The Last Few Bits..

CS771: Introduction to Machine Learning

\boldsymbol{Q} and \boldsymbol{K} are The Attention Mechanism $N \times v$ assumed $N \times d$ $\alpha_{nm}(\mathbf{X}) = \frac{\exp(\mathbf{q}_n^{\mathsf{T}} \mathbf{k}_m)}{\sum_{j=1}^{N} \exp(\mathbf{q}_n^{\mathsf{T}} \mathbf{k}_j)}$ $N \times v$ H = softmax $\boldsymbol{h}_n = \sum_{m=1}^N \alpha_{nm}(\boldsymbol{X}) \boldsymbol{v}_m$ "Scaled" dot-product attention Dividing by \sqrt{d} ensures variance $\alpha_{n,n+1}$ of the dot product is 1 $\alpha_{n,n-1}$ $\alpha_{n,n}$ "query" "value" "key" \boldsymbol{k}_{n+1} \boldsymbol{k}_n k_{n-1} q_{n-1} \boldsymbol{q}_n \boldsymbol{v}_n q_{n+1} v_{n+1} v_{n-1} x_{n+1} \boldsymbol{x}_n \boldsymbol{x}_{n-1}

$$Q = XW_O$$

$$K = XW_K$$

 $V = XW_V$

(Self-)Attention: An Illustration

ullet With self-attention, each token $oldsymbol{x}_n$ can "attend to" all other tokens of the same sequence when computing this token's embedding $oldsymbol{h}_n$

- Attention helps capture the context better and in a much more "global" manner
 - "Global": Long ranges captures and in both directions (previous and ahead)

Output Probabilities

Softmax

Transformer

Basically a sequence-tosequence model, like RNN

- Maps an input token sequence to an output token sequence
- Uses the idea of attention
 - "self-attention" over all input tokens
 - "self-attention" over each output token and previous tokens
 - "cross-attention" between output tokens and input tokens
- Transformers also compute embeddings of all tokens in parallel
- Transformers are based on the following key ideas*
 - "Self-attention" and "cross-attention" for computing the hidden states
 - Positional encoding
 - Residual connections

Attention helps capture the context better and in a much more "global" manner in sequence data

THE OF TECHNOLOGY

Positional Encoding

- Transformers also need a "positional encoding" for each token of the input since they don't process the tokens sequentially (unlike RNNs)
- Let $p_i \in \mathbb{R}^d$ be the positional encoding for location i. One way to define it is

Here
$${\it C}$$
 denotes the maximum possible length of a sequence
$$p_{i,2j} = \sin\left(\frac{i}{C^{2j/d}}\right), \; p_{i,2j+1} = \cos\left(\frac{i}{C^{2j/d}}\right)$$
 Positional encoding vector for location i assuming $d=4$
$$p_i = [\sin(\frac{i}{C^{0/4}}), \cos(\frac{i}{C^{0/4}}), \sin(\frac{i}{C^{2/4}}), \cos(\frac{i}{C^{2/4}})]$$

■ Given the positional encoding, we add them to the token embedding

$$\widehat{\boldsymbol{x}}_i = \boldsymbol{x}_i + \boldsymbol{p}_i$$

■ The above positional encoding is pre-defined but can also be learned

Zooming into the encoder and the decoder..

Multi-head Attention (MHA)

- A single attention function can capture only one notion of similarity
- Transformers therefore use multi-head attention (MHA)

Output Attention Query Keys Values

(Masked) Multi-head Attention (MHA)

Computing Attention Efficiently

■ The standard attention mechanism is inefficient for large sequences

$$0(T^2)$$
 storage and computation cost for a T length sequence $H = \operatorname{softmax}\left(\frac{QK^{\mathsf{T}}}{\sqrt{d}}\right)V$

Many ways to make it more efficient, e.g.,

Pic source: A Survey of Transformers (Lin et al, 2021)

Popular Transformers Variants: BERT and GPT

- The standard transformer architecture is an encoder-decoder model
- Some models use just the encoder <u>or</u> the decoder of the transformer
- BERT (Bidirectional Encoder Representations from Transformers)
 - Basic BERT can be learned to encoder token sequences
- GPT (Generative Pretrained Transformer)
 - Basic GPT can be used to generate token sequences similar to its training data

Transformers for Images: ViT

■ Transformers can be used for images as well[#]. For image classification, it looks like this

- Early work showed ViT can outperform CNNs given very large amount of training data
- However, recent work* has shown that good old CNNs still rule! ViT and CNN perform comparably at scale, i.e., when both given large amount of compute and training data

Fine-tuning and Transfer Learning

- Deep neural networks trained on one dataset can be reused for another dataset
 - It is like transferring the knowledge of one learning task to another learning task
- This is typically done by "freezing" most of the lower layers and finetuning the output layer (or the top few layers) this is known as "fine-tuning"

Unsupervised Pre-training

Self-supervised learning is a powerful idea to learn good representations unsupervisedly

- Self-supervised learning is key to unsupervised pre-training of deep learning models
 - Such pre-trained models can be fine-tuned for any new task given labelled data
- Models like BERT, GPT are usually pre-trained using self-supervised learning
 - Then we can finetune them further for a given task using labelled data for that task

Auto-encoders <

A special type of self-supervised learning: The whole input is being predicted by first compressing it and then uncompressing

- Auto-encoders (AE) are used for unsupervised feature learning
- lacktriangle Consist of an encoder f and a decoder g

• f and g can be deep neural networks (MLP, RNN, CNN, etc)

Note: Usually only the encoder is of use after the AE has been trained (unless we want to use the decoder for reconstructing the inputs later)

If using a prior on **z**, we can a probabilistic latent variable model called variational auto-encoder (VAE)

VAE can also generate synthetic data usings its decoder (standard AE's decoder can't generate "new" data)

$$\hat{x} = g(f(x))$$

Input Layer Representation Output Layer \hat{x}_1 \hat{x}_2 \hat{x}_3 \hat{x}_4 \hat{x}_5 \hat{x}_6 Output Layer \hat{x}_1 \hat{x}_2 \hat{x}_3 \hat{x}_4 \hat{x}_5 \hat{x}_6

Latent

Goal: Learn f and g s.t. $||x - \hat{x}||$ is small

Dimensionality of \boldsymbol{z} can be chosen to be smaller or larger than that of \boldsymbol{x}

If using AE for dimensionality reduction

Sometimes we want to learn "overcomplete" feature representations of the input

In such cases, need to impose additional constraints on f so that we don't learn an identify mapping from x to z

Contrastive Learning

Or "triplets" (e.g., "cat" is more similar to "dog" than to a "table")

- Can learn good features by comparing/"contrasting" similar and dissimilar object pairs
- Such pairs can be provided by to the algorithm (as supervision), or the algorithm can generate such pairs by itself using "data augmentation" (as shown in example below)

■ Such "contrastive learning" of features is also related to "distance metric learning" algos

Bias-Variance Trade-off

- \blacksquare Assume \mathcal{F} to be a class of models (e.g., linear classifiers with some pre-defined features)
- Suppose we've learned a model $f \in \mathcal{F}$ learned using some (finite amount of) training data
- We can decompose the test error $\epsilon(f)$ of f as follows

- lacktriangle Here f^* is the best possible model in ${\mathcal F}$ assuming infinite amount of training data
- Approximation error: Error of f^* because of model class ${\mathcal F}$ being too simple
 - Also known as "bias" (high if the model is simple)
- **Estimation error**: Error of f (relative to f^*) because we only had finite training data
 - Also known as "variance" (high if the model is complex)
- Because we can't keep both low, this is known as the bias-variance trade-off

Bias-Variance Trade-off

■ Bias-variance trade-off implies how training/test losses vary as we increase model complexity

Deep Neural Nets and Bias-Variance Trade-off

- Bias-variance trade-off doesn't explain well why deep neural networks work so well
 - They have very large model complexity (massive number of parameters massively "overparametrized")
- Despite being massively overparametrized, deep neural nets still work well because
 - Implicit regularization: SGD has noise (randomly chosen minibatches) which performs regularization
 - These networks have many local minima and all of them are roughly equally good
 - SGD on overparametrized models usually converges to "flat" minima (less chance of overfitting)

- Learning of good features from the raw data
- Ensemble-like effect (a deep neural net is akin to an ensemble of many simpler models)
- Trained on very large datasets

Double Descent Phenomenon

Overparametrized deep neural networks exhibit a "double descent" phenomenon

- Bias-variance trade-off seen only in the underparametrized regime
- Beyond a point (in the overparametrized regime), the test error starts decreasing once again even as the model gets more and more complex

Debugging ML Algorithms

What is going wrong?

- What to do when our model (say logistic regression) isn't doing well on test data
 - Use more training examples?
 - Use a smaller number of features?
 - Introduce new features (can be combinations of existing features)?
 - Try tuning the regularization parameter?
 - Run (the iterative) optimizer longer, i.e., for more iterations
 - Change the optimization algorithm (e.g., GD to SGD or Newton..) or the learning rate?
 - Give up and switch to a different model (e.g., SVM or deep neural net)?

High-Bias or High-Variance?

- The bad performance (low accuracy on test data) of a model could be due either
 - High Bias: Too simple model; doesn't even do well on training data
 - High Variance: Even small changes in training data lead to high fluctuation in model's performance
- High bias means underfitting, high variance means overfitting
- Looking at the training and test error can tell which of the two is the case

Learning from Imbalanced Data

Learning when classes are imbalanced

■ When classes are imbalanced, even a "stupid" classifier can give high accuracy but looking at accuracy alone may be misleading

Solution 1: Balancing the training data

- Can balanced the training data by
 - Under-sampling the majority class examples

Over-sampling the minority class examples

Weighted loss function with much larger importance given to loss function terms of positive examples than negative examples

$$\mathcal{L}(\mathbf{w}) = \sum_{i=1}^{N} \frac{\beta_{y_i}}{\beta_{y_i}} \ell(\mathbf{x}_i, y_i, \mathbf{w})$$

where $\beta_{+1} \gg \beta_{-1}$

cost/weights

99.997% not-phishing

abeled data

0.003%

phishing

Equivalent to

Add costs/weights to the training set

"negative" examples get weight 1

1 "positive" examples get a much larger

change learning algorithm to optimize weighted training error

99.997/0.003 = 33332

Solution 2: Changing the loss function

Don't use loss functions that define loss or accuracy on per-example basis

This loss function is a simple sum of losses on individual training examples. Not ideal for imbalanced classes

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ell(x_i, y_i, \mathbf{w})$$

■ Instead, use loss function that use example pairs (one positive and one negative)

■ Assuming our model to be defined by some function f(x) (e.g., w^Tx), define a loss

An input with positive label
$$\ell(f(\boldsymbol{x}_n^+), f(\boldsymbol{x}_m^-)) = \begin{cases} 0, & \text{if } f(\boldsymbol{x}_n^+) > f(\boldsymbol{x}_m^-) \\ 1, & \text{otherwise} \end{cases}$$

Now we don't care about per-example accuracy but care about whether the positive examples get a higher score than the negative examples (i.e., we are only preserving their relative rank)

Such loss functions can known as "pairwise loss functions"

$$\sum_{n=1}^{N_{+}} \sum_{m=1}^{N_{-}} \ell(f(\boldsymbol{x}_{n}^{+}), f(\boldsymbol{x}_{m}^{-})) + \lambda R(f)$$
Usual regularaizer on f

Ensemble Methods

Some Simple Ensembles

Voting or Averaging of predictions of multiple models trained on the same data

"Stacking": Use predictions of multiple already trained models as "features" to train a new model and use the new model to make predictions on test data

Mixture of Experts (MoE) based Ensemble

- Mixture of Experts (MoE) is a very general idea
- We assume m "simple" models, usually of the same type, e.g., m linear SVMs or m logistic regression models, or m deep neural nets (usually all with same architecture)

■ MoE is very popular in classical ML as well as "modern" deep learning

Ensembles using Bagging and Boosting

- lacktriangle Both use a single training set $\mathcal D$ to learn an ensemble consisting of several models
- lacktriangle Both construct N datasets from the original training set $\mathcal D$ and learn N models

- Bagging can do this in parallel for all the N models
- lacktriangle Boosting requires a <u>sequential</u> approach for N rounds

Bagging (Bootstrap Aggregation)

Boosting Boosting trains them Boosting assumes that the sequentially and combines individual models are them to get a "boosted" simple/weak models that powerful model can be easily learned Note that here we have Incorrect Correct two types of importances: Training data predictions predictions importance of each Importance of each training example and model is its accuracy 0 importance of each model 0 "Weighted data" means that we are increasing the importance of examples that were mispredicted in the previous round Weighted Model #2 0 and decrease it for examples The final model will be an data that were correctly predicted important-weighted combination 0 of all these models

Boosting primarily reduces the bias by making the weak (underfitted) models stronger but can also reduce variance to some extent

Weighted data

A Boosting Algo: AdaBoost (Adaptive Boosting)

Importance of the training example (x_i, y_i)

We might know this beforehand or estimate it during training

- In many ML problems, we can assign importance weight to each example, e.g., by weighing each term in the loss functions, i.e., $\mathcal{L}(w) = \sum_{i=1}^{N} \beta_i \ell(x_i, y_i, w)$
- AdaBoost is based on optimizing such a loss function
 - Initialize the ensemble as $\mathcal{E} = \{\}$ and $\boldsymbol{\beta}$ as $\boldsymbol{\beta}^{(0)} = [\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N}]$

Initially assume equal importance for all training examples

- For round t = 1, 2, ..., T
 - $\mathbf{w}^{(t)} = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \beta_i^{(t-1)} \ell(\mathbf{x}_i, y_i, \mathbf{w})$ and add it to ensemble $\mathcal{E} = \{\mathcal{E} \cup \mathbf{w}^{(t)}\}$
 - lacktriangle Define the total loss of $w^{(t)}$ as $L(w^{(t)}) = \sum_{i=1}^N eta_i^{(t-1)} \ell(x_i, y_i, w^{(t)})$ Or the importance weighted total error
 - lacktriangle Compute the "importance" of $m{w}^{(t)}$ for the $m{\mathcal{E}}$ as $m{\alpha}_t = f(L(m{w}^t))$ for is some function such that $m{\alpha}_t$ is high if total loss $L(m{w}^t)$ is low, and vice-versa
 - lacktriangle Increase/decrease importance eta_i of each training instance (x_i, y_i) for next round as

$$\beta_i^{(t)} \propto \begin{cases} \beta_i^{(t-1)} \times \exp\left(\alpha_t \ell(\mathbf{x}_i, y_i, \mathbf{w}^{(t)})\right) & \text{(Increase if } \mathbf{w}^{(t)} \text{ mispredicted } (\mathbf{x}_i, y_i)) \\ \beta_i^{(t-1)} \times \exp(-\alpha_t \ell(\mathbf{x}_i, y_i, \mathbf{w}^{(t)})) & \text{(Decrease if } \mathbf{w}^{(t)} \text{ correctly predicted on } (\mathbf{x}_i, y_i)) \end{cases}$$

• Final model is $\hat{w} = \sum_{t=1}^{T} \alpha_t w^{(t)}$ importance-weighted average of all $w^{(t)}$'s

AdaBoost: An Illustration

- Suppose we have a binary classification problems with each input having 2 features.
- Suppose we have a weak model like a simple DT (decision stump)
- Illustration of AdaBoost using a decision stump if run for 3 rounds

- The ensemble represents the overall model
- We got a nonlinear model from 3 simple linear models
- Note that the ensemble was constructed sequentially

Gradient Boosting

- Consider learning a function f(x) by minimizing a squared loss $\frac{1}{2}(y-f(x))^2$
- Gradient boosting is a sequential way to construct such f(x)
- For simplicity, assume we start with $f_0(x) = \frac{1}{N} \sum_{i=1}^N y_i$
- Given previously learned model $f_m(x)$, let's assume the following "improvement" to it

$$f_{m+1}(x) = f_m(x) + h(x)$$
 = "Residual" which, if added to $f_m(x)$, will make the new prediction $f_{m+1}(x)$ closer to y

- Thus the goal for the next round is to learn the "residual" $h(x) = y f_m(x)$
- lacktriangle Residual is negative gradient of the loss w.r.t. f(x) thus called "gradient boosting"
- The final model $f_M(x)$, once the residual is sufficiently small, is what we will use
- The idea of gradient boosting is applicable to classification too

Based on sequentially constructing a DT

XGBoost (eXtreme Gradient Boosting) is a very popular grad boosting algo

Domain Adaptation

- We may have a "source" model trained on data from some domain
- We might want to deploy it in a new domain
- Performance of the source model will suffer
- To prevent this, we usually perform "domain adaptation" or "transfer learning"
- These are broad terms covering a variety of techniques that "finetune" the source model using labelled/unlabeled data from the new domain

We do expect some "commonality" (e.g., some common set of features) between the two domains otherwise we can't hope to have any adaptation/transfer

The ending note..

- Good features are important for learning well
- The "classical" ML methods we studied in this course still continue to have high relevance
- Success of deep learning is largely attributed to (automatically learned) good features
- Deep learning is not a panacea often simple classical models can do comparably/better
- First understand your data (plot/visualize/look at some statistics of the data, etc)
- Always start with a simple model that you understand well
 - Try to first understand if your data really needs a complex model
- Think carefully about your features, how you compute similarities, etc.
- Helps to learn to first diagnose a learning algorithm rather than trying new ones
 - Understanding of optimization algos, loss function, bias-variance trade-offs, etc is important
- No free lunch. No learning algorithm is "universally" good

