Logistic regression

Mauricio A. Álvarez, PhD

Scalable Machine Learning, University of Sheffield

Outline

Logistic regression

Model fitting

Cross-entropy error function Logistic loss Optimisation routines

Regularisation

Multi-class logistic regression

Logistic regression in Spark

Spark ML Spark MLlib

Probabilistic classifier

□ A logistic regression model is an example of a probabilistic classifier.

□ Let $\mathbf{x} \in \mathbb{R}^p$ represents a feature vector and \mathbf{y} the target value.

□ For a binary classification problem we can use $y \in \{0, 1\}$ or $y \in \{-1, +1\}$.

 We model the relationship between y, and x using a Bernoulli distribution.

Bernoulli distribution (I)

□ A Bernoulli random variable Y is a random variable that can only take two possible values.

For example, the random variable Y associated to the experiment of tossing a coin.

Output "heads" is assigned 1 (Y = 1), and output "tails" is assigned 0 (Y = 0).

Bernoulli distribution (II)

□ A Bernoulli distribution is a probability distribution for Y, expressed as

$$p(Y = y) = Ber(y|\mu) = \begin{cases} \mu & y = 1, \\ 1 - \mu & y = 0, \end{cases}$$

where $\mu = P(Y = 1)$.

The expression above can be summarized in one line using

$$p(Y = y) = Ber(y|\mu) = \mu^{y}(1 - \mu)^{1-y},$$

How are y and x related in logistic regression?

The target feature y follows a Bernoulli distribution

$$p(y|\mathbf{x}) = \text{Ber}(y|\mu(\mathbf{x})).$$

- Notice how the probability $\mu = P(y = 1)$ explicity depends on **x**.
- □ In logistic regression, the probability $\mu(\mathbf{x})$ is given as

$$\mu(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top}\mathbf{x})} = \sigma(\mathbf{w}^{\top}\mathbf{x}),$$

where $\sigma(z)$ is known as the *logistic sigmoid* function.

We then have

$$p(y|\mathbf{w},\mathbf{x}) = \text{Ber}(y|\sigma(\mathbf{w}^{\top}\mathbf{x})).$$

The logistic sigmoid function $\sigma(z)$

- If $z \to \infty$, $\sigma(z) = 1$. If $z \to -\infty$, $\sigma(z) = 0$. If z = 0, $\sigma(z) = 0.5$.

The logistic sigmoid function $\sigma(\mathbf{w}^{\top}\mathbf{x})$

- □ We have $z = \mathbf{w}^{\top}\mathbf{x}$. For simplicity, assume $\mathbf{x} = x$, then $\sigma(\mathbf{w}\mathbf{x})$.
- $\Box \quad \text{So } \frac{d\sigma(wx)}{dx}\Big|_{x=0} = \frac{w}{4}.$

The logistic sigmoid function in 2d

Plot of $\sigma(w_1x_1 + w_2x_2)$. Here $\mathbf{w} = [w_1 \ w_2]^{\top}$.

Decision boundary

- After the training phase, we will have an estimator for w.
- For a test input vector \mathbf{x}_* , we compute $p(y = 1 | \mathbf{w}, \mathbf{x}_*) = \sigma(\mathbf{w}^\top \mathbf{x}_*)$.
- This will give us a value between 0 and 1.
- We define a threshold of 0.5 to decide to which class we assign \mathbf{x}_* .
- With this threshold we induce a linear decision boundary in the input space.

Outline

Logistic regression

Model fitting

Cross-entropy error function Logistic loss Optimisation routines

Regularisation

Multi-class logistic regression

Logistic regression in Spark Spark ML Spark MLlib

Contents

Logistic regression

Model fitting

Cross-entropy error function

Logistic loss
Optimisation routines

Regularisation

Multi-class logistic regression

Logistic regression in Spark Spark ML Spark MLlib

Cross-entropy error function

- $lue{}$ We write $\mathbf{X} = [\mathbf{x}_1 \cdots \mathbf{x}_N]^{\top}$, and $\mathbf{y} = [y_1 \cdots y_N]^{\top}$.
- Assuming IID observations

$$p(\mathbf{y}|\mathbf{w},\mathbf{X}) = \prod_{n=1}^{N} p(y_n|\mathbf{w},\mathbf{x}_n) = \prod_{n=1}^{N} \mathrm{Ber}(y_n|\sigma(\mathbf{w}^{\top}\mathbf{x}_n)).$$

The cross-entropy function or negative log-likelihood is given as

$$\begin{aligned} NLL(\mathbf{w}) &= -\log p(\mathbf{y}|\mathbf{w}, \mathbf{X}) \\ &= -\sum_{n=1}^{N} \{y_n \log[\sigma(\mathbf{w}^{\top} \mathbf{x}_n)] + (1 - y_n) \log[1 - \sigma(\mathbf{w}^{\top} \mathbf{x}_n)]\}, \end{aligned}$$

which can be minimised with respect to w.

Gradient and Hessian of *NLL*(**w**)

It can be shown that the gradient g(w) of NLL(w) is given as

$$\mathbf{g}(\mathbf{w}) = \frac{d}{d\mathbf{w}} NLL(\mathbf{w}) = \sum_{n=1}^{N} [\sigma(\mathbf{w}^{\top} \mathbf{x}_n) - y_n] \mathbf{x}_n = \mathbf{X}^{\top} (\boldsymbol{\sigma} - \mathbf{y}),$$

where $\boldsymbol{\sigma} = [\sigma(\mathbf{w}^{\top}\mathbf{x}_1)\cdots\sigma(\mathbf{w}^{\top}\mathbf{x}_N)]^{\top}$.

It can also be shown that the Hessian $\mathbf{H}(\mathbf{w})$ of $NLL(\mathbf{w})$ is given as

$$\mathbf{H}(\mathbf{w}) = \frac{d}{d\mathbf{w}}\mathbf{g}(\mathbf{w})^{\top} = \sum_{n=1}^{N} \sigma(\mathbf{w}^{\top}\mathbf{x}_n)[1 - \sigma(\mathbf{w}^{\top}\mathbf{x}_n)]\mathbf{x}_n\mathbf{x}_n^{\top} = \mathbf{X}^{\top}\mathbf{\Sigma}\mathbf{X},$$

where $\Sigma = \text{diag}(\sigma(\mathbf{w}^{\top}\mathbf{x}_n)[1 - \sigma(\mathbf{w}^{\top}\mathbf{x}_n)]).$

Contents

Logistic regression

Model fitting

Cross-entropy error function

Logistic loss

Optimisation routines

Regularisation

Multi-class logistic regression

Logistic regression in Spark Spark ML Spark MLlib

Logistic loss (I)

□ We could use $y \in \{-1, +1\}$ instead of $y \in \{0, 1\}$.

In this case,

$$p(y|\mathbf{w},\mathbf{x}) = \begin{cases} \frac{1}{1+\exp(+\mathbf{w}^{\top}\mathbf{x})} & y = -1, \\ \frac{1}{1+\exp(-\mathbf{w}^{\top}\mathbf{x})} & y = +1. \end{cases}$$

Using one expression,

$$p(y|\mathbf{w}, \mathbf{x}) = \frac{1}{1 + \exp(-v \mathbf{w}^{\top} \mathbf{x})} = \sigma(y \mathbf{w}^{\top} \mathbf{x}).$$

Logistic loss (II)

□ Let $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$, but each $y_n \in \{-1, +1\}$.

Assuming IID observations $p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{n=1}^{N} \sigma(y_n \mathbf{w}^{\top} \mathbf{x}_n)$.

The logistic loss is defined as

$$NLL(\mathbf{w}) = -\log p(\mathbf{y}|\mathbf{w}, \mathbf{X})$$
$$= \sum_{n=1}^{N} \log[1 + \exp(-y_n \mathbf{w}^{\top} \mathbf{x}_n)].$$

which can be minimised with respect to w.

Gradient and Hessian of NLL(w)

It can be shown that the gradient g(w) of LL(w) is given as

$$\mathbf{g}(\mathbf{w}) = \frac{d}{d\mathbf{w}} NLL(\mathbf{w}) = \sum_{n=1}^{N} [y_n \sigma(y_n \mathbf{w}^{\top} \mathbf{x}_n) - y_n] \mathbf{x}_n = \mathbf{X}^{\top} (\sigma - \mathbf{y}),$$

where $\sigma = [y_1 \sigma(y_1 \mathbf{w}^{\top} \mathbf{x}_1) \cdots y_N \sigma(y_N \mathbf{w}^{\top} \mathbf{x}_N)]^{\top}$.

It can also be shown that the Hessian $\mathbf{H}(\mathbf{w})$ of $NLL(\mathbf{w})$ is given as

$$\mathbf{H}(\mathbf{w}) = \frac{d}{d\mathbf{w}}\mathbf{g}(\mathbf{w})^{\top} = \sum_{n=1}^{N} \sigma(y_n \mathbf{w}^{\top} \mathbf{x}_n)[1 - \sigma(y_n \mathbf{w}^{\top} \mathbf{x}_n)]\mathbf{x}_n \mathbf{x}_n^{\top} = \mathbf{X}^{\top} \mathbf{\Sigma} \mathbf{X},$$

where $\Sigma = \text{diag}(\sigma(y_n \mathbf{w}^{\top} \mathbf{x}_n)[1 - \sigma(y_n \mathbf{w}^{\top} \mathbf{x}_n)]).$

Contents

Logistic regression

Model fitting

Cross-entropy error function Logistic loss

Optimisation routines

Regularisation

Multi-class logistic regression

Logistic regression in Spark Spark ML Spark MLlib

General problem

- □ We are given a function $f(\mathbf{w})$, where $\mathbf{w} \in \mathbb{R}^p$.
- \Box Aim: to find a value for **w** that minimises $f(\mathbf{w})$.
- Use an interative procedure

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \eta \mathbf{d}_k,$$

where \mathbf{d}_k is known as the search direction and it is such that

$$f(\mathbf{w}_{k+1}) < f(\mathbf{w}_k).$$

□ The parameter η is known as the **step size** or **learning rate**.

Gradient descent

Perhaps, the simplest algorithm for unconstrained optimisation.

□ It assumes that $\mathbf{d}_k = -\mathbf{g}_k$, where $\mathbf{g}_k = \mathbf{g}(\mathbf{w}_k)$.

Also known as steepest descent.

It can be written like

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \mathbf{g}_k.$$

Step size

- The main issue in gradient descent is how to set the step size.
- If it is too small, convergence will be very slow. If it is too large, the method can fail to converge at all.

The function to optimise is $f(w_1, w_2) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$. The minimum is at (1, 1). In (a) $\eta = 0.1$. In (b) $\eta = 0.6$.

Alternatives to choose the step size η

Line search methods (there are different alternatives).

 Line search methods may use search directions other than the steepest descent direction.

Conjugate gradient (method of choice for quadratic objectives $f(\mathbf{w}) = \mathbf{w}^{\top} \mathbf{A} \mathbf{w}$).

Newton's method

- □ Another important search direction is the *Newton* direction.
- □ It derives a faster optimisation algorithm by taking the curvature of the space (i.e., the Hessian) into account.
- Optimisation methods that include the Hessian are also known as second order optimisation methods.
- In Newton's algorithm

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \mathbf{H}_k^{-1} \mathbf{g}_k,$$

where $\mathbf{g}_k = \mathbf{g}(\mathbf{w}_k)$, and $\mathbf{H}_k = \mathbf{H}(\mathbf{w}_k)$.

lacksquare Usually $\eta=$ 1, and $\mathbf{d}_k=-\mathbf{H}_k^{-1}\mathbf{g}_k.$

Newton's method and convex functions

- \square Newton's method requires that \mathbf{H}_k be positive definite.
- Otherwise, we could not compute $\mathbf{d}_k = -\mathbf{H}_k^{-1}\mathbf{g}_k$.
- □ The condition holds if the function is strictly convex.
- Alternatives:
 - If \mathbf{H}_k is not positive definite, use $\mathbf{d}_k = -\mathbf{g}_k$ instead.
 - Use the Levenberg Marquardt algorithm, which compromises between the Newton direction and the steepest direction.
 - Rather than computing $\mathbf{d}_k = -\mathbf{H}_k^{-1}\mathbf{g}_k$, find \mathbf{d}_k that solves the linear system $\mathbf{H}_k\mathbf{d}_k = -\mathbf{g}_k$ using an iterative procedure. Stop when needed (**truncated Newton**).

Quasi-Newton methods

- □ The main drawback of the Newton direction is the need for the Hessian.
- Explicit computation of this matrix of second derivatives can sometimes be a cumbersome, error-prone, and expensive process.
- Quasi-Newton search directions provide an attractive alternative to Newton's method.
- They do not require computation of the Hessian and yet still attain a faster rate of convergence.
- □ In place of the true Hessian \mathbf{H}_k , they use an approximation \mathbf{B}_k , which is updated after each step to take account of the additional knowledge gained during the step.

BFGS formula for \mathbf{H}_k

In the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) formula

$$\mathbf{B}_{k+1} = \mathbf{B}_k + \frac{\mathbf{z}_k \mathbf{z}_k^\top}{\mathbf{z}_k^\top \mathbf{s}_k} - \frac{(\mathbf{B}_k \mathbf{s}_k)(\mathbf{B}_k \mathbf{s}_k)^\top}{\mathbf{s}_k^\top \mathbf{B}_k \mathbf{s}_k},$$

where $\mathbf{s}_k = \mathbf{w}_k - \mathbf{w}_{k-1}$ and $\mathbf{z}_k = \mathbf{g}_k - \mathbf{g}_{k-1}$.

- This is a rank-two update to the matrix, and ensures that the matrix remains positive definite.
- □ Ussually $\mathbf{B}_0 = \mathbf{I}$.
- □ The search direction is then $\mathbf{d}_k = -\mathbf{B}_k^{-1}\mathbf{g}_k$.

BFGS formula for \mathbf{H}_k^{-1}

□ BFGS can alternatively update $\mathbf{C}_k = \mathbf{H}_k^{-1}$ using

$$\mathbf{C}_{k+1} = \left(\mathbf{I} - \frac{\mathbf{s}_k \mathbf{z}_k^\top}{\mathbf{z}_k^\top \mathbf{s}_k}\right) \mathbf{C}_k \left(\mathbf{I} - \frac{\mathbf{z}_k \mathbf{s}_k^\top}{\mathbf{z}_k^\top \mathbf{s}_k}\right) + \frac{\mathbf{s}_k \mathbf{s}_k^\top}{\mathbf{z}_k^\top \mathbf{s}_k}.$$

The search direction is then $\mathbf{d}_k = -\mathbf{C}_k \mathbf{g}_k$.

Limited memory BFGS (L-BFGS)

- Since storing the Hessian takes $O(p^2)$ space, for very large problems, one can use limited memory BFGS, or L-BFGS.
- In L-BFGS, \mathbf{H}_k or \mathbf{H}_k^{-1} is approximated by a diagonal plus low rank matrix.
- In particular, the product $\mathbf{B}_k^{-1}\mathbf{g}_k$ can be obtained by performing a sequence of inner products with \mathbf{s}_k and \mathbf{z}_k , using only the m most recent $(\mathbf{s}_k, \mathbf{z}_k)$ pairs, and ignoring older information.
- □ The storage requirements are therefore O(mp). Typically $m \sim 20$ suffices for good performance.

Optimisation methods applied to logistic regression

All the methods described above can be applied to find the parameter vector \mathbf{w} that minimises the negative log-likelihood $NLL(\mathbf{w})$ in logistic regression.

Stochastic gradient descent (I)

- Traiditionally in machine learning, the gradient \mathbf{g}_k and the Hessian \mathbf{H}_k are computed using the whole dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$.
- There are settings, though, where only a subset of the data can be used.
- **Online learning**: the instances (\mathbf{x}_n, y_n) appear one at a time.
- Large datasets: computing the exact values for \mathbf{g}_k and \mathbf{H}_k would be expensive, if not impossible.

Stochastic gradient descent (II)

In stochastic gradient descent (SGD), the gradient \mathbf{g}_k is computed using a subset of the instances available.

The word stochastic refers to the fact that the value for \mathbf{g}_k will depend on the subset of the instances chosen for computation.

Stochastic gradient descent (III)

 In the stochastic setting, a better estimate can be found if the gradient is computed using

$$\mathbf{g}_k = \frac{1}{|S|} \sum_{i \in S} \mathbf{g}_{k,i},$$

where $S \in \mathcal{D}$, |S| is the cardinality of S, and $\mathbf{g}_{k,i}$ is the gradient at iteration k computed using the instance (\mathbf{x}_i, y_i) .

□ For logistic regression, $\mathbf{g}_{k,i}$ would be the gradient computed for $-\log p(y_i|\mathbf{w},\mathbf{x}_i)$.

Step size in SGD

- $lue{}$ Choosing the value of η is particularly important in SGD since there is no easy way to compute it.
- Usually the value of η will depend on the iteration k, η_k .
- It should follow the Robbins-Monro conditions

$$\sum_{k=1}^{\infty} \eta_k = \infty, \quad \sum_{k=1}^{\infty} \eta_k^2 < \infty.$$

□ Various formulas for η_k can be used

$$\eta_k = \frac{1}{k}, \quad \eta_k = \frac{1}{(\tau_0 + k)^\kappa},$$

where τ_0 slows down early interations and $\kappa \in (0.5, 1]$.

• Spark's option is $\eta_k = \frac{s}{\sqrt{k}}$, with s = stepsize.

Outline

Logistic regression

Model fitting

Cross-entropy error function Logistic loss Optimisation routines

Regularisation

Multi-class logistic regression

Logistic regression in Spark

Spark ML Spark MLlib

What is regularisation?

- It refers to a technique used for preventing overfitting in a predictive model.
- □ It consists in adding a term (a regulariser) to the objective function that encourages simple solutions.
- With regularisation, the objective function for logistic regression would be

$$f(\mathbf{w}) = NLL(\mathbf{w}) + \lambda R(\mathbf{w}),$$

where $R(\mathbf{w})$ is the regularisation term and λ the regularisation parameter.

 \Box If $\lambda = 0$, we get $f(\mathbf{w}) = NLL(\mathbf{w})$.

Regularisation for logistic regression

- Suppose the data is linearly separable.
- □ The optimum for $f(\mathbf{w})$ would be obtain if $\|\mathbf{w}\| \to \infty$.
- Such a solution is very brittle and will not generalize well.

Different types of regularisation

The objective function for logistic regression would be

$$f(\mathbf{w}) = NLL(\mathbf{w}) + \lambda R(\mathbf{w}),$$

where $R(\mathbf{w})$ follows as

$$R(\mathbf{w}) = \alpha \|\mathbf{w}\|_1 + (1 - \alpha) \frac{1}{2} \|\mathbf{w}\|_2^2,$$

where
$$\|\mathbf{w}\|_1 = \sum_{m=1}^{p} |w_m|$$
, and $\|\mathbf{w}\|_2^2 = \sum_{m=1}^{p} w_m^2$.

- \Box If $\alpha = 1$, we get ℓ_1 regularisation.
- □ If $\alpha = 0$, we get ℓ_2 regularisation.
- □ If $0 < \alpha < 1$, we get the elastic net regularisation.
- floor In Spark, λ is regParam and α is elasticNetParam.

Outline

Logistic regression

Model fitting

Cross-entropy error function Logistic loss Optimisation routines

Regularisation

Multi-class logistic regression

Logistic regression in Spark Spark ML

Spark MLlib

Categorial distribution

- Imagine an random experiment where the output can only take 1 of K outputs.
- The result of the experiment can be coded using a vector \mathbf{y} of dimension K, where only one of its entries is 1, and the rest is zero.
- Each of the *K* outputs of the experiment has a probability $μ_k$ with $\sum_{k=1}^{K} μ_k = 1$.
- □ We say that the vector **y** follows a categorial distribution

$$p(\mathbf{y}|\boldsymbol{\mu}) = \prod_{k=1}^K \mu_k^{y_k},$$

where $\mathbf{y} = [y_1, y_2, \cdots, y_K]^{\top}$, and $\boldsymbol{\mu} = [\mu_1, \mu_2, \cdots, \mu_K]^{\top}$.

Multinomial logistic regression (I)

- The categorial distribution is a particular case of the multinomial distribution.
- The categorial distribution can be used for multi-class logistic regression.
- \Box Each instance in a multi-class calssification problem is made of (\mathbf{x}, \mathbf{y}) .
- $lue{}$ In multinomial logistic regression, each probability μ_k is represented as

$$\mu_k = \frac{\exp(\mathbf{w}_k^{\top} \mathbf{x})}{\sum_{j=1}^K \exp(\mathbf{w}_j^{\top} \mathbf{x})},$$

where $\{\mathbf{w}_k\}_{k=1}^K$ is a set of weigths, that we jointly refer to as **W**.

Multinomial logistic regression (II)

□ In this way, we can model p(y|W,x) using

$$p(\mathbf{y}|\mathbf{W},\mathbf{x}) = \prod_{k=1}^K \mu_k^{y_k} = \prod_{k=1}^K \left[\frac{\exp(\mathbf{w}_k^\top \mathbf{x})}{\sum_{j=1}^K \exp(\mathbf{w}_j^\top \mathbf{x})} \right]^{y_k}.$$

- □ Suppose we have a dataset $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N$.
- $lue{}$ We write $\mathbf{X} = [\mathbf{x}_1 \cdots \mathbf{x}_N]^{\top}$, and $\mathbf{Y} = [\mathbf{y}_1 \cdots \mathbf{y}_N]^{\top}$.

Multinomial logistic regression (III)

The parameters W could be estimated by minimising

$$NLL(\mathbf{W}) = -\log p(\mathbf{Y}|\mathbf{W}, \mathbf{X}) = -\log \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_{n,k}^{y_{n,k}} = -\sum_{n=1}^{N} \sum_{k=1}^{K} y_{n,k} \log \mu_{n,k},$$

where
$$\mu_{\textit{n},\textit{k}} = \frac{\exp(\mathbf{w}_{\textit{k}}^{\top}\mathbf{x}_{\textit{n}})}{\sum_{j=1}^{\textit{K}}\exp(\mathbf{w}_{\textit{j}}^{\top}\mathbf{x}_{\textit{n}})}.$$

ightharpoonup We could also add a regularisation term to $NLL(\mathbf{W})$, and minimise

$$f(\mathbf{W}) = NLL(\mathbf{W}) + \lambda R(\mathbf{W}),$$

with respect to W.

Outline

Logistic regression

Model fitting

Cross-entropy error function Logistic loss Optimisation routines

Regularisation

Multi-class logistic regression

Logistic regression in Spark Spark ML Spark MLlib

Contents

Logistic regression

Model fitting

Cross-entropy error function Logistic loss Optimisation routines

Regularisation

Multi-class logistic regression

Logistic regression in Spark Spark ML

Spark MLlib

LogisticRegression()

LogisticRegression() works with DataFrames, so the feature vectors should be created using org.apache.spark.ml.linalg.Vectors

□ It is possible to use regularisation ℓ_1 , ℓ_2 or Elastic Net.

□ L-BFGS is used as a solver for LogisticRegression(), with ℓ_2 .

□ When ℓ₁, or Elastic Net are used, a variant of L-BFGS, known as Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) is used instead.

Contents

Logistic regression

Model fitting

Cross-entropy error function Logistic loss Optimisation routines

Regularisation

Multi-class logistic regression

Logistic regression in Spark Spark ML Spark MLlib

LogisticRegressionWithLBFGS()

LogisticRegressionWithLBFGS() uses LabeledPoints.

□ It supports both binary and multinomial Logistic Regression.

■ By default, it uses ℓ_2 regularisation.

 $lue{}$ ℓ_1 regularisation can be used by setting <code>setUpdater</code> to <code>L1Updater</code>

LogisticRegressionWithSGD()

Deprecated since version 2.0.0.