CLASSROOM CONTACT PROGRAMME

Academic Session: 2019-2020)

MHT-CET: ENTHUSE COURSE

Test Type : ONLINE TEST – 01 Test Pattern : MHT-CET

TEST DATE: 15-09-2020

	_				
PCM GROUP Paper code: CET2012FSPCB915	Roll No-				

Important Instructions

Do not open this Test Booklet until you are asked to do so.

- **1.** Immediately fill in the form number on this page of the Test Booklet with *Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.*
- **2.** The candidates should not write their Form Number anywhere else (except in the specified space)on the Test Booklet/Answer Sheet.
- 3. The test is of 3 hours duration.
- 4. The Test Booklet consists of 200 questions. The maximum marks are 200. Duration 180 minutes
- 5. Question Paper Format:

FULL SYLLABUS:

Physics (50 Questions) Chemistry (50 Questions) carrying 1 mark each questions and Biology (100 Questions) carrying 2 mark each.

Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

Marking scheme: Phy chem. +1 for correct answer and 0 if not Attempted. No negative marking.

Biology +1 for correct answer and 0 if not Attempted. **No** negative marking.

- 6. Use Blue/Black Ball Point Pen only for writting particulars/marking responses on Side–1 and Side–2 of the Answer Sheet. Use of pencil is strictly prohibited.
- **7.** No candidate is allowed to carry any textual material, printed or written, bits of papers, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room.
- 8. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 9. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. However, the candidate are allowed to take away this Test Booklet with them.
- 10. Do not fold or make any stray marks on the Answer Sheet.

Your Hard Work Leads to Strong Foundation

PHYS	sics						
1.	A cyclist is moving in a circular track of radius 80m, with a velocity of 36 km/hour. In order						
	to keep his balance, he	has to lean inward from	n the vertical through a	n angle θ . If g =			
	10m/s^2 , then θ is given	ı by					
	a) tan-1(2)	b) tan-1(4)	c) $\tan^{-1}\left(\frac{1}{4}\right)$	d) $\tan^{-1} \left(\frac{1}{8} \right)$			
2.	At what depth below th	e surface of the earth, i	s the value of g same as	s that at a height of 10			
	km from the surface of	the earth?					
	a) 5 km	b) 10 km	c) 20 km	d) 40 km			
3.	The moments of Inertia	of two rotating bodies	A and B are I $_1$ and I $_2$ wh	nere $I_1 > I_2$. If K_1 and K_2			

3. The moments of Inertia of two rotating bodies A and B are I_1 and I_2 where $I_1 > I_2$. If K_1 and K_2 are their kinetic energies and if their angular momenta are equal, then

a)
$$K_1 = K_2$$
 b) $K_1 < K_2$ **c)** $K_1 > K_2$ **d)** $K_1 = \frac{1}{2}K$

4. When the displacement of a simple harmonic oscillator is half of its amplitude, its potential energy is 3J. Its total energy is

a) 6J **b)** 12 J **c)** 15 J **d)** 20 J

5. If the potential energy of a spring is U, on stretching it by 2 cm. What is its potential energy when it is stretched by 10 cm?

a) $\frac{U}{5}$ **b)** $\frac{U}{25}$ **c)** 25 U **d)** 5U

6. If the radius of a soap bubble is four times that of another, then the ratio of their excess pressure will be

a) 4:1 **b)** 1:4 **c)** 16:1 **d)** 1:16

7. A whistle tide at the end of a string of length 50cm revolves in a circular path with angular speed w = 20 rad/s using a string of length 50 cm. The frequency of sound from the whistle is 385 Hz. What is the minimum frequency heard by an observer which is far away from the whistle?

(Velocity of sound = 340 m/s)

a) 394 Hz **b)** 385 Hz **c)** 374 Hz **d)** 333 Hz

8. If a resonance tube gives two consecutive resonances at the length of 15 and 48cm, then the velocity of sound in air is [frequency of fork = 500 Hz]

velocity of sound in air is [frequency of fork = 500 Hz] **a)** 320 m/s **b)** 330 m/s **c)** 340 m/s **d)** 350 m/s

9. What is the mean energy per molecule for a polyatomic gas with n degrees of freedom?

a) $\frac{nKT}{N}$ b) $\frac{3KT}{2}$ c) $\frac{nKT}{2N}$

10.	A ray of light is incider	nt on a medium of refract	ive index $\sqrt{2}$ at an angle	e of incidence of 45°.
	The ratio of the width of	of the incident beam is ai	r to that of the refracted	d beam in the medium
	is			
	a) $(3/2)^{1/2}$	b) $(2/3)^{1/2}$	c) 3/2	d) 2/3
11.	The difference between	n two interfering light wav	ves meetings at a point o	on the screen is $\left(\frac{87}{2}\right)\lambda$

The band obtained at that point is

a) 87th bright band

b) 87th dark band

c) 44th dark band

- d) 44th light band
- **12.** A network of capacitors is as shown in the diagram.

What is the equivalent capacitance between the points A and D

- **a)** $C = 3 \mu F$
- **b)** $C = 4 \mu F$
- **c)** $C = 2 \mu F$
- **d)** $C = 5 \mu F$
- 13. The resistivity of a potentiometer wire is 40×10^8 ohm-m and its area of cross-section is 8×10^8 10-6 m². If a current of 0.4 A is flowing through the wire, then the potential gradient will be
 - a) 10^{-2} V/m

b) 10^{-1} V/m

c) $2 \times 10^{-2} \, \text{V/m}$

- **d)** 1 V/m
- 14. In an ammeter, 4% of the total current is passing through the galvanometer. If the shunt resistance is 5Ω , then the resistance of the galvanometer will be
 - a) 30Ω
- **b)** 60 Ω
- c) 120Ω
- d) 240Ω
- **15.** The susceptibility of a magnetic material is χ at 127°C. At what temperature, its susceptibility will be reduced to half of its original value?
 - a) 327°C
- **b)** 427°C
- c) 527°C
- **d)** 627°C
- **16.** In an A.C. circuit, a resistance R = 40Ω and an inductance L are connected in series. If the phase angle between voltage and current is 45°, then the value of the inductive reactance will be
 - a) 20Ω
- **b)** 40Ω
- c) 10Ω
- d) 50Ω
- 17. For a photocell, the work function is ϕ and the stopping potential is V_s . The wavelength of the incident radiation is

- **b)** $\frac{hc}{\phi eV_c}$
- c) $\frac{hc}{\phi + eV_s}$ d) $\frac{hc}{e\phi + V_s}$

18.	What is the	ratio of the	nuclear	radii of two	elements v	with mass	numbers 27	and 1253

- To get on output X = 1 from the following logic circuit, the input must be

The same	Α	В	C ·
(a)	0	1	0
(b)	1	. 1	0
(a) (b) (c)	1	. 0	0
(d)	1	0	1

- 20. In short wave communication, waves of which of the following frequencies will be reflected back by the ionosphere, of electron density 10¹¹/m³?
 - **a)** 2 MHz

b) 10 MHz

c) 12 MHz

- **d)** 18 MHz
- 21. An automobile is turning around a circular road of radius r. The coefficients friction between the tyres and the road is μ . For safety of the vehicle, its velocity should not be more than
 - a) $\frac{\sqrt{\mu g}}{}$

b) $\sqrt{\mu gr}$

c) µrg

- d) $\frac{\mu g}{m}$
- A body weighs W newton at the surface of the earth. Its weight at a height equal to half the 22. radius of the earth will be
 - a) $\frac{W}{2}$
- **b)** $\frac{2W}{2}$
- c) $\frac{4W}{Q}$
- **d)** $\frac{8W}{15}$
- 23. What is the moment of inertia of a solid sphere of radius R and density P about its diameter?

- **a)** $\frac{8}{3}\pi R^3 \rho$ **b)** $\frac{8}{15}\pi R^4 \rho$ **c)** $\frac{8}{15}\pi R^5 \rho$ **d)** $\frac{15}{8}\pi R^3 \rho^2$
- 24. The differential equation of a particle performing a S.H.M is $\frac{d^2x}{dt^2} + 64x = 0$. The period of oscillation of the particle is
 - **a)** 10 sec
- **b)** 5 sec
- c) $\frac{\pi}{3}$ sec

- d) $\frac{\pi}{4}$ sec
- **25.** Y is the Young's modulus of the material of a wire of length L and cross-sectional are A. It is stretched through a length l. What is the force constant of the wire?
 - a) $\frac{YA}{L}$

c) $\frac{\text{YL}}{\text{A}}$

26.	Two parallel glass plates separated by a small distance x are dipped partly in a liquid of 'd'
	keeping them vertical. The surface tension of the liquid is T and angle of contact is θ . What is
	the rise of the liquid between the plates due to capillarity?

a)
$$\frac{2T\cos\theta}{xdg}$$

b)
$$\frac{2T}{xdg\cos\theta}$$
 c) $\frac{T\cos\theta}{xdg}$

c)
$$\frac{T \cos \theta}{x d \sigma}$$

d)
$$\frac{T \cos \theta}{xd}$$

27. In a sinusoisodal wave, the time required by a particular particle to move from maximum displacement to zero displacement is 0.025 sec. The frequency of the wave is

b) 5 Hz

c) 7.5 Hz

An organ pipe P₁ closed at one end vibrating in its first overtone and another and another 28. pipe P₂ open at both ends, vibrating in its third overtone are in resonance with a given tuning fork. The ratio of the length of P_1 to that of P_2 is

a)
$$\frac{1}{8}$$

c) $\frac{3}{9}$

29. The value of $\gamma = \frac{C_P}{C_{rr}}$ for a gas is given by $\gamma = 1 + \frac{2}{f}$ where f is the number of degrees of freedom

of a molecule of a gas. What is the ratio of $\frac{\gamma_{monoatomic}}{\gamma_{monoatomic}}$?

a)
$$\frac{25}{21}$$

b) $\frac{21}{25}$ **c)** $\frac{5}{7}$

30. A ray of light passes from vacuum into a medium of refractive index n. If the angle of incidence is found to be twice the angle of refraction, then the angle of incidence is

a)
$$2\sin^{-1}\left(\frac{n}{2}\right)$$

b)
$$2\cos^{-1}\left(\frac{n}{2}\right)$$
 c) $\cos^{-1}\left(\frac{n}{2}\right)$ **d)** $2\sin^{-1}(n)$

c)
$$\cos^{-1}\left(\frac{n}{2}\right)$$

Two coherent sources of intensities, I₁ and I₂ produce an interference pattern. What is the maximum 31. intensity in the interference pattern?

a)
$$I_1 + I_2$$

b)
$$I_1^2 + I_2^2$$

c)
$$(I_1 + I_2)^2$$

b)
$$I_1^2 + I_2^2$$
 c) $(I_1 + I_2)^2$ **d)** $(\sqrt{I_1} + \sqrt{I_2})^2$

Five capacitors each of capacity C are joined as shown in the following figure. If their 32. resultant capacity $C_{\mbox{\scriptsize R}}=2\mu\mbox{\scriptsize F}, then the capacity of each capacitor is$

d)
$$4 \mu F$$

33. In the given circuit, the galvanometer G gives zero deflection. What is the value of resistance X?

- a) 10Ω
- **b)** 12 Ω

- c) 15Ω
- d) 20Ω
- **34.** A galvanometer of resistance 20 Ω has a current sensitivity of 5 div/mA. The instrument has 50 divisions. How will you convert it into a voltmeter reading upto 25 volt?
 - a) Join a resistance of 1240 Ω in series
- **b)** Join a resistance of 2480 Ω in series
- c) Join a resistance of 2480 Ω in parallel
- **d)** Join a shunt of 20 Ω
- **35.** A charge q is circulating with constant speed v in a semicircular loop of wire of radius R. The magnetic moment of this loop is
 - a) qvR
- **b)** $\frac{\pi Rqv}{2(\pi+2)}$ **c)** $\frac{qvR}{3}$
- d) $\frac{qv\pi v}{\pi + 2}$
- The primary winding of a transformer has 50 turns while its secondary has 500 turns. If the primary is connected to an a.c. supply of 220 V, 50Hz, then the output at the secondary will be
 - a) 220V, 50Hz
- **b)** 2200 V, 50 Hz **c)** 2200 V, 500 Hz
- **d)** 22 V, 5 Hz
- The maximum velocity of an electron emitted by light of wavelength λ incident on the surface of a metal of work function ϕ , is

a)
$$\left[\frac{2(h\lambda-\phi)}{m}\right]^{1/2}$$

b)
$$\left[\frac{2(hC - \lambda\phi)}{m\lambda} \right]^{1/2}$$

a)
$$\left[\frac{2(h\lambda-\phi)}{m}\right]^{1/2}$$
 b) $\left[\frac{2(hC-\lambda\phi)}{m\lambda}\right]^{1/2}$ c) $\left[\frac{2(hC+\lambda\phi)}{m\lambda}\right]^{1/2}$

$$\mathbf{d)} \quad \frac{2(hC - \lambda\phi)}{m}$$

- 38. If λ_1 and λ_2 are the wavelengths of the first members of the Lyman and Paschen series respectively, then $\frac{\lambda_1}{\lambda_2}$ is equal to
 - **a)** 1: 3

- **b)** 30:1
- c) 7:50
- **d)** 7:108
- **39.** If l_1, l_2 and l_3 are the widths of emitter, base and collector regions of transistor, then
 - **a)** $l_1 > l_2 > l_3$
- **b)** $l_3 < l_2 < l_1$
- c) $l_3 > l_1 > l_2$
- **d)** $l_1 = l_2 = l_3$
- **40.** A signal wave of frequency 12 KHz is modulated with a carrier wave of frequency 2.51 MHz. What are the upper and lower sideband frequencies?
 - **a)** 2512 KHz and 2508 KHz

b) 2522 KHz and 2488 KHz

c) 2502 KHz and 2498 KHz

d) 2522 KHz and 2498 KHz

	a)	$\frac{\hat{i}+10\hat{j}-18\hat{k}}{5\sqrt{17}}$		b)	$\frac{\hat{i}-10}{5}$	$\frac{\hat{j} + 18\hat{k}}{\sqrt{17}}$			
	c)	$\frac{\hat{i}-10\hat{j}-18\hat{k}}{5\sqrt{17}}$		d)	$\frac{\hat{i}+10}{5}$	$\frac{\hat{j} + 18\hat{k}}{\sqrt{17}}$			
43.	subjec	_	g is moving in x-ong force F = (-0.1				_		
	a) 97	5 J	b) 450 J		c)	275 J		d) 250 J	
44.	An ide	eal fluid flows th	rough two pipes	of circu	ılar cı	ross-section v	with dia	meters 2.5 ci	n and
	3.75	cm connected or	ne after another.	The rati	io of t	the velocities	in the t	wo pipes is	
	a) 9 :	4	b) 3:2		c)	$\sqrt{3}$: $\sqrt{2}$		d) $\sqrt{2}:\sqrt{3}$	
45.	A tanl	k is filled to a he	eight H. The rang	ge of wat	ter co	ming out of h	ole whi	ch is a depth	H/4 from
	the fro	om the surface o	of water level is						
	a) $\frac{2H}{\sqrt{3}}$	$\frac{H}{3}$	$b) \frac{\sqrt{3}H}{2}$	•	c) √3	BH	d)	$\frac{3H}{4}$	
46.	A ray	of light is incide	nt at 60º on one	face of	a pri	sm of angle 3	80º and	the emergen	ray
	make	s 300 with the in	cident ray. The	refractiv	e ind	ex of the pris	m is		
	a) 1.7	732	b) 1.414		c)	1.5		d) 1.33	
47.			a convex lens o		ength	30 cm an ob	ject sho	ould be place	1, so that
	a) 30	_	b) 60 cm		c) 15 cm		d) 150 cm	
48.	least o	distance of distin	jective and eye lenct vision is 24 coower of the micro	em and o	object	t distance is 4			
	a) 18		b) 32			c) 64		d) 20)
49.	Curre	nt i is carried in	a wire of length	. If the v	wire is	s turned into	a circu	lar coil, the n	naximum
	magn	itude of torque i	n a given magne	tic field	B wil	1 be			
	a) $\frac{L^2}{2}$	$\frac{B^2}{2}$	b) $\frac{L^2B}{2}$		c)	$\frac{L^2iB}{4\pi}$	d)	$\frac{L^2B}{4\pi}$	
50.	The le	ength of a magne	etised steel wire	is l and	its m	agnetic mome	ent is M	I. It is bent ir	ito the
	shape	of L with two si	des equal. What	will be	the n	ew magnetic	momen	t?	
	a) 2 <i>N</i>	I	b) M/2		c)	$\sqrt{2} M$	d)	$M/\sqrt{2}$	
								MHT-CET ONLINE-T	EST -01- Page no. 7

41. If error in measuring diameter of a circle is 4%, the error in measuring radius of the cirle

42. What is the unit vector perpendicular to the following vectors $2\hat{i} + 2\hat{j} - \hat{k}$ and $6\hat{i} - 3\hat{j} + 2\hat{k}$?

c) 4 %

d) 1 %

would be

b) 8 %

a) 2 %

51.	In which one of	the following the en	npirical and molecular	formulae are sa	ame			
	a) Glucose	b) Benz	ene c) Ace	etic acid	d) Propane			
52.	The electronic of	configurations of ato	ms A and B are as follo	ws $A \rightarrow 2,8,2$;	$B \rightarrow 2,8,7$ The			
	molecular form	ula of their binary co	ompound would by					
	a) AB	b) 2	A_2B	$\mathbf{c)} \mathbf{A}_2 \mathbf{B}_7$	d) AB_2			
53.	In which one of	the following molec	ules, all bonds do not h	nave same leng	ths?			
	a) BCl_3	b) <i>CCl</i> ₄	c) PC	l_5	d) $BeCl_2$			
54.	In a molecule, t	the total no.of electro	ons in bonding M.O and	d antibonding I	M.O are 8 and 4			
	respectively. Th	e bond order is						
	a) 1	b) 4	c) 2	d) 3				
55.	The volume stre	ength of 1.5 N H_2 O_2	solution is nearly					
	a) 4.8	b) 16.8	c) 8.4	Ċ	1) 4.2			
56 .	On dissolving n	noderate amount of	sodium metal in liquid	NH ₃ at low tem	perature, which			
	one of the following does not occur?							
	a) Blue coloured solution is obtained b) Na ⁺ ions are formed in the solution							
	c) Liquid NH ₃ h	oecomes good condu	ctor of electricity d) L	iquid NH3 rema	ains diamagnetic			
57.	The IUPAC nam	ne of						
	a) 1-methyl cyc	clohex – 2- ene	b) 6 – met	thyl cyclohexer	ne			
	c) 1-methyl cyc	clohex -5- ene	d) 3- metl	hyl cyclothexer	ne			
58.	The molecule h	aving largest dipole	moment, among the fol	lowing is				
	a) CHI_3	b) CH ₄	c) CH	ICl ₃	d) CCl ₄			
59 .	Which one of th	ne following would gi	ve 2,3-dimethylbutane	in the Wurtz re	eaction?			
	a) n-propyl iod	ide b) 1- Io	dobutane					
	c) 2- Iodobutai	ne d) Isop	ropyl iodide					
60.	Which of the fo	llowing exhibits the	weakest intermolecular	forces?				
	a) NH_3	b) HC1	c) He	ď) H ₂ O			
61.	A binary compo	ound of A and B has	fcc lattice in which ato	ms A occupy th	ne corners of the cube			
	and atoms B od	ccupy the centres of	faces. The formula of th	ne compound is	S			
	a) AB	b) A_3B		c) AB_3	d) AB_6			
62.	An element, wit	h atomic mass equa	d to 5000 pm. Then der	nsity of the eler	ment is nearly			
	a) $7g \text{cm}^{-3}$	b) $2g cm^{-3}$	c) 0.2g cr	m^{-3}	d) 6g cm ⁻³			
60	_	, ,	•		, -			
63.	molality of solu		ing non-volatile solute l	JUHS AL 100.05	∠°C. what is the			
	-	nol^{-1} , B.pt.of water = 1	$00^{0}C$					
	a) 0.1	b) 0.01	c) 0.001		d) 1.0			

	a) 0.72	b) 0.36	c	2.1	d) 1.0	05
66.	The \wedge^0 values for	or AgNO3, NaCl an	d NaNO3 are 25	$0 \times 10^{-4},360 \times 10^{-4}$	0^{-4} and 310×10^{-4} S m	n ² equiv ⁻¹ The
	^ ⁰ value for Ag (Cl in S m² equiv-1	will be			
	_	b) 200×10^{-4}		d) 4	20×10^{-4}	
67.	When electricity	y is passed throug	gh a solution of A	AlCl _{3.} 13.5 g of	Al (At. Mass 27) is	deposited.
		Faraday passed tl			,	1
	a) 0.5	b) 1	<u> </u>			
	c) 1.5	d) 2				
68.	Zinc can be coa	ated on iron to pro	duce galvanized	iron but the 1	everse is not possi	ble. It is
	because					
	a) Zinc has hig	her negative elect	rode potential tl	nan iron		
	b) Zinc is lighte	er than iron				
	c) Zinc has low	ver melting point t	han iron			
	d) Zinc has low	ver negative electr	ode potential th	an iron.		
69.	The rate consta	nt for a reaction i	s 0.0693 min ⁻¹ a	nd the initial o	conc. Of the reacta	nt is 0.5 mol
	dm³. The half li	fe period is				
	a) 400 sec	b) 8	300 sec	c) 1200 sec	d) 60	0 sec
70.	Foa a reaction	$\frac{1}{2}A \rightarrow 2B$, rate	of disappeara	nce of A is re	lated to the rate o	of
	appearance of	B by the expres	sion.			
	$\mathbf{a)} -\frac{d[A]}{dt} = \frac{1}{2} \cdot \frac{d}{dt}$	$\frac{d[B]}{dt}$ b)	$-\frac{d[A]}{dt} = \frac{d[B]}{dt}$	$\mathbf{c)} -\frac{d[A]}{dt} =$	$4\frac{d[B]}{dt} \qquad \qquad \mathbf{d)} -\frac{d}{dt}$	$\frac{d[A]}{dt} = \frac{1}{2} \cdot \frac{d[B]}{dt}$
71.	The bond energ	gies of H-H, Cl- Cl	and H – Cl bond	ls are 436, 33	0 and 430 kJ mol ⁻¹	respectively.
	The value of ΔF	I for the formation	of HCl would b	e		
	a) – 47 kJ	b) – 168 Kj	c) 3	336 kJ	d) 47 Kj	
72.	The amount of	work done, when	$20 \pm 10^{-3} \text{ kg of A}$	rgon (mol.mas	s= 40) expands rev	ersibly from a
	pressure of 10	atm. To 1 atm. At	a temperature t	°C is		
	_		_		log 0.1	
	a) $-\frac{2.303R(273)}{2}$	——∕×10°	b) –	$\frac{2.303R(273+t)}{2}$		
	c) $-\frac{2.303Rt}{2} \times 1$	0^{-3}	d) –	$\frac{2.303R(273+t)}{2}$		
73.	For a reaction	$\Delta G = -2.303 \mathrm{kcal}$. The state of the s	The equilibrium	constant for t	ne reaction at 500	K would be
	a) 100	b) 10	c)		d) 0.1	
					MHT-CET ONLIN	IE-TEST -01- Page no. 9

The Van't Hoff factor for a dilute aqueous solution of the strong electrolyte, Barium

The molarity of a solution obtained by mixing 800 ml of 0.5 M HCl and 200 ml 1.6 M HCl will

c) 1

d) 3

b) 2

64.

65.

hydroxide, is

a) 0

be

74.	Which ore can	be best concentrated b	by froth floatation proces	88?
	a) Malachite	b) Cassiterite	c) Galena	d) Magnetite
75 .	On heating a m	nixture of Cu_2S and Cu_2S	O, we get	
	a) $Cu + SO_3$	b) <i>CuO+Cus</i>	c) $Cu + SO_2$	d) $Cu_2 + SO_3$
76 .	The state of hy	bridisation of P-atoms	in PCl ₃ is	
	a) sp^2	b) dsp^2	c) sp^3	d) dsp^3
77.	Among the follo	owing, the oxidation sta	ate of N is lowest in	
	a) NH_3	b) HN_3	c) N_2H_4	d) NO_2
78.	In the reaction	of NaOH with white P,	PH ₃ and NaH ₂ PO ₂ are o	btained. The reaction is an
	example of			
	a) Reduction	b) Oxidation	c) neutralisation	d) disproportionation
79.	A gaseous mi	ixture contains O2 an	d N_2 is the ratio of 1:2	by mass. The ratio of their
	number of mo	olecules is		
	a) 1:2	b) 2:1	c) 4:7	d) 7:16
80.	Which one of the	he following possesses	$p^{\pi} - d^{\pi}$ bonding?	
	a) NO_3^-	b) BO_3^{3-}	c) SO_3^{2-}	d) CO_3^{2-}
81.	Which halogen	forms an oxyacid that	contains the halogen at	om in oxidation state?
	a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
82.	The pair in whi	ich phosphorus atoms	have formula oxidation	state of + 3 is
	a) Orthophosp	horous and pyrophosp	horous acids	
		orous and hypophosph		
		horous and hypophosp		
00		orous and pyrophosph	oric acids t is more stable than the	Chrones
83.		_		
	a) Ti ⁺³ , Ti ⁺⁴	b) Mn^{+3}, Mn^{+2}	c) Na, Na^+	d) Fe^{+3}, Fe^{+2}
84.			less solution in aqueous	
	a) Ti^{3+}	b) Sc^{3+}	c) V^{3+}	d) Cr^{3+}
85.	The complex io	n which has only three	e d-electrons in the centr	ral metal ion is
	a) $[Co(NH_3)_6]^{3+}$	b) $[MnO_4]^-$	c) $[Fe(CN)_6]^{3-}$	d) $[Cr(CN)_6]^{3-}$
86.	Which one of the	he following statements	s about $\left[Co(CN_6) \right]^{3-}$ is tru	ie?
			vill be in a high- spin co	
	•	_	vill be in a low –spin con	_
	c) It has four t	unpaired electrons and	will be in a low- spin co	onfiguration.
	d) It has hour	unpaired electrons and	d will be in a high-spin o	configuration.

98.	. Identify the heteropolymer from the list given below								
	a)	Polythene	b)	Nylon -6		c) Teflo	on	đ) Nylon – 6,6
99.	As	pirin molecule c	ontain	s two functi	onal grou	aps in th	ne positions	s which	n are
	a)	Para	b) 01	tho	c)	meta		ď) 1 and 4
100.	W	hich one of the fo	ollowin	ng is an anti	biotic?				
	a)	Penicillin	ħ) Albumin		c) Pł	nenyl		d) Saccharin
BIOLO	OGY								
		ge, fleshy and ed	lible fr	niting bodie	es are nro	duced b	N/		
101.		yeast		acteria	s are pre		me fungi		d) algae
102.	•	izopus arrhizus i	•		ustrial n	•	C		a) aisac
		fumaric acid		citric acid	_		onic acid	•	d) acetic acid
103.	•	ich of the followi	•			. –	ome acra		a, acces acia
		Vit.A and B	_				A and K	d) 7	Vit. C and D
104.	•	e antibiotic chlor	•			•		,	
		Streptomyces ery	•		b) Peni				
	•	Streomyces venez			•		s griseus		
105.	•	· ·						aring s	ewage treatment is
called							C		
	a)	Primary treatme	nt			b) Seco	ondary trea	tment	
	c)	Final treatment				d) Amp	lification		
106.	"Vi	ncristin", a secor	ndary :	metabolite is	s obtaine	d from t	he plant		
	a)	Catharanthus ro	seus			b) Asp	aragus rac	emosu	s
	c)	Daucuscarota				d) Dat	urastramo	nium	
107.	In 1	most of the plant	s, a pa	art which is	free from	infectio	ons/ diseas	ses is	
	a)	apical bud	b	flower		c)	root	d) stem
108.	An	ability of a plant	cell b	y virtue of w	vhich it c	an gene	rate whole	plant ι	under suitable
	con	nditions is called.							
	a)	micropropagatio	n		b) totipo	tency		
	c)	somatic hybridiz	ation		đ) organ	ogenesis		
109.	An	improved insect	resist	ant variety "	Pusa Ga	urav" is	variety of		
	a)	Brassica	b) Flat bean		c) Cow	pea	•	d) Bhindi
110.	The	e classical metho	d of p	lant breedin	g is	•••			
	a)	Hybridization				b) mut	tation breed	ding	
	c)	genetic engineer	ing			d) tiss	ue culture		
111.	Oxy	ygen liberated du	ıring p	hotosynthe	sis comes	s from			
	a)	CO_2	b) g	lucose		c) H ₂	O	d) cl	nlorophyll
112	Wh	ich of the followi	ng is 1	not required	for Hill r	reaction	?		
	a)	Sunlight	b) C	hlorophyll		c) Wa	ater	d) C	arbon dioxide

113	PSI gets the	de-energized electrons f	from	
	a) Water	b) plastoquinone	c) plastocyanin	d) cytochrome f
114	Which of the	e following was used in t	the study of dark reactions	of photosynthesis?
	a) Hydrila		b) Chlorella and	l Scenedesmus
	c) Chlomyd	omonas	d) Chlorella and	l Spirogyra
115	During light	reaction of photosynthe	esis, how many photons are	e required for evolution of one
	O ₂ ?			
	a) Six	b) eight	c) four	d) two
116.	One – sixth	part of the total PGAL p	roduct is used for synthesis	s of
	a) Glucose	b) RUBP	c) RUMP	d) DHAP
117.	If light is cu	t CO ₂ supply is continue	ed, then which of the follow	ring substances will get
	disappeared	from photosynthesizing	; algal cells?	
	a) RUBP	b) PGAL	c) RUMP	d) PGA
118.	Which of the	e following shows chloro	-	
	a) Sugar be	et b) Sugar	rcane c) Potat	o d) Papaya
119.	The internal	source of CO ₂ in CAM p	plants is	
	a) OAA	b) Malic acid	c) RUBP	d) PEPA
120.	During Kreb	os cycle, fumaric acid ge	ts converted into malic acid	d by
	a) Decarbox	xylation b) dehydro	genation c) dehydration	n d) hydration
121.	Each molecu	ule of NADH2 through E	ΓS yields	
	a) 1 ATP	b) 2 ATPs	c) 3 ATPs	d) 4 ATPs
122.	The only 5C	compound produced in	Krebs cycle is	
	a) Citrate	b) α ketogutara te	c) Succinate	d) oxaloacetate
123.	In which of	the following steps dehy	drogenation occurs?	
	a) glucose -	\rightarrow glucose 6 – phosphate	b) 3- PGA \rightarrow 2-PG	GA
	c) PEPA -	> pyruvate	d) PGAL \rightarrow 1,3diPC	GA
124.	Mitchondria	are regarded as semi a	utonomous organelles, due	to the presence of
	a) Cristae	b) RNA	c) DNA	d) Ribosomes
125.	The amount	of energy lost in respira	ation in the form of heat is	about
	a) 40%	b) 50%	c) 60%	d) 70%
126.	In vegetative	e reproduction, when tw	o different individuals parti	icipate then it is called
	a) Layering	b) grafting	c) cutting	d) doubling
127.	In grafting,	the rooted plant is used	as a	
	a) Scion	b) stock	c) stem	d) root
128.	In Bryophyll	lum, the vegetative repro	oduction takes place throug	gh the
	a) Stem	b) grafting	c) leaves	d) root
129.	In Angiospe	rms, free nuclear divisio	ns compulsorily take place	during
	a) endosper	m development	b) embryo dev	velopment
	c) female ga	ametophyte development	d) male game	tophytes development

130.	. An Angiospermic plant has to produce 88 viable ovules. How many meiotic divisions will be							
	needed to produce equal number of female gametophytes by this plant?							
	a) 88	b) 22	c) 44	d) 132				
131.	Secondary nucle	us is also known as						
	a) generative nuc	eleus	b) tube nucleus					
	c) definitive nucle	eus	d) primary endosperm	nucleus				
132.	Albumin is also k	nown as						
	a) Perisperm	b) synergids	c) plumule	d) endodperm				
133.	The horizontal dis	stribution of trees is	studied in					
	a) Scarification	b) Stratification	n c) Zonation	d) speciation				
134.	The ability to prod	duce organic compo	und in unit time is					
	a) Leaching	b) Productivity	c) poaching	d) conductivity				
135.	Which harmful ra	adiations are absorbe	ed by ozone layer?					
	a)UV	b) X ray	c) Visible light	d) Gamma rays				
136.	In establishing ne	ew ecosystem on roc	k, the pioneers are					
	a) Lichens	b) phytoplankto	ns c) trees	d) animals				
137.	The succession th	nat starts on abando	ned cropland is					
	a) Primary succe	ssion	b) Xerach succes	ssion				
	c) Secondary suc	ecession	d) hydrarch succ	d) hydrarch succession				
138.	Gunodeposite are	erich in						
	a) Sulphur	b) magnesi	um c) phosphorous	d) calcium				
139.	Which of the follo	wings is mainly resp	oonsible for ozone depletion?					
	a) Chlorofluoroc	carbons	b) Hydrocarbons					
	c) Carbon mono	oxide	d) Carbon dioxide					
140.	Which of the follo	wing is responsible f	for expression of a trait?					
	a) Recon	b) Muton	c) Cistron	d) Codon				
141.	Which of the follo	wing is a pyrimidine	base?					
	a) Uracil	b) Adenine	c) Guanine	d) Riboflavin				
142.	On which strand	of DNA, mRNA is con	nstructed?					
	a) Sense strand	b) Antisense strane	d c) Both the strands	d) Any one strand				
143.	The bonds joining	g two successive nuc	eleotides of DNA strand are cal	lled				
	a) phosphodiester	r bonds b) covalent	bonds c) hydrogen bonds	d) glycosidic bonds				
144.	In which of the fo	llowing stages, does	synthesis of polypeptide take	place?				
	a) Transcription	b) Translation	c) Teminism	d) Replication				
145.	Unwinding of DNA	A stands is done by	which enzyme?	•				
	a) Amylase	-	clease c) Transcriptas	e d) Helicase				
146.	•	wing is a stop codon	•	•				
	a) AUG	b) GUG	c) UAA	d) GGU				
147.	•	wing is the smallest	•	.,				

148.	Clo	oning can	be done	in vitro, via	•••••					
	a) Polymerase Chain Reaction			b) gel electrophoresis						
	c)	transpos	sons			d) lamb				
149.	The	e molecul	ar knives	s of DNA are						
	a)	ligases	b) poly	merases	c)	endonuc	leases	d) 1	transcriptases	i
150.	The	e first trai	nsposons	were discovered	l in					
	a)	Corn	b) wheat	•	rice			d) yeast	
151.	The	e prebioti	c atmosp	here of the earth	was.	• • • • • • • •				
	a)	aerobic	b)) anaerobic	c) pa	artially ae	robic	d) witho	out any gas	
152.	The	e sum tot	al of gene	es present in all	indivio	duals of in	iterbreeding (or Mendo	elian populatio	on is
	cal	led								
	a)	Gene fre	equency	b) Gene j	pool	c) G	ene flow	d) (Gene mutation	Ĺ
153.	Wh	nich of the	followin	g theory states t	hat, tl	ne life orig	inated on the	e earth f	rom non living	5
	ma	tter?								
	a)	Theory	of Chemi	cal evolution	b)	Physical	Theory			
	c)	Mutatio	n Theory		d)	Biognesi	is			
154.	The	e struggle	between	organisms of di	fferen	t species is	s called			
	a)	Intraspe	ecific stru	ggle	1) Intersp	ecific struggl	e		
	c)	Environ	mental st	truggle	•	i) Struggl	le against nat	tural cal	amities	
155.	Ind	lia breed	of cow is							
	a)	Jersey		b) Gir	•	c) Sindhi		d) Jei	rsey	
156.	••••	is an	exotic br	eed of cow.						
	a)	Sahiwal		b) Gir		c) Sind	lhi	d	J ersey	
157.	The	e best lay	er chicke	n is						
	a)	Leghorn		b) Rhode isla	nd Re	d	c) Brahma	a	d) Kadarnat	h
158.	The	e lytic enz	zyme rele	ased by the sper	m is .					
	a)	Acrosom	ie i	b) ligase		c) a:	ndrogenase	d) hya	aluronidase	
159.	Wh	nich one o	f the follo	owing is not form	ned fro	om mesode	erm?			
	a)	Blood		b) Bones ar	nd Car	tilage	c) Kidn	neys	d)Nervous sy	rstem
160.	Sm	ooth mus	scles linir	ng the wall of scr	otum	are called				
	a)	deltoid r	nuscles			b) darto	os tunic mus	cles		
	c)	gluteal r	nuscles			d) latis	simusdoris m	nuscles		
161.	The	e role of L	eydig cel	ls is						
	a)	nourish	ment of s	perms		b) to §	give motility t	to sperm	ıs	
	c)	synthesi	s of testo	osterone hormon	e	d) to 1	undergo sper	matoger	nesis	
162.	In :	human po	enis, uret	thra passes thro	ugh					
	a)	Corpus	cavernos	um	b)	Corpus s	spongiosum			
	c)	Corpus 1	luteum		d)	Corpus a	albicans			

163.	In	In human being, the type of cleavage is								
	a)	holoblastic a	nd equal	b) merob	b) meroblastic and equal					
	c)	c) holoblastic and unequal			d) meroblastic and unequal					
164.	Ch	ipcoandolan r	novement is to	protect th	e					
	a)	flora	b) fauna	c)	trees			d) rivers		
165.	Но	t Spots are th	e examples of	• • • • • • • • • • • • • • • • • • • •						
	a)	In situ conse	ervation		b) Ex situ	conse	rvation			
	c)	Wildlife prote	ection		d) Water c	onser	vation			
166.	Th	The bioaccumulation of pesticides in birds leads to								
	a)	weakening o	f nest	b) egg	shell thinnin	g				
	c)	failure of mig	gration	d) loss	of feather co	lour				
167.	••••	increases	the temperatu	re.						
	a)	H_2	b) H ₂ C)	c) C		d) C	CO_2		
168.	Stı	ady of interact	ion of antigen	and antibo	ody in blood i	s				
	a)	Hematology	b) se	erology	c) cryol	ogy		d) at	ntilogy	
169.	An	tigens are fou	nd							
	a)	Inside cytopl	lasm b) Insid	le nucleus	c) On nu	clear e	envelope	d) 01	n cell si	urfac
170.	Nit	rogenous was	te which is les	s toxic, sol	uble in water	and f	ormed dur	ring ornith	ine cyc	le is.
	a)	urea	b) uric aci	d	c) a	mmor	nia	d) amin	o acid	
171.	Co	nservation of	water is possib	le in this r	node of excre	tion	•••••			
	a)	Ureotelism	b)	uricotelisn	n	c) an	nmonotelis	m d)	guano	telisr
172.	Re	troperitoneal l	kidney is							
	a)	Peritoneum o	on anterior sid	e b)	Peritoneum	on po	sterior sid	e		
	c)	Absence of p	eritoneum	d)	Peritoneum	on bo	th anterio	r and post	erior si	de
173.	Th	e part of the c	ortex continue	d inside th	e renal medu	ılla be	tween the	pyramid is	3	
	a)	Column of I	Bellini	b)	Column of	Bertin	ni			
	c)	Columnaeca	arneae	d)	Chordae te	ndine	ae			
174.	An	tiserum has	•••••							
	a)	antigen	b)	antibody	c	WB	С	Ġ	l) RBC	2
175.	Fo	llowing is prot	ozoan disease.							
	a)	malaria	b)	typhoid		c)	AIDS	d)	chole	era
176.	In	early days, ins	sulin was extra	acted from	•••••					
	a)	Liver of pigs		1) Pancreas o	f pigs				
	c)	Pancreas of p	oigs and cattle	C	i) Liver of ho	rse				
177.	Ge	netically engir	neered human	insulin is o	obtained by i	nsertii	ng the gen	e in		
	a)	Pancreatic ce	lls		b) E.coil					
	c)	Agrobacteriu	m tumafaciens		d) Droso	philla	melanogas	ster		

	a)	Polymerization rea	action	b) Po	lymerase chain r	reaction	
	c)	DNA fragmentation	on	d) So	uthern blotting		
179.	Key	factor in DNA profilir	ng is				
	a)	Sequence of nucleotic	des		b) DNA is	solation	
	c)	VNTR			d) RELP		
180.	Wh	ich of the following are	e called scavenge	rs?			
	a)	Lymphocytes	b) Thrombo	cytes	c) Erythrocy	ytes d) Monocytes	
181.	Pla	sma protein which ini	tiates blood coag	ulation is			
	a)	prthrombin b) fil	orinogen c)	thrombir	ı	d) fibrin	
182.	The	e covering of the heart	is				
	a)	perichondrium	b) pericardiu	m	c) periosteum	d) peritoneum	
183.	Lef	t atrioventricular aper	ture is guarded b	рy			
	a)	Tricuspid valve	b) Eustachia	n valve			
	c)	Bicuspid valve	d) Semilunar	valve			
184.	If tl	he centromere is situa	ted at the tip of t	he chrom	osome it is called	d	
	a)	metacentric	b) acrocentri	с с	telocentric	d) sub metacentric	
185.	••••	Chromosome app	ears 'V' shaped d	uring ana	aphase.		
	a)	Metacentric	b) Acrocentri	ic c	e) Telocentric	d) Sub metacentric	
186.	Sex	x- linked genes are pre	sent on				
	•	homologous region of		·	_	is region of autosomes	
	•	homologous region of		d)	non homologou	as region of X chromosome	es
187.		determination in hur	C				
	•	XY – XX type b		c) X	X – XY type	d) XO – XX type	
188.		our blindness is a				4 4. 4	
100	•	deficiency	b) X - linked		c) Y- linked	d) XY – linked	
189.		ermoregulatory centre	•			44 75%	
100	•		b) cerebellum	• -	nal cord	d) Pituitary	
190.		hich of the following is	-		a) Fa	-:-1 4) T1	
101	•	•	Auditory	10 to	c) Fac	cial d) Lumbar	
191.		nemical transmission i				antoman	
192.	•	cholesterol b) A cluntary muscular coo	•	•	e d) cholin	lesterase	
194.		-			halamus d	1) cerebrum	
193.	•	l involuntary activities				i) cerebrum	
195.	711	_				41.	
	۱و	Medulla oblongata	ni cerenellim	P1 /\	rehral hemienhe	re d) none warolu	
194	•	Medulla oblongata	·	e) ce	rebral hemisphe	re d) pons varolii	
194.	Bi	rd flu is caused by		·	-		
194. 195.	Bi a)	rd flu is caused by	b) protozoan	·	rebral hemisphe	d) pons varolii d) virus	

178. in vitro replication of DNA is called

196.	The human Genome Project was initiated by U.S department of						
	a) Agriculture	b) Energy	c) Science and Technology	d) Health			
197.	Which one of the follo	l constituent of urine?					
	a) Blood	b) Glucose	c) Protein	d) Urea			
198.	Red Data Book is mai	ntained by					
	a) WWF	b) WHO	c) IUCN	d) U.N			
199.	• About 60% of semen is formed by the secretion of						
	a) Cowper's gland	b) Seminiferous t	ubule c) Prostrate gland	d) Seminal vesicle			
200.	00. Recently, an almost complete lower jaw of a Dryopithecus has been obtained from						
	a) Fayumdeposite of Egyptb) Cave near Peking in chinac) Neanderthal valley in Germany						
	d) Haritalyanga in Bi	laspur district of H	Himachal Pradesh				

Together, we will make a difference.