¿Qué es el software?

Definición:

Programas de cómputo y documentación asociada.

Sommerville

Definición:

- instrucciones de ordenador que cuando se ejecutan proporcionan la función y el rendimiento deseado,
- estructuras de datos que facilitan a los programas manipular adecuadamente la información
- y los documentos que describen la operación y el uso de los programas.
 Pressman

Ingeniería del software.

¿Qué es la Ingeniería del Software?

- Una disciplina de la ingeniería que concierne a todos los aspectos de la PRODUCCIÓN DEL SOFTWARE desde su inicio hasta que se sustituye.
 - Ingeniería: Aplicación de Métodos, Herramientas, Técnicas, etc., de forma sistemática y organizada
 - Todos los aspectos de producción:

- aspectos técnicos,
- de gestión de RRHH,
- de gestión del tiempo, coste, calidad, etc.

Atributos del buen software

Mantenibles

Sommerville.

- Debe ser posible que el software evolucione y siga cumpliendo sus especificaciones
- Confiables y seguros
 - El software no debe causar daños físicos ni económicos en caso de fallo. Fiabilidad, Seguridad y protección.
- Eficientes
 - El software no debe desperdiciar los recursos del sistema
- Usables
 - Debe contar con Interfaces y documentación adecuadas

Ingeniería vs Preguntas sin resolver

- ¿Por qué lleva tanto tiempo terminar los programas?
 - Planificación (EDT, Gantt, etc.)
- □ ¿Por qué es tan elevado el coste?
 - Construcción a medida
 - Construcción desde cero.
 - Estimaciones

- ¿Por qué no es posible encontrar todos los errores antes de entregar el software al cliente?
 - Planes de Pruebas
- ¿Por qué resulta tan difícil constatar el progreso conforme se desarrolla el software?
 - Elemento lógico
 - Procesos
 - Ciclos de vida

Ingeniería vs Preguntas sin resolver

Ingeniería del software.

¿Qué es el proceso de desarrollo del Software?

- La secuencia de actividades que conducen a la elaboración de un producto software.
- Fundamentalmente, pero no sólo:
 - Especificación
 - Desarrollo
 - Validación
 - Evolución vs Mantenimiento

 El software se desarrolla, no se fabrica en un sentido clásico

Tabla 1.1. Influencia de los costes de ingeniería en el coste total del producto

	Ingeniería	Producción o Desarrollo	Coste unitario / 100 unidades	Coste unitario / 100.000 unidades
Hardware	1000	50 c.u.	60	50.01
Software	1000	2000	30	0.03

- □ El software no se fabrica, se desarrolla
- □ El software no se estropea

Curva de fallos del hardware

Curva ideal de fallos del software

Ingeniería del software.

- □ El software no se fabrica, se desarrolla
- □ El software no se estropea, se degrada

Curva real de fallos del Software

tiempo

- □ El software no se fabrica, se desarrolla
- □ El software no se estropea, se degrada
- Software a medida, o personalizado.
 - Productos Genéricos: Producidos por una organización para introducir en el mercado
 - Productos a Medida: Desarrollados bajo pedido
 - La mayor parte del gasto es en productos genéricos pero hay más esfuerzo en el desarrollo de los productos a medida

- Reutilización. Desarrollo por componentes
 - Posibilidades actuales: Activos o artefactos
 - Reutilización a través de Bibliotecas (Matemáticas, persistencia...)
 - Módulos o Componentes.
 - Integrar, adaptar, envolver
 - Tunning de soluciones genéricas a problemas particulares (ERPs). Configuración de frameworks.
 - Patrones de diseño (FACADE, MVC, etc.)
 - Requisitos???,
 - Desarrollo basado en componentes

- Reutilización.
 - Ventajas
 - Reduce los costes
 - Aumenta productividad
 - Aumenta la calidad
 - Mejora mantenimiento y soporte
 - Mejora control y planificación

Limitaciones

- Reutilización.
 - Ventajas
 - Reduce los costes
 - Aumenta productividad
 - Aumenta la calidad
 - Mejora mantenimiento y soporte
 - Mejora control y planificación

- Limitaciones
 - Complejos vs óptimos
 - Inversión inicial
 - ReestructuraciónOrganización y proceso
 - Recuperación de activos
 - Concepto
 - Contenido
 - Contexto

- Reutilización.
 - Estrategia
 - Ver qué es reutilizable.
 - Construir los activos.
 - Difundir la información.
 - Obligar al reuso enseñando a operar los activos.

- Futuro (Presente?)
 - Búsqueda de activos de cualquier tipo en un repositorio (en la nube?)

El software heredado

- Características
 - Es longevo.
 - Es crítico para las empresas que lo usan
 - Ha sido modificado de forma continuada
 - Debe adaptarse a nuevos entornos.
 - Nuevo hardware
 - La red
 - Nuevos sistemas (BDs)
 - Debe implementar nuevos requerimientos

- Problemas: poca calidad
 - Historia de cambios manejada con pobreza
 - No está documentado
 - Pruebas sin documentar
 - Diseños complejos
 - Código oscuro
- Consecuencias
 - Costoso en mantenimiento
 - Su evolución tiene un altísimo riesgo para la empresa.
- 🗆 Evolución del software.

Evolución del software

- Evolución de grandes sistemas soft. Leyes de Lehman
 - (Estudio referido a finales del siglo XX)
 - El cambio es continuo
 - Crecimiento continuo
 - nuevas funcionalidades continuamente
 - La complejidad es creciente
 - Costes extra para simplificación
 - Estabilidad organizacional
 - Velocidad de trabajo invariante
 - Conservación de la familiaridad:
 - Cambios incrementales constantes, independientes de los recursos
 - Decremento de la calidad

Aplicaciones del software

- Tipos de problema
 - Problemas con solución por pasos específicos
 - Algoritmo, con lenguajes de prog. Procedimentales
 - Problemas que pueden describirse formalmente
 - Lenguajes declarativos. SQL
 - Problemas basados en conocimiento heurístico
 - Sistemas expertos, basados en la ejecución de reglas
 - Problemas que no sabemos como se resuelven, pero conocemos algunas soluciones concretas
 - Utilizaremos redes neuronales

Aplicaciones del software

- Clasificación por Categoría (Pressman).
 - S. empotrado: lavadoras, hornos, coches, etc.
 - S. de sistemas: Sistemas operativos, compiladores,...
 - S. científico y de ingeniería: Cálculo numérico
 - S. de aplicación: Software a medida.
 - S. de línea de productos: Office, juegos, etc.
 - S. de Inteligencia Artificial
 - Aplicaciones basadas en Web, o en la nube.

Otras Clasificaciones del software (Sommerville)

- Por su estructura:
 - Orientados a función.
 - Orientados a componentes.
 - Orientados a listas.
 - Orientados a objetos.
- □ Por su función:
 - Programas o Sistemas de Usuario
 - Interfaces Hombre-Maquina.
 - Herramientas de Software.
 - Librerías.
 - Sistemas de uso genérico: Compiladores, S.O's, Procesadores de Texto, etc.
 - Bases de Datos.
 - Sistemas basados en Web.

- Por su plataforma de computo:
 - Sistemas embebidos.
 - Sistemas de computo distribuido.
 - Sistemas de computo paralelo.
 - Sistemas de tiempo real.
 - Sistemas basados en Chips.
 - Wearable computing systems.
 - Sistemas de computo ubicuos.

- Planificación y estimación de costes, imprecisos
- Productividad baja: duración mayor que la esperada
- Mala calidad a la entrega del producto
- Cliente insatisfecho
 - ⇒ Rediseño del producto

- Planificación y estimación de costes, imprecisos
 - No hay estudios de realizaciones previas
 - CMMI: 1^a Norma: Medir.
 - Los responsables de proyecto pueden no ser expertos informáticos
 - Los expertos en informática dirigen proyectos sin conocimientos de gestión.
- Productividad baja: duración mayor que la esperada
- Mala calidad a la entrega del producto
- □ Cliente insatisfecho ⇒ Rediseño del producto

- □ Planificación y estimación de costes, imprecisos
- Productividad baja: duración mayor que la esperada
 - Especificaciones ambiguas o incorrectas
 - Muchas modificaciones sobre la marcha
 - Falta de documentación
 - Soluciones:
 - Administración de requisitos
 - Metodologías ágiles
 - $lue{}$ Gestión de la configuración \Rightarrow G. del cambio.

- Planificación y estimación de costes, imprecisos
- Productividad baja: duración mayor que la esperada
- Mala calidad a la entrega del producto
 - Aseguramiento de la calidad
 - Procesos de Verificación y Validación
- □ Cliente insatisfecho → Rediseño del producto

CHAOS Report (Standish Group)

	1994	1996	1998	2000	2002	2004	2011	2012	2013	2014	2015
Éxito	16%	27%	26%	28%	34%	29%	29%	27%	31%	28%	29%
Comprometidos	53%	33%	46%	49%	51%	53%	49%	56%	50%	55%	52%
Cancelados	31%	40%	28%	23%	15%	18%	22%	17%	19%	17%	19%

CHAOS RESOLUTION BY LARGE AND SMALL PROJECTS **Small Projects Large Projects** Project resolution for the Successful calendar year 2012 in the new CHAOS database. Small projects are defined as 10% Challenged projects with less than \$1 million in labor content and large projects are considered projects with more than \$10 76% million in labor content. 38%

CHAOS Report 2013 (Standish Group)

	1994	1996	1998	2000	2002	2004	2011	2012	2013	2014	2015	2017
Éxito	16%	27%	26%	28%	34%	29%	29%	27%	31%	28%	29%	33%
Comprometidos	53%	33%	46%	49%	51%	53%	49%	56%	50%	55%	52%	48%
Cancelados	31%	40%	28%	23%	15%	18%	22%	17%	19%	17%	19%	19%

CHAOS RESOLUTION BY LARGE AND SMALL PROJECTS

Small Pro

Project resolution for the calendar year 2012 in the new CHAOS database. Small projects are defined as projects with less than \$1 million in labor content and large projects are considered projects with more than \$10 million in labor content.

- Mitos de la administración
 - Ya se tiene un libro lleno de estándares y procedimientos para la construcción del software.

Todos los modelos están mal pero algunos son útiles

George Box

Ingeniería del software.

- Mitos de la administración
 - Ya se tiene un libro lleno de estándares y procedimientos para la construcción del software.
 - Si un proyecto se atrasa sólo tengo que añadir personal
 - Si subcontrato un proyecto de software puedo despreocuparme y esperar a que se construya

- □ Mitos del Cliente
 - Un enunciado general de los objetivos es suficiente para comenzar a escribir programas
 - Podemos cambiar continuamente los requerimientos del programa porque el software es flexible y se adapta

- Mitos del desarrollador
 - Una vez el programa ha sido escrito y puesto a funcionar el trabajo está terminado
 - Mientras el programa no se esté ejecutando, no existe forma de evaluar su calidad
 - El único producto del trabajo que puede entregarse para que un proyecto se considere un éxito es el programa en funcionamiento
 - La I.S. obliga a emprender la elaboración de documentación que hará el proceso más lento.

Bibliografía

- □ Pressman, R.S.
 - Ingeniería del Software. Un enfoque práctico
 - 6° Edición, 2005
- Sommersville, I.
 - Ingeniería de Software. 9ª Edición 2011
- Chaos Report
 - https://larlet.fr/static/david/stream/ChaosManifesto2013.pdf
 - https://www.standishgroup.com/sample research files/CHAOSReport2 015-Final.pdf