

•Sumário:

- •Busca não informada
 - •Busca em largura primeiro
 - •Custo uniforme
 - •Busca em profundidade primeiro

Objectivos

- Adquirir a noção de busca não informada
- Descrever alguns algoritmos de busca não informada: em largura primeiro, de custo uniforme, em profundidade primeiro

Formulação de problemas

- Consiste em decidir que acções e estados considerar dado um objectivo
- Um problema é definido formalmente por 4 componentes:
 - − estado inicial
 - As possíveis *acções* do agente
 - Geralmente utiliza uma função sucessor

- Estado inicial e função sucessor definem o espaço de estados
- Teste de satisfação do objectivo
 - Utilizado para determinar se um estado constitui ou não o objectivo
- − custo do caminho
 - Função que atribui um custo numérico a cada trajectória

Busca em árvore: algoritmo

```
Função BuscaEmArvore (Problema, fronteira) retorna solução ou
  falha
Inicio
  fronteira ← InsereNaFila (FazNó (Problema [EstadoInicial]),
  fronteira)
  loop do
    se FilaVazia (fronteira) então
     retorna falha
   nó ← RemovePrimeiro(fronteira)
   se nó[Estado] for iqual a Problema[EstadoFinal] então
     retorna Solução (nó)
   fronteira \leftarrow InsereNaFila(ExpandeFronteira(nó, Problema),
  fronteira)
```

Fim

Estratégia de busca não informada (cega)

- Estratégias de busca não informada (ou busca cega blind search) usam apenas a informação disponível na definição do problema.
 - Apenas geram sucessores e verificam se o estado objetivo foi atingido
- As estratégias de busca não informada se distinguem pela ordem em que os nós são expandidos
 - Busca em largura primeiro (breadth-first)
 - Busca de custo uniforme (uniform-cost)
 - Busca em profundidade primeiro (depth-first)
 - Busca em profundidade limitada (depth-limited)
 - Busca de aprofundamento iterativo (iterative deepening)

Em largura primeiro

- Estratégia
 - Consiste em expandir todos os nós de um nível dado da árvore de busca, n, antes de qualquer nó correspondentes ao nível seguinte da árvore, n
 + 1
- Implementação
 - A fronteira é uma fila FIFO (first-in, first-out), os primeiros nós a ser incluídos são expandidos primeiro

Em largura primeiro: propriedades

- Completa?
 - Sim. Sempre encontra o objectivo que se encontra numa profundidade finita d (sempre que o factor de ramificação b seja finito)
- Óptima?
 - O nó objectivo mais raso nem sempre é o óptimo
 - É óptimo se o custo do caminho for uma função não decrescente da profundidade do nó

Em largura primeiro: propriedades

- Complexidade de tempo
 - Exponencial
 - $-O(b^{d+1})$, considerando que cada estado tem b sucessores e a solução se encontra a uma profundidade d
- Complexidade de espaço
 - Exponencial
 - $-O(b^{d+1})$, todos os nós gerados são mantidos em memória

Em largura primeiro: requisitos de tempo e memória

- Considerando
 - Factor de ramificação, b = 10
 - Podem ser gerados 10.000 nós por segundo
 - Cada nó ocupa 1000 bytes

Profundidade	Nós	Tempo	Memória
2	1100	0.11 segundo	1 megabyte
4	111.100	11 segundos	106 megabytes
6	10 ⁷	19 minutos	10 gigabytes
8	10 ⁹	31 horas	1 terabyte
10	10 ¹¹	129 dias	101 terabytes
12	10 ¹³	35 anos	10 petabytes
14	10 ¹⁵	3.523 anos	1 exabyte

Custo uniforme

- Estratégia
 - Expande sempre o nó de menor custo de caminho
 - Se os custos de todos os passos são iguais, método é idêntico à busca em largura primeiro
- Implementação
 - Fronteira -> fila
 ordenada pelo custo do caminho

Custo uniforme: propriedades

- Completa?
 - Sim, caso o custo de cada passo seja maior ou igual que um valor pequeno ε, constante e positivo
 - Condição evita a existência de ciclos infinitos ao expandir estados com custo de caminho nulo
- Óptima?
 - Sim, sob a mesma condição

Custo uniforme: propriedades

- Complexidade temporal
 - Exponencial, $O(b^{1+(C^*/\epsilon)})$
 - C* custo da solução óptima
 - ϵ custo mínimo de uma acção
- Complexidade espacial
 - Exponencial, $O(b^{1+(C^*/\epsilon)})$

Em profundidade primeiro

- Estratégia
 - Expande o nó mais profundo da fronteira da árvore de busca
- Implementação
 - Fronteira -> fila LIFO (last-in, first-out) ou pilha

Em profundidade primeiro: propriedades

- Complexidade espacial
 - Só precisa armazenar um único caminho da raiz até um nó folha, e os nós irmãos não expandidos
 - Nós cujos descendentes já foram completamente explorados podem ser retirados da memória
 - Para um factor de ramificação b e uma profundidade máxima m, O(mb) –> complexidade linear!

Em profundidade primeiro: propriedades

- Complexidade temporal
 - Exponencial
 - No pior dos casos todos os nós são gerados, O(b^m)
 - Péssimo quando m é muito maior que d
 - Mas se há muitas soluções pode ser mais eficiente que a busca em largura primeiro

Em profundidade primeiro: propriedades

- Completa?
 - Não
 - A busca não termina caso haja caminhos com profundidade infinita
- Óptima?
 - Não
 - Pode seleccionar um caminho errado e devolver uma solução profunda enquanto existem outras mais próxiimas da raiz

Tarefa

 Aplicar a busca de custo uniforme para achar o caminho mais curto entre Arad e Bucareste

Bibliografia

- Russell & Norvig, pg. 73 77
- Costa & Simões, pg. 78 93
- Palma Méndez & Marín Morales, pg. 315 –
 320