CENTRO UNIVERSITÁRIO UNINORTE CURSO DE PÓS-GRADUAÇÃO EM: Pós

Graduação em Gerência de Banco de Dados.

DISCIPLINA: Mineração de Dados

Avaliação

Prof.º: Manoel Limeira juniorlimeiras@gmail.com

Avaliação de Classificadores

- Procedimento: dividir a base de dados
 - Base de treinamento
 - Base de teste

Acurácia (ou taxa de acerto) do classificador:

nº de acertos (classificações corretas) |base de teste|

Taxa de erro do classificador:

nº de erros (classificações erradas) |base de teste|

Hold out

- Divisão aleatória (ou preservando a ordem)
- Base de treinamento (2/3)
- Base de teste (1/3)
- Acurácia do classificador é obtida a partir da única base de teste

Random Subsampling

- Hold out executado k vezes
- Acurácia do classificador é obtida a partir da média das acurácias obtidas nas k execuções

k-Fold Cross Validation

- Base particionada (aleatoriamente) em k partes (do mesmo tamanho aproximadamente)
- Treinamento e teste são executados k vezes, e cada execução possui:
- 1 partição de teste
- k-1 partições de treinamento
- Todas as partições são utilizadas, em algum momento, para teste

Stratified Cross-Validation

 Cada partição utilizada na técnica k-Fold Cross Validation deve possuir a mesma distribuição de classes da base original

Leave-one-Out

 Mesmo que k-Fold Cross Validation quando k é o número de instância da base de dados

Matriz de Confusão

Considere um problema com n classes

	C ₁	C ₂	 Cn	→ resultado do classificador
C ₁	20	3	1	
C ₂	0	31	2	A célula C _{ij} indica o r
• • •				de instâncias que for classificadas na class
Cn	2	1	28	e são da classe C _i
V				

A célula C_{ii} indica o número de instâncias que foram classificadas na classe C_i e são da classe C

classe real

Para Classificadores Binários

- Considerando duas classes: spam e não-spam
- Verdadeiro Positivo (TP: true positive)
 - Elementos positivos classificados como positivos
 - SPAMs que foram classificados como SPAMs
- Verdadeiro Negativo (TN: true negative)
 - Elementos negativos classificados como negativos
 - Não-SPAMs que foram classificados como Não-SPAMs
- Falso Positivo (FP: false positive)
 - Elementos negativos classificados como positivos
 - Não-SPAMs que foram classificados como SPAMs
- Falso Negativo (FN: false negative)
 - Elementos positivos classificados como negativos
 - SPAMs que foram classificados como Não-SPAMs

Para Classificadores Binários

	spam	não-spam	→ resultado do
spam	TP	FN	classificador
não-spam	FP	TN	

Medidas de Avaliação

 Acurácia – representa a porcentagem de elementos do conjunto de teste que foram corretamente classificados

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

 Precisão (Precision) – representa a proporção de elementos classificados como positivos que realmente são positivos

$$P = \frac{TP}{TP + FP}$$

Medidas de Avaliação

 Cobertura (Recall) – representa a proporção de elementos positivos que foram classificados como positivos

$$R = \frac{TP}{TP + FN}$$

 F-Score ou F-Measure – representa a média harmônica entre Precision e Recall

$$FMeasure = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Exemplo: matriz de confusão

Classe Prevista

	Α	В	С	Total
Α	28	7	3	38
В	6	32	2	40
С	5	8	25	38
Total	39	40	30	116

Classe Real

- Erros = (7+3) + (6+2) + (5+8) = 31
- Acertos = 28+32+25 = 85 (Diagonal Principal)
- Taxa de erro = 31/116 * 100 = 26,73%
- Acurácia = 85/116 * 100 = 73,27%

Exemplo: matriz de confusão

Classe Prevista

		Dool
U	asse	Real

	Α	В	С	Total
Α	28	7	3	38
В	6	32	2	40
С	5	8	25	38
Total	39	40	30	116

- Análise por classe (Precision)
- A = 28/28 + 6 + 5 = 0,717
- B = 32/32+7+8 = **0,680**
- C = 25/25 + 3 + 2 = 0,833

Exemplo: matriz de confusão

Classe Prevista

		Dool
U	asse	Real

	Α	В	С	Total
Α	28	7	3	38
В	6	32	2	40
С	5	8	25	38
Total	39	40	30	116

- Análise por classe (Recall)
- A = 28/28 + 7 + 3 = 0,736
- B = 32/32+6+2 = 0.800
- C = 25/25+5+8 = **0,657**

Underfitting e Overfitting

Underfitting

- Resultados ruins no treino

Overfitting

Resultados bons no treino e ruins no teste

Algumas Considerações

- Cenário/contexto
 - Comparação com outros artigos (estado da arte)
- Número de Classes
 - Baseline mínimo
 - -3 classes = 33,33%
- Classe Majoritária
 - Algoritmo Dummy (Constant)

CENTRO UNIVERSITÁRIO UNINORTE CURSO DE PÓS-GRADUAÇÃO EM: Pós

Graduação em Gerência de Banco de Dados.

DISCIPLINA: Mineração de Dados

Avaliação

Prof.º: Manoel Limeira juniorlimeiras@gmail.com