

Practice Mode Rank: 23297 Score: 0varun.narisetty@gmail.com | Contest scoreboard | Sign out

Qualification Round 2015

A. Standing Ovation

B. Infinite House of Pancakes

C. Dijkstra

D. Ominous Omino

Contest Analysis

Ask a question

View my submissions

Submissions Standing Ovation 7pt Not attempted 22964/26528 users correct (87%) 10pt Not attempted 19346/22732 users correct (85%) Infinite House of Pancakes 9pt Not attempted 7805/17231 users correct (45%) 12pt Not attempted 5442/6704 users correct (81%) Dijkstra 11pt Not attempted 6663/9721 users correct (69%) 17pt Not attempted 2492/4819 users correct (52%) Ominous Omino 8pt 1 incorrect attempt 7342/9200 users correct (80%)

 Top Scores 	
kyc	100
ksun48	100
darnley	100
AntiForest	100
shik	100
Nicolas16	100

686/4030 users correct

26pt Not attempted

(17%)

Problem D. Ominous Omino

This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the Quick-Start Guide to get started.

Small input 8 points	Solve D-small
Large input 26 points	Solve D-large

Problem

An N-omino is a two-dimensional shape formed by joining N unit cells fully along their edges in some way. More formally, a 1-omino is a 1x1 unit square, and an N-omino is an (N-1)omino with one or more of its edges joined to an adjacent 1x1 unit square. For the purpose of this problem, we consider two N-ominoes to be the same if one can be transformed into the other via reflection and/or rotation. For example, these are the five possible 4-ominoes:

And here are some of the 108 possible 7-ominoes:

Richard and Gabriel are going to play a game with the following rules, for some predetermined values of \mathbf{X} , \mathbf{R} , and \mathbf{C} :

- 1. Richard will choose any one of the possible **X**-ominoes.
- 2. Gabriel must use at least one copy of that **X**-omino, along with arbitrarily many copies of any **X**-ominoes (which can include the one Richard chose), to completely fill in an **R**-by-**C** grid, with no overlaps and no spillover. That is, every cell must be covered by exactly one of the **X** cells making up an **X**-omino, and no **X**-omino can extend outside the grid. Gabriel is allowed to rotate or reflect as many of the **X**-ominoes as he wants, including the one Richard chose. If Gabriel can completely fill in the grid, he wins; otherwise, Richard wins.

Given particular values **X**, **R**, and **C**, can Richard choose an **X**-omino that will ensure that he wins, or is Gabriel guaranteed to win no matter what Richard chooses?

Input

ProjectYoung	100
azariamuh	100
WO	100
ctunoku	100

The first line of the input gives the number of test cases, **T**. **T** lines follow. Each contains three space-separated integers: **X**, **R**, and **C**.

Output

For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1) and y is either RICHARD (if there is at least one choice that ensures victory for Richard) or GABRIEL (if Gabriel will win no matter what Richard chooses).

Limits

Small dataset

$$T = 64.$$

1 \le X, R, C \le 4.

Large dataset

```
1 \le T \le 100.
 1 \le X, R, C \le 20.
```

Sample

Input	Output	
2 1 3	Case #1: GABRIEL Case #2: RICHARD Case #3: RICHARD Case #4: GABRIEL	

In case #1, Richard only has one 2-omino available to choose -- the 1x2 block formed by joining two unit cells together. No matter how Gabriel places this block in the 2x2 grid, he will leave a hole that can be exactly filled with another 1x2 block. So Gabriel wins.

In case #2, Richard has to choose the 1x2 block, but no matter where Gabriel puts it, he will be left with a single 1x1 hole that he cannot fill using only 2-ominoes. So Richard wins.

In case #3, one winning strategy for Richard is to choose the 2x2 square 4-omino. There is no way for Gabriel to fit that square into the 4x1 grid such that it is completely contained within the grid, so Richard wins.

In case #4, Richard can either pick the straight 3-omino or the L-shaped 3-omino. In either case, Gabriel can fit it into the grid and then use another copy of the same 3-omino to fill in the remaining hole.

All problem statements, input data and contest analyses are licensed under the Creative Commons Attribution License.

© 2008-2015 Google Google Home - Terms and Conditions - Privacy Policies and Principles

Powered by

