Deep Retinex Decomposition for Low-Light Enhancement

Chen Wei *, Wenjing Wang *, Wenhan Yang, Jiaying Liu (*Equal contribution)

Institute of Computer Science and Technology, Peking University, Beijing, China

Introduction

MOTIVATION

- Insufficient lighting significantly degrades the visibility of images.
- Existing deep-based methods do not take the nature of low-light pictures into account.

THE RETINEX THEORY

- Images can be decomposed into reflectance and illumination.

Dataset

DATASET CAPTURED IN REAL SCENES

- LOw Light paired dataset (LOL), with 500 low/normal-light pairs.

SYNTHETIC IMAGE PAIRS FROM RAW

- We generate image pairs according to the illumination distribution of low-light images.

Retinex-Net for Low-Light Enhancement

STRUCTURE-AWARE SMOOTHNESS LOSS

- To make the loss aware of the image structure, original TV function is weighted with the gradient of reflectance map: $||\nabla I \times exp(-\lambda_g \nabla R)||_1$.

Experimental Results

RESULTS FOR ENHANCEMENT

RESULTS FOR JOINT ENHANCEMENT AND DE-NOISE

FOR MORE DETAILS & DATASETS LINKS
The QR code or https://daooshee.github.io/BMVC2018website/

Interested in our team STRUCT? Navigate to: http://www.icst.pku.edu.cn/struct/