Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Systèmes Linéaires Continus Invariants

SLCI1 - Généralités

Résumé

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Système asservi

MESURE - ECART - CORRECTION

Définitions		
SYSTEME en SLCI	Ensemble pouvant être décrit par des équations	
CONTINU/ANALOGIQUE	Grandeurs connues à chaque instant	
DISCRET/NUMERIQUE	Grandeurs mesurées en des points généralement espacés dans le	
DISCRET/NOIVIERIQUE	temps	
REGULATION	Consigne constante	
SUIVI	Consigne variable	
LINEAIRE	$L(\lambda e_1 + \mu e_2) = \lambda L(e_1) + \mu L(e_2)$	
INVARIANT	Même comportement à deux moments différents – Non-vieillissement	
PERFORMANCES	Précision statique (entrée échelon) ou dynamique	
PERFORIVIANCES	Rapidité – Stabilité – Dépassement	
NON LINEARITES	Seuil – Saturation – Hystérésis – Courbure	
ENTREES CLASSIQUES	Impulsion/Dirak – Echelon/Heaviside – Rampe – Sinusoïdale	

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Formalisme de Laplace

Définition

$$F(p) = \mathcal{L}(f(t)) = \int_0^{+\infty} f(t)e^{-pt} dt$$
$$\mathcal{L}^{-1}(F(p)) = f(t)$$
$$[F(p)] = [f(t)] * T$$

Utilité

Résolution d'équations différentielles du type :

$$a_n \frac{d^n s(t)}{dt^n} + \dots + a_1 \frac{ds(t)}{dt} + a_0 s(t) = b_m \frac{d^m e(t)}{dt^m} + \dots + b_1 \frac{de(t)}{dt} + b_0 e(t) \quad ; \quad m < n$$

Méthode temporelle classique

Méthode Laplace

Mise en place d'une fraction de polynômes dans Laplace (CIN) :

$$S(p) = \frac{b_m p^m + \dots + b_1 p + b_0}{a_n p^n + \dots + a_1 p + a_0} E(p)$$

Remplacement de E(p) par sa fonction dans Laplace, décomposition en éléments simplets et application des transformées de Laplace inverses.

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Transformées usuelles – Propriétés - Théorèmes

Allure	Fonction $f(t)$	Transformée de Laplace $F(p) = \mathcal{L}ig(f(t)ig)$	Pôles de $F(p)$
	$t{ ightarrow}\delta(t)$ Impulsion de DIRAC	1	RAS
	$t \rightarrow f(t) = \mathbf{u}(\mathbf{t})$ Echelon unitaire	$F(p) = \frac{1}{p}$	0
0 t	$t \rightarrow f(t) = tu(t)$ Rampe	$F(p) = \frac{1}{p^2}$	0 Double
0 t	$t \rightarrow f(t) = t^n u(t)$ Fonction puissance	$F(p) = \frac{n!}{p^{n+1}}$	0 D'ordre $n+1$
0 t	$t \rightarrow f(t) = e^{-at}u(t)$ Exponentielle	$F(p) = \frac{1}{p+a}$	-a
	$t \rightarrow f(t) = te^{-at}u(t)$ $t \rightarrow f(t) = \frac{t^{n-1}}{(n-1)}e^{-at}u(t)$	$F(p) = \frac{1}{(p+a)^2}$ $F(p) = \frac{1}{(p+a)^n}$	–а Multiple
• → → t	$t \rightarrow f(t) = \sin \omega t u(t)$ Sinus	$F(p) = \frac{\omega}{p^2 + \omega^2}$	±jω
0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$t \rightarrow f(t) = \cos \omega t u(t)$ Cosinus	$F(p) = \frac{p}{p^2 + \omega^2}$	±jω
0	$t \rightarrow f(t) = e^{-at} \sin \omega t u(t)$ Sinus amorti $t \rightarrow f(t) = ???$	$F(p) = \frac{\omega}{(p+a)^2 + \omega^2}$ $F(p) = \frac{\omega}{[(p+a)^2 + \omega^2]^n}$	–a±jω Multiple
o t	$t \rightarrow f(t) = e^{-at} \cos \omega t u(t)$ Cosinus amorti $t \rightarrow f(t) = ???$	$F(p) = \frac{p+a}{(p+a)^2 + \omega^2}$ $F(p) = \frac{p+a}{[(p+a)^2 + \omega^2]^n}$	–a±jω Multiple

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

$t \rightarrow f(t)$	F(p)
$t \rightarrow f'(t)$	$\mathcal{L}(f'(t)) = pF(p) - f(0^+)$
$t\rightarrow f''(t)$	$\mathcal{L}(f''(t)) = p^2 F(p) - pf(0^+) - f'(0^+)$
$\begin{cases} t \to f'(t) \\ f(0^+) = 0 \end{cases}$	$\mathcal{L}(f'(t)) = pF(p)$
$t \rightarrow f^{(n)}(t)$	$\mathcal{L}\left(f^{(n)}(t)\right) = p^n F(p) - p^{n-1} f(0^+) - p^{n-2} f'(0^+) - \dots - f^{(n-1)}(0^+)$
$\begin{cases} t \to f^{(n)}(t) \\ f(0^+) = 0 \\ \dots \\ f^{(n-1)}(0^+) = 0 \end{cases}$	$\mathcal{L}(f^n(t)) = p^n F(p)$
$\begin{cases} t \rightarrow \int_0^t f(t)dt = f_p(t) \\ f_p(0^+) = 0 \end{cases}$ $f_p \text{ primitive de } f$	$\mathcal{L}\left(\int_0^t f(t)dt\right) = \frac{F(p)}{p}$
$t \rightarrow t^n f(t)$	$\mathcal{L}(t^n f(t)) = (-1)^n F^{(n)}(p)$
$t\rightarrow e^{-at}f(t)$	$\mathcal{L}(e^{-at}f(t)) = F(p+a)$
Théorème du retard	$\mathcal{L}(f(t-T)) = e^{-Tp}F(p)$
Théorème de la valeur finale	$\lim_{t \to +\infty} f(t) = \lim_{p \to 0^+} pF(p)$
Théorème de la valeur initiale	
(si système stable – cf cours 2° année)	$\lim_{t \to 0^+} f(t) = \lim_{p \to +\infty} pF(p)$
Equivalents	
$Q(p) \begin{subarray}{c} \sim \ Q_{eq}^{0^+}(p) \end{subarray}$	$\frac{b_m p^m + \dots + b_1 p + b_0}{a_n p^n + \dots + a_1 p + a_0} \underset{0^+}{\sim} \frac{b_0}{a_0}$
$Q(p) \underset{+\infty}{\sim} Q_{eq}^{+\infty}(p)$	
$\lim_{p \to 0^+} Q(p) = \lim_{p \to 0^+} Q_{eq}^{0^+}(p)$	$\frac{b_{m}p^{m} + \dots + b_{1}p + b_{0}}{a_{n}p^{n} + \dots + a_{1}p + a_{0}} \sim \frac{b_{m}p^{m}}{a_{n}p^{n}} = \frac{b_{m}}{a_{n}}p^{m-n}$
$\lim_{p \to +\infty} Q(p) = \lim_{p \to +\infty} Q_{eq}^{+\infty}(p)$	

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Exemple de détermination d'une TL

Pôles d'une FT et allure de la fonction temporelle associée

On place les pôles de la FT dans le plan complexe et on a :

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Rappels sur la décomposition en éléments simples

Soit une fraction rationnelle $\frac{R(X)}{B(X)}$ telle que : $\deg R < \deg B$ (cf système causaux)

$$B(X) = a(X - r_1)^{m_1} \dots (X - r_m)^{m_p} (X^2 + b_1 X + c_1)^{n_1} \dots (X^2 + b_q X + c_q)^{n_q}$$

C'est un produit de polynômes de degré 1 et de degré 2 non factorisables ($\Delta < 0$)

Alors:

$$\frac{R(X)}{B(X)} = \frac{R(X)}{a(X - r_1)^{m_1} \dots (X - r_m)^{m_p} (X^2 + b_1 X + c_1)^{n_1} \dots (X^2 + b_q X + c_q)^{n_q}}$$
$$\frac{R(X)}{B(X)} = \sum_i \sum_k \frac{A_{ik}}{(X - r_i)^k} + \sum_j \sum_k \frac{B_{jk} x + C_{jk}}{\left(X^2 + b_j X + c_j\right)^k}$$

Exemples
$$\frac{x^3 - 21x - 7}{(x - 1)^2(x + 2)(x^2 + x + 1)} = \frac{A_1}{(x - 1)} + \frac{A_2}{(x - 1)^2} + \frac{A_3}{(x + 2)} + \frac{B_1x + C_1}{(x^2 + x + 1)}$$

$$\frac{x^2 - 6x - 1}{(x - 1)(x^2 + x + 1)} = \frac{A_1}{(x - 1)} + \frac{B_1x + C_1}{(x^2 + x + 1)}$$

$$\frac{1}{x^2 - 2x + 1} = \frac{1}{(x - 1)^2} = \frac{A}{(x - 1)} + \frac{B}{(x - 1)^2}$$

Détermination des coefficients par mise au même dénominateur, passage aux limites, multiplication et remplacement par des valeurs particulières...

Même dénominateur	Multiplication + Annulation Fonctionne bien pour les pôles simples
$\frac{x^2 - 6x - 1}{(x - 1)(x^2 + x + 1)}$ $= \frac{(A_1 + B_1)x^2 + (A_1 + C_1 - B_1)x + (A_1 - C_1)}{(x - 1)(x^2 + x + 1)}$ $\begin{cases} A_1 + B_1 = 1 \\ A_1 + C_1 - B_1 = -6 \\ A_1 - C_1 = -1 \end{cases}$ $\begin{cases} A_1 = 1 - B_1 = -2 \\ B_1 = 2 + 1 = 3 \\ C_1 = 2 - B_1 = -1 \end{cases}$	Multiplication par $(x-1)$ et en $x=1$ $\frac{x^2-6x-1}{(x^2+x+1)}=A_1+(x-1)\frac{B_1x+C_1}{(x^2+x+1)}$ $A_1=-2$ Plus complexe pour les autres !

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Applications de TLI (Transformées de Laplace Inverse)

$$s(t) = \mathcal{L}^{-1}\big(S(p)\big)$$

Exemple simple	Exemple plus complexe Cf forme canonique polynôme	
$S(p) = \frac{1}{p-1} + \frac{4}{p+2}$	$S(p) = \frac{3p - 2}{p^2 + 2p + 2}$ $S(p) = \frac{3p - 2}{(p + 1)^2 + 1}$ $S(p) = \frac{3(p + 1) - 5}{(p + 1)^2 + 1^2}$ $S(p) = 3\frac{(p + 1)}{(p + 1)^2 + 1^2} - 5\frac{1}{(p + 1)^2 + 1^2}$	
$s(t) = \mathcal{L}^{-1} \left(\frac{1}{p + (-1)} \right) + 4\mathcal{L}^{-1} \left(\frac{1}{p + 2} \right)$ $= (e^t + 4e^{-2t})u(t)$	$s(t) = \mathcal{L}^{-1} \left(3 \frac{(p+1)}{(p+1)^2 + 1^2} - 5 \frac{1}{(p+1)^2 + 1^2} \right)$	
$= (e^t + 4e^{-2t})u(t)$	$s(t) = [3e^{-t}\cos(t) - 5e^{-t}\sin(t)] u(t)$	

Forme canonique d'un polynôme

$$f(x) = ax^{2} + bx + c = a(x - \alpha)^{2} + \beta$$
$$\alpha = -\frac{b}{2a} \quad ; \quad \beta = f(\alpha)$$

Exemple d'une résolution d'équation

Equation	$\frac{d^2s(t)}{dt^2} - 3\frac{ds(t)}{dt} + 2s(t) = e(t)$ $e(t) = u(t)$		
Dans Laplace	$p^{2}S(p) - 3pS(p) + 2S(p) = E(p)$ $(p^{2} - 3p + 2)S(p) = E(p)$ $\frac{S(p)}{E(p)} = \frac{1}{p^{2} - 3p + 2}$ $E(p) = \frac{1}{p}$		
Entrée Laplace			
Sortie Laplace	$S(p) = \frac{1}{p(p^2 - 3p + 2)}$		
Décomposition en ES	$S(p) = \frac{1}{p(p-1)(p-2)} = \frac{A}{p} + \frac{B}{(p-1)} + \frac{C}{(p-2)}$ $= [\dots]$ $S(p) = \frac{1}{2} \frac{1}{p} - \frac{1}{(p-1)} + \frac{1}{2} \frac{1}{(p-2)}$		
TLI	$s(t) = \left(\frac{1}{2} - e^t + \frac{1}{2}e^{2t}\right)u(t)$		

Dernière mise à jour	SLCI1	Denis DEFAUCHY	l
28/08/2022	Généralités	Résumé	1

Fonctions de transfert

Equation différentielle du système

$$a_n \frac{d^n s}{dt^n} + \dots + a_1 \frac{ds}{dt} + a_0 s = b_m \frac{d^m e}{dt^m} + \dots + b_1 \frac{de}{dt} + b_0 e$$

Domaine de Laplace – CIN ou Heaviside :
$$e(0)=\frac{de(0)}{dt}=\frac{d^2e(0)}{dt^2}=\cdots=0$$

$$H(p) = \frac{S(p)}{E(p)} = \frac{b_m p^m + \dots + b_1 p + b_0}{a_n p^n + \dots + a_1 p + a_0}$$

Représentation par bloc

Forme canonique

$$H(p) = \frac{K}{p^{\alpha}} \frac{\prod_{i=1}^{m} \left(1 - \frac{p}{z_i}\right)}{\prod_{k=1}^{n-\alpha} \left(1 - \frac{p}{p_k}\right)} = \frac{K}{p^{\alpha}} \frac{1 + n_1 p + \dots + n_m p^m}{1 + d_1 p + \dots + d_{n-\alpha} p^{n-\alpha}} \quad ; \quad \begin{cases} [d_1] = s \\ \vdots \\ [d_{n-\alpha}] = s^{(n-\alpha)} \end{cases}$$

z_i	0 de la FT (réels ou complexes)	
p_i	Pôles de la FT (réels ou complexes)	
α	Classe de la FT	
n	Ordre de la FT	
K	Gain statique : $[K] = \frac{[s(t)]}{[e(t)]} s^{-\alpha}$	

Ecart statique

Quel que soit l'ordre de la FT, si le système est stable et ne tend pas vers 0 pour une entrée échelon, alors $\alpha=0$ et :

$$\varepsilon_{S} = \lim_{t \to +\infty} \left(E(p) - S(p) \right) = \lim_{p \to 0} E_{0} \left(1 - H^{n}(p) \right) = E_{0} \left[1 - \lim_{p \to 0} \left(H^{n}(p) \right) \right]$$

$$H^{n}(p) = \frac{K \left(\frac{b_{m}}{b_{0}} p^{m} + \dots + \frac{b_{1}}{b_{0}} p + \mathbf{1} \right)}{\left(\frac{a_{n}}{a_{0}} p^{n} + \dots + \frac{a_{1}}{a_{0}} p + \mathbf{1} \right)} {}_{0}^{\sim} K$$

$$\varepsilon_s = E_0(1 - K)$$
 ou $(1 - K)$ en %

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Linéarisation d'un comportement

$$K = \frac{y_B - y_A}{x_B - x_A} = \frac{6 - (-6)}{3 - (-3)} = 2 \text{ V. } mm^{-1}$$

U(p) = KX(p)

ATTENTION aux unités!

Représentation par schéma bloc

Forme générale

Formule de Black

$$FTBF(p) = G(p) = \frac{S(p)}{E(p)} = \frac{H(p)}{1 + K(p)H(p)} = \frac{Chaine\ directe(p)}{1 + FTBO(p)}$$
 Unité d'une BO $[FTBO(p)] = 1$

Page 10 sur 19

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Exemple d'application et mise sous forme canonique

Opérations

Retour unitaire

=G(p)

Transformations diverses

Dernière mise à jour	SLCI1	Denis DEFAUCHY	
28/08/2022	Généralités	Résumé	

Théorème de superposition

$$S(p) = \frac{H_2(p)H_1(p)}{1 + H_3(p)H_2(p)H_1(p)} E_1(p) + \frac{H_2(p)}{1 + H_3(p)H_2(p)H_1(p)} E_2(p)$$

$$S(p) = G_1(p)E_1(p) + G_2(p)E_2(p)$$

D'une manière générale, on a :

$$G_i(p) = \frac{Chaîne\ directe\ après\ E_i}{1 + FTBO(p)}$$

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Systèmes du premier ordre

Généralités

$$s(t)+T\frac{ds(t)}{dt}=Ke(t)\quad ;\quad (K,T)>0\quad ;\quad \omega_0=\frac{1}{T}\quad ;\quad [T]=s$$

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + Tp}$$

Réponse à un échelon

$$s(t) = Ke_0 \left[1 - e^{-\frac{t}{T}} \right] u(t)$$

Réponse à une rampe

$$s(t) = Ka \left[t - T \left(1 - e^{-\frac{t}{T}} \right) \right] u(t)$$

 $Asymptote: y(t) = Ka(t-T) \quad ; \quad \varepsilon_s = e_0(1-K) \quad ; \quad s'(0) = 0 \quad ; \quad \varepsilon_v = \begin{cases} aT \ si \ K = 1 \\ \pm \infty \ si \ K \neq 1 \end{cases}$

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Systèmes du second ordre

Généralités

$$s(t) + \frac{2z}{\omega_0} \frac{ds(t)}{dt} + \frac{1}{\omega_0^2} \frac{d^2s(t)}{dt^2} = Ke(t)$$
 ; $(K, \omega_0, z) > 0$

Z	Coefficient d'amortissement	1
K	Gain statique	$\frac{[s(t)]}{[e(t)]}$
ω_0	Pulsation propre non amortie	$rd.s^{-1}$

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + \frac{2z}{\omega_0}p + \frac{1}{\omega_0^2}p^2}$$

Particularités de la FT selon z

$\Delta > 0 \Leftrightarrow z > 1$ $\Delta = 0 \Leftrightarrow z = 1$		Δ < 0 \Leftrightarrow z < 1
$H(p) = \frac{K}{(1 + T_1 p)(1 + T_2 p)}$ $min(\omega_i) < \omega_0 < max(\omega_i)$	$H(p) = \frac{K}{(1+Tp)^2}$ $T = \frac{1}{\omega_0}$	$H(p) = \frac{K\omega_0^2}{(p+a)^2 + \omega_n^2}$ $a = z\omega_0 ; \omega_n = \omega_0 \sqrt{1 - z^2}$

Réponse à un échelon

$$\varepsilon_s = e_0(1-K) \quad ; \quad s_\infty = Ke_0 \quad ; \quad s'(0) = 0$$

Page 15 sur 19

z < 1		z = 1	z > 1	
Rég	gime pseudo périodique $\omega_n = \omega_0 \sqrt{1-z^2}$		Régime apériodique critique	Régime apériodique
z < 0,7	$z \approx 0.7$ 0.6901 Résoudre $D_{1\%} = 0.05$	z > 0,7		
Régime oscillant	Régime LE PLUS RAPIDE Présence d'un dépassement $D_{1\%} \approx 5\%$ $t_1 = \frac{\pi}{\omega_0 \sqrt{1-z^2}}$	Régime oscillant	Le plus rapide sans dépassement	Régime amorti Lent

 $tr_{5\%}\omega_0=k(z)$; $k(0,7)\approx 3$; $k(1)\approx 5$

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Réponse à une rampe

Asymptote à l'infini		
z > 1	z = 1	z < 1
$s(t) \underset{+\infty}{\sim} Kb(t - T_1 - T_2)$	$s(t) \underset{+\infty}{\sim} Kb(t-2T)$	$s(t) \underset{+\infty}{\sim} Kb \left(t - \frac{2z}{\omega_0} \right)$

Erreur de poursuite $arepsilon_v = \lim_{t o +\infty} [e(t) - s(t)]$			
z > 1	$\lim_{\substack{t \to +\infty \\ t \to +\infty}} [bt - Kb(t - T_1 - T_2)]$ $\lim_{\substack{t \to +\infty \\ t \to +\infty}} [bt(1 - K) + Kb(T_1 + T_2)]$	$\varepsilon_v = \begin{cases} b(T_1 + T_2) si K = 1 \\ \infty si K \neq 1 \end{cases}$	
z = 1	$\lim_{\substack{t \to +\infty \\ t \to +\infty}} [bt - Kb(t - 2T)]$ $\lim_{\substack{t \to +\infty }} [bt(1 - K) + 2KbT]$	$\varepsilon_v = \begin{cases} 2bT \ si \ K = 1 \\ \infty \ si \ K \neq 1 \end{cases}$	
z < 1	$\lim_{t \to +\infty} \left[bt - Kb \left(t - \frac{2z}{\omega_0} \right) \right]$ $\lim_{t \to +\infty} \left[bt (1 - K) + Kb \frac{2z}{\omega_0} \right]$	$\varepsilon_v = \begin{cases} b \frac{2z}{\omega_0} & \text{si } K = 1\\ \infty & \text{si } K \neq 1 \end{cases}$	

$$\begin{split} K &= 1 \Rightarrow \varepsilon_v \ constante \\ K &\neq 1 \Rightarrow \varepsilon_v = \pm \infty \end{split}$$

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

$$H(p) = \frac{K}{a_n p^n + \dots + a_1 p + a_0}$$

A une entrée échelon, la tangente à l'origine est : $\begin{cases} \frac{KE_0}{a_n} \ si \ n = 1 \\ 0 \ si \ n > 1 \end{cases}$

Echelon - 1° ordre

Tangente à l'origine non nulle - Pas de dépassement/oscillations

$$H(p) = \frac{K}{1 + Tp}$$

Echelon - 2° ordre - z<1

Tangente à l'origine nulle – Dépassements/oscillations

$$H(p) = \frac{K}{1 + \frac{2z}{\omega_0}p + \frac{1}{{\omega_0}^2}p^2}$$

$$s_{\infty} = Ke_{0}$$

$$T_{n} = \frac{2\pi}{\omega_{n}} = \frac{2\pi}{\omega_{0}\sqrt{1-z^{2}}}$$

$$D_{1\%} = e^{-\frac{\pi z}{\sqrt{1-z^{2}}}} \Leftrightarrow z = \frac{\left|\ln D_{1\%}\right|}{\sqrt{\left(\ln D_{1\%}\right)^{2} + \pi^{2}}}$$

$$t_{1} = \frac{\pi}{\omega_{n}} = \frac{\pi}{\omega_{0}\sqrt{1-z^{2}}} \Leftrightarrow \omega_{0} = \frac{\pi}{t_{1}\sqrt{1-z^{2}}}$$

Dernière mise à jour	SLCI1	Denis DEFAUCHY
28/08/2022	Généralités	Résumé

Echelon - 2° ordre - z>1 - Pour info

Poser $z(t)=Ke_0-s(t)$. Choisir T, t_1 , t_2 des temps quelconques tels que l'on connaisse la courbe de réponse en t_1 , t_2 , $T-t_1$ et $T-t_2$. Calculer :

$$x_1 = \frac{z(t_1 - T)}{z(t_1)}$$
 ; $x_2 = \frac{z(t_2 - T)}{z(t_2)}$; $y_1 = \frac{z(t_1 - 2T)}{z(t_1)}$; $y_2 = \frac{z(t_2 - 2T)}{z(t_2)}$
 $a_1 = \frac{y_2 - y_1}{x_2 - x_1}$; $a_2 = y_2 - a_1 x_2$

Déterminer les racines X_1 et X_2 du polynôme suivant : $X^2+a_1X+a_2=0$; Alors $\begin{cases} T_1=\frac{T}{\ln X_1}\\ T_2=\frac{T}{\ln X_2} \end{cases}$

Dans le cas particulier où $T_1 \ll T_2$:

Oscillations libres d'un 2° ordre

Condition de fonctionnement de la méthode : Voir au moins 5 oscillations, le $z \le 0.1 \ll 1$

$$H(p) = \frac{K}{1 + \frac{2z}{\omega_0} p + \frac{1}{\omega_0^2} p^2} ; \quad s + \frac{2z}{\omega_0} \dot{s} + \frac{1}{\omega_0^2} \ddot{s}$$

$$= 0 ; \quad s(0) = S_0 ; \quad s'(0) = 0$$

$$s(t) = e^{-z\omega_0 t} C \cos(\omega_n t + \varphi) ; \quad \omega_n = \omega_0 \sqrt{1 - z^2}$$

En supposant z << 1, on a $\omega_0 \approx \omega_n$ que l'on identifie directement sur la courbe.

Pour identifier z, on utilise le décrément logarithmique. Soient T_1 et T_2 deux temps écartés de N périodes $T=\frac{2\pi}{\omega_n}\approx\frac{2\pi}{\omega_0}$. On a $T_2-T_1=N\frac{2\pi}{\omega_0}$ et $\cos(\omega_nT_2+\varphi)=\cos(\omega_nT_1+\varphi)$

$$\Rightarrow \frac{s(T_1)}{s(T_2)} = \frac{e^{-z\omega_0 T_1}}{e^{-z\omega_0 T_2}} = e^{-z\omega_0 (T_1 - T_2)} \iff z = \frac{1}{\omega_0 N \frac{2\pi}{\omega_0}} \ln \frac{s(T_1)}{s(T_2)} = \frac{1}{2\pi N} \ln \frac{s(T_1)}{s(T_2)}$$