MATH3701: Higher Topology and Differential Geometry Assignment

Name: Keegan Gyoery zID: z5197058

1. Consider $d(l\gamma(u)), u \in I$. Note that l is linear and so dl = l.

$$d(l \circ \gamma(u)) = d\gamma(u) \cdot dl(\gamma(u))$$

= $d\gamma(u) \cdot l \circ \gamma(u)$ as l is linear
= $d\gamma(u) \cdot c \dots (A)$.

We know that γ sends u into $C \subset P$. For any $x = \gamma(u)$ inside the plane, by definition, $l \circ \gamma(u) = l(x) = c$. Alternatively, we can differentiate as follows.

$$\therefore d(l \circ \gamma(u)) = d(l(x))$$

$$= d(c)$$

$$= 0 \dots (B)$$

Using both (A) and (B), we arrive at the following result.

$$\therefore d\gamma(u) \cdot c = 0$$
$$d\gamma(u) = 0.$$

Thus all derivatives of γ are zero, so they cannot be linearly independent in \mathbb{R}^4 . Hence γ is not Frenet. Geometrically speaking, as the curve's derivatives are not linearly independent and all 0, the curve may not move out of the plane it resides in.

2.

$$\gamma(u) = (-u, \sin 2u, \cos 2u)^{\mathsf{T}} \dot{\gamma}(u) = (-1, 2\cos 2u, -2\sin 2u)^{\mathsf{T}} \ddot{\gamma}(u) = (0, -4\sin 2u, -4\cos 2u)^{\mathsf{T}}.$$

Consider $\alpha \dot{\gamma}(u) + \beta \ddot{\gamma}(u) = \mathbf{0}$, where $\alpha, \beta \in \mathbb{R}$. Solving for α and β , we use the following matrix.

$$\begin{bmatrix} -1 & 0 & 0 \\ 2\cos 2u & -4\sin 2u & 0 \\ -2\sin 2u & -4\cos 2u & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2\sin 2u & -4\cos 2u & 0 \end{bmatrix}$$

Clearly, $\alpha = \beta = 0$, thus $\dot{\gamma}(u)$ and $\ddot{\gamma}(u)$ are linearly independent, and so γ is Frenet. For the Frenet frame we get the following results for the ε_i .

$$\varepsilon_1(u) = \frac{\dot{\gamma}(u)}{|\dot{\gamma}(u)|} = \frac{1}{\sqrt{5}} (-1, 2\cos 2u, -2\sin 2u)^{\mathsf{T}}.$$

Notice that $\langle \varepsilon_1(u), \ddot{\gamma}(u) \rangle = 0$ and so $\ddot{\gamma}(u)$ is perpendicular to $\varepsilon_1(u)$. Hence for $\varepsilon_2(u)$ we simply normalise $\ddot{\gamma}(u)$.

$$\varepsilon_2(u) = (0, -\sin 2u, -\cos 2u)^{\mathsf{T}}.$$

For $\varepsilon_3(u)$ we take the cross product of the first two vectors in the distinguished Frenet frame.

$$\varepsilon_3(u) = \varepsilon_1(u) \times \varepsilon_2(u)$$

$$= \frac{1}{\sqrt{5}} (-1, 2\cos 2u, -2\sin 2u)^\mathsf{T} \times (0, -\sin 2u, -\cos 2u)^\mathsf{T}$$

$$= \frac{1}{\sqrt{5}} (-2, -\cos 2u, \sin 2u)^\mathsf{T}.$$

Note that $\det(\varepsilon_1(u) \ \varepsilon_2(u) \ \varepsilon_3(u)) = -1$, so instead choose $\varepsilon_3(u) = \varepsilon_2(u) \times \varepsilon_1(u) = -\varepsilon_1(u) \times \varepsilon_2(u)$, yielding a determinant of +1. By the definition of the cross product, and the selections of $\varepsilon_1(u)$, $\varepsilon_2(u)$,

and $\varepsilon_3(u)$, they satisfy conditions 1) and 2) for a distinguished Frenet frame. Thus the distinguished Frenet frame for γ is:

$$\varepsilon_{1}(u) = \frac{1}{\sqrt{5}} (-1, 2\cos 2u, -2\sin 2u)^{\mathsf{T}}$$

$$\varepsilon_{2}(u) = (0, \sin 2u, \cos 2u)^{\mathsf{T}}$$

$$\varepsilon_{3}(u) = \frac{1}{\sqrt{5}} (2, \cos 2u, -\sin 2u)^{\mathsf{T}}.$$

3. a) As we have a distinguished Frenet frame for γ , for any i, j, we have $\langle \varepsilon_i(u), \varepsilon_j(u) \rangle = 0$ or 1. In either case we know,

$$\frac{d}{du}\langle \varepsilon_i(u), \varepsilon_j(u) \rangle = 0.$$

Using the product rule, we get the result,

$$\frac{d}{du}\langle \varepsilon_i(u), \varepsilon_j(u) \rangle = \langle \dot{\varepsilon}_i(u), \varepsilon_j(u) \rangle + \langle \varepsilon_i(u), \dot{\varepsilon}_j(u) \rangle
\qquad \vdots \quad 0 = \langle \dot{\varepsilon}_i(u), \varepsilon_j(u) \rangle + \langle \varepsilon_i(u), \dot{\varepsilon}_j(u) \rangle
\qquad \vdots \quad \langle \dot{\varepsilon}_i(u), \varepsilon_j(u) \rangle = -\langle \varepsilon_i(u), \dot{\varepsilon}_j(u) \rangle
\qquad \langle \dot{\varepsilon}_i(u), \varepsilon_j(u) \rangle = -\langle \dot{\varepsilon}_j(u), \varepsilon_i(u) \rangle
\qquad \vdots \quad w_{ij} = -w_{ji}.$$

b) Part 2) of the proposition indicates that for $1 \leq i \leq m-1$, then $\operatorname{span}(\varepsilon_1(u), \cdots, \varepsilon_i(u)) = \operatorname{span}(\dot{\gamma}(u), \ddot{\gamma}(u), \dots, \gamma^{(i)}(u))$. Clearly $\varepsilon_i(u) \in \operatorname{span}(\varepsilon_1(u), \cdots, \varepsilon_i(u))$, thus $\varepsilon_i(u) \in \operatorname{span}(\dot{\gamma}(u), \ddot{\gamma}(u), \dots, \gamma^{(i)}(u))$. Hence $\varepsilon_i(u)$ can be written as a linear combination,

$$\varepsilon_i(u) = \alpha_1 \dot{\gamma}(u) + \alpha_2 \ddot{\gamma}(u) + \dots + \alpha_i \gamma^{(i)}(u).$$

Differentiating yields

$$\dot{\varepsilon}_i(u) = \alpha_1 \ddot{\gamma}(u) + \dots + \alpha_i \gamma^{(i+1)}(u)$$

$$\therefore \dot{\varepsilon}_i(u) \in \operatorname{span}(\ddot{\gamma}(u), \dots, \gamma^{(i+1)}(u)).$$

As $\operatorname{span}(\ddot{\gamma}(u), \dots, \gamma^{(i+1)}(u)) \subseteq \operatorname{span}(\dot{\gamma}(u), \ddot{\gamma}(u), \dots, \gamma^{(i+1)}(u)) = \operatorname{span}(\varepsilon_1(u), \dots, \varepsilon_{i+1}(u))$, then, $\dot{\varepsilon}_i(u) \in \operatorname{span}(\dot{\gamma}(u), \ddot{\gamma}(u), \dots, \gamma^{(i+1)}(u))$ $\therefore \dot{\varepsilon}_i(u) \in \operatorname{span}(\varepsilon_1(u), \varepsilon_2(u), \dots, \varepsilon_{i+1}(u)).$

c) Given $\dot{\varepsilon}_i(u) \in \text{span}(\varepsilon_1(u), \varepsilon_2(u), \dots, \varepsilon_{i+1}(u))$ then we can write.

$$\dot{\varepsilon}_{i}(u) = \alpha_{1}\varepsilon_{1}(u) + \alpha_{2}\varepsilon_{2}(u) + \dots + \alpha_{i+1}\varepsilon_{i+1}(u).$$

$$\begin{aligned}
w_{ij} &= \langle \dot{\varepsilon}_{i}(u), \varepsilon_{j}(u) \rangle \\
&= \langle \alpha_{1}\varepsilon_{1}(u) + \alpha_{2}\varepsilon_{2}(u) + \dots + \alpha_{i+1}\varepsilon_{i+1}(u), \varepsilon_{j}(u) \rangle \\
&= \langle \alpha_{1}\varepsilon_{1}(u), \varepsilon_{j}(u) \rangle + \langle \alpha_{2}\varepsilon_{2}(u), \varepsilon_{j}(u) \rangle + \dots + \langle \alpha_{i+1}\varepsilon_{i+1}(u), \varepsilon_{j}(u) \rangle \\
&= \begin{cases} 0 & j > i+1 \\ \alpha_{j} & j \leq i+1 \end{cases}$$

Similarly for w_{ji} ,

$$\dot{\varepsilon}_{j}(u) = \beta_{1}\varepsilon_{1}(u) + \beta_{2}\varepsilon_{2}(u) + \dots + \beta_{j+1}\varepsilon_{j+1}(u).$$

$$\begin{aligned}
w_{ji} &= \langle \dot{\varepsilon}_{j}(u), \varepsilon_{i}(u) \rangle \\
&= \langle \beta_{1}\varepsilon_{1}(u) + \beta_{2}\varepsilon_{2}(u) + \dots + \beta_{j+1}\varepsilon_{j+1}(u), \varepsilon_{i}(u) \rangle \\
&= \langle \beta_{1}\varepsilon_{1}(u), \varepsilon_{i}(u) \rangle + \langle \beta_{2}\varepsilon_{2}(u), \varepsilon_{i}(u) \rangle + \dots + \langle \beta_{j+1}\varepsilon_{j+1}(u), \varepsilon_{i}(u) \rangle \\
&= \begin{cases}
0 & i > j+1 \\
\beta_{i} & i \leq j+1
\end{cases}$$

Furthermore $\alpha_j > 0$, and $\beta_i > 0$, by positivity of the inner product. We also know that $w_{ij} = -w_{ji}$. Hence we have the following cases:

1) i > j + 1 or j > i + 1.

In this case either $w_{ij} = 0$ or $w_{ji} = 0$. Either way, as $w_{ij} = -w_{ji}$, we know that $w_{ij} = 0$.

2) $i \le j + 1$ and $j \le i + 1$.

In this case, $i - j \le 1$, and $i - j \ge -1$. This is equivalent to |i - j| = 1.

Thus $w_{ij} = 0$ unless |i - j| = 1.

4. Recall we have the following distinguished Frenet frame for γ .

$$\varepsilon_{1}(u) = \frac{1}{\sqrt{5}} (-1, 2\cos 2u, -2\sin 2u)^{\mathsf{T}}$$

$$\varepsilon_{2}(u) = (0, -\sin 2u, -\cos 2u)^{\mathsf{T}}$$

$$\varepsilon_{3}(u) = \frac{1}{\sqrt{5}} (2, \cos 2u, -\sin 2u)^{\mathsf{T}}.$$

Computing $\kappa_1(u)$ we have,

$$\kappa_1(u) = \frac{\langle \dot{\varepsilon}_1(u), \varepsilon_2(u) \rangle}{|\dot{\gamma}(u)|}$$

$$= \frac{\langle \frac{1}{\sqrt{5}} (0, -4\sin 2u, -4\cos 2u)^\mathsf{T}, (0, \sin 2u, \cos 2u)^\mathsf{T} \rangle}{\sqrt{5}}$$

$$= \frac{0 + 4\sin^2 2u + 4\cos^2 2u}{5}$$

$$\therefore \kappa_1(u) = \frac{4}{5}.$$

Computing $\kappa_2(u)$ we have,

$$\kappa_2(u) = \frac{\langle \dot{\varepsilon}_2(u), \varepsilon_3(u) \rangle}{|\dot{\gamma}(u)|}$$

$$= \frac{\langle (0, -2\cos 2u, 2\sin 2u)^\mathsf{T}, \frac{1}{\sqrt{5}}(2, \cos 2u, -\sin 2u)^\mathsf{T} \rangle}{\sqrt{5}}$$

$$= \frac{0 - 2\sin^2 2u - 2\cos^2 2u}{5}$$

$$\therefore \kappa_2(u) = -\frac{2}{5}.$$

5. Given a unit speed Frenet curve $\gamma: I \to \mathbb{R}^m$, we know that $|\dot{\gamma}(u)| = 1$ and,

$$C(u) = (\dot{\gamma}(u), \ddot{\gamma}(u), ..., \gamma^{(m)}(u)).$$

We can also express each column $\gamma^{(i)}(u)$ as a linear combination of the first i vectors in the Frenet frame.

$$\gamma^{(i)}(u) = \alpha_1 \varepsilon_1(u) + \alpha_2 \varepsilon_2(u) + \dots + \alpha_i \varepsilon_i(u).$$