Exercise sheet 3

Scalar fields.

The most general expression for the Lagrange density \mathscr{L} of N scalar fields ϕ_i which is Lorentz invariant and at most quadratic in the fields is

$$\mathscr{L} = \frac{1}{2} A_{ij} \partial^{\mu} \phi_i \partial_{\mu} \phi_j - \frac{1}{2} B_{ij} \phi_i \phi_j - C.$$

What constraints have the coefficients A_{ij}, B_{ij}, C to satisfy? Show that \mathscr{L} can be recast into "canonical form"

$$\mathscr{L} = \frac{1}{2} \partial^{\mu} \phi_i \partial_{\mu} \phi_i - \frac{1}{2} b_i \phi_i \phi_i - C$$

by linear field redefinitions.

Maxwell Lagrangian.

a.) Derive the Lagrangian for the photon field A_{μ} from the source-free Maxwell equation $\partial_{\mu}F^{\mu\nu}=0$. (Compare to the procedure for a scalar field in the notes.) b.) What is the meaning of the unused set of Maxwell equations?

Green functions.

Show that the connected and the unconnected n-point Green functions are identical for n = 2,

$$G(x_1, x_2) = \mathcal{G}(x_1, x_2),$$

while they differ in general for $n \geq 3$. [Recall that $\langle 0|0\rangle = 1$ and $\langle 0|\phi(x)|0\rangle = 0$.]

Volume of a sphere in arbitrary dimensions.

- a.) Calculate the volume of the unit sphere S^{n-1} defined by $x_1^2 + \ldots + x_n^2 = 1$ in \mathbb{R}^n .
- b.) Generalize the result to arbitrary (not necessarily integer) dimensions and show that it agrees with the familiar results for n = 1, 2 and 3.

(Recall that mathematicians distinguish between a sphere S^n and a ball B^n .)