# Background: What's wrong

# 1. Balancing Exploitation vs Exploration

h: an estimate of distance/cost to the goal



# 2. Monte-Carlo Tree Search (Kocsis & Szepesvári, 2006)



## 3. How to evaluate? (Schulte et al, 2014)



## 4. GBFS is just "min backprop" MCTS! (Schulte et al, 2014)



## 5. UCB1 is WRONG (Wissow & Asai, 2023)

UCB1 : designed for 0/1 rewards (games are like that! : win = 1, loss = 0) BUT Heuristics have no upper bound !!! ([0, 1] is an overspecification)

Algorithm Assumption

known finite support distributions, like [0, 1] UCB1

UCB1-Normal Gaussian + assumptions (may not hold)

### UCB1-Normal2 Gaussian + different assumptions

Solution:

(more likely to hold in classical planning)

- Use an **unbounded distribution**! Gaussian:  $[-\infty, \infty]$
- Backpropagates both (mean, variance):  $N(\mu, \sigma)$
- As seen here, quite powerful vs UCB1-based MCTS in classical planning

#### 6. Gaussian is better but is STILL WRONG (this paper)

Using the average is SO wrong

**Gaussian:** no bounds at all  $h \notin [-\infty, \infty] = R$ Heuristics have unknown bounds !!!  $h \in [0, \infty]$ 

(underspecification)  $h_{add}$  ∈  $[h_{max}, \infty]$ , Imcut ∈  $[0, h^+]$  ...

- We are interested in good nodes. Why do we use the average?
  - Average takes ALL bad nodes into consideration
- Why change it when it's not broken? GBFS uses the minimum.
  - Schulte et.al. proposed min-backup, but it is not good -
  - Why not good? → min-backup lacks statistical justifications. (bandit theory)
- What's the statistical theory of minimum/maximum (extremum)?
- **Dead-ends (h=\infty) break the average.** Average of [2,3, $\infty$ ,7,5] is  $\infty$ .
  - Existing work removes the dead-ends because otherwise it doesn't work
  - GBFS implicitly does it (minimum can discard ∞ naturally)
  - "Removing them just to make the algorithm work" is ad-hoc and wrong

 Statistical theory of the maximum (≠ average) Used in safety-critical applications: e.g. Maximum water level

Extreme Value Theory: What's right

- There are two types:
  - Method of block maxima: (block) e.g. Predict next monthly maximum from several monthly maxima
  - Peaks-over-Threshold: Predict the exceedance over the threshold

| What to model? | Limit Theorem (N→∞)      | converges to                         |  |  |
|----------------|--------------------------|--------------------------------------|--|--|
| Average        | Central Limit Theorem    | Gaussian<br>Distribution             |  |  |
| Block maxima   | Fisher-Tippett-Gnedenko  | Extreme Value Distribution (EVD)     |  |  |
| Exceedance     | Pickands-Balkema-de Haan | Generalized Pareto (GP) Distribution |  |  |



#### • We predict the exceedance above $\theta = -h(I)$ Initial heuristic value

fit GP( $\theta$ ,  $\sigma$ ,  $\xi$ ) = fit N( $\mu$ ,  $\sigma$ ) = high water mark/benches) discard samples below the threshold  $\theta$ , based on all samples (incl. bad h), compute the maximum and shape ξ compute the average & the variance X~Exponential/Pareto  $X \sim N(\mu, \sigma)$  $(\xi < 0)$ -X~Power(u,a)  $X\sim Uniform (\xi=-1)$ 

**Majority of search nodes** in the entire state space are far from the goal, thus are useless / must be discarded

**GP** = distribution near the goal !!!

= 0 : goal

(similarity to

# Backprop GP, not Gaussian

We focus on GP's special cases: Uniform and Power. (see paper for why)

(GP with 
$$\xi$$
<0)  $Pow(\mathbf{x}|u,a) = \frac{a\mathbf{x}^{a-1}}{u^a}.$   $(0 < x < u, \ 0 < a)$  (GP with  $\xi$ =-1)  $U(\mathbf{x}|l,u) = \frac{1}{u-l}.$   $(l < x < u)$ 

## Backpropagate min h<sub>i</sub>, max h<sub>i</sub>, mean log h<sub>i</sub>.

**Power:**  $\hat{u} = \max_i x_i \text{ and } \hat{a} = \left(\log \hat{u} - \frac{1}{N} \sum_i \log x_i\right)^{-1} \mathbf{x_i}$ : heuristic of leaf i Uniform:  $\hat{u} = \max_i x_i$  and  $l = \min_i x_i$ 



#### Power's shape parameter a: Rarity of h near 0

*a* is estimated from backpropagaged heuristics Small  $a \Leftrightarrow$  nodes with small h are common Large  $a \Leftrightarrow$  nodes with small h are rare

## Multi-Armed Bandit for GP (with regret bounds!)

LCB1-Uniform<sub>i</sub> = 
$$\frac{\hat{u}_i + \hat{l}_i}{2} - (\hat{u}_i - \hat{l}_i)\sqrt{6t_i \log T}$$
  $\stackrel{cas}{\underset{gro}{\text{pro}}}$  LCB1-Power<sub>i</sub> =  $\frac{\hat{u}_i \hat{a}_i}{\hat{a}_i + 1} - \hat{u}_i\sqrt{6t_i \log T}$ 

LCB1-Uniform/Power have worst-case polynomial, bestcase constant regrets. Let  $\alpha \in [0,1]$  be an unknown problem-dependent constant and  $u_i$ ,  $l_i$ ,  $a_i$  be unknown ground-truth parameters of Uniform and Power distributions of arm i. The regret is respectively bounded as follows, where  $\beta = (2 - \alpha)^{1/a_i}$ .  $\frac{24(u_i-l_i)^2(1-\alpha)^2\log T}{\Delta^2}+1+2C+\frac{(1-\alpha)T(T+1)(2T+1)}{2}$ 

 $\frac{2u_i^2(3-\beta)^2(\beta-1)^2\log T}{\Delta^2} + 1 + 2C + \frac{(1-\alpha)T(T+1)(2T+1)}{2}$ 

# Results

#### Num. solved on 24 IPC domains w/ 10<sup>4</sup> evaluations

|            | h =           | $h^{ m FF}$   | $h^{ m add}$ | $h^{\max}$ | $h^{ m GC}$ | $h^{\mathrm{FF}}$ +PO | $h^{\mathrm{FF}}$ +DE | $h^{\mathrm{FF}}$ +DE+PO |
|------------|---------------|---------------|--------------|------------|-------------|-----------------------|-----------------------|--------------------------|
| GBFS       | 538           | 518           | 224          | 354        | -           | 489                   | _                     |                          |
| Softmin-Ty | ype(h)        | 576           | 542.6        | 297.2      | 357.6       | -                     | 578                   | -                        |
| GUCT Use   | es UCB1       | 412           | 397.8        | 228.4      | 285.2       | 454                   | 389.2                 | 439.4                    |
| -Normal u  | ses UCB1-Norn | $_{nal}283.4$ | 265          | 212        | 233.4       | 372.4                 | 289                   | 381.6                    |
| *-Normal   | backprop min  | 318.8         | 300          | 215.2      | 246.2       | 378.05                | 304.4                 | 386.7                    |
| -Normal2   |               | 581.8         | 535.8        | 316.6      | 379         | 621                   | 518                   | 578                      |
| *-Normal2  | •             | 567.2         | 533.8        | 263        | 341         | 618                   | 511.4                 | 567.8                    |
| -Power     |               | 596           | 541.8        | 450.6      | 463.2       | 623.4                 | 413.6                 | 583                      |
| -Uniform   |               | 594.8         | 543.8        | 450.6      | 463.8       | 626.4                 | 416.4                 | 583                      |

FD/C++ implementation is on the way and showing promising results