	The previous four sections have given a general overview of the concepts of machine learning. In this section and the ones that follow, we will be taking a closer look at several specific algorithms for supervised and unsupervised learning, starting here with naive Bayes classification. 前面四个小节对机器学习的概念给出了概述。本节开始,我们会进入到有监督学习和无监督学习的一些特定算法当中,进行较深入的经,首先从本节的朴素贝叶斯分类开始。
	前面四个小节对机器学习的概念给出了概述。本节开始,我们会进入到有监督学习和无监督学习的一些特定算法当中,进行较深入的 绍。首先从本节的朴素贝叶斯分类开始。 Naive Bayes models are a group of extremely fast and simple classification algorithms that are often suitable for very high-dimensional datasets. Because they are so fast and have so few tunable parameters, they end up being very useful as a quick-and-dirty baseline for a classification problem. This section will focus on an intuitive explanation of how naive Bayes classifiers work, followed by a couple examples of them in action on some datasets.
	朴素贝叶斯模型是一组非常快和简单的分类算法,它们经常用来对高维度数据集进行分类处理。因为它们非常快和有一些可调的参数们最终成为了分类问题很好用的临时基线方法。本节会聚焦在对朴素贝叶斯分类器工作原理的直观介绍,然后会在不同的数据集上应作为例子。
	Bayesian Classification 贝叶斯分类 Naive Bayes classifiers are built on Bayesian classification methods. These rely on Bayes's theorem, which is an equation describing the relationship of conditional probabilities of statistical quantities. In Bayesian classification, we're
	equation describing the relationship of conditional probabilities of statistical quantities. In Bayesian classification, we're interested in finding the probability of a label given some observed features, which we can write as $P(L \mid \text{features})$. Bayes's theorem tells us how to express this in terms of quantities we can compute more directly: 朴素贝叶斯分类建立在贝叶斯分类方法的基础上。这些分类方法的基础是贝叶斯定理,这是一个用来描述统计理论中条件概率的等式贝叶斯分类中,我们感兴趣的是在给定观测特征数据上找到一个标签的概率,我们写做 $P(L \mid \text{features})$ 。贝叶斯定理告诉我们如何这些已知的特征量直接计算概率:
	$P(L \mid \text{features}) = \frac{P(\text{features} \mid L)P(L)}{P(\text{features})}$ If we are trying to decide between two labels—let's call them L_1 and L_2 —then one way to make this decision is to compute the ratio of the posterior probabilities for each label:
	如果我们尝试在两个标签中去选择,假设我们称它们为 L_1 和 L_2 ,那么做这个选择的一种方法是计算每一个标签的后验概率: $\frac{P(L_1 \mid \text{features})}{P(L_2 \mid \text{features})} = \frac{P(\text{features} \mid L_1)}{P(\text{features} \mid L_2)} \frac{P(L_1)}{P(L_2)}$ All we need now is some model by which we can compute $P(\text{features} \mid L_i)$ for each label. Such a model is called a generative model because it specifies the hypothetical random process that generates the data. Specifying this
	generative model for each label is the main piece of the training of such a Bayesian classifier. The general version of such a training step is a very difficult task, but we can make it simpler through the use of some simplifying assumptions about the form of this model.
	随机过程。对于训练贝叶斯分类器来说,为每个标签找到这样的通用模型是最主要的步骤。获得这种训练步骤的通用版本是很困难的是我们能够通过使用关于该模型的假设来简化这项任务。 This is where the "naive" in "naive Bayes" comes in: if we make very naive assumptions about the generative model for each label, we can find a rough approximation of the generative model for each class, and then proceed with the Bayesian classification. Different types of naive Bayes classifiers rest on different naive assumptions about the data, and
	we will examine a few of these in the following sections. 这就是"朴素贝叶斯"中的"朴素"的由来:如果我们对通用模型中的每个标签作出非常朴素的假设,我们就可以找到通用模型中每个标签概分布,然后进行贝叶斯分类。不同的朴素贝叶斯分类器取决于对数据不同的朴素假设上,我们在本节后续内容中会介绍它们中的一分。
[n [1]:	We begin with the standard imports: 首先是需要用到的包: %matplotlib inline import numpy as np
	import matplotlib.pyplot as plt import seaborn as sns; sns.set() Gaussian Naive Bayes 古版私美田門斯
	高斯朴素贝叶斯 Perhaps the easiest naive Bayes classifier to understand is Gaussian naive Bayes. In this classifier, the assumption is that data from each label is drawn from a simple Gaussian distribution. Imagine that you have the following data: 朴素贝叶斯分类器中最容易理解的也许就是高斯朴素贝叶斯。这个分类器假定每个标签的数据都服从简单正态分布。例如你有如下数
In [2]:	<pre>from sklearn.datasets import make_blobs X, y = make_blobs(100, 2, centers=2, random_state=2, cluster_std=1.5) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu');</pre>
	0 -2 -4 -6 -8
	-10 -12 -4 -2 0 2 4 6
	One extremely fast way to create a simple model is to assume that the data is described by a Gaussian distribution with no covariance between dimensions. This model can be fit by simply finding the mean and standard deviation of the points within each label, which is all you need to define such a distribution. The result of this naive Gaussian assumption is shown in the following figure: 创建一个简单模型的最快速方法就是假定数据服从一个两个维度之间没有协方差的正态分布。这个模型可以通过简单的寻找每个标签
	的均值和标准差来拟合,你只需要定义这个分布即可。高斯朴素假设的结果显示在下图中: (run code in Appendix to generate image) (附录中生成图像的代码
	The ellipses here represent the Gaussian generative model for each label, with larger probability toward the center of the ellipses. With this generative model in place for each class, we have a simple recipe to compute the likelihood $P(\text{features} \mid L_1)$ for any data point, and thus we can quickly compute the posterior ratio and determine which label is the most probable for a given point.
	上图中的椭圆表示每个标签的高斯生成模型,越接近椭圆中心位置具有越大的概率。有了每个分类的生成模型后,我们就能简单的计一个点的概率 $P(\text{features} \mid L_1)$,也就是后验概率,然后找到哪个标签在给定数据点上具有最大的概率。 This procedure is implemented in Scikit-Learn's sklearn.naive_bayes.GaussianNB estimator: 这个过程在Scikit-Learn中实现成了 sklearn.naive_bayes.GaussianNB 评估器:
[n [3]:	<pre>from sklearn.naive_bayes import GaussianNB model = GaussianNB() model.fit(X, y);</pre>
In [4]:	Now let's generate some new data and predict the label: 现在让我们创建一些新数据,然后预测标签: rng = np.random.RandomState(0) Xnew = [-6, -14] + [14, 18] * rng.rand(2000, 2) ynow = model predict(Ynow)
	Xnew = [-6, -14] + [14, 18] * rng.rand(2000, 2) ynew = model.predict(Xnew) Now we can plot this new data to get an idea of where the decision boundary is: 下面我们将新数据点绘制在图上,你能看到分类判定的边界位置:
[n [5]:	下面我们将新数据点绘制在图上,你能看到分类判定的边界位置: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu') lim = plt.axis() plt.scatter(Xnew[:, 0], Xnew[:, 1], c=ynew, s=20, cmap='RdBu', alpha=0.1) plt.axis(lim);
	2 0 -2 -4 -6
	-6 -8 -10 -12 -4 -2 0 2 4 6
	We see a slightly curved boundary in the classifications—in general, the boundary in Gaussian naive Bayes is quadratic. 我们看到分类之间的边界是有点弯曲的,因为通常来说,高斯朴素贝叶斯的边界是二次曲线。
	A nice piece of this Bayesian formalism is that it naturally allows for probabilistic classification, which we can compute using the predict_proba method: 这种贝叶斯分类方法的一个好处是它天然支持概率分类,我们可以通过 predict_proba 计算每个分类的概率:
	<pre>yprob = model.predict_proba(Xnew) yprob[-8:].round(2) array([[0.89, 0.11],</pre>
	[1. , 0.], [0. , 1.], [0.15, 0.85]]) The columns give the posterior probabilities of the first and second label, respectively. If you are looking for estimates of
	uncertainty in your classification, Bayesian approaches like this can be a useful approach. 上面结果中的两列分别给出了两个标签的后验概率。如果你在寻找你分类中的不确定性的话,贝叶斯方法能提供有效的判断依据。 Of course, the final classification will only be as good as the model assumptions that lead to it, which is why Gaussian naive Bayes often does not produce very good results. Still, in many cases—especially as the number of features
	becomes large—this assumption is not detrimental enough to prevent Gaussian naive Bayes from being a useful method. 当然最终分类结果最多只能达到模型的假定情况,这表明高斯朴素贝叶斯方法常常不会产生非常好的结果。但是在很多情况下,特别特征数量变得很大时,这个假定并不会导致高斯朴素贝叶斯方法完全失去意义。
	Multinomial Naive Bayes 多项式朴素贝叶斯 The Gaussian assumption just described is by no means the only simple assumption that could be used to specify the
	generative distribution for each label. Another useful example is multinomial naive Bayes, where the features are assumed to be generated from a simple multinomial distribution. The multinomial distribution describes the probability of observing counts among a number of categories, and thus multinomial naive Bayes is most appropriate for features that represent counts or count rates. 前面描述的高斯假设不是唯一的简单假设可以用来为每个标签产生生成分布。另一个有用的方法是多项式朴素贝叶斯,这个方法假定
	的特征是从一个简单的多项式分布中生成的。多项式分布描述了在一些分组中观察到的计数的概率,因此多项式朴素贝叶斯对于表达或计数的比例之类的特征是最合适的。 The idea is precisely the same as before, except that instead of modeling the data distribution with the best-fit Gaussian, we model the data distribuiton with a best-fit multinomial distribution.
	这里的原理和前面是一样的,只是不是使用正态分布来拟合数据模型,而是使用多项式分布来拟合数据模型。 Example: Classifying Text
	例子: 分类文字 One place where multinomial naive Bayes is often used is in text classification, where the features are related to word counts or frequencies within the documents to be classified. We discussed the extraction of such features from text in Feature Engineering ; here we will use the sparse word count features from the 20 Newsgroups corpus to show how we might classify these short documents into categories.
	多项式朴素贝叶斯经常被用到的场合是文字分类,因为这个场景下的特征是单词的计数或者文档中单词出现的频率。我们在 <u>特征工程</u> 中介绍过在文本中提取这样的特征的方法;这里我们会使用20个新闻组的语料库提取出来的稀疏单词计数特征来展示将这些短文档分方法。
In [7]:	Let's download the data and take a look at the target names: 让我们下载这个数据然后查看一下目标分类的名称: from sklearn.datasets import fetch_20newsgroups data = fetch_20newsgroups()
Out[7]:	Downloading 20news dataset. This may take a few minutes. Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)
	<pre>['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc',</pre>
	'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball',
	<pre>'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns',</pre>
	<pre>'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian',</pre>
In [8]:	'comp.graphios', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.electronics', 'sci.med', 'sci.space', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.mideast', 'talk.religion.misc'] For simplicity here, we will select just a few of these categories, and download the training and testing set: 这里为了简化,我们仅选择其中部分分类,然后载入训练集和测试集:
In [8]:	'comp.graphics', 'comp.sys.windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.boxekey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'sco.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] For simplicity here, we will select just a few of these categories, and download the training and testing set: 这里为了简化,我们仅选择其中部分分类,然后载入训练集和测试集: categories = ['talk.religion.misc', 'soc.religion.christian',
In [8]:	'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.erypt', 'sci.erypt', 'sci.edetronics', 'sci.ened', 'sci.ened', 'sci.ened', 'sci.ened', 'sci.ened', 'sci.ened', 'talk.politics guns', 'talk.politics.misc', 'talk.religion.misc'] For simplicity here, we will select just a few of these categories, and download the training and testing set: ix expressed in the strength of the set of these categories, and download the training and testing set: ix expressed in the set of the set of these categories, and download the training and testing set: ix expressed in the set of these categories, and download the training and testing set: ix expressed in the set of these categories, and download the training and testing set: ix expressed in the set of these categories, and download the training and testing set: ix expressed in the set of these categories, and download the training and testing set: ix expressed in the set of these categories, and download the training and testing set. ix expressed in the set of these categories, and download the training and testing set. ix expressed in the set of these categories, and download the training and testing set. ix expressed in the set of these categories, and download the training and testing set. ix expressed in the set of these categories, and download the training and testing set. ix expressed in the set of the set of these categories, and download the training and testing set. ix expressed in the set of the set
	'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'rem.sport.boseball', 'rec.sport.boseball', 'rec.sport.boseball', 'rec.sport.boseball', 'rec.sport.boseball', 'sci.crypt', 'sci.electronics', 'sci.electronics', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.misc', 'talk.politics.misc', 'talk.religion.misc'] For simplicity here, we will select just a few of these categories, and download the training and testing set: 这里为了简化,我们仅选择其中部分分类,然后载入训练集和测试集: categories = ['talk.religion.misc', 'soc.religion.christian', 'sci.space', 'comp.graphics'] train = fetch_20newsgroups(subset='train', categories=categories) Here is a representative entry from the data: 下面展示部分数据: print(train.data[5]) From: dmcgee@uluhe.soest.hawaii.edu (Don McGee) Subject: Federal Hearing Originator: dmcgee@uluhe Organization: School of Ocean and Earth Science and Technology Distribution: usa Lines: 10 Fact or rumor? Madalyn Murray O'Hare an atheist who eliminated the use of the bible reading and prayer in public schools 15 years ago is now going to appear before the FCC with a pertifion to stop the reading of the Gospel on the adraways of America. And she is also campaigning to remove
	'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'rec.autos', 'rec.autos', 'rec.autos', 'rec.sport.baseball', 'rec.sport.baseball', 'rec.sport.baseball', 'rec.sport.hockey', 'soi.relectronics', 'soi.relectronics', 'soi.med', 'soi.space', 'soi.pace', 'soi.pace', 'talk.politics.mideast', 'talk.politics.mideast', 'talk.politics.mideast', 'talk.religion.misc'] For simplicity here, we will select just a few of these categories, and download the training and testing set: 这里为了简化,我们仅选择其中部分分类,然后载入训练集和测试集: categories = ['talk.religion.misc', 'soc.religion.christian', 'sci.space', 'comp.graphics'] train = fetch 20newsgroups(subset='train', categories-categories) test = fetch_20newsgroups(subset='train', categories-categories) Here is a representative entry from the data: 下面展示部分数据: print(train.data[5]) From: dmcgee@uluhe.soest.hawaii.edu (Don McGee) Subject: Federal Hearing Originator: dmcgee@uluhe Organization: School of Ocean and Earth Science and Technology Distribution: usa Lines: 10 Fact or rumor? Madalyn Murray O'Hare an atheist who eliminated the use of the bible reading and prayer in public schools 15 years ago is now going to appear before the FCC with a petition to stop the reading of the
	Comp. graphics', Comp. sys. ibm. pc. hardware', Comp. sys. swindows.misc', Comp. sys. misc. hardware', Comp. sys. misc. hardware', Comp. windows.x', misc. forsale', "rec. autos', "rec. port. haseball', "rec. autos', "rec. port. haseball', "rec. autos', "rec. port. haseball', "sci. clectronics', "sci. pace', "sci. pace', "sci. pace', "sci. pace', "sci. pace', "sci. pace', "talk. politics. mideat', "talk
	Comp. graphics', Comp. sys. ibm. pc. hardware', Comp. utindows. x', Frec. comp. to hase hall', Frec. sport. base', Frec. sport. base', Frec. sport. base', Frec. sport. base', Soci. cypit', Soci. c
In [9]:	comp.graphics', comp.sys.ion.pc.hardware', comp.sys.ion.pc.hardware', comp.sys.ion.hardware', comp.sys.ion.hardware', comp.sys.ion.hardware', misc.forsale', rec.aucos', rec.aucos'
In [9]:	comp. graphics', comp. sys. achindors. misc', comp. sys. achindors. misc', comp. sys. achindors. misc', comp. sys. ach. furforare', comp. sys. ach. furforare', insts. forsale', "rec. anotorsycles', "rec. motorsycles', "rec. anotorsycles', "rec. sport. hockey', "sec. incorrections, institutions, ins
in [9]:	comp.graphics', comp.ysy.abm.pc.hardoare', comp.ysy.abm.pc.hardoare', comp.ysy.abm.pc.hardoare', comp.ysy.abm.hardoare', soc.ortilgion.christin', talk.politics.miscs', talk.politics.miscs', talk.religion.misc', train = fetch_20exegroups(subset='train', categories-categories) train = fetch_20exegroups(subset='train', categories-categories) Here's a representative entry from the data: Tomarcoare for the comparation of the comparat
in [10]:	comp.praphics', comp.praphi
in [10]:	comp. graphics' comp. gr
in [10]:	Comparable Co
in [10]:	Teach presentation Part
in [10]:	Today - Constitution (1994)
in [10]:	Total Company Compan
in [9]: in [10]: in [12]:	Transport and price district. Control and the price district. Co
in [9]: in [10]: in [12]:	Tagging and processors of the
in [10]: in [11]: in [12]: in [15]: in [15]:	Total Content Total Content
in [10]: in [11]: in [12]: in [15]:	Transport processors
in [10]: in [10]: in [11]: in [12]: in [15]: in [16]:	The control of the co
in [10]: in [10]: in [11]: in [12]: in [15]: in [16]:	**Temporal Control of State Control of S
in [10]: in [10]: in [11]: in [12]: in [15]: in [16]:	Total Control Control 「
in [10]: in [10]: in [11]: in [12]: in [15]: in [16]:	To provide the company of the comp
in [10]: in [10]: in [11]: in [12]: in [15]: in [16]:	Compared Section 1997 The Compared Section 1997
in [10]: in [10]: in [11]: in [12]: in [15]: in [16]:	The company of the co
in [10]: in [10]: in [11]: in [12]: in [15]: in [16]:	The company of the co
in [10]: in [10]: in [11]: in [12]: in [15]: in [16]:	The control of the place of the control of the control of the control of the place of the place of the place of the place of the control of the place of the control of the place of the control of the c
in [10]: in [10]: in [11]: in [12]: in [15]: in [16]:	The control of the co