





**Datawarehouse y Minería de Datos** 

Guía #5: Creación de cubos OLAP - Parte 1



### OLAP como herramienta de análisis

Se entiende por **OLAP** (<u>Proceso Analítico en Línea</u>) a la metodología para organizar y consultar datos sobre una estructura multidimensional. A diferencia de las bases de datos relacionales, todas las potenciales consultas están calculadas de antemano, lo que proporciona una mayor agilidad y flexibilidad al usuario de negocio.

Los sistemas OLAP quedan representados gráficamente por la figura de un *cubo*; de esta manera es posible, mediante sus dimensiones, catalogar datos descriptivos y además mediante las medidas se informa de datos cuantitativos.

Cada pieza de este cubo contiene *información especifica y cuenta con movilidad*, favoreciendo el proceso analítico de consulta con agilidad.

Una herramienta OLAP esta formada por un <u>motor y un visor</u>. El motor es el concepto que acabamos de describir y el visor es una interfaz que permite consultar, manipular, reordenar y filtrar datos existentes en una estructura OLAP mediante una interfaz gráfica de usuario que dispone de funciones de consultas MDX (lenguaje de consultas sobre estructuras multidimensionales).



### OLAP como herramienta de análisis

En función de la movilidad de las piezas consultadas se determinara si la técnica de análisis es:

- ➤ Drill Down (de la generalidad a la particularidad): es una de las herramientas más significativas y útiles del sistema OLAP para gerentes de una empresa, ya que permite al usuario desglosar cualquier dato, navegando en su búsqueda desde lo general a lo particular.
- ➤ Drill Up (un informe te llevar a otro informe relevante para los datos que se analizan): es una herramienta cuya técnica de análisis permite al usuario la comparativa entre diferentes informes, por lo que facilitaría un trabajo de comparativa de ventas entre diferentes comerciales.



### Ejemplo de un Sistema OLAP aplicado a una juguetería





#### **Elementos OLAP**

OLAP permite el análisis multidimensional, lo que significa que la información esta estructurada en ejes (puntos de vistas de análisis) y celdas (valores que se están analizando).

En el contexto OLAP existen diferentes elementos:

- **Esquema**: es una colección de cubos, dimensiones, tablas de hecho, métricas y roles.
- **Cubo**: es una colección de dimensiones asociadas a una tabla de hecho. Un cubo virtual permite cruzar la información entre tablas de hecho a partir de sus dimensiones comunes.
- > Tabla de hecho: representa un proceso de negocio que analizar.
- > Dimensión: representa las diferentes perspectivas de análisis de un proceso de negocio.
- Métrica: representa el resultado de un proceso de negocio.
- ➤ Jerarquía: es un conjunto de miembros organizados en niveles. Desde el punto de vista de las bases de datos se puede entender como una ordenación de los atributos de una dimensión.



### **Elementos OLAP**

- ➤ Nivel: es un grupo de miembros en una jerarquía que tienen los mismos atributos y nivel de profundidad en la jerarquía.
- ➤ **Granularidad**: Cuanto mayor nivel de detalle tenga la información sobre la que se desea trabajar, mayor será su grado de granularidad, por tanto, mayor será la cantidad de datos a analizar.
- ➤ Miembro: es un punto en la dimensión de un cubo que pertenece a un determinado nivel de la jerarquía. Las métricas (medidas) en OLAP se consideran un tipo especial de miembro que pertenece a su propio tipo de dimensión. Un miembro puede tener propiedades asociadas.
- > Roles: permisos asociados a un grupo de usuarios.
- ➤ MDX: es una acrónimo de multidimensional expressions (aunque también conocido como multidimensional query expresion). Es un lenguaje de consulta de estructuras OLAP, fue creado por Microsoft (año 1997).



### **Elementos OLAP**

- ➤ Nivel: es un grupo de miembros en una jerarquía que tienen los mismos atributos y nivel de profundidad en la jerarquía.
- ➤ **Granularidad**: Cuanto mayor nivel de detalle tenga la información sobre la que se desea trabajar, mayor será su grado de granularidad, por tanto, mayor será la cantidad de datos a analizar.
- ➤ Miembro: es un punto en la dimensión de un cubo que pertenece a un determinado nivel de la jerarquía. Las métricas (medidas) en OLAP se consideran un tipo especial de miembro que pertenece a su propio tipo de dimensión. Un miembro puede tener propiedades asociadas.
- > Roles: permisos asociados a un grupo de usuarios.
- ➤ MDX: es una acrónimo de multidimensional expressions (aunque también conocido como multidimensional query expresion). Es un lenguaje de consulta de estructuras OLAP, fue creado por Microsoft (año 1997).



### **Modelo Relacional**



Guía #5: Creación de cubos OLAP - Parte 1



## **Dimensión Productos**

#### dim\_productos

| PRODUCTO_ID | PRODUCTO       | MARCA      | TIPO      |
|-------------|----------------|------------|-----------|
| 1           | GRAND CHEROKEE | JEEP       | CAMIONETA |
| 2           | PATRIOT        | JEEP       | CAMIONETA |
| 3           | WRANGLER       | JEEP       | CAMIONETA |
|             | FIESTA         | FORD       | AUTO      |
| 5           | FOCUS          | FORD       | AUTO      |
|             | MUSTANG        | FORD       | AUTO      |
| - 7         | CLIO           | RENAULT    | AUTO      |
| 8           | 3              | RENAULT    | CAMIONETA |
| 9           | BEETLE         | VOLKSWAGEN | AUTO      |
| 10          | JETTA          | VOLKSWAGEN | AUTO      |



### Creación de tablas de hechos

Estará conformada por las tablas: factura y detalle de facturas





### Formación de tabla de hechos

#### Diferencias entre tabla de dimensión y tabla de hechos

- 1.En las tablas de dimensiones encontramos valores descriptivos
- 2.En la tabla de hechos encontramos fechas y valores cuantitativos.

| Llaves foráneas de las tablas dimensiones |           |                     | fact_ventas |                 |       |       |         | Valores cuantitativos |        |         |  |
|-------------------------------------------|-----------|---------------------|-------------|-----------------|-------|-------|---------|-----------------------|--------|---------|--|
| FAC_ID P                                  | AGADA PRO | DUCTO_ID AGENCIA_ID | FE          | CHA CANT        | IC) A | AD II | MPORTEU | SUBTOTAL              | IVA    | TOTAL   |  |
| 1                                         | 1         | 1                   | 1           | 01/12/16        |       | 1     | \$50.00 | \$50.00               | \$8.00 | \$58.00 |  |
| 1                                         | 1         | 5                   | 1           | 01/12/16        |       | 1     | \$30.00 | \$30.00               | \$4.80 | \$34.80 |  |
| 2                                         | 0         | 7                   | 2           | 02/12/16        |       | 2     | \$20.00 | \$40.00               | \$6.40 | \$46.40 |  |
| 3                                         | 1         | 2                   | 3           | 03/12/16        |       | 1     | \$35.00 | \$35.00               | \$5.60 | \$40.60 |  |
| 3                                         | 1         | 6                   | 3           | 03/12/16        |       | 1     | \$60.00 | \$60.00               | \$9.60 | \$69.60 |  |
|                                           |           |                     |             | Fechas de trans | ลเ    | ccion | nes     |                       |        |         |  |



## **Esquema de Datawarehouse**





# Comencemos con nuestra práctica

