VE320 Intro to Semiconductor Devices Summer 2022 — Problem Set for Chapter 7

June 28, 2022

Homework description

This is an extra exercise for Chapter 7, and you don't need to hand in.

Exercise 5.1

- (a) Consider a uniformly doped silicon pn junction at T=300 K. At zero bias, 25 percent of the total space charge region is in the n-region. The built-in potential barrier is $V_{bi}=0.710$ V. Determine $(i)N_a,(ii)N_d,$ (iii) $x_n,$ (iv) $x_p,$ and $(v)|E_{\rm max}|$.
 - (b) Repeat part (a) for a GaAs pn junction with $V_{bi} = 1.180 \text{ V}$.

An "isotype" step junction is one in which the same impurity type doping changes from one concentration value to another value. An n-n isotype doping profile is shown in Figure 1.

- (a) Sketch the thermal equilibrium energy-band diagram of the isotype junction.
- (b) Using the energy-band diagram, determine the built-in potential barrier.
- (c) Discuss the charge distribution through the junction.

Figure 1: Figure for Problem 5.2

An ideal one-sided silicon p⁺n junction at $T=300~{\rm K}$ is uniformly doped on both sides of the metallurgical junction. It is found that the doping relation is $N_a=80N_d$ and the built-in potential barrier is $V_{bi}=0.740~{\rm V}$. A reverse-biased voltage of $V_R=10~{\rm V}$ is applied. Determine

- (a) N_a, N_d ;
- (b) x_p, x_n ;
- $(c)|E_{max}|;$
- (d) C'_j .

Exercise 5.4

A silicon p⁺n junction has doping concentrations of $N_a = 2 \times 10^{17} \text{ cm}^{-3}$ and $N_d = 2 \times 10^{15} \text{ cm}^{-3}$. The cross-sectional area is 10^{-5} cm^2 . Calculate

- (a) V_{bi}
- (b) the junction capacitance at (i) $V_R = 1 \text{ V}$, (ii) $V_R = 3 \text{ V}$, and (iii) $V_R = 5 \text{ V}$.
- (c) Plot $1/C^2$ versus V_R and show that the slope can be used to find N_d and the intercept at the voltage axis yields V_{bi} .

A silicon pn junction at $T=300~{\rm K}$ has the doping profile shown in Figure 2. Calculate

- (a) V_{bi}
- (b) x_n and x_p at zero bias, and
- (c) the applied bias required so that $x_n = 30 \mu \text{m}$

Figure 2: Figure for Problem 5.5

Consider a silicon pn junction with the doping profile shown in Figure 3. T = 300 K.

- (a) Calculate the applied reverse-biased voltage required so that the space charge region extends entirely through the p region.
- (b) Determine the space charge width into the n^+ region with the reverse-biased voltage calculated in part (a).
 - (c) Calculate the peak electric field for this applied voltage.

Figure 3: Figure for Problem 5.6

Consider a silicon n^+p junction diode. The critical electric field for breakdown in silicon is approximately $E_{\rm crit}=4\times 10^5~{\rm V/cm}$. Determine the maximum p-type doping concentration such that the breakdown voltage is

- (a) 40 V and
- (b) 20 V.

Reference

1. Neamen, Donald A. Semiconductor physics and devices: basic principles. McGrawhill, 2003.