

Guía Relaciones

Tema IV: Operaciones con Relaciones

Universidad de San Buenaventura CALI

Relaciones

Operaciones con Relaciones.

Puesto que las relaciones binarias son conjuntos de pares ordenados, las nociones de intersección, diferencia simétrica, unión y diferencia de dos relaciones, se obtienen de manera similar a las correspondientes para conjuntos.

Entonces primeramente es necesario recordar dichas nociones para conjuntos.

a) La unión de dos conjuntos A y B, denotada por AUB, es el conjunto cuyos elementos son exactamente los elementos de A ó B, ó de ambos.

Ejemplos:

- 1) Si A = $\{a, b\}$, B = $\{c, d\}$, entonces AUB = $\{a, b, c, d\}$
- 2) Si A = $\{a, b\}$, B = $\{a, c\}$, entonces AUB = $\{a, b, c\}$
- 3) Si A = $\{a,b\}$, B = $\{\}$, entonces AUB = $\{a,b\}$
- 4) Si A = $\{a, b\}$, B = $\{c, \{a, b\}\}$, entonces AUB = $\{a, b, c, \{a, b\}\}$
- b) La intersección de dos conjuntos A y B, denotada por A \cap B, es el conjunto cuyos elementos son exactamente los elementos que están tanto en A como en B.

Ejemplos:

- 1) $\{a, b\} \cap \{a, c\} = \{a\}$
- 2) $\{a, b\} \cap \{c, d\} = \{\}$
- 3) $\{a, b\} \cap \{\} = \{\}$
- c) La diferencia de dos conjuntos A y B, denotada por A = B, es el conjunto que contiene exactamente aquellos elementos de A que no estan en B.

Ejemplos:

- 1) $\{a, b, c\}$ $= \{b, c\}$
- 2) $\{a, b, c\}$ $\{a, d\} = \{b, c\}$
- 3) $\{a, b, c\}$ $\{d, e\}$ = $\{a, b, c\}$
- d) La diferencia simetrica de dos conjuntos A y B, denotada por A \bigoplus B, es el conjunto que contiene todos los elementos que están en A o en B pero no en ambos, es decir, A \bigoplus B = (A \bigcup B) = (A \bigcap B).

Universidad de San Buenaventura Cali

Relaciones

Ejemplos:

Graficamente se pueden representar estas operaciones con conjuntos como sigue:

Aplicando los conceptos anteriores a relaciones binarias, tenemos que si \mathbf{R} y \mathbf{S} son dos relaciones binarias de A a B entonces: $\mathbf{R} \cup \mathbf{S}$, $\mathbf{R} \cap \mathbf{S}$, $\mathbf{R} - \mathbf{S}$, $\mathbf{R} \oplus \mathbf{S}$ son también relaciones binarias de A a B.

Ejemplo:

Sean \mathbf{R} y \mathbf{S} dos relaciones de X a Y y de U a V respectivamente. Además tenemos que

 $Dom(\mathbf{R})=\{a, b, c\} y Cod(\mathbf{R})=\{A, B, C\}$

 $Dom(S)=\{a,b\} y Cod(S)=\{B,C\}$

Encontrar $\mathbb{R} \cup \mathbb{S}$, $\mathbb{R} \cap \mathbb{S}$, $\mathbb{R} = \mathbb{S}$, $\mathbb{R} \oplus \mathbb{S}$, si $\mathbb{R} = \{(a, A), (a, B), (b, C)\}$ y $\mathbb{S} = \{(a, B), (b, C)\}$

 $R \cup S = \{(a, A), (a, B), (b, C)\}$

 $\mathbf{R} \cap \mathbf{S} = \{(\mathsf{a}, \mathsf{B}), (\mathsf{b}, \mathsf{C})\}$

 $R = S = \{(a, A)\}$

 $\mathbf{R} \oplus \mathbf{S} = \{(a, A)\}$

Definición:

Puede definirse el complemento de una relación ${\bf R}$ como el conjunto de todos los pares ordenados del producto cartesiano ${\bf A}^{\bf X}$ B que no estan en ${\bf R}$, y se representa como ${\bf R}'$ ó ${}^{\bf C}{\bf R}$.

Relaciones

Ejemplo:

Sean \mathbf{R} y \mathbf{S} dos relaciones de X a Y y de U a V respectivamente. Además tenemos que

$$Dom(\mathbf{R})=\{a, b, c\} Cod(\mathbf{R})=\{A, B, C\}, Dom(\mathbf{S})=\{a,b\} Cod(\mathbf{S})=\{B,C\} y sean$$

$$\mathbf{R} = \{(a, A), (a, B), (b, C)\} \ \mathbf{S} = \{(a, B), (b, C)\}$$

Por lo tanto
$$\mathbf{R}' = \{(a, c), (b, A), (b, B), (c, A), (c, B), (c, C)\}$$

Y para
$$U \times V = \{(a, B), (a, C), (b, B), (b, C)\}$$

se tiene que
$$S'=\{(a, C), (b, B)\}.$$

Graficamente se representa:

Otra operación que a menudo se utiliza es el inverso de una relación, la cual se define de la siguiente manera:

Definición:

Sea ${\bf R}$ una relación de A a B, el inverso de ${\bf R}$, que de denota como ${\bf R}^1$ ó ${\bf R}^2$, y es la relación de B a A definida formalmente como:

$$\mathbf{R}^1 = \{(b, a) \mid (a, b) \in \mathbf{R}\}\$$

Ejemplo:

Sean A= $\{2, 3, 4\}$ y B= $\{3, 4, 5, 6, 7\}$, además definimos \mathbf{R} como sigue:

 $(a, b) \in \mathbf{R}$ si a divide a b (división entera)

entonces
$$\mathbf{R} = \{(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}$$

por lo que
$$\mathbb{R}^1 = \{(4, 2), (6, 2), (3, 3), (6, 3), (4, 4)\}$$

De lo anterior se deduce que $a \mathbf{R} b \equiv b \mathbf{R}^1 a$. Algunos autores llaman al inverso opuesto.

Como una relación es un conjunto, podemos obtener el número de elementos de dicho conjunto, es decir:

Definición:

La cardinalidad es el número de elementos de un conjunto para una relación ${\bf R}$ de A en B. La cardinalidad se representa ${\bf \#R}$.

Relaciones

Ejemplos:

Si $A = \{1,2,3,4\}$ entonces #A = 4

Si $\mathbf{R} = \{(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}$ entonces # $\mathbf{R} = 5$

Definición:

Sea ${\bf R}$ una relación de A en B el conjunto potencia ${\bf R}$, denotado como P(${\bf R}$), es el conjunto que contiene a todos los subconjuntos de ${\bf R}$, es decir:

$$P(\mathbf{R}) = \{S \mid S \subseteq A\}$$

Si # \mathbf{R} = n, entonces #P(\mathbf{R}) = 2^n

Ejemplo:

Sea $\mathbf{R} = \{(1, 1), (1, 2), (1, 3)\}$, entonces $\#\mathbf{R} = 3 \text{ y } \#P(\mathbf{R}) = 2^{-3} = 8$

 $P(\mathbf{R}) = \{\emptyset, \{(1,1)\}, \{(1,2)\}, \{(1,3)\}, \{(1,1), (1,2)\}, \{(1,1), (1,3)\}, \{(1,2), (1,3)\}, \{(1,1), (1,2), (1,3)\}\}$