

Laboratorio No. 9 Eduardo Ramirez 19946

Entregue sus respuestas, incluyendo todo su procedimiento, en un documento pdf para la entrega de este laboratorio.

Ejercicio No. 1 (10%) – Cuál es la función computada por la siguiente Máquina de Turing cuando se le presentan inputs sobre el lenguaje $\{a, b, A, B\}$ *?

Ejercicio # 1

(qo, A, P) (qo, B, P) (qo, a, P) (qo, b, P)

quality de la maquina verifica si la cinta contiene caracteres valides y se naeve a Ederecha hasta en contrar el final

$$M = (Q, E, T, d, qo, qi)$$
 $Q = \{qo, q, p\}$
 $Z = \{a, b, A, b\}$
 $Z = \{a, b, A, b\}$

Ejercicio No. 2 (40%) – Considere la siguiente Máquina de Turing $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{halt})$ dónde:

- $Q = \{q_0, q_1, q_{halt}\}$
- $\Sigma = \{0,1\}$
- $\Gamma = \{0,1,B\}$ y
- δ está dada por:

$$\circ \quad \delta(q_0,0) = (q_0,0,R)$$

$$\circ \delta(q_0, 1) = (q_0, 1, R)$$

$$\circ \quad \delta(q_0, B) = (q_1, B, L)$$

$$\circ \quad \delta(q_1,0) = (q_{halt},1,R)$$

$$\circ \quad \delta(q_1,1) = (q_1,0,L)$$

$$\circ \quad \delta(q_1, B) = (q_{halt}, B, L)$$

- a) Provea la secuencia completa de descripciones instantáneas de M al correrla con el input 100. ¿Cuál es el output de M con este input?
- b) Provea la secuencia completa de descripciones instantáneas de M al correrla con el input 10011. ¿Cuál es el output de M con este input?
- c) Provea la secuencia completa de descripciones instantáneas de M al correrla con el input 11. ¿Cuál es el output de M con este input?

Ever cicio # 2

In pot 100

(40, 100)

$$S(q_0, 1) = (q_0, 1, 2)$$
 $S(q_0, B) = (q_1, B, L)$
 $S(q_0,$

Ejercicio No. 3 (50%) – Considere la siguiente Máquina de Turing $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ dónde:

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_{acc}, q_{rej}\}$
- $\Sigma = \{a, b\}$
- $\Gamma = \{a, b, X, B\}$ y
- δ está dada por:

(q,s)		III \ - · · /			((- , , , ,	(q,s)	$\delta((q,s))$
(q_0,a)	(q_1, \llcorner, R)	$\parallel (q_2, a)$	(q_{rej}, \lrcorner, R)	(q_4,a)	(q_4, a, L) (q_{rej}, \downarrow, R) (q_5, X, R) (q_5, \downarrow, R)	(q_6,a)	(q_{rej}, \lrcorner, R)
(q_0,b)	$\mid (q_{rej}, \lrcorner, R) \mid$	$\parallel (q_2,b)$	(q_3,b,L)	$\parallel (q_4,b)$	$\mid (q_{rej}, \lrcorner, R) \mid$	(q_6,b)	(q_{rej}, \lrcorner, R)
(q_0,X)	$\mid (q_{rej}, \lrcorner, R) \mid$	$\parallel (q_2, X)$	(q_{rej}, \lrcorner, R)	$\ (q_4, X)$	$ (q_5, X, R) $	(q_6,X)	(q_6, X, L)
(q_0, \lrcorner)	$ (q_{rej}, \square, R) $	$\parallel (q_2, \lrcorner)$	$(q_6, {\scriptscriptstyle \sqcup}, L)$	$\ \ (q_4, \lrcorner)$	$(q_5, {\scriptscriptstyle \square}, R)$	$(q_6, _)$	(q_{acc}, \sqcup, R)
(q_1,a)	(q_1, a, R)	(q_3,a)	(q_4, a, L)	$\parallel (q_5,a)$	(q_1, X, R)		
(q_1,b)	$ (q_2,X,R) $	(q_3,b)	(q_{rej}, \lrcorner, R)	(q_5,b)	(q_{rej}, \lrcorner, R)		
(q_1,X)	$ (q_1,X,R) $	$\ (q_3, X)$	(q_3,X,L)	(q_5,X)	(q_{rej}, \lrcorner, R)		
(q_1, \llcorner)	(q_1, a, R) (q_2, X, R) (q_1, X, R) (q_{rej}, \Box, R)	$\parallel (q_3, \lrcorner)$	(q_{rej}, \lrcorner, R)	$\parallel (q_5, \lrcorner)$	$\mid (q_{rej}, \lrcorner, R) \mid$		

$$\delta(q_{acc}, s) = (q_{acc}, B, L) \mathbf{y} \delta 7q_{rej}, s8 = 7q_{rej}, B, L8 \forall s \in \{a, b, X, B\}$$

- a) Dibuje el diagrama de control de estados de esta máquina de Turing. Para una mayor claridad, en su diagrama omita todas las transiciones salientes desde q_{acc} y remueva a q_{rej} por completo (incluyendo todas sus transiciones entrantes y salientes). Hint: q_1 a q_5 forman un pentágono, así que puede dibujar eso primero.
- b) Provea la secuencia completa de descripciones instantáneas de M al correrla con el input aabb.
- c) ¿Cuál es el Lenguaje que esta máquina reconoce? Hint: piense en lo que hace la máquina en cada estado y escanee la cinta con las descripciones instantáneas que consiguió anteriormente para el input aabb. Al ver los movimientos sobre la cinta, tendrá una mejor idea de las operaciones que M lleva a cabo y tendrá una mejor idea del lenguaje que reconoce.
- d) Con base en el inciso anterior indique si $aba \in L(M)$?