The Development of High Performance Actuator Material with Low Lead Content using the Spark-plasma-sintering Method

R. Wang, R. Xie, T. Sekiya, Y. Shimojo,

Y. Akimune, N. Hirosaki¹⁾, and M. Itoh²⁾

National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan; ¹⁾ National Institute of Materials Science, Tsukuba, Japan; ²⁾ Tokyo Institute of Technology, Yokohama, Japan

maintaining the data needed, and of including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate or mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington			
1. REPORT DATE 00 JUN 2003		2. REPORT TYPE N/A		3. DATES COVERED				
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER							
The Development of Content using the	5b. GRANT NUMBER							
Content using the	5c. PROGRAM ELEMENT NUMBER							
6. AUTHOR(S)		5d. PROJECT NUMBER						
		5e. TASK NUMBER						
		5f. WORK UNIT NUMBER						
National Institute o Tsukuba, Japan; N	ZATION NAME(S) AND AE of Advanced Industr lational Institute of itute of Technology,	rial Science and Tec Materials Science, T		8. PERFORMING REPORT NUMB	G ORGANIZATION ER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)			
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)						
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited						
	OTES 97, ARO-44924.1-E chnology)., The orig				nterials (5th)(Smart			
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON					
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	13	RESPONSIBLE PERSON			

Report Documentation Page

Form Approved OMB No. 0704-0188

INTRODUCTION

Origin of colossal effects (e.g. colossal magnetoresistance in magnanites, colossal proximity effect in underdoped high temperature superconductors, giant dielectric constant in Pbcontaining relaxor ferroelectrics):

intrinsic inhomogeneities

J. Burgy, M Mayr, V. Martin-Mayor, and E. Dagotto, Phys. Rev. Lett. 87, 277202(2001).

In (Na_{0.5}K_{0.5})NbO₃, the competing ferroelectric and antiferroelectric interactions coexist. By modifying its disorder with PbTiO₃, what will happen? Could the giant or colossal effect be possible?

Objectives of the present research

• To characterize dielectric and piezoelectric properties of (Na_{0.5}K_{0.5})NbO₃-PbTiO₃ ceramics.

• To investigate the effect of random fields on performance of perovskite piezoelectrics.

EXPERIMENTAL

Sample preparation

calcination SPS sintering post annealing

Na₂CO₃, K₂CO₃, PbO, TiO₂, Nb₅O₂

950°C X 2hr, twice

1020 ~ 1100°C X 5 min ~ 60 MPa, vacuum

950°C X 5 hr, air

Measurements

- X-ray diffraction
- Scanning Electronic Microscopy
- Dielectric constant.
- > *DE*-loop
- Electromechanical coupling coefficient

resonance method,

Sample sizes: ~5mmx5mmx0.5mm poling conditions:

 $E \sim 30 \text{ kV/cmx} 15 \text{ mins, RT}$

RESULTS

SEM images

X 3000

X 10000

Real part of the dielectric constant

Imaginary part of the dielectric constant

D vs. E loops

$T_{\rm c}$, $\varepsilon_{\rm max}$, and $m_{\rm B}$ - $m_{\rm A}$ vs. x

The composition at which $m_{\rm B}$ - $m_{\rm A}$ = 0 (x = 0.28) is very close to the composition where $T_{\rm c1}$ and $\varepsilon_{\rm max}$ show minimum (x = 0.30).

List of piezoelectric properties

PbTiO ₃ content y	0	0.0	0.0	0.0	0.0	0.0 5	0.1	0.2	0.3	0.4	0.5
Relative density (%)	96. 0	99. 8	97. 2	98. 2	95. 9	96. 0	98. 3	93. 1	98. 2	96. 5	97. 1
Remnant polarization (μ C/cm ²)	19	21	19	14	15	15	11	11	8	8	6
Coercive field (kV/cm)	14	16	19	12	15	15	17	21	19	26	20
k _p (%)	18	26	21	25	22	24	16	12	13	10	10

SUMMARIES

- High density of $(1-x)(Na_{0.5}K_{0.5})NbO_3$ - $xPbTiO_3$ ($x \le 0.50$) samples were prepared by the SPS method.
- The improved electric field induced strain has been observed in the low *x* range. The modified domain structure is considered to be mainly responsible for the improvement.
- The dielectric properties tend to degrade with the intensification of the random fields.

REFERENCES

- 1. T. Wada, K. Toyoike, Y. Imanaka and Y. Matsuo: Jpn. J. Appl. Phys. **40** (2001) 5703.
- 2. G. Shirane, R. Newnham and R. Pepinsky: Phys. Rev. **96** (1954) 581.
- 3. L. Egerton and D. M. Dillon: J. Am. Ceram. Soc. **42** (1959) 438.
- 4. R. E. Jaeger and L. Egerton: J. Am. Ceram. Soc. **45** (1962) 209.
- 5. G. H. Haertling: J. Am. Ceram. Soc. **50** (1967) 329.
- 6. M. Tokita: J. Soc. Powder Technol. Jpn. **30** (1993) 790.
- 7. I. Kondoh, T. Tanaka and Tamari: J. Ceram. Soc. Jpn. (Yogyo Kyokaishi) **102**(1994)505.
- 8. N. Tamari, T. Tanaka, K. Tanaka, I. Kondoh, M. Kawahara and M. Tokita: J. Ceram. Sco. Jpn. (Yogyo Kyokaishi) **103** (1995) 740.
- 9. T. Takeuchi, E. Betourne, M. Tabuchi, H. Kageyama, Y. Kobayashi, A. Coats, F. Morrison, D. C. Sinclair and A. R. West: J. Mat. Sci. **34** (1999) 917.
- 10. T. Takeuchi, M. Tabuchi, I. Kondoh, N. Tamari and H. Kageyama, J. Am. Ceram. Soc. 83 (2000) 541.
- 11. J-K. Park, U-J. Chung, N-M. Hwang and D-Y. Kim, J. Am. Ceram. Soc. **84** (2001) 3057.
- 12. Z. Shen, Z. Zhao, H. Peng and M. Nygren, Nature **417** (2002) 266.
- 13. R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, and M. Itoh: submitted.
- 14. V. A. Isupov: Phys. Stat. Sol. (a) **181** (2000) 211.
- 15. R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune and N. Hirosaki: submitted.
- 16. P. Papet, J. P. Dougherty and T. R. Shrout: J. Mater. Res. **5** (1990) 2902.
- 17. G. A. Samara: Solid State Phys. **56** (2001) 239 and references therein.

