

Gravity provides the CNS a fundamental reference for estimating spatial orientation and coordinating movements in the terrestrial environment.

Otolith Physiology Relative movement of otoconial layer otolith membrane (clastic & viscous forces) subcupular zone sensory epithelium

Fig. 3-9. At Presumed mechanical linkages between the macular epithelial cells and overlying structures. B: Elementary mechanical analogy, \mathcal{X} . Linear acceleration of head relative to space; \tilde{y} , acceleration of otoconia relative to space; \tilde{y} , acceleration of otoconia relative to space; \tilde{y} , relative displacement of otoconia and macula: t_0 , position of end organ at commencement of acceleration: t, position after time t.

Benson, 1982

Brain is box

Proprioceptie Function

Young et al., Exp Brain Res, 1986

Bed Test
- lie still
- soget aums
- brain streets where
hards are.

H-Reflex motor (muscle) force modul in descende Column.

Knll

Walkantee in Street
Shoes
is similar
to walking
Post Stight

Modulating by pressure on bottom of Elect.

Perturbation Experiment

of support

sofiltup.

Fig. 2. Posture control with eyes closed, showing marked detrements immediately after flight for standing on a 5.7-cm rail or responding to an unexpected toe-up tilt of a posture platform (6). In (a), modified sharpened Romberg test measured total time standing on rail for the best time of five 1-minute trials. In (b), flittered EMG activity farbitrary units) from the tilitalis anterior muscle of one subject during the first eyes-closed \$\mathbb{T}\$ toe-up tilt shows, for \$K = 0\$, increased of magnitude and duration of the late response. The drop in magnitude below the preflight value was seen for \$K = 0\$ but not for the other three subjects.

Young et al., Science, 1984

7 day mussian

Rto @4hus

3 Trials

Translated
base of support
backwards
Somards
backwards

Isternal Model

Dualitation Production victoriases.

Paloski, et al., 1997

Data Analysis

<u>Statistical Model for EQ Scores:</u> The normalized latent EQ scores (scale of 0 to 1) for each SOT are modeled as Beta distributions: $y \sim B(p, q)$. The density of y is:

$$f(y) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} y^{p-l} (1-y)^{q-l}$$

Fall Model: The conditional probability of a fall given latent EQ score is modeled as:

$$P(\text{fall} \mid y) = G(y) = (1 - y)^r \quad \text{or} \quad P(\text{fall}) = \frac{\Gamma(p+q)\Gamma(r+q)}{\Gamma(q)\Gamma(r+p+q)}$$

where p, q and r depend on independent variables (mission duration and time after landing):

$$\log r = C_5 + C_6 \frac{\delta}{l+t} + C - \frac{\delta \log(dur)}{l+t}$$

 $\log q = C_4$ (fixed for all conditions)

$$\log p = C_0 + C_1 \delta + C_2 \frac{\delta}{1+t} + C_3 \frac{\delta \log(dur)}{1+t}$$

where δ = 0 preflight; I postflight, dur = mission duration (days), t = time after landing (days) for postflight only, and C_0, \ldots, C_7 are coefficients estimated from the data

4-8 days
to return
to pushight

8-10 days &

According to the NIH:

- There are more than 30,000,000 people over age 65 in the U.S. (Bureau of Census, 1992)
- Vestibular disorders account for 20–25% of falls in the elderly that lead to hospitalization (Brockelhurstet al., 1991)
- Of the elderly people hospitalized because of falls (over 200,000 per year with hip fracture alone), 40% die within one year (Rubenstein, 1983)

- SOYRS mounts
posture
70-80 1 Sol

20-90 years

Probability &

multi-system countermeasure?

Option 1: Linear AG

Constant acceleration during the first half of a trip to Mars Constant deceleration during the last half of a trip to Mars

$$\mathbf{F} = m \frac{d^2 \mathbf{R}}{dt^2} = m\mathbf{a}$$

- Fuel requirements
- New propulsion systems
- Surface activities and operations

Option 2: Rotational AG

Achieved by:

- 1) rotating entire vehicle during transit or
- 2) providing human centrifuge within vehicle

Approximate g	Radius (m)	Angular Velocity (rpm)
1	300	0.55
1	15	2.46
1	0.75	11.02

Precedent from the Past: 2001

mail

Kubrick, 1968

Physics and Physiology

from Stone, 1970

Physics and Physiology

Objectives

- 1. Discuss the role of gravity in spatial orientation and balance control.
- 2. Review the anatomy and physiology of the neuro-vestibular system.
- 3. Examine the disruption and recovery of sensory-motor function following space flight.

Forward work to facilitate the next steps in human exploration of space...

- Identify sites and mechanisms of sensory-motor adaptation.
- Determine interactions between sensory-motor adaptation, autonomic system function, and musculo-skeletal function.
- Assess functional risk of sensory-motor adaptation to the success of future missions.
- Develop adequate countermeasures to mitigate the untoward functional risks.

Ground-based venues are unlikely to serve as adequate analogs. Space-based experiment platforms will be required, possibly including animal and human centrifuges to provide artificial gravity.