Práctica 2 Redes Neuronales. Clasificador de peces.

Introducción.

En esta práctica se ha implementado una red neuronal convolutiva que es capaz de clasificar distintos grupos de peces. El dataset que se ha empleado está formado por cuatro clases de peces, en el que cada uno se compone de 1000 imágenes, obtenidas de un dataset de Kaggle (ver https://www.kaggle.com/crowww/a-large-scale-fish-dataset).

Hiperparámetros y parámetros.

Los modelos que se han probado para esta práctica han utilizado los mismos hiperparámetros y parámetros que no están relacionados con el propio diseño y estructura de la red neuronal. Dicho de otra manera, los modelos difieren únicamente en la disposición, número y características de las capas ocultas, pero el entrenamiento se ha hecho a partir de los mismos hiperparámetros para el data augmentación, número de épocas, optimizador y función de pérdida, entre otros.

Inicializador del Dataset

Nombre	Definición	Valor
Training percentage	Porcentaje de ficheros para el entrenamiento	80%
Validation percentage	Porcentaje de fichero para la validación	20%

• Compilación de la red neuronal

Nombre	Definición	Valor	
Loss function	Función de pérdida	Categorical Cross Entropy	
Optimizer	Optimizador	Optimizador Ada Delta	

Entrenamiento y EarlyStopping

Nombre	Definición	Valor
Number of epochs	Número máximo de iteraciones	30
Steps per epoch	Pasos totales para cada época	70
Batch size	Número de ficheros cargados por cada época	30
Dationes	Número máximo de intentos para mejorar	3
Patience	val_accuracy antes de que finalice el entrenamiento	3

Data augmentation

Nombre	Definición	Valor
Target size	Ancho y alto para cada imagen cargada	200w, 200h
Rescale	Reescalado usado sobre las imágenes	1./255
Rotation range	Rango de rotación para las imágenes	30

Zoom range	Rango del zoom para las imágenes	0.7
Width shift range	Rango del desplazamiento del ancho	0.1
Height shift range	Rango del desplazamiento del alto	0.1
Brightness range	Rango del brillo de las imágenes	(0.2,0.8)
Horizontal flip	Volteo horizontal de las imágenes	True
Vertical flip	Volteo vertical de las imágenes	True

Modelos probados

Nombre	Estructura Conv2D(filters=32, kernel=(3, 3), activation=relu) MaxPooling(pool_size=(2, 2)) Dropout(0.25) Flatten() Dense(128, activation=relu) Dropout(0.25) Dense(64, activation=relu) Dense(4, activation=softmax)		
Model Definition Two Dense			
Model Definition Leaky Relu	 Conv2D(filters=128, kernel=(3, 3), activation=relu) LeakyReLU(alpha=0.1) MaxPooling(pool_size=(2, 2)) Dropout(0.25) Flatten() Dense(64, activation=relu) Dropout(0.5) Dense(32, activation=relu) Dense(4, activation=softmax) 		
ModelDefinitionLeakyReluMoreConv	 Conv2D(filters=128, kernel=(3, 3), activation=relu) MaxPooling(pool_size=(2, 2)) Dropout(0.25) LeakyReLU(alpha=0.1) MaxPooling((2,2)) Dropout(0.25) Flatten() Dense(64, activation=relu) Dropout(0.5) Dense(32, activation=relu) Dense(4, activation=softmax) 		

Los resultados que ofrecen los modelos diseñados se han obtenido a partir de la misma disposición del dataset y aplicando los mismos hiperparámetros como por ejemplo el número de épocas. Cabe aclarar que puede que se obtengan resultados mejores o peores si el dataset muestra una organización diferente a la que se usó durante las pruebas de cada modelo de red neuronal.

Nombre	Loss	Accuracy	Val_Loss	Val_Accuracy
ModelDefinitionTwoDense	1.2345	0.4949	1.0191	0.6875
ModelDefinitionLeakyRelu	1.2832	0.4655	1.0627	0.6625
ModelDefinitionLeakyReluMoreConv	1.3145	0.3952	1.1267	0.6525

De todos los modelos probados, se ha escogido el primero de ellos, es decir, ModelDefinitionTwoDense. Los motivos de esta elección se resumen en el hecho de que tiene la mejor precisión y valor de pérdida tanto en el conjunto de entrenamiento como en la de validación. Cabe aclarar que es posible que los otros dos llegasen a alcanzar resultados mejores con otros hiperparámetros, como puede ser el número de épocas o pasos por época, que, si fuese mayor, seguramente se obtendrían resultados más altos.

Resultados obtenidos.

De entre todas las posibles configuraciones que se han probado, la que mejor resultados ha ofrecido ha sido una que contiene una capa convolutiva de 32 filtros con función de activación ReLU, y tres capas densas, todo ello con capas Dropout y de MaxPooling. Esta arquitectura de red llega a alcanzar alrededor del 48-50% de precisión, y un 65-70% en la validación. Los motivos de que la red neuronal no llegue a ser más eficiente y precisa son varios, los cuales se explicarán a continuación:

- Número de pasos por época: el proceso de entrenamiento se ha restringido de tal manera que en cada época se hagan sólo 70 pasos, cuando realmente este número debería corresponder a la fórmula nºmuestras / batch_size. El motivo de que se haya reducido tanto este número se debe más bien a limitaciones en el hardware, lo que significa que muy posiblemente la red llegaría a alcanzar mejores resultados si el número de pasos no se limitase.
- Número de épocas: el número de épocas que realiza la red neuronal se ha limitado a 30, por exactamente la misma razón que ocurría en el número de pasos por época, es decir, limitaciones en el hardware empleado durante el entrenamiento.
- Mala configuración de la red neuronal: aunque la arquitectura de red que se acabó escogiendo
 es la que mejor resultados ha ofrecido, ello no implica que no sea mejorable, por lo que puede
 ser que hagan falta más capas o que las existentes se localicen en la red de distinta manera. Este
 puede ser el motivo más evidente, pues durante el entrenamiento la red neuronal llega en
 muchas ocasiones a necesitar dos épocas más para superar la mejor precisión alcanzada, lo que
 supone que, si no se cambiase la red, 30 épocas no son suficientes.
- Alto sobreajuste: en muchas ocasiones la precisión de la validación llega a superar a la del entrenamiento, lo que puede significar que la red no está realmente aprendiendo, sino que trata de mejorar la precisión en la validación, pero no tanto en el entrenamiento. Una solución podría ser añadir más ficheros de test que no se empleen durante en el entrenamiento.
- Similitud de las clases: el dataset que se ha escogido para la realización de la práctica está compuesto por imágenes de peces que puede que la red neuronal no sea capaz de diferenciarlos por su gran similitud, siendo en muchas ocasiones el tamaño y el color lo que realmente los hace distintos. Esto se ha intentado arreglar con el data augmentation y usando un dataset amplio.

