Berechnungen und Logik Hausaufgabenserie 3

Henri Heyden, Nike Pulow stu240825, stu239549

$\mathbf{A1}$

a)

 f_1 erfüllt nicht das notwendige Kriterium des linear beschränktem Wachstums, denn es gilt folgendes: Für alle $w \in A^*$ gilt: $|f_1(w)| = |1^{|w|^2}| = |w|^2$. Des Weiteren gilt jedoch: $\forall c \in \mathbb{N} : \exists w \in A^* : |w|^2 > c \cdot (|x|+1)$, mit w: |w| = 2c > 0, denn es gilt dann: $|w|^2 = 4c^2 > 2c^2 + c$ (Beachte |w| > 0).

b)

 f_2 erfüllt auch nicht das notwendige Kriterium des linear beschränktem Wachstums. Wir zeigen dafür $\forall c \in \mathbb{N}: \exists w \in A^*: |f_2(w)| > c \cdot (|w|+1)$ Hierfür wähle $x:=v_0v_1v_3\ldots v_n$ mit n:=c und $v_i \neq \epsilon$ für $i\in [n]$, dann gilt: $|f_2(w)|=n!=c!$ aufgrund der Definition von $\cdot !$ und f_2 . Des Weiteren gilt: $c!>c^2+c$, was zu zeigen war.

A2

A3

Da f und $\lambda: B^* \to B^*, w \mapsto wv$ sequenziell¹ sind, gilt nach Bonusaufgabe 7, dass \tilde{f} sequenziell ist, da $\tilde{f} = \lambda \circ f$ gilt.

 $^{^1\}lambda$ ist tatsächlich sequenziell, betrachte dafür die jeweiligen Identitätsfunktionen als Zustands und Ausgabefunktionen und $\phi:Q\to B^*, q\mapsto v$ als die finale Ausgabefunktion, für $Q:=\{z_0\}.$

A4

A7

maybe baby