Constrained Nonlinear Optimization

Maestría en Cómputo Estadístico

Centro de Investigación en Matemáticas A.C.

What is constrained nonlinear optimization? I

- Roughly speaking, it is a nonlinear optimization problem with either equallity or inequallity constrains
- Constrains can be linear or nonlinear
- Mathematically, a nonlinear constrained optimization problem is defined as:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
subject to: $h_i(\mathbf{x}) = 0, i = 1, ..., m$

$$g_i(\mathbf{x}) \le 0, j = 1, ..., I$$

$$(1)$$

First-Order Optimality Conditions I

A necessary condition to consider x^* as an optimal solution can be stated as follows:

$$\nabla f(\mathbf{x}^*) - \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) - \sum_{j=1}^l \gamma_j \nabla g_j(\mathbf{x}^*) = 0$$
 (2)

This is known as the Karush-Kuhn-Tucker (KKT) condition

Second-Order Optimality Conditions I

• Let
$$\mathcal{L}(x, \gamma, \lambda) = f(x) - \sum_{i=1}^{m} \lambda_i h_i(x) - \sum_{j=1}^{l} \gamma_j g_j(x)$$

A second-order condition should satisfy:

$$d^{T}\nabla^{2}\mathcal{L}\left(\mathbf{x},\gamma,\lambda\right)d\geq0\tag{3}$$

Quadratic Programming I

- Quadratic programming (QP) is the simplest constrained nonlinear optimization problem
- It is a special case with quadratic objective function and linear constraints
- Mathematically, a QP problem is defined as:

$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{q}^{T} \mathbf{x}$$
subject to: $\mathbf{a}_{i}^{T} \mathbf{x} = b_{e}, i = 1, \dots, m$

$$\mathbf{a}_{j} \mathbf{x} \geq b_{i}, j = m + 1, \dots, m + l$$

$$(4)$$

• where Q is a symmetric $n \times n$ matrix

Quadratic Programming II

- If matrix Q is positive semi-definite, then the optimization problem is convex; thus, any local minimum is a global minimum
- a typical technique to solve QP is through the conjugate gradient method
- Remarkable applications of QP into machine learning are the optimization problem to train support vector machines and least squares regression

Example I

Find the optimal solution for the following QP problem:

$$\min_{x} \frac{1}{2} x^{T} Q x + q^{T} x$$
subject to: $A_{e}^{T} x = 0$

$$A_{i}^{T} x \ge 1$$
(5)

where

$$\bullet \ \mathsf{x} = [x_1, x_2]^T$$

$$Q = \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix}$$

•
$$q = [-2, 0]^T$$

•
$$A_e = [1, -2]^T$$

•
$$A_i = [1, -1]^T$$

Equality Constrained QP

- When only equality constraints are considered, QP is reduced to an equality constrained QP
- Equality constrained QP can be reduced to the following problem:

$$\begin{bmatrix} Q & -A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} -q \\ b_e \end{bmatrix}$$
 (6)

Active Set Methods I

- Most QP problems involve inequality constraints
- Constrained QP can be converted to an equality constrained QP form and be solved with most effective methods
- A constraint is said to be active if satisfies the equality condition
- The active set is the set of all constraints that are active

Active Set Methods II

- Intuitively, inactive inequality constraints do not play any role near the solution, so they can be dropped
- The active inequality constraints have zero values at solution, and so they can be replaced by equality constraints
- The active set methods are a feasible point method, that is, all iterates remain feasible
- The idea is that, in each iteration, a QP subproblem is solved with a subset of equality constraints, known as the working set, S_k

Active Set Methods III

• Let x^* be a local minimizer for the QP problem, then x^* is a local minimizer of the problem

$$\min_{\mathbf{x}^*} \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{q}^T \mathbf{x}
\text{subject to: } \mathbf{A} \mathbf{e_i}^T \mathbf{x} = b \mathbf{e_i}, i \in E \cup I(\mathbf{x}^*)$$
(7)

• If x^* is a feasible point and a KKT point of the above problem, and the corresponding Lagrangian multiplier vector λ^* satisfies:

$$\lambda_i^* \ge 0 : i \in I\left(\mathbf{x}^*\right) \tag{8}$$

Then x* is also a KKT point of the QP problem

Active Set Methods IV

- If the solution of the equality-constrained QP subproblem on the working set, S_t is feasible for the original QP problem, then it needs to be checked if satisfies the Lagrangian condition
- A search direction is found as:

$$\min_{d} \frac{1}{2} (x_t + d)^T Q(x_t + d) + g^T (x_t + d)$$
subject to: $Ae_i^T d = 0, i \in S_t$

$$(9)$$

Active Set Methods V

• The value of α_t can be computed as follows:

$$\alpha_t = \min \left\{ 1, \min_{i \notin \mathcal{S}_t} \frac{b_i - a_t^T x_t}{a_t^T d_t} : a_t^T d_t \text{ is infeasible} \right\}$$
 (10)

Active Set Methods VI

Algorithm 1 Active Set Method

```
1: Set an initial feasible search point x^{(0)}
 2: Set the working set, S_0 \leftarrow E \cup I(x^{(0)})
 3: Set t \leftarrow 0
 4: while a stop criterion is not met do
 5:
         Find the search direction by solving the optimization problem
 6:
         if d_t is zero then
             Compute \lambda_i^{(t)}
 7:
8:
             if \exists \lambda_i < 0, i \in \mathcal{S}_t \cap I then
 9:
                 S_t \leftarrow S_t \setminus i_t, x_{t+1} \leftarrow x_t
10:
             else
11:
                 Stop
12:
             end if
13:
          else
14:
             x_{t+1} \leftarrow x_t + \alpha_t d_t
15:
             if \alpha_t < 1 then
16:
                  Add the violated constraint into the working set
17:
             end if
18:
         end if
19:
          t \leftarrow t + 1
20: end while
21: return x^{(t)}
```


Optimization (CIMAT)

Example I

Using the Active Set Method, find the optimal solution of a QP problem given by:

$$Q = \begin{bmatrix} 17 & 14 & -3 \\ 14 & 13 & 0 \\ -3 & 0 & 10 \end{bmatrix}$$

$$q = [-2 -2 -1]^T$$

$$\bullet \ \mathsf{E} = \left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 3 \end{array} \right]$$

•
$$b_e = [10 \ 5]^T$$

$$\bullet \ \mathsf{I} = \left[\begin{array}{cc} 0 & 3 & 7 \\ 4 & 7 & 1 \end{array} \right]$$
$$\bullet \ \mathsf{b_i} = \left[3 \ 9 \right]^T$$

•
$$b_i = [3 \ 9]^T$$

Example II

- $x^{(0)} = [10 \ 5 \ 0]^T$
- Solving, we obtain that: $d^{(0)} = [7.4444 - 22.3333 \ 7.4444]^T$; and $\lambda^{(0)} = [29.5556 \ 16.8889]^T$

Quadratic Programming

- That results in $\alpha = 0.5541$, and then $x^{(1)} = \begin{bmatrix} 14.1250 & -7.3750 & 4.1250 \end{bmatrix}^T$
- \bullet $x^{(1)}$ activates one of the inequality constraint, which is further added to the working set

Example III

 Computing the new direction search and Lagrangian multipliers result in:

$$\mathbf{d^{(1)}} = \begin{bmatrix} 0.000 & 0.0000 & 0.000 \end{bmatrix}^T \text{; and } \\ \lambda^{(0)} = \begin{bmatrix} 77.6875 & 21.4531 & 11.2031 \end{bmatrix}^T$$

• Since $d^{(1)}$ is zero and the Lagrangian are greater or equal than zero, then the optimal solution is given by $x^{(1)}$, i.e.,

$$x^* = [14.1250 - 7.3750 \ 4.1250]^T$$

Exercise I

Using the Active Set Method, find the optimal solution of the QP problems given by:

$$\min f(x) = \frac{1}{2} (x_1^2 + x_2^2 + x_3^2) - 3x_2 - x_3$$
s.t. $x_1 + x_2 + x_3 \le 1$

$$x_2 - x_3 < 1$$
(11)

Exercise II

$$\bullet \ \ Q = \left[\begin{array}{cccccc} 32 & -17 & 18 & -5 & 0 \\ -17 & 59 & -6 & 42 & 14 \\ 18 & -6 & 58 & 4 & -31 \\ -5 & 42 & 4 & 41 & 12 \\ 0 & 14 & -31 & 12 & 31 \end{array} \right]$$

Exercise III

$$\mathbf{b}_{e} = \begin{bmatrix} -9 & 0 & -6 \end{bmatrix}^{T}$$

$$\mathbf{I} = \begin{bmatrix} -3 & 2 & 2 & -2 & 4 \\ -3 & -3 & -1 & -1 & 5 \\ 5 & -1 & -3 & 1 & 3 \\ -3 & 0 & 0 & -2 & -1 \\ -4 & 5 & 0 & -2 & 1 \\ 1 & -3 & -3 & 2 & -3 \\ 4 & 4 & 1 & -2 & 5 \end{bmatrix}$$

Quadratic Programming

•
$$b_i = [8 \ 7 \ -4 \ 2 \ -9 \ -1 \ -3]^T$$

Interior-Point Methods I

- Interior-point methods are able to solve quadratic programming problems
- These methods reach the solution by traversing the interior of the feasible region
- For simiplicity, we consider the inequality-constrained QP:

$$\min_{\mathbf{x}^*} \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{q}^T \mathbf{x}$$
subject to: $A_i \mathbf{x} \ge b_i$ (12)

The Central Path I

- ullet The central path $\mathcal C$ is an arc of strictly feasible points
- It is parametrized by a scalar $\tau > 0$, and each point $(x_{\tau}, \lambda_{\tau}, y_{\tau})$ solves the following system:

$$A^{T}\lambda + y = c$$

$$Ax = b$$

$$x_{i}y_{i} = \tau, i = 1, \dots, m$$

$$(x, y) > 0$$
(13)

The Interior-Point Method I

Quadratic Programming

• The first optimality condition:

$$Qx + q - A^{T}\lambda = 0$$

$$Ax - b \ge 0$$

$$(Ax - b)_{i}\lambda_{i} = 0$$

$$\lambda \ge 0$$
(14)

The Interior-Point Method II

By introducing slack variables, $y \ge 0$, we obtain:

$$Qx + q - A^{T}\lambda = 0$$

$$Ax - b - y = 0$$

$$y_{i}\lambda_{i} = 0$$

$$(\lambda, y) \ge 0$$
(15)

The Interior-Point Method III

Rewritten:

$$\begin{bmatrix} Qx + q - A^{T}\lambda \\ Ax - b - y \\ \mathcal{Y}Ae \end{bmatrix}$$
 (16)

where \mathcal{Y} is a diagonal matrix of the vector y, \mathcal{A} is the diagonal matrix of the vector λ , and e is vector of ones.

The Interior-Point Method IV

• Biasing the search towards the central path:

$$\begin{bmatrix} Qx + q - A^{T}\lambda \\ Ax - b - y \\ \mathcal{Y}Ae - \sigma\mu e \end{bmatrix} = 0$$
 (17)

where
$$\mu = \frac{y^T \lambda}{m}$$
 and $\sigma = [0, 1]$

The Interior-Point Method V

• Solving the nonlinear system using Newton's method:

$$\begin{bmatrix} G & 0 & -A^{T} \\ A & -I & 0 \\ 0 & A & \mathcal{Y} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \lambda \end{bmatrix} = \begin{bmatrix} -r_{d} \\ -r_{p} \\ -A\mathcal{Y}e + \sigma\mu e \end{bmatrix}$$
(18)

where
$$r_d = Qx + q - A^T$$
 and $r_p = Ax - b - y$

• The next point is obtained by setting:

$$\left(\mathbf{x}^{t+1}, \mathbf{y}^{t+1}, \lambda^{t+1}\right) = \left(\mathbf{x}^{t}, \mathbf{y}^{t}, \lambda^{t}\right) + \alpha \left(\Delta \mathbf{x}, \Delta \mathbf{y}, \Delta \lambda\right) \tag{19}$$

where α is chosen to keep the inequality $(\mathbf{y}^{t+1}, \lambda^{t+1}) > 0$

The Interior-Point Method VI

- The greatest reduction in the residuals r_d and r_p is obtained by choosing the largest admissible primal (α^p) and dual (α^d) steplenght
- The residuals satisfy the following conditions:

$$r_p^{t+1} = (1 - \alpha^p) r_p^t$$

 $r_d^{t+1} = (1 - \alpha^p) r_d^t + (\alpha^p - \alpha^d) Q \Delta x$ (20)

• The steplenght α is set to $\alpha = \min (\alpha_{\tau}^{p}, \alpha_{\tau}^{d})$, where:

$$\begin{split} &\alpha_{\tau}^{\textit{p}} = \max\left\{\alpha \in \left(0,1\right]: \mathbf{y} + \alpha \Delta \mathbf{y} \geq \left(1 - \tau\right) \mathbf{y}\right\} \\ &\alpha_{\tau}^{\textit{d}} = \max\left\{\alpha \in \left(0,1\right]: \lambda + \alpha \Delta \lambda \geq \left(1 - \tau\right) \lambda\right\} \end{split}$$

The Interior-Point Method VII

- The most popular interior-point method for convex QP is based on Mehrotra's predictor-corrector
- First, we compute an affine scaling step $\left(\Delta \mathsf{x}^{\mathit{aff}}, \Delta \mathsf{y}^{\mathit{aff}}, \Delta \lambda^{\mathit{aff}}\right)$ by setting $\sigma = 0$
- ullet Next, we compute the centering parameter σ
- The total step is obtained by solving the following system

$$\begin{bmatrix} G & 0 & -A^{T} \\ A & -I & 0 \\ 0 & \Lambda & \mathcal{Y} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \lambda \end{bmatrix} = \begin{bmatrix} -r_{d} \\ -r_{p} \\ -\Lambda \mathcal{Y}e - \Delta \Lambda^{aff} \Delta \mathcal{Y}^{aff} + \sigma \mu e \end{bmatrix}$$
CIMAT

The Interior-Point Method VIII

Algorithm 2 Interior Point Predictor-Corrector for QP

- 1: Set an initial search point x⁰
- 2: Compute (x^0, y^0, λ^0) with $(y^0, \lambda^0) > 0$
- $3: t \leftarrow 0$
- 4: while a stop criterion is not meet do
- Set $(x, y, \lambda) \leftarrow (x^t, y^t, \lambda^t)$ and solves (18) with $\sigma = 0$ for $(\Delta x^{aff}, \Delta y^{aff}, \Delta \lambda^{aff})$ 5:
- $\mu \leftarrow \frac{y^{t}\alpha}{}$ 6:
- $\hat{lpha}^{ ext{aff}} \leftarrow \max \left\{ lpha \in (0, a] : (y, \lambda) + lpha (\Delta y, \Delta lpha) \ge 0 \right\}$
- $\mu^{aff} \leftarrow \left(\mathbf{y} + \hat{\alpha}^{aff} \Delta \mathbf{y}^{aff} \right)^T \left(\lambda + \hat{\alpha}^{aff} \Delta \lambda^{aff} \right) / m \text{ and set } \sigma \leftarrow \left(\mu^{aff} / \mu \right)^3$ 8:
- 9: Solves (22) for $(\Delta x, \Delta y, \Delta \lambda)$
- Choose $\tau_t \in (0,1)$ and set $\alpha = \min (\alpha_{\tau}^p, \alpha_{\tau}^d)$ 10:
- $(\mathsf{x}^{t+1},\mathsf{y}^{t+1},\lambda^{t+1}) \leftarrow (\mathsf{x}^t,\mathsf{y}^t,\lambda^t) + \alpha(\Delta\mathsf{x},\Delta\mathsf{y},\Delta\lambda)$ 11:
- 12: $t \leftarrow t + 1$
- 13: end while
- 14: return $x^{(t)}$

Penalty Function Methods I

- The penalty function methods are an important class of methods for constrained optimization problem
- In this class of methods we replace the original constrained problem by a sequence of unconstrained subproblems that minimizes the penalty functions
- The so-called "penalty" property requires that the penalty function, $\mathcal{P}(x)$, equals to f(x) for all feasible points
- Conversely, $\mathcal{P}(x)$ has to be much larger than f(x) when the constraint violations are severe

Penalty Function Methods II

A constraint violation can be defined as:

$$c_i(x) = \begin{cases} c_i(x) & \text{if } i \text{ is an equality constraint} \\ \min\{c_i(x), 0\} & \text{if } i \text{ is an inequality constraint} \end{cases}$$
 (23)

 The penalty function will thus consist in a sum of the original objective function and a penalty term, i.e.,

$$\mathcal{P}(x) = f(x) + h(c(x)) \tag{24}$$

• The key in this kind of methods relies on the definition of h(c(x))

Penalty Function Methods III

 One of the first approaches consisted in penalizing based on the norm of the constraints violation vector, i.e.,

$$\mathcal{P}(\mathsf{x}) = f(\mathsf{x}) + \sigma \parallel c(\mathsf{x}) \parallel^k \tag{25}$$

where k > 0 and $\sigma > 0$

• The basic idea of the penalty function method is that the penalty parameter, σ , is increased in each iteration until $\|c(x)\|^k$ is greater than a given tolerance, δ

Penalty Function Methods IV

The properties of the penalty methods:

- They substitute unconstrained optimization problems for constrained ones: however, the effective use of numerical methods for unconstrained problems requires the penalty function to be *sufficiently* differentiable
- Unlimited increment of the penalty parameter increases ill-conditioning which is often inherent in the minimization process of the penalty function

Applications

Some applications of nonlinear optimization in the field of machine learning encompass:

- Least-square regression
- Training of neural networks
- Training of support vector machines
- Ensemble learning

Questions?

