Lab 4

Inertial Measurement Units

This lecture is part of the RACECAR-MN introductory robotics course. You can visit the course webpage at mitll-racecar-mn.readthedocs.io.

Objectives

Main Objective: Use the RACECAR's IMU data to prevent rolling

Learning Objectives

 Use the Physics module to retrieve linear acceleration and angular velocity

Roll Prevention

- Vehicle rollover is a threat for cars and trucks
 - Turning too quickly can cause a vehicle with a high center of mass to roll

Roll Prevention

 It is difficult to roll the RACECAR-MN due to its low center of mass, but we will model this problem by artificially raising the center of mass in RacecarSim

Rolling Prevention

- Rolling is caused by inertia
 - When a car turns the inertial force continues linearly, which creates an outward force
- There are various ways to prevent rolling:

Super elevation

Wider turning

Reducing speed

Inertial Measurement Unit (IMU)

- Uses accelerometers and gyroscopes to measure:
 - Linear acceleration (acceleration data)
 - Angular velocity (gyro data)

Inertial Measurement Unit (IMU)

Accel RIGHT DOWN

Inertial Measurement Unit (IMU)

Accelerometer

Gyroscope

Using IMU Data

- What benefits are there to having linear acceleration?
- What benefits are there to having angular velocity?
- What concerns do you have about using the IMU data?

Intel RealSense D435i

Acceleration

- Has three values (in m/s²):
 - Linear acceleration on X-axis,
 which points to the **right**
 - Linear acceleration on Y-axis, which points **down**
 - Linear acceleration on Z-axis, which points forward

Gyro

- Has three values (in radians/sec):
 - Angular velocity about X-axis (denoted by Ωx)
 - Angular velocity about Y-axis (denoted by Ωy)
 - Angular velocity about Z-axis (denoted by Ωz)

Physics Module

- Retrieves IMU data
- Public Interface
 - get_linear_acceleration()
 - get_angular_velocity()

Examples


```
# Example 1
def update():
    accel = rc.physics.get_linear_acceleration()
    ang_vel = rc.physics.get_angular_velocity()

if accel[2] > 0.10:
    print("Kachow!")

if ang_vel[0] > 0.25:
    rc.drive.stop()
```

Examples


```
foo = 0
def update():
    global foo
    ang vel = rc.physics.get angular velocity()
    foo += ang vel[1] * rc.get delta time()
    if foo < math.pi / 2:</pre>
        rc.drive.set speed angle(1, 1)
    else:
        rc.drive.set speed angle(1, 0)
```