XPBD: position-based simulation of compliant constrained dynamics

IG3DA/IMA904: Advanced 3D Computer Graphics

Sammy Rasamimanana

February 10, 2023

Table of Contents

- 1. Introduction
- 2. Position Based Dynamics (PBD)
- 3. Extended Position Based Dynamics (XPBD)
- 4. Conclusion

Introduction

A basic strategy for physic simulation

Consider a particle with

- 1. mass *m*
- 2. position p
- 3. speed v
 - Newton's Second Law of Motion

$$m\dot{v} = F_{ext}$$

$$\dot{p} = v$$

Semi-implicit Euler: a basic strategy for physic simulation

Let's make a little change

Semi-implicit Euler/Symplectic integrator

Let dt the time step and t_k the time at the k-th step of the animation. Thus

$$v_{k+1} = v_k + \frac{F_{ext}}{m} dt$$

$$p_{k+1} = p_k + v_{k+1}dt$$

Algorithm

Algorithm 1 Simulation loop

- 1: for all particles do
- $v \longleftarrow v + f_{ext} \cdot m^{-1} \cdot dt$
- $p \leftarrow p + v \cdot dt$
- 4: end for

Position Based Dynamics (PBD)

Another approach: a constraints based strategy

A dynamic object : a set of N vertices (= particles) and M constraints

- **1** A Constraint $j \in [1, M]$ consists of
 - a cardinality n_j and a set of indices $i_1, \dots, i_{n_j} \subset \llbracket 1, N \rrbracket$
 - a function $C_j: \mathbb{R}^{3n_j} \longrightarrow \mathbb{R}$
 - a stiffness parameter $k_j \in [0,1]$
 - a type of either equality ($C_j = 0$) or inequality ($C_j \ge 0$)

Constraint examples

Two particles A and B.

Distance constraint : $C(p_A, p_B) = |p_A - p_B| - l_0$ It is an *equality* constraint : satisfied when $C(p_A, p_B) = 0$.

Main idea : projecting the points

Move the points such that they satisfy the constraint

Main idea: move along gradient

Two particles A and B with Distance constraint : $C(p_A, p_B) = |p_A - p_B| - l_0$

Denote
$$p = \begin{pmatrix} p_A^T \\ p_B^T \end{pmatrix} = \begin{pmatrix} x_A & y_A & z_A \\ x_B & y_B & z_B \end{pmatrix}$$
. How to find Δp such that $C(p + \Delta p) = 0$?

1 Gradient $\nabla_{\mathcal{D}}\mathcal{C}$ indicates the direction of maximal increase for \mathcal{C}

The correction term Δp will be along the gradient $\nabla_p C$

PBD Algorithm

Algorithm 2 Simulation loop

```
1: for all particles do
     p_{old} \longleftarrow p
 3: v \leftarrow v + f_{ext} \cdot m^{-1} \cdot dt
 4: p \leftarrow p + v \cdot dt
 5. end for
 6: while i < nbIterations do
       for all constraints C do
 8:
     \Delta p \leftarrow solveConstraint(C)
      p \leftarrow p + \Delta p
10: end for
11: i \leftarrow i + 1
12. end while
13: v \leftarrow (p - p_{old})/dt
```

Roadmap

Q Goals of the project

- Implementation of distance constraint and fixed constraint (often used)
- Tests on a spring model and on a cloth
- Implementation of bending constraint and collision/penetration constraints
- Tests cloth and ball interaction with ground

Scene: Spring

Two particles with a distance constraint

Scene: Cloth simulation (1)

 20×20 particles with distance constraints for each edge of the quads

Collision constraint

Two particles A and B.

Distance constraint : $C(p_A, p_B) = |p_A - p_B| - l_0$ But its *inequality* version: satisfied when $C(p_A, p_B) \ge 0$.

Penetration Constraint

$$C = (q - p_1) \cdot n \geqslant 0$$
 where $n = \frac{(p_2 - p_1) \times (p_3 - p_1)}{||(p_2 - p_1) \times (p_3 - p_1)||}$

Useful to model collision with walls or floor

If p_1, p_2, p_3 are points of the wall, they are constants and C is just a function of q.

Scene: Floor collision

One particle with two wall-penetration constraints

Scene: Balls

Collision between particles + Wall constraints

PBD: pros and cons

- direct manipulation of positions of vertices and parts of objects
- gives control over explicit integration and removes typical instability problems (it is unconditionnally stable)
- can handle non-linear constraints
- low accuracy, no energy preserving
- stiffness of the model depends on the number of sub-iterations and the time step when moving along the gradient
- results depends on a lot of parameters; order of constraints, stiffness, mass, etc. and do not have a proper physical interpretation

Scene: Cloth simulation (2)

Stiffness dependance of PBD

Stiffness of the model depends on the number of sub-iterations and the time step when moving along the gradient

Extended Position Based Dynamics (XPBD)

Compliant constraint formulation

Idea 1: treat a constraint as an energy potential

$$U(p) = \frac{1}{2}C(p)^{\mathsf{T}}\alpha^{-1}C(p)$$

 α corresponds to the inverse stiffness

Newton's second law: $M\ddot{p} = -\nabla_p U^T = -\nabla_p C^T(p)\alpha^{-1}C(p)$

Compliant constraint formulation

Newton's second law: $M\ddot{p} = -\nabla_p U^T = -\nabla_p C^T(p) \alpha^{-1} C(p)$

Idea 2: introduce the Lagrange multiplier

$$\lambda = -\tilde{\alpha}^{-1}C(p)$$

The equation becomes the system

$$M\ddot{p} - \nabla_{p}C(p)^{T}\lambda = 0$$
$$C(p) + \tilde{\alpha}\lambda = 0$$

⇒ Discretization of the system and iterative resolution (Gauss-Seidel or Jacobi) to find λ then p at each time.

- direct manipulation of positions of vertices and parts of objects
- gives control over explicit integration and removes typical instability problems (it is unconditionnally stable)
- can handle non-linear constraints
- no energy preserving
- stiffness of the model qualitatively independent of time step and number of iterations
- results depends on a lot of parameters: order of constraints, stiffness, mass, etc. and do not have a proper physical interpretation

XPBD Algorithm

Algorithm 3 Simulation loop

```
1: for all particles do
         p_{old} \longleftarrow p
     v \longleftarrow v + f_{ext} \cdot m^{-1} \cdot dt
         p \leftarrow -p + v \cdot dt
5: end for
6: Initialize multipliers \lambda \leftarrow 0
7: while i < nbIterations do
8:
         for all constraints C do
              Compute \Delta \lambda
10:
        Compute \Delta p
        \lambda \longleftarrow \lambda + \Delta \lambda
12:
        p \leftarrow p + \Delta p
13:
        end for
          i \leftarrow -i + 1
15: end while
16: v \leftarrow (p - p_{old})/dt
```

Scene: Cloth simulation (3)

Scene: Cloth balloon

Conclusion

Conclusion

Q Goals of the project

- Implementation of distance constraint and fixed constraint (often used)
- Tests on a spring model and on a cloth
- ✓ Implementation of bending constraint and collision/penetration constraints
- Tests cloth and ball interaction with ground
- Hierarchical or parallelized constraints implementation
- Implementation of Rayleigh dissipation potential (for damping)

THANK YOU

QUESTIONS?

24/24

Still some unstability

Semi-implicit Euler/Symplectic integrator

Let dt the time step and t_k the time at the k-th step of the animation. Thus

$$V_{k+1} = V_k + \frac{F_{ext}}{m} dt$$

$$p_{k+1} = p_k + v_{k+1}dt$$

 \Longrightarrow More stable than explicit Euler, but still unstable depending on time step and types of force ...

⇒ A dynamic object : its center of mass (usually)

Force based strategy for physic simulation

Consider a particle with

- 1. mass *m*
- 2. position p
- 3. speed v

Explicit Euler: discretization of Newton's Second Law of Motion

Let dt the time step and t_k the time at the k-th step of the animation. Thus

$$m(v_{k+1}-v_k)=F_{ext}dt$$

$$p_{k+1} - p_k = v_k dt$$

Explicit Euler: a basic strategy for physic simulation

Consider a particle with mass m, position p, speed v

Explicit Euler: discretization of Newton's Second Law of Motion

Let dt the time step and t_k the time at the k-th step of the animation. Thus

$$v_{k+1} = v_k + \frac{F_{ext}}{m}dt$$

$$p_{k+1} = p_k + v_k dt$$

Explicit Euler: a basic strategy for physic simulation

Consider a particle with mass m, position p, speed v

Explicit Euler: discretization of Newton's Second Law of Motion

Let dt the time step and t_k the time at the k-th step of the animation. Thus

$$v_{k+1} = v_k + \frac{F_{ext}}{m} dt$$

$$p_{k+1} = p_k + v_k dt$$

But it diverges and has a low accuracy!