Aula2_2_Estacionariedade

July 16, 2020

1 Séries estacionárias

por Cibele Russo

Baseado em

- Moretting, P.A.; Toloi, C.M.C. "Análise de Séries Temporais". Blucher, 2004.
- Ehlers, R.S. (2009) Análise de Séries Temporais, http://www.icmc.usp.br/~ehlers/stemp/stemp.pdf. Acessado em 28/06/2020.

Leituras adicionais recomendadas

- Boxplots https://pt.wikipedia.org/wiki/Diagrama_de_caixa
- Boxplots usando o pacote seaborn https://seaborn.pydata.org/generated/seaborn.boxplot.html
- Teste para raiz unitária https://en.wikipedia.org/wiki/Unit_root_test
- Teste de Dickey-Fuller aumentado https://en.wikipedia.org/wiki/Augmented_Dickey-Fuller_test.

1.1 Estacionariedade

Como as séries temporais são realizações de processos estocásticos, estudaremos um pouco as características de processos estocásticos estacionários.

Definição

Um processo estocástico é dito ser **estritamente estacionário** se a distribuição de probabilidade conjunta de $Z(t_1), \ldots, Z(t_k)$ é a mesma de $Z(t_1 + \tau), \ldots, Z(t_k + \tau)$.

Ou seja, o deslocamento da origem dos tempos por uma quantidade τ não tem efeito na distribuição conjunta que portanto depende apenas dos intervalos entre t_1, \ldots, t_k .

Para k = 1, a estacionariedade estrita implica que a distribuição de Z_t é a mesma para todo t de modo que, se os primeiros momentos forem finitos,

$$\mu(t) = \mu e \sigma^2(t) = \sigma^2 \ \forall t$$

Para k = 2, a distribuição conjunta de $Z(t_1)$ e $Z(t_2)$ depende apenas da distância $t_2 - t_1$.

A **função de autocovariância** também depende apenas de $t_2 - t_1$ e pode ser escrita como $\gamma(\tau)$:

$$\gamma(\tau) = E[(Z(t)\mu)(Z(t+\tau)\mu)] = Cov(Z(t), Z(t+\tau)).$$

 $\gamma(\tau)$ é chamado de coeficiente de autocovariância na defasagem τ .

Note que o tamanho de $\gamma(\tau)$ depende da escala de Z(t). Uma quantidade livre de escala é a função de autocorrelação

$$\rho(\tau) = \frac{\gamma(\tau)}{\gamma(0)}.$$

Na prática é muito dificil usar a definição de estacionariedade estrita e costuma-se definir estacionariedade de uma forma menos restrita.

Definição

Um processo estocástico $\{Z(t), t \in \mathcal{T}\}$ é dito ser **estacionário de segunda ordem ou fracamente estacionário** se a sua função média é constante e sua função de autocovariância depende apenas da defasagem,

$$E(Z(t)) = \mu$$
, $\forall t$ e

$$SCOV[Z(t), Z(t+\tau)] = E[Z(t)\mu][Z(t+\tau)\mu] = \gamma(\tau) \forall t$$

- Nenhuma outra suposição é feita a respeito dos momentos de ordem mais alta.
- Fazendo $\tau = 0$ segue que $Var[Z(t)] = \gamma(0), \forall t$.
- Tanto a média quanto a variância precisam ser finitos.

Definição

Um processo estocástico é dito ser um processo **Gaussiano** se, para qualquer conjunto $\{t_1, t_2, ..., t_n\}$ as variáveis aleatórias $Z(t_1), Z(t_2), ..., Z(t_n)$ tem distribuição normal multivariada.

- A distribuição normal multivariada fica completamente caracterizada pelo primeiro e segundo momentos, ou seja, média, variâncias e covariâncias.
- Estacionariedade fraca implica em estacionariedade estrita para processos Gaussianos.
- Por outro lado, μ e $\gamma(t)$ podem não descrever adequadamente processos que se afastem muito da normalidade.

Já vimos na primeira aula um passeio aleatório

$$Z_t = Z_{t-1} + \epsilon_t$$
.

A série temporal se desenvolve no tempo de forma aleatória ao redor de uma média constante?

A maior parte das séries temporais não! Em geral, as séries de tempo apresentam *tendências*, positivas ou negativas, que podem ser lineares ou não lineares.

1.2 Séries estacionárias

- Uma série temporal é estacionária se a sua média, variância e autocovariância são fixas para quaisquer dois pontos equidistantes. Isso significa que, independente de onde tomarmos um subconjunto da série, a média, variância, autocorrelação devem se manter constantes.
- Uma série que apresenta sazonalidade ou tendência não é estacionária.

1.3 Transformações para buscar estacionariedade

Diferenças da série original Como a maioria dos procedimentos da análise estatística das séries temporais supõe estacionariedade, pode ser necessário transformar os dados originais para obter uma série estacionária.

A transformação (filtro) mais comum consiste em tomar *diferenças sucessivas* da série original, até obter uma série estacionária.

• Primeira diferença

$$\Delta Z(t) = Z(t) - Z(t-1)$$

• Segunda diferença

$$\Delta^2 Z(t) = \Delta(\Delta(Z(t))) = \Delta(Z(t) - Z(t-1))$$

$$\Delta^2 Z(t) = Z(t) - 2Z(t-1) + Z(t-2)$$

1.3.1 Exemplos:

- 1. Considere os dados dos passageiros. A série é estacionária? A primeira diferença é estacionária?
- 2. Considere a série de mortes da COVID-19 em SP. Ela é estacionária? A primeira diferença é estacionária?

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller

pkgdir = '/home/cibele/CibelePython/AprendizadoDinamico/Data'

passageiros = pd.read_csv(f'{pkgdir}/airline_passengers.csv', index_col=0, □
→parse_dates=True)
```

```
[2]: passageiros['Milhares de passageiros'].plot();
```



```
[3]: # Verificando as séries de média e desvio-padrão móvel com janela de 12 meses

passageiros['MMS-12'] = passageiros['Milhares de passageiros'].

→rolling(window=12).mean()

passageiros['DP-12'] = passageiros['Milhares de passageiros'].rolling(window=12).

→std()

passageiros[['Milhares de passageiros','MMS-12','DP-12']].plot();
```



```
[4]: # Primeiras diferenças
y = np.diff(passageiros['Milhares de passageiros'])
x = passageiros.iloc[1:].index
plt.plot(x,y);
```



```
[5]: # Segundas diferenças
y2 = np.diff(y)
x2 = x[1:]
plt.plot(x2,y2);
```


1.4 Boxplots por períodos

Veja mais em

https://pt.wikipedia.org/wiki/Diagrama_de_caixa

https://seaborn.pydata.org/generated/seaborn.boxplot.html

```
[6]: import seaborn as sns

passageiros['Ano'] = passageiros.index.year

sns.boxplot(x=passageiros['Ano'], y=passageiros['Milhares de passageiros'])
```

[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7f131c4439d0>


```
[7]: # Mortes por COVID-19 no estado de SP
covidSP = pd.read_csv('covidSP.csv', index_col='date', parse_dates=True)
covidSP['deaths'].plot();
```



```
[8]: # Verificando as séries de média e desvio-padrão móvel com janela de 7 dias

covidSP['MMS-7'] = covidSP['deaths'].rolling(window=7).mean()

covidSP['DP-7'] = covidSP['deaths'].rolling(window=7).std()

covidSP[['deaths','MMS-7','DP-7']].plot();
```



```
[9]: import seaborn as sns
covidSP['Week'] = covidSP.index.week
sns.boxplot(x=covidSP['Week'], y=covidSP['deaths'])
```



```
[10]: # Primeiras diferenças
y = np.diff(covidSP['deaths'])
x = covidSP.index[1:]

plt.rcParams['figure.figsize'] = [10,3]
plt.plot(x,y)
```

[10]: [<matplotlib.lines.Line2D at 0x7f131bbb63d0>]


```
[11]: # Segundas diferenças

y = np.diff(np.diff(covidSP['confirmed']))
x = covidSP.iloc[2:].index

plt.rcParams['figure.figsize'] = [10,3]
plt.plot(x,y);
```



```
[14]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller

pkgdir = '/home/cibele/CibelePython/AprendizadoDinamico/Data'

starbucks = pd.read_csv(f'{pkgdir}/starbucks.csv', index_col=0, parse_dates=True)

starbucks['Close'].plot()
```



```
[13]: import seaborn as sns
    starbucks['Year'] = starbucks.index.year
    x = sns.boxplot(x=starbucks['Year'], y=starbucks['Close'])
```



```
[15]: # Primeiras diferenças
y = np.diff(starbucks['Close'])
x = starbucks.iloc[1:].index
plt.plot(x,y);
```


O Teste de Dickey-Fuller é usado para testar estacionariedade em um contexto de modelos autorregressivos.

1.5 Um teste para "alguma evidência sobre estacionariedade"

Considere inicialmente um modelo AR(1), que veremos com mais detalhes nas próximas aulas.

$$Z_t = \phi Z_{t-1} + a_t$$

em que $a_t \sim RBN(0, \sigma^2)$.

Segue-se que

$$\Delta Z_t = \phi^* Z_{t-1} + a_t$$

no qual $\{ \phi | \star \} = \phi - 1$ \$.

Queremos avaliar as hipóteses

 $H_0: \phi^* = 0$ contra

 $H_1: \Phi(\star) < 0.$

Para isso, diversos desenvolvimentos são necessários para se obter a estatística de teste, mas não daremos detalhes aqui!

Existem outros tipos de testes de hipóteses como esse, e muitos deles testam se:

 H_0 : a série é não estacionária e contém uma raiz unitária

 H_1 : a série é estacionária ou tendência-estacionária

Para mais informações, veja (https://en.wikipedia.org/wiki/Unit_root_test)

O teste Dickey-Fuller aumentado também tem essa proposta (https://en.wikipedia.org/wiki/Augmented_Dickey-Fuller_test).

Para o Teste de Dickey-Fuller:

- Quando o valor-p é pequeno (p < 0.05, por exemplo), rejeitamos H_0 e portanto há evidências de que a série é estacionária ou tendência-estacionária.
- Se o valor-p for grande ($p \ge 0.05$, por exemplo), não rejeitamos H_0 e a série não é estacionária e contém uma raiz unitária.

Neste momento, vamos apenas aplicar o teste de Dickey-Fuller e verificar se há ou não evidências contra a estacionariedade da série.

```
[17]: # fonte: https://machinelearningmastery.com/time-series-data-stationary-python/
result = adfuller(passageiros['Milhares de passageiros'], autolag='AIC')
```

ADF Statistic: 0.815369 p-value: 0.991880 Critical Values: 1%: -3.482 5%: -2.884 10%: -2.579

Há evidências de que a série não seja estacionária!

ADF Statistic: -2.829267 p-value: 0.054213 Critical Values: 1%: -3.482 5%: -2.884 10%: -2.579

Há evidências fracas de que a série das primeiras diferenças não seja estacionária!

ADF Statistic: -16.384232 p-value: 0.000000 Critical Values: 1%: -3.482 5%: -2.884 10%: -2.579

Há evidências de que a série das segundas diferenças seja estacionária ou tendência-estacionária!

```
[20]: y = np.diff(np.diff(passageiros['Milhares de passageiros']))
x = passageiros.index[1:][1:]

plt.rcParams['figure.figsize'] = [10,3]
plt.plot(x,y)
```

[20]: [<matplotlib.lines.Line2D at 0x7f131b886410>]

ADF Statistic: -0.806163 p-value: 0.817305 Critical Values: 1%: -3.486 5%: -2.886 10%: -2.580

Há evidências de que a série não seja estacionária!

ADF Statistic: -4.830813

p-value: 0.000047
Critical Values:

```
1%: -3.486
5%: -2.886
10%: -2.580
```

Há evidências de que a série das primeiras diferenças seja estacionária ou tendência-estacionária!

```
[25]: y = np.diff(covidSP['deaths'])
x = covidSP.index[1:]

plt.rcParams['figure.figsize'] = [10,3]
plt.plot(x,y)
```

[25]: [<matplotlib.lines.Line2D at 0x7f131b98e590>]

[26]: <matplotlib.axes._subplots.AxesSubplot at 0x7f131ba95a50>

ADF Statistic: -18.705760

p-value: 0.000000 Critical Values: 1%: -3.466 5%: -2.877 10%: -2.575

Há fortes evidências para concluir que a série seja estacionária ou tendência-estacionária!

```
[28]: # Dados daily-total-female-births, cujo objetivo seria prever nascimentos⊔
→ diários de meninas

from pandas import read_csv
from matplotlib import pyplot

plt.rcParams['figure.figsize'] = [10,3]
births = read_csv('daily-total-female-births.csv', header=0, index_col=0)

births.plot();
```



```
[29]: births['MMS-30'] = births['Births'].rolling(window=30).mean()
births['DP-30'] = births['Births'].rolling(window=30).std()

plt.rcParams['figure.figsize'] = [10,3]
births[['Births','MMS-30','DP-30']].plot();
```


ADF Statistic: -4.808291

p-value: 0.000052 Critical Values: 1%: -3.449 5%: -2.870 10%: -2.571

Há evidências de que a série seja estacionária ou tendência-estacionária!

Exercício: Faça o teste para avaliar a estacionariedade dos dados do Starbucks. Existem evidências de que a série das primeiras diferenças é estacionária?