Averaging

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Motivation

In data science we average all over the place

- ► To describe a quantity
- ► To describe the variation of a quantity
- ▶ To estimate a variable from another variable
- ► To estimate causal effects

Plan

- ► Average of a random variable
- ► The variance
- ► The conditional mean
- ► Causal inference

Average of a random variable?

Data: 3,4,3,4,4,3, ...

Interpreted as samples from random variable \tilde{a} with range A

$$\frac{3+4+3+4+\cdots}{n}$$
= $3 \cdot \frac{\text{number of data} = 3}{n} + 4 \cdot \frac{\text{number of data} = 4}{n}$

$$\approx \sum_{a \in A} a \, p_{\tilde{a}}(a)$$

Mean of a discrete random variable

The mean, first moment or expected value of a discrete random variable \tilde{a} with range A is

$$\mathrm{E}\left[\tilde{a}\right]:=\sum_{a\in A}a\,p_{\tilde{a}}\left(a\right)$$

if the sum converges

Goal difference

$$E[\tilde{g}] = \sum_{g=-2}^{2} g \, p_{\tilde{g}}(g)$$

$$= -2 \cdot 0.1 - 1 \cdot 0.2 + 0 \cdot 0.3 + 1 \cdot 0.25 + 2 \cdot 0.1 + 3 \cdot 0.05$$

$$= 0.2$$

Average of function of a random variable?

Data: 3,4,3,4,4,3, ...

Interpreted as samples from random variable \tilde{a} with range A

$$\frac{3^2 + 4^2 + 3^2 + 4^2 + \cdots}{n}$$

$$= 3^2 \cdot \frac{\text{number of data} = 3}{n} + 4^2 \cdot \frac{\text{number of data} = 4}{n}$$

$$\approx \sum_{a \in A} a^2 p_{\tilde{a}}(a)$$

Function of a random variable

The expected value of $h(\tilde{a}), h: \mathbb{R} \to \mathbb{R}$ is

$$\mathrm{E}\left[h\left(\tilde{a}\right)\right] := \sum_{a \in A} h\left(a\right) p_{\tilde{a}}\left(a\right)$$

if \tilde{a} is discrete and the sum converges

Converting goal difference to points

Points: $\tilde{x} := h(\tilde{g})$, where

$$h(g) := \begin{cases} 0 & \text{if } g < 0 \\ 1 & \text{if } g = 0 \\ 3 & \text{if } g > 0 \end{cases}$$

Goal difference

$$E[\tilde{x}] = E[h(\tilde{g})]$$

$$= \sum_{g=-2}^{2} h(g)p_{\tilde{g}}(g)$$

$$= 0 \cdot 0.1 + 0 \cdot 0.2 + 1 \cdot 0.3 + 3 \cdot 0.25 + 3 \cdot 0.1 + 3 \cdot 0.05$$

$$= 1.5$$

Function of multiple random variables?

Data: (3,1), (4,2), (4,1), (3,2), ..., (x_n,y_n)

Interpreted as samples from random variables \tilde{a} and \tilde{b}

$$\frac{3 \cdot 1 + 4 \cdot 2 + 4 \cdot 1 + 3 \cdot 2 + \cdots}{n}$$

$$= 3 \cdot 1 \cdot \frac{\mathsf{pairs} = (3,1)}{n} + 3 \cdot 2 \cdot \frac{\mathsf{pairs} = (3,2)}{n} + \cdots$$

$$\approx \sum \sum a \cdot b \, p_{\tilde{a},\tilde{b}}(a,b)$$

Function of multiple random variables

If \tilde{a} (range: A) and \tilde{b} (range: B) are discrete, the expected value of $h(\tilde{a}, \tilde{b})$ is

$$\mathrm{E}[h(\tilde{a},\tilde{b})] := \sum_{a \in A} \sum_{b \in B} h(a,b) \, p_{\tilde{a},\tilde{b}}(a,b) \,,$$

if the sum converges

Function of discrete random vector

If \tilde{x} is a d-dimensional discrete random vector the expected value of $h(\tilde{x})$ of \tilde{x} is

$$\mathrm{E}\left[h(\tilde{x})\right] := \sum_{x|1| \in X_1} \sum_{x|2| \in X_2} \cdots \sum_{x|d| \in X_d} h(x) \, \rho_{\tilde{x}}\left(x\right)$$

if the sum converges

Continuous random variable

The mean, first moment or expected value of a continuous random variable \tilde{a} is

$$\mathrm{E}\left[\widetilde{a}\right] := \int_{a=-\infty}^{\infty} a f_{\widetilde{a}}\left(a\right) \, \mathrm{d}a$$

if the integral converges

Uniform random variable in [a, b]

$$E[\tilde{u}] = \int_{u=-\infty}^{\infty} u f_{\tilde{a}}(u) du$$
$$= \int_{u=a}^{b} \frac{u}{b-a} du$$
$$= \frac{a+b}{2}$$

Uniform random variable in [0,1]

Function of a random variable

The mean of $h(\tilde{a})$, $h: \mathbb{R} \to \mathbb{R}$ is

$$\mathrm{E}\left[h\left(\tilde{a}
ight)
ight] := \int_{a=-\infty}^{\infty} h\left(a
ight) f_{\tilde{a}}\left(a
ight) \, \mathsf{d}a$$

if \tilde{a} is continuous and the integral converges

Multiple random variables

If \tilde{a} , and \tilde{b} are continuous, the expected value of $h(\tilde{a},\tilde{b})$ is

$$\mathrm{E}[h(\tilde{a},\tilde{b})] := \int_{a=-\infty}^{\infty} \int_{b=-\infty}^{\infty} h(a,b) f_{\tilde{a},\tilde{b}}(a,b) \, \mathrm{d}a \, \mathrm{d}b$$

if the integral converges

Function of random vector

If \tilde{x} is a d-dimensional continuous random vector the expected value of $h(\tilde{x})$ is

$$\mathrm{E}\left[h(\tilde{x})\right] := \int_{x \in \mathbb{R}^d} h(x) \, f_{\tilde{x}}(x) \, \mathrm{d}x$$

if the integral converges

Discrete and continuous quantities

If \tilde{c} is continuous and \tilde{d} is discrete with range D, the mean of $h(\tilde{c},\tilde{d})$ is

$$E\left[h(\tilde{c},\tilde{d})\right] := \int_{c=-\infty}^{\infty} \sum_{d \in D} h(c,d) f_{\tilde{c}}(c) p_{\tilde{d} \mid \tilde{c}}(d \mid c) dc$$
$$= \sum_{d \in D} \int_{c=-\infty}^{\infty} h(c,d) p_{\tilde{d}}(d) f_{\tilde{c} \mid \tilde{d}}(c \mid d) dc,$$

if the sum and integral converge

Bayesian coin flip

We flip a coin but don't know the probability of heads $\tilde{\theta}$

We assume $\tilde{\theta}$ is uniform in [0,1]

Mean of the coin flip (heads = 1, tails = 0)?

$$E[\tilde{a}] = \int_{c=-\infty}^{\infty} \sum_{a=0}^{1} a f_{\tilde{\theta}}(\theta) p_{\tilde{a}|\tilde{\theta}}(a|\theta) d\theta$$
$$= \int_{0}^{1} \theta d\theta$$
$$= \frac{1}{2}$$

How do we estimate the mean from data?

We average

The sample mean of $X := \{x_1, x_2, \dots, x_n\}$ is the arithmetic average

$$m(X) := \frac{\sum_{i=1}^{n} x_i}{n}$$

Same for discrete and continuous variables

Temperature dataset

Hourly temperatures at 134 weather stations in the US

Method of moments

Distribution	Parameter	Maximum-likelihood estimator	Mean
Bernoulli	θ	$\frac{1}{n}\sum_{i=1}^n x_i = m(X)$	θ
Geometric	α	$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{-1}=m(X)^{-1}$	α^{-1}
Poisson	λ	$\frac{1}{n}\sum_{i=1}^{n}x_{i}=m(X)$	λ
Exponential	λ	$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{-1}=m(X)^{-1}$	λ^{-1}
Gaussian	μ	$\frac{1}{n}\sum_{i=1}^{n}x_{i}=m(X)$	μ

NBA salaries

How many earn more than mean?

Less than 1/3 of players (32.1%)

Extreme values

Random variable \tilde{a} uniform in [-4.5, 4.5] and [x-0.5, x+0.5]

 $\mathrm{E}\left[\widetilde{a}
ight] = rac{x}{10}$

Median = 0.5

NBA salaries

Two important properties

- ▶ Mean of linear combination is linear combination of means (always)
- Mean of product is product of means (only under independence)

Temperature dataset

Hourly temperatures at 134 weather stations in the US

Same mean

Quantifying $\it magnitude$ of deviation from the mean

Magnitude of a random variable?

Magnitude of real number a: $|a| = \sqrt{a^2}$

Euclidean length of vector
$$x$$
: $||x||_2 = \sqrt{\sum_{i=1}^d x[i]^2}$

Magnitude/energy of random variable ã?

Mean square or second moment $\mathrm{E}\left[\tilde{\mathbf{a}}^2\right]$

Variance

Mean squared distance of a random variable to its mean

$$\operatorname{Var}\left[\tilde{\mathbf{a}}\right] := \operatorname{E}\left[\left(\tilde{\mathbf{a}} - \operatorname{E}\left[\tilde{\mathbf{a}}\right]\right)^{2}\right]$$
$$= \operatorname{E}\left[\tilde{\mathbf{a}}^{2}\right] - \operatorname{E}\left[\tilde{\mathbf{a}}\right]^{2}$$

Standard deviation

The standard deviation $\sigma_{\tilde{a}}$ of \tilde{a} is

$$\sigma_{\tilde{a}} := \sqrt{\operatorname{Var}\left[\tilde{a}\right]}$$

Sample variance

Dataset: x_1, x_2, \ldots, x_n

The sample variance is the average squared deviation from the sample mean

$$v(X) := \frac{\sum_{i=1}^{n} (x_i - m(X))^2}{n-1}$$

The sample standard deviation σ_X is the square root of the sample variance

Same mean

Means

Standard deviations

O Weather-station locations (radius proportional to standard deviation of temperature)

Mean of \tilde{b} when $\tilde{a} = a$?

The conditional mean function of a discrete random variable \tilde{b} given \tilde{a} is

$$\mu_{\tilde{b}\,|\,\tilde{a}}(\mathsf{a}) := \sum_{b \in B} b\, p_{\tilde{b}\,|\,\tilde{a}}\,(b\,|\,\mathsf{a})$$

The conditional mean function of a continuous random variable \tilde{b} given \tilde{a} is

$$\mu_{\tilde{b}\,|\,\tilde{a}}(a) := \int_{b-\infty}^{\infty} b f_{\tilde{b}\,|\,\tilde{a}}(b\,|\,a) db$$

Joint pmf

Mean of \tilde{b} if \tilde{a} is known?

Mean of \tilde{b} if $\tilde{a}=1$

$$\begin{split} \mu_{\tilde{b} \,|\, \tilde{a}}(1) &= \sum_{b \in \mathcal{B}} b p_{\tilde{b} \,|\, \tilde{a}}(b \,|\, 1) \\ &= 1 \cdot \frac{1}{7} + 2 \cdot \frac{4}{7} + 3 \cdot \frac{2}{7} = \frac{15}{7} \end{split}$$

Conditional mean function

$$\mu_{\tilde{b}\,|\,\tilde{a}}(1) = \sum_{b \in B} b \, \rho_{\tilde{b}\,|\,\tilde{a}}(b\,|\,1) = \frac{15}{7}$$

$$\mu_{\tilde{b}\,|\,\tilde{a}}(2) = \sum_{b \in B} b \, \rho_{\tilde{b}\,|\,\tilde{a}}(b\,|\,2) = \frac{16}{7}$$

$$\mu_{\tilde{b}\,|\,\tilde{a}}(3) = \sum_{b \in B} b \, \rho_{\tilde{b}\,|\,\tilde{a}}(b\,|\,a) = 2$$

Triangle lake

Mean of \tilde{b} if $\tilde{a} = a$?

$$f_{\tilde{b}\,|\,\tilde{a}}(b\,|\,a) = \frac{1}{1-a} \qquad b \in [0,1-a]$$

Triangle lake: Conditional mean function

$$\mu_{\tilde{b}\,|\,\tilde{a}}(a) = \int_{b=-\infty}^{\infty} b f_{\tilde{b}\,|\,\tilde{a}}(b\,|\,a) \,\mathrm{d}b$$
$$= \frac{1-a}{2}$$

Sample conditional mean

Dataset \mathcal{D} : (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) , where $x_i \in A$

Data interpreted as samples from random variables \tilde{a} (range A) and \tilde{b}

Estimate of $\mu_{\tilde{b}\,|\,\tilde{a}}$?

For any $a \in A$,

$$Y_a := \{ y \mid (a, y) \in \mathcal{D} \}$$

$$\widehat{m}_{\widetilde{b}\mid\widetilde{a}}(a):=\frac{1}{n_a}\sum_{v\in Y_a}y$$

 n_a = number of elements of Y_a

Movie ratings

Independence Day

macpendence buy							
	1	2	3	4	5		
1	2	3	5	1	0		
2	3	12	18	11	5		
3	5	14	37	41	17		
4	6	15	20	47	19		
5	0	0	4	12	17		
	3	2 3 3 5 4 6	1 2 1 2 3 2 3 12 3 5 14 4 6 15	1 2 3 1 2 3 5 2 3 12 18 3 5 14 37 4 6 15 20	1 2 3 4 1 2 3 5 1 2 3 12 18 11 3 5 14 37 41 4 6 15 20 47		

Mission Impossible

Sample conditional mean function

Temperature in Corvallis and Versailles

Sample conditional mean function

Iterated expectation

For any random variables \tilde{a} and \tilde{b} belonging to the same probability space

$$\mathrm{E}\left[\mu_{\tilde{b}\,|\,\tilde{a}}(\tilde{a})\right]=\mathrm{E}[\tilde{b}]$$

For any function $h: \mathbb{R}^2 \to \mathbb{R}$

$$\mathrm{E}[\mu_{h(\tilde{a},\tilde{b})\,|\,\tilde{a}}(\tilde{a})] = \mathrm{E}\left[h(\tilde{a},\tilde{b})\right]$$

Regression

Independence Day

Mission Impossible

Given rating for Mission Impossible, rating for Independence Day?

Regression

Given temperature in Corvallis, temperature in Versailles?

Regression

Goal: Find function h, such that h(a) approximates \tilde{b} when $\tilde{a}=a$

How do we evaluate the estimator?

Mean squared error (MSE)

$$\mathrm{E}\left[(\tilde{b}-h(\tilde{a}))^{2}\right] = \int_{a=-\infty}^{\infty} \int_{b=-\infty}^{\infty} (b-h(a))^{2} f_{\tilde{a},\tilde{b}}(a,b) \,\mathrm{d}b \,\mathrm{d}a$$

Minimum MSE constant estimate

Best constant estimate of \tilde{a} ?

$$\arg\min_{c\in\mathbb{R}}\mathrm{E}\left[(c-\tilde{a})^2\right]=\mathrm{E}[\tilde{a}]$$

The mean $\mathbb{E}[\tilde{a}]$ is the minimum MSE constant estimate

Regression: Given $\tilde{a} = a$ how should we estimate \tilde{b} ?

Conditional mean function of \tilde{b} given $\tilde{a} = a$

MMSE estimator

The conditional mean is the minimum MSE estimator

$$\mu_{\tilde{b} \,|\, \tilde{a}}(\tilde{a}) = \arg\min_{h(\tilde{a})} \mathrm{E}\left[(\tilde{b} - h(\tilde{a}))^2\right]$$

Movie ratings

Temperature in Corvallis and Versailles

Goal: Estimate causal effect of a treatment from data

All caps titles

Goal: Determine whether all caps titles cause YouTube videos to get more views

Treatment \tilde{t} : if title is all caps $\tilde{t}=1$, if not $\tilde{t}=0$

Data: Number of views \tilde{y}

Potential outcomes

 \widetilde{po}_0 : Views if all titles are proper case

 $\widetilde{\mathsf{po}}_1$: Views if all titles are all caps

Observed data:

$$ilde{y} := egin{cases} \widetilde{\mathsf{po}}_0 & \mathsf{if} & ilde{t} = 0 \ \\ \widetilde{\mathsf{po}}_1 & \mathsf{if} & ilde{t} = 1 \end{cases}$$

Average treatment effect

$$\mathsf{ATE} := \mathrm{E}\left[\widetilde{\mathsf{po}}_{1}\right] - \mathrm{E}\left[\widetilde{\mathsf{po}}_{0}\right]$$

Challenge: We do not observe \widetilde{po}_0 and \widetilde{po}_1 directly

Observed data

Treatment	Observed outcome	Outcome if proper case	Outcome if all caps
$ ilde{t}$	$ ilde{y}$	\widetilde{po}_0	\widetilde{po}_1
×	102	102	?
×	45	45	?
✓	330	?	330
✓	121	?	121
✓	23	?	23

? are counterfactuals

Is $\mu_{\tilde{y}\,|\,\tilde{t}}(1) - \mu_{\tilde{y}\,|\,\tilde{t}}(0)$ a reasonable estimate for the ATE?

Estimating the ATE

$$\begin{split} \mu_{\widetilde{y}\,|\,\widetilde{t}}(1) &= \mu_{\widetilde{\mathsf{po}}_1\,|\,\widetilde{t}}(1) \\ &= \int_x x f_{\widetilde{\mathsf{po}}_1\,|\,\widetilde{t}}(x\,|\,1)\,\mathrm{d}x \\ &= \int_x x f_{\widetilde{\mathsf{po}}_1}(x)\,\mathrm{d}x \qquad \text{if } \widetilde{\mathsf{po}}_1 \text{ and } t \text{ are independent} \\ &= \mathrm{E}\left[\widetilde{\mathsf{po}}_1\right] \\ \\ \mu_{\widetilde{y}\,|\,\widetilde{t}}(0) &= \mathrm{E}\left[\widetilde{\mathsf{po}}_0\right] \\ \\ \mathsf{ATE} &= \mu_{\widetilde{y}\,|\,\widetilde{t}}(1) - \mu_{\widetilde{y}\,|\,\widetilde{t}}(0) \end{split}$$

YouTube videos

All caps: 19

No all caps: 26

$$\begin{aligned} \mathsf{ATE} &= \mu_{\tilde{\mathbf{y}} \,|\, \tilde{\mathbf{t}}}(1) - \mu_{\tilde{\mathbf{y}} \,|\, \tilde{\mathbf{t}}}(0) \\ &= 133 - 132 \approx 0 \end{aligned}$$

YouTube videos

