Теоретические модели вычислений ДЗ №2: КС-грамматики

Андрей Ефанов

Март 2022

Правила те же, что и раньше. Дедлайн – 12:00 29 апреля.

Упражнение 1

(5 баллов)

Для следующих языков постройте КС-грамматику.

- 1. В алфавите $\Sigma = \{a, b, c\}$ постройте грамматику для языка $L = \{w \in \Sigma^* | w \text{ содержит подстроку } aa\}$. Например, $\{aa, baac, caabb\} \subset L$.
- 2. В алфавите $\Sigma=\{a,b,c\}$ постройте грамматику для языка $L=\{w\in\Sigma^*|w$ не палиндром $\}.$ Например, $\{aab,baabab\}\subset L$, а $\{aba,bb,\lambda\}\not\subset L$.
- 3. В алфавите $\Sigma = \{\emptyset, \mathbb{N}, `\{`, `\}`, \cup\}$ можно построить следующие слова, обозначающие множества:

\emptyset	$\{\emptyset,\mathbb{N}\}\cup\mathbb{N}\cup\emptyset$
$\{\emptyset\} \cup \mathbb{N} \cup \{\mathbb{N}\}$	$\{\emptyset,\emptyset,\emptyset\}$
$\{\{\mathbb{N},\emptyset\}\cup\{\emptyset\}\}$	$\mathbb{N} \cup \{\mathbb{N},\emptyset\}$
{}	$\{\mathbb{N}\}$
$\{\emptyset,\{\emptyset,\{\emptyset\}\}\}\}$	$\{\{\{\{\mathbb{N}\}\}\}\}$
\mathbb{N}	$\{\emptyset, \{\}\}$

Некоторые из этих множеств (например $\{\emptyset,\emptyset,\emptyset\}$) синтаксически корректны, но избыточны в записи. Ниже приведены примеры синтаксически некорректных множеств:

λ	}∅{
$\emptyset\{\mathbb{N}\}$	{{}
$\mathbb{N}, \emptyset, \{\emptyset\}$	$\{,\mathbb{N}\}$
$\{\mathbb{N}\emptyset\},$	$\{,\}$
$\{\emptyset$	}}N
$\{\emptyset,\emptyset,\emptyset,\}$	$\{\mathbb{N}, , , \emptyset\}$

Постройте грамматику для языка $L = \{w \in \Sigma^* | w - \text{синтаксически коррект-}$ ная строка, обозначающая множество $\}$. Для простоты описания используйте символы n, u, o вместо $\mathbb{N}, \cup, \emptyset$ соответственно

Упражнение 2

(5 баллов)

В данном упражнении мы используем унарную арифметическую систему. Каждое число в унарной системе представлено последовательностью единиц. Например, 5 будет записано как 11111.

В алфавите $\Sigma = \{1, +, =\}$ мы можем записать выражения для суммы чисел x + y = z:

- 4+3=7 будет представлено как 1111+111=11111111,
- $0+1=1-\kappa a\kappa +1=1$.

Рассмотрим язык $A = \{1^m + 1^n = 1^{m+n} | m, n \in \mathbb{N}\}.$

- 1. Докажите, что язык A регулярный (построением) или не регулярный (через лемму о накачке).
- 2. Постройте КС-грамматику для языка A, показывающую, что A контекстносвободный.

Упражнение 3

(5 баллов)

1. Вы пошли гулять с собакой, ваша собака на поводке длины 2. Это значит, что она не может отойти от вас более чем на 2 шага. Пусть $\Sigma = \{h, d\}$, где h – ваше перемещение на 1 шаг вперёд, а d – шаг собаки. Например, hhdd обозначает, что вы прошли на 2 шага вперёд, затем собака подошла к вам. При этом прогулка может быть завершена, если собака и человек оказались в одной точке.

Пусть $D_1 = \{w \in \Sigma^* | w \text{ описывает последовательность ваших шагов и шагов вашей собаки на прогулке с поводком <math>\}$.

- (а) Докажите, что язык D_1 регулярный (построением) или не регулярный (через лемму о накачке).
- (b) Постройте КС-грамматику для D_1 , показывающую, что D_1 контекстносвободный.
- 2. Допустим теперь, что вы также пошли на прогулку с собакой, но не взяли с собой поводок. Это значит, что вы можете отдалиться от собаки на любое расстояние.

Пусть $D_2 = \{ w \in \Sigma^* | w \text{ описывает последовательность ваших шагов и шагов вашей собаки на прогулке без поводка }.$

- (а) Докажите, что язык D_2 регулярный (построением) или не регулярный (через лемму о накачке).
- (b) Постройте КС-грамматику для D_2 , показывающую, что D_2 контекстно-свободный.

Упражнение 4

(5 баллов)

Пусть $Perm(\omega)$ – это множество всех пермутаций строки ω , то есть, множество всех уникальных строк, состоящих из тех же букв и в том же количестве, что и в ω . Если L – регулярный язык, то Perm(L) – это объединение $Perm(\omega)$ для всех ω в L. Если L регулярный, то Perm(L) иногда тоже регулярный, иногда контекстносвободный, но не регулярный, а иногда даже не контекстно-свободный. Рассмотрите следующие регулярные выражения R и установите, является ли Perm((R)) регулярным, контекстно-свободным или ни тем и ни другим:

- 1. (01)* 3. (012)*
- $2. 0^* + 1^*$

Упражнение 5

(10 баллов)

Все правила праволинейной КС-грамматики имеет одну из следующих форм:

$$A \to \lambda$$
$$A \to B$$
$$A \to aB$$

где A, B – нетерминалы, а a – терминал.

1. Пусть грамматика G — праволинейная. Опишите алгоритм построения НКА N, такого что (N)=(G). Коротко докажите (от противного), что ваш алгоритм может получить только слова из языка грамматики. Проиллюстрируйте алгоритм на грамматике:

$$A \to aB|bC$$

$$B \to aB|\lambda$$

$$C \to aD|A|bC$$

$$D \to aD|bD|\lambda$$

2. Пусть N – HKA. Опишите алгоритм построения KC-грамматики G, такой что (G) = (N). Коротко докажите (от противного), что ваш алгоритм может получить только слова из языка HKA. Проиллюстрируйте алгоритм на автомате:

