-> KALPIT BORKAR	200070029
-> NAVNEET	200070048
-> SANJHI PRIYA	20 D0 700 70
-> YUVRAJ SINGH	200070093

Q1 (a)

Best_N1 Correct_no_of_coin

Case	N		
	20	12	5.528
no = 2 nb = 4 no = 7	100	27	63.218
pa = .2, pb = .4, pc = .7	1000	27	63.437
	5000	105	4875.420
	20	18	0.756
no = 45 nh = 5 no = 50	100	45	28.435
pa = .45, pb = .5, pc = .58	1000	45	28.820
	5000	594	4181.294

Question 1: (b) Algorithm B:

> After K tosses: nack, nack, nack, nack, nack, nack, A, B& C were torsed. KA(K) KB(K), KelK) -> mo. of heads corresponding to ABRC.

By Hoeffeling's unequality, we can find,

UCBACKS = KACKS + XA such that

P(PA < XA+ KA(K)) I 1-2.

Applying foeffoling's inequality,

 $P\left(\begin{array}{c} p_{A} - k_{A}(N) & Z_{Y} \right) \leq e \\ \hline n_{A}(N) & -2n_{A}y^{2} \\ \vdots & P\left(\begin{array}{c} p_{A} & Z_{Y} + k_{A}(N) \\ \hline n_{A}(N) \end{array}\right) \leq e \\ \hline -2n_{A}y^{2} \\ \end{array}$

:- IP (pA C y + KACK) & 7 1-e

But y = XA

P(pA < XA + KA (KY) Z 1 - e

NACIU)

 $-2 \Lambda A \times A^2$ here $e = \lambda$.

Avg_no_of_heads

Case	Alpha	N	
	0.01	20	10.932068
		100	63.353646
	0.01	1000	690.347652
		5000	3489.336663
	0.05	20	11.065934
pa = .2, pb = .4, pc = .7		100	64.437562
		1000	692.054945
		5000	3493.736264
		20	11.156843
	0.10	100	65.355644
	0.10	1000	693.442557
		5000	3492.533467

	0.01	20	10.498501
		100	52.924076
		1000	560.235764
		5000	2867.935065
		20	10.188811
na = 45 nh = 5 nc = 95	0.05	100	53.487512
pa = .45, pb = .5, pc = .85	0.03	1000	562.627373
		5000	2871.371628
	0.10	20	10.457542
		100	53.142857
		1000	562.130869
		5000	2869.767233

03

a) Let suppose n=K, then one can say that in out off 200 tubes,

K are tre and 10-K are -ve.

So, to find Expectation of Pos we should Look in the remaining 190 cases.

Assumption:

Here, we can sussume that probability of each text tube to be tre is p and for it to be negative, probability = 1-P.

So, POS ail Jollow bin ary distribution, POS ~ bin (200, p)

Since, we are booking only on 190 tales we can say, because because 10 samples are Known.

E (POSIn=K) = \(\frac{190}{9-K} \) \(\frac{190}{9-K} \) \(\frac{190-9+K}{9-K} \)

	Case	Expect n = 0	Expect n = 1	Expect n = 2	Expect n = 3	Expect n = 4	Probability	Intreval	Confidence
0	No of cases = 200, No of samples =10	152.0	153.0	154.0	155.0	156.0	0.471079	-10 to +10	0.92996
1	No of cases = 400, No of samples =20	304.0	305.0	306.0	307.0	308.0	0.428605	-10 to +10	0.80018

Pr= P(pos-E(pos)|(E); E>0

gives a quantitative measure of confidence in an interval (-E, E)

Foon, Calculation Durpose C: 1000

For, Calculation purpose, E is taken 10 for, the 1st case i.e. N=200, n=10 Pr=-92

For the 2nd Case i.e. N=400, n=20 $P_n=.80$.

There is a decrease in Probability in 2nd Cost because no of cases whose value is unknown increase. So, in the interval the confidence is Cow for 2nd case, also, increase in no of known samples, will increase the probability/Confidence. but according to given data, the am no of known samples are not enough to boost the confidence of case-2 above Case-1.