

INTRODUCTION

Sequence Transduction

• Convert a *sequence* to another *sequence*

Past Works – RNNs

- Sequential nature disallows parallelization within training samples
- Long distance between input and output

Past Works – Attention

- Allow modelling dependencies disregarding distance
- Used with RNNs or CNNs

Past Works – CNN

- Allow parallelism
- Difficult to learn dependencies between distant positions

```
. la maison de Léa <end> .
```

Our Work – Transformer

- Rely entirely on self-attention to compute representations
- Allows for greater parallelization and short path lengths

Sneak Peek

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(\hat{k}\cdot n\cdot \hat{d}^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

MODEL ARCHITECTURE

MODEL ARCHITECTURE ENCODER AND DECODER STACKS

Encoder-Decoder Structure

Stacked Layers

Encoder Sub-layers

Decoder Sub-layers

Residual Connections

• Each sub-layer has residual connection

Layer Normalization

MODEL ARCHITECTURE ATTENTION

What is Attention?

 "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors"

- There is additive and dot-product attention
 - Dot-product attention is more efficient

Dot-Product Attention

$$A(Q, K, V) = softmax(QK^T)V$$

Scaled Dot-Product Attention

Scaled Dot-Product Attention

"Mapping a query and a set of key-value pairs to an output"

- $query, key \in \mathbb{R}^{d_k}$
- $value \in \mathbb{R}^{d_v}$

- 1. Compute dot product of query with all keys
- 2. Divide each by $\sqrt{d_k}$
- 3. Apply softmax to get weights of values

Scaled Dot-Product Attention: Matrix Form

Scaled Dot-Product Attention: Matrix Form

Decoder Attention: One step

Decoder Attention: Remainder

Visualization of Attentions

What's Missing from Self-Attention?

- Self-attention is just a weighted average of values
- Can we use different linear transformations like CNN filters?

Multi-Head Attention

Multi-Head Attention

Multi-Head Attention: 8 Heads

Multi-Head Attention: Concatenation

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

Multi-Head Attention: Details

- Each Q, K, V matrices are randomly initialized
- To have similar computational cost as single-head attention, we use smaller $d_k=d_v=\frac{d_{model}}{h}=64$.

Attention: Recap

Applications of Attention

1. Encoder-Decoder Attention

- Query from previous decoder layer
- Key, Value from encoder output

2. Encoder Self-Attention

Query, Key, Value from previous encoder layer

3. Decoder Self-Attention

- Query, Key, Value from previous decoder layer
- Prevent leftward information flow through masking

Masking for Decoder Self-Attention

- Decoder cannot look at subsequent positions
- Decoder attention should be masked

Applications of Attention

Encoder-Decoder Attention

MaskedDecoder Self-Attention

MODEL ARCHITECTURE POSITION-WISE FEED-FORDWARD NETWORKS

Position-wise Feed-Forward Networks

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- Same linear transformation across different positons
- Different parameters for each layer

MODEL ARCHITECTURE EMBEDDINGS AND SOFTMAX

Decoder Softmax

Which word in our vocabulary am is associated with this index? Get the index of the cell 5 with the highest value (argmax) log_probs 0 1 2 3 4 5 ... vocab_size Softmax logits 0 1 2 3 4 5 ... vocab_size Linear Decoder stack output

MODEL ARCHITECTURE POSITIONAL ENCODING

Rationale

- Transformer uses neither recurrence nor convolution
- Need to inject positional information

→ Add Positional Encoding (Learned or Fixed)

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Positional Encoding

WHY SELF-ATTENTION

Comparison with Previous Methods

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential	Maximum Path Length		
		Operations			
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)		
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)		
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$		
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)		

Interpretability

RESULTS

BLEU Scores

English German Translation quality

English French Translation Quality

BLEU Scores and Training Cost

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training C	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot10^{19}$	$1.2 \cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}		
Transformer (big)	28.4	41.8	2.3 ·	10^{19}		

Variations

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(4)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(B)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbedo	ling ins	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Generalization to other tasks

Parser	Training	WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37]	WSJ only, discriminative	88.3
Petrov et al. (2006) [29]	WSJ only, discriminative	90.4
Zhu et al. (2013) [40]	WSJ only, discriminative	90.4
Dyer et al. (2016) [8]	WSJ only, discriminative	91.7
Transformer (4 layers)	WSJ only, discriminative	91.3
Zhu et al. (2013) [40]	semi-supervised	91.3
Huang & Harper (2009) [14]	semi-supervised	91.3
McClosky et al. (2006) [26]	semi-supervised	92.1
Vinyals & Kaiser el al. (2014) [37]	semi-supervised	92.1
Transformer (4 layers)	semi-supervised	92.7
Luong et al. (2015) [23]	multi-task	93.0
Dyer et al. (2016) [8]	generative	93.3

THANK YOU FOR YOUR ATTENTION

Resources

Posts

- <u>The Illustrated Transformer</u> by Jay Alammar
- Paper Dissected: "Attention is All You Need" Explained by Keita Kurita
- <u>The Transformer Attention is all you need</u> by Michal Chromiak
- Transformer by Jakob Uszkoreit (Google Al Blog)

Video

• <u>Tensor2Tensor Transformers</u> by Lukasz Kaiser

Resources

Code

- Tensor2Tensor (Official)
- Tensor2Tensor Colab (Official)
- Annotated Transformer (Harvard NLP)

Slides

End-to-End AI