1

Assignment 17

Gaydhane Vaibhav Digraj Roll No. AI20MTECH11002

Abstract—This document solves a problem involving linear functional.

Download latex-tikz codes from

https://github.com/Vaibhav11002/EE5609/tree/master/Assignment 17

1 Problem

Similar matrices have the same trace. Thus we can define the trace of a linear operator on a finite-dimensional space to the trace of any matrix which represents the operator in a ordered basis. This is well-defined since all such representing matrices for one operator are similar.

Now let V be the space of all 2×2 matrices over the field F and let P be a fixed 2×2 matrix. Let T be the linear operator on V defined by T(A) = PA. Prove that tr(T) = 2tr(P).

2 Solution

Given V is the space of all 2×2 matrices over field F. P is a 2×2 matrix,

$$P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} \tag{2.0.1}$$

Let $\mathcal{B} = \{e_{11}, e_{12}, e_{21}, e_{22}\}$ be the ordered basis of V where,

$$e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 (2.0.2)

$$e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 (2.0.3)

Given, T(A) = PA,

The matrix representation of linear functional T in the ordered basis \mathcal{B} is given as,

$$T = ([T(e_{11})]_{\mathcal{B}} [T(e_{12})]_{\mathcal{B}} [T(e_{21})]_{\mathcal{B}} [T(e_{22})]_{\mathcal{B}})$$

$$= ([Pe_{11}]_{\mathcal{B}} [Pe_{12}]_{\mathcal{B}} [Pe_{21}]_{\mathcal{B}} [Pe_{22}]_{\mathcal{B}})$$

$$(2.0.5)$$

$$T = \begin{pmatrix} p_{11} & 0 & p_{12} & 0 \\ 0 & p_{11} & 0 & p_{12} \\ p_{21} & 0 & p_{22} & 0 \\ 0 & p_{21} & 0 & p_{22} \end{pmatrix}$$
(2.0.6)

$$= \begin{pmatrix} p_{11} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & p_{12} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ p_{21} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & p_{22} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$
 (2.0.7)

$$= \begin{pmatrix} p_{11}I & p_{12}I \\ p_{21}I & p_{22}I \end{pmatrix} = P \otimes I \tag{2.0.8}$$

Now by using the property of kronecker product we get,

$$tr(T) = tr(P \otimes I) = tr(P)tr(I)$$
 (2.0.9)

$$= 2tr(P)$$
 (2.0.10)

$$\therefore tr(T) = 2tr(P) \tag{2.0.11}$$