Dr. Brigitte Breckner Dr. Anca Grad

Winter semester 2013-2014

Exercise Sheet no.1

Analysis for CS

GROUPWORK:

(G 4)

- a) Let $S \subseteq \mathbb{R}$. Using the definition of the *lower* (respectively, *upper*) bound of S write down what it does mean that an element $x \in \mathbb{R}$ is not a lower (respectively, upper) bound of S.
- b) Fill in the following table:

S	LB(S)	UB(S)	$\min S$	$\max S$	$\inf S$	$\sup S$
Ø						
$(-5,3) \cup [4,+\infty)$						
$(-2,4) \cup \{5\}$						
$(-\infty,0] \cup \{1,2\}$						
$(-2,3) \cap \mathbb{Z}$						
N						
$(-2,\sqrt{3})\cap \mathbb{Q}$						
$\{x \in \mathbb{R} \mid x^3 - x^2 - 6x \ge 0\}$						

c) Give an example of a subset S of \mathbb{R} that satisfies simultaneously the following conditions: it is not an interval, it is unbounded below, it doesn't have a greatest element, and sup S = -1.

(G 5) (Train your brain)

Let $S \subseteq \mathbb{R}$.

- a) Prove that if $UB(S) \neq \emptyset$, then UB(S) contains infinitely many elements.
- b) Prove that if S has a greatest element, then $\max S = \sup S$.
- c) Prove that S has at most one greatest element. (In other words, S cannot have two distinct greatest elements.)
- d) Prove that S has at most one supremum. (In other words, S cannot have two distinct suprema.)

Homework:

(H 5) (To be delivered in the next exercise-class)

a) Fill in the following table:

A	LB(A)	UB(A)	$\min A$	$\max A$	$\inf A$	$\sup A$
\mathbb{R}_{+}						
\mathbb{Q}^*						
$\boxed{[-2,1)\cup(2,\infty)}$						
$(-\infty, -1) \cup (2, 3)$						
$(-2,5) \cap \mathbb{N}$						
\mathbb{Z}						
$(-\infty, 5] \cap \mathbb{Q}$						
$\left\{ x \in \mathbb{R} \mid \frac{x+1}{x^2+1} < 1 \right\}$						

b) Give an example of a subset S of \mathbb{R} that satisfies simultaneously the following conditions: it is not an interval, it is unbounded above, it doesn't have a least element, and inf S=3.

(H 6) (Train your brain)

Let $S \subseteq \mathbb{R}$.

- a) Prove that if $LB(S) \neq \emptyset$, then LB(S) contains infinitely many elements.
- b) Prove that if S has a least element, then $\min S = \inf S$.
- c) Prove that S has at most one least element. (In other words, S cannot have two distinct least elements.)
- d) Prove that S has at most one infimum. (In other words, S cannot have two distinct infima.)

(H 7) (Train your brain)

Having the proof of C2 in the first course as a model, prove C4.