Solution: Gradel Quiz-9 (Bonus Quiz)

Q#1: Which of the following statements is/are correct?

- The columns of the transformation matrix A needs to be linearly independent. ightharpoonup
- A over-determined system is a linear system where the number of conditions to be satisfied must not be less than the number of variable needed to express the system.
- The least-square method is applicable for over-determined system. ullet

WAll of the above. (Amales)

Q#2: Consider two vectors $u_1,u_2\in \mathrm{R}^2$ with $u_1=(1,0)$ and $u_2=(1,1)$ and a_1 and a_2 are scalars or numbers. Which of the following statements about u_1, u_2 is/are correct?

- $|u_i|=1$ for i=1,2
- $\bigcirc u_1^T u_2 = 0$ X

- a141 ta24220 =>(a+b), (b))=0=(90)
 - : 620 La=-620

 $a_1u_1+a_2u_2=0$ f and only if $a_1=a_2=0$

All of the above. X

Q#3: In a normal equation/system it is found that $\det{(A^TA)} =$,1where A is the m imes ntransformation matrix that represent a linear system Ax = bThis implies that

- $\bigcirc A^T = A$ \nearrow
- $\bigcirc \det (A) = \pm 1 \quad \mathsf{x}$

- A is mich, mot a consider matrix if m > n. There ere not concect in general.
- $\bigcirc \det (A) = \det (A^T)$ y

None of the above. Answer)

Q#4: An ove	erdetermin	ed linear syst	em three	variables	that need	to
satisfy four e	equations.	The solution	of the sys	tem by le	ast-square	,
method is a						

460.					
1	deares	one	no	lynomial.	V
1	MERICA	Oil.	PO	y i moi i mai.	

) degr**æ** four polynomial. 🗡

degr**æ** two polynomial.

h=2poly normial => ao, a, a2=) Three

There is no solutions.

Q#5: Consider a set of three orthonormal vectors $S = \{\hat{i},\hat{j},\hat{k}\} \in \mathbb{R}^3$ Let us now define another set $S' = \{u_1, u_2, u_3\}$ such that $u_1 = \hat{\pmb{i}} + \hat{\pmb{j}}$ $u_2 = \hat{j} + \hat{k}$ and $u_3 = \hat{i} + \hat{k}$ The set S' is now

a linearly independent set of vectors.

- G41+(241+(343 >0 a) CI(1,110) + CZ((0,121) + C3(1,01) 20
- an orthogonal set of vectors. >
- a linearly dependent set of vectors.

- an orthonormal set of vectors. X

Q#6: Which of the following statement(s) about the QR-decomposition method is(are) true?

- \bigcirc The matrices A and Q must be of same orders. lacksquare
- \bigcirc The matrix Q must be a set of orthonormal vectors. \smile
- \bigcirc The matrix R must be an square matrix. \smile

All of the above. (Anguer)

Q#7: The matrix A in the QR-decomposition method is of order $m \times n$ with $m \geq n$ and the hence the solution can of degree-(n-1) polynomial. But if m < n rather than m > n then there will

- \bigcirc exist a solution of degree-(m-1) polynomial.
- \bigcirc still exist a solution of degree-(n-1) polynomial. \lor

Doe infinitely many solutions. Execuse there will be undersonined variable left oner.

 \bigcirc It cannot be determined. \checkmark

Q#8: Which of the following set of vectors form(s) an orthonormal set?

$$\bigcirc \left\{ \frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1) \right\} \smile$$

Unck for each At option Mu. U1. U2 = O S(U1) > (412)

$$\bigcirc \{(1,0),(0,1)\}$$

$$\bigcirc \left\{ \frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{6}}(1,-2,1) \right\} -$$

All of the above. (Answar)

You have used 0 of 1 attempt

Consider the four data points: f(-1) = 0 f(1) = 2 f(3) = 3 and f(5) = 4 Now fit the least-squares straight line to these data by answering the following two questions:

Question-9: [1 Mark] Compute the 'normal matrix' of the system.

Question-10: [1 Mark] Find the equation of the straight line that fits the data using the normal matrix found in the previous question (that is find the coefficients a_0 and a_1 , and then write the expression for p_1 (x).

Problem Solving

Note: A = 1 = 3 + (R) = 6

A = 1 = 3 + (R) = 2

$$\begin{array}{c}
X_1 = 1 = 3 + (R) = 2 \\
X_2 = 3 \Rightarrow + (R) = 3 \\
X_4 = 5 \Rightarrow + (R) = 4
\end{array}$$

Therefore no mormal matrix (equation) of no system.

Therefore no Anguested form of me number equation is

 $\begin{array}{c}
Y_1 = 1 = 3 + (R) = 2 \\
Y_2 = 3 \Rightarrow + (R) = 3 \\
Y_3 = 3 + (R) = 4
\end{array}$

Therefore: $\begin{array}{c}
A^T b = 1 & 1 & 1 & 1 \\
1 & 3 & 5 & 3
\end{array}$

Therefore: $\begin{array}{c}
A^T b = 1 & 1 & 1 & 1 \\
1 & 3 & 5 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
1 & 3 & 5 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
1 & 3 & 5 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
1 & 3 & 5 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
1 & 3 & 5 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
1 & 3 & 5 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
1 & 3 & 5 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
1 & 3 & 5 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
1 & 3 & 5 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
2 & 3 & 1 & 3
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 \\
A = 1 & 1 & 1 & 1 & 1
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 & 1 \\
A = 1 & 1 & 1 & 1 & 1
\end{array}$

Therefore: $\begin{array}{c}
A = 1 & 1 & 1 & 1 & 1 & 1 \\
A = 1 & 1 & 1 & 1 & 1 & 1 \\
A = 1 & 1 & 1 & 1 & 1$