0150 10.531 2749 .000 856 1684 1169 1 366 561 1 597 509 809 34.190 6420 10.534 2795 .000 855 4320 1170 1 368 900 1 601 613 000 34.205 2627 10.537 2825 .000 854 7009 1171 1 371 241 1 605 723 211 34.219 8773 10.540 2837 .000 853 9710 1172 1 373 584 1 609 840 448 34.234 4855 10.543 2832 .000 853 9710 1174 1 378 276 1 618 096 024 34.263 6834 10.549 2771 .000 851 7888 1175 1 380 625 1 626 379 776 34.292 8564 10.555 2642 .000 850 3401 1177 1 385 829 1 636 582 233 34.307 4336 10.582 2552 .000 849 6177 1178 1 390 41 1 638 858 339 34.322 0046 10.561 2445 .000 8						
1167 1 361 889 1 589 324 463 34.161 3817 10.528 2685 .000 856 8980 1168 1 364 224 1 593 413 632 34.176 0150 10.531 2749 .000 856 1644 1169 1 366 561 1 597 509 809 34.190 6420 10.534 2795 .000 855 4820 1170 1 368 900 1 601 613 000 34.205 2627 10.537 2825 .000 854 7009 1171 1 371 241 1 605 723 211 34.219 8773 10.540 2887 .000 853 9710 1172 1 373 584 1 609 840 448 34.234 4855 10.542 2837 .000 853 2423 1173 1 375 929 1 613 964 717 34.249 0875 10.546 2810 .000 852 5149 1174 1 378 276 1 618 096 024 34.263 6834 10.549 2771 .000 851 6888 1175 1 380 625 1 622 234 375 34.292 8564 10.555 2642 .000 850 3401 1177 1 385 329 1 636 532 233 34.307 4336 10.556 2425 .000 850 3401 1178 1 390 491 1 638 858 339 34.335 1281 10.561 2445 .000						
1168 1 364 224 1 593 413 632 34.176 0150 10.531 2749 .000 856 1644 1169 1 366 561 1 597 509 809 34.190 6420 10.534 2795 .000 855 4320 1170 1 368 900 1 601 613 000 34.205 2627 10.537 2825 .000 853 9710 1171 1 371 241 1 605 723 211 34.219 8773 10.540 2837 .000 853 9710 1172 1 373 584 1 609 840 448 34.234 4855 10.542 2832 .000 853 2423 1173 1 375 929 1 618 964 717 34.249 0875 10.546 2810 .000 852 5149 1174 1 378 276 1 618 096 024 34.263 6834 10.549 2771 .000 851 688 1175 1 380 625 1 622 234 375 34.278 2730 10.552 2715 .000 851 6638 1176 1 382 976 1 626 379 776 34.292 8564 10.555 2642 .000 850 401 1177 1 385 329 1 630 532 233 34.307 4336 10.552 2715 .000 849 6177 1178 1 387 684 1 634 691 752 34.322 0046 10.561 2445 .000 84						
1169 1 366 561 1 597 509 809 34.190 6420 10.534 2795 .000 855 4320 1170 1 368 900 1 601 613 000 34.205 2627 10.587 2825 .000 854 7009 1171 1 371 241 1 605 723 211 34.219 8773 10.540 2837 .000 853 9710 1172 1 373 584 1 609 840 448 34.234 4855 10.543 2832 .000 853 2423 1173 1 375 929 1 618 096 024 34.249 0875 10.546 2810 .000 852 5149 1174 1 378 276 1 618 096 024 34.263 6834 10.549 2771 .000 851 6638 1175 1 380 625 1 622 379 776 34.292 8564 10.555 2642 .000 850 3401 1177 1 385 329 1 630 532 233 34.307 4336 10.555 25642 .000 849 6177 1178 1 387 684 1 634 691 752 34.322 0046 10.561 2445 .000 848 8964 1179 1 390 041 1 638 858 339 34.336 5694 10.564 2322 .000 848 766 1180 1 392 400 1 643 032 000 34.351 1281 10.567 2181 .000		1 364 224	1 593 413 632	34.176 0150	10.531 2749	.000 856 1644
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					10.534 2795	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1170	1 368 900	1 601 613 000	34.205 2627	10.537 2825	.000 854 7009
1173 1 375 929 1 613 964 717 34.249 0875 10.546 2810 .000 852 5149 1174 1 378 276 1 618 096 024 34.263 6834 10.549 2771 .000 851 7888 1175 1 380 625 1 622 234 375 34.278 2730 10.552 2715 .000 851 6888 1176 1 382 976 1 626 379 776 34.292 8564 10.555 2642 .000 850 3401 1177 1 385 329 1 636 532 233 34.307 4336 10.556 2552 .000 849 6177 1178 1 387 684 1 634 691 752 34.322 0046 10.561 2445 .000 848 8964 1179 1 390 041 1 638 858 339 34.336 5694 10.564 2322 .000 847 1576 1180 1 392 400 1 643 032 000 34.351 1281 10.567 2181 .000 847 1576 1181 1 397 124 1 651 400 568 34.380 2268 10.573 1849 .000 846 7021 1182 1 397 124 1 655 954 887 34.394 7670 10.576 1658 .000 845 3085 1184 1 401 856 1 659 797 504 34.409 3011 10.579 1449 .000	1171	1 371 241	1 605 723 211	34.219 8773	10.540 2837	.000 853 9710
1174 1 378 276 1 618 096 024 34.263 6834 10.549 2771 .000 851 7888 1175 1 380 625 1 622 234 375 34.278 2730 10.552 2715 .000 851 0638 1176 1 382 976 1 626 379 776 34.292 8564 10.555 2642 .000 850 3401 1177 1 385 329 1 630 532 233 34.307 4336 10.555 2552 .000 849 6177 1178 1 387 684 1 634 691 752 34.322 0046 10.561 2445 .000 848 964 1179 1 390 041 1 638 858 339 34.336 5694 10.564 2322 .000 848 1764 1180 1 392 400 1 643 032 000 34.351 1281 10.567 2181 .000 847 1576 1181 1 397 124 1 651 400 568 34.380 2268 10.573 1849 .000 846 0237 1183 1 399 489 1 655 595 487 34.394 7670 10.576 1658 .000 845 0385 1184 1 401 856 1 659 797 504 34.409 3011 10.579 1449 .000 844 5946 1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000 8	1172	1 373 584	1 609 840 448	34.234 4855	10.543 2832	.000 853 2423
1175 1 380 625 1 622 234 375 34.278 2730 10.552 2715 .000 851 0638 1176 1 382 976 1 626 379 776 34.292 8564 10.555 2642 .000 850 3401 1177 1 385 329 1 630 532 233 34.307 4336 10.555 2552 .000 849 6177 1178 1 387 684 1 634 691 752 34.322 0046 10.561 2445 .000 848 8964 1179 1 390 041 1 638 858 339 34.336 5694 10.564 2322 .000 848 1764 1180 1 392 400 1 643 032 000 34.351 1281 10.567 2181 .000 847 1576 1181 1 394 761 1 647 212 741 34.365 6805 10.570 2024 .000 846 0237 1182 1 397 124 1 651 400 568 34.380 2268 10.573 1849 .000 846 0237 1183 1 399 489 1 655 595 487 34.394 7670 10.576 1658 .000 845 3085 1184 1 401 856 1 659 797 504 34.499 3011 10.579 1449 .000 844 5946 1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000	1173	1 375 929	1 613 964 717	34.249 0875	10.546 2810	.000 852 5149
1176 1 382 976 1 626 379 776 34.292 8564 10.555 2642 .000 850 3401 1177 1 385 329 1 636 532 233 34.307 4336 10.558 2552 .000 849 6177 1178 1 387 684 1 634 691 752 34.322 0046 10.561 2445 .000 848 964 1179 1 390 041 1 638 858 339 34.336 5694 10.564 2322 .000 848 164 1180 1 392 400 1 643 032 000 34.351 1281 10.567 2181 .000 847 1576 1181 1 394 761 1 647 212 741 34.365 6805 10.570 2024 .000 846 7401 1182 1 397 124 1 651 400 568 34.380 2268 10.573 1849 .000 846 0237 1183 1 399 489 1 655 595 487 34.394 7670 10.576 1658 .000 845 3085 1184 1 401 856 1 659 797 504 34.499 3011 10.579 1449 .000 844 5946 1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000 843 8819 1186 1 406 596 1 668 222 856 34.438 3507 10.585 0983 .000 84	1174	1 378 276	1 618 096 024	34.263 6834	10.549 2771	.000 851 7888
1177 1 385 329 1 630 532 233 34.307 4336 10.558 2552 .000 849 6177 1178 1 387 684 1 634 691 752 34.322 0046 10.561 2445 .000 848 8964 1179 1 390 041 1 638 858 339 34.336 5694 10.564 2322 .000 848 1764 1180 1 392 400 1 643 032 000 34.351 1281 10.567 2181 .000 847 1576 1181 1 394 761 1 647 212 741 34.365 6805 19.570 2024 .000 846 7401 1182 1 397 124 1 661 400 568 34.380 2268 10.573 1849 .000 846 7301 1183 1 399 489 1 655 595 487 34.394 7670 10.576 1658 .000 845 3085 1184 1 401 856 1 659 797 504 34.409 3011 10.579 1449 .000 844 5946 1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000 843 8819 1186 1 408 596 1 672 446 203 34.438 3507 10.585 0983 .000 841 703 1187 1 408 969 1 672 446 203 34.452 8663 10.588 0725 .000 8	1175	1 380 625	1 622 234 375	34.278 2730	10.552 2715	.000 851 0638
1178 1 387 684 1 634 691 752 34.322 0046 10.561 2445 .000 848 8964 1179 1 390 041 1 638 858 339 34.336 5694 10.564 2322 .000 848 1764 1180 1 392 400 1 643 032 000 34.351 1281 10.567 2181 .000 847 1576 1181 1 394 761 1 647 212 741 34.365 6805 10.570 2024 .000 846 7401 1182 1 397 124 1 651 400 568 34.380 2268 10.573 1849 .000 846 237 1183 1 399 489 1 655 595 487 34.394 7670 10.576 1658 .000 845 3085 1184 1 401 856 1 659 797 504 34.409 3011 10.579 1449 .000 845 3085 1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000 843 8819 1186 1 408 969 1 672 446 203 34.438 3507 10.588 0725 .000 842 4600 1187 1 408 969 1 672 446 203 34.452 8663 10.589 0725 .000 841 753 1189 1 413 721 1 680 914 629 34.481 8793 10.594 0158 .000 84	1176	1 382 976	1 626 379 776	34.292 8564	10.555 2642	.000 850 3401
1179 1 390 041 1 638 858 339 34.336 5694 10.564 2322 .000 848 1764 1180 1 392 400 1 643 032 000 34.351 1281 10.567 2181 .000 847 1576 1181 1 394 761 1 647 212 741 34.365 6805 10.570 2024 .000 846 7401 1182 1 397 124 1 651 400 568 34.380 2268 10.573 1849 .000 846 7401 1183 1 399 489 1 655 595 487 34.394 7670 10.576 1658 .000 845 3085 1184 1 401 856 1 659 797 504 34.409 3011 10.579 1449 .000 844 5946 1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000 843 8819 1186 1 406 596 1 668 222 856 34.483 8507 10.588 0725 .000 842 4600 1187 1 408 969 1 672 446 203 34.452 8663 10.588 0725 .000 841 7508 1188 1 411 344 1 676 676 672 34.467 3759 10.591 0450 .000 841 7508 1189 1 413 721 1 680 914 629 34.481 8793 10.594 9158 .000	1177	1 385 329	1 630 532 233		10.558 2552	.000 849 6177
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 387 684				.000 848 8964
1181 1 394 761 1 647 212 741 34.365 6805 10.570 2024 .000 846 7401 1182 1 397 124 1 651 400 568 34.380 2268 10.573 1849 .000 846 0237 1183 1 399 489 1 655 595 487 34.394 7670 10.576 1658 .000 845 3085 1184 1 401 856 1 659 797 504 34.409 3011 10.579 1449 .000 844 5946 1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000 843 8819 1186 1 406 596 1 668 222 856 34.438 3507 10.585 0983 .000 843 8819 1187 1 408 969 1 672 446 203 34.452 8663 10.588 0725 .000 842 4600 1188 1 411 344 1 676 676 672 34.467 3759 10.591 0450 .000 841 7508 1189 1 413 721 1 680 914 629 34.498 3766 10.596 9850 .000 840 3361 1191 1 418 481 1 689 410 871 34.510 8678 10.599 9525 .000 839 6306 1192 1 420 864 1 693 669 888 34.523 5330 10.602 9184 .000						.000 848 1764
1182 1 397 124 1 651 400 568 34.380 2268 10.573 1849 .000 846 0237 1183 1 399 489 1 655 595 487 34.394 7670 10.576 1658 .000 845 3085 1184 1 401 856 1 659 797 504 34.409 3011 10.579 1449 .000 844 5946 1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000 843 8119 1186 1 406 596 1 668 222 856 34.438 3507 10.585 0983 .000 843 1703 1187 1 408 969 1 672 446 203 34.452 8663 10.588 0725 .000 842 4600 1188 1 411 344 1 676 676 672 34.467 3759 10.591 0450 .000 841 7508 1189 1 413 721 1 680 914 629 34.481 8793 10.594 0158 .000 841 0429 1190 1 416 100 1 685 159 000 34.496 3766 10.596 9850 .000 849 3361 1191 1 418 481 1 699 410 871 34.510 8678 10.599 9525 .000 838 9302 1193 1 423 249 1 697 936 697 34.539 821 10.602 9184 .000 8						
1183 1 399 489 1 655 595 487 34.394 7670 10.576 1658 .000 845 3085 1184 1 401 856 1 659 797 504 34.409 3011 10.579 1449 .000 844 5946 1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000 843 8819 1186 1 406 596 1 668 222 856 34.438 3507 10.585 0983 .000 843 1703 1187 1 408 969 1 672 446 203 34.452 8663 10.588 0725 .000 842 4600 1188 1 411 344 1 676 676 672 34.467 3759 10.591 0450 .000 841 7508 1189 1 413 721 1 680 914 629 34.481 8793 10.594 0158 .000 841 0429 1190 1 416 100 1 685 159 000 34.496 3766 10.596 9850 .000 840 3361 1191 1 418 481 1 698 410 871 34.510 8678 10.599 9525 .000 839 6306 1192 1 420 864 1 693 669 888 34.525 3530 10.602 9184 .000 838 2622 1193 1 423 636 1 702 209 384 34.534 3051 10.608 8451 .000						
1184 1 401 856 1 659 797 504 34.409 3011 10.579 1449 .000 844 5946 1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000 843 8819 1186 1 406 596 1 668 222 856 34.483 8507 10.585 0983 .000 843 1703 1187 1 408 969 1 672 446 203 34.452 8663 10.586 0725 .000 842 4600 1188 1 411 344 1 676 676 672 34.467 3759 10.591 0450 .000 841 7508 1189 1 413 721 1 680 914 629 34.481 8793 10.594 0158 .000 841 0429 1190 1 416 100 1 685 159 000 34.496 3766 10.596 9850 .000 840 3361 1191 1 418 481 1 689 410 871 34.510 8678 10.599 9525 .000 839 6306 1192 1 420 864 1 693 69888 34.525 3530 10.602 9184 .000 838 9262 1193 1 423 249 1 697 936 057 34.539 8321 1 0.605 8826 .000 838 2320 1194 1 425 636 1 702 209 384 34.554 3051 10.601 86451 .000						
1185 1 404 225 1 664 006 625 34.423 8289 10.582 1225 .000 843 8819 1186 1 406 596 1 668 222 856 34.438 3507 10.585 0983 .000 843 1703 1187 1 408 969 1 672 446 203 34.452 8663 10.586 0725 .000 841 4703 1188 1 411 344 1 676 676 672 34.467 3759 10.591 0450 .000 841 7508 1189 1 413 721 1 680 914 629 34.481 8793 10.594 0158 .000 841 0429 1190 1 416 100 1 685 159 000 34.496 3766 10.596 9850 .000 849 3361 1191 1 418 481 1 689 410 871 34.510 8678 10.599 9525 .000 839 6306 1192 1 420 864 1 697 936 057 34.539 8321 10.605 8826 .000 838 2620 1193 1 423 249 1 697 936 057 34.539 8321 10.605 8826 .000 837 5209 1194 1 425 636 1 702 209 384 34.554 3051 10.601 88451 .000 837 5209 1195 1 428 025 1 706 489 875 34.568 7720 10.611 8060 .000						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
1190 1 416 100 1 685 159 000 34.496 3766 10.596 9850 .000 840 3361 1191 1 418 481 1 689 410 871 34.510 8678 10.599 9525 .000 839 6306 1192 1 420 864 1 693 669 888 34.525 3530 10.602 9184 .000 838 9262 1193 1 423 249 1 697 936 057 34.539 8321 10.605 8826 .000 838 2320 1194 1 425 636 1 702 209 384 34.554 3051 10.608 8451 .000 837 5209 1195 1 428 025 1 706 489 875 34.568 7720 10.611 8060 .000 836 8201						
1191 1 418 481 1 689 410 871 34.510 8678 10.599 9525 .000 839 6306 1192 1 420 864 1 693 669 888 34.525 3530 10.602 9184 .000 838 9262 1193 1 423 249 1 697 936 057 34.539 8321 10.605 8826 .000 838 2320 1194 1 425 636 1 702 209 384 34.554 3051 10.608 8451 .000 837 5209 1195 1 428 025 1 706 489 875 34.568 7720 10.611 8060 .000 836 8201						
1192 1 420 864 1 693 669 888 34.525 3530 10.602 9184 .000 838 9262 1193 1 423 249 1 697 936 057 34.539 8321 10.605 8826 .000 838 2320 1194 1 425 636 1 702 209 384 34.554 3051 10.608 8451 .000 837 5209 1195 1 428 025 1 706 489 875 34.568 7720 10.611 8060 .000 836 8201						
1193 1 423 249 1 697 936 057 34.539 8321 10.605 8826 .000 838 2320 1194 1 425 636 1 702 209 384 34.554 3051 10.608 8451 .000 837 5209 1195 1 428 025 1 706 489 875 34.568 7720 10.611 8060 .000 836 8201						
1194 1 425 636 1 702 209 384 34.554 3051 10.608 8451 .000 837 5209 1195 1 428 025 1 706 489 875 34.568 7720 10.611 8060 .000 836 8201						
1195 1 428 025 1 706 489 875 34.568 7720 10.611 8060 .000 836 8201						
1 100 110 1 110 111 000 01,000 2020 10,011 1002 ,000 000 1204						
		1 100 110	1.10 /// 000	01.000 2020	13.011 1002	.000 000 1204

		- 0 11 2210			
Number.	Squares.	Cubes.	VRoots.	Noots.	Reciprocals.
1197	1 432 809	1 715 072 373	34.597 6879	10.617 7228	.000 835 4219
1198	1 435 204	1 719 374 392	34.612 1366	10.620 6788	.000 834 7245
1199	1 437 601	1 723 683 599	34.626 5794	10.623 6331	.000 834 0284
1200	1 440 000	1 728 000 000	34.641 0162	10.626 5857	.000 833 3333
1201	1 442 401	1 732 323 601	34.655 4469	10.629 5367	.000 832 6395
1202	1 444 804	1 736 654 408	34.669 8716	10.632 4860	.000 831 9468
1203	1 447 209	1 740 992 427	34.684 2904	10.635 4338	.000 831 2552
1204	1 449 616	1 745 337 664	34.698 7031	10.638 3799	.000 830 5648
1205	1 452 025	1 749 690 125	34.713 1099	10.641 3244	.000 829 8755
1206	1 454 436	1 754 049 816	34.727 5107	10.644 2672	.000 829 1874
1207	1 456 849	1 758 416 743	34.741 9055	10.647 2085	.000 828 5004
1208	1 459 264	1 762 790 912	34.756 2944	10.650 1480	.000 827 8146
1209	1 461 681	1 767 172 329	34.770 6773	10.653 0860	.000 827 1299
1210	1 464 100	1 771 561 000	34.785 0543	10.656 0223	.000 826 4463
1211	1 466 521	1 775 956 931	34.799 4253	10.658 9570	.000 825 7638
1212	1 468 944	1 780 360 128	34.813 7904	10.661 8902	.000 825 0825
1213	1 471 369	1 784 770 597	34.828 1495	10.664 8217	.000 824 4023
1214	1 473 796	1 789 188 344	34.842 5028	10.667 7516	.000 823 7232
1215	1 476 225	1 793 613 375	34.856 8501	10.670 6799	.000 823 0453
1216	1 478 656	1 798 045 696	34.871 1915	10.673 6066	.000 822 3684
1217	1 481 089	1 802 485 313	34.885 5271	10.676 5317	.000 821 6927
1218	1 483 524	1 806 932 232	34.899 8567	10.679 4552	.000 821 0181
1219	1 485 961	1 811 386 459	34.914 1805	10.682 3771	.000 820 3445
1220	1 488 400	1 815 848 000	34.928 4984	10.685 2973	.000 819 6721
1221	1 490 841	1 820 316 861	34.942 8104	10.688 2160	.000 819 0008
1222	1 493 284	1 824 793 048	34.957 1166	10.691 1331	.000 818 3306
1223	1 495 729	1 829 276 567	34.971 4169	10.694 0486	.000 817 6615
1224	1 498 176	1 833 764 247	34.985 7114	10.696 9625	.000 816 9935
1225	1 500 625	1 838 265 625	35.000 0000	10.699 8748	.000 816 3265
1226	1 503 276	1 842 771 176	35.014 2828	10.702 7855	.000 815 6607
1227	1 505 529	1 847 284 083	35.028 5598	10.705 6947	000 814 9959
1228	1 507 984	1 851 804 352	35.042 8309	10.708 6023	.000 814 3322
1229	1 510 441	1 856 331 989	35.057 0963	10.711 5083	.000 813 6696
1230	1 512 900	1 860 867 000	35.071 3558	10.714 4127	.000 813 0081
1231	1 515 361	1 865 409 391	35.085 6096	10.717 3155	.000 812 3477
1232	1 517 824	1 869 959 168	35.099 8575	10.720 2168	.000 811 6883
1233	1 520 289	1 874 516 337	35.114 0997	10.723 1165	.000 811 0300
1234	1 522 756	1 879 080 904	35.128 3361	10.726 0146	.000 810 3728
1235	1 525 225	1 883 652 875	35.142 5668	10.728 9112	.000 809 7166
1236	1 527 696	1 888 232 256	35.156 7917	10.731 8062	.000 809 0615
1237	1 530 169	1 892 819 053	35.171 0108	10.734 6997	.000 808 4074
1238	1 532 644	1 897 413 272	35.185 2242	10.737 5916	.000 807 7544
1239	1 535 121	1 902 014 919	35.199 4318	10.740 4819	.000 807 1025
1240	1 537 600	1 906 624 000	35.213 6337	10.743 3707	.000 806 4516
1241	1 540 081	1 911 240 521	35.227 8299	10.746 2579	.000 805 8018
1242	1 542 564	1 915 864 488	35.242 0204	10.749 1436	.000 805 1530
1243	1 545 049	1 920 495 907	35.256 2051	10.752 0277	.000 804 5052
1244	1 547 536	1 925 134 784	35.270 3842	10.754 9103	.000 803 8585
1245 1246	1 550 025	1 929 781 125	35.284 5575	10.757 7913	.000 803 2129
1246	1 552 516 1 555 009	1 934 434 936 1 939 096 223	35.298 7252 35.312 8872	10.760 6708 10.763 5488	.000 802 5682
1247	1 557 504	1 943 764 992	35.312 8872	10.763 5488	.000 801 9246
1240	1 001 004	1 345 704 392	55.527 0455	10.700 4202	.000 001 2021

2011200 200200					
Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
1249	1 560 001	1 948 441 249	35.341 1941	10.769 3001	.000 800 6405
1250	1 562 500	1 953 125 000	35.355 3391	10.772 1735	.000 800 0000
1251	1 565 001	1 957 816 251	35.369 4784	10.775 0453	.000 799 3605
1252	1 567 504	1 962 515 008	35.383 6120	10.777 9156	.000 798 7220
1253	1 570 009	1 967 221 277	35.397 7400	10.780 7843	.000 798 0846
1254	1 572 516	1 971 935 064	35.411 8624	10.783 6516	.000 797 4482
1255	1 575 025	1 976 656 375	35.425 9792	10.786 5173	.000 796 8127
1256	1 577 536	1 981 385 216	35.440 0903	10.789 3815	.000 796 1783
1257	1 580 049	1 986 121 593	35.454 1958	10.792 2441	.000 795 5449
1258	1 582 564	1 990 865 512	35.468 2957	10.795 1053	.000 794 9126
1259	1 585 081	1 995 616 979	35.482 3900	10.797 9649	.000 794 2812
1260	1 587 600	2 000 376 000	35.496 4787	10.800 8230	.000 793 6508
1261	1 590 121	2 005 142 581	35.510 5618	10.803 6797	.000 793 0214
1262	1 592 644	2 009 916 728	35.524 6393	10.806 5348	.000 792 3930
1263	1 595 169	2 014 698 447	35.538 7113	10.809 3884	.000 791 7656
1264	1 597 696	2 019 487 744	35.552 7777	10.812 2404	.000 791 1392
1265	1 600 225	2 024 284 625	35.566 8385	10.815 0909	.000 790 5138
1266	1 602 756	2 029 089 096	35.580 8937	10.817 9400	.000 789 8894
1267	1 605 289	2 033 901 163	35.594 9434	10.820 7876	.000 789 2660
1268	1 607 824	2 038 720 832	35.608 9876	10.823 6336	.000 788 6435
1269	1 610 361	2 043 548 109	35.623 0262	10.826 4782	.000 788 0221
1270	1 612 900	2 048 383 000	35.637 0593	10.829 3213	.000 787 4016
1271	1 615 441	2 053 225 511	35.651 0869	10.832 1629	.000 786 7821
1272	1 617 984	2 058 075 648	35.665 1090	10.835 0030	.000 786 1635
1273	1 620 529	2 062 933 417	35.679 1255	10.837 8416	.000 785 5460
1274	1 623 076	2 067 798 824	35.693 1366	10.840 6788	.000 784 9294
1275	1 625 625	2 072 671 875	35.707 1421	10.843 5144	.000 784 3137
1276	1 628 176	2 077 552 576	35.721 1422	10.846 3485	.000 783 6991
1277	1 630 729	2 082 440 933	35.735 1367	10.849 1812	.000 783 0854
1278	1 633 284	2 087 336 952	35.749 1258	10.852 0125	.000 782 4726
1279	1 635 841	2 092 240 639	35.763 1095	10.854 8422	.000 781 8608
1280	1 638 400	2 097 152 000	35.777 0876	10.857 6704	.000 781 2500
1281	1 640 961	2 102 071 841	35.791 0603	10.860 4972	.000 780 6401
1282	1 643 524	2 106 997 768	35.805 0276	10.863 3225	.000 780 0312
1283	1 646 089	2 111 932 187	35.818 9894	10.866 1454	.000 779 4232
1284	1 648 656	2 116 874 304	35.832 9457	10.868 9687	.000 778 8162
1285	1 651 225	2 121 824 125	35.846 8966	10.871 7897	.000 778 2101
1286	1 653 796	2 126 781 656	35.860 8421	10.874 6091	.000 777 6050
1287	1 656 369	2 131 746 903	35.874 7822	10.877 4271	.000 777 0008
1288	1 658 944	2 136 719 872	35.888 7169	10.880 2436	.000 776 3975
1289	1 661 521	2 141 700 569	35.902 6461	10.883 0587	.000 775 7952
1290	1 664 100	2 146 689 000	35.916 5699	10.885 8723	.000 775 1938
1291	1 666 681	2 151 685 171	35 930 4884	10.888 6845	.000 774 5933
1292 1293	1 669 264	2 156 689 088	35.944 4015	10.891 4952	.000 773 9938
1293	1 671 849	2 161 700 757	35.958 3092	10.894 3044	.000 773 3952
1294	1 674 436 1 677 025	2 166 720 184	35.972 2115	10.897 1123	.000 772 7975
1295	1 677 025	2 171 747 375	35.986 1084	10.899 9186	
1296	1 682 209	2 176 782 336 2 181 825 073	36.000 0000 36.013 8862	10.902 7235 10.905 5269	.000 771 6049
1297	1 684 804	2 181 825 073	36.013 8862	10.905 5269	.000 771 0100
1299	1 687 401	2 191 933 899	36.041 6426	10.908 3290	.000 770 4100
1300	1 690 000	2 197 000 000	36.055 5128	10.911 1296	.000 769 8229
1000	1 000 000	2 137 000 000	00.000 0128	10.010 5201	.000 100 2000

Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.
1301	1 692 601	2 202 073 901	36.069 3776	10.916 7265	.000 768 6395
1302	1 695 204	2 207 155 608	36.083 2371	10.919 5228	.000 768 0492
1303	1 697 809	2 212 245 127	36.097 0913	10.922 3177	.000 767 4579
1304	1 700 416	2 217 342 464	36.110 9402	10.925 1111	.000 766 8712
1305	1 703 025	2 222 447 625	36.124 7837	10.927 9031	.000 766 2835
1306	1 705 636	2 227 560 616	36.138 6220	10.930 6937	.000 765 6968
1307	1 708 249	2 232 681 443	36.152 4550	10.933 4829	.000 765 1109
1308	1 710 864	2 237 810 112	36.166 2826	10.936 2706	.000 764 5260
1309	1 713 481	2 242 946 629	36.180 1050	10.939 0569	.000 763 9419
1310	1 716 100	2 248 091 000	36.193 9221	10.941 8418	.000 763 3588
1311	1 718 721	2 253 243 231	36.207 7340	10.944 6253	.000 762 7765
1312	1 721 344	2 258 403 328	36.221 5406	10.947 5074	.000 762 1951
1313	1 723 969	2 263 571 297	36.235 3419	10.950 1880	.000 761 6446
1314	1 726 596	2 268 747 144	36.249 1379	10.952 9673	.000 761 0350
1315	1 729 225	2 273 930 875	36.262 6287	10.955 7451	.000 760 4563
1316	1 731 856	2 279 122 496	36.276 7143	10.958 5215	.000 759 8784
1317	1 734 489	2 284 322 013	36.290 4246	10.961 2965	.000 759 3014
1318	1 737 124	2 289 529 432	36.304 2697	10.964 0701	.000 758 7253
1319	1 739 761	2 294 744 759	36.318 0396	10.966 8423	.000 758 1501
1320	1 742 400	2 299 968 000	36.331 8042	10.969 6131	.000 757 5758
1321	1 745 041	2 305 199 161	36.345 5637	10.972 3825	.000 757 0023
1322	1 747 684	2 310 438 248	36.359 3179	10.975 1505	.000 756 4297
1323	1 750 329	2 315 685 267	36.373 0670	10.977 9171	.000 755 8579
1324	1 752 976	2 320 940 224	36.386 8108	10.980 6823	.000 755 2870
1325	1 755 625	2 326 203 125	36.400 5494	10.983 4462	.000 754 7170
1326	1 758 276	2 331 473 976	36.414 2829	10.986 2086	.000 754 1478
1327	1 760 929	2 336 752 783	36.428 0112	10.988 9696	.000 753 5795
1328	1 763 584	2 342 039 552	36.441 7343	10.991 7293	.000 753 0120
1329	1 766 241	2 347 334 289	36.455 4523	10.994 4876	.000 752 4454
1330	1 768 900	2 352 637 000	36.469 1650	10.997 2445	.000 751 8797
1331	1 771 561	2 357 947 691	36.482 8727	11.000 0000	.000 751 3148
1332	1 774 224	2 363 266 368	36.496 5752	11.002 7541	.000 750 7508
1333	1 776 889	2 368 593 037	36.510 2725	11.005 5069	.000 750 1875
1334	1 779 556	2 373 927 704	36.523 9647	11.008 2583	.000 749 6252
1335	1 782 225	2 379 270 375	36.537 6518	11.011 0082	.000 749 0637
1336	1 784 896	2 384 621 056	36.551 3388	11.013 7569	.000 748 5030
1337	1 787 569	2 389 979 753	36.565 0106	11.016 5041	.000 747 9432
1338	1 790 244	2 395 346 472	36.578 6823	11.019 2500	.000 747 3842
1339	1 792 921	2 400 721 219	36.592 3489	11.021 9945	.000 746 8260
1340	1 795 600	2 406 104 000	36.606 0104	11.024 7377	.000 746 2687
1341	1 798 281	2 411 494 821	36.619 6668	11.027 4795	.000 745 7122
1342	1 800 964	2 416 893 688	36.633 3181	11.030 2199	.000 745 1565
1343	1 803 649	2 422 300 607	36.646 9144	11.032 9590	.000 744 6016
1344	1 806 336	2 427 715 584	36.660 6056	11.035 6967	.000 744 0476
1345	1 809 025	2 433 138 625	36.674 2416	11.038 4330	.000 743 4944
1346	1 811 716	2 438 569 736	36.687 8726	11.041 1680	.000 742 9421
1347	1 814 409	2 444 008 923	36.701 4986	11.043 9017	.000 742 3905
1348	1 817 104	2 449 456 192	36.715 1195	11.046 6339	.000 741 8398
1349	1 819 801	2 454 911 549	36.728 7353	11.049 3649	.000 741 2898
1350	1 822 500	2 460 375 000	36.742 3461	11.052 0945	.000 740 7407
1351	1 825 201	2 465 846 551	36.755 9519	11.054 8227	.000 740 1924
1352	1 827 904	2 471 326 208	36.769 5526	11.057 5497	.000 739 6450

	2011213 1112 110013)					
Number.	Squares.	Cubes.	V Roots.	Noots.	Reciprocals.	
1353	1 830 609	2 476 813 977	36.783 1483	11.060 2752	.000 739 0983	
1354	1 833 316	2 482 309 864	36.796 7390	11.062 9994	.000 738 5524	
1355	1 836 025	2 487 813 875	36.810 3246	11.065 7222	.000 738 0074	
1356	1 838 736	2 493 326 016	36.823 9053	11.068 4437	.000 737 4631	
1357	1 841 449	2 498 846 293	36.837 4809	11.071 1639	.000 736 9197	
1358	1 844 164	2 504 374 712	36.851 0515	11.073 8828	.000 736 3770	
1359	1 846 881	2 509 911 279	36.864 6172	11.076 6003	.000 735 8352	
1360	1 849 600	2 515 456 000	36.878 1778	11.079 3165	.000 735 2941	
.1361	1 852 321	2 521 008 881	36.891 7335	11.082 0314	.000 734 7539	
1362	1 855 044	2 526 569 928	36.905 2842	11.084 7449	.000 734 2144	
1363	1 857 769	2 532 139 147	36.918 8299	11.087 4571	.000 733 6757	
1364	1 860 496	2 537 716 544	36.932 3706	11.090 1679	.000 733 1378	
1365	1 863 225	2 543 302 125	36.945 9064	11.092 8775	.000 732 6007	
1366	1 865 956	2 548 895 896	36.959 4372	11.095 5857	.000 732 0644	
1367	1 868 689	2 554 497 863	36.972 9631	11.098 2926	.000 731 5289	
1368	1 871 424	2 560 108 032	36.986 4840	11.100 9982	.000 730 9942	
1369	1 874 161	2 565 726 409	37.000 0000	11.103 7025	.000 730 4602	
1370	1 876 900	2 571 353 000	37.013 5110	11.106 4054	.000 729 9270	
1371	1 879 641	2 576 987 811	37.027 0172	11.109 1070	.000 729 3946	
1372	1 882 384	2 582 630 848	37.040 5184	11.111 8073	.000 728 8630	
1373	1 885 129	2 588 282 117	37.054 0146	11.114 5064	.000 728 3321	
1374	1 887 876	2 593 941 624	37.067 5060	11.117 2041	.000 727 8020	
1375	1 890 625	2 599 609 375	37.089 9924	11.119 9004	.000 727 2727	
1376	1 893 376	2 605 285 376	37.094 4740	11.122 5955	.000 726 7442	
1377	1 896 129	2 610 969 633	37.107 9506	11.125 2893	.000 726 2164	
1378	1 898 884	2 616 662 152	37.121 4224	11.127 9817	.000 725 6894	
1379	1 901 641	2 622 362 939	37.134 8893	11.130 6729	.000 725 1632	
1380	1 904 400	2 628 072 000	37.148 3512	11.133 3628	.000 724 6377	
1381	1 907 161	2 633 789 341	37.161 8084	11.136 0514	.000 724 1130	
1382	1 909 924	2 639 514 968	37.175 2606	11.138 7386	.000 723 5890	
1383	1 912 689	2 645 248 887	37.188 7079	11.141 4246	.000 723 0658	
1384	1 915 456	2 650 991 104	37.202 1505	11.144 1093	.000 722 5434	
1385 1386	1 918 225	2 656 741 625	37.215 5881 37.229 0209	11.146 7926	.000 722 0217	
1387	1 920 996 1 923 769	2 662 500 456 2 668 267 603	37.242 4489	11.149 4747 11.152 1555	.000 721 5007	
1388	1 925 769	2 674 043 072	37.242 4489	11.152 1555	.000 720 9805	
1389	1 929 321	2 679 826 869	37.269 2903	11.154 6550	.000 720 4611	
1390	1 932 100	2 685 619 000	37.282 7037	11.160 1903	.000 719 4245	
1391	1 934 881	2 691 419 471	37.296 1124	11.162 8659	.000 719 4243	
1392	1 937 664	2 697 228 288	37.309 5162	11.165 5403	.000 718 3908	
1393	1 940 449	2 703 045 457	37.322 9152	11.168 2134	.000 717 8751	
1394	1 943 236	2 708 870 984	37.336 3094	11.170 8852	.000 717 3601	
1395	1 946 025	2 714 704 875	37.349 6988	11.173 5558	.000 716 8459	
1396	1 948 816	2 720 547 136	37.363 0834	11.176 2250	.000 716 3324	
1397	1 951 609	2 726 397 773	37.376 4632	11.178 8930	.000 715 8196	
1398	1 954 404	2 732 256 792	37.389 8382	11.181 5598	.000 715 3076	
1399	1 957 201	2 738 124 199	37.403 2084	11.184 2252	.000 714 7963	
1400	1 960 000	2 744 000 000	37.416 5738	11.186 8894	.000 714 2857	
1401	1 962 801	2 749 884 201	37.429 9345	11.189 5523	.000 713 7759	
1402	1 965 604	2 755 776 808	37.443 2904	11.192 2139	.000 713 2668	
1403	1 968 409	2 761 677 827	37.456 6416	11.194 8743	.000 712 7584	
1404	1 971 216	2 767 587 264	37.469 9880	11.197 5334	.000 712 2507	

Number.	Squares.	Cubes.	VRoots.	Noots.	Reciprocals.
1405	1 974 025	2 773 505 123	37.483 3296	11.200 1913	.000 711 7438
1406	1 976 836	2 779 431 416	37.496 6665	11.202 8479	.000 711 2376
1407	1 979 649	2 785 366 143	37.509 9987	11.205 5032	.000 710 7321
1408	1 982 464	2 791 309 312	37.523 3261	11.208 1573	.000 710 2273
1409	1 985 281	2 797 260 929	37.536 6487	11.210 8101	.000 709 7232
1410	1 988 100	2 803 221 000	37.549 9667	11.213 4617	.000 709 2199
1411	1 990 921	2 809 189 531	37.563 2799	11.216 1120	.000 708 7172
1412	1 993 744	2 815 166 528	37.576 5885	11.218 7611	.000 708 2153
1413	1 996 569	2 821 151 997	37.589 8922	11.221 4089	.000 707 7141
1414	1 999 396	2 827 145 944	37.603 1913	11.224 0054	.000 707 2136
1415	2 002 225	2 833 148 375	37.616 4857	11.226 7007	.000 706 7138
1416	2 005 056	2 839 159 296	37.629 7754	11.229 3448	.000 706 2147
1417	2 007 889	2 845 178 713	37.643 0604	11.231 9876	.000 705 7163
1418	2 010 724	2 851 206 632	37.656 3407	11.234 6292	.000 705 2186
1419	2 013 561	2 857 243 059	37.669 6164	11.237 2696	.000 704 7216
1420	2 016 400	2 863 288 000	37.682 8874	11.239 9087	.000 704 2254
1421	2 019 241	2 869 341 461	37.696 1536	11.242 5465	.000 703 7298
1422	2 022 084	2 875 403 448	37.709 4153	11.245 1831	.000 703 2349
1423	2 024 929	2 881 473 967	37.722 6722	11.247 8185	.000 702 7407
1424	2 027 776	2 887 553 024	37.735 9245	11.250 4527	.000 702 2472
1425	2 030 625	2 893 640 625	37.749 1722	11.253 0856	.000 701 7544
1426	2 033 476	2 899 736 776	37.762 4152	11.255 7173	.000 701 2623
1427	2 036 329	2 905 841 483	37.775 6535	11.258 3478	.000 700 7708
1428	2 039 184	2 911 954 752	37.788 8873	11.260 9770	.000 700 2801
1429	2 042 041	2 918 076 589	37.802 1163	11.263 6050	.000 699 7901
1430	2 044 900	2 924 207 000	37.815 3408	11.266 2318	.000 699 3007
1431	2 047 761	2 930 345 991	37.828 5606	11.268 8573	.000 698 8120
1432	2 050 624	2 936 493 568	37.841 7759	11.271 4816	.000 698 3240
1433	2 053 489	2 942 649 737	37.854 9864	11.274 1047	.000 697 8367
1434	2 056 356	2 948 814 504	37.868 1924	11.276 7266	.000 697 3501
1435	2 059 225	2 954 987 875	37.881 3938	11.279 3472	.000 696 8641
1436	2 062 096	2 961 169 856	37.894 5906	11.281 9666	.000 696 3788
1437	2 064 969	2 967 360 453	37.907 7828	11.284 5849	.000 695 8942
1438	2 067 844	2 973 559 672	37.920 9704	11.287 2019	.000 695 4103
1439	2 070 721	2 979 767 519	37.934 1535	11.289 8177	.000 694 9270
1440	2 073 600	2 985 984 000	37.947 3319	11.292 4323	.000 694 4444
1441	2 076 481	2 992 209 121	37.960 5058	11.295 0457	.000 693 9625
1442	2 079 364	2 998 442 888	37.973 6751	11.297 6579	.000 693 4813
1443	2 082 249	3 004 685 307	37.986 8398	11.300 2688	.000 693 0007
1444	2 085 136	3 010 936 384	38.000 0000	11.302 8786	.000 692 5208
1445 1446	2 088 025 2 090 916	3 017 196 125 3 023 464 536	38.013 1556 38.026 3067	11.305 4871 11.308 0945	.000 692 0413
1447	2 093 809	3 029 741 623	38.039 4532	11.310 7006	.000 691 0850
1448	2 096 704	3 036 027 392	38.052 5952	11.313 3056	.000 691 6078
1449	2 090 704	3 042 321 849	38.065 7326	11.315 9094	.000 690 1312
1450	2 102 500	3 042 321 349	38.078 8655	11.318 5119	.000 689 6552
1451	2 102 300	3 054 936 851	38.091 9939	11.321 1132	.000 689 1799
1452	2 108 304	3 061 257 408	38.105 1178	11.323 7134	.000 688 7052
1453	2 111 209	3 067 586 777	38.118 2371	11.326 3124	.000 688 2312
1454	2 114 116	3 073 924 664	38.131 3519	11.328 9102	.000 687 7579
1455	2 117 025	3 080 271 375	38.144 4622	11.331 5067	.000 687 2852
1456	2 119 936	3 086 626 816	38.157 5681	11.334 1022	.000 686 8132
		1			

TOWERS AND ROOTS. 95						
Number.	Squares.	Cubes.	VRoots.	Noots.	Reciprocals.	
1457	2 122 849	3 092 990 993	38.170 6693	11.336 6964	.000 686 3412	
1458	2 125 764	3 099 363 912	38.183 7662	11.339 2894	.000 685 8711	
1459	2 128 681	3 105 745 579	38.196 8585	11.341 8813	.000 685 4010	
1460	2 131 600	3 112 136 000	38.209 9463	11.344 4719	.000 684 9315	
1461	2 134 521	3 118 535 181	38,223 0297	11.347 0614	.000 684 4627	
1462	2 137 444	3 124 943 128	38.236 1085	11.349 6497	.000 683 9945	
1463	2 140 369	3 131 359 847	38.249 1829	11.352 2368	.000 683 5270	
1464	2 143 296	3 137 785 344	38.262 2529	11.354 8227	.000 683 0601	
1465	2 146 225	3 144 219 625	38.275 3184	11.357 4075	.000 682 5939	
1466	2 149 156	3 150 662 696	38.288 3794	11.359 9911	.000 682 1282	
1467	2 152 089	3 157 114 563	38.301 4360	11.362 5735	.000 681 6633	
1468	2 155 024	3 163 575 232	38.314 4881	11.365 1547	.000 681 1989	
1469	2 157 961	3 170 044 709	38.327 5358	11.367 7347	.000 680 7352	
1470	2 160 900	3 176 523 000	38.340 5790	11.370 3136	.000 680 2721	
1471	2 163 841	3 183 010 111	38.353 6178	11.372 8914	.000 679 8097	
1472	2 166 784	3 189 506 048	38.366 6522	11.375 4679	.000 679 3478	
1473	2 169 729	3 196 010 817	38.379 6821	11.378 0433	.000 678 8866	
1474	2 172 676	3 202 524 424	38.392 7076	11.380 6175	.000 678 4261	
1475	2 175 625	3 209 046 875	38.405 7287	11.383 1906	.000 677 9661	
1476	2 178 576	3 215 578 176	38.418 7454	11.385 7625	.000 677 5068	
1477	2 181 529	3 222 118 333	38.431 7577	11.388 3332	.000 677 0481	
1478	2 184 484	3 228 667 352	38.444 7656	11.390 9028	.000 676 5900	
1479	2 187 441	3 235 225 239	38.457 7691	11.393 4712	.000 676 1325	
1480	2 190 400	3 241 792 000	38.470 7681	11.396 0384	.000 675 6757	
1481	2 193 361	3 248 367 641	38.483 7627	11.398 6045	.000 675 2194	
1482	2 196 324	3 254 952 168	38.496 7530	11.401 1695	.000 674 7638	
1483	2 199 289	3 261 545 587	38.509 7390	11.403 7332	.000 674 3088	
1484	2 202 256	3 268 147 904	38.522 7206	11.406 2959	.000 673 8544	
1485	2 205 225	3 274 759 125	38.535 6977	11.408 8574	.000 673 4007	
1486	2 208 196	3 281 379 256	38.548 6705	11.411 4177	.000 672 9474	
1487	2 211 169	3 288 008 303	38.561 6389	11.413 9769	.000 672 4950	
1488	2 214 144	3 294 646 272	38.574 6030	11.416 5349	.000 672 0430	
1489	2 217 121	3 301 293 169	38.587 5627	11.419 0918	.000 671 5917	
1490	2 220 100	3 307 949 000	38.600 5181	11.420 6476	.000 671 1409	
1491	2 223 081	3 314 613 771	38.613 4691	11.424 2022	.000 670 6908	
1492	2 226 064	3 321 287 488	38.626 4158	11.426 7556	.000 670 2413	
1493	2 229 049	3 327 970 157	38.639 3582	11.429 3079	.000 669 7924	
1494	2 232 036	3 334 661 784	38.652 2962	11.431 8591	.000 669 3440	
1495	2 235 025	3 341 362 375	38.665 2299	11.434 4092	.000 668 8963	
1496	2 238 016	3 348 071 936	38.678 1593	11.436 9581	.000 668 4492	
1497 1498	2 241 009 2 244 004	3 354 790 473 3 361 517 992	38.691 0843 38.704 0050	11.439 5059 11.442 0525	.000 668 0027	
1498	2 244 004 2 247 001	3 361 517 992	38.704 0050	11.442 0525	.000 667 5567	
1500	2 250 000	3 375 000 000	38.729 8335	11.444 5980	.000 666 6667	
1501	2 253 001	3 381 754 501	38.742 7412	11.447 1424	.000 666 2225	
1502	2 256 004	3 388 518 008	38.755 6447	11.452 2278	.000 665 7790	
1502	2 259 009	3 395 290 527	38.768 5439	11.454 7688	.000 655 3360	
1503	2 262 016	3 402 072 064	38.781 4389	11.457 3087	.000 664 8936	
1505	2 265 025	3 402 672 664	38.794 3294	11.457 3037	.000 664 4518	
1506	2 268 036	3 415 662 216	38.807 2158	11.462 3850	.000 664 0106	
1507	2 271 049	3 422 470 843	38.820 0978	11.464 9215	.000 663 5700	
1508	2 274 064	3 429 288 512	38.832 9757	11.467 4568	.000 663 1300	
		1 200 012	10.002 0.00			

OT TOWERS AND ROOTS.					
Number.	Squares.	Cubes.	VRoots.	Noots.	Reciprocals.
1509	2 277 081	3 436 115 229	38.845 8491	11.469 9911	.000 662 6905
1510	2 280 100	3 442 951 000	38.858 7184	11.472 5242	.000 662 2517
1511	2 283 121	3 449 795 831	38.871 5834	11.475 0562	.000 661 8134
1512	2 286 144	3 456 649 728	38.884 4442	11.477 5871	.000 661 3757
1513	2 289 169	3 463 512 697	38.897 3006	11.480 1169	.000 660 9385
1514	2 292 196	3 470 384 744	38.910 1529	11.482 6455	.000 660 5020
151 5	2 295 225	3 477 265 875	38.923 0009	11.485 1731	.000 660 0660
1516	2 298 256	3 484 156 096	38.935 8447	11.487 6995	.000 659 6306
1517	2 301 289	3 491 055 413	38.948 6841	11.490 2249	.000 659 1958
1518	2 304 324	3 597 963 832	38.961 5194	11.492 7491	.000 658 7615
1519	2 307 361	3 504 881 359	38.974 3505	11.495 2722	.000 658 3278
1520	2 310 400	3 511 808 000	38.987 1774	11.497 7942	.000 657 8947
1521	2 313 441	3 518 743 761	-39.000 0000	11.500 3151	.000 657 4622
1522	2 316 484	3 525 688 648	39.012 8184	11.502 8348	.000 657 0302
1523	2 319 529	3 532 642 667	39.025 6326	11.505 3535	.000 656 5988
1524	2 322 576	3 539 605 824	39.038 4426	11.507 8711	.000 656 1680
1525	2 325 625	3 546 578 125	39.051 2483	11.510 3876	.000 655 7377
1526	2 328 676	3 553 559 576	39.064 0499	11.512 9030	.000 655 3080
1527	2 331 729	3 560 558 183	39.076 8473	11.515 4173	.000 654 8788
1528	2 334 784	3 567 549 552	39.089 6406	11.517 9305	.000 654 4503
1529	2 337 841	3 574 558 889	39.102 4296	11.520 4425	.000 654 0222
1530	2 340 900	3 581 577 000	39.115 2144	11.522 9535	.000 653 5948
1531	2 343 961	3 588 604 291	39.127 9951	11.525 4634	.000 653 1679
1532	2 347 024	3 595 640 768	39.140 7716	11.527 9722	.000 652 7415
1533	2 350 089	3 602 686 437	39.153 5439	11.530 4799	.000 652 3157
1534	2 353 156	3 609 741 304	39.166 3120	11.532 9865	.000 651 8905
1535	2 356 225	3 616 805 375	39.179 0760	11.535 4920	.000 651 4658
1536	2 359 296	3 623 878 656	39.191 8359	11.537 9965	.000 651 0417
1537	2 362 369	3 630 961 153	39.204 5915	11.540 4998	.000 650 6181
1538	2 365 444	3 638 052 872	39.217 3431	11.543 0021	.000 650 1951
1539	2 368 521	3 645 153 819	39.230 0905	11.545 5033	.000 649 7726
1540	2 371 600	3 652 264 000	39.242 8337	11.548 0034	.000 649 3506
1541	2 374 681	3 657 983 421	39.255 5728	11.550 5025	.000 648 9293
1542	2 377 764	3 666 512 088	39.268 3078	11.553 0004	.000 648 5084
1543	2 380 849	3 673 650 007	39.281 0387	11.555 4972	.000 648 0881
1544	2 383 936	3 680 797 184	39.293 7654	11.557 9931	.000 647 6684
1545	2 387 025	3 687 953 625	39.306 4880	11.560 4878	.000 647 2492
1546	2 390 116	3 695 119 336	39.319 2065	11.562 9815	.000 646 8305
1547	2 393 209	3 702 294 323	39.331 9208	11.565 4740	.000 646 4124
1548	2 396 304	3 709 478 592	39.344 6311	11.567 9655	.000 645 9948
1549	2 399 401	3 716 672 149	39.357 3373	11.570 4559	.000 645 5778
1550	2 402 500	3 723 875 000	39.370 0394	11.572 9453	.000 645 1613
1551	2 405 601	3 731 087 151	39.382 7373	11.575 4336	.000 644 7453
1552	2 408 704	3 738 308 608	39.395 4312	11.577 9208	.000 644 3299
1553	2 411 809	3 745 539 377	39.408 1210	11.580 4069	.000 643 9150
1554	2 414 916	3 752 779 464	39.420 8067	11.582 8919	.000 643 5006
1555	2 418 025	3 760 028 875	39.433 4883	11.585 3759	.000 643 0868
1556	2 421 136	3 767 287 616	39.446 1658	11.587 8588	.000 642 6735
1557	2 424 249	3 774 555 693	39.458 8393	11.590 3407	.000 642 2608
1558	2 427 364	3 781 833 112	39.471 5087	11.592 8215	.000 641 8485
1559	2 430 481	3 789 119 879	39.484 1740	11.595 3013	.000 641 4368
1560	2 433 600	3 796 416 000	39.496 8353	11.597 7799	.000 641 0256

TOWERS AND ROOTS.					
Number.	Squares.	Cubes.	VRoots.	Noots.	Reciprocals.
1561	2 436 721	3 803 721 481	39.509 4925	11.600 2576	.000 640 6150
1562	2 439 844	3 811 036 328	39.522 1457	11.602 7342	.000 640 2049
1563	2 442 969	3 818 360 547	39.534 7948	11.605 2097	.000 639 7953
1564	2 446 096	3 825 641 444	39.547 4399	11.607 6841	.000 639 3862
1565	2 449 225	3 833 037 125	39.560 0809	11.610 1575	.000 638 9776
1566	2 452 356	3 840 389 496	39.572 7179	11.612 6299	.000 638 5696
1567	2 455 489	3 847 751 263	39.585 3508	11.615 1012	.000 638 1621
1568	2 458 624	3 855 123 432	39.597 9797	11.617 5715	.000 637 7551
1569	2 461 761	3 862 503 009	39.610 6046	11.620 0407	.000 637 3486
1570	2 464 900	3 869 883 000	39.623 2255	11.622 5088	.000 636 9427
1571	2 468 041	3 877 292 411	39.635 8424	11.624 9759	.000 636 5372
1572	2 471 184	3 884 701 248	39.648 4552	11.627 4420	.000 636 1323
1573	2 474 329	3 892 119 157	39.661 0640	11.629 9070	.000 635 7279
1574	2 477 476	3 899 547 224	39.673 6688	11.632 3710	.000 635 3240
1575	2 480 625	3 906 984 375	39.686 2696	11.634 8339	.000 634 9206
1576	2 483 776	3 914 430 976	39.698 8665	11.637 2957	.000 634 5178
1577	2 486 929	3 921 887 033	39.711 4593	11.639 7566	.000 634 1154
1578	2 490 084	3 929 352 552	39.724 0481	11.642 2164	.000 633 7136
1579	2 493 241	3 936 827 539	39.736 6329	11.644 6751	.000 633 3122
1580	2 496 400	3 944 312 000	39.749 2138	11.647 1329	.000 632 9114
1581	2 499 561	3 951 805 941	39.761 7907	11.649 5895	.000 632 5111
1582	2 502 724	3 959 309 368	39.774 3636	11.652 0452	.000 632 1113
1583	2 505 889	3 966 822 287	39.786 9325	11.654 4998	.000 631 7119
1584	2 509 056	3 974 344 704	39.799 4976	11.656 9534	.000 631 3131
1585	2 512 225	3 981 876 625	39.812 0585	11.659 4059	.000 630 9148
1586	2 515 396	3 989 418 056	39.824 6155	11.661 8574	.000 630 5170
1587	2 518 569	3 996 969 003	39.837 1686	11.664 3079	.000 630 1197
1588	2 521 744	4 004 529 472	39.849 7177	11.666 7574	.000 629 7229
1589	2 524 921	4 012 099 469	39.862 2628	11.669 2058	.000 629 3266
1590	2 528 100	4 014 679 000	39.874 8040	11.671 6532	.000 628 9308
1591	2 531 281	4 027 268 071	39.887 3413	11.674 0996	.000 628 5355
1592	2 534 464	4 034 866 688	39.899 8747	11.676 5449	.000 628 1407
1593	2 537 649	4 042 474 857	39.912 4041	11.678 9892	.000 627 7464
1594	2 540 836	4 050 092 584	39.924 9295	11.681 4325	.000 627 3526
1595	2 544 025	4 057 719 875	39.937 4511	11.683 8748	.000 626 9592
1596	2 547 216	4 065 356 736	39.949 9687	11.686 3161	.000 626 5664
1597	2 550 409	4 073 003 173	39.962 4824	11.688 7563	.000 626 1741
1598	2 553 604	4 080 659 192	39.974 9922	11.691 1955	.000 625 7822
1599	2 556 801	4 088 324 799	39.987 4980	11.693 6337	.000 625 3909
1600	2 560 000	4 096 000 000	40.000 0000	11.696 0709	.000 625 0000

The use of the table of powers and roots may be extended far beyond

its apparent limits by the observance of the following rules:

Remembering that the extraction of the square root of a number is simply the separating it into two equal factors, we have: to extract the square root of any whole number and decimal, when the whole number is within the limits of the table, simply find the square root of the whole number in the table and divide the given number and decimal by this root. The quotient will be another factor, very nearly equal to the required root. Add the divisor and the quotient together and divide by two, and the result will be the true root to a very close degree of approximation.

Thus, let it be required to find the square root of 346.285. We find from the table that the square root of 346 is 18.6010752, or, for

moderate precision, 18.6011, which is, of course, too small. We then have $346.285 \div 18.6011 = 18.6163$, so that we have the number

346.285, composed of the two factors, 18.6011×18.6163 , which are very nearly equal. Adding them together and dividing by 2, we get

$$\sqrt{346.285} = \frac{18.6011 + 18.6163}{2} = 18.6087.$$

The true root is 18.60873.

To extract the cube root of a whole number and decimal we proceed in a similar manner, remembering that the cube root is one of three equal factors, so that we divide *twice* by the cube root of the whole number and then take the mean of the two divisors and the final quotient,—*i.e.*, of the three nearly equal factors.

Thus, to find the cube root of 346.285, we find in the table $\sqrt[3]{346} = \sqrt[3]{346} = \sqrt[3]{346}$

7.0203490, or, for moderate precision, = 7.02035.

We then have $346.285 \div 7.02035 = 49.32588$ and $49.32588 \div 7.02035 = 7.02612$, and we have

$$\sqrt[8]{346.285} = \frac{7.02035 + 7.02035 + 7.02612}{3} = 7.02227.$$

The true root is 7.02226.

If the square root or the cube root of a number larger than 1600 is required, look for the nearest number in the column of squares or cubes, as the case may be, and the approximate root will be the corresponding number in the first column. By using this as the divisor the given number

may be resolved into two or three nearly equal factors, and their mean will be the required root, very nearly.

Thus, if it is required to find the square root of 569,245, we look in the column of squares and find the nearest number to be 570,025, and the corresponding number in the first column is 755. Taking this as a divisor, we

$$\frac{569,245}{755} = 753.935$$
, and $\frac{755 + 753.935}{2} = 754.476$.

The true root is 754.483.

INTEREST.

Simple Interest.

Interest is money paid for use of money which is lent for a certain time.

Notation.

c =the amount lent;

r =interest on the amount, c;

p = per cent. in the certain time.

Analogy.

$$c: r = 100: p$$
.

If p is the per cent. on 100 in one year, then t = time in years for thestanding capital c and the interest r.

c: r = 100: pt.Analogy,

From this analogy we obtain the equations:

1. Interest,
$$r=\frac{cpt}{100}$$
. 3. Capital, $c=\frac{100r}{pt}$. 2. Per cent., $p=\frac{100r}{ct}$. 4. Time in years, $t=\frac{100r}{cp}$.

Now for any question in Simple Interest there is one equation which gives the answer. If the time is given in months, weeks, or days, multiply the 100 correspondingly by 12, 52, 365.

Example 1. What is the interest on \$3789.35, for 3 years and 5 months, at

6 per cent. per annum? $t=3\times 12+5=41$ months; from the Equation 1 we have,

Interest,
$$r = \frac{3789.35 \times 6 \times 41}{12 \times 100} = 776.81$$
 dollars.

Example 2. A capital c = 469.78 dollars, returned interest r = 150.72 dollars in time t = 4 years and 7 months. Required the per cent. per annum?

 $t = 4 \times 12 + 7 = 55$ months; from the Equation 2 we have,

Per cent.,
$$p = \frac{12 \times 100 \times 150.72}{469.78 \times 55} = 7$$
 per cent.

Example 3. What amount is required to return interest r=345 dollars in 6 years, at 5 per cent. per annum? From the Equation 3 we have,

Capital,
$$c = \frac{100 \times 345}{5 \times 6} = 1150 \text{ dollars.}$$

Example 4. An amount c = 2365 dollars is to stand until the interest r = 550 dollars, at p = 6 per cent. per annum. How long must the amount stand?

From the Equation 4 we have,

Time,
$$t = \frac{100 \times 550}{2365 \times 6} = 3.876$$
 years.

 $12 \times 0.876 = 10.512$ months, $4 \times 0.512 = 2.048$ weeks; the time t = 3 years, 10 months, and 2 weeks.

Compound Interest.

Compound Interest is when the interest is added to the capital for each year, and the sum is the capital for the following year.

1. Amount,
$$a = c(1+p)^n$$
. 3. Per cent., $p = \sqrt[n]{\frac{a}{c}} - 1$.

1. Amount,
$$a = c(1+p)^n$$
. 3. Per cent., $p = \sqrt{\frac{a}{c}} - 1$.
2. Capital, $c = \frac{a}{(1+p)^n}$. 4. Number of years, $n = \frac{\log a - \log c}{\log (1+p)}$.

In these formulas p must be expressed in hundredths.

Example 1. A capital c = 8650 standing with compound interest at p = 5 per cent. What will it amount to in n = 9 years?

Amount $a = 8650 (1.05)^9 = 13,419 \text{ dollars.}$

Example 2. A man commenced business with c=300 dollars: after n=5 years he had a=6875 dollars. At what rate did his money increase, and how soon will he have a fortune of 50.000 dollars?

The first question, or the percentage, will be answered by the Formula 3.

$$p = \sqrt[4]{\frac{6875}{800}} - 1 = \sqrt[5]{22.9166} - 1 = 0.87$$
, or 87 per cent.

The time from the commencement of business until the fortune is completed will be answered from the Formula 4.

$$n = \frac{\log.\ 50,000 - \log.\ 300}{\log.\ 187} = \frac{4.69897 - 2.47712}{0.2720048} = 8.169 \ \text{years,}$$

or 8 years and 2 months.

Compound Interest Table, CALCULATED FROM FORMULA 1.

n	Сомт	OUND INTE	REST.	n	Compound Interest.		
Years.	5 per cent.	6 per cent.	7 per cent.	Years.	5 per cent.	6 per cent.	7 per cent.
1	1.0500	1.0600	1.0700	17	2.2920	2.6928	3.1588
2 3	1.1025	1.1236	1.1449	18	2.4066	2.8543	3.3799
3	1.1576	1.1910	1.2250	19	2.5269	3.0256	3.6165
4	1.2155	1.2625	1.3108	20	2.6533	3.2071	3.8697
4 5 6 7	1.2770	1.3382	1.4025	21	2.7859	3.3995	4.1406
6	1.3400	1.4185	1.5007	22	2.9252	3.6035	4.4304
7	1.4071	1.5036	1.6058	23	3.0715	3.8197	4.7405
8 9	1.4774	1.5938	1.7182	24	3.2251	4.0487	5.0724
	1.5513	1.6895	1.8385	25	3.3864	4.2919	5.4274
10	1.6289	1.7908	1.9671	30	4.3219	5.7435	7.6123
11	1.7103	1.8983	2.1048	35	5.5166	7.6861	10.6766
12	1.7958	2.0122	2.2522	40	7.0400	10.2858	14.9745
13	1.8856	2.1329	2.4098	45	8.9850	13.7646	21.0025
14	1.9799	2.2609	2.5785	50	11.6792	18.4190	29.4570
15	2.0789	2.3965	2.7599	60	18.6792	32.9878	57.946 6
16	2.1 829	2. 5403	2.9522				

This table shows the value of one unit of money at the rates of 5, 6, and 7 per cent. per annum, compound interest, up to 60 years.

Example 1. What is the amount of 864 pounds sterling for 12 years, at 6 per cent. compound interest?

Table, 2.01219 × 864 = 1738.53216, or £1738 10s. 7.7d.

Example 2. What is the amount of 3450 dollars for 18 years, at 5 per cent.

cent. compound interest?

Table, $2.40661 \times 3450 = 8302.80$ dollars.

When the interest is compounded in more or less than one year, at the rate of interest per year, and m = the number of months in which the interest is compounded:

then, instead of p in the formulas, put $\frac{mp}{12}$, and instead of n, put $\frac{12n}{m}$.

Example 3. A capital of 500 dollars bears compound interest semiannually at 5 per cent. per annum; what will it amount to in 10 years?

$$m = 6$$
 months, $p = \frac{mp}{12} = \frac{6 \times 0.05}{12} = 0.025$, and $n = \frac{12 \times 10}{6} = 20$;

then, $a = c(1+p)^n = 500(1+0.025)^{20} = 8193.11$ dollars, the answer.

$$\begin{array}{c} \log.~(1+0.025) = \begin{array}{c} 0.0107239 \\ \hline 20 \\ \hline 0.2144780 \\ \log.~500 = \begin{array}{c} 2.6989700 \\ 8193.11 = \begin{array}{c} 2.9134480 \end{array} \end{array}$$

Amount,

WEIGHTS AND MEASURES.

There are now but two really important systems of weights and measures in use in civilized countries,—the English and the metric. Many of the older English tables are falling into disuse, volumes of all kinds being expressed in cubic feet, solutions in percentages instead of grains per gallon, and similar simplifications.

The metric system is used everywhere in Europe, except in Great Britain, and it is also extensively used in America, except in the United States and

The following tables will be found to cover practically all necessary requirements:

Measures of Length—United States and Great Britain.

12 inches = 1 foot.

3 feet = 1 yard = 36 inches.

 $5\frac{1}{2}$ yards = 1 rod = $16\frac{1}{2}$ feet = 198 inches. 40 rods = 1 furlong = 220 yards = 660 feet.

8 furlongs = 1 mile = 320 rods = 1760 yards = 5280 feet.

Of the above, the inch and the foot are most frequently used by mechanics. The ordinary two-foot rule has the inches subdivided by the system of repeated halving, thus giving V_0 , V_4 , V_4 , and V_7 of an inch; and this is sometimes carried as iar as to include 32ds and 64ths. This system, however, is now used principally by carpenters, builders, etc., while machinists are generally using scales, calipers, and measuring tools which have the inch subdivided into 10ths, 100ths, and 1000ths.

The yard is much used by shopkeepers for measuring cloth, carpet, and fabrics generally, and is by them also subdivided into halves, quarters, and eighths

For long distances the mile is universally used, and portions of a mile are given either in furlongs and feet or in halves and quarters.

For engineering measurements steel tapes are much used,—100 feet long, with the feet subdivided into 10ths instead of inches, thus giving 10ths, 100ths, and 1000ths of the length of the tape. The mile given in the above table is called the *statute* mile, and is always used on land. The *nautical* mile, used only at sea, is equal to 6080

feet, being about 15 per cent. longer than the statute mile.

A knot is not a distance, but a rate of speed, corresponding to 1 nauti-

cal mile per hour. The expression "knots per hour" is incorrect, as the time element is included in the word knot.

The only other system of measures of length which is extensively used

is the Metric System.

Metrical Measures of Length-Used generally on the Continent of Europe.

The unit is the Metre = 39.37 inches.

The metre is subdivided decimally and multiplied decimally, as below:

1 millimetre = $\frac{1}{1000}$ metre = 0.03937 inches. 1 centimetre = $\frac{1000}{100}$ metre = 0.3937 inches. 1 decimetre = $\frac{1}{10}$ metre = 3.937 inches. 1 metre = 39.37 inches = 3.2808 feet. 1 dekametre = 10 metres = 32.8087 feet.1 hectometre = 100 metres = 328.0869 feet.

1 kilometre = 1000 metres = 3280.869 feet = 0.621 mile

In using the metric system it is important to think of the metre as a main unit and the subdivisions as decimals of it. In mechanical and scientific work the metre and the millimetre are usually employed, and sometimes the centimetre, the decimetre more rarely. In the machine shop, for instance, measurements are usually given directly in millimetres, as 325 mm., not 3 dcm., 2 cm., 5 mm.

For longer distances the kilometre is used exclusively, and should be

kept in mind as the unit of out-door measurement, with the metre, its room part, for all subdivisions, the dekametre and hectometre being hardly used at all. It is very desirable that the student should learn the values of these measurements directly from the use of a metric scale, and not by transformation into English measures. When such transformations must be roughly made, however, it will be convenient to remember the following:

1 millimetre = $\frac{1}{25}$ inch, approximately. 1 decimetre = 4 inches, approximately. 1 metre = 3 feet and 3% inches, very closely. 1 kilometre = $\frac{5}{8}$ of a mile, nearly.

An approximate rule to convert metres to feet is to multiply by 3 and add 10 per cent. Thus, 100 metres would be 300+30=330 feet, while it really is equal to 328 feet, the error being less than 1 per cent.

Measures of Weight-United States and British.

The commercial system is the Avoirdupois; the unit being the pound of 7000 grains.

The system for weighing gold and silver is called Troy Weight, of which

the pound contains 5760 grains.

For medicines and drugs the Apothecaries' System is used, the grain and pound being the same as in Troy Weight, but the subdivisions of the pound being different.

Avoirdupois or Commercial Weight.

 $1 \, dram = 27.34375 \, grains.$

 $16 \text{ drams} = 1 \text{ ounce} = 437\frac{1}{2} \text{ grains}.$ 16 ounces = 1 pound = 7000 grains.

14 pounds = 1 stone.

28 pounds = 1 quarter. 4 quarters = 1 hundredweight = 112 pounds. 20 hundred weight = 1 ton = 2240 pounds.

It will be noticed that the "hundredweight" (so called) is 12 pounds more than 100 pounds, this having been the allowance for loss in handling merchandise in old times. The ton of 2240 pounds is sometimes called the long ton in commerce, as distinguished from the short ton of 2000 pounds. When no explanation is made, the long ton of 2240 pounds is the legal value of the ton, but in engineering calculations, such as the load upon a bridge, the pressure of a mass of earthwork, or the lifting capacity of a crane, it is customary to use the word ton to mean 2000 pounds. In practice a hundredweight (used as one word) means always 112 pounds, while a hundred pounds means 100 pounds exactly.

Troy Weight.

1 pennyweight = 24 grains. 20 pennyweights = 1 ounce = 480 grains. 12 ounces = 1 pound Troy = 5760 grains.

Apothecaries' Weight.

1 scruple = 20 grains. 3 scruples = 1 dram = 60 grains.8 drams = 1 ounce = 480 grains.12 ounces = 1 pound = 5760 grains.

Measures of Weight-Metric System.

The metric unit of weight is the Gramme, which is the weight of a cubic centimetre of pure water at a temperature of 4° C., and which is equal to 15,432 grains. The gramme is subdivided and multiplied decimally, as follows:

> 1 milligram = $\frac{1}{1000}$ gramme = 0.015432 grains. 1 centigram = $\frac{1}{100}$ gramme = 0.15432 grains. 1 decigram = $\frac{1}{100}$ gramme = 1.5432 grains. 1 gramme = 1 gramme = 15.432 grains. 1 dekagram = 10 grammes = 154.32 grains. 1 hectogram = 100 grammes = 1543.2 grains. 1 kilogram = 1000 grammes = 2.2046 pounds, 1 myriagram = 10,000 grammes = 22.046 pounds, 1 metric ton = 1000 kilograms = 2204.6 pounds.

In practice many of these subdivisions and multiples are rarely used. The gramme and the milligram are used by chemists and physicists all over the world. The kilogram is used almost everywhere on the continent of Europe except in Russia, and its subdivisions are generally referred to as $\frac{1}{12}$ kilo, $\frac{1}{12}$ kilo, etc., instead of the tabular names, while the multiples are similarly named at 10 kilos, 100 kilos, etc. It will be noticed that the metric ton, or tonne, as it is written in France, is very nearly the same as the English long ton, so nearly that for ordinary commercial purposes they may be considered the same.

Measures of Volume.

Measures of Volume are not the same in the United States and in Great

Britain, and hence it should always be stated as to which is meant.

In the United States the systems for Liquid and for Dry Measures of volume are also different from each other, while in England both liquid and dry substances are measured by the same system.

Liquid Measure-U. S. A. only.

The unit of volume is the Gallon = 231 cubic inches. The gallon is subdivided and multiplied as follows:

> 4 gills = 1 pint = 28.875 cubic inches.2 pints = 1 quart = 57.750 cubic inches.4 quarts = 1 gallon = 231 cubic inches.63 gallons = 1 hogshead.2 hogsheads = 1 pipe or butt.

2 pipes = 1 tun.

Of the above measures the pint and quart are most frequently used. The barrel is not a standard volume, although in the United States and in England a wine barrel is supposed to contain 31½ gallons, but in referring to a barrel in liquid measure the number of gallons it contains should be stated.

A cylinder 7 inches in diameter and 6 inches high contains almost precisely a gallon, and a gallon of pure water at its greatest density weighs 8.33888 pounds. Ordinarily it may be taken at 8.34 pounds. A cubic foot contains 7.48052 United States gallons.

Dry Measure-U. S. A. only.

The unit of dry measure is the Bushel = 2150.42 cubic inches. The bushel is subdivided as follows:

 $\begin{array}{l} 2 \text{ pints} = 1 \text{ quart} = 67.2 \text{ cubic inches.} \\ 4 \text{ quarts} = 1 \text{ gallon} = 268.8 \text{ cubic inches.} \\ 2 \text{ gallons} = 1 \text{ peck} = 537.6 \text{ cubic inches.} \\ 4 \text{ pecks} = 1 \text{ struck bushel} = 2150.42 \text{ cubic inches.} \end{array}$

The barrel is not a legalized unit in dry measure, and its value should always be stated in gallons or in pounds weight of the substance it contains. A barrel of flour is equal to 196 pounds.

British Measures of Volume.

In the British or Imperial system the same measures are used both for liquid and for dry measure. The unit of the system is the Imperial Gallon =277.274 cubic inches. This is intended to be equal to 10 pounds avoirdupois weight of pure water at a temperature of 62° Fahrenheit. The imperial gallon is subdivided and multiplied as follows:

4 gills = 1 pint = 1.25 pounds water.2 pints = 1 quart = 2.50 pounds water.2 quarts = 1 pottle = 5.00 pounds water.2 pottles = 1 gallon = 10.00 pounds water.2 pations = 1 park = 10.00 pounds water. 2 pations = 1 peck = 20.00 pounds water. 4 pecks = 1 bushel = 80.00 pounds water. 4 bushels = 1 coomb = 320.00 pounds water. 2 coombs = 1 quarter = 640.00 pounds water.

The measures above the gallon are used for dry measures exclusively, and it is customary to state all quantities above the bushel in bushels.

Metric Measures of Volume.

The unit of volume is the Litre = 1 cubic decimetre. This is subdivided and multiplied decimally, as follows:

Liquid.

1 millilitre = $\frac{1}{1000}$ litre. 1 centilitre = $\frac{1}{100}$ litre. 1 decilitre = $\frac{1}{10}$ litre. 1 litre = 1 litre. 1 decalitre = 10 litres. 1 hectolitre = 100 litres. 1 kilolitre = 1000 litres.

The principal measure used is the litre itself, and in trade the $\frac{1}{2}$ litre is often used, this being a little more than a pint ($\frac{1}{2}$ litre = 1.056 pint), and so convenient that the fact of its not being a decimal equivalent is overlooked. For chemical and physical measurements the cubic centimetre is much used, and called by this name, c.c., and not millilitre, which latter it really is.

The unit of dry measure in the metric system is supposed to be the Stere = 1 cubic metre, but in practice the term cubic metre is very generally used, and the subdivisions and multiples so named, -i.e., in cubic

metre, 100 cubic metres, etc.

MONETARY SYSTEMS.

The various systems used for the money of different countries are too numerous to be described here, but a few of the most important will be given.

United States and Canada.

The unit is the Dollar (\$), subdivided and multiplied decimally. The dollar is divided into 100 cents, and the other units are as follows:

 $1 \text{ dime} = 10 \text{ cents} = \frac{1}{10} \text{ dollar.}$

1 dollar = 100 cents.

10 dollars = 1 eagle.

Besides these decimal units there are coins as follows:

¼ dollar = 25 cents. ½ dollar = 50 cents. Double eagle = 20 dollars.

These coins are made for convenience, but are not known by their names in reckoning, the quarter- and half-dollar being counted as 25 and 50 cents, and the double eagle, as well as the eagle, as so many dollars.

Great Britain.

The unit is the Pound Sterling, or Sovereign (£), subdivided as follows:

The penny = $\frac{1}{240}$ pound. 1 shilling = 12 pence = about 24 cents.

1 pound = 20 shillings = 240 pence = about \$4.86.

Besides these there are the following coins:

Half-penny = $\frac{1}{2}$ penny. Crown = 5 shillings. Half-crown = $2\frac{1}{2}$ shillings. Florin = 2 shillings.

But the calculations are all made in pounds, shillings, and pence. The Guinea, often used in giving prices, is equal to 21 shillings, but it has not been coined for many years.

Latin Monetary Union.

On the Continent of Europe the following countries have formed themselves into the Latin Monetary Union, and use the same system,—i.e., France, Belgium, Switzerland, Italy, and Greece. The unit is the Franc, called Lira in Italy and Drachma in Greece.

The franc is subdivided into 100 centimes,—Centesemi in Italy, Lepta in Greece. There are also gold pieces of 20 francs and silver coins = ½ franc, besides minor coins of nickel, but these have no special names, all the reckoning being done in francs and 100ths. The equivalent value of the

franc in United States money is about 19.3 cents.

Germany.

The unit is the Mark = about 24 cents, subdivided into 100 pfennigs. There are gold coins of 20 marks, but all the reckoning is done in marks and 100ths.

Besides the tables and terms already described, there are many other calculations made in trade and commerce which cannot be given here, but which must be learned by actual experience. There are many words, such as net, gross, rebate, tare, tret, etc., etc., for the meanings of which the reader must refer to the dictionary.

There are two ratios, however, which are of sufficient interest to be described here. The "fineness" (so called) of gold or silver is determined by the number of parts of pure gold or silver there are in 1000 parts of the alloy. The metal is, of course, pure only when it contains no alloy whatever, and is then 1800 fine. The standard alloy for gold for United States coinage is 900 parts of pure gold and 100 parts alloy, and hence is 1000 fine.

Of this alloy the gold dollar contains 25.8 grains, the eagle 258 grains,

and the double eagle 516 grains.

The standard "fineness" for silver is also $\frac{900}{1000}$, and the standard dollar contains 412.5 grains of this alloy.

THE METRIC SYSTEM.

The principal advantage of the metric system consists in its use of the decimal subdivisions. The attempt to consider the metre as $\frac{1}{10,000,000}$ of

a quadrant of the earth's surface has been abandoned, and it is now held only to be the length of the standard known as the Mêtre des Archives, copies of which are issued by the Bureau Internationale des Poids et Mêsures,

at Breteuil, near Paris.

The kilogramme was originally intended to be the weight of a cubic decimetre or litre of pure water at the temperature of maximum density, but it is really now considered only as the weight of a platinum standard. At the same time, this relation between the unit of weight and a standard volume of water is sufficiently close for the specific gravity of any substance to be considered as equal to the weight of a cubic decimetre of that substance. In all hydraulic measurements a cubic metre of water is equal in weight to the metric tonne of 1000 kilogrammes, a most convenient fact in the determination of the power developed by a given fall and volume of water.

The French Metrical System.

The French units of weight, measure, and coin are arranged into a perfect decimal system, except those of time and the circle. The division and multiplication of the units are expressed by Latin and Greek names, as follows:

Latin, Division. Greek, Multiplication. Milli = 1000th of the unit.Deca = 10 times the unit. Centi = 100th of the unit. Hecato = 100 times the unit.= 1000 times the unit Deci = 10th of the unit.Kilio Metre, litre, are, franc, stere. Myrio = 10000 times the unit. gramme.

French Measure of Length.

1 millimetre 0.03937 inch. 1 metre (unit) = 3.28083 feet. 0.3937 inch. 1 centimetre 1 decamètre 32.8083 feet. = = 328.083 feet. 1 decimetre = 3.937 inches. 1 hectometre = 1 metre (unit) = 39.37 inches.1 kilometre = 3280.83 ft. = 0.621371 sea mile = 1853.25 metres.= 0.53959 sea mile. 1 kilometre 1 statute mile = 1.60935 kilomets. 1 kilometre 49.7096 chains.

French Measure of Surface.

1 square metre = 10.764 square feet. 1 are = 1076.4 square feet. 1 decare = 1076.4 square feet. 1 decare = 1076.4 square feet. 1 hectare = 1076.4 square feet. 1 hectare = 1076.4 square feet. 1 hectare = 1076.4 square feet. 1 decare = 1076.4 square feet. 1 hectare = 1076.4 square feet. 1 decare = 1076.4 square feet.

French Measure of Volume.

 $\left. \begin{array}{l} 1 \text{ stere (cubic } \\ \text{metre)} \end{array} \right\} = 10 \text{ decasteres.} \\ 1 \text{ stere} \\ 1 \text{ litre} \\ 1 \text{ litre} \\ 2 \text{ subic decimetre.} \end{array} \quad \left| \begin{array}{l} 1 \text{ stere} \\ 1 \text{ litre} \\ 1 \text{ gallon} \\ 2 \text{ litres.} \\ 1 \text{ decistere} \\ 2 \text{ .838 bushels (nearly).} \end{array} \right|$

French Measure of Weight.

1 ton = 1 cubic metre dis-1 gramme = 10 decigrammes. tilled water. 1 decigramme = 10 centigrammes. 1 ton = 1000 kilogrammes. 1 centigramme = 10 milligrammes. 1 kilogramme 1 kilogramme = 2.20462 pounds av-= 1000 grammes.oirdupois. 1 hectogramme = 100 grammes.1 Eng. pound = 0.45359 kilograms. 1 decagramme = 10 grammes.1 gramme = 1 cubic centimetre 1 gramme = 15.43 grains troy. distilled water. 1 English ton = 1.016 French tons. 1 French ton = 0.9842 Eng. ton.

Conversion of English Inches into Centimetres.

Inches.	0	1	2	3	4	5	6	7	8	9
	Cm.									
0	0.000	2.540	5.080	7.620	10.16	12.70	15.24	17.78	20.32	22.86
10	25.40	27.94	30.48	33.02	35.56	38.10	40.64	43.18	45.72	48.26
20	50.80	53.34	55.88	58.42	60.96	63.50	66.04	68.58	71.12	73.66
30	76.20	78.74	81.28	83.82	86.36	88.90	91.44	93.98	96.52	99.06
40	101.60		106.68							
50	127.00	129.54	132.08	134.62	137.16	139.70	142.24	144.78	147.32	149.86
60	152.40	154.94								
70	177.80		182.88							
80		205.74								
90	228.60	231.14								
100	254.00	256.54	259.08	261.62	264.16	266.70	269.24	271.78	274.32	276.85

Conversion of Centimetres into English Inches.

Cm.	0	1	2	3	4	5	6	7	8	9
	Inch.									
0	0.000	0.394	0.787	1.181	1.575	1.969	2.362	2.756	3.150	3.543
10	3.937	4.331	4.742	5.118	5.512	5.906	6.299	6.693	7.087	7.480
20	7.874	8.268	8.662	9.055	9.449	9.843	10.236	10.630	11.024	11.418
30	11.811	12.205	12.599	12.992	13.386	13.780	14.173	14.567	14.961	15.355
40	15.748	16.142	16.536	16.929	17.323	17.717	18.111	18.504	18.898	19.292
50	19.685	20.079	20.473	20.867	21.260	21.654	22.048	22.441	22.835	23.229
60	23.622	24.016	24.410	24.804	25.197	25.591	25.985	26.378	26.772	27.166
70	27.560	27.953	28.347	28.741	29.134	29.528	29.922	30.316	30.709	31.103
80			32.284							
90			36.221							
100	39.370	39.764	40.158	40.552	40.945	41.339	41.733	42.126	42.520	42.914

Conversion of English Feet into Metres.

Feet.	0	1	2	3	4	5	6	7	8	9
	Met.									
0	0.000	0.3048	0.6096	0.9144	1.2192	1.5239	1.8287	2.1335	2.4383	2.7431
10	3.0479	3.3527	3.6575	3.9623	4.2671	4.5719	4.8767	5.1815	5.4863	5.7911
20	6.0359	6.4006	6.7055	7.0102	7.3150	7.6198	7.9246	8.2294	8.5342	8.8390
30	9.1438	9.4486	9.7534	10.058	10.363	10.668	10.972	11.277	11.582	11.887
40	12.192	12.496	12.801	13.106	13.411	13.716	14.020	14.325	14.630	14.935
50	15.239	15.544	15.849	16.154	16.459	16.763	17.068	17.373	17.678	17.983
60	18.287	18.592	18.897	19.202	19.507	19.811	20.116	20.421	20.726	21.031
70									23.774	
80	24.383	24.688	24.993	25.298	25.602	25.907	26.212	26.517	26.822	27.126
90									29.870	
100	30.479	30.784	31.089	31.394	31.698	32.003	32.308	32.613	32.918	33.222

Conversion of Metres into English Feet.

Metres.	0	1	2	3	4	5	6	7	8	9
	Feet.									
0	0.000	3.2809	6.5618	9.8427	13.123	16.404	19.685	22.966	26.247	29.528
10	32.809	36.090	39.371	42.651	45.932	49.213	52.494	55.775	59.056	62.337
20			72.179							
30	98.427	101.71	104.99	108.27	111.55	114.83	118.11	121.39	124.67	127.96
40	131.24	134.52	137.80	141.08	144.36	147.64	150.92	154.20	157.48	160.76
50			170.61							
60			203.42							
70			236.22							
80			269.03							
90	295.28	298.56	301.84	305.12	308.40	311.69	314.97	318.25	321.53	324.81
100	328.09	331.37	334.65	337.93	341.21	344.49	347.78	351.06	354.34	357.62

Conversion of English Statute-miles into Kilometres.

Miles.	0	1	2	3	4	5	6	7	8	9
	Kilo.	Kilo.	Kilo.							
0	0.0000	1.6093	3.2186	4.8279	6.4372	8.0465	9.6558	11.2652	12.8745	14.4848
10	16.093	17.702	19.312	20.921	22.530	24.139	25.749	27.358	28.967	30.577
20	32.186	33.795	35.405	37.014	38.623	40.232	41.842	43.451	45.060	46.670
30	48.279	49.888	51.498	53.107	54.716	56.325	57.935	59.544	61.153	62.763
40	64.372	65.981	67.591	69.200	70.809	72.418	74.028	75.637	77.246	78.856
50	80.465	82.074	83.684	85.293	86.902	88.511	90.121	91.730	93.339	94.949
60	96.558	98.167	99.777	101.39	102.99	104.60	106.21	107.82	109.43	111.04
70	112.65	114.26	115.87	117.48	119.08	120.69	122.30	123.91	125.52	127.13
80	128.74	130.35	131.96	133.57	135.17	136.78	138.39	140.00	141.61	143.22
90	144.85	146.44	148.05	149.66	151.26	152.87	154.48	156.09	157.70	159.31
100	160.93	162.53	164.14	165.75	167.35	168.96	170.57	172.18	173.79	175.40

Conversion of Kilometres into English Statute-miles.

Kilom.	0	1	2	3	- 4	5	6	7	8	9
	Miles.									
0			1.2427							
10	6.2138	6.8352	7.4565	8.0780	8.6994	9.3208	9.9421	10.562	11.185	11.805
20	12.427	13.049	13.670	14.292	14.913	15.534	16.156	16.776	17.399	18.019
30	18.641	19.263	19.884	20.506	21.127	21.748	22.370	22.990	23.613	24.233
40	24.855	25.477	26.098	26.720	27.341	27.962	28.584	29.204	29.827	30.447
50	31.069	31.690	32.311	32.933	33.554	34.175	34.797	35.417	36.040	36.660
60	37.282	37.904	38.525	39.147	39.768	40.389	41.011	41.631	42.254	42.874
70	43.497	44.118	44.739	45.361	45.982	46.603	47.225	47.845	48.468	49.088
80	49.711	50.332	50.953	51.575	52.196	52.817	53.439	54.059	54.682	55.302
90	55.924	56.545	57.166	57.788	58.409	59.030	59.652	60.272	60.895	61.515
100	62.138	62.759	63.380	64.002	64.623	65.244	65.866	66.486	67.109	67.729

Conversion of Sea-miles into Kilometres.

Sea-miles.	0	1	2	3	4	5	6	7	8	9
	Kilo.									
0	0.0000	1.8532	3.7046	5.5596	7.4128	9.2660	11.119	12.972	14.825	16.788
10	18.532	20.386	22.237	24.128	25.945	27.798	29.651	31.504	33.357	35.320
20			40.769							
30			59.301							
40	74.128	75.982	77.833	79.724	81.541	83.396	85.247	87.100	88.953	90.916
50	92.660	94.514	96.365	98.256	100.07	101.92	103.78	105.63	107.48	109.45
60	111.19	113.05	114.90	116.79	118.61	120.45	122.21	124.16	126.01	127.98
70			133.43							
80	148.25	150.11	151.96	153.85	155.67	157.52	159.27	161.22	163.07	165.04
90			170.49							
100	185.32	187.18	189.03	190.88	192.73	194.58	196.44	198.28	200.14	201.99

Conversion of Kilometres into Sea-miles.

Kilom.	0	1	2	3	4	5	6	7	8	9
	Sea-m.									
0	0.0000	0.5396	1.0792	1.6188	2.1584	2.6880	3.2375	3.7771	4.3167	4.8563
10	5.3959	5.9356	6.4751	7.0147	7.5543	8.0839	8.6334	9.1730	9.7126	10.252
20	10.792	11.331	11.870	12.410	12.950	13.480	14.029	14.568	15.108	15.647
30	16.188						19.424			
40	21.584						24.819			
50	26.980						30.214			
60	32.375						35.609			
70	37.771	38.310	38.852	39.390	39.925	40.459	41.004	41.574	42.088	42.627
80	43.167						46.399			
90	48.563						51.794			
100	53,959	54.498	55.038	55.575	56.117	56.658	57.198	57.737	58.275	58.816

Conversion of Square Inches into Square Centimetres.

Square in.	0	1	2	3	4	5	6	7	8	9
	Cm ² .									
0	0.0000	6.4515	12.903	19.354	25.806	32.257	38.709	45.160	51.612	58.063
10	64.515	70.967	77.418	83.869	90.321	96.772	103.22	109.67	116.12	122.57
20	129.03	135.48	141.93	148.38	154.83	161.29	167.74	174.19	180.64	187.09
30	193.54	199.99	206.44	212.89	219.34	225.80	231.25	238.70	245.15	251.60
40			270.96							
50			335.47							
60			399.99							
70			464.50							
80			529.02							
90			593.53							
100	645.15	651.60	658.05	664.50	670.95	677.41	683.86	690.31	696.76	703.21

Conversion of Square Centimetres Into Square Inches.

Square cm.	0	1	2	3	4	5	6	7	8	9
	In2.	In?,	In2.							
0	0.0000	0.1550	0.3100	0.4650	0.6200	0.7750	0.9300	1.0850	1.2400	1.3950
10	1.5500	1.7050	1.8600	2.0150	2.1700	2.3250	2.4800	2.6350	2.7900	2.9450
20	3.1000	3.2550	3.4100	3.5650	3.7200	3.8750	4.0300	4.1850	4.3400	4.4950
30	4.6501	4.8051	4.9601	5.1151	5.2701	5.4251	5.5801	5.7351	5.8901	6.0451
40	6.2001	6.3551	6.5101	6.6651	6.8201	6.9751	7.1301	7.2851	7.4401	7.5951
50	7.7501	7.9051	8.0601	8.2151	8.3701	8.5251	8.6801	8.8351	8.9901	9.1451
60	9.3002	9.4552	9.6102	9.7652	9.9202	10.075	10.230	10.385	10.540	10.695
70	10.850	11.040	11.160	11.315	11.470	11.625	11.780	11.935	12.090	12.245
80	12.400	12.555	12.710	12.865	13.020	13.175	13.330	13.485	13.640	13.795
90	13.950	14.105	14.260	14.415	14.570	14.725	14.880	15.035	15.190	15.345
100	15.500	15.655	15.810	15.965	16.120	16.275	16.430	16.585	16.740	16.895

Conversion of Cubic Inches Into Cubic Centimetres.

Cubic in.	0	1	2	3	4	5	6	7	8	9
	Cm ³ .	Cm³.								
0	0.0000	16.383	32.773	49.160	65.546	81.933	98.320	114.71	131.01	147.48
10	163.87	180.26	196.64	213.03	229.41	245.80	262.19	278.58	294.88	311.35
20	327.73	344.12	360.50	376.89	393.27	409.66	426.05	442.44	458.74	475.21
30	491.60	507.99	524.37	540.76	557.14	573.53	569.92	606.31	622.61	639.08
40	655.46	671.85	688.23	704.52	721.00	737.39	753.78	770.17	786.47	802.94
50	819.33	835.72	851.10	868.49	884.87	901.26	917.65	934.04	950.34	966.81
60	983.20	999.59	1016.0	1032.4	1048.7	1065.1	1081.5	1097.9	1114.2	1130.7
70	1147.1	1163.5	1179.9	1196.3	1212.6	1229.0	1245.4	1261.8	1278.1	1294.6
80	1310.9	1327.3	1343.7	1360.1	1376.4	1392.8	1409.2	1425.6	1441.9	1458.4
90	1474.8	1491.2	1507.6	1524.0	1540.3	1556.7	1573.1	1589.5	1605.8	1622.3
100	1638.7	1655.1	1671.5	1687.9	1704.2	1720.6	1737.0	1753.4	1769.7	1786.2

Conversion of Cubic Centimetres into Cubic Inches.

Cubic cm.	0	1	2	3	4	5	6	7	8	9
	In3.	In ³ .								
0	0.0000	0.0610	0.1221	0.1831	0.2441	0.3051	0.3661	0.4272	0.4882	0.5492
10	0.6102	0.6712	0.7323	0.7933	0.8543	0.9153	0.9763	1.0374	1.0984	1.1594
20	1.2205	1.2815	1.3426	1.4036	1.4646	1.5256	1.5866	1.6477	1.7087	1.7697
30		1.8918								
40	2.4410	2.5020	2.5631	2.6241	2.6851	2.7461	2.8071	2.8682	2.9292	2.9902
50	3.0513	3.1123	3.1734	3.2344	3.2954	3.3564	3.4174	3.4785	3.5395	3.6005
60	3.6615	3.7225	3.7836	3.8446	3.9056	3.9666	4.0276	4.0887	4.1497	4.2107
70		4.3328								
80	4.8820	4.9430	5.0041	5.0651	5.1261	5.1871	5.2481	5.3092	5.3702	5.4312
90	5.4923	5.5533	5.6144	5.6754	5.7364	5.7974	5.8584	5.9195	5.9805	6.0415
100	6.1025	6.1635	6.2246	6.2856	6.3466	6.4076	6.4686	6.5297	6.5907	6.6517

Conversion	of	Cubic	Yards	into	Cubic	Metres.
	~ -					

Cubic yds.	0	1	2	3	4	5	6	7	8	9
	Met ³ .	Met3.								
0	0.0000	0.7645	1.5291	2.2936	3.0581	3.8226	4.5872	5.3517	6.1163	6.8808
10				9.9389						
20				17.585						
30				25.230						
40				32.875						
50				40.520						
60				48.166						
70				55.811						
80				63.457						
90				71.102						
100	76.453	77.217	77.982	78.747	79.511	80.276	81.040	81.805	82.569	83.334

Conversion of Cubic Metres into Cubic Yards.

Cubic met.	0	1	2	3	4	5	6	7	8	9
	Yds3.									
0	0.0000	1.3080	2.6160	3.9240	5.2329	6.5399	7.8479	9.1559	10.464	11.772
10		14.388								
20		27.468								
30		40.548								
40		53.627								
50		66.707								
60		79.787								
70		92.867								
80		105.94								
90		119.03								
100	130.80	132.11	133.42	134.72	136.03	137.34	138.65	139.96	141.26	142.57

Conversion of U. S. Gallons into Litres.

Gallons.	0	.1	2	3	4	5	6	7	8	9
	Litres.	Litres,								
0	0.0000	3.7853	7.5706	11.356	15.141	18.946	22.712	26.497	30.282	34.068
10	37.853	41.638	45.423	49.209	52.994	56.799	60.565	64.350	68.135	71.921
20	75.706	79.491	83.276	87.062	90.847	94.652	98.418	102.20	105.99	109.77
30	113.56	117.34	121.13	124.92	128.66	132.50	136.27	140.06	143.84	147.63
40			158.99							
50			197.03							
60			234.69							
70			272.54							
80			310.39							
90			448.25							
100	478.53	482.31	486.10	789.89	493.67	497.47	501.24	505.03	508.81	512.60

Conversion of Litres into U. S. Gallons.

Litres.	0	1	2	3	4	5	6	7	8	9
	Gal.									
0		0.2642								
10		2.9060								
20		5.5478								
30		8.1896								
40	10.567	10.831	11.095	11.360	11.624	11.888	12.152	12,416	12,680	12.945
50	13.209	13.473	13.737	14.002	14.266	14.530	14.794	15.058	15.322	15.587
60	15.851	16.115	16.379	16.644	16.908	17.172	17.436	17.700	17.964	18.229
70	18.492	18.756	19.020	19.284	19.549	19.813	20.077	20.341	20,605	20.870
80	21.134	21.398	21.662	21.926	22.191	22.455	22.719	22.983	23.247	23.512
90		24.040								
100	26.418	26.682	26.946	27.210	27.475	27.739	28.003	28.267	28.531	28.796

Conversion of Yards into Metres.

Yards.	0	1	2	3	4	5	6	7	8	9
	Met.	Met								
0	0.0000	0.9144	1.8288	2.7432	3.6576	4.5719	5.4863	6.4007	7.3151	8.22
10	9.1439	10.058	10.973	11.887	12.801	13.716	14.630	15.544	16.458	17.3
20	18.288	19.202	20.117	21.031	21.945	22.860	23.774	24.689	25.603	26.5
30		28.346								
40		37.490								
50	45.719	46.634	47.548	48.462	49.376	50.291	51.205	52.120	53.034	53.9
60		55.778								
70		64.922								
80		74.066								
90		83.210								
100	91.439	92.353	93.267	94.181	95.095	96.010	96.924	97.839	98.753	99.6

Conversion of Metres into Yards.

Metres.	0	1	2	3	4	5	6	7	8	9
	Yds.									
0	0.0000	1.0936	2.1872	3.2809	4.3745	5.4681	6.5617	7.6553	8.7490	9.8426
10	10.936	12.029	13.122	14.217	15.310	16.404	17.498	18.591	19.685	20.778
20	21.872	22.966	24.059	25.153	26.247	27.340	28.434	29.527	30.621	31.715
30		33.900								
40	43.745	44.839	45.932	47.026	48.120	49.213	50.307	51.400	52.544	53.588
50		55.775								
60		66.711								
70		77.647								
80		88.584								
90		99.520								
100	109.36	110.45	111.55	112.64	113.73	114.83	115.92	117.02	118.11	119.20

Conversion of Square Yards into Square Metres.

Sq. yards.	0	1	2	3	4	5	6	7	8	9
	Met2.	Met ² .	Met2.	Met ² .	Met2.	Met ² .	Met ² .	Met2.	Met2.	Met2.
0			1.6722							
10			10.033							
20			18.394							
30			26.755							
40			35.116							
50			43.477							
60	50.167	51.003	51.839	52.747	53.511	54.348	55.184	56.020	56.856	57.692
70			60.190							
80			68.561							
90			76.922							
100	83.611	84.447	85.283	86.191	86.955	87.792	88.628	89.464	90.300	91.136

Conversion of Square Metres into Square Yards.

Sq. metres.	0	1	2	3	4	5	6	7	8	9
	Yds2.									
0	0.0000	1.1960	2.3920	3.5880	4.7840	5.9800	7.1760	8.3720	9.5681	10.764
10	11.960	13.156	14.352	15.548	16.744	17.940	19.136	20.332	21.528	22.724
20	23.920	25.116	26.312	27.508	28.704	29.900	31.096	32.292	33.488	34.684
30	35.880	37.076	38.272	39.468	40.664	41.860	43.056	44.252	45.448	46.644
40	47.840	49.036	50.232	51.428	52.624	53.820	55.016	56.212	57.408	58.604
50	59.800	60.996	62.192	63.388	63.584	65.780	66.976	68.172	69.368	70.564
60	71.760	72.956	74.152	75.348	76.544	77.740	78.936	80.132	81.328	82.524
70	83.721	84.917	86.113	87.309	88.505	89.701	90.897	92.093	93.289	94.485
80	95.681	96.877	98.073	99.269	100.46	101.66	102.86	104.06	105.25	106.44
90									117.21	
100	119.60	120.80	121.99	123.19	124.38	125.58	126.77	127.97	129.17	130.36

Conversion of Hectares into Acres.

Hectares.	0	1	2_	3	. 4	5	6	7	8	9
	Acres.									
0	0.0000	2.4711	4.9422	7.4133	9.8844	12.355	14.836	17.298	19.769	22.240
10			29.653							
20			54.364							
30			79.075							
40			103.79							
50			128.49							
60			153.30							
70			177.92							
80										219.93
90			227.34							
100	247.11	249.58	252.05	254.52	256.99	259.44	261.94	264.41	266.88	269.35

Conversion of Acres into Hectares.

· Acres.	0	1	2	3	4	5	6	7	8	9
	Hect.									
0									3.2374	
10	4.0468	4.4515	4.8561	5.2608	5.6655	6.0702	6.4748	6.8795	7.2782	7.6888
20	8.0936	8.4983	8.9029	9.3076	9.7123	10.117	10.521	10.926	11.331	11.735
30	12.140	12.545	12.949	13.354	13.759	14.163	14.568	14.973	15.377	15.782
40	16.187	16.592	16.996	17.401	17.806	18.210	18.615	19.020	19.414	19.829
50	20.234	20.639	21.043	21.448	21.853	22.257	22.662	23.067	23.471	23.876
69	24.280	24.685	25.089	25.494	25.899	26.303	26.708	27.113	27.517	27.922
70	28.327	28.732	29.136	29.541	29.946	30.350	30.755	31.160	31.564	31.969
80	32.374	32.779	33.183	33.588	33.993	34.397	34.802	35.207	35.611	36.016
90	36.420	36.825	37.229	37.634	38.039	38.443	38.848	39.253	39.657	40.062
100	40.468	40.873	41.277	41.682	42.087	42.491	42.896	43.301	43.695	44.110

Conversion of Square Miles into Square Kilometres.

Sq. miles.	0	1	2	3	4	5	6	7	8	9
	Kil2.	Kil2.	Kil2.	Kil ² .	Kil2.	Kil2.	Kil2.	Kil ² .	Kil2.	Kil2.
0	0.0000	2.5899	5.1798	7.7697	10.359	12.929	15.539	18.129	20.718	23.309
10	25.899	28.490	31.079	33.669	36.259	38.829	41.439	44.029	46.619	49.209
20	51.798	54.388	56.978	59.568	62.158	64.728	67.338	69.928	72.518	75.108
30	77.697	80.287	82.877	85.467	88.057	90.627	93.238	96.828	98.417	101.01
40						116.52				
50	129.29	131.88	134.47	137.06	139.65	142,22	144.83	147.42	150.01	152.50
60						168.32				
70						194.22				
80						220.11				
90						246.02				
100	258.99	261.58	264.17	266.76	269.35	271.92	274.53	277.12	279.71	282.20

Conversion of Square Kilometres into Square Miles.

Sq. kilom.	0	1	2	3	4	5	6	7	8	9
	Sq. m.	Sq. m	Sq. m.	Sq. m.						
0	0.0000	0.3861	0.7722	1.1583	1.5445	1.9304	2.3166	2.7028	3.0890	3.4749
10	3.8612	4.2471	4.6334	5.0195	5.4057	5.7916	6.1778	6.5640	6.9502	7.3362
20						9.6528				
30						13.513				
40						17.375				
50						21.234				
60						25.096				
70						28.958				
80						32.820				
90						36.679				
100	38.612	38.996	39.384	39.770	40.156	40.542	40.928	41.315	41.701	42.087

Conversion of Cubic Feet into Cubic Decimetres.

Cubic feet.	0	1	2	3	4	5	6	7	8	9
_	Dm ³ .	Dm ³ .	Dm ³ .	Dm ² .	Dm ³ .					
0 .	0.0000	28.316	56.632	84.948	113.26	141.58	169.90	198.21	226.53	254.84
10	283.16	311.47	339.79	268.11	396.42	424.74	453.06	481.37	509.69	538.00
20	566.32	594.64	622.95	651.27	679.58	707.90	736.22	764.53	792.85	821.16
30	849.48	877.80	906.11	934.43	962.74	991.06	1019.4	1047.7	1076.0	1104.3
40									1359.1	
50									1642.3	
60	1698.9	1727.2	1755.5	1783.8	1812.2	1840.5	1868.8	1897.1	1925.4	1953.7
70									2208.6	
80	2265.3	2293.5	2321.9	2350.2	2378.6	2406.9	2435.2	2463.5	2491.8	2520.1
90									2774.9	
100	2831.6	2859.8	2888.2	2916.5	2944.9	2973.2	3001.5	3029.8	3058.1	3086.4

Conversion of Cubic Decimetres into Cubic Feet.

Cubic dm.	0	1	2	3	4	5	6	7	8	9
	Ft ³ .	Ft3.	Ft3.	Ft ³ .	Ft3.	Ft ³ .	Ft ³ .	Ft3.	Ft3.	Ft3.
0	0.0000	0.0353	0.0706	0.1059	0.1413	0.1766	0.2119	0.2472	0.2825	0.3178
10	0.3531	0.3884	0.4237	0.4590	0.4944	0.5297	0.5540	0.6003	0.6356	0.6709
20	0.7063	0.7416	0.7766	0.8122	0.8476	0.8829	0.9182	0.9535	0.9888	1.0241
30	1.0594	1.0947	1.1300	1.1653	1.2007	1.2360	1.2713	1.3066	1.3419	1.3772
40	1.4126	1.4479	1.4832	1.5185	1.5539	1.5892	1.6245	1.6608	1.6951	1.7304
50	1.7658	1.8011	1.8364	1.8717	1.9071	1.9424	1.9777	2.0130	2.0483	2.0836
60	2.1189	2.1542	2.1895	2.2248	2.2602	2.2955	2.3308	2.3661	2.4014	2.4367
70	2.4721	2.5074	2.5427	2.5780	2.6134	2.6487	2.6840	2.7193	2.7546	2.7899
80	2.8252	2.8605	2.8958	2.9311	2.9665	3.0018	3.0371	3.0724	3.1077	3.1430
90	3.1784	3.2137	3.2490	3.2843	3.3197	3.3550	3.3903	3.4256	3.4609	3.4962
100	3.5315	3.5668	3.6021	3.6374	3.6728	3.7081	3.7434	3.7787	3.8140	3.8493

Pounds per Square Foot into Kilogrammes per Square Metre.

Lbs. pr ft ² .	0	1	2	3	4	5	6	7	8	9
	K. m ² .	$\overline{\mathrm{K.m^2.}}$	K. m ² .							
0	0.0000	4.8825	9.7650	14.647	19.530	24.413	29.295	34.177	39.006	43.943
10	48.825	53.707	58.590	63.472	68.355	73.238	78.120	83.002	87.831	92.768
20	97.650	102.53	107.41	112.30	117.18	122.06	126.94	131.83	136.66	141.59
30	146.47	151.35	156.23	161.12	165.90	170.88	175.76	180.65	185.47	190.41
40	195.30	200.13	205.06	209.95	214.83	219.71	224.59	229.48	234.30	239.24
50	244.13	249.01	253.89	258.78	263.66	268.54	273.42	278.31	283.13	288.08
60	292.95	297.83	302.71	307.60	312.48	317.36	322.24	327.13	331.95	336.89
70	341.77	346.65	351.53	356.42	361.20	366.18	371.06	375.95	380.77	385.71
80	390.06	394.94	399.82	404.71	409.59	414.47	419.35	424.24	429.06	434.00
90		444.31								
100	488.25	493.13	498.01	502.90	507.78	512.66	517.54	522.43	527.25	532.19

Kilogrammes per Square Metre into Pounds per Square Foot.

K. per m ² .	0	1	2	3	4	5	6	7	8	9
	Lb. ft2	Lb. ft ²	Lb. ft ²	Lb. ft2	Lb. ft ²	Lb. ft ²	Lb. ft ²	Lb. ft2	Lb. ft2	Lb. ft ²
0	0.0000	0.2048	0.4096	0.6144	0.8192	1.0240	1.2289	1.4337	1.6385	1.8433
10	2.0481	2.2529	2.4577	2.6625	2.8673	3.0721	3.2770	3.4818	3.6866	3.8914
20			4.5058							
30	6.1444	6.3492	6.5540	6.7588	6.9636	7.1684	7.3733	7.5781	7.7829	7.9877
40			8.6021							
50	10.240	10.445	10.649	10.854	11.059	11.264	11.469	11.674	11.878	12.083
60			12.698							
70			14.746							
80	16.385	16.590	16.794	16.999	17.204	17.409	17.614	17.819	18.023	18.228
90			18.842							
100	20.481	20.686	20.890	21.095	21.300	21.505	21.710	21.915	22.119	22.324

Po	unds	ner S	quare	Inch	into A	tmosi	heric	Press	sure.	
Lbs. pr in ² .	0	1	2	3	4	5	6	7	8	9
	At.	At.	At.	At.	At.	At.	At.	At.	At.	At.
0	0.0000	0.0630		0.2041						
10	0.6804	0.7484	0.8165						1.2247	1.2928
10 20	1.3608	1.4288	1.4969	1.5649	1.6330	1.7010	1.7690	1.8371	1.9051	1.9732
30	2.0413	2.1093	2.1774	2.2454	2.3135	2.3814	2.4495			
40 50	$\begin{vmatrix} 2.7217 \\ 3.4021 \end{vmatrix}$	2.7897 3.4701	2.8578 3.5382		2.9939 3.6743	3.0619 3.7423	3.1299 3.8103			
60	4.0825	4.1505				4.4227	4.4907	4.5588		
70	4.7630	4.8310	4.8991	4.9671	5,0352	5.1031	5.1712	5.2393	5.3073	5.3754
80	5.4434				5.7156		5.8516		5.9877	6.0558
90 100	6.1238 6.8042	$\begin{vmatrix} 6.1918 \\ 6.8722 \end{vmatrix}$				6.4640 7.1444			6.6681 7.3485	6.7362 7.4166
A1	mosp	heric	Pressu	ire int	to Por	ınds p	er Sq	uare I	nch.	
Atm. pres.	0	1	2	3	4	5	6	7	8	9
	Lb in2	Lh in2	Lb.in ²	Lb. in2	Lb. ip2	Lb.in2	Lb.in ²	Lb. ip2	Lb. ip2	Lb. in2
0	0.0000			44.090		73.483		102.87	117.57	132.27
10	146.97	161.67	176.36			220.45	235.15	249.84	264.54	279.24
20	293.93		323.32	338.02	352.72	367.41	382.11	396.80	411.50	426.20
30	440.90	455.60 602.57	470.29	484.99	499.69	514.38	529.08	543.77	558.47	573.17
40 50	587.87 734.83	749.53	617.26 764.22	631.96 778.92	646.66 793.62	661.35 808.31	676.05 823.01	690.74 837.70	705.44 852.40	720.14 867.10
60	881.80		911.19	925.89	940.59	955.28	969.98	984.67	999.37	1014.1
70	1028.7	1043.4	1058.1	1072.8			1116.9		1146.3	
80 90	1175.7 1322.7	1190.4 1337.4	1205.1 1352.1	1219.8 1366.8	1234.5 1381.5	$1249.2 \\ 1396.2$	1263.9 1410.9	$1278.6 \\ 1425.6$	1293.3 1439.3	
100	1469.7		1499.1				1557.9		1586.3	
Pounds p	er Squ	iare I	nch in	to Kil	ogran	nmes		uare	Centin	netre.
Pounds p	er Squ	iare Ii	nch in	to Kil	ogran 4	nmes j		uare (Centin	netre.
	0	1	2	3	4	5	per Sq	7	8	9
Lbs. prin2.	0	$\frac{1}{\mathrm{K.cm^2}}$	$\frac{2}{\mathrm{K.cm}^2}$	$\frac{3}{\mathrm{K.cm^2}}$	$\frac{4}{\mathrm{K.cm^2}}$	$\frac{5}{\mathrm{K.cm^2}}$	per Sq 6 K.cm ²	7 K.cm ²	$\frac{8}{\mathrm{K.cm}^2}$	9 K.cm ²
Lbs. pr in ² .	0 K.cm ² 0.0000 0.7031	1 K.cm ² 0.0703 0.7734	Z K.cm ² 0.1406 0.8437	3 K.cm ² 0.2109 0.9140	4 K.cm ² 0.2812 0.9843	5 K.cm ² 0.3515 1.0546	6 K.cm ² 0.4218 1.1249	7 K.cm ² 0.4921 1.1952	8 K.cm ² 0.5625 1.2655	9 K.cm ² 0.6328 1.3358
0 10 20	0 K.cm ² 0.0000 0.7031 1.4062	1 K.cm ² 0.0703 0.7734 1.4765	2 K.cm ² 0.1406 0.8437 1.5468	3 K.cm ² 0.2109 0.9140 1.6171	4 K.cm ² 0.2812 0.9843 1.6874	5 K.cm ² 0.3515 1.0546 1.7577	6 K.cm ² 0.4218 1.1249 1.8280	7 K.cm ² 0.4921 1.1952 1.8983	8 K.cm ² 0.5625 1.2655 1.9686	9 K.cm ² 0.6328 1.3358 2.0389
Dbs. prin2. 0 10 20 30	0 K.cm ² 0.0000 0.7031 1.4062 2.1092	1 K.cm ² 0.0703 0.7734 1.4765 2.1795	2 K.cm ² 0.1406 0.8437 1.5468 2.2498	3 K.cm ² 0.2109 0.9140 1.6171 2.3202	4 K.cm ² 0.2812 0.9843 1.6874 2.3905	5 K.cm ² 0.3515 1.0546 1.7577 2.4608	6 K.cm ² 0.4218 1.1249 1.8280	7 K.cm ² 0.4921 1.1952 1.8983 2.6014	8 K.cm ² 0.5625 1.2655 1.9686 2.6717	9 K.cm ² 0.6328 1.3358 2.0389 2.7420
0 10 20	0 K.cm ² 0.0000 0.7031 1.4062	1 K.cm ² 0.0703 0.7734 1.4765 2.1795	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.0232	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.0935	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045	8 K.cm ² 0.5625 1.2655 1.9686 2.6717 3.3748	9 K.cm² 0.6328 1.3358 2.0389 2.7420 3.4451
0 10 20 30 40 50 60	0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.0232 3.7263 4.4294	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.0935 3.7966 4.4997	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.0075 4.7106	8 K.cm ² 0.5625 1.2655 1.9686 2.6717 3.3748 4.0779 4.7809	9 K.cm ² 0.6328 1.3358 2.0389 2.7420 3.4451 4.1482 4.8512
0 10 20 30 40 50 60 70	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 4.9216	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888 4.9919	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591 5.0622	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.0232 3.7263 4.4294 5.1325	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.0935 3.7966 4.4997 5.2028	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403 5.3434	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.0075 4.7106 5.4137	8 K.cm ² 0.5625 1.2655 1.9686 2.6717 3.3748 4.0779 4.7809 5.4840	9 K.cm ² 0.6328 1.3358 2.0389 2.7420 3.4451 4.1482 4.8512 5.5543
0 10 20 30 40 50 60 70 80	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 4.9216 5.6246	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888 4.9919 5.6949	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591 5.0622 5.7652	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.7263 4.4294 5.1325 5.8356	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.0935 3.7966 4.4997 5.2028 5.9059	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731 5.9762	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403 5.3434 6.0465	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.0075 4.7106 5.4137 6.1168	8 K.cm ² 0.5625 1.2655 1.9686 2.6717 3.3748 4.0779 4.7809 5.4840 6.1871	9 K.cm² 0.6328 1.3358 2.0389 2.7420 3.4451 4.1482 4.8512 5.5543 6.2574
0 10 20 30 40 50 60 70	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 4.2185 4.2185 4.9216 5.6246 6.3277	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888 4.9919 5.6949 6.3980	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591 5.0622	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.7263 3.7263 4.4294 5.1325 5.8356 6.5386	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.0935 3.7966 4.4997 5.2028 5.9059	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403 5.3434 6.0465	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.0075 4.7106 5.4137 6.1168	8 K.cm ² 0.5625 1.2655 1.9686 2.6717 3.3748 4.0779 4.7809 5.4840 6.1871 6.8902	9 K.cm ² 0.6328 1.3358 2.0389 2.7420 3.4451 4.1482 4.8512 5.5543
0 10 20 30 40 50 60 70 80 90	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 4.9216 5.6246 6.3277 7.0308	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888 4.9919 5.6949 6.3980 7.1011	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591 5.0622 5.7652 6.4683 7.1714	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.0232 3.7263 4.4294 5.1325 5.8356 6.5386 7.2417	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.0935 3.7966 4.4997 5.2025 6.6089 7.3120	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731 5.9762 6.6793 7.3823	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403 5.3434 6.0465 6.7496 6.7496	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.0075 4.7106 5.4137 6.1168 6.8199 7.5229	8 K.cm ² 0.5625 1.2655 1.9686 2.6717 3.3748 4.0779 4.7809 5.4840 6.1871 6.8902 7.5933	9 K.cm ² 0.6328 1.3358 2.0389 2.7420 3.4451 4.1482 4.8512 5.5543 6.2574 6.9605 7.6636
0 10 20 30 40 50 60 70 80 90	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 4.9216 5.6246 6.3277 7.0308	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888 4.9919 5.6949 6.3980 7.1011	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591 5.0622 5.7652 6.4683 7.1714	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.0232 3.7263 4.4294 5.1325 5.8356 6.5386 7.2417	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.0935 3.7966 4.4997 5.2025 6.6089 7.3120	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731 5.9762 6.6793 7.3823	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403 5.3434 6.0465 6.7496 6.7496	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.0075 4.7106 5.4137 6.1168 6.8199 7.5229	8 K.cm ² 0.5625 1.2655 1.9686 2.6717 3.3748 4.0779 4.7809 5.4840 6.1871 6.8902 7.5933	9 K.cm ² 0.6328 1.3358 2.0389 2.7420 4.1482 4.851 2 5.5548 6.2574 6.9605 7.6636
0 10 20 30 40 50 60 70 80 90 100	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 5.6246 6.3277 7.0308 mes p	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888 4.9919 5.6949 6.3980 7.1011 er Squ	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 3.6560 4.3591 5.0622 5.7652 6.4683 7.1714	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.7263 4.4294 5.1325 5.8356 6.5386 7.2417 entim	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.0935 3.7966 4.4997 5.2028 5.9059 6.6089 7.3120 etre i	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731 5.9762 6.6793 7.3823 nto Pc	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403 5.3434 6.0465 6.7496 7.4526 punds	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.0075 5.4137 6.1168 6.8199 7.5229 per S	8 K.cm ² 0.5625 1.2655 1.9686 2.6717 3.3748 4.0779 4.7809 5.4840 6.1871 6.8902 7.5933 quare	9 K.cm² 0.6328 1.3358 2.0389 2.7420 3.4451 4.1482 4.8512 5.5543 6.2574 6.9605 7.6636 Inch.
0 10 20 30 40 50 60 70 80 90 100 Kilogram K. per cm².	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 4.9216 5.6246 6.3277 7.0308 mes p 0 Lb.in ² 0.0000	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 4.9919 5.6949 7.1011 er Squ Lb.in ²	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591 5.0622 5.7652 6.4683 7.1714 trare C	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.0232 3.7263 3.7263 5.8356 6.5386 7.2417 entim 3 Lb.in ² 42.670	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.0935 3.7966 4.4997 5.2028 5.9059 6.6089 7.3120 etre i 4 Lb.in ² 56.893	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 3.8669 5.2731 5.9762 6.6793 7.3823 nto Pe	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403 5.3434 6.0465 6.74526 Dunds 6 Lb.in ² 85.339	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.7106 5.4137 6.1168 6.8199 7.5229 per S 7 Lb.in ² 99.562	8 K.cm ² 0.5625 1.2656 1.9686 2.6717 3.3748 4.0779 5.4840 6.1871 6.8902 7.5933 quare 8 Lb.in ²	9 K.cm² 0.6328 1.3358 2.0389 2.7420 3.4451 4.1482 5.5543 6.2574 6.9605 7.6636 Inch. 9 Lb.in² 128.01
0 10 20 30 40 50 60 70 80 90 100 Kilogram K. per cm ² .	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.9216 6.3277 7.0308 mes p 0 Lb.in ² 0.0000 0.142.23	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 4.9819 6.3980 7.1011 er Sqt Lb.in ² 14.223 156.454	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591 5.0622 6.4683 7.1714 tare C Lb.in ² 28.446 170.68	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.0232 3.7263 3.7263 5.8356 6.5386 7.2417 entim 3 Lb.in ² 42.670	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.0935 3.7966 4.4997 5.2028 5.9059 6.6089 7.3120 etre i 4 Lb.in ² 56.893	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 3.8669 5.2731 5.9762 6.6793 7.3823 nto Pe	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403 5.3434 6.0465 6.74526 Dunds 6 Lb.in ² 85.339	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.7106 5.4137 6.1168 6.8199 7.5229 per S 7 Lb.in ² 99.562 241.79	8 K.cm ² 0.5625 1.2656 1.9686 2.6717 3.3748 4.0779 5.4840 6.1871 6.8902 7.5933 quare 8 Lb.in ²	9 K.em² 0.6328 1.3358 2.0389 2.7420 3.4451 4.1482 4.8512 5.5548 6.2574 6.9605 7.6636 Inch. 9 Lb.in² 128.01 128.01 1270.24
0 10 20 30 40 50 60 70 80 90 100 Kilogram K, per cm ² .	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 4.9216 5.6246 6.3277 7.0308 mes p 0 Lb.in ² 0.0000 142.23 284.46	1 K.cm ² 0.0703 1.4765 2.1795 2.8826 3.5857 4.2888 4.9919 5.6949 6.3980 7.1011 er Squ Lb.in ² 14.223 156.456 298.65	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591 5.0622 5.7652 6.4683 7.1714 tare C 2 Lb.in ² 28.446 170.68	3 K.cm² 0.2109 0.9140 1.6171 2.3202 3.0232 3.7263 4.4294 5.1325 5.8356 6.5386 7.2417 entim 3 Lb.in² 42.670 184.90 327.13	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.7966 4.4997 5.2028 6.6089 7.3120 etre i 4 Lb.in ² 56.893 199.12	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 3.8669 5.2731 5.9762 6.6793 7.3823 nto Pe	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403 5.3434 6.0465 6.7496 7.4526 Dunds 6 Lb.in ² 85.339 227.57 369.80	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.7106 5.4137 6.1168 6.8199 7.5229 per S Lb.in ² 99.562 241.79 384.03	8 K.cm ² 0.5625 1.2655 1.9686 2.6717 3.3748 4.0779 4.7809 5.4840 6.1871 6.8902 7.5933 quare 8 Lb.in ² 113.78 256.02 398.25	9 K.cm² 0.6328 2.0389 2.7420 3.4451 4.1482 4.8512 5.5543 6.2574 6.9605 7.6636 Inch. 9 Lb.in² 128.01 270.24
Clbs. pr in ² . 0 10 20 30 40 50 60 70 80 90 100 Kilogram K. per cm ² .	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 4.9216 5.6246 6.3277 7.0308 mes p 0 Lb.in ² 0.0000 142.23 284.46 426.70	1 K.cm ² 0.0703 1.4765 2.1795 2.8826 3.5857 4.2889 6.3980 7.1011 er Squ Lb.in ² 14.223 156.45 298.69	2 K.cm ² 0.1406 0.8437 1.5468 2.2458 2.9529 3.6560 4.3591 5.0622 5.7652 6.4683 7.1714 tare C 2 Lb.in ² 28.446 170.68 312.91 455.14	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.7263 4.4294 5.1325 5.8356 6.5386 7.2417 entim 42.670 184.90 327.13 469.36	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.7966 4.4997 5.2028 5.9059 6.6089 7.3120 etre i 4 Lb.in ² 56.893 199.12 341.36	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731 5.9762 6.6793 7.3823 nto Po 5 Lb.in ² 71.116 213.35 355.58 497.81	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 4.6403 5.3434 6.0465 6.7496 7.4526 0unds 6 Lb.in ² 85.339 227.57 369.80 512.03	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.0075 4.7106 5.4137 6.1168 6.8199 7.5229 per S 7 Lb.in ² 99.562 241.79 384.03 384.03 526.26	8 K.cm ² 0.5625 1.2655 1.9686 2.6717 3.3748 4.0779 4.7809 5.4840 6.1871 6.8902 7.5933 quare 8 Lb.in ² 113.78 256.02 398.25 540.48	9 K.cm² 0.6328 2.0389 2.7420 3.4451 4.1482 4.8512 5.5543 6.2574 6.9605 7.6636 Inch. 9 Lb.in² 128.01 270.24 412.47
0 10 20 30 40 50 60 70 80 90 100 Kilogram K, per cm².	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 5.6246 6.3277 7.0308 mes p 0 Lb.in ² 0.0000 142.23 284.46 426.70 568.93	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888 6.3980 7.1011 er Sqt 1 Lb.in ² 14.223 156.45 298.69 440.92 583.15 725.38	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 3.6560 4.3591 5.0622 5.7652 6.4683 7.1714 2 Lb.in ² 28.446 170.68 312.91 455.14 597.37 739.61	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.7263 4.4294 5.1325 5.8356 6.5386 6.5386 7.2417 entim 3 Lb.in ² 42.670 184.90 327.13 469.36 611.60 753.83	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.7966 4.4997 5.2028 5.9059 6.6089 7.3120 etre i 4 Lb.in ² 56.893 199.12 341.36 483.59 625.82 768.05	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731 5.9762 6.6793 7.3823 nto Pc 5 Lb.in ² 71.116 213.35 355.58 497.81 640.04 782.28	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 4.6403 5.3434 6.0465 6.7496 7.4526 0unds 6 Lb.in ² 85.339 227.57 369.80 512.03 654.27 796.50	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 3.3045 4.7106 5.4137 6.1168 6.8199 per S 7 Lb.in ² 99.562 241.79 384.03 526.26 668.49 810.72	8 K.cm ² 0.5625 1.9686 2.6717 3.3748 4.0779 4.7809 4.7809 5.4840 6.1871 6.8902 7.5933 quare 8 Lb.in ² 113.78 256.02 398.25 540.48 682.71 824.94	9 K.cm² 0.6328 2.0389 2.7420 3.4451 4.1482 4.8512 5.5543 6.2674 6.9605 Junch. 9 Lb.in² 128.01 270.24 412.47 554.70 696.94 839.17
Clbs. pr in ² . 0 10 20 30 40 50 60 70 80 90 100 Kilogram K. per cm ² .	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 4.9216 5.6246 6.3277 7.0308 mes p 0 Lb.in ² 0.0000 142.23 284.46 426.70 568.93 711.16 853.339	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888 4.9919 5.6949 7.1011 er Squ Lb.in ² 14.223 156.45 298.69 440.92 583.15 725.38 867.61	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591 5.0622 5.7652 6.4683 7.1714 tare C 2 Lb.in ² 28.446 170.68 312.91 455.14 597.37 739.61 881.84	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.0232 3.7263 4.4294 5.1325 5.8356 6.5386 7.2417 entim 3 Lb.in ² 42.670 42.670 611.60 753.83 896.06	4 K.cm² 0.2812 0.9843 1.6874 2.3905 3.0935 3.7966 4.4997 5.2028 5.9059 7.3120 etre i 4 Lb.in² 56.893 199.12 341.36 483.59 625.82 768.05 910.28	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731 5.9762 6.6793 7.3823 nto Pc Lb.in ² 71.116 213.35 355.58 497.81 640.04 782.25	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 4.6403 5.3434 6.0465 6.7496 7.4526 0unds 6 Lb.in ² 85.339 227.57 369.80 512.03 654.27 796.50 938.73	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 4.7106 5.4137 6.1168 6.8199 7.5229 per S Lb.in ² 99.562 241.79 384.03 526.26 668.49 810.72 952.95	8 K.cm² 0.5625 1.9686 2.6717 3.3748 4.0779 4.7809 5.4840 6.1871 6.8902 7.5933 quare 8 Lb.in² 113.78 256.02 398.25 540.48 682.71 824.94 967.18	9 K.cm² 1.3358 2.0389 2.7420 3.4451 4.1482 4.8512 5.5548 6.2574 6.9605 7.6636 Inch. 9 Lb.in² 128.01 1270.24 412.47 554.70 696.94 839.17 981.40
0 10 20 30 40 50 60 70 80 90 100 Eilogram K. per cm².	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.2185 5.6246 6.3277 7.0308 mes p 0.0000 142.23 284.46 426.70 568.93 711.16 853.39 995.62	1 K.cm ² 0.0703 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888 6.3980 7.1011 er Squ Lb.in ² 14.223 156.45 298.69 440.92 583.92 5.38 867.61 1009.8	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.2529 3.6560 4.3591 5.0622 5.7652 6.4683 7.1714 Lb.in ² 28.446 170.68 312.91 455.14 597.37 739.61 881.84 1024.1	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.7263 4.4294 5.1325 5.8356 6.5386 7.2417 entim 3 Lb.in ² 42.670 184.90 327.13 469.36 611.60 753.83 896.06 1038.3	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.7966 4.4997 5.2028 5.9059 6.6089 7.3120 etre i 4 Lb.in ² 56.893 199.12 341.36 483.59 625.82 768.05 910.28	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731 5.9762 6.6793 7.3823 nto Po 5 Lb.in ² 71.116 213.35 355.58 497.81 640.04 782.28 924.51 1066.7	6 K.cm² 0.4218 1.1249 1.8280 2.5311 3.2342 3.9372 4.6403 5.3434 6.0465 6.7456 5.3494 6.0465 6.7456 5.349 227.57 369.80 512.03 654.27 796.50 938.73 1081.0	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 4.7106 5.4137 6.1168 6.8199 7.5229 per S 7 Lb.in ² 99.562 241.79 384.03 526.26 668.49 810.72 952.95	8 K.cm ² 0.5625 1.9686 2.6717 4.7809 5.4840 6.1871 6.8902 7.5933 Quare 8 Lb.in ² 113.78 256.02 398.25 540.48 682.494 967.18 1109.4	9 K.cm² 0.6328 1.3358 2.0389 2.7420 3.4451 4.1482 4.8512 5.5548 6.2657 6.69605 7.6636 Inch. 9 Lb.in² 128.01 270.24 412.47 554.70 689.17 981.40 1123.6
Clbs. pr in ² . 0 10 20 30 40 50 60 70 80 90 100 Kilogram K. per cm ² .	0 K.cm ² 0.0000 0.7031 1.4062 2.1092 2.8123 3.5154 4.9216 5.6246 6.3277 7.0308 mes p 0 Lb.in ² 0.0000 142.23 284.46 426.70 568.93 711.16 853.39 995.62 1137.8	1 K.cm ² 0.0708 0.7734 1.4765 2.1795 2.8826 3.5857 4.2888 4.9919 5.6949 7.1011 er Sqt Lb.in ² 14.223 156.45 298.69 440.92 583.15 725.38 67.61 1009.8 1152.1	2 K.cm ² 0.1406 0.8437 1.5468 2.2498 2.9529 3.6560 4.3591 5.0622 5.7652 6.4683 7.1714 tare C 2 Lb.in ² 28.446 170.68 312.91 455.14 597.37 739.61 881.84	3 K.cm ² 0.2109 0.9140 1.6171 2.3202 3.0232 3.7263 4.4294 5.1325 5.8356 6.5386 7.2417 entim 3 Lb.in ² 42.670 184.90 327.13 469.36 611.60 753.83 896.06 1038.3 1180.5	4 K.cm ² 0.2812 0.9843 1.6874 2.3905 3.7966 4.4997 5.2028 5.9059 6.6089 7.3120 etre i 4 Lb.in ² 56.893 199.12 341.36 483.59 625.82 768.05 910.28 1052.5 1194.7	5 K.cm ² 0.3515 1.0546 1.7577 2.4608 3.1639 3.8669 4.5700 5.2731 5.9762 5.9762 5.1010 7.3823 nto Po 213.35 355.58 4497.81 640.04 782.28 824.51 1066.7 1209.0	6 K.cm ² 0.4218 1.1249 1.8280 2.5311 3.2342 4.6403 5.3434 6.0465 6.74526 0unds 6 Lb.in ² 85.339 227.57 369.80 512.03 654.27 796.50 938.73 1081.0 1223.2	7 K.cm ² 0.4921 1.1952 1.8983 2.6014 4.7106 5.4137 6.1168 6.8199 7.5229 per S 7 Lb.in ² 99.562 241.79 384.03 526.26 668.49 810.72 952.95 1095.2	8 K.cm² 0.5625 1.9686 2.6717 3.3748 4.0779 4.7809 5.4840 6.1871 6.8902 7.5933 quare 8 Lb.in² 113.78 256.02 398.25 540.48 682.71 824.94 967.18	9 K.cm² 1.3358 2.0389 2.7420 3.4451 4.1482 4.8512 5.5548 6.2657 7.6636 Inch. 9 Lb.in² 128.01 129.024 412.47 554.70 696.94 839.17 981.40 1123.6 1123.6 1123.6 1123.6 1126.9 1408.1

Conversion of	f	English	Pounds	into	Kilog	rammes.
---------------	---	---------	--------	------	-------	---------

Eng. lbs.	0	1	2	3	4	5	6	7	8	9
	Kilo.	Kilo.	Kilo.	Kilo.	Kilo.	Kilo.	Kilo.	Kilo.	Kilo.	Kilo.
0	0.000	0.453	0.907	1.361	1.814	2.268	2.722	3.175	3.629	4.082
10	4.536	4.989	5.443	5.897	6.350	6.804	7.258	7.711	8.165	8.618
20	9.072	9.525	9.979	10.43	10.89	11.34	11.79	12.25	12.70	13.15
30	13.61	14.06	14.52	14.97	15 42	15.88	16.33	16.78	17.24	17.69
40	18.14	18.59	19.05	19.50	19.95	20.41	20.86	21.31	21.77	22.22
50	22.68	23.13	23.59	24.04	24.49	24.95	25.40	25.85	26.31	26.76
60	27.22	27.67	28.13	28.58	29.03	29.49	29.94	30.39	30.85	31.30
70	31.75	32.20	32.66	33.11	33.56	34.02	34.47	34.92	35.38	35.83
80	36.29	36.74	37.20	37.65	38.10	38.56	39.01	39.46	39.92	40.37
90	40.82	41.27	41.73	42.18	42.63	43.09	43.54	43.99	44.45	44.90
100	45.36	45.81	46.27	46.72	47.17	47.63	48.08	48.53	48.99	49.44
	Onve	reion	of Kile	oream	mac I	nto E	orlich	Doun	de	

Conversion of Kilogrammes into English Pounds.

Fr. kilo.	0	1	2	3	4	5	6	7	8	9
	Lbs.									
0	0.000	2.205	4.410	6.615	8.820	11.02	13.23	15.43	17.64	19.84
10	22.05	24.25	26.46	28.67	30.87	33.07	35.28	37.48	39.69	41.89
20	44.10	46.30	48.51	50.72	52.92	55.12	57.33	59.53	61.74	63.94
30	66.15	68.35	70.56	72.77	74.97	77.17	79.38	81.58	83.79	85.99
40	88.20	90.40	92.61	94.82	97.02	99.22	101.4	103.6	105.8	108.0
50	110.2	112.5	114.6	116.8	119.0	121.2	123.4	125.6	127.8	130.0
60	132.3	134.5	136.7	138.9	141.1	143.3	145.5	147.7	149.9	152.1
70	154.3	156.5	158.7	160.9	163.1	165.3	167.5	169.7	171.9	174.1
80	176.4	178.6	180.8	183.0	185.2	187.4	189.6	191.8	194.0	196.2
90	198.4	200.6	202.8	205.0	207.2	209.4	211.6	213.8	216.0	218.2
100	220.5	222.7	224.9	227.1	229.3	231.5	233.7	235.9	238.1	240.3

Conversion of English Tons into Metric Tons.

Eng. tons.	0	1	2	3	4	5	6	7	8	9
	M. ton									
0	0.000	1.016	2.032	3.048	4.064	5.080	6.096	7.112	8.128	9.144
10	10.16	11.18	12.19	13.21	14.12	15.24	16.26	17.27	18.29	19.30
20	20.32	21.34	22.35	23.37	24.38	25.40	26.42	27.43	28.45	29.46
30	30.48	31.50	32.51	33.53	34.54	35.56	36.58	37.59	38.61	39.62
40	40.64	41.66	42.67	43.69	44.70	45.74	46.74	47.75	48.77	49.78
50	50.80	51.82	52.83	53.85	54.86	55.88	56.90	57.90	58.93	59.94
60	60.96	61.97	62.99	64.01	65.02	66.04	67.06	68.07	69.09	70.10
70	71.12	72.14	73.15	74.17	75.18	76.20	77.22	78.23	79.25	80.26
80	81.28	82.29	83.31	84.33	85.34	86.36	87.38	88.39	89.41	90.42
90	91.44	92.46	93.47	94.49	95.50	96.52	97.54	98.55	99.57	100.6
100	101.6	102.6	103.6	104.6	105.7	106.7	107.7	108.7	109.7	110.7

Conversion of Metric Tons into English Tons.

Fr. m. ton.	0	1	2	3	4	5	6	7	8	9
	E. ton									
0	0.000	0.984	1.969	2.953	3.937	4.921	5.906	6.890	7.874	8.858
10	9.843	10.83	11.81	12.79	13.78	14.76	15.75	16.73	17.72	18.70
20	19.69	20.67	21.66	22.64	23.63	24.61	25.60	26.58	27.56	28.55
30	29.53	30.51	31.50	32.48	33.47	34.45	35.44	36.42	37.40	38.39
40	39.37	40.35	41.34	42.32	43.31	44.29	45.28	46.26	47.24	48.23
50	49.21	50.19	51.18	52.16	53.15	54.13	55.12	56.10	57.08	58.07
60	59.06	60.04	61.03	62.01	63.00	63.98	64.97	65.95	66.93	67.92
70	68.90	69.88	70.87	71.85	72.84	73.82	74.81	75.79	76.77	77.76
80	78.74	79.72	80.71	81.69	82.68	83.66	84.65	85.63	86.61	87.60
90	88.58	89.56	90.55	91.53	92.52	93.50	94.49	95.47	96.45	97.44
100	98.43	99.41	100.4	101.4	102.4	103.3	104.3	105.3	106.3	107.3

Conversion	on of	Englis	h Ou	nces A	voird	upois	into I	renct	Gran	nmes.
Eng. ozs.	0	1	2	3	4	5	6	7	8	9
	Grams	Grams	Grams	Grams	Grams	Grams	Grams	Grams	Grams	Grams
0	0.0000		56.697	85.046	113.39	141.74	170.09		226.79	255.14
10 20	283.48	311.83 595.32	340.18	368.52 652.01 935.50	396.87	425.22 708.71	453.57 737.06	481.92	510.27 793.76	538.62
30	566.97 850.46	878.81	907.16	935.50	680.36 963.85	992.20	1020.5	765.41 1048.9	1077.2	822.11 1105.6
40	1133.9	1162.2	1190.6	1218.9	1247.3	1275.6	1304.0	1332.3	1360.7	1389.0
50	1417.4		1474.1	1502.4	1530.8	1559.1	1587.5	1615.8	1644.2	1672.5
60 70	1700.9 1984.4	1729.2 2012.7	1756.6 2041.1	1785.9 2079.4	1814.3 2097.8	1842.9 2126.1	1871.0 2154.5	1899.3 2182.8	1927.7 2211.2	1956.0 2239.5
80	2267.9	2296.2	2324.6	2352.9	2381.3	2409.6	2438.0	2466.3	$2211.2 \\ 2494.7$	2523.0
90 100	2551.4 2834.8		2608:1 2891.5	2636.4 2919.8	2664.8 2948.2	2693.1 2976.5	2721.5 3004.9	2739.8	2778.2	2806.5 3089.9
Conversion	on of l	Frenci	n Gran	nmes	into l	Englis	h Oun	ices A	voird	upois.
Fr. grams.	0	1	2	3	4	5	6	7	8	9
	Ozs.	Ozs.	Ozs.	Ozs.	Ozs.	Ozs.	Ozs.	Ozs.	Ozs.	Ozs.
0	0.0000					0.1768				
10	0.3527	0.3880	0.4232			0.5295	0.5643		0.6349	0.6702
20	0.7055	0.7408	0.7760	0.8113	0.8466	0.8823	0.9171	0.9524	0.9877	1.0230
30 40	1.0582 1.4110	1.0935	1.1287	1.1640	1.1993	$1.2350 \\ 1.5878$	1.2698	1.3051	1.3404	1.3757
50	1.7687	1.4463 1.8040	1.4815 1.8392	1.5168 1.8745	1.5521 1.9098	1.9455	1.6226 1.9803	1.6579 2.0156	1.6932 2.0509	$\begin{bmatrix} 1.7285 \\ 2.0862 \end{bmatrix}$
60	2.1165	2.1518	2.1870	2.2223	2.2576	2.2933	2.3281	2.3634	2.3987	2.4340
70	2.4692	2.5045	2.5397	2.5750	2.6103	2.6460	2.6808	2.7161	2.7514	2.7867
80 90	2.8220 3.1747	2.8573 3.2100	2.8925 3.2452	2.9278 3.2805	2.9631 3.3158	$2.9988 \\ 3.3515$	3.0336 3.3863	$3.0689 \\ 3.4216$	$3.1042 \\ 3.4569$	3.1395 3.4922
100		3.5628				3.7043			3.8097	
Conv	ersion	of Er	ıglish	Grain	s Tro	y into	Fren	ch Gr	amme	s.
Conv Eng.grains	ersion 0	of Er	nglish 2	Grain 3	s Tro	y into	Fren 6	ch Gr	amme 8	s. 9
	0	1	2	3	4		6	7	8	9
Eng. grains	0 Grams 0.0000	1 Grams 0.0648	2 Grams 0.1296	3 Grams 0.1944	4 Grams 0.2592	5 Grams 0.3240	6 Grams 0.3888	7 Grams 0.4535	8 Grams 0.5183	9 Grams 0.5831
Eng. grains 0 10	Grams 0.0000 0.6479	1 Grams 0.0648 0.7127	Grams 0.1296 0.7775	Grams 0.1944 0.8423	Grams 0.2592 0.9071	5 Grams 0.3240 0.9719	6 Grams 0.3888 1.0367	7 Grams 0.4535 1.1014	8 Grams 0.5183 1.1662	9 Grams 0.5831 1.2310
0 10 20	Grams 0.0000 0.6479 1.2959	Grams 0.0648 0.7127 1.3607	Grams 0.1296 0.7775 1.4255	Grams 0.1944 0.8423 1.4903	Grams 0.2592 0.9071 1.5551	5 Grams 0.3240 0.9719 1.6199	6 Grams 0.3888 1.0367 1.6847	7 Grams 0.4535 1.1014 1.7494	8 Grams 0.5183 1.1662 1.8142	9 Grams 0.5831 1.2310 1.8890
0 10 20 30 40	Grams 0.0000 0.6479 1.2959 1.9438 2.5918	Grams 0.0648 0.7127 1.3607	2 Grams 0.1296 0.7775 1.4255 2.0734 2.7214	Grams 0.1944 0.8423 1.4903 2.1382 2.7862	4 Grams 0.2592 0.9071 1.5551 2.2030 2.8510	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158	6 Grams 0.3888 1.0367 1.6847 2.3326 2.9806	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101	9 Grams 0.5831 1.2310
0 10 20 30 40 50	Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046	2 Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694	Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342	Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158	6 Grams 0.3888 1.0367 1.6847 2.3326 2.9806 3.6286	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 3.8229
0 10 20 30 40 50 60	Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.8877	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 3.9525	Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694 4.0173	Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821	Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158 3.5638 4.2117	Grams 0.3888 1.0367 1.6847 2.3326 2.9806 3.6286 4.2765	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 3.8229 4.4708
0 10 20 30 40 50	Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046	2 Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694	Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342	Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158	6 Grams 0.3888 1.0367 1.6847 2.3326 2.9806 3.6286	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 3.8229
0 10 20 30 40 50 60 70 80 90	Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.2398 3.8877 4.5357 5.1830 5.8316	1 Grams 0.0648 0.7127 1.3607 2.0086 3.3046 3.39525 4.6005 5.2484 5.8964	2 Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694 4.0173 4.6653 5.3132 5.9612	Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 4.7301 5.3780 6.0260	Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 4.7949 5.4428 6.0908	5 Grams 0.3240 0.9719 1.6199 2.2678 3.5638 4.2117 4.8597 5.5076 6.1556	6 Grams 0.3888 1.0367 1.6847 2.3326 3.6286 4.2765 4.9245 5.5724 6.2204	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 4.9892 5.6371 6.2851	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 3.8229 5.1188 5.7667 6.4147
0 10 20 30 40 50 60 70 80 90 100	Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.8877 4.5357 5.1830 5.8316 6.4795	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 3.9525 4.6005 5.2484 5.8964 6.5443	Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694 4.0173 4.6653 5.3132 5.9612 6.6091	Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 4.7301 5.3780 6.0260 6.6739	Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 4.7949 5.4428 6.0908 6.7387	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158 3.5638 4.2117 4.8597 5.5076 6.1556 6.8035	6 Grams 0.3888 1.0367 1.6847 2.3326 2.9806 3.6286 4.2765 4.9245 5.5724 6.2204 6.8683	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 4.9892 5.6371 6.2851 6.9330	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 6.9978	9 Grams 0.5831 1.2310 2.5269 3.1749 3.8229 4.4708 5.1188 5.766.4147 7.0626
0 10 20 30 40 50 60 70 80 90 100	0 Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.2877 4.5357 5.1830 5.8316 6.4795 ersion	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 4.6005 5.2484 5.8964 6.5443 of Fr	2 Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694 4.0173 4.6653 5.3132 5.9612 6.6091	3 Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 4.7301 5.3780 6.0260 6.6739	Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 4.7949 5.4428 6.0908 6.7387	5 Grams 0.3240 0.9719 1.6199 2.2678 3.5638 4.2117 4.8597 5.5076 6.1556 6.8035 ato En	6 Grams 0.3888 1.0367 1.6847 2.3326 3.6286 4.2765 4.9245 5.5724 6.2204 6.8683 glish	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 5.6371 6.2851 6.9330 Grain	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 6.9978 S Troy	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 3.8229 4.4708 5.1188 5.7667 6.4147 7.0626
0 10 20 30 40 50 60 70 80 90 100	0 Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.8877 5.1830 5.8316 6.4795 ersion	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 3.9525 4.6005 5.2484 5.8964 6.5443 of Fr	2 Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694 4.0173 5.3132 5.9612 6.6091	3 Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 4.7301 5.3780 6.0260 6.6739 Grams	Grams 0.2592 0.9071 1.5551 1.5551 2.2030 2.8510 3.4990 4.1469 5.4428 6.0908 6.7387 mes ir	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158 3.5638 4.2117 5.5076 6.1556 6.8035 ato En	6 Grams 0.3888 1.0367 1.6847 2.3326 2.9806 3.6286 4.2765 5.5724 6.2204 6.8683 glish	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 4.9892 5.6371 6.2851 6.9330 Grain 7	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 6.9978 8	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 4.4708 5.1188 5.7667 6.4147 7.0626
0 10 20 30 40 50 60 70 80 90 100 Conv	0 Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.8877 5.1830 5.8316 6.4795 ersion 0 Grs.	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 3.9525 5.2484 5.8964 6.5443 of Fr 1 Grs.	2 Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694 4.0173 5.3132 5.9612 6.6091 ench	3 Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 4.7301 5.3780 6.0260 6.6739 Grams	Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 5.4428 6.0908 6.7387 mes ir 4 Grs.	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158 3.5638 4.2117 5.5076 6.1556 6.8035 ato En	6 Grams 0.3888 1.0367 1.6847 2.3326 2.9806 3.6286 4.2765 5.5724 6.2204 6.8683 glish 6 Grs.	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 5.6371 6.2851 6.9330 Grain 7 Grs.	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 6.9978 8 Troy	9 Grams 0.5831 1.2310 1.8890 3.1749 3.8229 4.4708 5.1188 5.7667 6.4147 7.0626
0 10 20 30 40 50 60 70 80 90 100 Conv Fr. grams.	Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.2398 3.8877 4.5357 5.1830 5.8316 6.4795 ersion Grs. 0.00000 154.33	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 3.9525 4.6005 5.2484 5.8964 6.5443 of Fr 1 Grs. 15.433 169.76	Grams 0.1296 0.7775 1.4255 2.0734 2.7214 4.0173 4.6653 5.3132 5.9612 6.6091 ench 2 Grs. 30.866 185.19	3 Grams 0.1944 0.8423 1.4903 2.1382 2.7862 4.0821 4.7301 5.3780 6.0260 6.6739 Grams 46.299 200.63	Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 4.7949 5.4428 6.0908 6.7387 mes ir 4 Grs. 61.732 216.06	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158 3.5638 4.2117 4.8597 5.5076 6.1556 6.8035 hto En 5 Grs. 77.165 231,49	Grams 0.3888 1.0367 1.6847 2.3326 2.9806 4.2765 4.9246 6.2204 6.8683 glish Grs. 92.599 246.93	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 4.9892 5.6371 6.2851 6.9330 Grain 7 Grs. 108.03	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 6.9978 8 Grs. 123.46	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 3.8229 4.4708 5.1188 5.7667 6.4147 7.0626 9 Grs. 138.90 293.23
0 10 20 30 40 50 60 70 80 90 100 Conv Fr. grams.	0 Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.8877 4.5357 5.1830 5.8316 6.4795 ersion 0 Grs. 0.0000 154.33 308.66	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 3.9525 4.6005 5.2484 5.8964 6.5443 of Fr 1 Grs. 15.433 169.76 324.09	2 Grams 0.1296 0.7778 1.4255 2.0734 2.7214 3.3694 4.0173 4.6653 5.3132 5.9612 6.6091 ench 2 Grs. 30.866 185.19 339.59	3 Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 4.7301 5.3780 6.0260 6.6739 Grams 46.299 200.63 354.96	Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 4.7949 5.4428 6.0908 6.7387 mes ir 4 Grs. 61.732 216.06	5 Grams 0.3240 0.9719 2.2678 2.9158 4.2117 4.8597 5.5076 6.1556 6.8035 to En 5 Grs. 77.165 231.49 385.82	6 Grams 0.3888 1.0367 2.3326 2.9806 4.2765 4.9245 5.5724 6.2204 6.8683 glish 6 Grs. 92.599 246.93 401.26	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 4.9892 5.6371 6.2851 6.9330 Grain 7 Grs. 108.03 262.36 416.69	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 6.9978 8 Grs. 123.46 277.79 432.12	9 Grams 0.5831 1.2310 2.5269 3.1749 4.4708 5.1188 5.1666 6.4147 7.0626 7 Grs. 138.90 293.23 447.56
0 10 20 30 40 50 60 70 80 90 100 Conv Fr. grams.	0 Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.8877 5.1830 5.8316 6.4795 ersion 0 Grs. 0.0000 154.33 308.66 462.99	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 3.9525 4.6005 5.2484 5.8964 6.5443 of Fr 1 Grs. 15.433 169.76 324.09 478.42	2 Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694 4.0173 4.6653 5.3132 5.9612 6.6091 ench 2 Grs. 30.866 185.19 339.52 493.85	3 Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 4.7301 5.3780 6.0260 6.6739 Grami 3 46.299 200.63 354.96 509.29	4 Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 4.7949 5.4428 6.0908 6.7387 mes ir 4 Grs. 61.732 216.06 3524.72	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158 3.5638 4.2117 4.8597 5.5076 6.1556 6.8035 1to En 5 Grs. 77.165 231.49 385.82 540.15	Grams 0.3888 1.0367 1.6847 2.3326 2.9806 3.6286 4.2765 4.9245 5.5724 6.2204 6.8683 glish 6 Grs. 92.599 246.93 401.26 5555.59	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 4.9892 5.6371 6.2851 6.9330 Grain 7 Grs. 108.03 262.36 416.69 571.02	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 6.9978 Troy 8 Grs. 123.46 277.79 432.12 586.45	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 3.8229 4.4708 5.1188 5.7667 6.4147 7.0626 9 Grs. 138.90 293.23 447.56 601.89
0 10 20 30 40 50 Conv Fr. grams.	0 Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.8877 4.5357 5.1830 5.8316 6.4795 ersion 0 Grs. 0.0000 154.33 308.66	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 3.9525 4.6005 5.2484 5.8964 6.5443 of Fr 1 Grs. 15.433 169.76 324.09	2 Grams 0.1296 0.7778 1.4255 2.0734 2.7214 3.3694 4.0173 4.6653 5.3132 5.9612 6.6091 ench 2 Grs. 30.866 185.19 339.59	3 Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 4.7301 5.3780 6.0260 6.6739 Grams 46.299 200.63 354.96	4 Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 4.7949 5.4428 6.0908 6.7387 d Grs. 61.732 216.06 370.39 524.72 679.38	5 Grams 0.3240 0.9719 2.2678 2.9158 4.2117 4.8597 5.5076 6.1556 6.8035 to En 5 Grs. 77.165 231.49 385.82	6 Grams 0.3888 1.0367 2.3326 2.9806 4.2765 4.9245 5.5724 6.2204 6.8683 glish 6 Grs. 92.599 246.93 401.26	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 4.9892 5.6371 6.2851 6.9330 Grain 7 Grs. 108.03 262.36 416.69	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 6.9978 8 Grs. 123.46 277.79 432.12	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 3.8229 4.4708 5.1188 5.1667 6.4147 7.0626 9 Grs. 138.90 293.23 447.56 647.56 6756.22
0 10 20 30 40 50 60 70 80 90 100 Conv Fr. grams.	0 Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2838 3.8877 4.5357 5.1830 6.4795 Grs. 0.0000 154.33 308.66 462.99 617.65 771.65 925.99	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 3.39525 4.6005 5.2484 6.5443 of Fr 1 Grs. 15.433 169.76 324.09 478.42 632.75 787.08	2 Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694 4.0173 4.6653 5.3132 5.9612 6.6091 ench 2 Grs. 30.866 185.19 339.52 493.86 648.18 802.52 956.85	3 Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 4.7301 5.3780 6.0260 6.6739 Grami 3 46.299 200.63 354.96 509.29 663.95 817.95 972.29	4 Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 4.7949 5.4428 6.0908 6.7387 mes ir 4 Grs. 61.732 216.06 370.39 524.72 679.38 833.38 893.38	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158 3.5638 4.2117 4.8597 5.5076 6.1556 6.8035 hto En 5 Grs. 77.165 231.49 385.82 540.15 694.81 848.82 1003.1	Grams 0.3888 1.0367 1.6847 2.3326 2.9806 2.9806 3.6286 4.2765 4.9245 5.5724 6.8683 glish Grs. 92.599 246.93 401.26 555.59 709.92 864.25 1018.6	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 4.9892 5.6371 6.2851 6.9330 Grain 7 Grs. 108.03 262.36 416.69 571.02 725.35 879.68	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 6.9978 Troy 8 Grs. 123.46 277.79 432.12 586.45 740.78 895.11 1049.4	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 3.8229 4.4708 5.1188 5.7667 6.4147 7.0626 7 Grs. 138.90 293.23 447.56 601.89 756.22 910.55
0 10 20 30 40 50 60 70 80 90 100 Conv	0 Grams 0.0000 0.6479 1.2959 1.9438 3.2398 3.8877 5.1830 5.8316 6.4795 0 Grs. 0.0000 154.33 308.66 462.99 617.65 771.65 925.99 1080.3	1 Grams 0.0648 0.7127 1.3607 2.0086 3.3046 3.9525 5.2484 5.8964 6.5443 of Fr 1 Grs. 15.433 169.76 324.09 478.42 632.75 787.08 941.42 1095.7	2 Grams 0.1296 0.7775 1.4255 2.0734 4.0173 4.0173 5.3132 5.9612 6.6091 ench 2 Grs. 30.866 48.18 802.52 956.83 1111.5	3 Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 5.3780 6.0260 6.6739 Grams 46.299 200.63 354.96 509.29 663.95 817.95 972.29	4 Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 4.7949 5.4428 6.0908 6.7387 Grs. 61.732 216.06 370.39 524.72 679.38 833.38 987.72	5 Grams 0.3240 0.9719 1.6199 2.2678 3.5638 4.2117 5.5076 6.1556 6.8035 Grs. 77.165 231.49 385.82 540.15 694.81 1003.1	Grams 0.3888 1.0367 1.6847 2.3326 2.9806 3.6286 4.2765 5.5724 6.2204 6.26883 glish 6 Grs. 92.599 246.93 401.26 555.59 709.92 864.25 1018.6	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 6.2851 6.2851 6.2851 6.9330 Grain 7 Grs. 108.03 262.36 416.69 571.02 725.35 879.68 1034.0 1188.3	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 8 Grs. 123.46 277.79 432.12 586.45 740.78 895.11 1049.4 1203.7	9 Grams 0.5831 1.2310 1.8890 2.5269 3.8229 4.4708 5.7667 6.4147 7.0626 9 Grs. 138.90 293.23 447.56 601.89 756.22 910.55 1064.9 1219.2
0 10 20 30 40 50 60 70 80 90 100 Conv Fr. grams.	0 Grams 0.0000 0.6479 1.2959 1.9438 2.5918 3.2398 3.8877 4.5357 5.1830 6.4795 ersion 0 Grs. 0.0000 154.33 308.66 462.99 925.99 1080.3 1234.6 1389.0	1 Grams 0.0648 0.7127 1.3607 2.0086 2.6566 3.3046 3.39525 4.6005 5.2484 6.5443 of Fr 1 Grs. 15.433 169.76 324.09 478.42 1095.7 787.08 941.42 1095.7	2 Grams 0.1296 0.7775 1.4255 2.0734 2.7214 3.3694 4.0173 4.6653 5.3132 5.9612 6.6091 ench 2 Grs. 30.866 30.868 30.868 30.868 185.19 339.52 464.818 802.52 956.85 1111.2 1265.5 1111.2	3 Grams 0.1944 0.8423 1.4903 2.1382 2.7862 3.4342 4.0821 4.7301 5.3780 6.0260 6.6739 Grams 3 46.299 200.63 354.96 509.29 1126.6 1280.1 1435.3	4 Grams 0.2592 0.9071 1.5551 2.2030 2.8510 3.4990 4.1469 4.7949 5.4428 6.0908 6.7387 Grs. 61.732 216.06 370.39 524.72 129.38 833.38 893.72 1142.0 1296.3	5 Grams 0.3240 0.9719 1.6199 2.2678 2.9158 3.5638 4.2117 4.8597 5.5076 6.1556 6.8035 hto En 5 Grs. 77.165 231.49 385.82 540.15 694.81 848.82 1003.1	6 Grams 0.3888 1.0367 1.6847 2.3326 2.9806 3.6286 4.2765 4.9245 5.5724 6.2204 6.8683 glish 6 Grs. 92.599 246.93 401.26 555.59 570.92 864.25 1018.6 1172.9 1327.2 1481.6	7 Grams 0.4535 1.1014 1.7494 2.3973 3.0453 3.6933 4.3412 4.9892 5.6371 6.2851 6.9330 Grain 7 Grs. 108.03 262.36 416.69 571.02 725.35 879.68 1034.0 1188.3 1342.6 1497.0	8 Grams 0.5183 1.1662 1.8142 2.4621 3.1101 3.7581 4.4060 5.0540 5.7019 6.3499 6.9978 8 Grs. 123.46 277.79 432.12 586.45 586.45 5740.78 895.11 1049.4 1203.7 1358.1 1512.4	9 Grams 0.5831 1.2310 1.8890 2.5269 3.1749 3.8229 4.4708 5.1188 5.7667 6.4147 7.0626 9 Grs. 138.90 293.23 447.56 601.89 2910.55 1064.9 1219.2 1373.5

Horse-power into Cheval-vapeur.

Hpower.	0	1	2	3	4	5	6	7	8	9
	Cv.									
0	0.0000	1.0136	2.0272	3.0408	4.0544	5.0680	6.0816	7.0952	8.1088	9.1224
10	10.136	11.150	12.163	13.176	14.190	15.204	16.218	17.231	18.245	19.258
20	20.272	21.308	22.299	23.313	24.326	25.240	26.354	27.367	28.381	29.394
30			32,435							
40			42.571							
50	50.680	51.693	52.707	53.721	54.734	55.748	56.762	57.775	58.789	59.802
60			62.843							
70			72.979							
80			83.115							
90			93.251							
100	101.36	102.37	103.30	104.40	105.41	106.43	107.44	108.45	109.47	110.48

Cheval-vapeur into Horse-power.

Chevvap.	0	1	2	3	4	5	6	7	8	9
	Нр.									
0	0.0000	0.9863	1.9726	2.9589	3.9452	4.9315	5.9178	6.9041	7.8904	8.8767
10	9.8630	10.849	11.835	12.822	13.808	14.794	15.781	16.767	17.753	18.739
20			21.698							
30			31.561							
40			41.424							
50			51.287							
60			61.150							
70			71.013							
80			80.876							
90			90.739							
100	98.630	99.616	100.60	101.59	102.57	103.56	104.55	105.53	106.52	107.50

Foot-pounds into Kilogrammetres.

Foot-lbs.	0	1	2	3	4	. 2	6	7	8	9
	Kgm.									
0	0.0000	0.1382	0.2764	0.4146	0.5528	0.6910	0.8292	0.9674	1.1056	1.2438
10	1.3820	1.5202	1.6584	1.7966	1.9348	2.0731	2.2112	2.3494	2.4876	2.6259
20	2.7640	2.9022	3.0404	3.1786	3.3168	3.4552	3.5933	3.7315	3.8696	4.0078
30			4.4224							
40			5.8044							
50			7.1864							
60			8.5684							
70			9.9504							
80			11.322							
90			12.714							
100	13.820	13.958	14.096	14.235	14.373	14.511	14.649	14.787	14.925	14.064

Kilogrammetres into Foot-pounds.

Kgm.	0	1	2	3	4	5	6	7	8	9
	Ftlb.									
0			14.467							
10			87.101							
20	144.67	151.90	158.43	166.37	173.60	180.84	188.08	195.40	202.54	209.77
30			231.77							
40	289.34	296.57	304.11	311.04	318.27	325.50	332.75	340.07	347.21	354.44
50	361.66	368.89	376.43	383.36	390.59	397.82	405.07	412.39	419.53	426.76
60	434.00	441.23	448.77	455.70	462.93	470.17	477.41	484.73	491.87	499.10
70	507.34	514.57	522.11	529.04	536.27	543.50	550.75	558.07	565.21	572.44
80	578.68	585.91	593.45	599.38	607.61	614.85	622.09	629.41	636.55	643.78
90	651.00	658.23	665.77	672.70	679.93	687.17	694.41	701.73	708.87	716.10
100	723.34	730.57	738.11	745.04	752.27	759.51	766.75	774.07	781.21	788.44

Conversion of Foot-tons into Tonnes-metres.

	••••			000						
Foot-tons.	0	1	2	3	4	5	6	7	8	9
	Tm.									
0	0.0000	0.3097	0.6194	0.9291	1.2382	1.5484	1.8581	2.1678	2.4775	2.7872
10	3.0969	3.3166	3.7163	4.0260	4.3356	4.6453	4.9550	5.2667	5.5744	5.8841
20					7.4325					
30					10.529					
40					13.626					
50					16.723					
60					19.820					
70					22.917					
80					26.014					
90 -					29.111					
100	30.969	31.279	31.588	31.898	32.208	32.517	32.827	33.139	33.446	33.756

Conversion of Tonnes-metres into Foot-tons.

Tmetres.	0	1	2	3	4	5	6	7	8	9
	Ftn.									
0	0.0000	3.2290	6.4581	9.6871	12.916	16.145	19.374	22.603	25.832	29.061
10	32.290	35.519	38.758	41.977	45.206	48.435	51.664	54.893	58.122	61.351
20	64.581	67.810	71.049	74.268	77.497	80.726	83.955	87.184	90.413	93.642
30	96.871	100.10	103.34	106.56	109.79	113.01	116.24	119.47	122.70	125.93
40	129.16	133.39	135.63	138.85	142.07	145.30	148.53	151.76	154.99	158.22
50									187.28	
60									219.57	
70									251.86	
80	258.32								284.15	
90	290.61								316.44	
100	322.90	326.13	329.37	332.59	335.81	339.04	342.27	345.50	348.73	351.96

British Thermal Units into French Calories.

B. T. U.	0	1	2	3	4	5	6	7	8	9
	Cal.									
0	0.0000	0.2520	0.5040	0.7560	1.0080	1.2600	1.5120	1.7640	2.0160	2.2680
10	2 5200	2.7720	3.0240	3.2760	3.5280	3.7800	4.0320	4.2840	4.5360	4.7880
20	5.0399	5.2919	5.5439	5.7959	6.0478	6.2699	6.5419	6.8039	7.0559	7.3079
30	7.5600	7.8120	8.0640	8.3160	8.5680	8.8200	9.0720	9.3340	9.5760	9.8280
40	10.080	10.332	10.584	10.836	11.088	11.340	11.512	11.844	12.096	12.348
50						13.860				
60	15.120	15.372	15.624	15.876	16.128	16.380	16.632	16.884	17.136	17.388
70	17.640	17.892	18.144	18.396	18.648	18.900	19.152	19.404	19.656	19.908
80	20.160	20.412	20.664	20.916	21.168	21.420	21.672	21.924	22.176	22,428
90						23.940				
100	25.200	25.452	25.704	25.956	26.208	26.460	26.712	26.964	27.216	27.468

French Calories into British Thermal Units.

Calories.	0	1	2	3	4	5	6	7	8	9
	T. U.									
0	0.0000	3.9683	7.9366	11.905	15.873	19.842	23.810	27.778	31.746	35.715
10	39.683	43.651	47.620	51.598	55.520	59.525	63.493	67.461	71.429	75.398
20	79.366	83.334	87.303	91.271	95.203	99.208	103.17	107.14	111.11	115.08
30	119.05	123.02	126.98	130.95	134.89	138.89	142.86	146.83	150.80	154.77
40						178.57				
50	198.42	202.39	206.35	210.39	214.26	218.26	222.23	226.20	230.16	234.14
60						258.94				
70						297.62				
80						337.30				
. 90						376.99				
100	396.83	400.80	404.77	408.73	412.67	416.67	420.64	424.61	428.58	432.55

ALGEBRA.

For the detailed operations of Algebra the reader is referred to the numerous good text-books upon the subject, and only a few of the more important and generally practical matters will here be given in convenient form for reference.

Remembering that multiplication is represented in algebra by placing the two quantities next each other, without any intermediate sign, we have $aa = a^2$, $aaa = a^3$, etc.; also a multiplied by b is written ab, a divided

by b is written $\frac{a}{b}$, etc.

From an examination of these facts we are able to place the rules regarding exponents in a form in which they can be conveniently remembered.

$$aaa = a^3$$
; dividing this by a we get $aa = a^2$; dividing again by a we get $a = a$.

In each case we see that dividing any power of a by a is simply subtracting unity from the exponent. Proceeding, we see that

$$\begin{array}{ll} -\frac{a}{a} = a^{1-1} &= a^{0} &= 1; \\ \frac{a^{0}}{a} = a^{0-1} &= a^{-1} = \frac{1}{a}; \\ \frac{a^{-1}}{a} = a^{-1-1} = a^{-2} = \frac{1}{a^{2}}, \text{ etc.} \end{array}$$

This shows why a negative exponent to any quantity means the reciprocal of the same power with a positive exponent.

Binomial Theorem.

The binomial theorem enables any power of the sum or difference of two quantities to be determined. For any value of n we have

$$(a \pm b)^n = a^n \pm na^{n-1}b + \frac{n(n-1)}{1 \cdot 2} a^{n-2}b^2 \pm \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-3}b^3 + \dots$$

An examination of this will show that the right-hand side consists of the quantities a and b arranged according to the ascending and descending powers. Thus, when n = 2, we have $a^2 + ab + b^2$; for n^3 we have $a^3 + a^2b + ab^2 + b^3$, and so on.

The coefficients must be computed for each power, or they may be tabulated as below.

Table of Binomial Coefficients.

Expo-						7	Cerms	•					
nents.	0	1	2	3	4	5	6	7	8	9	10	11	12
1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 4 5 6 7 8 9 10	1 3 6 10 15 21 28 36 45	1 4 10 20 35 56 84 120	1 5 15 35 70 126 210	1 6 21 56 126 252	1 7 28 84 210	1 8 36 120	1 9 45	1 10	1	1	
10 11 12	1 1 1										1 11 66	$\frac{1}{12}$	

Thus,

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4;$$

 $(a+b)^7 = a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 + b7.$

ARITHMETICAL PROGRESSION.

Arithmetical Progression is a series of numbers, as 2, 4, 6, 8, 10, 12, etc., or 18, 15, 12, 9, 6, 3, in which every successive term is increased or diminished by a constant number.

Letters denote

a = the first term of the series.

b =any other term whose number from a is n. n =number of terms within a and b.

d = the difference between any two adjacent terms. S = the sum of all the terms.

In the series 2, 5, 8, 11, a = 2, b = 11, n = 4, d = 3, and S = 26.

When the series is decreasing, take the first term = b and the last term = a.

The accompanying table contains all the formulas or questions in Arithmetical Progressions, and the nature of the question will tell which formula is to be used.

Formulas for Arithmetical Progressions.

1.
$$a = b - d(n-1)$$
.

2.
$$a = \frac{2S}{n} - b$$
.

3.
$$a = \frac{S}{n} - \frac{d}{2}(n-1)$$
.

4.
$$b = a + d(n-1)$$
.

5.
$$b = \frac{2S}{n} - a$$
.

6.
$$b = \frac{S}{n} + \frac{d}{2}(n-1)$$
.

7.
$$n = \frac{b-a}{d} + 1$$
.

$$8. \quad n = \frac{2S}{a+b}.$$

$$9. \quad d = \frac{b-a}{n-1}.$$

10.
$$d = \frac{(b+a)(b-a)}{2S-a-b}$$
.

11.
$$d = \frac{2(S-an)}{n(n-1)}$$
.

12.
$$d = \frac{2(bn-S)}{n(n-1)}$$
.

13.
$$S = \frac{n(a+b)}{2}$$
.

14.
$$S = \frac{(a+b)(b+d-a)}{2d}$$
.

15.
$$S = n \left[a + \frac{d}{2}(n-1) \right]$$
.

16.
$$S = n \left[b - \frac{d}{2} (n-1) \right]$$
.

17.
$$a = \frac{d}{2} \pm \sqrt{\left(b + \frac{d}{2}\right)^2 - 2dS}$$
.

18.
$$b = -\frac{\zeta}{2} \pm \sqrt{\left(a - \frac{d}{2}\right)^2 + 2dS}$$
.

19.
$$n = \frac{1}{2} - \frac{a}{d} \pm \sqrt{\left(\frac{1}{2} - \frac{a}{d}\right)^2 + \frac{2S}{d}}$$
.

20.
$$n = \frac{1}{2} + \frac{b}{d} \pm \sqrt{\left(\frac{1}{2} + \frac{b}{d}\right)^2 - \frac{2S}{d}}$$
.

GEOMETRICAL PROGRESSION.

Geometrical Progression is a series of numbers, as 2:4:8:16:32:, etc., or 729:243:81:27:9:, etc., in which every successive term is multiplied or divided by a constant factor.

Notation.

a= the first term of the series; b= any other term whose number from a is n; n= number of terms within a and b, inclusive; r= ratio, or the factor by which the terms are multiplied or divided;

S = Sum of the terms.

In the series 1:3:9:27:, a=1, b=27, n=4, r=3, S=40, inclusive.

The accompanying table contains all the formulas or questions in Geometrical Progressions. The nature of the question will tell which formula is to be used.

Formulas for Geometrical Progressions.

$$1. \quad a = \frac{b}{m-1}.$$

$$2. \quad a = S - r(S - b).$$

3.
$$a = S \frac{r-1}{r^n-1}$$

$$4. \quad b = ar^{n-1}.$$

$$5. \quad b = S - \frac{S - a}{r}.$$

6.
$$b = S\left(\frac{r-1}{r^n-1}\right)r^{n-1}.$$

$$7. \quad r = \sqrt[n-1]{\frac{b}{a}}.$$

8.
$$r = \frac{S-a}{S-b}$$
.

9.
$$ar^n + S - rS - a = 0$$
.

$$10. \quad S = \frac{br - a}{r - 1}.$$

11.
$$S = \frac{a(r^n - 1)}{r - 1}$$
.

12.
$$S = \frac{b(r^n - 1)}{(r - 1)r^{n-1}}$$

13.
$$n = 1 + \frac{\log b - \log a}{\log r}$$
.

14.
$$n = 1 + \frac{\log b - \log a}{\log (S - a) - \log (S - b)}$$

15.
$$n = \frac{\log [a + S(r-1)] - \log a}{\log r}$$
.

16.
$$n = 1 + \frac{\log b - \log [br - S(r-1)]}{\log r}$$
.

17.
$$S = \frac{b \sqrt{b} - a \sqrt{a}}{\sqrt{b} - \sqrt{a}}$$

SPECIAL SERIES.

Among the great variety of series occurring in practical mathematics the following will be found convenient for reference:

1.
$$1+2+3+4+\ldots n=\frac{n(n+1)}{2}$$

2.
$$2+4+6+8+\ldots 2n=n(n+1)$$
.

3.
$$1+3+5+7+\ldots(2n-1)=n^2$$
.

4.
$$1^2 + 2^2 + 3^2 + 4^2 \dots n^2 = \frac{n(n+1)(2n+1)}{1 \cdot 2 \cdot 3}$$
.

5.
$$1^3 + 2^3 + 3^3 + 4^3 + \dots$$
 $n^3 = \left[\frac{n(n+1)}{2}\right]^2$

EQUATIONS.

Equations of the first degree need not be discussed here. Their solution may be found in any elementary algebra.

Equations of the second degree may be reduced to one of three forms, and solved respectively as follows:

1.
$$x^{2} + px + q = 0; \ x = -\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}} - q.$$

$$ax^{2} + bx + c = 0; \ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}.$$
 2.
$$x^{2n} + px^{n} + q = 0; \ x = \sqrt[n]{-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4} - q}}.$$

3. When $x \pm y = s$ and xy = p, we have

$$x = \frac{s + \sqrt{s^2 \mp 4p}}{2}$$
; $y = \pm \frac{s - \sqrt{s^2 \mp 4p}}{2}$.

LOGARITHMS.

There are four fundamental rules for operations with powers:

$$a^m \cdot a^n = a^{m+n}$$
.

That is, the product of any two powers of a number is equal to the number raised to a power whose exponent is the *sum* of the exponents of the two factors.

$$\frac{a^m}{a^n} = a^{m-n}$$
.

Or, the quotient of two powers is equal to the number raised to a power whose exponent is the *difference* of the exponents of divisor and dividend.

$$(a^n)^m = a^{mn}.$$

Or, any power may be raised to a higher power by multiplying the two exponents.

$$\sqrt[n]{a^m = a^{\frac{m}{n}}}$$

Or, any root of any power may be extracted by dividing the exponent by the index of the root.

If we take any number, such as 2, and use it as the base of a geometrical series, we will see that the exponents form an arithmetical series. Thus, the exponent of 1=0, of 2=1, of 4=2, of 8=3, etc.; or, proceeding, we may arrange the following little table:

Powers.	Exponents.	Powers.	Exponents.	Powers.	Exponents.
1 2 4 8 16 32 64 128 256 512	0 1 2 2 3 4 5 6 7 8 9	1024 2048 4096 8192 16384 32768 65536 131072 262144 524288	10 11 12 13 14 15 16 17 18 19	1048576 2097152 4194304 8388608 16777216	20 21 22 22 23 24

Suppose now we wish to multiply 128 by 512, we see that $128=2^7$ and $512=2^9$; hence, $128\times512=2^{7-9}=2^{16}$, and in the table, opposite the

exponent 16, we find the power 65536, which is the product of the two factors, obtained by the simple addition of the exponents.

Again,
$$\frac{512}{128} = \frac{2^9}{27} = 2^9 - 7 = 2^2 = 4$$
.

To raise a number to a power, such as 16 to the fifth power, we have $16 = 2^4$ and $(2^4)^5 = 2^{20} = 1048576$. Again, the seventh root of 2097152 is formed as follows:

$$2097152 = 2^{21}$$
 and $\sqrt[7]{2^{21}} = 2^{\frac{21}{7}} = 2^3 = 8$.

In the small table of the powers of 2 given above there are many gaps, because only those powers which have whole exponents are given. For all the numbers between 16 and 32, for example, the exponents will be decimals, and will be greater than 4 and less than 5, etc. In practice, the base used is not 2, but 10, and all the intermediate exponents have been computed to many decimals, these forming a table of logarithms.

Table of Logarithms of Numbers.

Pages 82 to 104 give the *mantissas*, or decimal portions of the logarithms, of all whole numbers from 1 to 10009. The *characteristics*, or whole numbers, which, with these decimals, form the complete logarithms, are found

as follows:

The logarithm of 1 = 0, of 10 = 1, of 100 = 2, of 1000 = 3, etc.; hence, the logarithm of any number between 100 and 1000 must lie between 2 and 3, and be greater than 2 and less than 3, and so for any number. Therefore we have the rule that the whole portion of a logarithm of any number is one less than there are figures in the number. The decimal portion for any number below 10009 is taken directly from the table. Thus,

$$\log_{10} 365 = 2.56229$$

the decimal portion, 56229, being found directly opposite 365 in the table, and the whole portion being 2, or 1 less than the number of places in 365. In like manner we have

> $\log 36.5 = 1.56229$ $\log. 3.65 = 0.56229.$

The mantissa, or decimal portion, is always positive, but the characteristic is negative when the number is less than unity. Thus,

 $\log 0.365 = 1.56229$ $\log 0.0365 = \overline{2}.56229$ $\log 0.00365 = \overline{3}.56229$

the minus being placed over the characteristic to show that it applies to

that portion only, and not to the mantissa.

If the given number has more than three places, the mantissa is found in the body of the table. Thus, the logarithm of 1873 = 3.27253, the figures 0.27 being found opposite 183, and the 253 on the same horizontal line under 3.

If the last three figures of the mantissa are preceded by an asterisk, the first two figures are to be taken from the next line below, in the first column. Thus,

 $\log 3897 = 3.59073$,

in which, opposite 389, we find 59, and then, passing on under 7, we find *073, the asterisk indicating that we are to go one line below, taking out 59, not 58, for the first two figures of the mantissa, giving us 0.59073, as

The table, as will be seen, enables the logarithm of any number of four places to be taken out at once. If the number of which the logarithm is required has more than four places, the logarithm can be found from the

table, as follows:

In the column at the extreme right of each page, under the heading P. P. (Proportional Parts), will be found in the black figures the differences between any logarithm and the next succeeding logarithm for the adjoining portions of the table. The smaller figures in the same column form little multiplication tables, in which these differences are multiplied by

0.1, 0.2, 0.3, etc.

The use of these proportional parts and their decimal parts is best shown by actual example. Suppose it is desired to find the logarithm of 18702. Opposite 187 and under 0 in the table we find the mantissa, 0.27184. The proportional part, or difference at this point between one logarithm and the next, is 23, or, in other words, there is a difference of 23 between the last two figures of the logarithm of 1870 and 1871. For 0.1 difference in the number, the difference in the logarithms would be 2.3; for 0.2, it would be 4.6, etc., as shown in the small table under 23 in the column P. P. For 2 points additional, therefore, we simply add 4.6 to the logarithm of 1870, and we have the logarithm of 18702. Thus,

log.
$$1870 = 0.27184$$

p. p. for $2 = 4.6$
log. $18702 = 4.271886$, or 4.27189

Again, let it be required to find the logarithm of 35.797.

$$\begin{array}{ll} \log.\ 35.79 &= 1.55376 \\ \text{p. p. for } 7 &= 8.4 \\ \log.\ 35.797 &= \overline{1.553844} \end{array}$$

If the given number has six or more figures the method is the same, except that the proportional part is reduced one-tenth for each additional figure. Thus, the logarithm of 3725.96 is found as follows:

The operation of finding the number corresponding to a given logarithm is the reverse of the preceding. Thus, the number corresponding to the logarithm 2.73924 is found as follows:

In the table the next smaller logarithm is

73918, and its number =584500The given $\log_{\bullet} = 73924$ ٠. and the difference = The nearest difference in the table = 5.6 =corresponding to Subtracting 0.4corresponding to 5 Hence, the number is 584575 Since the characteristic = 2, there must be one more place before the decimal point; hence,

 $\log_{10} 2.73924 = \text{num}$ 584,575

Num. 100 to 139. Log. 000 to 145.

N	L	0	1	2	3	4	5	6	7	8	9	P. P.
100	00	000	043	087	130	173	217	260	303	346	389	44 43
101		432	475	518	561	604	647	689	732	775	817	111111
102		860	903	945	988	*030	*072	*115	*157	*199	*242	1 4.4 4.3 2 8.8 8.6
103	01	284	326	368	410	452	494	536	578	620	662	3 13.2 12.9
104		703	745	787	828	870	912	953	995	*036	*078	4 17.6 17.2
705	00	110	1.00	000	040	004	205	900	405	440	400	5 22.0 21.5 6 26.4 25.8
105	02	119	160	202	243	284	325	366	407	449	490	7 30.8 30.1
106		531	572	612 *019	653	694	735	776	816	857	898	8 35.2 34.4
107	00	938	979		*060		*141			*262		9 39.6 38.7
108	03	342	383	423	463	503	543	583	623	663	703	42 41
109		743	782	822	862	902	941		*021			1 4.2 4.1
110	04	139	179	218	258	297	336	376	415	454	493	2 8.4 8.2
111		532	571	610	650	689	727	766	805	844	883	
112		922	961		*038	*077	*115	*154	*192	*231		4 16.8 16.4 5 21.0 20.5
113	05	308	346	385	423	461	500	538	576	614	652	6 25.2 24.6
114		690	729	767	805	843	881	918	956	994	*032	7 29.4 28.7 8 33.6 32.8
115	06	070	108	145	183	221	258	296	333	371	408	9 37.8 36.9
116		446	483	521	558	595	633	670	707	744	781	40 39
117		819	856	893	930	967	*004	*041	*078	*115	*151	40 39
118	07	188	225	262	298	335	372	408	445	482	518	1 4.0 3.9
119		555	591	628	664	700	737	773	809	846	882	2 8.0 7.8 3 12.0 11.7
120		918	954	990	*027	*063	*099	*135	*171	*207	*243	4 16.0 15.6
121	08	279	314	350	386	422	458	493	529	565	600	5 20.0 19.5 6 24.0 23.4
122		636	672	707	743	778	814	849	884	920	955	7 28.0 27.3
123		991	*026	*061	*096	*132	*167	*202	*237	*272	*307	8 32.0 31.2 9 36.0 35.1
124	09	342	377	412	447	482	517	552	587	621	656	1 10012
125		691	726	760	795	830	864	899	934	968	*003	38 37
126	10	037	072	106	140	175	209	243	278	312	346	1 3.8 3.7
127		380	415	449	483	517	551	585	619	653	687	2 7.6 7.4 3 11.4 11.1
128		721	755	789	823	857	890	924	958	992	*025	4 15.2 14.8
129	11	059	093	126	160	193	227	261	294	327	361	5 19.0 18.5
130		394	428	461	494	528	561	594	628	661	694	7 26.6 25.9
131		727	760	793	826	860	893	926	959	992	*024	8 30.4 29.6
132	12	057	090	123	166	189	222	254	287	320	352	9 34.2 33.3
133		385	418	450	483	516	548	581	613	646	678	36 35
134		710	743	775	808	840	872	905	937	969	*001	1 3.6 3.5
135	13	033	066	098	130	162	194	226	258	290	322	2 7.2 7.0
136		354	386	418	450	481	513	545	577	609	640	3 10.8 10.5 4 14.4 14.0
137		672	704	735	767	799	830	862	893	925	956	5 18.0 17.5
138		988	*019	*051	*082	*114	*145	*176	*208	*239	*270	6 21.6 21.0 7 25.2 24.5
139	14	301	333	364	395	426	457	489	520	551	582	8 28.8 28.0
140		613	644	675	706	737	768	799	829	860	891	9 32.4 31.5
N	L	0	1	2	3	4	5	6	7	8	9	P. P.

Num. 140 to 179. Log. 146 to 255.

N	L	0	1	2	3	4	5	6	7	8	9		Р. Р	>.
140	14	613	644	675	706	737	768	799	829	860	891		34	33
141		922	953	983	*014	*045	*076	*106	*137	*168	*198			
142	15	229	259	290	320	351	381	412	442	473	503	1 2	3.4	3.3
143		534	564	594	625	655	685	715	746	776	806	3	10.2	9.9
144		836	866	897	927	957	987	*017	*047	*077	*107	4	13.6	13.2
145	16	137	167	197	227	256	286	216	940	277.0	406	4 5 6 7 8	$\frac{17.0}{20.4}$	16.5 19.8
146	16	455	465	495	524	554	584	316 613	346 643	376 673	406 702	7	23.8	23.1
147		732	761	791	820	850	879	909	938	967	997	8 9	27.2 30.6	26.4 29.7
148	17	026	056	085	114	143	173	202	231	260	289	9	190.0	129.1
149	1 1	319	348	377	406	435	464	493	522	551	580		32	31
110		919	940	311	400	100	101	430	044	991	900	1	3.2	3.1
150		609	638	667	696	725	754	782	811	840	869	$\frac{1}{2}$	6.4	6.2
151		898	926	955	984	*013		*070			*156	3	9.6	9.3
152	18	184	213	241	270	298	327	355	384	412	441	5	12.8 16.0	12.4 15.5
153		469	498	526	554	583	611	639	667	696	724	2 3 4 5 6 7	19.2	18.6
154		752	780	808	837	865	893	921	949	977	*005	7	22.4	21.7
155	19	033	061	089	117	145	173	201	229	257	285	8 9	25.6 28.8	24.8 27.9
156		312	340	368	396	424	451	479	507	535	562			
157		590	618	645	673	700	728	756	783	811	838		30	29
158		866	893	921	948	976	*003	*030	*058	*085	*112	$\frac{1}{2}$	3.0	2.9
159	20	140	167	194	222	249	276	303	330	358	385	2 3 4	9.0	5.8
160		412	439	466	493	520	548	575	602	629	656	5	12.0 15.0	11.6 14.5
161		683	710	737	763	790	817	844	871	898	925	5 6	18.0	17.4
162		952	978	*005	*032	*059	1	*112	*139	*165		7	21.0	20.3 23.2
163	21	219	245	272	299	325	352	378	405	431	458	8 9	$\begin{vmatrix} 24.0 \\ 27.0 \end{vmatrix}$	26.1
164		484	511	537	564	590	617	643	669	696	722			•
165		748	775	801	827	854	880	906	932	958	985		28	27
166	22	011	037	063	089	115	141	167	194	220	246	1	2.8	2.7
167		272	298	324	350	376	401	427	453	479	505	3	5.6 8.4	5.4
168		531	557	583	608	634	660	686	712	737	763	4	11.2	10.8
169		789	814	840	866	891	917	943	968	994	*019	5	14.0	13.5
170	23	045	070	. 096	121	147	172	198	223	249	274	6 7	16.8 19.6	16.2 18.9
171		300	325	350	376	401	426	452	477	502	528	8 -	22.4	21.6
172		553	578	603	629	654	679	704	729	754	779	9	25.2	24.3
173		805	830	855	880	905	930	955	980	*005	*030		26	25
174	24	055	080	105	130	155	180	204	229	254	279			0.5
175		304	329	353	378	403	428	452	477	502	527	$\begin{vmatrix} 1\\2 \end{vmatrix}$	$\begin{vmatrix} 2.6 \\ 5.2 \end{vmatrix}$	2.5
176		551	576	601	625	650	674	699	724	748	773	$\begin{bmatrix} \bar{2} \\ 3 \\ 4 \end{bmatrix}$	7.8	7.5
177		797	822	846	871	895	920	944	969		*018	5	10.4 13.0	10.0 $ 12.5 $
178	25	042	066	091	115	139	164	188	212	237	261	6	15.6	15.0
179		285	310	334	358	382	406	431	455	479	503	8	18.2 20.8	17.5 20.0
180		527	551	575	600	624	648	672	696	720	744	9		22.5
N	L	0	1	2	3	4	5	6	7	8	9		P. P	

Num. 180 to 219. Log. 255 to 342.

N	L	0	1	2	3	4	5	6	7	8	9	P. P.
180	25	527	551	575	600	624	648	672	696	720	744	24
181		768	792	816	840	864	888	912	935	959	983	
182	26	007	031	055	079	102	126	150	174	198	221	$\begin{array}{ c c c c } & 1 & 2.4 \\ & 2 & 4.8 \end{array}$
183		245	269	293	316	340	364	387	411	435	458	$\begin{vmatrix} 2 & 4.8 \\ 3 & 7.2 \end{vmatrix}$
184		482	505	529	553	576	600	623	647	670	694	4 9.6
					=00				004			5 12.0 6 14.4
185		717	741	764	788	811	834	858	881	905	928	7 16.8
186	07	951	975		*021	277	*068			*138		8 19.2
187	27	184 416	207 439	231 462	254 485	508	300 531	323 554	346 577	370 600	393 623	9 21.6
188 189		646	669	692	715	738	761	784	807	830	852	23
109		040	009	092	710	100	701	104	007	000	002	1 2.3
190		875	898	921	944	967	989	*012	*035	*058	*081	$\begin{vmatrix} 1 & 2.3 \\ 2 & 4.6 \end{vmatrix}$
191	28	103	126	149	171	194	217	240	262	285	307	3 6.9
192		330	353	375	398	421	443	466	488	511	533	$\begin{vmatrix} 4 & 9.2 \\ 5 & 11.5 \end{vmatrix}$
193		556	578	601	623	646	668	691	713	735	758	5 11.5 6 13.8
194		780	803	825	847	870	892	914	937	959	981	7 16.1
195	29	003	026	048	070	092	115	137	159	181	203	8 18.4 9 20.7
196	20	226	248	270	292	314	336	358	380	403	425	1
197		447	469	491	513	535	557	579	601	623	645	22
198		667		710	732	754	776	798	820	842	863	1 2.2
199		885	907	929	951	973	994	*016	*038	*060	*081	2 4.4
	90			7.40	1.00		011	000	077	077.0	000	3 6.6 4 8.8
200	30	103	125	146	168	190	211	233	255	276	298	5 11.0
201		320	341	363	384	406	428	449	471	492	514	6 13.2
202 203		535 750	557 771	578 792	600 814	621 835	643 856	664 878	685 899	707 920	728 942	7 15.4 8 17.6
203		963		*006						*133		9 19.8
204		900	301	**000	*021	**040	1009	.031	*112	*100	.194	21
205	31	175	197	218	239	260	281	302	323	345	366	
206		387	408	429	450	471	492	513	534	555	576	$\begin{array}{ c c c c c } & 1 & 2.1 \\ & 2 & 4.2 \end{array}$
207		597	618	639	660	681	702	723	744	765	785	2 4.2 3 6.3
208		806	827	848	869	890	911	931	952	973	994	4 8.4
209	32	015	035	056	077	098	118	139	160	181	201	5 10.5 6 12.6
210	1	222	243	263	284	305	325	346	366	387	408	7 14.7
211		428	449	469	490	510	531	552	572	593	613	8 16.8
212		634	654	675	695	715	736	756	777	797	818	9 18.9
213		838	858	879	899	919	940	960	980	*001	*021	20 19
214	33	041	062	082	102	122	143	163	183	203	224	1 2.0 1.9
015		244	264	284	304	205	945	965	905	405	425	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
215 216		244 445	264 465	486	506	325 526	345 546	365 566	385 586	405 606	626	3 6.0 5.7
217		646	666	686	706	726	746	766	786	806	826	$\begin{array}{c cccc} 4 & 8.0 & 7.6 \\ 5 & 10.0 & 9.5 \end{array}$
218		846	866	885	905	925	945	965	985	*005	*025	6 12.0 11.4
219	34	044	064	084	104	124	143	163	183	203	223	7 14.0 13.3
	01											8 16.0 15.2 9 18.0 17.1
220		242	262	282	301	321	341	361	380	400	420	
N	L	0	1	2	3	4	5	. 6	7	8	9	P. P.

Num. 220 to 259. Log. 342 to 414.

220 221 222 223 224 225 226 227 228	34 35	242 439 635 830 025 218 411 603 793 984 173	262 459 655 850 044 238 430 622 813 *003	282 479 674 869 064 257 449 641 832	301 498 694 889 083 276 468 660	321 518 713 908 102 295 488	341 537 733 928 122 315 507	361 557 753 947 141 334	380 577 772 967 160 353	400 596 792 986 180	420 616 811 *005 199 392	1 2 3 4	20 2.0 4.0 6.0 8.0
221 222 223 224 225 226 227 228		635 830 025 218 411 603 793 984	459 655 850 044 238 430 622 813	674 869 064 257 449 641 832	694 889 083 276 468 660	713 908 102 295 488	733 928 122 315	557 753 947 141	772 967 160	792 986 180	811 *005 199	2 3 4	2.0 4.0 6.0
223 224 225 226 227 228		830 025 218 411 603 793 984	850 044 238 430 622 813	869 064 257 449 641 832	889 083 276 468 660	908 102 295 488	928 122 315	947 141	967 160	986 180	*005 199	2 3 4	4.0 6.0
224 225 226 227 228		025 218 411 603 793 984	044 238 430 622 813	064 257 449 641 832	083 276 468 660	102 295 488	122 315	141	160	180	199	3 4	4.0 6.0
225 226 227 228		218 411 603 793 984	238 430 622 813	257 449 641 832	276 468 660	295 488	315					4	
226 227 228	36	411 603 793 984	430 622 813	449 641 832	468 660	488	ł	334	353	379	000	1 5	
226 227 228	36	411 603 793 984	430 622 813	449 641 832	468 660	488	ł	994				0	10.0
227 228	36	603 793 984	622 813	641 832	660			526	545	564	583	5 6 7	12.0
228	36	793 984	813	832			698	717	736	755	774	8	14.0 16.0
	36	984			851	679 870	889	908	927	946	965	9	18.0
229	36		.003	ポリアノ		*059		*097		*135			
225	36	173		.021			-010	.001	.110		101		
230			192	211	229	248	267	286	305	324	342		19
231		361	380	399	418	436	455	474	493	511	530		
232		549	568	586	605	624	642	661	680	698	717	1	1.9 3.8
233		736	754	773	791	810	829	847	866	884	903	2 3	5.7
234		922	940	959	977	996	*014	*033	*051	*070	*088	4	7.6
235	37	107	125	144	162	181	199	218	236	254	273	5 6 7	9.5 11.4
236		291	310	328	346	365	38	401	420	438	457	7	13.3
237		475	493	511	530	548	566	5	603	621	639	8 9	15.2
238		658	676	694	712	731	749	767	785	803	822	9	17.1
239		840	858	876	894	912	931	949	967	985	*003		
240	38	021	039	057	075	093	112	130	148	166	184		
241	90	202	220	238	256	274	292	310	328	346	364		
242		382	399	417	435	453	471	489	507	525	543		18
243		561	578	596	614	632	650	668	686	703	721	1	1.8
244		739	757	775	792	810	828	846	863	881	899	2 3	3.6
												3	5.4 7.2
245	00	917	934	952	970	987	*005	*023	*041	*058	*076	5	9.0
246	39	094	111	129	146	164	182	199	217	235	252	6 7	10.8 12.6
247		270	287	305	322	340	358	375	393	410	428	8	14.4
248		445	463 637	480	498	515	533	550 724	568 742	585	602	9	16.2
249		620	037	655	672	690	707	124	142	759	777		
250		794	811	829	846	863	881	898	915	933	950		
251		967	985		*019	*037		*071		*106	*123		
252	40	140	157	175	192	209	226	243	261	278	295		4.77
253		312	329	346	364	381	398	415	432	449	466		17
254		483	500	518	535	552	569	586	603	620	637	1	1.7
255		654	671	688	705	722	739	756	773	790	807	3	3.4 5.1
256		824	841	858	875	892	909	926	943	960	976	4	6.8
257		993	*010	*027	*044	*061	*078	*095	*111	*128	*145	5	8.5
258	41	162	179	196	212	229	246	263	280	296	313	5 6 7 8	10.2 11.9
259		330	347	363	380	397	414	430	447	464	481	8	13.6
260		497	514	531	547	564	581	597	614	631	647	9	15.3
N	L	0	1	2	3	4	5	6	7	8	9	P	. P.

Num. 260 to 299. Log. 414 to 476.

N	L	0	1	2	3	4	5	6	7	8	9	P	. P.
260	41	497	514	531	547	564	581	597	614	631	647		
261		664	681	697	714	731	747	764	780	797	814		
262		830	847	863	880	896	913	929	946	963	979		
263		996	*012	*029	*045	*062	*078	*095	*111	*127	144		
264	42	160	177	193	210	226	243	259	275	292	308		17
265		325	341	357	374	390	406	423	439	455	472	1	1.7
266		488	504	521	537	553	570	586	602	619	635	2	3.4
267		651	667	684	700	716	732	749	765	781	797	3 4	5.1
268		813	830	846	862	878	894	911	927	943	959	5	6.8
269		975	991	*008	*024	*040	*056	*072	*088	*104	*120	6	10.2
270	43	136	152	169	185	201	217	233	249	265	281	6 7 8	11.9 13.6
271		297	313	329	345	361	377	393	409	425	441	9	15.3
272		457	473	489	505	521	537	553	569	584	600		
273		616	632	648	664	680	696	712	727	743	759		
274		775	791	807	823	838	854	870	886	902	917		
275		933	949	965	981	996	*012			*059	*075		
276	44	091	107	122	138	154	170	185	201	217	232		16
277		248	264	279	295	311	326	342	358	373	389		
278		404	420	436	451	467	483	498	514	529	545	1 2	$\begin{array}{ c c }\hline 1.6\\ 3.2\end{array}$
279		560	576	592	607	623	638	654	669	685	700	3	4.8
280		716	731	747	762	778	793	809	824	840	855	5	6.4 8.0
281		871	886	902	917	932	948	963	979	994	*010	6	9.6
282	45	025	040	056	071	086	102	117	133	148	163	6 7 8	11.2
283		179	194	209	225	240	255	271	286	301	317	8 9	12.8 14.4
284		332	347	362	378	393	408	423	439	454	469		
285		484	500	515	530	545	561	576	591	606	621		
286		637	652	667	682	697	712	728	743	758	773		
287		788	803	818	834	849	864	879	894	909	924		
288		939	954	969	984	*000	*015	*030	*045	*060	*075		
289	46	090	105	120	135	150	165	180	195	210	225		15
290		240	255	270	285	300	315	330	345	359	374	1	1.5
291		389	404	419	434	449	464	479	494	509	523	2 3	3.0 4.5
292		538	553	568	583	598	613	627	642	657	672	4	6.0
293		687	702	716	731	746	761	776	790	805	820	5	6.0 7.5
294		835	850	864	879	894	909	923	938	953	967	6 7	9.0 10.5
295		982	997	*012	*026	*041	*056	*070	*085	*100	*114	8	12.0 13.5
296	47	129	144	159	173	188	202	217	232	246	261	9	10.0
297		276	290	305	319	334	349	363	378	392	407		
298		422	436	451	465	480	494	509	524	538	553		
299		567	582	596	611	625	640	654	669	683	698		
300		712	727	741	756	770	784	799	813	828	842		110
N	L	0	1	2	3	4	5	6	7	8	9	P	. P.

Num. 300 to 339. Log. 477 to 531.

N	L	0	1	2	3	4	5	6	7	8	9	P. P.
300	47	712	727	741	756	770	784	799	813	828	842	
301		857	871	885	900	914	929	943	958	972	986	
302	48	001	015	029	044	058	073	087	101	116	130	
303		144	159	173	187	202	216	230	244	259	273	
304		287	302	316	330	344	359	373	. 387	401	416	14
305		430	444	458	473	487	501	515	530	544	558	1 1.4
306		572	586	601	615	629	643	657	671	686	700	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
307		714	728	742	756	770	785	799	813	827	841	3 4.2
308		855	869	883	897	911	926	940	954	968	982	4 5.6 5 7.0
309		996	*010	*024	*038	*052	*066	*080	*094	*108	*122	6 8.4
310	49	136	150	164	178	192	206	220	234	248	262	8 11.2
311		276	290	304	318	332	346	360	374	388	402	9 12.6
312		415	429	443	457	471	485	499	513	527	541	
313		554	568	582	596	610	624	638	651	665	679	
314		693	707	721	734	748	762	776	790	803	817	
315		831	845	859	872	886	900	914	927	941	955	
316		969	982	996	*010	*024	*037	*051	*065	*079	*092	13
317	50	106	120	133	147	161	174	188	202	215	229	
318		243	256	270	284	297	311	325	338	352	365	1 1.3
319		379	393	406	420	433	447	461	474	488	501	$\begin{array}{c cccc} 1 & 1.3 \\ 2 & 2.6 \\ 3 & 3.9 \end{array}$
320		515	529	542	556	569	583	596	610	623	637	3 3.9 4 5.2 5 6.5
321		651	664	678	691	705	718	732	745	759	772	6 7.8 7 9.1
322		786	799	813	826	840	853	866	880	893	907	7 9.1
323		920	934	947	961	974	987	*001	*014	*028	*041	8 10.4 9 11.7
324	51	055	068	081	095	108	121	135	148	162	175	,
325		188	202	215	228	242	255	268	282	295	308	
326		322	335	348	362	375	388	402	415	428	441	
327		455	468	481	495	508	521	534	548	561	574	
328		587	601	614	627	640	654	667	680	693	706	
329		720	733	746	759	772	786	799	812	825	838	12
330		851	865	878	891	904	917	930	943	957	970	1 1.2
331		983	996	*009	*022	*035	*048	*061	*075	*088	*101	3 3.6
332	52	114	127	140	153	166	179	192	205	218	231	3 3.6 4 4.8 5 6.0
333		244	257	270	284	297	310	323	336	349	362	5 6.0
334		375	388	401	414	427	440	453	466	479	492	6 7.2 7 8.4
335		504	517	530	543	556	569	582	595	608	621	8 9.6
336		634	647	660	673	686	699	711	724	737	750	9 10.8
337		763	776	789	802	815	827	840	853	866	879	
338		892	905	917	930	943	956	969	982		*007	
339	53	020	033	046	058	071	084	097	110	122	135	
340		148	161	173	186	199	212	224	237	250	263	
N	L	0	1	2	3	4	5	6	7	8	9	P. P.

Num. 340 to 379. Log. 531 to 579.

N	L	0	1	2	3	4	5	6	7	8	9	P. P.
340	53	148	161	173	186	199	212	224	237	250	263	
341		275	288	301	314	326	339	352	364	377	390	
342		403	415	428	441	4 53	466	479	491	504	517	
343		529	542	555	567	580	593	605	618	631	643	
344		656	668	681	694	706	719	732	744	757	769	13
345		782	794	807	820	832	845	857	870	882	895	
346		908	920	933	945	958	970	983	995	*008	*020	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
347	54	033	045	058	070	083	095	108	120	133	145	2 2.6 3 3.9 4 5.2
348		158	170	183	195	208	220	233	245	258	270	4 5.2 5 6.5
349		283	295	307	320	332	345	357	370	382	394	6 7.8
350		407	419	432	444	456	469	481	494	506	518	7 9.1 8 10.4
351		531	543	555	568	580	593	605	617	630	642	9 11.7
352		654	667	679	691	704	716	728	741	753	765	
353		777	790	802	814	827	839	851	864	876	888	
354		900	913	925	937	949	962	974	986	998	*011	
355	55	023	035	047	060	072	084	096	108	121	133	
356		145	157	169	182	194	206	218	230	242	255	12
357		267	279	291	303	315	328	340	352	364	376	
358		388	400	413	425	437	449	461	473	485	497	$\begin{array}{ c c c c } & 1 & 1.2 \\ 2 & 2.4 \end{array}$
359		509	522	534	546	558	570	582	594	606	618	3 3.6
360		630	642	654	666	678	691	703	715	727	739	4 4.8
361		751	763	775	787	799	811	823	835	847	859	5 6.0 7.2
362		871	883	895	907	919	931	943	955	967	979	7 8.4 8 9.6 9 10.8
363		991		*015	*027	*038	*050		*074	*086	*098	9 10.8
364	56	110	122	134	146	158	170	182	194	205	217	
365		229	241	253	265	277	289	301	312	324	336	
366		348	360	372	384	396	407	419	431	443	455	
367		467	478	490	502	514	526	538	549	561	573	
368		585	597	608	620	632	644	656	667	679	691	
369		703	714	726	738	750	761	773	785	797	808	11
370		820	832	844	855	867	879	891	902	914	926	1 1.1
371		937	949	961	972	984	996	*008		*031	*043	3 3.3
372	57	054	066	078	089	101	113	124	136	148	159	4 4.4
373		171	183	194	206	217	229	241	252	264	276	5 5.5 6.6
374		287	299	310	322	334	345	357	368	380	392	6 6.6 7 7.7 8 8.8 9 9.9
375		403	415	426	438	449	461	473	484	496	507	8 8.8 9.9
376		519	530	542	553	565	576	588	600	611	623	
377		634	646	657	669	680	692	703	715	726	738	
378		749	761	772	784	795	807	818	830	841	852	
379		864	875	887	898	910	921	933	944	955.	967	
380		978	990	*001	*013	*024	*035	*047	*058	*070	*081	
N	L	0	1	2	3	4	5	6	7	8	9	P. P.

Num. 380 to 419. Log. 579 to 623.

N	L	0	1	2	3	4	5	6	7	8	9	P.	P.
380	57	978	990	*001	*013	*024	*035	*047	*058	*070	*081		
381	58	092	104	115	127	138	149	161	172	184	195		
382	00	206	218	229	240	252	263	274	286	297	309		
383		320	331	343	354	365	377	388	399	410	422		
384		433	444	456	467	478	490	501	512	524	535		
904		100	111	100	101	1,0	100	001	012	021	000		11
385		54 6	557	569	580	591	602	614	625	636	647	1	1.1
386		659	670	681	692	704	715	726	737	749	760	1 2	2.2
387		771	782	794	805	816	827	838	850	861	872	3	3.3
388		883	894	906	917	928	939	950	961	973	984	4	4.4
389		995	*006	*017	*028	*040	*051	*062	*073	*084	*095	6	5.5 6.6
390	59	106	118	129	140	151	162	173	184	195	207	3 4 5 6 7 8 9	7.7
391	00	218	229	240	251	262	273	284	295	306	318	8	8.8 9.9
392		329	340	351	362	373	384	395	406	417	428	"	0.0
393		439	450	461	472	483	494	506	517	528	539		
394		550	561	572	583	594	605	616	627	638	649		
594		550	901	312	900	094	000	010	021	000	049		
395		660	671	682	693	704	715	726	737	748	759		
396		770	780	791	802	813	824	835	846	857	868	1	10
397		879	890	901	912	923	934	945	956	966	977		10
398		988	999	*010	*021	*032	*043	*054	*065	*076	*086	1	1.0
399	60	097	108	119	130	141	152	163	173	184	195	1 2 3 4 5 6 7 8	2.0
400		206	217	228	239	249	260	271	282	293	304	4 5	4.0 5.0
401		314	325	336	347	358	369	379	390	401	412	6	6.0
402		423	433	444	455	466	477	487	498	509	520	7	7.0
403		531	541	552	563	574	584	595	606	617	627	8 9	8.0 9.0
404		638	649	660	670	681	692	703	713	724	735		1 3.0
405		746	756	767	778	788	799	810	821	831	842	-	
406		853	863	874	885	895	906	917	927	938	949		
407		959	970	981		*002	*013	*023	*034		*055	1	
408	61	066	077	087	098	109	119	130	140	151	162	1	
409	01	172	183	194	204	215	225	236	247	257	268		
409		112	100	134	204	210	220	230	241	201	200		
410		278	289	300	310	321	331	342	352	363	374		
411		384	395	405	416	426	437	448	458	469	479		
412		490	500	511	521	532	542	553	563	574	584		
413		595	606	616	627	637	648	658	669	679	690		
414		700	711	721	731	742	752	763	773	784	794		
415		805	815	826	836	847	857	868	878	888	899		
416		909	920	930	941	951	962	972	982		*003		
417	62	014	024	034	045			076	086	097	107		
417	02	118	128	138	149	055 159	066 170	180	190	201	211		
419		221	232		252	263	273	284	294	304	315		
420		325	335	346	356	366	377	387	397	408	418		
N	L	0	1	2	3	4	5	6	7	8	9	P	. Р.

Num. 420 to 459. Log. 623 to 662.

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444	626364	325 428 531 634 737 839 941 043 144 246 347 448 649 749 949 949 048 345 444	335 439 542 644 747 849 951 053 155 256 357 458 659 959 058 157 256 355	346 449 552 655 757 859 961 063 165 266 367 468 669 769 969 068 167 266 365	356 459 562 665 767 870 972 073 175 276 377 478 579 679 779 879 979 078 177 276	366 469 572 675 778 880 982 083 185 286 387 488 589 689 789 889 988 088 187 286	377 480 583 685 788 890 992 094 195 296 397 498 599 699 799 899 998 098 197 296	387 490 593 696 798 900 *002 104 205 306 407 508 609 709 809 909 *008 108 207 306	397 500 603 706 808 910 *012 114 215 317 417 518 619 719 819 919 *018 118 217 316	408 511 613 716 818 921 *022 124 225 327 428 528 629 729 829 929 *028 128 227 326	418 521 624 726 829 931 *033 134 236 337 438 639 739 839 939 *038 137 237 335	1 1 1 2 2 3 3 4 4 5 5 6 6 7 7	.0000000
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449		531 634 737 839 941 043 144 246 347 448 649 749 849 949 948 147 246 345	542 644 747 849 951 053 155 256 357 458 659 759 859 959 058 157 256 355	552 655 757 859 961 063 165 266 367 468 568 669 769 869 969 068 167 266	562 665 767 870 972 073 175 276 377 478 579 679 779 879 979 078 177 276	572 675 778 880 982 083 185 286 387 488 589 988 088 187 286	583 685 788 890 992 094 195 296 397 498 599 699 799 899 998 098	593 696 798 900 *002 104 205 306 407 508 609 709 809 909 *008 108 207	603 706 808 910 *012 114 215 317 417 518 619 719 819 919 *018 118 217	613 716 818 921 *022 124 225 327 428 528 629 729 829 929 *028 128 227	624 726 829 931 *033 134 236 337 438 538 639 739 839 939 *038 137 237	1 1 1 2 2 3 3 4 4 5 5 6 6 7 7	0 0 0 0
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 461 462		634 737 839 941 144 246 347 448 548 649 749 849 949 048 147 246 345	644 747 849 951 053 155 256 357 458 659 759 859 959 959 058 157 256 355	655 757 859 961 063 165 266 367 468 568 669 769 869 969 968 167 266	665 767 870 972 073 175 276 377 478 579 679 779 879 979 078 177 276	675 778 880 982 083 185 286 387 488 589 689 789 988 088 187 286	685 788 890 992 094 195 296 397 498 599 799 899 998 098 197	696 798 900 *002 104 205 306 407 508 609 709 809 909 *008 108 207	706 808 910 *012 114 215 317 417 518 619 719 819 919 *018 118 217	716 818 921 *022 124 225 327 428 629 729 829 929 *028 128 227	726 829 931 *033 134 236 337 438 538 639 739 839 939 *038 137 237	1 1 1 2 2 3 3 4 4 5 5 6 6 7 7	0 0 0 0
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 461 461 461 461 461 461 461 461		737 839 941 043 144 246 347 448 548 649 749 849 949 048 147 246 345	747 849 951 053 155 256 357 458 659 759 859 959 058 157 256 355	757 859 961 063 165 266 367 468 568 669 769 869 969 068 167 266	767 870 972 073 175 276 377 478 579 679 779 879 979 078 177 276	778 880 982 083 185 286 387 488 589 689 789 988 088 187 286	788 890 992 094 195 296 397 498 599 699 799 899 998 197	798 900 *002 104 205 306 407 508 609 709 809 909 *008 108 207	808 910 *012 114 215 317 417 518 619 719 819 919 *018 118 217	818 921 *022 124 225 327 428 528 629 729 829 929 *028 128 227	931 *033 134 236 337 438 538 639 739 839 939 *038 137 237	1 1 1 2 2 3 3 4 4 5 5 6 6 7 7	0 0 0 0
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452		839 941 043 144 246 347 448 548 649 749 849 949 048 147 246 345	849 951 053 155 256 357 458 558 659 759 859 959 058 157 256 355	859 961 063 165 266 367 468 568 669 769 869 969 068 167 266	870 972 073 175 276 377 478 579 679 779 879 979 078 177 276	880 982 083 185 286 387 488 589 689 789 889 988 088 187 286	890 992 094 195 296 397 498 599 699 799 899 998 098 197	900 *002 104 205 306 407 508 609 709 809 909 *008 108 207	910 *012 114 215 317 417 518 619 719 819 919 *018 118 217	921 *022 124 225 327 428 528 629 729 829 929 *028 128 227	931 *033 134 236 337 438 538 639 739 839 939 *038 137 237	1 1 1 2 2 3 3 4 4 5 5 6 6 7 7	0 0 0 0
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452		941 043 144 246 347 448 548 649 749 849 949 048 147 246	951 053 155 256 357 458 558 659 759 859 959 058 157 256	961 063 165 266 367 468 568 669 769 869 969 068 167 266	972 073 175 276 377 478 579 679 779 879 979 078 177 276	982 083 185 286 387 488 589 689 789 889 988 088 187 286	992 094 195 296 397 498 599 699 799 899 998 098 197	*002 104 205 306 407 508 609 709 809 909 *008 108 207	*012 114 215 317 417 518 619 719 819 919 *018 118 217	*022 124 225 327 428 528 629 729 829 929 *028 128 227	*033 134 236 337 438 538 639 739 839 939 *038 137 237	1 1 1 2 2 3 3 4 4 5 5 6 6 7 7	0 0 0 0
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452		043 144 246 347 448 548 649 749 849 949 048 147 246	053 155 256 357 458 558 659 759 859 959 058 157 256	063 165 266 367 468 568 669 769 869 969 068 167 266	073 175 276 377 478 579 679 779 879 979 078 177 276	083 185 286 387 488 589 689 789 889 988 088 187 286	094 195 296 397 498 599 699 799 899 998 098 197	104 205 306 407 508 609 709 809 909 *008 108 207	114 215 317 417 518 619 719 819 919 *018 118 217	124 225 327 428 528 629 729 829 929 *028 128 227	134 236 337 438 538 639 739 839 939 *038 137 237	1 1 1 2 2 3 3 4 4 5 5 6 6 7 7	0 0 0 0
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452		144 246 347 448 548 649 749 849 949 048 147 246	155 256 357 458 558 659 759 859 959 058 157 256 355	165 266 367 468 568 669 769 869 969 068 167 266	175 276 377 478 579 679 779 879 979 078 177 276	185 286 387 488 589 689 789 889 988 088 187 286	195 296 397 498 599 699 799 899 998 098 197	205 306 407 508 609 709 809 909 *008 108 207	215 317 417 518 619 719 819 919 *018 118 217	225 327 428 528 629 729 829 929 *028 128 227	236 337 438 538 639 739 839 939 *038 137 237	1 1 1 2 2 3 3 4 4 5 5 6 6 7 7	0 0 0 0
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	64	246 347 448 548 649 749 849 949 048 147 246	256 357 458 558 659 759 859 959 058 157 256 355	266 367 468 568 669 769 869 969 068 167 266	276 377 478 579 679 779 879 979 078 177 276	286 387 488 589 689 789 889 988 088 187 286	296 397 498 599 699 799 899 998 098	306 407 508 609 709 809 909 *008 108 207	317 417 518 619 719 819 919 *018 118 217	327 428 528 629 729 829 929 *028 128 227	337 438 538 639 739 839 939 *038 137 237	1 1 1 2 2 3 3 4 4 5 5 6 6 7 7	0 0 0 0
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	64	347 448 548 649 749 849 949 048 147 246	357 458 558 659 759 859 959 058 157 256 355	367 468 568 669 769 869 969 068 167 266	377 478 579 679 779 879 979 078 177 276	387 488 589 689 789 889 988 088 187 286	397 498 599 699 799 899 998 098	407 508 609 709 809 909 *008 108 207	417 518 619 719 819 919 *018 118 217	428 528 629 729 829 929 *028 128 227	438 538 639 739 839 939 *038 137 237	1 1 1 2 2 3 3 4 4 5 5 6 6 7 7	0 0 0 0
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	64	448 548 649 749 849 949 048 147 246	458 558 659 759 859 959 058 157 256	468 568 669 769 869 969 068 167 266	478 579 679 779 879 979 078 177 276	488 589 689 789 889 988 088 187 286	498 599 699 799 899 998 098 197	508 609 709 809 909 *008 108 207	518 619 719 819 919 *018 118 217	528 629 729 829 929 *028 128 227	538 639 739 839 939 *038 137 237	2 2 3 3 4 4 5 5 6 6 7 7	3.0 3.0 3.0 3.0 3.0
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	64	548 649 749 849 949 048 147 246	558 659 759 859 959 058 157 256	568 669 769 869 969 068 167 266	579 679 779 879 979 078 177 276	589 689 789 889 988 088 187 286	599 699 799 899 998 098 197	609 709 809 909 *008 108 207	619 719 819 919 *018 118 217	629 729 829 929 *028 128 227	639 739 839 939 *038 137 237	3 3 4 4 5 6 7 7 8 9	0.0
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	64	649 749 849 949 048 147 246	659 759 859 959 058 157 256 355	669 769 869 969 068 167 266	679 779 879 979 078 177 276	689 789 889 988 088 187 286	699 799 899 998 098 197	709 809 909 *008 108 207	719 819 919 *018 118 217	729 829 929 *028 128 227	739 839 939 *038 137 237	5 5 6 6 7 7 8 8 8 9 9 9	0.0
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	64	749 849 949 048 147 246	759 859 959 058 157 256 355	769 869 969 068 167 266	779 879 979 078 177 276	789 889 988 088 187 286	799 899 998 098 197	909 *008 108 207	819 919 *018 118 217	829 929 *028 128 227	839 939 *038 137 237	8 8 9 9	0.0
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	64	849 949 048 147 246 345	859 959 058 157 256 355	869 969 068 167 266	879 979 078 177 276	889 988 088 187 286	899 998 098 197	909 *008 108 207	919 *018 118 217	929 *028 128 227	939 *038 137 237	7 7 8 8 8 9 9 9	.0
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	64	949 048 147 246 345	959 058 157 256 355	969 068 167 266	979 078 177 276	988 088 187 286	998 098 197	*008 108 207	*018 118 217	*028 128 227	*038 137 237	9 9	.0
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	64	048 147 246 345	058 157 256 355	068 167 266	078 177 276	088 187 286	098 197	108 207	118 217	128 227	137 237	100	
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452	64	147 246 345	157 256 355	167 266	177 276	187 286	197	207	217	227	237	1-	
439 440 441 442 443 444 445 446 447 448 449 450 451 452		246 345	256 355	266	27 6	286						1=1	
440 441 442 443 444 445 446 447 448 449 450 451 452		345	355				296	306	316	326	335		
441 442 443 444 445 446 447 448 449 450 451 452				365	375	385							
442 443 444 445 446 447 448 449 450 451 452		444				000	395	404	414	424	434		
443 444 445 446 447 448 449 450 451 452			454	464	473	483	493	503	513	523	532		
444 445 446 447 448 449 450 451 452		542	552	562	572	582	591	601	611	621	631		
445 446 447 448 449 450 451 452		640	650	660	670	680	689	699	709	719	729		
446 447 448 449 450 451 452		738	748	758	768	777	787	797	807	816	826		
447 448 449 450 451 452		836	846	856	865	875	885	895	904	914	924		9
448 449 450 451 452		933	943	953	963	972	982	992	*002	*011	*021	1 0	.9
449 450 451 452	65	031	040	050	060	070	079	089	099	108	118	$egin{array}{c c} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{array}$.8
450 451 452		128	137	147	157	167	176	186	196	205	215	4 3	.6
451 452		225	234	244	254	263	273	283	292	302	312	$ \begin{array}{ c c c c } 4 & 3 \\ 5 & 4 \\ 6 & 5 \\ 7 & 6 \end{array} $.5 .4
452		321	331	341	350	360	369	379	389	398	40 8	7 6	.3
		418	427	437	447	456	466	475	485	495	504	8 7 9 8	.2 .1
453		514	523	533	543	552	562	571	581	591	600	9 9	.1
		610	619	629	639	648	658	667	677	686	696		
454		706	715	725	734	744	753	763	772	782	792		
455		801	811	820	830	839	849	858	868	877	887		
456		896	906	916	925	935	944	954	963	973	982		
457		992	*001	*011	*020	*030	*039	*049	*058	*068	*077		
458	66	087	096	106	115	124	134	143	153	162	172		
459		181	191	200	210	219	229	238	247	257	266		
460			285	295	304	314	323	332	342	351	361		
N		276			3	4	5	6	7	8	9	P. P	

Num. 460 to 499. Log. 662 to 698.

N	L	0	1	2	3	4	5	6	7	8	9	P.	Р.
460	66	276	285	295	304	314	323	332	342	351	361		
461		370	380	389	398	408	417	427	436	445	455		
462		464	474	483	492	502	511	521	530	539	549		
463		558	567	577	586	596	605	614	624	633	642		
464		652	661	671	680	689	699	708	717	727	736		
465		745	755	764	773	783	792	801	811	820	829		
466		839	848	857	867	876	885	894	904	913	922		
467		932	941	950	960	969	978	987	997	*006	*015		
468	67	025	034	043	052	062	071	080	089	099	108		4.0
469		117	127	136	145	154	164	173	182	191	201		10
470		210	219	228	237	247	256	265	274	284	293	1 1	1.0
471		302	311	321	330	339	348	357	367	376	385	3	2.0 3.0
472		394	403	413	422	431	440	449	459	468	477	4	4.0
473		486	495	504	514	523	532	541	550	560	569	2 3 4 5 6 7	5.0
474		578	587	596	605	614	624	633	642	651	660	7	7.0
475		669	679	688	697	706	715	724	733	742	752	8 9	8.0 9.0
476		761	770	779	788	797	806	815	825	834	843		
477		852	861	870	879	888	897	906	916	925	934		
478		943	952	961	970	979	988	997	*006	*015	*024		
479	68	034	043	052	061	070	079	088	097	106	115		
480		124	133	142	151	160	169	178	187	196	205		
481		215	224	233	242	251	260	269	278	287	296		
482		305	314	323	332	341	350	359	368	377	386		
483		395	404	413	422	431	440	449	458	467	476		
484		485	494	502	511	520	529	53 8	547	556	565		^
485		574	583	592	601	610	619	628	637	646	655		9
486		664	673	681	690	699	708	717	726	735	744	1	0.9
487		753	762	771	780	789	797	806	815	824	833	3	1.8 2.7
488		842	851	860	869	878	886	895	904	913	922	4	3.6
489		931	940	949	958	966	975	984	993	*002	*011	1 2 3 4 5 6 7 8	4.5 5.4
490	69	020	028	037	046	055	064	073	082	090	099	7	6.3 7.2
491		108	117	126	135	144	152	162	170	179	188	8 9	$ \begin{array}{c} 7.2 \\ 8.1 \end{array} $
492		197	205	214	223	232	241	249	258	267	276		1 0.4
493		285	294	302	311	320	329	338	346	355	364		
494		373	381	390	399	408	417	425	434	443	452		
495		461	469	478	487	496	504	513	522	531	539		
496		548	557	566	574	583	592	601	609	618	627		
497		636	644	653	662	671	679	688	697	705	714		
498 499		723 810	732 819	740 827	749 836	758 845	767 854	775 862	784 871	793 880	801 888		
500		897	906	914	923	932	940	949	958	966	975		
	-	·											
N	L	0	1	2	3	4	5	6	7	8	9	Р.	P

Num. 500 to 539. Log. 698 to 732.

N	L	0	1	2	3	4	5	6	7	8	9	P.	P.
500	69	897	906	914	922	932	940	949	958	966	975		
501		984	992	*001	*010	*018	*027	*036	*044	*053	*062		
502	70	070	079	088	096	105	114	122	131	140	148		
503		157	165	174	183	191	200	209	217	226	234		
504		243	252	260	269	278	286	295	303	312	321		
505		329	338	346	355	364	372	381	389	398	406		
506		415	424	432	441	449	458	467	475	484	492		
507		501	509	518	526	535	544	552	561	569	578		
508		586	595	603	612	621	629	638	646	655	663		9
509		672	680	689	697	706	714	723	731	740	749		
510		757	766	774	783	791	800	808	817	825	834	1 2	0.9
511		842	851	859	868	876	885	893	902	910	919	3	2.7
512		927	935	944	952	961	969	978	986	995	*003	2 3 4 5	3.6 4.5
513	71	012	020	029	037	046	054	063	071	079	088	6 7	5.4
514		096	105	113	122	130	139	147	155	164	172	7 8	6.3
515		181	189	198	206	214	223	231	240	248	257	9	7.2 8.1
516		265	273	282	290	299	307	315	324	332	341		
517		349	357	366	374	383	391	399	408	416	425		
518		433	441	450	458	466	475	483	492	500	508		
519		517	525	533	542	550	559	567	575	584	592		
520		600	609	617	625	634	642	650	659	667	675		
521		684	692	700	709	717	725	734	742	750	759		
522		767	775	784	792	800	809	817	825	834	842		
523		850	858	867	875	883	892	900	908	917	925		
524		933	941	950	958	966	975	983	991		*008		8
525	72	016	024	032	041	049	057	066	074	082	090		
526		099	107	115	123	132	140	148	156	165	173	1	0.8
527		181	189	198	206	214	222	230	239	247	255	3	1.6 2.4
528		263	272	280	288	296	304	313	321	329	337	4	3.2
529		346	354	362	370	378	387	395	403	411.	419	2 3 4 5 6 7	4.0
530		428	436	444	452	460	469	477	485	493	501	7	5.6
531		509	518	526	534	542	550	558	567	575	583	8 9	6.4 7.2
532		591	599	607	616	624	632	640	648	656	665	9	1.4
533		673	681	689	697	705	713	722	730	738	746		
534		754	762	770	779	787	795	803	811	819	827		
535		835	843	852	860	868	876	884	892	900	908		
536		916	925	933	941	949	957	965	973	981	989		
537					*022		*038	*046			*070		
538	73	078	086	094	102	111	119	127	135	143	151		
539		159	167	175	183	191	199	207	215	223	231		
540		239	247	255	263	272	280	288	296	304	312		
N	L	0	1	2	3	4	5	6	7	8	9	P.	D

Num. 540 to 579. Log. 732 to 763.

N	L	0	1	2	3	4	. 5	6	7	8	9	P	. P.
540	73	239	247	255	263	272	280	288	3 296	304	312		
541		320	328	336	344	352	360	368	376	384	392		
542		400	408	416	424	432	440	448	456	464	472		
543		480	488	496	504	512	520	528	536	544	552		
544		560	568	576	584	592	600	608	616	624	632		
545		640	648	656	664	672	679						
546		719	727	735	743	751	759						
547		799	807	815	823	830	838						
548		878	886	894	902	910	918						8
549		957	965	973	981	989	997	*005	*013	*020	*028		
550	74	036	044	052	060	068	076				107	$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	$\begin{vmatrix} 0.8 \\ 1.6 \end{vmatrix}$
551		115	123	131	139	147	155	162		178	186	3	2.4
552		194	202	210	218	225	233	241		257	265	5	3.2
553		273	280	288	296	304	312	320		335	343	6	4.8
554		351	359	367	374	382	390	398	406	414	421	4 5 6 7 8	5.6
555		429	437	445	453	461	468	476	484	492	500	9	7.2
556		507	515	523	531	539	547	554	562	570	578		
557		586	593	601	609	617	624	632	640	648	656		
558		663	671	679	687	695	702	710	718	726	733		
559		741	749	757	764	772	780	788	796	803	811		
560		819	827	834	842	850	858	865	873	881	889		
561		896	904	912	920	927	935	943	950	958	966		
562		974	981	989		*005				*035	*043		
563	75	051	059	066	074	082	089	097	105	113	120		
564		128	136	143	151	159	166	174	182	189	197		7
565		205	213	220	228	236	243	251	259	266	274		1
566		282	289	297	305	312	320	328	335	343	351	1	0.7
567		358	366	374	381	389	397	404	412	420	427	$\frac{2}{3}$	$\frac{1.4}{2.1}$
568		435	442	450	458	465	473	481	488	496	504	4	2.8
569		511	519	526	534	542	549	557	565	572	580	5 6 7	$\frac{3.5}{4.2}$
570		587	595	603	610	618	626	633	641	648	656	7	4.9
571		664	671	679	686	694	702	709	717	724	732	8 9	5.6 6.3
572		740	747	755	762	770	778	785	793	800	808	9	0.5
573		815	823	831	838	846	853	861	868	876	884		
574		891	899	906	914	921	929	937	944	952	959		
575		967	974	982	989	997	*005		*020		ī		
576	76	042	050	057	065	072	080	087	095	103	110		
577		118	125	133	140	148	155	163	170	178	185		
578		193	200	208	215	223	230	238	245	253	260		
579		268	275	283	290	298	305	313	320	328	335		
580		343	350	358	365	373	380	388	395	403	410		
N	L	0	1	2	3	4	5	6	7	8	9	P.	P.

Num. 580 to 619. Log. 763 to 792.

N	L	0	1	2	3	24.0	5	6	,7	8	9	P. P.
580	76	343	350	358	365	373	380	388	395	403	410	8
581		418	425	433	440	448	455	462	470	477	485	
582		492	500	507	515	522	530	537	545	552	559	$\begin{array}{ c c c c c }\hline 1 & 0.8 \\ 2 & 1.5 \\ \hline \end{array}$
583		567	574	582	589	597	604	612	619	626	634	3 2.4
584		641	649	656	664	671	678	686	693	701	708	2 1.5 3 2.4 4 3.2 5 4.0 6 4.8
585		716	723	730	738	745	753	760	768	775	782	6 4.8 7 5.6
586		790	797	805	812	819	827	834	842	849	856	8 6.4
587		864	871	879	886	893	901	908	916	923	930	9 7.2
588		938	945	953	960	967	975	982	989	997	*004	
589	77	012	019	026	034	041	048	056	063	070	078	
590		085	093	10 0	107	115	122	129	137	144	151	
591		159	166	173	181	188	195	203	210	217	225	
592		232	240	247	254	262	269	276	283	291	298	
593		305	313	320	327	335	342	349	357	364	371	
594		379	386	393	401	408	415	422	430	437	444	
595		452	459	466	474	481	488	495	503	510	517	
596		525	532	539	546	554	561	568	576	583	590	
597		597	605	612	619	627	634	641	648	656	663	7
598		670	677	685	692	699	706	714	721	728	735	
599		743	750	757	764	772	779	786	793	801	808	$\begin{array}{ c c c c c }\hline 1 & 0.7 \\ 2 & 1.4 \\ \hline \end{array}$
600		815	822	830	837	844	851	859	866	873	880	$\begin{array}{ c c c c }\hline 2 & 1.4 \\ 3 & 2.1 \\ 4 & 2.8 \\ 5 & 3.5 \\ 6 & 4.2 \\\hline \end{array}$
601		887	895	902	909	916	924	931	938	945	952	5 3.5
602		960	967	974	981	988	996	*003	*010	*017	*025	6 4.2
603	78	032	039	046	053	061	068	075	082	089	097	7 4.9
604		104	111	118	125	132	140	147	154	161	168	8 5.6 9 6.3
605		176	183	190	197	204	211	219	226	233	240	
606		247	254	262	269	276	283	290	297	305	312	
607		319	326	333	340	347	355	362	369	376	383	
608		390	398	405	412	419	426	433	440	447	455	
609		462	469	476	483	490	497	504	512	519	526	
610		533	540	547	554	561	569	576	583	590	597	
611		604	611	618	625	633	640	647	654	661	668	
612		675	682	689	696	704	711	718	725	732	739	7
613		746	753	760	767	774	781	789	796	802	810	
614		817	824	831	838	845	852	859	866	873	880	
615		888	895	902	909	916	923	930	937	944	951	
616		958	965	972	979	986	993		*007	*014		
617	79	029	036	043	050	057	064	071	078	085	092	
618		099	106	113	120	127	134	141	148	155	162	
619		169	176	183	190	197	204	211	218	225	232	
620		239	246	253	260	267	274	281	288	295	302	
N	L	0	1	2	3	4	5	6	7	8	9	P. P.

Num. 620 to 659. Log. 792 to 819.

N	- L	0	1	2	3	4	5	6	7	8	9	P. P.
620	79	239	246	253	260	267	274	281	288	295	302	
621		309	316	323	330	337	344	351	358	365	372	
622		379	386	393	400	407	414	421	428	435	442	
623	9	449	456	463	470	477	484	491	498	505	511	
624		518	525	532	539	546	553	560	567	574	581	
625		588	595	602	609	616	623	630	637	644	6 50	
626		657	664	671	678	685	692	699	706	713	720	
627		727	734	741	748	754	761	768	775	782	789	
628		796	803	810	817	824	831	837	844	851	858	
629		865	872	879	886	893	900	906	913	920	927	
630		934	941	948	955	962	969	975	982	989	996	
631	80	003	010	017	024	030	037	044	051	058	065	
632		072	079	085	092	099	106	113	120	127	134	1
633		140	147	154	161	168	175	182	188	195	202	
634		209	216	223	229	236	243	250	257	264	271	-
635		277	284	291	298	305	312	318	325	332	339	
636		346	353	359	366	373	380	387	393	400	407	_
637		414	421	428	434	441	448	455	462	468	475	7
638		482	489	496	502	509	516	523	530	536	543	1 0.7
639		550	557	564	570	577	584	591	. 598	604	611	$\begin{array}{ c c c c }\hline 2 & 1.4 \\ 3 & 2.1 \\ 4 & 2.8 \\ \hline \end{array}$
640		618	625	632	638	645	652	659	665	672	679	4 2.8 5 3.5
641		686	693	699	706	713	720	726	733	740	747	6 4.2
642		754	760	767	774	781	787	794	801	808	814	7 4.9 8 5.6
643		821	828	835	841	848	855	862	868	875	882	8 5.6 9 6.3
644		889	895	902	909	916	922	929	936	943	949	0 1 010
645		956	963	969	976	983	990		*003			
646	81	023	030	027	043	050	057	064	070	077	084	
647		090	097	104	111	117	124	131	137	144	151	
648		158	164	171	178	184	191	198	204	211	218	
649		224	231	238	245	251	258	265	271	278	285	
650		291	298	305	311	318	325	331	338	345	351	
651		358	36 5	371	378	385	391	398	405	411	418	
652		425	431	438	445	451	458	46 5	471	478	485	
653		491	498	505	511	518	525	531	538	544	551	
654		558	564	571	578	584	591	598	604	611	617	
655		624	631	637	644	651	657	664	671	677	684	
656		690	697	704	710	717	723	730	737	743	750	
657		757	763	770	776	783	790	796	803	809	816	
658 659		823 889	829 895	836 902	908	849 915	856 921	862 928	869 935	875 941	882 948	
660		954	961	968	974	981	987		*000			
N	L	0	1	2	3	4	5	6	7	8	9	P. P.

Num. 660 to 699. Log. 819 to 845.

N	L	0	1	2	3	4	5	6	7	8	9	P. P.
660	81	954	961	968	974	981	987	994	*000	*007	*014	7
661	82	020	027	033	040	046	053	060	066	073	079	
662	02	086	092	099	105	112	119	125	132	138	145	1 0.7
663		151	158	164	171	178	184	191	197	204	210	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
664		217	223	230	236	243	249	256	263	269	276	4 2.8
001		411	220	200	200	210	213	200	200	200	210	2 1.4 3 2.1 4 2.8 5 3.5 6 4.2 7 4.9 8 5.6 9 6.3
665		282	289	295	302	308	315	321	328	334	341	6 4.2 7 4.9
666		347	354	360	367	373	380	387	393	400	406	8 5.6
667	100	413	419	426	432	439	445	452	458	465	471	8 5.6 9 6.3
668		478	484	491	497	504	510	517	523	530	536	
669		543	549	556	562	569	575	582	588	595	601	
670		607	614	620	627	633	640	646	653	659	666	
671		672	679	685	692	698	705	711	718	724	730	
672		737	743	750	756	763	769	776	782	789	795	
673		802	808	814	821	827	834	840	847	853	860	
674		866	872	879	885	892	898	905	911	918	924	
675		930	937	943	950	956	963	969	975	982	988	
676				*008			*027	*033		*046		
677	83	059	065	072	078	085	091	097	104	110	117	6
678		123	129	136	142	149	155	161	168	174	181	1100
679		187	193	200	206	213	219	225	232	238	245	$\begin{array}{ c c c c c } & 1 & 0.6 \\ 2 & 1.2 \end{array}$
680		251	257	264	270	276	283	289	296	302	308	3 1.8
681		315	321	327	334	340	347	353	359	366	372	4 2.4 5 3.0
682		378	385	391	398	404	410.	417	423	429	436	6 3.6
683		442	448	455	461	467	474	480	487	493	499	7 4.2
684		506	512	518	525	531	537	544	550	556	563	2 1.2 3 1.8 4 2.4 5 3.0 6 3.6 7 4.2 8 4.8 9 5.4
685		569	575	582	588	594	601	607	613	620	626	
686		632	639	645	651	658	664	670	677	683	689	-
687		696	702	708	715	721	727	734	740	746	753	
688		759	765	771	778	784	790	797	803	809	816	
689		822	828	835	841	847	853	860	866	872	879	
690		885	891	897	904	910	916	923	929	935	942	
691		948	954	960	967	973	979	985	992	998	*004	
692	84	011	017	023	029	036	042	048	055	061	067	
693		073	080	086	092	098	105	111	117	123	130	
694		136	142	148	155	161	167	173	180	186	192	
695		198	205	211	217	223	230	236	242	248	255	
696		261	267	273	280	286	292	298	305	311	317	
697		323	330	336	342	348	354	361	367	373	379	
698		386	392	398	404	410	417	423	429	435	442	
699		448	454	460	466	473	479	485	491	497	504	
700		510	516	522	528	535	541	547	553	559	566	
N	L	0	1	2	3	4	5	6	7	8	9	P. P.

Num. 700 to 739. Log. 845 to 869.

N	L	0	1	2	3	4	5	6	7	8	9	P.	Р.
700	84	510	516	522	528	535	541	547	553	559	566		
701		572	578	584	590	597	603	609	615	621	628		
702		634	640	646	652	658	665	671	677	683	689		
703		696	702	708	714	720	726	733	739	745	751		
704		757	763	770	776	782	788	794	800	807	813		
705		819	825	831	837	844	850	856	862	868	874		
706		880	887	893	899	905	911	917	924	930	936		
707		942	948	954	960	967	973	979	985	991	997		
708	85	003	009	016	022	028	034	040	046	052	058		
709		065	071	077	083	089	095	101	107	114	120		
710		126	132	138	144	150	156	163	169	175	181		
711		187	193	199	205	211	217	224	230	236	242		
712		248	254	260	266	272	278	285	291	297	303		
713		309	315	321	327	333	339	345	352	358	364		
714		370	376	382	388	394	400	406	412	418	425		
715		431	437	443	449	455	461	467	473	479	485		
716		491	497	503	509	516	522	528	534	540	546		
717		552	558	564	570	576	582	588	594	600	606		6
718		612	618	625	631	637	643	649	655	661	667	1	0.6
719		673	679	685	691	697	703	709	715	721	727	1 2 3 4 5 6 7 8	1.2 1.8
720		733	739	745	751	757	763	769	775	781	788	4	2.4
721		794	800	806	812	818	824	830	836	842	848	5	3.0 3.6
722		854	860	866	872	878	884	890	896	902	908	. 7	4.2
723 724		914	920	926	932	938	944	950 *010	956	962 *022	968	8	4.8
		974	980	986	992	998			*016			9	5.4
725	86	034	040	046	052	058	064	070	076	082	088		
726		094	100	106	112	118	124	130	136	141	147		
727		153	159	165	171	177	183	189	195	201	207		
728		213	219	225	231	237	243	249	255	261	267		
729		273	279	285	291	297	303	308	314	320	326		
730		332	338	344	350	356	362	368	374	380	386		
731		392	398	404	410	415	421	427	433	439	445		
732		451	457	463	469	475	481	487	493	499	504		
733 734		510 570	516	522	528 587	534	540	546 605	552	558	564		
			576	581		593	599		611	617	623		
735		629	635	641	646	652	658	664	670	676	682		
736		688	694	700	705	711	717	723	729	735	741		
737		747	753	759	764	770	776	782	788	794	800		
738 739	1	806	812	817	823	829	835	841	847	853	859		
		864	870	876	882	888	894	900	906	911	917		
740		923	929	935	941	947	953	958	964	970	976		
N	L	0	1	2	3	4	5	6	7	8	9	P.	P.

Num. 740 to 779. Log. 869 to 892.

					• • •	0 .0					0,72	•		
	N	L	0	1	2	3	4	5	6	7	8	9	P	. P.
7	40	86	923	929	935	941	947	953	958	964	970	976		
	741		982	988	994	999	*005	*011	*017	*023	*029	*035		
	742	87	040	046	052	058	064	070	075	081	087	093		
	743		099	105	111	116	122	128	134	140	146	151		
	744		157	163	169	175	181	186	192	198	204	210		
	745		216	221	227	233	239	245	251	256	262	268		
	746		274	280	286	291	297	303	309	315	320	326		
	747		332	338	344	349	355	361	367	373	379	384		
	748		390	396	402	408	413	419	425	431	437	442	1	
,	749		448	454	460	466	471	477	483	489	495	500		
	50		506	512	518	523	529	535	541	547	552	558		
	751		564	570	576	581	587	593	599	604	610	616		
	752		622	628	633	639	645	651	656	662	668	674		
	753		679	685	691	697	703	708	714	720	726	731		
	754		737	743	749	754	760	766	772	777	783	789		
	755		795	800	806	812	818	823	829	835	841	846		
	756		852	858	864	869	875	881	887	892	898	904		
	757		910	915	921	927	933	938	944	950	955	961		6
	758		967	973	978	984	990		*001	*007		*018	1	0.6
	759	88	024	030	036	041	047	053	058	064	070	076	$\begin{vmatrix} \frac{1}{2} \\ 3 \end{vmatrix}$	1.2 1.8
	60		081	087	093	098	104	110	116	121	127	133	4 5	2.4
	761		138	144	150	156	161	167	173	178	184	190	5	3.0
,	762		195	201	207	213	218	224	230	235	241	247	6 7	3.6 4.2
	763		252	258	264	270	275	281	287	292	298	304	8 9	4.8
,	764		309	315	321	326	332	338	343	349	355	360	9	5.4
,	765		366	372	377	383	389	395	400	406	412	417		
,	766		423	429	434	440	446	451	457	463	468	474		
,	767		480	485	491	497	502	508	51 3	519	525	530		
,	768		536	542	547	553	559	564	570	576	581	587		
,	769		593	598	604	610	615	621	627	632	638	643		
7	70		649	655	660	666	672	677	683	689	694	700		
,	771		705	711	717	722	728	734	739	745	750	756		
,	772		762	767	773	779	784	790	795	801	807	812		
,	773		818	824	829	835	840	846	852	857	863	868		
,	774		874	880	885	891	897	902	908	913	919	925		
	775		930	936	941	947	953	958	964	969	975	981		
	776	00	986	992		*003	*009	*014	*020			*037		
	777	89	042	048	053	059	064	070	076	081	087	092		
	778		098	104	109	115	120	126	131	137	143	148		
	779		154	159	165	170	176	182	187	193	198	204		
7	80		209	215	221	226	232	237	243	248	254	260		
	N	L	0	1	2	3	4	5	6	7	8	9	P.	P.

Num. 780 to 819. Log. 892 to 913.

N	L	0	i	2	3	4	5	6	7	8	9	P. P.
780	89	209	215	221	226	232	237	243	248	254	260	
781		265	271	276	282	287	293	298	304	310	315	
782		321	326	332	337	343	348	354	360	365	371	
783		376	382	387	393	398	404	409	415	421	426	
784		432	437	443	448	454	459	465	470	476	481	
785		487	492	498	504	509	515	520	526	531	537	
786		542	548	553	559	564	570	575	581	586	592	
787		597	603	609	614	620	625	631	636	642	647	
788		653	658	664	669	675	680	686	691	697	702	,
789		708	713	719	724	730	735	741	746	752	757	
790		763	768	774	779	785	790	796	801	807	812	
791		818	823	829	834	840	845	851	856	862	867	
792		873	878	883	889	894	900	905	911	916	922	
793		927	933	938	944	949	955	960	966	971	977	
794		982	988	993	998	*004	*009	*015	*020	*026	*031	
795	90	037	042	048	053	059	064	069	075	080	086	
796		091	097	102	108	113	119	124	129	135	140	
797		146	151	157	162	168	173	179	184	189	195	5
798		200	206	211	217	222	227	233	238	244	249	1 0.5
799		255	260	266	271	276	282	287	293	298	304	1.0 3 1.5 4 2.0 5 2.5 6 3.0 7 3.5
800		309	314	320	325	331	336	342	347	352	358	$\begin{bmatrix} 3 & 1.5 \\ 4 & 2.0 \\ 5 & 2.5 \end{bmatrix}$
801		363	369	374	380	385	390	396	401	407	412	5 2.5
802		417	423	428	434	439	445	450	455	461	466	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
803		472	477	482	488	493	499	504	509	515	520	8 4.0
804		526	531	536	542	547	553	558	563	569	574	9 4.5
805		580	585	590	596	601	607	612	617	623	628	
806		634	639	644	650	655	660	666	671	677	682	
807		687	693	698	703	709	714	720	725	730	736	
808		741	747	752	757	763	768	773	779	784	789	
809		795	800	806	811	816	822	827	832	838	843	
810		849	854	859	865	870	875	881	886	891	897	
811		902	907	913	918	924	929	934	940	945	950	
812		956	961	966	972	977	982	988	993		*004	
813	91	009	014	020	025	030	036	041	046	052	057	
814		062	068	073	078	084	089	094	100	105	110	
815		116	121	126	132	137	142	148	153	158	164	
816		169	174	180	185	190	196	201	206	212	217	
817		222	228	233	238	243	249	254	259	265	270	
818 819		275 328	281 334	286 339	291 344	297 350	302 355	307 360	312 365	318 371	323 376	
820		381		392								
			387		397	403	408	413	418	424	429	
N	L	0	1	2	3	4	5	6	7	8	9	P. P.

L. of C.

Num. 820 to 859. Log. 913 to 934.

N	L	0	1	2	3	4	5	6	7	8	9	P. P.
820	91	381	387	392	397	403	408	413	418	424	429	
821		434	440	445	450	455	461	466	471	477	482	
822		487	492	498	503	508	514	519	524	529	535	
823		540	545	551	556	561	566	572	577	582	587	
824		593	598	603	609	614	619	624	630	635	640	
825		645	651	656	661	666	672	677	682	687	693	
826		698	703	709	714	719	724	730	735	740	745	
827		751	756	761	766	772	777	782	787	793	798	
828		803	808	814	819	824	829	834	840	845	850	
829		855	861	866	871	876	882	887	892	897	903	
830		908	913	918	924	929	934	939	944	950	955	
831		960	965	971	976	981	986	991	997	*002	*007	
832	92	012	018	023	028	033	038	044	049	054	059	
833		065	070	075	080	085	091	096	101	106	111	
834		117	122	127	132	137	143	148	153	158	163	
835		169	174	179	184	189	195	200	205	210	215	
836		221	226	231	236	241	247	252	257	262	267	
837		273	278	283	288	293	298	304	309	314	319	5
838		324	330	335	340	345	350	355	361	366	371	1 0.5
839		376	381	387	392	397	402	407	412	418	423	2 1.0 3 1.5 4 2.0
840		428	433	438	443	449	454	459	464	469	474	4 2.0
841		480	485	490	495	500	505	511	516	521	526	
842		531	536	542	547	552	557	562	567	572	578	6 3.0
843	1	583	588	593	598	603	609	614	619	624	629	5 2.5 6 3.0 7 3.5 8 4.0
844		634	639	645	650	655	660	665	670	675	681	9 4.5
845		686	691	696	701	706	711	716	722	727	732	
846		737	742	747	752	758	763	768	773	778	783	
847		788	793	799	804	809	814	819	824	829	834	
848		840	845	850	855	860	865	870	875	881	886	
849		891	896	901	906	911	916	921	927	932	937	
850		942	947	952	957	962	967	973	978	983	988	
851		993	998	*003	*008	*013	*018	*024	*029	*034	*039	
852	93	044	049	054	059	064	069	075	080	085	090	
853		095	100	105	110	115	120	125	131	136	141	
854		146	151	156	161	166	171	176	181	186	192	
855		197	202	207	212	217	222	227	232	237	242	
856		247	252	258	263	268	273	278	283	288	293	1
857		298	303	308	313	318	323	328	334	339	344	7
858		349	354	359	364	369	374	379	384	389	394	1
859		399	404	409	414	420	425	430	435	440	445	
860		450	455	460	465	470	475	480	485	490	495	
N	L	0	1	2	3	4	5	6	7	8	9	P. P.

Num. 860 to 899. Log. 934 to 954.

N	L	0	1	2	3	4	5	6	7	8	9	P. P.	
860	93	450	455	460	465	470	475	480	485	490	495		
861		500	505	510	515	520	526	531	536	541	546		
862		551	556	561	566	571	576	581	586	591	596		
863		601	606	611	616	621	626	631	636	641	646		
864		651	656	661	666	671	676	682	687	692	697		
865		702	707	712	717	722	727	732	737	742	747		
866		752	757	762	767	772	777	782	787	792	797		
867		802	807	812	817	822	827	832	837	842	847		
868		852	857	862	867	872	877	882	887	892	897		
869		902	907	912	917	922	927	932	937	942	947		
870		952	957	962	967	972	977	982	987	992	997		
871	94	002	007	012	017	022	027	032	037	042	047		
872		052	057	062	067	072	077	082	086	091	096		
873		101	106	111	116	121	126	131	136	141	146		
874		151	156	161	166	171	176	181	186	191	196		
875		201	206	211	216	221	226	231	236	240	245		
876		250	255	260	265	270	275	280	285	290	295		
877		300	305	310	315	320	325	330	335	340	345		;
878		349	354	359	364	369	374	379	384	389	394	1 0.5	5
879		399	404	409	414	419	424	429	433	438	443	1 0.5 2 1.0 3 1.5 4 2.0 5 2.5 6 3.0 7 3.5 8 4.0	į
880		448	453	458	463	468	473	478	483	488	493	$\begin{vmatrix} 3 & 1.5 \\ 4 & 2.6 \end{vmatrix}$	0
881		498	503	507	512	517	522	527	532	537	542	5 2.3 6 3.0	j 1
882		547	552	557	562	567	571	576	581	586	591	7 3.5	5
883		596	601	606	611	616	621	626	630	635	640	8 4.0)
884		645	650	655	660	665	670	675	680	685	689	9 4.5)
885		694	699	704	709	714	719	724	729	734	73 8		
886		743	748	753	758	763	768	773	778	783	787		
887		792	797	802	807	812	817	822	827	832	836		
888 889		841 890	846 895	851 900	856 905	861 910	866 915	871 919	876 924	880 929	885 934		
						•							
890		939	944	949	954	959	963	968	973	978	983		
891	0.5	988	993		*002		*012			*027	*032		
892 893	95	036 085	041 090	046 095	051 100	056 105	061 109	066 114	071 119	075 124	080 129		
894		134	139	143	148	153	158	163	168	173	177		
895		182	187	192	197	202	207	211	216	221	226		
896 897		231 279	236 284	240 289	245 294	250 299	255	260 308	265	270	274		
898		328	332	289 337	342	347	303 352	357	313 361	318 366	323 371		
899		376	381	386	390	395	400	405	410	415	419		
900		424	429	434	439	444	448	453	458	463	468		
N	L	0	1	2	3	4	5	6	7	8	9	P. P.	

Num. 900 to 939. Log. 954 to 973.

N	L	0	1	2	3	4	5	6	7	8	9	P.	P.
900	95	424	429	434	439	444	448	453	458	463	468		
901		472	477	482	487	492	497	501	506	511	516		
902		521	525	530	535	540	545	550	554	559	564		
903		569	574	578	583	588	593	598	602	607	612		
904		617	622	626	631	636	641	646	650	655	660		
905		665	670	674	679	684	689	694	698	703	708		
906		713	718	722	727	732	737	742	746	751	756		
907		761	766	770	775	780	785	789	794	799	804		
908		809	813	818	823	828	832	837	842	847	852		
909		856	861	866	871	875	880	885	890	895	899		
910		904	909	914	918	923	928	933	938	942	947		
911		952	957	961	966	971	976	980	985	990	995		
912		999	*004	*009	*014	*019	*023	*028	*033	*038	*042	1	
913	96	047	052	057	061	066	071	076	080	085	090		
914		095	099	104	109	114	118	123	128	133	137		
915		142	147	152	156	161	166	171	175	180	185		
916		190	194	199	204	209	213	218	223	227	232		
917		237	242	246	251	256	261	265	270	275	280		5
918		284	289	294	298	303	308	313	317	322	327	1	0.5
919		332	336	341	346	350	355	360	365	369	374	1 2 3 4 5	0.5 1.0 1.5
920		379	384	388	393	398	402	407	412	417	421	4	2.0
921		426	431	435	440	445	450	454	459	464	468	5	2.0 2.5
922		473	478	483	487	492	497	501	506	511	515	6	3.0 3.5
923		520	525	530	534	539	544	548	553	558	562	6 7 8	4.0
924		567	572	577	581	586	591	595	600	605	609	9	4.5
925		614	619	624	628	633	638	642	647	652	656		
926		661	666	670	675	680	685	689	694	699	703		
927		708	713	717	722	727	731	736	741	745	750		
928		755	759	764	769	774	778	783	788	792	797		
929		802	806	811	816	820	825	830	834	839	844		
930		848	853	858	862	867	872	876	881	886	890		
931		895	900	904	909	914	918	923	928	932	937		
932		942	946	951	956	960	965	970	974	979	984		
933		988	993	997	*002	*007	*011	*016	*021	*025	*030		
934	97	035	039	044	049	053	058	063	067	072	077		
935		081	086	090	095	100	104	109	114	118	123		
936		128	132	137	142	146	151	155	160	165	169		
937		174	179	183	188	192	197	202	206	211	216		
938		220	225	230	234	239	243	248	253	257	262		
939		267	271	276	280	285	290	294	299	304	308		
940		313	317	322	327	331	336	340	345	350	354		
N	L	0	1	2	3	4	5	6	7	8	9	P.	P.

Num. 940 to 979. Log. 973 to 991.

N	L	0	1	2	3	4	5	6	7	8	9	P.	Р.
940	97	313	317	322	327	331	336	340	345	350	354		
941		359	364	368	373	377	382	387	391	396	400		
942		405	410	414	419	424	428	433	437	$44\dot{2}$	447		
943		451	456	460	465	470	474	479	483	488	493		
944		497	502	506	511	516	520	525	529	534	539		
945		543	548	552	557	562	566	571	575	580	585		
946		589	594	598	603	607	612	617	621	626	630		
947		635	640	644	649	653	658	663	667	672	676	ļ	
948		681	685	690	695	699	704	708	713	717	722		
949		727	731	736	740	745	749	754	759	763	768		5
950		772	777	782	786	791	795	800	804	809	813	$\begin{vmatrix} 1\\2 \end{vmatrix}$	0.5
951		818	823	827	832	836	841	845	850	855	859	3	1.0 1.5
952		864	868	873	877	882	886	891	896	900	905	3 4	2.0
953		909	914	918	923	928	932	937	941	946	950	5 6	2.5
954		955	959	964	968	973	978	982	987	991	996	7	3.5
955	98	000	005	009	014	019	023	028	032	037	041	8 9	4.0 4.5
956		046	050	055	059	064	068	073	078	082	087		***
957		091	096	100	105	109	114	118	123	127	132		
958		137	141	146	150	155	159	164	168	173	177		
959		182	186	191	195	200	204	209	214	218	223		
960		227	232	236	241	245	250	254	259	263	268		
961		272	277	281	286	290	295	299	304	308	313		
962		318	322	327	331	336	340	345	349	354	358		
963		363	367	372	376	381	385	390	394	399	403		
964		408	412	417	421	426	430	435	439	444	448		4
965		453	457	462	466	471	475	480	484	489	493		4
966		498	502	507	511	516	520	525	529	534	538	1	0.4
967		543	547	552	556	561	565	570	574	579	583	$\frac{1}{2}$	0.8
968		588	592	597	601	605	610	614	619	623	628	3 4 5	1.2 1.6
969		632	637	641	646	650	655	659	664	668	673	5	20
970		677	682	686	691	695	700	704	709	713	717	6 7	2.4 2.8 3.2 3.6
971		722	726	731	735	740	744	749	753	758	762	8 9	3.2
972		767	771	776	780	784	789	793	798	802	807	91	3.6
973		811	816	820	825	829	834	838	843	847	851		
974		856	860	865	869	874	878	883	887	892	896		
975		900	905	909	914	918	923	927	932	936	941		
976		945	949	954	958	963	967	972	976	981	985		
977		989	994		*003		1	*016		*025			
978	99	034	038	043	047	052	056	061	065	069	074		
979		078	083	087	092	096	100	105	109	114	118		
980		123	127	131	136	1 40	145	149	154	158	162		
N	L	0	1	2	3	4	5	6	7	8	9	P.	P.

Num. 980 to 1000. Log. 991 to 999.

N	L	0	1	2	3	4	5	6	7	8	9	P. P.
980	99	123	127	131	136	140	145	149	154	158	162	
981		167	171	176	180	185	189	193	198	202	207	
982		211	216	220	224	229	233	238	242	247	251	
983		255	260	264	269	273	277	282	286	291	295	
984		300	304	308	313	317	322	326	330	335	339	
985		344	348	352	357	361	366	370	374	379	383	
986		388	392	396	401	405	410	414	419	423	427	
987		432	436	441	445	449	454	458	463	467	471	
988		476	480	484	489	493	498	502	506	511	515	
989		520	524	528	533	537	542	546	550	555	559	4
990		564	568	572	577	581	585	590	594	599	603	1 0.4
991		607	612	616	621	625	629	634	638	642	647	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
992		651	656	660	664	669	673	677	682	686	691	4 1.6
993		695	699	704	708	712	717	721	726	730	734	5 2.0
994		739	743	747	752	756	760	765	769	774	778	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
995		782	787	791	795	800	804	808	813	817	822	8 3.2 9 3.6
996		826	830	835	839	843	848	852	856	861	865	0 0.0
997		870	874	878	883	887	891	896	900	904	909	
998		913	917	922	926	930	935	939	944	948	952	
999		957	961	965	970	974	978	983	987	991	996	
1000	000	000	043	087	130	174	217	260	304	347	391	
N	L	0	1	2	3	4	5	6	7	8	9	P. P.

Logarithms of Important Numbers.

 208411041110 01 1111	por came i (amboro)
Number.	Logarithm.
$\pi = 3.141 593$	0.497 150
$\frac{4}{3}\pi = 4.188790$	0.622 089
$\frac{1}{6}\pi$ = 0.523 599	1.718 999
$\frac{1}{\pi}$ = 0.318 310	T.502 850
$\pi^2 = 9.869 604$	0.994 300
$\frac{1}{\pi^2} = 0.101 \ 321$	1.005 700
$\sqrt{\pi} = 1.772 \ 454$	0.248 575
$\frac{1}{\sqrt{\pi}} = 0.564 \ 190$	1.751 425
$\tilde{V}_{\pi}^{-} = 1.464 592$	0.165 717
$\frac{1}{p'_{\pi}} = 0.682784$	T.834 283
$\sqrt[3]{\frac{6}{\pi}} = 1.240 \ 701$	0.093 667

GEOMETRY.

No attempt will be made to give the successive propositions of geometry, as these can be found in the standard text-books. Instead will be given such constructions as will be found useful to the engineer, followed by the

mensuration of bodies in one, two, and three dimensions.

A straight line is usually best obtained by the use of a straight edge, such as a T square, or one of the sides of a draughtsman's triangle. In some cases, however, when very long centre lines are required, it is not advisable to place too much reliance upon any long straight edge. A fine thread tightly stretched between points may be used to advantage, a comparatively short straight edge being used to connect points marked off upon the line of the thread.

Right angles are best obtained by use of a draughtsman's triangle or set square, but where this is not available, or where the angle is to be laid out upon a large scale, as upon the ground or on a floor, the following con-

structions may be found useful:

To divide a given line, AB, into two equal parts, and to erect a perpendicular through the

middle:

With the ends, A and B, as centres, draw the dotted circle arcs with a radius greater than half the line. Through the crossings of the arcs draw the perpendicular, CD, which divides the line into two equal parts.

From a given point, C, on the line, AB, to erect a perpendicular, CD:

With Cas a centre, find two points, A and B, on the line at equal distances from C. With A and B as centres, draw the dotted circle arcs at D. From the crossing, D, draw the required perpendicular, DC.

From a given point, C, at a distance from the line, AB, to draw a perpendicular to the line:

With C as a centre, draw the dotted circle arc so that it cuts the line at A and B. With A and B as centres, draw the dotted cross arcs at D with equal radii. Draw the required perpendicular through C and D.

At the end, A, of a given line, AB, to erect a perpendicular, AC:
With any point, D, as a centre at a distance from the line, and with AD as radius, draw the dotted circle arc so that it cuts the line at E; through E and D draw the diameter, EC; then it is EC, then it is EC. join C and A, which will give the required perpendicular.

The division of a line into any required number of parts may best be done by con-tinual bisection as far as possible. When the limit has been reached in this manner the portions thus obtained may be divided by trial and error, using fine dividers with screw adjustment, or the following construction may be used:

Let it be required to divide AC into three

equal parts. From A draw any convenient line, AB, and on it step off with the dividers any equal spaces, 1, 2, 3. Then join 3 with C, and draw from 1 and 2 lines parallel to 3C; these will divide AC into three equal parts at I, II, and III.

Constructions with Angles.

On a given line, AB, and at the point, B, to construct an angle equal to the angle, CDE:

With D as a centre, draw the dotted arc, CE; and with the same radius and B as a centre, draw the arc, GF; then make GF equal to CE; then join BF, which will form the required angle, FBG = CDE.

To divide the angle, ACB, into two equal

With C as a centre, draw the dotted arc, DE; with D and E as centres, draw the cross arcs at F with equal radii. Join CF, which divides the angle into the required parts.

Angles: $ACF = FCB = \frac{1}{2}(ACB)$.

To divide an angle into two equal parts when the lines do not extend to a meeting point:

Draw the lines CD and CE parallel and at equal distances from the lines AB and FG. With C as a centre, draw the dotted arc, BG; and with B and G as centres, draw the cross arcs, H. Join CH, which divides the angle into the required equal parts.

To trisect a right angle, ACB:

To trisect a right angle, Alb. With any convenient radius, CB, strike a with any convenient radius, With the circular arc with C as a centre. dividers open to the same radius sweep short arcs from A and B as centres. These will intersect the first arc at D and E. Through Eand D draw lines passing through C. lines will trisect the right angle, ACB.

Angles may be laid off by means of a protractor graduated in degrees and subdivisions, but unless the instrument is accurately made and carefully used the results are not very reliable. A more accurate method is to use a table of chords. With the dividers open to any convenient distance sweep an arc. Multiply the radius used by the tabular value in the table on page 107 for the required angle, and sweep the distance as a chord upon the arc. The remaining side of the angle may then be drawn.

A convenient radius is 10 inches. sidering this as units, one inch will be 0.1, one-tenth of an inch will be 0.01, and onehundredth of an inch will be 0.001, and the chord may be taken directly from the table: Thus, for an angle of 17° we have from the

RADIUS – 10 IN.

B

RADIUS – 10 IN.

RADIUS – 10 IN. cision as can be laid out on a drawing-board. Intermediate values may be taken by direct proportion.

The chord for any angle is equal to twice the sine of half of the angle.

-			_	~-		
1 2	ıbl	e c)Ť (Ch	ord	S.

Deg.	Chord.	Deg.	Chord.	Deg.	Chord.	Deg.	Chord.	Deg.	Chord.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.0175 0.0349 0.0524 0.0698 0.0872 0.1047 0.1221 0.1359 0.1743 0.1917 0.2091 0.204 0.244 0.2437 0.2611 0.2783 0.3129	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	0.3301 0.3473 0.3645 0.3816 0.4158 0.4329 0.4499 0.4669 0.4838 0.5076 0.5176 0.5345 0.5680 0.5847 0.6180	37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	0.6346 0.6511 0.6676 0.6840 0.7004 0.7167 0.7330 0.7492 0.7654 0.7815 0.8155 0.8294 0.8452 0.8610 0.8767	55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	0.9235 0.9389 0.9543 0.9696 0.9848 1.0000 1.0151 1.0398 1.0798 1.0798 1.1039 1.11328 1.1472 1.1614 1.1756	73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	1.1896 1.2036 1.2175 1.2313 1.2456 1.2586 1.2722 1.2859 1.3121 1.3252 1.3512 1.3647 1.3767 1.3893 1.4014 1.4142

Construction of Polygons.

To inscribe a square in a given circle:

Draw the diameter, AB, and through the centre erect the perpendicular, CD, and complete the square as shown in the illustration.

To describe a square about a given circle: Draw the diameters, AB and CD, at right angles to one another; with the radius of the circle, and A, B, C, and D as centres, draw the four dotted half circles which cross one another in the corners of the square, and thus solve the problem.

To inscribe a pentagon in a given circle: Draw the diameter, AB, and from the centre, C, erect the perpendicular, CD. Biscet the radius, AC, at E; with E as centre, and DE as radius, draw the arc, DF, and the straight line, DF, is the length of the side of the pentagon.

To construct a pentagon on a given side, AB:

From B erect BC perpendicular to and half the length of AB_j draw a line from A through C and beyond; with C as a centre and CB as radius, draw the arc, BD, cutting this last line at D_j ; then the chord, BD, is the radius of the circle circumscribing the pentagon. With A and B as centres, and BD as radius, draw the cross in the centre.

To construct a pentagon on a given side, AB,

without resort to its centre:

From B erect Bo perpendicular and equal to AB; with C as centre and Co as radius, draw the arc, Do; then AD is the diagonal of the pentagon. With AD as radius and A as centre, draw the arc, DE; and with B as centre and AB as radius, finish the cross, E, and thus complete the pentagon.

To construct a hexagon in a given circle:

The radius of the circle is equal to the side of the hexagon.

To construct an octagon on

the given line, AB:
Prolong AB through B. With B as centre and AB as radius, draw semicircle, AFDEC; from B, draw BI at right angles to AB; divide the angles, ABD and DBC, each into two equal parts; then BE is one side of the octagon. With A and E as centres, and radius AE, draw the arcs, HKE and AKI, which determine the projets Hand L and thus complete the octagon. the points H and I, and thus complete the octagon as shown in the illustration.

To cut off the corners of a square so as to make a

regular octagon: With the corners as centres, draw circle arcs through the centre of the square to the sides, which determines the sides of the octagon.

To construct any regular polygon on a given

line, AB, without resort to its centre: Extend AB through B, and, with B as a centre, draw the half circle, ADC. Divide the half circle into as many parts as the number of sides in the polygon, and complete the construction as shown in the illustration.

Table of Polygons.

sides.	Angle of centre.	Angle of circle.	Side.	Area.	Apothem.
No. of si	(Just		(8)		(a)
3	120°	60°	1.73205	0,4330	0.5000
	900	900	1.41421	1.0000	0.7071
5	720	108°	1.17557	1.7205	0.8090
6	60°	120°	1.00000	2.5980	0.8660
7	51° 25′ 42′′	128° 17′	0.86776	3.6339	0.9009
8 9	450	135°	0.76536	4.8284	0.9238
	400	140°	0.68404	6.1820	0.9396
10	36°	1440	0.61801	7.6942	0.9510
11	32° 43′ 38′′	147° 47′	0.56346	9.3656	0.9595
12	300	150°	0.51763	11.1961	0.9659

109

To find the length of side of any polygon, multiply the radius of the circumscribing circle by the tabular number. To find the arc, multiply the square of the side by the tabular number. To find the apothem, multiply radius of circumscribing circle by tabular number.

The Circle.

Notation.

d = diameter of the circle.r = radius of the circle.

r =radius of the circle. p =periphery or circumference.

p =periphery or circumference. a =area of a circle or part thereof. b =length of a circle-arc. c = chord of a segment, length of. h = height of a segment.s = side of a regular polygon.

v = centre angle.w = polygon angle.

All measures must be expressed in terms of the same unit.

Formulas for the Circle.

Periphery or Circumfer-
nce.

$$p = \pi d = 3.14d$$
.

 $p = 2\pi r = 6.28r$,

 $p = 2\sqrt{\pi a} = 3.54\sqrt{a}$.

 $p = 2\frac{p}{\pi} = \frac{p}{3.14}$.

 $p = 2\sqrt{\pi a} = 3.54\sqrt{a}$.

 $p = \frac{2a}{r} = \frac{4a}{d}$.

Diameter and Radius.

 $d = \frac{p}{\pi} = \frac{p}{3.14}$.

 $d = \frac{p}{\pi} = \frac{p}{3.14}$.

 $d = \frac{p}{\pi} = \frac{p}{6.28}$.

 $d = 2\sqrt{\frac{a}{\pi}} = 1.128\sqrt{a}$.

 $d = 2\sqrt{\frac{a}{\pi}} = 1.128\sqrt{a}$.

 $d = 2\sqrt{\frac{a}{\pi}} = 1.128\sqrt{a}$.

 $d = 2\sqrt{\frac{a}{\pi}} = 0.564\sqrt{a}$.

 $d = \frac{p^2}{4\pi} = \frac{p^2}{12.56}$.

 $d = \frac{p^2}{4\pi} = \frac{p^2}{4\pi}$.

 $\pi = 3.141\ 592\ 653\ 589\ 793\ 238\ 462\ 643\ 383\ 279\ 502\ 884\ 197\ 169\ 399\$

.	Circum.	Area.	7.	Circum.	Area.	D.	Circum.	Area.
Diam- eter.			Diam- eter.			Diam- eter.		
1	3.1416	0.7854	51	160.22	2042.8	101	317.30	8011.9
2	6.2832	3.1416	52	163.36	2123.7	102	320.44	8171.3
3	9.4248	7.0686	53	166.50	2206.2	103	323.58	8332.3
4	12.566	12.5664	54	169.65	2290.2	104	326.73	8494.9
5	15.708	19.6350	55	172.79	2375.8	105	329.87	8659.0
6	18.850	28.2743	56	175.93	2463.0	· 106	333.01	8824.7
7	21.991	38.4845	57	179.07	2551.8	107	336.15	8992.0
8	25.133	50.2655	58	182.21	2642.1	108	339.29	9160.9
9	28.274	63.6173	59	185.35	2734.0	109	342.43	9331.3
10	31.416	78.54	60	188.50	2827.4	110	345.58	9503.3
11	34.558	95.03	61	191.64	2922.5	111	348.72	9676.9
12	37.699	113.10	62	194.78	3019.1	112	351.86	9852.0
13	40.841	132.73	63	197.92	3117.2	113	355.00	10028.8
14	43.982	153.94	64	201.06	3217.0	114	358.14	10207.0
15	47.124	176.71	65	204.20	3318.3	115	361.28	10386.9
16	50.265	201.06	66	207.35	3421.2	116	364.42	10568.3
17	53.407	226.98	67	210.49	3525.7	117	367.57	10751.3
18	56.549	254.47	68	213.63	3631.7	118	370.71	10935.9
19	59.690	283.53	69	216.77	3739.3	119	373.85	11122.0
20	62.832	314.16	70	219.91	3848.5	120	376.99	11310
21	65.973	346.36	71	223.05	3959.2	121	380.13	11499
22	69.115	380.13	72	226.19	4071.5	122	383.27	11690
23	72.257	415.48	73	229.34	4185.4	123	386.42	11882
24	75.398	452.39	74	232.48	4300.8	124	389.56	12076
25	78.540	490.87	75	235.62	4417.9	125	392.70	12272
26	81.681	530.93	76	238.76	4536.5	126	395.84	12469
27	84.823	572.56	77	241.90	4656.6	127	398.98	12668
28	87.965	615.75	78	245.04	4778.4	128	402.12	12868
29	91.106	660.52	79	248.19	4901.7	129	405.27	13070
30	94.248	706.86	80	251.33	5026.6	130	408.41	13273
31	97.389	754.77	81	254.47	5153.0	131	411.55	13478 13685
32 33	100.53 103.67	804.25 855.30	82 83	257.61 260.75	5281.0 5410.6	132 133	414.69 417.83	13893
34	106.81	907.92	84	263.89	5541.8	134	420.97	14103
34 35	100.81	962.11	85	263.89	5674.5	134	420.97	14314
36	113.10	1017.88	86	270.18	5808.8	136	427.26	14527
37	116.24	1075.21	87	273.32	5944.7	137	430.40	14741
38	119.38	1134.11	88	276.46	6082.1	138	433.54	14957
39	122.52	1194.59	89	279.60	6221.1	139	436.68	15175
40	125.66	1256.63	90	282.74	6361.7	140	439.82	15394
41	128.81	1320.25	91	285.88	6503.9	141	442.96	15615
42	131.95	1385,44	92	289.03	6647.6	142	446.11	15837
43	135.09	1452.20	93	292.17	6792.9	143	449.25	16061
44	138.23	1520.52	94	295.31	6939.8	144	452.39	16286
45	141.37	1590.43	95	298.45	7088.2	145	455.53	16513
46	144.51	1661.90	96	301.59	7238.2	146	458.67	16742
47	147.65	1734.94	97	304.73	7389.8	147	461.81	16972
48	150.80	1809.55	98	307.88	7543.0	148	464.96	17203
49	153.94	1885.74	99	311.02	7697.7	149	468.10	17437
50	157.08	1963.50	100	314.16	7854.0	150	471.24	17671

		CIRCUMPE	ILLIN CE	AND A	TREA OF	CINCIE		111
	Circum.	Area.		Circum.	Area.		Circum.	Area.
Diam-			Diam-			Diam-		
eter.			eter.	()		eter.	()	
		45000	201	227 12	21 501	051		40.401
151	474.38	17908	201	631.46	31731	251	788.54	49481
152	477.52	18146	202	634.60	32047	252	791.68	49876
153	480.66	18385	203	637.74	32365	253	794.82	50273
154	483.81	18627	204	640.89	32685	254	797.96	50671
155	486.95	18869	205	644.03	33006	255	801.11	51071
156	490.09	19113	206	647.17	33329	256	804.25	51472
157	493.23	19359	207	650.31	33654	257	807.39	51875
158	496.37	19607	208	653.45	33979	258	810.53	52279
159	499.51	19856	209	656.59	34307	259	813.67	52685
160	502.65	20106	210	659.73	34636	260	816.81	53093
161	505.80	20358	211	662.88	34967	261	819.96	53502
162	508.94	20612	212	666.02	35299	262	823.10	53913
1 63	512.08	20867	213	669.16	35633	263	826.24	54325
164	515.22	21124	214	672.30	35968	264	829.38	54739
165	518.36	21382	215	675.44	36305	265	832.52	55155
166	521.50	21642	216	678.58	36644	266	835.66	55572
167	524.65	21904	217	681.73	36984	267	838.81	55990
168	527.79	22167	218	684.87	37325	268	841.95	56410
169	530.93	22432	219	688.01	37668	269	845.09	56832
170	534.07	22698	220	691.15	38013	270	848.23	57256
171	537.21	22966	221	694.29	38360	271	851.37	57680
172	540.35	23235	222	697.43	38708	272	854.51	58107
173	543.50	23506	223	700.58	39057	273	857.66	58535
174	546.64	23779	224	703.72	39408	274	860.80	58965
175	549.78	24053	225	706.86	39761	275	863.94	59396
176	552.92	24328	226	710.00	40115	276	867.08	59828
177	556.06	24606	227	713.14	40471	277	870.22	60263
178	559.20	24885	228	716.28	40828	278	873.36	60699
179	562.35	25165	229	719.42	41187	279	876.50	61136
180	565.49	25447	230	722.57	41548	280	879.65	61575
181	568.63	25730	231	725.71	41910	281	882.79	62016
182	571.77	26016	232	728.85	42273	282	885.93	62458
183	574.91	26302	233	731.99	42638	283	889.07	62902
184	578.05	26590	234	735.13	43005	284	892.21	63347
185	581.19	26880	235	738.27	43374	285	895.35	63794
186	584.34	27172	236	741.42	43744	286	898.50	64242
187	587.48	27465	237	744.56	44115	287	901.64	64692
188	590.62	27759	238	747.70	44488	288	904.78	65144
189	593.76	28055	239	750.84	44863	289	907.92	65597
190	596.90	28353	240	753.98	45239	290	911.06	66052
191	600.04	28652	241	757.12	45617	291	914.20	66508
192	603.19	28953	242	760.27	45996	292	917.35	66966
193	606.33	29255	243	763.41	46377	293	920.49	67426
194	609.47	29559	244	766.55	46759	294	923,63	67887
195	612.61	29865	245	769.69	47144	295	926.77	68349
196	615.75	30172	246	772.83	47529	296	929.91	68813
197	618.89	30481	247	775.97	47916	297	933.05	69279
198	622.04	30791	248	779.12	48305	298	936.19	69747
199	625.18	31103	249	782.26	48695	299	939.34	70215
200	628.32	31416	250	785.40	49087	300	942.48	70686

	1	1	II	1	1	(1	1	
	Circum.	Area.		Circum.	Area.	11	Circum.	Area.
Diam- eter.			Diam- eter.			Diam- eter.		
eter.			eter.	()		eter.		
301	945.62	71158	351	1102.70	96 762	401	1259.78	126 293
302	948.76	71631	352	1105.84	97 314	402	1262.92	126 923
303	951.90	72107	353	1108.98	97 868	403	1266.06	127 556
304	955.04	72583	354	1112.12	98 423	404	1269.20	128 190
305	958.19	73062	355	1115.27	98 980	405	1272.35	128 825
306	961.33	73542	356	1118.41	99 538	406	1275.49	129 462
307	964.47	74023	357	1121.55	100 098	407	1278.63	130 100
308	967.61	74506	358	1124.69	100 660	408	1281.77	130 741
309	970.75	74991	359	1127.83	101 223	409	1284.91	131 382
310	973.89	75477	360	1130.97	101 788	410	1288.05	132 025
311	977.04	75964	361	1134.11	102 354	411	1291.19	132 670
312	980.18	76454	362	1137.26	102 922	412	1294.34	133 317
313	983.32	76945	363	1140.40	103 491	413	1297.48	133 965
314	986.46	77437	364	1143.54	104 062	414	1300.62	134 614
315	989.60	77931	365	1146.68	104 635	415	1303.76	135 265
316	992.74	78427	366	1149.82	105 209	416	1306.90	135 918
317	995.88	78924	367	1152.96	105 785	417	1310.04	136 572
318	999.03	79423	368	1156.11	106 362	418	1313.19	137 228
319	1002.17	79923	369	1159.25	106 941	419	1316.33	137 885
320	1005.31	80425	370	1162.39	107 521	420	1319.47	138 544
321	1008.45	80928	371	1165.53	108 103	421	1322.61	139 205
322	1011.59	81433	372	1168.67	108 687	422	1325.75	139 867
323	1014.73	81940	373	1171.81	109 272	423	1328.89	140 531
324	1017.88	82448	374	1174.96	109 858	424	1332.04	141 196
325	1021.02	82958	375	1178.10	110 447	425	1335.18	141 863
326	1024.16	83469	376	1181.24	111 036	426	1338.32	142 531
327	1027.30	83982	377	1184.38	111 628	427	1341.46	143 201
328	1030.44	84496	378	1187.52	112 221	428	1344.60	143 872
329	1033.58	85012	379	1190.66	112 815	429	1347.74	144 545
330	1036.73	85530	380	1193.81	113 411	430	1350.88	145 220
331	1039.87	86049	381	1196.95	114 009	431	1354.03	145 896
332	1043.01	86570	382	1200.09	114 608	432	1357.17	146 574
333	1046.15	87092	383	1203.23	115 209	433	1360.31	147 254
334	1049.29	87616	384	1206.37	115 812	434	1363.45	147 934
335	1052.43	88141	385	1209.51	116 416	435	1366.59	148 617
336	1055.58	88668	386	1212.65	117 021	436	1369.73	149 301
337	1058.72	89197	387	1215.80	117 628	437	1372.88	149 987
338	1061.86	89727	388	1218.94	118 237	438	1376.02	150 674
339	1065.00	90259	389	1222.08	118 847	439	1379.16	151 363
340	1068.14	90792	390	1225.22	119 459	440	1382.30	152 053
341	1071.28	91327	391	1228.36	120 072	441	1385.44	152 745
342	1074.42	91863	392	1231.50	120 687	442	1388.58	153 439
343	1077.57	92401	393	1234.65	121 304	443	1391.73	154 134
344	1080.71	92941	394	1237.79	121 922	444	1394.87	154 830
345	1083.85	93482	395	1240.93	122 542	445	1398.01	155 528
346	1086.99	94025	396	1244.07	123 163	446	1401.15	156 228
347	1090.13	94569	397	1247.21	123 786	447	1404.29	156 930
348	1093.27	95115	398	1250.35	124 410	448	1407.43	157 633
349	1096.42	95662	399	1253.50	125 036	449	1410.58	158 337
350	1099.56	96211	400	1256.64	125 664	450	1413.72	159 043
-			-					

	Circum.	Area.	11	Circum.	Area.	11	Circum.	Area.
Diam-			Diam-			Diam-	1	
eter.			eter.			eter.		
451	1416.86	159 751	501	1573.94	197 136	551	1731.02	238 448
452	1420.00	160 460	502	1577.08	197 923	552	1734.16	239 314
453	1423.14	161 171	503	1580.22	198 713	553	1737.40	240 182
454	1426.28	161 883	504	1583.36	199 504	554	1740.44	241 051
455	1429.42	162 597	505	1586.50	200 296	555	1743.58	241 922
456	1432.57	163 313	506	1589.65	201 090	556	1746.73	242 795
457	1435.71	164 030	507	1592.79	201 886	-557	1749.87	243 669
458	1438.85	164 748	508	1595.93	202 683	558	1753.01	244 545
459	1441.99	165 468	509	1599.07	203 482	559	1756.15	245 422
460	1445.13	166 190	510	1602.21	204 282	560	1759.29	246 301
461	1448.27	166 914	511	1605.35	205 084	561	1762.43	247 181
462	1451.42	167 639	512	1608.50	205 887	562	1765.58	248 063
463	1454.56	168 365	513	1611.64	206 692	563	1768.72	248 947
464	1457.70	169 093	514	1614.78	207 499	-564	1771.86	249 832
465	1460.84	169 823	515	1617.92	208 307	565	1775.00	250 719
466	1463.98	170 554	516	1621.06	209 117	566	1778.14	251 607
467	1467.12	171 287	517	1624.20	209 928	567	1781.28	252 497
468	1470.27	172 021	518	1627.35	210 741	568	1784.42	253 388
469	1473.41	172 757	519	1630.49	211 556	569	1787.57	254 281
470	1476.55	173 494	520	1633.63	212 372	570	1790.71	255 176
471	1479.69	174 234	521	1636.77	213 189	571	1793.85	256 072
472	1482.83	174 974	522	1639.91	214 008	572	1796.99	256 970
473	1485.97	- 175 716	523	1643.05	214 829	573	1800.13	257 869
474	1489.11	176 460	524	1646.20	215 651	574	1803.27	258 770
475	1492.26	177 205	525	1649.34	216 475	575	1806.42	259 672
476	1495.40	177 952	526	1652.48	217 301	576	1809.56	260 576
477	1498.54	178 701	527	1655.62	218 128	577	1812.70	261 482
478	1501.68	179 451	528	1658.76	218 956	578	1815.84	262 389
479	1504.82	180 203	529	1661.90	219 787	579	1818.98	263 298
480	1507.96	180 956	530	1665.04	220 618	580	1822.12	264 208
481	1511.11	181 711	531	1668.19	221 452	581	1825.27	265 120
482	1514.25	182 467	532	1671.33	222 287	582	1828.41	266 033
483	1517.39	183 225	533	1674.47	223 123	583	1831.55	266 948
484	1520.53	183 984	534	1677.61	223 961	584	1834.69	267 865
485 486	1523.67	184 745 185 508	535	1680.75	224 801 225 642	585	1837.83	268 783
487	1526.81 1529.96	186 272	536 537	1683.89 1687.04	226 484	586 587	1840.97 1844.11	269 702 270 624
488	1533.10	187 038	538	1690.18	227 329	588	1847.26	270 624
489	1536.24	187 805	539	1693.32	228 175	589	1850.40	272 471
490	1539.38	188 574	540	1696.46	229 022	590	1853.54	273 397
491	1542.52	189 345	541	1699.60	229 871	591	1856.68	274 325
492	1545.66	190 117	542	1702.74	230 722	592	1859.82	275 254
493	1548.81	190 890	543	1705.88	231 574	593	1862.96	276 184
494	1551.95	191 665	544	1709.03	232 428	594	1866.11	277 117
495	1555.09	192 442	545	1712.17	233 283	595	1869.25	278 051
496	1558.23	193 221	546	1715.31	234 140	596	1872.39	278 986
497	1561.37	194 000	547	1718.45	234 998	597	1875.53	279 923
498	1564.51	194 782	548	1721.59	235 858	598	1878.67	280 862
499	1567.65	195 565	549	1724.73	236 720	599	1881.81	281 802
500	1570.80	196 350	550	1727.88	237 583	600	1884.96	282 743

D:	Circum.	Area.	D:	Circum.	Area.	n.	Circum.	Area.
Diam- eter.			Diam- eter.			Diam- eter.		
601	1888.10	283 687	651	2045.18	332 853	701	2202.26	385 945
602	1891.24	284 631	652	2048.32	333 876	702	2205.40	387 047
603	1894.38	285 578	653	2051.46	334 901	703	2208.54	388 151
604	1897.52	286 526	654	2054.60	335 927	704	2211.68	389 256
605	1900.66	287 475	655	2057.74	336 955	705	2214.82	390 363
606	1903.81	288 426	656	2060.88	337 985	706	2217.96	391 471
607	1906.95	289 379	657	2064.03	339 016	707	2221.11	392 580
608	1910.09	290 333	658	2067.17	340 049	708	2224.25	393 692
609	1913.23	291 289	659	2070.31	341 083	709	2227.39	394 805
610	1916.37	292 247	660	2073.45	342 119	710	2230.53	395 919
611	1919.51	293 206	661	2076.59	343 157	711	2233.67	397 035
612	1922.65	294 166	662	2079.73	344 196	712	2236.81	398 153
613	1925.80	295 128	663	2082.88	345 237	713	2239.96	399 272
614	1928.94	296 092	664	2086.02	346 279	714	2243.10	400 393
615	1932.08	297 057	665	2089.16	347 323	715	2246.24	401 515
616	1935.22	298 024	666	2092.30	348 368	716	2249.38	402 639
617	1938.36	298 992	667	2095.44	349 415	717	2252.52	403 765
618	1941.50	299 962	668	2098.58	350 464	718	2255.66	404 892
619	1944.65	300 934	669	2101.73	351 514	719	2258.81	406 020
620	1947.79	301 907	670	2104.87	352 565	720	2261.95	407 150
621	1950.93	302 882	671	2108.01	353 618	721	2265.09	408 282
622	1954.07	303 858	672	2111.15	354 673	722	2268.23	409 416
623	1957.21	304 836	673	2114.29	355 730	723	2271.37	410 550
624 625	1960.35	305 815	674	2117.43	356 788 357 847	724	2274.51 2277.65	411 687
626	1963.50	306 796 307 779	675	2120.58 2123.72	358 908		2280.80	412 825 413 965
627	1966.64 1969.78	307 779	676	2125.72	359 971	726 727	2283.94	415 905
628	1909.78	309 748	678	2120.00	361 035	728	2287.08	416 248
629	1976.06	310 736	679	2130.00	362 101	729	2290.22	417 393
630	1979.20	311 725	680	2136.28	363 168	730	2293.36	418 539
631	1982.35	312 715	681	2139.42	364 237	731	2296.50	419 686
632	1985.49	313 707	682	2142.57	365 308	732	2299.65	420 835
633	1988.63	314 700	683	2145.71	366 380	733	2302.79	421 986
634	1991.77	315 696	684	2148.85	367 453	734	2305.93	423 139
635	1994.91	316 692	685	2151.99	368 528	735	2309.07	424 292
636	1998.05	317 690	686	2155.13	369 605	736	2312.21	425 447
637	2001.19	318 690	687	2158.27	370 684	737	2315.35	426 604
638	2004.34	319 692	688	2161.42	371 764	738	2318.50	427 762
639	2007.48	320 695	689	2164.56	372 845	739	2321.64	428 922
640	2010.62	321 699	690	2167.70	373 928	740	2324.78	430 084
641	2013.67	322 705	691	2170.84	375 013	741	2327.92	431 247
642	2016.90	323 713	692	2173.98	376 099	742	2331.06	432 412
643	2020.04	324 722	693	2177.12	377 187	743	2334.30	433 578
644	2023.19	325 733	694	2180.27	378 276	744	2337.34	434 746
645	2026.33	326 745	695	2183.41	379 367	745	2340.49	435 916
646	2029.47	327 759	696	2186.55	380 459	746	2343.63	437 087
647	2032.61	328 775	697	2189.69	381 554	747	2346.77	438 259
648	2035.75	329 792	698	2192.83	382 649	748	2349.91	439 433
649	2038.89	330 810	699	2195.97	383 746	749	2353.05	440 609
650	2042.04	331 831	700	2199.11	384 845	750	2356.19	441 786

	CIRCUMFERENCE		AND AREA OF C		CIRCLES.		119	
	Circum.	Area.		Circum.	Area.	1	Circum.	Area.
Diam-			Diam-			Diam-		
eter.	()		eter.	()		eter.	()	
751	2359.34	442 965	801	2516.42	503 912	851	2673.50	568 786
752	2362.48	444 146	802	2519.56	505 171	852	2676.64	570 124
753	2365.62	445 328	803	2522.70	506 432	853	2679.78	571 463
754	2368.76	446 511	804	2525.84	507 694	854	2682.92	572 803
755	2371.90	447 697	805	2528.98	508 958	855	2686.06	574 146
756	2375.04	448 883	806	2532.12	510 223	856	2689.20	575 490
757	2378.19	450 072	807	2535,27	511 490	857	2692.34	576 835
758	2381.33	451 262	808	2538.41	512 758	858	2695,49	578 182
759	2384.47	452 453	809	2541.55	514 028	859	2698.63	579 530
760	2387.61	453 646	810	2544.69	515 300	860	2701.77	580 880
761	2390.75	454 841	811	2547.83	516 573	861	2704.91	582 232
762	2393.89	456 037	812	2550.97	517 848	862	2708.05	583 585
763	2397.04	457 234	813	2554.11	519 124	863	2711.19	584 940
764	2400.18	458 434	814	2557.26	520 402	864	2714.34	586 297
765	2403.32	459 635	815	2560.40	521 681	865	2717.48	587 655
766	2406.46	460 837	816	2563.54	522 962	866	2720,62	589 014
767	2409.60	462 041	817	2566.68	524 245	867	2723.76	590 375
768	2412.74	463 247	818	2569.82	525 529	868	2726.90	591 738
769	2415.88	464 454	819	2572.96	526 814	869	2730.04	593 102
770	2419.03	465 663	820	2576.11	528 102	870	2733.19	594 468
771	2422.17	466 873	821	2579.25	529 391	871	2736.33	595 835
772	2425,31	468 085	822	2582.39	530 681	872	2739.47	597 204
773	2428.45	469 298	823	2585.53	531 973	873	2742.61	598 575
774	2431.59	470 513	824	2588.67	533 267	874	2745.75	599 947
775	2434.73	471 730	825	2591.81	534 562	875	2748.89	601 320
776	2437.88	472 948	826	2594.96	535 858	876	2752.04	602 696
777	2441.02	474 168	827	2598.10	537 157	877	2755.18	604 073
778	2444.16	475 389	828	2601.24	538 456	878	2758.32	605 451
779	2447.30	476 612	829	2604.38	539 758	879	2761.46	606 831
780	2450.44	477 836	830	2607.52	541 061	880	2764.60	608 212
781	2453.58	479 062	831	2610.66	542 365	881	2767.74	609 595
782	2456.73	480 290	832	2613.81	543 671	882	2770.88	610 980
783	2459.87	481 519	833	2616.95	544 979	883	2774.03	612 366
784	2463.01	482 750	834	2620.09	546 288	884	2777.17	613 754
785	2466.15	483 982	835	2623.23	547 599	885	2780.31	615 143
786	2469.29	485 216	836	2626.37	548 912	886	2783.45	616 534
787	2472.43	486 451	837	2629.51	550 226	887	2786.59	617 927
788	2475.58	487 688	838	2632.65	551 541	888	2789.73	619 321
789	2478.72	488 927	839	2635.80	552 858	889	2792.88	620 717
790	2481.86	490 167	840	2638.94	554 177	890	2796.02	622 114
791	2485.00	491 409	841	2642.08	555 497	891	2799.16	623 513
792	2488.14	492 652	842	2645.22	556 819	892	2802.30	624 913
793	2491.28	493 897	843	2648.36	558 142	893	2805.44	626 315
794	2494.42	495 143	844	2651.50	559 467	894	2808.58	627 718
795	2497.57	496 391	845	2654.65	560 794	895	2811.73	629 124
796	2500.71	497 641	846	2657.79	562 122	896	2814.87	630 530
797	2503.85	498 892	847	2660.93	563 452	897	2818.01	631 938
798	2506.99	500 145	848	2664.07	564 783	898	2821.15	633 348
799	2510.13	501 399	849	2667.21	566 116	899	2824.29	634 760
800	2513.27	502 655	850	2670.35	567 450	900	2827.43	636 173

=	Circum.	Area.		Circum.	Area.		Circum.	Area.
Diam-			Diam-			Diam-		
eter.	()		eter.	()		eter.	()	
			1					
901	2830.58	637 587	934	2934.25	685 147	967	3037.92	734 417
902	2833.72	639 003	935	2937.39	686 615	968	3041.06	735 937
903	2836.86	640 421	936	2940.53	688 084	969	3044.20	737 458
904	2840.00	641 840	937	2943.67	689 555	970	3047.34	738 981
905	2843.14	643 261	938	2946.81	691 028	971	3050.49	740 506
906	2846.28	644 683	939	2949.96	692 502	972	3053.63	742 032
907	2849.42	646 107	940	2953.10	693 978	973	3056.77	743 559
908	2852.57	647 533	941	2956.24	695 455	974	3059.91	745 088
909	2855.71	648 960	942	2959.38	696 934	975	3063.05	746 619
910	2858.85	650 388	943	2962.52	698 415	976	3066.19	748 151
911	2861.99	651 818	944	2965.66	699 897	977	3069.34	749 685
912	2865.13	653 250	945	2968.81	701 380	978	3072.48	751 221
913	2868.27	654 684	946	2971.95	702 865	979	3075.62	752 758
914	2871.42	656 118	947	2975.09	704 352	980	3078.76	754 296
915	2874.56	657 555	948	2978.23	705 840	981	3081.90	755 837
916	2877.70	658 993	949	2981.37	707 330	982	3085.04	757 378
917	2880.84	660 433	950	2984.51	708 822	983	3088.19	758 922
918	2883.98	661 874	951	2987.65	710 315	984	3091.33	760 466
919	2887.12	663 317	952	2990.80	711 809	985	3094.47	762 013
920	2890.27	664 761	953	2993.94	713 307	986	3097.61	763 561
921	2893.41	666 207	954	2997.08	714 803	987	3100.75	765 111
922	2896.55	667 654	955	3000.22	716 303	988	3103.89	766 662
923	2899.69	669 103	956	3003.36	717 804	989	3107.04	768 215
924	2902.83	670 554	957	3006.50	719 306	990	3110.18	769 769
925	2905.97	672 006	958	3009.65	720 810	991	3113.32	771 325
926	2909.11	673 460	959	3012.79	722 316	992	3116.46	772 882
927	2912.26	674 915	960	3015.93	723 823	993	3119.60	774 441
928	2915.40	676 372	961	3019.07	725 332	994	3122.74	776 002
929	2918.54	677 831	962	3022.21	726 842	995	3125.88	777 564
930	2921.68	679 291	963	3025.35	728 354	996	3129.03	779 128
931	2924.82	680 752	964	3028.50	729 867	997	3132.17	780 693
932	2927.96	682 216	965	3031.64	731 382	998	3135.31	782 260
933	2931.11	683 680	966	3034.78	732 899	999	3138.45	783 828
			1			ll l		

Note.-When it is desired to find the circumference corresponding to any diameter not in the table, point off as many places in the circumference as have been pointed off in the diameter, and point off twice as many places in this area as have been pointed off in the diameter. Thus:

Diameters.	Circumferences.	Areas.
9.16	28,777	65.8993
91.6	287.77	6 589.93
916.	2877.7	658 993.
9160	28777	65 899 321

When it is desired to find the circumference or area for any diameter consisting of a whole number and a decimal, it may be done by taking the difference between the tabular figures for the diameters between which the given diameter lies and multiplying this difference by the decimal and adding the result to the tabular value corresponding to the next lower diameter. Thus:

Required the circumference for the diameter 916.27?

We have

Circumference 917 =
$$2880.84$$

Circumference 916 = 2877.70
Difference, 3.14

Circumference 916.27 = 2877.70 + 0.85 = 2878.55

 $3.14 \times 27 = 0.8478$

For the area corresponding to the same diameter we have

Difference, $1440 \times 0.27 = 388.8$

Area 916.27 = 658993 + 388.8 = 659381.8

Arcs and Segments of Circles.

The table starting below enables the following values to be determined: angle at centre = v, radius = r, length of arc = b, area of segment = a, surface of spherical segment = a, volume of spherical segment = c, and length of chord = c.

The quantities given are the height or versedsine of the arc = h, and

the length of the chord = c.

To use the table, divide the length of the chord by the height. Look for the nearest value to this quotient in the first, or extreme left-hand column, and opposite this value will be found the corresponding values for the various coefficients, k, for a chord of unit length. These values, multiplied by the length of the given chord, will give the required lengths; by the square of the chord, will give the required surfaces; and by the cube of the chord, will give the required volume.

Thus, for a chord, c=25, and height, h=5, we have

$$\frac{25}{5} = 5$$
.

The nearest value to this in the table is 5.0134. We then have

> $v = 87^{\circ}$; Angle at centre, Radius, $r=25\times0.75$ (0.72637 = 18.159 Length of arc, $b=25\times1.1027=27.567$ Area of segment, $a=25^2\times0.13704=85.65$; Volume of spherical segment, $\mathbf{a}=25^2\times0.91036=568.97$; Volume of spherical segment, $\mathbf{c}=25^3\times0.08340=1303.12$. 18.159; 27.567

Chord div. by height.	Centre angle v .	Radius $r = kc$.	Cir. arc $b = kc$.	Area seg. $a = kc^2$.	Surface $\mathbf{a} = kc^2$.	Solidity $\mathbf{c} = kc^3$.	Chord $c = kr$.
(h)	(01)		<u>b</u>				\bigcirc
		4					
458.08	1	57.296	1.0000	.00109	.78539	.00085	.01744
229.18	2	28.649	1.0000	.00218	.78549	.00172	.03490
152.77	3	19.101	1.0000	.00327	.78562	.00255	.05234
114.57	4	14.327	1.0000	.00436	.78574	.00310	.06978
84.747	5	11.462	1.0001	.00647	.78586	.00401	.08722
76.375	6	9.5530	1.0003	.00741	.78599	.00514	.10466
65.943	7	8.1902	1.0004	.00910	.78621	.00592	.12208
57.273	8	7.1678	1.0006	.01089	.78630	.00686	.13950
50.902	9	6.3728	1.0008	.01254	.78665	.00772	.15690
45.807	10	5.7368	1.0011	.01407	.78695	.00857	.17430

			- 102012				
Chord div.	Centre	Radius	Cir. arc	Area seg.	Surface	Solidity	Chord
by height.	angle v.	r = kc.	b = kc.	$a = kc^2$.	$\mathbf{a} = kc^2$.	$\mathbf{c} = kc^3$.	c = kr.
(Ih)	1000	7°T'N	7				
0	7	1 m	(- b)	(comming)	and the same	CAMILLA INTERPRETATION	\leftarrow
		*				100	
41.203	11	5.2167	1.0013	.01552	.78730	.00964	.19168
38.133	12	4.7834	1.0016	.01695	.78762	.01031	.20904
35.221	13	4.4168	1.0019	.01841	.78794	.01114	.22640
32.742	14	4.1027	1.0023	.02000	.78832	.01199	.24372
30.514	15	3.8307	1.0027	.02157	.78889	.01288	.26104
28,601	16	3.5927	1.0029	.02269	.78909	.01375	.27834
26.915	17	3.3827	1.0034	.02434	.78969	.01462	.29560
25.412	18	3.1962	1.0039	.02592	.79028	.01542	.31286
24.068	19	3.0293	1.0044	.02744	.79084	.01635	.33008
22.860	20	2.8793	1.0048	.02878	.79140	.01722	.34728
21.760	21	2.7440	1.0054	.03040	.79234	.01802	.36446
20.777	22	2.6222	1.0059	.03178	.79300	.01897	.38160
19.862	23	2.5080	1.0066	.03343	.79340	.01984	.39872
19.028	24	2.4050	1.0072	.03493	.79416	.02072	.41582
18.261	25	2.3101	1.0078	.03639	.79486	.02159	.43286
17.553	26	2.2233	1.0084	.03784	.79530	.02248	.44990
16.970	27	2.1418	1.0091	.03970	.79639	.02315	.46688
16.288	28	2.0673	1.0101	.04115	.79748	.02424	.48384
15.721	29	1.9969	1.0105	.04230	.79811	.02511	.50076
15.191	30	1.9319	1.0113	.04385	.79907	.02600	.51762
14.970	31	1.8710	1.0121	.04476	.80002	.02692	.53446
14.230	32	1.8140	1.0129	.04710	.80098	.02778	.55126
13.796	33	1.7605	1.0138	.04842	.80181	.02866	.56802
13.382	34	1.7102	1.0146	.04989	.80300	.02956	.58479
12.994	35	1.6628	1.0155	.05137	.80405	.03046	.60140
12.733	36	1.6184	1.0167	.05311	.80531	.03137	.61802
12.473	37	1.5758	1.0174	.05401	.80622	.03226	.63460
11.931	38	1.5358	1.0184	.05628	.80713	.03328	.65112
11.621	39	1.4979	1.0194	.05755	.80850	.03418	.66760
11.342	40	1.4619	1.0204	.05899	.80987	.03506	.68404
11.060	41	1.4266	1.0207	.06001	.81046	.03589	.70040
10.791	42	1.3952	1.0226	.06196	.81240	.03680	.71672
10.534	43	1.3643	1.0237	.06359	.81377	.03773	.73300
10.289	44	1.3347	1.0248	.06574	.81505	.03864	.74920
10.043	45	1.3066	1.0260	.06628	.81756	.03890	.76536 -
9.8303	46	1.2797	1.0272	.06826	.81795	.04050	.78146
9.6153	47	1.2539	1.0290	.06998	.81939	.04143	.79748
9.4092	48	1.2289	1.0297	.07138	.82064	.04247	.81346
9.2113	49	1.2057	1.0309 1.0323	.07290	.82244	.04330	.82938
9.0214 8.8387	50 51	1.1831 1.1614	1.0323	.07453	.82584	.04424	.86102
8.6629	52	1.1406	1.0349	.07511	.82729	.04614	.87674
8.4462	53	1.1206	1.0349	.07755	.82896	.04685	.89238
8.3306	54	1.1200	1.0378	.08083	.83072	.04805	.90798
8.1733	55	1.0828	1.0373	.08246	.83249	.04901	.92348
0.1100		1.0020	1.0000	100210	100210	101001	

		ARCS AI	ND SEGM.	ENTS OF	CIRCLES	•	118
Chord div. by height.	Centre angle v.	Radius $r = kc$.	Cir. are $b = kc$.	Area seg. $a = kc^2$.	Surface $\mathbf{a} = kc^2$.	Solidity $\mathbf{c} = kc^3$.	Chord $c = kr$.
by neight.	angle v.	7 — nc.	0 — nc.	- nc .	a - no		C == nr.
(h)	(-v-)		6				
				1. 10	1	" John	1
8.0215	56	1.0650	1.0407	.08400	.83422	.05002	.93894
7.8750	57	1.0478	1.0422	.08579	.83602	.05098	.95430
7.7334	58	1.0313	1.0431	.08680	.83796	.05191	.96960
7.5895	59	1.0154	1.0454	.08891	.84064	.05299	.98484
7.4565	60	1.0000	1.0470	.09106	.84266	.05400	1.0000
7.3358	61	.98515	1.0486	.09209	.84380	.05466	1.0150
7.2118	62	.97080	1.0503	.09375	.84581	.05583	1.0300
7.0914	63	.95694	1.0520	.09540	.84791	.05684	1.0450
6.9748	64	.94352	1.0537	.09697	.84996	.05784	1.0598
6.8616	65	.93058	1.0555	.09865	.85215	.05885	1.0746
6.7512	66	.91804	1.0573	.10036	.85441	.05987	1.0892
6.6453	67	.90590	1.0591	.10201	.85640	.06088	1.1038
6.5469	68	.89415	1.0610	.10367	.85815	.06181	1.1184
6.4902	69	.88276	1.0629	.10520	.86082	.06201	1.1328
6.3431	70	.87172	1.0648	.10710	.86350	.06396	1.1471
6.2400	71	.86102	1.0668	.10887	.86699	.06515	1.1614
6.1553	72	.85065	1.0687	.11046	.86834	.06604	1.1755
6.0652	73	.84058	1.0708	.11225	.87081	.06709	1.1896
5.9773	74	.83082	1.0728	.11385	.87344	.06815	1.2036
5.8918	75	.82134	1.0749	.11563	.87590	.06921	1.2175
5.8084	76	.81213	1.0770	.11736	.87853	.07037	1.2313
5.7271	77	.80319	1.0792	.11910	.88120	.07136	1.2450
5.6478	78	.79449	1.0814	.12072	.88389	.07244	1.2586
5.5704	79	.78606	1.0836	.12281	.88677	.07352	1.2721
5.4949	80	.77786	1.0859	.12441	.88949	.07462	1.2855
5.4254	81	.76988	1.0882	.12660	.89161	.07512	1.2989
5.3492	82	.76212	1.0905	.12793	.89520	.07683	1.3121
5.2705	83	.75458	1.0920	.12958	.89958	.07819	1.3252
5.2101	84	.74724	1.0953	.13157	.90095	.07907	1.3383
5.1429	. 85	.74009	1.0977	.13330	.90420	.07960	1.3512
5.0772	86	.73314	1.1012	.13546	.90734	.08102	1.3639
5.0134	87	.72637	1.1027	.13704	.91036	.08340	1.3767
4.9501	88	.71978	1.1054	.13893	.91363	.08436	1.3893
4.8886	89	.71336	1.1079	.14078	.91696	.08530	1.4018
4.8216	90	.70710	1.1105	.14279	.92210	.08621	1.4142
4.7694	91	.70101	1.1132	.14449	.92352	.08716	1.4265
4.7117	/ 92	.69508	1.1159	.14643	.92476	.08798	1.4387
4.6615	93	.68930	1.1186	.14817	.92914	.08932	1.4507
4.5999	94	.68366	1.1211	.15009	.93385	.09076	1.4627
4.5453	95	.67817	1.1242	.15211	.93746	.09197	1.4745
4.4845	96	.67282	1.1271	.15375	.94272	.09348	1.4863
4.4398	97	.66760	1.1300	.15600	.94470	.09442	1.4979
4.3859	98	.66250	1.1329	.15801	.94852	.09567	1.5094
4.3383	99	.65754	1.1359	.15995	.95236	.09693	1.5208
4.2862	100	.65270	1.1382	.16180	.95682	.09831	1.5321

by height. angle v . $r = kc$. $b = kc$. a 4.2406 101 .64798 1.1420 4.1930 102 .64338 1.1451	Area seg. 16393 16610 16925 17001 17204 17414	Surface a = kc ² . .96011 .96412 .96568 .97246	Solidity c = kc ³ . .09956 .10076 .10215	Chord $c = k\tau$. 1.5432 1.5543
4.2406 101 .64798 1.1420 4.1930 102 .64338 1.1451	.16610 .16925 .17001 .17204	.96011 .96412 .96568 .97246	.09956 .10076 .10215	
4.1930 102 .64338 1.1451	.16610 .16925 .17001 .17204	.96011 .96412 .96568 .97246	.09956 .10076 .10215	
4.1930 102 .64338 1.1451	.16610 .16925 .17001 .17204	.96412 .96568 .97246	.10076 .10215	
4.1930 102 .64338 1.1451	.16610 .16925 .17001 .17204	.96412 .96568 .97246	.10076 .10215	
	.16925 .17001 .17204	.96568 .97246	.10215	1.5543
4.1570 103 .63889 1.1483	.17001 .17204	.97246		
	.17204		40040	1.5652
4.1006 104 .63450 1.1515		07040	.10343	1.5760
4.0555 105 .63023 1.1547	.17414	.97643	.10471	1.5867
4.0113 106 .62607 1.1580		.98067	.10601	1.5973
3.9679 107 .62200 1.1614	.17619	.98495	.10735	1.6077
3.9252 108 .61803 1.1648	.17832	.98931	.10870	1.6180
3.8832 109 .61416 1.1682	.18041	.99376	.11007	1.6282
3.8419 110 .61039 1.1716	.18257	.99827	.11149	1.6383
3.8013 111 .60670 1.1752	.18472	1.0028	.11284	1.6482
3.7612 112 .60325 1.1790	.18696	1.0077	.11426	1.6581
3.7221 113 .59960 1.1823	.18900	1.0122	.11566	1.6677
3.6837 114 .59618 1.1859	.19117	1.0169	.11709	1.6773
3.6454 115 .59284 1.1897	.19339	1.0218	.11853	1.6867
	.19559	1.0266	.11995	1.6961
	.19787	1.0317	.12145	1.7053
	.20009	1.0368	.12294	1.7143
	.20227	1.0417	.12444	1.7232
3,4641 120 .57735 1.2089	.20453	1.0472	.12596	1.7320
	.20678	1.0525	.12748	1.7407
	.20945	1.0578	.12903	1.7492
	.21175	1.0634	.13060	1.7576
	.21399	1.0690	.13218	1.7659
	.21538	1.0753	.13391	1.7740
	.21859	1.0803	.13558	1.7820
	.22121	1.0862	.13701	1.7898
	.22370	1.0921	.13866	1.7976
	.22617	1.0974	.14028	1.8051
	.22865	1.1040	.14202	1.8126
	.23113	1.1104	.14371	1.8199
	.23372	1.1164	.14537	1.8271
	.23603	1.1212	.14676	1.8341
	.23892	1.1295	.14894	1.8410
	.24198	1.1363	.15209	1.8477
	.24364	1.1428	.15252	1.8543
	.24676	1.1495	.15422	1.8608
	.24938	1.1558	.15605	1.8671
	.25222	1.1634	.15807	1.8733
	.25485	1.1705	.15996	1.8794
	.25759	1.1777	.16201	1.8853
	.25936	1.1851	.16381	1.8910
2.7781 143 .52724 1.3157	.26320	1.1925	.16577	1.8966
	.26604	1.2000	.16776	1.9021
2.7276 145 .52426 1.3265 .	.26889	1.2077	.16965	1.9074

ARCS AND SEGMENTS OF CIRCLES. 121									
Chord div. by height.	Centro angle v.	Radius $r = kc$.	Cir. arc $b = kc$. Area seg. $a = kc^2$.		Surface $\mathbf{a} = kc^2$.	Solidity $\mathbf{c} = kc^3$.	Chord $c = kr$.		
(In)	(-0-)	2 Time	b						
10/	/			Commission			1		
		4.							
2.7002	146	.52284	1.3320	.27196	1.2166	.17209	1.9126		
2.6816	147	.52147	1.3377	.27449	1.2219	.17405	1.9176		
2.6533	148	.52015	1.3433	.27772	1.2318	.17605	1.9225		
2.6301	149	.51887	1.3491	.28168	1.2396	.17809	1.9272		
2.6064	150	.51764	1.3549	.28369	1.2476	.18023	1.9318		
2.5830	151	.51645	1.3608	.28674	1.2563	.18666	1.9363		
2.5598	152	.51530	1.3668	.28983	1.2648	.18751	1.9406		
2.5239	153	.51420	1.3729	.29397	1.2801	.18845	1.9147		
2.5143	154	.51315	1.3790	.29607	1.2824	.18913	1.9487		
2.4919	155	.51214	1.3852	.29928	1.2914	.19147	1.9526		
2.4699	156	.51117	1.3919	.30259	1.3004	.19374	1.9563		
2.4478	157	.51014	1.3973	.30560	1.3094	.19607	1.9598		
2.4262	158	.50936	1.4043	.30905	1.3191	.19851	1.9632		
2.4047	159	.50851	1.4109	.31239	1.3287	.20095	1.9663		
2.3835	160	.50771	1.4175	.31575	1.3368	.20342	1.9696		
2.3613	161	.50695	1.4243	.31931	1.3490	.20609	1.9725		
2.3417	162	.50623	1.4311	.32263	1.3583	.20847	1.9753		
2.3211	163	.50555	1.4380	.32618	1.3682	.21105	1.9780		
2.3004	164	.50491	1.4450	.32969	1.3791	.21371	1.9805		
2.2805	165	.50431	1.4520	.33327	1.3895	.21634	1.9829		
2.2605	166	.50374	1.4592	.33684	1.4021	.21904	1.9851		
2.2408	167	.50323	1.4665	.34048	1.4111	.22177	1.9871		
2.2212	168	.50275	1.4739	.34422	1.4222	.22450	1.9890		
2.2013	169	.50231	1.4813	.34802	1.4344	.22766	1.9908		
2.1826	170	.50191	1.4889	.35230	1.4476	.23028	1.9924		
2.1636	171	.50154	1.4966	.35563	1.4565	.23266	1.9938		
2.1447	172	.50122	1.5044	.35953	1.4684	.23650	1.9951		
2.1271	173	.50093	1.5123	.36337	1.4797	.23900	1.9962		
2.1075	174	.50068	1.5202	.36747	1.4927	.24225	1.9972		
2.0892	175	.50047	1.5283	.37152	1.5052	.24537	1.9981		
2.0710	176	.50030	1.5365	.37562	1.5179	.24856	1.9988		
2.0530	177	.50017	1.5448	.37974	1.5308	.25179	1.9993		
2.0352	178	.50007	1.5533	.38401	1.5439	.25531	1.9996		
2.0175	179	.50002	1.5618	.38828	1.5573 .25840		1.9999		
2.0000	180	.50000	1.5708	.39269	1.5708	.26179	2.0000		

The Ellipse.

Notation.

a = semi-major axis.b = semi-minor axis.f, f' = foci.

x = abscissa = horizontal distance from centre to base of vertical under any point, p, on perimeter.

= ordinate = vertical distance from horizontal axis to point, p, on perimeter.

Equation of ellipses, referred to axes through centre:

$$a^2y^2 + b^2x^2 = a^2b^2$$
.

Construction: given the semi-axes, a and b.

Find the foci, f, f', by taking the semi-major axis, a, in the dividers and sweeping arcs from B, intersecting the major axis at f and f'. By attaching a string to pins at f and f', and making the length of the string equal to 2a, the curve can be drawn by

moving a pencil around in the bight of the string.

Points on the perimeter of an ellipse may be found as

follows:

Mark off on a straightedged piece of paper the distances rt = a, rs = b; then, when t is on the minor axis and son the major axis, r will be on a point in the curve, and so any number of points

may be found.

To draw a normal or a tangent at any point, p, on the perimeter of an ellipse, draw lines, fp, f'p, from the point, p, to the two foci. A line, rs, bisecting the angle, fpf', will be the normal, and a line, mn, at right angles to the normal

will be the tangent. The construction of the normal indicates the proper angles for joints in ellipti-

cal arches. The perimeter of an ellipse can be accurately computed only by the summation of a series.

A good, approximate formula is that of Boussinesq, which is very close, when a is not more than three times greater than b.

Perimeter =
$$S = 2\pi \left(\frac{3}{2} \cdot \frac{a+b}{2} - \frac{1}{2} \sqrt{ab} \right)$$
.

The quantity in the parenthesis is the radius of a circle of equivalent perimeter to an ellipse whose major and minor semi-axes are a and b.

Example. Let a = 5, b = 2.

$$S = 2\pi \left(\frac{3}{2} \cdot \frac{7}{2} - \frac{1}{2}\sqrt{10}\right) = 2\pi \times 3.6689 = 23.052.$$

The true perimeter of any ellipse may be computed from the following series:

$$\text{Perimeter} = S = \pi(a+b) \left[1 + \frac{1}{4} \left(\frac{a-b}{a+b} \right)^2 + \frac{1}{64} \left(\frac{a-b}{a+b} \right)^4 + \frac{1}{256} \left(\frac{a-b}{a+b} \right)^6 \cdot \right].$$

Calling the quantity within the brackets k, we have

$$S = \pi(a+b)k$$
.

In the following table are given values of k for successive values of $\frac{a-b}{a+b}$, this rendering the application of the formula simple.

Example. Let a = 7, b = 1.

We have

$$\frac{a-b}{a+b} = \frac{6}{8} = 0.75.$$

In the table, for 0.75 we have k = 1.1466; hence,

$$S = \pi \times 8 \times 1.1466 = 28.817.$$

By the Boussinesq formula we get

$$S = 29.388.$$

Perimeter of Ellipse.

Values of k for successive Values of $\frac{a-b}{a+b}$.

$\frac{a-b}{a+b}$	$k = \left \frac{a-b}{a+b} \right $	$\left \frac{k}{k} \right $	$\left \frac{a-b}{a+b} \right $	k	$\left \frac{a-b}{a+b} \right $	k	$\left \frac{a-b}{a+b} \right $	k
0.02 1. 0.03 1. 0.04 1. 0.05 1. 0.06 1. 0.07 1.	.0000	1.0133 1.0145 1.0158 1.0173 1.0186	0.41 0.42 0.43 0.44 0.45 0.46 0.47	1.0431 1.0450 1.0472 1.0494 1.0516 1.0538 1.0561	0.61 0.62 0.63 0.64 0.65 0.66 0.67	1.0954 1.0986 1.1016 1.1048 1.1083 1.1115 1.1157	0.81 0.82 0.83 0.84 0.85 0.86 0.87	1.1721 1.1768 1.1813 1.1859 1.1903 1.1950 1.2000
0.09 1. 0.10 1. 0.11 1. 0.12 1. 0.13 1. 0.14 1. 0.15 1. 0.16 1. 0.17 1. 0.18 1. 0.19 1.	.0016	1.0215 1.0226 1.0245 1.0245 1.0261 1.0276 1.0291 1.0311 1.0349 1.0369 1.0389	0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59	1.0585 1.0608 1.0635 1.0661 1.0686 1.0713 1.0740 1.0768 1.0798 1.0827 1.0857 1.0889 1.0922	0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80	1.1193 1.1229 1.1267 1.1306 1.1345 1.1383 1.1423 1.1466 1.1509 1.1550 1.1593 1.1637 1.1677	0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00	1.2049 1.2100 1.2154 1.2207 1.2263 1.2315 1.2374 1.2430 1.2486 1.2546 1.2605 1.2665 1.2732

The area of an ellipse is readily found by the formula

Area =
$$A = \pi ab$$
.

This is simply obtained by taking the product, ab, as the diameter of a circle and looking up the corresponding area in the table of circles, pages 110-116.

The Parabola.

Notation.

x = abscissa for any point on the curve.

y = ordinate.

f = focus.O = vertex.

p = semi-parameter = double ordinate through focus.

CD = directrix.

 $m = \frac{1}{2}p = \text{distance of focus from vertex} = \text{distance of directrix from vertex}.$

Equation:

$$y^2 = 2px;$$
$$y = \sqrt{2px}.$$

Construction of Parabola.

Given position of vertex, O, and focus, f:

Take the distance, m=fO, and lay it off from O to A; A will then be the point where the directrix cuts the horizontal axis. At any point, a', erect a vertical, and with the distance, Aa', in the dividers, sweep an arc with f as a centre; the intersection of this arc with the vertical will be a point in the curve. In like manner the points b, c, or any others may be found.

Given the rise and span of the curve:

Lay off the span, A-B, and height, O-C; divide A-E and B-F into any number of equal parts, 1-2-3, and EO and OF into the same number of equal parts. Join 1-2-3 with O, and the intersection of these lines with

verticals through a,b,c, etc., will be points in the curve. The accuracy of the curve will depend upon the number of divisions.

Length of Parabolic Curve.

Let h = height, s = span, l = length of curve.

$$l = s \left[1 + \frac{8}{3} \left(\frac{h}{s} \right)^2 - \frac{32}{5} \left(\frac{h}{s} \right)^4 \right].$$

This is a close approximation when the rise is small in proportion to the span.

The exact formula for the length of an arc of a parabola from the vertex to a point whose co-ordinates are x and y is

$$l = \frac{p}{2} \left[\sqrt{\frac{2x}{p} \left(1 + \frac{2x}{p} \right)} + \text{hyp. log. } \left(\sqrt{\frac{2x}{p}} + \sqrt{1 + \frac{2x}{p}} \right) \right].$$

Area of Parabola.

Let s = span, h = height.

Area = $\frac{2}{3}8h$.

The Hyperbola.

Notation.

x = abscissa for any point on the curve. y = ordinate. f, f' = foci.A.B = vertices, A-B = transverse axis.

Equation of the hyperbola:

$$a^2y^2 - b^2x^2 = -a^2b^2$$

Construction of the Curve.

Given the transverse axis, A-B, and the foci, f, f': Take any points, 1, 2, 3, 4, etc., on the axis, OX, and make fa = B1, f'a = A1, fb = B2, f'b = A2, etc., thus obtaining as many points on the curves as may be required.

Cycloidal Curves.

Cycloidal curves are those generated by the path of a point on a circle which rolls upon a given line. They are principally used for tooth profiles in wheel gearing.

We may consider the usual forms of cycloidal curves as generated by one circle rolling upon another, the rolling circle being called the generating circle, and the stationary one the base circle.

When the base circle is of infinitely great diameter it may be considered as a straight line, and the curve is the *orthocycloid*, usually called the common cycloid. When the generating circle rolls on the outside of the base circle, the curve is called the *cpicycloid*; when it rolls inside of the base circle it is called the hypocycloid.

When the rolling circle is of infinitely great diameter it may be considered as a straight line, and the curve is called an *involute*, or more

correctly an evolute.

We shall here give only the geometrical methods of construction of the four curves, taking up their applications in connection with the practical constructions.

Common Cycloid.

Let D be the generating circle: Lay off C, equal to one-half the circumference of the circle, D. Divide C and the half circumference of D into the same number of equal parts,

1, 2, 3, 4, 5, 6, and 1', 2', 3', 4', 5', 6'. Erect ordinates from 1, 2, 3, etc., and draw horizontals from 1', 2', 3', etc. Then make $a\alpha' = 1'l$, bb' = 2'm, cc' = 3'n, d'd = 4'o, ee' = 5'p. Then a', b', c', etc., will be points on the curve.

Epicycloid and Hypocycloid.

The construction of both epicycloid and hypocycloid is similar to that of the common cycloid, modified only by the

fact that the base is circular instead of straight. The following construction applies to both curves, the only change being that due to the rolling being external and internal.

In each case the arc, 1-4, on the base circle is made equal in length to the semi-circumference of the generating circle. Radial lines are drawn

from the centre of the base circle through 1, 2, 3, 4, and arcs struck from 0 through 1', 2', 3', 4'. Then aa'=1'n, bb'=2'm, cc'=3'l, and the curve is drawn through a',b',c',d.

Areas of Plane Figures.

a = area; other dimensions as in the figures.

Square.

 $a = s^2 = 4b^2$,

 $a = 0.5d^2$.

Rectangle.

 $\mathbf{a} = ab$

 $a = bV d^2 - b^2$

Triangle.

$$\mathbf{a} = \frac{bh}{2} = \frac{1}{2}bh,$$

$$\mathbf{a} = \frac{b}{2} \sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2}.$$

Trapezoid.

$$\mathbf{a} = \frac{1}{2}h(a+b).$$

Circle.

$$\mathbf{a} = \pi r^2 = 0.7854d^2$$

$$\mathbf{a} = \frac{pr}{2} = 0.0796P^2$$
.

Sector.

$$\mathbf{a} = \frac{1}{2}br$$

$$\mathbf{a} = \frac{\pi r^2 v}{360} = \frac{r^2 v}{114.5}$$

Triangle.

 $\mathbf{a} = \frac{1}{2}bh$,

$$\mathbf{a} = \frac{b}{2} \sqrt{a^2 - \left(\frac{c^2 - a^2 - b^2}{2b}\right)^2}.$$

Trapezium.

 $\mathbf{a} = \frac{1}{2}(a[h+h'] + bh' + ch).$

Circle Ring.

 $\mathbf{a} = \pi(R^2 - r^2) = \pi(R + r)(R - r),$

 $\mathbf{a} = 0.7854(D^2 - d^2).$

Or take the difference between the areas of the inner and outer circles, as found in the tables of areas of circles.

Segment.

 $\mathbf{a} = \frac{1}{2}[br - c \ (r - h)],$

$$\mathbf{a} = \frac{\pi r^2 v}{360} \mp \frac{c}{2} (r - h).$$

Quadrant.

 $\mathbf{a} = 0.785r^2 = 0.3927c^2$.

Spandrel.

 $\mathbf{a} = 0.215r^2 = 0.1075c^2$.

The area of any irregular figure is best found by Simpson's Rule, as follows:

Divide the base, AB, into any even number of parts, d (in the illustration, 8 parts), and erect the ordinates, h_0 , h_1 , h_2 , etc. Then the area, **a**, of the figure, ABCD, will be

$$\mathbf{a} = \frac{d}{3}(h_0 + 4h_1 + 2h_2 + 4h_3 + 2h_4 + 4h_5 + 2h_6 + 4h_7 + h_8).$$

It will be observed that the coefficients of the ordinates are alternately 4 and 2, with the exception of the first and last.

When the figure is drawn to scale, the area is best measured by a planimeter, but if this is not available, Simpson's Rule is practically as correct The degree of accuracy will naturally depend upon the number as any. of divisions taken.

Surfaces of Solids.

Sphere.

 $\mathbf{a} = 4\pi r^2 = 12.5664r^2 = \pi d^2$.

The surface of any sphere may readily be found by multiplying the area of a circle of the same diameter by 4, using the Table of Areas of Circles.

Torus, or Ring of Circular Cross Section.

$$a = 4\pi^2 Rr = 39.4784 Rr$$

$$a = 9.8696Dd$$

Sector of a Sphere.

$$\mathbf{a} = \frac{\pi r}{2} (4h - c).$$

Circle Zone.

$$\mathbf{a} = 2\pi rh = \frac{\pi}{4}(c^2 + 4h^2).$$

Frustum of a Cone.

$$x = \frac{dh}{D-d}, \qquad R = s + \frac{ds}{D-d},$$

$$\mathbf{a} = \frac{\pi s}{2}(D+d),$$

$$v = \frac{180D}{R} = \frac{180(D-d)}{s}.$$

Cone.

$$\mathbf{a} = \pi R s,$$

$$\mathbf{a} = \pi R^{\sqrt{R^2 + h^2}}.$$

Volumes of Solids.

 $\mathbf{c} = \text{content of the various bodies in terms of the dimensions given in the figures.}$

Sphere.

$$\mathbf{c} = \frac{4\pi r^3}{3} = 4.18879r^3,$$
 $\mathbf{c} = \frac{\pi d^3}{6} = 0.5236d^3.$

For Table of Volumes of Spheres, see page 132.

Torus.

$$\mathbf{c} = 2\pi^2 R r^2 = 19.74 R r^2$$

 $\mathbf{c} = 2.463 D d^2$.

Sphere Sector.

$$c = \frac{2}{3}\pi r^2 h = 2.0944r^2 h,$$

$$c = \frac{2}{3}\pi r^2 (r \mp \sqrt{r^2 - \frac{1}{4}c^2}).$$

Cone.

$$\mathbf{c} = \frac{\pi r^2 h}{3} = 1.047 r^2 h,$$
 $\mathbf{c} = 0.2618 d^2 h.$

Cylinder.

$$\mathbf{c} = \pi r^2 h = 0.785 d^2 h,$$

 $\mathbf{c} = \frac{p^2 h}{4\pi} = 0.0796 p^2 h.$

Paraboloid.

$$c = \frac{1}{2}\pi r^2 h = 1.5707 r^2 h$$

Segment of a Sphere.

$$egin{aligned} \mathbf{c} &= \pi h^2 (r - \frac{1}{3}h), \ \mathbf{c} &= \pi h^2 \Big(\frac{c^2 + 4h^2}{8h} - \frac{1}{3}h \Big). \end{aligned}$$

Conic Frustum.

$$c = \frac{1}{3}\pi h(R^2 + Rr + r^2),$$

$$c = \frac{1}{12}\pi h(D^2 + Dd + d^2).$$

Ellipsoid.

$$\mathbf{c} = 0.424\pi^2 R r^2 = 4.1847 R r^2,$$

 $\mathbf{c} = 0.053\pi^2 D d^2 = 0.5231 D d^2.$

Pyramid.

$$c = \frac{1}{3}ah,$$

$$c = \frac{nsh}{6}\sqrt{r^2 - \frac{s^2}{4}}.$$

Pyramidic Frustum.

$$\mathbf{c} = \frac{h}{3}(A + \mathbf{a} + \sqrt{A}\mathbf{a}).$$

Wedge Frustum.

 $\mathbf{c} = \frac{hs}{2}(a+b).$

Volumes of Spheres.

D = diameter.

D	Volume.	D	Volume.	D	Volume.	D	Volume.	D	Volume.
1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.523599 4.188790 14.13717 33.51032 65.44984 113.0974 179.5943 268.0826 381.7035 523.5988 696.9100 904.7785 1150.347 1436.755	21 22 23 24 25 26 27 28 29 30 31 32 33 34	4849.048 5575.280 6370.626 7238.228 8181.230 9202.770 10306.00 11494.04 12770.05 14137.17 15598.53 17157.25 18816.56 20579.52	41 42 43 44 45 46 47 48 49 50 51 52 53	36086.95 38792.38 41629.77 44602.24 47712.93 50965.00 54361.60 57905.83 61600.86 65449.84 69455.90 73622.17 77951.80 82447.94	61 62 63 64 65 66 67 68 69 70 71 72 73	118846.9 124788.2 130924.3 137258.3 143793.3 150532.5 157479.1 164636.2 172006.9 179594.3 187401.7 195432.2 203688.8 212174.8	81 82 83 84 85 86 87 88 89 90 91 92 93 94	278261.8 288695.6 299387.0 310339.1 321555.1 333038.2 344791.4 356818.0 369120.9 381703.5 394568.8 407720.0 421160.4 434892.8
15 16	1767.146 2144.660	35 36	22449.29 24429.02	55 56	87113.74 91952.32	75 76	220893.3 229847.3	95	448920.4 463246.7
17	2572.441	37	26521.84	57	96966.82	77	239040.1	97	477874.4
18	3053.628	38	28730.91	58	102160.4	78	248474.8	98	492807.0
19	3591.364	39	31059.35	59	107536.2	79	258154.6	99	508047.3
20	4188.790	40	33510.32	60	113097.4	80	268082.6	100	523598.8

TRIGONOMETRY.

Angular Functions.

In order to obtain a clear idea of the various functions by which angular values may be expressed in terms of straight lines, let it be supposed that we have a straight line, X'X, and that from a point, O, on this line we have an arm, OR, which may be moved like a crank about O as a centre. The arm, OR, will then make various angles with the line, X'X, according to the position which is given to it.

If we take a radius, Oc = unity on any convenient scale, and describe a circle about O, we find that there are a number of ways in which we can measure the angle, a, which the arm, OR, makes with the line, X'X.

can measure the angle, a, which the arm, OR, makes with the line, X'X. Thus, we may erect a perpendicular from c until it reaches OR at d, and the distance, cd, will be the tangent of the angle, a (written tana). Or, we may drop a perpendicular from b to OX at a, and we have ab, the sine of the angle, a. Again, we may measure the distance, Oa, the cosine of a; or fc, the cotangent of a. If we had given any one of the distances, measured on the same scale as the radius, Oc, we can construct the angle, a.

By supposing the arm, OR, to be gradually moved about O, so that the angle, a, steadily increases, we may observe the manner in which these functions vary. At first, when the angle is equal to zero, the sine, tangent, and versed-sine are also equal to zero, while the cosine and secant are both equal to the radius, or equal to unity. As the angle increases the sine, tangent, and versed-sine increase, while the cosine diminishes. At 45° the

sine and cosine are equal to each other and equal to $\frac{1}{2}\sqrt{2} = 0.7071$, while the tangent and cotangent are also equal to each other and also equal to the radius or unity. At 90° the cosine and cotangent become equal to zero and the sine equals the radius. For angles between 90° and 180° the cosine and cotangent become negative; between 180° and 270° the sine and cosine, tangent and cotangent, are all negative; and between 270° and 360° the sine and tangent are negative, the cosine and cotangent positive. Distances measured above X'X and to the right of YY' are positive; those measured to the left of YY' and below X'X are negative. Referring again to the diagram, the functions are:

ab = sineac = versed sinecd = tangent,Od = secant $aO = \cos ine$ fg = coversed sine,fe = cotangent. 0e = cosecant.

Trigonometric Tables.

In the following tables the values of the various angular functions are In the following tables the values of the various angular functions are given for every degree and minute of the quadrant for a radius of unity. If any other radius is used, the tabular values are to be multiplied by the actual length of the radius. These tables of so-called Natural Functions are followed by tables of the Logarithmic Angular Functions, these being the logarithms of the natural functions. If the computations are made by the ordinary processes of multiplication and division, the natural functions are used, and if logarithms of numbers are used, the logarithms of the angular functions are the overeign such that the most of the second such that the second such the angular functions are to be used with them.

In the logarithmic functions the characteristics have been increased by 10, in order to avoid negative characteristics; hence, the corresponding

number of tens are to be subtracted from the final result.

00 179° Natural Trigonometrical Functions. Cosec'nt Cosine. M. M. Vrs. cos. Tang. Cotang. Secant. Vrs. sin. Sine. 1.0000 60 0 .00000 1.0000 Infinite. .00000 Infinite. .00000 1.0000 1 .99971 3437.7 0029 .0000 0000 .0000 59 . 0029 3437.73 . 0058 9942 0058 .0000 0000 .0000 58 1718.9 1718.9 .0000 9913 1145.9 0087 1145.9 0000 .0000 . 0087 4 5 0116 859.44 687.55 572.96 859.44 687.55 572.96 491.11 9884 0116 .0000 0000 .0000 .00145 .99854 .00145 1.0000 .00000 1.0000 0000 678 .0000 54 . 0174 9825 .0000 9796 491.11 0204 .0000 0000 .0000 53 0204 0233 429.72 0233 429.72 .0000 0000 .0000 9767 9 0262 9738 381.97 6262 381.97 .0000 0000 .0000 1.0000 10 .00291 .99709 343.77 .00291 343.77 .00000 99999 50 312.52 49 . 0320 0320 312.52 .0000 0000 9999 11 9680 12 0349 9651 286.48 286.48 0349 .0000 0001 9999 48 64.44 13 0378 9622 $\begin{array}{c} 64.44 \\ 45.55 \end{array}$ 0378 .0000 0001 9999 47 45.55 14 0407 9593 0407 .0000 0001 9999 46 .00436 .99564 229.18 .00436 229.18 1.0000 .00001 .99999 45 16 0465 9534 14.86 0465 14.86 .0000 0001 9999 44 02.22 9999 0494 9505 02.22 0494 .0000 0001 43 9476 190.99 .0000 18 0524 0524 190.98 0001 9999 42 19 0553 9447 80.93 0553 .0000 0001 9998 80.93 41 20 .00582 .99418 171.89 .00582 171.88 1.0000 .00002 .99998 40 21 63.70 63.70 .0000 0002 56.26 9998 0640 9360 0640 56.260002 38 .0000 23 24 25 26 27 28 49.47 9998 37 0669 9331 0669 49.46.0000 0002 43.24 137.51 32.22 27.32 22.77 43.24 137.51 32.22 27.320698 9302 0698 .0000 0002 9997 36 .00727 .99273 .00727 1.0000 .00003 .99997 0756 0756 9244 .0000 0003 9997 34 9215 0785 9997 0785 .0000 0003 0814 9185 22.78 0814 .0000 0003 9997 29 0843 9156 18.54 18.54 .0000 0003 9996 0844 30 .00873 .99127 114.59 .00873 114.59 1.0000 .00004 99996 30 29 0902 9098 10.90 0902 10.89 .0000 0004 9996 0931 9069 07.43 0931 9996 28 07.43.0000 0004 27 33 0960 9040 04.17 0960 04.17.0000 0005 9995 26 34 0989 9011 01.11 0989 .0000 9995 01.11 0005 98,223 1.0000 35 .01018 .01018 99995 25 .98982 98.218.00005 5.49536 1047 8953 $\begin{array}{c} 1047 \\ 1076 \end{array}$ 5.489 .0000 9994 24 0005 1076 23 37 2.914 2.908 8924 .0000 0006 9994 38 39 8895 1105 0.469 1105 9994 0.463 .0001 0006 1134 9993 8865 88.149 1134 88.143 .0001 0006 40 .01163 .98836 85,946 .01164 85.940 1.0001 .00007 99993 20 3.849 41 1193 8897 3.843 .00010007 9993 19 1222 42 8778 1.853 1222 9992 18 1.847 .0001 0007 43 1251 8749 79.950 1251 .0001 9992 17 79.9430008 1280 44 8720 8.133 1280 8.126 9992 .00010008 45 .01309 76.396 .01309 99991 .98691 76.390 1.0001 .00008 15 46 1338 8662 4.7361338 4.729 9991 14 .0001 0009 47 1367 8633 3.146 1367 3.139 .0001 0009 9991 13 48 1396 8604 1.622 1396 .0001 0010 9990 1425 0.160 0.153 49 8575 1425 .0001 0010 9990 11 .98546 50 .01454 68.757 .01454 68,750 1.0001 .00010 99989 10 7.409 . 1483 8516 1484 7.402.0001 0011 9989 9 1512 8487 6.1136.105 .0001 0011 9988 87 53 1542 8458 4.8661542 4.858 .00010012 9988 54 1571 8429 3,664 1571 6 .0001 00129988 .01600 .98400 62.507 .01600 5 62.4991.0001 .00013 .99987 56 1.391 8371 1.383 .0001 0013 9987 4 1658 1658 0.314 8342 0.306 .0001 0014 9987 3 58 1687 8313 59.274 1687 59.266 $\bar{2}$.00010014 9986 59 8284 8.270 8.261 .0001 0015 9985 ī 60 1745 8255 7.2991745 7.290 .00010015 9985 0 M. Cosine. Vrs. sin. Secant. Cotang. Tang. Vrs. cos. Cosec'nt Sine. M.

10		Na	tural Ti	rigonom	etrical	Function	ns.	· 1	78°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.01745	.98255	57.299	.01745	57.290	1.0001	.00015	.99985	60
1	. 1774	. 8226 . 8196	6.359 5.450	. 1775	6.350 5.441	.0001	. 0016	. 9984	59 58
2 3	. 1832	. 8167	4.570	. 1833	4.561	.0002	. 0017	9983	57
4	. 1861	. 8138	3.718	. 1862	3.708	.0002	. 0017	. 9983	56
5	.01891	.98109	52.891	.01891	52.882	1.0002	.00018	.99982	55
6	. 1920	. 8080 . 8051	2.090 1.313	. 1920	2.081 1.303	.0002	. 0018	. 9981	54 53
7 8	1978	. 8022	0.558	. 1978	0.548	.0002	. 0019	. 9980	52
9	. 2007	. 7993	49.826	. 2007	49.816	.0002	. 0020	. 9980	51
10 11	.02036	.97964	49.114 8.422	.02036	49.104 8.412	1.0002 .0002	.00021	.99979	50 49
12	2003	7906	7.750		7.739	.0002	. 0021	9978	48
13	. 2123	. 7877	7.096	. 2095 . 2124	7.085	.0002	. 0022	. 9977	47
14	. 2152	. 7847	6.460	. 2153	6.449	.0002	. 0023	. 9977	46
15 16	. 02181	. 97818	45.840 5.237	. 02182	45.829 5.226	1.0002 .0002	.00024	.99976	45
17	. 2240	. 7760	4.650	. 2240	4.638	.0002	. 0025	. 9975	43
18	. 2269	. 7731	4.077	. 2269	4.066	.0002	. 0026	. 9974	42
19 20	. 2298	. 7702 .97673	$\begin{array}{r} 3.520 \\ 42.976 \end{array}$. 2298	$3.508 \\ 42.964$	1.0003	.0026	. 9974	41 40
21	. 2356	. 7644	2.445	. 2357	2.433	.0003	. 0028	. 9972	39
22	. 2385	. 7615	1.928	. 2386	1.916	.0003	. 0028	. 9971	38
23	. 2414	. 7586	1.423	. 2415	1.410	.0003	. 0029	. 9971	37
24 25	. 2443 .02472	. 7557 .97528	0.930 40 448	. 2444 .02473	0.917 40.436	1.0003	.0030	. 9970	36 35
26	. 2501	. 7499	39.978	. 2502	39.965	.0003	. 0031	. 9969	34
27	. 2530	. 7469	9.518	. 2531	9.506	.0003	. 0032	. 9968	33
28 29	. 2559	. 7440 . 7411	9.069 8.631	. 2560	9.057 8.618	.0003	. 0033	. 9967	32
30	.02618	.97382	38.201	.02618	38.188	1.0003	.00034	.99966	30
31	. 2647	. 7353	7.782	. 2648	7.769	.0003	. 0035	. 9965	29
32	. 2676	. 7324	7.371	. 2677	7.358	.0003	. 0036	. 9964	28
33 34	. 2705 . 2734	. 7295 . 7266	6.969 6.576	. 2706 . 2735	6.956 6.563	.0004	. 0036	. 9963	27 26
$3\overline{5}$.02763	.97237	36.191	.02764	36.177	1.0004	.00038	.99962	25
36	. 2792	. 7208	5.814	. 2793	5.800	.0004	. 0039	. 9961	24
37 38	. 2821 . 2850	. 7179 . 7150	5.445 5.084	. 2822 . 2851	5.431 5.069	.0004	. 0040	. 9960	23 22
39	2879	7121	4.729	. 2880	4.715	.0004	. 0041	. 9958	21
40	.02908	.97091	34.382	.02910	34.368	1.0004	.00042	.99958	20
41 42	. 2937 . 2967	. 7062	4.042	. 2939	4.027	.0004	. 0043	. 9957	19
43	. 2996	. 7033	3.708 3.381	. 2968	3.693 3.366	.0004	. 0044	. 9956	18 17
44	. 3025	. 6975	3.060	. 3026	3.045	.0004	. 0046	. 9954	16
45	.03054	.96946	32.745	.03055	32.730	1.0005	.00046	.99953	15
46 47	. 3083 . 3112	. 6917	2.437 2.134	. 3084	2.421 2.118	.0005	. 0047	. 9952 . 9951	14 13
48	. 3141	6859	1.836	. 3143	1.820	.0005	. 0048	. 9951	12
49	. 3170	. 6830	1.544	. 3172	1.528	.0005	. 0050	. 9950	11
50 51	.03199	.96801	31.257	.03201	31.241	1.0005	.00051	.99949	10
52	. 3257	. 6772 . 6743	0.976 0.699	. 3259	0.960 0.683	.0005	. 0052	. 9948	9
53	. 3286	6713	0.428	3288	0.411	.0005	. 0054	9946	8 7
54	. 3315	. 6684	0.161	. 3317	0.145	.0005	. 0055	. 9945	6 5
55 56	. 3374	. 96655	29.899 9.641	. 03346	29.882 9.624	1.0005	.00056	.99944	5 4
57	. 3403	. 6597	9.388	. 3405	9.824	.0006	. 0057	. 9943	3
58	. 3432	. 6568	9.139	. 3434	9.122	.0006	. 0059	. 9941	3 2
59 60	. 3461	6539	8.894	. 3463	8.877	.0006	. 0060	. 9940	1 0
	. 3490	. 6510	8.654	. 3492	8.636	.0006	. 0061	. 9939	_
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	М.

2 °		Na	tural T	rigonom	etrical	177°			
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.03490	.96510	28.654	.03492	28.636	1.0006	.00061	.99939	60
1	. 3519	. 6481	8.417	. 3521	8.399 8.166	.0006	. 0062	. 9938	59
2	. 3548	6452	8.184	. 3550	8.166	.0006	. 0063	. 9937	58 57
2 3 4 5 6 7	. 3577	. 6423	7.955 7.730	. 3579	7.937 7.712	.0006	. 0064	9936	56
5	.03635	.96365	27.508	.03638	27,490	1.0007	.00066	.99934	55
6	. 3664	. 6336	7.290	. 3667	27.490 7.271	.0007	. 0067	. 9933	54
7	. 3693	. 6306	7.075	. 3696	7.056	.0007	. 0068	. 9932	1 53
8	. 3722	6277	6.864	. 3725	6.845	.0007	. 0069	. 9931	52
10	. 3751 .03781	. 6248	6.655 26.450	.03783	6.637 26.432	.0007 1.0007	.0070	. 9930	51 50
10 11	. 3810	6190	6.249	. 3812	6.230	.0007	. 0073	. 9927	49
12	. 3839	. 6161	6.050	. 3842	6.031	.0007	. 0074	. 9926	48
13	. 3868	. 6132	5.854	. 3871	5.835	.0007	. 0075	. 9925	47
14	. 3897	. 6103	5.661	. 3900	5.642	.0008	. 0076	. 9924	46
15 16	.03926	. 6045	25.471 5.284	.03929	25.452 5.264	1.0008	.00077	.99923	45
17	3984	6016	5.100	3987	5.080	.0008	. 0079	. 9921	43
18	. 4013	. 5987	4.918	. 4016	4.898	.0008	. 0080	. 9919	42
19	. 4042	. 5958	4.739	. 4045	4.718	.0008	. 0082	. 9918	41
20	.04071	.95929	24.562	.04075	24.542	1.0008	.00083	.99917	40
21 22	. 4100	. 5900 . 5870	4.388 4.216	. 4104	4.367 4.196	.0008	. 0084	. 9916	39
23	. 4158	. 5841	4.047	. 4162	4.026	.0009	. 0086	9913	38 37
24	. 4187	. 5812	3.880	. 4191	3.859	.0009	. 0088	. 9912	36
25	.04217	.95783	23.716	.04220	23.694	1.0009	.00089	.99911	35
26 27	. 4246	. 5754	3.553	. 4249	3.532	.0009	. 0090	. 9910	34
28	. 4275	. 5725	3.393 3.235	. 4279	3.372 3.214	.0009	. 0091	9908	33 32
29	. 4333	. 5667	3.079	. 4337	3.058	.0009	. 0094	. 9906	31
30	.04362	.95638	22.925	.04366	22.904	1.0009	.00095	.99905	30
21	. 4391	. 5609	2.774	. 4395	2.752	.0010	. 0096	. 9903	29
32 33	. 4420	. 5580	2.624 2.476	. 4424	2.602	.0010	. 0098	. 9902	28 27
34	. 4478	5522	2.330	. 4483	2.454 2.308	.0010	. 0100	. 9901	26
35	.04507	.95493	22.186	.04512	22.164	1.0010	.00102	.99898	25
36	. 4536	. 5464	2.044	. 4541	2.022	.0010	. 0103	. 9897	24
37 38	. 4565	. 5435	1.904	. 4570	1.881	.0010	. 0104	. 9896	23
39	. 4594	. 5405	1.765 1.629	. 4599	1.742 1.606	.0010	. 0106	. 9894	22 21
40	.04652	.95347	21.494	.04657	21.470	1.0011	.00108	.99892	20
41	. 4681	. 5318	1.360	. 4687	1.337	.0011	. 0110	. 9890	19
42	. 4711	. 5289	1.228	. 4716	1.205	.0011	. 0111	. 9889	18
43 44	. 4740	. 5260 . 5231	1.098	. 4745	1.075	.0011	. 0112	. 9888	17
45	.04798	.95202	$0.970 \\ 20.843$. 4774	$0.946 \\ 20.819$.0011	.0114	. 9886 .99885	16 15
46	. 4827	. 5173	0.717	. 4832	0.693	.0012	. 0116	. 9883	14
47	. 4856	. 5144	0.593	. 4862	0.569	.0012	. 0118	. 9882	13
48	. 4885	. 5115	0.471	. 4891	0.446	.0012	. 0119	. 9881	12
49 50	. 4914	. 5086	0.350	. 4920	0.325	$\begin{array}{c c} .0012 \\ 1.0012 \end{array}$.0121	. 9879 .99878	11
51	. 4972	. 5028	20.230 0.112	. 4978	20.205 0.087	.0012	. 0124	. 9876	10 9
52	. 5001	. 4999	19.995	. 5007	19.970	.0012	. 0125	. 9875	8
53	. 5030	. 4970	9.880	. 5037	9.854	.0013	. 0127	. 9873	7
54	. 5059	. 4941	9.766	. 5066	9.740	.0013	. 0128	. 9872	6
55 56	.05088	.94912	19.653 9.541	.05095	19.627 9.515	1.0013	.00129	. 9869	8 7 6 5 4
57	. 5146	. 4853	9.431	. 5153	9.405	.0013	. 0131	. 9867	3
58	. 5175	. 4824	9.322	. 5182	9.296	.0013	. 0134	. 9866	3 2
59	. 5204	. 4795	9.214	. 5212	9.188	.0013	. 0135	. 9864	1
60	. 5234	. 4766	9.107	. 5241	9.081	.0014	. 0137	. 9863	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

3		1144	turar II	igonom	etiicai	unction	15.		, 0
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.05234	.94766	19.107	.05241	19.081	1.0014	.00137	.99863	60
1	. 5263	. 4737	9.002	. 5270	8.975	.0014	. 0138	. 9861	59
2	. 5292	. 4708	8.897	. 5299	8.871	.0014	. 0140	. 9860	58
3 4	. 5321	. 4679	8.794	. 5328	8.768	.0014	. 0142	. 9858	57
4	. 5350	. 4650	8.692	. 5357/	8.665	.0014	. 0143	. 9857	56
5 6	.05379	.94621	18.591	.05387	18.564	1.0014	.00145	.99855	55
6	. 5408	. 4592	8.491	. 5416	8.464	.0015	. 0146	. 9854	54
7	. 5437	. 4563	8.393	. 5445	8.365	.0015	. 0148	. 9852	53
8	. 5466	. 4534	8.295	. 5474	8.268	.0015	. 0149	. 9850	52
9	. 5495	. 4505	8.198	. 5503	8.171	.0015	. 0151	. 9849	51
10	.05524	.94476	18.103	.05532	18.075	1.0015	.00153	.99847	50
11 12	. 5553	. 4447	8.008 7.914	. 5562	7.980 7.886	.0015	. 0154	. 9846	49
13	. 5611	. 4389	7.821	. 5620	7.793	.0016	. 0157	. 9842	47
14	. 5640	. 4360	7.730	. 5649	7.701	.0016	. 0159	. 9841	46
15	.05669	.94331	17.639	.05678	17.610	1.0016	.00161	.99839	45
16	. 5698	. 4302	7.549	. 5707	7.520	.0016	. 0162	. 9837	44
17	. 5727	. 4273	7.460	. 5737	7.431	.0016	. 0164	. 9836	43
18	. 5756	. 4244	7.372	. 5766	7.343	.0017	. 0166	. 9834	42
19	. 5785	. 4214	7.285	. 5795	7.256	.0017	. 0167	. 9832	41
20	.05814	.94185	17.198	.05824	17.169	1.0017	.00169	.99831	40
21	. 5843	. 4156	7.113	. 5853	7.084	.0017	. 0171	. 9829	39
22	. 5872	. 4127	7.028	. 5883	6.999	.0017	. 0172	. 9827	38
23	. 5902	. 4098	6.944	. 5912	6.915	.0017	. 0174	. 9826	37
24	. 5931	. 4069	6.861	. 5941	6.832 16.750	.0018	. 0176	. 9824 .99822	36
25 26	.05960	.94040	16.779 6.698	.05970	6.668	1.0018 .0018	.00178	. 9822	35 34
27	. 5989	. 3982	6.617	. 6029	6.587	.0018	. 0179	. 9819	33
28	6047	. 3953	6.538	. 6058	6.507	.0018	. 0183	. 9817	32
29	6076	. 3924	6.459	. 6087	6.428	.0018	. 0185	. 9815	31
30	.06105	.93895	16.380	.06116	16.350	1.0019	.00186	.99813	30
31	. 6134	. 3866	6.303	. 6145	6.272	.0019	. 0188	. 9812	29
32	. 6163	. 3837	6 226	. 6175	6.195	.0019	. 0190	. 9810	28
33	. 6192	. 3808	6.150	. 6204	6.119	.0019	. 0192	. 9808	27
34	. 6221	. 3777	6.075	. 6233	6.043	.0019	. 0194	. 9806	26
35	.06250	.93750	16.000	.06262	15.969	1.0019	.00195	.99804	25
36	. 6279	. 3721	5.926	. 6291	5.894	.0020	. 0197	. 9803	24
37	. 6308	. 3692	5.853	. 6321	5.821 5.748	.0020	. 0199	. 9801	23
38 39	. 6337	. 3663	5.780	. 6350	5.748	.0020 .0020	. 0201	. 9799 . 9797	$\frac{22}{21}$
40	.06395	.93605	5.708 15.637	.6379	5.676 15.605	1.0020	.00205	.99795	20
41	. 6424	. 3576	5.566	. 6437	5.534	.0021	. 0206	. 9793	19
42	. 6453	. 3547	5.496	. 6467	5.464	.0021	. 0208	. 9791	18
43	. 6482	3518	5.427	6496	5.394	.0021	. 0210	. 9790	17
44	. 6511	. 3489	5.358	. 6525	5.325	.0021	. 0212	. 9788	16
45	.06540	.93460	15.290	.06554	15.257	1.0021	.00214	.99786	15
46	. 6569	. 3431	5.222	. 6583	5.189	.0022	. 0216	. 9784	14
47	. 6598	. 3402	5.155	. 6613	5.122	.0022	. 0218	. 9782	13
48	. 6627	. 3373	5.089	. 6642	5.056	.0022	. 0220	. 9780	12
49	. 6656	. 3343	5.023	. 6671	4.990	.0022	. 0222	. 9778	11
50	.06685	.93314	14.958	.06700	14.924	1.0022	.00224	.99776	10
51 52	. 6714	. 3285	4.893 4.829	. 6730 . 6759	4.860 4.795	.0023	. 0226	. 9774 . 9772	9
53	6772	. 3227	4.765	6788	4.732	.0023	. 0228	9770	8 7 6 5 4
54	6801	3198	4.702	6817	4.668	.0023	. 0231	9768	6
55	.06830	.93169	14.640	.06846	14.606	1.0023	.00233	.99766	5
56	. 6859	. 3140	4.578	. 6876	4.544	.0024	. 0235	. 9764	4
57	. 6888	. 3111	4.517	. 6905	4.482	.0024	. 0237	. 9762	3 2
58	. 6918	. 3082	4.456	. 6934	4.421	.0024	. 0239	. 9760	2
59	. 6947	. 3053	4.395	. 6963	4.361	.0024	. 0241	. 9758	1
60	. 6976	. 3024	4.335	. 6993	4.301	.0024	. 0243	. 9756	0
M.	Cosine.	Vrs. sin.	Secant.	Cotena	Тапа	Cosec'nt	Vrs cos	Sine.	
0.60	Cosine.	118, 8111.	Becaut.	Cotang.	Tang.	Cosec III	VIB. COS.	ыне.	-

40	Natural Trigonometrical Functions.								75°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.06976	.93024	14.335	.06993	14.301	1.0024	.00243	.99756	60 *
$\frac{1}{2}$. 7005 . 7034	. 2995 . 2966	4.276 4.217	. 7022 . 7051	4.241 4.182	.0025	. 0246	. 9754 . 9752	59 58
3	. 7063	2937	4.159	. 7080	4.123	.0025	. 0250	9750	57
4	. 7092	. 2908	4.101	. 7110	4.065	.0025	. 0252	. 9748	56
5	.07121 . 7150	.92879	14.043 3.986	.07139	14.008 3.951	1.0025	.00254	.99746	55
7	. 7179	2821	3.930	7197	3.894	.0026	. 0258	. 9744	53
8	. 7208	. 2792	3.874	. 7226	3.838	.0026	. 0260	. 9740	52
9	. 7237	. 2763	3.818	. 7256	3.782 13.727	.0026	. 0262	. 9738	51
10 11	. 7295	. 92734	13.763 3.708	. 7314	3.672	1.0026	.00264	.99736	50 49
12	7324	2676	3.654	. 7343	3.617	.0027	. 0268	9731	48
13	. 7353	. 2647	3.600	. 7373	3.563	.0027	. 0271	. 9729	47
14 15	. 7382	. 2618 .92589	3.547 13.494	. 7402 .07431	3.510 13.457	.0027 1.0027	.0273	. 9727	46
16	. 7440	. 2560	3.441	. 7460	3.404	.0028	. 0277	.99725	45 44
17	. 7469	. 2531	3.389	. 7490	3.351	.0028	. 0279	. 9721	43
18	. 7498	. 2502	3.337	. 7519	3.299	.0028	. 0281	. 9718	42
19 20	. 7527 .07556	. 2473	3.286 13.235	. 7548 .07577	3.248 13.197	.0028 1.0029	.0284	. 9716	41 40
21	. 7585	. 2415	3.184	. 7607	3.146	.0029	. 0288	. 9712	39
22	. 7614	. 2386	3.134	. 7636	3.096	.0029	. 0290	. 9710	38
23 24	. 7643	. 2357	3.084 3.034	. 7665	3.046 2.996	.0029	. 0292	. 9707	37
25	. 7672 .07701	.92299	12.985	. 7694 .07724	12.947	1.0030	.00297	.9705	36 35
26	. 7730	. 2270	2.937	. 7753	2.898	.0030	. 0299	. 9701	34
27	. 7759	. 2241	2.888	. 7782	2.849	.0030	. 0301	. 9698	33 32
28 29	. 7788 . 7817	. 2212 . 2183	2.840 2.793	. 7812 . 7841	$2.801 \\ 2.754$.0030	. 0304	. 9696	32
30	.07846	.92154	12.745	.07870	12.706	1.0031	.00308	.99692	30
31	. 7875	. 2125	2.698	. 7899	2.659	.0031	. 0310	. 9689	29
32 33	. 7904 . 7933	. 2096	2.652 2.606	. 7929 . 7958	2.612 2.566	.0031	. 0313	. 9687	28 27
34	. 7962	. 2038	2.560	. 7987	2.520	.0032	. 0315	. 9685	26
35	.07991	.92009	12.514	.08016	12.474	1.0032	.00320	.99680	25
36	. 8020	. 1980	2.469	. 8046	2.429	.0032	. 0322	. 9678	24
37 38	. 8049 . 8078	. 1951	2.424 2.379	. 8075 . 8104	2.384 2.339	.0032	. 0324	. 9675 . 9673	23 22
39	. 8107	. 1893	2.335	. 8134	2.295	.0033	. 0329	. 9671	21
40	.08136	.91864	12,291	.08163	12.250	1.0033	.00331	.99668	20
41 42	. 8165 . 8194	. 1835	2.248 2.204	. 8192 . 8221	2.207 2.163	.0033	. 0334	. 9666	19
43	. 8223	1777	2 161	8251	2.120	.0034	. 0339	. 9661	18 17
44	. 8252	. 1748	2.118	. 8280	2.077	.0034	. 0341	. 9659	16
45 46	. 08281	. 1690	12.076 2.034	.08309	12.035 1.992	1.0034	.00343	.99656	15
47	. 8339	. 1661	1.992	. 8339 . 8368	1.950	.0035	. 0346	. 9654 . 9652	14 13
48	. 8368	. 1632	1.950	. 8397	1.909	.0035	. 0351	. 9649	12
49	. 8397	. 1603	1.909	. 8426	1.867	.0035	. 0353	. 9647	11
50 51	. 8455	. 1545	11.868 1.828	.08456	11.826 1.785	1.0036 .0036	.00356	. 9644	10 9
52	. 8484	. 1516	1.787	. 8514	1.745	.0036	. 0360	. 9639	8
53	. 8513	. 1487	1.747	. 8544	1.704	.0036	. 0363	. 9637	8 7
54 55	. 8542	. 1458 .91429	1.707 11.668	. 8573 .08602	1.664 11.625	.0037 1.0037	. 0365	. 9634	6 5
56	. 8600	. 1400	1.628	. 8632	1.585	.0037	. 0370	. 9629	4
57	. 8629	. 1371	1.589	. 8661	1.546	.0037	. 0373	. 9627	3 2
58 59	. 8658 . 8687	. 1342	$1.550 \\ 1.512$. 8690 . 8719	1.507 1.468	.0038	. 0375	. 9624	2
60	. 8715	. 1284	1.474	. 8749	1.430	.0038	. 0378	. 9622	1 0
M.	Cosine	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vra occ		34
40		10, 014.	Decant.	orang.	rang.	Cosec III	7 18. COS.	Sine.	M.

174°

5-		I\a	turai ii	igonometrical Functions.				1/4-	
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.08715	.91284	11.474	.08749	11.430	1.0038	.00380	.99619	60
0 1 2 3	. 8744	. 1255	1.436	8778	1.392	.0038	. 0383	. 9617	59
2	. 8773	. 1226	1.398	. 8807	1.354	.0039	. 0386	. 9614 . 9612	58
3	. 8802 . 8831	. 1197	1.360 1.323 11.286	. 8837 . 8866	1.316 1.279	.0039	. 0388	. 9612	57 56
4 5 6 7 8 9	.08860	. 1168 .91139	11.286	.08895	11.242	1.0039	.00393	.99607	55
6	. 8889	. 1110	1.249	. 8925	1.205	.0040	. 0396	. 9604	54
7	. 8918	. 1082 . 1053	1.213 1.176	. 8954	1.168	.0040	. 0398	. 9601	53
8	. 8947	. 1053	1.176	. 8983	1.132	.0040	. 0401	. 9599	52
	. 8976	. 1024	1.140	. 9013	1.095 11.059	.0040	. 0404	. 9596	51
10 11	.09005	. 90995	11.104 1.069	.09042 . 9071	11.059	1.0041 .0041	.00406	.99594	50,
12	. 9034	. 0937	1.033	9101	1.024	.0041	. 0409	. 9591	49 48
13	9092	. 0908	0.998	9130	0.988 0.953	.0041	. 0414	. 9586	47
14	. 9121	. 0879	0.963	. 9159	0.918	.0042	. 0417	. 9586 . 9583	46
15	.09150	.90850	10.929	.09189	0.918 10.883	.0042 1.0042	.00419	.99580	45
16	. 9179	. 0821	0.894	. 9218	0.848	.0042	. 0422	. 9578	44
17	. 9208	. 0792	0.860	. 9247	0.814	.0043	. 0425	. 9575	43
18 19	. 9237	. 0763	0.826	. 9277	0.780	.0043	. 0427	. 9572	42
20	. 9266	.90705	0.792	. 9306	0.746	.0043 1.0043	.0430	. 9570	41 40
20 21	.09295 . 9324	. 0676	10.758 0.725	. 9365	10.712 0.678	.0044	. 0436	. 9564	39
22	. 9353	. 0647	0.692	. 9394	0.645	.0044	. 0438	. 9562	38
23	. 9382	. 0618	0.659	. 9423	0.612	.0044 .0044	. 0441	. 9562 . 9559	37
24	. 9411	. 0589	0.626	. 9453	0.645 0.612 0.579 10.546	.0044	. 0444	. 9556	36
25	.09440	.90560	10.593	.09482	10.546	1.0045	.00446	.99553	35
26 27	. 9469 . 9498	. 0531	0.561 0.529	. 9511 . 9541	0.514 0.481	.0045 .0045	. 0449	. 9551 . 9548	34
28	. 9527	. 0473	0.323	9570	0.449	.0046	. 0455	9545	32
29	. 9556	. 0444	0.465	. 9599	0.417	.0046	. 0458	. 9542	31
30	.09584	.90415	10.433	.09629	0.417 10.385	1.0046	.00460	.99540	30
31	. 9613	. 0386	0.402	. 9658	0.354 0.322 0.291 0.260	.0046	. 0463	.99540 . 9537	29
32	. 9642	. 0357	0.371	. 9688	0.322	.0047	. 0466	. 9534	28 27
33 34	. 9671 . 9700	. 0328	0.340 0.309	. 9717 . 9746	0.291	.0047	. 0469	. 9531	27
35	.09729	.90271	10.278	.09776	10.229	1.0048	.00474	.99525	26 25
36	. 9758	. 0242	0.248	. 9805	0.199	.0048	. 0477	. 9523	24
37	. 9787	. 0213	0.217	. 9834	0.168	.0048	. 0480	. 9520	23
38	. 9816	. 0184	0.187 0.157	. 9864	0.168 0.138	.0048	. 0483	. 9517	22
39	. 9845	. 0155	0.157	. 9893	0.108 10.078 0.048	.0049 1.0049	. 0486	. 9514	21
40 41	.09874	.90126	10.127 0.098	.09922	10.078	.0049	.00489	.99511	20 19
42	. 9932	. 0068	0.068	9981	0.048	.0049	. 0491	. 9505	18
43	. 9961	. 0039	0.039	.10011	9.9893	.0050	. 0497	9503	17
44	. 9990	. 0010	0.010	. 0040	.9601	.0050	.0500	. 9500	16
45	.10019	.89981	9.9812	.10069	9.9310	1.0050	.00503	.99497	15
46	. 0048	. 9952	.9525	. 0099	.9021	.0051	. 0506	. 9494	14
47 48	. 0077	. 9923 . 9894	.9239	. 0128	.8734	.0051	. 0509	. 9491	13 12
48	. 0134	9865	.8955 .8672	. 0187	.8448 .8164	.0051 .0052	. 0512 . 0515	. 9488	11
50	.10163	.89836	9 8391	.10216	9.7882	1.0052	00518	.99482	10
51	. 0192	. 9807	.8112	. 0246	.7601	.0052	. 0521	. 9479	9
52	. 0221	. 9779	.7834	. 0275	.7322	.0053	. 0524	. 9476	8
53	. 0250	. 9750	.7558	. 0305	.7044	.0053	. 0527	. 9473	9 8 7 6 5
54	. 0279	. 9721	.7283	. 0334	.6768	.0053	. 0530	. 9470	6
55 56	.10308	.89692	9.7010 .6739	.10363	9.6493 .6220	1.0053 .0054	.00533	.99467	4
57	. 0366	. 9663 . 9634	.6469	. 0422	.5949	.0054	. 0539	9461	3
58	. 0395	. 9605	.6200	0452	.5679	.0054	. 0542	. 9461 . 9458	3 2 1
59	. 0424	. 9576	.5933	. 0481	.5411	.0055	. 0545	. 9455	1
60	. 0453	. 9547	.5668	. 0510	.5144	.0055	. 0548	. 9452	0
M.	Cosine.	Vre ein	Socont	Cotona	Tong	Cospoint	Vra oca	Sine.	M.
-		Vrs. sin.	Becant.	Cotang.	Tang.	Cosec III	Vrs. cos.	Sille.	DI.
OFC	1								0.40

95°

60 Natural Trigonometrical Functions. 173° M. Sine. Vrs. cos. Cosec'nt Tang. Cotang. Secant. Vrs. sin. Cosine. M. 9.5144 .10453 .89547 9.5668 .10510 1.0055 .00548 .99452 60 .5404 59 0482 9518 0540 .4878 .0055 0551 9449 12 0569 .0056 9446 9489 .4614 0554 58 3 0599 .4351 .0056 9443 57 0540 9460 .4880 5 0568 9431 4620 0628 .4090 .0056 0560 9440 56 9.4362 .10657 9.3831 .99437 .10597.89402 1.0057 .005636 0626 9373 .4105 0687 .3572 .0057 0566 9434 54 7 0655 9345 .3850 0716 .3315 .0057 0569 9431 8 0684 9316 .3596 0746 .3060 .0057 0572 9428 52 9 0713 9287 3343 2806 .0058 0575 9424 9.2553 .00579 .99421 .10742 .89258 9.3092 .108051.0058 50 9229 .2842 0834 .2302 .0058 9418 49 0585 12 9200 .2593 0863 .2051.00599415 48 .2346 13 0829 9171 0893 .1803 .0059 0588 9412 47 0858 0922 .1555 .0059 9409 14 9142 2100 46 .10887 .89113 9.1855 .10952 9.1309 1.0060 .00594 .99406 45 16 0916 9084 .1612 0981 .1064 .0060 0597 9402 44 1011 0944 9055 .1370 .0821.0060 0601 9399 43 0973 9026 1040 .0579 0604 18 .00619396 42 19 1002 8998 .0890 1069 .0338 .0061 0607 9393 41 .11031 .11099 9.0098 20 .88969 9.0651 1.0061 .00610 .99390 40 1060 8940 .0414 1128 8.9860 .0062 0613 9386 39 1158 22 1089 8911 .0179.9623 .0062 9383 0617 38 1118 8882 8.9944 1187 .9387 .00620620 9380 37 8853 24 1147 .9711.9152.00630623 9377 36 $\overline{25}$.88824 8.9479 .11246 .111768.8918 1.0063 .99373 .00626 26 1205 8795 1276 .9248 .8686 .0063 0630 34 27 1234 8766 .9018 1305 .8455 .0064 0633 9367 .8225 28 1262 8737 .8790 1335 .0064 0636 9364 32 .8563 7996 29 1291 8708 1364 .0064 0639 9360 31 .11320 .11393 .88680 8.8337 8.7769 1.0065.00643 .99357 30 1349 8651 1423 .7542 .7317 .8112 .00650646 9354 29 8622 1378 .7888 1452 .0065 0649 9350 28 33 1407 8593 .7665 1482 .7093 .0066 0653 9347 8564 34 1436 7444 1511 .6870.0066 0656 26 9344 35 .11465 .88535 8.7223 .11541 8,6648 1.0066 .00659 .99341 ..1494 .7004 36 8506 1570 .6427 .0067 0663 9337 24 8477 .6208 .6786 1600 .0067 0666 9334 1551 . 22 38 8448 .6569 1629 .5989 .00670669 9330 39 1580 8420 .6353 1659 .5772.0068 9327 21 0673 40 .11609 .88391 8.6138 .11688 8.5555 1.0068 .00676 .99324 20 41 1638 8362 .5924 1718 .5340 .0068 9320 19 0679 42 1667 .5711 8333 1747 .5126 .0069 0683 9317 18 43 1696 8304 .54991777 .4913 .0069 0686 9314 . 1725 .11754 8272 44 .5289 1806 .4701.0069 0690 9310 .88246 45 8.5079 .11836 8.4489 1.0070.00693 .99307 15 46 1783 8217 .4871 1865 .4279 .0070 0696 9303 14 8188 47 1811 .4663 1895 .4070 .0070 0700 9300 1840 8160 48 .44571924 .0071 .3862 0703 9296 12 8131 .4251 49 1869 1954 .3655 .0071 0707 9293 11 .11898 .88102 .11983 8,4046 8.3449 1.0071 .00710 .99290 10 1927 8073 2013 .3244 .00720714 9286 9 1956 8044 .3640 2042 .3040 .0072 9283 87 1985 8015 2072 .3439.0073 9279 54 2014 7986 .3238 2635 .0073 0724 9276 6 .12042 .87957 8.3039 .121318.2434 1.0073 .00728 .99272 5 7928 2840 .2234 4 56 2160 .00740731 9269 2100 7900 2642 2190 .2035 .00740735 9265 3 2129 7871 2446 2219 .1837 .0074 0738 9262 2 2158 2249 0742 .1640.0075 9258 2187 2278 60 .2055 .1443 9255 .0075 0745 0

M. 96°

Cosine.

Vrs. sin.

Secant.

Cotang.

Tang.

Cosec'nt Vrs. cos.

Sine.

172°

7 °		Na	tural Tr	igonom	etrical I	unction	ıs.	17	72°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0 1 2 3	.12187	.87813	8.2055	.12278	8.1443	1.0075	.00745	.99255	60
1	. 2216	. 7787	.1861	. 2308	.1248	.0075	. 0749	. 9251	59
2 3	. 2245 . 2273	. 7755 . 7726	.1668 .1476	. 2337 . 2367	.1053	.0076 .0076	. 0752	. 9247 . 9244	58 57
4	. 2302	7697	.1285	2396	.0860 .0667	.0076	. 0760	. 9240	56
5	.12331	.87669	8.1094	.12426	8.0476	1.0077	.00763	.99237	55
6	. 2360	7640	.0905	. 2456	.0285	.0077	. 0767	. 9233	54
4 5 6 7 8 9	. 2389	. 7611 . 7582	.0717	. 2485	.0095	.0078	. 0770	. 9229	53
8	. 2418	. 7582	.0529	. 2515 . 2544	7.9906 .9717	.0078 .0078	. 0774	. 9226 . 9222	52 51
10	.12476	.87524	.0342 8.0156	.12574	7.9530	1.0079	.00781	.99219	50
11	. 2504	. 7495	7.9971	. 2603	.9344	.0079	. 0785	. 9215	49
12	. 2533	. 7467	.9787	. 2633	.9158	.0079	. 0788	. 9211	48
13	. 2562	. 7438	.9604	. 2662	.8973	.0080	. 0792	. 9208	47
14 15	. 2591 .12620	. 7409 .87380	.9421 7.9240	. 2692	.8789 7.8606	.0080 1.0080	.0796	. 9204	46 45
16	. 2649	. 7351	.9059	.12722 . 2751	.8424	.0081	. 0803	. 9197	44
17	. 2678	. 7322	.8879	. 2781	.8243	.0081	. 0807	. 9193	43
18	. 2706	. 7293	.8700	. 2810	.8062	.0082	. 0810	. 9189	42
19	. 2735	. 7265	.8522	. 2840	.7882	.0082	. 0814	. 9186	41
20 21	.12764	.87236 . 7207	7.8344 .8168	.12869 . 2899	7.7703 .7525	1.0082 .0083	.00818	.99182	40 39
22	. 2822	7178	.7992	. 2928	.7348	.0083	. 0825	. 9174	38
23	. 2851	7149	.7817	2958	.7171	.0084	. 0829	. 9171	37
94	. 2879	. 7120	.7642	. 2988	.6996	.0084	. 0833	. 9167	36
25	.12908	.87091	7.7469	.13017	7.6821	1.0084	.00837	.99163	35
26 27	. 2937	. 7063	.7296 .7124	. 3047	.6646	.0085 .0085	. 0840	. 9160 . 9156	34 33
28	. 2995	7005	.6953	. 3106	.6300	.0085	. 0848	. 9152	32
29	. 3024	. 6976	.6783	. 3136	.6129	.0086	. 0852	. 9148	31
30	.13053	.86947	7.6613	.13165	7.5957	1.0086	.00855	.99144	30
31	. 3081	. 6918	.6444	. 3195	.5787	.0087	. 0859	. 9141	29 28 27
32 33	. 3110	. 6890 . 6861	.6276 .6108	. 3224 . 3254	.5617	.0087	. 0863	. 9137	28
34	. 3168	6832	.5942	3284	.5280	.0088	. 0871	9129	26
35	.13197	86803	7.5776	.13313	7.5113	1.0088	.00875	.99125	26 25
36 37	. 3226	. 6774	.5611	. 3343	.4946	.0089	. 0878	. 9121	24
37 38	. 3254	6745	.5446	. 3372	.4780 .4615	.0089	. 0882	. 9118	23 22 21 20 19
39	3312	. 6717	.5282 .5119	. 3432	.4451	.0099	. 0890	9114	21
40	.13341	.86659	7.4957	.13461	7.4287	1.0090	.00894	.99106	20
41	. 3370	. 6630	.4795	. 3491	.4124	.0090	. 0898	. 9102	19
42	. 3399	. 6601	.4634	. 3520	.3961	.0091	. 0902	. 9098	18
43 44	. 3427	. 6572 . 6544	.4474 .4315	. 3550 . 3580	.3800	.0091	. 0905	. 9094	17 16
45	.13485	.86515	7.4156	.13609	.3639 7.3479	1.0092	.00913	.99086	15
46	. 3514	. 6486	.3998	. 3639	.3319	.0092	. 0917	. 9083	14
47	. 3543	. 6457	.3840	. 3669	.3160	.0093	. 0921	. 9079	13 12
48	. 3571	. 6428	.3683	. 3698	.3002	.0093	. 0925	. 9075	12
49 50	. 3600	. 6400 .86371	.3527 7.3372	. 3728 .13757	.2844 7.2687	.0094 1.0094	.0929	. 9070	11 10
51	. 3658	. 6342	.3217	. 3787	.2531	.0094	. 0937	. 9063	9
52	. 3687	. 6313	.3063	. 3787	.2375	.0095	. 0941	. 9059	8
53	. 3716	. 6284	.2909	. 3846	.2220	.0095	. 0945	. 9055	7
54 55	. 3744	. 6255 .86227	.2757 7.2604	. 3876	.2066 7.1912	.0096 1.0096	. 0949	. 9051	9 8 7 6 5 4 3 2
56	. 3802	. 6198	.2453	. 13906	.1759	.0096	.00953	.99047	4
57	3831	6169	.2302	. 3965	.1607	.0097	. 0961	9039	3
58	. 3860	. 6140	.2152	. 3995	.1455	.0097	. 0965	. 9035	2
59	. 3888	. 6111	.2002	. 4024	.1304	.0098	. 0969	. 9031	1
60	. 3917	. 6083	.1853	. 4054	.1154	.0098	. 0973	. 9027	0
<u>M.</u>	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

80	Natural Trigono			igonom	metrical Function		ons. 171°		710
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.13917	.86083	7.1853	.14054	7.1154	1.0098	.00973	.99027	60
$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. 3946	. 6054	.1704	. 4084	.1004	.0099	. 0977	. 9023	59
2	. 3975	. 6025	.1557	. 4113	.0854	.0099	. 0981	. 9019	58
3	. 4004 . 4032	. 5996 . 5967	.1409	. 4143 . 4173	.0706	.0099	. 0985	. 9015	57 56
4 5	.14061	.85939	.1263 7.1117	.14202	7.0410	1.0100	.00993	.99006	55
6	. 4090	. 5910	.0972	. 4232	.0264	.0101	. 0998	. 9002	54
6 7	. 4119	. 5881	.0827	. 4262	.0117	.0101	. 1002	. 8998	53
8	. 4148	. 5852	.0683	. 4291	6.9972	.0102	. 1006	. 8994	52
9	. 4176	. 5823 .85795	.0539 7.0396	. 4321 .14351	.9827 6.9682	.0102 1.0102	. 1010 .01014	. 8990 .98986	51 50
10 11	.14205	. 5766	.0254	. 4380	.9538	.0103	1018	. 8982	49
12	. 4263	. 5737	.0112	. 4410	.9395	.0103	. 1018 . 1022	. 8978	48
13	. 4292	. 5708	6.9971	. 4440	.9252	.0104	. 1026	. 8973	47
14	. 4320	. 5679	.9830	. 4470	.9110	.0104	. 1031	. 8969	46
15	.14349	.85651	6.9690	.14499	6.8969	1.0104	.01035	.98965	45
16 17	. 4378	. 5622 . 5593	.9550 .9411	. 4529	.8828	.0105	. 1039	. 8961 . 8957	44 43
18	. 4436	. 5564	.9273	4588	.8547	.0106	. 1047	8952	42
19	. 4464	. 5536	.9135	. 4618	.8408	.0106	. 1052	. 8948	41
19 20	.14493	.85507	6.8998	.14648	6.8269	1.0107	.01056	.98944	40
$\frac{21}{22}$. 4522	. 5478	.8861	. 4677	.8131	.0107	. 1060	. 8940	39
23	. 4551 . 4579	. 5449	.8725 .8589	. 4707	.7993 .7856	.0107 .0108	. 1064	. 8936 . 8931	38 37
24	. 4608	. 5392	.8454	4767	.7720	.0108	. 1073	. 8927	36
25	.14637	.85363	6.8320	.14796	6.7584	1.0109	.01077	.98923	35
25 26	. 4666	. 5334	.8185	. 4826	.7448	.0109 .0110	. 1081	. 8919	34
27	. 4695	. 5305	.8052	. 4856	.7313	.0110	. 1085	. 8914	33
28 29	. 4723	. 5277	.7919	. 4886	.7179	.0110 .0111	. 1090 . 1094	. 8910	32
30	. 4752 .14781	. 5248	.7787 6.7655	. 4915	.7045	1.0111	.01098	. 8906 .98901	31 30
31	. 4810	. 5190	.7523	. 4975	6.6911 .6779	.0111	. 1103	. 8897	29
32	. 4838	. 5161	.7392	. 5004	.6646	.0112	. 1107	. 8893	28
33	. 4867	. 5133	.7262	. 5034	.6514	.0112	. 1111	. 8889	27
34 35	. 4896 .14925	. 5104	.7132 6.7003	. 5064	.6383 6.6252	.0113 1.0113	. 1116	. 8884	26 25
36	. 4953	.85075	.6874	.15094	.6122	.0113	. 1124	. 8876	23
37	. 4982	. 5018	.6745	. 5153	.5992	.0114	. 1129	. 8871	23
38	. 5011	. 4989	.6617	. 5183	.5863	.0115	. 1133	. 8867	23 22
39	. 5040	. 4960	.6490	. 5213	.5734 6.5605	.0115 1.0115	. 1137	. 8862	21
40	.15068	.84931	6.6363	.15243	6.5605	1.0115	.01142	.98858	20
41 42	. 5097 . 5126	. 4903	.6237 .6111	. 5272 . 5302	.5478 .5350	.0116 .0116	. 1146	. 8854	19 18
43	5155	. 4845	.5985	. 5332	5223	.0117	. 1151 . 1155	. 8849 . 8845	17
44		. 4816	.5860 6.5736	. 5362	.5097	.0117	. 1159	. 8840	16
45	. 5183	.84788	6.5736	.15391	6.4971	1.0118	.01164	.98836	15
46 47	. 5241 . 5270	. 4759 . 4730	.5612	. 5421	.4845	.0118	. 1168	. 8832	14
48	. 5270	4701	.5488 .5365	. 5451 . 5481	.4720 .4596	.0119	. 1173	. 8827 . 8823	13 12
49	5328	4672	.5243	. 5511	.4472	.0119	1182	. 8818	11
50	.15356	.84644	.5243 6.5121	.15540	6.4348	1.0120	.01186	.98814	10
51	. 5385	. 4615	.4999	. 5570	.4225	.0120	. 1190	. 8809	9
52	. 5413	. 4586	.4878	. 5600	.4103	.0121	. 1195	. 8805	8
53 54	. 5442	. 4558 . 4529	.4757 .4637	. 5630	.3980 .3859	.0121 .0122	. 1199	. 8800 . 8796	9 8 7 6 5 4
55	.15500	.84500	6.4517	.15689	6.3737	1.0122	.01208	. 98791	5
56	. 5528	. 4471	.4398	. 5719	.3616	.0123	. 1213	. 8787	4
57	. 5557	. 4443	.4279	. 5749	.3496	.0123	. 1217	. 8782	3
58 59	. 5586 . 5615	. 4414	.4160	. 5779	.3376	.0124	. 1222	. 8778	$\frac{3}{2}$
60	. 5643	. 4385	.4042	. 5809	.3257	.0124	. 1227 . 1231	. 8773 . 8769	0
			.0021	- 0000	.0107	.0120	. 1201	. 6709	
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Sine.	Vrs. cos.	M.
000									

	90		Na	tural Ti	rigonom	etrical	ns.	170°		
	M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
ě	0	.15643	.84356	6.3924	.15838	6.3137	1.0125	.01231	.98769	60
	1	. 5672	. 4328	.3807	. 5868	.3019	.0125	. 1236	. 8764	59
	$\frac{1}{2}$. 5701	. 4299	.3690 .3574	. 5898	.2901	.0125	. 1240	. 8760	58 57
	3	. 5730 . 5758	. 4270 . 4242	.3458	. 5928 . 5958	.2783 .2665*	.0126	. 1245	. 8755 . 8750	56
	5	.15787	.84213	6.3343	.15987	6.2548	.0126 1.0127	.01254	.98746	55
	4 5 6 7 8 9	. 5816	. 4184	.3228	. 6017	.2432	.0127	. 1259	. 8741	54
	7	. 5844	4155	.3113	. 6047	.2316	.0128	. 1263	. 8737	54 53
	8	. 5873	. 4127	.2999	. 6077	.2200	.0128	. 1268 . 1272	. 8732	52
	9	. 5902	. 4098	.2885	. 6107	.2085	.0129	. 1272	. 8727	51
	10 11	. 15931	.84069 . 4041	6.2772	.16137	6.1970	1.0129 .0130	.01277	.98723	50 49
	12	. 5988	. 4012	.2546	. 6167 . 6196	.1856 .1742	.0130	. 1286	. 8718 . 8714	48
	13	6017	3983	.2434	6226	.1628	.0131	1291	. 8709	47
	14	. 6045	. 3954	.2322	. 6256	.1628 .1515	.0131 .0131	. 1291 . 1296	. 8704	46
	15	.16074	.83926	6.2211	.16286	6.1402	1.0132	.01300	.98700	45
	16	. 6103	. 3897	.2100	. 6316	.1290	.0132	. 1305	. 8695	44
	17	. 6132 . 6160	. 3868	.1990	. 6346	.1178	.0133	. 1310 . 1314	. 8690	43 42
	18 19	. 6189	. 3811	.1880 .1770	. 6376 . 6405	.1066 .0955	.0133 .0134	. 1314	8685	42
	20	.16218	.83782	6.1661	.16435	6.0844	1.0134	.01324	. 8681 .98676	40
	21	. 6246	. 3753	.1552	. 6465	.0734	.0135	. 1328	. 8671	39
	21 22	. 6275	. 3725 . 3696	.1443	. 6495	.0624	.0135	. 1333	. 8667	38
	23	. 6304	. 3696	.1335	. 6525	.0514	.0136	. 1338	. 8662	37
	24	. 6333	. 3667 .83639	.1227	6555	.0405	.0136	. 1343	. 8657	36
	25 26	.16361	. 3610	6.1120	.16585 . 6615	6.0296 .0188	1.0136	. 1352	.98652 . 8648	35 34
	27	. 6419	3581	.0906	. 6644	.0080	.0137	. 1357	. 8643	33
	28	. 6447	. 3581 . 3553	.0800	. 6674	5.9972	.0137 .0138	. 1362	. 8643 . 8638	32
	29	. 6476	. 3524	.0694	. 6704	.9865	.0138	. 1367	. 8633	31
	30	.16505	.83495	6.0588	.16734	5.9758	1.0139	.01371	.98628	30
	31 32	. 6533 . 6562	. 3466	.0483 .0379	. 6764 . 6794	.9651 .9545	.0139 .0140	. 1376	. 8624 . 8619	29 28
	33	6591	3409	.0274	6824	.9439	.0140	. 1386	. 8614	27
	34	. 6619	. 3380	.0170	. 6854	.9333	.0141	. 1391	. 8609	26
	35	.16648	.83352	6.0066	.16884	5.9228	1.0141	.01395	.98604	25
	36	. 6677 . 6705	. 3323	5.9963	. 6914	.9123	.0142	. 1400	. 8600	24
	37 38	. 6705	. 3294	.9860 .9758	. 6944 . 6973	.9019 .8915	.0142 .0143	. 1405	. 8595 . 8590	23 22
	39	6763	. 3266 . 3237	.9655	7003	.8811	.0143	. 1415	. 8585	21
	40	.16791	.83208	5.9554	.17033	5.8708	1.0144	.01420	.98580	20
	41	. 6820	. 3180	.9452	. 7063	.8605	.0144	. 1425	. 8575	19
	42	. 6849	. 3151	.9351	. 7093	.8502	.0145	. 1430	. 8570	18
	43	. 6878	. 3122	.9250	. 7123	.8400	.0145	. 1434	. 8565	17
	44 45	. 6906 .16935	.83065	.9150 5.9049	. 7153 .17183	.8298 5.8196	.0146 1.0146	. 1439	. 8560 .98556	16 15
	46	. 6964	. 3036	.8950	. 7213	.8095	.0147	. 1449	. 8551	14
	47	. 6992	. 3008	.8850	. 7243	.7994	.0147	. 1454	. 8546	13
	48	. 7021	. 2979	.8751	. 7273	.7894	.0148	. 1459	. 8541	12
	49	. 7050	. 2950	.8652 5.8554	. 7303 .17333	.7793 5.7694	.0148	. 1464	. 8536	11
	50 51	.17078 . 7107	.82922	.8456	. 7363	.7594	1.0149 .0150	.01469	.98531 . 8526	10
	52	. 7136	2864	.8358	7393	.7495	.0150	1479	. 8521	8
	53	. 7164	2836	.8261	. 7423	.7396	.0151	1484	. 8516	7
	54		2807	.8163	. 7453	.7297 5.7199	.0151	. 1489	. 8511	9 8 7 6 5 4 3 2
	55	. 7193 .17221 . 7250	.82778	5.8067	.17483	5.7199	1.0152	.01494	.98506	5
	56	7250	. 2750 . 2721	.7970	7513	.7101	.0152	. 1499	. 8501	4
	57 58	. 7279 . 7307	. 2692	.7874 .7778	. 7543 . 7573	.6906	.0153 .0153	. 1504 . 1509	. 8496 . 8491	2
	59	7336	2664	.7683	7603	.6809	.0154	. 1514	. 8486	ī
	60	. 7365	. 2635	.7588	. 7633	.6713	.0154	. 1519	. 8481	ō
	7.5	Continu		0	G 4	m	a	***	0:	7.7
	M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
	000									000

10° Natural Trigonometrical Functions.

100		Na	turai II	igonom	gonometrical Funct		15.	109	
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.17365	.82635	5.7588	.17633	5.6713	1.0154	.01519	.98481	60
1	. 7393	. 2606	.7493 .7398	. 7663 . 7693	.6616	.0155	. 1524	. 8476	59
2	. 7422	. 2578	.7398	. 7693 . 7723	.6520 .6425	.0155	. 1529 . 1534	. 8471 . 8465	58 57
4	. 7451 . 7479	. 2549 . 2521	.7304 .7210	7753	.6329	.0156	. 1539	. 8460	56
1 2 3 4 5 6 7 8 9	.17508	.82492	5.7117	.17783	5.6234	.0156 1.0157	.01544	.98455	55
6	. 7537	. 2463	.7023	. 7813	.6140	.0157 .0158	. 1550	. 8450	54
7	. 7565	. 2435	.6930	. 7843 . 7873	.6045	.0158	. 1555 . 1560	. 8445 . 8440	53 52
9	. 7594 . 7622	· 2406 · 2377	.6838 .6745	7903	.5951 .5857	.0158	. 1565	. 8435	51
10	.17651	.82349	5.6653	17933	5.5764	1.0159	.01570	.98430	50
10 11	. 7680	. 2320	.6561	7963	.5670	.0160	. 1575	. 8425	49
12 13	. 7708 . 7737	. 2291	.6470	. 7993 . 8023	.5578	.0160 .0161	. 1580 . 1585	. 8419 . 8414	48
14	. 7766	. 2234	.6379 .6288	8053	.5485	.0162	. 1591	. 8409	46
15	.17794	.82206	5.6197	.18083	.5393 5.5301	1.0162	.01596	.98404	45
16	. 7823	. 2177	.6107	. 8113	.5209	.0163	. 1601	. 8399	44
17 18	. 7852 . 7880	. 2148	.6017	. 8143 . 8173	.5117 .5026	.0163 .0164	. 1606	. 8394 . 8388	43 42
19	. 7909	2091	.5838	8203	.4936	.0164	. 1617	. 8383	41
20	.17937	.82062	5.5749	. 8203 .18233	5.4845	1.0165	.01622	.98378	40
21	. 7966	. 2034	.5660	8263	.4755	.0165	. 1627	. 8373	39
22 23	. 7995 . 8023	. 2005	.5572 .5484	. 8293 . 8323	.4665	.0166	. 1632 . 1638	. 8368 . 8362	38 37
24	. 8052	1948	.5396	. 8353	.4486	.0167	. 1643	. 8357	36
25	.18080	.81919	5.5308	.18383	5.4396	1.0167	.01648	.98352	35
26	. 8109	. 1891	.5221	. 8413	.4308	.0168	. 1653	. 8347	34
27 28	. 8138 . 8166	. 1862 . 1834	.5134	. 8444 . 8474	.4219	.0169 .0169	. 1659	. 8341	33 32
29	. 8195	. 1805	.4960	. 8504	.4043	.0170	. 1669	. 8331	31
30	.18223	.81776	5.4874	.18534	5.3955	1.0170	.01674	.98325	30
31 32	. 8252	. 1748	.4788	. 8564	.3868	.0171	. 1680	. 8320	29
33	. 8281 . 8309	. 1719	.4702 .4617	. 8594 . 8624	.3780 .3694	.0171 .0172	. 1685	. 8315	28 27
34	. 8338	1662	.4532	. 8654	.3607	.0172	. 1696	. 8304	26
35	.18366	.81633	5.4447	.18684	5.3521	1.0173	.01701	.98299	25
36	. 8395	. 1605	.4362	. 8714	.3434	.0174	. 1706	. 8293	24
37 38	. 8424 . 8452	. 1576 . 1548	.4278 .4194	. 8745 . 8775	.3349	.0174	. 1712 . 1717	. 8288 . 8283	23 22
39	. 8481	. 1519	.4110	. 8805	.3178	.0175	1722	8277	21
40	.18509	.81490	5.4026	.18835	5.3093	1.0176	.01728	.98272	20
41 42	. 8538 . 8567	. 1462	.3943	. 8865	.3008	.0176	. 1733	. 8267	19
43	. 8595	1405	.3860	. 8895 . 8925	.2923	.0177	. 1739	. 8261 . 8256	18 17
44	. 8624	. 1376	.3695	. 8955	.2755	.0178	. 1749	8250	16
45	.18652	.81348	5.3612	.18985	5.2671	1.0179	.01755	.98245	15
46 47	. 8681 . 8709	. 1319	.3530	. 9016	.2588	.0179 .0180	. 1760	. 8240	14
48	. 8738	. 1290 . 1262 . 1233	.3367	. 9046	.2505	.0180	. 1766	. 8234 . 8229	13 12
49	. 8767	. 1233	.3286	. 9106	.2339	.0181	1777	8223	iĩ
50	.18795	.81205	5.3205	.19136	5.2257	1.0181	.01782	.98218	10
51 52	. 8824 . 8852	. 1176	.3124	. 9166 . 9197	.2174	.0182	. 1788	. 8212	9
53	. 8881	1119	.2963	. 9227	.2092	.0182 .0183	. 1793	. 8207 . 8201	7
54	. 8909	. 1090	.2883	. 9257	.1929	.0184	. 1804	. 8196	8 7 6 5
55 56	.18938	.81062	5.2803	.19287	5.1848	1.0184	.01810	.98190	5
56 57	. 8967	. 1033	.2724	. 9317 . 9347.	.1767	.0185	. 1815	. 8185	4
58	9024	. 0976	.2566	. 9378	.1686	.0185	. 1821	. 8179 . 8174	3 2
59	. 9052	. 0948	.2487	. 9408	.1606 .1525	.0186	. 1832	. 8168	1
60	. 9081	. 0919	.2408	. 9438	.1445	.0187	. 1837	. 8163	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
100						COSCO III	1 15. 006.		700

	THAT OF THE TOTAL STATE OF THE T									
119	>	Na	tural Tr	igonom	etrical	Function	ns.	10	68°	
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.	
0	.19081	.80919	5.2408	.19438	5.1445	1.0187	.01837	.98163	60	
0 1 2 3	. 9109	. 0890	.2330	. 9468	.1366	.0188	. 1843	. 8157	59	
2	. 9138 . 9166	. 0862	.2252 .2174	. 9498 . 9529	.1286 .1207	.0188 .0189	. 1848	. 8152 . 8146	57	
4	. 9195	. 0805	.2097	9559	.1128	.0189	. 1859	. 8140	58 57 56 55	
5	.19224	.80776	5.2019	.19589	.1128 5.1049	1.0190	.01865	.98135	55	
6	. 9252	. 0748	.1942	. 9619	.0970	.0191	. 1871	. 8129	54	
4 5 6 7 8 9	. 9281 . 9309	. 0719	.1865	. 9649	.0892	.0191 .0192	. 1876 . 1882	. 8124 . 8118	52	
9	. 9338	. 0662	.1712	. 9710	.0736	.0192	. 1887	. 8112	54 53 52 51	
10	.19366	.80634	5.1636	.19740	5.0658	1.0193	.01893	.98107	50 49	
11 12	. 9395 . 9423	. 0605	.1560 .1484	. 9770 . 9800	.0581	.0193 .0194	. 1899	. 8101 . 8095	49	
13	9452	. 0548	.1409	. 9831	.0427	.0195	. 1910	. 8090	48 47 46 45	
14	. 9480	. 0519	.1333	. 9861	.0350	.0195	. 1916	. 8084	46	
15	.19509	.80491	5.1258	.19891 . 9921	5.0273	1.0196	.01921	.98078	45	
16 17	. 9537 . 9566	. 0462	.1183	. 9952	.0197	.0196 .0197	. 1927 . 1933	. 8073	44 43	
18	. 9595	. 0405	.1034	. 9982	.0040	.0198	. 1938	. 8061	42	
19 20	. 9623	. 0377	.0960	.20012	4.9969	.0198	. 1944	. 8056	41	
20 91	.19652 • 9680	. 80348	5.0886 .0812	. 20042	4.9894	1.0199	.01950	.98050 . 8044	30	
21 22	. 9709	. 0291	.0739	. 0103	.9744	.0200	. 1961	. 8039	38	
23	. 9709 . 9737	. 0263	.0666	. 0133	.9669	.0201	. 1967	. 8033	37	
24 25	. 9766 .19794	. 0234	.0593 5.0520	. 0163	.9594 4.9520	.0201 1.0202	. 1973 .01979	. 8027 .98021	36	
26	. 9823	. 0177	.0447	. 0224	.9446	.0202	. 1984	. 8016	34	
27	. 9851	. 0149	.0375	. 0254	.9372	.0203	. 1990	. 8010	33	
26 27 28 29	. 9880	. 0120	.0302	. 0285	.9298 .9225	.0204	. 1996	. 8004	40 39 38 37 36 35 34 33 32 31	
30	. 9908 .19937	.80063	.0230 5.0158	.20345	4.9151	.0204 1.0205	. 2002	. 7998	30	
31	. 9965	. 0035	.0087	. 0375	.9078	.0205	. 2013	. 7987	29	
32 33	. 9994	. 0006	.0015	. 0406	.9006	.0206	. 2019	. 7981	29 28 27	
34		.79978	4.9944 .9873	. 0436	.8933 .8860	.0207 .0207	. 2025 . 2031	. 7975 . 7969	26	
34 35	.20079	.79921	4.9802	.20497	4.8788	1.0208	.02037	.97963	26 25 24	
36	. 0108	. 9892	.9732	. 0527	.8716	.0208	. 2042	. 7957	24	
37 38	. 0136	. 9863	.9661 .9591	. 0557	.8644 .8573	.0209 .0210	. 2048	. 7952 . 7946	23 22 21 20 19 18	
39	. 0193	. 9807	.9521	. 0618	.8501	.0210	. 2060	. 7940	21	
40	.20222	.79778	4.9452	.20648	4.8430	1.0211	.02066	.97934	20	
41 42	. 0250	. 9750 . 9721	.9382 .9313	. 0679	.8359 .8288	.0211	. 2072	. 7928 . 7922	19	
43	. 0307	. 9693	.9243	. 0739	.8217	.0213	. 2084	. 7916	17	
44	. 0336	. 9664	.9175	. 0770	.8147	.0213	. 2089	. 7910	17 16 15	
45 46	. 20364	.79636	4.9106 .9037	. 20800	4.8077 .8007	1.0214 .0215	.02095	.97904	15 14	
47	. 0421	9579	.8969	. 0861	.7937	.0215	2107	. 7893	13	
48	. 0450	. 9550	.8901	. 0891	.7867	.0216	. 2113	. 7887	13 12 11	
49	. 0478	. 9522 .79493	.8833 4.8765	. 0921	.7798 4.7728	0.0216 1.0217	. 2119	. 7881 .97875	111	
51	. 0535	. 9465	.8697	. 0982	.7659	.0217	. 2131	. 7869	9	
50 51 52	. 0563	. 9436	.8630	. 1012	7591	.0218	. 2137	. 7863	8	
53 54	. 0592	. 9408	.8563	. 1043 . 1073	.7522 .7453	.0219	. 2143	. 7857	7	
55	.20649	.79351	.8496 4.8429	. 21104	4.7385	.0220 1.0220	. 2149 .02155	. 7851 .97845	10 9 8 7 6 5 4 3 2	
56	. 0677	. 9323	.8362	. 1134	.7317	.0221	. 2161	. 7839	4	
57 58	. 0706	. 9294 . 9266	.8296 .8229	. 1164	.7249 .7181	.0221	. 2167	. 7833 . 7827	3	
59	. 0763	9237	.8163	. 1225	.7114	.0223	. 2173	. 7821	1	
60	. 0791	. 9209	.8097	. 1256	.7046	.0223	. 2185	. 7815	Õ	
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.	

1670

12	0	Natural II		rigonom	ietricai	Functio	ns.	1	07°
M.	Sine.	Vrs. cos.	Cosec'n	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.20791	.79209	4.8097	.21256	4.7046	1.0223	.02185	.97815	60
1	. 0820	. 9180	.8032	. 1286	.6979	.0224	. 2191	. 7809	59
2	. 0848	. 9152	.7966	. 1316	.6912	.0225	. 2197	. 7803	58
3	. 0876	. 9123	.7901	. 1347	.6845	.0225	. 2203	. 7806	57
4	. 0905	. 9105	.7835	.1377	.6778 4.6712	1.0226 1.0226	. 2209	. 7790	56
5 6	. 0962	. 9038	4.7770 .7706	. 1438	.6646	.0227	. 2222	. 97784	55
7	. 0990	9010	.7641	. 1468	.6580	.0228	2228	7772	53
8	. 1019	8981	.7576	1499	.6514	.0228	. 2234	. 7766	52
9	. 1047	. 8953	.7512	. 1529	.6448	.0229	. 2240	. 7760	51
10	.21076	.78924	4.7448	.21560	4.6382	1.0230	.02246	.97754	50
11	. 1104	. 8896	.7384	. 1590	.6317	.0230	. 2252	. 7748	49
12 13	. 1132	. 8867	.7320	. 1621	.6252	.0231	. 2258	. 7741	48
13	. 1161	. 8839 . 8811	.7257	. 1651	.6122	.0232	. 2264	. 7735	47
15	.21218	.78782	4.7130	.21712	4.6057	1.0233	.02277	.97723	45
16	. 1246	. 8754	.7067	. 1742	.5993	.0234	. 2283	. 7717	44
17	. 1275	. 8725	.7004	. 1773	.5928	.0234	. 2289	. 7711	43
18	. 1303	8697	.6942	. 1803	.5864	.0235	. 2295	. 7704	42
19	. 1331	8668	.6879	. 1834	.5800	.0235	. 2302	. 7698	41
20	.21360	.78640	4.6817	.21864	4.5736	1.0236	.02308	.97692	40
21 22	. 1388	. 8612 . 8583	.6754 .6692	. 1895 . 1925	.5673	.0237	. 2314	. 7686	39
23	. 1445	8555	.6631	1956	.5546	.0237	. 2326	. 7680 . 7673	38 37
24	. 1473	8526	.6569	1986	.5483	.0239	2333	. 7667	36
25	.21502	.78508	4.6507	.22017	4.5420	1.0239	.02339	.97661	35
26	. 1530	. 8470	.6446	. 2047	.5357	.0240	. 2345	. 7655	34
27	. 1559	. 8441	.6385	. 2078	.5294	.0241	. 2351	. 7648	33
28	. 1587	. 8413	.6324	. 2108	.5232	.0241	. 2358	. 7642	32
29 30	. 1615	. 8384 .78356	$\begin{array}{c} .6263 \\ 4.6202 \end{array}$. 2139	.5169 4.5107	.0242 1.0243	. 2364	. 7636	31
31	. 1672	. 8328	.6142	. 22109	.5045	.0243	. 2377	.97630 . 7623	30 29
32	. 1701	8299	.6081	2230	.4983	.0244	2383	. 7617	28
33	. 1729 . 1757	. 8271	.6021	. 2261	.4921	.0245	. 2389	7611	27
34	. 1757	. 8242	.5961	. 2291	.4860	.0245	. 2396	. 7604	26
35	.21786	.78214	4.5901	.22322	4.4799	1.0246	.02402	.97598	25
36	. 1814	8186	.5841	. 2353	.4737	.0247	. 2408	. 7592	24
37 38	. 1843 . 1871	. 8154 . 8129	.5782 .5722	. 2383	.4676	.0247	. 2415	. 7585	23
39	. 1899	. 8100	.5663	2444	.4555	.0249	2427	. 7579 . 7573	$\frac{22}{21}$
40	.21928	.78072	4.5604	.22475	4.4494	1.0249	.02434	.97566	20
41	. 1956	. 8043	.5545	. 2505	.4434	.0250	. 2440	. 7560	19
42	. 1985	. 8015	.5486	. 2536	.4373	.0251	. 2446	. 7553	18
43 44	. 2013	. 7987 . 7959	.5428	. 2566	.4313	.0251	. 2453	. 7547	17
45	.22070	.7939	.5369 4.5311	. 2597 .22628	.4253 4.4194	$\begin{array}{c c} .0252 \\ 1.0253 \end{array}$. 2459	. 7541	16
46	. 2098	. 7902	.5253	. 2658	.4134	.0253	. 2472	. 97534 . 7528	15 14
47	. 2126	. 7873	.5195	. 2689	.4074	.0254	2479	. 7521	13
4 8	. 2155	. 7845	.5137	. 2719	.4015	.0255	. 2485	. 7515	12
49	. 2183	7817	.5079	. 2750	.3956	.0255	. 2491	. 7508	11
50	.22211	.77788	4.5021	.22781	4.3897	1.0256	.02498	.97502	10
51 52	. 2240	. 7760 . 7732	.4964	. 2811 . 2842	.3838	.0257	. 2504	. 7495	9
53	2297	7703	.4850	2872	.3721	.0257	. 2511	. 7489	8 7
54	. 2325	. 7675	.4793	2903	.3662	.0259	2524	. 7483	6
55	.22353	.77647	4.4736	.22934	4.3604	1.0260	.02530	.97470	6 5
56	. 2382	. 7618	.4679	. 2964	.3546	.0260	. 2537	. 7463	4
57	. 2410	. 7590	.4623	. 2995	.3488	.0261	. 2543	. 7457	3 2
58 59	. 2438	. 7561 . 7533	.4566 .4510	. 3025	.3430	.0262	. 2550	. 7450	2
60	. 2495	. 7505	.4510	. 3056	.3372 .3315	.0262	. 2556	. 7443	1
M.							. 2563	. 7437	0
M.	Cosme.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	М.

	13-		Na	turar ir	igonom	eti icai i	15.	100-		
	M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
	0	.22495	.77505	4.4454	.23087 . 3117	4.3315	1.0263	.02563	.97437	60
	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$. 2523	. 7476	.4398	. 3117	.3257 .3200	.0264	. 2569	. 7430	59
	2	. 2552	. 7448	.4342	. 3148	.3200	.0264	. 2576	. 7424	58
	3 4 5 6 7 8 9	. 2580	. 7420 . 7391	.4287 .4231	. 3179	.3143	.0265 .0266	. 2583	. 7417	57
	4	. 2608	. 7391	.4231	3209	.3086	.0266	. 2589	. 7411 .97404	56
	5	.22637	.77363 . 7335	4.4176 .4121	.23240 . 3270	4.3029 .2972	1.0266	.02596	.97404	55 54
	7	. 2665	7306	4065	. 3301	.2916	1.0266 .0267 .0268	. 2602	. 7398 . 7391	53
	8	· 2722	. 7278	.4065 .4011 .3956	. 3332	.2859	.0268 .0269 1.0270 .0271	2616	. 7384	52
	9	2750	7250	.3956	. 3363	.2803	.0269	. 2622	. 7378	52 51
	10	.22778	.77221	4.3901	.23393	4.2747	1.0270	.02629	.97371	50
	10 11 12 13	. 2807	. 7193	.3847	. 3424	.2691	.0271	. 2635	. 7364	49
	12	. 2835	. 7165	.3792	. 3455	.2635	.0271 .0272 .0273 1.0273	. 2642	. 7358	48
	13	. 2863	. 7136	.3738	. 3485	.2579	.0272	. 2649	. 7351	47
	14	. 2892	. 7108	.3684	. 3516 .23547	.2524	.0273	. 2655	. 7344	46
	14 15 16 17 18	.22920	.77080 . 7052	4.3630 .3576	. 3577	4.2468	1.0273	.02662	.97338 . 7331	45 44
	17	2977	7023	.3522	. 3608	.2358	0275	. 2669 . 2675	. 7324	43
	18	3005	6995	.3469	. 3639	.2303	.0274 .0275 .0276 .0276	2682	. 7318	42
	19	0000	. 6967	.3415	. 3670	2248	.0276	. 2689	. 7311	41
	19 20	.23061	.76938	4.3362	. 3670 .23700	4.2193		.02695	.97304	40
	21 22	. 3090	. 6910	.3309 .3256	. 3731 . 3762	.2139 .2084	.0278	. 2702 . 2709	. 7298 . 7291	39
	22	. 3118	. 6882	.3256	. 3762	.2084	.0278	. 2709	. 7291	38
	23	. 3146	. 6853 . 6825	.3203 .3150	. 3793 . 3823	.2030 .1976	.0278 .0278 .0278 .0279 .0280	. 2716	. 7284 . 7277	37
	24 25	. 3175	.76797	4.3098	. 23854	1 4 1001	1.0280	. 2722 .02729	.97271	36 35
	26	. 3231	. 6769	.3045	. 3885	.1867	.0281	. 2736	. 7264	34
	27	. 3260	. 6740	.3045 .2993	. 3916	.1814	.0281	. 2743	. 7257	34 33
	28	. 3288	. 6712	.2941	. 3946	.1867 .1814 .1760 .1706	.0283	. 2749	. 7250	32 31
	29	. 3316	. 6684	.2888	. 3977 .24008	.1706	.0283	. 2756	. 7244	31
	30	.23344	.76655	4.2836	.24008	4 1653	1.0284	.02763 . 2770	.97237 . 7230	30 29 28 27 26 25 24 23 22 21 20
	31 32	. 3373	. 6627	.2785	. 4039	.1600 .1546 .1493	.0285	. 2770	. 7230 . 7223	29
	3 3	. 3401 . 3429	6571	.2681	. 4069 . 4100	1/02	0286	. 2777	7216	27
	34	. 3458	6542	2630	. 4131	1440	0287	2790	. 7210	26
	35	.23486	.76514	4.2579	.24162	.1440 4.1388 .1335 .1282 .1230 .1178 4.1126 .1073 .1022 .0970 .0918 4.0867	.0285 .0286 .0287 1.0288 .0288	.02797	.97203	25
	36	. 3514	. 6486	.2527	. 4192	.1335	.0288	. 2804	. 7196	24
	37	. 3542	. 6457	.2476	. 4223	.1282		. 2811	. 7189	23
	38 39	. 3571	. 6429	.2425	. 4254	.1230	.0290 .0291 1.0291	. 2818	. 7182	22
	40	. 3599	.76373	4.2324	. 4285 .24316	4 1126	1 0201	. 2824 .02831	. 7175 .97169	20
	41	. 3655	. 6344	.2273	. 4346	1073	0292	. 2838	. 7162	19
	42	. 3684	. 6316	.2223	. 4377	.1022	.0292	. 2845	. 7155	18
	43	. 3712	. 6288	.2173	. 4408	.0970	0293	. 2852	. 7148 . 7141	17
	44	. 3740	. 6260 .76231	.2122 4.2072	. 4439	.0918	.0294 1.0295 .0296	. 2859	. 7141	16
	45	.23768	.76231	4.2072	.24470	4.0867	1.0295	.02866	.97134	15
	46 47	. 3797 . 3825	. 6203 . 6175	.2022 .1972	. 4501 . 4531		.0296	. 2873	. 7127 . 7120	14 13
	48	. 3853	6147	1993	. 4562	0713	0297	2886	7113	12
	49	. 3881	6118	.1873	4593	.0662	.0297	2893	7106	11
	50 51	.23910	.76090	4.1824	.24624	4.0611	1.0299	.02900	.97099	10
	51	. 3938	. 6062	.1873 4.1824 .1774	.24624 . 4655	.0560	1.0299 .0299	. 2907	7092	9
	52	. 3966	. 6034	.1725 .1676	4686	.0704 .0713 .0662 4.0611 .0560 .0509	1 0300 1	. 2914	. 7086	8
	53 54	. 3994	. 6005 . 5977	.1676	. 4717 . 4747	.0458	.0301	. 2921	. 7079 . 7072	7
	55	.24051	.75949	4.1578	.24778	.0458 .0408 4.0358	.0301 .0302 1.0302	. 2928	.97065	10 9 8 7 6 5 4 3 2
	56	. 4079	. 5921	.1529	. 4809	.0307	.0303	. 2942	. 7058	4
	57	. 4107	. 5892	.1481	. 4840	.0257	0304	. 2949	. 7051	3
	58 59	. 4136	. 5864	.1432	. 4871	.0257 .0207	.0305	. 2956	. 7044	2
4	59	. 4164	. 5836	.1384	. 4902	.0157 .0108	.0305	. 2963	. 7037	1
	60	. 4192	. 5808	.1336	. 4933	.0108	.0306	. 2970	. 7029	0
	M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
	103			,	3		,	1		760

1650

140	,	Na	tural Tr	igonom	etrical	Function	ns. 10		65°
М.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.24192	.75808	4.1336	.24933	4.0108	1.0306	.02970	.97029	60 🛋
1	. 4220	. 5779	.1287	. 4964	.0058	.0307	. 2977	. 7022	59
$\begin{bmatrix} \hat{2} \\ 3 \end{bmatrix}$. 4249 . 4277	5751 . 5723	.1239 .1191	. 4995 . 5025	3.9959	.0308	. 2984	. 7015	58 57
4	. 4305	. 5695	.1144	. 5056	.9910	.0309	2999	. 7003	56
4 5	.24333	.75667	4.1096	.25087	3.9861	1.0310	.03006	.96994	55
6 7	. 4361	. 5638	.1048	. 5118	.9812	.0311	. 3013	. 6987	54
7	. 4390	. 5610	.1001	. 5149	.9763	.0311	. 3020	. 6980	53
8 9	. 4418	. 5582 . 5554	.0953	. 5180 . 5211	.9714	.0312	. 3027	. 6973	52 51
10	.24474	.75526	4.0859	.25242	3.9616	1.0314	.03041	.96959	50
11	. 4502	. 5497	.0812	. 5273	.9568	.0314	. 3048	. 6952	49
12	. 4531	. 5469	.0765	. 5304	.9520	.0315	. 3055	. 6944	48
13	. 4559	. 5441	.0718	. 5335	.9471	.0316	. 3063	. 6937	47
14 15	. 4587	. 5413	.0672 4.0625	. 5366	.9423 3.9375	.0317 1.0317	. 3070	. 6930	46 45
16	. 4643	5356	.0579	. 5428	.9327	.0318	. 3084	. 6916	44
17	. 4672	. 5328	.0532	. 5459	.9279	.0318 .0319	. 3091	. 6909	43
18	. 4700	5300	.0486	. 5490	.9231	.0320	. 3098	. 6901	42
19	. 4728	. 5272 .75244	.0440 4.0394	. 5521	.9184	.0320	. 3106	. 6894	41 40
20 21	.24756	. 5215	.0348	. 25552	3.9136	1.0321	. 3120	.96887 . 6880	39
22	. 4784 . 4813	5187	.0302	. 5614	.9042	.0322	. 3127	. 6873	38
23	. 4841	. 5159	.0256	. 5645	.8994	.0323	. 3134	. 6865	37
24	. 4869	. 5131	.0211	. 5676	.8947	.0324	. 3142	. 6858	36
25 26	.24897	.75103	4.0165 .0120	.25707 . 5738	3.8900 .8853	1.0325	. 3156	.96851 . 6844	35 34
27	. 4953	. 5046	.0074	. 5769	.8807	.0327	. 3163	. 6836	33
28	. 4982 . 5010	5018	.0029	. 5800	.8760	.0327	. 3171	. 6829	32
29	. 5010	. 4990	3.9984	. 5831	.8713	.0328	. 3178	. 6822	31
30	.25038	.74962	3.9939	.25862	3.8667	1.0329	.03185	.96815	30
31 32	. 5066	. 4934	.9894	. 5893 . 5924	.8621 .8574	.0330	. 3192	. 6807 . 6800	29 28
33	. 5122	. 4877	.9805	. 5955	.8528	.0331	. 3207	. 6793	27
34		. 4849	.9760	. 5986	.8482	.0332 1.0333	. 3214	. 6785 .96778	26
35	. 5151	.74821	3.9716	.26017	3.8436	1.0333	.03222	.96778	25
36 37	. 5207 . 5235	. 4793 . 4765	.9672 .9627	. 6048	.8390 .8345	.0334	. 3229	. 6771	24 23
38	. 5263	. 4737	.9583	6110	8999	.0335	. 3244	. 6763 . 6756	22
39	. 5291	. 4709	.9539	. 6141	.8254	.0336	3251	. 6749	22 21
40	.25319	.74680	3.9495	.26172	3.8208	1.0337	.03258	.96741	20
41	. 5348	. 4652	.9451	. 6203	.8163	.0338	. 3266	. 6734	19
42 43	. 5376	. 4624	.9408	6234	.8118	.0338	. 3273	. 6727 . 6719	18 17
44		4568	.9320	. 6266 . 6297	.8027	.0340	3288	6712	16
45	.25460	.74540	3.9277	.26328	3.7983	1.0341	.03295	.96704	15
46	. 5488	. 4512	.9234	. 6359	.7938	.0341	. 3303	. 6697	14
47 48	. 5516 . 5544	. 4483	.9190 .9147	. 6390 . 6421	.7893 .7848	.0342	. 3310	. 6690	13 12
49	. 5573	. 4427	.9104	6452	.7804	.0344	. 3325	. 6682 . 6675	11
50	.25601	.74399	3.9061	.26483	3.7759	1.0345	.03332	.96667	10
51	. 5629	. 4371	.9018	. 6514	.7715	.0345	. 3340	. 6660	9
52 53	. 5657	. 4344	.8976	. 6546	.7671	.0346	. 3347	. 6652	8 7
54	. 5685 . 5713	. 4287	.8933	. 6577	.7627	.0347	. 3355	. 6645	6
55	.25741	.74259	3.8848	.26639	3.7539	1.0349	.03370	.96630	6 5
56	. 5769	. 4230	.8805	. 6670	.7495	.0349	. 3377	. 6623	4
57	. 5798	. 4202	.8763	. 6701	.7451	.0350	. 3385	. 6615	3 2
58 59	. 5826	. 4174	.8721 .8679	. 6732 . 6764	.7407 .7364	.0351	. 3392	. 6608	2
60	. 5882	. 4118	.8637	6795	.7320	.0352	. 3400	. 6592	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	М.

15	0	Na	tural Tr	igonom	etrical l	Function	ns.	10	64°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.25882	.74118	3.8637	.26795	3.7320	1.0353	.03407	.96592	60
ĭ	. 5910	. 4090	.8595	. 6826	.7277	.0353	. 3415	. 6585	59
$\frac{1}{2}$	5938	. 4062	.8553	. 6857	.7234	.0354	. 3422	. 6577	58
3	. 5966	. 4034	.8512	. 6888	.7191	.0355	. 3430	. 6570	57
4	5994	4006	.8470	. 6920	7147	.0356	. 3438	6562	56
4 5	.26022	73978	3.8428	.26951	.7147 3.7104	1.0357	.03445	.96555	55
6	6050	3949	.8387	. 6982	.7062	.0358	. 3453	. 6547	54
6	6078	3921	.8346	. 7013	7019	.0358	. 3460	. 6540	53
8	6107	. 3893	.8304	. 7044	.6976	.0359	. 3468	. 6532	52
9	6135	. 3865	.8263	. 7076	.6933	.0360	. 3475	6524	51
10	.26163	.73837	3.8222	.27107	3.6891	1.0361	.03483	.96517	50
11	. 6191	. 3809	.8181	. 7138	.6848	.0362	. 3491	. 6509	49
12	. 6219	. 3781	.8140	. 7169	.6806	.0362	. 3498	. 6502	48
13	. 6247	. 3753	.8100	. 7201	.6764	.0363	. 3506	. 6494	47
14	. 6275	. 3725	.8059	. 7232	.6722	.0364	. 3514	. 6486	46
15	.26303	.73697	3.8018	.27263	.6722 3.6679	1.0365	.03521	.96479	45
16	. 6331	. 3669	.7978	. 7294	.6637	.0366	. 3529	. 6471	44
17	. 6359	. 3641	.7937	. 7326	.6596	.0367	. 3536	. 6463	43
18	. 6387	. 3613	.7897	. 7357	.6554	.0367	. 3544	. 6456	42
19	. 6415	. 3585	.7857	. 7388	.6512	.0368	. 3552	. 6448	41
20	.26443	.73556	3.7816	.27419	3.6470	1.0369	.03560	.96440	40
21	. 6471	. 3528	.7776	. 7451	.6429	.0370	. 3567	. 6433	39
22	. 6499	. 3500	.7736	. 7482	.6387	.0371	. 3575	. 6425	38
23	. 6527	. 3472	.7697	. 7513	.6346	.0371	. 3583	. 6417	37
24	. 6556	. 3444	.7657	. 7544	.6305	.0372	. 3590	. 6409	36
25	.26584	.73416	3.7617	.27576	3.6263	1.0373	.03598	.96402	35
26	. 6612	. 3388	.7577	. 7607	.6222	.0374	. 3606	. 6394	34
27	. 6640	. 3360	.7538	. 7638	.6181	.0375	. 3614	. 6386	33
28	. 6668	. 3332	.7498	. 7670	.6140	.0376	. 3621	. 6378	32
29	. 6696	. 3304	.7459	. 7701	.6100	.0376	. 3629	. 6371	31
30	.26724	.73276	3.7420	.27732	3.6059	1.0377	.03637	.96363	30
31	. 6752	. 3248	.7380	. 7764	.6018	.0378	. 3645	. 6355	29
32	. 6780	. 3220	.7341	. 7795	.5977	.0379	. 3652	. 6347	28
33	. 6808	. 3192	.7302	. 7826	.5937	.0380	. 3660	. 6340	27
34	. 6836	3164	.7263 3.7224	. 7858	.5896	.0381 1.0382	. 3668	. 6332	26
35 36	. 6892	.73136	.7186	. 7920	3.5856		.03676		25
37	6920		.7147	. 7952	.5816	.0382	. 3691	. 6316	24 23 22 21
38	. 6948	. 3080	.7108	. 7983	.5776	.0384	. 3699	. 6301	20
39	6976	3024	.7070	. 8014	.5696	.0385	. 3707	. 6293	21
40	.27004	.72996	3.7031	.28046	3.5656	1.0386	.03715	.96285	20
41	7032	. 2968	.6993	. 8077	.5616	.0387	. 3723	. 6277	19
42	7060	2940	.6955	. 8109	.5576	.0387	3731	6269	18
43	7088	2912	.6917	. 8140	.5536	.0388	. 3739	6261	17
44	7116	. 2884	.6878	. 8171	.5497	.0389	. 3746	6253	16
45	.27144	.72856	3.6840	.28203	3.5457	1.0390	.03754	.96245	15
46	. 7172	. 2828	.6802	. 8234	.5418	.0391	. 3762	. 6238	14
47	. 7200	. 2800	.6765	. 8266	.5378	.0392	. 3770	. 6230	13
48	. 7228	. 2772	.6727	. 8297	.5339	.0393	. 3778	. 6222	12
49	. 7256	. 2744	.6689	. 8328	.5300	.0393	. 3786	. 6214	11
50	.27284	.72716	3.6651	.28360	3.5261	1.0394	.03794	.96206	10
51	. 7312	. 2688	.6614	. 8391	.5222	.0395	. 3802	. 6198	9
52	. 7340	. 2660	.6576	. 8423	.5183	.0396	. 3810	. 6190	8
53	. 7368	. 2632	.6539	. 8454	.5144	.0397	. 3818	. 6182	8
54	. 7396	. 2604	.6502	. 8486	.5105	.0398	. 3826	. 6174	6
55	.27424	.72576	3.6464	.28517	3.5066	1.0399	.03834	.96166	6 5
56	. 7452	. 2548	.6427	. 8549	.5028	.0399	. 3842	. 6158	4
57	. 7480	. 2520	.6390	. 8580	.4989	.0400	. 3850	. 6150	4 3 2
58	. 7508	. 2492	.6353	. 8611	.4951	.0401	. 3858	. 6142	2
59	. 7536	. 2464	.6316	. 8643	.4912	.0402	. 3866	. 6134	1

60

. 7564

. 2436

M. Cosine. Vrs. sin. Secant. Cotang.

.6279

. 8674

.4874

Tang.

.0403

Cosec'nt Vrs. cos.

. 3874

. 6126 0

Sine.

Nati	ural Trigo:	nometrical	Functions.

10-		Na	turai ir	igonom	etricai i	runction	15.		J3 -
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.27564	.72436	3.6279	.28674	3.4874	1.0403	.03874	.96126	60
1	. 7592	. 2408	.6243	. 8706	.4836	.0404	. 3882	. 6118	59
2	. 7620	. 2380	.6206	. 8737	.4798	.0405	. 3890	. 6110	58
3	. 7648	. 2352	.6169	. 8769	.4760	.0406	. 3898	. 6102	57
4	. 7675	. 2324	.6133	. 8800	.4722	.0406	. 3906	. 6094	56
5	.27703	.72296	3.6096	.28832	3.4684	1.0407	.03914	.96086	55
5 6 7	. 7731	. 2268 . 2240	.6060	. 8863	.4646	.0408	. 3922	. 6078	54 53
0	. 7759 . 7787	2213	.6024	. 8895 . 8926	.4608 .4570	.0409	. 3938	. 6070	52
8 9	. 7815	2185	.5951	. 8958	.4533	.0411	. 3946	6054	51
10	.27843	.72157	3.5915	.28990	3.4495	1.0412	.03954	.96045	50
11	. 7871	. 2129	.5879	. 9021	.4458	.0413	. 3962	. 6037	49
12	. 7899	. 2101	.5843	. 9053	.4420	.0413	. 3971	. 6029	48
13	. 7927	. 2073	.5807	. 9084	.4383	.0414	. 3979	. 6021	47
14	. 7955	. 2045	.5772	. 9116	.4346	.0415	. 3987	. 6013	46
15	.27983	.72017	3.5736	.29147	3.4308	1.0416	.03995	.96005	45
16	. 8011	. 1989	.5700	. 9179	.4271	.0417	. 4003	. 5997	44
17 18	. 8039 . 8067	. 1961	.5665	. 9210 . 9242	.4234	.0418	. 4011	. 5989	43 42
19	. 8094	1905	.5594	9274	.4160	.0419	. 4019	5972	41
20	.28122	.71877	3.5559	.29305	3.4124	1.0420	.04036	.95964	40
21	. 8150	. 1849	.5523	. 9337	.4087	.0421	. 4044	. 5956	39
22	. 8178	. 1822	.5488	. 9368	.4050	.0422	. 4052	. 5948	38
21 22 23	. 8206	. 1794	.5453	. 9400	.4014	.0423	. 4060	. 5940	38 37
24	. 8234	. 1766	.5418	. 9432	.3977	.0424	. 4069	. 5931	36
25	.28262	.71738	3.5383	.29463	3.3941	1.0425	.04077	.95923	35
26	. 8290 . 8318	. 1710 . 1682	.5348	. 9495	.3904	.0426	. 4085	. 5915	34
27 28	. 8346	. 1654	.5313 .5279	. 9526 . 9558	.3868	.0427	. 4093	. 5907	33 32
29	. 8374	1626	.5244	9590	.3795	.0428	. 4110	. 5890	31
30	.28401	.71608	3.5209	.29621	3.3759	1.0429	.04118	.95882	30
51	. 8429	. 1570	.5175	. 9653	.3723	.0430	. 4126	. 5874	29
32	. 8457	. 1543	.5140	. 9685	.3687	.0431	. 4134	. 5865	28
3 3	. 8485	. 1515	.5106	. 9716	.3651	.0432	. 4143	. 5857	27
34	. 8513	. 1487	.5072	9748	.3616	.0433	. 4151	. 5849	26
3 5 3 6	. 28541	.71459 . 1431	3.5037 .5003	.29780 . 9811	3.3580 .3544	1.0434 .0435	.04159	.95840	25 24
37	. 8597	1403	.4969	9843	.3509	.0436	4176	. 5824	23
38	. 8624	1375	.4935	. 9875	.3473	.0437	. 4184	. 5816	22
39	. 8652	. 1347	.4901	. 9906	.3438	.0438	. 4193	. 5807	21
40	.28680	.71320	3.4867	.29938	3.3402	1.0438	.04201	.95799	20
41	. 8708	. 1292	.4833	. 9970	.3367	.0439	. 4209	. 5791	19
42	. 8736	. 1264	.4799	.30001	.3332	.0440	. 4218	. 5782	18
43 44	. 8764 . 8792	1236	.4766 .4732	. 0033	.3296	.0441	. 4226	. 5774	17 16
45	.28820	. 1208 .71180	3.4698	.30096	.3261 3.3226	1.0443	.04243	. 5765	15
46	. 8847	. 1152	.4665	. 0128	.3191	.0444	. 4251	. 5749	14
47	. 8875	. 1125	.4632	. 0160	.3156	.0445	. 4260	. 5740	13
48	. 8903	. 1097	.4598	. 0192	.3121	.0446	. 4268	. 5732	12
49	. 8931	. 1069	.4565	. 0223	.3087	.0447	. 4276	. 5723	11
50	.28959	.71041	3.4532	.30255	3.3052	1.0448	.04285	.95715	10
51 52	. 8987	. 1013	.4498	. 0287	.3017	.0448	. 4293	. 5707	9
5 3	. 9014	. 0958	.4465	. 0319	.2983	.0449	. 4302	. 5698 . 5690	8 7
54	. 9070	. 0930	.4399	. 0382	.2948	.0450	. 4319	. 5681	6
55	.29098	.70902	3.4366	.30414	3.2879	1.0452	.04327	.95673	6 5
56	. 9126	. 0874	.4334	. 0446	.2845	.0453	. 4335	. 5664	4
57	. 9154	. 0846	.4301	. 0478	.2811	.0454	. 4344	. 5656	3 2
58	. 9181	. 0818	.4268	. 0509	.2777	.0455	. 4352	. 5647	
59 60	. 9209 . 9237	. 0791	.4236	0541	.2742	.0456	. 4361	. 5639	1
00	. 5201	. 0703	.4203	. 0573	.2708	.0457	. 4369	. 5630	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
				9.1	-0.				

17		Na	tuiai i	ingonom	letricar	runction	115.	1,	02-
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
- 0	.29237	.70763	3.4203	.30573	3.2708	1.0457	.04369	.95630	60
1	. 9265	. 0735	.4170	. 0605	.2674	.0458	. 4378	. 5622	59
2	. 9293	. 0707	.4138	. 0637	.2640	.0459	. 4386	. 5613	58
$\tilde{3}$. 9321	. 0679	.4106	. 0668	.2607	.0460	. 4395	. 5605	57
4	. 9348	. 0651	.4073	. 0700	.2573	.0461	. 4404	. 5596	56
5 6 7	.29376	.70624	3.4041	.30732	3.2539	1.0461	.04412	.95588	55
6	. 9404	. 0596	.4009	. 0764	.2505	.0462	. 4421	. 5579	54
7	. 9432	. 0568	.3977	. 0796	.2472	.0463	. 4426	. 5571	53 52
8	. 9460	. 0540	.3945	. 0828	.2438	.0464	. 4438	. 5562	52
9 10	. 9487	. 0512	.3913 3.3881	. 0859	.2405 3.2371	.0465 1.0466	. 4446	. 5554	51
11	. 9543	. 0457	.3849	. 0923	.2338	.0467	. 4463	. 5536	50 49
12	. 9571	. 0429	.3817	. 0955	.2305	.0468	. 4472	. 5528	48
13	9598	. 0401	.3785	. 0987	.2271	.0469	. 4481	. 5519	47
14	9626	. 0374	.3754	. 1019	.2238	.0470	. 4489	. 5511	46
15	.29654	.70346	3.3722	.31051	3.2205	1.0471	.04498	.95502	45
16	. 9682	. 0318	.3690	. 1083	.2172	.0472	. 4507	. 5493	44
17	. 9710	. 0290	.3659	. 1115	.2139	.0473	. 4515	. 5485	43
18	. 9737	. 0262	.3627	. 1146	.2106	.0474	. 4524	. 5476	42
19	. 9765	. 0235 .70207	.3596	. 1178	.2073	.0475	. 4532	. 5467	41
20	.29793	.70207	3.3565	.31210	3.2041	1.0476	.04541	.95459	40
21	. 9821	. 0179 . 0151	.3534	. 1242	.2008	.0477	. 4550	. 5450	39
22 23	9848	. 0151	.3502	. 1274	.1975 .1942	.0478	. 4558	. 5441	38
23	9904	. 0096	.3471	. 1338	.1942	.0478	. 4567	. 5424	36
25	.29932	70068	3.3440 3.3409	.31370	3.1877	1.0480	.04585	.95415	35
26	. 9959	.70068 . 0040	.3378	. 1402	.1845	.0481	. 4593	. 5407	34
27		. 0013	.3347	. 1434	.1813	.0482	. 4602	. 5398	33
27 28 29	. 9987	.69982	.3316	. 1466	.1780	.0483	. 4611	. 5389	32
29	. 0043	. 9957	.3286	. 1498	.1748	.0484	. 4619	. 5380	31
30	.30070	.69929	3.3255	.31530	3.1716	1.0485	.04628	.95372	30
31	. 0098	. 9902	.3224	. 1562	1684	.0486	. 4637	. 5363	29
32	. 0126	. 9874	.3194	. 1594	.1652 .1620 .1588	.0487	. 4646	. 5354	28
33	. 0154	. 9846	.3163	. 1626	.1620	.0488	. 4654	. 5345	27
34	. 0181	. 9818	.3133	. 1658	.1588	.0489	. 4663	. 5337	26
35 36	.30209 . 0237	.69791 . 9763	3.3102	.31690 . 1722	3.1556	1.0490 .0491	.04672	.95328 . 5319	25 24
37	. 0265	9735	.3072	. 1754	.1524 .1492	.0492	. 4690	. 5319	23
38	. 0292	9707	.3011	. 1786	.1460	.0493	. 4698	. 5301	22
39	. 0320	9680	.2981	. 1818	.1429	.0494	. 4707	. 5293	21
40	.30348	.69652	3.2951	.31850	3.1397	1.0495	.04716	.95284	20
41	. 0375	. 9624	.2921	. 1882	.1366	.0496	. 4725	. 5275	19
42	. 0403	. 9597	.2891	. 1914	.1334	.0497	. 4734	. 5266	18
43	. 0431	. 9569	.2861	1946	.1303	.0498	. 4743	. 5257	17
44	. 0459	. 9541	.2831	. 1978	.1271 3.1240	.0499	. 4751	. 5248 .95239	16
45	.30486	.69513	3.2801	.32010	3.1240	1.0500	.04760	.95239	15
46	. 0514	. 9486	.2772	. 2042	.1209	.0501	. 4769	. 5231 . 5222	14
47 48	. 0542	. 9458 . 9430	.2742 .2712	. 2074 . 2106	.1177	.0502	. 4778	. 5222	13 12
49	. 0509	9403	.2683	. 2138	.1115	.0504	. 4796	. 5213	11
50	.30625	.69375	3.2653	.32171	.1115 3.1084	1.0505	.04805	.95195	10
51	. 0653	. 9347	.2624	. 2203	.1053	.0506	. 4814	. 5186	9
52	. 0680	. 9320	.2594	. 2235	.1022	.0507	. 4823	. 5177	8
5 3	. 0708 . 0736	. 9292	.2565	. 2267	.0991	.0508	. 4832	. 5168	8 7 6 5 4
54	. 0736	. 9264	.2535	. 2299	.0960	.0509	. 4840	. 5159	6
55	.30763	.69237	3.2506	.32331	3.0930	1.0510	.04849	.95150	5
56	. 0791	. 9209	.2477	. 2363	.0899	.0511	. 4858	. 5141	4
57	. 0819	. 9181	.2448	. 2395	.0868	.0512	. 4867	5132	3
58 59	. 0846	. 9154 . 9126	.2419	. 2428	.0838	.0513 .0514	. 4876 . 4885	. 5124 . 5115	3 2 1
60	. 0874	. 9126	.2390	. 2492	.0807	.0514	. 4894	. 5116	0
	. 0302	. 5050	.2001	. 2132	.0111	.0010	. 1001	. 0100	
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
-									

161°

10		144	ituiai i	1 1g Ull Ull	icti icai	I dilictio			
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.30902	.69098	3.2361	.32492	3.0777	1.0515	.04894	.95106	60
1	. 0929	. 9071	.2332	. 2524	.0746	.0516	. 4903	. 5097	59
$\frac{1}{2}$. 0957	. 9043	.2303	. 2556	.0716	.0517	. 4912	. 5088	58
3	. 0985	. 9015	.2274	. 2588	.0686	.0518	. 4921	. 5079	57
4 5	. 1012	. 8988	.2245	. 2621	.0655	.0519	. 4930	. 5070	56
5	.31040	.68960	3.2216	.32653	3.0625	1.0520	.04939	.95061	55
6 7	. 1068	. 8932 . 8905	.2188 .2159	. 2685 . 2717	.0595	.0521	. 4948	. 5051	54 53
8	. 1123	8877	.2131	2749	.0535	.0522	. 4966	. 5042	52
9	. 1150	. 8849	.2102	2782	.0505	.0524	4975	. 5024	51
10	.31178	.68822	3.2074	.32814	3.0475	1.0525	.04985	.95015	50
11	. 1206	. 8794	.2045	2846	.0445	.0526	. 4994	. 5006	49
12	. 1206 . 1233	. 8766	.2017	. 2878	.0415	.0527	. 5003	. 4997	48
13	. 1261	. 8739	.1989	. 2910	.0385	.0528	. 5012	. 4988	47
14	. 1289	. 8711	.1960	. 2943	.0356	.0529	. 5021	. 4979	46
15	.31316	.68684	3.1932	.32975	3.0326	1.0530	.05030	.94970	45
16	. 1344	. 8656	.1904	. 3007	.0296	.0531	. 5039	. 4961	44
17	. 1372	8628	.1876	3039	.0267	.0532	. 5048	. 4952	43
18 19	1399	. 8601 . 8573	.1848	. 3072 . 3104	.0237	.0533	. 5057	. 4942	42 41
20	. 1427	.68545	3.1792	.33136	3.0178	1.0535	.05076	. 4955	41
21	. 1482	8518	.1764	. 3169	.0149	.0536	. 5085	. 4915	39
22	. 1510	8490	.1736	3201	.0120	.0537	. 5094	. 4906	38
23	. 1537	8463	.1708	. 3233	.0090	.0538	. 5103	. 4897	37
24	. 1565	8435	.1681	. 3265	.0061	.0539	. 5112	. 4888	36
25	.31592	.68407	3.1653	.33298	3.0032	1.0540	.05121	.94878	35
26	. 1620	. 8380	.1625	. 3330	.0003	.0541	. 5131	. 4869	34
27	. 1648	8352	.1598	. 3362	2.9974	.0542	. 5140	. 4860	33
28	. 1675	. 8325	.1570	. 3395	.9945	.0543	. 5149	. 4851	32
29	. 1703	8297	.1543	. 3427	.9916	.0544	. 5158	. 4841	31
30	.31730	.68269	3.1515	.33459	2.9887	1.0545	.05168	.94832	30
31 32	. 1758	. 8242 . 8214	.1488 .1461	. 3492 . 3524	.9858	.0546	. 5177	. 4823	29 28
33	1813	8187	.1433	. 3557	.9800	.0548	. 5186	. 4805	27
34	. 1841	8159	.1406	. 3589	.9772	.0549	. 5205	. 4795	26
35	.31868	.68132	3.1379	.33621	2.9743	1.0550	.05214	.94786	25
36	. 1896	. 8104	.1352	. 3654	.9714	.0551	. 5223	. 4777	24
37	. 1923	. 8076	.1325	. 3686	.9686	.0552	. 5232	. 4767	23
38	. 1951	. 8049	.1298	. 3718	.9657	.0553	. 5242	. 4758	22
39	. 1978	. 8021	.1271	. 3751	.9629	.0554	. 5251	. 4749	21
40	.32006	.67994	3.1244	.33783	2.9600	1.0555	.05260	.94740	20
41 42	. 2034	7966	.1217	. 3816	.9572	.0556	5270	. 4730	19
43	2089	. 7939 . 7911	.1163	. 3848 . 3880	.9544	.0557	. 5279	. 4721	18 17
44	2116	7884	.1137	. 3913	.9487	.0559	5297	4702	16
45	.32144	.67856	3.1110	.33945	2.9459	1.0560	.05307	.94693	15
46	. 2171	. 7828	.1083	. 3978	.9431	.0561	. 5316	. 4684	14
47	. 2199	. 7801	.1057	. 4010	.9403	.0562	. 5326	. 4674	13
48	. 2226	. 7773	.1030	. 4043	.9375	.0563	. 5335	. 4665	12
49	. 2254	. 7746	.1004	. 4075	.9347	.0565	. 5344	. 4655	11
50	.32282	.67718	3.0977	.34108	2.9319	1.0566	.05354	.94646	10
51 52	. 2309	. 7691	.0951	. 4140	.9291	.0567	. 5363	. 4637	9
53	. 2364	. 7663 . 7636	.0925	. 4205	.9263	.0568	. 5373	. 4627	8
54	2392	7608	.0872	. 4238	.9235 .9208	.0569 .0570	. 5382	. 4618	8 7 6 5
55	.32419	.67581	3.0846	.34270	2.9180	1.0571	.05401	. 94599	5
56	. 2447	. 7553	.0820	. 4303	.9152	.0572	. 5410	. 4590	4
57	. 2474	. 7526	.0793	. 4335	.9125	.0573	. 5420	. 4580	3
58	. 2502	. 7498	.0767	. 4368	.9097	.0574	. 5429	. 4571	2
59	. 2529	. 7471	.0741	. 4400	.9069	.0575	. 5439	. 4561	1
60	. 2557	. 7443	.0715	. 4433	.9042	.0576	. 5448	. 4552	0
M.	Cosine.	Vrs. sin.	Secant.	Cotona	Tona	Cogoglat	Vno	0:-	7.5
H1.	Cosme.	118. SIII.	secant.	Cotang.	Tang.	Cosec nt	Vrs. cos.	Sine.	M.

190	•	Na	tural Tr	igonom	etrical I	unction	ıs.	10	60°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.32557	.67443	3.0715	.34433	2.9042	1.0576	.05448	.94552	60
1	. 2584	. 7416	.0690	. 4465	.9015	.0577	. 5458	. 4542	59
2	. 2612	. 7388	.0664	. 4498	.8987	.0578	. 5467	. 4533	58 57
3	. 2639	. 7361 . 7333	.0638 .0612	. 4530 . 4563	.8960 .8933	.0579	. 5476	. 4523 . 4514	56
2 3 4 5 6 7 8 9	.32694	.67306	3.0586	.34595	2.8905	1.0581	.05495	.94504	55
6	. 2722	. 7278	.0561	. 4628	.8878	.0582	. 5505	. 4495	55 54
7	. 2749	. 7251	.0535	. 4661	.8851	.0584	. 5515	. 4485	1 53
8	. 2777	. 7223	.0509	. 4693	.8824	.0585	. 5524	. 4476	52 51
9	. 2804	. 7196	.0484	. 4726	.8797	.0586	. 5534	. 4466	51
10	.32832	.67168	3.0458	.34758	2.8770	1.0587	.05543	.94457	50
11 12	. 2859 . 2887	. 7141	.0433	. 4791 . 4824	.8743 .8716	.0588	. 5553	. 4447	48
13	. 2914	7086	.0382	. 4856	.8689	.0590	5572	. 4428	47
14	2942	7058	.0357	. 4889	.8662	.0591	. 5581	. 4418	46
15	.32969	.67031	3.0331	.34921	2.8636	1.0592	.05591	.94409	45
16	. 2996	. 7003	.0306	. 4954	.8609	.0593	. 5601	. 4399	44
17	. 3024	. 6976	.0281	. 4987	.8582	.0594	. 5610	. 4390	43
18	. 3051	. 6948	.0256	. 5019	.8555	.0595	. 5620	. 4380	42
19	. 3079	. 6921	.0231	. 5052	.8529	.0596	. 5629	. 4370	41
20 21	.33106 . 3134	. 6866	3.0206	.35085	2.8502 .8476	1.0598	. 5649	.94361	40
21	. 3161	. 6839	.0181	. 5150	.8449	.0599	. 5658	. 4341	38
22 23	. 3189	6811	.0131	. 5183	.8423	.0601	. 5668	. 4332	37
24	. 3216	6784	.0106	. 5215	.8396	.0602	. 5678	. 4322	36
25	.33243	.66756	3.0081	.35248	2.8370	1.0603	.05687	.94313	36
26	. 3271	. 6729	.0056	. 5281	.8344	.0604	. 5697	. 4303	1 34
27 28	. 3298	. 6701	.0031	. 5314	.8318	.0605	. 5707	. 4293	33
28	. 3326	. 6674	.0007	5346	.8291	.0606	. 5716	. 4283	32
29	. 3353	. 6647	2.9982	. 5379	.8265	.0607	. 5726	. 4274	31
30 31	.33381	. 66619	2.9957 .9933	.35412	2.8239 .8213	1.0608 .0609	. 5745	.94264	30
32	. 3435	6564	.9908	. 5477	.8187	.0611	. 5755	. 4245	20
33	. 3463	6537	.9884	. 5510	.8161	.0612	5765	4235	27
34	. 3490	. 6510	.9859	. 5543	.8135	.0613	. 5775	. 4235 . 4225	26
35	.33518	.66482	2.9835	.35576	2.8109	1.0614	.05784	.94215	25
36	. 3545	. 6455	.9810	. 5608	.8083	.0615	. 5794	. 4206	24
37	. 3572	6427	.9786	. 5641	.8057	.0616	. 5804	. 4196	28
38 39	. 3600 . 3627	. 6400	.9762 .9738	. 5674	.8932	.0617	. 5814	. 4186	22
40	. 33655	.66345	2.9713	. 5707 .35739	.8006 2.7980	.0618 1.0619	. 5823	. 4176	28 27 26 25 24 23 22 21 20
41	. 3682	. 6318	.9689	. 5772	.7954	.0620	. 5843	. 4157	19
42	. 3709	. 6290	.9665	. 5805	.7929	.0622	. 5853	. 4147	18
43	. 3737	. 6263	.9641	. 5838	.7903	.0623	. 5863	. 4137	18 17
44	. 3764	. 6236	.9617	. 5871	.7878	.0624	. 5872	. 4127	16
45	.33792	.66208	2.9593	.35904	2.7852	1.0625	.05882	.94118	15
46 47	. 3819	6181	.9569 .9545	. 5936	.7827	.0626	. 5892	. 4108	14
48	. 3874	6126	.9521	. 5969	.7801 .7776	.0627 .0628	. 5902 . 5912	. 4098 . 4088	14 13 12
49	. 3901	6099	.9497	. 6035	.7751	.0629	5922	. 4078	11
50	.33928	.66071	2.9474	.36068	2.7725	1.0630	.05932	.94068	10
51	. 3956	. 6044	.9450	. 6101	.7700	.0632	. 5941	. 4058	9
52	. 3983	. 6017	.9426	. 6134	.7675	.0633	. 5951	. 4049	8
53	. 4011	. 5989	.9402	. 6167	.7650	.0634	. 5961	. 4039	9 8 7 6 5 4 3 2 1
54	. 4038	. 5962	.9379	. 6199	.7625	.0635	. 5971	. 4029	6
55 56	.34065 . 4093	.65935	2.9355 .9332	.36232 . 6265	2.7600	1.0636	.05981	.94019	1 5
57	. 4120	. 5880	.9332	. 6265	.7574 .7549	.0637 .0638	. 5991	. 4009	9
58	. 4147	. 5853	.9285	. 6331	.7524	.0639	. 6011	. 3989	9
59	. 4175	. 5825	.9261	. 6364	.7500	.0641	6021	. 3979	1
60	. 4202	. 5798	.9238	. 6397	.7475	.0642	. 6031	. 3969	O
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

159°

200		Na	turai ir	igonom	etricai i	unction	ıs.	13	590
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.34202	.65798	2.9238	.36397	2.7475	1.0642	.06031	.93969	60
1	. 4229	. 5771	.9215	. 6430	.7450	.0643	. 6041	. 3959	59
2	. 4257	. 5743	.9191	. 6463	.7425	.0644	. 6051	. 3949	58
3	. 4284	. 5716	.9168	. 6496	.7400	.0645	. 6061	. 3939	57
4	. 4311	. 5689	.9145 2.9122	. 6529	.7376 2.7351	.0646 1.0647	. 6071	. 3929	56 55
5 6	. 4366	. 5634	.9098	. 6595	.7326	.0648	. 6090	. 3909	54
7	. 4393	. 5607	.9075	. 6628	.7302	.0650	. 6100	. 3899	53
8	. 4421	. 5579	.9052	. 6661	.7277	.0651	. 6110	. 3889	52
9	. 4448	. 5552	9029	. 6694	.7252	.0652	. 6121	. 3879	51
10	.34475	.65525	2.9006	.36727	2.7228	1.0653	.06131	.93869	50
11	4502	. 5497	.8983	. 6760	.7204	.0654	. 6141	. 3859	49
12 13	. 4530 . 4557	. 5470 . 5443	.8960 .8937	. 6793 . 6826	.7179	.0655	. 6151	. 3849	48 47
14	. 4584	5415	.8915	6859	7130	.0658	6171	3829	46
15	.34612	.65388	2.8892	.36892	.7130 2.7106	1.0659	.06181	.93819	45
16	. 4639	. 5361	.8869	. 6925	.7082	.0660	. 6191	. 3809	44
17	. 4666	. 5334	.8846	. 6958	.7058	.0661	. 6201	. 3799	43
18	. 4693	. 5306	.8824	. 6991	.7033	.0662	. 6211	. 3789	42
19	. 4721	. 5279	.8801	. 7024	.7009	.0663	. 6221	. 3779	41
20 21	.34748	.65252 , 5225	2.8778 .8756	.37057 . 7090	2.6985	1.0664	. 6241	.93769	40 39
22	4803	5197	.8733	7123	.6937	.0667	6251	. 3748	38
23	. 4830	. 5170	.8711	. 7156	.6913	.0668	6262	. 3738	37
24	. 4857	. 5143	.8688	. 7190	.6889	.0669	. 6272	. 3728	36
25	.34884	.65115	2.8666	.37223	2.6865	1.0670	.06282	.93718	35
26	. 4912	. 5088	.8644	. 7256	.6841	.0671	. 6292	. 3708	34
27	. 4939	. 5061	.8621	. 7289	.6817	.0673	. 6302	. 3698	33
28 29	. 4966 . 4993	. 5034	.8599 .8577	. 7322 . 7355	.6794 .6770	.0674	6312	. 3687	32 31
30	.35021	.64979	2.8554	.37388	2.6746	.0675 1.0676	.06333	.93667	30
31	. 5048	. 4952	.8532	. 7422	.6722	.0677	. 6343	. 3657	29
32	. 5075	. 4925	.8510	. 7455	.6699	.0678	. 6353	. 3647	28
33	. 5102	. 4897	.8488	. 7488	.6675	.0679	. 6363	. 3637	27
34	. 5130 .35157	. 4870	.8466	. 7521	.6652	.0681	. 6373	. 3626	26
35 36	. 5184	.64813 . 4816	2.8444 .8422	.37554	2.6628	1.0682	.06384	.93616	25
37	5211	4789	.8400	. 7587 . 7621	.6581	.0683	. 6394	. 3606	24 23
38	5239	. 4761	.8378	7654	.6558	.0685	6414	. 3585	22
39	. 5266	. 4734	.8356	. 7687	.6534	.0686	. 6425	. 3575	21
40	.35293	.64707	2.8334	.37720	2.6511	1.0688	.06435	.93565	20
41	. 5320	. 4680	.8312	. 7754	.6487	.0689	. 6445	. 3555	19
42	. 5347	. 4652	.8290	. 7787	.6464	.0690	. 6456	. 3544	18
43	. 5375 . 5402	. 4625 . 4598	.8269 .8247	. 7820 . 7853	.6441	.0691	6466	. 3534 . 3524	17 16
45	.35429	.64571	2.8225	.37887	2.6394	1.0694	.06486	.93513	15
46	. 5456	. 4544	.8204	. 7920	.6371	.0695	. 6-197	, 3503	14
47	. 5483	. 4516	.8182	. 7953	.6348	.0696	. 6507	. 3493	13
48	. 5511	. 4189	.8160	. 7986	.6325	.0697	. 6517	. 3482	12
49	. 5538	. 4462	.8139	. 8020	.6302	.0698	. 6528	. 3472	11
50 51	.35565 . 5592	.64435	2.8117	.38053	2.6279	1.0699	.06538	.93462	10 9
52	. 5619	. 4380	.8074	. 8120	.6233	.0701	. 6548 . 6559	. 3451	8
53	. 5647	. 4353	.8053	. 8153	.6210	.0703	. 6569	. 3431	8 7
54	. 5674	. 4326	.8032	. 8186	.6187	.0704	6579	. 3420	6
55	.35701	.64299	2.8010	.38220	2.6164	1.0705	.06590	.93410	6 5 4
56	. 5728	. 4272	.7989	. 8253	.6142	.0707	. 6600	. 3400	4
57 58	. 5755 . 5782	. 4245	.7968	. 8286	.6119	.0708	. 6611	. 3389	3
59	5810	4217	.7947 .7925	. 8320 . 8353	.6096	.0709	. 6621 . 6631	. 3379	2
60	5837	4163	.7904	. 8386	.6051	.0710	6642	. 3358	0
_			-	-					_
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

21		Na	tural II	rigonom	etricai	Function	ns.	1.	58°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.35837	.64163	2.7904	.38386	2.6051	1.0711	.06642	.93358	60
0	. 5864	. 4136	.7883	8420	.6028	.0713 .0714 .0715	. 6652	. 3348	59
$\frac{2}{3}$. 5891	. 4109	.7862 .7841	. 8453	.6006	.0714	. 6663	. 3337	58 57
3	. 5918	4082	.7841	. 8486	.5983	.0715	. 6673	. 3327	57
4 5 6 7 8	. 5945 .35972	. 4082 . 4055 .64027	.7820 2.7799	. 8520 .38553	.5960 2.5938	.0716 1.0717	. 6684 .06694	. 3316 .93306	56 55
6	. 6000	. 4000	.7778	8587	.5916	11719	. 6705	3295	54
7	6027	. 3973	.7757	. 8587 . 8620	.5893	.0720	. 6715	. 3285	53
8	. 6027 . 6054	. 3946	.7736	. 8654	.5893 .5871	.0720 .0721 .0722	. 6726	. 3295 . 3285 . 3274	52
9	. 6081 .36108	. 3919	.7715	. 8687	.5848	.0722	. 6736 .06747	. 3264	51
10	.36108	.63892	2.7694	.38720	2.5826 .5804	1.0723	.06747	.93253	50
11	. 6135	. 3865	.7674 .7653 .7632	. 8754	.5804	.0725	. 6757	. 3243 . 3232 . 3222	49
12	6180	. 3837 . 3810	7629	. 8787 . 8821	.5781 .5759	0727	6778	2999	48 47
13 14	6217	3783	7611	. 8854	5737	0728	6789	3211	46
15	. 6162 . 6189 . 6217 .36244	. 3783 .63756	2.7591	.38888	.5737 2.5715	.0726 .0726 .0727 .0728 1.0729	. 6768 . 6778 . 6789 . 06799	.93201	46 45
16	. 6271 . 6298 . 6325	. 3729 . 3702 . 3675	.7570 .7550	8921	.5693	.0731	1 . 6810	3190	44
16 17	. 6298	. 3702	.7550	. 8955	.5671 .5640	.0732 .0733	. 6820 . 6831	. 3180	43
18 19	. 6325	. 3675	.7529	. 8988	.5640	.0733	. 6831	. 3169	42
19	. 6352	. 3648	.7509	. 9022 .39055	.5627 2.5605	.0734 1.0736	. 6841	. 3158 .93148	41
20 21 22	.36379 . 6406	.63621 . 3593	2.7488 .7468	. 9089	5589	0727	.06852	. 3137	40 39
21	6433	3566	7447	9122	5561	.0738	. 6863 . 6873	3127	38
23	. 6433 . 6460	. 3539	.7447 .7427	. 9122 . 9156	.5539	.0737 .0738 .0739	. 6884	. 3116	37
23 24 25 26 27	. 6488 .36515	. 3566 . 3539 . 3512 .63485	7406	. 9189 .39223	.5583 .5561 .5539 .5517 2.5495	.0740 1.0742	. 6894 .06905	. 3105 .93095	38 37 36 35
25	.36515	.63485	2.7386	.39223	2.5495	1.0742	.06905	.93095	35
26	. 6542	3458	.7366 .7346	. 9257	6146.	.0743	. 6916	. 3084	34
27	. 6569 . 6596	. 3431 . 3404 . 3377	.7346	. 9290	.5451	.0744 .0745	. 6926 . 6937	. 3074	33
28	00000	3377	.7325 .7305	. 9324 . 9357	.5430	.0745	6947	. 3063 . 3052 .93042	32 31
29 30	.36650	.63350	2.7285	.39391	.5408 2.5386	1.0748	.06958	.93042	30
31	. 6677	. 3323	.7265	. 9425	.5365	.0749	. 6969	3031	29
31 32	. 6704 . 6731	. 3296	.7265 .7245 .7225	. 9458	.5365 .5343	.0749 .0750 .0751 .0753 1.0754 .0755 .0756 .0758 .0759	. 6979 . 6990	. 3020 . 3010 . 2999	28
33	. 6731	. 3269	.7225	. 9492	.5322	.0751	. 6990	. 3010	28. 27
33 34 35	. 6758	. 3242	.7205	. 9525 .39559	.5300 2.5278	.0753	. 7001 .07012	. 2999	26 25 24 23
35	.36785 . 6812	.63214	2.7185	.39559	2.5278	1.0754	. 7022	.92988	25
36 37	6839	3187	.7165 .7145	9593	.5257 .5236 .5214	0756	7033	. 2978 . 2967	24
38	6866	. 3160 . 3133	.7125	. 9626 . 9660	.5214	.0758	7044	2956	22
39	0000	. 3106	.7105	. 9694	.5193	.0759	7054	. 2945	21
40	.36921	. 3106 .63079	2.7085	.39727	1 2.5171	1.0760	.07065 .7076 .7087 .7097	.92935	20
41	. 6948	1. 3052 1	.7065	. 9761	.5150 .5129 .5108	.0761	. 7076	. 2924	19
42	. 6975	. 3025 . 2998	.7045	. 9795	.5129	.0763	. 7087	. 2913	18
43	7002	2998	.7026	. 9828 . 9862	.5108	.0761 .0763 .0764 .0765	71097	. 2902 . 2892	17
44 45	.7029 .37056	. 2971 .62944	.7006 2.6986	39896	.5086 2.5065	1.0766	. 7108 .07119	.92881	16 15
46	7083	2917	.6967	.39896 . 9930	5044	0769	7130	. 2870	14
47	. 7083 . 7110 . 7137	. 2890	.6947	. 9963	.5023	.0769 .0770 .0771 1.0773	. 7130 . 7141	. 2859	13
48	. 7137	. 2863	.6927	9997	.5002	.0770	. 7151	. 2848	12
49 50	. 7164 .37191	. 2836	.6908	.40031 .40065	.4981 2.4960	.0771	. 7162	. 2838	11
50	.37191	.62809	2.6888	.40065	2.4960	1.0773	.07173	.92827 . 2816	10
51 52	. 7218 . 7245 . 7272	. 2782 . 2755 . 2728	.6869	. 0098	.4939	.0774 .0775 .0776 .0778 1.0779	7184	2805	9
53	7272	2728	.6849 .6830	. 0132	.4897	.0776	. 7195 . 7205	. 2805 . 2794	8 7
54		1 . 2701 I	.6810	. 0200	.4876	.0778	7216	. 2784	6
54 55	.37326	.62674	2.6810 2.6791	. 0200 .40233	.4876 2.4855	1.0779	. 7216 .07227	. 2784 .92773	6 5
56 57	. 7353	. 2647	6779	. 0267	.4834		7238	. 2762	4
57	. 7380 . 7407	. 2620 . 2593	.6752	. 0301	.4813	.0781	7249	. 2751	3 2 1
58	. 7407	. 2593	.6733	. 0335	.4792	.0783	. 7260	. 2740	2
59 60	. 7434 . 7461	. 2566 . 2539	.6752 .6733 .6714 .6695	. 0369	.4834 .4813 .4792 .4772 .4751	.0781 .0783 .0784 .0785	. 7271 . 7282	. 2729 . 2718	0
00	. 7401	. 4009	.0093	. 0403	.4751	.0700	. 1202	. 2718	
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
111	10				-				68°

157°

220		Na	tural Tr	rigonom	etrical l	Function	ns.	1.	57°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.37461	.62539	2.6695	.40403	2.4751	1.0785	.07282	.92718	60
0	. 7488	. 2512	.6675	. 0436	.4730	.0787	. 7292	. 2707	59
2	. 7514	. 2485	.6656	. 0470	.4709	.0788	. 7303	. 2696	58
3 4 5 6 7	. 7541	. 2458	.6637	. 0504	.4689	.0789	. 7314	. 2686	57
4	. 7568	. 2431	.6618	. 0538	.4668	.0790	. 7325	. 2675	56
5	.37595	.62404	2.6599	.40572	2.4647	1.0792	.07336	.92664	55
0	. 7622 . 7649	. 2377 . 2351	.6580 .6561	. 0606	.4627 .4606	.0793	. 7347	. 2653	54 53
8	. 7676	2324	.6542	. 0673	.4586	.0795	7369	. 2631	52
9	. 7703	2297	.6523	. 0707	4565	0797	7380	2620	51
10	.37730	.62270	2.6504	.40741	.4565 2.4545	.0797 1.0798	.07391	.92609	50
11	. 7757	. 2243	.6485	. 0775	.4525	.0799	. 7402	. 2598	49
12	. 7784	. 2216	.6466	. 0809	.4504	.0801	. 7413	. 2587	48
13	. 7811	. 2189	.6447	. 0843	.4484	.0802	. 7424	. 2576	47
14	. 7838	. 2162	.6428	. 0877	.4463	.0803	. 7435	. 2565	46
15	.37865	.62135	2.6410	.40911	2.4443	1.0804	.07446	.92554	45
16 17	. 7892 . 7919	. 2108	.6391 .6372	. 0945	.4423	.0806	. 7457	. 2543 . 2532	44 43
18	. 7946	2054	.6353	. 1013	.4382	.0808	. 7479	. 2521	43
19	. 7972	2027	.6335	. 1047	.4362	.0810	7490	2510	41
20	.37999	.62000	2.6316	.41081	2.4342	1.0811	.07501	.92499	40
21	. 8026	. 1974	.6297	. 1115	.4322	.0812	. 7512	. 2488	39
22	. 8053	. 1947	.6279	. 1149	.4302	.0813	. 7523	. 2477	38
23	. 8080	. 1920	.6260	. 1183	.4282	.0815	. 7534	. 2466	37
24	. 8107	. 1893	.6242	. 1217	.4262	.0816	. 7545	. 2455	36
25	. 38134	.61866	2.6223	.41251	2.4242	1.0817	.07556	.92443	35
26	. 8188	1812	.6205 .6186	. 1285 . 1319	.4222	.0819	. 7567	. 2432 . 2421	34 33
27 28	. 8214	. 1785	.6168	. 1353	.4182	.0821	7590	. 2410	32
29	. 8241	. 1758	.6150	. 1387	:4162	.0823	. 7601	. 2399	31
30	.38268	.61732	2.6131	.41421	2.4142	1.0824	.07612	.92388	1 30
3i	. 8295	. 1705	.6113	. 1455	.4122	.0825	. 7623	. 2377	29 28
32	. 8322	. 1678	.6095	. 1489	.4102	.0826	. 7634	. 2366	28
33 34	. 8349 . 8376	. 1651 . 1624	.6076	. 1524	.4083	.0828	. 7645	. 2354	27
35	.38403	.61597	.6058 2.6040	. 1558	.4063 2.4043	.0829 1.0830	. 7657	. 2343	26
36	. 8429	. 1570	.6022	. 1626	.4023	.0832	. 7679	. 2321	25 24
37	. 8456	. 1544	.6003	. 1660	.4004	.0833	. 7690	. 2310	23
38	. 8483	. 1517	.5985	. 1694	.3984	.0834	. 7701	. 2299	23 22
39	. 8510	. 1490	.5967	. 1728	.3964	.0836	. 7712	. 2287	1 21
40	.38537	.61463	2.5949	.41762	2.3945	1.0837	.07724	.92276	20 19
41 42	. 8564 . 8591	. 1436	.5931	. 1797	.3925	.0838	. 7735	. 2265	19
43	. 8617	1382	.5913 .5895	. 1831	.3906	.0840	. 7746 . 7757	. 2254	18 17
44	0011	. 1356	.5877	. 1899	.3867	.0842	7769	. 2231	16
45	. 8644	.61329	2.5859	.41933	2.3847	1.0844	.07780	.92220	16 15
46	. 8698	. 1302	.5841	. 1968	.3828	.0845	. 7791	. 2209	14
47	. 8725	. 1275	.5823	. 2002	.3808	.0846	. 7802	. 2197	13
48 49	. 8751 . 8778	. 1248	.5805	. 2036	.3789	.0847	. 7814	. 2186	12
50	.38805	.61195	.5787 2.5770	. 2070	.3770 2.3750	.0849	. 7825	. 2175	11
51	. 8832	. 1168	.5752	.42105	.3731	1.0850 .0851	. 7847	.92164	10
52	. 8859	. 1141	.5734	. 2173	.3712	.0853	7859	2141	8
53	. 8886	. 1114	.5716	. 2207	.3692	.0854	. 7870	. 2130	7
54	. 8912	. 1088	.5699	. 2242	.3673	.0855	. 7881	. 2118	9 8 7 6 5 4 3 2 1
55	.38939	.61061	2.5681	.42276	2.3654	1.0857	.07893	.92107	5
56 57	. 8966 . 8993	. 1034	.5663	. 2310	.3635	.0858	. 7904	. 2096	4
58	. 9019	. 0980	.5628	. 2344	.3616	.0859 .0861	. 7915 . 7927	. 2084 . 2073	3
59	. 9046	. 0954	.5610	2413	.3577	.0862	7938	. 2073	1
60	. 9073	. 0927	.5593	. 2447	.3558	.0864	7919	2050	0
75	Cost	Vina	0	Q-4:	m	<u> </u>			
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
112	0								

1120

230	>	Na	tural Ti	igonom	etrical	Function	s. 156°		
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.39073	.60927	2.5593	.42447	2.3558	1.0864	.07949	.92050	60
1	• 9100	. 0900	.5575	. 2482	.3539	.0865	. 7961	. 2039	59
2 3	9126	. 0846	.5558	. 2550	.3520 .3501	.0866	. 7972 . 7984	2016	58 57
4	9180	0820	.5523	2585	.3482	.0869	. 7995	2005	56
4 5	.39207	.60793	2.5506	.42619	2.3463	1.0870	.08006	.91993	55
6 7	. 9234	. 0766	.5488	. 2654	.3445	.0872	. 8018	. 1982	54
7	. 9260	. 0739	.5471	. 2688	.3426	.0873	. 8029	. 1971	53
8 9	. 9287	. 0713	.5453 .5436	. 2722 . 2757	.3407	.0874	. 8041	. 1959	52 51
10	.39341	.60659	2.5419	.42791	2.3369	1.0877	.08063	.91936	50
11	. 9367	. 0632	.5402	. 2826	.3350	.0878	. 8075	. 1925	49
12	. 9394	. 0606	.5384	. 2860	.3332	.0880	. 8086	. 1913	48
13	9421	. 0579	.5367	. 2894	.3313	.0881	. 8098	. 1902	47
14 15	. 9448	. 0552	.5350 2.5333	. 2929 .42963	.3294 2,3276	.0882 1.0884	. 8109	. 1891	46 45
16	. 9501	. 0499	.5316	. 2998	.3257	.0885	. 8132	. 1868	44
17	. 9528	. 0472	.5299	. 3032	.3238	.0886	. 8144	. 1856	43
18	. 9554	. 0445	.5281	. 3067	.3220	.0888	. 8155	. 1845	42
19	. 9581	. 0419	.5264	. 3101	.3201	.0889	. 8167	. 1833	41
20 21	.39608	.60392	2.5247 .5230	. 43136	2.3183	1.0891	. 8190	.91822	39
22	. 9661	. 0339	.5213	. 3205	.3145	.0893	8201	. 1798	38
23	. 9688	. 0312	.5196	. 3239	.3127	.0895	. 8213	. 1787	37
24	. 9715	. 0285	.5179	. 3274	.3109	.0896	. 8224	. 1775	36
25	.39741	.60258	2.5163	.43308	2.3090	1.0897	.08236	.91764	35
26 27	9768	. 0232	.5146	. 3343	.3072 .3053	.0899	. 8248 . 8259	. 1752 . 1741	34
28	. 9821	. 0178	.5112	3412	.3035	.0902	. 8271	. 1729	32
29	. 9848	. 0152	.5095	. 3447	.3017	.0903	. 8282	. 1718	31
30	.39875	.60125	2.5078	.43481	2.2998	1.0904	.08294	.91706	30
31 32	9901	. 0098	.5062	. 3516	.2980	.0906	. 8306	. 1694	29 28
33	. 9955	. 0072	.5028	. 3585	.2944	.0907	. 8329	. 1683 . 1671	27
34	. 9981	. 0018	.5011	. 3620	.2925	.0910	. 8340	. 1659	26
35	.40008	.59992	2.4995	.43654	2.2907	1.0911	.08352	.91648	25
36	. 0035	9965	.4978	. 3689	.2889	.0913	. 8364	. 1636	24
37 38	. 0061	9938	.4961	. 3723 . 3758	.2871	.0914	. 8375 . 8387	. 1625 . 1613	23 22
39	. 0115	9885	.4928	3793	.2835	.0917	. 8399	. 1601	21
40	.40141	.59858	2.4912	.43827	2.2817	1.0918	.08410	.91590	20
41	. 0168	. 9832	.4895	. 3862	.2799	.0920	. 8422	. 1578	19
42 43	. 0195	9805	.4879	. 3897	.2781	.0921	. 8434	. 1566	18
44	. 0221	9778	.4862	. 3932	.2763 .2745	.0922	. 8445 . 8457	. 1554	17 16
$\hat{45}$.40275	.59725	2.4829	.44001	2.2727	1.0925	.08469	.91531	15
46	. 0301	. 9699	.4813	. 4036	.2709	.0927	. 8480	. 1519	14
47	. 0328	. 9672	.4797	. 4070	.2691	.0928	. 8492	. 1508	13
48 49	. 0354	. 9645	.4780 .4764	. 4105	.2673 .2655	.0929	. 8504 . 8516	. 1496	12 11
50	.40408	.59592	2.4748	.44175	2.2637	1.0932	.08527	.91472	10
51	. 0434	. 9566	.4731	. 4209	.2619	.0934	. 8539	. 1461	9
52	. 0461	. 9539	.4715	. 4244	.2602	.0935	. 8551	. 1449	8 7
53	. 0487	. 9512	.4699	. 4279	.2584	.0936	. 8563	. 1437	7
54 55	. 0514	. 9486	.4683 2.4666	. 4314	.2566 2.2548	.0938 1.0939	. 8575 .08586	. 1425 .91414	6 5
56	. 0567	. 9433	.4650	. 4383	.2531	.0941	. 8598	. 1402	4
57	. 0594	. 9406	.4634	. 4418	.2513	.0942	. 8610	. 1390	3
58	. 0620	. 9379	.4618	. 4453	.2495	.0943	. 8622	. 1378	2 1
59 60	. 0647	, 9353 , 9326	.4602 .4586	. 4488	.2478	.0945	. 8634 . 8645	. 1366 . 1354	0
_									
М.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	М.

113°

24°	Natural Trigonometrical Functions.								55°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.40674	.59326	2.4586	.44523	2.2460	1.0946	.08645	.91354	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$. 0700	. 9300	.4570	. 4558	.24-13	.0948	. 8657	. 1343	59
3	. 0727	. 9273 . 9247	.4554	. 4593 . 4627	.2425	.0949	. 8669 . 8681	. 1331	58 57
4	. 0780	9220	.4522	. 4662	.2350	.0952	8693	. 1319	56
5	.40806	.59193	2.4506	.44697	2,23"3	1.0953	.08705	.91295	55
6	. 0833	. 9167	.4190	. 4732	.2355	.0955	. 8716	. 1283	54
7	. 0860	. 9140	.4474	. 4767	.2338	.0956	. 8728	. 1271	53
8 9	. 0886	9114	.4458	. 4802 . 4837	.2320	.0958	. 8740 . 8752	. 1260	52 51
10	.40939	.59061	2.4426	.44872	2.2286	1.0961	.08764	.91236	50
11	. 0966	. 9034	.4411	. 4907	.2268	.0962	. 8776	. 1224	49
12	. 0992	. 9008	.4395	. 4942	.2251	.0963	. 8788	. 1212	48
13 14	. 1019	. 8981	.4379	. 4977	.2234	.0965	. 8800 . 8812	. 1200	47 46
15	.41072	.58928	2,4347	.45047	2.2199	1.0968	.08824	.91176	45
16	. 1098	. 8901	.4332	. 5082	.2182	.0969	. 8836	. 1164	44
17	. 1125	. 8875	.4316	. 5117	.2165	.0971	. 8848	. 1152	43
18	. 1151	. 8848	.4300	. 5152	.2147	.0972	. 8860	. 1140	42
19 20	. 1178	. 8822 .58795	.4285 2,4269	. 5187	.2130 2.2113	.0973 1.0975	. 8872	. 1128	41 40
21	. 1231	. 8769	.4254	. 5257	.2096	.0976	. 8896	. 1104	39
22	. 1257	. 8742	.4238	. 5292	.2079	.0978	. 8908	. 1092	38
23	. 1284	. 8716	.4222	. 5327	.2062	.0979	. 8920	. 1080	37
24 25	. 1310 .41337	. 8689	.4207 2.4191	. 5362 .45397	.2045 2.2028	.0981 1.0982	. 8932	. 1068	36 35
26	. 1363	. 8636	.4176	. 5432	.2011	.0984	. 8956	. 1044	34
27	. 1390	. 8610	.4160	. 5467	.1994	.0985	8968	1032	33
28	. 1416	. 8584	.4145	. 5502	.1977	.0986	. 8980	. 1020	32
29 30	. 1443	. 8557 .58531	.4130	. 5537	.1960	.0988	. 8992	. 1008	31 30
31	. 1496	. 8504	2.4114 .4099	.45573	2.1943 .1926	1.0989	.09004	.90996	29
32	. 1522	8478	.4083	. 5643	.1909	.0992	9028	. 0972	28
33	. 1549	. 8451	.4068	. 5678	.1892	.0994	. 9040	. 0960	27
34	. 1575	. 8425	.4053	. 5713	.1875	.0995	. 9052	. 0948	26
35 36	41602 . 1628	.58398	2.4037 .4022	.45748	2.1859 .1842	1.0997	.09064	.90936	25 24
37	. 1654	8345	.4007	5819	.1825	.1000	9088	. 0924	23
38	. 1681	. 8319	.3992	. 5854	.1808	.1001	9101	. 0899	22
39	. 1707	. 8292	.3976	. 5889	.1792	.1003	. 9113	. 0887	21
40 41	. 41734	. 58266	2.3961	.45924	2.1775	1.1004	.09125	.90875	20 19
42	. 1787	8213	.3946 .3931	. 5960 . 5995	.1758	.1005	9137	. 0863	18
43	. 1813	. 8187	.3916	6030	.1725	.1008	9161	. 0839	17
44	. 1839	. 8160	.3901	. 6065	.1708	.1010	. 9173	. 0826	16
45 46	. 1892	.58134	2.3886	.46101	2.1692	1.1011	.09186	.90814	15
47	. 1919	8108	.3871	. 6136 . 6171	.1675	.1013	9198	. 0802	14 13
48	1945	8055	.3841	6206	.1642	.1016	9222	. 0778	12
49	. 1972	. 8028	.3826	. 6242	.1625	.1017	. 9234	. 0765	11
50	.41998	.58002	2.3811	.46277	2.1609	1.1019	.09247	.90753	10
51 52	. 2024	. 7975	.3796 .3781	. 6312 . 6348	.1592 .1576	.1020 .1022	. 9259	. 0741	9
53	2077	7923	.3766	. 6383	.1559	.1022	9271	. 0729	7
54	. 2103	. 7896	.3751	. 6418	.1543	.1025	. 9296	. 0704	6
55	.42130	.57870	2.3736	.46454	2.1527	1.1026	.09308	.90692	9 8 7 6 5 4 3
56 57	. 2156	. 7844	.3721 .3706	. 6489 . 6524	.1510	.1028	. 9320	. 0680	4
58	2209	7791	.3691	. 6560	.1494	.1029	9332	. 0668	2
59	. 2235	. 7764	.3677	. 6595	.1461	.1032	9357	. 0643	2 1
60	. 2262	. 7738	.3662	. 6631	.1445	.1034	. 9369	. 0631	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

25°	Natural Trigonometrical Functions. 154°										
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.		
0	.42262	.57738	2.3662	.46631	2.1445	1.1034	.09369	.90631	60		
1 2	. 2288 . 2314	. 7712 . 7685	.3647 .3632	. 6666	.1429 .1412	.1035 .1037	. 9381	. 0618	59 58		
3	. 2341	7659	.3618	. 6737	.1396	.1038	. 9406	. 0594	57		
2 3 4 5 6 7 8	. 2367	. 7633	.3603	. 6772	.1380	.1040	. 9418	. 0581	56		
5	.42394	.57606	2.3588 .3574	.46808 . 6843	2.1364 .1348	1.1041 .1043	.09431	.90569	55 54		
7	. 2446	. 7554	.3559	. 6879	1331	.1044	. 9455	. 0544	53		
8	. 2473	. 7527	.3544	. 6914	.1315	.1046	. 9468	. 0532	52		
9 1 0	. 2499 .42525	. 7501 .57475	.3530 2.3515	. 6950 .46985	.1299 2.1283	.1047 1.1049	. 9480	. 0520 .90507	51 50		
11	. 2552	. 7448	.3501	. 7021	.1267	.1050	. 9505	. 0495	49		
12	. 2578	. 7422	.3486	. 7056	.1251	.1052	. 9517	. 0483	48		
13 14	. 2604 . 2630	. 7396 . 7369	.3472 .3457	. 7092 . 7127	.1235 .1219	.1053 .1055	. 9530 . 9542	. 0470	47 46		
15	.42657	.57343	2.3443	.47163	2.1203	1.1056	.09554	.90445	45		
16	. 2683	7317	.3428	. 7199	.1187	.1058	. 9567	. 0433	44		
17 18	. 2709 . 2736	. 7290 . 7264	.3414	. 7234 . 7270	.1171	.1059 .1061	. 9579	. 0421	43		
19	. 2762	. 7238	.3385	. 7305	.1139	.1062	. 9604	. 0396	41		
20	.42788	.57212	2.3371	.47341	2.1123	1.1064	.09617	.90383	40		
21	. 2815 . 2841	. 7185 . 7159	.3356	. 7376 . 7412	.1107 .1092	.1065 .1067	. 9629 . 9641	. 0371	39		
21 22 23 24 25	. 2867	. 7133	.3328	. 7448	.1076	.1068	. 9654	. 0346	37		
24	. 2893	. 7106	.3313	. 7483	.1060 2.1044	.1070 1.1072	. 9666	. 0333	36		
25 26	. 42920	.57080 .7054	2.3299 .3285	.47519 . 7555	.1028	.1072	.09679	. 90321	35 34		
27	. 2972	7028	.3271	. 7590	.1013	.1075	9704	. 0296	33		
27 28 29	. 2998	. 7001	.3256	. 7626	.0997	.1076	. 9716	. 0283	32		
29	. 3025 .43051	. 6975	.3242 2.3228	. 7662 .47697	0.0981 0.0965	.1078 1.1079	. 9729	. 0271 .90258	31 30		
30 31	. 3077	. 6923	.3214	. 7733	.0950	.1081	. 9754	. 0246	29		
32	. 3104	. 6896	.3200	. 7769	.0934	.1082	. 9766	. 0233	28		
33 34	. 3130 . 3156	. 6870 . 6844	.3186 .3172	. 7805 . 7840	.0918	.1084 .1085	9779	. 0221	27 26		
35	.43182	.56818	2.3158	.47876	2.0887	1.1087	.09804	.90196	25		
36	. 3208	. 6791	.3143	. 7912	.0872	.1088	. 9817	. 0183	24		
37 38	. 3235 . 3261	. 6765	.3129 .3115	. 7948 . 7983	.0856	.1090 .1092	. 9829	. 0171	23 22		
39	. 3287	. 6713	.3101	. 8019	.0825	.1093	. 9854	. 0145	21		
40	.43313	.56686	2.3087	.48055	2.0809	1.1095	.09867	.90133	20		
41 42	. 3340	. 6660	.3073 .3059	. 8091 . 8127	.0794 .0778	.1096 .1098	. 9880	. 0120	19 18		
43	. 3392	. 6608	.3046	. 8162	.0763	.1099	. 9905	. 0095	17		
44 45	. 3418	. 6582	.3032	. 8198	.0747	.1101	. 9917	. 0082	16		
46	. 3471	. 6529	2.3018 .3004	. 8270	2.0732	1.1102	. 9943	.90070	15 14		
47	. 3497	. 6503	.2990	. 8306	.0701	.1106	. 9955	. 0044	13		
48 49	. 3523	6477	.2976 .2962	. 8342	.0686	.1107 .1109	. 9968	. 0032	12 11		
50	.43575	.56424	2.2949	. 8378 .48414	0.0671 2.0655	1.1110	. 9981	. 0019	10		
51	. 3602	. 6398	.2935	. 8449	.0640	.1112	.10006	:89994	9		
5 2 5 3	. 3628	6372	.2921	. 8485 . 8521	.0625	.1113 .1115	. 0019	. 9981	8		
54	. 3680	6320	.2894	. 8557	.0594	.1116	. 0031	. 9956	8 7 6 5		
5 5	.43706	.56294	2.2880	.48593	2.0579	1.1118	.10057	.89943	5		
56 5 7	3732	. 6267	.2866	. 8629 . 8665	.0564	.1120 .1121	. 0070	. 9930	4 3 2		
58	. 3785	. 6215	.2839	. 8701	.0533	.1123	. 0082	. 9918	2		
59	. 3811	. 6189	.2825	. 8737	.0518	.1124	. 0108	. 9892	1		
60	. 3837	. 6163	.2812	. 8773	.0503	.1126	. 0121	. 9879	0		
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.		

26°	Natural Trigonometrical Functions. 153								53°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.43837	.56163	2.2812	.48773	2.0503	1.1126	.10121	.89879	60
1	. 3863	. 6137	.2798	. 8809	.0488	.1127	. 0133	. 9867	59
2	. 3889	. 6111	.2784	. 8845	.0473	.1129	. 0146	. 9854	58
3	. 3915	6084	.2771	. 8881 . 8917	.0458	.1131	. 0159	. 9841	57 56
5	.43968	.56032	2.2744	.48953	2.0427	1.1134	.10184	.89815	55
2 3 4 5 6 7 8 9	. 3994	. 6006	.2730	. 8989	.0412	.1135	. 0197	. 9803	54
7	. 4020	. 5980	.2717	. 9025	.0397	.1137	. 0210	. 9790	53
8	. 4046	. 5954	.2703	. 9062	.0382	.1139	. 0223	. 977 7 . 9764	52 51
10	. 4072	. 5928 .55902	.2690 2.2676	. 9098	.0367 2.0352	.1140 1.1142	.10248	.89751	50
11	. 4124	. 5875	.2663	. 9170	.0338	.1143	. 0261	. 9739	49
12	. 4150	. 5849	.2650	. 9206	.0323	.1145	. 0274	. 9726	48
13	. 4177	. 5823	.2636	. 9242	.0308	.1147	. 0287	. 9713	47
14	. 4203	. 5797	.2623	. 9278	.0293	.1148	. 0300	. 9700	46
15 16	.44229	.55771	2.2610 .2596	. 49314	.0263	1.1150 .1151	.10313	. 9674	45
17	. 4281	. 5719	.2583	. 9387	.0248	.1153	. 0326	. 9661	43
18	. 4307	. 5693	.2570	. 9423	.0233	.1155	. 0351	. 9649	42
19	. 4333	. 5667	.2556	. 9459	.0219	.1156	. 0364	. 9636	41
20	.44359	.55641	2.2543	.49495	2.0204	1.1158	.10377	.89623	40
21 22	. 4385	. 5615	.2530	. 9532 . 9568	.0189	.1159 .1161	. 0390	. 9610	39
23	. 4437	. 5562	.2503	. 9604	.0174	.1163	. 0416	. 9584	38 37
24	. 4463	. 5536	.2490	. 9640	.0145	.1164	. 0429	. 9571	36
25	.44489	.55510	2.2477	.49677	2.0130	1.1166	.10442	.89558	35
26	. 4516	. 5484	.2464	. 9713	.0115	.1167	. 0455	. 9545	34
27 28	. 4542 . 4568	. 5458 . 5432	.2451	. 9749 . 9785	.0101	.1169	. 0468	. 9532 . 9519	33 32
29	. 4594	. 5406	.2425	. 9822	.0050	.1171 .1172	. 0481	. 9506	31
30	.44620	.55380	2.2411	.49858	2.0058	1.1174	.10506	.89493	30
31	. 4646	. 5354	.2398	. 9894	.0042	.1176	. 0519	. 9480	29 28 27
32	. 4672	. 5328	.2385	. 9931	.0028	.1177	. 0532	. 9467	28
33 34	. 4698 . 4724	. 5302 . 5276	.2372	. 9967 .50003	1.9998	.1179 .1180	. 0545	. 9454	27 26
35	.44750	.55250	2,2346	.50040	1.9984	1.1182	. 0558	.89428	25
36	. 4776	. 5224	.2333	. 0076	.9969	.1184	. 0584	. 9415	24
37	. 4802	. 5198	.2320	. 0113	.9955	.1185	. 0598	. 9402	23
38	. 4828	. 5172	.2307	. 0149	.9940	.1187	. 0611	. 9389	22
39 40	. 4854	. 5146	.2294 2.2282	. 0185	.9926 1.9912	.1189 1.1190	. 0624	. 9376	21 20
41	. 4906	. 5094	.2269	. 0258	.9897	.1190	. 0650	. 9350	19
42	. 4932	. 5068	.2256	. 0295	.9883	.1193	. 0663	9337	18
43	. 4958	. 5042	.2243	. 0331	.9868	.1195	. 0676	. 9324	17
44	. 4984	. 5016	.2230	. 0368	.9854	.1197	. 0689	. 9311	16
45 46	. 45010	. 54990	2.2217 .2204	.50404	1.9840 .9825	1.1198	.10702	.89298 . 9285	15 14
47	. 5062	4938	.2192	. 0477	.9811	.1200	. 0715	9272	13
48	. 5088	. 4912	.2179	. 0514	.9797	.1203	0741	9258	12
49	. 5114	. 4886	.2166	. 0550	.9782	.1205	. 0754	. 9245	11
50	.45140	.54860	2.2153	.50587	1.9768	1.1207	.10768	.89232	10
51 52	. 5166 . 5191	. 4834	.2141	. 0623	.9754 .9739	.1208 .1210	. 0781	. 9219 . 9206	9
52 53	. 5217	4782	.2115	. 0696	.9725	.1212	. 0794	. 9193	7
54	. 5243	. 4756	.2103	. 0733	.9711	.1213	. 0820	. 9180	6
55	.45269	.51730	2.2090	.50769	1.9697	1.1215	.10833	.89166	8 7 6 5 4 3 2 1
56	. 5295	. 4705	.2077	. 0806	.9683	.1217	. 0846	. 9153	4
57 58	. 5321	. 4679	.2055	. 0843	.9668 .9654	.1218	. 0860	. 9140	3
59	. 5373	4627	.2032	. 0916	.9640	.1220	. 0873	. 9127	1
60	. 5399	. 4601	.2027	. 0952	.9626	.1223	. 0899	. 9101	ō
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.		Vrs. cos.	Sine.	<u>M</u> .
							,	22401	-

27	,	Na	tural Ti	rigonom	etrical	Function	ns.	1	52°
M.	Sine.	Vrs. cos.	Cosec 'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.45399	.54601	2.2027	.50952	1.9626	1.1223	.10899	.89101	60
1	. 5425 . 5451	. 4575	.2014	. 0989	.9612 .9598	.1225 .1226	. 0912	. 9087	59 58
3	5477	. 4523	.1989	. 1020	.9584	.1228	. 0939	. 9061	57
4	. 5503	. 4497	.1977	. 1099	.9570	.1230	. 0952	. 9048	56
5	.45528	.54471	2.1964	.51136	1.9556	1.1231	.10965	.89034	55
5 6 7 8	. 5554 . 5580	. 4445	.1952 .1939	1209	.9542 .9528	.1233 .1235	. 0979	. 9021	54 53
8	. 5606	. 4394	.1927	. 1246	.9514	.1237	. 1005	. 8995	52
9	. 5632	. 4368	.1914	. 1283	.9500	.1238	. 1018	. 8981	51
10 11	.45658 . 5684	.54342	2.1902 .1889	.51319 . 1356	1.9486 .9472	1.1240 .1242	.11032	.88968 . 8955	50 49
12	5710	4290	.1877	. 1393	.9458	.1243	. 1058	. 8942	48
13	. 5736	. 4264	.1865	. 1430	.9444	.1245	. 1072	. 8928	47
14	. 5761	. 4238	.1852 2.1840	. 1466	.9430	.1247 1.1248	. 1085	. 8915 .88902	46
15 16	.45787 . 5813	.54213	.1828	.51503 . 1540	1.9416 .9402	.1248	.11098	. 8888	45
17	. 5839	. 4161	.1815	. 1577	.9388	.1252	. 1125	. 8875	43
18	. 5865	. 4135	.1803	. 1614	.9375	.1253	. 1138	. 8862	42
19 20	. 5891 .45917	. 4109	.1791 2.1778	. 1651 .51687	.9361 1.9347	.1255 1.1257	. 1152	. 8848	41 40
21	. 5942	. 4057	.1766	. 1724	.9333	.1258	. 1178	. 8822	39
21 22	. 5968	. 4032	.1754	. 1761	.9319	.1260	. 1192	. 8808	38
23	. 5994	. 4006	.1742	. 1798	.9306	.1262 .1264	. 1205	. 8795	37
24 25	. 6020 .46046	. 3980 .53954	.1730 2.1717	. 1835 .51872	.9292 1.9278	1.1264	. 1218 .11232	. 8781 .88768	36
26	6072	. 3928	.1705	. 1909	.9264	.1267	. 1245	. 8755	34
27	. 6097	. 3902	.1693	. 1946	.9251	.1269	. 1259	. 8741	33
28 29	. 6123 . 6149	. 3877 . 3851	.1681	. 1983 . 2020	.9237	.1270 .1272	. 1272	. 8728 . 8714	32 31
30	.46175	.53825	2.1657	.52057	1.9210	1.1274	.11299	.88701	30
31	. 6201	. 3799	.1645	. 2094	.9196	.1275	. 1312	. 8688	29
32	. 6226	. 3773	.1633	. 2131	.9182	.1277	. 1326	. 8674	28
33 34	. 6252 . 6278	3748	.1620 .1608	. 2168	.9169 .9155	.1279 .1281	. 1339 . 1353	. 8661 . 8647	27 26
35	.46304	.53696	2.1596	.52242	1.9142	1.1282	.11366	.88634	25
36	. 6330	. 3670	.1584	. 2279	.9128	.1284	. 1380	. 8620	24
37 38	• 6355 • 6381	. 3645 . 3619	.1572 .1560	. 2316 . 2353	.9115 .9101	.1286	. 1393	. 8607 . 8593	23 22
39	. 6407	3593	.1548	2390	.9088	.1289	. 1420	. 8580	21
40	.46433	.53567	2.1536	.52427	1.9074	1.1291	.11434	.88566	20
41	. 6458	. 3541	.1525	. 2464	.9061	.1293	. 1447	. 8553	19
42 43	. 6484 . 6510	. 3516	.1513 .1501	. 2501 . 2538	.9047	.1294	. 1461	. 8539 . 8526	18
44	. 6536	3464	.1489	257.5	.9020	.1298	. 1488	. 8512	16
45	.46561	.53438	2.1477	.52612	1.9007	1.1299	.11501	.88499	15
46 47	. 6587 . 6613	3413	.1465 .1453	. 2650 . 2687	.8993	.1301 .1303	. 1515	. 8485 . 8472	14 13
48	. 6639	3361	.1441	2724	.8967	.1305	. 1542	. 8458	12
49	. 6664	. 3336	.1430	. 2761	.8953	.1306	. 1555	. 8444	11
50 51	.46690	.53310	2.1418	.52798	1.8940	1.1308	.11569	.88431	10 9
52	. 6716 . 6741	. 3284	.1406 .1394	. 2836	.8927 .8913	.1310 .1312	. 1583 . 1596	8404	
53	. 6767	. 3233	.1382	. 2910	.8900	.1313	. 1610	. 8390	8 7
54	. 6793	. 3207	.1371	. 2947	.8887	.1315	. 1623	. 8376	6
55 56	.46819	. 3156	2.1359 .1347	.52984	1.8873 .8860	1.1317	.11637 . 1651	.88363	6 5 4
57	6870	. 3130	.1335	. 3059	.8847	.1320	. 1664	. 8336	3
58	. 6896	. 3104	.1324	. 3096	.8834	.1322	. 1678	. 8322	3 2 1
59 60	6921	3078	.1312 .1300	. 3134	.8820	.1324	. 1691	8308	0
	. 0347	. 5005	.1900	. 3171	.0007	.1020	. 1700		-
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

1510

28°		Na	tural Tr	igonom	etrical F	unction	ıs.	15	51°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.46947	.53053	2.1300	.53171	1.8807	1.1326	.11705	.88295	60
0 1 2 3 4 5 6 7 8 9	. 6973	. 3027	.1289 .1277	. 3208	.8794 .8781	.1327 .1329	. 1719 . 1732	. 8281	59
2	. 6998	3001	.1277	. 3245	.8781	.1329	. 1732	. 8267 . 8254	58 57
3	. 7024 . 7050	. 2976 . 2950	.1266	. 3283	.8768 .8754	.1331	. 1740	8240	56
5	.47075	.52924	2.1242	.53358	1.8741	.1333 1.1334	.11774	.88226	55
6	. 7101	. 2899	.1231	. 3395	.8728	.1336	. 1787	. 8213	56 55 54 53 52 51 50 49
7	. 7127	. 2873	.1219	. 3432	.8715	.1338	. 1801	. 8199	53
8	. 7152	. 2847	.1208	. 3470	.8702	.1340 .1341	. 1815	. 8185	52
10	. 7178	. 2822	.1196 2.1185	. 3507	.8689 1.8676	1.1343	. 1828	.8171	50
11	. 7229	2770	.1173	. 3582	.8663	.1345	. 1856	. 8144	49
12	. 7255	. 2745	.1162	. 3619	.8650	.1347	. 1870	. 8130	148
13	. 7281	. 2719	.1150	. 3657	.8637	.1349	. 1883	. 8117	47 46 45 44
14	. 7306	. 2694	.1139	. 3694	.8624	.1350	. 1897	8103	46
15 16	. 47332	.52668	2.1127 .1116	.53732	1.8611	1.1352 .1354	.11911	*88089 . 8075	40
17	7383	2617	.1104	3807	.8585	.1356	1938	8061	43
18	. 7409	. 2591	.1104 .1093	. 3844	.8572	.1357	. 1952	. 8048	43 42
19	. 7434	. 2565	.1082 2.1070	. 3882	.8559 1.8546	.1359 1.1361	. 1966	. 8034	41
20	.47460	.52540	2.1070	.53919	1.8546	1.1361	.11980	.88020	40
$\frac{21}{22}$. 7486 . 7511	. 2514	.1059 .1048	. 3957	.8533 .8520	.1363 .1365	. 1994 . 2007	. 8006 . 7992	39
2 3	. 7537	2463	.1036	. 4032	.8507	.1366	2021	7979	37
24	. 7562	. 2437	.1025 2.1014	. 4070	.8495 1.8482	.1368 1.1370	. 2035 .12049	. 7965	36
25	.47588	.52412	2.1014	.54107	1.8482	1.1370	.12049	.87951	35
$\frac{26}{27}$. 7613	. 2386	.1002	. 4145	.8469	.1372	. 2063	. 7937	34
27 28	. 7639 . 7665	. 2361	.0991	. 4183	.8456	.1373 .1375	2077	7923	33
29	7690	2310	.0969	4258	.8430	.1377	2104	7895	31
29 30	.47716	.52284	2.0957	.54295	1.8418	.1377 1.1379	.12118	.87882	38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 20 19 18 17 16 15 14 13 12 11
51	. 7741	. 2258	.0946	. 4333	.8405	.1381	. 2132	. 7868	29
32 33	. 7767	. 2233	.0935	. 4371	.8392	.1382	. 2146	. 7854	28
34	7818	2182	.0924	. 4446	.8379 .8367	.1384 .1386	. 2160 . 2174	. 7840 . 7826	26
35	.47844	.52156	2.0901	.54484	1.8354	1.1388	.12188	.87812	25
36	. 7869	. 2131	.0890	. 4522	.8341	.1390	. 2202	. 7798	24
37	. 7895	. 2105	.0879	. 4559	.8329	.1391	. 2216	. 7784	23
38 39	. 7920 . 7946	. 2080	.0868	. 4597 . 4635	.8316 .8303	.1393 .1395	· 2229 · 2243	. 7770	22
40	.47971	.52029	2.0846	.54673	1.8291	1.1397	.12257	. 7756	20
41	. 7997	2003	.0835	. 4711	.8278	.1399	. 2271	. 7728	19
42	8022	. 1978	.0824	. 4748	.8265	.1401	. 2285	. 7715	18
43 44	. 8048	. 1952 . 1927	.0812	. 4786 . 4824	.8253 .8240	.1402	. 2299	. 7701	17
44	.48099	.51901	.0801 2.0790	. 4824	1.8227	.1404 1.1406	. 2313	. 7687 .87673	15
46	. 8124	. 1876	.0779	. 4900	.8215	.1408	. 2341	. 7659	14
47	. 8150	. 1850	.0768	. 4937	.8202	.1410	. 2355	. 7645	13
48	. 8175	. 1825	.0757	. 4975	.8190	.1411	. 2369	. 7645 . 7631	12
49 50	. 8201 .48226	. 1799 .51774	.0746	. 5013	.8177	.1413	. 2383	. 7617	111
51	. 8252	. 1748	2.0735	.55051	1.8165 .8152	1.1415 .1417	.12397	.87603 .7588	10
52	. 8277	. 1723	.0714	5127	.8140	.1419	. 2425	7574	8
53	. 8303	. 1697	.0703	. 5165	.8127 .8115	.1421	2439	. 7560	7
54	. 8328	. 1672	.0692	. 5203	.8115	.1422	. 2453	. 7546	6
55 56	. 48354	.51646	2.0681 .0670	.55241	1.8102	1.1424	.12468	.87532	5
57	. 8405	. 1621 . 1595	.0659	. 5317	.8090	.1426	. 2482	. 7518	2
58	. 8430	1570	.0648	5355	.8065	.1428 .1430	2510	7490	2
59	. 8455	. 1544	.0637	. 5393	.8053	.1432	. 2524	. 7476	10 9 8 7 6 5 4 3 2 1 0
60	. 8481	. 1519	.0627	. 5431	.8040	.1433	. 2538	. 7462	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
446				, some	Tong.	10000 110	120.000.	D. 110.	

=00

2 9°	•	Na	tural Tr	igonom	etrical l	Function	ıs.	13	50°
М.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.48481	.51519	2.0627	.55431	1.8040	1.1433	.12538	.87462	60
0 1 2 3 4 5 6 7 8 9	. 8506	. 1493 . 1468	.0616	. 5469 . 5507	.8028 .8016	.1435 .1437	. 2552	. 7448	59
3	. 8532 . 8557	. 1443	.0594	. 5545	.8003	.1439	. 2580	. 7434 . 7420	58 57
4	. 8583	. 1417	.0594 .0583	. 5545 . 5583	.7991	.1439 .1441	. 2580 . 2594	. 7405	56
5	.48608	.51392	2.0573	.55621	1.7979	1.1443 .1445	.12609	.87391	55
6	. 8633 . 8659	. 1366 . 1341	.0562 .0551	. 5659 . 5697	.7966 .7954	.1445	. 2623	7377	54 53
8	. 8684	. 1316	.0540	. 5735	.7942	.1448	. 2637 . 2651	. 7363 . 7349 . 7335	52
9	. 8684 . 8710	. 1316 . 1290	.0540 .0530	. 5735 . 5774	.7942 .7930	.1448 .1450	. 2665 .12679 . 2694	. 7335	51
10	.48735	.51265 . 1239	2.0519 .0508	.55812	1.7917 .7905	1.1452	.12679	.87320	50 49
10 11 12	. 8760 . 8786	1 1214	.0308	. 5850 . 5888	.7893	1.1452 .1454 .1456 .1458 .1459 1.1461	2708	. 7306 . 7292	49
13 14	. 8811	. 1189	.0487	. 5926	.7881	.1458	. 2708 . 2722 . 2736	. 7278 . 7264	47
14	. 8837	L. 1163 L	.0476	. 5964	.7881 .7868	.1459	. 2736	. 7264	46
15 16	.48862	.51138	2.0466	.56003 . 6041	1.7856	1.1461	.12750 . 2765	.87250 . 7235	45 44
17	. 8887	1087	.0455	. 6079	.7844 .7832	.1463 .1465	2779	. 7233	43
18	. 8938	. 1062	.0434	. 6117 . 6156	.7820	.1467 .1469	. 2793	. 7221 . 7207	43 42
19	. 8964	. 1036	.0423	. 6156	.7808	.1469	. 2807	. 7193	41
20 21 22 23 24	.48989 . 9014	. 1087 . 1062 . 1036 .51011 . 0986 . 0960	2.0413 .0402	.56194 . 6232	1.7795 .7783	1.1471 .1473	.12821 . 2836	.87178 . 7164	40 39
22	. 9040	. 0960	.0392	6270	.7771	.1474	2850	7150	38
23	. 9065	. 0900	.0381	. 6309	.7759	.1476 .1478	. 2864	. 7150 . 7136	38 37
24	. 9090	. 0910	.0370	. 6347	.7747	.1478	. 2879	. 7121	36
25 26	.49116 . 9141	.50884	2.0360 .0349	.56385 . 6424	1.7735 .7723	1.1480	.12893	.87107	35 34
27	. 9166	. 0834	.0339	. 6462	.7711	.1482 .1484	. 2921	7078	33
26 27 28 29 30	. 9192 . 9217 .49242	0808	.0329	. 6500 . 6539	.7699	.1486 .1488	2936	. 7064	32
29	. 9217	50750	.0318	. 6539	.7687	.1488	. 2950	. 7050	31
31	9268	. 0783 .50758 . 0732	2.0308 .0297	.56577 . 6616	1.7675 .7663	1.1489 .1491	.12964 . 2979	.87035 . 7021	30 29 28 27 26
31 32 33	. 9268 . 9293	1 . (17/07/ 1	.0287	6654	.7651	1 .1493	2993	. 7007	28
33	. 9318	. 0682 . 0656 .50631	.0287 .0276	. 6692 . 6731 .56769 . 6808	.7651 .7639 .7627	.1495 .1497	. 3007 . 3022	. 6992	27
34 35	. 9343	50631	.0266 2.0256	56760	1.7627 1.7615	1 1497	12026	. 6978	26
36	. 9394	0606	.0245	. 6808	.7603	1.1499 .1501	.13036 . 3050	.86964 . 6949	25 24
37 38	. 9419	. 0580 . 0585 . 0530 .50505 . 0479	0225	. 6846	7501	1509	. 3065 . 3079 . 3094 .13108 . 3122	. 6935	23 22 21
38	. 9445	. 0555	.0224 .0214 .0214 2.0204 .0194	. 6885	.7579 .7567 1.7555 .7544	.1505 .1507 1.1508 .1510 .1512	. 3079	. 6921	22
39 40	. 9470 .49495	50505	2 0204	. 6923 .56962	1.7555	1 1508	13108	. 6906 .86892	20
41	. 9521	. 0479	.0194	. 7000	.7544	.1510	3122	. 6877	19
42	. 9521 . 9546	. 0404	1 .0125	. 7039	755%	.1512		. 6863	18
43 44	. 9571	. 0429	.0173 .0163 2.0152	. 7000 . 7039 . 7077 . 7116	.7520	.1514 .1516 1.1518	. 3151 . 3166 .13180 . 3194	. 6849	20 19 18 17 16
45	. 9596 .49622	.0404	2.0152	.57155	.7508 1.7496	1 1518	13180	. 6834 .86820	15
46	. 9647	. 0353	.0142	. 7193	.7484	.1520 .1522 .1524	. 3194	. 6805	14
47	. 9672	. 0328	.0132	. 7232	.7473	.1522		6701	13
48 49	. 9697	. 0303	.0122 .0111	. 7270 . 7309	.7461	.1524	. 3223	6776	12 11
50	. 9723 .49748	.50252	2.0101	.57348	.7449 1.7437	1.1528	13252	. 86748	10
51 52 53	. 9773 . 9798	. 0277 .50252 . 0227 . 0202	.0091	. 7386	.7426	.1524 .1526 1.1528 .1530 .1531	. 3209 . 3223 . 3238 .13252 . 3267	. 6776 . 6762 .86748 . 6733	9
52	. 9798	. 0202	.0081	. 7425	.7414	.1531		. 6719	8
54	. 9823 . 9849	. 0176	.0071	. 7464	.7402	.1533	. 3296 . 3310	6704	7
55	.49874	. 0151 .50126 . 0101	.0061 2.0050	. 7502 .57541 . 7580	.7390 1.7379	.1535 1.1537	.13325	. 6690 .86675	5
56	. 9899	. 0101	.0040	. 7580	.7367	.1 539	. 3339	. 6661	4
57	. 9924	. 0076	.0030 .0020	. 7619	.7355	.1541	. 3354	. 6646	3
58 ₹ 59	. 9950 . 9975	. 0025	.0020	. 7657 . 7696	.7344 .7332	.1543	. 3368	. 6632 . 6617	9 8 7 6 5 4 3 2 1
60	. 9975	. 0025	.0000	. 7696 . 7735	.7320	.1545 .1547	. 3397	6602	ō
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Sine.	Vrs. cos.	M.
119		-				-1			600

30		Na	tural Tr	igonom	etrical	ns.	1490		
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.50000	.50000	2.0000	.57735	1.7320	1.1547	.13397	.86602	60-
1	. 0025	.49975	1.9990	. 7774	.7309 .7297	.1549 .1551	. 3412 . 3426	6588	59
2 3	. 0050	9950	.9980	. 7813 . 7851	.7286	.1553	3441	6559	58 57
4	. 0101	. 9899	.9960	. 7890	.7274	.1555	. 3456	. 6544	56
5	.50126	.49874	1.9950	.57929	1.7262	1.1557	.13470	.86530	55
6 7	. 0151	. 9849	.9940	. 7968	.7251 .7239	.1559	. 3485	. 6515	54 53
8	. 0201	9799	.9920	. 8046	7228	.1562	. 3514	6486	52
9	. 0226	. 9773	.9910	. 8085	.7216	.1564	. 3529	. 6471	51
10	.50252	.49748	1.9900	.58123	1.7205	1.1566	.13543	.86457	50
11 12	. 0277	9723	.9890	. 8162 . 8201	.7193 .7182	.1568 .1570	. 3558	6442	49 48
13	. 0327	9673	.9870	. 8240	.7170	.1572	. 3587	6413	47
14	. 0352	. 9648	.9860	. 8279	.7159	.1574	. 3602	. 6398	46
15	.50377	.49623	1.9850	.58318 . 8357	1.7147	1.1576	.13616	.86383	45
16 17	. 0402	. 9572	.9840	. 8396	.7136 .7124	.1578 .1580	. 3631	. 6369	44 43
18	. 0453	9547	.9820	. 8435	.7113	.1582	. 3660	6339	42
19	. 0478	. 9522	.9811	. 8474	.7101	.1584	. 3675	. 6325	41
20	.50503	.49497	1.9801	.58513	1.7090	1.1586	.13690	.86310	40
$\frac{21}{22}$. 0528	. 9472 . 9447	.9791 .9781	. 8552 . 8591	.7079 .7067	.1588 .1590	3704	. 6295 . 6281	39 38
23	. 0578	9422	.9771	. 8630	.7056	.1592	3734	6266	37
24	. 0603	. 9397	.9761	. 8670	.7044	.1594	. 3749	. 6251	36
25	.50628	.49371	1.9752	.58709	1.7033	1.1596	.13763	.86237	35
26 27	. 0653	. 9346 . 9321	.9742	. 8748 . 8787	.7022 .7010	.1598 .1600	. 3778	. 6222 . 6207	34 33
28	. 0704	9296	.9722	. 8826	.6999	1.1602	3807	6192	32
29	. 0729	. 9271	.9713	. 8865	.6988	.1604	. 3822	. 6178	31
30	.50754	.49246	1.9703	.58904	1.6977	1.1606	.13837	.86163	30
$\frac{31}{32}$. 0779	9221	.9693 .9683	. 8944	.6965 .6954	.1608 .1610	. 3852 . 3867	. 6148 . 6133	29 28
33	. 0829	9171	.9674	9022	.6943	.1612	. 3881	6118	27
34	. 0854	. 9146	.9664	. 9061	.6931	.1614	. 3896	. 6104	26
35	.50879	.49121	1.9654	.59100	1.6920	1.1616	.13911	.86089	25
36 37	. 0904	. 9096 . 9071	.9645	. 9140	.6909	.1618	. 3926 . 3941	. 6074	24
38	. 0954	9046	.9625	9218	.6887	.1620 .1622	3955	. 6044	23 22
39	. 0979	. 9021	.9616	. 9258	.6875	.1624	. 3970	. 6030	21
40	.51004	.48996	1.9606	.59297	1.6864	1.1626	.13985	.86015	20
41 42	. 1029 . 1054	. 8971 . 8946	.9596	. 9336	.6853 .6842	.1628 .1630	. 4000	. 6000 . 5985	19 18
43	. 1079	8921	.9577	. 9415	.6831	.1632	4030	. 5970	17
44	. 1104	. 8896	.9568	. 9454	.6820	.1634	. 4044	. 5955	16
45	.51129	.48871	1.9558	.59494	1.6808	1.1636	.14059	.85941	15
46 47	. 1154	. 8846 . 8821	.9549 .9539	. 9533 . 9572	.6797	.1638 .1640	. 4074	. 5926 . 5911	14 13
48	. 1204	. 8796	.9530	. 9612	.6775	.1642	. 4104	5896	12
49	. 1229 .51254	. 8771	.9520	. 9651	.6764	.1644	. 4119	. 5881	11
50	. 1279	.48746	1.9510	.59691	1.6753	1.1646	.14134	.85866	10
51 52	. 1304	. 8721 . 8696	.9501 .9491	. 9730 . 9770	.6742 .6731	.1648 .1650	. 4149	. 5851 . 5836	9
53	. 1329	. 8671	.9482	. 9809	6720	.1652	. 4178	. 5821	8 7
54	. 1354	. 8646	.9473	. 9849	.6709	.1654 1.1656	. 4193	. 5806	6 5
55 56	.51379	.48621	1.9463	.59888	1.6698	1.1656	.14208	.85791	5
57	. 1404	. 8596 . 8571	.9454 .9444	. 9928 . 9967	.6687	.1658 .1660	. 4223	. 5777	4 3
58	. 1454	8546	.9435	.60007	.6665	.1662	. 4253	5747	3 2 1
59	. 1479	. 8521	.9425	. 0046	.6654	.1664	. 4268	. 5732	
60	. 1504	. 8496	.9416	. 0086	.6643	.1666	. 4283	. 5717	0
М.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

2	4	0
•	А	

310	•	Na	tural Tr	igonom	etrical l	Function	ıs.	14	180
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
D = 0	.51504	.48496	1.9416	.60086	1.6643	1.1666	.14283	.85717	60
$\frac{1}{2}$. 1529	. 8471	.9407	. 0126	.6632	.1668	. 4298 . 4313	. 5702 . 5687	59
2	. 1554 . 1578	. 8446 . 8421	.9397 .9388	. 0165	.6621 .6610	.1670 .1672	. 4313	. 5687	58 57
4	. 1603	8396	.9378	. 0244	.6599	.1674	. 4343	. 5657	56
5	.51628	.48371	1.9369	.60284	1.6588	1.1676	.14358	.85642	55
5 6 7 8 9	. 1653	. 8347	.9360	. 0324	.6577 .6566	.1678	. 4373	. 5627	54
7	. 1678	. 8322	.9350	. 0363	.6566	.1681	. 4388	. 5612	53
8	. 1703 . 1728	. 8297 . 8272	.9341 .9332	. 0403	.6555 .6544	.1683 .1685	. 4403	. 5597	52 51
10	.51753	.48247	1.9322	.60483	1.6534	1.1687	.14433	.85566	50
11	. 1778	. 8222	.9313	. 0522	.6523	.1689	. 4448	. 5551	49
12	. 1803	. 8197	.9304	. 0562	.6512	.1691	. 4463	. 5536	48
13	. 1827	8172	.9295	. 0602	.6501	.1693 .1695	. 4479	. 5521	47
14 15	. 1852	. 8147 .48123	.9285 1.9276	.60681	.6490 1.6479	1.1697	.14509	.85491	46 45
16	. 1902	. 8098	.9267	. 0721	.6469	.1699	. 4524	. 5476	44
17	. 1927	. 8073	.9258	. 0721 . 0761	.6458	.1701	. 4539	. 5461	43
18	. 1952	. 8048	.9248	. 0801	.6447	.1703	. 4554	. 5446	42
19	. 1977	. 8023	.9239 1.9230	. 0841 .60881	.6436	.1705	. 4569 .14584	. 5431 .85416	41
20 21	.52002	.47998 . 7973	.9221	. 0920	1.6425	1.1707 .1709	. 4599	. 5400	40 39
22	2051	7949	.9212	. 0960	.6404	.1712	. 4615	. 5385	38
23	. 2076	. 7924	.9203	. 1000	.6393	.1714	. 4630	. 5370	37
24	. 2101	. 7899	.9193	. 1040	.6383	.1716	. 4645	. 5355	36
25	.52126	. 7849	1.9184	.61080 . 1120	1.6372 .6361	1.1718 .1720	. 14660	.85340	35 34
20	. 2175	. 7824	.9166	. 1120	.6350	1722	. 4690	. 5309	33
26 27 28	2200	. 7800	.9157	. 1200	.6340	.1722 .1724	. 4706	. 5294	32
29	. 2225	. 7775	.9148	. 1240	.6329	.1726	. 4721	. 5279	31
30	.52250	.47750	1.9139	.61280	1.6318	1.1728	.14736	.85264	30
31 32	. 2275	. 7725 . 7700	.9130 .9121	. 1320 . 1360	.6308	.1730 .1732	. 4751 . 4766	. 5249 . 5234	29 28
33	. 2324	. 7676	.9112	. 1400	.6297 .6286	.1734	. 4782	5218	27
34	. 2349	. 7651	.9102	. 1440	.6276	.1737	. 4797	. 5203	26
35	.52374	.47626	1.9093	.61480	1.6265	1.1739	.14812	.85188	25
36	. 2398	. 7601	.9084	. 1520	.6255	.1741	. 4827	. 5173	24
37 38 39	. 2448	. 7577	.9075 .9066	. 1560 . 1601	.6244	.1743	. 4858	. 5157	23 22
39	2473	. 7527	.9057	. 1641	.6233 .6223	.1745 .1747	. 4873	5127	21
40	.52498	.47502	1.9048	.61681	1.6212	1.1749	.14888	.85112	20
41	. 2522	. 7477	.9039	. 1721	.6202	.1751	. 4904	. 5096	19
42 43	. 2547	. 7453 . 7428	.9030 .9021	. 1761 . 1801	.6191	.1753 .1756	. 4919	. 5081	18 17
44	2597	. 7428	.9013	. 1842	.6181 .6170	1758	. 4949	5050	16
45	.52621	.47379	1.9004	.61882	1.6160	.1758 1.1760	.14965	.85035	15
46	. 2646	. 7354	.8995	. 1922	.6149	.1762	. 4980	. 5020	14
47	. 2671	. 7329	.8986	. 1962	.6139	.1764	. 4995	. 5004	13
48 49	. 2695	. 7304	.8977 .8968	. 2004	.6128 .6118	.1766 .1768	. 5011 . 5026	. 4989	12 11
50	.52745	. 7280 .47255	1.8959	.62083	1.6107	1.1770	.15041	.84959	10
51	. 2770	. 7230	.8950	. 2123	.6097	.1772	. 5057	. 4943	9
52 53	. 2794	. 7205	.8941	. 2164	.6086	.1775	. 5072	. 4928	8
53	. 2819	. 7181	.8932	. 2204	.6076	.1777	. 5087	. 4912	9 8 7 6 5 4 3 2
54 55	. 2844	. 7156 .47131	.8924 1.8915	. 2244	.6066 1.6055	.1779 1.1781	. 5103	. 4897	5
55 56	. 2893	. 7107	.8906	. 2325	.6045	.1783	. 5133	. 4866	4
57	. 2918	. 7082	.8897	. 2366	.6034	.1785	. 5149	. 4851	3
58	. 2942	. 7057	.8888	. 2406	.6024	.1787	. 5164	. 4836	2
59 60	. 2967	. 7033	.8879 .8871	. 2446	.6014	.1790 .1792	. 5180	. 4820 . 4805	1 0
00	. 2992	. 7008	.08/1	. 2487	.0003	.1792	. 5195	. 4803	
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
12	10								58°

32°	2° Natural Trigonometrical Functions. 147°								
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.52992	.47008	1.8871	.62487	1.6003	1.1792	.15195	.84805	60
1	. 3016	. 6983	.8862	. 2527	.5993	.1794	. 5211	. 4789	59
2	. 3041	. 6959	.8853	. 2568	.5983	.1796	. 5226	. 4774	58
3	. 3066	. 6934	.8844	. 2608	.5972	.1798	. 5241	. 4758	57
4	. 3090	. 6909	.8836	. 2649	.5962	.1800	. 5257	. 4743	56
5	.53115	. 46885	1.8827 .8818	.62689 . 2730	1.5952	1.1802	. 15272	.84728	55 54
6	. 3140	6835	.8809	2770	.5931	.1807	5303	4697	53
8	. 3189	. 6811	.8801	. 2811	.5921	.1809	5319	. 4681	52
9	. 3214	. 6786	.8792	. 2851	.5910	.1811	. 5334	4666	51
10	.53238	.46762	1.8783	.62892	1.5900	1.1813	.15350	.84650	50
11	. 3263	. 6737	.8775	. 2933	.5890	.1815	. 5365	. 4635	49
12	. 3288	. 6712	.8766	. 2973	.5880	.1818	. 5381	. 4619	48
13	. 3312	. 6688	.8757	. 3014	.5869	.1820	. 5396	. 4604	47
14	. 3337	. 6663	.8749	. 3055	.5859	.1822	. 5412	. 4588	46
15	.53361	.46638	1.8740	.63095 . 3136	1.5849	1.1824	.15427	.84573	45
16 17	. 3411	. 6589	.8723	. 3177	.5829	.1826 .1828	. 5443	. 4557	44 43
18	. 3435	6565	.8714	. 3217	.5818	.1831	. 5474	. 4526	42
19	. 3460	. 6540	.8706	3258	.5808	.1833	5489	4511	41
20	.53484	.46516	1.8697	.63299	1.5798	1.1835	.15505	.84495	40
21	. 3509	. 6491	.8688	. 3339	.5788	.1837	. 5520	. 4479	39
2:2	. 3533	. 6466	.8680	. 3380	.5778	.1839	. 5536	. 4464	38
23	. 3558	. 6442	.8671	. 3421	.5768	.1841	. 5552	. 4448	37
24	. 3583	. 6417	.8663	. 3462	.5757	.1844	. 5567	. 4433	36
25 26	.53607	. 46393	1.8654	. 63503 . 3543	1.5747	1.1846	.15583	.84417	35
27	. 3656	. 6344	.8646	. 3584	.5737	.1848	. 5598	. 4402	34
08	. 3681	. 6319	.8629	. 3625	.5717	.1852	. 5630	. 4370	32
28 29	. 3705	6294	.8620	. 3666	.5707	.1855	. 5645	4355	31
30	.53730	.46270	1.8611	.63707	1.5697	1.1857	.15661	.84339	30
31	. 3754	. 6245	.8603	. 3748	.5687	.1859	. 5676	. 4323	29
32	. 3779	. 6221	.8595	. 3789	.5677	.1861	. 5692	. 4308	28
33	. 3803	. 6196	.8586	. 3830	.5667	.1863	. 5708	. 4292	27
34	. 3828	. 6172	.8578 1.8569	. 3871	.5657	.1866	. 5723	. 4276	26
35 36	. 3877	. 6123	.8561	. 3953	1.5646 .5636	1.1868	.15789	.84261	25 24
37	. 3901	6098	.8552	. 3994	.5626	.1872	. 5770	4229	23
38	. 3926	. 6074	.8544	4035	.5616	.1874	. 5786	4214	22
39	. 3950	. 6049	.8535	. 4076	.5606	.1877	. 5802	. 4198	21
40	.53975	.46025	1.8527	.64117	1.5596	1.1879	.15817	.84182	20
41	. 3999	. 6000	.8519	. 4158	.5586	.1881	. 5833	. 4167	19
42	. 4024	. 5976	.8510	. 4199	.5577	.1883	. 5849	. 4151	18
43	. 4048	. 5951 . 5927	.8502 .8493	. 4240	.5567	.1886	. 5865	. 4135	17
45	. 4073	.45902	1.8485	. 64322	.5557 1.5547	.1888 1.1890	. 5880	. 4120	16 15
46	. 4122	. 5878	.8477	. 4363	.5537	.1892	. 5912	. 4088	10
47	. 4146	. 5854	.8468	. 4404	.5527	.1894	5927	4072	13
48	. 4171	. 5829	.8460	. 4446	.5517	.1897	. 5943	. 4057	12
49	. 4195	. 5805	.8452	. 4487	.5507	.1899	. 5959	. 4041	11
50	.54220	.45780	1.8443	.64528	1.5497	1.1901	.15975	.84025	10
51	. 4244	. 5756	.8435	. 4569	.5487	.1903	. 5991	. 4009	9
52 53	. 4268	. 5731	.8427	. 4610 . 4652	.5477	.1906	. 6006	. 3993	8 7
54	. 4317	. 5682	.8410	. 4693	.5458	.1908	. 6022 . 6038	. 3978	6
55	.54342	.45658	1.8402	.64734	1.5448	1.1912	.16054	.83946	5
56	. 4366	. 5634	.8394	. 4775	.5438	.1915	. 6070	. 3930	4
57	. 4391	. 5609	.8385	. 4817	.5428	.1917	. 6085	. 3914	3
58	. 4415	. 5585	.8377	. 4858	.5418	.1919	. 6101	. 3899	2_
59	. 4439	. 5560	.8369	. 4899	.5408	.1921	. 6117	. 3883	1
60	. 4464	. 5536	.8361	. 4941	.5399	.1922	. 6133	. 3867	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

330		Na	tural Tr	igonom	etrical F	unction	s.	14	46°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
1. 0 1 2 2 3 4 4 5 6 6 7 8 9 10 11 2 13 14 15 16 17 18 8 19 20 21 22 23 24 5 26 27 28 29 9 30 1 32 2 23 33 34 4 4 5 6 6 7 8 8 9 40 1 4 1 2 2 2 3 3 3 3 3 6 6 7 8 8 9 40 1 4 1 2 2 2 3 3 3 3 3 6 6 7 8 8 9 40 1 1 2 2 2 3 3 3 3 3 6 6 7 8 8 9 40 1 1 2 2 2 3 3 3 3 6 6 7 8 8 9 9 10 1 1 2 2 2 3 3 3 3 3 3 3 6 6 7 8 8 9 9 10 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	54464 4488 44513 44587 4561 54566 4610 54566 4610 54634 54630 54756 4781 4805 54829 4854 4876 4781 4806 554829 4854 4876 554829 5526 5526 5526 5526 5526 5526 5726 555678 5702 5523 56654 55678 5702 5523 56654 55678 5702 5726 5750 5774 55579	\(\text{VIS. COS.} \) \(45536 \) \(55512 \) \(5512 \) \(5487 \) \(5488 \) \(5438 \) \(4544 \) \(5390 \) \(5365 \) \(5341 \) \(5347 \) \(45292 \) \(5294 \) \(5219 \) \(5195 \) \(5244 \) \(5219 \) \(5195 \) \(5244 \) \(5219 \) \(5195 \) \(5009 \) \(5003 \) \(5003 \) \(45049 \) \(5025 \) \(5009 \) \(5005 \) \(5009 \) \(5005 \) \(5009 \) \(5005 \) \(5009 \) \(5005 \) \(5009 \) \(5005 \) \(45025 \) \(5009 \) \(45025 \) \(45025 \) \(4503 \) \(4782 \) \(4783 \) \(4783 \) \(4784 \) \(4783 \) \(4784 \) \(4784 \) \(4784 \) \(4785 \) \(4785 \) \(4806 \) \(4782 \) \(4788 \) \(4784 \) \(4515 \) \(4497 \) \(44444 \) \(4447 \) \(44444 \) \(4447 \) \(44444 \) \(4457 \) \(4445 \) \(44322 \) \(4250 \) \(42251 \) \(44081 \) \(4081 \) \(4081 \)	1.8961 1.8951 1.8952 1.8352 1.8325 1.8326 1.8326 1.8326 1.8279 1.8279 1.8279 1.8279 1.8279 1.8279 1.8271 1.8283 1.8283 1.8290 1.8214 1.8296 1.8218 1.8196 1.8196 1.8196 1.8196 1.8196 1.8196 1.8196 1.8197 1.8289 1.829 1.8399 1.8390 1.8300 1.8	1 ang 64941 - 4982 - 6223 - 5065 - 5106 - 65148 - 5189 - 5231 - 5272 - 5314 - 65355 - 5375 - 5438 - 5438 - 5438 - 5438 - 5438 - 5521 - 5521 - 5521 - 5521 - 5635 - 5337 - 5531 - 5646 - 5688 - 5729 - 6588 - 6721 - 66188 - 6598 - 6021 - 6036 - 6030 - 6212 - 6346 - 6356 - 6330 - 6272 - 6344 - 6356 - 6356 - 6356 - 6356 - 6356 - 6356 - 6356 - 6440 - 6356 - 6650 - 6650 - 6728 - 7071 - 7113 - 7155 - 7177 - 7115 - 7173 - 7155 - 7177 - 7282 - 7324 - 7366 - 7481	1.5399 .5359 .5379 .5389 .5379 .5389 .5389 .5389 .5389 .5389 .5389 .5389 .5389 .5389 .5389 .5389 .5380 .5381 .5282 .5272 .5262 .5243 .5252 .5262 .5243 .5233 .5214 .5195 .5165 .5165 .5165 .5166 .5147 .5118 .5109 .5089 .5089 .5080 .5070 1.5061 .5042 .5023 1.5013 .5044 .4984 .4947 .4947 .4947 .4947 .4947 .4947 .4947 .4947 .4947 .4947 .4947 .4947 .4947 .4948 .4968 .4963 .4968 .4968 .4971 .4919 .4863 .4863 .4863 .4863 .4863 .4863 .4863 .4863 .4863	1.1926 1.1928 1.1928 1.1928 1.1928 1.1933 1.1935 1.1935 1.1935 1.1944 1.1946 1.1946 1.1946 1.1945 1.1955 1.1955 1.1958 1.1969 1	16133 16149 6165 6149 6165 6196 6196 6196 6196 616212 6228 6232 6339 6335 16371 6357 6403 6419 6435 1647 6567 6463 6579 6595 16611 6667 66660 6676 6676 6676 6676 6786 6724 6831 6837 16853 6895 6901 6855 6901 6855 6901 6982 6995 17015 7081 7084 7086	.83867 .3851 .3855 .3819 .3804 .83788 .3772 .3756 .3740 .3724 .83708 .3676 .3644 .83768 .3664 .3643 .3597 .3551 .3561 .3581 .3565 .3581 .3591 .3581 .3591 .3581 .3591 .3591 .3591 .3591 .3591 .3492 .3591 .3	59 58 57 56 55 44 43 42 41 40 39 83 7 36 53 22 21 20 9 18 17 16 5 14 13 12 11 10 9 8 7 6 5 4 4 3 2 1 10
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
123	30								56°

34°)	Na	tural Ti	igonom	etrical	Punction	ns.	1.	45°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.55919	.44081	1.7883	.67451	1.4826	1.2062	.17096	.82904	60 ×
1	. 5943	. 4057	.7875	. 7493	.4816	.2064	. 7112	. 2887	59
2 3	. 5967 . 5992	. 4032	.7867	. 7535 . 7578	.4807	.2067	. 7129 . 7145	. 2871 . 2855	58
4	. 6016	. 3984	.7852	. 7620	.4788	.2009	7143	. 2839	56
4 5 6 7	.56040	.43960	1.7844	.67663	1.4779	1.2074	.17178	.82822	55
6	. 6064	. 3936	.7837	. 7705	.4770	.2076	. 7194	. 2806	54
7	. 6088	. 3912	.7829	. 7747	.4761	.2079	. 7210	. 2790	53
8 9	. 6112 . 6136	. 3888	.7821	. 7790 . 7832	.4751	.2081	. 7227	. 2773	52
10	.56160	.43840	1.7806	.67875	1.4733	1.2086	.17259	.82741	50
11	. 6184	. 3816	.7798	. 7917	.4724	.2088	. 7276	. 2724	49
12	. 6208	. 3792	.7791	. 7960	.4714	.2091	. 7292	. 2708	48
13	. 6232	. 3768	.7783	. 8002	.4705	.2093	. 7308	2692	47
14 15	. 6256	. 3743	1.7768	. 8045	.4696 1.4687	.2095 1.2098	.17341	. 2675	46 45
16	. 6304	. 3695	.7760	. 8130	.4678	.2100	. 7357	. 2643	44
17	. 6328	. 3671	.7753	. 8173	.4669	.2103	. 7374	. 2626	43
18	. 6353	. 3647	.7745	. 8215	.4659	.2105	. 7390	. 2610	42
19	. 6377	3623	.7738	8258	.4650	.2107	. 7406	. 2593	41
20 21	.56401	. 3575	1.7730 .7723	.68301	1.4641	1.2110	. 17423	.82577	39
22	. 6449	. 3551	.7715	8386	.4623	.2115	7456	. 2544	38
23	. 6473	. 3527	.7708	. 8429	.4614	.2117	. 7472	. 2528	37
24	. 6497	. 3503	.7700	. 8471	.4605	.2119	. 7489	. 2511	36
25	.56521	.43479	1.7693	.68514	1.4595	1.2122	.17505	.82495	35
26 27	. 6545	. 3455	.7685	. 8557 . 8600	.4586	.2124	. 7521 . 7538	. 2478	34
28	. 6593	3407	.7670	. 8642	.4568	.2129	. 7554	. 2445	32
29	. 6617	3383	.7663	. 8685	.4559	.2132	. 7571	. 2429	31
30	.56641	.43359	1.7655	.68728	1.4550	1.2134	.17587	.82413	30
31	. 6664	. 3335	.7648	. 8771	.4541	.2136	. 7604	. 2396	29
32 33	. 6688 . 6712	. 3311	.7640 .7633	. 8814 . 8857	.4532	.2139	. 7620 . 7637	. 2380	28 27
34	. 6736	3263	.7625	. 8899	.4514	.2144	. 7653	. 2347	26
35	.56760	.43239	1.7618	.68942	1.4505	1.2146	.17670	.82330	25
36	. 6784	. 3216	.7610	. 8985	.4496	.2149	. 7686	. 2314	24
37	. 6808	. 3192	.7603	. 9028	.4487	.2151	. 7703	. 2297	23
38 39	. 6832 . 6856	. 3168	.7596	. 9071	.4478	.2153	7719	. 2280	22 21
40	.56880	.43120	1.7581	.69157	1.4460	1.2158	. 7736 .17752	.82247	20
41	. 6904	. 3096	.7573	, 9200	.4451	.2161	. 7769	. 2231	19
42	. 6928	. 3072	.7566	. 9243	.4442	.2163	. 7786	. 2214	18
43	. 6952	. 3048	.7559	. 9286	.4433	.2166	. 7802	. 2198	17
44 45	. 6976	. 3024	.7551 1.7544	. 9329	.4424 1.4415	.2168 1.2171	. 7819	. 2181 .82165	16 15
46	. 7023	. 2976	.7537	. 9415	.4406	.2173	. 7852	. 2148	14
47	. 7047	. 2952	.7529	. 9459	.4397	.2175	. 7868	. 2131	13
48	. 7071	. 2929	.7522	. 9502	.4388	.2178	. 7885	. 2115	12
49	. 7095	. 2905	.7514	. 9545	.4379	.2180	. 7902	. 2098	11
50 51	.57119	. 42881	1.7507	.69588 . 9631	1.4370 .4361	1.2183	.17918	.82082	10
52	7167	2833	.7493	. 9674	.4352	.2185	. 7951	. 2065	9
53	. 7191	. 2809	.7485	9718	.4343	.2190	7968	2032	8 7 6 5 4 3 2
54	. 7214	. 2785	.7478	. 9761	.4335	.2193	. 7985	. 2015	6
55	.57238	.42761	1.7471	.69804	1.4326	1.2195	.18001	.81998	5
56 57	. 7262 . 7286	. 2738	.7463 .7456	. 9847	.4317	.2198	. 8018	. 1982	4
58	7310	2690	.7449	. 9934	.4299	.2200	. 8035 . 8051	. 1965	9
59	. 7334	. 2666	.7442	. 9977	.4290	.2205	. 8068	. 1932	ı
60	. 7358	. 2642	.7434	.70021	.4281	.2208	. 8085	. 1915	ō
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

	-									-
	350	•	Na	tural Tr	igonom	etrical l	Function	ns.	1.	440
	M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
,5	0 1 2 3	.57358 . 7381 . 7405 . 7429	.42642 . 2618 . 2595 . 2571	1.7434 .7427 .7420 .7413	.70021 . 0064 . 0107 . 0151	1.4281 .4273 .4264 .4255	1.2208 .2210 .2213 .2215	.18085 . 8101 . 8118 . 8135	.81915 . 1898 . 1882 . 1865	60 59 58 57
	4 5 6	. 7453 .57477 . 7500	. 2547 .42523 . 2499	.7405 1.7398 .7391	. 0194 .70238 . 0281	.4246 1.4237 .4228	.2218 1.2220 .2223	. 8151 .18168 . 8185	. 1848 .81832 . 1815	56 55 54
	7 8 9 10	. 7524 . 7548 . 7572 .57596	. 2476 . 2452 . 2428 .42404	.7384 .7377 .7369 1.7362	. 0325 . 0368 . 0412 .70455	.4220 .4211 .4202 1.4193	.2225 .2228 .2230 1.2233	. 8202 . 8218 . 8235 .18252	. 1798 . 1781 . 1765 .81748	53 52 51 50
	11 12 13 14	. 7619 . 7643 . 7667 . 7691	. 2380 . 2357 . 2333 . 2309	.7355 .7348 .7341 .7334	. 0499 . 0542 . 0586 . 0629	.4185 .4176 .4167 .4158	.2235 .2238 .2240 .2243	. 8269 . 8285 . 8302 . 8319	. 1731 . 1714 . 1698 . 1681	49 48 47 46
	15 16 17	.57714 . 7738 . 7762 . 7786	.42285 . 2262 . 2238 . 2214	1.7327 .7319 .7312 .7305	.70673 . 0717 . 0760 . 0804	1.4150 .4141 .4132 .4123	1.2245 .2248 .2250 .2253	.18336 . 8353 . 8369 . 8386	.81664 . 1647 . 1630 . 1614	45 44 43 42
	18 19 20 21	. 7809 .57833 . 7857	. 2190 .42167 . 2143	.7298 1.7291 .7284	. 0848 .70891 . 0935	.4115 1.4106 .4097	.2255 1.2258 .2260	. 8403 .18420 . 8437	. 1597 .81580 . 1563	41 40 39
	22 23 24 25	. 7881 . 7904 . 7928 .57952	. 2119 . 2096 . 2072 .42048	.7277 .7270 .7263 1.7256	. 0979 . 1022 . 1066 .71110	.4089 .4080 .4071 1.4063	.2263 .2265 .2268 1.2270	. 8453 . 8470 . 8487 .18504	. 1546 . 1530 . 1513 .81496	38 37 36 35
	26 27 28 29	. 7975 . 7999 . 8023 . 8047	. 2024 . 2001 . 1977 . 1953	.7249 .7242 .7234 .7227	. 1154 . 1198 . 1241 . 1285	.4054 .4045 .4037 .4028	.2273 .2276 .2278 .2281	. 8521 . 8538 . 8555 . 8571	. 1479 . 1462 . 1445 . 1428	34 33 32 31
	30 31 32 33	.58070 . 8094 . 8118 . 8141	.41930 . 1906 . 1882 . 1859	1.7220 .7213 .7206 .7199	.71329 . 1373 . 1417 . 1461	1.4019 .4011 .4002 .3994	1.2283 .2286 .2288 .2291	.18588 . 8605 . 8622 . 8639	.81411 . 1395 . 1378 . 1361	30 29 28 27
	34 35 36 37	. 8165 .58189 . 8212	. 1835 .41811 . 1788 . 1764	.7192 1.7185 .7178	. 1505 .71549 . 1593 . 1637	.3985 1.3976 .3968	.2293 1.2296 .2298	. 8656 .18673 . 8690 . 8707	. 1344 .81327 . 1310	26 25 24 23 22
	38 39 40	. 8259 . 8283 .58307	. 1740 . 1717 .41693	.7171 .7164 .7157 1.7151	. 1681 . 1725 .71769	.3959 .3951 .3942 1.3933	.2301 .2304 .2306 1.2309	. 8724 . 8741 .18758	. 1293 . 1276 . 1259 .81242	$\begin{vmatrix} 21\\20 \end{vmatrix}$
	41 42 43 44	. 8330 . 8354 . 8378 . 8401	. 1669 . 1646 . 1622 . 1599	.7144 .7137 .7130 .7123	. 1813 . 1857 . 1901 . 1945	.3925 .3916 .3908 .3899	.2311 .2314 .2316 .2319	. 8775 . 8792 . 8809 . 8826	. 1225 . 1208 . 1191 . 1174	19 18 17 16
	45 46 47 48	.58425 . 8448 . 8472 . 8496	.41575 . 1551 . 1528 . 1504	1.7116 .7109 .7102 .7095	.71990 . 2034 . 2078 . 2122	1.3891 .3882 .3874 .3865	1.2322 .2324 .2327 .2329	.18843 . 8860 . 8877 . 8894	.81157 . 1140 . 1123 . 1106	15 14 13 12
	49 50 51 52	. 8519 .58543 . 8566 . 8590	. 1481 .41457 . 1433 . 1410	.7088 1.7081 .7075 .7068	. 2166 .72211 . 2255 . 2299	.3857 1.3848 .3840 .3831	.2332 1.2335 .2337 .2340	. 8911 .18928 . 8945 . 8962	. 1089 .81072 . 1055 . 1038	11 10 9 8 7
	53 54 55 56	. 8614 . 8637 .58661 . 8684	. 1386 . 1363 .41339 . 1316	.7061 .7054 1.7047 .7040	. 2344 . 2388 .72432 . 2477	.3823 .3814 1.3806 .3797	.2342 .2345 1.2348 .2350	. 8979 . 8996 .19013 . 9030	. 1021 . 1004 .80987	7 6 5 4
	57 58	. 8708 . 8731	. 1292 . 1268	.7033 .7027	. 2521 . 2565	.3789	.2353	. 9047	. 0953	3 2

59

60

. 8755 . 8778

M. Cosine.

. 1245 . 1221

Vrs. sin.

.7020 .7013

Secant.

. 2610 . 2654

Cotang.

.3772 .3764

.2358

.2361

Tang. | Cosec'nt | Vrs. cos.

9081

. 9081

0

0919

. 0902

Sine.

36°	Natural	Trigonometrical	Functions.
-----	---------	-----------------	------------

36°	•	Na	tural Ti	rigonom	etrical	Function	ns.	1.	43°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.58778	.41221	1.7013	.72654	1.3764	1.2361	.19098	.80902	60
1 2 3 4 5 6 7	. 8802	. 1198	.7006	. 2699	.3755	.2363 .2366 .2368	. 9115	. 0885	59
2	. 8825	. 1174	.6999	. 2743	.3747	.2366	. 9132 . 9150	. 0867	58
3	. 8849	1101	.6993 .6986	. 2788 . 2832	.3738	.2368	9150	. 0850	57 56
5	. 8873 .58896	. 1127 .41104	1.6979	.72877	.3730 1.3722	1.2374	. 9167 .19184	. 0833	55
6	. 8920	1090	.6972	. 2921	.3713	.2376	9201	. 0799	54
7	. 8943	. 1030 . 1057 . 1033 . 1010 .40986	.6965	. 2966	.3713 .3705	.2376 .2379	. 9218	. 0799 . 0782	53
8 9	. 8967	. 1033	.6959	. 3010	.3697	.2382	. 9218 . 9235	. 0765	52
9	. 8990	. 1010	.6952	. 3055	.3688	.2384	. 9252	. 0747	51
10	.59014	.40986	1.6945	.73100	1.3680	1.2387	.19270	.80730	50
11	. 9037	. 0963	.6938 .6932	. 3144 . 3189	.3672 .3663	.2389	. 9287 . 9304	. 0713	49 48
12 13	. 9084	. 0939 . 0916 . 0892	.6925	. 3234	3655	.2395	9304	. 0679	47
14		0892	.6918	. 3278	.3655 .3647	.2397	. 9321 . 9338	. 0662	46
15	.59131	1 .40869 1	1.6912	.73323	1.3638	1.2400	19355	.80644	45
16	. 9154 . 9178	. 0845 . 0822 . 0799	.6905	. 3368	.3630 .3622	.2403 .2405	. 9373	. 0627 . 0610	44
17	. 9178	. 0822	.6898	. 3412	.3622	.2405	. 9390	. 0610	43
18	. 9201	. 0799	.6891	. 3457 . 3502	.3613	.2408	. 9407	. 0593	42
19	. 9225	. 0775	.6885	. 3502	.3605	.2411	. 9424	. 0576 .80558	41
20 21	. 9272	.40752	1.6878 .6871	.73547 . 3592	1.3597 .3588	1.2413 .2416	. 9459	. 0541	40 39
22	. 9295	. 0728	.6865	. 3637	.3580	.2419	. 9476	. 0524	38
23	. 9318	. 0681	.6858	. 3681	.3572	.2421	9493	. 0507	37
24	. 9342	0650	.6851	. 3726	.3564	.2424	. 9511	. 0489	36
25	.59365	.40635	1.6845 .6838	. 3726 .73771 . 3816	1.3555	1.2427	.19528 . 9545	.80472	35
26	. 9389	. 0611	.6838	. 3816	.3547 .3539	.2429	. 9545	. 0455	34
27	. 9412	. 0635 . 40635 . 0611 . 0588 . 0564	.6831	. 3861	.3539	.2432	. 9562	. 0437	33 32
28 29	. 9435 . 9459	. 0541	.6825 .6818	. 3906 . 3951	.3531	.2435	. 9580 . 9597	. 0420	32
30	.59482	.40518	1.6812	.73996	.3522 1.3514	.2437 1.2440	.19614	80386	30
31	. 9506	. 0494	.6805	. 4041	.3506	.2443	. 9632	.80386 . 0368	29
32	. 9529	. 0471	.6798	. 4086	.3498	.2445	. 9649	. 0351	29 28 27
33	. 9552	. 0447	.6792	. 4131	.3489	.2448	. 9666	. 0334	27
34	. 9576	. 0424	.6785 1.6779	. 4176 .74221	.3481 1.3473	.2451 1.2453	. 9683 .19701	. 0316	26
35	.59599	.40401 . 0377	1.6779	.74221	1.3473	1.2453	.19701	.80299 . 0282	25
36 37	. 9622 . 9646	. 0377	.6772	. 4266 . 4312	.3465 .3457	.2456 .2459	. 9718 . 9736	. 0282	24 23
38	. 9669	. 0331	.6766 .6759	. 4357	.3449	.2461	9753	. 0204	20
39	. 9692	0307	.6752	. 4402	.3440	.2464	. 9753 . 9770 .19788	. 0230	22 21
40	.59716	.40284	.6752 1.6746	.74447	.3440 1.3432	.2464 1.2467	.19788	. 0230 .80212	20
41	. 9739	. 0261	.6739	. 4492	.3424	.2470	9805	. 0195	19
42	. 9762	. 0237	.6733	. 4538	.3416	.2472	. 9822	. 0177	18
43	. 9786	. 0214	.6726 .6720 1.6713	. 4583	.3408	.2475	. 9840	. 0160	17
44 45	. 9809 .59832	. 0191	1.6712	. 4628 .74673	.3400 1.3392	.2478 1.2480	. 9857 .19875	. 0143 .80125	16 15
46	. 9856	. 0144	6707	. 4719	.3383	.2483	. 9892	. 0108	14
47	. 9879	. 0121	.6707 .6700	. 4764	.3375	.2486	9909	. 0090	14 13 12 11
48	. 9902	. 0098	-6694	. 4809	.3367	2488	9927	. 0073	12
49	. 9926	. 0074	.6687	. 4855	.3359	.2491	. 9944	. 0056	11
50	.59949	.40051	1.6681	.74900	1.3351	1.2494	.19962	.80038	10
51	. 9972	. 0028	.6674	. 4946	.3343	.2497	. 9979	. 0021	9
52 53	. 9995	.39981	.6668 .6661	. 4991 . 5037	.3335	.2499 .2502	. 9997	. 0003	8
54	. 0042	. 9958	.6655	5082	.3327	.2502	. 0031	. 9968	6
55	.60065	.39935	1.6648	.75128	1.3311	1.2508	.20049	.79951	9 8 7 6 5
56	. 0088	. 9911	.6642	. 5173	.3303	.2510	. 0066	. 9933	4
57	. 0112	. 9888	.6636	. 5219	.3294	.2513	. 0084	. 9916	3
58	. 0135	. 9865	.6629	. 5264	.3286	.2516	. 0101	. 9898	4 3 2 1
59 60	. 0158	. 9842	.6623	. 5310 . 5355	.3278	.2519	. 0119	. 9881	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$
00	. 0101	. 3019	.0010	. 5555	.3270	.2521	. 0136	. 9863	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
			-	0,1		1			

Natural Trigonometrical Functions.

1420

37°		Na	tural T	rigonon	ietrical	Functio	ns.	1	42°
М.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.60181	.39813	1.6616	.75355	1.3270	1.2521	.20136	.79863	60
1 2 3 4 5 6 7 8	. 0205	. 9795	.6610	. 5401	.3262	.25?4	. 0154	. 9846	59 58
2	. 0228	. 9772	.6603	. 5447	3254	.2527 .2530	. 0171	9828	58
1	. 0251	. 9749 . 9726	.6597 .6591 1.6584 .6578		.3254 .3246 .3238	.2532	0206	9793	57 56
5	.60298	.39702	1.6584	. 5538	1.3230	1.2535	.20224	.79776	55
6	. 0320	. 9679	.6578	. 5629	.3222	1.2535 .2538	. 0242	. 9758	55 54
7	. 0344	. 9656	.6572	. 5675	.3214	.2541	. 0259	. 9741	53
8	. 0367	. 9633	.6572 .6565 .6559 1.6552	. 5721 . 5767	.3206	.2543	. 0277	. 9723	53 52 51 50 49
9	. 0390	. 9610	.6559	. 5767	.3198	.2546	. 0294	. 9706	51
10	.60413	.39586	1.6552	.75812	1.3190	1.2549	. 20312	.79688	50
11 12	. 0437	. 9563	.6546 .6540	. 5858	.3182	.2552 .2554	. 0347	. 9670 . 9653	149
13	. 0483	9517	.6533	. 5950	.3174 .3166	.2557	. 0365	9635	48 47 46 45 44
14	. 0506	. 9494	.6527	. 5996 .76042	.3159 1.3151	.2560 1.2563	0000	. 9618 .79600	46
15	.60529	.39471	1.6521	.76042	1.3151	1.2563	.20400	.79600	45
16	. 0552	. 9447	.6514	. 6088	.3143 .3135 .3127	.2565	. 0417	. 9582	44
17	. 0576	. 9424	.6508 .6502	. 6134	.3135	.2568 .2571	. 0435	. 9565	43
18	. 0599	. 9401	6406	. 6179 . 6225	2110	.2574	. 0453	. 9547	42
16 17 18 19 20	.60645	.39355	.6496 1.6489	.76271	.3119 1.3111	1.2577	.20488	.79512	43 42 41 40
21	. 0668	. 9332	.6483	. 6317	.3103	.2579	. 0505	. 9494	39
22	. 0691	. 9309	.6483 .6477	. 6364	.3103 .3095	.2579 .2582	. 0523	. 9477	38
21 22 23 24 25 26 27	. 0714	. 9285	.6470	. 6410	.3087 .3079	.2585 .2588	. 0541	. 9459	39 38 37 36
24	. 0737	. 9262	.6464 1.6458	. 6456 .76502	.3079	.2588	. 0558	. 9441	36
25	.60761	.39239	1.6458	.76502	1.3071 .3064	1.2591 .2593	. 20576	.79424	35
20	. 0784	9216	.6452 .6445	. 6548 . 6594	.3056	.2596	. 0611	0288	34 33
28	. 0830	9170	.6439	. 6640	.3048	.2599	. 0629	. 9388 . 9371	32
28 29 30 31	. 0853	. 9147	.6433	. 6686	.3048 .3040	.2602	. 0647	. 9353	32 31
30	.60876	.39124	1.6427 .6420	.76733 . 6779	1.3032 .3024 .3016	1.2605	.20665	.79335	30
31	. 0899	. 9101	.6420	. 6779	.3024	.2607	. 0682	. 9318	29
32	. 0922	. 9078	.6414	. 6825	.3016	.2610 .2613	. 0700	. 9300	28
33	. 0945	. 9055	.6408 .6402	. 6871 . 6918	.3009	.2613	. 0718	. 9282	27 26
35	60001	.39008	1 6396	. 6918	1.2993	.2616 1.2619	20753	.79247	25
34 35 36	. 1014	. 8985	1.6396 .6389 .6383	. 7010 . 7057 . 7103	.2985	.2622	.20753 . 0771 . 0789	. 9229	25 24
37	. 1037	. 8962	.6383	. 7057	.2977	.2624	. 0789	. 9211	23
38	• 1061	. 8939	.6377	. 7103	2970	.2627 .2630 1.2633	. 0806	. 9193	23 22 21 20
39	. 1084	. 8916	.6371 1.6365	. 7149	.2962 1.2954 .2946	.2630	. 0824	. 9176	21
40 41	.61107	.38893	.6359	.77196 . 7242	1.2954	.2636	.20842	.79158 . 9140	19
42	. 1130 . 1153	. 8847	.6352	7289	.2938	.2639	. 0878	. 9140	18
43	. 1176	8824	.6346	. 7335	.2931	.2641	. 0895	. 9104	18 17
44 45 46	. 1199 .61222	8801	.6340 1.6334	. 7382 .77428	.2923 1.2915	.2644 1.2647	. 0913	. 9087 .79069	16
45	.61222	.38778	1.6334	.77428	1.2915	1.2647	.20931	.79069	15
46	. 1245	. 8755	.6328 .6322	. 7475	.2907 .2900	.2650 .2653	. 0949	. 9051	14
47 48	. 1268 . 1290	. 8732 . 8709	.6322	. 7521 . 7568	.2892	.2656	. 0967	. 9033	13 12
49	. 1314	8686	6309	. 7614	2884	2650	. 1002	. 8998	11
50	.61337	. 8686 .38663	.6309 1.6303	.77661	.2884 1.2876	.2659 1.2661	.21020	.78980	10
51	. 1360	. 8640	.6297	. 7708	.2869	.2664	. 1038	. 8962	9
52 53	. 1383	. 8617	.6291	. 7754	.2861	2667	1056	. 8944	8
53	. 1405	. 8594	.6285 .6279 1.6273	. 7801	.2853	.2670 .2673 1.2676 .2679	. 1074 . 1091 .21109 . 1127	. 8926 . 8908	7
54	. 1428	. 8571 .38548	1 6279	. 7848 .77895	.2845 1.2838	1 2673	21100	78800	6
55 56	. 1474	. 8525	.6267	. 7941	.2830	2679	1127	.78890 . 8873	4
57	. 1497	. 8503	.6261	. 7988	.2822	.2681	1145	. 8855	3
58	. 1520	. 8480	.6255	. 8035	.2815	.2684	. 1163	. 8837	2
59	. 1543	. 8457	.6249	. 8082	.2807	.2687	. 1181	. 8819	9 8 7 6 5 4 3 2 1
60	. 1566	. 8434	.6243	. 8128	.2799	.2690	. 1199	. 8801	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	М.
105	0			- 5000-81		, 5 3500 110		21401	-00

Natural Trigonometrical Functions. 38° 1410

38		Na	turai ir	igonom	etricai	Function	15.	14	110	
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.	
0	.61566	.38434	1.6243	.78128	1.2799	1.2690	.21199	.78801	60	-
1	. 1589	. 8411	.6237 .6231	. 8175	.2792	.2693	. 1217 . 1235	. 8783 . 8765	59	
$\tilde{2}$. 1612	. 8388	.6231	. 8222	.2784	.2696	. 1235	. 8765	58	
3	. 1635	. 8365	.6224	. 8269	.2776	.2699	. 1253	. 8747	57	
4 5 6 7	. 1658	. 8342	.6218 1.6212	. 8316 .78363	.2769 1.2761	.2702 1.2705	.21288	. 8729 .78711	56 55	
6	. 1703	. 8296	.6206	. 8410	.2753	.2707	. 1306	. 8693	54	
7	. 1726	8273	.6200	. 8457	.2746	.2710	. 1324	. 8675	53	
8 9	. 1749	. 8251	.6194	. 8504	.2738	.2713	. 1342	. 8657	52	
	. 1772	8228	.6188	. 8551	.2730	.2716	. 1360	. 8640	51	
10	.61795	.38205	1.6182	.78598	1.2723	1.2719	.21378	.78622	50	
11 12	. 1818 . 1841	. 8182 . 8159	.6176 .6170	. 8645 . 8692	.2715	.2722	. 1396	. 8604 . 8586	49	
13	. 1864	8136	.6164	. 8739	.2700	.2728	. 1432	. 8568	47	
14	. 1886	8113	.6159	. 8786	.2692	.2731	. 1450	. 8550	46	
15	.61909	.38091	1.6153	.78834	1.2685	.2731 1.2734	.21468	.78532	45	
16	. 1932	. 8068	.6147	. 8881	.2677	.2737	. 1486	. 8514	44	
17	. 1955	. 8045	.6141	. 8928	.2670	.2739	. 1504	. 8496	43	
18 19	. 1978 . 2001	. 8022 . 7999	.6135 .6129	. 8975 . 9022	.2662	.2742 .2745	. 1522 . 1540	. 8478 . 8460	42 41	
20	.62023	.37976	1.6123	.79070	1.2647	1.2748	.21558	.78441	40	
21 22	. 2046	. 7954	.6117	. 9117	.2639	.2751	. 1576	. 8423	39	
22	. 2069	. 7931	.6111	. 9164	.2632	.2754	. 1594	. 8405	38	
23	. 2092	. 7908	.6105	. 9212 . 9259	.2624	.2757	. 1612	. 8387	37	
24 25	. 2115	. 7885 .37862	.6099 1.6093	.79306	.2617 1.2609	1.2760 1.2763	. 1631	. 8369 .78351	36	
26	. 2160	. 7840	.6087	. 9354	.2602	.2766	. 1667	. 8333	34	
27 28	. 2183	. 7817	.6081 .6077	. 9401	.2594	.2769	. 1685	. 8315	33	
28	. 2206	7794	.6077	. 9449	.2587	.2772	. 1703	. 8297	32	
29	. 2229	7771	.6070	. 9496	.2579	.2775	. 1721	. 8279	31	
30	.62251 . 2274	.37748 .7726	1.6064 .6058	.79543 . 9591	1.2572 .2564	1.2778 .2781	. 1757	.78261 . 8243	30 29	
31 32	2297	7703	.6052	. 9639	.2557	.2784	. 1775	8224	28	
3 3	. 2320	. 7680	.6046	. 9686	.2549	.2787	. 1793	. 8206	27	
34	. 2342	. 7657	.6040	. 9734	.2542	.2790	. 1812	. 8188	26	
35 36	.62365	.37635	1.6034 .6029	.79781 . 9829	1.2534 .2527	1.2793 .2795	.21830	.78170	25 24	
37	. 2411	7589	.6023	9876	.2519	.2798	. 1866	. 8152 . 8134	23	
38	. 2433	. 7566	.6017	. 9924	.2512	.2801	. 1884	. 8116	22	
39	. 2456	. 7544	.6011	. 9972	.2504	.2804	. 1902	. 8097	21	
40	.62479	.37521	1.6005	.80020	1.2497	1.2807	.21921	.78079	20	
41 42	. 2501 . 2524	. 7498 . 7476	.6000 .5994	. 0067	.2489	.2810	. 1939	. 8061	19	
43	2547	7453	.5988	. 0113	.2482	.2813	. 1957 . 1975	. 8043 . 8025	18 17	
44	. 2570	7430	.5982	. 0211	.2467	.2819	1993	. 8007	16	
45	.62592	.37408	1.5976	.80258	1.2460	1.2822	.22011	.77988	15	
46	. 2615	. 7385	.5971	. 0306	.2452	.2825	. 2030	. 7970	14	
47 48	. 2638 . 2660	. 7362 . 7340	.5965 .5959	. 0354	.2445	.2828	. 2048	. 7952 . 7934	13 12	
49	. 2683	7317	.5953	. 0450	2430	.2834	. 2066	. 7934	11	
50	.62706	.37294	1.5947	.80498	.2430 1.2423	1.2837	.22103	.77897	10	
51	. 2728	. 7272	.5942	. 0546	.2415	.2840	. 2121	. 7879	9	
52	. 2751	. 7249	.5936	. 0594	.2408	.2843	. 2139	. 7861	8	
53 54	. 2774	. 7226 . 7204	.5930 .5924	. 0642	.2400	.2846	. 2157 . 2176	. 7842	7	
55	.62819	.37181	1.5919	.80738	1.2386	1.2849	.22194	. 7824 .77806	5	
56	. 2841	. 7158	.5913	. 0786	.2378	.2855	. 2212	. 7788	4	
57	. 2864	. 7136	.5907	. 0834	.2371	.2858	. 2230	. 7769	3	
58	. 2887	7113	.5901	. 0882	.2364	.2861	. 2249	. 7751	9 8 7 6 5 4 3 2	
59 60	. 2909	. 7090 . 7068	.5896 .5890	. 0930	.2356	.2864	. 2267	. 7733 . 7715	0	
	. 2002	- 7000		. 0010	.2013	.2007	. 2200	. 7713		
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.	
100	20									

39° Natural Trigonometrical Functions.

140°

39		144	tuiai ii	igonom	ctitear	unction	.15.	1.	40
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.62932	.37068	1.5890	.80978	1.2349	1.2867	.22285	.77715	60
1	. 2955	. 7045	.5884	. 1026	.2342	.2871	. 2304	. 7696	59
2	. 2977	. 7023	.5879	. 1075	.2334	.2874	. 2322	. 7678	58
3	. 3000	. 7000	.5873	. 1123	.2327	.2877	. 2340	. 7660	57
4	. 3022	. 6977	.5867	. 1171 .81219	.2320 1.2312	.2880	. 2359	. 7641 .77623	56
5	.63045	.36955 . 6932	1.5862 .5856	. 1268	.2305	1.2883 .2886	. 22377	. 7605	55 54
6 7	. 3067	6910	.5850	. 1316	.2297	.2889	2414	. 7586	53
8	. 3113	. 6887	.5845	. 1364	.2290	.2892	. 2432	. 7568	52
8 9	. 3135	. 6865	.5839 1.5833	. 1413	.2283	.2895	. 2450	. 7549	51
10	.63158	.36842	1.5833	.81461	1.2276	1.2898	.22469	.77531	50
11	. 3180	. 6820	.5828	. 1509	.2268	.2901	. 2487	. 7513	49
12 13	. 3203 . 3225	. 6797	.5822	. 1558 . 1606	.2261	.2904	. 2505	. 7494 . 7476	48
14	. 3248	. 6774 . 6752	.5810	. 1655	.2234	.2910	. 2542	. 7476	46
15	.63270	.36729	1.5805	.81703	1.2239	1.2913	.22561	.77439	45
16	. 3293	. 6707	.5799	. 1752	.2232	.2916	. 2579	. 7421	44
17	. 3315	. 6684	.5794	. 1800	.2225	.2919	. 2597	. 7402	43
18	. 3338	. 6662	.5788	. 1849	.2218	.2922	. 2616	. 7384	42
19	. 3360	. 6639	.5783	. 1898	.2210	.2926	. 2634	. 7365	41
20	.63383	.36617	1.5777	.81946	1.2203	1.2929	.22653	.77347	40
21	. 3405	6594	.5771 .5766	. 1995	.2196	.2932	. 2671	. 7329 . 7310	39
20 21 22 23	. 3450	6549	.5760	. 2092	.2181	.2938	. 2708	7292	37
24	. 3473	6527	.5755	. 2141	.2174	.2941	2727	. 7273	36
25	.63495	.36504	1.5749	.82190	1.2167	1.2944	.22745	.77255	35
26 27	. 3518	. 6482	.5743	. 2238	.2160	.2947	. 2763	. 7236	34
27	. 3540	. 6459	.5738	. 2287	.2152	.2950	. 2782	. 7218	33
28 29	. 3563	. 6437	.5732	. 2336	.2145 .2138	.2953 .2956	. 2800 . 2819	. 7199	32
30	. 3585	. 6415	.5727 1.5721	. 2385	1.2131	1.2960	.22837	.7181	31 30
31	. 3630	. 6370	.5716	. 2482	.2124	.2963	2856	. 7144	29
32	. 3653	. 6347	.5710	. 2531	.2124 .2117	.2966	2874	. 7125	28
33	. 3675	. 6325	.5705	. 2580	.2109	.2969	. 2893	. 7107	27
34	. 3697	. 6302	.5699	. 2629	.2102	.2972	. 2912	. 7088	26
35	.63720 . 3742	.36280 . 6258	1.5694	.82678	1.2095	1.2975 .2978	.22930	.77070	25 24
36 37	. 3765	. 6235	.5688 .5683	. 2727 . 2776	.2088	.2978	. 2949 . 2967	. 7051 . 7033	23
38	. 3787	6213	.5677	2825	.2074	.2985	2986	7014	22
39	. 3810	. 6190	.5672	. 2874	2066	.2988	. 3004	. 6996	21
40	.63832	.36168	1.5666	.82923	1.2059	1 2991	.23023	.76977	20
41	. 3854	. 6146	.5661	. 2972	.2052 .2045	.2994	. 3041	. 6958	19
42	. 3877	. 6123	.5655	. 3022	.2045	.2997	. 3060	. 6940	18
43 44	. 3899 . 3921	. 6101 . 6078	.5650 .5644	. 3071	.2038	.3000 .3003	. 3079	. 6921 . 6903	17 16
45	.63944	.36056	1.5639	.83169	.2031 1.2024 .2016	1.3006	.23116	.76884	15
46	. 3966	. 6034	.5633	. 3218	.2016	.3010	. 3134	. 6865	14
47	. 3989	. 6011	.5628	. 3267	.2009	.3013	. 3153	. 6847	13
48	. 4011	. 5989	.5622	. 3317	.2002	.3016	. 3172	. 6828	12
49	. 4033	. 5967	.5617 1.5611	. 3366	.1995	.3019	. 3190	. 6810	11
50 51	.64056 . 4078	.35944	.5606	.83415	1.1988 .1981	1.3022 .3025	.23209	.76791 . 6772	10 9
52	. 4100	5900	.5600	. 3514	.1974	.3029	3246	6754	8
53	. 4123	. 5877	.5595	. 3563	.1967	.3032	3265	6735	8.
54	. 4145	. 5855	.5590 1.5584	. 3613	.1960 1.1953	.3035	. 3283	. 6716	6 5
55	.64167	.35833	1.5584	.83662	1.1953	1.3038	.23302	.76698	5
56	. 4189	5810	.5579	. 3712	.1946	.3041	. 3321	. 6679	4
57	. 4212	5788	.5573	. 3761	.1939	.3044	. 3339	. 6660	3 2
58 59	. 4234	5766	.5568	. 3811	.1932 .1924	.3048	. 3358	. 6642 . 6623	1
60	. 4279	5721	.5557	. 3910	.1917	.3054	. 3395	. 6604	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
129	00							1	50°

409	·	Na	tural T	rigonom	etrical	Functio	ns.	1	39°
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.64279	.35721	1.5557	.83910	1.1917	1.3054	.23395	.76604	60
1	. 4301	. 5699	.5552	. 3959	.1910	.3057	. 3414	. 6586	59
2	. 4323	. 5677	.5546	. 4009	.1903	.3060 .3064	. 3433	. 6567	58
4	. 4343	. 5632	.5541 • .5536	. 4108	.1896 .1889	.3067	. 3470	. 6548	56
1 2 3 4 5 6 7 8 9	.64390	.35610	1.5530	.84158	1.1882	1.3070	.23489	.76511	58 57 56 55
6	. 4412	. 5588	.5525 .5520	. 4208	.1875 .1868	.3073	. 3508	. 6492	54
7	. 4435	. 5565	.5520	. 4257	.1868	.3076	. 3527	. 6473	53
8	. 4457	. 5543 . 5521	.5514 .5509	. 4307 . 4357	.1861 .1854	.3080	. 3545	. 6455	52 51
10	.64501	.35499	1.5503	.84407	1.1847	1.3086	.23583	.76417	50
11	. 4523	. 5476	.5498	. 4457	.1840	.3089	. 3602	. 6398	49
11 12	. 4546	. 5454	.5493	. 4506	.1833	.3092	. 3620	. 6380	48
13 14	. 4568	. 5432	.5487	. 4556	.1826	.3096	. 3639	. 6361	47 46
14	. 4590	. 5410	.5482 1.5477	. 4606	.1819 1.1812	.3099 1.3102	. 3658	. 6342	46
15 16	.64612	. 5365	.5471	.84656 . 4706	.1805	.3105	. 3695	. 6304	45 44
17	. 4657	5343	.5466	4756	.1798	.3109	3714	6286	43
17 18 19	. 4679	. 5321	.5461	. 4806	.1798 .1791	.3112	. 3733	. 6267	42
19	. 4701	. 5299	.5456	. 4856	.1785	.3115	. 3752	. 6248	41
20	.64723	.35277	1.5450	.84906	1.1778	1.3118	.23771	.76229	40
21	. 4745	. 5254	.5445	. 4956	.1771	.3121	. 3790	. 6210	39
22	. 4790	5210	.5440 .5434	. 5006 . 5056	.1764	.3125 .3128	. 3808	. 6191	38 37 36 35 34
24	. 4812	5188	.5429	. 5107	.1757 .1750	.3131	. 3846	6154	36
25	.64834	.35166	1.5424	.85157	1.1743	1.3134	.23865	.76135	35
26	. 4856	. 5144	.5419	. 5207	1736	.3138	. 3884	. 6116	34
20 21 22 23 24 25 26 27 28 29	. 4878	. 5121	.5413	. 5257	.1729 .1722 .1715	.3141	. 3903	. 6097	33
28	. 4900	. 5099	.5408 .5403	. 5307	.1722	.3144	. 3922	. 6078	32
30	. 64945	.35055	1.5398	. 5358 .85408	1 1708	.3148 1.3151	. 3940	. 6059 .76041	32 31 30 29 28 27 26 25 24
31	. 4967	. 5033	.5392	. 5458	1.1708 .1702 .1695	.3154	. 3978	. 6022	29
32 33	. 4989	. 5011	.5387	. 5509	.1695	.3157	. 3997	. 6003	28
33	. 5011	. 4989	.5382	. 5559	.1688 .1681	.3161	. 4016	. 5984	27
34	. 5033	. 4967	.5377	. 5609	.1681	.3164	. 4035	. 5965	26
35 36	.65055	. 34945	1.5371 .5366	.85660 . 5710	1.1674 .1667	1.3167 .3170	. 24054	.75946	25
37	. 5099	4900	.5361	. 5761	.1660	.3174	. 4075	. 5927 . 5908	23
37 38	. 5121	. 4878	.5356	. 5811	.1653	.3177	. 4111	. 5889	22.
39	. 5144	. 4856	.5351	. 5862	.1653 .1647	.3180	. 4130	. 5870	21
40	.65166	.34834	1.5345	.85912	1.1640	1.3184	.24149	.75851	20 19
41 42	. 5188 . 5210	. 4812	.5340	. 5963	.1633	.3187	. 4168	. 5832	19
43	. 5232	4768	.5335	. 6013	.1626 .1619	.3190 .3193	. 4186	. 5813 . 5794	18 17 16
44	. 5254	. 4746	.5325	6115	.1612	.3193	4203	. 5775	16
45	.65276	.34724 . 4702	.5325 1.5319	.86165	1.1605	1.3200	.24243	.75756	115
46	. 5298	. 4702	.5314	. 6216	.1612 1.1605 .1599	.3203	. 4262	. 5737 . 5718	14
47	. 5320 . 5342	. 4680	.5309	. 6267	1 .1592	.3207	. 4281	. 5718	13 12
48 49	. 5342	4636	.5304	. 6318	.1585 .1578	.3210	. 4300	. 5699	12 11
50	.65386	.34614	1.5294	.86419	1.1571	.3213 1.3217	. 4319	. 5680	10
51	. 5408	. 4592	.5289	. 6470	.1565	.3220	. 4357	. 5642	9
52	. 5430	. 4570	.5283	. 6521	.1565 .1558 .1551	.3223	. 4376	. 5623	9 8 7 6 5 4 3 2
53	. 5452	. 4548	.5278	. 6572	.1551	.3227	. 4396	. 5604	7
54 55	. 5474	. 4526 .34504	.5273 1.5268	. 6623	.1544 1.1537	.3230	. 4415	. 5585	6
56	. 5518	. 4482	.5263	. 6725	.1537	1.3233 .3237	.24434	.75566 . 5547	5
57	. 5510	. 4460	.5258	6775	.1524	.3240	. 4472	5528	3
58	. 5562	. 4438	.5253	. 6826	.1517	.3243	. 4491	5509	2
59	. 5584	. 4416	.5248	. 6878	.1510	.3247	. 4510	. 5490	1

M. 130°

60

. 5584

. 5606

Cosine.

. 4416

4394

Vrs. sin.

.5258 .5253 .5248 .5242

Secant.

. 6878

. 6929

Cotang.

ō

. 5509 . 5490

. 5471

Sine.

. 4510

. 4529

.3240 .3243 .3247

.3250

Cosec'nt Vrs. cos.

.1504

Tang.

Natural Trigonometrical Functions.

41		INE	turai II	rigonom	etrical	runction	ns.	1.	30-
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
× 0	.65606	.34394	1.5242	.86929	1.1504	1.3250	.24529	.75471	60
* 0 1 2 3	. 5628	. 4372	.5237	. 6980	.1497	.3253	. 4548	. 5452	59
2	. 5650	. 4350	.5232	. 7031	.1490	.3257	. 4567	. 5433	58
3	5672	. 4328	.5227 .5222	. 7082	.1483	.3260	. 4586	. 5414	57
4.	. 5694	. 4306	1.5217	. 7133 .87184	.1477 1.1470	.3263	. 4605	. 5394	56 55
5 6 7 8 9	. 5737	.34284	.5217	. 7235	.1463	1.3267 .3270	.24624	. 5356	54
7	5759	4240	5207	. 7287	.1456	.3274	. 4663	5337	53
8	. 5781	. 4219	.5207 .5202	. 7338	.1450	.3277	. 4682	. 5318	53 52
9	. 5803	. 4197	.5197	. 7389	.1443	.3280	. 4701	. 5299	51
10	.65825	.34175	1.5192	.87441	1.1436	1.3284	.24720	.75280	50
11	. 5847	. 4153	.5187	. 7492	.1430	.3287	. 4739	. 5261	49
12	. 5869	. 4131	.5182	. 7543	.1423	.3290	. 4758	. 5241	48
13	. 5891	. 4109	.5177	. 7595	.1416	.3294	. 4778	. 5222	47
14 15	. 5913	. 4087	.5171 1.5166	. 7646 .87698	.1409 1.1403	.3297 1.3301	. 4797	. 5203	46 45
16	. 5956	. 4043	.5161	. 7749	.1396	.3304	. 4835	. 5165	44
17	. 5978	. 4022	.5156	7801	.1389	.3307	. 4854	5146	43
18	. 6000	. 4000	.5151	. 7852	.1383	.3311	. 4873	. 5126	42
19	. 6022	0050	.5146	. 7904	.1376	.3314	. 4893	E107	41
19 20 21	.66044	.33956	1.5141	.87955	1.1369	1.3318	.24912	.75088	40
21	. 6066	. 3934	.5136	. 8007	.1363	.3321	. 4931	. 5069	39
22 23	. 6087	. 3912	.5131	. 8058	.1356	.3324	. 4950	. 5049	38
23	. 6109	. 3891	.5126	. 8110 . 8162	.1349	.3328	. 4970	. 5030	37 36
24 25	. 6131 .66153	.33847	.5121 1.5116	.88213	.1343 1.1336	1.3335	.25008	.74992	35
26	. 6175	. 3825	.5111	. 8265	.1329	.3338	. 5027	. 4973	34
26 27	. 6197	. 3803	.5106	. 8317	.1323	.3342	. 5047	. 4953	33
28 29	. 6218	. 3781	.5101	. 8369	.1316	.3345	. 5066	. 4934	32
29	. 6240	. 3760	.5096	. 8421	.1309	.3348	. 5085	. 4915	31
30	.66262	.33738	1.5092	.88472	1.1303	1.3352	.25104	.74895	30
31 32	. 6284 . 6305	. 3716 . 3694	.5087 .5082	. 8524	.1296	.3355	. 5124	. 4876 . 4857	29
33	. 6327	. 3673	.5077	. 8576 . 8628	.1283	.3359 .3362	. 5143 . 5162	. 4838	28 27
34	6349	. 3651	.5072	. 8680	.1276	.3366	. 5181	. 4818	26
35	.66371	.33629	1.5067	.88732	1.1270	1.3369	.25201	,74799	25
36	. 6393	. 3607	.5062	. 8784	.1263	.3372	. 5220	. 4780	24
37	. 6414	. 3586	.5057	. 8836	.1257 .1250	.3376	. 5239	. 4760	23 22
38 39	. 6436	. 3564 . 3542	.5052	. 8888	.1250	.3379	. 5259	. 4741	22 21
40	. 6458 .66479	. 33520	.5047 1.5042	. 8940 .88992	.1243 1.1237	.3383 1.3386	. 5278	. 4722 .74702	20
41	. 6501	. 3499	.5037	. 9044	.1230	.3390	. 5317	. 4683	19
42	. 6523	. 3477	.5032	. 9097	.1224	.3393	. 5336	. 4664	18
42 43	. 6545	. 3455	.5027	. 9149	.1217	.3397	. 5355	. 4644	17
44	. 6566	. 3433	.5022	. 9201	.1211	.3400	. 5375	. 4625	16
45	.66588 . 6610	.33412	1.5018	.89253	1.1204	1.3404	.25394	.74606	15
46 47	. 6631	. 3390	.5013 .5008	. 9306 . 9358	.1197	.3407 .3411	. 5414	. 4586	14
48	. 6653	. 3347	.5003	9410	.1184	.3414	. 5433 . 5452	. 4567 . 4548	13 12
49	. 6675	. 3325	.4998	. 9463	.1178	.3418	. 5472	4528	11
50	.66697	.33303	1.4993	.89515	1.1171	1.3421	.25491	.74509	10
51	. 6718	. 3282	.4988	. 9567	.1165	.3425	. 5510	. 4489	9
52	. 6740	. 3260	.4983	. 9620	.1158	.3428	. 5530	. 4470	8
53 54	. 6762 . 6783	. 3238 . 3217	.4979	. 9672 . 9725	.1152	.3432 .3435	. 5549	. 4450	9 8 7 6 5 4
55	.66805	.33195	1.4969	. 9725	.1145 1.1139	1.3439	. 5569	. 4431 .74412	5
55 56 57	. 6826	. 3173	.4964	. 9830	.1132	.3442	. 5608	. 4392	4
57	. 6848	. 3152	.4959	. 9882	.1126	.3446	. 5627	. 4373	3
58	. 6870	. 3130	.4954	. 9935	.1119	.3449	. 5647	. 4353	3 2
59	. 6891	. 3108	.4949	. 9988	.1113	.3453	. 5666	. 4334	1
60	. 6913	. 3087	.4945	.90040	.1106	.3456	. 5685	. 4314	0
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.
12:			,	2,000	1	2 3 5 5 5 E	1.10. 000.		100

131°

Natural Trigonometrical Functions.

420		Na	tural Tr	igonom	etrical	Function	ns.	1	3 7 °
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
0	.66913	.33087	1.4945	.90040	1.1106	1.3456	.25685	.74314	60
1 2 3	. 6935	. 3065	.4940	. 0093	.1100	.3460	. 5705	. 4295	59
2	. 6956	. 3044	.4935	. 0146	.1093	.3463	. 5724	. 4275	58
	. 6978	. 3022	.4930 .4925	. 0198	.1086	.3467 .3470	. 5744	. 4256 . 4236	57 56
5	.67021	.32979	1.4921	.90304	1.1074	1.3474	.25783	.74217	55
6	. 7043	. 2957	.4916	. 0357	.1067	.3477	. 5802	. 4197	54
6 7	. 7064	. 2936	.4911	. 0410	.1061	.3481	. 5822	. 4178	53
8	. 7086	. 2914	.4906	. 0463	.1054	.3485	. 5841	. 4158	52
9	. 7107	. 2893	.4901	. 0515	.1048	.3488	. 5861	. 4139	51
10	.67129	.32871	1.4897	.90568	1.1041	1.3492	.25880	.74119	50
11 12	. 7150	. 2849	.4892	. 0621	.1035	.3495	. 5900	. 4100	49 48
13	. 7172 . 7194	2828	.4882	. 0074	.1028 .1022	.3502	. 5939	. 4080 . 4061	47
14	7215	2785	.4877	. 0780	.1015	.3502	5959	. 4041	46
15	.67237	.32763	1.4873	.90834	1.1009	1.3509	.25978	.74022	45
16	. 7258	. 2742	.4868	. 0887	.1003	.3513	. 5998	. 4002	44
17	. 7280	. 2720	.4863	. 0940	.0996	.3517	. 6017	. 3983	43
18	. 7301	. 2699	.4858	. 0993	.0990	.3520	. 6037	. 3963	42
19	. 7323	. 2677	.4854	. 1046	.0983	.3524	. 6056	. 3943	41
20	.67344	.32656	1.4849	.91099	1.0977	1.3527	.26076	.73924	40
21 22	. 7366 . 7387	. 2634	.4844	. 1153	.0971	.3531 .3534	. 6096	. 3904	39 38
23	. 7409	2591	.4835	. 1259	.0958	.3538	6135	. 3885	37
24	. 7430	2570	.4830	. 1312	.0951	.3542	6154	. 3845	36
25	.67452	.32548	1.4825	.91366	1.0945	1.3545	.26174	.73826	35
26	. 7473	. 2527	.4821	. 1419	.0939	.3549	. 6194	. 3806	34
27	. 7495	. 2505	.4816	. 1473	.0932	.3552	. 6213	. 3787	33
28	. 7516	. 2484	.4811	. 1526	.0926	.3556	. 6233	. 3767	32
29	. 7537	. 2462	.4806	. 1580	.0919	.3560	. 6253	. 3747	31
30	.67559	.32441	1.4802	.91633	1.0913	1.3563	.26272	.73728	30 29
31 32	. 7580 . 7602	. 2419	.4797	. 1687 . 1740	.0907	.3567 .3571	. 6292 . 6311	. 3708	28
33	7623	2377	.4788	. 1794	.0894	.3574	6331	. 3669	27
34	. 7645	. 2355	.4783	. 1847	.0888	.3578	. 6351	. 3649	26
35	.67666	.32334	1.4778	.91901	1.0881	1.3581	.26371	.73629	25
36	. 7688	. 2312	.4774	. 1955	.0875	.3585	. 6390	. 3610	24
37	. 7709	. 2291	.4769	. 2008	.0868	.3589	. 6410	. 3590	23
38	. 7730	. 2269	.4764	. 2062	.0862	.3592	. 6430	. 3570	22
39	. 7752 .67773	. 2248	.4760 1.4755	. 2116	.0856 1.0849	.3596 1.3600	. 6449	. 3551 .73531	21 20
41	. 7794	. 2205	.4750	. 2223	.0843	.3603	. 6489	. 3511	19
42	. 7816	2184	.4746	. 2277	.0837	.3607	. 6508	. 3491	18
43	. 7837	. 2163	.4741	. 2331	.0830	.3611	6528	. 3472	17
44	. 7859	. 2141	.4736	. 2385	.0824	.3614	. 6548	. 3452	16
45	.67880	.32120	1.4732	.92439	1.0818	1.3618	.26568	.73432	15
46	. 7901	. 2098	.4727	. 2493	.0812	.3622	. 6587	. 3412	14
47 48	. 7923 . 7944	2077	.4723 .4718	. 2547	.0805	.3625	. 6607	. 3393	13
49	. 7944	2034	.4713	. 2655	.0799	.3629	. 6627	. 3373	11
50	.67987	.32013	1.4709	.92709	1.0786	1.3636	.26666	.73333	10
51	. 8008	, 1992	.4704	. 2763	.0780	.3640	. 6686	. 3314	9
52	. 8029	. 1970	.4699	. 2817	.0774	.3644	. 6706 -	. 3294	8
53	. 8051	. 1949	.4695	. 2871	.0767	.3647	. 6726	. 3274	7
54	. 8072	. 1928	.4690	. 2926	.0761	.3651	. 6746	. 3254	6
55	.68093	.31907	1.4686	.92980	1.0755	1.3655	.26765	.73234	5
56 57	. 8115	. 1885	.4681	. 3034	.0749	.3658	. 6785	. 3215	3
58	. 8157	1843	.4672	. 3143	.0742	.3666	. 6825	. 3175	9
59	. 8178	1821	.4667	3197	.0730	.3669	6845	. 3155	i i
60	. 8200	. 1800	.4663	. 3251	.0724	.3673	. 6865	. 3135	ō
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

132°

Sine	430		Na	tural Ti	igonom	etrical	Function	ns.	1	36°
1 8221 1779 4668 3306 0717 .3681 6904 3096 58 3 8284 17736 .4649 3415 .0705 .3681 6994 .3076 56 4 8285 1715 .4644 3315 .0699 .3688 .6944 .3056 56 5 .68306 .31694 1.46410 .93524 1.0692 1.3689 .26964 .73036 56 6 .8327 1630 .4622 .3878 .6880 .36899 7004 .2996 53 8 8.8370 1630 .4622 .3742 .0667 .3707 .7023 .2976 52 9 8391 1609 .4622 .3742 .0667 .3707 .7043 .2957 50 10 .68412 .31588 1.4617 .9379 1.0661 1.3710 .7063 .72937 50 11 .8433 .5668 .4414 <t< th=""><th>M.</th><th>Sine.</th><th>Vrs. cos.</th><th>Cosec 'nt</th><th>Tang.</th><th>Cotang.</th><th>Secant.</th><th>Vrs. sin.</th><th>Cosine.</th><th>M.</th></t<>	M.	Sine.	Vrs. cos.	Cosec 'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.
3 8264 1.1736 4.649 3415 0.705 3684 .6924 3076 57 5 5 6.8306 3.1694 1.4640 .93524 1.0692 1.3692 2.26964 .73036 55 6 8.27 1673 .4635 .3578 .0686 .3695 .6984 .3016 56 7 8.349 .1651 .4631 .3333 .0680 .3699 .7004 .2996 53 9 .8391 .1609 .4622 .3742 .0667 .3707 .7043 .2956 51 10 .68412 .31588 1.4617 .93797 1.0661 1.3710 .27083 .2917 70 11 .84333 .1566 .4608 .3906 .0619 .3718 .7103 .2897 48 12 .8455 .1436 .4604 .3961 .0643 .3722 .7123 .2877 42 12 .8466 .14339 <th>. 0</th> <td></td> <td>.31800</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	. 0		.31800							
3 8264 1.1736 4.649 3415 0.705 3684 .6924 3076 57 5 5 6.8306 3.1694 1.4640 .93524 1.0692 1.3692 2.26964 .73036 55 6 8.27 1673 .4635 .3578 .0686 .3695 .6984 .3016 56 7 8.349 .1651 .4631 .3333 .0680 .3699 .7004 .2996 53 9 .8391 .1609 .4622 .3742 .0667 .3707 .7043 .2956 51 10 .68412 .31588 1.4617 .93797 1.0661 1.3710 .27083 .2917 70 11 .84333 .1566 .4608 .3906 .0619 .3718 .7103 .2897 48 12 .8455 .1436 .4604 .3961 .0643 .3722 .7123 .2877 42 12 .8466 .14339 <th></th> <td></td> <td>1759</td> <td>4654</td> <td>3306</td> <td>0717</td> <td>3677</td> <td></td> <td></td> <td></td>			1759	4654	3306	0717	3677			
4 8285 1.1715 4.644 33469 .06992 3.3688 .6944 .3056 56 5 6.8827 1.673 4.635 .3578 .0686 .3695 .6884 .3016 54 7 8.8349 1.661 .4621 .3833 .0680 .3699 .7004 .2996 52 8 8.870 .1630 .4626 .3687 .0674 .3703 .7023 .2976 52 9 .8391 .1609 .4622 .3742 .0667 .3707 .7043 .2956 51 11 .8433 .1566 .4613 .3851 .0655 .3714 .7083 .2917 49 12 .8455 .1545 .4604 .3961 .0643 .3718 .7103 .2877 47 4 .8497 .1503 .4599 .4016 .0636 .3725 .7143 .2857 47 45 .8581 .1414 .4595	3		1736							
6 8827 1673 4635 4635 3638 0686 3699 7004 2996 538 8 8870 1630 4626 3687 0674 3703 7023 2976 52 89 8901 1600 4622 3742 0667 3707 7043 2956 52 10 68412 31588 1.4617 93797 1.0661 1.3710 .27063 .72377 50 11 8433 1.3666 4613 3851 .0655 .3714 .7083 .2917 49 12 8455 .1545 .4604 .3961 .0643 .3722 .7123 .2877 47 14 .8497 .1503 .4599 .4016 .0636 .3729 .27163 .72837 47 15 .68518 .31482 1.4595 .94071 .10636 .3737 .7203 .2797 43 16 .8539 .1460 .4590 .4125 .6624	4	. 8285	. 1715	.4644	. 3469	.0699	.3688	. 6944	. 3056	56
8 8870 1650 4681 3683 0680 3699 7004 2996 53 9 8391 1609 4622 3742 0667 3707 7043 2956 51 10 68412 31588 1.4617 93797 1.0661 1.3710 27063 72937 50 11 8433 1366 4613 3851 .0655 3714 7083 22917 49 12 8455 1545 4604 3961 .0649 .3718 7103 2897 48 15 .68518 .31482 1.4595 .94071 1.0630 .3729 .27163 .72877 45 16 .68518 .31482 1.4599 .4016 .0636 .3729 .27163 .72873 46 16 .68518 .31460 .4590 .4125 .0612 .3733 .7183 .2817 42 17 .8661 .1439 .4546 .48	5							.26964		
8 8370 1630 4626 3687 0674 3707 7043 2956 51 9 8391 1609 4622 3742 0667 3707 7043 2956 51 11 8433 1566 4613 3851 .0655 3714 7083 2917 49 12 8455 1545 4604 3961 .0643 3722 7123 2877 47 14 8497 1503 4599 4016 .0636 3725 7143 2857 46 15 68518 31482 1.4595 .94071 1.0630 1.3729 27163 72837 45 16 8539 1460 4590 4125 .0624 3.733 7183 2817 44 17 8561 1439 4586 4180 .0618 3.737 7203 2777 42 18 8630 1337 4577 4290 .0605	7		. 1651							
10	8	. 8370	. 1630	.4626	. 3687	.0674	.3703	. 7023	. 2976	52
11 8433 1566 4613 3851 0655 3714 7083 2997 48 13 8476 1524 4604 3961 .0649 .3718 7103 2897 47 14 8497 1503 .4699 .4016 .0636 .3725 .7143 .2857 46 15 .68518 .31482 1.4595 .94071 .10630 .13729 .27163 .72837 45 16 .8539 .1460 .4590 .4125 .0624 .3733 .7183 .2817 44 17 .8561 .1439 .4586 .4180 .0618 .3737 .7203 .2797 43 18 .8662 .13136 .14572 .94345 .10599 .13748 .27263 .27273 40 22 .8666 .1333 .4563 .4456 .0567 .3744 .7232 .2777 42 22 .8666 .1333 .4563			. 1609							
12 8455 1545 4608 3961 0649 3713 7103 2897 47 14 8476 1503 4599 4016 0643 3722 7123 2857 46 15 68518 31482 1.4595 94071 1.0630 1.3729 .27163 .2857 46 16 8539 1.460 4.590 4125 .0624 .3733 7183 2817 44 17 8561 1.4394 4586 4180 .0618 .3737 7033 .2797 42 19 8603 1.3187 .4557 .4290 .0605 .3744 .7243 .2757 42 19 8603 1.3136 1.4572 .94345 1.0599 1.3748 .27263 .72737 40 21 .8645 1.335 .4568 .4400 .0581 .3756 .7302 .2667 37 21 .8666 .1333 .4569 .45										
13 8476 1524 4604 3961 0643 3.722 7123 2877 45 15 68518 3.1482 1.4595 94071 1.0630 1.3729 .27163 .72837 45 16 8539 1.460 4590 4125 .0624 .3733 .7183 .2817 45 17 8561 14139 4586 4180 .0618 .3737 .7203 .2777 43 18 8582 1418 4581 .4235 .0612 .3740 .7223 .2777 429 19 8603 .1397 .4577 .290 .0605 .3744 .7243 .2757 41 20 .68624 .1355 .4568 .4400 .0593 .3752 .7283 .2717 .2736 21 .8645 .1333 .4563 .4450 .0561 .3759 .7322 .2677 .36 23 .8688 .13129 .4554			. 1545			.0649		. 7103		
15 68518 31482 1.4595 94071 1.0630 1.3729 .27163 .72837 44 16 8539 1.460 4.4590 4125 .0624 .3733 .7183 .2817 44 17 8.861 .1439 .4586 .4180 .0618 .3737 .7203 .2777 43 18 .8582 .1418 .4681 .4235 .0612 .3740 .7223 .2777 429 19 .8603 .1397 .4577 .4290 .0605 .3744 .7243 .2757 41 20 .68624 .1335 .4568 .4400 .0593 .3752 .7283 .2717 39 21 .8666 .1333 .4563 .4450 .0561 .3759 .7322 .2677 .38 23 .8688 .1312 .4559 .4565 .0575 .3763 .7342 .2667 .36 25 .68730 .31270 .45		. 8476				.0643		. 7123		
16 8539 1460 4590 4125 .0624 3733 7183 .2817 44 17 8561 1439 4368 4180 .0618 .3737 7203 .2797 43 18 .8582 .1418 .4581 4235 .0612 .3740 .7223 .2777 41 20 .68624 .13376 1.4572 .94345 1.0599 1.3748 .27263 .27737 40 21 .8645 .1355 .4568 .4400 .0593 .3752 .7283 .2717 39 22 .8666 .1333 .4663 .4455 .0587 .3756 .7302 .2697 .38 22 .8666 .1333 .4663 .4455 .0567 .3763 .7342 .2657 .36 25 .68730 .1291 .4554 .4555 .0575 .3763 .7342 .2657 .36 26 .8751 .1249 .4545								7143		
17 8561 1449 4586 4180 .0618 3737 7203 2797 42 18 8582 1418 4581 4235 .0612 3740 7223 2777 42 19 8603 1397 4577 4290 .0605 .3744 .7243 2757 41 20 .68624 .31376 1.4572 .94345 1.0599 1.3748 .27263 .72737 40 21 .8645 .1355 4568 4400 .0593 .3752 .7283 .2717 39 22 .8666 1333 .4563 4455 .0567 .3756 .7302 .2697 38 24 .8709 .1291 .4554 .4565 .0575 .3763 .7342 .2657 .37 25 .68730 .31270 1.4550 .94620 1.0568 1.3767 .27362 .72637 .35 26 .8771 .1228 .4411										
19 .8603 .1397 .4577 .4290 .0605 .3744 .7243 .2757 41 20 .68624 .31376 1.4572 .94345 1.0599 1.3748 .27263 .72737 40 21 .8665 .1333 .4568 .4400 .0593 .3752 .7283 .2717 39 22 .8666 .1333 .4563 .4550 .0581 .3759 .7302 .2697 38 24 .8709 .1291 .4554 .4565 .0575 .3763 .7342 .2657 36 26 .8751 .1249 .4545 .4675 .0562 .3771 .7382 .2617 34 27 .8772 .1228 .4541 .4731 .0556 .3774 .7402 .2597 .33 28 .8793 .1207 .4586 .4786 .0550 .3778 .7442 .2557 .31 30 .68835 .31164 .	17		. 1439	.4586	. 4180	.0618	.3737	. 7203	. 2797	43
20 68624 3.1376 1.4572 .94345 1.0599 1.3748 .27263 .72787 40 21 .8646 .1355 .4568 .4455 .0587 .3752 .7283 .2717 39 22 .8666 .1333 .4563 .4455 .0587 .3756 .7302 .2697 38 23 .8688 1312 .4554 .4565 .0575 .3763 .7342 .2657 .36 24 .8709 .1291 .4554 .4565 .0575 .3763 .7342 .2657 .36 26 .8751 .1249 .4544 .4731 .0556 .3771 .7382 .2617 .34 27 .8772 .1228 .4541 .4731 .0556 .3774 .7402 .2597 .33 28 .8793 .1207 .4536 .4786 .0550 .3778 .7422 .2597 .31 30 .68855 .31164			. 1418							
21 8645 1355 4568 4400 .0593 .3752 7283 2717 39 22 8666 1333 4563 4455 .0587 .3756 7302 2697 38 24 8709 1291 4554 4565 .0575 .3763 .7342 .2657 36 25 .68730 .31270 1.4550 .94620 1.0568 1.3767 .27362 .72637 36 26 .8751 .1249 .4545 .4675 .0562 .3771 .7382 .2617 34 27 .8772 .1228 .4541 .4731 .0556 .3778 .7402 .2597 32 28 .8793 .1207 .4536 .4786 .0550 .3778 .7442 .2557 32 29 .8814 .1186 .4522 .4841 .0544 .3782 .7442 .2557 31 30 .68855 .31143 .4523										
22 8666 1333 4563 4455 .0587 3756 7302 2987 38 23 8688 1312 4559 4510 .0581 3759 7322 2677 37 24 8709 1291 4354 4565 .0575 3763 7342 2657 36 25 .68730 .31270 1.4550 .94620 1.0588 1.3767 .27362 .72637 35 26 .8751 1249 4545 4675 .0562 .3771 .7382 2617 34 27 .8772 1228 .4541 4731 .0556 .3774 .7402 .2597 33 28 .8793 1207 .4536 .4786 .0550 .3774 .7402 .2557 31 30 .68835 .31164 1.4527 .94896 1.0538 1.3786 .27462 .72537 30 31 .8856 .1133 .4523 .4			. 1355							
24 8709 1291 4554 4565 0.0575 3763 7342 2657 36 25 6.8730 31270 1.4550 94620 1.0568 1.3767 27362 .72637 35 26 8751 1.249 4545 4675 .0562 .3771 .7382 .2617 34 27 8772 1.1228 4541 .4781 .0556 .3774 .7402 .2597 32 28 8793 1.207 .4536 4786 .0550 .3778 .7422 .2557 32 29 8814 .1186 .4532 .4841 .0544 .3782 .7442 .2557 31 30 .68835 .31164 1.4527 .94896 .10588 .13786 .27462 .72537 30 31 .8856 .1134 .4523 .4961 .5029 .3794 .7503 .2477 27 32 .8878 .1102 .4518		. 8666	. 1333							38
25 .68730 .31270 1.4550 .94620 1.0568 1.3767 .27362 .72637 .35 26 .8751 .1249 .4545 .4675 .0562 .3771 .7382 .2617 .34 27 .8772 .1228 .4541 .4731 .0556 .3774 .7402 .2597 .33 28 .8793 .1207 .4536 .4786 .0550 .3778 .7422 .2557 .31 30 .68835 .31164 1.4527 .94896 1.0538 1.3786 .27462 .72537 .30 31 .8856 .1143 .4523 .4841 .0544 .3782 .7442 .2517 .29 32 .8878 .1122 .4518 .5007 .0525 .3794 .7502 .2477 .27 34 .8990 .1080 .4510 .5118 .0513 .3801 .7543 .2457 .27 .27 .27 .27 .27				.4559						
26 8751 1249 4545 4675 0.0562 3771 7382 2617 34 27 8772 1228 4541 4781 0.0566 3774 7402 2597 33 28 8793 1207 4536 4786 0.0550 3778 7422 2577 32 29 8814 1186 4582 4841 0.0542 3782 7442 2557 31 30 68835 31164 1.4527 94896 1.0588 1.3786 27462 .72537 30 31 .8856 .1143 .4523 4952 .0532 .3790 .7482 .2517 29 32 .8878 .1122 .4518 .5007 .0525 .3794 .7503 .2477 27 34 .8920 .1080 .4510 .5118 .0513 .3801 .7543 .2477 27 36 .8962 .1038 .4501 .5229										
28 8798 1207 4536 4786 .0550 3778 7422 2577 32 29 8814 1.186 .4532 .4841 .0544 .3782 .7442 .2557 31 30 .68835 .31164 1.4527 .94896 1.0538 1.3786 .27462 .72537 30 31 .8856 .1143 .4523 .4952 .0532 .3790 .7482 .2517 29 32 .8878 .1122 .4518 .5007 .0525 .3794 .7503 .2497 28 33 .8899 .1101 .4514 .5062 .0519 .3797 .7523 .2417 27 34 .8920 .1080 .4510 .5118 .0513 .3801 .7543 .2417 24 37 .8983 .1017 .4496 .5284 .0495 .3813 .7603 .2397 22 38 .9004 .0996 .4492			. 1249			.0562				
29										
30 .68835 .31164 1.4527 .94896 1.0538 1.3786 .27462 .72337 30 31 .8856 .1143 .4523 .4952 .0532 .3790 .7482 .2517 .29 32 .8878 .1122 .4518 .5007 .0525 .3794 .7503 .2497 .28 33 .8899 .1101 .4514 .5062 .0519 .3797 .7523 .2477 .27 34 .8920 .1080 .4510 .5118 .0513 .3801 .7543 .2457 .26 35 .68941 .31059 1.4505 .95173 1.0507 1.3805 .27563 .72437 .25 36 .8962 .1088 .4501 .5229 .0501 .3809 .7583 .2417 .24 37 .8983 .1017 .4496 .5284 .0495 .3813 .7603 .2377 .22 38 .9004 .0996				4536						
31 8856 1143 4523 4952 0.682 3790 7482 2517 29 32 8878 1122 4518 5007 0.525 3794 7503 2497 28 33 8899 1101 4514 5062 0.619 3797 7523 2477 27 34 8920 1080 4510 5118 0.613 3801 7543 2457 26 36 .8962 1038 4501 5229 0.501 3809 7583 2417 24 37 .8983 1017 4496 5284 0.495 3813 7603 2397 22 38 .9004 .0996 4492 5340 0.489 3816 7623 2377 22 39 .9025 .0975 .4487 5395 .0483 3820 .7643 2357 21 40 .69046 .30954 1.4483 .9561 .0470				1.4527		1.0538				
33 8899 1101 4514 5062 .0519 .3797 7523 2477 27 34 8920 1080 .4510 5118 .0513 .3801 .7543 .2457 26 36 .68941 .31059 1.4505 .95173 1.0507 1.3805 .27563 .72437 25 36 .8962 .1038 .4501 .5229 .0501 .3809 .7583 .2417 24 37 .8983 .1017 .4496 .5284 .0495 .3813 .7603 .2377 23 38 .9004 .0996 .4492 .5340 .0489 .3816 .7623 .2377 23 39 .9025 .0975 .4487 .5395 .0483 .3820 .7643 .2357 21 40 .69046 .30954 .14483 .95451 .10476 .13824 .27663 .72337 20 41 .9067 .0933 .4479<	31	. 8856	. 1143	.4523	. 4952	.0532	.3790	. 7482		
34 8920 1080 4510 5118 0513 3801 7543 2457 26 35 .68941 .31059 1.4505 .95173 1.0507 1.3805 .27563 .72437 25 36 .8962 .1038 .4501 .5229 .0501 .3809 .7583 .2417 24 37 .8983 .1017 .4496 .5284 .0495 .3813 .7603 .2397 23 38 .9004 .0996 .4492 .5340 .0489 .3813 .7603 .2397 22 40 .69046 .30954 1.4483 .95451 1.0476 .13824 .27663 .72337 20 41 .9667 .0933 .4479 .5506 .0470 .3828 .7683 .2317 19 42 .9088 .0912 .4474 .5562 .0464 .3832 .7763 .2277 18 43 .9109 .0891 .4474										28
35 68941 3.1059 1.4505 95173 1.0507 1.3805 2.7563 .72437 25 36 8962 1.038 4501 55229 0.501 3809 .7583 2417 24 37 8983 1017 4496 5284 0.495 3813 .7603 2397 23 38 9004 0.996 4492 5395 0.488 .3816 .7623 2377 22 40 .69046 3.0954 1.4483 .95451 1.0476 1.3824 .27663 .72337 20 41 .9667 0.933 .4479 .5566 .0470 .3828 .7683 .2317 19 42 .9088 .0912 .4474 .5562 .0464 .3832 .7683 .2277 17 44 .9130 .0870 .4465 .5673 .0452 .3839 .7743 .2276 16 45 .9172 .0828 .4457										
37 8983 1017 .4496 5284 .0495 .3813 .7603 .2397 23 38 .9004 .0996 .4492 .5340 .0489 .3816 .7623 .2377 22 39 .9025 .0975 .4487 .5395 .0483 .3820 .7643 .2357 21 40 .69046 .30954 1.4483 .9561 1.0476 1.3824 .27663 .72337 20 41 .9067 .0933 .4479 .5506 .0470 .3828 .27663 .72337 20 42 .9088 .0912 .4474 .5562 .0464 .3832 .7703 .2277 17 43 .9109 .0891 .4470 .5562 .0464 .3832 .7703 .2277 17 44 .9130 .0870 .4465 .5673 .0452 .3839 .7743 .2276 16 45 .69151 .30849 1.446			.31059						.72437	25
38 9004 0996 4492 5340 0489 3816 7623 2377 22 39 9025 0975 4487 5395 0483 3820 7643 2357 21 40 689046 30954 1,4483 95451 1,0476 1,3824 27663 72337 20 41 9067 0933 4479 5506 0470 3828 7683 2317 19 42 9088 0912 4474 5562 0464 3832 7703 2227 17 44 9130 0870 4465 5673 0452 3839 7743 2256 16 45 69151 30849 1,4461 95729 1,0446 1,3843 27764 2226 16 47 9193 0807 4457 5785 0440 3847 7784 2216 14 48 9214 0786 4448 5896 0428										
39 9025 0975 4487 5395 0.0483 3,820 7,643 2357 21 40 .69046 3,0954 1,4483 ,95451 1,0476 1,3824 2,27663 .72337 20 41 .9067 .0933 .4479 ,5506 .0470 ,3828 ,7683 .2317 19 42 .9088 .0912 .4470 ,5618 .0468 ,3832 ,7703 .2297 18 43 .9109 .0891 .4470 .5618 .0468 ,3836 ,7723 .2277 17 44 .9130 .0870 .4465 .5673 .0452 .3839 ,7743 .2256 16 45 .69151 .30849 1,4461 .95729 1,0446 1,3843 .27764 .72236 15 46 .9172 .0828 .4457 .5785 .0440 .3847 .7764 .72236 15 48 .9214 .0786 <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3820			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.69046	.30954	1.4483	.95451	1.0476	1.3824	.27663	.72337	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0470		. 7683		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.4470					. 2277	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	. 9130	. 0870	.4465	. 5673	.0452	.3839	. 7743	. 2256	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.30849							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0410				8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	. 9319	. 0681	.4426	. 6176	.0397	.3874	. 7925	. 2075	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										6
59 . 9445 . 0555 . 4400 . 6513 . 0361 . 3898 . 8046 . 1954 1 60 . 9466 . 0534 . 4395 . 6569 . 0355 . 3902 . 8066 . 1934 0										1 4
59 . 9445 . 0555 . 4400 . 6513 . 0361 . 3898 . 8046 . 1954 1 60 . 9466 . 0534 . 4395 . 6569 . 0355 . 3902 . 8066 . 1934 0						.0373				3
60 . 9466 . 0534 . 4395 . 6569 . 0355 . 3902 . 8066 . 1934 0		. 9424	. 0576	.4404	. 6456	.0367	.3894	. 8026	. 1974	2
										1
M. Cosine. Vrs. sin. Secant. Cotang. Tang. Cosec'nt Vrs. cos. Sine. M.		. 5100	. 0004	.1000	. 0003	.0000	.0002	. 0000	. 1304	-
	М.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.

449		Na	tural T	rigonom	etrical	Function	ns.	13	35°	
M.	Sine.	Vrs. cos.	Cosec'nt	Tang.	Cotang.	Secant.	Vrs. sin.	Cosine.	M.	
0	.69466	.30534	1.4395	.96569	1.0355	1.3902	.28066	.71934	60	
1	. 9487	. 0513	.4391	. 6625 . 6681	.0349	.3905	. 8086	. 1914	59	
2 3	. 9508 . 9528	. 0492	.4382	. 6738	.0343	.3913	. 8106	. 1873	58 57	
4	. 9549	. 0450	.4378	6794	.0331	.3917	. 8147	. 1853	56	
5	.69570	.30430	1.4374	.96850	1.0325	1.3921	.28167	.71833	55	
5 6 7 8 9	. 9591	. 0409	.4370	. 6907	.0319	.3925	. 8187	. 1813	54	
7	. 9612	. 0388	.4365	. 6963	.0313	.3929 .3933	. 8208 . 8228	. 1792 . 1772	53 52	
8	. 9633	. 0367	.4361	. 7020 . 7076	.0307	.3937	. 8248	. 1752	51	
10	.69675	.30325	1.4352	.97133	1.0295	1.3941	.28268	.71732	50	
11	. 9696	. 0304	.4348	. 7189	.0289	.3945	. 8289	. 1711	49	
12	. 9716	. 0283	.4344	. 7246	.0283	.3949	. 8309	. 1691	48	
13	. 9737	. 0263	.4339	. 7302 . 7359	.0277	.3953	. 8329	. 1671	47	
14 15	. 9758 .69779	.30221	1.4331	.97416	1.0265	1.3960	.28370	. 1650 .71630	46 45	
16	. 9800	. 0200	.4327	. 7472	.0259	.3964	. 8390	. 1610	44	
17	. 9821	. 0179	.4327 .4322	. 7529	.0253	.3968	. 8410	. 1589	43	
18	. 9841	. 0158	.4318	. 7586	.0247	.3972	. 8431	. 1569	42	
19 20	. 9862	. 0138	1.4314	. 7643	1.0235	.3976 1.3980	. 8451	. 1549 .71529	41 40	
20	. 9904	. 0096	.4305	. 7756	.0229	.3984	. 8492	. 1508	39	
21 22 23	. 9925	. 0075	.4301	. 7813	.0223	3988	. 8512	. 1488	38	
23	. 9945	. 0054	.4297	. 7870	.0218	.3992	. 8532	. 1468	37	
24	. 9966	. 0034	.4292	. 7927	.0212	.3996	. 8553	. 1447	36	
25 26	.69987 .70008	.30013	1.4288	.97984	1.0206	1.4000	.28573	.71427 . 1406	35 34	
27	. 0029	. 9971	.4280	. 8098	.0194	.4004	. 8614	. 1386	33	
28	. 0049	. 9950	.4276	. 8155	.0188	.4012	. 8634	. 1366	32	
29	. 0070	. 9930	.4271	. 8212	0182	4016	. 8654	. 1345	31	
30	.70091	.29909	1.4267	.98270	1.0176	1.4020	.28675	.71325	30	
51 32	. 0112	. 9888	.4263	. 8327	.0170 .0164	.4024 .4028	. 8695	. 1305	29 28	
33	. 0152	. 9847	.4254	. 8384 . 8441	.0154	.4028	. 8716 . 8736	. 1284	27	
34	. 0174	9826	.4250	. 8499	.0152	.4036	. 8756	. 1243	26	
35	.70194	.29805	1.4246	.98556	1.0146	1.4040	.28777	.71223	25	
36	. 0215	. 9785	.4242	. 8613	.0141	.4044	. 8797	. 1203	24	
37 38	. 0236	. 9764	.4238	. 8671 . 8728	.0135	.4048	. 8818	. 1182	23	
39	. 0257 . 0277	9722	.4233 .4229	8786	.0129 .0123	.4056	. 8859	. 1141	22 21	
40	.70298	.29702	1.4225	.98843	1.0117	1.4060	.28879	.71121	20	
41	. 0319	. 9681	.4221	. 8901	.0111	.4065	. 8899	. 1100	19	
42 43	. 0339	. 9660	.4217	. 8958 . 9016	.0105	.4069	. 8920	. 1080	18 17	
44	. 0381	. 9619	.4212	. 9073	.0093	.4073	. 8940 . 8961	. 1059 . 1039	16	
45	.70401	.29598	1.4204	.99131	1.0088	1.4081	.28981	.71018	15	
46	. 0422	. 9578	.4200	. 9189	.0082	.4085	. 9002	. 0998	14	
47	. 0443	. 9557	.4196	. 9246	.0076	.4089	. 9022	. 0977	13	
48 49	. 0463	. 9536 . 9516	.4192	. 9304	.0070	.4093 .4097	. 9043	. 0957	12 11	
50	.70505	.29495	1,4183	.99420	1.0058	1.4101	.29084	.70916	10	
51	. 0525	. 9475	.4179	. 9478	.0052	.4105	. 9104	. 0895		
52	. 0546	. 9454	.4175	. 9536	.0047	.4109	. 9125	. 0875	8	
53	. 0566	. 9433	.4171	. 9593	.0041	.4113	. 9145	. 0854	9 8 7 6 5	
54 55	. 0587	. 9413	.4167 1.4163	. 9651	.0035 1.0029	.4117 1.4122	. 9166	. 0834	5	
56	. 0628	. 9372	.4159	. 9767	.0023	.4126	. 9207	. 0793	4	
57	. 0649	. 9351	.4154	. 9826	.0017	.4130	. 9228	. 0772	3 2	
58	. 0669	. 9330	.4150	. 9884	.0012	.4134	. 9248	. 0772	2	
59 60	. 0690	9310	.4146	. 9942 1.0000	.0006	.4138	, 9269	. 0731	1	
	. 0/11	. 9209	.4142		.0000	.4142	. 9289	. 0711	0	
M.	Cosine.	Vrs. sin.	Secant.	Cotang.	Tang.	Cosec'nt	Vrs. cos.	Sine.	M.	

Logarithms.

0-			Logai	itiiliis.			179-
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	Inf. Neg.	Infinite.	Inf. Neg.	Infinite.	10.00000	10.00000	60
ĭ	6.46373	13.53627	6.46373	13.53627	00000	00000	59
2	76476	23524	76476	23524	00000	00000	58
3	94085	05915	94085	05915	00000	00000	57
4	7.06579	12.93421	7.06579	12.93421	00000	00000	56
5	7.16270 24188	12.83730	7.16270 24188	12.83730	10.00000	10.00000	55
7	30882	75812 69118	30882	75812 69118	00000	00000 00000	54 53
1 2 3 4 5 6 7 8	36682	63318	36682	63318	00000	00000	52
9	41797	58203	41797	58203	00000	00000	51
10	7.46373	12.53627	7.46373	12.53627	10.00000	10.00000	50
11	50512	49488	50512	49488	00000	00000	49
12 13	54291	45709 42233	54291 57767	45709 42233	00000	00000	48
13	57767 60985	39015	60986	39014	00000	00000	47 46
15	7.63982	12.36018	7.63982	12.36018	10.00000	10.00000	45
16	66784	33216	66785	33215	00000	00000	44
17	69417	30583	69418	30582	00001	9.99999	43
18	71900	28100	71900	28100	00001	99999	42
19	74248	25752	74248	25752	00001	99999	41
20	7.76475	12.23525	7.76476	12.23524	10.00001	9.99999	40
21 22	78594 80615	21406 19385	78595 80615	21405 19385	00001 00001	99999 99999	39
23	82545	17455	82546	17454	00001	99999	38 37
24	84393	15607	84394	15606	00001	99999	36
25	7.86166	12.13834	7.86167	12.13833	10.00001	9.99999	35
26	87870	12130	87871	12129	00001	99999	34
27	89509	10491	89510	10490	00001	99999	33
28	91088	08912	91089	08911	00001	99999	32
29 30 31	92612 7.94084	07388 12.05916	92613 7.94086	$07387 \\ 12.05914$	00002 10.00002	99998 9.99998	31
31	95508	04492	95510	04490	00002	99998	30
32	96887	03113	96889	03111	00002	99998	29 28
33	98223	01777	98225	01775	00002	99998	27
34	99520	00480	99522	00478	00002	99998	27 26
35	8.00779	11.99221	8.00781	11.99219	10.00002	9.99998	25
36	02002	97998	02004	97996	00002	99998	24
37 38	03192 04350	96808 95650	03194 04353	96806 95647	00003	99997 99997	$\frac{23}{22}$
39	05478	94522	05481	94519	00003	99997	21
40	8.06578	11.93422	8.06581	11.93419	10.00003	9.99997	20
41	07650	92350	07653	92347	00003	99997	19
42	08696	91304	08700	91300	00003	99997	18
43	09718	90282	09722	90278	00003	99997	17
44 45	10717 8.11693	89283 11.88307	10720 8.11696	89280 11.88304	00004 10.00004	99996 9.99996	16
46	12647	87353	12651	87349	00004	9.99996	15 14
47	13581	86419	13585	86415	00004	99996	13
48	14495	85505	14500	85500	00004	99996	12
49	15391	84609	15395	84605	00004	99996	11
50	8.16268	11.83732	8.16273	11.83727	10.00005	9.99995	10
51	17128	82872	17133	82867	00005	99995	9
52 53	17971 18798	82029 81202	17976 18804	82024 81196	00005 00005	99995 99995	9 8 7 6 5 4 3 2 1
54	19610	80390	19616	80384	00005	99995	6
55	8.20407	11.79593	8.20413	11.79587	10.00006	9.99994	5
56	21189	78811	21195	78805	00006	99994	4
57 58	21958	78042	21964	78036	00006	99994	3
58	22713	77287	22720	77280	00006	99994	2
59 60	23456 24186	76544 75814	23462 24192	76538 75808	00006 00007	99994	1
	24100	70014	24132	10008	00007	99993	0
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
000							000

10			Logar	ithms.			178°
М.	Sine.	Cosecant.	Tangent.	Cotangent,	Secant.	Cosine.	M.
0	8.24186	11.75814	8.24192	11.75808	10.00007	9.99993	60
1	24903 25609	75097 74391	24910 25616	75090 74384	00007 00007	99993 99993	59 58
3	26304	73696	26312	73688	00007	99993	57
0 1 2 3 4 5 6 7 8 9	26988	73012	26996	73004	00008	99992	56
5	8.27661	11.72339	8.27669	11.72331	10.00008	9.99992	55
6	28324	71676	28332	71668	00008	99992	54
7	28977 29621	71023 70379	28986 29629	71014 70371	00008 00008	99992 99992	53 52
9	30255	69745	30263	69737	00009	99991	51
10	8.30879	11.69121	8.30888	11.69112	10.00009	9.99991	50
11	31495	68505	31505	68495	00009	99991	49
12	32103	67897	32112	67888	00010	99990	48
13 14	32702 33292	67298 66708	32711 33302	67289 66698	00010 00010	99990 99990	47 46
15	8.33875	11.66125	8.33886	11.66114	10.00010	9.99990	45
16	34450	65550	34461	65539	00011	99989	44
17	35018	64982	35029	64971	00011	99989	43
18	35578	64422	35590	64410	00011	99989	42
19 20	36131 8.36678	63869 11.63322	36143 8.36689	63857 11.63311	00011 10.00012	99989	41 40
21	37217	62783	37229	62771	00012	99988	39
21 22	37217 37750	62783 62250	37762	62238	00012	99988	38
23	38276	61724	38289	61711	00013	99987	37
24	38796	61204	38809	61191	00013	99987	36
25 26	8.39310 39818	11.60690 60182	8.39323 39832	11.60677 60168	10.00013	9.99987 99986	35 34
27	40320	59680	40334	59666	00014	99986	33
28	40816	59184	40830	59170	00014	99986	32
29	41307	58693	41321	58679	00015	99985	31
30	8.41792	11.58208	8.41807	11.58193	10.00015	9.99985	30
31 32	$\frac{42272}{42746}$	57728 57254	42287 42762	57713 57238	00015 00016	99985 99984	29 28
33	43216	56784	43232	56768	00016	99984	27
34	43680	56320	43696	56304	00016	99984	26
35	8.44139	11.55861	8.44156	11.55844	10.00017	9.99983	25
36	44594	55406	44611	55389	00017	99983	24
37 38	45044 45489	54956 54511	45061 45507	54939 54493	00017 00018	99983 99982	23 22
39	45930	5407.0	45948	54052	00018	99982	21
40	8.46366	11.53634	8.46385	11.53615	10.00018	9.99982	20
41	46799	53201	46817	53183	00019	99981	19
42 43	47226 47650	52774 52350	47245	52755	00019	99981	18
44	48069	51931	47669 48089	52331 51911	00019 00020	99981 99980	17 16
45	8.48485	11.51515	8.48505	11.51495	10.00020	9.99980	15
46	48896	51104	48917	51083	00021	99979	14
47	49304	50696	49325	50675	00021	99979	13 12
48 49	49708 50108	50292 49892	49729	50271	00021	99979	12
50	8.50504	11.49496	50130 8.50527	$49870 \\ 11.49473$	00022 10.00022	99978 9.99978	10
51	50897	49103	50920	49080	00023	99977	9
52	51287 51673	48713	51310	48690	00023	99977	8
53	51673	48327	51696	48304	00023	99977	7
54 55	52055 8.52434	47945 11.47566	52079 8.52459	47921 11.47541	$00024 \\ 10.00024$	99976 9.99976	6 5
56	52810	47190	52835	47165	00025	9.99976	4
57	53183	46817	53208	46792	00025	99975	3
58	53552	46448	53578	46422	00026	99974	2
59 60	53919 54282	46081 45718	53945	46055	00026	99974	9 8 7 6 5 4 3 2 1
			54308	45692	00026	99974	
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

Logarithms.

	20			Logar	ithms.			1770
	M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
á	0	8.54282	11.45718	8.54308	11.45692	10.00026	9.99974	60
	1	54642	45358	54669	45331	00027	99973	59
	2	54999	45001	55027	44973	00027	99973	58 57
	2 3 4 5 6 7 8 9	55354	44646	55382	44618	00028	99972	57
	4	55705	44295	55734	44266	00028	99972	56
	5	8.56054 56400	11.43946 43600	8.56083	11.43917 43571	10.00029 00029	9.99971 99971	55
	7	56743	43257	56429 56773	43227	00029	99970	53
	8	57084	42916	57114	42886	00030	99970	52
	9	57421	42579	57452	42548	00031	99969	51
	10	8.57757	11.42243	8.57788	11.42212	10.00031	9.99969	50
	11	58089	41911	58121	41879	00032	99968	49
	12 13	58419	41581	58451	41549	00032	99968	48
	14	58747 59072	41253 40928	58779 59105	41221 40895	00033 00033	99967 99967	47 46
	15	8.59395	11.40605	8.59428	11.40572	10.00033	9.99967	45
	16	59715	40285	59749	40251	00034	99966	44
	17	60033	39967	60068	39932	00034	99966	43
	18	60349	39651	60384	39616	00035	99965	42
	19	60662	39338	60698	39302	00036	99964	41
	20 21 22	8.60973	11.39027	8.61009	11.38991	10.00036	9.99964	40 39
	21	61282 61589	38718 38411	61319 61626	38681 38374	00037 00037	99963 99963	38
	23	61894	38106	61931	38069	00037	99962	37
	24 25	62196	37804	62234	37766	00038	99962	36
	25	8.62497	11.37503	8 62535	11.37465	10.00039	9.99961	35
	26 27	62795	37205	62834	37166	00039	99961	34
	27	63091	36909	63131	36869	00040	99960	33
	28 29	63385	36615	63426	36574	00040	99960	32 31
	30	63678 8.63968	36322 11.36032	63718 8.64009	36282 11.35991	00041 10.00041	99959 9,99959	30
	31	64256	35744	64298	35702	00042	99958	29
	32	64543	35457	64298 64585	35415	00042	99958	28
	33 34	64827	35173	64870	35130	00043	99957	27
	34	65110	34890	65154	34846	00044	99956	26
	35	8.65391	11.34609	8.65435	11.34565	10.00044	9.99956	25
	36 37	65670	34330	65715	34285 34007	00045	99955	24 23
	38	65947 66223	34053 33777	65993 66269	33731	00045 00046	99955 99954	$\frac{25}{22}$
	39	66497	33503	66543	33457	00046	99954	21
	40	8 66760	11.33231	8.66816	11.33184	10.00047	9.99953	20
	41	67039	32961	67087	32913	00048	99952	19
	42	67308	32692	67356	32644	00048	99952	18
	43 44	67575	32425	67624	32376	00049	99951	17
	44	67841 8.68104	32159 11.31896	67890 8.68154	32110 11.31846	00049 10.00050	99951 9.99950	16 15
	46	68367	31633	68417	31583	00051	99949	14
	47	68627	31373	68678	31322	00051	99949	13
	48	68886	31114	68938	31062	00052	99948	12
	49	69144	30856	69196	30804	00052	99948	11
	50	8.69400	11.30600	8.69453	11.30547	10.00053	9.99947	10
	51 52 53	69654 69907	30346 30093	69708 69962	30292 30038	00054	99946	9
	53	70159	29841	70214	29786	00054 00055	99946 99945	0 7
	54	70409	29591	70465	29535	00056	99944	6
	55	8.70658	11.29342	8.70714	11.29286	10.00056	9.99944	8 7 6 5 4 3 2 1
	56	70905	29095	70962	29038	00057	99943	4
	57	71151	28849	71208	28792	00058	99942	3
	58 59	71395	28605	71453	28547	00058	99942	2
	60	71638 71880	28362 28120	71697 71940	28303 28060	00059 00060	99941 99940	0
,		71000	20120	71310	20000	00000	33340	
	M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
	920							870

3°			Logar	ithms.			176°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	8.71880	11.28120	8.71940	11.28060	10.00060	9.99940	60
0 1 2 3	72120	27880	72181	27819	00060	99940	59
2	72359	27641 27403	72420 72659	27580 27341	00061 00062	99939 99938	58 57
3	72597 72834	27403	72896	27341	00062	99938	56
5	8.73069	11.26931	8.73132	27104 11.26868	10.00063	9.99937	55
6	73303	26697	73366	26634	00064	99936	54
4 5 6 7 8 9	73535	26465	73600	26400	00064	99936	53
8	73767	26233	73832	26168	00065	99935	52
9	73997	26003	74063	25937	00066	99934	51
11	8.74226 74454	11.25774 25546	8.74292 74521	11.25708 25479	10.00066 00067	9.99934 99933	50 49
12	74680	25320	74748	25252	00068	99932	48
13	74906	25094	74974	25026	00068	99932	47
14	75130	24870	75199	24801	00069	99931	46
15	8.75353	11.24647	8.75423	11.24577	10.00070	9.99930	45
16	75575	24425	75645	24355	00071	99929	44
17 18	75795 76015	24205 23985	75867 76087	24133 23913	00071 00072	99929 99928	43 42
10	76234	23766	76306	23694	00072	99928	42
19 20	8.76451	23766 11.23549	8.76525	23694 11.23475	10.00074	9.99926	40
21 22	76667	23333	76742	23258	00074	99926	39
22	76883	23117	76958	23042	00075	99925	-38
23	77097	22903	77173	22827	00076	99924	37
24 25	77310 8.77522	22690	77387	22613 11.22400	00077	99923	36
26 26	77733	11.22478 22267	8.77600 77811	22189	10.00077 00078	9.99923 99922	35
27	77943	22057	78022	21978	00079	99921	33
27 28	78152	21848	78232	21768	00080	99920	32
29	78360	21640	78441	21559 11.21351	00080	99920	31
30	8.78568	11.21432	8.78649	11.21351	10.00081	9.99919	30
31	78774	21226	78855	21145	00082	99918	29
32 33	78979 79183	21021 20817	79061 79266	20939 20734	00083 00083	99917 99917	28 27
34	79386	20614	79470	20734	00084	99917	26
35	8.79588	11.20412	8.79673	11.20327	10.00085	9.99915	25
36	79789	11.20412	79875	20125	00086	99914	24
37	79990	20010	80076	19924	00087	99913	23
38 39	80189	19811	80277	19723	00087	99913	22
40	80388 8.80585	19612 11.19415	80476 8.80674	19524 11.19326	00088 10.00089	99912 9.99911	21 20
41	80782	19218	80872	19128	00090	9.99911	19
42	80978	19022	81068	18932	00091	99909	18
43	81173	18827	81264	18736 18541 11.18347	00091	99909	17
44	81367	18633	81459	18541	00092	99908	16
45 46	8.81560	11.18440 18248	8.81653	11.18347	10.00093	9.99907	15
47	81752 81944	18056	81846 82038	18154 17962	00094	99906	14 13
48	82134	17866	82230	17770	00095 00096	99905 99904	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
49	82324	17676	82420	17580	00096	99904	11
50	8.82513	11.17487	8.82610	11.17390	10.00097	9.99903	10
51	82701	17299	82799	17201	00098	99902	9
52 53	82888 82075	17112	82987	17013	00099	99901	8
54	83075 83261	16925 16739	83175 83361	16825 16639	00100 00101	99900	7
55	8.83446	11.16554	8.83547	11.16453	10.00101	99899 9.99898	6 5
56	83630	16370	83732	16268	00102	99898	4
57	83813	16370 16187	83916	16084	00103	99897	3
58	83996	16004	84100	15900	00104	99896	3 2 1
59 60	84177 84358	15823 15642	84282 84464	15718	00105	99895	1 0
				15536	00106	99894	
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

£3a

Logarithms.

-			8				
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	8.94030	11.05970	8.94195	11.05805	10.00166	9.99834	60
1 2 3 4 5 6 7 8	94174	05826	94340	05660	00167	99833	59
2	94317	05683	94485	05515	00168	99832	58
3	94461	05539	94630	05370	00169	99831	57
4	94603	05397	94773 8.94917	05227 11.05083	00170	99830	56
5	8.94746	11.05254	8.94917	11.05083	10.00171	9.99829	55
6	94887	05113	95060	04940	00172	99828	54
7	95029	04971	95202	04798	00173	99827	53
8	95170	04830	95344	04656	00175	99825	52
9	95310	04690	95486	04514	00176	99824	51
10	8.95450	11.04550	8.95627	11.04373	10.00177	9.99823	50
11	95589	04411	95767	04233	00178	99822	49
12	95728	04272	95908	04092	00179	99821	48
12 13	95728 95867	04272 04133	96047	03953	00180	99820	47
14	96005	03995	96187	03813	00181	99819	46
15	8.96143	11.03857	8.96325	11.03675	10.00183	9.99817	45
16	96280	03720 03583	96464	03536	00184	99816	44
17	96417	03583	96602	03398	00185	99815	43
18	96553	03447	96739	03261	00186	99814	42
19	96689	03311	96877	03123	00187	99813	41
20 21 22 23	8.96825	11.03175	8.97013 97150 97285	11.02987 02850	10.00188	9.99812	40
21	96960	03040	97150	02850	00190	99810	39
22	97095 97229	02905	97285	02715	00191	99809	38
23		02771	97421	02579	00192	99808	37
24 25	97363	$02637 \\ 11.02504$	97556	02444 11.02309	00193	99807	36
26	8.97496 97629	00271	8.97691		10.00194	9.99806	35
20	97762	02371 02238	97825 97959	02175 02041	00196 00197	99804 99803	34 33
27 28 29	97894	02106	98092	02041	00197	99802	32
20	98026	01974	98225	01908 01775 11.01642	00199	99801	31
30	8.98157	11.01843	8.98358	11 01649	10.00200	9.99800	30
31	98288	01712	98490	01510	00202	99798	29
32	98419	01581	98622	01378	00203	99797	28
33	98549	01451	98753	01247	00204	99796	28 27
34	98679	01321	98884	01116	00205	99795	26
35	8.98808	11.01192	8.99015	11.00985	10.00207	9.99793	25
36	98937	01063	99145	00855	00208 00209	99792	24
37	99066	00934	99275	00855 00725	00209	99791	23
38	99194	00806	99405	00595	00210	99790	22
39	99322	00678	99534	00466	00212	99788	21
40	8.99450	11.00550	8.99662	11.00338	10.00213	9.99787	20
41	99577	00423	99791	00209	00214	99786	19
42	99704	00296	99919	00081	00215	99785	18
43	99830	00170	9.00046	10.99954	00217	99783	18 17
44	99956	00044	00174	99826	00218 10.00219	99782 9.99781	16
45	9.00082	10.99918	9.00301	10.99699	10.00219	9.99781	15
46	00207	99793	00427	99573	00220	99780	14
47	00332	99668	00553	99447	00222	99778	13
48 49	00456 00581	99544	00679	99321	00223 00224	99777 99776	12 11
50	9.00704	99419 10.99296	00805	99195	10 00005	99776	11
51	00828	99172	9.00930 01055	10.99070	10.00225	9.99775	10
52	00951	99049	01055	98945 98821	00227 00228	99773	9
53	01074	98926	01179	98697	00228	99772 99771	7
54	01196	98804	01303 01427	98573	00229	99769	6
55	9.01318	10.98682	9.01550	10.98450	10.00232	9.99768	5
56	01440	98560	01673	98327	00233	99767	4
57	01561	98439	01796	98204	00235	99765	3
58	01682	98318	01918	98082	00236	99764	2
59	01803	98197	02040	97960	00237	99763	9 8 7 6 5 4 3 2 1
60	01923	98077	02162	97838	00239	99761	0
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

M. Sine. Cosecant. Tangent. Cotangent. Secant. Cosine. M.		6°			Logar	ithms.			173°
2 02163 97837 02283 97717 00240 99760 59 2 02163 97837 02404 977596 00241 99759 58 3 02283 97717 02525 97475 00243 99759 57 4 02402 97598 02645 97355 00244 99756 56 5 9.02520 10.97480 9.02766 10.97234 10.00245 9.99755 55 6 02639 97361 022885 97115 00247 99758 56 7 02757 97243 03005 96995 00248 99758 58 8 02874 97126 03124 96876 00249 99751 52 9 02992 97008 03242 96876 00249 99751 52 10 9.03109 10.96891 9.03361 10.96639 10.00252 9.99748 51 11 03226 96774 03479 96521 00253 99747 49 12 03342 96658 03597 96403 00255 99744 47 14 03574 96426 03832 96168 00256 99744 47 15 9.03600 10.96310 9.03948 10.96052 10.00259 99744 47 16 03805 96195 04065 95935 00260 99740 44 17 03920 96080 04181 95881 00262 99738 43 18 04034 95966 04297 95703 00263 99738 41 18 04034 95966 04297 95703 00263 99738 42 20 9.04262 10.95738 9.04528 10.95472 10.00266 99730 44 20 9.04262 10.95738 9.04528 10.95472 10.00266 99730 42 21 04376 95624 04643 95387 00266 99738 43 22 04490 95510 04758 95242 00269 99731 38 22 04490 95510 04758 95242 00269 99731 38 22 04490 95510 04758 95242 00269 99731 38 22 04490 9550 04683 95387 00267 99738 37 24 04715 95285 04887 95013 00273 9.99728 36 25 9.04828 10.95172 9.05101 10.94899 10.00273 9.99728 36 27 05052 94948 05328 94672 00269 99731 38 28 05164 94836 05411 94559 00277 99728 36 29 05275 94725 05553 94447 00279 99728 36 30 9.05386 10.94173 06113 93887 00267 99724 33 31 05497 94503 05788 94222 00289 99711 32 32 06607 94939 05666 0334 94758 00277 99721 31 33 05717 94283 06002 93998 00284 99716 27 34 05697 94738 06113 93887 00286 99711 24 35 9.05087 10.94063 9.06264 93736 10.00280 997910 23 36 06069 93974 9488 05328 94672 00269 99791 32 37 06059 93845 06666 93334 00293 99707 21 38 0607 94939 05666 03349 90692 11 39 06372 93854 00369 93988 00284 99716 27 39 05275 94725 05553 94747 00279 99728 36 30 06069 93969 0616 9398 00284 99710 0283 99717 28 30 06079 93968 15 30 06388 91070 93889 10.94171 00316 99868 14 30 06388 91070 93889 10.9111 00.0317 99968 16 34 06944 93966 06666 93344 00292 99790 11 34 06891 93968 9396 00288		M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
10 9.03109 10.96891 9.03361 10.96639 10.00252 9.99748 50 12 033226 966774 03479 96521 00253 99745 48 13 03458 96542 03714 96286 00256 99744 48 14 03574 96426 03832 96168 00258 99742 46 15 9.03690 10.96310 9.03948 10.96052 10.00259 9.99741 45 16 03805 96195 04065 95935 00260 99744 44 17 03920 96080 04181 95819 00262 99738 43 18 04034 95966 04297 95703 00263 99736 41 19 04149 95851 04413 95587 00264 99736 41 20 9.04262 10.95788 9.04528 10.95472 10.00266 99731 48 40376 95624 04643 95357 00267 99733 39 22 04490 95510 04758 95242 00269 99731 38 23 04603 95397 04873 95127 00270 99733 37 24 04715 95285 04987 95103 00272 99728 36 25 9.04828 10.95172 9.05101 10.94899 10.00273 9.99727 35 26 04940 95060 05214 94786 00274 99726 34 27 05052 94948 05328 94672 01276 99723 32 28 05164 94836 05441 94559 00277 99723 32 29 05275 94725 05553 94447 00279 99721 33 30 9.05386 10.9454 9.05666 10.9434 10.00280 9.99720 30 30 05386 10.9454 0.96666 10.9434 00282 9.99710 23 23 05607 94393 05890 94110 00283 9.99720 30 30 05836 10.9463 06335 93665 00289 999711 24 24 06696 39344 06656 93444 00292 99710 27 27 27 27 27 27 27 2									
10 9.03109 10.96891 9.03361 10.96639 10.00252 9.99748 50 12 033226 966774 03479 96521 00253 99745 48 13 03458 96542 03714 96286 00256 99744 48 14 03574 96426 03832 96168 00258 99742 46 15 9.03690 10.96310 9.03948 10.96052 10.00259 9.99741 45 16 03805 96195 04065 95935 00260 99744 44 17 03920 96080 04181 95819 00262 99738 43 18 04034 95966 04297 95703 00263 99736 41 19 04149 95851 04413 95587 00264 99736 41 20 9.04262 10.95788 9.04528 10.95472 10.00266 99731 48 40376 95624 04643 95357 00267 99733 39 22 04490 95510 04758 95242 00269 99731 38 23 04603 95397 04873 95127 00270 99733 37 24 04715 95285 04987 95103 00272 99728 36 25 9.04828 10.95172 9.05101 10.94899 10.00273 9.99727 35 26 04940 95060 05214 94786 00274 99726 34 27 05052 94948 05328 94672 01276 99723 32 28 05164 94836 05441 94559 00277 99723 32 29 05275 94725 05553 94447 00279 99721 33 30 9.05386 10.9454 9.05666 10.9434 10.00280 9.99720 30 30 05386 10.9454 0.96666 10.9434 00282 9.99710 23 23 05607 94393 05890 94110 00283 9.99720 30 30 05836 10.9463 06335 93665 00289 999711 24 24 06696 39344 06656 93444 00292 99710 27 27 27 27 27 27 27 2		1				97717			59
10 9.03109 10.96891 9.03361 10.96639 10.00252 9.99748 50 12 03226 96774 03479 96521 00253 99747 49 12 03342 96688 03597 96403 00255 99745 48 13 03458 96542 03714 96286 00256 99744 47 47 03574 96426 03832 96163 00253 99742 46 15 9.03690 10.96310 9.03948 10.96052 10.00259 99740 44 17 03920 96080 04181 95855 00260 99740 44 18 04034 95966 04297 95703 00263 99737 42 42 04376 95587 00264 99736 41 41 95851 04413 95587 00264 99736 41 41 20 9.04262 10.95738 9.04528 10.95472 10.00266 9.99734 40 40 40 95510 04758 95522 00269 99731 33 22 04490 95510 04758 95522 00269 99731 33 22 04490 95510 04758 95522 00269 99733 37 24 04715 95285 04987 95013 00272 99723 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904528 94725 05553 94447 00279 99723 32 25 905275 94725 05553 94447 00279 99723 32 25 905275 94725 05553 94447 00279 99723 32 25 905667 94383 05890 94110 00288 99711 24 24 24 24 24 24 24		3		97037	02525	97475	00241		
10 9.03109 10.96891 9.03361 10.96639 10.00252 9.99748 50 12 03226 96774 03479 96521 00253 99747 49 12 03342 96688 03597 96403 00255 99745 48 13 03458 96542 03714 96286 00256 99744 47 47 03574 96426 03832 96163 00253 99742 46 15 9.03690 10.96310 9.03948 10.96052 10.00259 99740 44 17 03920 96080 04181 95855 00260 99740 44 18 04034 95966 04297 95703 00263 99737 42 42 04376 95587 00264 99736 41 41 95851 04413 95587 00264 99736 41 41 20 9.04262 10.95738 9.04528 10.95472 10.00266 9.99734 40 40 40 95510 04758 95522 00269 99731 33 22 04490 95510 04758 95522 00269 99731 33 22 04490 95510 04758 95522 00269 99733 37 24 04715 95285 04987 95013 00272 99723 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904528 94725 05553 94447 00279 99723 32 25 905275 94725 05553 94447 00279 99723 32 25 905275 94725 05553 94447 00279 99723 32 25 905667 94383 05890 94110 00288 99711 24 24 24 24 24 24 24		4	02402	97598	02645			99756	
10 9.03109 10.96891 9.03361 10.96639 10.00252 9.99748 50 12 03226 96774 03479 96521 00253 99747 49 12 03342 96688 03597 96403 00255 99745 48 13 03458 96542 03714 96286 00256 99744 47 47 03574 96426 03832 96163 00253 99742 46 15 9.03690 10.96310 9.03948 10.96052 10.00259 99740 44 17 03920 96080 04181 95855 00260 99740 44 18 04034 95966 04297 95703 00263 99737 42 42 04376 95587 00264 99736 41 41 95851 04413 95587 00264 99736 41 41 20 9.04262 10.95738 9.04528 10.95472 10.00266 9.99734 40 40 40 95510 04758 95522 00269 99731 33 22 04490 95510 04758 95522 00269 99731 33 22 04490 95510 04758 95522 00269 99733 37 24 04715 95285 04987 95013 00272 99723 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904528 94725 05553 94447 00279 99723 32 25 905275 94725 05553 94447 00279 99723 32 25 905275 94725 05553 94447 00279 99723 32 25 905667 94383 05890 94110 00288 99711 24 24 24 24 24 24 24	٠	5		10.97480	9.02766				
10 9.03109 10.96891 9.03361 10.96639 10.00252 9.99748 50 12 03226 96774 03479 96521 00253 99747 49 12 03342 96688 03597 96403 00255 99745 48 13 03458 96542 03714 96286 00256 99744 47 47 03574 96426 03832 96163 00253 99742 46 15 9.03690 10.96310 9.03948 10.96052 10.00259 99740 44 17 03920 96080 04181 95855 00260 99740 44 18 04034 95966 04297 95703 00263 99737 42 42 04376 95587 00264 99736 41 41 95851 04413 95587 00264 99736 41 41 20 9.04262 10.95738 9.04528 10.95472 10.00266 9.99734 40 40 40 95510 04758 95522 00269 99731 33 22 04490 95510 04758 95522 00269 99731 33 22 04490 95510 04758 95522 00269 99733 37 24 04715 95285 04987 95013 00272 99723 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904528 94725 05553 94447 00279 99723 32 25 905275 94725 05553 94447 00279 99723 32 25 905275 94725 05553 94447 00279 99723 32 25 905667 94383 05890 94110 00288 99711 24 24 24 24 24 24 24		6							
10 9.03109 10.96891 9.03361 10.96639 10.00252 9.99748 50 12 03226 96774 03479 96521 00253 99747 49 12 03342 96688 03597 96403 00255 99745 48 13 03458 96542 03714 96286 00256 99744 47 47 03574 96426 03832 96163 00253 99742 46 15 9.03690 10.96310 9.03948 10.96052 10.00259 99740 44 17 03920 96080 04181 95855 00260 99740 44 18 04034 95966 04297 95703 00263 99737 42 42 04376 95587 00264 99736 41 41 95851 04413 95587 00264 99736 41 41 20 9.04262 10.95738 9.04528 10.95472 10.00266 9.99734 40 40 40 95510 04758 95522 00269 99731 33 22 04490 95510 04758 95522 00269 99731 33 22 04490 95510 04758 95522 00269 99733 37 24 04715 95285 04987 95013 00272 99723 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904828 10.95172 9.05101 0.94899 10.00273 9.99727 35 25 904528 94725 05553 94447 00279 99723 32 25 905275 94725 05553 94447 00279 99723 32 25 905275 94725 05553 94447 00279 99723 32 25 905667 94383 05890 94110 00288 99711 24 24 24 24 24 24 24		8	02757	97245	03124	96876	00248		
10 9.03109 10.96891 9.03361 10.96639 10.00252 9.99748 50 12 03322 96658 03597 96403 00255 99745 48 13 03458 96542 03714 96286 00256 99744 47 47 48 48 48 48 48		9	02992	97008	03242	96758	00251	99749	51
12		10	9.03109		9.03361	10.96639	10.00252		50
14 03574 96426 03832 96168 00259 997421 45 16 03805 10,96310 9,03948 10,06052 10,00259 9,9741 45 16 03805 96195 04065 95935 10,00260 99738 43 18 04034 95866 04297 95703 00263 99737 42 19 04149 95851 04413 95587 00264 99734 40 20 9,04262 10,95738 9,04528 10,95472 10,00266 99734 40 21 0,4376 95624 04643 95357 00267 99733 38 22 0,4490 95510 04758 95242 00269 99731 38 23 0,4603 95285 04987 95013 00272 99722 35 24 0,4715 95285 04987 95013 00272 99723 32 25		11							
14 03574 96426 03832 96168 00259 997421 45 16 03805 10,96310 9,03948 10,06052 10,00259 9,9741 45 16 03805 96195 04065 95935 10,00260 99738 43 18 04034 95866 04297 95703 00263 99737 42 19 04149 95851 04413 95587 00264 99734 40 20 9,04262 10,95738 9,04528 10,95472 10,00266 99734 40 21 0,4376 95624 04643 95357 00267 99733 38 22 0,4490 95510 04758 95242 00269 99731 38 23 0,4603 95285 04987 95013 00272 99722 35 24 0,4715 95285 04987 95013 00272 99723 32 25		13		96542		96286			
15 9.03690 10.96310 9.03948 10.96052 10.00259 9.99740 44 17 03805 96080 04181 95819 00262 99738 43 18 04034 95866 04297 95703 00263 99736 41 20 9.04262 10.95738 9.04528 10.95472 10.00266 9.99734 40 21 04376 95624 04643 955357 00267 99733 39 22 04490 95510 04758 95242 00269 99731 38 23 04603 95397 04873 95127 00270 99730 37 24 04715 95285 04987 95013 00272 99728 36 25 9.04828 10.95172 9.05101 10.94899 10.00273 9.99726 34 27 05052 94948 05328 94672 0277 99723 32 28		14	03574	96426	03832	96168	00258	99742	46
17 03920 96080 04181 95819 00263 99737 42 19 04149 95851 04413 95587 00263 99737 42 20 9.04262 10.95738 9.04528 10.95472 10.00266 9.99736 41 21 04376 95624 04643 95557 00267 99733 39 22 04490 95510 04758 95242 00269 99731 38 23 04603 95397 04873 95127 00270 99730 37 24 04715 95285 04987 95013 00272 99728 36 26 04940 95060 05214 94786 00274 99726 34 27 05052 94948 05328 94672 0276 99724 33 28 05164 94836 05441 9459 00277 99723 32 29 05275 <		15				10.96052			
18 04034 95966 04297 95703 00263 99736 41 20 9.04262 10.95738 9.04528 10.95472 10.00266 999734 40 21 04376 95624 04643 95357 00267 99733 39 22 04490 95510 04758 95242 00269 99731 38 23 04603 95397 04873 95127 00270 99730 37 24 04715 95285 04987 95013 00272 99728 36 25 9.04828 10.95172 9.05101 10.94899 10.02273 9.99727 35 26 0.4940 95060 05214 94786 00274 99724 34 27 05052 94948 05328 94672 0276 99724 33 28 05164 94836 05441 94559 00277 99723 32 29 0527						95935			
19									
21 04376 95624 04643 95357 00267 99731 38 22 04400 95510 04758 95242 00269 99731 38 24 04715 95285 04987 95013 00272 99728 36 25 9.04828 10.95172 9.05101 10.94899 10.00273 9.99727 35 26 04940 95060 05214 94786 00274 99724 33 28 05164 94836 05441 94559 00277 99723 32 29 05275 94725 05553 94447 00279 99721 31 30 9.05386 10.94614 9.05666 10.9434 10.00280 9.99720 30 31 05497 94503 05578 94222 00282 99718 29 32 05607 94393 05890 94110 00283 99716 27 34 0582		19	04149	95851	04413	95587	00264	99736	41
22		20		10.95738		10.95472	10.00266		
24 04715 95285 04987 95010 10.94899 10.00272 99727 35 26 04940 95060 05214 94786 00274 99726 34 27 05052 94948 05328 94672 01276 99724 33 28 05164 94836 05441 94559 00277 99723 32 29 05275 94725 05553 94447 00279 99721 31 30 9.05886 10.94614 9.05666 10.94334 10.00280 9.99720 30 31 05497 94503 05878 94222 00282 99718 29 32 05607 94393 05890 94110 00283 99716 27 34 05827 94173 06113 93887 00284 99716 27 34 05827 94173 06113 93887 00286 99711 24 36		21		95624	04643			99733	
24 04715 95285 04987 95010 10.94899 10.00272 99727 35 26 04940 95060 05214 94786 00274 99726 34 27 05052 94948 05328 94672 01276 99724 33 28 05164 94836 05441 94559 00277 99723 32 29 05275 94725 05553 94447 00279 99721 31 30 9.05886 10.94614 9.05666 10.94334 10.00280 9.99720 30 31 05497 94503 05878 94222 00282 99718 29 32 05607 94393 05890 94110 00283 99716 27 34 05827 94173 06113 93887 00284 99716 27 34 05827 94173 06113 93887 00286 99711 24 36		23							
27 05052 94948 05328 94672 01276 99723 32 28 05164 94836 05441 94559 00277 99723 32 29 05275 94725 05553 94447 00279 99721 31 30 9.05386 10.94614 9.05666 10.94334 10.00280 9.99720 30 31 05497 94503 05878 94222 00282 99718 29 32 05607 94393 05890 94110 00283 99717 28 34 05827 94173 06113 93887 00284 99716 27 34 05827 94173 06113 93887 00289 99711 24 35 9.05937 10.94063 9.06224 10.93776 10.00287 9.99713 25 36 60646 93354 06355 93655 00290 99711 24 37 061		24	04715	95285	04987	95013	00272	99728	36
27 05052 94948 05328 94672 01276 99723 32 28 05164 94836 05441 94559 00277 99723 32 29 05275 94725 05553 94447 00279 99721 31 30 9.05386 10.94614 9.05666 10.94334 10.00280 9.99720 30 31 05497 94503 05878 94222 00282 99718 29 32 05607 94393 05890 94110 00283 99717 28 34 05827 94173 06113 93887 00284 99716 27 34 05827 94173 06113 93887 00289 99711 24 35 9.05937 10.94063 9.06224 10.93776 10.00287 9.99713 25 36 60646 93354 06355 93655 00290 99711 24 37 061		25					10.00273		
28 05164 94836 05441 94559 00277 99721 32 29 05275 94725 05553 94447 00279 99721 31 30 9.05386 10.94614 9.05666 10.94334 10.0280 9.99720 30 31 05497 944503 05778 94222 00282 99718 29 32 05607 94393 05890 94110 00283 99717 28 33 05717 94283 06002 93998 00284 99716 27 34 05827 94173 06113 93887 00286 99714 26 35 9.05937 10.9463 9.06224 10.93776 10.00287 9.99713 25 36 06046 93954 06335 93665 00289 99711 24 37 06155 93845 06445 93555 00290 99710 23 38 0627		26			05214	94786	00274		
29 05275 94725 05553 94447 00279 99721 31 30 9.05386 10.94614 9.05666 10.94334 10.00280 9.99720 30 31 05497 94503 05778 94222 00282 99718 29 32 05607 94393 05890 94110 00283 99717 28 33 05717 94283 06002 93998 00284 99716 27 34 05827 94173 06113 93887 00286 99714 26 36 06046 93954 06335 93665 00289 99711 24 37 06155 93845 06445 93555 00290 99702 23 38 06264 93736 06556 93444 00292 99708 22 40 9.06481 10.93519 9.06775 10.93225 10.00295 9.99705 20 41 065		28			05441		00277		
31 05497 94503 05778 94222 00282 99718 29 32 05607 94393 05890 94110 00283 99717 28 33 05717 94283 06002 93998 00284 99716 27 34 05827 94173 06113 93887 00286 99714 26 35 9.05937 10.94063 9.06224 10.93776 10.00287 9.99713 25 36 06046 93934 06335 93665 00289 99711 24 37 06155 93845 06445 93555 00290 99710 23 38 06264 93736 06556 93444 00292 99708 22 39 06372 93628 06666 93334 00293 99707 21 40 9.06481 10.93519 9.06775 10.93225 10.00295 9.99702 18 41 065		29	05275	94725	05553	94447	00279	99721	31
33 05717 94283 06002 93998 00286 99714 26 35 9.05937 10.94063 9.06224 10.93776 10.00287 9.99713 25 36 06046 93954 06335 93665 00289 99711 24 37 06155 93845 06445 93555 00290 99710 23 38 06264 93736 06556 93444 00292 99708 22 39 06372 93628 06666 93334 00293 99707 21 40 9.06481 10.93519 9.06775 10.93225 10.00295 9.99705 20 41 06589 93411 06885 93115 00296 99704 19 42 06696 93304 06994 93006 00298 99702 18 43 06804 93196 07103 92897 00299 99701 17 45 9.0		30	9.05386		9.05666	10.94334	10.00280		
33 05717 94283 06002 93998 00286 99714 26 35 9.05937 10.94063 9.06224 10.93776 10.00287 9.99713 25 36 06046 93954 06335 93665 00289 99711 24 37 06155 93845 06445 93555 00290 99710 23 38 06264 93736 06556 93444 00292 99708 22 39 06372 93628 06666 93334 00293 99707 21 40 9.06481 10.93519 9.06775 10.93225 10.00295 9.99705 20 41 06589 93411 06885 93115 00296 99704 19 42 06696 93304 06994 93006 00298 99702 18 43 06804 93196 07103 92897 00299 99701 17 45 9.0		32	05607		05778	94222		99718 99717	
34 05827 94173 9.06113 93887 00286 99714 26 35 9.05937 10.94063 9.06224 10.93776 10.00287 9.99713 25 36 06046 93954 06335 93665 00289 99711 24 37 06155 93845 06445 93555 00290 99710 23 38 06264 93736 06556 93444 00292 99708 22 39 06372 93628 06666 93334 00293 99707 21 40 9.06481 10.93519 9.06775 10.93225 10.00295 9.99702 20 41 06589 93411 06885 93115 00298 99702 18 43 06804 93196 07211 92789 00299 99701 17 44 06911 93089 07211 92789 00301 99699 16 45 9		33	05717	94283	06002			99716	27
36 06046 93954 06335 93665 00289 99711 24 37 06155 93845 06445 93555 00290 99710 23 38 06264 93736 06556 93444 00292 99708 22 39 06372 93628 06666 93334 00293 99707 21 40 9.06481 10.93519 9.06775 10.93225 10.00296 99704 12 41 06589 93411 06885 93115 00296 99702 18 43 06804 93304 06994 93006 00298 99702 18 43 06804 93196 07103 92897 00299 99701 17 44 06911 93089 07211 92789 00301 9699 16 45 9.07018 10.92982 9.07320 10.92680 10.00302 9.96968 15 46 07124<		34	05827	94173	06113			99714	
37 06155 93845 06445 93555 00290 99710 23 38 06264 93736 06556 93444 00292 99708 22 39 06372 93628 06666 93334 00293 99707 21 40 9.06481 10.93519 9.06775 10.93225 10.00295 9.99704 19 41 06589 93411 06885 93115 00296 99704 19 42 06696 93304 06994 93006 00298 99701 18 43 06804 93196 07103 92897 00299 99701 17 44 06911 93089 07211 92789 00301 99699 16 45 9.07018 10.92982 9.07320 10.92680 10.00302 9.99698 15 46 07124 92876 07428 92572 00304 99696 14 47 072		35	9.05937		9.06224	10.93776			25
39 06372 93628 06666 93334 00293 99707 21 40 9.06481 10.93519 9.06775 10.93225 10.00295 9.99705 20 41 06589 93411 06885 93115 00296 99704 19 42 06696 93304 06994 93006 00298 99702 18 43 06804 93196 07103 92897 00299 99701 17 44 06911 93089 07211 92789 00301 99699 16 45 9.07018 10.92982 9.07320 10.92680 10.00302 9.9698 15 46 07124 92876 07428 92572 00304 99696 14 47 07231 92769 07536 92464 00305 99695 13 48 07337 92663 07643 92357 00307 99693 12 49 0734		37							
39 06372 93628 06666 93334 00293 99707 21 40 9.06481 10.93519 9.06775 10.93225 10.00295 9.99705 20 41 06589 93411 06885 93115 00296 99704 19 42 06696 93304 06994 93006 00298 99702 18 43 06804 93196 07103 92897 00299 99701 17 44 06911 93089 07211 92789 00301 99699 16 45 9.07018 10.92982 9.07320 10.92680 10.00302 9.9698 15 46 07124 92876 07428 92572 00304 99696 14 47 07231 92769 07536 92464 00305 99695 13 48 07337 92663 07643 92357 00307 99693 12 49 0734		38	06264	93736	06556		00292	99708	22
41 06589 93411 06885 93115 00296 99704 19 42 06696 93304 06994 93006 00298 99702 18 43 06804 93196 07103 92897 00299 99701 17 44 06911 93089 07211 92789 00301 99699 16 45 9.07018 10.92982 9.07320 10.92680 10.00302 9.96998 15 46 07124 92876 07428 92572 00304 99696 14 47 07231 92769 07536 92464 00305 99695 13 48 07337 92663 07643 92357 00307 99693 12 49 07442 92558 07751 92249 00308 99692 11 50 9.07548 10.92452 9.07858 10.92142 10.00310 9.96960 10 51 076		39							
42 06696 93304 06994 93006 00298 99702 18 43 06804 93196 07103 92897 00299 99701 17 44 06911 93089 07211 92789 00301 99699 16 45 9.07018 10.92982 9.07320 10.92680 10.00302 9.9698 15 46 07124 92876 07428 92572 00304 99696 14 47 07231 92769 07536 92464 00305 99695 13 48 07337 92663 07643 92357 00307 99693 12 49 07442 92558 07751 92249 00308 99692 11 50 9.07548 10.92452 9.07858 10.92142 10.00310 9.99690 10 51 07653 92347 07964 92036 00311 99689 9 52 07758		40	9.06481	10.93519	9.06775	10.93225		9.99705	20
43 06804 93196 07103 92897 00299 99701 17 44 06911 93089 07211 92789 00301 99699 16 45 9.07018 10.92982 9.07320 10.92680 10.00302 9.99698 15 46 07124 92876 07428 92572 00304 99696 14 47 07231 92769 07536 92464 00305 99695 13 48 07337 92663 07643 92357 00307 99693 12 49 07442 92558 07751 92249 00308 99692 11 50 9.07548 10.92452 9.07858 10.92142 10.00310 9.9689 12 51 07653 92347 07964 92036 00311 99689 13 53 07863 92137 08177 91823 00314 99686 7 54 07668		42	06696				00298	99704	18
44 06911 93089 07211 92789 00301 99699 16 45 9.07018 10.92982 9.07320 10.92680 10.00302 9.99698 15 46 07124 92876 07428 92572 00304 99696 14 47 07231 92769 07536 92464 00305 99695 13 48 07337 92663 07643 92357 00307 99693 12 49 07442 92558 07751 92249 00308 99692 11 50 9.07548 10.92452 9.07858 10.92142 10.00310 9.99690 10 51 07653 92347 07964 92036 00311 99689 9 52 07753 92242 08071 91929 00313 99687 8 53 07863 92137 08177 91823 00314 99686 7 54 07968<		43	06804	93196	07103	92897	00299	99701	17
46 07124 92876 07428 92572 00304 99696 14 47 07231 92769 07536 92464 00305 99695 13 48 07337 92663 07643 92357 00307 99693 12 49 07442 92558 07751 92249 00308 99692 11 50 9.07548 10.92452 9.07858 10.92142 10.00310 9.96690 10 51 07653 92347 07964 92036 00311 99689 9 52 07758 92242 08071 91929 00313 99687 8 53 07863 92032 08283 91717 00316 99684 6 54 07968 92032 08283 91717 00316 99684 6 55 9.08072 10.91928 9.08389 10.91611 10.00317 9.99683 5 56 08176 <th></th> <th>44</th> <th></th> <th></th> <th>07211</th> <th>92789</th> <th></th> <th>99699</th> <th></th>		44			07211	92789		99699	
47 07231 92769 07536 92464 00305 99695 13 48 07337 92663 07643 92357 00307 99693 12 49 07442 92558 07751 92249 00308 99692 11 50 9.07548 10.92452 9.07858 10.92142 10.00310 9.99690 10 51 07653 92347 07964 92036 00311 99689 9 52 07758 92242 08071 91929 00313 99687 8 53 07863 92137 08177 91823 00314 99686 7 54 07968 92032 08283 91717 00316 99684 6 55 9.08072 10.91928 9.08389 10.91611 10.00317 99683 5 56 08176 91824 08495 91505 00319 99681 4 57 08280					9.07320	10.92680		9.99698	
48 07337 92663 07643 92357 00307 99693 12 49 07442 92558 07751 92249 00308 99692 11 50 9.07548 10.92452 9.07858 10.92142 10.00310 9.99690 10 51 07653 92347 07964 92036 00311 99689 9 52 07758 92242 08071 91929 00313 99687 8 53 07863 92137 08177 91823 00314 99686 7 54 07968 92032 08283 91717 00316 99684 6 55 9.08072 10.91928 9.08389 10.91611 10.00317 9.99683 5 56 08176 91824 08495 91505 00319 99681 4 57 08280 91720 08600 91400 00320 99688 3 58 08383		47	07231	92769	07536	92464			
50 9.07548 10.92452 9.07858 10.92142 10.00310 9.99690 10 51 07653 92347 07964 92036 00311 99689 9 52 07758 92242 08071 91929 00313 99687 8 53 07863 92137 08177 91823 00314 99686 7 54 07968 92032 08283 91717 00316 99684 6 55 9.08072 10.91928 9.08389 10.91611 10.00317 99683 5 56 08176 91824 08495 91505 00319 99681 4 57 08280 91720 08600 91400 00320 99680 3 58 08383 91617 08705 91295 00322 99678 2 59 08486 91514 08810 91190 00323 99677 1 60 08589			07337	92663	07643	92357	00307	99693	12
51 07653 92347 07964 92036 00311 99689 9 52 07758 92242 08071 91929 00313 99687 8 53 07863 92137 08177 91823 00314 99686 7 54 07968 92032 08283 91717 00316 99684 6 55 9.8072 10.91928 9.08389 10.91611 10.00317 9.99683 5 56 08176 91824 08495 91505 00319 99681 4 57 08280 91720 08600 91400 00320 99680 3 58 08383 91617 08705 91295 00322 99678 2 59 08486 91514 08810 91190 00323 99677 1 60 08589 91411 08914 91086 00325 99675 0 M. Cosine. Seca									11
52 07758 9242 08071 91929 00313 99687 8 53 07863 92137 08177 91823 00314 99686 7 54 07968 92032 08283 91717 00316 99684 6 55 9.08072 10.91928 9.08389 10.91611 10.00317 9.99683 5 56 08176 91824 08495 91505 00319 99681 4 57 08280 91720 08600 91400 00320 99680 3 58 08383 91617 08705 91295 00322 99678 2 59 08486 91514 08810 91190 00323 99677 1 60 08589 91411 08914 91086 00325 99675 0 M. Cosine. Secant. Cotangent. Tangent. Cosecant. Sine. M.		51							
56 08176 91824 08495 91505 00319 99681 4 57 08280 91720 08600 91400 00320 99680 3 58 08383 91617 08705 91295 00322 99678 2 59 08486 91514 08810 91190 00323 99677 1 60 08589 91411 08914 91086 00325 99675 0 M. Cosine. Secant. Cotangent. Tangent. Cosecant. Sine. M.		52	07758			91929			8
56 08176 91824 08495 91505 00319 99681 4 57 08280 91720 08600 91400 00320 99680 3 58 08383 91617 08705 91295 00322 99678 2 59 08486 91514 08810 91190 00323 99677 1 60 08589 91411 08914 91086 00325 99675 0 M. Cosine. Secant. Cotangent. Tangent. Cosecant. Sine. M.		5 3	07863		08177	91823	00314	99686	7
56 08176 91824 08495 91505 00319 99681 4 57 08280 91720 08600 91400 00320 99680 3 58 08383 91617 08705 91295 00322 99678 2 59 08486 91514 08810 91190 00323 99677 1 60 08589 91411 08914 91086 00325 99675 0 M. Cosine. Secant. Cotangent. Tangent. Cosecant. Sine. M.		55	07968		08283	91717	00316	99684	6
57 08280 91720 08600 91400 00320 99680 3 58 08383 91617 08705 91295 00322 99678 2 59 08486 91514 08810 91190 00323 99677 1 60 08589 91411 08914 91086 00325 99675 0 M. Cosine, Secant. Cotangent, Tangent. Cosecant. Sine, M.		56	08176		08495				4
60 08589 91411 08914 91086 00325 99675 0 M. Cosine. Secant. Cotangent. Tangent. Cosecant. Sine. M.		57	08280	91720	08600	91400	00320	99680	3
60 08589 91411 08914 91086 00325 99675 0 M. Cosine. Secant. Cotangent. Tangent. Cosecant. Sine. M.		58					00322		2
M. Cosine, Secant. Cotangent, Tangent. Cosecant. Sine, M.									1
		M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

Logarithms.
Logar Itiliio.

-							
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.08589	10.91411	9.08914	10.91086	10.00325	9.99675	60
ĭ	08692	91308	09019	90981	00326	99674	59
2	08795	91205	09123	90877	00328	99672	58
3	08897	91103	09227	90773	00330	99670	57
3 4 5 6 7 8	08999	91001	09330	90670	00331	99669	56
5	9.09101	10.90899	9.09434	10.90566	10.00333	9.99667	55
6	09202	90798	09537	90463	00334	99666	54
7	09304	90696	09640	90360	00336	99664	53
8	09405	90595	09742	90258	00337	99663	52
9	09506	90494	09845	90155	00339	99661	51
10	9.09606	10.90394	9.09947	10.90053	10.00341	9.99659	50
11	09707	90293	10049	89951	00342	99658	49
12	09807	90193	10150	89850	00344	99656	48
12	09907	90093	10252	89748	00345	99655	47
13 14	10006	89994	10353	89647	00347	99653	46
15	9.10106	10.89894	9.10454	10.89546	10.00349	9.99651	45
16	10205	89795	10555	89445	00350	99650	44
17	10304	89696	10656	89344	00352	99648	43
17 18	10402	89598	10756	89244	00353	99647	42
19	10501	89499	10856	89144	00355	99645	41
20	9.10599	10.89401			10.00357	9.99643	40
21	10697	89303	9.10956	10.89044 88944	00358	9.99643	39
22			11056			99640	38
23	10795 10893	89205	11155	88845	00360		37
23 24		89107	11254	88746	00362	99638	37
24 25	10990	89010	11353	88647	00363	99637	36
25 26	9.11087	10.88913	9.11452	10.88548	10.00365	9.99635	35
26	11184	88816	11551	88449	00367	99633	34
27 28	11281	88719	11649	88351	00368	99632	33
28	11377	88623	11747	88253	00370	99630	32
29 30	11474	88526	11845	88155	00371	99629	31
30	9.11570	10.88430	9.11943	10.88057	10.00373	9.99627	30
31	11666	88334	12040	87960	00375	99625	29
32	11761	88239	12138	87862	00376	99624	28
3 3	11857	88143	12235	87765	00378	99622	27
34	11952	88048	12332	87668	00380	99620	26
35	9.12047	10.87953	9.12428	10.87572	10.00382	9.99618	25
36	12142	87858	12525	87475	00383	99617	24
37 38	12236 12331	87764	12621	87379	00385	99615	23
38	12331	87669	12717	87283	00387	99613	22
39	12425	87575	12813	87187	00388	99612	21
40	9.12519	10.87481	9.12909	10.87091	10.00390	9.99610	20
41	12612	87388	13004	86996	00392	99608	19
42	12706	87294	13099	86901	00393	99607	18
43	12799	87201	13194	86806	00395	99605	17
44	12892	87108	13289	86711	00397	99603	16
45	9.12985	10.87015	9.13384	10.86616	10.00399	9.99601	15
46	13078	86922	13478	86522	00400	99600	14
47	13171	86829	13573	86427	00402	99598	13 12
48	13263	86737	13667	86333	00404	99596	12
49	13355	86645	13761	86239	00405	99595	11
50	9.13447	10.86553	9.13854	10.86146	10.00407	9.99593	10
51	13539	86461	13948	86052	00409	99591	9 8 7 6 5 4 3 2
52	13630	86370	14041	85959	00411	99589	8
53	13722	86278	14134	85866 85773	00412	99588	7
54	13813	86187	14227	85773	00414	99586	6
55	9.13904	10.86096	9.14320	10.85680	10.00416	9.99584	5
56	13994	86006	14412	85588	00418	99582	4
57	14085	85915	14504	85496	00419	99581	3
58	14175	85825	14597	85403	00421	99579	2
59	14266	85734	14688	85312	00423	99577	1
60	14356	85644	14780	85220	00425	99575	0
							-
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
							-

80			Logar	ithms.			171°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.14356	10.85644	9.14780	10.85220	10.00425	9.99575	60
1 2 3 4 5 6 7 8	14445	85555	14872	85128	00426	99574	59
2	14535 14624	85465 85376	14963 15054	85037 84946	00428 00430	99572 99570	58 57
4	14714	85286	15145	84855	00430	99568	56
5	9.14803	10.85197	9.15236	10.84764	10.00434	9.99566	55
6	14891	85109	15327 15417	84673	00435	99565	54
7	14980	85020	15417	84583	00437	99563	53 52
8	15069 15157	84931 84843	15508 15598	84492 84402	00439 00441	99561 99559	51
10	9.15245	10.84755	9.15688	10.84312	10.00443	9.99557	50
11	15333	84667	15777 15867	84223	00444	99556	49
12 13	15421	84579	15867	84133	00446	99554	48
13 14	15508 15596	84492 84404	15956 16046	84044 83954	00448 00450	99552 99550	47 46
15	9.15683	10.84317	9.16135	10.83865	10.00452	9.99548	45
16	15770	84230	16224	83776	00454	99546	44
17 18	15857	84143	16312	83688	00455	99545	43
18	15944	84056	16401 16489	83599	00457	99543	42
19 20 21	16030 9.16116	83970 10.83884	9.16577	83511 10.83423	00459 10.00461	99541 9.99539	41 40
20	16203	83797	16665	83335	00463	99537	39
22	16289	83711	16753	83247	00465	99535	38
23 24	16374 16460	83626 83540	16841	83159	00467	99533	. 37
24	16460	83540	16928	83072	00468	99532	36
25 26 27 28 29	9.16545 16631	10.83455 83369	9.17016 17103	10.82984 82897	10.00470 00472	9.99530 99528	35 34
27	16716	83284	17190	82810	00474	99526	33
28	1,0001	83199	17277	82723	00476	99524	32
29	16886	83114	17277 17363	82723 82637	00478	99522	31
30 31 32	16886 9.16970 17055	10.83030	9.17450	10.82550	10.00480	9.99520	30 29
35 2T	17033	82945 82861	17536 17622	82464 82378	00482 00483	99518 99517	29
33	17223	82777	17708	82292	00485	99515	28 27 26
34	17307	82693	17708 17794	82206 10.82120	00487	99513	26
35	9.17391	10.82609	9.17880	10.82120	10.00489	9.99511	25
36	17474	82526 82442	17965	82035	00491 00493	99509 99507	24 23
37 38	$17558 \\ 17641$	82359	18051 18136	81949 81864	00495	99505	22
38 39 40	17724 9.17807	82276 10.82193	18221	81779 10.81694	00497 10.00499	99503	21
40	9.17807	10.82193	18221 9.18306	10.81694	10.00499	9.99501	20
41	17890	82110	18391 18475	81609	00501	99499	19
42 43	17973 18055	82027 81945	18475 18560	81525 81440	00503 00505	99497 99495	18 17
44	18137	81863	18644	81356	00506	99494	16
45	9.18220 18302	10.81780	9.18728	10.81272	10.00508	9.99492	15
46	18302	81698	18812	81188	00510	99490	14
47 48	18383	81617	18896	81104	00512	99488	13 12
49	18465 18547	81535 81453	18979 19063	81021 80937	00514 00516	99486 99484	11
50	9.18628	10.81372	9.19146	10.80854	10.00518	9.99482	10
50 51	9.18628 18709	81291	19229	80771	00520	99480	9
52 53 54	18790	81210	19312	80688	00522	99478	8
53	18871 18952	81129 81048	19395 19478	80605 80522	00524 00526	99476 99474	7
55	9.19033	10.80967	9.19561	10.80439	10.00528	9.99474	5
56	19113	80887	19643	80357	00530	99470	4
57	19193	80807	19725	80275	00532	99468	3
58 59	19273	80727	19807	80193	00534	99466	2
60	19353 19433	80647 80567	19889 19971	80111 80029	00536 00538	99464 99462	9 8 7 6 5 4 3 2 1
			100.1				
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
980							810

90			Logar	ithms.			170°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine,	M.
0	9.19433	10.80567	9.19971	10.80029	10.00538	9.99462	60
1	19513	80487	20053	79947	00540	99460	59
3	19592 19672	80408 80328	20134 20216	79866 79784	00542 00544	99458 99456	58
4	19751	80249	20297	79703	00546	99454	56
4 5 6 7 8 9	9.19830	10.80170	9.20378	10,79622	10.00548	9.99452	55
6	19909	80091	20459	79541	00550	99450	54
7	19988	80012	20540	79460	00552	99448	53
8	20067	79933	20621	79379	00554	99446 99444	52
10	20145 9.20223	79855 10,79777	$\begin{vmatrix} 20701 \\ 9.20782 \end{vmatrix}$	79299 10.79218	00556 10,00558	9,99442	50
11	20302	79698	20862	79138	00560	99440	19
12	20380	79620	20942	79058	00562	99438	48
13	20458	79542	21022	78978	00564	99436	47
14	20535	79465	21102	78898	00566	99434	46
15 16	9.20613 20691	10.79387	9.21182	10.78818 78739	10.00568	9.99432 99429	45
17	20768	79309 79232	21261 21341	78659	00571 00573	99429	43
18	20845	79155	21420	78580	00575	99425	42
19	20922	79078	21499	78501	00577	99423	41
20	9.20999	10.79001	9,21578	10.78422	10.00579	9.99421	40
21	21076	78924	21657	78343	00581	99419	39
22	21153 21229	78847	21736	78264	00583	99417	38
$\frac{23}{24}$	21229	78771 78694	21814 21893	78186	00585 00587	99415 99413	37 36
25	9.21382	10.78618	9.21971	78107 10.78029	10.00589	9.99411	35
26	21458	78542	22049	77951	00591	99409	34
27	21534	78466	22127	77873	00593	99407	33
28	21610	78390	22205	77795	00596	99404	32
29	21685	78315	22283	77717	00598	99402	31
30	$9.21761 \\ 21836$	10.78239 78164	9,22361 22438	10.77639	10.00600	9,99400 99398	30
32	21912	78088	22516	77562 77484	00602 00604	99396	28
33	21987	78013	22593	77407	00606	99394	27
34	22062	77938	22670	77330	00608	99392	26
35	9.22137	10.77863	9,22747	10.77253	10,00610	9,99390	25
36	22211	77789	22824	77176	00612	99388	24
37 38	22286 22361	77714	22901	77099	00615	99385	23 22
39	22435	77639 77565	22977 23054	77023 76946	00617 00619	99383 99381	21
40	9.22509	10.77491	9,23130	10.76870	10.00621	9.99379	20
41	22583	77417	23206	76794	00623	99377	19
42	22657	77343	23283	76717	00625	99375	18
43	22731	77269	23359	766-11	00628	99372	17
44 45	$\frac{22805}{9,22878}$	77195	23435	76565	00630	99370	16
46	22952	10.77122 77048	9,23510 23586	10.76490 76414	10.00632	9,99368 99366	15
47	23025	76975	23661	76339	00634 00636	99364	13
48	23098	76902	23737	76263	00638	99362	12
49	23171	76829	23812	76188	00641	99359	11
50	9,23244	10,76756	9.23887	10.76113	10.00643	9,99357	10
51 52	23317 23390	76683	23962	76038	00645	99355	9
53	23462	76610 76538	24037 24112	· 75963	00647	99353	8 7
51	23535	76465	24186	75888 75814	00649 00652	99351 99348	6
55	9.23607	10.76393	9,24261	10.75739	10.00654	9,99346	5
56	23679	76321	24335	75665	00656	99344	4
57	23752	76248	24410	75590	00658	99342	3
58 59	23823	76177	24484	75516	00660	99340	2
60	23895 23967	76105 76033	24558 24632	75442 75368	00663 00665	99337 99335	1 0
M.	Cosine,	Secant.	Cotangent.	Tangent.	Cosecant.	Sine,	M.
-		-					-

10°			Logar	ithms.			169°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.23967	10.76033	9.24632	10.75368	10.00665	9.99335	60
1	24039 24110	75961 75890	24706	75294	00667 00669	99333 99331	59 58
2 3	24110	75890	24779 24853	75221 75147	00669	99328	57
4	24253	75747	24926	75074	00674	99326	56
4 5 6 7 8 9	9.24324	10.75676	9.25000	10.75000	10.00676	9.99324	55
6	24395	75605	25073	74927	00678	99322	54
7	24466 24536	75534 75464	25146	74854 74781	00681 00683	99319 99317	53 52
9	24607	75393	25219 25292	74708	00685	99315	51
10	9.24677	10.75323	9.25365	10.74635	10.00687	9.99313	50
11	24748	75252	25437	. 74563	00690	99310	49
12 13	24818 24888	75182 75112	25510 25582	74490 74418	00692 00694	99308 99306	48
14	24958	75042	25655	74345	00696	99304	46
15	9.25028	10.74972	9.25727	10.74273	10.00699	9.99301	45
16	25098	74902	25799	74201	00701	99299	44
17	25168	74832	25871	74129	00703	99297	43
18 19	25237 25307	74763 74693	25943 26015	74057 73985	00706	99294 99292	42
20	9.25376	10.74624	9.26086	10.73914	00708 10.00710	9.99290	40
21 22	25445	10.74624 74555	26158	73842	00712	99288	39
22	25514	74486	26229	73771	00715	99285	38
23	25583	74417	26301	73699	00717	99283	37
24	$25652 \\ 9.25721$	74348 10.74279	26372 9.26443	73628 10.73557	00719 10.00722	99281 9.99278	36
25 26	25790	74210	26514	73486	00724	99276	35
27	25858	74142	26585	73415	00726	99274	33
28	25927	74073	26655	.73345	00729	99271	32
29 30	25995 9,26063	74005 10.73937	26726 9.26797	73274 -10.73203	00731 10.00733	99269 9.99267	31 30
31	26131	73869	26867	73133	00736	9.99267	29
32	26199	73801	26937	73063	00738	99262	28
33 34	26267	73733	27008	72992	00740	99260	27
34	26335	73665	27078	72922	00743	99257	26
35 36	9.26403 26470	10.73597 73530	9.27148 27218	10.72852 72782	10.00745	9.99255 99252	25 24
37	26538	73462	27288	72712	00748 00750	99250	23
3 8	26605	73395	27357	72643	00752	99248	22
39	26672	73328	27427	72573	00755	99245	21
40 41	9.26739	10.73261	9.27496	10.72504	10.00757	9.99243	20
42	26806 26873	73194 73127	27566 27635	72434 72365	00759 00762	99241 99238	19 18
43	26940	73060	27704	72296	00764	99236	17
44	27007	72993	27773	72227	00767	99233	16
45	9.27073	10.72927	9.27842	10.72158	10.00769	9.99231	15
46 47	27140 27206	72860	27911 27980	72089 72020	00771 00774	99229 99226	14 13
48	27273	72794 72727	28049	71951	00776	99224	12
49	27339	72661	28117	71883	00779	99221	11
50	9.27405	10.72595	9.28186	10.71814	10.00781	9.99219	10
51	27471	72529	28254	71746	00783	99217	9
52 53	27537 27602	72463 72398	28323 28391	71677 71609	00786 00788	99214 99212	8 7 6
54	27668	72332	28459	71541	00791	99209	6
55	9.27734	10.72266	9.28527	10.71473	10.00793	9.99207	5
56	27799	72201	28595	71405	00796	99204	4
57 58	27864	72136 72070	28662	71338	00798	99202	3 2
59	27930 27995	72070	28730 28798	71270 71202	00800 00803	99200 99197	1
60	28060	71940	28865	71135	00805	99195	0
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
100	2						

11°			Logar	ithms.			168°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.28060	10.71940	9.28865	10.71135	10.00805	9.99195	60 =
$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	28125	71875	28933	71067	00808	99192	59
2	28190	71810 71746	29000	71000	00810	99190	58 57
3	28254	71746	29067	70933	00813	99187	57
4 5 6 7 8	28319 9.28384	71681 10.71616	29134 9.29201	70866 10.70799	00815 10.00818	99185 9.99182	56 55
6	28448	71552	29268	70732	00820	99180	54
7	28512	71488	29335	70665	00823	99177	53
8	28577	71423	29402	70598	00825	99175	52
9	28641	71359	29468	70532	00828	99172	51
10	9.28705	10.71295	9.29535	10.70465	10.00830	9.99170	50
11	28769	71231	29601	70399	00833	99167	49
12 13	28833 28896	71167 71104	29668 29734	70332 70266	00835 00838	99165 99162	48
14	28960	71104	29800	70200	00840	99160	47 46
15	9.29024	10.70976	9.29866	10.70134	10.00843	9.99157	45
16	29087	70913	29932	70068	00845	99155	44
17	29150	70850	29998	70002	00848	99152	43
18	29214	70786	30064	69936	00850	99150	42
19	29277	70723	30130	69870	00853	99147	41
20	$\begin{array}{c} 9.29340 \\ 29403 \end{array}$	10.70660 70597	9.30195 30261	10.69805 69739	10.00855	9.99145 99142	40
21	29466	70534	30326	69674	00858 00860	99142	39 38
22 23	29529	70471	30320	69609	00863	99137	37
24	29591	70409	30457	- 69543	00865	99135	36
25	9.29654	10.70346	9.30522	10.69478	10.00868	9.99132	35
26	29716	70284	30587	69413	00870	99130	34
27	29779	70221	30652	69348	00873	99127	33
28 29	29841 29903	70159 70097	30717 30782	69283 69218	00876 00878	99124 99122	32 31
30	9.29966	10.70034	9.30846	10.69154	10.00881	9.99119	30
31	30028	69972	30911	69089	00883	99117	29
32	30090	69910	30975	69025	00886	99114	28
33	30151	69849	31040	68960	00888	99112	27
34	30213	69787	31104	68896	00891	99109	26
35 36	9.30275 30336	10.69725 69664	9.31168 31233	10.68832 68767	10.00894 00896	9.99106 9910 4	25 24
37	30398	69602	31297	68703	00899	99101	23
38	30459	69541	31361	68639	00901	99099	22
39	30521	69479	31425	68575	00904	99096	21
40	9.30582	10.69418	9.31489	10.68511	10.00907	9.99093	20
41	30643	69357	31552	68448	00909	99091	19
42 43	30704 30765	69296 69235	31616 31679	68384 68321	00912 00914	99088	18 17
44	30826	69174	31743	68257	00914	99086 99083	16
45	9.30887	10.69113	9.31806	68257 10.68194	10.00920	9.99080	15
46	30947	69053	31870	68130	00922	99078	14'
47	31008	68992	31933	68067	00925	99075	13
48	31068	68932	31996	68004	00928	99072	12
49	31129	68871	32059	67941	00930	99070	11
50 51	$9.31189 \\ 31250$	10.68811 68750	9.32122 32185	10.67878 67815	10.00933 00936	9.99067 99064	10 9
52	31310	68690	32248	67752	00938	99062	9
53	31370	68630	32311	67689	00941	99059	8 7
54	31430	68570	32373	67627	00944	99056	6
55	9.31490	10.68510	9.32436	10.67564	10.00946	9.99054	5
56 57	31549 31609	68451 68391	32498	67502	00949	99051	6 5 4 3 2
58	31669	68331	32561 32623	67439 67377	00952 00954	99048 99046	3
59	31728	68272	32685	67315	00954	99043	1 1
60	31788	68212	32747	67253	00960	99040	ō
M.	Cosine.	Secant.	Cotangent,	Tangent.	Cosecant.	Sine.	M.

	12°			Logar	ithms.			16 7 °
	M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
×	0	9.31788	10.68212	9.32747	10.67253	10.00960	9.99040	60
	1 2 3 4 5 6 7 8 9	31847	68153	32810	67190	00962	99038	59
	2	31907	68093	32872	67128	00965	99035	58
	3	31966	68034	32933 32995	67067 67005	00968 00970	99032 99030	57
	5	32025 9.32084	67975 10.67916	9.33057	10.66943	10.00973	9.99027	56 55
	6	32143	67857	33119	66881	00976	99024	54
	7	32202	67798	33180	66820	00978	99022	53
	8	32261	67739	33242	66758	00981	99019	52
	9	32319	67681 10.67622	33303	66697	00984	99016	51
	10	9.32378	10.67622	9.33365	10.66635	10.00987	9.99013	50
	11	32437	67563	33426	66574	00989	99011	49
	12 13	32495	67505	33487	66513	00992	99008	48
	13	32553	67447	33548 33609	66452 66391	00995 00998	99005	47
	15	32612 9.32670	67388 10.67330	9.33670	10.66330	10.01000	99002 9.99000	45
	16	32728	67272	33731	66269	01003	98997	44
	17	32786	67214	33792	66208	01006	98994	43
	18	32844	67156	33853	66147	01009	98991	42
	19	32902	67098 10.67040	33913	66087	01011	98989	41
	20	9.32960	10.67040	9.33974	10.66026	10.01014	9.98986	40
	21 22	33018	66982	34034	65966	01017	98983	39
	22	33075	66925	34095	65905	01020	98980	38
	23 24	33133	66867	34155	65845	01022	98978	37
	25	33190 9.33248	66810 10.66752	34215 9.34276	65785 10.65724	01025 10.01028	98975 9.98972	36 35
	26	33305	66695	34336	65664	01031	98969	34
	27	33362	66638	34396	65604	01033	98967	33
	28	33420	66580	34456	65544	01036	98964	32
	29	33477	66523	34516	65484	01039	98961	31
	30	9.33534	10.66466	9.34576	10.65424	10.01042	9.98958	30
	31	33591	66409	34635	65365	01045	98955	29
	32	33647 33704	66353 66296	34695 34755	65305 65245	01047 01050	98953	28 27
	33 34	33761	66239	34814	65186	01050	98950 98947	26
	35	9.33818	10.66182	9.34874	10.65126	10.01056	9.98944	25
	36	33874	66126	34933	65067	01059	98941	24
	37	33931	66069	34992	65008	01062	98938	23
	38	33987	66013	35051	64949	01064	98936	22
	39	34043	65957	35111	64889	01067	98933	21
	40	9.34100	10.65900	9.35170	10.64830	10.01070	9.98930	20
	41 42	$\frac{34156}{34212}$	65844 65788	35229 35288	64771 64712	01073 01076	98927 98924	19 18
	43	34268	65732	35347	64653	01078	98921	17
	44	34324	65676	35405	64595	01081	98919	16
	45	9.34380	10.65620	9.35464	10.64536	10.01084	9.98916	15
	46	34436	65564	35523	64477	01087	98913	14
	47	34491	65509	35581	64419	01090	98910	13
	48	34547	65453	35640	64360	01093	98907	12
	49	34602	65398	35698	64302	01096	98904	11
	50 51	9.34658 34713	10.65342	9.35757 35815	10.64243 64185	10.01099 01102	9.98901 98898	10 9
	52	34769	65287 65231 65176	35873	64127	01102	98896	8
	53	34824	65176	35931	64069	01104	98893	8 7
	54	34879	65121	35989	64011	01110	98890	6
	55	9.34934	10.65066	9.36047	10.63953	10.01113	9.98887	6 5 4
	56	34989	65011	36105	63895	01116	98884	4
	57	35044	64956	36163	63837	01119	98881	3
	58	35099	64901	36221	63779	01122	98878	2
	59 60	35154 35209	64846 64791	36279 36336	63721	01125 01128	98875 98872	3 2 1 0
		30209	04731	90990	63664	01128	90012	
	М.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

13° Logarithms. 166°

13-			Logar	itiilis.			100
М.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.35209	10.64791	9.36336	10.63664	10.01128	9.98872	60 -
1	35263	64737	36394	63606	01131	98869	59
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	35318	64682	36452	63548	01133	98867	58
3	35373	64627 64573	36509	63491	01136	98864	57
4 5 6 7 8	35427	64573	36566	63434	01139	98861	56
5	9.35481	10.64519	9.36624	10.63376	10.01142	9.98858	55
_6	35536	64464	36681	63319	01145	98855	54
7	35590	64410	36738	63262	01148	98852	53
8	35644	64356	36795	63205	01151	98849	52
9	35698	64302	36852	63148	01154	98846	51
10	9.35752	10.64248	9.36909	10.63091	10.01157	9.98843	50
11	35806	64194	36966	63034	01160	98840	49
12	35860	64140	37023	62977	01163	98837	48
13	35914	64086	37080	62920	01166	98834	47
14	35968	64032	37137	62863	01169	98831	46
15 16	$\begin{array}{r} 9.36022 \\ 36075 \end{array}$	10.63978	9.37193 37250	10.62807 62750	10.01172 01175	9.98828 98825	45
17	36129	63925 63871	37306	62694	01178	98822	44 43
18	36182	63818	37363	62637	01181	98819	42
19	36236	62764	37410	62581	01184	98816	41
20	9.36289	63764 10.63711	37419 9.37476	10.62524	10.01187	9.98813	40
21	36342	63658	37532	62468	01190	98810	39
22	36395	63605	37588	62412	01193	98807	38
22	36449	63551	37644	62356	01196	98804	37
23 24	36502	63498	37700	62356 62300	01199	98801	36
25	9.36555	10.63445	9.37756	10.62244	10.01202	9.98798	35
25 26	36608	63392	37812	62188	01205	98795	34
27	36660	63340	37868	62132	01208	98792	33
27 28	36713	63287	37924	62076	01211	98789	32
29	36766	63234	37980	62020	01214	98786	31
30	9.36819	10.63181	9.38035	10.61965	10.01217	9.98783	30
31	36871	63129	38091	61909	01220	98780	29
32	36924	63076	38147	61853	01223	98777	28
33	36976	63024	38202	61798	01226	98774	27
34	37028	62972	38257	61743	01229	98771	26
35	9.37081	10.62919	9.38313	10.61687	10.01232	9.98768	25
36	37133	62867	38368	61632 61577	01235	98765	24
37	37185	62815	38423	61577	01238	98762	23
38	37237	62763	38479	61521	01241	98759	22
39	37289	62711	38534	61466	01244	98756	21
40	9.37341	10.62659	9.38589	10.61411	10.01247	9.98753	20
41	37393	62607	38644	61356	01250	98750	19
42	37445 37497	62555 62503	38699	61301	01254	98746	18
44	37549	62451	38754 38808	61246 61192	01257 01260	98743 98740	17 16
45	9.37600	10.62400	9.38863	10.61137	10.01263	9.98737	15
46	37652	62348	38918	61082	01266	98734	14
47	37703	62297	38972	61028	01269	98731	13
48	37755	62245	39027	60973	01203	98728	12
49	37806	- 62194	39082	60918	01272 01275	98725	11
50	9.37858	10.62142	9.39136	10.60864	10.01278	9.98722	10
51	37909	62091	39190	60810	01281	98719	9
52	37960	62040	39245	60755	01285	98715	8
53	38011	61989	39299	60701	01288	98712	7
51	38062	61938	39353	60647	01291	98709	8 7 6
55	9.38113	10.61887	9.39407	10.60593	10.01294	9.98706	5
56	38164	61836	39461	60539	01297	98703	5 4
57	38215	61785	39515	60485	01300	98700	3
58	38266	61734	39569	60431	01303	98697	3 2 1
59	38317	61683	39623	60377	01306	98694	1
60	38368	61632	39677	60323	01310	98690	0
M.	Cosine.	Secant.	Cotangent,	Tangent.	Cosecant.	Sine.	M.
			-				-

140			Logar	ithms.			165°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
. 0	9.38368	10.61632	- 9.39677	10.60323	10.01310	9.98690	60
1	38418	61582	39731	60269	01313	98687	59
2	38469	61531	39785	60215	01316	98684	58
3	38519 38570	61481 61430	39838 39892	60162 60108	01319	98681 98678	57 56
2 3 4 5	9.38620	10.61380	9.39945	10.60055	01322 10.01325	9.98675	55
6	38670	61330	39999	60001	01329	98671	54
6 7	38721	61279	40052	59948	01332	98668	53
8	38771	61229	40106	59894	01335	98665	52
9	38821	61179	40159	59841	01338	98662	51
10	9.38871	10.61129	9.40212	10.59788	10.01341	9.98659	50
11 12	38921 38971	61079 61029	40266 40319	59734 59681	01344 01348	98656 98652	49
13	39021	60979	40372	59628	01351	98649	47
14	39071	60929	40425	59575	01354	98646	46
15	9.39121	10.60879	9.40478	10.59522	10.01357	9.98643	45
16	39170	60830	40531	59469	01360	98640	44
17	39220	60780	40584	59416	01364	98636	43
18	39270	60730	40636	59364	01367	98633	42
19 20	39319 9.39369	60681 10.60631	40689 9.40742	59311 10.59258	$01370 \\ 10.01373$	98630 9.98627	41 40
21	39418	60582	40795	59205	01377	98623	39
$\frac{21}{22}$	39467	60533	40847	59153	01380	98620	38
23	39517	60483	40900	59100	01383	98617	37
24	39566	60434	40952	59048	01386	98614	36
25 26	9.39615 39664	10.60385 60336	9.41005	10.58995 58943	10.01390 01393	9.98610 98607	35
27	39713	60287	41057 41109	58891	01396	98604	34
28	39762	60238	41161	58839	01399	98601	32
$\frac{1}{29}$	39811	60189	41214	58786	01403	98597	31
30	9.39860	10.60140	9.41266	10.58734	10.01406	9.98594	30
31	39909	60091	41318	58682	01409	98591	29
32 33	39958 40006	60042 59994	41370 41422	58630 58578	01412 01416	98588 98584	28 27
34	40055	59945	41474	58526	01419	98581	26
35	9.40103	10.59897	9,41526	10.58474	10.01422	9.98578	25
36	40152	59848	41578	58422	01426	98574	24
37	40200	59800	41629	58371	01429	98571	23
38 39	40249 40297	59751 59703	41681	58319	01432	98568	22 21
40	9.40346	10.59654	41733 9.41784	58267 10.58216	01435 10.01439	98565 9.98561	$\frac{21}{20}$
41	40394	59606	41836	58164	01442	98558	19
42	40442	59558	41887	58113	01445	98555	18
43	40490	59510	41939	58061	01449	98551	17
44	40538	59462	41990	58010	01452	98548	16
45 46	9.40586 40634	10.59414 59366	9.42041 42093	10.57959 57907	10.01455 01459	9.98545 98541	15 14
47	40682	59318	42144	57856	01462	98538	13
48	40730	59270	42195	57805	01465	98535	12
49	40778	59222	42246	57754	01469	98531	11
50	9.40825	10.59175	9.42297	10.57703	10.01472	9.98528	10
51 52	40873 40921	59127 59079	42348	57652	01475	98525	9
53	40921	59079	42399 42450	57601 57550	01479 01482	98521 98518	8 7
54	41016	58984	42501	57499	01485	98515	6
55	9.41063	10.58937	9.42552	10.57448	10.01489	9.98511	6 5
56	41111	58889	42603	57397	01492	98508	4
57 58	41158 41205	58842 58795	42653	57347	01495	98505	$\begin{bmatrix} 3\\2\\1 \end{bmatrix}$
59	41205	58795	42704 42755	57296 57245	01499 01502	98501 98498	1
60	41300	58700	42805	57195	01506	98494	0
M	Coning	C	Catalana				
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

15° Logarithms.

15°			Logar	ithms.			164°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.41300	10.58700	9.42805	10.57195 -	10.01506	9.98494	60
1 2 3 4 5 6 7 8 9	41347	58653	42856	57144	01509	98491	59
2	41394 41441	58606 58559	42906 42957	57094 57043	01512 01516	98488 98484	58
3 1	41441	58512	42937	56993	01519	98481	57 56
5	9.41535	10.58465	9.43057	10.56943	10.01523	9.98477	55
6	41582	58418	43108	56892	01526	98474	54
7	41628	58372	43158	56842	01529	98471	53 52
8	$41675 \\ 41722$	58325 58278	43208 43258	56792 56742	01533 01536	98467 98464	52
10	9.41768	10.58232	9.43308	10.56692	10.01540	9.98460	50
11	41815	58185	43358	56642	01543	98457	49
12	41861	58139	43408	56592	01547	98453	48
13	41908	58092	43458	56542	01550	98450	47
14 15	41954 9.42001	58046 10.57999	43508 9.43558	56492 10.56442	01553 10.01557	98447 9.98443	46 45
16	42047	57953	43607	56393	01560	98440	44
17	42093	57907	43657	56343	01564	98436	43
18	42140	57860	43707	56293	01567	98433	42
19	42186	57814	43756	56244	01571	98429	41
20 21	9.42232 42278	10.57768 57722	9.43806 43855	10.56194 56145	10.01574 01578	9.98426 98422	40 39
22	42324	57676	43905	56095	01581	98419	38
23	42370	57630	43954	56046	01585	98415	37
24 25	42416	57584	44004	55996	01588	98412	36
25	9.42461	10.57539	9.44053	10.55947	10.01591	9.98409	35
26	42507 42553	57493 57447	44102 44151	55898 55849	01595 01598	98405 98402	34
27 28	42599	57401	44201	55799	01602	98398	32
29	42644	57356	44250	55750	01605	98395	31
30	9.42690	10.57310	9.44299	10.55701	10.01609	9.98391	30
31 32	42735 42781	57265 57219	44348 44397	55652	01612	98388	29 28
33	42826	57174	44446	55603 55554	01616 01619	98384 98381	27
34	42872	57128	44495	55505	01623	98377	26
35	9.42917	10.57083	9.44544	10.55456	10.01627	9.98373	25
36 37	42962	57038	44592	55408	01630	98370	24
38	43008 43053	56992 56947	44641 44690	55359 55310	01634 01637	98366 98363	23 22
39	43098	56902	44738	55262	01641	98359	21
40	9.43143	10.56857	9.44787	10.55213	10.01644	9.98356	20
41	43188	56812	44836	55164	01648	98352	19
42 43	43233 43278	56767	44884 44933	55116 55067	01651 01655	98349 98345	18
44	43323	56722 56677	44981	55019	01658	98342	17 16
45	9.43367	10.56633	9.45029	10.54971	10.01662	9.98338	15
46	43412	56588	45078	54922	01666	98334	14
47 48	43457 43502	56543 56498	45126	54874	01669	98331	13 12
49	43546	56454	45174 45222	54826 54778	01673 01676	98327 98324	11
50	9.43591	10.56409	9.45271	10.54729	10.01680	9.98320	10
51	43635	56365	45319	54681	01683	98317	9
52 53	43680	56320	45367	54633	01687	98313	8 7
54	43724 43769	56276 56231	45415 45463	54585 54537	01691 01694	98309 98306	7
55	9.43813	10.56187	9.45511	10.54489	10.01698	9.98302	6 5
56	43857	56143	45559	54441	01701	98299	4 3
57	43901	56099	45606	54394	01705	98295	3
58 59	43946 43990	56054 56010	45654 45702	54346	01709	98291	2
60	44034	55966	45750	54298 54250	$01712 \\ 01716$	98288 98284	0
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

105°

16°			Logar	ithms.		1	163°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.44034	10.55966	9.45750	10.54250	10.01716	9.98284	60
1 2 3 4 5 6 7 8 9	$\frac{44078}{44122}$	55922 55878	45797 45845	54203 54155	01719	98281 98277	59 58
2 2	44122	55834	45892	54108	01723 01727	98273	57
4	44210	55790	45940	54060	01730	98270	56
5	9.44253	10.55747	9.45987	10.54013	10.01734	9.98266	55
6	44297	55703	46035	53965	01738	98262	54
7	44341	55659	46082	53918	01741	98259	53
8	44385	55615 55572	46130	53870	01745 01749	98255	52
10	$\frac{44428}{9.44472}$	10.55528	$46177 \\ 9.46224$	53823 10.53776	10.01752	98251 9.98248	51 50
11	44516	55484	46271	53729	01756	98244	49
$\frac{1}{12}$	44559	55441	46319	53681	01760	98240	48
12 13	44602	55398	46366	53634	01763	98237	47
14	44646	55354	46413	53587	01767	98233	46
15	9.44689	10.55311	9.46460	10.53540	10.01771	9.98229	45
16 17	44733 44776	55267 55224	46507 46554	53493 53446	01774 01778	98226 98222	44 43
18	44819	55181	46601	53399	01782	98218	42
19	44862	55138	46648	53352	01785	98215	41
20	9.44905	10.55095	9.46694	10.53306	10.01789	9.98211	40
21	44948	55052	46741	53259	01793	98207	39
22	44992	55008	46788	53212	01796	98204	38
23	45035	54965	46835	53165	01800	98200	37
24 25	45077	54923	46881	53119	01804	98196	36 35
26	$9.45120 \\ 45163$	10.54880 54837	9.46928 46975	10.53072 53025	10.01808 01811	9.98192 98189	34
27	45206	54794	47021	52979	01815	98185	33
28	45249	54751	47068	52932	01819	98181	32
27 28 29	45292	54708	47114	52886	01823	98177	31
30	9.45334	10.54666	9.47160	10.52840	10.01826	9.98174	30
31	45377	54623	47207	52793	01830	98170	29
32 33	45419 45462	54581 54538	47253 47299	52747 52701	01834	98166 98162	28 27
34	45504	54496	47299	52654	01838 01841	98159	26
35	9.45547	10.54453	9.47392	10.52608	10.01845	9.98155	25
36	45589	54411	47438	52562	01849	98151	24
37	45632	54368	47484	52516	01853	98147	23
38	45674	54326	47530	52470	01856	98144	22
39	45716	54284	47576	52424	01860	98140	21
40 41	9.45758 45801	10.54242 54199	9.47622	10.52378 52332	10.01864	9.98136 98132	20 19
42	45843	54157	47668 47714	52352	01868 01871	98132	18
43	45885	54115	47760	52240	01875	98125	17
44	45927	54073	47806	52194	01879	98121	16
45	9.45969	10.54031	9.47852	10.52148	10.01883	9.98117	15
46	46011	53989	47897	52103	01887	98113	14
47	46053	53947	47943	52057	01890	98110	13 12
48 49	46095 46136	53905 53864	47989 48035	52011 51965	01894 01898	98106 98102	11
50	9.46178	10.53822	9.48080	10.51920	10.01902	9.98098	10
51	46220	53780	48126	51874	01906	98094	9
52	46262	53738	48171	51829	01910	98090	8
53	46303	53697	48217	51783	01913	98087	7
54	46345	53655	48262	51738	01917	98083	9 8 7 6 5 4 3 2 1
55	9.46386	10.53614	9.48307	10.51693	10.01921	9.98079	5
56 57	46428 46469	53572 53531	48353 48398	51647	01925 01929	98075	4
58	46511	53489	48443	51602 51557	01929	98071 98067	2
59	46552	53448	48489	51511	01937	98063	ī
60	46594	53406	48534	51466	01940	98060	Õ
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
106	-		,	,			73°

17°			Logarithms.			162°		
М.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.	
0	9.46594	10.53406	9.48534	10.51466	10.01940	9.98060	60	
1	46635	53365	48579	51421	01944	98056	59	
2	46676	53324	48624	51376	01948	98052	58	
3	46717	53283	48669	51331	01952	98048	57	
1 2 3 4 5 6 7 8 9	46758	53242 10.53200	48714 9.48759	51286 10.51241	01956 10.01960	98044 9.98040	56 55	
6	$9.46800 \\ 46841$	53159	48804	51196	01964	98036	54	
7	46882	53118	48849	51151	01968	98032	53	
8	46923	53077	48894	51106	01971	98029	52	
9	46964	53036	48939	51061	01975	98025	51 50	
10	9.47005	10.52995	9.48984	10.51016	10.01979	9.98021	50	
$\frac{11}{12}$	47045	52955	49029	50971	01983	98017	49	
13	47086 47127	52914 52873	49073 49118	50927 50882	01987 01991	98013 98009	48 47	
14	47168	52832	49163	50837	01995	98005	46	
15	9.47209	10.52791	9.49207	10.50793	10.01999	9.98001	45	
16	47249	52751	49252	50748	02003	97997	44	
17	47290	52710	49296	50704	02007	97993	43	
18	47330	52670	49341	50659	02011	97989	42	
19	47371	52629	49385	50615	02014	97986	41	
20 21	$\begin{array}{c} 9.47411 \\ 47452 \end{array}$	10.52589 52548	9.49430 49474	10.50570 50526	10.02018 02022	9.97982 97978	40 39	
0 22	47492	52508	49519	50481	02022	97974	38	
22 23	47533	52467	49563	50437	02030	97970	37	
24	47573	52427	49607	50393	02034	97966	36	
25	9.47613	10.52387	9.49652	10.50348	10.02038	9.97962	35	
26	47654	52346	49696	50304	02042	97958	34	
27 28	47694	52306	49740	50260 50216	02046	97954	33	
28 29	47734	52266 52226	49784 49828	50216	02050	97950	32	
30	47774 9.47814	10.52186	9.49872	50172 10.50128	02054 10.02058	97946 9.97942	30	
31 1	47854	52146	49916	50084	02062	97938	29	
32 33	47894	52106	49960	50040	02066	97934	28	
33	47934	52066	50004	49996	02070	97930	27	
34	47974	52026	50048	49952	02074	97926	26	
35	9.48014	10.51986	9.50092	10.49908	10.02078	9.97922	25	
36 37	48054 48094	51946 51906	50136 50180	49864 49820	02082 02086	97918 97914	24 23	
38	48133	51867	50223	49820	02090	97914	22	
39	48173	51827	50267	49733	02094	97906	21	
40	9.48213	10.51787	9.50311	10.49689	10.02098	9.97902	20	
41	48252	51748 51708	50355	49645	02102	97898	19	
42	48292	51708	50398	49602	02106	97894	18	
43 44	48332	51668	50442	49558	02110	97890	17	
45	48371 9.48411	51629 10.51589	50485 9.50529	$\begin{array}{c c} 49515 \\ 10.49471 \end{array}$	02114 10.02118	97886 9.97882	16 15	
46	48450	51550	50572	49428	02122	97878	14	
47	48490	51550 51510	50616	49384	02126	97874	13	
48	48529	51471	50659	49341	02130	97870	12	
49	48568	51432	50703	49297	02134	97866	11	
50	9.48607	10.51393	•9.50746	10.49254	10.02139	9.97861	10	
51 52	48647	51353	50789	49211	02143	97857	9	
53	48686 48725	51314 51275	50833 50876	49167 49124	$02147 \\ 02151$	97853 97849	8 7 6 5	
54	48764	51236	50919	49124	02151	97845	6	
55	9.48803	10.51197	9.50962	10.49038	10.02159	9.97841	5	
56	48842	51158	51005	48995	02163	97837	4	
57	48881	51119	51048	48952	02167	97833	3	
58 59	48920	51080	51092	48908	02171	97829	3 2 1	
60	48959 48998	51041 51002	51135 51178	48865	02175	97825 97821	0	
	40000	31002	31178	48822	02179	97021		
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.	
1079							720	

Logarithms.

1	10-			Logar	itiliiis.	101-		
	M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
	0	9.48998	10.51002	9.51178	10.48822	10.02179	9.97821	60
	0 1 2 3 4 5 6 7 8 9	49037	50963	51221	48779	02183	97817	59
	2	49076	50924	51264	48736	02188	97812	58
	3	49115	50885	51306 51349 9.51392	48694	02192	97808 97804 9.97800 97796	57
	4	49153	50847	51349	48651	02196 10.02200	97804	56
	5	9.49192	10.50808	9.51392	10.48608	10.02200	9.97800	55
	6	49231	50769	51435	48565	02204	97796	54
	7	49269 49308	50731 50692	51478	48522 48480	02208 02212	97792 97788	53 52
	0	49308	50653	51520 51563	48437	02212	97784	51
	10	9.49385	10.50615	9.51606	10.48394	02216 10.02221	9.97779	50
	11	49424	50576	51648	48352	02225	97775	49
	12 I	49462	50538	51691	48309	02229	97771	48
	13	49500	50500	51734	48266	02233	97767	47
	13 14	49539	50461	51776	48266 48224	02237	97767 97763	46
	15	9.49577	10.50423	51734 51776 9.51819	10.48181	10.02241	9.97759	45
	16	49615	50385	51861	48139	02246	97754	44
	17	49654	50346	51903	48097	02250 02254	97750	43
	18	49692 49730	50308	51946 51988	48054	02204	97746 97742	42
	19 20	9.49768	50270 10.50232	9.52031	48012 10.47969	$02258 \\ 10.02262$	9.97738	41 40
	21	49806	50194	52073	47927	02266	97734	39
	22	49844	50156	52115	47885	02271	97729	38
	22 23	49882	50118	52157	47843 47800	02275	97729 97725	38 37
	24	49920	50080	52157 52200	47800	02279	97721	36
	24 25 26	9.49958	10.50042	9.52242	10.47758	10.02283	9.97717	35
	26	49996	50004	52284	47716	02287	97713	34
	27 28 29	50034	49966	52326	47674 47632	02292	97708 97704	33
	28	50072 50110	49928	52368	47632	02296	97704	32
	30	9.50148	49890	52410	47590 10.47548	02300	97700	31 30
	31	50148	10.49852 49815	9.52452 52494	47506	10.02304 02309	9.97696 97691	29
-	32	50223	49010	52536	47300	02309	97687	28
	33	50223 50261	49777 49739	52536 52578	47464 47422	02313 02317	97687 97683	27
	34	50298	49702	52620	47380	02321	97679	26
- 1	35	9.50336	10.49664	9.52661	10.47339	10.02326	9.97674	25
	36	50374	49626	52703	47297	02330	97670	24
- 1	37 38	50411	49589	52703 52745	47255 47213	02334 02338	97666	23 22
- 1	38	50449	49551	52787	47213	02338	97662	22
-	39	50486	49514	52829	47171	02343	97657	21
	40 41	9.50523 50561	10.49477 49439	9.52870	10.47130	10.02347	9.97653	20 19
	42	50598	49439	52912 52953	47088 47047 47005	02351 02355	97649 97645	18
	43	50635	49365	52995	47005	02360	97640	17
	44	50673	49327	53037	46963	02364	97636	16
	45	9.50710	10.49290	9.53078	10.46922	10.02368	9.97632	15
	46	50747 50784	49253 49216	53120 53161	46880	02372	97628 97623	14
	47	50784	49216	53161	46839	02377	97623	13
4	48	50821	49179	53202	46798	02381	97619	12
	49 50	50858	49142	53244	46756	02385	97615	11
	50 51	9.50896 50933	10.49104 49067	9.53285 53327	10.46715	10.02390 02394	9.97610	10 9
	52	50955	49067	53368	46673 46632	02394	97606 97602	8
	52 53	51007	48993	53409	46591	02403	97597	7
	54 I	51043	48957	53450	46550	02407	97593	8 7 6 5
į	55	9.51080	10.48920	9.53492	10.46508	10 02411	9.97589	5
	56	51117	48883	53533 53574	46467	02416	97584	4
	57 58	51154	48846	53574	46426	02420	97580	4 3 2 1
	58	51191	48809	53615	46385	02424	97576	2
	59	51227	48773	53656	46344	02429	97571	1
	60	51264	48736	53697	46303	02433	97567	0
]	M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
	080							710
	00							11

19°			Logar	ithms.			160°
M.	Sine.	Cosecant.	Tangent.	Cotangent,	Secant.	Cosine.	M.
0	9.51264	10.48736	9.53697	10.46303	10.02433	9.97567	60 =
1	51301	48699	53738	46262	02437	97563	59
2	51338	48662	53779	46221 46180	02442 02446	97558	58
4	51374 51411	48626 48589	53820 53861	46139	02450	97554 97550	57 56
2 3 4 5 6 7 8	9.51447	10.48553	9.53902	10.46098	10.02455	9.97545	55
6	51484	48516	53943	46057	02459	97541	54
7	51520	48480	53984	46016	02464	97536	53
8	51557	48443	54025	45975	02468	97532	52
	51593	48407	54065	45935	02472	97528	51
10 11	$9.51629 \\ 51666$	10.48371 48334	9.54106 54147	10.45894 45853	10.02477 02481	9.97523 97519	50 49
12	51702	48298	54187	45813	02485	97515	48
13	51738	48262	54228	45772	02490	97510	47
14	51774	48226	54269	45731	02494	97506	46
15	9.51811	10.48189	9.54309	10.45691	10.02499	9.97501	45
16	51847	48153	54350	45650	02503	97497	44
17 18	51883	48117	54390	45610	02508	97492	43
18	51919 51955	48081 48045	54431 54471	45569 45529	02512 02516	97488 97484	42
20	9.51991	10.48009	9.54512	10.45488	10.02521	9.97479	40
21	52027	47973	54552	45448	02525	97475	39
22	52063	47937	54593	45407	02530	97470	38
23	52099	47901	54633	45367	02534	97466	37
24	52135	47865	54673	45327	02539	97461	36
25	9.52171	10.47829	9.54714	10.45286	10.02543	9.97457	35
26 27	52207 52242	47793	54754 54794	45246 45206	02547	97453	34
28	52278	47758 47722	54835	45165	02552 02556	97448 97444	32
29	52314	47686	54875	45125	02561	97439	31
30	9.52350	10.47650	9.54915	10.45085	10.02565	9.97435	30
31	52385	47615	54955	45045	02570	97430	29
32	52421	47579	54995	45005	02574	97426	28
33	52456	47544	55035	44965	02579	97421	27
34 35	52492 9.52527	47508 10.47473	55075 9.55115	$\begin{array}{c c} 44925 \\ 10.44885 \end{array}$	02583 10.02588	97417 9.97412	26 25
36	52563	47437	55155	44845	02592	97408	24
37	52598	47402	55195	44805	02597	97403	23
38	52634	47366	55235	44765	02601	97399	22
39	52669	47331	55275	44725	02606	97394	21
40	9.52705	10.47295	9.55315	10.44685	10.02610	9.97390	20
41 42	$52740 \\ 52775$	47260 47225	55355 55395	44645	02615	97385	19 18
43	52811	47189	55434	44605 44566	02619 02624	97381 97376	17
44	52846	47154	55474	44526	02628	97372	16
45	9.52881	10.47119	9.55514	10.44486	10.02633	9.97367	15
46	52916	47084	55554	44446	02637	97363	14
47	52951	47049	55593	44407	02642	97358	13
48	52986	47014	55633	44367	02647	97353	12
49 50	53021 9.53056	46979 10.46944	55673	44327	02651	97349	11 10
51	53092	46908	9.55712 55752	10.44288 44248	$\begin{array}{c c} 10.02656 \\ 02660 \end{array}$	9.97344 97340	9
52	53126	46874	55791	44209	02665	97335	8
53	53161	46839	55831	44169	02669	97331	8 7 6 5
54	53196	46804	55870	44130	02674	97326	6
55	9.53231	10.46769	9.55910	10.44090	10.02678	9.97322	5
56	53266	46734	55949	44051	02683	97317	4
57 58	53301 53336	46699 46664	55989	44011	02688	97312	3 2
59	53370	46630	56028 56067	43972 43933	02692 02697	97308 97303	1
60	53405	46595	56107	43893	02701	97299	ō
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

	20 °			Logar	ithms.			159°
	M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
×	0	9.53405	10.46595	9.56107	10.43893	10.02701	9.97299	60
	1	53440	46560	56146	43854	02706	97294 97289	59
	$\begin{bmatrix} \overline{2} \\ 3 \end{bmatrix}$	53475 53509	46525 46491	56185 56224	43815 43776	02711 02715	97289	58 57
	4	53544	46456	56264	43736	02720	97280	56
	5	9.53578	10.46422	9.56303	10.43697	10.02724	9.97276	55
	6	53613	46387	56342	43658	02729	97271	54
	7	53647	46353	56381	43619	02734	97266	53
	8	53682	46318	56420	43580	02738	97262	52
	4 5 6 7 8 9	53716 9.53751	46284 10.46249	56459 9.56498	43541 10.43502	02743 10.02748	97257 9.97252	51 50
	11	53785	46215	56537	43463	02752	97248	49
	12	53819	46181	56576	43424	02757	97243	48
	13	53854	46146	56615	43385	02762	97238	47
	14	53888	46112	56654	43346	02766	97234	46
	15	9.53922	10.46078	9.56693	10.43307	10.02771	9.97229	45
	16 17	53957 53991	46043 46009	56732 56771	43268 43229	02776 02780	97224 97220	44 43
	18	54025	45975	56810	43190	02785	97215	42
	19	54059	45941	56849	43151	02790	97210	41
	20	9.54093	10.45907	9.56887	10.43113	10.02794	9.97206	40
	21	54127	45873	56926	43074	02799	97201	39
	22	54161	45839	56965	43035	02804	.97196	38
	23	54195 54229	45805	57004	42996	02808	97192	37
	24 25	9.54263	$\begin{array}{c c} & 45771 \\ & 10.45737 \end{array}$	57042 9.57081	42958 10.42919	02813 10.02818	97187 9.97182	36 35
	26	54297	45703	57120	42880	02822	97178	34
	27	54331	45669	57158	42842	02827	97173	33
	28	54365	45635	57197	42803	02832	97168	32
	29	54399	45601	57235	42765	02837	97163	31
	30	9.54433	10.45567	9.57274	10.42726	10.02841	9.97159	30
	31 32	54466 54500	45534 45500	57312 57351	42688 42649	02846 02851	97154 97149	29 28
	33	54534	45466	57389	42611	02855	97145	27
	34	54567	45433	57428	42572	02860	97140	26
	35	9.54601	10.45399	9.57466	10.42534	10.02865	9.97135	25
	36	54635	45365	57504	42496	02870	97130	24
	37	54668	45332	57543	42457	02874	97126	23 22
	38 39	54702 54735	45298 45265	57581 57619	42419 42381	02879 02884	97121 97116	21
	40	9.54769	10.45231	9.57658	10.42342	10.02889	9.97111	20
	41	54802	45198	57696	42304	02893	97107	19
	42	54836	45164	57734	42266	02898	97102	18
	43	54869	45131	57772	42228	02903	97097	17
	44 45	54903	45097	57810	42190	02908	97092	16
	46	9.54936 54969	10.45064 45031	9.57849 57887	10.42151 42113	10.02913 02917	9.97087 97083	15 14
	47	55003	44997	57925	42075	02922	97078	13
	48	55036	44964	57963	42037	02927	97073	12
	49	55069	44931	58001	41999	02932	97068	11
	50	9.55102	10.44898	9.58039	10.41961	10.02937	9.97063	10
	51 52	55136	44864	58077	41923	02941	97059	9
	53	55169 55202	44831 44798	58115 58153	41885 41847	02946 02951	97054 97049	8 7 6 5 4
	54	55235	44765	58191	41809	02956	97044	6
	55	9.55268	10.44732	9.58229	10.41771	10.02961	9.97039	5
	56	55301	44699	58267	41733	02965	97035	4
	57	55334	44666	58304	41696	02970	97030	3
	58 59	55367 55400	44633 44600	58342 58380	41658	02975 02980	97025 97020	$\begin{bmatrix} 3\\2\\1 \end{bmatrix}$
	60	55433	44567	58418	41620 41582	02985	97020 97015	0
	M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

21°			Logarithms.			158°		
М.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.	
0	9.55433	10.44567	9.58418	10.41582	10.02985	9.97015	60	
0 1 2 3 4 5 6 7	55466	44534	58455	41545	02990	97010	59	
2	55499	44501	58493	41507 41469	02995 02999	97005	58 57	
3	55532 · 55564	44468 44436	5853 1 58569	41409	02999	97001 96996	56	
5	9.55597	10.44403	9.58606	10.41394	10.03009	9.96991	55	
6	55630	44370	58644	41356	03014	96986	54	
7	55663	44337	58681	41319	03019	96981	53	
8 9	55695	44305	58719	41281	03024	96976	52 51	
9	55728	44272	58757	41243	03029	96971	51	
10	9.55761	10.44239	9.58794	10.41206	10.03034	9.96966	50	
11	55793	44207 44174	58832	41168 41131	03038 03043	96962	49	
12 13	55826 55858	44174	58869 58907	41093	03048	96957 96952	48 47	
14	55891	44109	58944	41056	03053	96947	46	
15	9.55923	10.44077	9.58981	10.41019	10.03058	9.96942	45	
16	55956	44044	59019	40981	03063	96937	44	
17	55988	44012	59056	40944	03068	96932	43	
18	56021	43979	59094	40906	03073	96927	42	
19	56053	43947	59131	40869	03078	96922	41	
20	9.56085	10.43915	9.59168	10.40832	10.03083	9.96917	40	
21 22	56118 56150	43882 43850	59205 59243	40795	03088 03093	96912 96907	39	
23	56182	43818	59280	40757 40720	03097	96903	38 37	
24	56215	43785	59317	40683	03102	96898	36	
25	9.56247	10.43753	9.59354	10.40646	10.03107	9.96893	35	
26	56279 56311	43721 43689	59391	40609	03112	96888	34	
27	56311	43689	59429	40571	03117	96883	33	
28	56343	43657	59466	40534	03122	96878	32	
29 30	56375	43625	59503	40497	03127	96873	31	
31	9.56408 56440	10.43592 43560	9.59540 59577	10.40460 40423	10.03132 03137	9.96868 96863	30 29	
32	56472	43528	59614	40386	03142	96858	28	
33	56504	43496	59651	40349	03147	96853	27	
34	56536	43464	59688	40312	03152	96848	26	
35	9.56568	10.43432	9.59725	10.40275	10.03157	9.96843	25	
36	56599	43401	59762	40238	03162	96838	24	
37	56631	43369	59799	40201	03167	96833	23	
38	56663	43337	59835	40165	03172	96828	22	
40	56695 9 56727	43305	59872 9.59909	40128 10.40091	03177 10.03182	96823 9,96818	21 20	
41	9.56727 56759	10.43273 43241	59946	40054	03187	96813	19	
42	56790	43210	59983	40017	03192	96808	18	
43	56822	43178	60019	39981	03197	96803	17	
44	56854	43146	60056	39944	03202	96798	16	
45	9.56886	10.43114	9.60093	10.39907	10.03207	9.96793	15	
46	56917	43083	60130	39870	03212	96788	14	
47 48	56949 56980	43051 43020	60166	39834	03217	96783	13	
49	57012	42988	60203	39797	03222 03228	96778	12 11	
50	9.57044	10.42956	60240 9.60276	39760 10.39724	10.03233	96772 9.96767	10	
51	57075	42925	60313	39687	03238	96762	9	
52	57107	42893	60349	39651	03243	96757	8	
53	57138	42862	60386	39614	03248	96752	7	
54	57169	42831	60422	39578	03253	96747	9 8 7 6 5 4 3 2 1	
55 56	9.57201	10.42799	9.60459	10.39541	10.03258	9.96742	5	
57	57232 57264	42768 42736	60495 60532	39505	03263	96737	4	
58	57295	42736	60568	39468 39432	03268 03273	96732 96727	3	
59	57326	42674	60605	39395	03278	96722	1	
60	57358	42642	60641	39359	03283	96717	ō	
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.	

3	3	0
¥	£	

Logarithms.

	22°			Logar	ithms.			157°
	M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
×	0	9.57358	10.42642	9.60641	10.39359	10.03283	9.96717	60
	1	57389	42611	60677	39323	03289	96711	59
	2 3	57420	42580	60714	39286 39250	03294 03299	96706	58 57
	3	57451 57482	42549	60750 60786	39250 39214	03299	96701 96696	56
	4 5 6 7 8 9	9.57514	42518 10.42486	9 60823	10.39177	10.03309	9.96691	55
	6	57545	42455	9.60823 60859	39141	03314	96686	54
	7	57576	42424 42393	60895	39105	03319	96681	53
	8	57607	42393	60931	39105 39069	03324 03330	96681 96676	52
	9	57638	42362	60967	39033	03330	96670	51
	10 11	9.57669 57700	42362 10.42331 42300	9.61004	10.38996	10.03335 03340	9.96665 96660	50 49
	12	57731	42269	61040 61076 61112	38960 38924	03345	96655	48
	13	57762	42238	61112	38888	03350	96650	47
	14	57793	42207	61148	38852	03355	96645	46
	15	9.57824	10.42176 42145	9.61184	10.38816	10.03360 03366	9.96640	45
	16	57855	42145	61220 61256	38780	03366	96634	44
	17 18	57885	42115 42084	61256	38744	03371 03376	96629 96624	43 42
	19	57916 57947	42054	61292 61328	38708 38672	03381	96619	41
	20	9.57978	10.42022	9 61364	10.38636	10.03386	9.96614	40
	20 21	58008	10.42022 41992	9.61364 61400	38600	03392	96608	39
	22	58039	41961	61436	38564	03397	96603	38
	22 23 24 25	58070	41930 41899	61472	38528	03402	96598	37
	24	58101	41899 10.41869	61508	38492	03407 10.03412	96593	36
	26	9.58131 58162	10.41809	9.61544 61579	10.38456 38421	03412	9.96588	35 34
	27	58192	41808	61615	38385	03423	96582 96577	33
	28	58223	41838 41808 41777	61615 61651	38349	03428	96572	32
	28 29	58253	41747	61687	38313	03428 03433	96567	32 31
	30	9.58284	10.41716	61687 9.61722 61758 61794	10.38278 38242	10.03438	9.96562	30
	31 32	58314	41686 41655	61758	38242	03444	96556 96551	29
	33	58345 58375	41625	61794	38206 38170	03449 03454	96546	28 27
	34	58406	41594	61865	38135	03459	96541	26
	35	9.58436	10.41564	9.61901	10.38099	10.03465	9.96535	25
	36	58467	41533 41503	61936	38064	03470	96530	24
	37	58497	41503	61972	38028	03475	96525	23
	38	58527	41473 41443	62008	37992	03480	96520	22
	39 40	58557 9.58588	10.41412	62043 9.62079	37957	03486 10.03491	96514 9.96509	21 20
	41	58618	41382	62114	10.37921 37886	03496	96504	19
	42	58648	41382 41352 41322	62114 62150	37850	03502	96498	18
	43	58678	41322	62185	37815	03507	96493	17
	44	58709	41291	62221	37779	03512	96488	16
	45	9.58739	10.41261	9.62256 62292 62327	10.37744	10.03517	9.96483	15
	46 47	58769 58799	41231 41201	62292	37708 37673	03523 03528	96477 96472	14 13
	48	58829	41171	62362	37638	03533	96467	12
	49	58859	41141	62398	37602	03539	96461	11
	50	9.58889	10.41111	9.62433	10 37567	10.03544	9.96456	11 10
	51	58919	41081 41051	62468	37532 37496	03549	96451	9
	52	58949	41051	62504	37496	03555	96445	8
	53	58979 59009	41021 40991	62539 62574	37461 37426	03560 03565	96440	6
	54 55	9.59039	10.40961	9.62609	10.37391	10.03571	96435 9.96429	8 7 6 5 4 3 2 1 0
	56	59069	40931	62645	37355	03576	96424	4
	57	59098	40902 40872	62680	37320	03576 03581	96424 96419	3
	58	59128	40872	62715	37285	03587	96413	2
	59 60	59158	40842 40812	62750	37250	03592	96408	1
	00	59188	40812	62785	37215	03597	96403	0
	M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
	1120)			-11			67°

23°	Logarithms. 150						
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.59188	10.40812	9.62785	10.37215	10.03597	9.96403	60
1	59218	40782	62820	37180	03603	96397	59
2 3	59247	40753	62855	37145	03608	96392	58
3	59277	40723	62890	37110	03613	96387	57
4 5 6 7 8 9	59307 9.59336	40693	62926 9.62961	37074 10.37039	03619 10.03624	96381 9.96376	56 55
6	59366	10.40664 40634	62996	37004	03630	96370	54
7	59396	40604	63031	36969	03635	96365	53
8	59425	40575	63066	36934	03640	96360	52
	59455	40545	63101	36899	03646	96354	51
10	9.59484	10.40516	9.63135	10.36865	10.03651	9.96349	50
11	59514	40486	63170	36830	03657	96343	49
12	59543	40457	63205	36795	03662	96338	48
13	59573	40427	63240	36760	03667	96333	47
14 15	59602 9.59632	40398 10.40368	63275	36725 10.36690	03673 10.03678	96327 9.96322	46 45
16	59661	40339	9.63310 63345	36655	03684	96316	44
17	59690	40310	63379	36621	03689	96311	43
18	59720	40280	63414	36586	03695	96305	42
19	59749	40251	63449	36551	03700	96300	41
20	9.59778	10.40222	9.63484	10.36516	10.03706	9.96294	40
21 22	59808	40192	63519	36481	03711	96289	39
2 2	59837	40163	63553	36447	03716	96284	38
23	59866	40134	63588	36412	03722	96278	37
24	59895	40105	63623	36377	03727	96273	36
25	9.59924	10.40076	9.63657	10.36343	10.03733	9.96267	35
26	59954 59983	40046 40017	63692 63726	36308	03738 03744	96262 96256	34
27 28 29	60012	39988	63761	36274 36239	03749	96251	32
29	60041	39959	63796	36204	03755	96245	31
30	9:60070	10.39930	9.63830	10.36170	10.03760	9.96240	30
31	60099	39901	63865	36135	03766	96234	29
32	60128	39872	63899	36101	03771	96229	28
3 3	60157	39843	63934	36066	03777	96223	27
34	60186	39814	63968	36032	03782	96218	26
35	9.60215	10.39785	9.64003	10.35997	10.03788	9.96212	25
36 37	60244 60273	39756	64037	35963 35928	03793	96207 96201	24 23
38	60302	39727 39698	64072 64106	35894	03799 03804	96196	22
39	60331	39669	64140	35860	03810	96190	21
40	9.60359	10.39641	9.64175	10.35825	10.03815	9.96185	20
41	60388	39612	64209	35791	03821	96179	19
4 2	60417	39583	64243	35757	03826	96174	18
43	60446	39554	64278	35722	03832	96168	17
44	60474	39526	64312	35688	03838	96162	16
45	9.60503	10.39497	9.64346	10.35654	10.03843	9.96157	15
46 47	60532 60561	39468	64381	35619	03849	96151	14
48	60589	39439 39411	64415 64449	35585 35551	03854 03860	96146 96140	13 12
49	60618	39382	64483	35517	03865	96135	11
50	9.60646	10.39354	9.64517	10.35483	10.03871	9.96129	10
51	60675	39325	64552	35448	03877	96123	
52	60704	39296	64586	35414	03882	96118	9 8 7 6 5
53	60732	39268	64620	35380	03888	96112	7
54	60761	39239	64654	35346	03893	96107	6
55	9.60789	10.39211	9.64688	10.35312	10.03899	9.96101	5
56 57	60818 60846	39182	64722	35278	03905	96095	4
58	60875	39154 39125	64756 64790	35244 35210	03910	96090	3 2
59	60903	39097	64824	35176	03916 03921	96084 96079	1
60	60931	39069	64858	35142	03927	96073	ō
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

240	2	4	0	
-----	---	---	---	--

Logarithms.

24-			Logar	itiiiis.			13
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	N
0	9.60931	10.39069	9.64858	10.35142	10.03927	9.96073	6
1	60960	39040	64892	35108 35074	03933	96067 96062	5
2	60988	39012	64926	35074	03938	96062	5
1 2 3 4 5 6 7 8 9	61016	38984	64960	35040	03944	96056	5
4	61045	38955	64994	35006	03950	96050	5
5	61045 9.61073	10.38927	64994 9.65028	35006 10.34972	10.03955	96050 9.96045	5
6	61101	38899	65062	34938	03961	96039	5
7	61129	38871	65096	34904	03966	96034	5 5
0	61158	38842	65130	34870	03972	96028	5
0	01100	38814	65164	24070	03978	96028	5
10	61186 9.61214 61242	10.38786	00104	34836	10.03983	9.96017	5
11	0.01214	10.35750	9.65197	10.34803		9.90017	9
11	01242	38758	65231	34769	03989	96011	4
12 13	61270	38730	65265	34735	03995	96005	4
13	61298	38702 38674	65299 65333	34701	04000	96000	4
14	61270 61298 61326	38674	65333	34667	04006	95994	4
15	9.61354	10.38646	9.65366 65400	10.34634	10.04012	9.95988	4
16	61382	38618	65400	34600	04018	95982	4
17	61411	38589	65434	34566	04023	95977	4
18 19	61438	38562	65467	34533	04029	95971	4
19	61466	38534	65501	34499	04035	95965	4
20 21 22 23 24	9.61494	10.38506	9.65535	10.34465	10.04040	9.95960	4
21	61522	38478	65568	34432	04046	95954	3
22	61550	38450	65602	34398	04052	95948	3
23	61578 61606	38422 38394	65636 65669	34364 34331	04058	95942	3
24	61606	38394	65669	34331	04063	95937	3
25	9.61634	10.38366	9.65703	10.34297	10.04069	9.95931	3
26	61662	38338	65736	3/196/	04075	95925	3
27	61689	38311	65770	34230 34197	04080	95920	3
00	61717	36363	65770 65803 65837	24107	04086	95914	3
26 27 28 29	61717 61745	38283 38255	65097	34163	04092	95908	3
20	9.61773	10.38227	9.65870	10.34130	10.04092	9.95902	3
30 31			9.00070			9.90902	
9T	61800	38200	65904	34096	04103	95897	2
32 33 34	61828 61856 61883	38172	65937 65971	34063	04109	95891	2
55	01990	38144	65971	34029	04115	95885 95879	$\frac{1}{2}$
34	01000	38117	66004	33996	04121	95879	2
35	9.61911	10.38089	9.66038	10.33962	10.04127	9.95873	2
36	61939	38061	66071	33929	04132	95868	2
37	61966	38034	66104 66138	33896	04138	95862 95856	$\frac{1}{2}$
38	61994 62021	38006	66138	33862	04144	95856	2
39	62021	37979	66171	33829	04150	95850	2
10	9.62049	10.37951	9.66204	10.33796	10.04156	9.95844	2
11	62076	37924	66238 66271 66304	33762	04161	95839	1
12	62104	37896 37869	66271	33729 33696	04167 04173	95833 95827	1 1
13	62131 62159	37869	66304	33696	04173	95827	1
14	62159	37841	66337	33663	04179	95821	1
15	9.62186	10 37814	9.66371	10.33629	10.04185	9.95815	1
16	62214	37786	66404	33596	04190	95810	1
7	62241	37786 37759 37732 37704	66437	33563	04196	95804	1
18	62268	37732	66437 66470	33563 33530	04202	95798	1
19	62296	37704	66503	33497	04208	95792	1
50	9.62323	10.37677	9.66537	10.33463	10.04214	9.95786	1
51	62350	37650	66570	33430	04220	95780	
2	62377	37623	66603	33307	04220 04225	95780 95775	
$\frac{1}{2}$	62405	37623 37595	66603 66636	33397 33364	04223	95769	1 3
4	62432	37569	66669	33331	04231	95769	
5	9.62459	37568 10.37541	0.66700	10 22200	10.04949	95763	
6		27514	9.66702	10.33298	10.04243	9.95757	1
7	62486 62513	37514	66735	33265 33232	04249	95751 95745	1 5
7		37487 37459	66768	33232	04255	95745	
8	62541	37459	66801	33199	04261	95739	6
99	62568	37432	66834 66867	33166	04267	95733	-
00	62595	37405	66867	33133	04272	95728	(
T .	α.:					~-	-
L.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M
140							65
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	

25° Logarithms. 154°								
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.	
0	9.62595	10.37405	9.66867	10.33133	10.04272	9.95728	60	
1	62622	37378	66900	33100	04278	95722	59	
$\begin{bmatrix} \hat{2} \\ 3 \end{bmatrix}$	62649	37351 37324	66933	33067	04284	95716	58	
3	62676	37324	66966	33034	04290	95710	57	
4	62703 9.62730 62757	37297 10.37270 37243	66999	33001	04296	95704	56 55	
5	9.62730	10.37270	9.67032	10.32968	10.04302	9.95698	55	
6	62757	37243	67065 67098	32935	04308	95692	54	
0	62811	37216 37189	67131	32902 32869	04314 04320	95686 95680	53	
4 5 6 7 8 9	62838	37162	67163	32837	04326	95674	52 51	
10	9.62865	10.37135	9.67196	10.32804	10.04332	9.95668	50	
11	62892	37108	67229	32771	04337	95663	49	
12	62918	37108 37082	67229 67262	32738	04343	95657	48	
13	62945	37055	67295	32705	04349	95651	47	
14	62972	37028	67327	32673	04355	95645	46	
15	9.62999	10.37001	9.67360	10.32640	10.04361	9.95639	45	
16	63026	36974 36948	67393	32607	04367	95633	44	
17	63052	36948	67426	32574	04373	95627	43	
18	63079	36921	67458	32542	04379	95621	42	
19	63106	36894	67491	32509	04385	95615	41	
20	9.63133 63159	10.36867 36841	9.67524 67556	10.32476 32444	10.04391 04397	9.95609 95603	40	
20 21 22 23	63186	36914	67589	32411	04403	95597	39	
23	63213	36814 36787	67622	32378	04409	95591	38 37	
24	63239	36761	67654	32346	04415	95585	36	
25	9.63266	10.36734	9.67687	10.32313	10.04421	9.95579	35	
26	63292	36708	67719	32281	04427	95573	34	
27 28	63319	36681	67752 67785	32248	04433	95567	33	
28	63345	36655	67785	32215	04439	95561	32	
29	63372	36628	67817	32183	04445	95555	31	
30	9.63398	10.36602	9.67850	10.32150	10.04451	9.95549	30	
31	63425	36575	67882	32118	04457	95543	29	
32	63451	36549	67915	32085	04463	95537	28	
33	63478	36522	67947	32053	04469	95531	27	
34 35	63504 9.63531	36496 10.36469	67980 9.68012	32020 10.31988	04475 10.04481	95525 9.95519	26 25	
36	63557	36443	68044	31956	04487	95513	23	
37	63583	36417	68077	31923	04493	95507	23	
38	63610	36390	68109	31891	04500	95500	22	
39	63636	36364	68142	31891 31858	04506	95494	22 21	
40	9.63662	10.36338	9.68174	10.31826	10.04512	9.95488	20	
41	63689	36311	68206	31794	04518	95482	19	
42	63715	36285	68239	31761	04524	95476	18	
43	63741	36259	68271	31729	04530	95470	17	
44	63767	36233	68303	31697	04536	95464	16	
45 46	9.63794	10.36206	9.68336	10.31664	10.04542	9.95458	15	
47	63820 63846	36180 36154	68368 68400	31632	04548	95452	14	
48	63872	36128	68432	31600 31568	04554 04560	95446 95440	13 12	
49	63898	36102	68465	31535	04566	95434	11	
50	9.63924	10.36076	9.68497	10.31503	10.04573	9.95427	10	
51	63950	36050	68529	31471	04579	95421	9	
52 53	63976	36024	68561	31439	04585	95415	8	
53	64002	35998	68593	31407	04591	95409	7	
54	64028	35972	68626	31374	04597	95403	6	
55	9.64054	10.35946	9.68658	10.31342	10.04603	9.95397	5	
56	64080	35920	68690	31310	04609	95391	4	
57	64106	35894	68722	31278	04616	95384	3	
58	64132	35868	68754	31246	04622	95378	2	
59 60	64158 64184	35842 35816	68786	31214	04628	95372	9 8 7 6 5 4 3 2 1	
	04104	30816	68818	31182	04634	95366	0	
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.	

2	26°			Logar	ithms.			153°
-	м.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
, -	0	9.64184	10.35816	9.68818	10.31182	10.04634	9.95366	60
	1	64210	35790	68850	31150	04640	95360	59
	1 2 3	64236	35764	68882	31118	04646	95354	58
	3	64262	35738 35712	68914 68946	31086 31054	04652 04659	95348 95341	57 56
	4	64288 9.64313	10.35687	9.68978	10.31022	10.04665	9.95335	55
	6	64339	35661	69010	30990	04671	95329	54
	4 5 6 7 8 9	64365	35635	69042	30958	04677	95323	53
	8	64391	35609	69074	30926	04683	95317	52
	9	64417	35583	69106	30894	04690	95310	51
	10	9.64442	10.35558	9.69138	10.30862	10.04696	9.95304	50
	11	64468	35532	69170	30830	04702	95298	49
	12	64494	35506	69202	30798	04708	95292	48
	13 14	64519 64545	35481 35455	69234 69266	30766 30734	04714 04721	95286 95279	47 46
	15	9.64571	10.35429	9.69298	10.30702	10.04727	9.95273	45
	16	64596	35404	69329	30671	04733	95267	44
	17	64622	35378	69361	30639	04739	95261	43
	18	64647	35353	69393	30607	04746	95254	42
	19	64673	35327	69425	30575	04752	95248	41
	20	9.64698	10.35302	9.69457	10.30543	10.04758	9.95242	40
	21	64724	35276	69488	30512	04764	95236	39
	22	64749	35251 35225	69520	30480	04771 04777	95229 95223	38 37
	23 24	64775 64800	35225	69552 69584	30448 30416	04777	95223	36
	25 25	9.64826	10.35174	9.69615	10.30385	10.04789	9.95211	35
	26	64851	35149	69647	30353	04796	95204	34
	27	64877	35123	69679	30321	04802	95198	33
	28	64902	35098	69710	30290	04808	95192	32
	29	64927	35073	69742	30258	04815	95185	31
	30	9.64953	10.35047	9.69774	10.30226	10.04821	9.95179	30
	31	64978	35022	69805	30195	04827	95173	29 28
	32 33	65003 65029	34997 34971	69837 69868	30163 30132	04833 04840	95167 95160	27
	34	65054	34946	69900	30100	04846	95154	26
	35	9.65079	10.34921	9.69932	10.30068	10.04852	9.95148	25
	36	65104	34896	69963	30037	04859	95141	24
	37	65130	34870	69995	30005	04865	95135	23
	38	65155	34845	70026	29974	04871	95129	22
	39	65180	34820	70058	29942	04878	95122	21
	40	9.65205	10.34795	9.70089	10.29911	10.04884	9.95116	20
	41 42	65230	34770 34745	70121 70152	29879 29848	04890 04897	95110 95103	19 18
	43	65255 65281	34719	70132	29816	04903	95097	17
	44	65306	34694	70215	29785	04910	95090	16
	45	9.65331	10.34669	9.70247	10.29753	10.04916	9.95084	15
	46	65356	34644	70278	29722	04922	95078	14
	47	65381	34619	70309	29691	04929	95071	13
	48	65406	34594	70341	29659	04935	95065	12
	49	65431 9.65456	34569 10.34544	70372	29628 10.29596	04941	95059	11 10
	50 51	65481	34519	9.70404 70435	29565	10.04948 04954	9.95052 95046	9
	52	65506	34494	70466	29534	04961	95039	8
	52 53	65531	34469	70498	29502	04967	95033	8 7
	54	65556	34444	70529	29471	04973	95027	6
	5 5	9.65580	10.34420	9.70560	10.29440	10.04980	9.95020	5
	56	65605	34395	70592	29408	04986	95014	4
	57	65630	34370	70623	29377	04993	95007	3
	58 59	65665	34345 34320	70654	29346	04999	95001	6 5 4 3 2 1
	60	65680 65705	34320	70685 70717	29315 29283	05005 05012	94995 94988	0
-								
	M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
-	116	0						620

27°			Logar	ithms.			152°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.65705	10.34295	9.70717	10.29283	10.05012	9.94988	60
1	65729	34271	70748 70779	29252	05018	94982	59
2 3	65754	34246	70779	29221	05025	94975	58
3	65779	34221	70810	29190 29159	05031	94969	57
4 5 6 7 8 9	65804 9.65828	34196 10.34172	70841 9.70873	10.29127	05038 10.05044	94962 9.94956	56
6	65853	34147	70904	29096	05051	94949	55 54
7	65878	34122	70935	29065	05057	94943	53
8	65902	34098	70966	29034	05064	94936	52
9	65927	34073	70997	29003	05070	94930	51
10	9.65952	10.34048	9.71028	10.28972	10.05077	9.94923	50
11	65976	34024	71059	28941	05083	94917	49
12 13	66001 66025	33999 33975	71090 71121	28910 28879	05089	94911	48
14	66050	33950	71153	28847	05096 05102	94904 94898	47 46
15	9.66075	10.33925	9.71184	10.28816	10.05109	9.94891	45
16	66099	33901	71215	28785	05115	94885	44
17	66124	33876	71215 71246	28754	05122	94878	43
18	66148	33852	71277	28723	05129	94871	42
19	66173	33827	71308	28692	05135	94865	41
20	9.66197	10.33803	9.71339	10.28661	10.05142	9.94858	40
21	66221	33779	71370	28630	05148	94852	39
22 23	66246	33754	71401	28599	05155	94845	38
24	66270 66295	33730 33705	71431 71462	28569 28538	05161 05168	94839 94832	37
25	9.66319	10.33681	9.71493	10.28507	10.05174	9.94826	36 35
26	66343	33657	71524	28476	05181	94819	34
27	66368	33632	71555	28445	05187	94813	33
28	66392	33608	71586	28414	05194	94806	32
29	66416	33584	71617	28383	05201	94799	31
30	9.66441	10.33559	9.71648	10.28352	10.05207	9.94793	30
31	66465	33535	71679	28321	05214	94786	29
32	66489 66513	33511 33487	71709	28291 28260	05220	94780	28
34	66537	33463	71740 71771	28229	05227 05233	94773 94767	27 26
35	9.66562	10.33438	9.71802	10.28198	10.05240	9.94760	25
36	66586	33414	71833	28167	05247	94753	24
37	66610	33390	71863	28137	05253	94747	23
38	66634	33366	71894	28106	05260	94740	22
39	66658	33342	71925	28075	05266	94734	21
40	9.66682	10.33318	9.71955	10.28045	10.05273	9.94727	20
41 42	66706 66731	33294 33269	71986	28014	05280	94720	19
43	66755	33245	72017 72048	27983 27952	05286 05293	94714 94707	18
44	66779	33221	72078	27922	05300	94700	17 16
45	9.66803	10.33197	9.72109	10.27891	10.05306	9.94694	15
46	66827	33173	72140	27860	05313	94687	14
47	66851	33149	72170	27830	05320	94680	13
48	66875	33125	72201	27799	05326	94674	12
49	66899	33101	72231	27769	05333	94667	11
50 51	9.66922 66946	10.33078 33054	9.72262 72293	10.27738	10.05340	9.94660	10
52	66970	33030	72323	27707 27677	05346 05353	94654	9
53	66994	33006	72354	27646	05360	94647 94640	8 7
54	67018	32982	72384	27616	05366	94634	6
55	9.67042	10.32958	9.72415	10.27585	10.05373	9.94627	5
56	67066	32934	72445	27555	05380	94620	4
57	67090	32910	72476	27524	05386	94614	3 2
58	67113	32887	72506	27494	05393	94607	
59 60	67137 67161	32863 32839	72537	27463	05400	94600	1
			72567	27433	05407	94593	0
М.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

1170

28	0		Logar	ithms.		1	151°
M	. Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
M 10 22 3 4 4 5 5 6 6 7 7 8 8 9 10 11 12 13 13 14 15 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Sine. 9.67161 67185 67282 67298 67282 67350 667303 67327 67327 67327 67327 67327 67421 67445 67445 67468 67468 67468 67468 67599 67562	10.32839 32815 32792 32768 32744 10.32720 32697 32633 32633 32626 10.32602 32579 32555 32532 32508 10.32485 32461 32438	72567 72598 72628 72628 72629 727659 72770 72770 72780 72811 72841 9.72872 72902 72932 72963 72993 9.73023 73054 73084	Cotangent. 10.27433 27402 27372 27341 27311 10.27280 27250 27220 27159 10.27128 27088 27088 27087 27007 10.26977 26946 26916	10.05407 05413 05420 05427 05433 10.05440 05447 05460 05467 10.05474 05481 05487 05501 10.05508 05515	Cosine. 9.94593 94587 94587 94567 9.94560 94553 94546 94533 9.94526 94513 94513 94513 94519 94513 94519 94499 9.94492	M. 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43
18 18 19 19 19 18 19 18 19 18 19 18 18 19 18 19 18 19 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	67586 67699 9.67633 67656 67656 67703 67726 677750 677750 677786 67873 67843 9.67866 67843 9.67866 67843 9.67866 67843 9.67866 67843 9.67866 67843 9.67866 67843 9.67866 67843 9.67866 67843 9.67866 67843 9.67866 67895 67895 67895 67895 67895 67895 67895 68006	32414 32391 10.32367 32344 32320 32227 32227 32227 32204 32180 32157 10.32134 32110 32087 32041 10.32018 32041 32110 32087 3207 32041 32087 32041 32087 32087 32091 32087 32091 3209	73114 73144 73144 9.73175 73205 73235 73235 73295 9.73326 73356 73356 73416 9.73476 9.73476 9.7367 73597 9.73627 73657 73657 73657 73657 73657 73657 73717 73747	26886 26856 10.26825 26795 26765 26765 26765 10.26674 26614 26534 26534 26403 26403 26403 10.26373 26313 26313 26313 26313 26313	05528 05538 05535 10.05542 05549 05555 05562 05569 05596 05596 05696 05617 05617 05624 0631 06631 06651 06656 06656	94472 94465 944458 94451 94438 94431 9.4424 94117 94410 94397 9.4383 94383 94369 94362 9.94355 94342 94342 94342 94328	42 41 40 39 38 37 36 35 34 32 31 30 29 28 27 26 25 24 22 21
41444444444444444444444444444444444444	9,68098 68121 68144 3,68167 68190 9,68213 3,66250 68250 8,68250 9,68325 1,68325 1,68325 1,68325 1,68325 1,68325 1,68426 1,6842	10.31902 31879 31856 31833 31810 10.31787 31763 31740 31717 31695 10.31672 31626 31630 31580 10.31557 31534 31511 31488 31466 31443	9.73777 73807 73837 73867 73897 73897 73957 73987 74047 9.74047 9.7407 74137 74166 74196 9.74226 74256 74286 74316 74345 74345	26253 10.26223 26193 26163 26163 26103 10.26073 26043 25983 25983 25893 25893 25893 25893 25894 25744 25744 25744 25655 25652	10.05679 05686 05693 05700 05707 10.05714 05721 05727 05734 05741 10.05748 05755 05762 05762 05766 05776 10.05783 05790 05797 05804 05811 05818	9.94321 94314 94307 94300 94293 9.94286 94279 94276 94259 9.94255 94238 94231 94224 9.94217 94203 94189 94189	20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2 1

Cotangent. Tangent.

Cosecant.

Cosine.

Secant.

Sine.

29°			Logarithms.				150°	
М.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.	
0	9.68557	10.31443	9.74375	10.25625	10.05818	9.94182	60 -	
1	68580	31420	74405	25595	05825	94175	59	
2 3	68603	31397	74435	25565	05832	94168	58	
3	68625	31375	74465	25535	05839	94161	57	
4 5 6 7 8 9	68648 9.68671	31352 10.31329	74494	25506 10.25476	05846 10.05853	94154 9.94147	56 55	
6	68694	31306	9.74524 74554	25446	05860	94140	54	
7	68716	31284	74583	25417	05867	94133	53	
8	68739	31261	74613	25387	05874	94126	52	
9	68762	31238 10.31216	74643	25357	05881	94119	51	
10	9.68784	10.31216	9.74673	10.25327	10.05888	9.94112	50	
11	68807	31193	74702	25298	05895	94105	49	
12 13	68829	31171	74732	25268	05902	94098	48	
13	68852	31148	74762	25238	05910	94090	47	
14 15	68875 9,68897	31125 10.31103	74791 9.74821	25209 10.25179	05917 10.05924	94083 9.94076	46	
16	68920	31080	74851	25149	05931	94069	44	
17	68942	31058	74880	25120	05938	94062	43	
18	68965	31035	74910	25090	05945	94055	42	
19	68987	31013	74939	25061	05952	94048	41	
19 20	9.69010	10.30990	9.74969	10.25031	10.05959	9.94041	40	
21 22	69032	30968	74998	25002	05966	94034	39	
22	69055	30945	75028	24972	05973	94027	38	
23 24	69077	30923	75058	24942	05980	94020	37	
24 25	69100	30900	75087	24913	05988	94012	36	
26	9.69122 69144	10.30878 30856	9.75117	10.24883 24854	10.05995	9.94005	35 34	
27	69167	30833	75146 75176	24824	06002 06009	93998 93991	33	
28	69189	30811	75205	24795	06016	93984	32	
28 29	69212	30788	75235	24765	06023	93977	31	
30	9.69234	10.30766	9.75264	10.24736	10.06030	9.93970	30	
31 32	69256	30744	75294	24706	06037	93963	29	
32	69279	30721	75323	24677	06045	93955	28	
33	69301	30699	75353	24647	06052	93948	27	
34	69323	30677	75382	24618	06059	93941	26	
35 36	9.69345 69368	10.30655	9.75411	10.24589	10.06066	9.93934	25	
37	69390	30632 30610	75441 75470	24559 24530	06073 06080	93927 93920	23	
38	69412	30588	75500	24500	06088	93912	22	
39	69434	30566	75529	24471	06095	93905	21	
40	9.69456	10.30544	9.75558	10.24442	10.06102	9.93898	20	
41	69479	30521	75588	24412	06109	93891	19	
42	69501	30499	75617	24383	06116	93884	18	
43	69523	30477	75647	24353	06124	93876	17	
44 45	69545 9.69567	30455 10.30433	75676	24324	06131	93869	16 15	
46	69589	30411	9.75705 75735	10.24295 24265	10.06138 06145	9.93862 93855	14	
47	69611	30389	75764	24205	06153	93847	13	
48	69633	30367	75793	24236 24207	06160	93840	12	
49	69655	30345	75822	24178	06167	93833	11	
50	9.69677	10.30323	9.75852	10.24148	10.06174	9.93826	10	
51	69699	30301	75881	24119	06181	93819	9	
52	69721	30279	75910	24090	06189	93811	8	
53	69743	30257	75939	24061	06196	93804	8 7 6	
54 55	69765 9.69787	30235 10.30213	75969	24031	06203	93797	5	
56	69809	30191	9.75998 76027	10.24002 23973	10.06211 06218	9.93789 93782	1	
57	69831	30169	76056	23944	06218	93775	3	
58	69853	30147	76086	23914	06232	93768	4 3 2 1	
59	69875	30125	76115	23885	06240	93760	1	
60	69897	30103	76144	23856	06247	93753	0	
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.	

-	^	0	
3	ŧ,	0	

Logarithms.

300			Logar	ithms.			149
M.	Sine.	Cosecant.	Tangent.	Cotangent,	Secant.	Cosine.	M.
. 0	9.69897	10.30103	9.76144	10.23856	10.06247	9.93753	60
1	69919	30081	76173		06254	93746	59
2 3	69941	30059	76202	23827 23798	06262	93738	58
3	69963	30059 30037	76202 76231	23769	06269 06276	93731 93724	57
4	69984	30016	76261	23739	06276	93724	56
5	9.70006	10.29994	9.76290	10.23710	10.06283	9.93717	55
6	70028	29972	76319	23681	06291	93709 93702	54
4 5 6 7 8 9	70050 70072	29950 29928	76348 76377	23652 23623	06298 06305	93702	53 52
o o	70072	29907	76406	23594	06313	93687	51
10	9.70115	10.29885	9.76435	10.23565	10.06320	9.93680	50
11	70137	29863	76464	23536	06327	93673	49
12 13	70159	29841	76493	23507	06335 06342	93665	48
13	70180 70202	29820	76522	23478	06342	93658	47
14	70202	29798	76551	23449	06350	93650	46
15	9.70224	10.29776	9.76580	10.23420	10.06357	9.93643	45
16 17	70245 70267	29755 29733	76609 76639	23391 23361	06364 06372	93636 93628	44 43
18	70287	29712	76668	23332	06379	93621	42
19	70310	29690	76697	23303	06386	93614	41
20	9.70332	10.29668	9.76725	10.23275	10.06394	9.93606	40
21	70353	29647	9.76725 76754	23246 23217	06401	93599	39
20 21 22	70375	29625	76783 76812	23217	06409	93591	38
23 24	70396	29604	76812	23188	06416	93584	37
24	70418	29582	76841	23159	06423	93577	36
25 26	9.70439 70461	10.29561 29539	9.76870 76899	10.23130 23101	10.06431 06438	9.93569 93562	35
20	70482	29518	76928	23072	06446	93554	34
28	70504	29496	76957	23043	06453	93547	32
27 28 29	70525 9.70547	29475	76986	23014	06461	93539	31
30	9.70547	10.29453	9.77015 77044	10.22985 22956	10.06468	9.93532	30
31	70568	29432	77044	22956	06475	93525 93517	29
32 33	70590 70611	29410	77073	22927 22899	06483 06490	93517	28
34	70611	29389 29367	77101 77130	22870	06490	93510 93502	27 26
35	9.70654	10.29346	9.77159	10.22841	10.06505	9.93495	25
36	70675	29325	77188	22812	06513	93487	24
37 38	70697	29303	77217	22783	06520	93480	23
38	70718	29282	77246	22754	06528	93472	22
39 40	70739 9.70761 70782	29261° 10.29239	77274 9.77303	22726 10.22697	06535 10.06543	93465	21
41	70701	29218	77332	22668	06550	9.93457 93450	20 19
42	70803	29197	77361	22639	06558	93442	18
43	70824	29176	77390	22610	06565	93435	17
44	70846	29154 10.29133	77418	22582 10,22553	06573 10.06580	93427	17 16
45	9.70867	10.29133	9.77447	10.22553	10.06580	9.93420	15
46	70888	29112	77476	22524	06588	93412	14
47	70909	29091	77505	22495	06595	93405	13
48 49	70931 70952	29069	77533	22467	06603 06610	93397 93390	12 11
50	9.70973	29048 10.29027	77562 9.77591	22438 10.22409	10.06618	9.93382	10
51	70994	29006	77619	22381	06625	93375	9
52 53	71015	28985	77648	22352	06633	93367	8
53	71036	28964	77677 77706	22323	06640	93360	7
54	71058	28942	77706	22294	06648	93352	6
55 56	9.71079 71100	10.28921	9.77734	10.22266 22237	10.06656	9.93344	8 7 6 5
57	71100	28900 28879	77763 77791	22237	06663 06671	93337 93329	4
58	71142	28858	77820	22180	06678	93322	3 2
59	71163	28837	77820 77849	22151	06678 06686	93314	1
60	71184	28816	77877	22123	06693	93307	0
M.	Cosine,	Secant.	Cotangent,	Tangent.	Cosecant.	Sine,	M.
		Becant.	Countingent.	rangent.	Cosecant.	Sille.	
120	0						500

31° Logarithms.

31°			Logari	thms.			148°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.71184	10.28816	9.77877	10.22123	10.06693	9.93307	60
1	71205	28795	77906	22094	06701	93299	59
$\frac{2}{2}$	71226 71247	28774 28753	77935 77963	22065 22037	06709 06716	93291 93284	58 57
4	71247	28732	77992	22008	06724	93276	56
$\hat{5}$	9.71289	10.28711	9.78020	10.21980	10.06731	9.93269	55
6	71310	28690	78049	21951	06739	93261	54
1 2 3 4 5 6 7 8 9	71331	28669	78077	21923	06747	93253 93246	53 52
8	71352 71373	28648 28627	78106 78135	21894 21865	06754 06762	93246	51
10	9.71393	10.28607	9.78163	10.21837	10.06770	9.93230	50
`11	71414	28586	78192	21808	06777	93223	49
12 13	71435	28565	78220	21780	06785	93215	48
13	71456 71477	28544 28523	78249 78277	21751 21723	06793 06800	93207 93200	47
15	9.71498	10.28502	9.78306	10.21694	10.06808	9.93192	45
16	71519	28481	78334	21666	06816	93184	44
17	71539	28461	78363	21637	06823	93177	43
18	71560	28440	78391	21609	06831	93169	42
19 20	71581 9.71602	28419 10.28398	78419 9.78448	21581 10.21552	06839 10.06846	93161 9.93154	41 40
21	71622	28378	78476	21524	06854	93146	39
$\begin{bmatrix} 22\\23 \end{bmatrix}$	71643	28357	78505	21495	06862	93138	38
23	71664	28336	78533	21467	06869	93131	37
24 25	71685 9.71705	28315 10.28295	78562 9:78590	21438 10.21410	06877 10.06885	93123 9.93115	36
26	71726	28274	78618	21382	06892	93108	34
$\begin{bmatrix} 27 \\ 28 \end{bmatrix}$	71747	28253	78647	21353	06900	93100	33
28	71767	28233	78675	21325	06908	93092	32
29 30	71788	28212 10.28191	78704	21296 10.21268	06916	93084	31 30
31	9.71809 71829	28171	9.78732 78760	21240	10.06923 06931	9.93077 93069	29
32	71850	28150	78789	21211 21183	06939	93061	28
32 33	71870	28130	78817	21183	06947	93053	28 27
34	71891	28109 10.28089	78845	21155	06954	93046	26
35 36	$9.71911 \\ 71932$	28068	9.78874 78902	10.21126 21098	10.06962 06970	9.93038 93030	25 24
37	71952	28048	78930	21070	06978	93022	23 22
38	71973	28027	78959	21041	06986	93014	22
39	71994	28006	78987	21013	06993	93007	21
40 41	$9.72014 \\ 72034$	10.27986 27966	9.79015 79043	10.20985 20957	10.07001 07009	9.92999 92991	20
42	72055	27945	79072	20928	07017	92983	18
43	72075	27925	79100	20900	07024	92976	17
44	72096	27904	79128	20872	07032	92968	16
45 46	$\begin{array}{c} 9.72116 \\ 72137 \end{array}$	10.27884 27863	9.79156 79185	10.20844 20815	10.07040 07048	9.92960 92952	15 14
47	72157	27843	79213	20787	07056	92944	13
48	72177	27823	79241	20759	07064	92936	12
49	72198	27802	79269	20731	07071	92929	11
50 51	9.72218 72238	10.27782 27762	9.79297 79326	10.20703 20674	10.07079	9.92921	10
52	72259	27741	79354	20646	07087 07095	92913 92905	9 8
53	72279	27721	79382	20618	07103	92897	7
54	72299	27701	79410	20590	07111	92889	8 7 6 5
55	9.72320 72340	10.27680 27660	9.79438	10.20562	10.07119	9.92881	5
56 57	72340 72360	27640	79466 79495	20534 20505	07126 07134	92874 92866	4 3
58	72381	27619	79523	20477	07142	92858	3 2 1
59	72401	27599	79551	20449	07150	92850	1
60	72421	27579	79579	20421	07158	92842	0
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine,	M.
1219		-	6,,				580

M. 0 1 2 3 4 5 6 7 8 9 10	Sine. 9.72421 72441 72461 72482 72502 9.72522 72542 72562 72582 72683 72683 72683 72703 9.72723 72743 72763	Cosecant. 10.27579 27559 27559 275518 27498 10.27478 27418 27418 27398 10.27378 27337 27317 27297 10.27277	79832 9.79807 79607 79635 79663 79691 9.79719 79747 79804 79832 9.79860 79888 79916 79944 79972	Cotangent. 10.20421 20393 20365 20337 20309 10.20281 20253 20224 20196 20168 10.20140 20112 20084 20056	Secant. 10.07158 07164 071174 07182 07190 10.07197 07205 07213 07221 07229 10.07237 07245 07245 07253	Cosine. 9.92842 92834 92826 92818 92810 9.92803 92795 92787 92771 9.92763 92755 92747	M. 60 59 58 57 56 55 54 53 52 51 50 49 48
1 2 3 4 5 6 7 8	72441 72461 72482 72502 9.72522 72542 72562 72582 72602 9.72623 72683 72683 72703 9.72723 72743 72763	27559 27539 27518 27498 10.27478 27458 27438 27418 27398 10.27373 27337 27317 27297 10.27277	79607 79635 79663 79691 9.79719 79747 79876 79832 9.79860 79888 79916 79944 79972	20393 20365 20337 20309 10.20281 20253 20224 20196 20168 10.20140 20112 20084	07166 07174 07182 07190 10.07197 07205 07213 07221 07229 10.07237 07245 07253	92834 92826 92818 92810 9.92803 92795 92777 927779 927771 9.92763 92755	59 58 57 56 55 54 53 52 51 50 49
1 2 3 4 5 6 7 8	72461 72482 72502 9.72522 72542 72562 72662 72602 9.73622 72643 72663 72683 72703 9.72723 72743 72743	27539 27518 27498 10.27478 27458 27438 27418 27398 10.27378 27357 27357 27317 27297 10.27277	79635 79663 79691 9.79719 79747 79776 79804 79882 9.79860 79888 79916 79944 79972	20365 20337 20309 10.20281 20253 20224 20196 20168 10.20140 20112 20084	07174 07182 07190 10.07197 07205 07213 07221 07229 10.07237 07245 07253	92826 92818 92810 9.92803 92795 92787 92779 92771 9.92763 92755	58 57 56 55 54 53 52 51 50 49
2 3 4 5 6 7 8	72482 72502 9.72502 72542 72542 72562 72662 72683 72663 72683 72703 9.72723 72743 72743	27518 27498 10.27478 27458 27438 27438 27418 27398 10.27378 27357 27337 27317 27297 10.27277	79663 79691 9.79719 79747 79776 79804 79832 9.79860 79888 79916 79944 79972	20337 20309 10.20281 20253 20224 20196 20168 10.20140 20112 20084	07182 07190 10.07197 07205 07213 07221 07229 10.07237 07245 07253	92818 92810 9.92803 92795 92787 92779 92771 9.92763 92755	56 55 54 53 52 51 50 49
3 4 5 6 7 8	72502 9.72522 72542 72562 72562 72602 9.72622 72643 72663 72683 72708 9.72723 72743 72743	27498 10.27478 27458 27438 27438 27438 27398 10.27378 27357 27357 27317 27297 10.27277	79691 9.79719 79747 79776 79804 79832 9.79860 79888 79916 79944 79972	20309 10.20281 20253 20224 20196 20168 10.20140 20112 20084	07190 10.07197 07205 07213 07221 07229 10.07237 07245 07253	92810 9.92803 92795 92787 92779 92771 9.92763 92755	56 55 54 53 52 51 50 49
4 5 6 7 8	9.72522 72542 72562 72562 72582 72602 9.72622 72643 72663 72683 72703 9.72723 72743 72763	10.27478 27458 27438 27418 27398 10.27378 27357 27357 27317 27297 10.27277	9.79719 79747 79776 79804 79832 9.79860 79888 79916 79944 79972	10.20281 20253 20224 20196 20168 10.20140 20112 20084	$\begin{array}{c} 10.07197 \\ 07205 \\ 07213 \\ 07221 \\ 07229 \\ 10.07237 \\ 07245 \\ 07253 \end{array}$	9.92803 92795 92787 92779 92771 9.92763 92755	55 54 53 52 51 50 49
5 6 7 8	72542 72562 72582 72602 9.72622 72643 72663 72683 72703 9.72723 72743 72763	27458 27438 27418 27398 10.27378 27357 27357 27317 27297 10.27277	79747 79776 79804 79832 9.79860 79888 79916 79944 79972	20253 20224 20196 20168 10.20140 20112 20084	$\begin{array}{c} 07205 \\ 07213 \\ 07221 \\ 07229 \\ 10.07237 \\ 07245 \\ 07253 \end{array}$	92795 92787 92779 92771 9.92763 92755	54 53 52 51 50 49
6 7 8	72562 72582 72602 9.72622 72643 72663 72703 9.72723 72743 72763	27438 27418 27398 10.27378 27357 27337 27317 27297 10.27277	79776 79804 79832 9.79860 79888 79916 79944 79972	20224 20196 20168 10.20140 20112 20084	$\begin{array}{c} 07213 \\ 07221 \\ 07229 \\ 10.07237 \\ 07245 \\ 07253 \end{array}$	92787 92779 92771 9.92763 92755	53 52 51 50 49
8	72582 72602 9.72622 72643 72663 72663 72703 9.72723 72743 72763	27418 27398 10.27378 27357 27337 27317 27297 10.27277	79804 79832 9.79860 79888 79916 79944 79972	20196 20168 10.20140 20112 20084	$\begin{array}{c} 07221 \\ 07229 \\ 10.07237 \\ 07245 \\ 07253 \end{array}$	92779 92771 9.92763 92755	51 50 49
8	72602 9.72622 72643 72663 72663 72703 9.72723 72743 72763	27398 10.27378 27357 27337 27317 27297 10.27277	79832 9.79860 79888 79916 79944 79972	20168 10.20140 20112 20084	$\begin{array}{r} 07229 \\ 10.07237 \\ 07245 \\ 07253 \end{array}$	92771 9.92763 92755	51 50 49
	9.72622 72643 72663 72683 72703 9.72723 72743 72763	10,27378 27357 27337 27317 27297 10,27277	9.79860 79888 79916 79944 79972	10.20140 20112 20084	$\begin{array}{r} 10.07237 \\ 07245 \\ 07253 \end{array}$	$9.92763 \\ 92755$	50 49
10	72643 72663 72683 72703 9.72723 72743 72763	27357 27337 27317 27297 10.27277	79888 79916 79944 79972	20112 20084	07245 07253	92755	49
11	72663 72683 72703 9,72723 72743 72763	27337 27317 27297 10.27277	79916 79944 79972	20084	07253		49
10	72683 72703 9.72723 72743 72763	27317 27297 10.27277	79944 79972			32/4/	
12 13	72703 9.72723 72743 72763	27297 10.27277	79972		07261	92739	47
14	9.72723 72743 72763	10.27277		20028	07269	92731	46
15	72743 72763		9.80000	10.20000	10.07277	9.92723	45
16	72763	27257	80028	19972	07285	92715	44
17		27237	80056	19944	07293	92707	43
18	72783	27217	80084	19916	07301	92699	42
19	72803	27197	80112	19888	07309	92691	41
20	9.72823	10.27177	9.80140	10.19860	10.07317	9.92683	40
21	72843	27157	80168	19832	07325	92675	39
22	72863	27137	80195	19805	07333	92667	38
23	72883	27117	80223	19777	07341	92659	37
24	72902	27098	80251	19749	07349	92651	36
25	9.72922	10.27078	9.80279	10.19721	10.07357	9.92643	35
26	72942	27058	80307	19693	07365	92635	34
27	72962	27038	80335	19665	07373	92627	33
27 28	72982	27018	80363	19637	07381	92619	32
29	73002	26998	80391	19609	07389	92611	31
29 30	9.73022	10.26978	9.80419	10.19581	10.07397	9.92603	30
31	73041	26959	80447	19553	07405	92595	29
32	73061	26939	80474	19526	07413	92587	28
- 33	73081	26919	80502	19498	07421	92579	27
34	73101	26899	80530	19470	07429	92571	26
35	9.73121	10.26879	9.80558	10.19442	10.07437	9.92563	25
36	73140	26860	80586	19414	07445	92555	24
37	73160	26840	80614	19386	07454	92546	23 22
38 39	73180 73200	26820 26800	80642 80669	19358 19331	07462 07470	92538 92530	21
40	9.73219	10.26781	9.80697	10.19303	10.07478	9.92522	20
41	73239	26761	80725	19275	07486	92514	19
42	73259	26741	80753	19247	07494	92506	18
43	73278	26722	80781	19219	07502	92498	17
44	73298	26702	80808	19192	07510	92490	16
45	9.73318	10.26682	9.80836	10.19164	10.07518	9.92482	15
46	73337	26663	80864	19136	07527	92473	14
47	73357	26643	80892	19108	07535	92465	13
48	73377	26623	80919	19081	07543	92457	12
49	73396	26604	80947	19053	07551	92449	11
50	9.73416	10.26584	9.80975	10.19025	10.07559	9.92441	10
51	73435	26565	81003	18997	07567	92433	9
52	73455	26545	81030	18970	07575	92425	8
53	73474	26526	81058	18942	07584	92416	7
54	73494	26506	81086	18914	07592	92408	6
55	9.73513	10.26487	9.81113	10.18887	10.07600	9.92400	5
56	73533	26467	81141	18859	07608	92392	4
57	73552	26448	81169	18831	07616	92384	3
58 59	73572	26428	81196	18804	07624	92376	9 8 7 6 5 4 3 2
60	73591 73611	26409 26389	81224 81252	18776	07633	92367	0
		20009	01202	18748	07641	92359	
М.	Cosine.	Secant.	Cotangent	Tangent.	Cosecant.	Sine.	M.

1220

33°			Logar	ithms.			146°
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.73611	10.26389	9.81252	10.18748	10.07641	9.92359	60 -
1	73630	26370	81279	18721	07649	92351	59
2 3 4	73650	26350	81307	18693	07657	92343	58
3	73669	26331	81335	18665	07665	92335	57
4	73689	26311	81362	18638	07674	92326	56
5	9.73708	10.26292	9.81390	10.18610	10.07682	9.92318	55
7	73727 73747	26273 26253	81418 81445	18582 18555	07690 07698	92310 92302	54 53
8	73766	26234	81473	18527	07707	92293	52
8 9	73785	26215	81500	18500	07715	92285	51
10	9.73805	10.26195	9.81528	10.18472	07715 10.07723	9.92277	50
11	73824	26176	81556	18444	07731	92269	49
12	73843	26157	81583	18417	07740	92260	48
13	73863	26137	81611	18389	07748	92252	47
14	73882	26118	81638	18362	07756	92244	46
15	9.73901	10.26099	9.81666	10.18334	10.07765	9.92235	45
16 17	73921	26079	81693	18307 18279	07773	92227	44
18	73940 73959	26060 26041	81721 81748	18252	07781 07789	92219 92211	43
19	73978	26022	81776	18224	07798	92202	41
20	9.73997	10.26003	9.81803	10.18197	07798 10.07806	9.92194	40
21	74017	25983	81831	18169	07814	92186	39
22	74036	25964	81858	18142	07823	92177	38
23	74055	25945	81886	18114	07831	92169	37
24	74074	25926	81913	18087	07839	92161	36
25	9.74093	10.25907	9.81941	10.18059	10.07848	9.92152	35
26	74113	25887	81968	18032	07856	92144	34
27 28	74132	25868	81996	18004	07864	92136	33
29	74151 74170	25849 25830	82023 82051	17977 17949	07873 07881	92127 92119	32 31
30	9.74189	10.25811	9.82078	10.17922	10.07889	9.92111	30
31	74208	25792	82106	17894	07898	92102	29
32	74227	25773	82133	17867	07906	92094	28
33	74246	25754	82161	17839	07914	92086	27
34	74265	25735	82188	17812	07923	92077	26
35	9.74284	10.25716	9.82215	10.17785	10.07931	9.92069	25
36	74303	25697	82243	17757	07940	92060	24
37 38	74322 74341	25678	82270	17730	07948	92052	23 22
39	74341	25659 25640	82298 82325	17702 17675	07956 07965	92044 92035	21
40	9.74379	10.25621	9.82352	10.17648	10.07973	9.92027	20
41	74398	25602	82380	17620	07982	92018	19
42	74417	25583	82407	17593	07990	92010	18
43	74436	25564	82435	17565	07998	92002	17
44	74455	25545	82462	17538	08007	91993	16
45	9.74474	10.25526	9.82489	10.17511	10.08015	9.91985	15
46	74493	25507	82517	17483	08024	91976	14
47 48	74512 74531	25488 25469	82544	17456	08032	91968	13
49	74531	25451	82571 82599	17429 17401	08041 08049	91959 91951	12
50	9.74568	10.25432	9.82626	10.17374	10.08058	9.91942	10
51	74587	25413	82653	17347	08066	91934	9
52	74606	25394	82681	17319	08075	91925	8
53	74625	25375	82708	17292	08083	91917	7
54	74644	25356	82735	17265	08092	91908	6
55	9.74662	10.25338	9.82762	10.17238	10.08100	9.91900	5
56	74681	25319	82790	17210 17183	08109	91891	3
57 58	74700 74719	25300 25281	82817 82844	17183	08117	91883	3
58 59	74719	25263	82844 82871	17156 17129	08126 08134	91874	1 2
60	74756	25244	82899	17129	08134	91866 91857	0
					00110	21001	
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.

LOGARITHMIC ANGULAR FUNCTIONS. 218								
34°			Logar	ithms.			145°	
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.	
0	9.74756	10.25244	9.82899	10.17101	10.08143	9.91857	60	
1	74775	25225	82926	17074	08151	91849	59	
2	74794	25206	82953	17047	08160	91840	58	
2 3 4	74812	25188	82980	17020	08168	91832	57	
4	74831	25169	83008	16992	08177	91823	56	
5 6 7 8 9	9.74850	10.25150	9.83035	10.16965	10.08185	9.91815	55	
6	74868	25132	83062	16938	08194	91806	54	
7	74887	25113	83089	16911	08202	91798	53	
8	74906	25094	83117	16883	08211	91789	52	
	74924	25076	83144	16856	08219	91781	51	
10	9.74943	10.25057	9.83171	10.16829	10.08228	9.91772	50	
11	74961	25039	83198	16802	08237	91763	49	
12	74980	25020	83225	16775	08245	91755	48	
13	74999	25001	83252	16748	08254	91746	47	
14	75017	24983 10.24964	83280	16720	08262	91738	46	
15 16	9.75036 75054	24946	9.83307 83334	10.16693 16666	10.08271 08280	9.91729 91720	44	
17	75073	24927	83361	16639	08288	91720	43	
18	75073	24909	83388	16612	08297	91703	42	
19	75110	24890	83415	16585	08305	91695	41	
20	9.75128	10.24872	9.83442	10.16558	10.08314	9.91686	40	
21	75147	24853	83470	16530	08323	91677	39	
22	75165	24835	83497	16503	08331	91669	38	
23	75184	24816	83524	16476	08340	91660	37	
24	75202	24798	83551	16449	08349	91651	36	
25	9.75221	10.24779	9.83578	10.16422	10.08357	9.91643	35	
26	75239	24761	83605	16395	08366	91634	34	
27	75258	24742	83632	16368	08375	91625	33	
28	75276	24724	83659	16341	08383	91617	32	
29	75294	24706	83686	16314	08392	91608	31	
30	9.75313	10.24687	9.83713	10.16287	10.08401	9.91599	30	
31	75331	24669	83740	16260	08409	91591	29	
32	75350	24650	83768	16232	08418	91582	28	
33	75368	24632	83795	16205	08427	91573	27	
34	75386	24614	83822	16178	08435	91565	26	
35	9.75405	10.24595	9.83849	10.16151	10.08444	9.91556	25	
36	75423	24577	83876	16124	08453	91547	24	
37	75441	24559	83903	16097	08462	91538	23	
38	75459	24541	83930	16070	08470	91530	22	
39	75478	24522	83957	16043	08479	91521	21	
40	9.75496	10.24504	9.83984	10.16016	10.08488	9.91512	20	

Tangent.

10.15612

10.15881

10.15746

M. 124°

Cosine.

9.75769

9.75678

9.75587

Secant.

10.24231

10,24322

10.24413

Cotangent

9.84388

9.84254

9.84119

Sine.

9.91381

9.91425

9.91469

Cosecant.

10.08619

10.08575

10.08531

2 75895 24105 84576 15424 08681 91 4 75931 24087 84603 15397 08690 91 4 75931 24089 84630 15370 08699 91 5 9.75949 10.24051 9.84657 10.15343 10.08708 9.91 6 75967 24033 84684 15316 08717 91 7 75985 24015 84711 15289 08726 91 8 76003 23997 84764 15236 08734 91 10 9.76039 10.23961 9.84791 10.15209 10.08752 9.91 11 76057 23943 84818 15182 08761 91 12 76075 23925 84845 15155 88770 91 13 76093 23907 84872 15128 08779 91 14 76119 10.23871 9.84925	336 60 59 328 59 319 58 310 57 301 56 292 55 283 54 274 53 266 52 257 51
1 758975 24123 84556 15454 08681 91 3 75913 24087 84603 15397 08690 91 4 75931 24089 84630 15370 08699 91 5 9.75949 10.24051 9.84657 10.15343 10.08708 9.91 6 75967 24033 84684 15316 08717 91 7 75985 24015 84711 15289 08726 91 8 76003 23997 84738 15262 08743 91 9 76021 23979 84764 15236 08743 91 10 9.76039 10.23961 9.84791 10.15209 10.08752 9.91 11 76057 23943 84813 15152 08770 91 12 76075 23925 84845 15155 08770 91 14 76111 23892 84899 <	328 59 319 58 310 57 301 56 292 55 283 54 274 53 266 52 257 51 248 50 239 49
11 76057 23943 84818 15182 08761 91 12 76075 23925 84845 15155 08770 91 13 76093 23907 84872 15128 08779 91 14 76111 23889 84899 15101 08788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23854 84952 15048 08806 91 17 76164 23836 84979 15021 08815 91 18 76182 23818 85006 14994 08824 91 19 76200 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85089 10.14941 08851 91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113	319 58 310 57 301 56 292 55 283 54 274 53 266 52 257 51 248 50 239 49
11 76057 23943 84818 15182 08761 91 12 76075 23925 84845 15155 08770 91 13 76093 23907 84872 15128 08779 91 14 76111 23889 84899 15101 08788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23854 84952 15048 08806 91 18 76182 23818 85006 14994 08815 91 18 76182 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113 14880 08868 91 24 76299 23711 85166	310 57 301 56 292 55 283 54 274 53 266 52 257 51 248 50 239 49
11 76057 23943 84818 15182 08761 91 12 76075 23925 84845 15155 08770 91 13 76093 23907 84872 15128 08779 91 14 76111 23889 84899 15101 08788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23854 84952 15048 08806 91 18 76182 23818 85006 14994 08815 91 18 76182 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113 14880 08868 91 24 76299 23711 85166	301 56 292 55 283 54 274 53 266 52 257 51 248 50 239 49
11 76057 23943 84818 15182 08761 91 12 76075 23925 84845 15155 08770 91 13 76093 23907 84872 15128 08779 91 14 76111 23889 84899 15101 08788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23854 84952 15048 08806 91 18 76182 23818 85006 14994 08815 91 18 76182 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113 14880 08868 91 24 76299 23711 85166	283 54 274 53 266 52 257 51 248 50 239 49
11 76057 23943 84818 15182 08761 91 12 76075 23925 84845 15155 08770 91 13 76093 23907 84872 15128 08779 91 14 76111 23889 84899 15101 08788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23854 84952 15048 08806 91 18 76182 23818 85006 14994 08815 91 18 76182 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113 14880 08868 91 24 76299 23711 85166	274 53 266 52 257 51 248 50 239 49
11 76057 23943 84818 15182 08761 91 12 76075 23925 84845 15155 08770 91 13 76093 23907 84872 15128 08779 91 14 76111 23889 84899 15101 08788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23854 84952 15048 08806 91 18 76182 23818 85006 14994 08815 91 18 76182 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113 14880 08868 91 24 76299 23711 85166	266 52 257 51 248 50 239 49
11 76057 23943 84818 15182 08761 91 12 76075 23925 84845 15155 08770 91 13 76093 23907 84872 15128 08779 91 14 76111 23889 84899 15101 08788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23854 84952 15048 08806 91 18 76182 23818 85006 14994 08815 91 18 76182 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113 14880 08868 91 24 76299 23711 85166	257 51 248 50 239 49
11 76057 23943 84818 15182 08761 91 12 76075 23925 84845 15155 08770 91 13 76093 23907 84872 15128 08779 91 14 76111 23889 84899 15101 08788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23854 84952 15048 08806 91 18 76182 23818 85006 14994 08815 91 18 76182 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113 14880 08868 91 24 76299 23711 85166	248 50 239 49
11 76057 23943 84818 15182 08761 91 12 76075 23925 84845 15155 08770 91 13 76093 23907 84872 15128 08779 91 14 76111 23889 84899 15101 08788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23854 84952 15048 08806 91 18 76182 23818 85006 14994 08815 91 18 76182 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113 14880 08868 91 24 76299 23711 85166	
13 76093 23907 84872 15128 08779 91 14 76111 23889 84899 15101 10.8788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23836 84979 15021 08806 91 17 76164 23836 84979 15021 08805 91 18 76182 23818 85006 14994 08824 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23744 85086 14914 08851 91 22 76253 23747 85113 14887 08859 91 24 76289 23711 85166 14834 08877 91 25 9.76307 10.23693 9.85193 10.14807 10.08866 9.91 26 76324 23676	230 + 48
14 76111 23889 84899 15101 08788 91 15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23834 84952 15048 08806 91 17 76164 23836 84979 15021 08815 91 18 76182 23818 85006 14994 08824 91 19 76200 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113 14880 08868 91 24 76289 23711 85166 14834 08877 91 25 9.76307 10.23693 9.85193 10.14807 10.08866 9.91 26 76324 23658 <t< td=""><td></td></t<>	
15 9.76129 10.23871 9.84925 10.15075 10.08797 9.91 16 76146 23854 84952 15048 08806 91 17 76164 23836 84979 15021 08815 91 18 76182 23818 85006 14994 08824 91 19 76200 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76253 23747 85113 14887 08865 91 24 76289 23711 85166 14834 08877 91 25 9.76307 10.23693 9.85193 10.14807 10.08886 9.91 26 76324 23676 85220 14780 08895 91 28 76360 23640 <t< td=""><td></td></t<>	
16 76146 23884 84952 15048 08806 91 17 76164 23836 84979 15021 08815 91 18 76182 23818 85006 14994 08824 91 19 76200 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23764 85086 14914 08851 91 22 76253 23747 85113 14887 08859 91 24 76289 23711 85166 14834 08877 91 25 9.76307 10.23693 9.85193 10.14807 10.08886 9.91 26 76324 23676 85220 14780 08895 91 28 76378 23622 85300 14700 08922 91 29 76378 23622 85300	203 45
17 76164 23836 84979 15021 08815 91 18 76182 23818 85006 14994 08824 91 19 76200 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 23 76271 23729 85140 14860 08868 91 24 76289 23711 85166 14834 08877 91 25 9.76307 10.23693 9.85193 10.14807 10.08886 9.91 26 76324 23676 85220 14780 08895 91 28 76360 23640 85273 14727 08913 91 28 76378 23622 85300 14700 08922 91 30 9.76395 10.23605 9.85327<	194 44
19 76200 23800 85033 14967 08833 91 20 9.76218 10.23782 9.85059 10.14941 10.08842 9.91 21 76236 23747 85113 14887 08859 91 22 76233 23747 85113 14887 08859 91 23 76271 23729 85140 14860 08868 91 24 76289 23711 85166 14834 08877 91 25 9.76307 10.23693 9.85193 10.14807 10.08886 9.91 26 76324 23676 85220 14780 08895 91 28 76360 23640 85237 14727 08913 91 29 76378 23622 85300 14700 08922 91 30 9.76395 10.23605 9.85327 10.14673 10.08931 9.91 31 76413 23587 <t< td=""><td>185 43</td></t<>	185 43
20 9.76218 10.23782 9.85059 10.14941 10.08842 9.9.1 21 76236 23764 85086 14914 08851 91 22 76253 23747 85113 14887 08859 91 23 76271 23729 85140 14860 08868 91 24 76289 23711 85166 14834 08877 91 25 9.76307 10.23693 9.85193 10.14807 10.08886 9.91 26 76324 23676 85220 14780 08895 91 27 76342 23658 85247 14753 08904 91 28 76360 23640 85273 14727 08913 91 29 76378 23622 85300 14700 08922 91 30 9.76395 10.23669 9.85327 10.14673 10.08931 9.91 31 76413 23569 <	
21 76236 23764 85086 14914 08851 91 22 76253 23747 85113 14887 08859 91 24 76289 23711 85160 14884 08877 91 25 9.76307 10.23693 9.85193 10.14807 10.08886 9.91 26 76324 23676 85220 14780 08895 9.91 28 76360 23640 85273 14727 08913 91 29 76378 23622 85300 14700 08922 91 30 9.76395 10.23605 9.85327 10.14673 10.08931 9.91 31 76413 23569 85380 14620 08949 91 32 76431 23569 85380 14620 08949 91 33 76448 23552 85407 14593 08958 91 34 76466 23534 85467	167 41 158 40
23 76271 23729 85140 14860 08868 91 24 76289 23711 85166 14834 08877 91 25 9.76307 10.23693 9.85193 10.14807 10.08886 9.91 26 76324 23676 85220 14780 08895 91 27 76342 23658 85247 14753 08904 91 28 76360 23640 85273 14727 08913 91 29 76378 23622 85300 14700 08992 91 30 9.76395 10.23605 9.85327 10.14673 10.08931 9.91 31 76413 23569 85380 14620 08949 91 32 76431 23569 85380 14620 08949 91 34 76466 23534 85434 14566 08967 91 35 9.76484 10.23516 9.85460<	
24 76289 23711 85166 14834 08877 91: 25 9.76307 10.23693 9.85193 10.14807 10.08886 9.91: 26 76324 23668 85220 14780 08895 91: 27 76342 23668 85247 14753 08904 91 28 76360 23640 85273 14727 08913 91 29 76378 23622 85300 14700 08922 916 30 9.76395 10.23605 9.85327 10.14673 10.08931 9.91 31 76413 23587 85354 14646 08940 91 32 76431 23587 85380 14620 08949 91 33 76448 23552 85407 14593 08958 91 34 76466 23534 85487 14513 08986 91 35 9.76484 10.23499 8548	141 38
25 9.76307 10.23693 9.85193 10.14807 10.08886 9.91 26 76324 23676 85220 14780 08895 91 27 76342 23658 85247 14753 08904 91 28 76360 23640 85273 14727 08913 91 29 76378 23622 85300 14700 08922 91 30 9.76395 10.23605 9.85327 10.14673 10.08931 9.91 31 76413 23567 85354 14646 08940 91 32 76431 23569 85380 14620 08949 91 33 76448 23552 85407 14593 08958 91 34 76466 23534 85434 14566 08967 91 35 9.76484 10.23516 9.85460 10.14540 10.08977 9.91 36 76501 23491 <t< td=""><td>132 37</td></t<>	132 37
26 76324 23676 85220 14780 08895 91. 27 76342 23658 85247 14753 08904 91. 28 76360 23640 85273 14727 08913 91. 29 76378 23622 85300 14700 08922 91. 30 9.76395 10.23605 9.85327 10.14673 10.08931 9.91. 31 76413 23569 85354 14646 08949 91. 32 76431 23569 85380 14620 08949 91. 34 76466 23534 85407 14593 08958 91. 34 76466 23534 85434 14566 08967 91. 35 9.76484 10.23516 9.85460 10.14540 10.08977 9.91. 36 76501 23493 85540 14486 08995 91. 37 76537 23463 85	123 36
27 76342 23658 85247 14753 08904 911 28 76360 23640 85273 14727 08913 912 29 76378 23622 85300 14700 08922 91 30 9.76395 10.23605 9.85327 10.14673 10.08931 9.91 31 76413 23569 85364 14646 08940 91 32 76481 23552 85407 14593 08958 91 34 76466 23534 85434 14566 08967 91 35 9.76484 10.23516 9.85460 10.14540 10.08977 9.91 36 76501 23499 85487 14513 08986 91 37 76519 23481 85514 14486 08995 91 38 76537 23463 85540 144460 09004 90 39 76554 23446 85567	
28 76360 23640 85273 14727 08913 914 29 76378 23622 85300 14700 08922 91 30 9.76395 10.23605 9.85327 10.14673 10.08931 9.914 31 76413 23587 85354 14646 08940 91 32 76431 23569 85380 14620 08949 91 33 76448 23552 85407 14593 08958 91 34 76466 23534 85434 14566 08967 91 35 9.76484 10.23516 9.85460 10.14540 10.08977 9.91 36 76501 23499 85487 14513 08986 91 37 76519 23481 85540 14486 08995 91 38 76537 23463 85540 14430 09013 90 40 9.76572 10.23428 9.8559	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	087 32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	078 31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	042 27
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	033 26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	987 21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	78 20
43 76625 23375 85674 14326 09049 906 44 76642 23358 85700 14300 09058 906 45 9.76660 10.23340 9.85727 10.14273 10.09067 9.908	
45 9.76660 10.23340 9.85727 10.14273 10.09067 9.909	
45 9.76660 10.23340 9.85727 10.14273 10.09067 9.909	942 16
	933 15
46 76677 23323 85754 14246 09076 909	
47 76695 23305 85780 14220 09085 908 48 76712 23288 85807 14193 09094 908	
48 76712 23288 85807 14193 09094 906 49 76730 23270 85834 14166 09104 908	
50 9.76747 10.23253 9.85860 10.14140 10.09113 9.908	387 10
51 76765 23235 85887 14113 09122 908	378 9
52 76782 23218 85913 14087 09131 908	
53 76800 23200 85940 14060 09140 908 54 76817 23183 85967 14033 09149 908	
54 76817 23183 85967 14033 09149 906 55 9.76835 10.23165 9.85993 10.14007 10.09158 9.908 56 76852 23148 86020 13980 09168 908	860 7
56 76852 23148 86020 13980 09168 908	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
57 76870 23130 86046 13954 09177 908	351 6 342 5 332 4
58 76887 23113 86073 13927 09186 908 59 76904 23096 86100 13900 09195 908	351 6 342 5 332 4
59 76904 23096 86100 13900 09195 908 60 76922 23078 86126 13874 09204 907	351 6 342 5 332 4 323 3 314 2
M. Cosine. Secant. Cotangent, Tangent. Cosecant. Sine	351 6 342 5 332 4 323 3 314 2

Logarithms.

	36°			Logar	ithms.			143°
	M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
	M. 0 1 2 3 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 22 24 24 3 34 4 4 5 6 4 4 7 4 8 9 40 41 42 3 3 3 3 3 4 4 4 4 5 6 6 7 8 9 9 10 11 12 22 3 24 4 3 3 5 6 6 7 8 9 9 10 11 12 22 3 24 4 3 3 5 6 6 7 8 9 9 10 11 12 22 3 3 3 3 3 4 4 4 4 5 6 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	9.76922 76939 76957 76967 76967 77009 9.77009 77026 77048 9.77085 9.77181 771164 9.77181 771164 9.77181 77126 77230 9.77268 77285 77302 77319 77250 9.77268 77302 77319 77364 9.77353 77405 77422 9.77439 77456 77473 77456 77473 77507 9.77524 77561 77575 77694 77761 9.77694 777711 77728 777694 777741 9.77764 9.777781	10.23078 23061 23043 23026 23009 10.22991 22974 22957 22939 22922 10.22905 22858 22850 10.22819 22871 22750 10.22732 22715 22684 22681 10.22647 22630 22613 22595 22578 10.22476 22498 10.22476 22498 10.22476 22498 10.22476 22498 10.22476 22498 10.22476 22498 10.22476 22498 10.22476 22498 10.22476 22498 10.22476 22498 10.22476 22498 10.22374 22357 22360 22289 10.22391	Tangent. 9.86126 86153 86179 86296 86232 9.86259 86285 86312 86388 86365 9.86392 86418 86445 86471 86698 9.86524 86557 86603 86630 9.86656 86683 86709 86736 86762 9.86789 86815 86844 9.86944 86947 86947 86974 87000 87027 9.87053 87007 87158 9.87185 9.87185 87211 87238 87264 87290 9.87317 87369 87366 87366 87366 87369	Cotangent. 10.13874 13847 13821 13794 13768 10.13741 13688 13662 13635 10.13608 13555 13529 13502 10.13476 13449 13423 13397 13370 10.13344 13317 13291 13264 13238 13106 10.13079 13053 13026 10.13079 13053 13026 10.12947 12991 12894 12894 12894 12894 12894 12894 12898 12762 12736 10.12683 12657 12631 12667 12677 12681 12678 10.12578 10.12578 10.12578 10.12578	10.09204 09213 09223 09232 09241 10.09250 09259 09269 09278 09287 10.09296 09306 09315 09324 09333 10.09383 10.09389 09388 10.09389 09491 09501 09425 09445 09445 09448 09491 09501 09520 10.09529 09538 09548 09557 09586 10.09576 09585 09595 09604 10.09623 09661 10.09623 09661 10.09629	9.90796 90787 90778 90778 90778 90778 90778 90750 90741 90731 90722 90713 9.90704 90685 90667 9.90657 90648 90630 90620 9.90611 90602 90592 90583 90574 9.90565 90555 90546 90537 90527 9.90518 90509 90499 90490	M. 609 588 577 566 555 449 448 441 440 398 337 636 349 288 377 266 252 244 232 222 210 18 17 16 51 14 13 21 11 10 9
	52 53	77812 77829	22188 22171	87501 87527	12499 12473	09689 09699	90311 90301	8 7
	54 55 56	77846 9.77862 77879	22154 10.22138 22121	87554 9.87580 87606	$\begin{array}{c} 12446 \\ 10.12420 \\ 12394 \end{array}$	09708 10.09718 09727	90292 9.90282 90273	8 7 6 5 4 3 2 1
	57 58 59	77896 77913 77930	22104 22087 22070	87633 87659 87685	12367 12341 12315	09737 09746 09756	90263 90254 90244	3 2 1
	60 M.	77946 Cosine.	Secant.	87711 Cotangent,	Tangent.	09765 Cosecant.	90235 Sine,	$\frac{\tilde{0}}{M}$
-	1269		Becant.	Ottangent,	rangent.	Cosecant.	bille.	530

37° Logarithms. 142°

	Logarienno.						1 72
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.77946	10.22054	9.87711	10.12289	10.09765	9.90235	60
	77963	22037	87738	12262 12236 12210	09775	90225	59
2	77980	22020	87764	12236	09784	90216	58
$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	77997	22003	87790	12210	09794	90206	58 57
4	78013	21987	87817 9.87843	12183	09803	90197	56
4 5 6 7 8 9	9.78030	10.21970	9.87843	12183 10.12157	10.09813	9.90187	55
6	78047	21953	87869	12131	09822	90178	54
7	78063	21937	87895	12105	09832	90168	53
8	78080	21920	87922	12078	09841	90159	52 51 50
9	78097	21903	87948	12052 10.12026	09851	90149	51
10	9.78113	10.21887 21870	9.87974	10.12026	10.09861	9.90139	50
11	78130	21870	88000	12000	09870	90130	49
12	78147	21853	88027	11973	09880	90120	48
13	78163	21837	88053	11947	09889	90111	47
14	78180	21820	88079	11921	09899	90101	46
15	9.78197	10.21803	9.88105	11921 10.11895	10.09909	9.90091	45
16	78213	21787	88131	11869	09918	90082	44
17	78230	21770	88158	11842	09928	90072	43
18	78246	21754 21737	88184	11816	09937	90063	42
19	78263	21737	88210	11790	09947	90053	41
20	9.78280	10.21720	9.88236	10.11764	10.09957	9.90043	40
20 21	78296	21704	88262	11738	09966	90034	39
22	78313	21687	88289	11711	09976	90024	38
22 23	78329	21687 21671	88315	11711 11685	09986	90024 90014	37
24	78346	21654	88341	11659	09995	90005	36
25	9.78362	10.21638	9.88367	10.11633	10.10005	9.89995	35
26	78379	21621	88393	11607	10015	89985	34
26 27 28	78395	21605	88420	11580	10024	89976	33
28	78412	21588	88446	11554	10034	89966	32
29	78428	21572	88472	11528	10044	89956	31
30	9.78445	10.21555	9.88498	10.11502	10.10053	9.89947	30
31	78461	21530	88524	11476	10063	89937	29
32	78478	21539 21522	88550	11450	10073	89927	28
33	78494	21506	88577	11423	10082	89918	27
34	78510	21490	88603	11397	10092	89908	26
35	9.78527	10 21473	0 88620	10.11371	10.10102	9.89898	25
36	78543	10.21473 21457	9.88629 88655	11345	10112	89888	24
37	78560	21440	88681	11319	10121	89879	23
38	78576	21424	88707	11909	10131	89869	22
39	78592	21/08	88733	11267	10141	89859	21
40	9.78609	10.21391 21375	88733 9.88759	10 11241	10.10151	9.89849	20
41	78625	21375	88780	11214	10160	89840	19
42	78642	21358	88812	11267 10.11241 11214 11188	10170	89830	18
43	78658	21342	88838	11162	10180	89820	17
44	78674	21326	88864	11136	10190	89810	16
45	9.78691	10.21309	9.88890	11136 10-11110	10.10199	9.89801	15
46	78707	21293	88916	11084	10209	89791	14
47	78723	21277	88942	11084 11058	10219	89781	13
48	78739	21261	88968	11039	10213	89771	12
49	78756	21244	88994	11032 11006	10229 10239	89771 89761	11
50	78756 9.78772	$\begin{array}{c} 21244 \\ 10.21228 \end{array}$	9.89020	10.10980	10.10248	9.89752	10
51	78788	21212	89046	10.10330	10.10248	89742	10
52	78805	21195	89073	10934	10268	89732	8
53	78821	21179	89099	10901	10208	89722	7
54	78837	21163	89125	10875	10278 10288	89712	6
55	9.78853	10.21147	9.89151	10.10849	10.10298	9.89702	5
56	78869	21131	89177	10.10849	10.10298	89693	4
57	78886	21114	89203	10025	10307	89683	3
58	78902	21098	89220	10797	10317		9 8 7 6 5 4 3 2
59	78918	21082	89229 89255	10797 10771 10745	10327	89673 89663	1
60	78934	21066	89281	10719	10347	89653	0
	10001	21000	00201	10/19	10347	03000	0
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
			Journay of the	Tongent.	Coscant.	Diffe.	
127	0						520

38°	Logarithms. 14								
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.		
0	9.78934	10.21066	9.89281	10.10719	10.10347	9.89653	60		
1	78950	21050 21033	89307 89333	10693 10667	10357 10367	89643 89633	59 58		
3	78967 78983	21017	89359	10641	10376	89624	57		
4	78999	21001	89385	10615	10386	89614	56		
5	9.79015	10.20985	9.89411	10.10589	10.10396	9.89604	55		
7	79031 79047	20969 20953	89437 89463	10563 10537	10406 10416	89594 89584	54 53		
7 8 9	79063	20937	89489	10511	10426	89574	52		
9	79079	20921	89515	10485	10436	89564	51		
10 11	9.79095 79111	10.20905 20889	9.89541 89567	10.10459 10433	10.10446 10456	9.89554 89544	50 49		
12	79128	20872	89593	10407	10466	89534	48		
13	79144	20856	89619	10381	10476	89524	47		
14 15	79160 9.79176	20840 10.20824	89645 9.89671	10355 10.10329	10486 10.10496	89514 9.89504	46		
16	79192	20808	89697	10303	10505	89495	44		
17	79208	20792	89723	10277	10515	89485	43		
18	79224 79240	20776 20760	89749 89775	10251 10225	10525	89475 89465	42		
19 20	9.79256	10.20744	9.89801	10.10199	10535 10.10545	9.89455	40		
21 22	79272	20728	89827	10173	10555	89445	39		
22 23	79288	20712	89853	10147	10565	89435	38		
24	79304 79319	20696 20681	89879 89905	10121 10095	10575 10585	89425 89415	37 36		
25 26	9.79335	10.20665	9.89931	10.10069	10.10595	9.89405	35		
26	79351	20649	89957	10043	10605	89395	34		
27 28	79367 79383	20633 20617	89983 90009	10017 09991	10615 10625	89385 89375	33 32		
29	79399	20601	90035	09965	10636	89364	31		
30	9.79415	10.20585	9.90061	10.09939	10.10646	9.89354	30		
31 32	79431 79447	20569 20553	90086 90112	09914 09888	10656 10666	89344 89334	29 28		
33	79463	20537	90138	09862	10676	89324	27		
34	79478	20522	90164	09836	10686	89314	26		
35 36	9.79494 79510	10.20506 20490	9.90190 90216	10.09810	10.10696	9.89304	25 24		
37	79526	20474	90242	09784 09758	10706 10716	89294 89284	23		
37 38	79542	20458	90268	09732	10726	89274	22		
39 40	79558	20442	90294	09706	10736	89264	21 20		
41	9.79573 79589	10.20427 20411	9.90320 90346	10.09680 09654	10.10746 10756	9.89254 89244	19		
42	79605	20395	90371	09629	10767	89233	18		
43 44	79621	20379	90397	09603	10777	89223	17		
45	79636 9.79652	20364 10.20348	90423 9.90449	09577 10.09551	10787 10.10797	89213 9.89203	16 15		
46	79668	20332	90475	09525	10807	89193	14		
47	79684	20316	90501	09499	10817	89183	13 12		
48 49	79699 79715	20301 20285	90527 90553	09473 09447	10827 10838	89173 89162	11		
50	9.79731	10.20269	9.90578	10.09422	10.10848	9.89152	10		
51	79746	20254	90604	09396	10858	89142	9		
52 53	79762 79778	20238	90630 90656	09370 09344	10868 10878	89132 89122	8		
54 55	79778 79793	20222 20207	90682	09318	10888	89112	8 7 6 5		
55	9.79809	10.20191	9.90708	10.09292	10.10899	9.89101	5		
56 57	79825 79840	20175 20160	90734 90759	09266 09241	10909 10919	89091 89081	4 3 2		
58	79856	20144	90785	09215	10919	89071	2		
59	79872	20128	90811	09189	10940	89060	1		
60	79887	20113	90837	09163	10950	89050	0		
M.	Cosine.	Secant.	Cotangent,	Tangent.	Cosecant.	Sine.	M.		
1200	2								

390			Logarithms.				
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.79887	10.20113	9.90837	10.09163	10.10950	9.89050	60
$\frac{1}{2}$	79903	20097	90863	09137	10960	89040	59
2	79918	20082	90889	09111	10970	89030	58
3	79934	20066	90914	09086	10980	89020	57
4	79950 9.79965	20050	90940	09060	10991 10.11001	89009	56 55
5 6	79981	10.20035 20019	9.90966 90992	10.09034 09008	11011	9.88999 88989	54
7	79996	20004	91018	08982	11022	88978	53
7 8	80012	19988	91043	08957	11032	88968	52
9	80027	19973	91069	08931	11042	88958	51
10	9.80043	10.19957	9.91095	10.08905	10.11052	9.88948	50
11	80058	19942	91121	08879	11063	88937	49
12 13	80074 80089	19926 19911	91147 91172	08853 08828	11073 11083	88927 88917	48
14	80105	19895	91198	08802	11094	88906	46
15	9.80120	10.19880	9.91224	10.08776	10.11104	9.88896	45
16	80136	19864	91250	08750	11114	88886	44
17	80151	19849	91276	08724	11125	88875	43
18	80166	19834	91301	08699	11135	88865	42
19 20	80182 9.80197	19818 10.19803	91327 9.91353	08673 10.08647	11145 10.11156	88855 9.88844	41 40
21	80213	19787	91379	08621	11166	88834	39
22	80228	19772	91404	08596	11176	88824	38
23	80244	19756	91430	08570	11187	88813	37
24	80259	19741	91456	08544	11197	88803	36
25	9.80274	10.19726	9.91482	10.08518	10.11207	9.88793	35
26 27	80290 80305	19710	91507	08493	11218	88782	34
28	80320	19695 19680	91533 91559	08467 08441	11228 11239	88772 88761	33 32
29	80336	19664	91585	08415	11249	88751	31
30	9.80351	10.19649	9.91610	10.08390	10.11259	9.88741	30
31	80366	19634	91636	08364	11270	88730	29
32 33	80382 80397	19618	91662	08338	11280	88720	28 27
34	80412	19603 19588	91688 91713	08312 08287	11291 11301	88709 88699	26
35	9.80428	10.19572	9.91739	10.08261	10.11312	9.88688	25
36	80443	19557	91765	08235	11322	88678	24
37	80458	19542	91791	08209	11332	88668	23
38	80473	19527	91816	08184	11343	88657	22 21
39 40	80489 9.80504	19511 10.19496	91842 9.91868	08158	11353 10.11364	88647	21
41	80519	19481	91893	10.08132 08107	11374	9.88636 88626	19
42	80534	19466	91919	08081	11385	88615	18
43	80550	19450	91945	08055	11395	88605	17
44	80565	19435	91971	08029	11406	88594	16
45 46	9.80580	10.19420	9.91996	10.08004	10.11416	9.88584	15
47	80595 80610	19405 19390	92022 92048	$07978 \ 07952$	11427 11437	88573 88563	14 13
48	80625	19375	92073	07927	11448	88552	12
49	80641	19359	92099	07901	11458	88542	11
50	9.80656	10.19344	9.92125	10.07875	10.11469	9.88531	10
51	80671	19329	92150	07850	11479	88521	9
52 53	80686 80701	19314 19299	92176 92202	07824	11490	88510	8 7 6 5 4 3 2
54	80716	19299	92202	07798 07773	11501 11511	88499 88489	6
55	9.80731	10.19269	9.92253	10.07747	10.11522	9.88478	5
56	80746	19254	92279	07721	11532	88468	4
57	80762	19238	92304	07696	11543	88457	3
58 59	80777 80792	19223 19208	92330	07670	11553	88447	$\begin{vmatrix} 2\\1 \end{vmatrix}$
60	80792	19208	92356 92381	$07644 \\ 07619$	11564 11575	88436 88425	0
		10100	02001	07019	11070	00120	

Cotangent. | Cosecant.

M. | 129° Cosine.

Secant.

Sine.

40°	Logarithms.							
М.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.	
0	9.80807	10.19193	9.92381	10.07619	10.11575	9.88425	60	
1 2 3 4 5 6 7 8	80822	19178	92407	07593	11585	88415	59	
2	80837	19163	92433	07567	11596	88404	58	
3	80852	19148	92458	07542	11606 11617	88394	57	
4	80867 9.80882	19133 10.19118	92484 9.92510	07516 10.07490	10.11628	88383 9.88372	56 55	
6	80897	19103	92535	07465	11638	88362	54	
7	80912	19088	92561	07439	11649	88351	53	
8	80927	19073	92587	07413	11660	88340	52	
9	80942	19058	92612	07388	11670	88330	51	
10	9.80957	10.19043	9.92638	10.07362	10.11681	9.88319	50	
11	80972	19028	92663	07337	11692	88308	49	
12	80987	19013	92689	07311	11702	88298	48	
13	81002	18998	92715	07285 07260	11713	88287	47	
14 15	81017 9.81032	18983 10.18968	92740 9,92766	10.07234	11724 10.11734	88276 9.88266	46 45	
16	81047	18953	92792	07208	11745	88255	44	
17	81061	18939	92817	07183	11756	88244	43	
18	81076	18924	92843	07157	11766	88234	42	
19	81091	18909 10.18894	92868	07139	11777 10.11788	88223	41	
20	9.81106	10.18894	9.92894	10.07106	10.11788	9.88212	40	
21	81121	18879	92920	07080	11799	88201	39	
22 23 24 25	81136	18864	92945	07055	11809	88191	38	
23	81151	18849	92971	07029	11820	88180	37	
24	81166 9.81180	18834 10.18820	92996 9.93022	07004 10.06978	11831 10.11842	88169 9.88158	36 35	
26	81195	18805	93048	06952	11852	88148	34	
27	81210	18790	93073	06927	11863	88137	33	
27 28	81225	18775	93099	06901	11874	88126	32	
29 30	81240	18760	93124	06876	11885	88115	31	
30	9.81254	10.18746	9.93150	10.06850	10.11895	9.88105	30	
31	81269	18731	93175	06825	11906	88094	29	
32	81284	18716	93201	06799	11917	88083	28	
33	81299	18701	93227	06773	11928	88072	27 26	
34 35	81314 9.81328	18686 10.18672	93252 9.93278	$ \begin{array}{c c} 06748 \\ 10.06722 \end{array} $	11939 10.11949	88061 9.88051	25	
36	81343	18657	93303	06697	11960	88040	24	
37	81358	18642	93329	06671	11971	88029	23	
38	81372	18628	93354	06646	11982	88018	22	
39	81387	18613	93380	06620	11993	88007	21	
40	9.81402	10.18598	9.93406	10.06594	10.12004	9.87996	20	
41	81417	18583	93431	06569	12015	87985	19	
42	81431	18569 18554	93457	06543 06518	12025	87975	18	
43 44	81446 81461	18539	93482 93508	06492	12036 12047	87964 87953	17 16	
45	9.81475	10.18525	9.93533	10.06467	10.12058	9.87942	15	
46	81490	18510	93559	06441	12069	87931	14	
47	81505	18495	93584	06416	12080	87920	13	
48	81519	18481	93610	06390	12091	87909	12	
49	81534	18466	93636	06364	12102	87898	11	
50	9.81549	10.18451	9.93661	10.06339	10.12113	9.87887	10	
51	81563 81578	18437 18422	93687 93712	06313 06288	12123 12134	87877	9	
52 53	81578 81592	18422 18408	93712	06288	12134	87866 87855	8 7 6 5 4	
54	81607	18393	93763	06237	12156	87844	6	
55	9.81622	10.18378	9.93789	10.06211	10.12167	9.87833	5	
56	81636	18364	93814	06186	12178	87822	4	
57	81651	18349	93840	06160	12189	87811	3	
58	81665	18335	93865	06135	12200	87800	$\frac{3}{2}$	
59	81680	18320	93891	06109	12211	87789	1	
60	81694	18306	93916	06084	12222	87778	0	
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.	
	John	200min	Journa City	Zungont.	Jobecult.	Diric.	1	

41°			1380				
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.81694	10.18306	9.93916	10.06084	10.12222	9.87778	60
1	81709 81723	18291 18277	93942	06058	12233	87767 87756	59
2 3 4 5	81723	18277	93967	06033	12244	87756	58
3	81738	18262 18248	93993	06007 05982	$12255 \\ 12266$	87745 87734	57 56
5	$81752 \\ 9.81767$	10.18233	94018 9.94044	10.05956	10.12277	9.87723	55
6	81781	18219	94069	05931	12288	87712	54
6 7 8 9	81796	18204	94095	05905	12299	87701	53
8	81810	18190	94120	05880	12310	87690	52
9	81825	18175	94146	05854	12321	87679	51
10	9.81839	10.18161	9.94171	10.05829	10.12332	9.87668	50
11	81854	18146 18132	94197	05803	12343	87657	49
12 13	81868 81882	18118	94222 94248	05778 05752	12354 12365	87646 87635	48 47
14	81897	18103	94273	05727	12376	87624	46
15	9.81911	10.18089	9.94299	10.05701	10.12387	9.87613	45
16	81926	18074	94324	05676	12399	87601	44
17	81940	18060	94350	05650	12410	87590	43
18	81955	18045	94375	05625	12421	87579	42
19	81969	18031	94401	05599	12432	87568	41
$\begin{array}{c c} 20 \\ 21 \end{array}$	9.81983 81998	10.18017 18002	9.94426 94452	10.05574 05548	10.12443 12454	$9.87557 \\ 87546$	40 39
22	82012	17988	94477	05523	12465	87535	38
23	82026	17974	94503	05497	12476	87524	37
24	82041	17959	94528	05472	12487	87513	36
25	9.82055	10.17945	9.94554	10.05446	10.12499	9.87501	35
26	82069	17931	94579	05421	12510	87490	34
27	82084	17916	94604	05396	12521	87479	33
28 29	82098 82112	17902 17888	94630	05370	12532 12543	87468 87457	32 31
30	9.82126	10.17874	94655 9.94681	05345 10.05319	10.12554	9.87446	30
31	82141	17859	94706	05294	12566	87434	29
32	82155	17845	94732	05268	12577	87423	28
33	82169	17831	94757	05243	12588	87412	27
34	82184	17816	94783	05217	12599	87401	26
35	9.82198	10.17802	9.94808	10.05192	10.12610	9.87390	25
36 37	82212 82226	17788 17774	94834	05166	$12622 \\ 12633$	87378	24 23
38	82226 82240	17774	94859 94884	05141 05116	12633	87367 87356	23
39	82255	17745	94910	05090	12655	87345	21
40	9.82269	10.17731	9.94935	10.05065	10.12666	9.87334	20
41	82283	17717	94961	05039	12678	87322	19
42	82297	17703	94986	05014	12689	87311	18 17
43	82311	17689	95012	04988	12700	87300	17
44 45	82326	17674	95037	04963	12712	87288	16
46	9.82340 82354	10.17660 17646	9.95062 95088	10.04938 04912	10.12723 12734	$9.87277 \\ 87266$	15 14
47	82368	17632	95113	04812	12745	87255	13
48	82382	17618	95139	04861	12757	87243	13 12
49	82396	17604	95164	04836	12768	87232	11
50	9.82410	10.17590	9.95190	10.04810	10.12779	9.87221	10 9
51	82424	17576	95215	04785	12791	87209	9
52 5 3	82439 82453	17561 17547	95240	04760	12802	87198	8 7 6 5 4 3 2 1
54	82455 82467	17533	95266 95291	04734 04709	$\begin{array}{c} 12813 \\ 12825 \end{array}$	87187 87175	6
55	9.82481	10.17519	9.95317	10.04683	10.12836	9.87164	5
56	82495	17505	95342	04658	12847	87153	4
57	82509	17491	95368	04632	12859	87141	3
58	82523	17477	95393	04607	12870	87130	2
59	82537	17463	95418	04582	12881	87119	1
60	82551	17449	95444	04556	12893	87107	0
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
424	2						100

42°			137				
M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M
	0.00551	10.15440	0.05444	10.04556	10 19909	0.97107	60

M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.82551	10.17449	9.95444	10.04556	10.12893	9.87107	60
1	82565	17435	95469	04531	12904	87096	59
2	82579	17421	95495	04505	12915	87085	58
2 3	82593	17407	95520	04480	12927	87073	57
4	82607	17393	95545	04455	12938	87062	56
4 5 6 7 8 9	9.82621	10.17379	9.95571	10.04429	10.12950	9 87050	55
6	82635	17365	95596	04404	$12961 \\ 12972$	87039	54
7	82649 82663	17351 17337	95622 95647	04378 04353	12984	87028 87016	53 52
8	82677	17323	95672	04328	12995	87005	51
10	9.82691	10.17309	9.95698	10.04302	10.13007	9.86993	50
11	82705	17295	95723	04277	13018	86982	49
12	82719	17281	95748	04252	13030	86970	48
13	82733	17267	95774	04226	13041	86959	47
14	82747	17253	95799	04201	13053	86947	46
15	9.82761	10.17239	9.95825	10.04175	10.13064	9.86936	45
16	82775	17225 17212	95850	04150	13076	86924	44
17	82788	17212	95875	04125	13087	86913	43
18	82802	17198	95901	04099	13098	86902	42
19	82816	17184	95926	04074	13110 10.13121	86890	41 40
20	9.82830	10.17170 17156	9.95952	10.04048 04023	13133	9.86879	39
21 22	82844 82858	17142	95977 96002	03998	13145	86867 86855	38
23	82872	17128	96028	03972	13156	86844	37
24	82885	17115	96053	03947	13168	86832	36
25	9.82899	10.17101	9.96078	10.03922	10.13179	9.86821	35
26	82913	17087	96104	03896	13191	86809	34
27	82927	17073	96129	03871	13202	86798	33
28	82941	17059	96155	03845	13214	86786	32
29	82955	17045	96180	03820	13225	86775	31
30	9.82968	10.17032	9.96205	10.03795	10.13237	9.86763	30
31	82982	17018	96231	03769	13248	86752	29
32	82996	17004	96256	03744 03719	13260 13272	86740	28 27
33	83010	16990	96281	03719	13272	86728	26
34 35	83023 9.83037	16977 10.16963	96307 9.96332	10.03668	10.13295	86717 9.86705	25
36	83051	16949	96357	03643	13306	86694	24
37	83065	16935	96383	03617	13318	86682	23
38	83078	16922	96408	03592	13330	86670	22
39	83092	16908	96433	03567	13341	86659	21
40	9.83106	10.16894	9.96459	10.03541	10.13353	9.86647	20
41	83120	16880	96484	03516	13365	86635	19
42	83133	16867	96510	03490	13376	86624	18
43	83147	16853	96535	03465	13388	86612	17
44	83161	16839	96560	03440	13400 10.13411	86600	16
45	9.83174	10.16826 16812	9.96586	10.03414 03389	13423	9.86589	15 14
46 47	83188 83202	16708	96611 96636	03364	13435	86577 86565	13
48	83215	16798 16785	96662	03338	13446	86554	12
49	83229	16771	96687	03313	13458	86542	11
50	9.83242	10.16758	9.96712	10.03288	10.13470	9.86530	10
51	83256	16744	96738	03262	13482	86518	9
52	83270	16730	96763	03237	13493	86507	8 7
53	83283	16717	96788	03212	13505	86495	7
54	83297	16703	96814	03186	13517	86483	6 5
55	9.83310	10.16690	9.96839	10.03161	10.13528	9.86472	5
56 57	83324 83338	16676 16662	96864 96890	03136 03110	13540 13552	86460 86448	4
58	83351	16649	96915	03110	13564	86436	3 2
59	83365	16635	96940	03060	13575	86425	1
60	83378	16622	96966	03034	13587	86413	0
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
100	0						4=0

43° Logarithms. 136°

M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	M.
0	9.83378	10.16622	9.96966	10,03034	10.13587	9.86413	60
1	83392	16608	96991	03009	13599	86401	59
2 3 4 5 6 7 8 9	83405	16595	97016	02984	13611	86389	58
3	3 83419 16581		97042	02958	13623	86377	57
4	83432	16568	97067	02933	13634	86366	56
5	9.83446	10.16554	9.97092	10.02908	10.13646	9.86354	55
6	83459	16541 16527	97118	10.02908 02882 02857	13658	86342	54
0	83473	16514	97143 97168	02837	13670	86330	53 52
0	83486 83500	16500	97108	02807	13682 13694	86318 86306	51
10	9.83513	10.16487	9 97019	10 02781	10.13705	9.86295	50
11	83527	16473	9.97219 97244	10.02781 02756	13717	86283	49
12	83540	16460	97269	02731	13729	86271	48
13	83554	16446	97295	02705	13741	86259	47
14	83567	16433	97295 97320	02680	13753	86247	46
15	9.83581	10.16419	9.97345	10.02655	13753 10.13765	9.86235	45
16	83594	16406	97371	02629	13777	86223	44
17	83608	16392	97396	02604	13789	86211	43
18	83621	16379	97421 97447	02579	13800	86200	42
19	83634	16366	97447	02553	13812	86188	41
20	9.83648	10.16352	9.97472	10.02528 02503	10.13824	9.86176	40
21 22 23	83661 83674	16339 16326	97497 97523	02477	13836 13848	86164 86152	39 38
22	83688	16319	97548	02452	13860	86140	37
24	83701	16312 16299	97573	02427	13872	86128	36
25	9.83715	10.16285	9.97598	10.02402	10.13884	9.86116	35
25 26	83728	16272	97624	02376	13896	86104	34
27 28	83741	16259 16245	97649	02351 02326	13908	86092	33
28	83755	16245	97674	02326	13920	86080	32
29	83768	16232	97700	02300	13932	86068	31
30	9.83781	10.16219	9.97725	10.02275	10.13944	9.86056	30
31	83795	16205 16192	9.97725 97750 97776	02250	13956	86044	29 28 27
32	83808	16192	97776	02224	13968	86032	28
33 34	83821	16179 16166	97801	02199 02174	13980	86020 86008	26
35	\$3\$34 9.\$3\$48	10.16152	97826 9.97851	10.02149	13992 10.14004	9,85996	25
36	83861	16139	97877	02123	14016	85984	24
37	83874	16126	97902	02098	14028	85972	23
38	83887	16113	97927	02073	14040	85960	22
39	83901	16099	97953	02047	14052	85948	21
40	9.83914	10.16086	9.97978	10.02022	10.14064	9.85936	20
41	83927	16073	98003	01997	14076	85924	19
42	83940	16060	98029	01971	14088	85912	18
43	83954	16046	98054	01946	14100	85900	17
44	83967	16033	98079	01921	14112	85888	16
45 46	9.83980	10.16020	9.98104	10.01896	10.14124	9.85876	15 14
47	83993 84006	16007 15994	98130 98155	01870 01845	14136 14149	85864 85851	13
48	84020	15980	98180	01820	14161	S5839	12
49	84033	15967	98206	01794	14173	85827	11
50	9.84046	10.15954	9.98231	01794 10.01769	10.14185	9.85815	10
51	84059	15941	98256	01744	14197	85803	9
52	84072	15928	98281	01719	14209	85791	8
53	84085	15915	98307	01693	14221	85779	7
54	84098	15902	98332	01668	14234	85766	8 7 6 5
55	9.84112	10.15888	9.98357	10.01643	10.14246	9.85754	5
56	84125	15875	98383	01617	14258	85742	4
57 58	84138	15862 15849	98408 98433	01592	14270	85730	3
59	84151 84164	15896	98453 98458	01567 01542	14282 14294	85718 85706	1
60	84177	15836 15823	98484	01516	14307	85700 85693	0
	01111	10020	00101	01010	11001	00000	
M.	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	M.
1339							460
1 4 4							40

1330

M.

 $\frac{25}{24}$

3 2

M.

Sine.

9.85012

9.85074

LOGARITHMIC ANGULAR FUNCTIONS.									
	440			Logarithms.					
	M.	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.		
N.	0	9.84177	10.15823	9.98484	10.01516	10.14307	9.85693		
	1	84190	1.5810	98509	01491	14319	85681		
	2	84203	15797	98534	01466	14331	85669		
	$\frac{2}{3}$	84216	15784	98560	01440	14343	85657		
	4	84229	15771	98585	01415	14355	85645		
	5	9.84242	10.15758	9.98610	10.01390	10.14368	9.85632		
	6	84255	15745	98635	01365	14380	85620		
	7	84269	15731	98661	01339	14392	85608		
	8	84282	15718	98686	01314	14404	85596		
	9	84295	15705	98711	01289	14417	85583		
	10	9.84308	10.15692	9.98737	10.01263	10.14429	9.85571		
	11	84321	15679	98762	01238	14441	85559		
	12	84334	15666	98787	01213	14453	85547		
	13	84347	15653	98812	01188	14466	85534		
	14	84360	15640	98838	01162	14478	85522		
	15	9.84373	10.15627 15615	9.98863	10.01137	10.14490	9.85510		
	16 17	84385	15602	98888	01112	14503	85497		
		84398	15589	98913	01087	$14515 \\ 14527$	85485		
	18 19	84411 84424	15576	98939 98964	01061 01036	14527	85473 85460		
	20	9.84437	10.15563	9.98989	10.01011	10.14552	9.85448		
	21	84450	15550	99015	00985	14564	85436		
	22	84463	15537	99040	00960	14577	85423		
	23	84476	15524	99065	00935	14589	85411		
	24	84489	15511	99090	00910	14601	85399		
	25	9.84502	10.15498	9.99116	10.00884	10.14614	9.85386		
	26	84515	15485	99141	00859	14626	85374		
	27	84528	15472	99166	00834	14639	85361		
	28	84540	15460	99191	00809	14651	85349		
	29	84553	15447	99217	00783	14663	85337		
	30	9.84566	10.15434	9.99242	10.00758	10.14676	9.85324		
	31	84579	15421	99267	00733	14688	85312		
	32	84592	15408	99293	00707	14701	85299		
	33	84605	15395	99318	00682	14713	85287		
	34	84618	15382	99343	00657	14726	85274		
	35	9.84630	10.15370	9.99368	10.00632	10.14738	9.85262		
	36	84643	15357	99394	00606	14750	85250		
	37	84656	15344	99419	00581	14763	85237		
	38	84669	15331	99444	00556	14775	85225		
	39	84682	15318	99469	00531	14788	85212		
	40	9.84694	10.15306	9.99495	10.00505	10.14800	9.85200		
	41	84707	15293	99520	00480	14813	85187		
	42	84720	15280	99545	00455	14825	85175		
	43	84733	15267	99570	00430	14838	85162		
	44	84745	15255	99596	00404	14850	85150		
	45	9.84758	10.15242	9.99621	10.00379	10.14863	9.85137		

M.

Cosine.

9.84885

9.84822

Secant.

10.15115

10.15178

Cotangent.

10.00000

9.99874

9.99747

Tangent.

10.00126

10.00253

Cosecant.

10.14988

10.14926

134° 45°

Formulas for Right-Angled Triangles.

1.
$$a = \sqrt{b^2 + c^2}$$
.
2. $a = \frac{c}{\sin C}$.
3. $a = \frac{b}{\cos C}$.
4. $a = 2\sqrt{\frac{Q}{\sin 2C}}$.
5. $b = a \cos C$.
6. $b = c \cot C$.
7. $b = a \sin B$.
8. $b = c \tan B$.
10. $Q = \frac{a^2 \sin 2C}{4}$.
11. $Q = \frac{1}{2}b^2 \tan C$.
12. $Q = \frac{1}{2}c^2 \cot C$.
13. $Q = \frac{1}{2}c\sqrt{(a + c)(a - c)}$.
14. $\sin C = \frac{c}{a}$.
15. $\cos C = \frac{b}{a}$.
16. $\tan C = \frac{c}{b}$.
17. $\sin 2C = \frac{4Q}{a^2}$.
18. $\tan C = \frac{2Q}{b^2}$.

Say the angle to be $C=60^\circ$. In the first column of the table of sines, 60° corresponds with 0.86602 in the next column, which is the length of $\sin 60^\circ$, when the radius of the circle is one, or the unit, and the expression $\sin 60^\circ \times 36$ means $0.86602 \times 36 = 31.17672$, and likewise with all the other trigonometrical expressions.

In a triangle the functions of an angle have a certain relation to the opposite side; it is this relationship which enables us to solve the triangle

by the application of simple arithmetic.

In triangles the sides are denoted by the letters a, b, and c; their respective opposite angles are denoted by A, B, and C, and the area by Q.

Example. The side c in a right-angled triangle being 365 feet, and the angle $C=39^\circ$ 20′, how long is the side a=?

Formula 2.
$$a = \frac{c}{\sin C} = \frac{365}{\sin 39^{\circ} 20'} = \frac{365}{0.63383} = 575.86$$
 feet, the answer.

Or, by logarithms,

log.
$$a = \log$$
. 365 — \log . sin 39° 20′ = 2.56229 — 9.80197 = 2.76032, num, = 575.86,

Formulas for Oblique-Angled Triangles.

 $a:b=\sin A:\sin B$, and $b:c=\sin B:\sin C$. $a:c=\sin A:\sin C$, and $Q:ab=\sin C:2$.

$$1. a = \frac{c \sin A}{\sin C}.$$

$$2. a = \frac{c \sin A}{\sin (A+B)}.$$

$$a = \frac{2Q}{b\sin C}.$$

4.
$$b = \frac{c \sin B}{\sin C}.$$

$$b = \frac{2Q}{c \sin A}.$$

6.
$$\sin C = \frac{c \sin B}{b}$$
.

7.
$$\sin C = \frac{c \sin A}{a}$$
.

8.
$$\sin A = \frac{2Q}{bc}$$
.

9.
$$\sin A = \frac{a \sin C}{c}$$
.

10.
$$a = \sqrt{b^2 + c^2 - 2bc \cos A}$$
.

11.
$$a = \sqrt{\frac{2Q\sin A}{\sin B\sin (A+B)}} \cdot / 22. \quad c = \sqrt{\frac{2Q\sin C}{\sin A\sin (A+C)}}.$$

12.
$$S = \frac{1}{2}(a+b+c)$$
.

13.
$$\sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
.

14.
$$\sin \frac{1}{2}B = \sqrt{\frac{(s-a)(s-c)}{ac}}$$
.

15.
$$\cos \frac{1}{2}A = \sqrt{\frac{s(s-a)}{bc}}.$$

16.
$$\cos \frac{1}{2}B = \sqrt{\frac{s(s-b)}{ac}}$$
.

$$17. Q = \frac{bc \sin A}{2}.$$

$$18. Q = \frac{ab \sin C}{2}.$$

19.
$$Q = \frac{c^2 \sin A \sin B}{2 \sin (A+B)}.$$

20.
$$Q = \sqrt{(S-a)(S-b)(S-c)S}$$
.

21.
$$b = \sqrt{\frac{2Q\sin(A+C)}{\sin A\sin C}}.$$

22.
$$c = \sqrt{\frac{2Q\sin C}{\sin A\sin (A+C)}}$$

Right=Angled Spherical Triangle.

1.
$$\sin b = \sin a \sin B$$
.

2.
$$\tan c = \tan a \cos B$$
.

3.
$$\cot C = \cos a \tan B$$
.

4.
$$\tan c = \sin b \tan C$$
.

5.
$$\cos a = \cos b \cos c$$
.

6.
$$\cos B = \cos b \sin C$$

7.
$$\tan a = \frac{\tan b}{\cos C}.$$

8.
$$\sin c = \frac{\tan b}{\cos a}$$

9.
$$\sin a = \frac{\sin b}{\sin B}.$$

10.
$$\sin C = \frac{\cos B}{\cos b}.$$

11.
$$\cos c = \frac{\cos a}{\cos b}.$$

12.
$$\sin B = \frac{\sin b}{\sin a}.$$

12.
$$\sin B = \frac{\sin a}{\sin a}.$$

13.
$$\cos C = \frac{\tan b}{\tan a}$$

14.
$$\tan C = \frac{\tan c}{\sin b}.$$

15.
$$\tan B = \frac{\tan b}{\sin c}.$$

16.
$$\cos c = \frac{\cos C}{\sin B}$$

$$\frac{17}{1}$$
 $\cos h = \cos B$

$$17. \qquad \cos b = \frac{\cos B}{\sin C}$$

18.
$$\cos a = \frac{\cot C}{\tan B}$$
.

The sum of the three angles in a spherical triangle is greater than two right angles and less than six right angles.

By spherical trigonometry we ascertain distances and courses on the surface of the earth, positions and motions of the heavenly bodies, etc., etc. Examples will be furnished in geography and astronomy.

Example. In a right-angled spherical triangle the side or hypothenuse $a = 36^{\circ} 20'$, the angle $B = 68^{\circ} 50'$. How long is the side b = ?

Formula 1. $\sin b = \sin a \sin B = \sin 36^{\circ} 20' \times \sin 68^{\circ} 60'$.

 $\log \sin 36^{\circ} 20' = 9.77267$ α B $\log \sin 68^{\circ} 50' = 9.96966$

The answer, $\log \sin 33^{\circ} 32' = 9.74233$ or, $b = 33^{\circ} 32'$.

Oblique-Angled Spherical Triangle.

19.
$$\sin a : \sin b = \sin A : \sin B$$
.

$$\sin a = \frac{\sin b \sin A}{\sin B}.$$

20.
$$\sin b : \sin c = \sin B : \sin C$$

$$\sin b = \frac{\sin c \sin B}{\sin C}.$$

21.
$$\tan \frac{1}{2}(a+b) = \tan \frac{1}{2}c \frac{\cos \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A+B)}$$

22.
$$\tan \frac{1}{2}(a-b) = \tan \frac{1}{2} e^{\frac{\sin \frac{1}{2}(A-B)}{\sin \frac{1}{2}(A+B)}}$$

23.
$$\tan \frac{1}{2}(B+C) = \cot \frac{1}{2}A \frac{\cos \frac{1}{2}(b-c)}{\cos \frac{1}{2}(b+c)}.$$

24.
$$\tan \frac{1}{2}(B-C) = \cot \frac{1}{2}A \frac{\sin \frac{1}{2}(b-c)}{\sin \frac{1}{2}(b+c)}.$$

25.
$$\cot \frac{1}{2}A = \tan \frac{1}{2}(B-C)\frac{\sin \frac{1}{2}(b+c)}{\sin \frac{1}{2}(b-c)}$$
.

26.
$$\tan \frac{1}{2}c = \tan \frac{1}{2}(a-b)\frac{\sin \frac{1}{2}(A+B)}{\sin \frac{1}{2}(A-B)}$$

Example. Oblique-angled spherical triangle. $c=72^{\circ}$ 30′, $B=17^{\circ}$ 30′, $C=79^{\circ}$ 50′. How long is the side b=?

Formula 20.
$$\sin b = \frac{\sin c \sin B}{\sin C} = \frac{\sin 72^{\circ} 30' \times \sin 17^{\circ} 30'}{\sin 79^{\circ} 50'}.$$

$$\begin{array}{c} c \\ B \\ + \log. \sin 72^{\circ} 30' = 9:97942 \\ + \log. \sin 17^{\circ} 30' = 9:47812 \\ + \\ C \\ + \log. \sin 79^{\circ} 50' = 9:99312 \\ \end{array}$$
The answer,
$$\log. \sin 16^{\circ} 56' = 9:46442 \quad \text{or, } b = 16^{\circ} 56'.$$

Oblique-Angled Spherical Triangle.

[B refers to the whole angle between a and c, and b to the whole line opposite B.]

27.
$$\tan \frac{1}{2}(m+n) \tan \frac{1}{2}(m-n) = \tan \frac{1}{2}(a+c) \tan \frac{1}{2}(a-c) \tan m = \tan c \cos A$$
.

28.
$$\tan C = \frac{\sin m \tan A}{\sin (b - m)}.$$

29.
$$\cos \quad a = \frac{\cos c \cos (b - m)}{\cos m}.$$

30.
$$\cos n = \frac{\cos a \cos m}{\cos c}.$$

$$b=m\pm n$$
.

31.
$$\cot m = \frac{\cos c \tan A}{\tan a}.$$

$$s = \frac{a+b+c}{2}$$
, $S = \frac{A+B+C}{2}$.

32.
$$\sin \frac{1}{2}A = \sqrt{\frac{\sin (s-c)\sin (s-b)}{\sin b \sin c}}.$$

33.
$$\sin \frac{1}{2}a = \sqrt{\frac{\cos S \cos (S - A)}{\sin B \sin C}}.$$

To find the area of a spherical triangle:

Let Q be the area of the triangle in square degrees. If R = radius of the sphere, the length of one degree will

$$=\frac{2\pi R}{360}$$
, or one square degree $=\frac{R^2}{3285.58}$.

1.
$$\cot \frac{1}{2}Q = \frac{\cot \frac{1}{2}c \cot \frac{1}{2}a + \cos B}{\sin B}.$$

2.
$$\sin \frac{1}{2}Q = \frac{\sin \frac{1}{2}c \sin \frac{1}{2}a \sin B}{\cos \frac{1}{2}b}$$
.

Trigonometrical Formulas.

1.
$$\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
.

2.
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
.

$$3. \quad \sin 2a \qquad = 2\sin a \cos a.$$

4.
$$\sin 3\alpha = 3 \sin \alpha - 4 \sin \alpha^3 = \sin \alpha (4 \cos \alpha^2 - 1)$$
.

5.
$$\cos 2a = \cos a^2 - \sin a^2 = 2 \cos a^2 - 1 = 1 - 2 \sin a^2$$
.

6.
$$\cos 3a = 4 \cos a^3 - 3 \cos a = \cos a(1 - 4 \sin a^2)$$
.

7.
$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
.

8.
$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

9.
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
.

10.
$$\cos \alpha - \cos \beta = 2 \sin \frac{\alpha + \beta}{2} \sin \frac{\beta - \alpha}{2}$$

11.
$$\sin \alpha^2 = \frac{1}{2}(1 - \cos 2\alpha)$$
.

12.
$$\cos \alpha^2 = \frac{1}{2}(1 + \cos 2\alpha)$$

13.
$$\sin a^3 = \frac{1}{4}(3 \sin a - \sin 3a)$$
.

14.
$$\cos \alpha^3 = \frac{1}{4}(3\cos \alpha + \cos 3\alpha)$$
.

15.
$$\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$
.

16.
$$\cot (\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\pm \cot \alpha + \cot \beta}$$
.

17.
$$\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan \alpha^2}$$

18.
$$\cot 2a = \frac{\cot a^2 - 1}{2 \cot a}$$
.

19.
$$\tan \alpha = \sqrt{\frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}} = \frac{\sin 2\alpha}{1 + 2\cos \alpha} = \frac{2 \tan \frac{1}{2}\alpha}{1 - \tan \frac{1}{2}\alpha^2}$$

20.
$$\cot a = \sqrt{\frac{1 + \cos 2a}{1 - \cos 2a}} = \frac{\sin 2a}{1 - \cos 2a} = \frac{\cot \frac{1}{2}a^2 - 1}{2 \cot \frac{1}{2}a}$$

21.
$$\tan \alpha \pm \tan \beta = \frac{\sin (\alpha \pm \beta)}{\cos \alpha \cos \beta}$$

22.
$$\cot \alpha \pm \cot \beta = \frac{\sin (\beta \pm \alpha)}{\sin \alpha \sin \beta}$$
.

23.
$$\frac{\sin \alpha + \sin \beta}{\sin \alpha - \sin \beta} = \frac{\tan \frac{1}{2}(\alpha + \beta)}{\tan \frac{1}{2}(\alpha - \beta)}.$$

Differential and Integral Calculus.

When one quantity depends upon another, so that the variations of one produce certain variations in the other, the one quantity is said to be a function of the other. There are many such functional relations occurring in mechanics and engineering; as, for example, those between time and distance in falling bodies, the expansion of steam in a cylinder, etc.

distance in falling bodies, the expansion of steam in a cylinder, etc.

Thus, in the case of a falling body, we know that the motion begins slowly and grows quicker and quicker, so that after a body has been falling for several seconds it passes over a much greater distance in each later second than it did in the first second. By observing the spaces passed over by a falling body in several consecutive seconds we will find, as did Galileo, that the distances increase proportionally to the squares of the times, or, in modern notation,

 $s = \frac{1}{2}gt^2$.

The closer together the successive observations are taken, the more nearly the truth will the deduction be. Thus, if we platted the values of s for a number of values of t,—taking the time intervals as one second,—and joined the points by straight lines, we should have a broken line, indicating roughly the curve. By taking the time intervals closer, the broken character of the line becomes less apparent. When the time intervals are taken so very close to each other that the broken character of the line can no longer be distinguished, it appears as a smooth curve, the equation of which gives the law connecting the two interdependent variables.

which gives the law connecting the two interdependent variables.

The object of the calculus is to discuss the immediately consecutive values of variables, in order that their relations may be reduced to expres-

sions suitable for use in computation.

The method used is to take any single relation between the variable quantities under consideration, make a small increase in one of them, and compute what the corresponding increase will become in the other. Then, by deducing the ratio of the two increases in value, we get an algebraic expression corresponding to the geometrical construction giving the broken line instead of the curve, as described above. By a simple transposition in the equation the actual value of the increment may be made equal to zero, and, at the same time, permit the ratio of the variations at that instant to be determined.

Thus, let $y = ax^2$; then let x be increased by a quantity, $\triangle x$ or h, and y

will have a corresponding increase, $\triangle y$, and we have

$$y + \triangle y = a(x + h)^2$$

$$= ax^2 + 2axh + ah^2$$
Subtracting
$$y = ax^2$$

$$\triangle y = 2axh + ah^2$$

$$\triangle x = h$$
we get
$$\frac{\triangle y}{\triangle x} = 2ax + ah$$

Now, when $\triangle x$ is equal to zero, $\triangle y$ is also equal to zero; and thus, when the increment, $\triangle x = h$, is zero, we have

$$\frac{0}{0} = 2ax$$
.

That is, the ratio between the increments of x and of y at their zero values is equal to 2ax. It is usually stated in this demonstration that the value, 2ax, is reached when the increment is made infinitely small, so that its square, h^2 , may be considered still smaller, and hence negligible; but this manœuvring is altogether unnecessary, as there is no reason to object to the determination of the value of ${g}$ as the true and exact ratio of the two increments.

This is seen by an example in falling bodies. In the equation $y=ax^2$, let a=16, and substitute s for y and t for x,—s representing space, and t, time,—and we have $s=16t^2$, and 2ax becomes 32t, the well-known formula

for the velocity at the end of t seconds.

The integral calculus is the reverse of the differential calculus, being the study of the methods of finding the quantities and expressions which correspond to given differentials. The differential of a quantity is indi-

cated by prefixing the letter d, as dx (read differential of x), and the integral of an expression is indicated by the symbol f, an old-fashioned form

of the letter s (signifying summation).

The usual working method of applying the calculus to a technical problem is first to state, in the form of an equation, the relation existing between two immediately consecutive states of the functions under consideration, these being found from observation or from their known relations by differentiation. This statement being made, both sides of the equation are integrated simultaneously, the result being a general algebraic statement of the relation between the varying quantities within the limits for which the integration is made. limits for which the integration is made.

As an example, we may give the determination of the law of barometric pressure, or the formula for computing differences of altitude by observing differences in atmospheric pressure by the barometer.

Taking a column of air with a base equal to a unit of area (say 1 square

Taking a column of air with a base equal to a unit of area (say 1 square metre) and an unknown height, x, and calling the pressure at the bottom of the column = p, and letting the weight of a unit volume of air (say 1 cubic metre) at the bottom = q, we have the following:

Let the height of the column, x, be increased by a very small quantity, dx, so that it becomes x + dx. We then have the pressure on the base increased by some small quantity, dp. But this is also equal to qdx, or the weight per cubic metre times the portion of a cubic metre which has been added; hence, we have

$$dp = qdx$$
.

According to Mariotte's law, the weights of given volumes of air are proportional to the pressures; or, for another pair of pressures and volumes, p' and q', we have

$$\frac{q}{q'} = \frac{p}{p'}$$
, and $q = \frac{q'}{p'}p$,

which, in the above equation, gives

$$dp = \frac{q'}{p'}pdx;$$

or, calling the constant quantity $\frac{q'}{p'} = c$, we have

Dividing both sides by p, we get

$$\frac{dp}{p} = cdx;$$

and integrating

$$\int \frac{dp}{p} = fcdx, \text{ or log. } p = cx + C,$$

when x = 0, p = p', and log. p' = C.

Subtracting, we have $\log. p - \log. p' = cx;$

but
$$\log p - \log p' = \log \frac{p}{p'}$$
, and hence $cx = \log \frac{p}{p'}$, or $x = \frac{1}{c} \log \frac{p}{n'}$,

and we have thus derived a formula giving the value of x for any two pressures,—that is, for the vertical height between two points at which the air pressures are p and p'.

The whole art of using the calculus in engineering or applied science

lies in the framing of the equations and the use of the observed relations of the quantities, the processes of differentiation and integration being almost as much matters of routine as the use of logarithms.

For those desiring to refresh their recollection, reference may be made to Professor Perry's "Calculus for Engineers," Professor R. H. Smith's "Calculus for Engineers and Physicists," and Autenheimer's "Elementarbuch der differential und integral Rechnung," the latter being especially cially rich in numerical applications to mechanics, physics, and practical science.

Formulas. Differentials.

1.
$$y = x$$
 $dy = dx$.

$$2. \ y = ax^2 \qquad dy = 2axdx.$$

$$3. \quad y = x^n \qquad dy = nx^{n-1}dx.$$

$$4. \ 3abx^3 = 9abx^2dx.$$

$$5. \ 4ab^2x^n = 4nab^2x^{n-1}dx.$$

6.
$$a + x^3 = 3x^2 dx$$
.

7.
$$(a+b)x^2 = 2x(a+b)dx$$
.

8.
$$6ab^4x^3 - c = 18ab^4x^2dx$$
.

9.
$$x + 3z^2 - v = dx + 6zdz - dv$$
.

10.
$$6x^3 + 4ax^2 - 3ax = (18x^2 + 8ax - 3)dx$$
.

$$11. xv^2 = vdx + 2xvdv.$$

12.
$$xvz = xvz\left(\frac{dx}{x} + \frac{dv}{v} + \frac{dz}{z}\right)$$
.

13.
$$x(x^2 - bx) = (3x^2 - 2b^2x)dx$$
.

$$14. \frac{x^2}{v} = \frac{2xvdx - x^2dv}{v^2}.$$

15.
$$\frac{a}{x} = \frac{adx}{x^3}$$
.

$$16. \frac{a}{x^n} = -\frac{nax^{n-1}dx}{x^{2n}}.$$

17.
$$(a + \sqrt{x})^3 = \frac{3(a + \sqrt{x})^2 dx}{2\sqrt{x}}$$
.

18.
$$(a + \sqrt[n]{x})^m = m(a + \sqrt[n]{x})^{m-1} \frac{1}{n} x^{\frac{1}{n}-1} dx$$
.

19.
$$\frac{1}{n(a-x)^n} = \frac{dx}{(a-x)^{n-1}}$$
.

20.
$$\frac{2\sqrt{2ax-x^2}}{x} = -\frac{2adx}{\sqrt{2ax-x^2}}$$

Formulas. Differentials.

$$21. \quad a^x = a^x l \cdot a dx.$$

22.
$$d \cdot l \cdot x = \frac{dx}{x}$$
.

$$23. \quad xl \cdot x = (1 + l \cdot x) dx.$$

$$24. \quad \frac{l \cdot x}{x^n} \qquad \qquad = \frac{(1 - l \cdot x) dx}{x^{n+1}}.$$

25.
$$\frac{x}{l \cdot x} = \frac{(l \cdot x - 1) dx}{(l \cdot x)^2}.$$

26.
$$\frac{ay}{\sqrt{x^2 + y^2}} = \frac{ayxdx - ax^2dy}{\sqrt{(x^2 + y^2)^3}}$$
.

27.
$$\frac{a-2bx}{(a+bx)^2} = \frac{2b^2xdx}{(a+bx)^3}.$$

28.
$$\sqrt{x} = x^{\frac{1}{2}} = \frac{dx}{2\sqrt{x}}$$
.

29.
$$(ax + x^2)^n = n(ax + x^2)^{n-1}$$

 $(a + 2x)dx$.

30.
$$\sqrt{a^2 + bx^2} = \frac{bxdx}{\sqrt{a^2 + bx^2}}$$

31.
$$d^{\cdot 2}(ax^3) = 6axdx^2$$
.

32.
$$d^3(ax^3) = 6adx^3$$
.

33.
$$d^4(ax^3) = 6ax^{o-1}dx = 0$$
.

$$34. \sin v = +\cos v dv.$$

35.
$$\cos v = -\sin v dv$$
.

$$36. \quad \tan v = +\frac{dv}{\cos^2 v}.$$

$$37. \cot v = -\frac{dv}{\sin^2 v}.$$

$$38. \sec v = + \frac{\cos v dv}{\cos^2 v}.$$

39.
$$\csc v = -\frac{\cos v dv}{\sin^2 v}$$
.

40. Tan for any curve,
$$t = y\sqrt{1 + \frac{dx^2}{dy^2}}$$
.

Differentials. Integrals.

1.
$$\int dx = x + c$$
 $\int x dx = \frac{x^3}{2} + C$.

2.
$$\int 4ax^3 dx = 4a\int x^3 dx = ax^4 + C$$
.

3.
$$fx^n dx = \frac{x^{n+1}}{n+1} + C$$

$$4. \int \sqrt{x dx f x^{1/2}} dx = \int x^{1/2} dx.$$

5.
$$\int \frac{dx}{\sqrt{x}} = \int x^{-1/2} dx = 2\sqrt{x} + C$$
.

6.
$$\int \frac{dx}{x^2} = \int x^{-1} dx = \int x^{-1} dx$$
.

7.
$$\int \frac{dx}{x^2} = \int x^{-2} dx = \frac{1}{x} + C$$
.

8.
$$\int \frac{dx}{x^3} = \int x^{-3} dx = -\frac{1}{2x^2} + C$$
.

9.
$$\int \left(ax^3 + \frac{b}{2\sqrt{x}}\right) dx = \frac{ax^4}{4} + b\sqrt{x} + C.$$

10.
$$\int \frac{adx}{x} = al \cdot x + C.$$

11.
$$\int \frac{bdx}{a+x} = bl \cdot (a+x) + C.$$

13.
$$faxdx + 3x^2dx = \frac{ax^2}{2} + x^3 - b^2x + C$$
.

14.
$$f(a^2 + b^2) = f(a^2 + b^2)dx$$
.

15.
$$f(ax-2x^2)^2 dx = x^3 \left(\frac{a^2}{3} - ax + \frac{4x^2}{5}\right) + C$$

16.
$$f3(ax - x^2)^2$$

 $(a - 2x)dx = (ax - x^2)^3 + C.$

17.
$$\int \frac{n(x^{n-1}dx)}{\sqrt{a+x^n}} = 2\sqrt{a^2 + x^n} + C.$$

18.
$$\int \frac{2adx}{a^2 - x^2} = l \cdot \frac{a + x}{a - x} + C$$
.

19.
$$\int \sqrt{a^2 + x^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} l \cdot (x + \sqrt{a^2 + x^2}).$$

20.
$$\int \sqrt{a + bx} dx = \frac{2}{3b}(a + bx)^3 + C$$
.

Differentials. Integrals.

21.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = l \cdot (x + \sqrt{a^2 + x^2}).$$

$$22. \int_{a}^{b} 3mx^{2}dx = mb^{3} - ma^{3}.$$

23.
$$\int_{a}^{b} mx dx = \frac{m}{2}(b^2 - a^2).$$

$$24. \int_{0}^{\infty} \frac{dx}{a^2 + x^2} = \frac{\pi}{2a}.$$

25.
$$\int_{0}^{a} \frac{dx}{\sqrt{a^2 - x^2}} = \frac{\pi}{2}.$$

26.
$$\int_{a}^{b} dx = -\int_{b}^{a} dx = \int_{a}^{c} = \int_{a}^{b} + \int_{b}^{c}$$

$$27. f \sin x dx = -\cos x + C.$$

$$28. \ f \cos x dx = \sin x + C.$$

29.
$$\int \tan x dx = -l \cos x + C$$
.

30.
$$f \cot x dx = -l \sin x + C$$
.

$$31. \int \frac{dx}{\sin x} = l \cdot \tan \frac{x}{2} + C.$$

32.
$$\int \frac{dx}{\cos x} = l \cdot \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) + C.$$

33.
$$f \sin x \cos x dx = \frac{1}{2} \sin^2 x + C$$
.

$$34. \int \frac{\sin bx}{x} dx = \frac{\pi}{2}.$$

$$35. \int_{0}^{\infty} \frac{\cos bx}{x} dx = \infty.$$

36.
$$\int \frac{dt}{1+t^2} = \text{circle arc, of which } t = \text{tan.}$$

37.
$$\int \frac{dx}{\sqrt{2x - x^2}} = \text{circle arc, of which } x = \sin x$$

38.
$$\iiint 6a dx^3 = \iint 6ax dx^2 = \int 3ax^2 dx = ax^3 + C$$
.

39.
$$\iint 2(a+b)dx^2 = (a+b)x^2 + C_0x + C_1$$
.

40.
$$\int \int 2v^2 dx^2 + 8vx dx dv + 2x^2 dv^2 = x^2 v^2$$
.

MECHANICS.

In considering the action of force upon matter, it is important to have a clear understanding of the terms as used in the following pages.

Without going deeply into the theoretical considerations of analytical mechanics, we will discuss briefly those relations commonly used by the engineer in daily practice, leaving the profounder questions for the elaborate theoretical treatises, such as those of Rankine, Hertz, Lagrange, Du Bois, and others.

There are three elementary quantities used in mechanics, from which

numerous compound quantities are derived:

- 1. Force, usually expressed in units of weight, as pounds, tons, kilogrammes, etc.
 - 2. Distance, expressed in linear units, feet, yards, metres, etc.

3. Time, expressed in hours, minutes, or seconds.

From these we derive a number of compound expressions, some of which are given here, others will be used as occasion requires.

Thus, we have

Work, which is the product of force by distance, and expressed by a combination of units of weight and distance, as foot-pounds, kilogrammetres, etc.

Power, which is the product of force by distance, divided by time, or the performance of a given amount of work in a given time, expressed as foot-pounds per minute, kilogrammetres per second, etc.

Velocity is distance divided by time, as feet per minute, metres per second, miles per hour.

Acceleration is the time-rate of change of the velocity of a body, expressed as a velocity divided by time, feet per second per second, miles per hour per second, etc.

Forces may be conveniently represented by straight lines, the position of the line showing the direction of action of the force, and the length of the line indicating the magnitude of the force on some convenient scale. The convenience of the graphical method of solving problems in statics and mechanics renders it most useful, and in the following pages it will be extensively employed.

So far as precision is concerned, it is quite as practicable to construct force diagrams with a high degree of precision as it is to make the drawings of the structures to which they are to be applied, while the accuracy of the work is materially increased by the possibility of examining the

relations of all the forces at once.

STATICS.

Statical problems are those which deal with the equilibrium of forces

acting upon bodies at rest.

It is customary to consider the bodies upon which the forces act as being rigid, although it is well understood that all substances are more or less elastic; it being found more practicable to determine the relations of the forces first, and then to modify these, when necessary, for the influence of the elasticity of the material under consideration.

In order that a body or a structure shall remain at rest, it is necessary that all the forces acting upon it should balance each other. If this were not the case, the body would move in a direction dominated by the preponderating force. This fact is used to aid in the determination of statical problems. The influence of the combined action of all the known forces acting on a body enables the magnitude and direction of the remaining force which holds them in equilibrium to be determined.

The most convenient, rapid, and accurate method of combining and

resolving the action of forces is the graphical method.

A single force may be indicated by a straight line, the length of which,

on any convenient scale, shows the magnitude of the force.

Thus, a force of 10 pounds may be represented as a straight line 10 inches long, in which case the scale is 1 inch to the pound. The direction of the action of the force is shown by the direction of the line, and,

235

if unopposed, the body upon which the force acts will move in the direction of the line of action of the force.

If the body does not move, equilibrium must be maintained by reason of the action of a force of equal magnitude to the first force, acting in the

opposite direction.

Thus, a weight of 10 pounds, suspended from a cord, hangs stationary. There must, therefore, be produced in the cord a reacting force of 10 pounds, acting upward, otherwise the weight would fall. The upward reaction in the cord cannot be greater than 10 pounds, or the weight would move upward; hence, we know that the reaction in the cord is exactly equal to the force of the weight, but acts in the opposite direction.

When more than one force is to be considered, the question becomes

more complicated, but the principle is the same.

Thus, if we have two forces, 10, 20, acting upon the point, 0, we find the magnitude and direction of the opposing force, which just balances

and holds them in equilibrium, as follows:

At any convenient place on the paper draw a line, 1, parallel to 10, and At any convenient place of the paper draw a fine, 1, parallel to 10, and of a length corresponding, on any convenient scale, to the force, 10. Thus, if 10 is 5 pounds, the line, 1, may be 5 inches, or 5 centimetres, or 5 feet long. From the extremity of 1 draw 2, parallel to 20, and of a length equal to the force, 20, on the same scale as used for 1. Then join the extremities of 1 and 2 by a line, 3. This last line will then be equal in length to the desired force, which holds 10 and 20 in equilibrium, and it will also be parallel to it in direction. By drawing 03 parallel to 3 we have the balancing force fully determined balancing force fully determined.

For more than two forces we may proceed in a similar manner.

Thus, if we have five forces acting upon the point, O, we draw the polygon, having the sides 1, 2, 3, 4, and 5, respectively, parallel to the forces and, proportional to their magnitude, upon the same scale, and then close the polygon by the dotted line, 6, which gives the magnitude and direction of the resultant, 06, which will hold the other forces in equilibrium.

If the polygon closes of itself, the system of forces is already in equilibrium; if it does not close of itself, the length and direction of the side necessary to close it will give the required result.

The foregoing discussion has assumed that the forces under consideration all act at the same point. When, however, the forces act at various points in a body which may be assumed as rigid, the resultant may be found as follows:

Suppose we have any rigid body, upon which several forces, P1, P2, P3, are acting at several points. Construct the polygon as in the figure at the right, the line, 1-2, corresponding to P^1 ; 2-3, to P^2 ; and 3-4, to P^3 . The resultant will then be equal to 1-4. Then choose any point, O, as a pole, and draw the rays, S^1 , S^2 , S^3 , S^4 . Now, as in the figure on the left, draw a line, K^1K^2 , parallel to S^2 , intersecting P^2 prolonged. From K^2 to K^3 draw a line parallel to S^3 ; then draw K^1 to K^4 , parallel to S^1 ; and the intersection will give the point, K^4 , through which the resultant must resc. which the resultant must pass.

The position of the pole, O, does not affect the result, as will be found by choosing several poles and observing that the position of the resultant is not affected thereby.

If we have a number of parallel forces acting upon a rigid body, the same method may be used, but the diagram becomes simplified.

Thus, if we have the vertical forces, P^1 , P^2 , P^3 , P^4 , we draw a vertical line, as in the diagram on the right, and lay off $1-2=P^1$, $2-3=P^2$, $3-4=P^3$, $4-5=P^4$. Taking any pole, O, and drawing the rays, S^1 , S^2 , S^3 , S^4 , S^5 , we draw, as in the figure on the left, the line, K^1K^2 , parallel to S^2 ; K^2K^3 , parallel to S^3 ; K^3K^4 , parallel to S^4 . Then draw K^1K^5 , parallel to S^1 , and K^4K^5 , parallel to S^5 , these two lines intersecting at K^5 . The resultant, equal to 1-5, will then pass through K^5 .

Funicular Polygons.

If we have a flexible cord, secured at the ends and having weights suspended from it at various points, we may use the polar force diagram to

pended from it at various points, we may use the polar force diagram to determine the various forces acting in the combination.

Thus, if we have a cord suspended from two points, K^1 , K^5 , and to the points K^2 , K^3 , K^4 , suspend weights, P^1 , P^2 , P^3 , the cord will assume a shape similar to that shown in the figure. The combination will be in equilibrium, since the flexibility of the cord permits the weights to draw it into a position in which the forces balance each other. The various parts of the cord will then be subjected to tensions which are to be determined. There will also be vertical and horizontal forces at the points K^1 and K^5 which are to be found. All of these questions are solved by the and K5 which are to be found. All of these questions are solved by the

diagram on the right. First draw the vertical line, 1-4, making $1-2=P^1$, $2-3=P^2$, and $3-4=P^3$. Then from 1 draw S^1 , parallel to K^1K^2 , and from 4 draw S^2 , parallel to K^4K^5 , and the intersection of these two rays determines the position of pole, 0. The rays S^2 and S^3 are parallel to K^2K^3

and K^3K^4 .

The lengths of the various rays, S^1 , S^2 , S^3 , S^4 , measured on the same scale on which the vertical forces were laid off, will then give the magnitude of the tensions in the parts of the cord to which they are parallel. tude of the tensions in the parts of the cord to which they are parallel. By drawing a horizontal line, OH, through the pole, O, the vertical will be divided at a point, H, and 1H and H4 will be the vertical reactions at K^1 and K^5 , while the length, OH, will give the horizontal force acting to draw the two ends of the cord together. If the butments were removed, and a rod extending from K^1 to K^5 substituted, the length, OH, would give the compression on the rod. If the whole diagram be imagined as inverted, and the parts of the cord be replaced by rigid struts, the figure will represent a framework which will sustain the same weights without distortion, the tensions in the various parts of the cord being converted into thrusts in the corresponding members of the framework into thrusts in the corresponding members of the framework.

In the preceding example the form taken by the cord is assumed to be given, and the only requirement is the determination of the forces. In some important cases, to be discussed hereafter, it is desirable to determine the form of the curve under various conditions of loading, as well as the stresses. Thus, the data given may be the span and the depth of the lowest point in the curve; also, the position and magnitude of the loads; and it may be required to find the form which these conditions give to the cord. The importance of these questions will be seen when it is understood that the flexibility of the cord permits it to assume a position of equilibrium

under any loading; and hence from it can be deduced the stresses which are produced in rigid bodies, such as beams and similar constructions.

It is well known that a cord suspended from two points on the same horizontal line, and uniformly loaded, will assume the form of a parabola; but instead of acting on this assumption we may proceed just as if we had only to depend upon the methods of graphical statics, and then apply the same methods to the cases of unequal loading and unequal distribution.*

Suppose, Fig. 1, that we have the forces, 1, 2, 3, 4, 5, 6, 7, 8, equal in magnitude and at equal distances apart, acting vertically, as under the action of gravity, and that it is desired to determine the shape of the curve assumed by a cord sustaining these forces. The points of suspension are given at A and K, the forces are given in position, and the sag, RS, of the curve is given. The horizontal tension and the vertical reactions at the points, A and K, are required, and also the tension in each portion of the

curve.

curve. Referring to the force diagram at the right, we draw the horizontal line, 40, and draw a perpendicular through 4. We then lay off the spaces, A, 1, 2, 3, 4, 5, 6, 7, 8, equal, on any convenient scale, to the forces, and choose any point, 0, as a pole, and draw the rays, 10, 20, 30, ---80. We have taken the point, 0, on the horizontal, because we know that the curve is symmetrical, being uniformly loaded, and for reasons which will appear hereafter. Now, starting at A, in the diagram to the left, we draw Ab, parallel to A0; bc, parallel to 10; cd, parallel to 20; and so on until we come to iK, parallel to 80. This gives us a curve, A, b, c, d, e, f, g, h, i, K, which is a force polygon corresponding to the forces given. The horizontal tension at A and at K will then be equal to the distance A0 measured on tension at A and at K will then be equal to the distance, 40, measured on the same scale as was used for the given forces in making the diagram, and the vertical reactions will be equal to A4 and 4-8.

Now this diagram, while undoubtedly correct, is not the one we want, as the sag is too small; and this is due to the fact that we have taken our pole, O, too far from the point, 4, or, in other words, we have assumed the tension too great. Having once obtained one equilibrium curve, however, it is easy to transform it into any other one of any desired sag, in the fol-

lowing manner:

Draw the horizontal line, PQ, through the lowest point of the curve, which we have already obtained. Then prolong the line, Ab, until it intersects this horizontal at m; also prolong Ki until it intersects the horizontal at m. Draw P'Q' through S, the point of the desired sag, and drop perpendiculars from m and n until they intersect P'Q' at m' and n'; join Am' and Kn'.

Now, in the force diagram at the right of the figure, draw from A a line, AO', parallel to Am', and a line, 8O', parallel to Kn'. They will intersect on the horizontal at O', and this will be a new pole. Using this pole by drawing rays to O' from A, 1, 2, ---8, we have a new force diagram. Now, starting again at A, we draw Ab', parallel to AO'; b'c',

^{*}The following treatment of the subject of the catenary is substantially the same as that given in an article by the author in Engineering-Mechanics, June, 1896.

parallel to 10', etc., and we get a new catenary, A', b', c', ----i'K, which will have just the sag required. The distance, 40', will then be the correct horizontal tension, which corresponds to the sag, RS; and the tension in any portion of the curve is equal to the length of the corresponding parallel ray.

All this is very clear; but this is the simple case of uniform loading, All this is very clear; but this is the simple case of uniform loading, and might just as well have been solved by drawing a parabola of the required span and sag. Suppose now, however, that the loads are not uniform. Such an example is shown in Fig. 2. Here the loads are all the same, except that at 6, which is as much greater as is indicated by the length of the arrow. As before, we know only the magnitude and direction of the forces and the span and sag of the curve, and desire to find the horizontal tension and other forces. Referring to the force diagram on the right, we draw a vertical line, 48, making the distances,

A1, 1-2, 2-3, ----7-8, proportional to the various forces, and it will be noticed that 5-6 is the large force, the others being equal to each other. We now choose any point, O, for a pole, and draw the rays, AO, 1O, 2O, ---8O. Then, starting at A in the diagram to the left, we draw Ab, parallel to AO; bc, parallel to 1O; cd, parallel to 2O, etc., and get the curve, A, b, c, d, e, f, g, h, i, k. We then join k back to A by drawing the inclined line, Ak. This gives us a complete polygon, but it is not the one we want, for two reasons: first, it has not the right sag; and second, the points of suspension are not on a horizontal line. We can readily bring the points of suspension and a horizontal line in the following manning the points of suspension and horizontal line in the following manning the points of suspension on a horizontal line in the following manning the suspension of the points of suspension are not on a horizontal line in the following manning the points of suspension are not on a horizontal line in the following manning the points of suspension are not on a horizontal line in the following manning the suspension and the points of suspension and horizontal line in the following manning the suspension and horizontal line in the following manning the suspension and horizontal line in the following manning the suspension and horizontal line in the following manning the suspension and horizontal line in the following manning the suspension and horizontal line in the following manning the suspension are not on the suspension and horizontal line in the following manning the suspension and horizontal line in the following manning the suspension and horizontal line in the following manning the suspension and horizontal line in the following manning the suspension and horizontal line in the following manning the suspension and horizontal line in the suspension and horizontal the points of suspension are not on a horizontal line. We can readily bring the points of suspension on a horizontal line, in the following manner: In the force diagram, draw from the line, O, a line, OK, parallel to kA; then will the distances, E' and R, be the vertical reactions at the points of suspension, and OK will be the tension at A and at k, in the direction of the line, Ak. If, now, we draw in the force diagram a line, KO', horizontally through K, and place a new pole, O', on this horizontal line vertically under O, we can draw a new force diagram, as shown in the dotted lines, and the polygon drawn from A, with its sides parallel to the rays of this new diagram, will give us the dotted curve, which has the same sag as the first curve, but has its points of suspension on a horizontal line. We thus see that even if the first curve—obtained by choosing any pole—does not give us a curve with the required points of choosing any pole—does not give us a curve with the required points of suspension, that it can readily be transformed into the desired form. instead of having the points of suspension on a horizontal line, it is desired to have them at different elevations, it is only necessary to draw a line through K, on the force diagram, parallel to a line joining the desired points of suspension, and place the pole on the line so obtained, and the desired curve will be found. Now, to obtain the sag which is wanted, we have only to proceed as in the first case, Fig. 3. In this figure the dotted curve corresponds to the dotted curve of Fig. 2. Draw the horizontal line, PQ, through the lowest point, f. of the curve already obtained; prolong Ab to m, and Ki to n. Draw, also, P'Q' horizontally through the desired point of lowest sag and drop perpendiculars from m and m to it at m' and point of lowest sag, and drop perpendiculars from m and n to it at m' and

n'. Join Am' and Kn', and draw from A, in the force diagram, a line parallel to Am', and from 8, a line parallel to Kn'. These two lines will intersect at the point, O^2 , which will then be the correct pole for the curve of the desired sag. Drawing a new set of rays, we have only to draw the new polygon, A, b', c', d', e', f', g', h', i', K, with its sides parallel to the corresponding rays, and the problem is solved. The vertical reactions at the point of support are R' and R, and the horizontal tension is equal to KO^2 .

In actual practice the two operations of bringing the points of support to the horizontal (or to any desired inclination), and the adjustment of the tension to produce any required sag, may be combined so as to give the proper pole at one operation, as shown in Fig. 4, in which, also, the forces are all shown as different, so as to show the general nature of the solution. We first draw the vertical line of the force diagram on the left, making the spaces from A, downward, proportional to the forces of the corresponding numbers, and then choose a trial pole, O. Drawing the rays, and constructing the polygon, A, b, c, d, e, f, g, h, i, k, and joining kA, we have a polygon which has neither the proper position of the points of

suspension nor the desired sag, but which does express the equilibrium of forces, and can therefore be transformed into the form we want. We draw PQ, parallel to Ak, and prolong Ab and ki until they intersect PQ at m and n. Also draw PQ' horizontally through the desired point of lowest sag, and drop perpendiculars from m and n, intersecting m' and n'. In the force diagram draw OK, parallel to Ak, and draw a horizontal line through K. Then, by drawing a line from A, parallel to Am', and from

241 STATICS.

8, parallel to Kn', we find that they intersect at O', on the horizontal line, KO', and O' will at once be the new pole for the final curve, A, b', c', d', e',

f',g',h',i',K

As a general idea of the process we may imagine the pole to be connected to the points, A, 1, 2, 3, 4, 5, 6, 7, 8, by elastic cords, so that they will remain taut and straight as O is moved about. Then, if we move the pole up and down anywhere, always keeping it at a constant distance from the line, 48, we shall obtain diagrams which will give correct polygons for the forces under consideration, and of any desired inclination. The horizontal tension being unchanged, the sag will remain constant in all these curves. If we move the pole, O, to and from the line, A8, we shall obtain curves of varying sag and correspondingly varying horizontal tensions, and, as we have shown how to obtain the position of the pole for any desired sag, we have only to place it there and proceed with the construction of the curve. If the forces, 1, 2, 3, -, etc., are not spaced equally, it is only necessary to draw verticals through their points of application and use them in the construction of the curve, instead of the lines as given in the figures. By this simple graphical process, therefore, all the problems involved in the construction of such curves may be rapidly and accurately solved.

The space which has been given to the variably-loaded catenary in the preceding pages will be understood when it is seen that the construction of such curves enables the distribution of stresses in a great variety of structures to be readily and accurately determined. The flexible cord, structures to be readily and accurately determined. The flexible cord, being at liberty to assume a position of equilibrium, is free from any bending stresses, every portion of the curve being, in fact. a resultant of the forces acting upon it, the tension in the various portions of the cord being measured by the length of the corresponding ray in the force diagram. If, now, we invert the catenary, we have the proper curve for an arch subjected to similar forces, the only difference being that the arch is in compression, while the catenary is in tension. This will be discussed more fully when treating of the arch.

If, instead of a cord, we have a horizontal beam resting upon two

If, instead of a cord, we have a horizontal beam resting upon two If, instead of a cord, we have a horizontal beam resung upon two supports and loaded in any given manner, we may use the catenary to determine the stresses. The beam, unless loaded excessively, will not have an appreciable deflection, and so will not place itself in the line of the catenary. In consequence, it is subjected to internal stresses of a kind differing from the simple tension of the catenary. By drawing the catenary and the force diagram we get the data to determine these internal forces, and thus are able to proportion the beam to resist the loads

properly.

If we have a beam, AG, loaded with parallel forces, Q_1 to Q_5 (Fig. 5), whose load is to be opposed by reactions, P_1 and P_2 , at A and G, we may first determine a resultant, Q, of all the forces, and then decompose this into values for P_1 and P_2 . We also omit the determination of Q altogether,

and proceed to determine P_1 and P_2

directly, as follows: Choose any pole, O, and form the force polygon, K1.2....50, and construct the cord polygon, making tonstruct the cord polygon, maning its sides parallel to their respective rays, and draw ba, parallel to KO, and fg, parallel to O5, their intersections with the lines of the forces, P₁ and P₂, being a and g. Join ag, which will be the closing line of the polygon, and its parallel, 06, in the force polygon gives $P_2 = 5$. 6 and $P_1 = 6$. 7. If the sides, ab and fg, of the cord polygon are prolonged in the other direction we obtain a' and

FIG. 5. Q1 Q_2 Q_3 C

of the tone the following a and a and a and a and a are given by a, giving, however, the same result, since a'g' is parallel to ag. The cord polygon would then be the figure, a', g', m, b, d, c, e, f, m, a', and m indicates the position of the resultant of the forces, Q_1 to Q_5 , or of P_1 and P_2 .

The cord polygon, or catenary, therefore, gives the proportion of load borne by each of the supports. But it does more, it enables the determination of both the observant that the straight more at any point.

tion of both the shear and the statical moment at any point.

242 STATICS.

A Statical Moment is the product of a force by the normal distance from the point of resistance against which it acts. Thus, a force of 10 pounds, hanging from the end of a rod projecting 36 inches from a wall, has a statical moment of $36\times 10=360$ inch-pounds,—moment being merely

the technical term for leverage.

A statical moment is a compound quantity, expressed in terms of force and distance, as inch-pounds, foot-tons, kilogramme-metres, etc. In the case of a beam resting upon two supports, and having various loads upon it, the statical moment at any point is the product of the resultant of all the forces acting upon the beam on either side of the point into the distance of the line of action of the resultant from the given point for which

the statical moment mined.

In order to show how the statical moments in any loaded beam may be determined graphically, take the example shown in Fig. 6.

After constructing the force polygon, A04, and cord polygon, a, b, c, d, e, f, let it be required to find the statical moment for any point, S, upon the beam. This moment is the product of the resultant of all the forces upon one side or the other of the line, SS_1 ,

into the lever arm, l, of this resultant from SS_1 .

The magnitude of this resultant is obtained from the distance, hi = 1.5, in the force polygon, cut off by the rays, O1 and O5, which are parallel to be and fa, and its point of application is determined by prolonging these sides until they intersect at g. By drawing the perpendicular, gg_0 , the lever arm, l, of the resultant, P = hi, is determined for the force acting at the point, S; and hence we have M = Pl.

This multiplication may also be performed graphically. By drawing the perpendicular, Ok, in the force polygon, we obtain the altitude of the triangle, Ohi, from the base, hi, and this triangle is similar to the triangle,

 gss_0 , whose altitude is l. Call in Ok = H, and $ss_0 = t$, we have

or
$$P: H = t: l,$$

 $M = Pl = Ht.$

This proves that the statical moment at any point in a beam is proportional to the corresponding ordinate of the cord polygon, parallel to the direction of the forces, since H is a constant. By making H equal to unity the moment, M, becomes equal to the ordinate, t. It is not necessary to determine the position of the point of application, g, of the resultant, since it is the relation between the statical moments which is most desirable, whether H be chosen as a unit or not. This property of the cord polygon for parallel forces is most useful, and an example may be found in the case of axles.

The shearing force in a beam at either support is evidently equal to the entire reaction at that support. Thus, in Fig. 6, the shearing force at A is equal to A5 on the force diagram. The shearing force at any other point in the beam is equal to the distance from 5 to the point on A4 corresponding to that point in the force diagram. Thus, the shearing force at

B is equal to 1-5, etc.

Centre of Gravity.

Every particle of a body is attracted by the force of gravitation to the earth, and the sum of all these forces upon the particles constitutes the weight of the body. In accordance with the methods already given for determining the resultant of a number of parallel forces, the point of application of the resultant of the force of gravity may be found. This point is known as the Centre of Gravity of the body. For homogeneous bodies the position of the centre of gravity may generally be computed from the form of the body. For bodies which are entirely symmetrical and homogeneous, the centre of gravity is situated at the centre of figure.

STATICS. 243

For bodies which are symmetrical about a given axis, such as a cone, etc., the centre of gravity is situated in the axis. Various methods are used for determining the position of the centre of gravity of non-symmetrical figures, most of them based upon the subdivision of the figure into parts, of which the centres of gravity are known.

The most convenient of these

is the graphical method.

This may be done by dividing the figure into a number of strips of uniform width such that their area may be considered as propor-tional to their middle ordinate, constructing the force and cord polygons, and taking the line of the resultant as a line of gravity. If the figure is not symmetrical, it will be necessary to divide the figure again in another direction

M

and determine another line of gravity, when the position of the centre of gravity will be found at the intersection of the two lines. For figures of simple form larger determinate sections may be taken instead of strips, their area determined in any convenient manner, and the diagram con-

structed accordingly.

Suppose, for example, that it is required to determine the position of the centre of gravity of the T-shaped section shown in the above cut. The figure is symmetrical about the axis, YY, so that the centre of gravity must lie somewhere in that line. We may divide the figure into the rectangular portions $b \times c$, $b_1 \times c_1$, and $b_2 \times g$, which we will call respectively the areas 1, 2, and $b_3 \times c_4$.

These three forces are laid off at A, 1, 2, 3, a pole, O, selected, and $K_1'K_1$ drawn parallel to OA; K_1K_2 , parallel to O1; K_2K_3 , parallel to O2; K_3K_3' , parallel to O3, when the intersection of the sides, K_1K_1' and K_3K_3' , at M gives a point on the line of gravity, MM', whose intersection, S, with the axis, YY, is the centre of gravity of the figure.

The method of moments may also be used in determining the position of the centre of

gravity, as follows:

This method is based on the fact that the total weight of a body, multiplied by the distance of its centre of gravity from any given axis,—i.e., its statical moment with regard to that axis,-is equal to the sum of the statical

moments of its various parts.

Thus, if we have the section here shown, we see that its figure is symmetrical about the axis, YY', so the centre of gravity must lie in that axis. Taking any convenient axis, XX', we divide the section into the three rectangles, A, B, and C, of which the positions of the centres of gravity are known, we have their distances from the axis, XX', equal respec-

tively to a, b, and c; and their statical moments with reference to the axis, XX', will be

Aa, Bb, and Cc.

The area of the whole figure is equal to A + B + C, which we will call M, and the distance of its centre of gravity, x, from the axis, XX', is unknown and sought.

We have

$$Aa + Bb + Cc = Mx$$
:

$$\frac{Aa + Bb + Cc}{M} = x.$$

Thus, if A=4 square inches, B=5 square inches, C=9 square inches, and a=12 inches, b=9 inches, c=4 inches, we have

$$Aa = 4 \times 12 = 48$$

 $Bb = 5 \times 9 = 45$
 $Cc = 9 \times 4 = 36$

and this, divided by the area of the whole figure, or 18 square inch s, gives $\frac{129}{18} = 7.166$ for x, the distance of the centre of gravity, S, from the axis, XX' The position of the axis, XX', is immaterial, so long as all the

moments are taken with reference to the same axis.

When a figure is not symmetrical, the moments must be taken first with reference to a vertical axis and then with reference to a horizontal axis, and the centre of gravity will be found at the intersection of the two lines thus determined.

In practical work the position of the centre of gravity is often most

conveniently found by experiment.

Thus, if a scale drawing of the section be cut out of stiff card-board, or better, thin sheet metal, it may be hung up by one corner, a plumb-bob made of a fine thread and weight being suspended from the same point, a, as in the figure. By marking the point where the thread intersects the

edge of the section, as at p, the path of the vertical across the section may be drawn from the supporting point. The section is then suspended from another point, b, and the point p' marked; the intersection of the lines ap and bp' gives the position of the centre of gravity, s. Care must be taken to have the section perfectly free to oscillate about the point of suspension, usually a pin, and errors due to friction against the wall must be avoided.

Another convenient method is to balance the section across a horizontal knife-edge, in two successive po-

sitions, marking the intersection of the two positions of the knife-edge. This latter method may be conveniently applied by using a draftsman's triangular scale as a knife-edge.

The position of the centre of gravity for some of the more generally occurring figures may be obtained from the following diagrams:

Quadrangle. a and b parallel. $z = \frac{h}{2} - \frac{h}{6} \left(\frac{b-a}{b+a} \right).$

Half a Circle Plane, or Elliptic Plane.

Circle Sector.

Circle Segment

a = area.

Parabola.

Half Sphere.

Convex surface, $z = \frac{1}{2}r$. Solid, $z = \frac{3}{8}r$.

Spherical Sector.

Solid, $z = \frac{3}{4} \left(r - \frac{h}{2} \right)$.

Spherical Segment.

Convex surface, $z = \frac{h}{2}$.

Solid, $z = \frac{h}{4} \cdot \left[\frac{4r - h}{3r - h} \right]$.

Cone.

Convex surface, $z = \frac{\hbar}{3}$.

Solid, $z = \frac{h}{4}$

Conic Frustum.

Convex surf'e,
$$z = \frac{h}{2} - \frac{h}{6} \left[\frac{R-r}{R+r} \right]$$
.

Solid,
$$z = \frac{h}{4} \cdot \left[\frac{R^2 + r(2R + 3r)}{R^2 + r(R + r)} \right]$$
.

Pyramidic Frustum.

A and a = area of the two bases.

Solid,
$$z = \frac{h}{4} \left[\frac{A + 3a + 2\sqrt{Aa}}{A + a + \sqrt{Aa}} \right].$$

Irregular Figure.

$$P:W=l:z$$
,

$$z = \frac{Wl}{P}$$
.

To find the Centre of Gravity of Two Bodies, P and Q.

$$\mathbf{z} = \frac{Qa}{P + Q'}$$

$$b = \frac{Pa}{P+Q}.$$

To find the Centre of Gravity of a System of Bodies.

$$b = \frac{Ra}{P+R},$$

$$z = \frac{Qd}{P + R + Q}.$$

Half a Circumference of a Circle or Ellipse.

Circle Arc, or Elliptic Arc.

For semicircular line,

$$z = \frac{2r}{\pi} = 0.6366r$$
.

Cylindric Surface, with a bottom in one end.

$$z = \frac{h^2}{2(h+r^2)}.$$

Statics of Framed Structures.

As the distribution of stresses in simple beams or in suspended cords may be determined graphically, so may the stresses in the various members of framed structures be investigated.

Framed structures are of very general application wherever loads are to be supported, and their discussion may be classified as a system by itself, while their use extends from the simple trussed beam to the bridge and

roof truss; also for walking beams and many other uses.

The tensile and compressive stresses in these various forms may readily be examined by means of the force plan, which consists of both the force and cord polygons and their modifications. The subsequent examples will serve to illustrate the principal cases. In all of these cases it is assumed that at the knots—i.e., at the points where several members meet,—a joint is supposed to exist; or at least no account is taken of the re-

sistance to bending at the knots.

In order to form such a plan for any given construction, it is necessary first to determine the division and direction of the forces, and then, beginning at one of the external forces and laying off its direction and magnitude to the next knot, combining it there with the external forces at that point, laying off the resultant to the next bend, etc. Upon such combinations of force triangles or quadrangles the force plan is constructed.

If it is desired to determine the directions of the components of a given or determined force, the principles laid down in the following rules must

be borne in mind.

If one force is to be separated into two or more forces, its direction is to be reversed and it is to be made the closing line, S', in the paths of the other forces. If two or more given forces are to be combined with two or more other forces,

the force polygon will consist of the given forces and their closing line, S.

The first rule is only a special case under the second or general rule, since the single force may be considered as an unclosed force polygon whose closing line passes backward over the same path to the starting point.

In the investigation of each member in a frame without error, it is best to assume the member to be cut, and to determine the external forces at each section which oppose the internal forces; the direction of the forces

may then also be determined with precision. I. Simple-Trussed Beams.—The beam, ABC, is supposed to carry at B a load equal to 2P, acting in a direction normal to AC, and to be supported at A and C. Since AB = BC, the reaction at each support is equal It is then required to determine the stresses upon the various

members from 1 to 5, as marked in the figure.

Referring to the diagram marked a, let ab be the reaction, P, which acts upward at A. We now have to construct a diagram of the internal forces acting in AB and AD. To simplify matters we will give these forces the same numbers as their corresponding members, drawing I parallel to AB, and 2 parallel to AD. The direction of the force, P, in the closing line of the force triangle determines the direction in the other two sides, as shown by the arrows and by the lines 1 and 2. In this case there will be compression in AB and tension in AD.

In order to show this clearly, in all the following strain diagrams the forces acting compressively in struts or posts will be indicated by double lines, while all tension members, links, or rods will be shown by single

Following out this idea, we shall, in the following illustrations, show all struts or compression members in the construction drawings as having a measurable thickness, as if made of wood, while the tension members

will be represented by simple lines, although this is not intended to indi-

cate any limit as to the choice of materials.

For the knot at B we make abc=2P, and, following in the direction dac (because the thrust is from A towards B), join the closing lines 3 and 4, both of which represent compression. The combination of 2 and 3 determines 5, which is tension. This gives an entirely symmetrical plan.

Simple-Trussed Beam.-I.

which was to be expected from the symmetrical form of the structure,

and an investigation of one-half is practically sufficient.

If the load, 2P, is taken as uniformly distributed over the entire distance, ABC, instead of being concentrated at B, the reactions at A and Bwill each be equal to $\frac{P}{Q}$, and the load at B=P, so that one-half of the

load on AB and BC is referred to the knots A, B, and C. From these conditions we obtain the force plan b, which is geometrically similar to the

other, but only half as large.

II. Double-Trussed Beam (much used for constructions of all sizes).— In this case take vertical forces, P, at B and C, and corresponding vertical reactions at A and D. In the first force plan a is drawn equal to P, and 1 and 2 parallel respectively to AB and AE, thus determining the forces 1 and 2,—1 being compression, and 2 tension. Lines now drawn parallel to BE and EF determine the compression in 3 and the tension in 5, while the compression at 4 is the closing line of 3, 1, and P; and the other half of

Double-Trussed Beam.-II.

the diagram is similar. If the vertical forces at A and B are not of the same magnitude, which is often the case in practice, the structure should be strengthened by the introduction of the diagonals, EC and BF.

strengthened by the introduction of the diagrams, $P_1 = a_1b_1$. The second diagram shows the construction in this case. Let $P_1 = a_1b_1$. The second diagram shows the construction in this case. Let $P_1 = a_1b_1$. Draw a be the force acting at A, and $P_2 = a_0 c_2$ be the force acting at B. Draw a vertical line from 1 to a horizontal through C_1 , which gives the length, 3, of the vertical force at B, and by drawing the dotted diagonal line their resultant is found. If any of the tension members are omitted the framework will tend to take an inclined position until the various parts are at such an angle with each other that both constructions will give the same value for 3. For this reason it is best in nearly every case to use the diagonal counterbraces.

III. Triple-Trussed Beam.—The uniformly distributed load upon the framework gives the following distribution of forces. The force, 3P = abc, is first decomposed in 2 and 1, or ce and ea; then 1 is connected to ab = 2P by the line be, and this latter decomposed into 3 and 4, or ef and fb; 2 and 3 are now joined by fc, and the components at 5 and 6, or fg and gc, found. Since 6 and 10 are equal to each other, we may draw ch parallel to GH, and equal to cg, which gives gh = 7; the rest of the force plan is similar to the first half.

Triple-Trussed Beam .- III.

IV. Another form of Triple-Trussed Beam is shown below.—The space between B and C is twice as great as between A and B, and the uniformly distributed load is equal to 12P, acting at the various knots, as shown in the figure.

Triple-Trussed Beam.—IV.

In the force plan make abc = 5P, and draw parallel to 1 and 2 the lines ae and ec; then join 1 with 3p (for the knot at B), and decompose into 3 and 4, or ef and fb. Now combine 2 with 3, giving ef, and draw 5 and 6 parallel to FC and FG, respectively. This case differs from the preceding, in that 5 is now compression instead of tension. The equality of the forces 6 and 10 gives gh = 7, and the similar half of the diagram need not be drawn.

Multiple-Trussed Beam .- V.

V. Multiple-Trussed Beam.—The beam, AJ, is divided into eight equal parts, which are represented as being uniformly loaded, the load at each knot being shown in the figure. In constructing the force plan we make ae = 7P, and by drawing the lines parallel to 1 and 2 we obtain af and fe; then lay off ab = 2P, and join the resultant, bf. This decomposes into 3 and 4, or fg and gb. The forces 2 and 3 combine to give the resultant, ge, which, by drawing lines parallel to KC and KL, gives gh and he for the values of 5 and 6. We now find that to proceed further we have three forces of given direction only, and, since this is indeterminate, we must forces of given direction only, and, since this is indeterminate, we must obtain one magnitude as well. This, for example, may be done for the force 7, as follows: the strut, CL, sustains the vertical components of 5 and 9, as well as its own direct load, 2P. Now 5 and 9 are equal to each other, since they are placed symmetrically, and carry equal loads from the struts, BK and KM; hence, in the force plan, we may make hi, which represents the force 7, equal to twice the projection of 5 upon the vertical +2P. This we can now combine with 6=he, giving ie, which in turn decomposes into im and ie, or 10 and 11. Returning to the knot, ie, we may now take the line, ie, and by drawing parallels to ie, ie, ie, ie, ie, obtain the figure, ie, ie, ie, ie, which will complete the half plan. It may be noted that the principal beam, ie, is subjected to a uniform compression throughout its entire length. sion throughout its entire length.

The force plan will, of course, be modified by various distributions of the load, as in the case of simple beams.

Roof trusses furnish many and varied examples of framework. In the following examples a uniformly distributed vertical load is assumed, so

Simple Roof.—I.

that the burden upon any portion of a rafter may be considered as pro-

portional to the length of that portion.

I. Roof with Simple Principals.—A uniform load, 2P, upon each half gives as the external forces P, 2P, and P at A, B, and C. Lay off in the force plan ab = P, and draw ac and bc parallel to AB and AC, determining the forces 1 and 2,—1 being compression, and 2 tension. Then draw the vertical, ce, and also draw be parallel to CD, thus giving both 3 and 5, and the diagram is completed by drawing de.

II. Roof with Single-Trussed Principals.—This form is similar to the preceding, with the addition of the struts, CE and CP. The distance, AE, is to EB as 3 is to 2; and the loads upon the respective portions are 6P and 4P, which give the forces at the various knots, as shown in the figure. Make ac in the force plan equal to 7P, and by drawing lines parallel to AE and AC obtain the forces 1 and 2, or ad and ac, then combine 1 with 5P = ab, and decompose the dotted resultant into ac and ac, respectively, regardled to AE and AC and respectively parallel to EC and EB, giving the forces 3 and 4, both being compression. By repeating 2 and 3, in drawing 7 and 8, we obtain the figure, cdefg, in which cg gives 5. This latter force might also have been found by combining 4 and 4P, and decomposing the resultant by lines parallel to BC and BF, an illustration of the various methods in which the force plan may be used.

III. Another form, with Single-Trussed Principals.—This roof is similar to the preceding, except that the struts, EC and CF, are placed horizontally. In this case AE = EB, and the external forces at A and D are both

Single-Trussed Roof .- II.

equal to 3P. The forces from a to c in the force plan are determined as before, giving da and cd for the forces 1 and 2, and the combination of 1 with 2P gives the resultant, db, from which the thrusts 3 and 4, or de and eb, are obtained. The value of 1 is the same as 3, and 8 is the same as 2, while 5 is the closing line of cdedf or of cdf. The force 5 must also be the combination of the equal forces 4 and 6 with 2P, which the diagram shows to be the case. If the rod, CB, is omitted, as is frequently done, the strut, ECF, if there is no joint at C, will oppose its resistance to bending to the

Single-Trussed Roof .- III.

force 5; but there will be a tendency to rise at the apex, B, if the fastening be not made sufficiently strong.

IV. Third Roof with Single-Trussed Principals.—In this form of truss, frequently known as the Belgian or French truss, the single vertical rod of the preceding form is replaced by a triangle, *BCD*. The struts are placed

in the middle of the rafters and the external forces are distributed as shown in the figure. In the force plan abc=3P, and 1 and 2 are determined as before. By the decomposition of the resultant of 1 and 2P we obtain the forces 3 and 4, or de and be, and from the resultant, ee, of the forces 2 and 3 we get the tensions 5 and 6, in ef and ef. The second half of the diagram is the symmetrical counterpart of the first.

Single-Trussed Roof .-- IV.

V. Roof Truss with Double-Trussed Principals.—This construction does not differ greatly from the preceding, except that the struts employed to strengthen the rafters are divided into two. The spaces are equal to each other and the load uniformly distributed. As shown in the figure this gives a reaction of 5P, or A and D. In the force plan ad=5P, and lines parallel to AE and AC drawn, determining the forces 1 and 2, or de and ea. We then combine ea with ab=2P, and decompose the dotted resultant, eb, into the thrusts, ef and fb, or 3 and 4, by drawing these lines

Double-Trussed Roof .-- V.

parallel to EC and EF. Again, we take the resultant of the forces 4 and 2P and decompose it into 5 and 6, or fg and gc, which brings us to the middle of the symmetrical figure. The force 7 is the resultant of 6 and its counterpart, 8, and the load 2P, and the half of this force is therefore equal to the projection of 6 upon the vertical, less P, or, in the diagram, to dh.

VI. English Roof Truss, with Multiple-Trussed Principals.—Here we have inclined struts, with vertical tie-rods. The load is again uniformly distributed, each space bearing the load of 2P. The reactions at A-and D are each = 7P. In the force plan we have $ab + bc + cd + de = 3 \times 2P + P = 7P$, which gives the length of ae. The forces 1 and 2 are found by drawing fa and ef parallel to AE and AL. Now consider 1 as combined

Multiple-Trussed Roof .- VI.

with ab=2P, and the resultant, fb, decomposed into fg and gb, giving the forces 3 and 4. Again, combine 2 and 3, and then decompose the resultant, ge, into 5 and 6, or gh and he, by drawing these latter parallel to LF and LM. In this manner we continue until we reach 12, or ld, which we then project upon the vertical. Now, taking from dm one-half the load P=de, we have me for one-half the stress on the middle rod, BC. The remaining half of the force plan is similar.

Polygonal Roof Truss .- VII.

VII. Polygonal- or Sickel-Shaped Roof Truss.—This roof may be considered as a modification of the preceding form, and is used for higher and wider spans. It is hardly proper to assume that the load is here uniformly distributed, even if the spaces are equal, for in the case of snow much less weight would be carried by the steep portions, AB or GH, than by the flatter surfaces, CD or DE. We must therefore estimate the forces P_1 , P_2 , P_3 , acting as B, C, D, E, F, G, and make the reactions at A and B equal to $Q = P_1 + P_2 + P_3$.

In the force plan $ab=P_1$, $bc=P_2$, $cd=P_3$, and ad=Q, which is first decomposed into 1 and 2 by drawing ea and de parallel to AB and AJ; then, combining 1 with P_1 , and decomposing the resultant, as before, we get 3 and 4, or ef and fb. Having 2 and 3, we get in like manner 5 and 6g, or gf and dg; then combining 4 and 5 with P_2 , and decomposing with parallels to CK and CD, we obtain the forces 8 and 9, and so proceed until we reach 12, which is the middle of the symmetrical figure. The members KL, DL, EL, and ML are all subject to tension.

WIND STRESSES.

In designing large and important roof trusses it is important to investigate the stresses due to wind pressure, as well as those due to the weight of the roof and of snow; and, indeed, in some cases the resistance to wind is the most important of all.

As an illustration of the applicability of the graphical method to the determination of wind stresses, we will take the English roof truss, whose

Wind Stresses.

conditions under a vertical load have already been examined, and con-

sider it as also subjected to a wind stress, W.

We have first to determine the forces, Q_1 and Q_2 , acting at the points, Aand D. The wind pressure will be taken as acting on the surface of the roof from A to B. Let W be the resultant of the entire wind pressure acting normal to AB, and let P be the total vertical load upon that half of the truss. By combining these two forces we obtain the direction, FS, of their resultant, and also its magnitude, which we then lay off on the force plan at c_1 . Upon the other half of the truss we have only the vertical load, which may be considered as acting at J, and equal in magnitude to P. By prolonging its direction until it intersects the previously determined line at S, we have at S a point in the resultant of the entire load upon the roof, including wind pressure. By making c_1a_2 in the force plan equal to P, we have ac for the direction of this resultant, which may then be laid off at ST in the drawing. In order to determine the forces

 Q_1 and Q_2 we must recollect that when we have two closing forces to determine we must also have at least two conditions given. In this case,

then, we must first find the direction of Q_1 and Q_2 .

The wind pressure produces a horizontal thrust which must be met by the stability of the walls or columns upon which the roof rests. In each the stability of the walls or columns upon which the roof rests. In each case it must be determined whether this horizontal thrust is borne equally or unequally by both supports, and in what proportion it is divided. To this end we first find the proportion of the vertical component of the force ac, which comes upon each support (as found by the intersection of ST, prolonged with AD), and then combine these vertical forces with their respective horizontal components. It often happens that all the horizontal thrust is borne by one of the supports, which it must of course be prepared to resist. This often occurs in the case of railway stations, and under such circumstances the direction of each force must be determined separately. First prolong the vertical at D downward until it intersects ST, and join the intersection with A (the lines are only indicated in the figure). This gives the direction of the force at A. We have now both the direction of the reaction at D and the direction of that at A. We must also consider the distribution of the forces at the various knots between Aalso consider the distribution of the forces at the various knots between A and B and between B and D. We have for the points between A and B the resultants between the proportional parts of P and W, while from B to D we have simply the proportional parts of P. This gives at A the force P_1 ; at E, F, and G, the force P_2 ; at the peak, the force P_3 ; at H, H, and H, the force $P_4 = \frac{P}{4}$; and at D, the vertical force $P_5 = \frac{P}{8}$

Returning now to the force plan, we make $cd = P_1$, $de = ef = fg = P_2$, $gh = P_3$, $hi = ik = kl = P_4$, and $la = P_5$. We now have finally the length, bl, for the value of the reaction, Q_2 , at the point, D, and a line (not shown)

from b to d gives the magnitude of the force, Q_1 , acting at A.

The determination of the stresses in the various members can now readily be made. The decomposition of bd by drawing bm and md parallel readily be made. The decomposition of oa by drawing bm and ma parallel respectively to AE and AL gives the forces 1 and 2. We thus proceed until we reach the rod, BC, or No. 13, for which we get the tension, rs = 13, by drawing the vertical, rs from r, until it intersects the line, ns, drawin parallel to BD. We then continue to determine the forces from 15 to 25, as already shown. The force plan shows that under these conditions similarly placed struts are subjected to dissimilar stresses. The determina-tion of the stresses might have been made in the reverse order, beginning with the triangle, xbl, which should give the same results, and which may be used to prove the accuracy of the work. A proof is also made by the be used to prove the accuracy of the work. A proof is also made by the accuracy with which the line, wx, drawn from w, parallel to KO, intersects the point, x, which was first determined by the intersection of bx and bx. As a matter of fact, it will be found to require careful drawing in order to insure the closing of the diagram.

By comparing the last force plan with that found for the same roof truss, under vertical loads only, it will be seen how greatly the wind stresses affect the structure. In order to compete the calculation, a second

plan should be drawn, assuming the wind to act also upon BD.

FRAMED BEAMS.

Beams of various forms are often framed in various shapes and made both of wrought and east iron, and have many applications, such as walking beams for steam engines, for cranes, arms, etc. A few examples

will show the method of investigation for such cases.

will show the method of investigation for such cases.

I. Cantilevers with Straight Members.—The load, P, acts at A in a direction normal to the axis of the frame, which is supported at B and C. The force plan is constructed as follows: Draw ab = P, and from its extremities draw ac and bc parallel to 1 and 2, which gives the forces in those members. Each of these is then decomposed into two other forces,—linto 3 and 4, 2 into 5 and 6, giving the triangles, bcc and adc.

The forces 3 and 5 are then combined and the resultant decomposed into 7 and 8. To do this we transfer bcc and bcc and join the resultant, bcc which can readily be separated into 7 and 8. We proceed in this manner for the remaining members, and as the frame is symmetrical about the

for the remaining members, and as the frame is symmetrical about the axis, gc, only one-half of the diagram need be completed. The lines, ga and bg, which are the final resultants of 15 with 17, and 16 with 18, are also the external forces at B and C, the points of attachment, provided that their direction be permitted to remain the same.

Cantilever .-- I.

II. **Double-Loaded Frame.**—In this case we have the force, P_1 , acting downwards at A, and a force, P_2 , acting upwards at D, while the points of attachment remain at B and C, as before. The members, AB and AC, are polygonal-formed. The force plan is drawn just as before, until the force 13 is reached. At D the members are attached to each other at their intersection, so that the force, P_2 , acts upon both 15 and 16. At this same point we have the action of the forces 12 and 13. Now join the extremities of 12 and 13 by the dotted line shown, and mark off the length of the force, P_2 , which is subtracted, because its action is upward, thus obtaining the resultant of the three forces. We can then draw 15 and 16 and proceed without interruption to 20. Finally, we draw bf and ea, the external forces at Q_1 and Q_2 , which hold the entire frame in equilibrium.

Cantilever .- II.

III. Framed Boom.—This figure is a portion of a framed arch which may be used for the projecting boom of a large crane. At A and D we have the forces, P_1 and P_2 , and at B and C the external forces acting on the various members of the structure. Before this can be done we must first determine the as yet unknown direction of the force, Q_2 . Prolong P_1 and P_2 to their intersection at E, and by drawing in the force plan the triangle, abc, determine the direction, FE, of their resultant; then prolong Q_1 until it intersects EF at G, and join CG, which will be the required direction of the force, Q_2 . Completing the figure in the force plan, we have $cd = Q_1$ and $da = Q_2$. We now proceed from $P_1 = ab$ and lay off the forces 1 and 2, decomposing 2 into 3 and 4; combine 3 and 1 and decompose their resultant, obtaining 5 and 6. We thus proceed until we reach 12, which we obtain by combining 9 and 8 and decomposing the resultant into 11 and 12. We now have to combine 10 and 11 with P_2 , and decompose the

resultant into 13 and 14. We first transfer the force 11 to e, making it equal to ef, in order to avoid the confusion of lines, which would occur if the construction were made at a. Now, drawing the path 11. 10, P2, we have the closing line, cf, which decomposes into 13 and 14. We then have 15

Framed Boom .- III.

and 16 from the resultant of 13 and 12, and finally, 17, as the line joining 15 and 16 with d, since 16 and 17 must have the resultant, $ad=Q_2$. If the work is correctly done, we will find 17 falls parallel to BC, which affords a convenient and valuable proof for the whole work.

BRIDGE TRUSSES

may be examined in a similar manner

to roof trusses.

I. Simple Truss.—In the case of a truss of four panels, with vertical struts and diagonal tie-rods, as in the figure, we have on each pillar a load, P, except at the ends, where it is equal

 $\frac{1}{2}$, this giving a total load of 4P, or

a vertical reaction of 2P on each pier. The diagram shown is constructed for one-half of the truss, the forces in the other half being identical. In the diagram we make ad = 2P. Since $\frac{1}{2}P$ is supported directly upon the pier at A, we make $ab = \frac{3}{4}P$. Then draw 2, parallel to BD, and 3, parallel to BC, the lengths of these lines giving the stresses in the corresponding members.

BD + 2PD-2 P

of draw 5, parallel to CD, and from b draw 6, parallel to CE. Combine 5 and 2 with P for a resultant, ed, and draw 7, parallel to DE, and 8, parallel to DF. Each member will then have its load given by the lengths of the lines in the diagram, the double lines representing compression and the single lines tension, as before. The middle strut, FE, bears a compression equal to its top load, P.

II. Simple Truss.—In the case of a truss with diagonal struts and vertical tie-rods, as in the figure, we have similar loading, and the diagram

is given below. The tension on EF is zero, and there is no compression on BD.

III. Combined Truss.—By combining the two simple trusses the combination is formed in which all the loads may be doubled for the same stresses as shown in the previous diagrams, except for those members which

Compined 11dbs.—111.

coincide. We thus have loads of 2P on the vertical struts, except the middle one, while the loads on the diagonals remain unchanged.

Leverage.

The statical moment of a force, as already explained, is the leverage of that force,—that is, the magnitude of the force, multiplied by the perpendicular distance from the centre about which it acts. If two or more forces are in equilibrium, so that motion does not take place, their statical

moments must be equal. This is only a general statement of what may be called the principle

of the lever.

A P P

Simple Truss .- II.

Thus, the statical moment of the force, P, is the force multiplied by the distance, a, from the fulcrum, f, or = Pa. In like manner the statical moment of P' is equal to P'a', and, if the beam remains stationary, Pa = P'a'.

This is true no matter how the lever arms may be disguised by the form or material which may include them. Thus, the force may act at the perimeter of a wheel, the radius of the wheel then becoming the lever arm, or it may be included in some other form; but the forces themselves must always be considered as acting upon lever arms of a length equal to the perpendicular distance from the lines of action of the forces to the fulcrum.

In the case of a force acting at any point to overturn a mass, the resistance must be considered as the weight of the body acting at the centre of

gravity.

Thus, in the case of either wall shown in the illustration, the force, P, acting to overturn the wall about the corner, A, is opposed by a force, G, equal to the weight of the wall, acting at a lever arm, AM, equal to the

distance of the corner, A, from the centre of gravity, S, measured at right angles to the line of the force, G. This gives for the moment of stability of the wall

 $AM \times S$.

MOTION.

Falling Bodies.

According to the law of gravitation enunciated by Sir Isaac Newton, every particle of matter in the universe attracts every other particle of matter with a force which varies directly as the mass, and inversely as the square of the distance.

In accordance with this law any body above the surface of the earth,

when permitted to fall freely, does so with an accelerated velocity. The unit or measure of force of gravity is assumed to be the velocity a falling body has attained at the end of the first second of descent. This unit is commonly denoted by the letter g; its value at the level of the sea in New York is g = 32.17 feet per second, in vacuum. g is called the acceleration of gravity. The space fallen through in the first second is $\frac{1}{2}g = \frac{1}{2}g =$ 16.085 feet.

This value increases with the latitude, and decreases with the elevation

above the level of the sea.

l = latitude, h = height in feet above the level of the sea, and r = radiusof the earth in feet, at the given latitude, l.

$$\begin{split} r &= 208\ 87510\ (1+0.00164\ \cos2l), \\ g &= 32.16954\ (1-0.00284\ \cos2l) \Big(1-\frac{2h}{r}\Big). \end{split}$$

Notation.

S = the space in feet which the falling body passes through in the time T. u = the space in feet which the body falls in the Tth second.

 $\overline{V}=$ velocity in feet per second of the falling body at the end of the time T. T= time in seconds the body is falling.

In the metric system the value of g is given in metres per second, and is taken as equal to 9.81 metres at latitude 45° and at the level of the sea.

Formulas for Accelerated Motion.

Velocity, V, in Feet per Second.

1.
$$V = gT$$
.
2. $V = \frac{2S}{T}$.
3. $V = \sqrt{2gS}$.
4. $V = 8.02\sqrt{S}$.
4a. $V = 4.429\sqrt{S}$.
(Metric.)

Space, S, Fallen through in Feet.

5.
$$S = \frac{gT^2}{2}$$
. 7. $S = \frac{V^2}{2g}$. 8a. $S = \frac{V^2}{19.62}$. (Metric.)

Time of Fall in Seconds.

9.
$$T = \frac{V}{g}$$
. 11. $T = \sqrt{\frac{2S}{g}}$. 12a. $T = \frac{\sqrt{S}}{2.04}$. (Metric)

Space Fallen through in the Tth Second.

13.
$$u=g\left(T-\frac{1}{2}\right)$$
. $14.$ $T=\frac{u}{g}+\frac{1}{2}$.

Example 1. What velocity has a body attained after having fallen freely for a time of $T=2\frac{1}{2}$ seconds?

Velocity, $V = 32.17 \times 2.5 = 80.2$ feet per second.

Example 4. A body is dropped from a height of S=98 feet. What velocity will it have on reaching the ground, and what time is required for its fall?

Formula 4. Velocity, $V = 802 \sqrt{98} = 79.3939$ feet per second.

Formula 12. Time,
$$T = \frac{\sqrt{S}}{4.01} = \frac{\sqrt{98}}{4.01} = 2.46$$
 seconds.

Example 5. A body was dropped at the opening of a hole in the rock, and reached the bottom in T=3.5 seconds. Required the depth of the hole?

Formula 5. Depth,
$$S = g \frac{T^2}{2} = \frac{32.17 \times 3.5^2}{2} = 196.98$$
 feet.

Example 8. What space must a body fall through in order to acquire a velocity V=369 feet per second?

Space,
$$S = \frac{V^2}{64.33} = \frac{369^2}{64.33} = 2116.6$$
 feet.

Example 10. What time is required for a body to fall S=2116.6 feet, when the final velocity V=369 feet per second?

Time,
$$T = \frac{2S}{V} = \frac{2 \times 2116.6}{369} = 11.472$$
 seconds.

Example 13. A body falls freely for a time of $T=4\frac{1}{2}$ seconds. How much will it fall in the last second?

Formula 13. $u = q(T - \frac{1}{2}) = 32.17 (4.5 - 0.5) = 128.68$ feet.

Retarded Motion.

A body thrown up vertically will obtain inversely the same motion as when it falls down, because it is the same force that acts upon it, causing retarded motion when it ascends, and accelerated motion when it descends.

V = the velocity at which the body starts to ascend.

v =velocity at the end of the time t.

T =time in seconds in which the body will ascend.

t =any time less than T.

S = height in feet to which the body will ascend.

s =the space it ascends in the time t.

Velocity in Feet per Second at the End of the Time t.

15.
$$v = V - gt$$
. 16. $v = \frac{s}{t} - \frac{gt}{2}$.

Height of Ascension in the Time t.

17.
$$s = t\left(V - g\frac{t}{2}\right)$$
. $s = t\left(v + g\frac{t}{2}\right)$.

Starting Velocity in Feet per Second.

19.
$$V = v + gt$$
. 20. $V = \frac{s}{t} + g\frac{t}{2}$.

Time of Ascension in Seconds.

21.
$$t = \frac{V - v}{g}$$
. $= \frac{V}{g} - \sqrt{\frac{V^2}{g^2} - \frac{2s}{g}}$.

Starting and Ending Velocities.

23.
$$v = \sqrt{V^2 - 2gs}$$
. | 24. $V = \sqrt{v^2 + 2gs}$.

Formulas for T and S are the same as for accelerated motion.

Example 22. A ball starts to ascend with a velocity of 135 feet per second. At what velocity will it strike an object 60 feet above?

Find the time t by the Formula 22.

$$t = \frac{135}{32.16} - \sqrt{\frac{135^2}{32.16} - \frac{2 \times 60}{32.16}} = 0.41 \text{ seconds},$$

intil it strikes; and from Formula 15 we have

$$v = 135 - 32.16 \times 0.41 = 121.83$$
 feet per second.

Example 24. With what velocity must a body start to ascend in order to strike an object s=15 feet above with a velocity v=10 feet per second?

Velocity, $V = \sqrt{10^2 + 2 \times 32.17 \times 15} = 32.63$ feet per second.

Force of Gravity.

$$V = gT\sin x = \sqrt{2gS\sin x},$$

$$gT^2 \qquad V^2$$

$$S = \frac{gT^2}{2\sin x} = \frac{V^2}{2g\sin x},$$

$$T = \frac{V}{g \sin x} = \sqrt{\frac{2S \sin x}{g}}$$

A body will fall from o the disances a, b, c, and d, in equal times.

$$T = \sqrt{\frac{2d}{g}}$$
.

A body will fall from a to b, via c, the shortest time, if the curve is cycloid.

S=4d, the length of the cycloid,

$$T = \pi \sqrt{\frac{d}{2g}} = \pi \sqrt{\frac{p}{2\pi g}}.$$

$$b=rac{2\,V^2\sin x\cos x}{g},$$
 $T=rac{V\sin x}{g},$ $S=rac{V^2\sin^2 2g}{g}$

$$S = g \frac{T^2 F}{2W} = \frac{V^2 W}{2gF},$$

$$V = g T \frac{F}{W} = \sqrt{\frac{2gSF}{W}},$$

$$T = \frac{VW}{gF} = \sqrt{\frac{2SW}{gF}},$$

$$F = \frac{VW}{gT} = \frac{2SW}{gT^2},$$

$$W = P + Q$$
, and $F = P - Q$.

English Units.

V = velocity in feet per second at the end of fall.

T =time in seconds of the fall.

S = space fallen through in feet.

V	T	S	V	T	S	V	T	S
0.1	0.0031	.00015	5.1	0.1585	0.4042	11,	0.3419	1.8804
0.2	0.0062	.00031	5.2	0.1616	0.4202	12	0.3730	2.2380
0.3	0.0093 0.0124	0.0014 0.0025	5.3 5.4	0.1647 0.1678	0.4364 0.4530	13 14	0.4041 0.4352	2.6266 3.0464
0.4	0.0124	0.0025	5.5	0.1678	0.4550	15	0.4552	3.4975
0.6	0.0186	0.0055	5.6	0.1740	0.4872	16	0.4973	3.9784
0.7	0.0217	0.0076	5.7	0.1771	0.5047	17	0.5284	4.4914
0.8	0.0248	0.0099	5.8	0.1802	0.5226	18	0.5595	5.0355
0.9	0.0279	0.0125	5.9	0.1833	0.5407	19	0.5906	5.6107
1. 1.1	0.0311 0.0342	0.0155 0.0188	6. 6.1	0.1865	0.5595 0.5782	20 21	0.6217	6.2170 6.8502
$\frac{1.1}{1.2}$	0.0342	0.0188	6.2	0.1896 0.1927	0.5782	$\frac{21}{22}$	0.6527 0.6838	7.5218
1.3	0.0404	0.0262	6.3	0.1958	0.6168	23	0.7149	8.2213
1.4	0.0435	0.0304	6.4	0.1989	0.6365	24	0.7460	8,9520
1.5	0.0466	0.0335	6.5	0.2020	0.6565	25	0.7771	9.7125
1.6	0.0497	0.0381	6.6	0.2051	0.6768	26	0.8082	10.566
1.7	0.0528	0.0432	6.7	0.2082	0.6975	27 28	0.8393	11.330
1.8 1.9	0.0599	0.0485 0.0551	6.8	$0.2113 \\ 0.2144$	0.7184 0.7397	28	0.8704 0.9015	12.185 13.072
2.	0.0622	0.0622	7.	0.2176	0.7616	30	0.9325	13.987
2.1	0.0653	0.0685	7.1	0.2207	0.7835	31	0.9636	14.936
2.2	0.0684	0.0756	7.2	0.2238	0.8057	32	0.9947	15.915
2.3	0.0715	0.0822	7.3	0.2269	0.8282	33	1.0258	16.926
2.4	0.0746	0.0895	7.4	0.2300	0.8510	34	1.0569	17.967
$\frac{2.5}{2.6}$	0.0777	0.0971 0.1050	7.5	$0.2331 \\ 0.2362$	$0.8741 \\ 0.8975$	35 36	1.0879 1.1190	19.038 20.142
$\frac{2.0}{2.7}$	0.0839	0.1030	7.7	0.2362	0.8973	37	1.1190	20.142
2.8	0.0870	0.1218	7.8	0.2424	0.9453	38	1.1812	22.443
2.9	0.0901	0.1305	7.9	0.2455	0.9697	39	1.2123	23.640
3.	0.0932	0.1398	8.	0.2487	0.9948	40	1.2434	24.868
3.1	0.0963	0.1492	8.1	0.2518	1.0168	41	1.2745	26.127
3.2 3.3	$0.0994 \\ 0.1025$	0.1590 0.1691	8.2 8.3	$0.2549 \\ 0.2580$	$\begin{bmatrix} 1.0451 \\ 1.0707 \end{bmatrix}$	42 43	1.3056 1.3367	27.417 28.739
3.4	0.1025	0.1091	8.4	0.2611	1.0707	44	1.3678	29.407
3.5	0.1087	0.1886	8.5	0.2642	1.1228	45	1.3989	31.475
3.6	0.1118	0.2012	8.6	0.2673	1.1494	46	1.4300	32.890
3.7	0.1149	0.2125	8.7	0.2704	1.1762	47	1.4611	34.336
3.8	0.1170	0.2223	8.8	0.2735	1.2034	48	1.4922	35.813
3.9 4.	$0.1201 \\ 0.1243$	0.2355 0.2486	8.9	$0.2766 \\ 0.2797$	1.2259 1.2586	49 50	1.5233 1.5544	37.321 38.830
4.1	0.1243	0.2400	9.1	0.2797	1.2867	51	1.5854	40.413
4.2	0.1305	0.2740	9.2	0.2859	1.3151	52	1.6165	42.029
4.3	0.1336	0.2872	9.3	0.2890	1.3438	53	1.6475	43.659
4.4	0.1367	0.2939	9.4	0.2921	1.3729	54	1.6786	45.322
4.5	0.1398	0.3145	9.5	0.2952	1.4022	55	1.7097	47.017
4.6 4.7	$0.1429 \\ 0.1460$	0.3286 6 431	9.6 9.7	$0.2983 \\ 0.3014$	1.4318	56	1.7407 1.7718	48.740 50.396
4.7	0.1491	0.3578	9.7	0.3014	$1.4618 \\ 1.4920$	57 58	1.7718	52.284
4.9	0.1522	0.3729	9.9	0.3076	1.5226	59	1.8340	54.103
5.	0.1554	0.3885	10.	0.3108	1.5540	60	1.8651	55.953
			1					

English Units.

$$V = \frac{2S}{T}. T = \sqrt{\frac{2S}{g}}.$$

$$S = \frac{g T^2}{2}.$$

V	T	S	V_{\perp}	T	S	v	T	S
65	2.0206	65.669	530	16.478	4366.6	1030	32.027	16494
70	2.1769	76.260	540	16.788	4452.8	1040	32.338	16815
75	2.3314	87.427	550	17.099	4701.7	1050	32.649	17141
80 .	2.4868	97.472	560	17.409	4874.5	1060	32.950	17463
85	2.6422	112.29	570	17.720	5050.2	1070	33.261	17794
90	2.7976	125.89	580	18.030	5228.7	1080	33.572	18129
95	2.9530	140.27	590	18.341	5410.6	1090	33.883	18446
100 110	3.1085 3.4194	155.42 188.07	600 610	18.651 18.961	5595.3 5783.1	1100 1110	34.194 34.504	18806 19149
120	3.7302	223.81	620	19.271	5974.0	1120	34.815	19149
130	4.0411	262.67	630	19.582	6168.3	1130	35.126	19846
140	4.3519	304.63	640	19.893	6365.7	1140	35.436	20198
150	4.6627	349.70	650	20.204	6566.3	1150	35.747	20504
160	4.9736	397.88	660	20.515	6770.0	1160	36.058	20913
170	5.2844	449.18	670	20.826	6976.7	1170	36.369	21275
180	5.5953	503.36	680	21.137	7186.6	1180	36.680	21641
190	5.9061	561.08	690	21.448	7399.5	1190	36.991	22009
200 210	$6.2170 \\ 6.5279$	621.70 689.43	700 710	21.759 22.070	7615.6 7834.8	1200 1210	37.302 37.613	22381 22755
220	6.8387	752.26	720	22.380	8056.8	1210	37.924	23133
230	7.1496	822.20	730	22.691	8282.2	1230	38.235	23514
240	7.4604	895.25	740	23.002	8510.7	1240	38.546	23898
250	7.7713	971.41	750	23.313	8742.4	1250	38.857	24285
260	8.0821	1050.6	760	23.623	8976.7	1260	39.168	24676
270	8.3930	1133.1	770	23.934	9214.6	1270	39.479	25069
280	8.7038	1218.5	780	24.245	9455.5	1280	39.780	25459
290 300	9.0147	1308.2	790	24.556	9699.6	1290	40.090	25855
310	9.3255 9.6363	1398.8 1493.7	800 810	24.868 25.179	9947.2 10197	1300 1310	40.411 40.722	26267 26673
320	9.9472	1591.6	820	25.179	10197	1320	41.033	27081
330	10.258	1690.6	830	25.801	10707	1330	41.343	27493
340	10.569	1791.7	840	26.112	10967	1340	41.654	27908
350	10.879	1903.8	850	26.423	11230	1350	41.965	28326
360	11.190	2014.2	860	26.733	11495	1360	42.276	28747
370	11.501	2127.7	870	27.044	11764	1370	42.587	29172
380	11.812	2244.3	880	27.354	12035	1380	42.897	29599
390 ° 400	12.123 12.434	2364.0 2486.8	890 900	27.665 27.976	12311 12589	1390 1400	43.208 43.519	30029 30463
410	12.454	2612.7	910	28.287	12871	1410	43.820	30893
420	13.055	2741.5	920	28.598	13155	1420	44.131	31333
430	13.366	2873.7	930	28.908	13442	1430	44.442	31776
440	13.677	3008.9	940	29.219	13733	1440	44.753	32222
450	13.989	3144.8	950	29.530	14027	1450	45.064	32671
460	14.300	3289.0	960	29.841	14323	1460	45.375	33123
470	14.611	3433.6	970	30.152	14623	1470	45.686	33579
480 490	14.922 15.233	3581.3 3732.1	980	30.463 30.774	14927 15233	1480 1490	45.997 46.308	34037 34499
500	15.235	3886.2	1000	31.085	15542	1500	46.619	34499
510	15.856	4043.3	1010	31.396	15855	1510	46.930	35432
520	16.167	4203.4	1020	31.707	16179	1520	47.241	35853
]	1	l l					

Metric System.

Space, s, for terminal velocity, v, in metres.

$$s = \frac{v^2}{2g}.$$

			29		
v	8	v	8	v	8
0.0	0.0000	4.0	0.8157	8.0	3.2627
1	0.0005	1	0.8570	1	3.3447
2	0.0020	2	0.8993	2	3.4278
3	0.0046	3	0.9426	3	3.5120
4	0.0082	4	0.9869	4	3.5971
5	0.0127	5	1.0323	5	3.6832
6	0.0184	6	1.0787	6	3.7704
7	0.0250	7	1.1261	7	3,8586
8	0.0326	8	1.1746	8	3.9478
9	0.0413	9	1.2240	9	4.0381
1.0	0.0510	5.0	1.2745	9.0	4.1293
1	0.0617	1	1.3260	1	4.2216
2	0.0734	2	1.3785	2	4.3149
3	0.0862	3	1.4320	3	4.4092
4	0.0999	4	1.4866	4	4.5045
5	0.1147	5	1.5421	5	4.6009
6	0.1305	6	1.5987	6	4.6982
7	0.1473	7	1.6563	7	4.7966
8	0.1652	8	1.7149	8	4.8960
9	0.1840	9	1.7746	9	4.9965
2.0	0.2039	6.0	1.8352	10.0	5.0979
1	0.2248	1	1.8969	1	5.2004
2	0.2467	2	1.9596	2	5.3039
3	0.2697	3	2.0234	3	5.4084
4	0.2936	4	2.0881	4	5.5139
5	0.3186	5	2.1539	5	5.6204
6	0.3446	6	2.2207	6	5.7280
7	0.3716	7	2.2885	7	5.8366
8	0.3997	8	2.3573	8	5.9462
9	0.4287	9	2.4271	9	6.0568
3.0	0.4588	7.0	2.4980	11.0	6.1685
1	0.4899	1	2.5699	12.0	7.3410
2	0.5220	2	2.6428	13.0	8.6155
3	0.5552	3	2.7167	14.0	9.9919
4	0.5893	4	2.7916	15.0	11.4703
5	0.6245	5	2.8676	16.0	13.0507
6	0.6607	6	2.9446	17.0	14.7330
7	0.6979	7	3.0226	18.0	16.5172
8	0.7361	8	3.1016	19.0	18.4035
9	0.7754	9	3.1816	20.0	20.3916

Metric System.

Terminal velocity, v, for space, s, in metres.

$$v = \sqrt{2gs}$$
.

			.,		
S	v	8	v	8	v
0.0	0.0000	4.0	8,8580	8.0	12.5271
1	1.4006	1	8.9681	1	12,6052
2	1.9807	2	9.0767	2	12.6827
3	2.4259	3	9.1842	3	12.7598
4	2.8012	4	9.2904	4	12.8365
*	2.0012	1	3.2304	4	12.0000
5	3.1318	5	9.3953	5	12.9127
6	3.4307	6	9.4991	6	12.9884
7	3.7056	7	9.6019	7	13.0637
8	3.9614	8	9.7035	8	13.1385
9	4.2017	9	9.8040	9	13.2130
1.0	4.4290	5.0	9,9036	9.0	13.2870
1	4.6452	1	10.0021	1	13.3606
2	4.8517	2	10.0997	2	13.4338
3	5.0499	3	10.1963	3	13.5066
4	5.2405	4 .	10.1903	4	13.5790
*	0.2400	1	10.2921	4	13.0750
5	5.4244	5	10.3869	5	13.6511
6	5.6023	6	-10.4809	6	13.7228
7	5.7747	7	10.5740	7	13.7940
8	5.9421	8	10.6664	8	13.8650
9	6.1049	9	10.7580	9	13.9355
2,0	6,2635	6.0	10.8488	10.0	14.0057
1	6.4182	1	10.9388	1	14.0756
2	6.5693	2	11.0281	2	14.1451
3	6.7169	3	11.1167	3	14.2143
4	6.8614	4	11.2046	4	14.2831
_	0.0014				
5	7.0029	5	11.2918	5	14.3516
6	7.1415	6	11.3783	6	14.4198
7	7.2776	7	11.4642	7	14.4877
8	7.4111	8	11.5495	8	14.5552
9	7.5423	9	11.6340	9	14.6224
3.0	7.6712	7.0	11.7180	11.0	14.6893
1	7.7981	1	11.8014	12.0	15.3425
2	7.9228	$\frac{1}{2}$	11.8842	13.0	15.9692
3	8.0457	3	11.9665	14.0	16.5720
4	8.1667	4	12.0482	15.0	17.1535
5	8,2859	5	12.1293	16.0	17.7160
6	8,4035	6	12.1293	17.0	18.2612
7	8.5194	7	12.2900	18.0	18.7907
8	8.6337	8	12.3695	19.0	19.3056
9	8.7466	9	12.4485	20.0	19.8071
9	0.7400	9	12.4400	20.0	19.00/1

Metric System.

Space, s, in metres for time, t, from 0.1 to 10 seconds.

$$s = \frac{1}{2}gt^2$$
.

t	8	t	8	t	8		
0.0	0.0000	3.0	44.1362	6.0	176.5446		
1	0.0490	1	47.1276	1	182.4785		
2	0.1962	2	50.2171	2	188.5104		
3	0.4414	3	53.4047	3	194.6404		
4	0.7846	4	56.6904	4	200.8685		
5	1.2260	5	60.0742	5	207.1947		
6	1.7654	6	63.5561	6	213.6190		
7	2.4030	7	67.1360	7	220.1413		
8	3.1386	8	70.8140	8	226.7618		
9	3.9723	9	74.5901	9	233.4802		
1.0	4.9040	4.0	78.4643	7.0	240.2968		
1	5.9339	1	82.4365	1	247.2115		
2	7.0618	2	86.5069	2	254.2243		
3	8.2878	3	90.6753	. 3	261.3351		
4	9.6119	4	94.9418	4	268.5440		
5	11.0340	5	99.3063	5	275.8510		
6	12.5543	6	103.7690	6	283.2560		
7	14.1726	7	108.3297	7	290.7592		
8	15.8890	8	112.9886	8	298.3604		
9	17.7035	. 9	117.7455	9	306.0597		
2.0	19.6161	5.0	122.6004	8.0	313.8571		
1	21.6267	1	127.5535	1	321.7526		
2	23.7354	2	132.6046	2	329.7461		
3	25.9422	3	137.7538	3	337.8377		
4	28.2471	4	143.0011	4	346.0274		
5	30.6501	5	148.3465	8.5	354.3153		
6	33.1512	6	153.7900	9.0	397.2254		
7	35.7503	7	159.3315	9.5	442.5875		
8	38.4475	8	164.9711	10.0	490.4017		
9	41.2428	9	170.7088	11.0	593.3911		

Leverage.

$$F: W = l: L, \qquad FL = Wl.$$

1.
$$F = \frac{Wl}{L}$$
. 3. $l = \frac{Fa}{W+F}$.

2.
$$W = \frac{FL}{l}$$
. 4. $L = \frac{Wa}{W+F}$.

 $F: W = l: L, \qquad FL = Wl.$

5.
$$F = \frac{Wl}{L}$$

5.
$$F = \frac{Wl}{L}$$
. 7. $L = \frac{Wa}{W - F}$.

6.
$$W = \frac{FL}{I}$$

6.
$$W = \frac{FL}{l}$$
. 8. $l = \frac{Fa}{W - F}$.

$$F: W = l: L, \qquad FL = Wl.$$

9.
$$F = \frac{Wl}{L}$$
.

9.
$$F = \frac{Wl}{L}$$
. 11. $L = \frac{Wa}{F - W}$.

10.
$$W = \frac{FL}{l}$$
. 12. $l = \frac{Fa}{F - W}$. $F = \frac{Wl - Qx}{L}$, $W = \frac{FL + Qx}{l}$.

Static Moments.

af + a'f' + a''f'' = br + b'r' + b''r''.

If the sum of the moments that act to move the body in one direction are equal to the sum of the moments that act opposite, the acting forces will be in equilibrium; c being the centre or fulcrum.

To find the fulcrum, c, when three forces act on the lever,

$$Rx = Q(a - b - x) + P(a - x),$$

$$x = \frac{Qa + Pa - Qb}{R + Q + P}.$$

Q =weight of the lever, x =distance from the centre of gravity of the lever to the fulcrum. Balance the lever over a sharp edge, and the centre of gravity is found.

$$F = \frac{Wl - Qx}{L}, \qquad W = \frac{FL + Qx}{l}$$

DYNAMICS.

We have already referred to the fact that in practical engineering work there are but three elementary quantities: Force, expressed as a weight; Space, expressed as a lineal distance; and Time, expressed in hours, minutes, or seconds.

In the problems of Dynamics, or the study of force and motion, we have the following relations, in which

F =force, S =space, T =time, M =mass,

 $V = \frac{S}{m} = \text{velocity},$ $P = \frac{FS}{T} = FV = \text{power},$ K = FS = work. $K = \frac{1}{M} M V^2 = \text{work}.$

Dynamical Formulas.

Force or Pressure, in Pounds,

1.
$$F = \frac{P}{V}$$
. | 2. $F = \frac{550 \, IP}{V}$. | 3. $F = \frac{K}{S}$. | 4. $F = \frac{K}{VT}$.

Velocity, in Feet, per Second. For Uniform Motion.

5.
$$V = \frac{S}{T}$$
. | 6. $V = \frac{P}{F}$. | 7. $V = \frac{550 \ P}{F}$. | 8. $V = \frac{K}{FT}$.

Time of Action, in Seconds. For Uniform Motion.

9.
$$T = \frac{S}{V}$$
. | 10. $T = \frac{FS}{P}$. | 11. $T = \frac{FS}{550 \, IP}$. | 12. $T = \frac{K}{FV}$.

Power, in Foot-Pounds, per Second.

13.
$$P = FV$$
. | 14. $P = \frac{FS}{T}$. | 15. $P = 550 \, P$. | 16. $P = \frac{K}{T}$.

Space passed through in the Time T.

17.
$$S = VT$$
. | 18. $S = \frac{PT}{F}$. | 19. $S = \frac{550 \ T \ P}{F}$. | 20. $S = \frac{K}{F}$.

Horse-power.

21.
$$P = \frac{P}{550}$$
, | 22. $IP = \frac{FV}{550}$. | 23. $IP = \frac{FS}{550T}$. | 24. $IP = \frac{K}{550T}$.

Work, in Foot-Pounds.

25.
$$K = FVT$$
 in time T .
26. $K = PT$ in time T .
27. $K = FS$.
28. $K = 550 \, \text{LP T}$ in time T .

It will be observed in the preceding formulas that an element is never divided by an element; but a function is divided by an element only when that function contains that element.

Power divided by velocity gives force, because power contains the elements force and velocity; but power cannot be divided by time, because time is not a constituent element of power.

Work can be divided by either one or two of its three constituent factors. When work is divided by either two of its elements, the product will be the third element.

Different elements or functions cannot be added to or subtracted from work.

one another. Power or space cannot be added to or subtracted from work. Force, velocity, or time cannot be added to or subtracted from space.

In the metric system, force is given in Kilogrammes and space in etres. Work is given in *Kilogrammetres*; Power in Kilogrammetres per Metres. second.

The metric Horse-power is 75 kilogrammetres per second, = 32,547 footpounds per minute, or about 1.4 per cent. less than the British horse-power of 33,000 foot-pounds per minute.

Work (K = FS).

Work is the product obtained by multiplying together the elements force, F, and space, S. Work may also be expressed by K = PT, or the product of power and

The work of a steam-engine operating with a constant power will be directly as the time of operation, and so with all labor, whether it be mechanical or manual.

Moment of a Force (Fl).

The moment of a force is its lever arm at right angles to its direction of action multiplied by its intensity in pounds or tons.

Momentum (MV).

The momentum of a moving body is the intensity of that constant force which, resisting its movement, will bring it to rest in one second.

$$M = \frac{weight}{32.2}$$
.

V = velocity in feet per second.

Moment of Inertia (MVr).

The moment of inertia of a rotating body is the moment of its momentum, and is equal to its momentum, MV, multiplied by its radius of oscillation, r.

Radius of Oscillation.

The radius of oscillation is the mean lever-arm of the momentum of a revolving body. It is equal to the moment of inertia divided by the momentum of the revolving body.

Radius of Gyration.

The square of the radius of gyration of an oscillating body is equal to the product of the radius of oscillation and of the distance of the centre

of gravity of the suspended body from its point of suspension.

The intensity of the force of momentum is proportional to the distance of the centre of gravity from the axis of suspension, and the mean leverage of the momentum is the radius of oscillation. The square of the "radius of gyration," then, is a convenient product of these two quantities, as including both, and therefore giving them in a convenient mathematical form. If a straight rod be balanced at its middle, we are obliged to consider each half separately and add them together.

Units of Work.

The usual unit of work in the British notation is the foot-pound, equal to one pound raised through a space of one foot. For large measurements, where this unit is too small, the *foot-ton* is used, this being the usual unit in ordnance computations.

Units of Power.

The unit of power most generally used in England and America is the horse-power. In rating the early steam-engines Watt made a number of experiments with powerful draught horses, and arrived at the value of 22,000 foot-pounds per minute as the horse-power. In order to allow liberal measure in proportioning his steam-engines, he increased this by 50 per cent., and called the steam horse-power 33,000 foot-pounds per minute, or

550 foot-pounds per second.

The unit of power generally used in connection with electrical work is the watt, and for most mechanical purposes the kilowatt = 1000 watts is used. One English horse-power = 746 watts, or one kilowatt = 1.34 horse-power. The metric horse-power = 736 watts. Since electric generators are usually rated in kilowatts, and are frequently coupled directly to steam-engines, or even built into combined generating sets with them, the power of steam-engines is sometimes rated in kilowatts, and this practice is probably destined to become more and more general as electric driving is introduced. For all practical purposes the kilowatt may be taken as three-quarters of a horse-power.

Formulas for Rotary Motion.

F= force. P= power, in foot-pounds, per sec- R= radius from centre of rotation.

V = velocity, in feet, per second. S = space, in feet. T = time, in seconds.

n = revolutions per minute. N = total number of revolutions in

a time T.

Force, F, acting in the Direction of the Tangent.

29.
$$F = \frac{60 P}{2\pi Rn}$$
. | 30. $F = \frac{9.55 P}{Rn}$. | 31. $F = \frac{9.55 K}{Rn T}$. | 32. $F = \frac{5252 P}{Rn}$.

Circumferential Velocity and Revolutions per Minute.

33.
$$V = \frac{2\pi Rn}{60}$$
. | 34. $V = 0.10472Rn$. | 35. $n = \frac{9.55 \, V}{R}$. | 36. $n = \frac{5252 \, HP}{FR}$.

Time of Operation, in Seconds.

37.
$$T = \frac{9.55 \text{ S}}{Rn}$$
. | 38. $T = \frac{9.55 \text{ K}}{FRn}$. | 39. $T = \frac{FRn}{9.55 P}$. | 40. $T = \frac{FRN}{87.5 P}$.

Radius of Revolution.

41.
$$R = \frac{9.55\ V}{n}$$
. | **42.** $R = \frac{9.55\ P}{Fn}$. | **43.** $R = \frac{5252\ IP}{Fn}$. | **44.** $R = \frac{9.55\ K}{Fn\ T}$.

Power Generated, in Foot-pounds, per Second.

45.
$$P = \frac{2\pi RnF}{60}$$
. | 46. $P = \frac{FRn}{9.55}$. | 47. $P = \frac{FRN}{9.55 T}$. | 48. $N = \frac{9.55 PT}{FR}$.

Space Generated, in Feet.

49.
$$S = \frac{2\pi RnT}{60}$$
. | 50. $S = \frac{RnT}{9.55}$. | 51. $S = \frac{FnN}{755.625 \, IP}$. | 52. $S = N2\pi R$.

Horse-power Generated.

53.
$$IP = \frac{FRn}{5252}$$
. | 54. $IP = \frac{FRN}{87.5 T}$. | 55. $N = \frac{87.5 IPT}{FR}$. | 56. $N = \frac{S}{2\pi R}$.

Work Accomplished, in Foot-pounds, in Time T.

57.
$$K = \frac{FRnT}{9.55}$$
. | 58. $K = F2\pi RN$. | 59. $N = \frac{K}{F2\pi R}$. | 60. $R = \frac{K}{F2\pi N}$.

Force, Power, and Work in Moving Bodies.

It requires force, power, and work to change the state of motion or rest of a body.

In the dynamic expression MV = FT we have

1. Force,
$$F = \frac{MV}{T}$$
. 3. $M = \frac{FT}{V}$. 2. $T = \frac{MV}{T}$. 4. $V = \frac{FT}{V}$.

The force, F, required to set a mass, M, in motion with velocity, V, depends inversely on the time, T, of action. The more time the less need the force be for a certain velocity, and therefore it cannot be determined what force has set a mass in motion without knowing its time of action; but when the mass and its velocity are given, then we can determine the exact amount of work bestowed on the motion.

Multiply the dynamic momentum by the velocity, V, and we have

$$MV^2 = FVT$$
.

Here we recognize the work, $\frac{V}{2}FT$, which is that bestowed on the mass,

M, in giving it the velocity, V, or the mass multiplied by one-half the square of its velocity is the work stored in it.

Vis-viva.—The term MV^2 has formerly been called vis-viva, but that

term is now seldom used.

The real work in foot-pounds is $\frac{1}{2}MV^2 = \frac{1}{2}FVT$. The space, S, in which the mass was set in motion is $S = \frac{1}{2}VT$, which inserted in the formula gives the

Work,
$$K = \frac{1}{2}MV^2 = FS$$
.

Dynamical Formulas for Accelerated or Retarded Motion.

Constant Force, in Pounds, acting on a Body free to move.

$$F = \frac{GW}{g} = \frac{WV}{gT} = \frac{2WS}{gT^2} = \frac{WV^2}{2gS} = \frac{PT}{S} = \sqrt{\frac{2PW}{gT}} = \frac{2K}{GT^2} = \frac{K}{S}.$$

Final Velocity in the Time, T, or Uniform Velocity of a moving Body.

$$V=GT=\frac{gFT}{W}=\frac{2S}{T}=\sqrt{\frac{2gSF}{W}}=\sqrt{2GS}=\frac{PT}{K}=\sqrt{\frac{2gPT}{W}}=\sqrt{\frac{2gK}{W}}.$$

Time, in Seconds, in which the Force acts on the Body free to move.

$$T = \frac{V}{G} = \frac{WV}{gF} = \sqrt{\frac{2WS}{aF}} = \sqrt{\frac{2S}{G}} = \frac{2FS^2}{VK} = \frac{K}{P} = \frac{2SW}{aTF} = \sqrt{\frac{2WK}{aF^2}}.$$

Constant Acceleration of the Force, F, in Feet per Second.

$$G = \frac{gF}{W} = \frac{2S}{T^2} = \frac{V}{T} = \frac{V^2}{2S} = \frac{gPT}{WS} = \frac{FV^2}{PT} = \frac{gK}{WS} = \frac{2K}{FT^2}.$$

Space, in Feet, in which the Force acts on the Body free to move.

$$S = \frac{-GT^2}{2} = \frac{VT}{2} = \frac{V^2}{2G} = \frac{gFT^2}{2W} = \frac{PT}{F} = \frac{gPT^2}{WV} = \frac{gK}{GW} = \frac{K}{F}.$$

Weight, in Pounds, of the moving Body.

$$W = \frac{gF}{G} = \frac{gFT^2}{2S} = \frac{2gFS}{V^2} = \frac{gFT}{V} = \frac{gPT^3}{2S^2} = \frac{gF^2T}{2P} = \frac{2gK}{V^2} = \frac{gT^2K}{2S^2}.$$

Mean Power in Effects during the Time, T, or in the Space, S.

$$P = \frac{FS}{T} = \frac{gF^2T}{2W} = \frac{2WS^2}{gT^3} = \frac{WV^2}{2gT} = \frac{2K}{T} = \frac{TK}{2S} = \frac{VK}{S} = \frac{FV^2}{GT}.$$

Work, in Foot-pounds, concentrated in a moving Body.

$$\mathit{K} = \mathit{FS} = \frac{\mathit{WV}^2}{2\mathit{g}} = \frac{\mathit{FVT}}{2} = \frac{\mathit{GWVT}}{2\mathit{g}} = \frac{\mathit{FGT}^2}{2} = \frac{\mathit{gF}^2\mathit{T}^2}{2\mathit{W}} = \frac{2\mathit{SP}}{\mathit{T}} = \mathit{PT}.$$

REVOLVING BODIES.

Centre of Gyration.

The Centre of Gyration is a point in a revolving body in which, if all the revolving matter were there collected, it would obtain equal angular velocity from and sustain equal resistance to the force that gives it the rotary motion. The distance of the centre of gyration from the axis of rotation for different shapes in practical work will be found in the diagrams on pages 273 and 274.

Formulas for Accelerated Circular Motion.

Force, F, in Pounds, acting on the Lever or Radius, r, to rotate the Body.

$$F = \frac{Wx^2n}{307.49\ Tr} = \frac{Wx^2N}{2.562\ T^2r} = \frac{60\ K}{\pi rn\ T} = \frac{K}{2\pi rN}.$$

Final Revolutions per Minute in the Time T.

$$n = \frac{120 \, N}{T} = \frac{307.49 \, FTr}{Wx^2} = \frac{60 \, K}{\pi r \, TF} = \sqrt{\frac{5872.2 \, K}{Wx^2}}.$$

Total Number of Revolutions in the Time T.

$$N = \frac{Tn}{120} = \frac{2.562 \, FT^2 r}{Wx^2} = \frac{K}{2\pi r F} = \frac{T}{1.565 \, x} \sqrt{\frac{K}{W}}.$$

Time of Acceleration, in Seconds, from the Start of Change of Motion.

$$T = \frac{Wx^2n}{307.49\;Fr} = \sqrt{\frac{Wx^2N}{2.562\;Fr}} = \frac{60\;K}{\pi rnF} = \frac{x\sqrt{\;WK}}{4.09\;Fr}.$$

Radius of Gyration, in Feet, of the revolving Body.

$$x = \sqrt{\frac{307.49 \ Fr \ T}{Wn}} = \sqrt{\frac{2.562 \ Fr \ T^2}{WN}} = \frac{KT}{3.9 \ N \ \sqrt{WNFr}} = \frac{334.9 \ K}{n \sqrt{Wn \ TFr}}.$$

Weight, in Pounds, of the revolving Body.

$$W = \frac{307.49\ TFr}{x^2n} = \frac{2.562\ T^2Fr}{x^2N} = \frac{5872.2\ K}{n^2x^2} = \frac{KT^2}{2.452\ x^2N^2}.$$

Work, in Foot-pounds, concentrated in a revolving Body.

$$K = \frac{Wx^2n^2}{5872.2} = \frac{2.452 \ Wx^2N^2}{T^2} = \frac{\pi rnFT}{60} = 2\pi rNF.$$

273

Radius of Gyration.

A Line or Bar.

$$x = 0.5773l$$
,

$$x = 0.2887l.$$

- A Circumference around its Diameter.
- A Disk around its Centre.
- A Cylinder around its Axis.

x = 0.7072r.

A Disk around its Diameter.

x = 0.5r.

A Sphere around its Diameter.

Spherical shell, x = 0.8165r, Solid, x = 0.6324r.

Parallelopipedon.

Cylinder.

Cone.

Cylinder and Sphere.

Wedge and Ring.

r =internal radius of ring, R =external radius of ring.

$$x = 0.204\sqrt{12l^2 + B^2 + b^2},$$
 $x = \sqrt{\frac{R^2 + r^2}{2}}.$

Fly=wheel.

$$x=\sqrt{\frac{R^2+r^2}{2}},$$

$$FG:Wg=x^2:s^2.$$

Fly-wheel with Arms.

$$x^{2}(W+w) = W\frac{R^{2}+r^{2}}{2} + w\frac{4r^{2}+b^{2}}{12},$$

$$x = \sqrt{\frac{6W(R^2 + r^2) + w(4r^2 + b^2)}{12(W + w)}}$$

CENTRAL FORCES.

Central Forces are of two kinds, centrifugal and centripetal.

Centrifugal Force is the resistance which a revolving body offers to being moved in the arc of a circle.

Centripetal Force is that by which a revolving body is attracted or

attached to its centre of motion.

The centrifugal and centripetal forces are opposites to each other, and when equal the body revolves in a circle; but when they differ the body will revolve in other curved lines, as the ellipse, the parabola, etc., according to the nature of the difference in the forces. If the centrifugal force is o while the other is acting, the body will move straight to the centre of motion; and if the centripetal force is o while the other is act

ing, the body will depart from the circle in a straight line, tangent to the circle in the point where the centripetal force ceased to act. The central forces are distinct from the force that has set the body in motion.

If the centrifugal force be made use of to produce an effect, such effect will be at the expense of the one producing the rotary motion.

Notation.

 $F={
m centrifugal}$ force, in pounds. $W={
m the}$ weight of the revolving body, in pounds. $v={
m velocity}$ of the revolving body, in feet, per second. $R={
m radius}$ of the circle in which the body revolves, in feet.

n = number of revolutions per minute.

$$F = \frac{Wv^2}{gR} = \frac{Wv^2}{32.2R},$$

$$F = \frac{4WR\pi^2n^2}{60^2g} = \frac{WRn^2}{2933} = 0.00034WRn^2,$$

$$W = \frac{FgR}{v^2} = \frac{2933F}{Rn^2}$$

$$n = \sqrt{\frac{2933F}{WR}},$$

$$n = \sqrt{\frac{2933F}{WR}},$$

$$\mathcal{C} = \frac{Wv^2}{Fg} = \frac{2933F}{Wn^2},$$

$$v = \sqrt{\frac{FRg}{W}}.$$

Thus, if we have a weight of 63 pounds at a radius of 4 feet 4 inches, making 163 revolutions per minute, we have

$$W = 63$$
, $R = 4.333$, $n = 163$,

and the centrifugal force, or tension produced on the radial arm, will be $0.00034 WRn^2 = 0.00034 \times 63 \times 4.333 \times 163^2 = 2466 \text{ pounds}.$

Centrifugal Force of a Ring.

r = internal radius, R = externalradius.

$$F = \frac{Wn_2(R-r)}{\pi 4150}.$$

Centrifugal Force of a Grinding Stone, Thin Disk, or Cylinder rotating around its centre.

$$F = \frac{WRn^2}{\pi 4150}.$$

Centrifugal Force of a Cylinder rotating around the diameter of its base.

$$F = \frac{Wn^2l}{5867}$$

Centrifugal Force of a Ball.

$$F = \frac{Wn^2R}{2933}$$

Governor.

$$n = \frac{60}{2\pi} \sqrt{\frac{g}{h}} = \frac{54.16}{\sqrt{h}} = \frac{54.16}{\sqrt{l \cos x}},$$

$$h = \frac{2933}{n^2}, \qquad l = \frac{2933}{n^2 \cos x} = \frac{h}{\cos x},$$

$$\cos x = \frac{2933}{n^2} = \frac{h}{l}, \qquad r = \sqrt{l^2 - h^2},$$

x =angle made by arm with the vertical axis.

For a weighted governor of the Porter type, in which W= the axial weight and B= the weight of the ball, the height, \hbar , will be equal to the height of a simple governor multiplied by $\left(1+\frac{W}{2}\right)$.

PENDULUM.

Simple Pendulum is a material point under the action of gravitation, and suspended at a fixed point by a line of no weight.

Compound Pendulum is a suspended rod and body of sensible magnitude, fixed as the simple pendulum.

Centre of Oscillation is a point at which if all the matter in the compound pendulum were there collected, it would make a simple pendulum oscillate in the same periods.

Angle of Oscillation is the space a pendulum describes when in

The velocity of an oscillating body through the vertical position is equal to the velocity a body would obtain by falling vertically the distance versed sine of half the angle of oscillation.

Notation.

l = length of the simple pendulum, or the distance between the centre of suspension and centre of oscillation, in inches.

t =time, in seconds, for n oscillations.

n = number of single oscillations in the time t.

Example. Required the length of a pendulum that will vibrate seconds? Here n=1 and $t=1^{\prime\prime}$.

$$l = 39.10 \frac{t^2}{n^2} = 39.10$$
 inches, the length of a pendulum for seconds.

Example. Required the length of a pendulum that will make 180 vibrations per minute? Here $t=60^{\prime\prime}$ and n=180.

$$l = \frac{39.10t^2}{n^2} = \frac{39.10 \times 60^2}{180^2} = 4.344$$
 inches.

Example. How many vibrations will a pendulum of 25 inches length make in 8 seconds?

 $n = \frac{6.254t}{\sqrt{l}} = \frac{6.254 \times 8}{\sqrt{25}} = 10 \text{ vibrations.}$

Example. A pendulum is 137.67 inches long and makes 8 vibrations in 15 seconds. Required the acceleration of gravity, g?

equired the acceleration of gravity,
$$g \neq g = \frac{0.8225 ln^2}{t^2} = \frac{0.8225 \times 137.67 \times 8^2}{15^2} = 32.209.$$

Example. A compound pendulum of two iron balls, P and Q, having the centre of suspension between themselves, as shown in the illustrations on the opposite page. P=38 pounds, Q=12 pounds, a=25 inches, and b=18 inches. How long is the simple pendulum, and how many vibrations will the pendulum make in 10 seconds?

$$\begin{split} x &= \frac{aP - b\,Q}{P + \,Q} = \frac{25 \times 38 - 18 \times 12}{38 + 12} = 14.68 \text{ inches,} \\ l &= \frac{a^2P + b^2Q}{x(P + Q)} = \frac{25^2 \times 38 + 18^2 \times 12}{14.68(38 + 12)} = 37.68 \text{ inches,} \end{split}$$

the length of the single pendulum.

$$n = \frac{6.254t}{\sqrt{l}} = \frac{6.254 \times 10}{\sqrt{37.68}} = 10.193 \text{ vibrations in 10 seconds.}$$

If a compound pendulum is hung up at its centre of oscillation, the former centre of suspension will be the centre of oscillation and the pendulum will oscillate the same time.

Simple Pendulum.

A = centre of gravity,B = centre of gyra-C = centre of oscilla

$$a: b = b: l,$$
 $b = \sqrt{al} = 1.414a,$
 $l = 1\frac{1}{3}a.$

Compound Pendulum.

neglected.

278 IMPACT.

Length of Pendulum Vibrating Seconds at Sea-level.*

	Latitude.	Metres.	Inches.
At Equator	00 00'	0.99092	39.012
At Washington, D. C	38° 53′	0.99299	39.094
At New York	40° 43′	0.99316	39.101
At Latitude 45°	45° 00′	0.99355	39.116
At London, Eng	51° 31′	0.99414	39.139
At Stockholm	59° 21′	0.99481	39.166

IMPACT.

Impact of Moving Bodies.

When bodies in motion come in collision with each other, the sum of their concentrated momentum will be the same after the collision as before, but their velocities and sometimes their directions of motion will differ.

In the illustrations on page 279 the bodies are supposed to move in the same straight line, and the formula illustrates the consequences after collision.

Notation.

M and m = weight of the bodies, in pounds.

V and v = their respective velocities, in feet, per second.

V and v = their respective velocities, in feet, per second. V' and v' = respective velocities of the bodies after impact. K and k = coefficient of elasticity, which for perfectly hard bodies k = 0 and for perfectly elastic bodies k = 1; therefore the elastic coefficient will always be between 0 and 1. When the bodies are perfectly hard their velocities after impact will be common.

For
$$M$$
, $K = \frac{MV}{M(V-V')}$; for m , $k = \frac{mv}{m(v-V')}$.

Example 1. The non-elastic body weighs M=25 pounds, and moves at a velocity V=12 feet per second; m=16 pounds and v=9 feet per second. Required the bodies' common velocities v=? after impact, both bodies moving in the same direction.

$$v' = \frac{MV + mv}{M+m} = \frac{25 \times 12 + 16 \times 9}{25 + 16} = 10.83 \text{ feet per second.}$$

Example 2. The perfect elastic body M=84 pounds, V=18 feet per second, m=48 pounds, and v=27 feet per second. Required the velocity V'=? after impact with the body m, the bodies moving in opposite directions. tions.

$$V = \frac{18(84 - 48) - 2 \times 48 \times 27}{84 + 48} = -23.64.$$

The negative sign denotes that the body will return after the collision

with a velocity of 23.63 feet per second.

Example 3. The partly elastic body M=38 pounds and V=79 feet per second will strike the body in rest m=24 pounds. What will be the velocity v=? of the body m, its elasticity being k'=0.6.

$$v' = \frac{79 \times 38(1 + 0.6)}{38 + 24} = 70.6$$
 feet per second.

When a moving body strikes a stationary elastic plane its course of departure from the plane will be equal to its course of incidence.

^{*} Authority of T. C. Mendenhall, Superintendent United States Coast and Geodetic Survey, January, 1894.

The Bodies Perfectly Hard.

The bodies move in the same direction.

$$v'(M+m) = MV + mv,$$

$$v' = \frac{MV + mv}{M+m}.$$

The bodies move in opposite directions.

$$\begin{split} v'(M+m) &= MV - mv, \\ v' &= \frac{MV - mv}{M+m}. \end{split}$$

Only one body in motion.

$$v'(M+m) = MV,$$

$$v' = \frac{MV}{M+m}.$$

The Bodies Elastic.

The bodies move in the same direction.

$$\begin{split} V' &= \frac{V(M-Km) + vm(1+K)}{M+m}, \\ v' &= \frac{MV(1+k) + v(m+kM)}{M+m}. \end{split}$$

The bodies move in opposite directions.

$$\begin{split} V' &= \frac{V(M-Km)-vm(1+K)}{M+m},\\ v' &= \frac{MV(1+k)-v(m-kM)}{M+m}. \end{split}$$

Only one body in motion.

$$V' = \frac{V(M-Km)}{M+m},$$

$$v' = \frac{VM(1+k)}{M+m}.$$

FRICTION.

The resistance to motion which is experienced when one body is moved upon another is expressed by the general term Friction. Theoretically, it is assumed to be due to the interlocking of the roughness and inequalities which exist to a greater or less degree in the surfaces of all solids. The term friction, however, is applied to the resistance encountered by air or gases flowing through pipes or flues, or by water in pipes and channels,

and in all cases of motion it is an element to be considered. The first modern study of the subject of friction was that made in France by General Morin about 1831, and for a long time the laws enunciated by him as the result of his experiments, and the coefficients of friction given by him, were generally accepted and extensively reprinted. It is now generally understood, however, that these laws and results were true only for the conditions under which they were made, and that modern operative conditions require them to be modified. At the same time, the general results of Morin's experiments may here be referred to as forming a basis for the more recent data.

Morin's experiments were made by measuring the force required to cause one body to slide upon another. The ratio between this force and the pressure upon the sliding body is called the coefficient of friction, so that the coefficient of friction is the proportion which the resistance of friction bears to the pressure upon the sliding body. The pressure upon the sliding body is always taken as acting normal to the sliding surfaces.

As a result of his experiments, Morin announced:

1. Friction is directly proportional to the pressure; the coefficient being thus constant at all pressures.

2. Friction, both in amount and coefficient, is independent of the areas

in contact; the pressure remaining the same.

3. The coefficient of friction is independent of the velocity of the rubbing surfaces. This is understood to refer to the friction of motion, since it takes a greater force to overcome the friction of rest than to maintain the surfaces in motion thereafter.

The second law is a natural consequence of the first, since any increase in area for the same total pressure reduces the pressure per unit of area in the same proportion. If the area be doubled, the pressure per square inch will be halved, but there will be twice as many square inches, and the

frictional resistance will be unchanged.

The principal modifications which have to be made in these laws, in the light of modern practice, are in the expansion of an expression made by Morin himself in connection with the experiments,—namely, that the condition of the surfaces must be taken into consideration. It is now possible to produce surfaces, both plane and cylindrical, so far superior to those with which Morin experimented that the coefficients deduced by him, and tabulated in many reference books since, are now considered far too great in nearly every case. The improvement in lubricants and the influence of temperature also enter as factors, and the number of variables thus introduced make it impossible to do more than furnish general data for preliminary use; and in all undertakings of importance experimental determinations should be made with the given materials, as nearly under the actual conditions as possible.

For plane-sliding friction, in which the speed of the movement is moderate and the pressures not excessive, Morin's laws and coefficients are fairly correct, although the latter are somewhat higher than are found with highly-polished surfaces, well lubricated.

Morin's coefficients of friction, given by him in detail under numerous varying conditions, may be taken in general as follows:

Material.	Coefficient.
Wood on wood, dry	0.25
Metal on metal, dry	0.15
" well lubricated	0.07 to 0.08

Any attempt to use closer refinements when the exact conditions are not known is both useless and deceptive.

Journal Friction.

Recent experiments have shown that Morin's laws do not hold for revolving journals at high speeds and under heavy pressures.

The experiments of Mr. Beauchamp Tower* showed that the coefficient

of friction, f, increased as the square root of the linear velocity, and diminished directly with the increase in pressure.

If v = the linear velocity in feet per second, and p = the pressure in

pounds per square inch, the coefficient $f = c \frac{\sqrt{v}}{n}$, in which c is a constant, dependent upon the lubricant.

The following values of c may be used with pressures of 100 to 600 pounds per square inch:

Lubricant.	c	Lubricant.	c
Olive oil			
Lard oil			

With olive oil lubrication, at a velocity of $3\frac{1}{2}$ feet per second, and pressures ranging from 520 pounds down to 100 pounds per square inch, the coefficient of friction, f, varied from 0.001 to 0.055.

In Mr. Tower's experiments the pressure at which the journal seized varied from 520 to 625 pounds per square inch of projected area,—that is, the length multiplied by the diameter.

On collar bearings, such as are used for the thrust bearings of screwpropeller shafts, the coefficient of friction is found to be independent of the speed, and for pressures between 45 and 75 pounds per square inch it ranges between 0.040 and 0.035. Good practice allows a pressure of 50 pounds per square inch, at which a coefficient of 0.036 may be used.

In computing the resistance of friction a clear distinction must be made between the frictional resistance itself and the work of friction. The work is measured by the product of the frictional resistance and the lineal speed

of the rubbing surfaces, this giving the power absorbed in foot-pounds per

minute.

The question of temperature is often an important element in frictional resistance, the work of friction appearing as heat, which, if not carried away, produces a rapid rise in temperature. The increased temperature reduces the viscosity of the lubricant, which is then forced out by the pressure, and the bearing runs dry and seizes.

Pillow-blocks and similar bearings should contain sufficient mass of metal to permit the heat to be conducted away freely, and attempts to economize in metal by coring out to the limit of mere strength may reduce the thermal conductivity of a bearing to such an extent as to render it

liable to heat.

The thrust bearings of marine engines, and other bearings in which it is of great importance that motion should not be interrupted, are made with passages for the circulation of cooling water, which is to be turned

on promptly in case of an abnormal increase in temperature.

The maximum pressures which are permitted depend upon the nature of the motion. When the pressure is exerted continuously in the same direction, as in the case of heavy shafting, etc., there is not the same opportunity for the lubricant to flow in, as in the case of alternating or intermittent pressure. In the first case the pressure should not exceed 450 pounds per square inch at a maximum, and should be kept down to 250 or 300 pounds, when practicable. For the second case, such as crank pins, in which the pressure acts in alternate directions, pressures from 500 to 900 pounds per square inch are used in stationary practice and 1200 to 1800 pounds per square inch in locomotive engines.

^{*}Proceedings of the Institution of Mechanical Engineers, 1883.

MATERIALS OF ENGINEERING.

Martens divides the materials of engineering into two main classes:

- Materials of Construction. Being those which constitute the completed structures. To this class belong the metals, woods, stone, cement, etc.
- 2. Materials of Consumption. Being those which are consumed or transformed while being used. These include such substances as coal, water, oil, etc.

While these distinctions are not rigid or absolute, they may serve as a

convenient classification.

Materials of Construction may be considered according to their

Materials of Construction may be considered according to their physical or their chemical properties, or both.

For engineering purposes the chemical properties are not so generally considered as are the physical properties, although in some respects the ultimate composition, as well as the manner of combination, must be taken into account. Materials must generally be defined according to their chemical nomenclature, after which their physical properties demand the most attention. No attempt will be made here to discuss any but the restories in general uses the reserved elements and their combination. but the materials in general use, the rarer elements and their combina-tions forming properly the subjects for treatises on chemistry and physics.

Apart from their chemical composition, the principal properties of

importance to the engineer are:

Density, represented by specific gravity. Resistance, or capacity to oppose stresses. Hardness, or opposition to penetration. Toughness, or capacity for elongation under tension. Brittleness, the opposite of toughness.

Besides these there are many other physical properties, such as behavior during heating or cooling, fusing, or working in innumerable ways, but these must be considered in connection with the operations in which they

appear.

The Specific Gravity, or relative density of substances, is the ratio of the weight of a given volume of the substance to the same volume of water. For gases, the unit of comparison is an equal volume of air. The water unit in specific gravity determinations is assumed to be pure and at

its temperature of greatest density.

Since, in the metric system, the units of weight are derived from the units of volume in terms of the weight of water, the specific gravity of any substance is also its weight in metric units. Thus, if the specific gravity of a certain iron is 7, a cubic centimetre of it will weigh 7 grammes, or a cubic decimetre will weigh 7 kilogrammes. In English units there is no such integral relation between the units of weight and volume of water, and hence the weight of a cubic inch or cubic foot of any substance must be given in pounds in addition to the specific gravity, or it can be computed from the latter by multiplying it by the weight of the given volume of water.

Since a submerged body is buoyed up by a force equal to the weight of an equal volume of water, the specific gravity of any solid substance may

be found by the following methods:

To Find the Specific Gravity.

W = weight of a body in the air.

w = weight of the body (heavier than water) immersed in water.

S = specific gravity of the body. Then

$$W-w:W=1:S, \qquad S=\frac{W}{W-w}.$$

Required the specific gravity of a piece of iron ore weighing 6.345 pounds in the air and 4.935 pounds in water, S=?

$$S = \frac{6.345}{6.345 - 4.935} = 4.5$$
, the specific gravity.

When the body is lighter than water, attach to it a heavier body that is able to sink the lighter one.

S = specific gravity of the heavier attached body.

s = specific gravity of the lighter body.

W = weight of the two bodies in air.

w = weight of the two bodies in water.

V = weight of the heavier body in air.

v = weight of the lighter body in air.

 $s = \frac{v}{W - w - \frac{V}{S}}.$ 2.

To a piece of wood, which weighs v=14 pounds in the air, is fastened a piece of cast-iron, V=28 pounds; the two bodies together weigh w=11.7 pounds in water. Required the specific gravity of the wood?

W = V + v = 28 + 14 = 42 pounds. S = 7.2, the specific gravity of cast-iron.

Formula 2. $S = \frac{14}{42 - 11.7 - \frac{28}{7.9}} = 0.529$, the specific gravity of the wood (Spanish white poplar).

A simple way to obtain the specific gravity of wood is to make it into a rod and place it vertically in water; then, when in equilibrium, the immersed end is to the whole rod as the specific gravity is to I.

A cylinder of wood is 6 feet 3 inches long. When immersed vertically in water it will sink 3 feet 9 inches by its own weight. Required its spe-

cific gravity?

$$3.75:6.25 = S:1.$$
 $S = \frac{3.75}{6.25} = 0.600.$

To Find the Percentage of Alloy in Metals, or to Find the Proportions of Two Ingredients in a Compound.

 $V = \frac{W - \epsilon(W - w)}{1 - \frac{s}{S}}.$ 3.

A metal compounded of silver and gold weighs W=6 pounds in the air, and in water w = 5.636 pounds. Required the proportions of silver and gold?

> S = 19.36, the specific gravity of gold. s = 10.51, the specific gravity of silver.

Weight
$$V = \frac{6 - 10.51(6 - 5.636)}{1 - \frac{10.51}{19.36}} = \frac{4.755 \text{ pounds of gold and }}{1.245 \text{ pounds of silver.}}$$

" wire 21.042 761 " hammered 20.337 736 " purified 19.500 706 " Crude, grs. 15.602 565 Gold, hammered 19.361 700 " pure cast 19.258 697 " 22 carats' fine 17.486 733 " 20 " " 15.702 568 Mercury, solid at —400 15.632 566 " 4 22 carats' fine 17.486 733 " 20 " " 15.702 568 Mercury, solid at —400 15.632 566 " 4 22 carats' fine 11.386 491 " 60° F 13.560 491 " " 212° F 13.619 493 " " " 212° F 13.635 494 Lead, pure 11.330 410 " hammered 11.338 412 Silver, hammered 11.338 412 " black 25.84 998 " " 10.474 379 Bismuth 9.823 355 Red lead 8.8940 324 " pure 8.808 233 Manganese 8.030 290 Copper, wire & rolled 8.878 321 Cinnabar 8.098 233 Manganese 8.030 290 Copper, wire & rolled 8.878 321 Srbeel, cast-steel 7.919 286 Roters them of the roll of						
Metals.		0:	1.c		0 %	5.ct
Metals.	77	ity	ab b.	37 0 1	iti	ngh h
Metals.	Names of substances.	ec v.v.	ei 2	Names of substances.	ec X	ei.
Metals.		Sre	P. W.		Srs	P P
Platinum, rolled		92 W	ر ط			, u
Platinum, rolled						
" wire 21.042 761 " hammered 20.337 736 " purified 19.500 706 " Crude, grs. 15.602 565 Gold, hammered 19.361 700 " pure cast 19.258 697 " 22 carats' fine 17.486 733 " 20 " " 15.702 568 Mercury, solid at —400 15.632 566 " 4 22 carats' fine 17.486 733 " 20 " " 15.702 568 Mercury, solid at —400 15.632 566 " 4 22 carats' fine 11.386 491 " 60° F 13.560 491 " " 212° F 13.619 493 " " " 212° F 13.635 494 Lead, pure 11.330 410 " hammered 11.338 412 Silver, hammered 11.338 412 " black 25.84 998 " " 10.474 379 Bismuth 9.823 355 Red lead 8.8940 324 " pure 8.808 233 Manganese 8.030 290 Copper, wire & rolled 8.878 321 Cinnabar 8.098 233 Manganese 8.030 290 Copper, wire & rolled 8.878 321 Srbeel, cast-steel 7.919 286 Roters them of the roll of	Metals.		Lb.	Stones.—Continued.		Lb.
" wire 21.042 761 " hammered 20.337 736 " purified 19.500 706 " Crude, grs. 15.602 565 Gold, hammered 19.361 700 " pure cast 19.258 697 " 22 carats' fine 17.486 733 " 20 " " 15.702 568 Mercury, solid at —400 15.632 566 " 4 22 carats' fine 17.486 733 " 20 " " 15.702 568 Mercury, solid at —400 15.632 566 " 4 22 carats' fine 11.386 491 " 60° F 13.560 491 " " 212° F 13.619 493 " " " 212° F 13.635 494 Lead, pure 11.330 410 " hammered 11.338 412 Silver, hammered 11.338 412 " black 25.84 998 " " 10.474 379 Bismuth 9.823 355 Red lead 8.8940 324 " pure 8.808 233 Manganese 8.030 290 Copper, wire & rolled 8.878 321 Cinnabar 8.098 233 Manganese 8.030 290 Copper, wire & rolled 8.878 321 Srbeel, cast-steel 7.919 286 Roters them of the roll of	Platinum, rolled	22,669	.798	Alabaster, vellow	2.699	.0974
"hammered 20.337 736 "Quincy 2.652 9976 "crude, grs. 15.602 565 "Quincy 2.652 9986 Gold, hammered 19.361 700 "Patapseco 2.640 9954 "pure cast 19.258 697 "Scotch 2.625 .994 "curde, y. Solid at —40° 15.702 568 Talc, black 2.900 1097 Mercury, solid at —40° 15.632 556 Quartz 2.660 .966 "a " 60° F. 13.580 491 Pearl, Oriental 2.650 .995 "a " 212° F. 13.37 444 Flint, white 2.582 .993 Lead, pure 11.384 Flint, white 2.582 .993 Silver, hammered 10.511 381 Stone, common 2.520 .991 Bismuth 9.823 355 mill 2.443 .99 .98 Marganese 8.090 290 Grindstone 2.143 .97 Copper, wire & rol				Coral, red		.0974
" purified. 19.500 706 " Quincy. 2.652 0955 601d, hammered. 19.361 700 " Scotch. 2.640 0956 19.361 700 " Scotch. 2.625 0946 7092	" hammered.				2.704	.0976
Gold, hammered 19.361 700 "Scotch 2.625 995" "20 " 15.702 568 697 Marble, white Italian 2.708 9968 9968 9969 "15.702 15.688 17.486 733 "common 2.686 9966 9966 9966 9967 13.508 17alc, black 2.900 1096 9968 9968 9969 9969 9969 9969 9969 9					2.652	.0958
Gold, hammered				" Patapsco		
" pure cast 19.258 697 Marble, white Italian 2.768 0978 " 22 carats fine 17.486 733 " common 2.686 0968 " at +32° F 13.619 493 31ate 2.660 0965 " " 60° F 13.580 491 Pearl, Oriental 2.660 0965 " " 212° F 13.37 494 Slate 2.660 0965 " " 212° F 13.37 494 Pearl, Oriental 2.660 0965 " " hammered 11.388 412 " black 2.582 0933 Lead, pure 10.474 379 " Bristol 2.510 0906 Bismuth 9.823 355 mill 2.484 0878 Red lead 8.940 324 " paving 2.416 0878 Copper, wire & rolled 8.878 318 Salt, common 2.130 077 Steel, cast-steel 7.919 286 Rotten stone 1.981 071 " cost-iron <t< td=""><td>Gold, hammered</td><td></td><td></td><td></td><td>2,625</td><td>.0948</td></t<>	Gold, hammered				2,625	.0948
" 22 carats' fine 17.486 733 " common 2.686 0.966 " 20 " " " 15.702 .568 Talc, black 2.900 .010 " at +32° F . 13.6619 493 Slate 2.672 .096 .096 " " 60° F . 13.580 491 Pearl, Oriental 2.660 .096 .096 " " 212° F . 13.375 484 Shale 2.600 .094 Lead, pure 11.330 410 Flint, white 2.594 .993 " hammered 11.383 412 " black 2.582 .093 Silver, hammered 10.511 381 Stone, common 2.500 .091 Bismuth 9.823 355 " mill 2.484 .087 Red lead 8.940 324 " paving 2.168 .078 Copper, wire & rolled 8.878 321 Salt, common 2.130 .077 Bronze, gun metal 8.700 282 Grindstone 2.143 .077 Steel, cast-steel 7.91 286 Rotten stone 1.931 .071 Steel, cast-steel 7.780 282 <					2,708	
" 20 " " 15.702 .568 Talc, black 2.900 .0106 Mercury, solid at -40° 15.632 .566 Quartz 2.660 .966 " at +32° F. 13.619 .493 Pearl, Oriental 2.660 .966 " " " " 60° F. 13.580 .491 Pearl, Oriental 2.660 .0956 " at -32° F. 13.580 .491 Pearl, Oriental 2.650 .0956 Lead, pure 11.338 .410 Flint, white. 2.594 .0936 Lead, pure 10.511 .381 .412 " black 2.584 .098 Silver, hammered 10.511 .381 .412 " black 2.594 .093 " pure 10.474 .379 " Bristol 2.510 .090 Red lead 8.940 .324 " paving 2.416 .0878 Red lead 8.940 .324 " paving 2.416 .0878 Rot pure 8.783 .318 .312 Colypering .216 <td>" 22 carats' fine</td> <td>17.486</td> <td></td> <td></td> <td></td> <td></td>	" 22 carats' fine	17.486				
Mercury, solid at —40° 15.632 566 Quartz 2.660 .996 " at +32° 13.619 .493 Slate 2.670 .966 " " 60° F 13.580 .491 Pearl, Oriental 2.650 .0957 Lead, pure 11.330 410 Flint, white 2.560 .094 " hammered 10.511 .881 12° black 2.582 .093 Silver, hammered 10.474 .379 " Bristol 2.510 .090 " pure 10.474 .379 " Bristol 2.510 .090 Red lead 8.940 .324 " mill 2.484 .087 Kanganese 8.093 .293 Gyrpsum, opaque 2.168 .078 Bronze, gun metal 8.700 .315 Saltpetre 2.090 .075 Bronze, gun metal 8.700 .315 Sulphur, native 2.033 .073 Bress, common 7.820 .282 Common soil 1.984 .071 <td>" 20 " " …</td> <td></td> <td></td> <td></td> <td></td> <td></td>	" 20 " " …					
"" at +82° F 13.619 493 Slate 2.672 .0966 "" "212° F 13.3580 491 Pearl, Oriental 2.650 .0957 Lead, pure 11.330 410 Flint, white 2.594 .0938 "hammered 10.511 381 Whack 2.582 .0938 Silver, hammered 10.474 379 Bristol 2.500 .0914 Edead 8.940 324 "paving 2.416 .0872 Cinnabar 8.098 293 Grypsum, opaque 2.168 .0788 Manganese 8.030 290 Grindstone 2.143 .077 Copper, wire & rolled 8.878 .321 Salt, common 2.130 .077 Brass, common 7.820 .282 Common soil 1.984 .071 Steel, cast-steel 7.919 .286 Rotten stone 1.981 .041 " wrought & rol'd 7.780 .282 Infon, pure 7.768 .281 Iror 1.872<	Management and 11 d at 400	15 000		Quartz		
"hammered 11.388 412	" at +32° F	13.619		Slate	2.672	
"hammered 11.388 412	" " 60° F	13 580		Pearl Oriental		
"hammered 11.388 412	" " 212° F	13 375		Shale		
" hammered 11.381 .412 " black 2.582 .093 Silver, hammered 10.474 .379 Bismuth 9.823 .355 " Bristol 2.510 .0906 Red lead 8.940 .324 " paving 2.416 .0872 Cinnabar 8.098 .293 Gypsum, opaque 2.168 .0782 Manganese 8.030 .290 Grindstone 2.130 .0772 Copper, wire & rolled 8.878 .321 Salt, common 2.130 .0772 Bronze, gun metal 8.700 .315 Saltphur, native 2.090 .0758 Brass, common 7.820 .282 Common soil 1.984 .0717 Steel, cast-steel 7.919 .286 Rotten stone 1.981 .0416 " common soft 7.383 .283 Clay 1.930 .0698 " wrought & roll'd 7.780 .282 Plaster of Paris 1.872 .0677 Tin, from Bohmen 7.312 .265 Sand 1.800 .0651 " cast 6.861 .248	Lead nure	11 330		Flint white		
Silver, hammered. 10.511 381 " pure. 10.474 379 " Bismuth 9.823 355 " mill. 2.484 0.897 Cinnabar 8.098 293 Gypsum, opaque 2.416 0.976 Opper, wire & rolled 8.878 321 Salt, common 2.130 0.776 Opper, wire & rolled 8.878 321 Salt, common 2.130 0.776 Opper, wire & rolled 8.878 321 Salt, common 2.130 0.776 Opper, wire & rolled 8.878 321 Salt, common 2.130 0.776 Opper, wire & rolled 8.788 318 Saltpetre 2.090 0.755 Opper, wire & rolled 8.788 318 Saltpetre 2.090 0.755 Opper, wire & rolled 8.788 318 Saltpetre 2.090 0.755 Opper, wire & rolled 8.788 318 Saltpetre 2.090 0.755 Opper, wire & rolled 7.780 2.820 Opper, wire & rolled 7.833 2.83 Common soil 1.984 0.717 Opper, wire & rolled 7.833 2.83 Common soil 1.984 0.717 Opper, wire & rolled 7.833 2.83 Clay 1.930 Opper, wire & rolled 7.789 2.82 Opper, wire & rolled 7.830 Opper, wire & rolled 7.830 Opper, wire & rolled 0.688 Opper, wire & rolled 0.788 Opp	" hammered	11 388		" black	2.582	
" pure 10.474 379 "Bristol 2.510 .0906 Red lead 8.940 .324 "paving 2.416 .0872 Cinnabar 8.098 .293 Gypsum, opaque 2.168 .0782 Manganese 8.030 .290 Grindstone 2.143 .0772 Copper, wire & rolled 8.878 .321 Salt, common 2.130 .0770 Copper, wire & rolled 8.878 .321 Salt, common 2.130 .0770 Bronze, gun metal 8.700 .315 Saltphur, native 2.093 .0781 Bronze, gun metal 8.700 .315 Sulphur, native 2.033 .0782 Brass, common 7.820 .282 Common soil 1.984 .0717 Steel, cast-steel 7.919 .286 Rotten stone 1.981 .044 "word had'ed & temp. 7.818 .283 Brick 1.900 .068 "worought & rol'd 7.789 .282 Plaster of Paris 1.872 .06	Silver hammered				2.520	
Bismuth 9.823 .355 "mill 2.484 .0872 Red lead 8.940 .324 "paving 2.416 .0872 Cinnabar 8.098 .293 Gypsum, opaque 2.168 .0782 Copper, wire & rolled 8.878 .318 Salt, common 2.133 .0772 Copper, wire & rolled 8.878 .318 Saltpetre 2.090 .0755 Bronze, gun metal 8.700 .315 Sulphur, native 2.033 .073 Brass, common 7.820 .282 Common soil .1984 .0717 Steel, cast-steel 7.919 .286 Rotten stone 1.981 .0416 "common soft 7.831 .283 Clay 1.900 .0688 "wrought & rol'd 7.789 .282 Nitre 1.900 .0688 "wrought & rol'd 7.789 .282 Nitre 1.900 .0688 "English 7.291 .264 Phosphorus 1.770 .0640 <td< td=""><td>" nure</td><td></td><td></td><td>" Bristol</td><td>2.510</td><td></td></td<>	" nure			" Bristol	2.510	
Red lead 8.940 .324 "paving 2.416 .0875 Cinnabar 8.098 .293 Gypsum, opaque 2.168 .0785 Manganese 8.030 .290 Grindstone 2.143 .0775 Copper, wire & rolled 8.878 .321 Salt, common 2.130 .0775 Bronze, gun metal 8.700 .315 Saltpetre 2.093 .0735 Brass, common 7.820 .282 Common soil 1.984 .0717 Steel, cast-steel 7.919 .286 Rotten stone 1.981 .0416 "common soft 7.833 .283 Clay 1.930 .0698 "hand'ed & temp 7.818 .283 Brick 1.900 .0688 "wrought & rol'd 7.780 .282 Plaster of Paris 2.2473 .089 "wrought & rol'd 7.780 .282 Plaster of Paris 2.473 .089 "cast in, from Bohmen 7.312 .265 Sand 1.800 .0651	Riemuth					
Cinnabar 8.098 293 Gypsum, opaque 2.168 .0782 Copper, wire & rolled 8.878 .291 Grindstone 2.143 .0775 Copper, wire & rolled 8.788 .321 Salt, common 2.130 .0770 Bronze, gun metal 8.700 .315 Saltpetre 2.090 .0758 Brass, common 7.820 .282 Common soil 1.984 .0717 Steel, cast-steel 7.919 .286 Rotten stone 1.981 .0416 "common soft 7.833 .283 Clay 1.930 .0698 Iron, pure 7.788 .281 Nitre 1.900 .0686 "wrought & rol'd 7.789 .282 Plaster of Paris 1.872 .0677 Tin, from Bohmen 7.312 .265 Sand 1.800 .0651 Zinc, rolled 7.191 .266 Borax 1.770 .0640 Wire 6.6712 .244 Antimony 6.6712 .244 Antimony	Red lead		394			
Manganese 8.090 290 Grindstone 2.143 .0772 Copper, wire & rolled 8.878 .321 Salt, common 2.130 .077 " pure 8.788 .318 Salt, common 2.130 .077 Bronze, gun metal 8.700 .315 Sulphur, native 2.033 .078 Brass, common 7.820 .282 Common soil 1.984 .0717 Steel, cast-steel 7.919 .286 Rotten stone 1.981 .0416 " common soft 7.833 .283 Clay 1.930 .069 " common soft 7.833 .283 Nitre 1.990 .0638 Iron, pure 7.768 .281 Nitre 1.900 .0638 " wrought & rol'd 7.789 .282 Plaster of Paris 1.242 .067 " English 7.291 .264 Ivory 1.822 .0665 " English 7.291 .264 Ivory 1.822 .067 Altimony <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Copper, wire & rolled 8.878 321 Salt, common 2.130 .0772 Bronze, gun metal 8.780 .315 Saltpetre 2.090 .0755 Brass, common 7.820 .282 Sulphur, native 2.033 .0735 Brass, common 7.820 .282 Common soil 1.984 .0717 Steel, cast-steel 7.919 .286 Rotten stone 1.981 .0416 "common soft 7.833 .283 Clay 1.930 .0698 "hard'ed & temp 7.818 .283 Brick 1.900 .0688 "wrought & rol'd 7.780 .282 Plaster of Paris 1.872 .0677 "wrought & rol'd 7.780 .282 Plaster of Paris 1.872 .0677 "cast-tiron 7.291 .265 Sand 1.800 .0651 Zinc, rolled 7.191 .266 Borax 1.770 .064 "aluminium 2.500 .090 "Maryland 1.355 .0490			200	Grindstone		
" pure 8.788 3.18 Saltpetre 2.090 .0755 Brass, common 7.820 .282 Common soil 1.984 .0717 Steel, cast-steel 7.919 .286 Rotten stone 1.981 .0416 " common soft 7.833 .283 Clay 1.930 .0698 " hard'ed & temp 7.768 .282 Rotten stone 1.981 .0419 Iron, pure 7.768 .283 Brick 1.900 .0688 " wrought & rol'd 7.789 .282 Nitre 1.900 .068 " bammered 7.789 .282 Plaster of Paris 2.473 .0894 " cast-iron 7.207 .261 Ivory 1.822 .0657 Tin, from Bohmen 7.312 .265 Sand 1.800 .0651 Zinc, rolled 7.191 .266 Borax 1.770 .0644 Aluminium 2.500 .090 "Maryland 1.355 .0490 Aluminium <t< td=""><td></td><td></td><td></td><td>Salt common</td><td>2.130</td><td></td></t<>				Salt common	2.130	
Bronze, gun metal 8.700 .315 Sulphur, native 2.033 .0782 Brass, common 7.820 .282 Common soil 1.984 .071 Steel, cast-steel 7.919 .286 Rotten stone 1.981 .0416 " common soft 7.833 .283 Clay 1.930 .0698 " hard'ed & temp 7.818 .283 Rrick 1.900 .0688 Iron, pure 7.768 .281 Nitre 1.900 .0688 " wrought & rol'd 7.789 .282 Rastiron 7.207 .261 Livory 1.822 .0698 " acst-iron 7.207 .261 Lvory 1.822 .0689 Tin, from Bohmen 7.312 .265 Sand 1.800 .0651 Zinc, rolled 7.191 .260 Borax 1.714 .0620 Antimony 6.712 .244 Coal, anthracite 1.460 .0593 Atheric 4.011 .145 Earth, loose 1.500 <td>copper, wire & folled.</td> <td>0.010</td> <td></td> <td></td> <td>2.100</td> <td></td>	copper, wire & folled.	0.010			2.100	
Brass, common 7.820 282 Common soil 1.984 .0717 Steel, cast-steel 7.919 286 Rotten stone 1.981 .0698 "common soft 7.833 283 Clay 1.930 .0698 "hard'ed & temp. 7.818 283 Brick 1.900 .0688 "wrought & rol'd 7.789 282 Plaster of Paris 1.872 .0677 "mammered 7.789 282 Plaster of Paris 2.473 .0898 "cast-iron 7.207 261 Ivory 1.822 .0657 Zinc, rolled 7.191 .260 Borax 1.770 .0662 "cast 6.861 .248 Coal, anthracite 1.640 .0593 Aluminium 2.500 .090 "Maryland 1.355 .0490 Arsenic 5.763 .208 "Scotch 1.270 .0460 Emery 4.000 .144 Amber 1.078 .0387 Limestone, green 3.						
Steel, cast-steel	Bress common	7 890				
" common soft 7.833 283 Clay 1.930 .0698 " hard'ed & temp. 7.818 283 Brick 1.900 .0688 Iron, pure 7.788 281 Nitre 1.900 .0688 " wrought & rol'd 7.789 282 Nitre 1.900 .0688 " hammered 7.789 282 Plaster of Paris 2.473 .0894 " cast-iron 7.207 261 Ivory 1.822 .0652 Tin, from Bohmen 7.312 .264 Sand 1.800 .0651 Zinc, rolled 7.291 .260 Borax 1.714 .0620 " cast 6.861 .248 Coal, anthracite 1.460 .0593 Antimony 6.712 .244 Coal, anthracite 1.460 .0593 Stones and Earths Topaz, oriental 4.011 .145 Earth, loose 1.500 .0470 Emery 4.000 .144 Earth, loose 1.500 .0596 <	Steel cest-steel			Rotton stone		
" hard'ed & temp. 7.818 283 Brick 1.900 .0688 " wrought & rol'd 7.786 281 Nitre 1.900 .0638 " wrought & rol'd 7.780 282 Nitre 1.900 .0638 " cast-iron 7.290 261 Ivory 1.822 .0659 Tin, from Bohmen 7.312 .265 Sand 1.800 .0651 " English 7.291 .264 Phosphorus 1.770 .0661 " cast 6.861 .248 Borax 1.714 .0620 " cast 6.861 .248 Coal, anthracite 1.640 .0593 Aluminium 2.500 .090 " Maryland 1.355 .0490 Arsenic 5.763 .208 " Scotch 1.300 .0470 Emery 4.000 .144 .050 .0542 Limes or, green 3.180 .15 .154 .050 .0542 Limestone, green 3.156 .114 .146 .1441 .062 Asbestos, starry 3.073 .111	" common soft		200	Clay		
Iron, pure.	" hard'ed & temp	7 818	200	Brick		
"wrought & rol'd. 7.780 282 "hammered. 7.789 282 "cast-iron. 7.297 281 "cast-iron. 7.207 261 Image: First of parts. 1.872 2.682 "cast-iron. 7.291 264 Phosphorus. 1.770 0.640 Zinc, rolled. 7.191 260 Borax. 1.714 0.620 "cast. 6.861 248 Antimony. 6.712 244 Coal, anthracite 1.640 0.593 Aluminium. 2.500 0.90 "Maryland. 1.355 0.490 Arsenic. 5.763 208 "Scotch. 1.300 0.970 Stones and Earths. "New Castle. 1.270 0.460 Emery. 4.001 1.45 Earth, loose. 1.500 0.542 Diamond. 3.521 1.27 Amber. 1.078 0.387 Limestone, green. 3.160 1.14 Earth, loose. 1.647 0.562 <t< td=""><td></td><td>7.768</td><td></td><td>Nitro</td><td></td><td></td></t<>		7.768		Nitro		
" hammered 7.789 282 " cast-iron 7.297 261 Tin, from Bohmen 7.312 265 Zinc, rolled 7.191 266 Cinc, rolled 7.191 266 " cast 6.861 248 Antimony 6.712 244 Aluminium 2.500 .090 Arsenic 5.763 208 Stones and Earths. "Maryland 1.356 Topaz, Oriental 4.011 .145 Emery 4.000 .144 Diamond 3.521 .127 Asbestos, starry 3.03 .111 Glass, flint 2.933 .106 " white 2.892 .104 " bottle 2.732 .0987 Marble, Parian 2.838 .1030 " african 2.708 .0978 Mica 2.800 .000 Hone, white razor 2.838 .000 100 Box, French .912 100 Box, French .912 100 Box, Fre	" wrought & rol'd					
" cast-iron 7,207 261 Ivory 1,822 0,652 Tin, from Bohmen 7,312 2,655 Sand 1,800 0,651 " English 7,291 2,64 Phosphorus 1,770 0,640 Zinc, rolled 7,191 2,60 Borax 1,714 0,622 " cast 6,861 2,48 Coal, anthracite 1,640 0,593 Antimony 6,712 2,44 Coal, anthracite 1,436 0,592 Aluminium 2,500 .090 "Maryland 1,355 .0490 Arsenic 5,763 2,08 "Seotch 1,355 .0490 Koroes and Earths "New Castle 1,270 .0460 Topaz, Oriental 4,011 .145 Charcoal, triturated 1,350 .050 Emery 4,000 .144 Earth, loose 1,500 .0542 Limestone, green 3,180 .115 Lime, quick .804 .0291 Asbestos, starry 3,073 .111 Charcoal .441 .0160 " white 2,322				Plaster of Paris		
Tin, from Bohmen						
"English 7.291 .264 Phosphorus 1.770 .064d Zinc, rolled 7.191 .260 Borax 1.714 .0620 "cast 6.861 .248 Coal, anthracite 1.640 .0593 Aluminium 2.500 .090 "Maryland 1.355 .0490 Arsenic 5.763 .208 "Scotch 1.300 .0470 Stones and Earths. "New Castle 1.270 .0460 Emery 4.001 .145 Earth, loose 1.500 .0542 Emery 4.000 .144 Earth, loose 1.500 .0542 Limestone, green 3.180 .115 Pimstone 1.647 .0598 Limesquick 3.04 Charcoal .441 .0160 Asbestos, starry 3.073 .111 Charcoal .441 .0160 "white 2.982 .104 Charcoal .441 .0160 "green 2.642 .0954 Alder .800 .0289 Marble, Parian 2.838 .1030 Aghple-tree <				Sand		
Zinc, rolled	" English			Phosphorus		
" cast 6.861 .248 Coal, anthracite 1.640 .0592 Antimony 6.712 .244 " Maryland 1.355 .0490 Aluminium 2.500 .090 " Scotch 1.355 .0490 Arsenic 5.763 .208 " Scotch 1.300 .0470 Stones and Earths " New Castle 1.270 .0460 Emery 4.001 .145 Earth, loose 1.500 .0542 Diamond 3.521 .127 Amber 1.078 .0387 Limestone, green 3.180 .115 Pimstone 1.647 .0596 " white 3.156 .114 Charcoal .441 .0160 Glass, flint 2.933 .106 Woods (Dry) Woods (Dry) " bottle 2.2732 .0987 Alder .80 .0287 Marble, Parian 2.838 .1030 Ash, the trunk .845 .0306 " african 2.708 .0978 Bay-tree .822 .0297 Mica 2.800 .1000 Box, French	Zinc rolled					
Antimony. 6.712 244 Coar, antimated 1.436 .0592 .0490 Aluminium 2.500 .090 .090 .090 .	" cost			(
Aluminium 2.500 .090 " Maryland 1.355 .0490 Arsenic 5.763 .208 " Scotch 1.300 .0470 Stones and Earths. Copaz, Oriental 4.011 .145 " New Castle 1.270 .0460 Emery 4.000 .144 Earth, loose 1.500 .0542 Diamond 3.521 .127 Amber 1.500 .0542 Limestone, green 3.180 .115 Pimstone 1.647 .0596 Glass, flint 2.933 .106 Charcoal .441 .0160 "white 2.832 .104 Charcoal .441 .0160 "white 2.282 .104 Woods (Dry). Woods (Dry). Alder .800 .0289 "african 2.283 .1030 Ash, the trunk .845 .0306 Mica 2.800 .0978 Bay-tree .822 .0297 Mica 2.800 .000 Box, French .912 .0330	Antimony			Coal, anthracite {		
Arsenic 5.763 .208 "Scotch 1.300 .0470 .0460 .0520 .0460 .0460 .0460 .0464 .011 .145 .1270 .0460 .0542 .016 .016 .0542 .016 .016 .016 .016 .016 .016 .016 .016	Aluminium	2.500				
Stones and Earths. "New Castle				" Scotch		
"Diamond	iliscino	0.100	.200	" New Castle		
Topaz, Oriental 4.011 .145 Charcoal, triturated 1.380 0.500 Emery 4.000 .144 Earth, loose. 1.500 .0542 Diamond 3.521 .127 Amber 1.078 .0387 Limestone, green 3.180 .115 Lime, quick 8.044 .0291 Charcoal 4.41 .0160 Charcoal	Stones and Earths.			" bituminous		
Emery 4,000 1.44 Earth, loose 1,500 .0542 Diamond 3.521 1.27 Amber 1.078 .0387 Limestone, green 3.180 .115 Pimstone 1.647 .0596 " white 3.156 .114 Lime, quick .804 .0291 Asbestos, starry 3.073 .111 Charcoal .441 .0160 " white 2.893 .104 Woods (Dry). Woods (Dry). Woods (Dry). Alder .800 .0289 " bottle 2.732 .0987 Alder .800 .0289 " green 2.642 .0954 Apple-tree .793 .0287 Marble, Parian 2.838 .1030 Ash, the trunk .845 .0308 Mica 2.704 .0978 Bay-tree .822 .0297 " Egyptian 2.668 .0964 Beech .852 .0308 Mica 2.80 .1000 Box, French .912 .0330	Topaz, Oriental	4.011	.145			
Diamond 3.521 1.27 Amber 1.078 .0387 Limestone, green 3.180 .115 Pimstone 1.647 .0596 " white 3.156 .114 Lime, quick .804 .0291 Asbestos, starry 3.073 .111 Charcoal .441 .0160 " white 2.933 .106 Woods (Dry). Woods (Dry). Woods (Dry). .0287 " bottle 2.2732 .0987 Alder .800 .0289 " green 2.642 .0964 Apple-tree .793 .0287 Marble, Parian 2.838 .1030 Ash, the trunk .845 .0306 " a frican 2.686 .0964 Beech .852 .0929 Mica 2.800 .1000 Box, French .912 .0330 Hone, white razor 2.338 .1040 " Dutch 1.328 .0480 Chalk 2.784 .1000 " Brazilian red 1.031 .0873 Porp						
Limestone, green 3.180 .115 Pimstone 1.647 .0596 " white 3.156 .114 Lime, quick .804 .0291 Asbestos, starry 3.073 .111 Charcoal .441 .0160 " white 2.933 .106 Woods (Dry). .084 .0291 " bottle 2.732 .0987 Alder .800 .0287 Marble, Parian 2.838 .1030 Ash, the trunk .845 .0306 " African 2.708 .0978 Bay-tree .822 .0297 " Egyptian 2.668 .0964 Beech .852 .0308 Mica 2.800 1.000 Box, French .912 .0330 Chalk 2.784 1000 "Dutch 1.328 .0480 Chalk 2.784 1000 "Brazilian red 1.031 .0373 Porphyry 2.765 .0999 Cedar, wild .596 .0219 " blue 2.693 .0971 "Indian 1.315 .0476	Diamond			Amber		
"white 3.156 .114 Lime, quick .804 .0291 Asbestos, starry 3.073 .111 Charcoal .441 .0160 "white 2.892 .104 Woods (Dry). Woods (Dry). Woods (Dry). .987 .987 Alder .800 .0289 "green 2.642 .0954 Apple-tree .793 .0287 Marble, Parian 2.838 .1030 Ash, the trunk .845 .0306 "African 2.708 .0978 Bay-tree .822 .0297 "Egyptian 2.668 .0964 Beech .852 .0308 Mica 2.800 .1000 Box, French .912 .0330 Hone, white razor 2.838 .1040 "Dutch 1.328 .0480 Chalk 2.784 .1000 "Brazilian red 1.031 .0373 Porphyry 2.765 .0999 Cedar, wild .596 .0219 Spar, green 2.704 .0976 "Palest				Pimstone	1.647	
Asbestos, starry 3.073 .111 Charcoal .441 .0160 Glass, flint . 2.933 .106 Woods (Dry). White . 2.892 .104 Woods (Dry). Woods (Dry). Charcoal .262 .0987 Alder800 .0289 Alder800 .0289 Marble, Parian .2.838 .1030 Ash, the trunk845 .0306 Chalk .2800 .1000 Box, French .852 .0298 Chalk .2800 .1000 Box, French .912 .0330 Chalk .2.784 .1000 Box, French .912 .0330 Chalk .2.784 .1000 Brazilian red .1031 .0373 Color .2784 .1000 Cedar, wild .596 .0219 Spar, green .2.704 .0976 Palestine .613 .0222 Charcoal .2893 .0971 Falestine .613 .0222 Charcoal .2893 .0971 Indian .1315 .0476 Charcoal .2893 .0971 Indian .1315 .0476 Charcoal .2892 .0297 Charcoal .2893 .1010 Charcoal .2893 .0971 Falestine .613 .0222 Charcoal .2893 .0971 Falestine .613 .1315 .0476 Charcoal .2891 Charcoal .2891 Charcoal .2891 Charcoal .2891 Charcoal .441 .0160 Charcoal .441 .1160 Charcoal .441 .0160 Charcoal .441 .0160 Charcoal .441 .1160 Charco	" white			Lime, quick		
Glass, flint				Charcoal		
"white 2.892 1.04 Woods (Dry). "bottle 2.732 .0987 Alder. .800 .0289 "green. 2.642 .0954 Apple-tree .793 .0287 Marble, Parian 2.838 .1030 Ash, the trunk .845 .0306 "African 2.708 .0978 Bay-tree. .822 .0297 "Egyptian 2.668 .0964 Beech .852 .0308 Mica 2.800 .1000 Box, French .912 .0330 Hone, white razor 2.838 .1040 "Dutch 1.328 .0480 Chalk 2.784 .1000 "Brazilian red 1.031 .0373 Porphyry 2.765 .0999 Cedar, wild .596 .0219 Spar, green 2.704 .0976 "Palestine .613 .0222 "blue 2.693 .0971 "Indian 1.315 .0476	Glass, flint					******
" bottle 2.732 .0987 Alder .800 .0289 " green 2.642 .0954 Apple-tree .793 .0287 Marble, Parian 2.838 .1030 Ash, the trunk .845 .0306 " African 2.708 .0978 Bay-tree .822 .0297 " Egyptian 2.686 .0964 Beech .852 .0308 Mica 2.800 .1000 Box, French .912 .0330 Hone, white razor 2.838 .1040 "Dutch 1.328 .0480 Chalk 2.784 .1000 "Brazilian red 1.031 .0373 Porphyry 2.765 .0999 Cedar, wild .596 .0219 Spar, green 2.704 .0976 "Palestine .613 .0222 " blue 2.693 .0971 "Indian 1.315 .0476	" white			Woods (Dry),		
"green. 2.642 .0954 Apple-tree .798 .0287 Marble, Parian 2.838 .1030 Ash, the trunk .845 .0360 "African 2.708 .0978 Bay-tree .822 .0297 "Egyptian 2.668 .0964 Beech .852 .0308 Mica 2.800 .1000 Box, French .912 .0330 Hone, white razor 2.838 .1040 "Dutch .1,328 .0480 Chalk 2.784 .1000 "Brazilian red 1.031 .0373 Porphyry 2.765 .0999 Cedar, wild .596 .0219 Spar, green 2.704 .0976 "Palestine .613 .0222 "blue 2.693 .0971 "Indian 1.315 .0476	" bottle			Alder	.800	.0289
Marble, Parian 2.888 1.030 Ash, the trunk .845 .0306 "African 2.708 .0978 Bay-tree .822 .0297 "Egyptian 2.668 .0964 Beech .852 .0308 Mica 2.800 .1000 Box, French .912 .0330 Hone, white razor 2.838 .1040 "Dutch 1.328 .0480 Chalk 2.784 .1000 "Brazilian red 1.031 .0373 Porphyry 2.765 .0999 Cedar, wild .596 .0219 Spar, green 2.704 .0976 "Palestine .613 .0222 "blue 2.693 .0971 "Indian 1.315 .0476						
"African 2.708 .0978 Bay-tree .822 .0297 "Egyptian 2.668 .0964 Beech .852 .0308 Mica 2.800 1.000 Box, French .912 .0330 Hone, white razor 2.838 .1040 "Dutch 1.328 .0480 Chalk 2.784 .1000 "Brazilian red 1.031 .0373 Porphyry 2.765 .0999 Cedar, wild .596 .0219 Spar, green 2.704 .0976 "Palestine .613 .0222 "blue 2.693 .0971 "Indian 1.315 .0476				Ash, the trunk		
"Egyptian. 2.668 .0964 Beech. .852 .0300 Mica. 2.800 .1000 Box, French. .912 .0330 Hone, white razor 2.888 .1040 "Dutch. 1.328 .0480 Chalk. 2.784 .1000 "Brazilian red. 1.031 .0373 Porphyry 2.765 .0999 Cedar, wild. .596 .0219 Spar, green 2.704 .0976 "Palestine. .613 .0222 "blue. 2.693 .0971 "Indian. 1.315 .0476	" African			Bay-tree		
Mica 2.800 1000 Box, French .912 .0330 Hone, white razor 2.838 .1040 " Dutch 1.328 .0480 Chalk 2.784 .1000 " Brazilian red 1.031 .0373 Porphyry 2.765 .0999 Cedar, wild .596 .0219 Spar, green 2.704 .0976 " Palestine .613 .0222 " blue 2.693 .0971 " Indian 1.315 .0476						
Hone, white razor 2.888 .1040 " Dutch 1.328 .0480	Mica			Box. French		
Porphyry 2.765 .0999 Cedar, wild .596 .0212 Spar, green 2.704 .0976 "Palestine .613 .0222 "blue 2.693 .0971 "Indian .1315 .0476	Hone, white razor			" Dutch		
Porphyry 2.765 .0999 Cedar, wild .596 .0212 Spar, green 2.704 .0976 "Palestine .613 .0222 "blue 2.693 .0971 "Indian .1315 .0476	Chalk			" Brazilian red		
Spar, green	Porphyry	2.765		Cedar, wild		
" blue	Spar, green	2.704		" Palestine		
Alabaster, white 2.730 .0987 " American561 .0203	" blue	2.693		" Indian		
	Alabaster, white					

Names of substances.	Specific gravity.	Weight per cubic inch.	Names of substances.	Specific gravity.	Weight per cubic inch.
Woods Continued.		Lb.	Liquids.—Continued.		Lb.
Citron	.726	.0263	Oil, olive	.915	.0331
Cocoa-wood	1.040	.0376	" turpentine	.870	.0314
Cherry-tree	.715	.0259	" whale	.932	.0337
Cork	.240	.0087	Proof spirit Vinegar	.925	.0334
Cypress, Spanish	.644	.0233	Vinegar	1.080	.0390
Ebony, American "Indian	1.331	.0481	Water, distilled	1.000 1.030	.0361
Elder-tree	1.209	.0437	" sea " Dead Sea	1.240	.0371
Elder-tree Elm, trunk of	.671	.0243	Wine	.992	.0359
Filbert-tree	.600	.0217	" port	.997	.0361
Fir, male	.550	.0199			
" female	.498	.0180	Miscellaneous.		
Hazel	.600 .770	.0217	(.905	.0327
Juniper-tree	.556	.0201	Asphaltum	1.650	.0597
Lemon-tree	.703	.0254	Atmospheric air	.0012	43
Lignum-vitæ	1.333	.0482	Beeswax	.965	.0349
Linden-tree	.604	.0219	Butter	.942	.0341
Log-wood	.913	.0331	CamphorIndia rubber	.988	.0357
Mahogany	1.063	.0385	Fat of beef	.923	.0334
Maple	.750	.0271	" hogs	.936	.0338
Medlar	.944	.0342	" mutton	.923	.0334
Mulberry Oak, heart of, 60 old	.897	.0324	Gamboge	1.222	.0442
Orange-tree	1.170 .705	.0423	Gunpowder, loose shaken	.900 1.000	.0325
Orange-tree	.661	.0239	(1.550	.0561
Pomegranate-tree	1.354	.0490	30114}	1.800	.0650
Poplar	.383	.0138	Gum Arabic	1.452	.0525
" white Spanish.	.529	.0191	Indigo	1.009	.0365
Plum-treeQuince-tree	.785 .705	.0284	Lard	0.947 1.074	.0343
Sassafras	.482	.0174	Spermaceti	.943	.0341
Spruce	.500	.0181	Sugar	1.605	.0580
" old	.460	.0166	Tallow, sheep	.924	.0334
Pine, yellow	.660	.0239	" calf	.934	.0338
Vine	.554 1.327	.0200	" ox	.923	.0334
Walnut	.671	.0243			Weight
Yew, Dutch	.788	.0285	Gases, Vapors.		cubic ft.
" Spanish	.807	.0292		040	Grains.
Liquids.			Acetylene	.910	480.00 311.00
Acid, acetic	1.062	.0384	Atmospheric air	1.000	527.00
" nitric	1.217	.0440	Carbonic acid	1.527	805.30
" sulphuric	1.841	.0666	Carbonic oxid	.972	512.70
murianc	1.200	.0434	Carburetted hydrog	.972	512.70
" fluoric " phosphoric	1.500 1.558	.0542	Chlorine	2.500 .984	1316.00 519.00
Alcohol, commercial	.833	.0301	Ethylene	.069	36.33
" pure	.792	.0287	Methane	.566	297.00
Ammoniac, liquid	.897	.0324	Nitrogen	.972	512.00
Beer, lager	1.034	.0374	Oxygen	1.104	581.80
Cider	9.970 1.018	.0360	" " wood	.102	53.80 474.00
Egg.	1.090	.0394	Steam at 212°	.488	257.30
Ether, sulphuric	.739	.0267	Sulphuretted hydrog	1.777	9370.00
Honey	1.450	.0524	Sulphurous acid	2.222	1171.00
Human blood	$1.054 \\ 1.032$.0381	Vapor of alcohol	1.613	851.00 2642.00
Milk	.940	.0340	" " turp. spir " water	5.013	328.00
				.020	020.00

For Thicknesses from $\frac{1}{16}$ inch to 2 inches, and Widths from 1 inch to $3\frac{3}{4}$ inches.

Iron weighing 480 pounds per cubic foot.

cness,					W	idth, i	n incl	ies.				
Thickness, in inches.	1	11/4	1½	13/4	2	21/4	2½	23/4	3	31/4	31/2	33/4
	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
16	.208	.260	.313	.365	.417	.469	.521	.573	1	.677	.729	.781
1/8	.417	.521	.625	.729	.833	.938	1.04	1.15	1.25	1.35	1.46	1.56
1 ³ 6	.625	.781		1	1.25	1.41	1.56	1.72	1.88	2.03	2.19	2.34
1/4	.833	1.04	1.25	1.46	1.67	1.88	2.08	2.29	2.50	2.71	2.92	3.13
5 16	1.04	1.30	1.56	1.82	2.08	2.34	2.60	2.86	3.13	3.39	3.65	3.91
3/8	1.25	1.56	1.88	2.19	2.50	2.81	3.13	3.44	3.75	4.06	4.38	4.69
76	1.46	1.82	2.19	2.55	2.92	3.28	3.65	4.01	4.38	4.74	5.10	5.47
1/2	1.67	2.08	2.50	2.92	3.33	3.75	4.17	4.58	5.00	5.42	5.83	6.25
9 16	1.88	2.34	2.81	3.28	3.75	4.22	4.69	5.16	5.63	6.09	6.56	7.03
5/8	2.08	2.60	3.13	3.65	4.17	4.69	5.21	5.73	6.25	6.77	7.29	7.81
116	2.29	2.86	3.44	4.01	4.58	5.16	5.73	6.30	6.88	7.45	8.02	8.59
3/4	2.50	3.1 3	3.75	4.38	5.00	5.63	6.25	6.88	7.50	8.13	8.75	9.38
13	2.71	3.39	4.06	4.74	5.42	6.09	6.77	7.45	8.13	8.80	9.48	10.16
7/8	2.92	3.65	4.38	5.10	5.83	6.56	7.29	8.02	8.75	9.48	10.21	10.94
15	3.13	3.91	4.69	5.47	6.25	7.03	7.81	8.59	9.38	10.16	10.94	11.72
1	3.33	4.17	5.00	5.83	6.67	7.50	8.33	9.17	10.00	10.83	11.67	12.50
16	3.54	4.43	5.31	6.20	7.08	7.97	8.85	9.74	10.63	11.51	12.40	13.28
1/8	3.75	4.69	5.63	6.56	7.50	8.44	9.38	10.31	11.25	12.19	13.13	14.06
3 16	3.96	4.95	5.94	6.93	7.92	8.91	9.90	10.89	11.88	12.86	13.85	14.84
1/4	4.17	5.21	6.25	7.29	8.33	9.38	10.42	11.46	12.50	13.54	14.58	15.63
5 16	4.37	5.47	6.56	7.66	8.75	9.84	10.94	12.03	13.13	14.22	15.31	16.41
3/8	4.58	5.73	6.88	8.02	9.17	10.31	11.46	12.60	13.75	14.90	16.04	17.19
76	4.79	5.99	7.19	8.39	9.58	10.78	11.98	13.18	14.38	15.57	16.77	17.97
1/2	5.00	6.25	7.50	8.75	10.00	11.25	12.50	13.75	15.00	16.25	17.50	18.75
16	5.21	6.51	7.81	9.11		11.72		14.32		16.93	18.23	19.53
5/8	5.42	6.77	8.13	9.48	10.83	12.19	13.54	14.90	16.25	17.60	18.96	20.31
11	5.63	7.03	8.44	9.84	11.25	12.66		15.47	16.88	18.28	19.69	21.09
3/4	5.83	7.29	8.75	10.21	11.67	13.13	14.58	16.04	17.50	18.96	20.42	21.88
13	6.04	7.55	9.06	10.57	12.08	13.59	15.10	16.61	18.13	19.64	21.15	22.66
7/8	6.25	7.81	9.38	10.94	12.50	14.06	15.63	17.19	18.75	20.31	21.88	23.44
18	6.46	8.07	9.69	11.30	12.92	14.53	16.15	17.76		20.99	22.60	24.22
2	6.67	8.33	10.00	11.67	13.33	15.00	16.67	18.33	20.00	21.67	23.33	25.00

For Thicknesses from $\frac{1}{16}$ inch to 2 inches, and Widths from 4 inches to $6\frac{3}{4}$ inches.

Iron weighing 480 pounds per cubic foot.

Thickness, in inches.					Wi	idth, i	n inch	ies.				
Thick in inc	4	41/4	4½	43/4	5	51/4	5½	53/4	6	61/4	6½	63/4
	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
16	.833	i .	1	.990	1.04	1.09	1.15	1.20	1.25	1.30	1.35	1.41
1/8	1.67	1.77	1.88	1.98	2.08	2.19	2.29	2.40	2.50	2.60	2.71	2.81
16 16	2.50	2.66	2.81	2.97	3.13	3.28	3.44	3.59	3.75	3.91	4.06	4.22
1/4	3.33	3.54	3.75	3.96	4.17	4.38	4.58	4.79	5.00	5.21	5.42	5.63
1 ⁵ 6	4.17	4.43	4.69	4.95	5.21	5.47	5.73	5.99	6.25	6.51	6.77	7.03
3/8	5.00	5.31	5.63	5.94	6.25	6.56	6.88	7.19	7.50	7.81	8.13	8.44
76	5.83	6.20	6.56	6.93	7.29	7.66	8.02	8.39	8.75	9.11	9.48	9.84
$\frac{1}{2}$	6.67	7.08	7.50	7.92	8.33	8.75	9.17	9.58	10.00	10.42	10.83	11.25
9 16	7.50	7.97	8.44	8.91	9.38	9.84	10.31	10.78	11.25	11.72	12.19	12.66
5/8	8.33	8.85	9.38	9.90	10.42	10.94	11.46	11.98	12.50	13.02	13.54	14.06
11	9.17	9.74	10.31	10.89	11.46	12.03	12.60	13.18	13.75	14.32	14.90	15.47
3/4	10.00	10.63	11.25	11.88	12.50	13.13	13.75	14.38	15.00	15.63	16.25	16.88
13	10.83	11.51	12.19	12.86	13.54	14.22	14.90	15.57	16.25	16.93	17.60	18.28
7/8	11.67	12.40	13.13	13.85	14.58	15.31	16.04	16.77	17.50	18.23	18.96	19.69
15	12.50	13.28	14.06	14.84	15.63	16.41	17.19	17.97	18.75	19.53	20.31	21.09
1	13.33	14.17	15.00	15.83	16.67	17.50	1 8.33	19.17	20.00	20.83	21.67	22.50
16	14.17	15.05	15.94	16.82	17.71	18.59	19.48	20.36	21.25	22.14	23.02	23.91
1/8	15.00	15.94	16.88	17.81	18.75	19.69	20.63	21.56	22.50	23.44	24.38	25.31
3 16	15.83	16.82	17.81	18.80	19.79	20.78	21.77	22.76	23.75	24.74	25.73	26.72
1/4	16.67	17.71	18.75	19.79	20.83	21.88	22.92	23.96	25.00	26.04	27.08	28.13
5 16	17.50	18.59	19.69	20.78	21.88	22.97	24.06	25.16	26.25	27.34	28.44	29.53
3/8	18.33	19.48	20.63	21.77	22.92	24.06	25.21	26.35	27.50	28.65	29.79	30.94
7 16	19.17	20.36	21.56	22.76	23.96	25.16	26.35	27.55	28.75	29.95	31.15	32.34
1/2	20.00	21.25	22.50	23.75	25.00	26.25	27.50	28.75	30.00	31.25	32.50	33.75
9	20.83	22.14	23.44	24.74	26.04	27.34	28.65	29.95	31.25	32.55	33.85	35.16
5/8	21.67	23.02	24.38	25.73	27.08	28.44	29.79	31.15	32.50	33.85	35.21	36.56
11	22.50	23.91	25.31	26.72	28.13	29.53	30.94	32.34	33.75	35.16	36.56	37.97
$\frac{3}{4}$	23.33	24.79	26.25	27.71	29.17	30.63	32.08	33.54	35.00	36.46	37.92	39.38
13 16	24.17	25.68	27.19	28.70	30.21	31.72	33.23	34.74	36.25	37.76	39.27	40.78
7/8	25.00	26.56	28.13	29.69	31.25	32.81	34.38	35.94	37.50	39.06	40.63	42.19
1 <u>5</u>	25.83	27.45	29.06	30.68	32.29	33.91	35.52	37.14	38.75	40.36	41.98	43.59
2	26.67	28.33	30.00	31.67	33.33	35.00	36.67	38.33	40.00	41.67	43.33	45.00
	1							ų, ų				

For Thicknesses from $\frac{7}{16}$ inch to 2 inches, and Widths from 7 inches to $9\frac{3}{4}$ inches.

Iron weighing 480 pounds per cubic foot.

165.6

	Tion weighing 400 pounds per cubic 100t.											
cness,					Wi	dth, i	n inch	es.				
Thickness, in inches.	7	71/4	7½	73/4	8	81/4	8½	83/4	9	91/4	9½	93/4
	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
18	1.46	1.51	1.56	1.61	1.67	1.72	1.77	1.82	1.88	1.93	1.98	2.03
1/8	2.92	3.02	3.13	3.23	3.33	3.44	3.54	3.65	3.75	3.85	3.96	4.06
3 16	4.38	4.53	4.69	4.84	5.00	5.16	5.31	5.47	5.63	5.78	5.94	6.09
1/4	5.83	6.04	6.25	6.46	6.67	6.88	7.08	7.29	7.50	7.71	7.92	8.13
7.6	7.29	7.55	7.81	8.07	8,33	8.59	8.85	9.11	9.38	9.64	9.90	10.16
3/8	8.75	9.06	9.38	9.69		10.31	10.63	10.94				
7	10.21	10.57	10.94	11.30	11.67	12.03	12.40	12.76	13.13	13.49	13.85	14.22
1/2	11.67	12.08	12.50	12.92	13.33	13.75	14.17	14.58	15.00	15.42	15.83	16.25
9	13.13	13.59	14.06	14.53	15.00	15.47	15.94	16.41	16.88	17.34	17.81	18.28
16 5/8	14.58	15.10	15.63	16.15	16.67	17.19	17.71	18.23		19.27	19.79	20.31
116	16.04	16.61	17.19	17.76	18.33	18.91	19.48	20.05		21.20	21.77	22.34
3/4	17.50	18.13		19.38	20.00	20.63	21.25	21.88	22.50	23.13	23.75	24.38
13	18.96	19.64	20.31	20.99	21.67	22.34	23.02	23.70	24.38	25.05	25.73	26.41
7/8	20.42	21.15	21.88	22.60	23.33	24.06	24.79	25.52	26.25	26.98		28.44
78 15	21.88		23.44			25.78	26.56	27.34	28.13	28.91	29.69	30.47
1	23.33	24.17	25.00	25.83	26.67	27.50	28.33	29.17	30.00	30.83	31.67	32.50
1	24.79	25.68	26.56	27.45	28.33	29.22	30.10	30.99	31.88	32.76	33.65	34.53
16 1/8	26.25	27.19	28.13	29.06	30.00	30.94	31.88	32.81	33.75		35.63	36.56
78 3 16	27.71	28.70	29.69	30.68	31.67	32.66	33.65	34.64	35.63	36.61	37.60	38.59
1/4	29.17	30.21	31.25	32.29	33.33	34.38	35.42	36.46	37.50	38.54	39.58	40.63
,5 16	30.62	31.72	32.81	33.91	35.00	36.09	37.19	38.28	39.38	40.47	41.56	42.66
3/8	32.08	33.23	34.38	35.52	36.67	37.81	38.96	40.10	41.25	42.40	43.54	44.69
78 18	33.54	34.74	35.94	37.14	38.33	39.53	40.73	41.93	43.13	44.32	45.52	46.72
16 1/2	35.00	36.25	37.50	38.75	40.00	41.25	42.50	43.75	45.00	46.25	47.50	48.75
9	36.46	37.76	39.06	40.36	41.67	42.97	44.27	45.57	46.88	48.18	49.48	50.78
5/8	37.92	39.27	40.63	41.98	43.33	44.69	46.04	47.40	48.75	50.10	51.46	52.81
78 11	39.38	40.78	42.19	43.59	45.00	46.41	47.81	49.22	50.63	52.03	53.44	54.84
3/4	40.83	42.29	43.75	45.21	46.67	48.13	49.58	51.04	52.50	53.96	55.42	56.88
13	42.29	43.80	45.31	46.82	48.33	49.84	51.35	52.86	54.38	55.89	57.40	58.91
7/8	43.75	45.31	46.88	48.44	50.00	51.56	53.13		56.25	57.81	59.38	60.94
15	45.21	46.82	48.44	50.05	51.67	53.28	54.90	56.51	58.13	59.74	61.35	62.97
2	46.67	48.33	50.00	51.67	53.33	55.00	56.67	58.33	60.00	61.67	63.33	65.00

For Thicknesses from $\frac{1}{16}$ inch to 2 inches, and Widths from 10 inches to $12\frac{3}{4}$ inches.

Iron weighing 480 pounds per cubic foot.

ness,	Width, in inches.											
Thickness, in inches.	10	101/4	10½	103/4	11	111/4	11½	113/4	12	121/4	12½	123/4
	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
16	2.08	2.14	2.19	2.24	2.29	2.34	2.40	2.45	2.50	2.55	2.60	2.66
1/8	4.17	4.27	4.38	4.48	4.58	4.69	4.79	4.90	5.00	5.10	5.21	5.31
3 16	6.25	6.41	6.56	6.72	6.88	7.03	7.19	7.34	7.50	7.66	7.81	7.97
1/4	8.33	8.54	8.75	8.96	9.17	9.38	9.58	9.79	10.00	10.21	10.42	10.63
5 16	10.42	10.68	10.94	11.20	11.46	11.72	11.98	12.24	12.50	12.76	13.02	13.28
3/8	12.50	12.81	13.13	13.44	13.75	14.06	14.38	14.69	15.00	15.31	15.63	15.94
7	14.58	14.95	15.31	15.68	16.04	16.41	16.77	17.14	17.50	17.86	18.23	18.59
1/2	16.67	17.08	17.50	17.92	18.33	18.75	19.17	19.58	20.00	20.42	20.83	21.25
9	18.75	19.22	19.69	20.16	20.63	21.09	21.56	22.03	22.50	22.97	23.44	23.91
5/8	20.83	21.35	21.88	22.40	22.92	23.44	23.96	24.48	25.00	25.52	26.04	26.56
16	22.92	23.49	24.06	24.64	25.21	25.78	26.35	26.93	27.50	28.07	28.65	29.22
3/4	25.00	25.62	26.25	26.88	27.50	28.13	28.75	29.38	30.00	30.63	31.25	31.88
13	27.08	27.76	28.44	29.11	29.79	30.47	31.15	31.82	32.50	33.18	33.85	34.53
7/8	29.17	29.90	30.63	31.35	32.08	32.81	33.54	34.27	35.00	35.73	36.46	37.19
15 16	31.25	32.03		33.59	34.38	35.16	35.94	36.72	37.50	38.28	39.06	39.84
1	33.33	34.17	35.00	35.83	36.67	37.50	38.33	39.17	40.00	40.83	41.67	42.50
16	35.42	36.30	37.19	38.07	38.96	39.84	40.73	41.61	42.50	43.39	44.27	45.16
1/8	37.50	38.44	39.38	40.31	41.25	42.19	43.13	44.06	45.00	45.94	46.88	47.81
3 16	39.58		41.56		43.54		45.52	46.51	47.50	48.49	49.48	
1/4	41.67	42.71	43.75	44.79	45.83	46.88	47.92	48.96	50.00	51.04	52.08	53.13
5 16	43.75	44.84	45.94	47.03	48.13	49.22	50.31	51.41	52.50	53.59	54.69	55.78
3/8	45.83			49.27	50.42	51.56	52.71	53.85	55.00	56.15	57.29	58.44
7	47.92	1	50.31	51.51	1	53.91	55.10				59.90	
1/2	50.00	51.25	52.50	53.75	55.00	56.25	57.50	58.75	60.00	61.25	62.50	63.75
9 16	52.08	53.39	54.69	55.99	57.29	58.59	59.90	61.20	62.50	63.80	65.10	66.41
5/8	54.17		1				62.29	1			67.71	69.06
116	56.25	57.66			61.88	63.28	64.69	1	67.50		70.31	71.72
3/4	58.33	59.79	61.25	62.71	64.17	65.63	67.08	68.54	70.00	71.46	72.92	74.38
13 16	60.42		63,44		66.46		69.48	1		74.01	75.52	
7/8	62.50				68.75	70.31	71.88	1		76.56	78.13	79.69
15	64.58		1			72.66	74.27	75.89	77.50		80.73	82.34
2 '	66.67	68.33	70.00	71.67	73.33	75.00	76.67	78.33	80.00	81.67	83.33	85.00
*				-		-	-					

Weight of Square and Round Wrought-iron per Lineal Foot.

Thickness or diameter, in inches.	Weight of square bar, in pounds.	Weight of round bar, in pounds.	Thickness or diameter, in inches.	Weight of square bar, n pounds.	Weight of round bar, in pounds.	Thickness or diameter, in inches.	Weight of square bar, in pounds.	Weight of round bar, in pounds.				
0			2	13.33	10.47	4	53.33	41.89				
16	.013	.010	16	14.18	11.14	16	55.01	43.21				
16 1/8	.052	.041	1/8	15.05	11.82	1/8	56.72	44.55				
78 3 16	.117	.092	3 16	15.95	12.53	3 16	58.45	45.91				
1/4	.208	.164	1/4	16.88	13.25	1/4	60.21	47.29				
16	.326	.256	16 16	17.83	14.00	5 16	61.99	48.69				
3/8	.469	.368	3/8	18.80	14.77	3/8	63.80	50.11				
76	.638	.501	7 16	19.80	15.55	7 16	65.64	51.55				
1/2	.833	.654	1/2	20.83	16.36	1/2	67.50	53.01				
72 16	1.055	.828	9 16	21.89	17.19	9 16	69.39	54.50				
5/8	1.302	1.023	5/8	22.97	18.04	5/8	71.30	56.00				
11	1.576	1.237	116	24.08	18.91	11	73.24	57.52				
3/4	1.875	1.473	3/4	25.21	19.80	3/4	75.21	59.07				
13	2.201	1.728	13	26.37	20.71	13 16	77.20	60.63				
7 ⁄8	2.552	2.004	7/8	27.55	21.64	7/8	79.22	62.22				
15	2.930	2.301	15	28.76	22.59	15 16	81.26	63.82				
1	3.333	2.618	3	30.00	23.56	5	83.33	65.45				
16	3.763	2.955	18	31.26	24.55	16	85.43	67.10				
1/8	4.219	3.313	1/8	32.55	25.57	1/8	87.55	68.76				
3 16	4.701	3.692	1 ³ 6	33.87	26.60	1 ³ 6	89.70	70.45				
1/4	5.208	4.091	1/4	35.21	27.65	1/4	91.88	72.16				
5 16	5.742	4.510	5 16	36.58	28.73	5 16	94.08	73.89				
3/8	6.302	4.950	3/8	37.97	29.82	3/8	96.30	75.64				
7 16	6.888	5.410	7 16	39.39	30.94	7	98.55	77.40				
1/2	7.500	5.890	1/2	40.83	32.07	1/2	100.8	79.19				
16	8.138	6.392	16	42.30	33,23	16	103.1	81.00				
5/8	8.802	6.913	5/8	43.80	34.40	5/8	105.5	82.83				
16	9.492	7.455	118	45.33	35.60	16	107.8	84.69				
3/4	10.21	8.018	3/4	46.88	36.82	3/4	110.2	86.56				
18	10.95	8.601	13	48.45	38.05	13	112.6	88.45				
7/8	11.72	9.204	7/8	50.05	39.31	7/8	115.1	90.36				
15	12.51	9.828	15 16	51.68	40.59	15 16	117.5	92.29				

Weight of Square and Round Wrought-iron per Lineal Foot.

Thickness or diameter,	in inches.	Weight of square bar, in pounds.	Weight of round bar, in pounds.	Thickness or diameter, in inches.	Weight of square bar, in pounds.	Weight of round bar, in pounds.	Thickness or diameter, in inches.	Weight of square bar, in pounds.	Weight of round bar, in pounds.
c		120.0	94.25	8	010.0	167.6	10	333.3	001.0
6		120.0	96.22		213.3 216.7	170.2		337.5	261.8 265.1
16 16		125.1	98.22	16	220.1	170.2	16 1/8	341.7	268.4
1/8 16		127.6	100.2	1/8 3 16	223.5	175.5	78 3 16	346.0	271.7
16		127.0	100.2	16	220.0	170.0	16	540.0	211.1
1/4		130.2	102.3	1/4	226.9	178.2	1/4	350.2	275.1
76 16		132.8	104.3	5 16	230.3	180.9	5 16	354.5	278.4
3/8		135.5	106.4	3/8	233.8	183.6	3/8	358.8	281.8
7 16	:	138.1	108.5	716	237.3	186.4	7 16	363.1	285.2
$\frac{1}{2}$		140.8	110.6	1/2	240.8	189.2	1/2	367.5	288.6
9		143.6	112.7	9 16	244.4	191.9	9	371.9	292.1
5/8		146.3	114.9	5/8	248.0	194.8	5/8	376.3	295.5
116		149.1	117.1	116	251.6	197.6	11	380.7	299.0
	1								
3/4		151.9	119.3	3/4	255.2	200.4	3/4	385.2	302.5
13 16		154.7	121.5	13	258.9	203.3	13	389.7	306.1
7/8		157.6	123.7	7/8	262.6	206.2	7/8	394.2	309.6
15		160.4	126.0	1 <u>5</u> 16	266.3	209.1	15 16	398.8	313.2
7		163.3	128.3	9	270.0	212.1	11	403.3	316.8
1 16		166.3	130.6	16	273.8	215.0	16	407.9	320.4
1/8		169.2	132.9	1/8	277.6	218.0	1/8	412.6	324.0
3 16	.	172.2	135.2	3 16	281.4	221.0	3 16	417.2	327.7
1/4	.	175.2	137.6	1/4	285.2	224.0	1/4	421.9	331.3
74 5 16		178.2	140.0	5 16	289.1	227.0	5 16	426.6	335.0
3/8		181.3	142.4	3/8	293.0	230.1	3/8	431.3	338.7
7 16		184.4	144.8	7 16	296.9	233.2	7 16	436.1	342.5
	- 1								
1/2		187.5	147.3	1/2	300.8	236.3	1/2	440.8	346.2
16		190.6	149.7	9 16	304.8	239.4	16	445.6	350.0
5/8		193.8	152.2	5/8	308.8	242.5	5/8	450.5	353.8
16		197.0	154.7	116	312.8	245.7	16	455.3	357.6
3/4		200.2	157.2	3/4	316.9	248.9	3/4	460.2	361.4
13		203.5	159.8	13 16	321.0	252.1	13 16	465.1	365.3
7/8	3	206.7	162.4	7/8	325.1	255.3	7/8	470.1	369.2
15 16		210.0	164.9	15 16	329.2	258.5	15 16	475.0	373.1

Weight of Flat Rolled Iron, in Kilogrammes, per Lineal Metre.

Width.						Thic	kness.					
mm	2 mm	4 mm	6 mm	8 mm	10 mm	12 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm
5	0.078	0.155	0.233	0.310	0 388	0.465	0.581	0.775	0.969	1.163	1.356	1.550
10	0.155	0.310	0.465	0.620	0.775	0.930	1.163	1.550	1.938	2.325	2.713	3.100
1 5	0.233	0.465	0.698	0.930	1.163	1.395	1.744	2.325	2.906	3.488	4.069	4.650
20	0.310	0.620	0.930	1.240	1.550	1.860	2.325	3.100	3.875	4.650	5.425	6.200
2 5	0.388	0.775	1.163	1.550	1.938	2.325	2.906	3.875	4.844	5.813	6.781	7.750
30	0.465	0.930	1.395	1.860	2.325	2.790	3.488	4.650	5.813	6.975	8.138	9.300
35	0.543	1.085	1.628	2.170	2.713	3.255	4.069	5.425	6.781	8.138	9.494	10.850
40	0.620	1.240	1.860	2.480	3.100	3.720	4.650	6.200	7.750	9.300	10.850	12.400
4 5	0.698	1.395	2.093	2.790	3.488	4.185	5.231	6.975	8.719	10.463	12.206	13.950
50	0.775	1.550	2.325	3.100	3.875	4.650	5.81 3	7.750	9.688	11.625	13.563	15.500
55	0.853	1.705	2.558	3.410	4.263	5.115	6.394	8.525	10.656	12.788	14.919	17.050
60	0.930	1.860	2.790	3.720	4.650	5.580	6.975	9.300	11.625	13.950	16.275	18.600
65	1.008	2 015	3 023	4.030	5.038	6 045	7.556	10.075	12.594	15.113	17.631	20.150
70	1.085	2.170	3.255	4.340	5.425	6.510	8.138	10.850	13.563	16.275	18.988	21.700
75	1.163	2.325	3.488	4.650	5.813	6.975	8.719	11.625	14.531	17.438	20.344	23.250
80	1.240	2.480	3.720	4.960	6.200	7.440	9.300	12.400	15.500	18.600	21.700	24.800
85	1.318	2.635	3.953	5.270	6.588	7.905	9.862	13.175	16.469	19.763	23.056	26.350
90	1.395	2.790	4.185	5.580	6.975	8.370	10.463	13.950	17.438	20.925	24.413	27.900
95	1.473	2.945	4.418	5.890	7.363	8.835	11.044	14.725	18.406	22.088	25.769	29.450
100	1.550	3.100	4.650	6.200	7.750	9 300	11.625	15.500	19.375	23.250	27.125	31.000
110	1.705	3.410	5.115	6.820	8.525	10.230	12.789	17.050	21.314	25 575	29.838	34.100
120	1.860	3.720	5.580	7.440	9.300	11.160	13.950	18.600	23.250	27.900	32.550	37.200
130	2.015	4.030	6.045	8.060	10.075	12.090	15.113	20.150	25.188	30.225	35.263	40.300
140	2.170	4.340	6.510						27.125			
150	2.325	4.650	6.975	9.300	11.625	13.950	17.438	23.250	29.062	34.875	40.688	46.500
160	2.480	4.960	7.440						31.000		_	
170	2.635	5.270	7.905						32.93 8		_	
180	2.790	5.580	8.370	11.160	13.950	16.740	20.925	27.900	34.875	41.850	48.825	55.800
190	2.945	5.890	8.835	11.780	14.725	17.670	22.088	29.450	36.81 3	44.175	51.538	58.900
200	3.100	6.200	9.300	12.400	15.500	18.600	23.250	31.000	38.750	46.500	54.250	62.000

Weight of Square and Round Wrought=iron, in Kilogrammes, per Lineal Metre.

			1		
Thickness or diameter.	Square.	Round.	Thickness or diameter.	Square.	Round.
Mm.	Kg.	Kg.	Mm.	Kg.	Kg.
5 6 7 8 9	0.195 0.280 0.381 0.498 0.630	0.152 0.219 0.298 0.390 0.493	50 52 54 56 58	$\begin{array}{c} 19.450 \\ 21.009 \\ 22.686 \\ 24.398 \\ 26.172 \end{array}$	15.215 16.459 17.749 19.088 20.476
10	$\begin{array}{c} 0.778 \\ 0.941 \\ 1.120 \\ 1.315 \\ 1.525 \end{array}$	0.609	60	28.080	21.913
11		0.737	62	29.906	23 398
12		0.877	64	32.147	24.930
13		1.028	66	33.890	26.514
14		1.193	68	35.975	28.146
15	1.751	1.370	70	38.122	29.825
16	1.992	1.558	72	39.743	31.554
17	2.248	1.759	74	42.603	33.333
18	2.520	1.972	76	44.937	35.158
19	2.809	2.197	78	47.334	37.032
20	3.112	2.435	80	$\begin{array}{c} 49.792 \\ 56.195 \\ 63.018 \\ 70.215 \\ 77.800 \end{array}$	38.953
21	3.431	2.684	85		43.977
22	3.765	2.946	90		49.303
23	4.116	3.220	95		54.934
24	4.481	3.506	100		60.860
25	4.863	3.804	105	85.775	67.107
26	5.259	4.115	110	94.138	73.651
27	5.672	4.437	115	102.891	80.500
28	6.100	4.772	120	112.000	87.650
29	6.543	5.119	125	121.563	95.107
30	7.002	5.478	130	131.500	102.867
31	7.477	5.849	135	141.791	110.933
32	7.967	6.232	140	152.500	119.302
33	8.472	6.629	145	163.575	127.976
34	9.009	7.036	150	175.100	136.954
35	9.531	7.456	155	186.915	146.236
36	10.083	7.889	160	199.200	155.812
37	10.651	8.333	165	211.811	165.714
38	11.234	8.789	170	224.842	175.910
39	11.833	9.258	175	238.263	186.410
40	12.448	9.738	180	252.000	197.213
41	13.078	10.212	185	266.271	208.322
42	13.724	10.737	190	280.900	219.735
43	14.385	11.255	195	295.835	231.452
44	15.062	11.784	200	311.200	243.473
45	15.755	12.326	205	326,920	256.790
46	16.462	12.880	210	343, 0 90	269.465
47	17.187	13.446	215	359,600	282.453
48	17.925	14.024	220	376,550	295.744
49	18.680	14.614	225	393,860	309.340

Weight of Sheet=metal.

British Units.

Weight of Iron, Copper, Lead, and Zinc per Square Foot.

Thickness, in inches.	Cast-iron.	Wrought- or sheet-iron.	Sheet- copper.	Sheet-lead.	Sheet-zinc.
	Lb.	Lb.	Lb.	Lb.	Lb.
16	2.346	2.517	2.890	3.694	2.320
1/8	4.693	5.035	5.781	7.382	4.642
3 16	7.039	7.552	8.672	11.074	6.961
1/4	9.386	10.070	11.562	14.765	9.275
5 16	11.733	12.588	14.453	18.456	11.61
3/8	14.079	15.106	17.344	22.148	13.93
7 16	16.426	17.623	20.234	25.839	16.23
1/2	18.773	20.141	23.125	29.530	18.55
9 16	21.119	22.659	26.016	33.222	20.87
5/8	23,466	25.176	28.906	36.913	23.19
11 16	25.812	27.694	31.797	40.604	25.53
3/4	28.159	30.211	34.688	44.296	27.85
13 16	30.505	32.729	37.578	47.987	30.17
7/8	32.852	35.247	40.469	51.678	32.47
15 16	35.199	37.764	43.359	55.370	34.81
1	37.545	40.282	46.250	59.061	37.13
1/8	42.238	45.317	52.031	66.444	41.78
1/4	46.931	50.352	57.813	73.826	46.42
3/8	51.625	55.387	63.594	81.210	51.04
1/2	56.317	60.422	69.375	88.592	55.48
5/8	61.011	65.458	75.156	95.975	60.35
3/4	65.704	70.493	80.938	103.358	65.00
7/8	70.397	75.528	86.719	110.740	69.61
2	75.090	80.563	92.500	118.128	74.25

Weight of Sheet-metal.

Metric Units.

Weight, in Kilogrammes, per Square Metre.

Thickness.	Cast-iron.	Wrought-iron.	Steel.	Copper.
Mm.	Kg.	Kg.	Kg.	Kg.
0.5	3.625	3.89	3.925	4.45
1	7.25	7.78	7.85	8.90
2	14.50	15.56	15.70	17.80
3	21.75	23.34	23.55	26.70
4	29.00	31.12	31.40	35.60
5	36.25	38.90	39.25	44.50
6	43.50	46.68	47.10	53.40
7	50.75	54.46	54.95	62.30
8	58.00	62.24	62.80	71.20
9	65.25	70.02	70.65	80.10
10	72.50	77.80	78.50	89.00
11	79.75	85.58	86.35	97.90
12	87.00	93.36	94.20	106.80
13	94.25	101.14	102.05	115.70
14	101.50	108.92	109.90	124.60
15	108.75	116.70	117.75	133.50
16	116.00	124.48	125.60	142.40
17	123.25	132.26	133.45	151.30
18	130.50	140.04	141.30	160.20
19	137.75	147.82	149.15	169.10
20	145.00	155.60	157.30	178.00
21	152.25	163.38	164.85	186.90
22	159.50	171.17	172.70	195.80
23	166.75	178.94	180.55	204.70
24	174.00	186.72	188.40	213.60
25	181.25	194.50	196.25	222.50
26	188.50	202.28	204.10	231.40
27	195.75	210.06	211.95	240.30
28	203.00	217.84	219.80	249.20
29	210.25	225.62	227.65	258.10
30	217.50	233.40	235.50	267.00

Weight of Rolled Sheets of Wrought=iron and Steel.

British Units.

Specific Gravity of Iron, 7.70; of Steel, 7.85.

	Брест	Caravity	01 11011, 1	.70, 01 5166.	., 7.00.		
	Birming	gham Wire	Gauge.	American ((B. & S.) W	ire Gauge.	
No. of gauge.	Thickness, in inches.	Weight, is per squa		Thickness, in inches.	Weight, in pounds, per square foot.		
	:	Iron.	Steel.		Iron.	Steel.	
0000	.454	18.16	18.52	.4600	18.40	18.76	
000	.425	17.00	17.34	.4096	16.39	16.72	
00	.380	15.20	15.50	.3648	14.59	14.88	
0	.340	13.60	13.87	.3249	13.00	13.26	
1	.300	12.00	12.24	.2893	11.57	11.80	
2	.284	11.36	11.59	.2576	10.31	10.52	
3	.259	10.35	10.56	.2294	9.18	9.36	
4	.238	9.52	9.71	.2043	8.17	8.33	
5	.220	8.80	8.98	.1819	7.27	7.42	
6	.203	8.12	8.28	.1620	6.48	6.61	
7	.180	7.19	7.34	.1443	5.77	5.88	
8	.165	6.60	6.73	.1285	5.14	5.24	
$\begin{array}{c} 9 \\ 10 \\ 11 \\ 12 \end{array}$.148	5.92	6.04	.1144	4.57	4.66	
	.134	5.36	5.47	.1019	4.07	4.15	
	.120	4.80	4.89	.0907	3.63	3.70	
	.109	4.35	4.44	.0808	3.23	3.29	
13	.095	3.80	3.87	.0720	2.88	2.93	
14	.083	3.32	3.38	.0641	2.56	2.61	
15	.072	2.88	2.94	.0571	2.28	2.32	
16	.065	2.60	2.65	.0508	2.03	2.07	
17	.058	2.32	2.37 1.99 1.71 1.42	.0453	1.81	1.84	
18	.049	1.96		.0403	1.61	1.64	
19	.042	1.68		.0359	1.43	1.46	
20	.035	1.39		.0320	1.27	1.30	
21	.032	1.27	1.30	.0285	1.13	1.16	
22	.028	1.11	1.14	.0253	1.01	1.03	
23	.025	.997	1.02	.0226	.903	.921	
24	.022	.880	.898	.0201	.805	.821	
25	.020	.800	.816	.0179	.715	.729	
26	.018	.719	.734	.0159	.638	.651	
27	.016	.640	.653	.0142	.570	.581	
28	.014	.560	.571	.0126	.505	.515	
29	.013	.520	.531	.0113	.450	.459	
30	.012	.480	.489	.0100	.400	.409	
31	.010	.399	.408	.0089	.357	.364	
32	.009	.359	.367	.0080	.318	.324	
33	.008	.320	.326	.0071	.283	.288	
34	.007	.280	.286	.0063	.252	.257	
35	.005	.200	.204	.0056	.224	.228	
36	.004	.159	.162	.0050	.200	.204	

Dimensions and Weights of Spheres.

British Units.

Sizes in inches, weights in pounds.

Diameter. Surface. Capacity. Cast-iron. Lead. Water.						
1.000	Diameter.	Surface.	Capacity.	Cast-iron.	Lead.	Water.
1.125 3.9760 .7455 .1943 .3962 .0264 1.250 4.9087 1.0226 .2673 .4200 .0368 1.375 5.9395 1.3611 .3550 .5579 .0490 1.500 7.0686 1.7671 .4697 .7248 .0636 1.625 8.2957 2.2467 .5861 .9227 .0809 1.750 9.6211 2.8061 .7325 1.1528 .1050 1.875 11.044 3.4514 .9000 1.4156 .1242 2.000 12.566 4.1888 1.0920 1.7180 .1568 2.125 14.186 5.0243 1.3124 2.0631 .1809 2.250 15.964 5.9640 1.5592 2.4442 .2247 2.375 17.720 7.0143 1.8334 2.8811 .2525 2.605 21.647 9.4708 2.4725 3.8892 .3410 2.780 23.758 10.889 2.8400 4.4623 <td>Inch.</td> <td>Sq. inch.</td> <td>Cub. inch.</td> <td>Lb.</td> <td>Lb.</td> <td>Lb.</td>	Inch.	Sq. inch.	Cub. inch.	Lb.	Lb.	Lb.
1.125 3.9760 .7455 .1943 .3962 .0264 1.250 4.9087 1.0226 .2673 .4200 .0368 1.375 5.9395 1.3611 .3550 .5579 .0490 1.500 7.0686 1.7671 .4697 .7248 .0636 1.625 8.2957 2.2467 .5861 .9227 .0809 1.750 9.6211 2.8061 .7325 1.1528 .1050 1.875 11.044 3.4514 .9000 1.4156 .1242 2.000 12.566 4.1888 1.0920 1.7180 .1568 2.125 14.186 5.0243 1.3124 2.0631 .1809 2.250 15.964 5.9640 1.5592 2.4442 .2247 2.375 17.720 7.0143 1.8334 2.8811 .2525 2.605 21.647 9.4708 2.4725 3.8892 .3410 2.780 23.758 10.889 2.8400 4.4623 <td>1.000</td> <td>3 1416</td> <td>.5236</td> <td>.1365</td> <td>.2147</td> <td>.0188</td>	1.000	3 1416	.5236	.1365	.2147	.0188
1.250 4.9087 1.0226 .2673 .4200 .0368 1.375 5.9395 1.3611 .3550 .5579 .0490 1.600 7.0686 1.7671 .4667 .7248 .0636 1.625 8.2957 2.2467 .5861 .9227 .0809 1.750 9.6211 2.8661 .7325 1.1528 .1050 1.875 11.044 3.4514 .9900 1.4156 .1242 2.000 12.566 4.1888 1.0920 1.7180 .1580 2.125 14.186 5.0243 1.3124 2.0631 .1809 2.250 15.904 5.9640 1.5592 2.4482 .2147 2.375 17.720 7.0143 1.8334 2.8411 .2525 2.500 19.635 8.1812 2.1328 3.3554 .2945 2.625 21.617 9.4708 2.4725 3.8892 .3410 2.750 23.758 10.889 2.8400 4.623<						
1.375 5.9395 1.3611 .3550 .5579 .0490 1.500 7.0686 1.7671 .4667 .7248 .0636 1.625 8.2957 2.2467 .5861 .9227 .0899 1.7750 9.6211 2.8661 .7325 1.1528 .1060 1.875 11.044 3.4514 .9000 1.4156 .1242 2.000 12.566 4.1888 1.0920 1.7180 .1508 2.125 14.186 5.0243 1.3124 2.0631 1.809 2.250 15.904 5.9640 1.5592 2.4482 .2147 2.375 17.720 7.0143 1.8334 2.8811 .2525 2.500 19.635 8.1812 2.1328 3.3554 .2945 2.625 21.647 9.4708 2.4725 3.892 .3410 2.870 23.758 10.889 2.8400 4.4623 .3920 2.875 25.967 12.412 3.2512 5.10						.0368
1.625 8.2957 2.2467 .5861 .9227 .9890 1.750 9.6211 2.8061 .7325 1.1528 .1050 1.875 11.044 3.4514 .9000 1.4156 .1242 2.006 12.566 4.1888 1.0920 1.7180 .1508 2.125 14.186 5.0243 1.3124 2.0631 .1890 2.250 15.904 5.9640 1.5592 2.4482 .2147 2.375 17.720 7.0143 1.8334 2.8811 .2525 2.600 19.635 8.1812 2.1328 3.3554 2.945 2.655 21.647 9.4708 2.4725 3.8892 .3410 2.875 25.967 12.412 3.2512 5.1056 .4479 3.000 28.274 14.137 3.6855 5.7982 .5089 3.250 33.183 17.974 4.6835 7.3623 .6471 3.875 35.785 20.129 5.2612	1.375	5.9395	1.3611		.5579	.0490
1.750 9.6211 2.8661 .7325 1.1528 .1050 1.875 11.044 3.4514 .9000 1.4156 .1242 2.000 12.566 4.1888 1.0920 1.7180 .1508 2.125 14.186 5.0243 1.3124 2.0631 1.809 2.250 15.904 5.9640 1.5592 2.4482 .2147 2.375 17.720 7.0143 1.8334 2.8811 .2525 2.605 21.647 9.4708 2.4725 3.8892 .3410 2.750 23.758 10.889 2.8400 4.4623 .3920 2.875 25.967 12.412 3.2512 5.1056 .4479 3.000 28.274 14.137 3.6855 5.7982 .5089 3.125 30.680 15.979 4.1721 6.5568 .5752 3.250 33.183 17.974 4.6835 7.3623 .6471 3.695 41.282 24.941 6.5089 <t< td=""><td>1.500</td><td></td><td>1.7671</td><td>.4607</td><td>.7248</td><td>.0636</td></t<>	1.500		1.7671	.4607	.7248	.0636
1.875 11.044 3.4514 .9000 1.4156 .1242 2.000 12.566 4.1888 1.0920 1.7180 .1580 2.125 14.186 5.0243 1.3124 2.0631 .1809 2.250 15.904 5.9640 1.5592 2.4482 .2147 2.375 17.720 7.0143 1.8334 2.8811 .2525 2.500 19.635 8.1812 2.1328 3.3554 .2945 2.625 21.647 9.4708 2.4725 3.8892 .3410 2.750 23.758 10.889 2.8400 4.4623 .3920 2.875 25.967 12.442 3.2512 5.1056 .4479 3.000 28.274 11.137 3.6855 5.7982 .5089 3.250 33.183 17.974 4.6835 7.3623 .6471 3.500 38.484 22.449 5.8525 9.2073 .8081 3.625 41.282 24.941 6.5089 <	1.625	8.2957	2.2467	.5861	.9227	
2,000 12,566 4,1888 1,0920 1,7180 1,508 2,125 14,186 5,0243 1,3124 2,0631 1,809 2,250 15,904 5,9640 1,5592 2,4482 2,2147 2,375 17,720 7,0143 1,8334 2,8811 2,525 2,500 19,635 8,1812 2,1328 3,3554 2,945 2,605 21,647 9,4708 2,4725 3,8892 3,410 2,875 25,967 12,442 3,2512 5,1056 ,4479 3,000 28,274 14,137 3,6855 5,7982 5,089 3,125 30,680 15,979 4,1721 6,5568 5,752 3,250 33,183 17,974 4,6855 7,3623 8,641 3,605 34,484 22,494 5,8525 9,2073 8,081 3,605 44,179 27,612 7,2135 11,233 9,941 3,805 44,179 27,612 7,2135	1.750					
2.125 14.186 5.0243 1.3124 2.0631 1.809 2.250 15.904 5.9640 1.5592 2.4482 2.147 2.375 17.720 7.0143 1.8334 2.8811 2.525 2.600 19.635 8.1812 2.1328 3.3554 .2945 2.625 21.447 9.4708 2.4725 3.8992 .3410 2.750 23.758 10.889 2.8400 4.4623 .3920 2.875 25.967 12.442 3.2512 5.1056 .4479 3.000 28.274 14.137 3.6855 5.7982 5.689 3.125 30.680 15.979 4.1721 6.5568 .5752 3.250 33.183 17.974 4.6835 7.3623 .6471 3.500 38.484 22.449 5.8525 9.2073 .8081 3.625 41.282 24.941 6.5089 10.231 .8994 3.875 47.173 30.466 7.9556						
2.250 15.904 5.9640 1.5592 2.4482 .2147 2.375 17.720 7.0143 1.8334 2.8811 .2525 2.500 19.635 8.1812 2.1328 3.3554 .2945 2.625 21.647 9.4708 2.4725 3.8892 .3410 2.750 23.758 10.889 2.8400 4.4623 .3920 2.875 25.967 12.442 3.2512 5.1056 .4479 3.000 28.274 11.137 3.6855 5.7982 .5089 3.250 33.183 17.974 4.6835 7.3623 .6471 3.375 35.785 20.129 5.2612 8.2521 .7264 3.605 34.44 22.494 6.5089 10.231 .8979 3.750 44.179 27.612 7.2135 11.232 .941 3.875 47.173 30.466 7.9556 12.500 1.0968 4.00 50.265 33.510 8.7361 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
2.375 17.720 7.0143 1.8334 2.8811 .2525 2.500 19.635 8.1812 2.1328 3.3554 .2945 2.625 21.647 9.4708 2.4725 3.8892 .3410 2.750 23.758 10.889 2.8400 4.4623 .3920 2.875 25.967 12.442 3.2512 5.1056 .4479 3.000 28.274 11.137 3.6855 5.7982 .5089 3.125 30.680 15.979 4.1721 6.5568 .5752 3.250 33.183 17.974 4.6835 7.3623 .6471 3.375 35.785 20.129 5.2612 8.2521 .7246 3.605 41.282 24.941 6.5089 10.231 .8979 3.750 44.179 27.612 7.2135 11.323 .9941 3.875 47.173 30.466 7.9556 12.500 1.0968 4.00 50.265 33.510 8.7351						
2.500 19.635 8.1812 2.1328 3.3554 .2945 2.625 21.647 9.4708 2.4725 3.8892 .3410 2.750 23.758 10.889 2.8400 4.4623 .3920 2.875 25.967 12.442 3.2512 5.1056 .4479 3.000 28.274 14.137 3.6855 5.7982 .5089 3.125 30.680 15.979 4.1721 6.5568 .5752 3.250 33.183 17.974 4.6835 7.3623 .6471 3.575 35.785 20.129 5.2612 8.2521 .7246 3.500 38.484 22.4941 6.5089 10.231 .8974 3.575 41.779 27.612 7.2135 11.323 .9941 3.875 47.173 30.466 7.9556 12.500 1.0968 4.00 50.265 33.510 8.7361 13.744 1.264 4.25 56.745 40.194 10.510						
2,625 21,647 9,4708 2,4725 3,8892 .3410 2,750 23,758 10,889 2,8400 4,4623 .3920 2,875 25,967 12,412 3,2512 5,1056 .4479 3,000 28,274 14,137 3,6855 5,7982 .5089 3,125 30,689 15,979 4,1721 6,5568 .5752 3,250 33,183 17,974 4,6835 7,3623 .6471 3,500 38,484 22,449 5,85925 9,2073 .8081 3,695 41,282 24,941 6,5089 10,231 .8979 3,757 3,750 44,179 27,612 7,2135 11,323 .9941 3,875 47,173 30,466 7,9556 12,500 1,0968 4,00 50,255 33,510 8,7361 13,744 1,2064 4,25 56,745 40,194 10,510 16,482 1,4470 4,50 63,617 47,713						
2,750 23,758 10,889 2,8400 4,4623 3,920 2,875 25,967 12,442 3,2512 5,1056 4479 3,000 28,274 14,137 3,6855 5,7982 5,089 3,125 30,680 15,979 4,1721 6,5568 5,752 3,250 33,183 17,974 4,6835 7,3623 ,6471 3,500 38,484 22,449 5,8525 9,2073 ,8081 3,695 41,282 24,941 6,5089 10,231 ,8979 3,750 44,179 27,612 7,2135 11,323 ,9941 3,875 47,173 30,466 7,9556 12,500 1,0964 4,00 50,265 33,510 8,7361 13,744 1,2064 4,25 56,745 40,194 10,510 16,482 1,4470 4,50 63,617 47,713 12,439 19,569 1,717 4,75 70,882 56,115 14,666 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
2.875 25.967 12.442 3.2512 5.1056 .4479 3.000 28.274 11.137 3.6855 5.7982 .5089 3.125 30.680 15.579 4.1721 6.5568 .5752 3.250 33.183 17.974 4.6835 7.3623 .6471 3.375 35.785 20.129 5.6612 8.2521 .7246 3.500 38.484 22.449 5.8525 9.2073 .8081 3.625 41.282 24.941 6.5089 10.231 .8979 3.875 47.173 30.466 7.9556 12.500 1.0968 4.00 50.265 33.510 8.7361 13.744 1.2664 4.25 56.745 40.194 10.510 16.482 1.4470 4.50 63.617 47.713 12.439 19.569 1.7177 4.75 70.882 56.115 14.666 23.685 2.0002 5.00 78.540 65.450 17.063						
3.000 28,274 14,127 3,6855 5,7982 5,089 3.125 30,680 15,979 4,1721 6,5568 5,752 3.250 33,183 17,974 4,6835 7,3623 ,6471 3.375 35,785 20,129 5,2612 8,2521 .7246 3.500 38,484 22,4941 6,5089 10,231 ,8979 3,750 44,179 27,612 7,2135 11,233 ,9941 3,875 47,173 30,466 7,9556 12,500 1,0968 4,00 50,265 33,510 8,7361 13,744 1,2064 4,25 56,745 40,194 10,510 16,482 1,4470 4,50 63,617 47,713 12,439 19,569 1,717 4,75 70,882 56,115 14,666 23,035 2,0202 5,00 78,540 65,450 17,063 25,843 2,556 5,56 95,033 87,114 22,720 <						
3.125 30,680 15,979 4.1721 6.5568 .5752 3.250 33,183 17,974 4.6835 7.3623 .6471 3.375 35,785 20,129 5.2612 8.2521 .7246 3.500 38,484 22,449 5.8525 9.2073 .8081 3.625 41,282 24,941 6.5089 10.231 .8979 3.750 44,179 27.612 7.2135 11.323 .9941 3.875 47.173 30.466 7.9556 12.500 1.0968 4.00 50.265 33.510 8.7361 13.744 1.2664 4.25 56.745 40.194 10.510 16.482 1.4470 4.50 63.617 47.713 12.439 19.569 1.717 4.50 63.617 47.713 12.439 19.569 1.717 4.50 63.617 47.713 12.439 19.569 1.717 4.50 63.637 7.766 19.810						
3,250 33,183 17,974 4,6885 7,3823 ,6471 3,375 35,785 20,129 5,2612 8,2521 ,724 3,600 38,484 22,449 5,8525 9,2073 ,8081 3,695 41,282 24,941 6,5089 10,231 ,8979 3,750 44,179 27,612 7,2135 11,323 ,9941 3,875 47,173 30,466 7,9556 12,500 1,0968 4,00 50,265 33,510 8,7361 13,744 1,2064 4,25 56,745 40,194 10,510 16,482 1,4470 4,50 63,617 47,713 12,439 19,569 1,717 4,75 70,882 56,115 14,666 23,035 2,0202 5,00 78,540 65,450 17,063 26,843 2,5562 5,55 86,590 75,766 19,810 31,089 2,7276 5,75 103,87 99,541 26,000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
3.375 35.785 20.129 5.2612 8.2521 .7246 3.500 38.484 22.449 5.8525 9.2073 .8081 3.625 41.282 24.941 6.5089 10.231 .8979 3.750 44.179 27.612 7.2135 11.323 .9941 3.875 47.173 30.466 7.9556 12.500 1.0968 4.00 50.265 33.510 8.7361 13.744 1.2064 4.25 56.745 40.194 10.510 16.482 1.4470 4.50 63.617 47.713 12.439 19.569 1.7177 4.75 70.882 56.115 14.666 23.035 2.0202 5.00 78.540 65.450 17.063 25.843 2.5566 5.25 86.590 75.766 19.810 31.089 2.7276 5.50 95.033 87.114 22.720 35.729 3.1361 5.75 103.87 99.541 26.000						
3.500 38.484 22.449 5.8525 9.2073 8.081 3.625 41.282 24.941 6.5089 10.231 8.979 3.750 44.179 27.612 7.2185 11.323 .9941 3.875 47.173 30.466 7.9556 12.500 1.0968 4.00 50.265 33.510 8.7761 13.744 1.2664 4.25 56.745 40.194 10.510 16.482 1.4470 4.50 63.617 47.713 12.439 19.569 1.717 4.75 70.882 56.115 14.666 23.652 2.0202 5.00 78.540 65.450 17.063 26.843 2.3562 5.25 86.590 75.766 19.810 31.089 2.726 5.75 103.87 99.541 26.000 40.856 3.5835 6.0 113.10 113.10 29.484 46.355 4.0716 6.5 132.73 143.79 37.453						
3.625 41.282 24.941 6.5089 10.231 8979 3.750 44.179 27.612 7.2135 11.323 .9941 3.875 47.173 30.466 7.9556 12.500 1.0968 4.00 50.265 33.510 8.7361 13.744 1.2064 4.25 56.745 40.194 10.510 16.482 1.4470 4.50 63.617 47.713 12.439 19.569 1.7177 4.75 70.882 56.115 14.666 23.695 2.0202 5.00 78.540 65.450 17.063 26.843 2.356 5.25 86.590 75.766 19.810 31.089 2.7276 5.50 95.033 87.114 22.700 35.729 3.1361 6.5 132.73 143.79 37.453 58.976 5.1766 6.5 132.73 143.79 37.453 58.976 5.1766 7.5 176.71 220.89 57.587 9						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
3.875 47.173 30.466 7.9556 12.500 1.0968 4.00 50.265 33.510 8.7361 13.744 1.2664 4.25 56.745 40.194 10.510 16.482 1.4470 4.50 63.617 47.713 12.439 19.569 1.7174 4.75 70.882 56.115 14.666 23.685 2.0002 5.00 78.540 65.450 17.063 26.843 2.3562 5.25 86.590 75.766 19.810 31.089 2.7265 5.50 95.033 87.114 22.720 35.729 3.1361 5.75 103.87 99.541 26.000 40.856 3.5835 6.0 113.10 113.10 29.484 46.385 4.0716 6.5 132.73 143.79 37.453 58.976 5.1765 7.0 153.94 179.59 46.820 73.659 6.4653 7.5 176.71 220.89 57.587						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
5.50 95.033 87.114 22.720 35.729 3.1361 5.75 103.87 99.541 26.000 40.856 3.5835 6.0 113.10 113.10 29.484 46.385 4.0716 6.5 132.73 143.79 37.453 58.976 5.1765 7.0 153.94 179.59 46.820 73.659 6.4653 7.5 176.71 220.89 57.587 90.598 7.9520 8.0 201.06 268.08 69.889 109.95 9.6509 8.5 226.98 321.55 83.839 131.33 11.576 9.0 254.47 381.70 99.51 156.55 13.741 9.5 283.53 448.92 117.03 184.12 16.161 10.0 314.16 523.60 136.50 214.75 18.850 11.0 380.13 696.91 181.76 285.83 26.289 12.0 452.39 904.78 235.87 371.09	5.00	78.540	65.450	17.063	26.843	2.3562
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.25	86.590	75.766	19.810	31.089	2.7276
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
18.0 1017.8 3053.6 796.08 1252.4 109.93 19.0 1134.1 3591.3 936.27 1472.9 129.29		853.96				
19.0 1134.1 3591.3 936.27 1472.9 129.29			3053.6		1252.4	
20.0 1256.6 4188.8 1092.00 1718.0 150.80					1472.9	129.29
	20.0	1256.6	4188.8	1092.00	1718.0	150.80
			1			

Dimensions and Weights of Cast-iron Spheres.

Metric Units.

Sizes in centimetres, weights in kilogrammes. For Lead, multiply by 1.575.

Cm.	Cub. cm.				
	Cub. cm.	Kg.	Cm.	Cub. cm.	Kg.
1.0	.524	.004	21.0	4849.05	35.16
1.5	1.767	.013	21.5	5203.72	37.73
2.0	4.189	.030	22.0	5575.28	40.42
2.5	8.181	.059	22.5	5964.12	43.24
3.0	14.137	.102	23.0	6370.63	46.19
3.5	22,449	.165	23.5	6795.20	49.27
4.0	33.510	.243	24.0	7238,23	52.48
4.5	47.713	.346	24.5	7700.11	55.83
5.0	65.45	.475	25.0	8181.23	59.31
5.5	87.11	.632	25.5	8681.98	62.94
6.0	113.10	.820	26.0	9202.77	66.72
6.5	143.79	1.043	26.5	9744.08	70.64
7.0	179.59	1.302	27.0	10305.99	74.72
7.5	220.89	1.601	27.5	10889,22	78.95
8.0	268.08	1.944	28.0	11494.04	83.33
8.5	321.56	2.331	28.5	12120.85	87.88
9.0	381.70	2.767	29.0	12770.08	92.58
9.5	448.92	3,255	29.5	13442.02	97.45
10.0	523.60	3,796	30.0	14137.17	102.49
10.5	606.13	4.394	31.0	15598.53	113.09
11.0	696.91	5,053	32.0	17157.28	124.39
11.5	796.33	5.773	33.0	18816.57	136.42
12.0	904.78	6,560	34.0	20579.53	149.20
12.5	1022.64	7.414	35.0	22449.30	162.76
13.0	1150.35	8.340	36.0	24429.02	177.11
13.5	1288.25	9.340	37.0	26521.95	192.28
14.0	1436.76	10.416	38.0	28730.91	208.30
14.5	1596.26	11.573	39.0	31059.35	225.18
15.0	1767.15	12,812	40.0	33510.32	242.95
15.5	1949.82	14.14	41.0	36086.96	261.63
16.0	2144.66	15.55	42.0	38792.39	281.24
16.5	2352.07	17.05	43.0	41629.77	301.82
17.0	2572.44	18.65	44.0	44602.24	323.37
17.5	2806.16	20.34	45.0	47712.94	345.91
18.0	3053.63	22.14	46.0	50965.01	369.50
18.5	3315.24	24.04	47.0	54361.60	394.12
19.0	3591.36	26.04	48.0	57905.58	419.82
19.5	3882.42	28.15	49.0	61600.87	446.61
20.0	4188.79	30.37	50.0	65449.85	474.51
20.5	4510.87	32.70	100.0	523598.80	3796.09

Weight of Cast=iron Pipe per Foot in Length.

British Units.

For Wrought-iron multiply by 1.067; for Lead, by 1.575; for Copper, by 1.23; for Brass, by 1.16.

ner m.				Th	ickne	ss of	pipe,	in in	ches.				
Inner diam.	1/4	3/8	1/2	5/8	3/4	7/8	1	11/8	11/4	13/8	11/2	13/4	2
Ins.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
1	3.07	• • • •		• • • • •		• • • •	• • • •			• • • •		• • • •	• • • •
14	4.30												
$\frac{5^{2}}{4}$	4.92												
2	5.53	8.76											
1/4 1/2 3/4 2 1/4/2 3/4 3/4 3/4	6.15	9.69						٠					
33	6.76	$ 10.6 \\ 11.5 $	• • • • •		• • • •				• • • • •		• • • •	• • • •	• • • •
3 4	7.37 7.98	12.5	17.2	22.3							• • • •	••••	
1/4 1/2 3/4 4	8.60	13.4	18.5	23.8									
1/2	9.21	14.3	19.7	25.4									
3/4	9.83	15.2	20.9	26.9		40.0	• • • • •						• • • •
4	10.3 11.1	16.1 17.1	$22.2 \\ 23.4$	28.5 30.0	35.1 36.9	42.0 44.1	• • • • •	• • • • •				• • • •	
1/4 1/2 3/4 5	11.7	18.0	$\frac{23.4}{24.6}$	31.5	38.8	46.3							
3/4	12.3	18.9	25.8	33.1	40.6	48.5							
5	12.9	19.8	27.1	34.6	42.5	50.6	59.1	67.8					
74	13.5	20.8	28.3	36.1	44.3	52.8	61.5	70.6					• • • •
14 14 33 6 7 7 1/2 8 1/2 9 1/2 10 11	14.2 14.8	$\frac{21.7}{22.6}$	$\frac{29.5}{30.8}$	37.7 39.2	$\frac{46.1}{48.0}$	54.9 57.1	64.0 66.4	73.3 76.1		• • • •		• • • •	
6	15.4	23.5	32.0	40.8	49.8	59.2	68.9	78.9	89.2	99.8			
1/9	16.6	25.4	34.5	43.8	53.5	63.5	73.8	84.4	95.3	107.0			
7 2	17.8	27.2	36.9	46.9	57.2	67.8	78.7	89.4	102.0	113.0	126	151	177
1/2	19.1	29.1	39.4	50.0	60.9	72.1	83.7	95.5	108.0	120.0	133	159	187
8	20.3	30.9	41.8	53.1	64.6	76.4	88.6	101.0	114.0	127.0	140	168	197
9/2	$\frac{21.5}{22.8}$	32.8 34.6	44.3 46.8	56.1 59.2	68.3 72.0	80.7 85.1	93.5 98.4	$107.0 \\ 112.0$	120.0 126.0	134.0 140.0	148 155	177 185	$207 \\ 217$
1/0	24.0	36.4	49.2	62.3	75.7	89.3	103.0	118.0	132.0	147.0	163	194	226
10	25.1	38.3	51.7	65.3	79.4	93.6	108.0	1 23.0	138.0	154.0	170	202	235
1/2	26.4	40.1	54.1	68.4	83.0	97.9	113.2	129.0	145.0	161.0	177	211	245
11	27.6 28.8	42.0 43.8	56.6	71.5	86.7	102.0 107.0	$118.0 \\ 123.0$	134.0	151.0	168.0	185 192	$\frac{220}{228}$	255 265
11 12 13	30.0	45.7	$59.1 \\ 61.5$	74.6 77.7	$90.4 \\ 94.1$	111.0	128.0	140.0 145.0	157.0 163.0	174.0 181.0	192	237	275
13			66.4	83.8	102.0	120.0	138.0	156.0	175.0	195.0	214	254	294
14			71.4	89.4	109.0	128.0	148.0	168.0	188.0	208.0	229	271	314
15			76.3	96.1	116.0	137.0	158.0	179.0	200.0	222.0	244	289	334
16 17			81.2 86.1	102.0 108.0	124.0 131.0	$145.0 \\ 154.0$	$167.0 \\ 177.0$	190.0	$212.0 \\ 225.0$	235.0 249.0	258 273	306 323	353 373
18			91.0	115.0	139.0	163.0	187.0	$201.0 \\ 212.0$	257.0	262.0	288	340	393
19			96.0	121.0	146.0	171.0	197.0	223.0	249.0	276.0	303	357	412
20			101.0	127.0	1 53.0	180.0	207.0	234.0	261.0	289.0	317	375	432
21			• • • •	133.0	161.0	188.0	217.0	245.0	274.0	303.0	332	392	452
22 23			• • • •	139.0 145.0	$168.0 \\ 175.0$	196.0 206.0	227.0 236.0	$256.0 \\ 267.0$	286.0 298.0	$316.0 \\ 330.0$	$\frac{347}{362}$	409 426	471 491
24				152.0	183.0	214.0	246.0	278.0	311.0	343.0	375	444	511
25					190.0	223.0	256.0	289.0	323.0	357.0	391	461	531
26	.,				198.0	231.0	266.0	300.0	335.0	370.0	406	478	550
27		• • • • •	• • • •		205.0	240.0	276.0	311.0	348.0	384.0	421	495	570
28 30			• • • •	••••	$212.0 \\ 227.0$	$249.0 \\ 266.0$	286.0 305.0	$323.0 \\ 345.0$	$360.0 \\ 384.0$	397.0 424.0	436 465	512 547	590 629
32					242.0	283.0	325.0	367.0	409.0	451.0	495	581	668
34					257.0	300.0	345.0	389.0	434.0	479.0	524	616	708
36					271.0	318.0	364.0	411.0	458.0	506.0	554	650	746
42 48	• • • •	• • • • •	• • • •		315.0	370.0	423.0	478.0	532.0	588.0	644	753	864
	••••								605.0			856	982
T	he we	eight	of a s	nigot	and t	faucet	ioint	may	he ta	ken a	18 PO	mal	to 8

The weight of a spigot and faucet joint may be taken as equal to 8 inches of straight pipe, and the weight of two flanges as equal to 12 inches of straight pipe.

Weight of Cast=iron Pipe.

Metric Units.

Weight, in Kilogrammes, per Metre of Length. For Wrought-iron multiply by 1.067; for Lead, by 1.575; for Copper, by 1.23; for Brass, by 1.16.

Inside		נ	Thickness, in	n millimetre	es.	
diameter.	10	15	20	25	30	40
Mm.	Kg.	Kg.	Kg.	Kg.	Kg.	Kg.
25	8.0	13.7	20.5	28.5		
30	9.1	15.4	22.8	31.3	41.0	
35	10.2	17.1	25.1	34.4	44.4	68.3
40	11.4	18.8	27.3	37.0	47.8	72.9
45	12.5	20.5	29.6	39.9	51.2	77.4
50	13.7	22.2	31.8	42.8	54.7	82.0
60	15.9	25.6	36.5	48.4	61.5 .	91.1
70	18.2	29.0	41.0	54.1	68.3	100.2
80	20.5	32.5	45.6	59.8	75.2	109.3
90	22.8	36.0	50.1	65.5	82.0	118.4
100	25.1	39.3	54.7	- 71.1	88.8	129.8
110	27.3	42.8	59.2	76.9	95.7	136.7
120	29.6	46.1	63.8	82.5	102.5	144.9
130	31.8	49.5	68.3	88.3	109.3	154.9
140	\ 34.4	52.8	72.9	94.0	116.2	164.0
150	36.5	56.5	77.4	99.6	123.0	173.1
160	38.7	59.8	82.0	105.4	129.8	182.2
170	41.8	63.2	86.5	110.7	136.7	191.3
180	43.3	66.6	91.5	116.6	143.5	200.4
190	45.6	70.1	97.7	122.3	150.3	209.5
200	47.8	73.5	100.2	128.1	157.2	218.7
210	50.1	76.9	104.8	133.8	164.0	227.8
220	52,4	80.2	109.3	139.5	170.8	236.9
230	54.7	83.9	113.8	145.2	177.7	246.0
240	56.9	86.8	118.4	150.9	184.5	255.1
250	59.2	90.5	123.0	156.6	191.3	264.2
260	61.5	94.0	127.6	162.3	198.2	273.3
270	63.8	97.3	132.1	168.0	205.0	282.4
280	66.1	100.8	136.7	173.7	211.8	291.5
290	68.3	104.9	141.2	179.4	218.7	300.7
300	70.6	107.6	144.9	185.1	225.5	309.7
325		116.2	157.2	199.3	242.6	332.5
350		124.7	168.5	213.5	259.7	355.3
375		133.2	179.9	227.8	276.7	378.1
400		141.8	191.3	241.9	293.8	400.9
450		158.9	214.1	270.5	328.9	446.4
500		175.9	236.9	298.9	362.1	492.0

The weight of spigot and faucet joint = 0.2 metre. The weight of two flanges = 0.3 metre.

Weight of Bridge Rivets per Hundred.

This table also applies to Button-headed Bolts.

Length of rivet			Diam	eter of r	ivet, in i	nches.		
under head,	3/8	1/2	5/8	3/4	7 ∕8	1	11/8	11/4
Inch.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
13775 SANS CARREST CARREST SANS CARREST SANS CARREST SANS CARREST SANS CARREST CAR	5.7 6.1 6.5 6.9 7.3 7.7 8.0 8.4 8.8 9.2 9.6 10.0 10.4 11.2 11.6 11.2 11.3 12.7 13.5 14.3 14.7 15.5 15.8 16.6	12.8 13.5 14.2 14.8 15.5 16.2 17.6 18.3 19.0 19.7 20.4 21.1 21.8 22.5 23.2 24.6 25.3 26.0 26.7 27.4 28.7 29.4 30.1 30.8 31.5 32.2	22.0 223.1 24.1 25.2 26.3 27.4 28.5 29.6 30.7 32.8 33.9 35.0 36.1 37.2 44.8 45.9 44.9 150.2 51.3 52.4	29.3 30.9 32.4 34.0 35.5 37.1 38.7 40.2 41.8 44.9 46.5 51.7 54.3 55.8 57.4 58.9 60.5 62.1 63.6 66.2 66.7 68.9 771.4 73.4	43.9 46.1 48.2 50.3 52.5 54.6 758.8 61.0 63.1 65.2 67.1.6 73.7 75.9 78.0 1 82.3 84.4 86.5 88.6 90.8 92.9 95.0 97.0 99.3 101.4 103.5	66.6 69.4 72.1 74.9 77.7 80.5 83.3 86.0 88.8 91.6 94.2 99.9 102.7 105.5 108.3 111.1 113.8 116.4 119.4 122.2 125.0 127.8 130.5 133.5 134.9 141.7	93.3 96.9 100.4 103.9 107.4 110.9 114.5 118.0 121.5 125.0 128.5 132.1 135.6 139.1 142.6 146.7 153.1 156.7 160.2 163.7 170.8 174.3 174.3 174.3 184.9 188.4	127.1 131.5 135.8 140.2 144.5 148.9 153.2 157.5 166.2 170.6 174.9 179.3 183.6 188.0 192.3 196.7 201.0 205.4 209.7 214.1 218.4 227.1 235.8 240.1 244.5
5 1/4	17.0 17.4 18.2	32.9 33.6 35.0	53.5 54.5 56.7	74.5 76.1 79.2	105.7 107.8 112.1	144.4 147.2 150.0 155.6	191.9 195.4 198.9 206.0	248.8 253.2 257.5 266.2
6 7 8 9	19.0 19.7 20.5 23.6 26.8 29.9	36.4 37.8 39.2 44.7 50.3 55.9	58.9 61.1 63.2 71.9 80.6 89.3	82.3 85.5 88.6 101.1 113.7 126.2	116.3 120.6 124.8 142.0 158.9 175.9	161.1 166.7 172.2 194.5 216.7 239.0	213.1 220.1 227.1 255.3 283.4 311.6	274.9 283.6 292.3 327.1 361.9 396.6
10 12	33.0 39.3	61.4 72.5	98.0 115.4	138.7 163.7	193.0 227.0	261.2 305.7	339.7 367.9	431.4 501.0
Before	Wei	ight of	Two (2)	Rivet	Heads,	in Pour	nds.	
driving After	.037	.116	.222	.273	.453	.780	1.16	1.67
driving	.032	.082	.147	.246	.369	.545	.746	1.02
Before	Weigh	nt of Bo	dy per	Inch of	Length	, in Po	unds.	
driving	.031	.056	.087	.125	.170	.223	.282	.34 8

Weight of Bolts per Hundred.

Square Heads and Nuts.

Dimensions in inches.

T 0					Dia	meter.					
Length.	1/4	3/8	1/2	5/8	3/4	7/8	1	11/8	11/4	13/8	1½
	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
$1\frac{1}{2}$	3.9	9.7	20.4	37.0	58.0						
3/4	4.2	10.5	21.3	37.9	60.5						
2	4.6	11.3	22.4	39.9	63.2	97.7	145				
1/4	5.0	12.1	23.6	42.0	66.0	101.6	149		• • • •	••••	• • • •
1/2	5.4	12.9	25.0	44.4	69.0	105.6	153	••••			
3/4	5.8	13.7	26.4	46.2	72.1	109.7	158				
3	6.2	14.5	27.8	48.3	75.2	113.8	163	200	289	350	480
1/2	6.9	16.1	30.6	52.5	81.4	122.0	174	213	305	370	500
4	7.6	17.7	33.4	56.7	87.6	130.2	185	226	322	390	520
1/2	8.3	19.2	36.2	60.9	93.8	138.4	196	240	339	410	545
5	9.0	20.7	39.0	65.1	100.0	146.6	207	255	356	430	570
1/2	9.7	22.2	41.8	69.2	106.1	154.9	218	270	373	450	595
6	10.4	23.7	44.6	73.4	112.2	163.2	229	285	390	470	620
1/2	11.1	25.2	47.4	77.6	118.3	171.5	240	300	407	490	645
7	11.8	26.7	50.2	81.8	124.4	179.8	251	315	434	510	670
1/2	12.5	28.2	53.1	86.0	130.5	187.1	262	330	451	530	695
8	13.2	29.7	56.0	90.0	136.6	195.4	273	345	468	550	725
9		33.1	61.5	98.0	148.8	212.0	295	375	505	590	775
10		36.5	67.0	106.3	161.0	229.0	317	405	540	630	825
11	• • • • • •	40.0	72.5	114.6	173.2	246.0	339	435	575	670	875
12		43.5	78.0	122.9	184.4	263.0	361	465	610	710	925
13			83.5	131.2	196.6	280.0	383	495	645	751	975
14			89.0	139.5	208.8	297.0	405	525	680	793	1025
15	• • • • • •		94.5	148.0	221.0	314.0	427	555	715	835	1075
16			100.0	156.5	233.2	331.0	449	585	750	877	1125
17			105.5	165.0	245.4	348.0	471	615	785	919	1175
18			111.0	173.5	257.6	365.0	493	645	820	961	1225

Weight of Bolts per Hundred.

Hexagon Heads and Nuts. Dimensions in inches.

T (1					Dia	meter.					
Length.	1/4	3/8	1/2	5/8	3/4	1/8	1	11/8	11/4	13/8	11/2
	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.
$1\frac{1}{2}$	3.4	8.5	17.7	32.5	49.0						
3/4	3.7	9.3	18.6	33.4	51.5						
2	4.1	10.1	19.7	35.4	54.2	86.6	128				
1/4	4.5	10.9	20.9	37.5	57.0	90.6	132				
1/2	4.9	11.7	22.3	39.9	60.0	94.6	136				
3/4	5.3	1 2.5	23.7	41.7	63.1	98.7	141				
3	5.7	13.3	25.1	43.8	66.2	102.8	144	174	255	310	430
1/2	6.1	14.1	26.6	45.7	69.4	107.0	151	187	271	330	450
4	6.8	15.7	29.4	49.9	75.6	115.2	162	200	288	350	470
1/2	7.5	17.0	32.2	56.1	81.8	123.4	173	214	305	370	495
5	8.2	18.7	35.0	58.3	88.0	131.6	184	229	322	390	520
1/2	8.9	20.2	37.8	62.4	94.1	139.9	195	244	339	410	545
6	9.6	21.7	40.6	66.6	100.2	148.2	206	259	356	430	570
1/2	10.3	23.2	43.4	70.8	106.3	156.5	217	274	373	450	595
7	11.0	24.7	46.2	75.0	112.4	164.8	228	289	400	470	620
1/2	11.7	26.2	49.1	79.2	118.5	172.1	239	304	417	490	645
/2	11.,	20.2	10.1	10.2	110.0	1.2.1		001	11.	100	010
8	12.4	27.7	52.0	83.2	124.6	180.3	250	319	424	510	670
9		29.7	54.8	87.0	130.8	189.0	262	336	465	530	700
10		33.1	60.3	95.0	143.0	206.0	284	366	500	570	750
11	• • • • • •	36.6	65.8	103.6	155.2	223.0	3 0 6	396	535	610	800
12		40.1	71.3	111.9	166.4	240.0	328	426	570	650	850
13			76.8	120.2	178.6	257.0	350	456	605	691	900
14			82.3	128.5	190.8	274.0	372	486	640	733	950
15			87.8	137.0	203.0	291.0	384	516	675	775	1000
16			93.3	145.5	215.2	308.0	416	546	710	817	1050
17			98.8	154.0	227.4	325.0	438	576	745	859	1100
18			104.3	162.5	239.6	342.0	460	606	780	901	1150
							Į,				

United States Standard Screw Threads.

					1						
	16	of	Width of flat.	jt j	r ct	gh.	sh.	r- gh.	gh.		
er.	ď	fer (J Jo	ತ	ro	ian ou	ini	on	an	sse.	388,
net	ads	t ol	o q	of Y.	at	t d r, r	t f	; di	s di	gh.	kn sh.
Diameter.	Threads per inch.	Diameter root of thread.	idt	Area of bolt body.	Area at root of thread.	Short diam- eter, rough	Short diam- eter, finish	Long diam- eter, rough	Long diam- eter, rough	Thickness, rough.	Thickness, finish.
Ä	£		· ·	4~	₹°	Sc	SZ	Ĭ	Ĕ	T.	II,
\$	1		A.F	Pe-A-M	B→	~	_		A		
₹-A-»		8/1/3					(O)		(⊕)		m
L-w-w]		be Ban					\sim		\forall	افغلسا	لللا
In.		Inch.	Inch.	Sq. in.	Sq. in.	Inch.	Inch.	Inch.	Tnoh	Inch.	In.
	00					L L			Inch.		
1/4	20 18	.185 .240	.0062	.049	.027	1/2	16 17	37 64	10	1/4	3 16
5 16	16	.294	.0074	.077 .110	.045	19 32	17 32	11 16	10 12 63	5 16 3/	1/4
3/8			.0078		.068	11 16 25	5/8	51 64	63 64	3/8	16 3/
16	14	.344	.0089	.150	.093	2 <u>5</u> 32	$\frac{23}{32}$	9 10	$1\frac{7}{64}$	16	3/8
1/2	13	.400	.0096	.196	.126	1/8	13 16	1	145	1/2	7 16
16	12	.454	.0104	.249	.162	$\frac{31}{32}$	29 32	11/8	$1\frac{23}{64}$	9 16	1/2
5/8	11	.507	.0113	.307	.202	1_{16}^{-1}	1	$1\frac{7}{32}$	1½	5/8	9 16
3/4	10	.620	.0125	.442	.302	11/4	1 ₁₆	1_{16}^{7}	149	3/4	116
7 ⁄8	9	.731	.0138	.601	.420	$1\frac{7}{16}$	13/8	$1\frac{21}{32}$	$2\frac{1}{32}$	1/8	13 16
1	8	.837	.0156	.785	.550	15/8	$1_{\frac{9}{16}}$	17/8	$2\frac{19}{64}$	1	15 16
1/8	7	.940	.0178	.994	.694	113	13/4	$2\frac{3}{32}$	2 9	11/8	116
1/4	7	1.065	.0178	1.227	.893	2	115	$2\frac{5}{16}$	253	11/4	13
3/8	6	1.160	.0208	1.485	1.057	23	21/8	$2\frac{17}{32}$	3 3 2	13/8	15
1/2	6	1.284	.0208	1.767	1.295	23/8	$2\frac{5}{16}$	23/4	323	1½	$1\frac{7}{16}$
5/8	51/2	1.389	.0227	2.074	1.515	$2\frac{9}{16}$	$\frac{21}{2}$	$2\frac{31}{32}$	35/8	15/8	$1\frac{9}{16}$
3/4	5	1.491	.0250	2.405	1.746	23/4	$2^{\frac{1}{16}}$	$3\frac{3}{16}$	357	13/4	111
7/8	5	1.616	.0250	2.761	2.051	215	27/8	313	$4\frac{5}{32}$	17/8	113
2	41/2	1.712	.0277	3.142	2.302	31/8		35/8	427	2	115
1/4	$\frac{1}{2}$ $\frac{4}{2}$	1.962	.0277	3.976	3.023	3½ 3½	3^{1}_{16} 3^{7}_{16}	$4\frac{1}{16}$	461	21/4	$2\frac{3}{16}$
1/2	4	2.176	.0312	4.909	3.719	37/8	$3\frac{13}{16}$	$\frac{41}{6}$		$\frac{274}{2\frac{1}{2}}$	$2\frac{7}{16}$
$\frac{2}{3/4}$	4	2.426	.0312	5.940	4.620	$\frac{378}{4\frac{1}{4}}$	$4\frac{3}{16}$	$4\frac{29}{32}$	$\frac{5\frac{31}{64}}{6}$	23/4	$2\frac{16}{16}$
3	31/2	2.629	.0357	7.069	5.428	45/8	4 9 16	53/8	$6\frac{17}{32}$	3	$2\frac{15}{16}$
1/4	31/2	2.879	.0357	8.296	6.510	5	$4\frac{15}{16}$	$5\frac{13}{16}$	7_{16}^{1}	31/4	33
1/2	31/4	3.100	.0384	9.621	7.548	53/8	$5\frac{5}{16}$	$6\frac{7}{64}$	$7\frac{39}{64}$	31/2	376
3/4	3	3.317	.0413	11.045	8.641	$5\frac{3}{4}$	511	6^{21}_{32}	81/8	33/4	316
4	3	3.567	.0413	12.566	9.963	61/8	616	$7\frac{3}{32}$	841	4	315
1/4	27/8	3.798	.0435	14.186	11.329	$6\frac{1}{2}$	67	7 9 16	93	41/4	4-3
1/2	23/4	4.028	.0454	15.904	12.753	67/8	613	$7\frac{31}{32}$	93/4	$4\frac{1}{2}$	$4\frac{7}{16}$
3/4	25/8	4.256	.0476	17.721	14.226	$7\frac{1}{4}$	73	813	101/4	43/4	411
5	21/2	4.480	.0500	19.635	15.763	75/8	7.9	827	1043	5	415
1/4	21/2	4.730	.0500	21.648	17.572	8	715	932	1123	51/4	$5\frac{3}{16}$
1/2	23/8	4.953	.0526	23.758	19.267	83/8	8 5 16	923	117/8	51/2	576
3/4	23/8	5.203	.0526	25.967	21.262	83/4	811	$10\frac{5}{32}$	123/8	53/4	511
6	21/4	5.423	.0555	28.274	23.098	91/8	91	1019	1215	6	515
	-/4				-5.500	-/8	-18	2032	16		-16

Whitworth Screw Bolts and Nuts.

Size of bolt and thickness of nut.	Number of threads per inch.	Diameter at bottom of thread.	Area at bottom of thread.	Thickness of bolt head.	Nut across plate.	Nut across corners.
Inch.		Inch.	Inch.	Inch.	Inch.	Inch.
1/8	40	.093	.0067	.109	.338	.390
3 16	24	.134	.0141	.164	.448	.517
1/4	20	.186	.0271	.219	.525	.606
5 16	18	.241	.0458	.273	.601	.694
3/8	16	.295	.0683	.328	.709	.819
7 16	14	.346	.0940	.383	.820	.947
1/2	12	.393	.1215	.437	.919	1.06
9	12	.456	.1633	.492	1.011	1.16
5/8	11	.508	.2032	.547	1.101	1.27
11 16	11	.571	.2560	.601	1.201	1.38
3/4	10	.622	.3038	.656	1.301	1.50
13 16	10	.684	.3674	.711	1.390	1.60
7/8	9	.733	.422	.766	1.479	1.70
$\frac{15}{16}$	9	.795	.496	.820	1.574	1.82
1	8	.840	.554	.875	1.670	1.95
1/8	7	.942	.697	.984	1.860	2.15
1/4	7	1.067	.894	1.094	2.048	2.36
3/8	6	1.161	1.059	1.203	2.215	2.55
1/2	6	1.286	1.30	1.312	2.413	2.78
5/8	5	1.369	1.47	1.422	2.576	2.97
3/4	5	1.494	1.75	1.531	2.758	3.18
7/8	$4\frac{1}{2}$	1 590	1.99	1.641	3.018	3.48
2	$4\frac{1}{2}$	1.715	2.31	1.750	3.149	3.63
1/8	$4\frac{1}{2}$	1.840	2.66	1.859	3.337	3.85
1/4	. 4	1.930	2.92	1.969	3.546	4.09
3/8	4	2.055	3.31	2.078	3.750	4.33
1/2	4	2.180	3.73	2.187	3.894	4.49
5/8	4	2.305	4.17	2.297	4.049	4.67
3/4	31/2	2.384	4.46	2.406	4.181	4.82
7/8	3½	2.509	4.92	2.516	4.346	5.02
3	3½	2.634	5.45	2.625	4.530	5.23

Whitworth threads are inclined at an angle of 55 degrees, and have one-sixth of the total depth of thread rounded off at the top and also at the bottom

the bottom.

The Whitworth system is the standard for Great Britain, and is also used extensively on the Continent pending the adoption of a satisfactory international metric screw thread system. In many of the leading machine shops of France, Switzerland, Belgium, and Germany the bolts are made in English units with Whitworth threads, all other parts of the machines being in metric units.

Wrought=iron Steam Pipe.

United States Standard.

	Inner diameter.		r foot.	er inch w.	Inner diameter.			r foot.	r inch w.
Nominal.	Actual.	Thickness.	Weight per foot.	Threads per inch of screw.	Nominal.	Actual.	Thickness.	Weight per foot.	Threads per inch of screw.
Inch.	Inch.	Inch.	Lb.		Inch.	Inch.	Inch.	Lb.	
1/8	.270	.068	.24	27	$4\frac{1}{2}$	4.508	.246	12.49	8
1/4	.364	.088	.42	18	5	5.045	.259	14.50	8
3/8	.494	.091	.56	18	6	6.065	.280	18.76	8
$\frac{1}{2}$.623	.109	.84	14	7	7.023	.301	23.27	8
3/4	.824	.113	1.12	14	8	7.982	.322	28.18	8
1	1.048	.134	1.67	11½	9	9.001	.344	33.70	8
1/4	1.380	.140	2.24	$11\frac{1}{2}$	10	10.019	.366	40.00	8
$\frac{1}{2}$	1.611	.145	2.68	11½	11	11.00	.375	45.00	8
2	2.067	.154	3.61	111/2	12	12.00	.375	49.00	8
1/2	2.468	.204	5.74	8	13	13.25	.375	54.00	8
3	3.067	.217	7.54	8	14	14.25	.375	58.00	8
1/2	3.548	.226	9.00	8	15	15.25	.375	62.00	8
4	4.026	.237	10.66	8					

Whitworth or British Standard.

Pipes having an internal diameter of $\frac{1}{4}$ inch or $\frac{3}{8}$ inch have 19 threads to the inch. Those of $\frac{1}{8}$ inch, $\frac{3}{8}$ inch, $\frac{3}{8}$ inch, and $\frac{3}{8}$ inch have 14 threads to the inch, and all other sizes of pipes have 11 threads to the inch.

size.	Diameter.		size.	Dian	neter.	size.	Diam	eter.
Nominal si	Internal.	External.	Nominal si	Internal.	External.	Nominal si	Internal.	External.
Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.
1/8	.27	.40	2½	2.47	2.87	9	8.94	9.62
1/4	.36	.54	3	3.07	3.50	10	10.02	10.75
3/8	.49	.67	1/2	3.55	4.00	11	11.00	11.75
1/2	.62	.84	4	4.03	4.50	12	12.00	12.75
3/4	.82	1.05	1/2	4.51	5.00	13	13.25	14.00
1	1.05	1.31	5	5.04	5.56	14	14.25	15.00
1/4	1.38	1.66	6	6.06	6.62	15	15.43	16.00
1/2	1.61	1.90	7	7.02	7.62	16	16.40	17.00
2	2.07	2.37	8	7.98	8.62	17	17.32	18.00

Standard Cast=iron Pipe.

Metric System.

Inside diam- eter.	Thick- ness.	Outside diameter.	Weight per metre.	Inside diameter.	Thick- ness.	Outside diameter.	Weight per metre.
Mm.	Mm.	Mm.	Kilo.	Mm.	Mm.	Mm.	Kilo.
40	8.0	56	8.75	375	14.0	403	124.04
50	8.0	66	10.57	400	14.5	429	136.89
60	8.5	77	13.26	425	14.5	454	145.15
70	8.5	87	15.20	450	15.0	480	158.87
80	9.0	98	18.24	475	15.5	506	173.17
90	9.0	108	20.29	500	16.0	532	188.04
100	9.0	118	22.34	550	16.5	583	212.90
125	9.5	144	29.10	600	17.0	634	238.90
150	10.0	170	36.44	650	18.0	686	273.86
175	10.5	196	44.36	700	19.0	738	311.15
200	11.0	222	52.86	750	20.0	790	350.76
225	11.5	248	61.95	800	21.0	842	392.69
250	12.0	274	71.61	900	22.5	945	472.76
275	12.5	300	81.85	1000	24.0	1048	559.76
. 300	13.0	326	92.68	1100	26.0	1152	666.81
325	13.5	352	104.08	1200	28.0	1256	783.15
350	14.0	378	116.07				

Cast-iron Pipe.

The following tables of dimensions and weights of standard cast-iron pipe for water mains are those adopted by the New England Water Works Association at its meeting in September, 1902. Ten classes of pipe are given, designated by the letters of the alphabet, the difference between the various classes being in the matter of thickness,—the inside diameter remaining constant for any size pipe, and the variation in thickness affecting the outside diameter. Table No. 1, herewith, gives the dimensions of the various sizes, and Table No. 2 gives the weights for standard 12-foot lengths of the various diameters and thicknesses.

The various classes are required to stand hydrostatic tests, as follows:

	Pounds per square in 20 inches and larger.	Less than
Class A	150	300
Class B	200	300
Class C	250	300
Class D	300	300
Class E	350	350
Class F	350	350

TABLE No. 1.

General Dimensions of Pipes and Special Castings.

Namin al		Actual	Diam. o	f sockets.	Depth o	f sockets.		
Nominal diameter.	Classes.	outside diameter.	Pipe.	Special castings.	Pipe.	Special castings.	"a"	"b"
Inch.		Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch
4 4 4 6 6 8 8 10 10 12 12 14 14 16 18 18 18 20 20 24 24 24 30 30 36 36 42 42 42 48 48 48 48 48 54 54 54 56 60 60 60 60 60 60 60 60 60 60 60 60 60	A,G,A,G,A,E,A,E,A,E,A,C,	4.80 5.00 6.90 7.10 9.05 9.30 11.10 11.40 13.50 15.30 15.65 17.40 19.25 19.50 19.70 21.30 21.60 21.90 25.40 25.80 26.10 32.40 37.80 32.40 37.80 38.30 38.70 44.50 45.10 50.20 50.80 51.40 57.80 62.60 62.60	5.60 5.80 7.77 7.90 9.85 10.10 11.90 12.20 14.30 16.15 18.40 20.25 20.50 22.60 22.60 22.90 22.90 26.40 22.90 22.90 23.00 33.40 33.80 39.70 45.50 46.10 51.80 52.40 55.80 55.80 55.80 55.80 56.60 56.60	5.70 5.70 7.80 10.00 10.00 12.10 14.20 14.20 14.20 14.20 16.35 18.60 18.60 20.40 20.40 20.40 22.50 22.50 22.50 23.00 26.60 26.60 27.10 32.60 33.40 33.80 39.70 45.50 46.10 51.80 52.40 55.180 55.80 56.60 57.40 58.10 58.80	3.0 3.0 3.5 3.5 3.5 3.5 3.5 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.5 4.5 4.5 5.0 5.0 5.5 5.5 5.5 5.5 5.5 5	4.0 4.0 4.0 4.0 4.0 4.0 4.5 4.5 4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	$\begin{matrix} 1.3 \\ 1.4 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.6 \\ 1.7 \\ 1.8 \\ 1.9 \\ 1.9 \\ 2.0 \\ 2.1 \\ 2.1 \\ 2.3 \\ 2.3 \\ 2.5 \\ 2.8 \\ 2.8 \\ 3.0 \\ 3.0 \\ 3.0 \\ 3.0 \\ 3.2 \\ 3.8 \\ 3.4 \\ 4 \end{matrix}$
60	C, D E, F	63.40 64.20	64.40 65.20	64.40 65.20	5.5 5.5	5.5 5.5	2.25 2.25	3.4 4.0

548

36 36 36

12 14 16 Nominal diam-

eter of pipe.

Thickness

of shell. Weight per

length.

Class

×

Thickness .87 1.03 1.10 3256 55556 4.2834 Class of shell. Weight per 4900 6130 7510 8900 1610 2050 2860 3800 810 1010 1215 1410 Þ 200 330 475 650 length. Inch. Thickness . 60 57 55 .908.72 Class of shell. 1760 2290 3230 4270 Weight per 865 1085 1310 1540 ಹ length. Thickness $\frac{1.13}{1.25}$ $\frac{1.37}{1.50}$.91 .91 .00000 .36 .42 .53 Class of shell. 1920 2530 3600 4830 Weight per 920 1155 1410 1660 Ω 215 525 725 length. 12 Feet in Length, exclusive of Socket. Inch. Thickness .79 .88 1.01 1.54 .76 Class of shell. Weight per 980 1230 1500 1790 Lb. length. Thickness 1.40 1.55 1.72 .85 1.10 1.25 .865.76 .536 Class of shell. Weight per 2250 3000 4320 5900 1035 1300 1600 1910 575 805 Ħ length. 1.03 1.20 1.37 Thickness .868.768 Class of shell. 10600 13500 Weight per 2410 3240 4680 6360 1090 1380 1700 2040 Lb length. Thickness .73 .79 .50 .58 .58 Class of shell. Weight per 1150 1450 1800 885 885 885 885 Ω length. Inch. Thickness .90 Class of shell. 1210 1530 1900 Weight per Lb length. Inch Thickness .54 of shell. Weight per 260 440 685 length.

Standard Thicknesses and Weights of Cast-iron Pipes

Sizes and Weights of Cast=iron Pipe Connections.

Cross	es.	Tees	3.	45°Bran	ch Pipes	3.	Plu	gs.	Reducers.					
Inch.	Lb.	Inch.	Lb.	Inch.	Lb.		Inch.	Lb.	Inch.	Lb.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 104 90 150 114 110 200 150 150 325 265 265 225 510	$\begin{array}{c} 2\\ 3\\ 3 \times 2\\ 4 \times 3\\ 4 \times 2\\ 6 \times 4\\ 6 \times 3\\ 6 \times 2\\ 8 \times 6\\ 8 \times 4\\ 8 \times 3\\ \end{array}$	28 76 76 100 90 87 150 130 125 120 266 252 222 220	3 6 × 6 × 8 × 8 × 6 24 × 24 × 24 × 30 36	$\left(\begin{array}{c c} 4 & 14 \\ 36 \\ 29 \\ 276 \end{array} \right)$	00 00 05 15 70	2 3 4 6 8 10 12 14 16 20 24 30	2 5 8 12 26 46 66 70 100 150 185 370	$\begin{array}{c} 4 \times 3 \\ 6 \times 4 \\ 6 \times 3 \\ 8 \times 4 \\ 8 \times 4 \\ 10 \times 4 \\ 10 \times 4 \\ 10 \times 4 \\ 12 \times 1 \\ 12 \times 4 \end{array}$	2 35 3 42 4 95 3 80 6 126 4 116 3 116 8 212 6 150 4 128 0 278 8 254 6 250				
$\begin{array}{c} 10 \times 8 \\ 10 \times 6 \\ 10 \times 4 \end{array}$	415 388 338	10×8 10×6	390 330 312	Slee	ves.				14×1 14×1	0 430				
$ \begin{array}{c} 10 \times 3 \\ 12 \\ 12 \times 10 \\ 12 \times 8 \\ 12 \times 6 \\ 12 \times 4 \end{array} $	350 700 650 615 540 525	$egin{array}{c c c} 0 & 12 & 5 \\ 5 & 12 \times 10 \\ 0 & 12 \times 8 \\ \hline \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		$ \begin{vmatrix} 12 & 56 \\ 12 \times 10 & 51 \\ 12 \times 8 & 49 \\ 12 \times 6 & 48 \end{vmatrix} $		$ \begin{array}{c cccc} $	$ \begin{array}{c cccc} 12 & & 565 \\ 12 \times 10 & 510 \\ 12 \times 8 & 492 \\ 12 \times 6 & 484 \end{array} $	Inch. 2 3	Lb.		½ or Ben		$ \begin{array}{c c} 14 \times & \\ 16 \times 1 \\ 16 \times 1 \\ 20 \times 1 \\ 20 \times 1 \end{array} $	0 435 6 690 4 575
12×3 14×10 14×8 14×6 16×14	495 750 635 570 1025 1070	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	460 650 650 575 545 525	$\begin{bmatrix} 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \end{bmatrix}$	44 65 86 140 176 208		Inch.	Lb. 30 65	24×2 30×2	8 300 0 745 4 1305 8 1385				
$ \begin{array}{c} 16 \times 14 \\ 16 \times 12 \\ 16 \times 10 \\ 16 \times 8 \\ 16 \times 6 \\ 16 \times 4 \\ \end{array} $	1025 14 1010 16 825 16 700 16 650 16	14×3 16 16×14 16×12	525 490 790 850 825 890 755	16 190 20 150 24 125 30 190 36	340 500 710 965 1500		6 8 10 12 16 20	85 160 190 290 510 740	Car					
20×12 20×10 20×8	1370 1225 1000	$ \begin{array}{c c} 16 \times 6 \\ 16 \times 4 \\ 20 \end{array} $	630 655 1375		~	=	24 30	1425 2000	Inch.	Lb.				
20×6 20×4 24 24×20 24×6 30×20	1000 1000 2190 2020 1340 2635	$\begin{array}{c} 20 \times 16 \\ 20 \times 12 \\ 20 \times 10 \\ 20 \times 8 \\ 20 \times 6 \\ 20 \times 4 \end{array}$	1115 1025 1090 900 875 845	90° E	lbows.				3 4 6 8 10 12	$ \begin{array}{c} 15 \\ 25 \\ 60 \\ 75 \\ 100 \\ 120 \end{array} $				
30×12 30×8	2250 1995	$\begin{array}{c} 21 \times 10 \\ 24 \\ 24 \times 12 \end{array}$	1465 1875 1425	Inch.	Lb.		1 or Ben							
		$\begin{vmatrix} 24 \times 8 \\ 24 \times 6 \\ 30 \end{vmatrix}$	1375 1375 3025 2640	$\begin{bmatrix} 2\\3\\4\\6 \end{bmatrix}$	14 34 48 110		Inch.	Lb.	Dri box					
		$ \begin{array}{c} 30 \times 24 \\ 30 \times 20 \\ 30 \times 12 \\ 30 \times 10 \end{array} $	2040 2200 2035 2050	8 10 12	145 225 370		6 8 10	150 155 165	Inch.	Lb.				
		$ \begin{array}{c} 30 \times 10 \\ 30 \times 6 \\ 36 \\ 36 \times 30 \\ 36 \times 12 \end{array} $	1825 5140 4200 4050	14 16 20 24	450 525 900 1400		10 12 16 24 30	260 500 1280 1735	4 8 10 20	235 355 760 1420				

Lap-welded American Charcoal Iron Boiler Tubes.

Tables of Standard Sizes.

Morris, Tasker & Co.

External diameter.	Internal diameter.	Thickness.	External cir- cumference.	Internal cir- cumference.	Length of pipe per square foot, inside surface.	Length of pipe per square foot, outside surface.	Internal area.	External area.	Weight per foot.
Inch.	Inch.	Inch.	Inch.	Inch.	Feet.	Feet.	Inch.	Inch.	Lb.
1	.856	.072	3.142	2.689	4.460	3.819	.575	.785	.708
1/1	1.106	.072	3.927	3.474	3.455	3.056	.960	1.227	.900
1/4 1/2 3/4 2	1.334	.083	4.712	4.191	2.863	2.547	1.396	1.767	1.250
3/4	1.560	.095	5.498	4.901	2.448	2.183	1.911	2.405	1.665
2	1.804	.098	6.283	5.667	2.118	1.909	2.556	3.142	1.981
1/4 1/2 3/4 3/4	2.054	.098	7.069	6.484	1.850	1.698	3.314	3.976	2.238
1/2	2.283	.109	7.854	7.172	1.673	1.528	4.094	4.909	2.755
3/4	2.533	.109	8.639	7.957	1.508	1.390	5.039	5.940	3.045
3	2.783	.109	9.425	8.743	1.373	1.273	6.083	7.069	3.333
1/4 1/2 3/4	3.012	.119	10.210	9.462	1.268	1.175	7.125	8.296	3.958
7 2	3.262	.119	10.995	10.248	1.171	1.091	8.357	9.621 11.045	4.272
4 4	3.512 3.741	.119 .130	11.781 12.566	11.033 11.753	1.088 1.023	1.018 .955	9.687 10.992	12.566	4.590 5.320
1/	4.241	.130	14.137	13.323	.901	.955	14.126	15.904	6.010
5 72	4.720	.140	15.708	14.818	.809	.764	17.497	19.635	7.226
6	5.699	.151	18.849	17.904	.670	.637	25,509	28.274	9.346
5 6 7 8 9	6.657	.172	21.991	20.914	.574	.545	34.805	38.484	12,435
8	7.636	.182	25.132	23.989	.500	.478	45.795	50.265	15.109
9	8.615	.193	28.274	27.055	.114	.424	58.291	63.617	18.002
10	9.573	.214	31.416	30.074	.399	.382	71.975	78.540	22.190

Wrought=iron Welded Tubes.

Extra strong.

		Likut	suong.		
Nominal diameter.	Actual outside diameter.	Thickness. Extra strong.	Thickness. Double extra strong.	Actual inside diameter. Extra strong.	Actual inside diameter. Double extra strong.
Inch. 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/	Inch, .405 .540 .675 .840 1.050 1.315 1.660 1.900 2.375 2.875 3.5 4.0	Inch, .100 .123 .127 .149 .157 .182 .194 .203 .221 .280 .304 .321 .341		Inch205 .294 .421 .542 .736 .951 1.272 1.494 1.933 2.315 2.892 3.358 3.818	

Different Standards for Wire Gauge in Use in the United States.

Dimensions in decimal parts of an inch.

	Dimensions in decimal parts of an inch.									
Number of wire gauge.	American, or Brown & Sharpe.	Birming- ham, or Stubs'.	Washburn & Moen Mfg. Co., Worces- ter, Mass.	Trenton Iron Co., Trenton, N. J.	United States Standard.	Old Eng- lish, from Brass Mfrs. List.				
000000			.46		.46875					
00000			.43	.45	.43750					
0000	.460 000	.454	.393	.40	.40625					
000	.409 640	.425	.362	.36	.37500					
00	.364 800	.380	.331	.33	.34375					
0	.324 950	.340	.307	.305	.31250					
1	.289 300	.300	.283	.285	.28125					
2	.257 630	.284	.263	.265	.26563					
3	.229 420	.259	.244	.245	.25000					
4	.204 310	.238	.225	.225	.23438					
5 6	.181 940	.220	.207	.205	.21875					
7	.162 020 .144 280	.203 .180	.192 .177	.190 .175	.20313 .18750					
8	.128 490	.165	.162	.160	.17188					
. 9	.114 430	.148	.102	.145	.15625					
10	.101 890	.134	.135	.130	.14063					
11	.090 742	.120	.120	.1175	.12500					
12	.080 808	.109	.105	.1050	.10938					
13	.071 961	.095	.092	.0925	.09375					
14	.064 084	.083	.080	.0800	.07813	.083				
15	.057 068	.072	.072	.0700	.07031	.072				
16	.050 820	.065	.063	.0610	.06250	.065				
17	.045 257	.058	.054	.0525	.05625	.058				
18	.040 303	.049	.047	.0450	.05000	.049				
19	.035 390	.042	.041	.0390	.04375	.040				
20	.031 961	.035	.035	.0340	.03750	.035				
21	.028 462	.032	.032	.0300	.03438	.0315				
22 23	.025 347	.028	.028	.0270	.03125	.0295				
23	.022 371	.023	.023	.0240	.02513	.0270				
25	.017 900	.020	.020	.0190	.02188	.0230				
26	.015 940	.018	.018	.0180	.01875	.0205				
27	.014 195	.016	.017	.0170	.01719	.01875				
28	.012 641	.014	.016	.0160	.01563	.01650				
29	.011 257	.013	.015	.0150	.01406	.01550				
30	.010 025	.012	.014	.0140	.01250	.01375				
31	.008 928	.010	.0135	.0130	.01094	.01225				
32	.007 950	.009	.0130	.0120	.01016	.01125				
33	.007 080	.008	.0110	.0110	.00938	.01025				
34	.006 304	.007	.0100	.0100	.00859	.00950				
35	.005 614	.005	.0095	.0090	.00781	.00900				

Wire.—Iron, Steel, Copper, Brass.

Weight, in Pounds, of 100 Feet. Birmingham Wire Gauge.

Number of	-	Per 100	lineal feet.	
gauge.	Iron.	Steel.	Copper.	Brass.
	Lb.	Lb.	Lb.	Lb.
0000	54.62	55.13	62.39	58.93
000	47.86	48.32	54.67	51.64
00	38.27	38.63	43.71	41.28
. 0	30.63	30.92	34.99	33,05
1	23.85	24.07	27.24	25.73
2	21.37	21.57	24.41	23.06
3	17.78	17.94	20.30	19.18
4	15.01	15.15	17.15	16.19
5	12.82	12.95	14.65	13.84
6	10.92	11.02	12,47	11.78
7	8,586	8.667	9.807	9.263
8	7.214	7.283	8.241	7.783
9	5,805	5.859	6.630	6.262
10	4,758	4.803	5,435	5.133
11	3.816	3.852	4,359	4.117
12	3.148	3.178	3,596	3.397
13	2.392	2.414	2.732	2.580
14	1.826	1.843	2.085	1.969
15	1.374	1.387	1.569	1.482
16	1.119	1,130	1.279	1.208
17	.8915	.900	1.018	.9618
18	.6363	.6423	.7268	.6864
19	.4675	.4720	.5340	.5043
20	.3246	.3277	.3709	.3502
21	.2714	.2740	.3100	.2929
22	.2079	.2098	.2373	.2241
23	.1656	.1672	.1892	.1788
24	.1283	.1295	.1465	.1384
25	.1060	.1070	.1211	.1144
26	.0859	.0867	.0981	.0926
27	.0678	.0685	.0775	.0732
28	.0519	.0524	.0593	.0560
29	.0448	.0452	.0511	.0483
30	.0382	.0385	.0436	.0412
31	.0265	.0267	.0303	.0286
32	.0215	.0217	.0245	.0231
33	.0170	.0171	.0194	.0183
34	.0130	.0131	.0148	.0140
35	.0066	.0067	.0076	.0071
36	.0042	.0043	.0048	.0046
			.0010	*0010

United States Standard Gauge for Sneet- and Plateiron and Steel, 1893.

Number of gauge.	Approximate thick- ness, in fractions of an inch.	Approximate thick- ness, in decimal parts of an inch.	Approximate thick- ness, in millimetres,	Weight per square foot, in ounces avoirdupois.	Weight per square foot, in pounds avoirdupois.	Weight per square foot, in kilogrammes.	Weight per square metre, in kilogrammes.	Weight per square metre, in pounds avoirdupois.			
0000000 000000 00000 0000 0000	1/2 15 35 76 16 13 3/8	.500 000 .468 750 .437 500 .406 250 .375 000	12.700 000 11.906 250 11.112 500 10.318 750 9.525 000	320 300 280 260 240	20.000 18.750 17.500 16.250 15.000	9.072 8.505 7.938 7.371 6.804	97.65 91.55 85.44 79.33 73.24	215.28 201.82 188.37 174.91 161.46			
00 0 1 2 3	$\begin{bmatrix} \frac{11}{32} \\ \frac{5}{16} \\ \frac{9}{32} \\ \frac{17}{64} \\ \frac{1}{4} \end{bmatrix}$.343 750 .312 500 .281 250 .265 625 .250 000	8.731 250 7.937 500 7.143 750 6.746 875 6.350 000	220 200 180 170 160	13.750 12.500 11.250 10.625 10.000	6.237 5.670 5.103 4.819 4.536	67.13 61.03 54.93 51.88 48.82	148.00 134.55 121.09 114.37 107.64			
4 5 6 7 8	15 64 7 32 13 64 16 16	.234 375 .218 750 .203 125 .187 500 .171 875	5.953 125 5.556 250 5.159 375 4.762 500 4.365 625	150 140 130 120 110	9.375 8.750 8.125 7.500 6.875	4.252 3.969 3.685 3.402 3.118	45.77 42.72 39.67 36.62 33.57	100.91 94.18 87.45 80.72 74.00			
9 10 11 12 13	5 32 64 1/8 7 64 3	.156 250 .140 625 .125 000 .109 375 .093 750	3.968 750 3.571 875 3.175 000 2.778 125 2.381 250	100 90 80 70 60	6.250 5.625 5.000 4.375 3.750	2.835 2.552 2.268 1.984 1.701	30.52 27.46 24.41 21.36 18.31	67.27 60.55 53.82 47.09 40.36			
14 15 16 17 18	5 64 128 16 16 160 20	.078 125 .070 312 500 .062 500 000 .056 250 000 .050 000 000	1.984 375 1.785 937 500 1.587 500 000 1.428 750 000 1.270 000 000	50 45 40 36 32	3.125 2.812 500 2.500 000 2.250 000 2.000 000	1.417 1.276 1.134 1.021 .9072	15.26 13.73 12.21 10.99 9.765	33.64 30.27 26.91 24.22 21.53			
19 20 21 22 23	$ \begin{array}{r} 7 \\ 3 \\ 80 \\ \hline 11 \\ \hline 320 \\ \hline 32 \\ \hline 32 \\ \hline 32 \\ \hline 32 \\ \end{array} $.043 750 000 .037 500 000 .034 375 000 .031 250 000 .028 125 000	1.111 250 000 .952 500 000 .873 125 000 .793 750 000 .714 375 000	28 24 22 20 18	1.750 000 1.500 000 1.375 000 1.250 000 1.125 000	.7938 .6804 .6237 .5670 .5103	8.544 7.324 6.713 6.103 5.493	18.84 16.15 14.80 13.46 12.11			
24 25 26 27 28	160 160 164 164	.025 000 000 .021 875 000 .018 750 000 .017 187 500 .015 625 000	.635 000 000 .555 625 000 .476 250 000 .436 562 500 .396 875 000	16 14 12 11 10	1.000 000 .875 000 .750 000 .687 500 .625 000	.4536 .3969 .3402 .3119 .2835	4.882 4.272 3.662 3.357 3.052	10.76 9.42 8.07 7.40 6.73			
29 30 31 32 33	$\begin{array}{r} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ &$.014 062 500 .012 500 000 .010 937 500 .010 156 250 .009 375 000	.357 187 500 .317 500 000 .277 812 500 .257 968 750 .238 125 000	$\begin{bmatrix} 9 \\ 8 \\ 7 \\ 6 \\ 2 \\ 6 \end{bmatrix}$.562 500 .500 000 .437 500 .406 250 .375 000	.2551 .2268 .1984 .1843 .1701	2.746 2.441 2.136 1.983 1.831	6.05 5.38 4.71 4.37 4.04			
34 35 36 37 38	$\begin{array}{c} 11 \\ 1280 \\ 540 \\ \hline 1280 \\ \hline 1280 \\ \hline 2560 \\ \hline 160 \\ \end{array}$.008 593 750 .007 812 500 .007 031 250 .006 640 625 .006 250 000	.218 281 250 .198 437 500 .178 593 750 .168 671 875 .158 750 000	5½ 5 4½ 4¼ 4¼ 4	.343 750 .312 500 .281 250 .265 625 .250 000	.1559 .1417 .1276 .1205 .1134	1.678 1.526 1.373 1.297 1.221	3.70 3.36 3.03 2.87 2.69			

315

Crane Chains.

		"D. B		Crane.						
Size of chain.	Pitch A. Approximately.	Weight per foot. Approx- imately.	Outside width. B.	Proof test.	Average break- age strain.	Ordinary safe load. General use.	Proof test.	Average break- age strain.	Ordinary safe load. General use.	
Inch.	Inch.	Lb.	Inch.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	
1/4	25 32	7/8	7/8	1 932	3 864	1 288	1 680	3 360	1 120	
5 16	$\frac{27}{32}$	1	116	2 898	5 796	1 932	2 520	5 040	1 680	
3/8	31 32	1,7	11/4	4 186	8 372	2 790	3 640	7 280	2 427	
7 16	$1_{\frac{5}{32}}$	2	13/8	5 796	11 592	3 864	5 040	10 080	3 360	
1/2	111	21/2	111	7 728	15 456	5 182	6 720	13 440	4 480	
9	$1\frac{15}{32}$	3.2	17/8	9 660	19 320	6 440	8 400	16 800	5 600	
5/8	123	41/8	216	11 914	22 828	7 942	10 360	20 720	6 907	
11 16	$1^{\frac{27}{32}}$	5	21/4	14 490	28 980	9 660	12 600	25 200	8 400	
3/4	$1\frac{31}{32}$	57/8	2½	17 388	34 776	11 592	15 120	30 240	10 080	
13 16	23	670	$2\frac{11}{16}$	20 286	40 572	13 524	17 640	35 280	11 760	
7/8	2732	8	27/8	22 484	44 968	14 989	20 440	40 880	13 627	
15 16	$2\frac{15}{32}$	9	316	25 872	51 744	17 248	23 520	47 040	15 680	
1	$2\frac{19}{32}$	10,7	31/4	29 568	59 136	19 712	26 880	53 760	17 920	
16	$2\frac{23}{32}$	11_{10}^{-2}	35	33 264	66 538	22 176	30 240	60 480	20 160	
1/8	$2\frac{27}{32}$	121/2	33/4	37 576	75 152	25 050	34 160	68 320	22 773	
3 16	35/32	13.7	37/8	41 888	83 776	27 925	38 080	76 160	25 387	
1/4	372	16	41/8	46 200	92 400	30.800	42 000	84 000	28 000	
5 16	$3\frac{15}{32}$	16½	43/8	50 512	101 024	33 674	45 920	91 840	30 613	
3/8	35/8	184	4.9	55 748	111 496	37 165	50 680	101 360	33 787	
7 16	$3\frac{25}{32}$	1970	43/4	60 368	120 736	40 245	54 880	109 760	36 587	
1/2	331	217	5	66 528	133 056	44 352	60 480	120 960	40 320	
				·						

The distance from centre of one link to centre of next is equal to the inside length of link, but in practice $\frac{1}{32}$ inch is allowed for weld. This is approximate, and, where exactness is required, chain should be made so.

For **Chain Sheaves.**—The diameter, if possible, should be not less than twenty times the diameter of chain used.

Example. For 1-inch chain use 20-inch sheaves.

Window Glass.

Number of Lights per Box of 50 Feet.

					,		1
Inch.	No.	Inch.	No.	Inch.	No.	Inch.	No.
$\begin{array}{c} 6 \times 8 \\ 7 \times 9 \\ 8 \times 10 \\ 8 \times 11 \\ 8 \times 12 \end{array}$	150 115 90 82 75	$\begin{array}{ c c c }\hline 12 \times 18 \\ 12 \times 20 \\ 12 \times 22 \\ 12 \times 24 \\ 12 \times 26 \\\hline \end{array}$	33 30 27 25 23	$\begin{array}{ c c c }\hline 16 \times 44 \\ 18 \times 20 \\ 18 \times 22 \\ 18 \times 24 \\ 18 \times 26 \\ \hline \end{array}$	10 20 18 17 15	$\begin{array}{c} 26 \times 32 \\ 26 \times 34 \\ 26 \times 36 \\ 26 \times 40 \\ 26 \times 42 \\ \end{array}$	9 8 8 7 7
$8 \times 13 \\ 8 \times 14 \\ 8 \times 15 \\ 8 \times 16 \\ 9 \times 11$	70 64 60 55 72	$\begin{array}{c} 12 \times 28 \\ 12 \times 30 \\ 12 \times 32 \\ 12 \times 34 \\ 13 \times 14 \end{array}$	21 20 18 17 40	$\begin{array}{c} 18 \times 28 \\ 18 \times 30 \\ 18 \times 32 \\ 18 \times 34 \\ 18 \times 36 \end{array}$	14 13 13 12 11	$\begin{array}{c} 26 \times 44 \\ 26 \times 48 \\ 26 \times 50 \\ 26 \times 54 \\ 26 \times 58 \\ \end{array}$	6 6 5 5
9×12 9×13 9×14 9×15 9×16	67 62 57 53 50	$\begin{array}{c} 13 \times 16 \\ 13 \times 18 \\ 13 \times 20 \\ 13 \times 22 \\ 13 \times 24 \end{array}$	35 31 28 25 23	$\begin{array}{c} 18 \times 38 \\ 18 \times 40 \\ 18 \times 44 \\ 20 \times 22 \\ 20 \times 24 \end{array}$	11 10 9 16 15	$\begin{array}{c} 28 \times 30 \\ 28 \times 32 \\ 28 \times 34 \\ 28 \times 36 \\ 28 \times 38 \end{array}$	9 8 8 7 7
9×17 9×18 9×20 10×12 10×13	47 44 40 60 55	$\begin{array}{c} 13 \times 26 \\ 13 \times 28 \\ 13 \times 30 \\ 14 \times 16 \\ 14 \times 18 \end{array}$	21 19 18 32 29	$\begin{array}{c} 20 \times 26 \\ 20 \times 28 \\ 20 \times 30 \\ 20 \times 32 \\ 20 \times 34 \end{array}$	14 13 12 11 11	$\begin{array}{c} 28 \times 40 \\ 28 \times 44 \\ 28 \times 46 \\ 28 \times 50 \\ 28 \times 52 \\ \end{array}$	6 6 5 5
10×14 10×15 10×16 10×17 10×18	52 48 45 42 40	$\begin{array}{c} 14 \times 20 \\ 14 \times 22 \\ 14 \times 24 \\ 14 \times 26 \\ 14 \times 28 \end{array}$	26 23 22 20 18	$\begin{array}{c} 20 \times 36 \\ 20 \times 38 \\ 20 \times 40 \\ 20 \times 44 \\ 20 \times 46 \end{array}$	10 9 9 8 8	$\begin{array}{c} 28 \times 56 \\ 30 \times 36 \\ 30 \times 40 \\ 30 \times 42 \\ 30 \times 44 \end{array}$	4 7 6 6 5
10×20 10×22 10×24 10×26 10×28	36 33 30 28 26	$ \begin{array}{c c} 14 \times 30 \\ 14 \times 32 \\ 14 \times 34 \\ 14 \times 36 \\ 14 \times 40 \\ \end{array} $	17 16 15 14 13	$\begin{array}{c} 20 \times 48 \\ 20 \times 50 \\ 20 \times 60 \\ 22 \times 24 \\ 22 \times 26 \end{array}$	8 7 6 14 13	30×46 30×48 30×50 30×54 30×56	5 5 4 4
$\begin{array}{c} 10 \times 30 \\ 10 \times 32 \\ 10 \times 34 \\ 11 \times 13 \\ 11 \times 14 \end{array}$	24 22 21 50 47	$\begin{array}{c} 14 \times 44 \\ 15 \times 18 \\ 15 \times 20 \\ 15 \times 22 \\ 15 \times 24 \end{array}$	11 27 24 22 20	$\begin{array}{c} 22 \times 28 \\ 22 \times 30 \\ 22 \times 32 \\ 22 \times 34 \\ 22 \times 36 \end{array}$	12 11 10 10 9	30×60 32×42 32×44 32×46 32×48	4 5 5 5 5
$\begin{array}{c} 11 \times 15 \\ 11 \times 16 \\ 11 \times 17 \\ 11 \times 18 \\ 11 \times 20 \end{array}$	44 41 39 36 33	$ \begin{vmatrix} 15 \times 26 \\ 15 \times 28 \\ 15 \times 30 \\ 15 \times 32 \\ 16 \times 18 \end{vmatrix} . $	18 17 16 15 25	$\begin{array}{c} 22 \times 38 \\ 22 \times 40 \\ 22 \times 44 \\ 22 \times 46 \\ 22 \times 50 \\ \end{array}$	9 8 8 7 7	32×50 32×54 32×56 32×60 34×40	4 4 4 4 5
$\begin{array}{c} 11 \times 22 \\ 11 \times 24 \\ 11 \times 26 \\ 11 \times 28 \\ 11 \times 30 \end{array}$	30 27 25 23 21	$ \begin{array}{ c c c } \hline 16 \times 20 \\ 16 \times 22 \\ 16 \times 24 \\ 16 \times 26 \\ 16 \times 28 \\ \hline \end{array} $	23 20 19 17 16	$\begin{array}{c} 24 \times 28 \\ 24 \times 30 \\ 24 \times 32 \\ 24 \times 36 \\ 24 \times 40 \end{array}$	11 10 9 8 8	34×44 34×46 34×50 34×52 34×56	5 5 4 4 4
$\begin{array}{c} 11 \times 32 \\ 11 \times 34 \\ 12 \times 14 \\ 12 \times 15 \\ 12 \times 16 \\ 12 \times 17 \end{array}$	20 19 43 40 38 35	$\begin{array}{c} 16 \times 30 \\ 16 \times 32 \\ 16 \times 34 \\ 16 \times 36 \\ 16 \times 38 \\ 16 \times 40 \\ \end{array}$	15 14 13 12 12 11	$\begin{array}{c} 24 \times 44 \\ 24 \times 46 \\ 24 \times 48 \\ 24 \times 50 \\ 24 \times 54 \\ 24 \times 56 \\ \end{array}$	7 7 6 6 5 5	$\begin{array}{c} 36 \times 44 \\ 36 \times 50 \\ 36 \times 56 \\ 36 \times 60 \\ 36 \times 64 \\ 40 \times 60 \end{array}$	5 4 4 3 3 3
	3						

Roofing Slate.

A square of slating is 100 square feet of finished roofing. Slating is usually so laid that the third slate laps the first slate by three inches. To compute the number of slates of a given size required to cover a square of roof, subtract 3 inches from the length of the slate, multiply the remainder by the width of the slate, and divide by 2; the result is the number of square inches of roof covered per slate. Divide 14,400 (the number of square inches in a square) by the number thus found, and the result will be the number of slates required for a square.

Slate.

Dimensions and Number per Square.

Dimensions, in inches.	Number per square.	Dimensions, in inches.	Number per square.	Dimensions, in inches.	Number per square.
6×12	533	9×16	246	16 × 20	137
7×12	457	10×16	221	12×22	126
8×12	400	9×18	213	14×22	108
9×12	355	10×18	192	12×24	114
7×14	374	12×18	160	14×24	98
8×14	327	10×20	169	16×24	86
9×14	291	11×20	154	14×26	89
10×14	261	12×20	141	16×26	78
8 × 16	277	14 × 20	121		

Thickness, $\frac{1}{16}$ inch, $\frac{3}{16}$ inch, $\frac{1}{16}$ inch, increasing by eighths to 1 inch. The weight of slate is about 174 pounds per cubic foot, or, per square foot of various thicknesses, as follows:

Thickness, in inches.. $\frac{1}{8}$ $\frac{1}{16}$ $\frac{1}{4}$ $\frac{3}{8}$ $\frac{1}{2}$ $\frac{5}{8}$ $\frac{3}{4}$ $\frac{7}{8}$ 1 Weight, in pounds.... 1.81 2.71 3.62 5.43 7.25 9.06 10.88 12.69 14.50

Tin Plates (Tinned Sheet=steel).

Brand		IC	IX	IXX				
Thickness, B. W. gauge		29	27	26				
Number of sheets per box		225	225	225				
Net weight per box {	$ \begin{array}{c} \text{Inch.} \\ 10 \times 14 \\ 12 \times 12 \\ 13 \times 13 \\ 14 \times 14 \\ 15 \times 15 \\ 16 \times 16 \\ 17 \times 17 \\ 10 \times 20 \\ 11 \times 22 \\ \hline \end{array} $	Lb. 108 110 132 155 178 200 230 160 190	Lb. 135 138 162 193 218 248 289 195 235	Lb. 160 165 192 230 260 290 340 222 275				
Brand		IC	IX	IXX	IXXX	IXXXX	IX	IXX
Thickness, B. W. gauge		29	27	26	25	24½	27	26
Number of sheets per box		112	112	112	112	112.	56	56
Net weight per box {	$\begin{array}{c} \text{Inch.} \\ 14 \times 20 \\ 20 \times 28 \\ 18 \times 18 \\ 8 \times 18 \\ 20 \times 20 \\ 22 \times 22 \\ 24 \times 24 \\ 13 \times 26 \\ 14 \times 22 \\ 14 \times 24 \\ 14 \times 28 \\ 14 \times 52 \\ 14 \times 52 \\ 16 \times 19 \\ 16 \times 22 \\ \end{array}$	Lb. 108 216 138 160 190 220 110 132 120 135 178 120 120 120 133 135 	Lb. 1355 270 158 195 235 276 138 162 148 161 193 152 147 154 170	Lb. 160 320 178 222 275 330 165 192 174 190 230 176 170 180 200	Lb, 180	Lb. 200	180 180 185 200	220 240
Brand		D	C	DX	DXX	DXXX	DX	XXX
Thickness, B. W. gauge		2	28	25	24	23		22
Net weight per box of 100 sheets {	Inch. $12\frac{1}{2} \times 17$ 15×21	L1 9 13	94	Lb. 122 180	Lb. 143 213	Lb. 164 244	1	Lb. .85 275
Net weight per box of 50 sheets	17 × 25	9	94	1 22	143	164	1	.85

Weight and Thickness of Lead Pipe.

Caliber.	Mark.	Weight per	foot.	Thickness.	Mean burst- ing pressure.	Safe working pressure.	Caliber.	Mark.	Weight per	foot.	Thickness.	Mean burst- ing pressure.	Safe working pressure.
In.		Lb.	Oz.	In.	Lb.	Lb.	In.		Lb.	Oz.	In.	Lb.	Lb.
3/8	AAA	1	12	.180	1968	492	1	A	4	0	.210	857	214
3/8	AA	1	5	.150	1627	406	1	В	3	4	.170	745	186
3/8	A	1	2	.130	1381	347	1	С	2	8	.140	562	140
3/8	В	1	0	.125	1342	335	1	D	2	4	.125	518	129
3/8	C	0	14	.110	1187	296	1	E	2	0	.100	475	118
3/8		0	10	.087	1085	271	1		1	8	.090	325	81
7 16		0	$9\frac{1}{2}$.080	775	193	11/4	AAA	6	12	.275	962	240
1/2	AAA	3	0	.250	1787	446	11/4	AA	5	12	.250	823	205
1/2		2	8	.225	1655	413	11/4	A	4	11	.210	685	171
1/2	AA	2	0	.180	1393	343	11/4	В	3	11	.170	546	136
7.		_				004		_			405		405
1/2	A	1	10	.160	1285	321	11/4	C	3	0	.135	420	105
1/2	В	1	3	.125	980	245	11/4	D	$\frac{2}{2}$	8	.125	350 322	87
1/2	C	1	9	.100	782	195 117	11/4	A A A	8	0	.095	742	80 185
1/2	ע	0	10	.065	468		11/2	AAA	7	0		700	175
$\frac{1}{2}$		0	10	.070	556	139	1½	AA	1	U	.250	700	113
$\frac{1}{2}$		0	12	.090	625	156	1½	A	6	4	.220	628	157
5/8	AAA	3	8	.230	1548	387	1½	В	5	0	.180	506	126
5/8	AA	2	12	.210	1380	345	1½	С	4	4	.150	430	107
5/8	A	2	8	.180	1152	288	1½	D	3	8	.140	315	78
5/8	В	2	0	.160	987	246	11/2		3	0	.120	245	61
5/8	С	1	7	.117	795	198	13/4	В	5	0			116
5/8	D	1	4	.100	708	177	13/4	С	4	0			93
3/4	AAA	4	14	.290	1462	365	13/4	D	3	10	.125	318	79
3/4	AA	3	8	.225	1225	306	2	AAA	10	11	.300	611	152
3/4	A	3	0	.190	1072	268	2	AA	8	14	.250	511	127
3/4	В	2	3	.150	865	216	2	A	7	0	.210	405	101
3/4	С	1	12	.125	782		2	В	6	0	.190	360	90
3/4	D	1	3	.090	505		2	С	5	0	.160	260	65
1	AAA	6	0	.300	1230	307	2	· D	4	0	.090	200	50
1	AA	4	8	.230	910	227							
-			-	100000	1	1							

Corrugated Iron.

The following table is calculated for sheets $30\frac{1}{2}$ inches wide before corrugating.

Number by Bir- mingham gauge.	ness.	nt per re foot, flat.	nt per re foot, cor- ted.	Weight per square of 100 square feet, when laid, allowing 6 inches lap in length and 2½ inches, or one corrugation, in width of sheet, for sheet lengths of							
Number mingha	Thickness.	Weight	Weight psquare frugated	5′	6′	7′	8'	9′	10′	Weight per square fool galvanized	
	Inch.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	
16	.065	2.61	3.28	365	358	353	350	348	346	2.95	
18	.049	1.97	2.48	275	270	267	264	262	261	2.31	
20	.035	1.40	1.76	196	192	190	188	186	185	1.74	
22	.028	1.12	1.41	156	154	152	150	149	148	1.46	
24	.022	.88	1.11	123	121	119	118	117	117	1.22	
26	.018	.72	.91	101	99	97	97	96	95	1.06	
	1		1						L.		

Skylight and Floor Glass.

Weight per Cubic Foot, 156 Pounds.

Weight per Square Foot.

Thickness, in inches	1/8	3	1/4	3/8	1/2	5/8	3/4	1
Weight, in pounds								

Flagging.

Weight per Cubic Foot, 168 Pounds.

Weight per Square Foot.

Thickness, in inches	1	2	3	4	5	6	· 7	8
Weight, in pounds	14	28	42	56	70	84	98	112

Number and Weight of Shingles (Pine) per Square of 100 Feet.

Number of inches exposed to weather.	Number of shingles per square.	Weight per square, in pounds.
4	900	216
41/2	800	192
5	720	173
51/2	655	157
6	600	144

Shipping Weights of Corrugated Iron.

United States Standard Gauge.

	Black.	Galvanized.
No.	Lb. per square foot.	No. Lb. per square foot.
	2.75	
	2.20	18
		20 1.82
		22
		26

Add to net surface 23 to 26 per cent. for roofing with 6-inch end laps. Add to net surface 20 to 22 per cent, for siding with 4-inch end laps.

All side laps = 1 corrugation = $2\frac{1}{3}$ inches. Example. 1600 square feet roof = 2000 square feet sheeting = 2000×1.65 pounds = 3300 pounds black corrugated iron.

Weight of Roofing.

Table for Computing Loads upon Roofs.

Pounds per Square of 100 Square Feet.

Yellow pine, Northern, sheathing, 1 inch thick	١.
Velley pine Couthons shoothing I finely thick	
Yellow pine, Southern, sheathing, 1 inch thick	
Spruce, sheathing, 1 inch thick)
Chestnut or maple, sheathing, 1 inch thick)
Ash or oak, sheathing, 1 inch thick)
Shingles, pine 200)
Slates, ¼ inch thick	
Sheet-iron, to inch thick	
Sheet-iron, 16 inch thick, and laths	
Iron, corrugated	
Iron, galvanized, flat	
Tin)
Felt and asphalt)
Felt and gravel 800 to 1000)
Skylights, glass, 3 inch to 1/2 inch thick)
Sheet-lead 500 to 800)
Copper 80 to 123	5
Zinc 100 to 200)
Tiles, flat)
Tiles, flat, with mortar	
	•
Tiles, pan 1000)

Timber Measurement.

Two methods are in use for the measurement of timber: the method of board measure, and the use of the cubic foot.

Board Measure, abbreviated B.M., employs as a unit one square foot of surface by one inch in thickness. For boards one inch thick the board measure, therefore, is equal to the number of square feet. For any thickness the board measure is obtained by multiplying the width in inches by the thickness in inches and by the length in feet, and dividing by 12. The table on page 322 gives the board measure for various widths and thicknesses for a length of one foot, and hence the tabular figures must be multiplied by the length of the board in feet.

Table of Board Measure.

Thickness, in inches.

Width.

16	22.000 11.1.33 11.2.00 11.2.00 11.2.00 11.2.00 11.3.33 11.33
4	1.167 1.750 2.2333 2.2333 2.2333 2.235 6.417 6.417 6.417 6.417 11.50 11.63 11.
12	1.1.00 0.2.2.3.8.3.3.3.3.3.0.00 0.3.0.0.6.5.3.0.00 0.0.0.0.0.00 0.0.0.0.00 0.0.0.00 0.0.0.00 0.0.0.00 0.0.0.00 0.0.0.00 0.0.0.00 0.000 0.000
=	. 9167 1.373 1.833 1.833 1.833 1.833 1.833 1.00 1.100 1.000
10	
0	1.11.11.12.00 1.11.12.00 1.11.12.00 1.11.12.00 1.12.00
∞	1. 6667 1. 666
7	
9	6.00 6.00
51/2	.4583 .6875 .1.1967 .1.376 .1.376 .1.376 .2.292 .2.292 .2.292 .2.292 .2.292 .2.293 .2.
ro	.4167 .6250 .6253 .1.9333 .1.9333 .1.657 .1.657 .2.292 .2.292 .2.293 .3.33 .3.730 .5.000 .6.250 .6.2
41/2	
4	
$3\frac{1}{2}$	2.2917 2.2917 2.2923 2.2923 2.2923 2.2924 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917 2.2917
8	0.000 0.000
21/2	2083 3128 5208 5208 6250 6250 7292 11.146 11.456 11.667 11
7	1.667 1.833 1.833 1.9167 1.9167 1.9167 1.167 1.833 1.8
11/2	11250 11250 1250 1250 1250 1250 1250 11250
-	.0833 1.250 2.2667 2.2683 2.2697 2.26000 2.260000 2.260000 2.260000 2.260000000000
in inches.	

Multiply the tabular value for the given width and thickness by the length in feet to obtain the board measure. Round and square finber is measured in cubic feet. For round timber, taking all dimensions in feet, multiply the length by one-fourth the product of the mean girth and diameter, and the result will be in cubic feet.

The volume of square timber is obtained by the ordinary rules of mensuration.

Wrought Spikes.

Size and Number in Keg of 150 Pounds.

gth,	Diameter, in inches.					gth,		Diame	ter, in	inches.	
Len in in	1/4	5 16	3/8	1 ⁷ 6	1/2	Len in in	1/4	15 16	3/8	7 16	1/2
3 3 ¹ / ₂ 4 4 ¹ / ₂ 5 6	2250 1890 1650 1464 1380 1292	1208 1135 1064 930 868	742 570			7 8 9 10 11 12	1161	662 635 573	482 455 424 391	445 384 300 270 249 236	306 256 240 222 203 180

Wire Spikes.

Size and Number to the Pound.

Title.	Number of wire.	Length, in inches.	Number per pound.	Title.	Number of wire.	Length, in inches.	Number per pound.
10d. 16d. 20d. 30d. 40d. 50d.	7 6 5 4 3 2	3 3 ¹ / ₂ 4 4 ¹ / ₂ 5 5 ¹ / ₂	50 35 26 20 15	60d. 6½ in. 7 in. 8 in. 9 in.	1 1 0 00 00	6 6½ 7 8 9	10 9 7 5 4½

Wire Nails.

Length and Number to the Pound.

Title.		Barbed, common.	Clinch.	Fence.	Smooth and barbed.	Fine.	Casing and smooth and barbed finishing.	Flooring-brads.	Slating.	Barbed roof- ing.	Shingle.
7d. 8d. 9d. 10d. 12d.	3/4	568 357 235 204 139 99 90 69 53 43 31 24 18	710 429 274 235 157 139 99 90 83 64 59 43	142 124 92 82 62 50 38 30 23	1558 980 760 575 350 275 190 173 137 98 81 71	1550 1140 760	1350 913 584 410 310 238 170 150 121 97 72 54 46 36	157 139 99 90 67 53 43	182 125 1209 142 125 125 114 83	714 469 411 251 165 142 103	270 204

Size and Weight of Lag Screws.

Length, in	Diameter, in inches.								
inches.	3/8	7 18	1/2	5/8	3/4				
	Lb. per 100.	Lb. per 100.	Lb. per 100.	Lb. per 100.	Lb. per 100.				
1½	6.88								
13/4	7.50	11.75	16.88						
2	8.25	12.62	17.18						
21/4	9.25	12.88	18.07						
2½	9.62	13.28	19.18						
3	10.82	16.62	22.00	34.07					
31/2	11.50	18.18	24.00	35.88					
4	13.31	18.88	26.82	39.25	64.00				
41/2	14.82	19.50	28.25	42.62	67.88				
5	16.50	21.25	30.37	47.75	71.37				
$5\frac{1}{2}$	17.37	23.56	33.88	51.62	79.37				
6	18.82	25.31	35.37	55.12	86.62				
7			38.94	61.88	92.75				
8			44.37	68.75	97.50				
9				77.00	108.75				
10				90.00	124.75				

Dimensions of Wood Screws.

Number.	Threads per inch.	Diameter of body.	Diameter of flat head,	Diameter of round head.	Diameter of filister head.	Lengths.
		Inch.	Inch.	Inch.	Inch.	Inch.
2	56	.0842	.1631	.1544	.1332	3 to 1/2
3	48	.0973	.1894	.1786	.1545	3 to 5%
4	32, 36, 40	.1105	.2158	.2028	.1747	3 to 3/4
5	32, 36, 40	.1236	.2421	.2270	.1985	3 to 1/8
6	30, 32	.1368	.2684	.2512	.2175	3 to 1
7	30, 32	.1500	.2947	.2754	.2392	½ to 1½
8	30, 32	.1631	.3210	.2936	.2610	½ to 1½
9	24, 30, 32	.1763	.3474	.3238	.2805	½ to 13/8
10	24, 30, 32	.1894	.3737	.3480	.3035	½ to 1½
12	20, 24	.2158	.4263	.3922	.3445	3/8 to 13/4
14	20, 24	.2421	.4790	.4364	.3885	3/8 to 2
16	16, 18, 20	.2684	.5316	.4866	.4300	3/8 to 21/4
18	16, 18	.2947	.5842	.5248	.4710	½ to 2½
20	16, 18	.3210	.6368	.5690	.5200	½ to 2¾
22	16, 18	.3474	.6894	.6106	.5557	½ to 3
24	14, 16	.3737	.7420	.6522	.6005	½ to 3
26	14, 16	.4000	.7420	.6938	.6525	3⁄4 to 3
28	14, 16	.4263	.7946	.7354	.6920	₹ to 3
30	14, 16	.4520	.8473	.7770	.7240	1 to 3

Lengths vary by 16ths from $\frac{3}{16}$ to $\frac{1}{2}$; by 8ths, from $\frac{1}{2}$ to $\frac{11}{2}$; by 4ths, from $\frac{1}{2}$ to 3.

Wrought=iron Welded Extra Strong Pipe.

	Diameter.			Nominal weight per foot.	
Nominal internal.	Actual external.	Actual internal.	Thickness.		
Inch.	Inch.	Inch.	Inch.	Lb.	
1/8	.405	.205	.100	.29	
1/4	.540	.294	.123	.54	
3/8	.675	.421	.127	.74	
1/2	.840	.542	.149	1.09	
3/4	1.050	.736	.157	1.39	
1	1.315	.951	.182	2.17	
11/4	1.660	1,272	.194	3.00	
$1\frac{1}{2}$	1.900	1.494	.203	3.63	
2	2.375	1.933	.221	5.02	
$2\frac{1}{2}$	2.875	2.315	.280	7.67	
3	3.500	2.892	.304	10.25	
31/2	4.000	3.358	.321	12.47	
4	4.500	3.818	.341	14.97	
* 5	5.563	4.813	.375	20.54	
6	6.625	5.750	.437	28.58	

Wrought=iron Welded Double Extra Strong Pipe.

	Diameter.				
Nominal Actual external.		Actual internal.	Thickness.	Nominal weight per foot.	
Inch.	Inch.	Inch.	Inch.	Lb.	
1/2	.840	.244	.298	1.70	
3/4	1.050	.422	.314	2.44	
1	1.315	.587	.364	3.65	
11/4	1.660	.885	.388	5.20	
1½	1.900	1.088	.406	6.40	
2	2.375	1.491	.442	9.02	
21/2	2.875	1.755	.560	13.68	
3	3.500	2.284	.608	18.56	
31/2	4.000	2.716	.642	22.75	
4	4.500	3.136	.682	27.48	
5	5.563	4.063	.750	38.12	
6	6.625	4.875	.875	53.11	

Lap-welded Charcoal Iron Boiler Tubes.

Dian	neter.	Thickness.	Length of square	Nominal weight	
External.	Internal.		External surface.	Internal surface.	per foot.
Inch. 3 3/4 3/2 3/4 4 4/4 4/2 4/2 4/2 5 5 1/4 5 5/2	Inch. 2.782 3.010 3.260 3.510 3.732 3.982 4.232 4.482 4.704 4.954 5.204	Inch. .109 .120 .120 .124 .134 .134 .134 .134 .148 .148 .148	Feet. 1.273 1.175 1.091 1.018 .955 .899 .849 .804 .764 .728 .694	Feet. 1.373 1.260 1.172 1.088 1.024 959 902 852 8512 771 734 673	Lb. 3.33 3.96 4.28 4.60 5.47 5.82 6.17 6.53 7.58 7.97 8.36 10.16

Double Galvanized Spiral Riveted Pressure Pipe..

For Compressed Air.

Inside diameter,	Thick	rness.	Approxi- mate weight	Approximate bursting pressure, in	Safe working pressure, in	
in inches.	B. W. G.	Inches.	per foot, in pounds.	pounds, per square inch.	pounds, per square inch.	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 24	20 20 20 18 18 18 16 16 16 14 14 14 14 14 12	.035 .035 .049 .049 .049 .049 .065 .065 .065 .065 .083 .083 .083 .083 .083	2)/4 3 4 5 6 7 8 11 12 14 15 20 22 24 29 34 40 50	900 700 550 700 600 500 450 450 400 380 470 450 400 370 325 365 335	300 220 175 220 185 150 135 150 135 120 115 140 185 120 110 100	

A variety of joints can be used to connect lengths, but the surest are bolted joints where the pipe is to carry an excessive pressure. Flanged, leaded, and 'cement joints may also be conveniently used according to pressure and permanency of pipe line.

Riveted Hydraulic Pipe.

Pelton Water-wheel Company.

Diameter of pipe, in inches.	Thickness of material, U. S. standard gauge.	Equivalent thickness, in inches.	Head, in feet, pipe will safely stand.	Weight per lineal foot, in pounds.	Diameter of pipe, in inches.	Thickness of material, U. S. standard gauge.	Equivalent thickness, in inches.	Head, in feet, pipe will safely stand.	Weight per lineal foot, in pounds.
3 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 14 14 14 14 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	18 18 16 18 16 14 18 16 14 12 16 14 12 11 10 16 14 14 12 11 10 10 16 14 14 12 11 10 10 16 14 14 12 11 10 10 16 14 14 12 11 10 10 16 14 14 12 11 10 10 16 14 14 12 11 11 10 10 11 11 11 11 11 11 11 11 11	.05 .05 .062 .078 .050 .062 .078 .050 .062 .078 .050 .062 .078 .062 .078 .109 .062 .078 .140 .062 .078 .140 .062 .078 .125 .140 .062 .078 .109 .078 .109 .125 .140 .062 .078 .109 .078 .109 .125 .140 .062 .078 .109 .078 .078 .078 .078 .078 .078 .078 .078	810 607 760 485 605 505 630 348 433 540 378 420 587 307 378 530 607 680 275 344 480 275 344 485 607 680 275 316 442 506 567 233 291 407 407 407 407 407 407 407 407	2.25 3.00 3.75 4.50 7.50 6.50 7.50 7.50 7.50 12.75 12.75 12.25 12.75 12.25 12.75 12.25 12.75 12.25 12.75 12.25 12.75 12.25 12.25 12.75 12.25 12.75 12.25 12.75 12.25 12.75 12.25 12.75 12.25 12.75 12.25 12.75 12.25 12.	18 18 18 18 20 20 20 20 20 20 22 22 22 22 24 24 24 24 24 24 24 24 28 28 28 28 28 30 30 30 30 30 30 30 36 36 36 36 36 36 36 36 36 36 36 40 40 40 40 40 40 42 42 42 42 42 42 42	12 11 10 8 16 14 12 11 10 8 14 12 11 10 8 14	.109 .125 .140 .171 .062 .078 .109 .125 .140 .171 .062 .078 .109 .125 .140 .171 .078 .109 .125 .140 .171 .200 .078 .109 .125 .140 .171 .200 .109 .125 .140 .171 .200 .109 .125 .140 .171 .200 .109 .125 .140 .171 .200 .109 .125 .140 .171 .200 .109 .125 .140 .171 .200 .109 .125 .140 .171 .200 .109 .125 .140 .171 .200 .250 .140 .187 .250 .312 .3140 .187 .2510 .312 .315	295 3378 460 151 189 265 304 415 138 172 240 276 309 376 158 220 240 276 309 376 420 226 319 373 135 188 216 242 295 346 176 202 226 276 323 404 168 189 252 377 420 170 226 303 378 378 378 379 373 375 376 377 377 377 377 377 377 377 377 377	25.25 29.00 16.00 19.75 27.50 31.50 45.50 35.00 45.50 39.00 50.00 23.75 32.00 37.50 34.50 34.50 34.50 35.50 42.00 50.00 25.50 35.50 42.25 42.25 42.25 47.50 69.00 90.00 61.75 73.00 90.00 60.50 81.00 90.00 135.00 67.50 90.00 120.00 135.00 67.50 90.00 120.00 135.00 67.50 90.00 120.00
18	14	.062	210	18.50	42	3/8	.187 .250 .312 .375	435	190.00

Weight of Wrought=iron Pipe.

Metric System.

Weight, in Kilogrammes, per Metre.

al eter.			Thi	ckness, i	n millime	tres.		
Internal diameter.	2	3	4	5	6	7	8	10
Mm.	Kg.	Kg.	Kg.	Kg.	Kg.	Kg.	Kg.	Kg.
10	.58	.95	1.36	1.83	2.34	2.90	2.51	4.87
13 15	.73 .83	$1.17 \\ 1.31$	1.65 1.85	$2.20 \\ 2.43$	2.78 3.07	3.41 3.75	4.09 4.51	5.60
20	1.07	1.68	2.34	3.04	3.80	4.60	5.46	7.30
25	1.31	2.05	2.83	3.65	4.54	5.46	6.43	8.50
30	1.56	2.41	3.42	4.26	5.26	6.31	7.40	9.74
35 40	$\frac{1.80}{2.05}$	2.78 3.14	3.80 4.26	4.87 5.48	5.99 6.72	7.16 8.00	8.38 9.31	10.96 12.18
45	2.29	3.51	4.77	6.09	7.45	8.86	10.32	13.39
50	2.53	3.87	5.26	6.69	8.18	9.72	11.30	14.61
55	2.78	4.24	5.75	7.30	8.91	10.57	12.27	15.83
60	3.02	4.60	6.23	7.92	9.64	11.42	13.25	17.04
70 . 80	$\frac{3.51}{3.99}$	5.33 6.06	7.21 8.18	9.13 10.35	11.10 12.56	13.01 14.83	15.20 17.14	19.48 21.91

Weight of Copper Pipe.

Metric System.

Weight, in Kilogrammes, per Metre.

al eter.			Thi	ckness, i	n millime	etres.		
Internal diameter.	2	3	4	5	6	7	8	10
Mm.	Kg.	Kg.	Kg.	Kg.	Kg.	Kg.	Kg.	Kg.
10	.68	1.10	1.58	2.12	2.71	3.37	4.07	5.6
13	.85	1.36	1.92	2.55	3.22	3.96	4.75	6.5
15	.96	1.53	2.15	2.83	3.56	4.35	5.24	7.0
20	1.24	1.95	2.71	3.53	4.41	5.34	6.33	8.4
25	1.52	2.38	3.28	4.24	5.26	6.33	7.46	9.9
30	1.81	2.80	3.85	4.93	6.11	7.32	8.60	11.3
35	2.09	3.22	4.41	5.66	6.96	8.31	9.73	12.7
40 45	2.38	3.65	4.98	6.36	7.80	9.30	10.86	14.1
	2.66	4.07	5.54	7.07	8.65	10.29	11.99	15.5
50	2.94	4.50	6.11	7.78	9.50	11.28	13.12	16.9
55	3.22	4.92	6.67	8.48	10.35	12.27	14.25	18.3
60	3.51	5.34	7.24	9.19	11.20	13.26	15.38	19.7
70	4.07	6.19	8.37	10.60	12.89	15.24	17.64	22.6

Standard Flanges.

The following standard dimensions for pipe flanges were prepared by a committee of the American Society of Mechanical Engineers in 1892.

Pipe size, in inches.	$\left(\frac{P+100}{.48}d+.333\left(1-\frac{d}{100}\right)\right)$	Thickness, nearest fraction, in inches.	Stress on pipe per square inch at 200 pounds.	Radius of fillet, in inches.	Flange diameters, in inches.	Flange thickness, in inches.	Width of flange face, in inches.	Bolt circle diameter, in inches.	Number of bolts.	Bolt size diameters, in inches.	Bolt length, in inches.	Stress on each bolt per square inch, at bottom of thread, at 200 pounds.
2 2 2 2 3 3 3 4 4 4 1 5 6 6 7 8 8 9 10 12 11 4 15 16 18 1 12 20 1 1 2 20 1 1 2 26 1 1 3 6 6 1 3 6 6 1 3 6 6 1 4 2 1 2 4 8 2 2	.409 .429 .448 .448 .466 .486 .525 .563 .678 .670 .864 .904 .02 .09 .30 .30 .38 .25 .30 .38 .48 .25 .30 .31 .38 .48 .48 .48 .48 .48 .48 .48 .48 .48 .4	7575757272956854554555555 1 11 11 11 11 11 12 21	460 550 690 700 800 900 11280 11280 11310 1600 1600 1780 1850 1920 2040 2040 2100 2130	1/8/8/8/8/8/8/8/8/8 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	6 6 6 6 7 7 7 2 8 8 9 4 9 9 4 4 10 11 14 4 12 12 12 14 14 14 14 12 12 14 14 14 14 14 14 14 14 14 15 17 12 15 17 15 17 15 17 17 15 17 17 17 17 17 17 17 17 17 17 17 17 17	5/1-100/4-100-100-100-100-100-100-100-100-100-10	21/4/4/2016/2016/2016/2016/2016/2016/2016/2016	434 614 614 754 754 958 1034 1134 1134 1614 1884 2014 1614 2254 2714 2254 2714 2914 3312 341 351 361 361 361 361 361 361 361 361 361 36	4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 16 16 16 20 20 24 28 32 36 44	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2 2 1 4 2 2 3 4 4 2 2 2 2 3 3 3 3 1 4 4 2 3 4 4 4 4 4 5 5 5 5 5 5 6 6 1 2 2 4 4 4 4 4 5 5 5 5 5 5 6 6 1 2 2 4 4 4 4 5 5 5 5 5 5 6 6 1 2 2 4 4 5 5 5 5 5 5 6 6 1 2 2 4 4 5 5 5 5 5 5 6 6 1 2 2 4 5 5 5 5 5 5 6 6 1 2 2 4 5 5 5 5 5 5 6 6 1 2 2 4 5 5 5 5 5 5 6 6 1 2 2 4 5 5 5 5 5 5 6 6 1 2 2 4 5 5 5 5 5 5 5 6 6 1 2 2 4 5 5 5 5 5 5 5 5 6 6 1 2 2 4 5 5 5 5 5 5 5 5 5 6 6 1 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	825 1050 1330 2530 2100 1430 2360 3200 3610 2970 4280 4280 4280 4210 4490 4490 4490 4490 5130 5030 5000 4590 5790 6090

Sizes up to 24 inches are designed for 200 pounds or less.

Sizes from 24 to 48 inches are divided into two scales, one for 200 pounds, the other for less.

The two sizes of bolts given are for medium and high pressures.

The sudden increase in diameters at 16 inches is due to the possible insertion of wrought-iron pipe, making with a nearly constant width of gasket, a greater diameter desirable.

When wrought-iron pipe is used, if thinner flanges than those given are sufficient, it is proposed that bosses be used to bring the nuts up to the standard lengths. This avoids the use of a reënforcement around the pipe.

Figures in the third, fourth, fifth, and last columns refer only to pipe

for 200 pounds pressure.

The above standards, while not officially adopted, are used by many manufacturers.

Extra Heavy Flanges.

Standard dimensions for extra heavy flanges for pipe fittings and valves, adopted by leading manufacturers in the United States, January 1, 1902.

Size of pipe.	Diameter of flange.	Thickness of flange.	Diameter of bolt circle.	Number of · bolts.	Size of bolts.	Size of pipe.	Diameter of flange.	Thickness of flange.	Diameter of bolt circle.	Number of bolts.	Size of bolts.
In. 2 21/2 3 31/2 4 41/2 5 6 7 8	Inch. 61/2 71/2 81/4 9 10 101/2 11 121/2 14 15	Inch. 78 1 $1^{1}/8$ $1^{1}/8$ $1^{1}/6$ $1^{1}/6$ $1^{1}/8$ $1^{1}/6$ $1^{1}/8$ $1^{1}/8$ $1^{1}/8$	Inch. 5 57/8 65/8 71/4 77/8 81/2 91/4 105/8 117/8	4 4 8 8 8 8 8 12 12 12	Inch. 5/8 3/4 5/8 5/8 5/8 5/8 5/4 5/8 7/8	In. 9 10 12 14 15 16 18 20 22 24	Inch, 16 17 ¹ / ₂ 20 22 ¹ / ₂ 23 ¹ / ₂ 25 27 29 ¹ / ₂ 31 ¹ / ₂ 34	Inch. 13/4 17/8 2 21/8 23/8 21/8 21/8 21/8 21/8 23/4 23/4	Inch. 14 15 ¹ / ₄ 17 ³ / ₄ 20 21 22 ¹ / ₂ 24 ¹ / ₂ 26 ³ / ₄ 28 ³ / ₄ 31 ¹ / ₄	12 16 16 20 20 20 24 24 28 28	Inch. 7/8 7/8 7/8 1 1 1 1 1/8 1/8 1/8

The foregoing table includes the following features: bolt holes are in multiples of four, in order to enable the positions of connections to be varied by right angles; bolt holes to be drilled to straddle vertical axis; varied by right angles; bolt holes to be drilled to straddle vertical axis; the distance between bolt centres not to exceed 35/2 inches, which is accomplished on all but the 2½-inch size; distance from centre of bolt to edge of the flange should always equal or exceed the diameter of bolt plus ½ inch for 9-inch valves and under, and diameter of bolt plus not less than ¼ inch for sizes larger.

The bolt circle diameters, as above stated, will allow the use of calking recess on pipe flanges, provided such device is specified.

The above standard sizes have been adopted by the following firms, and will be furnished by other firms to order:

and will be furnished by other firms to order:

The Eaton, Cole & Burnham Company	. Bridgeport, Conn.
Chapman Valve Manufacturing Company	Indian Orchard, Mass.
Walworth Manufacturing Company	. Boston, Mass.
Crane Company	
The Pratt & Cady Company	
Jenkins Bros	New York City.
General Fire Extinguisher Company	Providence, R. I.
Builders' Iron Foundry	Providence, R. I.
Jarecki Manufacturing Company	Erie, Penna.
Crosby Steam Gauge and Valve Company	Boston, Mass.
The Kennedy Valve Manufacturing Company	New York City.
The Ludlow Valve Manufacturing Company	Troy, N. Y.
The Lunkheimer Company	Cincinnati, Ohio.
The Michigan Brass and Iron Works	Detroit, Mich.
The Kelly & Jones Company	New York City.
Eastwood Wire Manufacturing Company	. Belleville, N. J.
National Tube Company	. Pittsburg, Penna.
Coffin Valve Company	.Boston, Mass.
Rensselaer Manufacturing Company	
The Mason Regulator Company	Boston, Mass.
McNab & Harlin Manufacturing Company	.New York City.
The John Davis Company	Chicago, Ill.
Watson & McDaniel Company	. Philadelphia, Penna.
Ross Valve Company	.Troy, N. Y.
Edward P. Bates	Syracuse, N. Y.

331

Dimensions of Cast=iron Pipe Fittings.

As made by Best & Co., Pittsburg, Pa.

For Pressures from 50 to 1000 Pounds.

B =thickness of body.

F = thickness of flanges.

a.	50	lb.	100	lb.	150	lb.	200	lb.	300	lb.	500	lb.	1000	lb.
Size.	\overline{B}	F	B	F	B	\overline{F}	B	F	B	F	B	F	B	\overline{F}
Inch.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.
1	3/8	3/4	3/8	13 16	3/8	13 16	7 16	13 16	7 16	13 16	1/2	7/8	1/2	7/8
11/4	7	7/8	7	15	7 16	15 16	1/2	1	1/2	1	17 32	1	$\frac{17}{32}$	1
$1\frac{1}{2}$	7 16	7/8	7 16	$\frac{15}{16}$	$\frac{7}{16}$	$\frac{15}{16}$	1/2	1	1/2	1	5/8	11/4	5/8	11/4
2	$\frac{7}{16}$	7/8	7 16	$\frac{15}{16}$	7 16	$\frac{15}{16}$	_9 16	1	9 16	1	5/8	11/4	5/8	$1\frac{1}{4}$
$2\frac{1}{2}$	1/2	1	1/2	1	1/2	1	9 18	1	9 16	1	11 16	$1\frac{3}{8}$	$\frac{25}{32}$	$1\frac{1}{2}$
3	1/2	1	1/2	1	1/2	1	5/8	11/8	5/8	11/8	3/4	$1\frac{1}{2}$	27 32	$1\frac{3}{4}$
31/2	9 16	11/8	9 16	$1\frac{1}{8}$	9 16	$1\frac{1}{8}$	5/8	11/8	5/8	11/8	3/4	$1\frac{1}{2}$	1	$1\frac{3}{4}$
4	16 16	11/8	9 16	11/8	16	11/8	11 16	$1\frac{1}{4}$	11 16	11/4	1/8	$1\frac{3}{4}$	11/8	2
$4\frac{1}{2}$	16	11/8	9 16	11/8	9 16	11/8	11	11/4	11	11/4	7/8	13/4	11/4	2
5	16	11/8	9 16	11/8	5/8	11/4	3/4	11/4	3/4	11/4	1	17/8	13/8	21/8
6 7	16	11/8	9 16	11/8	116	13/8	13 16	13/8	13 16	13/8	11/8	2	11/2	21/4
	9 16	11/8	5/8	$1\frac{1}{4}$	11 16	$1\frac{7}{16}$	13 16	$1\frac{1}{2}$	15 16	$1\frac{1}{2}$	11/4	21/8	$1\frac{5}{8}$	23/8
8	9 16	11/8	5/8	11/4	3/4	$1\frac{1}{2}$	7/8	$1\frac{1}{2}$	1	$1\frac{1}{2}$	13/8	21/4	13/4	$2\frac{1}{2}$
9	9 16	11/8	5/8	11/4	3/4	$1\frac{1}{2}$	15	15/8	$1_{\overline{16}}^{1}$	15/8	$1\frac{1}{2}$	23/8	17/8	25/8
10	9 16	11/8	11 16	13/8	13	1_{16}^{9}	1	$1\frac{3}{4}$	11/8	13/4	13/4	21/2	2	23/4
11 12	5/8	$1\frac{5}{16}$	11 16 3/	11/2	7/8	111	116	17/8	$1\frac{3}{16}$	17/8	13/4	25/8	21/4	27/8
*0. D.	5/8	$1\frac{5}{16}$	3/4	$1\frac{9}{16}$	7/8	$1\frac{3}{4}$	11/8	2	$1\frac{5}{16}$	2	17/8	$2\frac{3}{4}$	$2\frac{1}{2}$	3
14	11 16	$1\frac{7}{16}$	13 16	15/8	15	17/8	1_{16}^{3}	21/8	$1\frac{7}{16}$	21/8	2	3	23/4	31/2
15	11 16	$1\frac{7}{16}$	13 16	111	15 16	115	$1_{\frac{3}{16}}$	21/8	11/2	21/4				
16	3/4	1 9	7/8	13/4	1	2	11/4	21/4	1 9	23/8				
18	3/4	15/8	7/8	17/8	116	$2\frac{3}{16}$	13/8	23/8	111	21/2				
20	1 <u>3</u>	13/4	15 16	$1\tfrac{15}{16}$	11/8	21/4	$1\frac{1}{2}$	$2\frac{1}{2}$	17/8	$2^{3}/_{4}$				
22	13 16	$1\frac{3}{4}$	1	2_{16}	$1\frac{3}{16}$	$2\frac{3}{8}$	15/8	25/8	2	3				
24	7/8	$1\frac{7}{8}$	$1_{\overline{16}}$	21/8	$1\frac{5}{16}$	25/8	111	23/4	21/8	$3\frac{1}{4}$				• • • •
26	1 <u>5</u>	2	11/8	21/4	$1\frac{5}{16}$	$2\frac{11}{16}$	$1\frac{13}{16}$	27/8	21/4	33/8				
28	15	2	$1_{\frac{3}{16}}$	$2\frac{3}{8}$	13/8	23/4	$1\frac{15}{16}$	3	23/8	$3\frac{1}{2}$				
30	1	2	11/4	$2\frac{1}{2}$	$1\frac{7}{16}$	213	2	31/4	21/2	33/4				
32	1	2	11/4	$2\frac{1}{2}$	$1\frac{1}{2}$	$2\frac{15}{16}$	21/8	33/8	25/8	4		• • • •		
34	116	21/8	15	25/8	1 9 16	316	$2\frac{3}{16}$	31/2	23/4	41/8	• • • •			• • • •
36	1_{16}^{1}	21/8	$1\frac{3}{8}$	$2\frac{3}{4}$	$1\frac{5}{8}$	33	$2\frac{5}{16}$	35/8	27/8	$43/_{8}$	• • • •	• • • •	• • • •	

st O. D. 14 inches and larger is for lap-weld steel pipe whose outside diameter is of sizes given.

Dimensions of Steel Fittings and Flanges.

As made by Best & Co., Pittsburg, Pa. For Pressures from 150 to 1000 Pounds.

B =thickness of body.

F = thickness of flange, F = thickness of flange, F = diameter of male, F = diameter of female, F = depth of female.

Size. $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								110									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Ste	el F	ittir	ıgs.		Ca	st aı	nd R	olle	1 St	eel F	lang	ges.	= ,	h
Tuch. In. In	Size.			500	lb.	1000	lb.			300	lb.	500) lb.	100	0 lb.	For a	ures
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B	F	В	F	В	F	0	I	0	I	0	I	0	I	m	f
11/4	Inch.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	Ín.
1\frac{1}{2}	1	3/8	1	7 16	1	7	1	$2\frac{5}{16}$	23/8	25	23/8	21/4	$2\frac{5}{16}$	21/4	25	1/4	3 16
2	$1\frac{1}{4}$	$\frac{7}{16}$	1	1/2	1	1/2	1	2 9	25/8	2 9 1 6	25/8	21/2	$2\frac{9}{16}$	21/2	$2\frac{9}{16}$	1/4	3 16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1\frac{1}{2}$	$\frac{7}{16}$	1	1/2	1	1/2	1	$2\frac{1}{16}$	27/8	213	27/8	3	316	3	316	1/4	3 16
3		7	1_{16}^{1}	9 16	$1_{\frac{3}{16}}$	9 16	1_{16}^{3}	3.5	33/8	35	33/8	31/2	3 9 16	31/2	3 9	1/4	3 16
3½	$2\frac{1}{2}$	1/2	$1\frac{1}{8}$	9 16	$1_{\frac{3}{16}}$	9 16	1_{16}^{3}	315	4	315	4	4	416	4	416	1/4	3 16
4	3	$\frac{1}{2}$	$1\frac{1}{8}$	5/8	1_{16}^{5}	5/8	$1\frac{5}{16}$	415	5	$4\frac{15}{16}$	5	43/4	413	43/4	$4\frac{13}{16}$	1/4	3 16
4½	31/2	9 16	$1\frac{3}{16}$	5/8	$1\frac{5}{16}$	5/8	15	$5\frac{7}{16}$	51/2	$5\frac{7}{16}$	$5\frac{1}{2}$	6	6_{16}^{1}	6	616	1/4	3 16
5 1 1 1 1 1 1 1 1 1			1_{16}^{3}	$\frac{11}{16}$	$1_{\bar{1}\bar{6}}^{7}$	11 16	$1\frac{7}{16}$	6_{16}^{1}	61/8	6_{16}^{1}	61/8	6	$6\frac{1}{16}$		$6\frac{1}{16}$	1/4	
6			$1_{\bar{\scriptscriptstyle 1}\bar{\scriptscriptstyle 6}}^{3}$	11 16	$1\frac{7}{16}$	$\frac{11}{16}$	$1\frac{7}{16}$	$6\frac{9}{16}$	65/8	$6\frac{9}{16}$	65/8	71/4	7 5 16	71/4	$7\frac{5}{16}$		
The content of the		$\frac{9}{16}$	$1_{\frac{3}{16}}$	3/4	$1\frac{7}{16}$	3/4	$1\frac{7}{16}$	7 9 16	75/8	$7\frac{9}{16}$	75/8	71/4	$7\frac{5}{16}$	71/4	7 5 6	1/4	3 16
8			$1_{\frac{3}{16}}$	$\frac{13}{16}$	$1\frac{9}{16}$		1_{16}^{9}	8 9 16	85/8	$8\frac{9}{16}$	85/8		8 9 16				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	5/8	$1_{\overline{16}}^{5}$	13 16	$1\frac{9}{16}$	15 16	$1\frac{9}{16}$	9 9	95/8	$9_{\overline{16}}^{9}$	95/8	95/8	$9\frac{1}{16}$	95/8	$9^{11}_{\overline{16}}$	1/4	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	5/8	$1_{\frac{5}{16}}$	7/8	111	1	111	11.9	115%	1115	12	105/8	$10\frac{11}{16}$	105/8	1011	1/4	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	5/8				$1\frac{1}{16}$						$11\frac{5}{8}$	1011	113/4	$11\frac{13}{16}$	1/4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10				انتحا											1/4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	$\frac{11}{16}$	11/2	1_{16}^{1}	$2\frac{1}{16}$	$1\frac{3}{16}$	216								$15\frac{1}{16}$	1/4	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12												15^{1}_{16}	15	$15\frac{1}{16}$	1/4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. /							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	13 16	$1\frac{3}{4}$	$1\frac{3}{16}$	$2\frac{3}{8}$	$1\frac{7}{16}$	$2^{3}/_{8}$	$17\frac{5}{16}$	$17\frac{3}{8}$	$17\frac{15}{16}$	18	17	$17\frac{1}{16}$	17	$17\frac{1}{16}$	5 16	1/4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	13 16	$1\frac{3}{4}$					18 5	$18\frac{3}{8}$	$19\frac{5}{16}$	$19\frac{3}{8}$					5 16	1/4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7/8	$1\frac{7}{8}$					195	$19\frac{3}{8}$	$20\frac{5}{16}$	$20\frac{3}{8}$					16	1/4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7/8	2					2111	$21\frac{3}{4}$	$22\frac{7}{16}$	$22\frac{1}{2}$					5 16	1/4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 <u>5</u>	$2\frac{1}{16}$					2311	$23\frac{3}{4}$	$24\frac{3}{16}$	241/4					5 16	1/4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	$2\frac{1}{8}$					$26\frac{5}{16}$	$26\frac{3}{8}$	$27\frac{1}{16}$	271/8					5 16	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	$1_{\overline{16}}^{1}$	$2_{\overline{16}}^{3}$	• • • • •			• • • • •	$28\frac{5}{16}$	$28\frac{3}{8}$	29_{16}^{1}	$29\frac{1}{8}$	••••		••••		7 6	1/4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	11/8	21/4	_				30.7	301/2								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28			E	lbow	s, Te	ees,										
32 1½ 2½ above. Female 36½ 365% above. Fittings, Female; 34 1½ 25% on all ends. 36½ 385% valves, Male; according to dimensions on this table.	30	~ ~		and	l Cro	sses,	200	1 20									
34 1 5 25% on all ends. 38 9 35% Valves, Male; according to dimensions on this table	32									ab	ove.	F	'ittin	gs,	Fem	al	e;
36 13/8 23/4	34	15						38 9	385/8							to	di-
	36	13/8	$2^{3}/_{4}$					4013	407/8	me	211810	us o	ii till	stat	ne.		

^{*}O. D. 14 inches and larger is for lap-weld steel pipe whose outside diameter is of sizes given.

Dimensions of Pipe Fittings.

As made by Best & Co., Pittsburg, Pa.

Pipe Bends.

Made of Standard and Extra Heavy Pipe.

R = radius.

H =centre to face.

U =centre to centre.

Size.	St	andard radi	us.	Mi	nimum radi	us.
Dize.	R	H	U	R	H	U
Inch.	Ft. In.	Ft. In.	Ft. In.	Ft. In.	Ft. In.	Ft. In.
1/8	3	33/4	6	1	13/4	2
1/4	31/2	41/2	7	11/4	21/4	21/2
3/8	4	51/4	8	1½	23/4	3
1/2	5	6½	10	13/4	31/4	3½
3/4	6	73/4	12	2	33/4	4
1	7	91/4	14	21/4	4½	4½
11/4	8	101/2	16	23/4	51/4	5½
$1\frac{1}{2}$	10	123/4	20	31/4	6	6½
2	12	15	2 4	4½	7½	9
21/2	14	17½	2 4	6	9½	12
3	18	22	3	7	11	14
3½	20	2 ½	3 4	9	13½	18
4	24	2 5	4	12	17	24
$4\frac{1}{2}$	2 2	2 71/2	4 4	15	20½	2 6
5	2 6	3	5	18	24	3
6	3	3 61/2	6	24	2 6½	4
7	4	4 7	8	2 6	3 1	5
8	4 6	5 2	9	3 2	3 10	6 4
10	5 6	6 6	11	4 4	5 4	8 8
12	7 6	8 8	15	6 · 6	7 8	13
* O. D.						
14	8	9 6	16	7 6	9	15
16	10	11 10	20	8 6	10 4	17
18	12	14	24	9 6	11 6	19
20	14	16	28	10 6	12 6	21
22	16	18	32	11 6	13 6	23
24	18	20	36	12 6	14 6	25

st 0. D. 14 inches and larger is for lap-weld steel pipe whose outside diameter is of sizes given.

Bends below heavy lines made in two pieces.

Dimensions of Pipe Fittings.

As made by Best & Co., Pittsburg, Pa.

Pipe Bends.

Made of Standard and Extra Heavy Pipe.

^{*} O. D. 14 inches and larger is for lap-weld steel pipe whose outside diameter is of sizes given.

Dimensions of Angle, Globe, and Check Valves.

As made by Best & Co., Pittsburg, Pa.

Angle.

H =centre to face. o =centre to top of wheel, when open.

Globe.

l =face to face. o =centre to top of wheel, when open.

Check.

c = face to face. c = centre to top of cover.

Hy. and Ex. Hy.
l .c
Inch. Inch.
8 51/4 61/6
12 71/2
15½ 15½
17 11 11 113/
19½ 12¾
22½ 14½
28 1812
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
. 36 24
. 38 26 ³ / ₄ 28 ³ / ₄

Hy. for 150 pounds pressure. X Hy. for 200 pounds pressure.

Diameter of Wheels for Valves.

Dimensions of hydraulic valves to 5000 pounds on application.

Angle Check Valves to order.

Size of valves, in inches.	1	11/4	11/2	2	2 ½	3	$3\frac{1}{2}$	4	$4\frac{1}{2}$	5	6	7	8
Angle and Globe Valves				8					14				
Lt., Std., and Hy. Gate Valves 4	11/2	6	6	7	7	10	10	10	10	12	13	13	14
X Hy., XX Hy. Gate Valves. 4			6	7	81/2	10	10	12	12	13	14	14	15
Hyd. Gate Valves4	11/2	6	6	7	81/2	12	12	14	14	14	16	16	18
X Hyd. Gate Valves	6	6	7	81/2	10	12	12	14	16	16	18	20	24

Size of valves, in inches.	9	10	12	14	15	16	18	20	22	24	26	28	30
Angle and Globe Valves Lt., Std., and Hy. Gate Valves	18	20	24	30	20	24	24	30	39	39	39	36	36
X Hv., XX Hv. Gate Valves.	16	18	20	22	24	24	30	30	32	36			
Hyd. Gate ValvesX Hyd. Gate Valves	24	24	30	30		::	• •	::	• •	::			

Butterfly Valves.

Light, Standard, and X Hy.—Dimensions in inches. Size of valve $4\ 5\ 6\ 7\ 8\ 10\ 12\ 14\ 15\ 16\ 18\ 20\ 22\ 24$ Length, face to face . $4\frac{1}{2}\ 5\frac{1}{4}\ 6\ 7\ 8\ 10\ 12\ 12\frac{1}{4}\ 13\ 13\frac{3}{4}\ 15\ 16\frac{1}{2}\ 18\frac{1}{2}\ 19\frac{1}{4}$ Double Butterfly Valves to order.

Dimensions of Gate Valves.

As made by Best & Co., Pittsburg, Pa.

Pressures Indicated.

Light, 50 lb. 100 lb. 150 lb. Standard, Ну., Х Ĥy., 200 lb. XX Hy., 300 lb. Hyde., 500 lb. X Hyde., 1000 lb.

Outside Screw and Yoke. No By-pass. With By-pass.

ι	== 1	tac	e to	fac	ce.

30 30

L = face to face by-pass valves. S = centre to top of wheel.

O =centre to top of stem, when open.

Size.	Light and Standard.				H	[y.,	ХНу	7., 2	XXH	у.	Hydc.,	X Hydc.		
Size.	1		S		0	L	l		S		0	L	l	S
Inch.	In.	Ft.	In.	Ft.	In.	In.	In.	Ft.	In.	Ft.	In.	In.	Inch.	Inch.
1													63/4	81/2
11/4													71/2	101/2
11/2													111/2	123/4
2	8		113/8		14								12	141/8
$2\frac{1}{2}$	83/4		121/2		155/8		91/2		123/8		15		14	17
3	83/4		14						161/8		193/8		141/2	18
31/2							117/8		181/8		213/4		141/2	18
4	93/8		163/4		23		, 0		19		233/8		201/2	22
$4\frac{1}{2}$	101/4		19		24		131/4		213/4		, ,		211/2	23
5	95%		191/2		26				225/8			181/2	221/2	24
6	107/8		221/4		313/4		157/8		251/2		311/8		24	251/2
7	111/2		24		361/4		161/4		291/8		361/2		25	28
8	117/8		251/4	3	4	181/2	161/2		323/4	3	51/4	205/8	26	291/2
9	127/8		263/4	3	71/6	191/2			343/4	3	81/8	217/8	26	321/4
10	135%		303/8		101/4		18	3	15/8	4		223/4	27	35
12	145/8		333%	4	61/4		193/4	3	81/4	4		233/4	301/2	391/4
14	157/8		$1\frac{1}{2}$	5	21/2	24	211/2	4	2	5		257/8	321/2	431/4
15							211/2	4	$5\frac{3}{4}$	5	91/4	261/8		
16	183/4	3	7	6	1/2	261/2		4	8	6	1/2	327/8	Nec	cks.
18	20	3	101/4	7	73/4	263/4		5	$2^{3}/_{4}$	6	91/2	331/4		
20	21	4	2	7	43/4	27		5	81/2	7	51/4	351/4		Ti
22	221/2	4	63/8	8		32		6	23/4	8	$1\frac{1}{2}$	$35\frac{1}{2}$		H.
24	24	4	10	8	8	327/8		6	8	8	87/8	357/8		12.
26	26	5	$2\frac{1}{2}$	9	43/4	327/8		-	Post i	mo D			l, forged	
28	28	5	53/4	10	1	341/2	Cia						7 to 10, 8	
20	20	=		10	17	20	SIZ	C 4 L	00,0	111.	0 to 1	GIZE	n 11, 0;	/2 III. II.

36

10

Size 12 to 16, 9 in. H.

Dimensions of the various parts, according to the corresponding numbers in the accompanying table.

3.401 1.831 1.592 .992 .783 .630 1 4.026.49 .824 .623 .364 S .198 .374 | 5.15 | 5.22 | 5.47353 4.61 4.68 .334 .168 160 .136 221 2.40 2.46 2. 132 105 3.39 3. 1.38 .07 .90 ú .89 2.95 3. .16 12|2.1.43 0 .80 .63 .45 .79|1. 95 13 18 21 4.91 4.95 5.11 5.19 5.72 2.66|2..78 7 .36 .61 .37 .38 .96 67 .16 3. .98 Ξ 5.51 5.67 5.75 6.31 00 12 2 1.63 | 1.7200 .98 .80 .40 01|2..40 .13 7 19 3.31 3 69 2.81 2.87 4.560 .49 .20 .05 .85 .86 3 52 13 .09 10 .89 . 63 . 38 93 58 19 5 3.74 ಂ 1.78 1.05 _ .45 . 39 .20 .90 .02 .29 13 49 12 8 .40 34 .94 .84 .60 .55 .42 .33 .26 .77 53 .49 1.0 13 ×3 1/4 16 17 16 6 9 14 11 1 14 27 00 00 00 14 18 18 ∞ .6025 .6225.5625 .3825 .3625 .3225 .3025 .5225.4025 .2825.2625.2225 .422515 :28 .27 .15 .13 .11 16 .25 .23 .18 .17|1.1225.10 .08 1.7525 1:0725 1.8425 1.0025. 5225 .2025 .7325 .8725.8225.6925.562517 1.5|4.81.4 4.31 1.3 1.2 1.1|2.661163 28 % 1.0|2.1818 16 1/2 |3.16|1.565 3.81 1.911.030 .760 .590 19 .900 5.19 4.63 2.40 4.08 2.90.615 20 .008 .008 .008 .008 .008 .007 .007 007 .007 .006 .006 .06 21 006 .18 .10 .00 .08 .07 .06 .05

andard Pipe Unions

According to the Report of the Committee of the American Society of Mechanical Engineers, 1901

Dimensions for Standard Pipe Unions

Numbers indicate corresponding dimensions in the illustration.

Machine Screws.

Screw gauge Threads per inch. Outside diameter, in inches. diameter, in inches.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				diameter, in	Tap drill, B. & S. drill gauge.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	56	.08420	5 64	No. 49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	48	.09730		No. 45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	36	.11050	7 64	No. 42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	36	.12360		No. 38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	32	.13680		No. 35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	32	.15000	5 3 2	No. 30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	32	.16310	5 3 2	No. 29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	30	.17630	11 64	No. 27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	24	.18940	3 16	No. 25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	24	.20206	13 64	No. 21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	24	.2158	7 32	No. 17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	22	.2289	15 64	No. 15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	20	.2421	15 64	No. 13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	20	.2552	1/4	No. 8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	18	.2684	17 64	No. 6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	18	.2816	9 32	No. 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	18	.2947	19 64	No. 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	18	.3079	5 16	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	16	.3210	21 64	1/4"
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	16	.3474	$\frac{1}{3}\frac{1}{2}$	32"
	24	16	.3737		
28 14 .4263 $\frac{27}{64}$ $\frac{11}{32}$ "					
30 14 .4526 $\frac{7}{16}$ $\frac{23''}{64}$	30	14	.4526	76	23// 64

Set Screws.

Outside diameter, in inches.	Short diameter of square head, in inches.	Threads per inch.	Size of tap drill.	Lengths under head, in inches.
1/4	1/4	20	No. 5	3/4 to 3
5 16	5 16	18	17''	3/4 to 31/4
3/8	3/8	16	21'' 64''	3/4 to 31/2
7	7 16	14	3/8"	3/4 to 33/4
1/2	1/2	12	27// 64	3/4 to 4
9	9 16	12	31//	3/4 to 41/4
5/8	5/8	11	17''	$\frac{3}{4}$ to $\frac{41}{2}$
3/4	3/4	10	21'' 32''	1 to 43/4
7/8	7/8	9	49//	11/4 to 5
1	1	8	7/8"	1½ to 5

Standard Sleeve Nuts and Upsets.

Passaic Rolling Mill Company.

Diameter of rods.		Diameter of upset.	Length of upset.	Short diameter of hexagon.	Long diameter of hexagon.	Number of threads per inch.	Length of sleeve nut,	Weight of sleeve nut.	length requi	tional of rod red for upset.
Inch.	Inch.	Inch.	Inch.	Inch.	Inch.		Inch.	Lb.	Inch.	Inch.
3/4	5/8	1	4	21/4	25/8	8	81/4	4	33/4	43/4
7/8	3/4	11/8	4	21/4	25/8	7	81/2	5	31/4	33/4
1	7/8	13/8	41/2	23/8	23/4	6	91/4	7	43/4	5
11/8	1	11/2	41/2	27/8	35	6	91/4	8	41/4	41/4
11/4	11/8	15/8	41/2	27/8	3 5 16	51/2	91/2	9	33/4	3½
13/8	11/4	17/8	5	31/4	33/4	5	101/4	13	51/4	41/2
11/2	13/8	2	5	31/4	33/4	$4\frac{1}{2}$	101/4	13	43/4	4
15/8	1½	21/8	5	35/8	$4\frac{3}{16}$. 41/2	101/2	16	41/4	31/2
12/		07.6	F1.	02.4		47.6	4.4	40		
13/4	15/	21/4	5½	33/4	45	$4\frac{1}{2}$	11	18	41/4	47.6
17/8	15/8	23/8	5½	4	45/8	4	111/4	21	4	41/2
2	13/4	2½	5½	4	45/8	4	111/4	22	33/4	4
21/8	17/8	25/8	6	45/8	53/8	4	12	29	33/4	4
21/4	2	27/8	6	43/4	$5\frac{1}{2}$	31/2	121/4	33	41/2	$4\frac{1}{2}$
21/2	21/4	31/4	6	51/8	$5\frac{15}{16}$	31/2	12½	40	5	43/4
23/4	21/2	31/2	6	$5\frac{1}{2}$	63/8	31/4	123/4	47	$4\frac{1}{2}$	4
3		33/4	6	57/8	63/4	3	13	58	4	

Standard Steel Eye Bars.

Passaic Rolling Mill Company.

W	t	D	d	S-S	L
Width of bar.	Minimum thickness of bar.	Diameter of head.	Diameter of largest pin-hole.	Sectional area of head on lines $S-S$ in excess of that in body of bar.	Additional length of bar beyond centre of pin-hole to form one head.
Inch.	Inch.	Inch.	Inch.	Per cent.	Inch.
3	3/4	7	211	42	$14\frac{1}{2}$
3	3/4	8	311	42	$18\frac{1}{2}$
4	3/4	9½	$3\frac{15}{16}$	37½	$18\frac{1}{2}$
4	3/4	$10\frac{1}{2}$	47/8	39	$23\frac{1}{2}$
5	3/4	$11\frac{1}{2}$	43/8	41	21
5	3/4	$12\frac{1}{2}$	53/8	41	$25\frac{1}{2}$
6	7/8	131/2	47/8	42	22
6	7/8	141/2	57/8	42	$26\frac{1}{2}$
7	1	16	57/8	43	28
8	11/8	18	7	$37\frac{1}{2}$	321/2
10	11/4	23	9	40	40

Notes on Passaic Steel Eye Bars.

Passaic standard steel eye bars are forged without the addition of extraneous metal and without welds of any kind, and are guaranteed under the conditions given in the above table to develop the full strength of

the bar when tested to destruction.

The maximum sizes of pin-holes, given in the above table, allow an excess in the net section of the head over that of the body of the bar of 40 per cent, when the thickness of the head is the same as the thickness of the body of the bar. The thickness of the head is usually $\frac{1}{16}$ of an inch thicker than the body of the bar; and where a number of eye bars are to be placed closely together, as at a joint, the thicknesses of the heads should be considered $\frac{1}{16}$ of an inch greater than the bodies of the bars, in order to allow for the page of thickness of the heads and for the percent thickness. allow for the increased thickness of the heads and for the usual roughness of forged work.

Unless otherwise specified, the steel manufactured by the Passaic Rolling Mill Company for the use of eye bars is open-hearth medium steel, conforming with the standard specifications of the Association of Ameri-

can Steel Manufacturers.

All eye bars are finished to length, and the eyes bored at the specified distances, centre to centre, according to United States standard measurements.

Eye bars having larger or smaller heads than the above standards can

be furnished by special arrangement.

Standard Pins and Nuts.

Passaic Rolling Mill Company.

D	T	S	Short	Long		
Diameter of pin.	Diameter of thread.	Length of thread.	diameter of nut.	diameter of nut.	Weight of one nut.	
Inch.	Inch.	Inch.	Inch.	Inch.	Lb.	
$1\frac{3}{16}$	1	1½	13/4	2		
1_{16}^{7}	1	1½	13/4	2		
$1\frac{11}{16}$	1½	1½	31/4	33/4	1.5	
$1\frac{15}{16}$	1½	$1\frac{1}{2}$	31/4	33/4	1.5	
$2\frac{3}{16}$	11/2	1½	31/4	33/4	1.5	
$2\frac{7}{16}$	13/4	1½	31/4	33/4	1.5	
$2\frac{11}{16}$	2	1½	33/4	41/4	2.5	
$2\tfrac{15}{16}$	21/4	$1\frac{1}{2}$	4½	51/4	3.0	
3,3	21/2	1½	41/2	51/4	2.8	
37	21/2	11/2	41/2	51/4	2.8	
311	23/4	1½	43/4	51/2	3.0	
$3\frac{15}{16}$	3	11/2	43/4	51/2	3.0	
43/8	31/2	1½	51/2	61/4	3.8	
45/8	31/2	1½	51/2	61/4	3.8	
47/8	4	1½	6	7	6.7	
53/8	4	2	6	7	6.7	
57/8	4	2	7	8	9.1	
7	5	21/4	8	91/4	12.0	
8	6	21/4	$10\frac{1}{2}$	12	18.8	
9	7	21/4	101/2	12	22.8	

Standard Wire Hoisting Rope.

John A. Roebling's Sons Company.

Composed of 6 Strands and a Hemp Centre, 19 Wires to the Strand. Swedish Iron.

Trade number.	Diameter, in inches.	Approximate circumference, in inches.	Weight per foot, in pounds.	Approximate breaking strain, in tons of 2000 pounds.
	23/4	85/8	11.95	114.0
	2½	77/8	9.85	95.0
1	21/4	71/8	8.00	78.0
2	2	61/4	6.30	62.0
3	13/4	51/2	4.85	48.0
4	15/8	5	4.15	42.0
5	1½	43/4	3.55	36.0
51/2	13/8	41/4	3.00	31.0
6	11/4	4	2.45	25.0
7	11/8	31/2	2.00	21.0
8	1	3	1.58	17.0
9	7/8	23/4	1.20	13.0
10	3/4	21/4	.89	9.7
101/4	5/8	2	.62	6.8
101/2	16	13/4	.50	5.5
103/4	1/2	1½	.39	4.4
10a	7	11/4	.30	3.4
10b	3/8	11/8	.22	2.5
10 <i>c</i>	5	ı	.15	1.7
10d	1/4	3/4	.10	1.2
		Cast-st	eel.	
1	21/4	71/8	8.00	156.0
2	2	61/4	6.30	124.0
3	13/4	51/2	4.85	96.0
4	15/8	5	4.15	84.0
5	1½	43/4	3.55	72.0
51/2	13/8	41/4	3.00	62.0
6	11/4	4	2.45	50.0
7	11/8	31/2	2.00	42.0
8	1	3	1.58	34.0
9	7/8	23/4	1.20	26.0
10	3/4	21/4	.89	19.4
101/4	5/8	2	.62	13.6
$10\frac{1}{2}$	31	13/4	.50	11.0
103/4	1/2	1½	.39	8.8
10a	178	11/4	.30	6.8
10b	3/8	11/8	.22	5.0
10c	16	1	.15	3.4
10d	1/4	3/4	.10	2.4

Transmission or Haulage Rope.

John A. Roebling's Sons Company.

Composed of 6 Strands and a Hemp Centre, 7 Wires to the Strand.

Swedish Iron.

Trade number.	Diameter, in inches.	Approximate circumference, in inches.	Weight per foot, in pounds.	Approximate breaking strain, in tons of 2000 pounds.
11 12	$\frac{1\frac{1}{2}}{1\frac{3}{8}}$	4 ³ ⁄ ₄ 4 ¹ ⁄ ₄	3.55 3.00	34.0 29.0
13		4 4	2.45	24.0
14	1½ 1½	31/2	2.43	20.0
15	1 1/8	3/2	1.58	16.0
10	1	9	1.55	10.0
16	7/8	23/4	1.20	12.0
17	3/4	21/4	.89	9.3
18	11 16	21/8	.75	7.9
19	5/8	2	.62	6.6
20	9 16	13/4	.50	5.3
21	1/2	1½	.39	4.2
22	76	11/4	.30	3.3
23	3/8	11/8	.22	2,4
24	5 16	1	.15	1.7
25	9 32	7/8	.125	1.4
		Cast-ste	el.	
11	1½	43/4	3.55	68.0
12	13/8	41/4	3.00	58.0
13	11/4	4	2.45	48.0
14	11/8	31/2	2.00	40.0
15	1	3	1.58	32.0
16	7/8	23/4	1.20	24.0
17	3/4	21/4	.89	18.6
18	11 16	21/8	.75	15.8
19	5/8	2	.62	13.2
20	9 16	13/4	.50	10.6
21	1/2	1½	.39	8.4
22	7 16	11/4	.30	6.6
23	3/8	11/8	.22	4.8
24	5 16	1	.15	3.4
25	9 32	7/8	.125	2.8

Extra Strong Crucible Cast-steel Rope.

John A. Roebling's Sons Company.

Composed of 6 Strands and a Hemp Centre, 19 Wires to the Strand.

				-
Trade number.	Diameter, in inches.	Approximate circumference, in inches.	Weight per foot, in pounds.	Approximate breaking strain, in tons of 2000 pounds.
	23/4	85/8	11.95	266.0
	21/2	77/8	9.85	222.0
1	21/4	71/8	8.00	182.0
2	2	61/4	6.30	144.0
3	13/4	5½	4.85	112.0
4	15%	5	4.15	97.0
5	1½	43/4	3.55	84.0
5½	13/8	41/4	3.00	72.0
6	11/4	4	2.45	58.0
7	11/8	31/2	2.00	49.0
8	1	3	1.58	39.0
9	7/8	23/4	1.20	30.0
10	3/4	21/4	.89	22.0
101/4	5/8	2	.62	15.8
101/2	9 16	13/4	.50	12.7
103/4	1/2	1½	.39	10.1
10a	716	11/4	.30	7.8
10b	3/8	11/8	.22	5.78
10c	5 16	1	.15	4.05
10d	1/4	3/4	.10	2.70
		7 Wires to the	e Strand.	
11	11/2	43/4	3.55	79.0
12	13/8	41/4	3.00	68.0
13	11/4	4	2.45	56.0
14	11/8	31/2	2.00	46.0
15	1	3 .	1.58	37.0
16	7/8	23/4	1.20	28.0
17	3/4	21/4	.89	21.0
18	11 16	21/8	.75	18.4
19	5/8	2	.62	15.1
20	9 16	13/4	.50	12.3
21	1/2	11/2	.39	9.70
22 -	7 16	11/4	.30	7.50
23	3/8	11/8	.22	5.58
24	75	1	.15	3.88
25	3 2	7/8	.125	3.22
				I.

Weight, Length, and Strength of Steel Wire.

John A. Roebling's Sons Company.

Number, Roebling	Diam- eter, in	Area, in square	Breaking load at rate of	Weight, in	pounds.	Number of feet
gauge.	inches.	inches.	100,000 pounds per square inch.	Per 1000 feet.	Per mile.	in 2000 pounds.
000000	.460	.166 191	16619.0	558.4	2948.0	3 582
00000	.430	.145 221	14522.0	487.9	2576.0	4 099
0000	.393	.121 304	12130.0	407.6	2152.0	4 907
000	.362	.102 922	10292.0	345.8	1826.0	5 783
00	.331	.086 049	8605.0	289.1	1527.0	6 917
0	.307 .283	.074 023	7402.0	248.7	1313.0	8 041 9 463
	.283	.062 902	6290.0 5433.0	211.4 182.5	$1116.0 \\ 964.0$	10 957
2	.244	.034 525	4676.0	157.1	830.0	12 730
4	.225	.039 761	3976.0	133.6	705.0	14 970
2 3 4 5	.207	.033 654	3365.0	113.1	597.0	17 687
6	.192	.028 953	2895.0	97.3	514.0	20 559
7	.177	.024 606	2461.0	82.7	437.0	24 191
8	.162	.020 612	2061.0	69.3	366.0	28 878
9	,148	.017 203	1720.0	57.8	305.0	34 600
10	.135	.014 314	1431.0	48.1	254.0	41 584
11	.120	.011 310	1131.0	38.0	201.0	52 631
12	.105	.008 659	866.0	29.1	154.0	68 752
13 14	.092	.006 648	665.0	22.3 16.9	118.0	89 525 118 413
15	.080	.005 027	503.0 407.0	13.7	89.2 72.2	146 198
16	.063	.003 117	312.0	10.5	55.3	191 022
17	.054	.002 290	229.0	7.70	40.6	259 909
18	.047	.001 735	174.0	5.83	30.8	343 112
19	.041	.001 320	132.0	4.44	23.4	450 856
20	.035	.000 962	96.0	3.23	17.1	618 620
21	.032	.000 804	80.0	2.70	14.3	740 193
22	.028	.000 616	62.0	2.07	10.9	966 651
23	.025	.000 491	49.0	1.65	8.71	
24	.023	.000 415	42.0	1.40	7.37	
25 26	.020	.000 314	31.0 25.0	1.06 .855	5.58 4.51	
27	.017	.000 254	23.0	.763	4.03	
28	.016	.000 221	20.0	.676	3.57	
29	.015	.000 201	18.0	.594	3.14	
30	.014	.000 154	15.0	.517	2.73	
31	.0135	.000 143	14.0	.481	2.54	
32	.0130	.000 133	13.0	.446	2.36	
33	.0110	.000 095	9.5	.319	1.69	
34	.0100	.000 079	7.9	.264	1.39	
35	.0095	.000 071	7.1	.238	1.26	
36	.0090	.000 064	6.4	.214	1.13	

This table was calculated on a basis of 483.84 pounds per cubic foot for

steel wire.

The breaking loads were calculated for 100,000 pounds per square inch throughout, simply for convenience, so that the breaking loads for wires of any strength per square inch may be quickly determined by multiplying the values given in the table by the ratio between the strength per square inch and 100,000. Thus, a No. 15 wire, with a strength per square 150,000

inch of 150,000 pounds, will break with a load of $407 \times \frac{150,000}{100,000}$

pounds.

It must not be thought from this table that steel wire invariably has a strength of 100,000 pounds per square inch. As a matter of fact, it ranges from 45,000 pounds per square inch for soft annealed wire to over 400,000 pounds per square inch for hard wire.

STRENGTH OF MATERIALS.

When a body is subjected to the action of external forces certain deformations are produced. These deformations are called strains, and the

forces by which they are produced are called stresses.

The application of the external stresses is opposed by the production of internal stresses. The extent to which these internal stresses are capable of resisting the external stresses constitutes the strength of the material.

Thus, when a man lifts a weight so that it is suspended from his arm, stresses of sufficient magnitude to sustain the weight against the action of gravity are produced in the muscles. In like manner, a weight suspended from an iron rod produces internal stresses upon the fibres of the metal; and since equilibrium exists,—the weight being sustained,—the internal

forces must balance the external ones.

Since the internal forces are brought into play by the production of deformation, or *strain*, it follows that every force, however slight, when acting upon a resistant body must produce some deformation, in order that the internal fibre stress by which the external force is to be opposed shall appear. No body, therefore, is absolutely rigid; since, if a body could be entirely rigid, no internal stresses could be produced and no external characteristics.

ternal stresses could be resisted.

In the use of materials of engineering it is necessary to know the extent to which they may safely be subjected to certain external forces. It is also important to know the extent to which they become deformed under determinate loads, as well as the manner in which the stresses and strains are distributed. These various properties constitute the resistance of the materials, and it is upon a knowledge of the resistance of materials that the ability to make a correct distribution of them in any given structure

depends.

The manner in which the fibres of a material act in resisting deformation is not entirely understood. Apparently, the first and smaller deformations act only to separate the particles to distances within their range of attraction for each other, so that, when the external force is removed, the original relation of the particles is resumed. When, however, the deformation becomes sufficiently great for the range of attraction of the particles to be exceeded, the original relations are not resumed upon the removal of the external stresses, but a portion of the deformation remains, the structure of the material being more or less broken down. very clearly shown by the change in the appearance of the polished surface of a metal under stress, the bright surface suddenly becoming dulled when the stress exceeds a magnitude which affects the permanent structure. This was first observed by Professor J. B. Johnson, as long ago as 1892, and has recently been further investigated in France by M. Frémont. Further increase of external stress after the structure of the material has broken down is followed by rapidly-increasing deformation and rup-

It is obvious that no material should ever be subjected to such stresses in practice as will result in the breaking down of its molecular structure, since no further effective resistance can then be expected of it. It is, therefore, of little importance to know the force which produces rupture in a material. The important thing to know is the magnitude of the load at which the break-down begins, so that the structure under consideration may be so proportioned that this load is approached only within a certain known limit. In other words, it is not the breaking load which is required, but the permissible fibre stress to which the material may be subjected.

The external forces which act to cause strains in a material may produce

Tension. Compression or Crushing, Bending, Shearing, Torsion;

and, in most instances, several of these actions are produced at the same time.

Up to the point at which the molecular structure of the material breaks down under stress, the deformation produced exists only during the application of the stress, and the material returns to its original dimensions and form upon the removal of the stress. This property of returning to its original form and dimensions is called the *elasticity* of the material. Since a body does not return to its original dimensions and form when loaded to the point of structural break-down, its elasticity is then said to have been overcome, or its *elastic limit* reached.

Up to the elastic limit the deformation of a body is directly proportional to the load,—that is, the strain is proportional to the stress. If a certain elongation is observed with a load of 100 pounds, double that elongation will be produced by 200 pounds, and so on until the elastic limit is reached. This is known as Hooke's Law.

This is known as Hooke's Law.

If the material is subjected to a continually-increasing load in a testing machine provided with an autographic recorder, the line of the record will be a straight one, making a constant angle to the axes; while as soon as the elastic limit is closely approached it becomes a curve, the curvature

rapidly changing until rupture occurs.

The determination of the true elastic limit has been a matter of much discussion. Theoretically, it is the point at which "set" first occurs; practically, it is often assumed to correspond to the load at which the weighbeam of the testing machine drops, showing the sudden yield of the material. An examination of autographic test diagrams shows that the departure from Hooke's law begins gradually, not suddenly, the deviation from a straight line being at first slight, but rapidly increasing.

The true elastic limit is determined as the point at which strain ceases to be proportional to stress; but this point is not readily determined in to be proportional to stress; but this point is not readily determined in practice, except with precise and accurate testing machines, and hence the yield point, or point at which the drop of the beam of the ordinary testing machine occurs, is usually substituted for it. While admitting that this is not absolutely correct, it is quite within the working limits of accuracy under existing shop conditions.

In practice, the loads or stresses upon a body are expressed in units of weight per unit of area, as pounds per square inch or kilogrammes per square centimetre. Elongations are expressed either as the extension of a unit of length or in percentages of the length of test-piece.

The Modulus of Elasticity of a material is the result obtained by dividing the stress per unit of area by the strain per unit of length. If we call the stress per unit of area = S, and the corresponding elongation per unit of length = c, we have

Modulus of elasticity =
$$E = \frac{S}{e}$$
.

Thus, if an elongation of 0.01 is produced in a bar of 10 inches in length and 1 square inch cross-section by a load of 30,000 pounds, the modulus of elasticity will be

$$E = \frac{30,000}{0.001} = 30,000,000.$$

Since this is constant up to the yield point, it may be used for the determination of the elongation produced by any other load. Thus,

$$e = \frac{S}{E} = \frac{S}{30,000,000}$$

and any value of e can be obtained for any given value of S. In the use of any material in the construction of a framework, a machine, or any kind of mechanism, it is most important to use judgment and common sense in a careful examination of the case under consideration before attempting to apply any of the rules or tables. The actual magnitude and direction of the forces acting should be determined as closely as possible, for we may be well assured that they will be in action whether taken into account or not. It has been well said that "theory takes into account all the conditions which can be ascertained, but practice has to take into account all the conditions there are." tice has to take into account all the conditions there are.'

In the design of structural work, such as bridges, roofs, buildings, etc., the size and direction of action of loads can generally be determined with a fair degree of accuracy, the principal uncertainty being as to the action of wind pressure. In machine design, however, the stresses are much

more difficult of determination, the number and complex action of forces often rendering determinate analysis impossible. Under such circumstances recourse must often be had to empirical rules, based upon the experience gained in practice. In such cases, also, careful exercise of judgment is demanded, in order that one may be assured that the case under consideration is similar to those from which the experience has been derived; and too frequently errors have been made by blindly following the precedent set by some excellent authority, but wholly inapplicable to the case in hand.

Before applying any rules, tables, or formulas, the end to be obtained should be intelligently considered. In some instances it is the actual strength of the material which must be taken into account, but in machine design this is not often the case. More generally, it is the stiffness which must be considered. It is always necessary that a machine should retain the relative position of its parts to such an extent that the movements may continue within determinate limits of accuracy, and that no

undue binding or friction be created in the running parts.

Steam machinery must be so rigid that valve seats, etc., will remain tight and true, lathe beds must not spring under heavy cuts, planer uprights must stand firmly to their work; and all these and many other parts must be made far heavier than would be necessary for mere strength, in

order that ample rigidity may be obtained.

In many instances the principal value to be obtained from a study of the distribution of stresses in a machine is to ascertain the relative disposition of the material, and not the absolute strength to be used. Experience has shown how heavy certain portions must be, in order that deflection or spring may be kept within working limits, while a graphical analysis of the distribution of the stresses will then show where metal may safely be graped and where it must be layishly disposed.

spared and where it must be lavishly disposed.

It must be remembered, also, that break-downs usually occur by reason of unusual or abnormal stresses. Machines rarely break down under regular working loads. It is when some sudden shock occurs that the rupture takes place. While it is not to be expected that provision can be made for all accidents, yet the possible accidents should be considered in the original design; and often a little forethought as to whence the unusual stress may be expected will materially modify the disposition of the material.

may be expected will materially modify the disposition of the material.

Bearing the preceding considerations in mind, the following rules, formulas, and tables may be used, as representing both theory and prac-

tice.

Tension.

By far the greater number of tests of materials are made by pulling a test-piece, and observing or recording successive stages in the strains produced by the increasing stresses. The points usually observed are

Elastic Limit, Ultimate Strength, Ductility, Stiffness, Resilience.

As already stated, the elastic limit is the point at which the strain ceases to be proportional to the stress. In testing machines which are not provided with a recording attachment the nearest approach which can usually be had to this value is the stress observed at the moment of the drop of the beam. When a diagram of the test is automatically produced the point at which the line distinctly deviates from a straight one, at a definite angle with the axes, shows the elastic limit.

The ultimate strength is found when the material yields so rapidly that no further increase in load can be made. Both the elastic limit and the ultimate strength are always referred to the original area of the test specimen. In general, the elastic limit is reached at a stress about equal to six-tenths of the ultimate, but this varies for different materials and con-

ditions.

The ductility of a material when subjected to tension is measured by the elongation in a given length or by the reduction of fractured area.

The stiffness is measured by the angle which the test-line makes with the coördinate axes, the portion within the elastic limit alone being considered.

sidered.

Resilience is the amount of work performed in the production of strain by stress. It is, therefore, expressed in terms of force by length, usually in inch-pounds. When a piece is strained to the elastic limit, the work required is called the elastic resilience. When the load is applied gradually, the work done is equal to one-half the product of the stress at the elastic limit by the extension. When the load is applied instantaneously, the elastic deformation is double that produced by the same load applied slowly. When the force is applied by a drop, producing percussion, the product of the weight by the fall will give the work.

An examination of the following table, from data of the Pencoyd Iron Works will serve to show the relations which exist in open-hearth basic

Works, will serve to show the relations which exist in open-hearth basic

steel, such as is used in structural work.

Open-hearth Basic Structural Steel.

Pencoyd Iron Works.

Percentage	Tensile strength, square		Ductility.		
of carbon.	Ultimate strength.	Elastic limit.	Stretch in 8 inches.	Reduction of fractured area.	
			Per cent.	Per cent.	
.08	54000	32500	32	60	
.09	54800	33000	31	58	
.10	55700	33500_	- 31	57	
.11	56500	34000	30	56	
.12	57400	34500	30	55	
.13	58200	35000	29	54	
.14	59100	35500	29	53	
.15	60000	36000	28	52	
.16	60800	36500	28	51	
.17	61600	37000	27	50	
.18	62500	37500	27	49	
.19	63300	38000	26	48	
.20	64200	38500	26	47	
.21	65000	39000	25	46	
.22	65800	39500	25	45	
.23	66600	40000	24	44	
.24	. 67400	40500	24	43	
.25	68200	41000	23	42	
	1				

The predominant elements other than carbon in the above steels average as follows: manganese, 0.40 per cent.; phosphorus, 0.04 per cent.; sulphur, 0.05 per cent. Any increase of these constituents is attended by an increase of tensile strength and a diminished ductility. The tensile strength of steel is also affected to some extent by the heat treatment to which it has been subjected. Bessemer or open-hearth acid steel will generally show a higher tensile strength than basic steel, owing to the higher proportion of phosphorus, sulphur, and manganese present.

For convenient distinguishing terms it is customary to classify steel in three grades: "mild or soft," "medium," and "hard," and although the different grades blend into each other, so that no line of distinction exists, in a general sense the grades below 0.15 carbon may be considered as "soft" steel, from 0.15 to 0.30 carbon as "medium," and above that "hard" steel. Each grade has its own advantages for the particular purpose to which it is adapted. The soft steel is well adapted for boiler plate and similar uses, where its high ductility is advantageous. The medium grades are used for general structural nurposes while harder steel is expecially. are used for general structural purposes, while harder steel is especially adapted for axles and shafts and any service where good wearing surfaces are desired. Mild steel has superior welding property as compared to hard steel, and will endure higher heat without injury. Steel below 0.10 carbon should be capable of doubling flat without fracture, after being chilled from a red heat in cold water. Steel of 0.15 carbon will occasionally subif on a red heat in cold water. Steel of 0.15 carbon will occasionally submit to the same treatment, but will usually bend around a curve whose radius is equal to the thickness of the specimen; about 90 per cent. of specimens stand the latter bending test without fracture. As the steel becomes harder, its ability to endure this bending test becomes more exceptional, and when the carbon ratio becomes 0.20, little over 25 per cent. of specimens will stand the last-described bending test. Steel having about 0.40 per cent. carbon will usually harden sufficiently to cut soft iron and maintain an edge. and maintain an edge.

Compression.

When a material is subjected to a compressive load a crushing action is produced. This is frequently misunderstood, many assuming that the material is really compressed into a smaller volume than before. As a matter of fact, the only reduction in volume which can be produced is that permitted by the presence of voids in the material, the matter being pressed into the spaces existing in it. Liquids, in which no voids exist, are practically incompressible, while most metals may be materially increased in density under the hammer or the forging press but it must be creased in density under the hammer or the forging press; but it must be understood in all such cases that the increased density is due to the reduction in voids, and not the crowding of the actual particles of the metal closer together.

Crushing, however, is the usual effect of a heavy compressive stress, the material spreading in some other dimension as the yielding occurs along the line of compression. For ductile materials no definite point of rupture can be determined, since the change of shape becomes too great before any sign of rupture appears. Brittle materials, such as cast-iron, stone, bricks, cement, etc., have crushing points which may be more clearly determined. Many materials show a fairly distinct elastic limit under compression, the upsetting being proportional to stress within such

limit.

The manner of rupture under crushing is a matter of less importance than the determination of a safe working stress, and this is generally taken as the upsetting or yield point. For brittle materials, in which no such yield point can be determined, the actual crushing load must be used, the safe working load being made a certain proportion of the crushing load.

Shearing.

By shearing is understood the resistance which a material opposes to displacement in a plane. This action rarely, if ever, takes place alone. When a cutting edge begins to shear a bar, for example, true shearing takes place only for a very short distance, the material then bending and takes place only for a very short distance, the material then bending and flowing down with further pressure, so that with a thick bar the fibres are torn apart before the shearing edge has passed entirely through, and the divided piece falls off, the fracture clearly indicating the combing actions to which it has been subjected. These actions are still more clearly shown by polishing the surface of the metal and etching it to bring out the distortion of the fibres. The relation of the shearing to the tensile strength cannot be expressed as any definite ratio, varying with the materials and their disregition. rials and their disposition.

Bending.

When a body, such as a beam, is subjected to the action of a force producing deflection, there are reactions at the supports, and if no motion is produced these external forces must be equal to each other, or in equilibrium. In like manner, these external forces are opposed by internal forces acting upon the fibres of the material. In the case of a horizontal beam, the fibres in the upper portion are subjected to compression and these in the lawer portion to togeting there being a vortion between these those in the lower portion to tension, there being a portion between these

those in the lower portion to tension, there being a portion between these where the reversal of stress takes place and where the fibre stress is zero.

In such materials as steel and wrought-iron the resistance to compression and tension may be taken as equal, and this neutral axis, as it is called, then coincides with the centre of gravity of the section of the beam. When the beam is of symmetrical section the neutral axis naturally coincides with the centre of figure. If the beam is to resist the external forces, the internal stresses upon its fibres at any point must be equal to the bending moment of the external forces at the same point. The sum of the moments of the internal forces about the neutral axis is called the moment of resistance.

of resistance.

This moment of resistance is determined as follows:

Let S be the stress per unit of area in the extreme outer fibre of the cross-section; a, the cross-section of a fibre; y, the distance of any other fibre from the neutral axis. Then the moment of any fibre stress at adistance, y, from the neutral axis will be

$$\frac{S}{v}ay^2$$
;

and the sum of all the fibre-stress moments of the cross-section, taken with reference to the neutral axis, is

$$\frac{S}{v} \Sigma ay^2$$
.

The quantity Σay^2 , or the sum of all the elements of the area multiplied by the squares of their respective distances from the neutral axis, is called the moment of inertia of the section, and is always symbolized as I, so that we have for the moment of resistance of any section

$$M = \frac{S}{v}I$$
.

The value of the moment of inertia depends upon the form of the cross-section; the value of v is also dependent upon the shape of the section, while the value of S, the maximum permissible fibre stress, is governed by the material. These formulas are true only when the material is subjected to strains within the elastic limit, and the value of S should always be chosen within that limit. As a general rule, the maximum fibre stress should not exceed one-half the elastic limit of the material.

Since both I and v depend upon the shape of the section, we may con-

sider them by themselves, and write the moment of resistance

$$M = S \frac{I}{v}$$
.

The factor $\frac{I}{v}$, or the moment of inertia divided by the distance of the extreme fibre from the neutral axis, is called by Reuleaux and by Unwin the Section Modulus. It may be called

$$Z = \frac{I}{v}$$
.

The radius of gyration of any section may be obtained by taking the square root of the quotient obtained by dividing the moment of inertia by the area of the section. Thus, if R be the radius of gyration, I the moment of inertia, and A the area of the section, we have

$$R = \sqrt{\frac{I}{A}}.$$

This will be seen to be of use in connection with struts and pillars.

We thus see that an expression for the internal forces in a body subjected to bending stresses—such as a beam—has been obtained, and that it contains but two elements, the fibre stress on the material and the shape of the cross-section of the beam. It is only necessary, therefore, to place

this expression for the moment of resistance, $S\frac{I}{v}$, equal to the moment of

the external forces, to have their relation fully expressed. Thus, for a cantilever or projecting beam of a length, l, carrying a load, W, at its extremity, we have

$$Wl = S \frac{I}{v}$$
, or $W = \frac{S}{l} \cdot \frac{I}{v}$.

For a cantilever carrying a load, W, uniformly distributed, the lever arm, l, is one-half as long, and we have

$$W=2\frac{S}{l}\cdot\frac{I}{v}.$$

For a beam carrying a load, W, in the middle, we have

$$W=4\frac{S}{l}\cdot\frac{I}{c}$$
;

and for a beam carrying a load, W, uniformly distributed, we have

$$W = 8 \frac{S}{l} \cdot \frac{I}{c}.$$

In the preceding formulas W is the load, in pounds, which will produce a fibre stress, S, in pounds; l being the length of the beam, in inches; l, the moment of inertia of the section; and v, the distance of the most remote fibre from the neutral axis. By taking S as about one-half the elastic limit of the material, the proper working load, W, can readily be determined. Good practice takes S at 14,000 pounds for wrought-iron and 16,000 pounds for structural steel. Other values will be tabulated hereafter.

'The determination of the value of the moment of inertia for the section used is evidently the principal feature in the problem. Most of the important sections have been reduced to formulas, as in the following tables:

Elements of Usual Sections.

Pencoyd Iron Works.

Moments refer to horizontal axis, as shown. This table is intended for convenient application where extreme accuracy is not important. Some of the terms are only approximate; those marked * are correct. Values for radius of gyration in flanged beams apply to standard minimum sections only. A = area of section.

Shape of section.	Moment of inertia.	Section modulus.	Distance of base from centre of gravity.	Least radius of gyration.
h	$\frac{b\hbar^3}{12}$ *	$\frac{bh^2*}{6}$	$\frac{h}{2}$	Least side *
The Market Marke	h4 * 12	0.1178h³*		h * 3.46
↑ B ↓ ↓ ↓ ↓ ↓ ↓	$\frac{B^4 - b^4*}{12}$	$\frac{1}{6}\frac{B^4-b^4}{B}^*$	<u>B</u>	$\sqrt{\frac{B^2+b^2}{12}}^*$
b	<u>bh³*</u>	$\frac{bh^2*}{24}$	⅓h	The least of the two: $\frac{h}{4.24} \text{ or } \frac{b}{4.9}$
**************************************	<u>bħ³*</u>		-	
	$\frac{6b^2 + 6bb_1 + b_1^2}{36(2b+b_1)}h^{3*}$	-	$\sqrt[1/3]{\frac{3b+b_1}{2b+b_1}h}$	
	$\frac{AD^2}{16}$ *	<u>AD</u> *	<u>D</u>	<u>D</u> *
₩ P	,0.0491(<i>D</i> ⁴ — <i>d</i> ⁴)*	$0.0982 \frac{D^4 - d^{4*}}{D}$	$\frac{D}{2}$	$1/4\sqrt{(D^2+d^2)}*$

Elements of Usual Sections.

Pencoyd Iron Works.

Moments refer to horizontal axis, as shown. This table is intended for convenient application where extreme accuracy is not important. Some of the terms are only approximate; those marked *are correct. Values for radius of gyration in flanged beams apply to standard minimum sections only. A =area of section.

Shape of section.	Moment of inertia.	Section modulus.	Distance of base from centre of gravity.	Least radius of gyration.
(-r)	0.1098r ⁴ *	$W_1 = 0.1908r^3 * W_2 = 0.2587r^3$	0.4244r	0.0699r ² *
	0.7854ba³*	0.7854ba ² *	••••	
ħ	$\frac{Ah^2}{10.4}$	Ah 7.4	<u>h</u> 3.5	<u>h</u>
*-b>	$\frac{Ah^2}{9.9}$	Ah 6.7	$\frac{h}{3.1}$	$\frac{hb}{2.6(h+b)}$
	$\frac{Ah^2}{19}$	$\frac{Ah}{9.5}$	$\frac{h}{2}$. h
h 4bx	$\frac{Ah^2}{10.9}$	$\frac{Ah}{7.6}$	$\frac{h}{3.3}$	$\frac{b}{4.66}$
↑	$\frac{Ah^2}{6.1}$	$\frac{Ah}{3.0}$	$\frac{h}{2}$	<u>b</u> 5.2
	$\frac{Ah^2}{6.73}$	$\frac{Ah}{3.3}$	<u>h</u> 2	<u>b</u> 3.56

Moment of Inertia of Rectangles.

Depth,		Width of rectangle, in inches.									
j	nches.	1/4	3/8	1/2	5/8	3/4	7/8	1			
	6	4.50	6.75	9.00	11.25	13.50	15.75	18.00			
	7	7.15	10.72	14.29	17.86	21.44	25.01	28.58			
	8	10.67	16.00	21.33	26.67	32.00	37.33	42.67			
	9	15.19	22.78	30.38	37.97	45.56	53.16	60.75			
	10	20.83	31.25	41.67	52.08	62.50	72.92	83.33			
	11	27.73	41.59	55.46	69.32	83.18	97.06	110.92			
	12	36.00	54.00	72.00	90.00	108.00	126.00	144.00			
	13	45.77	68.66	91.54	114.43	137.31	160.20	183.08			
	14	57.17	85.75	114.33	142.92	171.50	200.08	228.67			
	15	70.31	105.47	140.63	175.78	210.94	246.09	281.25			
	16	85.33	128.00	170.67	213.33	256.00	298.67	341.33			
	17	102.35	153.53	204.71	255.89	307.06	358.24	409.42			
	18	121.50	182.25	243.00	303.75	364.50	425.25	486.00			
	19	142.90	214.34	285.79	357.24	428.68	500.14	571.58			
	20	166.67	250.00	333.33	416.67	500.00	583.33	666.67			
	21	192.94	289.41	385.88	482.34	578.81	675.28	771.75			
	22	221.83	332.75	443.67	554.58	665.50	776.42	887.33			
	23	253.48	380.22	506.96	633.70	760.44	887.18	1013.92			
	24	288.00	432.00	576.00	720.00	864.00	1008.00	1152.00			
	25	325.52	488.28	651.04	813.80	976.56	1139.32	1302.08			
	26	366.17	549.25	732.33	915.42	1098.50	1281.58	1464.67			
	27	410.06	615.09	820.13	1025.16	1230.19	1435.22	1640.25			
	28	457.33	686.00	914.67	1143.33	1372.00	1600.67	1829.33			
	29	508.10	762.16	1016.21	1270.26	1524.31	1778.36	2032.42			
	30	562.50	843.75	1125.00	1406.25	1687.50	1968.75	2250.00			
	31	620.65	930.97	1241.30	1551.62	1861.94	2172.26	2482.60			
	32	682.67	1024.00	1365.33	1706.67	2048.00	2389.33	2730.67			
	33	748.69	1123.03	1497.38	1871.72	2246.06	2620.40	2994.76			
	34	818.83	1228.25	1637.67	2047.08	2456.50	2865.92	3275.33			
	35	893.23	1339.84	1786.46	2233.07	2679.68	3126.30	3572.92			
	36	972.00	1458.00	1944.00	2430.00	2916.00	3402.00	3888.00			
	37	1055.27	1582.90	2110.54	2638.17	3165.80	3693.44	4221.08			
	38	1143.17	1714.75	2286.33	2857.92	3429.50	4001.08	4572.67			
	39	1235.81	1853.72	2471.62	3089.53	3707.44	4325.34	4943.24			
	40	1333.33	2000.00	2666.67	3333.33	4000.00	4666.67	5333.33			

Moments of Inertia of Standard Sections.

Pencoyd Iron Works.

When not otherwise specified, the inertia is the greatest around centre of gravity, or for horizontal axis in figures.

A = total area of section.

I Beam Section.

$$s = ta$$

 $l=k-\frac{2s}{2}$. s =taper of flange.

$$I = \frac{bh^3 - ck^3}{12} + \frac{cs^3}{18} + \frac{csl^2}{4}.$$

I, axis
$$xy = \frac{mb^3}{6} + \frac{kt^3}{12} + \frac{s\Big(\frac{b-t}{2}\Big)^3}{9} + 2s\Big(\frac{b-t}{2}\Big)\Big(\frac{b}{6} + \frac{t}{3}\Big)^2$$
.

Channel Section.

s =taper of flange.

$$r = \frac{s}{h - t}$$
.

$$I = \frac{bh^3 - \frac{1}{8r}(k^4 - l^4)}{12}.$$

$$I, \text{axis } xy = \frac{2mb^3 + \mathcal{U}^3 + \frac{r}{2}(b^4 - t^4)}{3} - Ad^2.$$

$$d = \frac{mb^2 + \frac{kt^2}{2} + \frac{s}{3}(b-t)(b+2t)}{4}.$$

Deck Beam Section.

taper of flange.

$$a =$$
area of bulb.

$$o=m-\frac{s}{3}.$$

$$I = \frac{aw^2}{15} + al^2 + \frac{tc^3}{3} + \frac{bd^3}{3} - \frac{m^3(b-t)}{3} + \frac{(b-t)s^3}{36} + \frac{s(b-t)o^2}{2}.$$

I, axis
$$xy = \frac{ak^2}{12.4} + \frac{nt^3}{12} + \frac{\left(p + \frac{s}{4}\right)b^3}{12}$$
.

$$d = \frac{a(2h-k) + t(h-k)^2 + (b-t)p^2 + s(b-t)\left(p + \frac{s}{3}\right)}{2A}.$$

Tee Section.

$$I = \frac{tc^3 + bd^3 - (b - t)a^3}{3}.$$

$$I, \text{ axis } xy = \frac{fb^3 + (h - f)t^3}{12}.$$

$$d = \frac{bf^2 + t(h^2 - f^2)}{2A}.$$

Angle Section.

$$I = \frac{tc^3 + bd^3 - (b-t)(d-t)^3}{3}, \text{ for even or uneven}$$
 angles.

xy passes through centre of gravity parallel to ee.

I, axis
$$xy = \frac{2d^4 - 2(d-t)^4 + t\left[b - \left(2d - \frac{t}{2}\right)\right]^3}{3}$$
, for even angles.

A close approximation for the latter is the following:

$$I$$
, axis $xy = \frac{Ab^2}{25}$, for even angles.

I, axis
$$xy = \frac{Ah^2b^2}{13(h^2 + b^2)}$$
, for uneven angles.

$$d=rac{b\ell^2+t(\hbar^2-t^2)}{2A}$$
, for even and uneven angles.

$$d' = \frac{ht^2 + t(b^2 - t^2)}{2A}$$
, for uneven angles.

In uneven angles the distance from centre of gravity in direction of the long leg exceeds that in the direction of the short leg by half the difference in the length of the two legs.

In angles and tees of equal legs and thickness

$$d = \frac{1}{4} \left(b + \frac{3}{2} t \right)$$
, nearly.

Inertia of Compound Shapes.

"The moment of inertia of any section about any axis is equal to the I about a parallel axis passing through its centre of gravity + the area of the section multiplied by the square of the distance between the axes.

By use of this rule, the moments of inertia or radii of gyration of any single sections being known, corresponding values can readily be obtained for any combination of these sections.

Example 1. A combination of two 9-inch channels of 3.89 square inches section and two $12'' \times \frac{1}{4}''$ plates, as shown.

Axis AB of Section.

$$I$$
 for two channels, column VI., page 362, = 95.78
 I for two plates = $\frac{12 \times .25^3}{12} \times 2 = .03125$
6 (area of plates) $\times 45/2$ = 128.34375
 I for combined section = 224.155

which, divided by area (13.78), gives $16.27 = R^2$ or 4.03 radius of combined section.

Axis CD.

Find distance, d=(.60), from column XII., page 363, then obtaining the distance (4.17) between axes $\it CD$ and $\it EF$.

I for two channels around axis EF from column VI. = 3.54 Area of channels \times square of distance = $7.78 \times 4.17^2 = 135.286$ I for two plates = $\frac{.5 \times 12^3}{12}$ = 72.000I for combined section = 210.826

Radius of gyration =
$$\sqrt{\frac{210.826}{13.78}}$$
 = 3.91.

By similar methods inertia or radius of gyration for any combination of shapes can readily be obtained.

Example 2. A "built-up beam" composed of

4 angles
$$3'' \times 3'' \times \frac{1}{4}''$$
.
2 plates $8'' \times \frac{1}{2}''$.
1 plate $15'' \times \frac{3}{8}''$.

Axis AB.

Radius of Gyration of Compound Shapes.

In the case of a pair of any shape without a web the value of R can always be readily found without considering the moment of inertia.

The radius of gyration for any section around an axis parallel to another axis passing through its centre of gravity is found as follows: Let r = radius of gyration around axis through centre of gravity; R = radius of gyration around another axis parallel to above; d = distancebetween axis.

$$R=\sqrt{d^2+r^2}.$$

When r is small, R may be taken as equal to d without material error. Thus, in the case of a pair of channels latticed together, or a similar construction.

Example 1. Two 9" channels of 3.89 square inches section placed 5.68" apart; required the radius of gyration around

axis *CD* for combined section. Find in column X., page 362, r = .67 and $r^2 = 0.45$. Find distance from base of channel to neutral axis, same page, = .60, this added to one-half the distance between the two bars, 2.84'' = 3.44'' d, and $d^2 = 11.8336$.
Radius of gyration of the pair as placed =

$$\sqrt{11.8336 + 0.45} = 3.505$$
.

 $r^2 = .8649.$ Find distance from side of angle to neutral

axis, same page, = .84. Subtract this from half the width of column = 5 - .84 = 4.16 = d, or distance between two axes. $d^2 =$ 17.3056. Radius of gyration of four angles as placed =

$$\sqrt{17.3056 + .8649} = 4.26.$$

When the angles are large, as compared with the outer dimensions of the combined section, the radius of gyration can be taken without serious error from the table of radii of gyration for square columns, on page 353.

Elements of Pencoyd Structural Shapes.

In the following tables various fundamental properties of rolled sections are given, whereby the strength or stiffness of each can be readily determined.

The calculations are made for the least and greatest thickness of the various shapes; intermediate thicknesses of these can be approximated by

. Moments of Inertia for the sections are obtained as hereafter described.

Radius of Gyration, equal to resistance of struts or columns.

 $\sqrt{\frac{\text{Inertia}}{\text{area}}}$, is used for determining the

Inertia Section Modulus, equal to distance from axis to extreme fibres, is used

for determining transverse strength in beams, etc.

Coefficient for Safe Load is the calculated load, in net tons, on a beam one foot between supports, that produces fibre strains of 16,000 pounds per square inch. A corresponding load for any beam is found by dividing this coefficient by the length of span in feet.

Coefficients for Deflection are based on a modulus of elasticity of 28,000,000 pounds. They apply to beams one foot long, bearing one ton (2000 pounds). The deflection of any beam, in inches, is found by multiplying its coefficient by the load in net tons and by the cube of the length in feet.

Maximum Load, in Net Tons, indicates the greatest load that a beam, however short, should carry, unless its web is reinforced to prevent crippling. This load is obtained by the formula:

$$W = \frac{2xdt}{1 + \frac{l^2}{3000l^2}} \qquad \begin{array}{l} x = 8 \text{ tons.} \\ d = \text{depth of beam.} \\ t = \text{thickness of web.} \\ d = d \times \text{secant } 45^{\circ} \ (\ell^2 = 2d^2). \end{array}$$

Elements of Pencoyd Beams.

I.	II.	III.	IV.	v.	VI.	VII.	VIII.
Size,	Section number.	Area, in square	Weight per foot,	Moments	of inertia.	Square of radius of gyration.	
inches.	number.	inches.	pounds.	Axis AB.	Axis CD.	Axis AB.	Axis CD.
24	240B	23.53	80.0	2111.40	42.84	89.73	1.82
24	244B	29.42	100.0	2497.30	57.53	84.88	1.96
20	200B	19.10	65.0	1179.71	27.72	61.76	1.45
20	207B	29.42	100.0	1649.55	55.57	56.07	1.89
18	180B	16.13	55.0	809.05	21.17	50.16	1.31
18	187B	26.46	90.0	1187.99	46.03	44.90	1.74
15	150B	12.35	42.0	443.71	14.43	35.93	1.17
15	158B	23.54	80.0	773.84	40.69	32.87	1.73
12	120B	9.27 19.12	31.5	218.71	9.45	23.59	1.02
12	127B		65.0	403.48	28.93	21.10	1.51
10	100B	7.34	25.0	123.07	6.81	16.77	0.93
10	103B	11.75	40.0	175.48	12.36	14.93	1.05
9	90B	6.17	21.0	84.94	5.06	13.77	0.82
	93B	10.30	35.0	112.76	7.25	10.95	0.70
8 8	80B	5.29	18.0	57.36	3.72	10.84	0.70
	83B	7.50	25.5	69.14	4.70	9.22	0.63
7 7	70B	4.42	15.0	36.61	2.64	8.28	0.60
	72B	5.88	20.0	42.55	3.20	7.24	0.54
6	60B 68B	3.60 7.03 to	12.25 23.90 to	22.09 41.98	1.83 7.89	6.14 5.97	0.51 1.12
6	68B	8.15	27.70	45.36	8.99	5.57	1.10
5	50B	2.87	9.75	12.12	1.21	4.22	0.42
5	52B	4.34	14.75	15.18	1.67	3.50	0.39
4 4	40B	2.20	7.50	5.90	0.76	2.68	0.34
	43B	3.08	10.50	7.07	1.00	2.30	0.32
3	30B	1.62	5.50	2.43	0.45	1.50	$0.28 \\ 0.27$
3	32B	2.20	7.50	2.87	0.59	1.30	

Elements of Pencoyd Beams.

IX.	x.	xi.	XII.	XIII.	XIV.	xv.	IV.	I.
	us of tion,	Section modu- lus.	Coefficient for great- est safe		ient for	Maximum load, in	Weight per foot, in	in hes.
Axis AB.	Axis CD.	Axis AB.	load, in net tons.	Distribu- ted load.	Centre load.	net tons.	pounds.	Size, in inches.
9.47	1.35	176.0	938.4	.000 00076	.000 00122	75.8	80.0	24
9.21	1.40	208.1	1109.9	.000 00064	.000 00103	143.4	100.0	24
7.86	1.20	118.0	629.2	.000 00137	.000 00217	74.2	65.0	20
7.49	1.37	165.0	889.8	.000 00097	.000 00155	184.8	100.0	20
7.08	1.14	89.9	479.4	.000 00198	:000 00317	65.6	55.0	18
6.70	1.32	132.0	712.9	.000 00135	.000 00216	178.2	90.0	18
5.99	1.08	59.2	315.5	.000 00357	.000 00578	47.6	42.0	15
5.73	1.32	103.2	550.3	.000 00207	.000 00331	162.6	80.0	15
4.86	1.01	36.5	194.4	.000 00727	.000 01172	35.6	31.5	12
4.59	1.23	67.3	358.7	.000 00397	.000 00635	134.4	65.0	12
4.10	0.96	24.6	131.3	.000 0129	.000 0208	27.0	25.0	10
3.86	1.03	35.1	187.2	.000 0091	.000 0146	78.8	40.0	10
3.71	0.91	18.9	100.7	.000 0185	.000 0302	21.2	21.0	9
3.31	0.84	25.1	133.6	.000 0142	.000 0227	93.8	35.0	
3.29	0.84	14.3	76.5	.000 0275	.000 0447	19.4	18.0	8 8
3.04	0.79	17.3	92.2	.000 0231	.000 0371	58.8	25.5	
2.88	0.78	10.5	55.8	.000 0433	.000 0700	17.2	15.0	7
2.69	0.74	12.2	64.8	.000 0376	.000 0603	43.2	20.0	7
2.48	0.71	7.4	39.3	.000 0717	.000 1161	13.8	12.25	6
2.44	1.06	14.0	74.6	.000 0370	.000 0591	30.8	23.90	
2.36	1.05	15.1	80.6	.000 0342	.000 0547	50.2	27.70	6
2.05	0.65	4.9	25.9	.000 1305	.000 2115	11.0	9.75	5
1.87	0.62	6.1	32.4	.000 1054	.000 1689	36.8	14.75	5
1.64	0.58	3.0	15.7	.000 2671	.000 4346	8.2	7.50	4 4
1.52	0.57	3.5	18.9	.000 2263	.000 3627	23.4	10.50	
1.23	0.53	1.6	8.6	.000 6452	.001 0552	5.4	5.50	3 3
1.14	0.52	1.9	10.2	.000 5575	.000 8934	15.6	7.50	

Elements of Pencoyd Channels.

I.	II.	III.	IV.	v.	VI.	VII.	VIII.	1X.	X.
Size,	Section number.	Area, in square	in per		Moments of inertia.		re of us of tion.	Radius of gyration.	
inches.		inches.	pounds.	Axis AB.	Axis CD.	Axis AB.	Axis	Axis AB.	Axis CD.
15 15	150C 155C	9.69 16.17	33.0 55.0	311.21 469.85	3.10 17.20	32.12 29.06	0.84 1.06	5.67 5.39	0.91 1.03
13	130C	9.39 to	31.9 to	238.26	11.48	25.38	1.22	5.04	1.11
13	130C	14.27	48.5	306.25	16.22	21.47	1.14	4.63	1.07
12 12	120C 128C	6.02 6.01 to	20.5 20.5 to	$\begin{array}{c} 129.27 \\ 123.98 \end{array}$	3.90 3.10	21.47 20.63	$0.65 \\ 0.52$	4.63 4.54	0.81 0.72
12	128C	9.40	32.0	164.30	4.42	17.48	0.47	4.18	0.69
10 10	100C 104C	4.41 10.29	15.0 35.0	67.11 124.61	2.28 5.99	15.22 12.11	0.52 0.58	3.90 3.48	0.72 0.76
9	90C 95C	3.89 5.98 to	13.25 20.30 to	$47.89 \\ 70.21$	1.77 3.99	12.31 11.65	$0.45 \\ 0.66$	3.51 3.41	0.67 0.81
9	95C	8.23	28.00	85.40	5.17	10.32	0.63	3.21	0.79
8 8	80C 84C	$\frac{3.31}{6.25}$	11.25 21.25	32.51 51.85	$\frac{1.32}{2.97}$	9.82 8.30	0.40 0.48	3.13 2.88	0.63 0.69
7 7	70C 74C	$\frac{2.86}{5.81}$	9.75 19.75	21.37 35.85	$0.98 \\ 2.49$	7.47 6.17	0.34 0.43	2.73 2.48	0.59 0.66
6	60C 65C	$\frac{2.35}{4.46}$	8.00 15.10	13.07 25.15	$0.69 \\ 5.20$	5.56 5.64	0.29 1.17	2.36 2.38	0.54 1.08
5 5	50C 52C	1.91 3.38	6.50 11.50	7.37 10.43	$0.47 \\ 0.82$	3.86 3.09	$0.25 \\ 0.24$	1.96 1.76	0.50 0.49
4 4	40C 42C	$\frac{1.54}{2.13}$	5.25 7.25	$\frac{3.74}{4.52}$	$0.32 \\ 0.44$	2.43 2.12	$0.21 \\ 0.21$	1.56 1.46	$0.45 \\ 0.46$
3 3	30C 32C	1.18 1.76	4.00 6.00	$\frac{1.61}{2.05}$	$0.20 \\ 0.31$	1.36 1.16	0.17 0.18	1.17 1.07	$0.41 \\ 0.42$
21/ ₄ 2 2	22C 20C 20C	1.12 0.87 1.06	3.80 2.90 3.60	0.80 0.48 0.54	$0.19 \\ 0.08 \\ 0.11$	$0.71 \\ 0.55 \\ 0.51$	$0.17 \\ 0.10 \\ 0.10$	$0.85 \\ 0.74 \\ 0.71$	$0.42 \\ 0.31 \\ 0.32$
13/4	17C	0.33	1.13	0.15	0.01	0.46	0.03	0.67	0.16

Elements of Pencoyd Channels.

	х°г.	XII.	XIII.	XIV.	XV.	XVI.	I.
-	Distance, d, from base to	Section modulus.	Coefficient for greatest safe load, in		ent for ction.	Maximum load, in	Size, in inches.
	neutral axis.	Axis AB.	net tons.	Distributed load.	Centre load.	net tons.	menes.
	0.79 0.95	41.5 62.7	221.3 334.1	.000 00514 .000 00340	.000 00826 .000 00546	45.0 135.4	15 15
	1.01	36.7	195.5	.000 00651	.000 01042	43.4	13
	0.97	47.1	251.3	.000 00507	.000 00811	130.0	13
	$0.70 \\ 0.62$	21.6 20.7	114.9 110.2	.000 01237 .000 01290	.000 01986 .000 02072	23.4 24.2	12 12
	0.62	27.4	146.0	.000 00974	.000 01564	82.4	12
	$0.64 \\ 0.76$	13.4 24.9	71.6 132.9	.000 02384 .000 01284	.000 03838 .000 02067	16.4 106.8	10 10
	$0.60 \\ 0.74$	10.6 15.6	56.8 83.2	.000 03341 .000 02210	.000 05379 .000 03536	15.6 39.0	9
	0.75	19.0	101.2	.000 01817	.000 02907	79.0	9
	0.57 0.66	8.1 13.0	43.4 69.1	.000 04921 .000 03086	.000 07923 .000 04968	13.6 57.0	8 8
	$0.54 \\ 0.65$	6.1 10.2	32.6 54.6	.000 07487 .000 04463	.000 12054 .000 07185	13.2 57.8	7 7
	0.51 1.07	4.4 8.4	23.2 44.7	.000 12242 .000 06170	.000 19709 .000 09872	10.8 28.2	6 6
	0.49 0.50	3.0 4.2	15.7 22.3	.000 21710 .000 15340	.000 34953 .000 24697	9.2 21.4	5 5
	0.46 0.46	1.9 2.3	10.0 12.1	.000 42781 .000 35398	.000 68877 .000 56991	8.2 18.4	4 4
	0.43 0.45	1.1 1.4	5.7 7.3	.000 99377 .000 78050	.001 59997 .001 25660	6.0 16.0	3 3
	$0.47 \\ 0.36 \\ 0.37$	0.7 0.5 0.5	3.8 2.6 2.9	.002 00000 .003 33333 .002 96980	.003 22000 .005 36666 .004 78138	8.6 6.6 9.6	2½ 2 2
	0.18	0.2	0.9	.010 66672	.017 17342	2.0	13/4

Bending Moments, etc., for Beams of Uniform Section.

Remarks.	Weakest section at right support.	Weakest section at centre of beam.	Weakest section at point of application of load.	Weakest section at right support.
Deflection, in inches.	$\frac{PB}{3BI}$	Pt3 48EI	$Pab(2l-a)\sqrt{\frac{3a(2l-a)}{27lEI}}$	$\frac{3P \eta_3}{322 E ar{I}}$ •
Maximum load, in pounds.	$\frac{l}{\partial S}$	480	usq.	$\frac{16SQ}{3l}$
Bending moment, in inch-pounds.	Px Maximum when $x=l$	$\frac{Px}{2}$ Maximum = $\frac{Pl}{4}$	For the left side, $\frac{Pbx}{l}$ For the right side, $\frac{Pay}{l}$	For the left side, $\frac{5Px}{16}$ For the right side, $Pl\left(\frac{32}{32} - \frac{16l}{16l}\right)$
Mode of loading. Lengths, in inches; loads, in pounds.	One end firmly fixed, other end loaded.	Supported at both ends, loaded at centre.	Supported at both ends, loaded any place.	other end fixed, conter end supported, loaded at centre.

Bending Moments, etc., for Beams of Uniform Section.

_						
	Remarks,	Weakest section at centre.	Weakest section at right support.	Weakest section at either support.	Weakest section at right support.	
	Deflection, in inches.	5WB 384BI	5 W B 926 E I	W/B 384ET	$W^{\mathcal{B}}_{\overline{I}}$	
	Maximum load, in pounds.	7	7	12SQ	386	
	Bending moment, in inch-pounds.	$\frac{Wz}{2} \left(1 - \frac{x}{l} \right)$ Maximum = $\frac{Wl}{8}$	$\frac{Wx}{2} \left(\frac{3}{4} - \frac{x}{l} \right)$ Maximum = $\frac{Wl}{8}$	$\frac{W^l}{2} \left(\frac{x}{l} - \frac{x^2}{l^2} - \frac{1}{6} \right)$ Maximum = $\frac{W^l}{12}$	$\frac{Wx^3}{3l^2}$ Maximum = $\frac{Wl}{3}$	
	Mode of loading. Lengths, in inches; loads, in pounds.	Both ends supported, load uniformly distributed.	One end supported, other end fixed, load uniformly distributed.	Both ends fixed, load uniformly distributed.	One end fixed, load distributed, increasing uniformly towards the fixed end.	

Thrust.

Bodies subjected to thrust, such as columns, struts, etc., generally fail by bending sideways,—this showing the practical impossibility of maintaining the thrust in the exact axial line. As in the case of beams, the shape of the cross-section of the column is an important element in the supporting power, but with this must be considered the length and the manner in which the ends are held.

The cross-section is best represented by the least radius of gyration, usually indicated by r. The length of the column or strut being taken as

l. in inches, we have the ratio, $\frac{1}{2}$ -, as representing the proportions of the

column. The manner of supporting the ends are classified according to the extent to which the column is secured and the degree to which it is

maintained in the line of the thrust.

Owing to the complex nature of the stresses in columns it is difficult to determine the maximum fibre stresses, and the various formulas which have been devised are the consequence of attempts to embody the results of experimental investigations. These have been conducted to determine the crippling loads required for the various conditions, the safe load then being taken as a certain portion of the crippling load, the latter being divided by a so-called factor of safety.

The following discussion of the subject, prepared by Mr. James Christie

to accompany the tabulated results of his experiments for the Pencoyd

Iron Company, represent standard current practice.

Struts are generally classified in four divisions, with respect to the manner in which the ends are secured,—viz., "fixed-ended," "flat-ended," "hinged-ended," and "round-ended."

In the class of "fixed ends" the struts are supposed to be so rigidly attached at both ends to the contiguous parts of the structure that the attachment would not be severed if the member was subjected to the ultimate load. "Flat-ended" struts are supposed to have their ends flat and normal to the axis of length, but not rigidly attached to the adjoining parts. "Hinged ends" embrace the class which have both ends properly fitted with pins or ball and socket joints of substantial dimensions, as compared with the section of the strut, the centres of these end joints being practically coincident with an axis passing through the centre of gravity of the section of the strut. "Round-ended" struts are those which have only central points of contact, such as balls or pins resting on flat plates, but still the centres of the balls or pins coincident with the proper axis of the strut.

If in hinged-ended struts the balls or pins are of comparatively insignificant diameter, it will be safest in such cases to consider the struts as

round-ended.

If there should be any serious deviation of the centres of round or hinged ends from the proper axis of the strut there will be a reduction of resistance that cannot be estimated without knowing the exact condi-

tions

When the pins of hinged-end struts are of substantial diameter, well fitted and exactly centred, experiment shows that the hinged-ended will be equally as strong as flat-ended struts. But a very slight inaccuracy of the centring rapidly reduces the resistance to lateral bending, and, as it is almost impossible in practice to uniformly maintain the rigid accuracy required, it is considered best to allow for such inaccuracies to the extent given in the tables, which are the average of many experiments.

It is considered good practice to increase the factors of safety as the

length of the strut is increased, owing to the greater inability of the long struts to resist cross strains, etc. For similar reasons it is considered advisa-ble to increase the factor of safety for hinged and round ends in a greater

ratio than for fixed or flat ends.

Presuming that one-third of the ultimate load would constitute the greatest safe load for the shortest struts, the following progressive factors of safety are adopted for the increasing lengths:

STRUTS. 369

 $3 + .015 \frac{l}{r}$ for hinged and round ends.

l = length of strut.

r =least radius of gyration.

From the above we derive the following factors of safety:

$\frac{l}{r}$	Fixed and flat ends.	Hinged and round ends.	$\frac{l}{r}$	Fixed and flat ends.	Hinged and round ends.	$\frac{l}{r}$	Fixed and flat ends.	Hinged and round ends.
20	3.2	3.30	110	4.1	4.65	200	5.0	6.00
30	3.3	3.45	120	4.2	4.80	210	5.1	6.15
40	3.4	3.60	130	4.3	4.95	. 220	5.2	6.30
50	3.5	3.75	140	4.4	5.10	230	5.3	6.45
60	3.6	3.90	150	4.5	5.25	240	5.4	6.60
70	3.7	4.05	160	4.6	5.40	250	5.5	6.75
80	3.8	4.20	170	4.7	5.55	260	5.6	6.90
90	3.9	4.35	180	4.8	5.70	270	5.7	7.05
100	4.0	4.50	190	4.9	5.85	280	5.8	7.20

Cast=iron Columns.

Cast-iron columns are sometimes used in buildings of moderate height, but their use is not to be recommended for buildings where the iron framework must be rigid and afford sufficient lateral stability. The manner in which cast-iron columns are connected together and the mode of attaching beams and girders to them does not permit of obtaining sufficient rigidity for such buildings. Cast-iron columns have more or less internal strains, due to the unequal cooling of the metal in the moulds, which makes it necessary to employ a large factor of safety. No cast-iron column should be used in a building with a factor of safety less than 8. Particular attention should be paid to the designing of the cast-iron brackets for supporting the beams and girders, in order that they may not be subjected to large internal strains, making them liable to break off under a sudden shock. The tables on pages 391 and 392 furnish an easy method of determining the safe loads on round and square cast-iron columns. Where the loads are eccentrically applied, producing bending strains in the columns, cast-iron columns are inadmissible, because of their inability to resist such strains.

TABLE No. 1.

Struts of Wrought=iron or Extreme Soft Steel.

Destructive pressure, in pounds, per square inch.

Least radius of gyration.	Fixed ends.	Flat ends.	Hinged ends.	Round ends.
20	46000	46000	46000	44000
30	43000	43000	43000	40250
40	40000	40000	40000	36500
50	38000	38000	38000	33500
co	36000	36000	36000	30500
70	34000	34000	33750	27750
80	32000	32000	31500	25000
90	31000	30900	29750	22750
100	30000	29800	28000	20500
110	29000	28050	26150	18500
120	28000	26300	24300	16500
130	26750	24900	22650	14650
140	25500	23500	21000	12800
150	24250	21750	18750	11150
160	23000	20000	16500	9500
170	21500	18400	14650	8500
180	20000	16800	12800	7500
190	18750	15650	11800	6750
200	17500	14500	10800	6000
210	16250	13600	9800	5500
220	15000	12700	8800	5000
230	14000	11950	8150	4650
240	13000	11200	7500	4300
250	12000	10500	7000	4050
260	11000	9800	6500	3800
270	10500	9150	6100	3500
280	10000	8500	5700	3200
290	9500	7850	5350	3000
300	9000	7200	5000	2800
310	8500	6600	4750	2650
320	8000	6000	4500	2500
330	7500	5550	4250	2300
340	7000	5100	4000	2100
350	6750	4700	3750	2000
360	6500	4300	3500	1900
370	6150	3900	3250	1800
380	5800	3500	3000	1700
390	5500	3250	2750	1600
400	5200	3000	2500	1500

TABLE No. 2.

Struts of Wrought=iron or Extreme Soft Steel.

Greatest safe load, in pounds per square inch of cross-section, for vertical struts. Both ends are supposed to be secured as indicated at the head of each column.

If both ends are not secured alike, take a mean proportional between the values given for the classes to which each end belongs.

If the strut is hinged by any uncertain method, so that the centres of pins and axis of strut may not coincide, or the pins may be relatively small and loosely fitted, it is best in such cases to consider the strut as "round-ended."

Length.				
Least radius of gyration.	Fixed ends.	Flat ends.	Hinged ends.	Round ends.
20	14380	14380	13940	13330
30	13030	13030	12460	11670
40	11760	11760	11110	10140
50	10860	10860	10130	8930
60	10000	10000	9230	7820
70	9190	9190	8330	6850
80	8420	8420	7500	5950
90	7950	7920	6840	5230
100	7500	7450	6220	4560
110	7070	6840	5620	3980
120	6670	6260	5060	3440
130	6220	5790	4580	2960
140	5800	5340	4120	2510
150	5390	4830	3570	2120
160	5000	4350	3060	1760
170	4570	3920	2640	1530
180	4170	3500	2250	1310
190	3830	3190	2020	1150
200	3500	2900	1800	1000
210	3190	2670	1590	890
220	2880	2440	1400	790
230	2640	2250	1260	720
240	2410	2070	1140	650
250	2180	1910	1049	600
260	1960	1750	940	550
270	1840	1610	870	500
280	1720	1460	790	440
290	1610	1330	730	410
300	1500	1200	670	370
310	1390	1080	620	350
320	1290	970	580	320
330	1190	880	540	290
340	1090	800	490	260
350	1040	720	450	240
360	980	650	420	230
370	920	580	380	210
380	850	510	340	200
390	800	470	310	80
400	740	430	280	70

TABLE No. 3.

Struts of Medium Steel.

Destructive pressure, in pounds per square inch, for steel of medium grade, tensile strength about 70,000 pounds per square inch. For extreme soft steel, use Table No. 1.

Length. Least radius of gyration.	Fixed ends.	Flat ends.	Hinged ends.	Round ends.
20	70000	70000	70000	66900
30	51000	51000	51000	47700
40	46000	46000	46000	41900
50	44000	44000	44000	38800
60	42000	42000	42000	35600
70	40000	40000	39700	32600
80	38000	38000	37400	29700
90	36100	36000	34700	26500
100	34200	34000	31900	23400
110	33100	32000	29800	21100
120	31900	30000	27700	18800
130	30100	28000	25500	16500
140	28200	26000	. 23200	14200
150	26800	24000	20700	12300
160	25300	22000	18100	10400
170	23400	20000	15900	9240
180	21400	18000	13700	8030
190	19400	16200	12200	6990
200	17900	14800	11000	6120
210	16200	13600	9800	5500
220	15000	12700	8800	5000
230	14000	11950	8100	4650
240	13000	11200	7500	4300
250	12000	10500	7000	4050
260	11000	9800	6500	3800
270	10500	9150	6100	3500
280	10000	8500	5700	3200
290	9500	7850	5330	3000
300	9000	7200	5000	2800

373

TABLE No. 4.

Struts of Medium Steel.

Greatest safe load for steel of medium grade, tensile strength about 70,000 pounds.

For extreme soft steel, use Table No. 2.

The figures are the working loads, in pounds per square inch, for vertical struts.

Both ends are supposed to be secured as indicated at the head of each

column.

If both ends are not secured alike, take a mean proportional between the values given for the classes to which each end belongs.

If the strut is hinged by any uncertain method, so that the centres of pins and axis of strut may not coincide, or the pins may be relatively small and loosely fitted, it is best in such cases to consider the strut as "round-ended."

L	Length, east radius of gyration.	Fixed ends.	Flat ends.	Hinged ends.	Round ends.
	20	21900	21900	21200	20300
	. 30	15400	15400	14800	13800
	40	13500	13500	12800	11600
	50	12600	12600	11700	10300
	60	11700	11700	10800	9130
	70	10800	10800	9800	8050
	80	10000	10000	8900	7070
	90	9260	9230	7980	6090
	100	8550	8500	7090	5200
	110	8070	7800	6410	4540
	120	7590	7140	5770	3920
	130	7000	6510	5150	3330
	140	6410	5910	4550	2780
	150	5950	5330	3940	2340
	160	5500	4780	3350	1920
	170	4980	4250	2860	1660
	180	4460	3750	2400	1410
	190	3960	3310	2080	1190
	200	3580	2960	1830	1020
	210	3180	2670	1590	890
	220	2880	2440	1400	790
	230	2640	2250	1250	720
	240	2410	2070	1140	650
	250	2180	1910	1040	600
	260	1960	1750	940	550
	270	1840	1610	860	500
	280	1720	1460	790	440
	290	1610	1330	720	410
	300	1500	1200	670	370

TABLE No. 5.

Struts of Hard Steel.

Destructive pressure, in pounds per square inch, for hard steel, tensile strength about 100,000 pounds. For softer steel, see Table No. 3.

Length.				
Least radius of gyration.	Fixed ends.	Flat ends.	Hinged ends.	Round ends
20	100000	100000	100000	95600
30	74000	74000	74000	69300
40	62000	62000	62000	56600
50	60000	60000	60000	52900
60	58000	58000	58000	49100
70	55500	55500	55100	45300
80	53000	53000	52200	41400
90	49900	49700	47800	36600
100	46800	46500	43700	32000
110	44700	43200	40400	28500
120	42600	40000	36900	25100
130	39400	36700	33500	21600
140	36300	33500	29900	18200
150	34200	30700	26500	15700
160	32200	28000	23100	13300
170	29800	25500	20300	11800
180	27400	23000	17500	10300
190	25100	21000	15800	9060
200	22900	19000	14100	7860
210	20300	17200	12400	6950
220	18300	15500	10700	6100
230	16900	14400	9820	5600
240	15500	13400	8960	5140
250	14200	12400	8270	4780
260	12900	11500	7630	4460
270	12200	10600	7060	4050
280	11400	9700	6500	3650
290	10900	9000	6130	3440
300	10600	8500	5890	3300

TABLE No. 6.

Struts of Hard Steel.

Greatest safe load for hard steel, tensile strength about 100,000 pounds.

For soft steel, see Table No. 4.

The figures are the working loads, in pounds per square inch, for vertical struts.

Both ends are supposed to be secured as indicated at the head of each column.

If both ends are not secured alike, take a mean proportional between

the values given for the classes to which each end belongs.

If the strut is hinged by any uncertain method, so that the centres of pins and axis of strut may not coincide, or the pins may be relatively small and loosely fitted, it is best in such cases to consider the strut as "round-ended."

Length. Least radius of gyration.	Fixed ends.	Flat ends.	Hinged ends.	Round ends.
20	31200	31200	30300	29000
30	22400	22400	21400	20100
40	18200	18200	17200	15700
50	17100	17100	16000	14100
60	16100	16100	14900	12600
70	15000	15000	13600	11200
80	13900	13900	12400	9860
90	12800	12700	11000	8410
100	11700	11600	9710	7110
110	10900	10500	8670	6130
120	10100	9520	7690	5230
130	9160	8530	6770	4360
140	8250	7610	5860	3570
150	7600	6820	5050	2990
160	7000	6090	4280	2460
170	6340	5420	3660	2130
180	5710	4790	3070	1810
190	5120	4280	2700	1550
200	4580	3800	2350	1310
210	3980	3370	2020	1130
220	3520	2980	1700	
230	3190	2720	1500	970
240	2870	2480	1360	870
250	2580	2250	1220	780 710
				710
260	2300	2050	1100	650
270	2240	1860	1000	570
280	1960	1670	900	510
290	1850	1520	830	470
300	1800	1420	780	440

Elements of Pencoyd Z=Bars.

-wnu	Size, in inches.	Area,	Weight per foot,		oments inertia.		Resistance.	
Section number.	Size, in inches.	square inches.	in pounds.	Axis AB.	Axis CD.	Axis EF.	Axis AB.	Axis CD.
30Z	$25/8 \times 3 \times 25/8 \times 1/4$	1.94	6.60	2.81	2.61	0.59	1.9	1.0
31Z	$2\frac{11}{16} \times 3\frac{1}{16} \times 2\frac{11}{16} \times \frac{5}{16}$	2.44	8.29	3.52	3.38	0.74	2.3	1.3
32 Z	$2\frac{3}{4} \times 3\frac{1}{8} \times 2\frac{3}{4} \times \frac{3}{8}$	2.94	10.00	4.34	4.22	0.92	2.8	1.7
33Z	$2\frac{21}{32} \times 3 \times 2\frac{21}{32} \times \frac{7}{16}$	3.25	11.15	4.20	4.24	0.95	2.8	1.7
34Z	$2\frac{11}{16} \times 3\frac{1}{32} \times 2\frac{11}{16} \times \frac{15}{32}$	3.51	11.93	4.54	4.64	1.01	3.0	1.9
35 Z	$2^{\frac{23}{32}} \times 3^{\frac{1}{16}} \times 2^{\frac{23}{32}} \times \frac{1}{2}$	3.75	12.75	4.88	5.04	1.11	3.2	2.0
40Z	$2\frac{7}{8} \times 4 \times 2\frac{7}{8} \times \frac{1}{4}$	2.32	7.88	5.95	3.47	0.95	3.0	1.3
41Z	$2\frac{15}{16} \times 4\frac{1}{16} \times 2\frac{15}{16} \times \frac{5}{16}$	2.91	9.89	7.52	4.49	1.23	3.7	1.6
42Z	$3 \times 4\frac{1}{8} \times 3 \times \frac{3}{8}$	3.52	11.90	9.14	5.58	1.53	4.4	2.0
43Z	$2\frac{31}{32} \times 4 \times 2\frac{31}{32} \times \frac{7}{16}$	3.96	13.46	9.40	6.09	1.63	4.7	2.2
44Z	$3\frac{1}{32} \times 4\frac{1}{16} \times 3\frac{1}{32} \times \frac{1}{2}$	4.56	15.50	10.92	7.21	1.94	5.4	2.6
45Z	$3\frac{3}{32} \times 4\frac{1}{8} \times 3\frac{3}{32} \times \frac{9}{16}$	5.16	17.54	12.40	8.40	2.27	6.0	3.0
46Z	$3\frac{1}{16} \times 4 \times 3\frac{1}{16} \times \frac{5}{8}$	5.55	18.80	12.11	8.73	2.32	6.1	3.2
47Z	$3\frac{1}{8} \times 4\frac{1}{16} \times 3\frac{1}{8} \times \frac{11}{16}$	6.14	20.87	13.52	9.95	2.67	6.7	3.6
48Z	$3\frac{3}{16} \times 4\frac{1}{8} \times 3\frac{3}{16} \times \frac{3}{4}$	6.75	22.95	14.97	11.24	3.03		4.0
50Z	$3\frac{3}{16} \times 5 \times 3\frac{3}{16} \times \frac{5}{16}$	3.36	11.42	13.14	5.81	1.86	5.3	1.9
51Z	$3\frac{1}{4} \times 5\frac{1}{16} \times 3\frac{1}{4} \times \frac{3}{8}$	4.05	13.77 16.15	15.93 18.76	7.20 8.67	2.28	6.3 7.3	2.4
52Z	$3_{16}^{5} \times 5\frac{1}{8} \times 3_{16}^{5} \times \frac{7}{16}$	4.75						
53Z	$3\frac{7}{32} \times 5 \times 3\frac{7}{32} \times \frac{1}{2}$	5.23	17.78 20.09	19.03 21.65	8.77	2.76 3.20	7.6 8.6	3.0
54Z 55Z	$3\frac{9}{32} \times 5\frac{1}{16} \times 3\frac{9}{32} \times \frac{9}{16}$	5.91 6.60	20.09	24.33	10.19 11.70	3.73	9.5	3.9
	$3\frac{1}{32} \times 5\frac{1}{8} \times 3\frac{1}{32} \times \frac{5}{8}$							
56Z 57Z	$3\frac{1}{4} \times 5 \times 3\frac{1}{4} \times \frac{11}{16}$	6.96 7.64	23.66 25.97	23.68 26.16	11.37 12.83	3.59 4.12	9.5 10.3	3.9 4.4
	$3_{16}^{5} \times 5_{16}^{1} \times 3_{16}^{5} \times \frac{3}{4}$							
60Z	$3\frac{1}{2} \times 6 \times 3\frac{1}{2} \times \frac{3}{8}$	4.59	15.61	25.32 29.80	9.11 10.95	3.11 3.74	9.8	2.8
61Z 62Z	$3_{16}^{9} \times 6_{16}^{1} \times 3_{16}^{9} \times \frac{7}{16}$	5.39 6.19	18.32 21.05	34.36	12.87	4.37	11.2	3.8
	$35/8 \times 61/8 \times 35/8 \times 1/2$							
63Z 64Z	$3\frac{1}{2} \times 6 \times 3\frac{1}{2} \times \frac{9}{16}$	6.68 7.46	22.71 25.36	34.64 38.86	12.59 14.42	4.37 4.92	11.6 12.8	3.9 4.4
65Z	$\begin{vmatrix} 3\frac{9}{16} \times 6\frac{1}{16} \times 3\frac{9}{16} \times \frac{5}{8} \\ 3\frac{5}{8} \times 6\frac{1}{8} \times 3\frac{5}{8} \times \frac{11}{16} \end{vmatrix}$	8.25	28.05	43.18	16.34	5.66	14.1	5.0
		8.64	29.37	42.12	15.44	5.61	14.0	4.9
66Z 67Z	$\begin{vmatrix} 3\frac{1}{2} \times 6 & \times 3\frac{1}{2} \times \frac{3}{4} \\ 3\frac{1}{16} \times 6\frac{1}{16} \times 3\frac{1}{16} \times \frac{1}{3} \end{vmatrix}$	9.38	31.89	46.13	17.27	6.16	15.2	5.5
68Z	$3\frac{5}{8} \times 6\frac{5}{8} \times 3\frac{5}{8} \times \frac{15}{8}$	10.16	34.54	50.22	19.18	6.85	16.4	6.0
302	0/8 / 0/8 / 0/8 / /8	10.10	31.01	30.22	20.10	3.00	10.1	0.0

Elements of Pencoyd Z-Bars.

Radius	of gyr	ation.	for gr	in net tons, reatest listributed.	Coefficient tion abou	Maxi- mum load.	-mnu u	
Axis AB,	Axis	Least. Axis EF.	Fibre stress, 16,000 pounds.	Fibre stress, 12,000 pounds.	Distrib- uted.	Centre.	in net tons.	Section ber.
1.20	1.16	0.55	10 0	7.5	.000 5694	.000 9167	11.0	30Z
1.20	1.18	0.55	12.3	9.2	.000 4545	.000 7317	14.4	31Z
1.21	1.20	0.56	14.8	11.1	.000 3687	.000 5937	18.0	32Z
1.13	1.14	0.54	14.9	11.2	.000 3809	.000 6132	20.4	33 Z
1.14	1.15	0.54	16.0	12.0	000 3524	.000 5674	22.2	34Z
1.14	1.16	0.55	17.0	12.8	.000 3279	.000 5279	24.0	35 Z
1.60	1.22	0.64	15.9	11.9	.000 2689	.000 4329	13.6	40Z
1.61	1.24	0.65	19.7	14.8	000 2128	.000 3426	18.2	41Z
1.62	1.26	0.66	23.6	17.7	.000 1750	.000 2817	23.0	42 Z
1.54	1.24	0.64	25.1	18.8	.000 1702	.000 2740	26.6	43Z
1.55	1.27	0.65	28.7	21.5	.000 1465	.000 2359	31.2	44Z
1.55	1.28	0.66	32.1	24.1	.000 1290	.000 2077	35.8	45Z
1.48	1.26	0.65	32.3	24.2	.000 1321	.000 2127	39.0	46Z
1.48	1.27	0.66	35.5	26.6	.000 1183	.000 1905	43.6	47Z
1.49	1.29	0.67	38.7	29.0	.000 1069	.000 1721	48.6	48Z
1.98	1.32	0.74	28.0	21.0	.000 1218	.000 1961	21.4	50Z
1.98	1.33	0.75	33.6	25.2	.000 1005	000 1618	27.0	51Z
1.99	1.35	0.76	39.1	29.3	.000 0853	.000 1373	32.8	52Z
1.91	1.30	0.73	40.6	30.5	.000 0841	.000 1354	37.6	53Z
1.91	1.31	0.74	45.6	34.2	.000 0739	.000 1190	43.2	54Z
1.92	1.33	0.75	50.6	38.0	.000 0658	.000 1059	49.0	55Z
1.84	1.28	0.72	50.5	37.9	.000 0676	.000 1088	53.2	56Z
1.85	1.30	0.73	55.1	41.3	.000 0612	.000 0984	59.0	57Z
2.35	1.41	0.82	45.0	33.8	.000 0632	.000 1017	30.8	60Z
2.35	1.43	0.83	52.4	39.3	.000 0537	.000 0864	37.6	61Z
2.36	1.44	0.84	59.8	44.9	.000 0466	.000 0750	44.6	62Z
2.28	1.37	0.81	61.6	46.2	.000 0462	.000 0744	50.2	63Z
2.28	1.39	0.81	68.4	51.3	.000 0412	.000 0663	57.0	64Z
2.29	1.41	0.83	75.2	56.4	.000 0370	.000 0596	64.0	65Z
2.21	1.34	0.81	74.9	56.2	.000 0380	.000 0612	69.0	66Z
2.22	1.36	0.81	81.2	60.9	.000 0347	.000 0559	76.0	67Z
2.22	1.37	0.82	87.5	65.6	.000 0319	.000 0513	83.0	68Z
				1	l .		1	

Elements of Z-Bar Columns.

The thicknesses of Web Plate and Z-Bars are the same.

	7" wel	7" web plate. 71/4" face to face.				8" web plate. 81/4" face to face.				
Size of Z-bar, in inches.	Area of 4 Z- bars	Axis 2	XX.	Axis	YY.	Area of 4 Z- bars	Axis.	XX.	Axis	YY,
	and 1 plate.	I.	R.	I.	R.	and 1 plate.	I.	R.	I.	R.
$3\frac{1}{2} \times 6 \times 3\frac{1}{2} \times \frac{3}{8}$		264.11							287.86	
$3_{16}^{9} \times 6_{16}^{1} \times 3_{16}^{9} \times {}_{16}^{7}$	1	306.46						_	346.99	_
$3\frac{5}{8} \times 6\frac{1}{8} \times 3\frac{5}{8} \times \frac{1}{2}$	1	347.80							409.29	
$3\frac{1}{2} \times 6 \times 3\frac{1}{2} \times \frac{9}{16}$		365.19							426.36	_
$3_{16}^{9} \times 6_{16}^{1} \times 3_{16}^{9} \times \frac{5}{8}$	1	402.96							489.23	_
$35\% \times 61\% \times 35\% \times \frac{11}{16}$		440.31							555.82	
$3\frac{1}{2} \times 6 \times 3\frac{1}{2} \times \frac{3}{4}$		448.24				5	1		562.43 628.23	_
$3_{16} \times 6_{16} \times 3_{16} \times 1_{16} \times 3_{16} \times 1_{16} \times 3_{16} \times 1_{16} \times 3_{16} \times 3$		481.03 514.64							699.17	
3% × 0% × 3% × %	-	L					L			
		plate.							face to	
$3\frac{3}{16} \times 5 \times 3\frac{3}{16} \times \frac{5}{16}$		193.88)	4				147.41	
$3\frac{1}{4} \times 5\frac{1}{16} \times 3\frac{1}{4} \times \frac{3}{8}$	4	231.00		1					183.50	
$3\frac{5}{16} \times 5\frac{1}{8} \times 3\frac{5}{16} \times \frac{7}{16}$		267.64		į.	4				222.07	
$3\frac{7}{32} \times 5 \times 3\frac{7}{32} \times \frac{1}{2}$		287.66							234.50	_
$3_{32}^{9} \times 5_{16}^{1} \times 3_{32}^{9} \times {}_{16}^{9}$		321.15		1					273.72	
$3\frac{11}{32} \times 5\frac{1}{8} \times 3\frac{11}{32} \times \frac{5}{8}$		354.33							315.69	
3½×5 ×3½×11		364.87							320.08	
$3_{16}^{5} \times 5_{16}^{1} \times 3_{16}^{5} \times \frac{3}{4}$		395.55			1		L		363.05	
	6" wel	plate.	61/4"	faceto	face.	7" wel	plate.	71/4"	face to	face.
$2\frac{7}{8} \times 4 \times 2\frac{7}{8} \times \frac{1}{4}$		101.90	ì	1	5				65.79	
$2\frac{15}{6} \times 4\frac{1}{16} \times 2\frac{5}{16} \times \frac{5}{16}$		126.14					t	1	85.80	1
$3 \times 4\frac{1}{8} \times 3 \times \frac{3}{8}$		150.56					1		107.87	
$2\frac{31}{32} \times 4 \times 2\frac{31}{32} \times \frac{7}{16}$		166.03							115.63	
$3\frac{1}{32} \times 4\frac{1}{16} \times 3\frac{1}{32} \times \frac{1}{2}$		188.60	1	2					138.67	
$3\frac{3}{32} \times 4\frac{1}{8} \times 3\frac{3}{32} \times \frac{9}{16}$	1	210.64				4			163.08	_
$3\frac{1}{16}\times4$ $\times3\frac{1}{16}\times\frac{5}{8}$		221.78		1					167.30	
$3\frac{1}{8} \times 4\frac{1}{16} \times 3\frac{1}{8} \times \frac{11}{16}$		242.16							192.80	
$3_{16}^{3} \times 4\frac{1}{8} \times 3_{16}^{3} \times \frac{3}{4}$		262.65		<u> </u>					220.55	
	6" we	plate.	61/4"	face to	face.	7" wel	plate.	71/4"	face to	face.
$2\frac{5}{8} \times 3 \times 2\frac{5}{8} \times \frac{1}{4}$		84.78		1			112.65			1.83
$2\frac{11}{16} \times 3\frac{1}{16} \times 2\frac{11}{16} \times \frac{5}{16}$		105.17		i	1.90		139.88			
$2\frac{3}{4} \times 3\frac{1}{8} \times 2\frac{3}{4} \times \frac{3}{8}$		125.10		1	,		166.56	1		
$2\frac{21}{32} \times 3 \times 2\frac{21}{32} \times \frac{7}{16}$		134.64					180.30			
$2\frac{23\frac{3}{32}\times 3\frac{1}{16}\times 2\frac{23}{32}\times \frac{1}{2}}{2}$	18.00	153.14	2.92	67.17	1.93	18.50	205.32	3.33	67.18	1.90

Elements of Pencoyd Tees. Uneven Legs.

I.	II.	III.	IV.	V.	VI.	VII.	VIII.	IX.	X.	XI.
ection number.	Size, in	Area, in	Weight		aents ertia.	Resist	tance.	Radi gyra	us of tion.	Dist., d, from base to
Section	inches.	square inches.	foot, in pounds.	Axis AB.	Axis CD.	Axis AB.	Axis CD.	Axis AB.	Axis CD.	neutral axis.
66 T	6 × 4½	8.21	28.2	14.74	13.81	4.71	4.60	1.33	1.29	1.37
64T	6 × 4	4.61	15.6	5.82	8.19	1.92	2.73	1.12	1.33	0.97
65 T	$6 \times 5\frac{1}{4}$	11.58	39.0	28.68	18.75	8.19	6.25	1.57	1.27	1.75
53T	$5 \times 3\frac{1}{2}$	4.95	17.0	5.29	5.47	2.17	2.19	1.03	1.05	1.06
54T	5×4	4.54	15.3	6.16	5.41	2.11	2.16	1.17	1.09	1.08
42T	4×2	1.93	6.5	0.53	1.75	0.34	0.87	0.52	0.95	0.46
43T	4 × 3	. 2.67	9.0	1.99	2.10	0.90	1.05	0.87	0.89	0.78
44T 45T	$\begin{array}{ccc} 4 & \times 3 \\ 4 & \times 4\frac{1}{2} \end{array}$	3.05 4.29	10.2 14.6	2.24 7.87	2.44	1.02 2.50	1.22 1.40	0.85 1.37	0.89	0.81 1.37
46T	$4\frac{1}{2} \times 3\frac{1}{2}$	4.65	15.8	4.93	3.67	2.05	1.63	1.03	0.81	1.11
47 T	$4 \times 4\frac{1}{2}$	3.38	11.4	6.31	2.11	1.96	1.06	1.37	0.79	1.28
38T	$3\frac{1}{2} \times 3$	2.11	7.0	1.65	1.18	0.75	0.67	0.88	0.75	0.80
39T	$3\frac{1}{2} \times 3$	2.46	8.5	1.91	1.41	0.88	0.81	0.88	0.75	0.83
30 T	3 × 1½	1.20	4.0	0.18	0.60	0.16	0.40	0.39	0.71	0.36
31T	$3 \times 2\frac{1}{2}$	1.46	5.0	0.78	0.60	0.42	0.40	0.73	0.64	0.66
32T	$3 \times 2\frac{1}{2}$	1.76	6.0	0.93	0.74	0.51	0.49	0.73	0.65	0.68
33 T	$3 \times 2\frac{1}{2}$	2.06	7.0	1.08	0.89	0.60	0.59	0.72	0.66	0.71
34T	$3 \times 2\frac{1}{2}$	2.38	8.0	1.32	0.91	0.78	0.61	0.74	0.62	0.80
35T 36T	$\begin{array}{ccc} 3 & \times 3\frac{1}{2} \\ 3 & \times 3\frac{1}{2} \end{array}$	2.46	8.3	2.82	0.89	1.17	0.59	1.07	0.60	1.08
		2.81	9.5	3.19	1.04	1.33	0.69	1.07	0.61	1.10
28T 29T	$2\frac{3}{4} \times 1\frac{3}{4}$	1.96	6.6	0.56	0.60	0.50	0.44	0.54	0.56	0.64
25T	$2\frac{3}{4} \times 2$ $2\frac{1}{2} \times 1\frac{1}{4}$	2.14 0.97	7.2 3.3	0.82	0.61 0.33	0.66	$0.44 \\ 0.26$	$0.62 \\ 0.32$	0.54 0.58	0.75 0.31
26T	$2\frac{1}{2} \times 2\frac{1}{4}$	1.68	5.7	1.16	0.33	0.60	0.20	0.83	0.55	0.83
27 T	$\frac{1}{2\frac{1}{2}} \times 3$	1.76	6.0	1.48	0.44	0.71	0.35	0.92	0.50	0.93
24T	$2\frac{1}{4} \times \frac{9}{16}$	0.66	2.2	0.01	0.24	0.03	0.21	0.14	0.60	0.17
20 T	2 × 3/16	0.60	2.0	0.01	0.17	0.03	0.17	0.14	0.53	0.17
22 T	$2 \times 1_{16}^{16}$	0.62	2.0	0.04	0.16	0.05	0.16	0.24	0.51	0.23
21 T	2×1	0.72	2.5	0.05	0.17	0.07	0.17	0.26	0.49	0.27
23 T	$2 \times 1\frac{1}{2}$	0.91	3.0	0.16	0.17	0.15	0.17	0.42	0.44	0.45
17T	$1\frac{3}{4} \times 1\frac{1}{16}$	0.56	1.9	0.05	0.11	0.06	0.13	0.30	0.45	0.24
18T	$1\frac{3}{4} \times 1\frac{1}{4}$	1.04	3.5	0.12	0.21	0.14	0.24	0.35	0.45	0.40
15T 12T	$1\frac{1}{2} \times \frac{15}{16}$	0.41	1.4	0.02	0.07	0.03	0.09	0.22	0.41	0.21
121	$1\frac{1}{4} \times \frac{15}{16}$	0.35	1.2	0.02	0.03	0.03	0.05	0.24	0.30	0.22

I.	II.	111.	IV.	v.	VI.	VII.
Section number.	Size, in inches.	Thick-	Area, in square	Weight per foot, in	Moments	of inertia.
	110000	110001	inches.	pounds.	Axis AB.	Axis EF.
880A	8 × 8	1/2	7.75	26.4	48.47	19.60
888A	8½ × 8¼	1	15.29	52.8	94.14	39.01
660A 669A	6 × 6 6½ × 6½	3/8 15 16	4.36 10.65	14.8 35.9	15.37 36.69	6.20 15.48
550A 559A	$\begin{array}{c} 5 \times 5 \\ 5\frac{1}{4} \times 5\frac{1}{4} \end{array}$	3/8 15 16	3.61 8.77	12.3 29.4	8.73 20.72	3.54 9.09
440A	$\begin{array}{c} 4 \times 4 \\ 4\frac{1}{4} \times 4\frac{1}{4} \end{array}$	1 ⁵ 6	2.40	8.2	3.69	1.50
447A		3⁄4	5.69	18.6	8.71	3.82
350A	$3\frac{1}{2} \times 3\frac{1}{2}$	5/8	2.09	7.1	2.45	0.99
355A	$3\frac{1}{8} \times 3\frac{1}{8}$		4.06	13.7	4.60	1.97
330A	3×3	1/4	1.44	4.9	1.25	0.50
336A	$3\frac{3}{16} \times 3\frac{3}{16}$	5/8	3.51	11.5	3.01	1.32
275A	$\begin{array}{c} 2\frac{3}{4} \times 2\frac{3}{4} \\ 3 \times 3 \end{array}$	1/4	1.31	4.5	0.95	0.39
279A		1/2	2.70	8.6	2.11	0.90
250A	$\begin{array}{c} 2\frac{1}{2} \times 2\frac{1}{2} \\ 2\frac{5}{8} \times 2\frac{5}{8} \end{array}$	16	0.90	3.1	0.54	0.22
255A		1/2	2.33	7.8	1.33	0.59
225A 228A	$\begin{array}{c} 2\frac{1}{4} \times 2\frac{1}{4} \\ 2\frac{7}{16} \times 2\frac{7}{16} \end{array}$	3/8	0.81 1.66	2.7 5.4	0.39 0.85	0.16 0.37
220A 223A	$\begin{array}{c} 2 \times 2 \\ 2\frac{3}{16} \times 2\frac{3}{16} \end{array}$	3/8	0.71 1.47	2.5 4.8	0.27 0.61	0.11 0.26 ·
175A	$1\frac{3}{4} \times 1\frac{3}{4}$	3/8	0.62	2.1	0.18	0.08
178A	$1\frac{15}{16} \times 1\frac{15}{16}$		1.28	4.1	0.39	0.18
150A	$1\frac{1}{2} \times 1\frac{1}{2}$	1/8	0.36	1.2	0.08	0.03
154A	$1\frac{3}{4} \times 1\frac{3}{4}$	3/8	1.14	3.5	0.29	0.13
125A	$1\frac{1}{4} \times 1\frac{1}{4}$	1/8	0.30	1.0	0.05	0.02
127A	$1\frac{3}{8} \times 1\frac{3}{8}$	1/4	0.62	2.0	0.10	0.04
110A	$\begin{array}{c} 1 \times 1 \\ 1\frac{1}{8} \times 1\frac{1}{8} \end{array}$	1/8	0.23	0.8	0.02	0.01
112A		1/4	0.49	1.5	0.05	0.02

	VIII.	IX.	X.	XI.	I.
	Radius of	gyration.	Resistance.	Distance from base to neutral axis.	Section number.
	Axis AB.	Axis EF.	Axis AB.	d.	
	2.50	1.59	8.34	2.19	880A
	2.48	1.60	16.18	2.43	888A
	1.88	1.19	3.53	1.64	660A
	1.86	1.21	8.43	1.90	669A
	1.56	0.99	2.42	1.39	550A
	1.54	1.02	5.76	1.65	559A
	1.24	0.79	1.28	1.12	440A
	1.24	0.82	3.10	1.34	447A
	1.08	0.69	0.98	0.99	350A
	1.06	0.70	1.84	1.13	355A
	0.93	0.59	0.58	0.84	330A
	0.93	0.61	1.39	1.02	336A
	0.85	0.55	0.48	0.78	275A
	0.88	0.58	1.02	0.93	279A
	0.77	0.49	0.30	0.70	250A
	0.76	0.50	0.75	0.84	255A
	0.69	0.44	0.24	0.63	225A
	0.72	0.47	0.50	0.75	228A
	0.62	0.39	0.19	0.58	220A
	0.64	0.42	0.40	0.68	223A
	0.54	0.36	0.15	0.51	175A
	0.55	0.38	0.30	0.63	178A
	0.47	0.28	0.07	0.42	150A
	0.50	0.34	0.25	0.57	154A
	0.41	0.26	0.06	0.35	125A
	0.40	0.25	0.11	0.43	127A
-	0.29	0.21	0.03	0.30	110A
	0.32	0.20	0.07	0.37	112A

I.	II.	111.	IV.	v.	VI.	VII.	VIII.
Section	Size, in	Thick-	Area, in square	Weight per foot, in	Mome	ents of in	ertia.
number.	iuches.	ness.	inches.	pounds.	Axis AB.	Axis CD.	Axis EF.
860A	8 × 6	1/2	6.75	23.0	44.38	21.73	12.04
868A	$8\frac{1}{4} \times 6\frac{1}{4}$.		13.29	45.6	85.34	41.67	24.76
730A	$7 \times 3\frac{1}{2}$	1/2	5.00	17.0	25.29	4.37	3.64
738A	$7\frac{1}{4} \times 3\frac{3}{4}$	1	9.79	32.5	48.59	8.47	7.47
650A	$6\frac{1}{2} \times 4$	3/8	3.80	12.9	16.83	5.03	3.29
659A	$6\frac{7}{8} \times 4\frac{3}{8}$	15 16	9.48	31.9	42.40	12.91	9.28
640A	6 × 4	3/8	3.61	12.2	13.48	4.91	3.04
649A	$6\frac{3}{8} \times 4\frac{3}{8}$	15 16	9.01	29.4	33.95	12.47	8.57
630A	6 × 3½	3/8	3.42	11.6	12.82	3.32	2.39
639A	$6\frac{3}{8} \times \frac{37}{8}$	15 16	8.54	28.6	32.56	7.74	6.50
500A	$5\frac{1}{2} \times 3\frac{1}{2}$	3/8	3.23	11.0	10.15	3.28	2.14
504A	$5\frac{3}{4} \times 3\frac{3}{4}$	5/8	5.47	17.9	17.62	5.85	3.82
540A	5 × 4	3/8	3.23	11.0	8.13	4.65	2.50
546A	$5_{16}^{3} \times 4_{16}^{3}$	3/4	6.35	21.3	15.65	8.74	4.95
510A	5 × 3½	5 16	2.56	8.7	6.58	2.71	1.65
517A	$5\frac{1}{4} \times 3\frac{3}{4}$	3/4	6.07	20.0	15.51	6.41	4.17
530A	5 × 3	5 16	2.40	8.2	6.27	1.75	1.20
537A	$5\frac{1}{4} \times 3\frac{1}{4}$	3/4	5.69	18.7	14.75	4.18	3.05
450A	4½×3	5 16	2,25	7.7	4.72	1.72	1.10
457A	$4\frac{3}{4} \times 3\frac{1}{4}$	3/4	5.32	17.4	11.04	4.07	2.96
410A	4 × 3½	5 16	2.25	7.7	3.57	2.56	1.18
417A	$4\frac{1}{4} \times 3\frac{3}{4}$	3/4	5.32	17.4	8.42	6.06	3.08

IX.	x.	XI.	XII.	XIII.	XIV.	xv.	I.	
Radius of gyration.			Resistance.		Distance from base to neutral axis.		Section	
Axis AB.	Axis CD.	Axis EF.	Axis AB.	Axis CD.	d.	l.	number.	
2.56	1.79	1.34	8.03	4.80	2.47	1.47	860A	
2.53	1.77	1.37	15.43	9.20	2.72	1.72	868A	
2.25	0.93	0.85	5.66	1.61	2,53	0.78	730A	
2.23	0.93	0.87	10.85	3.10	2.77	1.02	738A	
2.10	1.15	0.93	3.87	1.62	2.15	0.90	650A	
2.12	1.17	0.99	9.58	4.07	2.45	1.20	659A	
1.93	1.17	0.92	3.32	1.60	1.94	0.94	640A	
1.94	1.18	0.98	8.21	3.98	2.24	1.24	649A	
	-							
1.94	0.99	0.84	3.24	1.23	2.04	0.79	630A	
1.95	0.95	0.87	8.05	2.77	2.33	1.08	639A	
1.77	1.01	0.81	2.76	1.22	1.82	0.82	500A	
1.79	1.03	0.84	4.66	2.10	1.97	0.97	504A	
1.59	1.20	0.88	2.34	1.57	1.53	1.03	540A	
1.57	1.17	0.88	4.50	2.93	1.71	1.21	546A	
1.60	1.03	0.80	1.93	1.00	1.50	0,84	510A	
1.60	1.03	0.83	4.51	1.02 2.38	1.59 1.81	1.06	510A 517A	
2100	1.00	0.00	1.01	2.00	1.01	2.00	02.12	
1.62	0.85	0.71	1.89	0.75	1.68	0.68	530A	
1.61	0.86	0.73	4.40	1.78	1.90	0.90	537A	
1.45	0.87	0.70	1.55	0.75	1.46	0.71	450A	
1.44	0.87	0.75	3.61	1.76	1.69	0.94	457A	
1.26	1.07	0.72	1.27	1.00	1.18	0.93	410A	
1.26	1.07	0.76	2.95	2.33	1.40	1.15	417A	

I.	II.	III.	· IV.	v.	VI.	VII.	VIII.
Section number.	Size, in	Thick- ness.	Area, in square inches.	Weight per foot, in pounds.	Moments of inertia.		
	inches.				Axis AB.	Axis CD.	Axis EF.
430A	4×3	5 16	2.09	7.1	3.38	1.64	0.93
435A	$4\frac{1}{8} \times 3\frac{1}{8}$	5/8	4.06	13.8	6.36	2.59	1.80
300A	$3\frac{1}{2} \times 3$	5 16	1.93	6.6	2.33	1.59	0.80
305A	$3^{13}_{16} \times 3^{5}_{16}$	5/8	3.98	12.9	5.12	3.54	1.88
310A	$3\frac{1}{2} \times 2\frac{1}{2}$	1/4	1.44	4.9	1.81	0.78	0.45
314A	$3\frac{3}{4} \times 2\frac{3}{4}$	1/2	2.95	9.4	3.93	1.76	1.01
316A	$3\frac{1}{2} \times 2$	1/4	1.31	4.5	1.66	0.41	0.30
318A	$35/8 \times 21/8$	3/8	1.99	6.6	2.55	-0.65	0.45
325A	$3 \times 2\frac{1}{2}$	1/4	1.31	4.5	1.15	0.73	0.41
329A	$3\frac{1}{4} \times 2\frac{3}{4}$	1/2	2.70	8.7	2.64	1.71	0.76
320A	3×2	1/4	1.19	4.1	1.09	0.40	0.24
324A	$3\frac{1}{4} \times 2\frac{1}{4}$	1/2	2.45	7.9	2.41	0.92	0.57
200A	$2\frac{1}{2} \times 2$	3 16	0.81	2.7	0.51	0.29	0.13
205A	$2\frac{13}{16} \times 2\frac{5}{16}$	1/2	2.26	7.0	1.64	0.97	0.44
206A	$2\frac{1}{4} \times 1\frac{1}{2}$	3 16	0.67	2.3	0.35	0.12	0.08
209A	$2\frac{7}{16} \times 1\frac{1}{16}$	3/8	1.38	4.4	0.73	0.29	0.18
215A	2 × 1½	3 16	0.62	2.1	0.25	0.12	0.07
218A	$2^{3}_{16} \times 1^{11}_{16}$	3/8	1.28	4.3	0.52	0.29	0.15
210A	2 × 11/4	3 16	0.57	1.9	0.23	0.07	0.05
213A	$2^{3}_{16} \times 1^{7}_{16}$	3/8	1.19	3.9	0.50	0.17	0.12

Elements of Pencoyd Angles.

IX.	X.	XI.	XII.	XIII.	XIV.	xv.	I.	
Radi	us of gyr	ation.	Resis	tance.		Distance from base to neutral axis.		
Axis AB.	Axis CD.	Axis EF.	Axis AB.	Axis CD.	d.	1.	number.	
1.27 1.25	0.89 0.80	0.67 0.67	1.23 2.33	0.73 1.16	1.26 1.40	0.76 0.90	430A 435A	
1.10 1.13	0.91	0.64	0.95	0.73	1.06	0.81 1.00	300A 305A	
1.12	0.93	0.69	0.76	0.41	1.25	0.61	310A	
1.15	0.77	0.59	1.58 0.72	0.88	1.26	0.76	314A 316A	
1.13	0.57	0.48	1.09	0.41	1.28	0.53	318A	
0.94	0.75	0.56 0.53	0.55 1.20	0.40 0.88	0.92 1.05	0.67	325A 329A	
0.96 0.99	0.58 0.61	0.45 0.48	0.54 1.14	0.26 0.57	0.99 1.14	0.49 0.64	320A 324A	
0.79 0.85	0.60 0.66	0.40 0.44	0.29 0.88	0.19 0.60	0.76 0.94	0.51 0.69	200A 205A	
0.72 0.73	0.42	0.35	0.23	0.11 0.24	0.74 0.86	0.37 0.48	206A 209A	
0.63	0.44	0.34	0.18	0.11	0.64	0.39	215A	
0.64	0.48	0.34	0.36	0.24	0.76	0.50	218A 210A	
0.65	0.38	0.32	0.36	0.17	0.80	0.42	213A	

Size, in	Thick-	Weight per foot, in	d.	Radius of gyration.				
inches.	ness.	pounds.	u.	r ₀ .	r_1 .	r_2 .	r ₃ .	
8 × 8 8½ × 8¼	1/2	26.4 52.8	2.19 2.43	2.50 2.48	3.32 3.47	3.45 3.61	3.58 3.74	
6×6 $6\frac{1}{4} \times 6\frac{1}{4}$	3/8 15 16	14.8 35.9	1.64 1.90	1.88 1.86	2.49 2.66	2.62 2.80	2.76 2.94	
$\begin{array}{c} 5 \times 5 \\ 5\frac{1}{4} \times 5\frac{1}{4} \end{array}$	3/8 15 16	12.3 29.4	1.39 1.65	1.56 1.54	2.09 2.26	2.22 2.40	2.35 2.54	
4 × 4 4½ × 4½	5 16 3/4	8.2 * 18.6	1.12 1.34	1.24 1.24	1.67 1.82	1.80 1.97	1.94 2.12	
$3\frac{1}{2} \times 3\frac{1}{2} \\ 3\frac{5}{8} \times 3\frac{5}{8}$	5 16 5/8	7.1 13.7	0.99 1.13	1.08 1.06	1.46 1.55	1.60 1.69	1.74 1.84	
$3 \times 3 \\ 3_{16} \times 3_{16}$	1/4 5/8	4.9 11.5	0.84 1.02	0.93 0.93	1.25 1.38	1.39 1.52	1.53 1.68	
$2\frac{3}{4} \times 2\frac{3}{4}$ 3×3	1/4 1/2	4.5 8.6	0.78 0.93	0.85 0.88	1.15 1.28	1.29 1.42	1.43 1.57	
$2\frac{1}{2} \times 2\frac{1}{2}$ $2\frac{5}{8} \times 2\frac{5}{8}$	$\begin{array}{c} \frac{3}{16} \\ \frac{1}{2} \end{array}$	3.1 7.8	0.70 0.84	0.77 0.76	1.04 1.13	1.17 1.28	1.32 1.43	
$\begin{array}{c} 2\frac{1}{4} \times 2\frac{1}{4} \\ 2\frac{7}{16} \times 2\frac{7}{16} \end{array}$	3 16 3/8	2.7 5.4	0.63 0.75	0.69 0.72	0.93 1.04	1.07 1.18	1.21 1.34	
$\begin{array}{c} 2 \times 2 \\ 2_{16}^{3} \times 2_{16}^{3} \end{array}$	3/8	2.5 4.8	0.58 0.68	0.62 0.64	0.85 0.93	0.99 1.08	1.14 1.23	
$1\frac{3}{4} \times 1\frac{3}{4}$ $1\frac{15}{16} \times 1\frac{15}{16}$	3 16 3/8	2.1 4.1	0.51 0.63	0.54 0.55	0.74 0.84	0.88 0.98	1.04 1.14	
$1\frac{1}{2} \times 1\frac{1}{2}$ $1\frac{3}{4} \times 1\frac{3}{4}$	1/8 3/8	1.2 3.5	0.42 0.57	0.47 0.50	0.63 0.76	0.77 0.91	0.92 1.07	
$1\frac{1}{4} \times 1\frac{1}{4}$ $1\frac{3}{8} \times 1\frac{3}{8}$	1/8 1/4	1.0 2.0	0.35 0.43	0.41 0.40	0.54 0.59	0.68 0.73	0.83 0.90	
1 × 1 1½ × 1½	½8 1/4	0.8 1.5	0.30 0.37	0.29 0.32	0.42 0.49	0.57 0.64	0.73 0.81	

 r_1 , r_2 , and r_3 will also be radii of gyration for star columns.

Size, in	Thick-	Weight per foot, in	r d.	Radius of gyration.				
inches.	ness.	pounds.		r_0 .	r_1 .	r_2 ,	r_3 .	
8 × 6	1/2	23.0	2.47	2.56	2.32	2.44	2.57	
$8\frac{1}{4} \times 6\frac{1}{4}$	1	45.6	2.72	2.53	2.47	2.60	2.74	
$7 \times 3\frac{1}{2}$	1/2	17.0	2.53	2.25	1.21	1.34	1.48	
$7\frac{1}{4} \times 3\frac{3}{4}$	1	32.5	2.77	2.23	1.38	1.51	1.68	
$6\frac{1}{2} \times 4$	3/8	12.9	2.15	2.10	1.46	1.58	1.72	
$6\frac{7}{8} \times 4\frac{3}{8}$	15 16	31.9	2.45	2.12	1.68	1.81	1.96	
6 × 4	3/8	12.2	1.94	1.93	1.50	1.62	1.76	
$6\frac{3}{8} \times 4\frac{3}{8}$	15 16	29.4	2.24	1.94	1.71	1.85	2.00	
6 × 3½	3/8	11.6	2.04	1.94	1.27	1.39	1.53	
$6\frac{3}{8} \times \frac{3}{8}$	/8 15 16	28.6	2.33	1.95	1.44	1.58	1.74	
F1 / > / 91 /	97	77.0	4.00	1	1.00	4.40	1.50	
$5\frac{1}{2} \times 3\frac{1}{2}$	3/8	11.0	1.82	1.77	1.30	1.43	1.56	
$5\frac{3}{4} \times 3\frac{3}{4}$	5/8	17.9	1.97	1.79	1.41	1.55	1.69	
5×4	3/8	11.0	1.53	1.59	1.58	1.71	1.85	
$5\frac{3}{16} \times 4\frac{3}{16}$	3/4	21.3	1.71	1.57	1.68	1.82	1.97	
5 × 3½	5 16	8.7	1.59	1.60	1.33	1.45	1.59	
$5\frac{1}{4} \times 3\frac{3}{4}$	3/4	20.0	1.81	1.60	1.48	1.62	1.77	
5 × 3	5 16	8.2	1.68	1.62	1.09	1.21	1.35	
5½ × 3¼	3/4	18.7	1.90	1.61	1.24	1.39	1.54	
41/ >/ 2	5	PT PT	1.40	1.45	1.10	1.05	1.00	
$4\frac{1}{2} \times 3$	5 16 3/	7.7 17.4	1.46	1.45	1.12	1.25	1.39	
$4\frac{3}{4} \times 3\frac{1}{4}$	3/4	17.4	1.69	1.44	1.28	1.42	1.58	

Size, in	Thick-	Weight per foot, in pounds.	d.	Radius of gyration.				
inches.	ness.			r ₍₎ .	r_1 .	r_2 .	r ₃ .	
4 × 3½	5 16	7.7	1.18	1.26	1.42	1.55	1.69	
$4\frac{1}{4} \times 3\frac{3}{4}$	3/4	17.4	1.40	1.26	1.57	1.71	1.86	
4×3	5 16	7.1	1.26	1.27	1.17	1.30	1.44	
$4\frac{1}{8} \times 3\frac{1}{8}$	5/8	13.8	1.40	1.25	1.20	1.35	1.50	
$3\frac{1}{2} \times 3$	5 16	6.6	1.06	1.10	1.22	1.35	1.49	
$3_{16}^{13} \times 3_{16}^{5}$	5/8	12.9	1.25	1.13	1.38	1.52	1.67	
$3\frac{1}{2} \times 2\frac{1}{2}$	1/4	4.9	1.11	1.12	0.97	1.09	1.23	
$3\frac{3}{4} \times 2\frac{3}{4}$	1/2	9.4	1.26	1.15	1.08	1.22	1.37	
$3\frac{1}{2}\times 2$	1/4	4.5	1.21	1.13	0.72	0.86	1.00	
$35/8 \times 21/8$	3/8	6.6	1.28	1.13	0.78	0.92	1.07	
$3 \times 2\frac{1}{2}$	1/4	4.5	0.92	0.94	1.00	1.13	1.29	
$3\frac{1}{4} \times 2\frac{3}{4}$	1/2	8.7	1.05	0.99	1.13	1.27	1.42	
3×2	1/4	4.1	0.99	0.96	0.76	0.89	1.04	
$3\frac{1}{4} \times 2\frac{1}{4}$	1/2	7.9	1.14	0.99	0.88	1.03	1.18	
$2\frac{1}{2} \times 2$	3 16	2.7	0.76	0.79	0.79	0.92	1.07	
$2^{13}_{16} \times 2^{5}_{16}$	1/2	7.0	0.94	0.85	0.95	1.09	1.24	
$2\frac{1}{4} \times 1\frac{1}{2}$	3 16	2.3	0.74	0.72	0.56	0.70	0.85	
$2\frac{7}{16} \times 1\frac{11}{16}$	3/8	4.4	0.86	0.73	0.66	0.81	0.97	
2 × 1½	3 16	2.1	0.64	0.63	0.59	0.73	0.88	
$2\frac{3}{16} \times 1\frac{1}{16}$	3/8	4.3	0.76	0.64	0.69	0.84	1.00	
2 × 1½	3 16	1.9	0.69	0.64	0.47	0.61	0.77	
$2^{3}_{16} \times 1^{7}_{16}$	3/8	3.9	0.80	0.65	0.57	0.72	0.88	

Size, in	Thick-	Weight per foot, in	d.		Radius of	gyration	١.
inches.	ness.	pounds.		r_0 .	r_1 .	r_2 .	r ₃ .
8 × 6	1/2	23.0	1.47	1.79	3.56	3.69	3.83
$8\frac{1}{4} \times 6\frac{1}{4}$	1	45.6	1.72	1.77	3.71	3.85	4.00
7 × 3½	1/2	17.0	0.78	0.93	3,38	3.53	3.67
$7\frac{1}{4} \times 3\frac{3}{4}$	1	32.5	1.02	0.93	3.56	3.70	3.85
27 () , (0.4	40.0					0.00
$6\frac{1}{2} \times 4$	3/8	12.9 31.9	0.90 1.20	1.15 1.17	3.00	3.14 3.38	3.28 3.53
$6\frac{7}{8} \times 4\frac{3}{8}$	15 16	51.9	1.20	1.17	5.24	5.58	5.95
6×4	3/8	12.2	0.94	1.17	2.74	2.87	3.01
$6\frac{3}{8} \times 4\frac{3}{8}$	15 16	29.4	1.24	1.18	2.96	3.11	3.26
6 × 3½	3/	11.6	0.79	0.99	2.81	2.95	3.10
$6\frac{5}{8} \times 3\frac{7}{8}$	3/8 15 16	28.6	1.08	0.99	3.04	3.18	3.33
0/8 / 0/8	16	20.0	1.00	0.00	0.01	0.10	0.00
$5\frac{1}{2} \times 3\frac{1}{2}$	3/8	11.0	0.82	1.01	2.54	2.68	2.82
$5\frac{3}{4} \times 3\frac{3}{4}$	5/8	17.9	0.97	1.03	2.66	2.80	2.95
5 × 4	3/8	11.0	1.03	1.20	2.21	2.34	2.48
$5\frac{3}{16} imes 4\frac{3}{16}$	3/4	21.3	1.21	1.17	2.32	2.46	2.61
$5 \times 3\frac{1}{2}$	5 16	8.7	0.84	1.03	2.25	2.39	2.53
$5\frac{1}{4} \times 3\frac{3}{4}$	3/4	20.0	1.06	1.03	2.41	2.56	2.71
5 × 3	5 16	8.2	0.68	0.85	2.33	2.47	2.62
$5\frac{1}{4} \times 3\frac{1}{4}$	3/4	18.7	0.90	0.86	2.49	2.64	2.79
41/ \/ 9	5	7.7	0.71	0.87	2.06	2.19	2.34
$4\frac{1}{2} \times 3$ $4\frac{3}{4} \times 3\frac{1}{4}$	5 16 3/	I.				1	
*/4 / 0/4	/4	11.2	0.01	0.07	2.22	2.01	2.02
$\frac{47_2 \times 3}{43_4 \times 31_4}$	3/4	17.4	0.71	0.87	2.06	2.19	2.52

Size, in	Thick-	Weight per foot, in	d.	Radius of gyration.				
inches.	ness.	pounds.	a.	r_0 .	r_1 .	r_2 .	r ₃ .	
$4 \times 3\frac{1}{2}$. 5	7.7	0.93	1.07	1.73	1.86	2.00	
$4\frac{1}{4} \times 3\frac{3}{4}$	3/4	17.4	1.15	1.07	1.88	2.03	2.18	
4×3	5 16	7.1	0.76	0.89	1.79	1.92	2.07	
$4\frac{1}{8} \times 3\frac{1}{8}$	5/8	13.8	0.90	0.80	1.88	2.02	2.17	
$3\frac{1}{2} \times 3$	5 16	6.6	0.81	0.91	1.53	1.66	1.81	
$3\frac{13}{16} \times 3\frac{5}{16}$	5/8	12.9	1.00	0.95	1.68	1.82	1.98	
$3\frac{1}{2} \times 2\frac{1}{2}$	1/4	4.9	0.61	0.74	1.58	1.71	1.86	
$3\frac{3}{4} \times 2\frac{3}{4}$	1/2	9.4	0.76	0.77	1.71	1.85	2.00	
$3\frac{1}{6} \times 2$	1/4	4.5	0.46	0.56	1.65	1.80	1.95	
$35/8 \times 21/8$	3/8	6.6	0.53	0.57	1.71	1.85	2.00	
$3 \times 2\frac{1}{2}$	1/4	4.5	0.67	0.75	1.31	1.45	1.60	
$3\frac{1}{4} \times 2\frac{3}{4}$	1/2	8.7	0.80	0.80	1.44	1.58	1.73	
3×2	1/4	4.1	0.49	0.58	1.38	1.52	1.67	
$3\frac{1}{4} \times 2\frac{1}{4}$	1/2	7.9	0.64	0.61	1.51	1.66	1.81	
$2\frac{1}{2} \times 2$	3	2.7	0.51	0.60	1.10	1.23	1.38	
$2^{13}_{16} \times 2^{5}_{16}$	1/2	7.0	0.69	0.66	1.27	1.41	1.56	
$2\frac{1}{4} \times 1\frac{1}{2}$	3 16	2.3	0.37	0.42	1.03	1.17-	1.33	
$2\frac{7}{16} imes 1\frac{11}{16}$	3/8	4.4	0.48	0.46	1.13	1.28	1.43	
2 × 1½	3_ 16	2.1	0.39	0.44	0.90	1.04	1.19	
$2_{16}^{3} imes 1_{16}^{11}$	3/8	4.3	0.50	0.48	0.99	1.14	1.30	
2 × 1¼	3 16	1.9	0.31	0.35	0.94	1.09	1.24	
$3_{16}^3 \times 1_{16}^7$	3/8	3.9	0.42	0.38	1.03	1.18	1.34	
					1			

Safe Loads, in Tons of 2000 Pounds, for Hollow Cylindrical Cast-iron Columns.

Passaic Rolling Mill Company. Square ends. Factor of safety of 8.

											-f	# H
iame	s of			Len	gth of	colun	an, in	feet.			ection	er foc ans, i
Outside diame- ter, in inches.	Thickness of metal, in inches.	8	10	12	14	16	18	20	22	24	Area of section, in square inches.	Weight per foot of columns, in pounds.
6	13/4	47 60	41 52	36 46	31 40	27 35	24 30	21 26		•••	12.4 15.7	39 49
7 7	1 3/4	60 76	54	48 62	43 55	38 49	34 43	30 38	27 34	24 30	14.7 18.9	46 60
8	3/4	72	67	61	55	50	45	40	36	33	17.1	53
8	1	93	86	78	71	64	58	52	47	42	22.0	69
8	1 ¹ / ₄	112	104	94	86	77	69	62	56	51	26.5	83
9 9 9	$ \begin{array}{c} 3/4 \\ 1 \\ 1^{1/4} \\ 1^{1/2} \end{array} $	85 110 133 155	80 103 125 145	74 95 115 134	68 88 106 123	62 80 97 113	57 73 89 103	52 67 81 94	47 61 73 85	43 55 67 78	19.4 25.1 30.4 35.3	61 78 95 110
10	$ \begin{array}{c} 1 \\ 1^{1}/4 \\ 1^{1/2} \\ 1^{3/4} \end{array} $	127	120	112	105	97	89	82	76	69	28.3	88
10		154	146	136	127	118	109	100	92	84	34.4	107
10		180	170	159	148	137	127	117	107	98	40.1	125
10		203	192	180	168	155	143	132	121	111	45.4	142
11	$ \begin{array}{c} 1 \\ 1^{1/4} \\ 1^{1/2} \\ 1^{3/4} \\ 2 \end{array} $	144	137	129	122	114	106	100	91	85	31.4	98
11		175	167	158	148	139	129	122	112	103	38.3	119
11		204	195	184	173	161	151	143	130	121	44.8	140
11		232	221	209	197	184	172	162	148	137	50.9	159
11		258	246	233	219	205	191	181	164	152	56.6	176
12 12 12 12 12 12	$ \begin{array}{c} 1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{array} $	160 196 229 261 291	154 188 220 251 279	147 180 210 239 266	139 170 199 226 252	131 160 187 213 238	123 150 176 201 224	115 141 165 188 210	108 132 154 176 196	101 123 144 164 183	34.6 42.2 49.5 56.4 62.8	108 131 154 176 196
13	$ \begin{array}{c} 1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{array} $	177	170	163	156	148	140	132	124	117	37.7	118
13		216	209	200	191	181	172	162	152	143	46.1	144
13		254	245	235	224	213	201	190	179	168	54.2	169
13		289	280	268	256	243	229	217	204	192	61.9	193
13		324	312	300	286	272	257	242	228	214	69.1	216
14	$ \begin{array}{c} 1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{array} $	193	187	180	173	165	157	149	141	134	40.8	128
14		237	229	221	212	203	193	183	173	164	50.1	156
14		278	270	260	250	239	227	215	204	193	58.9	184
14		318	308	297	285	273	260	246	233	220	67.4	210
14		356	345	333	320	305	291	276	261	247	75.4	235
15	$ \begin{array}{c} 1 \\ 1^{1} 4 \\ 1^{1} 2 \\ 1^{3} 4 \\ 2 \end{array} $	209	204	197	190	183	175	167	159	151	44.0	137
15		257	250	242	233	224	214	205	195	185	54.0	168
15		303	295	285	275	264	253	241	229	218	63.6	199
15		347	337	327	315	302	289	276	263	249	72.9	227
15		389	378	366	353	339	324	309	294	280	81.7	255
16	$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \\ 2\frac{1}{4} \end{array} $	277	270	262	254	245	235	225	216	206	57.8	180
16		327	319	311	300	290	278	267	255	244	68.4	214
16		375	366	356	344	332	319	306	292	279	78.4	245
16		421	411	400	387	373	358	343	328	313	88.0	275
16		465	454	441	427	412	396	379	363	346	97.2	304

Safe Loads, in Tons of 2000 Pounds, for Hollow Square Cast=iron Columns.

Passaic Rolling Mill Company. Square ends. Factor of safety of 8.

-												
utside diame- ter, in inches.	ss of in			Len	gth of	colun	nn, in	feet.			section,	Veight per foot of columns, in pounds.
Outside diameter, in inches	Thickness of metal, in inches.	8	10	12	14	16	18	20	22	24	Area of section, in square inches.	Weight per foot of columns, in pounds.
6	1 3/4	64 81	57 73	51 65	45 58	40 51	36 45	32 40			15.8 20.0	49 63
7 7	1 3/4	$\begin{array}{c} 80 \\ 102 \end{array}$	73 94	67 86	61 78	55 70	50 63	45 57			18.8 24.0	59 75
8	1	96	90	83	77	71	65	59	54	49	21.8	68
8	1	123	116	107	99	91	83	76	69	63	28.0	88
8	1½	149	139	129	119	110	100	92	84	76	33.8	106
9	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2$	112	106	100	93	87	80	74	69	63	24.8	77
9		144	137	129	121	112	104	96	89	82	32.0	100
9		175	166	156	146	136	126	116	107	99	38.8	121
9		203	193	182	170	158	146	135	125	115	45.0	141
10	$\begin{array}{c} 1 \\ 11/4 \\ 11/2 \\ 13/4 \end{array}$	166	159	151	142	134	125	117	109	101	36.0	113
10		201	193	183	173	163	152	142	132	123	43.8	137
10		235	225	214	202	189	177	166	154	143	51.0	159
10		266	254	242	228	215	201	188	175	162	57.8	181
11	$\begin{array}{c c} 1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{array}$	187	180	172	164	156	147	138	130	122	40.0	125
11		227	219	210	200	190	179	169	158	148	48.8	152
11		266	256	246	234	222	209	197	185	174	57.0	178
11		302	291	279	266	252	238	224	210	197	64.8	202
11		336	324	310	295	280	264	249	234	219	72.0	225
12	$ \begin{array}{c c} 1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{array} $	208	201	194	186	177	169	160	151	143	44.0	138
12		254	246	237	227	217	206	196	185	174	53.8	168
12		297	288	278	266	254	242	229	217	205	63.0	197
12		338	328	316	303	289	275	261	247	233	71.8	224
12		377	366	352	338	323	307	291	275	260	80.0	250
13	$\begin{array}{c c} 1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{array}$	228	222	215	208	199	191	182	173	164	48.0	150
13		279	272	263	254	244	233	223	212	201	58.8	184
13		328	319	309	298	286	274	261	249	236	69.0	216
13		375	365	353	341	327	313	298	284	270	78.8	246
13		419	407	394	380	365	350	334	317	301	88.0	275
14	$ \begin{array}{c c} 1 \\ 1^{1}/_{4} \\ 1^{1}/_{2} \\ 1^{3}/_{4} \\ 2 \end{array} $	249	243	236	229	221	213	204	195	186	52.0	163
14		305	298	290	281	271	261	250	239	228	63.8	199
14		359	351	341	330	319	307	294	281	268	75.0	234
14		411	401	390	378	365	351	336	322	307	85.8	268
14		460	449	437	423	408	393	376	360	344	96.0	300
15	$\begin{array}{c} 1 \\ 1^{1} 4 \\ 1^{1} 2 \\ 1^{3} 4 \\ 2 \end{array}$	270	264	258	250	243	235	226	217	208	56.0	175
15		331	324	316	308	298	288	277	266	255	68.8	215
15		390	382	373	362	351	339	327	314	301	81.0	253
15		446	437	427	415	402	388	374	359	345	92.8	289
15		501	490	479	465	451	436	420	403	386	104.0	325
16	$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \\ 2\frac{1}{4} \end{array} $	357	350	343	334	325	315	305	294	286	73.8	231
16		421	413	404	394	383	372	359	347	334	87.0	272
16		482	474	463	452	440	426	412	397	383	99.8	312
16		541	532	520	507	493	478	463	446	429	112.0	350
16		598	588	575	561	545	529	511	493	475	123.8	387

Torsion.

When a prismatic body is subjected to the action of a force tending to rotate it about its geometric axis, it opposes to such a force its resistance to torsion. This resistance consists of the moments of the fibre stresses in the cross-section of the prism, and, until the elastic limit is reached, there exists an equilibrium between the external rotating forces on the one hand, and the stress moments of the various elements of the section on the other hand; both being taken with regard to the polar axis through the centre of gravity of the section, and at right angles to it.

In computing these relations it is necessary to use the *polar* moment of inertia of the section, which may be indicated by I_p , and determined from the two moments of inertia of the section, taken at right angles to each other through the centre of gravity of the section.

If we have I_1 and I_2 to be the moments of inertia of the section of the prism under consideration, we have

prism under consideration, we have

Polar Moment of Inertia = $I_p = I_1 + I_2$.

The most usual sections for bodies under torsion are the circle, as in shafting, and the square and rectangle, which occur in various examples of machine framing. The polar moments of inertia for these are given in the annexed table.

Torsion Sections.

Number.	Section.	Polar moment of inertia, I_p .	Polar section modulus, $Z_p = rac{I_p}{a}.$
I.		$\frac{\pi}{32}d^4$	$\frac{\pi}{16}d^3$
II.	b>	<u>b</u> 4 6	$\frac{b^3}{3\sqrt{2}}$
III.		$\mathcal{V}_3 rac{b^3 h^3}{b^2 + h^2}$	$\frac{b^{2}h^{2}}{3\sqrt{b^{2}+h^{2}}}$ Approximately, $\frac{b^{2}h^{2}}{3(0.4b+0.96h)}$

We then have the following relation: Let M be the statical moment of the external forces at any section of the prism; I_n , the polar moment of inertia for that section; v, the distance of the furthest element of the section from the centre of gravity of the section; S, the shearing fibre stress of the material at the distance, a, being taken at 4 the permissible fibre stress for direct tension.

Then we have

$$M = S \frac{I_p}{v}$$
.

The relative rotation which two sections of a prism at a given distance apart make with each other is called the angle of torsion. This may be represented by 3.

If we call the distance between two sections x, we have

$$\frac{d\vartheta}{dx} = \frac{M}{I_n G},$$

in which G is the modulus of torsion for the material used, and is equal to

of the modulus of elasticity, E.

An example will make the application of the formulas clear.

Suppose a round shaft of wrought-iron, 4 inches in diameter and 48 inches long, is held at one end. A twisting force of 1000 pounds is applied at the other end, with a lever arm of 24 inches.

From the equation, $M = S \frac{I_p}{v}$, we have

$$S = \frac{v}{I_n} M.$$

For a circular section, $I_p = \frac{\pi}{20}d^4$, and we have M = 24,000, d = 4, and $v = \frac{d}{2}$, $\pi = 3.1416$.

Hence,

$$S = \frac{16d}{\pi d^4}$$
. 24,000 = 1909 pounds.

To get the angle of torsion we have, from the torsion table,

$$\vartheta = \frac{S}{G} \cdot \frac{l}{v} = \frac{1909}{11,200,000} \cdot \frac{48}{2} = 0.004,$$

which is the length of arc of torsion for a radius 1, practically equal to

the tangent of the angle; the corresponding angle being 0° 14′.

The following tables give the essential elements for all the conditions of torsion which are of probable occurrence in practice.

Torsion Table.

Torsion Table.

Remarks.	General form of Cases I., II., and III. Weakest section at B . The value of θ in III. will be reached in IV., when $l_o = \frac{l}{3}$.	The shorter portion, c_1 , is the weaker.	Weakest points at A_1 and B .
Angle of torsion, 3.	$\vartheta = \frac{PRl_o}{I_pG}$ $= \frac{S}{G} \cdot \frac{l_o}{v}$	$\vartheta = rac{PR}{I_p G} \cdot rac{cc_1}{l}$ $= rac{S}{G} \cdot rac{c_1}{l}$	$\vartheta = \frac{PRl}{I_p G}$ $= \frac{S_S}{\sqrt{G}} \cdot \frac{l}{v}$
Twisting force, P.	$P = rac{SI_p}{vR}$	$V_{ m hen} \; c_1 < c$ $P = rac{SI_p}{vR} \cdot rac{l}{c}$	$P=2rac{SI_{p}}{vR}$
Moment, M.	M = the sum of the moments within x .	In the portion c , $M = PR \frac{c_1}{l}$ In the portion c_1 , $M = PR \frac{c}{l}$	$M = PR\Big(rac{1}{2} - rac{x}{l}\Big)$
Application.	B R R R R R	B	P A A A A A A A A A A A A A A A A A A A
Num- ber.	IX.	>	VI.

Resistance to Internal Pressure.

Application.	Pressure, p.	Thickness, δ.
7 8	$p = S\left(\sqrt{1 + \frac{2\delta}{r}} - 1\right)$	$\frac{\delta}{r} = \frac{p}{S} \left(1 + \frac{p}{S} \right)$
8	$p=2Srac{\delta}{r}$	$\frac{\delta}{r} = \frac{p}{2S}$
δ	$p = S\left(\frac{\delta}{r}\right)^2$	$\frac{\delta}{r} = \sqrt{\frac{p}{S}}$
δ	$p=rac{3}{2}S\Big(rac{\delta}{r}\Big)^2$	$\frac{\delta}{r} = \sqrt{\frac{2}{3}} \sqrt{\frac{p}{S}}$
	δ δ	$p = S\left(\sqrt{1 + \frac{2\delta}{r}} - 1\right)$ $p = 2S\frac{\delta}{r}$ $p = S\left(\frac{\delta}{r}\right)^2$

 $\begin{array}{l} p = \text{internal pressure, in pounds per square inch.} \\ S = \text{fibre stress upon material.} \\ E = \text{modulus of elasticity.} \\ \delta = \text{thickness of plate, in inches.} \end{array}$

For the deflection, f, we have for Case III.,

$$\frac{f}{\delta} = \frac{5}{6} \left(\frac{r}{\delta}\right)^4 \frac{p}{E},$$

and for Case IV.,

$$\frac{f}{\delta} = \frac{1}{6} \left(\frac{r}{\delta} \right)^4 \frac{p}{E}.$$

Thick Cylinders.

When the walls of a cylinder are very thick, as in the case of a hydraulic press, the material is not all strained uniformly for a given internal stress, the greater strain taking place upon the inner portion. The resistance under such conditions may be found by the formulas of Lamé:

$$p = S \frac{(r+\delta)^2 - r^2}{(r+\delta)^2 + r^2} \quad \text{and} \quad \frac{\delta}{r} = \sqrt{\frac{S+p}{S-p}} - 1,$$

in which r is the internal radius, δ is the thickness, and S is the fibre stress. When p reaches the elastic limit of the material the inner fibres will begin to yield, regardless of the thickness of the walls.

For a discussion of the strengthening of cylinders by hooping, see Reuleaux's "Constructor."

Springs.

The deflection and supporting power of the various forms of springs exhibit very fully the laws of bending, torsion, and elasticity; and the data for various forms are given in the following tables, as prepared by Reuleaux.

The quantities in the tables are

E = modulus of elasticity = 30,000,000 for steel; $G = \text{modulus of torsion} = \frac{2}{3}E;$

S =fibre stress;

 $\vartheta = \text{angle of torsion} = \text{length of arc for radius 1}.$

The other data used in the formulas are indicated in the illustrations.

III.	II.	l I.	No.
P	d 1/2	T C C C C C C C C C C C C C C C C C C C	Form.
Compound triangular spring.	Simple triangular spring.	Rectangular spring.	Name.
$P=rac{S}{6}\cdotrac{ibh^2}{l}$ $i= ext{number of plates}.$	$P=rac{S}{6}\cdotrac{bh^2}{l}$	$P=rac{S}{6}\cdotrac{bh^2}{l}$	Supporting power.
$f=6rac{Pl^{8}}{Pbhl^{8}}$	$f=6rac{Pl^3}{Ebh^3}$	$f=6rac{Pl^{8}}{Ebh^{8}}$	Deflection.
$\frac{f}{l} = \frac{S}{E} \cdot \frac{l}{h}$	$\frac{f}{E} = \frac{S}{E} \cdot \frac{I}{h}$	$c = \frac{1}{2} $	Elasticity.
This is equivalent to a simple triangular spring, with a base = \dot{v} , as shown by the dotted lines.	Body of uniform resistance to bending. In practice the end is made somewhat thicker.	An approximation to $\frac{y}{h} = \sqrt{\frac{x}{t}}$ will be secured by making the end $= \frac{y}{2}h$.	Remarks.

Springs.

	Remarks.	$l = ext{the developed}$	reing in of the spiral. All three forms of uniform resistance. The value $\frac{f}{R}$ is the angle of rotation, θ , produced by	the load, P.
The second second	Elasticity.	$f = 2 rac{S}{B} \cdot rac{l}{h}$	$\frac{f}{R} = 2\frac{S}{E} \cdot \frac{l}{h}$	$\frac{f}{R} = 2\frac{S}{E} \cdot \frac{l}{d}$
The second name of the second na	Deflection.	$f=R \vartheta=12rac{PlR^2}{Ebh^3}$	$f=R\vartheta=12rac{PlR^2}{Ebh^3}$.	$f=R\vartheta=rac{64}{\pi}\cdotrac{Rl}{E}\cdotrac{R^2}{d^4}$
Contract of the last of the la	Supporting power.	$P=rac{S}{6}\cdotrac{bh^2}{R}$	$P=rac{S}{6}\cdotrac{b\hbar^2}{R}$	$P=rac{S\pi}{32}\cdotrac{d^3}{R}$
	Уате,	Flat spiral spring.	Flat helical spring.	Round helical spring.
The second secon	Form.			
1	.oN	'VI	.ν	ΊΛ

Cases VII. to X. are bodies of uniform resistance to torsion.	Springs of the form of VII. and VIII. may also be combined into compound forms.	In cases IX. to XII. l is always the developed length of the spring.
$\frac{f}{R} = 2\frac{S}{G} \cdot \frac{l}{d}$	$\frac{J}{R} = \frac{S}{G} \cdot \frac{l\sqrt{b^2 + h^2}}{bh}$	$rac{f}{R}=rac{2}{G}rac{S}{d}\cdotrac{l}{d}$
$f=R \vartheta=rac{32}{\pi}\cdotrac{P}{G}\cdotrac{R^{U}}{d^{4}}$	$f=R\vartheta=3rac{PR^l}{rac{b^2+h^2}{b^3h^3}}.$	$f = \frac{32}{\pi} \cdot \frac{PR^2l}{Gd^4}$
$P=S_{16}^{m{\pi}}\cdotrac{d^3}{R}$	$P=rac{S}{3R}\cdotrac{b^2h^2}{\sqrt{b^2+h^2}}$ Approximately, when $h>b$, $b>b$, b^2h	$P\equiv Srac{\pi}{16}\cdotrac{d^3}{R}$
Simple round torsion spring.	Simple flat torsion spring.	Helical spring of round wire.
a de la companya de l	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
'IIA	'IIIA	IX.

Springs.

Remarks.	It is immaterial whether the breadth of the plate is parallel, normal, or oblique to the axis.	Here, as in case XII., also, the spring is measured to the apex of the cone. The weakest point is at B.	By making a gradual reduction in the value of h, from B to the end, this may be made a form of uniform resistance.
Elasticity.	$\frac{f}{R} = \frac{S}{G}.$ $\frac{l\sqrt{b^2 + h^2}}{bh}$	$\frac{f}{R} = \frac{S}{G} \cdot \frac{l}{d}$	$\frac{f}{R} = \frac{\sqrt{S}}{\sqrt{2G}}.$ $\frac{l\sqrt{b^2 + h^2}}{bh}$
Deflection.	$f=3rac{PR^2l}{G}\cdotrac{b^2+h^2}{b^3h^3}$	Approximately, $f = \frac{16}{\pi} \cdot \frac{PR^2l}{G\mathcal{U}^4}$	Approximately, $f = \frac{2}{3} \frac{PR^2l}{G} \cdot \frac{b^2 + h^2}{b^3 h^3}$
Supporting power.	$P = \frac{S}{3R} \cdot \frac{b^2h^2}{\sqrt{b^2 + h^2}}$ Approximately, when $h > b$, $b > b$, $b > b$? $P = \frac{S}{R} \cdot \frac{b^2h^2}{3(0.4b + 0.96h)}$. $P=S \frac{\pi}{16} \cdot \frac{d^3}{R}$	$P = rac{S}{3R} \cdot rac{b^2 h^2}{\sqrt{b^2 + h^2}}$ Approximately, when $h > b$, $h > b$, $h > b$. $h > b$
Name,	Helical spring of flat wire.	Conical spring of round wire.	Flat volute spring.
Form,		R. C.	
.oN	'X	.IX	,IIX

Specifications for Structural Steel.

Condensed from the Standard Specifications of the Association of American Steel Manufacturers.

Process of Manufacture.

1. Steel shall be made by either the open hearth or Bessemer process.

Test Pieces.

2. All tests and inspections shall be made at place of manufacture prior

to shipment.

3. The tensile strength, limit of elasticity, and ductility shall be determined from a standard test piece, planed or turned parallel throughout its entire length, cut from the finished material. The elongation shall be measured on an original length of 8 inches, except when the thickness of the finished material is $\frac{5}{16}$ of an inch or less, in which case the elongation shall be measured in a length equal to sixteen times the thickness; and except in rounds of \(\frac{5}{8} \) of an inch or less in diameter, in which case the elongation shall be measured in a length equal to eight times the diameter of section tested. Two test pieces shall be taken from each heat of finished material, one for tension and one for bending.

4. Every finished piece of steel shall be stamped with the heat number. Steel for pins shall have the heat numbers stamped on the ends. Rivet

and lacing steel, and small pieces for tie plates and stiffeners, may be shipped in bundles securely wired together, with the heat number on a

metal tag attached.

Finish.

5. Finished bars must be free from injurious seams, flaws, or cracks, and have a workmanlike finish.

Chemical Properties.

6. Steel for buildings, train sheds, highway bridges, and similar structures shall not contain more than 0.10 per cent. of phosphorus. 7. Steel for railway bridges shall not contain more than 0.08 per cent.

of phosphorus.

Physical Properties.

8. Structural steel shall be of three grades: rivet steel, soft steel, and medium steel.

Rivet Steel.

9. Rivet steel shall have an ultimate strength of 48,000 to 58,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 26 per cent., and shall bend 180 degrees, flat on itself, without fracture on the outside of the bent portion.

Soft Steel.

10. Soft steel shall have an ultimate strength of 52,000 to 62,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 25 per cent., and shall bend 180 degrees, flat on itself, without fracture on the outside of the bent portion.

Medium Steel.

11. Medium steel shall have an ultimate strength of 60,000 to 70,000 pounds per square inch, an elastic limit of not less than one-half the ultinate strength, and an elongation of 22 per cent., and shall bend 180 degrees, around a curve having a diameter equal to the thickness of the piece tested, without fracture on the outside of the bent portion.

Pin Steel.

12. Pins made from either of the above-mentioned grades of steel shall, on specimen test pieces cut at a depth of 1 inch from the surface of finished material, fill the physical requirements of the grade of steel from which they are rolled for ultimate strength, elastic limit, and bending, but the required percentage of elongation shall be decreased 5 per cent.

Eye Bar Steel.

13. Eye bar material 11/2 inches and less in thickness, made of either of the above-mentioned grades of steel, shall, on test pieces cut from finished material, fill the requirements of the grade of steel from which it is rolled. For thicknesses greater than 1½ inches there will be allowed a reduction in percentage of elongation of 1 per cent. for each ½ of an inch increase in thickness, to a minimum of 20 per cent. for medium steel and 22 per cent. for soft steel.

Full Size Test of Steel Eye Bars.

14. Full size tests of steel eye bars shall be required to show not less than 10 per cent. elongation in the body of the bar, and a tensile strength not more than 5000 pounds below the minimum tensile strength required in specimen tests of the grade of steel from which the bars are rolled. The bars will be required to break in the body; should a bar break in the head, but develop 10 per cent. elongation and the ultimate strength specified, it shall not be cause for rejection, provided not more than one-third of the total number of bars tested break in the head.

Variation in Weight.

15. A variation in cross-section or weight of more than 21% per cent. from that specified will be sufficient cause for rejection, except in the case

of sheared plates.

When sheared plates are ordered by weight, the permissible variation when sheared places are ordered by weight, the perims be variation shall not be more than $2\frac{1}{2}$ per cent. from that specified, except for plates $\frac{1}{2}$ " to $\frac{1}{16}$ " thick (10.2 to 12.75 pounds per square foot), which, when ordered to weight, shall not average a variation greater than 5 per cent. above or below the theoretical weight for plates over 75 inches wide. When sheared plates are ordered to gauge, the overweight shall not exceed the percentages given in the following table:

Percentages of Allowable Overweights for Sheared Plates when ordered to Gauge.

mi i i man e e alata		Width of plate.	
Thickness of plate.	Up to 75 inches.	75 to 100 inches.	Over 100 inches.
¼ inch	10	14	18
inch inch	8	12	16
3% inch	7	10	13
⁷ _s inch	6	8	10
½ inch	5.	7	9
inch 16	41/2	61/2	81/2
5% inch	4	6 5	8
Over 5% inch	31/2	5	61/2

Timber.

The following data for the strength of wooden posts and beams are based upon tests made at the government arsenal at Watertown and by the Forestry Division of the United States Department of Agriculture.

Thus, tests made on pillars of white and yellow pine at Watertown gave the following results for the breaking loads in pounds per square inch:

				Ratio	of len	gth to	thick	ness.							
	10	15	20	25	30										
Yellow pine	4400	4275	4100	3875	3600	3275	2900	2475	2130	1760	1480				
White pine	2450	2390	2300	2190	2000	1890	1700	1490	1320	1090	910				
Hemlock	2200	2150	2050	1950	1850	1700	1530	1340	1190	980	820				

The following general facts concerning the physical properties of timber are deduced from the experiments of the Forestry Division;

1. That bleeding (the experiments were made on long leaf yellow pine)

has no material effect on the strength of timber; the flexibility is slightly increased, but the bled timber will probably endure exposure to the weather as well as the other.

2. That moisture reduces the strength of timber, whether that moisture be the sap or water absorbed after seasoning. In general, seasoned timber, or with not more than 12 per cent. moisture, is from 75 per cent. to 100 per cent. stronger than green timber.

3. When artificially dried, timber contains a uniform percentage of moisture throughout, a condition requiring months or even years to attain

when kiln-dried at usual temperatures, wood shows no loss of strength compared with air-dried timber of the same percentage of moisture. The effect of very high temperatures and pressures (as used in vulcanizing) is lower strengths than when air-dried.

 Large timbers are equal in strength per square inch of section, tested every way, to small timbers, provided they are equally sound and contain

the same percentage of moisture.

5. The tests seem to indicate that the strength of woods of uniform structure increases with the specific gravity, irrespective of species,—i.e., in general, the heaviest wood is the strongest. Oak seems not to belong to the list of woods to which this general remark applies.

The data on properties of timbers must be used with considerable judgment and caution. Seasoned wood will gain weight to the extent of 5 to 15 per cent. if exposed to the weather, and this excess will be reduced if

the wood is kept a week in a warm, dry place. Some of the individual tests made by the United States Forestry Division varied considerably from the mean values given in the table. In the case of tension tests, which varied most from the average, a few were as

low as 25 per cent., while others reached 190 per cent. of the mean.

The elastic limit given in connection with the data from the United States Forestry Division is the relative elastic limit suggested by Professor Johnson, as there is no definite "elastic limit" in timber similar to that in some metals. This relative elastic limit is taken where the rate of deflection is 50 per cent, more than it is under initial loads.

Modulus of ultimate bending is extreme fibre stress on beam at rupture. The modulus of elastic bending is the fibre stress when the rate of deflection is increased 50 per cent. The modulus of elasticity is derived from

transverse tests.

406 Wood.

Physical Properties of Wood.

Seasoned timber, moisture 12 per cent. and under. Stresses given in pounds per square inch. .

Name of material,	Ultimate resistance to tension.	Ultimate resistance to compression, length.	Ultimate resistance to compression, cross.	Ultimate resistance to shearing, length.	Ultimate resistance to shearing, cross.
Ash (American)	17000	7200	1900	1100	6280
Birch	15000	8000			5600
Box	20000	10300			0000
Cedar (white)		5200	700	400	1370
Cedar (American red)	10800	6000	700	400	1370
Chestnut	11500	5300			1530
Cottonwood (see poplar)					
Douglas spruce (Oregon pine)	13000	5700	800	500	
Fir	13000			1300	
Gum		7100	1400	800	5890
Hemlock	8700	5700		400	2750
Hickory (American average)	19600	9500	2700	1100	6000
Lignum vitæ	11800	9900			
Mahogany (Spanish)	14900	8200			
Maple	11150	7150	1800	500	6350
Oregon pine (see Douglas spruce)					
Oak (red)	10250	7200	2300	1100	
Oak (black or yellow)	10000	7300	1800	1100	
Oak (white)	13600	8500	2200	1000	4400
Oak (live)		10400			8480
Pine (Southern yellow, long-leafed)	13000	8000	1260	835	5600
Pine (Cuban)	13000	8700	1200	770	3000
Pine (loblolly)	13000	7400	1150	800	
Pine (white)	10000	5400	700	400	2500
Poplar	7000	5000			
Spruce (Northern)	11000	6000		400	3250
Spruce pine (pinus glabra of Southern States)	12000	· 7300	1200	800	
Walnut (black)	10500	7500	2500		4700
			1	1	

Physical Properties of Wood.

Seasoned timber, moisture 12 per cent. and under. Stresses given in pounds per square inch.

Elastic	Modulus of	Modulus of	Modulus of	Ordinar	y working	stress.	Weight, in pounds, per cubic foot.
limit.	elasticity.	ultimate bending.	elastic bending.	Tension.	Compression.	Trans- verse.	Weight, i
7900	1 640 000	10800	7900	2000	1000	1200	39
	1 645 000	11700		2000	1000	1200	33
5800	910 000	6300	5800	2500 1200	1200 600	1500 800	23
5000	310 000	7200	5000	1400	700	900	23
	1 140 000	8100		1400	600	900	41
	1 140 000	8100		1400	600	900	41
6400	1 680 000	7900	6400	1400	700	1000	32
	1 530 000						
7800	1 700 000	9500	7800	1200	900	900	37
		7100				750	25
11200	2 390 000	16000	11000	2000	1200	1800	50
		11700		1500	1200	1500	83
	1 255 000	9550		1500	1200	1500	53
		10000					49
9200	1 970 000	11400	9200	1400	900	1200	45
8100	1 740 000	10800	8100	1400	900	1200	45
9600	2 090 000	13100	9600	1700	1000	1500	50
9040	1 851 500	11300					
10000	2 070 000	12600	9500	1600	1000	1500	38
11100	2 370 000	13600	10640				
9200	2 050 000	11300	9400	1600	900	1200	33
6400	1 390 000	7900	6400	1200	700	900	24
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	6500	• • • • • • • •	900	600	750	.:
	1 400 000	8000		1200	700	900	26
8400	1 640 000	10000	8400	1200	700	900	30
5700	1 306 000	8000		1000	1000	900	38

Greatest Safe Load, Uniformly Distributed, for Rectangular Wooden Beams One Inch Thick.

ches.					Lengt	th of s	span, i	n feet	•		
Depth, in inches.	Kind of timber.	4	6	8	10	12	14	16	18	20	22
Dept			Safe	loads	, in po	ounds,	per in	nch of	thick	ness.	
5	Hemlock Spruce or pine. Oak Yellow pine	520 620 830 *800	350 420 550 700	310 420	210 250 330 420		180 240	160 210	140 190	100 120 170 210	90 110 150 190
6	Hemlock Spruce or pine. Oak Yellow pine	*640 900 1200 *960	500 600 800 *960	450 600	300 360 480 600	250 300 400 500	260 340	220 300	200 270	150 180 240 300	140 160 220 270
7	Hemlock Spruce or pine. Oak Yellow pine	*750 *1120 1630 *1120	680 820 1090 *1120		410 490 650 820	340 410 540 680	350 470	260 310 410 510	270 360	200 240 330 410	190 220 300 370
8	Hemlock Spruce or pine. Oak Yellow pine	*850 *1280 *2130 *1280	1060 1420	1070	530 640 850 1070	440 530 710 890	460 610	330 400 530 670		270 320 430 530	240 290 390 480
9	Hemlock Spruce or pine. Oak Yellow pine	*2400	1350 1800		670 810 1080 1350	560 670 900 1120	480 580 770 960	420 510 670 840	370 450 600 750	340 400 540 670	310 370 490 610
10	Hemlock Spruce or pine. Oak Yellow pine	*1600 *2670	2220		830 1000 1330 *1600	690 830 1110 1390	590 710 950 1190	520 620 830 1040	460 560 740 930	420 500 670 830	380 450 610 760
12	Hemlock Spruce or pine. Oak Yellow pine	*1920 *3200	*1920 *3200	*1280 1800 2400 *1920	1200 1440 1920 *1920	1600	860 1030 1370 1710	750 900 1200 1500	670 800 1070 1330	600 720 960 1200	540 650 870 1090
14	Hemlock Spruce or pine. Oak Yellow pine	*2240 *3730	*2240 *3730	*1490 *2240 3270 *2240	1960 2610	1360 1630 2180 *2240	1870	1020 1220 1630 2040	900 1090 1450 1810	820 980 1310 1630	740 890 1190 1480
16	Hemlock Spruce or pine. Oak Yellow pine	*2560 *4270	*2560 *4270		$2550 \\ 3410$	$ \begin{array}{r} 2130 \\ 2840 \end{array} $	1520 1830 2440 *2560	1330 1600 2130 *2560	1180 1420 1900 2370	1070 1280 1710 2130	970 1160 1550 1940
18	Hemlock Spruce or pine. Oak Yellow pine	*2880 *4800	*2880 *4800	*2880 *4800	*2880 4320	2700 3600	2310 3090	1690 2030 2700 *2880	1500 1800 2400 *2880	1350 1620 2160 2700	1230 1470 1960 2450

The short lengths, marked with a star, are computed to resist longitudinal shearing.

Greatest Safe Central Loads for Rectangular Wooden Beams One Inch Thick.

ches.					Lengt	h of s	pan, ii	n feet.			
Depth, in inches.	Kind of timber.	4	6	8	10	12	14	16	18	20	22
Depti			Safe	loads,	in po	unds,	per in	ch of	thick	ness.	
5	Hemlock Spruce or pine. Oak Yellow pine	260 310 420 520	170 210 280 350	130 160 210 260	100 120 170 210	90 100 140 170	75 90 120 150	65 80 100 130	60 70 95 120	50 60 85 100	45 55 75 95
6	Hemlock Spruce or pine. Oak Yellow pine	380 450 600 750	250 300 400 500	190 220 300 370	150 180 240 300	120 150 200 250	110 130 170 210	95 110 150 190	85 100 130 170	75 90 120 150	70 80 110 140
7	Hemlock Spruce or pine. Oak Yellow pine	510 610 820 1020	340 410 540 680	260 310 410 510	$200 \\ 240 \\ 330 \\ 410$	170 200 270 340	150 170 230 290	130 150 200 260	110 140 180 230	100 120 160 200	95 110 150 190
8	Hemlock Spruce or pine. Oak Yellow pine	670 800 1070 1330	440 530 710 890	330 400 530 670	270 320 430 530	220 270 360 440	190 230 300 380	170 200 270 330	150 180 240 300	130 160 210 270	120 150 190 240
9	Hemlock Spruce or pine. Oak Yellow pine	840 1010 1350 *1440	560 670 900 1120	420 510 670 840	340 400 540 670	280 340 450 560	240 290 390 480	210 250 340 420	190 220 300 370	170 200 270 340	150 190 250 310
10	Hemlock Spruce or pine. Oak Yellow pine	1040 1250 1670 *1600	690 830 1110 1390	520 620 830 1040	420 500 670 830	350 410 550 690	300 360 480 590	260 310 420 520	230 280 370 460	210 250 330 410	190 230 300 380
12	Hemlock Spruce or pine. Oak Yellow pine	*1280 1800 2400 *1920	1200	750 900 1200 1500	600 720 960 1200	500 600 800 1000	430 510 690 860	370 450 600 750	330 400 530 670	300 360 480 600	270 330 440 540
14	Hemlock Spruce or pine. Oak Yellow pine	*1490 *2240 3270 *2240	1360 1630 2180 *2240	1220 1630	820 980 1310 1630	680 810 1090 1360	580 700 930 1170	510 610 820 1020	450 540 730 910	410 490 650 810	370 440 590 740
16	Hemlock Spruce or pine . Oak Yellow pine	*2560 *4270	*1710 2130 2840 *2560	1330 1600 2130 *2560	1070 1280 1710 2130	890 1060 1420 1780	$\begin{array}{c} 760 \\ 910 \\ 1220 \\ 1520 \end{array}$	660 800 1060 1330	590 710 950 1180	530 640 850 1060	480 580 780 970
18	Hemlock Spruce or pine. Oak Yellow pine	*1920 *2880 *4800 *2880	*1920 2700 3600 *2880	1690 2030 2700 *2880	1350 1620 2160 2700	1120 1350 1800 2250	960 1160 1540 1930	840 1010 1350 1690	750 900 1200 1500	670 810 1080 1350	610 740 980 1230

The short lengths, marked with a star, are computed to resist longitudinal shearing.

Total Safe Load, in Net Tons, for Square Pillars.

For Hemlock Pillars take $\frac{9}{10}$ of Load for White Pine.

				~							
feet.			1	Side	e of sq	luare 1	pillar,	in inc	ches.		
ıt, in	Kind of timber.	4	5	6	. 7	8	9	10	12	14	16
Height, in feet.			1	T	otal sa	fe loa	d, in 1	et tor	ıs.	1	
				1					1		1
6	Yellow pine White pine	7.3 4.5	11.8 7.2	17.3 10.5	23.8 14.4	31.3 18.9	39.8 24.0	49.3 29.7	71.3 42.9	97.3 58.5	127.3 76.5
7	Yellow pine White pine	7.1 4.4	11.6 7.1	17.1 10.3	23.6 14.3	31.1 18.7	39.6 23.6	49.1 29.5	71.1 42.8	97.1 58.4	127.1 76.4
8	Yellow pine White pine	$\frac{6.8}{4.2}$	11.3 6.9	16.8 10.2	23.3 14.1	30.8 18.6	39.3 23.7	48.8 29.4	70.8 42.6	96.8 58.2	126.8 76.2
9	Yellow pine White pine	6.5 4.1	11.0 6.8	16.5 10.1	23.0 14.0	30.5 18.5	39.0 23.6	48.5 29.3	70.5 42.5	96.5 58.1	126.5 76.1
10	Yellow pine White pine	6.2 3.9	10.7 6.6	16.2 9.9	22.7 13.8	30.2 18.3	38.7 23.4	48.2 29.1	70.2 42.3	96.2 57.9	126.2 75.9
11	Yellow pine White pine	5.8 3.7	10.3 6.4	15.8 9.7	22.3 13.6	29.8 18.1	38.3 23.2	47.8 28.9	69.8 42.1	95.8 57.7	125.8 75.7
12	Yellow pine White pine	5.4 3.5	9.9 6.2	15.4 9.5	21.9 13.4	29.4 17.9	37.9 23.0	47.4 28.7	69.4 41.9	95.4 57.5	$125.4 \\ 75.5$
13	Yellow pine White pine	5.0 3.3	9.5 6.0	15.0 9.3	21.5 13.2	29.0 17.7	37.5 22.8	47.0 28.5	69.0 41.7	95.0 57.3	$125.0 \\ 75.3$
14	Yellow pine White pine	4.5 3.0	9.0 5.7	14.5 9.0	21.0 12.9	28.5 17.4	37.0 22.5	46.5 28.2	68.5 41.4	94.5 57.0	124.5 75.0
15	Yellow pine White pine	3.9 2.8	8.4 5.5	13.9 8.8	20.5 12.7	27.9 17.2	36.4 22.3	45.9 28.0	67.9 41.2	93.9 56.8	123.9 74.8
16	Yellow pine White pine	$\frac{3.4}{2.5}$	7.9 5.2	13.4 8.5	19.9 12.4	27.4 16.9	35.9 22.0	45.4 27.7	67.4 40.9	93.4 56.5	123.4 74.5
17	Yellow pine White pine :	2.5 1.7	7.3 4.9	12.8 8.2	19.3 12.1	26.8 16.6	35.3 21.7	44.8 27.4	66.8 40.6	92.8 56.2	122.8 74.2
18	Yellow pine White pine	2.3 1.5	6.7 4.6	12.2 7.9	18.7 11.8	26.2 16.3	34.7 21.4	44.2 27.1	66.2 40.3	92.2 55.9	122.2 73.9
19	Yellow pine White pine	2.1 1.4	6.0 4.2	11.5 7.6	18.0 11.4	25.5 15.9	34.0 21.0	$\frac{43.5}{26.7}$	65.5 39.9	91.5 55.6	121.5 73.5
20	Yellow pine White pine	1.9 1.2	5.3 3.9	10.8 7.2	17.3 11.1	24.8 15.6	33.3 20.7	42.8 26.4	64.8 39.6	90.8 55.2	$\frac{120.8}{73.2}$
21	Yellow pine White pine	1.7 1.1	2.6 1.7	10.1 6.8	16.6 10.7	24.1 15.2	32.6 20.3	$\frac{42.1}{26.0}$	64.0 39.2	90.1 54.8	$\frac{120.1}{72.8}$
22	Yellow pine White pine	1.5 1.0	2.4 1.6	9.3 6.4	15.8 10.3	23.3 14.8	31.8 19.9	41.3 25.6	63.3 38.8	89.3 54.4	119.3 72.4
-											

Average Strengths of Materials.

In the foregoing discussion of the strength of materials it has been assumed that the elastic limit, ultimate strength, modulus of elasticity, and similar data concerning the materials to be used are known for the especial case under consideration, and attention has mainly been given to the distribution of stresses and strains. In all important works the material should be tested and its properties ascertained, and during the conduct of the work frequent tests should be made by competent persons, using reliable testing machines; the test pieces being selected with care to represent the actual material employed.

In the absence of specific data concerning the actual materials to be used, the values in the following tables may be taken as representing

fairly average results.

The tables which have been given of the strength of standard rolled sections represent experimental results made by the makers, and may be accepted, also, as closely corresponding to the similar sections of other

Data concerning the strength and proportions of various machine parts

will be discussed in connection with the subject of machine design.

In the use of materials of construction judgment should be used in connection with the results of tests, since it is manifestly absurd to take the resistance of the material to the pound when the load may be known only to the nearest ton. Care should also be taken to use records of strength of materials in the same general sense in which the original experiments were made, so far as can be ascertained, otherwise there can be no certainty that the conditions under which the resistance was ascertained are reproduced in the case in point. No records of experimental work can take the place of sound judgment on the part of the engineer, and he should always be liberal in his allowances for unforeseen stresses and shocks.

In many cases it must be remembered that strength is not the only element to be taken into account, but that stability and massiveness may sometimes demand far more material than the mere stresses would indicate. The effects of impact may require masses of metal for their reception, while in other cases the section may depend upon the amount of heat to be carried away. When it is realized that the actual strength is but one of several elements involved in engineering design, it will be understood that the main thing is to be on the right side, and that an extreme apparent precision may be far from representing true accuracy.

Pounds per Square Inch.

					1				1
	Tens	Tension.		Compression.		Tran	Transverse.	Shea	Shearing.
Motonical			Wit	With grain.		Tvtnomo			
Material,	With grain.	Across grain.	End bearing.	Columns under 15 diams. long.	Across grain.	fibre stress.	Modulus of elasticity.	With grain.	Across grain.
White oak.	10000	2000	7000	4500	2000	0009	1 100 000	800	4000
White pine	2000	200	2200	3500	800	4000	1 000 000	400	2000
Southern long-leaf, or Georgia yellow pine	12000	009	8000	2000	1400	2000	1 700 000	009	2000
Douglas, Oregon, and (yellow fir	12000		8000	0009	1200	6500	1 400 000	009	:
Washington fir or pine red fir	10000				:	2000		:	:
Northern, or short-leaf yellow pine	0006	200	0009	4000	1000	0009	1 200 000	400	4000
Red pine	0006	200	0009	4000	800	2000	1 200 000	:	
Norway pine	8000		0009	4000	800	4000	1 200 000	:	
Canadian (Ottawa) white pine	10000			2000	:			320	:
Canadian (Ontario) red pine	10000		:	2000	:	2000	1 400 000	400	:
Spruce and Eastern fir	8000	200	0009	4000	200	4000	1 200 000	400	3000
Hemlock	0009			4000	009	3500	000 006	350	2500
Cypress	0009	:	0009	4000	200	2000	000 006	:	:
Cedar	8000		0009	4000	200	2000	200 000	<i>*</i> :	1500
Chestnut	0006		:	2000	006	2000	1 000 000	009	1500
California redwood	2000		:	4000	800	4500	200 000	400	
California spruce	:		:	4000	:	2000	1 200 000	:	:::::::::::::::::::::::::::::::::::::::

For quiescent loads, as in buildings, divide above values by the following factors: tension, 10; compression, 5; transverse, 6; shearing, 5.

Pounds per Square Inch.

bars		Iron wire, unannealed	Iron wire, annealed	Iron, corrugated	Iron chains	Iron, cast	Gold, east	Copper wire, unannealed	annealed	Copper, cast (4	Copper bolts	Bronze, Tobin	Bronze, phosphor			Bronze, aluminum 1:	Brass wire, unannealed	Brass wire, annealed		Aluminum, nickel	Metals. Aluminum, commercial	Material. Com
48 000	46 000	:	:	:	:	80 000		:	:	(40 000)	30 000	:	:	20 000	(20 000)	120 000	:	:	$(30\ 000)$:	12 000	Compression.
50000	48000	80000	60000		35000	15000	20000	60000	36000	24000	30000	66000	50000	60000	32000	75000	80000	50000	24000	40000	15000	Tension.
27000	26000	27000		:		6000	4000	10000		6000		40000	24000	30000	10000		16000		6000	22000	6500	Elastic limit.
40000	40000					18000				30000					:				36000		12000	Shearing.
48000	44000			40000		30000				22000					53000				20000			Modulus of rupture.
26 000 000	27 000 000	25 000 000	15 000 000			12 000 000	8 000 000	18 000 000	15 000 000	10 000 000		4 500 000	14 000 000		10 000 000		14 000 000		9 000 000		11 000 000	Modulus of elasticity.

Compression values enclosed in parentheses indicate loads producing 10 per cent. reduction in original lengths.

Pounds per Square Inch.

Material.	Compression.	Tension.	Elastic limit.	Shearing.	Modulus of rupture.	Modulus of elasticity.
Lead, castContinued.		2 000	1000			1 000 000
Lead-pipe		1 600		:		
Silver, cast		40 000	4000		:	10 000 000
Steel castings	20000	20 000	40000	00009	70000	30 000 000
Steel, structural, 0.10 per cent. carbon	26000	26 000	30000	48000	54000	29 000 000
Steel, structural, 0.15 per cent. carbon	64000	64 000	33000	20000	00009	29 000 000
Steel wire, annealed		80 000	40000			29 000 000
Steel wire, unannealed		120 000	00009			30 000 000
Steel wire, crucible		180 000	80000			30 000 000
Steel wire for suspension bridges		200 000	00006			30 000 000
Steel wire, special tempered		300 000				
Tin, cast	(0009)	3 500	1800		4000	4 000 000
Zinc, cast	(20000)	5 000	4000		7000	13 000 000
Miscellaneous.		9				
riax yarn		72 000	:	:		
Glass, common green	20000	3 000	3000		4000	8 000 000
Glass flooring	10000	3 000			3000	
Glass wire, for skylights			2000		2000	
Leather, ox	:	4 000				240 000
Rope, hemp		8 000	:		:	
Rope, manila	:	000 6	:			
Silk fibre		2 000				1 300 000

Compression values enclosed in parentheses indicate loads producing 10 jer cent, reduction in original lengths.

Pounds per Square Inch.

Material.	Compression.	Tension.	Modulus of rupture.
Building Stones.			
Bluestone	13500	1400	2700
Granite, average	15000	600	1800
Granite, Connecticut	12000		
Granite, New Hampshire	15000		1500
Granite, Massachusetts	16000		1800
Granite, New York	15000		
Limestone, average	7000	1000	1500
Limestone, Hudson River, New York	17000		
Limestone, Ohio	12000		1500
Marble, average	8000	700	
Marble, Vermont	8000	700	1200
Sandstone, average	5000	150	1200
Sandstone, New Jersey	12000		650
Sandstone, New York	10000		1700
Sandstone, Ohio	9000	100	700
Slate	10000	10000	5000
Stonework	(4 stre	ngth of s	tone)
Bricks.		ı	1
Bricks, light red	1000	40	
Bricks, good common	10000	200	600
Bricks, best hard	12000	400	800
Bricks, Philadelphia pressed	6000	200	600
Brickwork, common (lime mortar)	1000	50	
Brickwork, good (cement and lime			
mortar)	1500	100	
Brickwork, best (cement mortar)	2000	300	
Terra-cotta	5000		
Terra-cotta work	2000		•••••
Cements, etc.			
Cement, Rosendale, one month old	1200	200	200 -
Cement, Portland, one month old	2000	400	400
Cement, Rosendale, one year old	2000	300	400
Cement, Portland, one year old	3000	500	800
Mortar, lime, one year old	400	50	100
Mortar, lime and Rosendale, one year old	600	75	200
Mortar, Rosendale cement, one year old.	1000	125	300
Mortar, Portland cement, one year old	2000	250	600
Concrete, Portland, one month old	1000	200	100
Concrete, Rosendale, one month old	500	100	50
Concrete, Portland, one year old	2000 .	400	150
Concrete, Rosendale, one year old	1000	200	75

Safe strengths of stone, brick, and cement, $\frac{1}{10}$ to $\frac{1}{30}$ of ultimate.

MACHINE DESIGN.

"A machine," according to the definition of Professor Reuleaux, is "a combination of resistant bodies so arranged that by their means the mechanical forces of nature can be compelled to do work accompanied by certain determinate motions."

In designing a machine, therefore, it is essential to consider the resistance or strength of the bodies of which it is composed, also the work

which it is to perform and the determinate motions to be made.

The resistance of the parts of a machine includes the proportions of the main framing, as well as the various shafts, gear-wheels, pulleys, connecting rods, and other parts, in most of which the actual strength is of less importance than the stiffness, or rigidity, and the mass necessary to furnish satisfactory solidity to absorb vibrations and shocks. The resistance also includes the proportions of the various fastenings, such as bolts, rivets, keys, pins, etc.

The work which the machine is compelled to do is the basis upon which the dimensions and form of the resistant parts are determined, and this is usually taken from the resistance opposed to the motion by the material to be cut, the weight to be lifted or propelled, or, in general, the opposing forces to be overcome.

The determinate motions involve some of the most intricate problems in machine design, and properly form the subject of a distinct science,—that of Kinematics, the science of controlled motion, considered apart from the magnitude and character of the forces involved.

It is impossible to do more here than to give the results of accepted modern practice with regard to these various elements of machine design, with such suggestions as experience may indicate for use with the special

requirements of each case.

Usually, the determinate motions demand the first attention. The form of the work to be done must be considered at the one end of the system, and the nature of the motion from which it is to be effected at the other, the machine standing between them and effecting the transforma-tion. Thus, in the case of the steam engine, the flowing steam, passing through a pipe, is converted into the rotary motion of the shaft, fly-wheel, and pulley. In like manner, the rotary motion communicated to the shaft of a Jacquard loom is transformed into all the complicated sequence of intermittent, yet determinate movements, which, through the medium of cards, heddles, shuttles, beams, etc., produce the elaborate woven fabric.

Having laid out the movements, and thus determined the positions of the various centres and connections, the forces to be transmitted must be

considered and the dimensions of the actual pieces computed.

In many portions of a machine the dimensions of the parts may be based upon the direct knowledge of the strength of the materials, but in other cases empirical rules, based upon the results of experience, must be employed. Both methods will here be given, according to current practice, and whenever a rational method, used the direct strength of the material, is practicable, it will be given.

FASTENINGS.

Riveting.

Rivets are used to secure structures of sheet metal, and may be employed solely for strength, as in structural iron or steel work; or for strength and tightness combined, as in tank and boiler construction

For strength alone the following method may be used for proportioning

riveted connections:*

For any given thickness, δ , of plate it is impracticable to make the riveted joint the same strength as the plate itself, but the ratio between the strength of the plate and the strength of the joint can be made a maximum. This will best be attained, with the assumption of a sufficient margin, when the strength of the rivets and the strength of the remainder of the metal between the rivet-holes are equal to each other,—i.e., when

they reach their limit of elasticity at the same time. If the rivets and plate are of the same material, we have the stress in the cross-section of the rivets as 0.8 that of the plate. From this we derive the following formulæ, in which the friction of the joint is neglected as being of uncertain value:

Let

 $\delta=$ the thickness of the plate, in inches; d= the diameter of rivet, in inches; a= the pitch of rivets,—i.e., the distance from centre to centre of adjacent rivets, in inches;

n = the number of rows of rivets; $\phi =$ the efficiency of the joint, being the ratio of the resistance of the joint to that of the full plate;

then the highest efficiency will be attained when we have, for lap-joint riveting.

$$\frac{a}{\delta} = n \frac{\pi}{5} \left(\frac{d}{\delta}\right)^2 + \frac{d}{\delta},$$

which gives

$$\phi = 1 - \frac{d}{a} = \frac{1}{1 + \frac{1}{a} \cdot \frac{5}{\pi} \cdot \frac{\delta}{d}};$$

or for butt-joint riveting,

$$\frac{a}{\delta} = 2n\frac{\pi}{5} \left(\frac{d}{\delta}\right)^2 + \frac{d}{\delta},$$

which gives

$$\phi = 1 - \frac{d}{a} = \frac{1}{1 + \frac{1}{2n} \cdot \frac{5}{\pi} \cdot \frac{\delta}{d}}.$$

The overlap of the plate is subjected both to shearing and bending. For the former conditions call the lap b', and for the latter b'', measuring in both cases from the centre of the rivets to the edge of the joint. To obtain the same resistance in the lap as in the perforated portion of the plate, we have, for lap-joint riveting,

$$\frac{b'}{\delta} = \frac{5}{8} \frac{a - d}{n\delta} = \frac{\pi}{8} \left(\frac{d}{\delta}\right)^2,$$

$$\frac{b''}{\delta} = \left(0.5 + 0.56\sqrt{\frac{d}{\delta}}\right);$$

for butt-joint riveting,

$$\frac{b'}{\delta} = \frac{5}{8} \frac{a - d}{n\delta} = \frac{\pi}{4} \left(\frac{d}{\delta} \right),$$

$$\frac{b^{\prime\prime}}{\delta} = \left(0.5 + 0.79\sqrt{\frac{d}{\delta}}\right) \frac{d}{\delta}.$$

In both cases a good value of b, in practice, giving sufficient room for rivet-heads, will be secured by making

$$b = 1.5d$$
, or $\frac{b}{\delta} = 1.5 \frac{d}{\delta}$.

A point of interest is the superficial pressure, p, which exists between the body of the rivet and the cylindrical surface of the rivet-hole. If S_2 is the stress in the punched plate, we have, for lap-riveted joints,

$$\frac{p}{S_2} = 0.2\pi \frac{d}{\delta};$$

for butt-riveted joints,

$$\frac{p}{S_2} = 0.4\pi \frac{d}{\delta}.$$

The following table will serve to reduce the numerical labor of these calculations:

Proportions for Riveted Joints.

$\frac{d}{\delta} = 1$		1	1.	.5	2		2.5		3		4 4		
	n =	1	2	1	2	1	2	1	2	1	2	1	2
	$\left(\frac{a}{\delta}\right) = 0$	1.63	2.22	2.92	4.33	4.52	7.04	6.43	10.37	8.67	14.33	14.07	24.14
Lap joint.	$\frac{b'}{\delta} =$	0,39	0.39	0.88	0.88	1.57	1.57	2.54	2.54	3.53	3.53	6.28	6.28
	$\frac{b^{\prime\prime}}{\delta} =$	1.06	1.06	1.78	1.78	2.58	2.58	3.46	3.46	4.31	4.31	6.48	6.48
	φ =	0.39	0.55	0.49	0.65	0.56	0.72	0.61	0.76	0.65	0.79	0.72	0.83
	$\left \frac{p}{S_2} \right =$	0.63	0.63	0.94	0.94	1.26	1.26	1.57	1.57	1.88	1.88	2.51	2.51
	$\left(\frac{a}{\delta}\right) =$	2.26	3.52	4.33	7.15	7.04	12.05	10.37	18.21	14.33	25.61	24.14	44.21
ıt.	$\frac{b'}{\delta} =$	0.79	0.79	0.96	0.96	3.14	3.14	4.91	4.91	7.07	7.07	12.56	12.56
Butt joint.	$\frac{b^{\prime\prime}}{\delta} =$	1.29	1.29	2.20	2.20	3.24	3.24	4.37	4.37	5.60	5.60	8.32	8.32
B	φ =	0.56	0.72	0.65	0.79	0.72	0.83	0.76	0.86	0.79	0.90	0.83	0.94
	$\frac{p}{S_2} =$	1.26	1.26	1.88	1.88	2.51	2.51	3.14	3.14	3.77	3.77	5.03	5.03

An examination of the preceding table shows that the higher efficiencies require the use of inconveniently large rivets. This may be avoided if more than two rows of rivets can be used, since they may then be dis-

posed in groups. In this arrangement each row in a group has one less rivet than the preceding row, as shown in the illustration.

Thus, the rivets are arranged according to a certain pitch, a, for the middle row of a joint, and 2, 3, 4, or 5 rivets are selected as the base of a group. The next row on each side will have a wider pitch, and the next still wider, and so on.

If, as before, we take

 $\delta = \text{thickness of plate, in inches;}$ d = diameter of rivet, in inches; a = pitch of rivets, in inches;

 $\phi = \text{efficiency of joint; and}$

m = number of rivets in the middle row of each group;

we have

Table for Group Riveting.

m =	2	3	4	5
$\frac{d}{\delta}$ =	1.6	1.6	1.6	1.6
$\frac{a}{d} =$	2.5	3.33	4.25	5.2
$\frac{a}{\delta}$ =	4.0	5.32	6.80	8.32
$\phi =$.8	.90	.94	.96

The rivet-holes, in all cases, are made $\frac{1}{16}$ larger than the diameter of the rivet.

Boiler Riveting.

The necessity for making a tight joint has necessitated modifications of the proportions of joints based solely upon considerations of strength. The following tables represent standard practice:

Table of Proportions for Riveted Joints with Iron Plates and Rivets.

	CONTRACTOR OF THE PERSON OF TH				
Thickness of plate	1/4"	<u>5</u> //	3/11	-7.// 16	1/2"
Diameter of rivet	5/8"	11/1	3/4"	13''	7/8"
Diameter of rivet-hole	11"	3/4"	13//	7/8"	15//
Pitch—single riveting	2''	21/1	21/8"	$2\frac{3}{16}''$	21/4"
Pitch—double riveting	3''	31/8"	31/4"	33/8"	31/2"
Efficiency—single riveting	.66%	.64%	.62%	.60%	.58%
Efficiency—double riveting	.77%	.76%	.75%	.74%	.73%

Table of Proportions for Riveted Joints in Steel Plates with Iron Rivets.

	Inch.	Inch.	Inch.	Inch.	Inch.
Thickness of plate	1/4	5 16	3/8	7	1/2
Diameter of rivet	$\frac{11}{16}$	3/4	13 16	7/8	15 16
Diameter of rivet-hole	3/4	13 16	7/8	15 16	1
Pitch—single riveting	2	$2\frac{1}{16}$	21/8	23	21/4
Pitch—double riveting	3	31/8	31/4	33/8	31/2

Bolts.

The dimensions of standard bolts and nuts will be found on pages 304 and 305, the United States standard being used in America and the Whit-

worth standard in Great Britain and on the Continent. Bolts are usually made of wrought-iron or mild steel. Fibre stresses of 10,000 to 15,000 pounds per square inch might be permitted under normal conditions of loading, but very often a heavy initial stress is put upon a bolt by reason of the tension applied when the nut is screwed up. A source of weakness is also found in the varying cross-section of the bolt at different points, thus preventing uniform stretching. The result is frequent breakages at the root of the thread, especially at the point where the thread merges into the full body of the bolt, since the change in section at this point localizes the stretch. By drilling a central hole from the head to the beginning of the thread, and thus making the cross-section of the main body of the bolt the same as at the bottom of the thread, the stretch may be distributed. For ordinary joints the fibre stress on bolts may be taken as 8000 pounds for iron and 11,000 pounds for mild steel.

Bolted flange-joints to resist steam-, air-, or water-pressure must be de-Bolts are usually made of wrought-iron or mild steel. Fibre stresses of

may be taken as 8000 pounds for iron and 11,000 pounds for mild steel. Bolted flange-joints to resist steam-, air-, or water-pressure must be designed for tightness rather than for strength. Here it is the initial tension upon the bolts which holds the faces of the joint together. The sum of the initial tensions of all the bolts in a flange-joint must be greater than the force acting to separate the joint, or it will open and leakage will occur. Under such conditions the maximum stress which should be put upon the bolts is about 6000 pounds per square inch, and lower stresses, down to 3000 pounds, are preferable. Instead of using larger bolts, the stresses should be reduced by using more of them. Recommended spacings for bolts on pipe flanges will be found in the table of standard flanges on page 329. page 329.

For pipe flanges the number of bolts is always made a multiple of four, in order to permit any member to be rotated 90° in making connections. For other bolted work the distance between bolt-centres for steam-tight work should not be less than 6d, in which d is the diameter of the bolt, while for heavy pressures a spacing of 4d is to be preferred. For steam cylinders, or similar situations, the number of bolts may be determined by the following formula:

$$N = \frac{p}{2400} \left(\frac{D}{d}\right)^2,$$

in which

N = number of bolts;

D =diameter of cylinder, in inches;

d = diameter of bolts;

p =pressure, in pounds per square inch.

Thus, for a cylinder 36 inches in diameter, with a pressure of 100 pounds, we have, for 11/4-inch bolts,

$$N = \frac{100}{2400} \left(\frac{36}{1.25}\right)^2 = 35$$
 bolts.

For moderate pressures, say under 50 pounds, the number of bolts may be taken as

$$N = 2 + \frac{D}{2};$$

the diameter of the bolts then being chosen so as to keep the fibre stress

within the predetermined limit.

For all general purposes the proportions of bolts are made according to the standard sizes, the United States standard, page 304, being used in America, and the Whitworth standard in Great Britain and on the Continent of Europe. For some purposes, however, special threads are advisable. In such cases the proportions should be directly designed for the

existing conditions. The forms most generally used are the square thread, suited to receive pressure in either direction, and the trapezoidal thread, flat on one face and inclined on the other, to sustain heavy pressures in one direction, as in screw-presses and similar work.

Referring to the figures,

d =outside diameter of screw; $d_1 = \text{bottom diameter of thread};$

s = pitch; P = total load on screw.

For a fibre stress of 3000 pounds the diameter, d_1 , at the bottom of the thread is obtained from

$$d_1 = 0.02 \sqrt{P}$$
; $P = 2360 d_1^2$;

or for a fibre stress of 6000 pounds per square inch,

$$d_1 = 0.0145 \sqrt{P}$$
; $P = 4720 d_1^2$.

The depth of thread, both for square and trapezoidal threads, is

$$t = \frac{d}{10} = \frac{d_1}{8}$$
;

and for square threads

$$s = \frac{d}{5} = \frac{d_1}{4}$$

and for trapezoidal threads

$$s = \frac{2}{15}d = \frac{d_1}{6}.$$

For such threads the nut should be made deeper than for ordinary bolts; from 1½ to 2 times the outside diameter of the screw being a proportion found in practice. This insures a sufficient number of threads in the nut and provides for wear.

In important structures, or where much vibration is expected, some form of nut-lock is used to prevent the bolt from working loose.

One of the oldest and most useful forms is the jam-nut shown at A. Both nuts should be truly faced, so that they will bear fairly upon each other. The thin nut is frequently placed under the thicker one, but this is immaterial, since a nut of a thickness of 0.45 to 0.4d is as strong as the bolt thread. At B is shown a split pin, often used in connection with a jam-nut. At C is shown an arrangement with a key upon the nut, making

a very convenient and secure combination. In all three cases the action

is such as to tighten the nut upon the thread.

Numerous patented devices have been made to secure bolts and nuts, but the design necessarily varies according to the conditions. In some cases a washer is arranged to be bent up against the face of the nut, or a wedge is driven between the nut and some portion of the structure; these methods being used in rail-joints. In other cases set-screws are used, or special nuts with ratchets are employed, as in heavy steam-engine work. These forms are modified in many ways, according to the ingenuity of the designer. Numerous examples will be found in Reuleaux's "Constructor" and in Unwin's "Machine Design."

Wrenches.

For most purposes wrenches to fit the standard nuts are to be had as a regular article of trade, being drop-forged to standard sizes. If special

wrenches are desired, the following proportions may be used, the unit being the diameter, D, of the hexagon nut across the flat.

Keyed Fastenings.

For many purposes, where the amount of movement is slight, and where

For many purposes, where the amount of movement is slight, and where the parts may be required to be readily disconnected, keys or cotters may be used. The principal proportions of such cotters have been determined empirically. The depth of a cotter is made equal to the diameter of the rod to be secured, and the thickness is made one-fourth of the depth. The taper varies from 1 in 30 to 1 in 100. For many purposes \(\frac{1}{8} \) inch in the foot is taken = 1 in \(\frac{9}{6} \). A greater taper than 1 in \(\frac{3}{6} \) is apt to cause the cotter to fly back. The general proportions of a gib and fly back. The general proportions of a gib and cotter connection are shown in the figure.

The use of gibs, as shown in the figure, increases the bearing surface of the cotter, and such gibs should always be used when the parts

are to be frequently disconnected.

Tf

d = diameter of rod; h = mean depth of cotter; t =thickness of cotter;

we have

$$h = d$$
: $t = 0.25d$.

The tip of the cotter should not be less than 3/4d.

Keys are used to secure the hubs of pulleys, wheels, levers, etc., to

shafts, to prevent rotation of one piece upon another.

If the shaft to which a hub is to be keyed is proportioned to stand a certain load, the dimensions of the key may be based upon the diameter of the shaft.

$$d = \text{diameter of shaft};$$

 $s = \text{breadth of key};$
 $s^1 = \text{depth of key}.$

Then, according to Reuleaux,

$$s = \frac{d}{5} + 0.16 \text{ inch}; \ s^1 = \frac{d}{10} + 0.16 \text{ inch.}$$

Feathers or splines are keys upon which a sleeve or collar may slide in with it. The proportions of a feather may be taken as a key placed on edge,—i.e., with the greater dimension of the cross-section upon the radius of the shaft. a direction parallel to the axis of the shaft, while compelled to rotate

The following table, while giving dimensions differing slightly from those determined by the formula of Reuleaux, correspond with American machine shop practice.

Standard Keys, Splines, Etc.

Diameter of shaft.	K	ey.	Spli	ine.	Double spline.		
	Wide.	Deep.	Wide.	Deep.	Wide.	Deep.	
Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	
3/4	1 ³	$\frac{5}{32}$	5 32	3 16	1/8	$\frac{5}{32}$	
1	1/4	3 16	3 16	1/4	1/8	$\frac{\frac{5}{32}}{\frac{5}{32}}$ $\frac{5}{32}$ $\frac{3}{16}$	
11/4	5 16	1/4	1/4	5 16	5 32		
$\frac{1\frac{1}{2}}{2}$	3/8 7	5 16 3/	5 16 3/8	3/8 1/6	$\frac{\frac{3}{16}}{\frac{1}{4}}$	1/4 5 16	
21/2	$\frac{7}{16}$ $\frac{9}{16}$	3/8 - 7/6	78 7 16	16 9 16	74 5 16	76 3/8	
3	5/8	1/2	1/2	5/8	3/8	7 16	
31/2	3/4	9 16	9 16	3/4	7 16	9 16	
4	7/8	5/8	5/8	7/8	1/2	5/8	
5	1	3/4	3/4	1	9 16	3/4	
6	$1\frac{1}{8}$	7/8	7/8	11/8	5/8	7/8	

Double splines are set opposite to each other, and their sizes are taken from the last two columns of the table. For sizes of shafts not tabulated take the sizes of keys for shafts of the next smaller size. Thus, for a 4½ inch shaft take sizes

for 4-inch shaft.

JOURNALS.

The most important form of journal is the overhung form shown in the illustration, and from its computed dimensions other forms may be proportioned. The ratio of length, l, to diameter, d, varies according to the service and the char-

acter of the bearing. For rigid bearings, such as pillow-blocks, with the pressure constant in one direction, $\frac{v}{d}$ -=1.5 to 2, while for crank pins and similar locations, in which the pressure is alternating in direction, $\frac{d}{d} = 1$ to 1.3.

When ball and socket bearings are used, as in shafting hangers, etc., = 4 in general practice.

Referring to the figure, let

d = diameter of journal;

l = length of journal;e = shoulder of collar;

p = pressure per square inchof projected area;

P = total load on journal;

S =fibre stress on material:

n = revolutions per minute.

We then have

$$d = \sqrt{\frac{16}{\pi S} \left(\frac{l}{d}\right)} \sqrt{P}.$$

For speeds up to 150 revolutions per minute the following values may be used:

Constant Pressure.

	Wrought-iron.	Cast-iron.	Steel.
p =	700	360	700
S =	8500	4260	14000
$\frac{l}{d} =$	1.5	1.5	2
d =	$0.03\sqrt{P}$	$0.043\sqrt{P}$	$0.027\sqrt{P}$

Intermittent Pressure.

	Wrought-iron.	Cast-iron.	Steel.
p =	1400	700	1400
S =	7000	3500	12000
$\frac{l}{d} =$	1	1	1.3
d =	$0.027\sqrt{P}$	$0.037\sqrt{P}$	$0.024\sqrt{P}$

When the speeds become higher than 150 revolutions per minute, the ratio, $\frac{l}{d}$, should be determined from the speed, according to the following formulas:

Constant Pressure.

	Wrought-iron.	Steel.
s =	8500	14000
$\frac{l}{d}$ =	$0.13\sqrt{n}$	$0.17\sqrt{n}$
d =	$0.0244\sqrt{\frac{l}{d}}\sqrt{P}$	$0.019\sqrt{\frac{l}{d}}\sqrt{P}$

Intermittent Pressure.

	Wrought-iron.	Steel.
s =	7000	12000
$\frac{l}{d} =$	$0.08\sqrt{\overline{n}}$	$0.10\sqrt{n}$
d =	$0.0273\sqrt{\frac{l}{d}}\sqrt{P}$	$0.02\sqrt{\frac{l}{d}}\sqrt{P}$

The value of $\frac{l}{d}$ is first computed, and then substituted in the following formula to find the value of d.

The depth of shoulder, e, is obtained from the diameter of the journal.

$$e = 0.07d + \frac{1}{8}$$
 inch.

The following table gives the diameters of journals for various pressures for speeds not exceeding 150 revolutions. For higher speeds the formulas should be used.

Table of Journal Proportions.

Total pressure, P, pounds.

		*		,		
Diameter	Direction of pre	essure, constant.	Direction of pressure, alternating.			
of journal,	Wrought-iron.	Steel.	Wrought-iron.	Steel.		
d.	$\frac{l}{d} = 1.5.$	$\frac{l}{d}=2.$	$\frac{l}{d} = 1.$	$\frac{l}{d} = 1.3.$		
	$\overline{d} = 1.5.$	$\frac{1}{d} = 2$.	$\overline{d} = 1.$	$\overline{d} = 1.3.$		
Inch.	Lb.	Lb.	Lb.	Lb.		
1.00	1 100	1 400	1 400	1 800		
1.25	1 700	2 200	2 200	2 200		
1.50	2 500	3 200	3 200	4 100		
1.75	3 400	4 300	4 300	5 200		
2.00	4 500	5 700	5 700	7 300		
2.25	5 700	6 800	6 800	9 300		
2.50	7 000	8 900	8 900	11 400		
2.75	8 500	10 700	10 700	13 800		
3.00	10 000	13 000	13 000	16 500		
3.25	11 800	15 000	15 000	19 300		
3.50	13 700	17 300	17 300	22 400		
3.75	15 800	19 800	19 800	25 000		
4.00	17 900	22 700	22 700	29 300		
4.25	20 000	25 600	25 600	33 100		
4.50	23 000	28 700	28 700	37 100		
4.75	25 000	32 000	32 000	41 300		
5.0	28 000	35 500	35 500	45 800		
5.5	34 000	43 000	43 000	55 400		
6.0	40 000	51 000	51 000	66 000		
6.5	47 000	60 000	60 000	79 200		
7.0	55 000	69 500	69 500	89 800		
7.5	63 000	80 000	80 000	103 000		
8.0	72 000	91 000	91 000	117 000		
8.5	81 000	102 000	102 000	132 000		
9.0	91 000	115 000	115 000	148 000		
9.5	101 000	128 000	128 000	165 000		
10.0	112 000	142 000	142 000	183 000		
10.5	124 000	156 000	156 000	202 000		
11.0	135 000	172 000	172 000	222 000		
11.5	148 000	188 000	188 000	242 000		
12.0	160 000	204 000	204 000	264 000		

The use of the table is apparent.

When the diameter of the journal is given, the load which may be put upon it is found. When a given load is to be put upon a journal, the nearest value in the proper column is found and the corresponding diameter of journal taken.

Necked journals, formed in the body of a shaft, are naturally stronger than overhung journals, but the diameter in this case is determined by the duty to be performed by the shaft, which will generally make it larger

than would be required for an overhung journal.

PIVOTS.

The bearing end of a vertical shaft or spindle is termed a pivot. Such pivot bearings are usually made with a recess in the middle, with cross oil channels. Taking the diameter of the recess as $\frac{1}{3}$ the diameter of the shaft, we may make the oil channels $\frac{1}{12}$ the diameter in width.

Let

P= total vertical pressure on pivot, in pounds; p= pressure, in pounds, per square inch; d= diameter of pivot, in inches; n= number of revolutions per minute.

We then have the following relations, according to Reuleaux:

Formulas for Pivots.

	Wrought-iron or steel on bronze.	on bronze.	Iron or steel on lignum vitæ.
SI	$ \begin{array}{l} \text{low-moving} \\ \text{pivots} \dots \\ d = 0.035 \sqrt{F} \end{array} $	$\frac{700}{0.05 \sqrt{P}}$	
n	$= \text{or} < 150 \ \begin{cases} p = 700 \\ d = 0.05 \sqrt{P} \end{cases}$	$\begin{array}{c} 350 \\ 0.07 \sqrt{P} \end{array}$	$\begin{array}{c} 1422 \\ 0.035 \sqrt{P} \end{array}$
n	> 150 $\left\{ \begin{array}{ll} \dots & \dots \\ d = 0.004 \sqrt{P} \end{array} \right.$	$\frac{\cdot}{n}$	$p = 1422$ $d = 0.035 \sqrt{P}$

700			
d =	$0.035\sqrt{P}$	$0.05\sqrt{P}$	$0.07\sqrt{P}$
	P	P	P
1.00 1.25 1.50 1.75	816	398	204
	1275	622	319
	1836	895	459
	2500	1219	625
2.00 2.25 2.50 2.75	3265 4132 5102 6173	$\begin{array}{c} 1592 \\ 2016 \\ 2488 \\ 3011 \end{array}$	816 1033 1275 1543
3.00	7347	3494	1836
3.25	8622	4205	2155
3.50	10000	4877	2500
3.75	11479	5599	2869
4.00 4.25 4.50 4.75	13061	6370	3265
	14745	7192	3686
	16530	8063	4132
	18418	8983	4604
5.00 5.25 5.50 5.75	20498	9954	5102
	22140	10974	5535
	24694	12044	6673
	26990	13164	6747
6.00 6.25 6.50 6.75	29388	14334	7344
	31890	15630	7972
	34490	16900	8623
	37190	18220	9298
7.00	41690	19600	10000

The three columns headed P give the total pressures permissible for wrought-iron or steel on bronze, cast-iron on bronze, and wrought-iron or steel on lignum vitæ, respectively. If the load is given, find the nearest value in the proper column and take the corresponding diameter.

The frictional resistance of a flat pivot bearing may be determined at

follows:

Let

F = the tangential frictional resistance, in pounds. at the periphery of the pivot;

 r_0 = the radius of shaft, in inches;

 r_1 = the radius of recess, in inches;

P = total load on shaft, in pounds;f = coefficient of friction.

Then

$$F = \frac{f}{2}P\left(1 + \frac{r_1}{r_0}\right).$$

If we take, as indicated above, $r_1 = \frac{1}{3}r_0$,

$$F = \frac{2}{3}fP$$
.

These formulas apply also to collar bearings of the form here shown.

For very heavy pressures, as in the thrust bearings of screw-propeller shafts, the thrust is taken upon a number of collars. Good practice limits the pressure upon such collars from 40 to 80 pounds per square inch.

n = the number of collars;

d = diameter of shaft;

D =outside diameter of collars;

P = total thrust:

we have, according to Seaton,

$$D = \sqrt{d^2 + \frac{P}{47n}}.$$

This provides for a pressure of 60 pounds per square inch on the collars. The thickness of each collar is made = 0.4(D-d), and the space between the collars may be 0.75(D-d).

SHAFTING.

In determining the dimensions of shafting there are two principal elements to be considered: the strength and the stiffness. Generally, the load acting upon the shaft is given in either one of two forms,—as horsepower to be transmitted at a given number of revolutions per minute, or as a twisting moment, or torque, expressed in a certain force acting at the end of a lever of a given length. In the latter case, the torque is here considered to be in inch-pounds. Thus, a belt pulling 100 pounds over a 20-inch pulley would give 100 pounds at a lever arm of 10 inches, or 1000

inch-pounds, etc.

In order that satisfactory results may be secured, a shaft should be so proportioned that it may not be subjected to a fibre stress at the circumference greater than the predetermined limit; and also that it may not be twisted through a greater angle than has been established as satisfactory. It is, therefore, necessary to compute the diameter by two methods, one for strength and the other for stiffness, and use the result which gives the

greatest size.

In the formulas the following symbols are

P = the force acting to rotate the shaft;

R = the lever arm at which it acts; N = the horse-power transmitted;

n = the number of revolutions per minute;

d = the diameter of the shaft; L = the length of shaft, in feet; ϑ = the angle of torsion, in degrees;

S = the fibre stress at the circumference; G =the modulus of torsion of the material $= \frac{2}{5}$ of the modulus of elasticity.

We then have, for strength,

$$d = \sqrt[3]{\frac{16}{\pi S} PR},$$

and for stiffness,

$$d = \sqrt[4]{\frac{32}{\pi G} \cdot \frac{12 \cdot L}{\vartheta^{\circ}} \cdot \frac{360}{2\pi} PR}.$$

Taking the fibre stress, S = 8500 pounds, we have for wrought-iron shafts, for strength,

$$d = 0.091 \sqrt[3]{PR} = 3.33 \sqrt[3]{\frac{N}{n}}.$$

In taking the torsion of shafting into consideration, the greatest allowable twist in degrees should not be over 0.075° per foot in length of shafting,—that is, $\vartheta^{\circ}=0.075L$, which gives for stiffness, against torsion,

$$d = 0.3 \sqrt[4]{PR} = 4.7 \sqrt[4]{\frac{N}{n}}.$$

The quotient of effect, $\frac{N}{n}$, is obtained from the relation to the statical moment, PR, as follows:

$$PR = \frac{33000 \times 12}{2\pi} \cdot \frac{N}{n} = 63025 \frac{N}{n}.$$

From these formulas the following table for round wrought-iron shafts has been calculated. An inspection of the table will show that it is quite possible for a shaft to be strong enough to resist permanent deformation and yet be so light as to be liable to spring under its load. For example, a shaft 26 feet long, with a twisting force of 220 pounds applied at one end, and acting with a lever arm of 20 inches, gives a turning moment, PR = 4400 inch-pounds, which would require a shaft only $1\frac{1}{2}$ inches diameter (see column 2). This, however, would permit far too much torsion, and in order that the angular deflection should not exceed the limit of 0.075° per foot, a corresponding value of PR, in column 4, must be found, and against it, in column 1, will be given the diameter,—in this case about $2\frac{9}{2}$ inches,—which, by comparison with column 2, gives about five-fold strength.

For short shafts this examination of angular deflection is uppresses. From these formulas the following table for round wrought-iron shafts

For short shafts this examination of angular deflection is unnecessary, as, for example, in the short lengths between two gear-wheels, for here the value of ϑ will be small enough in any case. With longer shafts, and in all special constructions, it is important to consider the angular deflection and keep it within the given limit.

For steel shafts, whose modulus of resistance is \(\frac{5}{3} \) greater than wrought-

iron, the diameters in both cases may be taken as $\sqrt[p]{0.6}$ —that is, 0.84 times that of correspondingly-loaded wrought-iron shafts. Shafting which is subjected to sudden and violent shocks, as in rolling mills, etc., must be made much stronger than the preceding formulas require, and these must be classed with the special cases which occur in every branch of construction.

Wrought=iron Shafting.

	1		1	
	For sti	rength.	For stiffness	(torsional).
đ.	PR.	$\frac{N}{n}$.	PR.	$\frac{N}{n}$.
Inch.				
1	1 327	.021	123	.0019
11/4	2 591	.052	301	.0048
11/2	4 479	.071	625	.0099
13/4	7 112	.114	1 157	.0183
2	10 616	.168	1 975	.0313
21/4	15 115	.239	3 164	.0502
21/2	20 730	.329	4 822	.0765
23/4	27 600	.438	7 061	.1120
3	35 830	.568	10 000	.1587
$3\frac{1}{2}$	56 890	.902	18 520	.2941
4	84 930	1.347	31 600	.5015
41/2	120 900	1.919	50 620	.8032
5	165 800	2.632	77 160	1.2240
5½	220 800	3.503	111 000	1.7920
6	286 600	4.548	160 000	2.5390
$6\frac{1}{2}$	364 400	5.784	220 300	3.4960
7	455 200	7.222	296 400	4.7040
$7\frac{1}{2}$	559 800	8.883	390 600	6.2000
8	679 400	10.780	505 700	8.0240
81/2	815 000	12.930	644 400	10.2300
9	967 400	15.350	810 000	12.8600
91/2	1 138 000	18.050	982 700	15.6000
10	1 327 000	21.050	1 230 000	19.5900
$10\frac{1}{2}$	1 536 000	24.380	1 501 000	23.8100
11	1 766 000	28.020	1 808 000	28.6800
111/2	2 018 000	32.020	2 159 000	34.2600
12	2 293 000	36.390	2 560 000	40.6200

d = diameter of shaft, in inches;

R = lever arm of torque, in inches (as radius of pulley or gear-wheel);
P = force on lever arm, in pounds;
N = actual horse-power transmitted;

n = revolutions per minute.

Find the nearest value for PR or $\frac{N}{n}$, both for strength and for stiffness, and take the largest diameter of shaft corresponding. For steel shafts multiply this diameter by 0.84.

For any given shaft the angle of torsion, ϑ , for a given statical moment, PR, may be found from the following formulas:

$$\vartheta = 0.00062 \frac{PRL}{d^4},$$
$$= 0.0001208 S \frac{L}{d},$$

in which L is the length of shaft, in feet, and d the diameter, in inches,-S being the fibre stress at the point of application on the shaft.

S being the fibre stress at the point of application on the shaft.

When the force is applied at one end of the shaft and taken off at the other, L is the whole length of the shaft. When the twisting forces are applied over the whole length of the shaft uniformly, L may be taken as one-half the length of the shaft; and when the twisting forces diminish uniformly from one end to the other, L is taken as one-third the length.

For a number of twisting forces applied at various points along the shaft, multiply the horse-power at each point by its distance from the end of the shaft, add the several products together, and divide by the total horse-power transmitted. The quotient may be used as the mean value of L in the formula. L in the formula.

Since the modulus of elasticity is practically the same for iron and steel, these formulas are good for either material.

Since $PR = 63025 \frac{N}{n}$, the above formulas can easily be used when the load is given in horse-power for a given number of revolutions instead of

Thus, suppose a shaft 164 feet long transmitting 70 horse-power at 100 revolutions, the power being taken off by machines uniformly distributed along its length. The effective length, L, may then be taken as $\frac{164}{2} = 82$ feet. We also have $\frac{N}{n} = \frac{70}{100} = 0.7$, and from the preceding table, under

the column for torsional stiffness, we find the values 0.5015, corresponding to 4 inches diameter, and 0.8032, corresponding to 4½ inches diameter, so that we make the shaft 4½ inches diameter. We have, also,

$$PR = 63025 \frac{N}{n} = 63025 \times 0.7 = 44117.$$

The angular deflection will then be

$$\vartheta = 0.00062 \frac{44117 \times 82}{(4.25)^4} = 6.88,$$

or 6° 53'.

Hollow Shafts.

Since the metal close to the axis of a shaft is of much less value in resisting stresses than the portion near the perimeter, there is a manifest advantage in using hollow or tubular shafting. Such shafts are very generally used for screw-propeller engines.

d = the diameter of a solid shaft;

d' = the outside diameter of a hollow shaft of equal strength; d_0 = diameter of hole through hollow shaft;

 $\psi = \frac{d_0}{d_1}$ = ratio of external to internal diameter of hollow shaft;

then

$$d_1 = \sqrt[3]{rac{d^3}{1 - \psi 4}}.$$

For d = unity we have, for the following values of ψ , the corresponding values of d_1 :

For any diameter solid shaft, therefore, we have simply to multiply by the value for d_1 , for the chosen ratio of external to internal diameters, to get the external diameter of a hollow shaft of equal strength.

In marine practice the ratio, ψ , of diameter to bore is generally 0.5, the bore being one-half the external diameter. The external diameter will then be 1.2 times that of an equivalent solid shaft, or only 2 per cent. greater, and, at the same time, the shaft will be 25 per cent. lighter.

The power which a hollow shaft will transmit may be obtained by finding the capacity of the corresponding solid shaft.

Thus, for

Thus, a shaft 10 inches in diameter, with a 5-inch hole through it, will transmit as much power as a solid shaft $10 \times 0.979 = 9.79$ inches diameter.

Deflection of Shafts.

In proportioning a shaft to carry a given load the practical method is to determine the pressures upon the journals and proportion them according to the methods already given. The rest of the shaft can then be proportioned according to the statical moments at various points, determined graphically, as follows:

Draw the line, A-C, equal in length to the distance between centres of journals, and upon it construct any triangle, ABC, whose apex lies on the line of the load, Q. Draw A-3 normal to A-C, making A-3=Q, draw 3-O parallel to B-C, and 2-O parallel to A-C; then $A-2=P_1$, $2-3=P_2$.

parallel to B-C, and 2-O parallel to A-C; then $A-2=P_1$, $2-3=P_2$.

The two journals may then be proportioned for these pressures.

By dropping the perpendiculars from the ends of the hub-seat we may divide Q into two forces, Q_1 and Q_2 , shown in the force polygon by O-O, parallel to B_1B_2 , giving $A-b=Q_1$, $b-3=Q_2$. The vertical ordinate, t, at any point of the surface of moments is proportional to the statical moment, M_y , at its point of intersection with the axis, as, for example,

the ordinate, t_1 , at the base of the journal for P_1 . We have, in any

$$y^3 = \frac{32}{\pi S} M_y, \quad d_{1^3} = \frac{32}{\pi S} M_1,$$

S being the fibre stress; and hence

$$\frac{y}{d_1} = \sqrt[3]{\frac{M_y}{M_1}}$$
, or $= \sqrt[3]{\frac{t}{t_1}}$,

from which y can readily be ob-

tained.

A similar diagram may be drawn for any loading, and the

drawn for any loading, and the relative proportions of the various parts of the shaft or axle determined. The graphical method has the further advantage of showing the distribution of stresses on the axle at one time; and even if a straight axle is used the points of greatest stress are thus clearly seen.

The practice of mounting heavy fly-wheels, or the rotor members of large electric generators, upon engine shafts, renders it necessary to consider the influence of bending and twisting moments combined. The may be done by uniting the two moments into an equivalent or "ideal" bending moment, such that the proportions of the shaft may be computed from it directly.

Let

 M_d = the twisting moment for a given shaft section; M_b = the bending moment for the same section.

Then the ideal moment, combining them both, will be

$$M = \frac{3}{8}M_b + \frac{5}{8}\sqrt{M_b^2 + M_d^2}.$$

The application of this formula is best seen by an example.

If we have a wheel subjected to a force of 6000 pounds, at a radius of 12 inches, on a shaft 100 inches long, being 20 inches from one end and 80 inches from the other, we have a bending moment, M_{b}^{1} , of

$$6000 \times \frac{80}{100} \times 20 = 96000$$
 inch-pounds.

We have, also, the twisting moment,

$$M_d = PR = 6000 \times 12 = 72000$$
 inch-pounds.

The combined moment will then be

$$M = \frac{3}{8}$$
. $96000 + \frac{5}{8}\sqrt{72000^2 + 96000^2}$
= $36000 + 75000 = 111000$ inch-pounds;

and the corresponding shaft diameter from the table, page 430, is about 43/8 inches. For the twisting moment of 72,000 inch-pounds alone the diameter would have been about 33/4 inches.

The graphical method may be applied to this problem very effectively.

Referring to the figure, first construct the link polygon, abc, for the bending moments, and the force polygon, a10, giving the forces, P_1 and P_2 , and also acc', the surface of moments for the shank, AC.

The moment, M_d is yet to be determined. In the force polygon, with a distance, R, from the pole, O, draw a vertical ordinate; this will be M_d . Lay its value off at $c'c_1$ and bb_1 , and five-eighths of these values give $c'c_0b_0b$ for the prescribed ground of the check. for the parallelogram of torsion for the shank, CB.

The combination of the bending and twisting moments may then be made according to the formula. Make $cc_2 = \frac{3}{8}cc'$, and join cb; then at any point of the polygon, as, for example, at f, the distance, $ff_2 = \frac{3}{6}ff'$. Now transfer $c'c_0$ to ab, at $c'c_0'$; then will the hypothenuse of the triangle, $c_2c'c_0'$, divided by $c_2c_0' = \sqrt{(3/acc')^2 + (5/ac_1c')^2}$, and the sum, $cc_2 + c_2c_0' = cc_2 + c_2c_3$, the desired moment, $(M_b)_i$, for the point, C. In the same manner we obtain $ff_2 + f_2f_0' = ff_2 + f_2f_3$, the moment, $(M_b)_i$, for the point, F. The line, $c_3f_3b_0$, is a curve (hyperbola), which may be taken approximately with sufficient accuracy as a straight line, c_3b_0 . The various dimensions may be obtained from the polygon, $acbb_0c_3c'$, in a similar response, as shown in the discussion of corless in a similar manner, as shown in the discussion of axles.

BEARINGS.

The form and shape of bearings in which journals are carried vary much with the service demanded. For line shafting the most satisfactory results are obtained with cast-iron boxes, usually made four diameters in length, and supported on spherical seats in adjustable screw-plugs, permitting a limited adjustment and enabling the box to align itself to the shaft. Such boxes are used in drop-hangers, pillow-blocks, and wall-

brackets, the whole being a general article of manufacture. When the bearing is made rigid, the length is rarely more than one to two diameters, as it is difficult to maintain good alignment for greater lengths, and heat-

ing and cutting are apt to follow.

The proportions of a standard pillow-block bearing are given in the illustration, this being a form used in heavy mill shafting, in the outboard

bearings of steam engines, and similar work. The proportions of the pillow-block are in terms of a modulus, $d_1 = 1$

1.15d + 0.4 inches, in which d is the diameter of the journal to run in the bearing. The dimensions of the brasses are in terms of the modulus, e = 0.07d +

0.125 inch.

The main bearings of steam engines are similar in design, but are gen-

HANGERS.

435

erally made with side brasses and adjustments to take up wear both horicontally and vertically, the casting of the pillow-block forming a portion of the engine bed-plate. For various designs of such bearings see Reuleaux's "Constructor" and Unwin's "Machine Design."

The proportions of hangers and pillow-blocks for shafting are given in the following illustrations.

The dimensions of the hanger are in terms of the modulus, d' = 1.4d +0.25 inches. The drop, a, varies according to local conditions. The screw-

blugs are of cast-iron, as are also the boxes. Lateral adjustment is made y providing slotted bolt-holes in the base of the hanger.

The wall-bracket is based upon the same modulus as the hanger, $d_1 =$

1.4d + 0.25 inches.

The pillow-block differs from the hangers in having no vertical adjustment, the spherical sockets being cast in the base and cap, as shown in

the illustration. The modulus is $d_1=1.4d+0.25$ inches. These designs are originally due to Wm. Sellers & Co., of Philadelphia.

COUPLINGS.

The simplest form of coupling is the plain cylindrical muff coupling shown in the illustration.

The thickness $\delta = \frac{d}{3} + 0.25$ inch, d being the diameter of the shaft; the length being 8 δ . This coupling is cheap, and serves for light work.

For heavier shafts the plate coupling is used.

The thickness of the hub $\delta = \frac{d}{3} + 0.25$ inch, and the length of hub on each plate = 4δ . The other dimensions are based on the modulus, $d' = 0.125d + \frac{5}{16}$ inch, this being the diameter of the bolts. The number of bolts, N = 2 + 0.8d.

The two halves of a plate coupling should be forced on their respective shafts and keyed fast as well, and should then be turned up and faced off

on the same centres as were used in turning the shafts. All pulleys, gears, etc., should then be put on the shaft in halves, the plates of the coupling not being removed.

For screw-propeller shafts the plates are forged on the shafts, as shown in the illustration.

According to Seaton, the diameter, d', of the bolts in such couplings should be:

For 4 bolts, d' = 0.32d; For 5 bolts, d' = 0.28d; For 6 bolts, d' = 0.25d; For 8 bolts, d' = 0.20d; For 10 bolts, d' = 0.18d; Thickness of plate $= \frac{b}{2} = 0.3d$; Diameter of bolt circle = 1.6d; Outside diameter, D = 1.6d + 21/4d'.

Number of bolts, one for every two inches diameter of shaft.
For ordinary line shafting the double-cone coupling of Sellers' has been very extensively used. As shown in the illustration, the tightening of the

bolts draws the cones together and clamps them upon the shafts. The dimensions given are in terms of the modulus, $\delta = \frac{d}{3} + 0.25$ inch, d being the diameter of the shaft. This coupling permits a slight variation

in the diameters of the shafts, and, unlike the plate coupling, it may be removed and replaced satisfactorily to permit the placing of pulleys upon the shaft.

When it is desired to disconnect portions of a transmission, various of alutch counlings are used

forms of clutch couplings are used. A great variety of these have been designed, and, as an example, the

cone clutch is given.

The general proportions of a cone clutch are given in the illustration, based on the modulus,

$$\delta = \frac{d}{3} + 0.25$$
 inch. The angle of

bevel, a, is made not less than 10°, or it is found difficult to disengage the parts. If PR is the turning moment, or torque, to be transmitted, the axial pressure, Q, to hold the parts in engagement will be

$$Q = \frac{PR}{r} \left(\frac{\sin \alpha}{f} + \cos \alpha \right),$$

in which r is the radius of the cone bearing and f the coefficient of friction. For iron on iron, fmay be taken at 0.15, and r should

not be made less than 3d,—preferably greater.

For connecting shafts which are placed at an angle with each other the universal joint is employed, shown in skeleton in the illustration. While this is convenient, it must be remembered that the angular velocity trans-

mitted is not uniform. If a is the angle between the shafts, and ω and ω1 the angular movements of the two shafts, respectively, then

$$\tan \omega_1 = \tan \omega \cos \alpha$$
.

The variation thus has a period of

The following table gives the values of ω_1 for successive values of ω , for various angles, a:

ω	α = 10°		= 10° 20°		3	30°		40°		
Deg.	Deg.	Min.	Deg.	Min.	Deg.	Min.	Deg.	Min.		
30	29	38	28	29	26	34	23	51		
45	44	34	43	12	40	54	37	27		
60	59	34	58	26	56	22	53	4		
90	90		90		90		90			
120	120	26	121	34	123	38	126	56		
135	135	26	136	48	139	6	142	33		
150	150	22	151	31	153	26	156	1		
180	180		180		180		180			

Where this variation is injurious it may be avoided by using two universal joints which correct each other.

LEVERS.

The proportions of the various forms of lever arms used in machine design are dependent upon various considerations. Thus, the ends are determined by the diameters of the pins to be inserted.

In the above forms the proportions are given in terms of the diameter of the pin. These dimensions are for wrought-iron; for cast-iron they should be doubled.

The calculations of the dimensions of simple lever arms of rectangular section are made upon the assumption that the force, P, acts in a plane, passing through the middle of the arm and in a direction normal to the arm.

If we let

h =width of the arm at the axis;

b =thickness of the arm at the axis; S =the maximum permissible fibre stress;

$$b = 6 \frac{PR}{Sh^2}.$$

Taking S for wrought-iron = 8500, and for cast-iron = 4250, we have,

for wrought-iron,
$$b=0.00072\frac{PR}{\hbar^2}$$
; for east-iron, 0.00144 $\frac{PR}{\hbar^2}$.

These formulas are adapted for the determination of b when h has been selected, the latter being most conveniently chosen with regard to the

other condition.

Example. Let P=4400 pounds, R=24 inches for a lever arm of wrought-iron, and $h=7\frac{1}{2}$ inches, we have

$$b = 0.00072 \frac{4400 \times 24}{(7.125)^2} = 1\frac{1}{2}$$
 inches.

If b is kept constant for the whole

length of the arm, the width at the small end may be 0.5h, while if a constant ratio of b:h is kept, the small

end = $\frac{2}{3}h$.

If, as often occurs, the force, P, does not act in the middle plane, then there must exist a combined bending and twisting stress on the arm. We may then derive a combined stress whose bending moment will give an ideal arm, P'.

If the plane in which the force P age is distant from the middle of

If the plane in which the force, P, acts is distant from the middle of the arm by an amount, a, we may make, approximately,

$$R' = \frac{3}{8}R + \frac{5}{8}\sqrt{R^2 + a^2}.$$

Thus, if the lever in the preceding example was acted upon by the same force with an overhang, α , of 15 inches, we have

$$R' = \frac{3}{8} \cdot 24 + \frac{5}{8} \sqrt{24^2 + 15^2}$$

= 9 + $\frac{5}{8} \cdot 28.3 = 26.7$;

whence

$$b = 0.00072 \frac{4400 \times 26.7}{(7.125)^2} = 1.66$$
 inches.

Sometimes it is desired to make a lever arm of ribbed or I-section to secure lightness or economy of material. The dimensions may then best be obtained by computing the rectangular section and transforming this into the section desired.

Let h_0 be the width and b_0 the thickness of the rectangular section as found in the preceding method, and let h and b be the corresponding dimensions in the section selected from among those given in the illustration.

Then we have

$$\frac{b}{b_0} = \frac{1}{1+a},$$

in which

$$a = \left(\frac{B}{b} - 1\right) \left\lceil 6 \frac{c}{h} - 12 \left(\frac{c}{h}\right)^2 \right\rceil.$$

These formulas permit a choice of the ratios, $\frac{B}{b}$ and $\frac{c}{h}$, which may be left to the judgment of the designer.

In the structural built-up sections the value of the angle-irons has been neglected, as it may be considered as making up for the weakening effect of the rivet-holes.

The following table of values of $\frac{1}{1+a}$ enables the transformation to be readily effected.

Table for Transforming Arm Sections.

h	Values of $\frac{1}{1+\alpha}$.									
с	$\frac{B}{b} = 2.5$	3	3.5	4	4.5	5	6	7	8	10
6 7 8 9 10 11 12 14 16 18 20 22 24 27 30 33	.50 .52 .54 .56 .58 .60 .62 .64 .67 .69 .71 .75 .76 .78	.43 .45 .47 .49 .51 .53 .55 .60 .63 .65 .67 .68 .71 .73	.38 .40 .42 .44 .46 .50 .52 .55 .57 .60 .62 .64 .68	.33 .35 .37 .39 .41 .43 .44 .47 .50 .52 .55 .57 .59 .62	.30 .32 .34 .36 .37 .39 .41 .44 .47 .49 .52 .53 .56 .58	.27 .29 .31 .33 .34 .36 .37 .40 .43 .46 .48 .50 .52 .55 .57	.23 .25 .26 .28 .29 .31 .32 .35 .38 .40 .42 .45 .47 .50 .52	.20 .21 .23 .24 .26 .27 .29 .31 .34 .36 .38 .40 .42 .45 .47	.18 .19 .20 .22 .23 .24 .26 .28 .30 .33 .34 .37 .38 .41	.14 .15 .16 .18 .19 .20 .21 .23 .25 .27 .29 .31 .33 .35 .37
36 40 45 50	.81 .83 .84 .85	.76 .78 .80 .81	.72 .74 .76 .78	.68 .70 .72 .74	.65 .67 .69 .71	.61 .64 .66 .68	.56 .58 .61 .63	.52 .54 .57 .59	.48 .50 .53 .56	.41 .44 .47 .49

Cranks. 441

Example. A lever arm has a length, R=78.75 inches, and the journal pressure at the end =P=5500 pounds. It is to be of cast-iron of double T-section with a height, $h_0=1256$ inches. We have, for a rectangular section,

 $b_0 = 0.00144 \frac{5500 \times 78.75}{(12.625)^2} = 3.9 \text{ inches.}$

With this the I-section may be compared. Here we may take c:h=1:12, B:b=4, and we get from the table $\frac{1}{1+a}=0.44$ and $b=0.44b_0=1.71$ inches, and the flange breadth, $B=1.71\times 4=6.84$ inches, the flange thickness $=c=\frac{1}{12}h=\frac{12.625}{12}=1.05$ inches, all of which are practical dimensions. It may be found desirable to have c=b or any reasonable ratio, or B:b, and c:b be chosen.

tratio, or B:b, and c:h be chosen.

Example. A wrought-iron arm has been found to require $b_0=2\%$ inches, b=12% inches. It is desired to make $\frac{b}{b_0}=0.25$, and in column 10 we find

0.25 opposite $\frac{h}{c} = 16$; hence, b = 0.57 inch and $B = 10 \times 0.59 = 5.90$ inches, and $c = \frac{12.625}{16} = 0.8$ inch.

This table may be used for transforming sections for many other purposes, such as beams, crane booms, struts, etc.

CRANKS.

The general proportions of engine cranks are obtained from the methods already given. The diameter and length of pin are found, as are those of a journal subjected to alternating stresses, according to the table on page 425, and the shaft is determined by the values of the twisting and bending moments upon it. The thickness of metal about the hub and eye of the crank is then proportioned according to the diameters of the shaft and pin as shown on page 439.

pin, as shown on page 439.

For important structures it is desirable to make a graphical analysis of all the stresses upon the crank and its shaft. Starting with a pin proportioned to resist the maximum effort of the connecting rod upon it, the following graphostatic analysis will enable all the parts to be equal in

strength to the pin, according to Reuleaux:

The Crank Axle.—Having calculated d and l, draw the skeleton diagram of the crank,—that is, the neutral axis, ABCDE, in which BC represents the axis of the crank arm, which in this case lies normal to the axis of the shaft, and is placed in its proportional distance from the centre of the crank pin, A, and from the bearing, D. Then lay off the force, P, from a, normal to Ea, choose the pole, O, of the force polygon (this being best placed upon a line passing through the end of P and parallel to the axis, Ea), draw the ray, adO, and line, dE, also the ray, OP, parallel to dE then adE will represent the cord polygon for the bending which P produces upon the axle, aCE, and PP1 represents the force upon the journal, E, and P1 the force upon the journal, D. Also make aF equal to the crank radius, E, and draw E6; this latter will be the twisting moment which P exerts upon the axis. This moment, E2, may be combined with the bending moment, E3, to give for each point an ideal bending moment,

$$M_i = \frac{3}{8}M_b + \frac{5}{8}\sqrt{M_b^2 + M_d^2},$$

from which the polygon curve, c'd'e', and surface of moments, Cc'd'e'E, are obtained. From the latter, in combination with the pin diameter, d, and ordinate, t, of the base of the pin, the diameter of the shaft may be obtained according to formula

$$\frac{y}{d_1} = \sqrt[3]{\frac{t}{t_1}}.$$

The Crank Arm.—Prolong Ea to a_0 , and transfer the cord polygon, Dad, to the base line, BC,—that is, make the angle a_0BC = the angle Dad, and then will Ba_0C be, with horizontal ordinates, the surface of moments for the bending of the crank arm due to

for the bending of the crank arm due to the force, P. Also make $Cc_0 = Bb_0 = Cc$, then will the horizontal ordinates of the torsion rectangle, Bb_0c_0C , be the moments with which P acts to twist the crank arm about the axis, BC. This moment may again be combined with the bending moment to give an ideal moment, as before; $(a_0c') = \frac{3}{2}(a_0C)$, draw

point, H, the space, $Hi = \frac{5}{4}Bb_0$, and make $Hh = \frac{h_0h'}{h'} + \frac{h'i}{h'}$, which gives the surface of moments, Bb'hFC, for the crank arm. From this and from the diameter, d, and ordinate, l, we can construct the conoidal form of the arm, IKLM, according to formula

$$\frac{y}{d_1} = \sqrt[3]{\frac{t}{t_1}}.$$

From this, again, the profile, STUV, of an arm of rectangular section may be derived, the width, h, being assumed for any point, and the corresponding thickness, b, obtained from the value, y, of the conoid, according to the formula

$$\frac{b}{y} = 0.6 \left(\frac{y}{h}\right)^2.$$

If the position of the axis, BC, does not give satisfactory results, the operation must be repeated with a better relation of parts. By proceeding in this manner the dimensions of a crank and axle may be so determined that they will be equal in strength to the pin upon which the power is exerted.

For a similar treatment of other forms of cranks and cranked axles see Reuleaux's "Constructor."

CONNECTING RODS.

The body of a connecting rod may be made of wrought-iron, cast-iron, seel, or even of wood. In the latter case it is usually only subject to tension

If the rod is of circular cross-section of diameter, D, and the force of tension be P, we have the following relations:

wrought-iron,
$$\frac{D}{\sqrt{P}} = 0.015$$
; cast-iron, $\frac{D}{\sqrt{P}} = 0.03$; steel, $\frac{D}{\sqrt{P}} = 0.012$; oak, $\frac{D}{\sqrt{P}} = 0.06$.

These give stresses of 5600, 9500, 2800, and 400 pounds, respectively, or about two-thirds the value given for ordinary conditions.

For short connecting rods the formulas cited are all right for compression as well as for tension, but for long rods a greater diameter should be used to provide against buckling. Owing to the great variety of conditions, a factor of safety, m, must be introduced, and we have the following formulas, in which D is the diameter of the round rod; L, its length, in inches a parallel the total presume in recursion. inches; and P, the total pressure, in pounds:

wrought-iron or steel,
$$D=0.0164\sqrt[4]{m}\sqrt{L\sqrt{P}};$$
 cast-iron,
$$D=0.0195\sqrt[4]{m}\sqrt{L\sqrt{P}};$$
 wood,
$$D=0.034\sqrt[4]{m}\sqrt{L\sqrt{P}}.$$

We have for

$$m=1.5$$
 2.0 3.0 4.0 6.0 8.0 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 $\sqrt[4]{m}=1.11$ 1.19 1.32 1.41 1.56 1.68 1.78 1.97 2.11 2.24 2.34 2.51 2.66 2.78

For various services the following values of m may be taken: locomo-

tive engines, m=2 to 5; high-speed stationary engines, m=10; ordinary stationary engines, m=20 to 25; marine engines, m=30 to 40. The above dimensions are for the middle of the rod. When the rod is tapered both ways, it is made 0.8D at the crank ends and 0.7D at the crosshead end. For high-speed engines the size is usually made greatest at the crank end, being about 1.7D, the cross-head end being 0.7D. For rods of a rectangular cross-section, in which the depth of cross-section = h and thickness = b, we have, for any given ratio of h to b,

$$h = 0.0144 \sqrt[4]{m} \sqrt[4]{\left(\frac{h}{b}\right)^3} \sqrt{L\sqrt{P}}.$$

In order to simplify the use of this formula, the following table will be of use:

$$\frac{h}{b} = 1.5 \quad 1.6 \quad 1.7 \quad 1.8 \quad 1.9 \quad 2.0 \quad 2.1 \quad 2.2 \quad 2.3 \quad 2.4 \quad 2.5$$

$$\sqrt[4]{\left(\frac{h}{b}\right)^3} = 1.36 \quad 1.42 \quad 1.49 \quad 1.55 \quad 1.62 \quad 1.68 \quad 1.74 \quad 1.80 \quad 1.87 \quad 1.93 \quad 1.99$$

Example. Let P = 30,000 pounds, L = 72 inches, $\frac{h}{h} = 2.5$. Taking m=2 for a locomotive engine, we have

and
$$\sqrt[4]{m} = 1.19$$
, $h = 0.0144 \times 1.19 \times 1.99 \sqrt{72 \sqrt{30000}} = 3.8$ inches, and $b = \frac{3.8}{2.5} = 1.52$ inches.

Connecting=rod Ends.

The general proportions of a strap end for a connecting rod are given in the illustration. The dimensions are in terms of the modulus,

$$d_1 = d + 0.2 \text{ inch,}$$

d being the diameter of the journal or crank pin. The dimensions of the brasses are in terms of the unit.

$$e = 0.07d + 0.125$$
 inch.

The modulus, d_1 , is assumed on the basis of an ordinary overhung crank pin. For a cranked axle or an eccentric, however, the increased diameter would give unsuitable dimensions, and in such cases the modulus becomes

$$d'_1 = d_1 + \sqrt{\frac{b}{b^1}} \sqrt{\frac{d^1}{d}},$$

in which d_1 is the modulus for an overhung crank pin for the same pressure as the one under consideration; b and d being the corresponding values for the overhung pin and b^1 and d^1 those selected for the new one.

For heavy service the marine type of rod end is used, one form being shown in the illustration. Here the end of the rod is forged into a T, and the brasses, cored out as shown, form the bearing and the rod end, the bolts and steel cap forming the resistance to the driving stresses.

The dimensions here are based upon the diameter of the bolts at the bottom of the thread. The bolts are turned down, as shown, in order to distribute the strain and avoid breakage at the base of the thread.

Taking fibre stresses of 5000 pounds for wrought-iron and 6600 pounds for steel, we have, according to Unwin, for the diameter of the bolts at the bottom of the thread.

$$\delta = 0.02 \sqrt{P}$$
 for wrought-iron,
= $0.018 \sqrt{P}$ for steel;

the other dimensions being in terms of δ ; P being the one-half maximum pressure upon the piston, or the pressure upon one bolt.

For rods of moderate size, where a closed end is permissible, the following type is convenient, compact, and inexpensive.

The proportions of the above type of stub end are based on the modulus.

$$\delta = 0.15d + 0.2$$
 inch.

The brasses are based on $t = 0.08d + \frac{1}{16}$ inch. The diameter of the bolts is 0.02d = 0.25 inch, taking the nearest even size.

The taper of the wedge is made $\frac{1}{2}$ inch to the inch.

The square end brass is made with a small lip on each side on the end only, to prevent lateral movement; the collar on the pin prevents the lateral movement of the bevelled brass.

The brasses should not be left open upon the pin, but either fitted close,

and filed off when wear is to be taken up, or else a number of sheets of copper foil placed be-tween them before boring the hole, forming slivers which can be taken out one at a time when necessary.

A variety of connecting-rod ends will be found in Reuleaux's "Constructor" and Unwin's

"Machine Design."

 $\bar{3a}$

ECCENTRICS.

Eccentrics may be considered as cranks in which the diameter of the pin is greater than the sum of the crank circle plus the shaft diameter.

The breadth of the eccentric (properly the length of pin, l) is the same as that of the equivalent overhung journal subjected to the same pressure; for the depth of flange, a, we have

$$a = 1.5e = 0.07l + 0.2$$
.

from which the other dimensions can be determined as in the illustrations.

For some forms of shafts with multiple cranks or other obstructions the eccentrics cannot be made as shown before, but must be in halves, bolted

The eccentric straps may be proportioned as in the illustrations, the modulus being derived from that for the equivalent overhung journal, as

already described. The diameter of the bolts, δ , is found from the two moduli, as follows:

$$\delta = 0.33d_1 + 0.06d'_1.$$

The form on the left is intended to be made in cast-iron, and that on the right in wrought-iron. The most important feature in the operation of eccentrics is the maintenance of complete lubrication, as otherwise the high lineal velocity of the rubbing surfaces is apt to produce heating. In the form shown in the illustration the strap is made wider than the eccentric, and the lip is bevelled as shown, thus forming a circular channel on each side, in which the oil collects and is distributed over the

rubbing surfaces. When this form of strap is to be used in the horizontal position the strap should be divided at an angle of 45° with the horizontal, otherwise the oil will run out at the joint, when standing. In practice, cast-iron on cast-iron is found to give excellent results as to wear and smooth running.

CROSS-HEADS.

For a simple \top cross-head the dimensions shown in the illustration may be used. If P is the maximum load upon the rod the journals are to

be computed for a load of $\frac{1}{2}P$, and the depth, h, in the middle may be made $=2.5d+\frac{1}{14}A$. The thickness, b, may be determined from

 $b = 0.00035 \frac{PA}{h^2},$

which corresponds to a fibre stress of 8500 pounds

for wrought-iron.

The arrangement of cross-heads for use in connection with guide bars depends very much upon the form of guides employed. Some examples will serve to indicate the general proportions.

For four-bar guides the following design may be employed, the proportions being those given

tions being those given by Unwin. The length and diameter of the pin are determined by the pressure upon the rod, the diameter usually being about 0.8 the size

0.65 0.8 0.8 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.18 0.17 0.

for the crank pin, and the length equal to the diameter. The dimensions of the other parts are in terms of the pin diameter, d. The cross-head itself is of wrought-iron, with castiron slide blocks.

When but two guide bars are used the form of cross-head shown here may be employed.

The dimensions are in terms of the pin diameter.

In these cross-heads the length and width, λ and β , of the slides should be so proportioned that the pressure should not be more than 40 to 60 pounds per square inch. For large engines the slides may be fitted with bronze shoes and with setscrews or wedges for adjustment. If, however, the area is made large, the wear

is very slight, and no such provision is necessary.

In some engines of moderate size the guides are cast on the frame and

448 GEARING.

bored out in line with the cylinder. The cross-head shown below is an example designed for use with such guides. Numerous special forms of cross-heads will be found in Reuleaux's "Constructor" and Unwin's "Machine Design."

The pressure on the guides depends upon the total pressure on the piston-rod and upon the maximum angle which the connecting rod makes

with the line of the guides. Assuming that the greatest pressure occurs when the position of the crank is at right angles with the line of the guides, we have

$$P_1 = \frac{1}{\sqrt{n^2 - 1}} P_{\bullet}$$

in which P_1 is the pressure on the guide; P, the total pressure on the piston-rod; and n, the ratio of the length of the connecting rod to the radius of the crank. Thus, if the connecting rod be made 5 cranks in length, we have

$$P_1 = \frac{1}{\sqrt{25 - 1}}P = 0.204P.$$

If the pressure on the piston is 10,000 pounds, the greatest pressure on the guides will be 2040 pounds; and at 40 pounds per square inch a single slide-block should have an area of 51 square inches.

GEARING.

In the transmission of motion by toothed gearing it is necessary to know the number of teeth and their shape, as well as the dimensions of the cylinders, cones, or other figures upon which they are formed.

In all cases toothed gear-wheels are substitutes for smooth, rolling surfaces, the teeth being employed merely to obviate the slipping which

might otherwise take place.

If we consider two spur-gears in engagement with each other, we can imagine the teeth being made smaller and smaller in size and, at the same time, greater and greater in number, until they become indefinitely small and the surfaces become practically smooth. Such rolling surfaces constitute the pitch surfaces of the gear-wheels, and the aim of toothed-gearing design is to shape the teeth so that the rolling action of the pitch surfaces may be maintained and, at the same time, forces of determinate magnitude transmitted without slip. In discussing gear-teeth, therefore magnitude transmitted without slip. In discussing gear-teeth, therefore, the pitch circles, of which the rolling action is to be reproduced, are the basis upon which the teeth are constructed.

R = radius of pitch circle;

t = distance from centre to centre of adjacent teeth = circumferentialZ = number of teeth.

We then have

$$\frac{R}{t} = \frac{Z}{2\pi} = 0.15916Z.$$

When the gear-wheels are of large size and to be cast, made from wooden patterns, it is desirable to work to definite and convenient lineal pitch distances, in which case the pitch, t, is selected, and the corresponding radius, R, found for the given number of teeth, thus,

$$R = 0.15916Zt.$$

Thus, for a wheel of 75 teeth and 21/2 inches pitch, we have

$$R = 0.15916 \times 187.5 = 29.85$$
 inches,

and the pitch diameter = 2R = 59.70 inches.

In order to abridge the work of computation the following table may be used. It is only necessary to take out the number corresponding to the number of teeth and multiply it by the pitch to obtain the radius of the corresponding pitch circle. The pitch may be taken in any unit, inches, sixteenths of an inch, millimetres, etc., and the radius will be in the same unit.

Thus, for 75 teeth, we find opposite 70 and under 5 the number 11.94; and $11.94 \times 2.5 = 29.85$ inches, the same as before.

Table of Radii of Gear-wheels.

Multiply tabular number for given number of teeth by the circumferential pitch to obtain radius.

Z	0	1	2	3	4	5	6	7	8	9
0 10 20 30 40	1.59 3.18 4.77 6.37	.159 1.75 3.34 4.93 6.53	.318 1.91 3.50 5.09 6.68	.477 2.07 3.66 5.25 6.84	.637 2.23 3.82 5.41 7.00	.796 2.39 3.98 5.57 7.16	.955 2.55 4.14 5.73 7.32	1.114 2.71 4.30 5.89 7.48	1.273 2.86 4.46 6.05 7.64	1.432 3.02 4.62 6.21 7.80
50	7.96	8.12	8.28	8.44	8.59	8.75	8.91	9.07	9.23	9.39
60	9.55	9.71	9.87	10.03	10.19	10.35	10.50	10.66	10.82	10.98
70	11.14	11.30	11.46	11.62	11.78	11.94	12.10	12.25	12.41	12.57
80	12.73	12.89	13.05	13.21	13.37	13.53	13.69	13.85	14.01	14.16
90	14.32	14.48	14.64	14.80	14.96	15.12	15.28	15.44	15.60	15.76
100	15.92	16.07	16.23	16.39	16.55	16.71	16.87	17.03	17.19	17.35
110	17.51	17.67	17.83	17.98	18.14	18.30	18.46	18.62	18.78	18.94
120	19.10	19.26	19.42	19.58	19.73	19.89	20.05	20.21	20.37	20.53
130	20.69	20.85	21.01	21.17	21.33	21.49	21.65	21.80	21.96	22.12
140	22.28	22.44	22.60	22.76	22.92	23.08	23.24	23.40	23.55	23.71
150	23.87	24.03	24.19	24.35	24.51	24.67	24.83	24.99	25.15	25.31
160	25.46	25.62	25.78	25.94	26.10	26.26	26.42	26.58	26.74	26.90
170	27.06	27.21	27.37	27.53	27.69	27.85	28.01	28.17	28.33	28.49
180	28.65	28.81	28.97	29.13	29.28	29.44	29.60	29.76	29.92	30.08
190	30.24	30.40	30.56	30.72	30.88	31.04	31.19	31.35	31.51	31.67
200	31.83	31.99	32.15	32.31	32.47	32.63	32.79	32.95	33.10	33.26
210	33.42	33.58	33.74	33.90	34.06	34.22	34.38	34.54	34.70	34.85
220	35.01	35.17	35.33	35.49	35.65	35.81	35.97	36.13	36.29	36.45
230	36.61	36.76	36.92	37.08	37.24	37.40	37.56	37.72	37.88	38.04
240	38.20	38.36	38.51	38.67	38.83	38.99	39.15	39.31	39.47	39.63
250	39.79	39.95	40.11	40.27	40.42	40.58	40.74	40.90	41.06	41.22
260	41.38	41.54	41.70	41.86	42.02	42.18	42.34	42.49	42.65	42.81
270	42.97	43.13	43.29	43.45	43.61	43.77	43.93	44.09	44.25	44.40
280	44.56	44.72	44.88	45.04	45.20	45.36	45.52	45.68	45.84	46.00
290	46.15	46.31	46.47	46.63	46.79	46.95	47.11	47.27	47.43	47.59

For small pitches, especially for cut gearing, the so-called **Diametral Pitch** is much used.

Thus, we have, as before,

$$\frac{R}{t} = \frac{Z}{2\pi}; \text{ or } \frac{2R}{t} = \frac{Z}{\pi};$$

whence

$$Z = 2R \, \frac{\pi}{t}.$$

Or, the number of teeth is equal to the pitch diameter of the gear multiplied by π , divided by the circumferential pitch. By making the circumferential pitch an aliquot part of π , the relation of the number of teeth to the diameter may be very simply expressed. Thus, instead of making a gear of $\frac{1}{2}$ -inch pitch, the pitch may be made equal to

$$\frac{\pi}{6} = \frac{3.1416}{6} = 0.5236 \text{ inch,}$$

and we have

$$\frac{\pi}{t} = 6$$
 and $Z = 2R \times 6$,

so that for every wheel we have only to choose the diameter and multiply by 6 to obtain the number of teeth; or select the number of teeth and divide by 6 to obtain the diameter. In like manner we may choose pitches of π , $\frac{1}{\sqrt{2}\pi}$, $\frac{1}{\sqrt{2}\pi}$, $\frac{1}{\sqrt{2}\pi}$, etc., or, as they are commonly called, one pitch, two pitch, three pitch, etc., these really meaning the number of teeth corresponding to each inch in diameter of the wheel; hence, the name, Diametral Pitch.

Since such gears are cut with standard cutters, the fractional circumferential pitch is provided for in the making of the cutter, and need not be further considered.

For convenience in selecting the approximate size of tooth required, the following table, showing the lineal value of diametra; pitches, is given:

Circumferential pitch.	Diametral pitch.	· Circumferential pitch.	
Inch.		Inch.	
3.1416	6	.5236	
1.5708	7	.4488	
1.0472	8	.3927	
.7854	9	.3491	
.6283	10	.3142	
	Inch. 3.1416 1.5708 1.0472 .7854	Inch. 3.1416 6 1.5708 7 1.0472 8 .7854 9	

Thus, 3 diametral pitch is about equal to 1 inch circumferential pitch, 4 diametral pitch is a little more than ¾ inch, and so on. The diametral system simply throws the inconvenient fraction into the size of the gearcutter, and thus simplifies all the succeeding work.

The form of gear teeth is a subject to which much study has been given. Formerly, when each establishment made its own gear-cutters and designed its own tooth outlines, the question was of more practical importance than at the present time, when accurately-formed cutters are regular articles of merchandise, and when it is only necessary to indicate the diametral pitch and the number of teeth to enable the proper cutter to be selected.

Two systems are in general use, the epicycloidal and the involute, and their respective merits have been actively discussed. Practice has shown, however, that there is little real difference between them, but the facility with which the involute system adapts itself to the design of machines for automatically generating tooth outlines gives it practical advantages.

Epicycloidal teeth are generated in the following manner:

External Teeth (Fig. a).—Given the number of teeth, Z, and pitch, t, or ratio, $\frac{t}{\pi}$, of the wheel. Make $OP = R = \frac{Zt}{2\pi} = \frac{t}{2}Z\left(\frac{t}{\pi}\right)$, and the radius, r_0 , of the rolling circle, W = 0.875t, or $= 2.75\frac{t}{\pi}$; draw the outside circle of the teeth, K, with a radius = R + 0.3t, and the inside circle, F, with radius = R - 0.4t, and make the thickness of tooth $= \frac{1}{4}$ %t. Arc $Sb = \arg t$

ab; arc Sc = arc ic. Sa, the face curve, is generated by the rolling of W upon T; Si, the flank curve, by the rolling of W in T. For pinions of eleven teeth, Si becomes a straight line and radial. Pinions with as few as seven teeth can be made to work on this system, for although the flanks are undercut, they are still within the limits of the theoretical flank profile, as shown in the following illustration, where a 7-tooth pinion is shown with a rack tooth. The backlash is $\frac{1}{10}t$.

Internal Teeth (Fig. b).—The generation of internal teeth is similar to the preceding. The radius of base circle is -R, and the length of tooth above and below the pitch circle is 0.3t and 0.4t, as before; $r_0 = 0.875t = 2.75 \frac{t}{\pi}$, and the thickness of tooth $= \frac{19}{40}t$. The flank, Sa, is generated

by rolling W upon T, and the face, Si, by rolling W inside of T. In the case of a rack, $R = \infty$, Sa and Si then become similar portions

of the common cycloid.

In teeth of this form the line of action coincides with the rolling circles, the portion included being = $arc\ ba + the$ corresponding arc, b_1a_1 , of the opposing wheel, when both are external gears, and + the arc, ci, for an internal gear working with a spur gear. The duration of action, e, varies between 1.22 and 1.60.

Involute teeth are generated as follows:

The curve is developed by unwrapping a line from a base circle, which is concentric with and bears a definite relation to the pitch circle.

External and Internal Teeth.—Given the number of teeth, Z, and pitch, t, or ratio, $\frac{t}{\pi}$, for the required wheel. Make $OP = R = \frac{Zt}{2\pi} = \frac{t}{2Z}\left(\frac{t}{\pi}\right)$, and draw the outer and inner circles, giving the distances, f = 0.4t, k = 0.3t, above and below the pitch circle; also make the thickness of the tooth $= \frac{1}{4}8t$.

Draw the line, NPN_1 , at an angle of 75° with OP, and it will be tangent to the base circle, G, the radius of which = r = 0.966R = 0.154Zt =

Limiting case of epicycloidal gear teeth, showing 7-tooth pinion engaged with

 $0.483Z\left(\frac{t}{\pi}\right)$. If, now, we unwrap the line, NP, upon the circle, G, from P outward to a and inward to g, the path, aPg, of the point, P, will be the

required tooth outline, which for wheels of fewer than 55 teeth may be prolonged by a radial line to reach the bottom circle.

For two equal wheels of 14 teeth, e is only a little greater than unity; it varies between 1 and 2.5.

Rack Teeth.—The profile, aPi, is straight and makes an angle of 75° with the pitch line, T. The angle 75° can readily be laid off by using the drawing triangles of 45° and 30° together.

For low-numbered pinions on the involute system care must be taken to avoid interference. Thus, in the illustration below, in which a 12-tooth

pinion is shown engaged with a rack, it will be seen that the radial flanks of the pinion are crossed by the dotted line of action of the rack teeth, as at Ag. This may be remedied by reducing the length of the rack teeth, or by rounding off their points.

Diametral Pitch Formulas.

Brown & Sharpe Manufacturing Company.

Let

P = the diametral pitch; D' = the pitch diameter; D = the outside diameter; N = the number of teeth; V = the velocity ratio; d' = the pitch diameter; a = the number of teeth; v = the number of teeth; v = the velocity ratio; Dinion. These wheels run together. These wheels run together. These wheels run together.

a =distance between the centres of the two wheels;

b =the number of teeth in both wheels.

Formulas.

$$b = 2aP; \qquad n = \frac{PD'V}{v}; \qquad d = \frac{2a(n+2)}{b};$$

$$n = \frac{bV}{v+V}; \qquad V = \frac{nv}{N}; \qquad a = \frac{b}{2P};$$

$$N = \frac{nv}{V}; \qquad v = \frac{NV}{n}; \qquad D' = \frac{2av}{v+V};$$

$$n = \frac{NV}{v}; \qquad v = \frac{PD'V}{n}; \qquad d' = \frac{2aV}{v+V};$$

$$N = \frac{bv}{v+V}; \qquad D = \frac{2a(N+2)}{b}; \qquad a = \frac{D'+d'}{2}.$$

Circular Pitch.

With its Equivalent in Diametral Pitch, Depth of Space, and Thickness of Tooth.

Circular pitch.	Diametral pitch.	Thickness of tooth on pitch line.	Depth to be cut in gear.	Addendum.
Inch.		Inch.	Inch.	Inch.
6	.5236	3.0000	4.1196	1.9098
5	.6283	2.5000	3.4330	1.5915
4	.7854	2.0000	2.7464	1.2732
31/2	.8976	1.7500	2.4031	1.1140
3	1.0472	1.5000	2.0598	.9550
23/4	1.1424	1.3750	1.8882	.8754
21/2	1.2566	1.2500	1.7165	.7958
21/4	1.3963	1.1250	1.5449	.7162
2	1.5708	1.0000	1.3732	.6366
17/8	1.6755	.9375	1.2874	.5968
13/4	1.7952	.8750	1.2016	.5570
$1\frac{5}{8}$	1,9333	.8125	1.1158	.5173
$1\frac{1}{2}$	2.0944	.7500	1.0299	.4775
13/8	2.2848	.6875	.9441	.4377
11/4	2.5133	.6250	.8583	.3979
11/8	2.7925	.5625	.7724	.3581
1	3,1416	.5000	.6866	.3183
15 16	3.3510	.4687	.6437	.2984
7/8	3.5904	.4375	.6007	.2785
13 16	3.8666	.4062	.5579	.2586
3/4	4.1888	.3750	.5150	.2387
11 16	4.5696	.3437	.4720	.2189
5/8	5.0265	.3125	.4291	.1989
9 16	5.5851	.2812	.3862	.1790
1/2	6.2832	.2500	.3433	.1592
716	7.1808	.2187	.3003	.1393
3/8	8.3776	.1875	.2575	.1194
.5 16	10.0531	.1562	.2146	.0995
1/4	12.5664	.1250	.1716	.0796
1/8	25.1327	.0625	.0858	.0398
116	50.2655	.0312	.0429	.0199

Diametral Pitch.

With its Equivalent in Circular Pitch, Depth of Space, and Thickness of Tooth.

Diametral pitch.	Circular pitch.	Thickness of tooth on pitch line.	Depth to be cut in gear.	Addendum.
	Inch.	Inch.	Inch.	Inch.
1/2	6.2832	3.1416	4.3142	2.0000
3/4	4.1888	2.0944	2.8761	1.3333
1	3.1416	1.5708	2.1571	1.0000
11/4	2.5133	1.2566	1.7257	.8000
$1\frac{1}{2}$	2.0944	1.0472	1.4381	.6666
13/4	1.7952	.8976	1.2326	.5714
2	1.5708	.7854	1.0785	.5000
21/4	1.3963	.6981	.9587	.4444
21/2	1.2566	.6283	.8628	.4000
23/4	1.1424	.5712	.7844	.3636
3	1.0472	.5236	.7190	.3333
3½	.8976	.4488	.6163	.2857
4	.7854	.3927	.5393	.2500
5	.6283	.3142	.4314	.2000
6	.5236	.2618	.3595	.1666
7	.4488	.2244	.3081	.1429
8	.3927	.1963	.2696	.1250
9	.3491	.1745	.2397	.1111
10	.3142	.1571	.2157	.1000
11	.2856	.1428	.1961	.0909
12	.2618	.1309	.1798	.0833
14	.2244	.1122	.1541	.0714
16	.1963	.0982	.1348	.0625
18	.1745	.0873	.1198	.0555
20	.1571	.0785	.1079	.0500
22	.1428	.0714	.0980	.0455
24	.1309	.0654	.0898	.0417
26	.1208	.0604	.0829	.0385
28	.1122	.0561	.0770	.0357
30	.1047	.0524	.0719	.0333
32	.0982	.0491	.0674	.0312
36	.0873	.0436	.0599	.0278
40	.0785	.0393	.0539	.0250
48	.0654	.0327	.0449	.0208

Strength of Gear Teeth.

(Lewis.)

W =load transmitted, in pounds;

p = circular pitch;

f = face;

y = factor for different number and forms of teeth;

s =safe working stress of material.

W = spfy.

	· Val	ue of facto	or, y.		Value of factor, y.					
Number of teeth.	Involute 20°.	Involute 15° cycloidal.	Radial flanks.	Number of teeth.	Involute 20°.	Involute 15° cycloidal.	Radial flanks.			
12	.078	.067	.052	27	.111	.100	.064			
13	.083	.070	.053	30	.114	.102	.065			
14	.088	.072	.054	34	.118	.104	.066			
15	.092	.075	.055	38	.122	.107	.067			
16	.094	.077	.056	43	.126	.110	.068			
17	.096	.080	.057	50	.130	.112	.069			
18	.098	.083	.058	60	.134	.114	.070			
19	.100	.087	.059	75	.138	.116	.071			
20	.102	.090	.060	100	.142	.118	.072			
21	.104	.092	.061	150	.146	.120	.073			
23	.106	.094	.062	300	.150	.122	.074			
25	.108	.097	.063	Rack	.154	.124	.075			

Safe Working Stress, s, for Different Speeds.

		Speed of teeth, in feet, per minute.												
Material.	100 or less,	200	300	600	900	1200	1800	2400						
Cast-iron	8000 20000	6000 15000	4800 12000	4000 10000	3000 7500	2400 6000	2000 5000	1700 4300						

When great strength is required, and the pressure is always in one direction only, the teeth may be shaped with a much greater angle of curvature on the back than on the working faces, it being only necessary that the back outlines clear each other properly. This may be done by making the working faces of the teeth according to the epicycloidal form, as already described, and the backs of the teeth of the involute curve, using an angle of 53° instead of 75°, as in the usual method. This is equivalent to the use of a generating circle for the involute of a diameter of 0.8 times the pitch diameter of the gear-wheel. The so-called "thumb-shaped" teeth thus derived are sharp on the point and thick at the base, and are much stronger than the ordinary form of teeth.

There has been much controversy as to the relative merits of epicycloidal and involute teeth, but in actual practice there is little difference. With wheels properly proportioned to their work, and especially with the correct relations of the axes firmly maintained, either form answers all practical requirements fully. The greater convenience with which involute teeth may be made, especially in the machines in which the tooth profile is automatically generated, gives it advantages in construction which in most cases far outweigh any points of superiority which have been advanced for the epicycloidal system.

Bevel Gears.

When the axes between which motion is to be transmitted are not parallel, but intersect each other, the gear teeth must be formed upon conical surfaces. Such gears are broadly called bevel gears, and when the shafts form a right angle with each other and the wheels are equal to each other in diameter they are called mitre gears.

The geometrical figures, which are formed by one cone rolling upon another, require that both cones should have a common apex. The surface thus developed is called a spherical cycloid. Of these there are five particular forms, as with the plane cycloids, the latter being really those for a cone with an apex angle of 180°.

for a cone with an apex angle of 180°. The spherical cycloid is very similar in form to the plane cycloid, as are

in form to the plane cycloid, as are also the corresponding evolutes.

The use of the spherical cycloid for the formation of bevel gear teeth would involve many difficulties. In order to construct such teeth it is, therefore, common to use the method (first devised by Tredgold) of auxiliary circles, based upon the supplementary copes and enabling the mentary cones, and enabling the teeth to be laid out in a similar manner to those of spur gears. The auxiliary circles for the bevel gears,

having the same pitch, their radii being respectively r and r_1 , the elements BS and CS of the supplementary cones. For any given angle, a, between the axes, the radius, r, and the number of teeth, 3, for the auxiliary circle can be determined from the radii, R and R_1 , and tooth numbers, Z and Z_1 , by the following formula:

$$\frac{r}{R} = \frac{\sqrt{R^2 + R_1^2 + 2RR_1 \cos a}}{R_1 + R \cos a},$$
$$\frac{z}{Z} = \frac{\sqrt{Z^2 + Z_1^2 + 2ZZ_1 \cos a}}{Z_1 + Z \cos a}.$$

$$\frac{r}{R} = \frac{\sqrt{|R^2+R_1|^2}}{R_1}, \qquad \frac{z}{Z} = \frac{\sqrt{|Z^2+Z_1|^2}}{Z_1}, \qquad \frac{r}{r_1} = \left(\frac{n_1}{n}\right)^2.$$

Example. A pair of bevel gears have 30 and 50 teeth, and an angle between axes $\alpha=60^{\circ}$; hence, $\cos\alpha=\frac{1}{2}$, and we have for the auxiliary circle of the 30-tooth gear

$$z = 30 \frac{\sqrt{30^2 + 50^2 + 2\cdot 30\cdot 50\cdot 0.5}}{50 + 30\cdot 0.5} = 6 \frac{\sqrt{4900}}{13} = 32.3, \text{ say } 32.$$

For the 50-tooth gear we have, also

$$z_1 = 50 \frac{\sqrt{4900}}{30 + 50 \cdot 0.5} = 64.$$

From these numbers and the given pitch the auxiliary circles can be

laid off and the teeth drawn.

Low tooth numbers are not available for bevel gears, since the errors which are involved in the method of auxiliary circles become disproportionately great. By using not fewer than 24 teeth for the bevel gear a minimum of 28 for the auxiliary circle is obtained, and the evolute system can be used to advantage. This form of tooth is best adapted for this purpose, on account of its simplicity of form, notwithstanding the minor defects which have already been noticed.

Owing to the fact that the form and shape of teeth on bevel gears vary along the face of the tooth, such gears cannot be cut theoretically correct by rotating cutters. When such cutters are used an approximate form is obtained, and filing must be resorted to in order to correct the shape of the At the present time, large bevel gears are usually made by planing the teeth, the tool being guided by a former, while small gears are cut on machines in which the tooth outlines are generated by the movement of The which the toth outlines are generated by the movement of the gear blank under the cutter, according to the method first devised by Professor Hermann, of Aix-la-Chapelle, in 1877, and employed in the ingenious machines of Bilgram and of Warren.

The whole subject of the form and action of gear teeth is thoroughly discussed in Grant's "Handbook on the Teeth of Gears," Beale's "Practical Treatise on the Teeth of Gears," Reuleaux's "Constructor," Unwin's "Machine Design," and numerous other standard works.

Spiral Gears.

When the axes between which motion is to be transmitted are not parallel to each other, and yet do not intersect, gears with spiral teeth are usually employed.

There are a number of useful variations of spiral gears. In the illustration is shown a pair of wheels, A and B, both with left-hand spirals and corresponding tooth profiles. The pitch angles, y and y1, are so chosen that at the point of contact the pitch cylinders have a common tangent, so that if a be the angle of inclination of the axes, $\gamma + \gamma_1 + a = 180^{\circ}$. If

we indicate by v and v_1 the circumferential velocity in the direction of the tangent and normal, respectively, we have

$$rac{v_1}{v}=rac{\sin\gamma}{\sin\gamma_1}$$
, whence $rac{n_1}{n}=rac{R\sin\gamma}{R_1\sin\gamma_1}=rac{Z}{Z_1}$.

The normal pitches, $\tau=t\sin\gamma$ and $\tau_1=t_1\sin\gamma_1$, must be equal to each other, whence $t_1=\frac{\sin\gamma_1}{\sin\gamma}$.

As indicated by the components of velocity, v' and v_1' , there is an end, long-sliding action of the teeth upon each other, with a velocity

$$c' = v' + v_1' = c(\cot \gamma + \cot \gamma_1).$$

This sliding consumes power and causes wear, and will be at a mini-

mum when v' and v_1' are equally great,—that is, when $\gamma = \gamma_1$.

With regard to the choice of γ and γ_1 , the conditions may be so taken that the position of the coinciding tangents of the two spirals shall be slightly before or slightly after the actual line of contact, but as close as may be possible. The position of the line of contact may be stated as follows:

$$\frac{R}{R_1} = \frac{\cot \gamma}{\cot \gamma_1} = \frac{\frac{n_1}{n} + \cos \alpha}{\frac{n}{n_1} + \cos \alpha};$$

as also

$$\cot \gamma = \frac{\sin \alpha}{\frac{n}{n_1} + \cos \alpha}.$$

For $\alpha = 90^{\circ}$ we have $\cot \gamma = \frac{n_1}{n}$. Such spiral wheels, when the teeth are well made, transmit motion very smoothly, but the surface of working contact is very small. One of the most important applications is that of the worm and worm-wheel. In this case $\alpha = 90^{\circ}$ and Z = 1, the teeth of the wheel, R_1 , being inclined at an angle, γ , with the edge of the wheel; whence $\tan \gamma = \frac{t}{2\pi R} = 0.15916 \frac{t}{R}$. The velocity ratio of transmission is

 $n_1: n=Z: Z_1.$ The subject of spiral gears is extensively discussed in Reuleaux's "Constructor" and in Halsey's "Spiral Gearing." See, also, "Transactions of the American Society of Mechanical Engineers," 1886, Vol. VII., p. 273.

Proportions of Gear-wheels.

Gear-wheels may be divided into two classes:

Hoisting Gears, such as are used in cranes and similar machinery,

Transmission Gears, used to transmit power continuously at a determinate velocity.

We may include under the term Hoisting Gears all those having a linear velocity at the pitch circle of not more than 100 feet per minute, and under Transmission Gears all those running at a higher velocity.

For a pitch, t, face, b, length of teeth, t, and base thickness of tooth, h, we have for a tooth pressure, P, corresponding to a stress, S, the general formula:

 $bt = 6\frac{P}{S}\left(\frac{l}{t}\right)\left(\frac{t}{h}\right)^2;$

and for a length of 0.7t and a thickness of 0.5t we have

$$bt = 16.8 \frac{P}{S}$$
.

This assumes that the resistance of the teeth is proportional to their cross-section, which is also equally true for those which have the same ratio of b to t to each other, a condition which is often of much service in practice.

For a hoisting gear of cast-iron let

(PR) = the statical moment of the driving force;

Z = the number of teeth;

R = its previously-determined pitch radius, in inches;

t =the pitch.

We have for the given dimensions

$$t = 0.230 \sqrt[3]{\frac{(PR)}{Z}}, \qquad \qquad \frac{t}{\pi} = 0.0730 \sqrt[3]{\frac{(PR)}{Z}};$$

$$t = 0.045 \sqrt{\frac{(PR)}{R}}, \qquad \qquad \frac{t}{\pi} = 0.0145 \sqrt{\frac{(PR)}{R}};$$

the face, b, being made

$$b = 2t$$
.

These are intended to give a fibre stress, S, of about 4200 pounds. The actual stress is properly somewhat less, because the thickness of the tooth at the base is usually more than $\frac{1}{2}t$.

Since the value of $\frac{PR}{R}$ is the same as the pressure, P, we can use the

above formulas in cases in which P only is given, as for rack teeth. In proportioning transmission gears, in which the velocity is greater than 100 feet per minute, the greater liability to shock with increased speed renders it desirable to assume a lower working fibre stress, S, as the cir-

cumferential velocity, v, increases. For cast-iron we may take

$$S = \frac{9\,600\,000}{v + 2164},$$

in which v is the lineal velocity, in feet, per minute. For steel, S may be taken $3\frac{1}{3}$ times, and for wood, $\frac{6}{10}$ times the value thus obtained. For

Material.	v = 100	200	400	600	800	1000	1500	2000	2500
Cast-iron Steel Wood	S = 14112	13520	12467	11565	10782	10103	8725	7665	2068 6886 1240

The velocity, v, may be obtained when n and R (the latter in inches) are given, by the following formula:

$$v = \frac{2\pi Rn}{12} = 0.5236Rn.$$

It is also found that the breadth of face, b, should increase with the increase of P. Tredgold states that the pressure per inch of face, $\frac{P}{b}$, should not exceed 400 pounds. This, however, is not to be followed implicitly, since pressures as high as 1400 pounds have been successfully used in practice. It is better, however, to consider the question of wear from the product of $\frac{P}{b}$ into n, which should not exceed a predetermined maximum.

It is found that if $\frac{P}{h} \times n$ exceeds 67,000, the wear becomes excessive. In a

pair of wheels where the teeth of both are made of iron, the greatest wear comes upon the teeth of the smaller wheel. In this case we may make

$$\frac{Pn}{b}$$
 = not more than 28,000,

and, if possible, it should be taken at less than this value. For smaller forces this constant, which we may call the coefficient of wear and designate as A, may readily be made as low as 12,000, and even 6000, without obtaining inconvenient dimensions. When the teeth are of wood and iron the wear upon the iron may be neglected, as the wear comes almost entirely upon the wooden teeth. For wooden teeth the value of A should not exceed 28,000, and is better made about 15,000 to 2,000.

It must be remembered that the different values of A do not appreciably affect the strength, but rather control the rapidity of wear. When sufficient space is available, and a low value can be given to the coefficient of wear, it is advisable to do so; if this cannot be done, the coefficient which is selected will give an indication of the proportional amount of wear which

may be expected.

In cases where a number of wheels gear into one other wheel it is better to take, instead of the number of revolutions of the common wheel, the number of tooth contacts.—that is, the product of the revolutions and number of wheels in the group.

If R is given, as is often the case with water-wheels, fly-wheels, etc., P is also becomes a superscript of the product of the revolutions.

is also known; and since A can be chosen, we have, taking N to be the

horse-power transmitted,

 $b = \frac{Pn}{A} = \frac{63000}{A} \cdot \frac{N}{R};$ $t = \frac{16.8P}{Sh} = \frac{16.8A}{Sn}$.

hence.

If, however, as occurs in many cases, R is not previously determined, the choice of the number of teeth, Z, is unrestricted. In such cases we have for the width of face, b,

$$b = \frac{396\ 000}{A} \cdot \frac{N}{Zt}.$$

For transmission gears the minimum number of teeth should not be fewer than 20, in order that the unavoidable errors of construction shall not cause excessive wear; for quick-running gears it is desirable to have still more teeth. The gear-wheels on high-speed turbines seldom have fewer than 40, and often as many as 80 teeth. When wood and iron teeth are used the least wear is produced when the wooden teeth are on the driver, because the action begins at the base of the tooth and passes towards the point, while on the driven gear the action is reversed.

Proportions of Gear-wheel Parts.

The Rim.—The ring of metal upon which the teeth of a gear-wheel are placed is called the rim. For cast-iron spur gears the thickness of the rim is given by the formula

 $\delta = 0.4t + 0.125$ inch.

The rim is thickened in the middle, or at one edge, to § δ , and also stiffened by a rib, and for gears of fine pitch the section of the rim is curved, which harmonizes well with arms of oval section. Accordingly, a pitch of 1 inch would give a rim thickness $\delta=0.4$ inch +0.125 inch =0.525 inch, or a little over ½ inch; and for a pitch of ½ inch, $\delta=0.325$ inch.

For bevel gears of cast-iron the rim is made $\S\delta$ thick at the outer edge, and of the various forms shown in the illustrations.

For wooden teeth it is necessary to have a deeper and stronger rim, the dimensions being dependent somewhat upon the method of inserting the

teeth. The proportions are shown in the illustrations. For very wide faces the wooden teeth are made in two pieces and a stay bar cast in the mortise.

Small pinions are often east solid, and when subjected to heavy pressures are strengthened by shrouding, and sometimes this shrouding is turned down to the pitch line.

Wheel Arms.—The arms of gear-wheels are made according to the following forms, dependent upon the kind of rim used.

Ribbed sections are made sometimes as shown in the dotted lines, as may be most convenient in moulding. Oval sections have the thickness,

 β , of the arm generally made one-half the width, h. A good proportion for the arms is obtained when their number, A, is made as follows:

$$A = 0.55 \sqrt{Z} \sqrt[4]{t}.$$

From these we obtain the following:

$$A = 3$$
 4 5 6 7 8 10 12 $Z\sqrt{t} = 30$ 53 83 119 162 211 330 475

For a gear-wheel of 50 teeth and 2-inch pitch we have $Z\sqrt{t}=50\sqrt{2}=50\times1.414=70$, and this lies between 53 and 83; being nearer the latter, we give the wheel five arms. If the pitch had been $\frac{3}{4}$

inch, and the same number of teeth, $Z_1/I = 501/0.75 = 50 \times 0.866 = 48.3$, or between three and four arms, the latter number being used in practice. The width of arm, h, in the plane of the wheel is somewhat a matter of judgment, but may suitably be made according to the ratio, h = 2 to 2.5t, when the thickness, β , may be obtained from the following formula:

$$\frac{\beta}{h} = 0.07 \frac{Z}{A} \left(\frac{t}{h}\right)^2$$
.

Should this formula give a thickness either too great or too small for convenience in casting, another value for $\frac{h}{t}$ must be taken and the calculation repeated. The following table will assist in this operation.

Table of Gear-wheel Arms.

h	Value of $\frac{\beta}{b}$, when												
$\frac{h}{t}$	$\frac{Z}{A} = 7$	9	12	16	20	25	30	35	40				
1.50	.20	.28	.37	.50	.62	.78	.93	1.08	1.24				
1.75	.16	.21	.27	.37	.46	.57	.69	.80	.91				
2.00	.12	.16	.21	.28	.35	.44	.53	.61	.70				
2.25	.10	.12	.17	.22	.28	.35	.41	.48	.55				
2.50	.08	.10	.13	.18	.22	.28	.34	.39	.45				
2.75	.06	.08	.11	.15	.18	.23	.28	.32	.37				
3.00	.05	.07	.09	.12	.16	.19	.23	.27	.31				

The taper of the arms may be made as follows: the ribs at the rim are made slightly narrower than the breadth of face, b, and at the hub equal to, or slightly greater, than b. For arms of oval section, h may be made equal 2t at the centre of the wheel, tapering to two-thirds this width at the rim.

Hub.—The thickness, w, of the hub may be made

w = 0.4h + 0.4 inch.

The above proportions are those recommended by Reuleaux.

Efficiency of Gearing.

The efficiency of spur gearing depends upon the lineal speed at the pitch line, while for spiral and worm gearing the angle of the teeth must also be taken into account.

The accompanying diagram, from experiments by William Sellers & Co., Incorporated, gives the efficiencies for practical cases.

For all ordinary calculations the following efficiencies may be used:

Cut spur gears	0.96
Cast spur gears	1 04
Cut bevel gears	95
Cast bevel gears).92

Table of Proportions for Gear-wheels. The Yale & Towne Manufacturing Company.

18,	×	E.	:	:	:	:	:	:	:	:	:	10.8	:	:	:	:	:	:	:	:	:	:	:	:	:
nsior		×	228	213	201	_	187	181	170	169	163	160	155	151	149	142	138	133	126	115	113	110	107	103	66
dime rms.	7	E.	:	:	:	6.5	:	2.5	:	:	:	9.0	:	:	:	:	12.5	:	14.5	17.0	:	:	:	:	
and of a	1	Ŋ.	178	166	157	155	146	141	133	132	126	124	120	117	116	110	108	104	86	88	88	98	83	81	12
ı, N,		E.	:	:	:	5.5	:	6.5	:	:	:	7.5	:	:	:	:	10.5	:	12.0	14.5	:	:	:	:	
teet)	9	×.	134	125	118	117	110	106	100	66	95	93	96	88	87	83	81	78	74	67	99	64	62	61	28
number of teeth, N, and dime for different numbers of arms.		E.	:	:	:	4.5	:	5.5	:	:	:	6.5	:	:	:	:	9.0	:	10.01	12.5	:	:	:	:	:
umb r diff	5	N.	96	6	85	84	79	9/	71	2	89	29	65	63	62	59	52	55	25	48	47	46	44	43	41
um n E, fo		E.	:	:	:	:	:	:	:	:	:	:	:	:	:	:	7	:	:	11	:	:	:	:	-
Maximum number of teeth, N, and dimensions, E, for different numbers of arms.	4	Ŋ.	64	09	26	26	23	51	48	47	45	44	43	42	42	33	39	38	35	32	32	31	30	53	28
M		Web.	39	36	34	34	32	99	53	53	27	22	56	56	25	24	23	23	21	19	19	19	18	18	16
		L.						-	tel	iq		11: 40	əπ	ısi	<u>a</u>	+	Æ	=	7						
	Hub.	T.							81.	.0 -	+ ,	V A	1 T	to!	iq	91	.0	=	\boldsymbol{L}						
		S.	377	U(0)	18	16	20,02	2017	327	6 1	313	%	64100 H 04	100	11	% **	6,0	6/10 17/0	10/0	11%	132	13	132	13%	$1\frac{7}{1^6}$
		Web.	2(3)	377	16	C 21	%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	63/03 (0)(0)	8/4	(C)(C)	C3100 12/01	1/8	0)(0)	112	$1\frac{1}{32}$	1_{16}	13%	11/4	135	137	133	111	$1\frac{1}{16}$	$1\frac{1}{16}$
		B_1 .	16	%	101	8/4/	163	1/8	(C)(C)	200	$1\frac{1}{16}$	11/8	$1\frac{3}{16}$	$1_{\frac{7}{32}}$	174	133	132	132	13/4	$2\frac{3}{32}$	$2\frac{3}{16}$	232	$2\frac{7}{16}$	25/8	$2\frac{13}{16}$
	Arms.	B.	64(c) rcles	1/8	_	$1\frac{1}{16}$	11%	11/4	13%	133	11/2	1 3	111	13/4	$1\frac{1}{16}$	2	$2\frac{3}{32}$	21/4	21%		31/8	31/4	31/2	33/4	4
of	4	A_1 .	13 32 N	174	1323	$1\frac{1}{32}$	132	13/4	1329	115	$2\frac{3}{32}$	$2\frac{7}{32}$	$2\frac{11}{32}$	$2\frac{7}{16}$	21/2	$2\frac{13}{16}$	$2\frac{15}{16}$	3 5	31/2	43	433	4 19	430	514	532
sions		4.	1 9 1	2000	2	$2\frac{3}{32}$	$2\frac{9}{32}$	21/2	23/4	225	3	37,8	$3\frac{1}{32}$	31/2	313	4	4-3	41%	5	9	632	63%	1	71/2	œ
Dimensions of		R_1 .	10 (c)	10	13	C)(2)	r 03	7,4	ත ^භ	0 0	10	16	100	100	%	C)	-1 C	16	70	6)8	200	C4(C)	111	%	13
D		R.	88	16	7,00	374	1.6	2%	177	11	8/4	C3 C3 FC C3	C4 C2	1/8	O)(0)	_	1_{16}^{-1}	11/8	11/4	11/2	1 3	15%	13/4	17/8	2
	Rim.	F.	1 9 1	C5(C)	2	$2\frac{3}{32}$	232	21/2	23/4	223	3	33%	$3\frac{1}{32}$	31/2	532	4	43	41/2	20	9	632	63/2	7	71/2	00
		D.	(C)(C)	$1\frac{3}{16}$	132	$1\frac{1}{32}$	$1\frac{7}{16}$	$1\frac{9}{16}$	$1\frac{1}{16}$	111	113	17/8	131	$2\frac{1}{16}$	$2\frac{3}{32}$	$2\frac{5}{16}$	$2\frac{13}{32}$	2 3	213	3 5	315	$3\frac{9}{16}$	327	432	411
		೮	(c3	1 1 (C)	e 1	300	200	111	03(0)	84	E 10	0,00	1/8	0/03	15	_	$1\frac{1}{16}$	11/8	11/4	135	132	132	111	$1\frac{13}{16}$	$1\frac{15}{16}$
		Thick- ness.	.37	.42	.47	.50	.54	09:	.65	.67	.72	.75	08:	.84	98.	96.	1.00	1.08	1.20	1.44	1.51	1.56	1.68	1.81	1.93
	Teeth.	Flank.	.32	.36	.40	.42	.45	.49	£0:	.55	.58	.61	.65	.67	69.	.77	08.	98.	.95	1.13	1.18	1.22	1.31	1.40	1.49
		Adden-	.25	.29	.35	.33	.36	.40	.44	.44	.48	.50	.53	96.	.57	.64	.67	.72	.80	.95	1.00	1.04	1.11	1.19	1.27
į,		Diam- etral.	4.00	3.50	3.14	3.00	2.75	2.50	2.28	2.25	2.08	5.00	1.88	1.80	1.75	$\vec{-}$	1.50	1.40	1.25	1.05	1.00	.97	. 30	.84	. 79
Pitch		Circu-	.79	8.	1.00	1.05		1.25		1.40	1.50	1.57	1.68	1.75	1.80	8	2.09	2.25	2.50	3.00	3.14	3.25	3.50	3.75	4.00

Proportions of Gear-wheels.

The following proportions are those of the Yale & Towne Manufacturing Company:

See table opposite.

BELTS AND PULLEYS.

Where an exact velocity ratio of transmission is not essential, and when the distance between shafts is too great for a positive means of transmission, belting and pulleys are extensively employed. The question of the transmitting capacity of belting is one upon which many discussions have been held, and the differences of opinion which have been found serve to emphasize the fact that the conditions under which belts are used are too varying to permit absolute rules and formulas to be employed. For a full discussion of the elements which enter into the problems of belt transmission reference must be had to such works as Reuleaux's "Constructor," Unwin's "Machine Design," and especially to the valuable practical paper of Mr. J. W. Taylor in the "Transactions of the American Society of Mechanical Engineers," Vol. XV., p. 204. We shall here give the general working principles, which will serve to guide practical installations.

The power which can be transmitted by a belt is measured by the pull and by the lineal velocity at which the belt travels. The pull is limited by the strength of the belt and by the friction upon the pulleys, while the lineal velocity is dependent upon the revolving speed of the pulleys and upon their diameter. If it is attempted to increase the strength by increasing the thickness, it is possible that the stiffness of the belt will prevent it from wrapping closely about the pulley, and hence the friction

468 BELTING.

will be reduced. If the speed is made too high the centrifugal force will act to throw the belt out of close contact with the pulley, and the friction will again be reduced. There are, therefore, several practical limits

within which satisfactory belt transmissions should be kept.

within which satisfactory belt transmissions should be kept.

The tension which can be maintained in actual practice ranges from about 30 to 60 pounds per inch of width. If a high tension is put upon a belt transmission when it is installed it will gradually diminish, owing to stretch, and, unless some tightening device is employed, the belt will, before long, slacken until the stress upon it becomes low enough to check further stretching. If this tension is sufficient to transmit the power the transmission will run well and give but little trouble, while if the load is too heavy the belt will slip, and it must either be tightened or a change made in width or speed.

If the power to be transmitted is given in horse-power, we have 33,000 foot-pounds per minute to consider. If the belt tension is to be 30 pounds per inch of width, we must, therefore, have a speed of 1100 feet per minute. If the speed is one-half as much, the width must be twice as great, and so the given elements must be taken and the others found. Usually, the speed and the power are given and the width required.

Usually, the speed and the power are given and the width required.

$$w =$$
width, in inches;
 $s =$ speed, in feet, per minute;
 $N =$ horse-power;
 $t =$ tension, per inch width of belt;

we have

$$N = \frac{tws}{33000};$$

$$w = \frac{33000N}{ts};$$

$$s = \frac{33000N}{ts}.$$

Or, if we have given the width, speed, and horse-power, the minimum tension which can be reached before slipping will occur is

$$t = \frac{33000N}{ws}.$$

Thus, if a belt 10 inches wide, running at 4000 feet per minute, is transmitting 50 horse-power, the tension is $\frac{33000 \times 50}{10 \times 4000} = 41.25$ pounds.

The tension available for transmitting power is really the difference between the tensions of the tight and slack sides, since there must always be tension enough on the slack side to secure sufficient friction on the pulley to keep the belt from slipping.

If we take the formula

$$N = \frac{tws}{33000},$$

and write it

$$N = \frac{t \times 12}{33000} \times \frac{ws}{12},$$

the last term will represent square feet per minute passing a given point. By substituting any value for t, and making N=1, we can thus find how many square feet per minute will transmit a horse-power. Good, practical belting rules are: For single belts, 60 square feet per minute equals 1 horse-power; and for double belts, 40 square feet per minute equals 1 horse-power. These correspond to 45 pounds and 68 pounds tension per inch of width, respectively,—tensions which are readily maintained in practice. These values are based on the assumption that the belt embraces 180° of each pulley. If the arc of contact is less, the power transmitted may be taken in the following proportions:

Percentage of Efficiency for Various Arcs of Contact.

900	100°	110°	120°	1300	140°	150°	160°	170°	180°	
0.65	0.70	0.75	0.79	0.83	0.87	0.91	0.94	0.97	1.00	

The power for 180° is to be multiplied by the percentage coefficient for other arcs. Thus, for 130°, only 83 per cent. as much power is transmitted as with 180°.

Pulleys.

The function of a pulley is to enable the rotary motion of the shaft on which it is mounted to be translated into the lineal motion of the belt, and vice versa. This is accomplished by the frictional contact of the wrapping connection—be it belt, rope, or wire cable—with the perimeter of the pulley. The following general discussion, from Reuleaux, will enable special computations to be made for any given conditions:

When a tension organ, which is loaded at both ends, is passed over a curved surface there is produced between the tension organ and the surface a very considerable sliding friction. The curved surface over which the cavery considerable sliding friction. The curved surface over which the cord is passed is the pulley, and the motion of the cord takes place in the plane of the pulley. If the tension, T, on the driving side of the cord is to overcome the cord friction, F, as well as the tension, t, of the driven side, we have, for the value of the friction, F = T - t. It is dependent upon the magnitude of the angle of contact, a, and upon the coefficient of friction, f, but is independent of the radius, R, of the pulley; it is also dependent upon the influence of centrifugal force. For these conditions we have

$$T = te^{fa(1-z)},$$

$$F = t \left(e^{fa(1-z)} - 1 \right).$$

In these e is the base of the natural system of logarithms = 2.71828, and $\frac{\gamma v}{gS}$, v being the velocity of the tension organ, in feet, per second;

S, the stress in its cross-section; γ , the weight of a cubic inch of the material; and g, the acceleration of gravity = 32.2.

The influence of centrifugal force becomes important at high speeds and when the tension organ is under small stress. For hemp or cotton rope, or for leather belting, we may take $\gamma = 0.035$, and for wire rope about 9 times as great.

The value of S in the formula, $z = 12 \frac{\gamma v^2}{gS}$, is properly considered a runcin of c, and we may therefore tion of a, and we may therefore assume a constant value for the arc, a, and thus calculate the following table for the values of 1-z.

S.	Value o	of coefficien	al force.	S.		
Hempen	v	elocity of r	ope, in fee	t, per second	1.	Winner
rope.	20	40	60	80	100	- Wire rope.
Lb.						Lb.
400	.987	.948	.882	.791	.674	3600
600	.991	.965	.922	.861	.783	5400
800	.993	.974	.941	.896	.837	7200
1000	.995	.980	.953	.916	.870	9000
1200	.996	.982	.961	.930	.892	10800
1400	.996	.985	.966	.940	.907	12600

This table serves both for hemp and for wire rope by taking the nine-fold value of S in the right-hand column for wire rope. It should be observed that the velocities are in feet per second. It will be seen that for

observed that the velocities are in feet per second. It will be seen that for high speeds a high stress in the tension organ is necessary, in order to oppose the action of the centrifugal force.

In order to simplify practical calculations we may substitute for the exponent, $f_{\alpha}(1-z)$, in each case the form, f'_{α} ,—that is, instead of using the actual coefficient of friction, f, taking another one, f', which is equal to (1-z)f. If it is a transmission system which is under consideration, the friction of the cord, belt, chain, etc., must at least equal the transmitted force, P; hence, also, must the stress be that of a cord friction $\geq P$, which gives, for a minimum value of T.

$$\frac{T}{P} = \tau = \frac{e^{\rho a}}{e^{\rho a} - 1} = \frac{\rho}{\rho - 1},$$

whence

$$\frac{T}{t} = \rho = e^{\rho a}$$
.

Both of these values are absolute numbers. The ratio, $\frac{T}{D}$, indicates the amount of stress which must be given to the tension organ, and hence may be called the stress modulus, and is designated as τ . The ratio, $\frac{T}{t}$, we may, in like manner, call the modulus of cord friction, this being understood to apply to any wrapping connector, and indicate as ρ . A series of values for ρ and τ are given in the following table:

Moduli for Cord Friction and Stress.

fa.	$ au = rac{T}{P}.$	$ ho = \frac{T}{t}$.	fa.	$ au = rac{T}{P}.$	$ \rho = \frac{T}{t}. $
.1	10.41	1.11	1.6	1.25	4.95
.2	5.52	1.22	1.7	1.22	5.47
.3	3.86	1.35	1.8	1.20	6.05
.4	3.03	1.49	1.9	1.18	6.69
.5	2.54	1.65	2.0	1.16	7.39
.6	2.22	1.82	2.2	1.13	9.03
.7	1.99	2.01	2.4	1.10	11.02
.8	1.86	2.23	2.6	1.08	13.46
.9	1.69	2.46	2.8	1.07	16.44
1.0	1.58	2.72	3.0	1.05	20.09
1.1	1.50	3.00	3.2	1.04	24.53
1.2	1.43	3.32	3.4	1.03	29.96
1.3	1.37	3.67	3.6	1.03	36.60
1.4	1.33	4.06	3.8	1.02	44.70
1.5	1.29	4.48	4.0	1.02	54.60
	3				

The superficial pressure, p, of the tension organ upon the circumference of the pulley increases as the belt or cord passes from the slack to the Qdatight side. It is equal to $\frac{Qta}{b'Rda}$, in which b' is the breadth of the surface

of contact of the belt. Now, for any cross-section, q, the force Q = qS; hence, we have

$$\frac{p}{S} = \frac{q}{b'R},$$

from which it will be seen that the pressure, p, can easily be kept within moderate limits.

Within the limits of injurious action of centrifugal force it is desirable that the lineal speed of belts or cords be kept as high as practicable, since the power transmitted is directly proportioned to the speed. Belt trans-missions are therefore best designed with pulleys of large diameter, and small pulleys employed only when the rotative speeds are such as to make

B---> R

The general dimensions of belt pulleys may be taken as follows: Let A = the number of arms, and let the other dimensions be as in the figure, then

$$A = \frac{1}{2} \left(5 + \frac{R}{b} \right),$$

their use imperative.

which gives, for
$$\frac{R}{b} = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13$$

$$A = 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

The width, h, of the arm, if prolonged to the middle of the hub, may be obtained from

$$h = 0.25 \text{ inch} + \frac{b}{4} + \frac{R}{10 A}.$$

The width, h_1 , of the arm at the rim is equal to 0.8h, and the corresponding

The width, h_1 , of the arm at the rim is equal to 0.8h, and the corresponding thicknesses are $e = \frac{1}{2}h$ and $e_1 = \frac{1}{2}h_1$.

Pulleys with two or three sets of arms may be considered as two or three separate pulleys combined in one, except that the proportions of the arms should be 0.8 or 0.7 times that of single-arm pulleys, or in the proportion of $V / \sqrt{2}$ and $V / \sqrt{3}$.

The thickness of the rim may be made $k = \frac{1}{5}$ to $\frac{1}{4}h$, this being frequently turned much thinner. The width of face should be from $\frac{6}{3}$ to $\frac{5}{4}$ the width of the both

of the belt.

The thickness of metal in the hub may be made W = h to $\sqrt[3]{4}h$. The length of hub may = b for single-arm pulleys, and 2b for double-arm

pulleys.

In order to cause the belt to run in the middle of the pulley, the face should be made crowning or rounded, the rise being about $\frac{1}{20}$ of the width of the face. Tight and loose pulleys should be made with rounded faces, and the wide face pulley from which they are driven made with straight face.

Three causes of loss exist in belt transmissions,—viz., journal friction, belt stiffness, and belt creeping. For horizontal belting we have for the journal friction expressed at the circumference of the pulley a loss, E_z , when T=2.5P, t=1.5P:

$$\frac{F'}{P}=E_z=\frac{T+t}{P}\cdot\frac{4}{\pi}f\Big(\frac{d}{2R}+\frac{d_1}{2R_1}\Big)=\frac{8}{\pi}f\Big(\frac{d}{R}+\frac{d_1}{R_1}\Big),$$

in which d and d_1 are the journal diameters and f the coefficient of journal friction. This loss is doubtless the greatest of the three. According to Eytelwein, the coefficient of stiffness, s, for force, S', which includes both pulleys. is

$$rac{S'}{P}=E^{8}=srac{T+t}{P}\Big(rac{\delta^{2}}{R}+rac{\delta^{2}}{R_{1}}\Big)=4s\Big(rac{\delta^{2}}{R}+rac{\delta^{2}}{R_{1}}\Big),$$

in which $s = 0.009 \frac{4}{\pi} = 0.012$.

The loss from creep is due to the fact that the greater stress on the driving pulley over that on the driven requires for a given volume of belt a longer arc of contact. For the expenditure of force, G', for creep on both pulleys, we have for a stress, S_1 , on the leading side of the belt,

$$rac{G'}{P} = E_8 = rac{1 - rac{t}{T}}{1 + rac{E}{S_1}} = rac{0.4S_1}{E + S_1}.$$

In this E is the modulus of elasticity of the belt, which for leather is 20,000 to 30,000 pounds. The losses from stiffness and creep are small.

Example. Let d and $d_1=4$ inches, $R=R_1=20$ inches, $\delta=0.2, f=0.08,$ $S=0.012, E=28,440, S_1=425,$ we have

also,
$$F^1 = P \frac{8 \times 0.08}{\pi} \times 0.4 = 0.08P;$$
 also,
$$S^2 = P(0.048 \times 2) \frac{0.2}{20} = 0.0048P,$$
 and
$$G^1 = P \frac{0.4 \times 425}{28440 + 425} = 0.0059P.$$

The total loss is, therefore, 0.08 + 0.0048 + 0.0059 = 9.1 per cent.

Cone Pulleys.

When a number of pulleys are placed side by side in order to enable varied speeds to be obtained with belt transmission, and are united together in one member, we obtain what is called a cone pulley, such pulley being used in pairs. This construction involves the problem of determining the proper radii for the various pulleys, so that the same belt shall serve for all the changes,—i.e., so that the length of the belt shall be the same for each pair of pulleys in the set. The problem may be solved as follows:

Crossed Belts (Fig. a).—The belt makes the angle, β , with the centre line of the pulleys, R and R_1 ; and the half length of the belt, $\ell = R\left(\frac{\pi}{2} + \beta\right) + R_1\left(\frac{\pi}{2} + \beta\right) + a\cos\beta$, a being the distance from centre to centre of the pulley. We then have

$$l = (R + R_1) \left(\frac{\pi}{2} + \beta \right) + a \sqrt{1 - \frac{(R + R_1)^2}{a^2}}.$$

This value is constant when $R+R_1$ is constant,—that is, when the increase to the radius of one pulley is equal to the decrease in the radius of

the other. Crossed belts are seldom used for this service, however, because of the injurious friction between the rubbing parts of the belt.

Open belts (Fig. b).—In this case we have

$$l = (R + R_1)\frac{\pi}{2} + (R - R_1)\beta + a\cos\beta,$$

and, also, $a \sin \beta = R - R_1$, which gives

$$R = \frac{l}{\pi} - \frac{a}{\pi} (\beta \sin \beta + \cos \beta) + \frac{a}{2} \sin \beta,$$

$$R_1 = \frac{l}{\pi} - \frac{a}{\pi} (\beta \sin \beta + \cos \beta) - \frac{a}{2} \sin \beta.$$

This function is transcendental, but may be graphically represented in the following manner: in the rectangle, ABB'A', with a radius, AB = a, strike the quadrant, BMC, about the centre, A. Within this arc will fall all the values of β which can occur. For any value of $\beta = CAM$, draw

MN perpendicular to MA and make MN = the arc, $MC = a\beta$. Drop the perpendicular, MP, to AC, and draw NO perpendicular to MP. No will then = $a\beta \sin \beta$. Through $N \operatorname{draw} QNK$ parallel to AB, and we have $AQ = PQ + AP = a(\beta \sin \beta + \cos \beta)$. By taking successively all the values of β between 0° and 90° in this manner, we can determine the path of the point, N, which will be the evolute of a circle, CND, BD being equal to the length of the arc, $BMC = \frac{\pi}{2}a$. If we now draw DE parallel to BA, and

take its middle point, F, we have $DF = EF = \frac{a}{2}$, and hence the proportion:

 $DF:DB=\frac{a}{2}:\frac{\pi}{2}a=a:\pi$, and by similar triangles:

$$TK = \frac{a}{\pi}QA = \frac{a}{\pi}(\beta \sin \beta + \cos \beta).$$

This value is dependent upon $\frac{l}{\pi}$. If we prolong BF until it intersects AC prolonged, the resulting length, AA' = BB', will bear to A'B' the ratio, $\frac{\pi}{1}$. By then working BG = l, and drawing GH parallel to A'B', we have $GH = \frac{l}{\pi}$. This length being transferred to IK gives $IT = \frac{l}{\pi}$ $\frac{a}{\pi}(\beta \sin \beta + \cos \beta)$. We then have only to use $\pm \frac{a}{2} \sin \beta$ to solve the problem.

Make $AR = \frac{a}{2}$, and we have the perpendicular, $RS = \frac{a}{2} \sin \beta$. By laying this length off above and below T on QK we obtain the points, U and V, and this finally gives IU for the radius, R, of the larger cone pulley, and $IV = R_1$, the radius of the corresponding smaller cone pulley. By solutions for successive values of β we obtain the curve, DUXVE, which can be used for the determination of the radii of any desired pair of pulleys, each pair of ordinates measured from HI belonging to corresponding pulley on each corre

sponding pulley on each cone.

In practice it is usual to find one of the cone pulleys given and the dimensions of the other required. In this case VU may be taken as the

In practice it is usual to find one of the cone pulleys given and the dimensions of the other required. In this case VU may be taken as the difference, $R-R_1$, between the radii, were the steps uniform. By taking this difference, $R-R_1$, in the dividers, and finding the equivalent ordinate, UV, on the curve, and then adding $VI=R_1$, the axis, HI, is found. In order to use the curve conveniently, it may also be laid off left-handed, as shown in the dotted lines, D'XE'.

The use of the diagram will be rendered still more convenient if we omit the unnecessary value, l. This enables us to distort the curve in the direction of the abscissas to any desired extent. This has been done in the proportional diagram on page 475, due to Professor Reuleaux.

The method of using the diagram is as follows:

The sides, AB and DE, of the rectangle represent the distance, a, between the centres of the pulleys; all radii are given in proportional parts of a, for which reason AB is subdivided, the size of the diagram being selected so that AB = 18 to 20 inches. If, then, 1a and 1'a are two given radii for a pair of pulleys on a pair of cones, we take the vertical chord of the curve which = 1'a - 1a, prolong the chord downward until its length = 1a, and draw the axis, abcd, parallel to AE. Then, for the other pairs of pulleys on the cones, we have b2 and b2', c3 and c3', etc., which can be taken directly from the diagram with the dividers. If the given pair of radii to which the cones are to be made are equal, the chord $R-R_1=0$, and the axis will pass through X at right angles to CX.

If it is desired to construct a pair of cone pulleys to any given speed ratio, this can readily be done. If, for example, the given ratio is 1:1, we lay off toward C the corresponding radius, Xd, and prolong the axial line, dd', to its intersection, d, with BE. Then lay off the given geometric ratio on CX, considering Xd as 1 (shown in the diagram by the small circles for the ratios

the ratios $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, $\frac{5}{4}$, $\frac{5}{4}$), and draw rays from d' through the points of division, and these rays will intersect the curve at the corresponding points for the pulley radii, R_1 . We then have for the radii,

al and al' for the ratio 1:4: at and at for the ratio 2: 4; b^2 and b^2 for the ratio 2: 4; c^3 and c^3 for the ratio 3: 4; dX and dX' for the ratio 4: 4; e^5 and e^5 for the ratio 6: 4;

If the slowest and fastest speeds for any set of cone pulleys be given in revolutions per minute, as n and n_x , x being the number of speed changes, or steps of the cone, we have for a, the geometric ratio of the series,

$$a = \sqrt[x-1]{\frac{n_x}{n}}.$$

Thus, for a cone of four steps, with an entire speed ratio of four to one, we have x=4 and x-1=3; hence,

$$a = \sqrt[3]{\frac{4}{1}} = \sqrt[3]{4} = 1.58.$$

Then, if the first speed be 100 revolutions, the succeeding speeds will be $100\times1.58=158$; $158\times1.58=249.6$; and $249.6\times1.58=394$, or say 400. When, as in many lathes, a back-gear system is introduced, it is desirable that the gear ratio should be so arranged that the speeds may proceed

in a geometric ratio throughout all the changes. This is readily done according to the same principle. The introduction of the back gear simply doubles the number of speed changes; in the above case it converts a lathe with a 4-step cone and four speed changes into one with eight changes. The speed ratio of the back gear, therefore, corresponds to the next term in the series, or at $a^4 = 1.58^4 = 6.25$.

If, to take another example, we have a lathe with a 5-step cone, with back gear, the whole should give ten changes. If these are to range from 100 to 600, we have

$$a = \sqrt[9]{6} = 1.22.$$

The series will then be

$$\begin{array}{c} 100 \times 1.22^0 = 100 \, ; \\ 100 \times 1.22^1 = 122 \, ; \\ 100 \times 1.22^2 = 149 \, ; \\ 100 \times 1.22^3 = 181 \, ; \\ 100 \times 1.22^4 = 221 \, ; \end{array}$$

for the cone acting direct.

The back-gear ratio will then give the next term in the series, or $1.22^5 = 2.70$, which, starting with the first step in the cone again, gives

$$\begin{array}{l} 100\times1.22^5=270\,;\\ 100\times1.22^6=330\,;\\ 100\times1.22^7=403\,;\\ 100\times1.22^8=492\,;\\ 100\times1.22^9=600. \end{array}$$

When a lathe is not carefully proportioned in this manner it may have what is termed a "lump" in its speed, the change produced by throwing in the back gear not conforming to the regular geometric ratio of the steps of the cone.

The simplest and most usual arrangements of belting are the plain open and the crossed belts. In these, as in all belt transmissions, the velocity

ratio is inversely as the diameter of the pulleys.

For these simple arrangements the belts are self-guiding, the only requirements being that the shafts shall be truly parallel to each other and one or both pulleys be made with crowning face.

For inclined and intersecting axes self-guiding belts are not suitable,

except in the case of inclined axes, in which the trace, SS, of the intersection of the planes of the two pulleys passes through the points at which the belt leaves the pulleys. The leading line then falls in the middle plane of each pulley, but the following side of the belt does not; hence, such systems can only be run in one direction. The leaving points in the figures are at a and b_1 . The arrangement gives an open belt when the angle, β , between the planes of the pulleys = 0°, and a crossed belt when $\beta = 180^{\circ}$. In the intermediate positions a partial crossing of the belt is produced. If $\beta = 90^{\circ}$, the belt is half crossed (or, as commonly called, quarter twist); if $\beta = 45^{\circ}$, it is quarter crossed.

The leading-off angle may be made as much as 25°, which occurs when the distance between the axes is equal to twice the diameter of the largest

pulley. Another rule for the minimum distance between shafts for quartertwist belts is to make the distance never less than \sqrt{bD} .

In general, the rule to be observed for any such arrangement of belting is that each part of the belt must lie in the plane of the pulley toward which it is moving.

It is evident that if such a system has its motion reversed the belt will leave the pulleys. Under such conditions guide pulleys are introduced, as shown in the illustration.

The introduction of electric driving of machinery is rendering quartertwist belts and similar contrivances of minor importance in connection with the transmission of power, but such belts will probably continue to be used in connection with machines themselves, and hence care must be

taken in their application.

In arranging belt transmissions the direction of motion should be made, when possible, so as to bring the slack side of the belt on the upper part for belts in the horizontal or inclined positions. This brings the sag of the belt in such a position as to increase the arc of contact about the pulleys and diminishes the probability of slipping. When practicable, machines should be so placed with regard to the line shaft that belts on adjacent

pulleys pull in opposing directions, as in that manner much of the pressure due to belt pull may be taken off of the bearings of the shaft, the pulls of the belts neutralizing each other. If possible, one pulley should never be placed vertically over another, since the weight of the belt acts to diminish the contact with the lower pulley. When such an arrangement must be employed a tightening pulley may be found necessary, placed upon the slack side of the belt.

Belts are usually joined by lacings, but whenever possible they should be scarfed and cemented, this making a much neater joint and rendering

the joint as effective as any other portion of the belt

Rope Transmission.

The transmission of power over longer distances than are practicable for belting may be accomplished by use of rope running at high velocities, and hence requiring but small diameters. This form of transmission was at one time thought to offer great possibilities for long-distance transmission, but the development of electrical transmission has caused it to be superseded. For many purposes, however, for spans of not less than 70 or more than 400 feet, wire-rope transmission may be used with success. complete computations for wire-rope transmission are to be found in

complete computations for wire-rope transmission are to be found in Reuleaux's "Constructor," but for general purposes the practical rules of Messrs. John A. Roebling's Sons Company may be employed.

The rope used for transmission purposes may be either 6-strand, of seven wires each, or with nineteen wires to the strand. For the 7-wire rope the diameter of the sheaves should be not less than 100 times the diameter of the rope, and for a 19-wire rope the minimum diameter of sheave is 60 times the rope diameter. The wheels are made with a deep V-groove, the bottom of the groove on which the rope runs being provided with a fulling composed of alternate blocks of leather and rubber.

with a filling composed of alternate blocks of leather and rubber,

The tension upon the rope in a transmission is that due to the weight of the rope itself, and since this is the measure of the power transmitted for a given speed it is entirely practicable to provide such a sag or deflecfor a given speed it is entirely practicable to provide such a sag of deflection to the rope as will give the tension desired in practice. According to Messrs. Roebling, the sag of both parts of a horizontal transmission should be $\frac{1}{36}$ part of the span when the rope is stationary. When the rope is running the deflection of the upper part will become about $\frac{1}{36}$ of the span, and that of the lower part about $\frac{1}{36}$ of the span. Under such conditions the difference of tension, T, or pull on the tight side of the rope, will be three times the weight of a single portion of rope between the sheaves. If V is the velocity of the rope, in feet, per minute, the horse-power transmitted will be mitted will be

$$IP = \frac{TV}{33000}.$$

The rope diameters used range from % inch to 1 inch, and the weights

will be found in the tables on pages 342-344.

For Manila-rope driving the formulas of Mr. C. W. Hunt may be used to advantage. He recommends ropes of 1 to 2 inches in diameter, and estimates the strength of good Manila ropes for driving as about 7000 pounds per square inch. The working stress, however, should be only about 200 pounds per square inch, this making allowance for wear and for the reduction in strength at the splice.

The power transmitted by ropes depends upon the tension and the speed, the power increasing with the speed until the influence of centrifugal force begins to preponderate.

gal force begins to preponderate.

T =tension on driving side of rope; t =tension on slack side of rope; F = tension due to centrifugal force; v = velocity of rope, in feet, per minute; W = weight of rope, in pounds, per foot; g = acceleration of gravity.

The value of W, the weight per foot for a rope of diameter, D, or circumference, C, is

$$W = 0.3D^2 = 0.032C^2$$

We have for the tension due to centrifugal force

$$F = \frac{Wv^2}{\sigma}$$
.

Assuming that the tension on the slack side necessary for giving adhesion is equal to one-half the force doing useful work on the driving side and calling this available tension for useful work R, we have

$$R = \frac{2}{3}(T - F).$$

The tension on the slack side to give the required adhesion will, therefore, be equal to $\frac{1}{3}(T-F)$, whence we have

$$t = \frac{1}{3}(T - F) + F.$$

Since F increases with the square of the velocity, there are, with increasing speeds, a decreasing useful force and an increasing tension, t, on the slack side. The horse-power may, therefore, be obtained from the following formula:

$$HP = \frac{2v(T-F)}{3 \times 33000}.$$

The following table has been computed from this formula.

Horse-power of Manila-rope Transmission.

C. W. Hunt.

ter of	Speed of the rope, in feet, per minute.												
Diameter ropes.	1500	2000	2500	3000	3500	4000	4500	5000	6000	7000	8000	Smallest diamete of pulle	
Inch.	нР.	Н,-Р.	НР.	нР.	HP.	нР.	нР.	нР.	нР.	нР.	нР.	Inch.	
1/2	1.45	1.9	2.3	2.7	3.0	3.2	3.4	3.4	3.1	2.2	0	20	
5/8	2.3	3.2	3.6	4.2	4.6	5.0	5.3	5.3	4.9	3.4	0	24	
3/4	3.3	4.3	5.2	. 5.8	6.7	7.2	7.7	7.7	7.1	4.9	0	30	
7/8	4.5	5.9	7.0	8.2	9.1	9.8	10.8	10.8	9.3	6.9	0	36	
1	5.8	-7.7	9.2	10.7	11.9	12.8	13.6	13.7	12.5	8.8	0 \	42	
11/4	9.2	12.1	14.3	16.8	18.6	20.0	21.2	21.4	19.5	13.8	0	54	
11/2	13.1	17.4	20.7	23.1	26.8	28.8	30.6	30.8	28.2	19.8	0	60	
13/4	18.0	23.7	28.2	32.8	36.4	39.2	41.5	41.8	37.4	27.6	0	72	
2	23.2	30.8	36.8	42.8	47.6	51.2	54.4	54.8	50.0	35.2	0	84	

Where large amounts of power are to be transmitted a number of ropes are used. In English practice separate ropes are generally employed, but in the United States the rope is made endless, passing around the grooves in the pulleys as many times as may be necessary, and finally over an idler guide pulley supported in a tension carriage, the required initial tension being secured by weighting. In the American system ropes of small diameter are generally employed.

The form of grooves employed for rope driving, according to Unwin, are given in the illustration. The unit for the proportional figures is γ , the

girth of the rope. If the pulley is a guide pulley merely, the rope should rest on the bottom of the groove. The sides of the groove are usually inclined at 45°.

Mr. Speneer Miller has proposed that the angle of the sides of the grooves should be varied to suit the difference in the diameters of the pulleys, the angles being equal only when both pulleys are of the same diameter. This may well be done when the pulleys are made to order, but it is impracticable if pulleys are to be carried in stock.

The following table gives the transmitting power of cotton driving ropes, according to good British practice.

Horse-power of Cotton-rope Transmission.

Speed, in feet, per	Diameter of ropes, in inches.												
minute.	1	11/8	11/4	13/8	1½	15/8	13/4	17/8	2				
	нР.	НР.	НР.	нР.	нР.	нР.	нР.	нР.	НР.				
2500	10.8	13.4	16.7	20.5	24.3	28.5	33.2	38.1	43.4				
2600	11.1	13.9	17.2	20.8	25.0	29.4	34.1	39.4	44.7				
2700	11.4	14.3	17.7	21.7	25.7	30.2	35.3	40.6	46.0				
2800	11.8	14.7	18.2	22.3	26.4	31.0	36.2	41.7	47.3				
2900	12.1	15.1	18.7	22.9	27.1	31.9	37.2	42.8	48.6				
3000	12.3	15.4	19.1	23.4	27.8	32.6	38.1	43.8	49.5				
3100	12.5	15.7	19.5	24.0	28.4	33.4	39.0	44.8	50.6				
3200	12.9	16.1	19.9	24.5	29.0	34.0	39.9	45.8	52.0				
3300	13.2	16.5	20.3	25.0	29.6	34.8	40.8	46.8	53.2				
3400	13.4	16.7	20.6	25.5	30.1	35.4	41.6	47.7	54.3				
3500	13.6	16.9	20.9	26.0	30.6	36.2	42.3	48.6	55.2				
3600	13.9	17.1	21.2	26.4	31.1	36.5	43.0	49.5	56.0				
3700	14.1	17.3	21.5	26.8	31.5	37.1	43.6	50.2	56.8				
3800	14.2	17.5	21.7	27.0	31.9	37.5	44.2	50.8	57.6				
3900	14.4	17.7	21.9	27.3	32.2	37.9	44.8	51.4	58.2				
4000	14.5	17.8	22.1	27.5	32.6	38.4	45.3	51.9	58.9				
4100	14.6	17.9	22.3	27.8	32.9	38.7	45.8	52.4	59.6				
4200	14.7	18.0	22.5	28.0	33.1	39.0	46.3	52.8	60.3				
4300	14.8	18.0	22.6	28.1	33.3	39.3	46.6	53.2	60.6				
4400	14.9	18.1	22.7	28.2	33.4	39.6	46.8	53.5	60.9				
4500	15.0	18.1	22.7	28.3	33.5	39.7	47.0	53.8	61.2				
4600	15.1	18.1	22.7	28.4	33.6	39.7	47.2	54.0	61.4				
4700	15.1	18.1	22.6	28.4	33.7	39.8	47.4	54.2	61.5				
4800	15.1	18.0	22.6	28.5	33.7	39.8	47.5	54.2	61.5				
4900	15.0	18.0	22.5	28.5	33.7	39.9	47.6	54.3	61.6				
5000	15.0	17.9	22.4	28.4	33.6	39.8	47.5	54.3	61.5				
5100	14.9	17.8	22.3	28.3	33.4	39.6	47.4	54.0	61.3				
5200	14.8	17.6	22.0	28.2	33.2	39.3	47.2	53.8	61.1				
5300	14.7	17.4	21.8	28.0	33.0	39.0	47.0	53.6	60.9				
5400	14.6	17.2	21.6	27.7	32.7	38.6	46.8	53.3	60.4				
5500	14.5	17.0	21.3	27.3	32.3	38.2	46.1	52.8	59.8				

HEAT.

Heat is defined as a form of molecular energy which is manifested by the changes which it produces in the form or state of the bodies upon which it acts. The most readily observed effect of heat is that of the expansion of the bodies to which it is applied; and this effect is used both for the measurement of quantities of heat and for its useful application by conversion into mechanical work.

Heat can be transferred from one body to another, the hotter body parting with heat to the body which is less hot. The scale of quantities upon which such transfers are compared is called the scale of temperatures. When there is no tendency for the transfer of heat from one body to another the two bodies are said to be at the same temperature.

There are, in nature, certain temperatures which can be identified by

482 HEAT.

positive phenomena which occur with them. Among them are the meltingpoint of ice and the boiling-point of water, these being considered as occurring at the average atmospheric pressure of 14.7 pounds to the square inch, corresponding to 29.922 inches, or 760 millimetres of mercury on the barometer. Having these, or certain other standards of temperature, it is practicable to make scales by which other temperatures may be compared.

The practical method of making instruments for the measurement of temperatures is to use the expansive effect of heat upon certain liquids or upon a gas. For temperatures within the range of its freezing and boiling

points mercury is generally used.

There are three forms of mercurial thermometers, or temperature-indicating instruments, in use. These all consist of sealed tubes of fine bore, there being a bulb at one end containing mercury. The expansion or contraction of the mercury in the bulb causes the portion in the tube to move, the extent of this movement indicating the changes in temperature. The three thermometers differ from each other only in the graduation and numbering of the scales upon the tube.

In the Centigrade thermometer the position of the mercury at the melting-point of ice is taken as the zero of the scale, while the boiling-point of water is called 100, the space between being divided into 100 equal parts,

called degrees.

The Fahrenheit thermometer was originally designed to range between two altogether different standard points, one of these being the temperature of pounded ice and salt, the other the normal temperature of the human body. The space between these was divided duodecimally, and numan body. The space between these was divided duoteenhary, and these large divisions subdivided by repeated bisection into halves, quarters, and eighths, thus making 96 divisions. Owing to the erroneous measurements made by Fahrenheit in constructing his early instruments the temperature of the human body was taken too low, and it is really equal to 98 degrees above the Fahrenheit zero. This scale, if prolonged upward to the boiling-point of water, reaches that temperature at 212 degrees, and it is often erroneously stated that Fahrenheit's scale was originally derived between those points.

The remarkable uniformity of the early thermometers made by Fahrenheit caused his instruments to be used for work involving scientific accu-

racy, and it is still the scale most extensively used in steam engineering in English-speaking countries.

The Reaumur scale has its zero at the melting-point of ice, as in the centigrade scale, and the graduations were intended to correspond to the expansion of the mercury in the bulb by $_{70}^{-1}$ 00 of its original volume for each degree. Upon this scale the boiling-point of water is reached at 80 degrees. degrees above zero, and the scale is generally so defined. The Reaumur scale is now rarely used; but many old measurements of importance are recorded in it, and hence it is valuable for purposes of comparison.

In converting the several scales from one to the other the following

formulas are used:

Zero Fahr. = -17.77° Cent. = -14.22° Reau.

Melting-point of Ice.

Zero Cent. = 32 Fahr. = zero Reau.

Boiling-point of Water.

 212° Fahr. = 100° Cent. = 80° Reau. 5° Cent. = 4º Reau. 9º Fahr. =

Formulas.

Cent. $= \frac{5}{3}(Fahr. \mp 32) = \frac{5}{4} Reau.$ Fahr. = $\frac{9}{5}$ Cent. $\pm 32 = \frac{9}{4}$ Reau. ± 32 . Reau. = 4 Cent. $= \frac{4}{6}(Fahr. \mp 32).$

In the accompanying tables the corresponding values of Fahrenheit and Centigrade degrees are given for the temperatures generally used in engineering. The main tables give the values for even degrees, and by means of the supplementary tables the values for tenths of a degree may be taken out.

Fahrenheit to Centigrade.

Fahr.	Cent.	Fahr.	Cent.	Fahr.	Cent.	Fahr.	Cent.	Fahr.	Cent.
 5	-20.55	57	13.88	119	48.33	181	82.77	243	117.22
_5 _4	-20.00	58	14.44	120	48.88	182	83.33	244	117.77
-3 -2 -1	-19.44	59	15.00	121	49.44	183	83 88	245	118.33
-2	-18.88	60	15.55	121 122	50.00	184	84.44	246	118.88
-1	-18.33	61	16.11	123	50.55	185	85.00	247	119.44
Zero.	-17.77	62	16.66	124	51.11	186	85.55	248	120.00
+1	-17.22	63	17.22 17.77 18.33	125 126	51.66	187 188	86.11	249	120.55
2 3 4 5 6 7	-16.66	64	17.77	126	52.22	188	86.66	250	121.11
3	-16.11	65	18.33	127 128	52.77	189	87.22 87.77	251	121.66 122.22
5	-15.55 -15.00	66	18.88 19.44	128	53.33 53.88	190 191	88.33	252 253	122.22
6	-14.44	68	20.00	130	54.44	192	88.88	254	123.33
7	-13.88	69	20.55	131	55.00	193	89.44	255	123.88
8	-13.33	70	21.11	131 132	55.55	194	90.00	256	124.44
8 9	-12.77 -12.22	71	21.66	133	56.11	195	90.55	257	125.00
10	-12.22	72	22.22	134	56.66	196	91.11	258	125.55
11	-11.66	73	22.77	135	57.22	197	91.66	259	126.11
12	-11.11	74	23.33	136	57.77	198	92.22	260	126.66
13	-10.55	75	23.88	137 138	58.33	199	92.77 93.33	261	127.22 127.77
14 15	-10.00	76	24.44	138	58.88	200	93.33	262	127.77
16	- 9.44 - 8.88	77 78	$25.00 \\ 25.55$	139 140	59.44 60.00	201 202	93.88 94.44	263 264	128.33 128.88
17	- 8.33	79	26.11	141	60.55	203	95.00	265	129.44
18	- 7.77	80	26.66	142	61.11	204	95.55	266	130.00
19	- 7.22	81	27.22	143	61.66	205	96.11	267	130.55
20	- 6.66	82	27.77	144	62.22 62.77 63.33	206	96.66	268	131.11
21	- 6.11	83	28.33	145	62.77	207	97.22 97.77	269	131.66
22	- 5.55	84	28.88	146	63.33	208	97.77	270	132.22
23 ·	- 5.00	85	29.44	147	63.88 =	209	98.33	271	132.77
24	- 4.44 - 3.88	86 87	30.00	148	64.44	210	98.88	272 273	133.33
25 26	- 3.33	88	30.55 31.11	149 150	65.00 65.55	211 212	99.44 100.00	274	133.88 134.44
27	- 2.77	89	31.66	151	66.11	213	100.55	275	135.00
27 28	- 2.22	90	32.22	152	66.66	214	101.11	276	135.55
29	- 1.66	91	32.77	153	67.22	215	101.66	277	136.11
29 30	- 1.11	92	33.33	154	66.66 67.22 67.77	216	102.22	278	136.66
31	55	93	33.88	155	68.33	217	102.77	279	137.22
. 32	Zero.	94	34.44	156	68.88	218	103.33	280	137.77
33	+ .55	95	35.00	157	69.44	219	103.88	281	138.33
34 35	1.11 1.66	96 97	35.55 36.11	158	70.00	220 221	104.44	282 283	138.88
36	2.22	98	36.66	159 160	70.55 71.11	221	105.00	284	139.44 140.00
37	2.77	99	37.22	161	71.11	223	105.55 106.11	285	140.55
38	3.33	100	37.22 37.77	162	71.66 72.22	224	106.66	286	141.11
39	3.88	101	38.33	163	72.77	225	107.22	287	141.66
40	4.44	102	38.88	164	73.33	226	107.77 108.33	288	142.22
41	5.00	103	39.44	165	73.88	227	108.33	289	142.77
42	5.55	104	40.00	166	74.44	228	108.88	290	143.33
43	6.11	105	40.55	167	75.00	229	109.44	291	143.88
44 45	6.66	106 107	41.11	168 169	75.55	230 231	110.00	292 293	144.44
46	7.22 7.77	107	$\frac{41.66}{42.22}$	170	76.11 76.66	231	110.55 111.11	293	145.00 145.55
47	8.33	109	42.77	171	77.22	233	111.66	294	146.11
48	8.88	110	43.33	172	77.77	234	112.22	296	146.66
49	9.44	111	43.88	173	78.33	235	112.22 112.77 113.33	297	147.22
50	10.00	112	44.44	174	78.88	236	113.33	298	147.77
51	10.55	113	45.00	175	79.44	237	113.88	299	148.33
52 53	11.11	114	45.55	176	80.00	238	114.44	300	148.88
54	11.66 12.22	115 116	46.11 46.66	177 178	80.55 81.11	239 240	115.00 115.55	400 600	204.44 315.55
55	12.77	117	47.22	179	81.66	240	116.11	800	433.33
56	13.33	118	47.77	180	82.22	242	116.66	1000	537.77
		1	2,,,,	100	32.22		210.00	2000	501.11

For Supplementary Tables, see page 485.

Centigrade to Fahrenheit.

Cent.	Fahr.	Cent.	Fahr.	Cent.	Fahr.	Cent.	Fahr.	Cent.	Fahr.
-273.00	-460.7	16	60.8	330	626	950	1742	1570	2858
-260.00	-436.0	17	62.6	340	644	960	1760	1580	2876
-250.00	-418.0	18	62.6 64.4	340 350	662	970	1778	1580 1590	2894
-240.00	-400.0	19	66.2	360	680	980	1796	1600	2912
-230.00	-382.0	20	68.0	370	698	990	1814	1610	2930
-220.00	-364.0	21	69.8	380	716	1000	1832	1620	2948
-210.00	-346.0	22 23	71.6	390	734	1010	1850	1630	2966
-200.00	-328.0 -310.0	23	73.4	400	752	1020	1868	1640	2984
-190.00 -180.00	-310.0 -292.0	24	75.2	410 420	770 788	1030 1040	1886 1904	1650 1660	3002 3020
-170.00	-252.0 -274.0	24 25 26	77.0 78.8	430	806	1050	1904	1670	3038
-160.00	-256.0	27	80.6	440	891	1060	1940	1680	3056
-150.00	-238.0	28	82.4	450	824 842	1070	1958	1690	3074
—1 40.00	-220.0	29	84.2	460	860	1080	1976	1700	3092
-130.00	-202.0	30	86.0	470	878	1090	1994	1700 1710 1720	3110
-120.00	-184.0	31	87.8	480	896	1100	2012	1720	3128
-110.00	-166.0	32	89.6	490	914	1110	2030	1730	3146
-100.00	-148.0	33	91.4	500	932	1120 1130	2048	1740	3164
- 90.00	-130.0	34 35	93.2	510	950	1130	2066	1750	3182
- 80.00	-112.0	35	95.0	520	968	1140	2084	1760	3200
— 70.00	- 94.0	36	96.8	530	986	1150	2102	1770	3218
-60.00 -50.00	- 76.0 - 58.0	37 38	98.6 100.4	540 550	1004	1160	2120	1780 1790	3236 3254
-40.00	$\frac{-38.0}{-40.0}$	39	100.4	560	1022 1040	1170 1180	2138 2156	1800	3272
-30.00	$-\frac{40.0}{22.0}$	40	104.0	570	1058	1190	2174	1810	3290
-20.00	- 4.0	41	105.8	580	1076	1200	2192	1820	3308
- 19.00	- 2.2	42	107.6	590	1094	1210	2210	1830	3326
18 00	- 0.4	43	109.4	600	1112	1210 1220	2210 2228	1840	3344
- 17.77	Zero.	44	111.2	610	1130	1230	2246	1850	3362
$ \begin{array}{r} -16.00 \\ -17.77 \\ -17.00 \\ -16.00 \\ -15.00 \end{array} $	+ 1.4	45	113.0	620 630	1148	1240	2264	1860	3380
— 16.00	+ 3.2	46	114.8	630	1166	1250	2282	1870	3398
— 15.00	+ 5.0	47	116.6	640	1184	1260	2300	1880	3416
- 14.00	+ 6.8	48	118.4	650	1202	1270	2318	1890	3434
- 13.00	+ 8.6	49	120.2	660	1220	1280	2336	1900	3452
-12.00 -11.00	$ \begin{array}{r} + 10.4 \\ + 12.2 \\ + 14.0 \\ + 15.8 \end{array} $	50 60	122.0 140.0	670 680	1238 1256	1290 1300	2354 2372	1910 1920	3470 3488
-11.00 -10.00	+ 14.0	70	158.0	690	1271	1310	2390	1930	3506
_ 9.00	+ 15.8	80	176.0	700	1274 1292	1320	2408	1940	3524
- 9.00 - 8.00 - 7.00	+17.6	90	194.0	710	1310	1330	2426	1950	3542
- 7.00	+ 19.4	100	212.0	720	1328	1340	2444	1960	3560
- 6.00	+ 21.2	110	230.0	730	1346	1350	2462	1970	3578
- 5.00	+ 23.0	120	248.0	740 750	1364	1360	2480	1980	3596
- 4.00	+ 24.8	130	266.0	750	1382	1370 1380	2498	1990	3614
- 3.00	+ 26.6	140	284.0	760	1400	1380	2516	2000	3632
-2.00 -1.00	+ 28.4	150	302.0	770	1418	1390	2534	2010	3650
Zero.	$+30.2 \\ +32.0$	160	320.0 338.0	780 790	1436 1454	1400 1410	2552 2570	2020 2030	3668 3686
	+32.0 + 33.8	170 180	356.0	800	1454	1420	2588	2040	3704
+ 1	35.6	190	374.0	810	1490	1430	2606	2050	3722
3	37.4	200	392.0	820	1508	1440	2624	2060	3740
4	39.2	210	410.0	830	1526	1450	2642	2070	3758
+ 1 2 3 4 5 6 7 8 9	41.0	220	428.0 446.0	840	1544	1460	2660	2080	3776
6	42.8	230	446.0	850	1562	1470	2678	2090	3794
7	44.6	240	464.0	860	1580	1480	2696	2100	3812
8	46.4	250	482.0	870	1598	1490	2714	2110	3830
9	48.2 50.0	260	500.0	880	1616	1500	2732	2120	3848
10	50.0	270	518.0	890	1634	1510	2750	2130	3866
11	51.8	280 290	536.0	900 910	1652	1520 1530	2768 2786	2140 2150	3884 3902
12 13	53.6 55.4	300	554.0	910	1670 1688	1540	2804	2160	3920
14	57.2	310	572.0 590.0	930	1706	1550	2822	2180	3956
15	59.0	320	608.0	940	1706 1724	1560	2840	2200	3992
								-	

For Supplementary Tables, see page 485.

SUPPLEMENTARY TABLES.

Number of Degrees Cent. = Number of Degrees Fahr.

ses t.		Tenths of a degree—Centigrade scale.										
Degrees Cent.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9		
	Fahr.	Fahr.	Fahr.	Fahr.	Fahr.	Fahr.	Fahr.	Fahr.	Fahr.	Fahr.		
0	.00	.18	.36	.54	.72	.90	1.08	1.26	1.44	1.62		
1	1.80	1.98	2.16	2.34	2.52	2.70	2.88	3.06	3.24	3.42		
2	3.60	3.78	3.96	4.14	4.32	4.50	4.68	4.86	5.04	5.22		
3	5.40	5.58	5.76	5.94	6.12	6.30	6.48	6.66	6.84	7.02		
4	7.20	7.38	7.56	7.74	7.92	8.10	8.28	8.46	8.64	8.82		
5	9.00	9.18	9.36	9.54	9.72	9.90	10.08	10.26	10.44	10.62		
6	10.80	10.98	11.16	11.34	11.52	11.70	11.88	12.06	12.24	12.42		
7	12.60	12.78	12.96	13.14	13.32	13.50	13.68	13.86	14.04	14.22		
8	14.40	14.58	14.76	14.94	15.12	15.30	15.48	15.66	15.84	16.02		
9	16.20	16.38	16.56	16.74	16.92	17.10	17.28	17.46	17.64	17.82		

Number of Degrees Fahr. = Number of Degrees Cent.

F	Tenths of a degree—Fahrenheit scale.										
Degrees Fahr.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	
	Cent.	Cent.	Cent.	Cent.	Cent.	Cent.	Cent.	Cent.	Cent.	Cent.	
0	.00	.06	.11	.17	.22	.28	.33	.39	.44	.50	
1	.56	.61	.67	.72	.78	.83	.89	.94	1.00	1.06	
2	1.11	1.17	1.22	1.28	1.33	1.39	1.44	1.50	1.56	1.61	
3	1.67	1.72	1.78	1.83	1.89	1.94	2.00	2.06	2.11	2.17	
4	2.22	2.28	2.33	2.39	2.44	2.50	2.56	2.61	2.67	2.72	
5	2.78	2.83	2.89	2.94	3.00	3.06	3.11	3.17	3.22	3.28	
6	3.33	3.39	3.44	3.50	3.56	3.61	3.67	3.72	3.78	3.83	
7	3.89	3.94	4.00	4.06	4.11	4.17	4.22	4.28	4.33	4.39	
8	4.44	4.50	4.56	4.61	4.67	4.72	4.78	4.83	4.89	4.94	
9	5.00	5.06	5.11	5.17	5.22	5.28	5.33	5.39	5.44	5.50	

By the use of the above tables any value may be obtained in connection with the preceding tables. Thus, to convert 1375.4° C. to Fahrenheit we have

 1370.0° C. = 2498.00° F. 5.0° C. = 9.00° F. 0.4° C. = 0.72° F.

1375.4° C. = 2507.72° F.

Coefficients of Expansion.

Per Degree of Fahrenheit Scale.

Tempera- tures.	Solids.	Linear.	Surface.	Volume.
Degrees.				***************************************
32 to 212		.000 00478	.000 00956	.000 01434
212 to 392	} Glass	.000 00546	.000 01093	.000 01639
392 to 572		.000 00660	.000 01320	.000 01980
32 to 212	} Wrought-iron	.000 00656	.000 01312	.000 01968
32 to 572	()	.000 00895	.000 01790	.000 02686
32 to 212	Soft iron	.000 00680	.000 01360	.000 02040
32 to 212 32 to 212	Cast-iron	.000 00618	.000 01236	.000 01854
32 to 212	Cast-steel Hardened steel	.000 00600	.000 01200 .000 01378	.000 01800
32 to 212)	.000 00039	.000 01378	.000 02067
32 to 572	{ Copper }	.000 00333	.000 01310	.000 02303
32 to 212	Lead	.000 01580	.000 03160	.000 04740
32 to 212	Gold, pure	.000 00815	.000 01630	.000 02445
32 to 212	Gold, hammered	.000 00830	.000 01660	.000 02490
32 to 212	Silver, pure	.000 01060	.000 02120	.000 03180
32 to 212	Silver, hammered	.000 01116	.000 02232	.000 03348
32 to 212	Brass, common cast	.000 01043	.000 02086	.000 03129
32 to 212	Brass, wire or sheet	.000 01075	.000 02150	.000 03225
32 to 212 32 to 572	Platinum, pure	.000 00491	.000 00982	.000 01473
32 to 372	Platinum, hammered	.000 00520	.000 01040	.000 01560
32 to 212	Palladium	.000 00555	.000 01060	.000 01590
32 to 212	Roman cement	.000 00797	.000 01110	.000 01005
32 to 212	Zinc, pure or cast	.000 01633	.000 03266	.000 04899
32 to 212	Zinc, hammered	.000 01722	.000 03444	.000 05166
32 to 212	Tin, cast	.000 01207	.000 02414	.000 03621
32 to 212	Tin, hammered	.000 01500	.000 03000	.000 04500
32 to 212	Fire-brick	.000 00235	.000 00470	.000 00705
32 to 212	Good red brick	.000 00305	.000 00610	.000 00915
32 to 212	Marble	.000 00613	.000 01226	.000 01839
32 to 212 32 to 212	Granite	.000 00438	.000 00876	.000 01314
32 to 212	Bismuth	.000 00773	.000 01546	.000 02319
32 to 212	Antimony	.000 00002	.000 01204	.000 10000
212 to 392	>Mercury	.000 03416	.000 06833	.000 10250
392 to 572		.000 03500	.000 07000	.000 10500
32 to 212		.000 08806	.000 17612	.000 26420
212 to 392	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.000 17066	.000 34133	.000 51198
392 to 572		.000 18904	.000 37808	.000 56713
32 to 212	Salt, dissolved	.000 09250	.000 18500	.000 27750
32 to 212	Sulphuric acid	.000 11111	.000 22222	.000 33333
32 to 212	Turpentine and ether	.000 12966	.000 25933	.000 38900
32 to 212 32 to 212	Oil, common	.000 14814	.000 29629	.000 44443
32 to 212	All permanent gases	.000 13131	.000 30302	.000 45455
02 10 212	All permanent gases	.000 05410	.001 00002	.002 00200

According to the investigations of M. Guillaume, an alloy of nickelsteel, containing 36 per cent. of nickel, has a coefficient of expansion only that of platinum, or about 0.0000003 for 1° F. Wires made of this alloy have been used for the measurement of geodetic base lines, without requiring any temperature correction.

Coefficients of Expansion.

Per Degree of the Centigrade Scale.

Substance.	Linear.	Surface.	Volume.
Aluminum	.000 0231	.000 0462	.000 0693
Brass, cast	.000 0187	.000 0374	.000 0561
Brass wire	.000 0193	.000 0386	.000 0579
Bronze	.000 0184	.000 0368	.000 0552
Carbon, gas	.000 0054	.000 0108	.000 0162
Carbon, graphite	.000 0077	.000 0154	.000 0231
Copper	.000 0168	.000 0336	.000 0504
German silver	.000 0184	.000 0368	.000 0552
Gold	.000 0144	.000 0288	.000 0432
Glass, crown	.000 0090	.000 0180	.000 0270
Glass, flint	.000 0079	.000 0158	.000 0237
Iron, cast	.000 0106	.000 0212	.000 0318
Iron, wrought	.000 0114	.000 0228	.000 0342
Steel, hard	.000 0132	.000 0264	.000 0396
Steel, soft	.000 0109	.000 0218	.000 0327
Lead	.000 0292	.000 0584	.000 0876
Nickel	.000 0128	.000 0256	.000 0384
Platinum	.000 0090	.000 0180	.000 0270
Silver	.000 0192	.000 0384	.000 0576
Tin	.000 0223	.000 0446	.000 0669
Zinc	.000 0292	.000 0584	.000 0876

Linear Expansion or Contraction, in Inches, of Cast=iron.

Lengths in Feet.

Feet. Inch. Inch. <th< th=""><th>sth.</th><th colspan="9">Difference in temperature.—Fahrenheit.</th></th<>	sth.	Difference in temperature.—Fahrenheit.								
1 .0072 .0110 .0150 .0192 .0237 .0336 .0444 .0563 2 .0144 .0220 .0300 .0384 .0474 .0632 .0885 .1123 3 .0216 .0330 .0450 .0576 .0711 .1008 .1332 .1684 4 .0288 .0440 .0600 .0768 .0948 .1344 .1776 .2246 5 .0360 .0550 .0750 .0960 .1185 .1680 .2220 .2806 6 .0432 .0660 .0900 .1152 .1422 .2016 .2664 .3368 7 .0504 .0770 .1050 .1344 .1659 .2352 .3108 .3552 .4499 9 .0648 .0990 .1350 .1728 .2133 .3024 .3996 .5561 10 .0720 .1102 .1502 .1926 .2376 .3360 .4440 .5614 1	Length	100°	150°	200°	250°	300°	400°	500°	600°	800°
2 .0144 .0220 .0300 .0384 .0474 .0632 .0885 .1128 3 .0216 .0330 .0450 .0576 .0711 .1008 .1332 .168 4 .0288 .0440 .0600 .0768 .0948 .1344 .1776 .2246 5 .0360 .0550 .0750 .0960 .1152 .1422 .2016 .2664 .3368 6 .0432 .0660 .0900 .1152 .1422 .2016 .2664 .3368 7 .0504 .0770 .1050 .1344 .1659 .2352 .3108 .3925 8 .0576 .0880 .1200 .1536 .1896 .2688 .3552 .4496 9 .0648 .0990 .1350 .1728 .2133 .3090 .4368 .3666 .4844 .6177 12 .0864 .1316 .1802 .2318 .2833 .4704 .6216 <t< td=""><td>Feet.</td><td>Inch.</td><td>Inch.</td><td>Inch.</td><td>Inch.</td><td>Inch.</td><td>Inch.</td><td>Inch.</td><td>Inch.</td><td>Inch.</td></t<>	Feet.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.
4 .0288 .0440 .0600 .0768 .0948 .1344 .1776 .2246 5 .0360 .0550 .0750 .0960 .1185 .1680 .2220 .2806 6 .0432 .0660 .0990 .1152 .1422 .2016 .2684 .3366 7 .0504 .0770 .1050 .1344 .1669 .2332 .3108 .3922 8 .0576 .0880 .1200 .1536 .1896 .2688 .3552 .4494 9 .0648 .0990 .1350 .1728 .2133 .3024 .3996 .5052 10 .0720 .1102 .1502 .1926 .2376 .3360 .4440 .5616 11 .0792 .1214 .1652 .2125 .2613 .3890 .4368 .5772 .7306 14 .1008 .1620 .2233 .2895 .3565 .5040 .6660 .8422 <td< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.0561</td><td>.0787</td></td<>	1								.0561	.0787
4 .0288 .0440 .0600 .0768 .0948 .1344 .1776 .2246 5 .0360 .0550 .0750 .0960 .1185 .1680 .2220 .2806 6 .0432 .0660 .0990 .1152 .1422 .2016 .2644 .3366 7 .0504 .0770 .1050 .1344 .1659 .2352 .3108 .3922 8 .0576 .0880 .1200 .1536 .1896 .2688 .3552 .4494 9 .0648 .0990 .1350 .1728 .2133 .3024 .3996 .5052 10 .0720 .1102 .1502 .1926 .2376 .3360 .4440 .5616 11 .0792 .1214 .1652 .2125 .2613 .3890 .4368 .5772 .7306 14 .1008 .1620 .2233 .2895 .3565 .5040 .6660 .8422 <td< td=""><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.1574</td></td<>	2									.1574
5 .0360 .0550 .0750 .0960 .1185 .1680 .2220 .2806 6 .0432 .0660 .0900 .1152 .1422 .2016 .2664 .3368 7 .0504 .0770 .1050 .1344 .1659 .2852 .3108 .3928 8 .0576 .0880 .1200 .1536 .1896 .2688 .3552 .4499 9 .0648 .0990 .1350 .1728 .2133 .3024 .3996 .5055 10 .0720 .1102 .1502 .1926 .2376 .3360 .4440 .5616 11 .0792 .1214 .1652 .22125 .2615 .3696 .4844 .6171 12 .0864 .1316 .1802 .2318 .2853 .4038 .5376 .5328 .6732 14 .1008 .1519 .2102 .2703 .3328 .4704 .6216 .7862 <	3									.2361
6 0.432 .0660 .0900 .1152 1.442 .2016 .2664 .3368 7 .0504 .0770 .1050 .1344 .1659 .2352 .3108 .3928 8 .0576 .0880 .1200 .1536 .1896 .2688 .3552 .4499 9 .0648 .0990 .1350 .1728 .2133 .3024 .3996 .5651 10 .0720 .1102 .1592 .1926 .2376 .3360 .4440 .5611 11 .0792 .1104 .1652 .2125 .2615 .3696 .4884 .6177 12 .0864 .1316 .1802 .2210 .3093 .4704 .6216 .7866 13 .0936 .1417 .1952 .2510 .3094 .4388 .5772 .7301 14 .1008 .1519 .2102 .2703 .3328 .4704 .6216 .7866 15	5				.0768			1776	2246	.3148
9	6			0000	1159	1499				.4722
9	7		.0770	.1050	.1344	1659			.3929	.5509
9	8			.1200		.1896				.6396
111 .0792 .1214 .1652 .2125 .2615 .3696 .4884 .6177 12 .0864 .1316 .1802 .2318 .2853 .4032 .5328 .6738 13 .0936 .1417 .1952 .2510 .3090 .4368 .5772 .7300 14 .1008 .1519 .2102 .2703 .3328 .4704 .6216 .7862 15 .1080 .1620 .2253 .2895 .3565 .5040 .6660 .8421 16 .1152 .1722 .2403 .3088 .3803 .5376 .7104 .8985 17 .1224 .1823 .2533 .3280 .4040 .5712 .7548 .9546 18 .1296 .1925 .2703 .3472 .4278 .6048 .7992 .1019 19 .1368 .2026 .2533 .3665 .4515 .6384 .8436 1.0662 20	9	.0648	.0990	.1350	.1728	.2133	.3024		.5052	.7083
12 .0864 .1316 .1802 .2318 .2883 .4082 .5328 .6738 13 .0936 .1417 .1952 .2510 .3090 .4368 .5772 .7306 14 .1008 .1519 .2102 .2703 .3328 .4704 .6216 .7862 15 .1080 .1620 .2253 .2895 .3565 .5040 .6660 .8421 16 .1152 .1722 .2403 .3088 .3803 .5376 .7104 .8985 17 .1224 .1823 .2553 .3280 .4040 .5712 .7548 .9546 18 .1296 .1925 .2703 .3472 .4278 .6048 .7992 1.0108 19 .1368 .2026 .2853 .3665 .4515 .6384 .8436 1.066 20 .1440 .2203 .3005 .3852 .4752 .6720 .8880 1.1232 21	10	.0720							.5616	.7872
14 .1008 .1519 .2102 .2703 .3285 .4704 .6216 .7866 15 .1080 .1620 .2253 .2895 .3565 .5040 .6660 .8422 16 .1152 .1722 .2403 .3088 .3803 .5376 .7104 .8985 17 .1224 .1823 .2553 .3280 .4040 .5712 .7548 .9546 18 .1296 .1925 .2703 .3472 .4278 .6048 .7992 .1010 19 .1368 .2026 .2853 .3665 .4515 .6384 .8436 1.0666 20 .1440 .2203 .3005 .3852 .4752 .6720 .8880 1.1232 21 .1512 .2305 .3155 .4045 .4995 .7056 .9324 1.1792 22 .1584 .2407 .3305 .4238 .5228 .7392 .9768 1.2394 23	11		.1214	.1652	.2125	.2615			.6177	.8659
14 .1008 .1519 .2102 .2703 .3285 .4704 .6216 .7866 15 .1080 .1620 .2253 .2895 .3565 .5040 .6660 .8422 16 .1152 .1722 .2403 .3088 .3803 .5376 .7104 .8985 17 .1224 .1823 .2553 .3280 .4040 .5712 .7548 .9546 18 .1296 .1925 .2703 .3472 .4278 .6048 .7992 .1010 19 .1368 .2026 .2853 .3665 .4515 .6384 .8436 1.0666 20 .1440 .2203 .3005 .3852 .4752 .6720 .8880 1.1232 21 .1512 .2305 .3155 .4045 .4995 .7056 .9324 1.1792 22 .1584 .2407 .3305 .4238 .5228 .7392 .9768 1.2394 23	12									.9446
15 .1080 .1620 .2253 .2895 .3565 .5040 .6660 .8422 16 .1152 .1722 .2403 .3088 .3803 .5376 .7104 .8985 17 .1224 .1823 .2553 .3280 .4040 .5712 .7548 .9546 18 .1296 .1925 .2703 .3472 .4278 .6048 .7992 .1010 19 .1368 .2026 .2853 .3665 .4515 .6384 .8436 1.0668 20 .1440 .2203 .3005 .3852 .4752 .6720 .8880 1.1232 21 .1512 .2305 .3155 .4045 .4995 .7056 .9324 1.1792 22 .1584 .2407 .3305 .4238 .5228 .7392 .9768 1.2394 23 .1656 .2508 .3455 .4430 .5465 .7728 1.0212 1.2915 24	13					.3090				1.0233
16 .1152 .1722 .2403 .3088 .3803 .5376 .7104 .8988 17 .1224 .1823 .2553 .3280 .4040 .5712 .7548 .9546 18 .1296 .1925 .2703 .3472 .4278 .6048 .7992 1.0108 19 .1368 .2026 .2853 .3665 .4515 .6384 .8436 1.0666 20 .1440 .2203 .3005 .3852 .4752 .6720 .8880 1.123 21 .1512 .2305 .3155 .4045 .4995 .7056 .9324 1.1792 22 .1584 .2407 .3305 .4238 .5228 .7392 .9768 1.2394 23 .1656 .2508 .3455 .4430 .5465 .728 1.0212 1.2192 24 .1728 .2610 .3606 .4623 .5703 .8064 1.0656 1.347 25	15	1080	1620			3565				1.1020 1.1808
17 1.224 .1823 .2553 .3280 .4040 .5712 .7548 .9546 18 .1296 .1925 .2703 .3472 .4278 .6048 .7992 1.0108 19 .1368 .2026 .2853 .3665 .4515 .6384 .8436 1.0666 20 .1440 .2203 .3005 .3852 .4752 .6720 .8880 1.123 21 .1512 .2305 .3155 .4045 .4995 .7056 .9324 1.1792 22 .1584 .2407 .3305 .4238 .5228 .7392 .9768 1.2392 23 .1656 .2508 .3455 .4430 .5465 .7728 1.0212 1.2915 24 .1728 .2610 .3666 .4623 .5703 .8064 1.0656 1.3477 25 .1800 .2711 .3756 .4815 .5940 .8400 1.1100 1.408 27	16	.1152	.1722							1.1505
18 .1296 .1925 .2703 .3472 .4278 .6048 .7992 1.0108 19 .1368 .2026 .2853 .3665 .4515 .6384 .8436 1.0668 20 .1440 .2203 .3005 .3852 .4752 .6720 .8880 1.1232 21 .1512 .2305 .3155 .4045 .4995 .7056 .9324 1.1792 22 .1584 .2407 .3305 .4228 .5228 .7392 .9768 1.2394 23 .1656 .2508 .3455 .4430 .5465 .7728 1.0212 1.2915 24 .1728 .2610 .3606 .4623 .5703 .8064 1.0656 1.3477 25 .1800 .2711 .3756 .4815 .5940 .8400 1.1100 1.402 26 .1872 .2813 .3906 .5008 .6179 .8736 1.1544 1.4606 27 </td <td>17</td> <td>.1224</td> <td></td> <td>.2553</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.2595 1.3382</td>	17	.1224		.2553						1.2595 1.3382
21 .1512 .2305 .3155 .4045 .4995 .7056 .9324 1.1798 22 .1584 .2407 .3305 .4238 .5228 .7392 .9768 1.2394 23 .1656 .2508 .3455 .4430 .5465 .7728 1.0212 1.2918 24 .1728 .2610 .3606 .4623 .5703 .8064 1.0656 1.3477 25 .1800 .2711 .3756 .4815 .5940 .8400 1.1100 1.4038 26 .1872 .2813 .3906 .5008 .6179 .8736 1.1544 1.4606 27 .1944 .2914 .4056 .5200 .6415 .9072 1.1988 1.5161 28 .2016 .3016 .4206 .5393 .6553 .9408 .12432 1.5722 29 .2888 .3117 .4356 .5585 .6890 .9744 1.2876 .6284 3	18	.1296	.1925	.2703		.4278	.6048		1.0108	1.4169
21 .1512 .2305 .3155 .4045 .4995 .7056 .9324 1.1798 22 .1584 .2407 .3305 .4238 .5228 .7392 .9768 1.2394 23 .1656 .2508 .3455 .4430 .5465 .7728 1.0212 1.2918 24 .1728 .2610 .3606 .4623 .5703 .8064 1.0656 1.3477 25 .1800 .2711 .3756 .4815 .5940 .8400 1.1100 1.4038 26 .1872 .2813 .3906 .5008 .6179 .8736 1.1544 1.4606 27 .1944 .2914 .4056 .5200 .6415 .9072 1.1988 1.5161 28 .2016 .3016 .4206 .5393 .6553 .9408 .12432 1.5722 29 .2888 .3117 .4356 .5585 .6890 .9744 1.2876 .6284 3	19					.4515			1.0669	1.4956
22 1584 .2407 .3305 .4238 .5228 .7392 .9768 1.2394 23 .1656 .2508 .3455 .4430 .5465 .7728 1.0212 1.2915 24 .1728 .2610 .3606 .4623 .5703 .8064 1.0656 1.3477 25 .1800 .2711 .3756 .4815 .5940 .8400 1.1100 1.4035 26 .1872 .2813 .3906 .5008 .6179 .8736 1.1544 1.4600 27 .1944 .2914 .4056 .5200 .6415 .9072 .11988 1.5161 28 .2016 .3016 .4226 .5393 .6553 .9408 1.2432 1.5722 29 .2088 .3117 .4356 .5585 .6890 .9744 1.2876 1.6284 30 .2160 .3304 .4507 .5778 .7128 1.0080 1.322 1.6284	20					.4752			1.1232	1.5744
23 .1656 .2508 .3455 .4430 .5465 .7728 1.0212 1.2915 24 .1728 .2610 .3606 .4623 .5703 .8064 1.0656 1.3477 25 .1800 .2711 .3756 .4815 .5940 .8400 1.1100 1.4035 26 .1872 .2813 .3906 .5008 .6179 .8736 1.1544 1.4600 27 .1944 .2914 .4056 .5200 .6415 .9072 1.1988 1.5161 28 .2016 .3016 .4206 .5393 .6553 .9408 1.2432 1.5722 29 .2888 .3117 .4356 .5585 .6890 .9744 1.2876 1.6284 31 .2232 .3405 .4657 .5970 .7365 1.0416 1.3764 1.7409 32 .2304 .3507 .4807 .6535 .7841 .1088 1.4652 1.8534 <	21	.1512				.4995			1.1793	1.6531
24 1.728 .2610 .3606 .4623 .5703 .8064 1.0656 1.3477 25 .1800 .2711 .3756 .4815 .5940 .8400 1.1100 1.4038 26 .1872 .2813 .3906 .5008 .6179 .8736 1.1544 1.4600 27 .1944 .2914 .4056 .5200 .6415 .9072 1.1988 1.5161 28 .2016 .3016 .4266 .5533 .6553 .9408 1.2432 1.5722 29 .2088 .3117 .4356 .5585 .6890 .9744 1.2876 1.6284 30 .2160 .3304 .4507 .5778 .7128 1.0080 1.3761 1.7404 32 .2304 .3507 .4807 .6163 .7603 1.0752 1.4208 1.7971 33 .2376 .3608 .4957 .6355 .7841 1.1088 1.4652 1.8533	22	1084							1.2394	1.7318
26 1.872 .2813 .3906 .5008 .6179 .8736 1.1544 1.4600 27 .1944 .2914 .4056 .5200 .6415 .9072 1.1988 1.5162 28 .2016 .3016 .4206 .5393 .6553 .9408 1.2432 1.5722 29 .2888 .3117 .4356 .5585 .6890 .9744 1.2876 1.6284 30 .2160 .3304 .4567 .5778 .7128 1.0080 1.3320 1.848 31 .2232 .3405 .4657 .5970 .7365 1.0416 1.3764 1.7409 32 .2304 .3507 .4807 .6163 .7603 1.0752 1.4208 1.7971 33 .2376 .3608 .4957 .6355 .7841 .1088 1.4652 1.8533 34 .2448 .3710 .5107 .6548 .8078 1.1424 1.5096 1.9934	20	1798		9098			9064	1.0212	1.2915	1.8105 1.8892
26 1.872 .2813 .3906 .5008 .6179 .8736 1.1544 1.4600 27 .1944 .2914 .4056 .5200 .6415 .9072 1.1988 1.5162 28 .2016 .3016 .4206 .5393 .6553 .9408 1.2432 1.5722 29 .2888 .3117 .4356 .5585 .6890 .9744 1.2876 1.6284 30 .2160 .3304 .4567 .5778 .7128 1.0080 1.3320 1.848 31 .2232 .3405 .4657 .5970 .7365 1.0416 1.3764 1.7409 32 .2304 .3507 .4807 .6163 .7603 1.0752 1.4208 1.7971 33 .2376 .3608 .4957 .6355 .7841 .1088 1.4652 1.8533 34 .2448 .3710 .5107 .6548 .8078 1.1424 1.5096 1.9934	25	1800	2711	3756	4815	5040		1 1100		1.9679
28 .2016 .3016 .4206 .5393 .6553 .9408 1.2432 1.5722 29 .2088 .3117 .4356 .5585 .6890 .9744 1.2876 1.6284 30 .2160 .3304 .4507 .5778 .7128 1.0080 1.3320 1.6848 31 .2232 .3405 .4667 .5970 .7365 1.0416 1.3764 1.7409 32 .2304 .3507 .4807 .6163 .7603 1.0752 1.4208 1.7971 33 .2376 .3608 .4957 .6355 .7841 1.1088 1.4652 1.8533 34 .2448 .3710 .5107 .6548 .8078 1.1424 1.5096 1.9094 35 .2520 .3811 .5258 .6740 .8316 1.1760 1.5540 1.9656 36 .2592 .3913 .5408 .6933 .8553 1.2996 1.5984 2.0217	26	.1872	.2813			6179		1 1544	1.4600	2.0467
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27					.6415	.9072			2.1254
30 .2160 .3304 .4507 .5778 .7128 1,0080 1.3320 1.6848 31 .2232 .3405 .4657 .5970 .7365 1,0416 1.3764 1.7402 32 .2304 .3507 .4807 .6163 .7603 1.0752 1.4208 1,7971 33 .2376 .3608 .4957 .6355 .7841 1.1088 1.4652 1.8533 34 .2448 .3710 .5107 .6548 .8078 1.1424 1.5096 1.9984 35 .2520 .3811 .5258 .6740 .8316 1.1760 1.5540 1.9656 36 .2592 .3913 .5408 .6933 .8553 1.2096 1.5984 2.0217 37 .2664 .4014 .5558 .7125 .8791 1.2432 1.6428 2.0779 38 .2736 .4116 .5708 .7298 .9028 1.2768 1.6872 2.1340	28	.2016		.4206				1.2432	1.5723	2.2041 2.2829
31 .2232 .3405 .4657 .5970 .7365 1.0416 1.3764 1.7409 32 .2304 .3507 .4807 .6163 .7603 1.0752 1.4208 1.7971 33 .2376 .3608 .4957 .6355 .7841 1.1088 1.4652 1.8533 34 .2448 .3710 .5107 .6548 .8078 1.1424 1.5096 1.9094 35 .2520 .3811 .5258 .6740 .8316 1.1760 1.5540 1.9656 36 .2592 .3913 .5408 .6933 .8553 1.296 1.5984 2.0217 37 .2664 .4014 .5558 .7125 .8791 1.2482 1.6872 2.1340 39 .2808 .4217 .5558 .7298 .9028 1.2768 1.6872 2.1340 40 .288 .4406 .6009 .7704 .9504 1.344 1.776 2.2464	29			.4356				1.2876	1.6284	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.4507		.7128		1.3320	1.6848	2.3616
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31								1.7409	2.4403
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32								1.7971	2.5190 2.5977
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34					8078	1.1000			2.6764
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35									2.7552
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	.2592		.5408			1.2096	1.5984	2.0217	2.8339
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37		.4014	.5558	.7125	.8791	1.2432	1.6428	2.0779	2.9126
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	.2736		.5708	.7298		1.2768	1 6872	2.1340	2.9913
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.7490		1.3104	1.7316	2.1902	3.0701
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1.0000	1.344	1.776	2.2464	3.1488
60 432 .6610 .9014 1,1556 1,4256 2,016 2,664 3,3696 65 .468 .7150 .9765 1,2519 1,5444 2,184 2,886 3,6540 70 .504 .7711 1,0517 1,3482 1,6632 2,352 3,108 3,9312 75 .540 .8262 1,1268 1,4445 1,7820 2,520 3,330 4,2190						1.0092	1.612	2 220	2.0272	3.5424 3.9360
60 432 .6610 .9014 1,1556 1,4256 2,016 2,664 3,3696 65 .468 .7150 .9765 1,2519 1,5444 2,184 2,886 3,6540 70 .504 .7711 1,0517 1,3482 1,6632 2,352 3,108 3,9312 75 .540 .8262 1,1268 1,4445 1,7820 2,520 3,330 4,2190	55				1.0593	1.3068	1.848	2.442		4.3296
65 468 .7150 .9765 1.2519 1.5444 2.184 2.886 3.6540 70 .504 .7711 1.0517 1.3482 1.6632 2.352 3.108 3.9312 75 .540 .8262 1.1268 1.4445 1.7820 2.520 3.330 4.2192	60	.432					2.016	2,664		4.7132
70 .504 .7711 1.0517 1.3482 1.6632 2.352 3.108 3.9312 75 .540 .8262 1.1268 1.4445 1.7820 2.520 3.330 4.2120			.7150	.9765	1.2519		2.184	2.886		5.1068
60 .940 .8262 1.1268 1.4445 1.7820 2.520 3.330 4.2120 80 .576 .8813 1.2019 1.5408 1.9008 2.688 3.552 4.4948 85 .612 .9364 1.2770 1.6371 2.0196 2.856 3.774 4.7756				1.0517					3.9312	5.5104
85 .612 .9364 1.2770 1.6371 2.0196 2.856 3.774 4.7756				1.1268		1.7820	2.520	3.330		5.9040
09 1,014 1,9004 1.2770 1 1 1 1 2 0 1 9 1 2 856 1 3 774 1 4 7756	85			1.2019			2.688	3.552		6.2976
90 .648 .9914 1.3521 1.7334 2.1384 3.024 3.996 5.0544	90	648		1.2770			2.856	3.774		6.6912 7.0848
95 .684 1.0465 1.4272 1.8297 2.2572 3.192 4.218 5.3352										7.0848
100 .720 1.1016 1.5024 1.9260 2.3760 3.360 4.440 5.6160										7.8720
.000 006 612 626 642 660 700 740 780	.00	0 006	612		_					820

Expansion per degree.-Fahrenheit.

For the determination of temperatures above the boiling-point of mercury various forms of pyrometers are used. The most reliable for practical use is the thermo-electric pyrometer of Le Chatelier, composed of a thermoelectric couple, one member of which is of pure platinum and the other of platinum alloyed with 10 per cent. of rhodium. For a full description of this and other methods of measurement of high temperatures reference may be made to the work entitled "High Temperature Measurements," by Le Chatelier and Boudouard, and translated by George K. Burgess.*

The following table gives the melting-points of the elements used in

engineering.

Fusing=points.

Substance.	Fahr.	Cent.	Substance.	Fahr.	Cent.
	Degrees.	Degrees.		Degrees.	Degrees.
Aluminum	1213	657	Glass	1832	1000
Antimony	815	435	Glass, lead free	2192	1200
Copper	1949	1065	Delta metal	1742	950
Gold	1947	1064			
Iron, pure	2975	1635	Fusible Metals.		
Iron, white pig	1967	1075	3 Tin		
Iron, gray pig	2192.	1200	5 Lead	212	100
Steel	2507	1375	8 Bismuth		
Lead	621	327	4 Tin		
Manganese	3452	1900	4 Lead	263	128
Nickel	2732	1500	1 Bismuth		
Platinum	3452	1900	3 Tin	275	135
Silver	1751	955	2 Lead	2/3	150
Tin	446	230	1 Tin	204	7.57
Zinc	787	419	1 Lead	304	151
Brass	1859	1015	1 Tin	361	183
Bronze	1652	900	2 Lead	361	183
	1	1			1

Expansion of Gases.

All perfect gases, so called, expand and contract alike under the action of heat. That is to say, every substance, when in the gaseous state, and not near its point of liquefaction, has the same coefficient of expansion, this coefficient being $\frac{1}{273}$ of its volume, or 0.003665 for each degree Centigrade, or $\frac{1}{4014}$ part = 0.002035 for each degree Fahrenheit.

Since a gas contracts $\frac{1}{273}$ part of its volume when its temperature is lowered 1° C., such a rate of contraction would theoretically reduce its volume to zero at a temperature of -273° C. $= -459.4^{\circ}$ F. Since all gases reach their liquefying point before this low temperature is attained, however, no such contraction exists. At the same time, it may be said that if heat is considered as a motion of the molecules of a substance, that motion is to be considered as having ceased when the temperature has reached -273° C.

This temperature of -273° C. $=-459.4^{\circ}$ F. is, therefore, called the *absolute zero*, and from it all temperatures should properly be reckoned. When-

^{*} New York, John Wiley & Sons.

ever a temperature is mentioned as being in degrees absolute, either in the Centigrade or the Fahrenheit scale, it is understood to be counted from the absolute zero, and therefore is equal to the observed temperature plus 273 or 459.4, as the case may be.

The lowest temperature which has thus far been attained is that pro-

duced by the evaporation of liquid hydrogen by Dewar, $=-252^{\circ}$ C.

Heat Units.

In expressing quantities of heat the temperature alone is not sufficient, since the substance in which the change of temperature is produced must be considered. The substance chosen as a standard is pure water, at or near its point of greatest density.

Two heat units are in general use.

The British Thermal Unit, abbreviated B.T.U., is the quantity of heat required to raise the temperature of 1 pound of water 1° F., at or near the temperature of 39.1°.

The limitation of the part of the scale, at or near which the measurement should be made, need be considered only for very precise physical work, since the variation in the quantity of heat corresponding to an interval of one degree in a given weight of water varies but slightly for different parts of the scale.

In the metric system the kilogramme of water is taken, and the degree on the Centigrade scale. The unit is the **Calorie**, being the quantity of heat required to raise 1 kilogramme of water 1° C., at or near the temperature of 4° C. In French the calorie is sometimes abbreviated Cal., and in German it is written W. E. (Wärme Einheit).

1 B. T. U = 0.252 calorie. 1 calorie = 3.968 B. T. U.

When the effect of the application of a given number of British thermal units or calories upon a given weight of any substance is under consideration, care must be taken to take into account the relation of the weights in making the conversion, or errors may be made. Thus, 1 calorie per kilogramme is only 1.8 times greater than 1 British thermal unit per pound, since the calorie is considered in connection with a weight equal to 2.2 pounds, and, conversely, 1 British thermal unit per pound is equal to 0.555 calories per kilogramme.

The following tables will be found convenient for transforming quantities in one kind of heat units to another.

Conversion of British Thermal Units into Calories.

B. T. U.	Calories.	B. T. U.	Calories.	B. T. U.	Calories.
1	.252	. 34	8.568	67	16.884
2	.504	35	8.820	68	17.136
3	.756	36	9.072	69	17.388
4	1.008	37	9.324	70	17.640
5	• 1.260	38	9.576	71	17.892
6	1.512	39	9.828	72	18.144
7	1.764	40	10.080	73	18.396
8	2.016	41	10.332	74	18.648
9	2.268	42	10.584	75	18.900
10	2.520	43	10.836	76	19.152
11	2.772	44	11.088	77	19.404
12	3.024	45	11.340	78	19.656
13	3.276	46	11.592	79	19.908
14	3.528	47	11.844	80	20.160
15	3.780	48	12.096	81	20.412
16	4.032	49	12.348	82	20.664
17	4.284	50	12.600	83	20.916
18	4.536	51	12.852	84	21.168
19	4.788	52	13.104	85	21,420
20	5.040	53	13.356	86	21.672
21	5.292	54	13.608	87	21.924
22	5.544	- 55	13.860	88	22.176
23	5.796	56	14.112	89	22,428
24 ·	6.048	57	14.364	90	22.680
25	6.300	58	14.616	91	22.932
26	6.552	59	14.868	92	23.184
27	6.804	60	15.120	93	23.436
28	7.056	61	15.372	94	23.688
29	7.308	62	15.624	95	23.940
30	7.560	63	15.876	96	24.192
31	7.812	64	16.128	97	24.444
32	8.064	65	16.380	98	24.696
33	8.316	66	16.632	99	24.948

Conversion of Calories into British Thermal Units.

					2.0
Calories.	B. T. U.	Calories.	B. T. U.	Calories.	B. T. U.
1	3.97	34	134.92	67	265.88
2	7.94	35	138.89	68	269.85
3	11.90	36	142.86	69	273.81
4	15.87	37	146.83	70	277.78
5	19.84	38	150.80	71 •	281.75
6	23.81	39	154.76	72	285.72
7	27.78	40	158.73	73	289.69
8	31.75	41	162.70	74	293.66
9	35.71	42	166.67	75	297.62
10	39.68	43	170.64	76	301.59
11	43.65	44	174.61	77	305.56
12	47.62	45	178.57	78	309.53
13	51.59	46	182.54	79	313.50
14	55.56	47	186.51	80	317.47
15	59.52	48	190.48	81	321.43
16	63.49	49	194.45	82	325.40
17	67.46	50	198.42	83	329.37
18	71.43	51	202.38	84	333.34
19	75.40	52	206.35	85	337.31
20	79.37	53	210.32	86	341.28
21	83.33	54	214,29	87	345.24
22	87.30	55	218.26	88	349.21
23	91.27	56	222.23	89	353.18
24	95.24	57	226.19	90	357.15
25	99.21	58	230.16	91	361.12
26	103.18	59	234.13	92	365.09
27	107.14	60	238.10	93	369.05
28	111.11	61	242.07	94	373.02
29	115.08	62	246.04	95	376.99
30	119.05	63	250.00	96	380.96
31	123.02	64	253.97	97	384.93
32	126.99	65	257.94	98	388.90
33	130.95	66	261.91	99	392.86

Conversion of Calories into Foot-pounds.

(alories.	Foot-pounds.	Calories.	Foot-pounds.	Calories.	Foot-pounds.
	1	3 091	34	105 106	67	207 121
	2	6 183	35	108 198	68	210 212
	3	9 274	36	111 289	69	213 304
	4	12 365	37	114 380	70	216 395
	5	15 457	38	117 472	71	219 487
	6	18 548	39	120 563	72	222 578
	7	21 640	40	123 654	73	225 669
	8	24 731	41	126 746	74	228 761
	9	27 822	42	129 837	75	231 852
	10	30 914	43	132 928	76	234 943
	11	34 005	44	136 020	77	238 035
	12	37 096	45	139 111	78	241 126
	13	40 188	46	142 203	79	244 217
	14	43 279	47	145 294	80	247 309
	15	46 370	48	148 387	81	250 400
	16	49 462	49	151 477	82	253 492
	17	52 553	50	154 568	83	256 583
	18	55 644	51	157 659	84	259 674
	19	58 736	52	160 751	85	262 766
	20	61 827	53	163 824	86	265 857
	21	64 919	54	166 933	87	268 948
	22	68 010	55	170 025	88	272 040
	23	71 101	56	173 116	89	275 131
	24	74 193	57	176 208	90	278 222
	25	77 284	58	179 299	91	281 314
	26	80 375	59	182 390	92	284 405
	27	83 467	60	185 482	93	287 496
	28	86 558	61	188 573	94	290 588
	29	89 649	62	191 664	95	293 679
	30	92 741	63	194 756	96	296 771
	31	95 835	64	197 847	97	299 862
	32	98 9 24	65	200 938	98	302 953
	33	102 015	66	204 030	99	306 045

Conversion of Foot=pounds into Calories.

Foot- pounds.	Calories.	Foot- pounds.	Calories.	Foot- pounds.	Calories.
1	.000 323	34	.010 998	67	.021 676
2	.000 647	35	.010 333	68	.021 070
3	.000 970	36	.011 645	69	.022 320
4	.001 294	37	.011 969	70	.022 644
5	.001 617	38	.012 292	71	.022 967
6	.001 941	39	.012 616	72	.023 291
7	.002 264	40	.012 939	73	.023 614
8	.002 588	41	.013 263	74	.023 938
9	.002 911	42	.013 586	75	.024 261
10	.003 235	43	.013 910	76	.024 584
11	.003 558	44	.014 233	77	.024 908
12	.003 882	45	.014 557	78	.025 231
13	.004 205	46	.014 880	79	.025 555
14	.004 529	47	.015 204	80	.025 878
15	.004 852	48	.015 527	81	.026 202
16	.005 176	49	.015 851	82	.026 525
17	.005 499	50	.016 174	83	.026 849
18	.005 823	51	.016 497	84	.027 172
19	.006 146	52	.016 821	85	.027 496
20	.006 470	53	.017 144	86	.027 819
21	.006 793	. 54	.017 468	87	.028 143
22	.007 117	55	.017 791	88	.028 466
23	.007 440	56	.018 115	89	.028 790
24	.007 764	57	.018 438	90	.029 113
25	.008 087	58	.018 762	91	.029 437
26	.008 410	59	.019 085	92	.029 760
27	.008 734	60	.019 409	93	.030 084
28	.009 057	61	.019 732	94	.030 407
29	.009 381	62	.020 056	95	.030 731
30	.009 704	63	.020 379	96	.031 054
31	.010 028	64	.020 703	97	.031. 378
32	.010 351	65	.021 026	98	.031 701
33	.010 675	66	.021 350	99	.032 025

Mechanical Equivalent of Heat.

In the conversion of heat into mechanical energy there is always a definite amount of work produced for a definite quantity of heat. One British thermal unit is equal to 778 foot-pounds, and one calorie is equal to 428 kilogrammetres. The maximum amount of energy which can be obtained for any given number of heat units is, therefore, found by multiplying by 778. Conversely, 1 foot-pound = $\frac{1}{\sqrt{8}}$ = 0.001285 heat unit.

Specific Heat.

We have seen that heat requires for its determination the production of a determinate change in temperature of a definite weight of a given substance. For the purpose of establishing a unit, water has been chosen as the standard substance. The quantity of heat required to raise the temperature of other substances is different from that required for water. The ratio of the quantity of heat required for any substance by that required for water is called the Specific Heat of the substance. Thus, it is found that it takes only about one-ninth as much heat to raise the temperature of a pound of iron one degree that it does to raise a pound of water; hence, the specific heat of iron is one-ninth, or, more precisely, = 0.1138.

The methods of measuring specific heats vary according to the character of the substances. For metals the most convenient is the method of mixtures. in which a known weight of the metal is raised to a definite temperature and then plunged into a given weight of water at a known temperature. The rise in temperature of the water gives the number of heat units which have been imparted to it, and these have obviously been derived from the metal which has been cooled. We then have, if

x' = specific heat of metal required; T = fall in temperature of metal; t = rise in temperature of water; W = weight of metal; w = weight of water:

$$x = \frac{wt}{Wt}$$
.

The specific heats of various substances are not constant, but gradually increase with the temperature. The following table gives the mean between 10° C. and 100° C., the usual working temperatures. Fuller tables for various ranges of temperatures are to be found in the Smithsonian Physical Tables.

Table of Specific Heats.

Solids (mean specific heat between 10° C. and 100° C.).

Silver Iron Zine Tin	.0570 .1138 .0955 .0562	Antimony	.0939 .2499 .2143 .1877
Lead	.0314 .0324 .0324	IceSulphur.GraphiteDiamond	.5040 .1777 .2008

Liquids.

Monograms	.0333 Alcohol	.615
		.019
Sulphuria agid	.3430 Oil of turpentine	.462
		.404
Ether	5030 Acetic acid	659

Gases (at constant pressure).

Air 2: Hydrogen 3.40 Oxygen 21 Chlorine 12	5 Carbonic oxide	.2163
--	--------------------	-------

The above specific heats represent the quantity of heat, in British thermal units, required to raise the temperature of 1 pound of the substance 1° F., or, in calories, required to raise the temperature of 1 kilogramme of the substance 1° C.

Latent Heat.

The phenomena of expansion follow the simple rule of direct relation to the temperature only when the substance does not suffer any change of state. Thus, there are determinate coefficients for solids, for liquids, and for gases. When, however, a substance under observation passes from the solid to the liquid state, and from the liquid to the gaseous state, certain amounts of heat are absorbed which do not raise the temperature, this heat being expended in molecular work, separating the molecules of the substance. The heat thus absorbed is said to be rendered *latent*—every substance having a *latent heat of fusion*, required to convert it from a solid to a liquid, and another latent heat of vaporization.

Thus, a pound of ice may be heated and its temperature will rise until the melting-point, 32° F. or 0° C., has been reached, when further application of heat, however intense, will cause no further rise in temperature until the ice has been entirely melted. Experiments have shown that 142.6 British thermal units are required to convert a pound of ice at 32° into a pound of water at 32°, and hence the latent heat of fusion of water is said to be 142.6°. Further application of heat causes a rise in temperature of the same of the s is said to be 142.6°. Further application of heat causes a rise in temperature directly proportional to the quantity of heat supplied, 180 thermal units raising it to the boiling-point, 212° F. Here, again, the rise in temperature ceases until all the pound of water at 212° has been converted into steam at 212°. This operation requires 966 heat units, so that the latent heat of vaporization of water is 966°.

The following table gives the latent heats of various substances.

Galatan a	B. T. U. 1	per pound.	Calories per kilogramme.	
Substance.	Fusion.	Vaporiza- tion.	Fusion.	Vaporiza- tion.
Water	142.60	966.6	79.24	537
Alcohol, ethyl		371.0		205
Alcohol, methyl		481.0		267
Ammonia		529.0		294
Bisulphide of carbon		162.0		90
Sulphur dioxide		164.0		91
Turpentine		133.0		74
Iron, gray	41.40		23.00	
Iron, white	59.40		33.00	
Lead	10.55		5.86	
Mercury	5.08		2.82	
Silver	37.92		21.07	
Zinc	50.63		28.13	

Coefficients for Heat Transmission.

Substance.	Metric.	British.	Substance.	Metric.	British.
Aluminum Antimony Brass, yellow Brass, red Copper German silver Iron	.00025 .00028	.00203 .00022 .00142 .00157 .00404 .00050 .00089	Lead	.00008 .00002 .00006 .00011 .00109 .00015 .00030	.00045 .00011 .00034 .00062 .00610 .00084

In the above table the metric coefficients give the quantity of heat, in calories, transmitted per second through a plate 1 centimetre thick, per square centimetre of surface, for a difference of 1° C., at a temperature of 100° C.

The British coefficients give the quantity of heat transmitted, in British thermal units, per second through a plate 1 inch thick, per square inch of surface, for a difference of 1° F., at a temperature of 212° F.

The coefficients vary somewhat with the temperature, but the above

will serve in practice.

Radiation.

For moderate differences in temperature the loss of heat by radiation may be taken as dependent upon the character of the surface, the area, and the difference in temperature.

The coefficients of radiation, as determined by Péclet, give the number of heat units emitted per hour, per square foot of surface, for 1° F., or the number of calories emitted per hour, per square metre, per 1° C., as below:

Coefficients of Radiation.

Surface.	B. T. U., per 1° F., per square foot, per hour.	Calories, per 1° C., per square metre, per hour.
Silver, polished	.02657	.13
Copper, polished	.03270	.16
Tin, polished	.04395	.22
Tinned iron, polished	.08585	.42
Iron, sheet-, polished	.0920	.45
Iron, ordinary	.5662	2.77
Glass	.5948	2.91
Cast-iron, new	.6480	3.17
Cast-iron, rusted	.6868	3.36
Sawdust	.7215	3.53
Sand, fine	.7400	3.62
Water		5.31
Oil	1.4800	7.24

The number of heat units radiated from any surface per hour may, therefore, be computed by multiplying the area by the difference in temperature between the hot surface and the surrounding air, and by the coefficient corresponding to the character of the surface. It will be seen from the table that ordinary cast-iron is about six times as good a radiating

surface as polished sheet-iron, and about twenty-five times as effective as

polished silver.

The coefficients in the preceding table are sufficiently correct for use when the difference in temperature is not great. When, however, there is a considerable difference in the temperature of the heated body and the surrounding air, the late of cooling becomes more rapid. The following tables give the ratio of increase in the rate of cooling for larger differences in temperature.

Ratio of Increase in Radiation for Temperatures from 10° F. to 450° F.

Temperatures of Air = 70° F.

Difference in temperature, Fahr.	Ratio.	Difference in temperature, Fahr.	Ratio.	Difference in temperature, Fahr.	Ratio.
Degrees.		Degrees.		Degrees.	
10	1.15	160	1.61	310	2.34
20	1.18	170	1.65	320	2.40
30	1.20	180	1.68	330	2.47
40	1.23	190	1.73	340	2.54
50	1.25	200	1.78	350	2.60
60	1.27	210	1.82	360	2.68
70	1.32	220	1.86	370	2.77
80	1.35	230	1.90	380	2.84
90	1.38	240	1.95	390	2.93
100	1.40	250	2.00	400	3.02
110	1.44	260	2.05	410	3.10
120	1.47	270	2.10	·420	3.20
130	1.50	280	2.16	430	3.30
140	1.54	290	2.21	440	3.40
150	1.57	300	2.27	450	3.50

Ratio of Increase in Radiation for Temperatures from 10° C. to 240° C.

Temperatures of Air = 20° C.

Difference in temperature, Cent.	Ratio.	Difference in temperature, Cent.	Ratio.	Difference in temperature, Cent.	Ratio.
Degrees.		Degrees.		Degrees.	
10	1.16	90	1.60	170	2.31
20	1.21	100	1.68	180	2.42
30	1.25	110	1.75	190	2.54
40	1.30	120	1.83	200	2.66
50	1.36	130	1.90	210	2.79
60	1.42	140	2.00	220	2.93
70	1.48	150	2.09	230	3.07
80	1.54	160	2.20	240	3.23

In computing the number of heat units radiated from a given area and material the result should first be calculated by the coefficients of radiation, given on page 497, and the value thus obtained, multiplied by the ratio, corresponding to the difference in temperature, as given in the preceding tables.

Heating Pipes (Iron).

Mean	Units of heat (B. T. U.) emitted, per square foot, per hour. Temperature of air = 70° F.					
temperature of pipes, Fahr.	By convection.		By radiation		on and radia- ombined.	
	Air, still.	Air, moving.	alone.	Air, still.	Air, moving.	
Degrees,						
80	5.04	8.40	7.43	12.47	15.83	
90	11.84	19.73	15.31	27.15	35.04	
100	19.53	32.55	23.47	43.00	56.02	
110	27.86	46.43	31.93	57.79	78.36	
120	36.66	61.10	40.82	77.48	101.92	
130	45.90	76.50	50.00	95.90	126.50	
140	55.51	92.52	59.63	115.14	152.15	
150	65.45	109.18	69.69	135.14	178.87	
160	75.68	126.13	80.19	155.87	206.32	
170	86.18	143.30	91.12	177.30	234.42	
180	96.93	161.55	102.50	199.43	264.05	
190	107.90	179.83	114.45	222.35	294.28	
200	119.13	198.55	127.00	246.13	325.55	
210	130 49	217.48	139.96	270.49	357.48	
220	142.20	237.00	155.27	297.47	392.27	
230	153.95	256.58	169.56	323.51	426.14	
240	165.90	279.83	184.58	350.48	464.41	
250	178.00	296.66	200.18	378.18	496.84	
260	189.90	316.50	214.36	404.26	530.86	
270	202.70	337.83	233.42	436.12	571.25	
280	215.30	358.85	251.21	466.51	610.06	
290	228.55	380.91	267.73	496.28	648.64	
300	240.85	401.41	279.12	519.97	680.53	

Loss of Heat Through Walls.

Loss, in British Thermal Units, per Square Foot, per Hour, for 1° F. Difference.

Thickness, in inches.	Brick.	Stone.	Thickness, in inches.	Brick.	Stone.
4	.273	.330	24	.129	.255
8	.223	.312	28	.116	.244
12	.188	.295	32	.106	.234
16	.163	.280	36	.097	.224
20	.144	.267	40	.090	.216

500

AIR.

Air is composed of a mixture of oxygen and nitrogen, in the proportion of 21 of oxygen to 79 of nitrogen, by volume; or 23 of oxygen to 77 of nitrogen, by weight, with an average of 0.04 per cent, of carbonic acid. A cubic metre of dry air, at 0° C. and a pressure of 760 millimetres of mercury, weighs 1.29305 kilogrammes. A cubic foot of dry air, at 32° F.

and a pressure of 29.92 inches of mercury, weighs 0.08072 pound. Above its critical temperature of -140° C. air may be considered as a permanent gas, expanding $\frac{1}{2}$ 3 of its volume for each degree Centigrade increase in temperature, and $\frac{1}{4}$ 1 of its volume for an increase of 1° Fahrenheit.

Taking the volume at freezing-point as unity, the weights and volumes at other temperatures are given in the following table.

Volume and Weight of Dry Air at Different Temperatures.

Under a Constant Atmospheric Pressure of 29.92 Inches of Mercury, the Volume at 32° F. being 1.

Tempera- ture, Fahr.	Volume.	Weight of a cubic foot.	Tempera- ture, Fahr.	Volume.	Weight of a cubic foot.
Degrees.		Lb.	Degrees.		Lb.
0	.935	.0864	500	1.954	.0413
12	.960	.0842	552	2.056	.0385
22	.980	.0824	600	2.150	.0376
32	1.000	.0807	650	2.260	.0357
42	1.020	.0791	700	2.362	.0338
52	1.041	.0776	750	2.465	.0328
62	1.061	.0761	800	2.566	.0315
72	1.082	.0747	850	2.668	.0303
82	1.102	.0733	900	2.770	.0292
92	1.122	.0720	950	2.871	.0281
102	1.143	.0707	1000	2.974	.0268
112	1.163	.0694	1100	3.177	.0254
122	1.184	.0682	1200	3.381	.0239
132	1.204	.0671	1300	3.584	.0225
142	1.224	.0659	1400	3.788	.0213
152	1.245	.0649	1500	3.993	.0202
162	1.265	.0638	. 1600	4.196	.0192
172	1.285	.0628	1700	4.402	.0183
182	1.306	.0618	1800	4.605	.0175
192	1.326	.0609	1900	4.808	.0168
202	1.347	.0600	2000	5.012	.0161
212	1.367	.0591	2100	5.217	.0155
230	1.404	.0575	2200	$5.\dot{4}20$.0149
250	1.444	.0559	2300	5.625	.0142
275	1.495	.0540	2400	5.827	.0138
300	1.546	.0522	2500	6.032	.0133
325	1.597	.0506	2600	6.236	.0130
350	1.648	.0490	2700	6.440	.0125
375	1.689	.0477	2800	6.644	.0121
400	1.750	.0461	2900	6.847	.0118
450	1.852	.0436	3000	7.051	.0114

On the Compression and Expansion of a Definite Weight of Air Enclosed in a Vessel.

AIR.

In this treatment no heat must be lost or gained by radiation from the sides of the vessel in which the air is enclosed. Let D and d represent the degrees of absolute temperatures of volumes, v and V, of the air to be experimented upon.

The absolute zero is 461° below Fahr. zero and 273° Cent. below the freezing-point of water. $D=461+T,\ d=461+t,\ {\rm and}\ D-d=T-t,$

Fahr. scale.

Volume and Temperature.

$$\frac{V}{v} = \left(\frac{D}{d}\right)^{2.45}$$
, and $\frac{v}{V} = \left(\frac{d}{D}\right)^{2.45}$.

Expansion,
$$V = v \left(\frac{D}{d}\right)^{2.45}$$
; compression, $v = \left(\frac{d}{D}\right)^{2.45}$

Compression,
$$D = d\sqrt[2.45]{\frac{V}{v}}$$
; expansion, $d = D\sqrt[2.45]{\frac{V}{v}}$.

Example. To what fraction must air of $t=65^{\circ}$ be compressed, in order to fire tinder at a temperature of $T=550^{\circ}$, $d=461+65=526^{\circ}$, $D=550+461=1011^{\circ}$?

Formula.
$$\frac{v}{V} = \left(\frac{526}{1011}\right)^{2.45} = 0.20$$
, the answer.

Example. How much must air of $T=80^{\circ}$ be expanded to reduce the temperature to $t=32^{\circ}$, or freezing-point of water?

Formula.
$$\frac{V}{v} = \left(\frac{541}{493}\right)^{2.45} = 1.3308$$
 times, the answer.

Example. v=360 cubic inches of air, of temperature, $T=380^{\circ}$ or $D=841^{\circ}$, is to be expanded until the temperature becomes $t=80^{\circ}$ or $d=541^{\circ}$. Required the volume, V, corresponding to that temperature?

Formula.
$$V = 360 \left(\frac{821}{541}\right)^{2.45} = 1025.9$$
 cubic feet.

Example. V=20 cubic feet of air, of $t=32^{\circ}$ or $d=493^{\circ}$, is to be compressed to v=12 cubic feet. Required the temperature, t, of compression?

Formula.
$$D = 493 \sqrt[2.45]{\frac{20}{12}} = 607.29^{\circ} \text{ or } T = 146.29^{\circ}.$$

Pressure and Temperature.

$$\frac{P}{p} = \left(\frac{D}{d}\right)^{3.42}, \text{ and } \frac{p}{P} = \left(\frac{D}{d}\right)^{3.42}.$$

Compression,
$$P = p\left(\frac{D}{d}\right)^{3.42}$$
; expansion, $p = P\left(\frac{d}{D}\right)^{3.42}$.

$$\text{Compression, } D = d \sqrt[3,42]{\frac{P}{p}} \,; \qquad \text{expansion, } p = D \sqrt[3,42]{\frac{p}{P}}.$$

Example. A volume of air, of pressure, p=15 pounds to the square inch, and of temperature, $t=62^\circ$, is to be compressed until the temperature becomes $T=120^\circ$. Required the pressure, P, per square inch, at $T=120^\circ$?

$$d = 461 + 62 = 523$$
, and $D = 461 + 120 + 581$.

Formula.
$$P = 15 \left(\frac{581}{523}\right)^{3.42} = 21.49$$
 pounds per square inch.

Example. A volume of air, of pressure, P=45 pounds to the square inch, and of temperature, $T=250^{\circ}$ or $D=711^{\circ}$, is to be expanded to a pressure of p=25 pounds. Required the temperature, t, of the expanded air?

Formula.

$$d = 711 \sqrt[3.42]{\frac{25}{45}} = 598.72^{\circ}$$
, and

 $t = 598.72 - 461 = 137.72^{\circ}$, the temperature required.

Pressure and Volume.

$$\sqrt[44]{\frac{V}{v}} = \sqrt[29]{\frac{p}{P}}, \text{ and } \sqrt[44]{\frac{v}{V}} = \sqrt[29]{\frac{p}{P}}.$$

Expansion,
$$V = v \sqrt[1.4]{\frac{P}{p}}$$
; compression, $v = V \sqrt[1.4]{\frac{p}{P}}$.

Compression,
$$P = p \left(\frac{V}{v}\right)^{1.4}$$
; expansion, $p = P \left(\frac{v}{V}\right)^{1.4}$.

Example. A volume, v=50 cubic inches, and of pressure, P=80 pounds per square inch, is to be expanded until the pressure becomes p=15 pounds. Required the expanded volume, V?

Formula. $V = 50 \sqrt[1.4]{\frac{80}{15}} = 165 \text{ cubic inches.}$

Example. What will be the pressure of a volume of air expanded 1.3308 times?

Formula.
$$p = \left(\frac{1}{1.3308}\right)^{1.4} = 0.5324$$
 of the primitive pressure.

In the compression and expansion of air, as given in the following table, it is supposed that no heat is transmitted to or from the air operated upon. In compression, the temperature of the air rises; and if the heat is allowed to be conducted through the sides of the vessel enclosing the air, the pressure will not correspond with the table. In expanding the air the temperature is lowered, as seen in the table. The primitive volume is assumed to be at 32° F.

Compression and Expansion of Air.

	Compre	ssion of a	ir.		Expans	sion of ai	r.
Volume.	Temper-	Pr	essure.	Volume.	Temper- ature,	Pr	essure.
v=1.	Fahr. Degrees.	Atmosphere.	Pounds per square inch.	v=1.	Fahr. Degrees.	Atmosphere.	Pounds per square inch.
V	T	A	P	v	T	A	P
1.000	32.00	1.0000	14.700	1.00	+ 32.00	1.00000	14.7000
.950	42.43	1.0297	15.137	1.10	+ 13.20	.87510	12.8640
.900	53.66	1.159	17.036	1.20	- 3.30	.77470	11.3930
.850	65.81	1.255	18.456	1.30	- 18.06	.69260	10.1810
.800	79.01	1.366	20.090	1.40	- 31.26	.62430	9.1778
.750	93.43	1.496	21.991	1.50	- 39.65	.58354	8.5780
.700	109.26	1.647	24.215	1.60	- 54.06	.5179	7.6130
.650	126.77	1.828	26.561	1.70	- 64.00	.4757	6.9934
.600	146.30	2.044	30.054	1.80	- 73.16	.4391	6.4556
.550	168.25	2.309	33.948	1.90	- 82.34	.4083	6.0020
.500	193.20	2.639	38.792	2.00	- 89.47	.3789	5.5700
.450	221.96	3.058	44.547	2.25	-106.90	.3213	4.7235
.400	245.70	3.607	53.020	2.50	-121.83	.2779	4.0851
.350	295.73	4.348	63.917	2.75	-134.77	.2426	3.5666
.330	314.10	4.721	69.406	3.00	-146.15	.2148	3.1576
.300	344.87	5.396	79.313	3.25	-156.27	.1920	2.8228
.250	407.13	6.964	102.38	3.50	-167.29	.1731	2.5446
.200	489.91	9.518	139.92	3.75	-173.57	.1572	2.3103
.150	606.4	14.240	209.31	4.0	-181.00	.1436	2.1111
.125	691.0	18.380	270.17	4.5	-194.18	.1218	1.7900
.10	800.9	25.120	369.24	5.0	-205.40	.1051	1.5444
.05	1213.5	66.289	974.45	6.0	-223.74	.0813	1.1965
.04	1373.2	90.60	1331.8	7.0	-238.20	.0656	.9642
.03	1601.7	135.53	1992.3	8.0	-250.03	.0544	.7998
.02	1973.0	239.09	3514.6	9.0	-259.92	.0461	.6782
.01	4469.0	794.33	11676.0	10.0	-268.39	.0355	.5216

The above table shows the necessity for taking into account the heat produced in air compressors. If the cylinders and valve chests are not sufficiently cooled there is danger of explosion from the air carburetted by the lubricant. High compression in gas engines is limited by the production of a temperature sufficient to cause a premature ignition of the charge. In the Diesel motor the air is compressed to about 30 atmospheres, this giving a temperature of about 875° F., supposing no cooling to occur. This is ample to ignite the heaviest oil injected into the cylinder.

Table of Volumes of Air Transmitted, in Cubic Feet, per Minute in Pipes of Various Dimensions.

of feet, nd.	Actual diameter of pipe, in inches.											
Velocity of flow, in feet, per second.	1	2	3	4	5	6	8	10	12	16	20	24
1	.33	1.31	2.95	5.2	8.2	11.8	20.9	32.7	47.1	83.8	131	188
2	.65	2.62	5.89	10.5	16.4	23.6	41.9	65.4	94.2	167.5	262	377
3	.98	3.93	8.84	15.7	24.5	35.3	62.8	98.2	141.4	251.3	393	565
4	1.31	5.24	11.78	20.9	32.7	47.1	83.8	131.0	188.0	335.0	523	754
5	1.64	6.55	14.7	26.2	41.0	59.0	104.0	163.0	235.0	419.0	654	942
6	1.96	7.85	17.7	31.4	49.1	70.7	125.0	196.0	283.0	502.0	785	1131
7	2.29	9.16	20.6	36.6	57.2	82.4	146.0	229.0	330.0	586.0	916	1319
8	2.62	10.50	23.5	41.9	65.4	94.0	167.0	262.0	377.0	670.0	1047	1508
9	2.95	11.78	26.5	47.0	73.0	106.0	188.0	294.0	424.0	754.0	1178	1696
10	3.27	13.1	29.4	52.0	82.0	118.0	209.0	327.0	471.0	838.0	1309	1885
12	3.93	15.7	35.3	63.0	99.0	141.0	251.0	393.0	565.0	1005.0	1571	2262
15	4.91	19.6	44.2	78.0	122.0	177.0	314.0	491.0	707.0	1256.0	1963	2827
18	5.89	23.5	53.0	94.0	147.0	212.0	377.0	589.0	848.0	1508.0	2356	3393
20	6.55	26.2	59.0	105.0	164.0	235.0	419.0	654.0	942.0	1675.0	2618	3770
24	7.86	31.4	71.0	125.0	196.0	283.0	502.0	785.0	1131.0	2010.0	3141	4524
25	8.18	32.7	73.0	131.0	204.0	294.0	523.0	818.0	1178.0	2094.0	3272	4712
28	9.16	36.6	82.0	146.0	229.0	330.0	586.0	916.0	1319.0	2346.0	3665	5278
30	9.80	39.3	88.0	157.0	245.0	353.0	628.0	982.0	1414.0	2513.0	3927	5655

Velocity of Escaping Compressed Air.

(Hiscox.)

Pressure, in atmos-	Pressure, in inches, of mercury.	Pressure, in pounds, per square inch.	Theoretical velocity, in feet, per second.	Pressure, in atmospheres.	Pressure, in inches, of mercury.	Pressure, in pounds, per square inch.	Theoretical velocity, in feet, per second.
.010	.30	.147	94.4	.680	20.40	10.0	780
.066	2.10	1.00	246.0	.809	24.28	12.0	855
.100	3.00	1.47	299.0	1.0	30.0	14.7	946
.136	4.08	2.00	348.0	2.0	60.0	29.4	1094
.204	6.12	3.00	472.0	5.0	150.0	73.5	1219
.272	8.16	4.00	493.0	10.0	300.0	147.0	1275
.340	10.20	5.00	552.0	20.0	600.0	294.0	1304
.408	12.24	6.00	604.0	40.0	1200.0	588.0	1323
.500	15.00	7.35	673.0	100.0	3000.0	1470.0	1331
.544	16.32	8.0	697.0	200.0	6000.0	2940.0	1334
.611	18.34	9.0	741.0				

The theoretical velocities of efflux of compressed air, as given in the above table, are to be reduced by multiplying by the coefficient of actual

discharge, the coefficient varying according to the nature of the orifice and the air pressure.

The following coefficients will serve in practice:

Coefficients of Air Discharge.

	Pressures, in atmospheres.						
	.01	.1	.5	1.	5	10	100
Orifice in thin plate Orifice in short tube	.65 .834	.64 .82	.57 .71	.54 .67	.45 .53	.436 .51	.423 .487

Thus, for a pressure of 5 atmospheres, or 73.5 pounds per square inch, the theoretical efflux would be 1219 feet per second. The actual efflux through a hole in a thin plate would be

$$1219 \times 0.45 = 548.55$$
 feet per second;

and through a short tube,

 $1219 \times 0.53 = 646.07$ feet per second.

The work required to compress a cubic foot of air to any desired pressure may be obtained as follows:

Let

P =the initial pressure, usually 14.7 pounds;

p = final pressure required;
 S = initial pressure per square foot (for 14.7 pounds per square inch = 2116.8 pounds per square foot);
 W = required work of compression, in foot-pounds;

$$W = S$$
 hyp. log. $\frac{p}{p}$.

This is true for isothermal compression only, in which the heat of compression is removed as rapidly as produced, so that a constant temperature is maintained. For adiabatic compression, in which all the heat is retained, the work is much greater. In actual practice the power is about midway between the two.

Foot-pounds of Work Required to Compress Air.

(Hiscox.)

Initial pressure = 1 atmosphere.

ure, in nds, square	Foot-pou	ınds per cu	ibic foot.	ure, in ads,	Foot-por	ınds per cı	ibic foot.
Pressure, pounds, per squi	Isother- mal.	Adia- batic.	Actual.	Pressure pounds per squ inch.	Isother- mal.	Adia- batic.	Actual.
5 10 15 20 25 30 35 40 45 50	619.6 1098.2 1488.3 1817.7 2102.6 2353.6 2578.0 2780.8 2966.0 3136.2	649.5 1192.0 1661.2 2074.0 2451.6 2794.0 3111.0 3405.5 3681.7 3942.3	637.5 1154.6 1592.0 1971.4 2312.0 2617.8 2897.8 3155.6 3395.4 3619.8	55 60 65 70 75 80 85 90 95	3393.7 3440.4 3577.6 3706.3 3828.0 3942.9 4051.5 4155.7 4254.3 4348.1	4188.9 4422.8 4645.4 4859.6 5063.9 5259.7 5450.0 5633.1 5819.3 5981.2	3870.8 4029.8 4218.2 4398.1 4569.5 4732.9 4890.1 5042.1 5187.3 5327.9

Compressor Efficiencies at Different Altitudes.

70 Pounds Pressure per Square Inch.

Altitude.	Barometr	ic pressure.	Volumetric efficiency of	Loss of capacity.	Decreased power.
Feet.	Inches of mercury.	Pounds per square inch.	compressor. Per cent.	Per cent.	Per cent.
Sea-level.	30.00	14.75	100		
1000	28.88	14.20	97	3	1.8
2000	27.80	13.67	93	7	3.5
3000	26.76	13.16	90	10	5.2
4000	25.76	12.67	87	13	6.9
5000	24.79	12.20	84	16	8.5
6000	23.86	11.73	81	19	10.1
7000	22.97	11.30	78	22	11.6
8000	22.11	10.87	76	24	13.1
9000	21.29	10.46	73	27	14.6
10000	20.49	10.07	70	30	16.1
11000	19.72	9.70	68	32	17.6
12000	18.98	9.34	65	35	19.1
13000	18.27	8.98	63	37	20.6
14000	17.59	8.65	60	40	22.1
15000	16.93	8.32	58	42	23.5

The above table is computed for a delivery of air compressed to 70 pounds per square inch. For pressures above 70 pounds the volumetric efficiency of the compressor may be decreased 3 per cent. for each 10 pounds, and the power required diminished 10 per cent.

Cubic Feet of Air Required, per Indicated Horsepower, in Motors.

(Hiscox.)

of iff.		Gauge pressures.											
Point of cut-off.	30	40	50	60	70	80	90	100	110	125	150		
1	23.30	21.3	20.2	19.40	18.80	18.42	18.10	17.80	17.62	17.40	17.05		
3/4	18.70	17.1	16.1	15.47	15.00	14.60	14.35	14.15	13.98	13.78	13.50		
2/3	17.85	16.2	15.2	14.50	14.20	13.75	13.47	13.28	13.08	12.90	12.60		
1/2	16.4	14.5	13.5	12.80	12.30	11.93	11.70	11.48	11.30	11.10	10.85		
1/3	17.5	15.2	12.9	11.85	11.26	10.80	10.50	10.21	10.02	9.78	9.5		
1/4	20.6	15.6	13.4	13.3	11.4	10.72	10.31	10.0	75	9.42	9.1		

In applying this table the amount must be increased to provide for the clearance of the cylinder, this depending upon the construction of the motor. When the air is reheated the amount required will be diminished. The economy due to reheating will be proportional to the increase in absolute temperature. Thus, if T be the initial temperature of the air, and T'the reheated temperature, we have the amount of air required, equal to the tabular amount, multiplied by

$$\frac{T + 461}{T' + 461}$$
.

Thus, if the air be reheated from 60° to 300° F., the tabular value should be multiplied by

$$\frac{60 + 461}{300 + 461} = 0.684,$$

showing a gain of nearly 32 per cent., due to reheating.

The flow of compressed air in pipes may be computed from the formula:

$$Q = c\sqrt{\frac{pd^5}{wL}},$$

in which

Q = flow, in cubic feet, per minute;

Q = now, in cubic feet, per minute; p = difference in pressure, in pounds, per square inch, by which the flow is caused; d = the diameter of the pipe, in inches; L = the length, in feet; w = the density of the entering air, in pounds, per cubic foot; and c = a constant coefficient. According to Halsey, the value of <math>c may be taken as = 58.

Table of Head or Additional Pressure Required to Deliver Air at 80 Pounds Gauge Pressure through 1000 Feet of Pipe of Various Sizes.

Pipe Sizes are Inside Diameters.

Velocity, in feet,	Cubic feet of free	Additional	Velocity, in feet,	Cubic feet of free air per minute.	Additional	Velocity, in feet,	Cubic feet of free	Additional		
per second.	air per minute.	pressure.	per second.		pressure.	per second.	air per minute.	pressure.		
	1 ir	nch.		4 inc	ches.		12 in	ches.		
3.07	6	.337	3.07	88	.031	3.07	799	.0067		
6.14	12	1.348	6.14	176	.124	6.14	1598	.0268		
9.20	18	3.033	9.20	264	.279	9.20	2397	.0603		
12.27	24	5.392	12.27	352	.495	12.27	3196	.1072		
15.34	30	8.425	15.34	440	.775	15.34	3995	.1675		
18.41	36	12.132	18.41	528	1.116	18.41	4794	.2412		
24.54	48	21.568	24.54	704	1.984	24.54	6392	.4288		
30.68	60	33.700	30.68	880	3.100	30.68	7990	.6700		
		ches.			ches.	}		ches.		
3.07	14	.134	3.07	141	.022	3.07	1087	.0055		
6.14	29	.536	6.14	282	.088	6.14	2174	.0220		
9.20	43	1.206	9.20	423	.198	9.20	3261	.0495		
12.27	57	2.144	12.27	564	.352	12.27	4348	.0880		
15.34	72	3.350	15.34	705	.550	15.34	5435	.1375		
18.41	86	4.824	18.41	846	.792	18.41	6522	.1980		
24.54	115	8.576	24.54	1128	1.408	24.54	8696	.3520		
30.68	144	13.400	30.68	1410	2.200	30.68	10870	.5500		
	2 inc	ches.		6 inc	ches.			ches.		
3.07	23	.100	3.07	204	.018	3.07	1420	.0047		
6.14	47	.400	6.14	408	.072	6.14	2840	.0188		
9.20	70	.900	9.20	612	.162	9.20	4260	.0423		
12.27	94	1.600	12.27	816	.288	12.27	5680	.0752		
15.34	118	2.500	15.34	1020	.450	15.34	7100	.1175		
18.41	141	3.600	18.41	1224	.648	18.41	8520	.1692		
24.54	188	7.200	24.54	1632	1.152	24.54	11360	.3009		
30.68	235	10.000	30.68	2040	1.800	30.68	14200	.4700		
		ches.		8 inc				ches.		
3.07	33	.058	3.07	353	.011	3.07	2219	.0036		
6.14	67	.232	6.14	706	.044	6.14	4438	.0144		
9.20	100	.522	9.20	1059	.099	9.20	6657	.0324		
12.27	134	.928	12.27	1412	.176	12.27	8876	.0576		
15.34	168	1.450	15.34	1765	.275	15.34	11095	.0900		
18.41	201	2.088	18.41	2118	.336	18.41	13314	.1296		
24.54	268	3.712	24.54	2824	.704	24.54	17752	.2304		
30.68	335	5.800	30.68	3530	1.100	30.68	22190	.3600		
		ches.			ches.		24 in	ches.		
3.07	52	.050	3.07	566	.0087	3.07	3194	.0029		
6.14	104	.200	6.14	1132	.0348	6.14	6388	.0116		
9.20	156	.450	9.20-	1698	.0783	9.20	9582	.0261		
12.27	208	.800	12.27	2264	.1392	12.27	12776	.0464		
15.34	260	1.250	15.34	2830	.2175	15.34	15970	.0725		
18.41	312	1.800	18.41	3396	.3132	18.41	19164	.1044		
24.54	416	3.200	24.54	4528	.5568	24.54	25552	.1856		
30.68	520	5.000	30.68	5660	.8700	30.68	31940	.2900		

Movement of Air.

When large volumes of air are to be moved at low pressures, as in ventilation, mechanical draft, etc., the following formulas, derived from Weisbach, by Snow, for the B. F. Sturtevant Company, may be used:

d= diameter of pipe, in inches; l= length of pipe, in feet; v= velocity, in feet, per second; p= loss of pressure, in ounces, per square inch, by friction.

Then

$$p = \frac{lv^2}{25000d},$$

$$l = \frac{25000dp}{v^2},$$

$$v = \frac{\sqrt{25000dp}}{l},$$

$$d = \frac{lv^2}{25000p}.$$

If we call the area of the pipe = A, and take the weight of a cubic foot of air as 0.08 pound, we have, for the loss in horse-power by friction in a length of 100 feet,

$$P = \frac{pAv}{8800}.$$

From these formulas the following tables have been computed for pipes of various diameters, all 100 feet long, the losses being directly proportioned for pipes of other lengths. Since the loss in pressure varies as the square of the velocity, the advantage of using large pipes and reducing the velocity is apparent.

The whole subject of the compression, utilization, and movement of air

The whole subject of the compression, utilization, and movement of air is a most extensive one. For further details of the different departments of the subject reference may be had to the following works:

"Mechanical Draft." By Walter B. Snow.

"Compressed Air and its Applications." By Gardner D. Hiscox.

"Compressed Air Information." By W. L. Saunders.

"Compressed Air." By Frank Richards.

The monthly periodical, "Compressed Air," also contains current information of value and interest mation of value and interest.

Pressure and Horse-power Lost by Friction of Air in Pipes 100 Feet Long.

		inches.	Horse-power lost in friction.	.0002 .0059 .0059 .0054 .0054 .0164 .0254 .0254 .0254 .0254 .0258	
		7 incl	Loss of pressure, in ounces, per square inch.	0.07 0.07	
		inches.	Horse-power lost in friction.	00034 00051 00051 00070 00070 00133 00272 00272 0048 0048 0078 0078 0078 0078 0078 0078	
		6 inc	Loss of pressure, in ounces, per square inch.	0.00 1.10 1.10 1.10 1.10 1.10 1.10 1.10	
1		inches.	Horse-power lost in friction,	.0018 .0028 .0042 .0063 .0110 .0118 .0118 .0118 .0118 .0118 .0227 .0227 .0237 .0238 .0338 .0480 .0480 .0480 .0480 .0481	-
		5 inc	Loss of pressure, in ounces, per square inch.	1.080 1.109	
	of pipes.	inches.	Horse-power lost in friction.	0014 0023 0003 0008 0008 0014 0114 0114 0223 0223 0223 0223 0223 0223 0223 022	-
2	Diameter	4 incl	Loss of pressure, in ounces, per square inch.	1100 1100 1100 1100 1100 1100 1100 110	-
		inches.	Horse-power lost in friction.	0011 0015 0025 0049 0049 0049 0066 0066 00724 0224 0224 0224 0224 0224 0224 022	-
		3 incl	Loss of pressure, in ounces, per square inch.	1.133 1.237 1.237 1.237 1.237 1.237 1.237 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.333	
		inches.	Horse-power lost in friction.	.0007 .0017 .0017 .0023 .0033 .0053 .0053 .0152	
		2 incl	Loss of pressure, in ounces, per square inch.	8.800000000000000000000000000000000000	
		inch.	Horee-power lost in friction.	.0006 .0008 .0008 .0017 .0017 .0018 .0088 .0088 .0088 .0098	
		1 in	Loss of pressure, in ounces, per square inch.	.400 .544 .544 .544 .544 .544 .550 .550	
	.93		Velocity of air in feet, per m	600 700 700 700 700 700 700 700	

Pressure and Horse-power Lost by Friction of Air in Pipes 100 Feet Long.—Continued.

	ches.	Horse-power lost in friction,	0057 0091 0135 0135 0135 0135 0135 0135 0135 013	.8664 1.0475 1.2335 1.4508 1.6922			
	16 inches.	Loss of pressure, in ounces, per square inch.	20000000000000000000000000000000000000	.827 .827 .900 1.003			
	inches.	Horse-power lost in friction.		.7581 .9093 1.0800 1.2695 1.4807			
	14 inc	Loss of pressure, in ounces, per square inch.	00000000000000000000000000000000000000	.813 .917 1.029 1.146 1.270			
	inches.	Horse-power lost in friction,	0043 01068 01045 01146 01146 01148 01148 01186 0187 0187 0187 0187 0187 0187 0187 0187	.6498 .7794 .9252 1.0871 1.2691			
	12 inc	Loss of pressure, in ounces, per square inch.	0044 0044 0044 0044 0044 0044 0044 004	948 1.070 1.200 1.337 1.481			
of pipes.	inches.	Horse-power lost in friction,	00629 00622 00933 01324 01324 01334 01336 0136 01	.5956 .7144 .8481 .9974 1.1734			
Diameter	11 inc	Loss of pressure, in ounces, per square inch.	0.036 0.044	1.034 1.168 1.309 1.459 1.616			
	inches.	Horse-power lost in friction.	0055 0055 0055 0100 0105 0105 0105 0105	.5415 .6495 .7710 .9068 1.0576			
	10 inc	Loss of pressure, in ounces, per square inch.	0.000 0.000	1.138 1.284 1.440 1.604 1.778			
	inches.	Horse-power lost in friction,	0051 0051 0076 0076 01188 01188 0527 0527 0560 0660 0731 0867 1139 1138 2614 2614 2614 2614 2614 2614 2614 2614	.4873 .5845 .7039 .8171 .9518			
	9 inc	Loss of pressure, in ounces, per square inch.	0.000 0.000	1.263 1.427 1.600 1.783 1.975			
	inches.	Horse-power lost in friction.	0045 0045 0064 0067 0176 0230 0230 0230 0244 0644 0641 0643 0771 1408 1728 1408 1728 1408 1728 1408 1728 1728 1728 1728 1728 1728 1728 172	.4332 .5237 .6168 .7254 .8461			
	8 inc	Loss of pressure, in ounces, per square inch.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.422 1.606 1.800 2.222			
·əq	Velocity of sir, Velocity of						

Pressure and Horse-power Lost by Friction of Air in Pipes 100 Feet Long.—Continued.

	inches.	Horse-power lost in friction,	0114 0271 0325 0565 0704 0704 0914 1162 1162 11785 2588 3084 2583 3627 4230 5631 11608 11608 11608 11785 2593 5631 11608 11785 2593 2593 11785 3384 11785 3384 3384
	32 inc	Loss of pressure, in ounces, per square inch.	00000000000000000000000000000000000000
	inches.	Horse-power lost in friction.	.0100 .0159 .0159 .0463 .0806 .0806 .0806 .1270 .1270 .1395 .2773
	28 inc	Loss of pressure, in ounces, per square inch,	0019 0019 0019 0019 0019 0019 0019 0019
	inches.	Horse-power lost in friction.	.0093 .0147 .0147 .0147 .0143 .0144 .1176
	26 inc	Loss of pressure, in ounces, per square inch.	0012 0020 0020 0020 0020 0020 0020 0020
of pipes.	inches.	Horse-power lost in friction.	.0086 .0136 .0203 .0203 .0203 .0873 .0873 .1088 .1339 .1339 .2313 .2720 .3173
Diameter of pipes	24 inc	Loss of pressure, in ounces, per square inch.	
	inches.	Horse-power lost in friction,	.0079 .0125 .0265 .0265 .0364 .0638 .0739 .0739 .0739 .1786 .2120 .2349 .2349 .2349 .2346 .1193 .2346
	22 inc	Loss of pressure, in ounces, per square inch.	8.00.00.00.00.00.00.00.00.00.00.00.00.00
	inches.	Horse-power lost in friction,	.0071 .013 .013 .0240 .0330 .0340 .0571 .0726 .0907 .11854 .11854 .2567
	20 inc	Loss of pressure, in ounces, per square inch.	0020 0027 0027 0027 0027 0027 0027 0027
	inches	Horse-power lost in friction.	0004 0102 0102 0217 0217 0236 0518 0654 1004 1128 1128 1128 1128 1128 1138 11169 116900 116900 116900 116900 11690 11690 116900 116900 116900 116900 116900 116900
	18 inc	Loss of pressure, in ounces, per square inch.	0022 0040 0040 0050 0050 0050 0050 0050
.9		Velocity of air in feet, per m	600 600 600 600 600 600 600 600

Pressure and Horse-power Lost by Friction of Air in Pipes 100 Feet Long.—Continued.

	ches.	Horse-power lost in friction.	0214 0658 0658 0723 0723 1320 1320 1713 2721 2721 2721 2721 2721 2721 2721	
	60 inches.	Loss of square in square inch.	0000 0000 0000 0000 0000 0000 0000 0000 0000	
	inches.	Horse-power lost in friction.	0.0200 0.0714 0.0714 0.0752 0.	
	56 inc	Loss of pressure, in ounces, per square inch,	000 010 010 000 000 000 000 000 000 000	
	inches.	Horse-power lost in friction.	.0186 .0295 .0295 .0859 .1144 .1188 .2360 .2360 .2960 .2970 .5011 .6874 .9150 .6874 .9150 .5310	
	52 inc	Loss of pressure, in ounces, per square inch.	900 900 900 900 900 900 900 900 900 900	
of pipes.	inches.	Horse-power lost in friction,	0171 0272 0578 0578 0793 0793 1187 1277 2249 3897 4626 5440 6346 11.0965 11.0965 11.0965 11.0965 11.0965 11.0965 11.0965 11.0965 11.0965 11.0965 12.0965 12.0965 12.0965 13.0965 13.0965 13.0965 13.0965 13.0965 13.0965 13.0965 13.0965 13.0965 14.0965 14.0965 15.0965 16.0965 17.09	
Diameter of	48 inc	Loss of pressure, in ounces, per square inch.	900 900 900 900 900 900 900 900 900 900	
	hes.	Horse-power lost in friction.	0.157 0.0372 0.6372 0.630 0.727 0.727 0.728 1.296 1.397 1.397 1.0051 1.0051 1.307 1.308 1.	
	44 inches.	Loss of pressure, in ounces, per squareinch.	000 0010 0010 0010 0010 0010 0010 0010	
	thes.	Horse-power lost in friction.	0.0143 .0227 .0482 .0482 .0482 .0482 .1142 .1142 .2347 .2347 .2384 .7388	
	40 inches.	Loss of pressure, in ounces, per square inch.	010101020308444 0101010303080440000000000000000000000000	
	inches.	Horse-power lost in friction.	0.028 0.029 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0456 0.04	
	36 inc	Loss of pressure, in ounces, per square inch.	100.000.000.000.000.000.000.000.000.000	
	əşnu	Velocity of air, in feet, per mi	\$800 \$800 \$800 \$800 \$1000 \$1200 \$100	

Determination of Difference in Level by Difference in Atmospheric Pressure.

According to the law of Mariotte, also called Boyle's law, the volume of a given quantity of any gas varies inversely as the pressure which it bears, the temperature remaining constant. The average pressure of the atmosphere at the sea-level is 1.033 kilogrammes per square centimetre, corresponding to a column of mercury 760 millimetres in height. This is the same as 14.7 pounds per square inch, or a mercury column of 29.92 inches. In English-speaking countries an atmosphere of pressure is understood to mean 14.7 pounds per square inch, but in countries in which the metric system is used an atmosphere means a pressure of 1 kilogramme per square centimetre = 14.22 pounds per square inch. This is cometimes called a metric atmosphere, and pressure gauges in France, Germany, and elsewhere on the Continent are generally graduated in metric atmospheres and tenths. and tenths.

In obedience to the law of Mariotte, the density of the air diminishes as we ascend, and the law of this reduction in pressure has been found to be proportional to the logarithms of the pressures at any two points under consideration. Thus, if b be the height of the barometer at any given point, and b' the height of the barometer at another point, and h the difference in altitude between them, we have

$$h = C \log_{\bullet} \frac{b}{b'}$$

C being a constant.

For a difference of height, in metres, we have

$$h = 18429.1 \log_{10} \frac{b}{b'}$$

and for feet,

$$h = 60463.4 \log_{10} \frac{b}{b'}$$
.

It is necessary to correct results obtained by these formulas for the effects of varying temperatures and other atmospheric conditions. If we assume the mean temperature of the air between two stations to be the half sum of the temperatures at these stations, we may take the coefficient of expansion of air, $\frac{1}{2}$ = 0.00366 per degree centigrade, and hence have for a temperature correction factor,

$$0.00366 \frac{t+t'}{2} = 0.00183(t+t'),$$

in which t and t' are the temperatures of the two stations, in degrees centigrade. For the Fahrenheit thermometer, taking the coefficient of expansion at $\frac{1}{4\delta_1} = 0.002036$, and remembering that the freezing-point is 32° above zero, we have

$$0.002036\frac{(t-32)+(t'-32)}{2}=0.00102(t+t'-64).$$

If we take the sea-level as a base station we may compute the altitudes for various barometric readings, and thus enable altitudes to be readily and accurately measured. With such tables the altitude of each station above sea-level may be computed separately, and their difference taken.

Barometric Table A.

Metric.

Normal Heights. 0° C.

18429.1 log. $\frac{760}{b}$.

400 410 420 430 440 450	5137.2 4939.6 4746.7 4558.3 4374.4 4294.5	—19.8 —19.3 —18.8 —18.4 —18.0	600 610 620 630 640 650	H. metres. 1892.0 1759.8 1629.6 1501.5 1375.5 1251.4	-13.2 -13.0 -12.8 -12.6 -12.6
440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590	4374.4 4294.5 4018.6 3846.4 3677.9 3512.8 3351.2 3192.7 3037.3 2884.9 2735.2 2588.4 2444.2 2302.6 2163.3 2026.5		640 650 660 670 680 690 700 710 720 730 740 750 760 770 780		

In Table A the first column contains the reading of the barometer, in millimetres, for every 10 millimetres, and in the second column the corresponding heights above sea-level. The third column, headed "Difference," contains the difference for every millimetre, so that the height can be obtained very correctly for barometer readings as close as the hundredth of a millimetre.

Suppose, now, that we have at one station a reading of 765 millimetres, and at another 732 millimetres, the air being at 0° C. We find in Table A, for a barometric weight of 760 millimetres, an altitude of 0.0 metres and $5\times-10.5=-52.5$ metres. Also, for 732 millimetres, we have 730 millimetres = 322.4 metres; and $2\times-10.9=-21.8$ metres, so that for 732 millimetres we have 22.4=1.8=300.6 metres; hence, one station is 300.6 metres above sea-level, and the other is 52.5 metres below, and the difference in altitude is 353.1 metres. It will be noticed that the differences are negative, because the altitude diminishes as the height of the barometer increases, and hence we multiply the number of millimetres in excess of the reading in the first column by the tabular difference and subtract the product from the tabular altitude.

product from the tabular altitude.

If the air had been at some other temperature than 0° a correction would have been necessary, and this may be readily applied by the follow-

ing table.

Barometric Table B.

Temperature Correction Factors.

Centigrade.

1 + 0.00183(t + t').

t+t'.	Factor.	t+t'.	Factor.	t+t'.	Factor.	t+t'.	Factor.
1 2 3 4 5 6	1.0018 1.0037 1.0055 1.0073 1.0091	15 16 17 18 19 20	1.0275 1.0293 1.0311 1.0329 1.0348 1.0366	29 30 31 32 33 34	1.0531 1.0549 1.0567 1.0586 1.0604 1.0622	43 44 45 46 47 48	1.0787 1.0805 1.0823 1.0842 1.0860 1.0878
7	1.0128	21	1.0384	35	1.0640	49	1.0897
8	1.0146	22	1.0403	36	1.0659	50	1.0915
9	1.0164	23	1.0421	37	1.0677	51	1.0933
10	1.0183	24	1.0439	38	1.0696	52	1.0952
11	1.0201	25	1.0458	39	1.0714	53	1.0970
12	1.0220	26	1.0476	40	1.0732	54	1.0988
13	1.0238	27	1.0495	41	1.0750	55	1.1006
14	1.0257	28	1.0513	42	1.0769	56	1.1025

In this table t and t' are the temperatures of the two stations. By taking the factor opposite their sum and multiplying by it the result obtained from Table A, the corrected difference in altitude between the two stations will be obtained. Thus, in the example just given, suppose that the temperature at the lower station had been 22° C., and at the upper station 16° C., we have 22 + 16 = 38; and opposite 38, in Table B, we find 1.0696. The corrected altitude will then be

 $353 \times 1.0696 = 377.5$ metres.

Table C is computed for English measures, the barometer readings being given in inches and tenths and the corresponding heights in feet above sea-level, the sea-level reading of the barometer being assumed as 30 inches. The column of differences here gives the differences in altitude for every hundredth of an inch, and so, if the difference be multiplied by the hundredths and thousandths, for any reading, and the product subtracted from the tabular altitude for the inches and tenths, it will give the precise altitude. An example will make this more readily understood.

precise altitude. An example will make this more readily understood. Suppose one reading to be 29.832 inches, and the other 26.636 inches, we have, from Table C, for 29.8 inches, 176 feet, and the difference -8.8 multiplied by 32, the hundredths and thousandths, $=-8.8 \times 32 = -28.16$, and 176 -28.16 = 147.81 feet. Likewise, we have for 26.5 inches, from the table, 3257 feet, and the difference -9.9 multiplied by 36 = -35.64, whence 3257 -35.64 = 3221.36 feet, and the difference in altitude between the two starting the starting of the startin

tions is

3221.36 - 147.84 = 3073.36 feet.

Barometric Table C.

English.

Normal Heights. 32° F.

60463.4 log. $\frac{30}{b}$.

B. inches.	H. feet.	Differ- ence.	B. inches.	H. feet.	Differ- ence.	B. inches.	H. feet.	Differ- ence.
15.0 15.1	18201 18027	-17.4	20.2 20.3	10386 10256	-13.0	25.4 25.5	4371	-10.3
$15.1 \\ 15.2$	17853	-17.4	20.3	10236	12.9	25.6	4268 4165	-10.3
15.3	17681	$-17.2 \\ -17.1$	20.5	9998	-12.9 -12.8	25.7	4062	-10.3 -10.2
15.4 15.5	17510 17340	-17.0	20.6	9871	-12.7	25.8 25.9	3960	-10.1
15.6	17171	-16.9	20.7 20.8	9744 9617	-12.7	26.0	3859 3758	-10.1
15.7	17003	$\begin{bmatrix} -16.8 \\ -16.7 \end{bmatrix}$	20.9	9491	$-12.6 \\ -12.6$	26.1	3657	-10.1 -10.1
15.8	16836	-16.6	21.0	9366	-12.5	26.2	3556	-10.1 -10.0
15.9 16.0	16670 16506	-16.4	$21.1 \\ 21.2$	9241 9117	-12.4	26.3 26.4	3456 3356	-10.0
16.1	16343	-16.3	21.3	8993	-12.4	26.5	3257	-9.9
16.2	16180	$-16.3 \\ -16.2$	21.4	8869	$-12.3 \\ -12.2$	26.6	3158	- 9.9 - 9.9
$\frac{16.3}{16.4}$	16019 15858	-16.1	21.5	8747	-12.1	26.7	3060	- 9.8
16.5	15698	-16.0	21.6 21.7	8626 8505	-12.1	26.8 26.9	2962 2864	- 9.8
16.6	15540	$-15.8 \\ -15.8$	21.8	8384	$-12.1 \\ -12.0$	27.0	2767	-9.7 -9.7
16.7	15382	-15.7	21.9	8264	-12.0	27.1	2670	-9.7
16.8 16.9	15225 15069	-15.6	$\begin{array}{c c} 22.0 \\ 22.1 \end{array}$	8144 8025	-11.9	27.2 27.3	2573 2476	- 9.6
17.0	14914	-15.5	22.2	7906	-11.9	27.4	2380	- 9.6
17.1	14761	-15.3 -15.3	22.3	7788	$-11.8 \\ -11.7$	27.5	2285	-9.5 -9.5
17.2 17.3	14607	-15.2	22.4	7671	-11.7	27.6	2190	-9.5
17.3	14455 14304	-15.1	22.5 22.6	7554 7438	-11.7	27.7 27.8	2095	- 9.5
17.5	14153	$-15.1 \\ -15.0$	22.7	7322	$-11.6 \\ -11.6$	27.9	1906	-9.4 -9.4
17.6	14004	-13.0 -14.9	22.8	7206	-11.5	28.0	1812	_ 94
17.7 17.8	13855 13707	-14.8	22.9 23.0	7091 6977	-11.5	28.1 28.2	1718 1625	- 9.3
17.9	13560	$ \begin{array}{c c} -14.7 \\ -14.7 \end{array} $	23.1	6863	-11.4 -11.4	28.3	1532	- 9.3
18.0	13413	-14.7 -14.6	23.2	6750	$-11.4 \\ -11.3$	28.4	1439	-9.2 -9.2
18.1 18.2	13267 13123	-14.5	23.3 23.4	6637 6524	-11.3	28.5 28.6	1347 1255	- 9.2
18.3	12979	-14.4	23.4	6412	-11.2	28.7	1163	- 9.2
18.4	12836	$-14.3 \\ -14.2$	23.6	6301	$-11.1 \\ -11.1$	28.8	1072	$-9.1 \\ -9.1$
18.5	12694	-14.2	23.7	6190	-11.1	28.9	981	-9.1
18.6 18.7	12552 12411	14.1	23.8 23.9	6079 5969	—11.0 l	29.0 29.1	890 800	- 9.0
18.8	12271	$-14.0 \\ -13.9$	24.0	5859	$-11.0 \\ -10.9$	29.2	710	-9.0 -9.0
18.9	12132	-13.9 -13.8	24.1	5750	-10.9 - 10.9	29.3	620	-9.0
19.0 19.1	11994 11856	-13.8	24.2 24.3	5641 5533	-10.8	29.4 29.5	530 441	-8.9
19.2	11719	-13.7	24.5	5425	-10.8	29.6	352	- 8.9
19.3	11582	-13.7 -13.6	24.5	5318	$-10.8 \\ -10.7$	29.7	264	-8.8 -8.8
19.4 19.5	11446 11312	-13.4	24.6	5211	-10.6	29.8	176	-8.8
19.5	11177	-13.4	24.7 24.8	5105 4999	-10.6	29.9 30.0	88	- 8.8
19.7	11044	-13.3 -13.3	24.9	4893	$-10.6 \\ -10.6$	30.1	— 87	-8.7 -8.7
19.8	10911	-13.3 -13.2	25.0	4787	-10.6 -10.5	30.2	-174	-8.7
19.9 20.0	10779 10648	-13.1	25.1 25.2	4683 4578	-10.5	30.3 30.4	-261 -348	— 8.7
20.1	10516	-13.1	25.3	4474	-10.4	30.5	-434	- 8.6
		-13.0			-10.4			

For the temperature correction the following may be used:

Barometric Table D.

Temperature Correction Factors.

Fahrenheit.

1 + 0.00102(t + t' - 64).

	1		1	1	T		
t+t'.	Factor.	t+t'.	Factor.	t+t'.	Factor.	t+t'.	Factor.
32	.9673	68	1.0041	102	1.0388	136	1.0735
34	.9697	70	1.0061	104	1.0408	138	1.0755
36	.9714	72	1.0082	106	1.0429	140	1.0776
38	.9735	74	1.0102	108	1.0450	142	1.0796
40	.9755	76	1.0122	110	1.0470	144	1.0817
42	.9776	78	1.0143	112	1.0490	146	1.0837
44	.9796	80	1.0163	114	1.0511	148	1.0858
46	.9816	82	1.0183	116	1.0531	150	1.0878
48	.9837	84	1.0204	118	1.0552	152	1.0898
50	.9857	86	1.0224	120	1.0572	154	1.0919
52	.9878	88	1.0245	122	1.0592	156	1.0939
54	9898	90	1.0265	124	1.0612	158	1.0960
56	.9918	92	1.0286	126	1.0633	160	1.0980
58	.9938	94	1.0306	128	1.0653	162	1.1000
60	.9959	96	1.0326	130	1.0674	164	1.1019
62	.9980	98	1.0347	132	1.0694	166	1.1039
64	1.0000	100	1.0368	134	1.0714	168	1.1060
66	1.0021						
		1				1	

Thus, if in the preceding example the temperatures at the two stations had been 65° F. and 43° F., we have 65+43=108, and opposite 108, in Table D, we find the correction factor, 1.045.

The corrected altitude will then be

 $3073.36 \times 1.045 = 3211.66$

an increase of more than 38 feet.

When observations are taken simultaneously, the preceding tables will enable altitudes to be computed with much accuracy. When but single observations are possible, the date and hour of the day should always be noted, as the simultaneous reading of the nearest weather bureau station may then be subsequently obtained, as well as its altitude, and the desired height thus computed.

For field work the aneroid barometer is undoubtedly the best. It should

For field work the aneroid barometer is undoubtedly the best. It should be carefully compared with the standard at the base station, both on leaving and returning, and the mean of the difference used as a base correction.

Aneroids are often marked "compensated, meaning that they are so constructed as to be unaffected by changes in their own temperature. This is rarely perfectly accomplished, as may be seen by warming or cooling the instrument. The best plan is to set the instrument, by means of the adjusting-screw at the back, so that it agrees with a standard mercurial barometer at 32°, and then warm the aneroid carefully up to about 70°, taking readings at every 10°. A correction table can then be prepared for use on subsequent occasions.

WATER. 519

The complete barometric formula of Laplace includes corrections for atmospheric humidity and for the variations in the action of gravity, but these need be considered only in precise work for great differences in altitude. Full details of this work will be found in the Smithsonian Meteorological Tables.

The altitude scales engraved on the dials of some aneroid barometers are of little use, except for rough approximate work, and their use has

done much to bring the barometric method into undeserved discredit.

WATER.

Water is composed of 1 part of hydrogen combined with 8 parts of oxygen, or more nearly, according to the determinations of Morley and of Rayleigh, its composition by weight is

Hydrogen, 2 atomsOxygen, 1 atom		11.186 88.814
	17.88	100.000

This gives 17.88 for the molecular weight in the gaseous state, but in the

liquid state it is probably a multiple of this.

In the production of 1 kilogramme of water by the burning of hydro-

gen and oxygen 3830 calories are evolved. Its specific heat is taken as unity, being the basis upon which the specific heats of solids and liquids are computed; but this specific heat is not constant, but varies with the temperature.

According to Dieterici, the specific heat at various temperatures, taking

the specific heat at 0° C. as unity, varies as follows:

Specific Heat of Water.

800 0° C. 100 200 300 400 500 600 70° 900 100° 1.000 0.9943 0.9893 0.9872 0.9934 0.9995 1.0057 1.0120 1.0182 1.0244 1.0306

In regard to the density of water at various temperatures there has a material difference of opinion among various authorities. The been a material difference of opinion among various authorities. The temperature of maximum density is 4° C. or 39.1° F., but the actual weight of a unit of volume at this temperature ranges, according to different authorities, from 62.879 pounds to 62.425 pounds. The tables on pages 520-523 are those computed by Nystrom from the experiments of Kopp, and may be accepted as being as accurate as any. In the metric system the litre is usually made equal to a kilogramme of water by weighing, thus practically determining the volume from the weight.

		Units of h	reat.			
Temp. Fahr,	Volume 1 at 39°.	Per pound.	Per cubic foot.	Pounds per cubic foot.	Cubic feet per pound.	Temp. Cent.
32	1.000 109	.000 000 000	.000	62.381 000	.016 03046	.000
33	1.000 077	1.000 000 867	62.383	62.383 000	.016 02994	.555
34	1.000 055	2.000 000 545	124.77	62.384 000	.016 02956	1.111
35	1.000 035	3.000 001 609	187.16	62.385 871	.016 02927	1.666
36	1.000 020	4.000 034 680	249.55	62.386 791	.016 02904	2.222
37	1.000 009	5.000 062 940	311.99	62.387 493	.016 02886	2.777
38	1.000 002	6.000 102 410	374.33	62.387 930	.016 02874	3.333
39	1.000 000	7.000 154 550	436.72	62.388 055	.016 02871	3.888
40	1.000 002	8.000 220 760	499.12	62.387 930	.016 02874	4.444
41	1.000 009	9.000 302 340	561.51	62.387 493	.016 02886	5.000
42	1.000 019	10.000 400 560	623.89	62.386 869	.016 02902	5.555
43	1.000 034	11.000 516 630	686.28	62.385 933	.016 02926	6.111
44	1.000 053	12.000 651 750	748.66	62.384 748	.016 02956	6.666
45	1.000 077	13.000 807 040	811.03	62.383 251	.016 02994	7.222
46	1.000 104	14.000 983 620	873.40	62.381 567	.016 03038	7.777
47	1.000 136	15.001 326 000	935.70	62.379 571	.016 03088	8.333
48	1.000 171	16.001 405 000	997.77	62.377 388	.016 03146	8.888
49	1.000 211	17.001 651 800	1060.0	62.374 893	.016 03210	9.444
50 51 52 53 54	1.000 254 1.000 302 1.000 353 1.000 408 1.000 468	18.001 924 200 19.002 223 000 20.002 549 300 21.002 924 100 22.003 288 000	1122.8 1185.1 1248.0 1310.1 1372.3	62.372 212 62.369 219 62.366 039 62.362 611 62.358 871	.016 03278 .016 03355 .016 03437 .016 03525 .016 03525	10.000 10.555 11.111 11.666 12.222 12.777
55 56 57 58 59 60	1.000 531 1.000 597 1.000 668 1.000 740 1.000 819 1.000 901	23.003 702 400 24.004 147 900 25.004 625 600 26.005 136 200 27.005 680 800 28.006 260 000	1434.3 1496.4 1558.6 1620.9 1683.2 1745.5	62.354 944 62.350 831 62.346 407 62.341 921 62.337 000 62.331 893	.016 03723 .016 03828 .016 03942 .016 04057 .016 04184 .016 04316	13.333 13.888 14.444 15.000 15.555
61 62 63 64 65	1.000 986 1.001 075 1.001 167 1.001 262 1.001 362	29.006 200 000 29.006 874 900 30.007 526 300 31.008 214 900 32.008 941 600 33.009 707 300	1807.8 1870.1 1932.4 1994.4 2056.6	62.326 620 62.321 059 62.315 333 62.309 420 62.303 198	.016 04451 .016 04594 .016 04741 .016 04894 .016 05054	16.111 16.666 17.222 17.777 18.333
66	1.001 464	34.010 513	2118.7	62.296 852	.016 05218	18.888
67	1.001 570	35.011 359	2180.8	62.290 259	.016 05388	19.444
68	1.001 680	36.012 246	2242.9	62.283 418	.016 05564	20.000
69	1.001 793	37.013 175	2305.0	62.276 293	.016 05748	20.555
70	1.001 909	38.014 148	2367.1	62.269 183	.016 05921	21.111
71	1.002 028	39.015 164	2429.2	62.261 788	.016 06122	21.666
72	1.002 151	40.016 224	2491.2	62.254 146	.016 06318	22.222
73	1.002 277	41.017 330	2553.2	62.246 320	.016 06521	22.777
74	1.002 406	42.018 482	2615.2	62.238 309	.016 06728	23.333
75	1.002 539	43.019 680	2677.1	62.230 052	.016 06941	23.888
76	1.002 675	44.020 926	2739.2	62.221 612	.016 07158	24.444
77	1.002 814	45.022 220	2801.0	62.212 987	.016 07382	25.000
78	1.002 956	46.023 563	2862.8	62.204 179	.016 07610	25.555
79	1.003 101	47.024 956	2924.6	62.195 187	.016 07841	26.111
80	1.003 249	48.026 398	2985.4	62.186 012	.016 08078	26.666
81	1.003 400	49.027 893	3048.2	62.176 654	.016 08321	27.222
82	1.003 554	50.029 438	3111.0	62.167 113	.016 08567	27 777
83	1.003 711	51.031 039	3172.8	62.157 388	.016 08820	28.333
84	1.003 872	52.032 688	3234.4	62.147 420	.016 09077	28.888
85	1.004 035	53.034 394	3296.2	62.137 330	.016 09338	29.444
86	1.004 199	54.036 154	3358.2	62.127 182	.016 09601	30.000 30.555 31.111 31.666 32.222
87	1.004 370	55.037 969	3418.7	62.116 605	.016 09875	
88	1.004 542	56.039 841	3480.4	62.105 969	.016 10151	
89	1.004 717	57.041 769	3542.1	62.095 152	.016 10432	
90	1.004 894	58.043 754	3603.8	62.084 214	.016 10715	

		Units of h	eat.		~	
Temp. Fahr.	Volume 1 at 39°.	Per pound.	Per cubic foot.	Pounds per cubic foot.	Cubic feet per pound.	Temp. Cent.
91	1.005 094	59.045 797	3665.0	62.071 860	.016 11036	32.777
92	1.005 258	60.047 899	3726.6	62.061 734	.016 11298	33.333
93	1.005 444	61.050 061	3788.2	62.050 252	.016 11597	33.888
94	1.005 633	62.052 282	3849.8	62.038 591	.016 11900	34.444
95	1.005 825	63.054 564	3911.2	62.026 749	.016 12208	35.000
96	1.006 019	64.056 907	3972.6	62.014 787	.016 12519	35.555
97	1.006 216	65.059 312	4033.9	62.002 646	.016 12834	36.111
98	1.006 415	66.061 780	4095.2	61.990 386	.016 13153	36.666
99	1.006 618	67.064 311	4156.5	61.977 885	.016 13478	37.222
100	1.006 822	68.066 906	4217.7	61.965 322	.016 13806	37.777
101	1.007 030	69.069 565	4278.9	61.952 528	.016 14140	38.333
102	1.007 240	70.072 290	4340.1	61.939 612	.016 14475	38.888
103	1.007 553	71.075 080	4401.3	61.920 370	.016 14944	39.444
104	1.007 668	72.077 937	4462.5	61.913 303	.016 15161	40.000
105	1.007 905	73.080 861	4523.0	61.898 745	.016 15541	40.555
106	1.008 106	74.083 852	4585.0	61.886 403	.016 15863	41.111
107	1.008 328	75.086 912	4645.9	61.872 778	.016 16220	41.666
108	1.008 554	76.090 044	4706.8	61.858 913	.016 16581	42.222
109	1.008 781	77.093 239	4767.7	61.844 994	.016 16946	42.777
110	1.009 032	78.096 509	4828.6	61.829 609	.016 17348	43.333
111	1.009 244	79.099 846	4889.5	61.816 622	.016 17677	43.888
112	1.009 479	80.103 255	4950.4	61.802 231	.016 18064	44.444
113	1.009 718	81.106 740	5011.3	61.787 602	.016 18447	45.000
114	1.009 956	82.110 290	5072.2	61.773 042	.016 18829	45.555
115	1.010 197	83.113 920	5133.0	61.758 305	.016 19216	46.111
116	1.010 442	84.117 620	5193.7	61.743 331	.016 19608	46.666
117	1.010 688	85.121 400	5254.3	61.728 302	.016 20003	47.222
118	1.010 938	86.125 250	5314.9	61.713 037	.016 20403	47.777
119	1.011 189	87.129 180	5375.5	61.697 719	.016 20806	48.333
120	1.011 442	88.133 180	5436.1	61.682 286	.016 21211	48.888
121	1.011 698	89.137 260	5496.6	61.666 678	.016 21621	49.444
122	1.011 956	90.141 410	5557.1	61.650 956	.016 22034	50.000
123	1.012 216	91.145 650	5617.6	61.635 123	.016 22451	50.555
124	1.012 478	92.149 960	5678.1	61.619 170	.016 22871	51.111
125	1.012 743	93.154 350	5738.6	61.603 047	.016 23296	51.666
126	1.013 010	94.158 820	5798.9	61.586 810	.016 23724	52.222
127	1.013 278	95.163 380	5859.2	61.570 516	.016 24153	52.777
128	1.013 550	96.168 010	5919.5	61.553 998	.016 24590	53.333
129	1.013 823	97.172 720	5979.7	61.537 423	.016 25027	53.888
130	1.014 098	98.177 520	6040.0	61.520 735	.016 25468	54.444
131	1.014 358	99.182 390	6100.2	61.504 966	.016 25884	55.000
135	1.015 505	103.202 740	6340.3	61.435 497	.016 27724	57.222
140	1.016 962	108.230 090	6639.6	61.347 282	.016 30064	60.000
145	1.018 468	113.259 650	6937.9	61.256 765	.016 32473	62.777
150	1.020 021	118.291 470	7215.1	61.163 500	.016 34961	65.555
155	1.021 619	123.325 620	7531.2	61.067 829	.016 37523	68.333
160	1.023 262	128.362 170	7826.2	60.969 776	.016 40156	71.111
165	1.024 947	133.401 190	8098.1	60.869 542	.016 42857	73.888
170	1.026 672	138.442 730	8412.8	60.767 270	.016 45623	76.666
175	1.028 438	143.486 870	8704.2	60.662 047	.016 48477	79.444
180	1.030 242	153.583 160	8994.9	60.556 699	.016 51345	82.222
185	1.032 083		9281.9	60.448 679	.016 54296	85.000
190	1.033 960		9571.6	60.338 944	.016 57305	87.777
195	1.035 873		9858.5	60.227 513	.016 60370	90.555
200	1.037 819		10318.0	60.114 581	.016 63489	93.333
205	1.039 798	178.873 550	10428.0	60.000 168	.016 66662	96.111
210	1.041 809		10712.0	59.884 350	.016 69885	98.888
212	1.042 622		10824.0	59.837 654	.016 71160	100.000

944		PRO	PERTIE	S OF W	ATER.				
Indicated	pressure.				Wat	iter.			
Atmos. excluded.	Atmos, excluded.	Temp., Fahr.	Units	of heat.	Bulk,	Weight,	Volume	Temp.,	
Lb. per	Inches of	scale.	Per	Per	cub. ft.	lbs., per	wat = 1	Cent.	
sq. in.	mercury.		cub. ft.	pound.	perlb.	cub. ft.	at 39°.	scale.	
	-28.52	101.36	4301	69.430	.01617	61.848	1.0071	30.83	
—13 —12	-26.48	126.21	5631	94.369	.01624 .01630	61.583 61.317	1.0130	41.87	
-12 -11	-24.44 -22.41	141.67 153.27	6583 7331	109.91 121.58	0.01630 0.01637	61.317	1.0174	48.74 53.90	
10	-22.41 -20.37	162.51	7974	130.89	.01638	60.920	1.0210	58.00	
	-18.33	170.25	8421	138.69	.01644	60.762	1.0267	61.44	
— 8	-16.29	176.97	8812	145.46	.01647	60.657	1.0288	64.43	
— 7	-14.26 -12.22	182.96 188.36	9203	151.52	.01652	60.514	1.0309	67.09	
- 6 - 5	-12.22 -10.18	193.20	9531 9755	156.97 161.87	.01656	60.372	1.0333	69.49 71.64	
- 4	-8.149	193.20 197.60	9975	166.32	.01663	60.282 60.169	1.0369	73.60	
— 3	-6.111	201.90	10183	170.67	.01666	60.072	1.0385	75.51	
$-\frac{2}{1}$	-4.074	205.77	10398	174.59	.01669	59.973	1.0401	77.23	
- 1 0	-2.037 .0000	209.55 212.00	10613 10824	178.42 180.95	.01672	59.896 59.838	1.0416 1.0426	78.91 100.00	
.3125	.6365		10883	181.95	.01675	59.814	1.0430	100.58	
+ 1	+ 2.037	216.33	11047	185.29	.01677	59.735	1.0444	102.45	
+ 2	+ 4.074	219.45	11225 11389	188.45	.01679	59.659	1.0457	104.36	
+ 3	$\begin{vmatrix} + 6.111 \\ + 8.149 \end{vmatrix}$	222.40 225.25	11550	191.44 194.33	.01680	59.592 59.523	1.0469	105.78 107.35	
+ 4 + 5 + 6	+10.18	227.95	11718	197.08	.01684	59.459	1.0492	108.86	
+ 6	+12.22	230.60	11868	199.77	.01686	59.389	1.0503	110.33	
+ 2 + 3 + 4 + 5 + 6 + 7 + 8	+14.26	233.10	12012	202.40	.01688	59.329	1.0514	111.50	
+ 8 + 9	+16.29 +18.33	235.49 237.81	12150 12282	204.73 207.10	.01690	59.270 59.212	1.0524 1.0534	113.05 114.00	
$^{+\ 9}_{+10}$	+20.37	240.07	12408	209.39	.01693	59.154	1.0545	115.59	
+11	+22.41	242.24 244.32	12528	$\begin{array}{c c} 211.57 \\ 213.72 \end{array}$.01695	59.097	1.0555	116.80 117.95	
+12	+24.44	244.32	12642	213.72	.01696	59.057	1.0564	117.95	
$^{+13}_{+14}$	$+26.48 \\ +28.52$	246.35 248.33	12750 12852	215.78 217.80	.01697	59.006 58.953	1.0573 1.0589	119.08 120.18	
+15	+30.55	250.26	12946	219.76	.01699	58.901	1.0590	121.25	
+16	+32.59	252.13	13053	221.67	.01700	58.851	1.0599	122.29	
+17	+34.63	253.98	13157	223.55	.01701	58.803	1.0607	123.32	
$^{+18}_{+19}$	$\begin{vmatrix} +36.67 \\ +38.71 \end{vmatrix}$	255.77	13258 13336	225.38 227.16	.01702	58.757 58.713	1.0615	124.32 125.29	
+20	+40.74	257.52 259.22	13430	228.89	.01703 .01704 .01705 .01707	58.671	1.0631	126.23	
+21	+42.78	260.88	13520	230.59 232.24	.01705	58.631	1.0639	127.15	
$^{+22}_{+23}$	+44.82	262.50 264.09	13608	232.24	.01707	58.592	1.0646	128.05	
$^{+23}_{+24}$	$+46.85 \\ +48.89$	264.09	13694 13778	233.86 235.45	.01708	58.560 58.517	1.0654 1.0661	128.94 129.80	
+25	+50.93	267.17	13860	237.00	.01710	58.481	1.0668	130.65	
+26	+52.97	268.66	13940	238.52	.01711	58.435	1.0675	131.48	
$^{+27}_{+28}$	$+55.00 \\ +57.04$	270.12 271.55	14018 14094	240.02 241.48	.01712	58.400 58.366	1.0684	132.29 133.05	
$^{+28}_{+29}$	+59.08	272 96	14168	241.48	.01713	58.332	1.0688	133.86	
+30	$+59.08 \\ +61.11$	274.33	14241	244.32	.01714 .01715 .01716	58.298 58.264	1.0701	134.63	
+31	+63.15	275.68	14314	245.70	.01716	58.264	1.0708	135.38	
+32 +33	+65.19 +67.23	277.01 278.32	14385 14454	247.06 248.40	.01717	58.230	1.0714 1.0720	136.12 136.84	
+34	+67.25 +69.20	279.62	14454	248.40	.01718		1.0726	137.56	
+35	+71.30	280.89	14592	251.03	.01720	58.131	1.0732	138.27	
+36	+73.34	282.14	14659	252.30	.01721	58.098		138.96	
$^{+37}_{+38}$	+75.38 +77.41	283.39 284.58	14725 14789	253.58 254.80	.01722	58.066 58.035		139.66 140.33	
+39	+79.45	285.76	14852	256.01	.01723 .01724 .01725	58.004	1.0756		
+40	+81.49	286.96	14913	256.01 257.24 258.38	.01725	57.972	1.0761	141.64	
+41	+83.52	288.06	14973	258.38	1 .01720	1156.10	+1.0767	142.27	
+42 +43	$+85.56 \\ +87.61$	289.24 290.37	15032 15091	$\begin{vmatrix} 259.67 \\ 260.71 \end{vmatrix}$.01727	57.910 57.879	$\begin{array}{ c c c c }\hline 1.0773 \\ 1.0778 \end{array}$		
+44	+89.64	291.48	15149	261.87	.01729	57.848			
+45	+91.67	292.58	15208	262.99	.01730	57.817			

		1100	The second secon					
Indicated	l pressure.				Wa	ter.		
Atmos.	Atmos.	Temp., Fahr.	Units	of heat.	Bulk,	Weight,	Volume	Temp.,
excluded.	excluded.	scale.	D	D	cub. ft.	lbs., per	wat. = 1	Cent.
Lb. per sq. in.	Inches of mercury.		Per cub.ft.	Per pound.	per lb.	cub. ft.	at 39°.	scale.
5q. III.				pound.				
+ 46	+ 93.71	293.66	15265	264.10	.01731	57.786	1.0794	145.37
+ 47	+ 95.75	294.73	15321	265.20	.01732	57.769	1.0799	145.96
$^{+48}_{+49}$	+97.78 +99.82	295.78 296.82	15377 15432	266.27 267.34	.01733	57.742 57.714	1.0804	146.54 147.12
$^{+}_{+}$ 50	+101.8	297.84	15485	268.39	.01735	57.687	1.0814	147.69
+ 51	+103.9	298.85	15536	269.42	.01735	57.660	1.0820	148.25
+ 52 + 53	+105.9	299.85	15588	270.45	.01736	57.633	1.0825 1.0830	148.80 149.34
$^{+}$ 54	$^{+108.0}_{+110.0}$	300.84 301.81	15639 15690	$\begin{array}{c} 271.46 \\ 272.46 \end{array}$.01737 .01737	57.606 57.580	1.0835	149.89
+ 55	+112.0	302.77	15739	273.44	.01738	57.580 57.554	1.0840	150.43
+ 56	+114.1	303.72	15789	274.42	.01739	57.529	1.0844	150.95
$^{+}$ 57 $^{+}$ 58	$+116.1 \\ +118.1$	304.69 305.60	15839 15888	275.40 276.35	.01739	57.504 57.480	1.0849 1.0854	151.48 152.00
$^{+}_{+}$ 59	± 120.2	306.52	15936	277.30	.01741	57.456	1.0859	152.51
+ 60	+122.2	307.42	15983	278.22	.01741	57.432	1.0863	153.01
+ 61	$+124.3 \\ +126.3$	308.38	16029	279.14	.01742	57.410	1.0867 1.0871	153.51 154.01
$^{+62}_{+63}$	+126.3 +128.3	309.22 310.11	16075 16120	280.07 280.98	.01743	57.410 57.388 57.364	1.0875	154.50
+ 64	+130.4	310.99	16165	281.87	.01744	57.344	1.0880	154.99
+ 65	+132.4	311.86	16209	282.78	.01745	57.322	1.0884	155.48
$^{+66}_{+67}$	$+134.4 \\ +136.5$	312.72 313.57	16254 16298	283.66 284.54	.01745	57.300 57.278	1.0888 1.0892	155.95 156.42
+ 68	+138.5	314.42	16342	285.41	.01746	57.254	1.0897	156.90
+ 69	+140.5	315.25	16384	286.27	.01747	57.232	1.0901	157.36
+ 70	+142.6 +144.6	316.08	16426	287.12	.01748	57.210 57.188	1.0905 1.0909	157.82 158.28
$^{+}_{+}$ $^{71}_{+}$ $^{+}$ 72	+144.6 $+146.7$	316.90 317.71	16467 16507	287.96 288.80	.01748	57.166	1.0909	158.73
+ 73	+148.7	318.51	16547	289.62	.01749 .01750	57.144	1.0918	159.17
+ 74	+150.7	319.31	16587	290.44	.01751	57.122	1.0921	159.62
+ 75 + 76	$+152.8 \\ +154.8$	320.10	16637 16677	291.26 292.06	.01752	57.101 57.080	1.0926 1.0929	160.05 160.49
$_{+}^{+}$ 77	+156.8	321.66	16717	292.85	.01753	57.059	1.0935	160.92
+ 78	+158.9	322.42	16756	293.65	.01753	57.038	1.0937	161.34
+ 79 + 80	$+160.9 \\ +163.0$	323.18 323.94	16795 16834	294:43 295.21	.01754 .01755	57.017 56.996	1.0941 1.0945	161.76 162.17
+ 81	+165.0	324.67	16872	295.96	.01756	56.975	1.0949	162.59
+ 82	+167.0	325.43	16910	296.75	.01756	56.954	1.0953	162.59 163.02
+ 83 + 84	$+169.1 \\ +171.1$	326.17 326.90	16947 16984	297.51 298.26	.01757	56.933 56.912	1.0956 1.0960	163.43 163.83
+ 85	$+171.1 \\ +173.1$	327.63	17020	298.20	.01757	56.891	1.0964	164.24
+ 86	+175.2	328.35	17056	299.75	.01759	56.871	1.0968	164.64
+ 87	+177.2	329.07	17092	300.50	.01759	56.862	1.0972	165.04
+ 88 + 89	$+179.2 \\ +181.3$	329.78 330.48	17127 17162	301.23 301.95	.01760	56.844 56.826	1.0975 1.0979	165.43 165.82
+ 90	+183.3	331.18	17197	302.67	.01761	56.808	1.0982	166.21
+ 91	+185.4	331.87	17231 17265	302.67 303.38 304.10	.01761 .01762 .01763	56.808 56.790 56.772	1.0986	166.59
+ 92 + 93	$+187.4 \\ +189.4$	332.56 333.24	17265	304.10	.01763	56.772	1.0989	166.98 167.35
+ 94	+191.5	333.92	17333	305.50	.01764	56.735	1.0996	167.77
+ 95	+193.5	334.59	17366	306.19	.01765	56.716	1.0999	168.10
+ 96 + 98	$+195.5 \\ +199.6$	335.26 336.58	17399 17465	306.88 308.34	.01765	56.699 56.664	1.1003 1.1010	168.47 169.21
$^{+}99$	+199.6 +201.6	337.23	17405	308.91	.01767	56.647	1.1010	169.21
+100	+203.7	337.89	17529	309.60	.01769	56.629	1.1017	169.94
$^{+105}_{+110}$	$+213.9 \\ +224.1$	341.0	17688 17840	312.87 316.04	.01772	56.549	1.1035 1.1050	171.70 173.40
+115	+234.1 +234.2	344.1 347.1	17993	319.12	.01775	56.469 56.389	1.1050	175.40
+120	+244.4	350.0	18136	322.13 325.06	.01781	56.309	1.1080	176.68
$^{+125}_{+130}$	+254.6	352.8	18278 18413		.01784	56.220	1.1095	178.25
$+130 \\ +135$	$+264.8 \\ +275.0$	355.6 358.4	18549	327.91 330.75	.01786	56.146 56.073	1.1110 1.1124	179.78 181.35
						, , , , , , ,		

Density and Volume of Water.

Centigrade Temperatures.

·			OE.	,				
Temp. Cent.	Density,	Volume.	Temp. Cent.	Density.	Volume.	Temp. Cent.	Density.	Volume.
								l
10	.99814	1.00186	14	.99930	1.00070	38	.99310	1.00694
- 9	.99843	1.00157	15	.99916	1.00084	39	.99273	1.00732
- 8	.99868	1.00132	16	.99900	1.00100	40	.99235	1.00770
— 7	.99891	1.00109	17	.99884	1.00116	41	.99197	1.00809
6	.99912	1.00088	18	.99865	1.00135	42	.99158	1.00849
- 5	.99930	1.00070	19	.99846	1.00154	43	.99118	1.00889
- 4	.99945	1.00054	20	.99826	1.00174	44	.99078	1.00929
- 3	.99959	1.00041	21	.99805	1.00196	45	.99037	1.00971
- 2	.99970	1.00030	22	.99783	1.00218	46	.98996	1.01014
— 1	.99980	1.00020	23	.99760	1.00240	47	.98954	1.01057
0	.99987	1.00013	24	.99737	1.00264	48	.98910	1.01101
1	.99993	1.00007	25	.99712	1.00289	49	.98865	1.01148
2	.99997	1.00003	26	.99687	1.00314	50	.98820	1.01195
3	.99999	1.00001	27	.99660	1.00341	55	.98582	1.01439
4	1.00000	1.00000	28	.99633	1.00368	60	.98338	1.01691
5	.99999	1.00001	29	.99605	1.00396	65	.98074	1.01964
6	.99997	1.00003	30	.99577	1.00425	70	.97794	1.02256
7	.99993	1.00007	31	.99547	1.00455	75	.97498	1.02566
8	.99989	1.00011	32	.99517	1.00486	80	.97194	1.02887
9	.99983	1.00018	33	.99485	1.00518	85	.96879	1.03221
10	.99975	1.00025	34	.99452	1.00551	90	.96556	1.03567
11	.99965	1.00034	35	.99418	1.00586	95	.96219	1.03931
12	.99955	1.00045	36	.99383	1.00621	100	.95865	1.04312
13	.99943	1.00057	37	.99347	1.00657	100	.00000	1.04012
10	.00010	1.00001	01	.55541	1.00007			

Table of Water-heads, Equivalent Pressures, Work, and Horse-power.

Pelton Water-wheel Company.

Head, in feet.	Equivalent pressure, in pounds, per square inch.	Foot-pounds of work when raising 100 gallons per minute against corresponding heads.	Corresponding water horsepower.	Head, in feet.	Equivalent pressure, in pounds, per square inch.	Foot-pounds of work when raising 100 gallons per minute against corresponding heads.	Corresponding water horse-power.
1 2 3 4 5 6 7 8	.43 .87 1.30 1.73 2.17 2.60	834 1 668 2 502 3 336 4 170	.03 .05 .08 .10 .13 .15 .18 .20	500 525 550 575	216.50 227.33 238.15 248.98	417 000 437 850 458 700 479 550	12.64 13.27 13.90 14.53
6 7 8 9	2.60 3.03 3.46 3.90	4 170 5 004 5 838 6 672 7 506	.15 .18 .20 .23	600 625 650 675	259.80 270.63 281.45 292.28	500 400 521 250 542 100 562 950	15.16 15.79 16.42 17.05
10 11 12 13 14 15 16 17	4.33 4.76 5.20 5.63	8 340 9 174 10 008 10 842 11 676	.25 .28 .30 .33 .35 .38 .40	700 725 750 775	303.10 313.93 324.75 335.58	583 800 604 650 625 500 646 350	17.68 18.31 18.95 19.58
15 16 17 18 19	6.06 6.50 6.93 7.36 7.79 8.23	12 510 12 510 13 344 14 178 15 012 15 846	.38 .40 .43 .46 .48	800 -825 850 875	346.40 357.23 368.05 378.88	667 200 688 050 708 900 729 750	20.20 20.85 21.48 22.11
20 30 40	8.66 12.99 17.32 21.65	16 680 25 020 33 360 41 700 50 040	.50 .76 1.01 1.26 1.52 1.77	900 925 950 975	389.70 400.53 411.35 422.18	750 600 771 450 792 300 813 150	22.74 23.38 24.01 24.64
50 60 70 80 90	25.98 30.31 34.64 38.97	50 040 58 380 66 720 75 060	2.02	1000 1025 1050 1075	433.00 443.83 454.65 465.48	834 000 854 850 875 700 896 550	25.27 25.90 26.53 27.17
100 125 150 175	43.30 54.13 64.95 75.78	83 400 104 250 125 100 145 950	2.53 3.16 3.79 4.42	1100 1125 1150 1175	476.30 487.13 497.95 508.78	917 400 938 250 959 100 979 950	27.80 28.43 29.06 29.69
200 225 250 275	86.60 97.43 108.25 119.08	166 800 187 650 208 500 229 350	5.05 5.68 6.31 6.94	1200 1225 1250 1275	519.60 530.43 541.25 552.08	1 000 800 1 021 650 1 042 500 1 063 350	30.33 30.96 31.59 32.23
300 325 350 375	129.90 140.73 151.55 162.38	250 200 271 050 291 900 312 750	7.57 8.22 8.85 9.48	1300 1325 1350 1375	562.90 573.73 584.55 595.38	1 084 200 1 105 050 1 125 900 1 146 750	32.86 33.49 34.12 34.75
400 425 450 475	173.20 184.03 194.85 205.68	333 600 354 450 375 300 396 150	10.11 10.74 11.38 12.01	1400 1425 1450 1475	606.20 617.03 627.85 638.68	1 167 600 1 188 450 1 209 300 1 230 150	35.38 36.01 36.64 37.28

Table of Water-heads, etc.—Continued.

Head, in feet.	Equivalent pressure, in pounds, per square inch.	Foot-pounds of work when raising 100 gallons per minute against corresponding heads.	Corresponding water horse-power.	Head, in feet.	Equivalent pressure, in pounds, per square inch.	Foot-pounds of work when raising 100 gallons per minute against corresponding heads.	Corresponding water horse- power.
1500	649.50	1 251 000	37.91	2300	995.90	1 918 200	58.12
1525	660.33	1 271 850	38.54	2325	1006.73	1 939 050	58.75
1550	671.15	1 292 700	39.17	2350	1017.55	1 959 900	59.39
1575	681.98	1 313 550	39.80	2375	1028.38	1 980 750	60.02
1600	692.80	1 334 400	40.44	2400	1039.20	2 001 600	60.65
1625	703.63	1 355 250	41.07	2425	1050.03	2 022 450	61.28
1650	714.45	1 376 100	41.70	2450	1060.85	2 043 300	61.91
1675	725.28	1 396 950	42.33	2475	1071.68	2 064 150	62.55
1700	736.10	1 417 800	42.96	2500	1082.50	2 085 000	63.18
1725	746.93	1 438 650	43.59	2525	1093.33	2 105 850	63.81
1750	757.75	1 459 500	44.22	2550	1104.15	2 126 700	64.44
1775	768.58	1 480 350	44.85	2575	1114.98	2 147 550	65.07
1800	779.40	1 501 200	45.49	2600	1125.80	2 168 400	65.70
1825	790.23	1 522 050	46.13	2625	1136.63	2 189 250	66.34
1850	801.05	1 542 900	46.76	2650	1147.45	2 210 100	66.97
1875	811.88	1 563 750	47.39	2675	1158.28	2 230 950	67.60
1900	822.70	1 584 600	48.02	2700	1169.10	2 251 800	68.23
1925	833.53	1 605 450	48.65	2725	1179.93	2 272 650	68.85
1950	844.35	1 626 300	49.29	2750	1190.75	2 293 500	69.49
1975	855.18	1 647 150	49.92	2775	1201.58	2 314 350	70.12
2000	866.00	1 668 000	50.55	2800	1212.40	2 335 200	70.75
2025	876.83	1 688 850	51.18	2825	1223.23	2 356 050	71.39
2050	887.65	1 709 700	51.81	2850	1234.05	2 376 900	72.02
2075	898.48	1 730 550	52.44	2875	1244.88	2 397 750	72.65
2100	909.30	1 751 400	53.07	2900	1255.70	2 418 600	73.28
2125	920.13	1 772 250	53.70	2925	1266.53	2 439 450	73.92
2150	930.95	1 793 100	54.33	2950	1277.35	2 460 300	74.55
2175	941.78	1 813 950	54.96	2975	1288.18	2 481 150	75.18
2200 2225 2250 2275	952.60 963.43 974.25 985.08	1 834 800 1 855 650 1 876 500 1 897 350	55.60 56.23 56.86 57.49	3000	1299.00	2 502 000	75.82

The head,—vertical distance to which water is pumped above level of supply. Constant used for equivalent pressure = 0.433, which is the pressure per square inch of 1 foot-head of water at 62° F.

1 gallon of water at 62° F. weighs 8.34 pounds.

1 horse-power = 33,000 foot-pounds per minute.

If equivalents of heads that are not tabulated are desired, divide the head into heads that are given, and add their equivalents.

E.g., to find the equivalent pressure for a head of 129 feet, 129 =

 $\begin{array}{l} 125 \text{ feet} = 54.13 \text{ pounds} \\ 4 \text{ feet} = 1.74 \text{ pounds} \end{array} \} \\ \text{sum } 55.86 = \text{pounds} = \text{equivalent pressure of} \\ 129 \text{ feet}. \end{array}$

The pressure of 1 foot-head of water, taking the density at the average temperature of 62° F., is 0.433 pound per square inch. The head corresponding to a pressure of 1 pound per square inch is 2.3095 feet.

The pressure within a vessel is the same upon every square inch of its surface, regardless of the shape or size of the vessel, and is that due to the head of water upon it. The horizontal pressure against a wall or dam varies as the square of the height. If h be the height of the dam, and w the weight of a cubic foot of water, the pressure per foot-width will be \(\frac{1}{2} \) when \(\frac{1}{2} \), and its point of application will be two-thirds of the distance from the top.

The theoretical velocity of issuing from an orifice is the same as that which would be acquired by a body falling from the height of the head of water above the orifice. This is

$$V = \sqrt{2gh}$$
,

in which h is the head of water; g, the acceleration of gravity = 32.2; and V, the velocity, in feet, per second. In practice, this theoretical velocity is not attained, owing to various resistances, but the principle should always be borne in mind. If the water is under a pressure other than that due be borne in mind. If the water is under a pressure other than that due to its own weight, the head corresponding to that pressure may be found, taking 2.3095 feet to the pound, and this value used in the formula.

If a be the area of a jet, in square inches; v, its velocity, in feet, per second; and w, the weight of a cubic foot of water, the energy, in foot-

pounds, per second will be

$$K = \frac{wav^2}{2\sigma}.$$

The coefficient of discharge of a jet of water is the proportion of the full theoretical discharge which is realized in practice. As a result of many experiments this coefficient may be given a mean value of 0.61. If, therefore, the area of an opening be multiplied by the theoretical velocity =

/2gh, and 61 per cent. of this taken, the actual discharge will be found. This is true for orifices in the comparatively thin wall or bottom of the vessel containing the water; the area of the orifice being small compared with the size of the reservoir, and the edges having a definite square

When, instead of a mere orifice, a short tube or nozzle is used, having a length of about three times its diameter, the coefficient of discharge is about 80 per cent. of the theoretical. By using smooth conveying nozzles, with the inner edges rounded, the coefficient may be raised to about 97

per cent.

In computing the flow of water through long pipes the principal loss to be provided for is that due to friction between the water and the surface of the pipe. The resistance due to friction may be computed in terms of feet of head,—that is, the number of feet of head necessary to overcome the resistance of friction may be found and deducted from the actual total head available.

Theoretical Velocity of Water Due to Given Heads.

Head of water, in feet.	Theoretical velocity, in feet, per second.	Theoretical velocity, in feet, per minute.	Head of water, in feet.	Theoretical velocity, in feet, per second.	Theoretical velocity, in feet, per minute.	Head of water, in feet.	Theoretical velocity, in feet, per second.	Theoretical velocity, in feet, per minute.			
1	8.205	481.5	51	57.309	3438.5	105	82.231	4933.9			
2	11.345	681.7	52	57.869	3472.1	110	84.166	5050.0			
3	13.899	833.9	53	58.422	3505.3	115	86.058	5163.5			
4	16.050	963.0	54	58.971	3538.2	120	87.909	5274.5			
5	17.944	1076.6	55	59.515	3570.9	125	89.722	5383.3			
6	19.657	1179.4	56	60.053	3603.2	130	91.499	5489.9			
7	21.232	1273.6	57	60.587	3635.2	135	93.242	5594.5			
8	22.698	1361.8	58	61.116	3666.9	140	94.953	5697.2			
9	24.075	1444.5	59	61.641	3698.4	145	96.633	5798.0			
10	25.377	1522.6	60	62.161	3729.6	150	98.285	5897.1			
11	26.615	1596.9	61	62.677	3760.6	155	99.909	5994.5			
12	27.799	1667.9	62	63.188	3791.3	160	101.50	6090.5			
13	28.934	1736.0	63	63.696	3821.7	165	103.08	6184.9			
14	30.026	1801.6	64	64.200	3852.0	170	104.63	6277.9			
15	31.080	1864.8	65	64.699	3881.9	175	106.16	6369.6			
16	32.100	1926.0	66	65.195	3911.7	180	107.66	6460.0			
17	33.087	1985.2	67	65.687	3941.2	185	109.15	6549.1			
18	34.047	2042.8	68	66.175	3970.3	190	110.61	6637.0			
19	34.980	2098.8	69	66.660	3999.6	195	112.06	6723.7			
20	35.888	2153.3	70	67.141	4028.5	200	113.49	6809.4			
21	36.775	2206.5	71	67.619	4057.1	205	114.90	6894.0			
22	37.640	2258.4	72	68.094	4085.6	210	116.29	6977.6			
23	38.486	2309.1	73	68.565	4113.9	215	117.66	7060.1			
24	39.314	2358.8	74	69.033	4142.0	220	119.03	7141.8			
25	40.125	2407.5	75	69.498	4169.9	225	120.00	7222.5			
26	40.919	2455.1	76	69.960	4197.6	230	121.70	7302.3			
27	41.699	2501.9	77	70.419	4225.1	235	123.02	7381.2			
28	42.464	2547.8	78	70.874	4252.4	240	124.32	7459.3			
29	43.215	2592.9	79	71.327	4279.6	245	125.60	7536.6			
30	43.954	2637.2	80	71.777	4306.6	250	126.88	7613.1			
31	44.681	2680.8	81	72.225	4333.5	255	128.15	7648.8			
32	45.396	2723.7	82	72.673	4360.4	260	129.39	7763.9			
33	46.100	2766.0	83	73.111	4386.6	265	130.63	7837.6			
34	46.793	2783.0	84	73.550	4413.0	270	131.86	7911.8			
35	47.476	2848.5	85	73.986	4439.2	275	133.08	7984.8			
36	48.150	2889.0	86	74.420	4465.2	280	134.28	8057.0			
37	48.814	2928.8	87	74.852	4491.1	285	135.48	8128.6			
38	49.469	2968.1	88	75.281	4516.8	290	136.66	8199.6			
39	50.116	3006.9	89	75.707	4542.4	295	137.83	8270.1			
40	50.754	3045.2	90	76.131	4567.9	300	138.99	8339.8			
41	51.385	3083.1	91	76.553	4593.2	305	140.15	8409.0			
42	52.007	3120.4	92	76.973	4618.3	310	141.29	8477.6			
43	52.623	3157.4	93	77.390	4643.4	315	142.42	8545.6			
44	53.231	3193.9	94	77.805	4668.3	320	143.55	8613.3			
45	53.833	3229.9	95	78.217	4693.0	325	144.67	8690.4			
46	54.427	3265.6	96	78.628	4717.7	330	145.78	8760.9			
47	55.016	3301.0	97	79.037	4742.2	335	146.88	8812.9			
48	55.598	3335.8	98	79.443	4766.6	340	147.97	8878.4			
49	56.175	3370.5	99	79.847	4790.8	345	149.06	8943.5			
50	56.745	3404.7	100	80.250	4815.0	350	150.13	9007.9			

Flow of Water Through Pipes.

The quantity of water which flows through a pipe is measured by the product of the area of its cross-section and by the velocity of the flow.

The velocity is not uniform over the entire cross-section, but a mean velocity may be computed which will serve for purposes of computation. In order to compute the velocity two elements must be given: the slope and the hydraulic radius. The slope is the sine of the angle of inclination of the pipe, or the head divided by the length; the hydraulic radius is the area divided by the wetted perimeter. The slope is called s, and the hydraulic radius r. For pipes of circular cross-section running full, r = area

 $\frac{\text{area}}{4}$, the same being true when half-full.

The first attempt to express the relations between these elements was that of Chézy, in 1775, his formula being

$$v = C\sqrt{rs}$$

v being the velocity, in feet or metres, per second, and C being a constant coefficient. A vast number of experiments have been made to determine the value of the coefficient, C, with the result of showing it to vary with different slopes and diameters of pipes. In 1896 Tutton collected the results of more than 1000 experiments and suggested a modification of the formula, which appears to be the most reliable one available, and which we shall use in preference to any other.

Instead of placing the two quantities, r and s, under the radical sign,

Tutton gives them independent exponents, writing the formula

$$v = C r^x s^y$$
.

By comparing the results of many experiments it appears that if the exponents are made $x = \frac{y}{\lambda}$, $y = \frac{y}{\lambda}$, the coefficient, C, remains practically constant for any one kind of pipe, regardless of slope or diameter. The formula then reads,

$$v = C r^{\frac{2}{3}} s^{\frac{1}{2}},$$

so that the cube root of the square of the hydraulic radius is taken and the square root of the slope, and the product of these, by a constant depending only upon the character of the pipe, gives the velocity.

The following values for C are given for different surfaces:

Values of C for Pipe Flow.

	α
Wassaht iron nine	100
Wrought-iron pipe	
Cast-iron pipe, new	130
Cast-iron pipe, in service	104
Lap riveted pipe	115
Wrought-iron pipe, asphalted	
Wood-stave pipe	125
Tuberculated pipe 30 t	o 80
Brick conduits	

In order to facilitate the use of the formula the following tables are appended, giving values of r^3 and $s^{\frac{1}{2}}$. Other values may be taken from the tables of power and roots, the $\frac{2}{3}$ power being the square of the cube root, and the $\frac{1}{2}$ power being the square root.

Values of $r^{\frac{2}{3}}$ from 0.01 to 1.

r	$r^{\frac{2}{3}}$	r	$r^{\frac{2}{3}}$	r	$r^{\frac{2}{3}}$	r	$r^{\frac{2}{3}}$	r	73
.01	.0464	.21	.3533	.41	.5519	.61	.7193	.81	.8690
.02	.0737	.22	.3644	.42	.5608	.62	.7271	.82	.8761
.03	.0965	.23	.3754	.43	.5697	.63	.7349	.83	.8832
.04	.1169	.24	.3861	.44	.5785	.64	.7427	.84	.8902
.05	.1357	.25	.3969	.45	.5872	.65	.7503	.85	.8974
.06	.1533	.26	.4073	.46	.5958	.66	.7581	.86	.9044
.07	.1698	.27	.4177	.47	.6045	.67	.7656	.87	.9111
.08	.1857	.28	.4280	.48	.6131	.68	.7733	.88	.9183
.09	.2008	.29	.4381	.49	.6216	.69	.7809	.89	.9252
.10	.2155	.30	.4481	.50	.6300	.70	.7884	.90	.9322
.11	.2295	.31	.4580	.51	.6384	.71	.7958	.91	.9390
.12	.2432	.32	.4679	.52	.6465	.72	.8033	.92	.9459
.13	.2566	.33	.4775	.53	.6550	.73	.8107	.93	.9528
.14	.2696	.34	.4871	.54	.6631	.74	.8181	.94	.9596
.15	.2823	.35	.4966	.55	.6712	.75	.8255	.95	.9663
.16	.2947	.36	.5061	.56	.6795	.76	.8328	.96	.9732
.17	.3069	.37	.5154	.57	.6874	.77	.8401	.97	.9799
.18	.3188	.38	.5246	.58	.6955	.78	.8473	.98	.9866
.19	.3305	.39	.5338	.59	.7034	.79	.8545	.99	.9932
.20	.3420	.40	.5429	.60	.7113	.80	.8617	1.00	1.0000

Values of $s^{\frac{1}{2}}$ for Slopes from .000025 to 1.

8	$\mathcal{S}^{\frac{1}{2}}$	8	$\mathcal{S}^{\frac{1}{2}}$	8	$S^{\frac{1}{2}}$
.000 025	.00500	.000 275	.01658	.006	.07746
.000 030	.00547	.000 300	.01732	.007	.08366
.000 035	.00592	.000 325	.01803	.008	.08944
.000 040	.00632	.000 350	.01871	.009	.09487
.000 045	.00671	.000 375	.01936	.01	.1000
.000 050	.00707	.000 400	.02000	.02	.1414
.000 055	.00742	.000 450	.02121	.03	.1732
.000 060	.00775	.000 500	.02236	.04	.2000
.000 065	.00806	.000 550	.02345	.05	.2236
.000 070	.00837	.000 600	.02449	.06	.2449
.000 075	.00866	.000 650	.02549	.07	.2646
.000 080	.00894	.000 700	.02646	.08	.2828
.000 085	.00921	.000 750	.02739	.09	.3000
.000 090	.00949	.000 800	.02828	.1	.3162
.000 095	.00975	.000 850	.02915	.2	.4472
.000 100	.01000	.000 900	.03000	.3	.5477
.000 125	.01118	.000 950	.03082	.4	.6324
.000 150	.01225	.001	.03162	.5	.7071
.000 175	.01323	.002	.04472	.6	.7746
.000 200	.01414	.003	.05477	.7	.8367
.000 225	.01500	.004	.06324	.8	.8944
.000 250	.01581	.005	.07071	.9	.9487

Example. A wrought-iron pipe 3 inches diameter, =0.25 foot, and 1000 feet long, has a head of water of 20 feet. Required the velocity? We have

$$r = \frac{0.25}{4} = 0.06;$$

 $s = 0.02;$

and the formula

$$v = C r^{\frac{2}{3}} s^{\frac{1}{2}}$$

 $v = 160 \times 0.1533 \times 0.1414 = 3.47$ feet per second. becomes

Again: A brick conduit is 7.5 feet in diameter, with a slope, s=0.00058. Required the velocity?

Here

$$r = \frac{7.5}{4} = 1.875,$$

and we have

$$v = Cr^{\frac{2}{3}}s^{\frac{1}{2}}$$

= 110 × 1.52 × 0.024 = 4.01 feet per second.

The measured velocity in this conduit was 3.929 feet per second.

Discharge of Water from Smooth Wrought-iron Pipes.

$$v = 160r^{\frac{2}{3}}s^{\frac{1}{2}}$$
, times area.

Cubic Feet per Second.

For Cast-iron, multiply by 0.81; Lap Riveted, 0.72; Wood Stave, 0.78; Brick, 0.68.

Diameter, in Inches.

Slope = head length	2	4	6	8 .	10	12	14
.001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03 .04 .05 .06 .07 .08 .09 .1 .2 .3 .4	.014 .019 .023 .026 .029 .032 .035 .037 .040 .043 .059 .069 .081 .094 .111 .118 .125 .133 .187 .230 .265 .293 .325	.083 .119 .145 .167 .186 .205 .222 .236 .252 .265 .375 .458 .530 .593 .695 .750 .795 .838 1.185 1.483 1.680 1.875 2.055	.249 .351 .429 .494 .549 .612 .657 .700 .742 .784 1.080 1.357 1.567 1.735 1.920 2.072 2.220 2.350 2.480 3.505 4.805 5.523 6.08	.532 .750 .936 1.062 1.179 1.280 1.405 1.500 1.675 2.375 2.812 3.350 3.650 4.110 4.340 4.740 5.022 5.287 7.50 8.78 10.50 11.87	.970 1.370 1.680 1.935 2.175 2.372 2.565 2.740 2.910 3.061 4.330 5.310 6.122 6.850 7.490 8.100 8.660 9.183 9.70 13.71 16.77 19.38 21.65 23.42	1.591 2.240 2.752 3.180 3.555 3.900 4.200 4.500 4.770 5.026 7.110 8.720 10.052 11.250 12.310 13.300 14.230 15.078 15.920 22.510 27.530 31.820 35.054 38.95	2.390 3.375 4.135 4.735 4.735 5.341 5.850 6.320 6.755 7.170 13.100 115.088 16.870 115.088 16.870 20.000 21.700 22.632 33.80 41.35 47.80 53.20 58.35

Discharge of Water from Smooth Wrought-iron Pipes.

 $v = 160r^{\frac{2}{3}}s^{\frac{1}{2}}$, times area.

Cubic Feet per Second.

For Cast-iron multiply by 0.81; Lap Riveted, 0.72; Wood Stave, 0.78; Brick. 0.68.

Diameter, in Inches.

$\frac{\text{head}}{\text{length}}.$	16	18	20	22	24	26	28
.001	3.390	4.650	6.230	7.935	10.000	12.420	15.130
.002	4.790	6.575	8.800	11.240	14.075	17.550	21.390
.003	5.865	8.045	10.770	13.740	17.250	21.470	26.170
.004	6.780	9.310	12.450	15.875	20.000	24.750	30,250
.005	7.580	10.400	13.920	17.760	22.700	26.300	33.750
.006	8.310	11.400	15.350	19.450	24.500	30.400	37.000
.007	8.970	12.300	16.460	21.000	26.475	32.750	39.900
.008	9.590	13.150	17.600	22.450	28.60	35.050	42.700
.009	10.175	13.950	18.670	23.800	30.00	37.200	44.300
.01	10.721	14.701	19.669	25.091	31.67	39.163	47.746
.02	15.150	20.770	27.80	35.450	44.70	55.400	67.40
.03	18.575	25.470	34.05	43.450	54.80	67.900	82.70
.04	21.442	29.402	39.34	50.182	63.34	78.326	95.50
.05	23.950	32.870	43.95	56.100	70.50	87.50	106.75
.06	26.230	36.000	48.15	61.400	77.40	94.90	117.00
.07	28.350	38.850	52.05	66.400	83.70	103.60	126.50
.08	30.300	41.500	55.60	70.950	89.40	110.75	135.00
.09 .1	32.163	44.103	59.01	75.274 79.35	95.00	115.50	143.24
.1	33.800	46.500	62.05	79.35	100.00	124.20	151.3
.2	47.950 58.700	65.750 80.500	88.10 107.75	112.40 137.40	140.75 172.50	175.50 214.70	213.9 261.7
.3				157.40		214.70 247.50	302.5
•'±	67.800	93.000	124.70	158.75	200.00		302.0
5		104 000	190 05	177 60	1 997 00	969 00	997 5
.5	75.800 83.100	104.000	138.25	177.60	227.00	263.00	337.5
.5 .6	75.800 83.100	104.000 113.900	138.25 152.50	177.60 194.50	227.00 245.00	263.00 304.00	337.5
.5 .6			138.25				
.5 .6	30 18.175	113.900 32	138.25 152.50	36 29.52	245.00	304.00	370.0
.6	30 	32 21.650 30.650	34 25.35 35.85	194.50 36	38	304.00 40 39.15 55.30	42.4 60.1
.001	30 18.175 25.70 31.45	32 21.650 30.650 37.475	138.25 152.50 34 25.35	36 29.52	38 34.10 48.20 59.00	304.00 40 39.15	370.0 42 42.4
.6 .001 .002 .003 .004	30 	32 21.650 30.650 37.475 43.35	34 25.35 35.85 43.80 50.70	36 29.52 41.75 51.11 59.00	38 34.10 48.20 59.00 68.20	304.00 40 39.15 55.30 67.75 78.3	42.4 60.1 73.5 85.0
.6 .001 .002 .003 .004	30 18.175 25.70 31.45 36.70 40.60	32 21.650 30.650 37.475 43.35 48.40	34 25.35 35.85 43.80 50.70 57.65	36 29.52 41.75 51.11 59.00 66.00	38 34.10 48.20 59.00 68.20 76.20	304.00 40 39.15 55.30 67.75 78.3 87.5	42.4 60.1 73.5 85.0 95.0
.6 .001 .002 .003 .004 .005	30 18.175 25.70 31.45 36.70 40.60 44.30	113.900 32 21.650 30.650 37.475 43.35 48.40 53.00	34 25.35 35.85 43.80 50.70 57.65 62.10	36 29.52 41.75 51.11 59.00 66.00 72.30	38 34.10 48.20 59.00 68.20 76.20 83.50	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9	42.4 60.1 73.5 85.0 95.0 104.1
.6 .001 .002 .003 .004 .005 .006	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10	32 21.650 30.650 37.475 43.35 48.40 53.00 57.25	34 25.35 35.85 43.80 50.70 57.65 62.10 67.00	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5	42.4 60.1 73.5 85.0 95.0 104.1 112.3
.6 .001 .002 .003 .004 .005 .006 .007	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40	113.900 32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25	34 25.35 35.85 43.80 50.70 57.65 62.10 67.00 71.60	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6	42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1
.6 .001 .002 .003 .004 .005 .006 .007 .008	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50	32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00	34 25.35 35.85 43.80 50.70 57.65 62.10 67.00 71.60 76.00	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5	42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4
.601 .002 .003 .004 .005 .006 .007 .008 .009	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50 57.43	32 21.650 30.650 37.475 43.35 48.40 57.25 61.25 65.00 68.15	34 25.35 35.85 43.80 50.70 57.65 62.10 67.00 71.60 76.00 80.13	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35	34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25 107.75	39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7	42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2
.601 .002 .003 .004 .005 .006 .007 .008 .009	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50 57.43 81.20	32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80	34 25.35 35.85 43.80 50.70 57.65 62.10 67.00 71.60 76.00 80.13 113.25	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25 107.75 152.50	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0	42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 57.43 81.20 99.50	32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80 110.86	34 25.35 35.85 35.85 43.80 50.70 57.65 62.10 67.00 71.60 76.00 80.13 113.25 138.75	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00 161.75	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25 107.75 152.50 186.75	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5	42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 232.5
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50 57.43 81.20 99.50 114.85	32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80 110.86 136.30	34 25.35 35.85 43.80 50.70 57.65 62.10 67.00 71.60 76.00 80.13 113.25 138.75 160.26	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00 161.75 186.70	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25 107.75 152.50 186.75 215.50	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5 247.4	42.4 42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 232.5 268.4
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03 .04 .05	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50 57.43 81.20 99.50 114.85 128.50	32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80 110.86 136.30 153.20	34 25.35 35.85 43.80 50.70 57.65 62.10 67.00 71.60 76.00 80.13 113.25 138.75 160.26 178.00	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00 161.75 186.70 208.70	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25 107.75 152.50 186.75 215.50 241.00	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5 247.4 276.5	42.4 42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 232.5 268.4 300.0
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03 .04 .05 .06	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50 57.43 81.20 99.50 114.85 128.50 140.75	113.900 32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80 110.86 136.30 153.20 167.50	34 25.35 35.85 35.85 43.80 50.70 57.65 62.10 67.00 80.13 113.25 138.75 160.26 178.00 196.25	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00 161.75 186.70 208.70 228.50	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25 107.75 152.50 186.75 215.50 241.00 264.00	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5 247.4 276.5 303.0	42.4 42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 232.5 268.4 300.0 328.5
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03 .04 .05 .06	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50 57.43 81.20 99.50 114.85 128.50 140.75 152.00	113.900 32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80 110.86 136.30 153.20 167.50 181.20	138.25 152.50 25.35 35.85 43.80 50.70 67.00 71.60 76.00 80.13 113.25 138.75 160.26 178.00 196.25 212.00	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00 161.75 186.70 208.70 228.50 247.00	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25 107.75 152.50 241.00 264.00 286.20	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5 247.4 276.5 303.0 327.0	42.4 42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 232.5 268.4 300.0 328.5 355.0
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03 .04 .05 .06 .07 .08	30 18.175 25.70 31.45 36.70 40.60 48.10 51.40 54.50 57.43 81.20 99.50 114.85 128.50 140.75 152.00 162.50	113.900 32 21.650 30.650 37.475 43.35 48.40 57.25 61.25 65.00 68.15 96.80 110.86 136.30 153.20 167.50 181.20 193.70	34 25.35 35.85 43.80 50.70 57.65 62.10 67.00 71.60 76.00 80.13 113.25 138.75 160.26 178.00 196.25 212.00 220.65	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 87.60 93.35 132.00 161.75 186.70 208.70 228.50 247.00 263.70	38 34.10 48.20 59.00 68.20 76.20 90.20 96.40 102.25 107.75 152.50 186.75 215.50 241.00 286.20 304.70	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5 247.4 276.5 303.0 327.0 349.5	42.4 42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 232.5 268.4 300.0 328.5 355.0 379.5
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03 .04 .05 .06 .07 .08	83.100 30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50 57.43 81.20 99.50 114.85 128.50 140.75 152.00 162.50 172.28	113.900 32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80 110.86 136.30 153.20 167.50 181.20 193.70 204.45	34 25.35 35.85 43.80 50.70 57.65 62.10 67.00 71.60 76.00 80.13 113.25 138.75 160.26 178.00 196.25 212.00 220.65 240.4	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00 161.75 186.70 208.70 228.50 247.00 263.70 280.05	38 34.10 48.20 59.00 68.20 76.20 90.20 96.40 102.25 107.75 152.50 241.00 286.20 304.70 323.25	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5 247.4 276.5 303.0 327.0 349.5 371.0	42.4 42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 232.5 268.4 300.0 328.5 355.0 379.5 402.6
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03 .04 .05 .06 .07 .08	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50 99.50 114.85 128.50 140.75 152.00 162.50 172.28 181.75	113.900 32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80 110.86 136.30 153.20 167.50 181.20 193.70 204.45 216.50	34 25.35 35.85 43.80 50.70 67.00 71.60 76.00 80.13 113.25 138.75 160.26 178.00 196.25 212.00 220.65 240.4 253.5	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00 161.75 186.70 208.70 228.50 247.00 263.70 280.05 295.2	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25 107.75 152.50 241.00 264.00 286.20 304.70 323.25 341.0	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5 247.4 276.5 303.0 327.0 349.5 371.0 391.5	42.4 42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 232.5 268.4 300.0 328.5 355.0 379.5 402.6 424.0
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03 .04 .05 .06 .07 .08	83.100 30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 57.43 81.20 99.50 114.85 128.50 140.75 152.00 162.50 172.28 181.75 257.0	113.900 32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80 110.86 136.30 153.20 167.50 181.20 193.70 204.45 216.50 306.50	34 25.35 35.85 43.80 50.70 57.65 62.10 67.00 80.13 113.25 138.75 160.26 178.00 196.25 212.00 220.65 240.4 253.5 358.5	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00 161.75 186.70 208.70 228.50 247.00 280.05 295.2 417.5	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25 107.75 152.50 186.75 215.50 241.00 286.20 304.70 323.25 341.0 482.0	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5 247.4 276.5 303.0 327.0 349.5 371.0 391.5 553.0	42.4 42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 232.5 268.4 300.0 328.5 355.0 379.5 402.6
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03 .04 .05 .06 .07 .08 .09 .1 .2 .3	30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50 99.50 114.85 128.50 140.75 152.00 162.50 172.28 181.75	113.900 32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80 110.86 136.30 153.20 167.50 181.20 193.70 204.45 216.50	34 25.35 35.85 43.80 50.70 67.00 71.60 76.00 80.13 113.25 138.75 160.26 178.00 196.25 212.00 220.65 240.4 253.5	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00 161.75 186.70 228.50 247.00 263.70 280.05 295.2 417.5 511.1	38 34.10 48.20 59.00 68.20 76.20 83.50 90.20 96.40 102.25 107.75 152.50 241.00 264.00 286.20 304.70 323.25 341.0	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5 247.4 276.5 303.0 327.0 349.5 371.0 391.5	42.4 42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 328.5 368.4 300.0 328.5 355.0 402.6 424.0 601.0
.6 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01 .02 .03 .04 .05 .06 .07 .08	83.100 30 18.175 25.70 31.45 36.70 40.60 44.30 48.10 51.40 54.50 57.43 81.20 99.50 114.85 128.50 140.75 152.00 162.50 172.28 181.75 257.0 314.5	113.900 32 21.650 30.650 37.475 43.35 48.40 53.00 57.25 61.25 65.00 68.15 96.80 110.86 136.30 153.20 167.50 181.20 193.70 204.45 216.50 306.50 374.75	25.35 35.85 43.80 50.70 67.00 71.60 76.00 80.13 113.25 138.75 160.26 178.00 196.25 212.00 220.65 240.4 253.5 358.5	36 29.52 41.75 51.11 59.00 66.00 72.30 78.10 83.50 87.60 93.35 132.00 161.75 186.70 208.70 228.50 247.00 280.05 295.2 417.5	38 34.10 48.20 59.00 68.20 76.20 90.20 96.40 102.25 107.75 152.50 241.00 286.20 304.70 323.25 341.0 482.0 590.0	304.00 40 39.15 55.30 67.75 78.3 87.5 95.9 103.5 110.6 117.5 123.7 175.0 214.5 247.4 276.5 303.0 327.0 349.5 371.0 391.5 553.0 677.5	42.4 60.1 73.5 85.0 95.0 104.1 112.3 120.1 127.4 134.2 190.0 232.5 355.0 379.5 402.6 424.0 601.0 735.0

Loss of Head, in Pipe, by Friction.

Inside Diameter of Pipe, in Inches.

The following tables show the loss of head by friction in each 100 feet in length of different diameters of pipe, when discharging the following quantities of water per minute: Pelton Water-wheel Company.

244488888888888888888888888888888888888	Velocity, in fe per second.	et,
2.280 2.280 2.280 4.322 4.322 4.322 4.322 4.322 5.47 10.60 11.4.20 8.20 8.20 8.20 8.20 11.3.35 11.3.23 11.3.23 11.3.23 11.3.23	Loss of head, in feet.	
73 73 99 1.066 1.102 1.112 1.112 1.126 1.266 1.322 1.322 1.323 1.3	Cubic feet per minute.	
1.185 1.404 1.404 1.639 1.891 2.244 2.244 2.244 3.78 3.06 3.74 4.10 4.49 4.89 5.30 5.72 6.622 6.172 6.622 8.601	Loss of head, in feet.	2
2.62 2.88 3.40 3.40 3.92 4.18 4.71 5.23 5.49 5.74 6.02 6.02 6.02 7.78 6.80 7.78 7.78 7.78	Cubic feet per minute.	
.791 .936 .1.093 .1.26 .1.44 .1.62 .1.82 .2.04 .2.249 .2.249 .2.249 .2.273 .2.28 .3.53 .53	Loss of head, in feet.	3
5.89 7.648 7.657 7.657 7.658 8.883 9.421 110.6 111.2 111.2 111.2 111.2 112.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1	Cubic feet per minute.	
.593 .702 .819 .819 .819 .819 .819 .819 .819 .819	Loss of head, in feet.	4
10.4 111.5 112.5 113.6 114.6 114.6 116.7 117.8 118.8 119.9 10.9 10	Cubic feet per minute.	
1.474 5.550 5.550 5.550 5.757 71.098 81322 81322 91149 9149 9	Loss of head, in feet.	OI
16.3 118.0 119.6 122.9 224.5 224.5 224.5 224.5 224.5 227.8 207.8 2	Cubic feet per minute.	
88775371250907624437511211212121212121212121212121212121212	Loss of head, in feet.	6
223.5 223.5 225.9	Cubic feet per minute.	
266 3117 368 368 368 368 368 368 368 368 368 368	Loss of head, in feet.	7
9888887737775419 9898888777777777777777777777777777777	Cubic feet per minute.	
2296 351 4410 4410 654 473 322 222 222 222 222 222 222 222 222 2	Loss of head, in feet.	00
41.9 46.1 58.6 58.6 58.6 66.2 77.5 77.5 77.5 77.5 77.5 77.5 77.5 77	Cubic feet per minute.	
264 312 365 365 366 366 366 366 366 366 366 366	Loss of head, in feet.	9
53.0 53.0	Cubic feet per minute.	
237 237 237 237 237 237 237 237 237 237	Loss of head, in feet.	10
765.4 772.0 98.2 98.2 111.0 111.	per minute.	_
255 87 255 87 257 9 257 9 257 9 257 9 257 13 257 13 257 13 257 13 257 15 257 15 25	in feet.	=
77.2 95.0 19.0 19.0 27.0	per minute.	
1.198	in feet.	12
94.2 113.0 123.0 1	per minute.	

Loss of Head, in Pipe, by Friction.—Continued.

Inside Diameter of Pipe, in Inches.

36	Cubic feet per minute.	548 933 1018 1100 11273 1273 1357 1442 1612 1612 1697 1782	
3	Loss of head, in feet.	000 000 000 000 000 000 000 000 000 00	
30	Cubic feet per minute.	288 648 707 766 824 883 942 1000 1110 1113 1113 1123 1236	1355 .29 1414 .31 1472 .34 1531 .36 1590 .39 1649 .45 1768 .45 1767 .47
8	Loss of head, in feet.		.353 .381 .381 .381 .381 .381 .540 .540 .574 .574
28	Cubic feet per minute.	564 616 616 677 770 872 872 872 974 1078 1129	1180 1231 1283 1283 1334 1437 1488 1539 1796
7	Loss of head, in feet.	289 116 116 1153 1153 1153 1154 1153 1154 1154 1154	17 .378 62 .409 06 .440 94 .507 39 .542 27 .615 48 .817
26	Cubic feet per minute.	444 486 531 531 575 752 752 752 885 885 929 929	1017 1062 1106 1150 1194 1239 1239 1327 1548
7	Loss of head, in feet.	108 1186 1186 1186 1186 1186 1186 1186 1	
4	Cubic feet per minute.	825 661 661 775 823 823 823 823	
24	Loss of head, in feet.	100 111 111 111 111 111 111 111 111 111	441 476 5513 552 553 674 674 717 953
22	Cubic feet per minute.	833 6655 6655 871 872 873 873 873 873 873 873 873 873 873 873	728 760 760 7823 883 887 887 950 1109
7	Loss of head, in feet.	108 117 117 117 117 117 117 117 117 117 11	
20	Cubic feet per minute.	262 288 288 284 286 266 276 276 276	628 628 628 628 707 707 733 733 745 916
7	Loss of head, in feet.	119 140 164 164 164 164 164 164 164 164 164 164	.572 .617 .617 .710 .758 .809 .801 .1143
81	Cubic feet per minute.	212 232 252 254 254 255 256 256 257 257 257 257 257 257 257 257 257 257	500 500 551 551 551 551 551 561 615 636
-	Loss of head, in feet,	132 156 182 182 182 182 183 183 183 183 183 183 183 183 183 183	.636 .636 .636 .736 .736 .843 .899 .899
16	Cubic feet per minute.	164 184 184 184 184 184 184 184 184 184 18	4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
-	Loss of head, in feet,	741 175 175 175 175 175 175 175 175 175 17	.662 .775 .770 .828 .949 .949 1.011 1.016
IO.	Cubic feet per minute.	147 162 162 176 176 176 176 176 176 176 176 176 176	333 353 368 383 383 383 442 442 515
-	Loss of head, in feet,	851 181 182 183 183 183 183 183 183 183 183 183 183	.707 .763 .822 .883 .947 1.011 1.078 1.148 1.52
14	Cubic feet per minute.	128 141 170 170 170 170 170 170 170 170 170 17	
-	Loss of head, in feet.	169 1200 1200 1200 1200 1200 1200 1200 120	.818 .818 .881 .947 1.014 1.083 1.155 1.155 1.63
13	Cubic feet per minute.	110 121 133 144 144 174 174 174 175 176 177 177 178 178 178 179 179 179 179 179 179 179 179 179 179	254 254 254 254 254 254 254 254 351 351 387
-	Loss of head, in feet.	188 28 28 28 28 28 28 28 28 28 28 28 28 2	
et,	Velocity, in fe per second.	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	14.4.0.0.0.0.0.0.7. 6.0.0.0.0.0.0.0.0.7.

Example. Have 200-foot head and 600 feet of 11-inch pipe, carrying 119 cubic feet of water per minute. To find effective head: In right-hand column, under 11-inch pipe, find 119 cubic feet; opposite this will be found the coefficient of friction for this amount of water, which is .44. Multiply this by the number of hundred feet of pipe, which is 6, and you will have 2.66 feet, which is the loss of head. Therefore, the effective head is 200 - 2.66 = 197.34.

Flow of Water in Open Channels.

In computing the flow of water in channels, canals, rivers, ditches, etc., the form of the Chézy formula is retained, the various working formulas being arranged to permit the value of the coefficient, C, in the formula,

$$v = C\sqrt{rs}$$

to be determined for the various classes of channels. In France the formula of Bazin is generally used, as follows:

$$v = \frac{157.6}{1 + \frac{\gamma}{\sqrt{r}}} \sqrt{\frac{r}{rs}}$$
, for English measures; $v = \frac{87}{1 + \frac{\gamma}{\sqrt{r}}} \sqrt{\frac{r}{rs}}$, for metric measures.

In these formulas γ is a coefficient dependent upon the character of the wetted surface; r is the hydraulic radius, or cross-section, divided by the wetted perimeter; and s is the slope, or sine of the angle of inclination. Bazin divides channels into six classes, with a value of γ for each.

Class.	Character of wetted surface.	γ		
010000	Character of victors surface;	Feet.	Metres.	
I.	Smooth cement, planed wood	.109	.06	
II.	Planks, bricks, cut masonry, etc	290	.16	
III.	Rubble masonry	.833	.46	
IV.	Earth, dry rubble, etc	1.540	.85	
v.	Earthen channels in ordinary condition	2.355	1.30	
VI.	Earthen channels or rivers, with stony beds and			
	grassy banks	3.170	1.75	

Although the formula appears complicated, it is not difficult of application, and its use may be simplified by the use of the diagram on page 536, which is for the metric system, and is due to M. Soreau.

Diagram for Flow of Water.

Bazin's Formula.

Metric System.

$$v = \frac{87}{1 + \frac{\gamma}{\sqrt{r}}} \sqrt{rs}.$$

Join γ to r. Then draw a line parallel to this through s, and it will intersect v at the velocity value. In the diagram, r=4, $\gamma=1.30$, s=0.004,

and v is found to be 6.63 metres per second.

In Switzerland, Germany, and to some extent in the United States and in England, Kutter's formula is used. This is also in the Chézy form, and consists of a rather complicated expression for the value of the coefficient, C, in the formula,

 $v = C\sqrt{rs}$

s being the slope of the stream, and r the hydraulic radius, or cross-section, divided by the wetted perimeter. In the English measure r is taken in

Diagram for Bazin Formula. (See page 535.)

feet,—i.e., the cross-section in square feet is divided by the wetted perimeter in feet. In the metric system the cross-section is taken in square metres and the wetted perimeter in metres. The Kutter formula, then, is

$$C = \frac{41.6 + \frac{.00281}{s} + \frac{1.811}{n}}{1 + \frac{\left(41.6 + \frac{.00281}{s}\right)n}{\sqrt{r}}}, \text{ English system;}$$

$$C = \frac{23 + \frac{.00155}{s} + \frac{1}{n}}{1 + \frac{\left(23 + \frac{.00155}{s}\right)n}{\sqrt{r}}}, \text{ metric system.}$$

In this formula the quantity, n, is a factor, the value of which depends upon the character of the channel. The value of n to be used in the formula may be taken from the following list:

Artificial Channels, Uniform Section.

Surface,	n
Planed boards	.009
Cement, neat	
Plaster, 3 cement, 1 sand	
Rough boards	
Ashlar, or brickwork	
Rubble	.017

Natural Channels.

Canals in very firm gravel	.020
Canals and rivers in fairly good order, free from stones	
and weeds	
Canals and rivers with occasional stones and weeds	
Streams in bad condition, with many stones and weeds	.035

The whole subject of the derivation and use of Kutter's formula, with many examples, are given in the book entitled, "A General Formula for the Uniform Flow of Water," by Ganguillet and Kutter, translated by Hering and Trautwine. In order to avoid the tedious computations with the formula, values of C are computed and tabulated; but sufficient precision may be attained by the use of a diagram, which is appended. This is a modification, by M. Soreau, of the original diagram by Kutter, the change being only to put it in more convenient form for the page. The

the use of the diagram will be best understood by an example. Taking the same data as were used with the Bazin formula, page 535, let r=4 and s=.004. For a canal in fairly good condition take n=.025. We then join 4, on the horizontal line, r, with .025, on the curve. The intersection of the dotted line with the inclined scale gives the value, C=49. We then have

$$v = 49\sqrt{4 \times .004} = 49\sqrt{.016} = 6.17$$
 metres per second.

Diagram for Flow of Water.

(See page 538.)

Kutter's Formula.

Metric System.

Join point on line, r, corresponding to given hydraulic radius, with point on the curves, corresponding to given values of s and n. The intersection with the inclined line gives the value of C in the formula,

$$v = C \sqrt{rs}$$
.

The formula of Tutton, as used for pipes, may be modified for open channels, as follows:

 $v = \frac{1.54}{n} r^{\frac{2}{3}} s^{\frac{1}{2}}$

in which n is the same as in Kutter's formula, English measures being used. This has the advantage of greater simplicity, and gives equally reliable results.

The difficulty with all these formulas lies in the fact that the flow depends to a great extent upon the condition of the channel, and therefore upon the selection of the coefficient of roughness, n.

Whenever possible, the actual velocity of the stream should be measured, computations based upon assumptions as to slope and condition of roughness being made only for canals and ditches prior to construction.

Diagram for Kutter's Formula. (See page 537.)

The following details of measurements represent the practice of the Pelton Water-wheel Company, and are based on large experience:

Select a stretch on the stream or ditch which will afford as straight and uniform a course as possible. If the water is at any point carried in a flume, it is better to measure at this point. Lay off a distance of, say, 300 feet; measure the width of flowing water at about six different places in this distance, and obtain the average width; likewise, at these same points, measure the depth of water at three or four places across the stream, and obtain the average depth. Next, drop a float in the water, noting the number of seconds it takes to travel the given distance. From this can be calculated the velocity of the water, in feet, per second. The quantity is the product obtained by multiplying the average width, in feet, by the average depth, in feet, by the velocity, which (if in feet per second) will give the flow of the stream, in cubic feet, per second. From the figures so obtained it is advisable to deduct about 20 per cent., as surface velocity of the water is in excess of the actual average velocity.

When the stream is of sufficient depth—say 3 feet or over—the average

velocity can be more closely obtained by using a pole, to one end of which is attached a stone or piece of lead of necessary weight to allow the pole to sink nearly to the bottom. In this way the velocities at the surface and bottom of the stream counteract one another, and a closer approximation of the average velocity is obtained.

The most accurate method of measuring the volume of water flowing

in a stream is by the use of a weir.

The principle of the weir is that for a notch of given dimensions and determinate head of water the flow through it is constant and uniform. If, therefore, the flow of a stream can all be caused to pass through a notch of a certain shape, the volume can be determined from the size of the notch and the depth of the water.

The general arrangement of a weir will be seen in the illustration, the dimensions being determined by the volume of water flowing in the stream. The width of the notch can be carefully measured before it is set

in place, and the depth of water measured afterwards.

General arrangement of Weir.

The instructions of the Pelton Water-wheel Company are as follows: Place a board or plank in the stream, as shown in the drawing, at some point where a pond will form above. The length of the notch in the dam should be from two to four times its depth for small quantities, and longer for large quantities. The edges of the notch should be bevelled towards the intake side, as shown. The overfall below the notch should not be less than twice its depth,—that is, 12 inches, if the notch is 6 inches deep, and so on.

In the pond, about 6 feet above the dam, drive a stake, and then obstruct the water until it rises precisely to the bottom of the notch, and mark the stake at this level. Then complete the dam so as to cause all the water to flow through the notch, and, after allowing time for the water to

settle, mark the stake again for this new level. If preferred, the stake can be driven with its top precisely level with the bottom of the notch, and the depth of the water be measured with a rule after the water is flowing free; but the marks are preferable, in most cases.

The theoretical quantity of water passing over a weir is given by the

formula.

$$Q = \frac{2}{3}\sqrt{2g} \cdot bH^{\frac{3}{2}},$$

in which b is the width of the notch, or the length of the weir; H, the

depth of water; g, the acceleration of gravity, = 32.2. The actual quantity of water has been determined by numerous experi-

ments. According to Francis, we may use

$$Q = 3.33bH^{\frac{3}{2}} = 3.33bH\sqrt{H}$$

Hand b both being taken in feet. The following table also may be used.

Table for Weir Measurement.

Pelton Water-wheel Company.

Giving Cubic Feet of Water per Minute that will Flow over a Weir 1 inch wide and from 1/8 to 201/8 inches deep.

Incl	hes.	1/8	1/4	3/8	1/2	5/8	3/4	7/8
0	.00	.01	.05	.09	:14	.19	.26	.32
1	.40	.47	.55	.64	.73	.82	.92	1.02
2	1.13	1.23	1.35	1.46	1.58	1.70	1.82	1.95
3	2.07	2.21	2.34	2.48	2.61	2.76	2.90	3.05
4	3.20	3.35	3.50	3.66	3.81	3.97	4.14	4.30
5	4.47	4.64	4.81	4.98	5.15	5.33	5.51	5.69
6	5.87	6.06	6.25	6.44	6.62	6.82	7.01	7.21
7	7.40	7.60	7.80	8.01	8.21	8.42	8.63	8.83
8	9.05	9.26	9.47	9.69	9.91	10.13	10.35	10.57
9	10.80	11.02	11.25	11.48	11.71	11.94	12.17	12.41
10	12.64	12.88	13.12	13.36	13.60	13.85	14.09	14.34
11	14.59	14.84	15.09	15.34	15.59	15.85	16.11	16.36
12	16.62	16.88	17.15	17.41	17.67	17.94	18.21	18.47
13	18.74	19.01	19.29	19.56	19.84	20.11	20.39	20.67
14	20.95	21.23	21.51	21.80	22.08	22.37	22.65	22.94
15	23.23	23.52	23.82	24.11	24.40	24.70	25.00	25.30
16	25.60	25.90	26.20	26.50	26.80	27.11	27.42	27.72
17	28.03	28.34	28.65	28.97	29.28	29.59	29.91	30.22
18	30.54	30.86	31.18	31.50	31.82	32.15	32.47	32.80
19	33.12	33.45	33.78	34.11	34.44	34.77	35.10	35.44
20	35.77	36.11	36.45	36.78	37.12	37.46	37.80	38.15
		1					1	

Example. Suppose the weir to be 66 inches long, and the depth of water on it to be 11% inches. Follow down the left-hand column of the figures, in the table until you come to 11 inches. Then run across the table on a line with the 11 until under %, on top line, and you will find 15.85. This, multiplied by 66, the length of weir, gives 1046.10, the number of cubic feet of water passing per minute.

The Miner's Inch.

The term Miner's Inch is used in a number of Western States, being used in the measurement of water for mining and irrigation. The term is more or less indefinite, for the reason that the water companies do not all use the same head above the centre of the aperture, and the inch varies from 1.36 to 1.73 cubic feet per minute each; but the most common measure-

ment is through an aperture 2 inches high and whatever length is required, and through a plank $1\frac{1}{4}$ inches thick, as shown in the illustration. The lower edge of the aperture should be 2 inches above the bottom of the measuring box, and the plank 5 inches high above the aperture, thus making a 6-inch head above the centre of the stream. Each square inch of this opening represents a miner's inch, which is equal to a flow of $1\frac{1}{4}$ cubic feet per minute.

The use of the miner's inch is to be discouraged, because of its indefi-

The use of the miner's inch is to be discouraged, because of its indefinite value. In some States its legal value has been made 1.5 cubic feet per

minute.

Tables for Calculating the Horse-power of Water.

Miner's Inch Table.

The following table gives the horse-power of 1 miner's inch of water under heads from 1 up to 1100 feet. This inch equals 1½ cubic feet per minute.

Cubic Feet Table.

The following table gives the horse-power of 1 cubic foot of water per minute under heads from 1 up to 1100 feet.

Heads, in feet.	Horse-	Heads,	Horse-	Heads,	Horse-	Heads,	Horse-
	power.	in feet.	power.	in feet.	power.	in feet.	power.
1	.002 4147	320	.772 704	1	.001 6098	320	.515 136
20	.048 2294	330	.796 851	20	.032 196	330	.531 234
30	.072 441	340	.820 998	30	.048 294	340	.547 332
40	.096 588	350	.845 145	40	.064 392	350	.563 430
50	.120 735	360	.869 292	50	.080 490	360	.579 528
60	.144 882	370	.893 439	60	.096 588	370	.595 626
70	.169 029	380	.917 586	70	.112 686	380	.611 724
80	.193 176	390	.941 733	80	.128 784	390	.627 822
90	.217 323	400	.965 880	90	.144 892	400	.643 920
100	.241 470	410	.990 027	100	.160 980	410	.660 018
110	.265 617	420	1.014 174	110	.177 078	420	.676 116
120	.289 764	430	1.038 321	120	.193 176	430	.692 214
130	.313 911	440	1.062 468	130	.209 274	440	.708 312
140	.338 058	450	1.086 615	140	.225 372	450	.724 410
150	.362 205	460	1.110 762	150	.241 470	460	.740 508
160	.386 352	470	1.134 909	160	.257 568	470	.756 606
170	.410 499	480	1.159 056	170	.273 666	480	.772 704
180	.434 646	490	1.183 206	180	.289 764	490	.788 802
190	.458 793	500	1.207 350	190	.305 862	500	.804 900
200	.482 940	520	1.255 644	200	.321 960	520	.837 096
210	.507 087	540	1.303 938	210	.338 058	540	.869 292
220	.531 234	560	1.352 232	220	.354 156	560	.901 488
230	.555 381	580	1.400 526	230	.370 254	580	.933 684
240	.579 528	600	1.448 820	240	.386 352	600	.965 880
250	.603 675	650	1.569 555	250	.402 450	650	1.046 370
260	.627 822	700	1.690 290	260	.418 548	700	1.126 860
270	.651 969	750	1.811 025	270	.434 646	750	1.207 350
280	.676 116	800	1.931 760	280	.450 744	800	1.287 840
290	.700 263	900	2.173 230	290	.466 842	900	1.448 820
300	.724 410	1000	2.414 700	300	.482 940	1000	1.609 800
310	.748 557	1100	2.656 170	310	.499 038	1100	1.770 780

When the Exact Head is Found in Above Table:

Example. Have 100-foot head and 50 inches of water. How many horse-power?

By reference to above table the horse-power of 1 inch under 100-foot head is .241470. This amount, multiplied by the number of inches, 50, will give 12.07 horse-power.

When Exact Head is Not Found in Table:

Take the horse-power of 1 inch under 1-foot head and multiply by the number of inches, and then by number of feet head. The product will be the required horse-power.

The above formula will answer for the cubic feet table by substituting

the equivalents therein for those of miner's inches.

Note.—The above tables are based upon an efficiency of 85 per cent.

Contents, in Cubic Feet and United States Gallons, of Pipes and Cylinders of Various Diameters and 1 Foot in Length.

1 gallon = 231 cubic inches. 1 cubic foot = 7.4805 gallons.

-							
	For 1 foot	in length.			For 1 foot	in length.	و و
es.	Cubic feet;	United States	ength, in inches, of cylinder of 1 cubic foot capacity.	es.	Cubic feet;	United States	ength, in inches, of cylinder of 1 cubic foot capacity.
Diameter, inches.	also, area in square feet.	gallons 231 cubic inches.	Length, i inches, cylinder 1 cubic 1 capacity	Diameter, inches.	also, area in square feet.	gallons 231 cubic inches.	Length, ir inches, o cylinder I cubic fi
1/4 5 16 3/	.0003 .0005 .0008	.0025 .0040 .0057		61/8	.1963 .2046 .2131	1.469 1.531 1.594	61.13 58.65 56.31
78 16 1/2	.0010 .0014	.0078 .0102 .0129		61/8 61/4 63/8 61/2 65/8 63/4 67/8	.2217 .2304	$1.662 \\ 1.724$	54.01 52.08
16 5/8 11 16	.0017 .0021 .0026	.0159 .0193		63/4 67/8	.2394 .2485 .2578	1.791 1.859 1.928	50.13 48.29 46.55
1/456/876/296/87496/856	.0031 .0036 .0042	.0230 .0269 .0312		7 7½ 7½ 7¼	.2673 .2769 .2867	1.999 2.071 2.145	44.89 43.34 41.86
1	.0048 .0055 .0069	.0359 .0408 .0516	2181.81 1739.13	73/8 73/8 71/2 75/8 73/4 77/8	.2967 .3068 .3171	$\begin{array}{c} 2.219 \\ 2.295 \\ 2.372 \end{array}$	40.45 39.11 37.84
$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$.0085 .0103 .0123	.0638 .0770 .0918	1411.76 1165.04 975.69	8	.3276 .3382 .3491	$\begin{array}{c} 2.450 \\ 2.530 \\ 2.611 \end{array}$	36.63 35.48 34.37
$1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$.0144 .0167 .0192	.1077 .1249 .1436	833.33 718.56 625.00	81/8 81/4 83/8	.3601 .3712 .3826	2.694 2.777 2.862	33.32 32.33 31.36
$\frac{2}{21/8}$ $\frac{21}{4}$.0218 .0246 .0276	.1632 .1840 .2066	550.44 487.80 434.76	81/8 81/4 83/8 81/2 85/8 83/4 87/8	.3941 .4057 .4176	2.948 3.035 3.125	30.45 29.58 28.74
$2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$.0308 .0341 .0376	.2304 .2550 .2813	389.52 351.84 319.14	9 91/8	.4296 .4418 .4541	3.214 3.305 3.397	$\begin{array}{c} 27.93 \\ 27.16 \\ 26.43 \end{array}$
23/4 27/8 3	.0412 .0451 .0491	.3085 .3374 .3672	291.26 266.07 244.39	91/4	.4667 .4794 .4922	3.491 3.586 3.682	$\begin{array}{c} 25.71 \\ 25.03 \\ 24.38 \end{array}$
31/8 31/4 33/8	.0533 .0576 .0621	.3987 .4309 .4645	225.14 208.33 193.23	93/8 91/2 95/8 93/4 97/8	.5053 .5185 .5319	3.780 3.879 3.979	23.75 23.14 22.56
3 ¹ / ₂ 3 ⁵ / ₈ 3 ³ / ₄	.0668 .0717 .0767	.4998 .5361 .5738	178.14 167.36 156.45	10	.5454 .5591 .5730	4.080 4.182 4.286	$22.00 \\ 21.46 \\ 20.94$
3/8 4 4 ¹ / ₈	.0819 .0873 .0928	.6127 .6528 .6942	146.52 137.43 129.31	$\begin{array}{c} 10^{1}/8 \\ 10^{1}/4 \\ 10^{3}/8 \\ 10^{1}/2 \\ 10^{5}/8 \\ 10^{3}/4 \\ 10^{7}/8 \end{array}$.5871 .6013 .6157	4.392 4.498 4.606	20.44 19.96 19.49
41/4 43/8 41/2	.0985 .1044 .1104	.7369 .7810 .8263	121.82 114.94 108.69	11	.6303 .6450 .6600	4.715 4.825 4.937	19.04 18.60 18.18
45/8 43/4 47/8	.1167 .1231 .1296	.8727 .9206 .9695	102.82 97.50 92.59	$11\frac{1}{8}$ $11\frac{1}{4}$ $11\frac{3}{8}$.6751 .6903 .7057	5.050 5.164 5.279	17.78 17.38 17.00
5 51/8 51/4	.1364 .1433 .1503	1.020 1.072 1.125	87.98 83.74 79.84	11 ¹ / ₈ 11 ¹ / ₄ 11 ³ / ₈ 11 ¹ / ₈ 11 ³ / ₄ 11 ⁷ / ₈	.7213 .7370 .7530	5.396 5.513 5.633	16.63 16.28 15.94
53/8 51/2 55/8	.1576 .1650 .1726	1.179 1.234 1.291	76.14 72.73 69.52	121/	.7691 .7854 .8018	5.753 5.875 5.998	15.60 15.28 14.94
57/8	.1803 .1883	1.349 1.409	66.56 63.72	$12\frac{1}{4}$ $12\frac{3}{8}$.8184 .8352	6.122 6.248	14.66 14.37

Contents, in Cubic Feet and United States Gallons, of Pipes and Cylinders of Various Diameters and 1 Foot in Length.—Continued.

1 gallon = 231 cubic inches. 1 cubic foot = 7.4805 gallons.

	1 gamon	== 251 Cui	ore menes.	1 cu	DIG 1001 =	: 7.4800 ga	110118.
	For 1 foot	in length.		1. 1	For 1 foot	in length.	43
Diameter, in inches.	Cubic feet;	United States	Length, in inches, of cylinder of 1 cubic foot capacity.	ır, in	Cubic feet;	United States	ength, in inches, of cylinder of 1 cubic foot capacity.
iamete inches.	also, area	gallons	ength, in inches, o cylinder 1 cubic f	iamete inches.	also, area	gallons	ength, i inches, cylinder 1 cubic capacity
)ian inc	in square feet.	231 cubic inches.	Length, inches, cylinde 1 cubic capacit	Diameter, inches.	in square feet.	231 cubic inches.	Length, inches, cylinde 1 cubic capacit
$\frac{12\frac{1}{2}}{12\frac{5}{8}}$.8522 .8693	6.375 6.503	14.080 13.800	$21\frac{1}{4}$ $21\frac{1}{2}$	$2.463 \\ 2.521$	18.42 18.86	$\frac{4.872}{4.760}$
$\frac{123/4}{127/8}$.8866 .9041	6.632 6.763	$13.530 \\ 13.270$	$\begin{vmatrix} 21 & 72 \\ 21 & 34 \\ 22 \end{vmatrix}$	$2.580 \\ 2.640$	19.30 19.75	4.651 4.545
13	.9218	6.895	13.020	221/4	2.700	20.20	4.445
13½ 13½	.9395 .9575	7.028 7.163	$12.780 \\ 12.530$	221/2 223/4	$2.761 \\ 2.823$	$20.66 \\ 21.12$	4.347 4.251
133/8	.9757	7.299	12.300	23	2.885	21.58	4.160
13½ 135%	.994 1.013	7.436 7.578	$12.070 \\ 11.850$	231/4 231/2	2.948 3.012	22.05 22.53	4.070 3.990
133/4 137/8	1.031 1.051	7.712 7.855	$11.640 \\ 11.420$	$\begin{vmatrix} 233/2 \\ 24 \end{vmatrix}$	$\frac{3.076}{3.142}$	23.01 23.50	3.901 3.819
14	1.069	7.997	11.230	25	3.409	25.50	3.520
14½ 14½	1.088 1.107	8.139 8.281	$11.030 \\ 10.840$	26 27	3.678 3.976	27.58 29.74	3.263 3.018
	1.127	8.431	10.650	28	4.276	31.99	2.806
143/8 141/2 145/8 143/4	1.147 1.167	8.578 8.730	$10.460 \\ 10.280$	29 30	4.587 4.909	34.31 36.72	2.616 2.444
14 ³ / ₄ 14 ⁷ / ₈	1.187 1.207	8.879 9.029	10.110 9.940	31 32	5.241 5.585	39.21 41.78	2.290 2.149
15	1.227	9.180	9.780	33	5.940	44.43	2.020
15½ 15¼	1.248 1.268	9.336 9.485	9.620 9.460	34 35	6.305 6.681	47.16 49.98	1.903 1.796
153/8	1.289	9.642	9.310	36	7.069	52.88	1.698
$15\frac{1}{2}$ $15\frac{5}{8}$	1.310 1.332	9.801 9.964	9.160 9.010	37 38	7.467 7.876	55.86 58.92	$1.607 \\ 1.527$
15 ¹ / ₂ 15 ⁵ / ₈ 15 ³ / ₄ 15 ⁷ / ₈	1.353 1.374	10.121 10.278	8.870 8.730	39 40	8.296 8.727	62.06 65.28	$1.446 \\ 1.375$
10	1.396	10.440	8.600	41	9.168	68.58	1.309
16 ¹ / ₄	$1.440 \\ 1.485$	$10.772 \\ 11.11$	8.330 8.081	42 43	9.621 10.085	71.91 75.44	1.247 1.190
$16\frac{1}{2}$ $16\frac{3}{4}$	1.530	11.45	7.843	44	10.559	78.99	1.136
17 171/4	1.576 1.623	11.79 12.14	7.511 7.394	45 46	11.045 11.541	82.62 86.33	$1.087 \\ 1.040$
$17\frac{1}{2}$ $17\frac{3}{4}$	1.670 1.718	12.49 12.85	7.186 6.985	47 48	12.048 12.566	90.13 94.00	.996 .955
18	1.768	13.22	6.787	49	13.095	97.96	.916
$18\frac{1}{4}$ $18\frac{1}{2}$	1.817 1.867	13.59 13.96	$6.604 \\ 6.427$	50 51	$13.635 \\ 14.186$	$102.00 \\ 106.12$.880 .846
183/4	1.917	14.34	6.259	52 53	14.748 15.320	110.32	.814 .783
19 19 ¹ / ₄	$1.969 \\ 2.021$	14.73 15.12	6.094 5.938	54	15.904	114.60 118.97	.755
$19\frac{1}{2}$ $19\frac{3}{4}$	$2.074 \\ 2.128$	15.51 15.92	5.786 5.639	55 56	16.499 17.104	122.82 127.95	.727 .702
20	2.182	16.32	5.500	57	17.720	132.55	.677
$20\frac{1}{4}$ $20\frac{1}{2}$	2.237 2.292	16.73 17.15	5.365 5.236	58 59	18.347 18.985	$137.24 \\ 142.02$.654 .632
$\frac{203}{4}$	2.348 2.405	17.56 17.99	5.110 4.989	60	19.637	146.89	.611
21	2.100	11.00	1.000	11			

To find the capacity of pipes greater than the largest given in the table, look in the table for a pipe one-half the given size and multiply its capacity by 4, or one of one-third its size, and multiply its capacity by 9, etc.

Table for Tank Measurement.

Giving the Number of Cubic Feet of Water Discharged per Minute through an Orifice 1 inch square under any Head of Water from 3 to 72 inches.

Heads, in inches.	Cubic feet discharged per minute.								
3	1.12	17	2.51	31	3.36	45	4.05	59	4.63
4	1.27	18	2.58	32	3.41	46	4.09	60	4.65
5	1.40	19	2.64	33	3.47	47	4.12	61	4.72
6	1.52	20	2.71	34	3.52	48	4.18	62	4.74
7	1.64	21	2.78	35	3.57	49	4.21	63	4.78
8	1.75	22	2.84	36	3.62	50	4.27	64	4.81
9	1.84	23	2.90	37	3.67	51	4.30	65	4.85
10	1.94	24	2.97	38	3.72	52	4.34	66	4.89
11	2.03	25	3.03	39	3.77	53	4.39	67	4.92
12	2.12	26	3.08	40	3.81	54	4.42	68	4.97
13	2.20	27	3.14	41	3.86	55	4.46	69	5.00
14	2.28	28	3.20	42	3.91	56	4.52	70	5.03
15	2.36	29	3.25	43	3.95	57	4.55	71	5.07
16	2.43	30	3.31	44	4.00	58	4.58	72	5.09

Example. Suppose the opening to be 36 inches long and 2 inches high, and the head of water above the opening 25 inches. Multiply the length, 36, by 2, the height of the opening, and it gives 72. Referring to the above table, opposite 25-inch head will be found 3.03. This, multiplied by 72, gives 218.16, the number of cubic feet of water passing through the opening per minute.

Water=wheels.

Water-wheels may be divided into two classes, vertical and horizontal, according to the position of the plane in which the revolving wheel is placed.

Vertical wheels include Overshot-wheels, Undershot-wheels, Breast-wheels, and Impact-wheels of the Pelton type. Horizontal wheels include practically all forms of turbines, although in some cases turbine wheels are placed on horizontal axes and revolve in vertical planes, without, however, suffering any material change in construction or action. In the pages immediately following the data for the various kinds of vertical wheels are:

Q = quantity of water, in cubic feet, per second; h = head, in feet;

V = velocity of water, in feet, per second; v = velocity of wheel buckets, in feet, per second; u = angle of entrance;

a = area of float, in square feet.

Example. The vertical section of the immersed floats of an undershotwheel in a mid-stream is a=27 square feet; velocity of the stream, V=8.6; and v=4 feet per second. Required the horse-power of the wheel?

$$P = \frac{av}{200}(V - v)^2 = \frac{27 \times 4}{200}(8.6 - 4)^2 = 11.4 P.$$

Example. On a breast-wheel is acting Q=88 cubic feet of water per second; the head, h=8 feet; velocity of the wheel at the centre of the buckets, v=5 feet per second. The water strikes the buckets at an angle, $u=8^\circ$, and velocity, V=7 feet per second. Required the horse-power of the wheel?

 $IP = \frac{88}{11.4} \left(8 + \frac{5}{25} (7 \times \cos 8^{\circ} - 5) \right) = 65 \ IP.$

Example. Required the effect of a Poncelet wheel: the head, h=4 feet; and the orifice, a=5 square feet; the velocity of the wheel at the centre of the pressure of the floats is v=6.78 feet per second?

$$\begin{split} V &= 6.91 \, \sqrt{4} \, = 13.82 \, \text{feet per second} \, ; \\ Q &= 6.5 \times 5 \times \sqrt{4} \, = 65 \, \text{cubic feet per second} \, ; \\ IP &= \frac{65 \times 6.78}{197} (13.82 - 6.78) = 15.8 \, IP. \end{split}$$

Example. A saw-mill wheel is to be built under a fall of h=18 feet, and to make n=110 revolutions per minute. Required the proper diameter of the wheel?

$$D = \frac{100}{110} \sqrt{18} = 3.857 \text{ feet}$$

at the centre of pressure of the buckets.

Velocity,

 $V = 8\sqrt{18} = 33.94$ feet per second.

Velocity,

$$v = \frac{3.14 \times 3.857 \times 110}{60} = 22.2$$
 feet per second.

The fall discharged 30 cubic feet of water per second. Required the horse-power of the wheel?

$$IP = \frac{30 \times 22.2}{200} (33.94 - 22.2) = 39 IP.$$

In general, the maximum efficiency of such wheels is obtained when $v = \frac{1}{2}V$.

Undershot Stream-wheel.

$$IP = \frac{av}{200} (V - v)^2$$
.

When V = 2v, about, the effect will be

$$IP = \frac{aV^3}{1600}$$
; $a = \text{area of float.}$

Undershot-wheel.

$$IP = \frac{Qv}{454}(V-v);$$

$$IP = \frac{mav}{56.6} (V - v) \sqrt{h};$$

When
$$V = 2v$$
, about, $IP = \frac{ah\sqrt{h}}{3.9}$.

Poncelet Wheel.

$$IP = \frac{Qv}{228}(V-v)$$
, when $h > 5$ feet;

$$IP = \frac{Qv}{200}(V-v)$$
, when $h < 5$ feet;

$$Q = 8ma\sqrt{h}$$
;

$$V = 6.91\sqrt{h}$$
.

Breast-wheel with Parabolic Drain.

$$\begin{split} IP &= \frac{Q}{12} \bigg[h + \frac{v}{28} (V - v) \bigg] \;; \\ Q &= 6.5 a \sqrt{h'} \,. \end{split}$$

Low Breast-wheel.

$$IP = \frac{Q}{11.2} \left[h + \frac{v}{32} (V \cos u - v) \right];$$

$$Q = kb$$
;

$$V = \frac{Q}{a}$$
.

See table for weirs.

Breast-wheel.

$$IP = \frac{Q}{11.4} \left[h + \frac{v}{25} (V \cos u - v) \right].$$

Overshot-wheel.

$$P = \frac{Q}{13.7} \left[h + \frac{v}{21.5} (V \cos u - v) \right].$$

Proper velocity about

$$n = \frac{35D + 100}{D}$$

revolutions per minute.

Saw-mill Wheel.

$$P = \frac{Qv}{200}(V - v).$$

Proper diameter of the wheel:

$$D = \frac{100}{n} \sqrt{h}$$
, in feet;

n = revolutions per minute.

For high heads of water the most effective form of wheel is the tangential impact type, of which the well-known Pelton wheel is a good example.

Pelton Water-wheel.

Pelton Bucket.

The buckets of the Pelton wheel are made double, with centre fin, producing a side discharge, and permitting the maximum transfer of energy from the jet to the wheel, an efficiency of 85 per cent. being obtained.

Pelton Water-wheel Table.

The calculations for power in this table are based upon the application of one stream to the wheel, as also upon an 85 per cent. efficiency and effective heads, no allowance being made for loss of head, in pipe, by friction. The smaller figures under those denoting the various heads give the equivalent pressure, in pounds, and spouting velocity of the water, in feet, per minute. The cubic feet measurement is also based on the flow per minute.

Head, in feet.	Size of wheels.	6 in.	12 inch.	15 inch,	18 inch.	24 inch.	3 foot.	4 foot.	5 foot.	6 foot.
100 43 lb. 4812.00	Miner's inc's	.60 3.74 2.33 1530	1.40 8.74 5.46 765	$ \begin{array}{r} \hline 2.32 \\ 14.81 \\ 9.25 \\ 612 \end{array} $	4.21 26.22 17.48 510	7.49 46.58 31.05 382	16.84 104.88 69.93 255	29.93 186.32 124.21 191	46.85 291.51 194.34 152	67.36 419.52 279.72 127
120 52 lb. 5271.30	Horse-power Cubic feet Miner's inc's Revolutions.	$ \begin{array}{r} .79 \\ 4.10 \\ 2.56 \\ 1677 \end{array} $		3.12 16.21 10.13 671		9.85 51.02 34.01 419	22.18 114.91 76.60 279	39.41 204.10 136.06 209	61.66 319.33 212.89 167	88.75 459.64 306.43 139
140 60 lb. 5693.65	Horse-power Cubic feet Miner's inc's Revolutions.	2.76		3.94 17.53 10.95 725		12.41 55.11 36.74 453	27.96 124.12 82.72 302		77.71 344.92 229.94 181	111.85 496.48 330.88 151
160 69 lb. 6086.74	Cubic feet	2.95		4.82 18.74 11.71 775		15.17 58.92 39.28 484	34.16 132.68 88.46 323	$\begin{array}{c} 60.68 \\ 235.68 \\ 157.12 \\ 242 \end{array}$	94.94 368.73 245.82 193	136.65 530.75 353.84 161
180 78 lb. 6455.97	Horse-power Cubic feet Miner's inc's Revolutions.	$5.02 \\ 3.13$	7.32	5.75 19.87 12.41 820	10.19 35.18 23.45 683	18.10 62.49 41.66 513	40.77 140.74 93.82 342	$72.41 \\ 249.97 \\ 166.64 \\ 256$	113.30 391.10 260.73 206	163.08 562.96 375.29 171
200 87 lb. 6805.17	Horse-power Cubic feet Miner's inc's Revolutions.	3.30	7.72	$20.94 \\ 13.08$	24.72	21.20 65.87 43.91 540	47.75 148.35 98.90 360		132.70 412.25 274.83 216	191.00 593.40 395.60 180
220 95 lb. 7137.35	Horse-power Cubic feet Miner's inc's Revolutions.	$5.55 \\ 3.46$	8.10	$21.96 \\ 13.72$			55.09 155.59 103.72 378	276.35	153.10 432.38 288.25 226	220.36 622.36 414.91 189
240 105 lb. 7454.70	Horse-power Cubic feet Miner's inc's Revolutions.	$\begin{bmatrix} 5.80 \\ 3.62 \end{bmatrix}$					62.77 162.50 108.34 395		174.45 451.60 301.07 237	251.10 650.03 433.36 197
260 113 lb. 7759.10	Horse-power Cubic feet Miner's inc's Revolutions.	$\frac{6.04}{3.77}$	14.09 8.80	10.05 23.88 14.92 986	$\frac{42.28}{28.19}$		70.78 169.14 112.76 411		196.71 470.04 313.36 247	283.15 676.59 451.05 206
280 121 lb. 8052.01	Horse-power Cubic feet Miner's inc's Revolutions.	$6.26 \\ 3.91$	14.62 9.13 1281		43.88 29.25 854		79.11 175.53 117.02 427		219.84 487.79 325.19 255	316.44 702.12 468.06 213
300 130 lb. 8334.62	Horse-power Cubic feet Miner's inc's Revolutions.	6.48	15.13	16.03	45.42		87.73 181.69 121,12 442		243.82 504.91 336.60 265	350.94 726.76 484.51 221
320 139 lb. 8607.94	Cubic feet	4.18	15.63 9.76	$\begin{array}{c} 13.64 \\ 26.50 \\ 16.56 \\ 1095 \end{array}$	$\frac{46.91}{31.27}$		$\begin{array}{r} 96.65 \\ 187.65 \\ 125.10 \\ 456 \end{array}$		268.60 521.46 347.64 274	386.62 750.60 500.40 228
340 147 lb. 8872.89	Horse-power Cubic feet Miner's inc's Revolutions.	$6.90 \\ 4.31$	$16.12 \\ 10.07$	17.06	$\frac{48.35}{32.24}$	85.88 57.26	105.86 193.42 128.98 470	$\frac{343.55}{229.04}$	294.18 537.51 358.34 282	423.44 773.71 515.93 235

Pelton Water-wheel Table.—Continued.

The calculations for power in this table are based upon the application of one stream to the wheel, as also upon an 85 per cent. efficiency and effective heads, no allowance being made for loss of head, in pipe, by friction. The smaller figures under those denoting the various heads give the equivalent pressure, in pounds, and spouting velocity of the water, in feet, per minute. The cubic feet measurement is also based on the flow per minute.

Head,	Size	6	12	15	18	24	3	4	5	6
in feet.	of wheels.		inch.			inch.	foot.	foot.	foot.	foot.
360 156 lb.	Horse-power Cubic feet	$\frac{4.10}{7.10}$	$9.61 \\ 16.58$	16.28 28.10	28.83		115.34 199.03		320.52 553.10	
9130.14	Miner's inc's	4.43	10.36	17.56	33.17	58.91	132.68	235.64	368.73	530.75
	Revolutions.	2907		1161	969	726	484	363	290	
380 165 lb.	Horse-power Cubic feet		$10.42 \\ 17 04$				125.08 204.48		347.60 568.25	
9380.32	Miner's inc's	$\frac{7.50}{4.56}$	10.65	18.03	34.08		136.32			
	Revolutions.	2985	1492	1194	995	746	497	373		
400	Horse-power	4.82	11.25	19.07	33.77		135.08			
173 lb. 9624.00	Cubic feet Miner's inc's		17.48				$209.80 \\ 139.84$		583.02 388.68	
3021.00	Revolutions.					765	510	382		
420	Horse-power	5.19	12.11	20.52	36.33		145.34			581.39
182 lb. 9861.66	Cubic feet Miner's inc's	7.67	17.91	30.36	53.74		214.98 143.32		597.41 398.28	859.93
9901.00	Revolutions.					785	523	$\frac{254.56}{392}$	313	
440	Horse-power	5.56	12.98	22.01	38.96	69.20	155.85		433.11	623.40
191 lb.	Cubic feet	7.85	18.33	31.07	55.01		220.04		611.47	880.16
10093.74		3213			1071	803	$146.64 \\ 535$	401	407.65 320	
460	Horse-power	5.95	13.88	23.53	41.65		166.60		462.97	666.40
200 lb.	Cubic feet	8.03	18.74	31.77	56.24		224.98		625.22	
10320.58	Miner's inc's Revolutions.					821	$150.00 \\ 547$	265.40 410	416.80 327	600.00
480	Horse-power						177.58		493.49	
208 lb.	Cubic feet	8.20	19.15	32.45	57.45		229.82		638.66	919.29
10542.56	Miner's inc's Revolutions.					68.00 839	$153.20 \\ 559$	$\frac{272.12}{419}$	425.78	612.80
500	Horse-power	6.74	15.73	20.66	47.20	83.83	188.80		524.66	755.20
217 lb.	Cubic feet	8.37	19.54	33.12	58.64	104.15	234.56		651.83	938.25
10759.96	Miner's inc's Revolutions.	5.23	12,21	20.72 1370	39.09 1142	69.41 856	156.36 571	$\frac{277.64}{428}$	434.56 342	625.44
600	Horse-power						248.16		689.63	992.65
260 lb.	Cubic feet						256.95	456.38	714.05	1027.80
11786.94	Miner's inc's Revolutions.						$171.30 \\ 625$	304.24 469	476.03 375	685.20
700	Horse-power	n i					312.73			1250.92
304 lb.	Cubic feet						277.54	492.95	771.26	1110.16
12731.34	Miner's inc's Revolutions.						$185.02 \\ 675$	328.63 506	514.18 405	740.09
800	Horse-power	D 0						000	1061.81	
348 lb.	Cubic feet						296.70	526.99	824.51	1186.81
13610.40									549.68	791.21
900	Revolutions. Horse-power						722 455 94	542 809 82	433 1267.02	361 1823 76
391 lb.	Cubic feet						314.70	558.96	874.53	1258.81
14436.00	Miner's inc's						209.80	372.64	583.02	839.20
1000	Revolutions. Horse-power						766 524 01	574	1482 07	383
434 lb.	Cubic feet						331.72	589.19	921.83	1326.91
15216.89	Miner's inc's						221.15	392.79		884.61
	Revolutions.						807	605	484	403

Turbines.

For moderate and low heads and large volumes of water turbines are now generally used. Various forms of turbines are in use, but they may all be considered as variants of

the two original types, the Fourney-

ron and the Jonval.

In the Fourneyron turbine the water flows down and out through the guides, LL, and is delivered into the curved buckets, AA, of the wheel, this latter being connected to the vertical shaft by the plate, BB. In the illustration the power is transmitted by the gear-wheels, DE, but the rotor of a dynamo may be mounted directly on the shaft.

The proportions of the Fourney-ron turbine may be determined as follows, according to Weisbach:* The data are given in the accompanying diagram, the dimensions being in feet, and Q being the quantity of water delivered, in cubic feet, per second under a head, h, in feet. The inner radius, $r_1 = CE = 0.326 1/Q$. The outer radius, $r = CM = \nu r_1 = \frac{5}{4}r_1$ to $\frac{3}{2}r_1$. The angle of the guides at the entrance, E, may then be made $\alpha = 15^\circ$ to 30° , and the bucket angle at the same point $= \beta = 2\alpha + 20^\circ$ to $2\alpha + 30^\circ$. The inner velocity of the wheel will then be determined by the formula,

Fourneyron Turbine.

$$v_1 = \sqrt{\frac{2 \sin \beta \cos \alpha}{\frac{2 \sin \beta \cos \alpha}{\sin (\beta - \alpha)}} + 0.1 \left[\left(\frac{\sin \beta}{\sin (\beta - \alpha)} \right)^2 + \nu^2 \right]}.$$

Curves for the Fourneyron Turbine.

The outer velocity will then be given $v = \nu v_1 = \frac{r}{r_1} v_1$, ν being the ratio of the inner and outer radii of the wheel. From this we obtain the number of revolutions:

$$u = \frac{30v}{\pi r} = 9.55 \frac{v}{r} = 9.55 \frac{v_1}{r_1}.$$

The velocity, c, with which the water issues through the guides will be

$$c = \frac{v_1 \sin \beta}{\sin (\alpha - \beta)},$$

and the cross-section, F, of the sum of all the openings will be

$$F = \frac{Q}{c} = \frac{Q\sin{(\alpha - \beta)}}{v_1 \sin{\beta}}$$
 square

feet. If e be the height of a

^{* &}quot;Der Ingenieur," Seventh Edition, 1896, pages 596-602.

bucket, and d = the width, as at AB_1 , we have for their ratio $\lambda = \frac{e}{d} = 2$ to 5, according to the head of water, the larger value being for the lower head. The thickness of metal in the floats may be made

$$s = 0.015r$$
.

We then have for the height, e, of the wheel,

$$e = \frac{F}{2\pi r_1 \sin a} \left(1 + \frac{2\pi r \sin a \cdot \lambda s}{F} \right).$$

The number of guide buckets, $n_1 = \frac{\lambda F}{c^2}$, and the number of wheel buckets,

$$n = \frac{\sin \beta}{\sin \alpha} n_1 = \frac{\lambda F \sin \beta}{e^2 \sin \alpha}.$$

The exit angle, δ , at the middle point, M, of a bucket is found from

$$\sin \delta = \frac{F_2 + nse}{2\pi re},$$

 F_2 being the sum of all the discharge openings of the wheel buckets.

The curvature of the floats is determined as follows:

From CM = r lay off the angle, $CMR = \delta$, and drop the perpendicular, CR, to MR. From M and from R lay off $MA = MB_1 = RO = RO_1 = r \sin \delta \tan \frac{\phi}{2}$, ϕ being $= \frac{360^{\circ}}{n}$. AB_1 will then be the width of a bucket mouth,

neglecting the thickness of the metal of the floats, and O and O_1 will be the centres for the arcs, AB and A_1B_1 , of the outer portions of the floats. Lay off the line, $AF = CE = r_1$, making the angle, $RAF = 180^{\circ} - \beta$, join OF, and at the middle point, H, of the latter line erect the perpendicular, HK. The intersection, K, with RA will then be the centre from

which the remainder of the bucket curve is struck.

Lay off the angle, a, from the ends, C and E, of the inner radius, CE, making the isosceles triangle, CEG, and G will be the centre from which to strike the curve, DE, of the guide. Having determined the centres for one pair of guides and bucket floats, the rest of the buckets can be readily

drawn.

The inward discharge turbines, such as that of Francis, may be designed in the same manner, simply by changing r to r_1

and v to v_1 , and vice versa.

The Jonval turbine is constructed as shown in the illustration, the guide blades, *LL*, being arranged in a ring above the turbine buckets, *AA*, the flow of water being parallel to the axis. This form of turbine is especially adapted for use with a draft tube, surrounding the wheel and adding the suction head of the discharge to the head above the wheel. When such a draft tube is used, the effective head, h, used in the computations is the sum of the heads above and below

Jonval Turbine. the wheel.

In this form of turbine $a = 15^{\circ}$ to 25° and $\beta = 100^{\circ}$ to 120°, and the most efficient velocity for the wheel is given by the formula,

$$v = \sqrt{\frac{2 \sin \beta \cos \alpha}{\frac{2 \sin \beta \cos \alpha}{\sin (\beta - \alpha)} + 0.1 \cdot \left[1 + \left(\frac{\sin \beta}{\sin (\beta - \alpha)}\right)^2\right]}.$$

The velocity of entrance of the water is

$$c = \frac{v \sin \beta}{\sin (\beta - \alpha)}.$$

The total cross-section of the entrance spaces between the guides will

$$F = \frac{Q}{c}$$
,

and the total discharge section of the wheel buckets,

$$F_2 = \frac{Q}{v}$$

Q being the quantity of water, in cubic feet, per second. If r_1 and r_2 be the inner and outer radii of the wheel, the mean radius will be

$$r = \frac{r_1 + r_2}{2},$$

and the width of the annular operative portion of the wheel, measured radially, will be

$$e = r_2 - r_1$$
.

Usually, e is made equal to $\rho r = 0.4r$, whence

and

$$r_1 = r(1 - \frac{1}{2}\rho) = 0.8r,$$

 $r_2 = r(1 + \frac{1}{2}\rho) = 1.2r.$

The ratio,

$$\lambda = \frac{e}{d}$$

of the length, e, of the floats to their width, d, may be made from 2 to 4. The radius may be determined from the formula,

$$r = \sqrt{\frac{F}{2\pi
ho\sin a}} \bigg(1 + \lambda s \sqrt{\frac{\pi\sin a}{2
ho F}}\bigg).$$

Approximately, we may take

$$r = \sqrt{\frac{F}{2\pi\rho\sin\alpha}},$$

and the thickness of the floats may be made

$$s = 0.02r$$
.

The length of a float will then be

$$e = \rho r$$
.

The number of guides,

$$n_1 = \frac{F}{de} + \frac{\lambda F}{e_2},$$

while the number of floats in the wheel,

$$n = \frac{\sin \beta}{\sin \alpha} \cdot n_1.$$

The angle of discharge, δ , is obtained from

$$\sin \delta = \frac{F_2 + nse}{2\pi re},$$

and the number of revolutions.

$$u = \frac{30v}{\pi r} = 9.55 \frac{v}{r}.$$

554 Pumps.

The height, a, of the wheel, as well as of the guides, may be made 0.5rto 0.6r.

0.6r.Both guides and floats are formed of warped surfaces, whose generating line is at right angles with the axis and follows the curves, HE and EA, of the illustration. The lower portions of the guides and buckets are straight lines, inclined at angles, a and δ , with the horizontal lines, as at DE and BA. The upper portions are arcs of circles, DH and BE. The centre, K, for DH, is at the intersection of a normal, DK, to the straight part of the guide with the upper line of the guides. To find the centre, C, of the curve, BE, of the wheel float, draw BC perpendicular to AB, make the angles, CBE and *BEC*, equal to $\frac{\beta + \delta}{2}$, when the in-

tersection, C, of EC and BC will be the desired centre.

PUMPS.

Dimensions.

Let

 $D={
m diameter}$ of plunger, in inches; $Q={
m quantity}$ of water, in cubic feet, per minute; $v={
m plunger}$ speed, in feet, per minute.

$$D = \sqrt{\frac{Q}{0.00545v}},$$

$$Q = 0.00545vD^{2}.$$

Approximately, the number of United States gallons delivered per minute. with a plunger speed of 100 feet per minute, will be

$$G = 4D^2$$
.

The loss by leakage and slip varies from 10 to 40 per cent. For a new

The loss by leakage and slip varies from 10 to 40 per cent. For a new pump, well packed, the delivery should be 90 per cent. of the theoretical.

Ordinarily, the speed of pump plungers should not exceed 100 feet per minute. At higher speeds there are apt to be concussions and water-hammer produced, due mainly to the sudden stoppages in the movement of the column of water. The study of the movement of water in pumps has been greatly facilitated by the use of the indicator, the instrument being attached, not only with the recording drum operated from the pump plunger but also by the life movement of the valves. The result of the latter method of investigation has shown the necessity for proper timing of the valves especially when pumping against high heads at high speeds. of the valves, especially when pumping against high heads at high speeds. In the designs of Professor Riedler a combination movement is used, the valve being closed mechanically, and opened by the action of the water.

Smooth running may also be improved by judicious use of air chambers

Smooth running may also be improved by judicious use of air chambers to receive the impact of the water. Air chambers on the suction side of the plunger are especially important. The proper arrangement is to have the air chamber in the direct line of the suction; and recent designs of high-speed pumps provide a large air chamber directly beneath the cylinder, each suction valve having its own suction tube extending down nearly to the bottom of the air chamber. This construction is both simple and effective, and should be followed, when practicable.

Consequences the strength of the air chamber and effective indigets that the air vessel on the delivery side should

General practice indicates that the air vessel on the delivery side should be from 3 to 6 times the capacity of the pump. while on the suction side it may be made from 2 to 3 times the capacity of the pump.

Delivery of Double-acting Pumps, in Cubic Feet.

7	61/2	6	51/2	5	41/2	4 4	33/4	31/2	31/4	లు	23/4	21/2	21/4	2	13/4	11/2	11/4	<u> </u>	Diameter pump, in	of inches.
13.32	11.49	9.792	8.227	6.800	5.347	4.352	3.824	3.331	2.872	2.448	2.056	1.699	1.376	1.088	.832	.611	.424	.272	Cubic feet per minute.	Piston speed, 50 per minute.
799.6	689.4	587.5	493.6	408.0	320.8	261.1	229.4	199.8	172.3	146.8	123.3	101.9	82.56	65.28	49.92	36.67	25.44	16.32	Cubic feet per hour.	Piston speed, 50 feet per minute.
15.99	13.79	11.75	9.875	8.160	6.609	5.222	4.588	3.998	3.446	2.937	2.467	2.040	1.651	1.305	.998	.734	.508	.326	Cubic feet per minute.	Piston speed, 60 per minute.
959.6	827.4	705.0	592.5	489.6	396.5	313.3	275.3	239.9	206.7	176.2	148.0	122.4	99.07	78.33	59.90	44.06	30.52	19.58	Cubic feet per hour.	Piston speed, 60 feet per minute.
18.65	16.08	13.70	11.51	9.520	7.710	6.092	5.353	4.760	4.020	3.427	2.879	2.379	1.926	1.523	1.164	.856	.593	.368	Cubic feet per minute.	Piston speed, 70 per minute.
1119.0	964.8	822.5	690.9	571.2	462.6	365.5	321.2	285.6	241.2	205.6	172.7	142.7	115.5	91.39	69.88	51.36	35.61	22.08	Cubic feet per hour.	Piston speed, 70 feet per minute.
21.31	18.38	15.66	13.16	10.88	8.812	6.963	6.120	5.331	4.596	3.916	3.291	2.720	2.203	1.740	1.332	.979	.680	.435	Cubic feet per minute.	Piston speed, 80 per minute.
1278.0	1103.0	940.0	789.8	652.8	528.7	417.7	367.2	319.8	275.8	235.0	197.4	163.2	132.1	104.4	79.96	58.75	40.80	26.11	Cubic feet per hour.	Piston speed, 80 feet per minute.
23.98	20.67	17.61	14.80	12.24	9.913	7.833	6.884	5.996	5.171	4.406	3.702	3.059	2.478	1.942	1.499	1,100	.764	.489	Cubic feet per minute.	Piston speed, 90 per minute.
1439.0	1240.0	1056.0	888.5	734.4	594.8	470.0	413.0	359.8	310.2	264.3	222.1	183.5	148.7	116.5	89.95	66.04	45.88	29.37	Cubic feet per hour.	Piston speed, 90 feet per minute.
26.65	22.97	19.58	16.44	13.60	11.01	8.704	7.649	6.664	5.745	4.896	4.113	3.400	2.753	2.176	1.665	1.224	.849	.544	Cubic feet per minute.	Piston speed, 100 feet per minute.
1599.0	1378.0	1175.0	986.8	816.0	660.9	522.2	458.9	399.8	344.7	293.7	246.8	204.0	165.2	130.5	99.93	73.44	50.97	32.64	Cubic feet per hour.	ed, 100 feet inute.

Delivery of Double-acting Pumps, in Cubic Feet.—Continued.

	Piston speed, 100 feet per minute.	Cubic feet per hour.	1835	2088	2357	2643	2945	3264	3598	3949	4316	4700	2099	5516	5948	6397	6862	7344	7841	8355	8885	9432	9995
	Piston sper per m	Cubic feet per minute.	30.59	34.81	39.29	44.06	49.08	54.40	59.96	65.82	71.93	78.33	84.99	91.93	99.13	106.6	114.3	122.4	130.6	139.2	148.0	157.2	166.5
	Piston speed, 90 feet per minute.	Cubic feet per hour.	1652	1878	2121	2378	2650	2937	3238	3553	3884	4229	4589	4964	5352	5757	6175	6099	2026	7519	2006	8489	9668
	Piston sper	Cubic feet per minute.	27.53	31.31	35.36	39.64	44.17	48.96	53.96	59.23	64.73	71.49	76.49	82.73	89.21	95.95	102.9	110.1	117.6	125.3	133.2	141.4	149.9
	ed, 80 feet inute.	Cubic feet per hour.	1468	1670	1886	2114	2355	2611	2878	3159	3453	3759	4080	4412	4758	5117	5489	5875	6272	6684	2108	7545	9662
	Piston speed, 80 feet per minute.	Cubic feet per minute.	24.48	27.84	31.44	35.24	39.26	43.52	47.96	52.65	57.55	62.65	68.00	73.53	79.31	85.29	91.48	97.92	104.5	111.4	118.4	125.7	133.2
•	ed, 70 feet nute.	Cubic feet per hour.	1284	1461	1650	1849	2061	2284	2518	2763	3021	3289	3569	3861	4163	4477	4802	5140	5488	5848	6219	6602	9669
	Piston speed, 70 per minute.	Cubic feet per minute.	21.40	24.35	27.50	30.83	34.35	38.08	41.96	46.06	50.35	54.83	59.48	64.35	69.39	74.62	80.04	85.68	91.47	97.47	103.6	110.0	116.6
	Piston speed, 60 feet per minute.	Cubic feet per hour.	1101	1252	1414	1585	1767	1958	2159	2369	2589	2819	3059	3309	3568	3838	4117	4406	4704	5013	5330	5659	2669
•	Piston speed, 60 per minute.	Cubic feet per minute.	18.35	20.88	23.56	26.43	29.45	32.64	35.98	39.48	43.15	46.99	50.99	55.15	59.47	63.96	68.62	73.44	78.41	83.55	88.84	94.32	99.95
	ed, 50 feet inute.	Cubic feet per hour.	917.9	1043.0	1178.0	1321.0	1472.0	1632.0	1799.0	1974.0	2158.0	2350.0	2549.0	2758.0	2974.0	3198.0	3431.0	3672.0	3920.0	4177.0	4442.0	4716.0	4997.0
	Piston speed, 50 per minute.	Cubic feet per minute.	15.29	17.39	19.61	22.03	24.54	27.20	29.98	32.91	35.96	39.16	42.49	45.96	49.56	53.31	57.18	61.20	65,34	69.63	74.04	78.60	83.29
1		Diameter pump, i inches.	71/2	so.	81/2	6	97%	10	101/2	11	111/2	12	121/2	13	131/2	14	141/2	15	151/2	16	161/2	17	171/2

10575	11170	11783	12410	13056	13716	14394	14511	15797	16523	17266	18024	18800	20400	22064	23794	25589	27450	29376	31367	33423	35544	37731	39984	42301	44684	47132	49645	52224
176.2	186.1	196.3	8.902	217.6	228.6	239.9	251.8	263.2	275.3	287.7	300.4	313.3	340.0	367.7	396.5	426.4	457.5	489.6	522.7	557.0	592.4	628.8	666.4	705.0	744.7	785.5	827.4	870.4
9517	10052	10604	11168	11750	12344	12954	13578	14217	14871	15539	16222	16920	18360	19857	21414	23030	24704	26438	28229	30080	31990	33958	35985	38070	40215	42418	44680	47001
158.6	167.5	176.7	186.1	195.8	205.7	215.9	226.3	536.9	247.8	258.9	270.3	282.0	306.0	330.9	356.9	383.8	411.7	440.6	470.4	501.3	533.1	565.9	599.7	634.5	670.2	6.902	744.6	783.3
8459	8935	9426	8266	10444	10972	11515	12070	12637	13219	13812	14420	15040	16320	17651	19034	20471	21960	23500	25093	26737	28435	30185	31987	33840	35746	37704	39716	41779
140.9	148.9	157.1	165.4	174.0	182.8	191.9	201.1	210.6	220.3	230.2	240.3	250.6	272.0	294.1	317.2	341.1	366.0	391.6	418.2	445.6	473.9	503.0	533.1	564.0	595.7	628.4	661.9	696.3
7402	7818	8247	8687	9139	0096	10075	10560	11058	11566	12086	12617	13159	14280	15444	16656	17912	19214	20563	21956	23396	24881	26411	27988	29610	31278	32992	34751	36556
123.3	130.3	137.4	144.7	152.3	160.0	167.9	176.0	184.3	192.7	201.4	210.2	219.3	238.0	257.4	277.6	298.5	320.2	342.7	365.9	389.9	414.6	440.1	466.4	493.5	521.3	549.8	579.1	609.2
6344	6701	6902	7446	7833	8230	8636	9051	9478	9913	10359	10814	11287	12240	13238	14276	15353	16469	17625	18819	20053	21326	22638	23990	25380	56809	28278	29786	31334
105.7	111.6	117.8	124.1	130.5	137.1	143.9	150.8	157.9	165.2	172.6	180.2	188.1	204.0	220.6	237.9	255.8	274.4	293.7	313.6	334.2	355.4	377.3	399.8	423.0	446.8	471.3	496.4	522.2
5987 0	5584.0	5891.0	6205.0	6528.0	6858.0	7197.0	7543.0	0.8687	8261.0	8633.0	9012.0	9400.0	10200.0	11032.0	11897.0	12794.0	13725.0	14688.0	15683.0	16711.0	17772.0	18865.0	19992.0	21150.0	22342.0	23566.0	24822.0	26112.0
88 19	93.07	98.19	103.4	108.8	114.3	119.9	125.7	131.6	137.6	143.8	150.2	156.6	170.0	183.8	198.2	213.2	228.7	244.8	261.3	278.5	296.2	314.4	333.2	352.5	372.3	392.7	413.7	435.2
31	181	19	191%	20,2	201%	21,2	21.7%	22, 23	221%	23.	231%	24	25	56	27	28	29	30	31	32	33	34	35	36	37	38	39	40

558

Standard Sizes of Deane Steam Pumps.

For Ordinary Service.

				For C	rainary	Service	•						
Diameter of steam cylinder, in inches.	nameter of water cylinder, in inches.	Length of stroke, in inches.	States s per	, per e.	Capaci minu given	ty, per te, at speed.	Extreme length, in inches.	Extreme width, in inches.	steam-	ize of steam- exhaust pipe.	Size of suction.	Size of discharge.	*
Diameter of s cylinder, in inches.	Diameter of water cylin in inches.	Length of in inches.	United States gallons per stroke.	Strokes, per minute.	Strokes.	United States gallons.	Extreme le in inches.	Extreme wi	Size of steam-supply pipe.	Size of steam exhaust pipe	Size of	Size of	
4	31/2	5	.14	1 to 300	130	18	33	91/2	1/2	3/4	2	11/	12
4	4	5	.27	1 to 300	130	35	33	91/2	1/2	3/4	2	11/	2
5	4	7	.39	1 to 300	125	49	451/2	15	3/4	1	3	21	
$5\frac{1}{2}$	5	7	.51	1 to 275	125	64	$45\frac{1}{2}$	15	3/4	1	3	21/	2
51/2	51/2	7	.72	1 to 275	125	90	451/2	15	3/4	1	3	21/	
7	7	10	1.64	1 to 250	110	180	58	17	1	11/2	5	4	
$7\frac{1}{2}$	71/2	10	1.91	1 60 250	110	210	58	17	1	11/2	5	4	
$7\frac{1}{2}$	8	10	2.17	1 to 250	110	239	58	17	1	11/2	5	4	
8	6	12	1.47	1 to 250	100	147	67	201/2	1	11/2	4	4	
8	7	12	2.00	1 to 250	100	200	67	201/2	1	$1\frac{1}{2}$	5	4	
8	8	12	2.61	1 to 250	100	261	68	30	1	$1\frac{1}{2}$	5	5	
8	10	12	4.08	1 to 250	100	408	68	201/2	1	$1\frac{1}{2}$	8	8	
10	8	12	2.61	1 to 250	100	261	681/2	30	11/2	2	5	5	
10	10	12	4.08	1 to 250	100	408	681/2	30	11/2	2	8	8	
10	12	12	5.87	1 to 250	100	587	681/2	30	11/2	2	8	8	
12	10	12	4.08	1 to 250	100	408	64	24	2	21/2	8	8	
12	10	18	6.12	1 to 200	70	428	681/2	30	2	$2\frac{1}{2}$	8	8	
12	12	12	5.87	1 to 250	100	587	64	281/2	2	21/2	8	8	
12	12	18	8.80	1 to 175	70	616	88	281/2	2	$2\frac{1}{2}$	8	8	
12	14	18	12.00	1 to 175	70	840	88	281/2	2	$2\frac{1}{2}$	8	8	
14	10	12	4.08	1 to 250	100	408	69	30	2	21/2	8	8	
14	10	18	6.12	1 to 175	70	428	93	25	2	$2\frac{1}{2}$	8	8	
14	10	24	8.16	1 to 150	50	408	112	26	2	$2\frac{1}{2}$	8	8	
14	12	12	5.87	1 to 250	100	587	69	30	2	21/2	8	8	
14	12	18	8.80	1 to 175	70	616	88	281/2	2	$2\frac{1}{2}$	8	8	
14	12	24	11.75	1 to 150	50	587	112	26	2	$2\frac{1}{2}$	10	8	
14	14	24	15.99	1 to 150	50	800	112	34	2	$2\frac{1}{2}$	12	10	
1.1	16	16	13.92	1 to 175	80	1114	84	34	2	$2\frac{1}{2}$	12	10	
14	16	24	20.88	1 to 150	50	1044	112	38	2	$2\frac{1}{2}$	12	1	
16	14	18	12.00	1 to 175	70	840	89	27	2	$2\frac{1}{2}$	8	8	
16	14	24	15.99	1 to 150	50	800	109	34	2	$2\frac{1}{2}$		10	
16	16 16	16 24	13.92	1 to 175	80	1114	85	34	2			10	
16		24	20.88	1 to 150	50	1044	115	34	2	$2\frac{1}{2}$		10	
16 18	18 16	24	26.43	1 to 125	50	1322	115	40	2	$2\frac{1}{2}$		12	
18	18	24	20.88	1 to 125 1 to 125	50	1044	118	38	3	31/2			
18	20	24	32.64	1 to 125	50	1322	118	40	3		_	12	
20	18	21	26.43	1 to 125	50	1632	118	40	3		16		-
20	20	24	32.64	1 to 125	50	1322	118	40	3		_	12	
20	22	24	39.50	1 to 125	50 50	1632	118	40	3			14	
20		-1	05.00	1 (0 120	50	1975	120	40	3	31/2	18	14	

Pumps. 559

Sizes of Worthington Standard Duplex Feed Pumps.

Siz	ze of pun	np.	gallons recom-			Size of	pipes.	
Diameter of steam cylinders.	Diameter of water cylinders.	Length of stroke.	Maximum gallons per hour recom- mended.	Floor-space required,	Steam.	Exhaust.	Suction.	Delivery.
Inch.	Inch.	Inch.		Inch.	Inch.	Inch.	Inch.	Inch.
2 3 3 41/2 51/4 71/2 71/2 71/2 9 9 10 10 12 12	11/8 11/4 2 23/4 31/2 4 41/2 5 51/4 6 6 6 7 91/4 91/4	23/4 3 3 4 5 6 6 6 6 10 10 10 10 10 10 10 10 10 10	100 200 300 400 1800 2500 3300 4000 4000 5000 5500 5500 7200 10000 15000 18000	$\begin{array}{c} 21 \times 6 \\ 26 \times 10 \\ 26 \times 10 \\ 26 \times 10 \\ 26 \times 10 \\ 33 \times 13 \\ 38 \times 15 \\ 44 \times 16 \\ 48 \times 24 \\ 72 \times 29 \\ 72 \times 30 \\ 72 \times 30 \\ 72 \times 30 \\ 72 \times 31 \\ 72 \times 31 \\ 72 \times 31 \\ 72 \times 31 \\ 80 \times 42 \\ 80 \times 42 \\ 80 \times 42 \\ \end{array}$	3/8/8/8/3/4 11/2/3/4 11/2/3/4 11/2/3/11/2/2 21/2/2/2 21/2/2/2 21/2/2/2	1/3/3/3/4/4/2 11/4/2 11/4/2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3	$\begin{array}{c} 1\\ 1^{1/4}\\ 1^{1/4}\\ 2^{1/2}\\ 3\\ 4\\ 4\\ 4\\ 5\\ 5\\ 6\\ 6\\ 6\\ 6\\ 8\\ 8\\ \end{array}$	3/4 1 1 1 2 2 ¹ / ₂ 3 3 3 5 5 5 5 6 6 7 7

Sizes of Knowles Standard Duplex Feed Pumps.

Steam cylin- ders.	Water cylin- ders.	Stroke.	Gallons per stroke of	each piston.	Strokes, per minute, of each piston, ordinary speed.	Capacity of both cylinders at speed	minute.	Steam pipe.	Exhaust pipe.	Suction pipe.	Delivery pipe.	Floor-space required.
In.	In.	In.				Gallo	ns.	Inch.	Inch.	Inch.	Inch.	Inch.
3 41, 51, 6 71, 8 8 10 12 12 12 14 14 16 16 181, 181, 181,	2 23/4 31/2 4 41/2 5 6 6 7 81/2 101/2 12 1101/2 12 111/2 14 14	3 4 6 7 10 12 12 12 12 12 12 12 12 12 12 12 12 12	3.0 3.0 3.0 3.0 4.5 5.8 4.5 5.8 8.0 12.0	4 9 9 9 7 7 0 0 0 0 0 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 0 0 7 0 0 0 0 7 0	75 to 200 75 to 150 75 to 150 75 to 150 75 to 125 60 to 125 50 to 100	9 to 15 to 36 to 58 to 82 to 102 to 147 to 200 to 300 to 300 to 450 to 450 to 450 to 587 to 800 to 960 to	900 1174 1600	3/8 11/2/2 11/2/2 2 2 21/2/2 3 3 3 3 4	1/2 3/4 11/4 11/2 11/2 21/2 21/2 3 3 3 3 3 6	11/4 2 21/2 3 4 5 5 5 6 6 6 8 8 10 8 10 12	1 11/2 21/2 3 4 4 4 5 5 7 7 8 7 8 10	$\begin{array}{c} 36 \times 12 \\ 38 \times 13 \\ 54 \times 20 \\ 54 \times 24 \\ 60 \times 24 \\ 80 \times 31 \\ 80 \times 31 \\ 80 \times 31 \\ 83 \times 37 \\ 83 \times 344 \\ 83 \times 50 \\ 83 \times 54 \\ 483 \times 50 \\ 83 \times 57 \\ \\ \end{array}$

Standard Method of Conducting Duty Trials of Pumping Engines.

Report of Committee of the American Society of Mechanical Engineers, 1890.

Abstract.

The basis upon which the duty of a pumping engine is to be determined is 1,000,000 British thermal units. This is the equivalent of 100 pounds of coal when each pound of coal imparts 10,000 heat units to the water in the boiler, this corresponding to an evaporation of 10.355 pounds of water from and at 212° F. per pound of fuel.

The duty should be computed from the quantity of heat supplied to the complete plant, including all auxiliaries. The work done by the pump is to be determined by the plunger displacement, the loss by leakage to be subsequently determined.

The necessary data having been obtained, the duty of an engine may

The necessary data having been obtained, the duty of an engine may be computed by the use of the following formulas:

1. Duty =
$$\frac{\text{Foot-pounds of work done}}{\text{Total number of heat units consumed}} \times 1\,000\,000,$$

= $\frac{A\,(P \pm p + s) \times L \times N}{H} \times 1\,000\,000$ (foot-pounds).

2. Percentage of leakage =
$$\frac{C \times 144}{A \times L \times N} \times 100$$
 (per cent.).

3. Capacity = number of gallons of water discharged in 24 hours,

$$=\frac{A\times L\times N\times 7.4805\times 24}{D\times 144},$$

$$=\frac{A\times L\times N\times 1.24675}{D} \text{ (gallons)}.$$

4. Percentage of total frictions

$$= \left[\begin{array}{c} I.H.P. - \frac{A \; (P \pm p \; + \; s) \times L \times N}{D \times 60 \times 33000} \\ \hline I.H.P. \end{array} \right] \times 100,$$

$$= \left[1 - \frac{A \; (P \pm p \; + \; s) \times L \times N}{A_s \times M.E.P. \times L_s \times N_s} \right] \times 100 \; (\text{per cent.}) \; ;$$

or, in the usual case, where the length of the stroke and number of strokes of the plunger are the same as that of the steam piston, this last formula

Percentage of total frictions =
$$\left[1 - \frac{A \left(P \pm p + s\right)}{A_s \times M.E.P.}\right] \times 100$$
 (per cent.).

In these formulas the letters refer to the following quantities:

 A = Area, in square inches, of pump plunger or piston, corrected for area of piston-rod. (When one rod is used at one end only, the correction is one-half the area of the rod. If there is more than one rod, the correction is multiplied accordingly.)

- P =Pressure, in pounds, per square inch, indicated by the gauge on the force main.
- p =Pressure, in pounds, per square inch, corresponding to indication of the vacuum gauge on suction main (or pressure gauge, if the suction pipe is under a head). The indication of the vacuum gauge, in inches of mercury, may be converted into pounds by dividing it by 2.035.
- s = Pressure, in pounds, per square inch, corresponding to distance between the centres of the two gauges. The computation for this pressure is made by multiplying the distance, expressed in feet, by the weight of one cubic foot of water at the tempera-ture of the pump well, and dividing the product by 144.
- L =Average length of stroke of pump plunger, in feet.
- N = Total number of single strokes of pump plunger made during the trial.
- $A_s =$ Area of steam cylinder, in square inches, corrected for area of piston-rod. The quantity, $A_s \times M.E.P.$, in an engine having more than one cylinder is the sum of the various quantities relating to the respective cylinders.
- $L_s = \text{Average length of stroke of steam piston, in feet.}$
- N_s = Total number of single strokes of steam piston during trial.
- M.E.P. = Average mean effective pressure, in pounds, per square inch, measured from the indicator diagrams taken from the steam cylinder.
- I.H.P. =indicated horse-power developed by the steam cylinder.
 - C = Total number of cubic feet of water which leaked by the pump plunger during the trial, estimated from the results of the leakage test.
 - D = Duration of trial, in hours.
 - H= Total number of heat units (B.T.U.) consumed by engine weight of water supplied to boiler by main feed pump \times total heat of steam of boiler pressure reckoned from temperature of main feed water + weight of water supplied by jacket pump \times total heat of steam of boiler pressure reckoned from temperature of jacket water + weight of any other water supplied \times total heat of steam reckoned from its temperature of supply. The total heat of the steam is corrected for the moisture or superheat which the steam may contain. For moisture the correction is subtracted, and is found by multiplying the latent heat of the steam by the percentage of moisture, and dividing the product by 100. For superheat the correction is added, and is found by multiplying the number of degrees of superheating—i.e., the excess of the temperature of the steam above the normal temperature of saturated steam—by 0.48. No allowance is made for heat added to the feed water, which is derived from any source, except the engine or some accessory of the engine. Heat added to the water by the use of a flue heater at the boiler is not to be deducted. Should heat be abstracted from the flue by means of a steam reheater connected with the intermediate receiver of the engine, this heat must be included in the total quantity supplied by the boiler.

The leakage test of the pump plunger should be made as soon as possible after the completion of the main trial.

The leakage of an inside plunger (the only type which requires testing) is most satisfactorily determined by making the test with the cylinder head removed. A wide board or plank may be temporarily bolted to the lower part of the end of the cylinder, so as to hold back the water in the manner of a dam, and an opening made in the temporary head thus provided for the reception of an overflow pipe. The plunger is blocked at some intermediate point in the stroke (or, if this position is not practicable, at the end of the stroke) and the water from the force main is admitted at full pressure behind it. The leakage escapes through the overflow pipe,

at full pressure behind it. The leakage escapes through the overflow pipe, and is collected in barrels and measured.

Should the escape of the water into the engine-room be objectionable, a spout may be constructed to carry it out of the building. Where the leakage is too great to be readily measured in barrels, or where other objections arise, resort may be had to weir or orifice measurement, the weir or orifice taking the place of the overflow pipe in the wooden head. The apparatus may be constructed, if desired, in a somewhat rude manner, and yet be sufficiently accurate for practical requirements. The test should be made, if possible, with the plunger in various positions.

In the case of a nump so planned that it is difficult to remove the

In the case of a pump so planned that it is difficult to remove the cylinder head, it may be desirable to take the leakage from one of the openings which are provided for the inspection of the suction valves,

the head being allowed to remain in place.

It is here assumed that there is a practical absence of valve leakage, a condition of things which ought to be attained in all well-constructed pumps. Examination for such leakage should be made first of all, and if it occurs, and it is found to be due to disordered valves, it should be remedied before making the plunger test. Leakage of the discharge valves will be shown by water passing down into the empty cylinder at either and when they are under pressure. either end when they are under pressure. Leakage of the suction valves will be shown by the disappearance of water which covers them.

If valve leakage is found which cannot be remedied, the quantity of water thus lost should also be tested. The determination of the quantity which leaks through the suction valves, where there is no gate in the suction pipe, must be made by indirect means. One method is to measure the amount of water required to maintain a certain pressure in the pump cylinder when this is introduced through a pipe temporarily erected, no water being allowed to enter through the discharge valves of the pump.

The exact methods to be followed in any particular case, in determining leakage, must be left to the judgment and ingenuity of the person con-

ducting the test.

Table of Data and Results.

In order that uniformity may be secured, it is suggested that the data and results, worked out in accordance with the standard method, be tabulated in the manner indicated in the following scheme:

DUTY TRIAL OF ENGINE.

Dimensions.

1. Number of steam cylinders	
2. Diameter of steam cylinders	ns.
3. Diameter of Diston-rods of Steam cylinders in	ng
4. Nominal stroke of Steam pistons fi	t.
5. Number of water plungers	
6. Diameter of blullgers	ns.
7. Diameter of Diston-rods of water cylinders in	ne
8. Nominal stroke of blungers fr	t
9. Net area of blungers	a ing
10. Net area of steam pistons	o ing
11. Average length of stroke of steam pistons during trial	t
12. Average length of stroke of plungers during trial f	t.
(Give also complete description of plant.)	

Temperatures.

14.	Temperature of	water in pump well	degs.
	SOURCES		doma

Feed Water.

	reed water.					
17.	Weight of water supplied to boiler by main feed pump Weight of water supplied to boiler from various other sources. Total weight of feed water supplied from all sources	lbs.				
Pressures.						
20. 21. 22. 23.	Boiler pressure indicated by gauge. Pressure indicated by gauge on force main. Vacuum indicated by gauge on suction main. Pressure corresponding to vacuum given in preceding line. Vertical distance between the centres of the two gauges. Pressure equivalent to distance between the two gauges.	lbs. ins. lbs. ins.				
	Miscellaneous Data.					
26. 27.	Duration of trial. Total number of single strokes during trial. Percentage of moisture in steam supplied to engine, or { number of degrees of superheating	per cent.				
28.	Total leakage of pump during trial, determined from results	The				
29.	of leakage test. Mean effective pressure, measured from diagrams taken from steam cylinders	M. E. P.				
	Principal Results.					
30. 31. 32. 33.	Duty. Percentage of leakage Capacity. Percentage of total frictions	ftlbs. per cent. gals. per cent.				
	Additional Results.*					
35.	Number of double strokes of steam piston per minute Indicated horse-power developed by the various steam cylin-	TITD				
36. 37.	ders Feed water consumed by the plant per hour. Feed water consumed by the plant, per indicated horse-power, per hour, corrected for moisture in steam					
38.	Number of heat units consumed, per indicated horse-power.					
30	per hour	B. T. U.				
00.	per minute Steam accounted for by indicator at cut-off and release in the	B.T.U.				
40.	Steam accounted for by indicator at cut-off and release in the					

Sample Diagrams taken from Steam Cylinders.

various steam cylinders......lbs. 41. Proportion which steam accounted for by indicator bears to

40. Steam accounted for by indicator at cut-off and release in the

the feed water consumption

(Also, if possible, full measurements of the diagrams, embracing pressures at the initial point, cut-off, release, and compression; also, backpressure and the proportions of the stroke completed at the various points noted.)

42.	Number of double strokes of pump per minute	
43.	Mean effective pressure, measured from pump diagrams	M. E. P.
44.	Indicated horse-power exerted in pump cylinders	IHP
45.	Work done (or duty) per 100 pounds of coal	ftlbs
10.	· · · · · · · · · · · · · · · · · · ·	10105.
	(Sample diagrams taken from nump cylinders)	

^{*} These are not necessary to the main object, but it is desirable to give them.

The Hydraulic Ram.

The hydraulic ram is a device by means of which a large volume of water under a low head may be used to force a smaller quantity of water up against a higher head. Its chief advantages are its simplicity, moderate cost, and freedom from

care or attendance.

The operation is as fol-

The water working the ram is supplied through the pipe, S, and escapes through an opening at o until it has gained a velocity sufficient to raise the valve or ball, B, which suddenly stops the current and causes an excessive pressure in the ram, R, which opens the valve or ball, C; the water is forced

into the vessel and air chamber, A, and finally through the delivery pipe, d, to its destination. When equilibrium of pressure is restored between S and R the valve, B, falls and the operation is repeated. The ram can make as many as 200 strokes per minute, depending upon its size.

The length of the supply pipe, S, should not be less than 5 times the height of the fall, F, because it is the dynamic action of the water in the pipe which works the ram. The delivery pipe may be made 10 or more times the height of the fall.

The useful effect of the ram, like that of water-wheels and turbines, depends much upon its construction. In ordinary cases it returns about

depends much upon its construction. In ordinary cases it returns about 50 per cent. of the natural effect,—that is, the quantity of water, q, multiplied by the height, h, of the delivery above the ram will be about 50 per cent. of the quantity of water, Q, working the ram, multiplied by the head of fall, F, in the same unit of time.

$$qh = 0.5 QF$$
. $q = \frac{0.5 QF}{h}$. $Q = \frac{2qh}{F}$.

Q and q can be expressed in any unit of volume or weight. F and h can be expressed in any unit of length.

But let us assume Q and q to be cubic feet per minute; F and h = fall and height, in feet;

L = length, in feet, and D = diameter, in inches, of the supply pipe, S; l = length, and d = diameter of the delivery pipe, d;

then

$$D = \sqrt[5]{\frac{2Q^2(L+5D)}{F}}, \text{ and } d = \sqrt[5]{\frac{4q^2(l+5d)}{h}}.$$

Hydrometer.

A body wholly immersed in a liquid will lose as much of its weight as the weight of the liquid it displaces.

A floating body will displace its own weight of the liquid in which it floats.

A cylindrical rod of wood or some light materials, being set down in two liquids, A and B, of different being set down in two injuries, A and B, or inspecting gravities, when in equilibrium will sink to the mark a in the liquid A, and to b in the liquid B; then the specific gravity of A: B = b, c: a, c, or inversely as the immersed parts of the rod. This is the principle upon which

a hydrometer is constructed.

Table Showing the Comparative Scales of Gay Lussac and Baume, with the Specific Gravity and Proof, at the Temperature of 60° Fahr.

	Gay Lussac's.		Baumé's.	Specific gravity.	Pro	of.
100 90 30 70 60 50 40	Percentage of pure alcohol.	100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25	46 40 36 33 31 28 26 24 23 21 19 18 17 16 15	.796 .815 .833 .848 .863 .876 .889 .901 .912 .923 .933 .942 .951 .958 .964 .970	100 \\ 92 \\ 82 \\ 72 \\ 62 \\ 22 \\ 22 \\ 12 \\ 8 \\ 8 \\ 35 \\ 48 \\ 35 \\ 48 \\ 36 \\ 48 \\ 37 \\ 38 \\ 3	Under & Percentage over proof.

Hydrostatics.

Notation.

A and \mathbf{a} = areas of the pressed surfaces, in square feet;

I and p = hydrostatic pressure, in pounds;

 $d = \text{depth of the centre of gravity of } \mathbf{A} \text{ or } \mathbf{a} \text{ under the surface of the liquids, in feet;}$

S = specific gravity of the liquid.

Example. Case I.—The plane $\mathbf{A}=3.3$ square feet at a depth of d=6 feet under the surface of fresh water. Required the pressure, P=? Specific gravity of fresh water, S=1.

$$P = 62.3$$
A $d = 62.3 \times 3.3 \times 6 = 1237.5$ pounds.

Example. Case IV.—The area of the pistons, $\mathbf{A}=8.5$ square feet, $\mathbf{a}=0.02$ square feet, l=4 feet, e=9 inches, and F=18 pounds. Required the pressure, P=

$$P = \frac{Fl\mathbf{A}}{e\mathbf{a}} = \frac{18 \times 4 \times 8.5}{0.75 \times 0.02} = 40800$$
 pounds.

It must be distinguished that the centre of pressure and centre of gravity of the planes are two different points; the centre of pressure is below the centre of gravity when the plane is inclined or vertical.

P = 62.3SAd, $A = \frac{P}{62.3Sd}, \qquad d = \frac{P}{62.3SA}.$

II.

The Hydrostatic Paradox.

The pressure, P, is independent of the width of column, C.

P = 62.3Sah. (Same as above.)

$$P = A\left(62.3Sh + \frac{p}{a}\right),$$

$$p = a\left(\frac{P}{A} - 62.3Sh\right),$$

$$h = \frac{Pa - pA}{62.3SAa}.$$

IV.

Bramah's Hydraulic Press.

$$P = rac{FlA}{ea}, \qquad \qquad A = rac{Pea}{Fl}, \ F = rac{Pea}{A}, \qquad \qquad a = rac{FAl}{Pe}.$$

V.

the upper edge at the surface of the liquid, $d = \frac{2}{3}h$.

VI.

Centre of Pressure of a Triangle,

the base being at the surface of the liquid, $d = \frac{1}{2}h$.

VII.

Centre of Pressure of a Triangle,

the vertex being at the surface of the liquid, $d = \frac{3}{4}h$.

VIII.

$$d = \frac{2}{3} \cdot \frac{3h^2 - 3hh_1 + h_1^2}{2h - h_2}$$

Resistance Caused by Obstructions.

In nearly all hydraulic work numerous bends, valves, etc., must be inserted in the connections, and these produce frictional resistance to the flow. Such resistances are conveniently computed in terms of additional head, representing the number of feet-head to be added to that for a smooth pipe in order that the final discharge or pressure may be realized.

Resistance in Angles and Bends.—The resistance due to an angle is important, and is dependent upon what Weisbach calls the semi-angle of deviation, β , according to the following formula:

$$h_2 = \zeta_2 \frac{v^2}{2g} = (0.9457 \sin^2 \beta + 2.047 \sin^4 \beta) \frac{v^2}{2g},$$

from which we get:

Example. In a right-angle bend $\beta = 45^{\circ}$, and the loss is practically equal to $\frac{v^2}{2a}$.

In the case of bends the resistance is not so great, but is too large to be neglected, since we have

$$h_2=\zeta_2\frac{\beta}{90}\cdot\frac{v^2}{2g}.$$

The ratio of the radius of the tube to the radius of the curvature of the bend affects the coefficient, as below:

$$\frac{0.5D}{r} = 0.1 \qquad 0.2 \qquad 0.3 \qquad 0.4 \qquad 0.5$$

$$\zeta_2 = 0.131 \qquad 0.138 \qquad 0.158 \qquad 0.206 \qquad 0.294$$

$$\frac{0.5D}{r} = 0.6 \qquad 0.7 \qquad 0.8 \qquad 0.9 \qquad 1.0$$

$$\zeta_2 = 0.440 \qquad 0.661 \qquad 0.977 \qquad 1.408 \qquad 1.978$$

Example. For a right-angle bend in which r = D, we have

$$h_2 = 0.294 \frac{45}{90} \cdot \frac{v^2}{2q} = 0.147 \frac{v^2}{2q},$$

or only about 1 the resistance of a sharp bend with any curvature.

Resistances due to Sudden Changes of Cross-section.—When water which is moving at a velocity, v_1 , suddenly changes to another velocity, v_2 as at a, it experiences a loss of pressure which, according to Weisbach, is equivalent to a height:

$$h_3 = \frac{v_1^2 - v^2}{2g} = \left(\frac{F}{F_1} - 1\right)^2 \frac{v^2}{2g} = \zeta_3 \frac{v^2}{2g},$$

F and F_1 being the respective cross-sections; also, $Fv = F_1v_1$. Doubling the cross-section causes a loss of head equal to $\frac{v^2}{2a}$.

For gate valves, as at b, or cocks, as at c, there is a loss due to the amount of contraction. For gate valves we have from Weisbach:

From the above tables it will be seen how important an influence is exerted by valve chests, mud traps, and the like upon the flow of water. In all such cases it is important to modify the suddenness of the change of velocity by rounding and curving all angles in the passages, and in this way a large part of the loss may be obviated. For gaseous fluids the resistance is less, but is at the same time sufficiently important to be carefully considered. For a fuller discussion of the resistances offered to water in careful and stream the reader must be referred to execute our the canals and streams the reader must be referred to special treatises on the subject.

Centrifugal Pumps.

Let

v= velocity of rim of wheel, in feet, per second; h= height of delivery, in feet, including suction; D= diameter of wheel, in feet; Q= cubic feet of water per minute; d= diameter of discharge pipe, in feet.

Then

$$v = 10 + 8\sqrt{h},$$

$$d = 0.36\sqrt{\frac{Q}{\sqrt{29h}}},$$

$$D = \sqrt{\frac{Q}{\sqrt{h}}} \times 0.18.$$

The inlet opening in the side of the wheel is made equal to 0.5D. The blades are sometimes made in the form of an Archimedean spiral, but a better efficiency is obtained with the reversed curve, designed according to the method of Rittinger, as follows:

Let

r = the radius of the propeller wheel;

 r_1 = the radius of the inlet opening;

a = the angle between radius and initial line of blade;

l = radius of curvature of blade;

n = number of revolutions per minute;
c = velocity of inflowing water per minute;

$$= \frac{Q}{\pi r_1^2}.$$

We have

$$\tan a = 0.1047 \frac{nr_1}{c},$$

$$l=\frac{r^2-r_1^2}{2r_1\sin\alpha}.$$

The case is made in the form of an Archimedean spiral.

Centrifugal Pump.

Hydraulic Transmission of Power.

For many purposes where power has to be distributed over a limited area for working machinery, such as presses, lifts, cranes, riveting and flanging machinery, and the like, it has been found advantageous to use water under high pressure, the system being piped to accumulators and pumps, so that a supply of stored energy is available for the varied and irregular demands.

irregular demands.

The accumulator is simply a vertical cylinder fitted with a weighted plunger, the area of the plunger and its load being proportioned to equal the pressure, in pounds, per square inch to be maintained in the system. The pumps deliver water under the plunger, and the pipe system is also connected to the cylinder. Unless the demand upon the pumps is equal to their full capacity, the plunger of the accumulator will be forced upward, the excess energy being thus stored in the lifted weights. When the plunger reaches its upper limit it shuts off the steam to the pumps and checks their action; as it falls, the steam is turned on, and the pumps are again started. When any machine connected with the system, as a riveter or a press, is put in motion the accumulator plunger falls as the water is drawn from the pipes, but the pressure is maintained by the weights upon the plunger. The pumps promptly respond to the fall of the plunger, so that the latter is kept oscillating up and down in response to the demand from the machines and the supply from the pumps. the demand from the machines and the supply from the pumps.

The amount of energy stored in an accumulator will be

Foot-pounds =
$$2240 Ws = \frac{\pi d^2}{4} sp$$
,

in which

W = weight on plunger, in tons;

d = diameter of plunger, in inches;p =pressure, in pounds, per square inch; s =vertical travel of plunger.

The efficiency of an accumulator may be as high as 98 per cent., 1 per at being lost in charging and as much in discharging. While the total cent. being lost in charging and as much in discharging. While the total amount of energy which can be stored is not great, it can be discharged at a high rate for a short time, and by care in proportioning the capacity of

Schmid Hydraulic Motor.

the pumps to the probable demand a very satisfactory service may be maintained

The pressures in such systems range from 600 to 800 pounds per square inch. At Hull, England, a pressure of 610 pounds square inch is maintained. In London the pressure is 800 pounds, and at Birmingham it is 730 pounds. For lifts the water is used in cylinders, usually hav-ing a stroke equal to but a fraction of the entire hoist, the travel of the cage being multiplied by a reduplication of the hoisting cable over a system of Plunger elevasheaves. tors are now coming into use, however, the valves used permitting speeds of 600 feet per minute, when required.

The high-pressure water is used in various forms of motors. On the Continent the Schmid oscillating engine is much used, while in England the 3-cylinder engine of Brotherhood and the 4-cylinder engine of Rigg are found.

The principal feature of such engines is the regulation. Throttling is unsatisfactory, and the rigidity of the water column must be contended with. The most satisfactory principle is that of a variable stroke, the pressure of the water being left unchanged.

An example of such a regulator is that of Helfenberger. This is made with a hydraulic ratchet mechanism arranged in the crank disk in such a manner as to move the crank pin to or from the centre, the ratchet being operated by tappets, which strike each time the crank passes the dead centres. The throw of the crank is thus varied to correct for variations of speed, the mechanism being controlled by a governor.

The Pelton water-wheel has also been employed with success as a small

motor for use with high-pressure water, and is both simple and convenient.

Professor Reuleaux has suggested a very effective method for power distribution by hydraulic pressure, using the water in a circuit or "ring," not unlike methods of electrical distribution.

Taking into consideration high-pressure hydraulic systems, we find two

distinct kinds of "ring" systems which may be used.

In the first method, shown above, the flow of water under pressure starts from the power station, T_0 , with a pressure, p_0 , and proceeds to the

first station, T_1 , where it operates a water-pressure engine, and passes on with a reduced pressure, p_1 . It has, therefore, operated at the station, T_1 , with a pressure, $p_0 - p_1$. With the pressure, p_1 , it passes on to the second, third, fourth, — nth station, T_n , each time losing pressure until it returns to the power station with a final pressure, p_n , where it is again raised to the initial pressure of p_0 . It is apparent that the water-pressure engines (escapements) at T_1 , T_2 , T_3 , — — T_n , should all be of equal size, in order to utilize the entire flow without excessive resistance. Automatic regulation, such as Helfenberger's, is also desirable.

The second system is shown above. It will be seen that at each station there is a branch or shunt tube leading through the motor (or escapement), T_2 , and then reuniting with the main pipe. The main pipe, A, forks at the station into the two branches, B and C, of which the first diverts any required fraction of the power of the main flow, as $\frac{1}{10}$, $\frac{1}{9}$, $\frac{1}{9}$, as the case may be. At the fork is a swing valve, C', operated by a speed governor, R, driven by the motor. This governor requires the assistance of some form of power reinforcement. The discharge pipe, D, of the motor unites with the by-pass, C, to form again the main conductor, E. At the entrance in the main pipe, A, we have the pressure, p_1 , of the original flow. The motor, T_2 , is now supposed to be stationary, the stop valve at B' having been closed by hand. The flap valve, C', which has been disconnected from the regulator before stopping the motor, is also closed. The flow of water then passes through C to E with the pressure, p_1 .

When the motor, T_2 , is to be started, the valve, B', is opened and the flap valve, C', gradually opened until the motor begins to move, when it is connected to the governor, which regulates it thereafter so as to keep the motor at its normal speed. When a heavy load is thrown on the valve is opened so that the pressure, p_2 , in B becomes a greater fraction of p_1 , so open a so that the pressure, p_2 , in B becomes a greater fraction of p_2 .

When the motor, T_2 , is to be started, the valve, B', is opened and the flap valve, C', gradually opened until the motor begins to move, when it is connected to the governor, which regulates it thereafter so as to keep the motor at its normal speed. When a heavy load is thrown on the valve is opened so that the pressure, p_2 , in B becomes a greater fraction of p_1 , and when the work is less it is reduced. The pressure of discharge, p_3 , acts as a back pressure, so that the motor works with an effective pressure, $p_2 - p_3$. The flow of water in the by-pass pipe, C, also passes the valve, C', with a pressure, p_3 , and unites with the discharge at E, to be further utilized at subsequent stations until it returns to the power station, where, if it has reached the minimum pressure, it is permitted to flow into a tank, from which it is again drawn by the pressure pumps. If the return water is delivered under pressure it may be allowed to enter the suction pipe of the pressure pumps direct, and so form a closed ring system to start anew on the circuit.

The ring system of hydraulic power transmission is to be recommended when the various stations are distributed over a wide area and are readily connected by a continuous line of pipe. The pipe can be kept from freezing in winter by occasional gas flames, as has already been demonstrated by experience with Armstrong's hydraulic cranes. The ring system should be carefully distinguished from those forms in which the flow of water passes through the motor and is allowed to flow off at lowest pressure of

discharge.

Full detailed descriptions of a variety of hydraulic machinery will be found in Professor Henry Robinson's treatise on "Hydraulic Power and Hydraulic Machinery," and reference should also be made to Reuleaux's "Constructor."

FUEL.

The fuels used in engineering consist of compounds of carbon and of hydrogen, which when uniting with oxygen produce heat.

Fuels may be classified as solid, liquid, and gaseous. The solid fuels are coal in its various grades from anthracite, bitumi-

The solid fuels are coal in its various grades from anthracite, bituminous, lignite, and peat; charcoal, coke, and wood. Liquid fuels include the mineral, vegetable, and animal oils. The gaseous fuels are natural gas and the various artificial gases, as coal gas produces gas, etc.

The calorific power of solid and liquid fuels, or, as it is sometimes called, the **thermal value**, is measured by the number of thermal units or calories developed during the combustion of a unit weight. Usually, the calorific power is expressed in the number of British thermal units evolved by the combustion of a pound of the fuel, or the number of calories produced by the combustion of a kilogramme of fuel. To convert B. T. U. per pound to calories per kilogramme multiply by 0.555 to convert B. T. U. per pound to calories per kilogramme multiply by 0.555, to convert calories per kilogramme to B. T. U. per pound multiply by 1.8, this being the ratio of the Centigrade to the Fahrenheit degree. The calorie involves the raising of the temperature of a kilogramme of water, and the B.T.U. involves the raising of the temperature of only a pound of water, but this corresponds exactly to the different weights of fuels respectively consumed, so that the ratio is simply that due to the thermometer scales.

The calorific power of gaseous fuels is generally determined in B. T. U. per cubic foot or in calories per cubic metre. To convert calories per cubic metre to B. T. U. per cubic foot multiply by 0.11235, to convert B. T. U.

per cubic foot to calories per cubic metre multiply by 8.9.

When the calorific powers of solids and gases are compared, the gas should be taken by weight, in order to have the data in comparable form, otherwise it is more convenient to consider gases separately by volume, as they are measured.

Since the fuels used in engineering are carbon, hydrogen, and their compounds, the calorific value of these elements form the foundations

upon which other values are computed.

One pound of pure carbon, completely burned to carbonic acid, CO₂, evolves 14,500 B. T. U. One kilogramme of carbon, burned in like manner, evolves 8080 calories.

One pound of pure hydrogen, burned to water, evolves 62,100 B. T. U.,

and one kilogramme of hydrogen evolves 34,500 calories.

Having these facts we may determine the calorific value of any combination of carbon and hydrogen when we know the ultimate chemical composition,—i.e., the percentage of carbon and hydrogen contained. When there is only carbon and hydrogen present, the calorific value of the combination is expressed by the sum of the calorific value of the constituents. Thus, if h be the number of heat units evolved by the complete combustion of a combination of carbon and hydrogen, we have

$$h = 8080C + 34500H$$
 calories,

or

$$h = 14500C + 62100H$$
 B. T. U.

When, however, as is usually the case, there is oxygen present in the fuel it will unite with a portion of the hydrogen, and in such case a deduction should be made. We therefore have, for the computation of the calorific value of a fuel from its chemical composition,

$$\hbar = 8080C + 34500 \Big(H - \frac{O}{8}\Big),$$
 for calories per kilogramme,

and

$$h=14500\,C\,+\,62100\Big(\,H-\frac{O}{8}\Big),$$
 for B. T. U. per pound.

Whenever practicable, it is desirable that the calorific power of a fuel be determined directly by experiment. Various devices have been made for

573 FUEL.

this purpose, depending for their action upon the complete combustion of a determinate weight of the fuel in a closed chamber immersed in a known weight of water. The rise in the temperature of the water then gives the information from which the heat evolved may be determined. The most reliable apparatus of this kind is the so-called calorimetric "bomb" of Bethelot, Vielle, and Mahler, in which the fuel is enclosed in a steel vessel, liked with left in the first contraction of the state of the lined with platinum or enamel, together with sufficient compressed oxygen to complete the combustion. The ignition is effected by means of an electric current, and the heat evolved is measured by the rise in temperature of the bath of water in which the bomb is immersed.

For full details of calorimetric apparatus and work reference may be made to Poole's work on the "Calorific Power of Fuels."

In important investigations the fuel used should be carefully sampled, and its calorific power determined, either by computation—using Dulong's formula—from a chemical analysis or by the use of the bomb, such work being performed in the testing laboratory. For general purposes, however, the calorific value of a fuel may well be taken by selecting from existing tests that of a fuel corresponding most nearly with the one under consideration.

Calorific Values of Fuels.

Substance.	Approximate total heat of combustion of 1 pound of fuel.	Equivalent evaporation from and at 212° Fahr. per pound of fuel.	
	Thermal units.	Lb. water.	
Hydrogen	62000	64.20	
Petroleum oils (benzine, etc.)	27500	28.56	
Petroleum, crude	20400	21.13	
Petroleum refuse	20000	20.70	
Coal gas	17800	18.43	
Coal gas, per cubic foot, at 62° Fahr.	630	0.70	
Coal, good average quality	14700	15.22	
Carbon, pure	14500	15.07	
Coke	13500	13.87	
Wood charcoal, dessicated	13000	13.46	
Wood, dessicated	11000	11.39	
Peat, dessicated	10000	10.35	
Wood, air dried	8000	8.28	
Straw	8000	8.40	
Peat, 25 per cent. moisture	7000	7.25	
Sulphur	4000	7.14	

Theoretical Heating Value of Coals.

(Babcock and Wilcox.)

Heating Power of Coals of Great Britain, United States, Germany, France, Belgium, and Austria-Hungary.

<u> </u>			
Coals. Locality of beds.	B. T. U.	Calories.	Nature.
Great Britain. Welsh Coal: Ebbw Vale, 1848 Powell Duffryn, 1848 Llangennech, 1848 Llangennech, 1871 Graigole, 1848 Nixon's Navigation Gwaun Cae Gurwen Newcastle Derbyshire and Yorkshire Lancashire Scotch United States. Pennsylvania Pennsylvania Pennsylvania Rennsylvania Kentucky	16214 15715 14998 14964 14689 15000 15123 14820 13918 14164 14221 13143 13155 14391 15198 9326 1321	8998 8710 8318 8305 8305 8152 8325 8402 8225 7724 7861 7892 7293 7301 7897 7897 7897 7893 7301 7497 7597 7598	Almost pure anthracites, having 84 to 89 per cent. of carbon. Pure hard anthracite. Called smokeless. Bituminous coal, having 77 to 82 per cent. of carbon. Bituminous coal, having 78 per cent. of carbon. Anthracite, having 88 per cent. of carbon. Cannel coal. Bituminous coking. Cannel coke. Lignite, good.
Illinois Indiana Indiana Virginia Arkansas	13123 14146 13097 13100 9215	7283 } 7851 } 7268 7270 5114	Bituminous coking. Cannel coal. Bituminous coking. Lignite, good.
Germany. Rhenish Prussia.			
Ruhr Coal: Dortmund	14518 15125 13514 13212	8066) 8403 7508 7340	Cannel coal. Short-flame coal, semi-anthracite.
Essen	14985 11511	8325 6395	
Saxony. Zwickau Hohndorf Oelsnitz	11964 11343 10674	6647 6302 5930	Cannel coal.
Lower Saxony, Anhalt, and Brunswig.			
Unseburg. Atzendorf Neudorf Görzig Halle a S. Bitterfeld Naumburg	5769 6444 6093 3852 4165 3830 4563	$ \begin{array}{c} 3205 \\ 3580 \\ 3385 \\ 2140 \\ 2314 \\ 2128 \\ 2535 \end{array} $	Brown coal or lignite, low grade.

Theoretical Heating Value of Coals.—Continued.

Coals. Locality of beds.	B. T. U.	Calories,	Nature.
Germany.—Continued. Hanover. Osnabrück Obernkirchen	10789 12718	5994 7066	Semi-anthracite, low grade. Bituminous.
Silesia (Prussia). Carlssegen. Myslowitz Waterloa Königshülle Paulusgrube Waldenburg Brandenburg Neurode Freienstein Maxgrube	10422 10758 11412 12247 12425 12637 12193 13393 9651 10087	5790 5977 6340 6804 6903 7021 6774 7441 5362 5604	Long-flaming, semi-bitumi- nous.
Bavaria. Hanshamer coal. Peipenberg. Penzberg	9821 8186 8921	5456 4548 4956	Lignite or brown, low grade.
France.			"
Anthracite de la Mayenne Anthracite de Lamure (Isère)	15566 13782	8646 } 7657 }	Anthracite.
Bassin du Bas-de-Calais. Marles	14175 15120 15352 15258 15256 15400 14265	7875 } 8400 } 8529 8477 8476 } 8556 } 7925	Bituminous hard coal. Bituminous coking. Bituminous hard coal. Bituminous coking. Semi-bituminous coal.
Bassin de la Saône.	-	2	
Blanzy	13127	7293	Semi-bituminous coal, long flame.
Epinac	14086	7826	Bituminous coal, long flame.
Bassin de la Loire. Rive-de-Gier, puits Henry Rive-de-Gier, No. 1 Rive-de-Gier, Cimetière 1 Rive-de-Gier, Couson Bassin de l'Aveyron.	15481 15472 14493 15309 14770	8601 } 8596 } 8052 8505 8206 }	Bituminous hard coal. Bituminous hard coal, long flame.
Lavaysse	14630 13203 15643	8128 7335 8691	Semi-bituminous coal. Bituminous coking.

576

Theoretical Heating Value of Coals.—Continued.

Coals. Locality of beds.	B. T. U.	Calories.	Nature.
France.—Continued. Bassin de Valenciennes. Denain, Fosse Renard. Denain, Fosse Lelvet 1 Denain, Fosse Lelvet 2 St. Wast, Fosse de la Réussite St. Wast, Grande Fosse St. Wast, Grande Fosse St. Wast, Fosse Tinchon Anzin, Fosse Chauffour Anzin, Fosse la Cave Anzin, Fosse St. Louis Fresne, Fosse Bonnepart Vieux-Condé, Fosse Sarteau	15244 15100 15316 15105 15188 15082 14353 14549 15397 15228 15409	8469 8389 8509 8392 8438 8379 7974 8083 8554 8460 8561	Bituminous coal, long flame. Bituminous coal, short flame. Bituminous coking. Semi-bituminous coal.
Belgium.			
Bassin de Mons.			
Haut-flenu Belle et Bonne, Fosse No. 21. Levant de flenu Couchant Midi Grand-Hornu Nord du bois de Bossu Grand-Buisson Escouffaux St. Hortense, bonne veine.	14576 14326 14508 14446 14553 14943 14407 14877 15217 15107	8098 7959 8060 8037 8085 8302 8004 8265 8454 8393	Semi-bituminous hard coal.
Bassin du Centre.			
Haine St. Pierre. Bois du Luc La Louvière Bracquegnies Mariemont Bascoup Sars-Longchamps Houssu	14702 14358 15127 15363 15168 14911 14895 14945	8168 7977 8404 8535 8427 8284 8275 8303	Semi-bituminous coking. Bituminous hard coal.
Bassin de Charleroi.			
St. Martin, Fosse No. 3	14311	8308 8372 8012 7670 8447 8403 8284 7951 8304	Semi-bituminous coking. Semi-bituminous hard coal.
2 3 2		0002)	
Austria-Hungary.			
Lower Austria.			X
Grünbach Thallern	11458 7057	6366	Semi-bituminous coal.
Upper Austria.		}	Lignite or brown coal.
Wolfsegg-Trannthal	6006	3337	
		•	

FUEL.

Theoretical Heating Value of Coals.—Continued.

Coals, Locality of beds,	B. T. U.	Calories.	Nature.
Austria-Hungary.—Continued. Styria. Leoben. Fohnsdorf. Göriagh. Wies. Trifail.	9666 9187 6222 7997 7556	5370) 5104 3457 } 4443 4198	Lignite or brown coal.
Bohemia. Kladno Buschtehrad Libuschin Schlan Rakonitz-Lubna Pilsen Schatzlar Aussig Dux	10675 8865 9900 7979 7257 9318 6552 6408 7808	5931 \\ 4925 \\ 5500 \\ 4433 \\ 4032 \\ 5177 \\ 5307 \\ 3560 \\ 4338 \\	Semi-bituminous coal. Lignite or brown coal.
Bilin Brüx Moravia. Rossitz M. Ostran Gaya Göding Silesia.	8182 8274 12553 12623 4858 5056	$ \begin{array}{c} 4546 \\ 4597 \end{array} $ $ \begin{array}{c} 6974 \\ 7013 \\ 2699 \\ 2809 \end{array} $	Lignite or brown coal.
P. Ostran Orlan-Lazy Poremba Karwin Taklowetz Hungary.	12564 12389 11057 13021 11932	$ \begin{array}{c} 6980 \\ 6883 \\ 6143 \\ 7234 \\ 6632 \end{array} $	Bituminous coal.
Fünfkirchen Anina Neufeld Brennberg Aika Salgo-Tarjan Dorog-Annathal Tokod	10276 11356 5200 8325 6913 7966 7709 8069	5709 } 6309 } 2889 } 4625 3841 4426 4283 4483	Cannel coal.
Dalmatia. Siveric	8087 10182	4493	Lignite or brown coal.
Transylvania. Petrozsény	11286 8692 7911	6270 4829 4359	,

American Coals.

		Theoreti	ical value.
State. Kind of coal.	Per cent. of ash.	In heat units.	Pounds of water evaporated.
	(3.49	14199	14.70
Pennsylvania anthracite	6.13	13535	14.01
	2.90	14221	14.72
Pennsylvania cannel	15.02	13143	13.60
Pennsylvania, Connellsville	6.50	13368	13.84
Pennsylvania semi-bituminous	10.70	13155	13.62
Pennsylvania, Stone's gas	5.00	14021	14.51
Pennsylvania, Youghiogheny	5.60	14265	14.76
Pennsylvania brown	9.50	12324	12.75
Kentucky caking	2.75	14391	14.89
Kentucky cannel	(2.00	15198	16.76
Kentucky cannel	{14.80	13360	13.84
Kentucky lignite	7.00	9326	9.65
Illinois, Bureau County	5.20	13025	13.48
Illinois, Mercer County	5.60	13123	13.58
Illinois, Montauk	5.50	12659	13.10
Indiana block	2.50	13588	14.38
Indiana caking	5.66	14146	14.64
Indiana cannel	6.00	13097	13.56
Maryland, Cumberland	13.88	12226	12.65
Arkansas lignite	5.00	9215	9.54
Colorado lignite	9.25	13562	14.04
Colorado ligilito	1 4.50	13866	14.35
Texas lignite	4.50	12962	13.41
Washington Territory lignite	3.40	11551	11.96

Wood

as fuel is estimated to have about 0.4 times the calorific value as the same weight of coal. The relative calorific values of various woods are therefore proportional to their weights. The following table gives the weight, in pounds, per cord.

Kind of wood.	Weight.	Kind of wood.	Weight.
Hickory, shell-bark Hickory, red heart White oak Red oak Spruce New Jersey pine.	3705 3821 3254 2325	Beech Hard maple Southern pine Virginia pine Yellow pine White pine	3126 2878 3375 2680 1904 1868

FUELS.

579

Total Heat of Combustion of Fuels.

(Rankine.)

The following table shows the total heat of combustion with oxygen of 1 pound of each of the substances named in it, in British thermal units, and also in pounds of water evaporated from 212°. It also shows the weight of oxygen required to combine with each pound of the combustible and the weight of air necessary in order to supply that oxygen. The quantities of heat are given on the authority of MM. Favre and Silbermann.

Combustible.	Pounds of oxygen per pound of combustible,	Pounds of air (about).	Total British heat units.	Evaporative power from 212° Fahr.
				Lb.
Hydrogen gas	8	36	62032	64.20
Carbon, imperfectly burned, so as to make carbonic oxide Carbon, perfectly burned, so	11/3	6	4400	4.55
as to make carbonic acid	22/3	12	14500	15.0
Olefiant gas, 1 pound	33	153	21344	22.1
Various liquid hydrocarbons, 1 pound			from 21700 to 19000	from 22½ to 20
Carbonic oxide, as much as is made by the imperfect combustion of 1 pound of carbon,—viz., 2 pounds		6	10000	10.45

Evaporative Power and Composition of Liquid Fuels.

Fuel.	Specific gravity at 32° Fahr. Water=1.	Chemical composition. C. H. O.		composition.		composition.		Theoretical evaporation, in pounds, of water per pound of fuel, from and at 212° Fahr.
Pennsylvania heavy crude oil	.928	84.9 86.3 86.6	13.7 13.6 12.3 11.7	.1 1.1 1.2	20736 22027 20138 19832 14112	Lb. 21.48 22.79 20.85 20.53 14.61		

580 FUELS.

Comparative Evaporation of Coal and Oil.

Taken from the United States Geological Report on Petroleum for 1900.

1 pound of combustible.	Pounds of water evapo- rated at 212° per pound of combustible.	Barrels of petroleum required to do same amount of evaporation as 1 ton of coal.	
Petroleum, 18° to 40° Baumé			
Pittsburg lump and nut, Pennsylvania	10.0	4.0	
Pittsburg nut and slack, Pennsylvania	8.0	3.2	
Anthracite, Pennsylvania	9.8	3.9	
Indiana block	9.5	3.8	
Georges Creek lump, Maryland	10.0	4.0	
New River, West Virginia	9.7	3.8	
Pocahontas lump, West Virginia	10.5	4.2	
Cardiff lump, Wales	10.0	4.0	
Cape Breton, Canada	9.2	3.7	
Nanaimo, British Columbia	7.3	2.9	
Co-operative, British Columbia	8.9	3.6	
Greta, Washington	7.6	3.0	
Carbon Hill, Washington	7.6	3.0	

Under favorable conditions 1 pound of oil will evaporate from 14 to 16 pounds of water from and at 212°; 1 pound of coal will evaporate from 7 to 10 pounds of water from and at 212°; 1 pound of natural gas will evaporate from 18 to 20 pounds of water from and at 212°.

Relative Values in Coal and Oil.

Petroleum residuum	19500
Beaumont crude	18500
Anthracite coal—East Middle coal-field	13400
Semi-bituminous coal—Cumberland, Maryland	14400
Semi-bituminous coal—Pocahontas, Virginia	15070
Bituminous coal—Jackson County, Ohio	13090
Bituminous coal—Hocking Valley, Ohio	12130
Bituminous coal—Missouri	12230
Bituminous coal—Alabama	13500
Bituminous coal—McAllester, Indian Territory	12789
Bituminous coal—New Mexico	12000
Bituminous coal—Texas lignite	10000

Gaseous Fuels.

The most valuable gaseous fuel is the natural gas of Pennsylvania and The most valuable gaseous ruel is the natural gas of Pennsylvania and Ohio; the calorific power being about 1100 B. T. U. per cubic foot, or 10,000 calories per cubic metre. In comparison, 57.25 pounds of coal or 63 pounds of coke are about equal to 1000 cubic feet of natural gas.

Producer gas, made by the partial combustion of coal to carbonic oxide, is a lean gas composed of about 25 per cent. of CO and about 60 per cent. of nitrogen, with small quantities of CO₂ and hydrogen. The calorific value is about 150 B. T. U. per cubic foot.

STEAM.

581

Blast-furnace gas is almost identical with producer gas in composition, except that there is usually more CO₂ present, the calorific power falling

to about 120 B. T. U. per cubic foot.

These lean gases can be used to advantage in properly designed gas engines with a high thermal efficiency, and engines of 1000 horse-power and more are in successful operation, using the waste gases from blast furnaces.

Calorific Power of Gas Fuels.

Authority.	Gas.	B. T. U.
A. G. Glasgow, M.E A. C. Humphreys	Plain water gas. Plain water gas (theoretical).	327,268 per 1000 cubic feet. 323,003 per 1000 cubic feet.
F. E. Taylor, M.E Dr. Greene	Plain water gas. Plain water gas. Plain water gas.	8,335 per pound. 6,223 per pound. 290,000 per 1000 cubic feet.
Newbigging	Plain water gas. Carburetted water gas, 22	6,649 per pound. 650,000 per 1000 cubic feet.
Dr. Gideon Moore { Newbigging {	candle-power. Coal gas, 18 candle-power. Coal gas, 17 candle-power.	642,000 per 1000 cubic feet. 673,224 per 1000 cubic feet.
Trew Digging	Coal gas, 17 candle-power. Coal gas. Water gas.	21,696 per pound. 735,000 per 1000 cubic feet. 322,000 per 1000 cubic feet.
R. D. Wood & Co {	Producer gas (anthracite). Producer gas (bitumi-	· •
2. 2. 11000 & 00 }	, ,	

STEAM.

Steam is the common name for water which has been converted into the gaseous state by heat. When heat is applied to water in an open vessel at or near the level of the sea the temperature of the water will rise until it reaches 212° F. or 100° C., after which it will remain constant until all

the water is vaporized.

If we consider one pound of water at atmospheric pressure, it will require the expenditure of 180.9 B. T. U. to raise the temperature from the freezing-point, 32° F., to the boiling-point, 212° F. If heat is further supplied until the pound of water at 212° is converted into a pound of steam at 212°, it will be found to require 965.7 additional thermal units, so that a

at 212, it will be found to require \$55.7 additional thermal units, so that a pound of steam at amospheric pressure will have a sensible temperature of 212° F., and will contain energy equal to 180.9 + 965.7 = 1146.6 B. T. U. Furthermore, its volume will have increased to 1641.5 times that of the original pound of water at its greatest density (39° F.).

If the steam is confined, and heat further applied, its temperature will rise, —the temperature, pressure, volume, and heat absorbed bearing certain relations to each other. These relations, of continual importance in steam engineering, have been the subject of much study and investigation, and have been fabulated in various ways by numerous authors. have been tabulated in various ways by numerous authors.

The data upon which all steam tables at present in use are founded are the result of experiments made by the French physicist, Regnault, in 1847. Regnault's observations covered only temperatures from 40° C. (104° F.) to 230° C. (446° F.), advancing by 10° C., there being thus 20 observations in all; and upon these 20 observations all the existing steam tables have been built by various computers who have devised formulas representing more

582 STEAM.

or less accurately the results of the experiments, and therefore available

for interpolating the intermediate values.

Since modern steam engineering is beginning to demand the use of pressures higher than the maximum examined by Regnault, some of the tables have been extended to higher pressures; but it must be understood that such figures are based upon the assumption that the relations developed within the range of Regnault's experiments continue beyond the limit of his work. A study of this feature of the subject will be found in the important paper of Macfarlane Gray, presented before the British Institution of Mechanical Engineers in 1889.

The tables here given in British units are those computed from the experiments of Regnault by the late John W. Nystrom, and may be accepted as being as reliable as any. The figures for temperatures above 446° F. agree fairly well with those deduced by Macfarlane Gray, and, until experimental researches at these higher pressures and temperatures

are made, they may be used.

The metric steam tables given have been compiled from those of Zeuner and Fliegner.

Introduction to Steam Tables.

(Nystrom.)

Properties of Steam.

Column P contains the total steam pressure, in pounds, per square inch,

Column P contains the total steam pressure, in points, per square fixed, including the pressure of the atmosphere. Column I is the same pressure, in inches, of mercury. The specific gravity of mercury at 32° F, is 13.5959, compared with water of maximum density at 39° . I cubic inch of mercury weighs 0.49086 pound, of which a column of 29.9218 inches is a mean balance of the atmosphere, or 14.68757pounds per square inch.

Column T contains the temperature of the steam on Fahrenheit's scale,

deduced from Regnault's experiments.

Column V contains the volume of steam of the corresponding temperature, T, compared with that of water of maximum density at 39° F. column is calculated from the formula of Fairbairn and Tate, namely,—

$$V = 25.62 + \frac{49513}{I + 0.72}.$$

Column W contains the weight per cubic foot in fractions of a pound;

Column C the cubic feet per pound of saturated steam under the press-

ure, P, and temperature, T.

Column H contains the heat units per pound of steam from 32° to temperature, T, and pressure, P, calculated from the formula,

$$H = 1081.91 + 0.305 T.$$

Column H' contains the heat units per cubic foot of steam from 32° to temperature, T.

The columns H and H' give the heat units required to heat the water from 32° to the boiling-point, and evaporate the same to steam under the

pressure, P, and of temperature, T.

Column L contains the latent units of heat per pound in steam of temperature, T, and pressure, P. The latent heat expresses the work done in the evaporation, or the difference between the number of heat units per pound in the steam and in the water of the same temperature.

Column L' contains the latent heat per cubic foot of steam. Latent heat, L = II - h, the heat units required to evaporate each pound of water from the boiling-point into steam.

In the metric tables the pressures are given in kilogrammes per square centimetre, or so-called metric atmospheres (1 kilogramme per square centimetre = 14.22 pounds per square inch), the temperatures in degrees Centigrade, and the total and latent heats in calories per kilogramme and calories per cubic metre.

Steam Table. British System.

Absolute press. Units of heat, from 32° to T°.										
Absolu	te press.	W	Walum a	Wt.	Bulk,	Units	of heat,	from 32	to To.	Press.
Lb.		Temp. Fahr.	Volume water =	lb. per	cubic	Total	Total	Lat'nt	Latent	Ab. at.
per	Inch.	scale.	1 at 39°.	cubic	feet per	per	per	per	per	lb. per
sq. in.	of mer.			foot.	pound.	lb.	cubic ft.	lb.	cubic ft.	sq. in.
								ļ		
P	I	T	V	W	C	H.	H'	L	L'	p
1	2.037	101.36	17983.00	.00347	288.2400	1112.8	3.8614	1043.40		-14
1 2 3 4 5 6 7 8 9	4.074	126.21	10353.00		165.9400			1026.00	6.1165	
3		141.67	7283.80		116.7500	1125.1		1015.20	8.6901	-12
5	10.18	$ 153.27 \\ 162.51$	5608.40 4565.60					1007.10 1000.60		-11 -10
6	12.22	170.25	3851.00		61.7420			995.17	16.113	_ 9
7	14.26	176.97	3330.80					990.44	18.194	— 8
8	16.29	182.96	2935.10		47.0460			986.22	20.957	-7
	18.33	188.36	2624.00		42.0590			982.41	23.352	$-6 \\ -5$
10	20.37	193.20	2373.00	.02628				978.99	25.728	— 5
11	22.41	197.60	2166.30	.02880	34.7230	1142.2	32.895	975.88	28.099	$\begin{vmatrix} -4 \\ -3 \\ -2 \\ -1 \end{vmatrix}$
12 13	24.44	201.90 205.77						972.84 970.11	30.450 32.789	- 3
14	26.48	209.55	1845.70 1718.90		27.5510			967.43		1 = 1
14.7	29.92	212.00	1641.50					965.70	36.706	0
15	30.55	213.04	1608.60		25.7840			964.96	37.421	.3125
16	32.59	216.33	1511.70		24.2300			962.63		1
17	34.63	219.45	1426.20		22.8590		50.248	960.49		2 3 4 5 6 7 8 9
18	36.67	222.40 225.25	1349.80					958.32	44.393	3
19	38.71	225.25	1281.10					958.30	46.698	4
20	$ 40.74 \\ 42.78 $	227.95 230.60						954.38		6
21 22	44.82	233.10						950.62		7
23	46.85	235.49			17.0920		67.503	949.03		8
24	48.89	237.81	1023.60					947.37	57.743	9
25	50.93	240.07		.06338			73.410	945.76		10
26	52.97	242.24	947.86	.06582				944.25		11
27	55.00	244.32			14.6520	1156,4	78.913	942.74	64.423	12
28 29	57.04 59.08	$246.35 \\ 248.33$	852.80 853.60	.07067 .07308	14.1500 13.6820			941.29 939.88		13 14
30	61.11	250.26						938.50		15
31	63.15	252.13		.07791				937.17		16
32	65.19	253.98	766.83					935.45		17
33	67.23	255.77	754.31			1159.9		934.57	77.298	18
34	69.26	257.52		.08510				933.32		19
35	71.30	259.22		.08749				932.10		20
36 37	73.34	260.88	694.17	.08987				930.92	83.662	21 22
38	75.38 77.41	$\begin{vmatrix} 262.50 \\ 264.09 \end{vmatrix}$	676.27 659.31	.09225				929.76		23
39	79.45	265.65	643.21	.09700				927.51		24
40	81.49	267.17	627.91	.09936	10.0640	1163.4	115.59	926.42	92.059	25
41	83.52	268.66	613.34	.10172 .10407	9.8310	1163.9	118.39	925.35	94.126	26
42	85.56	270.12	599.46	.10407	9.6086		121.17	924.30	96.192	27
43	87.60	271.55	586.23	.10642	9.3963		123.95	923.28		28
44 45	89.64 91.67	$ 272.96 \ 274.33$.10877			126.74 129.51	922.27	100.32 102.36	29 30
46	93.71	275.68		.11344			132.29	921.29	104.40	31
47	95.75	277.01	538.87	.11577			135.07		106.43	32
48	97.78	278.32	528.25	.11810			137.83		108.46	33
49	99.82	279.62	518.07	.12042	8.3040	1167.2	140.69	917.49	110.48	34
50	101.86	280.89		.12273	8.1472	1167.6	143.30		112.49	35
51	103.90	282.14	498.89		7.9966	1167.9	146.08	915.68	114.50	36
52 53	105.93 107.97	283.39 284.58	489.85	.12736 .12966			148.85 151.63	914.79	116.51	37 38
54	110.01	285.76					151.63		118.50 120.49	39
55	112.04	286.96		.13428			157.02		122.47	40
56	114.08	288.09	456.90	.13652	7.3236		159.74	911.42	124.43	41
57	116.12	289.24		.13883			162.45		126.40	42

Steam Table. British System.

Absolute press. Units of heat, from									00 / mo	
Absolu	te press.	Temp.	Volume	Wt.	Bulk,	Units	of heat,	rom 32	to To.	Press.
Lb.	Inch.	Fahr.	water =	lb, per cubic	cubic feet per	Total	Total	Lat'nt	Latent	Ab. at.
per	of mer.	scale.	1 at 39°.	foot.	pound.	per lb.	per	per lb.	per cubic ft.	lb. per
sq. in.						10.	cubic ft.	10.	cubic 1t.	5q. 11.
\overline{P}	I	T	V	W	C	H	H'	L	L'	p :
58	118.16	290.37	442.12	.14111	7.0866	1170.5		909.78	128.38	43
59	120.19	291.48	435.10	.14338	6.9741	1170.8		908.97	130.33	44
60 61	122.23 124.27	$\begin{vmatrix} 292.58 \\ 293.66 \end{vmatrix}$	428.32 421.75	.14566 .14792	6.8654	1171.2 1171.5	170.58 173.27	908.18 907.40	132.28 134.22	45 46
62	126.30	294.73	415.40	.15018	6.6583	1171.8	175.96	906.63	136.16	47
63	128.34	295.78	409.25	.15244	6.5597	1172.1	178.65	905.87	138.09	48
64	130.38	296.82		.15469	6.4642	1172.5		905.13		49
65 66	132.42 134.45	$\begin{vmatrix} 297.84 \\ 298.85 \end{vmatrix}$	397.51 391.90	.15694 .15919	6.3715 6.2817	$1172.8 \\ 1173.1$	184.03 186.72	904.39 903.66		50 51
67	136.49	299.85		.16130	6.1994	1173.4		902.94	145.64	52
68	138.53	300.84	381.18	.16366	6.1099	1173.7	192.07	902.23		53
69	140.56	301.81	376.06	.16590	6.0277	1174.0		901.53	149.56 151.45	54
70 71	142.60 144.64	302.77 303.72	371.07 366.34	.16812 .17035	5.9478 5.8702	1174.3 1174.6		900.84 $ 900.15 $	153.34	55 56
72	146.68	304.69	361.53	.17256	5.7948	1174.9		899.46		57
73	148.72	305.60	356.95	.17478	5.7214	1175.1	205.40	898.79		58
74 75	150.75	306.52		.17690	5.6500 5.5805	1175.4 1175.8	208.04 210.67	898.13 897.57	158.88 160.83	59 60
76 76	152.79 154.83	$\begin{vmatrix} 307.42 \\ 308.32 \end{vmatrix}$.17919 .18139	5.5129	1176.0		896.83		61
77	156.86	309.22	339.81	.18359	5.4468	1176.2	215.93	896.18		62
78	158.90	310.11		.18578	5.3825	1176.5		895.54		63
79 80	160.94 162.98	310.99 311.86		.18797 .19015	5.3190 5.2588	1176.8 1177.0	221.19 223.82	894.92 894.27	168.22 170.04	64 65
81	165.01	312.72	324.37	.19233		1177.3	226.44	893.65	171.87	66
82	167.05	313.57	320.74	.19451	5.1410	1177.6	229.06	893.03	173.70	67
83	169.09	314.42		.19668	5.0843	1177.9		892.51	175.52	68
84 85	171.12 173.16	315.25 316.08		.19885 .20101	5.0289 4.9748	1178.1 1178.3		891.82 891.22	177.33 179.14	69 70
86	175.20	316.90		.20317	4.9219	1178.6		890.63	180.95	71
87	177.24	317.71	303.85	.20532	4.8703	1178.8	242.10	890.04	182.75	72
88 89	179.27	318.51		.20747	4.8198	1179.1	244.69	889.46		73
90	181.31 183.35	319.31 320.10		.20962 .21185	$4.7704 \\ 4.7222$	1179.3 1179.6	247.29 249.88	888.88 888.31		74 75
91	185.38	320.88	291.66	.21390		1179.8		887.74		76
92	187.42	321.66	288.78	.21603	4.6288	1180.0	255.02	887.19		77
93 94	189.46 191.50	322.42 323.18		.21816 .22029		1180.3		886.63		78 79
95	193.53	323.94		.22241	4.5394	1180.5 $ 1180.7 $	260.14 262.69	886.08 885.53		80
96	195.57	324.67	277.86	.22453		1180.9		885.00		81
97	197.61	325.43	275.27	.22672	4.4106	1181.2		884.45		82
98 99	199.65 201.68	$\begin{vmatrix} 326.17 \\ 326.90 \end{vmatrix}$		$\begin{bmatrix} .22875 \\ .23085 \end{bmatrix}$		1181.4 1181.6		883.91 883.38		83 84
100	203.72	327.63		.23296		1181.9		882.85		85
101	205.76	328.35	265.41	.23505	4.2543	1182.1	277.85	882.33	207.39	86
102 103	207.79 209.83	329.07 329.78		$\begin{bmatrix} .23715 \\ .23924 \end{bmatrix}$	4.2167 4.1799	1182.3	280.38	881.81	209.12	87
103	211.87	330.48		.23924	4.1799	1182.5 1182.7	282.90 285.42	881.29 880.78		89
105	213.91	331.18		.24340		1182.9		880.27		90
106	215.94	331.87		.24548	4.0736	1183.2	290.45	879.77		91
107 108	$\begin{vmatrix} 217.98 \\ 220.02 \end{vmatrix}$	$\begin{vmatrix} 332.56 \\ 333.24 \end{vmatrix}$		$\begin{bmatrix} .24750 \\ .24963 \end{bmatrix}$		$\begin{vmatrix} 1183.4 \\ 1183.6 \end{vmatrix}$		879.27 878.79	217.66 219.36	92 93
109	222.05	333.92		.25169		1183.8		878.28	219.50	94
110	224.10	334.59	245.86	.25375	3.9408	1183.9	300.44	877.80	222.74	95
111	226.13	335.26		.25581	3.9091	1184.2	302.93	877.31	224.42	96
113 114	$\begin{vmatrix} 230.20 \\ 232.24 \end{vmatrix}$	336.58 337.28		.25991 .26204	3.8474 3.8100	1184.6 1184.8		876.25 875.88		98 99
115	234.28	337.89		.26400		1185.0		875.40		100
120	244.4	341.0	227.56	.27421		1185.9		873.09		105

Steam Table. British System.

	Absolute press. Units of heat, from 32° to T°.										
	Absolut	te press.	m	37-1	Wt.	Bulk,	Units	of heat,	from 32	20 to To.	Press.
ú	Lb.		Temp. Fahr.	Volume water =	lb. per	cubic	Total	Total	Lat'nt	Latent	Ab. at.
	non	Inch.	scale.	1 at 39°.	cubic	feet per	per	per	per	per	lb. per
	sq. in.	of mer.			foot.	pound.	Îb.	cubic ft.	lb.	cubic ft.	sq. in.
	P	I	T	V	W	C	H	H'	L	L'	p
	125	254.6	344.1	219.50	.28422		1186.9	337.39	870.85		110
	130 135	$264.8 \\ 275.0$	347.1 350.0	212.07 205.18	.29419	3.3991 3.2880	1187.8 1188.7	349.44 361.42	868.68 866.56	255.55 263.48	115 120
	140	285.2	352.8	198.78	.31385	3.1862	1189.5	373.34	864.49	271.32	125
	145	295.4	355.6	192.83	.32354	3.0908	1190.4	385.20	862.48		130
	150	305.6	358.4	187.26	.33315	3.0001	1191.2	396.86	860.45	286.66	135
	155	315.8	361.6	180.00	.3466	2.8958	1191.8 1192.5	413.20	858.4	297.5	140
	160 165	325.9 336.0	364.5	174.20 167.90	.3601 .3736	2.7916 2.6873	1192.5 1193.6	429.54 445.88	856.5 854.0	308.3 319.1	145 150
	170	346.3	369.8	161.10	.3871	2.5831	1194.7	462.22	852.5	329.9	155
	175	356.5	372.0	157.00	.3973	2.5171	1195.4	475.80	851.0	338.7	160
	180	366.7	374.2	152.80	.4075	2.4541	1196.1	488.96	849.4	347.1	165
	185	376.9 387.1	376.4	148.80	.4182	2.3916 2.3299	1196.8 1197.4	502.10 515.20	847.8 846.2	355.5 363.9	170 175
	190 195	397.3	378.5 380.6	145.00 141.50	.4409	2.2684	1198.1	528.27	844.8	372.4	180
	200	407.4	382.6	138.10	.4517	2.2137	1198.7	542.07	843.3	381.0	185
	210	427.8	386.6	132.00	.4719	2.1192	1199.8	568.40	840.3	398.0	195
	220	448.2	390.4	126.30	.4935	2.0265	1201.0	574.70	837.5	414.8	205
	230 240	468.5 488.9	394.0 397.6	120.80 116.10	.5165	1.9360 1.8646	1202.2 $ 1203.2 $	620.96 647.41	835.0 832.3	431.3 447.9	$\frac{215}{225}$
	250	509.3	401.0	111.70	.5595	1.7874	1203.2	673.85	829.8	464.4	235
	260	529.7	404.3	107.50	.5803	1.7230	1205.2	700.28	827.4	480.8	245
	270	550.0	407.5	103.70	.6016	1.6621	1206.2	726.66	825.0	497.1	255
	280	570.4	410.6	100.20	.6238	1.6031	1207.2	753.04	822.8	513.3	265
	290 300	590 8 611.1	413.5 416.5	97.01 94.22	.6459	1.5481 1.4967	1208.1 1209.0	779.40 805.74	820.7 818.6	529.4 545.4	275 285
	310	631.5	419.2	91.13	.6896	1.4499	1209.8		816.5	561.4	295
	320	651.9	422.1	88.21	.7107	1.4071	1210.6		814.4	577.3	305
	330	672.3	424.8	85.44	.7302	1.3695	1211.5	884.63	812.4	593.2	315
	340	692.6 713.0	427.4	83.19	.7547	1.3250	1212.3	910.89	810.5	608.9	325
	350 360	733.4	430.0 432.4	80.99 78.84	.7745	1.2915 1.2590	1213.1 1213.9	937.13 963.34	808.6	624.5 640.2	335 345
	370	753.8	434.9	76.74	.8146	1.2275	1214.7	989.51	805.1	655.8	355
	380	774.1	437.3	74.66	.8353	1.1968	1215.5	1015.7	803.4	671.3	365
	390	794.5	439.6	72.90	.8626	1.1597	1216.2	1041.8	801.7	686.7	375
	400	814.9 835.2	441.9	71.19 69.52	.8745	1.1434	1216.8 1217.4		800.0 799.4	702.0 717.2	385 395
	420	855.6	446.4	67.90	.9142	1.0938	1217.4		797.7	732.4	405
	430	876.0	448.5	66.34	.9400	1.0634	1218.7	1146.3	795.0	747.6	415
	440	896.4	450.6	64.91	.9599	1.0417	1219.4		793.5	762.8	425
	450 460	916.7	452.6	63.55	.9804	1.0201	1220.1		792.0	777.9	435
	470	937.1 957.5	454.6 456.7	60.94	$1.0007 \\ 1.0211$.9993	1220.7 1221.3		790.5 789.0	807.8	445 455
	480	977.8	458.7	59.72	1.0446	.9573	1221.9		787.5	822.7	465
	490	998.2	460.6	58.54	1.0652	.9388	1222.5	1302.3	786.1	837.4	475
	500	1018.6	462.5	57.45	1.0859	.9209	1223.0		784.7	852.1	485
	525 550	1069.5 1120.4	466.1	54.81 52.47	1.1381	.8786	1224.5	1392.6	782.3	881.8 921.3	510
	575	1171.4	475.7	50.32	1.1890 1.2397	.8410	$1225.8 \\ 1227.2$	1456.9 1521.0	778.0 775.0	960.4	535 560
	600	1222.3	479.8	48.35	1.2901	.7751	1228.3	1584.8	771.8	1000.0	585
	650	1324.2	487.6	44.75	1.3943	.7172	1230.6	1709.5	766.0	1082.0	635
	700	1426.0	494.9	41.70	1.4961	.6684	1232.7	1933.8	760.4	1157.0	685
	750 800	1527.9 1629.8	501.8 508.4	39.05 36.73	1.5977 1.6986	.6259 .5887	1234.9 1237.0	2057.7 2101.2	755.4 750.6	1234.0 1307.0	735 785
	850	1731.6	514.6	34.68	1.7989	.5554	1238.9	2228.3	745.9	1374.0	835
	900	1833.5	521.4	32.87	1.8979	.5269	1241.0	2355.4	740.0	1435.0	.885
	950	1935.5	526.0	31.21	1.9992	.5002	1242.4		737.4	1490.0	935
	1000	2037.2	531.6	29.73	2.0986	.4765	1243.5	2609.6	732.3	1538.0	985

Steam Table. Metric System.

	olute sure.	Temp.	Volume cubic	Weight kilo-	Volume	Calor	ries, from	0° C. t	o T°.
Kilo- grams. per sq. cm.	Milli- metres of mer- cury.	Centi- grade scale.	metres per kilo- gram.	grams. per cubic metre.	water = 1 at 4° C.	Total per kilo- gram.	Total per cubic metre.	Latent per kilo- gram.	Latent per cubic metre.
.10 .20 .30 .40 .50 .60 .70 .80 .90 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.70 2.80 2.70 2.80	73.6 147.1 220.7 294.2 367.8 441.3 514.9 588.4 662.0 735.5 809.1 882.6 956.2 1029.7 1103.3 1176.8 1250.4 1323.9 1397.5 1471.0 1544.6 1618.1 1691.7 1765.2 1838.8 1912.3 1985.9 2059.4 2133.0	45.6 59.8 68.7 75.5 80.9 85.5 93.0 96.2 99.1 101.8 104.2 106.5 110.8 112.7 116.3 118.0 119.6 121.1 122.6 124.0 125.4 126.7 128.0 129.3 130.5 131.6 132.8	15.0376 7.8064 7.8064 7.8064 7.3095 4.0667 3.2977 2.4033 2.1191 1.8964 1.773 1.5711 1.4478 1.3430 1.2527 1.1740 1.1050 1.0438 .9891 .9898 .8960 .8562 .8190 .7855 .7553 .7267 .7003 .6761 .6531 .6321 .6124 .6124	.0665 .1281 .1876 .2459 .3033 .3600 .4161 .4719 .5273 .5823 .6365 .6907 .7446 .7983 .8518 .9050 .9580 1.0109 1.0637 1.1161 1.1684 1.2206 1.3763 1.3763 1.3763 1.4280 1.4793 1.5820 1.6363 1.5820 1.6363	15038 7806 5330 4067 3297 2778 2403 2119 1896 1777 1571 1449 1343 1253 1174 1105 1044 989 940 896 816 817 785 727 700 676 653 632 612 594	620.40 624.73 627.46 629.52 631.18 632.58 633.95 634.87 635.64 636.72 637.54 638.29 639.00 639.00 640.87 641.96 642.97 641.43 642.97 643.88 644.32 644.94 645.15 645.54 645.54 645.64 646.29 646.65 647.00	41.25 80.00 116.50 154.70 191.80 228.20 2264.10 299.50 335.20 370.76 405.5 447.5 540.0 587.5 614.1 649.0 683.0 718.0 752.0 854.1 888.0 9922.0 995.0 990.0 1024.0	574.75 564.84 558.53 553.81 549.99 546.76 544.11 541.44 539.20 537.15 535.26 533.50 521.51 522.49 526.18 522.60 521.51 520.44 519.42 518.44 517.49 516.57 515.68 514.81 513.97	38.50 72.30 104.40 136.20 167.00 255.50 224.70 341.0 368.2 396.0 423.5 450.0 556.0 556.0 661.5 686.5 712.0 788.0 813.0 838.0
3.10 3.20 3.30 3.40 3.50 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70	2280.1 2253.6 2427.2 2500.7 2574.3 2647.8 2721.4 2794.9 2868.5 2942.0 3015.6 3089.1 3162.7 3236.2 3398.8 3383.3 3159.9 3530.4 3604.0	133.9 135.0 136.1 137.1 138.1 139.1 140.0 141.0 141.9 142.8 143.7 144.6 145.4 146.3 147.1 147.9 148.7 149.5 150.2	.5938 .5763 .5599 .5444 .5296 .5160 .5027 .4904 .4787 .4673 .4566 .4464 .4367 .4273 .4184 .4098 .4016 .3938 .3862	$\begin{array}{c} 1.6843\\ 1.7352\\ 1.7864\\ 1.8869\\ 1.8879\\ 1.9384\\ 1.9889\\ 2.0392\\ 2.0392\\ 2.1400\\ 2.2401\\ 2.2401\\ 2.2904\\ 2.3403\\ 2.3901\\ 2.4400\\ 2.3901\\ 2.4402\\ 2.5394\\ 2.5893 \end{array}$	594 576 560 544 530 516 503 490 479 467 446 437 427 418 410 402 394 386	647.34 647.67 648.00 648.31 648.62 649.21 649.50 649.21 650.06 650.33 650.66 650.36 651.10 651.35 651.60 652.09 652.31	1091.0 1123.0 1123.0 1158.0 1227.0 1228.0 1258.0 1357.0 1357.0 1479.0 1425.0 1457.0 1492.0 1558.0 1591.0 1624.0 1636.0 1691.0	512.35 511.57 510.82 510.07 509.35 508.64 507.95 507.27 506.61 505.96 505.32 504.70 504.09 503.47 502.88 502.30 501.73 501.17 500.61	864.0 888.0 914.0 938.0 962.0 987.0 1011.0 1034.0 1058.0 1107.0 1131.0 1177.0 1203.0 1227.0 1250.0 1274.0

Steam Table. Metric System.

»·											
Absolute pressure.		Temp.	cubic	Weight kilo-	Volume water	Calories, from 0° C. to T°.					
Kilo- grams. per sq. cm.	Milli- metres of mer- cury.	Centi- grade scale.	metres per kilo- gram.	per cubic metre.	= 1 at 4° C.	Total per kilo- gram.	Total per cubic metre.	Latent per kilo- gram.	Latent per cubic metre.		
5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 6.10 6.20 6.30 6.40 6.50 6.70 6.80 6.70 6.80 6.70 6.80 6.70 7.25 7.55 8.00 8.25 8.50 8.75 9.00 9.25 9.51 10.00	3677.6 3751.1 3824.7 3898.2 3971.8 4045.3 4118.9 4192.4 4266.0 4339.5 4413.1 4486.6 4560.2 4633.7 4707.3 4780.8 4854.4 4927.9 5001.5 5075.0 6251.8 6435.7 6619.6 6808.0 6251.8 6435.7 6619.6 6803.5 6987.4 77539.0	151.0 151.7 152.5 153.9 154.6 155.3 156.0 156.6 157.3 157.9 158.6 169.2 159.8 160.5 161.1 161.7 162.3 162.9 163.4 164.0 165.4 166.8 168.1 170.7 172.0 173.2 174.4 175.5 176.7 177.8 178.8	.3786 3720 .3654 .3588 .3524 .3465 .3407 .3351 .3291 .3096 .3049 .3096 .3049 .2962 .2919 .2839 .2809 .2763 .2673 .2590 .2511 .2437 .2388 .2302 .2211 .2182 .2127 .2024 .1975 .1981	2.6412 2.6882 2.7375 2.7871 2.8369 2.8860 2.9842 3.0331 3.0826 3.1319 3.1807 3.2300 3.2787 3.3761 3.4247 3.5714 3.5714 3.5714 3.5714 3.6193 3.7411 3.8610 3.9825 4.1034 4.2230 4.3440 4.4623 4.5830 4.7015 4.8216 4.9407 5.0607 5.0607 5.1787	379 372 365 352 346 341 335 330 324 319 314 310 305 300 296 292 288 284 280 276 267 259 251 244 218 213 207 202 193	652.45 652.78 653.00 653.21 653.43 653.55 653.87 654.06 654.85 655.03 655.21 655.40 655.59 655.78 656.15 656.33 656.52 656.83 657.35 657.76 658.18 658.55 658.93 659.30 659.30 659.68 660.02 660.02 660.71 661.06	1723 1756 1789 1821 1854 1885 1920 1943 1985 2018 2018 2018 2018 2218 2218 2213 2246 2278 2311 2343 2376 2443 2540 2620 2700 2782 2867 2942 3022 3105 3185 3265 3345 3425	500.07 499.54 499.01 498.48 497.97 497.47 496.98 496.48 496.00 494.16 493.72 495.04 494.60 494.19 493.28 492.39 491.95 491.52 491.07 490.63 489.64 485.79 484.89 483.99 483.99 483.99 483.99 483.99 483.99 483.99 483.40 48	1321 1344 1367 1390 1413 1436 1459 1482 1505 1528 1551 1573 1596 1618 1663 1686 1708 1731 1753 1776 1822 1998 2052 2109 2161 2270 2270 2270 2375 2432 2483		
10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.50	7722.9 7906.7 8090.6 8274.5 8458.4 8642.2 8826.1 9010.0 9193.9 9377.8 9561.6 9929.4	181.0 182.0 183.0 184.0 185.0 186.0 186.9 187.9 188.8 189.7 190.6 192.3	.1888 .1847 .1807 .1769 .1733 .1698 .1665 .1634 .1603 .1573 .1545 .1491	5.2966 5.4142 5.5340 5.6497 5.7703 5.8858 6.0060 6.1200 6.2383 6.3573 6.4725 6.7069	189 185 181 177 173 170 166 163 160 157 154 149	661.68 662.00 662.33 662.62 662.92 663.21 663.51 664.08 664.35 664.63 665.15	3505 3585 3665 3745 3825 3905 3985 4064 4143 4222 4301 4467	478.29 477.53 476.77 476.04 475.32 474.61 473.92 473.24 472.57 471.90 471.25 469.97	2535 2586 2638 2690 2742 2794 2846 2897 2948 2998 3049 3155		
14.00 14.50 15.00	10297.1 10664.9 11032.7	194.0 195.6 197.2	.1441 .1394 .1351	6.9396 7.1737 7.4019	144 139 135	665.67 666.17 666.67	4620 4780 4935	468.73 467.51 466.35	3254 3353 3452		

In the preceding tables the temperatures are given which correspond to the respective pressures, it being understood that these are the temperatures at which the steam is formed from the water under those pressures. Such steam is said to be saturated; it contains no moisture; neither is it superheated. If, now, the steam be further supplied with heat, its temperature will rise and it will become superheated. The effect of the additional heat upon the steam is similar to that upon a gas, and the more highly it is superheated the more nearly it resembles a perfect gas. For any given pressure saturated steam can have but one temperature, as given in the tables. Superheated steam may have any higher temperature.

Flow of Steam.

The flow of steam from one pressure to another increases as the increase in difference in pressure, until the lower pressure becomes 58 per cent. of the higher pressure. If the lower pressure be diminished, or even is made a perfect vacuum, the flow will not be affected. Steam will expand in a nozzle until it reaches the external pressure, provided the latter is not less than 58 per cent. of the internal pressure. The ratio of expansion for all external pressures below 58 per cent. of the internal pressure is 1 to 1.624. The discharge will then have a constant velocity of 890 feet per second, and the amount discharged will be proportional to the density of the steam, which latter value can be obtained from the steam tables.

The following formulas, by Rankine, may be used in computing the

discharge of steam:

T.ot

W = weight discharged, in pounds, per minute;

a =area of opening, in square inches;

p = absolute pressure, in pounds, per square inch;

d = difference in pressure, when more than 58 per cent.; k = coefficient = 0.93 for short nozzle = 0.63 for hole in thin plate.

$$W = 0.85ap$$
.

when discharging into atmosphere.

$$W = 1.9ak\sqrt{(p-d)d},$$

when the difference between the two pressures is more than 58 per cent.

The following table, compiled by D. K. Clark from experiments by Brownlee, will be useful in this connection.

Outflow of Steam from a given Initial Pressure into Various Lower Pressures.

Absolute initial pressure in boiler 75 pounds per square inch.

(D. K. Clark.)

		(D. K	. Clark.)		
Absolute pressure in boiler, in pounds, per square inch.	External pressure, in pounds, per square inch.	Ratio of expansion in nozzle.	Velocity of outflow at constant density, in feet, per second.	Actual velocity of outflow ex- panded, in feet, per second.	Discharge per square inch of orifice, in pounds, per minute.
75 75 75 75 75 75 75 75 75	74.00 72.00 70.00 65.00 61.62 60.00 50.00 45.00 43.46 (58%)	1.012 1.037 1.063 1.136 1.198 1.219 1.434 1.575 1.624 1.624	227.5 386.7 490.0 660.0 736.0 765.0 873.0 890.0 890.6 890.6	230.0 401.0 521.0 749.0 876.0 933.0 1252.0 1401.0 1446.5 1446.5	16.68 28.35 35.93 48.38 53.97 56.12 64 00 65.24 65.3 65.3

Napier's rule, which is a close approximation, is that the absolute pressure, in pounds, per square inch, multiplied by the area in square inches, divided by 70, equals the discharge, in pounds, per second.

Brownlee's formula for the discharge of steam of varying pressures of

the atmosphere is

$$v = 3.5953 \sqrt{h}$$

in which v = the velocity of outflow, in feet, per second as for steam of the initial density, and h = the height, in feet, of a column of steam of the given absolute initial pressure of uniform density, the weight of which is equal to the pressure on the unit of base.

Example. Boiler pressure, 80 pounds per square inch above the atmosphere. With what velocity will steam flow out of an orifice in the shell,—for example, a safety valve?

Here the absolute pressure = 80 + 14.7 = 94.7 pounds per square inch. The volume of *one pound* of steam at this pressure = 4.56 cubic feet; consequently, the height of a column of this steam 1 inch square, and weighing 94.7 pounds, will be

$$4.56 \times 144 \times 94.7 = 62183.81 \text{ feet} = h.$$

Then by the formula the velocity of outflow will be

$$v = 3.5953\sqrt{h} = 3.5953\sqrt{62183.81} = 3.5953 \times 249.37 = 896$$
 feet per second.

To find the amount of steam discharged from an orifice of any given size in a given time, we have merely to multiply the area of the orifice by the above velocity, and this product by the time in seconds, to obtain the volume of steam discharged, from which it is easy to calculate its weight by reference to a steam table.

Velocity of Efflux of Steam into the Atmosphere.

Pressure per gauge.	Velocity of discharge, in feet, per second.	Pounds of steam discharged, per minute, per square inch of opening.	Pressure per gauge.	Velocity of discharge, in feet, per second.	Pounds of steam discharged, per minute, per square inch of opening.
10	861	22.2	70	894	73.5
15	867	26.6	75	895	77.6
20	871	30.9	80	896	81.9
25	874	35.3	85	898	86.0
30	877	39.5	90	899	90.3
35	880	43.8	95	900	94.4
40	882	48.0	100	902	98.6
45	884	52.3	110	904	106.9
50	886	56.5	120	906	115.2
55	888	60.7	130	908	123.5
60	890	65.0	140	910	131.9
65	892	69.3	150	912	140.2
		8			

Flow of Steam in Pipes.

The quantity of steam flowing through a pipe under a given head increases directly as the square root of the density of the loss of pressure, and inversely as the square root of the length. A formula used for flow

 $\left| \frac{H}{L} D \right|$, in which V = velocity, in feet, per of steam in pipes is V = 50

second, L = length, and D = diameter of pipe, in feet, H = height, in feet, of a column of steam of the pressure of the steam at the entrance, which would produce a pressure equal to the difference of pressures at the two ends of the pipe.

If Q = quantity, in cubic feet, per minute, d = diameter, in inches, L_{res} and H being in feet, formula reduces to

$$Q = 4.7233\sqrt{\frac{H}{L}}d^5$$
, $H = .0448\frac{Q^2L}{d^5}$, $d = .5374\sqrt[5]{\frac{Q^2L}{H}}$.

A pipe 1 inch in diameter, 100 feet long, carrying steam of 100 pounds gauge-pressure at 6000 feet velocity per minute, would have a loss of pressure of 8.8 pounds per square inch, while steam travelling at the same velocity in a pipe 8.8 inches in diameter would lose only 1 pound pressure.

The following generally-accepted formula gives the weight of steam which, with a given vertical pressure, will flow through a given pipe:

W = weight, in pounds avoirdupois; D =density or weight per cubic foot; d =diameter, in inches;

 $p_1 = initial pressure;$ $p_2 =$ pressure at end of pipe; L = length, in feet.

$$W = 87 \sqrt{\frac{D(p_1 - p_2)d^5}{L\left(1 + \frac{3.6}{d}\right)}}.$$

Flow of Steam through Pipes.

e by gauge, square inch.		Diameter of pipe, in inches. Length of each = 240 diameters.												
sur	3/4	1	1½	2	2½	3	4	5	6	8	10	12	15	18
Initial pres	Weight of steam per minute, in pounds, with 1 pound loss of pressure.												э.	
1	1.16	2.07	5.7	10.27	15.45	25.38	46.85	77.3	115.9	211.4	341.1	502.4	804	1177
10	1.44	2.57	7.1	12.72	19.15	31.45	58.05	95.8	143.6	262.0	422.7	622.5	996	1458
20	1.70	3.02	8.3	14.94	22.49	36.94	68.20	112.6	168.7	307.8	496.5	731.3	1170	1713
30	1.91	3.40	9.4	16.84	25.35	41.63	76.84	126.9	190.1	346.8	559.5	824.1	1318	1930
40	2.10			18.51						381.3				
50	2.27			20.01						412.2			_	
60	2.43			21.38						440.5		1046.7		
70	2.57						103.37					1108.5	_	
80	2.71						108.74					1166.1		
90							113.74					1219.8		
100	_	_					118.47					1270.1		
120				_			127.12					1363.3	_	
150	3.45	6.14	17.0	30.37	45.72	75.09	138.61	228.8	343.0	625.5	1009.2	1486.5	2378	3481

For any loss of pressure, multiply by the square root of the proposed

For any other length of pipe, divide 240 by the given length expressed in diameters, and multiply the table figures by the square root of this quotient to get the flow for 1 pound loss of pressure. The resistance due to steam entering pipe = 60 diameters additional length; to a globe valve = 60; to an elbow = 40, or $\frac{2}{3}$ of a globe valve. All these equivalents must be added in getting out total length of pipe, with corresponding losses.

Moisture in Steam.

Various methods have been devised for determining the percentage of moisture in steam, but the principal difficulty involved in their use lies in the impossibility of obtaining an average sample of the steam. Professor J. E. Denton has shown that the appearance of an escaping jet of steam will reveal to the eye the presence or absence of moisture up to about 2 per cent. of moisture. If the jet be transparent close to the orifice, the steam may be assumed to be so nearly dry that no portable condensing calorimeter will be capable of measuring the small amount of moisture present. If the jet be strongly white, the amount of water may be roughly judged up to about 2 per cent., but beyond this only a calorimeter can determine the amount of moisture present. meter can determine the amount of moisture present.

In the appendix to the report of the committee of the American Society of Mechanical Engineers on steam boiler trials, Mr. Kent says: "For scientific research and in all cases in which there is reason to suspect that the moisture may exceed 2 per cent., a steam separator should be placed in the steam pipe as near to the steam outlet of the boiler as convenient, well covered with felting, all the steam made by the boiler passing through it, and all the moisture caught by it carefully weighed after being cooled. A convenient method of obtaining the weight of the drip from the separator is to discharge it through a trap into a barrel of cold water standing on a platform scale. A throttling or a separating calorimeter should be placed in the steam pipe, just beyond the steam separator, for the purpose of determining, by the sampling method, the small percentage of missure which may still be in the steam after passing through the separator." In the appendix to the report of the committee of the American Society which may still be in the steam after passing through the separator."

The formula for calculating the percentage of moisture when the throt-

tling calorimeter is used is the following:

$$w = 100 \times \frac{H - h - k(T - t)}{L},$$

in which w= percentage of moisture in the steam, H= total heat and L= latent heat per pound of steam at the pressure in the steam pipe, h= total heat per pound of steam at the pressure in the discharge side of the calorimeter, k= specific heat of superheated steam, T= temperature of the throttled and superheated steam in the calorimeter, and t= temperature due to the pressure in the discharge side of the calorimeter, $= 212^\circ$ F. at atmospheric pressure. Taking k=0.48 and t=212, the formula reduces to to

$$w = 100 \times \frac{H - 1146.6 - 0.48(T - 212)}{L}.$$

For descriptions of the throttling calorimeter of Peabody, see "Transactions of the American Society of Mechanical Engineers," Vol. X., p. 327; for the Barrus calorimeter, Vol. XI., p. 790, and Vol. XVII., p. 617; and for the Carpenter calorimeter, Vol. XII., p. 640, and Vol. XVII., p. 608.

In treating of superheated steam it is customary to give the number of

degrees of superheat,—that is, the excess of temperature over that due to the pressure, as shown in the steam tables. It is sometimes desirable to give the so-called "quality" of the steam, this being the percentage of excess heat.

The quality of the superheated steam is determined from the number of degrees of superheating by using the following formula:

$$Q = \frac{L + 0.48(T - t)}{L},$$

in which L is the latent heat, in British thermal units, in 1 pound of steam of the observed pressure; T, the observed temperature; and t, the normal temperature due to the pressure. This normal temperature should be determined by obtaining a reading of the thermometer when the fires are in a dead condition and the superheat has disappeared, this temperature being observed when the pressure as shown by the gauge is the average of the readings taken during the trial.

STEAM BOILERS.

A steam boiler is essentially a device for the conversion of water from the liquid to the gaseous state by the means of heat. Its performance should therefore be based entirely upon thermal considerations: the conversion of the energy in the fuel into energy in the steam, regardless of the use to which the steam is to be put. To speak of the horse-power of a boiler is distinctly unscientific, and is to be as strongly discouraged as the expressions horse-power of a feed-water heater, of a condenser, of a chim ney, or any similar device. The capacity of a boiler is fully indicated by a statement of the quantity of water it is capable of evaporating in a given time, and its economy by the proportion of combustible required to the quantity of water evaporated.

quantity of water evaporated.

The fact that the number of pounds of water evaporated to equal a boiler horse-power has varied from time to time shows the unsuitability of the application of the term to a steam boiler. At the same time, the commercial requirements of the business demand some definition of a boiler horse-power, and at the present time the evaporation of 30 pounds of water from feed water at a temperature of 100° F., as established by the judges of the Centennial Exhibition of 1876, may be used. It is always desirable, however, that the capacity of a boiler should be stated in terms of the number of pounds of water it will evaporate, from and at the boiling-point.

According to the steam tables, it will be seen that 965.7 B. T. U. are required to convert a pound of water at 212° to a pound of steam at the same temperature. If we assume a pound of combustible in the fuel to be capable of supplying 14,500 B. T. U., a perfectly efficient steam boiler would be capable of evaporating

$$\frac{14500}{965.7}$$
 = 15.015 pounds

of water for every pound of combustible burned. The actual efficiency of a boiler, therefore, is found by dividing the actual evaporation by 15.015. Thus, if a boiler evaporates 10 pounds of water per pound of combustible, its efficiency is

$$\frac{10}{15.015} = 0.66,$$

or 66 per cent.

In order to compute beforehand the proportions which will give the best efficiency, the formula of Rankine may be used.

Let

E = theoretical evaporative power of fuel used, pounds of water; E' = actual evaporative power, pounds of water;

S =square feet of heating surface in boiler;

F =pounds of fuel burned per square foot of grate per hour;

A = a constant tabulated below.

Then we have

Efficiency =
$$\frac{E'}{E} = \frac{BS}{S + AF}$$
,

or

$$E' = E \frac{BS}{S + AF}.$$

The value of E varies with the composition of the coal, and may be computed by Dulong's formula or determined by a calorimeter.

The constants A and B may be taken as follows:

I. Chimney draft, hottest gases meeting hottest water, economizer in flue, B = 1, A = 0.5.

II. Ordinary flow of gases, chimney draft, B = 0.916, A = 0.5.

III. Forced draft, hottest gases meeting hottest water, B = 1, A = 0.3. IV. Forced draft, ordinary flow of gases, B = 0.95, A = 0.3.

From the above it will be seen that a high efficiency may be obtained by causing the gases to flow in such a manner as to bring the hottest por-tion into contact with that portion of the boiler containing the hottest water, the flow of water and gases being in the opposite direction; also, that a moderate rate of combustion is conducive to efficiency.

When the feed water is supplied to a boiler at a temperature of 212°, the only heat required to be supplied is that necessary to furnish the latent heat of evaporation and the heat to raise the steam to the working pressure. When, however, the feed water is not at the boiling-point, it is necessary to supply additional heat to raise it to 212° F. For this reason it is necessary to know the temperature of the feed water in order to correct the observed evaporation to the equivalent evaporation from and at 212°.

The factors for making this correction may be computed from the

formula,

$$F = \frac{H - h}{965.7}$$

H being the total heat of the steam at the given pressure, and h being the total heat of the feed water.

The table on page 594 gives factors for various temperatures.

The evaporative performance of steam boilers is such an important matter, both from a commercial and technical point of view, that it is desirable for all tests to be conducted in such a manner as to be comparable. The standard method of testing steam boilers, according to the report of the Committee of the American Society of Mechanical Engineers, enables such uniform methods of testing possible, and an abridgement of this code is here given. The complete code will be found in Volume XXI. of the "Transactions" of the Society, and may be obtained in pamphlet form.

The Committee recommends that, as far as possible, the capacity of a boiler be expressed in terms of the "number of pounds of water evaporated per hour from and at 212 degrees." It does not seem expedient, however, to abandon the widely-recognized measure of capacity of stationary or land boilers expressed in terms of "boiler horse-power."

The unit of commercial boiler horse-power adopted by the Committee of 1885 was the same as that used in the reports of the boiler tests made at the Centennial Exhibition in 1876. The Committee of 1885 reported in favor of this standard in language of which the following is an extract:

'The Committee, after due consideration, has determined to accept the Centennial standard, and to recommend that in all standard trials the commercial horse-power be taken as an evaporation of 30 pounds of water per hour from a feed-water temperature of 100° F. into steam at 70 pounds gauge pressure, which shall be considered to be equal to 34½ units of evaporation,—that is, to 34½ pounds of water evaporated from a feedwater temperature of 212° F. into steam at the same temperature. This standard is equal to 33,305 thermal units per hour."

The present Committee accepts the same standard, but reverses the order of two clauses in the statement, and slightly modifies them to read

"The unit of commercial horse-power developed by a boiler shall be taken as 34½ units of evaporation per hour,—that is, 34½ pounds of water evaporated per hour from a feed-water temperature of 212° F. into dry steam of the same temperature. This standard is equivalent to 33,317 British thermal units per hour. It is also practically equivalent to an evaporation of 30 pounds of water from a feed-water temperature of 100° F. into steam at 70 pounds gauge pressure.

Ľ.

Factors of Equivalent Evaporation from and at 212°

Rules for Conducting Boiler Trials.

Code of 1899.

- I. Determine at the outset the specific object of the proposed trial, whether it be to ascertain the capacity of the boiler, its efficiency as a steam generator, its efficiency and its defects under usual working conditions, the economy of some particular kind of fuel, or the effect of changes of design, proportion, or operation; and prepare for the trial accordingly.
- II. Examine the boiler, both outside and inside; ascertain the dimensions of grates, heating surfaces, and all important parts; and make a full record, describing the same, and illustrating special features by sketches. The area of heating surface is to be computed from the surfaces of shells, tubes, furnaces, and fire-boxes in contact with the fire or hot gases. The outside diameter of water-tubes and the inside diameter of fire-tubes are to be used in the computation. All surfaces below the mean water-level which have water on one side and products of combustion on the other are to be considered as water-heating surface, and all surfaces above the mean water-level which have steam on one side and products of combustion on the other are to be considered as superheating surface.

III. Notice the general condition of the boiler and its equipment, and record such facts in relation thereto as bear upon the objects in view.

If the object of the trial is to ascertain the maximum economy or capacity of the boiler as a steam generator, the boiler and all its appurtenances should be put in first-class condition. Clean the heating surface inside and outside, remove clinkers from the grates and from the sides of the furnace. Remove all dust, soot, and ashes from the chambers, smoke connections, and flues. Close air-leaks in the masonry and poorly-fitted cleaning doors. See that the damper will open wide and close tight. Test for air-leaks by firing a few shovels of smoky fuel and immediately closing the damper, observing the escape of smoke through the crevices, or by passing the flame of a candle over cracks in the brickwork.

IV. Determine the character of the coal to be used. For tests of the efficiency or capacity of the boiler for comparison with other boilers the coal should, if possible, be of some kind which is commercially regarded as a standard. For New England and that portion of the country east of the Allegheny Mountains, good anthracite egg coal, containing not over 10 per cent. of ash, and semi-bituminous Clearfield (Pennsylvania), Cumberland (Maryland), and Pocahontas (Virginia) coals are thus regarded. West of the Allegheny Mountains, Pocahontas (Virginia) and New River (West Virginia) semi-bituminous and Youghiogheny or Pittsburg bituminous coals are recognized as standards.* There is no special grade of coal mined in the Western States which is widely recognized as of superior quality or considered as a standard coal for boiler testing. Big Muddy lump, an Illinois coal mined in Jackson County, Illinois, is suggested as being of sufficiently high grade to answer these requirements in districts where it is more conveniently obtainable than the other coals mentioned above.

For tests made to determine the performance of a boiler with a particular kind of coal, such as may be specified in a contract for the sale of a boiler, the coal used should not be higher in ash and in moisture than that specified, since increase in ash and moisture above a stated amount is apt to cause a falling off of both capacity and economy in greater proportion

than the proportion of such increase.

V. Establish the correctness of all apparatus used in the test for weighing and measuring. These are:

1. Scales for weighing coal, ashes, and water.

2. Tanks or water-meters for measuring water. Water-meters, as a rule,

^{*} These coals are selected because they are about the only coals which possess the essentials of excellence of quality, adaptability to various kinds of furnaces, grates, boilers, and methods of firing, and wide distribution and general accessibility in the markets.

should only be used as a check on other measurements. For accurate work, the water should be weighed or measured in a tank.

3. Thermometers and pyrometers for taking temperatures of air, steam,

feed water, waste gases, etc.

4. Pressure gauges, draught gauges, etc.
The kind and location of the various pieces of testing apparatus must be left to the judgment of the person conducting the test, always keeping in mind the main object,—i.e., to obtain authentic data.

VI. See that the boiler is thoroughly heated before the trial to its usual working temperature. If the boiler is new and of a form provided with a brick setting, it should be in regular use at least a week before the trial, so as to dry and heat the walls. If it has been laid off and become cold, it should be worked before the trial until the walls are well heated.

VII. The boiler and connections should be proved to be free from leaks before beginning a test, and all water connections, including blow and extra feed pipes, should be disconnected, stopped with blank flanges, or bled through special openings beyond the valves, except the particular pipe through which water is to be fed to the boiler during the trial. During the test the blow-off and feed pipes should remain exposed to

If an injector is used, it should receive steam directly through a felted

pipe from the boiler being tested.*

If the water is metered after it passes the injector, its temperature should be taken at the point where it leaves the injector. If the quantity is determined before it goes to the injector, the temperature should be determined on the suction side of the injector, and if no change of temperature occurs other than that due to the injector, the temperature thus determined is properly that of the feed water. When the temperature changes between the injector and the boiler, as by the use of a heater or by radiation, the temperature at which the water enters and leaves the injector and that at which it enters the boiler should all be taken. In that case the weight to be used is that of the water leaving the injector, computed from the heat units if not directly measured, and the temperature, that of the water entering the boiler.

Let

w = weight of water entering the injector;

x = weight of steam entering the injector; $h_1 = \text{heat units per pound of water entering injector};$ $h_2 = \text{heat units per pound of steam entering injector};$ $h_3 = \text{heat units per pound of water leaving injector};$

Then

w + x = weight of water leaving injector,

$$x = w \frac{h_3 - h_1}{h_2 - h_3}.$$

See that the steam main is so arranged that water of condensation cannot run back into the boiler.

VIII. Duration of the Test.-For tests made to ascertain either the maximum economy or the maximum capacity of a boiler, irrespective of the particular class of service for which it is regularly used, the duration should be at least 10 hours of continuous running. If the rate of combustion exceeds 25 pounds of coal per square foot of grate surface per hour, it may be stopped when a total of 250 pounds of coal has been burned per square foot of grate.

^{*} In feeding a boiler undergoing test with an injector taking steam from another boiler, or from the main steam pipe from several boilers, the evaporative results may be modified by a difference in the quality of the steam from such source compared with that supplied by the boiler being tested, and in some cases the connection to the injector may act as a drip for the main steam pipe. If it is known that the steam from the main pipe is of the same pressure and quality as that furnished by the boiler undergoing the test, the steam may be taken from such main pipe.

In cases where the service requires continuous running for the whole 24 hours of the day, with shifts of fireman a number of times during that

period, it is well to continue the test for at least 24 hours.

When it is desired to ascertain the performance under the working conditions of practical running, whether the boiler be regularly in use 24 hours a day or only a certain number of hours out of each 24, the fires being banked the balance of the time, the duration should not be less than 24 hours.

- IX. Starting and Stopping a Test .- The conditions of the boiler and furnace in all respects should be, as nearly as possible, the same at the end as at the beginning of the test. The steam pressure should be the same, the water-level the same, the fire upon the grates should be the same in quantity and condition, and the walls, flues, etc., should be of the same temperature. Two methods of obtaining the desired equality of conditions of the fire may be used,—viz., those which were called in the Code of 1885 "the standard method" and "the alternate method," the latter being employed where it is inconvenient to make use of the standard method.*
- X. Standard Method of Starting and Stopping a Test.—Steam being raised to the working pressure, remove rapidly all the fire from the grate, close the damper, clean the ash-pit, and as quickly as possible start a new fire with weighed wood and coal, noting the time and the water-

level,† while the water is in a quiescent state, just before lighting the fire.

At the end of the test remove the whole fire, which has been burned low, clean the grates and ash-pit, and note the water-level when the water is in a quiescent state, and record the time of hauling the fire. The waterlevel should be as nearly as possible the same as at the beginning of the test. If it is not the same, a correction should be made by computation,

and not by operating the pump after the test is completed.

- XI. Alternate Method of Starting and Stopping a Test.—The boiler being thoroughly heated by a preliminary run, the fires are to be burned low and well cleaned. Note the amount of coal left on the grate as nearly as it can be estimated; note the pressure of steam and the water-level; note the time, and record it as the starting time. Fresh coal, which has been weighed, should now be fired. The ash-pits should be thoroughly cleaned at once after starting. Before the end of the test the fires should be burned low, just as before the start, and the fires cleaned in such a manner as to leave a bed of coal on the grates of the same depth, and in the same condition, as at the start. When this stage is reached, note the time, and record it as the stopping time. The water-level and steam pressures should previously be brought as nearly as possible to the same point as at the start. If the water-level is not the same as at the start, a correction should be made by computation, and not by operating the pump after the test is completed.
- XII. Uniformity of Conditions.—In all trials made to ascertain maximum economy or capacity the conditions should be maintained uniformly constant. Arrangements should be made to dispose of the steam so that the rate of evaporation may be kept the same from beginning to end. This may be accomplished in a single boiler by carrying the steam through a waste steam pipe, the discharge from which can be regulated as desired. In a battery of boilers, in which only one is tested, the draught may be regulated on the remaining boilers, leaving the test boiler to work under a constant rate of production.
 Uniformity of conditions should prevail as to the pressure of steam,

^{*} The Committee concludes that it is best to retain the designations "standard" and "alternate," since they have become widely known and established in the minds of engineers and in the reprints of the Code of 1885. Many engineers prefer the "alternate" to the "standard" method, on account of its being less liable to error due to cooling of the boiler at the beginning and end of a test.

† The gauge glass should not be blown out within an hour before the water-

level is taken at the beginning and end of a test, otherwise an error in the reading of the water-level may be caused by a change in the temperature and density of the water in the pipe leading from the bottom of the glass into the boiler.

the height of water, the rate of evaporation, the thickness of fire, the times of firing and quantity of coal fired at one time, and as to the inter-

vals between the times of cleaning the fires.

The method of firing to be carried on in such tests should be dictated by the expert or person in responsible charge of the test, and the method adopted should be adhered to by the fireman throughout the test.

XIII. Keeping the Records.—Take note of every event connected with the progress of the trial, however unimportant it may appear. Record the time of every occurrence and the time of taking every weight

and every observation.

The coal should be weighed and delivered to the fireman in equal proportions, each sufficient for not more than one hour's run, and a fresh portion should not be delivered until the previous one has all been fired. The time required to consume each portion should be noted, the time being recorded at the instant of firing the last of each portion. It is desirable that at the same time the amount of water fed into the boiler should be accurately noted and recorded, including the height of the water in the boiler and the average pressure of steam and temperature of feed during the time. By thus recording the amount of water evaporated by successive portions of coal, the test may be divided into several periods, if desired, and the degree of uniformity of combustion, evaporation, and economy analyzed for each period. In addition to these records of the coal and the feed water, half-hourly observations should be made of the temperature of the feed water, of the flue gases, of the external air in the boiler-room, of the temperature of the furnace when a furnace pyrometer is used; also, of the pressure of steam and of the readings of the instruments for determining the moisture in the steam. A log should be kept on properly-prepared blanks containing columns for record of the various observations.

When the "standard method" of starting and stopping the test is used the hourly rate of combustion and of evaporation and the horse-power should be computed from the records taken during the time when the fires are in active condition. This time is somewhat less than the actual time which elapses between the beginning and end of the run. The loss of time due to kindling the fire at the beginning and burning it out at the

end makes this course necessary.

XIV. Quality of Steam.—The percentage of moisture in the steam should be determined by the use of either a throttling or a separating steam calorimeter. The sampling nozzle should be placed in the vertical steam pipe rising from the boiler. It should be made of ½-inch pipe, and should extend across the diameter of the steam pipe to within half an inch of the opposite side, being closed at the end and perforated with not less than twenty ½-inch holes equally distributed along and around its cylindrical surface, but none of these holes should be nearer than ½-inch to the inner side of the steam pipe. The calorimeter and the pipe leading to it should be well covered with felting. Whenever the indications of the throttling or separating calorimeter show that the percentage of moisture is irregular, or occasionally in excess of 3 per cent., the results should be checked by a steam separator placed in the steam pipe as close to the boiler as convenient, with a calorimeter in the steam pipe just beyond the outlet from the separator. The drip from the separator should be caught and weighed, and the percentage of moisture computed therefrom added to that shown by the calorimeter.

Superheating should be determined by means of a thermometer placed in a mercury-well inserted in the steam pipe. The degree of superheating should be taken as the difference between the reading of the thermometer for superheated steam and the readings of the same thermometer for saturated steam at the same pressure, as determined by a special experiment,

and not by reference to steam tables.

XV. Sampling the Coal and Determining its Moisture.—As each barrow-load or fresh portion of coal is taken from the coal-pile a representative shovelful is selected from it and placed in a barrel or box in a cool place and kept until the end of the trial. The samples are then mixed and broken into pieces not exceeding 1 inch in diameter, and reduced by the process of repeated quartering and crushing until a final sample weighing about 5 pounds is obtained and the size of the larger pieces is such that they will pass through a sieve with ¼-inch meshes. From this

sample two 1-quart, air-tight glass preserving jars, or other air-tight vessels which will prevent the escape of moisture from the sample, are to be promptly filled, and these samples are to be kept for subsequent determinations of moisture and of heating value and for chemical analyses. During the process of quartering, when the sample has been reduced to about 100 pounds, a quarter to a half of it may be taken for an approximate determination of moisture. This may be made by placing it in a shallow iron pan not over 3 inches deep, carefully weighing it, and setting the pan in the hottest place that can be found on the brickwork of the boiler setting or flues, keeping it there for at least 12 hours, and then The determination of moisture thus made is believed to be weighing it. approximately accurate for anthracite and semi-bituminous coals, and also for Pittsburg or Youghiogheny coal; but it cannot be relied upon for coals mined west of Pittsburg, or for other coals containing inherent moisture. For these latter coals it is important that a more accurate method be adopted. The method recommended by the Committee for all

accurate tests, whatever the character of the coal, is described as follows:

Take one of the samples contained in the glass jars and subject it to a thorough air-drying by spreading it in a thin layer and exposing it for several hours to the atmosphere of a warm room, weighing it before and after, thereby determining the quantity of surface moisture it contains. Then crush the whole of it by running it through an ordinary coffee-mill, adjusted so as to produce somewhat coarse grains (less than 15 inch), thoroughly mix the crushed sample, select from it a portion of from 10 to thoroughly mix the crushed sample, select from it a portion of from 10 to 50 grams, weigh it in a balance which will easily show a variation as small as 1 part in 1000, and dry it in an air- or sand-bath at a temperature between 240° and 280° F. for one hour. Weigh it and record the loss, then heat and weigh it again repeatedly, at intervals of an hour or less, until the minimum weight has been reached and the weight begins to increase by oxidation of a portion of the coal. The difference between the original and the minimum weight is taken as the moisture in the air-dried coal. This moisture test should preferably be made on duplicate semples and This moisture test should preferably be made on duplicate samples, and the results should agree within 0.3 to 0.4 of one per cent., the mean of the two determinations being taken as the correct result. The sum of the percentage of moisture thus found and the percentage of surface moisture previously determined is the total moisture.

XVI. Treatment of Ashes and Refuse.—The ashes and refuse are to be weighed in a dry state. If it is found desirable to show the principal characteristics of the ash, a sample should be subjected to a proximate analysis and the actual amount of incombustible material determined. For elaborate trials a complete analysis of the ash and refuse should be made.

XVII. Calorific Tests and Analysis of Coal.—The quality of the

fuel should be determined either by heat test or by analysis, or by both.

The rational method of determining the total heat of combustion is to burn the sample of coal in an atmosphere of oxygen gas, the coal to be sampled as directed in Article XV. of this code.

The chemical analysis of the coal should be made only by an expert The total heat of combustion computed from the results of the chemist. ultimate analysis may be obtained by the use of Dulong's formula (with constants modified by recent determinations), -viz., $14600C + 62000 \left(H - \frac{O}{8}\right)$

+4000S, in which C, H, O, and S refer to the proportions of carbon, hydrogen, oxygen, and sulphur, respectively, as determined by the ultimate analysis.*

It is desirable that a proximate analysis should be made, thereby determining the relative proportions of volatile matter and fixed carbon. These proportions furnish an indication of the leading characteristics of the fuel, and serve to fix the class to which it belongs. As an additional indication of the characteristics of the fuel the specific gravity should be determined.

^{*} Favre and Silberman give 14,544 B. T. U. per pound carbon; Berthelot, 14,647 B. T. U. Favre and Silberman give 62,032 B. T. U. per pound hydrogen; Thomsen, 61,816 B. T. U.

XVIII. Analysis of Flue Gases .- The analysis of the flue gases is an especially valuable method of determining the relative value of different methods of firing or of different kinds of furnaces. In making these methods of firing or of different kinds of furnaces. In making these analyses great care should be taken to procure average samples, since the composition is apt to vary at different points of the flue. The composition is also apt to vary from minute to minute, and for this reason the drawings of gas should last a considerable period of time. Where complete determinations are desired, the analyses should be intrusted to an expert chemist. For approximate determinations the Orsat* or the Hempel† apparatus may be used by the engineer.

For the continuous indication of the amount of carbonic acid present in the flue gases an instrument may be employed which shows the weight of the sample of gas passing through it.

of the sample of gas passing through it.

XIX. Smoke Observations.—It is desirable to have a uniform system of determining and recording the quantity of smoke produced where bituminous coal is used. The system commonly employed is to express the degree of smokiness by means of percentages dependent upon the judgment of the observer. The Committee does not place much value upon a percentage method, because it depends so largely upon the personal element, but if this method is used it is desirable that, so far as possible, a definition be given in explicit terms as to the basis and method employed in arriving at the percentage. The actual measurement of a sample of soot and smoke by some form of meter is to be preferred.

XX. Miscellaneous.—In tests for purposes of scientific research, in which the determination of all the variables entering into the test is desired, certain observations should be made which are in general unnecessary for ordinary tests. These are the measurement of the air-supply, the determination of its contained moisture, the determination of the amount of heat lost by radiation, of the amount of infiltration of air through the setting, and (by condensation of all the steam made by the boiler) of the total heat imparted to the water.

As these determinations are rarely undertaken, it is not deemed ad-

visable to give directions for making them.

XXI. Calculations of Efficiency.—Two methods of defining and calculating the efficiency of a boiler are recommended. They are,—

- Heat absorbed per pound of combustible 1. Efficiency of the boiler $=\frac{1}{\text{Calorific value of 1 pound of combustible'}}$

The first of these is sometimes called the efficiency based on combustible, and the second the efficiency based on coal. The first is recommended as a standard of comparison for all tests, and this is the one which is understood to be referred to when the word "efficiency" alone is used without qualification. The second, however, should be included in a record of a test together with the first whomever the chief the second in a second of the secon report of a test, together with the first, whenever the object of the test is to determine the efficiency of the boiler and furnace together with the grate (or mechanical stoker), or to compare different furnaces, grates,

The heat absorbed per pound of combustible (or per pound of coal) is to be calculated by multiplying the equivalent evaporation from and at

212° per pound of combustible (or of coal) by 965.7.

XXII. The Heat Balance.—An approximate "heat balance," or statement of the distribution of the heating value of the coal among the several items of heat utilized and heat lost, may be included in the report of a test when analyses of the fuel and of the chimney gases have been made. It should be reported in the following form:

^{*}See R. S. Hale's paper on "Flue Gas Analysis," "Transactions of the American Society of Mechanical Engineers," Vol. XVIII., p. 109. † See Hempel's "Methods of Gas Analysis" (Macmillan & Co.).

Heat Balance, or Distribution of the Heating Value of the Combustible.

Total heat value of 1 pound of combustible..... B. T. U.

	B. T. U.	Per cent.
1. Heat absorbed by the boiler = evaporation from and at 212° per pound of combustible × 965.7.		
2. Loss due to moisture in coal = per cent. of moisture referred to combustible \div 100 \times [(212 $-t$) + 966 + 0.48 (T -212)] (t = temperature of air in the boilerroom, T = that of the flue gases).		
3. Loss due to moisture formed by the burning of hydrogen = per cent. of hydrogen to combustible \div $100 \times 9 \times [(212-t) + 966 + 0.48 (T-212)].$		
4.* Loss due to heat carried away in the dry chimney gases = weight of gas per pound of combustible \times 0.24 \times ($T-t$).		
5.† Loss due to incomplete combustion of carbon =		
$\frac{\text{CO}}{\text{CO}_2 + \text{CO}} \times \frac{\text{per cent. C in combustible}}{100} \times 10150.$		
6. Loss due to unconsumed hydrogen and hydro- carbons, to heating the moisture in the air, to radiation, and unaccounted for. (Some of these losses may be separately itemized if data are ob- tained from which they may be calculated.)		-
Totals		100

XXIII. Report of the Trial.—The data and results should be reported in the manner given in either one of the two following tables, omitting lines where the tests have not been made as elaborately as provided for in such tables. Additional lines may be added for data relating to the specific object of the test. The extra lines should be classified under the headings provided in the tables, and numbered as per preceding line, with sub-letters a, b, etc. The short form of report, Table No. 2, is recommended for commercial tests and as a convenient form of abridging the longer form for publication when saving of space is desirable. For elaborate trials it is recommended that the full log of the trial be shown graphically, by means of a chart.

The weight of dry gas per pound of combustible is found by multiplying the dry gas per pound of carbon by the percentage of carbon in the combustible, and

dividing by 100.

^{*} The weight of gas per pound of carbon burned may be calculated from the gas analyses, as follows:

Dry gas per pound carbon $=\frac{11\text{CO}_2+80+7(\text{CO}+\text{N})}{3(\text{CO}_2+\text{CO})}$, in which CO_2 , CO, 0, and N are the percentages by volume of the several gases. As the sampling and analyses of the gases in the present state of the art are liable to considerable errors, the result of this calculation is usually only an approximate one. The heat balance itself is also only approximate for this reason, as well as for the fact that it is not possible to determine accurately the percentage of unburned hydrogen or hydrocarbons in the flue gases.

 $[\]dagger$ CO₂ and CO are respectively the percentage by volume of carbonic acid and carbonic oxide in the flue gases. The quantity 10150 = number of heat units generated by burning to carbonic acid 1 pound of carbon contained in carbonic oxide.

TABLE No. 2.

Data and Results of Evaporative Test.

Arranged in accordance with the Short Form advised by the Boiler Test Committee of the American Society of Mechanical Engineers.

Code of 1899.

Committee of the American Society of Mechanical	Engineers.
Code of 1899.	
Made byboiler, at	
determine	
Kind of fuel	
Kind of furnace	
"alternate," Art. X. and XI., Code)	
Grate surface	sq. ft.
Water-heating surface	sq. ft.
Superheating surface	sq. ft.
Total Quantities.	
1. Date of trial	hours
3. Weight of coal as fired	lbs.
4. Percentage of moisture in coal 5. Total weight of dry coal consumed	per cent.
5. Total weight of dry coal consumed	lbs.
6. Total ash and refuse	lbs.
8. Total weight of water fed to the boiler	per cent.
9. Water actually evaporated, corrected for moisture or	TUS.
superheat in steam	lbs.
superheat in steam 10. Equivalent water evaporated into dry steam from and	
at 212°	lbs.
Hounty Our maiding	
Hourly Quantities.	
11. Dry coal consumed per hour	lbs.
12. Dry coal per square foot of grate surface per hour13. Water evaporated per hour, corrected for quality of	IDS.
steam	lbs.
14. Equivalent evaporation per hour from and at 212°	lbs.
15. Equivalent evaporation per hour from and at 212° per	
square foot of water-heating surface	lbs.
Avenage Programes Temporatures et	
Average Pressures, Temperatures, et	
16. Steam pressure by gauge	lbs. per sq. in.
17. Temperature of feed water entering boiler	deg.
18. Temperature of escaping gases from boiler	ins, of water.
20. Percentage of moisture in steam, or number of degrees	***************************************
of superheating	per cent. or deg.
Horas power	
Horse-power.	TT D
21. Horse-power developed (Item $14 \div 34\frac{1}{2}$)	н. Р.
22. Builders' rated horse-power	ner cent.
25. Terechtage of banders fatted horse power developed.	per centa
Economic Results.	
24. Water apparently evaporated under actual conditions	
per pound of coal as fired (Item $8 \div \text{Item } 3) \dots$	lbs.
25. Equivalent evaporation from and at 212° per pound of	21
coal as fired (Item 10 ÷ Item 3)	IDS.
26. Equivalent evaporation from and at 212° per pound of dry coal (Item 10 ÷ Item 5)	lbs
dry coal (Item 10 ÷ Item 5)	A NO.
combustible [Item $10 \div (\text{Item } 5 - \text{Item } 6)$]	lbs.
(If Items 25, 26, and 27 are not corrected for quality of	

(If Items 25, 26, and 27 are not corrected for quality of steam, the fact should be stated.)

Efficiency.

29. Calorific value of the combustible per pound B. T.	J.
	J.
30. Efficiency of boiler (based on combustible) per ce	

31. Efficiency of boiler, including grate (based on dry coal) per cent.

Cost of Evaporation.

Although the capacity of a boiler should be specified by the quantity of water it is capable of evaporating per hour, it is often necessary to state the dimensions and proportions to be furnished. Certain general relations of heating and grate surface have come to be recognized as representing evaporative capacity, and although this practice is to be discouraged, it cannot be ignored.

The area of heating surface allowed for 1 horse-power, or the evaporation of 30 pounds of water from 100° F. per hour, is usually about 12 square feet for return tubular or water-tube boilers, with about ½ of a square foot of grate surface per horse-power. The proportion of heating surface varies, however, for various kinds of boilers, and the following formula may be used for the determination of the heating surface in designing boilers:

Let

S = heating surface. in square feet;

Q =quantity of water evaporated per hour; t = total heat of steam at the working pressure in the boiler;

C = constant, as per table below.

Then

$$S = C \frac{Q}{t}$$
.

Values of constant C:

Locomotive boilers	C = 90
Marine Scotch boilers	
Cornish boilers	
Plain cylinder boilers	C = 280
Return tubular boilers	
Water-tube boilers	C = 400

Thus, for a return tubular boiler to evaporate 5000 pounds of water per hour into steam at 160 pounds pressure, we have Q = 5000; t, by steam table, = 1195.4; C = 400; hence,

$$S = 400 \frac{5000}{1195.4} = 1677$$
 square feet.

Since 5000 pounds of water, at 30 pounds to the horse-power, is 166 horse-

power, this corresponds to about 10 square feet per horse-power.

flat horizontal surface above the fire, is as follows:

In estimating the heating surface, all parts of a boiler are not equally efficient. Rankine says that, on an average, from ¾ to § of the total heating surface may be taken as effective heating surface. In computing the heating surface of tubes the side next to the heated gases should be taken.

The relative value of different forms of heating surface, compared with

1 square foot of flat horizontal surface above the fire, such as the crown-plate of the fire-box of the boiler of a locomotive engine 1.00

1 square foot of circular surface above and concave to the fire, such as the crown-plates of the circular furnace of an internally-fired boiler

1 square foot of circular surface above and convex to the fire, such as the surface plates of an externally-fired plain cylindrical boiler	.90
1 square foot of flat surface at right angles to the current of gases, exposed to direct impingement of flame, such	.80
8	.70
1 square foot of sloping surface at the side of and inclined towards the fire, such as the sides of a fire-box when in- clined sufficiently to facilitate evaporation	.65
1 square foot of vertical surface at the side of the fire, such as the sides of a fire-box when vertical	.50
1 square foot of the surface of the tubes of a locomotive boiler, contained in a length not exceeding 3 feet from the fire-box tube-plate	.30

Horizontal surfaces below the fire and the under portions of internallyheated tubes have practically no evaporative value, and cannot be considered as effective heating surface, therefore the lower half of a furnace tube below the grate bars should not be included in calculating the heating surface of a steam boiler.

The draught area through the tubes of a boiler should be proportional to the area of the grate, and also depends upon the intensity of the draught. For natural chimney draught the area is usually made about 0.2 of the grate area; it may reach 0.25, or fall as low as 0.125, but these are extremes. The ratio of grate surface to heating surface varies according to the type of boilers. Accepted proportions are as follows:

Ratio of Grate to Heating Surface.

Type of boiler.	Ratio.
Scotch marine boiler	25 to 38
Lancashire	26 to 33
Cornish	25 to 40
Horizontal return tubular	30 to 50
Water tube	35 to 65
Locomotive	60 to 90
Plain cylinder	10 to 15

The quantity of water evaporated for a given combustion of fuel, when the proportions of heating and grate surface are given, may be determined by the formulas of D. K. Clark.

Let

w = weight of water, in pounds, per square foot of grate per hour;

c =pounds of fuel per square foot of grate per hour;

r =ratio of heating to grate surface.

Then we have for

Stationary boilers	$w = 0.0222r^2 + 9.56c$
Marine boilers	
Portable engine boilers	
Locomotive boilers	$w = 0.009r^2 + 9.7c$

CHIMNEYS.

The proportions of chimneys to furnish proper draught for steam boilers depend upon so many variables that it is impracticable to give absolute rational formulas, and hence empirical rules are used.

rational formulas, and hence empirical rules are used.

It is generally assumed that the area should bear a direct proportion to the quantity of fuel burned, and an inverse proportion to the square root of the height. The force of draught, however, has not only to draw the air in to maintain combustion, but must enable it to overcome the resistance of the fuel bed upon the grate, and this is always an indeterminate resistance. Moreover, the force of the draught depends upon the temperature of the discharge gases; but this latter should not be too high, or heat will be lost which should have been absorbed by the boiler. The entire subject will be found very fully discussed in the "Transactions of the American Society of Mechanical Engineers," Vol. XI., pp. 451, 974, and 984.

A common, ready rule for chimney area is to make it equal to one-tenth of the area of the grate. Mr. A. F. Nagle gives the rule to allow 2 square inches of chimney area for every pound of coal burned per hour.

The following formulas are given by their respective authors, as based

The following formulas are given by their respective authors, as based upon the results of experience, taking into account the investigations of Péclet, Rankine, and others.

Let

 $A = ext{area of chimney, in square feet;} \ h = ext{height, in feet;} \ F = ext{total number of pounds of coal burned per hour;} \ t = ext{temperature of discharge gases;}$

G = grate area, in square feet.

Then

$$A = \frac{0.0825F}{\sqrt{h}},$$

$$h = \left(\frac{0.0825F}{A}\right)^{2},$$
 Smith;

OT

$$A = \frac{0.06F}{\sqrt{h}},$$
 $h = \left(\frac{0.06F}{A}\right)^2,$ Kent;

or

$$A = 0.07 F^{\frac{2}{3}},$$

$$h = \frac{180}{t} \left(\frac{F}{G}\right)^{2},$$
 Gale.

The last formulas, it will be observed, do not make the height and area interchangeable, and for that reason they are to be preferred. Colonel E. D. Meier suggests the use of Gale's formula for heights, so modified as to read:

$$h = \frac{120}{t} \left(\frac{F}{G}\right)^2,$$

after which any other formula, such as Kent's, may be used to find the area. The following table has been computed by Colonel Meier for heights and areas of boiler chimneys, based on an assumed evaporation of 7 pounds of water per pound of coal, which is equivalent to the combustion of 5 pounds of coal per horse-power per hour. If the coal burned per hour is given, divide by 5, and take the chimney dimensions for the corresponding between them. sponding horse-power.

Table of Chimney Dimensions.

ате	in						н	eight	s, in f	eet.				,
in square	f,	75	80	85	90	95	100	110	120	130	140	150	175	200
Area, feet.	Diamete inches.					C	omm	ercia	l horse	-powe	r.			
3.14	24	75	78	81										
3.69	26	90	92	95	98									
4.28	28		106	110	114	117	120							
4.91	30		122	127	130	133	137							
5.59	32			144	149	152	156	164						
6.31	34			162	168	171	176	185						
7.07	36				188	192	198	208	215					
8.73	40					237	244	257	267	279				
10.56	44					287	296	310	322	337				
12.57	48						352	370	384	400	413			
15.90	54						445	468	484	507	526	,		
19.63	60							577	600	627	650	672		
23.76	66							697	725	758	784	815		
28.27	72							• • • •	862	902	932	969	1044	
38.48	84								1173	1229	1270	1319	1422	
50.27	96									1584	1660	1725	1859	1983
63.62	108									2058	2102	2181	2352	2511
78.54	120							• • • •	••••	• • • • •	2596	2693	2904	3100

The following formulas for chimney dimensions, for use in the metric system, are given in the "Ingenieurs Taschenbuch:" Let

d = internal diameter, in metres;

h = height, in metres;

R = grate area, in square metres; B = coal burned per hour, in kilogrammes.

Then

$$d = 0.1B^{0.4}$$
 metres,

$$h = 0.00277 \left(\frac{B}{R}\right) + 6d.$$

For use in British measures we have

d = internal diameter, in feet;

h = height, in feet;

R =grate area, in square feet;

B = coal burned per hour, in pounds.

Then

$$d = 0.242B^{0.4}$$
 feet,

$$h = 0.216 \left(\frac{B}{R}\right)^2 + 6d.$$

These appear to be the most satisfactory formulas of all. The diameter, and hence the area, is dependent solely upon the quantity of coal burned per hour, and the height is determined mainly by the rate of combustion per square foot of grate, plus 6 diameters; the latter member providing for the relation of height to diameter. With these formulas no absurd relations of height to diameter are possible, and the range of heights for various rates of combustion accord well with practice.

When the rate of combustion is not known it may be taken according to the character of the boiler and furnace. Taking the grate surface at 0.01 square foot per pound of water evaporated per hour, or about ½ square foot per horse-power, and the quantity of water evaporated per pound of coal from 5 to 10 pounds,—that is, 0.20 to 0.1 pound of coal per pound of water,—we have corresponding ratios of 10 to 20 pounds of coal per square foot of grate. It is advisable to make the chimper careballs of maintaining. foot of grate. It is advisable to make the chimney capable of maintaining

a rate of 20 pounds per square foot of grate, so that ($=20^2=400$, and this gives a minimum height of chimney for that rate as

$$h = 0.216 \times 400 = 86.4$$
 feet,

plus 6 diameters. The diameter is then determined by the total quantity of coal burned per hour; and taking this at 0.2 pound of coal per pound of water, or 6 pounds per horse-power, we have all the data necessary to determine the size of a chimney for any given evaporation of water.

Thus, for 3000 pounds of water per hour, or 100 horse-power, we have

$$B = 3000 \times 0.2 = 600,$$

 $d = 0.242 \times 600^{0.4} = 3.13,$

and

or, say, 3 feet diameter, and the height will be

$$86.4 + 18 = 104.4$$
 feet.

The areas given by these formulas are somewhat larger than many rules, and may serve for boilers of at least 25 per cent. greater capacity than close computation will indicate.

Theoretically, about 12 pounds of air are required for the combustion of 1 pound of coal; but, in practice, from 18 to 24 pounds actually pass through the furnace. This excess is found necessary to insure combustion, owing to the imperfect mixture of the air and the gases.

Draught Pressure Required for Combustion of Different Fuels.

Kind of fuel.	Total draught, in inches, of water.	Kind of fuel.	Total draught, in inches, of water.
Straw Wood Sawdust Peat, light Peat, heavy Sawdust mixed with small coal Steam coal, round Slack, ordinary	.30 .35 .4 .5	Slack, very small Coal-dust Semi-anthracite coal Mixture of breeze and slack Anthracite, round Mixture of breeze and coal-dust Anthracite slack	.7 to 1.1 .8 to 1.1 .9 to 1.2 1.0 to 1.3 1.2 to 1.4 1.2 to 1.5 1.3 to 1.8

Flue Area, in Square Inches, Required for the Passage of a Given Volume of Air at a Given Velocity.

(B. F. Sturtevant.)

Volume, in					Velo	city,	in fe	et, pe	r mi	nute.				
cubic féet, per minute.	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	,1500	1600
100	48	36	29	24	21	18	16	14	13	12	11	10	9.6	9.0
125	60	45	36	30	26	23	20	18	16	15	14	13	12.0	11.5
150	72	54	43	36	31	27	24	22	20	18	16	15	14.4	13.
175	84	63	50	42	36	32	28	25	23	21	19	18	16.8	15.
200	96	72	58	48	41	36	32	29	26	24	22	21	19.2	18.
225	108	81	65	54	46	41	36	32	29	27	25	23	21.6	20.
250	120	90	72	60	51	45	40	36	33	30	28	26	24.0	22.
275	132	99	79	66	57	50	44	40	36	33	30	28	26.4	24.
300	144	108	86	72	62	54	48	43	39	36	33	31	28.8	27.
325	156	117	94	78	67	59	52	47	43	39	36	33	31.2	29.
350	168	126	101	84	72	63	56	50	46	42	39	36	33.6	31.
375	180	135	108	90	77	68	60	54	49	45	42	39	36.0	33.
400	192	144	115	96	82	72	64	58	52	48	44	41	38.4	36.
425	204	153	122	102	87	77	68	61	56	51	47	44	40.8	38.
450	216	162	130	108	93	81	72	65	59	54	50	46	43.2	40.
475	228	171	137	114	98	86	76	68	62	57	53	49	45.6	42.
500	240	180	144	120	103	90	80	72	65	60	55	51	48.0	45.
525	252	189	151	126	108	95	84	76	69	63	58	54	50.4	47.
550	264	198	158	132	113	99	88	79	72	66	61	57	52.8	49.
575	276	207	166	138	118	104	92	83	75	69	64	59	55.2	51.
600	288	216	173	144	123	108	96	86	79	72	66	62	57.6	54.
625	300	225	180	150	129	113	100	90	82	75	69	64	60.0	56.
650	312	234	187	156	134	117	104	94	85	78	72		62.4	
675	324	243	194	162	139	122	108	97	88	81	75	69	64.8	60.
700	336	252	202	168	144	126	112	101	92	84	78	72	67.2	63.
725	348	261	209	174	149	131	116	104	95	87	80	75	69.6	65.
750	360	270	216	180	154	135	120	108	98	90	83	77	72.0	67.
775	372	279	223	186	159	140	124	112	101	93	86	80	74.4	69.
800	384	288	230	192	165	144	128	115	105	96	89	82	76.8	72.
825	396	297	238	198	170	149	132	119	108	99	91	85	79.2	74.
850	408	306	245	204	175	153	136	122	111	102	94	87	81.6	76.
875	420	315	252	210	180	158	140	126	115	105	97	90	84.0	78.
900	432	324	259	216	185	162	144	130	118	108	100		86.4	81.
925	444	333	266	222	190	167	148	133	121	111	103	95	88.8	83.
950	456	342	274	228	195	171	152	137	124	114	105	98	91.2	
975	468	351	281	234	201	176	156	140	128	117	108	100	93.6	
1000	480	360	288	240	206	180	160	144	131	120	111	103	96.0	90 (

Flue Area, in Square Inches, Required for the Passage of a Given Volume of Air at a Given Velocity.

(B. F. Sturtevant.)

	-			Velo	city,	in fe	et, pe	er mi	nute.					,	Volume, in
1700	1800	1900	2000	2100	2200	2300	2400	2600	2700	2800	2900	3000	3100		cubic feet, er minute.
8.5	8	7.6	7.2	6.9	6.6	6.3	6.0	5.5	5.3	5.1	5.0	4.8	4.6		100
10.6	10	9.5	9.0	8.6	8.2	7.8	7.5	6.9	6.7	6.4	6.2	6.0	5.8		125
12.7	12	11.4	10.8	10.3	9.8	9.4	9.0	8.0	8.0	7.7	7.5	7.2	7.0		150
14.8	14			12.0				9.7	9.3	9.0	8.7	8.4	8.1		175
16.9	16			13.7		1	1			8	9.9	9.6	9.3		200
19.1	18			15.6						17					225
21.2	20		1	17.1									1		250
23.3	22		0.00	18.9		5						1	1		275
25.4	24	22.7		20.6							10				300
27.5	26			22.3									1		325
29.6	28			24.0											350
31.8	30	28.4		25.7					1	1			1		375
33.9	32			27.4											400
36.0	34			29.1		l.	1 0			ľ	21.1				425
38.1	36			30.9		1				8					450
40.2	38			32.6					1						475
42.4	40			34.3							24.8				500
44.5	42			36.0							25.0	-			525
46.6	44	41.7		37.7											550
48.7	46		-	39.4											575
50.8	48			41.1								1			600 625
52.9	50			42.9			37.5								
55.1	52			44.6									1		650
57.2				46.3 48.0								1	1		675 700
59.3	56		ł.	49.7									1		700
63.5	60			51.4											725 750
65.6	62	1		53.1											775
67.8	1			54.9											800
69.9	66			56.6									1		825
72.0	68			58.4						43.7			1		850
74.0	11-	1	1	60.0		118				5	1		1		875
76.2	72	1		61.7					1				1		900
78.4	74	1		63.4	1				1				1		925
30.5	76	1		65.1	1								1		950
32.6	1	1		66.8	1	1		1		1					975
34.7	80	1		68.7	1								1 1		1000
1			1	į.	1	1		(1		

Pressure, in Ounces, per Square Inch.

Corresponding to Various Heads of Water, in Inches.

Head, in				Decim	nal part	s of an	inch.			
inches.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0		.06	.12	.17	.23	.29	.35	.40	.46	.52
1	.58	.63	.69	.75	.81	.87	.93	.98	1.04	1.09
2	1.16	1.21	1.27	1.33	1.39	1.44	1.50	1.56	1.62	1.67
3	1.73	1.79	1.85	1.91	1.96	2.02	2.08	2.14	2.19	2.25
4	2.31	2.37	2.42	2.48	2.54	2.60	2.66	2.72	2.77	2.83
5	2.89	2.94	3.00	3.06	3.12	3.18	3.24	3.29	3.35	3.41
6	3.47	3.52	3.58	3.64	3.70	3.75	3.81	3.87	3.92	3.98
7	4.04	4.10	4.16	4.22	4.28	4.33	4.39	4.45	4.50	4.56
8	4.62	4.67	4.73	4.79	4.85	4.91	4.97	5.03	5.08	5.14
9	5.20	5.26	5.31	5.37	5.42	5.48	5.54	5.60	5.66	5.72

Height of Water Column, in Inches.

Corresponding to Pressures, in Ounces, per Square Inch.

Pressure, in ounces,		Decimal parts of an ounce.										
per square inch.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9		
0		.17	.35	.52	.69	.87	1.04	1.21	1.38	1.56		
1	1.73	1.90	2.08	2.25	2.42	2.60	2.77	2.94	3.11	3.29		
2	3.46	3.63	3.81	3.98	4.15	4.33	4.50	4.67	4.84	5.01		
3	5.19	5.36	5.54	5.71	5.88	6.06	6.23	6.40	6.57	6.75		
4	6.92	7.09	7.27	7.44	7.61	7.79	7.96	8.13	8.30	8.48		
5	8.65	8.82	9.00	9.17	9.34	9.52	9.69	9.86	10.03	10.21		
6	10.38	10.55	10.73	10.90	11.07	11.26	11.43	11.60	11.77	11.95		
7	12.11	12.28	12.46	12.63	12.80	12.97	13.15	13.32	13.49	13.67		
8	13.84	14.01	14.19	14.36	14.53	14.71	14.88	15.05	15.22	15.40		
9	15.57	15.74	15.92	16.09	16.26	16.45	16.62	16.76	16.96	17.14		

STEAM-BOILER DETAILS. Material for Riveting.

Board of Trade. - Tensile strength of rivet bars between 26 and 30 tons; elongation in 10 inches not less than 25 per cent., and contraction of area

not less than 50 per cent.

Lloyd's.—Tensile strength, 26 to 30 tons; elongation not less than 20 per cent. in 8 inches. The material must stand bending to a curve, the inner radius of which is not greater than 1½ times the thickness of the plate, after having been uniformly heated to a low cherry-red, and quenched in water at 82° F.

United States Statutes .- No special provision. Bureau Veritas.—Tensile strength, 53,000 pounds.

German Lloyd's.—Tensile strength, 45,000 to 51,000 pounds; elongation, 23.5 per cent. to 26 per cent., depending on thickness of plate.

Rules Connected with Riveting.

Board of Trade.—The shearing resistance of the rivet steel to be taken at 23 tons per square inch, 5 to be used for the factor of safety indepenat 28 fons per square inch, 5 to be used for the factor of safety independently of any addition to this factor for the plating. Rivets in double shear to have only 1.75 times the single section taken in the calculation, instead of 2. The diameter must not be less than the thickness of the plate, and the pitch never greater than 8½ inches. The thickness of double butt straps (each) not to be less than ½ the thickness of the plate; single butt straps not less than ½.

Distance from centre of rivet to edge of hole = diameter of rivet × 1½.

Distance between rows of rivets

 $= 2 \times \text{diameter of rivet or} = [(\text{diameter} \times 4) + 1] \div 2$, if chain, and

 $\sqrt{[(\text{pitch} \times 11) + (\text{diameter} \times 4)] \times (\text{pitch} \div \text{diameter} \times 4)}$, if zigzag.

Diagonal pitch = (pitch \times 6 + diameter \times 4) \div 10.

Lloyd's.—Rivets in double shear to have only 1.75 times the single section taken in the calculation, instead of 2. The shearing strength of rivet steel to be taken at 85 per cent, of the tensile strength of the material of shell plates. In any case where the strength of the longitudinal joint is satisfactorily shown by experiment to be greater than given by the formula, the actual strength may be taken in the calculation.

United States Statutes .- No rules.

Bureau Veritas.—Shearing strength assumed = 0.8 tensile strength; at working pressure shearing strength to be $\frac{1}{4.4}$ part of full shearing strength. Double shear twice single section. Circular seams to be doubleriveted if plates exceed 1/2 inch.

German Lloyd's.—Shearing assumed = 0.8 tensile strength of plates,—factor of safety = 5 for lap joints and 1.15×5 for double butt joints,—total rivet area to be taken. Butt straps at least 0.75 of plate diameter of rivets not over twice, or less than thickness of plate for thin and thick plates, respectively. Pitch of rivets not over 8 times thickness of plate strap.

Proportions of Rivets.

Liidiston	•)			
1/4"	5//	3/8"	7.11	1/2"
5/8"	11/1	3/4"	13//	7/8"
11//	3/4"	13//	7/8"	15//
2"	21/1	21/8"	23"	21/4"
3"	31/8"	31/4"	33/8"	31/2"
.66%	.64%	.62%	.60%	.58%
.77%	.76%	.75%	.74%	.73%
	1/4" 5/8" 118" 2" 3" .66%	5%" 11" 11" 34" 2" 216" 3" 3½" .66% .64%	14" 56" 38" 58" 11" 34" 116" 34" 13" 2" 216" 21/2" 3" 31/2" 314" .66% .64% .62%	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Lloyd's Proportions for Riveted Joints. Single-riveted Joints.

Thickness of		Dial	T	Percentage.		
iron plate.	iron rivet.	Pitch.	Lap.	Plate.	Rivet.	
Inch.	Inch.	Inch.	Inch.			
16	11 16	13/4	$2\frac{1}{16}$	67.9	60.7	
	13	$2\frac{1}{16}$	$2\frac{7}{16}$	67.0	60.0	
3/8 176	15 16	$2\frac{1}{4}$ and $\frac{3}{32}$	213	67.4	60.1	
1/2	1	$2\frac{7}{16}$	3	64.9	58.9	
9	11/8	25% and 32	33/8	65.1	58.6	
5/8	$1\frac{3}{16}$	$2\frac{3}{4}$ and $\frac{1}{32}$	3 9 16	63.7	57.3	

Double-riveted Joints.

Thickness of	Diameter of	Dia.		Percentage.			
iron plate.	iron rivet.	Pitch.	Lap.	Rivet.	Plate.		
Inch.	Inch.	Inch.	Inch.				
3/8	11 16	23/8 and 32	3,7	80.2	72.1		
7 16	11 16 3/4	$2\frac{1}{2}$ and $\frac{3}{32}$	33/4	77.7	71.1		
1/2	13 16	25% and 16	416	77.2	69.4		
9	15 16	31/8	411	78.5	70.0		
5/8	1	31/4	5	77.3	69.2		
11 16	$1\frac{1}{16}$	33/8	5 5	76.4	68.5		
3/4	11/8	$3\frac{1}{2}$ and $\frac{1}{32}$	55/8	75.0	68.1		

Treble-riveted Joints.

Thickness of		Div 1	T	Perce	ntage.
iron plate.	iron rivet.	Pitch.	Lap.	Rivet.	Plate.
Inch.	Inch.	Inch.	Inch.		
1/2	3/4	31/8 and 1/32	41/2	83.9	76.2
9 16	13	$3\frac{1}{4}$ and $\frac{1}{32}$	47/8	84.3	75.2
5/8	7/8	37	51/4	83.9	75.4
116	1	418	6	84.4	75.4
3/4	116	$4\frac{1}{4}$	63/8	83.4	75.0
13	11/8	43% and 12	63/4	83.3	74.5
7/8	1 1 3	$4\frac{1}{2}$ and $\frac{3}{32}$	71/8	82.5	74.1
15	11/4	43/4 and 1/32	7½	82.1	73.8
1	$1\frac{5}{16}$	415	71/8	82.2	73.4

Materials for Boiler Shells.

Board of Trade.—Tensile strength between 27 and 32 tons. In the normal condition, elongation not less than 18 per cent. in 10 inches, but should be about 25 per cent.; if annealed, not less than 20 per cent. Strips 2 inches wide should stand bending until the sides are parallel at a distance from each other of not more than 3 times the plate's thickness.

Lloyd's.—Tensile strength between the limits of 26 and 30 tons per square inch. Elongation not less than 20 per cent. in 8 inches. Test strips heated to a low cherry-red and plunged into water at 82° F. must stand bending to a curve, the inner radius of which is not greater than 1½ times the plate's thickness.

United States Statutes.—Plates of ½ inch thickness and under shall show a contraction of not less than 50 per cent.; when over ½ inch, and up to 3/4 inch, not less than 45 per cent.; when over 3/4 inch, not less than 40 per cent.

Bureau Veritas.—Tensile strength not over 61,000 pounds. Elongation, 20 to 31 per cent. for various tensile strengths. Quench strips must bend 180° around diameter = 3t.

German Lloyd's.—Tensile strength not over 61,000 pounds. Elongation, 20 to 26 per cent. for various tensile strengths. Quench strips must bend 180° around diameter =4t.

Proportions of Boiler Shells.

Board of Trade.
$$-P = \frac{T \times B \times t \times 2}{D \times F}$$
.

D =diameter of boiler, in inches; P =working pressure, in pounds, per square inch;

t =thickness, in inches;

B = percentage of strength of joint compared to solid plate; T = tensile strength allowed for the material, in pounds, per square

F = a factor of safety, being 4.5, with certain additions depending on method of construction.

Lloyd's.—
$$P = \frac{C \times (t-2) \times B}{D}$$
.

t =thickness of plate, in sixteenths of an inch;

B and D as before;

C = a constant depending on the kind of joint.

When longitudinal seams have double but straps, C = 20. When longitudinal seams have double butt straps of unequal width, only covering on one side, the reduced section of plate at the outer line of rivets, C=19.5. When the longitudinal seams are lap-jointed, C = 18.5.

United States Statutes.—Using same notation as for Board of Trade. $P = \frac{t \times 2 \times T}{D \times 6}$ for single riveting; add 20 per cent. for double riveting where T is the lowest tensile strength stamped on any plate.

Bureau Veritas.—
$$P = \frac{T \times B \times (t - 0.042)^2}{D \times 4.4 \times 100}$$
.

B = per cent. of plate section at joint.P also depends on rivet section.

German Lloyd's.—
$$P = \frac{t \times 2 \times B \times T}{D \times F \times 100}$$
.

F varies from 4.65 to 5, depending on thickness of plate.

Proportions for Flat Plates.

Board of Trade.
$$-P = \frac{C(t+1)^2}{S-6}$$
.

P =working pressure, in pounds, per square inch;

S =surface supported, in square inches; t =thickness, in sixteenths of an inch;

C = a constant, as per following table.

C=125 for plates not exposed to heat or flame, the stays fitted with nuts and washers, the latter at least 3 times the diameter of the stay and % the thickness of the plate.
C=187.5 for the same condition, but the washers % the pitch of stays in diameter, and thickness not less than plate.
C=200 for the same condition, but doubling plates in place of washers, the width of which is % the pitch and thickness the same as the plate.
C=112 for the same condition, but stays fitted with puts only.

C = 112.5 for the same condition, but stays fitted with nuts only.

C=75 when exposed to impact of heat or flame and steam in contact with the plates, and the stays fitted with nuts and washers 3 times the diameter of the stay and $\frac{2}{3}$ the plate's thickness.

C = 67.5 for the same condition, but stays fitted with nuts only.

C = 100 when exposed to heat or flame and water in contact with the plates, and stays screwed into the plates and fitted with

C = 66 for the same condition, but stays with riveted heads.

United States Statutes.—Using same notations as for Board of Trade. $P = \frac{C \times t}{p^2}$, where p = greatest pitch, in inches, P and t as above.

C=112 for plates γ_6 of an inch thick and under, fitted with screw stay-bolts and nuts, or plain bolt fitted with single nut and socket or riveted head and socket.

C=120 for plates above $\frac{7}{16}$ of an inch, under the same conditions. C=140 for flat surfaces where the stays are fitted with nuts inside and outside.

C = 200 for flat surfaces under the same condition, but with the addition of a washer riveted to the plate at least half the plate's thickness and of a diameter equal to 2 pitch.

N.B.—Plates fitted with double angle-irons and riveted to plate, with leaf at least $\frac{1}{2}$ the thickness of plate and depth at least $\frac{1}{2}$ of pitch, would be allowed the same pressure as determined by formula for plate with washer riveted on.

N.B.—No brace or stay-bolt used in marine boilers to have a greater pitch than 10½ inches on fire-boxes and back connections.

Certain experiments were carried out by the Board of Trade which showed that the resistance to bulging does not vary as the square of the plate's thickness. There seems, also, good reason to believe that it is not inversely as the square of the greatest pitch.

Bureau Veritas.
$$-P = \frac{(t-1)^2}{a^2+b^2} \times \frac{T}{C}$$
.

T =tensile strength, in tons, per square inch;

a =pitch in one row, in inches;

b= distance between rows; C= factor depending on method of supporting, and varies from 0.055 to 0.084.

German Lloyd's.
$$-P = \frac{t^2}{C^2 \times p^2}$$
.

C varies from 0.00425 to 0.00639, depending on exposure and method of supporting.

Plates for Flanging.

The Board of Trade gives the following rule for the strength of furnaces stiffened with flanged seams, provided the pitch of the flanges does not exceed $120\,T-12$, and the flanging is of suitable design and effected at one heat:

$$P = \frac{9900 \times T}{3 \times D} \left(5 - \frac{L+12}{60 \times T} \right).$$

P =working pressure per square inch;

T = thickness of plate, in inches; L = pitch of flanges, in inches;

D = outside diameter of tubes, in inches.

Bureau Veritas.—Tensile strength not over 61,000 pounds. Elongation, 20 to 31 per cent. for various tensile strengths. Quench strips must bend 180° around diameter = 3t.

German Lloyd's.—Tensile strength not over 53,000 pounds. Elongation not under 22½ per cent. Quench strips must bend 180° around diameter = 4t.

Furnace Flues.

Board of Trade. Long Furnaces. $-P = \frac{C \times t^2}{(L+1) \times D}$, but not where L is shorter than (11.5t-1), at which length the rule for short furnaces comes into use.

P = working pressure, in pounds, per square inch;

t =thickness, in inches; D =outside diameter, in feet;

L =length of furnaces, in feet, up to 10 feet; C = a constant, as below, for drilled holes.

C = 99,000 for welded or butt-jointed, with single straps, doubleriveted.

C = 88,000 for butts with single straps, single-riveted.

C = 99,000 for butts with double straps, single-riveted.

Provided, always, that the pressure so found does not exceed that given by the following formulas, which apply also to short furnaces:

 $P = \frac{C \times t}{D}$ for all the patent furnaces named.

C = 8800 for plain furnaces.

C = 14,000 for Fox. Minimum thickness, ⁵/₅ inch; greatest, ⁵/₈ inch; plain part not to exceed 6 inches in length.
 C = 13,500 for Morison. Minimum thickness, ⁵/₅ inch; greatest, ⁵/₈ inch; plain part not to exceed 6 inches in length.
 C = 14,000 for Purves-Brown. Limits of thickness, ⁷/₅ and ⁵/₈ inch;

plain part 9 inches in length.

United States Statutes. Long Furnaces.—Same notation.

$$P = \frac{89,600 \times t^2}{L \times D}$$
, but L not to exceed 8 feet.

Short Furnaces, Plain and Patent.-P as before, when not 8 feet $\log = \frac{89,600 \times t^2}{L \times D}.$

$$P = \frac{t \times C}{D}$$
, when

C = 14,000 for Fox corrugations, where D = mean diameter.

C = 14,000 for Purves-Brown, where D = diameter of flue. C=5677 for plain flues over 16 inches diameter and less than 40 inches, when not over 3-foot lengths.

Lloyd's and Bureau Veritas for Morison Suspension Furnaces.- $WP = \frac{1259(T-2)}{T}$

> T =thickness, in sixteenths of an inch; D =greatest diameter, in inches;

WP = working pressure.

Stays.

MATERIAL.

Board of Trade.—The tensile strength to lie between the limits of 27 and 32 tons per square inch, and to have an elongation of not less than 20 per cent. in 10 inches. Steel stays which have been welded or worked in the fire should not be used.

Lloyd's.—26 to 30 ton steel, with elongation not less than 20 per cent. in 8 inches.

United States Statutes.—Reduction of area must not be less than 40 per cent. if the test bar is more than 3/4 of an inch in diameter.

Bureau Veritas .- Same as for shell plates.

German Lloyd's.—Large stays, tensile strength 45,800 to 61,200 pounds. Elongation same as shell plates. Screwed stays, tensile strength 44,600 to 53,400 pounds, and corresponding elongation.

Loads on Stays.

Board of Trade.—9000 pounds per square inch is allowed on the net section, provided the tensile strength ranges from 27 to 32 tons. Steel stays are not to be welded or worked in the fire.

Lloyd's.—For screwed and other stays not exceeding 11/2 inches in diameter effective, 8000 pounds per square inch is allowed; for stays above 11/2 inches, 9000 pounds. No stays are to be welded.

United States Statutes.—Braces and stays shall not be subjected to a greater stress than 6000 pounds per square inch.

Bureau Veritas. $-\frac{1}{5.75}$ of lower test limit on net section. Then add 1/2 inch to diameter of stay.

German Lloyd's.—Not to exceed † of tensile strength, or about 8500 pounds per square inch.

Stav Girders.

Board of Trade.
$$-P = \frac{C \times d^2 \times t}{(W-p)D \times L}$$
.

P = working pressure, in pounds, per square inch;

W =width of flame-box, in inches;

L =length of girder, in inches;

p = pitch of bolts, in inches; D = distance between girders from centre to centre, in inches;

d = depth of girder, in inches; t = thickness of sum of same, in inches; C = a constant = 6600 for 1 bolt, 9900 for 2 or 3 bolts, and 11,220 for

Lloyd's.—The same formula and constants, except that C = 11,000 for 4 or 5 bolts, 11,550 for 6 or 7 bolts, and 11,880 for 8 or more.

Tube Plates.

Board of Trade.—
$$P = \frac{t(D-d) \times 20000}{W \times D}$$
.

D =least horizontal distance between centres of tubes, in inches;

d =inside diameter of ordinary tubes;

t = thickness of tube plate, in inches; W = extreme width of combustion-box, in inches, from front of tubeplate to back of fire-box, or distance between combustion-box tube plates, when the boiler is double-ended, and the box common to both ends.

The crushing stress on tube plates caused by the pressure on the flame-box top is to be limited to 10,000 pounds per square inch.

Fox and Purves Furnace Tubes.

Working Pressures allowed by Board of Trade and Lloyd's.

sus.		Working pressure, in pounds, per square inch.																
iameter of furnace inside corrugations.		nch ick.		nch ick.	thick. 15 inch		nch ick.	1/2 i	nch ick.	17 i thi	nch ick.	1 thi	nch		nch	5%inch thick.		
Diameter of furnace inside corrugations	B. of T.	Lloyd's.	B. of T.	Lloyd's.	B. of T.	Lloyd's.	B. of T.	Lloyd's.	B. of T.	Lloyd's.	B. of T.	Lloyd's.	B. of T.	Lloyd's.	B. of T.	Lloyd's.	B. of T.	Lloyd's.
Ft. In.																		
2 6 7	159	141	177 172	158	185	176	198	193		211	225	229	238	246	251	264	265	282
2 8 2 9 2 10	150	133		150	175	166	187	183		200	212	216		233		250	250	274 266 259
2 11 3 0	141 138	126 123	153 149						189 184					221 215	224 218	237 231	236 230	253 246
3 1	131	117		132	153	146	164	161		176	185	190	196	210 205	213 207	220	218	240 235
											1 3							229
3 5 6	122	109 107	132 129	$\frac{123}{120}$	142 139	$\begin{array}{c} 137 \\ 134 \end{array}$	152 149	150 147	162 159	164 160	172 169	178 174	183 178	191 187		205	203 198	219
3 7 3 8		105 102	126 123						155 152				175 171	183 179	184 180		194 190	$\frac{210}{205}$
3 9	111 109					125 123	139 136		148 145								186 182	201 197
$\begin{array}{ccc} 3 & 11 \\ 4 & 0 \end{array}$	107 105	96 94	116 113	108 106	$\frac{125}{122}$	$\begin{array}{c} 120 \\ 118 \end{array}$	133 131	133 130	142 140	$\frac{145}{142}$	151 148	157 154	160 157	169 166	169 166	181	178 175	193
	102								137								171	
4 3	99	89	107	100	115	112	123	123	132	134	140	145	148	157	156	168	165	179
4 5 4 6	97 95 93	86 85	103	97	111	108	119	119	127	129	135	140	143	151	151	162	159	176 173 170
2 8 9 9 10 2 11 0 1 3 3 2 3 3 3 4 5 5 6 6 7 3 8 9 9 3 10 11 0 4 1 4 4 4 4 4 5 5	154 150 145 141 138 134 131 128 125 122 119 116 114 111 109 107 105 102	137 133 129 126 123 120 117 114 112 109 107 105 102 100 98 96 93 91 89 88 88 86	167 162 157 153 149 145 142 138 135 129 126 123 121 118 116 113 111	154 150 146 142 138 135 132 129 126 123 120 118 115 113 111 108 106 104	180 175 170 165 161 157 153 149 145 139 136 133 127 125 122 120 117 115 113	171 166 162 158 154 150 146 143 140 137 134 131 128 125 123 120 118 116 114 112 110 108	193 187 182 177 172 168 164 160 156 152 149 145 142 139 136 133 131 128	188 183 178 174 169 165 161 157 154 141 138 135 133 130 128 125 123 121 119	205 200 194 189 175 170 166 162 159 155 152 148 145 142 140 137	205 200 194 189 185 180 176 172 168 164 160 157 154 148 145 142 139 137 134 132	218 212 206 201 195 190 185 181 177 172 169 165 161 158 154 151 148 145 143 140 137 135	2222 216 2111 205 2000 195 190 186 182 178 174 170 167 163 160 157 154 151 148 145 143	231 225 218 212 207 201 196 192 187 173 174 164 160 157 154 151 148 145 143	239 233 227 221 215 200 205 200 196 191 187 183 179 166 162 159 157 154 151	244 237 230 224 218 213 207 202 197 193 188 184 180 176 169 166 162 159 156 153	257 250 243 237 231 225 220 215 210 205 201 196 192 188 181 177 174 171 168 165 162	257 250 243 236 230 224 218 213 208 203 198 190 186 182 178 175 171 168 165 162	

Internal flues should be so constructed as to allow for expansion.

Table Showing Working Pressure and Thickness of Morison Suspension Furnaces.

meter	eo.	Working pressure, in pounds, per square inch. Thickness of furnace.														
Inside diameter	of furnace.	16 inch.	11 inch.	3% inch.	13 inch.	7 inch.	32 inch.	1/2 inch.	17 inch.	β inch.	19 inch.	% inch.	31 inch.	11 inch.	33 inch.	34 inch.
Ft.	In.															
2	4	146	160	175	189	204	219	233	247	262	276	290	304	318	332	347
2	5	142	156	170	183	197	212	225	239	253	267	281	294	308	322	336
2	6	137	151	164	178	191	205	218	232	245	259	272	285	299	312	325
2	7	133	146	159	172	186	199	212	225	238	251	264	277	290	302	315
2	8	129	142	154	166	180	193	205	218	231	243	256	268	281	294	306
2	9	125	138	150	162	175	187	200	212	224	236	249	261	273	285	297
2	10	122	134	146	158	170	182	194	206	218	230	242	254	265	277	289
2	11	119	130	142	154	165	177	189	200	212	224	235	247	258	270	281
3	0	115	127	138	149	161	172	184	195	207	218	229	240	252	263	274
3	1	112	123	135	146	157	168	179	190	201	212	223	234	245	256	267
3	2	110	120	131	142	153	164	175	185	196	207	218	228	239	250	260
3	3	107	117	128	138	149	160	170	181	191	202	212	223	233	244	254
3	4	104	115	125	135	146	156	166	176	187	197	207	217	228	238	248
3	5	102	112	122	132	142	152	162	172	183	192	202	212	222	232	242
3	6	100	109	119	129	139	149	159	168	178	188	198	207	217	227	237
3	7	97	107	116	126	136	146	155	165	174	184	193	203	213	222	232
3	8	95	105	114	123	133	142	152	161	171	180	189	199	208	217	227
3	9	93	102	112	121	130	139	148	158	167	176	185	194	203	213	222
3	10	91	100	109	118	127	137	145	154	163	172	181	190	199	209	217
3	11	89	98	107	116	125	134	142	151	160	169	178	186	195	204	213
4	0	87	96	105	113	122	131	140	148	157	166	174	183	191	200	208
4	1	86	94	103	111	120	128	137	145	154	162	170	179	188	196	204
4	2	84	. 92	101	109	118	126	134	142	151	159	167	176	184	192	200
4	3	82	91	99	107	115	123	132	140	148	156	164	172	180	189	197
4	4	81	88	97	105	113	121	129	137	145	153	161	169	177	185	193
4	5	79	87	95	103	111	119	127	135	143	150	158	166	174	182	190
4	6	78	86	93	101	109	117	125	132	140	148	155	163	171	178	186
4	7	77	84	92	99	107	115	122	130	138	145	153	160	168	175	183
4	8	75	83	90	98	105	113	120	128	135	143	150	157	165	172	180
4	9	74	81	89	96	103	111	118	125	133	140	147	155	162	169	177
4	10	73	80	87	94	102	109	116	123	131	138	145	152	159	167	174
4	11	71	78	86	93	100	107	114	121	129	136	143	150	157	164	171

Dimensions of Standard Boiler Tubes, Lap-welded, Wrought-iron.

Out	side.	Thick-	Weight per foot,		surface length.	Area of	opening.
Diameter, in inches.	Circum- ference, in inches.	ness, in inches.	in pounds.	Outside, square feet.	Inside, square feet.	Square feet.	Square inches.
11/2	4.71	.08	1.25	.393	.349	.0097	1.40
13/4	5.50	.10	1.67	.458	.408	.0133	1.91
2	6.28	.10	1.98	.524	.472	.0177	2.56
21/4	7.07	.10	2.34	.589	.540	.0230	3.31
21/2	7.85	.11	2.76	.655	.598	.0284	4.09
-/2							
23/4	8.64	.11	3.05	.720	.663	.0350	5.04
3	9.43	.11	3.33	.785	.729	.0422	6.08
31/4	10.21	.12	3.96	.851	.789	.0495	7.12
3½	11.00	.12	4.27	.916	.854	.0580	8.36
33/4	11.78	.12	4.59	.982	.919	.0673	9.69
,	10.55	10	F 00	1.045	050	0540	10.00
4	12.57 14.14	.13 .13	5.32 6.01	1.047	.979	.0763	10.99
$\frac{4\frac{1}{2}}{5}$	14.14	.13	7.23	1.178	1.110	.0981	14.13
6	18.85	.14		1.309	1.234	.1215	17.50
7	21.99	.15	9.35 12.44	1.571	1.492	.1771	25.51
'	21.99	.17	12.44	1.833	1.743	.2417	34.81
8	25.13	.18	15.11	2.094	1.998	.3180	45.80
9	28.27	.19	18.00	2.356	2.254	.4048	58.29
10	31.42	21	22.19	2.618	2.506	.4998	71.98
11	34.56	.22	25.49	2.880	2.764	.6075	87.48
12	37.70	.23	28.52	3.142	3.022	.7205	103.75
13	40.84	.24	32.21	3.403	3.279	.8554	123.19
14	43.98	.25	36.27	3.665	3.534	.9943	143.19
15	47.12	,26	40.61	3.927	3.791	1.1438	164.72
16	50.27	.27	45.20	4.189	4.047	1.3032	187.67
17	53.41	.28	49.90	4.451	4.305	1.4738	212.23
18	56.55	.29	54.82	4.712	4.560	1.6543	238.22
19	59.69	.30	59.48	4.974	4.817	1.8465	265.90
20	62.83	.32	66.77	5.219	5.068	2.0443	294.37
21	65.97	.34	73.40	5.498	5.320	2.2522	324.31

Proportions for Stay Bolts for Flat Surfaces.

(Barr.)

e per inch.		Centre to ce	ntre of stay bol	ts, in inches.	
Pressur	1/4-inch plate. 3/4-inch stay.	⁵ -inch plate. ³ / ₄ -inch stay.	3/8-inch plate. 7/8-inch stay.	7-inch plate. 1-inch stay.	1/2-inch plate. 1/4-inch stay.
50 60 70 80 90 100 110 120 130 140 150	6 53/8 5 41/2 41/4 4 37/8 35/4 31/2 31/2	7 63/8 53/4 51/2 43/4 41/4 41/4 41/8 4	8 71/4 65/8 61/4 51/2 51/4 45/8 41/2	9 81/8 71/2 715/8 61/4 55/4 55/4 55/4 55/4 55/4	10 9 83/6 73/8 73/8 7 63/9 61/8 6 55/8

Working Pressures for Flat Stayed Surfaces.

Pounds per Square Inch.

Thickness of plates, in inches.									
Diameter of circle.	1/4	5 16	3/8	7 16	1/2 .	9 16	5/8	116	3/4
In. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 4 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	Lb. 621/2 50 42 35 30 26 23 20 18 16 14 13 12 11 10 9 8 7 7 6 1/2 6 5 1/3 4 4 1/3 4 4 1/3 3 1/4 3 3 1/	Lb. 90 73 60 50 50 43 37 32 29 25 23 20 18 17 15 14 13 12 11 10 91/2 91/2 6 6 51/2 5 5	Lb. 122 99 82 69 51 44 39 35 31 28 25 23 21 19 18 16/2 11 10/2 9 8/2 8/7 7	Lb. 160 129 107 90 76 66 58 51 45 40 36 33 30 27 25 23 21 191 2 11 11 10 10 91 2 9	Lb. 202 163 135 113 97 844 73 644 557 546 441 38 35 32 29 27 25 23 21½ 20 19 18 17 16 15 14 13 12½ 11	Lb. 250 202 167 140 120 103 90 80 71 47 43 39 36 33 31 29 27 25 23 21 20 19 18 17 16 15 141 2	Lb. 302 244 202 170 96 85 69 62 56 51 47 43 40 28 26 25 22 21 19 18 17	Lb. 360 290 240 201 172 148 130 114 101 91 82 48 44 41 38 351 28 26 25 23 22 21 20	Lb. 422 341 282 237 202 174 152 134 119 107 72 66 61 56 52 48 45 42 39 36 34 32 30 29 27 26 25 23½

The rules of the Boiler Inspection Department of the city of Philadelphia have been extensively used, and are as follows:

Philadelphia City Rules for Boiler Dimensions.

In estimating the strength of the longitudinal seams for rating maximum working pressure on cylindrical boiler shells, two rules should be applied:

Rule A.—From the pitch of the rivets, in inches, subtract the diameter of holes punched to receive the rivets; divide the remainder by the pitch of the rivets. The quotient represents the percentage of strength of the

solid part of the sheet.

Rule B.—Multiply the area of the hole filled by the rivet by the number of rows of rivets in the seam; divide the product by the pitch of the rivets multiplied by the thickness of the sheet. This product, multiplied by the shearing strength of the rivet, divided by the tensile strength of the sheet, will give the percentage of the strength of the rivets in the seam as compared with the strength of the solid part of the sheet.

The shearing strength of a rivet in a composite joint made of iron rivets and steel plates shall not be considered in excess of 40,000 pounds. Take the lowest of the percentages as found by Rules A and B and apply that percentage as the value of the seam in the following rule (C), which determines the strength of the longitudinal seams.

Rule C.—Multiply the thickness of the boiler plate, in parts of an inch, by the value of the seam as obtained by Rules A or B and by the ultimate tensile strength of the metal used in the plates; divide this product by the internal radius of the boiler, in inches, multiplied by the factor of safety. The quotient will be the pressure per square inch at which the safety valve may be set.

Working Pressures for Cylindrical Shells of Steam Boilers, *Lap Joints*, Double=riveted.

(Barr.)

Factor of Safety, 5.

		, coor or surcey,	•	
Diameter.	Thickness.	Iron shell, iron rivets.	Steel shell, iron rivets.	Steel shell, steel rivets.
Inch.	Inch.	Lb.	Lb.	Lb.
36	${14 \choose \frac{5}{16}}$	91 112	111 128	111 137
38	{1/4 15	86 106	105 121	105 129
40	$\left\{\begin{smallmatrix} 1_{4} \\ \frac{5}{16} \end{smallmatrix}\right.$	82 101	100 115	100 123
42	{1/4 5 16	78 96	95 110	95 117
44	{ 1/4 5 16	74 91	91 105	91 112
46	{ ½ 5 16	71 87	87 100	87 107
48	{ ⁵ / ₁₆ / _{3/8}	84 99	96 107	102 121
50	{ ⁵ 163/8	81 95	92 103	98 116
52	{\frac{16}{3\%}}	77 92	89 99	95 112
54	{\frac{5}{16}_{3/8}}	75 88	85 96	91 108
56	{ 16/3/8	72 85	82 92	88 104
58	{\frac{5}{16}}3/8	69 82	79 89	85 100
60	{16/3/8	67 79	77 85	82 97
62	{3/8 7 16	77 88	83 92	94 108
64	{3/8 7 16	74 86	81 89	91 105
66	{3/8	72 83	78 87	88 102
68	{3/8 7 16	70 81	76 80	86 99
70	{ 3/8 7 16	68 78	74 82	83 96
72	\[\begin{cases} \frac{3\frac{3}{8}}{1\frac{7}{2}} \\ \frac{1\frac{7}{6}}{2} \end{cases} \]	66 76 85	72 79 89	81 93 104

Working Pressures for Cylindrical Shells of Steam Boilers, Lap Joints, Triple=riveted.

(Barr.)

Factor of Safety, 5.

Diameter.	Thickness.	Iron shell, iron rivets.	Steel shell, iron rivets.	Steel shell, steel rivets.					
Inch.	Inch.	Lb.	Lb.	Lb.					
36	{1/4 5 16	100 124	121 139	123 151					
38	{1⁄4 15 16	95 117	115 132	116 144					
40	{1/4 5 16	90 112	109 125	110 136					
42	{1/4 ₅	86 106	104 119	105 130					
44	{ 1/4 5 16	83 101	99 114	100 124					
46	{1/4 5 16	79 97	95 109	96 119					
48	{ 16/3/8	93 110	104 118	114 135					
50	\begin{cases} \frac{5}{16} & & \\ 3/8 & & \end{cases}	89 106	100 113	109 129					
52	\begin{cases} \frac{5}{16} \\ 3/8 \end{cases}	86 102	96 109	105 124					
54	{ 16/3/8	83 98	93 105	101 120					
56	{ 16/3/8	80 95	89 101	97 116					
58	{ 16/3/8	77 91	86 98	94 112					
60	{\frac{5}{16}}_{3/8}	74 88	83 95	91 108					
62	{3/8 7 16	85 98	92 103	104 120					
64	{3/8 7 16	83 95	89 100	101 117					
66	{3/8 ₇	80 93	86 97	98 113					
68	{3/8 7 16	78 90	84 94	95 110					
70	{3/8 7 16	76 87	81 91	92 107					
72	\begin{cases} \frac{3\8}{1\frac{7}{16}} \\ \frac{1\frac{7}{2}}{2} \end{cases}	74 85 97	79 89 98	90 104 117					

Working Pressures for Cylindrical Shells of Steam Boilers, Butt Joints, Triple=riveted.

(Barr.)

Factor of Safety, 5.									
Diameter.	Thickness.	Iron shell, iron rivets.		Steel shell, steel rivets.					
Inch.	Inch.	Lb.	Lb.	Lb.					
36	\begin{cases} \frac{1}{4} & \\ \frac{5}{3\%} & \\ \frac{1}{16} & \\ \end{cases}	108 135 161	134 165 197	134 165 197					
38	$\begin{cases} \frac{1}{4} \\ \frac{5}{3/8} \end{cases}$	102 128 152	127 156 187	127 156 187					
40	{\frac{1/4}{3/8}^{\frac{5}{16}}}	97 121 145	120 148 178	120 148 178					
42	\begin{cases} \frac{1}{4} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	93 116 138	115 141 169	115 141 169					
44	\begin{cases} \frac{1}{4} & & \\ \frac{5}{16} & \\ \frac{3}{8} & \end{cases} \end{cases}	89 110 132	109 135 161	109 135 161					
46	\begin{cases} \frac{1}{4} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	85 106 126	105 129 154	105 129 154					
48	$\begin{cases} \frac{5}{16} \\ \frac{7}{16} \end{cases} $	101 121 141	124 148 172	124 148 172					
50	\begin{cases} \\ \frac{15}{16}3\\ \frac{7}{16} \end{cases} \]	97 116 135	119 142 165	119 142 165					
52	$\begin{cases} \frac{5}{16} \\ \frac{7}{16} \end{cases} $	93 111 130	114 137 159	114 137 159					
54	$\begin{cases} \frac{5}{16} \\ \frac{7}{16} \end{cases} 8$	90 107 125	110 132 153	110 132 153					
56	$\begin{cases} \frac{5}{16} \\ \frac{7}{16} \end{cases} = \begin{cases} \frac{5}{16} \\ \frac{7}{16} \end{cases}$	87 103 121	106 127 148	106 127 148					
58	\begin{cases} \frac{5}{16} & & \\ \frac{7}{16} & & \\ \frac{7}{16} & & \\ \end{cases} \end{cases}	84 100 117	102 123 142	102 123 142					
60	\begin{cases} \frac{3\frac{7}{8}}{1\frac{7}{16}} \\ \frac{1}{2}^{\frac{7}{16}} \end{cases}	97 111 128	118 138 157	118 138 157					
62	\[\begin{cases} \frac{3\8}{1\sqrt{7\8}} \\ \frac{1\sqrt{2}}{2} \end{cases} \]	93 109 124	115 133 152	115 133 152					

Working Pressures for Cylindrical Shells of Steam Boilers, Butt Joints, Triple=riveted.

(Barr.)

Factor of Safety, 5.

- Tactor or thately, o.										
Diameter.	Thickness.	Iron shell, iron rivets.	Steel shell, iron rivets.	Steel shell, steel rivets.						
Inch.	Inch.	Lb.	Lb.	Lb.						
64	$\begin{cases} {}^{3/8}_{1/16} \\ {}^{1/2}_{2} \\ {}^{9}_{16} \end{cases}$	90 106 120 135	111 129 147 165	111 129 147 165						
66	$\begin{cases} {}^{3/8}_{1} & {}^{76}_{16} \\ {}^{1/2}_{2} & {}^{9}_{16} \end{cases}$	88 102 117 131	108 125 143 160	108 125 143 160						
68	\begin{pmatrix} \frac{3/8}{176} \\ \frac{1}{2} \\ \frac{9}{16} \end{pmatrix}	85 99 113 127	105 121 138 155	105 121 138 155						
70	\begin{pmatrix} 3/8 & 7/6 & 1/6 & 1/2 & 9/16 & 1/6 & 1	83 97 110 123	102 118 134 151	102 118 134 151						
72	38 7 15 2 9 5 8	80 94 107 120 134	99 115 131 147 163	99 115 131 147 163						
75	$\begin{cases} \frac{7}{16} \\ \frac{1}{2} \\ \frac{9}{2} \\ 16 \\ \frac{5}{8} \end{cases}$	90 102 115 128	110 125 141 157	110 125 141 157						
78	\begin{cases} \frac{1^76}{16} \\ \frac{9}{16} \\ \frac{1}{5} \\ \frac{1}{8} \end{cases} \]	87 99 111 123	106 121 135 151	106 121 135 151						
81	\begin{cases} \frac{76}{16} \\ \frac{9}{16} \\ \frac{16}{5} \\ \text{8} \end{cases} \]	83 95 107 119	102 116 130 145	102 116 130 145						
84	12 9 16 5 8 11 34	92 103 115 126 137	112 126 140 158 167	112 126 140 158 167						
87	58 118 34	89 99 111 121 132	108 121 135 148 162	108 121 135 148 162						
90	5/8 116 3/4	86 96 107 117 128	105 117 131 143 156	105 117 131 143 156						

Working Pressures for Cylindrical Shells of Steam Boilers, Butt Joints, Triple=riveted.

(Barr.)

Factor of Safety, 5.

Diameter.	Thickness,	Iron shell, iron rivets.	Steel shell, iron rivets.	Steel shell, steel rivets.
Inch.	Inch.	Lb.	Lb. Lb.	
93	$\begin{cases} \frac{9}{16} \\ \frac{1}{16} \end{cases} 8$	93 103 114	114 126 139	114 126 139
96	\$\frac{5\%}{3\lambda^{16}}\$	100 110 120	123 134 146	123 134 146
99	\$5\\ 3\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	97 107 116	119 130 142	119 130 142
102	\begin{cases} \frac{5\8}{34^{\frac{11}{16}}} \\ 3\frac{1}{4} \end{cases}	94 104 113	94 115 104 127 113 138	
105	\$ \frac{5\%}{3\frac{11}{16}} \\ 3\frac{3}{4} \]	92 101 110	101 123	
108	\begin{cases} \frac{5\\8}{11} \\ 3\\\4\end{cases}^{16} \end{cases}	89 98 107	109 120 130	109 120 130
111	\begin{cases} \frac{5\\8}{11} \\ 3\\4 \end{cases}^{16} \end{cases}	87 106 95 116 104 127		106 116 127
114	\$\frac{5\\8}{3\\4}^{\frac{11}{16}}\$	84 93 101	103 113 123	103 113 123
117	\$ \frac{5\%}{34} \frac{11}{6}	82 90 99	90 110	
120	{5/8 11/6 3/4	80 88 96	98 108 117	98 108 117

The formulas for boilers given by Reuleaux in the "Constructor" are as follows:

Let

D = diameter, in metres;

a =pressure, in atmospheres;

 δ = thickness of shell, in millimetres;

S = fibre stress on material, in kilogrammes, per square millimetre.

$$\delta = 1.54aD + 2.6.$$

The stress in the longitudinal seams will be

$$S = \frac{a}{200} \cdot \frac{D}{\delta},$$

D being taken in millimetres.
From these we have

a =	4 atmospheres.		7 atmospheres.		10 atmo	spheres.	13 atmospheres.	
D metres.	δ mm.	S kg. per sq. mm.	δ mm.	S kg. per sq. mm.	δ mm.	S kg. per sq. mm.	δ mm.	kg. per sq. mm.
.6	6.3	1.90	9.1	2.31	11.8	2.54	14.6	2.67
.8	7.5	2.13	11.2	2.50	14.9	2.70	18.6	2.80
1.0	8.8	2.27	13.4	2.61	18.0	2.78	22.6	2.87
1.5	11.8	2.54	18.8	2.79	25.7	2.92	32.6	2.99
2.0	14.9	2.68	24.2	2.89	33.4	2.99	42.6	3.06

The stresses in the circumferential seams are one-half those in the longitudinal seams; hence, single riveting may be used when the longitudinal seams are double-riveted.

For spherical ends, or boiler heads which are formed in the shape of a segment of a sphere, if R is the radius of curvature, we have for the thick-

ness, δ_1 .

$$\delta_1 = R_1 \frac{a}{200S}.$$

The above formulas, when adapted for English measures, are as follows:

D = diameter, in inches;

a = pressure, in atmospheres;

p =pressure, in pounds, per square inch;

 δ = thickness of shell, in inches:

S = fibre stress, in pounds, per square inch.

We then have

$$\delta = 0.0015aD + 0.1,$$

$$S = \frac{p}{2} \cdot \frac{D}{2}$$

$$\delta_1 = \frac{R_1}{2} \cdot \frac{p}{S}.$$

For the usual diameters we have the following results:

a =	4 = 60 pounds.		7 = 105 pounds.		10 = 150 pounds.		13 = 175 pounds.	
D	δ	S	δ	S	δ	S	δ	S
24 36 42 72	.24 .31 .35 .43	3000 3500 3600 5000	.35 .48 .54 .85	3600 3900 4000 4400	.48 .64 .73 1.18	3750 4000 4300 4600	.58 .80 .92 1.50	3700 4000 4000 4200

The general character of the material entering into boiler work is well described in the specifications of the American Boiler Manufacturers' Association, given herewith:

Uniform American Boiler Specifications

Adopted by the American Boiler Manufacturers' Association.

(See Proceedings 1889, pages 49, 50, 66–81, 84–88.) (See Proceedings 1897, pages 42–54, 61–77, 207–208.) (See Proceedings 1898, pages 49–100.)

MATERIALS.

1. Cast-iron.-Should be of soft, gray texture and high degree of ductility. To be used only for hand-hole plates, crabs, yokes, etc., and man-heads. It is a dangerous metal to be used in mud drums, legs, necks, headers, man-hole rings, or any part of a boiler subject to tensile strains; its use is prohibited for such parts.

2. Steel.-Homogeneous steel made by the open-hearth or crucible pro-

cesses, and having the following qualities, is to be used in all boilers.

Tensile Strength, Elongation, Chemical Tests.—Shell plates not exposed to the direct heat of the fire or gases of combustion, as in the external shells of internally-fired boilers, may have from 65,000 to 70,000 pounds tensile strength; elongation not less than 24 per cent. in 8 inches; phosphorus

not over 0.035 per cent.; sulphur not over 0.035 per cent.
Shell plates in any way exposed to the direct heat of the fire or the gases of combustion, as in the external shells or heads of externally-fired boilers, or plates on which any flanging is to be done, to have from 60,000 to 65,000 pounds tensile strength; elongation not less than 27 per cent. in 8 inches; phosphorus not over 0.03 per cent.; sulphur not over 0.025 per

Fire-box plates, or such as are exposed to the direct heat of the fire or flanged on the greater portion of their periphery, to have 55,000 to 62,000 pounds tensile strength; elongation, 30 per cent. in 8 inches; phosphorus

not over 0.03 per cent.; sulphur not over 0.025 cent.

For all plates the elastic limit to be at least one-half the ultimate strength; percentage of manganese and carbon left to the judgment of the steel maker.

Test Section to be 8 inches long, planed or milled edges; its cross-sectional area not less than one-half of 1 square inch, nor width less than the thick-

ness of the plate.

Bending Test.—Steel up to %-inch thickness must stand bending double and being hammered down on itself; above that thickness it must bend round a mandrel of diameter of 11/2 times the thickness of plate down to 180 degrees. All without showing signs of distress.

Bending test piece to be in length not less than 16 times the thickness of plate, and rough, shear edges milled or filed off. Such pieces to be cut

both lengthwise and crosswise of the plate.

All tests to be made at the steel mill. Three pulling tests and three bending tests to be made from each heat. If one fails the manufacturer may furnish and test a fourth piece, but if two fail the entire heat to be rejected.

Certified copies of tests to be furnished each member of A.B.M.A. from

heats from which his plates are made.

- 3. Rivets to be of good charcoal iron or a soft, mild steel, having the same physical and chemical properties as the fire-box plates, and must test hot and cold by driving down on an anvil with the head in a die, by nicking and bending, by bending back on themselves cold, without developing cracks or flaws.
- 4. Boiler Tubes of charcoal iron or mild steel specially made for the purpose, and lap-welded or drawn. They should be round, straight, free from scales, blisters, and mechanical defects, each tested to 500 pounds internal hydrostatic pressure.

This fact and manufacturer's name to be plainly stencilled on each tube.

Standard Thicknesses by Birmingham wire gauge to be

No. 13 for tubes 1 inch, $1\frac{1}{4}$ inches, $1\frac{1}{2}$ inches, and $1\frac{3}{4}$ inches diameter; No. 12 for tubes 2 inches, $2\frac{1}{4}$ inches, and $2\frac{1}{4}$ inches diameter; No. 11 for tubes $2\frac{3}{4}$ inches, 3 inches, $3\frac{1}{4}$ inches, and $3\frac{1}{2}$ inches diameter; No. 10 for tubes $3\frac{3}{4}$ inches and 4 inches diameter; No. 9 for tubes $4\frac{1}{2}$ inches and 5 inches diameter.

Tests.—A section cut from 1 tube taken at random from a lot of 150 or less must stand hammering down cold vertically without cracking or splitting when down solid.

Length of test pieces:

34 inch for tubes from 1 inch to 134 inches diameter; 1 inch for tubes from 2 inches to 2½ inches diameter; 1¼ inches for tubes from 2¾ inches to 3¼ inches diameter; 1½ inches for tubes from 3½ inches to 4 inches diameter; 134 inches for tubes from 4½ inches to 5 inches diameter.

All tubes must stand expanding flange over on tube plate and bending without flaw, crack, or opening of the weld.

5. Stay Bolts to be made of iron or mild steel specially manufactured

for the purpose, and must show on

Test Section 8 inches long, net:

For Iron, tensile strength not less than 46,000 pounds; elastic limit not less than 26,000 pounds; elongation not less than 22 per cent. for bolts of less than one (1) square inch area, nor less than 20 per cent. for bolts one

(1) square inch and more in net area.

For Steel, tensile strength not less than 55,000 pounds; elastic limit not less than 33,000 pounds; elongation not less than 25 per cent. for bolts of less than one (1) square inch area, nor less than 22 per cent. for bolts one

(1) square inch and more in net area.

Tests.—A bar taken from a lot of 1000 pounds or less at random, threaded with a sharp die "V" thread with rounded edges, must bend cold 180° around a bar of same diameter without showing any crack or flaws.

Another piece, similarly chosen and threaded, to be screwed into well-fitting nuts formed of pieces of the plates to be stayed, and riveted over so as to form an exact counterpart of the bolt in the finished structure; to be pulled in testing machine and breaking stress noted; if it fails by pulling apart the tensile stress per square inch of net section is its measure of strength; if it fails by shearing the shear stress per square inch of mean section in shear is the product of half the thickness of the plate by the disjumpformed at half bright of of half the thickness of the plate by the circumference at half height of thread.

6. Braces and Stays.—Material to be fully equal to stay-bolt stock, and tensile strength to be determined by testing a bar not less than ten (10) inches long from each lot of 1000 pounds or less.

II. WORKMANSHIP AND DIMENSIONS.

7. Flanging, Bending, and Forming to be done at a heat suited to the material, but no bending must be done or blow struck on any plate which no longer shows red by daylight at the working point and at least 4 inches beyond it.

- 8. Rolling must be done cold by gradual and regular increments from the straight plate to the exact circle required, and the whole circum. ference, including the lap, rolled to a true circle.
- 9. Bumped Head uniformly dished to a segment of a sphere should have a thickness equal to that of a cylindrical shell of solid plate of same material, whose diameter is equal to the radius of curvature of the dished head.

Rivet-holes, man-holes, etc., to be allowed for by proportionate increase in the thickness.

10. Riveting.—Holes made perfectly true and fair by clean-cutting punches or drills. Sharp edges and burrs removed by slight countersinking and burr-reaming before and after sheets are joined together.

Under side of original rivet head must be flat, square, and smooth. For rivets ½ inch to 13 inch diameter allow 1½ diameters for length of stock to form the head, and less for larger rivets. Allow 5 per cent. more stock for driven head for button set or snap rivets. Use light regulation riveting hammers until rivet is well upset in the hole; after that, snap and heavy mauls. For machine riveting more stock to be left for driven head to make it equal to original head, as fixed by experiment.

Total pressure on the die about 80 tons for 1½-inch to 1½-inch rivets; 65 tons for 1-inch rivets; 57 tons for 1½-inch rivets; 35 tons for 3½-inch

rivets.

Make heads of rivets equal in strength to shanks by making head at periphery of shank of a height equal to one-third the diameter of shank

- and giving a slight fillet at this point.

 Approximately, make rivet-holes double thickness of thinnest plate; pitch, 3 times rivet-hole; pitch lines of staggered rows ½ pitch apart; lap for single riveting equal to pitch, for double riveting 1½ pitch, and ½ pitch more for each additional row of rivets; exact dimensions determined by making resistance to shear of aggregate rivet section at least 10 per cent. greater than tensile strength of net or standing metal.
- 11. Rivet-holes punched with good, sharp punches and well-fitting dies in A. B. M. A. steel up to 5%-inch thickness; in thicker plates punch and ream with a fluted reamer or drill the holes.
- 12. Drift Pin to be used only with light hammers to pull plates into place and round up the hole, but never to enlarge or gouge holes with heavy hammers.
- 13. Calking to be done by hand or pneumatic hammer and Conery or round-nosed tool. Avoid excessive calking; the fit must be made in the laying of the plates. The square-nosed tool may be used for finishing, with great care to avoid nicking lower plate. Calking edges must be prepared by bevel planing, shearing, or chipping.
- 14. Flat Surfaces.—State the thickness of the plate, t, in sixteenths of an inch; the pitch, p, in inches, and use a constant:
 - C=112 for plates $\frac{7}{16}$ inch and under, with screw stays with riveted ends.

 - C=120 for plates over 7_6 inch, with screw stays with riveted ends. C=140 for all plates when, in addition to screw threads in the plates, a nut is used inside and outside of each plate.

When salt, acids, or alkali are contained in the feed water, this latter

construction is imperative.

Rule.—Multiply this constant, C, by the square of the thickness of the plate expressed in sixteenths of an inch, and divide by the square of the pitch expressed in inches; the quotient is the safe working pressure, P.

$$P = \frac{CXt^2}{p^2}.$$

15. Tube-holes, either punched 1/8 inch less than required diameter and reamed to full size, or drilled, then slightly countersunk on both sides, should be $\frac{1}{64}$ inch to $\frac{1}{16}$ inch larger than diameter of tube, according to size of tube; if copper ferrules are used, the hole to be a neat fit for the ferrule. Tube sheet to be annealed after punching and before reaming.

16. Tube Setting.—Ends of tubes to be annealed (in the tube mill) before setting. The tube to extend through the sheet $\frac{1}{16}$ inch for every inch of diameter. Expand until tight in hole and no more. On end exposed to direct flame, flange the tube partly over on sheet, finishing by beading tool, which must not come in contact with the plate; expand slightly after beading.

Copper ferrules, No. 18 to 14 wire gauge, should be used in fire-tube

boilers on ends subject to direct heat.

- 17. Riveted and Lap-welded Flues, as prescribed in Rule II., Sections 8, 9, 10, 11, 12, and 13 of Regulations of Board of Supervising Inspectors of Steam Vessels, approved February, 1895.
- 18. Corrugated Furnace Flues, as prescribed in Sections 14 and 15 of the same Rule.
- 19. Stay Bolts to be carefully threaded with sharp, clean dies, "V" thread, with rounded edges; threading machine equipped with a lead screw; holes tapped with tap extending through both sheets to neat, smooth fit, so that bolts can be put in by hand-lever or wrench with a steady pull; a diameter to project for riveting over; with hollow stay bolts use slender drift pin in the bore while riveting, and drive it home to expand the bolt after riveting.

 High of puts read on concentrate to be at least 50.

Height of nuts used on screw stays to be at least 50 per cent. of diamer of stay. Largest permissible pitch for screw stays is 10 inches.

- 20. Braces and Stays shall be subjected to careful inspection and tests, as per Sections 6 and 2. Welding to be avoided where possible, but good, clean welds to be allowed a value of 80 per cent. of the solid bar. Rivets by which braces are attached, when the pull on them is other than at right angles, to be allowed only half the stress permitted for rivets in the seams.
- 21. Man-holes should be flanged in, out of the solid plate, on a radius not less than 3 times the metal thickness to a straight flange; when the plate is ½ inch or less in thickness a reinforce ring to be shrunk around it. Cast-iron reinforce flanges never to be used.
- 22. Domes to be avoided when possible; cylindrical portion to be flanged down to the shell of the boiler, and this shell flanged up inside the dome or reinforced by a collar flanged at the joint, the flanges doubleriveted.
- 23. Drums should be put on with collar flanges of A. B. M. A. steel not less than % inch thick, double-riveted to shell and drum and single-riveted to the neck or leg, or the flanges may be formed on these legs.
- 24. Saddles or Nozzles to be of flanged steel plate or of soft cast-steel, never of cast-iron.

III. FACTORS OF SAFETY.

- 25. Rivet Seams, when proportioned as prescribed in Section 10 with materials tested as per Sections 2 and 3, shall have 4½ as factor of safety; when not so tested, but inspection of materials indicates good quality, a factor of safety of 5 is to be taken, and at most 55,000 pounds tensile strength assumed for the steel plate and 40,000 pounds shear strength for the rivets, all figured on the actual net standing metal.
- 26. Flat Surfaces, proportioned as per Section 14, have, in the constants there given, a factor of safety of 5 or a little over.
- 27. Bumped Heads, proportioned as per Section 9, to be subject to a factor of safety of 5.
- 28. Stay Bolts, proportioned and tested as per Sections 19 and 5, to have a factor of safety of 5 applied to the lowest stress found.
- 29. Braces and Stays, when tested as per Sections 6 and 2, to be allowed a factor of safety of 5; when not so tested, but careful inspection

shows good stock, they may be used up to 6500 pounds actual direct pull for wrought-iron, and 8000 pounds for mild steel, all per square inch of actual net metal.

IV. HYDROSTATIC PRESSURE.

30. The hydrostatic test to be made on completed boilers built strictly to these specifications is never to exceed working pressure by more than one-third of itself, and this excess limited to 100 pounds per square inch. The water used for testing to have a temperature of at least 125° F.

V. HANGING OR SUPPORTING THE BOILER.

31. The boiler should be supported on points where there is the greatest excess of stress. Excessive local stresses from weight of boiler and contents must be avoided, and distortion of parts prevented, by using long lugs or brackets; and only half the stress which they may carry in the seams to be allowed on rivets.

The supports must permit rebuilding the furnace without disturbing the proper suspension of the boiler. The boiler should be slightly inclined, so that a little less water shows at the gauge cocks than at the opposite

SAFETY VALVES.

Weighted Valves.

Let

A =area of valve, in square inches;

F = distance from centre of valve to fulcrum, in inches; L = length of lever, in inches, from fulcrum to weight; W = weight of ball, in pounds;

P = blowing-off pressure, in pounds, per square inch.

Then we have

$$P = \frac{WL}{AF},$$

$$L = \frac{AFP}{W},$$

$$W = \frac{AFP}{I}.$$

If lever is not balanced, its effect, and the effect of valve and spindle, must be added to pressure and be taken into account in calculating L and W. If w = weight of lever and v = weight of valve and spindle, in pounds; c = distance of centre of gravity of lever from fulcrum; then, if p = pressure per square inch on valve due to weight of lever and valve alone,

$$p = \frac{w \times c}{AF} + \frac{v}{A}.$$

In most cases effect of valve and spindle may be neglected. With long, heavy levers p will require adding to \dot{P} to ascertain the blowing-off pressure.

Various rules are given for the area of safety valves, these usually being based on a certain number of square inches of valve area per square foot of grate surface, although sometimes the area of the valve is based on the heating surface of the boiler.

The United States Treasury Department, through its Board of Supervising Inspectors of Steam Vessels, has established the following rules:

"Lever safety valves to be attached to marine boilers shall have an area of not less than one square inch to two square feet of grate surface in the boiler, and the seats of all such safety valves shall have an angle of

inclination of 45° to the centre line of their axes.

The valves shall be so arranged that each boiler shall have one sepa-"The valves shall be so arranged that each boiler shall have one separate safety valve, unless the arrangement is such as to preclude the possibility of shutting off the communication of any boiler with the safety valve or valves employed. This arrangement shall also apply to lock-up safety valves when they are employed.

"Any spring-loaded safety valves constructed so as to give an increased lift by the operation of steam after being raised from their seats, or any spring-loaded safety valve constructed in any other manner, or so as to give an effective agree equal to that of the after when they are required to the safety was constructed.

give an effective area equal to that of the afore-mentioned spring-loaded safety valve, may be used in lieu of the common lever-weighted valves on all boilers on steam vessels, and all such spring-loaded safety valves shall be required to have an area of not less than 1 square inch to 3 square feet of grate surface of the boiler, and each spring-loaded safety valve shall be supplied with a lever that will raise the valve from its seat a distance of not less than that equal to one-eighth the diameter of the valve opening, and the seats of all such safety valves shall have an angle of inclination to the centre line of their axis of 45°. But in no case shall any spring-loaded safety valve be used in lieu of the lever-weighted safety valve without having first been approved by the Board of Supervising Inspectors."

The Boiler Inspection Department of the city of Philadelphia gives the

following formula for boilers with natural draft:

$$A = \frac{22.5G}{P + 8.62},$$

in which A is the area of combined safety valves, in inches; G is area of grate, in square feet; P is pressure of steam, in pounds, per square inch to be carried in the boiler above the atmosphere.

The following table gives the results of the formula for 1 square foot of grate, as applied to boilers used at different pressures.

Pressure per Square Inch.

10 20 30 40 50 60 70 80 90 100 110 120 150 $1.21 \quad 0.79 \quad 0.58 \quad 0.46 \quad 0.38 \quad 0.33 \quad 0.29 \quad 0.25 \quad 0.23 \quad 0.21 \quad 0.19 \quad 0.17 \quad 0.142 \quad 0.123$

Valve area in square inches, corresponding to 1 square foot of grate. When forced draft is used, the area of grate for purposes of safety valve computation is to be estimated at 1 square foot for each 16 pounds of fuel burned per hour. Hutton's rule is

$$A = \frac{4G}{\sqrt{P}}.$$

A =area of valve, in square inches;

G =area of grate, in square feet;

P =pressure, in pounds, per square inch.

The area of a safety valve may be determined from the evaporative power of the boiler.

Let

A =area of safety valve, in square inches:

P = steam pressure, in pounds, per square inch;

E =evaporative capacity of the boiler, in pounds of water, per hour.

Then we have

$$A = \frac{E}{40\sqrt{P}}.$$

Minimum Size of Safety Valve Areas Allowed by Board of Trade.

Boiler pressure, in pounds.	Area of valve per square foot of fire-grate, in square inches.	Boiler pressure, in pounds.	Area of valve per square foot of fire-grate, in square inches.	Boiler pressure, in pounds.	Area of valve per square foot of fire-grate, in square inches.	Boiler pressure, in pounds.	Area of valve per square foot of fire-grate, in square inches.	Boiler pressure, in pounds,	Area of valve per square foot of fire-grate, in square inches.
15	1.250	52	.559	89	.360	126	.265	163	.210
16	1.209	53	.551	90	.357	127	.264	164	.209
17	1.171	54	.543	. 91	.353	128	.262	165	.208
18	1.136	55	.535	92	.350	129	.260	166	.207
19	1.102	56	.528	93	.347	130	.258	167	.206
20	1.071	57	.520	94	.344	131	.256	168	.204
21	1.041	58	.513	95	.340	132	.255	169	.203
22 .	1.013	59	.506	96	.337	133	.253	170	.202
23	.986	60	.500	97	.334	134	.251	171	.201
24	.961	61	.493	98	.331	135	.250	172	.200
25	.937	62	.487	99	.328	136	.248	173	.199
26	.914	63	.480	100	.326	137	.246	174	.198
27	.892	64	.474	101	.323	138	.245	175	.197
28	.872	65	.468	102	.320	139	.243	176	.196
29	.852	66	.462	103	.317	140	.241	177	.195
30	.833	67	.457	104	.315	141	.240	178	.194
31	.815	68	.451	105	.312	142	.238	179	.193
32	.797	69	.446	106	.309	143	.237	180	.192
33	.781	70	.441	107	.307	144	.235	181	.191
34	.765	71	.436	108	.304	145	.234	182	.190
35	.750	72	.431	109	.302	146	.232	183	.189
36	.735	73	.426	110	.300	147	.231	184	.188
37	.721	74	.421	111	.297	148	.230	185	.187
38	.707	75	.416	112	.295	149	.228	186	.186
39	.694	76	.412	113	.292	150	.227	187	.185
40	.681	77	.407	114	.290	151	.225	188	.184
41	.669	78	.403	115	.288	152	.224	189	.183
42	.657	79	.398	116	.286	153	-223	190	.182
43	.646	80	.394	117	.284	154	.221	191	.181
44	.635	81	.390	118	.281	155	.220	192	.181
45	.625	82	.386	119	.279	156	.219	193	.180
46	.614	83	.382	120	.277	157	.218	194	.179
47	.604	84	.378	121	.275	158	.216	195	.178
48	.595	85	.375	122	.273	159	.215	196	.177
49	.585	86	.371	123	.271	160	.214	197	.176
50	.576	87	.367	124	.269	161	.213	198	.176
51	.568	88	.364	125	.267	162	.211	200	.174

Lloyd's Rules for Safety Valves.

Two safety valves to be fitted to each boiler and loaded to the working pressure in the presence of the surveyor. In the case of boilers of greater working pressure than 60 pounds per square inch, the safety valves may be loaded to 5 pounds above the working pressure. If common valves are used, their combined areas to be at least half a square inch to each square foot of grate surface. If improved valves are used, they are to be tested under steam in the presence of the surveyor; the accumulation in no case to exceed 10 per cent. of the working pressure.

An approved safety valve also to be fitted to the superheater.

In winch boilers one safety valve will be allowed, provided its area be not less than half a square inch per square foot of grate surface.

Each valve to be arranged so that no extra load can be added when steam is up, and to be fitted with easing gear, which must lift the valve itself. All safety valve spindles to extend through the covers and to be fitted with sockets and cross handles, allowing them to be lifted and turned round in their seats, and their efficiency tested at any time

The German rule for safety valves, as given in the "Ingenieurs Taschen-

buch Hütte," is

$$f = 15\sqrt{\frac{v}{p}},$$

in which f is the area of valve, in square millimetres, per square metre of heating surface in the boiler; p is the maximum boiler pressure, in atmospherical square metre of the property of the propert pheres; and v is the volume of steam, in litres, per kilogramme at the pressure, p, as given in the steam tables. We have from this formula

Areas of Safety Valves,

in Square Millimetres, per Square Metre of Heating Surface.

7 8 p = press. atm.. 1 2 3 4 5 6 9 10 11 12 13 14 v = sp. volume. 896 612 467 378 313 276 244 218 198 181 167 154 144 135 f = sq. mm. persq. metre., 449 263 188 147 119 102 89 78 71 63 59 54 50 48

INCRUSTATION IN BOILERS.

Whenever possible, pure water should be used for feeding boilers. When the water is impure the result is the formation of scale, producing diminished efficiency and possible injury to the boiler from overheating.

The principal impurities in water are calcium carbonate and calcium sulphate, together with suspended earth and organic matter. Water of condensation from steam engines contains more or less oil from the lubricant used in the steam, and this may produce a very injurious coating in the boiler.

By far the best plan is to remove or neutralize the impurities of the water before it is fed into the boiler, since the scale, when it is once

formed, is difficult to remove.

No general rules can be given for the purification of water, since different waters require different treatment. The best plan is to have the water analyzed and adopt the course indicated by the nature of the salts found

The following extracts from a paper by Messrs. Hunt and Clapp, in the "Transactions of the American Institute of Mining Engineers for 1888," is

an authoritative statement of the subject:

"By far the most common commercial analysis of water is made to determine its fitness for making steam. Water containing more than 5 parts per 100,000 of free sulphuric or nitric acid is liable to cause serious corrosion, not only of the metal of the boiler itself, but of the pipes, cylinders, pistons, and valves with which the steam comes in contact. Sulphuric acid is the only one of these acids liable to be present in the water

from natural sources, it being often produced in the water of the coal and iron districts by the oxidation of iron pyrites to sulphate of iron, which, being soluble, is lixiviated from the earth strata and carried into the stream, the presence of organic matter taken up by the water in its aftercourse reducing the iron and lining the bottom of the stream with red oxide of iron, leaving a considerable proportion of the sulphuric acid free in the water. This is a troublesome feature with the water necessarily used in many of the iron districts of this country. The sulphuric acid may come from other natural chemical reactions than the one described above. Muriatic and nitric acids, as well as sulphuric acid, may be con-veyed into water through the refuse of various kinds of manufacturing

veyed into water through the refuse of various kinds of manufacturing establishments being discharged into it.

"The large total residue in water used for making steam causes the interior linings of the boilers to become coated, clogs their action, and often produces a dangerous hard scale, which prevents the cooling action of the water from protecting the metal against burning.

"Lime and magnesia bicarbonates in water lose their excess of carbonic acid on boiling, and often, especially when the water contains sulphuric acid, produce, with the other solid residues constantly being formed by the evaporation, a very hard and insoluble scale.

A larger amount than 100 parts per 100,000 of total solid residue will ordinarily cause troublesome scale, and should condemn the water for use

in steam boilers, unless a better supply cannot be obtained.
"The following is a tabulated form of the causes of trouble with water for steam purposes, and the proposed remedies, given by Professor L. M. Norton in his lecture on 'Industrial Chemistry.'

"Causes of Incrustation.

"1. Deposition of suspended matter.

"2. Deposition of dissolved salts from concentration.

"3. Deposition of carbonates of lime and magnesia by boiling off car-

bonic acid, which holds them in solution.

"4. Deposition of sulphates of lime, because sulphate of lime is but slightly soluble in cold water, less soluble in hot water, insoluble above 140° C. (284° F.).

"5. Deposition of magnesia, because magnesium salts decompose at

high temperature.

"6. Deposition of lime soap, iron soap, etc., formed by saponification of grease.

"Various Means of Preventing Incrustation.

"1. Filtration. "2. Blowing off.

"3. Use of internal collecting apparatus or devices for directing the circulation.

"4. Heating feed water.

"5. Chemical or other treatment of water in boiler.

"6. Introduction of zinc into boiler.

"7. Chemical treatment of water outside of boiler."

Prevention and Cure of Boiler Troubles Due to Water.

Sediment, mud, clay, Filtration. etc..... Blowing off. Blowing off. Heating feed and precipitating. Readily soluble salts Incrustation. Bicarbonate of magne-Caustic soda. sia, lime, and iron... Lime. Magnesia. Carbonate of soda.
Barium chloride. Sulphate of lime

(Organic matter $\left\{ \right.$	Precipitate with alum and filter. Precipitate with ferric chloride and filter.
	Grease	Slaked lime and filter. Carbonate of soda and filter.
Corrosion	Chloride or sulphate of magnesia	Carbonate of soda.
	Dissolved carbonic { acid and oxygen {	Slaked lime. Caustic soda.
	(Heating.
Priming	Sewage {	Precipitate with alum or ferric chloride and filter.
)	Sewage	Barium chloride.

The following table shows the solubility of various scale-making materials in steam boilers, showing in the last column the temperatures at which they become insoluble. Although sulphate of lime does not become entirely insoluble until a temperature of nearly 400° F., corresponding to a pressure of about 225 pounds, a large proportion of it is precipitated at about 310° F., or about 65 pounds pressure. It will be seen, therefore, that most of these impurities may be precipitated by using a feed-water heater of sufficient size to permit the precipitated impurities to settle and be blown off before passing into the boiler.

Solubilities of Scale-making Minerals.

Substance.	Soluble in parts of pure water at 30° F.	Soluble in parts of carbonic acid, water cold.	Soluble in parts of pure water at 212° F.	Insoluble in water at
Carbonate of lime Sulphate of lime Carbonate of magnesia. Phosphate of lime Oxide of iron	500 5500		62500 460 9600	302° F. 392° F. 212° F. 212° F.
Silica				

Analyses of Boiler Scale.

(Chandler.)

Sulphate of lime.	Magnesia.	Silica.	Peroxide of iron.	Water.	Carbonate of lime.
74.07	9.19	.65	.08	1.14	14.78
71.37		1.76			
62.86	18.95	2.60	.92	1.28	12.62
53.05		4.79			
46.83		5.32			
30.80	31.17	7.75	1.08	2.44	26.93
4.95	2.61	2.07	1.03	.63	86.25
.88	2.84	.65	.36	.15	93.19
4.81		2.92			
30.07		8.24			

Analysis, in Parts per 100,000, of Water Giving Bad Results in Steam Boilers.

(A. E. Hunt.)

Waters.	Bicarbonate of lime deposited on boiling.	Bicarbonate of magnesia deposited on boiling.	Total lime.	Total magnesia.	Sulphuric acid.	Chlorine.	Iron.	Organic matter.	Alumina.	Chloride of sodium.
Coal-mine water	110	25	119.0	39.00	890	590.0	780	30	640	
Salt well	151	38	1.9	48.00	360	990.0	38	21	30	13.1
Spring	75	. 89	95.0	120.00	310	21.0	75	10	80	36.0
Monongahela River	130	21	161.0	33.00	210	38.0	70			
Monongahela River	80	70	94.0	81.00	219	210.0	90			
Monongahela River	32	82	61.0	1.04	28	1.9	38			
Allegheny River,										
near oil-works	30	1 50	41,0	68.00	890	42.0	. 23			

THE STEAM ENGINE.

Horse=power.

The measure of the power of steam engines is the Horse-power, originally selected by Watt as a basis on which to sell his engines. Tests of a number of powerful draught horses showed an effort corresponding to 22,000 foot-pounds per minute, and Watt increased this by 50 per cent., in order to assure his customers that he was furnishing ample power; this being the origin of the well-known value of 33,000 foot-pounds per minute, or 550 foot-pounds per second, as a commercial horse-power.

In the metric system the *cheval-vapeur* is taken as 75 kilogrammetres per second, this corresponding to 32,548 foot-pounds per minute, the metric horse-power thus being 0.863 times the British horse-power. The latter

will always be understood, unless otherwise stated.

In France it has been suggested to use a new unit, equal to 100 kilogrammetres per second, this being called the *Poncelet*, and being practically equivalent to the kilowatt.

Since 1 B. T. U. = 778 foot-pounds, it requires the expenditure of 42.416 B. T. U. per minute to produce 1 horse-power, if all the heat is converted

into mechanical energy.

In the steam engine the power is usually developed by the pressure of the expansive force of the steam upon the piston in the cylinder. Since the speed of the piston is not uniform, varying from zero to a maximum twice for every revolution of the crank, it is necessary to take the total distance travelled in one minute as the average or mean speed.

The pressure of the steam upon the piston is also variable, and hence it is necessary to determine the mean effective pressure, in order that the horse-power may be computed. For a completed engine the mean effective pressure may be determined by use of the indicator, but for a proposed design it is computed in accordance with the laws of the expansion of steam.

According to the law of Mariotte, considering steam as a gas, the product of the pressure and the volume is constant, or

When the steam in a cylinder be permitted to follow a portion of the stroke at full boiler pressure, and is then cut off and allowed to expand for the remainder of the stroke, the expansion curve may be considered as an equilateral hyperbola, the pressure at any point being inversely as the volume. When the volume has been doubled, the pressure will fall to one-half the initial; when it becomes three times what it was at the point of cut-off, the pressure will be one-third the initial pressure, and so on. In this way it is quite possible to construct a theoretical diagram for any degree of cut-off or any expansion ratio, and measure the mean pressure throughout the stroke.

Instead of performing this work, however, the mean effective pressure may be computed immediately by means of a table of hyperbolic loga-

rithms. Let

 $P = \text{initial pressure, absolute,} -i.e., above vacuum;}$

p = mean effective pressure, including vacuum;

r = expansion ratio = total stroke divided by length up to pointof cut-off.

Then

$$p = P \cdot \frac{1 + \text{hyp. log. } r}{r}.$$

Hence, by taking the hyperbolic logarithm of the expansion ratio and adding 1, and dividing by the expansion ratio, we have a number which,

multiplied by the initial pressure, will give the mean effective pressure.

Thus, if the steam is admitted at 100 pounds gauge pressure, or 114.7 pounds absolute pressure, and cut off at ½ the stroke, we have

and

$$r = 4$$
,
 $p = 114.7 \frac{1 + \text{hyp. log. 4}}{4}$.

The hyperbolic logarithm of 4 is 1.3863, and hence we have

$$p = 114.7 \frac{1 + 1.3863}{4}$$
$$= 114.7 \times 0.5966$$

= 68.43 pounds absolute

= 53.73 pounds above atmosphere.

There is always a loss of pressure in practice due to cylinder consideration, etc., and in practice about 70 per cent. of the theoretical mean effec-

tive pressure is attained.

In the above computations care must be taken always to use the absolute pressure,—i.e., the pressure above vacuum,—the resulting mean effective pressure being that existing above vacuum. For a high-pressure engine, therefore, atmospheric pressure must be deducted.

N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
1.01	.009 9503	1.65	.500 7752	2.29	.828 5518	2.93	1.075 0024
1.02	.019 8026	1.66	.506 8175	2.30	.832 9091	2.94	1.078 4095
1.03	.029 5588	1.67	.512 8236	2.31	.837 2475	2.95	1.081 8051
1.04	.039 2207	1.68	.518 7937 .524 7285	2.32	.841 5671	2.96	1.085 1892
1.05	.048 7902	1.69 1.70	.524 7285	2.33	.845 8682	2.97	1.088 5619
1.06	.058 2689	1.70	.530 6282	2.34	.850 1509	2.98	1.091 9233
1.07	.067 6586	1.71	.536 4933	2.35	.854 4153	2.99	1.095 2733
1.08	.076 9610	1.72	.542 3242	2.36	.858 6616	3.00	1.098 6123
1.09	.086 1777	1.73	.548 1214	2.37	.862 8899	3.01	1.101 9400
1.10	.095 3102	1.74	.553 8851	2.38	.867 1004	3.02	1.105 2568
1.11	.104 3600	1.75	.559 6157	2.39	.871 2933	3.03	1.108 5626
1.12	.113 3287	1.76	.565 3138	2.40	.875 4687	3.04	1.111 8575
1.13	.122 2176	1.77	.570 9795	2.41	.879 6267	3.05	1.115 1415
1.14	.131 0283	1.78	.576 6133	2.42	.883 7675	3.06	1.118 4149
1.15	.139 7619	1.79	.582 2156 .587 7866	2.43 2.44	.887 8912 .891 9980	3.07	1.121 6775 1.124 9295
$\frac{1.16}{1.17}$.157 0037	1.80	.593 3268	2.45	.896 0880	3.09	1.124 9295
1.18	.165 5144	1.82	.598 8365	2.46	.900 1613	3.10	1.131 4021
1.19	.173 9533	1.83	.604 3159	2.47	.904 2181	3.11	1.134 6227
1 20	.182 3215	1.84	.609 7655	2.48	908 2585	3 12	1.137 8330
1.20 1.21 1.22	.190 6203	1.85	.615 1856	2.49	.912 2826	3.12 3.13	1.141 0330
1.22	.198 8508	1.86	.620 5764	2.50	.916 2907	3.14	1.144 2227
1.23	.207 0141	1.87	.625 9384	2.51	.920 2827	3.15	1.147 4024
1.23 1.24	.215 1113	1.88	.631 2717	2.52	.924 2589	3.16	1.150 5720
1.25	.223 1435	1.89	.636 5768	2.53	.928 2193	1 3 17	1.153 7315
1 26	.231 1117	1.90	.641 8538	2.54	.932 1640	3.18	1.156 8811
1.27	.239 0169	1.91	.647 1032	2.55	.936 0933	3.19	1 160 0209
1.27 1.28 1.29	.246 8600	1.92	.647 1032 .652 3251	2.56	.940 0072	3.18 3.19 3.20 3.21	1.163 1508
1.29	.254 6422	1.93	.657 5200	2.57	.943 9058	3.21	1.166 2709
1.30	.262 3642	1.94	.662 6879	2.58	.947 7893	3.22	1.169 3813
1.31	.270 0271	1.95	.667 8293	2.59	.951 6578	3.23	1.172 4821
1.32	.277 6317	1.96	.672 9444	2.60	.955 5114	3.24	1.175 5733
1.33	.285 1789	1.97	.678 0335	$2.61 \\ 2.62$.959 3502 .963 1743	3.25 3.26	1.178 6549
1.34 1.35 1.36 1.37	.292 6696 .300 1045	1.98	.683 0968 .688 1346	2.63	.966 9838	3.27	1.181 7271 1.184 7899
1.36	.307 4846	2.00	.693 1472	2.64	.970 7789	3.28	1.187 8434
1.37	.314 8107	2.01	.698 1347	2.65	.974 5596	3.29	1.190 8875
1.38	.322 0834	2.02	.703 0974	2.66	.978 3261	3.30	1.193 9224
1 39	.329 3037	2.03	.708 0357	2.67	.982 0784	3.31	1.196 9481
1.40	.336 4722	2.04	.712 9497	2.68	.985 8167	3.32	1.199 9647
1.41	.343 5897	2.05	.717 8397	2.69	.989 5411	3.33	1.202 9722
1.42	.350 6568	2.06	.722 7059	2.70	.993 2517	3.34	1.205 9707
1.43	.357 6744	2.07	.727 5485	2.71	.996 9486	3.35	1.208 9603
1.44	.364 6431	2.08	.732 3678 .737 1640	2.72	1.000 6318	3.36	1.211 9409
1.45	.371 5635	2.09	.737 1640	2.73	1.004 3015	3.37	1.214 9127
1.46	.378 4364	2.10	.741 9373	2.74	1.007 9579	3.38	1.217 8757
1.47	.385 2624	2.11	.746 6879	2.75	1.011 6008	3.39	1.220 8299 1.223 7754
1.48	.392 0420	2.12	.751 4160	2.76	1.015 2306	3.40	1.223 7754
1.49 1.50	.398 7761 .405 4651	2.13 2.14	.756 1219 .760 8058	$2.77 \\ 2.78$	$oxed{1.0188473} \ 1.0224509$	3.41	1.229 6405
1.51	.412 1096	2.14	.765 4678	2.79	1.026 0415	3.43	1 232 5605
$\frac{1.51}{1.52}$.418 7103	2.16	770 1082	2.80	1.029 6194	3.44	1.235 4714
1.53	.425 2677	2.17	.770 1082 .774 7271	2.81	1.033 1844	3.45	1.235 4714 1.238 3742
1.54	.431 7824	2.18	.779 3248	2.82	1.036 7368	3.46	1.241 2685
1.55	.438 2549	2.19	.783 9015	2.83	1.040 2766	3.47	1.244 1545
1.56	.444 6858	2.20	.788 4573	2 84	1.043 8040	3.48	1.247 0322
1.57	.451 0756	2.21	.792 9925	2.85	1.047 3189	3.49	1.249 9017
1.58	.457 4248	2.22	.797 5071	2.86	1.050 8216	3.50	1.252 7629
1.59	.463 7340	2.23	.802 0015	2.87	1 054 3120	3.51	1.255 6160
1.60	.470 0036	2.24 2.25	.806 4758	2.88	1.057 7902 1.061 2564 1.064 7107	3.52 3.53	1.258 4609
1.61	.476 2341	2.25	.810 9302	2.89	1.061 2564	3.53	1.261 2978
1.62	.482 4261	2.26	.815 3648	2.90	1.064 7107	3.54	1.261 2978 1.264 1266 1.266 9475
1.63	.488 5800	2.27	.819 7798	2.91	1.068 1530	3.55	1.266 9475
1.64	.494 6962	2.20	.824 1754	2.92	1.071 5836	3.56	1.209 7000
						-	

			041					
	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
-	3.57	1.272 5655	4.21	1.437 4626	4.85	1.578 9787	5.49	1.702 9282
	3.58	1.275 3627	4.22	1.439 8351	4.86	1.581 0384	5.50	1.704 7481
	3.59	1.278 1521	4.23	1.442 2020	4.87	1.583 0939	5.51	1.706 5646
	3.60	1.280 9338	4.24	1.444 5632	4.88	1.585 1452	5.52	1.708 3778
	3.61	1.283 7077	4.25	1.446 9189	4.89	1.587 1923	5.53	1.710 1878
	3.62	1.286 4740	4.26	1.449 2691	4.90	1.589 2352	5.54	1.711 9944
	3.63	1.289 2326	4.27	1.451 6138	4.91	1.591 2739	5.55	1.713 7979
	3.64	1.291 9836	4.28	1.453 9530	4.92	1.593 3085	5.56	1.715 5981
	3.65	1.294 7271	4.29	1.456 2867	4.93	1.595 3389	5.57	1.717 3950
	3.66	1.297 4631	4.30	1.458 6149	4.94	1.597 3653	5.58	1.719 1887
	3.67	1.300 1916	4.31	1.460 9379	4.95	1.599 3875	5.59	1.720 9792
	3.68	1.302 9127	4.32	1.463 2553	4.96	1.601 4057	5.60	1.722 7666
	3.69	1.305 6264	4.33	1.465 5675	4.97	1.603 4198	5.61	1.724 5507
	3.70	1.308 3328	4.34	1.467 8743	4.98	1.605 4298	5.62	1.726 3316
	3.71	1.311 0318	4.35	1.470 1758	4.99	1.607 4358	5.63	1.728 1094
	3.72	1.313 7236	4.36	1.472 4720	5.00	1.609 4379	5.64	1.729 8840 *
	3.73	1.316 4082	4.37	1.474 7630	5.01	1.611 4359	5.65	1.731 6555
	3.74	1.319 0856	4.38	1.477 0487	5.02	1.613 4300	5.66	1.733 4238
	3.75	1.321 7558	4.39	1.479 3292	5.03	1.615 4200	5.67	1.735 1891
	3.76	1.324 4189	4.40	1.481 6045	5.04	1.617 4060	5.68	1.736 9512
	3.77	1.327 0749	4.41	1.483 8746	5.05	1.619 3882	5.69	1.738 7102
	3.78	1.329 7240	4.42	1.486 1396	5.06	1.621 3664	5.70	1.740 4661
	3.79	1.332 3660	4.43	1.488 3995	5.07	1.623 3408	5.71	1.742 2189
	3.80	1.335 0010	4.44	1.490 6543	5.08	1.625 3112	5.72	1.743 9687
	3.81	1.337 6291	4.45	1.492 9040	5.09	1.627 2778	5.73	1.745 7155
	3.82	1.340 2504	4.46	1.495 1487	5.10	1.629 2405	5.74	1.747 4591
	3.83	1.342 8648	4.47	1.497 3883	5.11	1.631 1994	5.75	1.749 1998
	3.84 3.85 3.86	1.345 4723 1.348 0731 1.350 6671	4.48 4.49 4.50	1.499 6230 1.501 8527 1.504 0774	5.12 5.13 5.14	1.633 1544 1.635 1056 1.637 0530	5.76 5.77 5.78 5.79	1.750 9374 1.752 6720 1.754 4036 1.756 1323
	3.87	1.353 2544	4.51	1.506 2971	5.15	1.638 9967	5.79	1.756 1323
	3.88	1.355 8351	4.52	1.508 5119	5.16	1.640 9365	5.80	1.757 8579
	3.89	1.358 4091	4.53	1.510 7219	5.17	1.642 8726	5.81	1.759 5805
	3.90	1.360 9765	4.54	1.512 9269	5.18	1.644 8050	5.82	1.761 3002
	3.91	1.363 5373	4.55	1.515 1272	5.19	1.646 7336	5.83	1.763 0170
	3.92	1.366 0916	4.56	1.517 3226	5.20	1.648 6586	5.84	1.764 7308
	3.93	1.368 6394	4.57	1.519 5132	5.21	1.650 5798	5.85	1.766 4416
	3.94	1.371 1807	4.58	1.521 6990	5.22	1.652 4974	5.86	1.768 1496
	3.95	1.373 7156	4.59	1.523 8800	5.23	1.654 4112	5.87	1.769 8546
	3.96 3.97 3.98	1.376 2440 1.378 7661 1.381 2818	4.60 4.61 4.62	1.526 0563 1.528 2278 1.530 3947	5.24 5.25 5.26	1.656 3214 1.658 2280	5.88 5.89 5.90	1.7715567 1.7732559
	3.99 4.00	1.383 7912 1.386 2943 1.388 7912	4.63 4.64	1.532 5568 1.534 7143	5.27 5.28	1.660 1310 1.662 0303 1.663 9260	5.91 5.92	1.774 9523 1.776 6458 1.778 3364
	4.01 4.02 4.03	1.391 2818 1.393 7663	4.65 4.66 4.67	1.536 8672 1.539 0154 1.541 1590	5.29 5.30 5.31	1.665 8182 1.667 7068 1.669 5918	5.93 5.94 5.95	1.780 0242 1.781 7091 1.783 3912
Photomorphic or or	4.04 4.05 4.06	1.396 2446 1.398 7168 1.401 1829	4.68 4.69 4.70	1.543 2981 1.545 4325 1.547 5625	5.32 5.33 5.34	$\begin{array}{c} 1.671\ 4733 \\ 1.673\ 3512 \\ 1.675\ 2256 \end{array}$	5.96 5.97 5.98	1.785 0704 1.786 7469 1.788 4205
-	4.07	1.403 6429	4.71	1.549 6879	5.35	1.677 0965	5.99	1.790 0914
	4.08	1.406 0969	4.72	1.551 8087	5.36	1.678 9639	6.00	1.791 7594
	4.09	1.408 5449	4.73	1.553 9252	5.37	1.680 8278	6.01	1.793 4247
Marie Address	4.10	1.410 9869	4.74	1.556 0371	5.38	1.682 6882	6.02	1.795 0872
	4.11	1.413 4230	4.75	1.558 1446	5.39	1.684 5453	6.03	1.796 7470
	4.12	1.415 8531	4.76	1.560 2476	5.40	1.686 3989	6.04	1.798 4040
-	4.13 4.14 4.15	1.418 2774 1.420 6957 1.423 1083	4.77 4.78 4.79	1.562 3462 1.564 4405 1.566 5304	5.41 5.42 5.43	1.688 2491 1.690 0958 1.691 9391	6.05	1.800 0582 1.801 7098 1.803 3586
-	4.16 4.17 4.18	1.425 5150 1.427 9160 1.430 3112	4.80 4.81 4.82	1.568 6159 1.570 6971 1.572 7739	5.44 5.45 5.46	1.693 7790 1.695 6155 1.697 4487	6.07 6.08 6.09 6.10	1.805 0047 1.806 6481 1.808 2887
-	4.19 4.20	1.432 7007 1.435 0845	4.83 4.84	1.574 8464 1.576 9147	5.47 5.48	1.699 2786 1.701 1051	6.11 6.12	1.809 9267 1.811 5621

	1						
N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
6.13	1.813 1947	6.77	1.912 5011	7.41	2.002 8305	8.05	2.085 6720
6.14	1.814 8247	6.78	1.913 9771	7.42	2.004 1790	8.06	2.086 9135
6.15	1.816 4520	6.79	1.915 4509	7.43	2.005 5258	8.07	2.088 1534
6.16	1.818 0767	6.80	1.916 9226	7.44	2.006 8708	8.08	2.089 3918
6.17	1.819 6988	6.81	1.918 3921	7.45	2.008 2140	8.09	2.090 6287
6.18	1.821 3182	6.82	1.919 8594	7.46	2.009 5553	8.10	2.091 8640
6.19	1.822 9351	6.83	1.921 3247	7.47	2.010 8949	8.11	2.093 0984
6.20	1.824 5493	6.84	1.922 7877	7.48	2.012 2327	8.12	2.094 3306
6.21	1.826 1608	6.85	1.924 2486	7.49	2.013 5687	8.13	2.095 5613
6.22	1.827 7699	6.86	1.925 7074	7.50	2.014 9030	8.14	2.096 7905
6.23	1.829 3763	6.87	1.927 1641	7.51	2.016 2354	8.15	2.098 0182
6.94	1.830 9801	6.88	1.928 6186	7.52	2.017 5661	8.16	2.099 2444
6.25	1.832 5814	6.89	1.930 0710	7.53	2.018 8950	8.17	2.100 4691
6.26	1.834 1801	6.90	1.931 5214	7.54	2.020 2221	8.18	2.101 6923
6.25 6.26 6.27	1.835 7763	6.91	1.932 9696	7.55	2.021 5475	8.19	2.102 9140
6.28	1.837 3699	6.92	1.934 4157	7.56	2.022 8711	8.20	2.104 1341
6.29	1.838 9610	6.93	1.935 8598	7.57	2.024 1929	8.21	2.105 3529
6.30	1.840 5496	6.94	1.937 3017	7.58	2.025 5131	8.22	2.106 5702
6.31	1.842 1356	6.95	1.938 7416	7.59	2.026 8315	8.23	2.107 7861
6.32	1.843 7191	6.96	1.940 1794	7.60	2.028 1482	8.24	2.108 9998
6.33	1.845 3002	6.97	1.941 6152	7.61	2.029 4631	8.25	2.110 2128
6.34	1.846 8787	6.98	1.943 0489	7.62	2.030 7763	8.26	2.111 4243
6.35	1.848 4547	6.99	1.944 4805	7.63	2.032 0878	8.27	2.112 6343
6.36	1.850 0283	7.00	1.945 9101	7.64	2.033 3976	8.28	2.113 8428
6.37	1.851 5994	7.01	1.947 3376	7.65	2.034 7056	8.29	2.115 0499
6.38	1.853 1680	7.02	1.948 7632	7.66	2.036 0119	8.30	2.116 2555
6.39	1.854 7342	7.03	1.950 1866	7.67	2.037 3166	8.31	2.117 4596
6.40	1.856 2979	7.04	1.951 6080	7.68	2.038 6195	8.32	2.118 6622
6.41	1.857 8592	7.05	1.953 0275	7.69	2.039 9207	8.33	2.119 8634
6.42	1.859 4181	7.06	1.954 4449	7.70	2.039 9207 2.041 2203	8.34	2.121 0632
6.43	1.860 9745	7.07	1.955 8604	7.71	2.042 5181	8.35	2.122 2615
6.44	1.862 5285	7.08	1.957 2739	7.72	2.043 8143	8.36	2.123 4584
6.45	1.864 0801	7.09	1.958 6853	7.73	2.045 1088	8.37	2.124 6539
6.46	1.865 6293	7.10	1.960 0947	7.74	2.046 4016	8.38	2.125 8479
6.47	1.867 1761	7.11	1.961 5022	7.75 7.76	2.047 6928	8.39	2.127 0405
6.48	1.868 7205	7.12	1.962 9077	7.76	2.048 9823	8.40	2.128 2317
6.49	1.870 2625	7.13	1.964 3112 1.965 7127	7.77	2.050 2701	8.41	2.129 4214
6.50	1.871 8021	7.14	1.965 7127	7.78	2.051 5563	8.42	2.130 6098
6.51	1.873 3394	7.15	1.967 1123	7.79	2.052 8408	8.43	2.131 7967
6.52	1.874 8743	7.16	1.968 5099	7.80	2.054 1237	8.44	2.132 9822
6.53	1.876 4069	7.17	1.969 9056	7.81	2.055 4049	8.45	2.134 1664
6.54	1.877 9371	7.18	1.971 2993	7.82	2.056 6845	8.46	2.135 3491
6.55	1.879 4650	7.19	1.972 6911 1.974 0810	7.83	2.057 9624	8.47	2.136 5304
6.56	1.880 9906 1.882 5138	7.20		7.84	2.059 2388	8.48 8.49	2.137 7104 2.138 8889
6.57 6.58	1.884 0347	7.21 7.22	1.975 4689	7.85	2.060 5135 2.061 7866	8.49	2.138 8889 2.140 0661
6.59	1.885 5533	7.23	1.976 8549 1.978 2390	7.86	2.061 7866	8.51	2.140 0001
6.60	1.887 0696	7.24	1.978 2390	7.87	2.064 3278	8.52	2.141 2419 2.142 4163
6.61	1.888 5837	7.25	1.981 0014	7.89	2.065 5961	8.53	2.142 4103
6.62	1.890 0954	7.26	1.982 3798	7.90	2.066 8627	8.54	2.144 7609
6.63	1.891 6048	7.27	1.983 7562	7.91	2.068 1277	8.55	2.145 9312
6.64	1.893 1119	7.28	1.985 1308	7.92	2.069 3911	8.56	2.147 1001
6.65	1.894 6168	7.29	1.986 5035	7.93	2.070 6530	8.57	2,148 2676
6.66	1.896 1194	7.30	1.987 8743	7.94	2.071 9132	8.58	2.149 4339
6.67	1.897 6198	7.31	1.989 2432	7.95	2.073 1719	8.59	2.150 5987
6.68	1.899 1179	7.32	1.990 6103	7.96	2.074 4290	8.60	2.151 7622
6.69	1.900 6138	7.33	1.991 9754	7.97	2.075 6845	8.61	2.152 9243
6.70	1.902 1075	7.34	1.993 3387	7.98	2.076 9384	8.62	2.154 0851
6.71	1.903 5989	7.35	1.994 7002	7.99	2.078 1907	8.63	2.155 2445
6.72	1.905 0881	7.36	1.996 0599	8.00	2.079 4415	8.64	2.156 4026
6.73	1.906 5751	7.37	1.997 4177	8.01	2.080 6907	8.65	2.157 5593
6.74	1.908 0600	7.38	1.998 7736	8.02	2.081 9384	8.66	2.158 7147
6.75	1.909 5425	7.39	2.000 1278	8.03	2.083 1845	8.67	2.159 8687
6.76	1.911 0228	7.40	2.001 4800	8.04	2.084 4290	8.68	2.161 0215

-							
N.	Logarithm.	N.	Logarithm.	N.	Logarithm.	N.	Logarithm.
8.69	2.162 1729	9.33	2.233 2350	9.97	2.299 5806	71	4.262 6799
8.70	2.162 1729 2.163 3230	9.34	2.234 3062	9.98	2.300 5831	$\frac{71}{72}$	4.276 6661
8.71	2.164 4718	9.35	2.235 3763	9.99	2.301 5846	73	4.290 4594
8.72	2.165 6192	9.36	2.236 4452	10.0	2.302 5851	74	4.304 0651
8.73	2.166 7653	9.37	2.237 5130	11.0	2.397 8953	75 76 ·	4.317 4881
8.74	2.167 9101	9.38 9.39	2.238 5797 2.239 6452	12.0	2.484 9067	76	4.330 7333
8.75	2.169 0536	9.39	2.239 0402	13.0 14.0	2.564 9494 2.639 0573	77 78 79	4.343 8054 4.356 7088
8.76 8.77	2.170 1959 2.171 3367	9.40	2.240 7096 2.241 7729	15.0	2.708 0502	70	4.369 4479
8.78	2.172 4763	9.42	2.242 8350	16.0	2.772 5887	80	4.382 0266
8.79	2.173 6146	9.43	2.243 8960	17.0	2.833 2133	81	4.394 4492
8.80	2.174 7517	9.44	2.244 9559	18 0	2.890 3718	82 83	4.406 7193
8.81	2.175 8874	9.45	2.246 0147	19.0	2.944 4390	83	4.418 8406
8.82	2.177 0218	9.46	2.247 0723	20.0	2.995 7323	84 85 86 87	4.430 8168
8.83	2.178 1550	9.47	2.248 1288	21.0	3.044 5224	85	4.442 6513
8.84	2.179 2868	9.48	2.249 1843	22.0	3.091 0425	86	4.454 3473
8.85	2.180 4174	9.49	2.250 2386 2.251 2917	23.0	3.135 4942	87	4.465 9081
8.86 8.87	2.181 5467 2.182 6747	9.50 9.51	2.251 2917 2.252 3438	24.0 25.0	3.178 0538 3.218 8758	88 89	4.477 3368 4.488 6364
8.88	2.183 8015	9.51	2.253 3948	26.0	3.258 0965	90	4.499 8097
8.89	2.184 9270	9.53	2.254 4446	27.0	3.295 8369	91	4.510 8595
8.90	2.186 0512	9.54	2.255 4934	28.0	3.332 2045	92	4.521 7886
8.91	2.187 1742	9.55	2,256 5411	29.0	3.367 2958	93	4.532 5995
8.92	2.187 1742 2.188 2959	9.56	2.257 5877	30.0	3.401 1974	94 95	4.543 2948
8.93	2.189 4163	9.57	2.258 6332	31.0	3.433 9872	95	4.553 8769
8.94	2.190 5355	9.58	2.2596776	32.0	3.465 7359	96	4.564 3482
8.95	2.191 6535	9.59	2.260 7209	33.0	3.496 5076	97	4.574 7110
8.96	2.192 7702	9.60	2.261 7631 2.262 8042	34.0	3.526 3605	98 99 100	4.584 9675
8.97 8.98	2.193 8856 2.194 9998	9.61 9.62	2.262 8042 2.263 8442	35.0 36.0	3.555 3481 3.583 5189	100	4.595 1199 4.605 1702
8.99	2.134 3330	9.63	2.264 8832	37.0	3.610 9179	101	4.615 1205
9.00	2.196 1128 2.197 2245 2.198 3350	9.64	2.265 9211	38.0	3.637 5862	102	4.624 9728
9.01	2.198 3350	9.65	2.266 9579	39.0	3.663 5617	102 103	4.634 7290
9.02	2.199 4443	9.66	2.267 9936	40.0	3.688 8795	104	4.644 3909
9.03	2.200 5523	9.67	2.269 0282	41.0	3.713 5721	105	4.653 9604
9.04	2.201 6591	9.68	2.270 0618	42.0	3.737 6696	106	4.663 4391
9.05	2.202 7647	9.69	2.271 0944	43.0	3.761 2001	107	4.672 8288
9.06 9.07	2.203 8691 2.204 9722	9.70 9.71	2.272 1258 2.273 1562	44.0 45.0	3.784 1896 3.806 6525	108 109	4.682 1312 4.691 3479
9.08	2.206 0741	9.72	2.274 1856	46.0	3.828 6414	110	4.700 4804
9.09	2.207 1748	9.73	2.275 2138	47.0	3.850 1476	111	4.709 5302
9.10	2.208 2744	9.74	2.276 2411	48.0	3.871 2010	112	4.718 4989
9.11	2.209 3727	9.75	2.277 2673	49.0	3.891 8203	113	4.727 3878
9.12	2.210 4697	9.76	2.278 2924	50.0	3.912 0230	114	4.736 1985
9.13	2.211 5656	9.77	2.279 3165	51.0	3.931 8256	115	4.744 9321
9.14	2.212 6603 2.213 7538	9.78 9.79	2.280 3395 2.281 3614	52.0	3.951 2437	116	4.753 5902
9.15 9.16	2.213 7338	9.79	2.282 3823	53.0 54.0	3.970 2919 3.988 9841	117 118	4.762 1739 4.770 6846
9.17	2.215 9372	9.81	2.202.0020	55.0	4.007 3332	119	4.779 1235
9.18	2.217 0272	9.82	2.283 4022 2.284 4211	56.0	4.025 3517	120	4.787 4917
9.19	2.218 1160	9.83	2.285 4389	57.0	4.043 0513	121	4.795 7906
9.20	2.219 2034	9.84	2.286 4556	58.0	4.060 4430	122 123	4.804 0210
9.21	2.220 2898	9.85	2.287 4714	59.0	4.077 5374	123	4.812 1844
9.22	2.221 3750	9.86	2.288 4861	60.0	4.094 3446	124	4.820 2816
9.23 9.24	2.222 4590 2.223 5418	9.87	2.289 4998	61.0	4.110 8739	125 126 127	4.828 3137
9.24 9.25	2.223 5418 2.224 6235	9.88 9.89	2.290 5124 2.291 5241	62.0 63.0	4.127 1344 4.143 1347	126	4.836 2819
9.25	2.224 6235 2.225 7040	9.89	2.291 5241 2.292 5347	64.0	4.143 1347 4.158 8839	127	4.844 1871 4.852 0303
9.27	2.226 7833	9.91	2.293 5443	65.0	4.174 3873	128 129 130	4.859 8124
9.28	2.227 8615	9.92	2.294 5529	66.0	4.189 6547	130	4.867 5345
9.29	2.228 9385	9.93	2.295 5604	67.0	4.204 6926	131	4.875 1973
9.30	2.230 0144	9.94	2.296 5670	68.0	4.219 5077	132	4.882 8019
9.31	2.231 0890	9.95	2.297 5725	69.0	4.234 1065	133	4.890 3491
9.32	2.232 1626	9.96	2.298 5770	70.0	4.248 4952	134	4.897 8398
-	'			-		3	

Mean Pressure Above Vacuum of Expanding Steam.

				Expansi	on ratio.			14.
Absolute steam	1.333	1.5	1.6	2	2.666	3	4	8
pressure,			Steam	cut-off, fr	action of	stroke.		1
	3/4	2/3	5/8	1/2	3/8	1/3	1/4	1/8
25	24.130	23.481	22.938	21.164	18.567	17.488	19.913	9.6232
30	28.956	28.100	27.524	25.396	22.280	20.986	17.897	11.548
35	33.782	32.874	32.110	29.630	25.992	24.484	20.880	13.472
40	38.608	37.468	36.700	33.862	28.964	27.982	23.862	15.396
45	43.474	42.151	41.287	38.095	32.677	31.479	26.845	17.320
50	48,262	46.835	45.875	42.328	37.133	34.977	29.828	19.246
55	53,088	51.518	50.462	46.561	40.846	38.474	32.811	21.170
60	57,914	56.202	55.050	50.794	44.559	41.972	35.794	23.095
65	62,740	60.885	59.637	55.027	48.273	45.470	38.777	25.020
70	67,566	65.569	64.225	59.260	51.986	48.967	41.760	26.944
75	72.393	70.252	68.812	63.493	55.700	52.465	44.743	28.869
80	77.216	74.936	73.400	67.726	59.413	55.963	47.726	30.794
85	82.042	79.619	77.987	71.959	63.126	59.461	50.709	32.718
90	86.866	85.303	82.574	76.192	66.840	62.958	53.692	34.643
95	91.699	89.986	87.163	80.425	70.553	66.456	56.675	36.568
100	96.524	93.670	91.750	84.657	74.267	69.954	59.657	38.493
105	101.35	98.353	96.337	88.890	77.981	73.451	62.640	40.417
110	106.17	103.04	100.92	93.123	81.694	76.949	65.622	42.342
115	111.00	107.72	105.51	97.356	85.407	80.447	68.606	44.267
120	115.83	112.40	110.10	101.59	89.121	83.944	71.589	46.191
125	120.65	117.08	114.68	105.82	92.834	87.442	74.572	48.116
130	125.48	121.77	119.27	110.05	96.548	90.940	77.555	50.041
135	130.30	126.45	123.86	114.28	100.26	94.437	80.538	51.966
140	135.13	131.13	128.45	118.52	103.97	97.935	83.520	53.890
145	139.96	135.82	133.03	122.75	107.68	101.43	86.502	55.815
150	144.78	140.50	137.62	126.98	111.40	104.93	89.485	57.739
155	149.60	145.18	142.20	131.22	115.11	108.42	92.468	59.663
160	154.43	149.87	146.79	135.45	118.82	111.92	95.451	61.588
165	159.26	154.55	151.38	139.68	122.54	115.42	98.434	63.513
170	164.08	159.23	155.97	143.92	126.25	118.92	101.41	65.437
175	168.91	163.92	160.55	148.15	129.96	122.42	104.40	67.362
180	173.73	168.60	165.14	152.38	133.68	125.91	107.38	69.287
185	178.56	173.28	169.73	156.61	137.39	129.41	110.36	71.212
190	183.39	177.97	174.32	160.85	141.10	132 91	113.35	73.136
195	188.21	182.65	178.90	165.08	144.82	136.41	116.33	75.061
200	193.04	187.34	183.50	169.31	148.53	139.91	119.31	76.986
210	202.69	196.71	192.68	177.78	155.96	146.90	125.27	80.835
220	212.34	205.08	201.85	186.25	163.39	153.90	131.24	84.684
230	221.99	215.45	211.03	194.71	170.82	160.89	137.20	88.534
240	231.65	224.81	220.20	203.18	178.23	167.89	143.17	92.383
250	241.30	234.18	229,38	211.64	185.67	174.88	149.13	96.232
260	250.96	243.55	238,55	220.11	193.18	181.88	155.11	100.08
270	260.61	252.91	247,73	228.57	200.52	188.87	161.07	103.93
280	270.26	262.28	256,90	237.04	207.95	195.87	167.04	107.78
300	289.56	281.00	275,24	253.96	222.80	209.86	178.97	115.48

Mean Pressure for High-pressure Engines Above Atmosphere.

		Expansion ratio.								
	Pressure above	1.333	1.5	1.6	2	2.666	3	4	8	
	atmos- here, P.	Steam cut-off, fraction of stroke.								
_		3/4	2/3	5/8	1/2	3/8	1/3	1/4	1/8	
	25	23.908	22.768	22.000	19.162	14.264	13.282	9.162	.696	
	30	28.774	27.451	26.587	23.395	17.977	16.779	12.145	2.620	
	35	33.562	32.135	31.175	27.628	22.433	20.277	15.128	4.546	
	40	38.388	36.818	35.762	31.861	26.146	23.774	18.111	6.470	
	45	43.214	41.502	40.350	36.094	29.859	27.272	21.094	8.395	
	50	48.040	46.185	44.937	40.327	33.573	30.770	24.077	10.320	
	55	52.866	50.869	49.625	44.560	37.286	34.267	27.060	12.244	
	60	57.693	55.552	54.112	48.793	41.000	37.765	30.043	14.169	
	65	62.516	60.236	58.700	53.026	44.713	41.263	33.026	16.094	
	70	67.342	64.919	63.287	57.259	48.426	44.761	36.009	18.018	
	75	72.166	70.603	67.874	61.492	52.140	48.258	38.992	19.943	
	80	76.999	75.286	72.463	65.725	55.853	51.756	41.975	21.868	
	85	81.824	78.970	77.050	69.957	59.567	55.254	44.957	23.793	
	90	86.65	83.653	81.637	74.190	63.281	58.751	47.940	25.717	
	95	91.47	88.34	86.22	78.423	66.994	62.249	50.922	27.642	
	100	96.30	93.02	90.81	82.656	70,707	65.747	53.906	29.567	
	105	101.13	97.70	95.40	86.89	74.421	69.244	56.889	31.491	
	110	105.95	102.38	99.98	91.12	78.134	72.742	59.872	33.416	
	115	110.78	107.07	104.57	95.35	81.848	76.240	62.855	35.341	
	120	115.60	111.75	109.16	99.58	85.56	79.737	65.838	37.266	
	125	120.43	116.43	113.75	103.82	89.27	83.235	68.820	39.190	
	130	125.26	121.12	118.33	108.05	92.98	86.73	71.802	41.115	
	135	130.08	125.80	122.92	112.28	96.70	90.23	74.785	43.039	
	140	134.90	130.48	127.50	116.52	100.41	93.72	77.768	44.963	
	145	139.73	135.17	132.09	120.75	104.12	97.22	80.751	46.888	
	150	144.56	139.85	136.68	124.98	107.84	100.72	83.734	48.813	
	155	149.38	144.83	141.27	129.22	111.85	104.22	86.71	50.737	
	160	154.21	149.22	145.85	133.45	115.26	107.72	89.70	52.662	
	165	159.03	153.90	150.44	137.68	118.98	111.21	92.68	54.587	
	170	163.86	158.58	155.03	141.91	122.69	114.71	95.66	56.812	
	175	168.69	163.27	159.62	146.15	126.40	118.21	98.65	58.436	
	180	173.51	167.95	164.20	150.38	130.12	121.71	101.63	60.361	
	185	178.34	172.64	168.80	154.81	133.83	125.21	104.61	62.286	
	190	183.16	177.32	173.39	158.81	137.54	128.71	107.59	64.210	
	195	187.99	182.01	177.98	163.08	141.26	132.20	110.57	66.135	
	200	192.81	186.69	182.58	167.31	144.97	135.70	113.55	68.060	
	210	202 46	195.06	191.74	175.78	152.40	142.70	119.52	71.908	
	220	212.11	205.43	200.93	184.24	159.83	149.69	125.48	75.758	
	230	221.77	214.79	210.10	192.71	167.24	156.69	131.39	79.603	
	240	231.42	224.16	219.27	201.17	174.68	163.68	137.41	83.456	
	250	241.08	233.57	228.45	209.64	182.19	170.68	143.39	87.30	
	260	250.73	242.89	237.62	218.10	189.53	177.67	149.35	91.15	
	270	260.38	252.26	246.79	226.57	196.96	184.67	155.32	95.00	
	280	270.04	261.62	255.94	235.03	204.39	191.66	161.29	98.86	
	300	289.34	280.35	264.30	251.95	219.24	205.56	173.22	106.55	

In the preceding computations and tables it has been assumed that there was no clearance or waste space between the piston and the cylinder head at the end of the stroke. In practice, the clearance amounts to from 2 to 7 per cent. of the cylinder volume. This may be taken into account by adding the clearance to both the length of the stroke and the length of the admission portion in determining the expansion ratio, r. Thus, if the stroke is 24 inches and the steam is cut off at 6 inches, the expansion ratio will be $\frac{24}{5} = 4$, if clearance is neglected. If, however, there is a space of $\frac{1}{2}$ inch between the piston and the cylinder head at the end of the stroke, we have

$$r = \frac{24.5}{6.5} = 3.77$$
;

and this is the ratio to be used in computation.

Most Economical Point of Cut=off.

(W. D. Marks.)

To find the most economical point of cut-off,—that is, its inverse, that number of expansions which will result in the greatest economy of steam from the boiler, per horse-power, per hour.

Notation.

e = the true point of cut-off = the reciprocal of the true number of expansions;

B =the absolute back pressure during exhaust, in pounds, per square inch;

 P_b = the absolute pressure at cut-off;

s = the stroke of piston, in feet;

d = the diameter of cylinder, in feet;

 $A = \frac{62.5}{S};$

S= the specific volume of steam at cut-off; $D=2\frac{T_b-T_e}{N}C;$

$$D = 2\frac{T_b - T_e}{N}C;$$

 $T_b =$ the temperature of the steam at cut-off (Fahr.);

 T_e = the temperature of the steam during exhaust;

N =the number of strokes per minute = twice the revolutions of crank;

C =the constant of condensation = 0.018 pounds of steam for about 82 pounds gauge pressure.

$$e = \frac{B}{P_b} + \left(\frac{1}{s} + \frac{0.194}{d}\right) \frac{Dd}{Ad+D} \text{ nat. log. } \frac{1}{e}.$$

Example. Let

 $P_b = 100$ pounds absolute: B = 15 pounds absolute;

s = 4 feet;d = 1.5 feet;

N = 150 per minute.

We have

$$\begin{array}{l} e \\ A = 0.233, \\ D = 0.0274, \\ e = 0.15 + \left(\frac{1}{4} + \frac{0.194}{1.5}\right) \frac{0.0274 \times 1.5 \times 2.3026}{0.233 \times 1.5 + 0.0274} \text{ com. log. } \frac{1}{e}, \\ e = 0.15 + 0.3793 \frac{0.0944}{0.3764} \log. \frac{1}{e}, \\ e = 0.15 + 0.0952 \log. \frac{1}{e}. \end{array}$$

We must solve this transcendental equation tentatively, trying values until the two members balance.

Assume $e = \frac{1}{5}$ of stroke plus clearance. We have

$$0.20 = 0.15 + 0.066 = 0.216.$$

This error of 0.016 is closer work than can be realized in practice, and

we can take 5 expansions as the best number.

Between \(\frac{1}{3} \) and \(\frac{1}{4} \) would have been near enough for all practical pur-

poses.

To find the proper ratio of stroke to diameter under the given conditions, assuming 5 expansions and diameter = $1\frac{1}{2}$ feet.

Inverting the above equation, we have

$$s = \frac{d}{\left(\frac{A}{D}d + 1\right)\left(\frac{e - \frac{B}{P_b}}{\text{nat. log. } \frac{1}{e}}\right) - 0.194},$$

$$\frac{A}{D} = 8.56,$$

$$s = \frac{1.5}{\left(8.56 \times 1.5 + 1\right) \left(\frac{0.20 - 0.15}{1.61}\right) - 0.194} = 6.4 \text{ feet, nearly.}$$

With slow-moving engines it will be found that long stroke is most economical, while on the other hand high-speed engines require short stroke for greatest economy. If we double the speed of this engine, making N=300, the stroke s=2.4 feet, for greatest economy.

In order to construct the curve representing the expansion of steam in a cylinder, under the assumption that the expansion is isothermal,—i.e.,

that pv = constant,—the following method may be used:

Isothermal Curve-

Draw the line, AC, to represent the position of zero pressure, or perfect vacuum, making the length, AC, represent the stroke of the piston. Make AX equal to the clearance, expressed in terms of the stroke,—that is,

$$AX = AC \frac{\text{clearance volume}}{\text{volume swept through by piston}}$$
.

Erect the perpendicular, DF, to represent the admission pressure on any convenient scale, and draw the horizontal line, YDF. Mark the point, E, so that DE represents the length of the stroke during which steam is admitted,—i.e., if the expansion ratio is 6, DE will be one-sixth of AC,—and draw BE. Take any points, 1, 2, 3, 4, and join them to X, and also drop

perpendiculars from 1, 2, 3, 4. Draw horizontal lines from the intersections, X_1 , X_2 , X_3 , X_4 , on EB, and where these horizontal lines intersect the cor-

responding verticals will be points on the curve, as at Y_1 , Y_2 , Y_3 , Y_4 . The hyperbolic curve represents isothermal expansion, it being assumed that the temperature is kept constant. Other curves have been considered in connection with the expansion of steam, and according to the investigations of Rankine, Zeuner, and others, these may be expressed by the general equation:

 $pv^m = \text{constant},$

the exponent, m, being varied according to the curve under consideration. For dry saturated steam, according to Rankine, $m = \frac{17}{16} = 1.0625$; while, according to Zeuner, m=1.0646. For adiabatic expansion, in which the expanding steam neither receives nor gives out heat, Rankine gives m=₩ = 1.111.

Any of these curves may be constructed by the computation of any desired number of ordinates, using logarithms, or more conveniently by the so-called "polytropic"

Polytropic Curve.

diagram. the Draw rectangular axes, YOX, and make v_0 equal the portion of the stroke during which the initial pressure, p_0 , is maintained. Draw OA, making the angle, a, any convenient value, and also draw OB, making the angle, β , so that

$$1 + \tan \beta = (1 + \tan \alpha)^m,$$

choosing m according to the curve to be drawn, as above. Then, starting from C, draw Cc at 45° from OC and back at right angles to CO, zigagging back and forth, as shown; also drop the vertillar sizes between C 4 and 5 and 5

cal, ED, prolonged to e, and construct a similar zigzag between OA and OX, making alternate angles of 45° and 90° with OX. The intersections of the normals to OY and OX, when prolonged, will then give points in

the curve, as at 1, 2, 3, etc.

In practice, it has been found that the isothermal curve represents practical working conditions as closely as any which can be drawn.

The principal source of loss in steam engines is the initial condensation of the steam, which takes place when it first enters the cylinder. difference in temperature between steam at 100 pounds and steam at atmospheric pressure is about 125° F., and as the cylinder walls absorb and part with heat readily the incoming steam meets the walls which have just been cooled to the temperature of the previous exhaust. For this reason it has been found wasteful to attempt to realize the high economy due to large expansion ratios in a single cylinder. For high-pressure engines the best results are obtained with 4 or 5 expansions,—i.e., cutting off the steam at 14 to 1 of the stroke,—while for condensing engines from 8 to 10 expansions is about the highest that can be used to advantage.

In order to use higher expansion ratios successfully, the expansion is performed in two or more cylinders, giving compound or multiple-expansion engines. A number of rules and methods have been given for determining the best relative areas of cylinders for compound and multiple-expansion engines, depending upon the desire of the designer. In many cases, it is wished to make the work performed in the various cylinders approximately equal; in others, it is desired to equalize the initial stresses; and in others, to equalize the drop in temperature.

For compound engines various empirical rules have been given, generally based upon the initial pressure or upon the expansion ratio. Thus, if r be the expansion ratio, the cylinder ratio is often made equal

In marine practice, the cylinder ratio usually ranges from 1 to 4 for 100 pounds pressure to 1 to 5 for 120 pounds pressure.

For triple-expansion engines the ratios found in practice, according to Whitham, are about as follows:

Cylinder Ratios for Triple-expansion Engines.

Initial pressure.	High pressure.	Intermediate.	Low pressure.		
130	1	2.25	5.00		
140	1	2.40	5.85		
150	1	2.55	6.90		
160	1	2.70	7.25		
			1		

For quadruple-expansion engines, operating at pressures of 160 pounds and over, the following proportions are found:

Cylinder Ratios for Quadruple-expansion Engines.

Initial pressure.	High pressure.	First intermediate.	Second intermediate.	Low pressure.
160	1	2.00	4.00	8
180	1	2.10	4.20	9
200	1	2.15	4.60	10
220	1	2.20	4.80	11

The subject is best studied by drawing a single diagram for the initial pressure and expansion ratio given, this being then divided up according to the distribution of power desired among two, three, or four cylinders, as the proposed design may be for a compound, triple, or quadruple engine.

For this purpose the isothermal curve will be sufficiently accurate.

Thus, the diagram may be drawn as for a single engine, as shown here-

with, and divided into portions of equal area, D, D', and D''; this being best done tenta-tively, the areas being measured by the plani-meter. If the total area is first measured and divided by three, the portion D can be laid off very closely after one or two trials, and the same for D' and D''. The areas of the several parts will then be proportional to the volumes of the various cylinders, and, since they are all made of the same

manner.

The thermal efficiency of any heat motor is limited by the range of temperature through which the impelling fluid acts. This efficiency is the ratio obtained by dividing the heat converted into work by the total heat taken in. This ratio must always be less than unity, and its maximum value for any range of temperature is found from the ratio

$$\frac{T_1-T_2}{T_1},$$

in which T_1 is the absolute temperature of reception, = temperature F. + 461, = temperature C. + 273; while T_2 is the absolute temperature of rejection. Considering all temperatures as absolute,—that is, as measured from the absolute zero, we have

Thus, in the case of an engine in which the steam enters at a temperature of 341° F., or 802° absolute, corresponding to an absolute pressure of 120 pounds per square inch, and is rejected in the condenser at a temperature of 60° F., or 521° absolute, we have

$$\frac{T_1 - T_2}{T_2} = \frac{802^\circ - 521^\circ}{802^\circ} = 0.35,$$

so that, if all the heat in the steam were converted into mechanical energy, the efficiency could not exceed 35 per cent.

In actual practice the thermal efficiency rarely attains 12 per cent., the highest recorded efficiency being that of the Reynolds pumping engine at Boston, Massachusetts. This engine has the record of a performance of 187.8 B.T.U. per indicated horse-power, corresponding to a thermal efficiency of 225/g per cent.

Indicator Diagrams.

The steam-engine indicator is a form of recording pressure gauge, arranged to be attached to the cylinder of a steam engine so as to draw a curve representing the pressure within the cylinder at every point in the stroke. Originally invented by Watt, and greatly improved by McNaught, Richards, Thompson, and others, it is now a standard instrument of the engineer. The details of construction of the various styles of instruments on the market are fully given in the hand-books issued by the manufacturer, and hence the diagrams themselves will only be discussed here.

Typical Indicator Diagram.

In the typical diagram, given herewith, the general form obtained from a single-cylinder engine in good condition is shown. If the area of the diagram (best measured by a planimeter) is divided by the length and this multiplied by the scale of the spring, the mean effective pressure in the cylinder is obtained. This mean effective pressure multiplied by the area of the piston, in square inches, gives the total force acting upon the piston, in pounds, and by multiplying this force by the number of feet of piston

travel per minute, the power, in foot-pounds, per minute is obtained. From this the horse-power is found by dividing by 33,000.

Thus, if

p = mean effective pressure, in pounds, per square inch;

 \hat{a} = area of piston, in square inches; s = piston speed, in feet, per minute.

$$H = \frac{a \times p \times s}{33000}.$$

If a number of computations are to be made upon a given engine, the area of the piston may conveniently be divided by 33,000 to obtain a constant factor, corresponding to the horse-power developed by 1 pound mean effective pressure at 1 foot piston speed. This constant need then only be multiplied by the actual speed and pressure to give the power in each case.

It must be remembered that the indicator is only a recording pressure gauge, and that it merely shows the pressure at every point in the stroke. The interpretation given to the record is a matter in which the judgment of the observer must in great measure supply.

In general, the indicator diagram shows the action of the valve gear, including the points of cut-off, release, and compression; also, the freedom of the exhaust and the equality of action in both the forward and backward strokes. To this extent the indicator is of great assistance in adjusting the valves and in maintaining a correct adjustment.

The indicator diagram may also be used to determine the steam consumption of the engine,—at least the theoretical consumption may thus be determined, and by comparison with actual measurements the proportion of steam accounted for by the indicator may be computed.

The steam consumption is usually stated in terms of the equivalent weight of water. Several methods may be used in computing the rate of water consumption. The following, due to Mr. Jesse Warrington, is convenient in that it does not require any data concerning the dimensions or speed of the engine, being determined solely from the indicator diagram.

Divide the constant number 859,375 by the *volume* of steam at the terminal pressure and by the mean effective pressure. The quotient will be the

desired rate.

This constant is the number of pounds of water that would be used in 1 This constant is the number of pounds of water that would be used in I hour by an engine developing I horse-power, if run by water (instead of steam), at I pound pressure per square inch. Then, with pressure of more than I pound, the amount required would be as many times less as the pressure was greater than I pound, and when steam is used the amount would be as much less as the volume of the steam at the pressure at which it is released is greater than that of an equal weight of water; hence, the above rule. The constant is found as follows: The standard horse-power height 3000 foot propulse if 18 feet per minute would being 33,000 foot-pounds, or 33,000 pounds lifted 1 foot per minute, would be equivalent to $33,000 \times 12 = 396,000$ pounds lifted 1 inch per minute; hence, an engine whose piston displacement was 396,000 cubic inches per minute would develop 1 horse-power with 1 pound mean effective pressure on the piston. This for 1 hour would be $396,000 \times 60$ minutes = 23,760,000 cubic inches per hour. Then suppose the engine to be run by water at 1 pound pressure per square inch, instead of steam, and taking 27.648 as the number of cubic inches of water per pound, $23,760,000 \div 27.648 = 859,375$, which is the desired georgical property. which is the desired constant

The water consumption thus determined is not corrected for clearance or for compression, but this may be done from the diagram, as follows: Prolong the expansion curve beyond the point of release until it reaches the end of the diagram, this giving the terminal point of the curve as it would have been had the exhaust valve not been opened. Draw a horizontal line from this terminal point through the compression curve to the other end of the diagram. The ratio of the length from terminal to compression curve, divided by the total length of the diagram, will give a factor which, when multiplied by the previously-computed water consumption, will give the result corrected for clearance and compression. These methods are naturally dependent upon the tightness of the valves

for their accuracy.

In order to simplify the work of computation, the following table has

been made.

Water Consumption Table.

P	W	P	W	P	W	P	W	P	W	P	W	P	W
		-		-		-		-					
3	39.10	20	34.99	37	33.72	54	32.98	71	32.46	88	32.07	105	31.73
4	38.47	21	34.89	38	33.67	55	32.94	72	32.43	89	32.05	106	31.71
5	37.95	22	34.79	39	33.62	56	32.91	73	32.40	90	32.03	107	31.69
6	37.54	23	34.70	40	33.57	57	32.88	74	32.38	91	32.00	108	31.67
7	37.22	24	34.61	41	33.52	58	32.85	75	32.36	92	31.98	109	31.65
8	36.93	25	34.53	42	33.47	59	32.82	76	32.34	93	31.96	110	31.63
9	36.67	26	34.45	43	33.42	60	32.79	77	32.32	94	31.94	111	31.61
10	36.44	27	34.37	44	33.38	61	32.76	78	32.30	95	31.92	112	31.59
11	36.24	28	34.29	45	33.34	62	32.73	79	32.27	96	31.90	113	31.57
12	36.06	29	34.22	46	33.30	63	32.70	80	32.25	97	31.88	114	31.55
13	35.89	30	34.15	47	33.26	64	32.67	81	32.23	98	31.86	115	31.54
14	35.73	31	34.08	48	33.22	65	32.64	82	32.20	99	31.84	116	31.53
15	35.59	32	34.01	49	33.18	66	32.61	83	32.18	100	31.82	117	31.52
16	35.46	33	33.95	50	33.14	67	32.58	84	32.16	101	31.80	118	31.51
17	35.34	34	33.89	51	33.10	68	32.55	85	32.14	102	31.78	119	31.50
18	35.22	35	33.83	52	33.06	69	32.52	86	32.12	103	31.77	120	31.49
19	35.10	36	33.77	53	33.02	70	32.49	87	32.09	104	31.75	121	31.48

Under P is found the absolute terminal pressure. Under W, opposite the terminal pressure, is found a factor which, when multiplied by the absolute terminal pressure and divided by the mean effective pressure, will give the theoretical water consumption. From this it will be seen that the best economy is attained by a low terminal pressure combined with a high mean effective pressure, conditions which are incompatible either with underloading or overloading.

The relation between the actual and the computed water consumption of simple engines, both condensing and non-condensing, for various points of cut-off is given in the following table from the practice of the Buckeye

Engine Company.

Table of Standard Engine Performance.

	$\frac{1}{10}$ cut=off.									
Initial pressure.	pressu	effective are, in ands.	als.	Rates, in pounds of water per inchese-power per hour.						
nitial]	Non-		Con- Terminals.		Actual.		Theoretical.			
Н	con- densing.	Con- densing.	Ř	Non- con- densing.	Con- densing.	Non- con- densing.	Con- densing.	Throt.		
40 45 50 55 60 65 70 75 80 85 90 95	3.65 5.42 7.19 8.96 10.73 12.50 14.27 16.04 17.81 19.58 21.36 23.13 24.9	13.65 15.42 17.19 18.96 20.73 22.50 24.27 26.04 27.81 29.58 31.36 33.13 34.9	6.41 7.00 7.59 8.17 8.76 9.35 9.93 10.52 11.11 11.70 12.28 12.87 13.46	72.0 58.5 49.0 43.5 39.0 35.7 33.0 31.0 29.0 27.5 26.0 25.0 24.0	38.0 35.0 33.0 31.5 30.0 28.6 27.7 26.7 26.0 25.3 24.5 23.7 23.0	51.4 38.5 31.9 28.1 25.3 23.3 21.8 20.6 19.7 19.0 18.4 17.9 17.5	16.4 16.0 15.6 15.2 14.9 14.4 14.2 14.0 13.8 13.6 13.5	146 120 93 80 70 62 55 50 46 43 40 37 35		
		15 cut-off.								
40 45 50 55 60 65 70 75 80 85 90 95 100	9.05 11.32 13.59 15.86 18.12 20.39 22.66 24.92 27.19 29.46 31.72 33.93 36.26	19.05 21.32 23.59 25.86 28.12 30.39 32.66 34.92 37.19 39.46 41.72 43.93 46.26	9.07 9.87 10.72 11.55 12.38 13.20 14.03 14.86 15.69 16.51 17.34 18.17	54.0 47.0 42.0 38.0 34.5 32.0 30.0 28.0 26.0 24.5 23.0 22.0 21.0	30.0 28.5 27.0 26.0 25.0 24.0 23.0 22.2 21.3 20.4 19.5 18.7 18.0	31.3 27.7 25.3 23.4 22.1 21.1 20.3 19.5 18.8 18.4 17.6 17.6	16.8 16.4 16.1 15.8 15.6 15.4 15.2 15.0 14.8 14.6 14.5 14.4 14.3	64 56 51 47 43 40 38 36 35 34 33 32 32		
	½ cut-off.									
40 45 50 55 60 65 70 75 80 85 90 95	13.46 16.15 18.85 21.54 24.24 26.93 29.63 32.32 35.02 37.71 40.41 43.1 45.8	23.46 26.15 28.85 31.54 34.24 36.93 39.63 42.32 45.02 47.71 50.41 53.1 55.8	11.79 12.87 13.94 15.00 16.08 17.15 18.23 19.31 20.39 21.46 22.54 23.62 24.7	45.0 41.5 37.0 33.6 31.0 29.0 27.5 26.0 24.5 23.3 22.0 21.0 20.0	24.0 23.3 22.5 21.7 21.0 20.3 19.6 19.0 18.4 18.0 17.4 16.9 16.4	27.9 25.7 24.0 22.7 21.7 20.9 20.2 19.6 19.1 18.7 18.4 18.1	17.7 17.3 16.9 16.6 16.4 16.2 16.0 15.8 15.7 15.6 15.5 15.4 15.3	51 45 40 38 36 35 34 33 32 32 31 31		

Table of Standard Engine Performance.—Continued.

	$rac{2.5}{100}$ or $rac{1}{4}$ cut-off.									
Initial pressure.		effective are, in nds.	als.	Rates, in pounds of water per indicated horse-power per hour.						
Initial p	Non-		Terminals.	Act	ual.	Theor	retical.	ئيد		
	con- densing.	Con- densing.	Ř	Non- con- densing.	Con- densing.	Non- con- densing.	Con- densing.	Throt		
40 45 50 55 60 65 70 75 80 85 90 95	17.34 20.39 23.45 26.50 29.56 32.61 35.67 38.72 41.78 44.83 47.89 50.94 54.0	27.34 30.39 33.45 36.50 39.56 42.61 45.67 48.72 51.78 54.83 57.89 60.94 64.0	14.49 15.81 17.13 18.45 19.77 21.09 22.41 23.73 25.05 26.37 27.69 29.01 30.33	39.0 36.0 33.5 31.2 29.0 27.6 26.4 25.3 24.0 23.0 22.0 21.2 20.4	22.0 21.5 21.0 20.5 20.0 19.5 19.0 18.5 18.0 17.7 17.4 17.2 17.0	27.2 25.3 24.0 22.9 22.0 21.3 20.8 20.4 20.0 19.6 19.3 19.0	18.5 18.2 17.9 17.6 17.4 17.2 17.0 16.8 16.6 16.5 16.4 16.3	46 44 42 40 39 38 37 36 35 34 33 32 31		
				3 cut=off.						
40 45 50 55 60 65 70 75 80 85 90 95 100	20.75 24.13 27.50 30.87 34.24 37.61 40.98 44.35 47.72 51.09 54.46 57.83 61.2	30.75 34.13 37.50 40.87 44.24 47.61 50.98 54.35 57.72 61.09 64.46 67.83 71.2	17.11 18.67 20.24 21.80 23.37 24.94 26.51 28.07 29.64 31.20 32.77 34.33 35.9	38.0 35.0 33.0 31.2 29.5 28.2 27.0 26.0 25.0 24.0 23.0 22.2 21.5	22.5 22.0 21.6 21.2 20.7 20.3 19.9 19.5 19.0 18.8 18.5 18.3	27.0 25.5 24.3 23.3 22.5 21.9 21.4 21.0 20.6 20.2 19.9 19.6 19.4	19.4 19.1 18.8 18.5 18.3 18.1 17.9 17.7 17.5 17.3 17.2 17.1	43 41 40 39 38 37 36 35 34 33 32 31 30		
	^{3.5} / ₁₀₀ cut-off.									
40 45 50 55 60 65 70 75 80 85 90 95 100	23.70 27.32 30.94 34.56 38.18 41.80 45.42 49.05 52.68 56.31 59.94 63.57 67.20	33.70 37.32 40.94 44.56 48.18 51.80 55.42 59.05 62.68 66.31 69.94 73.57 77.20	19.80 21.61 23.42 25.23 27.04 28.85 30.66 32.47 34.28 36.09 37.90 39.71 41.52	37.0 35.2 33.7 32.0 30.4 29.3 28.0 27.0 26.0 25.4 24.0 23.2 22.3	24.0 23.5 23.0 22.5 22.0 21.7 21.2 20.8 -20.5 20.2 20.0 19.7 19.4	27.5 26.3 25.3 24.4 23.6 22.9 22.3 21.8 21.4 21.1 20.8 20.6 20.4	20.4 20.0 19.7 19.5 19.3 19.1 18.9 18.7 18.5 18.4 18.3 18.2 18.1	41 40 39 38 37 36 35 34 33 32 31 30 30		

Table of Standard Engine Performance.—Continued.

	4/10 cut-off.										
Initial pressure.	pressu	effective ire, in nds.	als.	Rates,			of water per indicated ower per hour.				
nitial	Non-		Terminals.	Act	ual.	Theoretical.					
ı	con- densing.	Con- densing.	Te	Non- con- densing.	Con- densing.	Non- con- densing.	Con- densing.	Throt.			
40 45 50 55 60 65 70 75 80 85 90 95	26.22 30.08 33.95 37.81 41.68 45.54 49.41 53.27 57.14 61.00 64.87 68.73 72.6	36.22 40.08 43.95 47.81 51.68 55.54 59.41 63.27 67.14 71.00 74.87 78.73 82.6	22.44 24.49 26.55 28.60 30.66 32.71 34.77 36.82 38.88 40.93 42.99 45.04 47.1	38.0 36.3 34.5 33.0 31.5 30.0 29.0 28.0 27.0 26.0 25.0 24.2 23.4	25.0 24.6 24.3 23.8 23.5 23.0 22.7 22.3 22.0 21.7 21.5 21.2 21.0	28.3 26.9 25.8 25.0 24.4 23.9 23.4 23.0 22.6 22.2 21.9 21.6 21.4	21.4 21.1 20.8 20.5 20.2 20.0 19.8 19.6 19.4 19.3 19.2 19.1	40 39 38 37 36 35 34 33 32 31 30 29			
	$\frac{1}{2}$ cut=off.										
40 45 50 55 60 65 70 75 80 85 90 95 100	30.50 34.75 39.00 43.25 47.50 51.75 56.00 60.25 64.50 68.75 73.00 77.25 81.5	40.50 44.75 49.00 53.25 57.50 61.75 66.00 70.25 74.50 78.75 83.00 87.25 91.5	27.78 30.33 32.88 35.43 37.98 40.52 43.07 45.61 48.16 50.70 53.25 55.79 58.34	41.0 39.0 37.0 35.5 34.0 32.5 31.0 29.0 28.0 27.0 26.0 25.0	29.5 28.8 28.3 27.9 27.5 27.1 26.7 26.3 25.8 25.4 24.9 24.5 24.0	28.5 27.6 26.9 26.3 25.8 25.3 24.9 24.5 24.2 23.9 23.7 23.5 23.3	28.4 23.1 22.8 22.5 22.2 22.0 21.8 21.6 21.5 21.4 21.3 21.2 21.1	39 38 37 36 35 34 33 32 31 30 29 29			

The water rates given under the heading "Throt." in the tables show the number of pounds of water per indicated horse-power per hour used by throttling engines, at same (non-condensing) mean effective pressure and initial pressure as on same line.

Standard Engine Tests.

The final report of the Committee of the American Society of Mechanical Engineers upon the standardizing of steam-engine tests (1902) contains

a large amount of valuable information upon the whole subject of engine performance, and an abridgement of it is here given.

The Committee recommends the heat-unit basis, believing it to be the only fundamental basis for the determination of engine performance.

The expressions of engine economy which meet all the requirements noted are the number of heat units consumed per hour, both per indicated and per brake horse-power, and these are recommended as the desired

standards of comparison. The heat-unit standard does not interfere in any way with the common terms of expressing economy of engines. The hourly weights of coal, gas, oil, or other fuel, or weight of steam consumed per horse-power, heretofore commonly employed, are additional forms of stating economy, and are none the less useful within their limitations. They should by no means be abandoned. In the scheme now presented these additional or subsidiary forms of stating economy, as applied to particular classes of engines, are suitably provided for.

The heat consumption of a steam-engine plant required for the standard test is ascertained by measuring the quantity of steam consumed by the plant, calculating the total heat of the entire quantity, and crediting this plant, calculating the total leaf of the entire quantity, and crediting this total with that portion of the heat rejected by the plant, which is utilized and returned to the boiler. The term "engine plant," as here used, should include the entire equipment of the steam plant which is concerned in the production of the power, embracing the main cylinder or cylinders; the jackets and reheaters; the air, circulating, and boiler feed pumps, if steam driven; and any other steam-driven mechanism or auxiliaries necessary to the working of the engine.

The indicated horse-power for the proposed standard is that determined by the use of steam-engine indicators. It should be confined to the power developed in the main cylinder or cylinders, and should not include that

developed in the cylinders of auxiliaries.

One of the important subsidiary forms of expressing efficiency is that based on a so-called "standard coal" unit. The assumption is made that the heat consumed by the engine is generated from coal of a fixed heat value, as implied by the term "standard coal."

The term "standard coal" refers to a coal which imparts to the steam

10,000 B. T. U. for each pound of the dry coal consumed. It is coal having a calorific value of 12,500 B. T. U., used in what may be termed a "standard boiler," which gives an efficiency of 80 per cent. (referred to the coal). Although chosen arbitrarily, these figures, as a matter of fact, apply closely to the average coals of the United States.

In treating of the subject of engine testing as relating primarily to the determination of matters of economy, it must not be forgotten that capacity is often of even greater importance than economy. In that large class of steam engines which are required to run at a certain limited and constant speed there should be a considerable reserve of capacity beyond the rated power. It is recommended that when a steam engine is operating at its rated power at a given pressure there should be a sufficient reserve to allow a drop of at least 15 per cent, in the gauge pressure without sensible reduction in the working speed of the engine, and allow an overload at the stated pressure amounting to at least 25 per cent.

Rules for Conducting Steam-engine Tests.

Code of 1902.

American Society of Mechanical Engineers.

I. Object of Test.—Ascertain at the outset the specific object of the test, whether it be to determine the fulfilment of a contract guarantee, to ascertain the highest economy obtainable, to find the working economy and defects under conditions as they exist, to ascertain the performance under special conditions, to determine the effect of changes in the conditions, or to find the performance of the entire boiler and engine plant, and prepare for the test accordingly.

II. General Condition of the Plant .- Examine the engine and the entire plant concerned in the test; note its general condition and any points of design, construction, or operation which bear on the objects in Make a special examination of the valves and pistons for leakage by applying the working pressures with the engine at rest, and observe the quantity of steam, if any, blowing through per hour.

If the trial has for an object the determination of the highest efficiency

obtainable, the valves and pistons must first be made tight, and all parts of the engine and its auxiliaries, and all other parts of the plant concerned,

should be put in the best possible working condition.

III. Dimensions, etc.—Measure or check the dimensions of the cylinders in any case, this being done when they are hot. If they are much worn the average diameter should be determined. Measure also the clearance, which should be done, if possible, by filling the spaces with water previously measured, the piston being placed at the end of the stroke. If the clearance cannot be measured directly, it can be determined approximately from the working drawings of the cylinder.

Measure also the dimensions of auxiliaries and accessories; also those of the boilers, so far as concerned in attaining the objects. It is well to supplement these determinations with a sketch or sketches showing the gen-

eral features and arrangement of the different parts of the plant.

IV. Coal.—When the trial involves the complete plant, embracing boilers as well as engine, determine the character of coal to be used. The class, name of the mine, size, moisture, and quality of the coal should be stated in the report. It is desirable, for purposes of comparison, that the coal should be of some recognized standard quality for the locality where the plant is situated.

V. Calibration of Instruments.—All instruments and apparatus should be calibrated and their reliability and accuracy verified by comparison with recognized standards. Such apparatus as is liable to change or become broken during a test, as gauges, indicator springs, and thermometers, should be calibrated before and after the test. The accuracy of scales should be verified by standard weights. When a water-meter is used, special attention should be given to its calibration, verifying it both before and after the trial, and, if possible, during its progress, the conditions in regard to water pressure and rate of flow being made the same in the calibrations as exist throughout the trial.

VI. Leakages of Steam, Water, etc.—In all tests except those of a complete plant made under conditions as they exist, the boiler and its connections, both steam and feed, as also the steam piping leading to the engine and its connections, should, so far as possible, be made tight. If absolute tightness cannot be obtained (in point of fact it rarely can be), proper allowance should be made for such leakage in determining the steam actually consumed by the engine. This, however, is not required where a surface condenser is used and the water consumption is determined by measuring the discharge of the air pump. In such cases it is necessary to make sure that the condenser is tight, both before and after the test, against the entrance of circulating water, or, if such occurs, to make proper correction for it, determining it under the working difference of pressure. When the steam consumption is determined by measuring the discharge of the air pump, any leakage about the valve or piston-rods of the engine should be carefully guarded against.

Make sure that there is no leakage at any of the connections with the appreciates provided for measuring and supplying the feed water which

Make sure that there is no leakage at any of the connections with the apparatus provided for measuring and supplying the feed water which could affect the results. All connections should, so far as possible, be visible and be blanked off, and where this cannot be done satisfactory assurance should be obtained that there is no leakage either in or out.

VII. Duration of Test.—The duration of a test should depend largely upon its character and the objects in view. The standard heat test of an engine, and, likewise, a test for the simple determination of the feed-water consumption, should be continued for at least five hours, unless the class of service precludes a continuous run of so long duration. It is desirable to prolong the test the number of hours stated to obtain a number of consecutive hourly records as a guide in analyzing the reliability of the whole.

Where the water discharged from a surface condenser is measured for successive short intervals of time, and the rate is found to be uniform, the test may be of a much shorter duration than where the feed water is measured to the boiler. The longer the test with a given set of conditions the more accurate the work, and no test should be so short that it cannot be divided into several intervals which will give results agreeing substantially with each other.

The commercial test of a complete plant, embracing boilers as well as engine, should continue at least one full day of twenty-four hours, whether the engine is in motion during the entire time or not. A continuous coal

test of a boiler and engine should be of at least ten hours' duration, or the nearest multiple of the interval between times of cleaning fires.

VIII. Starting and Stopping a Test.—(a) Standard Heat Test and Feed-water Test of Engine: The engine having been brought to the normalrecarbater less of Engine: The eighte having been brought to the horman condition of running, and operated a sufficient length of time to be thoroughly heated in all its parts, and the measuring apparatus having been adjusted and set to work, the height of water in the gauge glasses of the boilers is observed, the depth of water in the reservoir from which the feed water is supplied is noted, the exact time of day is observed, and the test held to commence. Thereafter the measurements determined upon for the test are begun and carried forward until its close. If practicable, the test may be commenced at some even hour or minute, but it is of the first importance to begin at such time as reliable observations of the water heights are obtained, whatever the exact time happens to be when these are satisfactorily determined. When the time for the close of the test arrives, the water should, if possible, be brought to the same height in the glasses and to the same depth in the feed wat r reservoir as at the beginning, delaying the conclusion of the test, if necessary, to bring about this similarity of conditions. If differences occur, the proper corrections must be made.

(b) Complete Engine and Boiler Test: For a continuous running test of combined engine or engines, and boiler or boilers, the same directions apply for beginning and ending the feed-water measurements as that just referred to under Section a. The time of beginning and ending such a test should be the regular time of cleaning the fires and the exact time of beginning and ending should be the time when the fires are fully cleaned, beginning and ending should be the time when the fires are fully cleaned, just preparatory to putting on fresh coal. In cases where there are a number of boilers, and it is inconvenient or undesirable to clean all fires at once, the time of beginning the test should be deferred until they are all cleaned and in a satisfactory state, all the fires being then burned down to a uniformly thin condition, the thickness and condition being estimated and the test begun just before firing the new coal previously weighed. The ending of the test is likewise deferred until the fires are all satisfactorily along deepend being again hurned down to the same uniformly thin torily cleaned, being again burned down to the same uniformly thin condition as before, and the time of closing being taken just before replenishing the fires with new coal.

For a commercial test of a combined engine and boiler, whether the engine runs continuously for the full twenty-four hours of the day or only a portion of the time, the fires in the boilers being banked during the time when the engine is not in motion, the beginning and ending of the test should occur at the regular time of cleaning the fires, the method followed being that already given. In cases where the engine is not in continuous motion, as, for example, in textile mills, where the working time is ten or eleven hours out of the twenty-four, and the fires are cleaned and banked at the close of the day's work, the best time for starting and stopping a test is the time just before banking, when the fires are well burned down and the thickness and condition can be most satisfactorily judged. In these, as in all other cases noted, the test should be begun by observing the exact time, the thickness and condition of the fires on the grates, the height of water in the gauge glasses of the boilers, the depth of the water in the reservoir from which the feed water is supplied, and other conditions relating to the trial, the same observations being again taken at the end of the test, and the conditions in all respects being made as nearly as possible the same as at the beginning.

IX. Measurement of Heat Units Consumed by the Engine.—The measurement of the heat consumption requires the measurement of each measurement of the heat consumption requires the measurement of each supply of feed water to the boiler,—that is, the water supplied by the main feed pump, that supplied by auxiliary pumps, such as jacket water, water from separators, drips, etc., and water supplied by gravity or other means; also, the determination of the temperature of the water supplied from each source, together with the pressure and quality of the steam.

The temperatures at the various points should be those applying to the working conditions. The temperature of the feed water should be taken near the boiler. This causes the engine to suffer a disadvantage from the heat leat by radiation from the prosecular every the various which every the various the heiler.

heat lost by radiation from the pipes which carry the water to the boiler, but it is, nevertheless, advisable on the score of simplicity. Such pipes

would, therefore, be considered a portion of the engine plant. forms with the rule already recommended for the tests of pumping engines where the duty per million heat units is computed from the temperature of the feed water taken near the boiler. It frequently happens that the measurement of the water requires a change in the usual temperature of neply. For example, where the main supply is ordinarily drawn from a hot-well in which the temperature is, say, 100° F., it may be necessary, owing to the low level of the well, to take the supply from some source under a pressure or head sufficient to fill the weighing tanks used, and this supply may have a temperature much below that of the hot-well; possibly as low as 40° F. The temperature to be used is not the temperature of the water as weighed in this case, but that of the working temperature of the The working temperature in cases like this must be determined by a special test and included in the log sheets.

The heat to be determined is that used by the entire engine equipment, embracing the main cylinders and all auxiliary cylinders and mechanism concerned in the operation of the engine, including the air pump, circulating pump, and feed pumps, also the jacket and reheater, when these are used. No deduction is to be made for steam used by auxiliaries, unless these are shown by test to be unduly wasteful. In this matter an exception should be made in cases of guarantee tests where the engine contractor temislated in the contractor that the contractor that the contractor is the contractor is the contractor that the contractor is the contractor furnishes all the auxiliaries referred to. He should, in that case, be responsible for the whole, and no allowance should be made for inferior economy, if such exists. Should a deduction be made on account of the auxiliaries being unduly wasteful, the method of waste and its extent, as compared with the wastes of the main engine or other standard of known value,

shall be reported definitely.

The steam pressure and the quality of the steam are to be taken at some point conveniently near the throttle valve. The quantity of steam used by the calorimeter must be determined and properly allowed for. (See Article XVI., on "Quality of Steam.")

X. Measurement of Feed Water or Steam Consumption of Engine, etc.—The method of determining the steam consumption applicable to all plants is to measure all the feed water supplied to the boilers, and deduct therefrom the water discharged by separators and drips, as also the water and steam which escapes on account of leakage of the boiler and its pipe connections and leakage of the steam main and branches connecting the boiler and the engine. In plants where the engine exby determining the quantity of water discharged by the air pump, corrected for any leakage of the condenser, and adding thereto the steam used by jackets, reheaters, and auxiliaries, as determined independently. If the leakage of the condenser is too large to satisfactorily allow for it, the condenser should, of course, be repaired and the leakage again determined before medium the other partials of the condenser is too large to satisfactorily allow for it, the condenser should, of course, be repaired and the leakage again determined before medium the transfer of the condenser. mined before making the test.

In measuring the water it is best to carry it through a tank or tanks resting on platform weighing scales suitably arranged for the purpose, the water being afterwards emptied into a reservoir beneath, from which the

pump is supplied.

Where extremely large quantities of water must be measured, or in some places relatively small quantities, the orifice method of measuring is one that can be applied with satisfactory results. In this case the average head of water on the orifice must be determined, and, furthermore, it is important that means should be at hand for calibrating the discharge of

the orifice under the conditions of use.

The corrections or deductions to be made for leakage above referred to should be applied only to the standard heat-unit test and tests for determining simply the steam or feed-water consumption, and not to coal tests of combined engine and boiler equipment. In the latter, no correction should be made except for leakage of valves connecting to other engines and boilers, or for steam used for purposes other than the operation of the plant under test. Losses of heat due to imperfections of the plant should be charged to the plant, and only such losses as are concerned in the working of the engine alone should be charged to the engine.

In measuring jacket water or any supply under pressure which has a temperature exceeding 212° F., the water should first be cooled, as may be done by discharging it into a tank of cold water previously weighed, or by passing it through a coil of pipe submerged in running and colder water, preventing thereby the loss of evaporation which occurs when such hot water is discharged into the open air.

XI. Measurement of Steam Used by Auxiliaries.—Although the steam used by the auxiliaries-embracing the air pump, circulating pump, steam used by the auxiliaries—embracing the air pump, circulating pump, feed pump, and any other apparatus of this nature, supposing them to be steam-driven, also the steam jackets, reheaters, etc., which consume steam required for the operation of the engine—is all included in the measurement of the steam consumption, as pointed out in Article X., yet it is highly desirable that the quantity of steam used by the auxiliares, and in many cases that used by each auxiliary, should be determined exactly, so that the net consumption of the main engine cylinders may be ascertained and a complete englysis made of the entire work of the engine plant. and a complete analysis made of the entire work of the engine plant. Where the auxiliary cylinders are non-condensing, the steam consumption can often be measured by carrying the exhaust for the purpose into a tank of cold water resting on scales or through a coil of pipe surrounded by cold running water. Another method is to run the auxiliaries as a whole, or one by one, from a spare boiler (preferably a small vertical one), and measure the feed water supplied to this boiler. The steam used by the air and circulating pumps may be measured by running them under, as near as possible, the working conditions and speed, the main engine and other auxiliaries being stopped, and testing the consumption by the measuring apparatus used on the main trial. For a short trial, to obtain approximate results, measurement can be made by the water gauge-glass method, the feed supply being shut off. When the engine has a surface condenser, the quantity of steam used by the auxiliaries may be ascertained by allowing the engine alone to exhaust into the condenser, measuring the feed water supplied to the boiler and the water discharged by the air pump, and subtracting one from the other, after allowing for losses by leakage.

XII. Coal Measurement.—(a) Commercial Tests: In commercial tests of the combined engine and boiler equipment, or those made under ordinary conditions of commercial service, the test should, as pointed out in Article VII., extend over the entire period of the day,—that is, twenty-four Consequently, the coal hours,—or a number of days of that duration. consumption should be determined for the entire time. If the engine runs but a part of the time, and during the remaining portion the fires are banked, the measurement of coal should include that used for banking. It is well, however, in such cases, to determine separately the amount con-sumed during the time the engine is in operation and that consumed during the period while the fires are banked, so as to have complete data for purposes of analysis and comparison, using suitable precautions to obtain reliable measurements. The measurement of coal begins with the first firing, after cleaning the furnaces and burning down at the beginning of the test, as pointed out in Article VIII., and ends with the last firing, at

the expiration of the allotted time.
(b) Continuous Running Tests. In continuous running tests which, as pointed out in Article VII., cover one or more periods which elapse between the cleaning of the fires, the same principle applies as that mentioned under the above heading (a), -viz., the coal measurement begins with the first firing, after cleaning and burning down, and the measurement ends with the last firing, before cleaning and burning down at the close of the

trial.

(c) Coal Tests in General: When not otherwise specially understood, a coal test of a combined engine and boiler plant is held to refer to the commercial test above noted, and the measurement of coal should conform thereto.

In connection with coal measurements, whatever the class of tests, it is important to ascertain the percentage of moisture in the coal, the weight of ashes and refuse, and, where possible, the approximate and ultimate analysis of the coal, following all the methods and details advocated in the latest report of the Boiler Test Committee of the Society. (See "Transactions of the American Society of Mechanical Engineers," Volume XXI. page 34.)

(d) Other Fuels than Coal: For all other solid fuels than coal the same directions in regard to measurement should be followed as those given for coal. If the boilers are run with oil or gas, the measurements relating to

stopping and starting are much simplified, because the fuel is burned as fast as supplied and there is no body of fuel constantly in the furnace, as in the case of using solid fuel. When oil is used it should be weighed, and when gas is used it should be measured in a calibrated gas-meter or a asometer.

XIII. Indicated Horse-power.—The indicated horse-power should be determined from the average mean effective pressure of diagrams taken at intervals of twenty minutes, and at more frequent intervals if the nature of the test makes this necessary, for each end of each cylinder. With variable loads, such as those of engines driving generators for electric railroad work, and of rubber-grinding and rolling-mill engines, the diagrams cannot be taken too often. In cases like the latter, one method of obtaining suitable averages is to take a series of diagrams on the same blank card without unhooking the driving cord, and apply the pencil at successive intervals of ten seconds until two minutes' time or more has elapsed, thereby obtaining a dozen or more indications in the time covered. This tends to insure the determination of a fair average for that period. In taking diagrams for variable loads, as, indeed, for any load, the pencil should be applied long enough to cover several successive revolutions, so that the variations produced by the action of the governor may be properly recorded. To determine whether the governor is subject to what is called "racing" or "hunting," a "variation diagram" should be obtained,—that is, one in which the pencil is applied a sufficient time to cover a complete cycle of variations. When the governor is found to be working that the proposition is applied as the cover of the cov in this manner the defect should be remedied before proceeding with the

It is seldom necessary, as far as average power measurements are concerned, to obtain diagrams at precisely the same instant at the two ends of the cylinder, or at the same instant on all the cylinders, when there are more than one. All that is required is to take the diagrams at regular in-Should the diagrams vary so much among themselves that the tervals. Should the diagrams vary so much among themselves that they are age may not be a fair one, it signifies that they should be taken more frequently, and not that special care should be employed to obtain the diagrams of each set at precisely the same time. When diagrams are taken during the time when the engine is working up to speed at the start, or when a study of valve setting and steam distribution is being made, they should be taken at as nearly the same time as practicable. In cases where the diagrams are to be taken simultaneously, the best plan is to have an operator stationed at each indicator. This is desirable, even where an tervals. electric or other device is employed to operate all the instruments at once. for, unless there are enough operators, it is necessary to open the indicatorcocks some time before taking the diagrams and run the risk of clogging the pistons and heating the high-pressure springs above the ordinary work-

ing temperature.

The most satisfactory driving rig for indicating seems to be some form of well-made pantagraph, with driving cord of fine annealed wire leading to the indicator. The reducing motion, whatever it may be, and the connections to the indicator should be so perfect as to produce diagrams of equal lengths when the same indicator is attached to either end of the cylinder, and produce a proportionate reduction of the motion of the piston at every point of the stroke, as proved by test.

The use of a three-way cock and a single indicator connected to the two ends of the cylinder is not advised, except in cases where it is impracticable to use an indicator close to each end. If a three-way cock is used the

error produced should be determined and allowed for.

To determine the average power developed in cases where the engine starts from rest during the progress of the trial, as in a commercial test of a plant where the engine runs only a portion of the twenty-four hours, a number of diagrams should be taken during the period of getting up speed and applying the working load, the corresponding speed for each set of diagrams being counted. The power shown by these diagrams for the proportionate time should be included in the average for the whole run, and the duration should be the time the throttle valve is open.

XIV. Testing Indicator Springs.—To make a perfectly satisfactory comparison of indicator springs with standards, the calibration should be made, if this were practical, under the same conditions as those pertaining

to their ordinary use. Owing to the fact that the pressure of the steam in the indicator cylinder and the corresponding temperature are undergoing continual changes, it becomes almost impossible to compare the springs with any standard under such conditions. There must be a constant pressure during the time that the comparison is being made. Although the best that can be done is not altogether satisfactory, it seems that we must be content with it. To bring the conditions as nearly as possible to those of the working indicator, the steam should be admitted to the indicator as short a time as practicable for each of the pressures tried, and then the indicator coals should be closed and the steam explanated therefrom before indicator cock should be closed and the steam exhausted therefrom before another pressure is tried. By this means the parts are heated and cooled somewhat the same as under the working conditions. We recommend, therefore, that for each required pressure the first step be to open and close the indicator cock a number of times in quick succession, then to quickly draw the line on the paper for the desired record, observing the gauge or other standard at the instant when the line is drawn. A corresponding atmospheric line is taken immediately after obtaining the line at the given pressure, so as to eliminate any difference in the temperature of the parts of the indicator. This appears to be a better method (although less readily carried on and requiring more care) than the one heretofore more com-monly used, where the indicator cock is kept continually open and the pressure is gradually rising or falling through the range of comparison.

The calibration should be made for at least five points, two of these being for the pressures corresponding as near as may be to the initial and back pressures, and three for intermediate points equally distant.

For pressures above the atmosphere the proper standard recommended is the dead-weight testing apparatus or a reliable mercury column, or an accurate steam gauge proved correct, or of known error, by either of these For pressures below the atmosphere the best standard to use is standards. a mercury column.

The correct scale of spring to be used for working out the mean effective pressure of the diagrams should be the average based on the calibration.

XV. Brake Horse-power.—This term applies to the power delivered from the fly-wheel shaft of the engine. It is the power absorbed by a friction brake applied to the rips of the last the power absorbed by a friction brake applied to the rim of the wheel or to the shaft. A form of brake is preferred that is self-adjusting to a certain extent, so that it will, of itself, tend to maintain a constant resistance at the rim of the wheel. One of the simplest brakes for comparatively small engines which may be made to embody this principle consists of a cotton or hemp rope, or a number of ropes, encircling the wheel, arranged with weighing scales or other means for showing the strain. An ordinary band brake may also be constructed so as to embody the principle. The wheel should be provided with interior flanges for holding water used for keeping the rim cool.

The water friction breke is considered most satisfactory, not only for

The water-friction brake is considered most satisfactory, not only for small powers but for large powers. It is especially adapted for high speeds, and has the advantage of being self-cooling.

XVI. Quality of Steam.-When ordinary saturated steam is used its quality should be obtained by the use of a throttling calorimeter attached quality should be obtained by the use of a throttling calorimeter attached to the main steam pipe near the throttle valve. When the steam is superheated the amount of superheating should be found by the use of a thermometer placed in a thermometer-well filled with mercury, inserted in the pipe. The sampling pipe for the calorimeter should, if possible, be attached to a section of the main pipe having a vertical direction, with the steam preferably passing upward, and the sampling nozzle should be made of a half-inch pipe having at least twenty ½-inch holes in its perforated surface. The readings of the calorimeter should be corrected for radiation of the instrument, or they should be referred to a normal reading. If the steam is superheated, the amount of superheating should be obtained by referring the reading of the thermometer to that of the same thermometer when the steam within the pipe is saturated, and not by thermometer when the steam within the pipe is saturated, and not by taking the difference between the reading of the thermometer and the temperature of saturated steam at the observed pressure as given in a steam table.

XVII. Speed.—There are several reliable methods of ascertaining the speed, or the number of revolutions of the engine crank-shaft per minute. The simplest is the familiar method of counting the number of turns for a

period of one minute, with the eye fixed on the second-hand of a timepiece. Another is the use of a counter held for a minute or a number of minutes against the end of the main shaft. Another is the use of a reliable calibrated tachometer held likewise against the end of the shaft. The most reliable method, and the one we recommend, is the use of a continuous recording engine register or counter, taking the total reading each time that the general test data are recorded, and computing the revolutions per minute corresponding to the difference in the readings of the instrument. When the speed is above 250 revolutions per minute it is almost impossible to make a satisfactory counting of the revolutions without the use of some form of mechanical counter.

The determination of variation of speed during a single revolution, or the effect of the fluctuation due to sudden changes of the load, is also desirable, especially in engines driving electric generators used for lighting purposes. There is at present no recognized standard method of making such determinations, and, if such are desired, the method employed may be devised by the person making the test and described in detail in the

report.

XVIII. Recording the Data.—Take note of every event connected with the progress of the trial, whether it seems at the time to be important or unimportant. Record the time of every event and time of taking every weight and every observation. Observe the pressures, temperatures, water heights, speeds, etc., every twenty or thirty minutes when the conditions are practically uniform, and at much more frequent intervals if the conditions vary. Observations which concern the feed-water measurement should be made with special care at the expiration of each hour of the trial, so as to divide the tests into hourly periods and show the uniformity of the conditions and results as the test goes forward. Where the water discharged from a surface condenser is weighed, it may be advisable to divide the test by this means into periods of less than one hour.

The data and observations of the test should be kept on properly-pre-

pared blanks or in note-books containing columns suitably arranged for a clear record. As different observers have their own individual ideas as to how such records should be kept, no special form of log sheet is given as a necessary part of the code.

XIX. Uniformity of Conditions.—In a test having for an object the determination of the maximum economy obtainable from an engine, or where it is desired to ascertain with special accuracy the effect of predetermined conditions of operation, it is important that all the conditions under which the engine is operated should be maintained uniformly constant. This requirement applies especially to the pressure, the speed, the load, the rate of feeding the various supplies of water, the height of water in the gauge glasses, and the depth of water in the feed-water reservoir.

XX. Analysis of Indicator Diagrams.—(a) Steam Accounted for by the Indicator: The simplest method of computing the steam accounted for by the indicator is the use of the formula,

$$M = \frac{13750}{\text{M. E. P.}} [(C + E) \times Wc - (H + E) \times Wh],$$

which gives the weight, in pounds, per indicated horse-power per hour. In this formula the symbol "M. E. P." refers to the mean effective pressure. In multiple-expansion engines this is the combined mean effective pressure referred to the cylinder in question. The symbol C refers to the proportion of the stroke completed at points on the expansion line of the diagram near the actual cut-off or release, the symbol H to the proportion of compression, and the symbol E to the proportion of clearance, all of which are determined from the indicator diagram. The symbol W refers to the weight of 1 cubic foot of steam at the cut-off or release pressure, and the symbol Wh to the weight of 1 cubic foot of steam at the compression pressure, the symbol Wh to the weight of 1 cubic foot of steam at the compression pressure. ure, these weights being taken from steam tables of recognized accuracy. The points near the cut-off and release on the expansion line, and the point on the compression line, are located as shown on the sample diagram. They are the points in the case of the expansion and compression lines of the diagram which mark the complete closure of the valve. The

point near the cut-off, for example, lies where the curve of expansion begins after the rounding of the diagram due to the wire-drawing, which occurs while the valve is closing. This cut-off may be located by finding the point where the curve is tangent to a hyperbolic curve.

Showing Points where "Steam Accounted for by Indicator" is Computed.

Should the point in the compression curve be at the same height as the point in the expansion curve, then Wc = Wh, and the formula becomes

$$\frac{13750}{\text{M. E. P.}} \times (C-H) \times Wc,$$

in which (C-H) represents the distance between the two points divided by the length of the diagram.

When the load and all other conditions are substantially uniform, it is unnecessary to work up the steam accounted for by the indicator from all the diagrams taken. Five or more sample diagrams may be selected and the computations based on the samples instead of on the whole.

(b) Sample Indicator Diagrams: In order that the report of a test may (0) sample knarcator Inagrams: In order that the report of a test may afford complete information regarding the conditions of the test, sample indicator diagrams should be selected from those taken and copies appended to the tables of results. In cases where the engine is of the multiple-expansion type, these sample diagrams may also be arranged in the form of a "combined" diagram.

(c) The Point of Cut-off: The term "cut-off," as applied to steam engines, although somewhat indefinite, is usually considered to be at an earlier point in the stroke than the beginning of the real expansion line. That the cut-off point may be defined in event terms for commercial surposes.

the cut-off point may be defined in exact terms for commercial purposes, as used in steam-engine specifications and contracts, the Committee recommends that, unless otherwise specified, the commercial cut-off, which seems

Four-valve Engine, Slow Speed.

Single-valve Engine, High Speed.

Commercial Cut-off = $\frac{BC}{AC}$.

to be an appropriate expression for this term, be ascertained as follows: through a point showing the maximum pressure during admission draw a line parallel to the atmospheric line. Through the point on the expansion line, near the actual cut-off, referred to in Section XX. (a), draw a hyperbolic curve. The point where these two lines intersect is to be considered the commercial cut-off point. The percentage is then found by dividing the

length of the diagram measured to this point by the total length of the

diagram, and multiplying the result by 100.

The principle involved in locating the commercial cut-off is shown in the preceding diagrams, the first of which represents a diagram from a slow-speed Corliss engine, and the second a diagram from a single-valve, high-speed engine. In the latter case, where, owing to the fling of the pencil, the steam line vibrates, the maximum pressure is found by taking a mean of the vibrations at the highest point.

The commercial cut-off, as thus determined, is situated at an earlier point of the stroke than the actual cut-off used in computing the "steam ac-

counted for" by the indicator and referred to in Section XX. (a).

(d) Ratio of Expansion: The "commercial" ratio of expansion is the quotient obtained by dividing the volume corresponding to the piston

displacement, including clearance, by the volume of the steam at the ARC commercial cut-off, including clear-In a multiple-expansion engine the volumes are those pertaining to the low-pressure cylinder and high-pressure cylinder, respectively.

The "ideal" ratio of expansion is the quotient obtained by dividing the volume of the piston displacement by the volume of the steam at the cut-off (the latter being referred to the throttle-valve pressure), less the volume equivalent to that retained at compression. In a multiple-expansion engine the volumes to be

used are those pertaining to the low-pressure cylinder and high-pressure

cylinder, respectively.

(e) Diagram Factor: The diagram factor is the proportion borne by the actual mean effective pressure measured from the indicator diagram to that actual mean effective pressure measured from the indicator dagram to that of a diagram in which the various operations of admission, expansion, release, and compression are carried on under assumed conditions. The factor recommended refers to an ideal diagram which represents the maximum power obtainable from the steam accounted for by the indicator diagrams at the point of cut-off, assuming, first, that the engine has no clearance; second, that there are no losses through wire-drawing the steam either during the admission or the release; third, that the expansion line is a hyperbolic curve; and fourth, that the initial pressure is that of the atmosphere for a nonof the boiler and the back pressure that of the atmosphere for a noncondensing engine, and of the condenser for a condensing engine.

The diagram factor is useful for comparing the steam distribution losses in different engines, and is of special use to the engine designer, for by multiplying the mean effective pressure obtained from the assumed theoretical diagrams by it he will obtain the actual mean effective pressure that should be developed in an engine of the type considered. The expansion and compression curves are taken as hyperbolas, because such curves are ordinarily used by engine builders in their work, and a diagram based on such curves will be more useful to them than one where the curves are

constructed according to a more exact law.

In cases where there is a considerable loss of pressure between the boiler and the engine, as where steam is transmitted from a central plant to a number of consumers, the pressure of the steam in the supply main should be used in place of the boiler pressure in constructing the diagrams.

XXI. Standards of Economy and Efficiency.-The hourly consumption of heat, determined by employing the actual temperature of the feed water to the boiler, as pointed out in Article IX. of the Code, divided by the indicated and brake horse-power,—that is, the number of heat units consumed per indicated and per brake horse-power per hour are the standards of engine efficiency recommended by the Committee. The consumption per hour is chosen rather than the consumption per minute, so as to conform with the designation of time applied to the more familiar units of coal and water measurement, which have heretofore been used. The British standard, where the temperature of the feed water is taken as that corresponding to the temperature of the back-pressure steam, allowance

being made for any drips from jackets or reheaters, is also included in the

It is useful in this connection to express the efficiency in its more scientific form, or what is called the "thermal efficiency ratio." The thermal efficiency ratio is the proportion which the heat equivalent of the power developed bears to the total amount of heat actually consumed, as determined by test. The heat converted into work, represented by 1 horse-power, is 1,980,000 foot-pounds per hour, and this, divided by 778, equals 2545 B. T. U. Consequently, the thermal efficiency ratio is expressed by the fraction 2545

B. T. U. per horse-power per hour

XXII. Heat Analysis.—For certain scientific investigations it is useful

В b s m p

Temperature-entropy Diagram.

to pump a pound of water into the boiler.

evidently

 $\frac{h+L_1-xL_2-w}{h+L_1}$

to make a heat analysis of the diagram to show the interchange of heat from steam to cylinder walls, etc., which is going on within the cylinder. This is unnecessary for commercial tests.

XXIII. Temperatureentropy Diagram.—The study of the heat analysis is facilitated by the use of the temperature-entropy diagram, in which areas represent quantities of heat, the coordinates being the absolute temperature and entropy. Such a diagram is here given. When the quantity given in the steam tables is plotted, two curves, AA and BB, are obtained which may be termed the water line and the steam B line, AA being the logarithmic curve if the specific heat of the water is taken as constant. The diagram refers to a unit weight of the agent, and the heat necessary to raise a pound of water from the temperature, ma, to the temperature, pa', and evaporate it at that temperature, is represented by the area, aa'b'qm. If the steam be now expanded adiabatically, the temperature will fall to qs,

and x per cent. $=\frac{as}{x}$ \overline{ab}

remain as steam, the rest being liquefied. If the steam is now rejected, it carries away with it the heat, sqma, the work area being a'b'sa, from which must be deducted the work, w (expressed in heat units) The efficiency of this cycle is

in which

$$x = \frac{ar + a'b'}{ab} = \frac{\log_{\bullet} \frac{T_1}{T_2} + \frac{L_1}{T_1}}{\frac{L_2}{T_0}}.$$

By the action of the walls a portion of the steam is liquefied prior to the expansion, which, therefore, begins at e; and since the cooling action of the walls continues, the expansion line falls off to ef, from which point a reverse action takes place and the expansion line bends over to g. Finally, since the release takes place before the condenser temperature is reached, the heat rejection starts at g, following a line of equal volume until the exhaust-port temperature is reached at f. If enough heat is added during expansion to keep the steam theoretically saturated,—as, for example, by a water jacket,—such additional heat is represented by the area, b'bnq, and the additional work obtained by the triangle, b'bs. If the steam is superheated sufficiently to

superheated sufficiently to give by expansion theoretically dry steam at the end, such additional heat is represented by the area, b'vnq, and the additional work by b'vbs. Neither of these extra amounts of work are realized in practice, and it is evident from the diagram that the heat thus applied is in both cases less efficient than in the principal cycle. Nevertheless, the action in each case is to bring the point, e, nearer the point, b', and to effect a notable net economy.

The Carnot cycle would be obtained if in the Rankine cycle the rejection of heat were stopped at r and the temperature of the mixture raised to a' by compression. This cannot be practically accomplished, but a system of feed-water heaters has been suggested and exemplified in the Nordberg engine, which is theoretically a close equivalent to it. Where steam is expanded in, say, three cylinders, the feed water may be successively heated from the receiver intermediate between each pair, the

Temperature-entropy Diagram.

between each pair, the effect of which is illustrated in the above diagram. The expansion line follows the heavy line, being carried over to y by the first feed-water heater and to y' by the second feed-water heater. With an infinite number of such feed-water heaters the line, yy', would be parallel to aa', and the cycle equivalent to that of Carnot.

XXIV. Ratio of Economy of an Engine to that of an Ideal Engine.—The ideal engine recommended for obtaining this ratio is that which was adopted by the Committee appointed by the Civil Engineers of London to consider and report a standard thermal efficiency for steam engines. This engine is one which follows the Rankine cycle, where steam at a constant pressure is admitted into the cylinder with no clearance, and, after the point of cut-off, is expanded adiabatically to the back pressure. In obtaining the economy of this engine the feed water is assumed to be

returned to the boiler at the exhaust temperature. Such a cycle is preferable to the Carnot for the purpose at hand, because the Carnot cycle is theoretically impossible for an engine using superheated steam produced

Curves showing British Thermal Units Expended per Minute per Indicated Horse-power by the Ideal Steam Engine, forming part of the Rankine Cycle. (From the Minutes of Proceedings of the Civil Engineers of London.) Temperatures are expressed in degrees Fahrenheit. The upper and lower portions of the upper diagram are to different scales. This is in order that the lower and more important part may be read more easily, and accounts for the cusps in the curves.

at a constant pressure, and the gain in efficiency for superheated steam corresponding to the Carnot efficiency will be much greater than that possible for the actual cycle.

The economy of the ideal engine recommended can be readily obtained from the accompanying chart, which has been copied from the report already mentioned of the Committee appointed by the Civil Engineers of London.

In the chart, ta represents the temperature of saturated steam at the In the chart, t_{a} represents the temperature of saturated steam at the boiler pressure, in degrees Fahrenheit; t_{as} , that of the steam furnished to the engine, should there be superheating; t_{e} , that of the exhaust. The British thermal units consumed per minute per indicated horse-power by the ideal engine can be read off directly from the curves given in the upper portion of the diagram. Thus, if the temperature of the exhaust, t_{e} , is 212° F., and the temperature of the steam at boiler pressure is 350° F., the heat consumption is 265 B. T. U. per indicated horse-power per minute. If the steam is superheated, the figure obtained as just described is corrected by employing the factor obtained from the lower part of the diagram. Opposite the temperature of saturation, corresponding to the pressure in the boiler, and on the curve corresponding to the temperature pressure in the boiler, and on the curve corresponding to the temperature of superheated steam, t_{as} , is found a coefficient. This coefficient, multiplied by the exhaust temperature and by the heat consumption per minute obtained,—should there be no superheating,—gives the deduction to be made on account of the superheating. Thus, if the temperature of the superheated steam is 500° F. in the case already considered for saturated steam, we find, opposite 350 degrees for t_a and on the curve for $t_{as} = 500$ degrees, the coefficient, 0.00015. This gives the correction, 0.00015 \times 265 = \times 5.8. The end the heat consumption of the engine when furnished with 8.5 B. T. U; and the heat consumption of the engine, when furnished with superheated steam, will be 265 - 8.5 = 256.5 B. T. U. per indicated horsepower per minute.

The ratio of the economy of an engine to that of the ideal engine is obtained by dividing the heat consumption per indicated horse-power per minute for the ideal engine by that of the actual engine.

XXV. Miscellaneous.—In the case of tests of combined engine and boiler plants, where the full data of the boiler performance is to be determined, reference should be made to the directions given by the Boiler-test Committee of the Society, Code of 1899. (See "Transactions of the American Society of Mechanical Engineers," Volume XXI., page 34.)

In tests made for scientific research, and in those made on special forms

of engines, the line of procedure must be varied according to the special objects in view; and it has been deemed unnecessary to go into particulars

applying to such tests.

In testing steam pumping engines and locomotives, in accordance with the standard methods of conducting such tests recommended by the committees of the Society, reference should be made to the reports of those committees in the "Transactions," Volume XII., page 530, and in Volume XIV., page 1312.

XXVI. Report of Test.—The data and results of the test should be reported in the manner and in the order outlined in one of the following tables, the first of which gives, it is hoped, a complete summary of all the data and results as applied not only to the standard heat-unit test, but also to tests of combined engine and boiler for determining all questions of performance, whatever the class of service; the second refers to a short form of report giving the necessary data and results for the standard heat test; and the third to a short form of report for a feed-water test. It is the intention that the tables should be full enough to apply to any type of engine, but where not so, or where special data and results are determined, additional results may be inserted under the appropriate headings. Although these forms are arranged so as to be used for expressing the principal data and results of tests of pumping engines and locomotives, as well as for all other classes of steam engines, it is not the intention that they shall supplant the forms recommended by the committees on Duty Trials and Locomotives in cases where the full report of a test of such engines is desired.

Data and Results of Standard Heat Test of Steam Engine.

Arranged according to the Short Form advis mittee of the American Society of Mechanica	al Engineers. Code of 1	1902.
1. Made byof on engine located atto determine		
Date of trial		
	1st Cyl. 2d Cyl. 3e	d Cvl.
4. Dimensions of main engine: (a) Diameter of cylinder, in inches (b) Stroke of piston, in feet (c) Diameter of piston-rod, in inches (d) Average clearance, in per cent (e) Ratio of volume of cylinder thigh-pressure cylinder. (f) Horse-power constant for 1 poundment effective pressure and revolution per minute 5. Dimensions and type of auxiliaries		
Total Quantities, Tim	ne, Etc.	
6. Duration of test. 7. Total water fed to boilers from main sourc 8. Total water fed from auxiliary supplies: (a)	ce of suppry. lbs.	
(1)		
9. Total water fed to boilers from all sources 10. Moisture in steam or superheating near th 11. Factor of correction for quality of steam. 12. Total dry steam consumed for all purpose		or deg
Hourly Quantiti		
13. Water fed from main source of supply		
(a)(b)		
15. Total water fed to boilers per hour		
16. Total dry steam consumed per hour 17. Loss of steam and water per hour due to the steam and water per hour		
17. Loss of steam and water per hour due to main steam pipes and to leakage	e of plant lbs.	
main steam pipes and to leakage 18. Net dry steam consumed per hour by auxiliaries	engine and lbs.	
Pressures and Temperature	es (Corrected).	
19. Pressure in steam pipe near throttle, by g 20. Barometric pressure of atmosphere, in in	gauge lbs. per so	ą. in.
20. Barometric pressure of atmosphere, in in	nches of mer-	
20. Barometric pressure of atmosphere, in incurrence cury. 21. Pressure in receivers, by gauge	lbs. per so	4. in.
 22. Vacuum in contenser, in inches of mere 23. Pressure in jackets and reheaters, by gau 24. Temperature of main supply of feed wat 25. Temperature of auxiliary supplies of fee 	lbs. per so ter. deg. Fah	ą. in. r.
25. Temperature of auxiliary supplies of fee	ed water: deg. Fah	r.
$egin{pmatrix} (a) \dots & \\ (b) \dots & \\ (c) \dots & \\ \end{array}$	deg. Fah	r.

	26.	Ideal feed-water temperature, corresponding to press-
		ure of steam in the exhaust pipe, allowance being made for heat derived from jacket or
		reheater drips deg. Fahr.
		Tollowor disposition and a degree de degree degree degree de degree de degree degree de degree degre
		Data Relating to Heat Measurement.
	27.	Heat units per pound of feed water, main supply B. T. U.
	28	Heat units per pound of feed water, auxiliary supplies:
		(a) B. T. U. (b) B. T. U. (c) B. T. U. Heat units consumed per hour, main supply B. T. U.
		(c) B. T. U.
	30)	Hear linits consumed per nour ally mary supplies.
	00.	(a)
		(b)
	31.	Total heat units consumed per hour for all purposes B. T. U.
	33.	etc
	001	(a) By engine alone B. T. U.
	24	(b) By auxiliaries B. T. U. Heat units consumed per hour by engine slone rock-
	or.	oned from temperature given in line 26 B. T. U.
		Indicator Diagrams.
	35	Commercial cut-off, in per cent. of stroke. lst Cyl. 2d Cyl. 3d Cyl.
	36.	Initial pressure, in pounds, per square inch
	27	above atmosphere
	01.	below atmosphere, in pounds, per
	00	square inch
		Mean effective pressure, in pounds, per square inch
	39.	Equivalent mean effective pressure, in
		pounds, per square inch: (a) Referred to first cylinder
		(b) Referred to second cylinder
	40	(b) Referred to second cylinder
	10.	puting the steam accounted for
		by the indicator diagrams, meas-
1		ured to points on the expansion and compression curves
		Pressure above zero, in pounds, per square
1		inch:
-		(a) Near cut-off
		(c) Near beginning of compression Percentage of stroke at points where
1		prosettres are measured.
١		(a) Near cut-off (b) Near release (c) Near beginning of compression Steam accounted for by indicator in
l		(c) Near beginning of compression
1	41.	Steam accounted for by indicator, in
1		Steam accounted for by indicator, in pounds, per indicated horse-power per hour: (a) Near out off
-		(a) Near cut-off (b) Near release
	42	(b) Near release
١		(a) Commercial (b) Ideal
		(b) Ideal
		Speed.
-	43.	Revolutions per minute rev.
r		

Power.

44. Indicated horse-power developed by main engine cylinders:	
First cylinder	H P
Second cylinder	H. P.
mbind cylinder	п. г.
Third cylinder	
Total	н. Р.
45. Brake horse-power developed by engine	H. P.
Standard Efficiency and other Results.*	
Standard Efficiency and other Results.	
46. Heat units consumed by engine and auxiliaries per hour:	
(a) Per indicated horse-power	R TT II
(b) Don has been notice power	D. T. U.
(b) Per brake horse-power	D. 1. U.
47. Equivalent standard coal, in pounds, per hour:	22 .
(a) Per indicated horse-power	IDS.
(b) Per brake horse-power	lbs.
48. Heat units consumed by main engine per hour, corresponding	
to ideal maximum temperature of feed water given	
in line 26:	
(a) Per indicated horse-power	BTH
(b) Per brake horse-power	BTI
49. Dry steam consumed per indicated horse-power per hour:	D. 1. 0.
43. Dry steam consumed per indicated noise-power per nour.	lha
(a) Main cylinders, including jackets	IDS.
(b) Auxiliary cylinders	IDS.
(c) Engine and auxiliaries	IDS.
50. Dry steam consumed per brake horse-power per hour:	
(a) Main cylinders, including jackets	lbs.
(b) Auxiliary cylinders	lbs.
(c) Engine and auxiliaries	lbs.
51. Percentage of steam used by main engine cylinders accounted	
for by indicator diagrams, near cut-off of high-	
pressure cylinder	ner cent
pressure cymraer	per cent.
Additional Data.	
Add any additional data bearing on the particular objects of t	he test on
Add any additional data bearing on the particular objects of t	ne test or
relating to the special class of service for which the engine is us	ea. Also

Add any additional data bearing on the particular objects of the test or relating to the special class of service for which the engine is used. Also give copies of indicator diagrams nearest the mean and the corresponding scales.

Data and Results of Feed-water Test of Steam Engine.

Arranged according to the Short Form advised by the Engine Test Committee of the American Society of Mechanical Engineers. Code of 1902.

1.	Made byof	
	on engine located at	
	to determine	
0	Date of twist	
	Date of trial	
3.	Type of engine (simple, compound, or other multiple-expansion; condensing or non-condensing)	
	densing of non-condensing)	
4.	Class of engine (mill, marine, locomotive, pumping, electric, or other)).
	Rated power of engine	
6.	Name of builders	
7.	Number and arrangement of cylinders of engine; how lagged; typ	e

of valves and of condensers

exclusive of auxiliaries.

^{*} The horse-power referred to above (items 46-50) is that of the main engine,

		1st Cyl.	2d Cy	1. 3d Cy	vl
8.	Dimensions of engine				
	(a) Single or double acting	•			
	(b) Cylinder dimensions:				
	Bore, in inches				
	Stroke, in feet				
	Diameter of piston-rod, in inches. Diameter of tail-rod, in inches				
	Diameter of tan-rod, in inches				
	(c) Clearance, in per cent. of volume,				
	displaced by piston per stroke:				
	Head endCrank end				
	Average				
	to volume of high-pressure cyl-				
	inder				
	(e) Horse-power constant for 1 pound				
	mean effective pressure and 1				
	revolution per minute				
	1				
	Total Quantities, Time	. Etc.			
9.	Duration of test		hours	s.	
0.	Water fed to boilers from main source of su Water fed from auxiliary supplies:	pply	lbs.		
1.	Water fed from auxiliary supplies:	FF-5			
	(a)		lbs.		
	(b)		lbs.		
_	(c)		lbs.		
2.	Total water fed from all sources Moisture in steam or superheating hear thro	4/3 - %	Ibs.		
1	Factor of correction for quality of steem	ottie*	per c	ent. or de	g.
5	Factor of correction for quality of steam Total dry steam consumed for all purposes.		1he		
.0.	Total dry steam consumed for all purposes.		TOS.		
	Hourly Quantities	i.			
G	Water fed from main source of supply		lbg		
7	Water fed from main source of supply Water fed from auxiliary supplies:		TDS.		
•	(a)		lbs.		
	(b)		lbs.		
	(c)		1he		
8.	Total water fed to boilers per hour		lbs.		
9.	Total dry steam consumed per hour		lbs.		
:0.	Loss of steam and water per nour due to	leakage of			
_	plant, drips, etc		lbs.		
1.	Net dry steam consumed per hour by engin	e and aux-	11		
99	lliaries Dry steam consumed per hour:	• • • • • • • • • • • • • • • • • • • •	ibs.		
· Z-	(a) Main cylinders		1he		
	(a) Main cylinders (b) Jackets and reheaters		lbs.		
	(°) vacious and remodels illimited		1000		
	Pressures and Temperatures	(Corrected	1).		
19	-			om aa 4m	
ю. И	Steam-pipe pressure near throttle, by gauge Barometric pressure of atmosphere, in inch	og of mor	ros. p	er sq. m.	
T.	oury	ies or mer-	ing		
5	cury		lhs n	ersa in	
6.	Pressure in second receiver, by gauge		lbs. p	er sq. in.	
	(a) In inches of mercury		ins.		
	(b) Corresponding total pressure		lbs. p	er sq. in.	
8.	Pressure in steam jackets, by gauge		lbs. p	er sq. in.	
9.	(a) In inches of mercury. (b) Corresponding total pressure. Pressure in steam jackets, by gauge Pressure in reheater, by gauge Superheating of steam in first receiver	• • • • • • • • • • •	lbs. p	er sq. in.	
U.	Superheating of steam in first receiver		deg.	anr.	
1.	Superheating of steam in second receiver		aeg. 1	anr.	

^{*}In case of superheated steam engines determine, if practicable, the temperature of the steam in each cylinder.

	Indicator Diagrams.			
	Commercial cut-off, in per cent., of stroke.	st Cyl.	2d Cyl.	3d Cyl.
33.	Initial pressure, in pounds, per square inch above atmosphere			
34.	Back pressure at mid-stroke above or be- low atmosphere, in pounds, per			
35.	square inch			
36.	square inch Equivalent mean effective pressure, in pounds, per square inch per indicated horse-power			
	(a) Referred to first cylinder.(b) Referred to second cylinder.			
27	(c) Referred to third cylinder.			
57.	Pressures and percentages used in com- puting the steam accounted for			
	puting the steam accounted for by the indicator diagrams, meas-			
	ured to points on the expansion and compression curves			
	Pressures above zero, in pounds, per square			
	inch:			
	(a) Near cut-off (b) Near release (c) Near beginning of compression			
	(c) Near beginning of compression			
	Percentage of stroke at points where press-			
	ures are measured:			
	(a) Near cut-off(b) Near release(c) Near beginning of compression			
	(c) Near beginning of compression			
38.	Aggregate mean enective pressure, in			
	pounds, per square inch referred to each cylinder given in heading			
39.	Mean back pressure above zero			
40.	Steam accounted for, in pounds, per indi-			
	cated horse-power per hour:			
	(a) Near cut-off			
41.	Ratio of expansion:			
	(a) Commercial			
	(b) Ideal			
40	Speed.			
42.	Revolutions per minute. Piston speed per minute.		• • • • • • • • •	rev.
10.				10.
4.4	Power.		·	
44.	Indicated horse-power developed by main en First cylinder			нр
	Second cylinder			H. P.
	Third cylinder			Н. Р.
	Total		• • • • • • • • • • • • • • • • • • • •	н. Р.
	Efficiency Results.			
45.	Dry steam consumed per indicated horse-pow	ver per h	our:	1ha
	(b) Auxiliary cylinders etc	• • • • • • • • • • • • • • • • • • •		lbs.
	(a) Main cylinder, including jackets (b) Auxiliary cylinders, etc (c) Engine and auxiliaries			lbs.
46.	Percentage of steam used by main engine cyli	inders ac	ecounted	
	for by indicator diagrams:	st Cvl.	2d Cyl.	3d Cyl.
	(a) Near cut-off	St Oj I.	za Oji.	sa Oyl.

Sample Diagrams.

Copies of indicator diagrams nearest the mean, with corresponding scales, should be given in connection with table.

Practical Engine Performances.

(J. B. Stanwood.)

NON=CONDENSING ENGINES.

Slide-valve Engine.—75 to 80 pounds boiler pressure; stroke, long; mean effective pressure, 33 to 38 pounds per square inch; 25 to 100 horsepower; cut-off, % stroke; performance, about 40 pounds of steam per indicated horse-power per hour. When valves and piston are tight this has been reduced to 33 pounds of dry steam per indicated horse-power per hour by careful test.

Automatic High-speed Engines with Single Valves.—75 to 80 pounds boiler pressure; stroke, about equal to piston diameter; mean effective pressure, 40 pounds per square inch; 50 to 150 horse-power; cut-off, ½ stroke; performance, about 40 pounds of steam per horse-power per hour. When valves and piston are tight this has been reduced to 32 pounds of dry steam per indicated horse-power per hour. Valves difficult to keep tight.

Automatic High-speed Engines with Double Valves.—75 to 80 pounds boiler pressure; stroke, 1½ to 2 times piston diameter; mean effective pressure, 40 pounds per square inch; 50 to 150 horse-power; cut-off, $\frac{1}{2}$ stroke; performance, about 35 pounds of steam per indicated horse-power per hour. When valves and piston are tight this has been reduced to 30 pounds of dry steam per indicated horse-power per hour by careful test.

Automatic Cut-off Engines of the Corliss Type.—Stroke, 2 to 3 times diameter of piston; 75 to 90 pounds boiler pressure; mean effective pressure, 40 pounds per square inch; cut-off, \$ to ½ stroke; performance, under 200 horse-power, 29 to 30 pounds of steam per indicated horse-power per hour, over 200 horse-power, 27 pounds of steam per indicated horse-power per hour. When valves and piston are tight this has been reduced to 23½ pounds of dry steam per indicated horse-power per hour.

Compound Engines.—High speed; automatic cut-off; short stroke; 110 to 120 pounds boiler pressure; mean effective pressure, 25 to 27 pounds per square inch; 6 expansions; 100 to 250 horse-power; performance, 27 pounds of steam per indicated horse-power per hour.

CONDENSING ENGINES.

Automatic Cut-off Engines of the Corliss Type.—Stroke, 2 to 3 times piston diameter; 70 to 80 pounds boiler pressure; mean effective pressure, 40 pounds per square inch; over 200 horse-power; cut-off, $\frac{1}{5}$ stroke; about 19 to 20 pounds of steam per indicated horse-power per hour.

Compound Engines.—High speed; automatic cut-off; short stroke; 110 to 120 pounds boiler pressure; mean effective pressure, 27 to 30 pounds per square inch; 9 expansions; 200 to 500 horse-power; 17 to 19 pounds of steam per indicated horse-power per hour.

Compound Automatic Cut-off Engines of the Corliss Type.— Stroke, on high-pressure cylinder, 2 to 3 times piston diameter; 110 to 135 pounds boiler pressure; mean effective pressure, 14 to 24 pounds per square inch; over 400 horse-power; 16 to 20 expansions; 14 to 17 pounds of steam per indicated horse-power per hour. In one or two special cases, 13½ pounds of steam per indicated horse-power per hour has been obtained.

Steam-engine Proportions.

The dimensions of many of the parts of a steam engine may be determined according to the general methods given in the section on Machine

Design, pages 416-481, but some additional data will be given here.

The following proportions are those recommended by James B. Stanwood, M.E., and are based on an extensive practical experience.

ENGINE PROPORTIONS.

Pressures on Wearing Surfaces.

Main bearings: 140 to 160 pounds per square inch of area, obtained by multiplying length by diameter of journal. Crank pins: 1000 to 1200 pounds per square inch of area, obtained by multi-

plying length by diameter of pin.

Cross-head pins: 1200 to 1600 pounds per square inch of area, obtained by multiplying length by diameter of pin.

Cross-head surface: 35 to 40 pounds per square inch of area.

Non-condensing engines are usually designed for 100 pounds pressure per square inch of piston.

Sizes of Engine Parts, in Relation to Piston.

Diameter of piston.

Main shaft, diameter	0.42 to 0.50
Main bearing, length	0.85 to 1.00
Crank pin, diameter	0.22 to 0.27
Crank pin, length	0.25 to 0.30
Cross-head pin, diameter	0.18 to 0.20 0.25 to 0.30
Cross-head pin, length	0.25 to 0.30 0.14 to 0.17
Area of steam ports: Slide-valve engine	Area of piston. 0.08 to 0.09
High-speed automatic engine	0.00 to 0.03
Corliss engine	0.07 to 0.80
Area of exhaust ports;	
Slide-valve engine	0.15 to 0.20
High-speed automatic engine	0.18 to 0.22
Corliss engine	0.10 to 0.12
Diameter of steam pipes:	1/ 3:
Slide-valve engine, ¼ diameter of piston to inch.	o ¼ diameter of piston + ½
Automatic high-speed engine, ½ diameter of Corliss engine, 3 diameter of piston.	of piston.
Diameter of exhaust pipes:	
Slide-valve engine. % diameter of piston.	
Automatic high-speed engine, % diameter of	of piston.
Corliss engine, ½ to ½ diameter of piston.	1
	Displacement of piston
Clearance spaces:	in one stroke.
Slide-valve engineAutomatic high-speed engine, single valve.	0.06 to 0.08
Automatic high-speed engine, double valve	0.08 to 0.15 0.03 to 0.05
Automatic cut-off engine, Corliss type, long	stroke 0.03 to 0.03
Weights of engines per rated horse-power:	3010MC 0.02 to 0.04
Slide-valve engine	
Slide-valve engine	
Corliss engine	
Fly-wheels, weight per rated horse-power:	00 7
Slide-valve engine	33 pounds
Speed)	80 to 120 pounds
comiss engine (according to size and speed)	00 to 120 pounds
Rules for Fly-wheel Weights, Singl	le-cylinder Engines.
Let $d = \text{diameter of cylinder},$	
S = stroke of cylinder, in	
D = diameter of fly-wheel	
R = revolutions per minut W = weight of fly-wheel, i	e;
	A2S
For slide-valve engines, ordinary duty,	$W = 350\ 000\ \frac{a^2 B^2}{D^2 R^2}$;
	27 20
For slide-valve engines, electric lighting,	$W = 700,000 - \frac{d^2S}{d^2}$
Tot since there engines, electric lightning,	$W = 700000\frac{1}{D^2R^2};$
77 / // 71.7	d^2S
For automatic high-speed engines,	$W = 1\ 000\ 000\ \frac{1}{D^2R^2}$;
	20 20
For Corliss engines, ordinary duty,	$W = 700\ 000 \frac{a^2 B}{100\ 100}$;
For Corliss engines, electric lighting,	

Steam Passages.

The dimensions of steam passages should be proportioned, when possible, so that the velocity of flow is not greater than 6000 feet per minute, but this is not always practicable. The following table will enable the diameters of steam pipes and the areas of steam ports to be computed for various velocities.

Steam-pipe Diameters and Port Areas.

			Vel	ocity of	steam,	in feet,	per min	ute.			
et, per	40	000	60	00	80	00	100	000	12000		
Piston speed, in feet, per minute.	Steam-pipe diameter, if piston diameter = 1.	Port area, if piston area $= 1$.	Steam-pipe diameter, if piston diameter = 1.	Port area, if piston area = 1.	Steam-pipe diameter, if piston diameter = 1.	Port area, if piston area $= 1$.	Steam-pipe diameter, if piston diameter = 1.	Port area, if piston area = 1.	Steam-pipe diameter, if piston diameter = 1.	Port area, if piston area $= 1$.	
100 125 150 200 225 250 275 350 375 350 375 550 650 625 650 675 775 800 825 850 875 900 925 975 900 925 900 925 900 925 900 900 900 900 900 900 900 900 900 90	.158 .177 .194 .209 .224 .230 .262 .274 .296 .306 .316 .326 .335 .344 .353 .341 .388 .395 .401 .411 .418 .426 .433 .440 .454 .454 .468 .474 .454 .468 .474 .487 .494 .496 .506 .506 .506 .506 .518	.025 .031 .037 .044 .050 .056 .063 .069 .075 .081 .088 .094 .100 .106 .113 .119 .125 .131 .138 .144 .150 .156 .169 .175 .181 .188 .194 .194 .195 .195 .195 .195 .195 .195 .195 .195	.129 .144 .158 .171 .183 .194 .204 .214 .223 .242 .250 .258 .266 .274 .281 .285 .302 .309 .335 .341 .347 .353 .359 .365 .371 .371 .376 .382 .388 .398 .398 .408 .408 .418 .418 .428	.017 .021 .025 .029 .033 .038 .042 .046 .050 .054 .058 .063 .067 .071 .075 .079 .083 .088 .092 .096 .100 .104 .113 .117 .125 .129 .129 .139 .137 .141 .158 .166 .170 .175 .179	.112 .125 .137 .148 .158 .168 .177 .185 .193 .201 .201 .217 .224 .231 .238 .244 .256 .262 .262 .268 .279 .274 .290 .306 .311 .306 .311 .321 .321 .321 .321 .321 .321 .321	.013 .016 .019 .022 .025 .028 .031 .034 .044 .047 .050 .053 .056 .069 .075 .078 .081 .084 .081 .094 .091 .094 .091 .109 .113 .116 .119 .1125 .128 .131	.100 .112 .123 .132 .141 .150 .158 .166 .173 .180 .187 .194 .200 .206 .212 .218 .224 .229 .235 .240 .245 .255 .260 .255 .260 .266 .266 .274 .278 .283 .287 .292 .308 .301 .308 .312 .320 .324 .328	.010 .013 .015 .018 .020 .023 .025 .028 .030 .033 .035 .040 .043 .040 .053 .055 .055 .060 .063 .063 .073 .075 .078 .080 .083 .080 .083 .085 .090 .090 .090 .090 .090 .090 .090 .09	.091 .102 .112 .121 .121 .129 .137 .144 .151 .157 .164 .171 .177 .183 .188 .199 .204 .209 .214 .219 .224 .228 .232 .237 .241 .246 .250 .254 .250 .254 .250 .254 .257 .262 .262 .262 .262 .262 .262 .262 .26	.008 .010 .013 .015 .017 .019 .021 .023 .025 .027 .029 .031 .033 .035 .038 .040 .044 .046 .046 .050 .052 .054 .056 .068 .068 .067 .067 .067 .077 .079 .077 .079 .081 .077 .079 .077 .079 .083 .085 .085 .085	

Valve Gears.

The admission of the steam at the proper time to the cylinder may be effected by various forms of valve gear.

effected by various forms of valve gear.

The plain slide valve, operated by a single eccentric, is shown diagrammatically in the accompanying illustration.

When the valve is so made that it just covers both ports when in the mid position, and the eccentric travel is just equal to twice the width of the port, there will be no expansion, the eccentric being placed exactly at right angles with the crank. It was soon found, however, that by making the valve with increased lap and by giving the eccentric more throw a certain degree of expansion could be obtained, together with an earlier release and compression, this resulting in better steam economy and smoother running.

In order to accomplish this result without impeding the exhaust of the steam, the eccentric, r_1 , must be given the so-called angle of advance, $2^{\circ}1.2'$, beyond the mid position. The direction of rotation of the crank is then governed by this angle, the arrangement above giving rotation to the left and the position 1.2'' for r_2 giving right-hand rotation.

is then governed by this angle, the arrangement above giving rotation to the left, and the position, 1.2" for r_1 , giving right-hand rotation.

The action of the slide valve may readily be represented graphically by use of Reuleaux's diagram. The angle of advance and lap being given, the point of cut-off can be determined by the following method:

The circle, $1C^0$, represents the circle of the eccentric, and may also be taken as the crank circle on a reduced scale. C'' and C''' are two symmetrically-placed positions of the piston at which it is desired that the cut-off shall take place. Through these points, with a radius $1 \cdot 3 = l$,

describe arcs from centres, 3'' and 3'''. Their intersections, E_2 and E_3 , with the circle give the angles at which the expansion, C^0C'' and C'C''', occurs,—in this instance $\frac{7}{40}$ of the stroke. We now select the point, v_2 , of the crank circle at which the admission shall begin, join V_2E_2 , and draw, the equator, 2.1.2', parallel to it, and the angle, 2.1.C', will be the angle of advance, S_2 and the distance of 2.1 from E_2V_2 , the outside lap, e_2 , for the port II. The width of port, a_1 must also be chosen, and must be so taken that it is less than $r_1 - e_2$, and is represented by the parallel, A_2 . When the crank reaches I_2 ,—in this instance at $\frac{7}{400}$ of the stroke,—the exhaust begins and the distance, i_2i_2 , of the parallel, I_2i_3 , from the equator exhaust begins, and the distance, i_2i_2 , of the parallel, I_2I_2 , from the equator is the inside lap.

The construction is similar for the other half of the stroke. The angle, The construction is similar for the other half of the stroke. The angle, δ , is already known, and hence the parallel, E_3V_3 from E_3 , can be at once drawn and the admission point, V_3 , determined. The outside lap, e_3 , is somewhat less than e_2 , thus giving a correspondingly wider port opening. The inside lap, i_3 , is made equal to i_2 , and the bridges, b_3 and b_2 , are made equal, thus giving a symmetrical valve seat. A certain amount of discretion is permissible in the selection of $b_2 = b_3$, care being taken that there is sufficient bearing at the extreme valve stroke to insure tightness. The regists V_1 and V_2 are also of importance as they determine the classing of points, I_2 and I_3 , are also of importance, as they determine the closing of the exhaust. The corresponding piston positions, C^{IV} and C^{V} , are not symmetrical, because $i_3=i_2$; but the inequality in the compression is not

serious.

The above method of considering the influence of the ratio is very simple. It is easy to substitute any desired ratio $\frac{l_1}{r}$, but the variation is slight. It must be noted that the distance, 1.3, must be laid out to the actual scale of

construction.

The application of Zeuner's diagram to the same case is made in the following manner: The circle, $1C_0$, represents, as before, the eccentric circle and the crankpin path. The angle C_0 , 1, 2 = C', 1, 2 = 90 $-\delta$. With 1 as a centre describe circles with radii e and i, here made alike for both

ends of the valve; also, one of radius e + a. Upon 1.2 and 1.2 as diameters describe circles, called the valve circles.

The intersection of radii from 1 with these circles gives the distance of the valve from its middle position for various crank positions. For the position $1V_2$, for instance, the admission for the left stroke begins, at $1E_2$ the expansion, at 1I the exhaust, etc.

The Zeuner diagram gives the valve position by means of polar coordinates, while Reuleaux's diagram is based on parallel coordinates. To be strictly correct, the valve circles, 1.2 and 1.2, of the Zeuner diagram should fall upon each other. The arrangement shown has been adopted

by Zeuner as more convenient in practice.

It will be seen from the preceding that the rate of expansion can be varied by altering the eccentricity and the angle of advance. This may be carried so far that the direction of rotation is changed, giving what is termed a reversing motion. A variety of reversing motions have been devised, which accomplish the desired relation of parts by shifting a reversing lever. Of these the most practical are the so-called link motions, of which a number will here be briefly shown.

No. 1 is an outline diagram of Stephenson's link motion. The link, 3'3", of convex curvature towards the valve, is given an oscillating motion by means of the two equal eccentrics, 1.2' and 1.2'', and is suspended from its rainsmitted to the valve by means of the sliding block, 5, and rod, 6. No. 2 is Gooch's link motion. The link, 4, is driven by two eccentrics, as before, but is curved in the opposite direction with a radius, 5.6, and is suspended from its middle point, 8, to a fixed pivot, 8', while the rod, 5.6, is shifted by means of the lever connection, 810.10'.

No. 3 is the link motion of Pius Fink. In this form the link is operated by a single eccentric instead of two, as in the previous forms. This simple mechanism is not as widely used as its merits deserve.

No. 4 is the link motion of Allen. In this design the link, 4, is straight, and both the link and the radius rod are suspended and shifted by the lever connections, 8'. 8 and 9'. 9.

No. 5 is Walschaert's link motion. The link, 4, vibrates upon a fixed centre, 9, and is operated by an eccentric, 1.2. The valve rod is moved from the main cross-head by the connections, 10.11.6.7, and also by the radius rod, 5.6, which latter is suspended from the bell crank, S. 12'.

No. 6 is Marshall's valve gear. The curved link, 4, is rigidly secured and does not move. The eccentric, 1.2, moves the valve connection, 6.7, by means of the lever, 2.3.6, which vibrates about the point, 3, on the end of the radius rod, the other end of the rod being held by the link block, 5. Instead of the link, 4, a radius arm, 4_0 .5, is often used, the centre, 4_0 , corresponding to the centre of curvature of the link, the action being the same in both cases.

No. 7 is Brown's valve gear, which differs from the preceding by the substitution of a straight link of adjustable angle for the curved guide link.

No. 8 is Angström's valve gear. The point, 3, of the preceding gear is guided by a parallel motion, and the point, 6, is between 2 and 3, instead of beyond.

The eight preceding valve gears operate the valve approximately in the same manner as if a single eccentric of variable eccentricity and angular

advance were used, the eccentric rod being assumed of infinite length as compared with r. The path of the successive positions of the middle point of this imaginary eccentric is called the central curve of the valve gear.

The general forms of the central curve are shown above. Form a is that for cases 1, 4, and 5; form b, for case 1, when the eccentric rods are crossed; and form c, in which the curve becomes a straight line, is for cases 2, 3, 6, 7, and 8. In the latter instance the lead is constant.

The use of the central curve is involved in the mechanism of the valve

The use of the central curve is involved in the mechanism of the valve gear of the single-valve automatic cut-off engines, in which the eccentric is shifted across the shaft by the action of a centrifugal or inertia governor.

Slide Valves.

The two principal forms of slide valves in use are the plan D valve and the Allen valve, the latter being designed to give a more rapid and full port opening.

The action of the slide valve has already been discussed, and the amount of inside and outside lap may be determined for the desired steam

distribution by the use of Reuleaux's or Zeuner's diagrams. The other dimensions are determined as follows:

The width, a, of the steam ports is kept as small as is practicable, while the length at right angles to the plane of the drawing is made quite large. When a is given, the dimensions to be determined are the outside and

is

whence and

inside lap, e and i; the bridges, b; the width of face, b_0 , beyond the ports; the width, a_0 , of the exhaust port, IV; the travel, r; the length of the valve, l; and of the valve seat, l_0 . The laps, e and i, are determined from

the valve diagrams.

In the same manner, also, is found the greatest distance, s, in which the edge of the valves passes the edge of the port. This gives the width of bearing, t, of the valve upon the bridge, since b = s + t. The value of tvaries greatly; the least permissible value is $t = \frac{3}{16}t'$, and it is more frequently made $\frac{3}{8}t''$ to $\frac{1}{2}t''$. Approximately, we have, after assuming t as just given, $a_0 + t - (e + a + i) = a$. We then have

$$a_0 = 2a + l + i - t,$$

 $r = a + e + s,$
 $l = 4a + 3l + i + 2s + t.$

The valve face must have an inner width of bearing, t_0 (Fig. b), at least equal to t, whence for the total width of the valve face we have the value

$$a_0 + 2b + 2a + 2b_0$$
, or $l_0 = 4a + 3e - i + 4s + t + 2t_0$.

The thickness of metal in the valve itself, when made of cast-iron, should be about $=\frac{D}{200} + 0.4$ ".

The Allen Valve.

This is a double valve, and consists of one D valve over another, with a steam passage between. As before, we have r=a+e+s, and also make $b_0=2e-t,-i.e.$, the inner edge of the outer valve, when the valve is in mid position, is at a distance =e from the edge of the valve seat. The consequence is that when the valve is moved a distance equal to e, say to the right the research through the valve is moved a distance of the valve. the right, the passage through the valve opens to admit steam at the same instant as does the edge of the valve on the left. This gives a steam admission twice as quickly, and an opening twice as great, as would otherwise be the case.

The following positions, from a to f, will show the successive actions, the exhaust ports being omitted for simplicity. a. The admission is just about to take place both from the edge of the valve on the left and through the passage in the valve. If we apply Zeuner's diagram, we must, from the point A, which indicates the port opening, double the width given by the Zeuner circle until the entrance to the passage in the valve is wide open, as at b. By thus doubling the opening in the diagram we obtain the curve, AB_1 .

b. From this position on, the opening at the left continues to grow wider, but that through the valve on the right does not; hence, on the Zeuner diagram, from this point we return to the opening which the regular valve circle gives, to which is added the constant opening, $c = BB_1 = CC_1$, indicated by the curve, B_1C_1 . This continues until the inner edge of the opening of the valve passage on the left reaches the edge of

the bridge, as at c.

c. As the valve continues to move, the passage through it is gradually closed, but the steam port is opened to the same amount, and hence the actual port opening remains constant. This continues until the position, d, is reached, when the passage through the valve is entirely shut off. This is indicated in the diagram by the arc, C_1D , struck from the centre at 1.

d. The valve continues to move to the right until it is entirely upon the bridge, the corresponding portion of the diagram being the arc, DE, of the valve circle.

e. The valve from this position moves on the bridge beyond the port until it has travelled a distance equal to s, as shown at f, during which time the port opening remains constant, as indicated in the diagram by the arc. EE', struck from the centre, 1. From this point the same actions take place successively in the reversed order.

It will be seen that Allen's valve gives a much quicker opening and also a much longer duration of the full opening than does the plain slide valve. It remains to be seen how these features can be used to the best

This is best done by making the value of s negative, and advantage. also $\geq t$. This makes the port opening from C_1 to C_1' in the diagram constant, as shown in the diagram.

In order that the apparent contraction of the ports by the change in the sign of s shall not occur, the value of a is made greater than would otherwise be the case. Under these conditions we have for the exhaust port, a_0 , the equation:

$$a_0 + t - e_1 - a - i = a - s$$

in which s is given the magnitude equal to the distance which the edge of the valve is moved beyond the edge of the bridges, as in Fig. f. We then have

For the exhaust port, $\begin{array}{ll} a_0=2a+e_1+i-s-t;\\ \text{For the bridge,} & b=e-e_1+s-t;\\ \text{For the passage through valve,} & c=e-t-e_1;\\ \text{For the total valve,} & l=4a+4e-e_1+i-3s+t. \end{array}$

For a complete discussion of valves and valve gears see Zeuner's "Treatise on Valve Gears" and Auchincloss's "Link and Valve Motions;" also, compare Reuleaux's "Constructor" and Unwin's "Machine Design."

CONDENSERS.

The gain in power by use of a condenser may be estimated upon the basis of an increase of 12 pounds per square inch to the mean effective pressure in the cylinder. Upon this basis the following table shows the gain in horse-power for cylinders of various diameters for every 100 feet piston speed. For any other speed, multiply by the speed, in feet, per minute and divide by 100 to obtain the gain in horse-power.

Diameter of piston.	Horse-power gained for every 100 feet of piston speed per minute.	Diameter of piston.	Horse-power gained for every 100 feet of piston speed per minute.
5	.71	32	29.24
6	1.03	34	33.01
7	1.40	36	37.01
8	1.83	38	41.24
9	2.31	40	45.70
10	2.86	42	50.38
12	4.11	44	55,29
14	5.60	46	60.43
16	7.31	48	65.80
18	9.25	50	71.40
20	11.42	52	77.23
22	13.82	54	83.28
24	16,45	56	89.56
26	19.30	58	96.08
28	22,39	60	102.81
30	25.70		

The size of a jet condenser varies somewhat according to the speed of the engine, but is usually made from ½ to ½ the volume of the steam cylinder. The quantity of injection water required is from 25 to 30 times the weight of steam to be condensed, according to the pressure of the exhaust and the temperature of the water. Too much water is poor economy, since the increased burden on the air pump neutralizes the gain of the better vacuum. It is best to provide for an ample supply, in case of emergency, and cut the injection down in actual use until the minimum amount to maintain a fair vacuum is ascertained.

The temperature of the hot well is best kept at about 100° F., although it sometimes may rise to 120° F. without materially impairing the vacuum.

For surface condensers a cooling surface of 2 to 3 square feet per indicated horse-power is found satisfactory in practice, according to climate. The quantity of circulating water may be taken at about 30 times the weight of steam to be condensed.

The size of the air pump may be determined by the following formula:

Volume of air pump =
$$\frac{\text{I. H. P.}}{\text{revolutions}} \times c$$
,

where c = 700 for single-acting and jet condenser; = 300 for single-acting surface condenser;

= 470 for double-acting horizontal pump; volume of low-pressure cylinder or volume of single-acting air pump =

Independent condensers are now extensively used. The following general dimensions are for standard designs, the Worthington being a jet condenser and the Wheeler a surface condenser.

Sizes of Worthington Jet Condenser.

Diameter of steam cylinders.	Diameter of water cylinders.	Length of stroke.	Diameter of steam pipe of pump.	Diameter of exhaust pipe of pump.	Diameter of engine exhaust opening.	Diameter of injection pipe.	Diameter of discharge pipe.
	Inch.		Inch.	Inch.	Inch.	Inch.	Inch.
51/4 >	× 4¾ ×	(5	3/4	11/4	4	2½.	2
	× 5¾ ×		3/4 1	$\frac{1\frac{1}{4}}{1\frac{1}{2}}$	5	3	3
71/2	× 7½ ×		1½	. 2	8	4	4
71/2	\times 7 \times	< 10	1½ 1½ 1½ 1½ 2 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½	2	10	4	4
	\times 8½ \times	< 10	1½	2 2	· 12	5	4 5 6 8
	$\times 10\frac{1}{4} >$	< 10	1½	2	14	7	6
	\times 12 \rightarrow	< 10	2	2½	14	7	
	\times 14 \rightarrow	< 10	2½	3	16	8	10
	\times 15 \rightarrow	< 10	2½	3	16	8	10
	\times 15 \rightarrow		2½	3	18	10	10
	\times 17 \rightarrow		2½	3	18	10	12
	\times 17 \rightarrow		2½	3	18	10	12
	\times 19 \rightarrow		2½	3	18	10	12
	\times 19 \rightarrow			3	18	10	12
	\times 19 \rightarrow		3	4	18	10	12
	\times 22 \rightarrow		3	4	20	10	14
	\times 22 \rightarrow		3	4	20	10	14
	\times 22 \rightarrow		3	4	20	10	14
	\times 24 \rightarrow		. 3	4	20	10	14
	\times 26 \rightarrow		3	4	24	12	16
18	× 29 >	< 18	3	4	24	14	18

Wheeler Surface Condenser, Mounted on Blake-Knowles Air and Circulating Pump.

Steam per hour.	Cooling surface.	Size of cylinders: steam, air, water. Stroke.			Weight of outfit.				
Lb.	Sq. ft.		_	I	nch.				Lb.
500	80	4	X	5	X	5	X	5	1200
800	110	4	X	5	X	5	X	5	1350
1000	150	$4\frac{1}{2}$	\times	51/	\times	51/2	X	6	1700
1500	180	$4\frac{1}{2}$	X	51/	źΧ	51/5	χ×	6	2000
1800	200	51/2	X	6	X	6	X	7	2600
2000	210	$5\frac{1}{2}$	\times	6	X	6	X	7	2700
2250	230	51/2	\times	6	X	6	X	7	2800
2500	270	6	\times	8	X	8	X	7	3300
3000	310	6	\times	8	X	8	X	7	3500
3500	360	6	\times	8	X	8	X	7	3600
4000	430	71/2	\times	8	X	8	X	10	4600
4500	480	71/2	\times	8	X	8	X	10	4800
5000	530	71/2	\times	8	X	8	X		5600
6000	610	8	×	9	X	9	X	10	6000
7000	740	8	X	9	X	9	X		6300
7500	770	8	\times	10	X	10		1 2	6900
8000	850	8	×	10	X	10	X	12	7200
9000	900	8	\times	10	X	10	X	12	9100
10500	1000	10	×	12	X	1 2	X	12	9600
11000	1050	10	×	12	X	12	X	12	10700
12000	1200	10	×	12	X	12	X	12	13100
14000	1400	12	×	14	X	14	X	12	17000
16000	1600	12	×	14	X	14	X	16	19000
18000	1800	14	X.	16	X	16	X	16	19800
20000	2000	14	X	16	X	16	X	16	20500
22500	2100	14	X	16	X	16	X	16	24000
25000	2360	16	X	16	X	18	X	24	

Separate condensing plants have the advantage that they can be started before the main engines, and thus permit a vacuum to be secured at once, without blowing through. The speed of air and circulating pumps can be regulated according to the vacuum, which is not the case when they are operated by direct connection to the main engine.

In modern power plants, where there are many engines, pumps, and other steam-driven auxiliaries, it is found advantageous to provide one large central condensing plant, with independent air and water pumps, into which all the engines discharge their exhaust. When compound engines are used the exhaust steam from pumps and similar machines in which the steam is not used expansively may well be discharged into the receiver of the engine, being thus enabled to exert its expansive force upon the low-pressure piston, and then pass into the condenser. In this way much of the wastefulness of such auxiliaries may be prevented.

INTERNAL=COMBUSTION MOTORS.

Practically all of the internal-combustion motors now in active use are operated on the Beau de Rochas cycle, with a power impulse every fourth stroke. The sequence of operations is shown in the cuts, the corresponding portion of the indicator diagram being given in each case.

In the first outward stroke the mixed charge of air and gas is drawn in and on the return stroke this is compressed. It is then ignited by an electric spark, hot tube, or similar device, and the expansion due to the explosion and combustion makes the second outward stroke,—this being the power stroke. The fourth phase in the cycle, the second inward stroke, is the exhaust.

It is advantageous to use as high a compression pressure as possible, but the limit to this is found in the heat generated by compression. If the compression is too high the charge will be ignited by this heat and an

injurious premature explosion occur. Various attempts have been made to obviate this difficulty. In the Banki engine a fine spray of water is injected into the inlet pipe with the charge, and this absorbs much of the heat of compression. The vapor of water thus produced expands with the explosion, and there is thus a combined gas and steam action. In the Diesel motor the charge drawn in is pure air, and this is compressed to about 500 pounds per square inch. A high temperature is thus produced, but there is no fuel in the cylinder to be ignited. At the end of the stroke the liquid fuel is injected and is ignited by the heat of the compressed air.

In ordinary gas engines the compression is carried from 80 to 90 pounds

per square inch. The maximum pressure in such engines is about 3.5 times the compression pressure. For compressions of 100 pounds per square inch or less the mean effective pressure may be obtained from the following

formula:

$$M. E. P. = 2C - 0.01C^2$$

in which C is the compression pressure. Thus, for 50 pounds compression, this would give

M. E. P. = 100 - 25 = 75 pounds.

Piston speed should not exceed 700 feet per minute,—more generally 500 feet per minute is used. Maximum pressure should not be reached later than at one-tenth the stroke. The time of rise in pressure in a gas engine is: first, time taken for flame to strike back into the mixture; second, time during which pressure rises after ignition. Cylinders of large dimensions have much larger ratio of volume to surface than small ones, and are therefore more economical. The size of valves should be such that the velocity of gases calculated upon mean piston speed does not exceed 100 feet per minute.

Internal-combustion motors have a much higher thermal efficiency than steam engines, on account of the greater temperature range and, also, because of the absence of losses from cylinder condensation, owing

to the fact that the working fluid is a perfect gas.

Gas engines frequently show on test thermal efficiencies of 22 to 25 per

cent., while the Diesel motor has given a thermal efficiency of 38 per cent.

The general proportions of gas-engine parts may be determined according to the general principles of machine design. There are, however,

certain parts which may be given special consideration. Since gas engines may be used with fuels of various calorific values, it is necessary to assume some standard upon which proportions may be based, and in the United States it is often assumed that natural gas is the standard fuel, its calorific value being about 1000 B. T. U. per cubic foot. For gas of any other calorific value, a general rule is to make the compression ratio inversely as the calorific value of the gas. Thus for a lean gas a higher degree of compression will be required, and, although less power will be developed than with a richer gas, the thermal efficiency may be as high or even higher.

For natural gas the compression space is made about 30 per cent. of the piston displacement, so that the total volume of cylinder and clearance is

1.30 of the piston displacement, and the ratio of the clearance to the total volume is $\frac{0.00}{1.30}$ - = 0.2308.

Upon this assumption a typical gas-engine indicator diagram may be constructed, from which the action in the cylinder may be seen.

The following discussion is condensed from Roberts's "Gas-engine

The compression curve has been found experimentally to be represented by the relation

$$PV^{1,3} = K$$
,

in which P is the absolute pressure at any point; V, the corresponding volume; and K, a constant. If the volume of the cylinder is taken as unity, K is the absolute pressure of the atmosphere, or 14.7 pounds per square inch.

With natural gas the pressure of explosion is about 4 times the compression pressure, both compression and explosion pressures being con-

sidered above atmospheric.

For the expansion curve the relation of pressure to volume is

$$PV^{1.35} = C$$
.

in which C is a constant depending upon the maximum pressure of explosion.

To find the compression pressure with a clearance ratio of 0.2308, as

determined above, we have

$$PV^{1.3} = K = 14.7,$$

 $P = \frac{14.7}{V^{1.3}} = \frac{14.7}{(0.2308)^{1.3}} = 98.88 \text{ pounds.}$

This is absolute pressure, and the pressure above atmospheric will be

$$98.88 - 14.7 = 84.2$$
 pounds per square inch.

The explosion pressure will then be $84.2\times4=336.8$ pounds above atmosphere, or 351.5 pounds absolute. Other points in the compression curve may then be computed by the formula.

To apply the formula for the expansion curve,

$$PV^{1.35} = C$$

the value of C must be found. This is the pressure at the end of the stroke when the volume is equal to 1; hence, we have

$$PV^{1.35} = 351.5 \times (0.2308)^{1.35} = C,$$

= 48.56 pounds absolute,

as the terminal pressure.

Intermediate points in the expansion curve may then be found, as shown in the diagram, from

 $PV^{1.35} = 48.56$.

The mean effective pressure may then be measured from the diagram,—

The power of the gas engine is generally determined by means of the brake, and the dimensions of parts are based on brake horse-power (B. H. P.).

The brake horse-power may be expressed in general by the formula

B. H. P. =
$$\frac{D^2 \times L \times R}{C}$$

in which

D = diameter of cylinder, in inches;

L = stroke, in inches;

R = revolutions per minute;

C =constant, depending upon the fuel.

For a four-cycle engine C may be taken as 19,000 for natural gas and 18,000 for gasoline. The value of C may be determined from any engine in

which the brake horse-power has been found, and then this value can be used for subsequent computations with the same fuel.

The stroke is usually made equal to 1.5D, and the piston speed about

600 feet per minute.

For the inlet and the exhaust passages we have

S =piston speed, in feet, per minute; A =piston area, in square inches; a =inlet area; a' = exhaust area.

 $a \doteq \frac{AS}{6000};$

 $a' = \frac{AS}{5100}.$

The flow of water through the cylinder jacket is made 4 to 5 gallons per horse-power per hour. The 1902 Code of the American Society of Mechanical Engineers in-

cludes the following:

Rules for Conducting Tests of Gas and Oil Engines.

Code of 1901.

I. Objects of the Tests.—At the outset the specific object of the test should be ascertained, whether it be to determine the fulfilment of a contract guarantee, to ascertain the highest economy obtainable, to find the working economy and the defects as they exist, to ascertain the performance under special conditions, or to determine the effect of changes in the conditions; and the test should be arranged accordingly.

II. General Condition of the Engine.-Examine the engine, and make notes of its general condition and any points of design, construction, or operation which bear on the objects in view. Make a special examination of all the valves by inspecting the seats and bearing surfaces, and note their condition, and see if the piston rings are gas-tight.

If the trial is made to determine the highest efficiency, and the examination shows evidence of leakage, the valves and piston rings, etc., should be made tight and all parts of the engine put in the best possible working

condition before starting on the test.

- III. Dimensions, etc.—Take the dimensions of the cylinder, or cylinders, whether already known or not. This should be done when they are hot, and in working order. If they are slightly worn, the average diameter should be determined. Measure, also, the compression space or clearance volume, which should be done, if practicable, by filling the spaces with water previously measured, the proper correction being made for the temperature. (See Section III., Steam-engine Code.)
- IV. Fuel.—Decide upon the gas or oil to be used, and, if the trial is to be made for maximum efficiency, the fuel should be the best of its class that can readily be obtained, or one that shows the highest calorific power. (See Section IV., Steam-engine Code.)
- V. Calibration of Instruments Used in the Tests.—All instruments and apparatus should be calibrated and their reliability and accuracy verified by comparison with recognized standards. Apparatus liable to change or to become broken during the tests, such as gauges, indicator springs, and thermometers, should be calibrated both before and after the experiments. The accuracy of all scales should be verified by standard weights. In the case of gas- or water-meters, special attention should be given to their calibration, both before and after the trial, and at the same rate of the way pressure as existed during the trial. flow and pressure as exists during the trial.
- VI. Duration of Test.—The duration of a test should depend largely upon its character and the objects in view, and in any case the test should be continued until the successive readings of the rates at which oil or gas

is consumed, taken at, say, half-hourly intervals, become uniform and thus verify each other. If the object is to determine the working economy, and the period of time during which the engine is usually in motion is some part of twenty-four hours, the duration of the test should be fixed for this number of hours. If the engine is one using coal for generating as, the test should cover a long enough period to determine with accuracy the coal used in the gas producer; such a test should be of at least twentyfour hours' duration, and in most cases it should extend over several days.

VII. Starting and Stopping a Test.—In a test for determining the maximum economy of an engine, it should first be run a sufficient time to bring all the conditions to a normal and constant state. Then the regular observations of the test should begin, and continue for the allotted time.

If a test is made to determine the performance under working conditions, the test should begin as soon as the regular preparations have been made for starting the engine in practical work, and the measurements should then commence and be continued until the close of the period

covered by the day's work.

VIII. Measurement of Fuel.-If the fuel used is coal furnished to a gas producer, the same methods apply for determining the consumption as are used in steam-boiler tests. (See Code of Rules for Conducting Boiler Tests, "Transactions of the American Society of Mechanical Engineers," Volume XXI., page 34.)

If the fuel used be gas, the only practical method of measurement is the use of a motor, through which the gas is paged. Can be gas chard the

the use of a meter through which the gas is passed. Gas bags should be placed between the meter and the engine to diminish the variations of pressure, and these should be of a size proportionate to the quantity used. Where a meter is employed to measure the air used by an engine, a receiver with a flexible diaphragm should be placed between the engine and the meter. The temperature and pressure of the gas should be measured, as also the barometric pressure and temperature of the atmosphere, and the quantity of gas should be determined by reference to the calibration of the meter, taking into account the temperature and pressure of the gas. If the fuel is oil, this can be drawn from a tank which is filled to the original level at the end of the test, the amount of oil required for so

doing being weighed; or, for a small engine, the oil may be drawn from a

calibrated vertical pipe.

In an engine using an igniting flame the gas or oil required for it should be included in that of the main supply, but the amount so used should be stated separately, if possible.

IX. Measurement of Heat Units Consumed by the Engine.-The number of heat units used is found by multiplying the number of pounds of coal or oil or the cubic feet of gas consumed by the total heat of combustion of the fuel, as determined by a calorimeter test. In determining the total heat of combustion no deduction is made for the latent heat of the water vapor in the products of combustion. There is a difference of opinion on the propriety of using this higher heating value, and for purposes of comparison care must be taken to note whether this or the lower value has been used. The calorimeter recommended for determining the heat of combustion is the Mahler, for solid fuels or oil, or the Junker, for gases, or some form of calorimeter known to be equally reliable. Poole on "The Calorific Power of Fuels.")

It is sometimes desirable, also, to have a complete chemical analysis of the oil or gas. The total heat of combustion may be computed, if desired, from the results of the analysis, and should agree well with the calorimeter values. (See Section XVII., Boiler-test Code.)

For the purpose of making the calorimeter test, if the fuel used is coal for generating gas in a producer, or oil, samples should be taken at the time of the eigine trial and carefully preserved for subsequent determina-tion. If gas is used, it is better to have a gas calorimeter on the spot, samples taken, and the calorimeter test made while the trial is going on.

X. Measurement of Jacket Water to Cylinder or Cylinders.—The jacket water may be measured by passing it through a water-meter or allowing it to flow from a measuring tank before entering the jacket, or by collecting it in tanks on its discharge. If measuring tanks are used, the

same system of arrangement is recommended as that employed for feedwater measurements in boiler and steam-engine tests. (See Section XI., Steam-engine Code.)

XI. Indicated Horse-power.—The directions given for determining. the indicated horse-power for steam engines apply in all respects to internal-combustion engines. (See Section XIII., Steam-engine Code.)

XII. Brake Horse-power.—The determination of the brake horse-power, which is very desirable, is the same for internal combustion as for steam engines. (See directions given in Section XV., Steam-engine Code.)

XIII. Speed .- The same directions apply to internal-combustion engines as to steam engines for the determination of speed, and reference is made to Section XVII., Steam-engine Code, for suggestions on this subject.

In an engine which is governed by varying the number of explosions or working cycles, a record should be kept of the number of explosions per minute; or if the engine is running at nearly maximum load, by counting the number of times the governor causes a miss in the explosions.

XIV. Recording the Data.—The time of taking weights and every observation should be recorded, and note made of every event, however unimportant it may seem to be. The pressures, temperatures, meter readings, speeds, and other measurements should be observed every 20 or 30 minutes when the conditions are practically uniform, and at more frequent intervals if they are variable. Observations of the gas or oil measurements should be taken with special care at the expiration of each hour, so as to divide the test into hourly periods and reveal the uniformity, or otherwise, of the conditions and results as the test goes forward.

All data and observations should be kept on suitably-prepared blank

sheets or in note-books.

XV. Uniformity of Conditions.—When the object of the test is to determine the maximum economy, all the conditions relating to the operation of the engine should be maintained as constant as possible during the

XVI. Indicator Diagrams and Their Analysis.—(a) Sample Diagrams: Sample diagrams nearest to the mean should be selected from those taken during the trial and appended to the tables of the results. If there are separate compression or feed cylinders, the indicator diagrams from these should be taken and the power deducted from that of the main cylinder.

XVII. Standards of Economy and Efficiency.-The hourly consumption of heat, determined as pointed out in Article IX., divided by the indicated or the brake horse-power, is the standard expression of engine

economy recommended.

In making comparisons between the standard for internal-combustion engines and that for steam engines, it must be borne in mind that the former relates to energy concerned in the generation of the force employed, whereas in the steam engine it does not relate to the entire energy expended during the process of combustion in the steam boiler. The steam engine standard does not cover the losses due to combustion, while the internal-combustion engine standard, in cases where a crude fuel such as oil is burned in the cylinder, does cover these losses. To make a direct comparison between the two classes of engines considered as complete plants for the production of power, the losses in generating the working agent must be taken into account in both cases, and the comparison must be on the basis of the fuel used; and not only this, but on the basis of the same or equivalent fuel used in each case. In such a comparison, where producer gas is used and the producer is included in the plant, the fuel consumption, which will be the weight of coal in both cases, may be

directly compared.

The thermal efficiency ratio per indicated horse-power or per brake horse-power for internal-combustion engines is obtained in the same

manner as for steam engines referred to in Section XXI., Steam-engine Code, and is expressed by the fraction

2545

B. T. U. per horse-power per hour

XVIII. Heat Balance.—For purposes of scientific research, a heat balance should be drawn which shows the manner in which the total heat of combustion is expended in the various processes concerned in the working of the engine. It may be divided into three parts: first, the heat which is converted into the indicated or brake work; second, the heat rejected in the cooling water of the jackets; and third, the heat rejected in the exhaust gases, together with that lost through incomplete com-

bustion and radiation.

To determine the first item, the number of foot-pounds of work performed by, say, 1 pound or 1 cubic foot of the fuel is determined; and this quantity, divided by 778, which is the mechanical equivalent of 1 B.T. U., gives the number of heat units desired. The second item is determined by measuring the amount of cooling water passed through the jackets, equivalent to 1 pound or 1 cubic foot of fuel consumed, and calculating the amount of heat rejected, by multiplying this quantity by the difference in the sensible heat of the water leaving the jacket and that entering. The third item is obtained by the method of differences,—that is, by subtracting the sum of the first two items from the total heat supis, by subtracting the sum of the first two items from the total heat supplied. The third item can be subdivided by computing the heat rejected in the exhaust gases as a separate quantity. The data for this computation are found by analyzing the fuel and the exhaust gases, or by measuring the quantity of air admitted to the cylinder in addition to that of the gas or oil.

XIX. Report of Test.—The data and results of a test should be reported in the manner outlined in one of the following tables, the first of which gives a complete summary when all the data are determined, and the second is a shorter form of report, in which some of the minor items are omitted.

XX. Temperatures Computed at Various Points of the Indicator Diagram.—The computation of temperatures corresponding to various points in the indicator diagram is, at best, approximate. It is possible only where the temperature of one point is known or assumed, or where the amount of air entering the cylinder along with the charge of gas or oil and the temperature of the exhaust gases is determined.

Data and Results of Test of Gas or Oil Engine.

Arranged according to the Complete Form advised by the Engine Test Committee of the American Society of Mechanical Engineers.

	0040 01 20020
1.	Made by of of of engine located at to determine.
	Date of trial
4.	Class of engine (mill, marine, motor for vehicle, pumping, or other)
5.	Number of revolutions for one cycle, and class of cycle
6.	Method of ignition.
7.	Name of builders.
8.	Gas or oil used
	(a) Specific gravity deg. Fahr. (b) Burning-point deg. Fahr. (c) Flashing-point deg. Fahr.

099	GAS-ENGINE TESTING.		
		1st Cyl.	. 2d Cyl.
9.	Dimensions of engine:	150 051	. 2d Oj 1.
	(a) Class of cylinder (working or for compress-		1
	ing the charge)		
	(a) Single- or double-acting		do
	(d) Cylinder dimensions		
	(c) Single- or double-acting. (d) Cylinder dimensions Bore, in inches		
	Stroke, in feet Diameter of piston-rod, in inches Diameter of tail-rod, in inches		
	Diameter of piston-rod, in inches		
	(e) Compression space or clearance in per		
	(e) Compression space or clearance, in per cent., of volume displaced by piston		
	per stroke Head end. Crank end.		
	Head end		
	Crank end		
	Average		
	(f) Surface, in square feet (average) Barrel of cylinders		
	Cylinder heads		
	Clearance and ports		
	Ends of piston		
	Piston-rod		
	inder heated by jackets, in square feet.		
	Barrel of cylinder		
	Cylinder heads		
	Clearance and ports		
	/ effective pressure and 1 revolution per		
	minute		
10.	minuteGive description of main features of engine and	plant, a	nd illustrate
	with drawings of same given on an a scribe method of governing. State wh	ppendec	sneet. De-
	were constant throughout the test.	emer in	e conditions
	Troco constituito dello dello costi		
	Total Quantities.		
11	Duration of test		hours
12.	Gas or oil consumed		cu. ft. or lbs.
13.	Air supplied, in cubic feet		cu. ft.
14.	Air supplied, in cubic feet Cooling water supplied to jackets Calorific value of gas or oil by calorimeter test, dete		cu. ft.
15.	Calorine value of gas or oil by calorimeter test, dete	rmined	דו יחים
	bycalorimeter	• • • • • • •	D. 1. U.
	Hourly Quantities.		
10			lba
17	Gas or oil consumed per hour	• • • • • • • •	lbs
11.	decime nater supplied per modi	•••••	1 100.
	Pressures and Temperatures.		
10		,	
18.	Burometric pressure of atmosphere:	ater	ins.
10.	(a) Reading of height of barometer		ins
	Pressure at meter (for gas engine), in inches, of was Barometric pressure of atmosphere: (a) Reading of height of barometer (b) Reading of temperature of barometer (c) Reading of barometer corrected to 32° F		deg. Fahr.
	(c) Reading of barometer corrected to 32° F		ins.
	(b) Outlet	• • • • • • • •	deg. Fahr.
21.	(a) Inlet (b) Outlet		deg. Fahr.
22.	Temperature of atmosphere:		
	(a) Dry-bulb thermometer		deg. Fahr.
	(b) Wet-bulb thermometer		deg. Fahr.
23	(a) Dry-bulb thermometer. (b) Wet-bulb thermometer. (c) Degree of humidity. Temperature of exhaust gases.	• • • • • • • •	per cent.
201).	How determined		deg. ranr.

	Data Relating to Heat Measurement.
	24. Heat units consumed per hour (pounds of oil or cubic feet
	of gas per hour multiplied by the total heat of
7	25. Heat rejected in cooling water:
	combustion) B. T. U. 25. Heat rejected in cooling water: (a) Total per hour B. T. U. (b) In per cent. of heat of combustion of the gas or oil
	consumed
	(a) Total per hour B. T. U. (b) In per cent. of heat of combustion of the gas or oil
	consumed
	(a) Total per hour
	consumed per cent.
	Speed, Etc.
	28. Revolutions per minute rev. 29. Average number of explosions per minute
	How determined
	How determined 30. Variation of speed between no load and full load rev. 31. Fluctuation of speed on changing from no load to full load, measured by the increase in the revolu-
	load, measured by the increase in the revolu- tions due to the change
	and to the change that the change
	Indicator Diagrams.
	32. Pressure, in pounds, per square inch above atmos-
	phere:
	(a) Maximum pressure(b) Pressure just before ignition
	(c) Pressure at end of expansion
	(c) Pressure at end of expansion
	diagrams: (a) Maximum temperature (not necessarily at
	maximum pressure)
	(b) Just before ignition
	(d) During exhaust
	34. Mean effective pressure, in pounds, per square inch
	Power.
	35. Power, as rated by builders:
	(b) Brake horse-power H. P.
	36. Indicated horse-power actually developed: First cylinder
	(a) Indicated horse-power H. P. (b) Brake horse-power H. P. 36. Indicated horse-power actually developed: First cylinder H. P. Second cylinder H. P.
	37. Brake horse-power, electric horse-power, or pump horse-
	power, according to the class of engine H. P. 38. Friction indicated horse-power from diagrams, with no
	load on engine and computed for average speed H. P.
	39. Percentage of indicated horse-power lost in friction per cent.
	Standard Efficiency Results.
	40. Heat units consumed by the engine per hour:
	(a) Per indicated horse-power B. T. U. (b) Per brake horse-power B. T. U.

41. Heat units consumed by the engine per minute: (a) Per indicated horse-power B. T. U. (b) Per brake horse-power B. T. U.
(b) Per brake horse-power B. 1. U. 42. Thermal efficiency ratio: (a) Per indicated horse-power per cent.
(b) Per brake horse-power per cent.
Miscellaneous Efficiency Results.
43. Cubic feet of gas or pounds of oil consumed per horse- power per hour:
power per nour: (a) Per indicated horse-power (b) Per brake horse-power
Heat Balance.
44. Quantities given, in per cents., of the total heat of combustion of the fuel:
(a) Heat equivalent of indicated horse-power per cent. (b) Heat rejected in cooling water per cent. (c) Heat rejected in exhaust gases and lost through radiation and incomplete combustion per cent. Sum = 100 per cent.
Subdivisions of Item (c): (c1) Heat rejected in exhaust gases per cent.
Subdivisions of Item (c) : (c1) Heat rejected in exhaust gases per cent. (c2) Lost through incomplete combustion per cent. (c3) Lost through radiation, and unaccounted for per cent. Sum = Item (c)
Additional Data.
Add any additional data bearing on the particular objects of the test of relating to the special class of service for which the engine is to be used Also give copies of indicator diagrams nearest the mean and the corresponding scales. Where analyses are made of the gas or oil used as fue or of the exhaust gases, the results may be given in a separate table.
Data and Results of Standard Heat Test of Gas or Oi Engine.
Arranged according to the Short Form advised by the Engine Test Committee of the American Society of Mechanical Engineers. Code of 1902.
1. Made byofofon engine located atto determine.
2. Date of trial
3. Type and class of engine
4 Wind of fuel need
4. Kind of fuel used
(a) Specific gravity. deg. Fahr. (b) Burning-point. deg. Fahr. (c) Flashing-point. deg. Fahr.
(a) Specific gravity. deg. Fahr. (b) Burning-point. deg. Fahr. (c) Flashing-point. deg. Fahr. 5. Dimensions of engine: 1st Cyl. 2d Cy
(a) Specific gravity. deg. Fahr. (b) Burning-point. deg. Fahr. (c) Flashing-point deg. Fahr. 5. Dimensions of engine: 1st Cyl. 2d Cy. (a) Class of cylinder (working or for compressing the charge).
(a) Specific gravity. deg. Fahr. (b) Burning-point. deg. Fahr. (c) Flashing-point. deg. Fahr. 5. Dimensions of engine: 1st Cyl. 2d Cy (a) Class of cylinder (working or for compressing the charge). (b) Single- or double-acting. (c) Cylinder dimensions:
(a) Specific gravity. deg. Fahr. (b) Burning-point. deg. Fahr. (c) Flashing-point deg. Fahr. 5. Dimensions of engine: 1st Cyl. 2d Cyl. (a) Class of cylinder (working or for compressing the charge) (b) Single- or double-acting (c) Cylinder dimensions: (b) Class of cylinder dimensions: Bore. in inches.
(a) Specific gravity. deg. Fahr. (b) Burning-point. deg. Fahr. (c) Flashing-point deg. Fahr. 5. Dimensions of engine: (a) Class of cylinder (working or for compressing the charge) (b) Single- or double-acting. (c) Cylinder dimensions: Bore, in inches. Stroke, in feet. Diameter of piston-rod, in inches.
(a) Specific gravity. deg. Fahr. (b) Burning-point. deg. Fahr. (c) Flashing-point. deg. Fahr. (c) Flashing-point. deg. Fahr. 5. Dimensions of engine: (a) Class of cylinder (working or for compressing the charge) (b) Single- or double-acting. (c) Cylinder dimensions: Bore, in inches. Stroke, in feet Diameter of piston-rod, in inches. (d) Average compression space or clearance, in per cent.
(a) Specific gravity. deg. Fahr. (b) Burning-point. deg. Fahr. (c) Flashing-point deg. Fahr. 5. Dimensions of engine: (a) Class of cylinder (working or for compressing the charge) (b) Single- or double-acting (c) Cylinder dimensions: Bore, in inches Stroke, in feet Diameter of piston-rod, in inches (d) Average compression space or clearance,

minute

Total Quantities.

	Total Quantities.	
7.	Duration of test Gas or oil consumed Cooling water supplied to jackets Calorific value of fuel by calorimeter test, determined by	cu. ft. or lbs.
	calorimeter	B. T. U.
	Pressures and Temperatures.	
10.	Pressure at meter (for gas engine), in inches, of water	ins.
11.	Barometric pressure of atmosphere: (a) Reading of barometer. (b) Reading corrected to 32° F. Temperature of cooling water:	ins.
	(a) Inlet (b) Outlet (c) Degree of humidity Temperature of gas at meter (for gas engine) Temperature of atmosphere:	deor Hahr
13.	Temperature of gas at meter (for gas engine)	deg. Fahr.
	(a) Dry-bulb thermometer (b) Wet-bulb thermometer Temperature of exhaust gases	deg. Fahr.
	Data Relating to Heat Measurement.	
	Heat units consumed per hour (pounds of oil or cubic feet of gas per hour multiplied by the total heat of combustion)	вти
17.	combustion)	B. T. U.
	Speed, Etc.	
18. 19.	Revolutions per minute	rev.
	Indicator Diagrams. 1st Cyl	l. 2d Cyl.
20.	Pressure, in pounds, per square inch above atmos-	. 2d Oj 1.
	phere: (a) Maximum pressure(b) Pressure just before ignition	
	(b) Pressure just before ignition. (c) Pressure at end of expansion (d) Exhaust pressure . (e) Mean effective pressure	
	(e) Mean effective pressure	
	Power.	
21.	Indicated house moreon.	TT D
	Second cylinder. Total	н. Р. Н. Р. Н. Р.
22. 23. 24.	First cylinder Second cylinder Total Brake horse-power Friction horse-power by friction diagrams. Percentage of indicated horse-power lost in friction.	H. P. H. P. per cent.
	Standard Efficiency and Other Results.	
25.	Heat units consumed by the engine per hour: (a) Per indicated horse-power	B. T. U.
26.	Pounds of oil or cubic feet of gas consumed per hour: (a) Per indicated horse-power	lbs. or cu. ft.
	(b) Per brake horse-power	ios. or cu. it

Additional Data.

Add any additional data bearing on the particular objects of the test or relating to the special class of service for which the engine is to be used. Also give copies of indicator diagrams nearest the mean, and the corresponding scales.

Note.—The volume of gas measured at any temperature should be reduced to the equivalent at a standard temperature and atmospheric pressure, corrected for the effect of moisture in the gas, which is ordinarily at the saturation-point or nearly so. It is recommended that a standard be adopted for gas-engine work, the same as that used in photometry,—namely, the equivalent volume of the gas when saturated with moisture at the normal atmospheric pressure at a temperature of 60° F. In order to reduce the reading of the volume containing moist gas at any other temperature to this standard, multiply by the factor

$$\frac{459.4 + 60}{459.4 + t} \times \frac{b - (29.92 - s)}{29.4}$$
,

in which b is the height of the barometer, in inches, at 32° F.; t, the temperature of the gas at the meter, in degrees Fahrenheit; and s, the vacuum, in inches, of mercury corresponding to the temperature of t obtained from steam tables.

ELECTRIC POWER TRANSMISSION.

The principal applications of electricity in mechanical engineering are in the transmission of power and the independent driving of machines by electric motors. It is yet a question for debate as to whether the actual transmission losses are materially reduced by the substitution of electric driving for shafting, belting, and pulleys, but there is no doubt as to the great advantages of electricity so far as the convenient arrangement of machinery and the utilization of floor-space are concerned.

Some general data concerning electricity will here be given, and for special and fuller treatment the reader is referred to Foster's "Electrical Engineer's Pocket-book," Bell's "Electric Power Transmission," and the

standard works of reference on electrical engineering.

Equivalents and Expressions of Electrical and Mechanical Units.

	Joule.	Henry.	Farad.	Coulomb.	Watt.	Ohm.	Volt.	Ampere.	Name of unit.
	¥	L	K	Q	P	R	E	Q	Symbol.
	or self- induction. Electric energy or work.	Electrical inductance,	Electric capacity.	Q Electric quantity.	Electric power.	motive force. Electric resist- ance.	Difference of potential or electric press- ure or electro-	Electric cur- rent.	What it measures.
6 h	cuit a difference of potential of 1 volt. It corresponds to a rate of change of magnetic field strength through the circuit. Is the work done in one second when I ampere flows in conductor between two points, having a difference of potential of 1 volt.	the two conductors forming the condenser. Is the inductance in a circuit when current is changing at the rate of I ampere per second, and producing in that cir-	I ampere. Is capacity of condenser which would require a charge of 1 coulomb to produce difference of potential of 1 volt between	between two points, naving a difference of potential of a volt. The quantity of electricity that flows per second past a given point in a conductor which is carrying a current of	Is the rate of doing work when a current of 1 ampere flows	The ohm is the resistance offered by a column of mercury 14.4521 grammes in mass, of constant cross-section, and	of 1 coulomb per second. The volt is the electrical pressure, which, if applied to a confuctor where resistance is 1 ohm, will produce a current of 1 ampere, and which is represented by 0.6674 of the pressure between the poles of a Clark's voltaic cell at 15° C.	The ampere is the constant electric current which, when $L^{\frac{1}{2}}M^{\frac{1}{2}}T^{-1}$ passed through a particular solution of nitrate of silver in water denotity 0.001118 gramma near second. On the flow	Definition.
	L^2MT^{-2}	L	$L^{-1}T^2$	$L^{\frac{1}{2}}M^{\frac{1}{2}}$	L^2MT^{-3}	LT^{-1}		$L^{\frac{1}{2}}M^{\frac{1}{2}}T^{-1}$	Formulas of stand- ard units in absolute system (C. G. S.).
	L^2MT^{-2} $W=\frac{1}{2}E imes Q$ 0.7373 footpound per second.	$L = \frac{E + T}{C}$	$K = \frac{Q}{E}$	$Q = C \times T$	$P = E \times C$ $7\frac{1}{46}$ horse-	$R = \frac{E}{C}$	$E = C \times R$ 0.926 standard Daniel	$C = \frac{E}{R}$	Equation.
0	0.7373 foot- pound per second.		per second.	$Q = C \times T \begin{vmatrix} \text{power.} \\ 1.118 \text{ m. of sil-} \\ \text{verdeposited} \end{vmatrix}$	746 horse-		0.926 standard Daniel cell.	Flow of 1 coulomb per	Equivalent.
	10	10-9	10-9	10-1	10-7	10-9	10-8	10-1	Multiplier to get num- ber of C.G. S. correspond- ing units.

Norz.—In above C. G. S. (centimetre, gramme, second), L is the unit of length; M, of mass; and T, of time.

Analogies Between the Flow of Water and Electricity. Electricity.

Water.

Volts; electro-motive force; differ-

Head, difference of level, in feet. Difference of pressure per square inch, in pounds.

ence of potential or of pressure; E. or E. M. F. Ohms, resistance, R. The resistance increases directly as the

Resistance of pipes, apertures, etc., increases with length of pipe, with contractions, roughness, etc.; decreases with increase of sectional area. The law of increase and decrease is expressed by complex formulæ.

and inversely as its sectional area. It varies with the nature or quality of the conductor. Conductivity is the reciprocal of specific resistance.

length or the conductor or wire,

Rate of flow, as cubic feet per second, gallons per minute, etc., or volume divided by the time. In the mining regions sometimes expressed in "miner's inches."

Amperes; current; currentstrength; intensity of current; rate of flow; 1 ampere = 1 coulomb per second.

Amperes = $\frac{\text{volts}}{\text{ohms}}$; $C = \frac{E}{R}$; E = CR.

Quantity, usually measured cubic feet or gallons, but is also equivalent to rate of flow x time, as cubic feet per second for so many hours.

Coulomb, unit of quantity, Q = rateof flow \times time, as ampere seconds; 1 ampere hour = 3600 coulombs.

Work, or energy, measured in foot-pounds: product of weight of falling water into height of fall; in pumping, product of quantity, in cubic feet, into the pressure, in pounds, per square foot against which the water is pumped. Joule, volt-coulomb, W, the unit of work = product of quantity by the electro-motive force = voltampere.

Power, rate of work. Horse-power, foot-pounds of work done in 1 If C (amperes) = rate of flow, and E (volts) = difference of pressure between two points in a circuit, energy expended = CEt, = C^2Rt , since E = CR.

minute \div 30,000. In falling water, pounds falling in 1 second ÷ 150. In water flowing in pipes, rate of flow, in cubic feet, per second × pressure resisting the flow, in pounds, per square foot \div 550.

Watt, unit of power, $P = \text{volts} \times \text{amperes}$, = current or rate of flow \times difference of potential. 1 watt = 0.7373 foot-pound per

second = $\frac{1}{746}$ of a horse-power.

In the mechanical applications of electricity it must always be remembered that the volt corresponds to pressure and the ampere to flow, and the product—the volt-ampere—is the watt, the unit of power, 746 of which are equal to a horse-power. The kilowatt = 1000 watts is equal to

= 1.34 horse-power.

The British Board of Trade Unit is equal to 1 kilowatt hour

Strands of Copper Wire.

(Roeblings.)

Copper wires are twisted into concentric strands or into ropes of 7 strands. A rope of 7 strands, each composed of 7 wires, is called a seven-by-seven rope, and is usually written 7×7 . The number of wires that can be made into a strand is limited by the capacity of the stranding machinery,—200 wires is the usual limit of a concentric strand, and 133 wires of a rope.

In a strand of circular milage, CM , composed of n wires of diameter, d, with a weight per 1000 feet, w, we have

$$egin{aligned} \mathit{CM} &= \mathit{d}^2 imes \mathit{n}, \ &n &= rac{\mathit{CM}}{\mathit{d}^2}, \ &d &= \sqrt{rac{\mathit{CM}}{\mathit{n}}}, \ &w &= 0.00305 imes \mathit{CM}. \end{aligned}$$

The weights of strands are calculated about 1 per cent. heavier than a solid wire of the same circular milage, while the resistance is calculated for the solid wire.

The diameter of a strand may be calculated by multiplying the diameter of one wire by the factors given in the table, according to the number

of wires composing the strand.

Number of Wires and Diameter in Strand Required to Equal a Given Circular Milage.

Diameter of Wires in Decimal Parts of an Inch.

Number of wires.	Area, in circular mils.												
Number of wires	50 000	100 000	150 000	200 000	250 000	300 000	350 000						
7	.0845	.1203	.1463	.1690	.1890	.2070	.2236						
19	.0513	.0725	.0889	.1025	.1147	.1256	.1357						
37	.0367	.0519	.0636	.0735	.0821	.0900	.0972						
61	.0286	.0405	.0496	.0572	.0640	.0701	.0757						
127	.0199	.0280	.0343	.0396	.0443	.0486	.0526						
169	.0172	.0243	.0297	.0344	.0384	.0421	.0455						
217	.0151	.0214	.0262	.0304	.0339	.0371	.0401						
	400 000	450 000	500 000	550 000	600 000	650 000	700 000						
7	.2390	.2535	.2672	.2803	.2927	.3047	.3163						
19	.1450	.1538	.1622	.1701	.1776	.1849	.1919						
37	.1039	.1103	.1162	.1219	.1273	.1325	.1375						
61	.0809	.0858	.0905	.0949	.0991	.1032	.1071						
127	.0561	.0595	.0627	.0658	.0687	.0715	.0742						
169	.0486	.0516	.0543	.0571	.0595	.0620	.0643						
217	.0429	.0455	.0480	.0503	.0525	.0547	.0567						
=	750 000	800 000	850 000	900 000	950 000	1 000	1 000 000						
7	.3273	.3380	.3484	.3585	.3684	.37	70						
19	.1986	.2050	.2115	.2176	.2236	.229							
37	.1423	.1470	.1515	.1559	.1602	.164							
61	.1108	.1145	.1180	.1214	.1247	.128							
127	.0768	.0793	.0818	.0841	.0864	.088							
169	.0666	.0687	.0709	.0729	.0749	.076							
217	.0588	.0607	.0625	.0644	.0661	.067							

Copper Wire Table of American Institute of Electrical Engineers.

Giving Weights and Lengths of Cool, Warm, and Hot Wires, of Matthiessen's Standard of Conductivity, for Brown & Sharpe Gauge.

		Feet per ohm.	At 80° C.	16510.0 13890.0 10380.0 8232.0 6523.0 5177.0 1238.0 11238.0 11238.0 11238.0 1024.0 102
	Length.		At 50° C.	18290.0 14510.0 11500.0 11500.0 7235.0 5862.0 5862.0 2862.0 1890.0 11427.0 111.8 897.6 741.8 897.6 111.8 564.5 285.0 111.8 564.5 111.8 565.0 111.8 111
	Len	H	At 20° C.	20440.0 16210.0 112850.0 112850.0 1010.0 8083.0 6410.0 6410.0 2835.0 2835.0 2835.0 1595.0 1008.0 1008.0 1265.0 1165.0 1167.8 1167.8
		Foot nor	pound.	1.561 1.969 2.180
		Pounds per ohm.	At 80° C.	10570.000 6647.000 2630.000 1054.000 1654.200 411.400 162.700 102.300 40.480 25.480 25.480 25.480 25.480 25.480 25.480 25.480 25.480 25.480 25.480 25.480 25.480 26.332 27.300 27.300 28.300 28.300 28.300 28.300 28.300 28.300 39.900
Gauge.	Weight.		At 50° C.	11720.000 7369.000 2914.000 1833.000 1153.000 455.900 113.400 113.430 117.740
	M ,		At 20° C.	13090,000 8232,000 8252,000 826,000 82
		Pounds per foot.		640 500 508 000 319 500 508 000 509 500 509 500 509 500 509 500 509 630 509 630 500 500 600 600 600 600 600 600 600 60
	fourth	Area.	Sq. inch. sq. mils.	166 190.0 131 790.0 194 818.0 194 818.0 65 732.0 51 128.0 20 618.0 20 618.0
	Gauges to the nearest fourth significant digit.	Ar	Circular mils,	211 660.0 167 800.0 183 100.0 183 690.0 52 680.0 41 740.0 20 820.0 10 820.0 10 820.0 10 820.0 10 820.0 10 820.0 10 820.0 10 880.0 5 178.0 5 17
	Gauges to	Diame-	ter, in inches.	460 000 490 60
		S. or G.	B. & S	0000 000 000 000 000 000 000 000 000 0

_		_	_				_					_	_				_	_	_		_
79.68	63.19	50.11	39.74	31.52	24.99	19.82	15.72	12.47	9.886	7.840	6.217	4.930	3.910	3.101	2.459	1.950	1.547	1.226	.9726	.7713	
88.310	70.030	55.540	44.040	34.930	27.700	21.970	17.420	13.820	10.960	8.688	6.890	5.464	4.333	3.436	2.725	2.161	1.714	1.359	1.078	.8548	
98.660	78.240	62.050-	49.210	39.020	30.950	24.540	19.460	15.430	12.240	9.707	7.698	6.105	4.841	3.839	3.045	2,414	1.915	1.519	1.204	.955	
				_		_	_		2607.0		_	_			_	_	_	64	64	60	-
.246 400	.155 000	.097 460	.061 290	.038 550	.024 240	015250	.009 588	000-900	.003 792	.002 385	.001 500	.000 9436	.000 5933	.0003731	.000 2347	.000 1476	.000 09281	.000 05824	.000 03671	.000 02308	
.273 100	.171 700	.108 000	.067 930	.042 720	.026 870	006 910	.010 630	.006 683	.004 203	.002 643	.001 662	.001 045	.000 6575	.000 4135	.000 2601	.000 1636	.000 1029	.000 06454	.000 04068	.000 02559	
.305 100	.191 900	.120 700	.075 890	.047 730	.030 020	.018 880	.011 870	.007 466	.004 696	.002 953	.001 857	.001 168	.000 7346	.000 4620	.000 2905	.000 1827	.000 1149	.000 07210	.000 04545	.000 02858	-
.003 092	.002 452	.001 945	.001 542	.001 223	6696 000	.000 7692	000 000	.000 4837	.000 3836	.000 3042	.000 2413	.000 1913	.000 1517	.000 1203	.000 09543	.000 07568	.000 06001	.000 04759	.000 03774	.000 02993	-
802.00	636.30	504.60	400.20	317.30	251.70	199.60	158.30	125.50	99.53	78.94	62.60	49.64	39.37	31.22	24.76	19.64	15.57	12.35	9.79	7.77	
1 022.000	810.100	642.400	509.500	404.000	320.400	254.100	201.500	159.800	126.700	100.500	79.700	63.210	50.130	39.750	31.520	25.000	19.830	15.720	12.470	9.888	
.031	.028	025	0.52	.020	017	.015	014	012		010	800	200	.007	900	005	005	004	.003	.003	.003	
20	2	22	23	24	25	26	27	28	29	30	65	32	60	34	32	36	37	38	33	40	

The data from which this table has been computed are as follows: Matthiessen's standard resistivity, Matthiessen's temperature coefficient, specific gravity of copper = 8.89. Resistance in terms of the international ohm.

Ratio of resistivity, hard or soft

Matthiessen's standard 1 metre-gramme of hard drawn copper = 0.1469 B. A. U. at 0° C.

Temperature coefficients of resistance for 20° C., 50° C., 40° C., Matthiessen's standard 1 metre-gramme of soft drawn copper = 0.14365 B.A. U. at 0° C. 1 B.A. U. = 0.9866 international ohm. Matthiessen's standard 1 metre-gramme of soft drawn copper = 9.141729 international ohms at 0° C. metre, I pound = 453.59256 grammes.

Although the entries in the table are carried to the fourth significant digit, the computations have been carried to at least five The last digit is therefore correct to within half a unit, representing an arithmetical degree of accuracy of at least one part in two thousand. The diameters of the B. & S. or A. W. & wires are obtained from the geometrical series, in which No. It is to be observed that while Matthiessen's standard of resistivity may be permanently recognized, the temperature coefficient 0000 = 0.46 inch and No. 36 = 0.005 inch, the nearest fourth significant digit being retained in the areas and diameters so deduced. of its variation which he introduced, and which is here used, may in future undergo slight revision. figures.

Committee on "Units and Standards." A. E. KENNELLY, Chairman, G. A. HAMILTON, F. B. CROCKER,

Table for the Conversion of Mils. $(\frac{1}{1000}$ inch) into Centimetres.

Mils.	Centi- metres.	Mils.	Centi- metres.	Mils.	Centi- metres.	Mils.	Centi- metres.
1	.00254	26	.06602	51	.1295	76	.1931
2	.00508	27	.06856	52	.1321	77	.1956
3	.00762	28	.07110	53	.1346	78	.1981
4	.01016	29	.07364	54	.1372	79	.2006
5	.01270	30	.07618	55	.1397	80	.2032
6	.01524	31	.07872	56	.1422	81	.2057
7	.01778	32	.08126	57	.1448	82	.2083
8	.02032	33	.08380	58	.1473	83	.2108
9	.02286	34	.08634	59	.1499	84	.2133
10	.02540	35	.08888	60	.1524	85	.2159
11	.02793	36	.09142	61	.1549	86	.2184
12	.03047	37	.09396	62	.1575	87	.2209
13	.03301	38	.09650	63	.1600	88	.2235
14	.03555	39	.09904	64	.1626	89	.2260
15	.03809	40	.1016	65	.1651	90	.2286
16	.04063	41	.1041	66	.1676	91	.2311
17	.04317	42	.1067	67	.1702	92	.2336
18	.04571	43	.1092	68	.1727	93	.2362
19	.04825	44	.1118	69	.1752	94	.2387
20	.05079	45	.1143	70	.1778	95	.2413
21	.05333	46	.1168	71	.1803	96	.2438
22	.05587	47	.1194	72	.1829	97	.2465
23	.05841	48	.1219	73	.1854	98	,2489
24	.06095	49	.1245	74	.1879	99	.2514
25	.06348	50	.1270	75	.1905	100	.2540

"National Electrical Code."

Rules and Requirements of the National Board of Fire Underwriters for the Installation of Wiring and Apparatus for Electric Light, Heat, and Power as Recommended by the Underwriters'

National Electric Association.

Edition of 1901.

The National Electrical Code is the result of the united efforts of the various electrical, insurance, architectural, and allied interests which have, through the National Conference on Standard Electrical Rules, composed of delegates from various national associations, unanimously voted to recommend it to their respective associations for approval or adoption.

The following is a list of the associations represented in the conference, all of which have approved of the Code:

American Institute of Architects, • American Institute of Electrical Engineers, American Society of Mechanical Engineers, American Street Railway Association, Factory Mutual Fire Insurance Companies, National Association of Fire Engineers, National Board of Fire Underwriters, National Electric Light Association, Underwriters' National Electric Association.

GENERAL PLAN GOVERNING THE ARRANGEMENT OF RULES.

Class A.-Central Stations, Dynamo, Motor, and Storage-battery Rooms, Transformer Sub-stations, etc. Rules 1 to 11.

Class B.—Outside Work, all systems and voltages. Rules 12 and 13.

Class C.-Inside Work. Rules 14 to 39. Subdivided as follows:

General Rules, applying to all systems and voltages. Rules 14 to 17. Constant=current Systems. Rules 18 to 20.

Constant=potential Systems.

All voltages. Rules 21 to 23.

Voltage not over 550. Rules 24 to 31.

Voltage between 550 and 3500. Rules 32 to 37.

Voltage over 3500. Rules 38 and 39.

Class D.—Specifications for Wires and Fittings. Rules 40 to 63.

Class E.-Miscellaneous. Rules 64 to 67.

Class F.—Marine Wiring. Rules 68 to 80.

CLASS A.-STATIONS AND DYNAMO ROOMS.

Includes Central Stations, Dynamo, Motor, and Storage-battery Rooms, Transformer Sub-stations, etc.

1. Generators.

(a) Must be located in a dry place.(b) Must never be placed in a room where any hazardous process is car-

ried on, nor in places where they would be exposed to inflammable gases or flyings of combustible materials.

(c) Must be insulated on floors or base frames, which must be kept filled to prevent absorption of moisture, and also kept clean and dry. frame insulation is impracticable, the Inspection Department having jurisdiction may, in writing, permit its omission, in which case the frame must be permanently and effectively grounded.

A high-potential machine which, on account of great weight or for other reasons, cannot have its frame insulated from the ground, should be surrounded with an insulated platform. This may be made of wood mounted on insulating supports, and so arranged that a man must always stand upon

it in order to touch any part of the machine.

In case of a machine having an insulated frame, if there is trouble from static electricity due to belt friction, it should be overcome by placing near the belt a metallic comb connected with the earth, or by grounding the frame through a very high resistance of not less than 200 ohms per volt generated by the machine.

(d) Every constant-potential generator must be protected from excessive current by a safety fuse, or equivalent device, of approved design in each

lead wire.

These devices should be placed on the machine or as near it as possible. Where the needs of the service make these devices impracticable, the Inspection Department having jurisdiction may, in writing, modify the requirements.

(e) Must each be provided with a water-proof cover.

(f) Must each be provided with a name-plate, giving the maker's name, the capacity in volts and amperes, and the normal speed, in revolutions, per minute.

2. Conductors.

From generators to switchboards, rheostats, or other instruments, and thence to outside lines.

(a) Must be in plain sight or readily accessible.
(b) Must have an approved insulating covering, as called for by rules in Class C for similar work, except that in central stations, on exposed circuits, the wire which is used must have a heavy-braided, non-combustible outer covering.

Bus bars may be made of bare metal.

(c) Must be kept so rigidly in place that they cannot come in contact.

(d) Must in all other respects be installed under the same precautions as required by rules in Class C for wires carrying a current of the same volume and potential.

3. Switchboards.

(a) Must be so placed as to reduce to a minimum the danger of com-

municating fire to adjacent combustible material.

Special attention is called to the fact that switchboards should not be built down to the floor nor up to the ceiling, but a space of at least 10 or 12 inches should be left between the floor and the board, and from 18 to 24 inches between the ceiling and the board, in order to prevent fire from communicating from the switchboard to the floor or ceiling, and also to prevent the forming of a partially-concealed space very liable to be used for storage of rubbish and oily waste.

(b) Must be made of non-combustible material or of hard wood, in skele-

ton form, filled to prevent absorption of moisture.

(c) Must be accessible from all sides when the connections are on the back, but may be placed against a brick or stone wall when the wiring is entirely on the face.

(d) Must be kept free from moisture.
(e) Bus bars must be equipped in accordance with rules for placing conductors.

4. Resistance Boxes and Equalizers.

(For Construction Rules, see No. 60.)

(a) Must be placed on a switchboard, or, if not thereon, at a distance of a foot from combustible material, or separated therefrom by a non-inflammable, non-absorptive insulating material.

5. Lightning Arresters.

(For Construction Rules, see No. 63.)

(a) Must be attached to each side of every overhead circuit connected

with the station.

It is recommended to all electric light and power companies that arresters be connected at intervals over systems in such numbers and so located as to prevent ordinary discharges entering (over the wires) buildings connected to the lines.

(b) Must be located in readily-accessible places away from combustible materials, and as near as practicable to the point where the wires enter the

building.

Station arresters should generally be placed in plain sight on the switchboard.

In all cases, kinks, coils, and sharp bends in the wires between the

arresters and the outdoor lines must be avoided, as far as possible.

(c) Must be connected with a thoroughly good and permanent ground connection by metallic strips or wires having a conductivity not less than that of a No. 6 B. & S. copper wire, which must be run as nearly in a straight line as possible from the arresters to the earth connection.

Ground wires for lightning arresters must not be attached to gas-pipes within the buildings.

It is often desirable to introduce a choke coil in circuit between the arresters and the dynamo. In no case should the ground wire from a lightning arrester be put into iron pipes, as these would tend to impede the discharge.

6. Care and Attendance.

(a) A competent man must be kept on duty where generators are operating.

(b) Oily waste must be kept in approved metal cans and removed daily. Approved waste cans shall be made of metal, with legs raising can 3 inches from the floor, and with self-closing covers.

7. Testing of Insulation Resistance.

(a) All circuits, except such as are permanently grounded in accordance with Rule 13A, must be provided with reliable ground detectors. Detectors

which indicate continuously, and give an instant and permanent indication of a ground, are preferable. Ground wires from detectors must not be attached to gas-pipes within the building.

(b) Where continuously-indicating detectors are not feasible, the

circuits should be tested at least once per day, and preferably oftener.

(c) Data obtained from all tests must be preserved for examination by the Inspection Department having jurisdiction.

These rules on testing to be applied at such places as may be designated

by the Inspection Department having jurisdiction.

8. Motors.

(a) Must be insulated on floors or base frames, which must be kept filled to prevent absorption of moisture; and must be kept clean and dry. Where frame insulation is impracticable, the Inspection Department having jurisdiction may, in writing, permit its omission, in which case the frame must

be permanently and effectively grounded.

A high-potential machine, which on account of great weight or for other reasons cannot have its frame insulated, should be surrounded with an insulated platform. This may be made of wood mounted on insulating supports, and so arranged that a man must stand upon it in order to touch

any part of the machine.

In case of a machine having an insulated frame, if there is trouble from static electricity due to belt friction it should be overcome by placing near the belt a metallic comb connected to the earth, or by grounding the frame through a very high resistance of not less than 200 ohms per volt generated by the machine.

(b) Must be wired under the same precautions as required by rules in Class C for wires carrying a current of the same volume and potential.

The leads or branch circuits should be designed to carry a current at least 50 per cent, greater than that required by the rated capacity of the motor, to provide for the inevitable overloading of the motor at times without corefusion the windows.

without overfusing the wires.

(c) The motor and resistance box must be protected by a cutout and controlled by a switch (see No. 17, a), said switch plainly indicating whether "on" or "off." Where one-fourth horse-power or less is used on low-tension circuits a single-pole switch will be accepted. The switch and rheostat must be located within sight of the motor, except in such cases where special permission to locate them elsewhere is given in writing by the Inspection Department having jurisdiction.

(d) Must have their rheostats or starting-boxes located as to conform to

the requirements of No. 4.

In connection with motors, the use of circuit-breakers, automatic starting-boxes, and automatic under-load switches is recommended, and they must be used when required.

(e) Must not be run in series-multiple or multiple-series, except on constant-potential systems, and then only by special permission of the

Inspection Department having jurisdiction.

(f) Must be covered with a water-proof cover when not in use, and, if deemed necessary by the Inspection Department having jurisdiction, must be inclosed in an approved case.

From the nature of the question, the decision as to what is an approved case must be left to the Inspection Department having jurisdiction to determine in each instance.

(g) Must, when combined with ceiling fans, be hung from insulated hooks, or else there must be an insulator interposed between the motor and its support.

(h) Must each be provided with a name-plate, giving the maker's name, the capacity in volts and amperes, and the normal speed, in revolutions, per minute.

9. Railway Power Plants.

(a) Must be equipped in each feed wire before it leaves the station with an approved automatic circuit-breaker (see No. 52), or other device, which will immediately cut off the current in case of an accidental ground. This device must be mounted on a fire-proof base, and in full view and reach of the attendant.

10. Storage or Primary Batteries.

(a) When current for light and power is taken from primary or secondary batteries, the same general regulations must be observed as applied to similar apparatus fed from dynamo generators developing the same difference of potential.

(b) Storage-battery rooms must be thoroughly ventilated.

(c) Special attention is directed to the rules for rooms where acid fumes

ist. (See No. 24, j and k.)
(d) All secondary batteries must be mounted on non-absorptive, noncombustible insulators, such as glass or thoroughly vitrified and glazed porcelain.

(e) The use of any metal liable to corrosion must be avoided in cell

connections of secondary batteries.

11. Transformers.

(For Construction Rules, see No. 62.)

(a) In central or sub-stations the transformers must be so placed that smoke from the burning out of the coils or the boiling over of the oil (where oil-filled cases are used) could do no harm.

CLASS B .- OUTSIDE WORK.

All Systems and Voltages.

12. Wires.

(a) Service wires must have an approved rubber insulator covering. (See No. 41.) Line wires, other than services, must have an approved weather-proof or rubber insulating covering (Nos. 41 and 44). All the wires must have an insulation equal to that of the conductors they confine.

(b) Must be so placed that moisture cannot form a cross connection between them, not less than a foot apart, and not in contact with any sub-

stance other than their insulating supports. Service blocks must be covered over their entire surface with at least two coats of water-proof paint.

(c) Must be at least 7 feet above the highest point of flat roofs, and at least 1 foot above the ridge of pitched roofs over which they pass or to

which they are attached

(d) Must be protected by dead insulated guard iron or wires from possibility of contact with other conducting wires or substances to which current may leak. Special precautions of this kind must be taken where sharp angles occur, or where any wires might possibly come in contact with electric light or power wires.

(e) Must be provided with petticoat insulators of glass or porcelain.

Porcelain knobs or cleats and rubber hooks will not be approved.

(f) Must be so spliced or joined as to be both mechanically and electrically secure without solder. The joints must then be soldered, to insure preservation, and covered with an insulation equal to that on the conductors.

All joints must be soldered, even if made with some form of patent splicing device. This ruling applies to joints and splices in all classes of

wiring covered by these rules.

(g) Must, where they enter buildings, have drip loops outside, and the holes through which the conductors pass must be bushed with non-combustible, non-absorptive insulating tubes slanting upward towards the inside.

(h) Telegraph, telephone, and similar wires must not be placed on the same cross-rm with electric light or power wires; and when placed on the same pole with such wires the distance between the two inside pins of each cross-arm must not be less than 26 inches.

(i) The metallic sheaths to cables must be permanently and effectively

connected to "earth,"

Trolley Wires.

(j) Must not be smaller than No. 0 B. & S. copper, or No. 4 B. & S. silicon bronze, and must readily stand the strain put upon them when in use.

(k) Must have a double insulation from the ground. In wooden-pole construction the pole will be considered as one insulation.

(1) Must be capable of being disconnected at the power plant, or of being divided into sections, so that, in case of fire on the railway route, the current may be shut off from the particular section and not interfere with the work of the firemen. This rule also applies to feeders.

(m) Must be safely protected against accidental contact where crossed

by other conductors.

Guard wires should be insulated from the ground, and should be electrically disconnected in sections of not more than 300 feet in length.

Ground Return Wires.

(n) For the diminution of electrolytic corrosion of underground metal work, ground return wires must be so arranged that the difference of potential between the grounded dynamo terminal and any point on the

return circuit will not exceed 25 volts.

It is suggested that the positive pole of the dynamo be connected to the trolley line, and that whenever pipes or other underground metal work are found to be electrically positive to the rails or surrounding earth that they be connected by conductors arranged so as to prevent, as far as possible, current flow from the pipes into the ground.

13. Transformers.

(For Construction Rules, see No. 62.)

(a) Must not be placed inside of any building, excepting central stations, unless by special permission of the Inspection Department having jurisdiction.

(b) Must not be attached to the outside walls of buildings, unless

separated therefrom by substantial supports.

13A. Grounding Low-potential Circuits.

The grounding of low-potential circuits under the following regulations is only allowed when so arranged that under normal conditions there will be no flow of current through the ground wire.

Direct=current 3=Wire Systems.

(a) Neutral wire may be grounded, and when grounded the following rules must be complied with:

1. Must be grounded at the central station on a metal plate buried in coke beneath permanent moisture level, and also through all available underground water- and gas-pipe systems.

2. In underground systems the neutral wire must also be grounded at each distributing box through the box.

3. In overhead systems the neutral wire must be grounded every 500

feet, as provided in Sections c, e, and f.

The Inspection Department having jurisdiction may require grounding,

they deem it necessary.

2-wire direct-current systems having no accessible neutral point are not

to be grounded.

Alternating Current Secondary Systems.

(b) The neutral point of transformers or the neutral wire of distributing systems may be grounded, and when grounded the following rules must be complied with:

1. Transformers feeding 2-wire systems must be grounded at the centre

of the secondary coils.

2. Transformers feeding systems with a neutral wire must have the neutral wire grounded at the transformer and at least every 250 feet beyond.

Inspection Department having jurisdiction may require grounding, if they deem it necessary.

Ground Connections.

(c) The ground wire in D. C. 3-wire systems must not at central stations be smaller than the neutral wire, and not smaller than No. 6 B. & S. elsewhere.

(d) The ground wire in A. C. systems must never be less than No. 6 B. & S., and must always have equal carrying capacity to the secondary lead of the transformer, or the combined leads where transformers are banked

(e) The ground wire must be kept outside of buildings, but may be directly attached to the building or pole. The wire must be carried in as nearly a straight line as possible, and kinks, coils, and sharp bends must

(f) The ground connections for central stations, transformer substations, and banks of transformers must be made through metal plates buried in coke below permanent moisture level, and connections should also be made to all available underground piping systems. For individual transformers and building services the ground connection may be made as

above, or may be made to water or other piping systems running into the buildings. This connection may be made by carrying the ground wire into the cellar and connecting on the street side of meters, main clocks, etc.

In connecting ground wires to piping systems, where possible, the wires should be soldered into one or more brass plugs, and the plugs forcibly screwed into a pipe-fitting, or, where the plugs are cast-iron, into a hole tapped to the pipe itself. For large stations, where connecting to underground pipes with bell and spigot joints, it is well to connect to several lengths, as the pipe joints may be of rather high resistance. Where such lengths, as the pipe joints may be of rather high resistance. Where such plugs cannot be used the surface of the pipe may be filed or scraped bright, the wire wound around it, and a strong clamp put over the wire and firmly bolted together.

Where ground plates are used a No. 16 copper plate, about 3 × 6 feet in size, with about 2 feet of crushed coke or charcoal about pea size both under and over it, would make a ground of sufficient capacity for a moderate-size station, and would probably answer for the ordinary sub-station or bank of transformers. For a large central station considerable more area might be necessary, depending upon the other unground connections available. The ground wire should be riveted to such a plate in a number available. The ground whre should be riveted to such a plate in a number of places, and soldered for its whole length. Perhaps even better than a copper plate is a cast-iron plate with projecting forks, the idea of the fork being to distribute the connection to the ground over a fairly broad area, and to give a large surface contact. The ground wire can probably best be connected to such a cast-iron plate by brass plugs screwed into the plate to which the wire is soldered. In all cases the joint between the plate and the ground wire should be thoroughly protected against corrosion by suitable painting with water-proof raint or some equivalent. suitable painting with water-proof paint or some equivalent.

CLASS C .- INSIDE WORK.

All Systems and Voltages.

GENERAL RULES .- ALL SYSTEMS AND VOLTAGES.

14. Wires.

(For Special Rules, see Nos. 18, 24, 32, 38, and 39.)

(a) Must not be of smaller size than No. 14 B. & S., except as allowed under Rules 24, t, and 45, b.
(b) Tie wires must have an insulation equal to that of the conductors

they confine.

(c) Must be so spliced or joined as to both mechanically and electrically secure without solder; they must be then soldered to insure preservation, and the joint covered with an insulation equal to that on the conductors.

Standard wires must be soldered before being fastened under clamps or

B. & S. copper wire, they will be soldered into lugs.
All joints must be soldered, even if made with some form of patent splicing device. This ruling applies to joints and splices in all classes of wiring covered by these rules.

(d) Must be separated from contact with walls, floors, timbers, or partitions through which they may pass by non-combustible, non-absorptive

insulating tubes, such as glass or porcelain.

Bushings must be long enough to bush the entire length of the hole in one continuous piece, or else the hole must first be bushed by a continuous water-proof tube, which may be a conductor, such as iron pipe; the tube then is to have a non-conducting bushing pushed in at each end, so as to keep the wire absolutely out of contact with the conducting pipe.

(e) Must be kept free from contact with gas-, water-, or other metallic, piping, or any other conductors or conducting material which they may cross, by some continuous and firmly-fixed non-conductor, creating a separation of at least 1 inch. Deviations from this rule may sometimes be

allowed by special permission. (f) Must be so placed in wet places that an air space will be left between conductors and pipes in crossing, and the former must be run in such a way that they cannot come in contact with the pipe accidentally. Wires should be run over, rather than under, pipes upon which moisture is likely to gather, or which, by leaking, might cause trouble on a circuit.

15. Underground Conductors.

(a) Must be protected, when brought into a building, against moisture and mechanical injury, and all combustible material must be kept removed from the immediate vicinity.

(b) Must not be so arranged as to shunt the current through a building

around any catch-box.

16. Carrying Capacity of Wires.

Below is a table which must be followed in placing interior conductors, showing the allowable carrying capacity of wires and cables of 98 per cent. conductivity, according to the standard adopted by the American Institute of Electrical Engineers.

B. & S. G.	Table A, rubber- covered wires. (See No. 41.) Amperes.	Table B, weather- proof wires. (See Nos. 42-44.) Amperes.	Circular mils.	Circular mils.	Table A, rubber- covered wires. (See No. 41.) Amperes.	Table B, weather- proof wires. (See Nos. 42–44.) Amperes.
18	3	5	1 624	200 000	200	300
16	6	8	2 583	300 000	270	400
14	12	16	4 107	400 000	330	500
12	17	23	6 530	500 000	390	590
10	24	32	10 380	600 000	450	680
8	33	46	16 510	700 000	500	760
6	46	65	26 250	800 000	550	840
5	54	77	33 100	900 000	600	920
4	65	92	41 740	1 000 000	650	1000
3	76	110	52 630	1 100 000	690	1080
2	90	131	66 370	1 200 000	730	1150
1	107	156	83 690	1 300 000	770	1220
0	127	185	105 500	1 400 000	810	1290
00	150	220	133 100	1 500 000	850	1360
000	177	262	167 800	1 600 000	890	1430
0000	210	312	211 600	1 700 000	930	1490
				1 800 000	970	1550
				1 900 000	1010	1610
				2 000 000	1050	1670

The lower limit is specified for rubber-covered wires to prevent gradual deterioration of the high insulations by the heat of the wires, but not from

fear of igniting the insulation. The question of drop is not taken into

consideration in the tables on page 711.

The carrying capacity of 16- and 18-wire is given, but no smaller than 14 is to be used, except as allowed under Rules 24, t, and 45, b.

17. Switches, Cutouts, Circuit-breakers, etc.

(For Construction Rules, see Nos. 51, 52, and 53.)

(a) Must, whenever called for, unless otherwise provided (for exceptions, see No. 8, c, and No. 22, c), be so arranged that the cutouts will protect, and the opening of the switch or circuit-breaker will disconnect, all of the wires,—that is, in a 2-wire system the 2 wires, and in a 3-wire system the 3 wires, must be protected by the cutout, and disconnected by the operation of the switch or circuit-breaker.

(b) Must not be placed in the immediate vicinity of easily-ignitible stuff or where exposed to inflammable gases or dust or to flyings of com-

bustible material.

(c) Must, when exposed to dampness, either be inclosed in a water-proof box or mounted on porcelain knobs.

CONSTANT=CURRENT SYSTEMS.

Principally Series Arc Lighting.

18. Wires.

(See, also, Nos. 14, 15, and 16.)

(a) Must have an approved rubber insulating covering. (See No. 41.)
(b) Must be arranged to enter and leave the building through an approved double-contact service switch (see No. 51), mounted in a noncombustible case, kept free from moisture, and easy of access to police or firemen. So-called "snap switches" must not be used on high-potential circuits.

(c) Must always be in plain sight, and never incased, except when required by the Inspection Department having jurisdiction.
(d) Must be supported on glass or porcelain insulators, which separate the wire at least 1 inch from the surface wired over, and must be kept rigidly at least 8 inches from each other, except within the structure of lamps, on hanger-boards, in cutout boxes, or like places, where a less

distance is necessary.

(e) Must, on side walls, be protected from mechanical injury by a substantial boxing retaining an air space of 1 inch around the conductors, closed at the top (the wires passing through bushed holes), and extending not less than 7 feet from the floor. When crossing floor-timbers in cellars or in rooms where they might be exposed to injury, wires must be attached by their insulating supports to the under side of a wooden strip not less than 1/2 inch in thickness.

19. Arc Lamps.

(For Construction Rules, see No. 57.)

(a) Must be carefully isolated from inflammable material.

(b) Must be provided at all times with a glass globe surrounding the are, securely fastened upon a closed base. No broken or cracked globes to

(c) Must be provided with a wire netting (having a mesh not exceeding 14 inches) around the globe and an approved spark arrester (see No. 58), when readily-inflammable material is in the vicinity of the lamps, to prevent escape of sparks, melted copper, or carbon. It is recommended that plain carbons, not copper-plated, be used for lamps in such places.

Are lamps, when used in places where they are exposed to flyings of

easily-inflammable material, should have the carbons inclosed completely

in a globe in such manner as to avoid the necessity for spark arresters.

For the present globe and spark arresters will not be required on socalled "inverted are" lamps, but this type of lamp must not be used where exposed to flyings of easily-inflammable materials.

(d) Where hanger-boards (see No. 56) are not used lamps must be hung from insulating supports other than their conductors.

20. Incandescent Lamps in Series Circuits.

(a) Must have the conductors installed as provided in No. 18, and each lamp must be provided with an automatic cutout.

(b) Must have each lamp suspended from a hanger-board by means of

rigid tube.

(c) No electro-magnetic device for switches and no system of multipleseries or series-multiple lighting will be approved.

(d) Under no circumstances can they be attached to gas fixtures.

CONSTANT=POTENTIAL SYSTEMS.

General Rules, all Voltages.

21. Automatic Cutouts (Fuses and Circuit-breakers).

(See No. 17, and for Construction, Nos. 52 and 53.)

(a) Must be placed on all service wires, either overhead or underground, as near as possible to the point where they enter the building and inside the walls, and arranged to cut off the entire current from the building. Where the switch required by Rule No. 22 is inside the building, the cutout required by this section must be placed so as to protect it.

(b) Must be placed at every point where a change is made in the size of wire (unless the cutout in the larger wire will protect the smaller). (See No. 16.)

(c) Must be in plain sight or inclosed in an approved box (see No. 54) and readily accessible. They must not be placed in the canopies or shells

of fixtures.

(d) Must be so placed that no set of incandescent lamps, whether grouped on one fixture or several fixtures or pendants, requiring more than 660 watts shall be dependent upon one cutout. Special permission may be given in writing by the Inspection Department having jurisdiction for departure from this rule in case of laws chandeling the contraction. for departure from this rule in case of large chandeliers, stage borders, and illuminated signs.

(e) Must be provided with fuses, the rated capacity of which does not exceed the allowable carrying capacity of the wire; and, when circuitbreakers are used, they must not be set more than about 30 per cent. above the allowable carrying capacity of the wire, unless a fusible cutout is also

installed in the circuit. (See No. 16.)

22. Switches.

(See No. 17, and for Construction, No. 51.)

(a) Must be placed on all service wires, either overhead or underground, in a readily-accessible place, as near as possible to the point where the wires enter the building, and arranged to cut off the entire current.

(b) Must always be placed in dry, accessible places, and be grouped, as far as possible. Knife switches must be so placed that gravity will tend to

open rather than close the switch.

(c) Must not be single-pole, except when the circuits which they control supply not more than six 16-candle-power lamps or their equivalent.

(d) Where flush switches are used, whether with conduit systems or not, the switches must be inclosed in boxes constructed of or lined with fire-resisting material. No push-buttons for bells, gas-lighting circuits, or the like shall be placed in the same wall-plate with switches controlling electric light or power wiring.

23. Electric Heaters.

(a) Must, if stationary, be placed in a safe situation, isolated from inflammable materials, and be treated as sources of heat.

(b) Must each have a cutout and *indicating* switch. (See No. 17, a.) (c) Must have the attachments of feed wires to the heaters in plain sight, easily accessible, and protected from interference, accidental or otherwise.

(d) The flexible conductors for portable apparatus, such as irons, etc.,

must have an approved insulating covering. (See No. 45, h.)

(e) Must each be provided with name-plate, giving the maker's name and the normal capacity in volts and amperes.

LOW-POTENTIAL SYSTEMS.

550 Volts or Less.

Any circuit attached to any machine, or combination of machines, which develops a difference of potential between any two wires of over 10 volts and less than 550 volts, shall be considered as a low-potential circuit, and as coming under this class, unless an approved transforming device is used, which cuts the difference of potential down to 10 volts or less. The primary circuit not to exceed a potential of 3500 volts.

24. Wires.

General Rules.

(See, also, Nos. 14, 15, and 16.)

(a) Must not be laid in plaster, cement, or similar finish.(b) Must never be fastened with staples.

(c) Must not be fished for any great distance, and only in places where the inspector can satisfy himself that the rules have been complied with.
(d) Twin wires must never be used, except in conduits or where flexi-

ble conductors are necessary.

(e) Must be protected on side walls from mechanical injury. When crossing floor-timbers in cellars or in rooms where they might be exposed to injury, wires must be attached by their insulating supports to the under side of a wooden strip not less than ½ inch in thickness and not less than 3 inches in width.

Suitable protection on side walls may be secured by a substantial boxing, retaining an air space of 1 inch around the conductor, closed at the top (the wires passing through bushed holes), and extending not less than 5 feet from the floor; or by an iron-armored or metal-sheathed insulating conduit sufficiently strong to withstand the strain it will be subjected to; or plain metal pipe lined with insulating tubing, which must extend ½ inch beyond the end of the metal tube.

The pipe must extend not less than 5 feet above the floor, and may extend through the floor in place of a floor bushing.

If iron pipes are used with alternating currents, the two or more wires of a circuit must be placed in the same conduit. In this case the insulation of each wire must be reinforced by a tough conduit tubing projecting beyond the ends of the iron pipe at least 2 inches.

(f) When run immediately under roofs, or in proximity to water tanks or pipes, will be considered as exposed to moisture.

Special Rules.

For Open Work:

In dry places:

(g) Must have an approved rubber or "slow-burning," water-proof insu-

(See Nos. 41 and 42.)

(h) Must be rigidly supported on non-combustible, non-absorptive insulators, which separate the wires from each other and from the surface wired over in accordance with following table:

Voltage. Difference from surface. Distance between wires. 1½ inch 0 to 225 2½ inches 225 to 550 inch inches

Rigid supporting requires, under ordinary conditions, where wiring along flat surfaces, supports at least every 4½ feet. If the wires are liable to be disturbed, the distance between supports should be shortened. In buildings of mill construction, mains of No. 8 B. & S. wire or over, where not liable to be disturbed, may be separated about 4 inches and run from

timber to timber,—not breaking around,—and may be supported at each

timber only.

This rule will not be interpreted to forbid the placing of the neutral of a 3-wire system in the centre of a 3-wire cleat, provided the outside wires are separated in accordance with table on page 714.

In damp places, such as breweries, sugar-houses, packing-houses, stables, dye-houses, paper or pulp mills, or buildings specially liable to moisture or acid or other fumes liable to injure the wires or their insulation, except where used for pendants:

(i) Must have an approved rubber insulating covering. (See No. 41.)

(j) Must be rigidly supported on non-combustible, non-absorptive insu-

lators, which separate the wire at least 1 inch from the surface wired over, and they must be kept apart at least 2½ inches.

Rigid supporting requires, under ordinary conditions, where wiring over flat surfaces, supports at least every 4½ feet. If the wires are liable to be disturbed the distance between supports should be shortened. In to be disturbed, the distance between supports should be shortened. In buildings of mill construction, mains of No. 8 B. & S. wire or over, where not liable to be disturbed, may be separated about 4 inches and run from timber to timber,—not breaking around,—and may be supported at each timber only.

(k) Must have no joints or splices.

For Molding Work:

(l) Must have approved rubber insulating covering. (See No. 41.)

(m) Must never be placed in molding in concealed or damp places.

For Conduit Work:

(n) Must have an approved rubber insulating covering. (See No. 41.) (o) Must not be drawn in until all mechanical work on the building has been, as far as possible, completed.

(p) Must, for alternating systems, have the two or more wires of a

circuit drawn in the same conduit.

It is advised that this be done for direct-current systems also, so that they may be changed to alternating systems at any time, induction troubles preventing such a change unless this construction is followed.

For Concealed "Knob and Tube" Work:

(q) Must have an approved rubber insulating covering. (See No. 41.) (r) Must be rigidly supported on non-combustible, non-absorptive insulators, which separate the wire at least 1 inch from the surface wired over, and must be kept at least 10 inches apart, and, when possible, should be run singly on separate timbers or studding.

Rigid supporting requires, under ordinary conditions, where wiring along flat surfaces, supports at least every 4½ feet. If the wires are liable to be disturbed, the distance between supports should be shortened.

(s) When, from the nature of the case, it is impossible to place concealed wiring on non-combustible insulating supports of glass or porce-lain, an approved armored cable with single or twin conductors (see No. 48) may be used where the difference of potential between wires is not over 300 volts, provided it is installed without joints between writes, and the cable armor properly enters all fittings and is rigidly secured in place; or, if the difference of potential between wires is not over 300 volts, and it wires are not exposed to moisture, they may be fished on the loop system if separately incased throughout in approved flexible tubing or conduits.

For Fixture Work:

(t) Must have an approved rubber insulating covering (see No. 46), and

shall not be less in size than No. 18 B. & S.

(u) Supply conductors, and especially the splices to fixture wires, must be kept clear of the grounded part of gas-pipes; and, where shells are used, the latter must be constructed in a manner affording sufficient area to allow this requirement.

(v) Must, when fixtures are wired outside, be so secured as not to be cut

or abraded by the pressure of the fastenings or motion of the fixture.

25. Interior Conduits.

(See, also, Nos. 24, n to p, and 49.)

The object of a tube or conduit is to facilitate the insertion or extraction of the conductors, to protect them from mechanical injury, and, as far as possible, from moisture. Tubes or conduits are to be considered merely as raceways, and are not to be relied upon for insulation between wire and wire, or between the wire and the ground.

(a) No conduit tube having an internal diameter of less than 54 inch shall be used. (If conduit is lined, measurement to be taken inside of

lining.

(b) Must be continuous from one junction box to another or to fixtures,

and the conduit tube must properly enter all fittings.

(c) Must be first installed as a complete conduit system, without the conductors.

(d) Must be equipped at every outlet with an approved outlet box.
(e) Metal conduits, where they enter junction boxes, and at all other outlets, etc., must be fitted with a capping of approved insulating material, fitted so as to protect wire from abrasion.

(f) Must have the metal of the conduit permanently and effectively

grounded.

26. Fixtures.

(See, also, No. 24, t to v.)

(a) Must, when supported from the gas-piping of a building, be insulated from the gas-pipe system by means of approved insulating joints (see No. 59) placed as close as possible to the ceiling.

It is recommended that the gas outlet pipe be protected above the insulating joint by a non-combustible, non-absorptive insulating tube, having a flange at the lower end where it comes in contact with the insulating joint; and that, where outlet tubes are used, they be of sufficient length to extend below the insulating joint, and that they be so secured that they will not be pushed back when the canopy is put in place. Where iron ceilings are used care must be taken to see that the canopy is thoroughly and permanently insulated from the ceiling.

(b) Must have all burs, or fins, removed before the conductors are

drawn into the fixture.

(c) The tendency to condensation within the pipes should be guarded

against by sealing the upper end of the fixture.

(d) No combination fixture in which the conductors are concealed in a space less than 1/4 inch between the inside pipe and the outside casing will be approved.

(e) Must be tested for "contacts" between conductors and fixture, for "short circuits," and for ground connections before it is connected to its

supply conductors.

(f) Ceiling blocks for fixtures should be made of insulating material; if not, the wires in passing through the plate must be surrounded with non-combustible, non-absorptive insulating material, such as glass or porcelain.

(g) Under no conditions shall there be a difference of potential of more than 300 volts between wires contained in or attached to the same fixture.

27. Sockets.

(For Construction Rules, see No. 55.)

(a) In rooms where inflammable gases may exist the incandescent lamp and socket must be inclosed in a vapor-tight globe and supported on a pipe hanger, wired with approved rubber-covered wire (see No. 41) soldered directly to the circuit.

(b) In damp or wet places, or over specially-inflammable stuff, water-

proof sockets must be used.

When water-proof sockets are used they should be hung by separatestranded, rubber-covered wires, not smaller than No. 14 B. & S., which should preferably be twisted together when the drop is over 3 feet. These wires should be soldered direct to the circuit wires, but supported independently of them.

28. Flexible Cord.

(a) Must have an approved installation and covering. (See No. 45.)(b) Must not be used where the difference of potential between the two wires is over 300 volts.

(c) Must not be used as a support for clusters.

(d) Must not be used except for pendants, wiring of fixtures, and portable lamps or motors.

(e) Must not be used in show windows.

(f) Must be protected by insulating bushings where the cord enters the socket.

(g) Must be so suspended that the entire weight of the socket and lamp will be borne by knots under the bushing in the socket, and above the point where the cord comes through the ceiling-block or rosette, in order that the strain may be taken from the joints and binding screws.

29. Arc Lights on Low-potential Circuits.

(a) Must have a cutout (see No. 17, a) for each lamp of each series of

lamps.

The branch conductors should have a carrying capacity about 50 per cent. in excess of the normal current required by the lamp, to provide for heavy current required when lamp is started or when carbons become stuck, without overfusing the wires.

(b) Must only be furnished with such resistances or regulators as are inclosed in non-combustible material, such resistances being treated as sources of heat. Incandescent lamps must not be used for resistance

(c) Must be supplied with globes and protected by spark arresters and wire netting around globe, as in the case of arc lights on high-potential circuits. (See Nos. 19 and 58.)

30. Economy Coils.

(a) Economy and compensator coils for arc lamps must be mounted on non-combustible, non-absorptive insulating supports, such as glass or porce-lain, allowing an air space of at least 1 inch between frame and support, and in general to be treated like sources of heat.

31. Decorative Series Lamps.

(a) Incandescent lamps run in series shall not be used for decorative purposes inside of buildings, except by special permission in writing from the Inspection Department having jurisdiction.

32. Car-wiring.

(a) Must be always run out of reach of the passengers, and must have an approved rubber insulating covering. (See No. 41.)

33. Car=houses.

(a) Must have the trolley wires securely supported on insulating hangers

(b) Must have the trolley hangers placed at such distance apart that in

case of a break in the trolley wire contact cannot be made with the floor.

(c) Must have cutout switch located at a proper place outside of the building, so that all trolley circuits in the building can be cut out at one point; and line circuit-breakers must be installed, so that when this cutout switch is open the trolley wire will be dead at all points within 100 feet of the building. The current must be cut out of the building whenever the same is not in use or the road not in operation.

(d) Must have all lamps and stationary motors installed in such a way that one main switch can control the whole of each installation,-lighting or power,-independently of main feeder-switch. No portable incandescent lamps or twin wire allowed, except that portable incandescent lamps may be used in the pits, connections to be made by two approved rubbercovered, flexible wires (see No. 41), properly protected against mechanical injury; the circuit to be controlled by a switch placed outside of the pit. (e) Must have all wiring and apparatus installed in accordance with

rules under Class C for constant-potential systems.

(f) Must not have any system of feeder distribution centring in the

building. (g) Must have the rails bonded at each joint with no less than No. 2 B. & S. annealed copper wire; also, a supplementary wire to be run for

each track. (h) Must not have cars left with trolley in electrical connection with

the trolley wire.

34. Lighting and Power from Railway Wires.

(a) Must not be permitted, under any pretense, in the same circuit with trolley wires with a ground return, except in electric railway cars, electric car houses, and their power stations; nor shall the same dynamo be used for both purposes.

HIGH-POTENTIAL SYSTEMS.

550 to 3500 Volts.

Any circuit attached to any machine, or combination of machines, which develops a difference of potential between any two wires of over 300 volts and less than 3500 volts, shall be considered as a high-potential circuit, and as coming under that class, unless an approved transforming device is used which cuts the difference of potential down to 300 volts or less.

35. Wires.

(See, also, Nos. 14, 15, and 16.)

(a) Must have an approved rubber insulating covering. (See No. 41.)
(b) Must be always in plain sight and never incased, except where required by the Inspection Department having jurisdiction.
(c) Must be rigidly supported on glass or porcelain insulators, which raise the wire at least 1 inch from the surface wired over, and must be kept apart at least 4 inches for voltages up to 750, and at least 8 inches for voltages over 750.

Rigid supporting requires, under ordinary conditions, where wiring along flat surfaces, supports at least about every 4½ feet. If the wires are unusually liable to be disturbed, the distance between supports should be

shortened.

In buildings of mill construction, mains of No. 8 B. & S. wire or over, where not liable to be disturbed, may be separated about 6 inches for voltages up to 750, and about 10 inches for voltages above 750, and run from timber to timber,—not breaking around,—and may be supported at

each timber only.

(d) Must be protected on side walls from mechanical injury by a substantial boxing, retaining an air space of 1 inch around the conductors, closed at the top (the wires passing through bushed holes), and extending not less than 7 feet from the floor. When crossing floor-timbers in cellars or in rooms where they might be exposed to injury, wires must be attached by their insulating supports to the under side of a wooden strip not less than 1/2 inch in thickness.

36. Transformers (when permitted inside buildings). (See No. 13.)

(For Construction Rules, see No. 62.)

(a) Must be located at a point as near as possible to that at which the

primary wires enter the building.

(b) Must be placed in an inclosure constructed of or lined with fire-resisting material; the inclosure to be used only for this purpose and to be kept securely locked, and access to the same allowed only to responsible persons.

(c) Must be effectually insulated from the ground, and the inclosure in which they are placed must be practically air-tight, except that it shall be thoroughly ventilated to the out-door air, if possible, through a chimney or flue. There should be at least 6 inches air space on all sides of the transformer.

37. Series Lamps.

(a) No system of multiple-series or series-multiple for light or power will be approved.

(b) Under no circumstances can lamps be attached to gas fixtures.

EXTRA HIGH-POTENTIAL SYSTEMS.

Over 3500 Volts.

Any circuit attached to any machine, or combination of machines, which develops a difference of potential between any two wires of over 3500 volts, shall be considered as an extra high-potential circuit, and as coming under that class, unless an approved transforming device is used, which cuts the difference of potential down to 3500 volts or less.

38. Primary Wires.

(a) Must not be brought into or over building, except power and substations.

39. Secondary Wires.

(a) Must be installed under rules for high-potential systems when their immediate primary wires carry a current of over 3500 volts, unless the primary wires are entirely underground within city and village limits.

The presence of wires carrying a current with a potential of over 3500 volts in the streets of cities, towns, and villages is considered to increase the fire hazard. Extra high-potential circuits are also objectionable in any location where telephone, telegraph, and similar circuits run in proximity to them. As the underwriters have no jurisdiction over streets and roads, they can only take this indirect way of discouraging such systems; but further, it is strongly urged that municipal authorities absolutely refuse to grant any franchise for right of way for overhead wires carrying a current of extra high-potential through streets or roads which are used to any great extent for public travel or for trunk-line, telephone, or telegraph circuits.

CLASS D.—FITTINGS, MATERIALS, AND DETAILS OF CON-STRUCTION.

All Systems and Voltages. Insulated Wires, Rules 40 to 48.

40. General Rules.

(a) Copper for insulated conductors must never vary in diameter so as to be more than $\frac{1}{1000}$ inch less than the specified size.

(b) Wires and cables of all kinds designed to meet the following specifi-

(b) Wires and cables of all kinds designed to meet the following specifications must be plainly tagged or marked as follows:

The maximum voltage at which the wire is designed to be used.
 The words "National Electrical Code Standard."

3. Name of the manufacturing company, and, if desired, trade-name of the wire.

4. Month and year when manufactured.

41. Rubber-covered.

(a) Copper for conductors must be thoroughly tinned.

Insulation for Voltages Between 0 and 600.

(b) Must be of rubber or other approved substance, and be of a thickness not less than that given in the following table for B. & S. gauge sizes:

From	18	to	16,	inclusive,	$\frac{1}{32}$ inch.
From	14	to	8,	inclusive,	$\frac{3}{64}$ inch.
From	7	to	2,	inclusive,	$\frac{1}{16}$ inch.
From	1	to	0,000,	inclusive,	$\frac{5}{64}$ inch.
From	0,000	to	500,000	C. M.,	$\frac{3}{32}$ inch.
From	500,000	to	1,000,000	C. M.,	$\frac{7}{64}$ inch.
Large	r than		1,000,000	C. M.,	1/2 inch.

Measurements of insulating wall are to be made at the thinnest portion of the dielectric.

(c) The completed coverings must show an insulation resistance of at least 100 megohms per mile during 30 days' immersion in water at 70° F.

(d) Each foot of the completed covering must show a dielectric strength sufficient to resist throughout 5 minutes the application of an electromotive force of 3000 volts per $\frac{1}{4\pi}$ inch thickness of insulation under the

following conditions:

The source of alternating electro-motive force shall be a transformer of at least 1 kilowatt capacity. The application of the electro-motive force shall first be made at 4000 volts for 5 minutes, and then the voltage increased by steps of not over 3000 volts, each held for 5 minutes, until the rupture of the insulation occurs. The tests for dielectric strength shall be made on a sample of wire which has been immersed for 72 hours in water, 1 foot of which is submerged in a conducting liquid held in a metal trough, one of the transformer terminals being connected to the wire and the other to the metal of the trough.

Insulation for Voltages Between 600 and 3500.

(e) The thickness of the insulating walls must not be less than those given in the following table for B. & S. gauge sizes:

From 14 to 1, inclusive, $\frac{3}{32}$ inch.

From 0 to 500,000 C. M., $\frac{32}{32}$ inch, covered by a tape or a braid. Larger than 500,000 C. M., $\frac{32}{32}$ inch, covered by a tape or a braid.

(f) The requirements as to insulation and break-down resistance for wires for low-potential systems shall apply, with the exception that an insulation resistance of not less than 300 megohms per mile shall be required.

(g) Wire for arc-light circuits exceeding 3500 volts potential shall have an insulating wall not less than $\frac{6}{2}$ inch in thickness, and shall withstand a break-down test of at least 30,000 volts, and have an insulation of at least 500 megohms per mile.

The tests on this wire to be made under the same conditions as for low-

potential wires.

Specifications for insulations for alternating currents exceeding 3500 volts have been considered, but on account of the somewhat complex conditions in such work it has so far been deemed inexpedient to specify

general insulations for this use.

(h) All of the above insulations must be protected by a substantial braided covering, properly saturated with a preservative compound, and sufficiently strong to withstand all the abrasion likely to be met with in practice, and sufficiently elastic to permit all wires smaller than No. 7 B. & S. gauge to be bent around a cylinder with twice the diameter of the wire, without injury to the braid.

42. Slow-burning, Weather-proof.

(a) The insulation shall consist of two coatings, the inner one to be fire-proof in character, the outer to be weather-proof. The inner fire-proof coating must comprise at least $\frac{e}{10}$ of the total thickness of the wall. The

completed covering must be of a thickness not less than that given in the following table for B. & S. gauge sizes:

> From 14 to 8, inclusive, 3 inch. 7 to From 2, inclusive, $\frac{1}{16}$ inch. From 2 to 0,000, inclusive, $\frac{5}{64}$ inch. 0,000 to 500,000 C. M., $\frac{3}{32}$ inch. From From 500,000 to 1,000,000 C. M., $\frac{7}{64}$ inch. 1,000,000 C. M., Larger than

Measurements of insulating wall are to be made at the thinnest portion of the dielectric.

(b) The inner fire-proof coating shall be layers of cotton or other thread, the outer one of which must be braided. All the interstices of these layers are to be filled with the fire-proofing compound. This is to be material whose solid constituent is not susceptible to moisture, and which will not burn even when ground in an oxidizable oil, making a compound which, while proof against fire and moisture, at the same time has considerable elasticity, and which, when dry, will suffer no change at a temperature of 250° F., and which will not burn at even higher temperature.

(c) The weather-proof coating shall be a stout braid thoroughly satu-

rated with a dense, moisture-proof compound thoroughly slicked down, applied in such manner as to drive any atmospheric moisture from the

cotton braiding, thereby securing a covering to a greater degree water-proof and of high insulating power. This compound to retain its elasticity at zero Fahrenheit, and not to drip at 160° F. This wire is not as burnable as the old "weather-proof," nor as subject to softening under heat, but still is able to repel the ordinary amount of moisture found in-doors. It would not usually be used for outside work.

43. Slow-burning.

(a) The insulation shall be the same as the "slow-burning, weatherproof," except that the outer braiding shall be impregnated with a fireproofing compound similar to that required for the interior layers, and with the outer surface finished smooth and hard.

This "slow-burning" wire shall only be used with special permission of

the Inspection Department having jurisdiction.

This is practically the old "Underwriters" insulation. It is specially useful in hot, dry places, where ordinary insulations would perish; also where wires are bunched, as on the back of a large switchboard or in a wire tower, so that the accumulation of rubber or weather-proof insulation would result in an objectionably large mass of highly-inflammable restriction. material.

Its use is restricted, as its insulating qualities are not high and are

damaged by moisture.

44. Weather-proof.

(a) The insulating covering shall consist of at least 3 braids thoroughly impregnated with a dense moisture repellent, which will not drip at a temperature lower than 180° F. The thickness of insulation shall be not less than that of "slow-burning, weather-proof." The outer surface shall be thoroughly slicked down.

This wire is for out-door use, where moisture is certain and where fire-

proof qualities are not necessary.

45. Flexible Cord.

(a) Must be made of stranded copper conductors, each strand to be not larger than No. 26 or smaller than No. 30 B. & S. gauge, and each stranded conductor must be covered by an approved insulation and protected from mechanical injury by a tough, braided outer covering.

For Pendent Lamps:

In this class is to be included all flexible cord which under usual conditions hangs freely in air, and which is not likely to be moved sufficiently to come in contact with surrounding objects.

(b) Each stranded conductor must have a carrying capacity equivalent

to not less than a No. 18 B. & S. gauge wire.

(c) The covering of each stranded conductor must be made up as follows:

 A tight, close wind of fine cotton.
 The insulation proper, which shall be either water-proof or slowburning.

An outer cover of silk or cotton.

The wind of cotton tends to prevent a broken strand puncturing the insulation and causing a short circuit. It also keeps the rubber from

corroding the copper.

(d) Water-proof insulation must be solid, at least $\frac{1}{32}$ inch thick, and must show an insulation resistance of 50 megohms per mile throughout 2 weeks' immersion in water at 70° F., and stand the test prescribed for

low-tension wires as far as they apply.

(e) Slow-burning insulation must be at least $\frac{1}{32}$ inch in thickness, and composed of substantial, elastic, slow-burning materials, which will suffer no damage at a temperature of 250° F.

(f) The outer protecting braiding should be so put on and sealed in place that when cut it will not fray out, and where cotton is used it should be impregnated with a flame-proof paint, which will not have an injurious effect on the insulation.

For Portables:

In this class is included all cord used on portable lamps, small portable

motors, etc.

(g) Flexible cord for portable use must have water-proof insulation, as required in Section d for pendent cord, and in addition be provided with a reinforcing cover especially designed to withstand the abrasion it will be subject to in the uses to which it is to be put.

For Portable Heating Apparatus:

(h) Must be made up as follows:

1. A tight, close wind of fine cotton.

2. A thin layer of rubber about $\frac{1}{100}$ inch thick, or other cementing

3. A layer of asbestos insulation at least $\frac{3}{64}$ inch thick.

4. A stout braid of cotton.

5. An outer reinforcing cover especially designed to withstand abrasion. This cord is in no sense water-proof, the thin layer of rubber being specified in order that it may serve merely as a seal to help hold in place the fine cotton and asbestos, and it should be so put on as to accomplish

this.

46. Fixture Wire.

(a) Must have a solid insulation, with a slow-burning, tough, outer covering, the whole to be $\frac{1}{32}$ inch in thickness, and show an insulation resistance between conductors, and between either conductor and the ground, of at least 1 megohm per mile, after 1 week's submersion in water at 70° F., and after 3 minutes' electrification with 550 volts.

47. Conduit Wire.

Must comply with the following specifications:

(a) For metal conduits, having a lining of insulating material, single wires must comply with No. 41, and all duplex, twin, and concentric conductors must comply with No. 41, and must also have each conductor separately braided or taped, and a substantial braid covering the whole.

(b) For unlined metal conduits, conductors must conform to the specifications given for lined conduits, and in addition have a second outer fibrous covering at least $\frac{1}{3^2}$ inch in thickness, and sufficiently tenacious to withstand the abrasion of being hauled through the metal conduit.

The braid required around each conductor in duplex, twin, and concentric cables is to hold the rubber insulation in place and prevent

jamming and flattening.

48. Armored Cable.

(a) The armor of such cables must be at least equal in thickness and of equal strength to resist penetration by nails, etc., as the armor of metal

covering of metal conduits. (See No. 49, b.)

(b) The conductors in same—single wire or twin conductors—must have an insulating covering as required by No. 41, any filler used to secure a round exterior must be impregnated with a moisture repellent, and the whole bunch of conductors and fillers must have a separate exterior covering of insulating material at least $\frac{1}{32}$ inch in thickness, conforming to the insulation standard given in No. 41, and covered with a substantial braid.

Very reliable insulation is specified, as such cables are liable to hard usage, and in part of their length may be subject to moisture, while they may not be easily removable, so that a breakdown of insulation is likely

to be expensive.

49. Interior Conduits.

(For Wiring Rules, see Nos. 24 and 25.)

(a) Each length of conduit, whether insulated or uninsulated, must have the maker's name or initials stamped in the metal or attached thereto in a satisfactory manner, so that the inspectors can readily see the same.

Metal Conduits with Lining of Insulating Material.

(b) The metal covering or pipe must be equal in strength to the ordinary commercial forms of gas-pipe of the same size, and its thickness must be not less than that of standard gas-pipe, as shown by the following table:

Size, in inches.	Thickness of wall, in inches.	Size, in inches.	Thickness of wall, in inches.
1/2	.109	$1\frac{1}{4}$.140
1/2 5/8	.111	$1\frac{1}{2}$.145
3/4	.113	2	.154
1 1	.134		

An allowance of $\frac{2}{100}$ inch for variation in manufacturing and loss of

thickness by cleaning will be permitted.

(c) Must not be seriously affected externally by burning out a wire inside the tube when the iron pipe is connected to one side of the circuit.

(d) Must have the insulating lining firmly secured to the pipe.
(e) The insulating lining must not crack or break when a length of the conduit is uniformly bent at temperature of 212° F. to an angle of 90°, with a curve having a radius of 15 inches for pipes of 1 inch and less, and 15 times the diameter of pipe for larger pipes.

(f) The insulating lining must not soften injuriously at a temperature below 212° F., and must leave water in which it is boiled practically

neutral.

(g) The insulating lining must be at least $\frac{1}{32}$ inch in thickness; and the materials of which it is composed must be of such a nature as will not have a deteriorating effect on the insulation of the conductor, and be sufficiently tough and tenacious to withstand the abrasion test of drawing long lengths of conductors in and out of same.

(h) The insulating lining must not be mechanically weak after 3 days' submersion in water, and when removed from the pipe entire must not absorb more than 10 per cent. of its weight of water during 100 hours of

submersion.

(i) All elbows or bends must be so made that the conduit or lining of same will not be injured. The radius of the curve of the inner edge of any elbow not to be less than 3½ inches. Must have not more than the equivalent of 4 quarter-bends from outlet to outlet, the bends at the outlets not being counted.

Unlined Metal Conduits.

(j) Plain iron or steel pipes of equal thickness and strengths specified for lined conduits in No. 49, b, may be used as conduits, provided their in-

terior surfaces are smooth and free from burs; pipe to be galvanized, or the interior surfaces coated or enamelled to prevent oxidation with some substance which will not soften, so as to become sticky and prevent wire

from being withdrawn from the pipe.

(k) All elbows or bends must be so made that the conduit will not be injured. The radius of the curve of the inner edge of any elbow not to be less than 3% inches. Must have not more than the equivalent of 4 quarter-bends from outlet to outlet, the bends at the outlet not being counted.

50. Wooden Moldings.

(For Wiring Rules, see No. 24.)

(a) Must have, both outside and inside, at least two coats of water-proof

paint, or be impregnated with a moisture repellent.

(b) Must be made of two pieces, a backing and capping, so constructed as to thoroughly incase the wire, and provide a ½-inch tongue between the conductors, and a solid backing, which, under grooves, shall not be less than 3% inch in thickness, and must afford suitable protection from abrasion.

It is recommended that only hardwood molding be used.

51. Switches.

(See Nos. 17 and 22.)

(a) Must be mounted on non-combustible, non-absorptive insulating bases, such as slate or porcelain.

(b) Must have carrying capacity sufficient to prevent undue heating.
(c) Must, when used for service switches, indicate, on inspection, whether the current be "on" or "off."

(d) Must be plainly marked, where it will always be visible, with the name of the maker and the current and voltage for which the switch is designed.

(e) Must, for constant-potential systems, operate successfully at 50 per cent. overload in amperes, with 25 per cent. excess voltage under the most severe conditions they are liable to meet with in practice.

(f) Must, for constant-potential systems, have a firm and secure contact; must make and break readily, and not stop when motion has once

been imparted by the handle.

(g) Must, for constant-current systems, close the main circuit and disconnect the branch wires when turned "off;" must be so constructed that they shall be automatic in action, not stopping between points when started, and must prevent an arc between the points under all circumstances. They must indicate, upon inspection, whether the current be "on" or "off." stances.

52. Cutouts and Circuit-breakers.

(For Installation Rules, see Nos. 17 and 21.)

(a) Must be supported on bases of non-combustible, non-absorptive insulating material.

(b) Cutouts must be provided with covers, when not arranged in approved cabinets, so as to obviate any danger of the melted fuse metal coming in contact with any substance which might be ignited thereby.

(c) Cutouts must operate successfully, under the most severe conditions they are liable to meet with in practice, on short circuits with fuses rated at 50 per cent. above, and with a voltage 25 per cent. above the current and voltage for which they are designed.

(d) Circuit-breakers must operate successfully, under the most severe conditions they are liable to meet with in practice, on short circuits when set at 50 per cent. above the current, and with a voltage 25 per cent. above

that for which they are designed.

(e) Must be plainly marked, where it will always be visible, with the name of the maker and current and voltage for which the device is designed.

53. Fuses.

(For Installation Rules, see Nos. 17 and 21.)

(a) Must have contact surfaces or tips of harder metal having perfect electrical connection with the fusible part of the strip.

(b) Must be stamped with about 80 per cent, of the maximum current

they can carry indefinitely, thus allowing about 25 per cent. overload before fuse melts.

With naked, open fuses of ordinary shapes and not over 500 amperes capacity, the *maximum* current which will melt them in about 5 minutes may be safely taken as the melting-point, as the fuse practically reaches its maximum temperature in this time. With larger fuses a longer time is necessary.

Inclosed fuses, where the fuse is often in contact with substances having good conductivity to heat and often of considerable volume, require a much longer time to reach a maximum temperature, on account of the

surrounding material, which heats up slowly.

These data are given to facilitate testing.

(c) Fuse terminals must be stamped with the maker's name, initials, or some known trade-mark.

54. Cutout Cabinets.

(a) Must be so constructed, and cutouts so arranged, as to obviate any danger of the melted fuse metal coming in contact with any substance

which might be ignited thereby.

A suitable box can be made of marble, slate, or wood, strongly put together, the door to close against a rabbet, so as to be perfectly dust-tight; and it should be hung on strong hinges and held closed by a strong hook or catch. If the box is wood, the inside should be lined with sheets of asbestos-board about \(\frac{1}{16} \) inch in thickness, neatly put on and firmly secured in place by shellac and tacks. The wire should enter through holes bushed with porcelain bushings; the bushings tightly fitting the holes in the box, and the wires tightly fitting the bushings (using tape to build up the wire, if necessary), so as to keep out the dust.

55. Sockets.

(See No. 27.)

Sockets of all kinds, including wall receptacles, must be constructed in accordance with the following specifications:

(a) Standard Sizes.—The standard lamp socket shall be suitable for use on any voltage not exceeding 250, and with any size lamp up to 50 candle-power. For lamps larger than 50 candle-power a standard keyless socket may be used, or, if a key is required, a special socket designed for the current to be used must be made. Any special sockets must follow the general spirit of these specifications.

(b) Marking.—The standard socket must be plainly marked 50 candlepower, 250 volts, and with either the manufacturer's name or registered trade-mark. Special large sockets must be marked with the current and

voltage for which they are designed.

(c) Shell.—Metal used for shells must be moderately hard, but not hard enough to be brittle or so soft as to be easily dented or knocked out of place. Brass shells must be at least 0.013 inch in thickness, and shells of any other material must be thick enough to give the same stiffness and strength of brass.

(d) Lining.—The inside of the shells must be lined with insulating material, which shall absolutely prevent the shell from becoming a part of the circuit, even though the wires inside the socket should start from

their position under binding screws.

The material used for lining must be at least $\frac{3}{32}$ inch in thickness, and must be tough and tenacious. It must not be injuriously affected by the heat from the largest lamp permitted in the socket, and must leave the water in which it is boiled practically neutral. It must be so firmly secured to the shell that it will not fall out with ordinary handling of the socket. It is preferable to have the lining in one piece.

(e) Cap.—Caps, when of sheet brass, must be at least 0.013 inch in thickness, and when cast or made of other metals must be of equivalent strength. The inlet piece, except for special sockets, must be tapped and threaded for ordinary ½-inch pipe. It must contain sufficient metal for a full, strong thread, and, when not of the same piece as the cap, must be joined to it in a way to give the strength of a single piece.

There must be sufficient room in the cap to enable the ordinary wireman to easily and quickly make a knot in the cord, and push it into place in cap without crowding. All parts of the cap upon which the knot is

likely to bear must be smooth and well insulated.

(f) Frame and Screws.—The frame holding moving parts must be sufficiently heavy to give ample strength and stiffness.

Brass pieces containing screw threads must be at least 0.06 of an inch

in thickness.

Binding-post screws must not be smaller than No. 5 wire, and about 40 threads per inch.

(g) **Spacing.**—Points of opposite polarity must everywhere be kept not less than $\frac{1}{64}$ inch apart unless separated by a reliable insulation.

- (h) Connections.—The connecting points for the flexible cord must be made to very securely grip a No. 16 or 18 B. & S. conductor. A turned-up lug, arranged so that the cord may be gripped between the screw and the lug in such a way that it cannot possibly come out, is strongly advised.
- (i) Lamp-holder.—The socket must firmly hold the lamp in place, so that it cannot be easily jarred out, and must provide a contact good enough to prevent undue heating with maximum current allowed. The holding-pieces, springs, and the like, if a part of the circuit, must not be sufficiently exposed to allow them to be brought in contact with anything outside of lamp and socket.
- (j) Base.—The inside parts of the socket, which are of insulating material (except the lining), must be made of porcelain.
- (k) Key.—The socket key-handle must be of such a material that it will not soften from the heat of a 50 candle-power lamp hanging downward, in air at 70° F., from the socket, and must be securely, but not necessarily rigidly, attached to the metal spindle it is designed to turn.
- (t) Sealing.—All screws in porcelain pieces, which can be firmly sealed in place, must be so sealed by a water-proof compound which will not melt below 200° F.
- (m) Putting Together.—The socket must, as a whole, be so put together that it will not rattle to pieces. Bayonet joints or equivalent are recommended.
- (n) **Test.**—The socket, when slowly turned "on and off" at the rate of about 2 or 3 times per minute, must "make and break" the circuit 6000 times before failing when carrying a load of 1 ampere at 220 volts.
- (0) **Keyless Sockets.**—Keyless sockets of all kinds must comply with requirements for key sockets as far as they apply.
- (p) Sockets of Insulating Materials.—Sockets made of porcelain or other insulating material must conform to the above requirements as far as they apply, and all parts must be strong enough to withstand a moderate amount of hard usage without breaking.
- (q) Inlet Bushing.—When the socket is not attached to fixtures the threaded inlet must be provided with a strong insulating bushing having a smooth hole of at least $\frac{1}{6}$ inch in diameter. The corners of the bushing must be rounded and all inside fins removed, so that in no place will the cord be subjected to the cutting or wearing action of a sharp edge.

56. Hanger-boards.

(a) Hanger-boards must be so constructed that all wires and current-carrying devices thereon shall be exposed to view and thoroughly insulated by being mounted on a non-combustible, non-absorptive insulating substance. All switches attached to the same must be so constructed that they shall be automatic in their action, cutting off both poles to the lamp,

not stopping between points when started, and preventing an arc between points under all circumstances.

57. Arc Lamps.

(For Installation Rules, see No. 19.)

(a) Must be provided with reliable stops to prevent carbons from falling out in case the clamps become loose.

(b) Must be carefully insulated from the circuit in all their exposed

parts.

(c) Must, for constant-current systems, be provided with an approved hand switch, also an automatic switch that will shunt the current around

the carbons should they fail to feed properly.

The hand switch to be approved, if placed anywhere except on the lamp itself, must comply with requirements for switches on hanger-boards,

as laid down in No. 56.

58. Spark Arresters.

(See No. 19, c.)

(a) Spark arresters must so close the upper orifice of the globe that it will be impossible for any sparks thrown off by the carbons to escape.

59. Insulating Joints.

(See No. 26, a.)

(a) Must be entirely made of material that will resist the action of illuminating gases and will not give way or soften under the heat of an ordinary gas-fiame or leak under a moderate pressure. They shall be so arranged that a deposit of moisture will not destroy the insulating effect, and shall have an insulating resistance of at least 250,000 ohms between the gas-pipe attachments, and be sufficiently strong to resist the strain they will be fields to be subjected to in being installed. will be liable to be subjected to in being installed.

(b) Insulating joints having soft rubber in their construction will not

be approved.

60. Resistance Boxes and Equalizers.

(For Installation Rules, see No. 4.)

(a) Must be equipped with metal or with other non-combustible frames.

The word "frame" in this section relates to the entire case and surroundings of the rheostat, and not alone to the upholding supports.

61. Reactive Coils and Condensers.

(a) Reactive coils must be made of non-combustible material, mounted

on non-combustible bases, and treated, in general, like sources of heat.

(b) Condensers must be treated like apparatus operating with equivalent voltage and currents. They must have non-combustible cases and supports, and must be isolated from all combustible materials, and, in general, treated like sources of heat.

62. Transformers.

(For Installation Rules, see Nos. 11, 13, and 33.)

(a) Must not be placed in any but metallic or other non-combustible cases.

(b) Must be constructed to comply with the following tests:

1. Shall be run for 8 consecutive hours at a full load in watts under conditions of service, and at the end of that time the rise in temperature, as measured by the increase of resistance of the primary coll, shall not exceed 135° F.

2. The insulation of transformers, when heated, shall withstand continuously for 5 minutes a difference of potential of 10,000 volts (alternating) between primary and secondary coils and core, and between the primary coils and core and a no-load "run" at double voltage for 30 minutes.

63. Lightning Arresters.

(For Installation Rules, see No. 5.)

(a) Must be mounted on non-combustible bases, and must be so constructed as not to maintain an arc after the discharge has passed, and must have no moving parts.

CLASS E.-MISCELLANEOUS.

64. Signalling Systems (governing wiring for telephone, telegraph, district messenger, and call-bell circuits, fire and burglar alarms, and all similar systems).

(a) Outside wires should be run in underground ducts or strung on poles, and, as far as possible, kept off of buildings, and must not be placed on the same cross-arm with electric light or power wires.

(b) When outside wires are run on same pole with electric light or power wires the distance between the two inside pins of each cross-arm

must not be less than 26 inches.

(c) All aerial conductors and underground conductors which are directly connected to aerial wires must be provided with some approved protective device, which shall be located as near their point of entrance to the building as possible, and not less than 6 inches from curtains or other inflammable material.

(d) If the protector is placed inside of building, wires—from outside

supports to binding-posts of protector—shall comply with the following

requirements:

1. Must be of copper, and not smaller than No. 16 B. & S. gauge. 2. Must have an approved rubber insulating covering. (See No. 41.)

3. Must have drip loops in each wire immediately outside the building. 4. Must enter buildings through separate holes sloping upward from the outside. When practicable, holes to be bushed with non-absorptive, noncombustible insulating tubes extending through their entire length. Where tubing is not practicable, the wires shall be wrapped with two layers of insulating tape.

5. Must be supported on porcelain insulators, so that they will not come

in contact with anything other than their designed supports.

6. A separation between wires of at least 2½ inches must be main-

In case of crosses, these wires may become a part of a high-voltage circuit, so that similar care to that given high-voltage circuits is needed in placing them. Reliable porcelain bushings at the entrance holes are desirable, and are only waived under adverse conditions, because the state of the art in this type of wiring makes an absolute requirement inadvisable.

(e) The ground wire of the protective device shall be run in accord-

ance with the following requirements:

1. Shall be of copper, and not smaller than No. 16 B. & S.

2. Must have an approved rubber insulating covering. (See No. 41.)

3. Shall run in as straight a line as possible to a good, permanent ground, to be made by connecting to water- or gas-pipe, preferably water-pipe. If gas-pipe is used, the connection, in all cases, must be made between the meter and service pipes. In the absence of other good ground, the ground shall be made by means of a metallic plate or bunch of wires buried in permanently moist earth.

4. Shall be kept at least 3 inches from all other conductors, and supported on porcelain insulators, so as not to come in contact with anything

other than its designated supports.

In attaching a ground wire to a pipe it is often difficult to make a thoroughly-reliable solder joint. It is better, therefore, where possible, to carefully solder the wire to a brass plug, which may then be firmly screwed into a pipe fitting.

Where such joints are made underground they should be thoroughly

painted and taped to prevent corrosion.

(f) The protector, to be approved, must comply with the following

requirements:

1. Must be mounted on non-combustible, non-absorptive insulating bases, so designed that when the protector is in place all parts which may be alive will be thoroughly insulated from the wall holding the protector.

2. Must have the following parts: A lightning arrester which will operate with a difference of potential between wires of not over 500 volts, and so arranged that the chance of accidental grounding is reduced to a minimum.

A fuse designed to open the circuit in case the wires become crossed with light or power circuits. The fuse must be able to open the circuit without arcing or serious flashing when crossed with any ordinary commercial light or power circuit.

A heat coil which will operate before a sneak current can damage the

instrument the protector is guarding.

The heat coil is designed to warm up and melt out with a current large enough to endanger the instruments, if continued for a long time, but so small that it would not blow the fuses ordinarily found necessary for such instruments. These smaller currents are often called "sneak" currents.

3. The fuses must be so placed as to protect the arrester and heat coils, and the protector terminals must be plainly marked "line," "instrument," "ground."

(g) Wires beyond the protector, except where bunched, must be neatly arranged and securely fastened in place in any convenient, workmanlike manner. They must not come nearer than 6 inches to any electric light or power wire in the building, unless incased in approved tubing so

secured as to prevent its slipping out of place.

The wires would ordinarily be insulated, but the kind of insulation is not specified, as the protector is relied upon to stop all dangerous currents. Porcelain tubing or circular loom conduit may be used for incasing wires

where required as above.

(h) Wires connected with outside circuits, where bunched together within any building, or inside wires, where laid in conduits or ducts with electric light or power wires, must have fire-resisting coverings, or else must be inclosed in an air-tight tube or duct.

It is feared that if a burnable insulation were used a chance spark might ignite it and cause a serious fire, for many installations contain a

large amount of very readily-burnable matter.

65. Electric Gas-lighting.

Where electric gas-lighting is to be used on the same fixture with the electric light:

(a) No part of the gas-piping or fixture shall be in electric connection

with the gas-lighting circuit.

(b) The wires used with the fixtures must have a non-inflammable insulation, or, where concealed between the pipe and shell of the fixture, the insulation must be such as required for fixture wiring for the electric light.

(c) The whole installation must test free from "grounds."
(d) The two installations must test perfectly free from connection with each other.

66. Insulation Resistance.

The wiring in any building must test free from grounds,—i.e., the complete installation must have an insulation between conductors and between all conductors and the ground (not including attachments, sockets, receptacles, etc.) of not less than the following:

Up to	5 amperes	4,000,000 ohms.
Up to	10 amperes	2,000,000 ohms.
Up to	25 amperes	800,000 ohms.
Up to	50 amperes	400,000 ohms.
Up to	100 amperes	200,000 ohms.
Up to	200 amperes	100,000 ohms.
Up to	400 amperes	25,000 ohms.
Up to	800 amperes	25,000 ohms.
Up to	1600 amperes	12,500 ohms.

All cutouts and safety devices in place in the preceding. Where lamp sockets, receptacles, and electroliers, etc., are connected, one-half of the preceding insulation will be required.

67. Soldering Fluid.

(a) The following formula for soldering fluid is suggested:

Saturated solution of zinc chloride	
Alcohol	4 parts.
Glycerine	1 part.

CLASS F .- MARINE WORK.

68. Generators.

(a) Must be located in a dry place.

(b) Must have their frames insulated from their bed-plates.

(c) Must each be provided with a water-proof cover.

(d) Must each be provided with a name-plate, giving the maker's name, the capacity in voltage and amperes, and normal speed in revolutions per minute.

69. Wires.

(a) Must have an approved insulating covering.

The insulation for all conductors, except for portables, to be approved, must be at least ½ inch in thickness and be covered with a substantial water-proof and flame-proof braid. The physical characteristics shall not be affected by any change in temperature up to 200° F. After 2 weeks' submersion in salt water at 70° F. it must show an insulation resistance of 1 megohm per mile after 3 minutes' electrification with 550 volts.

(b) Must have no single wire larger than No. 12 B. & S. Wires to be

stranded when greater carrying capacity is required. No single solid wire smaller than No. 14 B. & S., except in fixture wiring, to be used.

Stranded wires must be soldered before being fastened under clamps or binding screws, and when they have a conductivity greater than No. 10 B. & S. copper wire they must be soldered into lugs.

(c) Must be supported in approved molding, except at switchboards

and portables,

Special permission may be given for deviation from this rule in dynamo-

(d) Must be bushed with hard-rubber tubing $\frac{1}{8}$ inch in thickness when

passing through beams and non-water-tight bulkheads.

(e) Must have, when passing through water-tight bulkheads and through all decks, a metallic stuffing-tube lined with hard rubber. In case of deck tubes they shall be boxed near deck to prevent mechanical

injury. (f) Splices or taps in conductors must be avoided as far as possible. Where it is necessary to make them they must be so spliced or joined as to be both mechanically and electrically secure without solder. They must then be soldered to insure preservation, covered with an insulating compound equal to the insulation of the wire, and further protected by a water-proof tape. The joint must then be coated or painted with a waterproof compound.

70. Portable Conductors,

(a) Must be made of two stranded conductors, each having a carrying capacity equivalent to not less than No. 14 B. & S. wire, and each covered

with an approved insulation and covering.

Where not exposed to moisture or severe mechanical injury, each stranded conductor must have a solid insulation at least $\frac{1}{3}$ inch in thickness, and must show an insulation resistance between conductors, and between either conductor and the ground, of at least 1 megohm per mile after 1 week's submersion in water at 70° F. and after 3 minutes' electrification with 590 volts, and be protected by a slow-burning, tough-braided, outer covering.

Where exposed to moisture and mechanical injury—as for use on decks, holds, and fire-rooms—each stranded conductor shall have a solid insulation, to be approved, of at least 3½ inch in thickness and protected by a tough braid. The two conductors shall then be stranded together, using a jute filling. The whole shall then be covered with a layer of flax, either woven or braided, at least 3½ inch in thickness, and treated with a non-inflammable, water-proof compound. After 1 week's submersion in water at 70° F., at 550 volts and a 3 minutes' electrification, must show an insulation between the two conductors, or between either conductor and the ground, of 1 megohm per mile.

71. Bell or Other Wires.

(a) Shall never run in same duct with lighting or power wires

72. Table of Capacity of Wires.

B. & S. G.	Area, actual C. M.	Number of strands.	Size of strands, B. & S. G.	Amperes.
19	1 288			
18	1 624			3
17	2 048			
16	2 583			6
15	3 257			
14	4 107			12
12	6 530			17
	9 016	7	19	21
	11 368	7	18	25
	14 336	7	17	30
	18 081	7	16	35
	22 799	7 -	15	40
	30 856	19	18	50
	38 912	19	17	60
	49 077	19	16	70
	60 088	37	18	85
	75 776	37	17	100
	99 064	61	18	120
	124 928	61	17	145
	157 563	61	16	170
	198 677	61	15	200
	250 527	61	14	235
	296 387	91	15	270
	373 737	91	14	320
••••••	413 639	127	15	340

When greater conducting area than that of a single wire is required, the conductor shall be stranded in a series of 7, 19, 37, 61, 91, or 127 wires, as may be required, the strand consisting of 1 central wire, the remainder laid around it concentrically, each layer to be twisted in the opposite direction from the preceding.

73. Switchboards.

(a) Must be made of non-combustible, non-absorptive insulating material, such as marble or slate.

(b) Must be kept free from moisture, and must be located so as to be accessible from all sides.

(c) Must have a main switch, main cutout, and ammeter for each generator.

Must also have a voltmeter and ground detector.

(d) Must have a cutout and switch for each side of each circuit leading from board.

74. Resistance Boxes.

(a) Must be made of non-combustible material.

(b) Must be located on switchboard or away from combustible material. When not placed on switchboard they must be mounted on non-inflammable, non-absorptive insulating material.

(c) Must be so constructed as to allow sufficient ventilation for the uses

to which they are put.

75. Switches.

(a) Must have non-combustible, non-absorptive insulating bases. (b) Must operate successfully, at 50 per cent. overload in amperes with 25 per cent. excess voltage, under the most severe conditions they are liable to meet with in practice, and must be plainly marked, where they will always be visible, with the name of the maker and the current and voltage for which the switch is designed.

(c) Must be double pole when circuits which they control supply more

than six 16-candle-power lamps or their equivalent.

(d) When exposed to dampness they must be inclosed in a water-tight case.

76. Cutouts.

(a) Must have non-combustible, non-absorptive insulating bases.

(b) Must operate successfully, under the most severe conditions they are liable to meet with in practice, on short circuit, with fuse rated at 50 per cent. above and with a voltage 25 per cent. above the current and voltage they are designed for, and must be plainly marked, where they will always be visible, with the name of the maker and current and voltage for which the device is designed.

(c) Must be placed at every point where a change is made in the size of the wire (unless the cutout in the larger wire will protect the smaller).

(d) In places such as upper decks, holds, cargo spaces, and fire-rooms a water-tight and fire-proof cutout may be used, connecting directly to mains when such cutout supplies circuits requiring not more than 660 watts energy.

(e) When placed anywhere except on switchboards and certain places, as cargo spaces, holds, fire-rooms, etc., where it is impossible to run from centre of distribution, they shall be in a cabinet lined with fire-resisting

(f) Except for motors, searchlights, and diving-lamps, shall be so placed that no group of lamps requiring a current of more than 6 amperes shall

ultimately be dependent upon 1 cutout.

A single-pole, covered cutout may be placed in the molding when same contains conductor supplying circuits requiring not more than 220 watts energy.

77. Fixtures.

(a) Shall be mounted on blocks made from well-seasoned lumber treated with two coats of white lead or shellac.

(b) Where exposed to dampness the lamp must be surrounded by a

vapor-proof globe.

(c) Where exposed to mechanical injury the lamp must be surrounded by a globe protected by a stout wire guard.

(d) Shall be wired with same grade of insulation as portable conductors which are not exposed to moisture or mechanical injury.

78. Sockets.

(a) No portion of the lamp socket or lamp base exposed to contact with outside objects shall be allowed to come into electrical contact with either of the conductors.

79. Wooden Moldings.

(a) Must be made of well-seasoned lumber and be treated inside and

out with at least two coats of white lead or shellac.

(b) Must be made of two pieces, a backing and a capping, so constructed as to thoroughly incase the wire and provide a ½-inch tongue between the conductors, and a solid backing which, under grooves, shall not be less than % inch in thickness.

(c) Where molding is run over rivets, beams, etc., a backing strip must

first be put up and the molding secured to this. (d) Capping must be secured by brass screws.

80. Motors.

 (α) Must be wired under the same precautions as with a current of same volume and potential for lighting. The motor and resistance box must be protected by a double-pole cutout and controlled by a double-pole switch, except in cases where ¼ horse-power or less is used.

The leads or branch circuits should be designed to carry a current at

least 50 per cent. greater than that required by the rated capacity of the

motor, to provide for the inevitable overloading of the motor at times.

(b) Must be thoroughly insulated. Where possible, should be set on base frames made from filled, hard, dry wood, and raised above surrounding deck. On hoists and winches they shall be insulated from bed-plates

by hard rubber, fibre, or similar insulating material.

(c) Shall be covered with a water-proof cover when not in use.

(d) Must each be provided with a name-plate giving maker's name, the capacity in volts and amperes, and the normal speed, in revolutions, per minute.

GENERAL SUGGESTIONS.

In all electric work, conductors, however well insulated, should always be treated as bare, to the end that under no conditions, existing or likely to exist, can a grounding or short circuit occur, and so that all leakage from conductor to conductor, or between conductor and ground, may be reduced to the minimum.

In all wiring special attention must be paid to the mechanical execution of the work. Careful and neat running, connecting, soldering, taping of conductors, and securing and attaching of fittings are specially con-

ducive to security and efficiency, and will be strongly insisted on.

In laying out an installation, except for constant-current systems, the work should, if possible, be started from a centre of distribution, and the switches and cutouts controlling and connected with the several branches be grouped together in a safe and easily-accessible place, where they can be readily got at for attention or repairs. The load should be divided as evenly as possible among the branches, and all complicated and unnecessary wiring avoided.

The use of wire-ways for rendering concealed wiring permanently accessible is most heartily endorsed and recommended; and this method

of accessible, concealed construction is advised for general use.

Architects are urged, when drawing plans and specifications, to make provision for the channelling and pocketing of buildings for electric light or power wires, and in specifications for electric gas-lighting to require a 2-wire circuit, whether the building is to be wired for electric lighting or not, so that no part of the gas fixtures or gas-piping be allowed to be used for the gas-lighting circuit.

General Wiring Formulas.

(General Electric Company.)

The following general formulas may be used to determine the size of copper conductors, volts loss in lines, current per conductor, and the weight of copper per circuit for any system of electrical distribution;

Area of conductor, circular mils.
$$=\frac{D\times W\times C}{P\times E^2};$$
Current in main conductors $=\frac{W\times T}{E};$
Volts loss in line $=\frac{P\times E\times B}{100};$
Pounds of copper $=\frac{D^2\times W\times C\times A}{P\times E^2\times 1,000,000}.$

Where

W = total watts delivered;

D= distance of transmission (one way), in feet; P= loss in line, in per cent., of power delivered,—that is, of W, E = voltage between main conductors at receiving or consumer'send of circuit.

For continuous current C = 2160, T = 1, B = 1, and A = 6.04.

Values of A, C, and T.

	A.		Valı	ues of	Values of T.						
System.	Values of	Per	centa fa	age o		ver	Per	Percentage of power factor.			
	Va.	100	95	90	85	80	100	95	90	85	80
Single phase	6.04	2160	2400	2660	3000	3380	1.00	1.05	1.11	1.17	1.25
Two-phase (4-wire)	12.08	1080	1200	1330	1500	1690	.50	.53	.55	.59	.62
Three-phase (3-wire)	9.06	1080	1200	1330	1500	1690	.58	.61	.64	.68	.72

The following formula will be found a convenient one for calculating the copper required for long-distance, three-phase transmission circuits,

Pounds of copper =
$$\frac{M^2 \times Kw. \times 300,000,000}{P \times E^2}$$
.

M =distance of transmission, in miles; Kw. = the power delivered, in kilowatts.

Power factor is assumed to be approximately 95 per cent.

Application of Formulas.

The value of C for any particular power factor is obtained by dividing 2160, the value for continuous current, by the square of that power factor for single-phase, and by twice the square of that power factor for 3-wire three-phase, or 4-wire two-phase.

The value of B depends upon the size of wire, frequency, and power factor. It is equal to 1 for continuous current and for alternating current

with 100 per cent. power factor, and sizes of wire given in the preceding

table of wiring constants.

The figures given are for wires 18 inches apart, and are sufficiently accurate for all practical purposes, provided the displacement in phase between current and electro-motive force at the receiving end is not very much greater than that at the generator; in other words, provided the reactance of the line is not excessive or the line loss unusually high. For example, the constants should not be applied at 125 cycles if the largest conductors are used and the loss is 20 per cent, or more of the power delivered. delivered.

10	9	00	7	6	5	4	ಲ	2	<u>, </u>	1/0	2/0	3/0	4/0		Numb B. &	er of wi	re, ge.
10 382	13 090	16 509	20 816	26 250	33 102	41 742	52 633	66 373	83 694	105 560	133 079	167 805	211 600		Area	of wire, ılar mils	in
31.4	39.6	49.99	63.03	79.49	100.23	126.40	159.38	200.98	253.43	319.00	402.97	508.12	640.73	Lb.		nt of har per 1000	
.994	.7886	.6250	.4958	.3934	.3120	.2473	.1962	.1556	.1234	.09775	.07758	.06154	.04879	Ohms.		ance of 1000 feet	
1.0	1.0	1.0	1.0	1.0	1.0	1.02	1.03	1.05	1.07	1.10	1.14	1.18	1.23		95	Pei	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.02	1.04	1.07	1.11	1.16	1.22	1.29		90	Percentage of factor.	25 с
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.02	1.05	1.10	1.16	1.24	1.33		851	tage of pofactor.	25 cycles.
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.03	1.09	1.16	1.24	1.34		80	power	
1.0	1.0	1.0	1.01	1.02	1.03	1.05	1.07	1.11	1.14	1.19	1.25	1.40	1.52		95	Pe	
1.0	1.0	1.0	1.0	1.0	1.01	1.06	1.08	1.12	1.17	1.24	1.32	1.41	1.53		90	Percentage of factor.	40 c
1.0	1.0	1.0	1.0	1.0	1.0	1.03	1.07	1.12	1.18	1.26	1.35	1.48	1.61		85	tage of pofactor.	40 cycles.
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.05	1.10	1.17	1.26	1.37	1.51	1.67		80	power	
1.0	1.0	1.02	1.03	1.05	1.08	1.11	1.14	1.18	1.24	1.31	1.34	1.49	1.62		95	Pe	
1.0	1.0	1.0	1.02	1.04	1.08	1.12	1.17	1.23	1.30	1.40	1.52	1.66	1.84		90	Percentage of factor.	60 c
1.0	1.0	1.0	1.0	1.02	1.06	1.11	1.18	1.25	1.34	1.46	1.60	1.77	1.99		85		60 cycles.
1.0	1.0	1.0	1.0	1.0	1.04	1.10	1.17	1.26	1.36	1.49	1.66	1.95	2.09		80	power	
1.04	1.06	1.09	1.12	1.16	1.21	1.27	1.35	1.45	1.56	1.71	1.86	2.08	2.35		95	Pe	
1.03	1.06	1.10	1.14	1.20	1.27	1.35	1.46	1.60	1.75	1.96	2.18	2.48	2.86		90	Percentage of power factor.	125
1.0	1.04	1.09	1.14	1.21	1.30	1.40	1.53	1.70	1.88	2.13	2.40	2.77	3.24		85	tage of pofactor.	125 cycles.
1.0	1.02	1.07	1.13	1.21	1.31	1.43	1.57	1.77	1.97	2.25	2.57	2.94	3.49		80	ower	

At lower frequencies, however, the constants are reasonably correct, even under such extreme conditions. They represent about the true values at 10 per cent, line loss, are close enough at all losses less than 10 per cent., and often, at least for frequencies up to 40 cycles, close enough for even much larger losses. Where the conductors of a circuit are much nearer each other than 18 inches the volts loss will be less than that given by the formula, and if close together, as with a multiple-conductor cable, the loss will be each that the loss will be each that the terminance. the loss will be only that due to the resistance.

The value of Tdepends on the system and power factor. It is equal to for continuous current and for single-phase current of 100 per cent.

power factor.

The value of A and the weights of wires in the tables are based on 0.00000302 of a pound as the weight of a foot of copper wire of 1 circular mil area.

In using the formulas and constants on page 734, it should particularly be observed that P stands for the per cent. loss in the line of the delivered power, not for the per cent. loss in the line of the power at the generator, and that E is the power at the end of the line and not at the generator.

When the power factor cannot be more accurately determined, it may be assumed to be as follows for any alternating system operating under average conditions: Incandescent lighting and synchronous motors, 95 per cent.; lighting and induction motors together, 85 per cent.; induction

motors alone, 80 per cent.

In continuous-current 3-wire systems the neutral wire for feeders should be made of one-third the section obtained by formula for either of the outside wires. In both continuous- and alternating-current systems the neutral conductor for secondary mains and house-wiring should be taken as large as the other conductors.

The 3 wires of a three-phase circuit and the 4 wires of a two-phase circuit should all be of the same size, and each conductor should be of the

cross-section given by the first formula.

Report of the Committee on Standardization.

American Institute of Electrical Engineers. 1898.

GENERAL PLAN.

Efficiency. Sections 1 to 24.

I. Commutating Machines. Sections 6 to 11. II. Synchronous Machines. Sections 10 to 11.

Sections 12 to 15.

III. Synchronous Commutating Machines. Sections 12 IV. Rectifying Machines. Sections 16 to 17. V. Stationary Induction Apparatus. Sections 18 to 19.

VI. Rotary Induction Apparatus. Sections 20 to 23. VII. Transmission Lines. Section 24. Rise of Temperature. Sections 25 to 31.

Insulation. Sections 32 to 41. Regulation. Sections 42 to 61.

Variation and Pulsation. Sections 62 to 65.

Rating. Sections 66 to 73.

Classification of Voltages and Frequencies. Sections 74 to 78.

Overload Capacities. Sections 79 to 82.

Appendices.

I. Efficiency.
II. Apparent Efficiency.
III. Power Factor and Inductance Factor.
IV. Notation.
V. Table of Sparking Distances.

Electrical apparatus will be treated under the following heads:

I. Commutating Machines, which comprise a constant magnetic field, a closed-coil armature, and a multi-segmental commutator connected thereto.

Under this head may be classed the following: Direct-current generators, direct-current motors, direct-current boosters, motor-generators, dynamotors, converters, and closed-coil arc machines.

A booster is a machine inserted in series in a circuit to change its voltage, and may be driven either by an electric motor or otherwise.

the former case it is a motor-booster.

A motor-generator is a transforming device consisting of two machines,

a motor and a generator, mechanically connected together.

A dynamotor is a transforming device combining both motor and generator action in one magnetic field, with two armatures, or with an armature having two separate windings.

For converters, see III.

II. Synchronous Machines, which comprise a constant magnetic field and an armature receiving or delivering alternating currents in synchronism with the motion of the machine,—i.e., having a frequency equal to the product of the number of pairs of poles and the speed of the machine, in revolutions, per second.

III. Synchronous Commutating Machines.—These include: 1, synchronous converters,—i.e., converters from alternating to direct, or from direct to alternating current; and 2, double-current generators,—i.e., generators producing both direct and alternating currents.

A converter is a rotary device transforming electric energy from one form into another without passing it through the intermediary form of

mechanical energy.
A converter may be either:

(a) A direct-current converter, converting from a direct current to a

direct current, or

(b) A synchronous converter, formerly called a rotary converter, converting from an alternating to a direct current, or vice versa. Phase converters are converters from an alternating-current system to an alternating-current system of the same frequency but different phase.

Frequency converters are converters from an alternating-current system of one frequency to an alternating-current system of another frequency,

with or without changes of phase.

IV. Rectifying Machines, or Pulsating-current Generators, which produce a unidirectional current of periodically varying strength.

V. Stationary Induction Apparatus,—i.e., stationary apparatus changing electric energy from one form into another without passing it through an intermediary form of energy. These comprise:

(a) Transformers, or stationary induction apparatus, in which the primary and secondary windings are electrically insulated from each

other. (b) Auto-transformers, formerly called compensators,—i.e., stationary induction apparatus, in which part of the primary winding is used as a secondary winding, or conversely.

(c) Potential regulators, or stationary induction apparatus having a coil in shunt and a coil in series with the circuit, so arranged that the ratio of transformation between them is variable at will.

These may be divided into:

1. Compensator potential regulators, in which the number of turns of one of the coils is changed.

2. Induction potential regulators, in which the relative positions of primary and secondary coils is changed.

3. Magneto-potential regulators, in which the direction of the magnetic

flux with respect to the coils is changed.

- (d) Reactive coils, or reactance coils, formerly called choking coils,i.e., stationary induction apparatus, used to produce impedance or phase displacement.
- VI. Rotary Induction Apparatus, which consists of primary and secondary windings, rotating with respect to each other. They comprise:
 - (a) Induction motors.(b) Induction generators.(c) Frequency changers.
 - (d) Rotary phase converters.

EFFICIENCY.

1. The "efficiency" of an apparatus is the ratio of its net power output to its gross power input.*

2. Electric power should be measured at the terminals of the apparatus. 3. In determining the efficiency of alternating-current apparatus the electric power should be measured when the current is in phase with the

E. M. F., unless otherwise specified, except when a definite phase difference is inherent in the apparatus, as in induction motors, etc.

4. Mechanical power in machines should be measured at the pulley, gearing, coupling, etc., thus excluding the loss of power in said pulley, gearing, or coupling, but including the bearing friction and windage. The magnitude of bearing friction and windage may be considered as independent of the load. The loss of power in the belt and the increase of bearing friction due to belt tension should be excluded. Where, however, a machine is mounted upon the shaft of a prime mover in such a manner that it cannot be separated therefrom, the frictional losses in bearings and in windage, which ought by definition to be included in determining the efficiency, should be excluded, owing to the practical impossibility of determining them satisfactorily. The brush friction, however, should be included.

(a) Where a machine has auxiliary apparatus, such as an exciter, the power lost in the auxiliary apparatus should not be charged to the machine, but to the plant, consisting of machine and auxiliary apparatus taken to-gether. The plant efficiency in such cases should be distinguished from

the machine efficiency.

5. The efficiency may be determined by measuring all the losses individually and adding their sum to the output to derive the input, or subtracting their sum from the input to derive the output. All losses should be measured at, or reduced to, the temperature assumed in continuous operation, or in operation under conditions specified. (See Sections 25 to 31.)

In order to consider the application of the foregoing rules to various machines in general use, the latter may be conveniently divided into

classes, as follows:

I. Commutating Machines.

6. In commutating machines the losses are:

(a) Bearing friction and windage. (See Section 4.)
(b) Molecular magnetic friction and eddy currents in iron and copper.
These losses should be determined with the machine on open circuit, and at a voltage equal to the rated voltage + Ir in a generator and - Ir in a motor, where I denotes the current strength and r denotes the internal resistance of the machine. They should be measured at the correct speed and voltage, since they do not usually vary in proportion to the speed or to any definite power of the voltage.

(c) Armature resistance losses, I^2r' , where I is the current strength in the armature and r' is the resistance between armature brushes, excluding

the resistance of brushes and brush contacts.

(d) Commutator brush friction.
(e) Commutator brush-contact resistance. It is desirable to point out that with carbon brushes the losses, (d) and (e), are usually considerable in

low-voltage machines.

(f) Field excitation. With separately-excited fields the loss of power in the resistance of the field coils alone should be considered. With shunt fields or series fields, however, the loss of power in the accompanying rheostat should also be included, the said rheostat being considered as an essential part of the machine, and not as separate auxiliary apparatus.

(b) and (c) are losses in the armature, or "armature losses;"

"commutator losses;" (f), "field losses."

7. The difference between the total losses under load and the sum of the losses above specified should be considered as "load losses," and are usually trivial in commutating machines of small field distortion. When

^{*} An exception should be noted in the case of storage batteries or apparatus for storing energy, in which the efficiency, unless otherwise qualified, should be understood as the ratio of the energy output to the energy intake in a normal cycle.

the field distortion is large, as is shown by the necessity for shifting the brushes between no load and full load, or with variations of load, these load losses may be considerable, and should be taken into account. In this case the efficiency may be determined either by input and output measurements or the load losses may be estimated by the method of Section II.

8. Boosters should be considered and treated like other direct-current

machines in regard to losses.

9. In motor-generators, dynamotors, or converters the efficiency is the electric output

electric input

II. Synchronous Machines.

10. In synchronous machines the output or input should be measured with the current in phase with the terminal E. M. F., except when otherwise expressly specified.

Owing to the uncertainty necessarily involved in the approximation of load losses, it is preferable, whenever possible, to determine the efficiency of synchronous machines by input and output tests.

11. The losses in synchronous machines are

 (a) Bearing friction and windage. (See Section 4.)
 (b) Molecular magnetic friction and eddy currents in iron, copper, and other metallic parts. These losses should be determined at open circuit of the machine at the rated speed and at the rated voltage, + Ir in a synchronous generator, -Ir in a synchronous motor, where I= current in armature, r= armature resistance. It is undesirable to compute these losses

from observations made at other speeds or voltages.

These losses may be determined either by driving the machine by a motor, or by running it as a synchronous motor and adjusting its fields so as to get minimum current input, and measuring the input by wattmeter. The former is the preferable method; and in polyphase machines the latter method is liable to give erroneous results in consequence of unequal distribution of currents in the different circuits, caused by inequalities of the impedance of connecting leads, etc.

(c) Armature-resistance loss, which may be expressed by $pI^{2}r$, where = resistance of one armature circuit or branch, I = the current in such armature circuit or branch, and p = the number of armature circuits or

branches.

(d) Load losses as defined in Section 7. While these losses cannot well be defermined individually, they may be considerable, and, therefore, their joint influence should be determined by observation. This can be done by operating the machine on short circuit and at full-load current,-that is, by determining what may be called the "short-circuit core loss." With the low field intensity and great lag of current existing in this case the load losses are usually greatly exaggerated.

One-third of the short-circuit core loss may, as an approximation, and in the absence of more accurate information, be assumed as the load loss.

(e) Collector-ring friction and contact resistance. These are generally negligible, except in machines of extremely low voltage. (f) Field excitation. In separately-excited machines the I^2r of the field-coils proper should be used. In self-exciting machines, however, the loss in the field rheostat should be included. (See Section 6, f.)

III. Synchronous Commutating Machines.

12. In synchronous converters the power on the alternating-current side is to be measured with the current in phase with the terminal E. M. F.,

unless otherwise specified.

13. In double-current generators the efficiency of the machine should be determined as a direct-current generator, in accordance with Section 6, and as an alternating-current generator, in accordance with Section 11. The two values of efficiency may be different, and should be clearly distinguished.

14. In synchronous converters the losses should be determined when driving the machine by a motor. These losses are:

(a) Bearing friction and windage. (See Section 4.)
(b) Molecular magnetic friction and eddy currents in iron, copper, and metallic parts. These losses should be determined at open circuit and at the rated terminal voltage, no allowance being made for the armature

resistance, since the alternating and the direct currents flow in opposite directions.

(c) Armature resistance. The loss in the armature is qI^2r , where I= direct current in armature, r= armature resistance, and q, a factor which is equal to 1.37 in single-phasers, 0.56 in three-phasers, 0.37 in quarterphasers, and 0.26 in six-phasers.

(d) Load losses. The load losses should be determined in the same manner as described in Section 11, d, with reference to the direct-current

side.

(e) and (f) Losses in commutator and collector-friction and brush-contact resistance. (See Sections 6 and 11.)

(g) Field excitation. In separately-excited fields the I^2r loss in the field-coils proper should be taken, while in shunt and series fields the rheostat loss should be included, except where fields and rheostats are intentionally modified to produce effects outside of the conversion of electric power, as for producing phase displacement for voltage control. In this case 25 per cent. of the I^2r loss in the field proper at non-inductive

alternating circuit should be added as proper estimated allowance for normal rheostat losses. (See Section 6, f.)

15. Where two similar synchronous machines are available their efficiency can be determined by operating one machine as a converter from direct to alternating, and the other as a converter from alternating the direct converting the alternating that direct the result may be alternating that the converter from alternating the direct converting the second converter from alternating the second converter from the second co to direct, connecting the alternating sides together and measuring the difference between the direct-current input and the direct-current output. This process may be modified by returning the output of the second machine through two boosters into the first machine and measuring the losses. Another modification might be to supply the losses by an alternator between the two machines, using potential regulators.

IV. Rectifying Machines, or Pulsating-current Generators.

16. These include open-coil arc machines, constant-current rectifiers,

constant-potential rectifiers.

The losses in open-coil arc machines are essentially the same as in Sec-The losses in open-coil arc machines are essentially the same as in Sections 6 to 9 (closed-coil commutating machines). In alternating-current rectifiers, however, the output must be measured by wattmeter and not by voltmeter and ammeter, since owing to the pulsation of current and E. M. F. a considerable discrepancy may exist between watts and volt-amperes, amounting to as much as 10 or 15 per cent.

17. In constant-current rectifiers, transforming from constant-potential alternating to constant direct current by means of constant-current transformers and rectifying commutators the losses in the transformers are to

formers and rectifying commutators, the losses in the transformers are to be included in the efficiency, and have to be measured when operating the rectifier, since in this case the losses are generally greater than when feeding an alternating secondary circuit. In constant-current transformers the load losses are usually larger than in constant-potential transformers, and thus should not be neglected.

The most satisfactory method of determining the efficiency in rectifiers is to measure electric input and electric output by wattmeter. The input is usually not non-inductive, owing to a considerable phase displacement and to wave distortion. For this reason the apparent efficiency should also be considered, since it is usually much lower than the true efficiency. The power consumed by the synchronous motor or other source driving

the rectifier should be included in the electric input.

V. Stationary Induction Apparatus.

18. Since the efficiency of induction apparatus depends upon the wave shape of E. M. F., it should be referred to a sine wave of E. M. F., except where expressly specified otherwise. The efficiency should be measured with non-inductive load and at rated frequency, except where expressly specified otherwise. The losses are:

(a) Molecular magnetic friction and eddy currents measured at open circuit and at rated voltage — Ir, where I = rated current, r = resistance

of primary circuit.

(b) Resistance losses. The sum of the I^2r of primary and of secondary in a transformer, or of the two sections of the coil in the compensator or auto-transformer, where I = current in the coil or section of coil, r =resistance.

(c) Load losses,—i.e., eddy currents in the iron, and especially in the copper conductors, caused by the current. They should be measured by short-circuiting the secondary of the transformer and impressing upon the primary an E.M.F. sufficient to send full-load current through the transformer. The loss in the transformer under these conditions, measured by wattmeter, gives the load losses = I^2r losses in both primary and secondary

(d) Losses due to the methods of cooling, as power consumed by the blower in air-blast transformers and power consumed by the motor drivingpumps in oil- or water-cooled transformers. Where the same cooling apparatus supplies a number of transformers, or is installed to supply

future additions, allowance should be made therefor.

19. In potential regulators the efficiency should be taken at the maximum voltage for which the apparatus is designed, and with non-inductive load, unless otherwise specified.

VI. Rotary Induction Apparatus.

20. Owing to the existence of load losses, and since the magnetic density in the induction motor under load changes in a complex manner, the efficiency should be determined by measuring the electric input by wattmeter and the mechanical output at the pulley, gear, coupling, etc.

21. The efficiency should be determined at the rated frequency, and the input measured with sine waves of impressed E. M. F.

22. The efficiency may be calculated from the apparent input, the power factor, and the power output. The same applies to induction generators. Since phase displacement is inherent in induction machines, their

apparent efficiency is also important.

23. In frequency changers,—i.e., apparatus transforming from a polyphase system to an alternating system of different frequency, with or without a change in the number of phases and phase converters,—i.e., apparatus converting from an alternating system, usually single-phase, to another alternating system, usually polyphase, of the same frequency, the efficiency should also be determined by measuring both output and input.

VII. Transmission Lines.

24. The efficiency of transmission lines should be measured with noninductive load at the receiving end, with the rated receiving pressure and frequency, also with sinusoidal impressed E.M.F.'s, except where expressly specified otherwise, and with the exclusion of transformers or other apparatus at the ends of the line.

RISE OF TEMPERATURE.

General Principles.

25. Under regular service conditions the temperature of electrical machinery should never be allowed to remain at a point at which per-

manent deterioration of its insulating material takes place.

26. The rise of temperature should be referred to the standard conditions of a room-temperature of 25° C., a barometric pressure of 760 millimetres, and normal conditions of ventilation,-that is, the apparatus under test should neither be exposed to draught nor inclosed, except where ex-

pressly specified.

27. If the room-temperature during the test differs from 25° C., the observed rise of temperature should be corrected by ½ per cent. for each degree C.* Thus, with a room-temperature of 35° C. the observed rise of temperature has to be decreased by 5 per cent., and with a room-temperature of 15° C. the observed rise of temperature has to be increased by 5 per cent. The thermometer indicating the room-temperature should be screened from thermal radiation emitted by heated bodies or from draughts of air. When it is impracticable to secure normal conditions of ventilation

^{*}This correction is also intended to compensate, as nearly as is at present practicable, for the error involved in the assumption of a constant temperature coefficient of resistivity, -i.e., 0.4 per cent. per degree C., taken with varying initial temperatures.

on account of an adjacent engine or other sources of heat, the thermometer for measuring the air-temperature should be placed so as fairly to indicate the temperature which the machine would have if it were idle, in order that the rise of temperature determined shall be that caused by the opera-

tion of the machine.

28. The temperature should be measured after a run of sufficient duration to reach practical constancy. This is usually from 6 to 18 hours, according to the size and construction of the apparatus. It is permissible, however, to shorten the time of the test by running a lesser time on an overload in current and voltage, then reducing the load to normal, and maintaining it thus until the temperature has become constant.

In apparatus intended for intermittent service, as railway motors, starting the starts of the vice of temperature should be processived effor.

ing rheostats, etc., the rise of temperature should be measured after a shorter time, depending upon the nature of the service, and should be

specified.

In apparatus which, by the nature of their service, may be exposed to overload, as railway converters, and in very high voltage circuits a smaller rise of temperature should be specified than in apparatus not liable to overloads or in low-voltage apparatus. In apparatus built for conditions of limited space, as railway motors, a higher rise of temperature must be allowed.

29. In electrical conductors the rise of temperature should be determined by their increase of resistance. For this purpose the resistance may be measured either by galvanometer test or by drop-of-potential method, A temperature coefficient of 0.4 per cent. per degree C. may be assumed for copper.* Temperature elevations measured in this way are usually in excess of temperature elevations measured by thermometers.

30. It is recommended that the following maximum values of tempera-

ture elevation should not be exceeded:

Commutating machines, rectifying machines, and synchronous machines

Field and armature, by resistance, 50° C.

Commutator and collector rings and brushes, by thermometer, 55° C. Bearings and other parts of machine, by thermometer, 40° C.

Rotary induction apparatus:

Electric circuits, 50° C., by resistance.

Bearings and other parts of the machine, 40° C., by thermometer. In squirrel-cage or short-circuited armatures, 55° C., by thermometer,

may be allowed.

Transformers for continuous service,—electric circuits, by resistance, 50° C.; other parts, by thermometer, 40° C., under conditions of normal ventilation.

Reactive coils, induction and magneto regulators and transformers of 15 kilowatts or less,—electric circuits, by resistance, 55° C.; other parts, by

thermometer, 45° C.

Where a thermometer, applied to a coil or winding, indicates a higher temperature elevation than that shown by resistance measurement, the thermometer indication should be accepted. In using the thermometer care should be taken so to protect its bulb as to prevent radiation from it, and, at the same time, not to interfere seriously with the normal radiation

from the part to which it is applied

31. In the case of apparatus intended for intermittent service, the temperature elevation which is attained at the end of the period corresponding to the term of full load should not exceed 50° C., by resistance, in electric circuits. In the case of transformers intended for intermittent service or not operating continuously at full load, but continuously in circuit, as in the ordinary case of lighting transformers, the temperature elevation above the surrounding air-temperature should not exceed 50° C., by resistance, in electric circuits, and 40° C., by thermometer, in other parts, after the period corresponding to the term of full load. In this instance the best load should not be applied until the transformer has been in circuit for a sufficient time to attain the temperature elevation due to core loss. With transformers for commercial lighting the duration of the full-load test

^{*}By the formula $R_{\rm T}=R_t~(1+0.004\theta)$. Where R_t is the resistance at room-temperature, $R_{\rm T}$ the resistance when heated, and θ the temperature elevation (T-t) in degrees centigrade.

may be taken as 3 hours, unless otherwise specified. In the case of railway, crane, and elevator motors the conditions of service are necessarily so varied that no specific period corresponding to the full load term can be stated.

INSULATION.

32. The ohmic resistance of the insulation is of secondary importance only, as compared with the dielectric strength or resistance to rupture by high voltage.

Since the ohmic resistance of the insulation can be very greatly increased by baking,—but the dielectric strength is liable to be weakened thereby, it is preferable to specify a high dielectric strength rather than a high insula-tion resistance. The high-voltage test for dielectric strength should always be applied.

Insulation Resistance.

33. Insulation resistance tests should, if possible, be made at the press-

ure for which the apparatus is designed.

The insulation resistance of the complete apparatus must be such that the rated voltage of the apparatus will not send more than $\frac{1}{1,000,000}$ of the full load current, at the rated terminal voltage, through the insulation. Where the value found in this way exceeds 1 megohm, 1 megohm is sufficient.

Dielectric Strength.

34. The dielectric strength or resistance to rupture should be determined by a continued application of an alternating E. M. F. for one minute. The source of alternating E. M. F. should be a transformer of such size that the charging current of the apparatus as a condenser does not exceed 25 per cent. of the rated capacity of the transformer.

35. The high-voltage tests should not be applied when the insulation is low owing to dirt and moisture, and should be applied before the machine

is put into commercial service.

36. It should be pointed out that tests at high voltages considerably in excess of the normal voltages are admissible on new machines, to determine whether they fulfil their specifications, but should not be made subsequently at a voltage much exceeding the normal, as the actual insulation of the machine may be weakened by such tests.

37. The test for dielectric strength should be made with the completelyassembled apparatus, and not with its individual parts, and the voltage should be applied as follows:

1. Between electric circuits and surrounding conducting material, and, 2. Between adjacent electric circuits, where such exist, as in trans-

formers.

The tests should be made with a sine wave of E.M.F., or, where this is not available, at a voltage giving the same striking distance between needle-points in air as a sine wave of the specified E. M. F., except where expressly specified otherwise. As needles, new sewing-needles should be used. It is recommended to shunt the apparatus during the test by a spark gap of needle-points set for a voltage exceeding the required voltage by 10

38. The following voltages are recommended for apparatus, not in-

cluding transmission lines or switchboards:

Rated terminal voltage.	Capacity.	Testing voltage.
Not exceeding 400 volts. Not exceeding 400 volts. 400 and over, but less than 800 volts. 400 and over, but less than 800 volts. 800 and over, but less than 1200 volts. 1200 and over, but less than 2500 volts. 2500 and over.	10 kilowatts and over. Any.	1500 volts.

Synchronous motor fields and fields of converters started from the alter-

nating current side should be tested at 5000 volts.

Synchronous motors and synchronous converter field-coils should be tested at 5000 volts, since in the starting of such machines a high voltage is induced in their field-coils.

Alternator field circuits should be tested under a breakdown test voltage corresponding to the rated voltage of the exciter referred to an output equal to the output of the alternator,—i.e., the exciter should be rated for this test as having an output equal to that of the machine it excites.

Condensers should be tested at twice their rated voltage and at their

rated frequency.

The above values are effective values, or square roots of mean square reduced to a sine wave of E. M. F.

39. In testing insulation between different electric circuits, as between primary and secondary of transformers, the testing voltage must be chosen corresponding to the high-voltage circuit.

40. In transformers of from 10,000 volts to 20,000 volts it should be considered as sufficient to operate the transformer at twice its rated voltage by connecting first the one and then the other terminal of the high-voltage winding to the core and to the low-voltage winding. The test of dielectric resistance between the low-voltage winding and the core should be in accordance with the recommendation in Section 39 for similar voltages and capacities.

41. When machines or apparatus are to be operated in series, so as to employ the sum of their separate E. M. F.'s, the voltage should be referred to this sum, except where the frames of the machine are separately insu-

lated, both from ground and from each other.

REGULATION.

42. The term "regulation" should have the same meaning as the term

"inherent regulation," at present frequently used.

43. The regulation of an apparatus intended for the generation of constant potential, constant current, constant speed, etc., is to be measured by the maximum variation of potential current, speed, etc., occurring within the range from full load to no load under such constant conditions of operation as give the required full-load values, the conditions of full load being considered in all cases as the normal condition of operation.

44. The regulation of an apparatus intended for the generation of a potential, current, speed, etc., varying in a definite manner between full load and no load, is to be measured by the maximum variation of poten-

tial, current, speed, etc., from the satisfied condition, under such constant conditions of operation as give the required full-load values.

If the manner in which the variation in potential, current, speed, etc., between full load and no load is not specified, it should be assumed to be a

simple linear relation.

The regulation of an apparatus may, therefore, differ according to its qualification for use. Thus, the regulation of a compound-wound generator specified as a constant-potential generator will be different from that it possesses when specified as an over-compounded generator.

45. The regulation is given in percentage of the full-load value of potential, current, speed, etc., and the apparatus should be steadily operated during the test under the same conditions as at full load.

46. The regulation of generators is to be determined at constant speed,

of alternating apparatus at constant impressed frequency.

47. The regulation of a generator unit, consisting of a generator united with a prime mover, should be determined at constant conditions of the prime mover,—i.e., constant steam pressure, head, etc. It would include the inherent speed variations of the prime mover. For this reason the regulation of a generator unit is to be distinguished from the regulation of either the prime mover or of the generator contained in it and taken separately.

48. In apparatus generating, transforming, or transmitting alternating currents, regulation should be understood to refer to non-inductive load, that is, to a load in which the current is in phase with the E. M. F. at the output side of the apparatus, except where expressly specified otherwise.

49. In alternating apparatus receiving electric power, regulation should refer to a sine wave of E. M. F., except where expressly specified otherwise.

50. In commutating machines, rectifying machines, and synchronous machines, as direct-current generators and motors, alternating-current and polyphase generators, the regulation is to be determined under the following conditions

At constant excitation in separately-excited fields, With constant resistance in shunt-field circuits, and

(c) With constant resistance shunting series fields,—i.e., the field adjustment should remain constant, and should be so chosen as to give the required full-load voltage at full-load current.

51. In constant-potential machines the regulation is the ratio of the maximum difference of terminal voltage from the rated full-load value (occurring within the range from full load to open circuit) to the full-load terminal voltage.

52. In constant-current machines the regulation is the ratio of the maximum difference of current from the rated full-load value (occurring within the range from full load to short circuit) to the full-load current.

53. In constant-power machines the regulation is the ratio of maximum difference of power from the rated full-load value (occurring within the

range of operation specified) to the rated power.

54. In over-compounded machines the regulation is the ratio of the maximum difference in voltage from a straight line connecting the no-load and full-load values of terminal voltage as function of the current to the full-load terminal voltage.

55. In constant-speed, continuous-current motors the regulation is the ratio of the maximum variation of speed from its full-load value (occurring within the range from full load to no load) to the full-load

speed.

56. In transformers the regulation is the ratio of the rise of secondary terminal voltage from full load to no load (at constant primary impressed terminal voltage) to the secondary terminal voltage.

57. In induction motors the regulation is the ratio of the rise of speed from full load to no load (at constant impressed voltage) to the full-load

speed.

The regulation of an induction motor is, therefore, not identical with the slip of the motor, which is the ratio of the drop in speed from syn-

chronism to synchronous speed.

58. In converters, dynamotors, motor-generators, and frequency-changers the regulation is the ratio of the maximum difference of terminal voltage at the output side from the rated full-load voltage (at constant impressed voltage and at constant frequency) to the full-load voltage on the output side.

59. In transmission lines, feeders, etc., the regulation is the ratio of maximum voltage difference at the receiving end between no load and full non-inductive load to the full-load voltage at the receiving end, with

constant voltage impressed upon the sending end.

60. In steam engines the regulation is the ratio of the maximum variation of speed in passing from full load to no load (at constant steam

pressure at the throttle) to the full-load speed.

61. In a turbine or other water motor the regulation is the ratio of the maximum variation of speed from full load to no load (at constant head of water,-i.e., at constant difference of level between tail-race and headrace) to the full-load speed.

VARIATION AND PULSATION.

62. In prime movers which do not give an absolutely uniform rate of rotation or speed, as in steam engines, the "variation" is the maximum angular displacement in position of the revolving member from the position it would occupy at uniform rotation, expressed in degrees,—that is, with one revolution at 300°; and the pulsation is the ratio of the maximum change of speed in an engine cycle to the average speed.

63. In alternators, or alternating-current circuits in general, the variation is the maximum difference in phase of the generated wave of E.M.F. from a wave of absolutely constant frequency, expressed in degrees, and is due to the variation of the prime mover. The pulsation is the ratio of the maximum change of frequency during an engine cycle to the average

frequency.

64. If n = number of poles, the variation of an alternator is $\frac{n}{2}$ times the variation of its prime mover if direct connected, and $\frac{n}{2}p$ times the variation of the prime mover if rigidly connected thereto in the velocity ratio, p. **65.** The pulsation of an alternating-current circuit is the same as the pulsation of the prime mover of its alternator.

RATING.

66. Both electrical and mechanical power should be expressed in kilo-66. Both electrical and mechanical power should be expressed in kilowatts, except when otherwise specified. Alternating-current apparatus should be rated in kilowatts on the basis of non-inductive condition,—i.e., with the current in phase with the terminal voltage.
67. Thus, the electric power generated by an alternating-current apparatus equals its rating only at non-inductive load,—that is, when the current is in phase with the terminal voltage.
68. Apparent power should be expressed in kilovolt-amperes, as distinguished from real power in kilowatts.

tinguished from real power in kilowatts.

69. If a power factor other than 100 per cent. is specified, the rating should be expressed in kilovolt-amperes and power factor at full load. 70. The full-load current of an electric generator is that current which,

with the rated full-load terminal voltage, gives the rated kilowatts; but in

alternating-current apparatus, only at non-inductive load.

71. Thus, in machines in which the full-load voltage differs from the no-load voltage, the full-load current should refer to the former.

If P = rating of an electric generator and E = full-load terminal voltage, the full-load current is:

 $I = \frac{P}{F}$ in a continuous-current machine or single-phase alternator;

 $I = \frac{P}{E_1/\frac{\gamma}{2}}$ in a three-phase alternator;

 $I = \frac{P}{2F}$ in a quarter-phase alternator.

72. Constant-current machines, such as series arc-light generators, should be rated in kilowatts based on terminal volts and amperes at full load.

73. The rating of a fuse or circuit-breaker should be the current strength at which it will open the circuit, and not the working-current strength.

CLASSIFICATION OF VOLTAGES AND FREQUENCIES.

74. In direct-current, low-tension generators the following average terminal voltages are in general use, and are recommended:

> 125 volts. 250 volts.

75. In direct-current and alternating-current, low-pressure circuits the following average terminal voltages are in general use, and are recommended:

110 volts. 220 volts.

In direct-current power circuits, for railway and other service, 500 volts may be considered as standard.

76. In alternating-current, high-pressure circuits at the receiving end the following pressures are in general use, and are recommended:

1000 volts. 3000 volts. 10,000 volts. 20,000 volts. 2000 volts. 6000 volts. 15,000 volts.

77. In alternating-current, high-pressure generators or generating systems the following terminal voltages are in general use, and are recommended:

> 1150 volts. 2300 volts. 3450 volts.

These pressures allow of a maximum drop in transmission of 15 per cent. of the pressure at the receiving end. If the drop required is greater than 15 per cent., the generator should be considered as special.

78. In alternating-current circuits the following approximate fre-

• quencies are recommended as desirable:

These frequencies are already in extensive use, and it is deemed advisable to adhere to them as closely as possible.

OVERLOAD CAPACITIES.

79. All guaranties on heating, regulation, sparking, etc., should apply to the rated load, except where expressly specified otherwise, and in alternating-current apparatus to the current in phase with the terminal E. M. F., except where a phase displacement is inherent in the apparatus.

80. All apparatus should be able to carry a reasonable overload without self-destruction by heating, sparking, mechanical weakness, etc., and with an increase of temperature elevation not exceeding 15° C. above those

specified for full loads. (See Sections 25 to 31.)

81. Overload guaranties should refer to normal conditions of operation regarding speed, frequency, voltage, etc., and to non-inductive conditions in alternating apparatus, except where a phase displacement is inherent in the apparatus.

82. The following overload capacities are recommended:

- 1. In direct-current generators and alternating-current generators, 25 per cent. for 1/2 hour.
- 2. In direct-current motors and synchronous motors, 25 per cent. for \(\frac{1}{2} \) hour, 50 per cent. for 1 minute, except in railway motors and other apparatus intended for intermittent service.

3. Induction motors, 25 per cent. for ½ hour, 50 per cent. for 1 minute.

4. Synchronous converters, 50 per cent. for ½ hour.

5. Transformers, 25 per cent. for ½ hour, except in transformers connected to apparatus for which a different overload is guaranteed, in which case the same guaranties shall apply for the transformers as for the apparatus connected thereto.

6. Exciters of alternators and other synchronous machines, 10 per cent. more overload than is required for the excitation of the synchronous

machine at its guaranteed overload and for the same period of time.

APPENDIX I.

EFFICIENCY.

Efficiency of Phase-displacing Apparatus.

In apparatus producing phase displacement, as, for example, synchronous compensators, exciters of induction generators, reactive coils, condensers, polarization cells, etc., the efficiency should be understood to be the ratio of the volt-ampere activity to the volt-ampere activity plus power loss.

The efficiency may be calculated by determining the losses individually, adding to them the volt-ampere activity, and then dividing the volt-

ampere activity by the sum.

1. In synchronous compensators and exciters of induction generators the determination of losses is the same as in other synchronous machines under Sections 10 and 11.

2. In reactive coils the losses are molecular friction, eddy losses, and I^2r loss. They should be measured by wattmeter. The efficiency of re-

^{*}The frequency of 120 \sim may be considered as covering the already-existing commercial frequencies between 120 \sim and 140 , and the frequency of 60 \sim as covering the already-existing commercial frequencies between 60 ~ and 70 ~.

active coils should be determined with a sine wave of impressed E. M. F., except where expressly specified otherwise.

a. In condensers the losses are due to dielectric hysteresis and leakage, and should be determined by wattmeter with a sine wave of E. M. F.

4. In polarization cells the losses are those due to electric resistivity and a loss in the electrolyte of the nature of chemical hysteresis, and are usually very considerable. They depend upon the frequency, voltage, and temperature, and should be determined with a sine wave of impressed E. M. F., except where expressly specified otherwise.

APPENDIX II.

APPARENT EFFICIENCY.

In apparatus in which a phase displacement is inherent to their operation, apparent efficiency should be understood as the ratio of net power output to volt-ampere input.

Such apparatus comprise induction motors, reactive synchronous converters, synchronous converters controlling the voltage of an alternatingcurrent system, self-exciting synchronous motors, potential regulators, and

open magnetic circuit transformers, etc.

Since the apparent efficiency of apparatus generating electric power depends upon the power factor of the load, the apparent efficiency, unless otherwise specified, should be referred to a load power factor of unity.

APPENDIX III.

POWER FACTOR AND INDUCTANCE FACTOR.

The power factor in alternating circuits or apparatus may be defined as the ratio of the electric power in watts to volt-amperes.

The inductance factor is to be considered as the ratio of wattless volt-

amperes to total volt-amperes. Thus, if p = power factor, q = inductance factor; then

$$p^2 + q^2 = 1$$
.

The power factor is the

(energy component of current or E. M. F.) total current or E. M. F.

and the inductance factor is the

(wattless component of current or E.M.F.) (total current of E. M. F.) volt-amperes '

Since the power factor of apparatus supplying electric power depends upon the power factor of the load, the power factor of the load should be considered as Unity, unless otherwise specified.

APPENDIX IV.

The following notation is recommended:

 $E, e = \text{voltage}, E. M. F., potential difference};$ R, r = resistance;X, x = reactance;I, i = current;Z, z = impedance;P = power; $\phi = \text{magnetic flux}$; L, l = inductance; $\beta = \text{magnetic density};$ C, c = capacity.

Vector quantities, when used, should be denoted by capital italics.

APPENDIX V.

Table of sparking distances in air between opposed sharp needle-points, for various effective sinusoidal voltages, in inches and in centimetres.

4	Kilovolts.	Distance.			Kilovolts.	Distance.			
	mean square.	Inches.	s. Centimetres.		mean square.	Inches.	Centimetres.		
	5	.225	.57		60	4.65	11.8		
	10	.470	1.19		70	5.85	14.9		
	15	.725	1.84		80	7.10	18.0		
	20	1.000	2.54		90	8.35	21.2		
	25	1.300	3.3		100	9.60	24.4		
	30	1.625	4.1		110	10.75	27.3		
	35	2.00	5.1		120	11.85	30.1		
	40	2.45	6.2		130	12.95	32.9		
	45	2.95	7.5		140	13.95	35.4		
	50	3.55	9.0		150	15.0	38.1		
				1			I		

CARY T. HUTCHINSON, A. E. KENNELLY. JOHN LIEB, JR.,

CHARLES P. STEINMETZ. LEWIS B. STILWELL. ELIHU THOMSON,

F. B. CROCKER, Chairman.

ELECTRIC DRIVING.

The general opinion is in favor of independent driving, each tool having its own motor attached. In some cases a group of small machines may be operated to advantage from a short line-shaft driven by an electric motor, but in the great majority of cases the independent driving is to be preferred.

The advantages of independent driving are well set forth in a paper by F. B. Duncan before the Engineers' Society of Western Pennsylvania.

 Greater output per machine due to positive nature of drive; in many cases this is at least 50 per cent.
 Ability to accurately determine—by means of recording instruments centrally located, with a multi-point switch—whether tools are being kept at work in proper manner, thereby affording a graphic record of the time each machine is in operation and its consumption of power. This will also enable the detection of tools that are in bad condition due to abnormal friction of bearings or moving parts.

3. The flexibility of placement of machine tools to suit the passage of

the work through the shop.

4. Better light and absence of dirt due to belts, shafting, pulley hangers, etc., and less first cost of building owing to the lighter overhead construc-tion permissible when no shafting, pulleys, hangers, or belt tension have to be taken care of.

5. Free head room for crane service.6. Ability to shut down or start up any one machine independently of

all others.

Mr. Duncan also gives the following data sheet of power required by a number of different machine tools. These represent average practice, using ordinary tool steels, but for the modern high-speed tool steels the cutting speeds may be increased to 80 to 100 feet per minute for cast or wrought-iron, in which case the power required will be about three times that given on pages 750-753.

For planers the maximum power is that required for reversing the platen, as will be seen.

Data Sheet of Motor Power on Standard Machine Tools.

No. 1.

Description of machine, Planer. Make of machine, Niles Tool Company. Size of machine, $10' \times 10' \times 20'$. Number of cutting tools, 3. Size of cut, 34" × 18", each tool. Cutting speed, 18 feet per minute. Material machined, cast-iron. Weight on platen, 40 tons. Power for cut, 26,54 H. P. Power for return, 23,56 H. P. Ratio of return, 3 to 1.

Kind of motor, Direct-current Compound-wound. Remarks.—Not enough fly-wheel effect on counter-shaft to equalize load

at moment of reversal. A 30 H. P. motor was used for above drive with good results.

No. 2.

Description of machine, Planer. Make of machine, Pond Machine Company. Size of machine, $8' \times 8' \times 20'$. Number of cutting tools, 3.
Size of cut, 5%" × 4%", each tool.
Cutting speed, 18 feet per minute. Material machined, cast-iron. Weight on platen, 32 tons. Power for cut, 16 H.P. Power for reverse, 28.15 H. P. Power for return, 14.80 H. P. Ratio of return, 3 to 1. Method of drive, motor belted to counter-shaft. Kind of motor, Direct-current Compound-wound.

Method of drive, motor belted to counter-shaft.

Remarks.—Not enough fly-wheel effect on counter-shaft to equalize load at moment of reversal. A 25 H. P. motor was used on this machine with good results.

No. 3.

Description of machine, Planer. Make of machine, Pond Machine Company. Size of machine, $66' \times 60' \times 12'$. Number of cutting tools, 2. Size of cut, $\frac{1}{2}$. $\frac{1}{2}$. Cutting speed, 21 feet per minute. Material machined, open-hearth steel castings. Weight on platen, 4 tons. Power for cut, 10 H.P Power for reverse, 16 H.P. Power for return, 14 H.P.

Ratio of return, 3% to 1.

Method of drive, Direct-current Compound-wound Motor, mounted on housing of planer with 42-inch, 1500-pound fly-wheel, running at 400 revolutions per minute, mounted on motor-shaft. Fly-wheel used as driving pulley for return of platen.

Remarks.—A series of recording ammeter cards taken on this planer showed it was idle an average of 2½ hours per day, showing a saving of power by use of individual motor drive. The above 21/2 hours was generally made up of short periods for setting work, taking measurements, etc.

No. 4.

Description of machine, Planer. Make of machine, Gray. Size of machine, 22" × 32" × 6'. Number of cutting tools, 1. Size of cut, $\frac{34}{4}$ × $\frac{1}{8}$ ". Cutting speed, 22 feet per minute. Material machined, cast-iron. Weight on platen, 3 tons. Power for cut, 3.1 H. P. Power for reverse, 4.4 H. P. Power for return, 3.8 H. P. Ratio of return, 4 to 1.

Ratio of return, 4 to 1.

Method of drive, Direct-current Compound-wound Motor, mounted on platen housings, with fly-wheel 30 inches in diameter, 496 pounds, 800 revolutions per minute, mounted on motor-shaft and used as pulley for return of platen.

Remarks.—Average load on motor, 2.48. A 3 H. P. motor at 800 revolutions per minute gave first-class service. Rheostat used in series with shunt field to raise cutting speed on light work to 30 feet per minute.

No. 5.

Description of machine, Turret Lathe. Make of machine, Gisholt Machine Company. Size of machine, 28 inches swing. Number of cutting tools, 5. Size of cut, $\frac{3}{2}$ /" \times $\frac{5}{6}$ ", 1 tool; $\frac{1}{2}$ " \times $\frac{5}{6}$ ", 4 tool. Cutting speed, 25 feet. Material machined, Tropenas cast-steel. Power for cut, 3.9 H. P. Weight of casting, 400 pounds. Method of drive, Direct-current Compound-wound Motor, 600 revolu-

Method of drive, Direct-current Compound-wound Motor, 600 revolutions per minute, geared to headstock gear in place of cone pulley. Speed variations on motor 100 per cent. in all,—25 per cent. by armature control below normal, and 75 per cent. increase above normal by resistance in shunt field. Eleven points in controller, giving, with the three gear speeds, 33 changes of speed in all. An increase in output of 100 per cent. was obtained on this machine by changing from belt to geared motor drive.

No. 6.

Description of machine, Drill-press. Make of machine, W. F. & John Barnes. Size of machine, 21 inches. Motor power required, 1 H. P.

Method of drive, Direct-current Compound Motor, mounted on frame of press and belted down to driving pulley. Starter and reversing switch mounted on frame of press within reach of operator seated at table.

No. 7.

Description of machine, Radial Drill-press.
Make of machine, Niles Tool Works.
Size of machine, No. 1, 5-foot arm from centre of column.
Motor power required (maximum), 2.03 H. P.
Size of motor used, 2 H. P., 600 revolutions per minute.
Method of drive, Vertical Direct-current Compound-wound Motor,
mounted on top of column and geared to driving-shaft. Raw-hide
pinion used on motor-shaft.

No. 8.

Description of machine, Double-end Emery-wheel Stand. Size of wheel, $18'' \times 2''$. Speed of wheels, 950 revolutions per minute. Kind of work, 2 laborers grinding castings. Maximum horse-power, 6 H. P. momentarily.

Average horse-power, 3.5 H. P.

Horse-power motor required, 5 H. P. open, with dust-proof covers. Method of drive, Direct-current Compound-wound Motor, mounted on grinder-shaft between the wheels.

No. 9.

Description of machine, Vertical Boring Mill. Make of machine, Pond Machine Company. Size of machine, 10-foot table. Number of cutting tools, 2. Size of cut, $\frac{3}{4}'' \times \frac{1}{4}''$ Cutting speed, 20 feet per minute. Weight on table, 3.5 too. Motor power required, 8.58 H. P.

Method of drive, Direct-current Compound-wound Motor, belted to counter-shaft. 12 H. P. motor gave good results on heaviest cuts and weights of castings.

No. 10.

Description of machine, Slotter. Make of machine, Bement & Miles. Number of cutting tools, 1.
Size of cut, $\frac{3}{4}$ " \times $\frac{1}{4}$ ".
Speed of tool, 20 feet per minute.
Material machined, open-hearth steel castings. Motor power required, 6.98 H. P. Method of drive, Direct-current Compound-wound Motor, belted to counter-shaft.

No. 11.

Description of machine, Flat Turret Lathe. Make of machine, Jones & Lamson. Size of machine, $2'' \times 24''$, their standard. Motor power required, $1\frac{1}{2}$ H. P. for satisfactory service.

No. 12.

Description of machine, Tool Grinder. Make of machine, Gisholt Machine Company. Size of wheel, their standard cup wheel. Speed of wheel, 16 to 18 revolutions per minute. Maximum horse-power required, 7 for short periods. Average horse-power required, 4.

Method of drive, Direct-current Compound-wound Inclosed Motor, mounted on grinder-shaft, with field rheostat in series with shunt coils to increase speed from 1600 to 1800. A 5 H. P. open motor with inclosing covers gave good satisfaction on this grinder.

No. 13.

Description of machine, Engine Lathe. Make of machine, Hendey Norton. Size of machine, 16 inches.

Motor power required, approximate, 2 H. P. at maximum.

Method of drive, Direct-current Compound-wound Motor, mounted on support, bolted to bed of lathe, and equipped with clutch and cone pulley, with belt to headstock cone.

No. 14.

Description of machine, Engine Lathe. Make of machine, Putnam. Size of machine, 18" × 6' between centres. Motor power required, 2.1 H. P.

Method of drive, Direct-current Compound-wound Motor, geared to counter-shaft.

No. 15.

Description of machine, Engine Lathe. Make of machine, Pond Machine Company. Size of tool, $36'' \times 10'$ between centres.

Motor power required, 10 H. P.

Method of drive, Direct-current Compound-wound Motor, directgeared to counter-shaft.

On all the preceding machines, where motors are geared, raw-hide pinions were used on motor-shaft.

Electric Cranes.

In discussing electric driving before the Engineer's Society of Western Pennsylvania, Mr. S. S. Wales gives data as to the power required for electric cranes.

As in a general crane specification the actual weights of material and gear reduction, etc., are not known, some arbitrary assumptions will have to be made and some empirical formulæ will be used, but as both are founded on facts and experience some reliance may be placed in them.

An electric crane is divided into three general parts,—bridge, trolley

and hoist,—each of which has its own motor and controlling system, and

each subjected to different conditions of work.

For the bridge, where the ratio of axle-bearings to diameter of wheel is between 1 to 5 and 1 to 6, the following table will answer our purpose for weights and traction for different spans.

Let

L =working load of crane, in tons; W = weight of bridge alone, in tons; w = weight of trollev alone, in tons; S =speed, in feet, per minute; P =pounds per ton required.

W. Span. P. .3 L. 25 feet. 30 pounds. 50 feet. .6 L. 35 pounds. 40 pounds. 75 feet. 1.0 L. 1.5 L.

45 pounds.

For the trolley we would assume the weight and traction as shown in the following table:

> W. P. .3 *L*. .4 *L*. 1 to 25 tons. 30 pounds. 25 to 75 tons. 35 pounds. 40 pounds. 75 to 150 tons. .5 L.

Now the power required for bridge will be

100 feet.

$$\frac{(L+W+w)\times P\times S}{33000} = \text{horse-power,}$$

which result will be used in connection with the motor characteristic to determine the gear reduction from motor to track wheel. As the nominal horse-power rating of a series motor is based on an hour's run, with a rise of 75° C. above the surrounding air, and as conditions of bad track, bad bearings, or poor alignment of track wheels may be met with, in factory operation 1½ times the above result should be taken as the proper size motor for the bridge. For the trolley the power required would be

$$\frac{(L+w)\times P\times S}{33000} = \text{horse-power,}$$

which will be used for speed and gear reductions; but 11/4 times this should.

be used for size of motor.

be used for size of motor.

For hoist work we cannot have so large a margin of power, as the variation from full load to no load may imply a possible dangerous increase of speed, and unless the crane is to be subjected to its maximum load continuously, or is to be worked where the temperature of the surrounding air will be high, it is safe to use the size by assuming 1 horse-power per 10 foot-tons per minute of hoisting. This is nearly equal to assuming the useful work done as 60 per cent, of the power consumed.

As an illustration, let us take a crane of 50-ton capacity; lifting speed of hoist, 15 feet per minute; bridge to be 70 feet span and to run 200 feet per minute with load; trolley to travel 100 feet per minute with load; trolley to travel 100 feet per minute with full load.

per minute with load; trolley to travel 100 feet per minute with full load. On the foregoing assumption the bridge would weigh 50 tons and require 40 pounds per ton for traction, and the trolley would weigh 20 tons and

require 35 pounds per ton for traction.

Mr. Wales also gives formulas for the power required for driving the rollers in rolling-mill tables.

The power required by roller tables in mill work varies greatly, as they are subjected to tight bearings and lack of oil to a greater extent than electric cranes; and as there will be from 2½ to 3 bearings to each roller, and many rollers per table, the chances for trouble are greatly multiplied.

For the average conditions of mill tables, where each roller is driven by

a mitre gear from a common line-shaft and with usual mill lubrication, the following empirical formulæ, derived from the test of 20 tables, represent about the power required:

$$\frac{W \times D \times S \times N}{950\ 000} = \text{horse-power,}$$

where w = weight of roller, in pounds, the load to be carried on table being considered as uniformly distributed over all rollers, 1-N to each.

D = diameter of bearings, in inches;

S =speed of table, in revolutions per minute, of rollers;

N = number of rollers in table.

The same 11/2 times power required for size of motors should be taken

as for crane bridges.

This takes no account of diameter of roller used, which would of course have some effect on the power required to move the load to be handled, and would also show some fly-wheel effect when starting, but still it will check fairly well with tables now in use under existing conditions, two examples of which are given here:

$$N=18$$
;
 $W=1000$ pounds;
 $D=4\frac{1}{2}$ inches;
 $S=200$ revolutions per minute.

Diameter of roller, 10 inches.

$$\frac{1600 \times 4\frac{1}{2} \times 200 \times 18}{950\ 000} = 27.2 \text{ horse-power.}$$

From actual test under working conditions, this table required 28.8 horse-power, or the nearest Westinghouse motor being No. 38,—50 horsepower,—this type should be used. As a matter of fact, this table is equipped with a 30 horse-power motor, and is the source of continual annoyance from over-load. N = 16:

$$W=1000$$
 pounds;
 $D=3$ inches;
 $S=110$ revolutions per minute.
 $\frac{1000\times 3\times 115\times 16}{950\ 000}=5.8$ horse-power.

By actual test 5.5 horse-power was required.

Choice of Motors and System.

In discussing the selection of electric motors for driving machinery, Mr. P. R. Moses, writing in the *Engineering Magazine* for September, 1901, says:
"The best system in general will be that which will be free from breakdown, able to stand hard usage and frequent sudden overloads, simple and safe to handle, with parts standard and available. It should be uniform and applicable to all the requirements liable to arise in the work contemplated, the speed of the motors should be variable at will of the operator, and in some cases, like hoisting, should vary inversely with the load to prevent undue use of power. The motors should start with small currents and should have high efficiencies at average loads. The first cost should

be as low as possible, and the number of parts a minimum.

"The alternating two- or three-phase system at low pressure (500 to 220 volts) meets the first few conditions slightly better than the direct-current system of the same voltages. This system consists of a polyphase generator composed of a stationary and a revolving part, an exciter—sometimes revolving on shaft, sometimes belted to shaft—for delivering the current required to magnetize the fields, a system of distributing wires and motors frequently built without brushes, but sometimes, where adjustable speed and good dynamo regulation are required, with brushes and collector rings. The system is simpler than the direct-current system, in that no current has to be delivered to any moving part of the motors. In the direct-current system, current must be delivered to the rotating armatures of the motors through brushes of carbon and commutators made up of copper bars held firmly, clamped by a collar, with mica between the bars and between the bars and between the bars and between the motors of the polyphase alternating systems and the motors of the direct-current systems. The connections to the commutator and the commutator itself are the only parts of the motors in which trouble is liable to arise, with careful construction; and although probably a hundred thousand are in use daily, and the manufacture has been carefully studied, trouble does arise,—generally on account of accumulation of grease or dirt, allowing the current to jump from the copper bars to the iron frame of the machines, or from breaking of connections between winding and commutator lugs, caused by frequent stopping and starting, combined with overheating and slow cooling. This alternation of heating and cooling causes the copper to become brittle and—unless the connections are made flexible—to break off.

"The advantages of simplicity, durability, and freedom from breakdown, therefore, are with the alternating polyphase motors,-more especially of the brushless type; but, unfortunately for the polyphase system at the present day, all the other requirements are much more easily and better met by the direct-current motor.

"The alternating-current motor.

"The alternating-current system is not yet fully standardized, but is constantly being perfected and broadened in its scope. Its parts are obtainable from but two or three first-class companies; it is not applicable yet to charging storage batteries, to railroad work, or to hoisting, although it has been used for both the last; the speed of motors is not adjustable unless the brush and collector-ring type is used; the starting currents under load are large, causing more or less fluctuation in lights; and the first cost of dynames and protors is between 25 per sont and 25 per sont an first cost of dynamos and motors is between 25 per cent. and 35 per cent. higher than that of direct-current apparatus of the same capacity. fore, unless the value of adjustable speeds, 25 per cent. less first cost, higher average efficiency, etc., are balanced by the possibility of commutator troubles, the direct-current system is at present preferable and advisable for ordinary cases of factory transmission. In such cases the polyphase alternating current's value is confined to the transmission of power from atternating current's value is commet to the transmission of power transmission of the distant sources at higher pressures. In special cases the alternating-current system may prove advisable even for medium distances. One of these instances is in hat, candy, or similar factories, where electricity is largely used for heating, as well as for power and for light; the ease with which an alternating current can be transformed—i.e., small quantity at high pressure changed to large quantity at low pressure, or vice versa—gives this system the preference, as quantity and not pressure is the essential feature of electric heating. Works where naphtha or other explosive gas is used equire a sparkless motor, and the alternating motor is the only one fitted for this use. Machine shops with a number of small, scattered machine

tools may be better suited by one system or the other, depending on the question as to the advisability of direct connection of tools, the amount of probable overload, and the question of speed variation. In mills, large machine shops, and factories of all kinds, where the power to transform is not valuable, there is no benefit to be derived from the polyphase current sufficient to offset the disadvantages mentioned.

"As to the best pressure to be used for transmitting direct current, the answer cannot be so definite. The advantages of a high transmitting pressure, such as 440 to 500 volts, are low first cost and small bulk of wiring, switches, and controlling apparatus. The disadvantages are increased liability to ground, danger of shock, increased number and decreased size of field armature wires and of commutator bars. The liability to ground may be guarded against in the construction, but the other difficulties are inherent, and are sufficiently objectionable to make the 500-volt motor and system inadvisable, except for such purposes as electric railroads, where power has to be transmitted a long distance. The 220 to 250-volt motor has only half as many commutator segments, armature conductors, and connections as the 500-volt motor; and the 110 to 125-volt motor but one-quarter nections as the sou-voit motor; and the 10 to 123-voit motor but one-quarter the number. The sizes of these parts increase in proportion to the decrease in number; hence, the lower the voltage of a motor, the more substantial and the stronger mechanically. The lower voltage offers the advantage, too, of decreased tendency of the current to jump to the frame or from one wire to another. The winding of the fields of the 120-volt motor is made up of less than one-half the number of turns used in the 240-volt motor, and while the wire has twice the area, it does not occupy twice the space; on this account the field-coils of the low-voltage motor do not heat as much as the higher-voltage motor. On the other hand the resistences as much as the higher-voltage motor. On the other hand, the resistances used to control the speed and starting current, the switches, fuses, and the wiring are much larger and heavier for the 120-volt motor than for the 240-volt motor, and for motors of large size this is a decided disadvantage, as it interferes with ease of regulation and control, and increases the first cost.

"For small motors, 5 to 50 horse-power, for transmission over short distances (from 200 to 400 feet), and for fluctuating work, such as elevators, presses, cranes, punches, etc., the 125-volt 2-wire system seems preferable. For large motors, transmission over comparatively long distances, or for steady work, where mechanical strength is not essential and where the motor will receive attention, as in silk mills, carpet works, etc., or for work where minimum weight and size are important, the 240-volt system, or one

of higher pressure, is usually the best fitted for the purpose.

"It is my opinion that at present prices the 125-volt direct-current 2-wire system is the preferable one in most instances, and little or no trouble with the motors or dynamos is experienced at this voltage. Where the distance through which the power is to be transmitted is such as to make the cost of wires for carrying the current too great, the 240-volt direct-current 3-wire system should be used. Where there are special features, such as those hereoforce mentioned or whose the power is transmitted. such as those heretofore mentioned, or where the power is transmitted a distance too great for the 240-volt direct-current system, the three-phase alternating-current system, 60 to 70 cycles per minute, becomes necessary and gives thoroughly satisfactory results.

"The greatest drawback to the alternating-current system to-day is its excessive cost, which brings no equivalent advantage. In the course of a few years this difference will disappear, and the system will probably be used for all situations demanding a higher pressure than 125 volts."

Speed Variation.

The question of the control of speed with electric driving of machine tools is an important one, especially as the use of modern high-speed tool steels involves the correct speeding for each diameter and material in the lathe, boring mill, or other machine. This subject was thoroughly discussed at a meeting of the Engineer's Club of St. Louis, January 7, 1903, and some abstract of the points there made represent the latest opinions.

Mr. W. A. Layman says: "The individual drive system may be generally classified under three headings:

"Rheostatic control systems,

"Multi-voltage control,

"Special systems for special tools.

"In the rheostatic control system the motor is of the well-known shunt type, supplied from a constant-potential system of distribution. Speed variation above the normal speed of the motor is secured by the introduction of resistance into the motor shunt-field circuit; speed variation below normal is secured by the introduction of resistance into the armature circuit.

The disadvantages of the system are its inefficiency when armature resistance is made use of for speed reduction, and variation of speed on a given armature resistance with variation of load. To overcome both disadvantages, motors have been designed capable of a very wide variation

in speed by variation of field resistance.

"The multiple-voltage control is regarded with favor by many.

"The Westinghouse and the General Electric Companies use a 3-wire system, as shown in the illustration.

Westinghouse 3-wire System for Variable Speed Control.

"The usual direct-current generator is provided with a set of collector rings, these collector rings being connected to the armature winding in such a way as to establish an exact two-phase relation between the potentials of the two pairs of collector rings. By means of choking coils, connected as shown, the neutral wire of the 3-wire system is exactly and constantly maintained, irrespective of load, at zero potential relative to the outside wires.

"In connection with this 3-wire system the individual tool is equipped with a standard 250-volt shunt motor, and speed variation is secured in two ways: first, by running the armature either on 250 volts (normal speed condition); and second, by running it on 125 volts (half normal speed condition). For any speed desired between normal and half normal,

shunt field resistance is introduced.

"The shunt motor is capable of 100 per cent. speed variation by variation of shunt resistance when the armature is on half voltage (and correspondingly at half load). If speed above normal full speed is required, shunt resistance is again introduced.

"The Bullock Electric Manufacturing Company advocates a system as

shown in the illustration. A generator, standard in every respect, is supplemented by a small motor-generator set, the design of which is such that plemented by a small motor-generator set, the design of which is such that a 4-wire system of distribution is established, providing for six different voltages upon which the motor armature may be operated without the use of armature resistance. The form of motor used is the standard shuntwound type. Without the use of field resistance six speeds may be secured, corresponding in ratio to the ratio of the voltages supplied by the 4-wire distribution system. By means of shunt resistance any speed intermediate to that possible with the several armature voltages may be secured. The motor-generator set is so proportioned as to take care of the

Bullock Electric Manufacturing Company's Multiple-voltage System.

unbalanced load. This system is also adaptable to 3-wire distribution, where less speed variation is required; and in the event of 3-wire distribution an increased amount of field regulation is introduced. This 3-wire distribution differs from the Westinghouse and General Electric systems, in that the voltages on the two sides of the intermediate wire differ, thus

giving three pressures instead of two."

In the same discussion Mr. W. Cooper said, in considering the fact that many tools are not designed to stand the high speeds that modern tool steels will permit, "that even if the machines will not stand the maximum speed of the tool, they may yet be operated at the highest speeds of which

they are capable.

There is no reason why a machine tool that is adapted to do a certain work should not do this work at two or three times the speed. The reason for this seems obvious, in the fact that the strains on a machine are due entirely to the torque required to make a given cut. With this given cut the speed may be increased three or four times without producing any greater strains on the machine itself, because the torque remains constant. However, the horse-power will increase directly in proportion as the increase in speed; and right here we have a factor that limits the ordinary belted machine tool,—the belts will not pull the load. For instance, suppose that we have a given machine running with a belt on the largest

step of the cone pulley on the machine, and taking a certain cut; assume the cutting speed to be 20 feet a minute. If it is desired to increase this cutting speed to, say, 80 feet per minute, it is found necessary to put the belt on the smallest step on the cone on the machine. We at once encounter the difficulty that the belt will not begin to pull the cut. This is also true of the various mechanical speed-changing devices that have been introduced. Thus it will be seen that machine tools that were designed on the lines of the cutting speed of 20 feet per minute are not adapted at all to cutting speed of 80 feet per minute. However, they are not limited However, they are not limited by the strength of the tool, but by the pulling power. Under these conditions it is only necessary to increase the pulling power of this machine to make it do four times the actual work that it formerly did.

"This can readily be accomplished by the use of the electric motor, so that the limit lies in the stiffness of the bed or frame of the machine to carry the increased load without springing or chatter."

In a paper read before the Iron and Steel Institute, in 1903, by Mr. D. Selby-Bigge, the power required to operate electrically a great variety of machine tools was tabulated. Although in many instances the depth of cut and the speed of cutting surfaces is not given, yet it is understood that these records represent average practice with ordinary tool steels, and that for lathes, boring mills, etc., the power given in the tables would have to be increased in proportion to the increased capacity given by use of the modern high-speed steels.

Motor Tests.

Pomorales	romarks.	Cut 0.05" thick on 1" plate 4" long at time of test. This machine took 29.5 horsepower to reverse.	Cutting 34" plate 22" long. 21 horse-power to reverse.	10" × ½" plate. Plate 4' square by 1,3" thick. Same plate on slow speed. This machine took 19.1 E. H. P. to reverse.	Cutting 12" × 3½" × ½" channel. Saw fitted with friction gear for feed, which prevents a heavy load.	34" hole, 38" plate. 25 per	15" hole, 34" plate. 20 per minute	Shearing $10'' \times \frac{1}{2}''$ plate. Cutting $3'' \times 3'' \times \frac{3}{8}''$ angles.	Ending $20'' \times 71/2''$ girder, $1/2''$ web, $1''$ flange.	Cutting $3\frac{1}{2}$ " $\times 3\frac{1}{2}$ " $\times \frac{1}{2}$ " angle (momentary load)	Straightening 6" × 6" angle- piece.
f mo-	Size o tor u	30	25	15	r	10			15	10	
E. H. P. absorbed	with load on.	24.50	20.10	6.10 16.10 14.00	2.60	00.9	8.85	5.15 4.90	15.42	11.55	6.15
E. H. P. absorbed by	machine run- ning light.	14.75	6.33	4.50	1.45	3.85			1.88	1.53	
Work done.	Average.	7/8" or 1" plate.	5%" to 34" plate.	4' $6'' \times 4'$ $6'' \times 1^{1}/8''$, $10'' \times \frac{1}{2}''$ to $15'' \times \frac{3}{4}''$.	About 12" \times 6".		34" hole, 1/2" plate.				
Work	Maximum.	35' × 1″.	15' × 34".	4' 6" × 4' 6" × 1½".	$16'' \times 6''$ girder.	12" shear, 78" plate.	18" hole, 7%" plate. 34" hole, 12" plate.			Angles and small bars.	
Doming of second second	resignation of machine.	Large plate-edge planer.	Small plate-edge planer.	Plate-straightening rolls.	Cold saw	Punch shears and an- 12" shear, 7,8" plate.			Large ending machine. Knives 221/2" long.	Straightener and angle Angles and small bars.	

All six drills at work. 3/" holes in girder steel.	Straightening $20^{\prime\prime} \times 71\%$ girder, $4^{\prime\prime\prime} \times 34\%$ notches in flanges of $8^{\prime\prime} \times 4^{\prime\prime\prime}$ girders. Two notches cut at once.	Joggling 14" plate.	No. 1 shaft drives about 70 machines. No. 2 shaft drives about 40 machines on first motor.	No. 3 shaft drives about 25 machines,—slots and planers. 7 grindstones, varying from 5 to 10 feet in diameter; each has fast and loose belt. Also I Tuese grinding machine on same shaft.	All rope-driven cranes. 2-30 ton cranes, 1-15 ton cranes, 2-10 ton cranes; all cranes on nearly full load at once.	Straightening a plate 36' × 4' 6" × 1½". Straightening a plate 9' × 17" × 1". Machine is driven by cross and open belts, and has 4 top rolls and 3 under rolls.
œ	∞ ∞		20	90	20	30
7.5	6.9 8.05, maxi- mum load. 5.8, aver- age load.	16.00 12.10 10.75	40–48	42-50 53-55	48	30
3.70	3.96	9.85 5.65	21 E. H. P. First motor, 23 E. H. P.; second motor, 22 F. H. B.	E. H. F. Second motor, 24 E. H. P. 20.5 E. H. P.	Driving-ropes doing no work, 23 E. H. P.	Driving countershafts and belts only, 5 E. H. P.
34".	12" × 6" girders.	34" plate.	Slotting machines, drills, milling,—about 70 in all.			1" plates.
1" holes.	20" × 7½" girders. 12" × 6" girders.	1¼" plate. 2 tons at 40 feet per minute.	Driving lathes, nibblers, planes, machines, etc.			Plates $40' imes 4' 6'' imes 13''$.
Shafting driving 6 ra- 1" holes. dial drills.	Large straightener Milling-tool notching machine.	Joggling machine	Shafting	Grindstones	Cranes	Cold rolls (locomotive Plates $40' \times 4'$ $6''$ 1" plates, work).

Motor Tests.—Continued.

	Domosti		During a week this motor was not seen to rise above 10 horse-power. When busy it absorbs about 17 to 18 E. H. P. It drives 12 tools, including 2 circular saws.	1" hole and 11/" countersink; 2 machines doing 280 holes in 8 minutes.	7/8" holes, 5/8" plate, 36 strokes	Shearing 5%" plate 16 feet per minute.	5%" holes, ½" plate, 34 strokes	Shearing ½" plate 11 feet per minute.	Motor is a series motor, with a tramway controller; belt drives direct to machine, and motor is reversed when mangling. This arrangement has given most excellent results.
	om 1	Size o tor u B, H	50		12	<u>:</u>	12		15
-	E. H. P. absorbed	with load on.	10	7.00	0.9	15.0	3.5	11.0	13.5
inocol reseased.	E. H. P. absorbed by	machine run- ning light.	Driving shaft- ing, 5.5 E. H. P.	Driving counter-shaft, off which 2 per cent. drills are worked, 3.5 E. H. P.	2.7 E. H. P.		2.75 E. H. P.		4.5 E. H. P.
CO TOTOLIN	Work done.	Average.			Plate.	Plate.	Plate.		%% %%
	Work	Maximum.		134" holes and 134" countersinks.	1½" holes in 1.	Shearing 1".	Shearing 1".		1½" plates.
	Designation of machine	resignation of macuine.	Joiners' shop machines	Vertical ship-yard drills and counter- sinks.	Funch and shears $11/4''$ holes in 1.		Punch and shears		Mangle rolls 13/8" plates.

3	Boring 5% hole in hatch 22" broad, in 2 minutes.	Cutting $\frac{1}{2}$ " off plank 10" broad \times 17' long, in 1.5 minutes.	1/8" off plank 7" broad × 13' 6" long, in 30 seconds.	Cutting 3" teak—hand-fed—14' long, in 20 seconds.	Machine cut about 35 pieces $11'' \times 11'8''$ section, in 1 minute.	Punching 19 holes per minute, 17%" in diameter, through 1" plate. Machine driven by belt.	Bending plates $20' \times 4' \times 34''$ (load at reverse 26 E. H. P.). Rolls driven by cross and open belts.	Pump discharges about 500,000 gallons per hour.	Leakage pump.	This machine took 23 E. H. P. to reverse; motor has cross and open belts on: special wide pulley, thus dispensing with the use of a countershaft.	$1''$ hole, $\frac{5}{8}''$ plate. 31 strokes per minute.
	3.5	∞	16	15	08	12	08	20	10	20	10
	3.0	8.8	16.0	14.8	29.0	10.5	26.0	74.0	11.0	38" plates, 10.0	7.5
	2.05 E. H. P.	4.4 E. H. P.	4.5 E. H. P.	0.9 E. H. P.	2 E. H. P.	3 E. H. P.	8 E. H. P.	-		5½ E. H. P.	3.5 E. H. P.
	5/8" holes.				General scrap.	1¼" holes in 1".	5g" and 34" plates.			Planing about 24' per minute.	1" holes in 5/8" plates. 3.5 E. H. P.
	1" holes.				Steel tires of locomotive wheels.	2" diameter of 114 " holes in 11 " plates.	26' rolls to bend $\%$ " and $34''$ plates.			5/8", 2/8", and 3/8" plates.	1¼"×1¼".
	Wood-working Tools. Hatch-boring machine	Wood-planing ma- chine.	Wood-planing machine (heavy).	32" circular saw	Heaviest class of shear- ing machinery.	Punching machine	Large ship-yard rolls	18" dock pump	5" dock pump	Plate-edge planer	Punch and shears $114'' \times 114''$.

Motor Tests.

	Remarks.			
į	and type of motor,	20 B. H. P.		20 B. H. P.
	Maxi- mum load on motor,	14.9 E. H. P., with fluctua- tions to 19 E. H.	ŭ	Fluctuation to about 18 E. H. P.
bsorbed.	Average machine loaded.	9.5 E. H. P.		Average full load, 11.2 E. H. P.
E. H. P. absorbed.	Average machines light.	3.7 E. H. P.		
	Shafting and all machines light.	Shafting alone, 1.75 E. H. P. All	ngnt. 62 B. H. P.	Shafting alone, 1.5 E. H. P.
otor.	Usual and average machines on load.	2-9" centre lathes. 1-12" centre lathes. 1-3' chuck lathe.	1 slotting machine. 1 drilling machine. 1 emery wheel. Fan.	All machines, pots, and drying machine continuous, and others intermittent.
Work done by motor.	Total of machines on motor.	2-9" centre lathes. 1-12" centre lathes. 1-3" centre chuck lathe. 1 planing machine, 9-foot stroke.	1 slotting machine. 1 milling machine. 1 shaping machine. 1 punch and shears machine. 2-2½" vertical drills. 1 emery wheel. 1 cold saw (hack). 1 fan. supplying 9 smiths' hearths: Shafting: 20 × 3" C shaft; five others to 10 feet long.	4 large galvanizing pots, each for 20 tons of metal. 2 drying machines, attached. 1 large sheef-stretching machine. 1 large corrugating machine (press). 2 circular shearing machines, counter-shafting, and belts.
Wester	depart- ment or machine.		Fitting- shop motor.	Gal- Gal- izing- house motor,

10 B.	10 B. H. P.	10 B. H. P.	mum, when work- motions well- motions well- simula- motions wheels, 2' diameter. simula- motions wheels, 2' diameter. simula- motions wheels, 3' diameter. simula- be H. P., lecting gear = D. P. E. H. P., lecting gear. Travel of much peel is racked in towards motion, peel is racked in towards motion, heel distance froms machine, the distance from and steel billet is ap- proximately 20', taken radially. When peel is machine, when peel is machine, when centre of support. Total lift of peel = 3'.
Average Fluctua- 10 B. full tion to H. F E. H. P. E. H. P.	11.5 E. H. P., occa- sionally.	11 to 12.5 E. H. P.	Maxi- mum, when work- ing 3 motions simulta- neously, about 22; under worst condi- tions.
Average full load, 6.9 E. H. P.	8.2 E. H. P.	9.8 to 10.3 E. H. P.	11, 11 to 12.8, 6.3 10.8, 10.8 6.5 to 8.5 E. H. P.
			Lifting, 3.2 to 4 B. H.P.; travel. ling, 7.8 E. H.P.; slew. ing, 4.9 E. H.P.; ing, 4.9 E. H.P.; ing, 5.
Shafting alone, 1 E. H. P.	2.6 E. H. P.	6.5 E. H. P.	Motor and first, second, and third and third motion shafts and gearing, 1.55 E. H. P.
		6.5 E. H. P.	
tons of metal. 2 small galvanizing pot, for 20 All machines, pots, and drying paraling pots, each for 10 tons of metal. 1 drying machine, attached. 1 stretching machine.	1-9' in diameter pan mill, short counter-shaft.	20 stamping machines, of various sizes and types, for armature and field core plates.	1 electrically-driven charging machine, charging and discharging—i.e., heating furnaces and supplying live rolls with ingots up to 10 cwt. each.
No. 2. Gal- van- izing- house motor.	"Dolo- mite" crusher.	Stamping-house motor.	Steel charging charging in machine, in steel mill.

Motor
Tests on Cranes. Quick-motion,
Taken August

		Work o	lone by	Actual tests on crane.				
Works department.	Size and type of travelling crane.	cra	ne.		E. H. P. absorbed. Crane light.			
		Aver- age.	Maxi- mum.	Motion.	Starting effort.	Running Power.		
No. 1 crane. Plate mills loading.	5-ton 3-motor crane. Works in exposed position, both in and out of shop.	1 to 3 tons.	$\frac{4\frac{1}{2}}{\text{tons.}}$	Lifting. Traversing. Travelling.	13.4 14.8 23.6	.50 7.70 11.80		
No. 2 crane. Plate mills floor.	5-ton 3-motor crane. Works under cover.	1 to 2 tons.	4 tons.	Lifting. Traversing. Travelling.	18.0 20.6 28.5	9.60 9.35 11.3		
No. 3 crane (new). Plate mills loading.	6-ton 3-motor crane. Built and erected by Dowlais Cardiff Works. works in exposed position, both in and out of shop.	1 to 3 tons.	4½ to 5 tons.	Lifting. Traversing. Travelling.	22.3 11.3 29.5	9.5 6.2 12.0		

Note.—The starting efforts given above can be regarded only as approximate, being merely momentary, and volts drop being disregarded. The cranes above are on 220 volts circuit. One longitudinal trolley wire

Tests.

Overhead Travelling.

18, 1902.

Figures t	taken Aug	ust 18, 19	02.	Size				
	absorbed. loaded.		Speeds and loads during test.		Remarks.			
Starting effort.	Running power.	Actual load.	Approximate speeds.	electrical.	+ -			
29.1 16.8 29.4	18.3 9.6 12.6	3 tons 6 cwt.	43 feet per minute. 125 feet per minute. 150 feet per minute.	22 E. H. P. 15 E. H. P. 22 E. H. P.	This crane has the motors fixed on the main girders above end carriage. Drives by square shaft and gear. Water starting and regulating switch, and metallic lever controlling switch.			
27.8 24.5 34.0 29.4 14.9 32.8	12.8 10.3 12.4 19.2 7.3 13.8	\\ 3 tons. \{ \} \] \[3 tons \\ 6 cwt. \\ \}	Speeds approximately as above. 60 feet per minute. 150 feet per minute. 165 feet per minute.	22 E. H. P. 15 E. H. P. 22 E. H. P. 20 B. H. P. 20 B. H. P. 20 B. H. P.	This crane has travel motor on main girders and lift and traverse motors on the bogie. Gear driven. Water starting and regulating switch, and metallic lever controlling switch.			

only employed, the return being to "earth." The above working-load tests present a fair and good heavy average load, and are seldom exceeded under actual working conditions in these works.

Motor Tests.

Taken August 18, 1902.

Description of machine.	Work done by machine.	E. H. P. absorbed. Light. Loaded.		Type and size of motor.	Remarks.		
3-ton skull- breaking winch.	Lifts ball weighing 3 tons 8 cwt. to height of 50 feet at speed of 60 feet per minute (timed).	8.5	17.8	2-pole open type ar- mature at bottom, 18 E. H. P., series- wound.	This winch is of ordinary band pattern, driven through works and spur gear, with brakes and clutch. Water starting and regulating switch.		

A table of machine tests in a somewhat different form is appended:

Condensing Plant.

One 10-horse-power motor of 220 volts, driving direct-coupled 3-inch centrifugal pump, driving also with belt air pump 9½ inches in diameter by 9-inch stroke, and feed pump 2 inches in diameter by 9-inch stroke. Boiler pressure, 200 pounds.

	Revolu-			Vacuum,	E. H. P.		
Operation.	tions.	Amperes.	Volts.	in inches.	Total.	Actual per operation.	
Centrifugal pump Centrifugal with air and	1100	6	240		1,9	1.9	
feed pump	160	12	240	27	3.8	1.9	

Brass-shop Motor, 5 Horse-power, 240 Volts.

	D 1			E. H. P.		
Operation.	Revolu- tions.	Volts.	Amperes.	Total.	Actual per operation.	
Motor and shaft	220	250	7.00	2.3	2.3	
running light		246	8.50	2.8	.5	
Facing 61%-inch brass valves		246	24.00	7.9	5.6	
6-inch capstan lathe (light)		248	9.75	3.2	.9	
Turning and screwing 1½-inch brass bars for ¾-inch tap bolts. Parting 1½-inch brass bars for		248	12.0	4.0	1.7	
3/4-inch tap bolts		248	10.0	3.3	1.0	

No. 1 Foundry .- Roots Blower, Acme No. M.

Operation.	Revolu-	Volts.	Amperes.	E. H. P.		Time,
operation,	tions.		Total.	Average.		
Motor and shafting, light running		245	14	4.6		•••••
Maximum Minimum	360 350	246 233	104 66	$\left\{\begin{array}{c} 32.7 \\ 21.7 \end{array}\right\}$	28.2	$4\frac{1}{2}$

Total weight of iron melted, 22 tons 10 hundredweights; total weight of iron melted per hour, 5 tons.

No. 2 Foundry.-Roots Blower, Acme No. K.

Operation.	Revolu-	Volts.	Amperes.	E.	Н. Р.	Time,
	tions.	·		Total.	Average.	
Motor and shafting, light running		232	9.5	2.96		
Maximum	430 394	237 225	57.0 50.0	$17.1 \ 15.2$	15.94	3

Total weight of iron melted, 12 tons; total weight of iron melted per hour, 4 tons.

REMARKS.—No. 1 cupola is capable of melting on an average 7 tons per hour.

Boiler Shop.-Vertical Plate-bending Rolls.

Length of rolls, 11 feet 7 inches; diameter of rolls, 1 foot 11 inches; mean size of plates rolled, $20' \times 10'$ $6'' \times 1''$; maximum size of plates rolled, $16' \times 11'$ $5'' \times 1\frac{1}{2}''$.

	Operation, Amperes.			Н. Р.	Time,
Operation,			Total.	Actual per operation.	in min- utes.
Motor and shafting, light running	20 24	242 242	6.40 7.70 Average.	$6.4 \\ 1.3$	
Putting squeeze on plates Reversing the rolls	90–68 30–60 50	233 233 233	19.2 9-18 15.6	12.8 6-12 9.2	3

Air Compressor, Belt Driving from Motor.

Operation.	Revolu- tions.	Volts.	Amperes.	Е. Н. Р.	Remarks.
Motor, shafting, and pumps.	175	230	22	6.7	Air compressor, 9 inches in diameter, 10-inch stroke.
Pumping up to maximum pressure.	170	230	. 70	21.5	Maximum pressure, 80 pounds.

Pattern-shop Motor, 15 Horse-power, 220 Volts.

	Daniela			E. H. P.		
Operation.	Revolutions.	Am- peres.	Volts.	Total.	Actual per operation.	
Motor and shafting	170	9.5	233	2.9	2.9	
diameter, running light	800 Maxi-	10.5	233	3.2	.3	
Cutting yellow pine 11 inches deep, 7 feet per minute	mum. Mini-	40.0	233	12.4	9.2	
* 1	mum.	18.0	233	5.6	2.4	
Thickness of machine, 2 feet 6 inch	Average.	29.0	233	9.0	5.8	
bed, running light	3800	12.0	230	3.7	.8	
wide, 13 feet per minute	• • • • • • • • • • • • • • • • • • • •	17.9	232	5.5	1.8	

37 Horse-power Motor.

	Revolu-	Am-		E. H. P.		
Operation.	tions.	peres.	Volts.	Total.	Actual per operation.	
Motor and shafting		12	230	3.7	3.7	
Circular saw, 3 feet in diameter, running light	1200	21	230	6.4	2.7	
20 feet per minute		71	230	21.5	15.1	
ter, running light		26	230	8.0	4.3	
Cross-cut lignum-vitæ, 9¼ inches deep by 18 inches long		41	230	12.6	4.6	

30-Ton Cranes. Boiler Shop, 25 Horse-power Motor, 220 Volts.

	Am-			. Н. Р.	Time,	Feet.
Operation.	peres.	Volts.	Total.	Actual per operation.	in min- utes.	
Motor and shafting and belts (light) Heaving (light) Cross travel (light) Longitudinal travel (light) Longitudinal and cross travel (light) Travelling long Weight, 16 tons, heaving Cross travel Longitudinal travel	12.0 16.0 15.0 16.0 18.0 16.2 36.0 30.0 18.0	230 230 230 230 230 230 230 230 230 230	4.3 4.9 4.8 4.9 5.5 4.9 11.1 9.2 5.5	4.30 .60 .50 .60 1.20 .68 6.2 4.4	1 1	

THE COST OF POWER.

In a series of articles in the Journal of the Franklin Institute, October, November, December, 1901, Mr. Clyde D. Gray gives an extended discussion of the cost of power under various conditions, and from these papers the following abstract is made:

Water Power.

The costs of water-power plants are widely different, depending upon the location, size, and extent of the hydraulic works needed, length of penstock and flume, and many other things that differ in the various localities. Below are given some figures in regard to the costs of plants. These are low-head plants fitted with turbine wheels, and are used principally for mill or factory purposes. The costs do not include costs of dam unless so specified, but include everything else in the plant. The horse-power basis upon which they are figured is the horse-power delivered at the wheel shaft.

WATER-PLANT COSTS.

Place.	Cost per D. H. P.	Authority.
Lawrence, Massachusetts Manchester, New Hampshire Lowell, Massachusetts, 13 feet	\$68.67 66.00	Manning, A. S. M. E., Vol. X., p. 499.
head Lowell, Massachusetts, 18 feet head Lawrence, Massachusetts. Lawrence, Massachusetts, 1000 horse-power. Concord, New Hampshire (with	110.00 57.00 63.00 67.50	C. T. Main, A. S. M. E., Vol. XI., p. 108.
dam)	$ \begin{bmatrix} 57.75 \\ 34.20 \\ 37.50 \\ 24.00 \\ 67.33 \end{bmatrix} $	Webber, A. S. M. E., Vol. XVII., p. 41. Eng. Mag., Vol. VII., p. 409.
Zurich (with dam)	$100.00 \}$ $120.00 \}$ 108.25	Eng. Mag., February, 1900. Eng. News, October 1, 1896.
Average without dam (excluding Lowell, \$110.00)	\$53.41 79.55	

It is probable that the cost of such plants will be from \$40.00 to \$60.00, excluding the cost of dam, but including all other parts; and when the dam is included that it will be from \$60.00 to \$100.00. Webber, in *Iron Age*, February and March, 1893, says that water-power plants can be put in for \$100.00 per horse-power; and Stilwell, in A.I.E.E., Vol. X., p. 484, says that the cost may be as low as \$65.00.

The cost of water power per horse-power year is variable, depending, as it does, upon the first cost of plant; and hence no very good average can be found. The following table may serve to show the costs in some cases

that have been reported.

COST OF WATER POWER.

Place.	Cost per H. P. year.	Authority.
Lawrence, Massachusetts	\$13.70	C. T. Main, A.S.M.E., Vol. XIII., p. 140.
Canada (lowest)	6.25 16.10	Meyer, Sci. Am., February 9, 1882. Eng. News, October 1, 1896.
Lawrence, Massachusetts, 1000 horse-power	22.62	Manning, A. S. M. E., Vol. X., p. 48.
horse-power	19.13	Main, A. S. M. E., Vol. XIII., p. 140.
Augusta, Georgia	11.05	Webber, A.S.M.E., Vol. XVII., p. 41.
Omaha, Nebraska (estimate) Norway (electrolytic work)	8.08	Eng. Mag., Vol. VII., p. 409. Chem. Ind., Vol. XXIII., p. 121.
Niagara (sold for) Estimate on plant	13.00 5.42	Emery, A. I. E. E., Vol. XII., p. 358. Webber, W. O., Eng. Mag., Vol.
Average of the above		XV., p. 926.

From the above table it may be seen that the cost per horse-power year is \$10.72. Webber gives it as \$10.00 to \$12.00 (*Iron Age*, February and March, 1893); and Conant, in an article in the *Street Railway Journal* for October, 1898, gives the cost as ranging from \$10.40 to \$22.40. A fair average may be taken as varying from \$10.00 to \$15.00.

Steam Power.

SUMMARY OF BOILER TESTS.

Water Evaporation per Pound of Fuel.

Authority.	No. of tests.	Water evaporated, in pounds.	Kind of fuel.
Kent (Christie), A.S.M.E., Vol. XVIII., p. 365 Barrus, horizontal tubular. Barrus, horizontal tubular, low flue temperature Barrus, horizontal tubular, high flue temperature Barrus, horizontal tubular, high flue temperature Average from Gray's Tables, W.T Average from Gray's Tables, tubular. Average of all the above.	95 16 6 5 10 37 23	11.11 10.76 10.40 11.00 11.59 10.80 10.40}	All kinds. Anthracite. Cumberland. All kinds.

SUMMARY OF ENGINE TESTS.

Pounds of Water per Horse-power Hour.

Authority.	Auto- matic.	Corliss.
Simple, Non-condensing.		
Carpenter (Sibley theses, Sib. Jour., Vol. XIV., p. 228)	34.3	28.3
I. Bell "Flectrical Transmission of Power"	33.0	28.0
Carpenter (Sibley theses, Sib. Jour., Vol. XIV., p. 228) L. Bell, "Electrical Transmission of Power" Hutton, "Mechanical Engineering of Power-plants"	33.0	29.0
Thurston & Competer A I E E Vol V n 207	31.5	28.6
Thurston & Carpenter, A. I. E. E., Vol. X., p. 297 Davis, C. H., Eng. Mag., Vol. XII., p. 942	36.0	31.5
A word of Crossle Made, vol. All., p. 942	33.4	28.9
Average of Gray's Tables	55.4	28.9
Average of all the above	33.8	29.0
Compound, Non-condensing.		
Carpenter	32.3	
Bell	24.0	22.0
Hutton	26.0	24.0
Thurston & Carpenter	24.5	24.0
	27.0	26.0
Davis	23.6	
Gray's Tables	25.0	
Average	26.2	24.0
Simple, Condensing.		
Bell	25.0	21.0
Hutton	22.0	20.0
Thurston & Carpenter		23.0
Thurston Eng Mag Vol VII n 844		25.0
Thurston, Eng. Mag., Vol. VII., p. 844 Davis	31.0	26.5
Grav's Tables	22.2	20.2
1		00.0
Average	23.1	22.6
Compound Condensing		
Compound, Condensing.		40.0
Carpenter	22.7	18.3
Bell	20.8	18.0
Hutton	20.0	18.0
Thurston & Carpenter	18.8	17.2
Davis	22.5	23.0
Thurston		18.0
Gray's Tables	19.8	15.7
Average	20.6	17.7
	20.0	
Triple, Condensing.		
Bell	17.0	13.0
Hutton	17.0	16.0
Thurston & Carpenter		14.6
Thurston		14.0
Gray's Tables		13.3
Average	17.0	14.2
Average	17.0	14.2
		·

STEAM=PLANT COSTS.

The cost of steam plants varies greatly with the locality, size, kind of machinery, boilers, and many other items. The table given herewith shows good approximations to the costs of various constructions.

TABLE OF PLANT COSTS.

Authority.	Cost per H. P.	Remarks.
Manning, A.S.M.E., Vol. X., p. 48	\$68.26 52.50 50.00	Total—engine, boilers, stack, 500 horse-power plant. Total—engine, boilers, stack, 1000 horse-power plant. Steam plant complete.
Webber, A. S. M. E., Vol. XVII., p.	65.00 54.71 59.51 60.35	Plant complete. High speed, condensing, from Emery's tables for 550. Low speed, from Emery.
Dean, A.S.M.E., Vol. XIX., p. 301	70.00 70.00 57.00 60.50	Simple Corliss, condensing, best, 1000 horse-power.
Rathwell, A.I.M.E., Vol. XVII., p. 555	40.00 60.00 28.60	1132 horse-power. Engines and boilers. Complete plant. Simple slide valve, non-con-
Carpenter, Sib. Jour., Vol. XIV., p. 298	30.20 30.00 30.00	densing.* Corliss, non-condensing. Compound slide valve, non- condensing. Compound, non-condensing.
<i>Elec. World</i> , February 2, 1901, p. 214.	33.25 28.50	Compound Corliss, condensing. Estimates on plant for South Africa. Engines, boilers, and piping,
Thurston, Eng. Mag., Vol. VII., p. 841	45.00 53.00 62.00	simple, condensing. Compound, condensing. Triple, condensing. Quadruple, condensing.

Field, in A. S. M. E., Vol. XVI., p. 504, gives the average cost of steam plants as ranging from \$50.00 to \$55.00 per horse-power, and Professor Ryan, in an article in the *Engineering Magazine*, Vol. VII., p. 733, says that the cost of steam plants with high-speed engines is about \$50.00, and that for slow-speed Corliss engines ranges from \$65.00 to \$75.00. This is exclusive of the cost of the buildings.

The costs of electric plants are dependent upon the cost of engines and boilers, and their cost is usually a constant quantity, for the cost of dynamos is nearly constant per kilowatt plus the cost of engine plant. The cost of dynamos and other electrical apparatus may be assumed as ranging from \$20.00 to \$35.00, including switchboard; hence, the cost of complete plants for electric lighting and power may be assumed to be

\$75.00 to \$100.00, according to circumstances.

^{*}The costs under this are for engines, boilers, and piping alone, exclusive of cost of building.

COST OF STEAM POWER.

The following table is a condensation of a more detailed one in Mr. Gray's paper, and gives practically the same result. The costs are for the total of fixed and operative charges, in cents, per horse-power hour.

Authority.	Cost per H. P. hour, cents.
Emery, A. I. E. E., for 3080 hours per annum Emery, A. I. E. E., for 7090 hours per annum Emery, Eng. Mag., for 3080 hours per annum Webber, 650 horse-power, for 3080 hours per annum Webber, 1050 horse-power, for 3080 hours per annum Hale, for 2985 hours per annum Main, for 3080 hours per annum Foster, for 3080 hours per annum Gray's Table	.784 .617 .856 .720 .646 .557 .637 .824
Average of all	.707

Dr. Louis Bell, in his book, "Electrical Transmission of Power," gives as the cost for 10-hour day, full load, with large compound-condensing engines, 0.8 to 1.0 cent per horse-power hour, and for simple engines, 1.5 to 2.5 cents: while, if the load is partial and intermittent, these figures become 1.0 to 1.5 and 3.0 to 4.0 cents, respectively.

The cost of engines varies considerably with the class, but the following

table is a very good approximation for the different kinds:

Simple slide-valve engine	\$7.00 to \$	\$10.00
Simple Corliss or low-speed type	11.00 to	13.00
Compound slide-valve	12.00 to	
Compound Corliss	18.00 to	23.00
High-speed automatic	10.00 to	
Low-speed automatic	15.00 to	17.00

In addition to this is the price of boilers, which is approximately \$10.00 to \$12.00 for the plain tubular and about \$15.00 for the water-tube type, and the cost of pumps, which is about \$2.00 for a non-condensing and \$4.00 for a condensing plant, including heaters.

Gas Power.

The following tables contain some tests of different gas engines, using various kinds of gas. Some of these are small and others large, although there are but few tests of the larger sizes, from the fact that they have not been on the market until recently. The amount of gas used per horse-power is in some cases based upon the indicated, and in others upon the developed or brake horse-power. This is indicated by an (I.) or (B.) placed after the column.

Using Natural Gas.

Kind.	Н. Р.	Cubic feet per H. P.	Authority.
Westinghouse	$\begin{cases} 621 \\ 67 \end{cases}$	9.3 (I.) 10.4 (B.)	Miller & Gladden, Sib. Jour., June, 1900. Lond. Eng., January 4, 1901.

The Westinghouse Company will guarantee a gas consumption of 12 cubic feet of gas per B. H. P. on their small engines, and as low as 10 cubic feet of gas per B. H. P. for the larger sizes. The Standard Automatic Gas Engine Company guarantees less than 15 cubic feet per B. H. P.

Using Coal Gas.

Kind.	Н. Р.	Cubic feet per H. P.	Authority.
Westinghouse Springfield	9 12 10	14.5 (I.) 16.5 (I.) 15.5 (I.) 16.6 (B.)	Budd & Moody, Sibley thesis. Spier & Keely, Sibley thesis. Perry.
Campbell		15.4 (B.)	Lond. Eng., January 4, 1901. Donkin, Eng. Mag., December, 1900.
Otto-Crossley	$ \begin{array}{c} 17 \\ 9 \\ \\ 6 \\ 16 \\ 6 \\ \\ 12 \\ 18 \\ 61 \\ 50 \\ 31 \end{array} $	24.1 (B.) 30.4 (B.) 25.7 22.5 28.5 22.5 20.4 27.8 21.0 19.7 17.0 (I.) 21.0 (B.)	London Elec. Eng., January 25, 1901. Hill & Brocksmit thesis.
Average on B. H. P		22.9	

This average is rather higher than can be expected of the best modern engines, for these are all rather small units. About 17 or 18 cubic feet may be expected of the average modern engine of moderate size.

Using Producer Gas.

Le Tombe	Authority.
Otto Les tha Simplex 220 Scrossley 280 Otto (I.) Crossley (I.) Le Tombe (B.) 100 (I.) 320 (I.) Crossley (I.) 4 (I.) 100	Mond. gas, January 4, 1901. Dowson gas, January 4, 1901. Witz Dowson gas
Crossley	Dowson gas. Lond. Eng., November 30, 1894.
	5 Spangler, Cass. Mag., Vol. IX., p. 47. Power Quarterly, 1901. 3 Adams, St. Ry. Jour., June, 1900.
Crossley-Otto \ \begin{pmatrix} \{ 21 \\ 118 \\ 118 \\ 22 \\ 10.0 \\ 109.0 \\ 109.0 \\ 10.0	Trans. I. C. E., Vol. V., p. 73.

Average cubic feet on B. H. P., 82, or on I. H. P., 62.9. These values are only approximate, as the data are not very complete.

Using Blast-furnace Gas.

Kind.	н. Р.	Cubic feet per H. P.	Authority.
Cockerill	\begin{cases} \{182.0 \\ 650.0 \\ 725.0 \\ 79.5 \\ 175.0 \\ \ 15.0 \\ 15.0 \\ 575.0 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	116.5 (B.) 135.7 (B.) 101.0 (I.) 79.4 (I.) 145.2 (B.) 140.0 112.9 (B.) 102.3 (B.) 90.0 (B.) 111.4 (B.) 101.0 (B.) 133.0 (B.) 231.0 (B.) 291.0 (I.)	Donkin, Eng. Mag., December, 1900. Booth, Cass. Mag., March 9, 1901. Hubert, test at factory. "Colliery Guardian," quoted in Eng. Mag., Vol. XV., p. 140. Eng. Mag., Vol. XIX., p. 587. Schutte.
Average		115.1	

COST OF GAS POWER.

The following table gives some figures on the cost of power produced by different-sized engines using various fuels. The kind of gas used is indicated by the capital letters in parentheses, as well as whether the horse-power is based upon the indicated or the brake.

Kind. Place.	Cubic feet of gas,	Coal per H. P.	Cost, cents.	Authority.
Ordinary	17 20 23 5	1.00	1.00 (B. P.) 1.02 (B. C.) .87 (B. P.) 1.50 (B. P.) 1.50 (B. P.)	Elec. Eng., January 25, 1901. Guy, "Electric Light and Power."
Otto		1.20	3.00 (B. C.) J .16 (I. P.)	Cost of fuel alone, Robinson, "Gas and Petroleum Engine."
Ordinary	250	1.73		Eberle, Eng. Mag., Vol. XIV., p. 687. Elec. World, 1897, p. 822. Elec. World, Vol. XXXVI.,
Average engine	20		.90 (B. P.) .50 (B. N.) 2.00 (B. C.) (B. B.)	p. 457. Cassier's, 9. Kerr, Cass. Mag., Vol. XVIII., p. 425. Fuel alone, Cass. Mag.,
Ordinary			2.00 (B. C.)	Vol. XVIII., p. 425. Bolton, A.S. M. E., Vol. XX., p. 873. Krone, Dg., Elec. World,
Crossley		$ { 2.05 \atop per \atop K. W. }$		1900, p. 443. Eng. Mag., Vol. XV., p. 295.
Le Tombe Otto Charon Crossley		1.60 1.00 1.06 1.23	(B. P.) (B. P.) (B. P.)	Power Quarterly, October, 1900.

Cost of Gas Power.—Continued.

Kind. Place.	Cubic feet of gas.	Cost, cents.	Authority.
Oil engine Gasoline engine . Diesel		1.74 (B.) 1.50 (B.) 2.00 (B.)	Guy, "Electric Light and Power." Kerr, Cass. Mag., Vol. XVIII., p. 425.
Ordinary Blast furnace	$\begin{cases} \dots \\ 25 \\ 80 \end{cases}$.66 (B. B.) .83 (B. P.) 3.10 (B. C.)	Meyer, Sci. Am., February 9, 1901. West. Elec., February 23, 1901. Dg. Elec. World, January 19, 1901.

The letters in the parentheses are read as follows: The first one refers

to brake or indicated horse-power, and the second to the kind of gas used, either natural, producer, coal, or blast-furnace.

The costs of gas-engine plants are not very different from those of steam plants. Mr. N. W. Perry, in A.J. E. E., 1894, says that the cost of producers or generators is about \$11.00 per horse-power, which is less than that of steam boilers. He also gives an estimate by Dawson on a plant to have an output of 400 kilowatts, occupying a floor-space 27×54 feet on one level, and costing, complete, about \$10.38 per horse-power.

Electric Power.

While electricity can be considered only as a secondary source of power, requiring itself to be generated from some prime mover, some data as to costs will be found acceptable.

The following table gives some figures on the cost of generating electric power. The costs are based upon the kilowatt-hour, which is the practical unit used to designate power, it being equal to 1.34 horse-power hours. The cost is based, in most cases, upon the power delivered to the feeders that carry the current to the point of application. The cost for lighting and for power is usually different, as the power used for motors does not need such careful regulation of the pressure, and again the amount is usually large as compared with the amount sold for lighting, so that the cost to produce is less per unit, and the amount is not so variable; hence, the machines can be run at better efficiency.

The cost also depends upon the load factor of the plant,—that is, upon the ratio of the average to the maximum output of the station, and the

cost increases as this factor decreases.

COST OF ELECTRIC POWER.

Place and use	Cost per K. W. hour, cents.	Authority.
Cheltenham, England, lighting Dundee, England, lighting London, price sold, lighting London, price sold, motors Estimated operating expense Lighting, 0.5 load factor Manufacturing works, large Manufacturing works, fairly constant Manufacturing works, small, constant Ordinary works, varying load	5.06 \\ 4.90 \\ 5.00 \\ 5.00 \\ 5.00 \\ 1.02 \\ .92 \\ 1.23 \\ 2.60 \\ 1.92 \\	London, E. Rev., January 4, 1901. London, E. Eng., January 4, 1901. Humphrey, Lond. Eng., January 4, 1901. These seven are for the operating expenses only.

Cost of Electric Power.—Continued.

cents.	
Dudley, England, selling price Average for United Kingdom American, practice, range 3.00 to. Met. Electric Railway, Chicago, operating expenses Clasgow, Scotland, operating expenses Railway, operating expenses Railway, large, at bus bars Railway, large, operating expenses shagara power in Buffalo Railway, estimated, 33 per cent. load factor Load factor Average at board Brooklyn Heights, operating expenses Chenver Railway Denver Railway Denver Railway Chenver Railway Denver Railway Chenver Railway Denver Railway Chenver Railway Conant, St. Ry. Jou XIV., p. 621. Conant, St. Ry. Jou XIV., p. 71. Editorial, St. Ry. Jou XIV., p. 92. Elec. World, February 15, 196 Conant, St. Ry. Jou XIV., p. 621. Conant, St. Ry. Jou XIV., p. 621. Conant, St. Ry. Jou XIV., p. 72. Editorial, St. Ry. Jou XIV., p. 92. Elec. World, February 15, 196 Conant, St. Ry. Jou XIV., p. 621. Conant, St. Ry. Jou XIV., p. 72. Editorial, St. Ry. Jou XIV., p. 92. Elec. World, February 15, 196 Conant, St. Ry. Jou XIV., p. 621. Conant, St. Ry. Jou XIV., p. 72. Editorial, St. Ry. Jou XIV., p. 92. Elec. World, February 15, 196 Conant, St. Ry. Jou XIV., p. 621. Conant, St. Ry. Jou XIV., p. 71. Editorial, St. Ry. Jou XIV., p. 621. Conant, St. Ry. Jou XIV., p. 72. Elec. World, February 15, 196 Conant, St. Ry. Jou XIV., p. 621. Conant, St. Ry. Jou XIV., p. 72. Elec. World, February 15, 196 Conant, St. Ry. Jou XIV., p. 621. Conant, St. Ry. Jou XIV., p. 72. Elec. World, February 15, 196 Conant, St. Ry. Jou XIV., p. 621. Conant, St. Ry. Jou XIV.	January ool. XX., ool. XX., ool. xch, 1896. gg., Vol. ur., Vol. ur., Vol. ur., Vol. ool. v26, 1901.

From the above table it may be seen that the cost of generating power is extremely variable in the different cases, depending upon the purpose for which it is used, the load factor, the cost of fuel, and the size of plant. For the case of large plants run by compound condensing engines, with generators directly connected, operating under fairly good load factors, it may be assumed that the cost of power per kilowatt at the bus-bars is not far from 1 cent, and it may be less with careful attendance. For water-power plants this figure may be lowered. The cost of distribution is so variable that no attempt has been made to estimate it, and it can only be approximated for specific cases.

The cost of electrical machinery depends upon the price of steel and copper to a large extent, and so is variable; but it may be assumed to range from \$15.00 to \$25.00 per kilowatt output for generators, motors, or rotaries of the medium or large sizes. The price per unit increases as the size decreases, as they are less efficient and require more material and more labor in manufacture.

WORKS MANAGEMENT.

The operative management of engineering establishments is necessarily governed largely by the character of the product, but there are certain.

basic principles which may be stated in a general form.

The object of good management is the production of good work at a minimum cost. Good work involves good tools and skilful mechanics; but good tools are costly, and skilful mechanics demand high wages. At the same time, it is fully established that poor and antiquated machinery and cheap labor are both unprofitable things. The problems of good management theorems of management theorems of good management theorems are both unprofitable things. agement, therefore, may be divided into the successful use of tools and the successful handling of men.

There are two ways to reduce the cost of a manufactured product,—one being to cut down wages and capital charge, and the other to increase the output. In other words, the value of a fraction may be diminished either by diminishing the numerator or by increasing the denominator. latter is recognized as being the best and most satisfactory method.

In order to increase the output of the workmen two things are necessary,—one, to systematize the operations; the other, to provide an incentive to the men.

Systematization of shop methods involves the principle of employing a limited number of highly-skilled and highly-paid mechanics to keep the tools in order, to maintain them at a high efficiency, and to devise improved methods, while the tools themselves are attended by a much lower grade of labor, costing less, and at the same time competent to perform the limited duties assigned to them. This also includes the use of the most efficient handling appliances and the proper arrangement of machines, so that machines are kept supplied with rough parts, while finished parts are promptly transferred to the next machines in orderly sequence.

The incentive to the men involves the use of some system of wage adjustment by which the man's earnings depend to a greater or less extent upon his output. The daily or hourly wage system, in which the pay depends wholly upon the time, has been found satisfactory in the moderate-sized shop, in which comparatively few men are employed, and where the owner or superintendent can keep his eyes upon everything and establish personal relations with all the men. The great difficulty in the extension of the system to large establishments lies in the fact that the day's output is determined by the men themselves, and naturally tends to

a minimum.

In order to provide an incentive to the workman, piece-work has long been used, but, except in rare instances, it has not proved satisfactory. The reason for this is readily seen. After a piece price has been put upon a certain article there is undoubtedly a direct incentive to the workman to do as many pieces as he can, since the more he does the more he makes. As soon as he has thus established a new rate for himself the employer compares the wages the man is receiving with his former pay, and comes to the conclusion that the man is making too much. The piece rate is accordingly cut, and soon the establishment reaches a sort of equilibrium in which the man does only about enough to make his piece wages equal The incentive is thus only temporary, and the the current day rate. method becomes unsatisfactory to employer and employee alike.

The Premium Plan is intended to obviate this defect in piece-work. Instead of fixing a price upon the piece, a time is fixed within which it can be completed. If the work is finished just in this time, or takes a longer time, the workman is paid the regular hourly wages. If, however, he finishes the job in less than the allotted time he is credited with a certain portion of the time saved, usually receiving one-half the time. Thus, if the time fixed for a piece of work is six hours, and the man does it in four hours, there are two hours saved, and he receives one hour's additional wages. The essential element in the premium system lies in the fact that the time for a piece, when once fixed, is never changed unless some alteration is made in the piece affecting the work upon it, or unless, some new tool or method is furnished by the employer to aid in accelerating the work. The premium system, with various modifications, is in successful use in many large establishments.

The Bonus System differs from the premium system, in that a definite sum of money is allotted as an extra payment for completing a job within

an allotted time limit. The job is analyzed into its elementary operations and the actual time in which they can be performed, and a time-card containing this information is given to the man with the job. If he gets the work out in less time he gets a bonus, the amount of which is fixed according to the value of the job, and if not, he gets his time wages, anyhow.

It will be seen that all these methods involve the determination by some one else of the time in which the job should be done, and this is one of the essentials of successful shop management. If the time is left to the judgment or choice of the man, the employer is relinquishing one of the most essential elements of his control, and success may be endangered. In all methods it is important to be liberal with the men. Any attempt to squeeze them to a minimum wage rate is to invite failure. The object of every improved system should be not to reduce wages but to increase output.

The importance of this will be seen when it is understood that the fixed charges of an establishment must be paid out of the product, regardless of the wage cost, and hence it is important that a maximum output be

attained to bear the establishment charges.

Cost Keeping.

The subject of cost keeping is closely allied to that of general works management, and, while details must differ in various establishments, there are certain fundamental principles underlying all successful systems.

The following general outline of a cost-keeping system is condensed from a chapter by Mr. J. Newton Gunn, forming a portion of "The Complete Cost Keeper," by H. L. Arnold, published by the Engineering Magazine, New York and London:
"The first consideration is to see that the plant is properly divided as to

its various departments,—that is to say, that each foreman has as many men as he can profitably handle and no more, that no one foreman has charge of two or more classes of work which are in no way related, and that the disposition of the work in the building is not such as to preclude the possibility of the foreman in charge giving to the work the best supervision and direction possible.

"Having determined so much, the next step is to obtain a complete statement of all the operations performed throughout the establishment.

"These are then divided into two main classes,—first, operations which are performed so directly upon the work that it is possible to charge the labor and material expended to a given production-order; and second, those operations which are so general in their character as to be necessarily treated as indirect expense, together with the cost of operations which are of the nature of expenses incidental to the operation and maintenance of

the plant rather than to any particular class of work.

"In the particular plant, which is the example selected for presentation here, the work is of such a character and the performances are of such duration that in the majority of cases the direct operations are chargeable to specific production-orders, and in every case it is possible for the workmen to record their own time and performances. Where one workman performs several minor operations on a single production-order these operations are recorded on his time-card, but he is not required to individualize the actual time spent on each of the minor operations. The rule which governs in determining whether he shall indicate the time down to the least operation, or record the time on a group of operations, is that the time shall be separately recorded for all operations which could not be performed under one contract if the work were on a piece-work basis. may be noted here that prior to the installation of the system taken as an example no piece-work was performed in the factory. Under the system adopted the indirect operations are classified wholly by the results which are obtained; thus, sweeping belongs to the group of operations incidental to the care of the plant, while oiling of shafts and care of belting pertains to the production and use of power. For all these indirect operations fixed or standing order-numbers are provided, and all the indirect work performed is charged to one or another of these standing order-numbers, unless a specific production- or plant-order has previously been given therefor.

"In order to reduce the mechanical effort in the making of the timecard, specially devised time-cards are prepared for each department, the card, specially devised time-cards are prepared for each department, the margin of the time-card containing the principal operations performed in that department, so that the record to be made on the card consists of the date, the workman's number, the workman's name, quantity and description of the work in hand, a check-mark or cross opposite the operation performed by the workman, a check-mark indicating the time the work was commenced, and another showing the time the work was finished. The record of the work performed as indicated on these time-cards is checked at the end of each day by the foreman or sub-foreman in where checked at the end of each day by the foreman or sub-foreman in charge, and the cards are then immediately transferred to the office of the pay-

master. "The same methods are used in securing the original records of material disbursed in producing an order. Forms termed Material Cards serve to record the entire history of all material from the time it enters the factory until it becomes finished product, and has all of its costs properly recorded upon the cost-cards. These material cards are differentiated in color to unmistakably indicate to the workman and clerks the different classes of Thus, a white material-received card is used for recording all records. material when it enters the factory, no matter whether this is raw material or parts purchased ready to assemble into a complete machine. A buff material-delivered card shows that material has been transferred from one of the storerooms to some department, or from one department to another. A salmon-colored materials-returned card shows that material is to be credited to the order-number or account which appears thereon, as the material is returned, either from a department to the storeroom or from one department to another department from which it may have been received. A blue material-requisition card indicates a requisition made by a foreman or a storekeeper for the purchase of material by the pur-

chasing department.

'The schedule of machine details records those parts of any one completed unit of factory product which are carried in stock in the storeroom ready for use by the assembling department, each schedule being individually numbered, and a single schedule representing all the parts necessary to complete a machine of a certain size and type. Duplicates of each of these schedules are in possession of each of the following officials: superintendent, cost clerk, stores-ledger clerk, storekeeper, and foreman of assembling department. These schedules enable the foreman of—for instance—the assembling department to use a single materials-delivered card calling for all parts on, say, schedule number seventeen, which he sends to the storekeeper, thus saving the writing and possible errors which would be incidental to the reproduction in detail of the individual items covered by the entire schedule every time a machine was to be assembled or two or more were to be assembled. These material cards always bear either the production-order number or plant-order number to which they are related, or, if the material is solely chargeable to expense, must bear the standing-order number which indicates the division of the expense account for which they are disbursed. It may be said here that one of the most important precedents to accurate factory accounting is absolute uniformity of nomenclature throughout the factory. Any variation in naming leads to doubt, and opens the way to inaccurate returns.

"As an example of organization the following, representing a successful

modern plant, is given:
"The chief of the entire office and factory staff is the President and Treasurer, who is Acting General Manager, and is responsible only to the Directors of the Company. The next in authority is the General Factory Manager, who bears the entire responsibility of production, and who is subordinate to the President alone. The General Factory Manager's staff consists of a Cost Clerk, who is also Paymaster, and a Purchasing Clerk, who is also Production-order Clerk. The Production-order Clerk originates production-orders on the factory under requisitions from the Superintendent.

"The general factory manager also has a stores-ledger clerk, who is responsible for all records of material up to the time these records are turned over to the cost clerk; a stenographer; a superintendent, who supplements the general factory manager in all his work, but is more especially responsible for the direct supervision of the foreman. The drawing-room is in charge of the constructing engineer and chief draughtsman, who has charge of the subordinate draughtsmen, and who undertakes the designing of new machinery and the remodelling of old, under the immediate direction of the superintendent. The chief draughtsman is also responsible for the revision of the schedules of machine details, which of

course must be made to conform to the drawings in his possession.

"Each department has a foreman in charge, who supplies the workmen with pads of time-cards and pads of material-order cards. All stores are kept by a storekeeper, who, with one assistant, has in charge all raw material, or rough stores, and also all semi-finished material or parts, as well as finished parts and machines. Heavy materials, such as rough castings and finished machines, which from their bulk and the expense attendant upon handling them cannot economically go into the storeroom, are delivered to, and kept in, the part of the factory where they are to be used; the nearest foreman is made responsible for their care and disburse-

"The president has as his executive force a stenographer, a filing clerk a bookkeeper, and an order clerk, who handles the shipping orders and does the billing, as well as renders general assistance to the bookkeeper. Directly responsible to the president is the general manager of the Sales Department, who has a number of salesmen responsible in turn to him. A branch office, which is purely a department of the selling organization, is responsible, in so far as its selling functions go, to the general manager of the sales department, but for its finances it is directly responsible to the

President-treasurer.

'A complete shop telephone system gives communication from the superintendent's office to all the foremen and to the stores department.

"The only bound book kept is a ledger, which contains the commercial accounts, and from which the general statement of the business is made up. This book is simply a general ledger containing personal accounts and customers' accounts. There are no other books employed in the accounting organization, every other record being made either on cards or on loose sheets. These cards and sheets are provided for as to their storage either in card-cabinets or in binders, or in filing boxes. The same record at different stages of its work may be in any one of the three forms of receptacle specified.

"Origination of Production-order.

"A production-order originates either from a specific shipping order, which demands a specific machine, or else from the depletion of the stock of a given machine or machine detail; stock shortage is immediately reported by the stores-ledger clerk, as he has a schedule showing the maximum and minimum limits not only of the parts of machines but of all complete machines. The schedule limits of stock are assumed, at first,

and revised as experience may dictate.

"The moderate size of the concern under consideration precludes any necessity for having a formal record of the instructions that the superintendent gives to the production-order clerk for the creation of a productionorder: these instructions are in every case verbal, the superintendent vitalizing the production-order as soon as made, and assuming the respon-

sibility by affixing his signature thereto.

"Other orders, termed 'plant-orders,' are issued by the production-order clerk. These cover all labor and material expended for the betterment of the plant or for experimental purposes; in the case of the production-order it is expected that a direct profit will be realized from all work ordered to be performed, while plant-orders are expected to be indirectly profitable. Both production-orders and plant-orders are carbon-sheet copies in duplicate, the original going to the foreman who is to do the initial work, the duplicate remaining at the desk of the production-order clerk, where it is filed by family,—that is, by class of machine and number of machine, or class of work,—until the return of the original order with the foreman's signature gives notice that the order has been filled.

"Both production- and plant-orders, before being sent to the foreman of the proper production department, go to the chief draughtsman, who supplements each order with the drawings needed for its production, and the drawings and order then go together to the department foreman. The foreman, on receipt of this order with its drawings, starts the work, making immediate provision for identification of the work throughout his department, either by tags showing the production-order number in case of large pieces, by painting the production-order number on the piece, or, in case of a large number of small pieces, by adding to the receptacle containing the parts a memorandum-slip bearing the production-order number.

"The material-delivered card, signed by any foreman, obtains from the storckeeper the stores needful for the completion of an order. At any time during the progress of the work, or at its completion, any excess of material may be returned, recorded on a 'material-returned' card. All these material-delivered and material-returned cards are identified by having

the production- or plant-order number upon them.

There is no limitation as to the amount of material which a foreman may draw for the completion of any one order, but as often as four times each day it is the duty of the assistant storekeeper to return all material cards to the stores-ledger clerk, on whom the responsibility is placed of seeing that the proper limits of material required for the completion of any order are not exceeded.

"The Sub-production-order.

"The sub-production-order is produced in duplicate by manifolding by any foreman who may require the product of any other department. The original goes to the department making the required product, and the duplicate to the office of the superintendent. Both original and duplicate bear the production-order number under which the foreman using the sub-production-order number is operating. On the completion of the required details by the department receiving the sub-production-order, the order is returned with the work to the originating foreman, who checks the sub-production-order, certifies its completion, and forwards it at once to the office of the superintendent.

"A plant-order is issued by the superintendent at the request of any foreman, or as his own judgment may dictate. Plant-orders cover all work in the nature of repairs or betterments to the plant or building, all special tools and special experiments, and, in fact, any work to be performed which will eventually become an addition to the plant or an expense-charge to the business. These orders are made in duplicate by manifolding, the original going to the foreman of the department required to produce the work, while the duplicate remains in the office of the superintendent, plant-orders being handled precisely as production-orders are

handled.

"There is one case in which it is necessary to make an exception to the rule requiring all production-orders to be issued by the superintendent. This occurs in the general machine shop, where it sometimes happens that certain machines are left idle. The foreman of that department is supplied with a pad of production-orders, and has authority to issue to himself an order for the undertaking of such work as will keep his machines busy, sending the duplicate order immediately to the office of the superintendent, on whom rests the responsibility of approving the order or of communicating with the foreman and stopping the work, if for any reason that particular work is not justifiable in the judgment of the superintendent. In no case, however, is work stopped until the particular operation in

progress is completed.

The production- and sub-production-orders, with the plant-orders, account for all direct labor and material and a portion of the expense-labor, but it is necessary that the general factory manager, superintendent, draughting department, the foremen, the general laborers, and men employed in the production of power, heat, and light shall have some definite means by which to indicate the services which they have rendered to the company. To this end a communication is addressed to all the heads of departments, and through them brought to the notice of the employees, which communication is a standing order under which all employees of the company are to work. The standing order directs that whenever workmen perform any of the operations or render any of the services enumerated on the list accompanying the order, the labor-time, together with any material that may be drawn from the stores department necessary to complete the service, shall be charged to some one of the various numbers set

opposite the items enumerated. These numbers are called standing-order numbers, and are specific orders, to be treated in the accounting as are the

production- or plant-orders.

"For convenience, and as an aid to all persons concerned in becoming familiar with these numbers, the numbers from 1 to 499 relate to the plant and expenses incidental to production. The numbers from 500 to 999 specify a general classification of the product, and relate to such operations upon the product as testing, which operation, though it may be performed-as in the case of a dynamo—upon a specific machine, gives information so general in its character as to be of service to the entire class to which this machine belongs, and therefore is an item of cost which may more justly be spread over the entire related product than charged to the individual machine under test.

"The plant-orders commence with 1000 and continue in numerical sequence, each number being preceded by the letter 'P.' Production-orders commence at 1000 and run in sequence, but have no distinguishing

"The numbers from 1 to 499 are subdivided into five general groups,

defined as follows:

"From 1 to 99, additions to or betterments of the 'permanent investment,'-buildings and plant; 100 to 199 report depreciations of the permanent investment and cost of up-keep of plant; 200 to 299 carry the time-cost of foremen, superintendents, draughtsmen, and all other indirect labor, excepting 'engineers' (American) or 'engine drivers' (English); 300 to 399 cover all labor and material used in the generation and distribution of power, heat, and light; 400 to 499 include all alterations, errors, and changes, also fixed charges, such as taxes and insurances."

General Expense.

In addition to the determination of the material and direct wage charges upon a job there is the item of indirect charges, usually called *general* expense. This includes interest and depreciation on plant, cost of motive expense. This includes interest and depreciation on plant, cost of motive power, lighting, insurance, taxes, etc., as well as the wages and salary expense of men whose work is not chargeable to any direct job, but must be borne by the entire output. This must be included in the actual shop cost; and while the total of such charges can usually be determined with a fair degree of accuracy, there are various methods of distributing it over the different jobs.

The commonest method of charging general expense is to make it a

percentage of the wage charge.

Thus, if the grand total of all the expenditures which cannot be properly charged directly to shop orders be summed up for the year, it will be found to bear a certain relation to the total of the direct wages for the In many cases the indirect charges will be found to be as same period. much as the direct wages; in other instances they will reach 80 per cent. of the wages, etc. This relation having been determined, it is only necessary to add to the cost of materials and labor an amount equal to the expense percentage of the labor to have the entire shop cost. Thus, if the material on a job cost \$12.00, and the direct labor charges amounted to \$80.00, and the expense percentage had been determined to be 100 per cent., the amount added for general expense would be $80 \times .70 = \$56.00$, and the total shop cost would be 12 + 80 + 56 = \$148.00.

This method has the advantage of simplicity, but it is not always satisfactory, since it assumes that the expense charge bears a direct relation to the labor charge. But it is evident that the expense goes on just as heavily for the time of a cheap workman as it does for a highly-paid one, and so this method saddles the jobs upon which skilled mechanics are working with more than their fair share of expense, and does not put enough upon

those done by cheaper men.

Another and better method of distributing general expense is the so-called "hourly burden."

In this system the expense is made to depend upon time, instead of wages. Thus, if the total expense for a year be divided by the during that ber of hours during which all the workmen were occupied during that ber of hours during whether her hour for every man's time. year, we shall obtain an expense charge per hour for every man's time.

A shop containing 100 men, each man working 3000 hours per year, will

The Effects at Different Rates of Depreciation for Terms of Years.

20 per cent.					.085 899 .068 720 .054 976							
15 per cent.					.167 343 .142 232 .120 905							
12 per cent.					.245 080 .215 671 .189 790							
10 per cent.					.313 811 .282 429 .254 186							
8 per cent.					.399 637 .367 666 .338 253							
7 per cent.					.450 103 .418 596 .389 294							
6 per cent.					.506 299 .475 921 .447 366							
5 per cent.					.568 800 .540 360 .513 342							
4 per cent.					.638 239 .612 709 .588 201							
3 per cent.					.715 301 .693 842 .673 026							
2 per cent.					.800 732 .784 717 .769 023							
per cent.					.895 338 .886 385 .877 522							
Years.	H 01	00 या r	9 1	8 00 10	122 122	15	16	18 20 20	ដូនន	252	25 27 28	33

have $100 \times 3000 = 300,000$ hours among which to divide the general expense. If the total expense charges for the year amount to \$75,000, the *burden* per because the property of the proper

hour will be $\frac{7,800,000}{300,000} = 25$ cents.

To find the expense charge against any job by this method the number of hours' time put on it will be multiplied by 0.25, regardless of the rate of wages paid to the men. This plan is very satisfactory in many cases, but it has been criticised in one respect. The expense properly chargeable to some important and expensive tools, it is maintained, should be greater than that charged against work done with tools which cost less to buy and to operate; hence, in many shops there is what is termed a machine rate for various machines, this rate being computed—more or less arbitrarily—from the importance and cost of the machine. It is impossible to provide for all the general expense by machine rates, because the various tools are not in continual operation, but it has been proposed by Mr. Hamilton Church to combine the two methods, using machine rates for the important tools, and having a supplementary hourly burden to take care of the balance of the expense charges.

The method to be selected depends largely upon the character of the work. When there is much uniformity in the methods and products the hourly burden is satisfactory, and when there is a diversified product the establishment may often be divided into departments, each with a fairly uniform product, and each with its own hourly burden. The choice of method must therefore be made by the works manager according to the

conditions of operation.

The question of depreciation is one which demands attention, and it is now considered upon an entirely different basis from that which formerly obtained. At one time the amount charged off from the inventory value of a machine tool was based upon its durability, and the original cost was divided by the length of time such a tool might reasonably be supposed to last.

It is now well understood, however, that a machine may become superannuated in a few years, and while it is still in perfect condition, simply by the appearance of some improved machine or method of doing the same work, the improved method rendering a cheaper product possible

and causing the old machine to be unsuited for competition.

Since the time which may elapse before a machine becomes superannuated is a very uncertain quantity, it is most necessary that the maximum output of all new machines be gotten from them as soon as practicable after they have been put into operation; and it is good management to place as high a depreciation rate upon a machine as it can reasonably stand, and drive the tool as hard as possible, so that it may pay for itself in a few years. If no improved device or method appears the machine will still be available, while if a new and improved tool comes out the old machine may, and indeed must, be promptly scrapped to make way for the new one.

If this method were more closely followed there would be fewer superannuated establishments; and a shop which uses its tools up instead of nursing and coddling them is dealing more fairly by its stockholders than

is the old-time plant.

The deduction for depreciation may be made in the form of a percentage of the cost of the machine or tool, and in such case the table opposite will be found convenient. This method is defective, however, in that the depreciation never equals the full original cost, and hence there is always some value left to the tool. Another plan is to charge off one-tenth, one-fifth, or one-third of the cost of the machine, as the case may be, and so have the entire inventory value wiped out at the expiration of ten, five, or three years, after which it may at any time be scrapped without compunction.

Valuable works upon the subject of works management and cost keeping are the following: J. Slater Lewis's "Commercial Organization of Factories," Arnold's "Complete Cost Keeper," Arnold's "Factory Manager and Accountant," Garcke & Fells's "Factory Accounts," Matheson's "Depreciation of Factories," and Metcalfe's "Cost of Manufactures."

ALUMINUM.

In various modern structures aluminum or some of its alloys are used when lightness is of importance, and the following information, furnished by the Pittsburg Reduction Company, will be found useful:

The low specific gravity of aluminum is one of its most striking properties, being 2.56 in ordinary castings of pure aluminum, and 2.68 in the compressed and worked.

Specific Gravity at 62° F. of Aluminum and Aluminum Alloys.

Aluminum commercially pure, cast	
Nickel-aluminum alloy ingots, for rolling	2.72
Nickel-aluminum casting alloy	2.85
Special casting alloy, cast	
Aluminum commercially pure, as rolled, sheets, and wire	2.68
'Aluminum commercially pure, annealed	2.66
Nickel-aluminum alloy, as rolled, sheets, and wire	2.76
Nickel-aluminum alloy, sheets annealed	2.74

Weight.

Using these specific gravities, assuming water at 62° F. and at standard barometric height as 62.355 pounds per cubic foot.

mother monday to an object to a section of the control of the cont	
Sheet of cast-aluminum, 12 inches square and 1 inch thick, weighs	13.3024 pounds.
Sheet of rolled aluminum, 12 inches square and 1	15.5024 pourius.
inch thick, weighs	13.9259 pounds.
Bar of cast-aluminum, 1 inch square and 12 inches	15.5255 pourrus.
	1.1085 pounds.
long, weighs	1.1009 pourius.
Bar of rolled aluminum, 1 inch square and 12	1.1605 pounds.
inches long, weighs	1.1005 pourids.
Bar of aluminum, cast, 1 inch round and 12 inches	F 2070
long, weighs	.8706 pound.
Bar of rolled aluminum, 1 inch round and 12 inches	. 0444 4
long, weighs	.9114 pound.
The weight per cubic inch of pure cast-aluminum is	.0920 pound.
The weight per cubic inch of pure rolled alumi-	
num, annealed, is	.0970 pound.
The weight per cubic foot of pure cast-aluminum is	159,6288 pounds.
The weight per cubic foot of pure rolled aluminum is	167.1114 pounds.

Strength of Aluminum.

The tensile, crushing, and transverse tests of aluminum vary considerably with different conditions of hardness, due to cold working; also by the amount of work that has been put upon the metal, the character of the section, amount of hardening ingredients, etc. Cast-aluminum has about an equal strength to cast-iron in tension, but under compression it is comparatively weak. The following is a table giving the average results of many tests of aluminum of 99 per cent. purity:

Elastic limit per square inch in	castings 8,500 pounds. sheet 12,500 to 25,000 pounds.
	sheet. 12,500 to 25,000 pounds. wire 16,000 to 33,000 pounds. bars. 14,000 to 23,000 pounds.
Ultimate strength per square	castings 18,000 pounds. sheet 24,000 to 40,000 pounds. wire 30,000 to 55,000 pounds. bars 28,000 to 40,000 pounds.
	bars 28,000 to 40,000 pounds. (castings 15 per cent.
Per cent, of reduction of area in	sheet
	bars 30 to 40 per cent.

Elastic limit per square inch under compression in cast cylindrical short columns, with length twice the diameter

3,500 pounds. Ultimate strength per square inch under compression

in cast cylindrical short columns, with length twice 12,000 pounds. the diameter The modulus of elasticity of cast-aluminum is about 11,500,000.

Aluminum in castings can readily be strained to the unit stress of 1500 pounds per square inch in compression, and to 5000 pounds per square inch in tension. It is rather an open metal in its texture; and for cylinders, to stand pressure, an increase in thickness over the ordinary formulæ should be given to allow for its porosity.

Nickel=aluminum.

In order to obtain a greater strength than is possessed by pure aluminum, and at the same time to retain as much as possible the advantage of the low specific gravity, an alloy containing from 2 to 5 per cent. of nickel and copper is made, this having a specific gravity of about 2.85, as compared with 2.56 for pure aluminum.

The following table gives the average results of many tests of nickel-

aluminum:

-				
	Elastic limit per square inch in	(castings		to 12,000 pounds.
	Elastic limit per square inch in tension	sheet		to 30,000 pounds.
	tension	(bars	18,500	to 25,000 pounds.
	Illtimate strongth nor square	(castings	18,000	to 28 000 pounds.
	Ultimate strength per square inch in tension	sheet		to 50,000 pounds.
	men in tension	(bars	30,000	to 45,000 pounds.
		castings		6 to 8 per cent.
	Per cent. of reduction of area	sheet		12 to 20 per cent.
				12 to 15 per cent.
	Elastic limit per square inch unde	er compres-		•
	sion in short columns, with le			
	the diameter		6.000	to 10,000 pounds.
	Illtimate atmomath man comone i		-,	

Ultimate strength per square inch under

compression in short columns, with length twice the diameter

1,600 to 24,000 pounds.

Aluminum for Structural Purposes.

In the use of aluminum for structural purposes, a great deal depends upon the specific purpose to which it is desired to apply the metal, so as to know just what is the proper grade that should be used; but, generally speaking, for purposes where aluminum is brought into tension,—such as speaking, in purpose a finite strength of from 32,000 to 40,000 pounds per square inch may be reckoned upon, and using a safety factor of 4 gives an allowable working strain of from 8000 to 10,000 pounds. This, of course, is not for pure metal, but for the stronger alloys.

The ultimate tensile strength of pure metal in plates and shapes may be taken at from 24,000 to 28,000 pounds. With the same safety factor of 4 it gives an allowable working strain of from 6000 to 7000 pounds.

For the alloys of cast-aluminum in tension the ultimate strength may be taken at from 18,000 to 28,000 pounds per square inch. Using a safety factor here of 5, as aluminum castings are quite uniform and solid, a work-

ing strain is obtained of from 3600 to 5600 pounds per square inch.

It is difficult to give a value for the ultimate strength of pure cast-aluminum in tension, for the reason that while the ordinary pure aluminum will run about 16,000 pounds per square inch, this can be increased very considerably by cold working, and in some cases to as much as 24,000 rounds per square inch. pounds per square inch. Using a safety factor of 4 gives an allowable working strain of from 3200 to 4800 pounds.

In compression, the alloys of aluminum in rolled plates and structural shapes—such as struts, columns, etc.—have an ultimate tensile strength of from 26,000 to 34,000 pounds per square inch, which, using a safety factor of 4, gives an allowable working strain of from 6500 to 8509 pounds per

square inch.

Pure aluminum sheets and structural shapes in compression have an ultimate tensile strength of from 20,000 to 24,000 pounds per square inch, which, with a safety factor of 4, gives an allowable working strain of from

5000 to 6000 pounds per square inch.

Castings of aluminum in compression can be taken at 16,000 pounds per square inch for pure aluminum, and from this to 24,000 pounds per square inch for the alloys. Using again a safety factor of 5, an allowable working strain is given of from 3200 to 4600 pounds per square inch. But the pure metal should not be used in castings, except for electrical purposes, as it is similar to pure copper in being difficult to cast, and is soft, comparatively weak, and has a large shrinkage. In its stead, alloys with from 5 to 20 per

cent. of copper, nickel, or other hardeners should be used.

The alloys of aluminum in rivets and similar shapes in shear have an ultimate shearing strength of from 24,000 to 27,000 pounds, which, using here a safety factor of 6, gives an allowable working strain of from 4000 to

4500 pounds per square inch.

The ratios of the ultimate shearing strength to the ultimate tensile strength for double-riveted joints is about 60 per cent., and for single-riveted joints the ratio is about 70 per cent. The ratio for steel is about 75 per cent.

In bearing, the ultimate value of the alloys of aluminum is from 32,000 to 40,000 pounds per square inch, which, using a safety factor of 4, gives an

allowable working strain of from 8000 to 10,000 pounds.

Electrical Properties of Aluminum.

The electrical conductivity of silver being taken as 100, that of pure

aluminum is about 63.

Aluminum is practically non-magnetic, and may therefore be used for many purposes in electrical work, where a magnetic metal would be use-less. At the same time, its electrical conductivity is excellent, as the following electrical conductivities of various metals will show. Aluminum may therefore in the future be largely used in the windings of field magnets on dynamos, where weight is an object, and, in general, for switches, brushes, brush-holders, and apparatus where its non-tarnishing

and non-corrosive qualities render it specially valuable.

As is the case with other metals of good electrical conductivity, the conducting power of aluminum is greatly decreased as the result of the presence of alloying metals. Pure aluminum has a much higher relative conductivity to pure copper than is ordinarily given in the books, occasioned by the considerable impurities in the aluminum that has been in

the past tested for its relative electrical conductivity.

The following tests, made by Mr. Charles F. Scott and Professor J. W. Richards, will serve to show the relative conductivity of various samples:

Sample.	Ohms per 1000 feet, .01 inch di- ameter, at 15° C.	Percentage of conduc- tivity at 15° C.	Percentage of variation between 15° C. and 80° C.
Pure copper wire	163.80 181.30 174.10	100.00 63.09 62.17 56.17 58.48	.388 .385 .385 .360 .361
No. 5, XCWC, copper-zinc-aluminum alloy	185.10	55.01 64.50	.359

Taking into account the relative specific gravity as well as the relative conductivity, it has been computed that when the price of aluminum per pound is double that of copper their values for electrical conductors are equal.

LOCOMOTIVE DATA.

The following formulas are those of the Baldwin Locomotive Works, Philadelphia, and have shown themselves reliable in the practice of that well-known establishment.

Speed Resistance, Locomotive and Train.

$$R = 3 + \frac{V}{6}.$$

R = resistance, in pounds, per ton of 2000 pounds;

V = speed, in miles, per hour.

This formula represents the resistance for sustained speed, and the element of acceleration is not taken into consideration. It is deduced from the results obtained by comparison of a large number of indicator cards taken at various speeds.

Grade Resistance.

The resistance for a straight grade of 1 foot per mile is 0.3788 pound per ton.

Ιf

G = grade, in feet, per mile;

T = weight of train, in tons (2000 pounds);

R = resistance, in pounds.

 $R = 0.3788 \ GT$.

Curve Resistance.

Taking the curve as expressed in degrees of deflection from a tangent measured from stations 100 feet apart, the resistance of curves may be expressed as in proportion to the number of degrees in the curve. The resistance naturally varies with the construction of the road-bed, speed of train, and other conditions of service, so that no general rule can be expected to apply to all cases. Approximately, with moderate speed and under ordinary conditions, the resistance may be computed on the basis that each degree of curvature is equal to a straight grade of 1½ feet per mile.

The following formula corresponds to this allowance:

Let A =angle of curve, in degrees;

T = weight of train, in tons; R = resistance, in pounds.

The political

 $R = 0.5682 \, AT$.

Acceleration Resistance.

The resistance opposed to the acceleration of a train from any speed to any higher speed may be computed by the following formula:

Let R =the resistance, in pounds:

T = weight of train, in tons (2000 pounds);

V =initial speed, in miles, per hour;

V' = accelerated speed.

 $R = 0.0132 (V'^2 - V^2) T$.

Thus, for a weight of 1 ton and an acceleration from 30 miles per hour to 50 miles, we have

$$0.0132 (50^{2} - 30^{2}) = 0.0132 (2500 - 900) = 0.0132 \times 1600 = 21 \text{ pounds,}$$

and this, multiplied by the weight of the train, in tons, will give the total resistance due to the acceleration.

Tractive Power.

Let

d = diameter of cylinder;

l = length of stroke;

D = diameter of driving-wheels, in inches;

T = tractive power, in pounds, per pound of mean effective pressure in cylinder.

$$T = \frac{d^2l}{D}$$
.

The mean effective pressure may be taken as equal to 85 per cent. of the boiler pressure.

The tractive power of a locomotive multiplied by the speed, in miles, per hour, divided by 375, gives the horse-power.

THE POWERING OF STEAMSHIPS.

The most reliable method of determining the power required to propel a vessel at a given speed is to use a model of the hull in a testing tank, and this should be done in all important designs.

The following tables (pages 796-799), originally prepared by Nystrom, will be found to agree closely with the results attained by modern steamships in actual service, and may be used when experimental data are lacking.

The average powering of modern steamships is about 1 horse-power per ton of displacement, while for the fast liners it reaches 2 horse-power per ton and over.

Displace-	. Knots, or nautical miles per hour.											
ment, in tons.	1	2	3	4	5	6	7	8	9	10		
T	H	H	H	H	H	H	H	H	H	H		
1	.004	.035	.118	.280 .444	.55	.949 1.51	1.50 2.40	2.24 3.55	3.20 5.08	4.38 6.96		
2 3 4 5 6 7 8	.007	.035	.190	.598	.87 1.14	1.98	3.12	4.79	6.91	9.12		
4	.010	.084	.300	.673	1.40	2.40	3.80	5.39	8.06	11.1		
5	.012	.102	.348	.818	1.52	2.78	4.40	6.55	9.36	12.2 14.5		
0	.014	.115	.390 .435	.924 1.025	1.81 2.01	3.12 3.48	4.96 5.50	7.39 8.20	10.6 11.7	16.1		
8	.017	.138	.479	1.125	2.20	3.80	6.01	8.96	12.8	17.5		
9 10	.019	.151	.501	1.211	2.38	4.12	6.51	9.69	13.8	19.0		
11	.020	.161	.552 .590	1.30 1.40	2.54 2.72	4.42 4.70	6.98	10.4	14.9	20.3 21.8		
12	.023	.185	.624	1.48	2.88	4.99	7.90 8.33	11.8	16.8	23.0		
13	.024	.195	.654	1.56	3.04	5.25	8.33	12.5	17.7	24.3		
14 15	.024	.198	.690 .725	1.62 1.70	$\begin{array}{ c c c }\hline 3.18 \\ 3.32 \\ \end{array}$	5.52 5.80	8.75 9.20	13.0 13.6	18.6 19.5	25.4 26.6		
16	.028	.223	.780	1.78	3.49	6.04	9.55	14.2	20.4	27.9		
17 18	.029	.236	.785	1.89 1.94	3.64	6.28 6.52	9.95	15.0	21.2 22.0	29.1 30.2		
18	.030	.242	.815 .850	2.00	3.78	6.80	10.3 10.7	15.5 16.0	22.8	31.2		
20 25	.032	.258	.875	2.06	4.02	7.00	11.1	16.5	23.0	32.2		
25	.038	.300	1.015 1.14	2.40	4.14	8.12	12.9	19.2	24.2	33.1		
30 35	.042	.338	1.14	2.70 3.00	5.30 5.89	9.18 10.1	14.6 16.2	$21.6 \\ 24.0$	31.0 34.2	42.4		
40	.050	.409	1.39	3.27	6.41	11.1	17.6	26.2	37.5	51.3		
45	.056	.445	1.50	3.56	6.95	12.0	19.0	28.5	40.5	55.6		
50 55	.056	.474	$1.61 \\ 1.72$	3.79 4.06	7.44 7.95	12.9 13.8	20.5	30.3	43.2	59.5		
60	.067	.538	1.80	4.30	8.41	14.4	23.1	34.4	49.1	67.3		
65	.071	.570	1.90	4.56	8.88	15.1	24.4	36.5	51.8	71.0		
70 75	.074	.597	$2.02 \\ 2.12$	4.77 5.00	9.36 9.77	16.2 16.9	25.5 26.8	38.2	54.4 56.8	74.9		
80	.081	.650	2.20	5.20	10.2	17.6	28.0	41.6	58.1	81.6		
85 90	.085	.680	2.30 2.38	5.44 5.64	10.6 11.0	18.4	29.2 30.5	43.5	62.0 64.5	85.0		
95	.088	.703	2.38	5.68	11.0	19.1 19.9	31.3	45.2	66.6	88.4 91.5		
100	.094	.755	2.56	6.04	11.8	20.5	32.4	48.4	68.5	94.5		
110 125	.101	.810	2.73 2.98	$6.48 \\ 7.02$	12.6 13.7	21.9 23.8	34.6 37.5	51.8	73.2	101.0 110.0		
150	.124	.99	3.38	7.72	15.7	27.0	42.8	56.2 61.7	90.5	124.0		
175 200	.138	1.10	3.72	8.81	17.2	29.8	47.2	70.5	100.0	138.0		
200 225	.150	1.20 1.30	4.06 4.39	$9.6 \\ 10.4$	18.8 20.2	32.5 35.1	51.5 56.0	76.9 83.3	110.0 118.0	150.0 162.0		
250	.175	1.40	4.70	11.2	21.9	37.6	59.8	89.2	127.0	175.0		
275	.188	1.50	5.04	11.9	23.2	40.3	63.8	95.2	136.0	186.0		
300 325	.196	1.57 1.66	5.31 5.63	12.6 13.3	24.5 26.0	42.5 45.0	67.5 71.2	100.0 106.0	142.0 152.0	196.0 208.0		
350	.220	1.75	5.91	14.0	27.4	47.3	75.0	112.0	159.0	219.0		
375	.228	1.82 1.91	6.12	14.6	28.6	49.0	78.4	112.0 117.0	166.0	229.0		
400 450	.240	$\frac{1.91}{2.06}$	6.42 6.98	15.3 16.5	29.8 32.2	51.4 55.8	81.7 88.5	$122.0 \\ 132.0$	172.0 188.0	238.0 258.0		
500	.276	2.21	7.45	17.7	34.6	59.6	94.3	141.0	200.0	276.0		
550 600	.295 .312	2.35 2.50	7.98	18.9 20.0	36.9	63.8	101.0	151.0	215.0	295.0		
650	.330	2.64	8.40	21.1	39.0 41.2	67.2 71.2	107.0 113.0	160.0 169.0	226.0 240.0	313.0 329.0		
700	.348	2.78	9.32	22.2	43.3	74.6	119.0	177.0	250.0	337.0		
750 800	.362	2.90 3.03	$\frac{9.80}{10.2}$	23.2 24.2	45.2 47.3	78.4	124.0 130.0	186.0	264.0	352.0 378.0		
850	.394	3.15	10.2	25.2	47.3	81.5 85.0	135.0	194.0 202.0;	274.0 288.0	394.0		
900	.410	3.28	11.0	26.2	51.1	88.1	140.0	210.0	296.0	409.0		
950	.422	3.41	11.4	27.3	53.1	91.8	146.0	218.0	310.0	445.0		

Knots, or nautical miles per hour.											
11	12	13	14	15	16	17	18	19	20	ment, in tons.	
H	H	H	H	H	H	H	H	H	H	T	
5.85 9.28	7.59 12.0	9.63 15.3	12.0 19.1	14.8 23.5	17.9 28.4	$\frac{21.6}{34.2}$	25.6 40.6	30.1 47.8	35.1 54.7	1 2 3 4 5 6 7 8	
12.2	15.8	20.0	25.0	30.8	38.3	44.8	53.3	62.6	73.0	3	
$\frac{14.8}{17.2}$	19.2 22.2	24.4 28.3	30.3 35.2	37.4 43.4	43.1 52.4	54.3 63.0	64.5 74.9	75.9 88.0	88.4 97.8	5	
19.4	25.1	31.9	39.7	49.0	59.1	71.1	84.5	99.2	116.0	6	
$\frac{21.4}{23.4}$	27.8	35.3 38.6	44.0 48.1	54.0 59.3	65.5	79.0	93.7 102.0	110.0 121.0	128.0 140.0	7	
25.3	32.9	41.8	52.1	64.0	68.7 77.5	86.2 93.2	110.0	130.0	152.0	9	
$\frac{27.2}{29.0}$	35.3 37.6	44.8	55.8 59.7	68.8 73.5	83.2 89.0	100.0 107.0	119.0 127.0	140.0 150.0	163.0 174.0	10 11	
30.7	39.9	50.6	63.2	77.7	94.4	113.0	134.0	158.0	184.0	12	
32.4	42.0	53.3	66.6	82.0	99.6	120.0	142.0	167.0	194.0	13	
34.0 35.6	44.2 46.3	56.0 58.7	70.0 73.5	86.0 90.0	105.0 109.0	126.0 131.0	149.0 156.0	176.0 183.0	203.0 213.0	14 15	
37.2 38.7	483	61.3	76.5	94.0	114.0	137.0	163.0	192.0	223.0	16	
$\frac{38.7}{40.2}$	50.2	63.8 66.2	79.6 82.7	98.0 102.0	120.0 124.0	143.0 148.0	170.0 176.0	200.0 207.0	233.0 242.0	17 18	
41.7	54.0	68.7	85.8	106.0	128.0	154.0	182.0	215.0	250.0	19	
43.2	56.0	71.0	88.9 103.0	111.0	132.0	159.0	189.0	222.0	258.0	20	
50.0 56.5	65.0 73.4	82.5 93.2	117.0	127.0 143.0	154.0 173.0	184.0 208.0	194.0 248.0	258.0 291.0	265.0 339.0	25 30	
62.6	81.3	103.0	130.0	159.0	192.0	230.0	274.0	322.0	377.0	35	
$68.4 \\ 74.0$	88.8 96.2	113.0	141.0	173.0 188.0	209.0 228.0	252.0 273.0	300.0 324.0	350.0 382.0	410.0 445.0	40 45	
79.4	103.0	$122.0 \\ 131.0$	152.0 164.0	201.0	242.0	293.0	346.0	410.0	476.0	50	
84.6	110.0	140.0	174.0	215.0	260.0	312.0	370.0	437.0	509.0	55	
90.0 94.7	117.0 123.0	149.0 156.0	185.0 195.0	226.0 240.0	285.0 292.0	330.0 349.0	393.0 414.0	464.0	538.0 568.0	60 65	
99.6	130.0	164.0	206.0	252.0	306.0	367.0	437.0	512.0	599.0	70	
104.0	135.0	171.0	214.0 224.0	264.0	320.0	383.0	455.0	536.0	624.0	75	
109.0 113.0	141.0 147.0	180.0 187.0	234.0	276.0 287.0	333.0 348.0	400.0	467.0 496.0	561.0 584.0	653.0 680.0	80 85	
118.0	153.0	194.0	243.0	298.0	362.0 376.0 387.0	433.0	516.0	607.0	707.0	90	
122.0 126.0	158.0 164.0	201.0 207.0	251.0 259.0	309.0 318.0	376.0	448.0 464.0	533.0 551.0	629.0 648.0	732.0 756.0	95 100	
135.0	175.0	222.0	277.0	340.0	414.0	495.0	588.0	693.0	807.0	110	
146.0	190.0	241.0	300.0	370.0	450.0	539.0	640.0	753.0	878.0	125	
165.0 183.0	215.0 238.0	273.0 302.0	342.0 378.0	420.0 464.0	494.0 564.0	609.0 675.0	724.0 802.0	852.0 946.0	992.0 1100.0	150 175	
200.0	260.0	330.0	412.0	506.0	615.0	737.0	875.0	1027.0	1201.0	200	
217.0	281.0 301.0	358.0 384.0	447.0	548.0	666.0	800.0 855.0	947.0 1016.0		1300.0 1400.0	225	
$232.0 \\ 248.0$	322.0	409.0	478.0 510.0	588.0 627.0	762.0	912.0	1087.0	1286.0	1490.0	250 275	
262.0	340.0	432.0	540.0	662.0 700.0	806.0	966.0	1146.0	1347.0	1573.0	300	
$277.0 \\ 290.0$	360.0	457.0 480.0	570.0	700.0	896.0	1010.0 1073.0	1213.0 1276.0	1500.0	1665.0 1750.0	325 350	
305.0	378.0 395.0	502.0	600.0 627.0	770.0	936.0	1122.0	1332.0	1570.0	1830.0	375	
317.0 343.0	412.0 446.0	522.0 567.0	654.0 708.0	803.0	976.0 1060.0	$1170.0 \\ 1265.0$	1402.0	1632.0	1907.0 2065.0	400	
368.0	478.0	607.0	759.0	932.0	1131.0	1358.0	1611.0	1896.0	2213.0	450 500	
393.0	510.0	648.0	810.0	995.0	1210.0	1358.0 1450.0	1720.0	2025.0	2362.0	550	
415.0 440.0	540.0 570.0	684.0 724.0	905.0	1036.0 1111.0	1350.0	1618 0	1820.0	$\begin{vmatrix} 2140.0 \\ 2265.0 \end{vmatrix}$	2500.0 2636.0	600 650	
460.0	599.0	759.0	938.0	1166.0	1417.0	1700.0	2016.0	2373.0	2770.0	700	
483.0 503.0	627.0 654.0	797.0 830.0	995.0 1038.0	$1220.0 \\ 1274.0$	1485.0	1780.0 1857.0	2113.0 2206.0	2490.0 2593.0	2900.0	750 800	
525.0	680.0	866.0	1080.0	1330.0	1620.0	1935.0	2300.0	2593.0		850	
545.0	708.0	898.0	1123.0	1380.0	1675.0	2009.0	2385.0	2803.0	3274.0	900	
565.0	734.0	933.0	1170.0	1430.0	1740.0	2080.0	2478.0	2920.0	3400.0	950	

Displace-	Knots, or nautical miles per hour.											
ment, in tons.	1	2	3	4	5	6	7	8	9	10		
T	H	H	H	H	H	H	H	H	H	H		
1000 1100	.438	3.50 3.75	11.8 12.5	28.0 30.0	54.9 58.4	94.6 100	150 160	225 239	318 338	439 467		
1200	.500	4.00	13.4	32.0	62.0	107	170	254	359	495		
1300	.515	4.12	14.0	33.0	65.3	112	179	267	378	523		
1400 1500	.548	4.38 4.50	14.9 15.5	35.0 36.0	68.7	119 124	189 197	281 295	398	549 575		
1600	.578	4.62	16.2	37.0	75.0	130	206	307	435	600		
1700 1800	.625	4.75 5.00	16.9 17.5	38.0 40.0	78.1 81.2	135 140	215 224	320	453 470	625		
1900	.634	5.25	18.1	42.0	84.2	145	231	345	488	673		
2000	.700	5.60	18.8	44.0	87.0	150	239	356	504	696		
2100 2200	.719	5.75 5.88	19.4 20.0	46.0 47.0	90.0 92.7	155 160	247 255	369 380	521 537	720 741		
2300	.765	6.12	20.6	49.0	95.6	165	262	391	554	764		
2400	.788	6.28	21.1	50.2	98.4	170	270	402	569	786		
2500 2600	.805	6.44	21.8	51.5 53.0	101.0 104.0	174 179	277 285	414 424	585	808 826		
2700	.851	6.81	23.0	54.5	106.0	184	292	436	616	850		
2800 2900	.872	$6.98 \\ 7.12$	23.5	55.8	109.0	188	299	446	631	871		
3000	.909	7.35	$24.0 \\ 24.6$	57.1 58.8	111.0 114.0	192 197	306 313	457 467	646	893 913		
3100	.931	7.45	25.1	59.8	117.0	201	320	478	676	933		
3200 3300	.952 .972	7.62	25.6 26.1	61.0 62.2	119.0 121.0	205 209	327 334	488 498	690 704	952 972		
3400	.992	7.94	26.8	63.5	124.0	214	340	508	718	992		
3500	1.01	8.10	27.2	64.8	127.0	218	347	518	733	1010		
3600 3700	1.03 1.05	8.25 8.39	27.8 28.2	66.0 67.1	129.0 131.0	222 226	354 360	528 538	746 759	1025 1049		
3800	1.08	8.60	28.7	68.5	133.0	230	367	548	774	1070		
3900	1.09	8.70	28.9 29.9	69.6	135.0	234	373	558	787 801	1087 1105		
4000 4100	1.13	8.85 9.01	30.4	70.8 71.1	138.0 140.0	238 242	380 386	567 577	814	1122		
4200	1.14	9.14	30.9	73.1	142.0	246	392	586	827	1141		
4300 4400	1.16 1.18	9.30	31.4	74.4 75.5	145.0 147.0	250 254	398 404	595 604	840 853	1160 1179		
4500	1 19	9.56	32.4	76.5	150.0	258	410	613	866	1198		
4600	1.22 1.23	9.72	32.8	77.7	152.0	261	416	622	879	1216		
4700 4800	1.25	9.86	33.4	78.9 80.0	154.0 156.0	266 270	422 428	631 640	891 904	1232 1248		
4900	1.28	10.1	34.4	81.1 82.7	158.0	270 274	434	649	916	1265		
5000 5250	1.30 1.32	10.3 10.6	34.8 35.6	82.7 85.0	$160.0 \\ 165.0$	277 283	440 455	658 670	929 959	1282 1324		
5500	1.36	10.0	36.4	87.5	171.0	290	469	700	990	1367		
5750	1.40	11.2	37.5	90.0	176.0	298	483	721	1024	1408		
6000 6250	1.42 1.47	11.4 11.9	38.0 40.2	92.8 95.2	181.0 188.0	303 322	497 512	742 762	1050 1065	1448 1488		
6500	1.52	12.2	41.2	97.8	191.0	330	526	782	1078	1526		
6750 7000	1.56 1.60	12.5	42.4 43.2	100.0	196.0	339	540	802	1123	1567		
7250	1.64	12.9 13.1	44.4	$103.0 \\ 105.0$	$202.0 \\ 205.0$	346 355	554 566	822 842	1174 1198	1616 1644		
7500	1.68	13.5	45.5	108.0	210.0	364	579	861	1226	1682		
7750 8000	$1.72 \\ 1.75$	13.8 14.0	46.5 47.4	$110.0 \\ 112.0$	$215.0 \\ 220.0$	372 379	599 603	879 899	1253 1280	1719 1757		
8250	1.78	14.2	48.4	115.0	224.0	387	615	918	1306	1793		
8500	1.81	14.5	49.4	116.0	229.0	395	628	929	1333	1829		
8750 9000	1.84 1.88	$14.9 \\ 15.2$	50.0 51.1	119.0 122.0	233.0 238.0	403 411	640 653	955 973	1354 1385	1865 1902		
9250	1.92	15.4	52.2	124.0	242.0	418	668	991	1411	1937		
9500	1.95	15.6	53.2	126.0	246.0	426	683	1008	1437	1972		
10000	2.05	16.4	55.1	131.0	255.0	441	714	1044	1488	2042		

Knots, or nautical miles per hour.											
	T	1	1		1	Ţ	1	1	1	Displace- ment,	
11	12	13	14	15	16	17	18	19	20	in tons.	
H	H	H	H	H	H	H	H	H	H	T	
585 622	759 806	963 1024	1206 1284	1480 1574	1798 1913	2157 2295	2560 2723	3008	3514 3736	1000	
660	858	1090	1360	1670	2030	2435	2890	3400	3907	1100 1200	
696	903	1147	1432	1758	2136	2564	3043	3576	4178	1300	
732	950	1204	1508	1850	2248	2697	3200	3762	4394	1400	
766 800	995 1038	1264 1317	1580 1648	1938 2020	2355 2458	2825 2948	3252 3500	3943 4113	4605	1500 1600	
833	1083	1374	1718	2107	2561	3072	3646	4286	5006	1700	
864	1123	1422	1784	2188	2660	3140	3785	4448	5195	1800	
897	1166 1205	1479	1850 1913	2270 2345	2760 2854	3310 3420	3928 4060	4615 4770	5390 5570	1900 2000	
927 958	1247	1527 1582	1913	2382	2948	3535	4195	4935	5762	2100	
988	1284	1628	2037	2500	3038	3642	4325	5084	5935	2200	
1017	1324	1680	2102	2578	3134	3755	4460	5241	6120	2300	
$\frac{1047}{1077}$	1360 1400	1723 1777	$\begin{vmatrix} 2160 \\ 2222 \end{vmatrix}$	2646 2725	3220 3313	3860 3970	4580 4715	5386 5542	6290 6470	2400 2500	
1102	1435	1820	2280	2796	3400	4075	4835	5655	6637	2600	
1131	1473	1870	2338	2868	3486	4180	4960	5832	6813	2700	
1160	1508	1911	2395	2935	3568	4280	5076	5970	6970	2800	
1189 1215	1545 1582	1960 2000	2452 2508	3010 3075	3655 3740	4385 4485	5200 5318	6115 6255	7142 7300	2900 3000	
1242	1614	2048	2565	3145	3822	4585	5440	6394	7470	3100	
1268	1648	2092	2616	3210	3905	4680	5550	6525	7622	3200	
1296 1320	1683	2134	2671	3280	3985	4775	5670	6666	7781	3300	
1347	1717 1750	2178 2220	2725 2779	3343 3408	4063 4143	4870 4965	5784	6784	7936 8090	3400 3500	
1373	1783	2264	2830	3475	4222	5060	6010	7061	8250	3600	
1398	1815	2303	2881	3534	4300	5155	6115	7184	8400	3700	
1422 1446	1848 1880	2348 2385	2941 2986	3606 3660	4385 4453	5250	6238	7333 7444	8563	3800	
1473	1912	2427	3038	3725	4530	5340 5430	6444	7580	8696 8847	3900 4000	
1497	1944	2468	3086	3785	4610	5520	6550	7700	8988	4100	
1520	1975	2507	3137	3850	4680	5610	6655	7830	9141	4200	
1545 1568	2008 2037	2546 2585	3186 3238	3910 3970	4750 4825	5700	6761 6865	7950 8072	9285 9432	4300 4400	
1593	2070	2624	3286	4025	4900	5790 5875	6970	8195	9572	4500	
1614	2100	2664	3333	4087	4975	5960	7070	8320	9710	4600	
1639 1663	2130 2160	2702	3382 343 1	4145	5040	6045	7172	8437	9850	4700	
1686	2190	2740 2779	3478	4202 4260	5112 5193	6130 6215	7275 7375	8555 8673	9990 10120	4800 4900	
1708	2220	2817	3525	4321	5253	6300	7475	8792	10250	5000	
1760	2293	2909	3640	4414	5426	6507	7723	9081	10601	5250	
1822 1876	2365 2436	3000 3090	3755 3868	4608 4744	5600 5767	6715 6917	7972 8204	9370 9652	10953 11269	5500	
1930	2507	3180	3981	4880	5935	7120	8436	9935	11586	5750 6000	
1982	2574	3261	4094	5013	6096	7313	8519	10203	11902	6250	
2035 2088	2642	3352	$\frac{4207}{4320}$	5146	6258	7505	8603	10472	12218 12534	6500	
2141	2710 2778	3438 3524	4434	5281 5417	6419 6580	7698 7892	8986 9370	10741 11010	12534	6750 7000	
2191	2842	3606	4531	5542	6733	8076	9587	11265	13152	7250	
2241	2907	3688	4629	5668	6886	8260	9805	11521	13453	7500	
2290 2340	2971 3036	3770 3852	4726 4824	5794 5920	7039 7192	8445 8628	$10022 \\ 10240$	$11776 \\ 12032$	13754 14056	7750 8000	
2488	3098	3931	4923	6042	7340	8806	10451	12280	14345	8250	
2636	3161	4011	5023	6164	7488	8984	10662	12528	14634	8500	
2784 2933	3223 3286	4095 4170	$5123 \\ 5222$	6286 6408	7637	9162	10823	12776	$\begin{array}{c c} 14922 \\ 15211 \end{array}$	8750	
3080	3346	4170	5343	6516	7785 7926	9340 9512	11084 11289	13024 13364	15211 15493	9000 9250	
3222	3407	4324	5465	6645	8068	9685	11494	13505	15775	9500	
3370	3529	4478	5708	6882	8351	10030	11904	13987	16340	10000	

Conversion of Horse-power into Kilowatts and Kilowatts into Horse-power.

No.	Kilowatts to horse- power.	Horse- power to kilowatts.	No.	Kilowatts to horse- power.	Horse- power to kilowatts,	No.	Kilowatts to horse- power.	Horse- power to kilowatts,
1	1.341	.746	38	50.943	28.3	75	100.545	55.9
2	2.681	1.49	39	52.283	29.1	76	101.886	56.7
3	4.022	2.24	40	53.624	29.8	77	103.226	57.4
4	5.363	2.98	41	54.965	30.6	78	104.567	58.2
5	6.703	3.73	42	56.305	31.3	79	105.907	58.9
6	8.044	4.48	43	57.646	32.1	80	107.248	59.7
7	9.384	5.22	44	58.986	32.8	81	108.588	60.4
8	10.725	5.97	45	60.327	33.6	82	109.929	61.2
9	12.065	6.71	46	61.667	34.3	83	111.269	61.9
10	13.406	7.46	47	63.008	35.1	84	112.610	62.7
11	14.747	8.21	48	64.349	35.8	85	113.951	63.4
12	16.087	8.95	49	65.689	36.5	86	115.292	64.2
13	17.428	9.7	50	67.030	37.3	87	116.632	64.9
14	18.768	10.4	51	68.371	38.0	88	117.973	65.6
15	20.109	11.2	52	69.711	38.8	89	119.313	66.4
16	21.450	11.9	53	71.052	39.5	90	120.654	67.1
17	22.790	12.7	54	72.392	40.3	91	121.995	67.9
18	24.131	13.4	55	73.733	41.0	92	123.335	68.6
19	25.471	14.2	56	75.074	41.8	93	124.676	69.4
20	26.812	14.9•	57	76.414	42.5	94	126.016	70.1
21	28.153	15.7	58	77.755	43.3	95	127.357	70.9
22	29.493	16.4	59	79.095	44.0	96	128.698	71.6
23	30.834	17.2	60	80.436	44.8	97	130.038	72.4
24	32.174	17.9	61	81.777	45.5	98	131.379	73.1
25	33.515	18.6	62	83.117	46.2	99	132.719	73.8
26	34.856	19.4	63	84.458	47.0	100	134.06	74.6
27	36.196	20.1	64	85.798	47.7	200	268.12	149.0
28	37.537	20.9	65	87.139	48.5	300	402.18	224.0
29	38.877	21.6	66	88.480	49.2	400	536.24	298.0
30	40.218	22.4	67	89.820	50.0	500	670.30	373.0
31	41.559	23.1	68	91.161	50.7	600	804.36	448.0
32	42.899	23.9	69	92.501	51.5	700	938.42	522.0
33	44.240	24.6	70	93.842	52.2	800	1072.48	597.0
34	45.580	25.4	71	95.183	53.0	900	1206.54	671.0
35	46.921	26.1	72	96.523	53.7	1000	1340.60	746.0
36	48.261	26.9	73	97.864	54.5			
37	49.602	27.6	74	99.204	55.2			• • • • • • • • • • • • • • • • • • • •

Unit Equivalents for Electric-heating Problems.

1000 watt hours. 1 watt second. 1.34 horse-power hours. 0.00000278 kilowatt 2,656,400 foot-pounds. hour. 1 ioulé = 3,600,000 joules. 0.102 kilogrammetre. 3440 heat units. 0.00094 heat unit. 366,848 kilogrammetres. 0.73 foot-pound. 0.229 pound of coal oxi-1 kilowatt dized with perfect efficiency. hour = 1.36 joulés. 3 pounds of water evap-0.1383 kilogrammetre. orated at 212° F. 0.000000377 kilowatt 1 foot-22.9 pounds of water hour. pound = raised from 62° to 0.000291 heat unit. 212° F. 0.0000005 horse-power 8 cents at usual rates hour. for electric heating. 0.746 kilowatt hour. 1 joulé per second. 0 00134 horse-power. 1,980,000 foot-pounds. 2580 heat units. 0.001 kilowatt. 273,740 kilogrammetres. 3.44heat units per 0.172 pound of coal oxihour. dized with perfect ef-1 watt = 0.73 foot-pound per sec-1 horseficiency. ond. power 225 pounds of water 0.003 pound of water evaporated per hour. hour = evaporated at 212° F. 17.2 pounds of water 44.24 foot-pounds per raised from 62° to minute. 212° F. 6 cents at usual rates for electric heating. 8.26 thermal units per square foot per min-1000 watts. 1.34 horse-power. ute. 1 watt per 120° F. above surround-2,656,400 foot-pounds square ing air (japanned per hour. cast-iron surface). inch = foot-pounds per 66° C. above surroundminute. ing air (japanned 73.73 foot-pounds per cast-iron surface). second. 1 kilo-3440 heat units per hour. watt = 573 heat units per min-1.048 watt seconds. 778 foot-pounds. 9.55 heat units per sec-0.252 caloric (kg. d.). ond. 108 kilogrammetres. 0.229 pound of coal oxi-0.000291 kilowatt hour. dized per hour. 1 heat 0.000388 horse-power 3 pounds of water evapunit = hour. orated per hour at 0.0000667 pound of coal, 212° F. oxidized. 0.00087 pound of water 746 watts. evaporated at 212° F. 0.746 kilowatts. 33,000 foot-pounds per minute. 1 heat unit) 550 foot-pounds per sec-0.021 watt per square per inch. ond. square 0.0174 kilowatt. 2580 heat units per hour. foot per 1 horse-43 heat units per min-0.0232 horse-power. minute = power = nite. 0.71 heat unit per sec-7.23 foot-pounds. ond. 0.172 pound of coal oxi-0.00000366 horse-power 1 kilodized per hour. hour. gramme-2.25 pounds of water evaporated per hour 0.00000272 kilowatt tre =hour. at 212° F. 0.0092 heat unit.

INDEX

Absolute zero, 489.

Accelerated circular motion, 272.

motion, 259, 271. Acceleration, 234. resistance of trains, 794. Accumulator, efficiency of, 570. hydraulic, 569. Acetic acid, specific heat of, 495. Acid in feed water, sulphuric, 636. Adiabatic expansion, 666. Advance, angle of, 678. Advantages of electric driving, 749. Air, 500. compression and expansion of, 501-503. compressor efficiencies, 506. compressor, electric power required for, 769. discharge, coefficients of, 505. flow of, 508. friction, 510-513. friction in pipes, 510-513. movement of, 509. pressure, 610. pressure and temperature of, 501. pressure and volume of, 502. pressures and water-heads, 610. pump, size of, 685.

required for combustion, 607.

transmission through pipes, 504,

volume and temperature of, 501.

volumes and velocities, 608, 609.

work required to compress, 505.

volume and weight of, 500.

required for motors, 506.

velocity of escape, 504.

vessels for pumps, 554.

specific head of, 496.

508.

Alcohol, coefficient of expansion of latent heat of, 496. specific heat of, 495. Algebra, 76. Allan's link motion, 680. Allen valve, 682. valve, Zeuner diagram for, 682. Alloys, fusing-points of, 489. percentage of metals in, 283. Alternating systems, electric, 755. Altitude, barometric determination of, 514-518. effect on air compressors, 506. table, metric, 515. Aluminum, 791-793. coefficient of expansion of, 487. conductivity of, 793. for structural purposes, 792. fusing-point of, 489. heat transmission through, 497. specific gravity of, 284. specific heat of, 495. strength of, 791. weight of, 791. American boiler specifications, 628-632. coals, 578. A. S. M. E. code for gas and oil engines, 690-698. rules for boiler trials, 595. steam-engine code, 656. Ammonia, latent heat of, 496.

Analogies, electrical, 700.

of boiler scale, 637.

Analysis of coal, 599.

of flue gases, 600.

Angle of advance, 678.

Analyses of boiler feed water, 638.

of indicator diagrams, 663.

Angle of oscillation, 276. sections, moment of inertia of, 357.

valves, 335. Angles and bends, resistance in, 567. constructions with, 106.

elements of, 380-390. Angström's valve gear, 680.

Angular belting, 477.

functions, 132-223.

functions, logarithmic, 179-223.

Antimony, coefficient of expansion of, 486.

fusing-point of, 489.

heat transmission through, 497.

specific gravity of, 284. specific heat of, 495.

Apothecaries' weight, 60.

Apparent efficiency of electrical apparatus, 748.

Arc lamps, 727.

lamps, installation of, 712.

lighting, series, 712.

lights on low-potential circuits, 717.

Arcs of belting contact, 469.

of circles, 117-121.

Area of chimneys, 605.

Areas for safety valves, Board of Trade, 634.

of circles, 110-116.

of flues, 608, 609.

of plane figures, 127, 128.

of safety valves, 633-635.

Arithmetical progression, 77.

Arkansas coal, heating value of, 574.

Armored cable, electric, 722.

Arm sections, transformation of, 440. Arms, lever, 439.

of gear-wheels, 464.

proportions of, 439.

Arresters, lightning, 706.

Ashes, 599.

Ash, percentage in coal, 578.

Asphalted pipe, water flow in, 529. Atmospheric pressure, 514.

Augusta, Ga., water-power costs,

771, 772. Austrian coals, heating value of, 576.

Automatic cutouts, 713.

engines, performance of, 676. Auxiliaries, steam used by, 660.

Auxiliary circles for bevel gears, 459.

Average strength of materials, 411-415.

Aveyron coals, heating value of, 575. Avoirdupois weight, 59.

Axis, neutral, 351.

Axle, crank, 441.

В

Back-gear ratios, 475. Band brake, 662.

Banki motor, 688.

Bar iron, metric weight of, 292, 293.

Barometric determination of altitude, 514-518.

tables, 515–518.

tables, British, 517.

tables, metric, 515.

Base circle for gear teeth, 451.

Basic open-hearth steel, 349.

Batteries, storage, 708.

Baumé hydrometer, 565.

Bavarian coals, heating value of, 575. Bazin formula, diagram for, 535, 536.

formula for water flow, 535.

Beams, bending moments for, 364–367.

deflections of, 364-367.

double-trussed, 248.

elements of, 360, 361.

framed, 255–257.

multiple-trussed, 249, 250.

simple-trussed, 247.

strength of wooden, 408, 409. timber, 405.

triple-trussed, 249.

Beam sections, moment of inertia of, 356.

Bearings, 434.

collar, 428.

pressure on engine, 675.

thrust, 428.

Beau de Rochas cycle, 687.

Belgian coals, heating value of, 576. Belting, 467.

angular, 477.

arcs of contact of, 469.

centrifugal force of, 468.

horse-power of, 468.

rules, 468.

speed of, 467.

tension of, 468.

Philadelphia

Boiler

dimensions,

Belts and pulleys, 467. arrangements of, 476. creep of, 472. crossed, 476. guide pulleys for, 478. half-crossed, 477. leading-off angle of, 477. open, 476. pull of, 478. quarter-twist, 477. slack side of, 478. stiffness of, 472. width of, 468. Belt transmission, 467. transmission, losses in, 472. Bending, 346-351. boiler plates, 629. moments for beams, 364-367. Bends, pipe, 333. Bevel-gear cutting machines, 459. Bevel gears, 458. gears, auxiliary circles for, 459. gears, rims of, 463. Binomial coefficients, 76. theorem, 76. Bismuth, coefficient of expansion of, specific gravity of, 284. specific heat of, 495. Bisulphide of carbon, latent heat of, 496. Blast-furnace gas, 581. gas-power cost, 777. Blowers, power required for foundry, 769. Board measure, 321. measure, table of, 322. of Trade areas for safety valves, 634. of Trade boiler specifications, 611of Trade unit, 700. Bohemian coals, heating value of,

Boiler and engine test, complete,

braces, factor of safety of, 631.

braces, 629-631.

bracing, 614.

calking, 630.

details, 611.

rules, 621. domes, 631. drums, 631. efficiency, 592. efficiency, calculation of, 600. factors of safety, 631. feed water, 635. feed water, analyses of, 638. furnace flues, 615. furnaces, corrugated, 615, 618 furnaces, stiffened, 615. furnaces, strength of, 615. hanging, 632. heat balance, 600. horse-power, 592. horse-power, Centennial standard, 593. horse-power, commercial, 593. incrustation, 635. incrustation, causes of, 636. man-holes, 631. materials, 611-616, 628. performances, 772. plate rolls, power required for, 769. plates, bending, 629. plates, flanging, 629. plates for flanging, 615. plates, forming, 629. plate, tensile strength of, 613. proportions, 592. proportions, metric, 627. riveting, 419, 630. riveting, pitch of, 611. riveting, rules for, 611. rivets, 629. saddles, 631. scale, analyses of, 637. shells, factor of safety of, 613. shells, materials for, 613. shells, proportions of, 613. specifications, American, 628-632. stay bolts, 614, 629, 631. stay girders, 616. stays, 614, 616. stays, loads on, 616. supporting, 632. surfaces, flat, 630. test, hydrostatic, 632. tests, 772. trials, A. S. M. E. rules, 595.

Boiler trials, conditions of, 597. trials, duration of, 596. trials, records of, 598. trials, report of, 601. trials, starting and stopping, 597. troubles due to water, 636. tube holes, 630. tube plates, 617. tubes, 629. tubes, draught area through, 604. tube setting, 631. tubes, extra strong, 311. tubes, lap-welded, 310, 326. tubes, standard, 619. workmanship, 629. Boilers, 592-638. causes of corrosion in, 637. Cornish, 603. cylinder, 603. evaporation in, 592. evaporation tests of, 772. evaporative performance of, 593. evaporative power of, 604. examination of, 595. flow of gases in, 593. grate surface of, 603, 604. heating surface of, 603, 604. locomotive, 603. prevention of corrosion in, 637.

prevention of incrustation in, 636. prevention of priming in, 637. proportions of, 603. return tubular, 603. scale in, 635.

Scotch, 603. steam, 592-638. water-tube, 603.

working pressures for, 622-626.

Bolts, 420.

for steam cylinders, 420. proportions of stay, 620. stresses on, 420.

weight of, 302, 303.

Bolt threads, special, 421.

Bomb, calorimetric, 573.

Bonus plan of wages, 780. Boom, framed, 256.

Boring mill, power required 752.

Bosnian coals, heating value of,

Boxes, resistance, 706.

Boyle's law, 514.

Braces, boiler, 629, 631.

Bracing, boiler, 614.

Brake, band, 662.

horse-power, 662.

rope, 662.

water, 662. Brass, coefficient of expansion of,

486, 487. fusing-point of, 489.

heat transmission through, 497.

specific gravity of, 284. specific heat of, 495.

wire, weight of, 313.

working tools, power required for,

Brasses, connecting-rod, 445. Breast water-wheel, 545-547.

Brick, coefficient of expansion of,

conduits, water flow in, 529. strength of, 415.

Bridge rivets, weight of, 301.

trusses, 257, 258. British coals, heating value of, 574.

measures of volume, 61. steam table, 583-585. thermal unit, 490, 572.

Brittleness, 282.

Bronze, coefficient of expansion of, 487.

fusing-point of, 489.

specific gravity of, 284.

Brotherhood hydraulic motor, 570. Brownlee's formula for discharge of steam, 589.

Brown's valve gear, 680.

Brunswick coals, heating value of, 574.

B. T. U., 490.

to calories, table, 491.

Bulging, resistance to, 614.

Bumped heads for boilers, 630, 631.

Burden, hourly, 785.

Bureau veritas boiler specifications, 611-616.

Bus bars, 705.

Butterfly valves, 335.

Butt-joint riveting, 418.

Butt straps, boiler, 613.

Cables, electrical, 701.

Calcium carbonate in feed water, 635.

sulphate in feed water, 635.

Calculus, differential and integral, 230–233.

Calibration of indicator springs, 661. Calking, boiler, 630.

Calorie, 490, 572.

Calories to B. T. U., table, 492. to foot-pounds, table, 493.

to thermal units, table, 492,

Calorific power, 572.

power, computation of, 572. power of blast-furnace gas, 581.

power of coal gas, 581.

power of gas fuels, 581.

power of natural gas, 580.

power of producer gas, 580, 581. power of water gas, 581.

tests of coal, 599.

values of fuels, table, 573.

Calorimeter, throttling, 591.

Calorimetric bomb, 573.

Canals, flow of water in, 535-538.

Cantilever beams, 255.

Capacity of wires, carrying, 711. steam-engine, 656.

Caratonk Falls water-power plant costs, 771.

Carbonate of lime, solubility of, 637.

of magnesia, solubility of, 637. Carbon, coefficient of expansion of, 487.

Carbonic anhydride, specific heat of, 496.

oxide, specific heat of, 496.

Car-houses, wiring of, 717.

Carnot cycle, 667.

Carrying capacity of wires, 711.

Car-wiring, 717.

Cast-iron columns, 369.

columns, safe loads for, 391, 392.

expansion of, 488. pipe, 307–310.

pipe, 307–310.

pipe fittings, 331.

pipe, metric system, 307.

pipe, metric weight of, 300.

Cast-iron pipe, standard dimensions of, 308, 309.

pipe, water flow in, 529.

pipe, weight of, 299.

spheres, weight of, 297, 298.

Catenary, 238-241.

Causes of boiler incrustation, 636.

of corrosion in boilers, 637.

of priming in boilers, 637.

Cements, strength of, 415.

Centigrade expansion coefficients, 487.

thermometer, 482.

to Fahrenheit tables, 484.

Central condensers, 686.

forces, 274.

Centre of gravity, 242-246.

of gravity experimentally determined, 244.

of gravity graphically determined, 243.

of gyration, 272.

of hydrostatic pressure, 566.

of oscillation, 276.

Centrifugal force, 274, 275.

force of belting, 468. force of Manila rope, 479.

pumps, 568.

Centripetal force, 274.

Chains, 315.

crane, 315. Chain sheaves, 315.

Channel sections, moment of inertia of, 356.

Channels, elements of, 362, 363. flow of water in open, 535.

Charging machine, power required for, 765.

Charleroi coals, heating value of, 576.

Check valves, 335.

Cheval-vapeur, 638.

Chézy formula for water, 529.

Chimney area, 605.

dimensions, table of, 606.

flues, 608, 609.

formulas, 605.

formulas, metric, 606.

Chimneys, 605.

height of, 665.

proportions of, 605.

Chlorine, specific heat of, 496.

Choice of electric motors, 755. of electric systems, 755. Choke coil for lightning arrester, 706. Chords, table of, 107, 117-121. Circle, 109. formulas, 109. ring, area of, 128. sector, centre of gravity of, 245. segment, centre of gravity of, 245. zone, surface of, 130. Circles, arcs of, 117-121. areas of, 110-116. circumferences of, 110-116. segments of, 117-121. tables of, 110-116. Circuit-breakers, electric, 724. for railway power plants, 707. general rules for, 712. Circular arc, centre of gravity of, 246. mils, 701. motion, accelerated, 272. pitch tables, 455. Circulating water, 685. Circumferences of circles, 110-116. Circumferential and diametral pitch, 450. pitch, 449. Clearance and expansion ratio, 646. in steam engines, 646, 676. Clutch, cone, 438. Coal, analysis of, 599. and oil, comparative evaporation of. 580. and oil, relative value of, 580. calorific tests of, 599. determination of character of, 595. determination of moisture in, 598. gas, calorific power of, 581. gas power cost, 776. measurement in engine tests, 660. mine water, 638. percentage of ash in, 578. sampling, 598. specific gravity of, 284. unit, standard, 656. Coals, American, 578. heating values of, 574-577. Code, A. S. M. E. steam-engine, 656. National Electric, 704-733. Coefficients, binomial, 76.

for pipe flow, 529. for safe load, 359. of air discharge, 505. of discharge, 527. of expansion, 486, 487. of friction, 281. of radiation, 497. of wear, 462. Coils, reactive, 727. Coinage, fineness of, 62. Cold saw, power required for, 760. Collar bearings, 428. bearings, friction in, 281. Columbia, S. C., water-power costs, 771, 772. Columns, 368. cast-iron, 369. elements of Z-bar, 378. safe loads for cast-iron, 391, 392. Combustible, distribution of heating value of, 601. Combustion, air required for, 607. draught pressure for, 607. rate of, 607. total heat of, 579. Commercial cut-off, 664. test of steam plant, 657. Commutating machines, efficiency of, 738. machines, electrical, 736. Comparative evaporation of coal and oil, 580, steam-engine economy, 667. Complete engine and boiler test, 658. Compound engines, cylinder ratios for, 648. engines, performance of, 675, 773. expansion, 648. interest, 57. interest table, 57. non-condensing engines, performance of, 773. pendulum, 276. shapes, moment of inertia of, 357. shapes, radius of gyration of, 358. steam engine, 648. Compressed air, delivery through pipes, 508. air required for motors, 506.

Coefficients for deflection, 359.

for heat transmission, 496.

Compressed air, velocity of escape of, 504.

Compression, 346, 350.

and expansion of air, 501-503. curve, 663.

in gas engines, 687.

Compressor efficiencies, 506.

Computation of calorific power, 572.

Concord, N. H., water-power costs, 771, 772.

Condensing engines, performance of, 675.

Condensation, cylinder, 639, 648.

initial, 648. Condenser plant, electrically driven, 768.

Condensers, 684.

central, 686. electric, 727.

gain due to, 684.

size of, 684.

Condenser, Wheeler surface, 686.

Worthington jet, 685. Condensing engines, performance of, 773.

water, 684.

Conditions of boiler trials, 597.

Conductivity, Matthiessen's standard of, 702.

Conductors, flexible cord, 717-721. rules for underground, 711. station, 705.

Conduits, electric, 723.

interior, 716.

Conduit wire, 722.

Cone, centre of gravity of, 245.

clutch, 438. coupling, 437. pulleys, 472.

pulleys, crossed belts for, 472.

surface of, 130. volume of, 131.

Conic frustum, centre of gravity of, 246.

frustum, volume of, 131.

Connecting rod, 442.

rod ends, 443.

rod, marine type, 444.

rod stub end, 445.

Connections, riveted, 416.

Constant-current electric systems, 712.

Constant-potential electric systems,

Construction, materials of, 282.

Contact, arcs of belting, 469.

Contents of pipes, 543, 544. Contraction of gases, 489.

Conversion of calories into thermal units, 572.

of fractions, 24.

of mils into centimetres, 704.

of thermal units into calories, 572. of thermometer scales, 482.

tables for heat units, 491, 492.

Copper, coefficient of expansion of, 486, 487.

fusing-point of, 489.

heat transmission through, 497.

pipe, metric weight of, 328.

radiation from, 497. specific gravity of, 284.

specific heat of, 495.

weight of sheet, 294, 295.

wire, 702.

wire, strands of, 700.

wire table, 702. wire, weight of, 313.

Cord friction on pulleys, 469.

polygon, 235. Corliss engines, performance of, 675.

Cornish boiler, 603.

boiler, heating surface of, 604. Corrosion in boilers, causes of, 637.

in boilers, prevention of, 637.

Corrugated furnace, Fox, 615.

furnace, Purves-Brown, 615.

furnaces, 615-618.

iron, 320.

iron, weight of, 321.

Cosecants, logarithmic, 179-223.

natural, 134-178.

Cosines, logarithmic, 179–223. natural, 134–178.

Cost keeping, 781.

of electric power, 778, 779.

of gas power, 775–777.

of power, 771.

of steam plants, 774.

of steam power, 772-775.

of water power, operative, 772. of water-power plants, 771.

Cotangents, logarithmic, 179–223.

810 Cotangents, natural, 134-178. Cotter, dimensions of, 423. Cotters for cross-heads, 447. Cotton-rope transmission, 481. Cottonwood, water-power costs of, 771, 772. Counters, speed, 663. Couplings, 436. Crane chains, 315. Cranes, electric, 753. power required for, 753, 761, 766, Crank arm, graphical analysis of, 442. axle, 441. graphical analysis of, 442. pins, dimensions of, 676. pins, pressure on, 281, 675. Cranks, 441. proportions of, 441. Creep of belts, 472. Crossed belts, 476. belts for cone pulleys, 472. Cross-head, 447. pin, dimensions of, 676. pin, pressure on, 676. pressure on, 676. proportions, 447. Cross-section of pipes, changes in, 567. Crushing, 346, 350. Cube roots, table of, 25-55. Cubes, table of, 25-55. Cubic feet, contents of cylinders in, 543, 544. Current-wheel, 546. Curve, compression, 663. expansion, 639. hyperbolic, 648. isothermal, 647. polytropic, 648. resistance on railways, 794. Curves for Fourneyron turbine, 551.

ures for, 622-626. Cylindric surface, centre of gravity of, 246. D Dalmatian coals, heating value of, 577. Dam, pressure on, 527. Data and results of duty trials, 562. and results of engine tests, 670. for pumping-engine trial, 560. Deane steam pumps, 558. Decimals and fractions, 24, Deck beam sections, moment of inertia of, 356. Deflection, coefficient for, 359. of beams, 364-367. of shafts, 432, of springs, 399-402. Delivery of air through pipes, 508. of pumps, 555-557. Density, 282. for Jonval turbine, 552. and volume of water, 524. thermal efficiency of, 668. of water, 519. Cut-off, commercial, 664. Depreciation table, 786. most economical point of, 646. point of, 663. Cutouts, automatic, 713. Design, machine, 416. electric, 724. Details of steam boilers, 611. general rules for, 712. Detectors, ground, 707.

Cycle, Beau de Rochas, 687. Carnot, 667. Rankine, 667. Cycloid, 126. Cycloidal curves, 126, 127. Cylinder boiler, 603. boiler, heating surface of, 604. condensation, 639, 648. proportions, steam, 647. ratios for compound engines, 648. ratios for quadruple-expansion engines, 649. ratios for triple-expansion engines, Cylinders, bolts for steam, 420. contents of, 543, 544. thick, 398. volume of, 131. Cylindrical boilers, working press-

and results of evaporative test,

Derbyshire coal, heating value of,

Diagram factor, indicator, 665. for Bazin's formula, 535, 536. for cone pulleys, 473. for Kutter's formula, 538. for multiple-expansion engines, 649. gas-engine, 688. polytropic, 648. temperature-entropy, 666. Diagrams, analysis of indicator, 663. indicator, 650. Diametral and circumferential pitch, 450. pitch, 450. pitch formulas, 454. pitch, lineal value of, 450. pitch tables, 456. Diamond, specific heat of, 495. Dielectric strength, 743. Diesel motor, 688. Differential and integral calculus, 230-233. calculus formulas, 232. Dimensions of chimneys, table, 606. of gear teeth, 461. of pipe fittings, 333, 334. of pumps, 554. of slide valve, 681, 682. Direct-current electric system, 756. Discharge, coefficient of, 527. of steam, Brownlee's formula, 589. of water from nozzles, 527. of water from orifices, 527. of water from pipes, 531. Distance, 234. Distribution of heating value, 601. Domes, boiler, 631. Double-acting pumps, delivery of, 555-557. Double angles, elements of, 386-390. extra strong pipe, 325. riveted joints, 611, 612.

trussed beams, 248.

tube, turbine, 552.

for, 762.

pressure, 607.

of rivet bars, 611. Dulong's formula for calorific power, Duplex steam pumps, 558, 559. Duration of boiler trials, 596. of engine test, 657. Duty trials, data and results of, 562. trials of pumping engines, 560-563. Dynamical formulas, 268-271. Dynamics, 268. Dynamo rooms, 705. Dynamos (see Generators). Е Eccentric bolts, 446. imaginary, 681. straps, 446. Eccentrics, 445. Economical length of engine stroke, 647. point of cut-off, 646. Economy coils, 717. of actual and ideal engines, 667. standard of steam engine, 665. Efficiency, boiler, 600. curves, thermal, 668. of electrical apparatus, 738. of gearing, 465. of heat motors, thermal, 649. of hydraulic accumulator, 570. of phase-displacing apparatus, 747. of Reynolds's pumping engines, 650. of steam engine, maximum, 650. of steam engines, thermal, 650. standard of steam engine, 665. Efflux of steam, velocity of, 589. Elastic bodies, impact of, 279. limit, 347, 348. Draft area through boiler tubes, 604. limit of wood, 405. Elasticity, 347. required for combustion, 607. modulus of, 347. Elbows, resistance to steam flow, 591. Drilling machines, power required Electrical analogies, 700. and mechanical units, 699. Drill presses, power required for, 751. apparatus, apparent efficiency of, Driving, advantages of electric, 749. 748.

Driving rig for indicator, 661.

Dry measure, U. S. A., 61.

Drums, boiler, 631.

Ductility, 348.

Electrical apparatus, efficiency of, 738. apparatus, overload capacity, 747. apparatus, pulsation in, 745. apparatus, rating of, 746. apparatus regulation, 744. apparatus, rise of temperature, 741. apparatus, variation in, 745. induction apparatus, rotary, 737. induction apparatus, stationary, 737. insulation, 743. machines, commutating, 736. machines, synchronous, 737. machines, synchronous commutating, 737. standardization, 736-749. units, 699. units, equivalents of, 699. wiring formulas, 733-736. work, inside, 710. work, marine, 730-733. work, outside, 708-710. Electrically-driven condenser plant, 768. Electric cable, 701. cable, armored, 722. circuit-breakers, 724. code, National, 704-733. conduits, metal, 723. cranes, power required for, 753, 766, 767. cutouts, 724. driving, advantages of, 749. driving of machine tools, 750-765. fittings, general rules for, 719. fixture wire, 722. fuses, 725. gas-lighting, 729. generators, location of, 705. heaters, 713. heating, unit equivalents for, 801. lamp sockets, 725. lighting fixtures, 716. motors, choice of, 755. motors, installation of, 707. motor tests, 760-770. power, 698. power, cost of, 778, 779. signalling systems, 728.

stations, care of, 706.

switches, 724.

systems, alternating, 755. systems, choice of, 755. systems, constant-current, 712. systems, constant-potential, 713. systems, extra high-potential, 718. systems, high-potential, 718. systems, low-potential, 714. Electricity and water flow compared. Elements of angles, 380-390. of beams, 360, 361. of channels, 362, 363. of double angles, 386-390. of structural sections, 353. of structural shapes, 359. of tees, 379. of Z-bars, 376, 377. Ellipse, the, 122, 123. Ellipsoid, volume of, 131. Elliptical arc, centre of gravity of, Emery-wheels, power required for, 752. Engine and boiler test, complete, 658. capacity, 656. compound, 648. dimensions, measurement of, 657. economy, standard of, 665. efficiency, standard of, 665. feed-water test of, 672. parts, sizes of, 676. performance, 653-655, 675. plant, examination of, 656. proportions, 675. shaft, size of, 676. speed, 662. steam, 638-686. test, duration of, 657. test, report of, 669. test, starting and stopping, 658. tests, 655-674. tests, forms for, 670. tests, heat unit basis for, 655. tests, measurement of coal in, 660. tests, recording, 663. tests, rules for, 656. Engines, cylinder ratios for compound, 648. cylinder ratios for quadruple-expansion, 649.

Electric system, direct-current, 756.

Engines, cylinder ratios for tripleexpansion, 649.

gas, 687-698.

gas, 001-000

heat analysis of, 666. maximum efficiency of, 650.

measurement of steam consumption, 659.

multiple-expansion, 648.

performance of automatic, 675. performance of compound, 675.

performance of condensing, 675. performance of non-condensing, 675.

performance of slide valve, 675. pressure on wearing surfaces, 675. thermal efficiency of, 650. water consumption of, 651-655.

Entropy diagram, 666.

Epicycloid, 127.

Epicycloidal teeth, 451.

Equations, 78, 79.

Equilibrium of forces, 234.

Equivalent eccentric, 681. evaporation, 593.

Ether, specific heat of, 495.

Evaporation equivalent, 593.

factors, 593. in boilers, 592.

tests of boilers, 772.

Evaporative performance of boilers, 593.

power of boilers, 604. power of liquid fuels, 579.

test, data and results of, 602. Examination of engine plant, 656.

of steam boilers, 595. Exhaust pipe, 676.

Expansion, adiabatic, 666.

and compression of air, 501-503. coefficients of, 486, 487.

compound, 648.

curve, 639.

curve in gas engines, 689.

linear, 486, 487.

multiple, 648. of gases, 489.

of metals, table, 488.

of steam, 639.

ratio, 639, 665.

ratio and clearance, 646.

superficial, 486, 487.

Expansion, volume of, 486, 487. Expense, general, 785.

Explosion pressure in gas engines,

Extra heavy flanges, 330.

Extra high-potential electric systems, 718.

Extra strong pipe, 325.

strong wire rope, 344.

Eye bars, standard steel, 340. bar steel, 404.

bars, test of steel, 404.

F

Factor of safety, boiler, 631.

of safety of boiler braces, 631.

of safety of boiler shells, 613.

of safety of flat boiler surfaces, 631.

of safety of riveting, 611.

of safety of rivet seams, 631.

of safety of stay bolts, 631. table, 7-23.

Factors of even

Factors of evaporation, 593.

Fahrenheit expansion coefficients, 486.

scale, origin of, 482.

thermometer, 482.

to centigrade table, 483.

Falling bodies, 259-266.

bodies, British table of, 262, 263. bodies, metric table of, 264–266.

Fastenings, 416. keyed, 423.

Feathers, shaft, 423.

Feed pumps, 559.

water, 635.

water, analyses of, 638.

water, boiler, 635.

water, calcium carbonate in, 635.

water, calcium sulphate in, 635.

water, impurities in, 635.

water, measurement of, 659. water, purification of, 635.

water, sulphuric acid in, 636.

water, temperature of, 659.

water test of steam engine, 672.

Fibre stress, 346.

Fineness of coinage, 62.

Fink's link motion, 680.

Fire-brick, coefficient of expansion of, 486.

814 Fittings, cast-iron pipe, 331. dimensions of pipe, 333, 334. general rules for electric, 719. steel pipe, 332. Fixtures, electric-lighting, 716. Fixture wire, electric, 722. Flagging, weight of, 320. Flange joints, 420. Flanges, extra heavy, 330. standard, 329. Flanging boiler plates, 629. plates for, 615. Flat boiler surfaces, 630. plates, proportions for, 614. stayed surfaces, 620. Flexible cord conductors, 717, 721. Floor glass, 320. Flow of air, 508. of gases in boilers, 593. of steam, 588. of steam in pipes, 589, 590. of steam, Napier's rule, 589. of water, 529-541. of water and electricity compared, 700. of water in open channels, 535. of water, resistance of bends, 567. of water, resistance of valves, 567. of water through pipes, 529. Flue areas, 608, 609. gases, analysis of, 600. Flues, chimney, 608, 609.

furnace, 615. Fluid, soldering, 730.

Fly-wheels, 274, 676. Foot-pounds into calories, table, 494.

Force, 234, 268. in moving bodies, 271. of gravity, 261.

Forces, equilibrium of, 234.

Forestry Division, experiments of U.-S., 405.

Forming boiler plates, 629. Form of gear teeth, 450. Forms for testing gas engines, 693.

Foundry blowers, power required for, 769.

Fourneyron turbine, 551. turbine, curves for, 551.

Fox corrugated furnace, 615, 617.

Fractions, 24.

Fractions, conversion of, 24. reduced to decimals, 24. Framed beams, 255-257.

boom, 256.

structures, statics of, 247.

Francis turbine, 552.

French anthracite, heating value of, 575.

coals, heating value of, 575.

Frequencies and voltages classified, 746.

Friction, 280.

air, 510-513.

coefficients of, 281.

journal, 281.

loss of water head by, 533.

Morin's laws of, 280. of air in pipes, 510-513.

on pulleys, 469.

Tower's experiments on, 281.

Fuels, 572-581.

classified, 572.

draught pressure for, 607.

evaporative power of liquid, 579. gaseous, 580.

table of calorific values of, 573, total heat of combustion, 579.

Funicular polygon, 237.

Furnace flues, 615.

gas-power cost, 777.

Furnaces, corrugated, 615, 618. Morison suspension, 616. stiffened, 615.

strength of short, 615.

Fuses, electric, 725.

Fusing-points, 489.

Fusion, latent heat of, 496.

Gallons, contents of cylinders in, 543, 544.

Galvanizing plant, electric driving,

Gas engine, 687-698.

engine diagram, 688. engine, forms for testing, 693.

engine, heat test of, 696. engine proportions, 689.

engine testing, 690-698.

engines, expansion curve in, 689. engines, explosion pressure in, 689. Gas engines, mean effective pressures in, 688. engines, power of, 689. lighting, electric, 729. natural, 580. power, cost of, 775, 777... power cost, blast-furnace gas, 777. power cost, coal gas, 776. power cost, natural gas, 775. power cost, producer gas, 776. Gaseous fuel, 580, Gases, analysis of flue, 600. contraction of, 489. expansion of, 489. flow in boilers, 593. specific gravity of, 285. specific heat of, 496. Gate valves, 335. Gauge, sheet-metal, 314. Gauges, wire, 312. Gay Lussac hydrometer, 565. Gear cutting machines, bevel, 459. Gearing, 448-467. efficiency of, 465. proportions of, 466. Gears, bevel, 468. spiral, 459. Gear teeth, dimensions of, 461. teeth, form of, 450. teeth, interference of, 453. teeth, strength of, 457. teeth, stresses in, 461. teeth, wear on, 462. teeth, wooden, 462. teeth, working stresses on, 457. Gear-wheel parts, proportions of, 462. Gear-wheels, arms of, 464. cutters for, 450. hubs of, 465. pitch of, 449. proportions of, 460. radii of, 449. rims of, 462. General expense, 785. Generators, insulated frames for, 705. location of electric, 705. Geometrical progression, 77, 78.

Geometry, 105-132.

616.

German coals, heating value of, 574.

German rules for safety valves, 635. silver, coefficient of expansion of, silver, heat transmission through, Girders, boiler stay, 616. Glass, coefficient of expansion of, 486, 487. fusing-point of, 489. radiation from, 497. skylight and floor, 320. specific heat of, 495. window, 316. Globe valve, resistance to steam flow, 591. valves, 335. Gold, coefficient of expansion of, 486, 487. fusing-point of, 489. specific gravity of, 284. specific heat of, 495. Gooch's link motion, 679. Governor, 276. Porter, 276. Grade resistance of trains, 794. Granite, coefficient of expansion of, Graphical analysis of cranks, 442. analysis of shafts, 433. statics, 247-258. Graphite, coefficient of expansion of, specific heat of, 495. Grate surface of boilers, 603, 604. surface, ratio to heating, 604. Gravity, centre of, 242-246. force of, 261. specific, 282. table of specific, 284, 285. Grindstones, power required for, 761. Grooves for rope sheaves, 480. Ground detectors, 707. return wires, 709. Grounding of lightning arresters, 706. of low-potential circuits, 709. Group driving of machine tools, 764. driving of wood-working machinery, 770. riveting, 418, 419. Lloyds, boiler specifications of, 611-Guide pulleys for belts, 478. Guides, pressure on, 448.

Gyration, centre of, 272. radius of, 269, 273, 274, 351, 358, 359.

Half-crossed belts, 477. Half sphere, centre of gravity of, 245. Hangers, 435. Hanging, boiler, 632. Hanover coals, heating value of, 575. Hard bodies, impact of, 279. steel struts, 374, 375. Hardness, 282. Haulage rope, wire, 343. Head of water, 525-528. of water, loss by friction, 533. Heads and velocities of water, 528. Heat, 481. analysis of steam engine, 666. balance of boiler performance, 600. defined, 481. emission, 499. latent, 496. loss through walls, 499. mechanical equivalent of, 495. motors, thermal efficiency of, 649. of combustion of fuels, 579. quantity of, 490. specific, 495. test of gas engine, 696. test of steam engine, form for, 670. test of steam engine, standard, 658. transmission, coefficients for, 497. unit basis for engine tests, 655. unit conversion tables, 491, 492. unit standard for steam engines, 656. units, 490. units in water, 520-523. units, measurement of, 658. Heaters, electric, 713. Heating, electric, 801. of electrical apparatus, 741. pipes, iron, 499. surface of boilers, 603, 604. surface, ratio to grate, 604. surface, relative value of, 603. values of coals, 574-577. Heavy flanges, extra, 330. Height of chimneys, 605. Helfenberger hydraulic regulator,

570.

Helical springs, 401. Hempen rope transmission, 469. Hexagon-headed bolts, weight of, High-potential electric systems, 718. Hoisting gears, 460. power required for, 754. rope, standard wire, 342. Hollow shafts, 431. Hooke's law, 347. Horizontal water-wheels, 545. Horse-power, 268, 638. and kilowatts, 800. brake, 662. determined by indicator, 651. indicated, 661. metric, 638. of belting, 468. of boilers, 592. of cotton-rope transmission, 481. of Manila-rope transmission, 480. of water, 525. of water, table for, 542. of water-wheels, 545, 546. Hot-well temperature, 684. Hourly burden, 785. Hubs of gear-wheels, 465. Hungarian coals, heating value of, Hydraulic accumulator, 569.

577.

Iydraulic accumulator, 569.
distribution of power, 570.
distribution, ring system, 570.
motor, Brotherhood, 570.
motors, 570.
motors, 570.
motor, Schmid, 570.
press, 566.
radius, 529.
radius, table for, 530.
ram, 564.
regulator, Helfenberger, 570.
riveted pipe, 327.
slopes, table for, 530.

Hydrogen, specific heat of, 496. Hydrometer, 564. Baumé, 565. Gay Lussac, 565. specific gravity, 565.

Hydrostatic boiler test, 632.

transmission of power, 569.

Hydraulics, 525-571.

Hydrostatic paradox, 566. press, 566. pressure, centre of, 566. Hydrostatics, 565. Hyperbola, the, 126. Hyperbolic curve, 648. logarithms, 639-643. Hypocycloid, 127.

I

Ice, specific heat of, 495. Ideal engine, 667. Illinois coals, 578. coals, heating value of, 574. Imaginary eccentric, 681. Impact, 278. of elastic bodies, 279. of hard bodies, 279. water-wheels, 545. Impurities in feed water, 635. Incandescent lamps in series circuits, 713. lamp sockets, 716. Inch, miner's, 541. Incrustation, causes of boiler, 636. in boilers, 635. in boilers, prevention of, 636 Indiana coal, 578. coal, heating value of, 574. Indicated horse-power, 661. Indicator, determination of horsepower by, 651. diagram factor, 665. diagrams, 650. diagrams, analysis of, 663. diagram, typical, 650. driving rig, 661. for determination of steam consumption, 651. reducing motion for, 661. showing valve action, 651. springs, testing, 661. steam accounted for, 663. steam engine, 650. Inductance factor, 748. Induction apparatus, efficiency of, 740.

apparatus, rotary, 737.

apparatus, stationary, 737.

Inertia, moment of, 269, 351.

pelar moment of, 393.

Initial condensation, 648. pressure, 639. Injector, steam used by, 596. Inside electrical work, 710. lap of valve, 681. Installation costs of steam plants, 774. costs of water power, 771. of electric motors, 707. of switchboards, 706. of transformers, 708. Insulated frames for generators, 705. frames for motors, 707. Insulating joints, electric, 727. Insulation, 720. electrical, 743. resistance, 729, 743. resistance, testing, 706. slow-burning, 720. tests, 720. weather-proof, 721. Integral calculus, 230-233. calculus formulas, 233. Interest, 56. compound, 57. simple, 56. table, compound, 57. Interference of gear teeth, 453. Interior conduits, 716. Internal-combustion motors, 687-698. Internal gear teeth, 451. pressure, 397. Introduction to steam tables, 582. Involute teeth, 451. Iron, coefficient of expansion of, 486, corrugated, 320. fusing-point of, 489. heating pipes, 499. heat transmission through, 497. latent heat of, 496. radiation from, 497. shafting, 431. specific gravity of, 284. specific heat of, 495. weight of flat rolled, 286-289. weight of round bar, 290, 291. weight of sheet, 294-296. weight of square bar, 290, 291. wire, weight of, 313. Irregular figures, areas of, 129.

Irregular figures, centre of gravity of, 246. Isothermal curve, 647.

Istria coal, heating value of, 577.

Jacket water, measurement of, 659. Jet condenser, Worthington, 685. Joints, double-riveted, 612.

flange, 420. insulating electric, 727. riveted, 417-419. single-riveted, 612.

treble-riveted, 612. Joint, universal, 438.

Jonval turbine, 552. turbine, curves for, 554.

Journal friction, 281. loads, 426. proportions, 426.

Journals, 424-426. dimensions of, 425. pressures on, 281.

Kentucky coals, 578. Keyed fastenings, 423. Keys, dimensions of, 423. standard, 424. Kilowatt, 638. Kilowatts and horse-power, 800. Kinematics, 416. Knowles steam pumps, 559. Kutter's formula, diagram for, 538. formula for water flow, 535-538.

Lag screws, 324. Lamps, arc, 727. incandescent, in series circuits, 713. installation of arc, 712. Lamp sockets, electric, 725. Lancashire boiler, heating surface of, 604. coal, heating value of, 574. Lap joint riveting, 418. of slide valve, 681. of valve, 678. of valve, inside, 681. riveted pipe, water flow in, 529. welded boiler tubes, 311, 326. Latent heat, 496.

Latent heat of fusion, 496. heat of vaporization, 496. Lathe, speed changes of, 476. speeds, "lump" in, 476. Lathes, power required for, 751-753. Latin monetary union, 62. Lawrence, Mass., water-power costs, 771, 772. Lead, fusing-point of, 489. heat transmission through, 497. latent heat of, 496. pipe, weight of, 319. specific gravity of, 284. specific heat of, 495. weight of sheet, 294, 295. Leading-off angle of belts, 477. Leakage test of pumping engine, 561. Leaks in steam-engine plants, 657. Length, metric measures of, 59. of belt for cone pulleys, 472. Leverage, 258, 267. Lever arms, 439. safety valves, 632. Levers, 439. Lightning arresters, 706, 728. Lignite, heating value of, 578. Lime, solubility of carbonate of, 637. solubility of phosphate of, 637. solubility of sulphate of, 637. Linear expansion of cast-iron, 488. Link motion, Allan's, 680. motion, Fink's, 680. motion, Gooch's, 679. motions, 679, 680. motion, Stephenson's, 679. motion, Walschaert's, 680. Liquid fuels, evaporative power of, 579.

measure, U. S. A., 60. Liquids, specific gravity of, 285.

Lloyd's boiler specifications, 611-616. proportions for riveted joints, 612. rules for safety valves, 635. Loads, maximum, 359.

on boiler stays, 616. on wooden beams, 408, 409.

Locomotive boiler, heating surface of, 604.

boilers, 603. data, 794, 795.

Locomotives, tractive power of, 795.

Logarithmic angular functions, 179–223.

cosecants, 179-223.

cosines, 179–223.

cotangents, 179–223. secants, 179–223.

sines, 179-223.

tangents, 179-223.

Logarithms, 79.

hyperbolic, 639-643.

of numbers, 80.

special, 104. table of, 82-104.

use of, 79.

Log for engine test, 670.

Loire coals, heating value of, 575.

Long connecting rods, 443.

Long-distance transmission, electric, 734.

Long furnaces, strength of, 615.

Losses in belt transmission, 472. Loss in steam pipes, entrance, 591.

of heat by radiation, 497.

of heat through walls, 499.

of steam pressure in pipes, 590.

of water-head by friction, 533. Lowell, Mass., water-plant costs, 771,

Lowell, Mass., water-plant costs, 771 772.

Low-potential circuits, grounding, 709.

electric systems, 714.

Low temperatures, 490.

"Lump" in lathe speeds, 476.

M

Machine, definition of, 416.

design, 416.

screws, 338.

tools, electric power required for, 764.

tools, group drawing of, 764. tools, motor power for, 750-753.

Magnesia, solubility of carbonate of, 637.

Magnesium, specific heat of, 495. Main bearings, pressure on, 676.

Management of works, 780–787.

Manchester, N. H., water-power costs, 771, 772.

Manganese, fusing-point of, 489. specific gravity of, 284.

Man-holes, boiler, 631.

Manila-rope driving, 479.

formulas for, 479.

Marble, coefficient of expansion of, 486.

Marine electric work, 730-733.

type connecting-rod, 444.

Mariotte's law, 514.

Marshall's valve gear, 680.

Materials, average strength of, 411-415.

for boilers, 628.

for boiler shells, 613.

for boiler stays, 616.

for riveting, 611.

of engineering, 282.

strength of, 345. ultimate strengths of, 412-415.

weight of, 286-310.

Mathematics, 5.

Matthiessen's standard of conductivity, 702.

Maximum efficiency of steam engine, 650.

loads, 359.

Mean effective pressure, 638, 650.

effective pressure above atmosphere, 645.

effective pressure above vacuum, 644.

effective pressure, computation of, 639.

effective pressure in gas engines, 688.

effective pressure, tables of, 644, 645.

Measurement of coal in engine tests, 660.

of engine dimensions, 657.

of feed water, 659.

of heat units, 658.

of jacket water, 659.

of steam consumption, 659.

of steam used by auxiliaries, 660.

of water, 538.

timber, 321.

Measures and weights, 58-60

of length, British, 58.

of length, metric, 59.

of length, U.S.A., 58.

of weight, British, 59.

Measures of weight, metric, 63. of weight, U.S.A., 59. Measure, table of board, 322. Measuring tanks, 659. Mechanical equivalent of heat, 495. units, electrical equivalents of, 699. Mechanics, 234. Medium steel, 403. steel struts, 372, 373. Melting-points, 489. Mercury, coefficient of expansion of, heat transmission through, 497. latent heat of, 496. specific gravity of, 284. specific heat of, 495. Metal conduits, electric, 723. Metals, percentage in alloys, 283. specific gravity of, 284. ultimate strength of, 413, 414. Metric areas for safety valves, 635. boiler dimensions, 627. conversion tables, 64-75. horse-power, 638. measures of length, 59. measures of weight, 60. rules for safety valves, 635. system, 63-75. system, steam table, 586, 587. weight of cast-iron pipe, 300. weight of copper pipe, 328. weight of iron, 292, 293. weight of sheet metal, 295. weight of spheres, 298. weight of wrought-iron pipe, 328.

Mils, circular, 701. conversion to centimetres, 704. Minerals, solubilities of scale-mak-

ing, 637. Miner's inch, 541. inch, table for, 542.

Mitre gears, 468.

Modulus of elasticity, 347.

section, 351, 359. Moisture in coal, determination of, 598.

in steam, 591. in wood, 405.

Molecular weight of water, 519.

Moment, 269.

Moment of inertia, 269, 351, 359. of inertia of rectangles, 355. of inertia of standard sections, 356. of inertia, polar, 393. of resistance, 351. statical, 242.

Moments, static, 267. Momentum, 269.

Monetary systems, 61, 62. union, Latin, 62.

Monn's laws of friction, 280.

Mons coals, heating value of, 576. Moravian coals, heating value of,

Morison suspension furnace, 616. suspension furnaces, strength of, 618.

Motion, 259.

accelerated, 259, 271. formulas for rotary, 270. retarded, 260, 271.

Motor power for machine tools, 750-753.

tests, electric, 760-770.

Motors, air required for, 506.

hydraulic, 570.

installation of electric, 707. insulated frames for electric, 707. internal-combustion, 687-698. switches for electric, 707.

Movement of air, 509.

Moving bodies, force in, 271. bodies, impact of, 278.

Multiple expansion, 648.

expansion engines, diagram for, 649.

expansion steam engine, 648. trussed beams, 249. trussed roof, 253.

Multiplication table, 5-7.

Multi-voltage speed control, 756.

Nails, wire, 323. Napier's rule for flow of steam, 589. National electric code, 704-733. Natural cosecants, 134-178. cosines, 134-178. cotangents, 134-178.

gas, 580.

gas, calorific power of, 580.

Natural gas, power costs of, 775. secants, 134–178.

sines, 134-178.

tangents, 134-178.

trigonometric functions, 134–178. versed sines, 134–178.

Neutral axis, 351.

Newcastle coal, heating value of, 574. Niagara water-power cost, 772.

Nickel-aluminum, 791, 792.

Nickel, coefficient of expansion of, 487.

fusing-point of, 489.

Nitrogen, specific heat of, 496.

Non-condensing engines, performance of, 675.

engines, performance of compound, 773.

engines, performance of simple,

Norway water-power cost, 772.

Nozzles, discharge from, 527.

Nut locks, 422.

Nuts, standard sleeve, 339.

0

Oblique-angled spherical triangles, 227, 228.

triangles, 225.

Obstructions in pipes, resistance of, 567.

Oil and coal, comparative evaporation of, 580.

and coal, relative value of, 580. engines, rules for testing, 690–698. radiation from, 497.

Open belts, 476.

belts for cone pulleys, 473. channels, flow of water in, 535. hearth basic steel, 349.

Operative cost of steam power, 775. Orifice, discharge of water from, 527. Oscillation, angle of 276.

scillation, angle o centre of, 276.

radius of, 269.

Outside electrical work, 708-710.

lap of valve, 681. wiring, 708.

Overload capacity of electrical apparatus, 747.

Overshot water-wheel, 545, 548.

Overshot wheel, 545.

Overweights allowable on sheared plates, 404.

Oxygen, specific heat of, 496.

P

Paderna water-power plant costs, 771.

Palladium, coefficient of expansion of, 486.

Parabola, 124, 125.

area of, 125.

centre of gravity of, 245.

length of, 125.

Paraboloid, volume of, 131.

Paradox, hydrostatic, 566.

Pas de Calais coals, heating value of, 575.

Pelton bucket, 548.

water-wheel, 545, 548.

water-wheel table, 549, 550.

Pendulum, 276, 277.

compound, 276.

length of seconds, 278.

simple, 276.

Pennsylvania coals, 578.

coals, heating value of, 574.

Percentage of ash in coal, 578.

Performance of simple non-condensing engines, 773.

steam engine, 653-655.

Perimeter of ellipse, 122.

value of, 109.

wetted, 529.

Phase-displacing apparatus, efficiency of, 747.

Philadelphia rules for boiler dimensions, 621.

rules for safety valves, 633.

Phosphate of lime, solubility of, 637. Physical properties of wood, 406, 407.

Piece-work, 780.

Pillars, strength of wooden, 410.

Pillow blocks, 434.

Pinions, 463.

shrouded, 463.

Pins and nuts, standard, 341.

Pin steel, 404.

Pipe bends, 333.

bends, resistance in, 567.

cast-iron, 307-310.

Pipe connections, cast-iron, 310. double extra strong, 325. exhaust, 676. extra strong, 325. fittings, cast-iron, 331. fittings, dimensions of, 333, 334. fittings, steel, 332. flow, coefficients for, 529. riveted hydraulic, 327. spiral riveted, 326. steam, 676. threads, U.S. standard, 306. threads, Whitworth standard, 306. unions, standard, 337. weight of cast-iron, 299. weight of lead, 319. Pipes, changes in cross-section of, 567. contents of, 543, 544. delivery of compressed air through, 508. discharge of water from, 531. flow of steam in, 589, 590. flow of water through, 529. friction of air in, 510-513. heating, 499. loss of steam pressure in, 590. pressure of air in, 508. resistance of obstructions in, 567. transmission of air through, 504, 508. Piston-rod, 676. Piston speed, average, 638. speed and delivery of pumps, 555-557. Pitch, circumferential, 449.

diametral, 450. formulas, diametral, 454. of boiler riveting, 611. of gear-wheels, 449. tables, circular, 455. tables, diametral, 456.

Pitches for gear-wheels compared, 450.

Pivots, proportions of, 427. Plane figures, areas of, 127, 128. Planers, power required for, 750, 760. Plate couplings, 437.

rolls, power required for, 761, 769. springs, 399.

tensile strength of boiler, 613. Plates, boiler-tube, 617.

Plates for flanging, 615. overweights on sheared, 404. proportions for flat, 614. Platinum, coefficient of expansion of, 486, 487.

fusing-point of. 489. specific gravity of, 284. specific heat of, 495.

Point of cut-off, 663. of release, 663.

Polar moment of inertia, 393. valve diagram, 679. Polygonal roof truss, 253. Polygon funicular, 237. Polygons, 107. table of, 108.

Polytropic curve, 648. Poncelet, 638.

water-wheel, 547.

Port areas, 676. width, 681.

Porter governor, 276. Posts, wooden, 405.

Power, 234, 268. calorific, 572.

cost of, 771-779. factor and inductance factor, 748. horse, 638.

hydraulic transmission of, 569.

of water, 525. of water-wheels, 545, 546. required for air compressor, 769. required for boring mill, 752.

required for brass-working tools, 768.

required for charging machine, 765. required for cold saw, 760.

required for cranes, 761, required for drilling machines, 751,

required for electric cranes, 753, 766, 767, 770.

required for emery-wheels, 752. required for grindstones, 761. required for hoisting, 754.

required for lathes, 751-753. required for machine tools, 750-

753, 764. required for planers, 750, 760.

required for plate rolls, 761, 769.

Power required for punching machine, 763.

required for roller tables, 754. required for shafting, 761.

required for shears, 760.

required for sheet-metal press, 765.

required for slotter, 752.

required for tool grinder, 752.

required for wood-working machinery, 763, 770.

table for water, 542.

transmitted by ropes, 479.

units of, 269.

Powering of steamships, 795-799.

Powers and roots, 24.

and roots, table of, 25-55.

Practical engine performances, 675. Premature ignition in gas engines,

Premium plan of wages, 780.

Press, hydraulic, 566.

hydrostatic, 566.

Pressure, air, 610.

and temperature of air, 501. and volume of air, 502.

atmospheric, 514.

draught, 607.

initial, 639.

internal, 397.

mean effective, 638, 650. of air in pipes, 508.

of water, 525.

of water, horizontal, 527.

on dam. 527.

tables of mean effective, 644, 645. Pressures for stayed surfaces, 620. on corrugated furnaces, 617.

Prevention of corrosion in boilers.

of incrustation in boilers, 636.

of priming in boilers, 637.

Priming in boilers, causes of, 637. in boilers, prevention of, 637.

Producer gas, 580.

gas, calorific power of, 581. gas, power cost of, 776.

Production order, 783.

Progression, arithmetical, 77. geometrical, 77.

Properties of aluminum, 791.

of steam, 582.

Properties of timber, 405.

of water, 520-523.

of wood, 406, 407.

Proportions for flat plates, 614.

for riveted joints, 418, 419, 611, 612.

for stayed surfaces, 614.

of boiler shells, 613,

of chimneys, 605.

of connecting rods, 442.

of cross-heads, 447.

of eccentrics, 445.

of gear teeth, 451.

of gear-wheels, 460.

of pulleys, 471, of riveting, 611.

of safety valves, 632.

of stay bolts, 620.

of steam engines, 675.

of steam-engine cylinders, 647, Prussian coals, heating value of, 574.

Pulley arms, 471.

rim, 471.

Pulleys, 467, 469.

friction on, 469.

proportions of, 471.

Pull of belts, 478.

Pulsation in electrical apparatus, 745.

Pumping engine, duty of, 560. engine, leakage test of, 561.

engines, standard duty trials of, 560-563.

Pumps, 554.

air vessels for, 554.

centrifugal, 568.

delivery of, 554, 555. dimensions of, 554.

duplex, 559.

electric power required for, 763-

feed, 559. slip of, 554.

speed of, 554.

steam, 558, 559.

Punching machine, power required for, 763.

Purification of feed water, 635.

Purves-Brown corrugated furnace, 615.

Purves corrugated furnace, 617.

Pyramidic frustum, centre of gravity of, 246.

frustum, volume of, 132.

Pyramid, volume of, 131. Pyrometer, Le Chatelier, 489.

Quadrangle, centre of gravity of, 244. Quadruple-expansion engines, cylinder ratios for, 649. Quality of steam, 598, 662. of superheated steam, 591.

Quantity of heat, 490. Quarter-twist belts, 477.

R

Rack teeth, involute, 453. Radial valve gears, 680, 681. Radiation, 497.

coefficients of, 497.

increase with temperature, 498. loss of heat by, 497.

Radii of gear-wheels, 449. Radius, hydraulic, 529.

of gyration, 269, 273, 274, 351, 359. of gyration of compound shapes, 358.

of oscillation, 269.

Railway power-plants, circuit-breakers for, 707.

trains, grade resistance of, 794. trains, speed resistance of, 794. Railways, curve resistance on, 794.

Ram, hydraulic, 564. Rankine cycle, 667.

Rate of combustion, 607.

Rating of electrical apparatus, 746. Ratio, expansion, 639.

of expansion, 665.

of grate to heating surface, 604.

Ratios for speed cones and back gear, 475.

Reactive coils, 727.

Réaumur scale, origin of, 482. thermometer, 482.

Reciprocals, table of, 25-55.

Recording engine tests, 663. Records of boiler trials, 598.

Rectangles, moment of inertia of,

Rectifying machines, 737. machines, efficiency of, 740.

Reducing motion for indicator, 661,

Regulation of electrical apparatus,

Relative value of coal and oil, 580. value of heating surface, 603.

Release, point of, 663.

Report of boiler trial, 601.

of engine test, 669. Resilience, 348.

Resistance, 282.

boxes, 706.

in pipe angles, 567.

in pipe bends, 567.

moment of, 351.

of elbows to steam flow, 591.

of globe valve to steam flow, 591.

of insulation, 729, 743.

of obstructions in pipes, 567.

of trains, acceleration, 794. on railway curves, 794.

testing of insulation, 706.

to bulging, 614.

to entrance in steam pipes, 591.

to flow in steam pipes, 590.

Results of engine tests, forms for, 670.

Retarded motion, 260, 271.

Return tubular boilers, 603.

tubular boilers, heating surface of,

Return wires, ground, 709.

Reuleaux valve diagram, 678.

Revolving bodies, 272.

Reynolds's pumping engine, efficiency of, 650.

Rhenish - Prussian coals, heating value of, 574.

Rheostatic speed control, 756.

Rigg hydraulic motor, 570.

Right-angled spherical triangles, 226.

triangles, 224.

Rims of bevel gears, 463. of gear-wheels, 462.

Ring system of hydraulic distribu-

tion, 571. Rise of temperature of electrical

apparatus, 741. Rivers, flow of water in, 535-538.

Rivet bars, ductility of, 611.

bars, tensile strength of, 611. seams, factor of safety of, 631. Rivet steel, 403. steel, shearing resistance of, 611. Riveted hydraulic pipe, 327. joints, Lloyd's proportions for, 612. joints, proportions of, 419, 612. Riveting, 416. boiler, 419, 630. butt-joint, 418. efficiency of, 417. factor of safety of, 611. group, 418, 419. lap-joint, 418. material for, 611. pitch of boiler, 611. proportions of, 611. rules for boiler, 611. Rivets, boiler, 629. weight of bridge, 301. Rods, connecting, 442. Rolling circle for gear teeth, 451. mill tables, power for driving, 754. Roman cement, coefficient of expansion of, 486. Roof, double-trussed, 252. multiple-trussed, 253. simple, 250. single-trussed, 251, trusses, wind stresses on, 254, 255. truss, polygonal, 253. Roofing slate, 317. weight of, 321. Roots and powers, 24. and powers, table of, 25-55. extraction of, 55. Rope brake, 662. driving, American system, 480. driving, English system, 480. driving, Manila, 479. power transmitted by, 479. sheaves, 478. sheaves, grooves for, 480. standard wire hoisting, 342 steel wire, 344. transmission, 478. transmission, cotton, 481. transmission, hempen, 469. transmission, sag in, 479.

transmission, wire, 469, 478.

weight of Manila, 479.

wire transmission, 343.

wire haulage, 343.

Rotary induction apparatus, 737. motion, formulas for, 270. Rules for boiler riveting, 611. for boiler trials, 595. for conducting steam-engine tests, for safety valves, German, 635. for safety valves, Lloyd's, 635. for safety valves, metric, 635. for safety valves, Philadelphia, 633. for safety valves, U.S. Treasury Department, 632. for testing gas and oil engines, 690-698. Saddles, boiler, 631. Safe load, coefficient for, 359. loads for cast-iron columns, 391, 392. loads on wooden beams, 408, 409. Safety valves, 632. valves, area of, 633-635. valves, Board of Trade areas, 634. valves, German rules for, 635. valves, lever, 632. valves, Lloyd's rules for, 635. valves, metric areas for, 635. valves, metric rules for, 635. valves, Philadelphia rules for, 633. valves, spring, 633. Salt-well water, 638. Sampling coal, 598. Sand, radiation from, 497. Saone coals, heating value of, 575. Saturated steam, 588. Sawdust, radiation from, 497. Saw-mill water-wheel, 548. Saxon coals, heating value of, 574. Scale, analyses of boiler, 637. in boilers, 635. making minerals, solubilities of, 637. Scales, conversion of thermometer, 482. Schmid hydraulic motor, 570. Scotch boiler, heating surface of, 604. boilers, 603.

coal, heating value of, 574. Screw stay bolts, 614.

Screw threads, U. S. standard, 304. threads, Whitworth, 305. Screws, lag, 324. machine, 338. set, 338. wood, 324. Seasoned timber, strength of, 406, 407. wood, strength of, 405. Secants, logarithmic, 179-223. natural, 134-178. Seconds, pendulum, length of, 278. Section modulus, 351, 359. Sections, elements of structural, 353. moments of inertia of standard, 356. torsion, 393. Sector, 128. centre of gravity of, 245. of sphere, 130. Segment, centre of gravity of, 245. Semi-circular surface, centre of gravity of, 245. Series, 77. arc lighting, 712. Set screws, 338. Shafting, 428. power required for, 761. stiffness of, 429. strength of, 429. table for, 430. wrought-iron, 431. Shafts, diameter of engine, 676. deflection of, 432. graphical analysis of, 433. hollow, 431. Sheared plates, overweight, 404. Shearing, 346, 350. resistance of rivet steel, 611. Shears, power required for, 760. Sheaves, chain, 315. for wire rope, 478. grooves for rope, 480. Sheet copper, weight of, 294, 295. iron gauge, U. S. standard, 314. iron, weight of, 294-297. lead, weight of, 294, 295. metal, British weight of, 294. metal, metric weight of, 295. metal press, power required for, 765. steel gauge, U. S. standard, 314.

steel, tinned, 318.

Sheet zinc, weight of, 294. Sheets, boiler tube, 617. Shells, materials for boiler, 613. proportions of boiler, 613. Shingles, number and weight of, 320. Short connecting rods, 443. furnaces, strength of, 615. Shrouded pinions, 463. Sickel roof truss, 253. Signalling systems, electric, 728. Silesian coals, heating value of, 575, Silver, coefficient of expansion of, 486, 487. fusing-point of, 489. heat transmission through, 497. latent heat of, 496. radiation from, 497. specific gravity of, 284. specific heat of, 495. Simple condensing engines, performance of, 773. interest, 56. pendulum, 276. trussed beams, 247. Simpson's rule, 129. Sines, logarithmic, 179-223. natural, 134-178. Single-riveted joints, 612. joints, strength of, 611. Sizes of engine parts, 676. Skylight glass, 320. Slack side of belts, 478. Slate, 317. Sleeve couplings, 436. nuts, standard, 339. Slide valve, 681. valve, dimensions of, 681, 682. valve engine, performances of, 675. valve gear, 678. Slip of pumps, 554. Slopes, hydraulic, 534. Slow-burning insulation, 721. Slotter, power required for, 752. Smoke observations, 600. Sockets, electric lamp, 725. for incandescent lamps, 716. Soft steel, 403. Soldering fluid, 730. Solids, surfaces of, 129. volumes of, 130-132.

Solubilities of scale-making minerals, 637. Sparking distances, 749.

Special bolt threads, 421.

logarithms, 104.

Specifications, American boiler, 628-

for structural steel, 403.

Specific gravity, 282.

gravity hydrometer, 565.

gravity tables, 284, 285.

heat, 495.

heat of gases, 496.

heat of water, 519.

heat, table of, 495.

Speed changes by cone pulleys, 474. changes for lathes, 476.

cones, 472.

cones and back gear, 475.

control, multi-voltage, 756.

control, rheostatic, 756. counters, 663.

of pumps, 554.

of steamships, 795-799.

resistance of trains, 794.

steam-engine, 662.

variation of electric motors, 756. Sphere sector, volume of, 131.

segment, volume of, 131.

surface of, 129.

volume of, 130.

Spheres, metric weight of, 298. volume table, 132.

weight of, 297, 298.

Spherical segment, centre of gravity of, 245.

triangles, oblique-angled, 227, 228. triangles, right-angled, 226.

Spikes, wire, 323. wrought, 323.

Spiral-gear formulas, 460.

Spiral gears, 459. riveted pipe, 326.

springs, 400.

Splines, 423. standard, 424.

Springs, 398.

deflection of, 399-402. elasticity of, 399-402.

helical, 401.

plate, 399.

Springs, spiral, 400.

supporting power of, 399-402. testing indicator, 661.

Spring safety valves, 633.

water, 638. Square-headed bolts, weight of, 302. Square roots, table of, 25-55.

threads, strength of, 421.

Squares, table of, 25-55.

Standard boiler tubes, 619.

cast-iron pipe, 307-309.

coal unit, 656.

engine tests, 655.

flanges, 329.

heat test of steam engine, 658.

pins and nuts, 341.

pipe unions, 337.

screw threads, U.S., 304.

screw threads, Whitworth, 305.

sleeve nuts, 339.

steel eye bars, 340.

temperatures, 482.

thermal efficiency for engines, 668. Standardization, electrical, 736-749.

Starting and stopping boiler trials,

and stopping steam-engine test,

Statical moment, 242, 267. Statics, 234.

of framed structures, 247.

Station conductors, 705. Stations and dynamo rooms, 705.

Stay bolts, boiler, 629.

bolts, factor of safety of, 631.

bolts, proportions of, 620.

bolts, screw, 614, 631.

girders, 616.

girders, boiler, 616.

Stayed surfaces, pressures for, 620. surfaces, proportions of, 614.

Stays, boiler, 614, 616.

loads on boiler, 616.

tensile strength of, 616.

Steam, 581-686.

accounted for by indicator, 663.

boilers, 592.

boiler details, 611.

consumption determined by indicator, 651.

consumption, measurement of, 659.

Steam consumption, theoretical, 651. Steam engine, standard heat test of, cylinder proportions, 647. cylinders, bolts for, 420. engine (see Engines). engine, 638-686. engine and boiler test, complete, 658. engine capacity, 656. engine, clearance in, 646, engine code, A.S.M.E., 656. engine, compound, 648. engine, cylinder ratios for comof. 658. pound, 648. engine, cylinder ratios for quadruple-expansion, 649. engine, cylinder ratios for tripleexpansion, 649. engine, diagram for multiple-expansion, 649.

engine, economical point of cutoff, 646. engine economy, standard of, 665.

engine efficiency, standard of, 665. engine, examination of plant, 656.

engine, feed-water test of, 672. engine, heat analysis of, 666. engine, heat-unit standard for, 656. engine indicator, 650.

engine, leaks in plant, 657.

engine, maximum efficiency of, 650.

engine, measurement of dimensions of, 657. engine, multiple-expansion, 648.

engine performance, 653-655. engine, performance of automatic,

engine, performance of compound,

675. engine, performance of condens-

ing, 675.

engine, performance of non-condensing, 675. engine, performance of slide valve,

engine, pressure on wearing sur-

faces of, 675. engine proportions, 675. engine, sizes of parts of, 676. engine speed, 662.

658. engine test, duration of, 657. engine test, report of, 669. engine tests, 655, 773. engine tests, forms for, 670. engine tests, measurement of coal

in, 660. engine tests, recording, 663. engine tests, rules for, 656. engine test, starting and stopping

engine, thermal efficiency of, 650. engine, water consumption of, 651-

655.

expansion of, 639. flow in pipes, 589, 590. flow of, 588.

loss of pressure in pipes, 590.

moisture in, 591. passages, 677.

pipe, 676.

pipe diameters, 677.

pipes, entrance loss in, 591. pipe, wrought-iron, 306.

plant, commercial test of, 657. plant installation costs, 774.

port areas, 676. port, width of, 681.

power, cost of, 772-775.

properties of, 582.

pumps, 558, 559.

quality of, 598, 662.

resistance of elbows to flow, 591. saturated, 588.

specific heat of, 496.

superheated, 588, 591.

table, British system, 583-585. table, metric system, 586, 587.

tables, introduction to, 582.

used by auxiliaries, measurement

of, 660. used by injector, 596.

velocity of efflux, 589.

Steamships, powering of, 795-799. speed of, 795.

Steel, 349.

chemical properties of, 403. coefficient of expansion of, 486, 487. eye bar, 404.

eye bars, standard, 340.

Steel for pins, 404.

for rivets, 403.

furnace charging machine, power for, 765.

fusing-point of, 489.

heat transmission through, 497. medium, 403.

pipe fittings, 332.

shearing resistance of rivet, 611. soft, 403.

specifications for structural, 403. specific gravity of, 284.

struts, 372-375.

test pieces, 403.

wire, 345.

wire rope, 344.

wire, weight of, 313.

Stephenson's link motion, 679. Stiffened furnaces, 615.

Stiffness, 348.

of belts, 472.

of shafting, 429.

Stones, specific gravity of, 284.

Stone, strength of, 415.

Storage batteries, 708.

Straight link motion, 680.

Strain and stress, 345.

Strands of copper wire, 700.

Strap end for connecting rods, 443. Straps, eccentric, 446.

Streams, measurement of water in, 539.

Strength of brick, 415.

of cements, 415.

of corrugated furnaces, 617.

of double-riveted joint, 611.

of gear teeth, 457.

of materials, 345.

of materials, average, 411-415.

of metals, ultimate, 413, 414.

of shafting, 429.

of single-riveted joints, 611.

of square threads, 421. of steel wire, 345.

of stones, 415.

of suspension furnaces, 618.

of timber, 405.

of trapezoidal threads, 421.

of wooden beams, 408, 409. of wooden pillars, 410.

Stress and strain, 345.

Stresses in gear teeth, 457, 461.

Stroke, economical length of, 647. Structural shapes, elements of, 359.

steel, specifications for, 403. steel, strength of, 349.

Struts, 368.

hard steel, 374, 375.

medium steel, 372, 373. wrought iron, 370, 371.

Stub end for connecting rod, 445.

Styrian coals, heating value of, 577.

Sub-production order, 783.

Sulphate of lime, solubility of, 637. Sulphur dioxide, latent heat of, 496.

specific gravity of, 284. specific heat of, 495.

Sulphuric acid, coefficient of expansion of, 486.

acid in feed water, 636.

acid, specific heat of, 495.

Superheated steam, 588, 591.

Supplementary thermometer tables, 485.

Supporting boilers, 632.

power of springs, 399-402. Surface condenser, 685.

condenser, Wheeler, 686.

Surfaces of solids, 129.

Suspension furnace, Morison, 616. furnaces, strength of, 618.

Switchboards, 706.

Switches, electric, 724.

for motors, 707.

general rules for, 712. installation of, 713.

Synchronous commutating electrical machines, 737.

commutating machines, efficiency of, 739.

electrical machines, 737.

machines, efficiency of, 739.

System of bodies, centre of gravity of, 246.

T

Tangents, logarithmic, 179-223.

natural, 134–178. Tank measurement, table for, 545.

Tanks, measuring, 659.

Tee sections, moment of inertia of,

Tees, elements of, 379. Thermal value, 572. Teeth, epicycloidal, 451. Thermometer, centigrade, 482. internal, 451. conversion tables, 483-485. involute, 451. Fahrenheit, 482. of wheels, 449. Réaumur, 482. proportions of, 451. Thermometers, 482. rack, 453. Thermometer scales, conversion of, Temperature, 481. and pressure of air, 501. tables, supplementary, 485. and volume of air, 501. Thick cylinders, 398. barometric corrections for, 516-518. Throttling calorimeter, 591. entropy diagram, 666. Thrust, 368. of feed water, 659. bearings, 428. Temperatures, standard, 482. bearings, friction in, 281. Tensile strength of boiler plate, 613. Thumb-shaped teeth, 457. strength of rivet bars, 611. Timber, 405. elastic limit of, 405. strength of stays, 616. Tension, 346, 348. measurement, 321. of belting, 468. properties of, 406, 407. on wire rope, 479. ultimate strength of, 412. Test, complete engine and boiler, 658. Time, 234, 268. duration of engine, 657. Tin, coefficient of expansion of, 486, of steam plant, commercial, 657. of steel eye bars, 404. fusing-point of, 489. report of engine, 669. heat transmission through, 497. starting and stopping steam engine, plates, 318. radiation from, 497. specific gravity of, 284. Testing, gas-engine, 690-698. indicator springs, 661. specific heat of, 495. of insulation resistance, 706. Tinned sheet steel, 318. Tests, electric motor, 760-770. Tool grinder, power required for, 752. for boiler tubes, 629. Torsion, 346, 393. for stay bolts, 629. sections, 393. insulation, 720. table, 395, 396. Torus, surface of, 129. measurement of coal in, 660. of steam engines, forms for, 670. volume of, 130. Toughness, 282. of wooden posts, 405. recording engine, 663. Tower's experiments on friction, 281. rules for conducting steam-engine, Tractive power of locomotives, 795. Trains, grade resistance of, 794. steam-engine, 655, 773. speed resistance of, 794. Theoretical discharge of water, 527. Transfer of heat, 481. velocity of water, 528. Transformation of arm sections, 440. steam consumption, 651. Transformers, 727. Thermal efficiency curves, 668. installation of, 708, 718. efficiency of heat motors, 649. location of, 709. efficiency of steam engines, 650, Transmission, belt, 467. gears, 460. unit, British, 490. long-distance electric, 734. units, 490, 572. of power, hydraulic, 569.

rope, 478.

units to calories, table, 491.

Transmission, wire-rope, 343. Transylvanian coals, heating value of, 577.

Trapezium, 128. Trapezoid, 128.

Trapezoidal threads, strength of, 421.

Treble-riveted joints, 612.

Trial, report of boiler, 601.

Trials of pumping engines, 560.

Triangle, centre of gravity of, 244. Triangles, areas of, 128.

formulas for, 224–228.

oblique-angled, 225.

right-angled, 224.

Trigonometrical formulas, 229.

Trigonometric tables, 133-223.

Trigonometry, 132-229.

Triple-expansion engines, cylinder ratios for, 649.

engines, performance of, 773.

Triple-trussed beams, 249.

Trolley wires, 708.

Troubles due to water in boilers, 636. Troy weight, 60.

Trussed beams, double, 248.

beams, multiple, 249.

beams, simple, 247.

beams, triple, 249.

roof, double, 252.

roof, single, 251.

Trusses, bridge, 257, 258.

Truss, polygonal roof, 253.

Tube holes, boiler, 630.

plates, boiler, 617. setting, boiler, 631.

Puhes boiler 619 629

Tubes, boiler, 619, 629.

Turbine, 551-554. Fourneyron, 551.

Francis. 552.

Jonval, 552.

Turpentine, latent heat of, 496. specific heat of, 495.

Typical indicator diagram, 650.

U

Ultimate strength, 348. strength of metals, 413, 414. strength of timbers, 412. strengths of materials, 412–415. Underground conductors, rules for, 711. Undershot stream wheel, 546. wheel, 545.

Unions, standard pipe, 337.

Unit, Board of Trade, 700.

equivalents for electric heating, 801.

standard coal, 656.

United States coal, heating value of, 574.

States standard pipe threads, 306.

States standard screw threads, 304.

States statutes, boiler specifications, 611-616.

States Treasury rules for safety valves, 632.

Units, heat, 490.

of power, 269.

of work, 269. Universal joint, 438.

11, 438.

V

Vacuum, 684.

Valenciennes coals, heating value of, 576.

Value, thermal, 572.

Valve action shown by indicator, 651.

Allen, 682.

diagram, polar, 679.

diagram, Reuleaux, 678.

diagram, Zeuner, 679.

gear, 678.

gear, Angström's, 680.

gear, Brown's, 680.

gear, Marshall's, 680.

gear, radial, 680.

Valves, angle, 335.

butterfly, 335.

check, 335.

dimensions of, 335.

gate, 335.

globe, 335.

resistance to flow of water in, 568.

safety, 632.

slide, 681.

Vaporization, latent heat of, 496.

Variable speed control, electric, 757. Variation in electrical apparatus,

745.

Velocities and heads of water, 528. Velocity, 234, 268.

of discharge from orifice, 527.
of discharge from orifice, 527.
of escape of compressed air, 504.
Versed cosines, natural, 134–178.
sines, natural, 134–178.
Vertical water-wheels, 545.
Virginia coal, heating value of, 574.
Voltages, 743.

and frequencies, classified, 746.
Volume and density of water, 524.
and pressure of air, 502.
and temperature of air, 501.
and weight of air, 500.
measures of, 60, 61.

Volumes and velocities of air, 608, 609.

of solids, 130-132. of spheres, table, 132.

W

Wage systems, 780.
Walls, loss of heat through, 499.
Walschaert's link motion, 680.
Washers, boiler, 614.
Water, 519.

Allegheny River, 638.

analyses of boiler feed, 638.

Bazin's formula for flow of, 535.

boiler feed, 635.

brake, 662.

calcium carbonate in feed, 635.

calcium sulphate in feed, 635.

chemical composition of, 519.

Chézy formula for, 529.

coal-mine, 638.

coefficient of expansion of, 486.

columns and air pressures, 610.

consumption of steam engines, 651–655.

consumption table, 652.
density and volume of, 524.
density of, 519.
discharge from orifice, 527.
discharge from pipes, 531.
flow, Bazin's formula for, 535.
flow in open channels, 535.
flow, Kutter's formula for, 535–538.

flow of, 529-541. flow through pipes, 529. Water gas, calorific power of, 581. head, loss by friction in, 533. heads and air pressures, 609, 610. heads and pressures, 525. heads and velocities, 528. heat units in, 520–523. horizontal pressure of, 527. horse-power of, 525. horse-power, table for, 542. impurities in feed, 635. Kutter's formula for flow of, 535–538.

latent heat of, 496. measurement by weir, 539. measurement of, 538. measurement of feed, 659. measurement of jacket, 659. molecular weight of, 519. Monongahela River, 638. plant costs, 771, 772. power, cost of, 771. power, installation costs of, 771. power, operative costs of, 772. pressure of, 525. properties of, 520-523. purification of feed, 635. radiation from, 497. salt-well, 638. specific heat of, 519. spring, 638. sulphuric acid in feed, 636. table for horse-power of, 542, temperature of feed, 659. theoretical discharge of, 527. tube boiler, heating surface of, 604. tube boilers, 603. volume of, 520-523. wheel, breast, 547. wheel, overshot, 548.

temperature of feed, 659. theoretical discharge of, 527. tube boiler, heating surface of tube boilers, 603. volume of, 520–523. wheel, breast, 547. wheel, overshot, 548. wheel, Pelton, 548. wheel, Poncelet, 547. wheels, 545–554. wheel, saw-mill, 548. wheels, power of, 545, 546. wheels, vertical, 545. wheel table, Pelton, 549, 550. wheel, undershot, 546.

Wear, coefficient of, 462. on gear teeth, 462. Wearing surfaces of engines, 675. Weather-proof insulation, 721. Wedge frustum, 132.
Weight and volume of air, 500.
measures of, 59.
of aluminum, 791.
of her from metric 202, 203.

of bar iron, metric, 292, 293.

of bolts, 302, 303.

of bridge rivets, 301. of cast-iron pipe, 299.

of copper pipe, metric, 328.

of flagging, 320.

of flat rolled iron, 286-289.

of fly-wheels, 676.

of lead pipe, 319. of Manila rope, 479.

of materials, 286-310.

of roofing, 321.

of round bar iron, 290, 291.

of sheet-copper, 294, 295.

of sheet-iron, 294-296.

of sheet-lead, 294-295.

of sheet-metal, British, 294.

of sheet-metal, metric, 295.

of sheet-zinc, 294. of shingles, 320.

of spheres, 297, 298.

of square bar iron, 290, 291.

of steel wire, 345.

of water, molecular, 519.

of water, tables, 520-523.

of wire, 313.

of wood, 578.

of wrought-iron pipe, metric, 328.

Weights and measures, 58-60. Weir, measurement of water by, 539.

measurement, table for, 540. Welsh coals, heating value of, 574.

Wetted perimeter, 529.

Wheeler surface condenser, 686. Whitworth standard pipe threads, 306.

standard screw threads, 305.

Width of belts, 468. of steam port, 681.

of steam port, 681. Window glass, 316.

Wind stresses, 254, 255.

Wire, conduit, 722.

copper, 702.

gauges, 312. haulage rope, 343.

nails, 323.

rope, extra strong, 344.

Wire rope, standard hoisting, 342. rope, tension on, 479. rope transmission, 469, 478.

spikes, 323.

strength of steel, 345. table of copper, 702.

transmission rope, 343.

weight of, 313. weight of steel, 345.

Wires, carrying capacity of, 711. general rules for electrical, 710.

return ground, 709. trolley, 708.

Wiring, car, 717.

for constant-current systems, 712. for extra high-potential systems,

719.

for high-potential systems, 718.

for low-potential systems, 714. formulas, electric, 733–736.

marine electric, 730.

outside, 708.

Wood, elastic limit of, 405.

heating value of, 578.

moisture in, 405.

physical properties of, 406, 407.

screws, 324.

strength of, 405-407.

weight of, 578.

Wooden beams, 405. beams, strength of, 408, 409.

gear teeth, 462.

pillars, strength of, 410.

Woods, specific gravity of, 284.

Wood-stave pipe, water flow in, 529. Wood-working machinery, electric

group driving of, 770. tools, power required for, 763, 770. Work, 234, 268, 269.

required to compress air, 505.

units of, 269.

Working pressures for boilers, 622–626.

pressures on corrugated furnaces,

stresses on gear teeth, 457.

Workmanship on boilers, 629. Works management, 780-787.

Worthington jet condenser, 685. steam pumps, 559.

Wrenches, 422.

Wrought-iron pipe, metric weight of, 328.
pipe, water flow in, 529.
steam pipe, 306.
struts, 370, 371.

Wrought spikes, 323.

v

Yield point, 347. Yorkshire coal, heating value of, 574.

Z

Z-bar columns, elements of, 378. bars, elements of, 376, 377.

Zero, absolute, 489.

Zeuner diagram for Allen valve, 682.

valve diagram, 679.

Zinc, coefficient of expansion of, 486, 487.

fusing-point of, 489.
heat transmission through, 497.
latent heat of, 496.
specific gravity of, 284.
specific heat of, 495.
weight of sheet, 294.

Zurich water-power plant costs,

771.

THE END.

A SYSTEM OF ELECTRIC DRIVE FOR MACHINE, TOOLS, WITH METHODS OF VARIABLE SPEED CONTROL.

(As furnished by the Crocker-Wheeler Company.)

Besides eliminating the disadvantages of line shafting, belting, and the inflexibility of location, the individual drive of machine tools by electric motors increases the efficiency and output of a machine shop. The ordinary belt-driven tool usually has a speed range obtained by mechanical means of from 20:1 to 50:1, with increasing speed steps of about 30 to 50 per cent. The Crocker-Wheeler system for the multiple-voltage operation of machine shops not only extends the speed range, but also reduces the speed increment per step to about 10 per cent., which has been found by experience to be as small an amount as would be desirable to use. This system is a method of electric-power distribution at different voltages, which enables standard motors to be operated at variable speed by changing the potential of the current at their terminals. The generating plant supplies the highest voltage of the system. This voltage may be termed the primary, and is divided by a 3-unit balancing transformer into three unvarying voltages of unequal value, which are maintained between the wires of a 4-wire circuit, various connections of which afford six different and distinct voltages.

The principle on which this system of speed control is based is that in a separately-excited shunt motor the speed of the armature is proportional to the voltage supplied to its terminals. If this voltage remains constant,

the speed will remain constant even with varying load.

It is the function of the balancer to maintain these voltages constant and to accommodate the unbalance of currents between the four wires of

the distribution circuit.

As the conditions of machine-tool operation will result in the various motors of the system being nearly equally distributed on the various circuits, the unbalanced current will be but a small percentage of the total current taken by all the motors.

The intermediate wires of the system are extended to the variable speed motors only, the constant-speed and crane motors and the lighting being supplied in the usual manner from the outside wires at the generator

voltage.

Those motors requiring variable speed are connected to the 4-wire circuit by means of a controller of the drum type adapted for mounting on the tool in a place convenient for the operator. The action of this controller is such that, as the drum revolves, the armature terminals of the motor are connected to the six circuits—afforded by this system—in the proper sequence, and the travel of the drum from one position to the next is so quickened by the action of a spring that contacts are made and broken at a high rate of speed, preventing the formation of arcs and eliminating the possibility of the drum stopping between contacts. This gives six fundamental motor speeds, which are subject to a further refinement by varying the motor's field strength sufficiently to cover the gaps between them.

The speed range obtained on the voltage points alone is 6:1, being proportional to the ratio of maximum to minimum voltages. The addition of field-resistance points above the highest voltage points extends the total range in the controller to a value of 10:1. For exceptional cases the range

may be increased to a maximum of 12:1, the proper range in any case being determined by the character of the machine tool and the work which it performs.

The Crocker-Wheeler system, as outlined, has certain positive advan-

tages, of which the most important are the following:

1. Variable speed, under instant control, over any range.

2. Every speed constant, regardless of the load.

3. Controllers simple and convenient of attachment.

- 4. The horse-power of the motor but slightly in excess of that required by the tool.
- Output of machine tools much greater than when they are beltdriven.
- Easy of adaptation to existing shops with 2-wire system of electricpower distribution.

7. Employment of standard motors.

8. Ability to maintain high cutting speeds due to superior facilities for manipulation.

Motors used in an ordinary shop equipment may be divided into classes A, B, C, or D, according to the nature of their duty.

Class A being constant-speed motors, such as drive groups of small tools

by shafting.

-

Class B, controllable-speed motors, generally of the series-wound type,

as used on cranes.

The duty which the motors in both these classes have to perform is such that their demand for current is intermittent and often excessive, consequently they are best suited for connection to the outside mains, and such speed regulation as they may require can be obtained by rheostatic control.

The other two classes, C and D, are controllable-speed motors for the drive of individual tools, where the speed should be maintained constant

at any one of a number of fixed values.

Class C is formed of motors driving pressure blowers, punch presses, planers, etc., which demand approximately constant torque at all speeds, the horse-power diminishing with the speed. This characteristic of the tool being identical with the power characteristic of the motor on this system, the normal horse-power of the motor need not be greater than the

maximum demanded by the tool.

Class D covers those motors operating lathes, boring mills, etc., where the torque increases as the speed diminishes. If the range required by these tools is to be obtained by using a motor through its maximum range, the motor would be very large and unnecessarily expensive. For this class a speed range of approximately 3:1 has been selected as a basis for the determination of the most suitable sizes of motors, with respect to the duty which they have to perform. A motor, therefore, to give a constant horse-power throughout this range, must have a normal rating of about twice the horse-power required by the tool. This range, however, may be extended to cover the entire range required by the tool by using one or more additional gear runs. The method is an advantageous compromise between the use of an excessively large motor with no gears and the constant-speed motor with many gears.

The extreme facility of manipulation which this system affords enables the machinist to push his tool to the highest limit of cutting speed and gives large increases in output. Results show that as much as 20 per cent. increase in output over a belt-driven tool may be obtained by this system of motor drive. As by actual test in commercial plants it has been shown that 2½ per cent. increase is sufficient to warrant the outlay necessary for individual drive, the possibility of large saying in operating expense is at

once apparent.

IF YOUR ENGINEER TELLS YOU THAT A

GREEN'S **ECONOMIZER**

In your boiler-room will produce the greatest economy, you can rely on him,—he is studying your interests. You get more steam with less fuel; have fewer repairs on boilers; get larger heating surface, because sediment is kept from the boiler, beside saving from 10 to 20 per cent. on coal bill. Ask for our booklet.

THE GREEN FUEL ECONOMIZER CO.

Sole Manufacturers in the U.S.A. MATTEAWAN, N. Y.

BALDWIN LOCOMOTIVE WORKS

BROAD AND NARROW GAUGE SINGLE EXPANSION AND COMPOUND

LOCOMOTIVES

Mine, Furnace, and Industrial Locomotives Electric Locomotives with Westinghouse Motors And Electric Trucks

BURNHAM, WILLIAMS & CO., PHILADELPHIA L.S.A.

AMERICAN VACUUM DRYING MACHINE CO.

VACUUM MACHINES WITH SHELVES, FOR DRYING IN TRAYS

VACUUM TUNNELS WITH CARS AND TRACK, FOR DRYING IN LARGEST OUANTITIES

VACUUM MACHINES WITH AGITATOR, FOR DRYING IN THE BULK

Most Rapid and Economical Process of Drying :: :: Suitable for Materials of Any Kind or Shape

NEW YORK OFFICE, 120 LIBERTY ST.

AIR COMPRESSO

THE INGERSOLL-SERGEANT CO.

26 Cortlandt Street, New York

Engineering News 1903

A JOURNAL OF CIVIL, MECHANICAL, ELECTRICAL. AND MINING ENGINEERING

PUBLISHED EVERY THURSDAY AT BROADWAY. NEW YORK

\$5.00 A YEAR :: :: TEN WEEKS FOR \$1.00

"A technical journal of character and standing."—Times, New York.
"The best informed of the engineering fraternity are among its

"Probably the highest technical authority in journalism."—Eagle,

- "Probably the highest technical action," "Probably the highest technical action," "Probably the highest character,"—Times, Troy, N. Y. "An independent professional journal."—Observer, Utica, N. Y. "A technical publication of the first rank."—Sun, Pittsfield, Mass. "An acknowledged authority."—Tribune, Lawrence, Kan. "The leading American authority."—Tribune, Scranton, Pa. "The leading engineering paper in the country."—Press, Cleveland, Ohio.
- land, Ohio. "An authority of the first order."—*Tribune*, Charleston, W. Va. "Most reliable and ably edited."—*Times*, Chattanooga, Tenn.

"One of the greatest and most influential class journals."-Telegraph, Alton, III.

"The very highest authority in engineering circles."—Herald, Vicksburg, Miss.

"The most widely read and popular journal on engineering."-

Ledger, Columbus, Ga.

"The leading journal of the country on engineering and municipal matters."—Enquirer, Oakland, Cal.

The publishers of Engineering News will spare no effort or expense to maintain the position accorded to it by the representative journals quoted above.

Our monthly supplement of "Engineering Literature" makes it possible to devote special attention to reviews of scientific books and all matter pertaining to the literature of engineering.

Catalogues, price-lists, and circulars relating to our own publications and to other technical books which we deal in

will be sent on request.

The Engineering News Publishing Company

FOR HEAVY LIFTING

a compact powerful Triplex Block enables a man to handle a load that five men cannot handle with the old slow and dangerous hoisting methods.

Compare the Triplex with any other block and it gives double speed at the same pull.

TO COMPARE SPEEDS:

start both hooks together at the floor and pull equally on both hand chains; note the rise of the hooks.

TO DETERMINE EASE:

hoist the same load with one block then with the other; note ease of pulling with the Triplex.

We make three types of Blocks, each the best for its purpose. Write us and we will send you

a book containing some valuable hoisting hints.

We send Blocks for trial use, and pay the freight if not kept. 1/2 to 20 tons, any height of hoist.

THE YALE & TOWNE MFG. CO.,

9-11-13 MURRAY ST., NEW YORK CITY.

The Engineering Record's

Articles upon the design and construction of large power and industrial plants are authoritative.

THE LEADING ENGINEERING PUBLICATION

SUBSCRIPTION RATES \$5.00 PER ANNUM

The Engineering Record

114 LIBERTY ST., NEW YORK

SEND POSTAL CARD FOR SAMPLE COPY

Digging Machinery.

The

HAYWARD **BUCKETS**

"ORANGE PEEL" AND "CLAM SHELL"

FOR

DREDGING **EXCAVATING**

AND HANDLING ALL KINDS OF MATERIAL, SUCH AS BROKEN ROCK, PHOSPHATE ROCK, CLAY, DIRT, GRAVEL, SAND, COAL, AND ALL OTHER SUBSTANCES THAT CAN BE PENETRATED.

Dredges, Excavators, Travelling Derricks, Coal-Handling Machinery, etc.

BUILT ON IMPROVED LINES.

SEND FOR 1903 CATALOGUES

The HAYWARD CO.

97 CEDAR STREET NEW YORK

The Gist of the Matter

Every Mechanical Engineer will find the columns of

The Iron Crade Review

full of information about the latest and best machinery and where it is made, which will enable him to equip plants in a way to obtain the best results with the least expense. Many Mechanical Engineers who are constant readers know this. Those who do not can easily acquire the knowledge. Sample copy for the asking.

Che Iron Crade Review

CLEVELAND, OHIO

429 Park Building

CHICAGO 1115 Monadnock Block 150 Nassau Street

NEW YORK

THE KELLY & JONES CO.

MANUFACTURERS OF

FLANGED AND SCREWED PIPE FITTINGS

GATE AND GLOBE VALVES FOR ALL PRESSURES

MADE IN

CAST IRON, MALLEABLE IRON, BRONZE, ETC.

Illustrated Catalog, giving particulars, Dimensions, and Prices on application

Offices:

13-21 PARK ROW, NEW YORK CITY. 135-137 WATER STREET, PITTSBURG, PA. 416 ASHLAND BLOCK, CHICAGO, ILL.

Works:

DO YOU READ The Engineer

Which is the leading publication for consulting, contracting, electric, steam, and mechanical engineers. Its pages cover the entire field of power generation.

It is the foremost paper of the world in its field, and is issued twenty-four times a year, hence giving up-to-date news of all progress in allied fields.

The best authority on power-plant matters both read and contribute to it. Its cost is very low, and you cannot afford to be without it. Have you received a copy? If not, write us to-day.

The Engineer Publishing Co.

355 Dearborn Street CHICAGO, ILL.

DON'T BE FOOLED BY IMITATIONS OR SUBSTITUTES

MADE ONLY BY

COES WRENCH CO.

WORCESTER, MASS.

J. C. McCARTY & CO., NEW YORK JOHN H. GRAHAM & CO., NEW YORK Sales Agents

THE CONSTRUCTOR

A HANDBOOK OF MACHINE DESIGN

By F. REULEAUX

Authorized translation, complete and unabridged, from the Fourth Enlarged German Edition.

By HENRY HARRISON SUPLEE, B.Sc.

Quarto, 312 pages, 1200 illustrations Price, \$7.50. Sent by express, prepaid

"As it stands the book is the best practical treatise on machine design of which we have any knowledge, and by this translation it is placed within reach of English-speaking engineers, to whom alone it has been inaccessible heretofore."—Engineering News.

"The present work enables every English-speaking designer, draughtsman, and engineer to use the vast collection of data and information, not only in his own language, but also in the notation in which, probably for a long time, his computations must be made."—The Engineering Magazine.

"The completion of the translation of Reuleaux's 'Constructor' marks an epoch in the technical literature of the country. It may be confidently stated that no one technical work has had so great an influence upon the entire subject of machine design in Europe (and incidentally in England and America, through German-reading engineers) as this famous book."—Engineering Mechanics.

"The book is a most useful one, and should be in the library of every mechanical engineer, and kept as a book of reference in the drawing room of every large machine shop."—Engineering and Mining Journal.

THE ENGINEERING MAGAZINE

120-122 LIBERTY STREET, NEW YORK

Engineering Works and 20 Articles Machine Shop Number 2/2 Pages 250 Illustrations of Cassier's Magazine

272 Pages

The Machine Shop Number of Cassier's Magazine should be read by every one having any interest in engineering works, machine shops, shipyards, iron and steel works, etc. It is a most valuable number for works' managers and heads of departments.

CONTENTS.

Compressed Air for Machine Shop and Foundry. With 33 Illustrations.	WILLIAM L. SAUNDERS
The Multiplication of Cutting Tools . A Growing Tendency in Machine Tool Development. With 30 Illustrations.	Joseph Horner
Electric Power in the Machine Shop. Considerations Affecting the Choice of a Distributing System. With 32 Illustrations.	W. M. McFarland
Cranes for Machine Shops With 28 Illustrations.	GEORGE L. CLARK
The Bonus System for Machine Shop Labour. The Latest Advance in Shop Management. With 4 Illustrations.	H, L, GANTT
Portable Machine Tools	FORREST R. JONES
Factory Depreciation	EWING MATHESON
Progress and Education	H. F. J. PORTER
Milling Machines in the United States. With 32 Illustrations,	CHAS. S. GINGRICH
Limit Gauges in the Work Shop The True Method for Interchangeabil-	Wм. Н. Воотн
Limit Gauges in the Work Shop	WM. H. BOOTH ALBERT BLAUVELT
Limit Gauges in the Work Shop . The True Method for Interchangeability. With 11 Illustrations. Fire Prevention for Machine Shops . The Question of Apprentices . How it is Solved in the United States.	ALBERT BLAUVELT E. H. PARKS
Limit Gauges in the Work Shop. The True Method for Interchangeability. With 11 Illustrations. Fire Prevention for Machine Shops. The Question of Apprentices. How it is Solved in the United States. Training Apprentices. In the Royal Dockyards of Great Britain.	Albert Blauvelt
Limit Gauges in the Work Shop. The True Method for Interchangeability. With 11 Illustrations. Fire Prevention for Machine Shops. The Question of Apprentices. How it is Solved in the United States. Training Apprentices.	ALBERT BLAUVELT E. H. PARKS
Limit Gauges in the Work Shop. The True Method for Interchangeability. With 11 Illustrations. Fire Prevention for Machine Shops. The Question of Apprentices. How it is Solved in the United States. Training Apprentices. In the Royal Dockyards of Great Britain. The Trend of Machine Tool Design.	ALBERT BLAUVELT E. H. PARKS FRANK BARTER
Limit Gauges in the Work Shop. The True Method for Interchangeability. With 11 Illustrations. Fire Prevention for Machine Shops. The Question of Apprentices. How it is Solved in the United States. Training Apprentices. In the Royal Dockyards of Great Britain. The Trend of Machine Tool Design. With 25 Illustrations.	ALBERT BLAUVELT E. H. PARKS FRANK BARTER JOSEPH HORNER
Limit Gauges in the Work Shop. The True Method for Interchangeability. With 11 Illustrations. Fire Prevention for Machine Shops. The Question of Apprentices. How it is Solved in the United States. Training Apprentices. In the Royal Dockyards of Great Britain. The Trend of Machine Tool Design. With 25 Illustrations. The Quality of Product in Piece Work. Machine Shop Floors.	ALBERT BLAUVELT E. H. PARKS FRANK BARTER JOSEPH HORNER S. E. THOMPSON
Limit Gauges in the Work Shop. The True Method for Interchangeability. With 11 Illustrations. Fire Prevention for Machine Shops. The Question of Apprentices. How it is Solved in the United States. Training Apprentices. In the Royal Dockyards of Great Britain. The Trend of Machine Tool Design. With 25 Illustrations. The Quality of Product in Piece Work. Machine Shop Floors. With 8 Illustrations. Tool Rooms in Modern Workshop Prac-	ALBERT BLAUVELT E. H. PARKS FRANK BARTER JOSEPH HORNER S. E. THOMPSON MILTON P. HIGGINS
Limit Gauges in the Work Shop. The True Method for Interchangeability. With 11 Illustrations. Fire Prevention for Machine Shops. The Question of Apprentices. How it is Solved in the United States. Training Apprentices. In the Royal Dockyards of Great Britain. The Trend of Machine Tool Design. With 25 Illustrations. The Quality of Product in Piece Work. Machine Shop Floors. With 8 Illustrations. Tool Rooms in Modern Workshop Practice. With 2 Illustrations. Modern Foundry Appliances.	ALBERT BLAUVELT E. H. PARKS FRANK BARTER JOSEPH HORNER S. E. THOMPSON MILTON P. HIGGINS WM. H. BOOTH

Price 50 cents, or send three dollars and we will enter your name in our subscription list for one year commencing with this issue.

System.

CASSIER'S MAGAZINE, 3 West 29th Street, New York City

HAISS' COAL-HANDLING MACHINERY

STEAM SHOVELS

Constructed from special designs to meet every requirement in the rapid and economical handling of coal.

COMPLETE COAL-HANDLING PLANTS CONSTRUCTED

SEND FOR CATALOGUE

GEO. HAISS MFG. COMPANY

141st St. and Rider Ave., NEW YORK

TRAUTWINE'S CIVIL ENGINEER'S POCKET BOOK

New (18th) Edition :: 70th Thousand :: 1902

370 PAGES OF NEW MATTER

Including digest of specifications for bridges and buildings and for iron and steel, conversion table of units of measurement, price-list and business directory of manufactured articles, bibliography, trusses, statics, strength of beams, cement, concrete, etc.

JOHN WILEY & SONS
43 EAST 19TH STREET, NEW YORK

Preferred by skilled mechanics. First in quality, in all points up to date

They
embody the
best and most
advanced ideas in
practical toolmaking

CATALOGUE FREE

The L. S. STARRETT CO., Athol, Mass., U.S.A.

WESTON STANDARD PORTABLE

DIRECT-READING

VOLTMETERS AMMETERS

ury to the amateur, a delight to both

Millivoltmeters
Voltameters
Milammeters
Ohmmeters
Portable Galvanometers
Ground Detectors and
Circuit Testers

Weston Standard Voltmeter

Our Portable Instruments are recognized as THE STANDARD the world over. Our STATION VOLTMETERS AND AMMETERS are unsurpassed in point of extreme accuracy and lowest consumption of energy.

WESTON ELECTRICAL INSTRUMENT CO.

WAVERLY PARK, NEWARK, N. J.

Berlin—European Weston Electrical Instrument Co., Ritterstrasse No. 88.
London—Elliott Bros., Century Works, Lewisham.
Paris, France—E. H. Cadiot, 12 Rue St. Georges.

New York Office
74 Cortlandt Street

RITHMETIC & ALGEBRA

By H. B. LÜBSEN

Adapted from the German
By HENRY HARRISON SUPLEE, B.Sc.

12mo. Cloth. \$2.00 by mail, postpaid

No previous knowledge of the subject is assumed.

Every step is explained in clear and intelligible language.

The examples are worked out in detail, showing just why and how everything is done.

Unnecessary matter is omitted, but practical applications are made prominent.

Repetitions are avoided, each point being clearly put, once for all.

Arithmetic leads up into Algebra, the use of symbols being gradually developed.

The exercise of the judgment is developed and dependence upon arbitrary rules avoided.

THE ENGINEERING MAGAZINE

120-122 LIBERTY STREET, NEW YORK

BORMAY & CO.

——— 64 FULTON STREET —

NEW YORK CITY

General Engravers and Illustrators

Employing all processes to make a perfect printing plate

Maps and Diagrams of all descriptions Compiling, Drawing, Retouching, etc.

Write to

J. B. Lippincott Company

Publishers

For a

Philadelphia

Complete List of Important Scientific Publications

Sent Free upon Application

Sixth Edition. 8vo. 1042 Pages. 900 Figures in Text and 10 Folding Plates. \$4.50, net

A TEXT=BOOK

OF

Mechanical Engineering

By WILFRID J. LINEHAM

M.INST.C.E., M.I.MECH.E., M.I.E.E.

Part I.—WORKSHOP PRACTICE Part II.—THEORY AND EXAMPLES

Sixth Edition, Revised and Enlarged

R. LINEHAM'S long experience as a teacher of mechanical engineering suggested to him the desirability of writing a comprehensive work which would show the students the general lines on which their study as engineer apprentices should proceed.

In Part I. the student makes the tour of the shops, and is initiated into their mysteries. The method used is to first describe the tools, after that the general processes, and then a series of graduated examples of their

application.

Part II. treats of all the principal theories and investigations required by the engineering student, the Strength of Materials coming first, followed by Energy and Kinematics; these all assist in the treatment of Prime Movers worked by gases or liquids.

The numerous figures in the text and the large folding plates are well-detailed examples of modern

mechanism.

.32

J. B. LIPPINCOTT COMPANY

PUBLISHERS ::: PHILADELPHIA

SPECIFY

CRANE VALVES

IN BRASS OR IRON FOR ALL PRESSURES AND PURPOSES

WRITE FOR COMPLETE POCKET CATALOGUE

NEW YORK PHILADELPHIA CINCINNATI KANSAS CITY SIOUX CITY ST. PAUL DULUTH OMAHA

CRANE CO.

CHICAGO

ESTABLISHED 1855

SEATTLE ST. LOUIS MINNEAPOLIS LOS ANGELES SAN FRANCISCO SALT LAKE CITY WATERTOWN, S. D. PORTLAND, ORE.

JERRY ELEVATING CONVEYING POWER

TRANSMISSION

MACHINERY

TIME, LABOR, AND MONEY SAVED BY USING OUR LABOR-SAVING DEVICES

We can move material in Bulk or Package-Hot or Cold-Wet or Dry-Any Size-Any Distance

Also manufacture

Coal Cutting, Hauling, Drilling, Washing Machinery

Send for our Catalogue. Address

THE JEFFREY MANUFACTURING COMPANY

COLUMBUS, OHIO, U.S.A. New York

Denver

LIDGERWOOD HOISTING

HOISTING AND **CONVEYING**

DEVICES

Standard Lidgerwood Hoisting Engine.

Of the Latest Improved Design and Construction.

The Lidgerwood Hoisting Engines

are built to gauge on the Duplicate Part System, insuring quick delivery. They are strictly high grade, and accepted as the STANDARD for all hoisting purposes.

> STEAM AND ELECTRIC HOISTS Over 21,000 Engines in Vse

The Lidgerwood Cableways

will hoist and convey loads up to 20 TONS. combine in their construction all the latest improvements, and are specially adapted for the construction e Dams, Piers, Walls, Sewers, Pipe Lines, Canal Exca vating, etc.

Send for Latest Catalogues.

LIDGERWOOD MFG. CO.

96 LIBERTY ST., NEW YORK

CHICAGO PORTLAND, ORE. BOSTON NEW ORLEANS PHILADELPHIA PITTSBURG CLEVELAND

