Covariance functions for libgp

February 20, 2019

1 Gaussian Process

We are given $X = \{x_i\}_{i=1}^n$ and $z = (z_1, \dots, z_n)$ with $x_i \in \mathbb{R}^d$ and $z_i \in \mathbb{R}$. The joint distribution of z is given by,

$$p(z) = \mathcal{N}\left(z \mid 0, C_n\right) \tag{1}$$

where C_n is a matrix with elements $(C_n)_{i,j} = k(\boldsymbol{x}_i, \boldsymbol{x}_j)$ and $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is the covariance function of the Gaussian process. It should hold that $k(\boldsymbol{x}, \boldsymbol{y}) = k(\boldsymbol{y}, \boldsymbol{x})$

Given a new point $(\boldsymbol{x}_{n+1}, z_{n+1})$, the conditional distribution of z_{n+1} on \boldsymbol{X} and \boldsymbol{z} is given by,

$$p(z_{n+1} | \boldsymbol{X}, \boldsymbol{z}, \boldsymbol{x}_{n+1}) = \mathcal{N}\left(z_{n+1} | \mu(\boldsymbol{x}_{n+1}), \sigma^2(\boldsymbol{x}_{n+1})\right),$$
 (2)

where

$$\mu(\boldsymbol{x}_{n+1}) = \boldsymbol{k}^{\top} \boldsymbol{C}_n^{-1} \boldsymbol{y}, \qquad (3)$$

and

$$\sigma^2(\boldsymbol{x}_{n+1}) = c - \boldsymbol{k}^\top \boldsymbol{C}_n^{-1} \boldsymbol{k}. \tag{4}$$

Here, $(k)_i = k(x_i, x_{n+1}), i = 1, ..., n$ and $c = k(x_{n+1}, x_{n+1})$ and satisfy,

$$C_{n+1} = \begin{pmatrix} C_n & \mathbf{k}^\top \\ \mathbf{k} & c \end{pmatrix} . \tag{5}$$

1.1 Derivatives of the Gaussian process w.r.t. state variables

We are interested in calculating derivatives of $\mu(x)$ w.r.t. the state variable x. Thus

$$\frac{\mathrm{d}\mu(\boldsymbol{x})}{\mathrm{d}\boldsymbol{x}} = \frac{\mathrm{d}\boldsymbol{k}^{\top}}{\mathrm{d}\boldsymbol{x}}\boldsymbol{C}_{n}\boldsymbol{z}, \tag{6}$$

where the matrix $\frac{\mathrm{d} \boldsymbol{k}^{\top}}{\mathrm{d} \boldsymbol{x}}$ has elements,

$$\left(\frac{\mathrm{d}\boldsymbol{k}^{\top}}{\mathrm{d}\boldsymbol{x}}\right)_{i,j} = \frac{\mathrm{d}k(\boldsymbol{x}, \boldsymbol{x}_i)}{\mathrm{d}x_j}, \tag{7}$$

for i = 1, ..., n and j = 1, ..., d.

2 Covariance Functions

2.1 Linear Covariance

name	cov_linear_one
formula	$k(oldsymbol{x},oldsymbol{y}) = artheta^2(1+oldsymbol{x}\cdotoldsymbol{y})$
parameters	ϑ
log-parameters	$\varphi = -\log \vartheta$
$\frac{\mathrm{d}k}{\mathrm{d}arphi}(artheta)$	$-2\vartheta^2(1+\boldsymbol{x}\cdot\boldsymbol{y})$
$\frac{\mathrm{d}k(oldsymbol{x},oldsymbol{x}_i)}{\mathrm{d}x_j}$	$x_{i,j}$

2.2 Linear Covariance with Automatic Relevance Determination

name	cov_linear_ard
formula	$k(oldsymbol{x},oldsymbol{y}) = \sum_{i=1}^d rac{x_i y_i}{\lambda_i}$
parameters	$\boldsymbol{\vartheta} = (\lambda_1, \dots, \lambda_d)$
log-parameters	$oldsymbol{arphi} = \log artheta$
$rac{\mathrm{d}k}{\mathrm{d}arphi_i}(oldsymbol{artheta})$	$-2\frac{x_i y_i}{\lambda_i}$
$\frac{\mathrm{d}k(oldsymbol{x},oldsymbol{x}_i)}{\mathrm{d}x_j}$	$rac{x_{i,j}}{\lambda_j}$

2.3 Squared exponential covariance function with isotropic distance measure

name	cov_se_iso
formula	$k(\boldsymbol{x}, \boldsymbol{y}) = \alpha^2 \exp\left(-\frac{1}{2\lambda^2} \ \boldsymbol{x} - \boldsymbol{y}\ ^2\right),$
parameters	$\boldsymbol{\vartheta} = (\lambda, \alpha)$
log-parameters	$oldsymbol{arphi} = \log oldsymbol{artheta}$
$rac{ ext{d} k}{ ext{d} arphi_1}(oldsymbol{artheta})$	$rac{1}{\lambda^2} \ oldsymbol{x} - oldsymbol{y}\ ^2 k(oldsymbol{x}, oldsymbol{y})$
$rac{\mathrm{d}k}{\mathrm{d}arphi_2}(oldsymbol{artheta})$	$2k(oldsymbol{x},oldsymbol{y})$
$rac{\mathrm{d} k(oldsymbol{x}, oldsymbol{x}_i)}{\mathrm{d} x_j}$	$\lambda^{-2} (x_{i,j} - x_j) k(\boldsymbol{x}, \boldsymbol{x}_i)$

2.4 Squared exponential covariance function with Automatic Relevance Determination

name	cov_se_ard
formula	$k(\boldsymbol{x}, \boldsymbol{y}) = \alpha^2 \exp\left(-\frac{1}{2} \sum_{i=1}^d \frac{(x_i - y_i)^2}{\lambda_i^2}\right),$
parameters	$\boldsymbol{\vartheta} = (\lambda_1, \dots, \lambda_d, \alpha)$
log-parameters	$oldsymbol{arphi} = \log artheta$
$rac{\mathrm{d}k}{\mathrm{d}arphi_i}(oldsymbol{artheta})$	$rac{1}{\lambda_i^2} \ oldsymbol{x} - oldsymbol{y}\ ^2 k(oldsymbol{x}, oldsymbol{y}), i = 1, \ldots, d$
$rac{\mathrm{d}k}{\mathrm{d}arphi_{d+1}}(oldsymbol{artheta})$	$2k(oldsymbol{x},oldsymbol{y})$

2.5 Independent covariance function (white noise)

name	cov_noise
formula	$k(\boldsymbol{x}, \boldsymbol{y}) = \alpha^2 \delta(\ \boldsymbol{x} - \boldsymbol{y}\)$
parameters	$\vartheta = \alpha$
log-parameters	$\varphi = \log \vartheta$
$\frac{\mathrm{d}k}{\mathrm{d}\varphi}(\vartheta)$	$2\alpha^2\delta(\ \boldsymbol{x}-\boldsymbol{y}\)$

2.6 Periodic covariance function

name	cov_periodic
formula	$k(\boldsymbol{x}, \boldsymbol{y}) = \sigma_f^2 \exp\left(-2\lambda^{-2} \sin^2 \frac{\pi \ \boldsymbol{x} - \boldsymbol{y}\ }{T}\right)$
parameters	$\boldsymbol{\vartheta} = (\alpha, \sigma_f, T)$
log-parameters	$oldsymbol{arphi} = \log artheta$
$rac{\mathrm{d}k}{\mathrm{d}arphi_1}(oldsymbol{artheta})$	$4k(\boldsymbol{x},\boldsymbol{y}) \lambda^{-2} \sin^2 \frac{\pi \ \boldsymbol{x} - \boldsymbol{y}\ }{T}$
$rac{\mathrm{d}k}{\mathrm{d}arphi_2}(oldsymbol{artheta})$	$2 k(\boldsymbol{x}, \boldsymbol{y})$
$rac{\mathrm{d}k}{\mathrm{d}arphi_3}(oldsymbol{artheta})$	$4k(\boldsymbol{x}, \boldsymbol{y}) \lambda^{-1} \beta \frac{\sin \beta}{\lambda} \cos \beta, \beta = \frac{\pi \ \boldsymbol{x} - \boldsymbol{y}\ }{T}$