Outline

- Representing Negative Numbers
 - Overflow

Sign/Magnitude Representation

- So far, we've dealt with unsigned numbers
 - How are negative numbers represented on a computer?
- One way to represent negative number is called sign/magnitude.
- For an N-bit binary number:

1 sign bit, N-1 magnitude bits

Sign bit is the most significant bit (leftmost)

- Negative number: sign bit = 1
- Positive number: sign bit = 0
- Rest of the bits are numerical value of the number

Sign/Magnitude Representation

1 sign bit, N-1 magnitude bits

Sign bit is the most significant bit (leftmost)

- Rest of the bits are numerical value of the number
- Hence, in a binary number with eight bits, the magnitude can range from 0000000 (0) to 1111111 (127)
- Thus numbers ranging from -127_{10} to $+127_{10}$ can be represented, once the sign bit (the eighth bit) is added

Problems

- Two representations of zero [0000, 1000]
- Difficulties in arithmetic operations:
 - 1101(-5) + 0011(3) = 0000

The most significant bit still indicates the sign

Same as unsigned binary, but the value of the most significant bit is -2^{N-1}

Example: What is the value of 10110

• Unsigned:

10110 = 16 + 4 + 2 = 22

Twos complement

Single representation of zero (0000)

Arithmetic works fine

• 1011 (-5) + 0011 (3) = 1110 (-8 + 4 + 2) = -2

How to convert a 2's complement binary to its decimal value?

• Assume in an 8-bit two's-complement numeral system

8-Bit Two's Complement (
$$-128 \le x < 127$$
)

MSB

Bit 7^{th} 6^{th} 5^{th} 4^{th} 3^{rd} 2^{nd} 1^{st} 0^{th}

Weight -2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

- What does 0000 0001 represent?
- What does 1111 1111 represent? -1
- What does 0101 1011 represent? 91

How to convert a positive 2's complement binary to its negative value?

E.g., what is the 2's complement of the binary number 011010

First
method

Complement each digit to get the first complement

100101

Add one to the first complement.

100110

Second Method

Start from the least significant bit, locate the first digit with value 1

011010

Complement each digit after the first digit with value 1.

100110

- The two's-complement numeral system is the most common method of representing signed integers on computers
 - Advantages: The fundamental arithmetic operations of addition, subtraction, and multiplication are identical to those for unsigned binary numbers
 - This property makes the system both simpler to implement and capable of easily handling higher precision arithmetic
 - Also, zero has only a single representation 0, eliminating the subtleties associated with negative zero
- All modern processors primarily use two's complement
 - Includes all the MIPS's integer arithmetic instructions
 - Different instruction variants for signed and unsigned

Sign Extension

- Sign extension is the operation of increasing the number of bits of a binary number while preserving the number's sign (positive/negative) and value
 - This is done by appending digits to the most significant side of the number, following a procedure dependent on the particular signed number representation used
- In MIPS, all arithmetic immediate values are sign-extended
- e.g., If six bits are used to represent the number "00 1010" (decimal +10) and the sign extension operation increases the word length to 16 bits, then the new representation is simply "0000 0000 0000 1010" padding the left side with 0s

Sign Extension

• Solution: If ten bits are used to represent the value "11 1111 0001" (decimal -15) in two's complement, and the sign extension operation increases the word length to 16 bits, the new representation is "1111 1111 1111 0001" – padding the left side with 1s

Long Addition

Long Addition in Decimal + 2 8 1 8 2 8 1 7 0 1 1 1 0 1 0 1 Carry 9 1 1 3 4 2 3 0

0111 0110 + 1101 0101

Long Addition in Binary 0 1 1 1 0 1 1 0 = 118 + 1 1 0 1 0 1 0 1 = 213 1 1 1 1 0 1 0 0 Carry 1 0 1 0 1 0 1 1 = 331

Overflow

- One issue in computer arithmetic is dealing with finite amounts of storage, such as 32-bit MIPS registers
- Overflow occurs when the result of an operation is <u>too large to be stored</u>
- For an unsigned number, overflow happens when the last carry (1) cannot be accommodated. E.g. 1111+0001

Overflow for addition

- For a signed number, overflow occurs when
 - Adding two positives yields a negative. E.g. (0111 + 0001)
 - Or, adding two negatives gives a positive. E.g. (1000 + 1000)
 - Or, subtract a negative from a positive gives a negative
 - Or, subtract a positive from a negative gives a positive

• One way to detect overflow is to check whether the sign bit is consistent with the sign of the inputs when the two inputs are of the same sign — if you added two positive numbers and got a negative number, something is wrong, and vice versa

Outline

- Representing Negative Numbers
 - Overflow

Shift Operations

- Shift operations shift a word a number of places to the left or right
- Bits which are shifted out, just disappear
- E.g. on 4 bits: 1011 shifted left 1 bit, results in 0110.

- Logical shift: in right shift, 0s are filled in empty positions.
 - E.g., 1011 shift right 1 bit => 0101
- Arithmetic shift: in right shift, sign bits are filled in empty positions.
 - E.g., 1011 shift right 1 bit => 1101

Shift Operations

- For <u>unsigned and 2's complement numbers</u>, <u>logical/arithmetic shift left</u> by 1 is multiplication by 2 if there is no overflow
 - e.g. 0011 (3) shifted left 1 bit results in 0110 (6)
 - e.g. 1100 (-4) shifted left 1 bit results in 1000 (-8)
- For <u>unsigned numbers</u>, <u>logical shift right</u> by 1 is division by 2, ignoring remainder.
 - e.g. 0101 (5) shifted right 1 bit results in 0010 (2)
 - For 2's complement numbers, logical shift right by 1 does not correspond to dividing 2.
 - e.g. 1100 (-4) shifted right results in 0110 (6)
- For <u>2's complement numbers</u>, <u>arithmetic shift right</u> by 1 performs division by 2.
 - e.g. 1100 (-4) shifted right arithmetical results in 1110 (-2)

Multiplication

- Binary multiplication similar to decimal multiplication multiplying with each bit and add the (shifted) results together.
- If we multiply an m-bit with an n-bit number, we need m+n bits to store the result
 - Multiplying 4-digit numbers needs 8 digits
 - e.g. 1101₂ x 1011₂

Long Multiplication in Binary											
						1	1	0	1	$a = 13_{10}$	
	×					1	0	1	1	$b = 11_{10}$	
						1	1	0	1		
					1	1	0	1			
				0	0	0	0				
	+		1	1	0	1				Partial Sums	
	=	1	0	0	0	1	1	1.	1	$c = 143_{10}$	

Multiplication Instructions

- MIPS stores the 64 bit result of the multiplication of two 32 bit registers in two special 32-bit registers Hi and Lo
 - Bits 32 to 63 are stored in Hi
 - Bits 0 to 31 are stored in Lo

- Find a similar question on division from our Week3's lab
- There are two instructions: multiply (mult) and unsigned multiply (multu)
- e.g. mult \$s1,\$s2
 - Performs a signed multiplication of the registers \$s1 and \$s2, storing the result in Hi and Lo
- We can use the instructions: move from low (mflo) and move from high (mfhi), e.g. mflo \$s0
 - Store the lower 32-bit of the result of the previous multiplication operation in register \$s0

Multiplication Instructions

- Two small integers are multiplied. Where is the result?
- If the result is small enough all the significant bits will be contained in Lo and Hi will contain all zeros
- Since it is common that we are only interested in the 32 bit result of a multiplication, the sequence

```
mult $s1,$s2
mflo $s0
can be encoded as one operation:
mul $s0,$s1,$s2
```

- Note mul does not check for overflow, but a pseudo-instruction multiply with overflow mulo does
- Think about it: How to check overflow for multiplications?