Grant Molnar

Curriculum Vitae

D 0000-0001-9152-2477 • ■ molnar.grant.5772@gmail.comD www.grantmolnar.comD github.com/grantmolnar

Education

PhD, Mathematics, Dartmouth College, Hanover, NH Fall 2018 - Spring 2023

Advisor: John Voight

Thesis: Counting elliptic curves with a cyclic m-isogeny over $\mathbb Q$

MA, Mathematics, Dartmouth College, Hanover, NH Fall 2018 - Winter 2020

Advisor: John Voight

MS, Mathematics, Brigham Young University, Provo, UT Winter 2017 - Summer 2018

Advisors: Michael Griffin and Paul Jenkins Thesis: *The arithmetic of modular grids*

BS, Mathematics, *Brigham Young University*, Provo, UT Fall 2013 - Fall 2016

Professional Experience

Academic Researcher at BYU and Dartmouth

Fall 2013 - Spring 2023

At BYU, I proved results about modular forms and algorithms on graphs. At Dartmouth, I instigated successful research into summing divergent series, the Prisoner's Dilemma, and the Ramanujan-Robin criterion. My thesis develops the arithmetic statistics of elliptic curves with cyclic m-isogeny. See Research Publications and Preprints below.

Math Instructor at BYU and Dartmouth

Winter 2017 - Spring 2023

I taught 30-student calculus courses in three different styles: lecturing, virtually with a "flipped classroom", and with handouts and group exercises. I TAed for lower-division courses, and by special request for upper-division courses as well. See Teaching Experience below.

Computer Skills

Fluent in...

 $\mathsf{Bash} \, \bullet \, \mathsf{Git} \, \bullet \, \mathsf{Go} \, \bullet \, \mathsf{Java} \, \bullet \, \mathsf{LATEX} \, \bullet \, \mathsf{Python} \, \bullet \, \mathsf{R} \, \bullet \, \mathsf{SageMath} \, \bullet \, \mathsf{YAML}$

Experience with...

C++ • gRPC • HTML • Magma • Mathematica • MatLab • MongoDB • PARI/GP • Rust

Books

Puzzle and Proof: A Decade of Problems from the Utah Math Olympiad, with Samuel Dittmer, Hiram Golze, and Caleb Stanford

AK Peters/CRC Recreational Mathematics Series.

This book is a collection of 70 mathematical problems and puzzles from the first ten years of the Utah Math Olympiad (UMO), 2013–2022. These problems are distinguished in two respects. First, they aim to be *understandable* to an advanced high school audience, even if solving them can sometimes be quite difficult. Second, all of the problems ask for not only an answer, but a *proof*.

Research Publications

A database of basic numerical invariants of Hilbert modular surfaces, with Eran Assaf, Angelica Babei, Ben Breen, Edgar Costa, Juanita Duque-Rosero, Aleksander Horawa, Jean Kieffer, Avinash Kulkarni, Sam Schiavone, and John Voight

Contemp. Math., vol. 796, 2024, Amer. Math. Soc., Providence, RI, 285–312. arXiv: 2301.10302 We describe algorithms for computing geometric invariants for Hilbert modular surfaces, and we report on their implementation.

Counting elliptic curves over the rationals with a 7-isogeny, with John Voight Research in Number Theory 9, 75 (2023). arXiv: 2212.11354

We count by height the number of elliptic curves over the rationals, both up to isomorphism over the rationals and over an algebraic closure thereof, that admit a cyclic isogeny of degree 7.

Reactive means in the Iterated Prisoner's Dilemma, with Caroline Hammond and Feng Fu Applied Mathematics and Computation 458 128201 (2023). arXiv: 2302.13909

The Iterated Prisoner's Dilemma (IPD) is a well studied framework for understanding direct reciprocity and cooperation in pairwise encounters. However, measuring the morality of various IPD strategies is still largely lacking. Here, we partially address this issue by proposing a suit of plausible morality metrics to quantify four aspects of justice. We focus our closed-form calculation on the class of reactive strategies because of their mathematical tractability and expressive power. We define reactive means as a tool for studying how actors in the IPD and Iterated Snowdrift Game (ISG) behave under typical circumstances. We compute reactive means for four functions intended to capture human intuitions about "goodness" and "fair play". Two of these functions are strongly anticorrelated with success in the IPD and ISG, and the other two are weakly anticorrelated with success. Our results will aid in evaluating and comparing powerful IPD strategies based on machine learning algorithms, using simple and intuitive morality metrics.

The arithmetic of modular grids, with Michael Griffin and Paul Jenkins Mathematika 68, 1080-1119 (2022). arXiv: 2012.14403

A modular grid is a pair of sequences $(f_m)_m$ and $(g_n)_n$ of weakly holomorphic modular forms such that for almost all m and n, the coefficient of q^n in f_m is the negative of the coefficient of q^m in g_n . Zagier proved this coefficient duality in weights 1/2 and 3/2 in the Kohnen plus space, and such grids have appeared for Poincaré series, for modular forms of integral weight, and in many other situations. We give a general proof of coefficient duality for canonical row-reduced bases of spaces of weakly holomorphic modular forms of integral or half-integral weight for every group $\Gamma \subseteq \operatorname{SL}_2(\mathbb{R})$ commensurable with $\operatorname{SL}_2(\mathbb{Z})$. We construct bivariate generating functions that encode these modular forms, and study linear operations on the resulting modular grids.

Odd, spoof perfect factorizations, with the BYU Computational Number Theory Group Journal of Number Theory **234**, 31-47 (2022). Quanta article. arXiv: 2006.10697

We investigate the integer solutions of Diophantine equations related to perfect numbers. These solutions generalize the example, found by Descartes in 1638, of an odd, "spoof" perfect factorization $3^2 \cdot 7^2 \cdot 11^2 \cdot 22021^1$. More recently, Voight found the spoof perfect factorization $3^4 \cdot 7^2 \cdot 11^2 \cdot 19^2 \cdot (-127)^1$. No other examples appear in the literature. We compute all nontrivial, odd, primitive spoof perfect factorizations with fewer than seven bases – there are twenty-one in total. We show that the structure of odd, spoof perfect factorizations is extremely rich, and there are multiple infinite families of them. This implies that certain approaches to the odd perfect number problem that use only the multiplicative nature of the sum-of-divisors function are unworkable. On the other hand, we prove that there are only finitely many nontrivial, odd, primitive spoof perfect factorizations with a fixed number of bases.

Zagier duality for level *p* **weakly holomorphic modular forms**, *with Paul Jenkins* The Ramanujan Journal **50**, 93–109 (2019). arXiv: 1709.10023

We prove Zagier duality between the Fourier coefficients of canonical bases for spaces of weakly holomorphic modular forms of prime level p with $11 \le p \le 37$ with poles only at the cusp at ∞ , and special cases of duality for an infinite class of prime levels. We derive generating functions for the bases for genus 1 levels.

Graphs with the strong Havel-Hakimi property, with Michael Barrus

Graphs and Combinatorics 32, 1689-1697 (2016). arXiv: 1505.00085

The Havel–Hakimi algorithm iteratively reduces the degree sequence of a graph to a list of zeroes. As shown by Favaron, Mahéo, and Saclé, the number of zeroes produced, known as the residue, is a lower bound on the independence number of the graph. We say that a graph has the strong Havel–Hakimi property if in each of its induced subgraphs, deleting any vertex of maximum degree reduces the degree sequence in the same way that the Havel–Hakimi algorithm does. We characterize graphs having this property (which include all threshold and matrogenic graphs) in terms of minimal forbidden induced subgraphs. We further show that for these graphs the residue equals the independence number, and a natural greedy algorithm always produces a maximum independent set.

Research Preprints

Positive spoof Lehmer factorizations, with Guntas Singh

Preprint. arXiv: ???

We investigate the integer solutions of Diophantine equations related to Lehmer's totient conjecture. We give an algorithm that computes all nontrivial, positive spoof Lehmer factorizations, and verify that $3^1 \cdot 3^1$ and $3^1 \cdot 3^1 \cdot 3^1 \cdot 3^1$ are the only nontrivial, positive spoof Lehmer factorizations with twelve or fewer bases.

Multiplicative summations into algebraically closed fields, with Robert Dawson

Preprint. arXiv: 2111.09938

In this paper, extending our earlier program, we derive maximal canonical extensions for multiplicative summations into algebraically closed fields. We show that there is a well-defined analogue to minimal polynomials for a series algebraic over a ring of series, the "scalar polynomial". When that ring is the domain of a summation \mathfrak{S} , we derive the related concepts of the \mathfrak{S} -minimal polynomial for a series, which is mapped by \mathfrak{S} to a scalar polynomial. When the scalar polynomial for a series has the form $(t-a)^n$, a is the unique value to which the series can be mapped by an extension of the original summation.

Telescopic, multiplicative, and rational extensions of summations, with Robert Dawson

Preprint. arXiv: 2105.04592

A summation is a shift-invariant R-module homomorphism from a submodule of R to R or another ring. Dawson formalized a method for extending a summation to a larger domain by telescoping. In this paper, we revisit telescoping, we study multiplicative closures of summations (such as the usual summation on convergent series) that are not themselves multiplicatively closed, and we study rational extensions as a generalization of telescoping.

Expository Notes

Minimalist practical numbers

Unpublished.

A natural number n is practical if every smaller number can be written as a sum of distinct divisors of n. We say that a practical number n is minimalist if this representation is unique. In this note, we prove that a practical number is minimalist if and only if it is a power of 2.

Fast-growing series are transcendental, with Robert Dawson

Unpublished. arXiv: 2102.12995

Let R be a subring of $\mathbb{C}[[z]]$, and let $X \in \mathbb{C}[[z]]$. The Newton-Puiseux Theorem implies that if the coefficients of X grow sufficiently rapidly relative to the coefficients of the series in R, then X is transcendental over R. We provide an alternative proof of this result by establishing a relationship between the coefficients of A(X) and A'(X), where A(T) is a polynomial over $\mathbb{C}[[z]]$.

Reviewer

zbMATH Open

Selected Git Projects	
Spoof Quasiperfect Factorizations	Fall 2021
https://github.com/grantmolnar/Spoof-Quasiperfect-Factoria	zations
Awards and Fellowships	
Dartmouth Graduate Fellowship	Fall 2018 - Summer 2023
Gridley Fund for Graduate Mathematics	Fall 2018 - Summer 2019
NSF Graduate Research Fellowship Honorable Mention	April 2018
BYU Academic Scholarship BYU Math Department Scholarship	Spring 2015 - Winter 2016 Fall 2016
BYU Math Department Scholarship	Fall 2015
BYU Academic Scholarship	Fall 2013 - Winter 2014
T 1: E :	
Teaching Experience	
Dartmouth College, Hanover, NH (Instructor)	
Math 8 (Calculus of One and Several Variables)	Fall 2021
Math 1 (Algebra and Calculus)	Fall 2020
Dartmouth College, Hanover, NH (Teacher's Assistant)	
Math 100 / Computer Science 49/149 (Random Walk)	Spring 2022
Math 100 / Computer Science $49/149$ (Decision Theory) Math 23 (Differential Equations)	Spring 2021 Winter 2020
Math 3 (Calculus)	Fall 2019
Math 22 (Linear Algebra)	Spring 2019
Math 22 (Linear Algebra)	Fall 2018
Brigham Young University, Provo, UT (Instructor)	
Math 112 (Calculus I)	Summer 2017
Brigham Young University, Provo, UT (Teacher's Assistant)	
Math 112 (Calculus I)	Fall 2017
Math 113 (Calculus II)	Winter 2017
Brigham Young University, Provo, UT (Grader)	
Math 570 (Matrix Analysis)	Winter 2017
Math 112 (Calculus I)	Fall 2015
Leadership and Community Service	
Referee	
Journal of Number Theory	2018 - Present
Mathematische Zeitschrift	2022 - Present
Theory and Decision	2024 - Present

2021 - 2024

K-12 Outreach	
Utah Math Olympiad Committee Member	2015 - Present
Lumiere Mentor	2024 - Present
Activity Leader at Dartmouth Science Day (Games & Surreal Numbers)	April 8, 2023
Activity Leader at Lebanon Ward Pi Day	7 pm 0, 2025
(Trachtenberg Arithmetic & Random Walk)	March 25, 2023
Session Leader at Dartmouth Sonia Kovalevsky Day	Warch 25, 2025
·	May 21 2022
(Trachtenberg Arithmetic)	May 21, 2022
Activity Leader at Lebanon Ward Pi Day (Random Walk)	April 8, 2022
Exploring Mathematics Camp Leader (Graph Theory)	July 27-31, 2020
Exploring Mathematics Camp Leader (Cryptography)	July 13-17, 2020
Activity Leader at Lebanon Ward Pi Day (Random Walk)	March 7, 2020
Volunteer at Dartmouth Sonia Kovalevsky Day	May 11, 2019
Activity Leader at Dartmouth Science Day (Nim)	May 4, 2019
Math Circles Guest Speaker (Tropical Algebra)	February 24, 2018
Math Circles Guest Speaker (Continued Fractions)	October 21, 2017
Proofreader for Utah State Math Contest	February 2017
Math Circles Counselor	2013 - 2015
Dartmouth Graduate Student Council	
Ad Hoc Healthcare Committee Founder and Co-Chair	2022 - 2023
Budget Committee Member	Summer 2022
Finance Officer	2021 - 2022
Budget Committee Member	Summer 2021
Representative for Math Department	2020 - 2021
Service Committee Member	2020 - 2021
Budget Committee Member	Summer 2020
-	Summer 2020
Dartmouth Directed Reading Program	14//
Mentor (Fuzzy Logic)	Winter 2023
Mentor (Decision Theory)	Spring 2022
Mentor (Fractional Calculus)	Winter 2022
Other	
LMFDB Contributor	2019 - 2023
Dartmouth Algebra and Number Theory Seminar Organizer	2019 - 2022
BYU Putnam Team Captain	2014 - 2016
Thesis Defenses	
Counting elliptic curves with a cyclic m -isogeny over $\mathbb Q$	April 24, 2023
Dartmouth College PhD Thesis Defense	7 (p. 11 2 1, 2020
The arithmetic of modular grids	June 22, 2018
_	Julie 22, 2010
BYU Master's Thesis Defense	
Invited Talks	
Counting elliptic curves with a cyclic m -isogeny	February 9, 2023
Job Talk at Metron	1 12. 22. 3 7 7 2020

Counting elliptic curves with a 7-isogeny BYU Colloquium	January 19, 2023
Counting elliptic curves with a 7-isogeny Simons Collaboration Annual Meeting	January 11, 2023
Counting 7-isogenies 2023 Joint Mathematics Meeting	January 6, 2023
A family of analogues to the Ramanujan-Robin Criterion BYU Number Theory Seminar	October 27, 2022
Other Conference Talks	
Intersecting varieties with transcendental graphs Arizona Winter School 2023: Unlikely Intersections	March 8, 2023
The LCM product and Grönwall's theorem 2021 Maine-Québec Number Theory Conference (virtual)	October 3, 2021
Formal summation of divergent series 2020 Conférence de Théorie des Nombres Québec-Maine (virtual)	September 26, 2020
The arithmetic of modular grids 2019 Maine-Québec Number Theory Conference	October 5, 2019
The arithmetic of modular grids 33 rd Automorphic Forms Workshop	March 8, 2019
The arithmetic of modular grids Building Bridges: 4th EU/US Summer School + Workshop on Automorphic Fo	July 17, 2018
Zagier duality in level p modular spaces 32^{nd} Automorphic Forms Workshop	March 21, 2018
Zagier duality in level <i>p</i> modular spaces 2018 BYU Student Research Conference	March 3, 2018
Zagier duality in level p modular spaces Modular Forms are Everywhere Conference	May 24, 2017
Weakly holomorphic modular forms of level 11 $31^{\rm st}$ Automorphic Forms Workshop	March 7, 2017
Weakly holomorphic modular forms of level 11 2017 BYU Student Research Conference	March 4, 2017
Congruence relations in modular forms of prime levels greater than 2015 BYU Student Research Conference	
Residues and independence numbers of graphs 2014 BYU Student Research Conference	March 15, 2014
Other Seminar Talks	M 1 00 0000
The Fox H-function Dartmouth Graduate Student Seminar Geometric doop learning	March 28, 2023
Geometric deep learning Dartmouth Graduate Student Seminar Nearing nearrings	February 14, 2023 September 14, 2022
Dartmouth Graduate Student Seminar	p · · · · · · · · · · · · · · · · ·

Universal algebra and coalgebra	March 30, 2022
Dartmouth Graduate Student Seminar Cogalois theory	February 16, 2022
Dartmouth Graduate Student Seminar	1 Ebituary 10, 2022
Cyclic resolution of singularities	January 25, 2022
Reading Seminar on Hilbert Modular Surfaces	3411441 y 23, 2022
What if the Riemann hypothesis is false?	January 19, 2022
Dartmouth Graduate Student Seminar	January 13, 2022
Inverse semigroups: groups without identity	November 9, 2021
Dartmouth Graduate Student Seminar	
Counting 7-isogenies	November 8, 2021
Dartmouth Algebra and Number Theory Seminar	
A sober look at pointless topology	September 21, 2021
Dartmouth Graduate Student Seminar	•
Fast-growing series are transcendental	April 21, 2021
Dartmouth Graduate Student Seminar (virtual)	
Coalgebras and Hopf algebras	April 15, 2021
Reading Seminar on Affine Group Schemes (virtual)	·
Absurd equalities and Runge's method: the degenerate case	March 30, 2021
Dartmouth Algebra and Number Theory Seminar (virtual)	,
p-adic Hodge theory	March 2, 2021
Reading Seminar on Classical and Quadratic Chabauty (virtual)	,
Odd, spoof quasiperfect factorizations	February 9, 2021
Dartmouth Algebra and Number Theory Seminar (virtual)	
A primer in social choice theory	January 20, 2021
Dartmouth Graduate Student Seminar (virtual)	
Examples of Kedlaya's algorithm	November 19, 2020
Reading Seminar on Classical and Quadratic Chabauty (virtual)	
The LCM product and Grönwall's theorem	November 17, 2020
Dartmouth Algebra and Number Theory Seminar (virtual)	110101111011 11, 2020
Reactive means and the prisoner's dilemma	October 7, 2020
Dartmouth Graduate Student Seminar (virtual)	0 000 000 1, 2020
Formal summation of divergent series: an algebraic approach	April 28, 2020
Dartmouth Algebra and Number Theory Seminar (virtual)	7 tp:// 20, 2020
On the infinitude of the natural numbers	February 12, 2020
Dartmouth Graduate Student Seminar	1 coldary 12, 2020
Variations of Hodge structures	November 26, 2019
Reading Seminar on Shimura Varieties	
Hodge structures	November 14, 2019
Reading Seminar on Shimura Varieties	
Savage's expected utility and making good decisions	November 13, 2019
Dartmouth Graduate Student Seminar	1111220. 10, 2013
Geometric and generalized calculus	October 8, 2019
Dartmouth Graduate Student Seminar	·

Summing divergent series	July 31, 2019
Dartmouth Graduate Student Seminar	A muil 17 2010
Real analysis: a nonstandard approach Dartmouth Graduate Student Seminar	April 17, 2019
Why save the universe? Set theory with a universal set	January 16, 2019
Dartmouth Graduate Student Seminar The arithmetic of modular grids	September 26, 2018
Dartmouth Graduate Student Seminar Dioids and idempotent geometry II	March 13, 2018
BYU Algebra Seminar	E 07 0010
Dioids and idempotent geometry I	February 27, 2018
BYU Algebra Seminar	F.I. 00 0010
Zagier duality in level p modular spaces	February 22, 2018
BYU Number Theory Seminar	O-t-l 10 0017
Average values of arithmetic functions	October 12, 2017
BYU Number Theory Seminar	Falaman, 0, 2017
Weakly holomorphic modular forms of level 11	February 9, 2017
BYU Number Theory Seminar	
Generating functions for canonical bases of certain	January 26, 2017
level 11 weakly holomorphic modular forms BYU Number Theory Seminar	January 26, 2017
High rank elliptic curves with prescribed torsion	December 1, 2016
BYU Number Theory Seminar	December 1, 2010
Heuristics for elliptic curves of high rank	October 20, 2016
BYU Number Theory Seminar	October 20, 2010
A lemma regarding the Feit-Thompson conjecture	November 12, 2015
BYU Number Theory Seminar	NOVEITIBET 12, 2013
Algebraic number theory and the Feit-Thompson conjecture	October 1, 2015
BYU Number Theory Seminar	October 1, 2013
Congruence relations in modular forms of prime levels greater than	7 March 19, 2015
BYU Number Theory Seminar	,
Hensel's lemma	February 12, 2015
BYU Number Theory Seminar	, , , , , , , , , , , , , , , , , , ,
Newton polynomials	March 27, 2014
BYU Number Theory Seminar	•
•	
Other	
Achievements and Honors $3^{\rm rd}$ Place in Virginia Tech Regional Math Competition $2^{\rm nd}$ Place in Search for High Rank Elliptic Curve	October 2016
at 2016 Connecticut Summer School in Number Theory	August 2016
Gold Palm Eagle Scout	December 2012
Black Belt (Taekwondo)	August 2012
(

Special Training

Dartmouth Mathematics Teaching Seminar Spring 2020
BYU Mathematics Teaching Seminar Fall 2018

Academic Interests

Analytic Number Theory • Arithmetic Geometry • Game Theory • Logic

Personal Interests

Reading • Writing • Philosophy • Hiking

Conferences and Workshops Attended

2024 Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation Annual Meeting January 11-12, 2024 Virtual (Simons Foundation's Gerald D. Fischbach Auditorium, New York City) Big Data Conference 2023 August 31 - September 1, 2023 Virtual (Harvard University, Cambridge) Hilbert Modular Forms Infrastructure Week 4 May 8-12, 2023 Dartmouth College, Hanover Arizona Winter School 2023: Unlikely Intersections March 4-8, 2023 University of Arizona, Tucson 2023 Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation Annual Meeting January 11-12, 2023 Simons Foundation's Gerald D. Fischbach Auditorium, New York City 2023 Joint Mathematics Meetings January 4-7, 2023 Hynes Convention Center, Boston Hilbert Modular Forms Infrastructure Week 3 December 12-16, 2022 Dartmouth College, Hanover Modular Curves Workshop 2 November 5-9, 2022 MIT, Boston Big Data Conference 2022 August 26, 2022 Virtual (Harvard University, Cambridge) Explicit Methods for Modularity April 11-15, 2022 Virtual (Simons Collaboration) Arizona Winter School 2022: Automorphic Forms Beyond GL₂ March 5-9, 2022 Virtual (University of Arizona, Tucson) Hilbert Modular Forms Infrastructure Week 2 February 21-25, 2022 Dartmouth College, Hanover 2021 Maine-Québec Number Theory Conference October 2-3, 2021 Virtual (University of Maine, Orono) Spring 2021 Algebraic Geometry Northeastern Series May 4-5, 2021 Virtual (Brown University, Providence) 21st Algebra, Geometry and Combinatorics Day April 10, 2021 Virtual (University of Notre Dame, Notre Dame)

2021 Joint Mathematics Meetings	January 6-9, 2021
Virtual (American Math Society, Mathematical Association of America)	
Fall 2020 Algebraic Geometry Northeastern Series	October 23-25, 2020
Virtual (Stony Brook University, Stony Brook)	
2020 Conférence de Théorie des Nombres Québec-Maine	September 26-27, 2020
Virtual (Université Laval, Québec)	
$14^{ m th}$ Algorithmic Number Theory Symposium	June 29 - July 4, 2020
Virtual (University of Auckland, Auckland)	
UNCG Summer School in Computational Number Theory and Algebra:	
Ergodic Theory with Applications to Continued Fractions	May 18-22, 2020
Virtual (University of North Carolina, Greensboro)	
2019 Maine-Québec Number Theory Conference	October 5-6, 2019
University of Maine, Orono	
Fall 2019 Algebraic Geometry Northeastern Series	September 20-22, 2019
Boston College, Boston	
33 rd Automorphic Forms Workshop	March 6-10, 2019
Duquesne University, Pittsburgh	
Building Bridges: 4^{th} EU/US Summer School $+$	
Workshop on Automorphic Forms and Related Topics	July 9-20, 2018
Alfréd Rényi Institute of Mathematics, Budapest	
32 nd Automorphic Forms Workshop	March 19-22, 2018
Tufts University, Medford	
Modular Forms are Everywhere	May 15-26, 2017
Max Planck Institute for Mathematics, Bonn	
31st Automorphic Forms Workshop	March 6-9, 2017
East Tennessee State University, Johnson City	
2017 BYU Student Research Conference	March 4, 2017
Brigham Young University, Provo	
2016 Connecticut Summer School in Number Theory	August 8-14, 2016
University of Connecticut, Storrs	Manala 01 001E
2015 BYU Student Research Conference	March 21, 2015
Brigham Young University, Provo 2014 BYU Student Research Conference	March 1E 2014
	March 15, 2014
Brigham Young University, Provo	