1 Отношение эквивалентности

Определение

Бинарное отношение $r \subseteq A^2$ называется **отношением эквивалентно- сти**, тогда и только тогда, когда оно рефлексивно, симметрично и транзитивно. Другими словами, выполняются следующие свойства:

- 1. рефлексивность $\forall a \in A \ (a, a) \in r$
- 2. симметричность $\forall a, b \in A \ (a, b) \in r \Rightarrow (b, a) \in r$
- 3. транзитивность $\forall a, b, c \in A \ (a, b) \in r, \ (b, c) \in r \Rightarrow (a, c) \in r$

Для обозначения отношений эквивалентности используются символы вида \sim , \equiv . Если использовать символ \sim (или \equiv) для отношения эквивалентности r, то вместо $(a,b) \in \sim$ можно писать $a \sim b$ и называть \sim просто эквивалентностью.

Примеры отношений эквивалентности

Пример 1

Определим эквивалентность $\sim_{\mathbb{Q}}$ на множестве $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$:

$$(n_1, n_2) \sim_{\mathbb{Q}} (m_1, m_2) \Leftrightarrow n_1 \cdot m_2 = n_2 \cdot m_1$$

Понятно, что $(n_1,n_2)\sim_{\mathbb{Q}}(m_1,m_2)$ означает, что $\frac{n_1}{n_2}=\frac{m_1}{m_2}$ Пусть $n,k\in\mathbb{N}$ - натуральные числа. Введем следующие обозначения:

- $\lfloor n/k \rfloor$ целая часть от деления n на k, т.е. $\lfloor n/k \rfloor \cdot k \leq n < (\lfloor n/k \rfloor + 1) \cdot k$
- $rest(n,k) \rightleftharpoons n \lfloor n/k \rfloor \cdot k$ остаток от деления n на k

Пример 2

Мы можем определить отношение эквивалентности \equiv_k на множестве \mathbb{Z} :

$$n_1 \equiv_k n_2 \Leftrightarrow rest(n_1, k) = rest(n_2, k)$$

2 Отношение частичного порядка

Определение

Бинарное отношение $r \subseteq A^2$ называется отношением **частичного порядка**, или просто **частичным порядком**, если оно рефлексивно, антисимметрично и транзитивно. Другими словами, оно должно удовлетворять следующим свойствам:

- 1. рефлексивность: $\forall a \in A \ (a, a) \in r$
- 2. антисимметричность: $\forall a, b \in A \ (a, b) \in r, (b, a) \in r \Rightarrow a = b$
- 3. транзитивность: $\forall a,b,c \in A \ (a,b) \in r, \ (b,c) \in r \Rightarrow (a,c) \in r$

Для обозначения отношения частичного порядка обычно используются следующие символы: \leq , \subseteq , \preceq , \sqsubseteq , Если такой символ используется в качестве r, то вместо $(a,b) \in \leq$ можно использовать более общие обозначения $a \leq b$ и называть \leq просто частичным порядком.

Важный частный случай частичного порядка, также называемый линейным порядком..

Определение

Частичный порядок \leq на множестве A называется **линейным поряд- ком**, если выполняется следующее свойство:

$$\forall a, b \in A \ (a, b) \in r$$
 или $(b, a) \in r$

Примеры частичных порядков

Пример 1

Обычное отношение \leq на действительных числах $\mathbb R$ является линейным порядком.

Пример 2

Пусть A - множество. Тогда бинарное отношение \subseteq_A на множестве $\mathcal{P}(A)$ будет частичным порядком, но не линейным в общем случае.

Пример 3

Определим отношение делимости | на множестве натуральных чисел $\mathbb{N} = \{1, 2, 3, \ldots\}$ как:

$$n|m \Leftrightarrow n$$
 делит m

Тогда | является частичным порядком на N.

3 Равномощность множеств

Определение

Два множества A и B равномощны, тогда и только тогда, когда существует биекция из A в B. Это отношение обозначается как $A \approx B$. В множестве A содержится не более элементов, чем в B, тогда и только тогда, когда существует всюду определенная инъекция из A в B. Это отношение обозначается как $A \leq B$.

4 λ -term

Определение

 λ -терм, составленный из переменных X и констант C - это слово в алфавите $\mathcal{A}_{\lambda} \cup X \cup C$, определяемое по индукции:

- любая переменная $x \in X$ и любая константа $c \in C$ являются λ -термом.
- ullet для любых λ -термов p и q запись

является λ -термом и называется аппликацией p к q.

• для любой переменной $x \in X$ и λ -терма f, запись

$$(\lambda x.f)$$

является λ -термом и называется абстракцией f от x.

5 β -редукция

 β -редукция правило переписывания:

$$(\lambda x.t)s \Rightarrow_{\beta} t[x=s]$$

может применяться когда подстановка t[x=s] не создаёт конфликта имен переменных в t, т.е. когда s свободно относительно x в t.

 β -редукция - это элементарный шаг вычисления, при котором все вхождения переменной x просто заменяются на s внутри t, как только выражение $(\lambda x.t)s$ встречается в переписываемом терме. Терм вида $(\lambda x.t)s$ называется β -редексом, а результат редукции t[x=s] называется β -сокращением.

6 Нормальная форма λ -терма

Определение

 λ -терм t находится в **нормальной форме**, если он не содержит подтерма s, такого, что существует некоторый α -эквивалентный к s терм s', образующий β или η редекс в t.

Дальнейшая редукция терма в нормальной форме невозможна, поскольку он не имеет редексов.

Примеры нормальных форм

- $I = \lambda x.x$ находится в нормальной форме
- (f(tsr)) находится в нормальной форме
- $(f((\lambda x.(gxh))sr))$ не находится в нормальной форме, потому что он имеет редекс $(\lambda x.(gxh))s$

7 Формулы логики высказываний

Определение

Алфавит логики высказываний: $\mathcal{A}_{prop} = \{(,), \wedge, \vee, \rightarrow, \neg, \top, \bot\} \cup V$ где $V = \{v_i | i \in \omega\}$ - бесконечное множество пропозициональных переменных.

Определение

формула логики высказываний - это слово алфавита \mathcal{A}_{prop} , определяемое по индукции:

- 1. \top, \bot и v_i для всех $i \in \omega$ являются **атомарными** формулами
- 2. если ϕ , ψ являются формулами, то следующие слова также являются формулами:
 - $(\phi \wedge \psi)$
 - $(\phi \lor \psi)$
 - $(\phi \rightarrow \psi)$
 - $\bullet \neg \phi$

8 Истинность формул логики высказываний

Определение

Если $\gamma(\phi)=1$, то будем говорить, что эта формула **истинна** при означивании γ , если $\gamma(\phi)=0$ будем говорить, что формула **ложна** при означивании γ .

9 Линейное доказательство в логике высказываний

Определение

Линейное доказательство (или **линейный вывод**) из множества секвенций H в исчислении высказываний - это последовательность секвенций (s_1, s_2, \ldots, s_n) такая, что каждая секвенция s_i :

- аксиома исчисления высказываний, т.е. $s_i \in A_{PC}$
- или $s_i \in H$
- или получена из некоторых секвенций $s_{j_1}, s_{j_2}, \ldots, s_{j_k}$, где $j_1, j_2, \ldots, j_k < i$, по одному из правил вывода, т.е.

$$\frac{s_{j_1}, s_{j_2}, \dots, s_{j_k}}{s_i} \in R_{PC}$$

Множество H называется множеством **предпосылок** или **предположений**, и если не указано, то будем считать, что $H = \emptyset$.

10 Формулы логики предикатов

Определение

Пусть $\sigma = (P, F, \mu)$ - некоторая сигнатура. Тогда **алфавит** логики предикатов (или логики первого порядка) сигнатуры σ - это множество:

$$\mathcal{A}_{FOL}(\sigma) \rightleftharpoons \{\land, \lor, \rightarrow, \neg, (,) \top, \bot, \forall, \exists, =\} \cup P \cup F \cup \{x_i | i \in \omega\} \cup \{,\}\}$$

Здесь $V = \{x_i | i \in \omega\}$ - бесконечное множество **предметных** переменных.

Определение

Пусть $\sigma = (P, F)$ - сигнатура. Тогда **язык формул** $F(\sigma)$ сигнатуры σ можно определить как множество слов алфавита $\mathcal{A}_{FOL}(\sigma)$ по индукции:

- 1. если $t_1, t_2 \in T(\sigma)$ два терма, то $(t_1 = t_2) \in F(\sigma)$
- 2. если $p^n \in P$ предикатный символ, $t_1,\dots,t_n \in T(\sigma)$ термы, то $p(t_1,\dots,t_n) \in F(\sigma)$
- 3. если $\phi \in F(\sigma)$, то $\neg \phi \in F(\sigma)$
- 4. если $\phi,\psi\in F(\sigma),$ то $(\phi\bullet\psi)\in F(\sigma)$ для любого $\bullet\in\{\wedge,\vee,\to\}$
- 5. если $\phi \in F(\sigma), x \in V$ предметная переменная, то $Qx\phi \in F(\sigma)$, где $Q \in \{\forall, \exists\}$ кванторы.

Слова из множества $F(\sigma)$ называются формулами сигнатуры σ . Формулы, полученные по 1 и 2 называются атомарными.

11 Истинность формул логики предикатов

Определение

Пусть $\mathcal{M} = (M, \sigma)$ - структура сигнатуры σ , $\phi(\bar{x})$ - некоторая формула сигнатуры σ , γ - означивание переменных \bar{x} в структуре \mathcal{M} . Определим

отношение **истинности** \models формулы ϕ в структуре \mathcal{M} при означивании γ :

•
$$\mathcal{M} \models (t_1 = t_2)[\gamma] \stackrel{def}{\Leftrightarrow} t_1^{\mathcal{M}}[\gamma] = t_2^{\mathcal{M}}[\gamma]$$

•
$$\mathcal{M} \models p(t_1, \dots, t_n)[\gamma] \stackrel{def}{\Leftrightarrow} (t_1^{\mathcal{M}}[\gamma], \dots, t_n^{\mathcal{M}}[\gamma]) \in p^{\mathcal{M}}$$

•
$$\mathcal{M} \models (\phi \land \psi)[\gamma] \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \phi[\gamma]) \land (\mathcal{M} \models \psi[\gamma])$$

•
$$\mathcal{M} \models (\phi \lor \psi)[\gamma] \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \phi[\gamma]) \lor (\mathcal{M} \models \psi[\gamma])$$

•
$$\mathcal{M} \models \neg \phi[\gamma] \stackrel{def}{\Leftrightarrow} \mathcal{M} \not\models \phi[\gamma] \Leftrightarrow \neg(\mathcal{M} \models \phi[\gamma])$$

•
$$\mathcal{M} \models (\phi \to \psi)[\gamma] \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \phi[\gamma]) \to (\mathcal{M} \models \psi[\gamma])$$

•
$$\mathcal{M} \models \forall x \phi[\gamma] \stackrel{def}{\Leftrightarrow} \forall a \in M \ (\mathcal{M} \models \phi[\gamma_a^x])$$

•
$$\mathcal{M} \models \exists x \phi[\gamma] \stackrel{def}{\Leftrightarrow} \exists a \in M \ (\mathcal{M} \models \phi[\gamma_a^x])$$

12 Линейное доказательство в логике предикатов

Определение

Линейное доказательство (или линейный вывод) из множества секвенций H в PredC_{σ} - это последовательность секвенций (s_1, s_2, \ldots, s_n) такая, что каждая секвенция s_i :

- аксиома, т.е. $s_i \in A_{PredC}(\sigma)$
- предпосылка, т.е. $s_i \in H$
- получена из секвенций $s_{j_1}, s_{j_2}, \ldots, s_{j_k}$, где $j_1, j_2, \ldots, j_k < i$, по одному из правил вывода $\operatorname{PredC}_{\sigma}$, т.е.

$$\frac{s_{j_1}, s_{j_2}, \dots, s_{j_k}}{s_i} \in R_{PredC}(\sigma)$$

Множество H называется множеством **предпосылок** или **предположений**, и если не указано, то будем считать, что $H = \emptyset$.

13 Условие частичной корректности

Проблема: формальная корректность

Дана программа π , и некоторое множество входных данных, соответствующее формуле ϕ (предусловие), будут ли выходные данные соответствовать формуле ψ (постусловие)?

Отметим, что здесь мы формализовали технические требования к программе, используя формулы логики предикатов. В сокращённых обозначениях проблема корректности записывается как:

$$\{\phi\}\pi\{\psi\}$$

и называется тройка Хоара или условие частичной корректности.