NATURAL DISASTER INTENSITY ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

PROJECT REPORT SUBMITTED BY

JIJISHA STARLIN S 962219106037 JENET S 962219106033 RAHITHA R V 962219106049 RESHMA XAVIER ROASTTA X 962219106052

ELECTRONICS AND COMMUNICATION ENGINEERING

ST.XAVIER'S CATHOLIC COLLEGE OF ENGINEERING KANYA KUMARI

1. INTRODUCTION

1.1 Project Overview

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we developed a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is compared with the Pre-trained model and the type of disaster is identified and showcased on the OpenCV window.

1.2 Purpose

Natural disasters are inevitable, and the occurrence of disasters drastically affects the economy, ecosystem and human life. Buildings collapse, ailments spread and sometimes natural disasters such as tsunamis, earthquakes, and forest fires can devastate nations. When earthquakes occur, millions of buildings collapse due to seismological effects. Many machine learning approaches have been used for wildfire predictions since the 1990s. A recent study used a machine learning approach in Italy. This study used the random forest technique for susceptibility mapping of wildfire. Floods are the most devastating natural disaster, damaging properties, human lives and infrastructures. To map flood susceptibility, an assembled machine learning technique based on random forest (RF), random subspace (RS) and support vector machine (SVM) was used. As the population is growing rapidly, people need to acquire land to live on, and as a result the ecosystem is disturbed horrifically, which causes global warming and increases the number of natural disasters. Populations in underdeveloped countries cannot afford damages disasters cause to infrastructures. The aftermath of disasters leaves the humans in miserable situations, and sometimes the devastating effects cannot be detected; additionally, rescue operations cannot take place in most of the places and victims are unable to be identified due to geographical factors of the different areas. Disasters such as forest fires spread rapidly in dense areas, so firefighting is difficult to carry out; in this case, development of the strategy to predict such circumstances is crucial so that such disasters can be prevented beforehand.

2. LITERATURE SURVEY

2.1 Existing problem

AUTHOR	TECHNOLOGY	DESCRIPTION	ADVANTAGES	DISADVANT
				AGES
Muhamm	Natural Disaster	It works in two blocks	Not face various	Complexity
ad Aamir,	Intensity analysis	.Block-I CNN for	issues due noise	due to
Tariq Ali,	and classification	detection and occurance	and serious class	multilayer
Muhamm	based on	of the disaster and	imbalance	
ad Irfan,	multispectral	Block-II for	problem	
Ahmad	images using	classification of disaster		
Shaf	multilayered deep	intensity types with		
	CNN	different filters and		
		parameters		
Seth	Artificial	Focused on two	Existing of large	The issue of
Guikema	Intelligence for	methods like the	training set, the	validation,
	Natural Hazards	physical loading due to	model are	Difficult to
	Risk Analysis	the hazard given	representative of	convey model
		occurrence of the	the future	accuracy and
		hazard or physical	situations andit is	the
		damage or loss of	highly flexible	uncertainty
		system functionality		that is
		given hazard loading		inherent in
				any AI model
				output to
				decision
				makers
Mummane	A disaster	Based on the	Complexity is	The loss is
ni Sobhana	classification	development in the	low, highly	continuously
	application using	domains of computer	efficient and	increasing
	convolutional	vision and image	identify features	over each
	neural network by	processing,machine	from noisy data	epoch
	performing data	learning and deep		
	augmentation	learning models can		

		integrate images		
Vasileios	Machine Learning	For the recognition and	This framework	Unstructured
Linardos,	in disaster	detection of natural	has less cost in	data tend to
Maria	management	disaster through the	terms of	be hard to
Drakaki,		framework,a satellite	computational	analyse , low
Panagiotis		images data set of the	power and had	quality
T zionas,		disasters are used	better accuracy	datasets could
Yannis L.				potentially
Karnavas				causes
				confusion.
Sreenivasu	Detecting	This method is for	It gives better	It doesnot
lu	informative tweets	classifying the	performance than	extended to
Madichetty	during disaster	informative and	the use of CNN	other dataset
	using deep neural	noninformative tweets	and ANN alone	and contains
	networks	during a disaster. The		few layers
		proposed approach is		
		based on the		
		Convolutional Neural		
		Network (CNN) and		
		Artificial Neural		
		Network (ANN). CNN		
		is used for feature		
		extraction and ANN		
		used as a classifier for		
		classifying the tweets		

2.2 References

- 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069408/
- **2.** https://deepblue.lib.umich.edu/bitstream/handle/2027.42/155885 /risa13476.pdf?sequence=2
- **3.** https://ijeecs.iaescore.com/index.php/IJEECS/article/view/2926 7#:~:text=The%20detection%20of%20natural%20disasters,floo ds%2C%20cyclones%2C%20and%20wildfires
- **4.** https://www.mdpi.com/25044990/4/2/20/pdf?version=16519165 64
- **5.** https://www.researchgate.net/publication/333072370_Detecting _Informative_Tweets_during_Disaster_using_Deep_Neural_Net works

2.3 Problem Statement Definition

- **1.** Government plans and implements various plans to keep our country economically strong but face a downfall of economy because of damages in buildings caused by natural disasters which makes them feel scared, uncertain of future.
- **2.** Government wish their citizens to be happy and secure but families are torn apart and it affects their mental health because of the loss of people's lives caused by natural disasters which makes them feel guilty, Inadequate.
- **3.** Scientists like seismologists , volcanologists, and meteorologists warns the Government and people about the natural disasters but they fail to predict correctly sometimes because of the lack of data or technology which makes them feel Inadequate.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

SI NO	PARAMETER	DESCRIPTION	
1	Problem Statement (Problem to be solved)	To develop a AI based natural	
		disaster intensity analysis and	
		classification by following	
		criteria, 1. To eliminate the	
		damage of people lives that	
		caused by natural disaster. 2.	
		To provide economical	
		strength to the government so	
		that they can implement their	
		plan.	
2	Idea / Solution description	We developed a multilayered	
		deep convolutional neural	
		network model that classifies	
		the natural disaster. The	
		model uses an integrated	
		webcam to capture the video	
		frame is compared with the	
		pre-trained model and the	
		type of disaster is identified	
		and showcased on the	
		openCV window.	

3	Novelty / Uniqueness	A multilayered deep
		convolutional neural network
		model is used to classify and
		analyse the natural disaster
		with great accuracy and
		within a short span of time.
4	Social Impact / Customer Satisfaction	It will save the lives of
		people, and minimize the loss
		of infrastructure, finance by
		classifying the disaster using
		AI.
5	Business Model (Revenue Model)	There are 2 ways to generate
		revenue from this project.
		One is by helping the
		government and getting fund
		from it. Another one is by
		giving the information to
		companies.
6	Scalability of the Solution	It can classify the natural
		disaster with great level of
		accuracy even when the
		image is flipped at any angle
		or even when it has no proper
		dimensions

3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirements

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Request permission	Accessibility to camera
FR-2	Prediction	Based on the given input it predicts the natural disaster

4.2 Non-Functional requirements

NFR No. Non-Functional Requirement Description
--

NRF-1	Usability	User friendly and easy to classify the disaster
NRF-2	Security	There is no user login needed so there is no security issue.
NRF-3	Reliability	This is highly reliable because it can undergoes without any fault or access inability
NRF-4	Performance	The accuracy of the result is about 90% and the result is updated within a short period of time
NRF-5	Availability	It can be accessed at any situation of disaster occurrence.
NRF-6	Scalability	The website can run on web browsers like Google chrome, Microsoft internet explorer, etc.

5. PROJECT DESIGN

5.1 DataFlow Diagrams

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Function	User	User Story / Task	Acceptance	Priority	Release
	al	Story		criteria		
	Requirem	Numb				
	ent (Epic)	er				
Customer	Dashboard	USN-1	As a user, I can	I can access	High	Sprint-4
(Web user			view the home page	the		
			where the different	dashboard		
			natural disasters are			
			defined.			
		TIONER	As a user, I can	I can access	Medium	Sprint-4
		USN-2	view the	the		
			introduction page	dashboard		
		TIONED	As a user, I can		High	Sprint-4
		USN-3	open my web			
			camera to stream			
			live			
		TICNI 4	As a user, I can		TT: .1	C
		USN-4	view the prediction		High	Sprint-4
			during the live			
			stream			
Administra-	Monitori		As a user, I can			

tor	ng the website feasiblen ess	USN-1	check whether the website is working smoothly.	High	Sprint-4
	Monitori ng the accuracy	USN-2	As a user, I can check the accuracy of the prediction	High	Sprint-2

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional	User	User Story / Task	Story	Priority	Team
	Requireme	Story		points		Members
	nt (Epic)	Number				
Sprint-1	Create and configure IBM cloud services	USN-1	As a user, I need to enroll in cloud registration	3	High	S.Jijisha Starlin
Sprint-1		USN-2	After registration, I will create a account in IBM cloud.	2	Medium	S.Jijisha Starlin
Sprint-1		USN-3	After that, in IBM cloud, creating a AI platform	5	High	R.V Rahitha
Sprint-1		USN-4	Create a node in IBM Watson platform	7	High	R.V Rahitha
Sprint-1		USN-5	After creating node get device type and id	1	Low	X. Reshma
Sprint-1		USN-6	Simulate the required data to view output	3	Medium	X. Reshma
	Accumulati		Create a deep learning	5		

Sprint-2	on of required data	USN-7	by gathering data		High	S. Jenet
Sprint-2		USN-8	Connect IBM Watson with deep learning through API key	2	Low	S. Jenet
Sprint-2		USN-9	Built the project flow using deep learning	7	High	S.Jijisha Starlin
Sprint-2		USN-10	Check the connection and view the output in data gathered	3	Medium	S.Jijisha Starlin
Sprint-3	Create a database	USN-11	Launch the cloudant DB and create database to store the location data	4	High	R.V Rahitha
Sprint-3		USN-12	Install python software	2	High	R.V Rahitha
Sprint-3		USN-13	Develop the python flask to publish details to IBM AI platform	6	High	X. Reshma
Sprint-3		USN-14	Integrate the device id, authentication token in python flask	2	High	X. Reshma
Sprint-3		USN-15	Create a python code for the location	8	High	S.Jenet
Sprint-4	Develop the python script	USN-16	Develop web application using deep learning	5	High	S.Jenet
Sprint-4		USN-17	Connect the IBM AI platform and get the location and store the data in the cloudant Create a multilayered	2	High	S.Jijisha St arlin
			Create a multilayered	O		

Sprint-4	USN-18	deep convolution nural network mode that tells the intensity of disaster		High	S.Jijisha St arlin
Sprint-4	USN-19	Integrate the type of disaster is identified and show cased on the open CV window	11	High	R.V Rahith a
Sprint-3	USN-20	Send the notification is the webcam to capture the video frame	4	High	R.V Rahit h a

6.2 Sprint Delivery Schedule

Sprint	Total	Duration	Sprint	Sprint End	Story	Sprint
	Story		start date	Date(plan	point	Release
	points			ned)	completed(Data
					as planned	(Actual)
					End date)	
Sprint	20	6 Days	24 Oct	29 Oct	20	29 Oct
			2022	2022		2022
Sprint	17	6 Days	24 Oct 2022	29 Oct 2022	17	29 Oct 2022
Sprint	22	6 Days	24 Oct 2022	29 Oct 2022	22	29 Oct 2022
Sprint	30	6 Days	24 Oct 2022	29 Oct 2022	30	29 Oct 2022

7. CODING & SOLUTIONING (Explain the features added in the project

along with code)

7.1 Feature 1

Home Page Code

```
<!DOCTYPE html>
<html>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<body>
<style>
* {box-sizing: border-box;}
.header {
 overflow: hidden;
 background-color: #f1f1f1;
 padding: 15px 10px;
}
.header a {
 float: left;
 color: black;
 text-align: center;
 padding: 12px;
 text-decoration: none;
 font-size: 18px;
 line-height: 25px;
 border-radius: 4px;
}
.header a.logo {
 font-size: 20px;
 font-weight:inherit;
}
.header a:hover {
 background-color: #ddd;
 color: black;
}
```

```
.header a.active {
 background-color: dodgerblue;
 color: white;
}
.header-right {
 float: right;
}
@media screen and (max-width: 500px) {
 .header a {
  float: none;
  display: block;
  text-align: left;
 }
 .header-right {
  float: none;
 }
}
.slideshow-container {
 max-width: 1000px;
 position: relative;
 margin: auto;
}
.mySlides {
 display: none;
}
.prev, .next {
 cursor: pointer;
 position: absolute;
 top: 50%;
 width: auto;
```

```
margin-top: -22px;
 padding: 16px;
 color: white;
 font-weight: bold;
 font-size: 18px;
 transition: 0.6s ease;
 border-radius: 0 3px 3px 0;
 user-select: none;
}
.next {
 right: 0;
 border-radius: 3px 0 0 3px;
}
.prev:hover, .next:hover {
 background-color: rgba(0,0,0,0.8);
}
.text {
 color: #f2f2f2;
 font-size: 15px;
 padding: 8px 12px;
 position: absolute;
 bottom: 8px;
 width: 100%;
 text-align: center;
}
.numbertext {
 color: #f2f2f2;
 font-size: 12px;
 padding: 8px 12px;
 position: absolute;
 top: 0;
}
```

```
.dot {
 cursor: pointer;
 height: 15px;
 width: 15px;
 margin: 0 2px;
 background-color: #bbb;
 border-radius: 50%;
 display: inline-block;
 transition: background-color 0.6s ease;
}
.active, .dot:hover {
 background-color: #717171;
}
.fade {
 animation-name: fade;
 animation-duration: 1.5s;
}
@keyframes fade {
 from {opacity: .4}
 to {opacity: 1}
}
.text {
 position: absolute;
 bottom: 0;
 background: rgb(0, 0, 0);
 background: rgba(0, 0, 0, 0.5);
 color: #f1f1f1;
 font: 1em sans-serif;
 width: 100%;
 padding: 20px;
}
</style>
<div class="header">
```

```
<a href="#default" class="logo">AI Based Natural Disaster Analysis</a>
  <div class="header-right">
    <a class="active" href="home.html">Home</a>
    <a href="intro.html">Introduction</a>
    <a href="upload.html">Open Web Cam</a>
  </div>
</div>
<div class="slideshow-container">
  <div class="mySlides fade">
   <div class="numbertext">1 / 4</div>
   <img src="Cyclone.jpg" width="1000px" height="525px">
   <div class="text">
    <h2>Cyclone</h2>
    A system of winds that are rotating inwards to an area of low barometric pressure, such
that in the Northern Hemisphere it is anticlockwise and in the Southern Hemisphere it is
clockwise circulation. Every year there are 70 to 90 cyclonic systems developed across the
globe.
   </div>
  </div>
  <div class="mySlides fade">
   <div class="numbertext">2 / 4</div>
   <img src="Earthquake.jpg" width="1000px" height="525px">
   <div class="text">
    <h2>Earthquake</h2>
    An earthquake is a sudden, rapid shaking of the ground caused by the shifting of rocks
deep underneath the earth's surface. Earthquakes can cause fires, tsunamis, landslides or
avalanches.
   </div>
  </div>
  <div class="mySlides fade">
   <div class="numbertext">3 / 4</div>
   <img src="Flood.jpg" width="1000px" height="525px">
   <div class="text">
```

```
<h2>Flood</h2>
    Flooding is an overflowing of water onto land that is normally dry. Floods can happen
during heavy rains, when ocean waves come on shore, when snow melts quickly, or when dams
or levees break. 
   </div>
  </div>
  <div class="mySlides fade">
    <div class="numbertext">4 / 4</div>
    <img src="Wildfire.jpg" width="1000px" height="525px">
    <div class="text">
      <h2>Wildfire</h2>
      A wildfire is an unplanned fire that burns in a natural area such as a forest, grassland,
or prairie. Wildfires are often caused by human activity or a natural phenomenon such as
lightning, and they can happen at any time or anywhere. 
    </div>
   </div>
  <a class="prev" onclick="plusSlides(-1)">&#10094;</a>
  <a class="next" onclick="plusSlides(1)">&#10095;</a>
 </div>
 <br>
 <div style="text-align:center">
  <span class="dot" onclick="currentSlide(1)"></span>
  <span class="dot" onclick="currentSlide(2)"></span>
  <span class="dot" onclick="currentSlide(3)"></span>
  <span class="dot" onclick="currentSlide(4)"></span>
 </div>
 <script>
  let slideIndex = 1;
  showSlides(slideIndex);
  function plusSlides(n) {
   showSlides(slideIndex += n);
  }
```

```
function currentSlide(n) {
   showSlides(slideIndex = n);
  }
  function showSlides(n) {
   let i;
   let slides = document.getElementsByClassName("mySlides");
   let dots = document.getElementsByClassName("dot");
   if (n > slides.length) {slideIndex = 1}
   if (n < 1) {slideIndex = slides.length}
   for (i = 0; i < slides.length; i++) {
    slides[i].style.display = "none";
   }
   for (i = 0; i < dots.length; i++) {
    dots[i].className = dots[i].className.replace(" active", "");
   slides[slideIndex-1].style.display = "block";
   dots[slideIndex-1].className += " active";
  }
  </script>
  </body>
</html>
```

Explaination:

A home page is the default or front page of a site. It is the first page that visitors see when they load a URL. Web managers can control the home page as a way of directing the user experience. Home pages are located in the root directory of the website. The home page often serves to orient visitors by providing titles, headlines and images and visuals that show what the website is about, and in some cases, who owns it and maintains it.

7.2 Feature 2

IntroductionCode:

```
<!DOCTYPE html>
<html>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<body>
<style>
* {box-sizing: border-box;}
```

```
.header {
 overflow: hidden;
 background-color: #f1f1f1;
 padding: 15px 10px;
}
.header a {
 float: left;
 color: black;
 text-align: center;
 padding: 12px;
 text-decoration: none;
 font-size: 18px;
 line-height: 25px;
 border-radius: 4px;
}
.header a.logo {
 font-size: 20px;
 font-weight:inherit;
}
.header a:hover {
 background-color: #ddd;
 color: black;
}
.header a.active {
 background-color: dodgerblue;
 color: white;
}
.header-right {
 float: right;
}
```

```
@media screen and (max-width: 500px) {
 .header a {
  float: none;
  display: block;
  text-align: left;
 }
 .header-right {
  float: none;
 }
}
.intro{
 width: 700px;
 padding: 30px;
 box-sizing: border-box;
}
body{
  background-color: lightsteelblue;
}
</style>
<div class="header">
  <a href="#default" class="logo">AI Based Natural Disaster Analysis</a>
  <div class="header-right">
    <a href="home.html">Home</a>
    <a class="active" href="intro.html">Introduction</a>
    <a href="upload.html">Open Web Cam</a>
  </div>
</div>
<center>
<div class="intro">
  <center>
    A natural disaster is the negative impact following an actual occurrence of natural
hazard in the event that it significantly harms a community.
    A natural disaster can cause loss of life or damage property, and typically leaves some
```

economic damage in its wake. Examples of natural hazards include: Cyclone, Earthquake, Flood, Earthquake etc.

Between 1995 and 2015, according to the UN's disaster-monitoring system, the greatest number of natural disasters occurred in America, China and India.

The objective of the project is to build a web application to detect the type of disaster.
The input is taken from the inbuilt web cam, which in turn is given to the pretrained model. The model predicts the type of disaster and displays on UI

```
</div>
</div>
</center>
</body>
</html>
```

Explaination:

A convolutional neural network is a class of artificial neural networks. It is a Deep Learning algorithm that can take in an input image, assign importance to various objects in the image and be able to differentiate one from the other. The pre-processing required in a ConvNet is much lower as compared to other classification algorithms. The advantage of CNNs is to provide an efficient dense network which performs the prediction or identification efficiently

Open Web Cam Code:

```
<!DOCTYPE html>
<html>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<body>
<style>
* {box-sizing: border-box;}

.header {
  overflow: hidden;
  background-color: #f1f1f1;
  padding: 15px 10px;
}

.header a {
  float: left;
  color: black;
  text-align: center;
```

```
padding: 12px;
 text-decoration: none;
 font-size: 18px;
 line-height: 25px;
 border-radius: 4px;
}
.header a.logo {
 font-size: 20px;
 font-weight:inherit;
}
.header a:hover {
 background-color: #ddd;
 color: black;
}
.header a.active {
 background-color: dodgerblue;
 color: white;
}
.header-right {
 float: right;
}
@media screen and (max-width: 500px) {
 .header a {
  float: none;
  display: block;
  text-align: left;
 }
 .header-right {
  float: none;
 }
```

Explaination:

We developed a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is compared with the Pre-trained model and the type of disaster is identified and showcased on the OpenCV window. A multilayer neural network with appropriate weights has been shown to be able to approximate any input-output function making it an attractive tool for modeling and forecasting.

8. TESTING

8.1 Test Cases

8.2 User Acceptance Testing

```
from flask import Flask,render_template,request import cv2 from tensorflow.keras.models import load_model import numpy as np from werkzeug.utils import secure_filename app=Flask(__name__,template_folder="templates") model=load_model('disaster.h5') print("Loaded model from disk") @app.route('/',methods=['GET']) def index(): return render_template('home.html') @app.route('/home',methods=['GET']) def home():
```

```
return render_template('home.html')
@app.route('/intro',methods=['GET'])
def about():
 return render_template('introduction.html')
@app.route('/upload',methods=['GET', 'POST'])
def predict():
  cap=cv2.VideoCapture(0)
  (H,W)=(None,None)
  while True:
     _, frame=cap.read()
     frame=cv2.flip(frame,1)
     while True:
       (grabbed, frame)=cap.read()
       if not grabbed:
         break
       if W is None or H is None:
         (H,W) = frame.shape[:2]
       output=frame.copy()
     frame=cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
     frame=cv2.resize(frame, (64,64))
     x=np.expand_dims(frame, axis=0)
     result=np.argmax(model.predict(x),axis=-1)
     index=['Cyclone','Earthquake','Flood','Wildfire']
     result=str(index[result[0]])
     cv2.putText(output, "activity:
{}".format(result),(10,120),cv2.FONT_HERSHEY_PLAIN,1,(0,255,255),1)
     cv2.imshow("Output",output)
     key=cv2.waitKey(1) & 0xFF
     if key == ord("q"):
       break
  print("[INFO] cleaning up...")
  cap.release()
  cv2.destroyAllWindows()
  return render_template("upload.html")
if __name__ == '__main__':
   app.run(host='0.0.0.0', port=8000, debug=False)
```

9. RESULT

9.1 Performance Metrics

SI NO	PARAMETER	VALUES
1	Model Summary	-96%
2	Accuracy	Traning Accuracy -80%
		Validation Accuracy -92.5%
3	Confidence Score	Class detected -Nill

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES

- 1. Humans also need breaks and time offs to balance their work life and personal life.But AI can work endlessly without breaks.
- 2. With the use of various AI-based techniques, we can also anticipate today's weatherand the days ahead.
- 3. Helpful in getting life back on track.
- 4. Their Alert nature able to respond effectively and efficiently which defend the societyfrom large scale damages.

DISADVANTAGES

- 1. It involves huge money to be equipped.
- 2. Problems faced in life basic needs.
- 3. One application of artificial intelligence is a robot, which is displacing occupations and increasing unemployment .
- **4.** Machines can perform only those tasks which they are designed or programmed to do, anything out of that they tend to crash or give irrelevant outputs which could be a major backdrop.

11. CONCLUSION

Natural disasters inflict severe damage on almost the entire spectrum of social and natural habitats, ranging from housing and shelter, water, food, health, sanitation, and waste management to information and communication networks, supply of power and energy, and transportation infrastructure. The major challenges faced in all disasters include pre-disaster early warning infrastructure; the supply of food and clean drinking water; health and sanitation; information and communication; power and energy for lighting and cooking; waste collection and disposal, including rapid disposal of dead bodies of humans and animals; disaster-proof housing and shelter; emergency and post-disaster shelters; rescue and relief operations; and transport infrastructure. Though it is not possible to prevent most of the disasters, still their

effects can be alleviated or mitigated in magnitude by anticipated preparedness. Advanced disaster management technology could provide a critical support system for disaster management authorities at times of disaster-related crises. Such a technology also provides important inputs for any disaster management plan of action in modern times. Communities and individuals have to be educated on pre-disaster planning and preparedness. Awareness must be created amongst masses, for which first-aid training at grass roots level is essential. There should be a National Disaster Plan that defines the tasks of the communities and local health personnel.

12. FUTURE SCOPE

In the future, the research will be continued to obtain the data from all over the country, not only west java province, and with the use of more complete analysis, so that the government or related institution could make a better anticipation work as a mitigation effort.

13. APPENDIX

SOURCE CODE

```
from flask import Flask, render template, request
import cv2
from tensorflow.keras.models import load model
import numpy as np
from werkzeug.utils import secure_filename
app=Flask(_name_,template_folder="templates")
model=load model('disaster.h5')
print("Loaded model from disk")
@app.route('/',methods=['GET'])
def index():
 return render_template('home.html')
@app.route('/home',methods=['GET'])
def home():
 return render template('home.html')
@app.route('/intro',methods=['GET'])
def about():
 return render_template('introduction.html')
@app.route('/upload',methods=['GET', 'POST'])
def predict():
  cap=cv2.VideoCapture(0)
  (H,W)=(None,None)
  while True:
```

```
_, frame=cap.read()
     frame=cv2.flip(frame,1)
     while True:
       (grabbed, frame)=cap.read()
       if not grabbed:
         break
       if W is None or H is None:
         (H,W) = \text{frame.shape}[:2]
       output=frame.copy()
     frame=cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
     frame=cv2.resize(frame, (64,64))
     x=np.expand_dims(frame, axis=0)
     result=np.argmax(model.predict(x),axis=-1)
     index=['Cyclone','Earthquake','Flood','Wildfire']
     result=str(index[result[0]])
     cv2.putText(output, "activity:
{}".format(result),(10,120),cv2.FONT_HERSHEY_PLAIN,1,(0,255,255),1)
     cv2.imshow("Output",output)
     key=cv2.waitKey(1) & 0xFF
     if key == ord("q"):
       break
  print("[INFO] cleaning up...")
  cap.release()
  cv2.destroyAllWindows()
  return render_template("upload.html")
if _name_ == '_main_':
   app.run(host='0.0.0.0', port=8000, debug=False)
```

Github & Project Demo Link

Github link - https://github.com/IBM-EPBL/IBM-Project-41067-1660639041

Demo video link - https://youtu.be/KLtygqGj3