Table 1. Logistic regression analysis of estimators of having a stroke

Variables	β^a	Exp ^b (β)	SE°β	P-value
Intercept	-7.49	0.0005	0.358	<0.001***
Age	0.069	1.071	0.005	<0.001***
Hypertension (vs. no hypertension)	0.381	1.464	0.163	0.019*
Heart disease (vs. no heart disease)	0.330	1.391	0.188	0.079
Average glucose level	0.004	1.004	0.001	<0.001***

N = 5110 used in this logistic regression analysis; Residual deviance = 1591.5; AIC = 1601.5

^a: Coefficient of the estimator. ^b: Exponential value. ^c: Standard error.

*P-value < 0.05, ***P-value < 0.001

Table 2. Accuracy of the prediction of the testing data

Types of Classification	Accuracy		
Logistic Regression ^a	0.951		
Linear Discriminant Analysis ^a	0.949		
Quadratic Discriminant Analysis ^a	0.885		
K-nearest Neighbors Algorithm	0.949		
Random Forest	0.951		
Support Vector Machine	0.951		
^a : Using the same logistic model in Table 1			