Statistiques et probabilités Cours n°5

Guillaume Postic

Université Paris-Saclay, Univ. Evry Département informatique

Master 1 MIAGE - 2022/2023

Loi de probabilité jointe

Loi de probabilité à plusieurs variables

- Cas discret: fonction de masse $p(x_i, y_i)$
- Cas continu : fonction de densité f (x, y)
- Fonction de répartition $F(x, y) = P(X \le x, Y \le y)$

Loi de probabilité jointe : cas discret

Exemple 1

Jet de deux dés à 6 faces : premier X, second Y

Table des probabilités jointes

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

Loi de probabilité jointe : cas discret

Exemple 2

Jet de deux dés à 6 faces : premier *X*, total (somme) *T*Table des probabilités jointes

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0
2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0
3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0
4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0
5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0
6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36

Loi de probabilité jointe : cas continu

Exemple

- X prend des valeurs dans l'intervalle [a, b] et Y dans [c, d]
- (X, Y) prend des valeurs dans $[a, b] \times [c, d]$

Loi de probabilité jointe : cas continu

Loi de probabilité jointe : cas continu

Loi de probabilité jointe

Variables discrète et nominale : table de contingence

	Alice	Bob	Charlie	David	Classe
Α	4	0	1	2	7
В	1	1	1	2	5
С	0	1	2	0	3
D	0	2	1	0	3
E	0	0	0	1	1
F	0	1	0	0	1
	5	5	5	5	20

- Probabilité **jointe** : $p(A \cap Alice) = 4/20 = 1/5$
- Probabilité conditionnelle :
 - $p(A | Alice) = p(A \cap Alice) / p(Alice) = (4/20) / (5/20) = 4/5$
- Probabilités marginales :
 - $\rho(A) = 7/20 \text{ et } \rho(Alice) = 5/20 = 1/4$

Loi de probabilité jointe

Propriétés des fonctions de masse et densité jointes

Cas discret

- 1. $0 \le p(x_i, y_i) \le 1$
- 2. Probabilité totale vaut 1

$$\sum_{i=1}^n \sum_{j=1}^m p(x_i, y_j) = 1$$

Cas continu

- 1. $0 \le f(x, y)$
- 2. Probabilité totale vaut 1

$$\int_{a}^{d} \int_{a}^{b} f(x, y) dx dy = 1$$

Note: f(x, y) peut être plus grand que 1, car **c'est une densité**, **pas une probabilité**

Covariance

Mesure du degré avec lequel deux variables aléatoires varient conjointement.

Par exemple : le poids et la taille d'individus

Pour X et Y variables aléatoires de moyennes μ_X et μ_Y

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

Covariance

Propriétés

- 1. Cov(aX + b, cY + d) = acCov(X, Y), pour des constantes a, b, c, d
- 2. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- 3. Cov(X, X) = Var(X)
- 4. $Cov(X, Y) = E(XY) \mu_X \mu_Y$
- 5. Si X et Y sont indépendants, alors Cov(X, Y) = 0
- 6. La réciproque n'est pas vraie : même si la covariance est nulle, les variables peuvent ne pas être indépendantes

Corrélation

Le coefficient de corrélation (de Pearson) entre X et Y est défini par :

$$Cor(X, Y) = \rho = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Propriétés:

- 1. *ρ* est la covariance des versions centrées réduites de *X* et *Y*
- 2. ρ est adimensionnelle

3.
$$-1 \le \rho \le 1$$
 $\rho = 1$ ssi $Y = aX + b$ avec $a > 0$ et $\rho = -1$ ssi $Y = aX + b$ avec $a < 0$

Corrélations fallacieuses (spurious)

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

Corrélations fallacieuses (spurious)

Divorce rate in Maine

correlates with

Per capita consumption of margarine

Corrélations fallacieuses (spurious)

Per capita consumption of mozzarella cheese

correlates with

Civil engineering doctorates awarded

Correlation: 95.86% (r=0.958648)

Nuage de points (scatter plot)

Transformation des données

