While a fugitive in Mexico, Mr. X remotely infiltrates the Arctic Nuclear Fusion Research Facility's (ANFRF) lab subnet over the Interwebs. Virtually inside the facility (pivoting through a compromised system), he conducts some noisy network reconnaissance. Sadly, Mr. X is not yet very stealthy.

Unfortunately for Mr. X, the lab's network is instrumented to capture all traffic (with full content). His activities are discovered and analyzed... by you!

The .pcap evidence I attached to this assignment and in files directory. You must include image evidence and/or file path for every question. Each question is worth 16.66 points.

As the network forensic investigator, your mission is to answer the following questions:

1. What was the IP address of Mr. X's scanner?

Answer: 10.42.42.253

- Mr. X is scanning the network to gather information, and each scanning attempt originates from his IP address. To identify his scanner, we need to locate the source of the scan traffic. Since most scans involve sending many packets to various ports on target machines, the scanner's IP address will be the source IP in those packets.
- Filter for SYN packets using **tcp.flags.syn** == **1 && tcp.flags.ack** == **0**. SYN packets are used to initiate TCP connections. Port scans often consist of large numbers of SYN packets sent to different destinations, as Mr. X is trying to discover open ports.
- Analyze the Source IP field in the results. The IP address that appears most frequently as the source in these packets is likely Mr. X's scanner.

tcp.flags.syn == 1 && tcp.	flags.ack == 0	
. Time	Source	Destination
1 0.000000	10.42.42.253	10.42.42.50
3 0.607594	10.42.42.253	10.42.42.56
4 0.607596	10.42.42.253	10.42.42.25
7 0.812790	10.42.42.253	10.42.42.50
8 0.812793	10.42.42.253	10.42.42.56
10 0.812980	10.42.42.253	10.42.42.25
11 0.813070	10.42.42.253	10.42.42.50
12 0.813201	10.42.42.253	10.42.42.56
15 0.813322	10.42.42.253	10.42.42.25

• Verify with Network Miner:

- 2. For the FIRST port scan that Mr. X conducted, what type of port scan was it? (Note: the scan consisted of many thousands of packets.) Pick one:
- TCP SYN
- TCP ACK
- UDP
- TCP Connect
- TCP XMAS
- TCP RST

Answer: TCP Connect

Method:

Filter for SYN packets:

tcp	cp.flags.syn == 1 && tcp.flags.ack == 0									
No.	Time	Source	Destination	Protocol Len	gth	Info				
	1 0.000000	10.42.42.253	10.42.42.50	TCP	74	4 46104 → 80 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=3299940 TSecr=0 WS=64				
	3 0.607594	10.42.42.253	10.42.42.56	TCP	74	4 59856 → 80 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=3300092 TSecr=0 WS=64				
	4 0.607596	10.42.42.253	10.42.42.25	TCP	74	4 40921 → 80 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=3300092 TSecr=0 WS=64				
	7 0.812790	10.42.42.253	10.42.42.50	TCP	74	4 38232 → 554 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=3300144 TSecr=0 WS=64				
	8 0.812793	10.42.42.253	10.42.42.56	TCP	74	4 43771 → 554 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=3300144 TSecr=0 WS=64				
	10 0.812980	10.42.42.253	10.42.42.25	TCP	74	4 50305 → 554 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=3300144 TSecr=0 WS=64				
	11 0.813070	10.42.42.253	10.42.42.50	TCP	74	4 35168 → 389 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=3300144 TSecr=0 WS=64				
	12 0.813201	10.42.42.253	10.42.42.56	TCP	74	4 43514 → 389 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=3300144 TSecr=0 WS=64				
	15 0.813322	10.42.42.253	10.42.42.25	TCP	74	4 49945 → 389 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=3300144 TSecr=0 WS=64				

Initially, the packet capture analysis suggests a TCP SYN scan, as the closed port behavior is identical for both TCP SYN and TCP Connect scans. In the capture, we observe SYN packets being sent from the scanner (10.42.42.253) to the targets (e.g., 10.42.42.50 and 10.42.42.56), with the targets responding with RST, ACK packets, indicating that the ports are closed. This type of response, SYN \rightarrow RST, ACK, is the same for both TCP SYN scans and TCP Connect scans when the ports are closed.

Filter for SYN-ACK responses:

Completing the Handshake:

12018 544.625908	10.42.42.25	10.42.42.50	TCP	66 49271 → 139 [ACK] Seq=73 Ack=7 Win=524280 Len=0 TSval=886638923 TSecr=176861
12019 544.626217	10.42.42.25	10.42.42.50	TCP	66 49271 → 139 [FIN, ACK] Seq=73 Ack=7 Win=524280 Len=0 TSval=886638923 TSecr=176861
12020 544.626324	10.42.42.50	10.42.42.25	TCP	66 139 → 49271 [ACK] Seq=7 Ack=74 Win=65463 Len=0 TSval=176861 TSecr=886638923
13527 597.069989	10.42.42.253	10.42.42.50	TCP	74 43490 → 135 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK PERM TSval=3449206 TSecr=0 WS=64
13528 597.069994	10.42.42.253	10.42.42.50	TCP	74 37926 → 139 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=3449206 TSecr=0 WS=64
13529 597.070722	10.42.42.50	10.42.42.253	TCP	78 135 → 43490 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=1 TSval=0 TSecr=0 SACK_PERM
13530 597.070726	10.42.42.50	10.42.42.253	TCP	78 139 → 37926 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=1 TSval=0 TSecr=0 SACK_PERM
13531 597.071021	10.42.42.253	10.42.42.50	TCP	66 43490 → 135 [ACK] Seq=1 Ack=1 Win=5888 Len=0 TSval=3449206 TSecr=0
13532 597.071025	10.42.42.253	10.42.42.50	TCP	66 37926 → 139 [ACK] Seq=1 Ack=1 Win=5888 Len=0 TSval=3449206 TSecr=0
13533 603.075410	10.42.42.253	10.42.42.50	NBSS	84 NBSS Continuation Message

However, upon closer examination, the **TCP Connect scan** completes the three-way handshake for open ports, which differentiates it from a **TCP SYN scan**. In a **TCP SYN scan**, the connection is terminated with an **RST** after receiving a **SYN-ACK** from an open port, without completing the handshake. But in a **TCP Connect scan**, the scanner sends an **ACK** to complete the handshake, establishing a full connection.

Thus, since the three-way handshake is completed for open ports, confirming a full connection, we can conclude that Mr. X performed a **TCP Connect scan**.

3. What were the IP addresses of the targets Mr. X discovered?

Answer: 10.42.42.25, 10.42.42.50 and 10.42.42.56

Method:

To answer this, we need to analyze the **targets** Mr. X scanned and interacted with during his reconnaissance. This involves identifying which IP addresses responded to Mr. X's scanning activity, particularly with SYN-ACK responses, indicating open ports.

Step 1: Filter SYN Packets Sent by Mr. X

Since we already know Mr. X's IP address (10.42.42.253), the first step is to filter all **SYN packets** he sent during the scan. This will give us a list of all the IP addresses he attempted to connect to. Apply this filter to show all SYN packets Mr. X sent:

ip.src =	ack == 0		
No.	Time	Source	Destination
1	0.000000	10.42.42.253	10.42.42.50
3	0.607594	10.42.42.253	10.42.42.56
4	0.607596	10.42.42.253	10.42.42.25
7	0.812790	10.42.42.253	10.42.42.50
8	0.812793	10.42.42.253	10.42.42.56

Step 2: Filter SYN-ACK Responses from Target IPs

To identify the IP addresses of the systems that responded to Mr. X's scan, you need to check for SYN-ACK packets sent to Mr. X. A SYN-ACK response indicates that the target's port is open and responding to the scan.

Apply this filter to display SYN-ACK responses sent to Mr. X:

Conclusion:

The IP addresses of the targets Mr. X discovered are: 10.42.42.5, 10.42.42.50 and 10.42.42.56

Even though only **10.42.42.50** responded with an acknowledgment (ACK), Mr. X sent SYN packets to all three, meaning they were all discovered as potential targets during the scan.

4. What was the MAC address of the Apple system he found?

Answer: IP Address: 10.42.42.25 and Mac Address: (00: 16: cb: 92: 6e: dc)

Method:

Checking discovered IP Address packets and finding devices:

IP Address: 10.42.42.25

	ip.addr == 10.42.42.25									
No).	Time	Source	Destination	١	Protocol	Length	Info		
L	785	0.867581	10.42.42.25	10.42.42.	253	TCP		60 9011	→ 36537	[RST,
>	> Frame 785: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)									
>	Ethern	et II, Src:	Apple_92:6e:dc (00:1	.6:cb:92:6e:dc)	Dst: Quant	aComput_	82:1f:4a	(00:23:	8b:82:1f	:4a)
>	Intern	et Protocol	Version 4, Src: 10.4	2.42.25, Dst: 1	0.42.42.253					

IP Address: 10.42.42.50

	ip.addr	== 10.42.42.50										
No).	Time	Source	Destinati	on	Protocol	Length	Info				
	812	0.868889	10.42.42.50	10.42.4	2.253	TCP	60	7999 -	→ 40442	[RST,	ACK]	Seq=
>	> Frame 788: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)											
>	Ethernet II, Src: CompalInform_51:d7:b2 (70:5a:b6:51:d7:b2), Dst: QuantaComput_82:1f:4a (00:23:8b:82:1f:4a)											
\rightarrow	Internet Protocol Version 4, Src: 10.42.42.50, Dst: 10.42.42.253											

IP Address: 10.42.42.56

5. What was the IP address of the Windows system he found?

Answer: 10.42.42.50

Method:

We are checking the Headers of packets:

IP Address: 10.42.42.50

				(1 0)		_			
13566 603.690411	10.42.42.50	10.42.42.253	TCP	74 135 → 36124	[SYN, AC	K] Seq=0 Ack	1 Win=65535 Le	n=0 MSS=1460	TSval:
13563 603.588371	10.42.42.50	10.42.42.253	TCP	78 135 → 36123	[SYN, AC	K] Seq=0 Ack	1 Win=65535 Le	n=0 MSS=1460	WS=1 1
13560 603.487192	10.42.42.50	10.42.42.253	TCP	78 135 → 36122	[SYN, AC	K] Seq=0 Ack	1 Win=65535 Le	n=0 MSS=1460	WS=1 '
13557 603.385397	10.42.42.50	10.42.42.253	TCP	74 135 → 36121	[SYN, AC	K] Seq=0 Ack	1 Win=65535 Le	n=0 MSS=1460	WS=1 '
13554 603.283559	10.42.42.50	10.42.42.253	TCP	78 135 → 36120	[SYN, AC	K] Seq=0 Ack	1 Win=65535 Le	n=0 MSS=1460	WS=1 '
13551 603.181635	10.42.42.50	10.42.42.253	TCP	78 135 → 36119	[SYN, AC	K] Seq=0 Ack	1 Win=65535 Le	n=0 MSS=1460	WS=1 '
13549 603.080571	10.42.42.50	10.42.42.253	TCP	66 135 → 43492	[ACK] Se	q=26 Ack=170	Win=65367 Len=) TSval=17744	46 TSe
13546 603.080033	10.42.42.50	10.42.42.253	TCP	66 135 → 43492	[FIN, AC	K] Seq=25 Acl	=169 Win=65367	Len=0 TSval=	=17744

- Window Size (65535) for the packets from 10.42.42.50.
- The packets are TCP SYN/ACK and ACK, indicating responses to connection requests from 10.42.42.50.
- Window Scaling (WS) = 1, commonly seen in Windows configurations.
- 65367 is a relatively large window size, very close to 65535, which is commonly seen in Windows configurations. The difference could be due to slight adjustments in the network conditions, but it's still within the range associated with Windows machines.
- TCP window size changes dynamically as data is transmitted, which explains why it might slightly decrease from the initial 65535 to 65367 in the middle of the connection. This is normal behavior and does not change the classification of the operating system.

IP Address: 10.42.42.56

7604 543.289570	10.42.42.253	10.42.42.56	TCP	60 36020 → 11111 [SYN] Seq <mark>=</mark> 0 Win=3074 Len=0 MSS=1460
7600 543.289556	10.42.42.253	10.42.42.56	TCP	60 36020 → 16080 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
7595 543.285627	10.42.42.253	10.42.42.56	TCP	60 36020 → 2601 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
7585 543.285311	10.42.42.253	10.42.42.56	TCP	60 36020 → 6156 [SYN] Seq=0 Win=2048 Len=0 MSS=1460
7580 543.285241	10.42.42.253	10.42.42.56	TCP	60 36020 → 2004 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
7574 543.285103	10.42.42.253	10.42.42.56	TCP	60 36020 → 465 [SYN] Seq=0 Win=2048 Len=0 MSS=1460
7570 543.284984	10.42.42.253	10.42.42.56	TCP	60 36020 → 5500 [SYN] Seq=0 Win=2048 Len=0 MSS=1460
7566 543.284878	10.42.42.253	10.42.42.56	TCP	60 36020 → 800 [SYN] Seq=0 Win=2048 Len=0 MSS=1460

In this image, the IP **10.42.42.56** is involved in multiple TCP connections with **10.42.42.253**. The window sizes shown in the packets are significantly smaller, and there are multiple values:

Window Sizes (Win): 3072 / 2048 /1024

These window sizes are quite small and deviate from what we typically see in Windows systems, which usually have larger default window sizes (like 65535 or 65367, as seen previously). Instead, these smaller window sizes are characteristic of **Linux/Unix-based** systems or non-Windows devices, where lower initial window sizes can sometimes be observed depending on system configuration and network optimization.

- **10.42.42.50**: Likely **Windows** based on the larger window sizes (65535, 65367).
- **10.42.42.56**: Likely **Linux/Unix-based** based on the smaller window sizes (5840, 3072, 2048, 1024).

6. What TCP ports were open on the Windows system? (Please list the decimal numbers from lowest to highest.)

Answer:

135

139

Method:

To identify open ports, you need to focus on the **SYN-ACK** packets sent by 10.42.42.50, which indicate that the server at this IP is responding to connection requests (indicating the ports are open).

- ip.src == 10.42.42.50: Filters packets where the source IP is 10.42.42.50.
- tcp.flags.syn == 1: Ensures that the packet is part of the TCP handshake (SYN flag is set).
- **tcp.flags.ack** == **1**: Ensures that the ACK flag is also set, which is typical for a SYN-ACK response.

ip.src =:	= 10.42.42.50 and	J			
No.	Time	Source	Destina	tion	Protocol
786	0.867584	10.42.42.50	10.42.4	12.253	TCP
12014	544.614722	10.42.42.50	10.42.4	12.25	TCP
12006	544.602469	10.42.42.50	10.42.4	12.25	TCP
11998	544.590731	10.42.42.50	10.42.4	12.25	TCP
11327	544.198026	10.42.42.50	10.42.4	12.25	TCP
11319	544.185734	10.42.42.50	10.42.4	12.25	TCP
11311	544.174173	10.42.42.50	10.42.4	12.25	TCP

The filter is designed to identify TCP three-way handshakes, which are a crucial part of establishing a TCP connection.

After this, we can simply Statistics > Conversations.

In the TCP tab, look for the IP address 10.42.42.50 under the "Address A" or "Address B" columns.

This will give you a list of conversations, and you can identify the destination ports involved in these conversations.

Ports 135 and 139 on 10.42.42.50 are confirmed open, as SYN-ACK packets were detected, indicating active services on these ports.