

Maria Cecilia FLORENZA Dely Catalina ARDILA Nhan NGUYEN

Final Restitution: Learning Optical Flow with Convolutional Networks FlowNet

P.-H. Conze, V. Burdin, R. Fablet, P. Papadakis, L. Bergantin, G. Andrade-Miranda

Summary

- 1. Context
- 2. Methodology
- 3. Developed method
- 4. Results
- 5. Conclusion

CONTEXT FlowNet

1. CONTEXT

- Goal: develop a robust object tracking method using optical flow computed with FlowNet
- Optical Flow: Estimates motion between consecutive frames.
- FlowNet: A deep learning-based model that learns motion estimation directly from data.

METHODOLOGY FlowNet

- **Pretrained Model:** FlowNetSimple (pretrained) form to compute motion between frames
- Tracking Methods:
 - **Direct Integration**: First frame as the reference throughout the sequence
 - **Sequential Integration**: Previous frame as the reference, updating at each step

<u>GitHub -</u> <u>FlowNetPytorch</u>

Network architecture: FlowNetSimple. The green funnel is a placeholder for the expanding refinement part. The networks including the refinement part are trained end-to-end.

DEVELOPED METHOD FlowNet

3. DEVELOPED METHOD

Self-Supervised Fine-tuning Strategy

Step 1: Optical Flow Estimation

- Run inference with FlowNetS to compute optical flow between frames depending on Integration Method.

Step 2: Mask Generation and Tracking integration

- Use optical flow to estimate object motion regions.
- Generate segmentation masks to highlight moving objects.

3. DEVELOPED METHOD

Self-Supervised Fine-tuning Strategy

Fine-tuning – adapting the model by retraining on our data to improve performance.

- ✓: Adapt to real, object-centered motion with no ground-truth flow.
- !: Training a CNN requires ground truth optical flow, which was unavailable.
 - **Pseudo Ground Truth**: Optical flow estimated with Farneback as a reference.
 - Reconstruction Loss: Warp the image to be processed using the reference image and the predicted optical flow and compare it with the real next frame.

RESULTS FlowNet

11

Results on training data

Pretrained model - Direct

Pretrained model - Sequential

Fine Tuned model - Direct

Fine Tuned model - Sequential

Results on test data

Results on test data

Direct

Sequential

IIVI Atlantique Bretagne-Pays de la Loire École Mines-Télécom

CONCLUSION FlowNet

5. CONCLUSION 15

Tracking Performance:

- **Direct** Tracking: Better for smooth motion sequences
- **Sequential** Tracking: More robust but prone to error accumulation

Optical Flow Estimation:

- FlowNetS: accuracy depends on the training data
- Finetuning helped adapt the model, was limited by the lack of true ground truth

Future Improvements:

- Use a better pseudo ground truth for training.
- Fine-tune the model on a **larger dataset** for improved generalization.

Q & A FlowNet

THANK YOU FOR LISTENING! FlowNet

