Vehicle Damage Detection

Group 3:

Background

Project:

- Car Damage Detection
- 3 labels: Minor, Moderate,
 Severe
- Currently working with 8000 images

Summary of last week's meeting:

- Data Augmentation
- EDA

Goals:

- Try different feature extraction/selection methods
- Run Machine Learning Baseline Models
- Research/Explore Deep Learning

Contributions

HOG Feature Extraction

Histogram of Oriented Gradients, a feature descriptor technique that computes the gradient magnitude and orientation for each pixel in an image.

- Random Forest
- GridSearch

```
print("Accuracy for Random Forest: ",accuracy score(y test,pred))
```

Accuracy for Random Forest: 0.47183098591549294

SIFT

Testing

Random Forest model

• Grid Search

Accuracy	for R	andom Forest:	0.5138	33992094861	.7
Classific	cation	Report:			
		precision	recall	f1-score	support
	0	0.53	0.70	0.60	83
	1	0.37	0.15	0.22	85
	2	0.55	0.69	0.61	85
accui	racy			0.51	253
macro	avg	0.48	0.52	0.48	253
weighted	avg	0.48	0.51	0.48	253
-	-				

SIFT

Texture Feature

Gray-Level Co-Occurrence Matrix (GLCM)

Accuracy =		precision	recall	f1-score	support
minor	0.57	0.61	0.59	138	
moderate	0.42	0.42	0.42	134	
severe	0.59	0.55	0.57	143	
accuracy			0.53	415	
macro avg	0.53	0.53	0.53	415	
weighted avg	0.53	0.53	0.53	415	

Accuracy =		precision	recall	f1-score	support
minor	0.58	0.62	0.60	138	
moderate	0.41	0.33	0.36	134	
severe	0.58	0.65	0.62	143	
accuracy			0.54	415	
macro avg	0.52	0.53	0.53	415	
weighted avg	0.53	0.54	0.53	415	

Gray-Level Co-Occurrence Matrix (GLCM)

2D-UMap

Texture Feature

Gabor

Accuracy =		precision	recall	f1-score	support
minor	0.57	0.55	0.56	138	
moderate	0.39	0.40	0.40	134	
severe	0.49	0.49	0.49	143	
accuracy			0.48	415	
macro avg	0.48	0.48	0.48	415	
weighted avg	0.48	0.48	0.48	415	

Accuracy = 0.49	397590361	144578 precision	recall	f1-score	support
riceal acy		p. 201010.			ouppor c
minor	0.56	0.61	0.58	138	
moderate	0.38	0.30	0.33	134	
severe	0.51	0.57	0.54	143	
accuracy			0.49	415	
macro avg	0.48	0.49	0.48	415	
weighted avg	0.48	0.49	0.49	415	
2000					

Gabor

2D-UMap

Edge Detection

Edge detection is an image processing technique for finding the boundaries of objects within images. It mainly works by detecting discontinuities in brightness.

Canny edge detector is an edge detection operator that uses multi-stage algorithm to detect a wide range of edges in images.

Edge Detection general process:

- 1. Filtering out noise using Gaussian blur algorithm.
- 2. Finding the strength and direction of edges using Sobel Filters.
- 3. Isolating the strongest edges and thin them to one-pixel wide lines by applying non-maximum suppression.
- 4. Using hysteresis to isolate the best edges

Canny edge detection algorithm process:

- 1. Noise reduction;
- 2. Gradient calculation;
- 3. Non-maximum suppression;
- 4. Double threshold;
- 5. Edge Tracking by Hysteresis

Edge Filters on Test Image

UMAP

Preliminary ML Results for Canny Edge Detection

LogReg					SVM				
	precision	recall	f1-score	support	ALCO POPE STATE	precision	recall	f1-score	support
0	0.53	0.35	0.42	80	0	0.55	0.60	0.57	80
1	0.47	0.36	0.41	78	1	0.48	0.19	0.28	78
2	0.35	0.59	0.44	70	2	0.45	0.70	0.54	70
accuracy			0.43	228	accuracy			0.49	228
macro avg	0.45	0.43	0.42	228	macro avg	0.49	0.50	0.46	228
weighted avg	0.46	0.43	0.42	228	weighted avg	0.50	0.49	0.46	228
RF					GNB				
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.57	0.36	0.44	80	0	0.49	0.44	0.46	80
1	0.36	0.42	0.39	78	1	0.40	0.22	0.28	78
2	0.38	0.47	0.42	70	2	0.39	0.64	0.49	70
accuracy			0.42	228	accuracy			0.43	228
macro avg	0.44	0.42	0.42	228	macro avg	0.43	0.43	0.41	228
weighted avg	0.44	0.42	0.42	228	weighted avg	0.43	0.43	0.41	228

ML Hypertuning Results

