Matching Continued

INFO/STSCI/ILRST 3900: Causal Inference

16 Oct 2025

Learning goals for today

At the end of class, you will be able to:

- 1. Understand propensity score matching and coarsened exact matching
- 2. Use matching methods to estimate causal effects

Logistics

- ► Peer Review 2 due today
- ► Quiz 3 due today
- ► Reminder: lowest quiz will be dropped

Matching: so far

Goal: Sample Average Treatment Effect on the Treated

$$E(Y^{a=1} \mid A=1) - E(Y^{a=0} \mid A=1)$$

Potential Solution: Create a group of untreated individuals, \mathcal{M} , which have a **similar distribution of** L to the treated group

$$\frac{1}{n_m} \sum_{i \in \mathcal{M}} Y_i = \frac{1}{n_m} \sum_{i \in \mathcal{M}} Y_i^{a=0} \approx \frac{1}{n_t} \sum_{i: A_i = 1} Y_i^{a=0} \approx \mathsf{E}(Y^{a=0} \mid A = 1)$$

How:

- ► Find untreated unit(s) which are similar to each treated unit
- ► Define "similar"

Motivating example

- $ightharpoonup \vec{L}$ denotes the set of covariates we want to condition on
- $ightharpoonup \vec{L}_i$ denotes the covariates values for individual i

A common distance metric: Exact matching

Ideally, we find an exact match for each treated unit

$$d(i,j) = \begin{cases} 0 & \text{if } \vec{L}_i = \vec{L}_j \\ \infty & \text{if } \vec{L}_i \neq \vec{L}_j \end{cases}$$

Because of the curse of dimensionality, this often leads to **no** matches at all

What if \vec{L} is multivariate? We need a **distance metric**

- Manhattan distance: $d(i,j) = \sum_{p} |L_{pi} L_{pj}|$
- Euclidean distance: $d(i,j) = \sqrt{\sum_{p} (L_{pi} L_{pj})^2}$
- ► Mahalanobis distance: Rescales and accounts for correlation

A common distance metric: Coarsened exact matching¹

- ▶ Define $\tilde{\vec{L}}$ to be a coarsened version of \vec{L}
 - ► Example: Age 15-20, 20-25, 25-30, etc
- ightharpoonup Match exactly on $\tilde{\vec{L}}$

$$d(i,j) = \begin{cases} 0 & \text{if } \tilde{\vec{L}}_i = \tilde{\vec{L}}_j \\ \infty & \text{if } \tilde{\vec{L}}_i \neq \tilde{\vec{L}}_j \end{cases}$$

- ► Benefit: Very transparent
- ► Benefit: Directly targets balance in *L*
- ▶ Drawback: May not find a good match for all individuals

¹lacus, S. M., King, G., & Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20(1), 1-24.

A common distance metric: Propensity scores

Suppose \vec{L} only affects A through a probability of treatment $\pi_i = \pi(\vec{\ell}_i) = P(A_i = 1 \mid \vec{L} = \vec{\ell})$

Conditional exchangeability holds given $\pi(\ell_i)$

Why propensity scores are nice

- Can match on propensity scores directly instead of L
 - ► Easy to reason about
 - Can directly visualize the univariate matches
- ► Intuitive: Prioritizes covariates that predict treatment
- ► Mathematical guarantees on average
 - ► If our DAG is correct
 - ▶ If our matches are good
 - We should on average get a matched group which looks like the treatment group

$$P(L \mid \pi_i, A_i = 1) = P(L \mid \pi_i, A_i = 0)$$

Multivariate distances: Recap

When matching on multivariate \vec{L} , you have to define the distance between each pair of confounder values $\vec{\ell_i}$ and $\vec{\ell_i}$

- ► Manhattan distance
- ► Euclidean distanace
- ► Mahalanobis distance
- ► Coarsened exact distance
- ► Propensity score distance

There is no right answer! Depends on the setting.

- ► Propensity scores are most popular
- ► Sometimes they are substantively meaningful
- ► Balance only occurs on average

Evaluate the matched sets

Whatever method, you should check that it worked

- ightharpoonup Compare means of \vec{L} (propensity scores) across groups
- ► Possibly compare interaction cells; e.g., race × age
- ► Visually assess distribution

Overlap

► Lack of overlap may indicate violation of positivity assumption

$$P(A = a \mid L = \ell) > 0$$
 for all a

Ex: Sarah has no MD training. Would Sarah earn more money if she were a surgeon?

$$P(A = Surgeon \mid No MD) = 0$$

▶ If no good match exists, could be that $P(A = 0 \mid L = \ell) = 0$

Matching: A word of warning²

Matching is an estimation strategy. It does not solve identification problems.

²Sekhon, J. S. (2009). Opiates for the matches: Matching methods for causal inference. Annual Review of Political Science, 12(1), 487-508.

Estimating a causal effect

- ▶ If we've matched everything well, we can compare the means
 - ► Treated group (with a match)
 - ► Matched control group
- ► We can be extra careful by combining regression + matching
 - ► If everything is perfect, both should be fine on their own
 - ► Combining can reduce bias
 - ► Reduces model sensitivity³

³On the statistical role of inexact matching in observational studies. Guo and Rothenhäusler (2023)

Learning goals for today

At the end of class, you will be able to:

- 1. Understand propensity score matching and coarsened exact matching
- 2. Use matching methods to estimate causal effects