

Random Variables

Prof. Uma D

Department of Computer Science and Engineering

Continuous Random Variables

Prof. Uma D

Topics to be covered...

- Continuous Random Variable
- Probability Density Function
- Cumulative Distribution Function
- Mean and Variance

Continuous Random variables

PES UNIVERSITY

- A continuous random variable is one which takes an infinite number of possible values.
- Continuous random variables are usually measurements.

Examples

- height
- weight
- the amount of sugar in an orange
- the time required to run a mile.

Probability Density Function

 A random variable is continuous if its probabilities are given by areas under a curve.

• The curve is called a **probability density function** (**pdf**) for the random variable. Sometimes the **pdf** is called the **probability distribution**.

- The function f(x) is the probability density function of X.
- Let X be a continuous random variable with probability density function f(x). Then $\int_{-\infty}^{\infty} f(x) dx = 1$

Continuous Random Variables

PES UNIVERSITY

We model Continuous Random Variables with a curve f(x) called a probability density function(pdf).

f(x) is function that represents the height of the curve at point x.

Values where the curve is high are more likely to occur.

For Continuous Random Variables, probabilities are areas under the curve – hence found using integration.

Looks like a **smooth histogram**.

Continuous Random Variables

Probability Density Function of a C.R.V.

Continuous Random Variables

Probability Density Function of a C.R.V.

Continuous Random Variables

Cumulative Distribution Function of a C.R.V.

Continuous Random Variables

Percentile and Median of a C.R.V.

Continuous Random Variables

Mean and Variance of a C.R.V.

Problems

PES UNIVERSITY ONLINE

Problem 1

Suppose for a random variable X:

$$f(x) = cx^3$$
 for $2 \le x \le 4$ and 0 otherwise.

- a) What value of c makes this a legitimate probability distribution?
- b) What is P(X > 3).
- c) Find $P(X \le 2.7)$.
- d) What is the median of this distribution?
- e) Find mean and variance of this distribution.
- f) What is the cumulative distribution function?

Continuous Random Variables

Solution:

a) What value of c makes this a legitimate probability distribution?

Continuous Random Variables

Solution:

b) What is P(X > 3).

Continuous Random Variables

Solution:

c) Find $P(X \le 2.7)$.

Continuous Random Variables

Solution:

d) What is the median of this distribution?

Continuous Random Variables

PES UNIVERSITY ONLINE

Solution:

e) Find mean and variance of this distribution.

Continuous Random Variables

PES UNIVERSITY ONLINE

Solution:

e) Find mean and variance of this distribution.

Continuous Random Variables

PES UNIVERSITY ONLINE

Solution:

f) What is the cumulative distribution function?

Random Variables

Problem 1 - Solution

a)
$$c = 1/60$$

b)
$$P(X > 3) = 0.729$$

c)
$$P(X \le 2.7) = 0.155$$

- d) Median = 3.415
- e) Mean = 248/75 = 3.3Variance = 11.2 - sq(3.3) = 0.31

f) CDF =
$$(x^4 - 2^4)/240$$

Problem

Do It Yourself!!!

Let X be a random variable with PDF given by

$$f(x)=\{x/250 \qquad 20 \le x \le 30$$

$$0 \qquad \text{otherwise}$$

- 1) Find P(X≥25).
- 2) Find E(X) and Var(X).
- 3) Find CDF.
- 4) Find median.
- 5) Find 60th percentile.

THANK YOU

Prof. Uma D

Department of Computer Science and Engineering