【2020年宝山一模20题】

20. 已知直线 l: x = t (0 < t < 2) 与椭圆 $\Gamma: \frac{x^2}{4} + \frac{y^2}{2} = 1$ 相交于 A、B 两点,其中 A 在第一象限,M 是椭圆上一点.

- (1) 记 F_1 、 F_2 是椭圆 Γ 的左右焦点,若直线AB 过 F_2 ,当M 到 F_1 的距离与到直线AB 的距离相等时,求点M的横坐标;
- (2) 若点 M、A 关于 y 轴对称, 当 Δ MAB 的面积最大时, 求直线 MB 的方程;
- (3) 设直线 MA 和 MB 与 x 轴分别交于 P、Q, 证明: $|OP| \cdot |OQ|$ 为定值.

【2020年松江一模 20 题】

20. 设抛物线 Γ : $y^2=4x$ 的焦点为 F ,经过 x 轴正半轴上点 M(m,0) 的直线 l 交 Γ 于不同的两点 A 和 B .

- (1) 若|FA|=3, 求点A的坐标;
- (2) 若m=2, 求证: 原点O 总在以线段AB为直径的圆的内部;
- (3) 若|FA|=|FM|, 且直线 $l_1 // l$, l_1 与 Γ 有且只有一个公共点E, 问: \triangle OAE 的面积 是否存在最小值?若存在,求出最小值,并求出M点的坐标,若不存在,请说明理由.

【2020年崇明一模 20 题】

20. 已知椭圆 Γ : $\frac{x^2}{4}$ + y^2 = 1,其左右顶点分别为A、B,上下顶点分别为C、D,圆O 是以线段 AB 为直径的圆.

- (1) 求圆O的方程;
- (2)若点 E 、 F 是椭圆上关于 y 轴对称的两个不同的点,直线 CE 、 DF 分别交 x 轴于点 M 、
- N, 求证: $\overrightarrow{OM} \cdot \overrightarrow{ON}$ 为定值;
- (3) 若点P是椭圆 Γ 上不同于点A的点,直线AP与圆O的另一个交点为Q,是否存在点P,使得 $\overrightarrow{AP}=\frac{1}{3}\overrightarrow{PQ}$?若存在,求出点P的坐标,若不存在,说明理由.

【2020年虹口一模 20 题】

20. 己知两点 $F_1(-\sqrt{3},0)$ 、 $F_2(\sqrt{3},0)$,设圆 $O: x^2 + y^2 = 4$ 与 x 轴交于 A 、 B 两点,且动点 P 满足:以线段 F_2P 为直径的圆与圆 O 相内切,如图所示,记动点 P 的轨迹为 Γ ,过点 F_2 与 x 轴不重合的直线 l 与轨迹 Γ 交于 M 、 N 两点.

- (1) 求轨迹 Γ 的方程;
- (2) 设线段 MN 的中点为 Q ,直线 OQ 与直线 $x = \frac{4\sqrt{3}}{3}$ 相交于点 R ,求证: $\overline{F_2R} \perp l$;
- (3)记 \triangle *ABM* 、 \triangle *ABN* 面积分别为 S_1 、 S_2 ,求| S_1 S_2 | 的最大值及此时直线 l 的方程.

【2020年杨浦一模 20 题】

- 20. 如图,在平面直角坐标系 xOy 中,已知抛物线 $C: y^2 = 4x$ 的焦点为 F,点 A 是第一象限内抛物线 C 上的一点,点 D 的坐标为 (t,0) , t>0 .
- (1) 若 $|OA| = \sqrt{5}$,求点A 的坐标;
- (2) 若 $\triangle AFD$ 为等腰直角三角形,且 $\angle FAD = 90^{\circ}$,求点D的坐标;
- (3)弦 AB 经过点 D ,过弦 AB 上一点 P 作直线 x=-t 的垂线,垂足为点 Q ,求证:"直线 QA 与抛物线相切"的一个充要条件是"P 为弦 AB 的中点".

【2020年普陀一模 20 题】

20. 己知双曲线 Γ : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的焦距为 4,直线l: x - my - 4 = 0 ($m \in \mathbb{R}$)

与 Γ 交于两个不同的点D、E,且m=0时直线l与 Γ 的两条渐近线所围成的三角形恰为等边三角形.

- (1) 求双曲线 [的方程:
- (2) 若坐标原点 O 在以线段 DE 为直径的圆的内部,求实数 m 的取值范围;
- (3) 设A、B分别是 Γ 的左、右两顶点,线段BD的垂直平分线交直线BD于点P,交直线AD于点Q,求证:线段PQ在x轴上的射影长为定值.