### **DataSet features**

The Dataset: Albuquerque House Pricing

- PRICE (Target Variable): House Selling Price in dollars

SquareFeet : Square feet of living space

- **AgeYear :** The age of the house (years)

- **NumberFeatures**: Sort the of 11 features (dishwasher, refrigerator, microwave, disposer, washer, intercom, skylight(s), compactor, dryer, handicap fit, cable TV access)

Northeast: If the building is located in the northeast sector of city (Yes or No)

- **CustomBuild**: Custom built (Yes or No)

- **CornerLot**: If the building is located in a Corner location (Yes or No)

There are 117 rows and 7 variables in this data set.

Please note the 49 null-values in the AgeYear column

#### **Objectives and Issues**

I wanna try to highlight an eventual relation between the target Price and the features. I will look for linear regression models to fit the data.

Missing Data: I will fill the missing data with a simple linear interpolation

**Categorical Variables:** I will perform one-hot encoding for the categorical variables (Northeast, CustomBuild, CornerLot)

#### **Summary Statistics**

Of the 7 variables, Northeast, CustomBuild, CornerLot are categorical variables, Price, SquareFeet and NumberFeatures are Int, AgeYear is a float.

# After the linear interpolation to fill the missing values and a change in the dytpe of AgeYear:

| Data | columns (total | 7 co. | lumns):     |        |
|------|----------------|-------|-------------|--------|
| #    | Column         | Non-  | -Null Count | Dtype  |
|      |                |       |             |        |
| 0    | Price          | 117   | non-null    | int64  |
| 1    | SquareFeet     | 117   | non-null    | int64  |
| 2    | AgeYear        | 117   | non-null    | int64  |
| 3    | NumberFeatures | 117   | non-null    | int64  |
| 4    | Northeast      | 117   | non-null    | object |
| 5    | CustomBuild    | 117   | non-null    | object |
| 6    | CornerLot      | 117   | non-null    | object |
|      | 1              |       |             |        |

dtypes: int64(4), object (3)

memory usage: 6.5+ KB

### After the one-hot encoding:

|             | 0   | 1   | 2   | 3   | 4   |
|-------------|-----|-----|-----|-----|-----|
| Northeast   | Yes | Yes | Yes | Yes | Yes |
| CustomBuild | Yes | Yes | Yes | Yes | Yes |
| CornerLot   | No  | No  | No  | No  | No  |

#### Let's see the common statistics values:

|                    | coun      | mean              | std              | min         | 25%         | 50%         | 75%          | max          |
|--------------------|-----------|-------------------|------------------|-------------|-------------|-------------|--------------|--------------|
| Price              | 117.<br>0 | 106273.50427<br>4 | 38043.69854<br>3 | 54000.<br>0 | 78000.<br>0 | 96000.<br>0 | 120000.<br>0 | 215000.<br>0 |
| SquareFeet         | 117.<br>0 | 1653.854701       | 523.722802       | 837.0       | 1280.0      | 1549.0      | 1894.0       | 3750.0       |
| AgeYear            | 117.<br>0 | 18.068376         | 13.370533        | 1.0         | 6.0         | 15.0        | 27.0         | 53.0         |
| NumberFeature<br>s | 117.<br>0 | 3.529915          | 1.405486         | 0.0         | 3.0         | 4.0         | 4.0          | 8.0          |
| Northeast_Yes      | 117.<br>0 | 0.666667          | 0.473432         | 0.0         | 0.0         | 1.0         | 1.0          | 1.0          |
| CustomBuild_Y es   | 117.<br>0 | 0.230769          | 0.423137         | 0.0         | 0.0         | 0.0         | 0.0          | 1.0          |
| CornerLot_Yes      | 117.<br>0 | 0.188034          | 0.392420         | 0.0         | 0.0         | 0.0         | 0.0          | 1.0          |

# Regarding skewed values (with a skew limit 0.75):

|            | Skew     |
|------------|----------|
| Price      | 1.375404 |
| SquareFeet | 1.187560 |
| AgeYear    | 0.765807 |

Let's perform a log transformation for the field Price.



And after the other 2 log transformations, let's see the statistics for the cleaned and transformed dataset

|                    | coun      | mean          | std          | min           | 25%           | 50%           | 75%           | max           |
|--------------------|-----------|---------------|--------------|---------------|---------------|---------------|---------------|---------------|
| Price              | 117.<br>0 | 11.51967<br>5 | 0.31982<br>5 | 10.89675<br>8 | 11.26447<br>7 | 11.47211<br>4 | 11.69525<br>5 | 12.27839<br>8 |
| SquareFeet         | 117.<br>0 | 7.366834      | 0.29458      | 6.731018      | 7.155396      | 7.346010      | 7.546974      | 8.229778      |
| AgeYear            | 117.<br>0 | 2.670314      | 0.79398<br>5 | 0.693147      | 1.945910      | 2.772589      | 3.332205      | 3.988984      |
| NumberFeature<br>s | 117.<br>0 | 3.529915      | 1.40548<br>6 | 0.000000      | 3.000000      | 4.000000      | 4.000000      | 8.000000      |
| Northeast_Yes      | 117.<br>0 | 0.666667      | 0.47343      | 0.000000      | 0.000000      | 1.000000      | 1.000000      | 1.000000      |
| CustomBuild_Y es   | 117.<br>0 | 0.230769      | 0.42313<br>7 | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 1.000000      |
| CornerLot_Yes      | 117.<br>0 | 0.188034      | 0.39242<br>0 | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 1.000000      |

Let's see the Histograms for each feature:









### And now the BoxPlot

0.5

0.0





AgeYear

We can see Outliers in Price and SquareFeet Variables.

### Here we can see the Price Vs NorthEast Esposition BoxPlot



#### And here Price Vs Corner Position



So far we've seen from the histograms none variables have a recognizable distribution (i.e gaussian)

From the boxplots we can se a relation between Price vs NorthEast position and Price vs Corner location.

### I've tried to fit a linear regression between **Price and SquareFeet**



And a linear regression between **Price and NumberFeatures** 



In conclusion we can't say the linear model is a proper model to describe the relations between our dataset variables. Maybe this due to the fact that the outliers are not normally distributes.

## Hypothesis:

(H\_0) for 3 linear regressions:

Linear Regressions with H\_0:

- Price Vs SquareFeet
- Price Vs NumberFeatures
- Price Vs Age

H\_0 = the data can be modeled by setting all our Betas to zero.

In a linear regression usually Betas are the coefficients for each one of our features. We will reject the null Hypo if the p-value is small enough.

We will use F-Statistic to test the Hypos.

I wil try to test null H for Price Vs Surface

| ======================================= |                  |                                        | ======================================= |
|-----------------------------------------|------------------|----------------------------------------|-----------------------------------------|
| Dep. Variable:                          | Price            | R-squared:                             | 0.714                                   |
| Model:                                  | OLS              | Adj. R-squared:                        | 0.711                                   |
| Method:                                 | Least Squares    | F-statistic:                           | 286.6                                   |
| Date:                                   | Sun, 22 Nov 2020 | Prob (F-statistic)                     | : 5.15e-33                              |
| Time:                                   | 15:10:31         | Log-Likelihood:                        | -787.49                                 |
| No. Observations:                       | 117              | AIC:                                   | 1579.                                   |
| Df Residuals:                           | 115              | BIC:                                   | 1584.                                   |
| Df Model:                               | 1                |                                        |                                         |
| Covariance Type:                        | nonrobust        |                                        |                                         |
| ============                            | ===========      |                                        |                                         |
| coe                                     | f std err        | t P> t                                 | [0.025 0.975]                           |
| Intercept 47.819                        | 3 62.855         | 0.761 0.448                            | -76.684 172.323                         |
| SquareFeet 0.613                        |                  | 16.931 0.000                           |                                         |
| ======================================  | 30.950           | ====================================== | 1.536                                   |
| Prob(Omnibus):                          | 0.000            |                                        | 216.286                                 |
| Skew:                                   | -0.540           | 1 , ,                                  | 1.08e-47                                |
| Kurtosis:                               | 9.573            | ` '                                    | 5.77e+03                                |

P-value very very low, so we reject the Null Hypothesis.

#### Conclusion

Overall's data set is, in my opinion, poor. We should have more data.

The linear model doesn't fit very well our data, this is due to the non-normal distribution of the data and outliers, even with a log transformation. We can't find a linear regression just in the case of relation between Price and Number of Features. We should try with a multiple regression model.