- (c) ଅନୁରୂପ ମଧ୍ୟମାମାନଙ୍କର ଦୈର୍ଘ୍ୟର ବର୍ଗାନୁପାତ ସହ ସମାନ ।
- (d) ପରିସୀମାର ବର୍ଗାନୁପାତ ସହ ସମାନ।
- 7. \triangle ABC ର \overline{AB} ଓ \overline{AC} ବାହୁ ଉପରେ P ଓ Q ଏପରି ଦୁଇଟି ବିନ୍ଦୁ ଯେପରିକି $\triangle BQP$ ଓ $\triangle CPQ$ ସମକ୍ଷେତ୍ରଫଳ ବିଶିଷ୍ଟ । ପ୍ରମାଣ କର ଯେ $\frac{PQ}{BC} = \frac{AP}{AB}$ ।
- 8. ଚିତ୍ର 1.52 ରେ \overline{AB} ଓ \overline{CD} ର ଛେଦ ବିନ୍ଦୁ O ।
 - (a) $AO \cdot OD = BO \cdot OC$ ହେଲେ, ପ୍ରମାଣକର ଯେ $\Delta AOC \sim \Delta BOD$ ।
 - $(b){
 m CO}$. ${
 m OD}={
 m AO}$. ${
 m OB}$ ହେଲେ, ପ୍ରମାଣକର ସେ $\Delta{
 m AOC}\sim\Delta{
 m DOB}$ $_{
 m Do}$
 - (c)ପୂର୍ବବର୍ତ୍ତୀ କେଉଁ କ୍ଷେତ୍ରରେ \overline{AC} ଓ \overline{DB} ସମାନ୍ତର ହେବେ ?

(ଚିତ୍ର 1.53)

- 9. ABCD ଟ୍ରାପିଜିୟମ୍ ର \overline{AB} II \overline{DC} । କର୍ଣ୍ଣ \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ O ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । AO=3 ସେ.ମି. ଏବଂ OC=5 ସେ.ମି. । ΔAOB ର କ୍ଷେତ୍ରଫଳ 36 ବ.ସେ.ମି. ହେଲେ, ΔCOD ର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
- 10. ଚିତ୍ର 1.53 ରେ ΔABC ଓ ΔDBC ଉଭୟ ଏକ ଭୂମି \overline{BC} ଉପରିସ୍ଥ । \overline{AC} ଓ \overline{BD} ର ଛେଦ ବିନ୍ଦୁ O ହେଲେ,

ପ୍ରମାଣ କର :
$$\frac{\Delta ABD$$
ର କ୍ଷେତ୍ରଫଳ $= \frac{AO}{OC}$

- 11. ପ୍ରମାଣ କର ଯେ ଏକ ତ୍ରିଭୁଜର ବାହୁମାନଙ୍କର ମଧ୍ୟବିନ୍ଦୁର ସଂଯୋଜକ ରେଖାଖଣ୍ଡମାନଙ୍କ ଦ୍ୱାରା ତ୍ରିଭୁଜଟି ଯେଉଁ ଚାରୋଟି ତ୍ରିଭୁଜରେ ପରିଶତ ହୁଏ, ସେମାନେ ସର୍ବସମ ଓ ପ୍ରତ୍ୟେକ ମୂଳ ତ୍ରିଭୁଜ ସହ ସଦୃଶ । ପୁନଶ୍ଚ ପ୍ରମାଣ କର ଯେ ଉତ୍ପନ୍ନ ହୋଇଥିବା ପ୍ରତ୍ୟେକ ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳ, ମୂଳତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳର ଏକ ଚତୁର୍ଥାଂଶ ।
- 12. ଚିତ୍ର 1.54 ରେ, ΔABC ର $\angle ABC$ ଏକ ସମକୋଣ । PQRS ଏକ ଆୟତଚିତ୍ର ହେଲେ, ପ୍ରମାଣ କର ଯେ, $\Delta APS \sim \Delta QCR \sim \Delta PQB \sim \Delta ACB$
- 13. ଚିତ୍ର 1.55 ରେ, \overline{AB} Π \overline{DC} । $\Delta ADO \sim \Delta BCO$ ହେଲେ, ପ୍ରମାଣ କର ଯେ AD = BC (ସୂଚନା : ପ୍ରଶ୍ନ 5 ରେ ପ୍ରମାଣିତ ତଥ୍ୟକୁ ବ୍ୟବହାର କର)
- 14. ABCD ଟ୍ରାପିକିୟମ୍ରେ \overline{AD} $|| \overline{BC} || \angle ABD \cong \angle DCB$ ହେଲେ, ପ୍ରମାଣକର ଯେ $\overline{BD^2}=\overline{AD}$. BC ||

- 15. ΔABC ର \overline{AB} ଓ \overline{BC} ବାହୁ ଉପରେ ଯଥାକ୍ରମେ X ଓ Y ବିନ୍ଦୁ ଅବସ୍ଥିତ ଯେପରିକି \overline{XY} II \overline{BC} । ପ୍ରମାଣ କର ଯେ, ΔABC ର ମଧ୍ୟମା \overline{AD} , \overline{XY} କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।
- 16. $\triangle ABC$ ରେ \overline{AD} ଏକ ମଧ୍ୟମା ଏବଂ \overline{AD} ର ମଧ୍ୟବିନ୍ଦୁ E । \overrightarrow{BE} ରଶ୍ମି \overline{AC} କୁ X ବିନ୍ଦୁରେ ଛେଦକଲେ, ପ୍ରମାଣକର ଯେ $\overline{BE}=3EX$ ।
- 17. ΔABC ରେ $\overline{AD} \perp \overline{BC}$ ଏବଂ $AD^2 = DC$. BD ହେଲେ, ପ୍ରମାଣକର ଯେ (i) $\angle BAC$ ଏକ ସମକୋଣ (ii) ΔABD ର କ୍ଷେତ୍ରଫଳ ଓ ΔCAD ର କ୍ଷେତ୍ରଫଳ AB^2 ଓ AC^2 ସହ ସମାନୁପାତୀ ।
- 18. $\triangle ABC$ ଓ $\triangle DEF$ ରେ m $\angle A=m$ $\angle D$, m $\angle B=m$ $\angle E$ । \overline{BC} ଓ \overline{EF} ର ମଧ୍ୟବିନ୍ଦୁ ଯଥାକୁମେ X ଓ Y ହେଲେ, ପ୍ରମାଣ କର ଯେ (i) $\triangle AXC\sim \triangle DYF$ (ii) $\triangle AXB\sim \angle DYE$ ।
- 19. ଚିତ୍ର 1.56 ରେ $\triangle ABC$ ର \overline{AB} ଉପରିସ୍ଥ Q ଏକ ବିନ୍ଦୁ, $\overline{QR} \text{ II } \overline{BC} \text{ ସେପରିକି A-R-C, } \overline{DR} \text{ II } \overline{QC} \text{ ସେପରିକି A-D-B I}$ ପ୍ରମାଣକର ଯେ $AQ^2 = AD \times AB$

20. ଚିତ୍ର 1.57 ରେ \overline{AB} । \overline{CD} । \overline{EF} ଏବଂ \overline{AF} ଓ \overline{BE} ପରସ୍କରକୁ \overline{C} ଚିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ \overline{EF} x \overline{BD} \overline{DF} x \overline{AB}

- 21. ଦୁଇଟି ସଦୃଶ ତ୍ରିଭୁଜର ଅନ୍ତଃବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ଦ୍ୱୟର ଅନୁପାତ, ଉକ୍ତ ତ୍ରିଭୁଜର ଦୁଇଟି ଅନୁରୂପ ବାହୁର ଦୈର୍ଘ୍ୟର ଅନୁପାତ ସହ ସମାନ, ପ୍ରମାଣ କର ।
- 22. A-P-B ଓ A-Q-B ହେଲେ ଏବଂ $\frac{AP}{PB} = \frac{AQ}{QB}$ ହେଲେ, ପ୍ରମାଣ କର ଯେ P ଓ Q ଅଭିନ୍ନ ।

- 24. ΔABC ର \overline{AB} ଓ \overline{AC} ଉପରେ ଯଥାକୁମେ X ଓ Y ବିନ୍ଦୁ ଅବସ୍ଥିତ, ଯେପରିକି \overline{XY} $|| \overline{BC}||$ ପ୍ରାପିଜିୟମ୍ XBCY ର କ୍ଷେତ୍ରଫଳ, ΔAXY ର କ୍ଷେତ୍ରଫଳର ଆଠଗୁଣ ହେଲେ, AX:BX ନିର୍ଣ୍ଣୟ କର ।
- 25. ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର । \overrightarrow{AG} ରଶ୍ମି, \overrightarrow{BD} , \overrightarrow{CD} ଓ \overrightarrow{BC} କୁ ଯଥାକୁମେ E, F ଓ G ବିନ୍ଦୁରେ ଛେଦକଲେ, ପ୍ରମାଣ କର ଯେ \overrightarrow{AE} : \overrightarrow{EG} = \overrightarrow{AF} : \overrightarrow{AG} ।

- 1.7. ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ ସହ ସମ୍ପୃକ୍ତ ସଦୃଶ ତ୍ରିଭୁଜମାନଙ୍କ ମଧ୍ୟରେ ଥିବା କେତେକ ଉପାଦେୟ ତଥ୍ୟ ନିମ୍ନ ପ୍ରମେୟ ଓ ଏହାର ଅନୁସିଦ୍ଧାନ୍ତରେ ଆଲୋଚନା କରାଯାଇଛି ।
- ପ୍ରମେୟ 1.4 : ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜର ସମକୋଣର ଶୀର୍ଷରୁ କର୍ଷ ପ୍ରତି ଅଙ୍କିତ ଲୟ ଦ୍ୱାରା ଯେଉଁ ଦୁଇଟି ତ୍ରିଭୁଜ ଉତ୍ପନ୍ନ ହୁଏ, ସେ ଦ୍ୱୟ ପ୍ରତ୍ୟେକ ମୂଳ ତ୍ରିଭୁଜ ସହିତ ସଦୃଶ ଓ ପରୟର ସଦୃଶ ।

(When a perpendicular is drawn from the vertex of the right angle of a right-triangle to its hyptenuse, each of the two triangles formed is similar to the original triangle and those are mutually similar.)

ଦଭ : $\triangle ABC$ ରେ $\angle ABC$ ସମକୋଣ । $\overline{BD} \perp \overline{AC}$ । ଉତ୍ପନ୍ନ ତ୍ରିଭୁଳ ଦ୍ୱୟ $\triangle ABD$ ଏବଂ $\triangle BCD$ ।

ପ୍ରାମାଶ୍ୟ : $(i) \Delta ABD \sim \Delta ACB$

- (ii) ΔBCD ~ ΔACB
- (iii) ΔABD ~ Δ BCD

ପ୍ରମାଣ : \triangle ABD ଓ \triangle ACB ମଧ୍ୟରେ,

$$\because \begin{cases} \angle BAD \cong \angle BAC \\ \angle ADB \cong \angle ABC \text{ (ପ୍ରତ୍ୟେକ ସମକୋଣ)} \end{cases}$$

 $\therefore \Delta \ ABD \sim \Delta \ ACB \ (କୋ-କୋ ସାଦୃଶ୍ୟ) (1) .((i)ପ୍ରମାଣିତ) <math>(\widehat{\Theta} \ \underline{\odot} \ 1.59)$

 Δ BCD ଓ Δ ACB ମଧ୍ୟରେ,

- $\therefore \Delta BCD \sim \Delta ACB$ (କୋ-କୋ ସାଦୃଶ୍ୟ) (2) ((ii) ପ୍ରମାଶିତ)
- (1) ଓ $(2)\Rightarrow \Delta ABD\sim \Delta BCD$ (ସାଦୃଶ୍ୟର ସଂକ୍ରମୀ ଧର୍ମ) ((iii) ପ୍ରମାଶିତ)

ଅନୁସିଦ୍ଧାନ୍ତ : ΔABC ର $\angle ABC$ ସମକୋଣ ଏବଂ $\overline{BD} \perp \overline{AC}$ ହେଲେ

(a)
$$AB^2 = AD \cdot AC$$
, (b) $BC^2 = CD \cdot AC$ ଏବଂ (c) $BD^2 = AD \cdot DC$

(a) ର ପ୍ରମାଣ : (ଚିତ୍ର 1.59 ଦୃଷ୍ଟବ୍ୟ)

ଉପପାଦ୍ୟରେ ପ୍ରମାଶିତ :
$$\triangle ABD \sim \triangle ACB \implies \frac{AB}{AC} = \frac{AD}{AB} = \frac{BD}{BC}$$

$$\frac{AB}{AC} = \frac{AD}{AB}$$
 ନେଇ, ପାଇବା $AB^2 = AD$. AC

(b) ର ପ୍ରମାଣ : (ଚିତ୍ର 1.59 ଦୃଷ୍ଟବ୍ୟ)

ଉପପାଦ୍ୟରେ ପ୍ରମାଣିତ :
$$\Delta BCD \sim \Delta ACB \implies \frac{BC}{AC} = \frac{DC}{BC} = \frac{BD}{AB}$$

$$\frac{BC}{AC} = \frac{DC}{BC}$$
 ନେଇ, ପାଇବା $BC^2 = AC$. DC

(c) ର ପ୍ରମାଣ : (ଚିତ୍ର 1.59 ଦୃଷ୍ଟବ୍ୟ)

ଉପପାଦ୍ୟରେ ପ୍ରମାର୍ଶିତ :
$$\Delta ABD \sim \Delta BCD \implies \frac{BD}{DC} = \frac{AD}{BD} = \frac{AB}{BC}$$

$$\frac{\mathrm{BD}}{\mathrm{DC}} = \frac{\mathrm{AD}}{\mathrm{BD}}$$
 ନେଇ, ପାଇବା $\mathrm{BD^2} = \mathrm{AD}$. DC

ସଦ୍ଶ ସୟନ୍ଧୀୟ କେତେକ ଉଦାହରଣ :

ଉଦାହରଣ - 1 : ପ୍ରମେୟ - 1.4 ର ପ୍ରୟୋଗ କରି, ପିଥାଗୋରାସ୍ ଉପପାଦ୍ୟ ପ୍ରମାଣ କର ।

ଦଭ : $\triangle ABC$ ରେ ∠ABC ଏକ ସମକୋଣ |

ପାମାଶ୍ୟ :
$$AC^2 = AB^2 + BC^2$$

ଅଙ୍କନ :
$$\overline{\mathrm{BD}} \perp \overline{\mathrm{AC}}$$
 (କର୍ଣ୍ଣ) ଅଙ୍କନ କରାଯାଉ ।

ପ୍ରମାଶ :
$$\triangle ABD \sim \triangle ACB$$
 (ପ୍ରମେୟ - 1.4)

$$\Rightarrow$$
 AB^2 = $AD \times AC \ (ଅନୁସିଦ୍ଧାନ୍ତ (a)).....(1)$

ପୁନଷ୍ଟ
$$\Delta BCD \sim \Delta BAC$$
 (ପ୍ରମେୟ - 1.4)

$$\Rightarrow$$
 BC 2 = CD . CA (ଅନୁସିଦ୍ଧାନ୍ତ (b)).....(2)

$$\therefore$$
 AB² + BC² = AD x AC + CD . CA ((1) ଓ (2) ଅନୁଯାୟୀ)

$$= AC (AD + CD) = AC \times AC = AC^{2}$$

ଉଦାହରଣ - 2 : ଦୁଇଟି ସମକୋଣୀ ତ୍ରିଭୁଜ ମଧ୍ୟରେ ଗୋଟିକର କର୍ଷ ଓ ଏକ ବାହୁର ଦୈର୍ଘ୍ୟ ଅନ୍ୟ ତ୍ରିଭୁଜର କର୍ଷ ଓ ଏକ ବାହୁର ଦୈର୍ଘ୍ୟ ସହ ସମାନୁପାତୀ ହେଲେ. ପ୍ରମାଣକର ଯେ ତ୍ରିଭୁଜ ଦ୍ୱୟ ସଦୂଶ ଅଟନ୍ତି ।

ଦତ୍ତ :
$$\Delta ABC$$
 ର $\angle B$ ଏବଂ ΔDEF ର କୋଣ $\angle E$

ପ୍ରତ୍ୟେକ ସମକୋଣ ଏବଂ
$$\frac{AC}{AB} = \frac{DF}{DE}$$
 ।

ପ୍ରାମାଶ୍ୟ : ΔABC ~ ΔDEF

ପ୍ରମାଶ :
$$\frac{AC}{AB} = \frac{DF}{DE}$$
 (ଦ୍ର)

$$\Rightarrow rac{AC^2 - AB^2}{AB^2} = rac{DF^2 - DE^2}{DE^2} \Rightarrow rac{BC^2}{AB^2} = rac{EF^2}{DE^2}$$
 (ପିଥାଗୋରାସ୍ ଉପପାଦ୍ୟ)

(ପମାଣିତ)

C E

(ଚିତ୍ର 1.61)

$$\Rightarrow rac{\mathrm{BC}}{\mathrm{AB}} = rac{\mathrm{EF}}{\mathrm{DE}} \Rightarrow rac{\mathrm{BC}}{\mathrm{EF}} = rac{\mathrm{AB}}{\mathrm{DE}} \,. \,$$
 (ସମାନୁପାତର ଏକାନ୍ତର ପ୍ରକ୍ରିୟା)(1)

ΔABC ଓ ΔDEF ରେ

$$Arr$$
 $brace$ $brace B \cong \angle E$ (ପ୍ରତ୍ୟେକ ସମକୋଣ) $brace BC = rac{AB}{DE}$. ((1) ରେ ପ୍ରମାଣିତ)

$$\therefore \Delta ABC \sim \Delta DEF$$
 (ବା-କୋ-ବା ସାଦୃଶ୍ୟ)

(ପ୍ରମାଣିତ)

ଅନୁଶୀଳନୀ - 1 (d)

('କ' ବିଭାଗ)

- 1. ବନ୍ଧନୀ ମଧ୍ୟରୁ ଠିକ୍ ଉତ୍ତର ବାଛି ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।
- (i) ଚିତ୍ର 1.62 ରେ ଥିବା Δ ABC ରେ m \angle ABC = 90°

ଏବଂ
$$\overline{BD} \perp \overline{AC}$$
 ,

 $m\angle ABD = [m\angle BAD, m\angle DBC, m\angle DCB, 2m\angle BAD]$

- (a) $AB^2 = AD x$ [BC, CD, AC, BD]
- (b) $BC^2 = AC x$ [DC, AD, BD, AB]
- (c) $BD^2 = DC x$ [AC, BC, AB, AD]

('ଖ' ବିଭାଗ)

- 2. ଚିତ୍ର 1.63 ରେ ଥିବା ΔPQR ର m $\angle PQR = 90^{\circ}$ ଏବଂ $\overline{QM} \perp \overline{PR}$
 - (i) QM = 12 ସେ.ମି., ଏବଂ PM = 6 ସେ.ମି. ହେଲେ, PR ନିର୍ଣ୍ଣୟ କର ।
 - (ii) PQ = 6 ସେ.ମି. ଏବଂ PM = 3 ସେ.ମି. ହେଲେ, PR ନିର୍ଣ୍ଣୟ କର ।
 - (iii)~QR=12~ସେ.ମି. ଏବଂ MR=9~ସେ.ମି. ହେଲେ, PM~ନିର୍ଣ୍ଣୟ କର । $_{O}$
 - $(iv) \ PQ = 12 \ {
 m Sq.}$ ମି. ଓ $RM = 7 \ {
 m Sq.}$ ମି. ହେଲେ, PM ନିର୍ଣ୍ଣୟ କର ।

- $(v) \ PQ = 8 \ \mathsf{GQ}.$ ଓ $QR = 15 \ \mathsf{GQ}.$ ହେଲେ, QM ଓ MR ନିର୍ଣ୍ଣୟ କର ।
- 3. ଚିତ୍ର 1.64 ରେ m∠ABC = m∠DCB = 90° \overline{AC} ଓ \overline{BD} ର ଛେଦ ବିନ୍ଦୁ O ଏବ° \overline{AC} \bot \overline{BD} l

OC = 6 ସେ.ମି. ଏବଂ OD = 4 ସେ.ମି. ହେଲେ,

- (i) BO ନିର୍ଣ୍ଣୟ କର; (ii) OA ନିର୍ଣ୍ଣୟ କର;
- (iii) BC ନିର୍ଣ୍ଣୟ କର; (iv) AB ନିର୍ଣ୍ଣୟ କର ଏବଂ
- (v) CD ନିର୍ଣ୍ଣୟ କର;

('ଗ' ବିଭାଗ)

 $4.\ \Delta ABC$ ରେ ∠ABC ସମକୋଣ ଏବଂ $\overline{BD} \perp \overline{AC} \mid AD = p$ ଏକକ ଏବଂ BD = q ଏକକ

ହେଲେ, ପ୍ରମାଣ କର : (i)
$$BC = \frac{q(p+q)}{\sqrt{p^2+q^2}}$$
 (ii) $AB = \frac{p(p+q)}{\sqrt{p^2+q^2}}$

(ii) AB =
$$\frac{p(p+q)}{\sqrt{p^2 + q^2}}$$

5. $\triangle ABC$ ରେ, m∠ABC = 90° ଏବ° $\overline{BD} \perp \overline{AC}$ ହେଲେ, ପ୍ରମାଶ କର ସେ, $AB^2 : BC^2 = AD : DC$ |

- $6.\ \Delta ABC$ ରେ, ∠ABC ସମକୋଶ ଏବଂ $BC^2 = AC$. BD ହେଲେ, ପ୍ରମାଶ କର ଯେ \overline{BD} ହେଉଛି ∠ABC ର ସମଦ୍ୱିଖଣ୍ଡକ ।
 - 7. ଚିତ୍ର 1.65 ରେ ଥିବା ଚତୁର୍ଭୁଜ ABCD ରେ

$$m\angle ABC = m\angle ADC = 90^{\circ} \ AB = AD$$
 |

କର୍ଣ୍ବୟର ଛେଦବିନ୍ଦୁ M ହେଲେ, ପ୍ରମାଣ କର ଯେ

 $AM \times MC = DM^2$ (ପ୍ରମେୟ -1.4 ର ପ୍ରୟୋଗ କରି ପ୍ରମାଣ କର) ।

 $8.\ \Delta\ ABC$ ରେ m $\angle ABC = 90^\circ$, $\overline{BD} \perp \overline{AC}$ ଏବଂ $\angle ABC$ ର ସମଦ୍ୱିଖଣ୍ଡକ \overline{AC} କୁ E ବିହୁରେ ଛେଦ କରେ । ପ୍ରମାଣ କର ଯେ $AE^2:EC^2=AD:DC$

9. \triangle ABC ରେ, m∠BAC = 90° ଏବ° $\overline{AD} \perp \overline{BC}$ ା

ପ୍ରମାଶ କର ଯେ
$$\Delta ADC$$
 ର କ୍ଷେତ୍ରଫଳ = $\frac{ABxAC^3}{2BC^2}$

 $10.\ \Delta\ ABC$ ର ∠ABC ସମକୋଣ, $\overline{BD} \perp \overline{AC}$ ଏବଂ ∠BAC ର ସମଦ୍ୱିଖଣ୍ଡକ \overline{BD} କୁ E ବିନ୍ଦୁରେ ଛେଦକରେ । ପ୍ରମାଶ କର ଯେ $BE^2:DE^2=AC:AD$ ।

<mark>ବୃତ୍ତ</mark> (CIRCLE)

2.1 ମୌଳିକ ଧାରଣା (Basic Concepts) :

ତୁମେ ପୂର୍ବରୁ କମ୍ପାସ୍ ସାହାଯ୍ୟରେ ବୃତ୍ତ ଅଙ୍କନ କରି ତା' ମଧ୍ୟରେ ତ୍ରିଭୁଚ୍ଚ ବର୍ଗଚିତ୍ର ଆଦି ଅନ୍ତର୍ଲିଖନ କରିବା ଶିଖିଛ । ଏହି ଅଧ୍ୟାୟରେ ଆମେ ବୃତ୍ତ ସମ୍ଭନ୍ଧୀୟ ଅଧିକ ତଥ୍ୟ ଆଲୋଚନା କରିବା । ସରଳରେଖା, ତ୍ରିଭୁଚ୍ଚ, ଆୟତଚିତ୍ର ଓ ବର୍ଗଚିତ୍ର ପରି, ବୃତ୍ତ ଏକ ସମତଳରେ ଥିବା କେତେଗୁଡ଼ିଏ ବିନ୍ଦୁର ସେଟ୍ ବା ସମାହାର ଅଟେ । ବର୍ତ୍ତମାନ କେଉଁ ବିନ୍ଦୁମାନଙ୍କର ସମାହାରରେ ବୃତ୍ତ ଗଠିତ, ତାହା ଆମେ ବୃତ୍ତର ସଂଜ୍ଞାରୁ ଜାଣିବା ।

ସଂଜ୍ଞା : ଗୋଟିଏ ସମତଳରେ ଅବସ୍ଥିତ କୌଣସି ଏକ ଦଉ ବିନ୍ଦୁଠାରୁ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଦୂରତାରେ ଉକ୍ତ

ସମତଳରେ ଅବସ୍ଥିତ ସମୟ ବିନ୍ଦୁର ସେଟ୍କୁ ବୃତ୍ତ (Circle) କୁହାଯାଏ ।

ଚିତ୍ର 2.1 ରେ ବହି ପୃଷାର ସମତଳରେ O ଏକ ଦଉ ବିନ୍ଦୁ । O ବିନ୍ଦୁ ଠାରୁ r ଏକକ ଦୂରତାରେ ପୂର୍ବୋକ୍ତ ସମତଳରେ ଥିବା ସମୟ ବିନ୍ଦୁର ସେଟ୍ S କୁ ଆମେ ଏକ ବୃତ୍ତ କହିବା । S ଅନ୍ତର୍ଭୁକ୍ତ ଯେକୌଣସି ବିନ୍ଦୁ O ଠାରୁ r ଦୂରତାରେ ଅଛି । ଅର୍ଥାତ୍ OA = OB = OC = r । ଏଠାରେ O କୁ ବୃତ୍ତ S ର **କେନ୍ଦ୍ର (Centre)** ଏବଂ ନିର୍ଦ୍ଦିଷ୍ଟ ଦୂରତା r କୁ ବୃତ୍ତର **ବ୍ୟାସାର୍ଦ୍ଦ (radius)** କୁହାଯାଏ ।

ସୁତରାଂ କେବଳ ବୃତ୍ତର କେନ୍ଦ୍ର ଓ ବ୍ୟାସାର୍ଦ୍ଧ ଦଉ ଥିଲେ ବୃତ୍ତଟି ସମ୍ପୂର୍ତ୍ତ ରୂପେ ନିର୍ଦ୍ଧିତ ହୋଇଥାଏ । ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ କହିଲେ ଆମେ ବୃତ୍ତର କେନ୍ଦ୍ର ଓ ବୃତ୍ତ ଉପରିସ୍ଥ ଯେ କୌଣସି ବିନ୍ଦୁର ଦୂରତାକୁ ବୁଝିଥାଉ ଏବଂ ବୃତ୍ତର ଏକ ବ୍ୟାସାର୍ଦ୍ଧ କହିଲେ ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ କେନ୍ଦ୍ର O ର ସଂଯୋଜକ ରେଖାଖଣ୍ଡକୁ ବୁଝିଥାଉ । ଅର୍ଥାତ **ବୃତ୍ତର** 'ବ୍ୟାସାର୍ଦ୍ଧ' ଏକ ଧନାମୂକ ବାୟବ ସଂଖ୍ୟା ଏବଂ 'ଏକ ବ୍ୟାସାର୍ଦ୍ଧ' ହେଉଛି ଏକ ରେଖାଖଣ୍ଡ ।

ଯଥା : ଚିତ୍ର 2.2ରେ ଥିବା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ହେଉଛି 2 ସେ.ମି.(ଯଦି OA=2 ସେ.ମି.) ଏବଂ \overline{OA} ଓ \overline{OB} ହେଉଛନ୍ତି ଉକ୍ତ ବୃତ୍ତର ଦୁଇଟି ବ୍ୟାସାର୍ଦ୍ଧ ।

ଦ୍ରଷ୍ଟବ୍ୟ :

- 1. ଆମର ସମୟ ଆଲୋଚନାରେ ବୃତ୍ତ ଏବଂ ଅନ୍ୟ ସମୟ ବିନ୍ଦୁ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ହେବେ ।
- 2. ପ୍ରମେୟ 2.2ରେ ଆମେ ପ୍ରମାଣ କରିବା ଯେ ଏକ ସରଳରେଖାରେ ନ ଥିବା ଯେକୌଣସି ତିନୋଟି ବିନ୍ଦୁ ଦେଇ ଗୋଟିଏ ମାତ୍ର ବୃତ୍ତ ଅଙ୍କନ କରାଯାଇପାରିବ । ତେଣୁ ବୃତ୍ତ ଉପରିସ୍ଥ ଯେକୌଣସି ତିନୋଟି ବିନ୍ଦୁ ଦ୍ୱାରା ବୃତ୍ତଟି ସୂଚିତ ହୁଏ । ଉପରୋକ୍ତ ବୃତ୍ତ S କୁ (ଚିତ୍ର 2.1) ଆମେ ABC ବୃତ୍ତ ନାମରେ ପ୍ରକାଶ କରିପାରିବା ।
 - 3. ABC ବୃତ୍ତକୁ ସାଙ୍କେତିକ ଚିହ୍ନ 'ABC ⊙' ଦ୍ୱାରା ମଧ୍ୟ ପ୍ରକାଶ କରାଯାଏ ।
 - କ୍ୟା (Chord) : ବୃତ୍ତର ଦୁଇଟି ପୃଥକ୍ ବିନ୍ଦୁର ସଂଯୋଜକ ରେଖାଖଣ୍ଡକୁ ବୃତ୍ତର ଏକ କ୍ୟା କୁହାଯାଏ । ବ୍ୟାସ (Diameter) : ଯେଉଁ କ୍ୟାରେ ବୃତ୍ତର କେନ୍ଦ୍ର ଅବସ୍ଥିତ ସେହି ଜ୍ୟାକୁ ବୃତ୍ତର ଏକ ବ୍ୟାସ କୁହାଯାଏ ।

ଚିତ୍ର 2.1ରେ \overline{AB} ଏକ ଜ୍ୟା ଏବଂ \overline{AC} ଏକ ବ୍ୟାସ । ଯେହେତୁ ବୃତ୍ତର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁ କେନ୍ଦ୍ରଠାରୁ ସମଦୂରବର୍ତ୍ତୀ, AO=OC । ଯଦି ABC ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ r=2 ସେ.ମି. ହୁଏ ତେବେ AC=AO+OC=4 ସେ.ମି. ହେବ । ଅର୍ଥାତ୍ **ଗୋଟିଏ ବୃତ୍ତରେ ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ହେଲେ ବ୍ୟାସ 2r ଏକକ ହେବ । ଫଳରେ ବୃତ୍ତର 'ଏକ ବ୍ୟାସ' ହେଉଛି ଏକ ରେଖାଖଣ୍ଡ ଯାହାର ପ୍ରାନ୍ତବିନ୍ଦୁ ଦ୍ୱୟ ବୃତ୍ତ ଉପରିସ୍ଥ ଏବଂ ମଧ୍ୟବିନ୍ଦୁ ହେଉଛି କେନ୍ଦ୍ର । ମାତ୍ର 'ବ୍ୟାସ' ହେଉଛି ଏକ ଧନାତ୍ମକ ବାଣ୍ଡବ ସଂଖ୍ୟା । ବୃତ୍ତର କେନ୍ଦ୍ର ପ୍ରତ୍ୟେକ ବ୍ୟାସର ମଧ୍ୟବିନ୍ଦୁ । ଚିତ୍ର 2.1ରେ A ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ଅନେକ ଗୁଡ଼ିଏ ଜ୍ୟା ଅଙ୍କନ କରି ଲକ୍ଷ୍ୟ କରିପାରିବ ଯେ \overline{AC} ବ୍ୟାସର ଦୈର୍ଘ୍ୟ, ଉକ୍ତ ବୃତ୍ତର ଯେକୌଣସି ଜ୍ୟାର ଦୈର୍ଘ୍ୟଠାରୁ ବୃହ୍ତର । ଅର୍ଥାତ୍ ଗୋଟିଏ ବୃତ୍ତରେ ଏକ ବ୍ୟାସ ହେଉଛି ଏହାର ଦୀର୍ଘତମ କ୍ୟା ।**

ବୃତ୍ତର ଅନ୍ତଦେଶ ଓ ବହିଦେଶ:

ଏକ ବୃତ୍ତର ସମତଳରେ ଅବସ୍ଥିତ ବିନ୍ଦୁମାନଙ୍କର ଉକ୍ତ ବୃତ୍ତର କେନ୍ଦ୍ରଠାରୁ ଦୂରତା ପରିପ୍ରେକ୍ଷୀରେ ସମତଳଟି ତିନୋଟି ଅଂଶରେ ବିଭକ୍ତ ହୁଏ । ଯଥା :

- (i) ଅନ୍ତର୍ଦେଶ : ବୃତ୍ତର କେନ୍ଦ୍ରଠାରୁ ବୃତ୍ତର ସମତଳ ଉପରିସ୍ଥ ଯେଉଁ ସମଞ ବିନ୍ଦୁର ଦୂରତା ଉଦ୍ଧି ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧଠାରୁ କ୍ଷୁଦ୍ରତର ସେଗୁଡ଼ିକୁ ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ (Interior Points) କୁହାଯାଏ । ଅର୍ଥାତ୍ କେନ୍ଦ୍ର ବିନ୍ଦୁ O ଥିବା ଏକ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ହେଲେ ଉକ୍ତ ସମତଳସ୍ଥ ଏକ ବିନ୍ଦୁ P ଲାଗି ଯଦି OP < r ହୁଏ ତେବେ P ଉକ୍ତ ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ହେବ । ଚିତ୍ର 2.3 ରେ P ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ । ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁମାନଙ୍କର ସମାହାରକୁ ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶ (Interior) କୁହାଯାଏ ।
- (ii) **ବହିର୍ଦ୍ଦେଶ –** ବୃତ୍ତର କେନ୍ଦ୍ରଠାରୁ ବୃତ୍ତର ସମତଳ ଉପରିସ୍ଥ ଯେଉଁ ବିନ୍ଦୁମାନଙ୍କର ଦୂରତା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧଠାରୁ ବୃହତ୍ତର ସେଗୁଡ଼ିକୁ ବୃତ୍ତର **ବହିଃସ୍ଥ ବିନ୍ଦୁ (Exterior points)** କୁହାଯାଏ । ଅର୍ଥାତ୍ ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ

ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ହେଲେ ଯଦି ବୃତ୍ତର ସମତଳସ୍ଥ ବିନ୍ଦୁ Q ଲାଗି OQ > r ହୁଏ ତେବେ Q ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ । ଚିତ୍ର 2.3ରେ Q ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ । ବୃତ୍ତର ବହିଃସ୍ଥ ବିନ୍ଦୁମାନଙ୍କର ସମାହାରକୁ ବୃତ୍ତର **ବହିର୍ଦ୍ଦେଶ (exterior)** କୁହାଯାଏ । ଏଠାରେ ମନେରଖିବା ଉଚିତ ହେବ ଯେ, ବୃତ୍ତ ଓ ଏହାର ଅନ୍ତର୍ଦ୍ଦେଶ ବ୍ୟତୀତ ସମତଳର ଅନ୍ୟ ସମୟ ବିନ୍ଦୁମାନଙ୍କୁ ବୃତ୍ତର ବହିଃସ୍ଥ ବିନ୍ଦୁ କୁହାଯାଏ ।

(iii) **ବୃତ୍ତ** ଉପରିସ୍ଥ ସମୟ ବିନ୍ଦୁ ।

ଚିତ୍ର 2.3ରେ ଚିତ୍ରିତ ଅଂଶଟି ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶ । \overline{AB} ବୃତ୍ତର ଯେକୌଣସି ଜ୍ୟା ହେଲେ A ଓ B ପ୍ରାନ୍ତ ଦ୍ୱୟ ବ୍ୟତୀତ ଜ୍ୟାର ଅନ୍ୟ ସମୟ ବିନ୍ଦୁ ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଅବସ୍ଥିତ । ଏହାର ପ୍ରମାଣ ପ୍ରମେୟ – 2.1, ଅନୁସିଦ୍ଧାନ୍ତ – 2ର ପରବର୍ତ୍ତୀ ଅନୁଚ୍ଛେଦ ଦେଖ ।

ମନ୍ତବ୍ୟ - ଏକ ବୃଭର ଅନ୍ତଦେଶ ଏକ **ଭଭଳ** ସେଟ୍ ଅଟେ ।

ସଂଜ୍ଞା : 1. ସର୍ବସମ ବୃତ୍ତ : ଏକାଧିକ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ସମାନ ହେଲେ ସେମାନଙ୍କୁ ସର୍ବସମ ବୃତ୍ତ (Congruent Circles) କୁହାଯାଏ ।

2. **ସର୍ବସମ ଜ୍ୟା :** ଗୋଟିଏ ବୃତ୍ତରେ ବା ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତରେ ଯେଉଁ ଜ୍ୟାମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ ସେମାନଙ୍କୁ **ସର୍ବସମ ଜ୍ୟା (Congruent Chords)** କୁହାଯାଏ ।

ପରବର୍ତ୍ତୀ ସମୟରେ ଆମେ ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତରେ ଥିବା ସର୍ବସମ ଜ୍ୟା ସୟକ୍ଷରେ ଆଲୋଚନା କରିବା । 2.2 ଜ୍ୟା ସୟକ୍ଷୀୟ କେତେକ ଉପପାଦ୍ୟ :

ଉପପାଦ୍ୟ - 7

ବୃତ୍ତର କେନ୍ଦ୍ରରୁ ଏହାର ବ୍ୟାସ ଭିନ୍ନ ଏକ ଜ୍ୟା ପ୍ରତି ଅଙ୍କିତ ଲୟ ଉକ୍ତ ଜ୍ୟାକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ I

[The perpendicular drawn from the centre of a circle to a chord, other than a diameter, bisects the chord.]

 ${f o}$ ଉ: S ବୃତ୍ତରେ ${f \overline{AB}}$ ବ୍ୟାସ ଭିନ୍ନ ଏକ ଜ୍ୟା, ବୃତ୍ତର କେନ୍ଦ୍ର O ଠାରୁ ${f \overline{AB}}$ ପ୍ରତି ଲୟ ${f \overline{OD}}$ ।

ପାମାଶ୍ୟ : AD = DB

ଅଙ୍କନ : $\overline{\mathrm{OA}}$ ଓ $\overline{\mathrm{OB}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ OAD ଏବଂ Δ OBD ମଧ୍ୟରେ

OA = OB (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ), \overline{OD} ସାଧାରଣ ବାହୁ ।

 $\angle ODA \cong \angle ODB$ (ପ୍ରତ୍ୟେକ ଏକ ସମକୋଣ) ∴ $\triangle OAD \cong \triangle OBD$ (ସମକୋଣ-କର୍ଣ୍ଣ - ବାହୁ)

∴ AD = DB (ପ୍ରମାଣିତ)

ଅନୁସିଦ୍ଧାନ୍ତ : ଗୋଟିଏ ସରଳରେଖା ବୃତ୍ତକୁ ଦୁଇଟିରୁ ଅଧିକ ବିନ୍ଦୁରେ ଛେଦ କରେ ନାହିଁ ।

ପ୍ରମାଣ : ଯଦି ସୟବ ହୁଏ ତେବେ ସରଳରେଖାଟି ବୃତ୍ତକୁ କ୍ରମାନ୍ୱୟରେ ତିନୋଟି ଭିନ୍ନ ବିନ୍ଦୁ A,B ଓ C ରେ ଛେଦ କରୁ । O ବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ \overline{OD} , \overline{AB} ପ୍ରତି ଲୟ ହେଉ ।

ବର୍ତ୍ତମାନ \overline{AB} ଓ \overline{AC} ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ଏବଂ ଉପପାଦ୍ୟ – 7ରୁ ଏହା ସୁକ୍ଷୟ ଯେ $\overline{AD} = \overline{DB}$ ଏବଂ $\overline{AD} = \overline{DC}$ । ସୁତରାଂ $\overline{DB} = \overline{DC}$ । ମାତ୍ର \overline{D} -B-C ହେତୁ ଏହା ଅସୟବ । ସୁତରାଂ ସରଳରେଖାଟି ବୃତ୍ତକୁ ଦୁଇଟିରୁ ଅଧିକ ବିନ୍ଦୁରେ ଛେଦ କରିବ ନାହିଁ ।

(ସୂଚନା : ଏଠାରେ ଆମେ ପ୍ରାମାଣ୍ୟର ବିପରୀତ ଉକ୍ତିକୁ ଆଧାର କରି ତର୍କ ଦ୍ୱାରା ଏକ ଅସୟବ ପରିସ୍ଥିତିରେ ପହଞ୍ଚିଲେ; ଯାହା ପ୍ରାମାଣ୍ୟର ସତ୍ୟତାକୁ ପ୍ରମାଣ କରୁଛି । ଏହି ପ୍ରକାର ପ୍ରମାଣକୁ ଗଣିତରେ **ଅସୟବାୟନ ପ୍ରଣାଳୀ** (Method of contradiction) କୁହାଯାଏ ।

ପ୍ରମେୟ 2.1 (ଉପପାଦ୍ୟ - 7 ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ) :

କୌଣସି ବୃତ୍ତର ବ୍ୟାସ ଭିନ୍ନ ଏକ କ୍ୟାର ମଧ୍ୟବିନ୍ଦୁ ଓ କେନ୍ଦ୍ରକୁ ଯୋଗ କରୁଥିବା ରେଖା ଉକ୍ତ କ୍ୟା ପ୍ରତି ଲୟ ଅଟେ ।

[The line joining the centre of a circle to the midpoint of a chord, other than a diameter, is perpendicular to the chord.]

ଦଉ : S ବୃତ୍ତରେ \overline{AB} ବ୍ୟାସ ଭିନ୍ନ ଏକ ଜ୍ୟା, O ବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ D, \overline{AB} ର ମଧ୍ୟବିନ୍ଦ୍ର I

ପ୍ରାମାଣ୍ୟ : $\stackrel{\longleftarrow}{\mathrm{OD}} \perp \overline{\mathrm{AB}}$

ଅଙ୍କନ : $\overline{\mathrm{OA}}$ ଓ $\overline{\mathrm{OB}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ OAD ଏବଂ Δ OBD ମଧ୍ୟରେ

$$:: \left\{ egin{aligned} \mathrm{OA} = \mathrm{OB} \ (\, orall \, \mathrm{e} \, \mathrm{e} \, \mathrm{o} \, \mathrm{a} \, \mathrm{e} \, \mathrm{e} \, \mathrm{e} \, \mathrm{e} \, \mathrm{o} \, \mathrm{e} \,$$

$$\therefore \Delta ADO \cong \Delta BDO$$
(ବାହୁ- ବାହୁ - ବାହୁ)

 \Rightarrow m \angle ADO = m \angle BDO

କିନ୍ତୁ m $\angle ADO + m\angle BDO = 180^{\circ}$ (ସନ୍ନିହିତ ପରିପୂରକ କୋଣ)

$$\Rightarrow$$
 m \angle ADO = m \angle BDO = 90 $^{\circ}$ ଅର୍ଥାତ୍ $\stackrel{\longleftarrow}{OD}$ \bot \overline{AB} (ପ୍ରମାଶିତ)

ଅନୁସିଦ୍ଧାନ୍ତ - 1 :

ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର ଏହାର ଯେକୌଣସି କ୍ୟାର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ଉପରେ ଅବସ୍ଥିତ । କାରଣ ଯେ କୌଣସି କ୍ୟାର ମଧ୍ୟବିନ୍ଦୁଠାରେ କେବଳ ଗୋଟିଏ ମାତ୍ର ଲୟ ଅଙ୍କିତ ହୋଇପାରିବ ।

ଅନ୍ସିଦ୍ଧାନ୍ତ - 2:

- (i) ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ଅସମାନ୍ତର କ୍ୟାର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ଦୃୟ ବୃତ୍ତର କେନ୍ଦ୍ରରେ ମିଳିତ ହୁଅନ୍ତି । କାରଣ ଅନୁସିଦ୍ଧାନ୍ତ - 1 ଅନୁଯାୟୀ ବୃତ୍ତର କେନ୍ଦ୍ର ପ୍ରତ୍ୟେକ ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ଉପରେ ଅବସ୍ଥିତ ।
- (ii) ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟାର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟଦ୍ୱୟ ବୃତ୍ତର କେନ୍ଦ୍ର ଦେଇ ଯାଇଥିବା ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ (କାହିଁକି ?) I

ବର୍ତ୍ତମାନ ଡୁମେ ପ୍ରମାଣ କରିପାରିବ ଯେ \overline{AB} ଏକ ବୃତ୍ତର ଜ୍ୟା ହେଲେ A ଓ B ଭିନ୍ନ ଜ୍ୟାଟିର ଅନ୍ୟ ସମସ୍ତ ବିନ୍ଦୁ ବୃତ୍ତର ଅନ୍ତଃସ୍ଥୁ ବିନ୍ଦୁ । ଚିତ୍ର 2.7ରେ P, \overline{AB} ଜ୍ୟା ଉପରେ ପାନ୍ତ ବିନ୍ଦୁ ଭିନ୍ନୁ ଯେକୌଣସି ଏକ ବିନ୍ଦୁ । $\overline{OD} \perp \overline{AB}$ ହେଲେ $OP^2 = OD^2 + DP^2 \Rightarrow OP^2 < OD^2 + DB^2 \Rightarrow OP^2 < OB^2$ |

ସୁତରାଂ $\mathrm{OP} <$ ବ୍ୟାସାର୍ଦ୍ଧ । ଅର୍ଥାତ୍ P ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ । (ଚିତ୍ରରେ $\mathrm{D} ext{-}\mathrm{P} ext{-}\mathrm{B}$ ନିଆଯାଇଛି ।

ଯଦି P-D-B ହୁଏ ତେବେ ମଧ୍ୟ ପ୍ରମାଣ ଅନୁରୂପ ହେବ ।)

ଯଦି A ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ ଓ P ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ହୁଏ ତେବେ \overrightarrow{AP} ବୃତ୍ତକୁ ଅନ୍ୟ ଏକ ବିନ୍ଦୁରେ ଛେଦ କରିବ । ଏହା ସୃତଃସିଦ୍ଧ ମନେ ହେଉଥିଲେ ହେଁ ଏହାର ଯୁକ୍ତିମୂଳକ ପ୍ରମାଣ କିପରି କରାଯାଇପାରେ ଦେଖିବା । ଚିତ୍ର 2.8ରେ ଥିବା ବୃତ୍ତର କେନ୍ଦ୍ର ${\rm O}$ ଏବଂ ବ୍ୟାସାର୍ଦ୍ଧ ${\rm r}$ ।

P ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ, $\overrightarrow{OD} \perp \overrightarrow{AP}$ ଏବଂ OD = d ହେଉ \vdash ତେଣୁ $d \leq OP \leq r$ ହେବ । ସୂତରା $\sqrt{r^2 - d^2}$ ଏକ ଧନାତ୍ମକ ବାଞ୍ଚବ ସଂଖ୍ୟା । \therefore \overrightarrow{AP} ଉପରେ ଏପରି ଏକ ବିନ୍ଦୁ B ଅଛି ଯେପରିକି D-P-B (କିୟା P-D-B) ଏବଂ DB = $\sqrt{r^2-d^2}$ |

ଆମେ ଜାଣ୍ଡ, ଗୋଟିଏ ନିର୍ଦ୍ଦିଷ୍ଟ ସରଳରେଖା ଅଙ୍କନ କରିବା ନିମନ୍ତେ ଆମେ ଉକ୍ତ ସରଳରେଖା ଉପରିସ୍ଥ ଅତି କମ୍ବରେ ଦୂଇଟି ବିନ୍ଦୁର ଅବସ୍ଥିତି ଜାଣିବା ଆବଶ୍ୟକ । ଅନ୍ୟ ପକ୍ଷରେ ଦୂଇଟି ଦତ୍ତ ବିନ୍ଦୁ ଦେଇ ଆମେ କେବଳ ଗୋଟିଏ ମାତ୍ର ସରଳରେଖା ଅଙ୍କନ କରିପାରିବା । ବର୍ତ୍ତମାନ ପ୍ରଶ୍ର ଉଠେ ଯେ ଗୋଟିଏ ବୃତ୍ତ ଅଙ୍କନ କରିବା ନିମନ୍ତେ ଅତି କମ୍ବରେ କେତୋଟି ବିନ୍ଦୁର ଆବଶ୍ୟକ ଜାଣିବା ।

ଚିତ୍ର 2.9 ରେ A ଓ B ଦୁଇଟି ବିନ୍ଦୁ $\mid D, \overline{AB}$ ର ମଧ୍ୟବିନ୍ଦୁ ଏବଂ \overrightarrow{MN} ରେଖା D ବିନ୍ଦୁରେ \overline{AB} ପ୍ରତି ଲୟ ହୁଅନ୍ତୁ ।

ପ୍ରମେୟ 2.1 ଅନୁସିଦ୍ଧାନ୍ତ -1 ଅନୁସାରେ $\stackrel{\longleftarrow}{MN}$ ଉପରିସ୍ଥ ଯେକୌଣସି ବିନ୍ଦୁ O, A ଏବଂ B ବିନ୍ଦୁ ଦେଇ ଯାଇଥବା (ଅର୍ଥାତ୍ \overline{AB} ଜ୍ୟା ଥିବା) କୌଣସି ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର ହେବ । ଏହା ସୁକ୍ଷଷ୍ଟ ଯେ \overline{AB} ଉକ୍ତ ବୃତ୍ତର ଏକ ଜ୍ୟା ହେବ ଏବଂ OA = OB = ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ । ଅର୍ଥାତ୍ ଦୁଇଟି ବିନ୍ଦୁ A ଓ B ମଧ୍ୟ ଦେଇ ଅସଂଖ୍ୟ ବୃତ୍ତ ରହିଛି । ପରବର୍ତ୍ତୀ ପ୍ରମେୟରେ ଆମେ ପ୍ରମାଣ କରିବା ଯେ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବୃତ୍ତ ନିର୍ଣ୍ଣୟ କରିବା ନିମନ୍ତେ ଅତି କମ୍ବରେ ତିନୋଟି ବିନ୍ଦୁର ଅବସ୍ଥିତି ଜାଣିବା ଆବଶ୍ୟକ । ନିମ୍ନ ଆଲୋଚନାରୁ ଏହା ସୁକ୍ଷଷ୍ଟ ହେବ ।

ପ୍ରମେୟ 2.2 : ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ ନ ଥିବା ଯେକୌଣସି ତିନୋଟି ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ଗୋଟିଏ ଏବଂ କେବଳ ଗୋଟିଏ ବୃତ୍ତ ଅଙ୍କନ କରାଯାଇ ପାରିବ ।

[There is one and only one circle that passes through three non-collinear points.]

ଦଡ : A, B ଓ C ଏକ ସରଳରେଖାରେ ନ ଥିବା ତିନୋଟି ବିନ୍ଦୁ ।

ପ୍ରାମାଣ୍ୟ : A, B ଓ C ବିନ୍ଦୁ ତ୍ରୟ ଦେଇ ଗୋଟିଏ ଏବଂ କେବଳ ଗୋଟିଏ ବୃତ୍ତ ଅଙ୍କନ ସୟବ ।

ଅଙ୍କନ : \overline{AB} ଓ \overline{BC} ଅଙ୍କନ କର । \overrightarrow{PQ} ଏବଂ \overrightarrow{MN} ରେଖାଦ୍ୟ ଯଥାକ୍ରମେ \overline{AB} ଓ \overline{BC} ର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ହୁଅନ୍ତୁ । A, B ଓ C ଏକ ସରଳରେଖାରେ ନ ଥିବାରୁ \overrightarrow{PQ} ଏବଂ \overrightarrow{MN} ରେଖାଦ୍ୟ ପରସ୍ପରକୁ ଛେଦ କରିବେ ଏବଂ ସେହି ଛେଦବିନ୍ଦୁ O ହେଉ । \overline{OA} , \overline{OB} ଏବଂ \overline{OC} ଅଙ୍କନ କର ।

ପ୍ରମାଣ : ଯେହେତୁ O ବିନ୍ଦୁ \overline{AB} ର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ଉପରେ ଅବସ୍ଥିତ ତେଣୁ OA = OB । ସେହିପରି OB = OC । ସୁତରାଂ OA = OB = OC ।

ବର୍ତ୍ତମାନ O ବିନ୍ଦୁକୁ କେନ୍ଦ୍ର କରି OA ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ଏକ ବୃତ୍ତ S ଅଙ୍କନ କଲେ B ଓ C ଉକ୍ତ ବୃତ୍ତ ଉପରିସ୍ଥ ଦୁଇଟି ବିନ୍ଦୁ ହେବେ । ଅର୍ଥାତ୍ A, B ଓ C ବିନ୍ଦୁ ତ୍ରୟ S ବୃତ୍ତ ଉପରିସ୍ଥ ହେବେ ।

ବର୍ତ୍ତମାନ ପ୍ରମାଣ କରିବା ଯେ ଏହିପରି ମାତ୍ର ଗୋଟିଏ ବୃତ୍ତ ଅଙ୍କନ କରାଯାଇପାରିବ । ମନେକର ଆଉ ଏକ ବୃତ୍ତ S' ରହିଅଛି ଯାହା ଉପରେ A,B ଓ C ଅବସ୍ଥିତ । O' ଏହି ବୃତ୍ତ S' ର କେନ୍ଦ୍ର ହେଉ ।

ବର୍ତ୍ତମାନ $O'A = O'B \Rightarrow O'$, \overrightarrow{AB} ର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ \overrightarrow{PQ} ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ । ସେହିପରି O'B = O'C $\Rightarrow O'$, \overrightarrow{BC} ର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ \overrightarrow{MN} ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ । ଅର୍ଥାତ୍ O ଏବଂ O' \overrightarrow{PQ} ଏବଂ \overrightarrow{MN} ରେଖାଦ୍ୱୟର ଦୁଇଟି ଛେଦବିନ୍ଦୁ ଯାହାକି ଅସୟବ, କାରଣ ଦୁଇଟି ସରଳରେଖା ମାତ୍ର ଗୋଟିଏ ବିନ୍ଦୁରେ ପରସ୍କରକୁ ଛେଦ କରନ୍ତି । ସୁତରାଂ O ଏବଂ O' ଅଭିନ୍ନ ଅଟନ୍ତି । ଅତଏବ OA = O'A ତେଣୁ S ଓ S' ଅଭିନ୍ନ ଅଟନ୍ତି । (ପ୍ରମାଣିତ)

ସଂଜ୍ଞା : ଗୋଟିଏ ତ୍ରିଭୁଜର ଶୀର୍ଷବିନ୍ଦୁତ୍ରୟ ଦେଇ ଅଙ୍କିତ ବୃତ୍ତକୁ ଉକ୍ତ ତ୍ରିଭୁଜର ପରିବୃତ୍ତ (Circum-Circle) ଓ ଏହାର କେନ୍ଦ୍ରବିନ୍ଦୁକୁ ଉକ୍ତ ତ୍ରିଭୁଜର ପରିକେନ୍ଦ୍ର (Circum-Centre) କୁହାଯାଏ ।

ଚାରି ବା ତତୋଧିକ ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ସର୍ବଦା ବୃତ୍ତ ଅଙ୍କନ ସୟବ ହୋଇ ନ ପାରେ । ଅନ୍ୟ ପକ୍ଷରେ ଯଦି କୌଣସି ଚତୁର୍ଭୁଳ ବା ବହୁଭୁଳର ଶୀର୍ଷବିନ୍ଦୁମାନେ ଏକ ବୃତ୍ତ ଉପରେ ରହନ୍ତି ତେବେ ସେହି ଚତୁର୍ଭୁଳ ବା ବହୁଭୁଳକୁ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ (inscribed in a circle) ଚତୁର୍ଭୁଜ ବା ବହୁଭୁଜ କୁହାଯାଏ । ପ୍ରମେୟ - 2.2 ଅନୁଯାୟୀ ଏକ ତ୍ରିଭୁଜ ସର୍ବଦା ବୃଭାନ୍ତଲିଖିତ ହୁଏ ।

ଅନୁସିଦ୍ଧାନ୍ତ : ଦୁଇଟି ବୃତ୍ତ ପରୟରକୁ ଦୁଇଟିରୁ ଅଧିକ ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି ନାହିଁ ।

ଯଦି ଏକ ତୃତୀୟ ଛେଦବିନ୍ଦୁ ଥାଏ ତେବେ ଛେଦ ବିନ୍ଦୁ ତ୍ରୟ ଦୁଇଟି ବୃତ୍ତ ଉପରେ ରହିବେ । ପ୍ରମେୟ - 2.2 ଅନୁଯାୟୀ ଏହା ଅସୟବ ।

ପ୍ରଶ୍ମ : ଏକ ସରଳରେଖାରେ ଥିବା ତିନୋଟି ବିନ୍ଦୁ ଦେଇ ଗୋଟିଏ ବୃତ୍ତ ଅଙ୍କନ ସୟବ କି ? (ସୂଚନା : ଯଦି ସନ୍ତବ ତେବେ ସେପରି କ୍ଷେତ୍ରରେ ସରଳରେଖାଟି ସମ୍ଭାବ୍ୟ ବୃତ୍ତକୁ ତିନୋଟି ବିନ୍ଦୁରେ ଚ୍ଛେଦ କରିବ । ଉପପାଦ୍ୟ - 7ର ଅନୁସିଦ୍ଧାନ୍ତକୁ ଏହା ବିରୋଧ କରେ I)

ଉପପାଦ୍ୟ - 8

ଗୋଟିଏ ବୃତ୍ତର ସମାନ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଜ୍ୟାମାନେ କେନ୍ଦ୍ରଠାରୁ ସମଦୂରବର୍ତ୍ତୀ I

[Chords of equal length in a circle are equidistant from the centre.]

ଦର : S ବୂତ୍ତରେ \overline{AB} ଓ \overline{CD} ଦୁଇଟି ଜ୍ୟା ଏବଂ $AB = CD \mid O$ ବୂତ୍ତର କେନ୍ଦ୍ର (ଚିତ୍ର 2.11)

 $\overline{\mathrm{OE}}$ ଏବଂ $\overline{\mathrm{OF}}$ ଯଥାକ୍ମେ $\overline{\mathrm{AB}}$ ଓ $\overline{\mathrm{CD}}$ ପ୍ରତି ଲୟ ।

ପାମାଶ୍ୟ : OE = OF |

ଅଙ୍କନ : $\overline{\mathrm{OB}}$ ଓ $\overline{\mathrm{OC}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : ଯେହେତୁ $\overline{\mathrm{OE}} \perp \overline{\mathrm{AB}}$,

 \overline{OE} , \overline{AB} କୁ ସମଦ୍ୱିଖଣ କରିବ । (ଉପପାଦ୍ୟ - 7)

ସୁତରା°
$$AE = EB \Rightarrow EB = \frac{1}{2} AB$$

ଯେହେତୁ $\overline{\mathrm{OF}} \perp \overline{\mathrm{CD}}$ ପୂର୍ବପରି ଆମେ ପାଇବା $\mathrm{CF} = \frac{1}{2}\mathrm{CD}$ ।

କିନ୍ତୁ
$$AB = CD$$
 (ଦଉ) ∴ $EB = CF$ |

ବର୍ତ୍ତମାନ Δ OEB ଏବଂ Δ OFC ମଧ୍ୟରେ EB = CF (ପୂର୍ବରୁ ପ୍ରମାଣିତ),

OB = OC (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ) ଏବଂ $m\angle OEB = m\angle OFC$ (ପ୍ରତ୍ୟେକ ସମକୋଣ)

$$:: \Delta \text{OEB} \cong \Delta \text{OFC}$$
 (ସମକୋଶ - ବାହୁ - କର୍ଣ୍ଣ)

(ଚିତ୍ର 2.11)

ମନ୍ତବ୍ୟ: ଉପରୋକ୍ତ ଉପପାଦ୍ୟ -8, ଦୁଇଟି (ବା ତତୋଧିକ) ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ମଧ୍ୟ ପ୍ରଯୁଙ୍ଖ । ଏହାକୁ ମୂଳ ଉପପାଦ୍ୟ-8ର ପ୍ରମାଣର ଧାରାରେ ସ୍ଥଳ ବିଶେଷରେ ସାମାନ୍ୟ ପରିବର୍ତ୍ତନ କରି ପ୍ରମାଣ କରାଯାଇ ପାରିବ । ପରବର୍ତ୍ତୀ ସମୟରେ ଆମେ ଦେଖିବା ବୃତ୍ତ ସମ୍ପନ୍ଧୀୟ ଅନେକ ଗୁଡ଼ିଏ ଉପପାଦ୍ୟ / ପ୍ରମେୟ ଯାହା ଗୋଟିଏ ବୃତ୍ତ ନିମନ୍ତେ ଉଲ୍ଲେଖ କରାଯାଇଛି ସେଗୁଡ଼ିକ ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ମଧ୍ୟ ପ୍ରଯୁଙ୍ଖ । ତେବେ ସେଗୁଡ଼ିକର ସ୍ୱତନ୍ତ ପ୍ରମାଣ ଦିଆଯାଇନାହିଁ । ସେଗୁଡ଼ିକ ମୂଳ ଉପପାଦ୍ୟର ପ୍ରମାଣର ଧାରାରେ ହେବ । କେବଳ ଉଦାହରଣ ସ୍ୱରୂପ ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଉପପାଦ୍ୟ - 8ର ଅନୁରୂପ କଥନ ଏବଂ ପ୍ରମାଣ ନିମ୍ବରେ ଦିଆଯାଇଛି ।

କଥନ : ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତର ସମାନ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଜ୍ୟାମାନେ ନିଜ ନିଜ କେନ୍ଦ୍ରଠାରୁ ସମଦୂରବର୍ତ୍ତୀ ।

ଦତ୍ତ : ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ $\mathbf{S_1}$ ଓ $\mathbf{S_2}$ ର କେନ୍ଦ୍ର ଯଥାକ୍ରମେ $\mathbf{O_1}$ ଏବଂ $\mathbf{O_2}$ (ଚିତ୍ର 2.12) ।

(ଚିତ୍ର 2.12)

 \overline{AB} ଓ \overline{CD} ଯଥାକୁମେ $S_{_1}$ ଓ $S_{_2}$ ର ଦୁଇଟି ଜ୍ୟା ଏବଂ AB=CD ।

 $\overline{\mathrm{O_1E}} \perp \overline{\mathrm{AB}}$ ଏବଂ $\overline{\mathrm{O_2F}} \perp \overline{\mathrm{CD}}$ ।

ପ୍ରାମାଶ୍ୟ : $O_1E = O_2F$

ଅଙ୍କନ : $\overline{\mathrm{O_{1}A}}$ ଏବଂ $\overline{\mathrm{O_{2}C}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : ଯେହେତୁ $\overline{\mathrm{O_{l}E}} \perp \overline{\mathrm{AB}}$ ତେଣୁ $\overline{\mathrm{O_{l}E}}$, $\overline{\mathrm{AB}}$ କୁ ସମଦ୍ୱିଖଣ କରିବ ।

ଅର୍ଥାତ୍ $AE = EB \Rightarrow AE = \frac{1}{2} AB$

ସେହେତୁ $\overline{\mathrm{O_2F}} \perp \overline{\mathrm{CD}}$ ତେଣୁ ପୂର୍ବପରି ଆମେ ପାଇବା $\mathrm{CF} = \frac{1}{2}\mathrm{CD}$

କିନ୍ତୁ AB = CD (ଦଉ) | ∴ AE = CF |

ବର୍ତ୍ତିମାନ $\Delta \ {
m O_1EA}$ ଏବଂ $\Delta \ {
m O_2FC}$ ମଧ୍ୟରେ

$${\rm Tr}\left\{ egin{aligned} &{\rm AE}={\rm CF}\;\left({
m Q}\mbox{\it e}\mbox{\it f}_{
m Q}\;{
m Q}\mbox{\it e}\mbox{\it f}_{
m Q}\;{
m Q}\mbox{\it e}_{
m Q}\mbox{\it$$

ପ୍ରମେୟ - 2.3 : ଉପପାଦ୍ୟ - 8ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ :

ଗୋଟିଏ ବୃତ୍ତରେ କେନ୍ଦ୍ରଠାରୁ ସମଦୂରବର୍ତ୍ତୀ ଜ୍ୟାମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ I

[Chords of a circle equidistant from the centre are of equal length.]

ଦଉ : S ବୃଉରେ \overline{AB} ଓ \overline{CD} ଦୁଇଟି ଜ୍ୟା $\mid O$ ବୃଉର କେନ୍ଦ୍ର \mid

 \overline{OE} ଏବଂ \overline{OF} ଯଥାକୁମେ \overline{AB} ଓ \overline{CD} ପ୍ରତି ଲୟ । $\overline{OE} = \overline{OF}$

ପ୍ରାମାଶ୍ୟ : AB = CD

ଅଙ୍କନ : $\overline{\mathrm{OA}}$ ଏବଂ $\overline{\mathrm{OC}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ Δ EO ଏବଂ Δ CFO ମଧ୍ୟରେ

 $\therefore \Delta \text{ AEO } \cong \Delta \text{ CFO } ($ ସମକୋଶ - କର୍ଷ - ବାହୁ $) \Rightarrow \text{AE} = \text{CF } \dots (1)$

 \cdots $\overline{\mathrm{OE}} \perp \overline{\mathrm{AB}}$, $\overline{\mathrm{OE}}$, $\overline{\mathrm{AB}}$ କ୍ୟାକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ (ଉପପାଦ୍ୟ - 7)

 \Rightarrow AE = EB \Rightarrow AB = 2AE

ସେହିପରି $\overline{OF} \perp \overline{CD} \Rightarrow CF = FD \Rightarrow CD = 2CF$

କିନ୍ତୁ $AE = CF \ (1 \ g)$ । ସୁତରାଂ $AB = 2AE = 2CF = CD \ (ପ୍ରମାଶିତ)$

ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ପ୍ରମେୟ - 2.3 ର କଥନ :

ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତରେ ନିଜ ନିଜ କେନ୍ଦ୍ରଠାରୁ ସମଦୂରବର୍ତ୍ତୀ ଜ୍ୟା ମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ ।

ଏହାର ପ୍ରମାଣ ମୂଳ ପ୍ରମେୟ - 2.3 ର ଅନୁରୂପ । ନିଜେ କର ।

ଅନୁସିଦ୍ଧାନ୍ତ - 1 : ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ମଧ୍ୟରେ, କେନ୍ଦ୍ରଠାରୁ ଦୂରବର୍ତ୍ତୀ ଜ୍ୟାର ଦୈର୍ଘ୍ୟ ନିକଟତର ଜ୍ୟାର ଦୈର୍ଘ୍ୟଠାରୁ କ୍ଷୁଦ୍ରତର ।

[Of any two chords of a circle, the length of the one farther from the centre is smaller than the length of the other.] $A \longrightarrow C$

ଦଉ : O ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର ।
$$\overline{AB}$$
 ଓ \overline{CD} ଉକ୍ତ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା । $\overline{OE} \perp \overline{AB}$ ଏବଂ $\overline{OF} \perp \overline{CD}$ । $\overline{OF} > \overline{OE}$ (ଚିତ୍ର 2.14) ।

ପ୍ରାମାଶ୍ୟ: CD < AB

ଅଙ୍କନ : $\overline{\mathrm{OA}}$ ଏବଂ $\overline{\mathrm{OC}}$ ଅଙ୍କନ କର ।

(ଚିତ୍ର 2.13)

(ଚିତ୍ର 2.14)

ପ୍ରମାଣ : Δ OEA ଏବଂ Δ OFC ଦୃୟ ସମକୋଣୀ

$$OE^2 + EA^2 = OA^2$$
 ଏବଂ $OF^2 + FC^2 = OC^2$ (ପିଥାଗୋରାସ ଉପପାଦ୍ୟ ଅନୁଯାୟୀ)

କିନ୍ତୁ OA = OC (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ)

$$\therefore$$
 $OE^2 + EA^2 = OF^2 + FC^2 \implies EA^2 - FC^2 = OF^2 - OE^2 > 0 \ (\because OF > OE \ (ହଉ))$

$$\Rightarrow$$
 FC < EA $\Rightarrow \frac{\text{CD}}{2} < \frac{\text{AB}}{2} [\because \overline{\text{OF}} \perp \overline{\text{CD}} \ \sqrt[4]{9}^{\circ} \overline{\text{OE}} \perp \overline{\text{AB}}]$

$$\Rightarrow$$
 CD < AB (ପ୍ରମାଶିତ)

ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଅନୁସିଦ୍ଧାନ୍ତ -1ର ଅନୁରୂପ ପ୍ରମାଣ ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ । ଏହାର କଥନ ଓ ପ୍ରମାଣ ନିଜେ କର ।

ଅନୁସିଦ୍ଧାନ୍ତ - 2 : ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି କ୍ୟା ମଧ୍ୟରୁ କ୍ଷୁଦ୍ରତର ଜ୍ୟାଟି କେନ୍ଦ୍ରଠାରୁ ଅଧିକ ଦୂରବର୍ତ୍ତୀ ।

(ଅନୁସିଦ୍ଧାନ୍ତ - 1 ର ବିପରୀତ)

[Of any two chords of a circle the smaller one is farther from the centre than the other.]

ଦର : O ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର । \overline{AB} ଓ \overline{CD} ଉକ୍ତ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ।

$$CD < AB \mid \overline{OE} \perp \overline{AB}$$
 ଏବଂ $\overline{OF} \perp \overline{CD}$ (ଚିତ୍ର 2.14 ଦେଖ)

ପାମାଶ୍ୟ: OF > OE

ଅ**ଙ୍କନ :** $\overline{\mathrm{OA}}$ ଏବଂ $\overline{\mathrm{OC}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ OEA ଏବଂ Δ OFC ଦୁଇଟି ସମକୋଣୀ ତ୍ରିଭୁଜରେ

$$m ... OE^2 + EA^2 = OA^2$$
 ଏବଂ $OF^2 + FC^2 = OC^2$ (i) (ପିଥାଗୋରାସଙ୍କ ସୂତ୍ର ଅନୁସାରେ)

କିନ୍ତୁ OA = OC (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ)

$$\therefore$$
 (i) ରୁ $OE^2 + EA^2 = OF^2 + FC^2 \implies OF^2 - OE^2 = EA^2 - FC^2$

$$\Rightarrow$$
 OF² – OE² = $\left(\frac{AB}{2}\right)^2 - \left(\frac{CD}{2}\right)^2$ ($\because \overline{OE} \perp \overline{AB}$ ଏବ° $\overline{OF} \perp \overline{CD}$)

$$\Rightarrow$$
 OF $>$ OE (ପ୍ରମାଶିତ)

ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଅନୁସିଦ୍ଧାନ୍ତ – 2 ର ଅନୁରୂପ ପ୍ରମାଣ ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ । ଏହାର କଥନ ଓ ପ୍ରମାଣ ନିଜେ କର ।

2.3 କ୍ୟା ଦ୍ୱାରା କେନ୍ଦ୍ରରେ ଉତ୍ପନ୍ନ କୋଶ (Angle subtended by the chord at the centre):

 \overrightarrow{AB} ଏକ ରେଖାଖଣ୍ଡ । \overrightarrow{P} , \overrightarrow{AB} ଉପରେ ନ ଥିବା ଯେ କୌଣସି ଏକ ବିନ୍ଦୁ ହେଉ । \overrightarrow{PA} ଓ \overrightarrow{PB} ଦ୍ୱାରା ଉତ୍ପନ୍ନ $\angle APB$ କୁ \overrightarrow{AB} ଦ୍ୱାରା P ଠାରେ ଉତ୍ପନ୍ନ କୋଶ (Angle subtended by \overrightarrow{AB} at P) କୁହାଯାଏ (ଚିତ୍ର 2.15(a)) ।

ସଂଜ୍ଞା : ଗୋଟିଏ ବୃତ୍ତର \overline{AB} ବ୍ୟାସ ଭିନ୍ନ ଏକ ଜ୍ୟା ଏବଂ O କେନ୍ଦ୍ର ବିନ୍ଦୁ ହେଲେ $\angle AOB$ କୁ ଜ୍ୟା \overline{AB} ଦ୍ୱାରା କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କୋଣ ଅଥବା \overline{AB} ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ କେନ୍ଦ୍ରସ୍ଥ କୋଣ (Central angle) କୁହାଯାଏ । ଚିତ୍ର 2.15(b) ଦୃଷ୍ଟବ୍ୟ ।

 $\angle {
m AOB}, \ \overline{
m AB} \$ ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ ଏକ କେନ୍ଦ୍ରସ୍ଥ କୋଣ । କେନ୍ଦ୍ରସ୍ଥ କୋଣ ସମ୍ବନ୍ଧୀୟ ବିଶଦ ଆଲୋଚନା ପରେ ହେବ ।

ଉପପାଦ୍ୟ - 9

ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ସର୍ବସମ କ୍ୟା କେନ୍ଦ୍ରଠାରେ ଯେଉଁ କୋଣ ଉତ୍ପନ୍ନ କରନ୍ତି ସେମାନେ ସର୍ବସମ । [In a circle the angles subtended by two congruent chords at the centre are congruent.]

ଦତ୍ତ : S ବୃତ୍ତରେ O କେନ୍ଦ୍ର ଏବଂ \overline{AB} ଓ \overline{CD} ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା (ଚିତ୍ର 2.16) । \overline{AB} ଓ \overline{CD} କେନ୍ଦ୍ରଠାରେ ଯଥାକ୍ମେ $\angle AOB$ ଏବଂ $\angle COD$ ଉତ୍ପନ୍ନ କରନ୍ତି ।

ପ୍ରାମାଶ୍ୟ : $\angle AOB \cong \angle COD$

ପ୍ରମାଣ : Δ AOB ଏବଂ Δ OCD ମଧ୍ୟରେ

$$\therefore \triangle \text{ OAB} \cong \triangle \text{ OCD } ($$
ବାହୁ-ବାହୁ-ବାହୁ) $\Rightarrow \angle \text{AOB} \cong \angle \text{COD}$

(ପ୍ରମାଶିତ)

ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଉପପାଦ୍ୟ - 9 ର କଥନ : **ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତର ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା ନିଜ** ନିଜ କେନ୍ଦ୍ରଠାରେ ଯେଉଁ କୋଣ ଉତ୍ପନ୍ନ କରନ୍ତି ସେମାନେ ସର୍ବସମ । ଏହାର ପ୍ରମାଣ ନିଜେ କର ।

ପ୍ରମେୟ - 2.4 : ଉପପାଦ୍ୟ - 9 ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ :

ଗୋଟିଏ ବୃତ୍ତର ଦୂଇଟି ଜ୍ୟା ଦ୍ୱାରା କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କୋଣଦୂଇଟି ସର୍ବସମ ହେଲେ କ୍ୟା ଦୂଇଟି ସର୍ବସମ ହେବେ ।

(In a circle the chords subtending congruent angles at the centre are congruent.)

ଦର : S ବୃତ୍ତରେ O କେନ୍ଦ୍ର ଏବଂ \overline{AB} ଓ \overline{CD} ଦୁଇଟି ଜ୍ୟା । ∠ $AOB \cong \angle COD$ (ଚିତ୍ର 2.16)

ପ୍ରାମାଣ୍ୟ : AB = CD

ପ୍ରମାଣ : Δ OAB ଏବଂ Δ OCD ମଧ୍ୟରେ

- $\cdot\cdot\cdot$ OA = OC, OB = OD (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ) ଏବଂ $m\angle AOB = m\angle COD$ (ଦତ୍ତ)
- $\therefore \Delta OAB \cong \Delta OCD$ (ବାହୁ-କୋଣ-ବାହୁ)

$$\Rightarrow AB = CD$$
 (ପ୍ରମାଣିତ)

ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ପ୍ରମେୟ - 2.4 ର ଅନୁରୂପ ପ୍ରମାଣ ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ । ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଏହାର କଥନ:

ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ଦ୍ୱାରା ନିଜ ନିଜ କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କୋଣ ଦୁଇଟି ସର୍ବସମ ହେଲେ ଜ୍ୟା ଦୁଇଟି ସର୍ବସମ ହେବେ । ଏହାର ପ୍ରମାଣ ନିଜେ କର ।

ଅନୁଶୀଳନୀ - 2 (a)

(କ - ବିଭାଗ)

$1. \$ ଉକ୍ତିଟି ଠିକ୍ ଥିଲେ T ଏବଂ ଭୁଲ ଥିଲେ F ଲେଖ I

- i) ଏକ ସମତଳରେ ଥିବା ଏକ ବକ୍ରରେଖାର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁ ଉକ୍ତ ସମତଳ ଉପରିସ୍ଥ ଏକ ଦଉ ବିନ୍ଦୁଠାରୁ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଦୂରତାରେ ଥିଲେ ବକ୍ରରେଖାଟିକୁ ବୃତ୍ତ କୁହାଯାଏ ।
- ii) ବୃତ୍ତର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁ କୌଣସି ଏକ ବ୍ୟାସାର୍ଦ୍ଧର ଏକ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ଅଟେ ।
- iii) ଏକ ବୃତ୍ତର ଅସଂଖ୍ୟ ବ୍ୟାସ ରହିଛି ।
- iv) କେନ୍ଦ୍ର, ବୃତ୍ତର ଏକମାତ୍ର ବିନ୍ଦୁ ଯାହା ବୃତ୍ତର ପ୍ରତ୍ୟେକ ବ୍ୟାସ ଉପରେ ଅବସ୍ଥିତ ।
- m v) ଏକ ଜ୍ୟା ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶକୁ ଯେଉଁ ଦୁଇ ଅଂଶରେ ବିଭକ୍ତ କରେ ସେମାନେ ପ୍ରତ୍ୟେକ ଉତ୍ତଳ ସେଟ୍ ଅଟନ୍ତି ।
- ${
 m vi}$) ବୃତ୍ତର ଏକ ବ୍ୟାସ ଗୋଟିଏ ଜ୍ୟାକୁ ସମଦ୍ୱିଖଣ୍ଡ କଲେ ସେମାନେ ପରୟର ପ୍ରତି ଲୟ ଅଟନ୍ତି ।
- vii) ପ୍ରତ୍ୟେକ ତ୍ରିଭୁଜର ପରିକେନ୍ଦ୍ର ଏହାର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ।
- ${
 m viii})$ ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର, ଏହାର ଏକମାତ୍ର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ଯାହାଠାରୁ ବୃତ୍ତର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁର ଦୂରତା ସମାନ ।
- ix) ଏକ ରଶ୍ମୀ ବୃତ୍ତକୁ ଗୋଟିଏ ମାତ୍ର ବିନ୍ଦୁରେ ଛେଦ କରେ । ତେବେ ରଶ୍ମୀର ଆଦ୍ୟ ବିନ୍ଦୁଟି ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ହେବ ।
- x) ଏକ ବୃତ୍ତରେ \overline{AB} ଓ \overline{BC} ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା ହେଲେ B ବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ, $\angle ABC$ କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।
- (xi) ଗୋଟିଏ ବିନ୍ଦୁ ଦୁଇ ବା ତତୋଧିକ ବୃତ୍ତର କେନ୍ଦ୍ର ହୋଇପାରିବ ନାହିଁ ।
- (xii) ଗୋଟିଏ ସରଳରେଖା ଗୋଟିଏ ବୃତ୍ତକୁ ସର୍ବଦା ଦୁଇଟି ବିନ୍ଦୁରେ ଛେଦ କରେ ।

2. ପ୍ରଦତ୍ତ ସୟାବ୍ୟ ଉତ୍ତରରୁ ଠିକ୍ ଉତ୍ତରଟି ବାଛି ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।					
i)	ଦୁଇଟି ଅସମାନ୍ତର ଜ୍ୟାର ଛେଦବିନ୍ଦୁ ଅଟେ ।				
	a) ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁc) ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ		••		
ii)	P ବିନ୍ଦୁ ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ ହେଲେ ବୃତ୍ତ ଉପରେ P ଠାରୁ ସମଦୂରବର୍ତ୍ତୀ ଯୋଡ଼ା ବିନ୍ଦୁ ଅଛି				
	a) 1 b) 2	c) 8	d) ଅସଂଖ୍ୟ		
iii)	ଗୋଟିଏ ରେଖାଖଣ୍ଡ ସର୍ବାଧିକ ଟି ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ହୋଇ ପାରିବ ।				
	a) 1 b) 2	c) 4	d) ଅସଂଖ୍ୟ		
iv)	ଗୋଟିଏ ରେଖାଖଣ୍ଡ ସର୍ବାଧିକ ଟି ବୃତ୍ତର ଜ୍ୟା ହୋଇପାରିବ ।				
	a) 1 b) 2	c) 4	d) ଅସଂଖ୍ୟ		
v)	ଗୋଟିଏ ବୃତ୍ତରେ ଏକ ଜ୍ୟାର ଗୋଟିଏ ପ୍ରାନ୍ତବିନ୍ଦୁ କେନ୍ଦ୍ରଠାରୁ 5 ସେ.ମି. ଦୂରରେ ଏବଂ ଜ୍ୟାଟିର ମଧ୍ୟବିନ୍ଦୁ କେନ୍ଦ୍ରଠାରୁ 3 ସେ.ମି ଦୂରରେ ଅଛି । ଜ୍ୟାଟିର ଦୈର୍ଘ୍ୟ ସେ.ମି. ।				
	a) 8 b) 1	2 c) 16	d) 20		
(ଖ - ବିଭାଗ)					
3.	ଏକ ବୃତ୍ତର 16 ସେ.ମି. ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଗୋଟିଏ ଜ୍ୟା ଏକ ବ୍ୟାସାର୍ଦ୍ଧ $\overline{\mathrm{OP}}$ ଦ୍ୱାରା D ବିନ୍ଦୂରେ ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ । ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 10 ସେମି. ହେଲେ $\overline{\mathrm{DP}}$ ର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।				
4.	ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର O । ଏକ ଜ୍ୟା \overline{AB} ର ମଧ୍ୟବିନ୍ଦୁ D ହେଲେ ପ୍ରମାଣ କର ଯେ \overline{OD} , $\angle AOB$ କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।				
5.	ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର O । ଏହାର \overline{AB} ଓ \overline{AC} ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା । ପ୍ରମାଣ କର ଯେ \overline{OA} , $\angle BAC$ କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।				
6.	ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର ${ m O}$ ଏବଂ ${ m \overline{AB}}$ ଓ ${ m \overline{CD}}$ ଏହାର ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟା । ${ m P}$ ଓ ${ m Q}$ ଯଥାକ୍ରମେ ${ m \overline{AB}}$ ଓ				
	$\overline{ ext{CD}}$ ର ମଧ୍ୟବିନ୍ଦୁ	$\stackrel{-}{\mathrm{D}}$ ର ମଧ୍ୟବିନ୍ଦୁ ହେଲେ ପ୍ରମାଣ କର ଯେ O ବିନ୍ଦୁ, $\stackrel{\longleftarrow}{\mathrm{PQ}}$ ଉପରିସ୍ଥ ହେବ ।			
7.	ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁଜର ପରିକେନ୍ଦ୍ରଠାରୁ ତ୍ରିଭୁଜର ବାହୁମାନେ ସମଦୂରବର୍ତ୍ତୀ – ପ୍ରମାଣ କର ।				
8.	ପ୍ରମାଶ କର ନେ	ଗ କର ଯେ ବୃତ୍ତରେ ଏକ ବ୍ୟାସ ଏହାର ବୃହତ୍ତମ ଜ୍ୟା । (ସୂଚନା : ଏକ ଜ୍ୟାର କେନ୍ଦ୍ରଠାରୁ ଦୂରତା			
	d≥0 ଏବଂ ବୃ	ତ୍ତର ବ୍ୟାସା	ର୍ଦ୍ଧ r ହେଲେ ଜ୍ୟାର ଦୈର୍ଘ୍ୟ	$2\sqrt{\mathbf{r}^2 - \mathbf{d}^2} \le 2\mathbf{r} = $ ବ୍ୟାସ)	
9.	ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟାର ଏକ ପାର୍ଶ୍ୱରେ ବୃତ୍ତର କେନ୍ଦ୍ର ଅବସ୍ଥିତ । ପ୍ରମାଣ କର ଯେ ଜ୍ୟା ଦ୍ୱୟ ସର୍ବସମ ନୁହଁନ୍ତି ।				

 \overline{AB} ଓ \overline{CD} ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟା । $\overline{AB} = \overline{CD} = 8$ ସେମି. । ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 5 ସେମି. ହେଲେ ଜ୍ୟା ଦ୍ୱୟର ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା ନିର୍ଣ୍ଣୟ କର ।

(ଗ - ବିଭାଗ)

- $11. \ 10$ ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟା \overline{AB} ଓ \overline{CD} ମଧ୍ୟରେ ଦୂରତା 10 ସେମି. । \overline{AB} ଜ୍ୟା କେନ୍ଦ୍ରଠାରୁ 6 ସେ.ମି. ଦୂରରେ ଅବସ୍ଥିତ ହେଲେ \overline{AB} ଓ \overline{CD} ର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
- 12. ଗୋଟିଏ ବୃତ୍ତରେ $\triangle ABC$ ଅନ୍ତର୍ଲିଖିତ ହୋଇଛି । ଯଦି AB = AC ହୁଏ ପ୍ରମାଣ ଯେ $\angle BAC$ ର ସମଦ୍ୱିଖଣ୍ଡକ ରଶ୍ମି ବୃତ୍ତର କେନ୍ଦ୍ର ବିନ୍ଦୁଗାମୀ ଅଟେ ।
- 13. ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ଏକ ବ୍ୟାସ ଦ୍ୱାରା ସମଦ୍ୱିଖଣ୍ଡିତ ହେଲେ ପ୍ରମାଣ କରେ ଯେ ଜ୍ୟା ଦୁଇଟି ସମାନ୍ତର ।
- 14. ପ୍ରମାଣ କର ଯେ ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ପରସ୍କରକୁ ସମଦ୍ୱିଖଣ୍ଡ କଲେ ସେମାନଙ୍କ ଛେଦବିନ୍ଦୁ ବୃତ୍ତର କେନ୍ଦ୍ର ହେବ । (ସୂଚନା : ଅସୟବାୟନ ପ୍ରଣାଳୀ (Method of contradiction) ବ୍ୟବହାର କର)
- 15. ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା \overline{AB} ଓ \overline{BC} , B ଠାରେ 90° କୋଣ ଉତ୍ପନ୍ନ କରନ୍ତି । ବୃତ୍ତର କେନ୍ଦ୍ର O ହେଲେ ପ୍ରମାଣ କର ଯେ A , O ଏବଂ C ଏକ ଏକରେଖୀୟ ।
- 16. ପ୍ରମାଣ କର ଯେ ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜରେ କର୍ତ୍ତର ମଧ୍ୟବିନ୍ଦୁ, ଏହାର ପରିବୃତ୍ତର କେନ୍ଦ୍ର ଅଟେ ।
- \overline{PQ} ଗୋଟିଏ ବୃତ୍ତର କ୍ୟା । P ଓ Q ଠାରେ ଉକ୍ତ କ୍ୟା ପ୍ରତି ଅଙ୍କିତ ଲୟ ବୃତ୍ତକୁ ଯଥାକ୍ରମେ R ଓ S ଠାରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ PQSR ଏକ ଆୟତ ଚିତ୍ର ।
- 18. ଚିତ୍ର 2.17ରେ A ଓ B ଦୁଇଟି ପରସ୍କର ଛେଦୀ ବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ P ଓ Q ବୃତ୍ତ ଦ୍ୱୟର ଛେଦବିନ୍ଦୁ ଅଟନ୍ତି । \overrightarrow{AB} , \overrightarrow{PQ} ସାଧାରଣ ଜ୍ୟାକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ

(ସୂଚନା : \overline{AB} ଓ \overline{PQ} ର ଛେଦବିନ୍ଦୁ C ହେଲେ ΔACP ଓ ΔACQ ଏବଂ ΔAPB ଓ ΔAQB ମଧ୍ୟରେ ତୁଳନା କର)

В

(ଚିତ୍ର 2.18)

- 19. ଚିତ୍ର 2.18ରେ ଦୁଇଟି ବୃତ୍ତ ପରସ୍କରକୁ P ଓ Q ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । P ଠାରେ \overline{PQ} ପ୍ରତି ଅଙ୍କିତ ଲୟ ବୃତ୍ତ ଦ୍ୱୟକୁ A ଓ B ଠାରେ ଛେଦ କରେ ଓ ସେହିପରି Q ଠାରେ \overline{PQ} ପ୍ରତି ଅଙ୍କିତ ଲୟ ବୃତ୍ତ ଦ୍ୱୟକୁ C ଓ D ଠାରେ ଛେଦ କରେ । ପ୍ରମାଣ କର ଯେ AB = CD
- 20.~A ଓ B କେନ୍ଦ୍ର ବିଶିଷ୍ଟ ଦୁଇଟି ବୃତ୍ତ ପରସ୍କରକୁ P ଓ Q ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । P ମଧ୍ୟ ଦେଇ \overline{AB} ସହିତ ସମାନ୍ତର ସରଳରେଖା ବୃତ୍ତ ଦ୍ୱୟକୁ M ଓ N ବିନ୍ଦୁରେ ଛେଦ କଲେ ପ୍ରମାଣ କର ଯେ, MN=2AB । (ସୂଚନା : \overline{AC} ଓ \overline{BD} , \overline{MN} ପ୍ରତି ଲୟ ଅଙ୍କନ କରି ଦର୍ଶାଅ ଯେ, AB=CD)

21. ଚିତ୍ର 2.19 ରେ ଗୋଟିଏ ସରଳରେଖା ଦୁଇଟି ଏକ କେନ୍ଦ୍ରିକ ବୃତ୍ତ \mathbf{S}_1 ଓ \mathbf{S}_2 କୁ ଯଥାକ୍ରମେ $\mathbf{A},\mathbf{C},\mathbf{D}$ ଓ \mathbf{B} ବିନ୍ଦୁରେ ଛେଦ କରୁଛି । ପ୍ରମାଣ କର ଯେ $\mathbf{A}\mathbf{C} = \mathbf{D}\mathbf{B}$ ।

- 22. ଗୋଟିଏ ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ P ମଧ୍ୟ ଦେଇ ଅଙ୍କିତ ଦୁଇଟି ଛେଦକ ବୃତ୍ତକୁ A, B ଏବଂ C, D ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି ଯେପରି P-A-B ଏବଂ P-C-D । ଯଦି AB=CD ହୁଏ, ପ୍ରମାଣ କର ଯେ PA=PC ଏବଂ \overline{AC} । । \overline{BD} ।
- 23. ABC ବୃତ୍ତର କେନ୍ଦ୍ର O । ଏହାର ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା \overline{AB} ଓ \overline{CD} ପର୍ୟତ୍ତକୁ ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ P ଠାରେ ଚ୍ଛେଦ କରନ୍ତି । B ଓ C, \overline{OP} ର ଏକ ପାର୍ଶ୍ୱସ୍ଥ ହେଲେ ପ୍ରମାଣ କର ଯେ,(i) $\overline{PA} = \overline{PC}$ ଏବଂ (ii) \overline{AC} । \overline{BD} । (ସୂଚନା : $\overline{OE} \perp \overline{AB}$ ଏବଂ $\overline{OF} \perp \overline{CD}$ ଅଙ୍କନ କରି O, P ଯୋଗ କର)

2.4 ଚାପ (Arc):

ଚିତ୍ର 2.20ରେ S ଏକ ବୃତ୍ତ ଏବଂ ଉକ୍ତ ବୃତ୍ତ ଉପରେ A ଓ B ଦୁଇଟି ଭିନ୍ନ ବିନ୍ଦୁ ହେଲେ ବୃତ୍ତଟି A ଓ B ବିନ୍ଦୁ ଦ୍ୱାରା ଦୁଇ ଭାଗରେ ବିଭକ୍ତ ହୁଏ I A ଓ B ବିନ୍ଦୁ ସମେତ ପ୍ରତ୍ୟେକ ଭାଗକୁ ଆମେ ଗୋଟିଏ ଗୋଟିଏ ଚାପ କହିବା I ଅନ୍ୟ ପ୍ରକାର କହିଲେ A ଓ B ବିନ୍ଦୁ ଦ୍ୱୟ ସହିତ "A ଠାରୁ B ପର୍ଯ୍ୟନ୍ତ" ବୃତ୍ତର ଏକ ଅବିଚ୍ଛିନ୍ନ ଅଂଶ ହେଉଚ୍ଛି ଏକ ଚାପ I ଚିତ୍ର 2.21ରେ $\stackrel{\longleftarrow}{AB}$, S ବୃତ୍ତର ଏକ ହେଦକ (Secant) I

P, ଚ୍ଛେଦକ \overrightarrow{AB} ର ଏକ ପାର୍ଶ୍ୱରେ ବୃତ୍ତ ଉପରିସ୍ଥ ଅନ୍ୟ ଏକ ବିନ୍ଦୁ ହେଉ । ବୃତ୍ତର ଯେଉଁ ଅଂଶରେ P ବିନ୍ଦୁ ଅଛି ସେହି ଅଂଶଟିକୁ APB ଅଥବା BPA ଚାପ କୁହାଯାଏ । ବର୍ତ୍ତମାନ ଆମେ ଚାପର ସଂଜ୍ଞା ନିମ୍ମମତେ କରିବା ।

ସଂଜ୍ଞା : ଏକ ବୃତ୍ତ ଉପରିସ୍ଥ \mathbf{A} ଓ \mathbf{B} ଦୁଇଟି ବିନ୍ଦୁ ହେଲେ \mathbf{A} ଓ \mathbf{B} ବିନ୍ଦୁ ସମେତ $\overline{\mathbf{A}}\overline{\mathbf{B}}$ କ୍ୟାର ଏକ ପାର୍ଶ୍ୱରେ ଥିବା ବୃତ୍ତ ଉପରିସ୍ଥ ବିନ୍ଦୁମାନଙ୍କ ସେଟ୍କୁ ଏକ ଚାପ କୁହାଯାଏ । ଉକ୍ତ ସେଟ୍ ଅନ୍ତର୍ଭୁକ୍ତ \mathbf{P} ଏକ ବିନ୍ଦୁ ହେଲେ ଉତ୍ପନ୍ନ ଚାପକୁ $\mathbf{A}\mathbf{P}\mathbf{B}$ କିନ୍ୟା $\mathbf{B}\mathbf{P}\mathbf{A}$ ବାପ ରୂପେ ନାମିତ କରାଯାଏ ଏବଂ ଉକ୍ତ ଚାପକୁ $\mathbf{A}\mathbf{P}\mathbf{B}$ କିନ୍ୟା $\mathbf{B}\mathbf{P}\mathbf{A}$ ସଂକେତ ଦ୍ୱାରା ପ୍ରକାଶ କରାଯାଏ ।

 \widehat{APB} ଏକ ଚାପ ହେଲେ \mathbf{A} ଓ \mathbf{B} , ଚାପର ଦୁଇଟି ପ୍ରାନ୍ତବିନ୍ଦୁ (End points) ଅଟନ୍ତି ଏବଂ ଚାପର ଅନ୍ୟ ସମୟ ବିନ୍ଦୁଙ୍କୁ ଚାପର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ (Interior points) କୁହାଯାଏ । \mathbf{Q} , ଛେଦକ \widehat{AB} ର ଅପର ପାର୍ଶ୍ୱରେ (ଚିତ୍ର 2.21) ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ ହେଲେ \widehat{AQB} ଚାପକୁ \widehat{AQB} ବା \widehat{BQA} ସଂକେତ ଦ୍ୱାରା ପ୍ରକାଶ କରିବା ।

A ଓ B ଉଭୟ \overrightarrow{APB} ଏବଂ \overrightarrow{AQB} ଚାପର ପ୍ରାନ୍ତବିନ୍ଦୁ ଅଟନ୍ତି । \overrightarrow{APB} ଓ \overrightarrow{AQB} ଚାପଦ୍ୱୟକୁ ପରୟରର ବିପରୀତ ଚାପ (Opposite arc) କୁହାଯାଏ । ଉକ୍ତ ଚାପ ଦ୍ୱୟର ସଂଯୋଗରେ ସମ୍ପୂର୍ଣ୍ଣ ବୃଉଟି ଗଠିତ ହେଉଥିବାରୁ ଗୋଟିକୁ ଅପରର ପରିପୂରକ ଚାପ (Supplementary arc) ମଧ୍ୟ କୁହାଯାଏ । ଏହି ଚାପଦ୍ୱୟକୁ \overline{AB} କ୍ୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ ବା ଛେଦିତ ଚାପ କୁହାଯାଏ ଏବଂ \overline{AB} କ୍ୟାକୁ ଉଭୟ ଚାପର ସମ୍ପୃକ୍ତ କ୍ୟା (Corresponding chord) କୁହାଯାଏ ।

2.4.1 କୁଦ୍ରଚାପ, ବୃହତ୍ଚାପ ଏବଂ ଅର୍ଦ୍ଧବୃତ୍ତ (Minor arc, Major arc and semi circle) : କୁଦ୍ରଚାପ, ବୃହତ୍ଚାପ :

ଯଦି କୌଣସି ଚାପ \widehat{APB} ର P ବିନ୍ଦୁ ଏବଂ ବୃତ୍ତର କେନ୍ଦ୍ର ବିନ୍ଦୁ ସମ୍ପୃକ୍ତ \overline{AB} ଜ୍ୟାର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ ହୁଅନ୍ତି ତେବେ \widehat{APB} କୁ ଏକ **କ୍ଷୁଦ୍ରଚାପ (Minor arc)** କୁହାଯାଏ । ଏକ କ୍ଷୁଦ୍ରଚାପର ବିପରୀତ ଚାପକୁ **ବୃହତ୍ତାପ** (Major arc) କୁହାଯାଏ ।

ଚିତ୍ର 2.22ରେ \widehat{APB} କ୍ଷୁଦ୍ରଚାପ ଓ \widehat{AQB} ବୃହତ୍ ଚାପ ଅଟନ୍ତି । \widehat{APB} ଏକ କ୍ଷୁଦ୍ରଚାପ ହେଲେ ଏହାକୁ 'AB କ୍ଷୁଦ୍ରଚାପ' ଦ୍ୱାରା ପ୍ରକାଶ କରାଯାଏ ଓ ସେହିପରି \widehat{AQB} ବୃହତ୍ ଚାପକୁ "AB ବୃହତ୍ ଚାପ" ଦ୍ୱାରା ପ୍ରକାଶ କରାଯାଏ । ଅର୍ଦ୍ଧ**୍ୱର** :

ଏକ ବୃତ୍ତରେ କୌଣସି ଚାପର ସମ୍ପୃକ୍ତ ଜ୍ୟା ବୃତ୍ତର ଏକ ବ୍ୟାସ ହେଲେ ଚାପଟିକୁ ଏକ ଅର୍ଦ୍ଧବୃତ୍ତ (Semi circle) କୁହାଯାଏ । ଚିତ୍ର 2.22ରେ \widehat{CQD} ଏବଂ \widehat{CPD} ପ୍ରତ୍ୟେକ ଅର୍ଦ୍ଧବୃତ୍ତ ଅଟନ୍ତି । ସଂଜ୍ଞାନୁସାରେ ଅର୍ଦ୍ଧବୃତ୍ତ ଏକ କ୍ଷୁଦ୍ରଚାପ ବା ବୃହତ୍ତ ଚାପ ନୃହେଁ । ଏକ ଅର୍ଦ୍ଧବୃତ୍ତର ବିପରୀତ ଚାପ ମଧ୍ୟ ଏକ ଅର୍ଦ୍ଧବୃତ୍ତ ।

D

2.4.2 ଚାପର ଦୈର୍ଘ୍ୟ (Length of the arc) :

ଯେପରି ପ୍ରତ୍ୟେକ ରେଖାଖଣ୍ଡର ଦୈର୍ଘ୍ୟ ମାପ ରହିଅଛି ସେହିପରି ବୃତ୍ତରେ ପ୍ରତ୍ୟେକ ଚାପର ଦୈର୍ଘ୍ୟ ମାପ ରହିଅଛି । ଏହାର ମାପ ପ୍ରଣାଳୀ ପରିମିତିରେ ଆଲୋଚନା କରାଯିବ । ତେବେ \overline{AB} ଜ୍ୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଚାପ ଦ୍ୱୟ ମଧ୍ୟରୁ କ୍ଷୁଦ୍ର ଚାପର ଦୈର୍ଘ୍ୟ ବୃହତ୍ ଚାପର ଦୈର୍ଘ୍ୟଠାରୁ କ୍ଷୁଦ୍ରତର । ଚାପର **ଦୈର୍ଘ୍ୟ (length)କୁ**

ଚାପର ଦୈଘ୍ୟ ବୃହତ୍ ଚାପର ଦେଘ୍ୟଠାରୁ କ୍ଷୁଦ୍ରତର । ଚାଧର **ଦେଧ୍ୟ (lengtn)କୁ** $P(\widehat{\delta}_{\overline{Q}}|2.22)$ ℓ ଚିହ୍ନ ଦ୍ୱାରା ସୂଚିତ କରାଯାଏ । ℓ \widehat{A} PQ , \widehat{A} PQ ଚାପର ଦୈର୍ଘ୍ୟମାପକୁ ସୂଚାଏ । ଦୁଇ ବିପରୀତ ଚାପର ଦୈର୍ଘ୍ୟର ସମଷ୍ଟି ବୃତ୍ତର ଦୈର୍ଘ୍ୟ ଅଟେ । ବୃତ୍ତର ଦୈର୍ଘ୍ୟକୁ ବୃତ୍ତର **ପରିଧି (Circumference)** କୁହାଯାଏ । **ସନ୍ନିହିତ ଚାପ (Adjacent arcs):**

ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ଚାପର ଗୋଟିଏ ମାତ୍ର ସାଧାରଣ ବିନ୍ଦୁ ଥିଲେ ଉକ୍ତ ବିନ୍ଦୁଟି ପ୍ରତ୍ୟେକ ଚାପର ଏକ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ହେବ ଏବଂ ଏହିପରି ଦୁଇଟି ଚାପକୁ **ସନ୍ନିହିତ ଚାପ (Adjacent arcs)** କୁହାଯାଏ । ଦୁଇଟି ସନ୍ନିହିତ ଚାପର ସଂଯୋଗରେ ନୂତନ ଚାପ ଗଠିତ ହୁଏ । ଚିତ୍ର 2.22ରେ \widehat{QCA} ଏବଂ \widehat{APB} ଦୁଇଟି ସନ୍ନିହିତ ଚାପର ସଂଯୋଗରେ \widehat{QAB} ଗଠିତ ହେଉଅଛି ।

ମନେରଖ : ଦୂଇଟି ବୃହତ୍ ଚାପ କିୟା ଦୁଇଟି ଅର୍ଦ୍ଧବୃତ୍ତ ସନ୍ନିହିତ ଚାପ ହୋଇପାରିବେ ନାହିଁ ।

2.5 ଚାପ ଦ୍ୱାରା ଉତ୍ପନ୍ତ କୋଶ (Angle subtended by an arc):

ଗୋଟିଏ ବୃତ୍ତରେ (ଚିତ୍ର 2.23) \widehat{APB} ଏକ କ୍ଷୁଦ୍ର ଚାପ | X, \overline{AB} ଜ୍ୟା ଉପରେ ନ ଥିବା ବୃତ୍ତର ସମତଳରେ ଅନ୍ୟ ଏକ ବିନ୍ଦୁ ହେଲେ $\angle AXB$ କୁ \widehat{APB} ଚାପ ଦ୍ୱାରା X ଠାରେ ଉତ୍ପନ୍ନ କୋଣ (angle subtended at X) କୁହାଯାଏ | ବୃତ୍ତର କେନ୍ଦ୍ର O ହେଲେ $\angle AOB$ କୁ \widehat{APB} ଦ୍ୱାରା କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କୋଣ ବା ସଂକ୍ଷେପରେ \widehat{APB} ର କେନ୍ଦ୍ରସ୍ଥ କୋଣ (Central angle) କୁହାଯାଏ | ଅର୍ଥାତ୍ ଏକ କ୍ଷୁଦ୍ର ଚାପ ଦ୍ୱାରା କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କୋଣ ଉକ୍ତ ଚାପର କେନ୍ଦ୍ରସ୍ଥ କୋଣ |

 \overrightarrow{AB} ର P ଯେକୌଣସି ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ହେଲେ $\angle APB$ କୁ \overrightarrow{AB} ଚାପର ଏକ ଅନ୍ତର୍ଲିଖିତ କୋଣ (Inscribed angle) କୁହାଯାଏ । Q, \overrightarrow{APB} ର ବିପରୀତ ଚାପ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ ହେଲେ $\angle AQB$ କୁ ନାପର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ ବା ପରିପୂରକ ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ (Angle subtended at a point on the opposite arc or supplementary arc) କୁହାଯାଏ । (ଚିତ୍ର 2.23 ଦେଖ)

ଆମେ ପୂର୍ବରୁ ଜାଣିଛେ, $\angle AOB$ ଟି \overline{AB} ଜ୍ୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ କେନ୍ଦ୍ରସ୍ଥ କୋଣ । ଏହା ସମ୍ଭ ଯେ \overline{AB} ଜ୍ୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ କେନ୍ଦ୍ରସ୍ଥ କୋଣ ଏବଂ \widehat{AB} କ୍ଷୁଦ୍ରଚାପ ଦ୍ୱାରା ଉତ୍ପନ୍ନ କେନ୍ଦ୍ରସ୍ଥ କୋଣ ଦ୍ୱୟ ଅଭିନ୍ନ (ଚିତ୍ର 2.24 ଦେଖ) । ଚିତ୍ର 2.25ରେ \widehat{AQB} ଏକ ବୃହତ୍ ଚାପ ।

 \widehat{ARB} ଦ୍ୱାରା Q ଠାରେ ଉତ୍ପନ୍ନ କୋଣ $\angle AQB,\ \widehat{AQB}$ ର ଏକ ଅନ୍ତର୍ଲିଖିତ କୋଣ । $\angle ARB,\ \widehat{AQB}$ ର ଏକ ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ ।

2.5.1 କୋଶ ଦ୍ୱାରା ଛେଦିତ ଚାପ (Arc intercepted by an angle) :

ଗୋଟିଏ କୋଣର ବାହୁଦ୍ୱୟ ଏକ ବୃତ୍ତକୁ ଛେଦ କଲେ, କୋଣର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଥିବା ଚାପ, ଯାହାର ପ୍ରାନ୍ତବିନ୍ଦୁଦ୍ୱୟ କୋଣର ଦୁଇବାହୁ ଉପରିସ୍ଥ ହୁଅନ୍ତି, ତାହାକୁ **ଉକ୍ତ କୋଣଦ୍ୱାରା ଛେଦିତ ଚାପ କୁହାଯାଏ ।** ଚିତ୍ର 2.26ରେ $\angle {
m EOF}$ କୋଣ ଦ୍ୱାରା ଛେଦିତ ଚାପ ହେଉଛି $\widehat{
m EQF}$ ଏବଂ $\angle {
m AXB}$ ଦ୍ୱାରା ଛେଦିତ ଚାପଦ୍ୱୟ ହେଲେ $\widehat{
m APB}$ ଏବଂ $\widehat{
m CQD}$ ।

2.6 ଚାପର ଡିଗ୍ରୀ ପରିମାପ (Degree measure of an arc):

ପ୍ରତ୍ୟେକ କ୍ଷୁଦ୍ରଚାପ କେନ୍ଦ୍ରଠାରେ ଏକ କୋଣ ଉତ୍ପନ୍ନ କରେ । କୋଣ ମାପ ପାଇଁ ତିନି ପ୍ରକାର ପରିମାପ; ଯଥା: ଡିଗ୍ରୀ, ରେଡ଼ିଆନ ଓ ଗ୍ରେଡ୍, ବ୍ୟବହୃତ ହୁଏ । ତଦନୁଯାୟୀ ଚାପର ତିନି ପ୍ରକାରର ପରିମାପର ସଂଜ୍ଞା ଦିଆଯାଇପାରିବ । ନିମ୍ବରେ ଯେକୌଣସି ଚାପର ଡିଗ୍ରୀ ପରିମାପର ସଂଜ୍ଞା ଦିଆଯାଇଛି ।

ସଂଜ୍ଞା : ଗୋଟିଏ ଚାପ \widehat{APB} ର ଡିଗ୍ରୀ ପରିମାପ 0 ଓ 360 ମଧ୍ୟବର୍ତ୍ତୀ ଏକ ବାୟବ ସଂଖ୍ୟା ଯାହା m \widehat{APB} ଦ୍ୱାରା ସୂଚିତ ହୁଏ ଏବଂ ନିମୁମତେ ସ୍ଥିରୀକୃତ ହୁଏ :

O ବୃତ୍ତର କେନ୍ଦ୍ର ହେଲେ,

ସଂଜ୍ଞାନୁଯାୟୀ ଏକ ଚାପ ଓ ଏହାର ବିପରୀତ ଚାପର ଡିଗ୍ରୀ ପରିମାପର ସମଷ୍ଟି 360° I

ଚିତ୍ର 2.27ରେ
$$\overline{AC}$$
 ବ୍ୟାସ ଓ m∠AOB = 120° ହେଲେ m \overrightarrow{APB} = 120° , m \overrightarrow{APC} = 180° , m \overrightarrow{APC} = 360° - 120° = 240° ହେବ ।

(ସୂଚନା: ଚାପର ଡିଗ୍ରୀ ପରିମାପ ପରି ଏହାର ରେଡ଼ିଆନ୍ ପରିମାପ 0 ଓ 2π ମଧ୍ୟରେ ଏକ ବାୟବ ସଂଖ୍ୟା ଏବଂ ଗ୍ରେଡ଼ ପରିମାପ 0 ଓ 400 ମଧ୍ୟରେ ଏକ ବାୟବ ସଂଖ୍ୟା । ଉଚ୍ଚତର ଗଣିତରେ ରେଡ଼ିଆନ୍ ପରିମାପର ବହୁଳ ବ୍ୟବହାର ହୁଏ । ଏହାର ଆଲୋଚନା ପରିମିତିରେ କରାଯିବ । ଏଠାରେ କେବଳ ଏତିକି କୁହାଯାଇପାରେ ଯେ ଗୋଟିଏ ଚାପର ଦୈର୍ଘ୍ୟ ସମ୍ପୃକ୍ତ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ସହ ସମାନ ହେଲେ ଚାପଟିର କେନ୍ଦ୍ରସ୍ଥ କୋଣର ରେଡ଼ିଆନ୍ ପରିମାଣ $1^{\rm c}$ ଅଟେ ଏବଂ ଡିଗ୍ରୀ ପରିମାଣ $\frac{180}{\pi}$ ଅଟେ । ସାଧାରଣ ଭାବେ ଯେକୌଣସି ଚାପ $\widehat{{\bf APB}}$ ର ରେଡ଼ିଆନ୍ ପରିମାଣ $\frac{{\it l} \widehat{{\bf APB}}}{{\it chillow}}$)

ଚିତ୍ର 2.28ରେ \widehat{AXP} ଓ \widehat{PYB} ଦୁଇଟି ସନ୍ନିହିତ ଚାପ ଏବଂ P ସେମାନଙ୍କର ସାଧାରଣ ବିନ୍ଦୁ । ଉକ୍ତ ଚାପଦ୍ୱୟର ସଂଯୋଗରେ ଗଠିତ \widehat{APB} ର ଡିଗ୍ରୀ ପରିମାପ ସମ୍ପୃକ୍ତ ଚାପଦ୍ୱୟର ଡିଗ୍ରୀ ପରିମାପର ସମଷ୍ଟି ହେବ ।

ଅଧୀତ m
$$\widehat{APB} = m \widehat{AXP} + m \widehat{PYB}$$

ସେହିପରି ସନ୍ନିହିତ ଚାପର ଦୈର୍ଘ୍ୟକୁ ବିଚାରକୁ ନେଲେ ଆମେ ପାଇବା

$$\ell \stackrel{\frown}{APB} = \ell \stackrel{\frown}{AXP} + \ell \stackrel{\frown}{PYB}$$

ଏହାର ପ୍ରମାଣ ଆମର ଆଲୋଚନା ପରିସରଭୁକ୍ତ ନୁହେଁ ।

2.6.1 ଚାପର ସର୍ବସମତା (Congruence of arcs) :

ସଂଜ୍ଞା : ଗୋଟିଏ ବୃତ୍ତରେ (ଅଥବା ଦୁଇ ସର୍ବସମ ବୃତ୍ତରେ) ଦୁଇଟି ଚାପର ଡିଗ୍ରୀ ପରିମାପ ସମାନ ହେଲେ ଚାପ ଦୁଇଟି ସର୍ବସମ (Congruent) ହୁଅନ୍ତି ।

ଚିତ୍ର 2.29ରେ m∠AOB = m∠COD
$$\Leftrightarrow$$
 \overrightarrow{APB} \cong \overrightarrow{CQD} । ଏଥିରୁ ସୁସ୍କଷ୍ଟ ଯେ

- (i) ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ସର୍ବସମ କ୍ଷୁଦ୍ରଚାପର କେନ୍ଦ୍ରସ୍ଥ କୋଣଦ୍ୱୟ ସର୍ବସମ ଏବଂ ବିପରୀତ କ୍ରମେ ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି କ୍ଷୁଦ୍ରଚାପର କେନ୍ଦ୍ରସ୍ଥ କୋଣଦ୍ୱୟ ସର୍ବସମ ହେଲେ କ୍ଷୁଦ୍ର ଚାପଦ୍ୱୟ ସର୍ବସମ ହେବେ ノ
- (ii) ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି କ୍ଷୁଦ୍ରଚାପ ସର୍ବସମ ହେଲେ ସେମାନଙ୍କର ବିପରୀତ ବୃହତ୍ ଚାପ ଦ୍ୱୟ ମଧ୍ୟ ସର୍ବସମ ହେବେ । ଏହାର ବିପରୀତ ଉକ୍ତିଟି ମଧ୍ୟ ସତ୍ୟ ।

ମନେରଖ : ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସର୍ବସମ ଚାପର ଦୈର୍ଘ୍ୟ ସମାନ ହୁଏ ଏବଂ ବିପରୀତ କ୍ରମେ ସମାନ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଚାପଦ୍ୱୟ ସର୍ବସମ ହୁଅନ୍ତି ।

ଉପପାଦ୍ୟ - 10

ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସର୍ବସମ ଚାପ ସହ ସମ୍ପୃକ୍ତ କ୍ୟାଦ୍ୱୟ ସର୍ବସମ ।

(Corresponding chords of two congruent arcs in a circle are congruent.)

ଦତ୍ତ : \overline{ABC} ବୃତ୍ତରେ \overline{O} କେନ୍ଦ୍ର ଏବଂ \widehat{AXB} ଓ \widehat{CYD} ଦୁଇଟି ସର୍ବସମ କ୍ଷୁଦ୍ର ଚାପ । \overline{AB} ଓ \overline{CD} ଚାପଦ୍ୱୟର ସମ୍ପୃକ୍ତ ଜ୍ୟା (ଚିତ୍ର 2.30) ।

(ଯଦି \widehat{AXB} ଓ \widehat{CYD} ଦୁଇଟି ସର୍ବସମ ବୃହତ୍ ଚାପ ହୁଅନ୍ତି ତେବେ ସେମାନଙ୍କର ବିପରୀତ ଚାପଦ୍ୱୟ ସର୍ବସମ କ୍ଷୁଦ୍ରଚାପ ହେବେ । ସୁତରାଂ କେବଳ କ୍ଷୁଦ୍ର ଚାପ ପାଇଁ ପ୍ରମାଣ ଯଥେଷ୍ଟ ।)

ପ୍ରାମାଣ୍ୟ : $\overline{AB} \cong \overline{CD}$

ଅଙ୍କନ : $\overline{\mathrm{OA}}$, $\overline{\mathrm{OB}}$, $\overline{\mathrm{OC}}$ ଏବଂ $\overline{\mathrm{OD}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ OAB ଏବଂ Δ OCD ମଧ୍ୟରେ

$$OA = OC, OB = OD$$
 (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ)

(ଚିତ୍ର 2.30) (m $\angle AOB = m$ $\angle COD$ $(\cdot \cdot \cdot \widehat{AXB} \cong \widehat{CYD})$ ହେତୁ ସେମାନଙ୍କର ଡ଼ିଗ୍ରୀ ପରିମାପ ସମାନ) ଅତଏବ $\triangle OAB \cong \triangle OCD$ (ବାହୁ - କୋଣ - ବାହୁ ସର୍ବସମତା)

$$\Rightarrow AB = CD \Rightarrow \overline{AB} \cong \overline{CD}$$

(ପ୍ରମାଣିତ)

- ମନ୍ତବ୍ୟ 1 : ଉପରୋକ୍ତ ଉପପାଦ୍ୟ –10 ରେ \widehat{AXB} ଓ \widehat{CYD} ଚାପଦ୍ୱୟ ଦୁଇଟି ଅର୍ଦ୍ଧବୃତ୍ତ ହେଲେ ସେମାନଙ୍କ ସହ ସମ୍ପୃକ୍ତ କ୍ୟା ଦ୍ୱୟ ସର୍ବସମ ହେବେ କାରଣ ସମ୍ପୃକ୍ତ କ୍ୟା ଦ୍ୱୟ ଏକା ବୃତ୍ତର ଦୁଇଟି ବ୍ୟାସ ଅଟନ୍ତି ।
- 2. ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଉପପାଦ୍ୟ 10 ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ । ଅର୍ଥାତ୍ **ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତରେ ଦୁଇଟି** ସର୍ବସମ ଚାପ ସହ ସମ୍ପୃକ୍ତ ଜ୍ୟା ଦୃୟ ସର୍ବସମ । ଏହାର ପ୍ରମାଣ ଉପପାଦ୍ୟ–10 ର ପ୍ରମାଣର ଅନୁରୂପ ହେବ ।

ପ୍ରମେୟ - 2.5 : ଉପପାଦ୍ୟ - 10 ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ :

କୌଣସି ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ସର୍ବସମ ହେଲେ ସେମାନଙ୍କ ସହ ସମ୍ପୃକ୍ତ (i) କ୍ଷୁଦ୍ରଚାପ ଦ୍ୱୟ ସର୍ବସମ ଏବଂ (ii) ବୃହତ୍ ଚାପ ଦ୍ୱୟ ସର୍ବସମ ।

[If two chords of a circle are congruent, then the corresponding (i) minor arcs are congruent and (ii) major arcs are congruent.]

ଦତ୍ତ : \overrightarrow{AB} ଓ \overrightarrow{CD} କ୍ୟା ସହ ସମ୍ପୃକ୍ତ କୁଦ୍ରଚାପ ଏବଂ \overrightarrow{AB} ଓ \overrightarrow{CD} ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା । \overrightarrow{AXB} ଓ \overrightarrow{CYD} ଯଥାକୁମେ \overrightarrow{AB} ଓ \overrightarrow{CD} ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ କୁଦ୍ରଚାପ ଏବଂ \overrightarrow{AYB} ଓ \overrightarrow{CXD} ସମ୍ପୃକ୍ତ ବୃହତ୍ ଚାପ । (ଚିତ୍ର 2.31)

ପ୍ରାମାଶ୍ୟ :
$$(i)$$
 \widehat{AXB} \cong \widehat{CYD} ଏବଂ (ii) \widehat{AYB} \cong \widehat{CXD}

ଅଙ୍କନ : \overline{OA} , \overline{OB} , \overline{OC} ଏବଂ \overline{OD} ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ OAB ଏବଂ Δ OCD ମଧ୍ୟରେ

 $\Rightarrow AYB \cong CXD$

ମନ୍ତବ୍ୟ : ପ୍ରମେୟ - 2.5, ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ମଧ୍ୟ ପ୍ରଯୁକ୍ୟ । ଏହାର କଥନ ଲେଖି ନିଜେ ପ୍ରମାଣ କରିବାକୁ ଚେଷ୍ଟା କର ।

((ii) ପ୍ରମାଣିତ)

2.6. 2 ଗୋଟିଏ ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣ ସମ୍ପର୍କିତ ଏକ ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ ତଥ୍ୟ :

ପ୍ରମେୟ - 2.6 : ଏକ ବୃତ୍ତରେ କୌଣସି ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣର ପରିମାଣ ଏହାର ବିପରୀତ ଚାପର ଡିଗୀ ପରିମାପର ଅର୍ଦ୍ଧେକ ।

[In a circle, the measure of an inscribed angle of an arc is half the degree measure of the opposite arc.]

ଦ୍ର : APB ବୃତ୍ତରେ O କେନ୍ଦ୍ର । \angle APB, $\stackrel{\frown}{APB}$ ର ଏକ ଅନ୍ତର୍ଲିଖିତ କୋଣ । $\stackrel{\frown}{AXB}$, $\stackrel{\frown}{APB}$ ର ବିପରୀତ ଚାପ (ଚିତ୍ର 2.32) ।

ପ୍ରାମାଶ୍ୟ : $m \angle APB = \frac{1}{2}m \widehat{AXB}$

ଅଙ୍କନ : \overrightarrow{PO} ବୃତ୍ତକୁ D ବିନ୍ଦୁରେ ଛେଦ କରୁ । \overline{AO} , \overline{BO} ଅଙ୍କନ କର । ପ୍ରମାଣ : ଏଠାରେ ତିନିଗୋଟି ସମ୍ଭାବନା ଅଛି । ସମ୍ଭାବନାତ୍ରୟ ହେଲେ –

- (i) APB ଏକ କ୍ଷୁଦ୍ରଚାପ (ଚିତ୍ର 2.32 (a)),
- (ii) \widehat{APB} ଏକ ଅର୍ଦ୍ଧିବୃତ୍ତ (ଚିତ୍ର 2.32 (b)) ଏବଂ
- (iii) \widehat{APB} ଏକ ବୃହତ୍ ଚାପ (ଚିତ୍ର 2.32 (c))

ବର୍ତ୍ତମାନ ଚିତ୍ର 2.32 (a), (b) ଓ (c) ନିମନ୍ତେ Δ OAP ରେ

$$AO = PO$$
 (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ) \Rightarrow m $\angle OAP = m\angle OPA$... (1)

 $\angle {
m AOD}$ ବହିଃସ୍ଥ କୋଣ $\Rightarrow {
m m} \angle {
m AOD} = {
m m} \angle {
m OAP} + {
m m} \angle {
m OPA}$ (ଅନ୍ତଃସ୍ଥ ଦୂରବର୍ତ୍ତୀ)

ସେହିପରି $\triangle OPB$ ରୁ ପାଇବା m $\angle BOD = 2m\angle OPB$ (3)

(2) ଓ (3)ରୁ ଆମେ ପାଇବା m $\angle AOD + m \angle BOD = 2m \angle OPA + 2m \angle OPB$

$$\Rightarrow$$
 m \angle AOD + m \angle BOD = 2m \angle APB (4)

ବର୍ତ୍ତମାନ ଚିତ୍ର (c) ରେ

$$2m\angle APB = m\angle AOD + m\angle BOD = m\angle AOB$$
 [(4) - ଦ୍ୱାରା]

$$\Rightarrow$$
 m \angle APB = $\frac{1}{2}$ m \angle AOB = $\frac{1}{2}$ m $\stackrel{\frown}{AXB}$ (ପ୍ରମାଣିତ) ପୁନଣ୍ଟ ଚିତ୍ର (b)ରେ

$$2m\angle APB = m\angle AOD + m\angle BOD [(4) - ଦ୍ୱାରା]$$
 $= 180^0 \ (\widehat{APB} \ ଅର୍ଦ୍ଧିବୃତ୍ତ ହେତୁ \overline{AB} ବ୍ୟାସ)$

$$\Rightarrow$$
 m $\angle APB = \frac{180}{2}^{\circ} = \frac{1}{2} \, \text{m} \, \widehat{AXB} \, (\because \widehat{AXB} \, \text{ମଧ୍ୟ ଏକ ଅର୍ଦ୍ଧିବୃତ୍ତ)} \, (ପ୍ରମାଶିତ)$

(∵ ∠AOD ଓ ∠AOP ପରସ୍କର ସନ୍ନିହିତ ପରିପୂରକ)

ସୁତରା°
$$2m\angle APB = m\angle AOD + m\angle BOD \ [(4) - ଦ୍ୱାରା]$$
$$= 360^{0} - (m\angle AOP + m\angle BOP) \ [(5) \ \Im \ (6) \ \ \Im]$$
$$= 360^{0} - m\angle AOB$$

[∠AOP ଓ ∠BOP ଦ୍ୟ ସନୁହିତ ଏବଂ P, ∠AOB ର ଅନ୍ତର୍ଦେଶରେ ଅବସ୍ଥିତ]

$$= m \stackrel{\frown}{AXB} \Rightarrow m \angle APB = \frac{1}{2} m \stackrel{\frown}{AXB} [Qମାଶିତ]$$

ଉଦାହରଣ ସ୍ୱରୂପ, ଚିତ୍ର 2.32 (a)ରେ \widehat{AXB} ର ବିପରୀତ ଚାପ \widehat{APB} ର P ଠାରେ ଉତ୍ପନ୍ନ କୋଣ $\angle APB$ ର ପରିମାଣ, \widehat{AXB} ର ଡିଗ୍ରୀ ପରିମାପର ଅର୍ଦ୍ଧେକ ।

ମନ୍ତବ୍ୟ : \widehat{APB} ବୃହତ୍ ଚାପ କ୍ଷେତ୍ରରେ ଦିଆଯାଇଥିବା ଚିତ୍ର 2.32 (c) ରେ O ବିନ୍ଦୁଟି $\angle APB$ ର ଅନ୍ତର୍ଦ୍ଦେଶରେ ରହିଅଛି । ଯଦି ବିନ୍ଦୁଟି $\angle APB$ ର ବହିର୍ଦ୍ଦେଶରେ ରହେ (ଚିତ୍ର 2.33) ତେବେ ପ୍ରମାଣରେ ସାମାନ୍ୟ ପରିବର୍ତ୍ତନ ହେବ ।

ଚିତ୍ର 2.33ରେ

(ଚିତ୍ର 2.33)

ଅନୁସିଦ୍ଧାନ୍ତ - 1 :

- (i) ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସର୍ବସମ ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣଦ୍ୱୟ ସର୍ବସମ । ବିପରୀତ କ୍ରମେ, ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣଦ୍ୱୟ ସର୍ବସମ ହେଲେ ଚାପଦ୍ୱୟ ସର୍ବସମ । [ଚିତ୍ର 2.34 (a)]
- (ii) ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସର୍ବସମ ଚାପର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ କୋଣଦ୍ୱୟ ସର୍ବସମ । ବିପରୀତ କ୍ରମେ, ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ଚାପର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ କୋଣଦ୍ୱୟ ସର୍ବସମ ହେଲେ ଚାପଦ୍ୱୟ ସର୍ବସମ । [ଚିତ୍ର 2.34~(b)]

(a) ପ୍ରମାଣ : (i) ଚିତ୍ର 2.34 (a) ନିମନ୍ତେ :

ଦତ୍ତ : $\widehat{AXB} \cong \widehat{CYD}$ । $\angle APB$ ଓ $\angle CQD$ ସେମାନଙ୍କର ଦୁଇଟି ଅନ୍ତର୍ଲିଖିତ କୋଣ ।

ପ୍ରାମାଣ୍ୟ: ∠APB ≅∠CQD

ପ୍ରମାଣ : $\widehat{AXB} \cong \widehat{CYD} \Rightarrow \widehat{AYB} \cong \widehat{CXD}$ (ବିପରୀତ ଚାପ)

$$\Rightarrow m \stackrel{\frown}{AYB} = m \stackrel{\frown}{CXD} (Q^{\circ}Q) \dots (1)$$

ସୁତରା $^{\circ}$ (1) \Rightarrow \angle APB \cong \angle CQD

ବିପରୀତ କ୍ରମେ $\angle APB \cong \angle CQD \Rightarrow m \angle APB = m \angle CQD$

$$\Rightarrow$$
 $\widehat{AYB} \cong \widehat{CXD}$ (ସଂଜ୍ଞା) \Rightarrow $\widehat{AXB} \cong \widehat{CYD}$ (ବିପରୀତ ଚାପ) (ପ୍ରମାଣିତ)

(ii) ଚିତ୍ର 2.34 (b) ନିମନ୍ତେ ପ୍ରମାଣ ନିଜେ କର ।

(ସୂଚନା: $\angle APB$ ଓ $\angle CQD$ ଯଥାକ୍ରମେ $\stackrel{\frown}{AXB}$ ଓ $\stackrel{\frown}{CYD}$ ର ବିପରୀତ ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣ ଅଟନ୍ତି ।)

ମନ୍ତବ୍ୟ : ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଅନୁସିଦ୍ଧାନ୍ତ – 1 ର ପ୍ରମାଣ ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ ।

ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ S_1 ଓ S_2 ରେ $\widehat{AXB}\cong\widehat{CYD}$ ଓ $\angle ARB$ ଏବଂ $\angle CSD$ ଯଥାକ୍ରମେ ସେମାନଙ୍କର ଦୁଇଟି ଅନ୍ତର୍ଲିଖିତ କୋଣ ହେଲେ $\angle ARB\cong\angle CSD$ ହେବ । ସେହିପରି \widehat{AXB} ଓ \widehat{CYD} ର ବିପରୀତ ଚାପଦ୍ୱୟର ଅନ୍ତର୍ଲିଖିତ ଦୁଇଟି କୋଣ $\angle APB$ ଏବଂ $\angle CQD$ ମଧ୍ୟ ସର୍ବସମ ହେବେ । ଏଥିପାଇଁ ପ୍ରମାଣ ନିଜେ କର ।

ଅନୁସିଦ୍ଧାନ୍ତ - 2: (i) ଗୋଟିଏ ବୃତ୍ତରେ କୌଣସି ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣଗୁଡ଼ିକ ସର୍ବସମ ।

(ii) ଗୋଟିଏ ବୃତ୍ତରେ କୌଣସି ଚାପର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ କୋଣଗୁଡ଼ିକ ସର୍ବସମ ।

ଚିତ୍ର 2.36ରେ \widehat{AXB} ର ଡିନୋଟି ଅନ୍ତର୍ଲିଖିତ କୋଣ $\angle APB, \angle AQB$ ଏବଂ $\angle ARB$ ମଧ୍ୟରୁ ପ୍ରତ୍ୟେକର ପରିମାଣ ବିପରୀତ ଚାପ \widehat{AYB} ର ଡିଗୀ ପରିମାପର ଅର୍ଦ୍ଧେକ (ପ୍ରମେୟ-2.6) ।

ସୁତରା° m
$$\angle$$
APB = m \angle AQB = m \angle ARB = $\frac{1}{2}$ m $\stackrel{\frown}{AYB}$ (i)

- $\Rightarrow \widehat{\mathsf{AYB}}$ ର ବିପରୀତ ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣଗୁଡ଼ିକ ସର୍ବସମ ।
- $\Rightarrow \widehat{AXB}$ ର ଅନ୍ତର୍ଲିଖିତ କୋଣଗୁଡ଼ିକ ସର୍ବସମ ।

ଅନୁସିଦ୍ଧାନ୍ତ - 3 : ଏକ ଅର୍ଦ୍ଧବୃତ୍ତର ଅନ୍ତର୍ଲିଖିତ କୋଣ ଏକ ସମକୋଣ ।

ଅନୁସିଦ୍ଧାନ୍ତ - 4 : କୌଣସି ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣ ଏକ ସମକୋଣ ହେଲେ ଚାପଟି ଏକ ଅର୍ଦ୍ଧବୃତ୍ତ ।

୍ର ପ୍ରମେୟ- 2.6ର ପ୍ରମାଣ ଅନ୍ତର୍ଗତ ସୟାବନା (ii) ଚିତ୍ର 2.32 (b) ରୁ ଏହା ସୁକ୍ଷଷ୍ଟ । ତଥାପି ଗୁରୁତ୍ୱ ଦୃଷ୍ଟିରୁ

ଅନୁସିଦ୍ଧାନ୍ତ – 3 ଓ 4 ର ସ୍ୱତନ୍ତ ପ୍ରମାଣ ନିମ୍ନରେ ଦିଆଯାଇଛି ।

ଅନୁସିଦ୍ଧାନ୍ତ - 3 ର ପ୍ରମାଣ :

ଦଉ : S ବୃଭରେ BAC ଏକ ଅର୍ଦ୍ଧବୃଭ । (ଚିତ୍ର 2.37)

ପ୍ରାମା**ଣ୍ୟ :** ∠BAC ଏକ ସମକୋଣ ।

ଅଙ୍କନ : O ବୃତ୍ତର କେନ୍ଦ୍ର ହେଲେ \overline{OA} , \overline{OB} ଓ \overline{OC} ଅଙ୍କନ କର ।

ପ୍ରମାଣ : BAC ଅର୍ଦ୍ଧବୃତ୍ତ ହେତୁ $\overline{\mathrm{BC}}$ ବୃତ୍ତର ବ୍ୟାସ ।

 $\Delta {
m BAO}$ ରେ ${
m OB} = {
m OA}$ (ଏକା ବୂଉର ବ୍ୟାସାର୍ଦ୍ଧ) \Rightarrow m∠ ${
m OAB} =$ m∠ ${
m OBA}$

ସେହିପରି ΔCAO ରେ m $\angle OAC = m\angle OCA$

ସୁତରା $^{\circ}$ m \angle OAB + m \angle OAC = m \angle OBA + m \angle OCA

- \Rightarrow m \angle BAC = m \angle OBA + m \angle OCA
- $\Rightarrow 2m\angle BAC = m\angle BAC + m\angle OBA + m\angle OCA = 180^{0}$ [$\triangle ABC$ ର କୋଶମାନଙ୍କର ପରିମାଣର ସମଷ୍ଟି 180^{0}]

 \Rightarrow m $\angle BAC = 90^\circ$ ଅର୍ଥାତ୍ $\angle BAC$ ଏକ ସମକୋଶ । (ପ୍ରମାଶିତ) ଅନୁସିଦ୍ଧାନ୍ତ - 4ର ପ୍ରମାଶ :

ଦତ୍ତ: S ବୃତ୍ତରେ $\angle BAC,\;\widehat{BAC}$ ର ଏକ ଅନ୍ତର୍ଲିଖିତ କୋଣ ଏବଂ $\angle BAC$ ଏକ ସମକୋଣ (ଚିତ୍ର 2.38) ।

ପ୍ରାମାଣ୍ୟ : $\widehat{B} A \widehat{C}$ ଏକ ଅର୍ଦ୍ଧବୃତ୍ତ ।

(ଚିତ୍ର 2.36)

ଅଙ୍କନ : O ବୃତ୍ତର କେନ୍ଦ୍ର ହେଲେ \overline{AO} , \overline{BO} ଏବଂ \overline{CO} ଅଙ୍କନ କର । \overrightarrow{AO} ବୃତ୍ତକୁ D ବିନ୍ଦୁରେ ଛେଦ କରୁ ।

ପ୍ରମାଣ : Δ ABO ରେ OB = OA (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ)

 \Rightarrow m \angle OBA = m \angle OAB(i)

∠BOD, △ABO ର ଏକ ବହିଃସ୍ଥ କୋଣ ।

 \therefore m \angle BOD = m \angle OBA + m \angle OAB = 2m \angle OAB [(i)ଦ୍ୱାରା]

ସେହିପରି ପ୍ରମାଣ କରାଯାଇପାରେ ଯେ, m∠COD = 2m∠OAC

 \therefore m \angle BOD + m \angle COD = 2m \angle OAB + 2m \angle OAC = 2m \angle BAC = 180⁰

 $[\cdot \cdot \cdot \text{m} \angle \text{BAC} = 90^{\circ} \text{ (ଦଉ)}]$

 $\Rightarrow \overrightarrow{OB}$ ଓ \overrightarrow{OC} ପରୟର ବିପରୀତ ରଶ୍ମୀ । ଅର୍ଥାତ $B,\,O,\,C$ ଏକ ରେଖୀୟ ।

O କେନ୍ଦ୍ର ହେତୁ \overline{BC} ଏକ ବ୍ୟାସ $\Rightarrow \widehat{BAC}$ ଏକ ଅର୍ଦ୍ଧବୃତ୍ତ । (ପ୍ରମାଶିତ)

2.7 ବୃଉଖୟ, ବୃଉଖୟସୁ କୋଣ ଏବଂ ବୃଉକଳା

(Segment, angle inscribed in a segment and sector):

2.7.1 ବୃଉଖଣ :

ବୃତ୍ତର ଏକ କ୍ୟା ଏବଂ କ୍ୟା ସହ ସମ୍ପୃକ୍ତ କୌଣସି ଏକ ଚାପର ସଂଯୋଗରେ ଉତ୍ପନ୍ନ ସେଟ୍କୁ ଏକ ବୃତ୍ତଖଣ୍ଡ କୁହାଯାଏ । ଚିତ୍ର 2.39ରେ \overline{AB} କ୍ୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଏକ ବୃତ୍ତଖଣ୍ଡ ହେଉଛି AXBA। \widehat{AXB} ଏକ ବୃହତ୍ତ ଚାପ ହୋଇଥିବା ଯୋଗୁଁ AXBA ଏକ ବୃହତ୍ତ ବୃତ୍ତଖଣ୍ଡ (Major Segment) । ସେହିପରି ଅନୁରୂପ କାରଣରୁ AYBA ଏକ କ୍ଷୁଦ୍ର ବୃତ୍ତଖଣ୍ଡ (Minor Segment) ।

2.7.2 ବୃତ୍ତଖଣ୍ଡସ୍ଥ କୋଣ :

କୌଣସି ଚାପର ଏକ ଅନ୍ତର୍ଲିଖିତ କୋଣକୁ ସମ୍ପୃକ୍ତ ବୃତ୍ତଖଣ୍ଡସ୍ଥ କୋଣ (Angle inscribed in a segment) କୁହାଯାଏ । ଚିତ୍ର 2.39ରେ $\angle ACB$, AXBA ବୃତ୍ତଖଣ୍ଡସ୍ଥ କୋଣ ଅଟେ । X

ସେହିପରି ∠ADB, AXBA ବୃଭଖଣ୍ଡସ୍ଥ ଅନ୍ୟ ଏକ କୋଣ ଅଟେ ।

ପ୍ରମେୟ -2.6 ଅନୁସିଦ୍ଧାନ୍ତ -2 ର ନିମୁ ବିକଳ୍ପ କଥନଟି ସୁସ୍କଷ୍ଟ :

କୌଣସି ଏକ ବୃଭଖଣ୍ୟସୁ ସମୟ କୋଣ ସର୍ବସମ ।

ଚିତ୍ର 2.39 ରେ m∠ACB = m∠ADB |

ସେହିପରି ପ୍ରମେୟ - 2.6, ଅନୁସିଦ୍ଧାନ୍ତ - 3 ର ବିକଳ୍ପ କଥନଟି ମଧ୍ୟ ସୁକ୍ଷୟ ।

ଅର୍ଦ୍ଧ ବୃତ୍ତଖଣ୍ଡସ୍ଥ କୋଣ ଏକ ସମକୋଣ I

(ଚିତ୍ର 2.39)

2.7.3 ବୃତ୍ତକଳା :

ବୃତ୍ତର କୌଣସି ଏକ ଚାପ, ଚାପର ପ୍ରାନ୍ତବିନ୍ଦୁକୁ କେନ୍ଦ୍ର ସହିତ ଯୋଗ କରୁଥିବା ବ୍ୟାସାର୍ଦ୍ଧ ଦ୍ୱୟର ସଂଯୋଗରେ ବୃତ୍ତକଳା (Sector) ଗଠିତ ହୁଏ । ଚିତ୍ର 2.39 ରେ OAYB ଏକ ବୃତ୍ତକଳା ଅଟେ ।

ପରିମିତିରେ ବୃତ୍ତଖଣ୍ଡ ଓ ବୃତ୍ତକଳା ସମ୍ଭକ୍ଷରେ ବିଶଦ ଆଲୋଚନା କରାଯାଇଛି ।

2.8 ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକ (Cyclic quadrilateral) :

ଆମେ ଜାଣୁ ଯେ ଏକ ସରଳରେଖାରେ ନ ଥିବା ଡିନୋଟି ବିନ୍ଦୁ ଦଉ ଥିଲେ ଉକ୍ତ ବିନ୍ଦୁମାନେ ସର୍ବଦା ଏକ ବୃତ୍ତ ଉପରେ ରହିବେ । ଅର୍ଥାତ୍ ସେହି ଡିନୋଟି ବିନ୍ଦୁ ଦେଇ ସର୍ବଦା ଏକ ବୃତ୍ତ ଅଙ୍କନ ସୟବ । କିନ୍ତୁ ଚାରିଟି ବିନ୍ଦୁ ଦଉ ଥିଲେ ସେମାନେ ସର୍ବଦା ଗୋଟଏ ବୃତ୍ତ ଉପରେ ରହିବେ କି ? ଏହା ସର୍ବଦା ସୟବ ନୁହେଁ । ନିମ୍ନରେ ଆଲୋଚିତ ସର୍ଭ ପୂରଣ କରୁଥିଲେ ଚାରିଟି ବିନ୍ଦୁ ଏକ ବୃତ୍ତ ଉପରିସ୍ଥ (Concyclic) ହେବେ ।

ପ୍ରମେୟ - 2.7: ଦୁଇଟି ବିନ୍ଦୁର ସଂଯୋଜକ ରେଖାଖଣ୍ଡ ତାର ଏକ ପାର୍ଶ୍ୱରେ ଅନ୍ୟ ଦୁଇଟି ବିନ୍ଦୁଠାରେ ଉତ୍ପନ୍ନ କରୁଥିବା କୋଣଦୃୟ ସର୍ବସମ ହେଲେ ବିନ୍ଦୁ ଚାରିଟି ଏକ ବୃତ୍ତ ଉପରେ ରହିବେ ।

[If the angles subtended by a line segment joining two points at two other points lying on the same side of the segment are congruent, then the four points lie on a circle.]

ଦର : A ଓ B ବିନ୍ଦୁ ଦ୍ୱୟର ସଂଯୋଜକ ରେଖାଖଣ୍ଡ \overline{AB} ଏହାର ଏକ ପାର୍ଶ୍ୱରେ ଥିବା C ଓ D ବିନ୍ଦୁଠାରେ $\angle ACB$ ଓ $\angle ADB$ ଉତ୍ପନ୍ନ କରୁଅଛି ଏବଂ $\angle ACB\cong \angle ADB$ (ଚିତ୍ର 2.40) ।

ସିଦ୍ଧାନ୍ତ : A, B, C ଓ D ବିନ୍ଦୁ ଚାରିଟି ଏକ ବୃତ୍ତ ଉପରିସ୍ଥ ହେବେ ।

ଏହାର ପ୍ରମାଣ ପାଠ୍ୟକ୍ରମ ବହିର୍ଭୁକ୍ତ ଥିବାରୁ ଏଠାରେ ଆଲୋଚନା କରାଯାଇ ନାହିଁ । ଆଗ୍ରହୀ ଛାତ୍ରଛାତ୍ରୀଙ୍କ ନିମନ୍ତେ ଏହି ଅଧ୍ୟାୟର ପରିଶିଷ୍ଟରେ ପ୍ରମେୟ 2.7 ର ପ୍ରମାଣ ଦିଆଯାଇଛି ।

ଏକ ବୃତ୍ତ ଉପରେ ଥିବା ଚାରିଗୋଟି ବିନ୍ଦୁ A,B,C ଓ D ଏକ ଚତୁର୍ଭୁକ ABCD ଗଠନ କରୁଥିଲେ ଅର୍ଥାତ୍ \overline{AB} , \overline{BC} , \overline{CD} ଓ \overline{DA} ମଧ୍ୟରୁ କୌଣସି ଦୁଇଟି ପର୍ୟରକୁ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ଭିନ୍ନ ଅନ୍ୟତ୍ର ଛେଦ କରୁ ନ ଥିଲେ ABCD ଚତୁର୍ଭୁକକୁ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକ କହିବା ।

ସଂଜ୍ଞା : ଏକ ଚତୁର୍ଭୁକର ଶୀର୍ଷବିନ୍ଦୁ ଗୁଡ଼ିକ ଏକ ବୃତ୍ତ ଉପରେ ଅବସ୍ଥିତ ହେଉଥିଲେ ଚତୁର୍ଭୁକଟିକୁ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକ (Cyclic Quadrilateral) କୁହାଯାଏ ।

ଚିତ୍ର 2.41ରେ ABCD ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଚ୍ଚ । ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଚ୍ଚର କୋଣମାନଙ୍କ ମଧ୍ୟରେ ଥିବା ସମ୍ଭନ୍ଧ ଉପପାଦ୍ୟ- 11 ରେ ଦିଆଯାଇଛି ।

(ଚିତ୍ର 2.40)

ଉପପାଦ୍ୟ - 11

ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକର ବିପରୀତ କୋଣମାନ ପରୟର ପରିପୂରକ I

[The opposite angles of a cyclic quadrilateral are supplementary.]

ଦଉ : ABCD ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକ (ଚିତ୍ର 2.42)

ପ୍ରାମାଶ୍ୟ : $m\angle A + m\angle C = 180^{\circ}$ ଏବଂ $m\angle B + m\angle D = 180^{\circ}$

ପ୍ରମାଣ : ABCD ଚତୁର୍ଭୁଜରେ \overline{AC} ଓ \overline{BD} କର୍ଣ୍ୟୁୟ ପରସ୍କରକୁ ଛେଦ କରନ୍ତି

(ପ୍ରମାଶ ନିମନ୍ତେ ମନ୍ତବ୍ୟ ଦେଖ) ।

 $m :: B \ ^{\it g} \ D$ ବିନ୍ଦୁ ଦ୍ୱୟ \overline{AC} ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ ।

ତେଣୁ ଚାପର ଡିଗୀ ପରିମାପର ସଂଜ୍ଞାନୁସାରେ

$$m \stackrel{\frown}{ABC} + m \stackrel{\frown}{ADC} = 360^{\circ} \Rightarrow \frac{1}{2} m \stackrel{\frown}{ABC} + \frac{1}{2} m \stackrel{\frown}{ADC} = 180^{\circ} \dots (1)$$

କିନ୍ତୁ m
$$\angle ADC = \frac{1}{2} m \stackrel{\frown}{ABC}$$
 ଏବଂ m $\angle ABC = \frac{1}{2} m \stackrel{\frown}{ADC}$ (ପ୍ରମେୟ - 2.6)

$$\Rightarrow$$
 m \angle ADC + m \angle ABC = $\frac{1}{2}$ m $\stackrel{\frown}{ABC}$ + $\frac{1}{2}$ m $\stackrel{\frown}{ADC}$ = 180° ((1) ଦ୍ୱାରା)

କିନ୍ତୁ ଆମେ ଜାଣୁ ଯେ ଏକ ଚତୂର୍ଭୁଜରେ m $\angle A + m\angle B + m\angle C + m\angle D = 360^{\circ}$

ସୁତରା
$$^{\circ}$$
 m \angle BAD + m \angle BCD = 180°

(ପ୍ରମାଶିତ)

(ଚିତ୍ର 2.42)

ମନ୍ତବ୍ୟ : ABCD ଚତୁର୍ଭୁଜ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ହେଲେ ଏହାର କର୍ଣ୍ଣଦ୍ୱୟ \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ ଛେଦ କରନ୍ତି ।

ପ୍ରମାଣ : ଯଦି \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ ଛେଦ ନ କରନ୍ତି (ଚିତ୍ର 2.43 ଦେଖ) ତେବେ B ଓ D \overline{AC} ର ଏକ ପାର୍ଶ୍ୱରେ ରହିବେ । ଅର୍ଥାତ୍ D, \widehat{ABC} ଉପରେ ରହିବ । ମନେକର D, \widehat{BYC} ର ଅନ୍ତଃସ୍ଥ । A, \widehat{ABC} ର ଏକ ପ୍ରାନ୍ତବିନ୍ଦୁ ହୋଇଥିବାରୁ \widehat{BYC} ର ଅନ୍ତଃସ୍ଥ ହେବ ନାହିଁ ।

- \Rightarrow A ଓ D, $\overline{\mathrm{BC}}$ ର ବିପରୀତ ପାର୍ଶ୍ୱସ୍ଥ ହେବେ ।
- $\Rightarrow \overline{AD}$ ଓ \overline{BC} ପରସ୍କରକୁ ଛେଦ କରିବେ, ଯାହାକି ଚତୁର୍ଭୁକର ସଂଜ୍ଞାନୁଯାୟୀ ଅସୟବ । ତେଣୁ D, \overrightarrow{BYC} ର ଅନ୍ତଃସ୍ଥ ହେବ ନାହିଁ । ସେହିପରି D, \overrightarrow{AXB} ର ଅନ୍ତଃସ୍ଥ ହେବ ନାହିଁ । ସୁତରାଂ D, \overrightarrow{ABC} ଉପରେ ରହି ପାରିବ ନାହିଁ । ତେଣୁ \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ ଛେଦ କରିବେ । (ପ୍ରମାଣିତ) ।

ଅନୁସିଦ୍ଧାନ୍ତ - 1 : ବୃଭାନ୍ତର୍ଲିଖିତ ସାମାନ୍ତରିକ ଚିତ୍ର ଏକ ଆୟତଚିତ୍ର ।

ପ୍ରମାଣ : ABCD ଏକ ବୃଢାନ୍ତର୍ଲିଖିତ ସାମାନ୍ତରିକ ଚିତ୍ର (ଚିତ୍ର 2.44)

 \Rightarrow m \angle A = m \angle C (ସାମାନ୍ତରିକ ଚିତ୍ର ସମ୍ମୁଖୀନ କୋଣମାନେ ସର୍ବସମ)

କିନ୍ତୁ m
$$\angle$$
A + m \angle C = 180° (ଉପପାଦ୍ୟ - 11)

$$\Rightarrow 2m\angle A = 180^{\circ} \Rightarrow m\angle A = 90^{\circ}$$

ସାମାନ୍ତରିକ ଚିତ୍ରର ଗୋଟିଏ କୋଣ ସମକୋଣ । : ABCD ଏକ ଆୟଡଚିତ୍ର ।

ଅନୁସିଦ୍ଧାନ୍ତ - 2 : ବୃଭାନ୍ତଲିଖିତ ରୟସ ଏକ ବର୍ଗଚିତ୍ର ।

ଅନୁସିଦ୍ଧାନ୍ତ - 1 ଅନୁଯାୟୀ ରୟସର ଗୋଟିଏ କୋଶ ଏକ ସମକୋଶ ହେବ ।

ଅନୁସିଦ୍ଧାନ୍ତ - 3: ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକର ଏକ ବହିଃସ୍ଥ କୋଣର

ପରିମାଣ ଏହାର ଅତଃସ୍ଥ ବିପରୀତ କୋଶର ପରିମାଣ ସହ ସମାନ I

ଚିତ୍ର 2.45 ରେ ABCD ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଜର $\angle CBX$ ଏକ ବହିଃସ୍ଥ କୋଣ

କିନ୍ତୁ m \angle ABC + m \angle ADC = 180° (ଉପପାଦ୍ୟ - 11) \Rightarrow m \angle CBX = m \angle ADC

ପ୍ରମେୟ - 2.8 : (ଉପପାଦ୍ୟ - 11ର ବିପରୀତ କଥନ) :

ଗୋଟିଏ ଚତୁର୍ଭୁଳର ବିପରୀତ କୋଣମାନ ପରୟର ପରିପୂରକ ହେଲେ ଚତୁର୍ଭୁଳଟି ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ହେବ ।

[If the opposite angles of a quadrilateral are supplementary, then the quadrilateral is cyclic.]

ଦଭ : ABCD ଚତୁର୍ଭୁକରେ $m\angle A + m\angle C = 180^\circ$ ଏବଂ $m\angle B + m\angle D = 180^\circ$ (ଚିତ୍ର 2.41)

ସିଦ୍ଧାତତ୍ତ: ABCD ଚତୁର୍ଭୁଜଟି ବୃଭାନ୍ତର୍ଲିଖିତ ।

ପ୍ରମେୟ −2.8 ର ପ୍ରମାଣ ପାଠ୍ୟକ୍ରମ ବହିର୍ଭୂତ ଥିବାରୁ ଆଗ୍ରହୀ ଛାତ୍ରଛାତ୍ରୀଙ୍କ ନିମନ୍ତେ ଏହି ଅଧ୍ୟାୟର ପରିଶିଷ୍ଟରେ ଉକ୍ତ ପ୍ରମେୟର ପ୍ରମାଣ ଦିଆଯାଇଛି ।

ବୃତ୍ତ ସୟନ୍ଧୀୟ କେତେଗୋଟି ଉଦାହରଣ :

ଉଦାହରଣ : - 1 ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ଜ୍ୟା \overline{AB} ଓ \overline{CD} ପରସ୍କରକୁ ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଠାରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ AP . PB=CP. PD ।

ସମାଧାନ : ଚିତ୍ର 2.46 ରେ \overline{AB} ଓ \overline{CD} ଜ୍ୟା ଦୃୟ ପରସ୍କରକୁ P ଠାରେ

ଛେଦ କରୁଛନ୍ତି । ପ୍ରମାଣ କରିବାକୁ ହେବ ଯେ PA . PB = PC .PD

ଅଙ୍କନ : $\overline{\mathrm{CA}}$ ଓ $\overline{\mathrm{BD}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଶ : Δ PAC ଓ Δ PBD ମଧ୍ୟରେ

 $m\angle ACP = m\angle PBD$ (ଏକା ଚାପ \widehat{ABD} ର ଅନ୍ତର୍ଲିଖିତ);

(ଚିତ୍ର 2.44)

(ଚିତ୍ର 2.45)

m∠PAC = m∠PDB (ଏକା ଚାପ $\stackrel{\frown}{BC}$ ର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ) ଏବଂ

 $m\angle APC = m\angle BPD$ (ପ୍ରତୀପ କୋଣ)

 \Rightarrow $\Delta PAC \sim \Delta \ PBD \ (କୋ-କୋ-କୋ ସାଦୃଶ୍ୟ)$

$$\Rightarrow \frac{AP}{PD} = \frac{PC}{PB} \Rightarrow PA \cdot PB = PC \cdot PD \text{ (ପ୍ରମାଶିତ)}$$

ଉଦାହରଣ - 2 : ଏକ ବୃତ୍ତର ବହିଃସ୍ଥ P ବିନ୍ଦୁଗାମୀ ଦୁଇଟି ଛେଦକ ବୃତ୍ତକୁ ଯଥାକ୍ରମେ A, B ଏବଂ C, D ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି (ଚିତ୍ର 2.47) ପ୍ରମାଣ କର ଯେ, PA . PB = PC. PD ।

ସମାଧାନ : ଚିତ୍ର 2.47ରେ P ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ଦୁଇଟି ଛେଦକ \overrightarrow{PB} ଓ \overrightarrow{PD} ବୃତ୍ତକୁ ଯଥାକ୍ରମେ A,B ଏବଂ C,D ବିନ୍ଦୁରେ ଛେଦ କରୁଛନ୍ତି ।

ପ୍ରାମାଶ୍ୟ : ପ୍ରମାଣ କରିବାକୁ ହେବ ଯେ $PA \cdot PB = PC \cdot PD$ |

ଅଙ୍କନ : $\overline{\mathrm{BC}}$ ଓ $\overline{\mathrm{AD}}$ ଅଙ୍କନ କର ।

ପ୍ରାମାଣ : ΔPAD ଓ ΔPCB ମଧ୍ୟରେ ∠APC ସାଧାରଣ ।

m∠ADP = m∠CBP (ଏକା ଚାପ \widehat{AC} ର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ)

 \Rightarrow $\Delta {
m ADP} \sim \Delta \ {
m PCB} \ (କୋ-କୋ ସାଦୃଶ୍ୟ)$

$$\Rightarrow \frac{PA}{PC} = \frac{PD}{PB} \Rightarrow PA \cdot PB = PC \cdot PD$$
 (ପ୍ରମାଶିତ)

ଉଦାହରଣ - 3 : ଏକ ବୃତ୍ତର ବହିଃସ୍ଥ P ବିନ୍ଦୁଗାମୀ ଦୁଇଟି ଛେଦକ ବୃତ୍ତକୁ ଯଥାକୁମେ A, B ଏବଂ C, D ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ m $\angle APC = \frac{1}{2}[m\ \ BD\ \ -m\ \ AC\ \]$

ସମାଧାନ : ଚିତ୍ର 2.47 ରେ P ବିନ୍ଦୁ ଦେଇ ଦୁଇଟି ଛେଦକ \overrightarrow{PB} ଓ \overrightarrow{PD} ବୃତ୍ତକୁ A,B ଏବଂ C,D ବିନ୍ଦୁରେ ଛେଦ କରୁଛନ୍ତି । ପ୍ରମାଣ କରିବାକୁ ହେବ ଯେ $m\angle APC = \frac{1}{2} \left[m \ \overrightarrow{BD} - m \ \overrightarrow{AC} \right]$

ଅଙ୍କନ : $\overline{\mathrm{AD}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : $\triangle PAD$ ରେ $m\angle APD = m\angle BAD - m\angle ADP$ $(\because \angle BAD$ ବହିଃସ୍ଥ କୋଣ)(1)

କିନ୍ତୁ m
$$\angle BAD = \frac{1}{2}$$
 m $\stackrel{\frown}{BD}$ ଏବଂ m $\angle ADP = m\angle ADC = \frac{1}{2}$ m $\stackrel{\frown}{AC}$

ସୁତରା°
$$m \angle APC = \frac{1}{2} \left[m \stackrel{\frown}{BD} - m \stackrel{\frown}{AC} \right] \left[(1) \left(\stackrel{\frown}{Q} \right) \right]$$
 (ପ୍ରମାଣିତ)

ପରିଶିଷ୍ଟ

ଆଗହୀ ଛାତ୍ରଛାତ୍ରୀଙ୍କ ପାଇଁ ପ୍ରମେୟ 2.7 ଓ 2.8 ର ପ୍ରମାଣ ନିମ୍ନରେ ଦିଆଯାଇଛି ।

ପ୍ରମେୟ - 2.7ର ପ୍ରମାଣ :

ଦଭ : C ଓ D ବିନ୍ଦୁ ଦ୍ୱୟ \overline{AB} ର ଏକ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ ଏବଂ m∠ACB = m∠ADB |

ପ୍ରାମାଣ୍ୟ : A, B, C ଓ D ବିନ୍ଦୁ ଚାରିଟି ଏକ ବୃତ୍ତ ଉପରେ ରହିବେ ।

ଅଙ୍କନ : ଯେହେତୁ A, B ଓ C ଏକ ସରଳରେଖାରେ ନାହାନ୍ତି, ସେମାନଙ୍କ ମଧ୍ୟ ଦେଇ ABC ବୃତ୍ତ ଅଙ୍କିତ ହେଉ |

ପ୍ରମାଣ : ବର୍ତ୍ତମାନ ଆମେ ଦର୍ଶାଇବା ଯେ D ବିନ୍ଦୁଟି ABC ବୃତ୍ତ ଉପରେ ରହିବ ।

ମନେକର D ବିନ୍ଦୁ ବୃତ୍ତର ବହିର୍ଦ୍ଦେଶରେ ରହିବ (ଚିତ୍ର 2.48) ତେବେ \overrightarrow{BD} କିୟା \overrightarrow{AD} ବୃତ୍ତକୁ ଏକ ବିନ୍ଦୁରେ ଛେଦ କରିବ । (ସମତଳ ଉପରେ \overline{AB} ର C ପାର୍ଶ୍ୱରେ Dର ବିଭିନ୍ନ ଅବସ୍ଥିତି ନେଇ ଏହା ପ୍ରମାଣ କରିହେବ ।) ମନେକର $\overleftrightarrow{\mathrm{BD}}$ ବୃତ୍ତଟିକୁ E ବିନ୍ଦୁରେ ଛେଦ କରେ । $\overline{\mathrm{AE}}$ ଅଙ୍କିତ ହେଉ ।

ସେହେତୁ C ଓ E ବିନ୍ଦୁ ଦ୍ୱୟ ACB ଉପରେ ଅଛନ୍ତି ।

ପ୍ରମେୟ - 2.6 ଅନୁସିଦ୍ଧାନ୍ତ - 2 ଦ୍ୱାରା

 $m\angle ACB = m\angle AEB$(1)

∆ADE ରେ ∠AEB ବହିଃସୁ ।

ସୁତରା° m∠AEB ≠ m∠ADB

କିନ୍ତୁ ଦଉ ଅଛି ଯେ m∠ADB = m∠ACB

 \Rightarrow m∠AEB \neq m∠ACB ଯାହା (1)କୁ ବିରୋଧ କରୁଛି |

ସେହିପରି \overrightarrow{AD} ବୃତ୍ତକୁ ଏକ ବିନ୍ଦୁରେ E' ଠାରେ ଚ୍ଛେଦ କଲେ $\overrightarrow{BE'}$ ଅଙ୍କନ କରି ପୂର୍ବ ପରି ଆମେ ଦୁଇଟି ପର୍ୟର ବିରୋଧୀ ଉକ୍ତି ପାଇବା ।

ତେଣୁ $\mathbf D$ ବିନ୍ଦୁଟି ବୃତ୍ତର ବହିର୍ଦ୍ଦେଶରେ ରହିବ ନାହିଁ । ଯଦି $\mathbf D$ ବିନ୍ଦୁଟି ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ $\mathbf D'$ ଠାରେ ରହେ ତେବେ ଉପରୋକ୍ତ ଧାରାରେ ଆମେ ଦୁଇଟି ପରୟର ବିରୋଧୀ ଉକ୍ତି ପାଇବା $\,$ ତେଣୁ $\,$ $\,$ ବିନ୍ଦୁ ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ରହିବ ନାହିଁ I

ସୁତରାଂ D ବିନ୍ଦୁଟି ABC ବୃତ୍ତ ଉପରେ ଅବସ୍ଥିତ ।

(ପ୍ରମାଣିତ)

ପ୍ରମେୟ - 2.8ର ପ୍ରମାଣ :

ଦଭ : ABCD ଚତୁର୍ଭୁକରେ $m\angle A + m\angle C = 180^{\circ}$ ଏବଂ $m\angle B + m\angle D = 180^{\circ}$ (ଚିତ୍ର 2.49)

ପ୍ରାମାଣ୍ୟ : ABCD ଚତୁର୍ଭୁକଟି ବୃଭାନ୍ତର୍ଲିଖିତ ।

ପ୍ରମାଣ : (ଅସୟବାୟନ ପ୍ରଣାଳୀ) ମନେକର ABCD ଚତୁର୍ଭୁଳ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ନୁହେଁ । ତେବେ A,B ଓ C ମଧ୍ୟ ଦେଇ ଅଙ୍କିତ ବୃତ୍ତ ଉପରେ D ବିନ୍ଦୁ ଅବସ୍ଥିତ ହେବ ନାହିଁ । ସୁତରାଂ D, ABC ବୃତ୍ତର ବହିଃସ୍ଥ (ଚିତ୍ର 2.49)(a)) କିୟା ଅନ୍ତଃସ୍ଥ (ଚିତ୍ର 2.49) (b)) ହେବ । ଉଭୟ କ୍ଷେତ୍ରରେ $m\angle A + m\angle B + m\angle C + m\angle D$

$$= (m\angle A + m\angle C) + (m\angle B + m\angle D) = 180^{0} + 180^{0} = 360^{0}$$

 \therefore ABCD ଏକ ଉତ୍ତଳ ଚତୁର୍ଭୁଚ୍ଚ । ଏହାର କର୍ଷଦ୍ୱୟ \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ E ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତୁ । E ବିନ୍ଦୁ ABC ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ ହେବ । (\because E ବିନ୍ଦୁ \overline{AC} ଜ୍ୟା ଉପରିସ୍ଥ) ସୂତରାଂ \overline{BE} ABC ବୃତ୍ତକୁ ଏକ ବିନ୍ଦୁ F ରେ ଛେଦ କରିବ ।

ବର୍ତ୍ତମାନ ଦୁଇଟି ସମ୍ଭାବନା ଯଥା : (i) E-F-D (ଚିତ୍ର 2.49(a) ଏବଂ (ii) E-D-F (ଚିତ୍ର 2.49) (b)) ମଧ୍ୟରୁ ସମ୍ଭାବନା (i) ର ପ୍ରମାଣ :

ଚିତ୍ର 2.49 (a) ରୁ m∠ADC = m∠ADB + m∠BDC ଏବଂ

$$m\angle AFC = m\angle AFB + m\angle BFC$$
 ...(1)

ବର୍ତ୍ତମାନ ABCF ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଜରେ m \angle ABC + m \angle AFC = 180^{o}

କିନ୍ତୁ m \angle ABC + m \angle ADC = 180° (ଦଉ)

 \therefore m \angle ABC + m \angle AFC = m \angle ABC + m \angle ADC

$$\Rightarrow$$
 m \angle AFC = m \angle ADC ... (2)

 Δ ADF ରେ \angle AFB ବହିସ୍ଥ \Rightarrow m \angle AFB > m \angle ADF

ସେହିପରି ∆CDF ରେ m∠CFB > m∠CDF

ସୁତରା $^{\circ}$ m \angle AFB + m \angle CFB > m \angle ADF + m \angle CDF

$$\Rightarrow$$
 m \angle AFC \geq m \angle ADC ((1) ଦ୍ୱାରା) (3)