

Comment on “ $1/f$ noise in the Bak-Sneppen model”

Jörn Davidsen* and Norbert Lüthje†

*Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität,
Olshausenstraße 40, 24118 Kiel, Germany*
(August 18, 2000)

Contrary to the recently published results by Daerden and Vanderzande (Phys. Rev. E **53**, 4723 (1996)), we show that the time correlation function in the random neighbor version of the Bak-Sneppen model can be well approximated by an exponential giving rise to a $1/f^2$ power spectrum.

5.40-a, 64.60.Ak, 87.10+e

Recently, an exact solution of the random neighbor version of the Bak-Sneppen model was presented by de Boer and co-workers [1]. They derived a master equation for the probability $P_n(t)$ that n of out of N numbers have a value less than a fixed value λ at (discrete) time t . In the limit $N \rightarrow \infty$ and $\lambda = 1/2$, P_n has the scaling form $P_n(t) = \frac{1}{\sqrt{N}} f(x = n/\sqrt{N}, \tau = t/N)$. Inserting this expression into the master equation gives the following Fokker-Planck equation for $f(x, \tau)$ with a reflecting boundary at $x = 0$:

$$\frac{\partial f}{\partial \tau} = \frac{1}{4} \frac{\partial^2 f}{\partial x^2} + \frac{\partial}{\partial x}(xf). \quad (1)$$

Consequently, the random neighbor version of the Bak-Sneppen model for $N \rightarrow \infty$ is just an Ornstein-Uhlenbeck process, i.e., Brownian motion in a parabolic potential. Given the initial condition $f(x, 0) = \delta(x-y)$, the solution is

$$f(x, \tau) = \sqrt{\frac{2}{\pi(1 - \exp^{-2\tau})}} \exp^{\frac{-2(x-y \exp^{-\tau})^2}{1-\exp^{-2\tau}}}. \quad (2)$$

FIG. 1. Plot of the correlation function given by Eq. 6.

It follows for the autocorrelation function $G(\tau)$ of the time signal $x(\tau)$

$$G(\tau) = \frac{1}{4} \exp^{-a|\tau|}, \quad (3)$$

where $a \equiv 1$. This directly gives the power spectral density $S(\tilde{\omega})$ via a Fourier transform of $G(\tau)$

$$S(\tilde{\omega}) = \frac{1}{2} \frac{a}{a^2 + \tilde{\omega}^2}. \quad (4)$$

Going back to the unscaled variables leads to

$$S_P(\omega) = \frac{1}{2} \frac{a}{\frac{a^2}{N^2} + \omega^2}, \quad (5)$$

which is only valid for low frequencies. Hence, the power spectral density of the signal $n(t)$ decays as $1/f^2$ and for very low frequencies it even becomes constant. However, the above calculation was carried out without applying the boundary condition at $x = 0$. Nevertheless, it is already clear from a physical point of view that the functional form of $G(\tau)$ will not change drastically by incorporating a reflecting boundary. This is supported mathematically by the fact that one simply has to use the method of images. This was done in Ref. [2] giving

$$G(\tau) = \frac{1}{8\pi} [1 - \exp^{-2\tau}]^{3/2} [F(1, 2, 3/2, r_-(\tau)) + F(1, 2, 3/2, r_+(\tau)) - F(1, 2, 5/2, r_-(\tau))/3 - F(1, 2, 5/2, r_+(\tau))/3] - \frac{1}{2\pi}, \quad (6)$$

where $F(a, b, c, z)$ is the hypergeometric function and where $r_{\pm}(\tau) = \frac{1}{2}[1 \pm \exp(-\tau)]$. In Fig. 1, $G(\tau)$ is shown. We clearly find an exponential behavior with $a = 0.869 \pm 0.008$ for $0.1 < \tau < 10$ giving rise to a power spectral density as in Eq. (4). This is confirmed by a numerical Fourier transform of Eq. (6) (see Fig. 2). Here, it has to be noted that $G(\tau)$ is an even function, i.e., $G(\tau) = G(-\tau)$. This also ensures that the Fourier transform $S(\tilde{\omega})$ is real.

In the case of the Bak-Sneppen model with one next neighbor, we also cannot confirm the results presented in Ref. [2]. A direct simulation of the time signal gives $S_P(\omega) \propto 1/\omega^{1.5}$ over 2 decades for a system size of $N = 8192$. Hence, although the power spectral density in the Bak-Sneppen model decays as a power law, the exponent is far from one. This is also true for a different definition of the time signal [3].

In conclusion, there is no sign of $1/f$ noise in the random neighbor version of the Bak-Sneppen model and even in the next neighbor version there is no $1/f$ noise in the strict sense.

FIG. 2. Plot of the power spectrum given by a numerical Fourier transformation of Eq. 6. The solid line with exponent -2 is drawn for reference.

ACKNOWLEDGMENTS

J. Davidsen would like to thank the Land Schleswig-Holstein, Germany, for the financial support granted to him.

* Email address: davidsen@theo-physik.uni-kiel.de

† Email address: luethje@theo-physik.uni-kiel.de

- [1] J. de Boer *et. al.*, Phys. Rev. Lett. **73**, 906 (1994).
- [2] F. Daerden and C. Vanderzande, Phys. Rev. E **53**, 4723 (1996).
- [3] M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E **53**, 4723 (1996); S. Maslov *et. al.*, Phys. Rev. E **58**, 7141 (1998).