Analyzing Data

MATLAB® Fundamentals for Aerospace Applications

Outline

- Importing data from file
- Normalizing data
- Dealing with missing data
- Polynomial fitting
- Creating customized visualizations

Course Example: Modeling Electricity Consumption

Analyzing Data

Importing Data Programmatically

Normalizing Data

Dealing with Missing Data

Ignore

Delete

Replace

Locating Missing Values

3 NaN 4 NaN 1 NaN 2 1 NaN NaN 6 1

F	F	F	F
F	F	F	F
F	F	F	F

3	NaN	4	NaN
1	NaN	2	1
NaN	NaN	6	1

F	T	F	T
F	T	F	F
T	T	F	F

Removing Missing Values

3	NaN	4	NaN
1	NaN	2	1
NaN	NaN	6	1

X

F	T F		T
F	T	F	F
T	T	F	F

$$x(idx1) = []$$

idx2 = all(ismissing(x))

	_	1
T	F.	F.
	T	T F

x(:,idx2) = []

3	4	NaN
1	2	1
NaN	6	1

Analyzing Data 9 - 10

Replacing Missing Values

Linear Correlation

plotmatrix

corrcoef

Moving Window Operations

Fitting a Polynomial

Analyzing Data

Adding a Theoretical Curve

Adding Annotations

Specifying Color

[R	G	в]	
[0.00	0.45	0.74]	
[0.85	0.33	0.10]	
[0.93	0.69	0.13]	
[0.49	0.18	0.56]	
[0.47	0.67	0.19]	
[0.30	0.75	0.93]	
[0.64	0.08	0.18]	

Customizing Plots

plot(x,y,'PropertyName', Value)

Summary

- Importing data from file
- Normalizing data
- Dealing with missing data
- Polynomial fitting
- Creating customized visualizations

Test Your Knowledge

1. Which of the following makes a plot with a thick line?

```
A. p = plot(x,y);
   LineWidth(p,4)

B. plot(x,y,'LineWidth'=4)

C. p = plot(x,y);
   p(LineWidth) = 4;

D. plot(x,y,'LineWidth',4)
```

Test Your Knowledge

- 2. Given 1-by-50 vectors **x** and **y**, what is the result of the command **z** = **polyfit**(**x**, **y**, 3)?
 - A. A 1-by-3 vector of points interpolating y as a function of x
 - B. A 1-by-4 vector representing the coefficients of a cubic polynomial fitted to **y** as a function of **x**
 - C. A 1-by-50 vector of the values of a cubic polynomial fitted to **y** as a function of **x**
 - D. An error message