Методы детекции машинно-сгенерированных фрагментов в документах на основе смены стиля

Анастасия Евгеньевна Вознюк Научный руководитель: к.ф.-м.н. А.В.Грабовой

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 01.03.02 Прикладные математика и информатика

Цель работы

Исследуется задача детекции машинно-сгенерированных фрагментов в текстовых документах.

Проблема:

Выделять в текстовых документах фрагменты человеческого текста и фрагменты, написанные с помощью языковых моделей.

Цель:

Предложить методы детекции фрагментов различного авторства в документах в случае смены авторов по фиксированным позициям и в случае единственной смены авторов — смены стиля.

Решение:

Рассмотреть различные частные случаи задачи детекции с ограничениями по количеству авторов в документе или с ограничениями в позициях смены авторов.

Общая постановка задачи

Определим документ как конечную последовательность символов из заданного алфавита \mathbf{W} . Пространство документов:

$$\mathbb{D} = \Big\{ \Big[t_j \Big]_{j=1}^n \mid t_j \in \mathbf{W}, n \in \mathbb{N} \Big\}.$$

Дан набор из N документов

$$\mathbf{D} = \bigcup_{i=1}^{N} D^{i}, D^{i} \in \mathbb{D}.$$

Определим множество авторов, тексты которых встречаются в наборе \mathbf{D} :

$$\mathbf{C} = \{0, \dots, k-1\}.$$

Рассматривается три подзадачи: классификация автора всего документа, детекция фрагментов в документах по заданным позициям в документе и детекция смены стиля в произвольной позиции в документе.

Постановки подзадач

Классификация автора документа

$$\phi: \mathbb{D} \to \mathbf{C}$$
.

Метрика: точность или F1-мера.

Детекция фрагментов

Для каждого документа $d \in \mathbb{D}$ существует представление в виде разбиения на фрагменты различного авторства:

$$\mathbb{T} = \Big\{ \Big[t_{s_j}, t_{f_j}, C_j \Big]_{j=1}^J \mid t_{s_j} = t_{f_{j-1}}, \quad s_j \in \mathbb{N}_0, \quad f_j \in \mathbb{N}, \quad C_j \in \mathbf{C} \Big\},$$

где J - количество фрагментов разного авторства в документе, t_{s_j} и t_{f_j} - начало и конец j-ого фрагмента, внутри которого все токены одного авторства, C_j - автор j-ого фрагмента.

Постановки подзадач

Тогда модель детектора определяется как композиция отображений:

$$\phi: \mathbb{D} \to \mathbb{T}$$
 $\phi: \mathbf{g} \circ \mathbf{f}$,

где ${f f}$ — отображение для выделения текстовых фрагментов, а ${f g}$ - отображение для классификации получившихся фрагментов. Метрика: мера Жаккара для истинного разбиения и разбиения, полученного с помощью модели.

Детекция смены стиля

Пусть для документа $d \in \mathbb{D}$ известно, что

$$\exists I_{\mathbf{D}} \in \mathbb{N}_0 \quad \mathbf{g}([t_0, t_I)) = 0, \quad \mathbf{g}([t_{I+1}, t_{|\mathbf{D}|})) = 1$$

Метрика: средняя абсолютная ошибка между истинной позицией индекса смены и предсказанной позицией смены авторства.

Классификация автора документа

Пусть для $d \in \mathbb{D}$ были получены векторные представления $\mathbf{h} = (\mathbf{h}_{\mathsf{CLS}}, \mathbf{h}_1, ..., \mathbf{h}_n)$ с помощью BERT или другого энкодера. Тогда автором документа будет:

$$\hat{y} = \operatorname{arg\,max}(\operatorname{softmax}(\mathbf{W} \cdot \mathbf{h}_{\mathsf{CLS}} + \mathbf{b})),$$

где \mathbf{W}, \mathbf{b} - обучаемые параметры модели.

Детекция фрагментов

Пусть для документа $d \in \mathbb{D}$ известны его параграфы $\mathcal{P} = (p_1, \dots, p_n)$ и $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ — векторные представления параграфов.

$$p(y_1,\ldots,y_n|\mathbf{x}_1,\ldots,\mathbf{x}_n)=p(\mathbf{y}|\mathbf{x}),$$

где $y_i \in \mathbf{C}$ - метки авторов

$$p(\mathbf{y}|\mathbf{x}) = \frac{\exp \Phi(\mathbf{x}, \mathbf{y})}{\sum_{\mathbf{y}' \in \mathcal{Y}^n} \exp(\Phi(\mathbf{x}, \mathbf{y}'))},$$

где \mathcal{Y}^n — все возможные последовательности меток длины n.

$$\begin{split} \Phi(\mathbf{x}, \mathbf{y}) &= \sum_{i=1}^{n} \Big(\log \phi_{\texttt{EMIT}}(y_i \to x_i) + \\ &+ \log \phi_{\texttt{TRANS}}(y_{i-1} \to y_i)\Big), \end{split}$$

Рис.: Схема модели с марковской линейной цепочкой

Функция потерь для выборки документов $\mathbf{X} \in \mathbb{D}$:

$$\mathcal{L}(\mathbf{Y}, \mathbf{X}) = -\sum_{i=1}^{|\mathbf{X}|} \log(p(\mathbf{y}^{i}|\mathbf{x}^{i})) =$$

$$= \sum_{i=1}^{|\mathbf{X}|} \left(\underbrace{\log\left[\sum_{\mathbf{y}' \in \mathcal{Y}^{n}} \exp(\Phi(\mathbf{x}^{i}, \mathbf{y}'))\right]}_{\widehat{\pi[n]}} - \Phi(\mathbf{x}^{i}, \mathbf{y}^{i}) \right), \quad (1)$$

Введём функцию
$$\pi[i][j]=\log\sum_{\substack{y'\in\mathcal{Y}^i\\y'[-1]=\mathcal{Y}[j]}}\exp(\Phi(\mathbf{x},\mathbf{y}))$$
, где $j\in\mathbf{C}$,

1 < i < n

Детекция смены стиля

Введем функцию-детектор с параметром скользящего окна ℓ , которая для токена в документе оценивает его вероятность быть токеном, в котором сменяются авторы:

$$\psi_{\ell}: \mathbb{D} \times \mathbb{N}_0 \quad \psi_{\ell}(d, i) = \mathbb{P}(t_i = 1 | t_{i-\ell}, t_{i-\ell+1}, ..., t_{i-1})$$

$$I_d = \arg\max_{0 \le i \le |d|} \psi_{\ell}(d, i)$$

Эксперименты с бинарной классификацией

Метод	Точность
TF-IDF	0.64223
BERT-base-multilingual	0.73430
RoBERTa-base	0.63847
XLM-RoBERTa-base	0.72661
XLM-RoBERTa-large	0.76777
DeBERTa-v3-base	0.72661
mDeBERTa-v3-base	0.76662
ruBERT	0.77288

Таблица: Точность бинарной классификации различных подходов.Цветом выделены модели, предобученные на корпусе русских текстов

Для бинарной классификации документов был взят набор текстами на русском языке с соревнования RuATD.

Эксперименты с детекцией фрагментов по параграфам

Для детекции фрагментов по параграфам был сгенерирован новый датасет на основе статей с Medium.com. В текстах статей из 4-6 параграфов и некоторые параграфы заменяли на машинно-сгенерированные.

Метод	Точность
RoBERTa	0.89
RoBERTa-CRF	0.94

Таблица: Точность детекции

Рис.: Разделение векторных представлений параграфов и предложений с помощью косинусной близости

Эксперименты со сменой стиля

Рис.: Распределения статистик в текстах после токенизации

Для детекции смены стиля данные были взяты из набора данных с соревнования SemEval2024 Task 8 SubtaskC. Данные были дополнительно аугментированы для увеличение размера выборки и внесения разнообразия в позиции смены автора.

Эксперименты со сменой стиля

Модель	Исходный датасет	Новый датасет
RoBERTa-base	31.56	30.71
RoBERTa-large	25.25	20.66
longformer-base	23.16	22.94
longformer-large	22.97	20.33
DeBERTaV3-base	16.12	13.98
DeBERTaV3-large	15.16	13.38
Тор 1 соревнования	15.68	-

Таблица: Метрика МАЕ на исходных и новых (аугментированных) данных. Дополнительно приведено лучшее решение, получившее первое место по результатам соревнования

Выносится на защиту

- 1. Модель детекции смены авторов в текстах, когда смена авторов происходит только на уровне параграфов с помощью марковской линейной цепочки.
- Модель детекции смены авторов в тексте, в случае, когда эта смена авторов происходит единожды, но может быть в произвольной позиции в документе с помощью моделей на основе трансформеров.

Публикации

 Leveraging Transfer Learning for Detecting Boundaries of Machine-Generated Texts // Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024) (In Printing).