7.2 习题

2024年10月1日

7.2.1

7.2.2

 \bigstar \Rightarrow 因为 $\sum\limits_{n=m}^{\infty}a_n$ 收敛,那么这个级数的部分和序列 $(S_N)_{N=m}^{\infty}$ 是收敛的,由 定理 6.4.18(实数的完备性)可知 $(S_N)_{N=m}^\infty$ 也是柯西序列,于是,对任意 的 $\epsilon > 0$, 存在 $N \ge m$, $p,q \ge N$ 使得

$$|S_p - S_q| \le \epsilon \tag{1}$$

$$\left|\sum_{n=p}^{q} a_n\right| \le \epsilon \tag{2}$$

 \bigstar \Leftarrow 对任意 $\epsilon>0$ 都有 $|\sum_{n=p}^{q}a_{n}|\leq\epsilon$,可知级数的部分和序列 $(S_{N})_{N=m}^{\infty}$ 是 柯西序列,由定理 6.4.18 (实数的完备性)可知其也是收敛的,由部分和收 敛可知级数收敛。

7.2.3

由命题 7.2.5 可知, $\sum_{n=m}^{\infty} a_n$ 收敛, 对任意 $\epsilon > 0$, 都存在一个 $N \ge m$ 使 得 $n \ge N$ 有

$$\left|\sum_{n=n}^{n} a_n\right| \le \epsilon$$

$$\left|a_n\right| \le \epsilon$$

由 ϵ 的任意性可知, $\lim_{n\to\infty} a_n$ 收敛且收敛于 0

7.2.4

 \bigstar 绝对收敛 \Rightarrow 条件收敛 $\sum_{n=m}^{\infty}a_n$ 是绝对收敛,即 $\sum_{n=m}^{\infty}|a_n|$ 是收敛的,由命题 7.2.5 可知,对任意 $\epsilon>0$,都存在一个整数 $N\geq m$,使得 $q,p\geq N$,均有,

$$|\sum_{n=n}^{q} |a_n|| \le \epsilon$$

由命题 7.1.4 (e) 可知,

$$\left|\sum_{n=p}^{q} a_n\right| \le \left|\sum_{n=p}^{q} |a_n|\right| \le \epsilon$$

$$\left|\sum_{n=p}^{q} a_n\right| \le \epsilon$$

再次利用命题 7.2.5 可知, $\sum\limits_{n=m}^{\infty}a_n$ 收敛

★三角不等式 不妨设 $\sum\limits_{n=m}^{\infty}|a_n|$ 的部分和序列为 $(S'_N)_{N=m}^{\infty}$, $|\sum\limits_{n=m}^{\infty}a_n|$ 的部分和序列为 $(S_N)_{N=m}^{\infty}$ 。显然,对任意 $N \geq m$ 都有,

$$S_N' \ge S_N$$

又因为两个序列的极限都存在,于是(推论 5.4.10 的变形),

$$\lim_{N \to \infty} S_N' \ge \lim_{N \to \infty} S_N$$

即:

$$\sum_{n=m}^{\infty} |a_n| \ge |\sum_{n=m}^{\infty} a_n|$$

7.2.5

 \bigstar (a) $\sum_{n=0}^{\infty}a_{n}$ 收敛于 x,于是其部分和序列 $(A_{N})_{N=m}^{\infty}$ 收敛于 x。

同理, $\sum_{n=0}^{\infty} b_n$ 收敛于 y,于是其部分和序列 $(B_N)_{N=m}^{\infty}$ 收敛于 y。

由题设可知, $\sum\limits_{n=m}^{\infty}a_{n}+b_{n}$ 的部分和 $S_{N}=A_{N}+B_{N}$,由定理 6.1.19(极 限定律)可知,序列 $(S_N)_{n=m}^{\infty}$ 收敛于 x+y。

★(b)

略,与(a)证明步骤类似。

不妨设 $\sum_{n=m}^{\infty}a_n$ 、 $\sum_{n=m+k}^{\infty}a_n$ 的部分和分别为 S_N,S_N' ,并设 $M=\sum_{n=m}^{m+k-1}a_n$ 。 当 $N\geq m+k-1$ 时, $S_N=M+S_N'$ 。

(1) 如果 $\sum_{n=m}^{\infty} a_n$ 收敛。

设 $\sum_{n=m}^{\infty} a_n$ 收敛于 x。

由于 $\sum_{n=-\infty}^{\infty} a_n$ 收敛 x, 所以对任意 $\epsilon > 0$, 存在 $N_0 \ge m$ 使得 $|S_N - x| \le \epsilon$, 对任意 $N \geq N_0$ 均成立。取 $N_0' = max(N_0, m+k-1)$,此时 $|S_N - x| \leq \epsilon$, 对任意 $N \ge N'_0$ 均成立。

反证法,假设 $\sum\limits_{n=m+k}^{\infty}a_n$ 是发散的,则序列 $(S'_N)_{N=m+k}^{\infty}$ 是发散的,那 么,也就不会收敛于 x-M。

所以,对存在 $\epsilon > 0, N \geq N'_0$,使得,

$$|S_N' + M - x| > \epsilon$$

$$S_N' + M > x + \epsilon$$
 或
$$S_N' + M < x - \epsilon$$

因为 $S_N=M+S_N'$,所以 $S_N>x+\epsilon$ 或 $S_N< x-\epsilon$,这与 $|S_N-x|\leq \epsilon$ 矛盾,所以 $\sum\limits_{n=m+k}^{\infty}a_n$ 是收敛的。

(2) 如果 $\sum\limits_{n=m+k}^{\infty}a_n$ 收敛。

(2) 如果
$$\sum_{n=m+k}^{\infty} a_n$$
 收敛。