3.3)Continuity of the square root function.

The following theorem shows that the square-root function is continuous for $x \ge 0$. We will give a different proof, based on the intermediate-value theorem, shortly.

Theorem. (i) $\lim_{x\to 0+} \sqrt{x} = 0$.

(ii) If
$$a > 0$$
, $\lim_{x \to a} \sqrt{x} = \sqrt{a}$.

Proof. (i) Given $\epsilon > 0$, we wish to ensure that $|\sqrt{x}-0| < \epsilon$. This will occur if $x < \epsilon^2$. So the choice $\delta = \epsilon^2$ will work; if $0 < x < \epsilon^2$, then $\sqrt{x} < \epsilon$.

(ii) Given $\epsilon > 0$, we wish to ensure that

$$|\sqrt{x} - \sqrt{a}| < \varepsilon$$
.

But

$$|\sqrt{x} - \sqrt{a}| = \frac{|x-a|}{\sqrt{x} + \sqrt{a}} \le \frac{|x-a|}{\sqrt{a}}$$
.

So we need merely choose $\delta = \varepsilon \sqrt{a}$; if $|x-a| < \varepsilon \sqrt{a}$, then $|\sqrt{x}-\sqrt{a}| < \varepsilon$.

Exercises on continuity

- 1. Show directly from the definition that f(x) = 1/x is continuous at x = 3. (That is, given $\epsilon > 0$, define a $\delta > 0$ and show it will work.)
- 2. Let f(x) be defined for all x, and continuous except for x = -1 and x = 3. Let

$$g(x) = \begin{cases} x^2 + 1 & \text{for } x > 0, \\ x - 3 & \text{for } x \le 0. \end{cases}$$

For what values of x can you be sure that f(g(x)) is continuous? Explain.

MIT OpenCourseWare http://ocw.mit.edu

18.014 Calculus with Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.