Natural Language Processing Language Models

Sudeshna Sarkar 24 July 2019

Language Understanding

How likely is a sentence?

- P (the cat is eating a sandwich on a couch)
- P (about fifteen minutes from)
 P (about fifteen minuets from)
- P (I saw a bus) >> P (eyes awe a boss)

Language Model Definition

• How likely is a sentence $(w_1, w_2, ..., w_n)$?

 A statistical language model is a probability distribution over sequences of words.

$$P(w_1, w_2, ..., w_n) = P(w_n | w_{n-1}, w_{n-2}, ..., w_1)$$

Application

Application	Signal Y
automatic speech recognition	acoustic signal
machine translation	sequence of words in a foreign language
spelling correction	sequence of characters produced by a possibly imperfect typist

source-channel model

Goal: to determine W from Y

Probabilistic Language Models

- The goal: assign a probability to a sentence
 - Machine Translation:
 - » P(high winds tonite) > P(large winds tonite)
 - Spelling Correction
 - » The office is about fifteen **minuets** from my house
 - P(about fifteen minutes from) > P(about fifteen minuets from)
 - -Speech Recognition
 - » P(I saw a van) >> P(eyes awe of an)
 - —+ Summarization, question-answering, etc.

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, X and Y :

- Y is the plaintext, the true message, the missing information, the output
- X is the ciphertext, the garbled message, the observable evidence, the input
- Decoding: select y given X = x.

$$y^* = \underset{y}{\operatorname{argmax}} p(y|x)$$

$$= \underset{y}{\operatorname{argmax}} \frac{p(x|y).p(y)}{p(x)}$$

$$= \underset{y}{\operatorname{argmax}} p(x|y).p(y)$$

Channel model

Source model

Perplexity

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)

Perplexity is the inverse probability of the test set, normalized by the number of words:

Chain rule:

For bigrams:

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1 \dots w_{i-1})}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Minimizing perplexity is the same as maximizing probability

Completion Prediction

- A language model also supports predicting the completion of a sentence.
 - Please turn off your cell _____
 - Your program does not _____
 - Stocks plunged this
 - Let's meet in Times
- Predictive text input systems can guess what you are typing and give choices on how to complete it.

Human Word Prediction

- The ability to predict future words in an utterance.
- How?
 - Domain knowledge
 - Syntactic knowledge
 - Lexical knowledge

Corpora

- Corpora are online collections of text and speech
 - Brown Corpus
 - Wall Street Journal
 - AP newswire
 - Hansards
 - DARPA/NIST text/speech corpora (Call Home, ATIS, switchboard, Broadcast News, TDT, Communicator)
 - TRAINS, Radio News

N-Gram Models

- Estimate probability of each word given prior context.
 - P(phone | Please turn off your cell)
- Number of parameters required grows exponentially with the number of words of prior context.
- An N-gram model uses only N-1 words of prior context.
 - Unigram: P(phone)
 - Bigram: P(phone | cell)
 - Trigram: P(phone | your cell)
- The *Markov assumption* is the presumption that the future behavior of a dynamical system only depends on its recent history. In particular, in a *kth-order Markov model*, the next state only depends on the *k* most recent states, therefore an N-gram model is a (N–1)-order Markov model.

Google 1-T Corpus

- 1 trillion word tokens
 - Number of tokens –1,024,908,267,229
 - Number of sentences –95,119,665,584
 - Number of unigrams –13,588,391
 - Number of bigrams –314,843,401
 - Number of trigrams –977,069,902
 - Number of fourgrams 1,313,818,354
 - Number of fivegrams 1,176,470,663

Google N-Gram Release

- serve as the incoming 92
- serve as the incubator 99
- serve as the independent 794
- serve as the index 223
- serve as the indication 72
- serve as the indicator 120
- serve as the indicators 45
- serve as the indispensable 111
- serve as the indispensible 40
- serve as the individual 234

N-Gram Model Formulas

Word sequences

$$w_1^n = w_1 \dots w_n$$

Chain rule of probability

$$P(w_1^n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1^2)...P(w_n \mid w_1^{n-1}) = \prod_{k=1}^n P(w_k \mid w_1^{k-1})$$

Bigram approximation

$$P(w_1^n) = \prod_{k=1}^n P(w_k \mid w_{k-1})$$

N-gram approximation

$$P(w_1^n) = \prod_{k=1}^n P(w_k \mid w_{k-N+1}^{k-1})$$

Estimating Probabilities

 N-gram conditional probabilities can be estimated from raw text based on the relative frequency of word sequences.

Bigram:
$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

N-gram:
$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1} w_n)}{C(w_{n-N+1}^{n-1})}$$

Generative Model & MLE

 An N-gram model can be seen as a probabilistic automata for generating sentences.

Relative frequency estimates are maximum
 likelihood estimates (MLE) since they maximize the probability that the model M will generate the training corpus T.

$$\hat{\lambda} = \underset{\lambda}{\operatorname{argmax}} P(T \mid M(\lambda))$$

Train and Test Corpora

- A language model is trained on a large corpus of text to estimate good parameter values.
- Model can be evaluated based on its ability to predict a high probability for a disjoint (held-out) test corpus
- May need to adapt a general model to a small amount of new (in-domain) data by adding highly weighted small corpus to original training data.

Data Sparsity

- Data sparsity:
- # of all possible n-grams: $|V|^n$, where |V| is the size of the vocabulary. Most of them never occur.

Training Set:

... denied the allegations

... denied the reports

... denied the claims

... denied the request

Test Set:

... denied the offer

... denied the loan

P (offer | denied the) = 0

False independence assumption

- We assume that each word is only conditioned on the previous n-1 words
- "The dogs chasing the cat bark".
- The tri-gram probability P (bark|the cat) is very low

Unknown Words

- How to handle out of vocabulary (OOV) words?
- 1. Train a model that includes an explicit symbol for an unknown word (<UNK>).
 - Choose a vocabulary in advance and replace other words in the training corpus with <UNK>.
 - Replace the first occurrence of each word in the training data with <UNK>.
- 2. Character based models

Sample Perplexity Evaluation

- Models trained on 38 million words from the Wall Street Journal (WSJ) using a 19,979 word vocabulary.
- Evaluate on a disjoint set of 1.5 million WSJ words.

	Unigram	Bigram	Trigram
Perplexity	962	170	109

Empirical Observations

- A small number of events occur with high frequency
- A large number of events occur with low frequency
- Some of the zeroes in the table are low frequency events you haven't seen yet.
- Words follow a Zipfian distribution
 - Small number of words occur very frequently
 - A large number are seen only once
- Zipf'slaw: a word's frequency is approximately inversely proportional to its rank in the word distribution list

Smoothing

- Many rare (but not impossible) combinations never occur in training, so MLE incorrectly assigns zero to many parameters (*sparse data*).
- If a new combination occurs during testing, it is given a probability of zero and the entire sequence gets a probability of zero (i.e. infinite perplexity).
- In practice, parameters are **smoothed** (or **regularized**) to reassign some probability mass to unseen events.
 - Adding probability mass to unseen events requires removing it from seen ones (*discounting*) in order to maintain a joint distribution that sums to 1.

Laplace (Add-One) Smoothing

"Hallucinate" additional training data in which each possible
 N-gram occurs exactly once and adjust estimates.

Bigram:
$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

N-gram:
$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n) + 1}{C(w_{n-N+1}^{n-1}) + V}$$

V: the total number of possible (N−1)-grams (i.e. the vocabulary size for a bigram (n-gram) model).

• Tends to reassign too much mass to unseen events, so can be adjusted to add δ

Advanced Smoothing

- Improved smoothing for language models.
 - Interpolation
 - Backoff
 - Kneser-Ney
 - Class-based (cluster) N-grams

Model Combination

- As N increases, the power (expressiveness) of an N-gram model increases
 - but the ability to estimate accurate parameters from sparse data decreases
- A general approach is to combine the results of multiple N-gram models of increasing complexity (i.e. increasing N).

Interpolation

 Linearly combine estimates of N-gram models of increasing order.

$$\hat{P}(w_n \mid w_{n-2}, w_{n-1}) = \lambda_1 P(w_n \mid w_{n-2}, w_{n-1}) + \lambda_2 P(w_n \mid w_{n-1}) + \lambda_3 P(w_n)$$

• Learn proper values for λ_i by training to (approximately) maximize the likelihood of an independent *development* corpus.

Backoff

- Only use lower-order model when data for higherorder model is unavailable.
- Recursively back-off to weaker models until data is available.

$$P_{katz}(w_n \mid w_{n-N+1}^{n-1}) = \begin{cases} P^*(w_n \mid w_{n-N+1}^{n-1}) & \text{if } C(w_{n-N+1}^n) > 1\\ \alpha(w_{n-N+1}^{n-1}) P_{katz}(w_n \mid w_{n-N+2}^{n-1}) & \text{otherwise} \end{cases}$$

• P* is a discounted probability estimate to reserve mass for unseen events and α 's are back-off weights.

Huge web-scale n-grams

- How to deal with, e.g., Google N-gram corpus
- Pruning
 - Only store N-grams with count > threshold.
 - Remove singletons of higher-order n-grams
 - Entropy-based pruning
- Efficiency
 - Efficient data structures like tries
 - Bloom filters: approximate language models
 - Store words as indexes, not strings
 - Use Huffman coding to fit large numbers of words into two bytes
 - Quantize probabilities (4-8 bits instead of 8-byte float)

A Problem for N-Grams: Long Distance Dependencies

- Syntactic dependencies
 - "The *man* next to the large oak tree near the grocery store on the corner is tall."
 - "The *men* next to the large oak tree near the grocery store on the corner are tall."
- Semantic dependencies
 - "The bird next to the large oak tree near the grocery store on the corner flies rapidly."
 - "The *man* next to the large oak tree near the grocery store on the corner talks rapidly."

Neural language model

$$\begin{split} P(w_t|w_{t-n},...,w_{t-1}) &= \frac{C(w_{t-n},...,w_t)}{C(w_{t-n},...,w_{t-1})} \\ &= f_{\theta}(w_{t-n},...,w_{t-1}) \end{split}$$

- Parametric estimator
- We need numerical representation of words