3ⁿ Ομάδα Ασκήσεων

OVOH/VULO: AABIONA MANTEO

Ομάδα ασκ.: 32

CAP. Mntp. : 3200098

14. (Αλλαχή μεταβλητής)

Eστω ότι 4ε>0 35>0: O< |x-x| < δ ⇒ | β(x)-L| < ε(1)

EGTW E70

9ètw 5'= 5/ a >0

 $0 < h - \frac{x_0 - b}{a} < \delta' \xrightarrow{|a|} 0 < |a| h - \frac{x_0 - b}{a} < \delta \Rightarrow 0 < |ah - \phi(\frac{x_0 - b}{a})| < \delta \Rightarrow$

 $\Rightarrow 0 < |ah - x_0 + b| < \delta \Rightarrow 0 < |ah + b| - x_0 | < \delta \Rightarrow |f(ah + b) - L| < \epsilon$

• Eσεω ότι 4ε>0 ∃δ>0:0< h-(xo-b) <δ⇒|P(ah+b)-L|<ε2) EGEW EZO

θέτω δ'= δ. |a| 70

 $0 < |x-x_0| < \delta' \Rightarrow 0 < |x-x_0| < \delta|a| \Rightarrow 0 < |x-x_0| < \delta \Rightarrow 0 < |x$

 $\Rightarrow 0 < \left| \frac{x}{a} - \frac{b}{a} - \frac{x}{a} + \frac{b}{a} \right| < \delta \Rightarrow 0 < \left| \frac{x - b}{a} - \left(\frac{x - b}{a} \right) \right| < \delta \Rightarrow \left| \frac{2}{b} \left| \frac{x - b}{a} + \frac{b}{a} \right| - \frac{1}{2} < \epsilon \Rightarrow 0 < \frac{x - b}{a} = \frac{1}{2}$

 $\Rightarrow |f(x) - L| < \varepsilon$

Apa lim f(x)=L

 \mathcal{Q} n λ a δ $\lim_{x \to x_0} f(x) = L \Leftrightarrow \lim_{h \to x_0 - b} f(ah+b) = L$

15. (Όριο ⇒ Φράχμα)

Αφού το όριο υπάρχει έχουμε ότι \forall ε>ο \exists δ>0:0<|x-x₀|< δ \Rightarrow | ξ (x)-k|< ϵ

 $\Rightarrow -\varepsilon < f(x) - k < \varepsilon \Rightarrow k - \varepsilon < f(x) < k + \varepsilon^{(1)}$

Θα LOXVEL OT Y E'>O; k-E'>O⇒E'<k 75% WOTE O<|x-x0|<δ' → O<k-E<β(x)<k+E' Οπότε το αναζητούμενο Ρείναι το Κ-ε' για οποιοδήποτε ε'κ και η ανοιχτή

χειτονιά είναι η (χο-δ', χο+δ')- ξχοζ για τα αντίστοιχα δ' που ικανοποιούν τη

oxion $0<|x-x_0|<\delta'\Rightarrow |f(x)-k|<\epsilon'$

Για παράδειχμα αν ε= k7 (δηλ είναι ε <k) :<="" th="" εχουμε="" ότι=""></k)>
$\exists \delta': O< x-x_0 <\delta'\Rightarrow f(x)-k <\epsilon'\Rightarrow f(x)-k <\frac{k}{2}\Rightarrow -\frac{k}{2}< f(x)-k<\frac{k}{2}\Rightarrow$
$\Rightarrow \underline{k} < f(x) < \underline{3k} \Rightarrow 0 < k < f(x) < \underline{3k}$
16. (Όριο χινομένου)
H g(x) είναι φραχμένη σε μια ανοιχτή χειτονιό του χο άρα χια χεΙ- ξχοξ
θα ισχύει (g(x) < M , M70
EXOUPE $ f(x) \cdot g(x) = f(x) \cdot g(x) \le f(x) \cdot M$
$ f(x) \cdot g(x) \leq f(x) \cdot M \Leftrightarrow - f(x) \cdot M \leq f(x) \cdot g(x) \leq f(x) \cdot M$
$ \text{OXUEL OIL } \lim_{x \to \infty} \left(- f(x) \cdot M \right) = - \lim_{x \to \infty} \left(f(x) \cdot M \right) = - \lim_{x \to \infty} f(x) \cdot M = - \text{O} \cdot M = 0$
$ \underset{x \to x_0}{\text{kat }} \lim_{x \to x_0} f(x) \cdot M = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} f(x) \cdot M = f(x) \cdot \lim_{x \to x_0} f(x) \cdot M = f(x) \cdot \lim_{x \to x_0} f(x) \cdot M = f(x) \cdot M = f(x) \cdot \lim_{x \to x_0} f(x) \cdot M = f(x) \cdot \lim_{x \to x_0} f(x) \cdot \lim$
• 'Apa and το κριτήριο παρεμβολής έχουμε ότι $\lim_{x\to x_0} (f(x) \cdot g(x)) = \lim_{x\to x_0} - f(x) \cdot M = \lim_{x\to x_0} f(x) M = \lim_{x\to x_0} $
17. (Όριο περιοδικής συνάρτησης)
Έστω ότι το όριο υπάρχει, δηλ. $∀$ M $∃$ X: $x>X ⇒ β(x)>M$
Eστω M>O και έστω Xmin=min {X/x>X => f(x)>M}
Onote gia kanolo x1 < Xmin kai gia to onoio Loxuel QXmin-X1 < T da eival f(x1) < M
Σε αυτήν την περίπτωση χ1+T>Xmin άρα θα πρέπει f(x1+T)>M
το οποίο είναι άτοπο αφού $f(x_1+T)=f(x_1) < M$ καθώς η συνάρτηση είναι περιοδική
Apa το lim p(x)=+ σο δεν μπορεί να ισχύει.
* Enpeimon: Ze ibiajouoes nepintiúseis anou der unapxei to min {x/x>x⇒p(x)>M}
θα υπάρχει σίχουρα το inf{X/x>X → f(x)>M} οπότε η
αποδεικτική διαδικοσία είναι όμοια

18. ('Ορια)
(a') $\lim_{x \to +\infty} \left(\frac{ \cos x }{2} \right)^x$
$Y \rightarrow +\infty$ $\left(\begin{array}{c} 2 \\ \end{array}\right)$
Tympijovyk ozi $0 < \cos x < 1 \Leftrightarrow 0 < \cos x < \frac{1}{2} \Leftrightarrow 0^x < (\cos x)^x < (\frac{1}{2})^x$
Exoυμε ότι $\lim_{x\to +\infty} \left(\frac{1}{2}\right)^x = 0$ (yaτί $\frac{1}{2}<1$) και $\lim_{x\to +\infty} 0^x = \lim_{x\to +\infty} 0 = 0$.
Άροι από το κριτήριο παρεμβολής έχουμε ότι lim $\frac{(0.5 \times 1)^{x}}{2}$ lim $\frac{(1.5)^{x}}{(2.5)^{x}} = 0$
(6') Με προσαρμοχή της πρότασης 3.8 έχουμε ότι μια συνάρτηση f δεν
έχει όριο καθώς χ→+∞ αν υπάρχουν Α,Β με Α<Β ώστε ∀χ να μπορούμε
Va βρούμε ένα $X_1 > X$ ώστε $f(X_1) < A$ και ένα $X_2 > X$ ώστε $f(X_2) > B$
Eστω λοιπόν f(x)= cosx/x
- XX 3ke Z TETOIO WOTE 2kn>X Kai Da Eivai P(2kn) = cos(2kn) = 11 = 1 = 1
$2n205n$ χια $x_1=2kn>X$ έχουμε $f(x_1)>1$ (αν ισχύει το "=" θα ισχύει και ">"
- ∀Χ ∃kεΖ τέτοιο ώστε Ձkn+ π > Χ και θα είναι f(2kn+π)=
$= \left \cos \left(2kn + \pi \right) \right ^{x} = \left 0 \right ^{x} = 0^{x} = 0$
2 ηλαδή χια $x_2 = 2kn + \pi > X$ εχουμε $f(x_2) < 0$ (αν ισχύει το "=" θα ισχύει και "<")
Άρα δεν υπάρχει το όριο.

19. (Οριο ρητής συνάρτησης) EDTW E70 $|f(x)-L|<\varepsilon\Leftrightarrow |\frac{10x-10}{x+5}-10|<\varepsilon\Leftrightarrow |\frac{10x-10(x+5)}{x+5}|<\varepsilon\Leftrightarrow |\frac{10x-10$ θ & Exoupe $x > x \Rightarrow x > 50 - 5 \Rightarrow |f(x) - L| < \epsilon$ Apa lim 10x = 10 $x \to +\infty$ x + 520. (Αύξουσα Συχκλίνουσα Συνάρτηση) θα δείξουμε ότι η ξ είναι άνω φραχμένη και μάλιστα από το Δ Έστω ότι η β δεν έχει άνω φράχμοι το L. Άρα θα υπάρχει ΧΔ ώστε £(ΧΔ) > L δηλ. $\exists \epsilon' > 0 : f(x_1) = L + \epsilon' \Rightarrow \epsilon' = f(x_1) - L^{\textcircled{0}}$ • Επειδή η f είναι αύξουσα έχουμε $x > x_1 \Rightarrow f(x) > f(x_1) \Rightarrow f(x) > L + ε'$ $\delta n \lambda$. $x \in (x_1, +\infty) \Rightarrow f(x) > L + \epsilon'$ • Όμως, πόχω της υπαρξης του ορίου ισχύει ότι $\delta n \lambda . x \in (X, +\infty) \Rightarrow f(X) < L + \epsilon'^{(3)}$ Aπό τα (2),(3) προκύπτει ότι χια $x \in (\max\{x_1, X\}, +\infty)$ η πρόταση xείναι άτοπη. Άρα η β έχει άνω φράχμα το L, δηλ. είναι άνω φραχμένη. * Engelwon: Tropavius (max {x1, X}, +0) C (x1, +0) kai $(\max \{x_1, X\}, +\infty) \subseteq (X, +\infty)$

21. ('Opia)

(a')
$$\lim_{x\to 0} \frac{x}{\sqrt{1-\cos x}} = \lim_{x\to 0} \frac{x\sqrt{1+\cos x}}{\sqrt{1-\cos x}} = \lim_{x\to 0$$

$$= \lim_{x \to 0} \frac{x \sqrt{1 + \cos x}}{x + \cos x}$$

Dia κρίνουμε τις περιπτώσεις:

•
$$\lim_{x\to 0^+} \frac{x\sqrt{1+\cos x}}{|\sin x|} = \lim_{x\to 0^+} \frac{x\sqrt{1+\cos x}}{|\sin x|} = \sqrt{1+\cos 0} = \sqrt{1+1} = \sqrt{2}$$

•
$$\lim_{x \to 0^-} \frac{x\sqrt{1+\cos x}}{|\sin x|} = \lim_{x \to 0^-} \frac{x\sqrt{1+\cos x}}{-\sin x} = \lim_{x \to 0^-} \frac{\sqrt{1+\cos x}}{-\sin x} = \frac{\sqrt{1+\cos x}}{-1} = \sqrt{2}$$

(8')
$$\lim_{h\to 0^+} \sup_{0< x< h_f^+} \frac{1}{x}$$

$$\lim_{k \to +\infty} x_0 = \lim_{k \to +\infty} \frac{1}{2kn + n}$$

`Exoupe ότι
$$\lim_{k\to+\infty} (2kn+\frac{\pi}{2}) = +\infty$$
 άρα $\mathbb{D} \to \lim_{k\to+\infty} \frac{1}{2kn+\frac{\pi}{2}} = 0$

Γνωρίζουμε ότι
$$-1 < \sin \frac{1}{x} < 1$$
 οπότε sup $\sin \frac{1}{x} < 1$
Για το x_0 είναι $\sin \left(\frac{1}{x_0}\right) = \sin(2k\pi + \pi) = 1$

'Apa sup
$$\sin \frac{1}{x} = 1$$
 {o< x