Homework 9

Runmin Lu

November 8, 2021

1

Z has dimension $N \times 45 = N \times \sum_{i=0}^{8} (i+1)$ because for each power i from 0 to 8 we have i+1 combinations of x and y and N is the number of data points.

$\mathbf{2}$

There is overfitting because the top boundary doesn't make sense. Something more curvy should not be more likely to be a 1.

There is still overfitting but less. The upper right boundary doesn't make sense for the same reason.

 $E_{\rm cv}$ is close to $E_{\rm test}$. The gap looks large because it's zoomed in and the y-axis doesn't start at 0 but if you look at the numbers, it's actually pretty small.

 $\lambda^*=2.42$

$$\begin{split} E_{\text{test}}(\mathbf{w}_{\text{reg}}(\lambda^*)) &\approx 0.0111 \\ E_{\text{out}}(\mathbf{w}_{\text{reg}}(\lambda^*)) &\leq E_{\text{test}}(\mathbf{w}_{\text{reg}}(\lambda^*)) + \sqrt{\frac{1}{2 \times 8998} \ln \frac{2}{0.01}} \\ &\approx 0.0111 + 0.0172 \\ &= 0.0283 \end{split}$$

No because we use $E_{\rm cv}(\lambda^*)$ to select λ^* , which is then used to select $\mathbf{w}_{\rm reg}(\lambda^*)$ as the final hypothesis. That's where data snooping occurs. On the other hand, $E_{\rm test}(\mathbf{w}_{\rm reg}(\lambda^*))$ purely measures the performance of $\mathbf{w}_{\rm reg}(\lambda^*)$ because we do not use the test set $\mathcal{D}_{\rm test}$ in training at all.

Yes because there's no data snooping. $E_{\text{test}}(\mathbf{w}_{\text{reg}}(\lambda^*))$ uses $\mathcal{D}_{\text{test}}$ to evaluate the performance of $\mathbf{w}_{\text{reg}}(\lambda^*)$, which in no way affected the selection of $\mathbf{w}_{\text{reg}}(\lambda^*)$. The selection only use the 300 data points in a completely separate set \mathcal{D} .