ASSESSMENT 1

Create a pandas dataframe (DataFrame name as 'df') with numpy random values (4 features and 4 observation)

In [1]:

```
import pandas as pd
import numpy as np
# Set the random seed for reproducibility
np.random.seed(42)
# Create a 4x4 array of random values
data = np.random.rand(4, 4)
# Create a DataFrame using the random values
df = pd.DataFrame(data, columns=['Feature 1', 'Feature 2', 'Feature 3', 'Feature 4'])
# Display the DataFrame
print(df)
   Feature 1 Feature 2 Feature 3 Feature 4
   0.374540 0.950714 0.731994 0.598658
0
   0.156019 0.155995 0.058084 0.866176
1
   0.601115 0.708073 0.020584
                                    0.969910
```

Rename the task - 1 'df' dataframe column names to 'Random value 1', 'Random value 2', 'Random value 3' & 'Random value 4'

In [2]:

3

```
df = df.rename(columns={'Feature 1': 'Random value 1',
                         'Feature 2': 'Random value 2',
                         'Feature 3': 'Random value 3',
                        'Feature 4': 'Random value 4'})
print(df)
```

	Random value 1	Random value 2	Random value 3	Random value 4
0	0.374540	0.950714	0.731994	0.598658
1	0.156019	0.155995	0.058084	0.866176
2	0.601115	0.708073	0.020584	0.969910
3	0.832443	0.212339	0.181825	0.183405

0.832443 0.212339 0.181825 0.183405

Find the descriptive statistics of the 'df' dataframe.

In [4]:

<pre>print(df.describe())</pre>			
---------------------------------	--	--	--

	Random value 1	Random value 2	Random value 3	Random value 4
count	4.000000	4.000000	4.000000	4.000000
mean	0.491029	0.506780	0.248122	0.654537
std	0.291252	0.386153	0.329856	0.350875
min	0.156019	0.155995	0.020584	0.183405
25%	0.319910	0.198253	0.048709	0.494845
50%	0.487828	0.460206	0.119954	0.732417
75%	0.658947	0.768733	0.319367	0.892110
max	0.832443	0.950714	0.731994	0.969910

Check for the null values in 'df' and find the data type of the columns.

In [6]:

```
print(df.isnull())
```

	Random value 1	Random value 2	Random value 3	Random value 4
0	False	False	False	False
1	False	False	False	False
2	False	False	False	False
3	False	False	False	False

In [7]:

```
print(df.dtypes)
```

Random value 1 float64 Random value 2 float64 Random value 3 float64 Random value 4 float64

dtype: object

Display the 'Random value 2' & 'Random value 3' columns with location method and index location method.

In [10]:

```
print(df.loc[:, ['Random value 2', 'Random value 3']])
```

```
Random value 2 Random value 3
0
         0.950714
                         0.731994
         0.155995
                         0.058084
1
2
         0.708073
                         0.020584
3
         0.212339
                         0.181825
```

```
In [9]:
```

```
print(df.iloc[:, [1, 2]])
   Random value 2 Random value 3
         0.950714
                         0.731994
0
         0.155995
1
                         0.058084
2
         0.708073
                         0.020584
3
         0.212339
                         0.181825
In [ ]:
```