Ciencia da Computação

Prof. Tiago J. Arruda

Álgebra Vetorial¹

- 1. (2,5 pt.) Resolva os exercícios abaixo.
 - (a) (1,0 pt.) Em um triângulo $\triangle ABC$, seja M um ponto no lado BC tal que $\overrightarrow{2BM} = 3\overrightarrow{MC}$. Escreva o vetor \overrightarrow{AM} em função de \overrightarrow{AB} e \overrightarrow{AC} .
 - (b) (1,5 pt.) Sendo $\overrightarrow{AB} = \vec{u}$, $\overrightarrow{AC} = \vec{v}$ e $\overrightarrow{AH} = \vec{w}$, utilize o paralelepípedo da figura ao lado para determinar os vetores $\vec{a} = 2\overrightarrow{BC} \overrightarrow{CF}$ e $\vec{b} = 3\overrightarrow{HD} \overrightarrow{BE} + 2\overrightarrow{AF}$ em termos de \vec{u} , \vec{v} e \vec{w} .

- 2. (2,0 pt.) Considere a base canônica $\varepsilon = (\vec{i}, \vec{j}, \vec{k})$.
 - (a) (1,0 pt.) Sendo $\vec{u} = \left(2 \frac{m}{2}\right)\vec{i} + \vec{j}$ e $\vec{v} = -6\vec{i} + m\vec{j}$, determine os valores de m para os quais os vetores $n\tilde{a}o$ são paralelos.
 - (b) (1,0 pt.) Sendo $\vec{a}=(1,3,m+1), \vec{b}=(2,1,m)$ e $\vec{c}=(1,1,2),$ calcule m para que os vetores sejam L.D.
 - 3. (2,5 pt.) Sejam $\vec{u}=(1,2,3), \ \vec{v}=(1,-1,-3) \ \text{e} \ \vec{w}=(1,1,-2)$ expressos na base canônica do \mathbb{R}^3 .
 - (a) (0,5 pt.) O vetor \vec{u} é uma combinação linear de \vec{v} e \vec{w} ? Justifique.
 - (b) (1,0 pt.) Determine o ângulo entre os vetores $\vec{a} \in \vec{b}$, onde $\vec{a} = \vec{u} \vec{v} \in \vec{b} = \vec{u} + 2\vec{v} 3\vec{w}$.
 - (c) (1,0 pt.) Escreva $\vec{t}=(1,0,2)$ como combinação linear de $\vec{u},\,\vec{v}$ e \vec{w} e determine os coeficientes dessa combinação.
- 4. (3,0 pt.) São dados os pontos A = (1,0,1), B = (-1,0,2) e C = (1,1,1) em um sistema de coordenadas ortogonal, na base canônica.
 - (a) (1,0 pt.) Mostre que os pontos $A, B \in C$ são vértices de um triângulo retângulo em \mathbb{R}^3 e determine sua área usando produto vetorial.
 - (b) (1,0 pt.) Calcule o vetor projeção ortogonal de \overrightarrow{BC} na direção de \overrightarrow{BA} (isto é, $\text{Proj}_{\overrightarrow{BA}}$ \overrightarrow{BC}) e comente o resultado.
 - (c) (1,0 pt.) Determine o comprimento da altura do triângulo relativa ao vértice A e à base BC e calcule o cosseno do ângulo \widehat{ABC} .

¹Coloque o nome completo nas folhas de prova e escreva o resultado final das questões à caneta. Respostas sem resolução e/ou justificativa não serão consideradas. Não é permitido o uso de quaisquer equipamentos eletrônicos. Data da Avaliação: 28/05/2025

