

Report No.: EED32L00061001 Page 1 of 47

Product : Spark Plug
Trade mark : Scalextric®
Model/Type reference : SA00528

Serial Number : N/A

Report Number : EED32L00061001 FCC ID : 2ACUF-SA00528 Date of Issue : Jun. 26, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Hornby Hobbies Ltd
Enterprise Road Westwood Industrial Estate, CT9 4JX,
United Kingdom

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Jay Zheng

Kevin Lan

Ware Xin

Date:

Jun. 26, 2019

Compiled by:

Kevin Lan

Kevin yang

Check No.: 1022573910

2 Version

Version No.	Date	Description	
00	Jun. 26, 2019	Original	
/2			- CR

Page 3 of 47

3 Test Summary

o rest outilitially	200	200		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No.: EED32L00061001 Page 4 of 47

4 Content

1 COVER PAGE			•••••		1
2 VERSION			•••••	•••••	2
3 TEST SUMMARY	•••••	•••••		•••••	
4 CONTENT				•••••	
5 TEST REQUIREMENT			•••••	•••••	
5.1.2 For Radiated Em	est setup hissions test setup missions test setup				
6 GENERAL INFORMATIO	N		•••••	•••••	
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATION 6.4 DESCRIPTION OF SUPP 6.5 TEST LOCATION 6.6 DEVIATION FROM STAN 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION F 6.9 MEASUREMENT UNCER	N OF EUT ON SUBJECTIVE TO THIS SPORT UNITS IDARDS STANDARD CONDITIONS. REQUESTED BY THE CUST	STANDARD TOMER CE LEVELS, K=2)			
7 EQUIPMENT LIST	••••••		••••••	••••••	10
8 RADIO TECHNICAL REQ					
Appendix B): Conducte Appendix C): Band-ed Appendix D): RF Cond Appendix E): Power Sp Appendix F): Antenna Appendix G): AC Powe Appendix H): Restricte	upied Bandwidthed Peak Output Power. ge for RF Conducted Er lucted Spurious Emissic pectral Density Requirement er Line Conducted Emis d bands around fundam Spurious Emissions	missionsons	adiated)		
PHOTOGRAPHS OF TEST	SETUP	•••••	•••••	••••••	39
PHOTOGRAPHS OF EUT (CONSTRUCTIONAL DE	ETAILS	•••••	••••••	41

Report No.: EED32L00061001 Page 5 of 47

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment for RF conducted test:						
Temperature:	24°C					
Humidity:	54% RH					
Atmospheric Pressure:	101kPa					

5.3 Test Condition

Test channel:

Test Mode	Tx -	RF Channel			
		Low(L)	Middle(M)	High(H)	
CESK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
GFSK	2402NIH2 ~2460 NIH2	2402MHz	2440MHz	2480MHz	
TX mode: The EUT transmitted the continuous signal at the specific channel(s).					
			/ 31		

Report No. : EED32L00061001 Page 7 of 47

6 General Information

6.1 Client Information

Applicant:	Hornby Hobbies Ltd
Address of Applicant:	Enterprise Road Westwood Industrial Estate, CT9 4JX, United Kingdom
Manufacturer:	Hornby Hobbies Ltd
Address of Manufacturer:	Enterprise Road Westwood Industrial Estate, CT9 4JX, United Kingdom
Factory:	Jianhui Plastic & Electronic Industry (Shenzhen) Co. Ltd.
Address of Factory:	No. 127, Sili Road, Guanlan Zhen, Longhua District, Shenzhen, China

6.2 General Description of EUT

Product Name:	Spark Plug	(4)
Model No.:	SA00528	(6,2)
Trade mark:	Scalextric®	
EUT Supports Radios application:	BT4.0 Single Mode; 2402-2480MHz	(2)
Power Supply:	AC Adapter MODEL No.: P9403W INPUT: 120V AC 60Hz 0.5A OUTPUT: 15V DC 1.2A	
Hardware Version:	C(manufacturer declare)	215
Firmware Version:	1(manufacturer declare)	
Sample Received Date:	Mar. 22, 2019	
Sample tested Date:	Apr. 16, 2019 to Jun. 14, 2019	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(6.)	(0,
Bluetooth Version:	4.0		
Modulation Technique:	DSSS		
Modulation Type:	GFSK	(3)	
Number of Channel:	40	(67)	
Test Power Grade:	P_m4dbm(manufacturer declare)		
Test Software of EUT:	wtcdb		
Antenna Type:	PCB antenna	Z*S	6
Antenna Gain:	0dBi		(5)
Test Voltage:	AC 120V, 60Hz		

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
		1					

30

2460MHz

40

2480MHz

6.4 Description of Support Units

2420MHz

The EUT has been tested independently.

6.5 Test Location

10

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

2440MHz

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

20

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Page 8 of 47

Report No. : EED32L00061001 Page 9 of 47

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Radiated Spurious amission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction aminaism	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32L00061001 Page 10 of 47

7 Equipment List

RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020		
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020		
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02		01-09-2019	01-08-2020		
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-09-2019	01-08-2020		
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020		
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020		
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019		

- 6.5-			400		5.00	
Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	05-25-2018 05-20-2019	05-24-2019 05-18-2020	
Temperature/ Humidity Indicator	Defu	TH128	/	07-02-2018	07-01-2019	
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020	
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020	
LISN	R&S	ENV216	100098	05-11-2018 05-08-2019	05-10-2019 05-06-2020	
LISN	schwarzbeck	NNLK8121	8121-529	05-11-2018 05-08-2019	05-10-2019 05-06-2020	
Voltage Probe	R&S	ESH2-Z3 0299.7810.56	100042	06-13-2017	06-11-2020	
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020	
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020	
Barometer	changchun	DYM3	1188	07-02-2018	07-01-2019	

Page 12 of 47

		/I Semi/full-anech	Serial	Cal. date	Cal. Due date	
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016 05-24-2019	06-03-2019 05-22-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019	
Microwave Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019	
Microwave Preamplifier	Tonscend	EMC051845S E	980380	01-16-2019	01-15-2020	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021	
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021	
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021	
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.6041	08-08-2018	08-07-2019	
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019	
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020	
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020	
Receiver	R&S	ESCI7	100938-003	11-23-2018	11-22-2019	
Multi device Controller	maturo	NCD/070/1071 1112		01-09-2019	01-08-2020	
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018 05-08-2019	05-10-2019 05-06-2020	
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018 05-08-2019	05-10-2019 05-06-2020	
Signal Generator	Agilent	E4438C	MY45095744	03-01-2019	02-28-2020	
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019	
Communication test set	Agilent	E5515C	GB47050534	03-01-2019	02-28-2020	
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020	
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020	
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020	
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020	
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020	
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020	
High-pass filter	MICRO- TRONICS	SPA-F-63029- 4		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001	(is)	01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002	0	01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-09-2019	01-08-2020	

Page 13 of 47

		3M full-anech	oic Chamber				
Equipment	Manufac turer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
RSE Automatic test software	JS Tonscen d	JS36-RSE	10166	06-20-2018	06-19-2019		
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-25-2020		
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-25-2020		
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-25-2020		
Loop Antenna	Schwarz beck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021		
Loop Antenna	Schwarz beck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021		
TRILOG Broadband Antenna	Schwarz beck	VULB 9163	9163-1148	04-25-2018	04-23-2021		
Horn Antenna	Schwarz beck	BBHA 9170	9170-832	04-25-2018	04-23-2021		
Horn Antenna	Schwarz beck	BBHA 9170	9170-829	04-25-2018	04-23-2021		
Communication Antenna	Schwarz beck	CLSA 0110L	1014	02-15-2018 02-14-2019	02-14-2019 02-12-2020		
Biconical antenna	Schwarz beck	VUBA 9117	9117-381	04-25-2018	04-23-2021		
Horn Antenna	ETS- LINDGR EN	3117	00057407	07-10-2018	07-08-2021		
Preamplifier	EMCI	EMC184055SE	980596	06-20-2018	06-19-2019		
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020		
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019		
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-02-2018 04-30-2019	05-01-2019 04-28-2020		
Signal Generator	KEYSIG HT	E8257D	MY53401106	03-13-2018 03-01-2019	03-12-2019 02-28-2020		
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-15-2021		
Filter bank	JS Tonscen d	JS0806-F	188060094	04-10-2018	04-08-2021		
Cable line	Times	SFT205- NMSM-2.50M	394812-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMSM-2.50M	394812-0002	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMSM-2.50M	394812-0003	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMSM-2.50M	393495-0001	01-09-2019	01-08-2020		
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMSM-3.00M	394813-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMSM-7.00M	394815-0001	01-09-2019	01-08-2020		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020		

Report No. : EED32L00061001 Page 14 of 47

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Page 15 of 47

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6758	1.0554	PASS
BLE	MCH	0.7054	1.0680	PASS
BLE	нсн	0.7019	1.0687	PASS

Page 16 of 47

Test Graphs

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-8.997	PASS
BLE	MCH	-7.884	PASS
BLE	HCH	-7.298	PASS

Page 18 of 47

Report No. : EED32L00061001 Page 19 of 47

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
	BLE	LCH	-9.263	-59.424	-29.26	PASS	
6	BLE	НСН	-7.789	-58.938	-27.79	PASS	

Report No. : EED32L00061001 Page 20 of 47

Appendix D): RF Conducted Spurious Emissions

Result Table

11000	0.10.10						
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict			
BLE	LCH	-9.297	<limit< td=""><td>PASS</td></limit<>	PASS			
BLE	MCH	-8.353	<limit< td=""><td>PASS</td></limit<>	PASS			
BLE	нсн	-7.843	<limit< td=""><td>PASS</td></limit<>	PASS			

Page 21 of 47

Page 22 of 47

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	LCH	-21.202	8	PASS
BLE	MCH	-19.610	8	PASS
BLE	НСН	-19.391	8	PASS

Page 25 of 47

Test Graphs

Report No.: EED32L00061001 Page 26 of 47

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No. : EED32L00061001 Page 27 of 47

Appendix G): AC Power Line Conducted Emission

	Test frequency range :150KHz-30MHz 1) The mains terminal disturbance voltage test was conducted in a shielded room								
	2) TI Si po w fo m	the EUT was connected to AC tabilization Network) which proper cables of all other units of the was bonded to the ground or the unit being measured. A nultiple power cables to a sing exceeded.	power source through a ovides a 50Ω/50μH + 5 of the EUT were conne d reference plane in the multiple socket outlet s	a LISN 1 (Line Impeda Ω linear impedance. acted to a second LIS a same way as the LIS astrip was used to con	and Th SN 2 SN				
Test Procedure:	re	he tabletop EUT was placed u eference plane. And for floor-st orizontal ground reference plar	anding arrangement, th						
	E re 1 gı pl	the test was performed with a UT shall be 0.4 m from the vereference plane was bonded to was placed 0.8 m from the bround reference plane for LISTANDE.	tical ground reference pathe horizontal ground recoundary of the unit un SNs mounted on topen the closest points of	olane. The vertical ground of the last control of the last and bonded of the ground refere	oun LIS to enc				
	th 5) In of	Il other units of the EUT and ne LISN 2. order to find the maximum em f the interface cables must	ission, the relative posi	tions of equipment an	nd a				
(di)	th 5) In of	ne LISN 2. order to find the maximum em	ission, the relative posi	tions of equipment an	nd a				
(cří)	th 5) In of	ne LISN 2. order to find the maximum em f the interface cables must conducted measurement.	ission, the relative posi be changed accordi	tions of equipment an	nd a				
	th 5) In of	ne LISN 2. order to find the maximum em f the interface cables must	ission, the relative posi	tions of equipment an	nd a				
	th 5) In of	ne LISN 2. order to find the maximum em f the interface cables must conducted measurement.	ission, the relative posi be changed according	tions of equipment anng to ANSI C63.10	nd a				
Limit:	th 5) In of	ne LISN 2. order to find the maximum em f the interface cables must conducted measurement. Frequency range (MHz)	ission, the relative posi be changed according Limit (dl Quasi-peak	tions of equipment anng to ANSI C63.10 BµV) Average	nd a				
Limit:	th 5) In of	ne LISN 2. order to find the maximum em f the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5	Limit (dl	tions of equipment anng to ANSI C63.10 BµV) Average 56 to 46*	nd a				
Limit:	th 5) In of co	order to find the maximum em f the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 e limit decreases linearly with lHz to 0.50 MHz.	Limit (dl Quasi-peak 66 to 56* 56 60 the logarithm of the fre	tions of equipment and to ANSI C63.10 BµV) Average 56 to 46* 46 50 equency in the range	nd a				
Limit: Charging mode:	* The	order to find the maximum em f the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 e limit decreases linearly with	Limit (dl Quasi-peak 66 to 56* 56 60 the logarithm of the fre	tions of equipment and to ANSI C63.10 BµV) Average 56 to 46* 46 50 equency in the range	nd a				

Report No.: EED32L00061001 Page 28 of 47

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

			Reading_Level			Correct	Measurement		Limit		Ma	Margin			
	No.	Freq.	(dBuV)			Factor		(dBuV)			(dBuV)		iB)		
Ś		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.3660	33.72	27.01	20.80	9.93	43.65	36.94	30.73	58.59	48.59	-21.65	-17.86	Р	
	2	0.5181	33.18	18.23	15.75	9.92	43.10	28.15	25.67	56.00	46.00	-27.85	-20.33	Р	
	3	0.5700	33.10	31.29	27.76	10.00	43.10	41.29	37.76	56.00	46.00	-14.71	-8.24	Р	
	4	1.4420	29.08	20.23	17.10	9.77	38.85	30.00	26.87	56.00	46.00	-26.00	-19.13	Р	
	5	5.0700	32.38	20.27	21.08	9.73	42.11	30.00	30.81	60.00	50.00	-30.00	-19.19	Р	
	6	7.7460	33.12	26.03	19.08	9.77	42.89	35.80	28.85	60.00	50.00	-24.20	-21.15	Р	

Report No.: EED32L00061001 Page 29 of 47

Neutral line:

			Read	ding_Le	vel	Correct	Measurement			Limit Margin			rgin		
	No.	Freq. (dBuV)				Factor (dBuV)			(dBuV)		(dB)				
Ī		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.2500	26.24	19.61	9.85	9.96	36.20	29.57	19.81	61.75	51.75	-32.18	-31.94	Р	
	2	0.5020	30.19	27.06	22.58	9.89	40.08	36.95	32.47	56.00	46.00	-19.05	-13.53	Р	
Š	3	0.5700	31.16	28.72	24.52	10.00	41.16	38.72	34.52	56.00	46.00	-17.28	-11.48	Р	
	4	2.2180	24.16	17.54	14.73	9.72	33.88	27.26	24.45	56.00	46.00	-28.74	-21.55	Р	
	5	5.7740	28.69	23.70	18.85	9.73	38.42	33.43	28.58	60.00	50.00	-26.57	-21.42	Р	
Ī	6	18.9300	22.98	15.83	8.39	9.92	32.90	25.75	18.31	60.00	50.00	-34.25	-31.69	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32L00061001 Page 30 of 47

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	(%)				
Receiver Setup:		Detector	RBW	VBW	Remark	
Receiver Setup:	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 meter was mounted on the toto. c. The antenna height is a determine the maximum polarizations of the antenna was tuned table was turned from the antenna was tuned table was turned from the e. The test-receiver system Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectro for lowest and highest.	n the top of a rotal choic camber. The of the highest racters away from the pof a variable-heavaried from one non value of the fielenna are set to mission, the EUT to heights from 10 degrees to 360 m was set to Peaum Hold Mode. The poliance of the restriction	e table was diation. The interfere eight antenineter to found strength. The hake the me was arrang a meter to 4 degrees to ak Detect F	rotated 36 nce-received tower. In meters a Both horize easuremented to its was meters as find the munction and the emissions	ing antenna, v bove the group contal and verint. orst case and and the rotatable aximum reading d Specified	which and the
	g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the load. The radiation measure Transmitting mode, and in Repeat above procedure.	ve is the test site, ber change form 1 meter and table west channel, th ments are perforr	table 0.8 net is 1.5 met le Highest on med in X, Y	netre to 1.5 re). channel f, Z axis pog which it	5 metre(Above esitioning for	
	i. Repeat above procedu	res until all freque	encies mea	sured was		
(3)	(43)	res until all freque	encies mea			1
(cri)	Frequency 30MHz-88MHz	Limit (dB		n) (s complete.	·
	Frequency	Limit (dB	μV/m @3n	n) Quas	complete.	
imit	Frequency 30MHz-88MHz	Limit (dB	µV/m @3n 40.0	Quas	Remark si-peak Value	
imit:	Frequency 30MHz-88MHz 88MHz-216MHz	Limit (dB	μV/m @3n 40.0 43.5	Quas Quas Quas	Remark si-peak Value si-peak Value	
Limit:	Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	Limit (dB	40.0 43.5 46.0	Quas Quas Quas Quas	Remark Si-peak Value Si-peak Value Si-peak Value	

Page 31 of 47

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak		(0.)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.48	53.66	74.00	20.34	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	66.86	70.00	74.00	4.00	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402	
Remark:	Peak			(0

Test Graph

7	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	49.86	53.04	74.00	20.96	Pass	Vertical
	2	2402.2653	32.26	13.31	-42.43	64.12	67.26	74.00	6.74	Pass	Vertical

Page 3	32	of	47
--------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2402	
Remark:	AV	(c,75)	(6.27)	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.47	41.65	54.00	12.35	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	63.00	66.14	54.00	-12.14	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		(

Test Graph

N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	38.79	41.97	54.00	12.03	Pass	Vertical
1	2	2401.9086	32.26	13.31	-42.43	60.36	63.50	54.00	-9.50	Pass	Vertical

Page 33 of 47

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak	10%	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2128	32.37	13.39	-42.40	67.69	71.05	74.00	2.95	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.31	52.67	74.00	21.33	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak	(3)	/

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.3004	32.37	13.39	-42.40	63.98	67.34	74.00	6.66	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.76	53.12	74.00	20.88	Pass	Vertical

Page 34 of 47

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

PK Limit AV Detector

PK Detector

AV Detector

V	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Ī	1	2479.9937	32.37	13.39	-42.39	66.14	69.51	54.00	-15.51	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	36.79	40.15	54.00	13.85	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

Ant Cable Pream Reading Level Limit Margin Freq. Factor gain NO Result **Polarity** loss [dBµV/m] [dBµV] [dBµV/m] [dB] [MHz] [dB] [dB] [dB] **Pass** 1 2479.9499 32.37 13.39 -42.3961.29 64.66 54.00 -10.66 Vertical Pass 2 2483.5000 32.38 13.38 -42.4036.77 40.13 54.00 13.87 Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32L00061001 Page 35 of 47

Appendix I): Radiated Spurious Emissions

(6.)	_	(67)	(6.2)		10	* /
		Frequency	Detector	RBW	VBW	Remark
		0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	1	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
')	(3)	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
Receiver Setup:	6	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
		0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
		0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
(cil)		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
(0)		Above 1GHz	Peak	1MHz	3MHz	Peak
		ADOVE IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre (Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

		Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	(2	0.009MHz-0.490MHz	2400/F(kHz)	- 0	- M	300
	6	0.490MHz-1.705MHz	24000/F(kHz)	- 10	5) -	30
		1.705MHz-30MHz	30	-	-	30
Limit:		30MHz-88MHz	100	40.0	Quasi-peak	3
		88MHz-216MHz	150	43.5	Quasi-peak	3
		216MHz-960MHz	200	46.0	Quasi-peak	3
		960MHz-1GHz	500	54.0	Quasi-peak	3
		Ab 4015	500	54.0	Average	3
	13	Above 1GHz	5011.9	74.0	peak	3
Test Ambient:	Tem	p.: 24°C	Humid.: 53%	(d	Press.: 101	kPa

Report No.: EED32L00061001 Page 36 of 47

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	Mode	e: GFSK Trai	nsmitting				Channel: 2480					
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	
d	1	37.5668	11.52	0.69	-32.12	34.37	14.46	40.00	25.54	Pass	Horizonta	
	2	77.5348	7.57	1.03	-32.07	42.16	18.69	40.00	21.31	Pass	Horizonta	
	3	168.0448	8.34	1.52	-31.96	42.74	20.64	43.50	22.86	Pass	Horizonta	
	4	256.0326	12.32	1.90	-31.88	45.70	28.04	46.00	17.96	Pass	Horizonta	
	5	319.9620	13.64	2.12	-31.83	42.53	26.46	46.00	19.54	Pass	Horizonta	
	6	600.0290	19.00	2.96	-31.99	38.51	28.48	46.00	17.52	Pass	Horizonta	

Mode	e: GFSK Trai	nsmitting				Channel: 2480					
NO	Freq. [MHz] Ant Factor loss gain [dB] [dB] Reading					Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	
1	30.3880	10.52	0.63	-32.12	39.39	18.42	40.00	21.58	Pass	Vertical	
2	55.2225	12.36	0.84	-32.07	39.28	20.41	40.00	19.59	Pass	Vertical	
3	208.8859	11.13	1.71	-31.94	45.99	26.89	43.50	16.61	Pass	Vertical	
4	319.9620	13.64	2.12	-31.83	39.01	22.94	46.00	23.06	Pass	Vertical	
5	600.0290	19.00	2.96	-31.99	37.57	27.54	46.00	18.46	Pass	Vertical	
6	897.9458	22.08	3.60	-31.60	37.25	31.33	46.00	14.67	Pass	Vertical	

Remark: All the channels are tested, only the worst data were reported.

Transmitter Emission above 1GHz

Mode	e:	GFSK T	ransmitt	ing			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remai
1	1399.0399	28.30	2.90	-42.68	53.01	41.53	74.00	32.47	Pass	Н	PK
2	1793.8794	30.34	3.31	-42.71	61.17	52.11	74.00	21.89	Pass	Н	PK
3	4803.1202	34.50	4.55	-40.66	54.66	53.05	74.00	20.95	Pass	Н	PK
4	4803.4226	34.50	4.55	-40.66	48.81	47.20	54.00	6.80	Pass	Н	AV
5	7206.0000	36.31	5.81	-41.02	54.54	55.64	74.00	18.36	Pass	Н	PK
6	7205.4987	36.31	5.82	-41.02	49.05	50.16	54.00	3.84	Pass	Н	AV
7	9608.0000	37.64	6.63	-40.76	39.54	43.05	74.00	30.95	Pass	Н	PK
8	12010.0000	39.31	7.60	-41.21	38.91	44.61	74.00	29.39	Pass	Н	PK
9	1598.4598	29.05	3.07	-42.90	59.19	48.41	74.00	25.59	Pass	V	PK
10	3197.0131	33.28	4.65	-42.01	53.98	49.90	74.00	24.10	Pass	V	PK
11	4804.0000	34.50	4.55	-40.66	51.91	50.30	74.00	23.70	Pass	V	PK
12	7206.2804	36.31	5.81	-41.02	50.17	51.27	74.00	22.73	Pass	V	PK
13	7205.4707	36.31	5.82	-41.02	43.47	44.58	54.00	9.42	Pass	V	AV
14	9608.0000	37.64	6.63	-40.76	38.98	42.49	74.00	31.51	Pass	V	PK
15	12010.0000	39.31	7.60	-41.21	38.38	44.08	74.00	29.92	Pass	V	PK

Mode	e :	GFSK T	ransmitt	ing			Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remai
1	1895.4895	31.01	3.42	-42.67	52.81	44.57	74.00	29.43	Pass	Н	PK
2	3109.0073	33.24	4.69	-42.05	50.55	46.43	74.00	27.57	Pass	Н	PK
3	4879.1253	34.50	4.80	-40.60	54.92	53.62	74.00	20.38	Pass	Н	PK
4	4879.4023	34.50	4.80	-40.60	48.38	47.08	54.00	6.92	Pass	Н	AV
5	7320.2880	36.42	5.85	-40.92	52.69	54.04	74.00	19.96	Pass	Н	PK
6	7319.6203	36.42	5.85	-40.92	48.23	49.58	54.00	4.42	Pass	Н	AV
7	9608.0000	37.64	6.63	-40.76	39.20	42.71	74.00	31.29	Pass	Н	PK
8	12010.0000	39.31	7.60	-41.21	36.63	42.33	74.00	31.67	Pass	Н	PK
9	1293.8294	28.19	2.74	-42.79	56.37	44.51	74.00	29.49	Pass	V	PK
10	1598.8599	29.05	3.07	-42.90	59.12	48.34	74.00	25.66	Pass	V	PK
11	4880.0000	34.50	4.80	-40.60	53.12	51.82	74.00	22.18	Pass	V	PK
12	4879.3589	34.50	4.80	-40.60	44.37	43.07	54.00	10.93	Pass	V	AV
13	7320.0000	36.42	5.85	-40.92	48.24	49.59	74.00	24.41	Pass	V	PK
14	9760.0000	37.70	6.73	-40.62	38.37	42.18	74.00	31.82	Pass	V	PK
15	12200.0000	39.42	7.67	-41.17	35.99	41.91	74.00	32.09	Pass	V	PK

Page	38	of 47	
raye	, 50	01 41	

Mode:		GFSK Transmitting					Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remai
1	1599.8600	29.06	3.07	-42.90	52.63	41.86	74.00	32.14	Pass	Н	PK
2	2004.9005	31.71	3.48	-42.61	51.07	43.65	74.00	30.35	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	54.06	52.85	74.00	21.15	Pass	Н	PK
4	4959.4183	34.50	4.82	-40.53	47.90	46.69	54.00	7.31	Pass	Н	AV
5	7440.0000	36.54	5.85	-40.82	52.09	53.66	74.00	20.34	Pass	Н	PK
6	7439.5096	36.54	5.85	-40.82	46.76	48.33	54.00	5.67	Pass	Н	AV
7	9920.0000	37.77	6.79	-40.48	38.67	42.75	74.00	31.25	Pass	Н	PK
8	12400.0000	39.54	7.86	-41.12	38.74	45.02	74.00	28.98	Pass	Н	PK
9	1596.8597	29.04	3.07	-42.90	58.92	48.13	74.00	25.87	Pass	V	PK
10	3191.0127	33.28	4.64	-42.01	51.70	47.61	74.00	26.39	Pass	V	PK
11	4959.1306	34.50	4.82	-40.53	51.81	50.60	74.00	23.40	Pass	V	PK
12	7440.0000	36.54	5.85	-40.82	49.32	50.89	74.00	23.11	Pass	V	PK
13	9920.0000	37.77	6.79	-40.48	37.86	41.94	74.00	32.06	Pass	V	PK
14	12400.0000	39.54	7.86	-41.12	37.66	43.94	74.00	30.06	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2)Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32L00061001 Page 39 of 47

PHOTOGRAPHS OF TEST SETUP

Test model No.: SA00528

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: SA00528

View of Product-1

View of Product-2

View of Product-3

View of Product-4

View of Product-5

View of Product-6

View of Product-7

View of Product-8

View of Product-9

View of Product-10

View of Product-11

View of Product-12

Report No.: EED32L00061001 Page 47 of 47

View of Product-13

View of Product-14

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.