

Universidade Estadual de Feira de Santana EXA 864 - Mineração de Dados Prof. Rodrigo Tripodi Calumby

Projeto Prático 2 - There and back again

Discentes: Ramon de Cerqueira Silva Adlla Katarine Aragão Cruz Passos Daniel Alves Costa

Sumário

- Introdução
- Algoritmos e Ferramentas Utilizadas
- Análise das Proposta e Metodologia
- Resultado e Discussão
- Conclusão
- Referências

Introdução

- Aplicação de técnicas adquiridas em sala de aula para criação de uma avaliação experimental.
- Objetivo é predizer, a partir de algoritmos, determinadas características e superpoderes dos personagens disponibilizados.
- Utilização de técnicas de classificação de dados com modelos de Ensemble Learning.
- Objetivo do grupo é atingir 70% de acurácia na previsão de todos os atributos.

Algoritmos e Ferramentas Utilizadas

- Tecnologias
- Ferramentas

Tecnologias

- Python em sua versão 3.6
- IDE Spyder 3.3.4
- **Anaconda Navigator**
- Ambientação para utilizar o pacote Fancyimpute

Ferramentas

- Leitura de arquivos .csv, com a biblioteca Pandas:
 - Dataframes
- Algoritmos para classificação e métodos de Ensemble com a biblioteca Sklearn:
 - Árvore de Decisão
 - Naive Bayes
 - Random Forest
 - VotingClassifier
 - Bagging
 - Adaboost

Ferramentas

- Tratamento de valores NaN, com a biblioteca Numpy
- Avaliação da qualidade dos modelos de predição, com Sklearn:
 - Matriz de Confusão
 - Recall
 - Precision
 - Validação Cruzada
 - Acurácia
 - F1
 - Curva ROC

Análise das Propostas e Metodologia

- Base de Dados
- Pré-processamento
- Classificadores
- **Ensemble Learning**
- Validação

Base de Dados

- 2 datasets em formato **csv**
- Dataset "herois"
 - 734 nomes de heróis
 - 9 características
 - Atributos categóricos e numéricos
 - Valores ausentes e NaN
- Dataset "superpoderes"
 - o 667 nomes de heróis
 - 167 poderes
 - Atributos binários
 - Sem valores ausentes ou NaN

Base de Dados

Base de Dados

Atributos binários

Pré-processamento

- Fase mais importante de um projeto de aprendizagem
- Integração dos datasets
- Tratamento dos dados
- Transformação de atributos multiclasses em binários
- Tratamento de personagens duplicados e sem características

name	Gender	Eye color	Race	Hair color	Height	Publisher	Skin color	Alignment	Weight
Goliath	Male	-	2		-99	Marvel Comics	4	good	-99
Goliath	Male	2	Human	2	-99	Marvel Comics	-	good	-99
Goliath	Male	-	Human	-	-99	Marvel Comics	-	good	-99

- Preenchimento de valores ausentes e NaN
- Uso da biblioteca Fancyimpute para tratamento com KNN
 - Valores '-' foram trocados por np.nan.
 - K vizinhos, escolhidos com base em alguma medida de distância.
 - A média é usada como estimativa de imputação.
 - Atributos discretos: Hamming
 - Atributos contínuos: Euclidean, Manhattan e Cosine.
 - Parâmetro usado: 3-NN ou 5-NN, e Hamming.

Fonte: https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn Acesso em 04 set. 2019

Classificadores

Naive Bayes

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

- Decision Tree
 - hiperparâmetros
 - GridSearchCV

Classificadores

Random Forestparâmetro: N_samples:50

Instance Random Forest Tree-n Tree-2 Tree-1 Class-B Class-B Class-A Majority-Voting Final-Class

- Bagging
- Adaboost
- **Voting-Classifier**

Bagging

Fonte: https://medium.com/swlh/difference-between-bagging-and-boosting-f996253acd22 Acesso em 04 set. 2019

AdaBoost

Fonte: https://medium.com/diogo-menezes-borges/boosting-with-adaboost-and-gradient-boosting-9cbab2a1af81 Acesso em 04 set. 2019

Voting Classifier

Validação

- Avaliar sua performance em diferentes métricas de desempenho
- Matriz de confusão
- Validação Cruzada
- Acurácia
- Recall
- Precision
- Curva ROC
- F1

$$ACC = \frac{VP + VN}{VP + FP + FN + VN}$$

$$F1 = \frac{2 * (PRE * REC)}{(PRE + REC)}$$

Resultado e Discussão

- Comparação entre pré-processamentos
- Divisão treinamento e teste
- Classes
 - Alignment
 - Durability
 - Super Strength
 - Flight
 - Gender
 - Publisher
 - Accelerated Healing

	ENSEMBLE	LEARNING - K	NN
Ensemble	Voting Ensemble	Bagging	Ada-Boost
Score	86%	84%	84,10%
Evaluation	n - KNN preproces	ssing - SuperSt	rength
Classifier	Naive Bayers	Decision Tree	Random Fores
Accurancy	73%	77,00%	81%
Score	79%	83,20%	85%
Recall	80,60%	87%	87%
Precision	81,20%	87,10%	87%
AUC	88%	89%	92%
F1	79%	84,60%	86%

Comparação entre pré-processamentos

• Comparação entre pré-processamentos utilizando a classe *Alignment*

Ensemble	Voting Ensemble	Bagging	Ada-Boost	
Score	69%	66,00%	66,00%	
Avaliation -	· SuperV preproce	ssing - Alignme	nt	
Classifier	Naive Bayers	Random Forest	Decision Tree	
Accurancy	65,00%	68%	66.2%	
Score	67,40%	67%	67,60%	
Recall	62,40%	58%	53%	
Precision	65,00%	64,40%	66,40%	
AUC	67%	63%	56%	
F1	67,40%	67%	66,00%	

ENSEMBLE LEARNING - KNN					
Ensemble	Voting Ensemble	Bagging	Ada-Boost		
Score	85%	81%	82,00%		
Avaliation	- KNN preproces	sing - Alignmen	t		
Classifier	Naive Bayers	Random Forest	Decision Tree		
Accurancy	78%	84,00%	85,00%		
Score	72%	82%	86,00%		
Recall	60,80%	51%	58%		
Precision	65,00%	59%	92,00%		
AUC	62%	70%	54%		
F1	72%	82%	83,00%		

Divisão entre treinamento e teste

- Divisão de 70% para treinamento e 30% para teste.
- Uso do GridSearchCV na Decision Tree para evitar overfitting.
- Utilizou-se cross_val_score para gerar resultados.
- Parâmetros: 5 cross-validation e escore pela acurácia.

- Atingiu o objetivo proposto pela equipe.
- Todos os modelos de classificação, o atributo obteve valores maiores que 80% de acurácia
- Destaque para Voting Ensemble que se beneficia da boa acurácia dos outros modelos.

- Atingiu o objetivo proposto pela equipe.
 - Eliminou-se a classe "bad" transformando-o em atributo vago.
- Atributo binário, "good"e "neutral".
- Com o uso de métodos de Ensemble, chega a uma acurácia de 85%.
- Destaque para o modelo Forest Random

- Ambos tiveram acurácia abaixo de 70% em dois modelos.
- Gender obteve 60% de acurácia no modelo Naive Bayes
- Publisher, teve baixa no Random Forest atingindo 68% de acurácia.

- Durability, SuperStrength e Flight que representam superpoderes, obtiveram taxas satisfatórias em relação a todos os modelos.
- Atinge o objetivo da equipe.
- Sobressaem-se nos métodos de Ensemble.
- Destaque sobre o Adaboost, quase se comparando com o Voting.

Conclusão

- O requisito de aplicação de múltiplos algoritmos de classificação e a execução de modelos de Ensemble Learning foi devidamente atendido, bem como o objetivo da equipe.
- Pré-processamento, os testes e análises das melhores configurações, auxiliaram a melhorar os resultados obtidos.
- Houve melhora significativa nos resultados utilizando o pré-processamento com KNN.
- Modelos de Ensemble melhoraram significativamente as predições dos classificadores.

- Melhor poder de discriminação (ROC) do classificador Random Forest no atributo SuperStrength.
- Melhor recall nos classificadores Random Forest e Decision Tree (Recall 87%), confirmando assim, a eficácia dos modelos classificatórios desenvolvidos.

 Portanto, utilizando da média da acurácia entre os classificadores, podemos concluir a efetividade geral ao usar algoritmos Ensemble.

Referências

- Freund, Y., e R. E. Schapire. "A short introduction to Boosting." Journal of Japanese Society for Artificial Intelligence, Vol. 14, No5., 1999: 771 - 780.
- CHAVES, Bruno Butilhao. Estudo do algoritmo AdaBoost de aprendizagem de máquina aplicado a sensores e sistemas embarcados. Dissertação de Mestrado, Escola Politecnica, Universidade de São Paulo, 2011.
- Georgios Drakos. Handling Missing Values in Machine Learning: Part 2.
 Disponível em:
 - https://towardsdatascience.com/handling-missingvalues-in-machine-learning-part-2-222154b4b58e. Acesso em Agosto de 2019.

- Documentação Pandas. Disponível em: https://pandas.pydata.org.
 Acesso em Julho de 2019.
- Documentação Numpy. Disponível em: https://numpy.org. Acesso em Julho de 2019.
- Documentação scikit-learn. Disponível em: https://scikitlearn.org/stable/.
 Acesso em Julho de 2019.
- Jones Granatyr. Machine Learning e Data Science com Python de A a Z.
 Disponível em:
 https://www.udemy.com/machine-learning-e-datascience-com-python-y/.
 Acesso em Agosto de 2019.
- Nicolas L. Gentille. Aprendizado de máquina e caracterização de aterosclerose subclínica: um estudo de caso. Disponível em: http://cassiopea.ipt.br/teses/2017 EC Nicolas-Gentille.pdf>. Acesso em Julho de 2019.

- Documentação Python. Disponível em: https://www.python.org/doc/.
 Acesso em Julho de 2019.
- Babenko, D., e H. Marmanis. Algorithms of the Intelligence Web. Manning Publications, 2009.
- Bernardini, F. C. Combinac, ao de classificação simbólicos para melhorar o poder preditivo e descritivo de ensembles. Dissertação de Mestrado, São Carlos: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 2002.
- Breiman, L. "Bagging Predictors." Machine Learning 24, 1996: 123 140.