Løsning øving 12

Oppgave 1

To parallelle ledere henger i lette snorer med lengde $L=0,050\,\mathrm{m}$ og vinkelen mellom hver snor og vertikalen er $\alpha=\frac{\theta}{2}=\frac{12^{\circ}}{2}=6,0^{\circ}$. Figuren under viser kreftene som virker på de to parallelle lederne: tyngden G, snordraget S og en magnetkraft F_m mellom de to lederne (et tilsvarende sett krefter virker på den andre lederen, men dette er ikke inntegnet). Se figuren under.

Ettersom hver leder henger i ro, må $\sum \vec{F} = \vec{0}$, slik at

$$S_y = mg$$
$$F_m = S_x$$

Ettersom $S_x = S_y \tan \alpha$, gir dette:

$$F_m = S_x = mg \tan \alpha$$

Den magnetiske kraften per lengdeenhet mellom to parallelle ledere er gitt fra formelarket:

$$\frac{F_m}{l} = \frac{\mu_0 I^2}{2\pi r},$$

der I er strømmen i hver leder og r er avstanden imellom de. Dette gir:

$$\begin{split} \frac{F_m}{l} &= \frac{mg \tan \alpha}{l} & \text{(Deler likning med } l) \\ \frac{\mu_0 I^2}{2\pi r} &= \frac{mg \tan \alpha}{l} & \text{(Setter inn for magnetkraft)} \\ I &= \sqrt{\frac{2\pi r}{\mu_0} \cdot \frac{mg \tan \alpha}{l}} \\ &= \sqrt{\frac{2\pi \cdot 2L \sin \alpha}{\mu_0} \cdot \frac{mg \tan \alpha}{l}} & \text{(Setter inn for avstanden } r) \\ &= \sqrt{\frac{4\pi}{\mu_0} \cdot L \sin \alpha \cdot \frac{m}{l} \cdot g \tan \alpha} \\ &= \sqrt{\frac{4\pi}{4\pi \cdot 10^{-7} \, \text{Tm/A}} \cdot 0,050 \, \text{m} \cdot \sin 6,0^\circ \cdot 0,030 \, \text{kg/m} \cdot 9,81 \, \text{m/s}^2 \cdot \tan 6,0^\circ} \\ &= 40,2 \, \text{A} \\ &\approx 40 \, \text{A} \end{split}$$

Oppgave 2

Figuren under viser magnetkreftene som virker på sløyfa ved t=0:

- a) På de to segmentene som er parallelle med magnetfeltet, er magnetkrafta $\vec{F}_m = \vec{l} \times \vec{B}$ og her er \vec{l} og \vec{B} parallelle.
- b) På de to sidene som står vinkelrett på magnetfeltet er absoluttverdien av krafta lik

$$F_m = IaB \sin 90^{\circ}$$

$$= 10 \text{ A} \cdot 0, 10 \text{ m} \cdot 0, 50 \text{ T}$$

$$= \underline{0, 50 \text{ N}}$$

Retningene er som antydet på figuren (én går inn i figurplanet; én ut av planet).

- c) Den totale magnetkrafta på sløyfa er **hele tiden** lik 0: på de to sidene hvor magnetkrafta er forskjellig fra 0, er magnetkreftene hele tiden like store og motsatt rettet.
- d) Dreiemomentet på sløyfa om et dreiepunkt gjennom midten av sløyfa kan vi finne fra formelarket:

$$\tau = IAB\sin\phi,$$

der ϕ er vinkelen mellom sløyfas normalvektor og magnetfeltet. Altså er

$$\tau (\phi) = 10 \text{ A} \cdot 0, 10 \text{ m} \cdot 0, 10 \text{ m} \cdot 0, 50 \text{ T} \cdot \sin \phi$$
$$= \underline{0,050 \text{ Nm} \cdot \sin \phi}$$

Oppgave 3

a) Magnetfeltet fra hver leder er konsentriske sirkler med retning bestemt ut i fra høyrehåndsregelen slik figuren under viser (her har strømmen retning inn i papiret):

Magnetfeltbidraget er hhv. B_1 og B_2 fra de to lederne. Som figuren viser har bidragene motsatt retning, mens absoluttverdien er den samme ettersom punktet ligger midt mellom lederne:

Magnetfeltet i avstand a fra hver leder er gitt ved

$$B_1 = B_2 = \frac{\mu_0 I}{2\pi a},$$

slik at det totale feltet blir

$$B = B_1 - B_2$$
$$= \underline{\underline{0}}$$

b) I punkt P_2 vil nå magnetfeltbidraget fra hver leder peke i samme retning, som figuren under viser (kun deler av magnetfeltet fra den ene lederen er inntegnet):

Det totale magnetfeltet blir altså summen av bidragene. Ut i fra formelen for magnetfelt rundt leder gir dette at:

$$B = B_1 + B_2$$

$$= \frac{\mu_0 I}{2\pi \cdot 4a} + \frac{\mu_0 I}{2\pi \cdot 2a}$$

$$= \frac{3\mu_0 I}{8\pi a}$$
(Avstanden er hhv 4a og 2a)

Oppgave 4

Vi skal vurdere følgende påstander:

A. Absoluttverdien av den induserte emsen i generatoren er $|NBA\omega \sin \omega t|$

Fluksen gjennom én sløyfe er gitt ved $\Phi = BA\cos\phi$, der ϕ er vinkelen mellom \overrightarrow{n} og magnetfeltet. Den induserte emsen er $\varepsilon = \frac{d\Phi}{dt} = -BA\sin\phi \cdot \frac{d\phi}{dt} = -BA\omega\sin\phi$, slik at absoluttverdien av emsen gjennom N vindinger blir $|NBA\omega\sin\phi|$. Påstanden er **riktig**.

B. Absoluttverdien av den induserte emsen i generatoren er $|NBA\omega\cos\omega t|$

Feil - se punkt A.

C. Absoluttverdien av den induserte emsen i sløyfa er konstant

Feil - se over (den varierer med tiden på grunn av faktoren $\sin \omega t$).

D. Absoluttverdien av den induserte emsen i sløyfa er størst når normalvektoren og magnetfeltet står vinkelrett på hverandre, dvs. for $\phi = n \cdot \frac{\pi}{2}, n = 1, 2, 3, ...$

Vi fant at $|\varepsilon| = |BA\sin\phi|$. Ettersom sinus har sin største verdi når $\phi = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$, vil emsen ha sin største verdi i tilfeller hvor \overrightarrow{n} står vinkelrett på magnetfeltet. Påstanden er **riktig**.

E. Absoluttverdien av den induserte emsen i sløyfa er størst når normalvektoren er parallelle, dvs. for $\phi = n \cdot 2\pi, n = 0, 1, 2, 3, \dots$

Feil - se punkt D.

F. Tiden for ett omløp av sløyfa er $t = \frac{2\pi}{\omega}$

Ettersom den konstante vinkelfarten er ω , blir tiden for ett omløp, som tilsvarer en rotert vinkel lik 2π , lik $t=\frac{\mathrm{vinkel}}{\mathrm{vinkelfart}}=\frac{2\pi}{\omega}$. Påstanden er **riktig**.