

Transformation #3: Box-Cox

LI(*) – Relationship between Y and X's are not linear or YN(*) – Y is not normally distributed

Box-Cox: Intuition

- Box-Cox is a family of transformations for the response variable y*
- You get a different transformation y^* for every value of λ in
 - For $\lambda = 0 \rightarrow y^* = Log(y)$

> For
$$\lambda \neq 0 \Rightarrow y^* = \frac{y^{\lambda} - 1}{\lambda}$$

- Box-Cox transformations are useful when one is having difficulties obtaining a transformed variable with a normal distribution.
- The idea is to **systematically** calculate y^* for $\lambda = 0$, 1, 2, etc. and select the transformation that yields the most normally distributed y^*
- Box-Cox transformations are a useful statistical feature engineering technique, but the transformed variables are difficult to interpret.
 However, they may prove to be very useful when predictive accuracy is a more important goal than interpretation

boxcox () {MASS} \rightarrow provides a maximum-likelihood plot showing which value of λ provides the best fit in a linear model boxcox (lm.fit) \rightarrow provides the maximum-likelihood plot for a wide range of λ 's in the linear model lm.fit \rightarrow pick the λ with the highest ML value

boxcox (lm.fit, lambda=seq (-0.1, 0.1, 0.01)) \rightarrow if, for example, the highest λ is around 0.04, get a zoomed in plot around that area \rightarrow in he example, the function provides a plot between λ =-0.1 and 0.1 in 0.01 increments.

KOGOD SCHOOL of BUSINESS

