

Fifty⁺ Nifty Variations of Two-Transistor Circuits

Circuit No. 1

This is the ubiquitous digital **inverter**. The input voltage $V_{\rm in}$ switches one of both transistors on while the other is off.

Circuit No. 2

The same structure can be used as a **voltage amplifier** ($V_{\rm out}$, with high-Z loading) or low-voltage complementary **transconductance stage** ($I_{\rm out}$, with low-Z loading) when both MOS-FET are held in saturation.

Circuit No. 3

The (dynamic threshold) **DT-MOS inverter** achieves an improved current drive at low leakage current. It needs to be operated at low supply voltages to avoid a forward bias of the well diodes.

Circuit No. 4

An ESD-safe **tie-zero** for unused CMOS logic inputs (no MOS-FET gate should be tied directly to a supply rail). The tie-one can be constructed accordingly.

Circuit No. 5

Using a current source $I_{\rm bias}$ with finite output impedance to bias this structure, this circuit implements an **XNOR** logic function ($V_{\rm out} = \overline{V_{\rm a} \oplus V_{\rm b}}$). The logic inputs $V_{\rm a}$ and $V_{\rm b}$ must be driven by low-ohmic logic levels between $V_{\rm DD}$ and $V_{\rm SS}$.

Circuit No. 6

This series connection of two MOS-FETs realizes a logical **NAND** function $(V_{\rm out} = \overline{V_{\rm a} \wedge V_{\rm b}})$ when driven by logic inputs.

Circuit No. 7

This circuit complements the logic gates and realizes a NOR function $(V_{\rm out} = \overline{V_{\rm a} \vee V_{\rm b}})$.

Circuit No. 8

This circuit is the basic **current mirror**, simultaneously copying and sizing of $I_{\text{out}} = (W/L)_2/(W/L)_1 \cdot I_{\text{in}}$ according to the dimensions of M_1 and M_2 .

Circuit No. 9

The ubiquitous **differential pair** (or long-tailed pair), like the current mirror, is a fundamental building block in integrated circuits.

Circuit No. 10

The **pseudo-differential pair** spares the tail current source's headroom in exchange for reduced common-mode rejection, but with the benefit of class-AB operation.

Circuit No. 11

This is the **source follower** (or common-drain stage), utilizing M_2 as a current source to bias M_1 .

Circuit No. 12

The **common-source** amplifier stage with active load.

Circuit No. 13

The **cascoded common-source** stage boosts the output impedance of M_1 considerably to $r_{\rm out} \approx g_{m2}/(g_{ds1} \cdot g_{ds2})$.

Circuit No. 14

This is the **cascoded common-gate** stage. Note that $I_{\rm out} \approx I_{\rm in}$, but the impedance level changes drastically, creating gain or a high output impedance at the output node.

Circuit No. 15

The **common-gate stage**, employing M_2 as a current source to bias transistor M_1 . The input can be either a voltage- or a current-signal.

Circuit No. 16

The transmission gate switches either voltage (V_1 and V_2) or current (I_1 and I_2) (and it works rail to rail, too).

Circuit No. 17

The 2-to-1 **multiplexer**, connecting either V_1 or V_2 to $V_{\rm com}$. Depending on $V_{\rm sel1}$ and $V_{\rm sel2}$, the MOS-FETs are alternately switched on or off.

Circuit No. 18

This circuit is an improved **bulk-driven current mirror** that allows low voltage operation, requiring a voltage headroom substantially less than $V_{\rm GS1}$.

Circuit No. 19

The common-source amplifier with diode load is sometimes called a wide-band amplifier due to its potentially high-speed operation. Here, the gain is set precisely to $A_v = V_{\rm out}/V_{\rm in} = -\sqrt{(W/L)_1/(W/L)_2}$, only depending on transistor sizing (if we neglect the body effect and finite output conductance).

Circuit No. 20

This wide-band amplifier has the advantage of a removed body effect in M_2 and a ground-referred output node.

Circuit No. 21

This ultra-low-power diode (ULPD) shows a reduced leakage in the reverse direction when $V_{\rm n} > V_{\rm p}$.

Circuit No. 22

This class-B **push-pull follower** can be considered an enhanced version of the simple source follower. However, lacking a class-A bias component, this structure is subject to cross-over distortion.

Circuit No. 23

This circuit is a MOS-FET-R degenerated common-source stage. By sizing M_2 appropriately, the degeneration can be adapted. This arrangement using two transistors can also increase the length of a (compound) device, for example, in current mirrors, as otherwise, MOS-FETs with different L will not match well.

Circuit No. 24

This is a variation of the implementation shown earlier, where the **degeneration** of M_1 can be **adapted** by tuning V_{bias} .

Circuit No. 25

This **common-gate-common-source** topology offers an impedance-matched single-ended input and a differential output while simultaneously canceling noise and distortion.

Circuit No. 26

This **low-noise amplifier** was discovered by doing an exhaustive search for potential two-transistor wide-band amplifiers. For practical implementation, M_1 requires an ac-coupling (and proper biasing) in its gate connection to keep M_2 in saturation.

Circuit No. 27

This (simple) bias voltage generator uses the current source M_1 to bias M_2 so that $V_{\rm bias} = V_{\rm GS2}$. Note that the generated voltage is susceptible to changes in process, supply voltage, and temperature (PVT).