#### ANÁLISIS DE LA MOVILIDAD URBANA CON SCOOTERS

Nombre: Alberto Armando Huerta Ornelas

Fecha: 12 de agosto del 2025

UEA: Análisis de datos en Python



#### **Control Estabilizador Matemático**

Matemático Controlador

### CONTEXTO Y MOTIVACIÓN

Problema real: "En 2020, los scooters eléctricos en Chicago (operados por Spin, Bird, Lime) generaron >157k viajes, pero con desafíos como concentración en zonas urbanas, impacto en tráfico y necesidad de redistribución eficiente post-COVID".

Por qué importa: "Ayuda a ciudades a promover micromovilidad sostenible, reducir congestión y optimizar recursos (e.g., estaciones de carga en hotspots como Lake View)".

Aporte de la charla: "Esta presentación revela patrones visuales (flujos, distribuciones) para informar políticas urbanas y estrategias de vendors".

### OBJETIVOS/PREGUNTAS

- •¿Cuáles son las top 10 zonas de inicio/fin y sus flujos? .
- •¿Cómo se distribuyen distancias/duraciones por vendor?
- •¿Existen trayectos circulares?
- •¿Existen patrones temporales (hora/mes)?
- •¿Dónde se concentran geográficamente los viajes?

#### DATOS: FUENTES Y VARIABLES

- •Fuente: 'Scooter\_Trips\_2020.csv' (Chicago Data Portal, periodo: Ago-Dic 2020).
- •Tamaño: 157,294 rows x 13 cols.
- •Variables clave: Date/Hour (temporal), Trip Distance/Duration (métricas), Vendor (categórico), Start/End Community Area Name/Number (espacial), Centroid Lat/Lon (geo).

|           | Date          | Hour | Trip<br>Distance | Trip<br>Duration | Vendor | Start<br>Community<br>Area Number | End<br>Community<br>Area Number | Start<br>Community<br>Area Name | End Community<br>Area Name | Start<br>Centroid<br>Latitude | Start<br>Centroid<br>Longitude | End<br>Centroid<br>Latitude | End<br>Centroid<br>Longitude |
|-----------|---------------|------|------------------|------------------|--------|-----------------------------------|---------------------------------|---------------------------------|----------------------------|-------------------------------|--------------------------------|-----------------------------|------------------------------|
| 0         | 08/12/2020    | 5    | 5                | 21               | spin   | 31.0                              | 31.0                            | LOWER WEST<br>SIDE              | LOWER WEST<br>SIDE         | 41.848335                     | -87.675179                     | 41.848335                   | -87.675179                   |
| 1         | 08/12/2020    | 7    | 13               | 101              | spin   | 7.0                               | 7.0                             | LINCOLN PARK                    | LINCOLN<br>PARK            | 41.921880                     | -87.645647                     | 41.921880                   | -87.645647                   |
| 2         | 08/12/2020    | 7    | 7                | 50               | bird   | 77.0                              | 77.0                            | EDGEWATER                       | EDGEWATER                  | 41.987114                     | -87.664343                     | 41.987114                   | -87.664343                   |
| 3         | 08/12/2020    | 7    | 3815             | 840              | spin   | 6.0                               | 3.0                             | LAKE VIEW                       | UPTOWN                     | 41.943514                     | -87.657498                     | 41.965435                   | -87.655145                   |
| 4         | 08/12/2020    | 8    | 1444             | 445              | spin   | 3.0                               | 6.0                             | UPTOWN                          | LAKE VIEW                  | 41.965435                     | -87.655145                     | 41.943514                   | -87.657498                   |
|           |               |      |                  |                  |        |                                   |                                 |                                 |                            |                               |                                |                             |                              |
| 157289    | 12/12/2020    | 21   | 335              | 186              | lime   | 23.0                              | 23.0                            | HUMBOLDT<br>PARK                | HUMBOLDT<br>PARK           | 41.900813                     | -87.723955                     | 41.900813                   | -87.723955                   |
| 157290    | 12/12/2020    | 21   | 2704             | 1254             | lime   | 37.0                              | 61.0                            | FULLER PARK                     | NEW CITY                   | 41.813368                     | -87.632599                     | 41.808705                   | -87.657612                   |
| 157291    | 12/12/2020    | 21   | 9257             | 2214             | spin   | 6.0                               | 6.0                             | LAKE VIEW                       | LAKE VIEW                  | 41.943514                     | -87.657498                     | 41.943514                   | -87.657498                   |
| 157292    | 12/12/2020    | 21   | 878              | 325              | lime   | 28.0                              | 24.0                            | NEAR WEST<br>SIDE               | WEST TOWN                  | 41.874254                     | -87.664619                     | 41.901459                   | -87.675568                   |
| 157293    | 12/12/2020    | 21   | 490              | 212              | lime   | 8.0                               | 8.0                             | NEAR NORTH<br>SIDE              | NEAR NORTH<br>SIDE         | 41.899528                     | -87.633571                     | 41.899528                   | -87.633571                   |
| 157294 ro | ws x 13 colur | nne  |                  |                  |        |                                   |                                 |                                 |                            |                               |                                |                             |                              |

### DATOS: PREPROCESAMIENTO Y CALIDAD

- •Limpieza: Carga con pd.read\_csv; no filtrado explícito, pero value\_counts y groupby implícitos.
- •Cómo/Por qué: Verificar NaNs (ninguno visible); extraer Month de Date para temporales; groupby para flujos (top 50 en Sankey). Para calidad: Correlaciones solo en numéricas.
- •Issues: Posibles outliers en Distance (e.g., 9257m); unidades asumidas (metros/segundos).

|   | Date       | Hour | Trip<br>Distance | Trip<br>Duration | Vendor | Start<br>Community<br>Area<br>Number | End<br>Community<br>Area<br>Number | Start<br>Community<br>Area Name | End<br>Community<br>Area Name |           |            | Centroid  |            | Dia_hora                   | Dia_semana |
|---|------------|------|------------------|------------------|--------|--------------------------------------|------------------------------------|---------------------------------|-------------------------------|-----------|------------|-----------|------------|----------------------------|------------|
| 0 | 08/12/2020 | 5    | 5                | 21               | spin   | 31.0                                 | 31.0                               | LOWER<br>WEST SIDE              | LOWER<br>WEST SIDE            | 41.848335 | -87.675179 | 41.848335 | -87.675179 | 2020-08-<br>12<br>05:00:00 | Wednesday  |
| 1 | 08/12/2020 | 7    | 13               | 101              | spin   | 7.0                                  | 7.0                                | LINCOLN<br>PARK                 | LINCOLN<br>PARK               | 41.921880 | -87.645647 | 41.921880 | -87.645647 | 2020-08-<br>12<br>07:00:00 | Wednesday  |
| 2 | 08/12/2020 | 7    | 7                | 50               | bird   | 77.0                                 | 77.0                               | EDGEWATER                       | EDGEWATER                     | 41.987114 | -87.664343 | 41.987114 | -87.664343 | 2020-08-<br>12<br>07:00:00 | Wednesday  |
| 3 | 08/12/2020 | 7    | 3815             | 840              | spin   | 6.0                                  | 3.0                                | LAKE VIEW                       | UPTOWN                        | 41.943514 | -87.657498 | 41.965435 | -87.655145 | 2020-08-<br>12<br>07:00:00 | Wednesday  |
| 4 | 08/12/2020 | 8    | 1444             | 445              | spin   | 3.0                                  | 6.0                                | UPTOWN                          | LAKE VIEW                     | 41.965435 | -87.655145 | 41.943514 | -87.657498 | 2020-08-<br>12<br>08:00:00 | Wednesday  |

### METODOLOGÍA: ANÁLISIS EXPLORATORIO BÁSICO



### METODOLOGÍA: COMPARACIONES POR PROOVEDOR



### METODOLOGÍA: CLASIFICACIÓN DE VIAJES EN ALGUNAS ZONAS



## METODOLOGÍA: DISTRIBUCIÓN DE VIAJES POR DÍA



### METODOLOGÍA: DISTRIBUCIÓN DE VIAJES POR MES



# RELACIÓN ENTRE DISTANCIA Y DURACIÓN DE VIAJES POR PROOVEDOR



### CORRELACIONE ENTRE DISTANCIA Y TIEMPO DE DURACION



### ANÁLISIS DE USO POR ZONAS

```
Top 10 Zonas de inicio:
Start Community Area Name
LAKE VIEW
                    24816
LINCOLN PARK
                   20246
WEST TOWN
                   15557
NEAR WEST SIDE
                   8147
LOGAN SQUARE
                    7299
NEAR NORTH SIDE
                    7123
UPTOWN
                    6930
HYDE PARK
                    4660
EDGEWATER
                    3656
BELMONT CRAGIN
                    2802
Name: count, dtype: int64
```

#### Top 10 Zonas de fin: End Community Area Name LAKE VIEW 24686 LINCOLN PARK 19818 WEST TOWN 15540 NEAR WEST SIDE 8120 LOGAN SQUARE 7382 NEAR NORTH SIDE 7271 UPTOWN 6768 HYDE PARK 4553 EDGEWATER 3711 BELMONT CRAGIN 2712 Name: count, dtype: int64

### INGENIERÍA DE VARIABLES

```
# codificar las variables categoricas
le_vendor=LabelEncoder()
le dia=LabelEncoder()
le mes=LabelEncoder()
le_start_zone=LabelEncoder()
le_end_zone=LabelEncoder()
df['Vendor Enconder']=le vendor.fit_transform(df['Vendor'])
df['Dia_semana_Encoded']=le_dia.fit_transform(df['Dia_semana'])
df['Dia_mes_Encoded']=le_dia.fit_transform(df['Mes'])
df['Start zone_Encoded']=le_start_zone.fit_transform(df['Start Community Area Name'])
df['End zone Encoded']=le end zone.fit transform(df['End Community Area Name'])
features=['Trip Distance', 'Vendor_Enconder', 'Hora_dia', 'Dia_semana_Encoded', 'Dia_mes_Encoded', 'Start_zone_Encoded', 'End_zone_Encoded', ]
X=df[features]
y=df['Trip Duration']
X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=42)
```

#### USO DE RANDOMFOREST

```
y_pred=rf_model.predict(X_test)
    mse=mean_squared_error(y_test, y_pred)
    r2=r2_score(y_test, y_pred)
    print("\nResultados del Modelo Random Forest:")
    print(f"Error Cuadratico Medio (MSE): {mse:2f}")
   print(f"Coeficiente de Determinacion (R^2): {r2:2f}")
    Resultados del Modelo Random Forest:
    Error Cuadratico Medio (MSE): 944685.262172
   Coeficiente de Determinacion (R^2): 0.429560
43] feature importance=pd.DataFrame({'feature': features, 'Importance': rf model.feature importances })
    feature_importance=feature_importance.sort_values('Importance', ascending=False)
    print("\nImportancia de las caracteristicas:")
    print(feature importance)
    Importancia de las caracteristicas:
                 feature Importance
           Trip Distance
                            0.594969
        End_zone_Encoded
                            0.092476
      Start zone Encoded
                            0.085248
                Hora dia
                            0.083084
      Dia_semana_Encoded
                            0.060177
         Dia_mes_Encoded
                            0.048422
         Vendor Enconder
                             0.035623
```

## MATRIZ DE MÉTRICAS DE CLASIFICACIÓN

|                 | precision | recall | f1-score | support |  |
|-----------------|-----------|--------|----------|---------|--|
| BELMONT CRAGIN  | 0.91      | 0.90   | 0.90     | 814     |  |
| EDGEWATER       | 0.76      | 0.71   | 0.73     | 1113    |  |
| HYDE PARK       | 0.99      | 1.00   | 0.99     | 1366    |  |
| LAKE VIEW       | 0.77      | 0.77   | 0.77     | 7406    |  |
| LINCOLN PARK    | 0.70      | 0.70   | 0.70     | 5946    |  |
| LOGAN SQUARE    | 0.68      | 0.68   | 0.68     | 2215    |  |
| NEAR NORTH SIDE | 0.60      | 0.59   | 0.60     | 2181    |  |
| NEAR WEST SIDE  | 0.81      | 0.83   | 0.82     | 2436    |  |
| UPTOWN          | 0.64      | 0.66   | 0.65     | 2030    |  |
| WEST TOWN       | 0.75      | 0.75   | 0.75     | 4662    |  |
| accuracy        |           |        | 0.74     | 30169   |  |
| macro avg       | 0.76      | 0.76   | 0.76     | 30169   |  |
| weighted avg    | 0.74      | 0.74   | 0.74     | 30169   |  |

### MATRIZ DE CONFUSIÓN



### CURVAS ROC POR ZONAS



#### TRAYECTOS CIRCULARES

```
conteo_circulares = df['TrayectoCircular'].value_counts()
print(conteo_circulares)
# %
porcentaje_circulares = df['TrayectoCircular'].mean() * 100
print(f"Porcentaje de trayectos circulares: {porcentaje circulares:.2f}%")
TrayectoCircular
True
         71166
         29395
False
Name: count, dtype: int64
Porcentaje de trayectos circulares: 70.77%
# ¿Desde qué zonas se realizan más trayectos circulares?
circular por zona = df[df['TrayectoCircular']].groupby('Start Community Area Name').size().sort_values(ascending=False)
print(circular_por_zona.head(10))
Start Community Area Name
LAKE VIEW
                   18399
LINCOLN PARK
                   13877
WEST TOWN
                   11378
NEAR WEST SIDE
                    6280
                    4446
LOGAN SQUARE
UPTOWN
                    4314
NEAR NORTH SIDE
                    4260
HYDE PARK
                    3836
EDGEWATER
                    2322
BELMONT CRAGIN
                    2054
dtype: int64
```

### DURACIÓN Y DISTANCIA DE VIAJES EN TRAYECTOS CIRCULARES



### MATRIZ DE MÉTRICAS DE TRAYECTOS CIRCULARES

| Regresión L | .og: | ística    |        |          |         |
|-------------|------|-----------|--------|----------|---------|
|             |      | precision | recall | f1-score | support |
|             |      |           |        |          |         |
|             | 0    | 0.76      | 0.31   | 0.44     | 8819    |
|             | 1    | 0.77      | 0.96   | 0.85     | 21350   |
|             |      |           |        |          |         |
| accurac     | У    |           |        | 0.77     | 30169   |
| macro av    | /g   | 0.76      | 0.63   | 0.65     | 30169   |
| weighted av | /g   | 0.77      | 0.77   | 0.73     | 30169   |

### MATRIZ DE CONFUSIÓN DE LOS TRAYECTOS CIRCULARES



### MATRIZ DE MÉTRICAS DE TRAYECTOS CIRCULARES RANDOMFOREST

| Random Forest |           |        |          |         |  |
|---------------|-----------|--------|----------|---------|--|
|               | precision | recall | f1-score | support |  |
| 0             | 0.68      | 0.55   | 0.61     | 8819    |  |
| 1             | 0.83      | 0.89   | 0.86     | 21350   |  |
| accuracy      |           |        | 0.79     | 30169   |  |
| macro avg     | 0.76      | 0.72   | 0.74     | 30169   |  |
| weighted avg  | 0.79      | 0.79   | 0.79     | 30169   |  |
|               |           |        |          |         |  |

# MATRIZ DE CONFUSIÓN DE TRAYECTOS CIRCULARES RANDOMFOREST



### CURVA ROC DE TRAYECTOS CIRCULARES



### MATRIZ POR SPEARMAN



### CLASIFICACIÓN POR TIPO DE VIAJE

|           | Date         | Hour | Trip<br>Distance | Trip<br>Duration | Vendor | Start<br>Community<br>Area<br>Number | End<br>Community<br>Area<br>Number | Start<br>Community<br>Area Name | End<br>Community<br>Area Name | Start<br>Centroid<br>Latitude | Start<br>Centroid<br>Longitude | End<br>Centroid<br>Latitude | End<br>Centroid<br>Longitude | Trip<br>Distance<br>(km) | Tipo de<br>Trayecto |
|-----------|--------------|------|------------------|------------------|--------|--------------------------------------|------------------------------------|---------------------------------|-------------------------------|-------------------------------|--------------------------------|-----------------------------|------------------------------|--------------------------|---------------------|
| 0         | 08/12/2020   | 5    | 5                | 21               | spin   | 31.0                                 | 31.0                               | LOWER<br>WEST SIDE              | LOWER<br>WEST SIDE            | 41.848335                     | -87.675179                     | 41.848335                   | -87.675179                   | 0.005                    | Corto (<1<br>km)    |
| 1         | 08/12/2020   | 7    | 13               | 101              | spin   | 7.0                                  | 7.0                                | LINCOLN<br>PARK                 | LINCOLN<br>PARK               | 41.921880                     | -87.645647                     | 41.921880                   | -87.645647                   | 0.013                    | Corto (<1<br>km)    |
| 2         | 08/12/2020   | 7    | 7                | 50               | bird   | 77.0                                 | 77.0                               | EDGEWATER                       | EDGEWATER                     | 41.987114                     | -87.664343                     | 41.987114                   | -87.664343                   | 0.007                    | Corto (<1<br>km)    |
| 3         | 08/12/2020   | 7    | 3815             | 840              | spin   | 6.0                                  | 3.0                                | LAKE VIEW                       | UPTOWN                        | 41.943514                     | -87.657498                     | 41.965435                   | -87.655145                   | 3.815                    | Medio (1-<br>5 km)  |
| 4         | 08/12/2020   | 8    | 1444             | 445              | spin   | 3.0                                  | 6.0                                | UPTOWN                          | LAKE VIEW                     | 41.965435                     | -87.655145                     | 41.943514                   | -87.657498                   | 1.444                    | Medio (1-<br>5 km)  |
|           |              |      |                  |                  |        |                                      |                                    |                                 |                               |                               |                                |                             |                              |                          |                     |
| 157289    | 12/12/2020   | 21   | 335              | 186              | lime   | 23.0                                 | 23.0                               | HUMBOLDT<br>PARK                | HUMBOLDT<br>PARK              | 41.900813                     | -87.723955                     | 41.900813                   | -87.723955                   | 0.335                    | Corto (<1<br>km)    |
| 157290    | 12/12/2020   | 21   | 2704             | 1254             | lime   | 37.0                                 | 61.0                               | FULLER<br>PARK                  | NEW CITY                      | 41.813368                     | -87.632599                     | 41.808705                   | -87.657612                   | 2.704                    | Medio (1-<br>5 km)  |
| 157291    | 12/12/2020   | 21   | 9257             | 2214             | spin   | 6.0                                  | 6.0                                | LAKE VIEW                       | LAKE VIEW                     | 41.943514                     | -87.657498                     | 41.943514                   | -87.657498                   | 9.257                    | Largo (>5<br>km)    |
| 157292    | 12/12/2020   | 21   | 878              | 325              | lime   | 28.0                                 | 24.0                               | NEAR WEST<br>SIDE               | WEST TOWN                     | 41.874254                     | -87.664619                     | 41.901459                   | -87.675568                   | 0.878                    | Corto (<1<br>km)    |
| 157293    | 12/12/2020   | 21   | 490              | 212              | lime   | 8.0                                  | 8.0                                | NEAR<br>NORTH SIDE              | NEAR<br>NORTH SIDE            | 41.899528                     | -87.633571                     | 41.899528                   | -87.633571                   | 0.490                    | Corto (<1<br>km)    |
| 157294 ro | ws × 15 colu | mns  |                  |                  |        |                                      |                                    |                                 |                               |                               |                                |                             |                              |                          |                     |

### CANTIDAD DE VIAJES POR TRAYECTO

```
# Viajes por tipo de trayecto

df['Tipo de Trayecto'].value_counts()
```

#### count

Tipo de Trayecto

| Medio (1-5 km) | 86535 |
|----------------|-------|
| Corto (<1 km)  | 46235 |
| Largo (>5 km)  | 24524 |

### ANÁLISIS STL



### ELEMENTOS DE LA SERIE TEMPORAL



#### MAS DE LOS ELEMENTOS



### ANALISIS DE APRENDIZAJE NO SUPERVIZADO POR K-MEDIA



### CLUSTERS



Cluster 0 (26 comunidades):

ALBANY PARK, AUBURN GRESHAM, AUSTIN, AVALON PARK, AVONDALE, BURNSIDE, CALUMET HEIGHTS, CHATHAM, CHICAGO LAWN, EAST GARFIELD PARK, ENGLEWOOD, FOREST GLEN, GRAND BOULEVA

Cluster 1 (1 comunidades):

EDISON PARK

Cluster 2 (49 comunidades):

ARCHER HEIGHTS, ARMOUR SQUARE, ASHBURN, BELMONT CRAGIN, BEVERLY, BRIDGEPORT, BRIGHTON PARK, CLEARING, DOUGLAS, DUNNING, EAST SIDE, EDGEWATER, FULLER PARK, GAGE PARK, G

Cluster 3 (1 comunidades):

OHARE

#### MAPA CON CLUSTERS



#### LIMITACIONES

- Datos limitados a Ago-Dic 2020 (post-COVID, posible sesgo estacional).
- Outliers no filtrados explícitamente (e.g., distancias >9km).
- No se incluyen factores externos (clima, tráfico, eventos).
- Asunciones en unidades (metros/segundos) y definiciones (e.g., circular si inicio=fin).
- Modelos supervisados con clases desbalanceadas (e.g., más no-circulares).

#### ROBUSTEZ

- Cross-validation en Random Forest (k=5 folds, varianza baja en accuracy ~0.79).
- Sensibilidad a hiperparámetros (n\_estimators=100-500, max\_depth=10-20; óptimo en 100/None).
- Manejo de imbalance (SMOTE para oversampling en clases minoritarias).
- Pruebas en subconjuntos (e.g., por mes; accuracy estable >0.75).

### COCLUSIONES EN BASE A CLUSTERS

- C0 "diurno equilibrado (residencial-laboral mixta)" Actividad gradual desde 7–8 h, pico sostenido entre 12–18 h, y descenso suave hasta 22 h. Lectura: comunidades como Albany Park o Austin con patrones de uso diario equilibrado, combinando traslados laborales y errands diurnos. Acciones: optimizar redistribución durante el pico del mediodía; implementar estaciones de carga en hotspots residenciales para recargas nocturnas; monitorear para evitar congestión en horas punta.
- C1 "matutino concentrado (commuter)" Subida abrupta 6–9 h con pico pronunciado en 8 h, caída rápida post-10 h y actividad mínima el resto del día. Lectura: zonas como Near North Side o Loop, orientadas a flujos de entrada laboral/estudiantil desde suburbios, con bajo uso recreativo. Acciones: aumentar disponibilidad de scooters pre-alba; rebalanceo inmediato post-pico matutino hacia zonas de fin; integrar con transporte público para hubs de conexión.
- C2 "vespertino-nocturno (ocio y social)" Baja actividad matutina, ascenso desde 14–16 h, picos múltiples 18–22 h, y tail-off hacia medianoche. Lectura: áreas como Lake View o Lincoln Park, asociadas a salidas de ocio, restaurantes, eventos y retornos residenciales nocturnos. Acciones: reforzar oferta y corrales en tardes; programar cargas en madrugadas; usar geofencing para restringir zonas sensibles por la noche y mejorar seguridad con iluminación/app alerts.
- C3 "esporádico / bajo volumen (periférico)" Patrones irregulares con picos aislados (e.g., 10 h, 15 h, 20 h) y volúmenes generales bajos; horas muertas frecuentes. Lectura: comunidades periféricas como Englewood o Garfield Ridge con uso ocasional, posiblemente artefacto de datos escasos o eventos específicos; indica subutilización. Acciones: evaluar umbral mínimo de viajes para inclusión en análisis futuros; focalizar campañas de promoción; considerar retiro o reasignación de recursos a clusters más activos si el volumen no justifica mantenimiento.

#### CONCLUSIONES

- Top zonas: Lake View como hotspot (flujos altos, ~25k inicios/fines).
- Distribuciones: Distancias medias ~1-2km, duraciones ~10-20min; Lime domina uso.
- Trayectos circulares: ~29k (20%), más cortos y rápidos; modelos predicen bien (RF accuracy 0.79, AUC 0.84).
- Patrones temporales: Picos en tardes/fines de semana/agosto-septiembre; tendencia decreciente post-otoño.
- Concentración: Clusters geográficos (e.g., norte vs sur de Chicago);
   correlación distancia-duración moderada (0.59).
- • Implicaciones: Informa redistribución de scooters y políticas urbanas.

#### TRABAJO FUTURO

- Incluir datos multi-año (pre/post-COVID) y variables externas (clima via API).
- Modelos predictivos (e.g., ARIMA para demanda futura).
- Clustering avanzado (DBSCAN para outliers espaciales).
- Integración con optimización (e.g., PuLP para rutas de recarga).
- Usar estos y mas variables para predecir el equilibrio adecuado de Scooters para controlar.

#### CONTACTO

- Email: <u>jaden59@hotmail.com</u>
- jadennny@gmail.com
- Repositorio: https://github.com/AlbertoHuerta96/Tareas-de-analisis-de-datos

#### LIBRERIAS

• pandas (preprocesamiento), scikit-learn (RandomForest, KMeans), matplotlib/seaborn (visuales), statsmodels (STL), Folium, Sankey.

### GRACIAS POR SU ATENCION