CMSC 641, Design and Analysis of Algorithms, Spring 2010

Sandipan Dey. Homework Assignment - 11 27/30

May 4, 2010

PiC (Partition into Cliques) is NP Complete

- PiC = {(G, k) : ∃ a partition of V(G) into k subsets V₁,..., V_k s.t. each V_i is a clique in G}
- 2. PiC \in NP : Given (G, k) and $\{V_1, \dots, V_k\}$ (certificate) we have to verify whether it is a valid partition of V(G) into k Cliques.
 - (a) Check if the vertex set (all vertices) V(G) is covered by the subsets $V = V_1 \cup V_2 \dots \cup V_k$: can be done in polynomial time at most $O(|V|^2)$.
 - (b) Check if valid partition (all of the k subsets are mutually disjoint) $V_i \cap V_j = \phi$ if $i \neq j$: can be done in polynomial time $O(k^2|V|^2)$.
 - (c) Check if each V_i is a clique: this can be done in polynomial time $O(\sum_{i=1}^{k} |V_i|^2) = O(k|V|^2)$

Hence the 'Yes' certificate can be verified in polynomial time.

⇒ PiC ∈ NP.

- 3. PiC is NP-hard: We show by reducing the well-known NP-hard problem Graph Coloring to Pic.
 - (a) Graph Coloring = $\{\langle G, k \rangle : G \text{ is } k\text{-colorable}\}.$
 - (b) To Prove Graph Coloring ≤^m_p Pic.
 - (c) Construction:
 - i. Construct the graph $\tilde{G}(V, \tilde{E})$, the complement graph of G(V, E)(s.t. $(u, v) \in \bar{E} \Leftrightarrow (u, v) \notin E$). ii. Claim: G is k colorable iff \tilde{G} can be partitioned into k cliques.

(d) Proof:

i. (=>)

- Suppose G is k colorable.
- ∃(V₁, V₂,...V_k) ⊆ V that are colored by colors 1, 2,...k respectively, with V_i colored by color i.
- $\bigcup_{i=1}^{k} V_i = V$ (since all the vertices of G must be colored).
- V_i ∩ V_j = φ if i ≠ j (since every vertex must be colored with exactly one color).
- Each V_i ⊆ V forms an independent set of G (since any two vertices u, v ∈ V can be colored with the same color only if (u, v) ∉ E).
- In \$\tilde{G}\$ each of \$V_i\$ forms a clique \$\forall i = 1,...,k\$ (since for any \$u,v ∈ V_i ⇒ (u,v) ∉ E ⇒ (u,v) ∈ \$\tilde{E}\$), with \$\bigcup_{i=1}^k V_i = V\$ and \$V_i ∩ V_j = \$\phi\$ if \$i ≠ j\$.

Hence \bar{G} can be partitioned into k cliques.

ii. (<=)

- Suppose G
 can be partitioned into k cliques.
- ∃(V₁, V₂,...V_k) ⊆ V, with each V_i being a clique, ⋃_{i=1}^k V_i = V,
 V_i ∩ V_j = φ if i ≠ j (mutually disjoint since a partition).
- Each V_i ⊆ V forms an independent set in G (since for any u, v ∈ V_i ⇒ (u, v) ∈ Ē ⇒ (u, v) ∉ E).
- In G, there are k such independent sets Vi.

Hence G is k colorable.

(e) The Construction is polynomial time: needs θ(|E|) time to construct the complement graph Ḡ.

Parallel Transpose

Work = $T_1(n) = \theta(n^2)$ (serializing nested for loops on line 2 and 3). Span = $T_{\infty}(n) = \theta(lgn) + \theta(1) = \theta(lgn)$. Parallelism = $\frac{T_1(n)}{T_{\infty}(n)} = \frac{\theta(n^2)}{\theta(lgn)} = \theta\left(\frac{n^2}{lgn}\right)$.

2. Matrix-Vector Multiplication

