iAssist

A Deep Learning Application to assist differently abled people to identify picture from captions

CMPE 258 Project
Team Deep Dreamers
Haley | Jocelyn | Princy | Tripura

Introduction

Can you write a caption?

- Goal of the application is to describe a scene in simple words to visually impaired people, just like a friend would if he or she was speaking to them.
- Challenge is to identify the objects, their relations and generate a natural language description.
- Solution is based on Encoder-Decoder based deep learning algorithm which combines both image and text.

Related work

- Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy, Andrej
 & Fei-Fei, Li. (2014)
- Unifying visual-semantic embeddings with multimodal neural language models, Kiros et al (2015).
- Show and tell: A neural image caption generator, Vinyals et al (2015).
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, Xu et al.
 (2015)

Methodology

- Transfer learning using CNN model InceptionV3 on Imagenet
- Teacher forcing
- Glove embeddings
- Bahdanau local attention
- Long Short-Term Memory(LSTM)
- Gated Recurrent Units(GRU)

CNN-RNN

- Convolutional Neural Networks(CNN) can generate a fixed length vector representation
 of the image by preserving spatial information.
- We use **InceptionV3**, trained on Imagenet as the feature extractor.
- Recurrent Neural Networks(RNN) can process sequential data like a stream of words, represented as time series.
- We experimented with two types of RNN, Long Short-Term Memory(LSTM) and Gated Recurrent Units(GRU)
- Global vectors for word representation, Glove is word-word co-occurrence matrix from a corpus, used to derive semantic relations between words.

Bahdanau Local attention, but why attention?

Idea - avoid attempting to learn a single vector representation sentences, instead, pay attention to specific input vectors of the input sequence based on the weights.

Local attention

- chooses to focus only on a small subset of the hidden states of the encoder per target word.
- Global is expensive and impractical while working on long sentences.
- The main part of the attention mechanism is the following two aspects: the decision needs to pay attention to which part of the input; the allocation of limited information processing resources to the important part.

Architecture - with and without Attention

Baseline model Architecture without attention

Dataset

Choice of datasets: Flickr8k, Flickr30k, MSCOCO

Selected Flickr8k because that can be trainable on an 8GB RAM

Flickr8k_Dataset:

- 8092 images in JPEG format with different shapes and sizes.
- 80% for training, 20% for validation.

Flickr8k_text:

5 captions for each image (total 40460 captions).

Dataset - example

A little girl in a pink dress going into a wooden cabin .

A little girl climbing the stairs to her playhouse .

A little girl climbing into a wooden playhouse .

A girl going into a wooden building .

A child in a pink dress is climbing up a set of stairs in an entry way .

Two dogs on pavement moving toward each other.

Two dogs of different breeds looking at each other on the road .

A black dog and a white dog with brown spots are staring at each other in the street .

A black dog and a tri-colored dog playing with each other on the road .

A black dog and a spotted dog are fighting

Young girl with pigtails painting outside in the grass.

There is a girl with pigtails sitting in front of a rainbow painting .

A small girl in the grass plays with fingerpaints in front of a white canvas with a rainbow on it.

A little girl is sitting in front of a large painted rainbow .

A little girl covered in paint sits in front of a painted rainbow with her hands in a bowl .

Configurations

Optimizer	Adam/RMSProp
Loss Function	Sparse Categorical Entropy
Batch Size	64
Units	512
Epoch	20~50
Image Array	(2048,)
Caption Vector	37
Embedding Matrix	(8780, 200)
Dropout Layer	0.5

Vanilla Model on Keras Functional API

Tensorflow Subclass Model

Layer (type)	Output Shape	Param #
dropout_2 (Dropout)	multiple	0
dense_6 (Dense)	multiple	409800
Total params: 409,800 Trainable params: 409,800 Non-trainable params: 0		

Layer (type)	Output Shape	Param #
================== embedding_1 (Embedding)	multiple	1756000
lstm_1 (LSTM)	multiple	1869824
dropout_3 (Dropout)	multiple	0
batch_normalization_95 (Batc	multiple	2048
dense_7 (Dense)	multiple	262656
dense_8 (Dense)	multiple	4504140
bahdanau_attention_1 (Bahdan	multiple	366081
Total params: 8,760,749 Trainable params: 7,003,725 Non-trainable params: 1,757,	024	

CNN - RNN architecture with Glove and Attention

Training

```
Initial hidden state with shape: [64, 512]
```

```
Decoder input
def train step(img tensor, target):
                                                                                                 is initialize with
                                                                                                 <start> token.
 loss = 0
                                                                                                 shape: (64, 1)
 hidden = decoder.reset state(batch size=target.shape[0])
                                                                                             Target shape [1] is
 dec input = tf.expand dims([tokenizer.word index['<start>']]
                                                                    target.shape[0], 1)
                                                                                             37 representing
      tf.GradientTape() as tape:
                                                                                             max caption length
      features = encoder(img tensor)
          i in range(1, target.shape[1]):
          predictions, hidden, = decoder(dec input, features, hidden)
          loss += loss function(target[:, i], predictions)
                                                                                             Put ground truth
                                                                                             back to the model
          dec input = tf.expand dims(target[:, i], 1)
 total loss = (loss / int(target.shape[1]))
 trainable variables = encoder.trainable variables + decoder.trainable variables
 gradients = tape.gradient(loss, trainable variables)
 optimizer.apply gradients(zip(gradients, trainable variables))
 return loss, total loss
```

Encoder output shape: (64, 200)

Evaluation Metrics

BLEU (Bilingual Evaluation Understudy)	GLEU (Google BLEU)	WER (Word Error Rate)
Compares the number of matching n-grams from the predicted caption to the reference captions.	Recall: # of matching n-grams/# total n-grams in the reference Precision: # of matching n-grams/# of total n-grams generated caption	Substitution: number of words need to be substituted to match reference Deletion: number of words dropped from the reference Insertion: number of extra words added compared to the reference Number: the total number of correct words WER = (S+D+I)/N
1.0 - perfect match, 0.0 - perfect mismatch	1.0 - perfect match, 0.0 - perfect mismatch	The smaller the value, the better the prediction

NLP Metrics Source: https://github.com/gcunhase/NLPMetrics

Experiments

Model Tracker:

https://docs.google.com/spreadsheets/u/1/d/1VbMC_GL809GxUB3ui934VhXeaLtrKatFQrs-JyZHR4I/edit?usp=drive_web&ouid=109949769242133710329

# Top Vocob	Encoder	Decoder	Optimizer	Batch, Epoch	Train Loss	Val Loss	Training Time	Batch, Epoch
top_k = 1600	Dense, Relu	Embedding,GRU, Dense, Dense, Attention	Adam	64, 20	1.064	1.027	16m47s with GPU	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
top_k = 1600	Dense, Relu	Embedding, GRU, Dropout (0.5), Dense, Dense, Attention	Adam	64, 20	1.063	1.025	17m11s with GPU	
top_k = 1600	Dense, Relu	Embedding, GRU, Dropout (0.5), Dense, Dropout (0.5), BatchNorm, Dense, Attention	Adam	64, 20	1.052	1.024	17m20s with GPU	
top_k = 1600	Dropout, Dense, Relu	Embedding, GRU, Dropout (0.5), Dense, Dropout (0.5), BatchNorm, Dense, Attention	Adam	64, 20	0.888	0.856	17m30s with	
top_k = 1600	Dropout, Dense, Relu	Embedding, LSTM, Dropout (0.5), Dense, Dropout (0.5), BatchNorm, Dense, Attention	Adam	64, 25	0.877	0.839	29m 51s with	
top_k = 5000		Embedding, LSTM, Dense, Dropout (0.5), BatchNorm, Dense, Attention	RMSProp	64, 25	0.998	0.958	32m21 with	
top k = 5000		Embedding, LSTM, Dropout (0.5), Dense, Dropout (0.5), BatchNorm, Dense, Attention		64. 25	0.999	0.96		
top_k = 5000	Dropout, Dense, Relu	Embeddin, GRU, Dense, Dropout (0.5), BatchNorm, Dense, Attention		64, 25	0.838	2.623		
top_k = 5000	Dense, Dropout, Relu	Embeddin, LSTM, Dense, Dropout (0.5),		64. 50	0.832		57m28s	

Tensorboard visualization - LSTM

Total train, Validation loss

Validation Loss: LSTM vs. GRU

Caption Evaluation

comparison on one image			BLEU Score					
	Method	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	GLEU	WER
	TF Func. API	Vanilla Model	0.714	0.662	0.634	0.494	0.271	13.4
	TF Subclass	LSTM w/ Attention	0.162	0.067	0.197	0.259	0.042	32.8
		+Beam Search	0.138	0.062	0.19	0.25	0.036	32.4
	TF Subclass	GRU w/ Attention	0.222	0.114	0.272	0.338	0.075	16.8
		+Beam Search	0.138	0.109	0.113	0.067	0.079	32.2

Reference Caption: a man in a dark shirt and shorts is standing on top of a high graffitied rock

Vanilla Model Generated
Caption: a man in a red shirt is
standing on a rock overlooking a
waterfall

Results - the okay

BLEU-1: 0.427367 BLEU-2: 0.629067 BLEU-3: 0.734269 BLEU-4: 0.763211

Results - the bad

Results - the interesting

Cloud architecture and CI/CD implementation

Web app inference

AI Platform (TFX Kubeflow Pipeline)

- Experimented some trained data model in AI-Platform and TFX Kubeflow Pipeline using Kubernetes container for Image-captioning in <u>github</u> <u>kubeflow/pipeline</u>.
- Deploying a trained model in AI Platform TFX Kubeflow Pipeline needs some Kubernetes configuration in order to run it.
- The trained model ms-coco dataset have some issues in downloading to GCP. The tutorial for data loading is not working so we need to load it from the website of MS-COCO dataset and upload it to GCP.
- Getting setup the ms-coco preprocessing data images is not fully completed.
- Issues encountered is how to deploy the preprocessing function using GKE (Kubernetes container).

AI Platform (TFX Kubeflow Pipeline)

Conclusion

- Major challenge training the model, often met with quota limitations in Colab
- One epoch can train for 80 secs with GPU and 30 mins without GPU
- Tutorial from Tensorflow github for TFX Image-Captioning have some inaccuracies instructions for loading the dataset.
- Challenges on deployment of model in Kubernetes (TFX Kubeflow) pipeline.
- There was challenges in implementing the TFX pipeline, on how to write the trainer code to deserialize the TFRecords to binary for ingestion and training.

Key Learnings

- Encoder-Decoder model relating to image and text captioning.
- Transfer learning CNN model Inception V3.
- Subclassing is useful for customizing model, but can get overly complicated and difficult to debug
- Deploying Flask web-app model in GCP Cloud
- Experiments different model methodology BEAM Search, Al Platform, TFX Kubeflow Pipeline.
- TFX Pipeline in AI Platform
- CI/CD setup was quite useful and avoided the manual intervention of cloud deployment whenever there was a code/model upgrade.

Future work

- Larger dataset with better compute resources
- More hyper-parameter tunings.
- Streaming video captioning
- Experiment with Transformer in place of GRU/LSTM
- Soft/Hard attention
- Try EfficientNet which is a CNN with better accuracy and efficiency.
- Self-Critical Sequence Training (SCST)
- Extending to other use cases like image search/retrieval

Collaboration/Responsibility

Name	Collaboration	Responsibility		
Haley	Princy, Jocelyn, Tripura	Architecture Experiments, Model Evaluation		
Jocelyn	Haley, Princy, Tripura	AI-Platform, TFX Pipeline Experiments		
Princy	Jocelyn, Haley, Tripura	Web/App Flask Model Deployment		
Tripura	Haley, Princy, Jocelyn	Research/Documentation		

Taskboard: https://docs.google.com/document/d/11ZsR_8_WC8t1yW9f6PMmL8bO9QUrPch4o_-ivU3hvZU/edit

References

- [1] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3156–3164, 2015.
- [2] Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In International Conference on Machine Learning, page 2048–2057, 2015.
- [3] Hodosh, P. Young and J. Hockenmaier (2013) "Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics", Journal of Artificial Intelligence Research, Volume 47, pages 853-899
- [4] Karpathy, Andrej & Fei-Fei, Li. (2014). Deep Visual-Semantic Alignments for Generating Image Descriptions.
- [5] R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying visual-semantic embeddings with multimodal neural language models. In arXiv:1411.2539, 2014.
- [4] https://www.tensorflow.org/tutorials/text/image_captioning

Demo

Colab Baseline model
Colab Attention model
TFX colab
Webapp
GitHub CI/CD

Thank you!