Two applications

(this is NOT an intro to provenance)

Dan Suciu
University of Washington

Two Applications

- 1. Provenance summaries for query answering using probabilistic views
 - With Chris Re
 - Status: ongoing
- 2. Provenance for privacy in RFID applications
 - With Vibhor Rastogi
 - Status: preliminary

Query Answering Using Views

$$V(x) = R(x,y), S(x,y,z), T(x,z)$$

Materialize:

\ = X

a

С

b

Query:

$$q = R(x,y),S(x,y,z),T(x,z),U(x,v),K(v,w)$$

Rewrite to:

$$q = V(x), U(x,v),K(v,w)$$

More efficient!

Using Probabilistic Views

R^p:

Sp:

Tp:

Vp:

X	у	Р
а	m	0.3
а	n	0.2
b	m	0.4
b	р	0.1

X	у	Z	Р
а	m	S	0.1
а	n	S	0.5
b	m	t	0.4
b	р	t	0.9

$$V(x) = R^{p}(x,y), S^{p}(x,y,z), T^{p}(x,z)$$

Using Probabilistic Views

R^p:

Sp:

Tp:

Vp:

X	у	Р
а	m	0.3
а	n	0.2
b	m	0.4
b	р	0.1

X	у	Z	Р
а	m	S	0.1
а	n	S	0.5
b	m	t	0.4
b	р	t	0.9

X	Z	Р
а	S	0.3
b	S	0.2
b	t	0.4

	X	Р		
	а	0.1		
	b	0.5		
Marginal				
probabilities				

$$V(x) = \mathbb{R}^{p}(x,y), \mathbb{S}^{p}(x,y,z), \mathbb{T}^{p}(x,z)$$

Using Probabilistic Views

Rp:

Sp:

Tp:

Vp:

X	у	Р
а	m	0.3
а	n	0.2
q	m	0.4
b	р	0.1

X	У	Z	Р
а	m	S	0.1
а	n	S	0.5
b	m	t	0.4
b	р	t	0.9

X	Z	Р
а	S	0.3
b	S	0.2
b	t	0.4

Marginal probabilities

$$V(x) = \mathbb{R}^{p}(x,y), \mathbb{S}^{p}(x,y,z), \mathbb{T}^{p}(x,z)$$

$$q = V(x), U(x,v),K(v,w)$$

Marginal Probin V^p insufficient

Enter Provenance

R^p:

Sp:

Tp:

Vp:

X	у	Е
а	m	E1
а	n	E2
b	m	E 3
b	р	E4

X	у	Z	Е
а	m	S	F1
а	n	S	F2
b	m	t	F3
b	р	t	F4

$$V(x) = R^{p}(x,y), S^{p}(x,y,z), T^{p}(x,z)$$

Enter Provenance

Rp:

Sp:

Tp:

Vp:

X	у	Е
а	m	E 1
а	n	E2
q	m	E 3
b	р	E4

X	у	Z	Е
а	m	S	F1
а	n	S	F2
b	m	t	F3
b	р	t	F4

X	Z	Е
а	S	G1
b	S	G2
b	t	G3

X	E
а	E1\F1\G1\E2\F2\G1
b	E3AF3AG3VE4AF4AG3

Provenance [Trio: "lineage"]

$$V(x) = \mathbb{R}^{p}(x,y), \mathbb{S}^{p}(x,y,z), \mathbb{T}^{p}(x,z)$$

Enter Provenance

R^p:

Sp:

Tp:

Vp:

X	у	Е
а	m	E1
а	n	E2
b	m	E 3
b	р	E4

X	у	Z	Е
а	m	S	F1
а	n	S	F2
b	m	t	F3
b	р	t	F4

X	Z	Е
а	S	G1
b	S	G2
b	t	G3

X	E
а	E1\F1\G1\E2\F2\G1
b	E3 _\ F3 _\ G3 _\ E4 _\ F4 _\ G3

Provenance [Trio: "lineage"]

$$V(x) = R^{p}(x,y), S^{p}(x,y,z), T^{p}(x,z)$$

$$q = V(x), U(x,v),K(v,w)$$

Can compute now but inefficient

"Provenance Summary"

Vp:

X	E
а	E1\F1\G1\E2\F2\G1
b	E3 _\ F3 _\ G3 _\ E4 _\ F4 _\ G3

A very concise summary of the provenance

"Provenance Summary"

Vp:

X	E
а	E1\F1\G1\E2\F2\G1
b	E3 _\ F3 _\ G3 _\ E4 _\ F4 _\ G3

-

x Ea H1b H2

Now we <u>know</u> we can use the marginals

A very concise summary of the provenance

"Provenance Summary"

Vp:

X	E
а	E1\F1\G1\E2\F2\G1
b	E3 _\ F3 _\ G3 _\ E4 _\ F4 _\ G3

 \rightarrow

 x
 E

 a
 H1

 b
 H2

Now we <u>know</u> we can use the marginals

A very concise summary of the provenance

Status: deciding if a view V has independent tuples is $\Pi^p{}_2$ complete

Open: find a minimal provenance summary 6

Application 2: RFID Security

RFID Ecosystem at UW

[Welbourne'2007]

Application 2: RFID Security

RFID Data

Base table

SIGHTINGS(tagID, antennaID, time)

EnteredRoom(personTagID, room, time)
CarriesObject(personTagID, objectTagID, time)
Meeting(personTagID1, personTagID2, time)

.

Derived tables (views)

Application 2: RFID Security

Privacy w. Authorization Views

Alice's query

q(x) = EnteredRoom(x, "Rm552", t), Yesterday(t)

```
v1(x,l,t) = LocatedAt(x,l,t), LocatedAt("Alice",l,t)

v2(x,r) = EnteredRoom(x,r,t),EnteredRoom("Alice",r,t'),|t-t'|<10

v3(x,r,t) = Friend(x,"Alice"), EnteredRoom(x,r,t)
```

.

Authorization view

System answers the query if it can be rewritten in terms of views; else deny

[Rizvi'2004]

Privacy and Provenance

 Issue 1: the data itself is a materialized view. How can we make access control decisions based on how the data was derived?

 Issue 2: the authorization views are probabilistic. How can we grant access with probability, say, 75%?

Questions?