1 Question 1

Given We are given three different vectors to try to map through a given function. We are then to plot everything.

1.
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$

2.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

3.
$$T(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

Find

1. The image of u under T where $\mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$

2. The image of c under T where $\mathbf{v} = \begin{bmatrix} 0 \\ 1.5 \end{bmatrix}$

3. The image of $\mathbf{u} + \mathbf{v}$

1.1 Work

Images The image under is just going to be the result of having the function applied. We can do as such like so, for each of the given terms

1.
$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 9 \\ 2 \end{bmatrix}$$

2.
$$T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$$

3.
$$T(\mathbf{u} + \mathbf{v}) = A(\mathbf{u} + \mathbf{v}) = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 9 \\ -1 \end{bmatrix}$$

1.2 Illustration

Scaling Throughout we should expect to see a few things. The origin should remain constant, and relationships about perpendicularity and being parallel should contine to hold.

2 Question 2

Given the matrix A:

$$A = \begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix}$$

Define the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$.

2.1 Prompts

(a) Find the image under T of $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$ So. We have a 2x3 and we're multiplying by a 3x1. The result is going to be a 2x1

Checking solution

$$\begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \end{bmatrix}$$

(b) Find a vector \mathbf{x} whose image under T is $\mathbf{b} = \begin{bmatrix} -12 \\ 12 \end{bmatrix}$

Thinking We can se up the system of equations so that we're solving for this. As long as the solution $y \in \text{span}\{\mathbf{u}, \mathbf{v}\}$

Solution

$$\begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -12 \\ 12 \end{bmatrix}$$
$$x_1 - 5x_2 - 7x_3 = -12$$
$$-3x_1 + 7x_2 + 5x_3 = 12$$
$$x_1 + 3x_3 = 3$$
$$x_2 + 2x_3 = 3$$

Particular solution Let $x_3 = 0$ then $x_1 = 3$ and $x_2 = 3$.

Checking solution

$$\begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} -12 \\ 12 \end{bmatrix}$$

3 Question 3

3.1 Restate

We're out to show that something is not a linear transformation

Given

$$T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} x_1 + 5 \\ x_2 \end{bmatrix}$$

Clarification As was discussed in classes and previously in other classes. The two things we need to consider something a linear transformation are

- Homogeneity We need that $T(c\mathbf{v}) = cT(\mathbf{v}), \forall c \in \mathbb{R}$
- Additivity We need that $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$

3.2 Breaking things

Alright. We have two requirements. Let's see which is going to be the one to break.

Additivity Let's define two vectors, **u** and **v**, to test this property.

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

First, we'll find the sum of the vectors and then apply the transformation T.

$$T(\mathbf{u} + \mathbf{v}) = T\left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}\right) = \begin{bmatrix} (u_1 + v_1) + 5 \\ u_2 + v_2 \end{bmatrix}$$

Next, we'll apply the transformation to each vector individually and then add the results.

$$T(\mathbf{u}) = \begin{bmatrix} u_1 + 5 \\ u_2 \end{bmatrix}, \quad T(\mathbf{v}) = \begin{bmatrix} v_1 + 5 \\ v_2 \end{bmatrix}$$
$$T(\mathbf{u}) + T(\mathbf{v}) = \begin{bmatrix} u_1 + 5 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 + 5 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 + 10 \\ u_2 + v_2 \end{bmatrix}$$

By comparing the two outcomes, we can see that $T(\mathbf{u} + \mathbf{v}) \neq T(\mathbf{u}) + T(\mathbf{v})$ because:

$$\begin{bmatrix} (u_1 + v_1) + 5 \\ u_2 + v_2 \end{bmatrix} \neq \begin{bmatrix} u_1 + v_1 + 10 \\ u_2 + v_2 \end{bmatrix}$$

Since the additivity property does not hold, T is not a linear transformation. We could go through the trouble to double check the other condition, but, there's no need.