ENUNȚURI ȘI REZOLVĂRI 2013

- 1. Un conductor de cupru ($\rho = 1.7 \cdot 10^{-8} \,\Omega \cdot m$) are lungimea de 300 m și aria secțiunii transversale de 1 mm². Rezistența conductorului este:
- a) $10,1\Omega$; b) $2,2\Omega$; c) $3,5\Omega$; d) $5,1\Omega$; e) $7,5\Omega$; f) $4,7\Omega$.

Rezolvare

Rezistența conductorului este $R = \rho \frac{l}{S} = 5.1 \Omega$.

- 2. Un gaz ideal suferă o transformare izobară la presiunea de 10^5 N/m^2 în cursul căreia volumul său crește de la 10 dm^3 la 50 dm^3 . Lucrul mecanic efectuat de gaz este:
- a) 4 kJ; b) $4 \cdot 10^6 \text{ J}$; c) 8 kJ; d) 1.2 kJ; e) 400 J; f) 5 J.

Rezolvare

Lucrul mecanic efectuat de gaz într-o transformare izobară este: $L = p\Delta V$; L = 4 kJ.

- **3.** Un motor termic funcționează după un ciclu Carnot cu randamentul 0,5. Cunoscând temperatura sursei reci de 250 K, temperatura sursei calde este:
- a) 600 K; b) 500 K; c) 800 K; d) 400 K; e) 1000 K; f) 300 K.

<u>Rezolvare</u>

Din randamentul ciclului Carnot $\eta = 1 - \frac{T_2}{T_1}$ rezultă temperatura sursei calde: $T_1 = 500 \, \text{K}$.

- 4. La bornele unui acumulator cu t.e.m. de 10 V și rezistența internă de 1Ω se leagă un rezistor cu rezistența de 4Ω . Puterea disipată pe rezistor este:
- a) 4 W; b) 64 W; c) 8 W; d) 16 W; e) 32 W; f) 20 W.

Rezolvare

Puterea disipată pe rezistor este: $P = \frac{RE^2}{(R+r)^2}$; P = 16 W.

- 5. Un corp cu masa de 10 kg este tras pe un plan orizontal cu o forță de 70 N paralelă cu planul. În absența frecărilor, accelerația corpului este:
- a) 0.14 m/s^2 ; b) 21 m/s^2 ; c) 700 m/s^2 ; d) 7 m/s^2 ; e) 5 m/s^2 ; f) 0.17 m/s^2 .

Rezolvare

Din $\vec{F} = m\vec{a}$ rezultă a = 7 m/s².

- 6. Un corp de masă 2 kg se deplasează cu viteza de 15 m/s. Impulsul corpului este:
- a) 17 kg·m/s; b) 30 kg·m/s; c) 7,5 kg·m/s; d) 225 J; e) 225 kg·m/s; f) 15 N.

Rezolvare

Impulsul corpului este: $\vec{p} = m\vec{v}$; $p = 30 \text{ kg} \cdot \text{m/s}$.

7. În SI puterea se măsoară în:

a)
$$\frac{kW}{h}$$
; b) J·s; c) kg·s; d) kWh; e) N·m; f) W.

Rezolvare

În SI puterea se măsoară în W.

- **8.** Volumul unui gaz ideal a fost redus izoterm cu 20%. Presiunea gazului a crescut cu:
- a) 20%; b) 22,5%; c) 12%; d) 33%; e) 18%; f) 25%.

Rezolvare

Din ecuația transformării izoterme pV = const., rezultă $p_1V_1 = (p_1 + xp_1) \cdot (V_1 - fV_1)$; x = 25%.

- **9.** Secțiunea transversală a unui conductor este traversată în 3 s de o sarcină electrică de 1,8 C. Intensitatea curentului prin conductor este:
- a) 0,8 A; b) 5,4 A; c) 6 A; d) 1 A; e) 0,54 A; f) 0,6 A.

Rezolvare

Intensitatea curentului prin conductor este: $I = \frac{q}{\Delta t}$; I = 0.6 A.

- **10.** Un gaz ideal aflat într-un recipient de volum $6 \,\mathrm{dm^3}$ are presiunea de $16,62 \cdot 10^5 \,\mathrm{N/m^2}$ la temperatura de 300 K. Dacă $R = 8,31 \,\mathrm{J/mol \cdot K}$, numărul de moli de gaz este:
- a) 6; b) 4; c) 16; d) 2; e) 8; f) 1.

Rezolvare

Din ecuația de stare a gazului ideal, pV = vRT, rezultă numărul de moli de gaz: v = 4 moli.

- 11. Trei rezistori cu rezistențele de 5Ω , 6Ω , 14Ω sunt legați în serie. Rezistența echivalentă a grupării este:
- a) 13Ω ; b) 3Ω ; c) 11Ω ; d) 25Ω ; e) 35Ω ; f) 15Ω .

Rezolvare

Rezistența echivalentă a grupării de rezistoare legate în serie este: $R_e = R_1 + R_2 + R_3$; $R_e = 25 \,\Omega$.

- **12.** Un automobil cu masa de 900 kg are energia cinetică de 180 kJ. Viteza automobilului este:
- a) 15 m/s; b) 10 m/s; c) 24 m/s; d) 20 m/s; e) 2 m/s; f) 400 m/s.

<u>Rezolvare</u>

Din expresia energiei cinetice, $E_c = \frac{mv^2}{2}$, rezultă viteza automobilului: v = 20 m/s.

- 13. O baterie formată din patru elemente identice legate în serie, fiecare element având t.e.m. de 2,5 V şi rezistența internă de 0,1 Ω , alimentează un circuit format din două rezistoare cu rezistențele $R_1 = 16 \Omega$ şi $R_2 = 24 \Omega$ legate în paralel. Energia disipată pe rezistorul R_1 în timp de 1000 s este:
- a) 2130 J; b) 8200 J; c) 5,76 J; d) 2,84 kJ; e) 5,76 kJ; f) 4580 J.

Rezolvare

Intensitatea curentului în circuitul format din baterie și rezistența echivalentă grupării de rezistoare legate în paralel este: $I = \frac{nE}{nr + \frac{R_1R_2}{R_1 + R_2}}$. Acest curent se împarte între cele două

rezistoare astfel încât: $I = I_1 + I_2$ și $I_1R_1 = I_2R_2$, de unde rezultă $I_1 = \frac{IR_2}{R_1 + R_2}$. Energia disipată pe rezistorul R_1 în timpul t este: $W_1 = R_1I_1^2t$; $W_1 = 5,76$ kJ.

- **14.** Un generator cu t.e.m. de 12 V are intensitatea curentului de scurtcircuit de 40 A. Rezistența unui rezistor, care legat la bornele generatorului face ca tensiunea la borne să fie egală cu 11 V, este:
- a) 3.3Ω ; b) 1.4Ω ; c) 3Ω ; d) 2.8Ω ; e) 6.2Ω ; f) 3.6Ω .

Rezolvare

Tensiunea la bornele rezistorului este: $U = \frac{RE}{R + \frac{E}{I_s}}$, de unde $R = 3,3 \Omega$.

- 15. Un corp cu masa de $50 \,\mathrm{kg}$ este ridicat vertical cu viteza de $3 \,\mathrm{m/s}$ timp de $8 \,\mathrm{s}$ ($g = 10 \,\mathrm{m/s^2}$) folosind un motor termic cu randamentul de 60%. Valoarea absolută a căldurii cedate de motor este:
- a) 2 kJ; b) 10 kJ; c) 8 kJ; d) 3,2 kJ; e) 4 kJ; f) 240 J.

Rezolvare

Randamentul motorului este $\eta = \frac{L}{Q_p}$ iar $L = Q_p - |Q_c|$, de unde rezultă

$$|Q_c| = L\left(\frac{1}{\eta} - 1\right) = mgvt\left(\frac{1}{\eta} - 1\right); |Q_c| = 8 \text{ kJ}.$$

16. Un automobil electric cu masa de 0,4t coboară o pantă cu viteza constantă de $18 \, \text{km/h}$ ($g = 10 \, \text{m/s}^2$) cu motorul oprit. La urcarea pantei cu aceeași viteză, motorul automobilului consumă un curent de $50 \, \text{A}$ la tensiunea de $100 \, \text{V}$. Sinusul unghiului format de pantă cu orizontala este:

a)
$$\frac{1}{2}$$
; b) $\frac{1}{8}$; c) $\frac{\sqrt{2}}{2}$; d) 0,3; e) $\frac{\sqrt{3}}{2}$; f) $\frac{1}{16}$.

Rezolvare

Ecuațiile de mișcare la coborârea și urcarea pantei cu viteză constantă sunt: $mg \sin \alpha - \mu mg \cos \alpha = 0$ și respectiv $F - mg \sin \alpha - \mu mg \cos \alpha = 0$ în care F este forța motorului: $F = \frac{UI}{v}$. Rezultă $\sin \alpha = \frac{1}{8}$.

17. O cantitate de gaz ideal monoatomic ($C_V = \frac{3}{2}R$) parcurge ciclul reversibil din figură. Randamentul ciclului este:

a) 0,18; b) 0,25; c)
$$\frac{16}{97}$$
; d) $\frac{1}{6}$; e) 0,07; f) $\frac{1}{7}$

Rezolvare

Randamentul ciclului este $\eta = \frac{L}{Q_p}$. Lucrul mecanic efectuat de gaz într-un ciclu este $L = \frac{p_0 V_0}{2}$.

Gazul primește căldură în transformarea izocoră $Q_{31} = \upsilon C_V (T_1 - T_3) = \frac{3}{2} p_0 V_0$ și pe porțiunea 1-M din transformarea 1-2, Q_{1M} , care se calculează în felul următor:

4

- ecuația dreptei 1-2 este p = aV + b cu $a = -\frac{p_0}{V_0}$ și $b = 3p_0$;
- considerând un punct oarecare (de coordonate p,V) de pe dreapta 1-2, se calculează lucrul mecanic, variația de energie internă și căldura pe transformarea 1-acel punct:

$$L(V) = \frac{(p+2p_0)(V-V_0)}{2} = -\frac{p_0V^2}{2V_0} + 3p_0V - \frac{5p_0V_0}{2}$$
$$\Delta U(V) = \upsilon C_V (T-T_1) = -\frac{3p_0V^2}{2V_0} + \frac{9p_0V}{2} - 3p_0V_0$$
$$Q(V) = \Delta U(V) + L(V) = -\frac{2p_0V^2}{V_0} + \frac{15p_0V}{2} - \frac{11p_0V_0}{2};$$

- din condiția ca funcția Q(V) să prezinte un maxim, Q'(V)=0, rezultă volumul corespunzător punctului M, $V_M=\frac{15}{8}V_0$, și căldura $Q_{1M}=\frac{49}{32}p_0V_0$.

Căldura totală primită de gaz pe un ciclu este $Q_p = Q_{31} + Q_{1M} = \frac{97}{32} p_0 V_0$, iar randamentul ciclului are valoarea $\eta = \frac{16}{97}$.

- **18.** Un corp cade liber. În secunda n a mişcării corpul parcurge o distanță de 1,4 ori mai mare decât în secunda anterioară. Dacă se neglijează frecarea cu aerul, valoarea lui n este:
- a) 4; b) 2; c) 5; d) 7; e) 8; f) 3.

Rezolvare

Spațiile parcurse de corp în primele n, n-1 și respectiv n-2 secunde sunt: $s_n = \frac{1}{2}gn^2$,

$$s_{n-1} = \frac{1}{2} g(n-1)^2, \ s_{n-2} = \frac{1}{2} g(n-2)^2.$$

Din condiția $s_n - s_{n-1} = k(s_{n-1} - s_{n-2})$ rezultă n = 4.