Exos AL1 - Compléments d'algèbre linéaire

Exercice 1

Soient E un \mathbb{K} -espace vectoriel, u et v des endomorphismes de E. Montrer que :

- 1. $\operatorname{Ker}(v \circ u) = \operatorname{Ker}(u) \Leftrightarrow \operatorname{Ker}(v) \cap \operatorname{Im}(u) = \{0\}.$
- **2.** $\operatorname{Im}(v \circ u) = \operatorname{Im}(v) \Leftrightarrow \operatorname{Ker}(v) + \operatorname{Im}(u) = E$.

Exercice 2

Soient E un K-espace vectoriel, u et v des endomorphismes de E. Montrer que :

- 1. $u \circ v = 0 \Leftrightarrow \operatorname{Im}(v) \subset \operatorname{Ker}(u)$
- **2.** $(u \circ v = u \text{ et } v \circ u = v) \Leftrightarrow (u \text{ et } v \text{ sont des projecteurs et } \operatorname{Ker}(u) = \operatorname{Ker}(v)).$

Exercice 3

Soient E un \mathbb{K} -espace vectoriel, u et v des projecteurs de E.

- **1a.** Montrer que $(v \circ u = u) \Leftrightarrow (\operatorname{Im}(u) \subset \operatorname{Im}(v))$.
- **b.** En déduire que $(u \circ v = v \circ u \text{ et } \operatorname{Im}(u) = \operatorname{Im}(v)) \Leftrightarrow (u = v)$.
- **2.** On suppose que $u \circ v = v \circ u$.
 - **a.** Montrer que $u \circ v$ est un projecteur.
 - **b.** Montrer que $\operatorname{Im}(u \circ v) = \operatorname{Im}(u) \cap \operatorname{Im}(v)$.
 - **c.** Montrer que $Ker(u \circ v) = Ker(u) + Ker(v)$.
- **3.** On suppose que $u \circ v = v \circ u = 0$.
 - **a.** Montrer que u + v est un projecteur de E.
 - **b.** Montrer que $\text{Im}(u+v) = \text{Im}(u) \oplus \text{Im}(v)$.
 - **c.** Montrer que $Ker(u+v) = Ker(u) \cap Ker(v)$.

Exercice 4

Soient $E = \{(x, y, z) \in \mathbb{R}^3 / x - y + z = 0\}$, et $F = \{(x, y, z) \in \mathbb{R}^3 / x = y = z\}$. On note \mathcal{B} la base canonique de \mathbb{R}^3 .

- **1.** Montrer que $\mathbb{R}^3 = E \oplus F$.
- 2. Déterminer la matrice dans \mathcal{B} de la projection sur E parallèlement à F.
- 3. Déterminer la matrice dans \mathcal{B} de la symétrie par rapport à E parallèlement à F.

Exercice 5

Soit E un \mathbb{K} -espace vectoriel de dimension n=2p (où $p\in\mathbb{N}^*$).

1. Montrer l'équivalence suivante :

$$(f^2 = 0 \text{ et } \operatorname{rg}(f) = p) \Leftrightarrow (\operatorname{Im}(f) = \operatorname{Ker}(f))$$

2. On suppose que $\operatorname{Im}(f) = \operatorname{Ker}(f)$. Montrer qu'il existe une base de E dans laquelle la matrice de f est de la forme $\begin{pmatrix} 0_p & 0_p \\ I_p & 0_p \end{pmatrix}$ où I_p et 0_p sont respectivement la matrice identité et la matrice nulle de $M_p(\mathbb{K})$

Exercice 6

Soient $E = \mathbb{R}^n \ (n \ge 1), e = (1; 1; ...; 1) \in E, A = \text{Vect}\{e\}, \text{ et } B = \{(x_1; x_2; ...; x_n) \in E/x_1 + x_2 + ... + x_n = 0\}.$ Montrer que A et B sont des sous-espaces vectoriels supplémentaires dans E.

Exercice 7

Soit H un hyperplan d'un espace vectoriel E de dimension finie $n \geq 2$.

Montrer que si F est un sous-espace vectoriel de E non inclus dans H, alors $\dim(F \cap H) = \dim(F) - 1$.

Exercice 8

Montrer que les matrices suivantes sont semblables :

$$\begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 9

- 1. Soient $\varphi \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$ une forme linéaire non nule, $H = \text{Ker}(\varphi)$, et $f \in \mathcal{L}(\mathbb{R}^n)$. Montrer que H est stable par f si, et seulement s'il existe un scalaire $\lambda \in \mathbb{R}$ tel que $\varphi \circ f = \lambda \varphi$.
- 2. Déterminer les espaces stables par l'endomorphisme f canoniquement associé à $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

Indication: faire une disjonction de cas sur leur dimension.

Exercice 10

Exercice 10
Soit
$$A = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}$$
.
Montrer que A est la matric

Montrer que A est la matrice d'un projecteur, et en déterminer les éléments caractéristiques.

Soit
$$B = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 1 & -2 \end{pmatrix}$$
.

Montrer que B est la matrice d'une symétrie, et en déterminer les éléments caractéristiques.

Exercice 12

Soit $\varphi \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}), \mathbb{R})$. On suppose que $\forall (A, B) \in (\mathcal{M}_n(\mathbb{R}))^2, \varphi(AB) = \varphi(BA)$.

- 1. Montrer que $\forall (i,j,k,l) \in [1,n]^4$, $\delta_{j,k}\varphi(E_{i,l}) = \delta_{l,i}\varphi(E_{k,j})$ où $\delta_{i,j}$ est le symbole de Kronecker qui vaut 1 si i = j, 0 sinon, et $E_{i,j}$ est la matrice élémentaire dont tous les coefficients sont nuls, sauf le coefficient de la ligne i colonne j qui vaut 1.
- **2.** En déduire que φ est proportionnelle à la trace.

Exercice 13

Soit $A \in \mathcal{M}_n(\mathbb{K})$ verifiant:

$$A^{n-1} \neq 0_n \text{ et } A^n = 0_n.$$

Montrer que A est semblable à la matrice

$$B = \begin{pmatrix} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ (0) & & & 0 \end{pmatrix}$$