AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

1	1.	(Currently amended) A computer implemented method of determining lower and	
2		upper bounds for a minimum cost comprising the steps of:	
3		solving an integer program using a relaxation of binary variables to	
4		determine the lower bound, the binary variables having values between zero	
5		and one comprising a first subset;	
6		for the binary variables in the first subset and until no binary variables	
7		remain in the first subset, iteratively performing the steps of:	
8		rounding up a first binary variable having a lowest ratio of a cost	
9		penalty to a performance reward; and	
10		until no binary variables remain in a second subset, iteratively	
11		performing the steps of:	
12		determining the binary variables in the first subset that may	
13		be rounded down without violating a performance constraint,	
14		thereby forming the second subset;	
15		rounding down one or more second binary variables in the	
16		second subset having a zero performance reward; and	
17		rounding down a third binary variable in the second subset	
18		having a highest ratio of a cost reward to the performance	
19		reward if none of the binary variables in the second subset have	
20		the zero performance reward; and	
21		determining the upper bound according to the binary variables having	
22		binary values.	
1	2.	(Currently amended) The computer implemented method of claim 1 wherein the	
2		integer program comprises the performance constraint and an objective of minimizing	
3		a cost.	

3

5

б

7

9

10 11

the steps of:

Atty. Dkt. No. 200311960-1

1	3.	(Currently amended) The computer implemented method of claim 1 wherein the
2		integer program models a data placement problem.

- 1 4. (Currently amended) The <u>computer implemented</u> method of claim 3 wherein the
 2 data placement problem seeks to minimize <u>athe</u> cost of placing data objects onto
 3 nodes of a distributed storage system while meeting a performance requirement for a
 4 workload.
- 1 5. (Currently amended) The computer implemented method of claim 1 wherein the 2 step of rounding up the first binary variable within the first subset further comprises 3 calculating the cost penalty and the performance reward.
- (Currently amended) The <u>computer implemented</u> method of claim 5 wherein the
 step of rounding down the one or more second binary variables within the second
 subset further comprises calculating the performance reward.
- 7. (Currently amended) The <u>computer implemented</u> method of claim 6 wherein the step of rounding down the third binary variable within the second subset further comprises calculating the cost reward.
- 8. (Currently amended) A <u>computer implemented method of determining bounds for</u>
 a minimum cost comprising the steps of:

solving an integer program using a relaxation of binary variables to determine a lower bound for the minimum cost, the relaxation allowing the binary variables to take values over the range of zero to one, a first subset of the binary variables comprising the binary variables having values between zero and one, the integer program modeling a data placement problem which seeks to minimize a cost of placing data objects onto nodes of a distributed storage system while meeting a performance requirement for a workload; until no binary variables remain in the first subset, iteratively performing

12	calculating a cost penalty and a performance reward for each of the		
13	binary variables in the first subset;		
14	rounding up a first binary variable having a lowest ratio of the cost		
15	penalty to the performance reward;		
16	until no binary variables remain in a second subset, iteratively		
17	performing the steps of:		
18	determining the binary variables in the first subset that may		
19	be rounded down without violating the performance		
20	requirement, thereby forming the second subset;		
21	calculating a cost reward and the performance reward for		
22	each of the binary variables in the second subset;		
23	rounding down one or more second binary variables in the		
24	second subset having a zero performance reward;		
25	rounding down a third binary variable in the second subset		
26	corresponding to a highest ratio of a cost reward to the		
27	performance reward if none of the binary variables in the		
28	second subset have the zero performance reward; and		
29	determining an upper bound for the minimum cost according to the binary		
30	variables having binary values.		
1	9. (Currently amended) The <u>computer implemented</u> method of claim 8 wherein the		
2	integer program further comprises a storage constraint.		
1	10. (Currently amended) The <u>computer implemented</u> method of claim 9 wherein the		
2	step of determining the upper bound for the minimum cost further comprises the steps		
3	of:		
4	determining a particular node which uses a maximum amount of storage		
5	within any evaluation interval; and		
6	allocating the maximum amount of storage on all nodes for all evaluation		
7	intervals.		

1	11. (Currently amended) The computer implemented method of claim 9 wherein the
2	step of determining the upper bound for the minimum cost further comprises the steps
3	of:
4	determining a maximum amount of storage for each node within any
5	evaluation interval; and
б	allocating the maximum amount of storage on each node for all evaluation
7	intervals.
1	12. (Currently amended) The computer implemented method of claim 8 wherein the
2	integer program further comprises a replica constraint.
1	13. (Currently amended) The computer implemented method of claim 12 wherein the
2	step of determining the upper bound for the minimum cost further comprises the steps
3	<u>of:of;</u>
4	determining a maximum number of replicas for any data object within any
5	evaluation interval; and
6	placing the maximum number of replicas for all data objects for all
7	evaluation intervals.
1	14. (Currently amended) The computer implemented method of claim 12 wherein the
2	step of determining the upper bound for the minimum cost further comprises the steps
3	of:of;
4	determining a maximum number of replicas for each data object within
5	any evaluation interval; and
6	placing the maximum number of replicas for each data object for all
7	evaluation intervals.
1	15. (Original) A computer readable memory comprising computer code for
2	implementing a method of determining bounds for a minimum cost, the method of
3	determining the bounds for the minimum cost comprising the steps of:
4	solving an integer program using a relaxation of binary variables to

1

18.

Atty. Dkt. No. 200311960-1

5	determine a lower bound for the imminimum cost, the imager program.	
6	comprising a performance constraint and an objective of minimizing a cost,	
7	the binary variables having values between zero and one comprising a first	
8	subset;	
9	for the binary variables within the first subset and until no binary variables	
10	remain in the first subset, iteratively performing the steps of:	
11	rounding up a first binary variable having a lowest ratio of a cost	
12	penalty to a performance reward; and	
13	until no binary variables remain in a second subset, iteratively	
14	performing the steps of:	
15	determining the binary variables in the first subset that may	
16	be rounded down without violating the performance constraint,	
17	thereby forming the second subset;	
18	rounding down one or more second binary variables in the	
19	second subset having a zero performance reward; and	
20	rounding down a third binary variable in the second subset	
21	having a highest ratio of a cost reward to the performance	
22	reward if none of the binary variables in the second subset have	
23	the zero performance reward; and	
24	determining an upper bound for the minimum cost according to the binary	
25	variables having binary values.	
1	16. (Original) The computer readable memory of claim 15 wherein the integer	
2	program models a data placement problem.	
1	17. (Currently amended) The computer readable memory of claim 16 wherein the	
2	data placement problem seeks to minimize athe cost of placing data objects onto	
3	nodes of a distributed storage system while meeting a performance requirement for a	
4	workload.	
7	WOLKIOUU.	

(Currently amended) The computer readable memory of claim 15 wherein the

2	step of rounding up the first binary variable within the <u>first</u> subset further comprises		
3	calculating the cost penalty and the performance reward.		
1	19. (Currently amended) The computer readable memory of claim 18 wherein the		
2	step of rounding down the one or more second binary variables within the second		
3	subset further comprises calculating the performance reward.		
1	20. (Currently amended) The computer readable memory of claim 19 wherein the		
2	step of rounding down the third binary variable within the second subset further		
3	comprises calculating the cost reward.		
1	21. (Original) A computer readable memory comprising computer code for		
2	implementing a method of determining bounds for a minimum cost, the method of		
3	determining the bounds for the minimum cost comprising the steps of:		
4	solving an integer program using a relaxation of binary variables to		
5	determine a lower bound for the minimum cost, the relaxation allowing the		
6	binary variables to take values over the range of zero to one, a first subset of		
7	the binary variables comprising the binary variables having values between		
8	zero and one, the integer program modeling a data placement problem which		
9	seeks to minimize a cost of placing data objects onto nodes of a distributed		
10	storage system while meeting a performance requirement for a workload;		
11	until no binary variables remain in the first subset, iteratively performing		
12	the steps of:		
13	calculating a cost penalty and a performance reward for each of the		
14	binary variables in first the subset;		
15	rounding up a first binary variable having a lowest ratio of the cost		
16	penalty to the performance reward;		
17	until no binary variables remain in a second subset, iteratively		
18	performing the steps of:		
19	determining the binary variables in the first subset that may		
20	be rounded down without violating the performance		

21	requirement, thereby forming the second subset;	
22	calculating a cost reward and the performance reward for	
23	each of the binary variables in the second subset;	
24	rounding down one or more second binary variables in the	
25	second subset having a zero performance reward;	
26	rounding down a third binary variable in the second subset	
27	corresponding to a highest ratio of a cost reward to the	
28	performance reward if none of the binary variables in the	
29	second subset have the zero performance reward; and	
30	determining an upper bound for the minimum cost according to the binary	
31	variables having binary values.	
1	22. (Original) The computer readable memory of claim 21 wherein the integer	
2	program further comprises a storage constraint.	
1	23. (Original) The computer readable memory of claim 22 wherein the step of	
2	determining the upper bound for the minimum cost further comprises the steps of:	
3	determining a particular node which uses a maximum amount of storage	
4	within any evaluation interval; and	
5	allocating the maximum amount of storage on all nodes for all evaluation	
6	intervals.	
1	24. (Original) The computer readable memory of claim 22 wherein the step of	
2	determining the upper bound for the minimum cost further comprises the steps of:	
3	determining a maximum amount of storage for each node within any	
4	evaluation interval; and	
5	allocating the maximum amount of storage on each node for all evaluation	
6	intervals.	
J		
1	25. (Original) The computer readable memory of claim 21 wherein the integer	
2	program further comprises a replica constraint.	

3 '06

1	26. (Original) The computer readable memory of claim 2	25 wherein the step of
2	determining the upper bound for the minimum cost furth	ner comprises the steps of;
3	determining a maximum number of replicas f	for any data object within an
4	evaluation interval; and	
5	placing the maximum number of replicas for	all data objects for all
6	evaluation intervals.	
1	27. (Original) The computer readable memory of claim 2	25 wherein the step of
2	determining the upper bound for the minimum cost furth	ner comprises the steps of;
3	determining a maximum number of replicas f	for each data object within
4	any evaluation interval; and	
5	5 placing the maximum number of replicas for	each data object for all
б	6 evaluation intervals.	