& Building your Deep Novrol Network

1. 1- layer Neural Network

	Shape of W	**Shape of b**	**Activation**	**Shape of Activation**
Layer 1	$(n^{[1]}, 12288)$	$(n^{[1]}, 1)$	$Z^{[1]} = W^{[1]}X + b^{[1]}$	$(n^{[1]}, 209)$
Layer 2	$(n^{[2]}, n^{[1]})$	$(n^{[2]}, 1)$	$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$	$(n^{[2]}, 209)$
<i>!</i>	1	1	1	I
Layer L-1	$(n^{[L-1]}, n^{[L-2]})$	$(n^{[L-1]}, 1)$	$Z^{[L-1]} = W^{[L-1]}A^{[L-2]} + b^{[L-1]}$	$(n^{[L-1]}, 209)$
Layer L	$(n^{[L]}, n^{[L-1]})$	$(n^{[L]}, 1)$	$Z^{[L]} = W^{[L]}A^{[L-1]} + b^{[L]}$	$(n^{[L]}, 209)$

Model structure: [LINZAR -> RZLU]X (L-1)

S26 NO20

Initialize model:

for (in range (1, L):

parameters ['w' + 4r (l)]=np. random. rando (layer_dsms[l], layor_dsms[l-1])xo.o/

parameters ['b't str (6)]-np. Zones ((layer_dims [6], 1))

) W.C. weight matrix of sharpe (layer_dsms[1], layer_dsms[1-1])

bl: bias rector of shape (laver_dsms [1],1)

2. Torruard ynopagation module

(1) Lincar forward

Z[1] = w21] A[1-1] + b21]

(ALO]=X)

Z: np. dot (W. A) tb

> bras vectors

weight matrix activations

> (layer_d/ms (), examples)

(layer_dsms (l.1, 1)

(layer_dem[1], layer_dems 26-1])

(2) Linear Activation Forward

calculate I LINZAR -> RZLUI (1-1) times

3. Cost Function

+ ny. multipy ((1-1), ny. 100 (1-41))

4. Backward Bropagaston module

Now, similar to forward propagation, you are going to build the backward propagation in three steps:

- LINEAR backward
- . LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation
- [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID backward (whole model)

(1) Linear backward

$$dw^{2l1} = \frac{1}{m} dz^{2l1} A^{2l-1} A^{2l-1} A^{2l}$$

$$db^{2l1} = \frac{1}{m} \sum_{i=1}^{m} dz^{2l} A^{2l} A^{2l} A^{2l}$$

$$c(A^{2l-1}) = W^{2l} A^{2l} A^{2l} A^{2l}$$

dw: (1/m) * mp. olot (dZ, cache lo]. 1)

db: (1./m) x np. sum (df, oxis: 1. keepolims = True)

Sigmosol Rely

dA_ prev: np. olst (carreli]. T. of?)

(2) Linear - Activation buckward

(3) L- Model Backward

$$dAL = \frac{\partial \mathcal{L}}{\partial ADJ}$$

$$dAL = -(DP. dnsde(Y, AL) -$$

Pp. dovode (1-7, 1-A21)