密级	
山纵	

博士学位论文

可压缩流动中间断问题的高分辨率数值求解方法及应用

刘利
申义庆 研究员
中国科学院力学研究所
理学博士
流体力学
中国科学院力学研究所

2017年4月

A Study of High-Resolution Algorithms for Discontinuous Problems in Complex Compressible Flows and Their Applications

By Li Liu

A Dissertation Submitted to
University of Chinese Academy of Sciences
In partial fulfillment of the requirement
For the degree of
Doctor of Fluid Mechanics

Institute of Mechanics
University of Chinese Academy of Sciences

April, 2017

摘要

在计算流体力学研究中,各种间断问题的高分辨率数值求解方法一直是一个重要的课题。如超声速、高超声速流动中的激波,高速化学反应流动中的爆 轰波,多物质运动界面等的存在,都给数值模拟研究带来各种不同的挑战。本 文正是针对求解这些问题时遇到的一些困难,发展了相关的数值求解方法。

- (1)激波是可压缩流动中的一个重要现象,激波捕捉格式也经历了半个多世纪的发展。近年来,WENO格式由于既能捕捉激波,在光滑区有具有一致高阶的精度而得到越来越多的应用。但是,已有的一些WENO格式主要是针对极值点格式精度降低的问题来进一步发展性能更好的WENO格式,如WENO-M,WENO-Z等格式。我们针对WENO格式在过度点所表现的不足,提出多步加权思想及多步加权格式(Multistep WENO),有效提高了WENO在激波附近的计算精度。除此之外,考虑到对某些问题,光滑区域需要更高的精度来提高短波分辨能力,构造杂交格式是一个兼顾激波捕捉和高精度低耗散的有效手段。对于杂交格式,如何有效识别间断是关键问题,文中对比了现存的不同激波识别方法,得出 75 识别方法最为有效。我们还将有限紧致格式应用在有限磁流体求解中。
- (2) 超声速多介质流广泛的存在于如燃烧室混合、射流等流动中,其中多相流界面是性质不同于激波的另一类的间断问题。在多相流的计算中,界面两侧由于物质不同,状态方程的参数,甚至形式都可能有很大的区别,界面由于数值耗散而产生的非物理状态很难给出合理的状态方程。在固定的网格下,由于界面附近网格量不足,追踪类方法较界面捕捉方法更为有效。考虑到现存的界面追踪方法,如 Level-Set 方法,VOF 方法等都有各自的不足,我们提出一种 Euler-Lagrange 方法,称为双信息保存方法。该方法的主要思想是:在 Euler单元内引入两类 Lagrange 信息点,一类全域追踪,称为粒子信息点,另一类限制在单元内移动,称为单元信息点,单元信息点的信息通过更新(单元内有信息点)与再生(无信息点)法则,以获得 Eulerian 网格上的信息。粒子信息点具有保持界面位置准确的特性,单元信息点可以保证粒子和单元间信息的传递。我们将该方法和避免界面附近振荡的虚拟流体方法结合,应用于求解可压缩流界面问题,结合高精度 WENO 格式,可以有效提高方法对于多相流界面的分

辨能力。

- (3) 在高速化学反应流动中,由于化学反应(如爆轰波)和流动的尺度差距,会存在空间刚性问题,传统求解方法难以准确计算爆轰波波速甚至产生错误的结构。由于双信息保存方法可以将反应区域当成有一定厚度的界面进行计算,能有效避免由于激波捕捉格式的数值耗散而产生的错误的化学反应激发,因而能够有效的克服化学反应刚性问题。在采用基元反应模型的更精细的爆轰反应求解中,该方法可以有效保持总组分的守恒性,在总的精度方面相比于传统的求解方法同样有所改善,数值结果表明所发展方法的有效性。
- (4)本文还针对高速化学反应流动的刚性问题,发展了反应常微分方程(ODE) 求解的数值摄动格式,提高了计算的稳定性和计算效率。

关键词: 激波捕捉格式,界面追踪方法,虚拟流体方法,化学反应流动,数值 摄动

Abstract

The numerical studies of the discontinuous problems are always one of the most important topics in the CFD field from the start. Different challenges come from those discontinuities, such as, the shocks in the supersonic and hypersonic flows, the interfaces in the multi-component flows and the detonation wave in the high speed reaction flows. The goal of this paper is to develop corresponding numerical methods to cue the problems in simulating different types of discontinuities.

Shock is one of the main characters in the compressible flows, although the shock-capture methods have developed for nearly half a century, it is still a hot topic. Recent years, the weighted essantially non-oscillatory (WENO) schemes have been widely used as those schemes can capture the shocks stably and get high-order accuracy in the smooth regions. However, the existing modified schemes such as WENO-Z and WENO-M, are all constructed to obtain the optimal order at critical points, but all those method cannot obtain the optimal accuracy at the transition points, which connect a smooth region and a discontinuity. A new multi-step method is developed and a new fifth-order WENO scheme is constructed to improve the accuracy at transition points. Besides, in some problems we need higher order in the smooth reagion to resolve the high frequency wave. Hybrid scheme is an ideal idea to obtain both the advantages of shock-capturing and low dissipation in the smooth reagions. The key of the hybrid method is how accuracy can we detect the shocks. In this paper, we compare different existing shock detectors, and get the result that the τ_5 detector is the most exact. One kind of hybrid scheme—finit compact scheme is extended to solve the ideal magnetofluid (MHD) equations in this paper.

Interface is another kind of discontinuity which appears in the compressible multi-component flows, for example the mixing in the combustion chamber, jet-flows and so on. In multi-component flows, the equation of state(EOS) is different in coefficients or even in the forms in different components. The dissi-

pation of the interface will bring the trouble of non-physical state. With a fixed grid, interface tracking method appears to be more effective than the interface capturing method. Considering that, the existed interface methods such as Levelset method and VOF method are all have problems in the conservation, in this paper, a new Euler-Lagrange method is constructed, named as dual information preserving(DIP) method. In the DIP method two kinds of Lagrangian points are introduced into the Eulerian grid, one kind of point named as particle-point is traced in the whole computation to keep the accuracy and sharp ouline of the surface, and the other kind of point is limited in every cell called cell-point to transmit the information between the cells and the points. We combine this method with the ghost fluid method (GFM) to tracking the interface with the characters high resolution and non-oscillatory.

In the high speed reaction flows, the difference in the scales between the reaction and convection may cause great spatial stiff problems. Especially in the computation of the detonation waves, when the stiff of the source terms is large enough, a wrong detonation speed or unphysical wave structure may appear with tranditional numerical methods. As the DIP method can compute the reaction reagion as am interface with finite thickness, in this paper, DIP method is used to restrict the incorrect reaction activation caused by the numerical dissipation. In the reaction flows with elementary reaction model, with the new method, the results show some goodness in conservation and the accuracy.

In this paper, we also construct a numerical perturbation method for the ordinary difference equation (ODE) to solve the reaction flows which may has temporal stiff problem.

Keywords: shock-capturing scheme, interface tracking method, ghost fluid method, reaction flow, numerical perturbation

目录

摘要 …			i
Abstra	ct ·····		iii
目录 …			\mathbf{v}
第一章	引言。		1
1.1	本文研	T究的范围及其方程系统·····	2
	1.1.1	单介质 Euler 方程 · · · · · · · · · · · · · · · · · ·	2
	1.1.2	理想磁流体方程 · · · · · · · · · · · · · · · · · · ·	3
	1.1.3	多介质 Euler 方程 · · · · · · · · · · · · · · · · · ·	5
	1.1.4	高速化学反应 Euler 方程 · · · · · · · · · · · · · · · · · ·	6
1.2	可压缩	音流中间断问题的理论研究简介	9
	1.2.1	Euler 方程弱解及解存在性的研究······	10
	1.2.2	黎曼问题和 Euler 方程近似解·····	11
1.3	计算流	瓦体力学和数值方法发展	12
	1.3.1	计算流体力学简介 · · · · · · · · · · · · · · · · · · ·	13
	1.3.2	数值方法的发展 · · · · · · · · · · · · · · · · · · ·	13
1.4	间断问	团题数值研究现状和不足	19
	1.4.1	激波捕捉格式和激波分辨率 · · · · · · · · · · · · · · · · · · ·	19
	1.4.2	物质界面和界面追踪方法 · · · · · · · · · · · · · · · · · · ·	19
	1.4.3	气相爆轰波 · · · · · · · · · · · · · · · · · · ·	22
1.5	本文所	f开展研究内容	30

上普	邓分 ·	
第二章	多步力	n权基本无振荡(Multi-WENO)格式 · · · · · · · · · · · · · · · · · · ·
2.1	本章涉	步及的数值方法 · · · · · · · · · · · · · · · · · · ·
	2.1.1	Lax-Friedrichs (LF) 通量分裂方法和空间半离散·······
	2.1.2	加权基本无振荡/WENO 格式 [22,102,115] · · · · · · · · · · · · · · · · · · ·
	2.1.3	Runge-Kutta 时间方法 · · · · · · · · · · · · · · · · · · ·
2.2	过渡点	5.精度分析 · · · · · · · · · · · · · · · · · · ·
2.3	WEN	O 格式的多步加权方法······
2.4	数值第	拿例 · · · · · · · · · · · · · · · · · · ·
	2.4.1	线性对流算例 · · · · · · · · · · · · · · · · · · ·
	2.4.2	非线性对流算例 · · · · · · · · · · · · · · · · · · ·
	2.4.3	一维激波管算例 · · · · · · · · · · · · · · · · · · ·
	2.4.4	二维对流传播方程 · · · · · · · · · · · · · · · · · · ·
	2.4.5	二维变系数线性对流守恒方程算例
	2.4.6	二维激波/涡相互作用算例 · · · · · · · · · · · · · · · · · · ·
	2.4.7	激波/剪切层相互作用算例 · · · · · · · · · · · · · · · · · · ·
2.5	小结	
第三章	间断认	只别方法比较研究 · · · · · · · · · · · · · · · · · · ·
3.1	有限紧	※致格式 (the finite compact scheme) ······
3.2	间断训	只别方法 · · · · · · · · · · · · · · · · · · ·
	3.2.1	τ ₅ 识别方法 [204] · · · · · · · · · · · · · · · · · · ·
	3.2.2	平均总变差(Average total variation)识别方法 · · · · · · · ·
	3.2.3	基于 minmod 函数的 TVB 识别方法 [44]·····
	3.2.4	XS 识别方法 [250] · · · · · · · · · · · · · · · · · · ·
	3.2.5	Biswas, Devine 和 Flaherty 动量限制 (moment limiter) 方法 [19] (BDF) · · · · · · · · · · · · · · · · · · ·
	3.2.6	KXRCF 间断识别器 [126]····································

目录	••
	VII

下部分	61
<u>参考文献</u> · · · · · · · · · · · · · · · · · · ·	63
发表文章目录 · · · · · · · · · · · · · · · · · · ·	93
简历	95
致谢 · · · · · · · · · · · · · · · · · · ·	97

表格

2.1	不同格式精度对比, $T=2$ ······	44
2.2	2D 线性对流传播方程算例中不同格式计算精度对比。 $T \equiv 2 \cdots$	50

插图

1.1	过渡点示意图。 · · · · · · · · · · · · · · · · · · ·	20
1.2	典型爆轰波压力曲线 [208] · · · · · · · · · · · · · · · · · · ·	23
1.3	二维胞格结构示意图 [208]。	24
1.4	一个典型的爆轰波虚假传播计算结果 [245] · · · · · · · · · · · · · · · · · · ·	26
1.5	$2H_2 + O_2 + 7Ar$ 反应组分摩尔比变化和激波前沿距离关系 [185] · ·	29
1.6	$2H_2 + O_2 + 7Ar$ 反应不同特征值最佳尺度和激波前沿距离关系 [185]	29
2.1	初始条件 Eq.(2.24) 下计算结果对比, $t=6$. · · · · · · · · · · · · · · · · · · ·	45
2.2	(a) 初始条件 Eq.(2.25) 下计算结果对比, $t = 6$. (b) 图.2.2(a) 的	
	局部放大图	47
2.3	(a) 初始条件 Eq.(2.25) 下计算结果对比, $t = 6$. (b) 图.2.3(a) 的	
	局部放大图. · · · · · · · · · · · · · · · · · · ·	48
	有限紧致格式示意图	

间断问题是计算流体力学中,乃至整个计算数学中长久存在的难点。在数学上,间断问题体现为,对流方程不存在无限可微的经典解而只能在更广义的不连续函数空间寻求弱解。弱解是普遍存在的,实际上,对于几乎所有连续力学模型都遵循的非线性双曲守恒方程的初值问题 (Cauchy 问题) 来说,即使初始值是光滑的,解在有限时间内也会发展出奇异性 [190,216,276]。从物理角度,间断体现为某些物理量在空间上的不连续性。在流体力学中,这种弱解主要体现为激波、接触间断、物质界面、爆轰(燃)波等。

激波在可压缩流体中就像衣服上的褶皱一样随处可见,是可压缩流中最主要的一类间断,所有和可压缩流动有关的问题都躲不开激波。在物理上,激波成因已经得到极为充分的研究 [162,172],然而更复杂的激波间或是激波与其他结构如激波/边界层、激波/界面间的相互作用等仍是当今理论研究 [?,103,167,269]、实验研究 [3,158,233] 和数值模拟 [88,249,251] 的热点,有很强的工程背景。除此之外,在化学反应流中,激波和化学反应相互作用还能形成如爆燃波、爆轰波等衍生的间断类型,其中爆轰波 [73,80,134] 的研究在诸如发动机 [29,30]、高能炸药爆炸 [40,62,134] 等诸多领域均有重要应用。

当流体中存在压强无法匹配时,根据特征线是汇聚或是发散的,会形成激波或稀疏波,当压力可以匹配而密度无法匹配时或存在不同状态的物质时,就会出现接触间断或界面 [273],事实上界面是不同状态的物质间存在的一种特殊的接触间断类型 [43],因此有些学者也把接触间断称为接触界面 [5,229]。通过接触间断,压力和法向速度连续而密度、切向速度以及状态方程可能存在间断。界面问题的集中体现在各种多相流研究中,是其中最为关键的问题,也是多相流求解的难点所在。多相流在高速可压缩流动中同样有广泛应用 [27],如空化 [17,92,255]、燃烧室混合 [133]、反应堆蒸汽发生器 [124] 和发电厂锅炉等方面。

激波和接触间断是孤立存在的吗?恰恰相反,可压缩多相流中广泛存在激波,而激波/界面相互作用极大增加了界面问题研究的难度[150,159,194]。

1.1 本文研究的范围及其方程系统

本文将从数值模拟角度对高速可压缩流中的各类间断问题进行较为系统的 研究,其中包括先进的激波捕捉方法、高精度低耗散的杂交格式以及其在磁流 体中的应用、界面追踪方法和刚性化学反应流及爆轰波相关研究。

本文研究涉及四种物质状态,包括可压缩单介质理想气体、理想磁流体、存在界面的多介质流体以及存在化学反应的可压缩多组分气体混合物。下面分别给出描述这四种物质状态所采用的具体的方程系统。

1.1.1 单介质 Euler 方程

研究各种常见单介质可压缩流动问题时,我们常采用无黏、无导热的 Euler 方程,它是 Navier-Stocks(NS) 方程的简化方程,既是 NS 方程分层次求解的一层,也能满足很多物理问题的求解要求,同时,Euler 方程研究也是其它如磁流体、多相流及化学反应流等复杂方程系统研究的基础。下面给出二维守恒型 Euler 方程:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \tag{1.1}$$

其中

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \end{pmatrix}, F = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ u(E+p) \end{pmatrix}, G = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ v(E+p) \end{pmatrix},$$

其中 ρ 为密度, u 为 x 方向速度, v 为 y 方向速度, p 是流体的压力, E 是总能量, 对于理想气体有如下形式状态方程

$$p = (\gamma - 1)[E - \frac{1}{2}\rho(u^2 + v^2)], \tag{1.2}$$

其中 γ 为比热比。

虽然 Euler 方程形式较 NS 方程大大简化,但是采用 Euler 方程至少有四点实际意义:

1, 可以认为 Euler 方程是 NS 方程在大雷诺数下的一种特例情况 [284]。

- 2, 在气体动力学中, 求解无分离流动问题时, 将无黏流动理论和边界层理论结合, 可以很好解决这类工程问题。
- 3, 很多流动现象的机理研究都可以采用 Euler 方程, 比如激波结构, 由于系统简单, 更容易分析和研究。
- 4, 由于 Euler 方程是 NS 方程的对流部分,数值上对流部分的方法设计更为困难,通常在 Euler 方程上设计算法,然后推广应用在 NS 方程中。

基于这些考虑,针对我们要研究的方法和问题来说,采用无黏 Euler 方程都是一件合理的事情。

1.1.2 理想磁流体方程

磁流体 (MHD) 在气体动力学中主要出现在飞行器再入、燃烧室等超高温情况下电离产生的等离子体相关研究方面,理想磁流体方程是磁流体研究中最简单的模型方程,它和 Euler 方程有类似的波动结构,但是它同时具有非严格的双曲性质、更复杂的特征值系统和流场间断结构。本文并不深入研究磁流体,只将 Euler 的数值方法推广于理想 MHD 方程求解中,验证方法的适用性。下面给出二维理想磁流体控制方程:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0, \tag{1.3}$$

其中

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \\ B_x \\ B_y \\ B_z \end{pmatrix}, F = \begin{pmatrix} \rho u \\ \rho u^2 + p_t - B_x^2 \\ \rho uv - B_x B_y \\ (E + p_t)u - B_x (uB_x + vB_y) \\ 0 \\ uB_y - vB_x \\ uB_z \end{pmatrix}, G = \begin{pmatrix} \rho v \\ \rho uv - B_y B_x \\ \rho v^2 + p_t - B_y^2 \\ (E + p_t)v - B_y (uB_x + vB_y) \\ vB_x - uB_y \\ 0 \\ vB_z \end{pmatrix},$$

和 $p_t = p + (B_x^2 + B_y^2 + B_z^2)/2$, 其中 B 为磁场强度,E 为电场强度,对于磁场有限制条件

$$\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial u} = 0.$$

状态方程为

$$p = (\gamma - 1)\left[E - \frac{1}{2}\rho(u^2 + v^2) - \frac{1}{2}(B_x^2 + B_y^2 + B_z^2)\right].$$

理想磁流体方程将流体看成完美的导体,具有无限大的电导率,并且忽略了位移电流。该方程是模拟磁流体最简化的自恰系统,多用在研究等离子体的宏观稳定性和平衡性等方面,尤其在磁约束核聚变中,该方程有重要作用[74]。

理想磁流体方程 (1.3) 和 Euler 方程 (1.1) 相比,增加了前麦克斯韦 (Pre-Maxwell) 方程 [160],对于一维来说特征根从 3 个增加到 7 个,从小到大分别为

$$\lambda_{1,2,3,4,5,6,7} = u - c_f, u - c_a, u - c_s, u, u + c_s, u + c_a, u + c_f.$$

可见从原本一个声速量增加到了三个分别可以称为快波,中速波 (Alfvén) 和慢波。Alfvén 波为

$$c_a = \frac{|B_x|}{\sqrt{\rho}},$$

快波和慢波为

$$c_{f,s} = \sqrt{\frac{1}{2} \left[c^2 + b^2 \pm \sqrt{(c^2 + b^2)^2 - 4c^2 c_a^2} \right]},$$

其中 c 为声速, $b^2 = \frac{B_x^2 + B_y^2 + B_z^2}{\rho}$ 。

对于一维方程系统来说,如果任意 u 的特征根都不相同,则认为该双曲系统为严格的双曲系统 [197],而方程 (1.3) 中,三个波速在特殊情况下可能等值,因此该系统为非严格双曲 (non-strictly hyperbolic) 系统 [53,192,197]。

由于理想磁流体中波速更多、特征值系统更为复杂以及其非严格双曲的特性都为数值构造带来很多困难,流场中更为丰富的激波结构也对数值方法的稳

定性提出考验。由于方程本身的相似性,很多 Euler 方程求解方法都曾推广到理想磁流体方程研究中。限于主题,本文并不对该方程系统做深入研究,只将构造的数值方法做初步推广工作。

1.1.3 **多介质** Euler 方程

界面问题是多介质、多相流中最基本问题,在多介质可压缩流中同样具有重要地位,界面出现在存在明确分界面的流体中,本文采用无相变、无扩散的多介质 Euler 方程描述这一问题,该方程系统也是描述界面问题的最简单系统。多介质 Euler 方程和单介质方程 (1.1) 相似,只是增加一个标记不同介质的方程,和界面相关的方程多采用非守恒形式,

$$\begin{cases}
\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \\
\frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} = 0
\end{cases}$$
(1.4)

其中

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \end{pmatrix}, F = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ u(E+p) \end{pmatrix}, G = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ v(E+p) \end{pmatrix}.$$

不同介质具有不相同的状态方程形式和参数,以两介质问题为例,

本文主要研究理想气体和水,理想气体状态方程在公式 (1.2) 中已经给出去,水 的状态方程为

$$p = (\gamma - 1)\rho e - \gamma B,\tag{1.6}$$

其中 $\gamma = 7.15$, B = 3309。

该方程系统忽略了粘性、热传导以及表面张力效应,是研究界面问题的极 为简化的模型方程,可能只在高速问题中才有定量的研究的意义,如激波/气泡 相互作用 [1,214]、水下爆炸 [168] 等方面。但是该方程系统仍然在界面问题的数值方法研究以及定性分析等方面有广范应用。

1.1.4 高速化学反应 Euler 方程

在化学反应流动中,激波会带来新的物理问题,如爆燃和爆轰。爆燃波和爆轰波是化学反应流中具有代表性的间断结构,它们的相关理论、实验以及数值研究在如炸药、发动机等极多高温、高超气体动力学领域中有重要意义。本文采用如下的无粘、无传热的 Euler 反应方程系统

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S \tag{1.7}$$

其中

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \\ \rho z_1 \\ \rho z_2 \\ \vdots \\ \rho z_{ns-1} \end{pmatrix}, F = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ u(E+p) \\ \rho z_1 u \\ \rho z_2 u \\ \vdots \\ \rho z_{ns-1} u \end{pmatrix}, G = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ v(E+p) \\ \rho z_1 v \\ \rho z_2 v \\ \vdots \\ \rho z_{ns-1} v \end{pmatrix}, S = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \omega_1 \\ \omega_2 \\ \vdots \\ \omega_{ns-1} \end{pmatrix}$$

其中 ns 为多组分流体中的组分数, z_i 和 ω_i 分别为 i 组分质量分数和生成率。由于总的质量分数为 1, 则第 ns 组分为

$$z_{ns} = 1 - \sum_{i=1}^{ns-1} z_i.$$

不同的反应模型下生成率有不同形式,本文主要采用三种形式,从简单到 复杂分别为固定比热比的单步总包反应模型,固定比热比的多步反应模型和变 比热比的基元反应模型。

固定比热比单步总包反应模型

对于固定比热比的单步总包反应模型

$$A \to B$$

其中 A 代表反应物, B 代表生成物, 反应源项为

$$\omega_1 = -K(T)\rho z,\tag{1.8}$$

其中 K 为反应率可以通过 Arrhenius 率

$$K(T) = K_0 e^{-T_{ign}/T}$$

或者如下 Heaviside 率求得

$$K(T) = \begin{cases} 1/\epsilon, & T \geqslant T_{ign}, \\ 0, & T < T_{ign}, \end{cases}$$

其中 K_0 是反应率常数, T_{ign} 是燃点和 ϵ 是反应时间。状态方程为

$$p = (\gamma - 1) \left(E - \frac{1}{2} \rho (u^2 + v^2) - \frac{1}{2} \rho u^2 - q_0 \rho z \right).$$

其中 q0 为反应热。

固定比热比多步反应模型

对于固定比热比多步反应模型,考虑有 ns 组分的可逆反应

$$\sum_{i=1}^{ns} \mu'_{i,j} \chi_i \leftrightarrow \sum_{i=1}^{ns} \mu''_{i,j} \chi_i \qquad (j=1,\cdots,nr)$$

$$(1.9)$$

其中 nr 为反应方程数, 化学计量数 μ 为整数, χ_i 代表第 i 组分, 上标 ' 正方向反应化学计量数, " 代表反方向反应化学计量数。i 组分反应率可以写成

$$\omega_i = W_i \sum_{k=1}^{nr} (\mu''_{i,k} - \mu'_{i,k}) K_k \prod_{j=1}^{ns} \left(\frac{\rho z_j}{W_j}\right)^{\mu'_{j,k}},$$

其中 nr 为反应数, W_i 为 i 组分的摩尔质量, 反应率 K_i 采用 Heaviside 形式

$$K_i(T) = \begin{cases} 1/\epsilon_i, & T \geqslant T_{ign}, \\ 0, & T < T_{ign}. \end{cases}$$
 $i = 1, 2, \dots, nr$

状态方程为

$$p = (\gamma - 1) \left(E - \frac{1}{2} \rho (u^2 + v^2) - \frac{1}{2} \rho u^2 - q_1 \rho z_1 - q_2 \rho z_2 - \dots - q_{ns} \rho z_{ns} \right).$$

其中 q_i 为 i 组分反应热。

多步基元反应模型

根据物理问题不同和对计算精准度要求不同,模拟可能需要了解详细的化学反应动力学,基元反应模型就是针对这样的要求提出的,这里的基元反应就是指反应物微粒 (原子、分子、离子和自由基等)一步实现的化学变化。区别于多步简化模型,基元反应模型中的混合物各种热力学参数如焓、熵和比热比等会随着温度变化而改变。基元反应模型研究的气体对象为理想气体方程控制下的的热完全气体 (T < 4000K)。关于量热完全气体 (Calorically perfect/Perfect)、热完全气体 (Thermally perfect/Semi-perfect)、理想气体 (Ideal) 和真实气体 (Imperfect) 的详细概念可以参照 [4]。

我们同样可以采用公式 (1.9) 来代表所有基元反应, 其中 ns 代表所有反应物和三体的数目。第 i 组分的质量生成率为

$$\omega_i = W_i \sum_{k=1}^{nr} (\nu_{k,i}'' - \nu_{k,i}') \left\{ K_{f,k}(T) \prod_{j=1}^{ns} \gamma_j^{\nu_{b,k}'} - K_{b,j}(T) \prod_{j=1}^{ns} \gamma_j^{\nu_{k,j}'} \right\}$$
(1.10)

其中, $K_{f,k}$ 、 $K_{b,k}$ 分别为第 k 个反应的正向和逆向反应速率常数,可以通过 Arrhenius 公式求得

$$K_{f,k} = A_k T^{b_j} exp\left(-\frac{E_{a,k}}{R_u T}\right) \tag{1.11}$$

参数 A_k,b_k 和 $E_{a,k}$ 分别为第 k 个基元反应的指前因子、温度系数和活化能。逆反应速率常数 $K_{b,k}$ 可以通过下面方式求得

$$K_{b,k} = \frac{K_{f,k}}{K_{c,k}}, K_{c,k} = K_{p,k} \left(\frac{p_{atm}}{R_u T}\right)^{\sum_{i=1}^{n_s} (\nu_{i,k}^{"} - \nu_{i,k}^{'})}$$
(1.12)

其中, p_{atm} 为标准大气压, $K_{n,k}$ 为压力平衡常数

$$K_{p,k} = exp\left(\sum_{i=1}^{ns} (\nu''_{i,k} - \nu'_{i,k}) \left(\frac{S_i}{R_u} - \frac{H_i}{R_u T}\right)\right)$$
(1.13)

 S_k 和 H_k 为 k 组分的摩尔熵和焓, 具体表达见正文。

热完全气体混合物遵从道尔顿分压定律,混合气体压力等于各组分压力之和,而各组分气体仍然满足热完全气体假设。混合气体状态方程为

$$p = \rho RT = \sum_{i=1}^{ns} \rho_i R_i T = \sum_{i=1}^{ns} z_i \rho_i T = \rho \frac{R_u}{\bar{W}} T$$
 (1.14)

其中, \bar{W} 为平均摩尔质量

$$\bar{W} = \frac{1}{\sum_{i=1}^{ns} z_i / W_i}$$

需要注意的是,公式 (1.14) 中的 R 为混合气体的特定气体常数 (Special gas constant)

$$R = \sum_{i=1}^{ns} z_i R_i \tag{1.15}$$

 R_i 为第 i 个组分的气体常数

$$R_i = \frac{R_u}{W_i} \tag{1.16}$$

其中 R_u 为气体常数(又被称为摩尔气体常数、普世气体常数、理想气体常数) 其值为 $R_u = 8.3144598J \cdot mol^{-1} \cdot K^{-1}$ 。每一气体组分均遵从热完全气体假设, 工程上通常采取拟合公式来得到每一组分的热力学参数,如等压比热 C_p 等,会 在正文中详细说明。

1.2 可压缩流中间断问题的理论研究简介

随着计算机技术的发展,数值求解已经慢慢成为研究各类方程的最主要工具。同时,伴随着学科的细化,数值研究和理论研究已经俨然成为两个相去甚远的方向。但是,数学理论一直都是数值方法的源头,也是数值研究的合理性所在。所以,尽管本文并不开展这方面理论性研究,然而仍有必要在引入数值

方法之前简单介绍相关的数学理论的发展历史和现状。

1.2.1 Euler 方程弱解及解存在性的研究

Euler 方程遵循双曲守恒率,关于非线性双曲守恒率方程的理论研究基本上是从广义函数和弱解的概念被学者们熟知后才开始。1950 年 E.Hopf [106] 给出关于 Burgers 方程的严格数学理论研究,被认为是双曲率数学研究的奠基性工作,这之后有了这方面一系列重要工作 [129,130,169–171] 等。如,由于弱解定义不能保证问题解的唯一性,Lax [130] 和 Oleinik [169] 分别提出的保证解唯一性的熵条件。第二次世界大战中,跨音速飞行器出现,使人们越来越多的空气动力学研究及激波现象,激波理论研究称为非线性前沿科学,也推动了守恒率方程研究的发展。

理论上,对于非线性双曲守恒率方程,即便初值充分光滑,在足够长的时间内,解都会失去光滑出现奇异性,这一现象被称为解的爆破。弱解的定义可针对于如下一般形式的双曲守恒率方程

$$u_t + \nabla_x f(u) = 0, \tag{1.17}$$

其中 $t \in R_+$, $x \in R^d$, $d \ge 1$, $u = u(t,x) \in R^n$, $n \ge 1$, $f(u) = (f_i^j(u))_{n \times d}$ 是 $n \times d$ 的矩阵。

弱解定义 [286]: 如果可测向量函数 $u=(u^1,\cdots,n^n):\Omega\subset R_+\times R_x^d\to R^n$ 满足

- 1. $u \in L^1_{loc}(\Omega)$,
- 2. $f(u) \in L^1_{loc}(\Omega)$,
- 3. 对于所有 $\phi \in C_0^{\infty}(\Omega)$ 都满足

$$\int \int_{\Omega} u^{j} \phi_{t} + f^{j}(u) \cdot \Delta_{x} \phi dx dt = 0, \quad j = 1, \dots, n,$$

则称 u 在分布的意义下满足双曲守恒率方程 (1.17),或称 u 为方程 (1.17) 的一个弱解。其中 R 为实数空间, L^1_{loc} 为强可测一阶可积空间 [282],C 为复数空间。

然而,由于缺乏针对于弱解有效的数学工具,如泛函分析等常用的标准微分工具都不再奏效,当前仅对单守恒率方程有完善的理论研究[51,129,171],而对

于方程组理论的研究,目前主要停留在一维问题,及两方程的二维问题。研究内容也从奢求理论解转移到证明方程解的存在性及数值方法解的收敛性上来。目前理论研究方法主要包括 Glimm 格式 [81] 和补偿列紧理论 [274,279],Glimm 格式曾经是研究方程组存在性定理的唯一方法,1965 年 Glimm 采用该方法证明了一维单方程的一般形式下"小初值"和特殊形式下"大初值"解得存在性,其中"小初值"指的是初始值总变差 $TV(u_0)$ 充分小,并和 Lax [83] 证明了 2×2 方程组在严格双曲,非线性情况下,初始扰动充分小假设下弱解的存在性。然而该方法依然存在有很多局限性 [151]。补偿列理论在 80 年代由 Tartar 提出 [225,226],之后得到广泛研究和应用,尤其在气体动力学方程中,如 1983 年 DiPerna 等 [58],1985 年 Ding 等人 [38,57],1994 年和 1996 年 Lions 等 [143,144],一系列工作解决了气体动力学方程组在不同比热比 γ 下如下形式的等熵流动方程的解存在性问题。

$$\begin{cases} \rho_t + (\rho u)_x = 0, \\ (\rho u)_t + (\rho u^2 + p(\rho))_x = 0, \end{cases}$$

其中, $p = p_0 \rho^{\gamma}$ 。但是我们知道,尽管在无黏、无传热流体中,流体穿过激波也并不是等熵过程,虽然后续工作,如 Huang 等人对等温过程也给出了解存在性证明,但是目前补偿列紧理论只能适用于严格双曲 2×2 方程组

$$\begin{cases} u_t + f(u, v)_x = 0, \\ v_t + g(u, v)_x = 0. \end{cases}$$

该方法也尚不能给出 Euler 方程解存在性证明。对于高维问题,目前是数学上的一个热点问题,当然也是难点,尚缺乏充分的理论结果 [176,207,224]。不过我们都坚信,欧拉方程乃至 NS 方程都是有唯一解的,并终有一天会得到完善的数学证明。

1.2.2 黎曼问题和 Euler 方程近似解

尽管欧拉方程的解在数学上缺乏足够的存在性证明,但是我们仍然需要通过一定方式求得它的近似解,甚至近似解本身要比解的存在性研究更为久远。我们可以一直追溯到伟大的数学家、物理学家伯恩哈德·黎曼,1858年,黎曼[190]在研究激波管问题时,巧妙的构造了 Euler 方程在一组特殊初值条件下的理论

解,这组初值设定为任意间断值的阶跃函数,即

$$U = \begin{cases} U_L & x < x_0 \\ U_R & x \ge x_0 \end{cases}$$

根据间断不同,黎曼构造出了四类解,分别由向前、向后稀疏波和向前、向后激波组成,并利用相平面分析方法给出了判别条件。该类 Cauchy 问题被称为黎曼问题。尽管黎曼问题在黎曼所有伟大工作中并不是那么显眼,但是该问题在求解拟线性双曲方程尤其在求解空气动力学方程中起到了第一块基石的作用 [76],并且开创了"微分方程广义解"概念及"相平面分析"方法之先河,具有的超前性。1957年 Lax [130,177,178] 对一维黎曼解存在性和唯一性给出了证明。至此,一维黎曼问题得到彻底解决,它的理论解由冲击波,中心稀疏波和接触间断三类基本波构成。

二维黎曼问题由于复杂性,到了 80 年代,甚至它问题的提法都尚未澄清。 85 年,张同和郑玉玺分析最简二维模型黎曼问题,成为二维问题的一个实质性 突破。1990 年他们在文献 [268] 中给出一套分析和猜想,他们假设初始间断线在 t>0 时发出一道平面基本波,这样四道波相互作用会形成 16 类不同问题。随着数值计算的发展,Schulz 和 Carsten [198],Chang [35,36] 等,Lax 和 Liu [132] 对这一猜想就行了数值模拟,并最终将二维黎曼问题完善为 19 类。目前为止,尚没有一类情况被完善证明 [285]。

黎曼问题的重要意义并不仅在于它是对流方程的一组理论解,而在于它是构造更一般 Cauchy 问题近似解的基础,通过将一般的初值离散成有限个黎曼问题,然后采用拼接的方式得到下一时刻值的分布,以此来推进时间的发展,使得近似求解一般初值 Euler 方程乃至所有非线性对流方程成为可能。

1.3 计算流体力学和数值方法发展

理论研究虽然非常严谨,但是远远无法满足多变的工程需要。尤其在流体力学领域,早期工程研究主要通过实验模拟完成。随着计算机技术发展,数值研究的优点不断彰显,如,省钱、省人力、模拟更为灵活,同时能给出更为详细的计算资料,又如,数值模拟可以免受研究问题尺度、环境限制等。

1.3.1 计算流体力学简介

采用数值离散逼近方法求解和研究方程原本就是数学中的常用手段,如有限差分方法早在19世纪前就经常用来分析方程性质。伴随着非线性双曲型守恒率方程理论的完善,以及人类计算能力的极大提高,通过数值方法求解双曲率方程成为数学研究的一大分支。尤其在流体力学研究中,通过数值方法求解流体力学控制方程已经发展成了独立且庞大的一门学科—计算流体力学(CFD)。

学者们普遍将 1922 年 Lewis Fry Richardson 采用数值方法预测天气的工作 [188] 作为 CFD 开始的标志,在同时期,美国学者也曾采用世界上第一台通用计算机 ENIAC 进行了类似的 CFD 计算。实际上 CFD 尚未真正出现前,相关理论工作早已开始,我们上节已经讲述了大量此类工作,包括 CFD 出现后的大量工作,都可以被划归在数学范围内,我们当然也可以称它们为 CFD 的早期理论研究。如 1928 年,Coutant、Friedrichs 和 Lewy [48] 提出有限差分方法求解偏微分方程时收敛的 Courant-Friedrichs-Lewy(CFL)条件,值得注意的是CFL条件只是数值解收敛的一个必要条件,并非充分条件,很多论文甚至书籍提到这项工作时曾出现错误。

计算流体力学成为了独立学科以后,研究重点也有了很大偏移,基于其工程背景的要求,区别于数学理论研究,CFD 绝大部分工作都集中于数值方法的发展、工程应用的推广以及以 CFD 为工具的物理机理性研究上。从 70 年代开始,伴随着数值方法、模型方程、网格划分以及计算机软硬件能力不断提升,CFD 真正得到了广泛应用,从航空、气象、船舶、化工到体育、动画等等各个领域都慢慢有了 CFD 的身影。1981 年第一代商业化软件 PHONICS 出现,标志着 CFD 从科研向工程应用的延伸。进入 90 年代,一大批优秀的商业软件涌现,如 FLUENT,CFX,STAR-CD 等等,在此基础上,CFD 工程师也成为许多行业中不可或缺的角色,推动着其他相关学科的研究和工业化的发展。

1.3.2 数值方法的发展

流体力学方程的数值方法从大的框架可以分为有限差分法、有限体积法、有限元法、边界元法和有限分析法等。各个方法具有不同的求解区域离散方式和控制方程的离散方式,有各自的优缺点,本文采用有限差分方法。

有限差分方法采用有限个网格节点代替连续的计算域,以泰勒级数展开等方法,将控制方程中的导数用节点函数值的差商代替进行离散。有限差分方法

是一种直接将微分方程变为代数问题的数值方法,直观且简单,发展较为成熟。下面简单的回顾数值方法的发展和现状。

1959 年, Godunov [84] 首先采用数值方法求解非线性偏微分方程,文中他证明,想要保持方程的解是单调的,那么线性对流格式最多只有一阶精度,同时他认为一阶迎风格式在某种意义上是最好的,并且给出了如何将迎风格式应用在非线性守恒方程系统的方法。在 Godunov 的方法中,在每一个时刻,每个计算单元当成一个值,经过一个很短时间后,通过在单元交界面求解黎曼问题

$$U_0(x) = \begin{cases} U_L = U_i & x < x_{i+\frac{1}{2}} \\ U_R = U_{i+1} & x > x_{i+\frac{1}{2}} \end{cases}$$
 (1.18)

在该时间步结束时进行单元平均,可以得到新的分段的分布,以此推进方程的发展。Godunov 方法整体具有一阶精度,即便处理间断时也能得到非常稳定计算结果。该工作也成为有限体积方法的基础。

从 Godunov 之后数值方法的研究变得更为清晰, Godunov 类方法主要包括, 近似黎曼求解器、空间离散方法和时间离散方法。

1.3.2.1 空间离散方法

尽管 Godunov 定理将线性方法的稳定性和一阶格式紧紧的绑定,但是在西方学术圈,该研究并没有得到足够的重视,60 和 70 年代,学者们仍然试图构造了一系列更高阶的格式。P.D.Lax 和 B.Wendroff [128] 在 1960 年合作构造了二阶差分格式,尽管该格式由于耗散不足会导致计算激波时出现严重的振荡,但是仍然具有深远影响。Lax-Wendroff 格式和它的一系列二阶、三阶改进格式 [28,153,193,195] 主导了对流方程研究领域超过了 10 年之久。

直到 70 年代,才有人开始意识到 Godunov 定理的重要性并试图将其避开,这之后不到一年时间,就出现了两种无振荡的高精度对流格式,分别是 Boris 和 Book 提出的通量修正输运方法 (Flux-Corrected Transport/FCT) 方法和接下来 Van Leer 提出的 MUSCL (Monotone Upstream Scheme for Conservation Laws) 格式。FCT 方法依然采用 Lax-Wendroff 方法类似的预估-校正结构,第一步采用一阶格式预估时间发展后的解,然后在校正步通过反扩散的方式移除大量的耗散误差,达到二阶或三阶精度。在第二步,修正的通量会和临时解进行比较,并且在需要的地方进行限制,保证没有新的极值点出现也没有极值增加。其中的对

比过程让该方法成为非线性方法。经过 1973 年到 1979 年的发展 [21,23,24,259],FCT 方法得到较广泛的应用,但是其并没有对后期的 Godunov 型高精度格式发展起到太大影响。同时期,Van Leer 认为振荡是由于并非单调插值引起的,他继承了 Godunov 方法的特点,将单元内的常值分布变为线性分布或二次分布,然后非线性限制分布函数的一阶和二阶导数值,以此得到二阶精度的稳定MUSCL 格式 [?,235,236,238,238,239]。MUSCL 类格式在 80 年代继续发展并成为当时最为流行的格式。FCT 方法和 MUSCL 格式虽然相去甚远,但是它们都是通过方法中的非线性性质来防止计算中大梯度带来的数值振荡,在对流方法接下来的发展中这一特点一直得到了保存。

同一时期,Harten 在 ICASE 做访问学者,在这里他受到 Roe 关于迎风格式工作的影响 [100],他考虑到无振荡插值只适用在一维空间,所以并不太接受无振荡插值的概念。实际上,他更多的受到 Glimm 和 Lax 关于一维标量守恒方程的解的总变差是不增的这一研究结果启发 [131]。通过分析,Harten 引入离散方程的总变差作为其振荡性质的度量 [87,96],总变差同样可以应用在更高纬度求解上。由此,Harten 提出了总变差不增(Total-Variation-Diminishing/TVD)方法,并推导出保证 TVD 性质的充分条件。之后学者们证明了 TVD 性质在线性方程中可以推导出单调插值条件。在当时,TVD 方法迅速成为了高精度迎风格式的代名词。

随着算法研究的发展,TVD 类格式暴露出了它们固有的不足,如无法区分激波和光滑的极值点,导致光滑区域精度过低。在不久之后,Goodman 和 LeVeque [87] 认为 TVD 在高维离散中过于呆板,导致高维 TVD 对流格式精度不会高于一阶。Harten 因此重新审视了曾被他忽视的无振荡插值方面的工作,并和 Osher 合作提出了基本无振荡(Essentially Non-Oscillatory/ENO)格式 [?,98]。ENO 格式的基本思想是在构造插值多项式时采用自适应选取最光滑插值模板的方式来避免引入数值振荡。ENO 格式不再满足 TVD 性质,允许总变差有微小的增加,但是仍需满足总变差有界(Total-Variation-Bounded/TVB。

ENO 格式单一选取模板的策略虽然能够达到无振荡的目的,然后由于光滑 区模板的浪费造成精度仍然不足。1994 年 Liu 等人 [152] 提出了加权的思想,将 ENO 的所有子模板进行凸组合加权取代原有的选取最光滑的模板的方法,以此 来构造光滑区的高精度并保持间断区域 ENO 的性质。该文章中构造了最早的 三阶有限体积 WENO 格式。随后,1996 年 Jiang 和 Shu [212] 构造了经典的五

阶 WENO 格式并给出了光滑因子和非线性权重构造的基本框架。

进入新世纪,以 WENO 格式为代表的高精度激波捕捉格式应用更为广泛,WENO 本身也在不断地发展和完善中。2005 年,Henrick [102] 指出 Jiang 和 Shu 所构造的经典的五阶 WENO 格式(WENO-JS)在导数等于 0 的极值点达不到理想精度。他构造了一个投影函数来到道极值点理想精度(WENO-M),在 2008 年,Borges 等人建议采用五点模板来构造高阶的光滑因子,并发展了WENO-Z 格式。另一方面,更高阶的 WENO 格式也得到发展,如七阶、九阶甚至十一阶 WENO [12,77] 以及中心型 WENO 格式等 [140,154]。

从以上回顾可以看出,空间格式的研究主要关注在保证间断稳定性情况下提高光滑区域的精度。然而,想保证稳定性,一定数值耗散是不可避免的,因此协调、处理这一对矛盾是格式研究的一个重点和难点。尽管通过构造更高阶的 WENO 格式可以提高光滑区域的精度,但在在计算小尺度波时,耗散仍然可能过大 [116,267]。另外,WENO 格式本身需要较高的计算量,通过这种方式提高精度往往是得不偿失的。

目前提高光滑区精度主要有两种方法,一种方法是借鉴有近似谱方法分辨 特性的紧致格式 [135] 的优点,构造紧致重构 WENO (CRWENO) 格式; 另 一种方法是结合高精度线性格式构造杂交格式或称混合格式 (Hybrid Scheme)。 CRWENO 格式的思想是将低阶紧致模板做 WENO 格式的非线性加权重构得 到激波稳定的高阶紧致格式,这部分工作主要见于文献 [56,78,115] 等。研究表 明 CRWENO 和传统 WENO 格式相比,的确具有更好的小尺度分辨能力 [267]。 值得一提的是, 2015 年 Peng 和 Shen [179] 在 Shen 等人 [201, 205] 的多步加权 WENO 思想基础上,构造了多步加权的 CRWENO 格式,该格式基于紧致格式 的隐式特性,通过改善间断附近过渡点精度来改善全局精度,取得了良好的效 果。杂交格式和 CRWENO 格式相比,由于它思想简单,有丰富的选择,因此 应用和研究都更为广泛。杂交格式采用间断识别器来区分光滑区域和间断区域, 然后采用激波捕捉格式和其他低耗散、计算量小的线性格式在不同区域求解, 达到兼顾两者优点的目的。常用的杂交格式有混合中心-WENO 格式 [104,119], 混合紧致-WENO 格式 [181, 187]、混合谱方法-WENO 格式 [47] 等。由于间断 识别器在杂交格式中至关重要,发展间断识别器也是杂交格式研究的一个热门 领域。2006 年 Shen 和 Zha [204] 以 WENO-JS 和 WENO-Z 格式的光滑因子为 基础,提出了一种无参数的间断识别器,并且构造了将激波当成内边界处理的

有限紧致格式。

1.3.2.2 近似黎曼求解器

近似黎曼求解器的发展是和空间离散方法同步进行的。黎曼求解器是为了解决非线性方程线性化近似的问题。在 Godunov 等的早期工作中,学者们采用基于理论解的"精确黎曼求解器",但是这过于耗费计算量,并且较近似李曼求解器比也没有优势。因此,发展黎曼问题的数值解或称为"近似黎曼求解器"成为 CFD 算法研究的另一大主要方面。由于黎曼求解器主要工作就是将非线性方程分裂为正向和负向的波便于采用迎风格式,所以也将其称为分裂方法。分裂方法并没有和空间离散方法类似的清晰的时间脉络,种类也比较繁多,具体可以分为通量差分分裂(flux-difference splitting)、流通矢量分裂(flux-vector splitting)、特征重构方法和对流迎风分离压力(Advection upstream splitting method/AUSM)等。

通量差分分裂方法基于对精确黎曼求解器的模拟,该类方法又称为 Godunov 类方法,如最经典也最为常用的基于当地 Jacobian 矩阵线化的 Roe 求解器 [191]、基于简单波分解的 Osher 求解器 [175]、基于两波假设的 HLL 求解器 [99] 以及可以模拟接触间断的基于三波假设的 HLLC 求解器 [229]、需要迭代的双激波近似黎曼求解器 [149] 和为了避免红玉现象而提出的旋转混合求解器等。

流通矢量分裂方法基于无碰撞 Boltzmann 方程,因此该类方法也称为 Boltzmann 类方法 [100],流通矢量分裂方法将相邻单元间的分布函数进行了抹平,因此较通量差分分裂有较大的误差,但是由于它们通常形式简单、易于实现,所以仍然有较多的应用。常用的流通矢量分裂方法有 Lax-Friedrichs (LF) 分裂 [129], Steger-Warming (SW) 分裂 [220] 和 Van-Leer 分裂 [240] 等。

特征分裂方法 (特征重构方法) 不同于在物理空间进行分裂的 FDS 和 FVS 方法,它的所有分裂和重构都在特征空间进行。在特征空间求得导数的近似后再变换回物理空间。该类方法具有最好的求解质量,严格保证了局部特征方向,然而由于其过大的矩阵运算,目前仅常用在一维问题的求解中。所有流通矢量分裂的分裂方法都可以应用在特征分裂中。

对流迎风分离压力方法是从 Van Leer 分裂方法发展而来的,它们将无粘通量分裂为与特征速度相关的对流项和与特征声速相关的压力项,对其进行分别

处理。该类方法兼具了 FVS 和 FDS 的一些优势,具有 iFVS 的简单性和算效率,又具有 FVS 的精准性,自 Liou 在 1993 年 [147] 提出以来就得到了广泛的关注和发展。目前应用较为广泛的有不存在"Carbuncle"现象的 AUSM+ 格式 [145,146]、激波计算稳定的 AUSMDV 格式 [242],以及结合了他们优势的AUSMPW [121] 和 AUSMPW+ [120] 格式。以上这些方法由于将总焓从能量方程分出,所以可以统称为 H-CUSP (Total enthalpy convective upwind and split pressure) 方法,然而从特征值系统看的话,H-CUSP 类方法并不能沿着传播方向保持守恒 [264,264],而总能却能保持守恒,因此 Zha 提出在对流项使用总能的 E-CUSP 格式 [261,262,265],该格式具有低耗散且更为稳定的效果。

1.3.2.3 时间离散方法

在 Godunov 类方法推广开前的 60-70 年代,学者们往往将时间和空间统一离散,如当时经典的 Lax-Wendroff 格式等,时间和空间精度也需要统一分析。随着 Godunov 类方法普及,由于它们属于半离散方法,时间离散和空间离散需要独立进行,因此对流方程的时间离散方法也得到发展。

时间离散方法其实是一个极为古老的问题,它们基本上都是来源于 20 世纪以前对如下的常微分方程求解

$$\frac{dx}{dt} = f(t, x), x(0) = x_0, \tag{1.19}$$

如最早的一阶 Euler 方法(1768 年)。1895 年 Runge 和 1900 年 Heun 尝试在 Euler 方法中增加子时间步,到 1901 年 Kutta 最终给出了显式 Runge-Kutta 方 法的一般形式。隐式方法的发展同样可以追溯到 1824 年,Cauchy 为了进行误差估计,在 Euler 方法中引入中间变量,间接的构造了隐式 Euler 格式。但是直到 1955 年才由 Hammer 和 Hollingsworth 在 Radau 格式基础上构造了第一个二阶的隐式 Runge-Kutta 类格式 [91]。

Runge-Kutta 格式并不单指一种格式,而是一系列的总称,如三阶 Runge-Kutta 就可以有无数种系数组合。1988 年,Shu [211] 根据对流方程解的 TVD 性质,给出了一组三阶 Runge-Kutta 的系数组合,该格式被称为 TVD Runge-Kutta 格式。TVD Runge-Kutta 格式在对流方程数值模拟中得到广泛采用。

1.4 间断问题数值研究现状和不足

在 1.2 节我们笼统的回顾了一般流体力学的数值方法,通过这些脉络性的介绍,我们从单介质流体力学角度了解了 Euler 方程数值求解体系的发展过程,但是这些介绍远没有触及本文所要关注的间断问题研究现状和遇到的问题。本小结将分别介绍和总结和激波、物质界面以及爆轰波相关的研究前沿。

1.4.1 激波捕捉格式和激波分辨率

在 Godunov 求解体系中,数值稳定性一直是处在第一位的。无论是早期的无振荡插值、总变差不增还是现在 WENO 格式的基本无振荡性质的提出,都是为了保证计算的稳定性。一直以来,WENO 格式改进的主线思路也是在保证激波稳定性的基础上提高光滑区域的精度,尤其关注非线性权重容易出问题的极值点。尽管光滑区域精度提高的确也能改善激波的分辨效果,但是这也只是高精度带来的附属效果。很少有人关注在激波区域附近传统 WENO 格式是否能有所改善进而改善其对于激波的分辨率。

2014 年,Shen 和 Zha [205] 分析了现存的五阶 WENO 格式发现,它们在如图1.1所示的连接光滑区和间断区的过渡点 i-1 的精度只有一阶,激波分辨率不足可能对激波引起的分离流、激波/湍流相互作用等问题的计算结果产生影响。在该文章中,他们在两个临近四阶模板上构造了两个四阶通量和一个光滑/间断识别器来提高过渡点精度。在更早的工作中 [206],Shen 等人曾提出多步重构的思想,并用它来解决传统 WENO-JS 格式的光滑因子在极值点不满足 $\beta_k = D(1 + O(\Delta x^2))$ 的问题。尽管该方法并不能满足极值点五阶收敛的充分必要条件 [102],但是多步重构的思想仍然有重要的意义。

本文基于 [205] 的研究,给出了一种新的 WENO 格式构造方法,该方法结合了 Henrick 的投影函数,并通过逐阶构造的方法来提高 WENO-Z 在过渡点精度、降低耗散,进而改善方法对于激波的分辨率,第四章对此有详细的研究,并通过算例验证了该方法在求解和激波相关的问题时,的确有更好的效果。

1.4.2 物质界面和界面追踪方法

在物理上,界面一般定义为不同物质或物质不同物理状态间分界面。理论上,界面是存在一定厚度的,界面具有和两边完全不同的特殊物理性质,且含有界面能。但在多相流体力学中,由于界面真实厚度只有分子的量级,在绝大

图 1.1: 过渡点示意图。

多数模拟中,我们将界面当成没有厚度的几何分界面,同时忽略跨过界面的扩 散作用。

我们知道,数值耗散会抹平原本清晰的分界面,如果想要的到准确的界面 位置就需要使用界面方法或称为界面模型。目前,尽管界面方法有多种分类方式 [232],但是多数学者都将其分为界面追踪方法和界面捕捉方法两类 [20]。

界面追踪方法是借助拉格朗日技术,采用运动网格或标记粒子来实时跟踪界面位置的变化。如锋面追踪(Front-tracking)方法 [55,232,234] 和标记(Marker) [184] 方法就是通过引入第二套移动网格来高准确度的给出界面位置和曲率。该类方法的难点是在于对界面破碎和合并的模拟较为复杂 [209,230]。Particle-in-Cell (PIC) 方法 [26,94] 和 Marker-and-Cell (MAC) 方法 [155,227,228,254] 是通过在界面附近引入拉格朗日粒子,然后追踪粒子的运动来跟踪界面位置。粒子类方法是最为古老的界面方法 [155],但是应用非常有限,究其原因,计算量和存储量过大是粒子类方法的一个限制,在流场压缩和膨胀的时候粒子点的管理是另外一个难点 [234],除此之外,粒子类方法还难以给出准确的几何界面线(面)。

另一类界面方法完全是基于欧拉技术,该类方法在欧拉网格内引入界面方程的形式来定义界面的位置。最典型的方法当属水平集 (Level Set) 方法和流体体积分数 (Volume of Fluid/VOF) 法。Level Set 方法 [174,199,223] 采用一个

光滑的距离函数,用距离函数为零的位置来定义界面。自从该方法提出后,由于它优美的数学理论、漂亮的计算结果和应用简单,Level Set 方法得到极为广泛的发展和应用。当然,Level Set 也有诸多不足,如鲁棒性差,重新初始化计算量大,耗散大等,尤其被学者们诟病的是它的守恒性较其它界面方法都要更差。VOF 方法 [105,127,256] 也属于欧拉的框架,该方法在每个单元间含有一个代表某一相流体的体积分数,当体积分数介于 0 和 1 之间则认为该单元跨过界面,通过捕捉体积分数来获得界面位置。不同于 Level Set 方法,VOF 方法具有精确地守恒性。该方法难点在于每一步需要有效的界面重构方法。界面重构决定于当地的体积分数和梯度方向,界面可以通过分段线性插值得到 [196],但该过程目前仍然过分复杂也难以取得预想的效果。

整体来讲,界面追踪方法更直观,在处理界面的融合和破裂时有其优势;界面捕捉方法更易于实现,在处理界面伴随流场压缩或膨胀时有优势 [142]。将它们彼此结合来避免它们各自的缺陷是目前一个比较流行的思路,其中应用最多的是和粒子类方法相结合,比如利用粒子方法的守恒性和 Level Set 方法的光滑性的粒子-水平集(Particle Level Set)方法 [66,67]。然而这种结合即增加了方法实现的难度,在复杂问题时也并不那么奏效。

本文尝试提出一种基于欧拉网格,具有界面追踪思想的粒子方法—双信息保存方法 (Dual information preseving method/DIP)。该方法直接用来求解对流方程

$$\frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} = 0 \tag{1.20}$$

该方法中,引入两类拉格朗日信息点,并不同于 MAC 方法中的标记粒子,也不同于 PIC 方法中携带全部流体信息的粒子,信息点携带距当地网格中心距离信息和对流信息 z。两类信息点分别被称为单元点 (Cell Point) 和粒子点 (Particle Point),在计算开始,每个单元分别在单元中心引入一个信息点,计算中同时根据速度场进行追踪。对于粒子点,如同传统的朗格朗日粒子一样全域追踪。对于单元点,每一步我们通过有效的生成算法,来保证每个单元只含有一个单元点。根据单元点位置和对流信息,我们可以捕捉界面的位置。详细过程将在第四章中说明。

1.4.3 气相爆轰波

爆轰波是高速化学反应流和爆炸中常见的一类间断问题,爆轰波的传播是物理化学强耦合过程,是激波和化学反应系统相互作用的结果。随着爆轰波传过,波后反应物随即发生高速的化学反应,形成高温、高压爆轰产物并释放大量化学反应热用以维持爆轰波的传播,这种过程称为自持爆轰。爆轰过程根据反应物状态可以分为气相、液相和固相爆轰,它们本质上是一致的,但是气相爆轰由于本身机理最为简单,研究也最为丰富,本文只涉及气相爆轰方面的研究工作。

1.4.3.1 爆轰波理论

关于爆轰波的理论包括最早期的平衡爆轰 Chapman-Jouguet(C-J) [37,118] 理论以及 ZND 理论。

C-J 理论将爆轰波模拟成一维稳态的没有厚度的强间断,反应热的释放是瞬间完成,通过爆轰波前后守恒关系式、能量方程和爆轰波稳定传播的 C-J 条件得到波后状态。C-J 理论中所有状态都是是平衡态,对应的模型为无限速率反应模型,因此无法考虑爆轰波结构,也不能解释传播机理。

直到上世纪 40 年代,Zeldovich [260],Doring [61] 和 Von Neumann [241] 对 C-J 理论进行改进提出 ZND 理论。ZND 理论中,爆轰波由前导激波和被激波诱导的反应区组成,前导激波提供一个绝热压缩过程,导致反应物温度、压力升高,分子活化,这个阶段称为诱导阶段。诱导阶段过后化学反应开始,热量大量释放,产生向后膨胀作用,驱使爆轰波传播。图.1.2是一个典型爆轰波压力曲线,在前导激波过后压力突越到 p_N (称为 Von Neumann 峰),随着反应进行,压力急剧下降,在反应终了,压力降至 p_{CJ} ,经过 C-J 面,爆轰产物进入等熵膨胀的 Taylor 膨胀区。

ZND 理论假设反应流动是一维均匀且不可逆的,并假设反应区的每一个断面都处在热力学平衡状态。该理论虽然能描述爆轰波的一维稳态结构,并能预测爆轰波的波速,但是仍然不是完美的模型,ZND 理论将爆轰看成一维均匀不可逆的,只能解释一维稳态爆轰结构。实际上,对于几乎所有可燃气体,爆轰波波阵面都是本质不稳定的。不稳定性会产生更复杂的一维和高维的物理现象。这种不稳定性主要取决于反应的活化能 $E_a/(RT)$ 。

在一维上,不稳定性会造成爆轰波在传播方向上的脉动振荡,表现为压力

图 1.2: 典型爆轰波压力曲线 [208]

峰值随时间在 Von Neuman 峰值附近有规律的上下脉动 [70,134]。对于活化能较低的爆轰,脉动通常在 $0.8-1.6P_{vn}$ 之间。对于高活化能的强不稳定爆轰,脉动更为剧烈,可能会存在熄火和重新起爆过程。

在高维上,除了有径向不稳定性外,横向也会叠加脉动,产生横向波,造成波阵面的三波点。三波点在空间上运动碰撞,反射的轨迹,构成了鱼鳞状的胞格结构。和一维类似,对于活化能较低的爆轰,横向波很弱,甚至可以看成声波。因此波阵面上过驱的马赫杆和欠驱的入射激波差别很小,都是爆轰波,分布也非常规则,产生的胞格非常均匀。相反,如果爆轰波不稳定性较强,横向波也同样变强,造成马赫杆和入射波强度差别较大。入射波甚至会衰减到局部熄火,然后再下一次三波点碰撞中重新起爆。对于这种情况,胞格结构会非常不规则。图.1.3是二维均匀的胞格结构示意图。

目前,相比如理论分析无法解释不稳定性和空间结构等问题,爆轰波的数值模拟变得更加主流,尤其是采用能反映化学动力学细节的基元反应模型进行计算,可以定性与定量的再现爆轰波的胞格 [275,283]、旋转爆轰 [31,278]、熄火区 [280]、以及一维或高维的不稳定现象等。尽管数值方法有便于实现,可以模拟复杂工况等优点,然而在爆轰的计算中仍然有一些问题和难点,其中比较显著的是时间尺度和空间的尺度问题,除传统的源项时间尺度造成的刚性外,还可能存在更为复杂的空间刚性问题。除此,还包括组分守恒性和反应区耗散等问题。

图 1.3: 二维胞格结构示意图 [208]。

1.4.3.2 源项数值刚性问题的时间方法

在高速化学反应流模拟中,经常会遇到化学反应源项存在刚性的问题,这种刚性体现为反应时间尺度远小于流动尺度。例如,很多燃烧反应精确计算所需的时间步要精确到纳秒的量级 [164,217],在真实计算中,由于计算能力的限制,我们无法将总体的时间步长缩小到该量级。如果采用和对流过程统一的时间方法而不做特殊处理,如采用最常用的显式的 Runge-Kutta 格式时,可能会造成计算不准确或存在较为严重的数值振荡甚至发散。

对于时间尺度差异带来的求解问题,目前主要有两种解决方法。一种方法采用源项点隐 (Point implicit) [63] 或者全隐式的方式 [69] 整体求解,这种方法称为耦合方法。另一种方法通过算子分裂将源项分裂出来,然后采用独立的时间方法和时间步长进行处理,这种方法通常称为解耦的方法。两种方法各有优势,耦合方法主要优点在于避免解耦误差。然而该类方法需要求解大型矩阵,随着反应模型复杂,矩阵也会更加复杂。另外耦合方法由于简化矩阵运算会引入一系列的近似,结果上耦合方法和解耦方法比并不能体现出太多的优势 [123],因此,目前更多学者都采用解耦方法。

解耦方法通过算子分裂,将化学反应流动方程在时间步内解耦成对流和反应两个子步,然后分别采用与各自的特征时间尺度相匹配的时间步长进行计算。这样处理由于较为灵活,也比较符合物理直观,因而得到广泛的应用 [138,156,157]。分裂方法通常采用 Strang 分裂,既能有二阶的精度,又可以减小反应步

时间步长,但是也有学者指出 Strang 分裂在计算间断问题时只有一阶精度,且没有一阶分裂方法准确 [49]。

对流子步的计算仍采用常用的 Euler 方程求解,反应子步通常具有如下 ODE 方程形式

$$\frac{dx}{dt} = f(t, x), x(0) = x_0, (x \in \mathbb{R}^s, t \le 0).$$
 (1.21)

关于该方程的研究早在 80 年代就已经已经较为成熟 [89,247],最为著名和常用的当属单步的 Runge-Kutta 格式,包括各类显式 RK 和隐式 RK 格式,而且同样可以应用在如对流方程求解中,这在前文对流方程时间方法中有指出,不在复述。

传统处理刚性 ODE 方程的方法主要包括减小时间步长和采用隐式格式两类方法。如采用刚性不稳定格式在每一步对流步采用很多的子时间步进行稳定的计算,这里由于考虑到计算量通常采用最简单的一阶显式 Euler 格式,时间步长选取可以采用固定步长或自适应步长两种方式。采用固定步长需要预设步长,并且不能随着刚性的变化采用最节约计算的步长。采用自适应步长 [117] 避免了固定步长的一系列问题,但是在计算刚性不强的问题上时由于精度不足会存在过大的误差。

隐式类格式通常具有较好的刚性稳定性 [164],可以构造一致高精度的刚性稳定隐式格式,然而,隐式格式避免不了需要进行大量的收敛迭代和矩阵运算, 在求解形式简单的 ODE 方程中鲜有应用。

除上述两类方法外,也有极为稀少的具有显形式的刚性稳定格式,如目前较为常用的线化梯形公式 (linearised Trapezoidal method/LT) [245,266],该方法具有二阶精度,且在一定程度上刚性稳定,通常都不需要进行迭代。但是线化梯形公式也仅有二阶精度,相比于对流步的三阶、四阶 Runge-Kutta 时间精度,这远远是不够的。另外,线化梯形公式也并非绝对稳定的,在不知道刚性强弱的计算中,仍可能崩溃。

本文基于数值摄动的思想 [75,257,270],构造了仅针对于 ODE 方程的三阶 摄动格式,该格式具有显式形式因此无需迭代,具有更好的刚性稳定性,在求解 ODE 方程中较传统格式的具有优势。

图 1.4: 一个典型的爆轰波虚假传播计算结果 [245]

1.4.3.3 刚性化学反应流动的空间刚性问题

上面我们介绍了源项刚性带来的时间尺度问题,该问题可以通过算子分裂结合有效的 ODE 求解等方法避免。但是如果工况中刚性进一步加大,这种影响会在空间尺度上也有所体现。最具有代表性的问题是模拟高速化学反应流时爆轰波的虚假传播问题。这一问题最早在出现在 1986 年 Colella 的研究中 [46]。他在数值模拟反应欧拉方程时发现,如果存在间断,如爆轰波,计算结果中经常出现错误的波速和结构。1990 年,LeVeque 和 Yee 发现即便在含源项的线性波动方程中也可能存在相似的间断虚假传播问题。这一问题在接下来二十年时间内得到广泛的关注和研究 [13—15,33,245,266]。图.1.4给出一组典型的爆轰波虚假传播的计算结果。这一类由于源项刚性而导致爆轰波空间数值求解问题的流动又被称为刚性化学反应流(Stiff reaction flow)。

性化学反应流产生根本原因是化学反应的时间尺度影响了空间尺度,极快的反应速度造成空间上的反应区域也极为狭窄。我们如果采用达到小于反应区域尺度的空间网格来数值模拟自然可以避免所有的空间刚性问题,这种求解通常称为完全求解(fully resolved)。然而这个尺度往往是达不到的,例如,在尚不存

在空间刚性的氢氧爆轰求解中,最理想的求解尺度已经达到 10⁻⁷m 量级 [185],刚性化学反应流的完全求解尺度会更小。因此,我们一般只能采用网格尺度远大于反应尺度的网格进行求解,这种求解称为不完全求解 (Underresolved) [13]。在不完全求解情况下,如果不采用特殊的方法,我们无法在网格内追踪反应面的传播,只能将反应尺度增大到至少一个网格的量级。格式的耗散不可避免会抹平组分和温度曲线,造成部分反应在激波前激活,这种激活会产生非物理的状态。该状态随着计算累计就会造成虚假传播现象。关于该问题,在正文中会有详细的分析。

2012 年 Wang [245] 对这 20 年关于避免刚性化学反应流中虚假传播现象的研究进行了回顾。Bao 和 Jin 在预先的刚性流假设情况下,在源项中发展了一种随机投影的方法来捕捉爆轰波 [13–15]。Zhang 等人提出了一种平衡态的方法 (ESM) [266] 来抑制虚假状态的产生,然而该方法是和空间格式相关的,难以推广到高阶格式,除此之外该方法最大的问题是,对于复杂的化学反应,往往没法预先知道平衡态。基于 HartenENO 子网格重构的思想 [97],Chang 发展了一种对流步的有限体积 ENO 方法 [33],Wang 等人 [244,245] 提出了结合了反应步于网格重构思想的高阶有限差分格式。然而,Yee 等人 2013 年指出 [252],子网格重构方法和他们自己提出的非线性限制器方法 [253],能在粗糙网格和适度的源项刚性情况下推迟非物理传播现象的出现,但是随着网格稀疏或是刚性进一步加强,虚假传播现象仍然会出现。

理论上,在不完全求解情况下,可以将反应面看成反应和未反应两项之间的几何界面,因此可以应用上文所列的各种界面追踪方法进行模拟。如 VOF 方法、Level set 方法以及锋面追踪方法等都曾用来追踪预混火焰面 [163,183]。也有人尝试采用追踪激波面的方法来抑制虚假传播这一非物理现象 [165]。然而,对于更精细的化学反应模型,由于反应速度并不是恒定的,反应区域中既可能存在刚性区域又存在非刚性的区域,反应面是有有一定厚度和内部结构的,因此界面类方法在化学反应流中,难以有很好的推广。

近些年,有人尝试采用结合了拉格朗日粒子和欧拉背景网格的拉格朗日-欧拉(Lagrangian-Euler/LE)方法来求解线性对流-扩散方程 [60,148,161,215],取得了较好的效果。LE 类方法基本思想是采用适当的算子分裂技术将模型方程分成不同的部分,然后选用欧拉方法或是拉格朗日方法来对应求解 [148]。2007年 Shipilova 等人 [210] 尝试用一种 LE 方法 (PTM 方法)求解对流-扩散-反应

方程,数值结果显式 PTM 方法即便在很稀疏的网格下也可以有效的抑制数值振荡。这种 LE 的思想并不新颖,实际上所有界面追踪类界面方法都是采用的同样的思想,只是他们仅将拉格朗日粒子或网格用来追踪界面,当时并没有人将这种思想用来直接求解方程本身。目前,这种 LE 方法仅用来求解简单的方程、方程组,尚没有人采用类似的思想求解化学反应方程系统。

在论文中第六章,我们采用算子分裂方法,将化学反应欧拉方程分裂为 Euler 方程和组分方程,然后再将组分方程进一步分裂为组分对流方程和反应 ODE 方程,组分对流方程采用 DIP 方法直接求解。由于 DIP 方法的拉格朗日特性,可以追踪界面的连续运动,同时又由于该方法继承了针对于方程本身求解的 LE思想,对于有反应区域厚度的问题同样可以模拟。

1.4.3.4 基元反应模型下爆轰波的数值模拟

空间刚性问题一般只出现在总包反应的单方程模型、较为简单的多步反应模型中或是更为严苛的反应条件下。为了准确的模拟反应动力学过程,我们通常会采用能反应化学动力学细节的基元反应模型进行计算。基元反应模型的求解中,空间刚性问题在并不是常见现象,也就是说反应率不足以引起爆轰波虚假传播问题,但是其中仍存在空间分辨率不足等问题。实际上,每种组分的反应率相差很大,图 1.5给出氢氧爆轰过程不同组分变化尺度的对数曲线,可以看到在 x 10^{-4} cm ,某些曲线如 OH 就开始变化;对于绝大多数组分都在 10^{-4} < x < 10^{-2} cm 之间出现变化;到了 x = 10^{-2} cm 后所有组分都会有剧烈变化。图 1.6是通过特征分析给出的最佳尺度和激波距离关系,从中也可以看出,基元模型下空间尺度的巨大差异。

对于爆轰不同位置空间尺度不同、同一位置不同组分的空间尺度也不相同的问题,目前并没有特别完善的解决办法。自适应网格加密技术可以通过在不同空间尺度的区域实时采用不同大小的网格来解决这一问题,似乎是非常好的解决办法 [32,113],但是目前该类技术在爆轰计算仍有很多困难,因此也并不常用。在固定网格和有限的计算资源下,想要达到完全求解每一空间尺度几乎是不可能的,其中空间尺度较小的组分曲线会由于网格分辨率不足导致的过度耗散而抹平、对应的反应区拉长。爆轰波的计算和激波不同,耗散对于激波而言并不能改变激波前后状态,但是爆轰波组分计算不准确会导致不精确的化学反应结果,得到错误的反应产物,进而影响整体的结果。对此,Powers [185] 等人总结出三点:

图 1.5: $2H_2 + O_2 + 7Ar$ 反应组分摩尔比变化和激波前沿距离关系 [185]

图 1.6: $2H_2 + O_2 + 7Ar$ 反应不同特征值最佳尺度和激波前沿距离关系 [185]

- 1) 想要准确预诱导区尺度就需要对引起这一强非线性现象的物理问题在 恰当的尺度合理的求解。但是目前没有发现任何文献对诱导区尺度做过网 格收敛分析,所以很难说这些物理问题是否被合理求解了。
- 2) 对于弯曲的爆轰波,新的几何尺度会和反应区尺度竞争决定整体的波动特性。能否准确的捕捉爆轰波的多维问题很大程度取决于对于反应区尺度和曲率尺度等物理问题的准确计算。
- **3)** 在非定常的计算中,任何瞬态爆轰波的高波束波长应该和定常结构中的最佳特征尺度在同一量级。在任何情况下,尤其是在非稳定问题中,想要完全捕捉非定常动力学过程,所用的长度尺度需要等于或者小于最佳定

常空间尺度。

和刚性化学反应流问题相似,我们无法采用欧拉方法在不完全求解下准确计算化学反应组分,但是我们可以通过拉格朗日-欧拉的思想进行计算来消除由于网格不足产生的数值耗散的影响。基于这样的考虑,我们将 DIP 方法推广到基元反应模型下的爆轰波模拟中,结合算子分裂方法将方程分裂为 Euler 方程部分、组分对流部分和源项部分,针对每一部分的特征分别采用欧拉体系的高精度方法、拉格朗日体系的 DIP 方法和数值摄动方法进行求解。数值结果表明新的方法能准确的计算如爆轰波速等问题,并且相比于传统方法在组分守恒性,组分曲线的耗散性上有更大的优势。

1.5 本文所开展研究内容

本文的研究内容如下:

- 1) 针对间断附近过渡点降阶问题,我们提出一种多步加权的思想,并构造了五 阶多步加权 WENO 格式,结果显示新格式在激波附近区域的精度得到较大 提高。
- 2) 针对混合格式的关键问题—-间断识别器,我们对比了现存的大部分识别器, 认为 τ_5 函数无人为参数,方便使用,且有较好的表现,是本文最推荐的识别方法。
- 3) 本文将采用了 τ₅ 识别方法的杂交格式—-有限紧致格式推广到理想磁流体求解中,考虑到磁流体方程有复杂的特征值系统和波系,本文结合无需特征系统求解的 E-CUSP 类格式,可以高精度低耗散的求解理想磁流体方程。
- 4) 由于传统界面方法无法处理耗散界面、界面守恒性不好等问题,本文提出一种基于欧拉背景网格的拉格朗日粒子类方法——双信息保存方法,并验证了该方法良好的守恒性。
- 5) 本文结合避免界面附近振荡的虚拟流体方法,将双信息保存方法应用在两相流界面问题求解中,取得了较好的结果。
- 6) 针对于化学反应流动方程中的反应源项 ODE 方程时间刚性,本文基于数值 摄动思想,构造了一系列高阶、显式且稳定的单步数值摄动方法,可以较好的避免时间刚性造成的 ODE 求解困难。

7) 在刚性化学反应流求解中,由于爆轰波附近的数值耗散会产生爆轰波虚假传播现象,本文将双信息保存方法应用在刚性化学反应流求解中,通过抑制组分对流方程耗散来避免这一非物理的数值现象。

8) 在应用了基元反应模型的化学反应求解中,由于组份之间尺度相差很大,在求解网格不够精细情况下,经常遇到某些反应速度快的组分求解不准确的问题。本文将双信息保存方法应用在基元反应的反应欧拉方程求解中,由于该方法的拉格朗日特性,即便在较稀疏网格也能很好的计算组分对流过程,保持组分求解的守恒性。

上部分

第二章 多步加权基本无振荡 (Multi-WENO) 格式

加权基本无振荡格式 (WENO) 自 1994 年由 Liu [152] 提出以来,在近 20 年已得到广泛应用。WENO 格式基本思想是将 ENO 格式 [98] 的最光子滑模板用所有子模板的凸组合重构代替,为了达到高精度特性并保持间断附近的无振荡特性,子模板的权重非常重要。

Jiang 和 Shu [114] 分析了 Liu [152] 引入的光滑因子,认为采用该光滑因子只能让 r 阶 ENO 格式收敛到一个 r+1 阶 WENO 格式,他们在该文中,构造了一个经典的五阶 WENO 格式,并给出了构造光滑因子和权重函数的一般框架。2005 年 Henrick 等人 [102] 指出,Jiang 和 Shu 提出的光滑度量因子不能提高 WENO 格式在一阶导数为零的极值点精度,他们在该文章中构造了一个映射函数来得到极值点的最优精度。2008 年,Borges 等人 [22] 建议采用整体的五点模板来推导光滑因子取代 Jiang 和 Shu 经典的光滑因子。另一方面,学者们构造了一系列高于五阶的 WENO 格式 [12,77,246]。如 Martin 等人 [154] 提出的 2r 阶精度的对称型 WENO 格式,可以达到更低耗散的效果。

上面提到的 WENO 格式都是通过 r 阶精度的 ENO 格式来设计光滑区域到达 2r-1 或 2r 阶精度的 WENO 格式,它们的目的都是提高光滑区的精度,尤其是极值点($f_i'=0$)。因此,对于含有间断的问题,上述的方法在连接光滑区和间断区的过渡点,并不能达到理想精度。例如,Shen 和 Zha [205] 分析了现存的各种五阶 WENO 格式,发现这些格式在过渡点半点精度只有三阶。这一缺点可能会影响五阶格式的整体表现。如在模拟激波诱导的分离流时或在模拟激波/湍流相互作用时。

由于解在过渡区仍然是光滑的,理论上,该点的半点通量可以达到四阶精度。换言之,可以通过四个点的光滑模板来构造一个四阶半点通量。在 [205] 工作中,Shen 和 Zha 引入了两个四阶的通量和一个判断相邻两个四阶通量光滑/间断的判别器用来提高精度。Shen 等人在更早的工作中 [206],指出 Jiang 和 Shu 的经典的光滑因子 IS_K 在极值点不能满足 $\beta_k = D(1 + O(\Delta^2))$,并提出一种逐阶的重构来满足上述条件。但是这一方法在极值点并不满足五阶收敛的充分必要条件 [102]。

本章我们基于 [205] 的分析,构造了一种新形式的 WENO 方法。该方法结

合了 Hentick 的映射函数、WENO-Z 格式以及多步的构造方法。新方法的优点主要是提高了 WENO 格式在近激波区域的精度。数值算例显示该方法比前文提到的各种五阶 WENO 格式耗散都要第。

2.1 本章涉及的数值方法

本节中,我们将给出本章涉及到的数值方法的具体的表达,这些方法也会 在后文中经常应用到。

2.1.1 Lax-Friedrichs (LF) 通量分裂方法和空间半离散

引言1.3.2.2 中介绍了各类近似黎曼求解器,在流通矢量分裂中,LF分裂方法是形式最为简单、最为常用的一种[12,22,187],具有较好的稳定性。

对于双曲率方程,为了实现迎风性,流通矢量方法通常将通量函数表达正负通量之和的形式,以一维方程为例,

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0, \tag{2.1}$$

LF 方法给出的正负通量为

$$f^{\pm}(u) = f(u) \pm \lambda_{max} u, \qquad (2.2)$$

其中 λ_{max} 是雅克比矩阵 $\frac{\partial f}{\partial u}$ 的当地最大特征值。

采用 Godunov 方法可以实现空间和时间的独立离散,所以 Godunov 方法通常也称为半离散方法。方程(2.1)的空间半离散形式为

$$\frac{du_i(t)}{dt} = -\frac{1}{\Delta x} (h_{i+1/2} - h_{i-1/2}), \tag{2.3}$$

其中 $h_{i+1/2}=h_{i+1/2}^++h_{i+1/2}^-$ 。本文中,我们仅构造 $h_{i+1/2}^+$ 通量。为了简便文中省略掉了上标'+', $h_{i+1/2}^-$ 的构造遵从同样的规律。

2.1.2 加权基本无振荡/WENO 格式 [22,102,115]

五阶 WENO 格式的通量构造为

$$h_{i+1/2} = \sum_{k=0}^{2} \omega_k q_k, \tag{2.4}$$

其中, q_k 是子模板 $S_k^3 = (x_{i+k-2}, x_{i+k-1}, x_{i+k})$ 上的三阶通量

$$\begin{cases}
q_0 = \frac{1}{3}f_{i-2} - \frac{7}{6}f_{i-1} + \frac{11}{6}f_i, \\
q_1 = -\frac{1}{6}f_{i-1} + \frac{5}{6}f_i + \frac{1}{3}f_{i+1}, \\
q_2 = \frac{1}{3}f_i + \frac{5}{6}f_{i+1} - \frac{1}{6}f_{i+2}.
\end{cases} (2.5)$$

模板权重 ω_k 为

$$\omega_k = \frac{\alpha_k}{\alpha_0 + \alpha_1 + \alpha_2},\tag{2.6}$$

其中

$$\alpha_k = \frac{c_k}{(\varepsilon + IS_k)^p},\tag{2.7}$$

 IS_k 是子模板 S_k^3 的光滑度量因子。在文献 [114] 中,Jiang 和 Shu 建议 IS_k 选取为

$$IS_k = \sum_{l=1}^{2} \int_{x_{i-1/2}}^{x_{i+1/2}} \Delta x^{2l-1} \left[q_k^{(l)}(x) \right]^2 dx.$$
 (2.8)

Eq.(2.8) 的泰勒展开为

$$\begin{cases}
IS_0 = \frac{13}{12}(f_{i-2} - 2f_{i-1} + f_i)^2 + \frac{1}{4}(f_{i-2} - 4f_{i-1} + 3f_i)^2, \\
IS_1 = \frac{13}{12}(f_{i-1} - 2f_i + f_{i+1})^2 + \frac{1}{4}(f_{i-1} - f_{i+1})^2, \\
IS_2 = \frac{13}{12}(f_i - 2f_{i+1} + f_{i+2})^2 + \frac{1}{4}(3f_i - 4f_{i+1} + f_{i+2})^2,
\end{cases} (2.9)$$

其中 $c_0 = 0.3$, $c_1 = 0.6$, $c_2 = 0.1$ 是构造五阶迎风格式的线性最优权重。如果 $f'_i = 0$, Eq.(2.9) 中的 $IS_k = D(1 + O(\Delta x), \ \omega_k = c_k + O(\Delta x)$ 不符合格式所要求的收敛精度 [22,102,206]。

Henrick 等人 [102] 给出了关于 Jiang 和 Shu 的 WENO 格式详细的精度分析,并且认为满足五阶收敛需要满足如下的条件

$$\sum_{k} = 0^{2} A_{k} (\omega_{k}^{+} - \omega_{k}^{-}) = O(\Delta x^{3}), \tag{2.10}$$

$$\omega_k^{\pm} - c_k = O(\Delta x^2),$$

其中 A_k 为 q_k 的泰勒展开中的三阶项 (Δx^3) 系数 [102]。为了满足前面的条件,提高权重系数 ω_k 的系数,映射函数 $g_k(\omega)$ 定义为

$$g_k(\omega) = \frac{\omega(c_k + c_k^2 - 3c_k\omega + \omega^2)}{c_k^2 + \omega(1 - 2c_k)},$$
(2.11)

通过 $g_k(\omega)$ 生成新的权重,并构造了新的 WENO 格式—WENO-M 格式。该格式可以在极值点达到五阶收敛精度。

Borges 等人 [22] 提出一个五阶收敛的充分条件

$$\omega_k^{\pm} - c_k = O(\Delta x^3), \tag{2.12}$$

并引入了一个系数 τ5

$$\tau_5 = |IS_0 - IS_2|,\tag{2.13}$$

用 75 来构造新的光滑因子

$$IS_k^z = \frac{IS_k + \varepsilon}{IS_k + \tau_5 + \varepsilon},\tag{2.14}$$

通过新的 IS_k^z 构造的 WENO 格式—WENO-Z 格式,可以在极值点满足条件 (2.12)。

在本文所有用到 ε 的公式中,该系数都是为了防止分母为零,在文章 [114] 中, $\varepsilon=10^{-6}$,在文章 [22,102] 中, $\varepsilon=10^{-40}$ 。Eq.(2.7) 中的 p 作用是增加间断区权重间的差距。

2.1.3 Runge-Kutta 时间方法

在引言1.3.2.3中我们简单回顾了对流方程的各种时间方法的发展,目前应用最为广泛的是 Shu 根据对流方程 TVD 性质发展的一套三阶显示 Runge-Kutta 格式 [212]。对于如下方程

$$\frac{du}{dt} = L(u), \tag{2.15}$$

三阶 TVD Runge-Kutta 格式具体表达如下,

$$\begin{cases} u^{(1)} = u^n + \Delta t L(u^n), \\ u^{(2)} = \frac{3}{4}u^n + \frac{1}{4}u^{(1)} + \frac{1}{4}\Delta t L(u^{(1)}), \\ u^{n+1} = \frac{1}{3}u^n + \frac{2}{3}u^{(2)} + \frac{2}{3}\Delta t L(u^{(2)}). \end{cases}$$
 (2.16)

2.2 过渡点精度分析

[205] 过渡点是连接光滑区和间断去的网格点,在前言1.4.1中有较详细的图示和描述。在文献 [205] 中分析了五阶 WENO 格式在过渡点降阶问题,认为无论是 WENO-Z 格式还是 WENO-JS 格式在过渡点只有三阶精度,然而该分析存在一些错误,其实该点只有二阶精度,以下我们将给出更为准确的分析,其中括号内为原不准确的表述。

图.1.1中,点 i 和点 i+1 是两个间断点,点 i-1 即被称作过渡点,在该点,模板

$$S_{(i-1)-1/2}^5 = (x_{i-4}, x_{i-3}, \cdots, x_i)$$

是光滑模板;因此,h(i-1)-1/2 通过 WENO-Z 或者 WENO-JS 格式可以得到一个五阶通量。然而对于模板

$$S_{(i-1)+1/2}^5 = (x_{i-3}, x_{i-2}, \cdots, x_{i+1})$$

由于在子模板 $S_2^3=(x_{i-1},x_i,x_{i+1})$ 上存在间断,所以无论采用了 WENO-Z 还是 WENO-JS 总有

$$IS_2 >> IS_0, IS_1$$
.

在计算通量 $h_{(i-1)+1/2}$ 时有

$$\omega_0 \to \frac{1}{7}, \omega_1 \to \frac{6}{7}, \omega_2 \to 0,$$

在 $\Delta x \to 0$ 时 $h_{(i-1)-1/2}$ 和 $h_{(i-1)+1/2}$ 分别为

$$h_{(i-1)-1/2} = \frac{1}{30}f_{i-4} - \frac{13}{60}f_{i-3} + \frac{47}{60}f_{i-2} + \frac{9}{20}f_{i-1} - \frac{1}{20}f_i,$$

和

$$h_{(i-1)+1/2} = \frac{1}{21}f_{i-3} - \frac{13}{42}f_{i-2} + \frac{41}{42}f_{i-1} - \frac{2}{7}f_i,$$

(原文中 f_{i-3} 前系数为 1/20)。应用泰勒分析有

$$\frac{1}{\Delta x}(h_{(i-1)+\frac{1}{2}} - h_{(i-1)-\frac{1}{2}}) = f'_{i-1} + O(\Delta x^2),$$

(原文中为 $O(\Delta x^3)$), 同样的情况也会发生在下游的点 i+3。

由于过渡点仍然属于光滑区域,因此该点的半点通量应该达到四阶和五阶, 而一阶导数精度应该达到三阶([205] 中为四阶)。

为了提高过渡点的精度,在文献 [205] 中,构造了一个新的方法

$$h_{i+1/2} = \begin{cases} q_0^4, & \text{if } \tau_4^0 \le \min(IS_k) \text{ and } \tau_4^1 \ge \min(IS_k), \\ q_1^4, & \text{if } \tau_4^1 \ge \min(IS_k) \text{ and } \tau_4^1 \le \min(IS_k), \\ h^{\text{WENO-Z}}, & \text{otherwise,} \end{cases}$$
 (2.17)

其中,

$$\begin{cases} q_0^4 = \frac{1}{12}(f_{i-2} - 5f_{i-1} + 13f_i + 3f_{i+1}), \\ q_1^4 = \frac{1}{12}(-f_{i-1} + 7f_i + 7f_{i+1} - f_{i+2}), \end{cases}$$

是两个四阶通量,可以通过方程(2.5)中两个三阶通量 q_k 组合得到

$$\begin{cases} q_0^4 = c_0^{4,0} q_0 + c_1^{4,0} q_1, \\ q_1^4 = c_0^{4,1} q_1 + c_1^{4,1} q_2. \end{cases}$$

系数 $c_k^{4,l}$ (k=0,1;l=0,1) 分别为

$$c_0^{4,0} = 0.25, \ c_1^{4,0} = 0.75; \ c_0^{4,1} = 0.5, \ c_1^{4,1} = 0.5,$$

其中 τ_4^0 和 τ_4^1 分别为

$$\begin{cases} \tau_4^0 = |IS_0 - IS_1|, \\ \tau_4^1 = |IS_1 - IS_2|. \end{cases}$$

尽管 Eq.(2.17) 中关于过渡点的计算并不十分精确, 但是仍然可以有效的提高过渡点精度, 并保持 ENO 的性质 [205]。

2.3 WENO 格式的多步加权方法

不同于 Eq.(2.17) 中的方法,本文中,我们构造结合了 Henrick 映射函数 [102] 和逐步提高精度阶的 WENO-Z 格式思想 [206],构造了一种新型的多步加权 WENO 方法。图.??可以用来说明该方法。

第一步,构造如下两个四阶的加权通量

$$\begin{cases}
h_0^4 = \omega_0^{4,0} q_0 + \omega_1^{4,0} q_1, \\
h_1^4 = \omega_0^{4,1} q_1 + \omega_1^{4,1} q_2,
\end{cases} (2.18)$$

权重系数 $\omega_k^{4,l}$ $(k=0,1;\ l=0,1)$ 通过结合 WENO-Z 和映射函数求得

$$\omega_k^{4,l} = \frac{g_k \left(\phi_k^{4,l}\right)}{\sum_k g_k \left(\phi_k^{4,l}\right)}, \ \phi_k^{4,l} = \frac{\alpha_k^{4,l}}{\sum_k \alpha_k^{4,l}},$$

$$\alpha_k^{4,l} = c_k^{4,l} \left(1 + \frac{\tau_4^l}{IS_{l+k} + \varepsilon}\right), \ \tau_4^l = |IS_{l+1} - IS_l|.$$

其中最佳权重系数 $c_k^{4,l}$ $(k=0,1,\ l=0,1)$ 和 Eq.(2.17) 中相同。

第二步,通过以下方式构造最终的五阶模板

$$h_{i+1/2} = \omega_0 h_0^4 + \omega_1 h_1^4, \tag{2.19}$$

其中,

$$\omega_{k} = \frac{g_{k} \left(\phi_{k}\right)}{\sum_{k} g_{k} \left(\phi_{k}\right)}, \ \phi_{k} = \frac{\alpha_{k}}{\sum_{k} \alpha_{k}},$$

$$\alpha_{k} = c_{k}^{5} \left(1 + \frac{\tau_{5}}{IS_{2k} + \varepsilon}\right), \ \tau_{5} = |IS_{2} - IS_{0}|.$$

其中 $c_0^5 = 0.4$, $c_1^5 = 0.6$ 是通过两个四阶模板构造五阶迎风格式的最优线性权重。

下面我们分析新的方法 Eq.(2.18, 2.19) 的精度, 通过泰勒展开可以得到

$$\tau_4^l = |f_i' f_i'''| \Delta x^4 + O(\Delta x^5),$$

和

$$\phi_k^{4,l} = \begin{cases} c_k^{4,l} + O(\Delta x^2), & \text{if } f_i' \neq 0, \\ c_k^{4,l} + O(\Delta x), & \text{if } f_i' = 0 \text{ and } f_i'' \neq 0, \end{cases}$$

应用合适的映射函数 $g_k(\omega)$

$$g_k\left(\phi_k^{4,l}\right) = c_k^{4,l} + \frac{\left(\phi_k^{4,l} - c_k^{4,l}\right)^3}{c_k^{4,l} - \left(c_k^{4,l}\right)^3} + \cdots,$$

容易发现

$$\omega_k^{4,l} = \begin{cases} c_k^{4,l} + O(\Delta x^6), & \text{if } f_i' \neq 0, \\ c_k^{4,l} + O(\Delta x^3), & \text{if } f_i' = 0 \text{ and } f_i'' \neq 0, \end{cases}$$
 (2.20)

同样可以得到

$$\omega_k = \begin{cases} c_k^5 + O(\Delta x^9), & \text{if } f_i' \neq 0, \\ c_k^5 + O(\Delta x^3), & \text{if } f_i' = 0 \text{ and } f_i'' \neq 0, \end{cases}$$
 (2.21)

因此,上文提到的第一和第二步加权过程中无论在 $f_i' \neq 0$ 情况下还是在 $f_i' = 0$ 和 $f_i'' \neq 0$ 情况下都满足条件 (2.10)。因此多步加权过程 Eq.(2.18) 和 Eq.(2.19) 在光滑区没有发生降阶。

如果 x_i 是过渡点(例如,间断介于点 x_{i+1} 和点 x_{i+2} 之间)。在第一步通过 Eq.(2.18) 可以得到四阶精度的半点通量 h_0^4 。在第二步,由于 $IS_2 >> IS_0$ 因此在 Eq.(2.19) 中有 $\omega_1 \to 0$,最后的 $h_{i+1/2} \to h_0^4$ 。因此,过渡点将有三阶精度。

要说明的是, 计算 Eq.(2.18) 和 Eq.(2.19) 比起 WENO-Z 或者 WENO-M 都需要更多的计算量, 这是由于它需要同时采用 WENO-Z 和 WENO-M 来求解六个权重系数。然而多步过程只在间断附近才需要, 因此可以通过一些措施来减少计算量, 比如通过有效的激波识别过程来确定非光滑模板并结合其它格式构造如下的杂交方法

$$h_{i+1/2} = \begin{cases} h_{i+1/2}^{\text{present}}, & \text{如果模板 } S_i^5 \text{ 是间断模板}, \\ h_{i+1/2}^{\text{other}}, & 其它, \end{cases}$$
 (2.22)

其中 $h_{i+1/2}^{\text{present}}$ 代表当前的多步加权 WENO 格式, $h_{i+1/2}^{\text{other}}$ 代表其它格式构造的结果。该部分将会在下一章间断识别方法中详细分析。

2.4 数值算例

2.4.1 线性对流算例

线性对流问题的控制方程如下,

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial u}{\partial t} = 0, & -1 \leqslant x \leqslant 1, \\ u(x,0) = u_0(x), & 周期边界条件. \end{cases}$$
 (2.23)

1. 初始条件

$$u_0(x) = \sin\left(\pi x - \frac{\sin(\pi x)}{\pi}\right).$$

这一初始条件含有两个极值点,表.2.1 给出了误差和精度。可以看出,在 光滑区,新的方法可以保持和 WENO-Z 和 WENO-M 相同的精度,都能达 到五阶。

2. 初始条件

$$u_0(x) = \begin{cases} -\sin(\pi x) - \frac{1}{2}x^3, & -1 < x \le 0, \\ -\sin(\pi x) - \frac{1}{2}x^3 + 1, & 0 < x \le 1, \end{cases}$$
 (2.24)

Scheme	N	L_1 error	L_1 order	L_{∞} error	L_{∞} order
WENO-Z	40	0.217102e-3	_	0.677211e-4	_
	80	0.649393e-5	5.063	0.237405e-5	4.834
	160	0.204882e-6	4.986	0.785200 e-7	4.918
	320	0.748874e-8	4.774	0.250232e-8	4.971
	640	0.364893e-9	4.359	0.779779e-10	5.004
WENO-M	40	0.210766e-3		0.672781e-4	
	80	0.648426e-5	5.023	0.225867e-5	4.897
	160	0.204671e-6	4.986	0.720345 e-7	4.971
	320	0.640983e-8	4.997	0.226830e-8	4.989
	640	0.200631e-9	4.998	0.710974e-10	4.996
present	40	0.203332e-3		0.714827e-4	
	80	0.649369e-5	4.969	0.229242e-5	4.963
	160	0.204635 e-6	4.988	0.724031e-7	4.985
	320	0.640982e-8	4.997	0.227140e-8	4.994
	640	0.200642 e-9	4.998	0.711126e-10	4.997

表 2.1: 不同格式精度对比, T=2

图.2.1(a) 中给出的是 N = 200 网格点在 t = 6 时刻的结果,可以看出,在间断附近,新的方法得到的结果较 WENO-Z 或 WENO-M 都有更好的表现。图..2.1(b) 给出的是当前格式和七阶 WENO (WENO-7) [12] 格式结果对比,可以看到,新的格式在间断附近的计算结果比 WENO-7 都要好。这也符合??中的分析,在过渡点 i-1,WENO-7 和新格式都有三阶精度,但是在点i-2WENO-7 只有三阶精度,而新的格式有五阶精度。

3. 初始条件

$$u_0(x) = \begin{cases} \frac{1}{6} \left(G(x, \beta, z - \delta) + G(x, \beta, z + \delta) + 4G(x, \beta, z) \right), & -0.8 \leqslant x \leqslant -0.6, \\ 1, & -0.4 \leqslant x \leqslant -0.2, \\ 1 - |10(x - 0.1)|, & 0 \leqslant x \leqslant 0.2, \\ \frac{1}{6} \left(F(x, \alpha, a - \delta) + F(x, \alpha, a + \delta) + 4F(x, \alpha, a) \right), & 0.4 \leqslant x \leqslant 0.6, \\ 0, & \text{otherwise,} \end{cases}$$

$$(2.25)$$

其中

$$G(x, \beta, z) = \exp(-\beta(x - z)^2),$$

图 2.1: 初始条件 Eq.(2.24) 下计算结果对比,t=6.

$$F(x, \gamma, a) = \sqrt{\max(1 - \alpha^2(x - a^2), 0)}.$$

系数 a=0.5, z=-0.7, $\delta=0.05$ 和 $\beta=log2/36\delta^2$ 。理论解中包含一个光滑的高斯波、一个方波、一个三角波和一个半椭圆波。图.2.2(a) 和图.2.2(b) 中给出了新格式和五阶 WENO-Z 以及 WENO-M 格式对比结果。可以看到新方法的确可以提高间断附近的数值表现。在图.fig:linear3(a) 和图.2.2(b) 中给出了新格式和 WENO-7 格式对比。和上一个算例相同,在含间断的区域以及椭圆波区域新方法都有更好的表现。

2.4.2 非线性对流算例

非线性对流算例采用的控制方程为无黏 Burgus 方程

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, \quad 0 \leqslant x \leqslant 2\pi, \tag{2.26}$$

初始条件为

$$u_0(x) = 0.3 + 0.7\sin(x), 0 \le x \le 2\pi$$
, 周期边界条件.

该算例中,通量分裂采用 $f^{\pm}=(f\pm au)/2$,其中 $f=u^2/2$, $a=max(u_i)$ 。图.() 给出在 N=80 网格下 t=2 时刻计算结果,可以看到相比与 WENO-Z 和 WENO-M,新的格式在间断附近的结果更接近间断解。

2.4.3 一维激波管算例

我们在引言1.1.1中给出二维的 Euler 方程系统,一维的方程更为简化

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = 0, \tag{2.27}$$

其中 $U = (\rho, \rho u, rhoE)^T$, $F = (\rho u, \rho u^2 + p, u(E+p))^T$ 。对于理想气体有 $p = (\gamma - 1)(E - \rho u^2)$, $\gamma = 1.4$ 。

1. Sod 激波管算例初始条件为

$$(\rho, u, p) = \begin{cases} (1, 0, 1), & x < 0, \\ (0.125, 0, 0.1), & x \ge 0. \end{cases}$$

图 2.2: (a) 初始条件 Eq.(2.25) 下计算结果对比,t=6. (b) 图.2.2(a) 的局部放大图.

图 2.3: (a) 初始条件 Eq.(2.25) 下计算结果对比, t=6. (b) 图.2.3(a) 的局部放大图.

图. 给出了在 N=200 网格下 t=0.14 时刻的计算结果。可以看出,在激波附近,新的方法较 WENO-Z 和 WENO-M 更准确。

2. Lax 激波管算例初始条件为

$$(\rho, u, p) = \begin{cases} (0.445, 0.698, 0.3528), & x < 0, \\ (0.500, 0.000, 0.5710), & x \geqslant x. \end{cases}$$

图. 给出了在 N = 200 网格下 t = 1.3 时刻的计算结果。在 Sod 激波管算例中,新的格式在间断附近的计算结果明显较其它五阶 WENO 格式更准确。

3. Shu-Osher 问题初始条件为

$$(\rho, u, p) = \begin{cases} (3.857143, 2.629369, 10.33333), & \exists x < -4, \\ (1 + \varepsilon \sin 5x, 0, 1), & \exists x \ge -4. \end{cases}$$

这一算例模拟的是一道马赫数为 3 的激波和一道正弦的熵波相互作用 [213]。图. 给出 N=200 网格下在 t=1.8 时刻的计算结果。'exact'结果是采用 WENO-Z 格式在 N=2000 网格下得到的。可以看到采用了新格式,即便是 在光滑区也能达到更好的精度。这表明,如果结果是剧烈变化的,新方法具 有更低的耗散。

图. 给出了新的方法在不同网格 (N = 200, N = 400, N = 800) 情况下计算结果,可以看到,采用 N = 800 网格的结果和 'exact' 结果较好的吻合。也表明,新的方法在计算复杂问题是具有较好的收敛特性。

4. 冲击波相互作用算例初始条件为

$$(\rho, u, p) = \begin{cases} (1, 0, 1000), & 0 \le x < 0.1, \\ (1, 0, 0.1), & 0.1 \le x < 0.9, \\ (1, 0, 100), & 0.9 \le x \le 1.0. \end{cases}$$

图. 给出了在 N = 400 网格下 t = 0.038 时刻的计算结果,通过结果对比表明,新的格式可以较其它格式更好的捕捉强激波结构。

2.4.4 二维对流传播方程

二维线性对流传播方程为

$$\begin{cases}
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0, & -1 \leq x, y \leq 1, \\
u(x, y, 0) = u_0(x, y),
\end{cases}$$
(2.28)

初始条件为 $u_0(x,y) = \sin(\pi(x+y))$,采用周期边界条件。表. 中给出了不同格式的误差,可以看到对于光滑算例,三种方法都能达到和一维中一样的五阶精度。

表 2.2 : 2D 线性对流传播力程昇例中不同格式订昇稍度对比, $I=2$					
Scheme	N	L_1 error	L_1 order	L_{∞} error	L_{∞} order
WENO-Z	20	0.342283E-03	_	0.214133E-03	_
	40	0.102111E-04	5.067	0.637584 E-05	5.746
	80	0.314224 E-06	5.022	0.199111E-06	5.680
	160	0.979186E- 08	5.004	0.622505 E-08	5.658
	320	0.305789E-09	5.001	0.194579E-09	5.653
WENO-M	20	0.314390E- 03	_	0.210032 E-03	
	40	0.995888E- 05	4.980	0.636855 E-05	5.625
	80	0.312491E-06	4.994	0.199092 E-06	5.644
	160	0.977631E-08	4.998	0.622500 E-08	5.650
	320	0.305630E-09	4.999	0.194578 E-09	5.652
present	20	0.312598 E-03		0.201245 E-03	
	40	0.995287 E-05	4.973	0.635348E- 05	4.985
	80	0.312471E-06	4.993	0.199062 E-06	5.644
	160	0.977603E-08	4.998	0.622479 E-08	5.650
	320	0.305600E- 09	5.000	0.194560 E-09	5.651

表 2.2: 2D 线性对流传播方程算例中不同格式计算精度对比, T=2

2.4.5 二维变系数线性对流守恒方程算例

本算例采用的二维线性对流守恒率方程为

$$\frac{\partial u}{\partial t} + \frac{\partial (-yu)}{\partial x} + \frac{\partial (xu)}{\partial y} = 0, \quad -1 \leqslant x, y \leqslant 1, \tag{2.29}$$

边界条件为周期边界, 初始条件为一个高出其它位置一个单位, 半径为 0.5 的圆。这一问题模拟的是一个旋转的固体,用来验证网格方向影响(Grid orientation effect)[45, 202]。图. 给出了在 200×200 网格下 t=2 时刻的计算结果。可以

看到网格方向影响并不严重,图给出坐标线 x = -0.02, -0.48 和 -0.52 上结果对比,可以看出新的方法是三种格式中最好的。

2.4.6 二维激波/涡相互作用算例

该算例我们采用二维 Euler 方程1.1,问题描述的是一道静止的激波和运动的涡之间的相互作用 [114]。计算区域为 $[0,2] \times [0,1]$ 。初始时刻在 x=0.5有一道垂直于 x 轴,马赫数为 1.1 的静止激波。激波左侧状态为 $(\rho,u,v,p)=(1,1.1,\sqrt{\gamma},0,1)$ 。在激波左侧以 $(x_c,y_c)=(0.25,0.5)$ 为中心设置一个小涡,涡采用速度 (u,v)、温度 $(T=p/\rho)$ 和熵 $(S=ln(p/\rho^{\gamma}))$ 的扰动来描述:

$$\begin{cases} = \varepsilon \tau e^{\alpha(1-\tau^2)} \sin \theta \\ v = -\varepsilon \tau e^{\alpha(1-\tau^2)} \cos \theta \\ T = -\frac{(\gamma - 1)\varepsilon^2 e^{2\alpha(1-\tau^2)}}{4\alpha\gamma} \\ S = 0 \end{cases}$$

其中, $\tau=r/r_c$, $r=\sqrt{(x-x_c)^2+(y-y_c)^2}$, ε 代表涡的强度, α 控制涡的衰减速度, r_c 是涡最大强度的临界半径。采用和文献 [114,204] 中相同的值, $\varepsilon=0.3$, $r_c=0.05$, $\alpha=0.204$ 。

计算时间步选取为 []<++>

$$\Delta t = \sigma \frac{\Delta t_x \Delta t_y}{\Delta t_x + \Delta t_y}, \quad \text{ i.e. } \Delta x_t = \frac{\Delta x}{\max_{i,j} (|u_{i,j}| + c_{i,j})}, \quad \Delta y_t = \frac{\Delta y}{\max_{i,j} (|v_{i,j}| + c_{i,j})}, \quad (2.30)$$

公式中的 c 为声速, $\sigma=0.5$ 是 Courant-Friedrichs-Lewy (CFL) 数。

图给出新方法在 t=0.6 时刻计算结果中的压力分布,图给出中轴线 y=0.5 上的压力曲线对比结果。计算采用 251×101 的网格,其中参考解 'exact' 为 WENO-Z 格式在 2001×401 网格下的计算结果。从图中可以看出,激波后,在压力峰值,新格式几乎可以达到和参考解相同的高度,在压力波谷,新方法也有较其它两种格式更好的表现。

图给出新方法在 251×101,501×201 和 1001×401 不同网格下结果对比,可以看到,在精细的网格下,结果很好的收敛到参考解。压力峰值的微小差异也表明,即便在粗糙网格下该方法也只有非常小的耗散。

2.4.7 激波/剪切层相互作用算例

本小节我们通过一个激波/剪切层相互作用算例来进一步验证新方法的低耗散性 [|<++>。该算例我们求解二维 Navier-stocks 方程

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = \frac{1}{\text{Re}} \left(\frac{\partial F_v}{\partial x} + \frac{\partial G_v}{\partial y} \right)$$
 (2.31)

其中,

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho e \end{pmatrix}, \quad F = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ (\rho e + p)u \end{pmatrix}, \quad G = \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ (\rho e + p)v \end{pmatrix}$$

$$F_{v} = \begin{pmatrix} 0 \\ \tau_{xx} \\ \tau_{xy} \\ u\tau_{xx} + v\tau_{xy} + q_{x} \end{pmatrix}, \quad v = \begin{pmatrix} 0 \\ \tau_{xy} \\ \tau_{yy} \\ u\tau_{xy} + v\tau_{yy} + q_{y} \end{pmatrix}$$

 $\forall \lambda \not \mathcal{R} \ \tau_{xx} = \frac{2}{3}\mu(2u_x - v_y), \ \tau_{xy} = \frac{2}{3}\mu(u_y + v_x), \ \tau_{yy} = \frac{2}{3}\mu(2v_y - u_x), \ q_x = \mu T_x/[(\gamma - 1)M^2\text{Pr}], \ p = (\gamma - 1)(\rho e - \rho u^2/2), \ \gamma = 1.4$

在该算例中,由于剪切层穿过激波形成的不稳定性会引起一系列涡。计算开始时,一道角度为 $\theta=12^\circ$ 马赫数为 0.5 的斜激波作用在混合边界层上。计算区域为 $[x,y]=[0,200]\times[-20,20]$,入流速度通过一个双曲正切函数给出

$$u = 2.5 + 0.5 \tanh(2y)$$

上层流体 $\rho_u=1.6374,\ p_u=0.3327;\$ 下层流体, $\rho_l=0.3626,\ p_l=0.3327.$ 上层流体选取的是激波后的参数。下壁面采用滑仪条件。在入流速度 v 上加入脉动量

$$v' = \sum_{k=1}^{2} a_k \cos(2\pi kt/T + \phi_k) \exp(-y^2/b)$$

周期为 $T = \lambda/u_c$,波长为 $\lambda = 30$,对流速度 $u_c = 2.68$,b = 10, $a_1 = a_2 = 0.05$, $\phi_2 = \pi/2$ 。普朗特数 Pr = 0.72,雷诺数 Re = 500。黏性项采用四阶中心格式 []<++>,网格如文献 []<++> 统一采用 321×81 ,时间步长同样通过公式

(2.30) 求得。图给出密度分布,可以看到三种方法都能很好的求解该问题,但 是对于涡,尤其是后面的四个,新的方法比其它两种方法捕捉的都更清晰。

2.5 小结

结合 Henrick 的映射函数和逐阶加权 WENO-Z 的思想,本文构造了一种新形式的 WENO 格式。每一步重构都满足五阶收敛的充分条件,因此最终得到的五阶形式格式在光滑区甚至是极值点都能到达五阶精度。该方法的突出优点是它可以提高 WENO 格式在过渡点的表现,因此,间断附近的数值耗散明显低于其它五阶 WENO 格式。一系列数值算例验证了该方法的有效性。

第三章 间断识别方法比较研究

为了能更准确的模拟可压缩流中复杂的激波和其它流场结构相互作用,如激波/边界层、激波/涡等,需要数值方法既能高分辨率的捕捉激波又能高精度低耗散的求解光滑区的小尺度结构 [182]。在上一章中,我们提出了多步加权的思想,并构造了多步加权五阶 WENO 格式,进一步改善了 WENO 格式在间断附近的表现,从算例中我们也能看出 WENO 格式可以求解各种和强间断相关的问题所表现出的准确性和鲁棒性。

尽管 WENO 格式在理论上可以构造到任意阶精度 [12,77,114],然而近些年研究发现,在求解短波时,尤其在可压缩湍流的计算中 [267]WENO 格式会存在过度的耗散以至掩盖了真实的物理黏性,造成计算的不准确。为了避免这一问题,学者们发展了一系列杂交格式 (hybrid method),如 WENO-紧致格式 [181,187,204,271],WENO-中心格式和 WENO-迎风格式等,在光滑区采用高精度低耗散格式,在间断区采用 WENO 类激波捕捉格式。对于杂交格式,最为关键的问题是准确的识别激波。

最近, Li 和 Qiu [141] 在 WENO-迎风格式中比较了多种间断识别方法,并且通过算例证明杂交格式比起 WENO 格式更为高效。Shen 和 Zha 在有限紧致的工作 [204] 中构造了一种基于 WENO-Z 格式光滑因子提出的激波识别方法。该识别方法无人为的或和问题相关的自由参数,有效性在文 [204] 中得到了验证。

在本章中,我们系统的研究、比较不同间断识别器,包含文 [141,204,272] 中的识别方法。

3.1 有限紧致格式 (the finite compact scheme)

本文将各种识别方法应用在有限紧致格式 [204] 来验证它们的表现。有限紧致格式 (the finite compact scheme) 是一种结合了 WENO 格式和紧致格式的杂交格式,有限紧致格式将间断看成流场的内边界,进而将流场分成有限个光滑区域。有限紧致格式具体的构造思想为:

图 3.1: 有限紧致格式示意图

- (1) 首先通过间断识别方法识别出间断区域,该区域包括边界都采用 WENO 格式构造通量。
- (2) 将介于两个间断区域之间(或者介于边界和间断区域之间)的光滑节点定义为紧致模板,并采用紧致格式构造紧致模板上的通量。

注意在第(2)步,第(1)步中构造的间断区域模板通量将自动的作为内边界。

图 (3.1) 给出有限紧致格式的示意图,其中 M 为紧致模板个数。在应用有限紧致格式求解中,需要一个用来定义光滑区域起始点和终止点的数组。有限紧致格式具体构造细节如下:

```
第 0 步: 采用边界条件计算 h_{1/2} 和 h_{N+1/2}
```

第 1 步: M=1! 搜寻第 M 个光滑区域的起始点和终止点 $\operatorname{start_point}(M)=1$! 第 M 光滑区域的起始点 Do i=1,N-1! 对模板 S_i 采用间断识别方法 $\operatorname{IF}(S_i$ 是间断模板) THEN $\operatorname{end_point}(M)=i$! 第 M 光滑区域的终止点 M=M+1 $\operatorname{start_point}=i+1$ 采用激波捕捉格式计算 $h_{i+1/2}$:

```
h_{i+1/2} = \sum_{k=0}^2 \omega_k \hat{f}^k(x_{i+1/2}) END IF END DO end_point(M) = N 第 2 步: DO k=1, M! 采用紧致格式计算第 k 紧致模板(光滑区域) DO i= \mathrm{start\_point}(k), \mathrm{end\_point}(k)-1 计算紧致格式右端项 d_{i+1/2} END DO 求解三对角紧致格式: \alpha h_{i-1/2} + \gamma h_{i+1/2} + \beta h_{i+3/2} = d_{i+1/2} 其中,i= \mathrm{start\_point}(k), \cdots, \mathrm{end\_point}(k)-1 ENDDO
```

3.2 间断识别方法

3.2.1 τ_5 识别方法 [204]

在 [204] 有限紧致格式采用的是 Shen 和 Zha 提出的一种基于 WENO-Z 格式光滑度量因子的间断识别方法。为了简便本文称其为 SZ 识别方法。

Borges 等人 [22] 在 WENO-Z 构造中中引入了一个 τ_5 系数,如公式 (??) 中所示。Shen 和 Zha [204] 指出, τ_5 具有如下重要的性质:

- (1) 在模板 $S^5 = (x_{i-2}, x_{i-1}, \dots, x_{i+2})$ 上,如果不存在间断,则 $\tau_5 \ll IS_k$ (k = 0, 1, 2)。
- (2) 如果在 S^5 模板上存在间断但是在子模板 S_k^3 上光滑,则对于光滑子模板 有 $IS_k << \tau_5$ 。
- (3) $\tau_5 \leq \max(IS_0, IS_1, IS_2)$.

根据这些性质可以得到如下的间断判别方法:

如果 $\tau_5 > \min(IS_0, IS_1, IS_2)$,则模板 S^5 是一个间断模板。

3.2.2 平均总变差 (Average total variation) 识别方法

对于平均总变差方法我们采用和 [141,186,272] 中相同的缩写 ATV, 其中 TV 代表 t_n 时刻的总变差

$$TV = TV(u^n) = \sum_{i} |u_{i+1}^n - u_{j}^n|$$

如果

$$|u_{j+1}^n - u_j^n| \ge \theta \frac{TV}{N}$$

则认为 $[x_j, x_{j+1}]$ 内存在间断。单元 I_j ($[x_{j-1/2}, x_{j+1/2}]$) 和单元 I_{j+1} 为间断单元。其中, θ 为问题相关参数,它的选择对识别方法的效果影响很大,本文统一选用 $\theta=0.3$ 。

3.2.3 基于 minmod 函数的 TVB 识别方法 [44]

为了便于表达, [141] 中在单元 I_i 上给出了一个二次多项式 $P_2(x)$

$$P_2(x) = u_j^{(0)} + u_j^{(1)} \frac{x - x_j}{\Delta x} + u_j^{(2)} \left[\left(\frac{x - x_j}{\Delta x} \right)^2 - \frac{1}{12} \right]$$
 (3.1)

其中 I_j 为 $x \in [x_{i-1/2}, x_{j+1/2}]$ 。在单元点上有

$$P_2(x_k) = u_k^n, \quad k = j - 1.j.j + 1$$

由此可以得到

$$u_{j}^{(0)} = \frac{1}{24}(u_{j-1}^{n} + 22u_{j}^{n} + u_{j+1}^{n}), \quad u_{j}^{(1)} = \frac{1}{2}(u_{j+1}^{n} - u_{j-1}^{n}), \quad u_{j}^{(2)} = \frac{1}{2}(u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n})$$

在 TVB 识别方法中, 首先定义

$$\widetilde{u}_j = P_2(x_{j+1/2}) - u_j^{(0)}, \quad \widetilde{\widetilde{u}}_j = -P_2(x_{j-1/2}) + u_j^{(0)}$$

然后通过 minmod 函数进行修正

$$\widetilde{u}_{j}^{(\text{mod})} = \widetilde{m}(\widetilde{u}_{j}, u_{j+1}^{(0)} - u_{j}^{(0)}, u_{j}^{(0)} - u_{j-1}^{(0)}),$$

$$\widetilde{\widetilde{u}}_{j}^{(\text{mod})} = \widetilde{m}(\widetilde{\widetilde{u}}_{j}, u_{j+1}^{(0)} - u_{j}^{(0)}, u_{j}^{(0)} - u_{j-1}^{(0)}).$$

其中 \tilde{m} 为

$$\widetilde{m}(a_1, a_2, \dots, a_n) = \begin{cases} a_1 & \text{if } |a_1| \leq M(\Delta x)^2, \\ m(a_1, a_2, \dots, a_n) & \text{otherwise,} \end{cases}$$

minmod 函数 m 为

$$m(a_1.a_2, \cdots, a_n) = \begin{cases} s \cdot \min_{1 \le j \le n} |a_j| & \text{if } \operatorname{sign}(a_1) = \operatorname{sign}(a_2) = \cdots = \operatorname{sign}(a_n) = s, \\ 0 & \text{otherwise.} \end{cases}$$
(3.2)

如果 $\widetilde{u}_{j}^{(\mathrm{mod})} \neq \widetilde{u}_{j}$ 或 $\widetilde{\widetilde{u}}_{j}^{(\mathrm{mod})} \neq \widetilde{\widetilde{u}}_{j}$ 则认为单元 I_{j} 为问题单元。

其中 M 为 TVB 识别方法中的一个问题相关参数,同样难以很好的给出,本文中我们采用 [44] 中 M 为初始解光滑区域的二阶导数最大值成正比的设定:

$$M = \frac{2}{3} \max_{J} |u_{xx}^0|$$

3.2.4 XS 识别方法 [250]

Xu 和 Shu 在文章 [250] 中引入了一个强间断判别方法,该方法中定义了一个 ϕ_i 函数

$$\phi_j = \frac{\beta_j}{\beta_j + \gamma_j}$$

其中

$$\alpha_j = (u_j^n - u_{j-1}^n)^2 + \varepsilon, \quad \beta_j = \left(\frac{\alpha_j}{\alpha_{j-1}} + \frac{\alpha_{j+1}}{\alpha_{j+2}}\right)^2, \quad \gamma_j = \frac{(u_{textmax} - u_{\min})^2}{\alpha_j}$$

这里 ε 是一个防止分母为 0 的小系数。 u_{\max} 和 u_{\min} 为所有节点在 t^n 时刻 u^n_j 最大值和最小值。在光滑区域有 $0 \leqslant \phi_i \leqslant 1$ 和 $\phi_i = O(\Delta x)$ 。在间断区域 $\gamma_j << \beta_j$, ϕ_j 趋近于 1。因此,本文中我们认为 $\phi_j > (\Delta x)^2$ 时单元 I_j 和单元 I_{j+1} 为间断

单元。

3.2.5 Biswas, Devine 和 Flaherty 动量限制 (moment limiter) 方 法 [19] (BDF)

该方法中定义

$$u_j^{(l),\text{mod}} = \frac{1}{2l-1} m \left((2l-1)u_j^{(l)}, u_{j+1}^{(l-1)} - u_j^{(l-1)}, u_j^{(l-1)} - u_{j-1}^{(l-1)} \right), \quad l = 1, 2$$

其中 m 为公式 3.2中的 minmod 函数。如果 $u_i^{(2),\text{mod}} \neq u_i^{(2)}$ 认为 I_j 为间断单元。

3.2.6 KXRCF 间断识别器 [126]

KXRCF 间断识别方法将单元 I_j 的边界分为入流边界 ∂I_j^+ 和出流边界 ∂I_j^- 两部分,如果

$$\frac{\left| \int_{\partial I_{j}}^{(u^{h}|_{I_{j}} - u^{h}|_{I_{n_{J}}})ds} \right|}{h_{j}^{\frac{k+1}{2}} |\partial I_{j}^{-}| \left\| u^{h}|_{I_{j}} \right\|} \ll 1$$
(3.3)

则认为 I_j 单元为间断单元。这里 h_j 定义为单元 I_j 的半径, I_{n_J} 为单元 I_j 出流 边界 ∂I_j^- 的邻居单元。本文中上面公式3.3可以简化为

$$\frac{u^h(-\frac{1}{2})|_j - u^h(\frac{1}{2})|_{j-1}|}{(\Delta x)^{3/2} \sqrt{\int_{-1/2}^{1/2} [u^h(x)|_j^2} dx} \gg 1$$

其中

$$u^{h}(-\frac{1}{2})|_{j} = u_{j}^{(0)} - \frac{1}{2}u_{j}^{(1)} + \frac{1}{6}u_{j}^{(2)},$$

$$u^{h}(\frac{1}{2})|_{j-1} = u_{j-1}^{(0)} + \frac{1}{2}u_{j-1}^{(1)} + \frac{1}{6}u_{j-1}^{(2)}.$$

$$\int_{-1/2}^{1/2} [u^h(x)|_j]^2 dx = a^2 + \frac{b^2}{12} + \frac{c^2}{80} + \frac{ac}{6}$$

a, b, c 分别为

$$a = u_j^{(0)} - \frac{1}{12}u_j^{(2)}, \ b = u_j^{(1)}, \ c = u_j^{(2)}$$

3.3 数值算例

下部分

- [1] ALLAIRE, G., CLERC, S., AND KOKH, S. A five-equation model for the simulation of interfaces between compressible fluids. *Journal of Computational Physics* 181, 2 (2002), 577–616.
- [2] AMSDEN, A. A., AND HARLOW, F. H. The smac method: A numerical technique for calculating incompressible fluid flows. Tech. rep., Los Alamos Scientific Lab., N. Mex., 1970.
- [3] Anderson, M., Vorobieff, P., Truman, C., Corbin, C., Kuehner, G., Wayne, P., Conroy, J., White, R., and Kumar, S. An experimental and numerical study of shock interaction with a gas column seeded with droplets. *Shock Waves* 25, 2 (2015), 107–125.
- [4] Anderson Jr, J. D. Fundamentals of aerodynamics. Tata McGraw-Hill Education, 2010.
- [5] Andronov, V., Bakhrakh, S., Meshkov, E., Mokhov, V., Nikiforov, V., Pevnitskii, A., and Tolshmyakov, A. Turbulent mixing at contact surface accelerated by shock waves. Sov. Phys. JETP 44, 2 (1976), 424–427.
- [6] ARTZI, M. B. The generalized riemann's problem for reactive flows. Preprint (1989).
- [7] Ashgriz, N., and Poo, J. Flair: Flux line-segment model for advection and interface reconstruction. *Journal of computational physics* 93, 2 (1991), 449–468.
- [8] ASLAM, T. D. A level-set algorithm for tracking discontinuities in hyperbolic conservation laws: I. scalar equations. *Journal of Computational Physics* 167, 2 (2001), 413–438.

- [9] ASLAM, T. D. A level set algorithm for tracking discontinuities in hyperbolic conservation laws ii: systems of equations. *Journal of Scientific computing* 19, 1-3 (2003), 37–62.
- [10] Aulisa, E., Manservisi, S., and Scardovelli, R. A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows. *Journal of Computational Physics* 188, 2 (2003), 611–639.
- [11] Babinsky, H., and Harvey, J. K. Shock wave-boundary-layer interactions, vol. 32. Cambridge University Press, 2011.
- [12] Balsara, D. S., and Shu, C.-W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. *Journal of Computational Physics* 160, 2 (2000), 405–452.
- [13] BAO, W., AND JIN, S. The random projection method for hyperbolic conservation laws with stiff reaction terms. *Journal of Computational Physics* 163, 1 (2000), 216–248.
- [14] BAO, W., AND JIN, S. The random projection method for stiff detonation capturing. SIAM Journal on Scientific Computing 23, 3 (2001), 1000–1026.
- [15] BAO, W., AND JIN, S. The random projection method for stiff multispecies detonation capturing. *Journal of Computational Physics* 178, 1 (2002), 37–57.
- [16] Batten, P., Clarke, N., Lambert, C., and Causon, D. M. On the choice of wavespeeds for the hllc riemann solver. *SIAM Journal on Scientific Computing* 18, 6 (1997), 1553–1570.
- [17] BERGANT, A., SIMPSON, A. R., AND TIJSSELING, A. S. Water hammer with column separation: A historical review. *Journal of fluids and structures* 22, 2 (2006), 135–171.

[18] Berkenbosch, A., Kaasschieter, E., and Klein, R. Detonation capturing for stiff combustion chemistry. *Combustion Theory and Modelling* 2, 3 (1998), 313–348.

- [19] BISWAS, R., DEVINE, K. D., AND FLAHERTY, J. E. Parallel, adaptive finite element methods for conservation laws. *Applied Numerical Mathematics* 14, 1-3 (1994), 255–283.
- [20] BONOMETTI, T., AND MAGNAUDET, J. An interface-capturing method for incompressible two-phase flows. validation and application to bubble dynamics. *International Journal of Multiphase Flow 33*, 2 (2007), 109–133.
- [21] BOOK, D. L., BORIS, J. P., AND HAIN, K. Flux-corrected transport ii: Generalizations of the method. *Journal of Computational Physics* 18, 3 (1975), 248–283.
- [22] Borges, R., Carmona, M., Costa, B., and Don, W. S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. *Journal of Computational Physics* 227, 6 (2008), 3191–3211.
- [23] Boris, J. P., and Book, D. Flux-corrected transport. iii. minimal-error fct algorithms. *Journal of Computational Physics* 20, 4 (1976), 397–431.
- [24] Boris, J. P., and Book, D. L. Flux-corrected transport i. shasta, a fluid transport algorithm that works. *Journal of computational physics* 11, 1 (1973), 38–69.
- [25] BOURLIOUX, A., MAJDA, A. J., AND ROYTBURD, V. Theoretical and numerical structure for unstable one-dimensional detonations. SIAM Journal on Applied Mathematics 51, 2 (1991), 303–343.
- [26] BRACKBILL, J. U., KOTHE, D. B., AND RUPPEL, H. M. Flip: a low-dissipation, particle-in-cell method for fluid flow. Computer Physics Communications 48, 1 (1988), 25–38.
- [27] Brennen, C. E. Fundamentals of multiphase flow. Cambridge university press, 2005.

- [28] Burstein, S. Z., and Mirin, A. A. Third order difference methods for hyperbolic equations. *Journal of Computational Physics* 5, 3 (1970), 547–571.
- [29] Bussing, T., and Pappas, G. An introduction to pulse detonation engines. In 32nd Aerospace Sciences Meeting and Exhibit (1994), p. 263.
- [30] Bussing, T., and Pappas, G. Pulse detonation engine theory and concepts. Developments in high-speed-vehicle propulsion systems (A 97-15029 02-07), Reston, VA, American Institute of Aeronautics and Astronautics, Inc. (Progress in Astronautics and Aeronautics. 165 (1996), 421-472.
- [31] BYKOVSKII, F. A., ZHDAN, S. A., AND VEDERNIKOV, E. F. Continuous spin detonations. *Journal of Propulsion and Power 22*, 6 (2006), 1204.
- [32] Calder, A. C., Curtis, B. C., Dursi, L., Fryxell, B., MacNeice, P., Olson, K., Ricker, P., Rosner, R., Timmes, F., Tufo, H., et al. High performance reactive fluid flow simulations using adaptive mesh refinement on thousands of processors. In *Proceedings of the 2000 ACM/IEEE conference on Supercomputing* (2000), IEEE Computer Society, p. 56.
- [33] Chang, S.-H. On the application of subcell resolution to conservation laws with stiff source terms. National Aeronautics and Space Administration, 1989.
- [34] Chang, S.-H. On the application of eno scheme with subcell resolution to conservation laws with stiff source terms. In *Computational Fluid Dynamics Symposium on Aeropropulsion* (1991), vol. 1, pp. 215–225.
- [35] Chang, T., Chen, G.-Q., and Yang, S. On the 2-d riemann problem for the compressible euler equations. i. interaction of shocks and rarefaction waves. *Discrete and Continuous Dynamical Systems* 1 (1995), 555–584.

[36] Chang, T., Chen, G.-Q., and Yang, S. On the 2-d riemann problem for the compressible euler equations ii. interaction of contact discontinuities. Discrete and Continuous Dynamical Systems 6, 2 (2000), 419–430.

- [37] Chapman, D. L. Vi. on the rate of explosion in gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47, 284 (1899), 90–104.
- [38] Chen, G. Q. Convergence of the lax-friedrichs scheme for isentropic gas dynamics (iii). *Acta Math. Sci* 6, 1 (1986), 75–120.
- [39] Chen, S. Stability of a mach configuration. Communications on pure and applied mathematics 59, 1 (2006), 1–35.
- [40] Chéret, R. Detonation of condensed explosives. Springer Science & Business Media, 2012.
- [41] Chipman, F. A-stable runge-kutta processes. *BIT Numerical Mathematics* 11, 4 (1971), 384–388.
- [42] Chorin, A. J. Random choice solution of hyperbolic systems. *Journal of Computational Physics* 22, 4 (1976), 517–533.
- [43] COCCHI, J.-P., AND SAUREL, R. A riemann problem based method for the resolution of compressible multimaterial flows. *Journal of Computational Physics* 137, 2 (1997), 265–298.
- [44] Cockburn, B., and Shu, C.-W. Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws. ii. general framework. *Mathematics of computation* 52, 186 (1989), 411–435.
- [45] Cockburn, B., and Shu, C.-W. Nonlinearly stable compact schemes for shock calculations. *SIAM Journal on Numerical Analysis* 31, 3 (1994), 607–627.

- [46] COLELLA, P., MAJDA, A., AND ROYTBURD, V. Theoretical and numerical structure for reacting shock waves. SIAM Journal on Scientific and Statistical Computing 7, 4 (1986), 1059–1080.
- [47] Costa, B., and Don, W. S. Multi-domain hybrid spectral-weno methods for hyperbolic conservation laws. *Journal of Computational Physics* 224, 2 (2007), 970–991.
- [48] COURANT, R., FRIEDRICHS, K., AND LEWY, H. Über die partiellen differenzengleichungen der mathematischen physik. Mathematische annalen 100, 1 (1928), 32–74.
- [49] Crandall, M., and Majda, A. The method of fractional steps for conservation laws. *Numerische Mathematik* 34, 3 (1980), 285–314.
- [50] Crandall, M. G. The semigroup approach to first order quasilinear equations in several space variables. *Israel Journal of Mathematics* 12, 2 (1972), 108–132.
- [51] Dafermos, C. M. Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Tech. rep., DTIC Document, 1976.
- [52] Dahlquist, G. G. A special stability problem for linear multistep methods. *BIT Numerical Mathematics* 3, 1 (1963), 27–43.
- [53] Damevin, H.-M., and Hoffmann, K. Development of a modified rungekutta scheme with tvd limiters for ideal three-dimensional magnetogasdynamics. In 32nd AIAA Plasmadynamics and Lasers Conference (2001), p. 2739.
- [54] Davis, S. F. An interface tracking method for hyperbolic systems of conservation laws. *Applied Numerical Mathematics* 10, 6 (1992), 447–472.
- [55] DE SOUSA, F., MANGIAVACCHI, N., NONATO, L., CASTELO, A., TOMÉ, M., FERREIRA, V., CUMINATO, J., AND MCKEE, S. A front-tracking/front-capturing method for the simulation of 3d multi-fluid flows

with free surfaces. Journal of Computational Physics 198, 2 (2004), 469–499.

- [56] Deng, X., and Maekawa, H. Compact high-order accurate nonlinear schemes. *Journal of Computational Physics* 130, 1 (1997), 77–91.
- [57] DING, X. X., CHEN, G. Q., AND LUO, P. Z. Convergence of the lax-friedrichs scheme for isentropic gas-dynamics. 1. Acta Mathematica Scientia 5, 4 (1985), 415–432.
- [58] DIPERNA, R. J. Convergence of the viscosity method for isentropic gas dynamics. Communications in mathematical physics 91, 1 (1983), 1–30.
- [59] DIRAC, P. The lorentz transformation and absolute time. *Physica 19*, 1–12 (1953), 888–896.
- [60] Dong, L., and Wang, B. Trajectory-tracking scheme in lagrangian form for solving linear advection problems: preliminary tests. *Monthly Weather Review* 140, 2 (2012), 650–663.
- [61] DÖRING, W. On detonation processes in gases. Ann. Phys 43, 421-436 (1943), 9.
- [62] Dremin, A. N., Savrov, S., Trofimov, V. S., and Shvedov, K. Detonation waves in condensed media. Tech. rep., DTIC Document, 1972.
- [63] EBERHARDT, S., AND IMLAY, S. Diagonal implicit scheme for computing flows with finite rate chemistry. *Journal of Thermophysics and Heat Transfer* 6, 2 (1992), 208–216.
- [64] Elling, V., and Liu, T.-P. Supersonic flow onto a solid wedge. Communications on Pure and Applied Mathematics 61, 10 (2008), 1347–1448.
- [65] ENGQUIST, B., AND SJÖGREEN, B. Robust difference approximations of stiff inviscid detonation waves. Department of Mathematics, University of California, Los Angeles, 1991.

- [66] ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I. A hybrid particle level set method for improved interface capturing. *Journal of Computational physics* 183, 1 (2002), 83–116.
- [67] ENRIGHT, D., LOSASSO, F., AND FEDKIW, R. A fast and accurate semi-lagrangian particle level set method. *Computers & structures 83*, 6 (2005), 479–490.
- [68] EVANS, M. W., HARLOW, F. H., AND BROMBERG, E. The particle-incell method for hydrodynamic calculations. Tech. rep., DTIC Document, 1957.
- [69] Fan, Y., Durlofsky, L. J., and Tchelepi, H. A. A fully-coupled flow-reactive-transport formulation based on element conservation, with application to co 2 storage simulations. *Advances in Water Resources* 42 (2012), 47–61.
- [70] FAY, J. A. Two-dimensional gaseous detonations: Velocity deficit. *The Physics of Fluids* 2, 3 (1959), 283–289.
- [71] Fedkiw, R. P., Aslam, T., Merriman, B., and Osher, S. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). *Journal of computational physics* 152, 2 (1999), 457–492.
- [72] FEYNMAN, R., AND VERNON JR., F. The theory of a general quantum system interacting with a linear dissipative system. *Annals of Physics* 24 (1963), 118–173.
- [73] Fickett, W., and Davis, W. C. Detonation: theory and experiment. Courier Corporation, 2012.
- [74] Freidberg, J. P. Ideal magnetohydrodynamics.
- [75] GAO, Z. Numerical perturbation algorithm and its cfd schemes. *Advances in Mechanics* 40 (2010), 607–633.

[76] Gelfand, I. Some problems in the theory of quasilinear equations. *Amer. Math. Soc. Transl* 29, 2 (1963), 295–381.

- [77] GEROLYMOS, G., SÉNÉCHAL, D., AND VALLET, I. Very-high-order weno schemes. *Journal of Computational Physics* 228, 23 (2009), 8481–8524.
- [78] GHOSH, D., AND BAEDER, J. D. Weighted non-linear compact schemes for the direct numerical simulation of compressible, turbulent flows. *Journal of Scientific Computing* 61, 1 (2014), 61–89.
- [79] GLAISTER, P. An approximate linearised riemann solver for the euler equations for real gases. *Journal of Computational Physics* 74, 2 (1988), 382–408.
- [80] GLASSMAN, I., YETTER, R. A., AND GLUMAC, N. G. Combustion. Academic press, 2014.
- [81] GLIMM, J. Solutions in the large for nonlinear hyperbolic systems of equations. Communications on Pure and Applied Mathematics 18, 4 (1965), 697–715.
- [82] GLIMM, J., GROVE, J. W., LI, X., AND ZHAO, N. Simple front tracking. Contemporary Mathematics 238, 2 (1999), 133–149.
- [83] GLIMM, J., AND LAX, P. D. Decay of solutions of systems of nonlinear hyperbolic conservation laws.
- [84] Godunov, S. K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. *Matematicheskii Sbornik* 89, 3 (1959), 271–306.
- [85] Gomes, J., and Faugeras, O. Reconciling distance functions and level sets. In *Biomedical Imaging*, 2002. 5th IEEE EMBS International Summer School on (2002), IEEE, pp. 15–pp.

- [86] GOODMAN, J., AND XIN, Z. Viscous limits for piecewise smooth solutions to systems of conservation laws. *Archive for rational mechanics and analysis* 121, 3 (1992), 235–265.
- [87] GOODMAN, J. B., AND LEVEQUE, R. J. On the accuracy of stable schemes for 2d scalar conservation laws. *Mathematics of computation* (1985), 15–21.
- [88] Hadjadj, A., Perrot, Y., and Verma, S. Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles. Aerospace Science and Technology 42 (2015), 158–168.
- [89] Haier, E., Norsett, S., and Wanner, G. Solving ordinary differential equations i, nonstiff problems. *Section III 8* (1987).
- [90] Hairer, E., and Wanner, G. Stiff differential equations solved by radau methods. *Journal of Computational and Applied Mathematics* 111, 1 (1999), 93–111.
- [91] Hammer, P. C., and Hollingsworth, J. W. Trapezoidal methods of approximating solutions of differential equations. *Mathematical Tables and Other Aids to Computation* (1955), 92–96.
- [92] Hammitt, F. G. Cavitation and multiphases flow phenomena. McGraw-Hill, 1980.
- [93] Harlow, F. H. Hydrodynamic problems involving large fluid distortions. Journal of the ACM (JACM) 4, 2 (1957), 137–142.
- [94] HARLOW, F. H., WELCH, J. E., ET AL. Numerical calculation of timedependent viscous incompressible flow of fluid with free surface. *Physics of fluids* 8, 12 (1965), 2182.
- [95] HARLOW F, W. J. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. *Phys Fluids* 8, 218 (1965), 2–9.

[96] Harten, A. High resolution schemes for hyperbolic conservation laws. Journal of computational physics 49, 3 (1983), 357–393.

- [97] Harten, A. Eno schemes with subcell resolution. [essentially nonoscillatory.
- [98] HARTEN, A., ENGQUIST, B., OSHER, S., AND CHAKRAVARTHY, S. R. Uniformly high order accurate essentially non-oscillatory schemes, iii. *Journal of computational physics* 71, 2 (1987), 231–303.
- [99] Harten, A., Lax, P. D., and van Leer, B. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. *SIAM Review* 25, 1 (1983), 35.
- [100] HARTEN, A., LAX, P. D., AND VAN LEER, B. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. In *Upwind* and *High-Resolution Schemes*. Springer, 1997, pp. 53–79.
- [101] Helzel, C., Leveque, R. J., and Warnecke, G. A modified fractional step method for the accurate approximation of detonation waves. *SIAM Journal on Scientific Computing* 22, 4 (2000), 1489–1510.
- [102] Henrick, A. K., Aslam, T. D., and Powers, J. M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. *Journal of Computational Physics* 207, 2 (2005), 542–567.
- [103] HILDEBRAND, N., DWIVEDI, A., SHRESTHA, P., NICHOLS, J. W., JO-VANOVIC, M. R., AND CANDLER, G. V. Global stability analysis of oblique shock/boundary layer interactions at mach 5.92. In *APS Division of Fluid Dynamics Meeting Abstracts* (2016).
- [104] HILL, D. J., AND PULLIN, D. I. Hybrid tuned center-difference-weno method for large eddy simulations in the presence of strong shocks. *Journal of Computational Physics* 194, 2 (2004), 435–450.

- [105] Hirt, C. W., and Nichols, B. D. Volume of fluid (vof) method for the dynamics of free boundaries. *Journal of computational physics* 39, 1 (1981), 201–225.
- [106] HOPF, E. The partial differential equation ut+ uux= μ xx. Communications on Pure and Applied mathematics 3, 3 (1950), 201–230.
- [107] Hu, X., Adams, N., and Iaccarino, G. On the hllc riemann solver for interface interaction in compressible multi-fluid flow. *Journal of Computational Physics* 228, 17 (2009), 6572–6589.
- [108] Hu, X., Khoo, B., Adams, N. A., and Huang, F. A conservative interface method for compressible flows. *Journal of Computational Physics* 219, 2 (2006), 553–578.
- [109] Hu, X. Y., and Khoo, B. C. An interface interaction method for compressible multifluids. *Journal of Computational Physics* 198, 1 (2004), 35–64.
- [110] Huang, F., and Wang, Z. Convergence of viscosity solutions for isothermal gas dynamics. *SIAM journal on mathematical analysis* 34, 3 (2002), 595–610.
- [111] HWANG, P., FEDKIW, R., MERRIMAN, B., ASLAM, T., KARAGOZIAN, A., AND OSHER, S. Numerical resolution of pulsating detonation waves. DCJ 2 (2000), 1.
- [112] Jeltsch, R., and Klingenstein, P. Error estimators for the position of discontinuities in hyperbolic conservation laws with source terms which are solved using operator splitting. *Computing and Visualization in Science 1*, 4 (1999), 231–249.
- [113] JI, H., LIEN, F.-S., AND YEE, E. A new adaptive mesh refinement data structure with an application to detonation. *Journal of Computational Physics* 229, 23 (2010), 8981–8993.

[114] JIANG, G.-S., AND SHU, C.-W. Efficient implementation of weighted eno schemes. *Journal of computational physics* 126, 1 (1996), 202–228.

- [115] JIANG, L., SHAN, H., AND LIU, C. Weighted compact scheme for shock capturing. *International Journal of Computational Fluid Dynamics* 15, 2 (2001), 147–155.
- [116] JOHNSEN, E., LARSSON, J., BHAGATWALA, A. V., CABOT, W. H., MOIN, P., OLSON, B. J., RAWAT, P. S., SHANKAR, S. K., SJÖGREEN, B., YEE, H., ET AL. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. *Journal of Computational Physics* 229, 4 (2010), 1213–1237.
- [117] JOHNSON, C. Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM Journal on Numerical Analysis 25, 4 (1988), 908–926.
- [118] JOUGUET, E. On the propagation of chemical reactions in gases. J. de mathematiques Pures et Appliquees 1, 347-425 (1905), 2.
- [119] Kim, D., and Kwon, J. H. A high-order accurate hybrid scheme using a central flux scheme and a weno scheme for compressible flowfield analysis.

 Journal of Computational Physics 210, 2 (2005), 554–583.
- [120] Kim, K. H., Kim, C., and Rho, O.-H. Methods for the accurate computations of hypersonic flows: I. ausmpw+ scheme. *Journal of Computational Physics* 174, 1 (2001), 38–80.
- [121] Kim, K. H., Lee, J. H., and Rho, O. H. An improvement of ausm schemes by introducing the pressure-based weight functions. *Computers & fluids 27*, 3 (1998), 311–346.
- [122] Kim, M. S., and Lee, W. I. A new vof-based numerical scheme for the simulation of fluid flow with free surface. part i: New free surface-tracking algorithm and its verification. *International Journal for Numerical Methods in Fluids* 42, 7 (2003), 765–790.

- [123] KNIO, O. M., NAJM, H. N., AND WYCKOFF, P. S. A semi-implicit numerical scheme for reacting flow: Ii. stiff, operator-split formulation. *Journal of Computational Physics* 154, 2 (1999), 428–467.
- [124] Kolev, N. I. Multiphase flow dynamics: Fundamentals. Springer, 2005.
- [125] KOTOV, D., YEE, H., WANG, W., AND SHU, C. On spurious numerics in solving reactive equations. *Proceedings of the ASTRONUM-2012*, The Big Island, Hawaii (2012), 24–28.
- [126] Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., and Flaherty, J. E. Shock detection and limiting with discontinuous galerkin methods for hyperbolic conservation laws. *Applied Numerical Mathematics* 48, 3-4 (2004), 323–338.
- [127] LAFAURIE, B., NARDONE, C., SCARDOVELLI, R., ZALESKI, S., AND ZANETTI, G. Modelling merging and fragmentation in multiphase flows with surfer. *Journal of Computational Physics* 113, 1 (1994), 134–147.
- [128] LAX, P., AND WENDROFF, B. Systems of conservation laws. Communications on Pure and Applied mathematics 13, 2 (1960), 217–237.
- [129] LAX, P. D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. *Communications on pure and applied mathematics* 7, 1 (1954), 159–193.
- [130] LAX, P. D. Hyperbolic systems of conservation laws ii. Communications on pure and applied mathematics 10, 4 (1957), 537–566.
- [131] LAX, P. D. Decay of solutions of systems of nonlinear hyperbolic conservation laws, vol. 101. American Mathematical Soc., 1970.
- [132] Lax, P. D., and Liu, X.-D. Solution of two-dimensional riemann problems of gas dynamics by positive schemes. *SIAM Journal on Scientific Computing* 19, 2 (1998), 319–340.

[133] LECKNER, B. Fluidized bed combustion: mixing and pollutant limitation. Progress in Energy and Combustion Science 24, 1 (1998), 31–61.

- [134] Lee, J. H. *The detonation phenomenon*, vol. 2. Cambridge University Press Cambridge, 2008.
- [135] Lele, S. K. Compact finite difference schemes with spectral-like resolution. *Journal of computational physics* 103, 1 (1992), 16–42.
- [136] Lemos, C. A simple numerical technique for turbulent flows with free surfaces. *International journal for numerical methods in fluids 15*, 2 (1992), 127–146.
- [137] Lemos, C. M. Higher-order schemes for free surface flows with arbitrary configurations. *International journal for numerical methods in fluids 23*, 6 (1996), 545–566.
- [138] LeVeque, R. J. Numerical methods for conservation laws. Springer Science & Business Media, 1992.
- [139] LEVEQUE, R. J., AND YEE, H. C. A study of numerical methods for hyperbolic conservation laws with stiff source terms. *Journal of computational* physics 86, 1 (1990), 187–210.
- [140] Levy, D., Puppo, G., and Russo, G. Compact central weno schemes for multidimensional conservation laws. SIAM Journal on Scientific Computing 22, 2 (2000), 656–672.
- [141] LI, G., AND QIU, J. Hybrid weighted essentially non-oscillatory schemes with different indicators. *Journal of Computational Physics* 229, 21 (2010), 8105–8129.
- [142] Li, Z., Jaberi, F. A., and Shih, T. I. A hybrid lagrangian-eulerian particle-level set method for numerical simulations of two-fluid turbulent flows. *International journal for numerical methods in fluids* 56, 12 (2008), 2271–2300.

- [143] Lions, P.-L., Perthame, B., and Souganidis, P. E. Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in eulerian and lagrangian coordinates. *Communications on pure and applied mathematics* 49, 6 (1996), 599–638.
- [144] LIONS, P.-L., PERTHAME, B., AND TADMOR, E. Kinetic formulation of the isentropic gas dynamics and p-systems. *Communications in mathematical physics* 163, 2 (1994), 415–431.
- [145] Liou, M.-S. A sequel to ausm: Ausm+. Journal of computational Physics 129, 2 (1996), 364–382.
- [146] Liou, M.-S. A sequel to ausm, part ii: Ausm+-up for all speeds. *Journal of Computational Physics* 214, 1 (2006), 137–170.
- [147] Liou, M.-S., and Steffen, C. J. A new flux splitting scheme. *Journal of Computational physics* 107, 1 (1993), 23–39.
- [148] LIU, L., AND BECERRA, M. An efficient semi-lagrangian algorithm for simulation of corona discharges: the position-state separation method. IEEE Transactions on Plasma Science 44, 11 (2016), 2822–2831.
- [149] Liu, T., Khoo, B., and Wang, C. The ghost fluid method for compressible gas—water simulation. *Journal of Computational Physics* 204, 1 (2005), 193–221.
- [150] LIU, T., KHOO, B., AND YEO, K. Ghost fluid method for strong shock impacting on material interface. *Journal of Computational Physics* 190, 2 (2003), 651–681.
- [151] Liu, T.-P., and Smoller, J. A. On the vacuum state for the isentropic gas dynamics equations. *Advances in Applied Mathematics* 1, 4 (1980), 345–359.
- [152] Liu, X.-D., Osher, S., and Chan, T. Weighted essentially non-oscillatory schemes. *Journal of computational physics* 115, 1 (1994), 200–212.

[153] MACCORMACK, R. The effect of viscosity in hypervelocity impact cratering. AIAA Paper No. 69-354 (1969).

- [154] Martín, M. P., Taylor, E. M., Wu, M., and Weirs, V. G. A bandwidth-optimized weno scheme for the effective direct numerical simulation of compressible turbulence. *Journal of Computational Physics 220*, 1 (2006), 270–289.
- [155] MCKEE, S., TOMÉ, M., FERREIRA, V., CUMINATO, J., CASTELO, A., SOUSA, F., AND MANGIAVACCHI, N. The mac method. *Computers & Fluids* 37, 8 (2008), 907–930.
- [156] McLachlan, R. I., and Quispel, G. R. W. Splitting methods. *Acta Numerica* 11 (2002), 341–434.
- [157] MCRAE, G. J., GOODIN, W. R., AND SEINFELD, J. H. Numerical solution of the atmospheric diffusion equation for chemically reacting flows. *Journal of Computational Physics* 45, 1 (1982), 1–42.
- [158] MERRITT, E. C., MOSER, A. L., HSU, S. C., LOVERICH, J., AND GILMORE, M. Experimental characterization of the stagnation layer between two obliquely merging supersonic plasma jets. *Physical review letters* 111, 8 (2013), 085003.
- [159] Meshkov, E. Instability of the interface of two gases accelerated by a shock wave. *Fluid Dynamics* 4, 5 (1969), 101–104.
- [160] MIKEŠ, J., STEPANOV, S., AND JUKL, M. The pre-maxwell equations. In *Geometric Methods in Physics*. Springer, 2013, pp. 377–381.
- [161] MORESI, L., DUFOUR, F., AND MÜHLHAUS, H.-B. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geometerials. *Journal of Computational Physics* 184, 2 (2003), 476–497.
- [162] MORETTI, G. Computation of flows with shocks. Annual Review of Fluid Mechanics 19, 1 (1987), 313–337.

- [163] MOUREAU, V., FIORINA, B., AND PITSCH, H. A level set formulation for premixed combustion les considering the turbulent flame structure. *Combustion and Flame 156*, 4 (2009), 801–812.
- [164] Najm, H. N., Wyckoff, P. S., and Knio, O. M. A semi-implicit numerical scheme for reacting flow: I. stiff chemistry. *Journal of Computational Physics* 143, 2 (1998), 381–402.
- [165] NGUYEN, D., GIBOU, F., AND FEDKIW, R. A fully conservative ghost fluid method and stiff detonation waves. In 12th Int. Detonation Symposium, San Diego, CA (2002).
- [166] Nichols, B., and Hirt, C. Improved free surface boundary conditions for numerical incompressible-flow calculations. *Journal of Computational Physics* 8, 3 (1971), 434–448.
- [167] NICHOLS, J. W., LARSSON, J., BERNARDINI, M., AND PIROZZOLI, S. Stability and modal analysis of shock/boundary layer interactions. *Theoretical and Computational Fluid Dynamics* (2016), 1–18.
- [168] NOURGALIEV, R. R., DINH, T.-N., AND THEOFANOUS, T. G. Adaptive characteristics-based matching for compressible multifluid dynamics.

 Journal of Computational Physics 213, 2 (2006), 500–529.
- [169] OLEINIK, O. A. Discontinuous solutions of non-linear differential equations. *Uspekhi Matematicheskikh Nauk 12*, 3 (1957), 3–73.
- [170] OLEINIK, O. A. On the uniqueness of the generalized solution of the cauchy problem for a non-linear system of equations occurring in mechanics. Uspekhi Matematicheskikh Nauk 12, 6 (1957), 169–176.
- [171] OLEINIK, O. A. Uniqueness and stability of the generalized solution of the cauchy problem for a quasi-linear equation. *Uspekhi Matematicheskikh Nauk 14*, 2 (1959), 165–170.
- [172] OSHER, S. Shock modelling in transonic and supersonic flow.

[173] OSHER, S., AND FEDKIW, R. Level set methods and dynamic implicit surfaces, vol. 153. Springer Science & Business Media, 2006.

- [174] OSHER, S., AND SETHIAN, J. A. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. *Journal of computational physics* 79, 1 (1988), 12–49.
- [175] OSHER, S., AND SOLOMON, F. Upwind difference schemes for hyperbolic systems of conservation laws. *Mathematics of computation* 38, 158 (1982), 339–374.
- [176] PANG, Y., CAI, S., AND ZHAO, Y. Global solutions to the twodimensional riemann problem for a system of conservation laws. *Journal* of Mathematical Physics 57, 6 (2016), 061501.
- [177] P.D.LAX. Shock waves and entropy, in contributions to nonlinear functionial analysis (e. a. zarantonello, ed.). Academic Press, New York (1971), 603–634.
- [178] P.D.LAX, B. W. Hyperbolic systems of conservation laws ii. *Comm. Pure Appl. Math.* 13 (1960), 537–566.
- [179] Peng, J., and Shen, Y. Improvement of weighted compact scheme with multi-step strategy for supersonic compressible flow. *Computers & Fluids* 115 (2015), 243–255.
- [180] PILLIOD, J. E., AND PUCKETT, E. G. Second-order accurate volume-of-fluid algorithms for tracking material interfaces. *Journal of Computational Physics* 199, 2 (2004), 465–502.
- [181] PIROZZOLI, S. Conservative hybrid compact-weno schemes for shock-turbulence interaction. *Journal of Computational Physics* 178, 1 (2002), 81–117.
- [182] PIROZZOLI, S. Numerical methods for high-speed flows. *Annual review of fluid mechanics* 43 (2011), 163–194.

- [183] Poinsot, T., Echekki, T., and Mungal, M. A study of the laminar flame tip and implications for premixed turbulent combustion. *Combustion science and technology* 81, 1-3 (1992), 45–73.
- [184] POPINET, S., AND ZALESKI, S. A front-tracking algorithm for accurate representation of surface tension. *International Journal for Numerical Methods in Fluids* 30, 6 (1999), 775–793.
- [185] POWERS, J. M., AND PAOLUCCI, S. Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. *AIAA journal 43*, 5 (2005), 1088–1099.
- [186] QIU, J., AND SHU, C.-W. A comparison of troubled-cell indicators for runge–kutta discontinuous galerkin methods using weighted essentially nonoscillatory limiters. SIAM Journal on Scientific Computing 27, 3 (2005), 995–1013.
- [187] Ren, Y.-X., Zhang, H., et al. A characteristic-wise hybrid compactweno scheme for solving hyperbolic conservation laws. *Journal of Compu*tational Physics 192, 2 (2003), 365–386.
- [188] RICHARDSON, L. F. Weather prediction by numerical process. Cambridge University Press, 2007.
- [189] RIDER, W. J., AND KOTHE, D. B. Reconstructing volume tracking. Journal of computational physics 141, 2 (1998), 112–152.
- [190] RIEMANN, B. Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Verlag der Dieterichschen Buchhandlung, 1860.
- [191] Roe, P. L. Approximate riemann solvers, parameter vectors, and difference schemes. *Journal of computational physics* 43, 2 (1981), 357–372.
- [192] ROE, P. L., AND BALSARA, D. S. Notes on the eigensystem of magnetohydrodynamics. SIAM Journal on Applied Mathematics 56, 1 (1996), 57–67.

[193] Rubin, E. L., and Burstein, S. Z. Difference methods for the inviscid and viscous equations of a compressible gas. *Journal of Computational Physics* 2, 2 (1967), 178–196.

- [194] RUPERT, V. Shock-interface interaction: current research on the richtmyer-meshkov problem. In *Shock Waves*. Springer, 1992, pp. 83–94.
- [195] Rusanov, V. On difference schemes of third order accuracy for nonlinear hyperbolic systems. *Journal of Computational Physics* 5, 3 (1970), 507–516.
- [196] SCARDOVELLI, R., AND ZALESKI, S. Direct numerical simulation of freesurface and interfacial flow. Annual review of fluid mechanics 31, 1 (1999), 567–603.
- [197] Schecter, S., and Shearer, M. Undercompressive shocks for non-strictly hyperbolic conservation laws. *Journal of Dynamics and Differential Equations* 3, 2 (1991), 199–271.
- [198] Schulz-Rinne, C. W. Classification of the riemann problem for twodimensional gas dynamics. *SIAM journal on mathematical analysis* 24, 1 (1993), 76–88.
- [199] Sethian, J. A. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol. 3. Cambridge university press, 1999.
- [200] Shampine, L. F. Numerical solution of ordinary differential equations, vol. 4. CRC Press, 1994.
- [201] Shen, Y., Liu, L., and Yang, Y. Multistep weighted essentially non-oscillatory scheme. *International Journal for Numerical Methods in Fluids* 75, 4 (2014), 231–249.
- [202] Shen, Y., Yang, G., and Gao, Z. High-resolution finite compact difference schemes for hyperbolic conservation laws. *Journal of Computational Physics* 216, 1 (2006), 114–137.

- [203] Shen, Y., and Zha, G. Application of low diffusion e-cusp scheme with high order weno scheme for chemical reacting flows. In 40th Fluid Dynamics Conference and Exhibit (2010), p. 4995.
- [204] Shen, Y., and Zha, G. Generalized finite compact difference scheme for shock/complex flowfield interaction. *Journal of Computational Physics* 230, 12 (2011), 4419–4436.
- [205] Shen, Y., and Zha, G. Improvement of weighted essentially non-oscillatory schemes near discontinuities. *Computers & Fluids 96* (2014), 1–9.
- [206] Shen, Y.-Q., Wang, R.-Q., and Liao, H.-z. A fifth-order accurate weighted enn difference scheme and its applications. *Journal of Computational Mathematics* (2001), 531–538.
- [207] Sheng, W. Two-dimensional riemann problem for scalar conservation laws. *Journal of Differential Equations* 183, 1 (2002), 239–261.
- [208] Shepherd, J. Detonation in gases. *Proceedings of the Combustion Institute* 32, 1 (2009), 83–98.
- [209] Shin, S., and Juric, D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. *Journal of Computational Physics* 180, 2 (2002), 427–470.
- [210] Shipilova, O., Haario, H., and Smolianski, A. Particle transport method for convection problems with reaction and diffusion. *International journal for numerical methods in fluids* 54, 10 (2007), 1215–1238.
- [211] Shu, C.-W. Total-variation-diminishing time discretizations. SIAM Journal on Scientific and Statistical Computing 9, 6 (1988), 1073–1084.
- [212] Shu, C.-W., and Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. *Journal of Computational Physics* 77, 2 (1988), 439–471.

[213] Shu, C.-W., and Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. *Journal of Computational Physics* 83, 1 (1989), 32–78.

- [214] Shyue, K.-M. An efficient shock-capturing algorithm for compressible multicomponent problems. *Journal of Computational Physics* 142, 1 (1998), 208–242.
- [215] SMOLIANSKI, A., SHIPILOVA, O., AND HAARIO, H. A fast high-resolution algorithm for linear convection problems: particle transport method. *International journal for numerical methods in engineering* 70, 6 (2007), 655–684.
- [216] SMOLLER, J. Shock waves and reaction—diffusion equations, vol. 258. Springer Science & Business Media, 2012.
- [217] SMOOKE, M., Puri, I., and Seshadri, K. A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air. In Symposium (International) on Combustion (1988), vol. 21, Elsevier, pp. 1783–1792.
- [218] SOLOUKHIN, R. Multiheaded structure of gaseous detonation. *Combustion and Flame 10*, 1 (1966), 51–58.
- [219] Soo Kim, M., Sun Park, J., and Lee, W. I. A new vof-based numerical scheme for the simulation of fluid flow with free surface. part ii: application to the cavity filling and sloshing problems. *International Journal for Numerical Methods in Fluids* 42, 7 (2003), 791–812.
- [220] Steger, J. L., and Warming, R. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. *Journal of computational physics* 40, 2 (1981), 263–293.

- [221] Sussman, M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. *Journal of Computational Physics* 187, 1 (2003), 110–136.
- [222] Sussman, M., and Puckett, E. G. A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. *Journal of Computational Physics* 162, 2 (2000), 301–337.
- [223] Sussman, M., Smereka, P., and Osher, S. A level set approach for computing solutions to incompressible two-phase flow. *Journal of Computational physics* 114, 1 (1994), 146–159.
- [224] TAN, D. C., AND ZHANG, T. Two-dimensional riemann problem for a hyperbolic system of nonlinear conservation laws: I. four-j cases. *Journal of differential equations* 111, 2 (1994), 203–254.
- [225] Tartar, L. Compensated compactness and applications to partial differential equations. In *Nonlinear analysis and mechanics: Heriot-Watt symposium* (1979), vol. 4, pp. 136–212.
- [226] Tartar, L. The compensated compactness method applied to systems of conservation laws. In *Systems of nonlinear partial differential equations*. Springer, 1983, pp. 263–285.
- [227] Tomé, M., Cuminato, J., Mangiavacchi, N., McKee, S., et al. Gensmac3d: a numerical method for solving unsteady three-dimensional free surface flows. *International Journal for Numerical Methods in Fluids* 37, 7 (2001), 747–796.
- [228] Tome, M. F., and McKee, S. Gensmac: A computational marker and cell method for free surface flows in general domains. *Journal of Computational Physics* 110, 1 (1994), 171–186.
- [229] TORO, E. F., SPRUCE, M., AND SPEARES, W. Restoration of the contact surface in the hll-riemann solver. *Shock waves* 4, 1 (1994), 25–34.

[230] Torres, D., and Brackbill, J. The point-set method: front-tracking without connectivity. *Journal of Computational Physics* 165, 2 (2000), 620–644.

- [231] Tosatto, L., and Vigevano, L. Numerical solution of under-resolved detonations. *Journal of Computational Physics* 227, 4 (2008), 2317–2343.
- [232] TRYGGVASON, G., BUNNER, B., ESMAEELI, A., JURIC, D., AL-RAWAHI, N., TAUBER, W., HAN, J., NAS, S., AND JAN, Y.-J. A front-tracking method for the computations of multiphase flow. *Journal of Computational Physics* 169, 2 (2001), 708–759.
- [233] Tumuklu, O., Levin, D. A., and Austin, J. M. Shock-shock interactions for a double wedge configuration in different gases. In 53rd AIAA Aerospace Sciences Meeting (2015), p. 1520.
- [234] UNVERDI, S. O., AND TRYGGVASON, G. A front-tracking method for viscous, incompressible, multi-fluid flows. *Journal of computational physics* 100, 1 (1992), 25–37.
- [235] Van Leer, B. Towards the ultimate conservative difference scheme i. the quest of monotonicity. In *Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics* (1973), Springer, pp. 163–168.
- [236] Van Leer, B. Towards the ultimate conservative difference scheme. ii. monotonicity and conservation combined in a second-order scheme. *Journal of computational physics* 14, 4 (1974), 361–370.
- [237] VAN LEER, B. Towards the ultimate conservative difference scheme iii. upstream-centered finite-difference schemes for ideal compressible flow. *Journal of Computational Physics* 23, 3 (1977), 263–275.
- [238] Van Leer, B. Towards the ultimate conservative difference scheme. iv. a new approach to numerical convection. *Journal of computational physics* 23, 3 (1977), 276–299.

- [239] VAN LEER, B. Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method. *Journal of computational Physics* 32, 1 (1979), 101–136.
- [240] VAN LEER, B. Flux-vector splitting for the euler equations. In *IN: International Conference on Numerical Methods in Fluid Dynamics*, 8th, Aachen, West Germany, June 28-July 2, 1982, Proceedings (A84-35301 16-34). Berlin, Springer-Verlag, 1982, p. 507-512. (1982), pp. 507-512.
- [241] VON NEUMAN, J. Theory of detonation waves. Tech. rep., DTIC Document, 1942.
- [242] Wada, Y., and Liou, M. An accurate and robust splitting scheme for shock and contact discontinuities, aiaa, 1994.
- [243] Wang, C., Liu, T., and Khoo, B. A real ghost fluid method for the simulation of multimedium compressible flow. *SIAM Journal on Scientific Computing* 28, 1 (2006), 278–302.
- [244] Wang, W., Shu, C.-W., Yee, H., Kotov, D. V., and Sjögreen, B. High order finite difference methods with subcell resolution for stiff multispecies discontinuity capturing. *Communications in Computational Physics* 17, 02 (2015), 317–336.
- [245] Wang, W., Shu, C.-W., Yee, H., and Sjögreen, B. High order finite difference methods with subcell resolution for advection equations with stiff source terms. *Journal of Computational Physics* 231, 1 (2012), 190–214.
- [246] Wang, Z. J., and Chen, R. Optimized weighted essentially nonoscillatory schemes for linear waves with discontinuity. *Journal of Computational Physics* 174, 1 (2001), 381–404.
- [247] WANNER, G., AND HAIRER, E. Solving ordinary differential equations ii. Stiff and Differential-Algebraic Problems (1991).

[248] Welch, J. E., Harlow, F. H., Shannon, J. P., and Daly, B. J. The mac method-a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces. Tech. rep., Los Alamos Scientific Lab., Univ. of California, N. Mex., 1965.

- [249] XIANG, G., WANG, C., TENG, H., AND JIANG, Z. Investigations of three-dimensional shock/shock interactions over symmetrical intersecting wedges. AIAA Journal 54, 1 (2016), 1472–1481.
- [250] Xu, Z., and Shu, C.-W. Anti-diffusive flux corrections for high order finite difference weno schemes. *Journal of Computational Physics* 205, 2 (2005), 458–485.
- [251] Yang, G., Yao, Y., Fang, J., Gan, T., and Lu, L. Large-eddy simulation of shock-wave/turbulent boundary layer interaction and its control using sparkjet. In *International Journal of Modern Physics: Conference Series* (2016), vol. 42, World Scientific, p. 1660186.
- [252] YEE, H., KOTOV, D. V., WANG, W., AND SHU, C.-W. Spurious behavior of shock-capturing methods by the fractional step approach: Problems containing stiff source terms and discontinuities. *Journal of Computational Physics* 241 (2013), 266–291.
- [253] YEE, H., AND SJÖGREEN, B. High order filter methods for wide range of compressible flow speeds. In Spectral and High Order Methods for Partial Differential Equations. Springer, 2011, pp. 327–337.
- [254] YOON, H., PARK, I., LEE, Y., AND JEONG, J. An unstructured smac algorithm for thermal non-equilibrium two-phase flows. *International Communications in Heat and Mass Transfer* 36, 1 (2009), 16–24.
- [255] Young, F. R. Cavitation. World Scientific, 1999.
- [256] Youngs, D. L. Time-dependent multi-material flow with large fluid distortion. *Numerical methods for fluid dynamics* 24, 2 (1982), 273–285.

- [257] Yu, C., Gao, Z., and Sheu, T. W. Development of a symplectic and phase error reducing perturbation finite-difference advection scheme. Numerical Heat Transfer, Part B: Fundamentals 70, 2 (2016), 136–151.
- [258] Yu, S.-H. Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws. Archive for rational mechanics and analysis 146, 4 (1999), 275–370.
- [259] Zalesak, S. T. Fully multidimensional flux-corrected transport algorithms for fluids. *Journal of computational physics* 31, 3 (1979), 335–362.
- [260] Zeldovich, J. To the theory of detonation propagation in gas systems. Journal of experimental and theoretical physics 10, 5 (1940), 542–568.
- [261] Zha, G., Shen, Y., and Wang, B. Calculation of transonic flows using weno method with a low diffusion e-cusp upwind scheme. In 46th AIAA Aerospace Sciences Meeting and Exhibit (2008), p. 745.
- [262] Zha, G.-C. Numerical tests of upwind scheme performance for entropy condition. *AIAA journal 37*, 8 (1999), 1005–1007.
- [263] Zha, G.-C. A low diffusion e-cusp upwind scheme for transonic flows. In 34th AIAA Fluid Dynamics Conference and Exhibit (2004), p. 2707.
- [264] Zha, G.-C. Low diffusion efficient upwind scheme. AIAA journal 43, 5 (2005), 1137–1140.
- [265] Zha, G.-C., and Bilgen, E. Numerical solutions of euler equations by using a new flux vector splitting scheme. *International Journal for Numerical Methods in Fluids* 17, 2 (1993), 115–144.
- [266] Zhang, B., Liu, H., Chen, F., and Wang, J. H. The equilibrium state method for hyperbolic conservation laws with stiff reaction terms. *Journal of Computational Physics* 263 (2014), 151–176.

[267] ZHANG, S., JIANG, S., AND SHU, C.-W. Development of nonlinear weighted compact schemes with increasingly higher order accuracy. *Journal* of Computational Physics 227, 15 (2008), 7294–7321.

- [268] Zhang, T., and Zheng, Y. X. Conjecture on the structure of solutions of the riemann problem for two-dimensional gas dynamics systems. *SIAM Journal on Mathematical Analysis* 21, 3 (1990), 593–630.
- [269] Zheltovodov, A. Shock waves/turbulent boundary-layer interactionsfundamental studies and applications. In *Fluid Dynamics Conference* (1996), p. 1977.
- [270] Zhi, G. Advances in perturbation finite difference (pfd) method [j]. Advances in Mechanics 2 (2000), 003.
- [271] ZHOU, Q., YAO, Z., HE, F., AND SHEN, M. A new family of high-order compact upwind difference schemes with good spectral resolution. *Journal* of Computational Physics 227, 2 (2007), 1306–1339.
- [272] Zhu, H., and Qiu, J. Adaptive runge–kutta discontinuous galerkin methods using different indicators: one-dimensional case. *Journal of Computational Physics* 228, 18 (2009), 6957–6976.
- [273] 傅德薰, 马延文, ET AL. 计算流体力学. 高等教育出版社, 2002.
- [274] 刘小民. 一维非严格双曲守恒律方程的 *Riemann* 问题. PhD thesis, 中国 科学院研究生院 (武汉物理与数学研究所), 2012.
- [275] 姜宗林, 滕宏辉, AND 刘云峰. 气相爆轰物理的若干研究进展. 力学进展 42, 2 (2012), 129–140.
- [276] 应隆安, AND 滕振寰. 双曲型守恒律方程及其差分方法, 1991.
- [277] 张德良, ET AL. 计算流体力学教程. 高等教育出版社, 2010.
- [278] 张旭东, 范宝春, 潘振华, AND 归明月. 旋转爆轰自持机理的数值研究. 弹道学报 23, 1 (2011), 1-4.

- [279] 杨瑞芳. 非齐次双曲型守恒律组的粘性解与弱解的研究. PhD thesis, 南京航空航天大学, 2007.
- [280] 潘振华, 范宝春, AND 归明月. T 型管内流动气体中爆轰绕射过程的数值模拟. 爆炸与冲击 34, 6 (2014), 709-715.
- [281] 王东红. 多介质流体界面追踪方法研究及误差分析. PhD thesis, 南京航空航天大学, 2014.
- [282] 王儒智. Banach 空间中非线性脉冲 volterra 积分方程的 l_ (loc)~ p 解. Master's thesis, 山东师范大学, 2005.
- [283] 王昌建, AND 徐胜利. 直管内胞格爆轰的基元反应数值研究. 爆炸與衝擊 25, 5 (2005), 405-416.
- [284] 童秉纲, 孔祥言, 邓国华, ET AL. 气体动力学. 高等教育出版社, 1990.
- [285] 肖伟. 气体动力学中压差方程双对称结构 Riemann 问题. PhD thesis, 上海大学, 2012.
- [286] 赖耕. 二维可压流体 *Euler* 方程的几类流动结构. PhD thesis, 上海大学, 2010.
- [287] 赵宁, 余彦, AND 唐维军. Rm 不稳定性数值模拟方法. 计算数学 (2001).

发表文章目录

- [1] Peng J, Shen Y. A novel weighting switch function for uniformly highorder hybrid shock-capturing schemes[J], International Journal of Numerical Methods in Fluids, DOI: 10.1002/fld.4285, 2016.
- [2] Peng J, Shen Y. Improvement of weighted compact scheme with multi-step strategy for supersonic compressible flow[J]. Computers and Fluids, 2015, 115: 243-255.
- [3] Peng J, Shen Y. A Seventh Order Hybrid Weighted Compact Scheme Based on WENO Stencil for Hyperbolic Conservation Laws, SIAM Conference on Computational Science and Engineering, Salt Lake City, U.S.A., 2015.
- [4] , . $34 \pm 9^{\circ}$ «¶ g [C]. f′, £, 2015.
- $[5] \quad , \quad \ \, . \ GPU^{1}\!\!/_{4} \quad \, «\P \qquad [C]. \ \mu \ \ \ddot{o}^{1} \quad f \qquad \, , \ \, , \ \, , \ \, , \ \, 2014.$
- [6] Peng J, Shen Y. Accuracy improvement of compact type shock capture scheme with multi-step strategy for supersonic turbulent flow[C], The Eleventh World Congress on Computational Mechanics, Barcelona, Spain, 2014.
- [7] , . $\P^{1/4}$ ½ , $^{1/4}$ $^{\circ}$ $^{-}$ [C]. $\mu^{-1/2}$ \ddot{o}^{1} ¼ f » , $_{\circ}$ £½", , 2014.
- [8] , . $^{3}4$ $\pm \neg^{\circ}$ «¶ g [C]. LHD2015 $^{1}4$, $\pm \pm ^{3}4$ ©, 2015.
- [9] , . GPU¼ «¶ [C]. LHD2014 ļ¾ , $\pm\pm$ ¾©, 2014.
- $[10] \quad , \qquad , \qquad . \ 0.8 \quad \bar{\rm o} \quad ^{\circ} \quad ^{1}\!\!/_{2} \ \ \dot{\rm g} \ \ [{\rm C}]. \ LHD2013 \ l/^{3}\!\!/_{4} \qquad , \, ^{\circ} \pm \ , \, 2013.$

简历

```
* ±¾

£¬¬½

¬1989 2 ³ £¬ F ; f ; r©°; j£

i ½

2006 9 2010 7 Æ

2010 9 2013 3 £¬±±¾©°½; ½ £¬°; £¬ £°°½; π³

2013 9 £¬; f ; £¬²©°; £¬ £°¼ f

¹π

£

i

¼ f £¬´ ġ²c F GPU±¬;

j ·½

µ £°±±¾© £µ ±± Ļ···15° f

100190

E-mail: pengjun62@163.com
```

致谢