iSupport Platform

For your daily care

Team members:

Burdisso Sara s275424

Centonze llenia s277389

Ferrara Mauro s276932

Pasotti Andrea s275100

The idea - overview

Objective:

To help clinicians and caregivers follow individuals in depressive states during their treatment period by providing a remote monitoring and support platform.

Protocolli di Comunicazione

REST Web Service

It allows to synchronize the communication between the parties.

Catalog: accesses the system information present in a JSON file and communicates it to the other actors;

ThingSpeak: database with data coming from the sensors. The data is accessed with a GET request and provided via a message in JSON format.

MQTT

Lightweight and flexible protocol suitable for ioT applications.

- **Publish** messages in JSON format using QoS 2
- **Receive** messages using QoS 2
- **Message topic**: hierarchical, containing patient information

Use Case Diagram - proposal

Use Case Diagram - modified

 It communicates with all the other actors in the platform exploiting REST communication.

```
"Catalog_url":"http://127.0.0.1:8080",

"baseTopic":"iSupport/",

"LightShift ":{
    "clientID" : "LigthShiftMS",
    "endTopic":["actuators/Light"]
},
...
```

 Catalog.json contains information about general configuration, registered devices and registered patients.

```
"IPaddress": "test.mosquitto.org",
                                                            json
    "port": 1883
"token": "1711013176:AAH6bCdvA0dOdL8fX4FIfCPGEqpEFNjN1d4",
        "deviceName": "smartwatch_1",
        "deviceID": "1",
        "measureType": [
            "HeartRate",
            "Accelerometer"
        ],
"availableServices": [
        "servicesDetails": [
                "serviceType": "MQTT",
                "topic": [
                    "iSupport/1/sensors/Body"
        "lastUpdate": 1621764472.704841
"patientList": [
        "patientID": "1",
        "patientName": "Mario",
        "patientSurname": "Rossi",
        "LightsSchedule": "7:30-8:30",
        "connectedDevices": [
                "measure": [
                    "Heart Rate",
                    "Acceration"
                "deviceID": "smartwatch 1"
                 "telegramIDs": [1234567],
                "thingspeakInfo": {
            "apikeys": [
                "ZQ2AJZABDSC4MXXG",
                "SV1H0ET58CE7225M"
            "channel": 1342741
        "lastUpdate": 1622981412.5148401
```

- It communicates with all the other actors in the platform exploiting REST communication.
- It has 3 main functions:
 - Retrieve (**GET**)
 - Add (POST)
 - Update (PUT)

- It communicates with all the other actors in the platform exploiting REST communication.
- It has 3 main functions:
 - Retrieve (GET)
 - Add (**POST**)
 - Update (PUT)

- It communicates with all the other actors in the platform exploiting REST communication.
- It has 3 main functions:
 - Retrieve (GET)
 - Add (POST)
 - Update (**PUT**)

 Catalog keeps updated the "deviceList" with the devices correctly connected and removes all the devices that are disconnected.

Devices implemented in the simulation:

- Temperature and humidity sensors
- Morion Sensor
- Heart rate sensor
- Accelerometer sensor
- Actuator for air Conditionair system
- Smart light bulb actuator

- Temperature and Humidity:

Extraction of a value from uniform distributions that have specific limits that change according to the month in which publication occurs. User sets mode of generation:

- in the suitable range
- out of range

- Motion Sensor:

It is a value (1/0) set by the user

Devices implemented in the simulation:

- Temperature and humidity sensors
- Motion Sensor
- Heart rate sensor
- Accelerometer sensor
- Actuator for air Conditionair system
- Smart light bulb actuator

-HR and Accelerometer measurments:

Accelerometer measurments are obtained from 2 database: *REST.txt* and *SPORT.txt*

REST configuration

Devices implemented in the simulation:

- Temperature and humidity sensors
- Motion Sensor
- Heart rate sensor
- Accelerometer sensor
- Actuator for air Conditionair system
- Smart light bulb actuator

-HR and Accelerometer measurments:

Accelerometer measurments are obtained from 2 database: *REST.txt* and *SPORT.txt*

Sport configuration

Devices implemented in the simulation:

- Temperature and humidity sensors
- Motion Sensor
- Heart rate sensor
- Accelerometer sensor
- Actuator for air Conditionair system
- Smart light bulb actuator

-HR and Accelerometer measurments:

Accelerometer measurments are obtained from 2 database: *REST.txt* and *SPORT.txt*

«Danger» configuration

Devices implemented in the simulation:

- Temperature and humidity sensors
- Presence Sensor
- Heart rate sensor
- Accelerometer sensor
- Actuator for air Conditionair system
- Smart light bulb actuator

Actuation Commands:

- Switching on the air Conditionair system to maintain optimal temperature and humidity levels.
- Switching on smart lights to enable luminotherapy.

Communication with the other actors is done using **SenML format.**

Communication with

- Catalog: to register devices or refresh registration with a REST communication.
- ThingSpeak Adaptor: which receives all measurements from the sensors published by Device Connector.
- Home system Control: device connector publishes sensor measurements to this microservice, which sends actuation commands to switch on and off the temperature control system.
- Light Shift: from which device connector receives actuation command to switch on/off smart light bulbs for luminotherapy.

Patient Control

Goal: Monitoring the patient and detecting of panic attack

How it works

Analyze heart rate and acceleration data

Communication with

• ThingSpeak: for getting measurement of 10 minutes windows.

Patient Control

How it works

Analyze heart rate and acceleration data

 Communicate an alert in case of panic attack to the doctor and caregiver

Communication with

- ThingSpeak: for getting measurement of 10 minutes windows.
- ThingSpeak: for recording the panic attack event
- Telegram bot: for communicating the panic attack event

Home system Control

Goal: Monitoring home for having a comfortable environment

How it works

- Manages temperature and humidity inside the house
- Verifies patient presence in the home
- Avoid wasting energy by establishing activation time slots

Home system Control

How it works

- Manages temperature and humidity inside the house
- Verifies patient presence in the home
- Avoid wasting energy by establishing activation time slots

Home system Control

How it works

- Manages temperature and humidity inside the house
- Verifies patient presence in the home
- Avoid wasting energy by establishing activation time slots

Communication with

- Device connector:
 - Continuously receives data from Temperature and Humidity sensors
 - Sends actuation commands if it is identified a condition to switch ON or OFF the Air Conditioning System

Light Shift

How it works

 Manages the lighting system in relation to the physician's established schedule for luminotherapy

Communication with

- Catalog:
 - to obtain the times in which to activate the luminotherapy
- Device Connectors:
 - to send actuations commands to turn the lights ON or OFF

ThingSpeak

It's a platform used like a database in which there are all measurement got from different sensors implemented on iSupport platform

It uses an adaptor *ThingSpeak Adaptor* which:

- Allows you to implement communication via MQTT.
- Increases the scalability of the platform
- Increases interoperability between components.

ThingSpeak third part Application User Interface

ThingSpeak

It's a platform used like a database in which there are all measurement got from different sensors implemented on iSupport platform

It uses an adaptor *ThingSpeak Adaptor* which:

- Allows you to implement communication via MQTT.
- Increases the scalability of the platform
- Increases interoperability between components.

Communication with

- Device Connector: continous updating of measurements
- Data Analysis: sending measurements received from the device connector.
- Patient Control: sending measurements related to specific observation windows.

Data Analysis

How it works

- Process patient measurements to get weekly or monthly statistics:
 - Weekly report about average heart rate in 3 time bands.
 - Weekly report about patient's activity status (percentage of low, medium, high intensity obtained as comparing rate and acceleration measurements
 - Number of monthly panic attacks
 - Weekly report about how much time patient spends in the bedroom (level of sedentary lifestyle)

Communication with

ThingSpeak Adaptor: to get measurements

Node-RED: to create statistical graphs

Data Analysis

How it works

- Process patient measurements to get weekly or monthly statistics:
 - Weekly report about average frequency values in 3 time bands.
 - Weekly report about patient's activity status (percentage of low, medium, high intensity obtained as comparing rate and acceleration measurements.
 - Number of monthly panic attacks.
 - Weekly report about how much time patient spends in the bedroom (level of sedentary lifestyle).

Communication with

- ThingSpeak Adaptor: to get measurements
- Node-RED: to create statistical graphs

Data Analysis

How it works

- Process patient measurements to get weekly or monthly statistics:
 - Weekly report about average frequency values in 3 time bands.
 - Weekly report about patient's activity status (percentage of low, medium, high intensity obtained as comparing rate and acceleration measurements.
 - Number of monthly panic attacks.
 - Weekly report about how much time patient spends in the bedroom (level of sedentary lifestyle).

Communication with

- ThingSpeak Adaptor: to get measurements
- Node-RED: to create statistical graphs

Node-RED interface

Node-RED

How it works

- Nodes:
 - MQTT communication node
 - Python function
 - Two blocks to visualize msg.payload in debug *display*
 - A rbe block
 - A digital display and three chart

- Emergency management
- Allow the doctor and the caregiver to always be updated on the Heart Rate, Movement and Recurrence trends of panic attacks.

• '/start' function:

Telegram user registration on platform

'/status' function:

Visualization of ThingSpeak graphs about vital signs

Emergency management:

• Getting alert message from the Patient Control microservice in case of Panic Attack.

- Emergency management
- Allow the doctor and the caregiver to always be updated on the Heart Rate, Movement and Recurrence trends of panic attacks.

'/start' function:

• Telegram user registration on platform

- Emergency management
- Allow the doctor and the caregiver to always be updated on the Heart Rate, Movement and Recurrence trends of panic attacks.

• '/status' function:

Visualization of ThingSpeak graphs about vital signs

- Emergency management
- Allow the doctor and the caregiver to always be updated on the Heart Rate, Movement and Recurrence trends of panic attacks.

• Emergency management:

• Getting alert message from the Patient Control microservice in case of Panic Attack.

- Emergency management
- Allow the doctor and the caregiver to always be updated on the Heart Rate, Movement and Recurrence trends of panic attacks.

Communication with

- Patient Control: which publishes a message to the telegram bot if it detects a panic attack
- ThingSpeak: required for viewing graphs
- Catalog: retrieve chatld and token

Thanks for your attention

Team 3:

Burdisso Sara s275424

Centonze llenia s277389

Ferrara Mauro s276932

Pasotti Andrea s275100