TOPOLOGÍA. UAM, 29 de junio de 2017

Apellidos, Nombre: ______Grupo:

1. Se considera una familia \mathcal{F} de subconjuntos de \mathbb{R}^2 definida del modo siguiente:

 $\mathcal{F} = \{\emptyset, \mathbb{R}^2\} \cup \{F \subset \mathbb{R}^2 : F \text{ consta de un número finito de puntos y de rectas}\}.$

- (a) Probar que \mathcal{F} es la familia de los cerrados de una topología $\mathcal{T}_{\mathcal{F}}$ de \mathbb{R}^2 .
- (b) Probar que $\mathcal{T}_{\mathcal{F}}$ es la mínima topología de \mathbb{R}^2 en la que las rectas y los puntos son conjuntos cerrados.
- (c) Comparar $\mathcal{T}_{\mathcal{F}}$ con la topología usual y con la topología cofinita.
- (d) Contestar razonadamente las dos preguntas siguientes:
 - lacktriangle ¿Existe alguna topología en \mathbb{R}^2 en la que las rectas sean conjuntos cerrados y los puntos no?
 - ¿Existe alguna topología en \mathbb{R}^2 en la que los puntos sean conjuntos cerrados y las rectas no?
- **2.** En $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ se considera la topología \mathcal{T}_1 producto de la topología usual en el primer factor \mathbb{R} por la topología discreta en el segundo factor \mathbb{R} . Después se define en \mathbb{R}^2 la siguiente relación de equivalencia \mathcal{R} :

$$(x_1, y_1)\mathcal{R}(x_2, y_2) \iff x_1^2 + 2y_1^2 = x_2^2 + 2y_2^2$$
.

- (a) Demostrar que el espacio cociente X de $(\mathbb{R}^2, \mathcal{T}_1)$ por la relación \mathcal{R} es homeomorfo a $[0, \to [=[0, \infty)$ con su topología usual.
- (b) Estudiar si la proyección canónica de $(\mathbb{R}^2, \mathcal{T}_1)$ sobre X es abierta o cerrada.

3.

- (a) Definir con precisión qué quiere decir que un espacio topológico sea compacto.
- (b) Sea (X, \prec) un conjunto totalmente ordenado y sea \mathcal{T} la topología de X asociada al orden \prec . Demostrar que (X, \mathcal{T}) es compacto si y sólo si todo subconjunto no vacío de X posee supremo e ínfimo.

4. Sea (X, \mathcal{T}) un espacio topológico. Para cada $A \subset X$ se define χ_A , la función característica de A mediante:

$$X \xrightarrow{\chi_A} \mathbb{R}$$

$$x \longmapsto \chi_A(x) = \begin{cases} 1 \text{ si } x \in A \\ 0 \text{ si } x \notin A. \end{cases}$$

Se pide

- (a) Definir qué es la frontera de A, a la que denotaremos por Fr(A), para un conjunto $A \subset X$.
- (b) Demostrar que, para un punto $x \in X$, χ_A es una aplicación continua en x si y sólo si $x \notin Fr(A)$.
- (c) Demostrar que χ_A es continua en X si y sólo si A es, a la vez, abierto y cerrado.
- **5.** Sea (X, \mathcal{T}) un espacio topológico.
 - (a) Explicar qué quiere decir que (X, \mathcal{T}) sea conexo.
 - (b) Demostrar que si (X, \mathcal{T}) es conexo y, además, existe una aplicación

$$f:(X,\mathcal{T})\longrightarrow (\mathbb{R},\mathcal{T}_u)$$

continua y no constante, donde \mathcal{T}_u es la topología usual de \mathbb{R} , entonces el conjunto X es no numerable.

6

- (a) Definir con precisión qué quiere decir que un espacio topológico sea simplemente conexo.
- (b) Probar que el conjunto de los puntos $z \in \mathbb{D}^2 = \{x \in \mathbb{R}^2 : ||x|| \le 1\}$ para los que $\mathbb{D} \setminus \{z\}$ es simplemente conexo es, precisamente, $\mathbb{S}^1 = \operatorname{Fr}(\mathbb{D}^2)$.
- (c) Deducir que si $f: \mathbb{D}^2 \longrightarrow \mathbb{D}^2$ es un homeomorfismo, entonces $f(\mathbb{S}^1) = \mathbb{S}^1$.

TIEMPO: 3 horas.