Internship Program Report

By

Chatragadda Prudhvi Raj-17481A02B0

In association with

Contents

ntroduction	3
Program organiser	3
Courtesy	3
Program details	3
nternship program	3
3 rd May2021: Introduction to EPC Industry	4
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Engineering documentation for commands and formulae	6
7 th May2021: Engineering documentation for Electrical system design	7
10 th May2021: Engineering documentation for Typical diagrams	8
11 th May2021: Classification of Transformers and Generators	9
12 th May2021: Classification of Switchgare construction and power factor improvement1	0
17 th May2021: Detailing about UPS system and Busducts	1
18 th May2021: Detailing about Motor Starters and Sizing of motors1	2
19 th May2021: Discribing about Earthing system and Lighting Protection1	3
20 th May2021: Lighting or illumination systems and calculations1	4
21 th May2021: Lighting or illumination systems using DIALUX software1	5
24 th May2021: Cabling and their calculations and types1	6
25 th May2021: Cabling calculations and Cable gland selection1	7
28 th May2021: Load calculations and Transformer sizing calculations 1	8
29th May2021: DG set calculations	9
2nd june2021: Caluculations of Earthing and Lighting protection2	<u>2</u> 0
5 th june 2021: Cable sizing and cable tray sizing calculations	<u>?</u> 1
Conclusion	22
Foodback:	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. G. Srinivasa Rao – Internship coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info exchange
		Deliverables types	Different types of deliverables

2

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

5 th May2021: Engineering documentation for commands and formulae

3	Document & Drawing	MS Word	Report / Calculations formats
	tools	MS Excel	Basic excel commands
		Autocad	Basic line diagrams and layout
			commends

3C. AUTOCAD BASIC COMMANDS

A AUTOCAD BASIC KEYS							
STAND	ARD	DRA	W	MOD	IFY	FORM	AT
NEW	Ctrl+N	LINE	L	ERASE	£	PROPERTIES	MO
OPEN	Ctrl+0	RAY	RAY	COPY	CO	SELECT COLOR	COL
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN. STYLE	D
MATCH PROPE.	MA	SPLINE	SPL	STRECH	\$	RENAME	REN
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX		
		POINT	PO	BRAKE	BR		
		HATCH	Н	CHAMFER	CHA		
		GRADIENT	GD	FILLET	F		
		REGION	REG	EXPLODE	Х		
		BOUNDARY	ВО				
		DONUT	00				

	EXTRA			DRAF	FING	PAPER SIZE
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID D	F7, Ctrl+G	A1=594*841
ALL	A	OBJECT SNAP	OB	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topic details:

Here we need to learn the basis of the autocadbasic keys like standard, modify,draw,format,papersize etc..

7 th May2021: Engineering documentation for Electrical system design

4	Electrical system	Overall plant description
	design for a small	Sequence of approach
	small project	Approach to detailed design

Topic details:

Internz

1C. DETAILED ENGINEERING

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May 2021: Engineering documentation for Typical diagrams

5	Electrical system design for typical diagrams		
		Load lists shedule	Power flow diagram
		Single line diagram	Typical schematic
			diagram

Topic details:

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

6	Classification of		
	Transformers and Generators	Different types of Transformers	Different types of Generators

Topic details:

Classification of Transformers and Generators

12th May2021: Classification of Switchgare construction and power factor improvement

7 Classificat Switchgare construction power fact improvement	Different types of Switchgare assembles	Power factor improvement	
--	---	--------------------------	--

Topic details:

Classification of Switchgare contruction and Power Factor Improvement

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	-

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about Motor	Motor starters and drives	Sizing and selection of
	Starters and Sizing of		motors
	motors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Discribing	Plant Earthing system	Lighting Protection materials
	about Earthing		
	system and		
	Lighting		
	Protection.		

Topic details: Discribing about Earthing system and Lighting Protection.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

11	Lighting			
	or	Lighting or illumination systems	Lighting calculations	
	Illuminatio			
	n systems			
	and			
	Calculation			
	S			

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon,

CG Lux Applicable Standards: IS 6665: Code of practice for industrial

lighting, IS 3646: Code

of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

using DIALUX software software	12	Lighting or Illumination using DIALUX	Lighting or illumination systems	Operation software	of	dialux
--------------------------------	----	---	----------------------------------	--------------------	----	--------

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

24th May2021: Cabling and their calculations and types.

13	Cabling and their			
	types and claculations	Cabling calculations	Types o materials	of cabling

Topic details: Cabling and their types and claculations .

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling	California del colorida de	C-111111
	claculations and cable gland	Cabling calculations	Cable gland selection
	selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point. Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table

Cable Gland Size	(Alternat	Entry Threads "C" te Metric Thread hs Available)	Cable Bedding Diameter "A"	Overall Cable Diameter "8"	Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length F
20516	M20	10.0	8.7	13.2	8.0	1.25	24.0	26.4	35.2
205	M20	10:0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32,2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	0.88	49.8
755	M75	15.0	62.0	72,1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	0.08	90.4	3.15	4.0	114.3	125.7	66.6

28 th May 2021: Load calculations and Transformer sizing calculations

15	Load calcul	ations		
	and calculations	TR	Load calculations	TR calculations
	Calculations			

Topic details:

List of electrical load calculations.

T/F calculation:

29th May2021: DG set calculations

16	DG set
	calculations

Topic details:

Transformer and DG set calculations, types , sizing or selections

	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.82	Avg
	Efficiency	0.93	Avs
7	Total operating load on DG set in kVA at 0.82 power factor	470.9	_
	Largest motor to start in the sequence - load in KW	90	KW
	Running kVA of last motor (CosØ= 0.91)	118	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter
	Starting KVA of the largest motor	708	KVA
	(Running KVA of last motor X Starting current ratio of motor)		
	Base load of DG set in KVA	353	KVA
	(Total operating load in kVA – Running kVA of last motor)		
	C		
	Continous operation under load -P1	353	
1	Capacity of DG set based on continuous operation under load P1	222	KVA
	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	1061	KVA
(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd")	7.91%	(Assumed)
-	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
3	xd··· =(xd··+xd·)/2	0.089875	
	Transient Voltage Dip	15%	(Max)
-	Transient Voltage dip during Soft starter starting of Last motor		
	P2 = Total momentary load in KVA x Xd" x (1-Transient Voltage Dip)	540	KVA
	(Transient Voltage Dip)		
	Overload capacity P3		
4	Capacity of DG set required considering overload capacity		
7	Total momentary load in KVA	1061	KVA
	overcurrent capacity of DG (K)	150%	
((Ref: IS/IEC 60034-1, Clause 9.3.2)		
	Capacity of DG set required considering overload capacity	707	KVA
	(P3) = Total momentary load in KVA overcurrent capacity of DG (K)		
	Considering the last value amongst P1, P2 and P3		
4	Continous operation under load -P1	353	KVA
7	Transient Voltage dip during Soft starter starting of Last motor P2	540	KVA
	Overload capacity P3	707	KVA
	Considering the last value amongst P1, P2 and P3	707	KVA
	Hence, Existing Generator 707 KVA is adequate to cater the loads as per re- scheduled loads		
	NOTE:VOLTAGE DIP CONSIDERED - 15%		

2nd june2021: Caluculations of Earthing and Lighting protection.

17	Calculation of		
	Earthing and	Earthing calculations	Lighting protection
	Lighting	_	calculation
	protection		
	calculations		

Topic details:

Calculation of Earthing and Lighting protection calculations

Lightning calculation

5 th june 2021: Cable sizing and cable tray sizing calculations.

18	Cable sizing and		
	cable tray	Cable sizing calculations	Cable tray calculation
	sizing		•
	calculations		

Topic details:

Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

0.	Descriptor	Equipment No.	Chartotos	Continued Loss Not	Exedit Forting KW	Askingar 201	2 4 5 F	ad Surfag	test P.P. Homey	SA ST	Motor P.J. Muchay	SRIP OTLERG	Турк	Alta of thore	Mon of Dones	Site (mint)	Cornett Pades (A)	Senting Subst (I)	Deserting Sector 62	factor factor kil	functor factor	Charated Sector	Detailed Garrent (A)	Came Length (At)	Catie Pastatelica (Distribit)	Ceste Nescanos (Chros/Mil)	Sport Sport	STE STE STE	one drame	Votage interproj	SEE SEE SEE	OD of Cable Stend	Glas HD
	LV MSG	Digital	Stockfor belians	1000	- 90	412	2 12	0.6 000.11		2.0	8.2	1.5	2	9	42		#107	0.00	9.39	1	1	9.002	95557	30	#800	#KETT	AREN.	1331	#80P	man	8300	#821	
	3V 9600	FLADUSA	Software pump	22.26	'At.	410	2 20	17 202,40	0.0	0.0	0.0	2.5	41	200	46	- 20	#REFT	036	0.3	(t)	7.	0.000	AREST	85	#REF.	MISSETT	ARCH.	PEET.	PROFE	#IZIT	WYCE'T.	AND:	23
т	TV MES		Greenham (Blacks) of pump.	101年	(38)	410	3 25	15 (table)	128	9.8	9.8	25		1000	1,0	, 3k	WHITE	0.06	0.0			11,685	41111	803	Atten	B EE21		No.	#1111 I	anni.	#RIP!	89077	1776
Т	(U alto		Citrio Polis Facility sang	97-44	(00)	218	1 11		-0.6	58	6.8	14	- 2	4101	.A0.	- 60	#107	2:88	0.5	- 2	1.0	1.600	anne	160	ANIT	ARTH	ATTE:	MEN.	4907	20111	#30r)	ALC: U	.03
Т	- IV BIGG	PUZZEE	they Olyanese	7804	.00	416	2 13	8.7 81430	3.0	3.0	5.3	14	1.	A	40.	40	#1671	E36	0.0	- 1		0.000	40221	76	#IC21	401271	#31/T	4FEF	#REP1	#RETT	WEST.	4701	70
	LV MCC		Softwaler sump-discrety	79.04	: 90	415	3 33		- 06	0.5	6.8	85	7	8.00	140	- 70	#43F1	036	0.9	1		0.883	4EES	186	4031	403/1	#21ff	- MEET	#R331	#1331	#ROFT-	#10/FT	204
Т	- FA 9622 -	AUDIA	Type/Creater Metering Furnis	203.40	11.00	415	3 50	33 349.55	1 06	2.5	6.8	85	1	4.0	40		#427°	CIME	0.0	,		0.863	***	160	*600	W0231	MILIT	WEF	PR27	WIETI	MOY!	**E71.1	- 23
Т	- IV MC		the spinete part insula	8.26	17	416	3 8	7 12.31	328	2.6	5.8	25	2	#100	8.0	- 4	- Bretter	0.98	0.0			11,840	4000	100	Atten	40234	batter.	and in	MILE.	antiti-	MED!	*ten	255
Т	IV HCc.	FV2000	Feet Fungi beprints:	(F#)	FA	912	2 7	21. 23,47	0.0	2.0	5.0	113	- 4	1.0	40.		RIVE	CHE	0.8	71 3	1.0	0.002	#RETT:	73	#RC21	#REF1	#31F	MET.	P CT	#12ft	#1071	#10°	- 11
т	TA MOD		Saco Hack Purse	5.88	95	411	3 9	00.00	9.0	2.0	5.8	1.5	- 1	A //	40.		MASS.	CHE	.0.4	1	1	0.000	****	110	#RECT	#RQ271	#51F	80EF	#RED	#15TT		#10°C	. 20
Ι	(O M.)	803335	Move	5.55	335	415	3 3	5 58.06	0.6	9.5	6.8	1.5	1	8,01	40	074	#V251	0.96	0.0	- 1		0.863	#EEEC.	- 25	4631	40231	43 (1)	ALEL:	#R211		#R271	#EP	. 25
Т	TO WEST	403208	Nive	20.66	1.985	414	5 20		3.e	9.8	5.8	1.4	4	9.73	.40	0.00	MARCH.	0.96	0.0			0.862	AFER	116.	- Audito	403,71	****	ACULA-	8000	William	Walls)	ance.	. 79
Ŧ	DV MISS	172313	Deposite	7,48	7.9	418	3 6	78.00	3.0	0.0	6.9	15	1	-1	44	.26	wight	0.98	0.0	- 0	-1	0.802	angre	п.	#FEET	AREH	PEST	HEF	PRIEFE	#HEH!	ANDEL	. Willer	12
ŧ						=	+						-	- 8											3 10								F
Ŧ		-	-	3		=	+	-		-	=		-	-		0	- 2	_							-		-					=	₽
Ŧ	=													-						_					- 1					_			=
Ξ												- 0		-0			- 7		-			-			2 10					-			Ε
f				0	100							8		- 8		9	1	- 8							8 8						10 72	=	Н
Ŧ				-8								- 8		- 8		9		- 8					10 10										F
+				20	1 15			17	10	17			1,9	- 8		8	V/ 5	13					12 8	-	8 13			72	-		8		-

Control descriptions in Fall ACM, CLU CAN

Local descriptions in Fall ACM, CLU CAN

Control descriptions in Control descriptions

Control descriptions in Control

Control descriptions in Control

Control descriptions in Control

Control descriptions in Control

Co

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

ELECTRICAL LOAD CALCULATIONS LV MCC

Assignment-1

												kW = [A] / [D]		Consumed	Load	kVAR = kW	x tan φ	
	Equipment Description		Breaker	Breaker	Breaker		Absorbed	Motor / Load		Efficiency	Power						Rem	
-	No.		Rating	Type	No. of	Rating	Load	Rating	Factor	at Load	Factor at	Continue	ous	Interm	ittent	Stand-l	by	
					Poles				[A] / [B]	Factor [C]	Load							
							F A 3	(D)	101	ID1	Factor [C]							
							[A]	[B]	[C]	[D]		1114	11/45	134	11/45	134	11/45	
-			Α			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
+	PU2315	Silica filter feed pump					76.68	00.00	0.05	0.00	0.00	00.45	57.55					
							22.28	90.00	0.85		0.82	82.45						
	PU 2314-A PU 2314 -B	Absorbesnt/Neutral oil pump (W)					19.16	22.00	1.01 0.87		0.78	24.5	19.6			24.4	16.9	
		Absorbesnt/Neutral oil pump (S)						22.00			0.78	00.0	50.4			21.1	16.9	
	PU2305	Feed Pump (Seperator)					77.44	90.00	0.86			83.3						
	MX2305	MIXER (W)					78.04	90.00	0.87 0.87			83.9	58.6			00.0	50.0	
	MX 2308	MIXER (S)					78.04 33.50	90.00				20.0	00.5			83.9	58.6	
_	BW2313	Blower						37.00 3.70	0.91 0.88		0.78	36.8	29.5		2.0			
	Rotary valve	TK 2313B (I)					3.25 7.52	7.50	1.00		0.73 0.73			3.8 8.85				
	SC2314 AG 2324A	Screw conveyor (I)					7.52 5.65	5.50	1.00			C CE			8.28			
	AG 2324A AG 2324B	Citric acid tan agitator (W)					5.65	5.50	1.03			6.65	6.22			0.0	6.0	
	AG 2324B AG 2305	Citric acid tank agitator (S)						22.00	0.93		0.73 0.78	22.58	18.12			6.6	6.2	
		Citric oil rection vessol agitator					20.55 7.48											
	AG 2309 AG 2310	Lye oil reaction vessel agitator					7.48 7.48	7.50 7.50	1.00 1.00		0.73 0.73	8.80 8.80						
	AG 2310 AG 2314	Lye oil reaction vessel agitator					13.08		0.87			15.39						
F	AG 2314	Soap Adsorbant Tank Agitator					13.00	15.00	0.87	0.85	0.73	15.39	14.41					
-																		
-																		
				000.0				11140 1144 500	470.0	1374	TOTAL	070.45	070.05	40.07	44.00	444.00	0.4.00	
	Maximum of norm (Est. x%E + y%F)	nal running plant load : 377.0 kW		282.2	2 kVAR		sqrt (I	kW² +kVAR²) =	470.9	KVA	TOTAL	3/3.15	278.65	12.67	11.86	111.62	81.69	
l,	Daald and .	200.4 IVM		000.4	L L-\ / A D		t //	LAM2 . LAMA D2\	404.7	1-1/4	1-1/4	405.7	4	47,	20	400.0	4	
	Peak Load : (Est. x%E + y%F	388.1 kW		290.4	kVAR		sqrt (i	$kW^2 + kVAR^2$) =	484.7	KVA	kVA	465.7	1	17.3	36	138.3	1	
1	(ESI. X%E + Y%F	+ 2%G)																J
Ι,	Assumptions																	
1	1) Load factor, Ef	ficiency and Power factor.																
	,	Load Rating (kW)	Effic	ciency		Power fact	or											
		<= 20		85		0.73												
		> 20 - <= 45		91		0.78												
		> 45 - < 150		93		0.82												
		>= 150	0.	94		0.91												
2	Coincidence fa	actors $x=1.0$, $y=0.3$, and $z=0.1$ considered for contnious, integrated for continuous, integrated for the continuous of the continuous contracts and the contract of the c	ermittent and sta	ndby load.														

Assignment -2

Calculation for Transformer Capacity

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	kW	kVar	kVA	
a. Continuous load	373.15	278.7	465.71	(i)
b. Intermittent load / Diversity Factor	12.67	11.9	17.36	(ii)
c. Stand-by load required as consumed load	111.62	81.7	17.36	(iii)
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	388.1	290.4	484.72	
Future expansion load (20% capacity)	77.6	58.1	96.94	
Total Load =	465.7	348.5	581.66	

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 =
 484.7 kVA

 Spare capacity
 =
 96.9 kVA

 Required capacity
 =
 581.7 kVA

 Transformer rated capacity
 =
 120 kVA

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx. 5.3%, which meets the criteria to maintain less than 15% voltage regulation.

1.4 Selection of rated capacity

120 kVA transformer selected.

	Assignment 3 DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.82	Avg
	Efficiency	0.93	Avg
	Total operating load on DG set in kVA at 0.82 power factor	470.9	
	Largest motor to start in the sequence - load in KW	90	KW
	Running kVA of last motor (CosØ= 0.91)	118	KVA (Considering starting
	Starting current ratio of motor	6	method as Soft starter)
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)	708	KVA
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	353	KVA
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	353	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	1061	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd'')	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd''' = (Xd'' + Xd')/2	0.089875	
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd''' x (1-Transient Voltage Dip) (Transient Voltage Dip)	540	KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	1061	KVA
		4500/	
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA	707	KVA
	overcurrent capacity of DG (K)		
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	353	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	540	KVA
	Overload capacity P3	707	KVA
	Considering the last value amongst P1, P2 and P3	707	KVA
	Hence, Existing Generator 707 KVA is adequate to cater the loads as per rescheduled loads		

Assignment -4

	2	
Maximum line-to-ground fault in kA for 1 sec	16	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	3.5	
Soil resistivity Ω -meter	11	
Ambient temperature in deg C	45	
Plot dimensions (earth grid) L x B in meters	60	120
Number of earth rods in nos.	6	

Earth electrode sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{l-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114
Earth rod dia in mm	12
Earth rod dia (including 25% corrosion allowance) in mm	15

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{I-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114

Rg - Grid resistance

Grid resistance can be calculated using Eq. 52 of IEEE 80

ρ - Soil resistivity in Ω -meter=	11
L - Total buried length of ground conductor in meter	360
h - Depth of burial in meter	0.5
A - Grid area in sq. meter	7200

Rg - Grid resistance 0.088

Rr - Earth Electrode resistance

Grid resistance can be calculated using Eq. 55 of IEEE 80

$$R_{r} = \frac{\rho}{2 \times \pi \times n_{r} \times L_{r}} \left\{ l_{n} \left[\frac{4 \times L_{r}}{b} \right] - 1 + \frac{2 \times k_{1} \times L_{r}}{\sqrt{A}} \left(\sqrt{n_{r}} - 1 \right)^{2} \right\}$$

ρ - Soil resistivity in Ω -meter, 16.96	11
n - No of earth electrodes	6
Lr - Length of earth electrode in meter	3.5
b - Diameter of earth electrode in meter	0.020
k1 - co-efficient	1
A - Area of grid in square metre	7200

Rr - Earth Electrode resistance 4.74245

Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows:

$$R_{s} = \frac{R_{g} \times R_{2} - {R_{m}}^{2}}{R_{g} + R_{2} - 2R_{m}}$$

 R_m - Mutual ground resistance between the group of ground conductors, R_g and group of electrodes, R_r in $\Omega.$ Neglected $R_m,$ since this is for homogenous soil

Rs - Total earthing system resistance 0.086 Ohms

The calculated resistance grounding system is less than the allowable 1 Ω value.

Location Raichur
Building Concrete, Hospital
Type of Building Flat Roofs (a)
Building Length (L) 17
Building breadth (W) 7
Building Height (H) 9

Risk Factor Calculation

1 Collection Area (Ac)

 $\begin{array}{lll} A_c & = & (L^*W) + (2^*L^*H) + (2^*W^*H) + (3.14^*H^*H) \\ & 805.34 \\ \\ \textbf{2 Probability of Being Struck (P)} & = & A_c^* N_g^* 10^{-6} \\ & & 0.000885874 \\ \end{array}$

3 Overall weighing factor

a) Use of structure (A) 1.2 b) Type of construction (B) 0.4 c) Contents or consequential effects (C) 8.0 d) Degree of isolation (D) 1.0 e) Type of country (E) 0.3 A * B * C * D * E Wo - Overall weighing factor 0.115 4 Overall Risk Factor Ро P * Wo Ро 0.000102053 10-5 Pa

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

Perimeter of the building = 2(L+W) = 48 Mts.

6 Down Conductors

Perimeter of building = 48 Mts. No. of down conductors based on perimeter = 48 Nos.

Hence 2 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Steel Strip

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

S.NO.	Description	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)	No. of ph Curren	Motor Starting t Current (A)	Load P.F. Running	SIN Ф Running	Motor P.F Staring	SIN Φ Staring	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)	Cable Length (M)	Cable Resistance (Ohms/kM)	Cable Reactance (Ohms/kM)	Voltage drop (Running) (V)	Voltage drop (Running) (%)	Voltage drop (Starting) (V)	Voltage drop (starting) (%)		OD of Cable (mm)	Gland size
3	LV MCC	PU2315	Silica filter feed pump	76.68	90	415	3 133.4	800.11	0.8	0.6	0.8	0.5	2	1	4.0	50	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
4	LV MCC	PU2322A	Soft water pump	22.28	22	415	3 38.7	232.48	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
5	LV MCC	PU 2314A	Absorbesnt/Neutral oil pump	19.16	22	415	3 33.3	199.92	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	60	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
6	LV MCC	PU2324	Citric Acid Tank pump	77.44	90	415	3 134.7	808.04	0.8	0.6	0.8	0.5	2	1	4.0	50	#REF!	0.98	0.9	1	1	0.882	#REF!	85	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
7	LV MCC	PU2333	Slop Oil pump	78.04	90	415	3 135.7	814.30	0.8	0.6	0.8	0.5	2	1	4.0	50	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
8	LV MCC	PU 2322B	Soft water pump-Stand by	78.04	90	415	3 135.7	814.30	0.8	0.6	0.8	0.5	2	1	4.0	70	#REF!	0.98	0.9	1	1	0.882	#REF!	105	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
9	LV MCC	PU2321A	Lye/Simplex Metering Pump	33.50	37	415	3 58.3	349.55	0.8	0.6	0.8	0.5	2	1	4.0	35	#REF!	0.98	0.9	1	1	0.882	#REF!	100	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
10	LV MCC	PU2321B	Lye storage tank pump	3.25	3.7	415	3 5.7	33.91	0.8	0.6	0.8	0.5	2	1	4.0	4	#REF!	0.98	0.9	1	1	0.882	#REF!	100	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
11	LV MCC	PU2305	Feed Pump(Seperator)	7.52	7.5	415	3 13.1	78.47	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
12	LV MCC	PU2332	Saop Stock Pump	5.65	5.5	415	3 9.8	58.95	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	110	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
13	LV MCC	MX2305	Mixer	5.65	5.5	415	3 9.8	58.95	0.8	0.6	8.0	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
14	LV MCC	MX2308	Mixer	20.55	22	415	3 35.7	214.43	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	105	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
15	LV MCC	CF2312	Separator	7.48	7.5	415	3 13.0	78.05	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	85	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	32
-				_			 	-																<u> </u>							\vdash		
																															\vdash		
							l l																										
																								1							\vdash		
								1																									
								1									†														+		$\overline{}$
				+				1									1						1								+		
						l l									l	l		l .	l .	l .			L	<u> </u>			l .	l .	l	l .			

Basis: 1. Overall derating factor $k = k1 \times k2 \times k3 \times k4$

K1=Rating factor for variation in air/ground temperature K2=Rating factor for depth of laying K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil 2. LT Motors: Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation ±10%

ABLE	TDAV. EDOM	17.4		TO	1	TE		1	
ABLE	FRAY: FROM	LT-4		ТО	L	T-5			
Sr. No. Cable Route (From-To)		Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	4	50	1	26	26	2.3	2.3	
2	PU2322A	4	25	1	22	22	1.4	1.4	
3	PU 2314A	4	25	1	22	22	1.4	1.4	
4	PU2324	4	50	1	26	26	2.3	2.3	
5	PU2333	4	50	1	26	26	2.3	2.3	
6	PU 2322B	4	70	1	29	29	3.25	3.25	
7	PU2321A	4	35	1	24	24	1.8	1.8	
8	PU2321B	4	4	1	17	17	0.6	0.6	
9	PU2305	4	6	1	18	18	0.7	0.7	
10	PU2332	4	6	1	18	18	0.7	0.7	
11	MX2305	4	6	1	18	18	0.7	0.7	
12	MX2308	4	25	1	22	22	1.4	1.4	
13	CF2312	4	25	1	22	22	1.4	1.4	
\dashv									
	Total			13		290	20,25	20.25	
Consider Distance Calculate		29 30% 0 377 10933	mm mm mm Sq.mm	I	Result Selected Cable T Selected Cable T Selectrd Cable T Selected Cable T	ray width: Fray Depth: Fray Weight:	0.K 0.K 0.K 0.K	Including Spare Capacit	
o of Lay elected elected elected elected	rer of Cables in Cable Tray: No of Cable Tray: Cable Tray Width: Cable Tray Depth: Cable Tray Weight Capacity: Cable Tray Weight Capacity:	2 1 300 100 90 Ladder	Nos. mm mm Kg/Meter		Required Cable Tray Size: Required Nos of Cable Tray: Required Cable Tray Weight: Type of Cable Tray: Cable Tray Width Area Remaning			mm No Kg/Meter/Tray	