# Real-Time Speech Workload Estimation for Intelligent Human-Machine Systems

Julian Fortune
Oregon State University
Corvallis, OR

Dr. Jamison Heard Rochester Institute of Technology Rochester, NY Dr. Julie A. Adams Oregon State University Corvallis, OR

#### **Problem statement**

# Find a means of estimating speech workload objectively in real-time.

- We want optimal performance from human-machine teams.
- The human-machine interface can maximize the human's performance by adapting interactions.



#### Performance and Workload





#### Workload



#### **Existing Speech Workload Algorithms**

#### **Speech Workload Estimation for Air Traffic Control**

(Luig and Sontacchi, 2010)

#### **PHYSIOPRINT**

(Popovic, Stikic, Rosenthal, Klyde, and Schnell, 2015)

- X Involved discrete classifications.
- X Unable to demonstrate generalizability between individuals.
- X Did not function in real-time.

## **Objective Speech Features**

| Feature                          | Correlation |
|----------------------------------|-------------|
| Intensity                        | Increases   |
| Pitch                            | Increases   |
| Voice activity                   | Increases   |
| Speaking rate (syllables/second) | Increases   |

#### Speech Workload Estimation Algorithm



#### **Real-Time Evaluation**

- Physically separated NASA MATB-II.
- One 52.5-min trial: seven consecutive 7.5-min workload conditions.







### Hypotheses

- **H**<sub>1</sub>: The **correlation** between the algorithm's estimates and the IMPRINT Pro speech workload predictions will **increase** as the window size increases.
- **H**<sub>2</sub>: The **RMSE** of the algorithm's estimates, when compared to the IMPRINT Pro speech workload predictions, will **decrease** as the window size increases.
- H<sub>3</sub>: The **time** required to calculate the features will **increase** as the window size increases, but will **remain less than 1s**.

### Methodology

- The investigated window sizes were 1s, 5s, 10s, 15s, 30s, and 60s.
- For each window size:
  - -Run-time was recorded for all four features.
  - Estimation accuracy was assessed by *leave-one-participant-out* cross-validation.

#### Leave-one-participant-out cross-validation example:



#### Filtered and Unfiltered Datasets



# The Correlation Between the Algorithm's Estimates and the IMPRINT Pro Model Predictions by Window Size



# Run-Time of Feature Extraction by Window Size

|                | Window Size |            |            |            |            |            |
|----------------|-------------|------------|------------|------------|------------|------------|
| Feature        | 1s          | 5s         | 10s        | 15s        | 30s        | 60s        |
| Intensity      | .001 (.00)  | .007 (.00) | .013 (.00) | .019 (.00) | .038 (.00) | .069 (.01) |
| Pitch          | .051 (.02)  | .246 (.08) | .490 (.15) | .734 (.22) | 1.46 (.44) | 2.84 (.88) |
| Voice Activity | .004 (.00)  | .024 (.00) | .049 (.00) | .074 (.00) | .149 (.00) | .286 (.02) |
| Speech Rate    | .004 (.00)  | .024 (.00) | .047 (.00) | .070 (.00) | .139 (.00) | .258 (.03) |
| All Features   | .061 (.02)  | .301 (.08) | .599 (.15) | .897 (.22) | 1.78 (.44) | 3.45 (.88) |

Mean (St. Dev.) run-time in seconds. **Note**: Cells shaded in green *support* H<sub>3</sub> and unshaded cells *do not support* H<sub>3</sub>.

#### Conclusion

**H**<sub>1</sub>: The **correlation** between the algorithm's estimates and the IMPRINT Pro speech workload predictions will **increase** as the window size increases.

Partially supported

H<sub>3</sub>: The **time** required to calculate the features will **increase** as the window size increases, but will **remain less than 1s**.

Not supported

#### **Lessons Learned**

- Overall, a window size of 15s is the most feasible size for real-time applications.
- A window size of 30s is the most reliable for offline speech workload estimation.
- Speech workload estimation in real-time can be incorporated in human-machine systems.

## **Applications**





#### Thank You

Live Q & A

#### **Acknowledgments**

This work was partially supported by NASA Cooperative Agreement No. NNX16AB24A and DoD Contract Number W81XWH-17-C-0252 from the CDMRP Defense Medical Research and Development Program.