

Lecture 9 – Phase-change memories

Outline

- Phase change materials
- Physics of switching in PCM
- Scalability of PCM
- Benchmarking
- PCM in neuromorphic computing

How does DVD and BluRay work?

The PCM device structure

3

Atwood, Science 2008 Mattias Borg | EITP25 VT20 – Lecture 9

Think-share: RESET Power consumption

Needed material properties

- 1. Reversible switching between phases → lifetime
- 2. High electrical resistivity contrast → signal to noise
- 3. Fast crystallization → Operation speed
- 4. Stable resistance states → Reliability
- 5. Properties stable to nanosize → Scalability

Electrical Resistivity Contrast

- $R_{RESET}/R_{SET} > \sim 10^5-10^6$
- Sharp decline in resistance above certain T
 → T_{cryst}
- T_{cryst} must be high enough to retain memory state

 AIST (AgInSb₆Te₁₂) and Sb2Te may not be suitable for some applications, why?

Conduction mechanism

Resistance drift

- High-resistance state (HRS) depends on the volume and nature of the amorphous region
- HRS varies between cycles
- HRS drifts (increasing R) over time!
 - Defects "heal"
 - → longer between remaining defects
 - → larger transport energy barrier

$$R(t) = R(t_0) \left(\frac{t}{t_0}\right)^{\nu}$$

$$\nu = drift \ exponent$$

 Drift is a strong function of temperature and size of the amorphous region

Mechanism of crystallization

Nucleation-dominated

Growth-dominated

Crystallization speed

- Typical speed: ~10 ns
- Crystal structures with small difference between amorphous and crystalline are faster
- Small pre-set incubation field induces local preordering → 100's ps!
- Limits the operation speed of PCM!

Amorphization and Thermal properties

- High enough current → high enough Temperature for melting
- Ultrashort time → quenching crystallization → amorphous phase
- Thermal properties are vital for low power amorphization (RESET)

Think a bit - Scaling materials

- 1. What happens to the ratio between volume and surface when devices are scaled down?
- 2. What could be the ultimate scaling limits?
- 3. What important parameters could shift?

Example: Interface-engineered PCM

- Superlattice-like structure (GeTe-Sb₂Te₃)
 - Maximizing interface effect!
- Phonon confinement at interface →
 Thermal conductivity very low
- Long range order reduce entropy cost of amorphidization
 - → reduced energy for SET/RESET
 - → reduced cycle-cycle variability
 - → faster switch times
- Similarly, nanostructured GST shows:
 - Reduced thermal conductivity
 - Reduced resistance drift
 - Higher crystallization T
 - Lower melting T

Scaling threshold voltage

- Apparently all (common) materials exhibit linearly changing threshold voltage
- Offset at device length = 0!

Q: What does this offset signify?

Scaling reset current

- RESET current supply a limiting factor
- Typically 40 MA/cm² is needed
- Careful engineering needed to scale this down further.
- Possible limitation for PCM scalability?

3D PCM

High current density prohibits PCM scaling → go 3D instead!

16

Kinoshita et al VLSI 2012 Mattias Borg | EITP25 VT20 – Lecture 9

Multibit operation

- SET level depends on size of amorphous region
- Size changes as function of write pulse amplitude
 - Variations give broad distribution in R
- Sequence of write and verify (feedback loop)
 - → 16 intermediate levels (4 bit precision)

17

Multilevel operation is very sensitive to resistance drift!

Wong et al. Proc. IEEE 2010 Mattias Borg | EITP25 VT20 – Lecture 9

PCM as storage

	DRAM	3DNAND	RRAM	PCM
Nonvolatile	No	Yes	Yes	Yes
Speed (ns)	10	104	>5 ns	10 ns
Energy use (pJ/write)	0.1	1	0.1-1	>1
Endurance (cycles)	10 ¹⁶	10 ⁵	10 ⁶ -10 ⁷	10 ⁹
Multilevel?	No	Yes	3-6 bit	Yes
Scalability	6-8F ²	3D!	3D!	3D!
Other	Destructive Read	High Voltage	Abrupt SET	R drifts

PCM in neuromorphic computing

- Conductivity ←→ synaptic weight
- Has been used also for neuron implementations!

Suri et al. IEDM 2011 Mattias Borg | EITP25 VT20 – Lecture 9 19

Gradual SET

- → Long Term Potentiation
- Nucleation dominated -> more gradual conductance change compared to Growth-dominated

Gradual RESET

- → Long term depression
- Cannot be achieved by repeating pulses with same amplitude
- Increasing amplitude is necessary for gradual RESET → difficult in practice

Suri et al. IEDM 2011 Mattias Borg | EITP25 VT20 – Lecture 9 21

PCM as artificial synapse

- Conductivity ←→ synaptic weight
- SET is gradual, while RESET is abrupt
- → Asymmetry in conductivity (weight) change
- Can be amended by variable pulse heights for potentiation and depression

22

Kuzum et al Nano Lett. 2012 Mattias Borg | EITP25 VT20 – Lecture 9

STDP protocol

Kuzum et al Nano Lett. 2012 Mattias Borg | EITP25 VT20 – Lecture 9 23

2-PCM synapse

- Better way to address the asymmetric SET/RESET
- Each synapse → 1 pair of PCM's, (LTP PCM and LTD PCM)
- Signal to post-neuron $I_{post} = I_{LTP} I_{LTD}$
- Intermittent RESETs needed to adjust conductivity (for every 10-25 SET pulse)

Weight update scheme

Intermittent RESET scheme

Reset after a fixed time or a fixed number of activation of the neuron

Performance in action

- Car lane detection
- GeSbTe needed less RESETs (1:35) vs (1:10)
- GeTe achieved better learning
 - 5 of 6 lanes
 - > 90% detection in 4
 - Due to better linearity in GeTe?
- Trained by STDP for 680s
- Power consumed for learning 112 μW!
- GeTe demands more power (315 µW)

3rd lane

2nd lane

1st lane

4th lane

5th lane

Car Detection %				
Lane	PCM			
	GST	GeTe		
1st	N.A.	88		
2 nd	100	91		
3rd	89	96		
4 th	89	97		
5 th	96	100		
6 th	N.A.	N.A.		