2013 硕士研究生入学考试数学三真题及答案解析

一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.

(1) 当 $x \to 0$ 时,用o(x)表示比x高阶的无穷小,则下列式子中错误的是()

$$(A) \quad x \cdot o(x^2) = o(x^3)$$

(B)
$$o(x) \cdot o(x^2) = o(x^3)$$

(C)
$$o(x^2) + o(x^2) = o(x^2)$$

(D)
$$o(x) + o(x^2) = o(x^2)$$

答案: (D)

解析: (A)
$$\frac{xo(x^2)}{x^3} = \frac{o(x^2)}{x^2} \to 0$$

(B)
$$\frac{o(x)o(x^2)}{x^3} = \frac{o(x)}{x} \cdot \frac{o(x^2)}{x^2} \to 0$$

(C)
$$\frac{o(x^2) + o(x^2)}{x^2} = \frac{o(x^2)}{x^2} \cdot \frac{o(x^2)}{x^2} \to 0$$

(D)
$$\frac{o(x) + o(x^2)}{x^2} = \frac{o(x)}{x^2} + \frac{o(x^2)}{x^2}$$
推不出0 如: $x^2 = o(x)$ 则 $\frac{o(x) + o(x^2)}{x^2} \to 1$

(2) 函数
$$f(x) = \frac{|x|^x - 1}{x(x+1)\ln|x|}$$
 的可去间断点的个数为 ()

- (A) 0
- (B) 1
- (C) 2
- (D) 3

答室· (B)

解析:
$$\lim_{x \to 1} \frac{|x|^x - 1}{x(x+1)\ln|x|} = \lim_{x \to 0} \frac{e^{x\ln|x|}}{x(x+1)\ln|x|} = \lim_{x \to 0} \frac{x\ln|x|}{x(x+1)\ln|x|} = 1.$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x \ln|x|}{x(x+1) \ln|x|} = \frac{1}{2}$$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x \ln |x|}{x(x+1) \ln |x|} = \infty$$

而 f(0),f(1)无定义,故 x=0,x=1 为可去间断点.

(3) 设 D_k 是圆域 $D = \{(x,y) \mid x^2 + y^2 \le 1\}$ 位于第 k 象限的部分,记 $I_k = \iint_{D_k} (y-x) dx dy (k = 1,2,3,4)$,

则()

- (A) $I_1 > 0$
- (B) $I_2 > 0$
- (C) $I_3 > 0$
- (D) $I_4 > 0$

答案: (B)

解析:

故应选 B。

- (4) 设 $\{a_n\}$ 为正项数列,下列选项正确的是(
- (A) 若 $a_n > a_{n+1}$,则 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛
- (B) 若 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛,则 $a_n > a_{n+1}$
- (C) 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则存在常数P > 1,使 $\lim_{n \to \infty} n^P a_n$ 存在
- (D) 若存在常数 P > 1 , 使 $\lim_{n \to \infty} n^P a_n$ 存在 ,则 $\sum_{n=1}^{\infty} a_n$ 收敛

答案: (D)

解析: 因为 $\sum_{n=1}^{\infty} \frac{1}{n^p} (p > 1)$ 收敛, $\lim_{n \to \infty} na_n$ 存在,则 $\sum_{n=1}^{\infty} a_n$ 收敛。 故应选 D。

(5) 设矩阵 A,B,C 均为 n 阶矩阵,若 AB = C,则B可逆,则

(A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价

(B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价

(C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价

(D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价

答案: (B)

解析: ∵B 可逆.∴A(b₁...b_n)=C=(c₁...c_n)

: Abi=Ci.即 C的列向量组可由 A的列向量组表示.

::AB=C $::A=CB^{-1}=CP$.

同理: A 的列向量组可由 C 的列向量组表示.

(6) 矩阵
$$\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$$
 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件为

(A)
$$a = 0, b = 2$$

(B)
$$a=0,b$$
为任意常数

(C)
$$a = 2, b = 0$$

(D)
$$a = 2, b$$
为任意常数

答案: (B)

解析: A和B相似,则A和B的特征值相同.

∴A 和 B 的特征值为λ₁=0. λ₂=b. λ₃=2.

$$\exists R(A) = R(B) \qquad A \to \begin{pmatrix} 1 & a & 1 \\ 0 & b - a^2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

当 a=0 时, $\forall b \in R$ 时, 有R(A) = R(B).

反之对于 $\forall b \in R$ 、a = 0时.有A和B相似..

(7) 设 X_1 , X_2 , X_3 是随机变量,且 $X_1 \sim N(0,1)$, $X_2 \sim N(0,2^2)$, $X_3 \sim N(5,3^2)$,

$$P_j = P\{-2 \le X_j \le 2\} (j = 1, 2, 3), \text{ JU}$$
 ()

(A)
$$P_1 > P_2 > P_3$$

(B)
$$P_2 > P_1 > P_3$$

(C)
$$P_3 > P_1 > P_2$$

(D)
$$P_1 > P_3 > P_2$$

答案: (A)

解析:

$$P_1 = P(-2 < X_1 < 2) = \Phi(2) - \Phi(-2) = 2\Phi(2) - 1$$

 $P_2 = P(-1 < \frac{X_2 - 0}{2} < 1) = 2\Phi(1) - 1$ $\therefore P_1 > P_2$

$$P_3 = P\left(-\frac{7}{3} < \frac{X_3 - 5}{3} < -1\right) = \Phi\left(\frac{7}{3}\right) - \Phi(1)$$
 $P_2 > P_3 :: P_1 > P_2 > P_3$

(8) 设随机变量 X 和 Y 相互独立,则 X 和 Y 的概率分布分别为,

				 10				
X	0	1	2	3	Y	-1	0	1
P	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	Р	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

则
$$P{X + Y = 2} = ($$
)

(A)
$$\frac{1}{12}$$

(B)
$$\frac{1}{8}$$

(C)
$$\frac{1}{6}$$

(D)
$$\frac{1}{2}$$

答案: (C)

解析:

$$P\{X+Y=2\} = P\{X=1, Y=1\} + P\{X=2, Y=0\} + P\{X=3, Y=-1\}$$

$$= P\{X=1\} P\{Y=1\} + P\{X=2\} P\{Y=0\} + P\{X=3\} P\{Y=-1\} = \frac{1}{4} \cdot \frac{1}{3} + \frac{1}{8} \cdot \frac{1}{3} + \frac{1}{8} \cdot \frac{1}{3} = \frac{1}{6}$$

二、填空题:9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

答案: -2

解析:

$$\lim_{n \to \infty} nf\left(\frac{n}{n+2}\right) = \lim_{n \to \infty} \frac{-2n}{n+2} \cdot \frac{f\left(1 - \frac{2}{n+2}\right)}{-\frac{2}{n+2}} = \lim_{n \to \infty} \frac{-2n}{n+2} \cdot \frac{f\left(1 - \frac{2}{n+2}\right) - f(1)}{-\frac{2}{n+2}}$$

$$= \lim_{n \to \infty} \frac{-2n}{n+2} \cdot \lim_{n \to \infty} \frac{f\left(1 - \frac{2}{n+2}\right) - f(1)}{-\frac{2}{n+2}} = -2f'(1) = -2$$

(10) 设函数
$$z = z(x, y)$$
 由方程 $(z + y)^x = xy$ 确定,则 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = \underline{\hspace{1cm}}$

答案: 2-2ln2

解析:

把点
$$(1,2)$$
代入 $(z+y)^x = xy$,得 $z(1,2) = 0$

在 $(z+y)^x = xy$ 两边同时对x求偏导数,有

$$(z+y)^x \left[\ln(z+y) + x \frac{\frac{\partial z}{\partial x}}{z+y} \right] = y,$$
将 $x = 1, y = 2,$ z $(1,2) = 0$ 代入得 $\frac{\partial z}{\partial x} = 2-2 \ln 2$

$$(11) \ \ \ \, \overline{\mathcal{R}} \int_{1}^{+\infty} \frac{\ln x}{\left(1+x\right)^{2}} dx \underline{\hspace{1cm}}$$

答案: In2

解析:
$$\int_{1}^{+\infty} \frac{\ln x}{(1+x)^2} dx = -\frac{\ln x}{1+x} \Big|_{1}^{+\infty} + \int_{1}^{+\infty} \frac{dx}{(1+x)x}$$

$$= 0 + \ln \frac{x}{1+x} \bigg|_{1}^{+\infty} = 0 - \ln \frac{1}{2} = \ln 2.$$

(12) 微分方程
$$y'' - y' + \frac{1}{4}y = 0$$
 通解为 $y =$ ________.

答案:
$$y = e^{\frac{1}{2}x}(c_1 + c_2x)$$

解析:

二阶齐次微分方程的特征方程为
$$\lambda^2-\lambda+\frac{1}{4}=0$$
,解得 $\lambda_1=\lambda_2=\frac{1}{2}$,所以齐次方程的通解为 $y=e^{\frac{1}{2}x}\left(c_1+c_2x\right)$

(13) 设 $A = (a_{ij})$ 是三阶非零矩阵,|A| 为 A 的行列式, A_{ij} 为 a_{ij} 的代数余子式,若 $a_{ij} + A_{ij} = 0 \\ (i,j=1,2,3), 则 \\ |A| = ____.$

答案: -1

解析:
$$: a_{ij} + A_{ij} = 0$$

$$A_{ij} = -a_{ij}$$

$$\therefore A^* = -A^T \Longrightarrow AA^* = -AA^T = |A|E$$

取行列式得: $-|A|^2 = |A|^3 \Rightarrow |A| = 0$ 或 |A| = -1

若
$$|A|=0$$
, \Rightarrow $-AA^T=0$, \Rightarrow $A=0$ (矛盾)

答案: 2e²

解析:

标准正态分布的概率密度 $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$

$$E\left(Xe^{2X}\right) = \int_{-\infty}^{+\infty} xe^{2x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} xe^{-\frac{1}{2}(x-2)^2 - 2} dx = e^2 \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-2)^2} dx = 2e^2$$

三、解答题: 15—23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x = ax^n$ 为等价无穷小,求n = a的值。

解析:

$$\lim_{x \to 0} \frac{1 - \cos x \cos 2x \cos 3x}{ax^n} = \lim_{x \to 0} \frac{1 - \frac{\cos 6x + \cos 4x + \cos 2x + 1}{4}}{ax^n} = \lim_{x \to 0} \frac{3 - \cos 6x - \cos 4x - \cos 2x}{4ax^n}$$

$$= \lim_{x \to 0} \frac{6 \sin 6x + 4 \sin 4x + 2 \sin 2x}{4anx^{n-1}} = \lim_{x \to 0} \frac{36 \cos 6x + 16 \cos 4x + 4 \cos 2x}{4an(n-1)x^{n-2}}$$

所以n=2

当
$$n = 2$$
时,由题意 $\frac{36+16+4}{4a \cdot 2 \cdot 1} = 1 \Rightarrow a = 7$

所以n=2, a=7

(16) (本题满分 10分)

设D是由曲线 $y=x^{\frac{1}{3}}$,直线x=a(a>0)及x轴所围成的平面图形, V_x,V_y 分别是D绕x轴,y轴旋转一周所得旋转体的体积,若 $V_y=10V_x$,求a的值。

解析: 由题意可得:

$$V_x = \pi \int_0^a (x^{\frac{1}{3}})^2 dx = \frac{3}{5} \pi a^{\frac{5}{3}}$$

$$V_{y} = 2\pi \int_{0}^{a} x \cdot x^{\frac{1}{3}} dx = \frac{6\pi}{7} a^{\frac{7}{3}}$$

因为:
$$V_y = 10V_x$$
 所以 $\frac{6\pi}{7}a^{\frac{7}{3}} = 10 \cdot \frac{3}{5}\pi a^{\frac{5}{3}} \Rightarrow a = 7\sqrt{7}$

(17) (本题满分10分)

设平面内区域 D 由直线 x = 3y, y = 3x 及 x + y = 8 围成.计算 $\iint_D x^2 dx dy$ 。

解析: y = 3x 与 x + y = 8 的交点为 (2,6), $y = \frac{1}{3}x$ 与 x + y = 8 的交点为 (6,2)。

$$\iint_{D} x^{2} dx dy = \int_{0}^{2} dx \int_{\frac{1}{3}x}^{3x} x^{2} dy + \int_{2}^{6} dx \int_{\frac{1}{3}x}^{8-x} x^{2} dy = \int_{0}^{2} (3x - \frac{1}{3}x)x^{2} dx + \int_{2}^{6} (8 - x - \frac{1}{3}x)x^{2} dx = \frac{416}{3}$$

(18) (本题满分10分)

设生产某产品的固定成本为 6000 元,可变成本为 20 元/件,价格函数为 $P=60-\frac{Q}{1000}$, (P 是单价,单位:元,Q 是销量,单位:件),已知产销平衡,求:

- (1) 该商品的边际利润。
- (2) 当 P=50 时的边际利润,并解释其经济意义。
- (3) 使得利润最大的定价 P。

解析: (1) 总收入
$$R(P) = PQ = 1000P(60 - P) = 60000P - 1000P$$

总成本
$$C(P) = 60000 - 20Q = 1260000 - 20000P$$

总利润
$$L(P) = R(P) - C(P) = -1000P^2 + 80000P - 1260000$$

边际利润 L'(P) = -2000P + 80000

- (2) 当 P=50 时的边际利润为 $L'(50) = -2000 \times 50 + 80000 = -2000$,其经济意义为在 P=50 时,价格 每提高 1 元,总利润减少 2000 元。
- (3) 由于 L'(P) = -2000P + 80000 $\begin{cases} > 0, P < 40 \\ < 0, P > 40 \end{cases}$, L(P) 在 (0,40) 递增,在 $(40,+\infty)$ 递减,当 P=40 时,总利润最大。
 - (19) (本题满分 10 分)

设函数 f(x) 在 $[0,+\infty]$ 上可导, f(0) = 0且 $\lim_{x \to +\infty} f(x) = 2$,证明

- (1) 存在a > 0, 使得f(a) = 1
- (2) 对 (1) 中的 a , 存在 $\xi \in (0, a)$, 使得 $f'(\xi) = \frac{1}{a}$.

证明: (1) 因为 $\lim_{x \to +\infty} f(x) = 2$,对于 $\varepsilon = \frac{1}{2}$,存在 A > 0,使得当 $x \ge A$ 时, $|f(x) - 2| < \frac{1}{2}$,因此 $f(A) > \frac{3}{2}$,由连续函数的介值性,存在 $a \in (0,A)$,使得 f(a) = 1。

(2) 由拉格朗日中值定理,存在
$$\xi \in (0,a)$$
,使得 $f'(\xi) = \frac{f(a) - f(0)}{a - 0} = \frac{1}{a}$.

(20) (本题满分11分)

设
$$A = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$, 当 a,b 为何值时,存在矩阵 C 使得 $AC - CA = B$,并求所有矩阵 C 。

解析: $\Leftrightarrow C = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$, 则

$$AC = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} = \begin{pmatrix} x_1 + ax_3 & x_2 + ax_4 \\ x_1 & x_2 \end{pmatrix}$$

$$CA = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 & ax_1 \\ x_3 + x_4 & ax_3 \end{pmatrix}$$

$$AC - CA = \begin{pmatrix} -x_2 + ax_3 & -ax_1 + x_2 + ax_4 \\ x_1 - x_3 - x_4 & x_2 - ax_3 \end{pmatrix},$$

则由AC-CA=B得

$$\begin{cases} -x_2 + ax_3 = 0 \\ -ax_1 + x_2 + ax_4 = 1 \\ x_1 - x_3 - x_4 = 1 \end{cases}$$
,此为 4 元非齐次线性方程组,欲使 C 存在,此线性方程组必须有解,于是
$$\begin{cases} x_2 - ax_3 = b \end{cases}$$

$$\overline{A} = \begin{pmatrix} 0 & -1 & a & 0 & 0 \\ -a & 1 & 0 & a & 1 \\ 1 & 0 & -1 & -1 & 1 \\ 0 & 1 & -a & 0 & b \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -1 & a & 0 & 0 \\ 0 & 1 & -a & 0 & 1+a \\ 1 & 0 & -1 & -1 & 1 \\ 0 & 1 & -a & 0 & b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -1 & 1 \\ 0 & 1 & -a & 0 & 0 \\ 0 & 1 & -a & 0 & 1+a \\ 0 & 1 & -a & 0 & b \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & -1 & -1 & 1 \\ 0 & 1 & -a & 0 & 0 \\ 0 & 0 & 0 & 0 & 1+a \\ 0 & 0 & 0 & 0 & b \end{pmatrix}$$

所以, 当a=-1,b=0时, 线性方程组有解, 即存在C, 使AC-CA=B。

所以
$$X = c_1 \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} c_1 + c_2 + 1 \\ -c_1 \\ c_1 \\ c_2 \end{pmatrix}$$

所以
$$C = \begin{pmatrix} c_1 + c_2 + 1 & -c_1 \\ c_1 & c_2 \end{pmatrix}$$
, (其中 c_1, c_2, c_3 为任意常数) c_1

(21) (本题满分11分)

设二次型
$$f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$$
,记 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ 。

- (I) 证明二次型 f 对应的矩阵为 $2\alpha^T\alpha + \beta^T\beta$;
- (II) 若 α, β 正交且均为单位向量,证明二次型 f 在正交变化下的标准形为二次型 $2y_1^2 + y_2^2$ 。

证明:

$$(1) f = 2(x_1, x_2, x_3) \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} (a_1, a_2, a_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + (x_1, x_2, x_3) \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} (b_1, b_2, b_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= X^T \left(2\alpha\alpha^T \right) X + X^T \left(\beta\beta^T \right) X = X^T \left(2\alpha\alpha^T + \beta\beta^T \right) X$$
故f的矩阵 $A = 2\alpha\alpha^T + \beta\beta^T$

$$(2) \because A\alpha = (2\alpha\alpha^T + \beta\beta^T)\alpha = 2\alpha |\alpha|^2 + \beta\beta^T \alpha = 2\alpha$$

$$\therefore \alpha \to A \text{ hho 对应于 } \lambda_1 = 2 \text{ hho hooding} \Rightarrow 0$$

$$\forall A\beta = (2\alpha\alpha^T + \beta\beta^T)\beta = 2\alpha\alpha^T \cdot \beta + \beta \cdot |\beta|^2 = \beta$$

$$\beta \to A \text{ hho hooding} \Rightarrow \lambda_2 = 1 \text{ hhooding} \Rightarrow 0$$

$$\therefore r(A) \le r(2\alpha\alpha^T) + r(\beta\beta^T) = r(\alpha) + r(\beta) = 2 < 3$$

$$\therefore \lambda_3 = 0$$

故f在正交变换下的标准型为 $2y_1^2 + y_2^2$.

(22) (本题满分11分)

设
$$(X,Y)$$
是二维随机变量, X 的边缘概率密度为 $f_X(x) = \begin{cases} 3x^2, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$,在给定
$$X = x(0 < x < 1)$$
的条件下, Y 的条件概率密度 $f_{Y|X}(y|x) = \begin{cases} \frac{3y^2}{x^3}, & 0 < y < x, \\ 0, & \text{其他.} \end{cases}$

- (1) 求(X,Y)的概率密度f(x,y);
- (2) Y 的边缘概率密度 $f_Y(y)$;
- $(3) \quad {}_{\stackrel{\bullet}{X}}P\{X>2Y\}.$

解析: (I)
$$f(x,y) = f_X(x) f_{Y|X}(y|x) = \begin{cases} 3x^2 \cdot \frac{3y^2}{x^3} & 0 < x < 1, 0 < y < x \\ 0 & 其他 \end{cases}$$

(II)
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$$

当
$$0 < y < 1$$
 时, $f_Y(y) = \int_y^1 \frac{9y^2}{x} dx = -9y^2 \cdot \ln y$

所以
$$y$$
 的边缘概率密度为 $f_{Y}(y) = \begin{cases} -9y^{2} \cdot \ln y & 0 < y < 1 \\ 0 & 其他 \end{cases}$

(III)
$$P\{X > 2Y\} = \iint_{X > 2Y} f(x, y) dx dy = \int_0^1 dx \int_0^{\frac{x}{2}} \frac{9y^2}{x} dy = \frac{1}{8}$$

(23) (本题满分11分)

设总体 X 的概率密度为 $f(x) = \begin{cases} \frac{\theta^2}{x^3} e^{-\frac{\theta}{x}}, & x>0, \\ 0, &$ 其中 θ 为未知参数且大于零, $X_1, X_2, \cdots X_N$ 为来自 $0, \quad$ 其它.

总体 X 的简单随机样本.

- (1) 求 θ 的矩估计量;
- (2) 求 θ 的最大似然估计量.

解析: (1) $EX = \int_0^{+\infty} x f(x) dx = \int_0^{+\infty} \frac{\theta^2}{x^2} e^{-\frac{\theta}{x}} dx = -\theta \int_0^{+\infty} e^{-\frac{\theta}{x}} d(\frac{\theta}{x}) = -\theta \int_{+\infty}^0 e^{-t} d(t) = \theta$, 令 $EX = \overline{X}$,得到矩估计 $\theta = \overline{X}$ 。

$$l(\theta) = f(x_1, \theta) f(x_2, \theta) \cdots f(x_n, \theta) = \theta^{2n} (x_1 x_2 \cdots x_n)^{-3} e^{-\theta(\frac{1}{x_1} + \cdots \frac{1}{x_n})}$$

$$L = \ln(l(\theta)) = 2n \ln \theta - 3\ln(x_1 x_2 \cdots x_n) - \theta(\frac{1}{x_1} + \cdots \frac{1}{x_n})$$

$$\frac{\partial L}{\partial \theta} = \frac{2n}{\theta} - (\frac{1}{x_1} + \cdots \frac{1}{x_n}) = 0$$

得到最大似然估计: $\theta = \frac{2n}{\frac{1}{x_1} + \cdots + \frac{1}{x_n}}.$