Analyse dimensionnelle : Contact de Hertz

BRAUN-DELVOYE Baptiste, CAN Erdi, CARTERON Augustin

Sorbonne Université

6 décembre 2022

Outline

- 1 Introduction
 - Théorème de Vaschy-Buckingham
- 2 Mesures
 - Mesures de module de Young
 - Mesures des diametres alonge
- 3 Resultats
- 4 La formule
- 5 Conclusion

Expérience

Figure: Scema de notre expérience[1]

Figure: Image de notre expérience

Les paramètres

- Le diamètre (paramètre observable).
- Le poids.
- La masse.
- Module de Young.
- Rayon du sphère.

Relation entre 5 paramètres dimensionnés

$$d_{allongé} = f(g, m, Y, r)$$

Théorème de Vaschy-Buckingham

- 5 paramètres dimensionnés: d, g, m, Y, r.
- 3 dimensions: L, T, M.
- 2 nombres Π.

Nos nombre Pi's

$$\blacksquare \Pi_1 = \frac{d_{allongé}}{r}$$

$$\Pi_1 = \frac{d_{allong\acute{e}}}{r}$$

$$\Pi_2 = \frac{Y}{g \cdot m \cdot r^{-2}}$$

Mesures de module de Young

Mesures de module de Young des spheres

$$\sigma = \frac{F}{S} = \frac{mg}{WL} = Y\varepsilon$$

$$\varepsilon = \frac{\text{élongation}}{h}$$

$$\blacksquare \implies Y = \frac{mg}{WL\varepsilon} = \frac{F}{S\varepsilon}$$

Mesures de module de Young

Parametres	$F\ \pm0.15\ (N)$	$S\ \pm 1.5 (\mathrm{mm}^2)$	$arepsilon \pm$ 0.01	Y (Pa)	Y (GPa)
Rose	9.81	185.28	0.37	143099.705	0.00014
Bleu	9.81	127.5	0.22	349732.620	0.00035
Vert	9.81	209	0.04	1173444.976	0.00117

Mesures des diametres alonge

Mesures des diametres alonge

Figure: Image de notre expérience

Figure: Image de notre expérience

Figure: Image de notre expérience

Figure: A metre une caption

Figure: A metre une caption

La fonction

Fonction

$$d_{along\acute{ ext{e}}} = 1.38 \cdot r \cdot \sqrt[3]{rac{g \cdot m}{Y \cdot r^2}} = 1.38 \cdot \sqrt[3]{rac{g \cdot m \cdot r}{Y}}$$

Analyse dimensionnelle : Contact de Hertz

Conclusion

Bibliographie I

- [1] Q. J. Wang and D. Zhu, "Hertz theory: Contact of spherical surfaces," in *Encyclopedia of Tribology*, Q. J. Wang and Y.-W. Chung, Eds. Boston, MA: Springer US, 2013, pp. 1654–1662, ISBN: 978-0-387-92897-5. DOI: 10.1007/978-0-387-92897-5_492. [Online]. Available: https://doi.org/10.1007/978-0-387-92897-5_492.
- [2] J. D. Hunter, "Matplotlib: A 2d graphics environment," Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007. DOI: 10.1109/MCSE.2007.55.