1. (a) Define the decision problem D_0 as follows.

Input: A string $x \in \Sigma^*$, where $\Sigma = \{0, 1\}$.

Output: Does x = 0?

To show that $D_0 \leq_p \overline{D_0}$, we wish to construct in polynomial time a function $f: \Sigma^* \to \Sigma^*$ such that x is a yes-instance of D_0 if and only if f(x) is a yes-instance of $\overline{D_0}$ (or equivalently a no-instance of D_0). The reduction function f is simply defined as follows.

$$f(x) = \begin{cases} 1 & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}$$

This function can trivially be computed in constant time, which means that it is computable in polynomial time. Moreover, if x is a yes-instance of D_0 , then x = 0, so f(x) = 1, which is a no-instance of D_0 . Conversely, if x is a no-instance of D_0 , then f(x) = 0, which is the only yes-instance of D_0 . Therefore $D_0 \leq_p \overline{D_0}$.

- (b) The problem of determining whether a binary input string x is equal to the string 0 is clearly decidable in constant time, and in particular $D_0 \in P$. Since $P \subseteq NP$, it follows that $D_0 \in NP$.
- (c) Let D_1 be NP-complete and suppose $D_1 \leq_p \overline{D_1}$. Then there is some reduction function $f: \Sigma^* \to \Sigma^*$ computable in polynomial time such that x is a yes-instance of D_1 if and only if f(x) is a yes-instance of $\overline{D_1}$. This implies that we also have $\overline{D_1} \leq_p D_1$, by using the exact same reduction function f.

Since $D_1 \in \text{NP}$, it follows that $\overline{D_1} \in \text{coNP}$. Moreover, a language L is NP if and only if \overline{L} is coNP. Since D_1 is NP-complete, we have $L \leq_p D_1$, and equivalently (by the same reasoning as above), $\overline{L} \leq_p \overline{D_1}$. Therefore $\overline{D_1}$ is coNP-complete.

Let $A \in NP$. Then $A \leq_p \overline{D_1}$. Since $\overline{D_1} \in coNP$ it follows that $A \in coNP$. Therefore $NP \subseteq coNP$.

Similarly, let $B \in \text{coNP}$. Then $B \leq_p \overline{D_1} \leq_p D_1$, since $\overline{D_1}$ is coNP-complete. Then $B \in \text{NP}$. Hence $\text{coNP} \subseteq \text{NP}$.

Therefore, combining these two statements, it follows that NP = coNP, under the assumption that such a problem D_1 exists.