# **Used Car Sales Price Prediction**

Team 9 Chen Zheng, C K Anand Prakash, Hui Xu, Jaewook Shin, Matthew Kwong

# **Background**

### US used car market is still booming.

# California used car market revenue \*Statista





### **Case Scenario**

"Hello, I am running a used car business in California,
I need 100 more cars to meet the market demand, and I have three options for a supplier.
I want to choose one who can provide me with the best cars with the highest selling price.
Can you help me with this?"

#### Who should our client choose?

Supplier A



"I've statistically chosen the 100 best cars"

Supplier B



"I sourced the best cars through my social network"

Supplier C



"Why do you need other suppliers, why?"

### **Project Overview**

### **Objective**

 Predict the sales price of cars from each supplier, and select the best one

#### Data set used

- Kaggle, "used-car-auction-prices"
  - Original: 558,838 rows / 16 variables
  - Cleaned: 20,000 rows / 21 variables\*

Filtered California cars only
Created dependent variable: sales premium
Gathered additional variables: awarded

### Methodologies applied

- Linear Regression (Lasso Regression)
- Clustering (K-means)
- Classification (Support Vector Machine)

#### Approach

- Explore historical sales data
- Cluster the historical sales data
- Prediction model building
- Predict price premium of cars from each supplier



"Why do you need this process?"

"First, I will provide you with my sales record. Can you show me any insights?



# Explore historical sales data

- Cluster the historical sales data
- Prediction model building
- Predict price premium of cars from each supplier

### **Exploratory Analysis (1)**

The company has sold 2,906 cars so far. Consumers seem to prefer Japanese make and below 2-year-old cars. As for individual brands, Ford was the most popular one.



This can be viewed as the consumer preference for used cars in California

# **Exploratory Analysis (2)**

Mileage seems to have negative impacts on the sales prices. If a certain car is cited as a good one by the media, the car's price tends to increase.



\*Award: consumer report, "best cars of the year"

## **Exploratory Analysis (3)**

Apart from the sales price, some cars generated higher price premiums, which means consumers were willing to pay more than the market price for those cars.



We chose the price premium as our dependent variable

<sup>\*</sup>Price Premium = Sales Price / The Manheim Market Report Price

"I always felt that customers showed different buying patterns for my cars... Can you check if my cars can be segmented?"



- Explore historical sales data
- Cluster the historical sales data
- Prediction model building
- Predict price premium of cars from each supplier

### Clustering

Client's cars can be clustered into two groups. Given their heterogeneous characteristics, we decided to treat them independently.

#### Variables considered

\$ int col

\$ seller

: chr

: chr

gray'

"the (

### Elbow chart



#### Segmentation result

| > | clust_data_means |         |             |           |      |         |           |           |              |
|---|------------------|---------|-------------|-----------|------|---------|-----------|-----------|--------------|
|   | Group.1          | Premium | sales_price | MMR_price | Age  | awarded | odometer  | condition | transmission |
| 1 | 1                | 1.01    | 19063.24    | 19021.36  | 2.54 | 0.07    | 37733.11  | 3.72      | 0.97         |
| 2 | . 2              | 1.04    | 6431.09     | 6335.02   | 9.02 | 0.05    | 120572.05 | 2.73      | 0.95         |

#### Cluster 1

#### Newer entry-level luxury, good condition: Chevy Camaro, Infiniti G37





### Cluster 2

### Older well-driven economy, fair condition: Honda Odyssey, Dodge Charger RT





"I see, my cars can be clustered into two groups. Now let's build a prediction model"



- Explore historical sales data
- Cluster the historical sales data
- Prediction model building
- Predict price premium of cars from each supplier

### **Prediction Model Building**

### We built two different Lasso regression models for each cluster.

#### Issues

#### 1. Information discrepancy

- Our data has sales related Information, such as sales price and sales data.
   But dealer's data set doesn't
- Remove sales-related variables on modeling

#### 2. Still too many variables

- 103 variables in total, after converting all categorical variables to dummy variables (high risk of multicollinearity)
- Take alternative approach

#### **Alternative Approach**

#### Feature selection with the Client's domain knowledge

- "MMR price, Age, Odometer, Condition, Awarded, and Transmission is everything"
- R2: 0.35, RMSE: 0.09738 (for cluster 1)

#### 2. Lasso regression

- R2: 0.61, RMSE: 0.0979 (for cluster 1)
- Lasso regression showed better model fit and prediction power

#### **Model building**

#### **Model for Cluster 1**

| > coef(lasso.c | 1)                          |
|----------------|-----------------------------|
| 103 x 1 sparse | Matrix of class "dgCMatrix" |
|                | s0                          |
| (Intercept)    | 6.283164e-01                |
| MMR_price      | -9.798730e-06               |
| Age            | 7.374449e-03                |
| awarded        |                             |
| odometer       | -4.037326e-08               |
| condition      | 1.444955e-01                |
| transmission   | •                           |
| makeAcura      | (*)                         |
|                |                             |

#### **Model for Cluster 2**



# **Prediction Model Building**



"Why do you need two different models? why?"

|                                 |           | Single model for the entire data set | 2. Two models optimized for each cluster       |
|---------------------------------|-----------|--------------------------------------|------------------------------------------------|
| Client's<br>domain<br>knowledge | R-Squared | 0.2226                               | Cluster1: 0.3545 Avg<br>Cluster2: 0.2179 0.286 |
| model                           | RMSE      | 0.1764                               | Cluster1: 0.0995 Avg<br>Cluster2: 0.2468 0.173 |
| Lasso<br>Regression             | R-Squared | 0.6531                               | Cluster1: 0.6279 Avg<br>Cluster2: 0.756 0.691  |
|                                 | RMSE      | 0.1745                               | Cluster1: 0.0983 Avg<br>Cluster2: 0.2424 0.170 |

Two model approach shows better prediction power and model fit

"Now we have prediction models.

Tell me which supplier should I choose?"



- 1 Explore historical sales data
- 2 Cluster the historical sales data
- Prediction model building
- Predict price premium of cars from each supplier



"This is a tense moment.

Do you need a joke?"

## **Prediction (1)**

First, we classified each supplier's cars and applied the cluster-optimized prediction model. And the winner is...



### **Prediction (2) - Conclusion**

Supplier A shows the highest and most stable price premium. Therefore, we highly recommend him for your business.

#### Forecast of price premium of 100 cars

Mean: 1.034 Sd: 0.069

Mean: 1.023 Sd: 0.095

Mean: 1.014 Sd: 0.079



"I will quit and teach marketing instead"



**Distribution of price premium** 

Supplier A Supplier B Supplier C

Difference is marginal since, originally, they are from the same data set

3

### **Lessons Learned**



Data

" Dependent variables are something that can be created "

 Sometimes playing around with variables can provide you with different insights

Modeling

Storytelling

" Every population has heterogeneous nature "

 It is the era of "micro-segmentation" modeling on segmented groups can be helpful

" It's a message, not a model "

 In real-world business settings, decision makers tend to focus more on messages than models

# **Appendix**

| [I]   | Data set and additional exploratory analysis | 19-21 |
|-------|----------------------------------------------|-------|
| [II]  | Clustering                                   | 22    |
| [III] | Prediction Modeling                          | 23-25 |
| [VI]  | Classification                               | 26-27 |

### **Data Set**

# Original Data Set Kaggle, "used-car-auction-prices" Original: 558,838 rows / 16 variables

| /ear | make       | model      | trim        | body        | transmission | vin               | state | condition | odometer | color  | interior    | seller       | mmr   | sellingprice   | saledate |
|------|------------|------------|-------------|-------------|--------------|-------------------|-------|-----------|----------|--------|-------------|--------------|-------|----------------|----------|
| 2015 | Kia        | Sorento    | LX          | SUV         | automatic    | 5xyktca69fg566472 | ca    | 5         | 16639    | white  | black       | kia motors   | 20500 | 21500          | Tue De   |
| 2015 | Kia        | Sorento    | LX          | SUV         | automatic    | 5xyktca69fg561319 | ca    | 5         | 9393     | white  | beige       | kia motors   | 20800 | 21500          | Tue De   |
| 2014 | BMW        | 3 Series   | 328i SULE   | Sedan       | automatic    | wba3c1c51ek116351 | ca    | 4.5       | 1331     | gray   | black       | financial se | 31900 | 30000          | Thu Jan  |
| 2015 | Volvo      | S60        | T5          | Sedan       | automatic    | yv1612tb4f1310987 | ca    | 4.1       | 14282    | white  | black       | volvo na re  | 27500 | 27750          | Thu Jan  |
| 2014 | BMW        | 6 Series G | 650i        | Sedan       | automatic    | wba6b2c57ed129731 | ca    | 4.3       | 2641     | gray   | black       | financial se | 66000 | 67000          | Thu De   |
| 2015 | Nissan     | Altima     | 2.5 S       | Sedan       | automatic    | 1n4al3ap1fn326013 | ca    | 1         | 5554     | gray   | black       | enterprise   | 15350 | 10900          | Tue De   |
| 2014 | BMW        | M5         | Base        | Sedan       | automatic    | wbsfv9c51ed593089 | ca    | 3.4       | 14943    | black  | black       | the hertz o  | 69000 | 65000          | Wed D    |
| 2014 | Chevrolet  | Cruze      | 1LT         | Sedan       | automatic    | 1g1pc5sb2e7128460 | ca    | 2         | 28617    | black  | black       | enterprise   | 11900 | 9800           | Tue De   |
| 2014 | Audi       | A4         | 2.0T Prem   | Sedan       | automatic    | wauffafl3en030343 | ca    | 4.2       | 9557     | white  | black       | audi missio  | 32100 | 32250          | Thu De   |
| 2014 | Chevrolet  | Camaro     | LT          | Convertibl  | automatic    | 2g1fb3d37e9218789 | ca    | 3         | 4809     | red    | black       | d/m auto     | 26300 | 17500          | Tue Jan  |
| 2014 | Audi       | A6         | 3.0T Presti | Sedan       | automatic    | wauhgafc0en062916 | ca    | 4.8       | 14414    | black  | black       | desert aut   | 47300 | 49750          | Tue De   |
| 2015 | Kia        | Optima     | LX          | Sedan       | automatic    | 5xxgm4a73fg353538 | ca    | 4.8       | 2034     | red    | tan         | kia motors   | 15150 | 17700          | Tue De   |
| 2015 | Ford       | Fusion     | SE          | Sedan       | automatic    | 3fa6p0hdxfr145753 | ca    | 2         | 5559     | white  | beige       | enterprise   | 15350 | 12000          | Tue Jan  |
| 2015 | Kia        | Sorento    | LX          | SUV         | automatic    | 5xyktca66fg561407 | ca    | 5         | 14634    | silver | black       | kia motors   | 20600 | 21500          | Tue De   |
| 2014 | Chevrolet  | Cruze      | 2LT         | Sedan       | automatic    | 1g1pe5sbxe7120097 | ca    |           | 15686    | blue   | black       | avis rac/sa  | 13900 | 10600          | Tue De   |
| 2015 | Nissan     | Altima     | 2.5 S       | Sedan       | automatic    | 1n4al3ap5fc124223 | ca    | 2         | 11398    | black  | black       | enterprise   | 14750 | 14100          | Tue De   |
| 2015 | Hyundai    | Sonata     | SE          | Sedan       |              | 5npe24af4fh001562 | ca    |           | 8311     | red    | ??"avis tra | 15200        | 4200  | Tue Dec 16 201 | 4 13:00: |
| 2014 | Audi       | Q5         | 2.0T Prem   | SUV         | automatic    | wa1lfafpxea085074 | ca    | 4.9       | 7983     | white  | black       | audi north   | 37100 | 40000          | Thu De   |
| 2014 | Chevrolet  | Camaro     | LS          | Coupe       | automatic    | 2g1fa1e39e9134494 | ca    | 1.7       | 13441    | black  | black       | wells fargo  | 17750 | 17000          | Tue De   |
| 2014 | BMW        | 6 Series   | 650i        | Convertibl  | automatic    | wbayp9c53ed169260 | ca    | 3.4       | 8819     | black  | black       | the hertz o  | 68000 | 67200          | Wed D    |
| 2015 | Chevrolet  | Impala     | LTZ         | Sedan       | automatic    | 2g1165s30f9103921 | ca    | 1.9       | 14538    | silver | black       | enterprise   | 24300 | 7200           | Tue Jul  |
| 2014 | BMW        | 5 Series   | 528i        | Sedan       | automatic    | wba5a5c51ed501631 | ca    | 2.9       | 25969    | black  | black       | financial se | 34200 | 30000          | Tue Fel  |
| 2014 | Chevrolet_ | Camaro     | IT          | Convertible | automatic    | 2a1fh3d31e9134662 | ca    |           | 33450    | black  | black       | avis rac/sa  | 20100 | 14700          | Tue De   |

- 1. Delete NA values
- 2. Delete invalid values
  - e.g., sales\_price = white
- 3. Delete outliers
  - e.g. price = 30,000,000
- 4. Create new variables
  - Premium (sales\_price / MMR\_price)
  - Awarded (consumer reports)
  - National (nationality of makes)
- 5. Dummy variable conversion
  - e.g., transmission, state
  - . Sampled 20,000 observations
- 7. Filtered California cars only

### Sales price vs. Condition

"Condition" variable is an important indicator of sales price in the used car market.

Used cars under greater condition is more likely to be sold in higher prices.



### **Correlation between features**

- "Odometer" is negatively related to sales prices in the used car market.
- "Mnf price" is positively related to sales prices.
- "Make\_yr" and "condition" variables are also an important indicator of sales prices.



### Clustering

```
#Elbow plot
fviz_nbclust(x=clusterdf3.1std, FUNcluster = kmeans, nstart=100, method="wss", k.max = 10) +
  labs(title="Optimal Number of Clusters: Elbow Plot") +
  coord_cartesian(ylim=c(0,15000)) + geom_line(size=2) # ---> looks like K=2 optimal
```



As shown in the exploratory analysis of this project, the cars in this dataset represent a diverse set of vehicular demographics. As such, it was necessary to examine the natural segmentation of the dataset.

Employing the knee/elbow approach to determine the optimal number of clusters k for k-means clustering, we selected 2 for k, as the elbow/knee is distinctly accentuated at k=2. It should be noted that we did also attempt higher values of k and did examine the underlying averages for the segments created for these higher k values, but we ultimately determined that two segments represented a clear delineation across groups that made sense within the scope of this project. Applying the decision making within clustering to our real world setting, both the elbow/knee method as well as the benefit of having more compact operational complexity (from two clusters, as opposed to three or four per classification model) pointed towards using 2 clusters.

| # | Gro | up.1  | Pre | emium sa | les_price MMF | R_price Age a | warded d  | odometer com | ndition trans | mission    |
|---|-----|-------|-----|----------|---------------|---------------|-----------|--------------|---------------|------------|
| # | 1   |       | 1   | 1.01     | 19063.24      | 19021.36 2.54 | 0.07      | 37733.11     | 3.72          | 0.97       |
| # | 2   |       | 2   | 1.04     | 6431.09       | 6335.02 9.02  | 0.05      | 120572.05    | 2.73          | 0.95       |
|   |     |       |     |          |               |               |           |              |               |            |
| # | #   | Group | .1  | Premium  | sales_price   | MMR_price Ag  | e awarded | dodometer    | condition tr  | ansmission |
| # | 1   |       | 1   | 0.98     | 12625.51      | 12983.74 3.33 | 0.05      | 51798.69     | 3.06          | 0.97       |
| # | 2   |       | 2   | 1.06     | 5834.92       | 5635.82 9.69  | 0.05      | 129316.98    | 2.72          | 0.95       |
| # | 3   |       | 3   | 1.02     | 24044.02      | 23667.11 2.25 | 0.09      | 29989.77     | 4.23          | 0.98       |
|   |     |       |     |          |               |               |           |              |               |            |

### **Prediction Modeling (1)**

# Client's Model Summary for train data for cluster 1

```
> summary(fit0)
call:
lm(formula = Premium ~ MMR_price + Age + awarded + odometer +
   condition + transmission, data = train)
Residuals:
    Min
              10 Median
                               30
                                       Max
-0.67440 -0.04945 0.00075 0.05276 0.57193
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.435e-01 2.232e-02 28.823 < 2e-16 ***
            -1.479e-06 2.673e-07 -5.534 3.76e-08 ***
MMR_price
           1.634e-02 2.176e-03 7.512 1.07e-13 ***
Age
awarded
           9.647e-03 1.079e-02 0.895 0.371206
odometer 5.580e-07 1.612e-07 3.461 0.000554 ***
condition 8.503e-02 3.542e-03 24.006 < 2e-16 ***
transmission 1.120e-02 1.655e-02 0.677 0.498542
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1008 on 1320 degrees of freedom
Multiple R-squared: 0.3512, Adjusted R-squared: 0.3483
F-statistic: 119.1 on 6 and 1320 DF. p-value: < 2.2e-16
```

# Client's Model Summary for entire data for cluster 1

```
> summary(fit.ceo1)
call:
lm(formula = Premium ~ MMR_price + Age + awarded + odometer +
   condition + transmission, data = a1)
Residuals:
    Min
              10 Median
-0.67723 -0.04817 0.00085 0.05342 0.57383
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.569e-01 1.858e-02 35.365 < 2e-16 ***
MMR_price
            -1.524e-06 2.303e-07 -6.620 4.66e-11 ***
    1.745e-02 1.785e-03 9.779 < 2e-16 ***
Age
awarded 1.268e-02 8.924e-03 1.421 0.155493
odometer 4.614e-07 1.314e-07
                                  3.511 0.000457 ***
            8.258e-02 2.903e-03 28.449 < 2e-16 ***
condition
transmission 7.912e-03 1.425e-02 0.555 0.578735
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.09977 on 1889 degrees of freedom
Multiple R-squared: 0.3545. Adjusted R-squared: 0.3524
F-statistic: 172.9 on 6 and 1889 DF, p-value: < 2.2e-16
```

### **Prediction Modeling (2)**

# Client's Model Summary for train data for cluster 2

```
> summary(fit0)
call:
lm(formula = Premium ~ MMR_price + Age + awarded + odometer +
   condition + transmission, data = train)
Residuals:
    Min
              10 Median
-0.81445 -0.14524 -0.00665 0.12935 1.78719
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.943e-01 7.627e-02 7.792 2.40e-14 ***
            -1.403e-05 3.027e-06 -4.633 4.29e-06
MMR_price
Age
     1.190e-02 3.951e-03 3.011
                                          0.0027 **
awarded
            -7.402e-03 4.453e-02 -0.166
                                         0.8680
odometer -2.236e-07 1.601e-07 -1.396 0.1630
condition 1.665e-01 1.376e-02 12.103 < 2e-16 ***
transmission 4.747e-03 4.306e-02 0.110 0.9122
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2548 on 700 degrees of freedom
```

Multiple R-squared: 0.2212, Adjusted R-squared: 0.2145

F-statistic: 33.13 on 6 and 700 DF, p-value: < 2.2e-16

# Client's Model Summary for entire data for cluster 2

```
> summary(fit.ceo2)
call:
lm(formula = Premium ~ MMR_price + Age + awarded + odometer +
   condition + transmission, data = a2)
Residuals:
    Min
             10 Median
-0.81175 -0.15047 -0.00539 0.13223 1.79630
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
            5.998e-01 6.690e-02 8.965 < 2e-16 ***
MMR_price
            -1.297e-05 2.591e-06 -5.008 6.49e-07 ***
     1.305e-02 3.311e-03 3.942 8.65e-05 ***
Age
awarded 2.593e-02 3.905e-02 0.664 0.5069
odometer -2.885e-07 1.499e-07 -1.925
                                         0.0545
condition 1.606e-01 1.152e-02 13.940 < 2e-16 ***
transmission 3.835e-03 3.868e-02 0.099
                                         0.9211
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.2578 on 1003 degrees of freedom

F-statistic: 43.87 on 6 and 1003 DF, p-value: < 2.2e-16

Multiple R-squared: 0.2079, Adjusted R-squared: 0.2031

### **Prediction Modeling (3)**

### **Lasso Regression**

To find the best lambda, we first tried a loop method, and then conducted the cross validation



Using the best lambda, we built the lasso regression model, the number of variables included in the model reduced to 11.



### Classifications(1)

#### **Random Forest**

```
install.packages('randomForest')
library(randomForest)
set.seed(223344)
bag.train.100 <- randomForest(ClusterNo ~ .,
                               data = r2.
                               mtry = 12, ntree = 100,
                               importance = TRUE)
bag.train.100
# Mean of squared residuals: 0.0235618
# % Var explained: 89.61
bag.train.50 <- randomForest(ClusterNo ~ .,
                               data = r2
                               mtry = 12, ntree = 50,
                               importance = TRUE)
bag.train.50
# Mean of squared residuals: 0.02322343
    % Var explained: 89.76
                                The accuracy of random forest is about 89.76%.
                                with 50 number of trees, MSE=0.0232
Call:
randomForest(formula = ClusterNo ~ ., data = r2, mtry = 12, ntree = 50,
                                                                     importance = TRUE)
             Type of random forest: regression
                  Number of trees: 50
No. of variables tried at each split: 12
         Mean of squared residuals: 0.02322343
                 % Var explained: 89.76
```

### **Logistic Regression Confusion Matrix**

This confusion matrix shows the performance of the classification model on the test set. The rows represent the actual class labels, while the columns represent the predicted class labels.

Looking at the table, we can see that the model predicted 482 instances as positive (1) when they were actually positive, and 908 instances as negative (0) when they were actually negative. However, the model incorrectly predicted 31 instances as negative when they were actually positive (false negatives) and 32 instances as positive when they were actually negative (false positives).

```
accuracy = (908 + 482) / 1453 = 0.9566
```

The accuracy is quite high, which means that the model is able to correctly classify most instances in the dataset.

### Classifications(2)

#### **SVM**

```
library(e1071)
                                                                                                                                             Confusion Matrix and Statistics
set.seed(100)
dat.train$ClusterNo <- factor(dat.train$ClusterNo)</pre>
                                                                                                                                                            Reference
# Find the best svm model
                                                                                                                                            Prediction
tune.out <- tune(svm, ClusterNo ~ Age + odometer + MMR_price + condition + int_colblack + int_colgray + nationalKOR + bodySedan + makeInfiniti + bodyCab,
               data = dat.train, kernel = "radial",
                                                                                                                                                          0 907 31
               ranges = list(cost = c(0.01, 0.1, 1, 10, 100, 1000), gamma = c(0.5, 1, 2, 3, 4))
                                                                                                                                                              7 498
# This is the best SVM model
svm.best <- tune.out$best.model
                                                                                                                                                                   Accuracy: 0.9737
svm.pred <- predict(svm.best, dat.test, type="class")</pre>
                                                                                                                                                                     95% CI: (0.964, 0.9813)
table(actual=dat.test[[1]], predict=svm.pred)
                                                                                                                                                   No Information Rate: 0.6334
library(caret)
                                                                                                                                                   P-Value [Acc > NIR] : < 2.2e-16
confusionMatrix(factor(dat.test[[1]]), svm.pred)
```

- We select the top 10 highest correlated variables, which are:Age, odometer, MMR\_price, condition, int\_colblack, int\_colgray, nationalKOR, bodySedan, makeInfiniti, bodyCab
- SVM model has a high accuracy of 97.37% on the test data, which means that
  the model was able to correctly predict the target variable for 97.37% of the
  observations in the test data set
- Therefore, we choose the SVM model because it has the highest accuracy of the three classification models.

### **Prediction**

#### **Data preparation**

We randomly assigned 100 observations to each supplier



#### Classification

Cluster 1

Cluster 2

And then classified each supplier's cars into two groups



#### Forecasting

Finally, we applied the prediction model to each cluster, and get the results

Prediction for the price premium

|               | Mean  | Standard<br>Deviation |
|---------------|-------|-----------------------|
| Supplier<br>A | 1.034 | 0.069                 |
| Supplier<br>B | 1.023 | 0.095                 |
| Supplier<br>C | 1.014 | 0.079                 |