Index

■ A	predict method, 379
<i>- ,</i> ,	sklearn.cluster module, 378
Anaconda environment, 472	Comma-separated
Attributes, 439	values (CSV) format, 426
	csv.reader function, 427
■ B	DataFrame instance, 429
_	delimiter argument, 427
Backward differentiation formula (BDF), 221	loadtxt function, 428
Bayesian statistics	read_csv function, 428
conditional probability, 385	skiprows argument, 427
import modules, 384	TAB character, 426
likelihood function, 385	usecols argument, 428
linear regression model, 393	Computing environments, 4
Boolean masks, 394	Conda, 472
dataset, 401	conda create command, 473
GLM model, 399 MCMC algorithm, 396	conda info command, 473
MCMC algorithm, 390 MCMC sampling, 401	conda install PACKAGE, 475
Seaborn library, 397	conda list command, 474
stochastic variable, 397	conda update command, 475
Monte Carlo simulation methods, 386	YAML format, 474
overview, 383	Conflicting objectives, 1
posterior probability, 385	CSV format. See Comma-separated
random variables, 386	values (CSV) format
mc.find_MAP function, 389	Cython library, 454 cy_cumsum function, 465
mc.sample function, 387	cy_tulisum function, 463 cy_julia_fractal function, 468
mc.traceplot function, 388	cy_sum function, 465
PyMC models, 386	overview, 461
SciPy stats module, 386	Overview, 401
sampling posterior distribution, 390	
statistical modeling, 385	D
unconditional probabilities, 384	Delimiter-separated
BDF. See Backward differentiation formula (BDF)	values (DSV), 426
Butterworth filter, 422	Dense matrices, 235
	Durbin-Watson statistical test, 360
■ C	
	_ =
Clustering, 378	■ E
confusion_matrix function, 380	Einstein summation convention, 61
K-means method, 378	Extrapolation, 169
	• '

© Robert Johansson 2015 481

- F	
FDM. See Finite-difference method (FDM)	Infinite impulse response (IIR) filters, 420
FEM. See Finite-element method (FEM)	Installation commands, 477
FEniCS framework, 265	Integral transforms, 202
CellFunction instance, 279	Fourier transform function, 205
DirichletBC class, 270, 274	Laplace transform, 203
dolfin.Constant, 275	Interpolation, 169
dolfin.Expression object, 269	bivariate, 185
dolfin.FunctionSpace class, 268	Chebyshev polynomials, 170
dolfin.interactive, 271	explicit matrix form, 170
dolfin library, 266	griddata function, 182
dolfin.MeshFunction object, 281	implicit matrix form, 170
dolfin.refine function, 279	import modules, 169
dolfin.solve, 282	Legendre polynomials, 170
function instance, 270	multivariate situations, 180
mesh object, 273	polynomial, 173
RectangleMesh function, 267	spline, 177
refined_mesh, 280	Vandermonde matrix, 170
vector method, 272	Interpreter, 5
Finite-difference method (FDM), 257	IPython, 6
boundary-value problem, 257	autocompletion, 7
Dirichlet boundary conditions, 261	command prompt, 6
eye function, 258	documentation, 7
	extension commands, 9
ODE problem, 259 reshape method, 260	debugger mode, 10
-	
scipy.sparse module, 260, 262 two-dimensional	file system navigation, 9 %timeit and %time commands, 12
generalization, 259	profiler function, 12
•	reset command, 11
Finite-element method (FEM), 262 Finite impulse	running scripts, 9
response (FIR) filters, 419	input and output caching, 6
response (1-11) inters, 413	notebook, 14
	cell-types, 16
■ G	dashboard page, 14
Generalized least squares (GLS), 335	editing cells, 17
	features, 14
get_values method, 387	HTML document, 19
■ H	JSON-based file format, 15, 21
Hierarchical Data Format F (HDEF) 420	markdown cells, 18
Hierarchical Data Format 5 (HDF5), 430	PDF format, 20
attributes, 439	object introspection, 7
datasets, 435	Qt console, 13
files, 432	system shell, 8
flush method, 442	
group objects, 432	■ J, K
HDFStore object, 444	•
h5py library, 431	JavaScript Object Notation (JSON) format, 445
iterrows method, 442	json.dump function, 446
PyTables library, 431, 440	json.load function, 446–447
where method, 443	
High-and low-level	■ L
languages, trade-off, 1	—
Hypothesis testing, 325	LUdecomposition method, 129

M	spine attribute, 112
Machine learning, 363	tick placements, 109
classification, 374, 377	twinx method, 111
classification_report function, 376	color map graph, 119
confusion_matrix function, 376	definition, 89
data and target attributes, 375	figure instances, 91, 95
data and target attributes, 373 datasets module, 375	import, 90
linear_model module, 375	interactive mode, 93
load_iris function, 375	legends, 101
predict method, 376	line properties, 98
-	noninteractive nodes, 94
sklearn matrice module, 377	NumPy arrays, 92
sklearn tree module, 376	plot types, 97
sklearn.tree module, 376	plt.subplots function, 97
train_test_split function, 375	text formatting, 102
clustering, 378	3D graphs, 120
confusion_matrix function, 380	Matrix and vector operations, 57
K-means method, 378	Einstein summation convention, 61
predict method, 379	elementwise multiplication, 57
sklearn.cluster module, 378	Kronecker product, 60
cross-validation, 365	matrix-vector multiplication, 58
dimensionality reduction, 366	nontrivial matrix multiplication, 58
feature extraction, 365	Mesh-grid arrays, 33
feature selection, 366	Miniconda environment, 472
regression, 366	Multiple integrals, 196
ElasticNet class, 373	
fit method, 369	■ N
LASSO method, 372	_ 14
LinearRegression instance, 367	Nonparametric methods, 329
LinearRegression object, 368	Numba library, 454–455
make_regression function, 366	Heaviside step function, 459-460
regularized, 369	imshow function, 458
score method, 367	JIT-compiled function, 456
SSE, 367	jit_julia_fractal function, 458
sklearn modules, 364	NumPy universal function, 461
supervised learning, 364	NumPy-array aware function, 460
training, 364	py_cumsum function, 456
unsupervised learning, 365	py_sum function, 456
Matplotlib	NumPy vectorize function, 459
annotations, 102	Numerical integration methods, 188
axes layout managers, 113	interpretation, 188
GridSpec, 117	midpoint rule, 189
insets, 113	Newton-Cotes quadrature rule, 189
plt.subplot2grid function, 116	quad function, 192
subplots, 114	quadrature rule, 190
axes instances, 91, 96	SciPy, 192
axis properties, 104	Simpson's rule, 189
autoscale method, 105	sympy.Lambda function, 190
axis ticks, 106	tabulated integrand, 194
grid lines, 108	trapezoid rule, 189
log-scale plots, 110	NumPy arrays
set_title method, 105	attributes, 26
set_xlabel and set_ylabel methods, 104	Boolean-valued indexing, 39
set_xlim and set_ylim methods, 105	constant values, 32
set_xticks and set_yticks methods, 107	creation, 30

■ INDEX

NumPy arrays (cont.)	multivariate optimization
data types, 27	BFGS method, 155-156
Einstein summation convention, 61	brute force, 157
elementwise multiplication, 57	Hessian evaluations, 155
fancy indexing, 39	Newton's method, 153
incremental sequences, 33	objective function, 157
indexing and slicing expressions, 36	optimize.minimize function, 158
Kronecker product, 60	slice objects, 157
logarithmic sequences, 33	steepest descent method, 153
matrix creation, 35	vectorized functions, 154
arbitrary one-dimensional array, 35	nonlinear least square problem
nonzero diagonals, 35	Levenberg–Marquardt method, 159
matrix-vector multiplication, 58	model function, 160
memory data, 29	nonlinear programming problem, 148
mesh-grid arrays, 33	univariate optimization, 150
multidimensional arrays, 37	Ordinary differential
nontrivial matrix multiplication, 58	equations (ODEs), 207-208
properties, 34	boundary value conditions, 209
Python lists, 31	canonical form, 208
real and imaginary parts, 29	direction field graph, 214
reshaping and resizing, 41	dsolve function, 214
slices, 36	homogeneous, 208
vectorized expressions, 44	import modules, 207
aggregate function, 50	initial value conditions, 209
arithmetic operations, 46	Laplace transformation, 217
array operations, 56	nonhomogeneous, 208
Boolean-valued arrays, 53	numerical methods, 220
conditional expressions, 53	Adams methods, 222
elementary mathematical function, 50	adaptive stepsize/stepsize control, 222
elementwise functions, 48	Euler's method, 220
logical operations, 54	Runge-Kutta method, 221
set operations, 55	SciPy (see SciPy)
views, 38	source term, 208
uninitialized values, 34	standard form, 208
NumPy library, 26	symbolic solution, 209
	Ordinary least squares (OLS), 335
■ O	
	■ P, Q
ODEs. See Ordinary differential equations (ODEs)	•
Optimization, 147	Pandas library, 285
bisection method, 150	DataFrame object, 289
constraints, 161	apply method, 293
cvxopt library, 166	columns attribute, 289
inequality function, 164	drop method, 296
Lagrangian function, 162	groupby method, 296
L-BFGS-B method, 161	index attributes, 290
linear programming, 165	info method, 292
objective function, 163–164	ix indexer attribute, 290
optimize.minimize function, 163	read_csv function, 291
SciPy SLSQP solver, 163	sort_index method, 294
continuous and smooth functions, 149	sortlevel method, 294
convex problems, 149	sort method, 295
feasible method, 150	sum method, 296
import libraries, 147	value_counts method, 295
minimization problem, 148	values attribute, 290

import modules, 286	dolfin.MeshFunction object, 281
seaborn graphics library, 306	dolfin.refine function, 279
boxplot function, 308	dolfin.solve, 282
dropna method, 308	function instance, 270
heatmap, 310	mesh object, 273
jointplot function, 308	RectangleMesh function, 267
kdeplot function, 308	refined_mesh, 280
sns.set function, 306	vector method, 272
violinplot functions, 308	import modules, 256
Series object, 286	Poisson model, 355
describe method, 288	Polynomials, 171
index attribute, 287	Probability density function (PDF), 387
kind argument, 288	, , , , , , , , , , , , , , , , , , , ,
plot method, 289	- D
time series, 297	■ R
concat function, 305	RandomState object, 317
DataFrame.plot method, 301	Regression, 366
date_range function, 297	ElasticNet class, 373
DateTimeIndex instance, 301	fit method, 369
DatetimeIndex object, 298	LASSO method, 373
freq keyword, 297	LinearRegression instance, 367
groupby methods, 303	LinearRegression object, 368
info method, 301	make_regression function, 366
join method, 303	regularized, 369
mean function, 303	score method, 367
PeriodIndex class, 299	SSE, 367
resample method, 304	33L, 307
reset_index method, 302	
to_period method, 299	■ S, T
to_pydatetime method, 298	SciPy
UNIX timestamps, 300	args argument, 227
using read_csv, 299	definition, 125
Partial differential equations (PDEs), 255, 257	double pendulum, dynamics, 233
FDM, 257	eigenvalue equation, 134
boundary-value problem, 257	import modules, 126
Dirichlet boundary conditions, 261	integrate.odeint, 224
eye function, 258	
ODE problem, 259	linear equation system, 126
reshape method, 260	condition number, 127
•	higher-order polynomial model, 133
scipy.sparse module, 260, 262	SciPy la.lstsq method, 132
two-dimensional generalization, 259	LUdecomposition method, 129
FEM Dirichlet/Neumann type 262	parameters/constant values, 126
Dirichlet/Neumann type, 263	rectangular systems, 131
libraries, 264	square systems, 127
strong form, 262	symbolic variables, 130
test function, 262	sympy.solve function, 132
trial function, 262	unique solution, 127
FEniCS framework, 265	unknown model parameters, 132
DirichletBC class, 270, 274	Lokta-Volterra equation, 226
dolfin.CellFunction, 279	nonlinear equations, 136
dolfin.Constant, 275	bisection method, 138
dolfin.Expression object, 269	Broyden's method, 142
dolfin.FunctionSpace class, 268	multivariate equation systems, 142
dolfin.interactive, 271	Newton's method, 139
dolfin library, 266	numerical techniques, 137

■ INDEX

SciPy (cont.)	random module, 315
optimize module, 141	choice function, 317
sympy.solve function, 136	randint function, 315–316
trigonometric equations, 136	RandomState class, 318
univariate function, 136	RandomState instance, 317
univariate systems, 143	seed function, 317
vector-valued function, 142	random variable and distributions, 318
visualization, 144	discrete Poisson distribution, 321
odeint function, 223	interval method, 320, 323
odeint solver, 227	moment method, 320
set_integrator method, 229	SciPy stats module, 318-319, 324
set_jac_params method, 230	stats method, 320
sympy.lambdify, 232	var and std methods, 315
Serialization, 449	statsmodels library, 333
Signal processing, 405	datasets, 349
import modules, 405	discrete regression, 351
signal files, 418	logistic regression, 351
convolution filters, 418	Poisson model, 355
FIR and IIR filters, 420	import module, 334
spectral analysis, 406	linear regression, 343
Fourier transform, 406	mathematical model, 335
frequency-domain filter, 410	multivariate linear regression, 335
spectogram, 414	patsy library, 334, 336
window function, 411	binary-valued treatment fields, 342
Slices, 36	DataFrame objects, 338
Social component, 3	design_info attribute, 340
Sparse matrices, 235	design matrix, 338, 342
eigen value problems, 245	formula syntax, 337
graphs and networks, 247	function call notation, 341
add_edges_from, 248	np.linalg.lstsq function, 339
degree method, 251	simple linear regression, 335
edge_color argument, 250	time-series analysis, 358
Tokyo Metro graph, 252	ARMA model, 358
transfer attribute, 252	AR model, 360
import modules, 235	fit method, 360
linear algebra functions, 242	plot_acf function, 359-360
linear equation systems, 242	Steepest descent method, 153
pyplot module, 240	Sum of squared errors (SSE), 367
in SciPy, 236	Symbolic and arbitrary-precision integration, 200
sp.sparse module, 240	Symbolic computing.
Spline interpolation, 177	See Symbolic Python (SymPy)
Spyder IDE	Symbolic Python (SymPy), 63
object inspector, 23	equation solving, 83
overview, 21	linear algebra, 85
panes, 21	LUsolve method, 87
Python and IPython consoles, 23	manipulating expressions, 72
shell prompt, 22	substitutions, 75
source code editor, 22	sympy.apart function, 75
Spyder Integrated	sympy.cancel function, 75
Development Environment, 4	sympy.collect function, 75
Statistics, 313	sympy.expand function, 73
import modules, 313	sympy.factor function, 74
ndarray methods, 314	sympy.simplify function, 72
population, 314	sympy.together function, 75

mathematical expressions, 70 mathematical symbols, 64 arbitrary function, 69 constants and special symbols, 69 floating-point number, 68 integer class, 67 lambda functions, 70 rational number, 68 sin function, 70 unapplied function, 69 undefined functions, 70 unevaluated function, 69 numerical evalution, 76 symbolic calculus, 77 derivatives, 77 integrals, 79 limits, 82 series expansions, 80 sums and products, 83 sympy.init_printing function, 64

U

Univariate optimization, 150

Vectorized expressions
aggregate function, 50
arithmetic operations, 46
array operations, 56
Boolean-valued arrays, 53
conditional expressions, 53
elementary mathematical function, 50
elementwise functions, 48
logical operations, 54
set operations, 55
Visualization. See Matplotlib

W, X, Y, Z

Weighted least squares (WLS), 335

Get the eBook for only \$5!

Why limit yourself?

Now you can take the weightless companion with you wherever you go and access your content on your PC, phone, tablet, or reader.

Since you've purchased this print book, we're happy to offer you the eBook in all 3 formats for just \$5.

Convenient and fully searchable, the PDF version enables you to easily find and copy code—or perform examples by quickly toggling between instructions and applications. The MOBI format is ideal for your Kindle, while the ePUB can be utilized on a variety of mobile devices.

To learn more, go to www.apress.com/companion or contact support@apress.com.

All Apress eBooks are subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.