Claims

WHAT IS CLAIMED IS:

1

1	1. A method for filtering one or more messages for transmission to a subscriber
2	computing system according to an individual information request criteria, the method comprising:
3	constructing a binary decision diagram implication graph for each individual information
4	request criteria specified for each subscriber;
5	identifying logical implications from one or more nodes in a binary decision diagram from a
<u> 6</u>	first information request criteria to one or more corresponding binary decision diagrams within a
46 17 17	second information request criteria;
8	receiving one or more messages to be filtered;
9	evaluating a first information request criteria based upon information within the received
10	messages;
11	evaluating one or more information request criteria based upon information within the
12	received messages using the identified logical implications between one or more binary decision
13	diagrams within the information request criteria being evaluated and one or more binary decision
14	diagrams previously evaluated; and
15	transmitting the received message to the subscriber computing system corresponding to an
16	information request criteria evaluated to be satisfied by information contained within the received
17	message.

determining if a current node is a leaf node in the binary decision diagram:

The method according to claim 1, wherein the binary decision diagrams include an

2.

1

3	if the current node is a leaf node, marking the information request criteria as being decided
4	and returning the value of the current node;
5	if the current node is not a leaf node, determining a value of the expression for the node
6	p(X);
7	if the value of the expression of the node is true
8	setting $X' = high(X)$ otherwise $X' = low(X)$;
9	inserting X' into the rank; and
10	visiting the targets of node X' to compare the current node with the target node;
11	if the target node is lower than the current node according to a predicate order, update
4 412	the current node.
11 112 1	7. A computer program product readable by a computing system and encoding
<u> </u>	instructions for filtering one or more messages to be transmitted to a subscriber computing system
∄ € 3	according to an individual information request criteria, the computing process comprising:
4 1	constructing a binary decision diagram implication graph for each individual information
5	request criteria specified for each subscriber;
6	identifying logical implications from one or more nodes in a binary decision diagram from a
7	first information request criteria to one or more corresponding binary decision diagrams within a
8	second information request criteria;
9	receiving one or more messages to be filtered;
10	evaluating a first information request criteria based upon information within the received
11	messages;

evaluating one or more information request criteria based upon information with					
13	received messages using the identified logical implications between one or more binary decision				
14	diagrams within the information request criteria being evaluated and one or more binary decision				
15	diagrams previously evaluated; and				
16	transmitting the received message to the subscriber computing system corresponding to an				
17	information request criteria evaluated to be satisfied by information contained within the received				
18	message.				
1	8. The computer program product according to claim 7, wherein the binary decision				
2	diagrams include an expression of an information request criteria in an if-then-else normal form.				
2	9. The computer program product according to claim 8, wherein the constructing step				
2	further comprises:				
3	recursively visiting the high and low successors for each node in the binary decision				
± 4	diagrams;				
2 5	while visiting each node, determine the precondition pre(X') for each successor and compute				
6	the target t(X') for all visited nodes and apply permissible implications; and				
7	iterate the processing for all implications.				
1	10. The computer program product according to claim 9, wherein permissible				
2 implications for a node M with successor node N include:					
3	if node N is equal to the high successor high(M), and				
4	if p(M) implies p(N), then remove N and set the high(M) equal to high(N); and				
5	if p(M) implies ! p(N), then remove N and set high(M) equal to low(N).				

1	11. The computer program product according to claim 9, wherein permissible
2	implications for a node M with successor node N include:
3	if node N is equal to the low successor low(M), and
4	if ! p(M) implies p(N), then remove N and set the low(M) equal to high(N); and
5	if ! p(M) implies ! p(N), then remove N and set low(M) equal to low(N).
1	12. The computer program product according to claim 9, wherein the evaluating steps
2	further comprises:
3	determining if a current node is a leaf node in the binary decision diagram;
3 4	if the current node is a leaf node, marking the information request criteria as being decided
<u> </u>	and returning the value of the current node;
6	if the current node is not a leaf node, determining a value of the expression for the node
7	p(X);
1 28	if the value of the expression of the node is true
9	setting $X' = high(X)$ otherwise $X' = low(X)$;
10	inserting X' into the rank; and
11	visiting the targets of node X' to compare the current node with the target node;
12	if the target node is lower than the current node according to a predicate order, update
13	the current node.
1	13. A publication-subscription broker server computing system for filtering one or more
2	messages to be transmitted to a subscriber computing system according to an individual information
3	request criteria, the broker server computing system comprises:

4	a memory module;
5	a mass storage system; and
6	a programmable processing module, the programmable processing module performing a
7	sequence of operations to implement the following:
8	constructing a binary decision diagram implication graph for each individual
9	information request criteria specified for each subscriber;
10	identifying logical implications from one or more nodes in a binary decision diagram
11	from a first information request criteria to one or more corresponding binary decision
12	diagrams within a second information request criteria;
13	receiving one or more messages to be filtered;
12 13 14	evaluating a first information request criteria based upon information within the
12115	received messages;
16	evaluating one or more information request criteria based upon information within the
16 17 17	received messages using the identified logical implications between one or more binary
= 18	decision diagrams within the information request criteria being evaluated and one or more
19	binary decision diagrams previously evaluated; and
20	transmitting the received message to the subscriber computing system corresponding
21	to an information request criteria evaluated to be satisfied by information contained within
22	the received message.
22	14. The broker server computing system according to claim 13, wherein the binary
23	
24	decision diagrams include an expression of an information request criteria in an if-then-else normal
25	form.

	1		15.	The broker server computing system according to claim 13, wherein the constructing		
	2	the implication graph further comprises:				
	3		recurs	ively visiting the high and low successors for each node in the binary decision		
	4	diagra	ms;			
	5		while	visiting each node, determine the precondition pre(X') for each successor and compute		
	6	the tar	get t(X	') for all visited nodes and apply permissible implications; and		
	7		iterate	the processing for all implications.		
	1		16.	The broker server computing system according to claim 14, wherein permissible		
Transfer of the second	2	implic	ations	for a node M with successor node N include:		
	3		if nod	e N is equal to the high successor high(M), and		
	4			if p(M) implies p(N), then remove N and set the high(M) equal to high(N); and		
Н	5			if p(M) implies ! p(N), then remove N and set high(M) equal to low(N).		
	1	17.	The b	roker server computing system according to claim 15, wherein permissible implications		
1777	2	for a r	ode M	with successor node N include:		
	3		if nod	le N is equal to the low successor low(M), and		
	4			if ! p(M) implies p(N), then remove N and set the low(M) equal to high(N); and		
	5			if ! p(M) implies ! p(N), then remove N and set low(M) equal to low(N).		
	1	18.	The b	broker server computing system according to claim 15, wherein the evaluating steps		
	2	furthe	r comp	rises:		
	3		deter	mining if a current node is a leaf node in the binary decision diagram;		

4	if the current node is a leaf node, marking the information request criteria as being decided
5	and returning the value of the current node;
6	if the current node is not a leaf node, determining a value of the expression for the node
7	p(X);
8	if the value of the expression of the node is true
9	setting $X' = high(X)$ otherwise $X' = low(X)$;
10	inserting X' into the rank; and
11	visiting the targets of node X' to compare the current node with the target node;
12	if the target node is lower than the current node according to a predicate order, update
12 13 13	the current node.
Property Control of the Control of t	
1	
<u> </u>	
y of or	
TO STATE OF THE ST	
menant graphic grap	