Hiding Access Patterns Obliviousness and Differential Privacy

Giuseppe Persiano

Università di Salerno

February 12, 2019

Describing joint work with: Sarvar Patel, Mariana Raykova and Kevin Yeo (Google LLC)

- Privacy in Cloud Storage
- Oblivious Algorithms
- An inefficient ORAM
- 4 An insecure ORAM
- A first secure ORAM
- 6 Shuffling without Sorting
- A second construction
- A Recursive Construction
- Ounds
 Ounds
- 10 Differential Privacy
- Where are we?

The perfect marriage of two parties

- The Data Owner O: owns large amount of data and not enough local storage
- The Storage Manager M:
 owns large amount of storage and not enough data

The perfect marriage of two parties

- The Data Owner O: owns large amount of data and not enough local storage
- The Storage Manager M:
 owns large amount of storage and not enough data

If \mathcal{O} and \mathcal{M} trust each other

The perfect marriage of two parties

- The Data Owner \mathcal{O} : owns large amount of data and not enough local storage
- The Storage Manager M:
 owns large amount of storage and not enough data

If \mathcal{O} and \mathcal{M} trust each other

no problem. we can go home now.

The perfect marriage of two parties

- The Data Owner O: owns large amount of data and not enough local storage
- The Storage Manager M:
 owns large amount of storage and not enough data

If \mathcal{O} and \mathcal{M} trust each other

no problem. we can go home now.

Lack of trust is much more interesting.

 $\mathcal O$ does not trust $\mathcal M$ because $\mathcal O$'s data contain personal data.

 \mathcal{O} should not trust \mathcal{M} because \mathcal{O} 's data contain personal data.

 $\mathcal O$ should not trust $\mathcal M$ because $\mathcal O$'s data contain personal data.

Use Encryption

- ullet Private Key: if ${\mathcal O}$ is the source of data
- Public Key: if data come from various sources

 $\mathcal O$ should not trust $\mathcal M$ because $\mathcal O$'s data contain personal data.

Use Encryption

- ullet Private Key: if ${\cal O}$ is the source of data
- Public Key: if data come from various sources

Data is

ullet encrypted before being uploaded to ${\mathcal M}$

 $\mathcal O$ should not trust $\mathcal M$ because $\mathcal O$'s data contain personal data.

Use Encryption

- ullet Private Key: if ${\cal O}$ is the source of data
- Public Key: if data come from various sources

Data is

- ullet encrypted before being uploaded to ${\mathcal M}$
- ullet decrypted when downloaded from ${\cal M}$

What if $\mathcal O$ wants to run an algorithm on the encrypted data?

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data.

What if $\mathcal O$ wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data.

Suppose $\mathcal O$ wants to sort the data.

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data.

Suppose $\mathcal O$ wants to sort the data.

Example

4 customers must be sorted according to revenue.

What if \mathcal{O} wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data.

Suppose $\mathcal O$ wants to sort the data.

Example

4 customers must be sorted according to revenue.

• download 1 and 3. decrypt, swap if out of order, re-encrypt, upload.

C;100

D;150

A;200

What if $\mathcal O$ wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data.

Suppose $\mathcal O$ wants to sort the data.

Example

- 4 customers must be sorted according to revenue.
 - download 1 and 3. decrypt, swap if out of order, re-encrypt, upload.
 - ② download 2 and 4. decrypt, swap if out of order, re-encrypt, upload.

C;100 D;150

A;200

What if $\mathcal O$ wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data.

Suppose $\mathcal O$ wants to sort the data.

Example

- 4 customers must be sorted according to revenue.
 - download 1 and 3. decrypt, swap if out of order, re-encrypt, upload.
 - ② download 2 and 4. decrypt, swap if out of order, re-encrypt, upload.
 - Odownload 1 and 2. decrypt, swap if out of order, re-encrypt, upload.

C;100

D;150

A;200

What if $\mathcal O$ wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data.

Suppose $\mathcal O$ wants to sort the data.

Example

- 4 customers must be sorted according to revenue.
 - download 1 and 3. decrypt, swap if out of order, re-encrypt, upload.
 - ② download 2 and 4. decrypt, swap if out of order, re-encrypt, upload.
 - 3 download 1 and 2. decrypt, swap if out of order, re-encrypt, upload.
 - download 3 and 4. decrypt, swap if out of order, re-encrypt, upload.

C;100 D;150

A;200

What if $\mathcal O$ wants to run an algorithm on the encrypted data? Running an algorithm might reveal information on the data.

Suppose $\mathcal O$ wants to sort the data.

Example

- 4 customers must be sorted according to revenue.
 - download 1 and 3. decrypt, swap if out of order, re-encrypt, upload.
 - 2 download 2 and 4. decrypt, swap if out of order, re-encrypt, upload.
 - 3 download 1 and 2. decrypt, swap if out of order, re-encrypt, upload.
 - download 3 and 4. decrypt, swap if out of order, re-encrypt, upload.
 - odownload 2 and 3. decrypt, swap if out of order, re-encrypt, upload.

Security

Can \mathcal{M} link the first record in the starting configuration to its position in the last configuration?

Two Concepts

Indistinguishability of Swap or Not

Download, Decrypt, Swap or Not, Re-encrypt, Upload

Two Concepts

Indistinguishability of Swap or Not

Download, Decrypt, Swap or Not, Re-encrypt, Upload

Chosen-Ciphertext Security: Standard notion of security for encryption guarantee that \mathcal{M} is unable to deduce if a swap has happened.

Enter Obliviousness

Definition (Weak Obliviousness)

An algorithm is *weakly oblivious* if the *access pattern* to data is the same for all possible inputs of the same length.

Thanks to Wikipedia for the image

Job Opportunities for Algorithmists

- Re-design all algorithms to be oblivious!
- Remove all ifs, and whiles
- Insertion Sort is not oblivious:
 - when the last element of the array is inserted, \mathcal{M} sees where it lands

Job Opportunities for Algorithmists

- Re-design all algorithms to be oblivious!
- Remove all ifs, and whiles
- Insertion Sort is not oblivious:
 - ightharpoonup when the last element of the array is inserted, ${\cal M}$ sees where it lands

Abbiamo abolito la povertà

Job Opportunities for Algorithmists

- Re-design all algorithms to be oblivious!
- Remove all ifs, and whiles
- Insertion Sort is not oblivious:
 - ightharpoonup when the last element of the array is inserted, ${\cal M}$ sees where it lands

Abbiamo abolito la povertà ... per gli algoritmisti

Job Opportunities for Algorithmists

- Re-design all algorithms to be oblivious!
- Remove all ifs, and whiles
- Insertion Sort is not oblivious:
 - ightharpoonup when the last element of the array is inserted, ${\cal M}$ sees where it lands

What? Just move on to the next slide and stop talking politics

A new threat

• which algorithm is being run should also be private information

A;200

B;300

C;100

D;150

A new threat • which algorithm is being run should also be private information A;200 B;300 C;100 D;150

A new threat • which algorithm is being run should also be private information A;200 B;300 C;100 D;150

Enter Oblivious RAM

ORAM [Goldreich-Ostrovsky]

- \mathcal{M} stores n blocks of memory.
- ullet Every time ${\mathcal O}$ wants a block, he asks ${\mathcal M}$ one or more blocks.
- Security notion:
 - For any two block sequences $\mathbb{B} = B_1, \dots, B_n$ and $\mathbb{C} = C_1, \dots, C_n$
 - For any two access sequences $I = (i_1, \ldots, i_l)$ and $J = (j_1, \ldots, j_l)$
 - * performing accesses i_1, \ldots, i_l on $\mathbb{B} = B_1, \ldots, B_n$;
 - * performing access j_1, \ldots, j_l on $\mathbb{C} = C_1, \ldots, C_n$

generate the same distribution of accesses to the data stored by ${\mathcal M}$

Enter Oblivious RAM

ORAM [Goldreich-Ostrovsky]

- \mathcal{M} stores n blocks of memory.
- ullet Every time ${\mathcal O}$ wants a block, he asks ${\mathcal M}$ one or more blocks.
- Security notion:
 - For any two block sequences $\mathbb{B} = B_1, \ldots, B_n$ and $\mathbb{C} = C_1, \ldots, C_n$
 - For any two access sequences $I = (i_1, \ldots, i_l)$ and $J = (j_1, \ldots, j_l)$
 - * performing accesses i_1, \ldots, i_l on $\mathbb{B} = B_1, \ldots, B_n$;
 - * performing access j_1, \ldots, j_l on $\mathbb{C} = C_1, \ldots, C_n$

generate the same distribution of accesses to the data stored by ${\mathcal M}$

For every predicate A

$$\begin{split} &\operatorname{Prob}[\mathtt{view} \leftarrow \mathtt{View}(I,\mathbb{B}) : A(\mathtt{view}) = 1] \\ &\leq e^0 \cdot \operatorname{Prob}[\mathtt{view} \leftarrow \mathtt{View}(J,\mathbb{C}) : A(\mathtt{view}) = 1] + \mathsf{negl}(n) \end{split}$$

40 + 40 + 40 + 40 + 00 P

ORAM makes all Algorithms Oblivious

Composing ORAM and Non-Oblivious Algorithms

- ullet ${\cal O}$ runs the algorithm
- ullet when a block of memory is requested, ${\mathcal O}$ retrieves it from ${\mathcal M}$ using ORAM.

ORAM makes all Algorithms Oblivious

Composing ORAM and Non-Oblivious Algorithms

- ullet ${\cal O}$ runs the algorithm
- ullet when a block of memory is requested, ${\mathcal O}$ retrieves it from ${\mathcal M}$ using ORAM.

Is ORAM possible at all?

A Trivial ORAM

➤ Jump ahead

ullet All blocks are uploaded to ${\mathcal M}$ in encrypted form.

A Trivial ORAM

▶ Jump ahead

 \bullet All blocks are uploaded to ${\cal M}$ in encrypted form.

A Trivial ORAM

► Jump ahead

ullet All blocks are uploaded to ${\mathcal M}$ in encrypted form.

A Trivial ORAM

▶ Jump ahead

ullet All blocks are uploaded to ${\mathcal M}$ in encrypted form.

A Trivial ORAM

▶ Jump ahead

ullet All blocks are uploaded to ${\mathcal M}$ in encrypted form.

A Trivial ORAM

▶ Jump ahead

ullet All blocks are uploaded to ${\mathcal M}$ in encrypted form.

$$\begin{bmatrix} B_1 \end{bmatrix} \begin{bmatrix} B_2 \end{bmatrix} \begin{bmatrix} B_3 \end{bmatrix} \begin{bmatrix} B_4 \end{bmatrix} \begin{bmatrix} B_5 \end{bmatrix} \begin{bmatrix} B_6 \end{bmatrix}$$

A Trivial ORAM

▶ Jump ahead

ullet All blocks are uploaded to ${\mathcal M}$ in encrypted form.

A Trivial ORAM

▶ Jump ahead

ullet All blocks are uploaded to ${\mathcal M}$ in encrypted form.

A Trivial ORAM

▶ Jump ahead

ullet All blocks are uploaded to ${\mathcal M}$ in encrypted form.

• Every time \mathcal{O} needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

Access pattern independent from the block accessed but...

A Trivial ORAM

▶ Jump ahead

ullet All blocks are uploaded to ${\mathcal M}$ in encrypted form.

• Every time \mathcal{O} needs to access block B_i , all the blocks are downloaded and all except for B_i are discarded.

Access pattern independent from the block accessed but...

Can this be made efficient?

Can this be made efficient?

First try: Initialization

- \bullet permute blocks according to permutation π
 - ▶ an encryption of B_i is uploaded in position $\pi(i)$;

• \mathcal{O} keeps π private;

Can this be made efficient?

First try: Initialization

- ullet permute blocks according to permutation π
 - ▶ an encryption of B_i is uploaded in position $\pi(i)$;

$$B_2$$
 B_4 B_3 B_6 B_1 B_5

• \mathcal{O} keeps π private;

Can this be made efficient?

First try: Reading block i • ask \mathcal{M} for block in position $\pi(i)$; decrypt to obtain B_i; • re-encrypt and upload in position $\pi(i)$; Accessing block B_3 B_3 Bэ B_4 B_6 B_1 B_5

Can this be made efficient?

First try: Reading block i

- ask \mathcal{M} for block in position $\pi(i)$;
- decrypt to obtain B_i;
- re-encrypt and upload in position $\pi(i)$;

First try: Security

First try: Security

Oblivious RAM

Obliviousness

For any two access sequences $O_1=(i_1^1,\ldots,i_l^1)$ $O_2=(i_1^2,\ldots,i_l^2)$ of the same length, the distribution of the positions requested by $\mathcal O$ to $\mathcal M$ is the same.

Oblivious RAM

Obliviousness

For any two access sequences $O_1=(i_1^1,\ldots,i_l^1)$ $O_2=(i_1^2,\ldots,i_l^2)$ of the same length, the distribution of the positions requested by \mathcal{O} to \mathcal{M} is the same.

Oblivious for Non-repeating sequences

- $k_1 \neq k_2$ implies $i_{k_1}^1 \neq i_{k_2}^1$ and $i_{k_1}^2 \neq i_{k_2}^1$;
- \mathcal{M} sees requests for l different randomly chosen blocks both for O_1 and for O_2 .

Repetition Pattern is leaked

Repetition Pattern

If the same block is requested twice by $\mathcal O$ then $\mathcal M$ sees the same position accessed twice.

Block 3 4 7 8 4 2 4 10 12 8 6

Position 12 2 9 3 2 6 2 10 1 3 5

Hiding the Repetition Pattern

Initialization for N blocks

- N real blocks B_1, \ldots, B_N ;
- 2 create M dummy blocks B_{N+1}, \ldots, B_{N+M} ;
- 3 create M stash blocks S_1, \ldots, S_M initialized to 0;
- pick a random permutation π over [N + M];
- permute *real* and *dummy* blocks according to permutation π an encryption of B_i is uploaded in position $\pi(i)$;
- upload all stash blocks in encrypted form;
- \bullet initialize nxt = 1, cnt = 1;
- \bullet π is kept private;

Reading Block B_i

- **1** download and decrypt all *M* blocks in the Stash;
- ② if B_i is found in the Stash then
 - ▶ download dummy block $\pi(N + \text{cnt})$;
 - ightharpoonup set cnt = cnt + 1;

else

- ▶ download encrypted real block in position $\pi(i)$;
- decrypt and obtain real block B_i;
- ▶ set next available Stash block $S_{nxt} = B_i$;
- \triangleright set nxt = nxt + 1;
- re-encrypt and upload all blocks in the Stash;

Download and decrypt all blocks from Stash

Download and decrypt all blocks from Stash

 B_1 is not found in the stash

Download block in position $\pi(1)$

Download block in position $\pi(1)$

Decrypt and obtain B_1

Copy B_1 in the Stash at position nxt

Copy B_1 in the Stash at position nxt

Encrypt and Upload the Stash

Download and decrypt all blocks from Stash

Download and decrypt all blocks from Stash

 B_2 is not found in the Stash

Download block in position $\pi(2)$

Download block in position $\pi(2)$

Decrypt and obtain B_2

Copy B_2 in the Stash at position nxt

Copy B_2 in the Stash at position nxt

Encrypt and Upload the Stash

Now read B_1 again

Download and decrypt all blocks from Stash

Download and decrypt all blocks from Stash

 B_1 is found in the Stash

Reading Block B_1 (again)

Download block in position $\pi(N + \text{cnt})$

Reading Block B_1 (again)

Download block in position $\pi(N + \text{cnt})$

No need to decrypt

Reading Block B_1 (again)

Download block in position $\pi(N + \text{cnt})$

Encrypt and Upload Stash

Insert slide in which we argue obliviousness

Two issues to be dealt with

• What happens when the Stash is full?

Two issues to be dealt with

• What happens when the Stash is full?

- How much memory does \mathcal{O} need?
 - ▶ needs to store cnt and nxt: $\Theta(1)$ memory;
 - \blacktriangleright π needs O(N) memory.

Overflowing the Stash

Overflowing the Stash

Overflowing the Stash

Let us count:

• each read costs

- each read costs
 - $ightharpoonup \Theta(M)$ blocks of bandwidth for the stash;

- each read costs
 - $ightharpoonup \Theta(M)$ blocks of bandwidth for the stash;
 - $ightharpoonup \Theta(1)$ blocks of bandwidth for real/dummy blocks;

- each read costs
 - $ightharpoonup \Theta(M)$ blocks of bandwidth for the stash;
 - $ightharpoonup \Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle

- each read costs
 - $ightharpoonup \Theta(M)$ blocks of bandwidth for the stash;
 - $ightharpoonup \Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
 - ▶ $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;

- each read costs
 - $ightharpoonup \Theta(M)$ blocks of bandwidth for the stash;
 - \triangleright $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
 - ▶ $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - ▶ $\Theta((M+N)\log(M+N)) = \Theta(N\log N)$ blocks of bandwidth for sorting;

- each read costs
 - $ightharpoonup \Theta(M)$ blocks of bandwidth for the stash;
 - \triangleright $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
 - ▶ $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - ▶ $\Theta((M+N)\log(M+N)) = \Theta(N\log N)$ blocks of bandwidth for sorting;

Let us count:

- each read costs
 - $ightharpoonup \Theta(M)$ blocks of bandwidth for the stash;
 - \triangleright $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
 - ▶ $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - ▶ $\Theta((M+N)\log(M+N)) = \Theta(N\log N)$ blocks of bandwidth for sorting;

for an amortized cost of

$$\Theta\left(M + \frac{N\log N}{M}\right)$$

Let us count:

- each read costs
 - ▶ $\Theta(M)$ blocks of bandwidth for the stash;
 - \triangleright $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
 - ▶ $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - ▶ $\Theta((M+N)\log(M+N)) = \Theta(N\log N)$ blocks of bandwidth for sorting;

for an amortized cost of

$$\Theta\left(M + \frac{N\log N}{M}\right)$$

for $M = \sqrt{N}$ we have

$$\sqrt{N} \cdot \log N$$
.

Let us count:

- each read costs
 - $ightharpoonup \Theta(M)$ blocks of bandwidth for the stash;
 - $ightharpoonup \Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
 - ▶ $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - ▶ $\Theta((M+N)\log(M+N)) = \Theta(N\log N)$ blocks of bandwidth for sorting;

for an amortized cost of

$$\Theta\left(M + \frac{N\log N}{M}\right)$$

for $M = \sqrt{N}$ we have

$$\sqrt{N} \cdot \log N$$
.

Using AKS to sort.

Let us count:

- each read costs
 - $ightharpoonup \Theta(M)$ blocks of bandwidth for the stash;
 - $ightharpoonup \Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
 - ▶ $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - ▶ $\Theta((M+N)\log(M+N)) = \Theta(N\log N)$ blocks of bandwidth for sorting;

for an amortized cost of

$$\Theta\left(M + \frac{N\log N}{M}\right)$$

for $M = \sqrt{N}$ we have

$$\sqrt{N} \cdot \log N$$
.

Using AKS to sort.

Huge constant

Let us count:

- each read costs
 - $ightharpoonup \Theta(M)$ blocks of bandwidth for the stash;
 - \triangleright $\Theta(1)$ blocks of bandwidth for real/dummy blocks;
- after M reads, we shuffle
 - ▶ $\Theta(M + N) = \Theta(N)$ blocks of bandwidth for tagging;
 - ▶ $\Theta((M+N)\log(M+N)) = \Theta(N\log N)$ blocks of bandwidth for sorting;

for an amortized cost of

$$\Theta\left(M + \frac{N\log N}{M}\right)$$

for $M = \sqrt{N}$ we have

$$\sqrt{N} \cdot \log N$$
.

Using AKS to sort. In practice $\sqrt{N} \cdot \log^2 N$.

Huge constant

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

▶ Jump ahead

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

• \mathcal{M} 's storage: $N+M=10^6+10^3$ blocks.

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.
- Cost of shuffling amortized per read operation:

$$1/2\cdot6^2\cdot10^3\approx18000$$

using Batcher's sort

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.
- Cost of shuffling amortized per read operation:

$$1/2\cdot 6^2\cdot 10^3\approx 18000$$

using Batcher's sort

Online cost

$$2 \cdot 10^3 \approx 2000$$

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.
- Cost of shuffling amortized per read operation:

$$1/2 \cdot 6^2 \cdot 10^3 \approx 18000$$

using Batcher's sort

Online cost

$$2 \cdot 10^3 \approx 2000$$

O's storage

▶ Jump ahead

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.
- Cost of shuffling amortized per read operation:

$$1/2 \cdot 6^2 \cdot 10^3 \approx 18000$$

using Batcher's sort

Online cost

$$2 \cdot 10^3 \approx 2000$$

- O's storage
 - cnt and nxt use constant storage

▶ Jump ahead

One possible setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks.
- Cost of shuffling amortized per read operation:

$$1/2 \cdot 6^2 \cdot 10^3 \approx 18000$$

using Batcher's sort

Online cost

$$2 \cdot 10^3 \approx 2000$$

- O's storage
 - cnt and nxt use constant storage
 - \blacktriangleright π requires storing 10⁶ 4 bytes integers=4 Megabytes

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

ullet ${\cal M}$'s storage: ${\it N}+{\it M}=10^6+10^3$ blocks

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$1/2\cdot 6^2\cdot 10^3\approx 18000$$

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$1/2\cdot 6^2\cdot 10^3\approx 18000$$

Online cost: 2 blocks per read

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$1/2\cdot6^2\cdot10^3\approx18000$$

- Online cost: 2 blocks per read
- ullet \mathcal{O} 's storage

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$1/2\cdot6^2\cdot10^3\approx18000$$

- Online cost: 2 blocks per read
- O's storage
 - cnt and nxt use constant storage

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$1/2\cdot6^2\cdot10^3\approx18000$$

- Online cost: 2 blocks per read
- O's storage
 - cnt and nxt use constant storage
 - \blacktriangleright π requires storing 10⁶ 4-byte integers=4 Megabytes

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$1/2\cdot6^2\cdot10^3\approx18000$$

- Online cost: 2 blocks per read
- O's storage
 - cnt and nxt use constant storage
 - \blacktriangleright π requires storing 10⁶ 4-byte integers=4 Megabytes
 - ▶ 1000 blocks of stash for a total of 4 Megabytes

• Input: N blocks stored in S[1,...,N] according to π

- Input: N blocks stored in S[1,...,N] according to π
 - ▶ Block B_l is found in $[\pi(l)]$

Blocks in S according to π

- Input: N blocks stored in S[1, ..., N] according to π
 - ▶ Block B_l is found in $[\pi(l)]$
- Output: N blocks stored in D[1, ..., N] according to σ

Blocks in S according to π

- Input: N blocks stored in S[1,...,N] according to π
 - ▶ Block B_l is found in $[\pi(l)]$
- Output: N blocks stored in D[1, ..., N] according to σ
 - ▶ Block B_l will be in $[\sigma(l)]$

An easy case:

Partition the *N* blocks in \sqrt{N} groups of \sqrt{N}

Blocks in S according to π

0

An easy case:

Partition the *N* destinations in \sqrt{N} groups of \sqrt{N}

Blocks in S according to π

0

M

An easy case:

Download first source group

Blocks in S according to π

0 0 0 0

 \mathcal{C}

An easy case:

Download first source group

Blocks in S according to π

0

0

0

0

0

 \mathcal{M}

0

0

0

An easy case:

One block to each destination group

Blocks in S according to π

0 0 0 0

An easy case:

Download second source group

Blocks in S according to π

0 0 0 0

An easy case:

Download second source group

Blocks in S according to π

 \mathcal{M}

An easy case:

One block to each destination group

Blocks in S according to π

0 0 0 0

An easy case:

Download second source group

Blocks in S according to π

0 0 0 0

An easy case:

 \mathcal{M}

Download second source group

Blocks in S according to π

0 0 0 0

An easy case:

One block to each destination group

Blocks in S according to π

0 0 0 0

An easy case:

Download second source group

Blocks in S according to π

0 0 0 0

An easy case:

 \mathcal{M}

0

Download second source group

Blocks in S according to π

0 0

An easy case:

One block to each destination group

Blocks in S according to π

13 12 11 6

An easy case:

Each block in the right destination group

Blocks in S according to π

13 12 11 6

An easy case:

Download each group and upload in correct position

Blocks in S according to π

13 12 11 6

An easy case:

 \mathcal{M}

0

Download each group and upload in correct position

Blocks in S according to π

13 12 11 6

An easy case:

Download each group and upload in correct position

Blocks in S according to π

16 12 11 6

An easy case:

 \mathcal{M}

0

Download each group and upload in correct position

Blocks in S according to π

An easy case:

 \mathcal{M}

0

Download each group and upload in correct position

Blocks in S according to π

An easy case:

Download each group and upload in correct position

Blocks in S according to π

An easy case:

 \mathcal{M}

0

Download each group and upload in correct position

Blocks in S according to π

An easy case:

Download each group and upload in correct position

Blocks in S according to π

16 15 5 1

An easy case:

Download each group and upload in correct position

Blocks in S according to π

10 16 14 13

2 | 15 | 7 | 12

4 8 5 11

3 9 1 6

Blocks in D according to σ

16 15 5

14 2 4 9

10 7 11 6

13 | 12 | 8 | 3

 \mathcal{C}

M

ullet Obliviousness: access pattern independent of π,σ

- ullet Obliviousness: access pattern independent of π,σ
 - download each source group

- ullet Obliviousness: access pattern independent of π, σ
 - download each source group
 - upload one block to each destination group in the next available empty location

- ullet Obliviousness: access pattern independent of π, σ
 - download each source group
 - upload one block to each destination group in the next available empty location
 - download each destination group

- Obliviousness: access pattern independent of π, σ
 - download each source group
 - upload one block to each destination group in the next available empty location
 - download each destination group
 - upload each destination group

- ullet Obliviousness: access pattern independent of π, σ
 - download each source group
 - upload one block to each destination group in the next available empty location
 - download each destination group
 - upload each destination group

bandwidth: 4N each block

- ullet Obliviousness: access pattern independent of π, σ
 - download each source group
 - upload one block to each destination group in the next available empty location
 - download each destination group
 - upload each destination group

- bandwidth: 4N each block
 - downloaded exactly twice

- ullet Obliviousness: access pattern independent of π, σ
 - download each source group
 - upload one block to each destination group in the next available empty location
 - download each destination group
 - upload each destination group

- bandwidth: 4N each block
 - downloaded exactly twice
 - uploaded exactly twice

Analysis of Shuffling Algorithm

- ullet Obliviousness: access pattern independent of π, σ
 - download each source group
 - upload one block to each destination group in the next available empty location
 - download each destination group
 - upload each destination group

- bandwidth: 4N each block
 - downloaded exactly twice
 - uploaded exactly twice

• Luck: so much!!!

Analysis of Shuffling Algorithm

- ullet Obliviousness: access pattern independent of π, σ
 - download each source group
 - upload one block to each destination group in the next available empty location
 - download each destination group
 - upload each destination group

- bandwidth: 4N
 each block
 - downloaded exactly twice
 - uploaded exactly twice

- Luck: so much!!!
 - lacktriangleright each source group contains exactly one block for each destination group under σ

when you know you are not going to be lucky, just randomize

• Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups

- Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups
 - ▶ Each group has size at most $(1 \epsilon)\sqrt{N}$, except with negligible probability

- Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups
 - ▶ Each group has size at most $(1 \epsilon)\sqrt{N}$, except with negligible probability
- Spray phase

- Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups
 - ▶ Each group has size at most $(1 \epsilon)\sqrt{N}$, except with negligible probability
- Spray phase
 - Download each source group and spray exactly one block to each destination group

- Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups
 - ▶ Each group has size at most $(1 \epsilon)\sqrt{N}$, except with negligible probability
- Spray phase
 - Download each source group and spray exactly one block to each destination group
 - ▶ if none available, spray a dummy block

- Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups
 - ▶ Each group has size at most $(1 \epsilon)\sqrt{N}$, except with negligible probability
- Spray phase
 - Download each source group and spray exactly one block to each destination group
 - if none available, spray a dummy block
 - if more than one available, spray exactly one and store the extra blocks in local cache

- Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups
 - ▶ Each group has size at most $(1 \epsilon)\sqrt{N}$, except with negligible probability
- Spray phase
 - Download each source group and spray exactly one block to each destination group
 - ▶ if none available, spray a dummy block
 - if more than one available, spray exactly one and store the extra blocks in local cache
- Recalibrate phase

- Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups
 - ▶ Each group has size at most $(1 \epsilon)\sqrt{N}$, except with negligible probability
- Spray phase
 - Download each source group and spray exactly one block to each destination group
 - ▶ if none available, spray a dummy block
 - if more than one available, spray exactly one and store the extra blocks in local cache
- Recalibrate phase
 - download each destination group

- Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups
 - ▶ Each group has size at most $(1 \epsilon)\sqrt{N}$, except with negligible probability
- Spray phase
 - Download each source group and spray exactly one block to each destination group
 - ▶ if none available, spray a dummy block
 - if more than one available, spray exactly one and store the extra blocks in local cache
- Recalibrate phase
 - download each destination group
 - remove dummies

- Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups
 - ▶ Each group has size at most $(1 \epsilon)\sqrt{N}$, except with negligible probability
- Spray phase
 - Download each source group and spray exactly one block to each destination group
 - ▶ if none available, spray a dummy block
 - if more than one available, spray exactly one and store the extra blocks in local cache
- Recalibrate phase
 - download each destination group
 - remove dummies
 - add blocks found in local cache

- Randomly partition destination array in $(1+2\epsilon)\sqrt{N}$ groups
 - ▶ Each group has size at most $(1 \epsilon)\sqrt{N}$, except with negligible probability
- Spray phase
 - Download each source group and spray exactly one block to each destination group
 - ▶ if none available, spray a dummy block
 - if more than one available, spray exactly one and store the extra blocks in local cache
- Recalibrate phase
 - download each destination group
 - remove dummies
 - add blocks found in local cache
 - upload in correct order

• bandwidth: $(4 + \epsilon)N$ blocks

- bandwidth: $(4 + \epsilon)N$ blocks
 - ▶ each real block is downloaded exactly twice and uploaded exactly twice

- bandwidth: $(4 + \epsilon)N$ blocks
 - each real block is downloaded exactly twice and uploaded exactly twice
 - each dummy block is uploaded exactly once and downloaded exactly once

- bandwidth: $(4 + \epsilon)N$ blocks
 - each real block is downloaded exactly twice and uploaded exactly twice
 - each dummy block is uploaded exactly once and downloaded exactly once
 - ▶ number of dummy blocks is at most $\epsilon \cdot N$ except with negligible probability

- bandwidth: $(4 + \epsilon)N$ blocks
 - each real block is downloaded exactly twice and uploaded exactly twice
 - each dummy block is uploaded exactly once and downloaded exactly once
 - ▶ number of dummy blocks is at most $\epsilon \cdot N$ except with negligible probability
- Obliviousness: access pattern is fixed for all executions

- bandwidth: $(4 + \epsilon)N$ blocks
 - each real block is downloaded exactly twice and uploaded exactly twice
 - each dummy block is uploaded exactly once and downloaded exactly once
 - ▶ number of dummy blocks is at most $\epsilon \cdot N$ except with negligible probability
- Obliviousness: access pattern is fixed for all executions
 - download each source group

- bandwidth: $(4 + \epsilon)N$ blocks
 - each real block is downloaded exactly twice and uploaded exactly twice
 - each dummy block is uploaded exactly once and downloaded exactly once
 - ▶ number of dummy blocks is at most $\epsilon \cdot N$ except with negligible probability
- Obliviousness: access pattern is fixed for all executions
 - download each source group
 - upload one block to each destination group

- bandwidth: $(4 + \epsilon)N$ blocks
 - each real block is downloaded exactly twice and uploaded exactly twice
 - each dummy block is uploaded exactly once and downloaded exactly once
 - ▶ number of dummy blocks is at most $\epsilon \cdot N$ except with negligible probability
- Obliviousness: access pattern is fixed for all executions
 - download each source group
 - upload one block to each destination group
 - when done, download and upload each destination group

- bandwidth: $(4 + \epsilon)N$ blocks
 - each real block is downloaded exactly twice and uploaded exactly twice
 - each dummy block is uploaded exactly once and downloaded exactly once
 - ▶ number of dummy blocks is at most $\epsilon \cdot N$ except with negligible probability
- Obliviousness: access pattern is fixed for all executions
 - download each source group
 - upload one block to each destination group
 - when done, download and upload each destination group
- \mathcal{M} 's storage: $\Theta(N)$

- bandwidth: $(4 + \epsilon)N$ blocks
 - each real block is downloaded exactly twice and uploaded exactly twice
 - each dummy block is uploaded exactly once and downloaded exactly once
 - ▶ number of dummy blocks is at most $\epsilon \cdot N$ except with negligible probability
- Obliviousness: access pattern is fixed for all executions
 - download each source group
 - upload one block to each destination group
 - when done, download and upload each destination group
- \mathcal{M} 's storage: $\Theta(N)$
- O's storage

- bandwidth: $(4 + \epsilon)N$ blocks
 - each real block is downloaded exactly twice and uploaded exactly twice
 - each dummy block is uploaded exactly once and downloaded exactly once
 - ▶ number of dummy blocks is at most $\epsilon \cdot N$ except with negligible probability
- Obliviousness: access pattern is fixed for all executions
 - download each source group
 - upload one block to each destination group
 - when done, download and upload each destination group
- \mathcal{M} 's storage: $\Theta(N)$
- O's storage
 - next slide

Intuition

• \mathcal{O} 's keeps a cache for each of the $(1+2\epsilon)\sqrt{N}$ destination groups

- \mathcal{O} 's keeps a cache for each of the $(1+2\epsilon)\sqrt{N}$ destination groups
- ullet each cache has arrival rate $pprox (1-2\epsilon)$

- \mathcal{O} 's keeps a cache for each of the $(1+2\epsilon)\sqrt{N}$ destination groups
- ullet each cache has arrival rate $pprox (1-2\epsilon)$
- departure rate 1

- \mathcal{O} 's keeps a cache for each of the $(1+2\epsilon)\sqrt{N}$ destination groups
- ullet each cache has arrival rate $pprox (1-2\epsilon)$
- departure rate 1
- each cache is expected to hold a constant number of blocks

- \mathcal{O} 's keeps a cache for each of the $(1+2\epsilon)\sqrt{N}$ destination groups
- ullet each cache has arrival rate $pprox (1-2\epsilon)$
- departure rate 1
- each cache is expected to hold a constant number of blocks
- total \mathcal{O} 's storage is $\Theta(\sqrt{N})$ except with negligible probability

- \mathcal{O} 's keeps a cache for each of the $(1+2\epsilon)\sqrt{N}$ destination groups
- ullet each cache has arrival rate $pprox (1-2\epsilon)$
- departure rate 1
- each cache is expected to hold a constant number of blocks
- total \mathcal{O} 's storage is $\Theta(\sqrt{N})$ except with negligible probability

Intuition

- \mathcal{O} 's keeps a cache for each of the $(1+2\epsilon)\sqrt{N}$ destination groups
- ullet each cache has arrival rate $pprox (1-2\epsilon)$
- departure rate 1
- each cache is expected to hold a constant number of blocks
- ullet total \mathcal{O} 's storage is $\Theta(\sqrt{N})$ except with negligible probability

Formal argument

cache sizes are not independent so cannot use Chernoff bound

Intuition

- \mathcal{O} 's keeps a cache for each of the $(1+2\epsilon)\sqrt{N}$ destination groups
- ullet each cache has arrival rate $pprox (1-2\epsilon)$
- departure rate 1
- each cache is expected to hold a constant number of blocks
- total \mathcal{O} 's storage is $\Theta(\sqrt{N})$ except with negligible probability

Formal argument

- cache sizes are not independent so cannot use Chernoff bound
- prove negative association and then use Chernoff bound

Keep the stash in \mathcal{O} 's memory and use CacheShuffleRoot

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Keep the stash in \mathcal{O} 's memory and use CacheShuffleRoot

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

Keep the stash in \mathcal{O} 's memory and use CacheShuffleRoot

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

• \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$4\cdot 10^3\approx 4000$$

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$4\cdot 10^3\approx 4000$$

Online cost: 2 blocks per read

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$4 \cdot 10^3 \approx 4000$$

- Online cost: 2 blocks per read
- ullet ${\cal O}$'s storage

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$4 \cdot 10^3 \approx 4000$$

- Online cost: 2 blocks per read
- O's storage
 - cnt and nxt use constant storage

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$4 \cdot 10^3 \approx 4000$$

- Online cost: 2 blocks per read
- O's storage
 - cnt and nxt use constant storage
 - \blacktriangleright π requires storing 10⁶ 4-byte integers=4 Megabytes

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash

Resources needed:

- \mathcal{M} 's storage: $N + M = 10^6 + 10^3$ blocks
- Cost of shuffling amortized per read operation:

$$4 \cdot 10^3 \approx 4000$$

- Online cost: 2 blocks per read
- O's storage
 - cnt and nxt use constant storage
 - \blacktriangleright π requires storing 10⁶ 4-byte integers=4 Megabytes
 - ▶ 1000 blocks of stash for a total of 4 Megabytes

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ めらで

Where are we now?

Construction -1
M's storage: 0
O's storage: N
bandwidth 0

Construction 0 Download It
M's storage: N
O's storage: 1
bandwidth N

• Construction 1 Download Stash
• \mathcal{M} 's storage: $N + \sqrt{N}$ • \mathcal{O} 's storage: 1
• Online Comm. $O(\sqrt{N})$ • Am. Comm. $O(\sqrt{N} \cdot \log N)$

• Construction 2 Keep Stash
• \mathcal{M} 's storage: $N + \sqrt{N}$ • \mathcal{O} 's storage: \sqrt{N} • Online Comm. 1
• Am. Comm. $O(\sqrt{N} \cdot \log N)$

• Use a cache (the Stash) to hide the repetition pattern

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?
 - Use an ORAM!

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?
 - Use an ORAM!
 - We only have two possible ORAMs:

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?
 - Use an ORAM!
 - We only have two possible ORAMs:
 - ▶ Download Stash uses the Download It ORAM to manage the Stash

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?
 - Use an ORAM!
 - We only have two possible ORAMs:
 - Download Stash uses the Download It ORAM to manage the Stash
 - Keep Stash uses the Keep It ORAM to manage the Stash

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?
 - Use an ORAM!
 - We only have two possible ORAMs:
 - Download Stash uses the Download It ORAM to manage the Stash
 - Keep Stash uses the Keep It ORAM to manage the Stash

- Use a cache (the Stash) to hide the repetition pattern
- How does O hide access to the Stash?
 - Use an ORAM!
 - We only have two possible ORAMs:
 - Download Stash uses the Download It ORAM to manage the Stash
 - ► Keep Stash uses the Keep It ORAM to manage the Stash

But now we have more ORAMs!!!

Querying B_q

retrieve (lev_q, pos_q) from local memory;

- retrieve (lev_q, pos_q) from local memory;
- if $lev_q \neq 0$

- retrieve (lev_q, pos_q) from local memory;
- if $lev_a \neq 0$
 - ▶ for all $l \neq lev_q$, \mathcal{O} asks for the next dummy in level l;

- retrieve (lev_q, pos_q) from local memory;
- if $lev_a \neq 0$
 - for all $l \neq lev_q$, \mathcal{O} asks for the next dummy in level l;
 - asks for block in pos_q from level lev_q;

- retrieve (lev_q, pos_q) from local memory;
- if $lev_a \neq 0$
 - for all $l \neq lev_q$, \mathcal{O} asks for the next dummy in level l;
 - asks for block in posq from level levq;
 - ▶ B_q is then stored in level 0 and (lev_q, pos_q) is updated;

- retrieve (lev_q, pos_q) from local memory;
- if $lev_a \neq 0$
 - ▶ for all $l \neq lev_q$, \mathcal{O} asks for the next dummy in level l;
 - asks for block in pos_q from level lev_q;
 - \triangleright B_q is then stored in level 0 and (lev_q, pos_q) is updated;
- else

- retrieve (lev_q, pos_q) from local memory;
- if $lev_a \neq 0$
 - ▶ for all $l \neq lev_q$, \mathcal{O} asks for the next dummy in level l;
 - asks for block in pos_q from level lev_q;
 - ▶ B_q is then stored in level 0 and (lev_q, pos_q) is updated;
- else
 - ▶ for I = 1, 2, 3, \mathcal{O} asks for the next dummy in level I;

- retrieve (lev_q, pos_q) from local memory;
- if $lev_a \neq 0$
 - for all $l \neq lev_q$, \mathcal{O} asks for the next dummy in level l;
 - asks for block in pos_q from level lev_q;
 - ▶ B_q is then stored in level 0 and (lev_q, pos_q) is updated;
- else
 - for l = 1, 2, 3, \mathcal{O} asks for the next dummy in level l;
 - ▶ block B_q is retrieved from local stash (level 0);

• at the start only level 3 contains real blocks;

- at the start only level 3 contains real blocks;
- ullet the local stash is full after $N^{1/2}$ queries

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - ► each shuffle costs 4N^{2/3}
 - over N queries, it happens $N^{1/2}$ times

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - ► each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ▶ total cost: 4 · N^{7/6}

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 1 is full after $N^{2/3}$ queries

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 1 is full after $N^{2/3}$ queries
 - ▶ it is shuffled with the level 2 of size $N^{5/6}$;

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ► total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs 4N^{5/6}

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - ▶ it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ► total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - ▶ total cost: 4 · N^{7/6}

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ▶ total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 2 is full after $N^{5/6}$ queries

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 1 is full after $N^{2/3}$ queries
 - ▶ it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;
 - each shuffle costs 4N

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 1 is full after $N^{2/3}$ queries
 - ▶ it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;
 - each shuffle costs 4N
 - over N queries, it happens $N^{1/6}$ times

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 1 is full after $N^{2/3}$ queries
 - ▶ it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;
 - each shuffle costs 4N
 - over N queries, it happens $N^{1/6}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 2 is full after $N^{5/6}$ queries
 - it is shuffled with the level 3 of size N;
 - each shuffle costs 4N
 - over N queries, it happens $N^{1/6}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- Over N queries, the cost is $12 \cdot N^{7/6}$

- at the start only level 3 contains real blocks;
- the local stash is full after $N^{1/2}$ queries
 - it is shuffled with the level 1 of size $N^{2/3}$;
 - each shuffle costs $4N^{2/3}$
 - over N queries, it happens $N^{1/2}$ times
 - ► total cost: 4 · N^{7/6}
- level 1 is full after $N^{2/3}$ queries
 - it is shuffled with the level 2 of size $N^{5/6}$;
 - each shuffle costs $4N^{5/6}$
 - over N queries, it happens $N^{1/3}$ times
 - ▶ total cost: $4 \cdot N^{7/6}$
- level 2 is full after $N^{5/6}$ queries
 - ▶ it is shuffled with the level 3 of size *N*;
 - ▶ each shuffle costs 4*N*
 - over N queries, it happens $N^{1/6}$ times
 - ▶ total cost: 4 · N^{7/6}
- Over N queries, the cost is $12 \cdot N^{7/6}$
 - each query has an amortized cost of $12N^{1/6}$ blocks;

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

 $\bullet~\mathcal{M}\mbox{'s storage}:~10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000~\mbox{blocks}$

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

- \bullet $\, \mathcal{M}'s$ storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$4 \cdot 10^3 \approx 120$$

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \bullet $\, \mathcal{M}'s$ storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$4 \cdot 10^3 \approx 120$$

Online cost: 3 blocks downloaded

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

- \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$4 \cdot 10^3 \approx 120$$

- Online cost: 3 blocks downloaded
- ullet \mathcal{O} 's storage

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

- \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$4 \cdot 10^3 \approx 120$$

- Online cost: 3 blocks downloaded
- O's storage
 - cnt and nxt use constant storage

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

- \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$4 \cdot 10^3 \approx 120$$

- Online cost: 3 blocks downloaded
- O's storage
 - cnt and nxt use constant storage
 - **ightharpoonup** position map requires storing 10^6 6-byte integers pprox 4 Megabytes

Same setting:

- $N = 10^6$ blocks of 4K each for a total of 4 Gigabytes
- $M = 10^3$ blocks of stash for a total of 4 Megabytes

Resources needed:

- \mathcal{M} 's storage: $10^6 + 2 \cdot 10^5 + 2 \cdot 10^4 + 10^3 = 1,221,000$ blocks
- Cost of shuffling amortized per read operation:

$$4 \cdot 10^3 \approx 120$$

- Online cost: 3 blocks downloaded
- O's storage
 - cnt and nxt use constant storage
 - **•** position map requires storing 10^6 6-byte integers \approx 4 Megabytes
 - ▶ 1000 blocks of stash for a total of 4 Megabytes

4 D > 4 A > 4 B > 4 B > B = 990

$$\mathcal{O}$$
's memory $\approx \sqrt{N}$

 \bullet set $\rho = 1/2$

- set $\rho = 1/2$
- 1/2 log₂ N levels with

- set $\rho = 1/2$
- 1/2 log₂ N levels with
 - \triangleright N + N/2 blocks

- set $\rho = 1/2$
- 1/2 log₂ N levels with
 - \triangleright N + N/2 blocks
 - ► N/2 + N/4 blocks

- set $\rho = 1/2$
- 1/2 log₂ N levels with
 - \triangleright N + N/2 blocks
 - ► N/2 + N/4 blocks
 - ▶ ...

- set $\rho = 1/2$
- 1/2 log₂ N levels with
 - N + N/2 blocks
 - N/2 + N/4 blocks
 - **>** ...
 - ▶ $3\sqrt{N}$ blocks

- set $\rho = 1/2$
- 1/2 log₂ N levels with
 - N + N/2 blocks
 - N/2 + N/4 blocks
 - **>** ...
 - ► $3\sqrt{N}$ blocks
- Amortized bandwidth 0.55 · log₂ N

- set $\rho = 1/2$
- 1/2 log₂ N levels with
 - N + N/2 blocks
 - ightharpoonup N/2 + N/4 blocks
 - **>** ...
 - ► $3\sqrt{N}$ blocks
- Amortized bandwidth 0.55 · log₂ N
 - ▶ For $N = 10^6$, 21 Blocks

- set $\rho = 1/2$
- 1/2 log₂ N levels with
 - \triangleright N + N/2 blocks
 - N/2 + N/4 blocks
 - **.**..
 - ► $3\sqrt{N}$ blocks
- Amortized bandwidth 0.55 · log₂ N
 - ► For $N = 10^6$, 21 Blocks
- OnLine bandwidth: 1 Block

- set $\rho = 1/2$
- 1/2 log₂ N levels with
 - \triangleright N + N/2 blocks
 - N/2 + N/4 blocks
 - **.**..
 - ► $3\sqrt{N}$ blocks
- Amortized bandwidth 0.55 · log₂ N
 - ► For $N = 10^6$, 21 Blocks
- OnLine bandwidth: 1 Block

 \mathcal{O} 's memory $\approx \sqrt{N}$

- set $\rho = 1/2$
- 1/2 log₂ N levels with
 - \triangleright N + N/2 blocks
 - N/2 + N/4 blocks
 - **>** ...
 - ► $3\sqrt{N}$ blocks
- Amortized bandwidth 0.55 · log₂ N
 - ► For $N = 10^6$, 21 Blocks
- OnLine bandwidth: 1 Block

Techniques to reduce bandwidth

- XOR Technique
- Homomorphic Selection
- Compression via Polynomial Interpolation

The XOR technique to reduce bandwidth

I-level ORAM

• when asking for B_q , \mathcal{O} asks one block for each level

The XOR technique to reduce bandwidth

I-level ORAM

- when asking for B_q , \mathcal{O} asks one block for each level
- at most one block is real

The XOR technique to reduce bandwidth

I-level ORAM

- when asking for B_q , O asks one block for each level
- at most one block is real
- suppose \mathcal{O} can compute locally the l-1 dummy blocks requested

The XOR technique to reduce bandwidth

I-level ORAM

- when asking for B_q , \mathcal{O} asks one block for each level
- at most one block is real
- ullet suppose ${\mathcal O}$ can compute locally the I-1 dummy blocks requested
 - M instead of sending all / blocks individually, xors them together and sends the result to O

The XOR technique to reduce bandwidth

I-level ORAM

- when asking for B_q , \mathcal{O} asks one block for each level
- at most one block is real
- ullet suppose ${\cal O}$ can compute locally the I-1 dummy blocks requested
 - M instead of sending all / blocks individually, xors them together and sends the result to O
 - $ightharpoonup {\cal O}$ computes the I-1 dummy blocks and xors them with the block received from ${\cal M}$

Assumption:

suppose ${\mathcal O}$ can compute any dummy block without interacting with ${\mathcal M}$

- each block uniquely identified by (I, pos)
- a dummy block is an AES-ECB encryption of 0^{len}
- using key $\mathcal{F}(K, (I, pos))$
 - $ightharpoonup \mathcal{F}$ is a pseudorandom function
 - ightharpoonup K is a randomly chosen seed private to ${\cal O}$

Some Theory

A Taxonomy

- OnLine vs OffLine ORAM
 - In an OnLine ORAM, all requests come one at the time and must be satisfied before the next one
 - in an OffLine ORAM, all requests come together
- BallsAndBins
 - Blocks are atomic and opaque blobs of data
- Passive vs Active M
 - ▶ A Passive M only moves data
 - An Active $\mathcal M$ can perform computation on data
 - ★ The XOR technique requires an Active M

• All the following require $\Omega(\log N)$

- All the following require $\Omega(\log N)$
 - ► BallsAndBins and OffLine with Passive M

- All the following require $\Omega(\log N)$
 - ► BallsAndBins and OffLine with Passive M
 - ► NonBallsAndBins and OnLine with Passive M

- All the following require $\Omega(\log N)$
 - ► BallsAndBins and OffLine with Passive M
 - ► NonBallsAndBins and OnLine with Passive M
- There are $\tilde{\mathbf{O}}(\log \mathbf{N})$ OnLine ORAM in the Balls and Bins model with Passive \mathcal{M}

- All the following require $\Omega(\log N)$
 - ► BallsAndBins and OffLine with Passive M
 - ► NonBallsAndBins and OnLine with Passive M
- There are $\tilde{\mathbf{O}}(\log \mathbf{N})$ OnLine ORAM in the Balls and Bins model with Passive \mathcal{M}
- There are o(log N) OnLine ORAM with Active \mathcal{M}

- All the following require $\Omega(\log N)$
 - ► BallsAndBins and OffLine with Passive M
 - ► NonBallsAndBins and OnLine with Passive M
- There are $\tilde{\mathbf{O}}(\log \mathbf{N})$ OnLine ORAM in the Balls and Bins model with Passive \mathcal{M}
- There are o(log N) OnLine ORAM with Active \mathcal{M}
- Proving lower bound for Non-BallsAndBins and OffLine with Passive M would give a superlinear lower bound for sorting circuits.

(ϵ, δ) -Differential Privacy

- \mathcal{M} stores n blocks of memory.
- ullet Every time ${\mathcal O}$ wants a block, he asks ${\mathcal M}$ one or more blocks.
- Security notion:
 - For any two block sequences $\mathbb{B} = B_1, \dots, B_n$ and $\mathbb{C} = C_1, \dots, C_n$
 - For any two access sequences i_1, \ldots, i_l and j_1, \ldots, j_l that differ in one position
 - * performing access i_1, \ldots, i_l on $\mathbb{B} = B_1, \ldots, B_n$;
 - \star performing access j_1,\ldots,j_l on $\mathbb{C}=\mathcal{C}_1,\ldots,\mathcal{C}_n$

generate the same distribution of accesses to the data stored by ${\mathcal M}$

(ϵ, δ) -Differential Privacy

- \mathcal{M} stores n blocks of memory.
- ullet Every time $\mathcal O$ wants a block, he asks $\mathcal M$ one or more blocks.
- Security notion:
 - For any two block sequences $\mathbb{B} = B_1, \dots, B_n$ and $\mathbb{C} = C_1, \dots, C_n$
 - For any two access sequences i_1, \ldots, i_l and j_1, \ldots, j_l that differ in one position
 - * performing access i_1, \ldots, i_l on $\mathbb{B} = B_1, \ldots, B_n$;
 - \star performing access j_1,\ldots,j_l on $\mathbb{C}=\mathit{C}_1,\ldots,\mathit{C}_n$

generate the same distribution of accesses to the data stored by ${\mathcal M}$

For every predicate A

$$\begin{split} \operatorname{Prob}[\mathtt{view} \leftarrow \mathtt{View}(I,\mathbb{B}) : & A(\mathtt{view}) = 1] \\ & \leq e^{\epsilon} \cdot \operatorname{Prob}[\mathtt{view} \leftarrow \mathtt{View}(J,\mathbb{C}) : A(\mathtt{view}) = 1] + \delta \end{split}$$

4 D > 4 A > 4 E > 4 E > 9 Q P

• it protects only individual accesses

- it protects only individual accesses
- ullet if the probability of an access is larger than $1/e^\epsilon$ no guarantee is given

- it protects only individual accesses
- ullet if the probability of an access is larger than $1/e^\epsilon$ no guarantee is given
- it protects unusual accesses

- it protects only individual accesses
- ullet if the probability of an access is larger than $1/e^\epsilon$ no guarantee is given
- it protects unusual accesses
- how unusual?

- it protects only individual accesses
- ullet if the probability of an access is larger than $1/e^\epsilon$ no guarantee is given
- it protects unusual accesses
- how unusual?
 - ▶ it depends on €

- it protects only individual accesses
- if the probability of an access is larger than $1/e^{\epsilon}$ no guarantee is given
- it protects unusual accesses
- how unusual?
 - ▶ it depends on €
- no protection is offered for high-probability accesses

- it protects only individual accesses
- ullet if the probability of an access is larger than $1/e^\epsilon$ no guarantee is given
- it protects unusual accesses
- how unusual?
 - ▶ it depends on €
- no protection is offered for high-probability accesses
 - nothing is lost: my daily routine is public

- it protects only individual accesses
- ullet if the probability of an access is larger than $1/e^\epsilon$ no guarantee is given
- it protects unusual accesses
- how unusual?
 - ▶ it depends on €
- no protection is offered for high-probability accesses
 - nothing is lost: my daily routine is public
- I really want to protect unusual accesses to documents that might reveal something

- it protects only individual accesses
- ullet if the probability of an access is larger than $1/e^\epsilon$ no guarantee is given
- it protects unusual accesses
- how unusual?
 - ▶ it depends on €
- no protection is offered for high-probability accesses
 - nothing is lost: my daily routine is public
- I really want to protect unusual accesses to documents that might reveal something
 - ▶ I am checking my medical records from some time ago...

Download Phase

• if B_i is found in the stash:

Download Phase

- if B_i is found in the stash:
 - return it

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash
 - ask M for a random block and then discard it

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash
 - ask M for a random block and then discard it
- if B_i is not found in the stash:

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash
 - \triangleright ask \mathcal{M} for a random block and then discard it
- if B_i is not found in the stash:
 - \triangleright ask \mathcal{M} for B_i

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash
 - \triangleright ask \mathcal{M} for a random block and then discard it
- if B_i is not found in the stash:
 - \triangleright ask \mathcal{M} for B_i

Overwrite Phase

• Toss a coin with probability (p, 1 - p)

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash
 - \triangleright ask \mathcal{M} for a random block and then discard it
- if B_i is not found in the stash:
 - \triangleright ask \mathcal{M} for B_i

- Toss a coin with probability (p, 1 p)
- if head

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash
 - \triangleright ask \mathcal{M} for a random block and then discard it
- if B_i is not found in the stash:
 - \triangleright ask \mathcal{M} for B_i

- Toss a coin with probability (p, 1 p)
- if head
 - ► add *B_i* to stash

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash
 - \triangleright ask \mathcal{M} for a random block and then discard it
- if B_i is not found in the stash:
 - \triangleright ask \mathcal{M} for B_i

- Toss a coin with probability (p, 1 p)
- if head
 - add B_i to stash
 - ask M for a randomly selected block, re-encrypt it and upload to the same location

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash
 - \triangleright ask \mathcal{M} for a random block and then discard it
- if B_i is not found in the stash:
 - \triangleright ask \mathcal{M} for B_i

- Toss a coin with probability (p, 1 p)
- if head
 - ▶ add B_i to stash
 - ask M for a randomly selected block, re-encrypt it and upload to the same location
- if tail

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash
 - \triangleright ask \mathcal{M} for a random block and then discard it
- if B_i is not found in the stash:
 - \triangleright ask \mathcal{M} for B_i

- Toss a coin with probability (p, 1 p)
- if head
 - ► add B_i to stash
 - ask M for a randomly selected block, re-encrypt it and upload to the same location
- if tail
 - \triangleright download B_i from \mathcal{M}

Download Phase

- if B_i is found in the stash:
 - return it
 - remove it from the stash
 - ask M for a random block and then discard it
- if B_i is not found in the stash:
 - ightharpoonup ask \mathcal{M} for B_i

- Toss a coin with probability (p, 1 p)
- if head
 - add B_i to stash
 - ask M for a randomly selected block, re-encrypt it and upload to the same location
- if tail
 - download B_i from \mathcal{M}
 - decrypt and re-encrypt and upload it to the same location

• Two blocks of communication

- Two blocks of communication
- $p = \omega(\log n/n)$ with $\omega(\log n)$ client memory

- Two blocks of communication
- $p = \omega(\log n/n)$ with $\omega(\log n)$ client memory
- $\epsilon = \Theta(\log n)$

- Two blocks of communication
- $p = \omega(\log n/n)$ with $\omega(\log n)$ client memory
- $\epsilon = \Theta(\log n)$

- Two blocks of communication
- $p = \omega(\log n/n)$ with $\omega(\log n)$ client memory
- $\epsilon = \Theta(\log n)$

Theorem

For any $\epsilon \geq 0$, any DP-RAM with error probability $\alpha \geq 0$ in the BallsAndBins model and a client that stores at most c blocks must operate on

$$\Omega\left(\log_c\left(\frac{(1-\alpha)\cdot n}{e^\epsilon}\right)\right)$$

records.

In the non-BallsAndBins the bound is

$$\Omega\left(\frac{b}{w}\log\frac{nb}{c}\right)$$

for any constant ϵ , $\delta \leq 1/3$ and error probability 1/3.

• Leaking the access pattern can be dangerous

- Leaking the access pattern can be dangerous
- Obliviousness: a strong security notion

- Leaking the access pattern can be dangerous
- Obliviousness: a strong security notion
 - ► requires > 20x overhead for 4 Giga of data

- Leaking the access pattern can be dangerous
- Obliviousness: a strong security notion
 - ► requires > 20x overhead for 4 Giga of data
- Differential Privacy: a weaker security notion

- Leaking the access pattern can be dangerous
- Obliviousness: a strong security notion
 - ► requires > 20x overhead for 4 Giga of data
- Differential Privacy: a weaker security notion
 - very efficient

- Leaking the access pattern can be dangerous
- Obliviousness: a strong security notion
 - ▶ requires > 20x overhead for 4 Giga of data
- Differential Privacy: a weaker security notion
 - very efficient
 - suitable only for specific applications

- Leaking the access pattern can be dangerous
- Obliviousness: a strong security notion
 - ► requires > 20x overhead for 4 Giga of data
- Differential Privacy: a weaker security notion
 - very efficient
 - suitable only for specific applications
- Other security notions?

- Leaking the access pattern can be dangerous
- Obliviousness: a strong security notion
 - ► requires > 20x overhead for 4 Giga of data
- Differential Privacy: a weaker security notion
 - very efficient
 - suitable only for specific applications
- Other security notions?
- Better analysis under reasonable assumptions for access distributions?
 Zipf?

- Leaking the access pattern can be dangerous
- Obliviousness: a strong security notion
 - ► requires > 20x overhead for 4 Giga of data
- Differential Privacy: a weaker security notion
 - very efficient
 - suitable only for specific applications
- Other security notions?
- Better analysis under reasonable assumptions for access distributions?
 Zipf?

- Leaking the access pattern can be dangerous
- Obliviousness: a strong security notion
 - ► requires > 20x overhead for 4 Giga of data
- Differential Privacy: a weaker security notion
 - very efficient
 - suitable only for specific applications
- Other security notions?
- Better analysis under reasonable assumptions for access distributions?
 Zipf?

- Leaking the access pattern can be dangerous
- Obliviousness: a strong security notion
 - ▶ requires > 20x overhead for 4 Giga of data
- Differential Privacy: a weaker security notion
 - very efficient
 - suitable only for specific applications
- Other security notions?
- Better analysis under reasonable assumptions for access distributions?
 Zipf?

https://github.com/giuper/talks/nonTechnical/oramTutorial.pdf

The original papers

O. Goldreich.

Towards a Theory of Software Protection and Simulation by Oblivious RAMs.

In *STOC*, 1987.

🔋 R. Ostrovsky.

Efficient computation on oblivious RAMs.

In STOC, pages 514-523, 1990.

O. Goldreich and R. Ostrovsky.

Software Protection and Simulation on Oblivious RAMs.

J. ACM, 43(3), 1996.

Asymptotics

G. Asharov, I. Komargodski, W.-K. Lin, K. Nayak, E. Peserico, and F Shi

OptORAMa: Optimal oblivious RAM. Cryptology ePrint Archive, Report 2018/892.

S. Patel, G. Persiano, M. Raykova, and K. Yeo.

PanORAMa: Oblivious RAM with logarithmic overhead.

Cryptology ePrint Archive, Report 2018/373, 2018. https://eprint.iacr.org/2018/373.

FOCS '18

Constant client memory

Efficient constructions for large blocks

E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas.

Path ORAM: An Extremely Simple Oblivious RAM Protocol. In *CCS '13*, pages 299–310, 2013.

S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs.

Onion ORAM: A constant bandwidth blowup oblivious RAM. In *TCC*, pages 145–174, 2015.

T. Moataz, T. Mayberry, and E.-O. Blass. Constant communication ORAM with small blocksize. In *CCS*, pages 862–873, 2015.

polylog(n)-bit blocks

Efficient constructions for large client memory

L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas.

Constants count: Practical improvements to oblivious RAM. In *USENIX Security*, pages 415–430, 2015.

E. Stefanov, E. Shi, and D. X. Song. Towards practical oblivious RAM. In *NDSS* 2012, 2012.

S. Patel, G. Persiano, and K. Yeo. Recursive ORAMs with practical constructions. Cryptology ePrint Archive, Report 2017/964, 2017.

$O(\sqrt{n})$ client memory

Lower bounds

Is There an Oblivious RAM Lower Bound? In *ITCS*, pages 357–368, 2016.

K. G. Larsen and J. B. Nielsen.

Yes, there is an oblivious RAM lower bound! Cryptology ePrint Archive, Report 2018/423, 2018. CRYPTO '18

M Weiss and D Wichs

Is there an Oblivious RAM lower bound for online reads? Cryptology ePrint Archive, Report 2018/619, 2018.

TCC '18

G. Persiano and K. Yeo.

Lower bounds for differentially private RAMs.

Cryptology ePrint Archive, Report 2018/1051, 2018.

Eurocrypt '19

Oblivious Sorting and Shuffling

M. T. Goodrich.

Zig-Zag Sort: A Simple Deterministic Data-oblivious Sorting Algorithm Running in $O(N \log N)$ Time.

In STOC, pages 684-693, 2014.

O. Ohrimenko, M. T. Goodrich, R. Tamassia, and E. Upfal. The melbourne shuffle: Improving oblivious storage in the cloud. In *ICALP '14*, pages 556–567. Springer, 2014.

S. Patel, G. Persiano, and K. Yeo. CacheShuffle: A Family of Oblivious Shuffles. In *ICALP*, pages 161:1–161:13, 2018.