Трансформеры

и их улучшения

Модель Трансформеров

Перевод

Генерация

Модель Трансформеров

Self-Attention

Процесс обучения

While we found the idea presented in the previous subsection very appealing

n = 12

(a) Train phase.

Процесс обучения

While we found the idea presented in the previous subsection very appealing

Transformer-XL

$$\begin{split} &\widetilde{\mathbf{h}}_{\tau+1}^{(n-1)} = [\text{stop-gradient}(\mathbf{h}_{\tau}^{(n-1)}) \circ \mathbf{h}_{\tau+1}^{(n-1)}] \\ &\mathbf{Q}_{\tau+1}^{(n)} = \mathbf{h}_{\tau+1}^{(n-1)} \mathbf{W}^q \\ &\mathbf{K}_{\tau+1}^{(n)} = \widetilde{\mathbf{h}}_{\tau+1}^{(n-1)} \mathbf{W}^k \\ &\mathbf{V}_{\tau+1}^{(n)} = \widetilde{\mathbf{h}}_{\tau+1}^{(n-1)} \mathbf{W}^v \\ &\mathbf{h}_{\tau+1}^{(n)} = \text{transformer-layer}(\mathbf{Q}_{\tau+1}^{(n)}, \mathbf{K}_{\tau+1}^{(n)}, \mathbf{V}_{\tau+1}^{(n)}) \end{split}$$

While we found the idea presented in the previous subsection very appealing

n = 12

(a) Train phase.

While we found the idea presented in the previous subsection very appealing

$$egin{aligned} a_{ij} &= \mathbf{q}_i \mathbf{k}_j^{ op} = (\mathbf{x}_i + \mathbf{p}_i) \mathbf{W}^q ((\mathbf{x}_j + \mathbf{p}_j) \mathbf{W}^k)^{ op} \ &= \mathbf{x}_i \mathbf{W}^q \mathbf{W}^{k^{ op}} \mathbf{x}_j^{ op} + \mathbf{x}_i \mathbf{W}^q \mathbf{W}^{k^{ op}} \mathbf{p}_j^{ op} + \mathbf{p}_i \mathbf{W}^q \mathbf{W}^{k^{ op}} \mathbf{x}_j^{ op} + \mathbf{p}_i \mathbf{W}^q \mathbf{W}^{k^{ op}} \mathbf{p}_j^{ op} \end{aligned}$$

Transformer-XL reparameterizes the above four terms as follows:

$$a_{ij}^{\mathrm{rel}} = \underbrace{\mathbf{x}_i \mathbf{W}^q \mathbf{W}_E^{k}^{\top} \mathbf{x}_j^{\top}}_{\text{content-based addressing}} + \underbrace{\mathbf{x}_i \mathbf{W}^q \mathbf{W}_R^{k}^{\top} \mathbf{r}_{i-j}^{\top}}_{\text{content-dependent positional bias}} + \underbrace{\mathbf{u} \mathbf{W}_E^{k}^{\top} \mathbf{x}_j^{\top}}_{\text{global content bias}} + \underbrace{\mathbf{v} \mathbf{W}_R^{k}^{\top} \mathbf{r}_{i-j}^{\top}}_{\text{global positional bias}}$$

Stabilization for RL (GTrXL)

MultiHead Attention

Adaptive Attention Span

$$m_z(x) = \operatorname{clamp}(\frac{1}{R}(R+z-x), 0, 1)$$

where R is a hyper-parameter which defines the softness of m_z .

Fig. 8. The soft masking function used in the adaptive attention span. (Image source: Sukhbaatar, et al. 2019.)

The soft mask function is applied to the softmax elements in the attention weights:

$$a_{ij} = rac{m_z(i-j) \exp(s_{ij})}{\sum_{r=i-s}^{i-1} m_z(i-r) \exp(s_{ir})}$$

Adaptive Attention Span

Результаты

Model	#layers	Avg. span	#Params	#FLOPS	dev	test
Small models						
T12 (Al-Rfou et al., 2019)	12	512	44M	22G	-	1.18
Adaptive-Span ($S = 8192$)	12	314	38M	42M	1.05	1.11
Large models			1114444	11114		
T64 (Al-Rfou et al., 2019)	64	512	235M	120G	1.06	1.13
T-XL (Dai et al., 2019)	24	3800	277M	438M	-	1.08
Adaptive-Span ($S = 8192$)	24	245	209M	179M	1.01	1.07

Литература

- https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html
- https://arxiv.org/abs/1706.03762
- https://arxiv.org/abs/1901.02860
- https://arxiv.org/abs/1910.06764
- https://arxiv.org/abs/1905.07799

