# STA261 Probability and Statistics II Lecture Notes

Yuchen Wang June 1, 2019

## Contents

## 1 Converge in distribution

### 2 Normal Distribution Theory

**Theorem: Sum of independent normal random variables** Suppose  $X_i \sim N(\mu_i, \sigma_i^2)$  for i = 1, 2, ..., n and that they are independent random variables. Let  $Y = (\sum_i a_i X_i) + b$  for some constants  $\{a_i\}$  and b. Then

$$Y \sim N((\Sigma_i a_i \mu_i) + b, \Sigma_i a_i^2 \sigma_i^2)$$

Corollary: The distribution of the sample mean of normal random variables Suppose  $X_i \sim N(\mu, \sigma^2)$  for i = 1, 2, ..., n and that they are independent random variables, If  $\bar{X} = (X_1 + ... + X_n)/n$ , then  $\bar{X} \sim N(\mu, \sigma^2/n)$ 

Theorem: The covariance of sums of normal random variables Suppose  $X_i \sim N(\mu_i, \sigma_i^2)$  for i = 1, 2, ..., n and also that the  $\{X_i\}$  are independent. Let  $U = \sum_{i=1}^n a_i X_i$  and  $V = \sum_{i=1}^n b_i X_i$  for some constants  $\{a_1\}$  and  $\{b_i\}$ . Then  $Cov(U, V) = \sum_i a_i b_i \sigma^2$ . Furthermore, Cov(U, V) = 0 if and only if U and V are independent.

## 3 Expectation and Covariance

#### 3.1 Expectation -Discrete case

**Definition of expectation** Let X be a discrete random variable, taking on distince values  $x_1, x_2, ...$ , with  $p_i = P(X = x_i)$ . Then the *expected value* (or *mean* or *mean value*) of X, written E(X) (or  $\mu_x$ ), is defined by

$$E(X) = \sum_{i} x_i p_i$$

#### Theorem: expectation involving nested functions

1. Let X be a discrete random variable, and let  $g: \mathbb{R} \to \mathbb{R}$  be some function such that the expectation of the random variable g(X) exists. Then

$$E(g(X)) = \Sigma_x g(x) P(X = x)$$

2. Let X and Y be discrete random variables, and let  $h: \mathbb{R}^2 \to \mathbb{R}$  be some function such that the expectation of the random variable h(X,Y) exists. Then

$$E(h(X,Y)) = \Sigma_{x,y}h(x,y)P(X=x,Y=y)$$

**Theorem: Linearity of expected values** Let X and Y be discrete random variables, let a and b be real numbers, and put Z = aX + bY. Then

$$E(Z) = aE(X) + bE(Y)$$

**Theorem: Expectation of product of independent r.v** Let X and Y be discrete random variables that are independent. Then

$$E(XY) = E(X)E(Y)$$

**Monotonicity** Let X and Y be discrete random variables, and suppose that  $X \leq Y$  (Remember that this means  $X(s) \leq Y(s)$  for all  $s \in S$ ) Then  $E(X) \leq E(Y)$ .

#### 3.2 Expectation - Continuous case

**Definition of expectation** Let X be an absolutely continuous random variable, with density function  $f_X$ . Then the *expected value* of X is given by

$$E(x) = \int_{-\infty}^{\infty} x f_X(x) dx$$

#### Theorem: expectation involving nested functions

1. Let X be a an absolutely continuous random variable with density function  $f_X$ , and let  $g: \mathbb{R} \to \mathbb{R}$  be some function such that the expectation of the random variable g(X) exists. Then

$$E[g(x)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

2. Let X and Y be discrete random variables, and let  $h: \mathbb{R}^2 \to \mathbb{R}$  be some function such that the expectation of the random variable h(X,Y) exists. Then

$$E(h(X,Y)) = \int_{-\infty}^{\infty} h(x,y) f_{X,Y}(x,y) dx dy$$

Theorem: Linearity of expected values Let X and Y be jointly absolutely continuous random variables, let a and b be real numbers. Then

$$E(aX + bY) = aE(X) + bE(Y)$$

**Monotonicity** Let X and Y be jointly continuous random variables, and suppose that  $X \leq Y$  (Remember that this means  $X(s) \leq Y(s)$  for all  $s \in S$ ) Then  $E(X) \leq E(Y)$ .

#### 3.3 Variance, Covariance and Correlation

**Definition of variance** The *variance* of a random variable X is the quantity

$$\sigma_x^2 = Var(X) = E((X - \mu_X)^2)$$

where  $\sigma_X$  is the standard deviation of X.

**Theorem** Let X be any r.v. with  $\mu_X = E(X)$  and variance Var(X). Then the following hold true:

- 1.  $Var(X) \ge 0$
- 2. If a and b are real numbers,  $Var(aX + b) = a^2Var(X)$
- 3.  $Var(X) = E(X^2) (\mu_X)^2 = E(X^2) E(X)^2$
- 4.  $Var(X) \leq E(X^2)$

#### Definition of covariance

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

**Theorem: Linearity of covariance** Let X, Y and z be three r.v.s. Let a and b be real numbers. Then

$$Cov(aX + bY.Z) = aCov(X, Z) + bCov(Y, Z)$$

**Theorem** Let X and Y be r.v.s. Then

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

**Theorem** If X and Y are independent, then

$$Cov(X, Y) = 0$$

#### Theorem

1. For any r.v.s X and Y,

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

2. More generally, for any r.v.s  $X_1, ..., X_n$ ,

$$Var(\Sigma_i X_i) = \Sigma_i Var(X_i) + 2\Sigma_{i < j} Cov(X_i, X_j)$$

#### Corollary

- 1. If X and Y are independent, then Var(X+Y) = Var(X) + Var(Y)
- 2. If  $X_1,...X_n$  are independent, then  $Var(\Sigma_{i=1}^n X_i) = \Sigma_{i=1}^n Var(X_i)$

**Definition** The *correlation* of two r.v.s X and Y is given by

$$Corr(X,Y) = \frac{Cov(X,Y)}{Sd(X)Sd(Y)}$$

provided  $Var(X) < \infty$  and  $Var(Y) < \infty$ 

## 4 Independent Random Variables

**Definition 1** Let X and Y be two continuous random variables. We say X and Y are independent if

$$f_{X,Y}(x,y) = f_X(x) \times f_Y(y)$$

 $\forall x, y \in \mathbb{R}$ 

**Lemma 1** X and Y are two continuous random variables. If X and Y are independent, then

$$E[g(X)h(Y)] = E(g(X)] \times E[h(Y)]$$

for any two functions g() and h().

proof:

$$E[g(X)h(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_{X,Y}(x,y) \, dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_X(x)f_Y(y) \, dxdy$$

$$= \int_{-\infty}^{\infty} f_Y(y)h(y) \int_{-\infty}^{\infty} g(x)f_X(x) \, dxdy$$

$$= \int_{-\infty}^{\infty} f_Y(y)h(y)E[g(X)] \, dy$$

$$= E[g(X)] \int_{-\infty}^{\infty} f_Y(y)h(y) \, dy$$

$$= E[g(X)]E[h(Y)]$$

## 5 Types of Inferences

#### **Estimation:**

- 1. Point estimation: Based on the sample observations, calculating a particular value as an estimate of the parameter  $\theta$
- 2. Interval estimation: Calculating a range of values that is likely to contain the parameter  $\theta$

**Hypothesis testing** Based on the sample, assess whether a hypothetical value  $\theta_0$  is a plausible value of the parameter  $\theta$  or not.

## 6 Different Types of Estimation

#### 6.1 Method of Moments Estimation

Let  $X_1, X_2, ..., X_n$  are independently and identically distributed (i.i.d.) random variables.

Let the  $k^{th}$  population moment be

$$\mu_k = E[X^k]$$

 $k^{th}$  sample moment based on sample

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i^k$$

We use  $\hat{\mu}_k$  as an estimator of  $\mu_k$ 

In other words, we use the sample moments as estimators of the population moments.

#### 6.2 Maximum Likelihood Estimation

**Definition of Likelihood Function** Suppose  $X_1, X_2, ..., X_n$  has a joint density or mass function  $f(x_1, x_2, ..., x_n | \theta)$ 

We observe sample,  $X_1 = x_1, X_2 = x_2, ..., X_n = x_n$ 

Given the sample, the likelihood function of  $\theta$ , noted as  $L(\theta|x_1, x_2, ..., x_n)$ , is defined as

$$L(\theta|x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n|\theta)$$

Often written as  $L(\theta)$ , is a function of  $\theta$ .

If X follows a discrete distribution, it gives the probability of observing the sample as a function of the parameter  $\theta$ 

If  $X_1, X_2, ..., X_n$  are i.i.d. then their joint density is the product of marginal densities,  $f_{\theta}(x)$ 

Hence, in i.i.d. case we write

$$L(\theta) = \prod_{i=1}^{n} f_{\theta}(x_i)$$

#### Comments

- 1.  $L(\theta)$  is NOT a pdf or pmf of  $\theta$
- 2. Likelihood introduces a belief ordering on parameter space,  $\Omega$
- 3. For  $\theta_1, \theta_2 \in \Omega$ , we believe in  $\theta_1$  as the true value of  $\theta$  over  $\theta_2$  whenever  $L(\theta_1) > L(\theta_2)$
- 4. Which means, the data is more likely to come from  $f_{\theta_1}$  than  $f_{\theta_2}$
- 5. The value  $L(\theta)$  is very small for every value of  $\theta$
- 6. So often, we are interested in the likelihood ratios:

$$\frac{L(\theta_1)}{L(\theta_2)}$$

#### **Maximum Likelihood Estimation**

- 1. Let's say we are interested in a point estimate of  $\theta$
- 2. A sensible choice will be to pick  $\hat{\theta}$  that maximizes  $L(\theta)$
- 3. So  $\hat{\theta}$  satisfies  $L(\hat{\theta}) \geq L(\theta)$  for all  $\theta \in \Omega$
- 4.  $\hat{\theta}$  is called the maximum likelihood estimate (MLE) of  $\theta$

#### Computation of the MLE

- 1. Define, log-likelihood function,  $l(\theta) = \ln L(\theta)$
- 2.  $\ln(x)$  is a 1-1 increasing function of  $x>0 \implies L(\hat{\theta}) \geq L(\theta)$  for  $\theta \in \Omega$  iff  $l(\hat{\theta}) \geq l(\theta)$
- 3. In other words, if  $L(\theta)$  is maximized at  $\hat{\theta}$  then  $l(\theta)$  will also be maximized at  $\hat{\theta}$
- 4. Therefore,

$$l(\theta) = \ln (\prod_{i=1}^{n} f_{\theta}(x_i)) = \sum_{i=1}^{n} \ln f_{\theta}(x_i)$$

- 5. The obvious benefit: It's much easier to differentiate a sum than a product
- 6. Solve the equation,  $\frac{\partial l(\theta)}{\partial \theta} = 0$  for  $\theta$
- 7. Say,  $\hat{\theta}$  is the solution. But it's still not the MLE
- 8. Need to check whether or not

$$\frac{\partial^2 l(\theta)}{\partial \theta^2}|_{\theta = \hat{\theta}} < 0$$

#### Properties of MLE

- 1. MLE is not unique
- 2. MLE may not exist
- 3. The likelihood may not always be differentiable.

## 7 Sampling Distribution of an Estimator

- 1. Recall: An Estimator (T) is a random variable (infinite number of sample means)
- 2. If we repeat the sampling procedure and keep calculating T for each set of sample and finally draw a density histogram based on the T values we get the sampling distribution of T
- 3. **Standard error:** Standard deviation of an estimator is called the standard error (SE)

**Definition of Mean Squared Error** Let  $\psi(\theta)$  be any real valued function of  $\theta$ , suppose T is an estimator of  $\psi(\theta)$ 

$$MSE_{\theta}(T) = E_{\theta}[(T - \psi(\theta))^2]$$

Corollary

$$MSE_{\theta}(T) = Var_{\theta}(T) + (E_{\theta}(T) - \psi(\theta))^2$$

proof:

$$MST(T) = E[(T - \psi(\theta))^{2}]$$

$$= E[(T - E(T) + E(T) - \psi(\theta))^{2}]$$

$$= E[(T - E(T))^{2} + (E(T) - \psi(\theta))^{2} + 2(T - E(T))(E(T) - \psi(\theta))]$$

$$= E[(T - E(T))^{2}] + (E(T) - \psi(\theta))^{2} + 2E[T - E(T)](E(T) - \psi(\theta))$$

$$= E[(T - E(T))^{2}] + (E(T) - \psi(\theta))^{2}$$
(Since  $E[T - E(T)] = E(T) - E(T) = 0$ )
$$= Var(T) + (E(T) - \psi(\theta))^{2}$$

$$= Var(T) + Bias^{2}(T)$$

**Bias** The bias of an estimator T of  $\psi(\theta)$  is given by

$$E_{\theta}(T) - \psi(\theta)$$

**Unbiased estimator:** When the bias of an estimator is zero, it's called unbiased

#### Remark

1. For unbiased estimators,

$$MSE_{\theta}(T) = Var_{\theta}(T)$$

- 2. If all the other properties are similar, then an unbiased estimator is preferred over a biased estimator.
- 3. In practice, often an biased estimator with lower variance is preferred over an unbiased estimator with really high variance. **We minimize MSE**.

## 8 Population Variance $(\sigma^2)$

**Definition**  $\sigma^2 = E[(X - \mu)^2]$  where  $\mu = E[X]$ .

If we have equally likely N data points in our population, this is equivalent of

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2$$

In words: It's the average squared difference of each of the data points  $(X_i)$  from the mean  $(\mu)$ 

Estimate  $\sigma^2$  based on a sample of size n When we are estimating based on the sample of size n, we replace  $\mu$  by  $\bar{X}$ , so the numerator is  $\sum_{i=1}^{n} (X_i - \bar{X})^2$ . We can divide it by both n or n-1. The latter one is unbiased!

The fraction,  $\frac{n-1}{n} \to 1$  as  $n \to \infty$ . So for large n, both estimator will produce similar estimate. In statistical literature, whenever we say sample variance we refer to the unbiased one. Hence, from now on,

#### Definition of sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

## Sampling distribution of $S^2$ (under Normal Distribution

**Theorem** Suppose  $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$  iid,  $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$  and  $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ . Then

1.  $\bar{X}$  and  $S^2$  are independent, and

2. 
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(df=n-1)}$$

proof:

#### Part 1 Let

$$U = \bar{X} = \frac{1}{n}X_1 + \dots + \frac{1}{n}X_n$$

$$V = X_1 - \bar{X} = X_1 - (\frac{1}{n}X_1 + \dots + \frac{1}{n}X_n)$$

$$= (1 - \frac{1}{n})X_1 - (\frac{1}{n}X_2 + \dots + \frac{1}{n}X_n)$$

$$Cov(\bar{X}, X_1 - \bar{X}) = Cov(\bar{X}, X_1) - Cov(\bar{X}, \bar{X})$$

$$= Cov(\frac{1}{n}X_1 + \dots + \frac{1}{n}X_n, X_1) - \frac{\sigma^2}{n}$$

$$= \frac{1}{n}Cov(X_1, X_1) - \frac{\sigma^2}{n}$$

$$= \frac{\sigma^2}{n} - \frac{\sigma^2}{n}$$

$$= 0$$

Hence by E&R theorem, U and V are independent. Similarly, we can show  $\bar{X}$  is independent to each  $X_i - \bar{X}$  for i = 1, ..., n

11

Therefore,  $\bar{X}$  is independent to  $\sum_{i=1}^{n} (X_i - \bar{X})^2$ Therefore,  $\bar{X}$  is independent to  $\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1} = S^2$ 

#### Part 2

$$\sum_{i} (X_{i} - \mu)^{2} = \sum_{i} (X_{i} - \bar{X} + \bar{X} - \mu)^{2}$$

$$= \sum_{i} (X_{i} - \bar{X})^{2} + \sum_{i} (\bar{X} - \mu)^{2} + 2 \sum_{i} (X_{i} - \bar{X})(\bar{X} - \mu)$$

$$= \sum_{i} (X_{i} - \bar{X})^{2} + \sum_{i} (\bar{X} - \mu)^{2} + 2(\bar{X} - \mu) \sum_{i} (X_{i} - \bar{X})$$

$$= \sum_{i} (X_{i} - \bar{X})^{2} + \sum_{i} (\bar{X} - \mu)^{2} + 2(\bar{X} - \mu)(\sum_{i} X_{i} - n\bar{X})$$

$$= \sum_{i} (X_{i} - \bar{X})^{2} + \sum_{i} (\bar{X} - \mu)^{2} + 2(\bar{X} - \mu)(n\bar{X} - n\bar{X})$$

$$= \sum_{i} (X_{i} - \bar{X})^{2} + n(\bar{X} - \mu)^{2}$$

$$\Rightarrow \sum_{i} (X_{i} - \bar{X})^{2} = \sum_{i} (X_{i} - \mu)^{2} - n(\bar{X} - \mu)^{2}$$

$$\Rightarrow \sum_{i} (X_{i} - \mu)^{2} = \frac{\sum_{i} (X_{i} - \bar{X})^{2}}{\sigma^{2}} + \frac{n(\bar{X} - \mu)^{2}}{\sigma^{2}}$$

$$\Rightarrow \sum_{i} (\frac{X_{i} - \mu}{\sigma})^{2} = \frac{\sum_{i} (X_{i} - \bar{X})^{2}}{\sigma^{2}} + (\frac{\bar{X} - \mu}{\sigma/\sqrt{n}})^{2}$$

$$= \frac{(n - 1)S^{2}}{\sigma^{2}} + (\frac{\bar{X} - \mu}{\sigma/\sqrt{n}})^{2}$$

$$\Rightarrow \chi_{(n)}^{2} = \frac{(n - 1)S^{2}}{\sigma^{2}} + \chi_{(1)}^{2}$$

$$= MGF(\chi_{(n)}^{2}) = MGF(\frac{(n - 1)S^{2}}{\sigma^{2}}) * MGF(\chi_{(1)}^{2})$$

$$\Rightarrow MGF(\frac{(n - 1)S^{2}}{\sigma^{2}}) = \frac{MGF(\chi_{(n)}^{2})}{MGF(\chi_{(1)}^{2})}$$

$$= \frac{(1 - 2t)^{-\frac{n}{2}}}{(1 - 2t)^{-\frac{1}{2}}}$$

$$= (1 - 2t)^{-\frac{n-1}{2}}$$

which is the MGF of  $\chi^2_{(n-1)}$ 

**E&R theorem 4.6.2**  $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)i.i.d.,$ , U and V are two different linear combinations of the  $X_i$ 's, then  $Cov(U, V) = 0 \iff U$  and V are independent.

**Note** In general, zero covariance doesn't imply independent Example:  $X \sim N(0,1), Y = X^2$ , clearly X and Y are dependent, but

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

$$= E[X^3] - 0 \cdot E[Y]$$

$$= E[X^3]$$

$$= \int x^3 f(x) dx$$

$$= 0 \qquad \text{(since } x^3 f(x) \text{ is centro-symmetric)}$$

Unbiasedness of  $S^2$  using the Chi-sq distribution

$$E\left[\frac{(n-1)S^2}{\sigma^2}\right] = n - 1$$

$$\implies E[S^2] = \sigma^2$$

This proves  $S^2$  is an unbiased estimator for  $\sigma^2$  under Normal distribution There's another way to prove it under any arbitrary distribution with the assumption that  $X_i$ 's are i.i.d. and  $\mu, \sigma^2$  exists.

## 10 Some relationships among distributions

1. 
$$\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{(n-1)}$$

$$2. \ \frac{\chi^2_{(m)}}{m} \stackrel{P}{\to} 1$$

# 11 Difference between sample variance and variance of sample mean

variance of sample mean: Expectation of squared difference of sample mean from the true mean

**sample variance:** average squared difference of each data points in the sample from the sample mean

## 12 Consistent Estimator

**Definition** Let  $T_n$  be an estimator of parameter  $\theta$ ,  $T_n$  is said to be consistent (in probability) if

$$T_n \stackrel{P}{\to} \theta$$

In words,  $T_n$  converges to  $\theta$  in probability.

**Note** If  $T_n \stackrel{a.s.}{\to} \theta$  then  $T_n$  is called consistent (almost surely). In this course we will only talk about consistent (in probability)

**Proving consistency using LLN** LLN tells us,  $\bar{X} = \frac{1}{n} \sum X_i \stackrel{P}{\to} E[X_i]$  for any distribution. Immediately that tells us:

- 1. If  $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$  then  $\bar{X}$  is a consistent estimator of  $\mu$
- 2. If  $X_i \stackrel{iid}{\sim} Poisson(\lambda)$  then  $\bar{X}$  is a consistent estimator of  $\lambda$
- 3. And we can say this for few other known distributions

Goal: prove consistency when the estimator is not simply  $\bar{X}$  Still use LLN but with the help of a well known Lemma and the continuous mapping theorem

**Slutsky's Lemma** We have two different sequence  $X_n$  and  $Y_n$  If  $X_n \stackrel{P}{\to} X$  and  $Y_n \stackrel{P}{\to} Y$ , then  $X_n + Y_n \stackrel{P}{\to} X + Y$  If  $X_n \stackrel{P}{\to} X$  and  $Y_n \stackrel{P}{\to} Y$ , then  $X_n Y_n \stackrel{P}{\to} XY$ 

Continuous mapping theorem Let  $X_n \stackrel{P}{\to} X$  and g() be a continuous function, then  $g(X_n) \stackrel{P}{\to} g(X)$ 

Proving  $S^2$  is a consistent estimator of  $\sigma^2$  ...

**MSE consistent** An estimator  $T_n$  is called <u>MSE consistent</u> if

$$MSE(T_n) \to 0 \text{ as } n \to \infty$$

Example: for  $N(\mu,\sigma^2)$   $MSE(\bar{X})=\sigma^2/n\to 0$  as  $n\to\infty$  Therefore  $\bar{X}$  is a MSE consistent estimator of  $\mu$ 

In naive words, after you have calculated the MSE of an estimator, just check if it goes to zero for large n

**Note** MSE consistent ⇒ consistent (in probability)

#### 13 Efficient Estimator

**Definition of Efficiency** Let  $T_1$  and  $T_2$  be two different estimators of  $\theta$ , Efficiency of  $T_1$  relative to  $T_2$  is defined as

$$eff(T_1, T_2) = \frac{var[T_2]}{var[T_1]}$$

#### Remark

- 1.  $eff(T_1, T_2) > 1 \implies T_1$  has smaller variance  $\implies T_1$  is more efficient
- 2. This comparison is meaningful when  $T_1$  and  $T_2$  are both unbiased or both have the same bias.

Lower bound of the variance of an unbiased estimator This famous inequality provides a lower bound for the variance of all the unbiased estimators. In other words it gives a lower bound of the MSE (since Bias = 0). The estimator whose variance achieves this lower bound is said to be efficient. Before we state the inequality let's define few terms...

**Score function,**  $S(\theta)$  The derivative of the log-likelihood

$$S(\theta) = \frac{\partial l(\theta)}{\partial \theta}$$

For the random variable X,  $S(\theta|X=x) = \frac{\partial}{\partial \theta} \ln f_{\theta}(x)$ . For an observed i.i.d sample, it's written as  $S(\theta|x_1, x_2, \dots, x_n)$  with

$$S(\theta|x_1, x_2, \dots, x_n) = \frac{\partial}{\partial \theta} \sum_{i} \ln f_{\theta}(x_i) = \sum_{i} \frac{\partial}{\partial \theta} \ln f_{\theta}(x_i) = \sum_{i} S(\theta|x_i)$$

**Fisher Information,**  $I(\theta)$  The function

$$I(\theta) = var_{\theta}[S(\theta|X)]$$

It's the amount of information that each observable random variable X contains about  $\theta$ .

Information of a sample of size  $n = var[S(\theta|x_1, x_2, \dots, x_n)] = nI(\theta)$ 

A plot showing the randomness of  $S(\theta)$  The likelihood function looks different for different data!

One important property of  $S(\theta)$  Under some assumptions,

$$E[S(\theta|X=x)] = 0$$

Which implies

$$E[S(\theta|x_1, x_2, \dots, x_n)] = \sum_i E[S(\theta|x_i)] = 0$$

**Cramer-Rao Inequality** Let  $X_1, X_2, ..., X_n$  be i.i.d. with density  $f_{\theta}(x)$ ,  $T(X_1, X_2, ..., X_n)$  be an unbiased estimator of  $\theta$ , Then under some assumptions on  $f_{\theta}(x)$ ,

$$var[T] \ge \frac{1}{nI(\theta)}$$

 $\frac{1}{nI(\theta)}$  is also known as the Cramer-Rao lower bound (CRLB)

Proof of Cramer-Rao Inequality ...

**Definition of sufficient statistic** A statistic  $T(X_1, X_2, ..., X_n)$  is said to be <u>sufficient</u> for  $\theta$  if the conditional distribution of  $X_1, X_2, ..., X_n$ , given T = t, does not depend on  $\theta$