

Model Optimization and Tuning Phase Template

Date	15 March 2024
Team ID	SWTID1720437019
Project Title	Thyroid Classification
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Random Forest		
Model	[39]: from sklearn.ensemble import RandomForestClassifier RFclassifier = RandomForestClassifier(max_leaf_nodes=30) RFclassifier.fit(x_train, y_train)	
	<pre>[42]: from sklearn.model_selection import GridSearchCV rf = { 'n_estimators': [100, 200, 300], 'max_depth': [3, 5, 7, 10, None] } RFclassifier = RandomForestClassifier(random_state=42) grid_rf = GridSearchCV(RFclassifier, rf, cv=5) grid_rf.fit(x_train, y_train) print("Best parameters for Random Forest:", grid_rf.best_params_) y_pred = grid_rf.predict(x_test) print(classification_report(y_test, y_pred))</pre>	[44]: RFAcc = accuracy_score(y_pred,y_test) print('Random Forest accuracy is: {:.2f}%'.format(RFAcc*100)) Random Forest accuracy is: 94.20%

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric

Random Forest

Model

```
y_pred = RFclassifier.predict(x_test)
[40]:
       print(classification_report(y_test, y_pred))
       print(confusion_matrix(y_test, y_pred))
                     precision
                                   recall f1-score
                                                       support
                           0.00
                                     0.00
                                                0.00
                                                             7
                  0
                  1
                           0.86
                                     0.86
                                                0.86
                                                            74
                  2
                           0.90
                                     1.00
                                                0.95
                                                            85
                           0.86
                                     0.82
                                                            38
                                                0.84
                  4
                           0.95
                                     1.00
                                                0.97
                                                           122
                  5
                           0.92
                                     0.86
                                                0.89
                                                            51
                           0.99
                                     0.93
                                                0.96
                                                            71
                  6
                                                0.92
                                                           448
           accuracy
                           0.78
                                                0.78
                                                           448
                                     0.78
          macro avg
       weighted avg
                           0.91
                                     0.92
                                                0.91
                                                           448
       11
                   0
                       0
                            6
                                1
                                    0]
                       3
           0
              64
                   5
                            1
                                1
                                    0]
           0
               0
                  85
                       0
                                    0]
                            0
                                0
           0
               4
                   1
                      31
                            0
                                1
                                    1]
               0
                   0
                       0 122
                                0
                                    0]
                   1
                       2
                            0
                               44
                                    0]
               4
                   2
                       0
                            0
           0
                                1
                                   66]]
```


SVC Model

47]:	<pre>y_pred = SVCclassifier.predict(x_test) print(classification_report(y_test, y_pred))</pre>									
					pre	cisio	n	recall	f1-score	support
				0		0.6	7	0.86	0.75	7
				1		0.7	9	0.80	0.79	74
				2		0.8	3	0.74	0.78	85
				3		0.7	' 3	0.58	0.65	38
				4		0.8	19	0.95	0.92	122
				5		0.7	6	0.75	0.75	51
				6		0.8	37	0.96	0.91	71
		ac	cura	су					0.83	448
		mac	ro a	vg		0.7	9	0.80	0.79	448
	wei	ght	ed a	vg		0.8	3	0.83	0.83	448
48]:	pri	nt(conf	usio	n_m	atrix	(y_t	est, y_p	red))	
	[[6	0	0	0	1	0	0]		
	1	1	59	7	3	2	2	0]		
	[1	4	63	0	9	3	5]		
	1	0	6	2	22	0	7	1]		
	1	1	1	0	0	116	0	4]		
	[0	4	3	4	2	38	0]		
	Г	0	1	1	1	0	0	68]]		

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The XGB classifier model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model.
XGB classifier	
Model	