Análisis Matemático UT2 - Funciones Reales de Variable Real

Objetivos

Generalidades sobre funciones (Una sesión)

- Recordar los conceptos básicos: dominio, rango, etc.
- Distinguir si una función es o no acotada, monótona, par, periódica,...
- Reconocer simetrías y periodicidad

Funciones elementales (Una sesión)

- Usar correctamente las propiedades básicas de las elementales
- Saber trazar y reconocer su representación gráfica aproximada

Derivadas (Una sesión)

- Recordar el concepto de derivada y su relación con la recta tangente
- Calculo de derivadas en casos sencillos
- Localizar extremos relativos y determinar intervalos de crecimiento

Contenido

Conceptos generales

- Dominio y rango
- Funciones inyectivas. Función inversa
- · Funciones crecientes, decrecientes y acotadas
- Funciones pares, impares y periódicas

Repaso de Funciones Elementales

- Polinómicas y racionales
- Irracionales
- Exponenciales y logarítmicas
- Trigonométricas e inversas

Derivabilidad de funciones

- Concepto de derivada
- Propiedades de las funciones derivables
- Propiedades geométricas de una función a partir de su derivada

Conceptos generales

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \qquad y$$

Es una función si f(x) es único (cuando existe)

Dominio =
$$D(f) = \{ x \in \mathbb{R} \mid f(x) \text{ existe } \}$$

Rango = $f(D) = R(f)$

Ejercicio: Obtener el dominio de
$$f(x) = \sqrt{2 + x - x^2}$$

 $x \in D(f)$ si existe f(x). En este caso, cuando $2 + x - x^2 \ge 0$ $\left(x^2 - x - 2 \le 0\right)$

La función $y = x^2 - x - 2$ es una parábola con las ramas hacia arriba y se anula en $x_1 = -1$, $x_2 = 2$. Así, $x^2 - x - 2 \le 0$ para $x \in [-1, 2]$

$$D(f) = \begin{bmatrix} -1, 2 \end{bmatrix}$$

Ejercicio: Hallar el dominio de
$$f(x) = \sqrt{-x} + \frac{1}{\sqrt{2x-1}}$$

En este caso es necesario que $\underbrace{-x \ge 0}_{x \le 0}$ y que $\underbrace{2x-1>0}_{x>\frac{1}{2}}$, simultáneamente

$$D(f) = \left] -\infty, 0\right] \cap \left[\frac{1}{2}, +\infty \right] = \emptyset$$

¡La función no está definida para ningún valor!

Ejercicio: Obtener el dominio de
$$f(x) = \frac{1}{\sqrt[4]{4 - x^2}}$$

$$x \in D(f) \Leftrightarrow \left\{ \begin{array}{l} 4 - x^2 \geq 0 \\ \sqrt[4]{4 - x^2} \neq 0 \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{l} (2 + x)(2 - x) \geq 0 \\ \sqrt[4]{(2 + x)(2 - x)} \neq 0 \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{l} x \in [-2, 2] \\ x \neq 2 \,, \, x \neq -2 \end{array} \right\} \Leftrightarrow x \in \left[-2, 2 \right]$$

Función inversa

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longrightarrow y$
 $f(x) = y \Leftrightarrow x = f^{-1}(y)$
 $f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$
 $y \longrightarrow x$

 f^{-1} es una función si f es inyectiva f es inyectiva si para $x_1, x_2 \in D(f)$ con $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

$$D(f^{-1}) = R(f)$$
 , $R(f^{-1}) = D(f)$

Ejemplo:
$$f(x) = \frac{2x+3}{x-1}$$
 tiene inversa y $f^{-1}(x) = \frac{x+3}{x-2}$
 $D(f) = \mathbb{R} - \{1\} = R(f^{-1})$; $D(f^{-1}) = \mathbb{R} - \{2\} = R(f)$

Las gráficas de una función y su inversa son simétricas respecto de la bisectriz del primer y tercer cuadrante.

Función creciente:

$$f \ creciente \Leftrightarrow [x < x' \Rightarrow f(x) \le f(x')]$$

$$f$$
 estrictamente creciente \Leftrightarrow $[x < x' \Rightarrow f(x) < f(x')]$

Función decreciente:

$$f \ decreciente \Leftrightarrow \left[x < x' \Rightarrow f(x) \ge f(x') \right]$$

$$f$$
 estrictamente decreciente \Leftrightarrow $[x < x' \Rightarrow f(x) > f(x')]$

Función monótona: en cualquiera de los dos casos.

Nota: Las funciones constantes son, a la vez, crecientes y decrecientes

Nota: Si f es estrictamente creciente/decreciente, entonces f es inyectiva

Ejercicio: Verifica que $f(x) = 5 + \sqrt{9 - x}$ decrece estrictamente en [0,9]. Halla también la función inversa de f sobre ese intervalo.

$$D(f) =]-\infty,9]$$

$$0 \le x_1 < x_2 \le 9 \implies -x_1 > -x_2 \implies 9 - x_1 > 9 - x_2 \implies \sqrt{9 - x_1} > \sqrt{9 - x_2} \implies f(x_1) > f(x_2)$$

f es estrictamente decreciente en todo su dominio y, en particular, en [0,9]

Veremos después que si f es derivable, $f' > 0 (< 0) \Rightarrow f$ es estrictamente creciente (decreciente)

Usando el resultado podríamos haber comprobado que $f'(x) = -\frac{1}{2\sqrt{9-x}} < 0$ para $x \in]-\infty, 9[$

$$f:[0,9] \to [5,8] \Rightarrow f^{-1}:[5,8] \to [0,9]$$

$$f(x) = 5 + \sqrt{9 - x} = y$$

$$x = 9 - (y - 5)^{2}$$

$$x = -y^{2} + 10y - 16 = f^{-1}(y)$$

$$f^{-1}(x) = -x^{2} + 10x - 16$$

Función acotada superiormente:

$$f$$
 acotada superiormente (en I) por $K \Leftrightarrow [f(x) \le K, \forall x \in I]$
(K es cota superior de f)

Función acotada inferiormente:

$$f$$
 acotada inferiormente (en I) por $L \Leftrightarrow [f(x) \ge L, \forall x \in I]$
(L es cota inferior de f)

Función acotada:

$$f \ acotada \ (en \ I) \Leftrightarrow \left[\ \left| f(x) \right| \le K \ , \ \forall x \in I \ \right] \Leftrightarrow \left[-K \le f(x) \le K \right]$$

$$\left(K \ es \ cota \ superior \ de \ f \ ; \ -K \ es \ cota \ inferior \ de \ f \right)$$

Ejercicio: Si $f(x) = \sqrt{2 + x - x^2}$, hallar sus valores máximo y mínimo. Verifica analíticamente que su gráfica corresponde a una semicircunferencia. $y = \sqrt{2 + x - x^2} \Leftrightarrow y^2 + (x - 0.5)^2 = (1.5)^2 \Leftrightarrow d((x, y), (0.5, 0)) = 1.5$

- Acotada superiormente en [-1,1] y en $]-\infty,-1]$
- No acotada superiormente en $[1,+\infty[$
- Acotada inferiormente en
 [-1,1] y en [1,+∞[
- No acotada inferiormente en $]-\infty,-1]$
- Acotada en [-1,1]
- No acotada en $]-\infty,-1]$ ni en $[1,+\infty[$

Función par: f(-x) = f(x) para $x \in D(f)$

Son simétricas respecto del eje OY

$$f(x) - f(-x) = 0 \implies f(x)$$
 es par

Son pares, por ejemplo:
$$x^2$$
, $x^6 - x^2$, $\frac{x^3 + x}{x^5 + x}$, $|x|$

Función impar: f(-x) = -f(x) para $x \in D(f)$

Son simétricas respecto del origen de coordenadas

$$f(x) + f(-x) = 0 \implies f(x)$$
 es impar

Son impares, por ejemplo:
$$x$$
, $x^3 - x$, $\frac{x^4 + 1}{x^3 + x}$, $\log\left(1 + \frac{2x}{1 - x}\right)$

No son pares ni impares : $\sqrt{1+x-x^2} - \sqrt{1-x+x^2}$, $(x+1)^{2/3} + |x-1|$

Función periódica: f(x) = f(x+T) para algún valor de T

(T es el periodo, se usa el menor)

Son periódicas: sen(x), cos(x), tan(x), 7 sen(3x) - 5 cos(2x)

No son periódicas: $sen(\sqrt{x})$, x^2 , e^{-x}

Otras simetrías:

Una función y su inversa son simétricas respecto de la bisectriz y = x

Repaso de funciones elementales

Polinómicas: $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, $a_i \in \mathbb{R}$, $i: 0, 1, \dots, n$

Racionales (cociente de funciones polinómicas):

Asíntota horizontal : y = -1Asíntotas verticales : $x = \pm 1$ Asíntota oblicua : y = xAsíntotas verticales : $x = \pm 1$ **Irracionales** (raíces): $f(x) = \sqrt[m]{x}$, $m \in \mathbb{N}$

$$D(f) = \begin{cases} \mathbb{R}^+ \cup \{0\} & \text{si } m \text{ es par} \\ \mathbb{R} & \text{si } m \text{ es impar} \end{cases}$$
 ¿Dominio de $F(x) = \sqrt[m]{f(x)}$?

Sus inversas

Exponenciales: $f(x) = a^x$, a > 0

$$a^{x} > 0$$
, $a^{0} = 1$
 $a^{x} \cdot a^{y} = a^{x+y}$, $a^{x} / a^{y} = a^{x-y}$
 $(a^{x})^{y} = a^{x \cdot y}$

Logarítmicas (inversas de exponenciales): $f(x) = \log_a(x)$, a > 0 $(y = \log_a(x) \iff x = a^y)$ $D(f) = \mathbb{R}^+$

$$\log_{a}(1) = 0 , \log(e) = 1 , \log(e^{k}) = k$$

$$\log_{a}(x \cdot y) = \log_{a}(x) + \log_{a}(y) , \log_{a}(x/y) = \log_{a}(x) - \log_{a}(y)$$

$$\log_{a}(x^{y}) = y \log_{a}(x)$$

$$x^{\log_{a}(y)} = y^{\log_{a}(x)} , \log_{a}(x) = \frac{\log_{b}(x)}{\log_{b}(a)} = k \cdot \log_{b}(x)$$

Trigonométricas: sen(x), cos(x), $tan(x) = \frac{sen(x)}{cos(x)}$ (x en radianes)

x	sen(x)	$\cos(x)$	tan(
0	0	1	0
$\pi/2$	1	0	?

$$\frac{impar}{\operatorname{sen}(-x) = -\operatorname{sen}(x)}, \quad \cos(-x) = \cos(x)$$

$$\operatorname{sen}\left(x + \frac{\pi}{2}\right) = \cos(x), \quad \cos\left(x + \frac{\pi}{2}\right) = -\operatorname{sen}(x)$$

$$\operatorname{sen}\left(x + \pi\right) = -\operatorname{sen}(x), \quad \cos\left(x + \pi\right) = -\cos(x)$$

Derivabilidad de funciones

Derivada en un punto

La derivada de f(x) en a se define como: $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Es el valor de la pendiente de la recta tangente a f(x) en el punto (a, f(a)) (el límite de las pendientes de las rectas secantes)

Funciones derivables

- f es derivable en $x_0 \in]a,b[$ si existe $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) f(x_0)}{h}$
- f es derivable en el intervalo]a,b[si es derivable en todos sus puntos

Funcion derivada de f es la funcion $f': \mathbb{R} \to \mathbb{R}$ que en cada punto toma el valor de la derivada en ese punto.

◆ Toda función derivable es continua.

Recta tangente y recta normal

• La recta tangente pasa por (a, f(a)) con pendiente f'(a)

$$y = f'(a)(x-a) + f(a)$$

• La recta normal pasa por (a, f(a)) con pendiente $\frac{-1}{f'(a)}$

$$y = \frac{-1}{f'(a)}(x-a) + f(a)$$

Reglas de derivación

$(\alpha f)'(x) = \alpha f'(x)$		
(f+g)'(x) = f'(x) + g'(x)		
$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$		
$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left(g(x)\right)^2}$		
$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$		

$$f(x) = \log(x) + 3\arctan(x) \implies f'(x) = \frac{1}{x} + \frac{1}{1+x^2}$$

$$g(x) = \frac{x^3 - 5x}{x^2 + 8} \implies g'(x) = \frac{(3x^2 - 5)(x^2 + 8) - (x^3 - 5x)(2x)}{(x^2 + 8)^2}$$

$$h(x) = x^3 \cdot \sqrt{\sec(x)} \implies h'(x) = 3x^2 \cdot \sqrt{\sec(x)} + \frac{x^3}{2\sqrt{\sec(x)}} \cdot \cos(x)$$

Derivadas de algunas funciones elementales

$f(x) = k$ \Rightarrow $f'(x) = 0$	
$f(x) = x^n$ \Rightarrow $f'(x) = n \cdot x^{n-1}$	$f(x) = \sqrt{x}$ \Rightarrow $f'(x) = \frac{1}{2\sqrt{x}}$
$f(x) = \log(x)$ \Rightarrow $f'(x) = \frac{1}{x}$	$f(x) = \log_a(x)$ \Rightarrow $f'(x) = \frac{1}{x \cdot \log(a)}$
$f(x) = e^x$ \Rightarrow $f'(x) = e^x$	$f(x) = a^x$ \Rightarrow $f'(x) = a^x \log(a)$
$f(x) = \operatorname{sen}(x)$ \Rightarrow $f'(x) = \cos(x)$	$f(x) = \tan(x)$ \Rightarrow $f'(x) = \frac{1}{\cos^2(x)}$
$f(x) = \cos(x)$ \Rightarrow $f'(x) = -\sin(x)$	
$f(x) = \arctan(x) \implies f'(x) = \frac{1}{1+x^2}$	$f(x) = \arcsin(x)$ \Rightarrow $f'(x) = \frac{1}{\sqrt{1 - x^2}}$

Caracterización de crecimiento y decrecimiento

f'(x) > 0 para $x \in]a,b[\Rightarrow f$ estrictamente creciente en]a,b[f'(x) < 0 para $x \in [a,b[\Rightarrow f]$ estrictamente decreciente en [a,b[

Localización de extremos relativos

Si f alcanza un extremo relativo en x = a, entonces f'(a) = 0(La recta tangente es horizontal)

Los posibles extremos relativos se hallan resolviendo f'(x) = 0No todas las soluciones de f'(x) = 0 son extremos relativos

Concavidad y convexidad

f es cóncava donde su gráfica está por encima de la tangente f es convexa donde su gráfica está por debajo de la tangente

Caracterización de concavidad y convexidad

$$f''(x) > 0$$
 para $x \in]a,b[\Rightarrow f$ cóncava en $]a,b[(f' \text{ creciente})$
 $f''(x) < 0$ para $x \in]a,b[\Rightarrow f \text{ convexa en }]a,b[(f' \text{ decreciente})$

La función cambia de cóncava a convexa en los puntos de inflexión. Los posibles puntos de inflexión se hallan resolviendo f''(x) = 0No todas las soluciones de f''(x) = 0 son puntos de inflexión.

Localización de máximos y mínimos usando la segunda derivada

En un mínimo relativo la tangente es horizontal y la curva cóncava:

$$f'(a) = 0$$
 y $f''(a) > 0$, en $x = a$ tenemos un mínimo relativo.

En un máximo relativo la tangente es horizontal y la curva convexa:

$$f'(a) = 0$$
 y $f''(a) < 0$, en $x = a$ tenemos un mínimo relativo.

$$f'(x) = 0 \Leftrightarrow x \in \{-3, -1\}$$

$$f'(x) < 0 \Leftrightarrow x \in]-3, -1[$$

$$f'(x) > 0 \Leftrightarrow x \in]-\infty, -3[\cup]-1, +\infty[$$

$$f \text{ creciente en }]-\infty, -3[\cup]-1, +\infty[$$

$$f \text{ decreciente en }]-3, -1[$$

$$\text{máximo relativo en } (-3, 3)$$

$$\text{mínimo relativo en } (-1, -1)$$

$$f''(x) = 0 \Leftrightarrow x = -2$$

$$f''(x) < 0 \Leftrightarrow x \in]-\infty, -2[$$

$$f''(x) = 0 \Leftrightarrow x \in]-2, +\infty[$$

$$f \text{ convexa en }]-\infty, -2[$$

$$f \text{ concava en }]-2, +\infty[$$

$$\text{punto de inflexión en } (-2, 1)$$