预习	报告	实验	记录	分析	讨论	总原	龙 绩
25		25		30		80	

年级、专业:	2022 级物理学	组号:	D8
姓名:	黄罗琳,王显	学号:	22344001 22344002
实验时间:	2024/3/20	教师签名:	

ET4 戴维南定理和诺顿定理

【实验报告注意事项】

- 1. 实验报告由三部分组成:
 - (a) 预习报告:课前认真研读实验讲义,弄清实验原理;实验所需的仪器设备、用具及其使用、完成课前预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(可以参考实验报告模板,可以打印)。(20分)
 - (b) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得输入电脑打印,但可扫描手记后打印扫描件);离开前请实验教师检查记录并签名。(30 分)
 - (c) 数据处理及分析讨论:处理实验原始数据(学习仪器使用类型的实验除外),对数据的可靠性和合理性进行分析;按规范呈现数据和结果(图、表),包括数据、图表按顺序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数据);最后得出结论。(30分)

实验报告就是将预习报告、实验记录、和数据处理与分析合起来,加上本页封面。(80分)

2. 实验报告在每个小结(补做)的之后一周内提交,最后一次实验,在结束一周内提交。

目录

1	ET4	4 戴维南定理和诺顿定理 预习报告	3
	1.1	实验目的	3
	1.2	仪器用具	3
	1.3	原理概述	3
	1.4	实验预习题	4
2	ET 4	4 戴维南定理和诺顿定理 实验记录	5
	2.1	实验内容、步骤与结果	5
		2.1.1 测量开路电压,短路电流	5
		2.1.2 测量等效电阻	6
		2.1.3 验证戴维南定理	7
		2.1.4 验证诺顿定理	8
		2.1.5 测量实验室函数信号发生器的戴维南等效内阻	8
	2.2	实验过程遇到问题及解决办法	9
3	ET 4	4 戴维南定理和诺顿定理 分析与讨论	10
	3.1	对于有源一端口的理论计算	10
	3.2	测量开路电压、短路电流	10
		3.2.1 直接测量法测量	10
		3.2.2 间接测量法(电路图)	10
	3.3	测量等效电阻	11
		3.3.1 开路电压、短路电流法	11
		3.3.2 伏安法	11
		3.3.3 半流法	12
		3.3.4 半压法	12
	3.4	验证戴维南定理	12
	3.5	验证诺顿定理	12
	3.6	测量实验室函数信号发生器的戴维南等效内阻	12
	3.7	误差分析综述	13
4	$\mathbf{ET}4$		14
	4.1	实验心得和体会、意见建议等	14
	4.2	附件	14

ET4 戴维南定理和诺顿定理 预习报告

1.1 实验目的

- 1. 加深对戴维南定理和诺顿定理的理解。
- 2. 学习戴维南等效参数的各种测量方法。
- 3. 理解等效置换的概念。
- 4. 学习直流稳压电源、万用表、直流电流表和电压表的正确使用方法。

1.2 仪器用具

编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)
1	电路原理箱或板	1	戴维南定理和诺顿定理
2	稳压源	1	RIGOL DP831
3	直流电流源	1	
4	直流电流表	3	RIGOL DM3058E
5	直流电压表	2	RIGOL DM3058E
6	电流表专用线	3	
7	2 号实验导线	n	
8	其它	_	

1.3 原理概述

- 1. **戴维南定理**指出:对于一个含有独立电源、线性电阻和受控源的一端口,可以用一个电压源和电阻的 串联组合来等效置换。其中,该电压源的激励电压等于端口的开路电压,电阻等于将端口内全部独立 电源置零后的输入电阻。
- 2. **诺顿定理**是戴维南定理的对偶形式。它指出:对于一个含有独立电源、线性电阻和受控源的一端口,可以用一个电流源和电阻的并联组合来等效置换。电流源的激励电流等于端口的短路电流,电阻等于将端口中全部独立源置零后的输入电阻。
- 3. **戴维南一诺顿定理的等效电路**是对外部特性而言的。换句话说,无论网络内部是时变的还是定常的,只要网络内部除了独立电源外都是线性元件,上述等效电路都是正确的。测量戴维南等效电路参数的方

法:对于开路电压 U_{oc} 的测量,可以直接使用电压表测量,也可以采用补偿法测量;而对于戴维南等效电阻 R_{eq} 的获取,可采用如下方法:当网络含有源时,可以使用开路电压法或者短路电流法,但对于不允许直接短路外部电路的网络(例如,可能因短路电流过大而损坏网络内部器件的情况),不能采用短路电流法;当网络不含源时,可以使用伏安法、半流法、半压法、直接测量法等方法。

图 1: 一种端口网络的等效置换

1.4 实验预习题

思考题 1.1: 用开路电压、短路电流法测量等效电阻时,开路电压、短路电流是否可以同时进行测量,为什么?

在使用开路电压和短路电流法测量电路的等效电阻时,实际操作中开路电压和短路电流是不能同时进行测量的。原因在于这两种测量方式的条件和对电路的影响完全不同。

开路电压测量:在进行开路电压的测量时,测量对象的两端不接任何外部负载,即电路是开路状态。这种测量方式的目的是测定在无负载条件下电源的电压,即电源的最大电动势。在这种状态下,电路中的电流为零,因此不会有电流通过被测电源或电路,可以获得一个准确的开路电压值。

短路电流测量: 而在进行短路电流的测量时,测量对象的两端被直接短路,通过一个极低的电阻(接近于零),目的是测量在这种极端条件下通过电路的电流大小。这种状态下电路的电阻最小,电流达到最大值。这样做可以确定电源或电路在最大负载条件下的输出电流能力。

由于开路状态下电路的电流为零,而短路状态下电流达到最大,这两种状态下的电路条件截然不同,因此不能同时进行测量。同时,若尝试同时进行这两种测量,可能会导致测量结果不准确,甚至损坏测量设备或被测电路。通常,在实际应用中,先后分别进行这两种测量,然后通过欧姆定律(V=IR)计算出等效电阻值,即使用开路电压除以短路电流的方法得到等效电阻值: $R_{\rm fry}=\frac{V_{\rm TBB}}{I_{\rm fry}}$ 。

专业:	物理学	年级:	2022 级
姓名:	黄罗琳,王显	学号:	22344001,22344002
室温:	25°C	实验地点:	A522
学生签名:	划 州 王显	评分:	
实验时间:	2024/3/20	教师签名:	

ET4 戴维南定理和诺顿定理 实验记录

2.1 实验内容、步骤与结果

2.1.1 测量开路电压,短路电流

设定 Usn=12V

1. 直接测量法

图 2: 开路电压、短路电路法电路图

U = 3.93V, I = 19.609mA

2. 间接测量法(补偿法)

图 3: 间接测量法电路图

(a) 电压零示法

最初设定外加电压为 3.9V、0.1A ,在直接测量法中结果为 3.93V,故选 3.9V 为初始电压设定电压 (电压表零示数结果):2.665 mV最终调节外加电压为 U=3.93V

(b) 电路零示法

最初设定外加电压为 3.9V、0.1A,选定 3.93V 原因与电压零示法相同电流 (电流表零示数结果):0.112mA最终调节外加电压为 U=3.93V

2.1.2 测量等效电阻

- 1. 开路电压、短路电流法(内部有源) $U=U_{oc}=3.93V, I=I_{sc}=19.609mA,\ R_{\rm eq}=200.41817\Omega$
- 2. 伏安法 (内部无源)

图 4: 伏安法电路图

U_s (V)	$I_s \text{ (mA)}$	U_v (V)
1	4.997	0.993
2	9.954	1.985
3	14.839	2.963
4	19.795	3.952
5	24.747	4.940
6	29.704	5.928
7	34.667	6.916
8	39.634	7.905
9	44.747	8.925
10	49.755	9.918

表 1: 伏安法实验数据

3. 半流法(内部无源)

图 5: 半流法电路图

使用伏安法中 $U_s=10V$ 时电流为 49.755mA目标电流为 24.8775mA最终测得 $R_w=R_{\rm eq}=196.341\Omega$

4. 半压法(内部无源)

图 6: 半压法电路图

设定 $U_s=10V$,调整到 $U_{Rw}=5.051V$ 最终测得 $R_w=196.941\Omega$

2.1.3 验证戴维南定理

图 7: 戴维南定理电路图

使用 U_{oc} 进行测量,并且等效电阻 $R_5=R_{eq}=200\Omega$,外接 $R_6=100\Omega$ 测得 U=1.304V I=13.074mA 使用 N 有源网络端口外接负载 $R_6=100\Omega$ 测得 U=1.3077V I=13.119mA

2.1.4 验证诺顿定理

图 8: 诺顿定理实验电路图

使用 I_{sc} 进行测量,并且将戴维南等效电阻 $R_5=R_{eq}=200\Omega$ 并联后,外接 $R_6=100\Omega$ 。 测得 U=1.30418V I=13.016mA

2.1.5 测量实验室函数信号发生器的戴维南等效内阻

实验电路图采用半压法电路图

图 9: 实验电路图 (左侧连接信号发生器)

初始值设定信号发生器为: $f=1\,\mathrm{kHz}$ $V_{\mathrm{pp}}=2500\,\mathrm{mV}$

使用半压法: $U_s = 6 \text{ V}$

 $50\Omega \quad U = 3.015 \, \text{V} \quad R_w = 51.7942 \, \Omega$

高阻 $U = 2.997 \,\mathrm{V}$ $R_w = 52.665 \,\Omega$

初始值设定信号发生器为: $f = 1 \, \text{kHz}$ $V_{pp} = 2500 \, \text{mV}$

使用半压法: $U_s = 8 \text{ V}$

 $50\Omega \quad U = 4.000 \,\mathrm{V} \quad R_w = 52.501 \,\Omega$

高阻 $U = 4.041 \,\mathrm{V}$ $R_w = 52.638 \,\Omega$

根据实验结果分析:负载不同时,Rw变化很小.负载 50Ω 的信号是高负载的两倍

2.2 实验过程遇到问题及解决办法

- 1. 实验过程中接线需要仔细思考,有些接线并不能很好的满足仪器的接口要求,就需要寻找符合要求的 线材进行接线,从而完成实验电路图。
- 2. 在测量电流时,台式万用表的读数会在一定范围内进行变化,这可能是由于电流流过导致温度升高从而出现了阻值变化,所以在实验过程中统一选取电流稳定时的某一示数,保证了误差在一定范围内。
- 3. 在进行**测量实验室函数信号发生器的戴维南等效内阻**这一实验中时,起初对实验电路的内部构造不够 了解,最后通过老师的讲解理解了为什么负载不同信号会出现变化。

专业:	物理学	年级:	2022 级
姓名:	黄罗琳、王显	学号:	22344001 22344002
日期:	2024/3/20	评分:	

ET4 戴维南定理和诺顿定理 分析与讨论

3.1 对于有源一端口的理论计算

图 11: 使用 N 有源网络内部电路图

计算可得其内部电阻理论值为 $R = 200\Omega$, 基于此项数据对实验结果进行如下误差分析。

3.2 测量开路电压、短路电流

3.2.1 直接测量法测量

U = 3.93V, I = 19.609mA

而理论值 U = 4V, I = 20mA

则相对误差为: r = -1.75% r = -1.99%

误差可能来源于: N 网络内部的电阻与设定阻值不同,可能更大,从而导致了,内阻增大,从而导致了分压增大,从而电压变小,短路电流减少。

3.2.2 间接测量法(电路图)

1. 电压零示法

测量值: U=3.93V 电压 (电压表零示数结果):2.665mV

理论值为: U=4V 相对误差为: r = -1.75%

误差可能来源于:除与直接测量法相同的误差来源之外(内阻更大),还可能是因为在实验过程调整电

压表为零时,仅仅是调整电压为 2.665mV,从而导致测量值比实际值较小,但是虽然出现不为零的情况。但是其测量值仍在 3.93V 附近,所以说明误差仍是内阻导致的问题。

2. 电流零示法

测量值: U=3.93V 电流 (电流表零示数结果):0.112mA

理论值为: U=4V 相对误差为: r=-1.75%

误差可能来源于: 电流表不能完全到达零示数,但是其仍然在 3.93V 附近。并且由于仪器精度问题,其与电压零示法结果相同,均为 3.93V。

3.3 测量等效电阻

3.3.1 开路电压、短路电流法

 $U=U_{oc}=3.93V, I=I_{sc}=19.609mA$, $R_{\rm eq}=200.41817\Omega$

与理论值 $R = 200\Omega$ 比较,相对误差为: r = 0.209%

误差可能来源于电流表的内阻引入的,与电路串联后导致所测量的电阻增大。

3.3.2 伏安法

根据实验数据进行图像拟合,如下所示:

伏安法测定戴维南等效电阻

图 12: 伏安法拟合图像

根据图像斜率可知: $R_{eq} = 199.40254\Omega$

与理论值 $R = 200\Omega$ 比较,相对误差为: r = -0.299%

实验误差相比于其他实验方法明显偏小,这说明通过线性拟合的方式可以得到更加准确的结果。

3.3.3 半流法

测得 $R_w = R_{eq} = 196.341\Omega$

与理论值 $R = 200\Omega$ 比较,相对误差为: r = -1.830%

误差可能来源于电表的示数存在一定的精度问题,**不能做到完全的精确一半的电流**,从而计算结果与实际存在较小的差距。并且可能由于调整目标电流时电流值存在一定的波动,导致最终实验结果存在误差,并且在测量阻值时也会存在仪器误差,并且变阻器的调整会出现主观的操作问题(难以准确控制)并且接入电路的电源也可能存在内阻,这也会导致实验出现误差。

这些误差影响综合起来,导致了实验结果比理论值偏小。

3.3.4 半压法

测得 $R_w = R_{eq} = 196.941\Omega$

与理论值 $R = 200\Omega$ 比较,相对误差为: r = -1.530%

误差来源基本上与半流法误差来源相同,电表的示数存在一定的精度问题,**不能做到完全的精确一半的** 电压。

3.4 验证戴维南定理

使用等效电路测得 U = 1.304V I = 13.074mA

使用 N 有源网络端口测得 U = 1.3077V I = 13.119mA

计算电压的相对误差 r=-0.28% 电流的相对误差 r=0.34%

故可以验证戴维南定理成立!

3.5 验证诺顿定理

测得 U = 1.30418V I = 13.016mA

使用 N 有源网络端口测得 U = 1.3077V I = 13.119mA

计算电压的相对误差 r = 0.27% 电流的相对误差 r = 0.79%

故可以验证诺顿定理成立!

3.6 测量实验室函数信号发生器的戴维南等效内阻

负载为 50Ω $U = 4.000 \,\mathrm{V}$ $R_w = 52.501 \,\Omega$

负载为高阻时 $U = 4.041 \,\mathrm{V}$ $R_w = 52.638 \,\Omega$

负载不同时,Rw 变化很小. 负载 50Ω 的信号是高负载的两倍

函数信号发生器的等效内阻是一个重要的参数,它描述了信号发生器在连接到外部负载时所表现出的 电阻性质。该参数与信号发生器的内部结构密切相关,包括波形发生电路和输出电路。在连接外部负载时, 外部负载与信号发生器的等效内阻构成一个电路,这个电路的特性受到外部负载阻抗的影响,包括输出电压 和输出功率的稳定性。一些函数信号发生器具有高阻特性,能够在连接到高阻负载时提供相对稳定的输出信 号,不会因负载变化而产生明显的失真或输出电压的变化。

3.7 误差分析综述

	理论计算	直接测量	电压零示法	电流零示法
U_{OC}/V	4.000	3.93	3.93	3.93
相对误差	/	-1.75%	-1.75%	-1.75%

表 2: 测量有源一端口网络开路电压实验数据

	理论计算	开路电压、短路电流法	伏安法	半流法	半压法
R_{eq}/Ω	200	200.418	199.402	196.341	196.941
相对误差	/	0.209%	-0.299%	-1.830%	-1.530%

表 3: 测量有源一端口网络等效电阻实验数据

概括上述误差分析和综合对比各个实验的相对误差,可以看出:

• 直接测量法与间接测量法比较:

- 直接测量法的相对误差为 -1.75%。主要误差可能来自于网络内部电阻与设定阻值不同,导致内阻增大,从而引起电压减小、短路电流减少。
- 间接测量法中,电压零示法和电流零示法的相对误差均为 -1.75%。可能误差来源包括电压表、电流表的调零及内阻增大,但测量值仍在附近,表明误差主要由内阻引起。

• 测量等效电阻的不同方法比较:

- 一 开路电压、短路电流法得到的相对误差为 0.209%。可能误差来自电流表的内阻导致电路总电阻增大。
- 伏安法得到的相对误差为 -0.299%。误差相比其他方法明显偏小,说明通过线性拟合的方式得到了较为准确的结果。
- 半流法和半压法的相对误差分别为 -1.830% 和 -1.530%。可能误差来源包括电表示数精度问题、目标电流或电压的波动、仪器误差以及主观操作引入的误差。

ET4 戴维南定理和诺顿定理 结语

4.1 实验心得和体会、意见建议等

- 1. 实验总体过程属于思路非常清晰,从一开始测量简单的开路电压短路电流测量到最后验证两个定理,体现了由浅入深的难度和实验思路,实验过程中体验很好。
- 2. 实验过程中会出现一些接线问题,通过对于实验仪器的逐渐熟悉,现在已经能够快速地找到适合本次实验仪器接口的接线,于是能够很快的完成实验。
- 3. 实验的误差分析相对来说属于对于同样的误差进行分析,相关讨论见误差分析部分,这说明可能是由于实验教学电路板的仪器误差导致的,所以实验总体误差来说似乎来源于同样的问题。
- 4. 本实验报告采用 LATEX 编辑,实验分工为黄罗琳同学负责记录数据、编辑报告、误差分析,王显同学负责实验操作、误差分析、数据绘图。

感谢您对于此篇实验报告的阅读与批改,祝您工作顺利!

4.2 附件

图 13: 原始数据

图 15: 原始数据

图 14: 原始数据

图 16: 实验桌面整理