Arithmetique

Par Lorenzo

23 November 2024

Contents

Arrivé apres le premier CM (cours à venir)

1 Structures algébriques

1.1 Lois de compositions internes

Définition 1.1. Soit E un ensemble. On appelle **loi de composition interne** (l.c.i) sur E une opération binaire.

On parle d'application $E \times E \rightarrow E$

Définition 1.2. Soit * une l.c.i sur E. On dit *

- associative $si \forall x, y, z \in E, \ x * (y * z) = (x * y) * z$
- commutative $si \ \forall x, y \in E, \ x * y = x * y$
- a un élement neutre $e \in E$ vérifiant $\forall x \in E, x * e = e * x = x$

1.2 Groupes

Définition 1.3. Soit G un ensemble et * une l.c.i sur G. On dit que (G, *) est un **groupe** lorsque les axiomes suivants sont vérifiés.

- * est associative
- * admet un élement neutre $e \in G$
- $\forall x \in G, \exists x' \in G$ tel que x * x' = x' * x = e (on dit que x' est l'élement inverse ou symétrique de x pour *)

Remarques 1.1. Si de plus * est commutative, alors le groupe est dit abélien (ou commutatif).

Example 1.1. Si X est un ensemble, notons Bij(X), l'ensemble des application de X dans X admettant une application réciproque

$$\forall f: X \to X, \exists g: X \to X, g \circ f = f \circ g = Id_X: \begin{cases} X & \longrightarrow X \\ x & \longmapsto x \end{cases}$$

Ainsi $(Bij(X), \circ)$ est un groupe.

Proposition 1.1.

Si(G, *) est un groupe alors

- (a) L'élement neutre de G est unique
- (b) Chaque $x \in G$ admet un unique élement inverse
- (c) $Si\ x, y, z \in G$ tel que x * y = z * y alors x * y (indépendament de l'ordre)

Démonstration 1.1.

(a): Soient e, e' des élements neutres de G par *, e * e' = e' * e = e = e'

(b): Soient x', x" des élements inverse de $x \in G$, x' = x' * e = x' * (x * x'') = (x' * x) * x'' = e * x'' = x''

(c): Posons $x^{-1} * (x * y) = x^{-1} * (x * z) \implies (x^{-1} * x) * y = (x^{-1} * x) * z \implies e * y = e * z \implies y = z$

Remarques 1.2. Lorsqu'il n'y a pas d'ambiguïtés, l'inverse d'un élement x sera noté x^{-1} . Notons que $(x^{-1})^{-1} = x$

Définition 1.4. Soit (G, *) un groupe. Soit $H \subset G$, on dit que H est un **sous-groupe** de G lorsque les condtions suivantes sont vérifiées.

- 1) $\forall x, y \in H, \ x * y \in H.$ On dit que H est stable par *
- 2) Muni de *, H est un groupe

Proposition 1.2.

Soit (G, *) un groupe et $H \subset G$. Les conditions suivantes sont équivalentes.

(a): H est un sous groupe de G

(b): $H \neq \emptyset$, H est stable par * et par passage au symétrique $(\forall x \in H, x^{-1} \in H)$

(b): $H \neq \emptyset$ et $\forall x, y \in H$, $x * y^{-1} \in H$

Démonstration 1.2.

- $D\'{e}montrons \ que \ (a) \implies (b).$
- \diamond H est un sous groupe donc doit admettre un élement neutre (e_H) donc $H \neq \emptyset$. Montrons que $e_H = e_G$, on a $e_H * e_H = e_G + e_H = e_G$.
- \diamond La stabilité par * fait partie de la définition de sous groupe.
- \diamond Soit $x \in H$, soit s' son symétrique dans H. x' est aussi un symétrique dans G. Dans G par unicité du symétrique $x^{-1} = x' \in H$.
- $\bullet \ \textit{D\'{e}montrons que} \ (b) \implies (c).$
- \diamond Soient $x, y \in H$. Alors $y^{-1} \in H$ et encore par $x * x^{-1} \in H$.

- $D\acute{e}montrons \ que \ (c) \implies (a)$.
- \diamond l'associativité est montré par $\forall x, y, z \in H, x, y, z \in G, x * (y * z) = (x * y) * z$
- \diamond l'élement neutre par $\exists x \in H, e = x * x^{-1} \in G$, ainsi $\forall x \in H, x \in G$
- \diamond l'élement inverse par $x \in H$, prenons y = e, ainsi $x^{-1} * e = x^{-1}$, ici x^{-1} est le symétrique de x dans H.

П

 \diamond la stabilité par * dans H par $x, y \in H$, posons $z = y^{-1}$, ainsi $x * y = x * z^{-1} \in H$.

Finalement par implication circulaire nous avons démontré que $(a) \iff (b) \iff (c)$

Définition 1.5. Soient (G, *) et (H, \square) deux groupes.

On appelle morphisme de groupes toute application $f: G \to H$ vérifiant $\forall x, y \in G, f(x * y) = f(x) \Box f(y)$

Proposition 1.3.

Si $f: G \to H$ est un morphisme de groupe, alors $f(e_G) = e_H$

Démonstration 1.3.

$$f(e_G) = f(e_G * e_G) = f(e_G) \square f(e_G)$$

$$f(e_G) = f(e_G) \square e_H$$

$$f(e_G) \square f(e_G) = f(e_G) \square e_H \implies f(e_G) = e_H$$

Proposition 1.4.

Si $f: G \to H$ est un morphisme de groupe, alors $\forall x \in G, f(x^{-1}) = f(x)^{-1}$

Démonstration 1.4.

$$f(x^{-1}) = f(x^{-1}) \Box f(x) \Box f(x)^{-1} = f(x^{-1} * x) \Box f(x)^{-1} = f(x)^{-1}$$

2 Anneaux et Corps

Définition 2.1. Un anneau est $(A, +, \times)$ où A est un ensemble, + et x sont deux l.c.i sur A vérifiant les axiomes suivants

- (A, +) est un groupe abélien (on note 0_A sont élément neutre)
- \bullet × est associative
- \bullet × est distributive sur +

Remarques 2.1. On dit que $(A, +, \times)$ est un anneau commutatif si, de plus \times est commutative.

Un élément $x \in A$ est dit inversible dans A lorsqu'il adment un symétrique pour \times .

Proposition 2.1.

Soit
$$(A, +, x)$$
 un anneau alors
 $\forall x \in A, 0_A \times x = 0_A$

Démonstration 2.1.

$$0_A \times x = (0_A + 0_A) \times x$$

= $0_A \times x + 0_A \times x \implies 0_A = 0_A \times x \ (par \ soustraction \ de \ 0_A \times x)$

Proposition 2.2.

Soient $x, y, z \in A$, Si $x \times z = y \times z$ et z est inversible alors x = y

Démonstration 2.2.

$$x \times z = y \times z \implies (x \times z) \times z^{-1} = (y \times z) \times z^{-1}$$
$$\implies x \times (z \times z^{-1}) = y \times (z \times z^{-1})$$
$$\implies x \times 1_A = y \times 1_A$$
$$\implies x = y$$

Définition 2.2. Un corps est la donnée d'un triplet $(k, +, \times)$ où k est un ensemble, + et \times sont deux l.c.i sur k vérifiant les axiomes suivants:

- $(k, +, \times)$ est un anneau commutatif
- (\mathbb{k}^*, \times) est un groupe abélien (de neutre noté $1_{\mathbb{K}}$).

Remarques 2.2. De manière équivalente, un corps est un anneau commutatif avec un élément neutre pour \times où tout élément non-nul est inversible.

3 Arithmétique des entiers

3.1 Rappels sur \mathbb{N} et \mathbb{Z}

À vérifier, certains théorèmes manque de consistance

Théorème 3.1. (propriétés $de + et \times sur \mathbb{N}$)

- (a) + et \times sont associative et commutative sur \mathbb{N}
- (b) 0 est élement neutre pour + tandis que 1 est neutre pour \times
- (c) Il y a une distributivité $de \times sur +$

(d)
$$\forall x, y, m \in \mathbb{N}, x + m = y + m \implies x = y$$

Théorème 3.2. (propriétés $de \leq sur \mathbb{N}$)

- 1) (relation d'ordre total) $\forall m, n, p \in \mathbb{N}$
- (a) $n \leq n$
- (b) $m \le n \land n \le m \iff m = n$
- (c) $m \le n \land n \le p \implies m \le p$
- (d) $m \le n \lor n \le m$
- 2) Les opérations + et \times sont compatibles avec la relation d'ordre $\forall n, m, p \in \mathbb{N}, n \leq m \implies (n + p \leq m + p) \land (n \times p \leq m \times p)$
- 3) $\forall n \in \mathbb{N}, \ 0 \le n$
- 4) $\forall n, m \in \mathbb{N}, \forall p \in \mathbb{N}^*, n \leq m \implies n \times p \leq m \times p$

Théorème 3.3.

- 1. Toute partie finie de N admet un plus grand élément.
- 2. Toute partie non vide de N admet un plus petit élément.
- 3. Toute partie non vide et majorée de N admet un plus grand élément.
- 4. N n'admet pas de plus grand élément.

Théorème 3.4. $(propriétés\ de + et \times sur\ \mathbb{Z})$

- (a) + et \times sont associative et commutative sur \mathbb{Z}
- (b) 0 est élement neutre pour + tandis que 1 est neutre pour \times
- (c) Il y a une distributivité de × sur +
- (d) Tout $m \in \mathbb{Z}$ admet un symétrique (élément inverse), $-m \in \mathbb{Z}$ pour +

Théorème 3.5. (propriétés de $\leq sur \mathbb{Z}$)

- 1) \leq est une relation d'ordre totale sur \mathbb{Z} .
- 2) Soient $n, m, p \in \mathbb{Z}$
- (a) $n \le m \iff n+p \le m+p$
- (b) $\forall p \in \mathbb{Z}_+^*, n \leq m \iff np \leq mp$
- (c) $\forall p \in \mathbb{Z}_{-}^{*}, n \leq m \iff mp \leq np$
- (d) $\forall p \in \mathbb{Z}^*, m = n \iff mp = np$

3.2 Arithmétique élémentaire dans $\mathbb Z$

Définition 3.1. Soient x et y dans \mathbb{Z} . On dit que x divise y s'il existe $k \in \mathbb{Z}$ tel que y = kx. La notation associée est $x \mid y$. x est un diviseur de y ou y est un multiple de x

Remarques 3.1. tout entier relatif divise 0.

0 divise uniquement 0.

si x est un diviseur de y alors (-x) est un diviseur de y

1 et -1 sont les diviseurs de tout entier relatifs.

les diviseurs de 1 et -1 sont 1 et -1

$$\forall x, y \in \mathbb{N}^* \implies (x \mid y \implies x \le y)$$

Définition 3.2. On dit que $p \in \mathbb{N}$, $p \geq 2$ est un nombre premier si les seuls diviseurs positifs de p sont 1 et p.

Remarques 3.2. Une autre définition est tout nombre qui a exactement 2 diviseurs.

Remarques 3.3. Pour vérifier qu'un nombre est premier, on peut regarde pour chaque $\forall k \in \mathbb{N}, k \leq \sqrt{p}$ si k divise p.

Définition 3.3. Soit $n \in \mathbb{Z}^*$, on appelle décomposition en facteurs premiers de n une écriture de la forme

$$n = cmultip_i = c(p_1 \times ... \times p_k)$$

 $où c \in +-1, k \in \mathbb{N}, p_1, ..., p_k \text{ sont premiers}$

Proposition 3.1.

Tout $n \in \mathbb{Z}^*$ admet une décomposition en facteurs premier.

Démonstration 3.1.

Il suffit de le démontrer pour $n \in \mathbb{N}^*$ et c=1 et pour les négatifs on se ramène à \mathbb{N}^* en posant c=-1

Démonstration par récurrence forte.

Initialisation: n = 1, on pose c = 1, k = 0, c'est un produit vide.

Initialisation: Soit $n \in \mathbb{N}^*, \forall d \leq n$, on ait une telle décomposition. Si n+1 est premier, on pose k=1 $P_1=n+1$. Si n+1 n'est pas premier il admet un diviseur $d \in [2,n]$. Par hypothèse de récurrence $d=c \times p_1 \times ... \times p_k$. De même $d'=\frac{n+1}{d} \in [2;n]$ $d'=p'_1 \times ... \times p'_k$.

Donc $n+1=d\times d'=p_1\times\ldots\times p_k\times p_1'\times\ldots\times p_k'$

Corollaire: Tout entier $n \geq 2$ admet au moins un diviseur premier

Proposition 3.2.

L'ensemble des nombre premiers est infini.

Démonstration 3.2.

Supposons (par l'absurde) qu'il y ait un nombre fini de nombres premiers $p_1, ..., p_m$ On pose $N = p_1 \times ... \times p_m + 1$

Alors N admet un diviseur premier $p_i(i \in [i; m])$ i.e. $N = p_i N' \implies N = multip_j + 1 \implies p_i N' - p_i multi_{i \neg j} p_j = 1 \implies p_i (N' - multi_{j \neg i} p_j) = 1$

Théorème 3.6. Soient $a \in \mathbb{Z}, b \in \mathbb{N}*$.

Alors il existe un unique couple $(q,r) \in \mathbb{Z} \times \mathbb{N}, a = bq + r \text{ avec } b > r \geq 0$

Démonstration 3.3.

Existence: Pour $a \in \mathbb{N}$, raisonnement par récurrence.

Initialisation: a = 0: On pose q = 0 et $r = 0 \implies 0 = b \times 0 + 0$

Hérédité: Si a = bq + r avec $(b > r \ge 0)$

Alors a+1 = bq+(r+1), C'est une division euclidienne lorsque $r+1 < b \implies r < l-1$ Lorsque r = b-1

$$a+1=bq+((b-1)+1)=bq+b=b(q+1)+0$$
, C'est une division euclidienne.
 $Si\ a<0\ alors\ (-a)>0\ Donc\ \exists (q,r)\in\mathbb{Z}\times\mathbb{N}, -a=bq+r\implies a=b\times(-q)+(-r)$
 $avec\ (b>r\geq 0)$
 $Si\ r=0,\ c'est\ une\ division\ euclidienne.$
 $Sinon\ -b<-r<0\implies 0<-r+b
 $Donc\ a=b\times(-q)+(-r+b)-b=b\times(-q-1)+(-r+b)$ C'est un division\ euclidienne.
 $Unicit\'e:\ Si\ a=bq+r\ et\ a=bq'+r'\ avec\ b>r,r'\geq 0$
 $Par\ soustraction:\ 0=b(q-q')+r-r'\implies r'-r=b(q-q')$
 $b-1\geq r'-r\geq -b-1\ Donc\ r'-r=0\implies r=r'$
 $Ainsi\ bq+r=bq'+r'\implies bq=bq'\implies q=q'$$

Définition 3.4. le **pgcd** de deux nombres $a, b \in \mathbb{Z}^*$ est le plus grand diviseur commun à a et b. Il est noté PGCD(a, b) (ou encore $a \wedge b$)

On dit que a et b sont premiers entre eux si PGCD(a, b) = 1.

Le **ppcm** de deux nombres $a, b \in \mathbb{Z}^*$ est le plus petit multiple strictement positif commun à a et b. Il est noté PPCM(a, b) (ou encore $a \lor b$)

Proposition 3.3.

$$\forall a, b \in \mathbb{Z}^*, PGCD(a, b) \times PPCM(a, b) = |ab|$$

Démonstration 3.4.

Si on remplace a et b par leurs valeurs absolues: ||a||b|| = |ab|Les multiples et les diviseurs de |a| et de a sont les mêmes. Donc PGCD(a,b) = PGCD(|a|,|b|) et PPCM(a,b) = PPCM(|a|,|b|)Ainsi il suffit de montrer le résultat pour $a,b \in \mathbb{N}^*$ On pose d = PGCD(a,b) $\exists a',b' \in \mathbb{N}^*, a = da'$ et b = db' $\frac{ab}{d} = \frac{da'b}{d} = a'b \frac{ab}{d} = \frac{adb'}{d} = ab'$

Méthode 3.1.

L'algorithme d'Euclide:

Le PGCD peut se calculer avec l'algorithme d'Euclide:

- **1.** (Eventuellement) remplacer a et b par |a| et |b|
- 2. De manière récursive:
- **2.1** Calculer la division euclidienne de a par b: a = bq + r
- **2.2** Si $r \neq 0$: recommencer en remplcaçant (a, b) par (b, r) Sinon sortir de la récursion
- 3. Le pgcd est le dernier reste non-nul calculé.

Proposition 3.4.

Si d est un diviseur commun à a et b alors $d \mid PGCD(a, b)$

Corollaire:

Le PGCD est aussi le plus grand diviseur commun au sens de la divisibilité.

Proposition 3.5.

Soient
$$a, b \in \mathbb{Z}^*$$
. Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = PGCD(a, b)$

Lemme 3.1. Les sous-groupes de \mathbb{Z} sont les $n\mathbb{Z} := \{nk \mid k \in \mathbb{Z}\}$ avec $n \in \mathbb{Z}$

Démonstration 3.5.

- 1) $\{nk \mid k \in \mathbb{Z}\}\ sous\ groupe\ de\ (\mathbb{Z},+)\ (cf\ TD1)$
- 2) Soit H un sous groupe de $(\mathbb{Z}, +)$ alors $0 \in H$ si $H = \{0\}$ alors $H = 0\mathbb{Z}$

Définition 3.5. On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes de congruences. $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$ est un ensemble fini à n élements.

Proposition 3.6.

Soient a, a', b, b' dans \mathbb{Z} tels que $a \equiv a'[n]$ et $b \equiv b'[n]$ Alors $a + b \equiv a' + b'[n]$

Démonstration 3.6.

$$(a-a') = kn$$
 et $(b-b') = k'n$
 $(a+b) - (a'+b') = a - a' + b - b' = kn + k'n = (k+k')n$
Donc $a+b \equiv a' + b'[n]$

Définition 3.6. Soient $a,b\in\mathbb{Z}$. On pose dans $\mathbb{Z}/n\mathbb{Z}: \overline{a}+\overline{b}=\overline{a+b}$ et $\overline{a}\times\overline{b}=\overline{a\times b}$

Proposition 3.7.

 $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif. $\overline{0}$ est l'élement neutre pour l'addition et $\overline{1}$ est l'élement neutre pour la multiplication.

Démonstration 3.7.

On peut faire des tables d'addition et de multiplication dans $\mathbb{Z}/n\mathbb{Z}$

Example 3.1.

Lemme 3.2. Soient a et b dans \mathbb{Z} tels que $a \equiv b[n]$. Pour tout $p \in \mathbb{N}^*$, $a^p \equiv b^p[n]$

Démonstration 3.8.

Dans
$$\mathbb{Z}/n\mathbb{Z}$$
 on veut montrer que $\overline{a^p} = \overline{b^p}$ Or $\overline{a^p} = \overline{a} \times ... \times \overline{a} = \overline{a} \times ... \times \overline{a} =$

Remarques 3.4. En revanche on n'a pas $p \equiv q[n] \implies a^p \equiv a^q[n]$

Théorème 3.7. $\{\mathbb{Z}/n\mathbb{Z}, +, \times\}$ est un corps si et seulement si n est premier.

Démonstration 3.9.

Dire que \overline{a} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ c'est dire qu'il existe \overline{u} tel que $\overline{au} = \overline{1} \iff \exists u \in \mathbb{Z}, \exists k \in \mathbb{Z}, au = 1 + kn \iff \exists u \in \mathbb{Z}, \exists k' \in \mathbb{Z}, au + k'n = 1$ Cette équation a des solutions si n et m sont premier entre eux (bezout)

П

Théorème 3.8. Soient $n_1, n_2, ..., n_k \in \mathbb{N}^*$, tels que $\forall i, n_i \geq 2$, avec les n_i deux à deux premiers entre eux. Alors pour tous $a_1, ..., a_k \in \mathbb{Z}$, il existe $x \in \mathbb{Z}$, unique modulo $n := \Pi n_i$, tel que

$$\forall i \in [|1, k|], x \equiv a_i mod n_i$$

Plus formellement, on a une application bijective,

$$\{\mathbb{Z}/n\mathbb{Z} \to (\mathbb{Z}/n_1\mathbb{Z}) \times ... \times (\mathbb{Z}/n_k\mathbb{Z}) \{xmodn \mapsto (xmodn_1, ..., xmodn_k)\}$$

Démonstration 3.10.

Montrons deja que

 $PGCD(\prod_{i=1}^{k-1} n_i, n_k) = 1$

Soit p un facteur premier de $\Pi_{i=1}^{k-1}n_i$ Alors p divise l'un des n_i .

Comme n_i et n_k sont premier entre eux p ne divise pas nk.

Donc $\prod_{i=1}^{k-1} n_i$ et n_k n'ont pas de facteur premier en commun : leurs PGCD est 1.

De même pour $i \in [|1;k|]$ $PGCD(\Pi_{i\neq j}n_j, n_i) = 1$.

Ainsi on pose une relation de Bezout

$$(\Pi_{i\neq j}n_j)u_i + n_iv_i = 1$$

Soit $x_i := (\prod_{j \neq i} n_j) u_i$

Alors $x_i \equiv \{0 mod n_i sij \neq i \{1 mod n_i\}\}$

On pose $x = \sum_{i=1}^{k} a_i x_i$ alors $x \equiv a_i mod n_i$

Si y = x + qn alors $y = x + q\prod_{j=1}^{k} n_j = x + q(\prod_{j=1}^{k} n_j)n_i \equiv x \mod n_i \equiv x_i \mod n_i$

En particulier l'application ϕ est bien définie

D'après la première partie, ϕ est surjective.

Il nous reste à démontrer l'injectivité qui est equivalente à l'unicité modulo n.

Regardons les cardinaux $Card(\mathbb{Z}/n\mathbb{Z}) = n$

 $Card(\mathbb{Z}/n_1\mathbb{Z}\times...\times\mathbb{Z}/n_k\mathbb{Z})=n_1\times...\times n_k=n$

 $Ainsi \phi \ est \ injective$

Remarques 3.5. ϕ est un "isomorphisme" d'anneau

Pour k = z

$$\{x \equiv a_1 mod n_1 \} \{x = a_1 + k_1 n_1 \} \{x \equiv a_2 mod n_2 \iff \{x = a_2 + k_2 n_2 \} \} \{x \equiv a_1 mod n_1 \} \{x \equiv a_1 mod n_2 \} \{x \equiv a_2 mod n_2 \} \{x \equiv$$

Alors $a_1 + k_1 n_1 = a_2 + k_2 n_2 \iff k_1 n_1 - k_2 n_2 = a_2 - a_1$

c'est une équation diophotienne qu'on sait résoudre

Ensuite, il suffit de poser $x = a_1 + k_1 n_1$

4 Polynômes et Fractions rationnelles

Définition 4.1. Un polynôme à coefficient dans \mathbb{k} : une suite $A = (a_n)_{n \in \mathbb{N}}$ telle que $\exists N \in \mathbb{N}, \forall n > N, a_n = 0.$

On écrira souvent $A = a_0 + a_1 X + a_2 X^2 + ... + a_N X^N = \sum_{i=0}^N a_i X^i = \sum_{i \in \mathbb{N}} a_i X^i = \sum_{i \in$

polynôme nul: tous les coefficients sont nuls.

polynôme constant: $\forall i > 0, a_i = 0 \ (A = cX^0 = c \ où \ c \in \mathbb{k})$

monôme : polynôme de la forme

Symbole de Kronecker $\delta_{i,j} = 1$ si i = j sinon 0

Propriétés 4.1.

Démonstration 4.1.

Soient
$$A = \sum (a_i X^i)$$
 et $B = \sum (b_i X^i)$
 $C = A + B$ avec $c_i = a_i + b_i$
Si $i > max(degA, degB)$ alors