Throughout the course, you may encounter the sets defined below. You are welcome to use these as appropriate.

 \mathbb{N} = the set of natural numbers $\{1, 2, 3, \ldots\}$

 \mathbb{Z} = the set of integers $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$

 \mathbb{Z}^+ = the set of positive integers $\{1, 2, 3, \ldots\}$ (note: $\mathbb{Z}^+ = \mathbb{N}$)

 \mathbb{Z}^- = the set of negative integers $\{\ldots, -3, -2, -1\}$

 $\mathbb{Z} \geq n$ = the set of integers greater than or equal to n: $\{n, n+1, n+2, \ldots\}$

 \mathbb{E} = the set of even integers $\{\ldots, -4, -2, 0, 2, 4, \ldots\}$

 \mathbb{O} = the set of odd integers $\{\ldots, -3, -1, 1, 3, \ldots\}$

 $\mathbb{Q} = \text{the set of rational numbers } = \left\{ \frac{a}{b} \mid a,b \in \mathbb{Z}, b \neq 0 \right\}$

 \mathbb{Q}^+ = the set of positive rational numbers

 \mathbb{Q}^- = the set of negative rational numbers

 \mathbb{I} = the set of irrational numbers

 \mathbb{R} = the set of real numbers

 \mathbb{R}^+ = the set of positive real numbers

 \mathbb{R}^- = the set of negative real numbers (note that this is not defined in the text but we define it here to

 \mathbb{R}^* = the set of nonzero real numbers (this is defined on p. 93 and not used often in the course)

 \mathbb{C} = the set of complex numbers