Machine Learning and Programming in Python Lecture for Master and PhD students

Chair of Data Science in Economics

Ruhr University Bochum

Summer semester 2024

Lecture 8

Decision Trees

- A Supervised Learning approach
- Available for Regression and for Classification
- Decision trees involve stratifying or segmenting the predictor space into a number of simple regions
- Since the set of splitting rules used to segment the predictor space can be summarized in a tree, these types of approaches are known as decision-tree methods

- Tree-based methods are simple and useful for interpretation.
- However they typically are not competitive with the best supervised learning approaches in terms of prediction accuracy.
- Hence we also discuss bagging, random forests, and boosting. These
 methods grow multiple trees which are then combined to yield a
 single consensus prediction.
- Combining a large number of trees can often result in dramatic improvements in prediction accuracy, at the expense of some loss interpretation

- Sequential splitting of the predictor space X into more 'homogeneous' regions.
 - Mean or mode of y of training data in a region to predict \hat{y} for a test point in that region
- Decision tree can illustrate splitting rules
 - ▶ Internal nodes (predictors/features): where splitting happens
 - Leaf or terminal nodes: final regions
 - Regression or classification
- Implementation: How to split sequence and splitting points? When to stop?

Regression Trees

- Predict salary of a baseball player based on:
 - Number of years in the major leagues.
 - Number of hits scored in the previous year.
- Build a decision tree.

- Stratifies into three regions.
 - ▶ R1: *years* <= 4.5 (inexperienced).
 - ▶ R2: *years* >= 4.5 and *hits* <= 117.5 (experienced but low hit rate recently).
 - ▶ R3: *years* >= 4.5 and *hits* >= 117.5 (experienced and high hit rate recently).
- Predicted salaries:
 - ► R1: $1000 * e^{5.11} \approx 165000$
 - R2: $1000 * e^{6.00} \approx 403000$
 - R3: $1000 * e^{6.74} \approx 845000$
- Experience key to salaries.
 - For inexperienced players, hit rate does not matter much. For experienced players, hit rate is important.
- Easy to interpret and illustrate graphically.

- Split the feature space $X_1, X_2, ..., X_p$ into J distinct exclusive regions $R_1, ..., R_j$
- For every observation x_i in region R_j , the predicted \hat{y}_i is the mean of the y of the training data in R_j

- How to split?
 - Could be any shape but divide into high-dimensional boxes
 - Minimise squared error: $\sum_{i=1}^{J} \sum_{i \in R_i} (y_i \hat{y}_{R_i})^2$
 - \hat{y}_{R_i} is the mean y of the training data in R_i
- Top-down, greedy splitting (recursive binary splitting):
 - Start at the tree top and split in two sequentially
 - Greedy because at each step choose the **best** split at that point (instead of a split that may lead to a better tree further down)

- For each X_j in $X_1, X_2, ..., X_p$
 - Cutoff s splits the data into two regions: $R_1(j,s) = [X|X_p < s] \& R_2(j,s) = [X|X_p \ge s]$
- Pick j and s that minimises squared error:

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

- Repeat the process by scanning across regions, and picking the best region and cutoff for the next split.
- Stop at a pre-defined criterion e.g. 5 or fewer observations in each region.
- **5** Predict the test \hat{y} by computing the mean y in each region.

- Top Down, greedy approach usually leads to overfitting.
- Complex trees: Too many small leaves.
 - Intuitively, leaves may differ in y by chance (noise).
 - ▶ But the tree has tried to fit this noise.
- Low bias but high variance.
- Poor performance in test data.

- Simpler trees?
- Stop when the decrease in squared error falls below a (high) threshold.
 - Smaller trees but...
 - Possibly bad trees because may stop at a 'poor' split which would have lead to a 'good' split later down the tree.
- Instead, grow a large tree T_0 and prune it back to get a subtree.
- Prune back to subtree that has the lowest test error rate.

- Too many subtrees how to prune?
- Assign a cost $\alpha >= 0$ to complexity.
- For each α , there is a subtree that $T \subset T_0$ that minimises:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

- |T| is the number of leaves in T; R_m is the subset corresponding to the mth leaf.
- When $\alpha = 0$, the full tree T_0 is selected.
- ullet For lpha > 0, penalty for having many leaves; smaller subtree is selected.

Algorithm 8.1 Building a Regression Tree

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α.
- Use K-fold cross-validation to choose α. That is, divide the training observations into K folds. For each k = 1,..., K:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .
 - Average the results for each value of α , and pick α to minimize the average error.
- Return the subtree from Step 2 that corresponds to the chosen value of α.

Classification Trees

instead of quantitative output variable)

Classification instead of Regression (qualitative output variable)

- Prediction in a region is the modal (most frequent) class in a region
- How to do the splitting?
 - Mostly binary splits (a parent node and two child nodes)
 - ▶ Aim: Raise purity in the regions

Source: https://towardsdatascience.com/anexhaustive-guide-to-classification-using-decision-trees-8d472e77223f

Data Project

- Titanic data set
- Fit a decision tree and a random forest to the data
- Visualise the decision tree and the random forest

Literature:

James, Witten, Hastie, Tibshirani, Taylor (2023), An Introduction to Statistical Learning, Springer, Chapter 8, pp. 331-350.

Hastie, Tibshirani, Friedman (2017), The Elements of Statistical Learning, Springer, Chapter 9, pp. 305-310.