Formulas for set

For any three sets A, B and C

$$n (A \cup B) = n(A) + n(B) - n (A \cap B)$$

If
$$A \cap B = \emptyset$$
, then $n(A \cup B) = n(A) + n(B)$

$$n(A-B) + n(A \cap B) = n(A)$$

$$n(B-A) + n(A \cap B) = n(B)$$

$$n(A - B) + n(A \cap B) + n(B - A) = n(A \cup B)$$

$$\begin{array}{l} n\;(\;A\;\cup\;B\;\cup\;C\;) = n(A) + n(B) + n(C) - n\;(\;A\cap B) - n\;(\;B\cap C) - n \\ (\;C\cap A) + \;\;n\;(\;A\cap B\;\;\cap\;C) \end{array}$$

Properties of Sets

Commutative Property:

$$AUB = BUA$$

$$A \cap B = B \cap A$$

Associative Property:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive Property:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

De morgan's Law:

Law of union
$$: (A \cup B)' = A' \cap B'$$

Law of intersection :
$$(A \cap B)' = A' \cup B'$$

Complement Law:

$$A \cup A' = A' \cup A = U$$

$$A \cap A' = \emptyset$$

Idempotent Law And Law of a null and universal set:

For any finite set A

$$A \cup A = A$$

 $A \cap A = A$
 $\emptyset ' = U$
 $\emptyset = U'$

These are the basic set of formulas from the set theory.

If there are two sets P and Q,

n(P U Q) represents the number of elements present in one of the sets P or Q.

 $n(P \cap Q)$ represents the number of elements present in both the sets P & Q.

$$n(P \cup Q) = n(P) + (n(Q) - n (P \cap Q)$$

For three sets P, Q, and R,

$$n(PUQUR)=n(P)+n(Q)+n(R)-n(P\cap Q)-n(Q\cap R)-n(R\cap P)+n(P\cap Q\cap R)$$

Symbol	Symbol Name	Meaning	Example
{}	set	a collection of elements	A = {1, 7, 9, 13, 15, 23}, B = {7, 13, 15, 21}
AUB	union	Elements that belong to set A or set B	A U B = {1, 7, 9, 13, 15, 21, 23}
$A \cap B$	intersection	Elements that belong to both the sets, A and B	A ∩ B = {7, 13, 15}
$A \subseteq B$	subset	subset has few or all elements equal to the set	$\{7, 15\}$ $\subseteq \{7, 13, 15, 21\}$
$A \nsubseteq B$	not subset	left set is not a subset of right set	{1, 23}

			¢ В
$A \subset B$	proper subset / strict subset	subset has fewer elements than the set	$\{7, 13, 15\} \subset \{1, 7, 9, 13, 15, 23\}$
$A \supset B$	proper superset / strict superset	set A has more elements than set B	$\{1, 7, 9, 13, 15, 23\} \supset \{7, 13, 15, \}$
$A \supseteq B$	superset	set A has more elements or equal to the set B	$\{1, 7, 9, 13, 15, 23\} \supset \{7, 13, 15, 21\}$
Ø	empty set	$\emptyset = \{ \}$	$C = {\emptyset}$
P (C)	power set	all subsets of C	C = {4,7}, P(C) = {{}, {4}, {7}, {4,7}} Given by 2s, s is number of elements in set C
A⊅ B	not superset	set X is not a superset of set Y	{1, 2, 5} ⊅ {1, 6}
A = B	equality	both sets have the same members	{7, 13,15} = {7, 13, 15}
A\B	relative	objects that belong to A and not to	{1, 9,

or A-B	complement	В	23}
Ac	complement	all the objects that do not belong to set A	We know, U = {1, 2, 7, 9, 13, 15, 21, 23, 28, 30} Ac = {2, 21, 28, 30}
ΑΔΒ	symmetric difference	objects that belong to A or B but not to their intersection	$A \Delta B = \{1, 9, 21, 23\}$
a∈B	element of	set membership	$B = \{7, 13, 15, 21\}, 13 \subseteq B$
(a,b)	ordered pair	collection of 2 elements	(1, 2)
x∉ A	not element of	no set membership	$A = \{1, 7, 8, 13, 15, 23\}, 5 \notin A$
B , #B	cardinality	the number of elements of set B	B = {7, 13, 15, 21}, B =4
A×B	cartesian product	set of all ordered pairs from A and B	{3,5} × {7,8} = {(3,7), (3,8), (5,7), (5, 8) }
N1	natural numbers / whole	N1 = {1, 2, 3, 4, 5,}	6 € N1

	numbers set (without zero)		
N0	natural numbers / whole numbers set (with zero)	$N0 = \{0, 1, 2, 3, 4, \ldots\}$	0 € N0
Q	rational numbers set	$Q=\{x\mid x=a/b, a, b\in Z\}$	2/6 ∈ Q
Z	integer numbers set	$Z=\{3, -2, -1, 0, 1, 2, 3,\}$	-6 ∈ Z
С	complex numbers set	$C= \{z \mid z=a+bi, \\ -\infty < a < \infty, \\ -\infty < b < \infty\}$	6+2i ∈ C
R	real numbers set	$R = \{x \mid -\infty < x < \infty\}$	6.343434 ∈ R

Properties of Union of Sets	Properties of Intersection of sets	
$A \cup B = B \cup A$ (Commutative law)	$A \cap B = B \cap A$ (Commutative law)	
A U B) U C = A U (B U C) (Associative law)	$(A \cap B) \cap C = A \cap (B \cap C)$ (Associative law)	
A $\cup \varphi = A$ (Law of identity element, φ is the identity of \cup)	$\varphi \cap A = \varphi$, $U \cap A = A$ (Law of φ and U)	
$A \cup A = A$ (Idempotent law)	$A \cap A = A$ (Idempotent law)	
$U \cup A = U \text{ (Law of U)}$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributive law)	

Properties of Complement of set:

$$A \cup A' = U$$

$$A \cap A' = \varphi$$

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

$$U' = \varphi$$

$$\varphi' = U$$

Properties of the intersection of sets operation:

$$A \cap B = B \cap A$$

 $(A \cap B) \cap C = A \cap (B \cap C)$
 $\varphi \cap A = \varphi ; U \cap A = A$
 $A \cap A = A$
 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Some properties of Union operation:

A U B = B U A
(A U B) U C = A U (B U C)
A U
$$\varphi$$
 = A
A U A = A
U U A = U

Properties of Complement sets

$$P \cup P' = U$$
$$P \cap P' = \Phi$$

Law of double complement : (P')' = P

Laws of empty/null set(Φ) and universal set(U), $\Phi' = U$ and $U' = \Phi$.

Cartesian Product of sets

If set A and set B are two sets then the cartesian product of set A and set B is a set of all ordered pairs (a,b), such that a is an element of A and b is an element of B. It is denoted by A × B.

We can represent it in set-builder form, such as:

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$$

Example: set $A = \{1,2,3\}$ and set $B = \{Bat, Ball\}$, then;
 $A \times B = \{(1,Bat),(1,Ball),(2,Bat),(2,Ball),(3,Bat),(3,Ball)\}$

Difference of Sets

If set A and set B are two sets, then set A difference set B is a set which has elements of A but no elements of B. It is denoted as A - B.

Example:
$$A = \{1,2,3\}$$
 and $B = \{2,3,4\}$
 $A - B = \{1\}$

Links that mentioned in the videos:-

Introduction of set :- https://youtu.be/Q985NC7B5fs

Types of set reference: https://youtu.be/crQ97zTdS8s

Operations on set :- https://youtu.be/IV47aiFpffk

https://youtu.be/TZIIUWbklwM

Laws of set theory :- https://youtu.be/I8WdCozPTeQ

https://youtu.be/HGBLmzHIxJU

Word problem :- https://youtu.be/pJ3ed3YCHr4

https://youtu.be/CRnh3Vb5BdY

Example: - https://youtu.be/Ry2tvyat3Y4

https://youtu.be/YSpEA1Cv5VQ

Other links from nptel :- https://youtu.be/ISVco9sY-SQ

https://youtu.be/je-HLcRBWuM https://youtu.be/rh-Ew15RO04 https://youtu.be/wHW-n-friXA https://youtu.be/JbUFP3txlus https://youtu.be/nwiuF5hV_5U https://youtu.be/71P8JoowR-8 https://youtu.be/OBLAbeRvaFE https://youtu.be/FF8_CQDABk8 https://youtu.be/FNTdU1lphg0 https://youtu.be/fk0talB2uhw

Other youtube links:- https://youtu.be/YGXMc8sNBYo

https://youtu.be/byCqdYDDNns https://youtu.be/6RsudHXe6ZM https://youtu.be/10Bg_-GYi1c https://youtu.be/B3L8ZzrZwzA

----- Thank-You -----