



## SCHOOL OF MECHANICAL ENGINEERING

Slot: B2/TB2/V4

Continuous Assessment Test-II - Fall Semester 2019-2020

Programme Name & Branch: B Tech-Mechanical Engineering

Course Name & Code: MEE 1002 Engineering Mechanics

Class Number: VL2019201002228/ VL2019201001155

Maximum Marks: 50 **Exam Duration: 90 Minutes** 

## General instruction(s):

No printed/photocopied materials are permitted.

|        | Section – A (2x10 = 20 Marks)                                                                                                                                                                                                           | THE RESERVE               |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| CI No  | Question                                                                                                                                                                                                                                | Course<br>Outcome<br>(CO) |
| Sl.No. | than 90° determine the smallest                                                                                                                                                                                                         | CO 3                      |
| 1.     | Considering only values of $\theta$ less than 90°, determine the smallest value of $\theta$ required to start the block moving to the right (see Fig. 1) when (a) $W = 300$ N, (b) $W = 450$ N. Take $\mu_s = 0.25$ and $\mu_k = 0.2$ . |                           |
|        | 135 N                                                                                                                                                                                                                                   |                           |
|        | Figure 1                                                                                                                                                                                                                                | . CO 4                    |
| 2.     | Find the centroid of the area shown in Fig. 2 (C is the centre of the semicircle of radius 50 cm).                                                                                                                                      |                           |
|        | 50 cm                                                                                                                                                                                                                                   |                           |
|        | 20 cm (                                                                                                                                                                                                                                 |                           |
|        | Figure 2                                                                                                                                                                                                                                | AIO1N<br>VIT QUESTIO      |

