Data-Driven Insights for Stategic Decision Making

Part 1

© IBM Corporation. All rights reserved.

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Project Goal:
- Key Findings:
 - Identified critical data sources
 - Applied advanced analytics
 - Revaled decision-making gaps
- Data Highlights:
- Impact:
- Conclusion

INTRODUCTION

- Project Background
- Problem Statement
- Objectives of the study
- Scope of the Work
 - Data sources and time frame
 - Key focus areas

METHODOLOGY

- Data Collection
- Data Cleaning and Preparation
- Analytical Techniques
- Tools used:
 - Python(Matplotlib, Pandas
 - Excel and Tableau for visualization

RESULTS

PROGRAMMING LANGUAGE TRENDS

Current Year

<Bar chart of top 10 programming
languages for the current year goes
here.>

Next Year

< Bar chart of top 10 programming
languages for the next year goes
here.>

PROGRAMMING LANGUAGE TRENDS - FINDINGS & IMPLICATIONS

Findings

- Python
- Javascript
- Java

Implications

- Upskilling
- Enterprise projects
- Curriculum updates

DATABASE TRENDS

Current Year

< Bar chart of top 10 databases for the current year goes here >

Next Year

< Bar chart of top 10 databases for the next year goes here.>

DATABASE TRENDS - FINDINGS & IMPLICATIONS

Findings

- Postgre SQL
- NoSQL
- Cloud-native and scalable
- databases

Implications

- Organizations
- Developers
- Startups and agile teams

DASHBOARD

https://github.com/Sejal0404/Cognos-Looker-Studio-dashboard

DASHBOARD TAB 1

DASHBOARD TAB 2

DASHBOARD TAB 3

DISCUSSION

OVERALL FINDINGS & IMPLICATIONS

Findings

- High Demand for Dashboard
- And Communication Skills
- Cross-functional Skills are Valued
- Business Impact and Insight
- Generation Are Key

Implications

- Interactive dashboards
- Complete pipeline
- Can impact business goals

CONCLUSION

- End-to-End Data Science Workflow Demostrated
- Effective Communication Through Inetractive Dashboards
- Relevant and Transferable Skills for Industry Roles
- Helps to maximize workflow and improved decision making

APPENDIX

 Include any relevant additional charts, or tables that you may have created during the analysis phase.

JOB POSTINGS

In Module 1 you have collected the job posting data using Job API in a file named "job-postings.xlsx". Present that data using a bar chart here. Order the bar chart in the descending order of the number of job postings.

POPULAR LANGUAGES

In Module 1 you have collected the job postings data using web scraping in a file named "popular-languages.csv". Present that data using a bar chart here. Order the bar chart in the descending order of salary.

