Quiz 1-2

HUL315: Econometric Methods

Indian Institute of Technology Delhi Semester-I: 2025–26 SET ACB

	221 1102
Name:	Entry Number:
C-14 41	and a supposition of the contract of the contr

Select the most appropriate choice among the alternatives for the questions below

- 1. (3 points) For X and Y, two jointly distributed random variables, which of the following statements is false?
 - A. If the covariance between X and Y is 0, then X and Y are independent.
 - B. If X and Y are independently distributed, then the conditional distribution of Y given X equals the marginal distribution of Y.
 - C. If the covariance between X and Y is 0, then X and Y are uncorrelated.
 - D. If X and Y are independently distributed, then the joint density of X and Y is the product of their marginal densities.
- 2. (3 points) Which of the following statements are false?
 - A. If the distribution of a random variable is symmetric to the mean, then the mean, median, and mode are the same.
 - B. If the correlation between X and Y is r, then the correlation coefficient between the standardized values of X and Y is also r.
 - C. If X and Y are independent, then Var(Y|X) = Var(Y).
 - **D.** If Cov(X, Y) = 0, then $\mathbb{E}(Y|X) = \mathbb{E}(Y)$.
- 3. (4 points) Let X be a discrete random variable with the probability mass function

$$P(X = n) = \begin{cases} -\frac{2c}{n} & \text{if } n = -1, -2\\ d & \text{if } n = 0\\ cn & \text{if } n = 1, 2\\ 0 & \text{otherwise} \end{cases}$$

where c and d are positive real numbers. If $P(|X| \leq 1) = \frac{3}{4}$, then $\mathbb{E}(X)$ is

- **A.** $\frac{1}{12}$
- B. $\frac{1}{6}$
- C. $\frac{1}{3}$
- D. $\frac{1}{2}$
- 4. (3 points) If X and Y are two random variables with $\mathbb{E}(X) = 10$, $\mathbb{E}(Y) = 5$, and they are independent, what is $\mathbb{E}(X^2Y)$?
 - A. 50

- B. Cannot be determined without knowing the variance of X.
- C. 250
- D. 100
- 5. (3 points) Which of the following describes a distribution with a kurtosis greater than 3?
 - A. The distribution is symmetric.
 - B. The distribution has a long right tail.
 - C. The distribution has heavy tails and is 'leptokurtotic'.
 - D. The distribution has a long left tail.
- 6. (4 points) Let X be a random variable with the probability density function

$$f(x) = \begin{cases} \alpha x^2 & \text{if } x \in [0, 2] \\ 0 & \text{otherwise} \end{cases}$$

A new random variable is defined as $Y = X^2$. What is the expected value of Y, $\mathbb{E}(Y)$?

- A. 2α
- B. $\frac{16}{3}$
- **C.** $\frac{12}{5}$
- D. $\frac{8}{3}$
- 7. (3 points) If X and Y are independent random variables, and Var(X) = 4 and Var(Y) = 9, what is Var(X + Y)?
 - **A.** 13
 - B. Cannot be determined without knowing the covariance of σ_{XY} .
 - C. 2.5
 - D. 36
- 8. (4 points) Let X and Y be two random variables. The joint p.d.f. is given by f(x,y) = k(x+y) for $x,y \in [0,1]$ and 0 otherwise. What is the value of k?
 - A. $\frac{1}{6}$
 - B. $\frac{1}{4}$
 - C. $\frac{1}{2}$
 - **D.** 1
- 9. (3 points) Which of the following statements are false?
 - A. If the distribution of a random variable is symmetric to the mean, then the mean, median, and mode are the same.

- B. If the correlation between X and Y is r, then the correlation coefficient between the standardized values of X and Y is also r.
- C. If X and Y are independent, then Var(Y|X) = Var(Y).
- **D.** If Cov(X,Y) = 0, then $\mathbb{E}(Y|X) = \mathbb{E}(Y)$.
- 10. (3 points) Let X be a random variable with the PDF f(x) = k(1-x) for $x \in [0,1]$ and 0 otherwise. What is the variance of X, Var(X)?
 - **A.** $\frac{1}{18}$
 - B. $\frac{1}{3}$
 - C. $\frac{1}{6}$
 - D. $\frac{1}{2}$
- 11. (3 points) Let $\{Y_1, Y_2, ..., Y_n\}$ be a random sample from a population with mean μ and variance σ^2 . The sample mean is $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$. A new estimator for the mean is
 - given by $\hat{\mu} = \frac{1}{n-1} \sum_{i=1}^{n} Y_i$. What is the bias of this new estimator?
 - A. 0
 - $\mathbf{B.} \ \frac{\mu}{(n-1)}$
 - C. $\frac{\mu}{n}$
 - D. $\frac{n\mu}{(n-1)}$
- 12. (4 points) The joint p.d.f. of two random variables X and Y is given by $f(x,y) = e^{-(x+y)}$ for $x,y \ge 0$ and 0 otherwise. What is the conditional expectation of X given Y = y, $\mathbb{E}(X|Y = y)$?
 - **A.** 1
 - B. e^{-y}
 - C. 0.5
 - D. y
- 13. (4 points) Let X be a random variable with the PDF f(x) = k(2-x) for $x \in [0,2]$ and 0 otherwise. What is the value of the median of X?
 - A. 1
 - **B.** $2 \sqrt{2}$
 - C. $2 + \sqrt{2}$
 - D. 0.5
- 14. (3 points) Let X and Y be independent random variables with $\mathbb{E}(X) = 1$ and $\mathbb{E}(Y) = 2$. Let W = X + Y and Z = X Y. What is Cov(W, Z)?

- A. -1
- B. Cannot be determined without knowing the variances of X and Y.
- C. 1
- D. 0
- 15. (3 points) For X and Y, two jointly distributed random variables, which of the following statements is false?
 - A. If the covariance between X and Y is 0, then X and Y are independent.
 - B. If X and Y are independently distributed, then the conditional distribution of Y given X equals the marginal distribution of Y.
 - C. If the covariance between X and Y is 0, then X and Y are uncorrelated.
 - D. If X and Y are independently distributed, then the joint density of X and Y is the product of their marginal densities.
- 16. (4 points) Consider a population with a Bernoulli distribution where P(Y = 1) = 0.78. Which of the following statements best describes the sampling distribution of the sample mean \bar{Y} for a large *i.i.d.* sample of size n?
 - A. The sampling distribution of \bar{Y} is approximately normal only if the probability of success P(Y=1) is close to 0.5.
 - B. By the Central Limit Theorem, the sampling distribution of \bar{Y} is approximately normal, centered at the population mean ($\mu_Y = 0.78$).
 - C. The variance of the sampling distribution of \bar{Y} is constant, regardless of the sample size n.
 - D. By the Central Limit Theorem, the sampling distribution of \bar{Y} converges to the same Bernoulli distribution as the population.
- 17. (3 points) An econometrician tests H_0 : policy has no effect vs. H_1 : policy has a positive effect, using $\alpha = 0.05$. The p-value is 0.065, so they fail to reject the null hypothesis. What is the most precise conclusion?
 - A. There is a 6.5% chance that the null hypothesis is true.
 - B. Failing to reject H_0 avoids the risk of a Type I error.
 - C. The *p*-value indicates the policy is very likely to have no effect.
 - D. Failing to reject H_0 incurs the risk of a Type II error (a false negative).
- 18. (3 points) Suppose the significance level is set at $\alpha = 0.05$ and the observed p-value is 0.07. Which of the following statements is correct?
 - A. We reject H_0 because the p-value is smaller than 0.1.
 - B. We fail to reject H_0 because the observed p-value (0.07) is greater than the chosen significance level (0.05).
 - C. The null hypothesis is true because the p-value exceeds 0.05.

- D. The test is inconclusive; p-values cannot be compared to α .
- 19. (4 points) Suppose $\{Y_i\}_{i=1}^n$ are i.i.d. random variables with $\mathbb{E}[Y_i] = \mu_Y$ and $\mathrm{Var}(Y_i) = \sigma^2 < \infty$. Two estimators of μ_Y are defined as:

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i, \quad \tilde{Y} = \sum_{i=1}^{n} w_i Y_i, \quad w_i > 0, \quad \sum_{i=1}^{n} w_i = 1.$$

Which of the following statements about their large-sample properties is correct?

- A. Both \bar{Y} and \tilde{Y} are unbiased, but only \tilde{Y} is consistent.
- B. Both \bar{Y} and \tilde{Y} are unbiased and consistent, but \bar{Y} is asymptotically more efficient.
- C. Both \bar{Y} and \tilde{Y} are unbiased and consistent, but \bar{Y} has the minimum variance among all such linear unbiased estimators.
- D. \bar{Y} is unbiased but inconsistent, while \tilde{Y} is biased but consistent.
- 20. (3 points) In the context of hypothesis testing, what does a very small p-value (e.g., 0.001) indicate?
 - A. Strong evidence that the null hypothesis is true.
 - B. Strong evidence against the null hypothesis, since such extreme data are unlikely if H_0 is true.
 - C. Proof that the alternative hypothesis is true.
 - D. No information; p-values cannot be used for inference.
- 21. (3 points) Suppose we are testing $H_0: \mu = 50$ vs. $H_1: \mu \neq 50$ using the test statistic $Z = \frac{\overline{Y} 50}{\sigma/\sqrt{n}}$ with known variance σ^2 . If the true mean is $\mu = 50 + \delta$, which of the following best describes how the power of the test behaves as $n \to \infty$?
 - A. Power converges to α , the size of the test.
 - B. Power converges to 0.5, regardless of δ .
 - C. Power converges to 1 for any fixed $\delta \neq 0$.
 - D. Power oscillates and does not converge.
- 22. (4 points) Let $\{Y_i\}_{i=1}^n$ be i.i.d. $\mathcal{N}(\mu, \sigma^2)$ with known σ^2 . A 95% confidence interval for μ is given by

$$\left[\overline{Y} - 1.96 \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{Y} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}\right].$$

If instead the variance is unknown and we replace σ by the sample standard deviation

$$S = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(Y_i-\bar{Y})^2}$$
, how does the probability that the interval contains the

true mean behave as $n \to \infty$?

- A. It becomes strictly less than 95% for all large n.
- B. It becomes strictly greater than 95% for all large n.
- C. It converges to 95%, since the t-distribution converges to the standard normal.

- D. It oscillates indefinitely and does not converge.
- 23. (3 points) A student runs a two-sided test and obtains a *p*-value of 0.03. Which of the following interpretations is correct?
 - A. There is a 3% probability that the null hypothesis is true.
 - B. If the null hypothesis were true, the probability of observing data as extreme as (or more extreme than) the sample is 3%.
 - C. The alternative hypothesis is true with 97% probability.
 - D. Repeating the experiment 100 times, the null would be rejected exactly 3 times.
- 24. (3 points) Suppose we test $H_0: \mu = 50$ against $H_1: \mu \neq 50$ at significance level $\alpha = 0.05$. If we reduce the significance level to $\alpha = 0.01$ while keeping the sample size fixed, what is the effect on the probability of a Type II error (β) ?
 - A. It decreases, since the rejection region becomes larger.
 - B. It increases, since the rejection region becomes smaller.
 - C. It remains the same, since β does not depend on α .
 - D. It oscillates between 0 and 1 as α decreases.
- 25. (3 points) Which of the following is the most precise definition of a p-value in hypothesis testing?
 - A. The probability that the null hypothesis is true, given the observed data.
 - B. The probability, under the assumption that the null hypothesis is true, of obtaining a test statistic at least as extreme as the one observed.
 - C. The smallest significance level α at which we fail to reject the null hypothesis.
 - D. The long-run frequency with which the null hypothesis is true.
- 26. (4 points) Let $\{Y_i\}_{i=1}^n$ be i.i.d. random variables with mean μ_Y and variance $\sigma_Y^2 < \infty$. Which of the following is the statement of the Central Limit Theorem (CLT) for the sample mean \bar{Y} ?
 - A. $\bar{Y} \sim N(\mu_Y, \sigma_Y^2)$ for any sample size n.
 - B. $\sqrt{n} \frac{\bar{Y} \mu_Y}{\sigma_Y} \stackrel{d}{\to} N(0,1)$ as $n \to \infty$.
 - C. $\bar{Y} \sim t_{n-1}$ for large n.
 - D. \bar{Y} converges almost surely to $N(\mu_Y, \sigma_Y^2)$.
- 27. (3 points) Let $\{Y_i\}_{i=1}^n$ be i.i.d. $\mathcal{N}(\mu, \sigma^2)$ with known σ^2 . A 95% confidence interval for μ is given by

$$\left[\overline{Y} - 1.96 \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{Y} + 1.96 \cdot \frac{\sigma}{\sqrt{n}} \right].$$

If instead the variance is unknown and we replace σ by the sample standard deviation

$$S = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(Y_i-\bar{Y})^2}$$
, how does the probability that the interval contains the

true mean behave as $n \to \infty$?

- A. It becomes strictly less than 95% for all large n.
- B. It becomes strictly greater than 95% for all large n.
- C. It converges to 95%, since the t-distribution converges to the standard normal.
- D. It oscillates indefinitely and does not converge.
- 28. (3 points) \bar{Y} is the sample mean defined for an *i.i.d.* random sample $\{Y_i\}_{i=1}^n$ often used to estimate the population mean μ_Y . Consider a second estimator, Y, which uses unequal weights $(w_i > 0, \sum w_i = 1)$

$$\tilde{Y} = \sum_{i=1}^{n} w_i Y_i.$$

Which of the following statement is correct?

- A. \tilde{Y} is generally biased for μ_Y unless all the weights are equal.
- B. \tilde{Y} is unbiased for μ_Y , but its variance is larger than \bar{Y} .
- C. \tilde{Y} is consistent only if the weights are unequal.
- D. \tilde{Y} always has a smaller variance than \bar{Y} .
- 29. (3 points) Suppose $Y_i \sim \text{Bernoulli}(p)$ with p = 0.6. What happens to the variance of the sample mean \bar{Y} as the sample size n increases?
 - A. It remains constant at p(1-p).
 - B. It decreases at the rate $\frac{1}{n}$, i.e. $Var(\bar{Y}) = \frac{p(1-p)}{n}$.
 - C. It increases linearly with n.
 - D. It oscillates depending on whether n is even or odd.
- 30. (4 points) In a two-sided t-test with n-1 degrees of freedom, the observed test statistic is $t_{\rm obs}=2.5$. Which of the following correctly describes how the p-value is computed?
 - A. $P(T \ge 2.5)$ where $T \sim N(0, 1)$.
 - B. $P(T \le 2.5)$ where $T \sim t_{n-1}$.
 - C. $2 \cdot P(T \ge 2.5)$ where $T \sim t_{n-1}$.
 - D. $P(T \ge |2.5|)$ where $T \sim \chi_{n-1}^2$.