

(Spatial) Entity Search and Intelligence

Data Intelligence Lab Yonsei University, Korea

Seung-won Hwang http://dilab.yonsei.ac.kr/~swhwang

Research background

- □ PhD(@2005) on left-hand side
- ☐ Recent work on right-hand side

Entity search as a platform

□ Browser

□ Spreadsheet

Coffee worldwide 2011

File Edit Tools Help

Country	Population
Austria	8,355,260
Estonia	1,340,415
Belgium	10,754,528
Germany	81,882,342
Bulgaria	7,606,551
Cyprus	793,963
Czech Republic	10,476,543
Demande	F F00 F04

Entity search as a platform

■ Mobile search

☐ And beyond!!

Semantic Web

- Human readable vs machine r eadable contents
- Human defines standard for d ata formats and models
- Explicit and precise specification of knowledge representation on that everyone has to agree upon

Knowledge Web

- Machine reads human readable e contents
- Machine learns to conflate diff erent formats of the same thin g
- Latent and fuzzy representation n of knowledge learned by mining big data

Recent Work

☐ Harvesting, Completion (#1,#3)

AAAI, ICDE, VLDB, VLDB Journal

☐ Linking, Multilingual linking (#2)

ACL, EMNLP, ACM TOIS, IEEE TKDE

□ Performance

SIGIR, WSDM, VLDB

I acquired **Bordeaux** which is 5 years of **age**. It's very pleasing in **texture** and **aroma**.

isA(Bordeaux, wine)=??
isProperty(wine|age,texture,aroma)=0.8
Verb?

Conflation: Graph

R_{ii} is confidence of G.i matches G'.j

Propagate matching confidence of G.i and G'.j neighbors

☐ Repeat #1 and #2 until convergence

Search performance as a platform

SIGIR14, WSDM15 Best paper runner-up

- ☐ Diverse software generate search queries
- ☐ Consistent low latency is crucial

Cost prediction features

Score distribution (mean,max,var), #postings, etc

Advanced features for automatic refinement

<Fields related to query execution plan>

rank=BM25F

enablefresh=1 partialmatch=1

language=en location=us

• • • •

<Fields related to search keywords>

Redmond (MS or Microsoft)

Ads related to microsoft office

Be an MS Office Expert

Simplilearn.com/MS-Office

3,100+ followers on Twitter

5 Courses on MS Office - Word, Excel, PowerPoint, Access & Outlook.

Performance when deployed

Spatial KB and search as a platform

YONSEI

- ☐ Devices as a producer/consumer of information
- □ Location as a first-class citizen context

Conflation for spatial entity [AAAI16, ICDM15]

☐ KB harvesting

- Map translation
- Intelligent query expansion ("seattle center" → "seattle center" or "space needle" or "Chihuly museum")

Еiffeltoring 에펠탑 torre Eiffel আই(ফল টাও্য়ার eiffel torre ku Eifel Айфеловата кула Eiffelov toranj Эйфелева вежа 艾菲尔 eiffelova věž エッフェル塔 eiffel tower Eiffel Dorrea πύρ тоυ Аιφελ tour eiffel Eyfel qülləsi Эйфелева башня

Query: One day tour in Kaohsiung Si Zih Bay, cuisine

Recommended Results:

- Si Zih Bay (10:28)-> 79 Style ice cream shop (12:20) Average score: PATS:0.86 ,timeScore:0.97
- Formosa Boulevard station (12:24) -> Kenting Hostel (06:14) Average score: PATS:0.94, timeScore:0.93, socialINF:0.33
- Formosa Boulevard station (10:00) -> seafood restaruant(14:00) -> Si Zih Bay (17:00) -> New Jyueijang Shopping Area (19:00) -> FE21Mega Kaohsiung (21:00)
 Average score: PATS: 0.87, timeScore: 0.90, socialINF: 0.4
- Guo Ji meat dumpling (11:00) -> ShanMinng TeaShop (12:00) ->
 The PIER-2 Art Center (15:00) -> SI Zih Bay (17:00) -> New
 Jyuejiang Shopping Area (19:00) -> FE21Mega Kaohsiung (21:00)
 Average score: PATS:0.87, timeScore:0.99, socialINF:0.16
- Guo Ji meat dumpling (11:00) -> Si Zih Bay (17:00) -> Love River (20:00) -> Feng-Shan Night market (04:00) Average score: PATS:0.86, timeScore:1.0, socialINF:0.25

Query Harvest Phase

Data Integration Phase

[Buca , pepperoni, mozzarella]

rid₃

[pepperoni , cheese , tomato, mozzarella , Buca di Beppo , pepperoni pizza]

[pepperoni , cheese , tomato, mozzarella , |

Buca di Beppo , pepperoni pizza]

Performance [VLDB16]

□ Automatic query expansion

- restaurant → restaurant OR banquet
- "seattle center" → "seattle center" or "space needle"

■ Multiple keywords

- Complex AND/OR with location
- Example
 - T = ((restaurant OR banquet) AND (vegetarian OR halal)
 OR ((hotel OR resort) AND wifi)
 OR ...

S = user location (Seoul)

Crane:

Good at narrownecked vessel

Fox: Good at bowl

\mathbf{term}	id	$\mathbf{df_t}$	\mathbf{type}	\mathbf{ptr}	storage
bar	t_1	4	${ m tree}$	\hookrightarrow	aR^{t_1}
pop	t_2	2	block	\hookrightarrow	$\langle p_1,p_5 angle$
pub	t_3	5	${\it tree}$	\hookrightarrow	aR^{t_3}
rock	t_4	2	block	\hookrightarrow	$\langle p_2,p_3 angle$
samba	t_5	2	block	\hookrightarrow	$\langle p_4,p_7 angle$

S2I: Text-first index Good at selective

IR-tree: Augmented R-tree Good at selective spatial

☐ Our approach

Measuring the problem (Cost model)

Proposing the solution (Optimization)

□ Challenges

- Cost model design
- Exponential possible ways (solution space)

- Efficient optimization
- Theoretic guarantee

☐ Base mapping

(spatial keyword processing part) Intersection (keyword predicate processing part)

Base mapping is optimized with the following five techniques.

	Name	Space Reduction (个 better)	Alg. Cost (↓ better)	TheoreticBound (↓ better)
T1	Single verification pop up	2 ^K	Linear	ОРТ
T2	Intersection push down	2^F	Linear	$\left(\frac{5}{3}\right)^F$ X OPT
Т3	Least selective intersection first	$\prod_{i=1}^{N} M_i! \cdot C_{M_i}$	Sorting	ОРТ
T4	Modified Huffman union tree	C_N	Sorting	ОРТ
T5	Verification selection	$2^{\sum_{i=1}^{N}(M_i-1)}$	Exp.	ОРТ
			Linear	2х Орт

Base mapping [134.7 ms]

vs. Optimized solution [1.8 ms]

Thanks!!!

Understanding Emerging Spatial Entities, AAAI 2016
Fine-grained Semantic Conceptualization of FrameNe t, AAAI 2016
Verb Pattern: A Probablistic Semantic Representation of Verbs, AAAI 2016
Processing and Optimizing Main Memory Spatial- Keyword Queries, VLDB 2016
KSTR: Keyword-aware Skyline Travel Route Recomme ndation, ICDM 2015
Delayed-Dynamic-Selecive (DDS) Prediction for Reducing Extreme Tail Latencies in Web Search, WSDM 2015 (Best Paper Runner-up)
Predictive Parallelization: Taming Tail Latencies in Web Search, SIGIR 2014
Overcoming Asymmetry in Entity Graphs, IEEE TKDE 1 4
ARIA: Asymmetry-Resistant Instance Alignment, AAAI 14
Bootstrapping Entity Translation on Weakly Comparable Corpora, ACL 13
Entity Translation Mining from Comparable Corpora: Combining Graph Mapping with Corpus Latent Featur es, IEEE TKDE 13
Efficient Entity Translation Mining: A Parallelized Grap h Alignment Approach, ACM TOIS 12
Web Scale Taxonomy Cleansing, VLDB 2011
Mining Entity Translations from Comparable Corpora: A Holistic Graph Mapping Approach ,CIKM 2011
SocialSearch: Enhancing Entity Search with Social Net work Matching ,EDBT 2011

Any Questions?

Visit dilab.yonsei.ac.kr/~swhwang