PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/31, C07K 14/22, A61K 39/095,
G01N 33/53, C12Q 1/68, C07K 16/12

(11) International Publication Number:

WO 99/36544

(43) International Publication Date:

22 July 1999 (22.07.99)

(21) International Application Number:

PCT/IB99/00103

(22) International Filing Date:

14 January 1999 (14.01.99)

(30) Priority Data:

9800760.2

9819015.0

9822143.5

14 January 1998 (14.01.98) GB 1 September 1998 (01.09.98) GB 9 October 1998 (09.10.98) GB

(71) Applicant (for all designated States except US): CHIRON S.P.A. [IT/IT]; Via Fiorentina, 1, I-53100 Siena (IT).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): MASIGNANI, Vega [IT/IT]; Via Pantaneto, 105, 1-53100 Siena (IT). RAP-PUOLI, Rino [IT/IT]; Via delle Rocche, 1, Vagliagli, 1-53019 Castelnuovo Berardenga (IT). PIZZA, Mariagrazia [IT/IT]; Strada di Montalbuccio, 160, I-53100 Siena (IT). SCARLATO, Vincenzo [IT/IT]; Via Firenze, 3/37, I-53134 Colle Val d'Elsa (IT). GRANDI, Guido [IT/IT]; 9° Strada, 4, I-20090 Segrate (IT).
- (74) Agent: HALLYBONE, Huw, George; Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PI, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NEISSERIA MENINGITIDIS ANTIGENS

(57) Abstract

The invention provides proteins from *Neisseria meningitidis* (strains A and B), including amino acid sequences, the corresponding nucleotide sequences, expression data, and serological data. The proteins are useful antigens for vaccines, immunogenic compositions, and/or diagnostics.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	RS	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GB	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IB	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF -	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Pederation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NEISSERIA MENINGITIDIS ANTIGENS

This invention relates to antigens from the bacterium Neisseria meningitidis.

BACKGROUND

5

10

15

20

25

Neisseria meningitidis is a non-motile, gram negative diplococcus human pathogen. It colonises the pharynx, causing meningitis and, occasionally, septicaemia in the absence of meningitis. It is closely related to N.gonorrhoeae, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.

N.meningitidis causes both endemic and epidemic disease. In the United States the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus influenzae, N. meningitidis is the major cause of bacterial meningitis at all ages in the United States (Schuchat et al (1997) supra).

Based on the organism's capsular polysaccharide, 12 serogroups of *N.meningitidis* have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol.46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak immune response that cannot be boosted by repeated immunization. Following the success of the

vaccination against *H.influenzae*, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger WD "New and Improved Vaccines Against Meningococcal Disease" in: *New Generation Vaccines*, *supra*, pp. 469-488; Lieberman *et al* (1996) *supra*; Costantino *et al* (1992) Development and phase I clinical testing of a conjugate vaccine against meningococcus A and C. *Vaccine* 10:691-698).

5

10

15

20

25

30

Meningococcus B remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α(2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? Clin Microbiol Rev 7(4):559-575).

Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed (eg. Poolman JT (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28). Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53).

A certain amount of sequence data is available for meningococcal and gonococcal genes and proteins (eg. EP-A-0467714, WO96/29412), but this is by no means complete. The provision of further sequences could provide an opportunity to identify secreted or surface-exposed proteins that

are presumed targets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all pathogenic *Neisseriae*.

5 THE INVENTION

10

15

20

The invention provides proteins comprising the *N.meningitidis* amino acid sequences disclosed in the examples.

It also provides proteins comprising sequences homologous (ie. having sequence identity) to the N.meningitidis amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of sequence identity is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). These homologous proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between the proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.

The invention further provides proteins comprising fragments of the *N.meningitidis* amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.

The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure form (ie. substantially free from other N.meningitidis or host cell proteins)

According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.

According to a further aspect, the invention provides nucleic acid comprising the *N.meningitidis* nucleotide sequences disclosed in the examples. In addition, the invention provides nucleic acid comprising sequences homologous (*ie.* having sequence identity) to the *N.meningitidis* nucleotide sequences disclosed in the examples.

Furthermore, the invention provides nucleic acid which can hybridise to the *N.meningitidis* nucleic acid disclosed in the examples, preferably under "high stringency" conditions (eg. 65°C in a 0.1xSSC, 0.5% SDS solution).

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the *N.meningitidis* sequences and, depending on the particular sequence, n is 10 or more (eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).

10

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions.

The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of: (i) a medicament for treating or preventing infection due to Neisserial bacteria; (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria; and/or (iii) a reagent which can raise antibodies against Neisserial bacteria. Said Neisserial bacteria may be any species or strain (such as N.gonorrhoeae) but are preferably N.meningitidis, especially strain A, strain B or strain C.

The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.

According to further aspects, the invention provides various processes.

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

15 A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.

A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.

A process for detecting proteins of the invention is provided, comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

Unlike the sequences disclosed in PCT/IB98/01665, the sequences disclosed in the present application are believed not to have any significant homologs in *N.gonorrhoeae*. Accordingly, the sequences of the present invention also find use in the preparation of reagents for distinguishing between *N.meningitidis* and *N.gonorrhoeae*

25

A summary of standard techniques and procedures which may be employed in order to perform the invention (eg. to utilise the disclosed sequences for vaccination or diagnostic purposes) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

5 General

10

15

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature eg. Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes I-IV (D.M. Weir and C. C. Blackwell eds 1986).

20 Standard abbreviations for nucleotides and amino acids are used in this specification.

All publications, patents, and patent applications cited herein are incorporated in full by reference. In particular, the contents of UK patent applications 9800760.2, 9819015.0 and 9822143.5 are incorporated herein.

Definitions

A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

The term "comprising" means "including" as well as "consisting" eg. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y.

The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.

5

20

25

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above). As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions (eg. see US patent 5,753,235).

Expression systems

The Neisserial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.

i. Mammalian Systems

20

25

30

Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A Laboratory Manual, 2nd ed 1.

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particilarly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range.

Examples include the SV40 early gene enhancer [Dijkema et al (1985) *EMBO J. 4*:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982b) *Proc. Natl. Acad. Sci. 79*:6777] and from human cytomegalovirus [Boshart et al. (1985) *Cell 41*:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) *Trends Genet. 2*:215; Maniatis et al. (1987) *Science* 236:1237].

5

10

15

20

25

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus triparite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In Transcription and splicing (ed. B.D. Hames and D.M. Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminater/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual).

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) Cell 23:175] or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mol. Cell. Biol. 9:946] and pHEBO [Shimizu et al. (1986) Mol. Cell. Biol. 6:1074].

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (eg. Hep G2), and a number of other cell lines.

ii. Baculovirus Systems

5

10

15

20

25

.30

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus

genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit).

These techniques are generally known to those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987) (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

15

20

25

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: The Molecular Biology of Baculoviruses (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.

10

15

20

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human α-interferon, Maeda et al., (1985), *Nature 315*:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol. 8*:3129; human IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene 58*:273; and human glucocerebrosidase, Martin et al. (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus — usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith *supra*; Ju et al. (1987); Smith et al., *Mol. Cell. Biol.* (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), *Bioessays 4*:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 µm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant

25

30

virus) of occlusion bodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, *supra*; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alia: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni (WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith supra.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, eg. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, eg. proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

iii. Plant Systems

15

20

25

There are many plant cell culture and whole plant genetic expression systems known in the art.

Exemplary plant cellular genetic expression systems include those described in patents, such as:

US 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, *Phytochemistry* 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., *Mol. Gen. Genet.* 209:33-40 (1987); Chandler et al., *Plant Molecular Biology* 3:407-418 (1984); Rogers, *J. Biol. Chem.* 260:3731-3738 (1985); Rothstein et al., *Gene* 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., *Molecular Microbiology* 3:3-14 (1989); Yu et al., *Gene* 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: *Advanced Plant Physiology*, Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, *Plant Cell*, 2:1027-1038(1990); Maas et al., *EMBO J.* 9:3447-3452 (1990); Benkel and Hickey, *Proc. Natl. Acad. Sci.* 84:1337-1339 (1987)

5

10

 $\mathcal{N}_{i,j}$

15

20

25

30

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The polynamion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Reptr.*, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward

antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

- 5

10

15

20

25

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, *Mol. Gen. Genet*, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., *Nature*, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high

velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., *Nature*, 327, 70-73, 1987 and Knudsen and Muller, 1991, *Planta*, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79, 1859-1863, 1982.

5

10

15

20

25

30

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solamum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the

history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iv. Bacterial Systems

5

10

15

20

25

30

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. coli) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al.

(1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; US patent 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-laotamase (bla) promoter system [Weissmann (1981) "The cloning of interferon and other mistakes." In Interferon 3 (ed. I. Gresser)], bacteriophage lambda PL [Shimatake et al. (1981) Nature 292:128] and T5 [US patent 4,689,406] promoter systems also provide useful promoter sequences.

5

10

15

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [US patent 4,551,433]. For example, the *tac* promoter is a hybrid *trp-lac* promoter comprised of both *trp* promoter and *lac* operon sequences that is regulated by the *lac* repressor [Amann *et al.* (1983) *Gene 25*:167; de Boer *et al.* (1983) *Proc. Natl. Acad. Sci. 80*:21]. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier *et al.* (1986) *J. Mol. Biol. 189*:113; Tabor *et al.* (1985) *Proc Natl. Acad. Sci. 82*:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an *E. coli* operator region (EPO-A-0 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In E. coli, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine et al. (1975) Nature 254:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' and of E. coli 16S rRNA [Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological Regulation and Development: Gene Expression (ed. R.F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Laboratory Manual].

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* on *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).

5

10

15

30

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with sequences from the lacZ [Jia et al. (1987) Gene 60:197], trpE [Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11], and Chey [EP-A-0 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin specific processing-protease) to cleave the abiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller et al. (1989) Bio/Technology 7:698].

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) [Masui *et al.* (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb *et al.* (1984) *EMBO J. 3:*2437] and the *E. coli* alkaline

phosphatase signal sequence (phoA) [Oka et al. (1985) Proc. Natl. Acad. Sci. 82:7212]. As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from B. subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 244 042].

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription.

Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either whigh or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

15

20

25

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A- 0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annu. Rev. Microbiol. 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, inter alia, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], Escherichia coli [Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J. Mol. Biol. 189:113; EP-A-0 036 776,EP-A-0 136 829 and EP-A-0 136 907], Streptococcus cremoris [Powell et al. (1988) Appl. Environ. Microbiol. 54:655]; Streptococcus lividans [Powell et al. (1983) Appl. Environ. Microbiol. 54:655], Streptomyces lividans [US paten! 4,745,056].

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl₂ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. See eg. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus], [Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; Wang et al. (1990) J. Bacteriol. 172:949, Campylobacter], [Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; Escherichia], [Chassy et al. (1987) FEMS Microbiol. Lett.

44:173 Lactobacillus]; [Fiedler et al. (1988) Anal. Biochem 170:38, Pseudomonas]; [Augustin et al. (1990) FEMS Microbiol. Lett. 66:203, Staphylococcus], [Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412, Streptococcus].

v. Yeast Expression

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara et al. (1983) *Proc. Natl. Acad. Sci. USA 80*:1].

In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes.

combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, [Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;].

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly 10 linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.

15

20

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (eg. WO88/024066). 25

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in vitro. The

leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

4.1

10

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873; JPO. 62,096,086) and the A-factor gene (US patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)

- 15 Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.
- Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein et al. (1979) Gene 8:17-24], pCl/1 [Brake et al. (1984) Proc. Natl. Acad. Sci USA 81:4642-4646], and YRp17 [Stinchcomb et al. (1982) J. Mol. Biol. 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and

usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake et al., supra.

5 Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245]. An integrating vector may be directed to a specific locus in yeast by 10 selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results 15 in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as *ADE2*, *HIS4*, *LEU2*, *TRP1*, and *ALG7*, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of *CUP1* allows yeast to grow in the presence of copper ions [Butt *et al.* (1987) *Microbiol, Rev. 51*:351].

20

25

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, inter alia, the following yeasts: Candida albicans [Kurtz, et al. (1986) Mol. Cell. Biol. 6:142], Candida maltosa [Kunze, et al. (1985) J. Basic Microbiol. 25:141]. Hansenula polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302], Kluyveromyces fragilis [Das, et al. (1984) J. Bacteriol. 158:1165], Kluyveromyces lactis [De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135], Pichia guillerimondii [Kunze et al. (1985) J. Basic Microbiol. 25:141], Pichia pastoris [Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; US Patent Nos. 4,837,148 and 4,929,555], Saccharomyces cerevisiae [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163], Schizosaccharomyces pombe [Beach and Nurse (1981) Nature 300:706], and Yarrowia lipolytica [Davidow, et al. (1985) Curr. Genet. 10:38047] Gaillardin, et al. (1985) Curr. Genet. 10:49].

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. 1202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; US Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Antibodies

30

10

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. "Antibody"

includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanised antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying Neisserial proteins.

5 Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline. preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 ug/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which 15 for the purposes of this invention is considered equivalent to in vivo immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C for one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugation (eg. 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

Monoclonal antibodies are prepared using the standard method of Kohler & Milstein [Nature (1975) 256:495-96], or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen

25

30

(and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either *in vitro* (eg. in tissue culture bottles or hollow fiber reactors), or *in vivo* (as ascites in mice).

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ³²P and ¹²⁵I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, 125 may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb, Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with ¹²⁵I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.

Pharmaceutical Compositions

5

10

15

20

Pharmaceutical compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of

therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

25 Delivery Methods

15

20

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

5

20

25

30

Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).

Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. pylori*, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59™ (WO 90/14837; Chapter 10 in *Vaccine design: the subunit and adjuvant approach*, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) Ribi™ adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial

cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox[™]); (3) saponin adjuvants, such as Stimulon[™] (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (eg. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (eg. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59™ are preferred.

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The immunogenic compositions (eg. the immunising antigen/immunogen/polypeptide/protein/nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

15

20

25

Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (eg. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation,

and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

The immunogenic compositions are conventionally administered parenterally, eg. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (eg. WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed [eg. Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648; see later herein].

Gene Delivery Vehicles

15

25

Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, paramyxovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) *Cancer Gene Therapy* 1:51-64; Kimura (1994) *Human Gene Therapy* 5:845-852; Connelly (1995) *Human Gene Therapy* 6:185-193; and Kaplitt (1994) *Nature Genetics* 6:148-153.

Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) *J. Virol.* 53:160) polytropic retroviruses

eg. MCF and MCF-MLV (see Kelly (1983) J. Virol. 45:291), spurnaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

5

10

15

20

25

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (eg. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) *J Virol* 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698,

WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

10

15

: 20

25

30

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (ie. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and

Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) *Human Gene Therapy* 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

5

10

The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) *Science* 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) *Human Gene Therapy* 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in US Serial No. 08/405,627, filed March 15, 1995, WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

DNA vector systems such as eukaryotic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

5

10

15

20

25

30

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) J. Biol. Standardization 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) J Cell Biochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Natl Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Vaccine 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Nature 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) Proc Natl Acad Sci 87:3802-3805; Enami & Palese (1991) J Virol 65:2711-2713 and Luyties (1989) Cell 59:110, (see also McMichael (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) Proc Soc Exp Biol Med 121:190.

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) *Hum Gene Ther* 3:147-154 ligand linked DNA, for example see Wu (1989) *J Biol Chem* 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9,

1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) *Mol Cell Biol* 14:2411-2418 and in Woffendin (1994) *Proc Natl Acad Sci* 91:1581-1585.

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) *J. Biol. Chem.* 262:4429-4432, insulin as described in Hucked (1990) *Biochem Pharmacol* 40:253-263, galactose as described in Plank (1992) *Bioconjugate Chem* 3:533-539, lactose or transferrin.

10

15

20

25

30

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in US 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin *et al* (1994) *Proc. Natl. Acad. Sci. USA* 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of

hand-held gene transfer particle gun, as described in US 5,149,655; use of ionizing radiation for activating transferred gene, as described in US 5,206,152 and WO92/11033

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

Delivery Methods

10

15

20

25

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the *ex vivo* delivery and reimplantation of transformed cells into a subject are known in the art and described in *eg.* WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

. М.,

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

B.Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

20 C.Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

25 D.Lipids, and Liposomes

The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

5

10

15

20

25

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner *supra*). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, *eg.* Szoka (1978) *Proc. Natl. Acad. Sci. USA* 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA

76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

E.Lipoproteins

25

In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985)

Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem

261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol.* (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750. Lipoproteins can also be produced by in vitro or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) Annu Rev Biophys Chem 15:403 and Radding (1958) Biochim Biophys Acta 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA. Further description of lipoproteins can be found in Zuckermann et al. PCT/US97/14465.

F.Polycationic Agents

15

20

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and purtrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. Lipofectin[™], and lipofectAMINE[™] are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.

Immunodiagnostic Assays

Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Kits suitable for immunodiagnosis and materials, including the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.

Nucleic Acid Hybridisation

20

25

30

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

10

15

20

25

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200°C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook et al. at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1µg for a plasmid or phage digest to 10° to 10° g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 µg of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 108 cpm/μg. For a single-copy mammalian gene a conservative approach would start with 10 µg of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10⁸ cpm/µg, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

 $Tm = 81 + 16.6(log_{10}Ci) + 0.4[\%(G + C)] - 0.6(\%formamide) - 600/n - 1.5(\%mismatch).$

where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (ie. stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42°C for a probe with is 95% to 100% homologous to the target fragment, 37°C for 90% to 95% homology, and 32°C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and reexposed. If the time sequired for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

Nucleic Acid Probe Assays

10

15

20

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the Neisserial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

5

10

15

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Metteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis *et al.* [Meth. Enzymol. (1987) 155: 335-350]; US patents 4,683,195 and 4,683,202. Two "primer" nucleotides hybridize

with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.

- A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).
- Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected.

 Typically, the probe is labelled with a radioactive moiety.

BRIEF DESCRIPTION OF THE DRAWINGS

20

25

Figures 1-7 show biochemical data and sequence analysis pertaining to Examples 1, 2, 3, 7, 13, 16 and 19, respectively, with ORFs 40, 38, 44, 52, 114, 41 and 124.. M1 and M2 are molecular weight markers. Arrows indicate the position of the main recombinant product or, in Western blots, the position of the main *N.meningitidis* immunoreactive band. TP indicates *N.meningitidis* total protein extract; OMV indicates *N.meningitidis* outer membrane vesicle preparation. In bactericidal assay results: a diamond (♦) shows preimmune data; a triangle (♠) shows GST control data; a circle (♠) shows data with recombinant *N.meningitidis* protein. Computer analyses show a hydrophilicity plot (upper), an antigenic index plot (middle), and an AMPHI analysis (lower). The AMPHI program has been used to predict T-cell epitopes [Gao *et al.* (1989) *J. Immunol.* 143:3007; Roberts *et al.* (1996) *AIDS Res Hum Retrovir* 12:593; Quakyi *et al.* (1992) *Scand J Immunol.* suppl.11:9) and is available in the Protean package of DNASTAR, Inc. (1228 South Park Street, Madison, Wisconsin 53715 USA).

EXAMPLES

15

The examples describe nucleic acid sequences which have been identified in *N.meningitidis*, along with their putative translation products. Not all of the nucleic acid sequences are complete *ie*. they encode less than the full-length wild-type protein. It is believed at present that none of the DNA sequences described herein have significant homologs in *N.gonorrhoeae*.

The examples are generally in the following format:

- a nucleotide sequence which has been identified in N. meningitidis (strain B)
- the putative translation product of this sequence
- a computer analysis of the translation product based on database comparisons
- a corresponding gene and protein sequence identified in N. meningitidis (strain A)
- a description of the characteristics of the proteins which indicates that they might be suitably antigenic
- results of biochemical analysis (expression, purification, ELISA, FACS etc.)

The examples typically include details of sequence homology between species and strains. Proteins that are similar in sequence are generally similar in both structure and function, and the homology often indicates a common evolutionary origin. Comparison with sequences of proteins of known function is widely used as a guide for the assignment of putative protein function to a new sequence and has proved particularly useful in whole-genome analyses.

Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLAST2, BLASTn, BLASTp, tBLASTn, BLASTx, & tBLASTx [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ+PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR sequences.

Dots within nucleotide sequences (eg. position 288 in Example 12) represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame. In the same way, double-underlined nucleotides were removed. Lower case letters (eg. position 589 in Example 12) represent ambiguities which arose during alignment of independent sequencing reactions (some of

the nucleotide sequences in the examples are derived from combining the results of two or more experiments).

Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti *et al.* [Critical evaluation of the hydropathy of membrane proteins (1990) *Eur J Biochem* 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.

Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).

Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).

Various tests can be used to assess the *in vivo* immunogenicity of the proteins identified in the examples. For example, the proteins can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the protein and patient serum indicates that the patient has previously mounted an immune response to the protein in question *ie.* the protein is an immunogen. This method can also be used to identify immunodominant proteins.

The recombinant protein can also be conveniently used to prepare antibodies eg. in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (eg. fluorescent labelling for FACS) can be incubated with intact bacteria and the presence of label on the bacterial surface confirms the location of the protein.

In particular, the following methods (A) to (S) were used to express, purify and biochemically characterise the proteins of the invention:

A) Chromosomal DNA preparation

5

15

20

N.meningitidis strain 2996 was grown to exponential phase in 100ml of GC medium, harvested by centrifugation, and resuspended in 5ml buffer (20% Sucrose, 50mM Tris-HCl, 50mM EDTA, pH8).

After 10 minutes incubation on ice, the bacteria were lysed by adding 10ml lysis solution (50mM NaCl, 1% Na-Sarkosyl, 50µg/ml Proteinase K), and the suspension was incubated at 37°C for 2

hours. Two phenoi extractions (equilibrated to pH 8) and one ChCl₃/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes ethanol, and was collected by centrifugation. The pellet was washed once with 70% ethanol and redissolved in 4ml buffer (10mM Tris-HCl, 1mM EDTA, pH 8). The DNA concentration was measured by reading the OD at 260 nm.

B) Oligonucleotide design

15

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by deducing the 5'-end amplification primer sequence immediately downstream from the predicted leader sequence.

The 5' primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, or EcoRI-NheI, depending on the gene's own restriction pattern); the 3' primers included a XhoI restriction site. This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using either BamHI-XhoI or EcoRI-XhoI), and pET21b+ (using either NdeI-XhoI or NheI-XhoI).

5'-end primer tail: CGCGGATCCCATATG (BamHI-NdeI)

CGCGGATCCGCTAGC (BamHI-NheI)

CCGGAATTCTAGCTAGC (EcoRI-NheI)

20 3'-end primer tail: CCCGCTCGAG (XhoI)

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridised to the sequence to be amplified. The number of hybridizing nucleotides depended on the melting temperature of the whole primer, and was determined for each primer using the formulae:

$$T_{m} = 4 (G+C)+2 (A+T)$$
 (tail excluded)

 $T_m = 64.9 + 0.41$ (% GC) - 600/N (whole primer)

The average melting temperature of the selected oligos were 65-70°C for the whole oligo and 50-55°C for the hybridising region alone.

Table I shows the forward and reverse primers used for each amplification. Oligos were synthesized by a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2ml NH₄OH, and deprotected by 5 hours incubation at 56°C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were then centrifuged and the pellets resuspended in either 100µl or 1ml of water. OD₂₆₀ was determined using a Perkin Elmer Lambda Bio spectrophotometer and the concentration was determined and adjusted to 2-10pmol/µl.

C) Amplification

5

10

15

The standard PCR protocol was as follows: 50-200ng of genomic DNA were used as a template in the presence of 20-40μM of each oligo, 400-800μM dNTPs solution, 1x PCR buffer (including 1.5mM MgCl₂), 2.5 units *TaqI* DNA polymerase (using Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase).

In some cases, PCR was optimised by the addition of 10µl DMSO or 50µl 2M betaine.

After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95°C), each sample underwent a double-step amplification: the first 5 cycles were performed using as the hybridization temperature the one of the oligos excluding the restriction enzymes tail, followed by 30 cycles performed according to the hybridization temperature of the whole length oligos. The cycles were followed by a final 10 minute extension step at 72°C.

The standard cycles were as follows:

	Denaturation	Hybridisation	Elongation	
First 5 cycles	30 seconds	30 seconds	30-60 seconds	
riist 5 cycles	95°C	50-55℃	72°C	
Last 30 cycles	30 seconds	30 seconds	30-60 seconds	
Last 30 Sycios	95℃	65-70℃	72°C	

The elongation time varied according to the length of the ORF to be amplified.

The amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.

The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a suitable volume to be loaded on a 1% agarose gel. The DNA fragment corresponding to the right size band was then eluted and purified from gel, using the Qiagen Gel Extraction Kit, following the instructions of the manufacturer. The final volume of the DNA fragment was 30µl or 50µl of either water or 10mM Tris, pH 8.5.

D) Digestion of PCR fragments

5

15

20

- The purified DNA corresponding to the amplified fragment was split into 2 aliquots and double-digested with:
 - NdeI/XhoI or NheI/XhoI for cloning into pET-21b+ and further expression of the protein as a C-terminus His-tag fusion
 - BamHI/XhoI or EcoRI/XhoI for cloning into pGEX-KG and further expression of the protein as N-terminus GST fusion.
 - EcoRI/PstI, EcoRI/SalI, SalI/PstI for cloning into pGex-His and further expression of the protein as N-terminus His-tag fusion

Each purified DNA fragment was incubated (37°C for 3 hours to overnight) with 20 units of each restriction enzyme (New England Biolabs) in a either 30 or 40µl final volume in the presence of the appropriate buffer. The digestion product was then purified using the QIAquick PCR purification kit, following the manufacturer's instructions, and eluted in a final volume of 30 or 50µl of either water or 10mM Tris-HCl, pH 8.5. The final DNA concentration was determined by 1% agarose gel electrophoresis in the presence of titrated molecular weight marker.

E) Digestion of the cloning vectors (pET22B, pGEX-KG, pTRC-His A, and pGex-His)

25 10μg plasmid was double-digested with 50 units of each restriction enzyme in 200μl reaction volume in the presence of appropriate buffer by overnight incubation at 37°C. After loading the

whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in 50μl of 10mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample, and adjusted to 50μg/μl. 1μl of plasmid was used for each cloning procedure.

The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream to the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).

F) Cloning

10

15

20

25

The fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20µl, a molar ratio of 3:1 fragment/vector was ligated using 0.5µl of NEB T4 DNA ligase (400 units/µl), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boehringer "Rapid Ligation Kit", following the manufacturer's instructions.

In order to introduce the recombinant plasmid in a suitable strain, 100µl E. coli DH5 competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37°C for 3 minutes, then, after adding 800µl LB broth, again at 37°C for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200µl of the supernatant. The suspension was then plated on LB ampicillin (100mg/ml).

The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37°C in either 2ml (pGEX or pTC clones) or 5ml (pET clones) LB broth + 100µg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30µl. 5µl of each individual miniprep (approximately 1g) were digested with either Ndel/XhoI or BamHI/XhoI and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.

G) Expression

5

10

15

20

25

30

Each ORF cloned into the expression vector was transformed into the strain suitable for expression of the recombinant protein product. 1μl of each construct was used to transform 30μl of *E.coli* BL21 (pGEX vector), *E.coli* TOP 10 (pTRC vector) or *E.coli* BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same *E.coli* strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2ml LB+Amp (100μg/ml), incubated at 37°C overnight, then diluted 1:30 in 20ml of LB+Amp (100μg/ml) in 100ml flasks, making sure that the OD₆₀₀ ranged between 0.1 and 0.15. The flasks were incubated at 30°C into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors; 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addition of 1mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2mM. After 3 hours incubation at 30°C, the final concentration of the sample was checked by OD. In order to check expression, 1ml of each sample was removed, centrifuged in a microfuge, the pellet resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000g and the pellet resuspended in PBS for further use.

H) GST-fusion proteins large-scale purification

A single colony was grown overnight at 37°C on LB+Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600ml of fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.8-1. Protein expression was induced with 0.2mM IPTG followed by three hours incubation. The culture was centrifuged at 8000rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10ml cold PBS for 10 minutes, resuspended in 1ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2ml cold PBS until the flow-through reached OD₂₈₀ of 0.02-0.06. The GST-fusion protein was eluted by addition of 700µl cold Glutathione elution buffer (10mM reduced

glutathione, 50mM Tris-HCl) and fractions collected until the OD₂₈₀ was 0.1. 21µl of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M2) (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26kDa, this value must be added to the MW of each GST-fusion protein.

I) His-fusion solubility analysis

5

10

15

20

To analyse the solubility of the His-fusion expression products, pellets of 3ml cultures were resuspended in buffer M1 [500µl PBS pH 7.2]. 25µl lysozyme (10mg/ml) was added and the bacteria were incubated for 15 min at 4°C. The pellets were sonicated for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and then separated again into pellet and supernatant by a centrifugation step. The supernatant was collected and the pellet was resuspended in buffer M2 [8M urea, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂ PO₄] and incubated for 3 to 4 hours at 4°C. After centrifugation, the supernatant was collected and the pellet was resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂PO₄] overnight at 4°C. The supernatants from all steps were analysed by SDS-PAGE.

J) His-fusion large-scale purification.

A single colony was grown overnight at 37°C on a LB + Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600ml fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.6-0.8. Protein expression was induced by addition of 1mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000rpm at 4°C, the supernatant was discarded and the bacterial pellet was resuspended in 7.5ml of either (i) cold buffer A (300mM NaCl, 50mM phosphate buffer, 10mM imidazole, pH 8) for soluble proteins or (ii) buffer B (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8) for insoluble proteins.

The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again.

For insoluble proteins, the supernatant was stored at -20°C, while the pellets were resuspended in 2ml buffer C (6M guanidine hydrochloride, 100mM phosphate buffer, 10mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000rpm for 40 minutes.

Supernatants were collected and mixed with 150µl Ni²⁺-resin (Pharmacia) (previously washed with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10ml buffer A or B for 10 minutes, resuspended in 1ml buffer A or B and loaded on a disposable column. The resin was washed at either (i) 4°C with 2ml cold buffer A or (ii) room temperature with 2ml buffer B, until the flow-through reached OD₂₈₀ of 0.02-0.06.

The resin was washed with either (i) 2ml cold 20mM imidazole buffer (300mM NaCl, 50mM phosphate buffer, 20mM imidazole, pH 8) or (ii) buffer D (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 6.3) until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The His-fusion protein was eluted by addition of 700μl of either (i) cold elution buffer A (300mM NaCl, 50mM phosphate buffer, 250mM imidazole, pH 8) or (ii) elution buffer B (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions collected until the O.D₂₈₀ was 0.1. 21μl of each fraction were loaded on a 12% SDS gel.

K) His-fusion proteins renaturation

20

10% glycerol was added to the denatured proteins. The proteins were then diluted to 20μg/ml using dialysis buffer I (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4°C for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C. Protein concentration was evaluated using the formula:

Protein (mg/ml) =
$$(1.55 \times OD_{280}) - (0.76 \times OD_{260})$$

25 L) His-fusion large-scale purification

500ml of bacterial cultures were induced and the fusion proteins were obtained soluble in buffer M1, M2 or M3 using the procedure described above. The crude extract of the bacteria was loaded

onto a Ni-NTA superflow column (Qiagen) equilibrated with buffer M1, M2 or M3 depending on the solubilization buffer of the fusion proteins. Unbound material was eluted by washing the column with the same buffer. The specific protein was eluted with the corresponding buffer containing 500mM imidazole and dialysed against the corresponding buffer without imidazole. After each run the columns were sanitized by washing with at least two column volumes of 0.5 M sodium hydroxide and reequilibrated before the next use.

M) Mice immunisations

20μg of each purified protein were used to immunise mice intraperitoneally. In the case of ORF 44, CD1 mice were immunised with Al(OH)₃ as adjuvant on days 1, 21 and 42, and immune response was monitored in samples taken on day 56. For ORF 40, CD1 mice were immunised using Freund's adjuvant, rather than Al(OH)₃, and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for ORF 38, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on day 49.

N) ELISA assay (sera analysis)

15

20

25

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swap and inoculated into 7ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 2 hours at room temperature and then overnight at 4°C with stirring. 100μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200μl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200μl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN₃ in PBS) were added to each well and the plates incubated for 90 minutes at 37°C. Wells were washed three times with PBT. 100μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at

37°C. Wells were washed three times with PBT buffer. $100\mu l$ of substrate buffer for HRP (25ml of citrate buffer pH5, 10mg of O-phenildiamine and $10\mu l$ of H_2O) were added to each well and the plates were left at room temperature for 20 minutes. $100\mu l$ H_2SO_4 was added to each well and OD_{490} was followed. The ELISA was considered positive when OD_{490} was 2.5 times the respective pre-immune sera.

O) FACScan bacteria Binding Assay procedure.

5

10

15

20

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA, 0.4% NaN₃) and centrifuged for 5 minutes at 4000rpm. Cells were resuspended in blocking buffer to reach OD620 of 0.07. 100µl bacterial cells were added to each well of a Costar 96 well plate. 100µl of diluted (1:200) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4°C. Cells were centrifuged for 5 minutes at 4000rpm, the supernatant aspirated and cells washed by addition of 200µl/well of blocking buffer in each well. 100µl of R-Phicoerytrin conjugated F(ab), goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4°C. Cells were spun down by centrifugation at 4000rpm for 5 minutes and washed by addition of 200µl/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200µl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan setting were: FL1 on, FL2 and FL3 off; FSC-H threshold:92; FSC PMT Voltage: E 02; SSC PMT: 474; Amp. Gains 7.1; FL-2 PMT: 539; compensation values: 0.

25 P) OMV preparations

Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes and the bacteria disrupted by sonication for 10 minutes on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000g for 10 minutes and the total cell envelope fraction recovered by centrifugation

at 50000g at 4°C for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.

Q) Whole Extracts preparation

Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1ml of 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes.

10 R) Western blotting

15

20

25

Purified proteins (500ng/lane), outer membrane vesicles (5μg) and total cell extracts (25μg) derived from MenB strain 2996 were loaded on 15% SDS-PAGE and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150mA at 4°C, in transferring buffer (0.3 % Tris base, 1.44 % glycine, 20% methanol). The membrane was saturated by overnight incubation at 4°C in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37°C with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled antimouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.

S) Bactericidal assay

MC58 strain was grown overnight at 37°C on chocolate agar plates. 5-7 colonies were collected and used to inoculate 7ml Mueller-Hinton broth. The suspension was incubated at 37°C on a nutator and let to grow until OD_{620} was 0.5-0.8. The culture was aliquoted into sterile 1.5ml Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD_{620} of 0.5, diluted 1:20000 in Gey's buffer and stored at 25°C.

-61-

50μl of Gey's buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25μl of diluted mice sera (1:100 in Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4°C. 25μl of the previously described bacterial suspension were added to each well. 25μl of either heat-inactivated (56°C waterbath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 22μl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37°C with rotation and then 22μl of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1 hour were counted.

10 Table II gives a summary of the cloning, expression and purification results.

Example 1

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1>:

```
ACACTGTTGT TTGCAACGGT TCAGGCAAGT GCTAACCAAT GAAGAGCAAG
                51
                       AAGAAGATTT ATATTTAGAC CCCGTACAAC GCACTGTTGC CGTGTTGATA
15
                       GTCAATTCCG ATAAAGAAGG CACGGGAGAA AAAGAAAAAG TAGAAGAAAA
                101
                       TTCAGATTGG GCAGTATATT TCAACGAGAA AGGAGTACTA ACAGCCAGAG
                151
                201
                       AAATCACCYT CAAAGCCGGC GACAACCTGA AAATCAAACA AAACGGCACA
                251
                       AACTTCACCT ACTCGCTGAA AAAAGACCTC ACAGATCTGA CCAGTGTTGG
                301
                       AACTGAAAAA TTATCGTTTA GCGCAAACGG CAATAAAGTC AACATCACAA
20
                       GCGACACCAA AGGCTTGAAT TTTGCGAAAG AAACGGCTGG SACGAACGGC
                351
                401
                       GACACCACGG TTCATCTGAA CGGTATTGGT TCGACTTTGA CCGATACGCT
                       GCTGAATACC GGAGCGACCA CAAACGTAAC CAACGACAAC GTTACCGATG
                451
                       ACGAGAAAAA ACGTGCGGCA AGCGTTAAAG ACGTATTAAA CGCTGGCTGG
                501
                551
                       AACATTAAAG GCGTTAAACC CGGTACAACA GCTTCCGATA ACGTTGATTT
25
                601
                       CGTCCGCACT TACGACACAG TCGAGTTCTT GAGCGCAGAT ACGAAAACAA
                       CGACTGTTAA TGTGGAAAGC AAAGACAACG GCAAGAAAAC CGAAGTTAAA
                651
                701
                       ATCGGTGCGA AGACTTCTGT TATTAAAGAA AAAGAC...
```

This corresponds to the amino acid sequence <SEQ ID 2; ORF40>:

```
1 ..TLLFATVQAS ANQEEQEEDL YLDPVQRTVA VLIVNSDKEG TGEKEKVEEN
SDWAVYFNEK GVLTAREITX KAGDNLKIKQ NGTNFTYSLK KDLTDLTSVG
101 TEKLSFSANG NKVNITSDTK GLNFAKETAG TNGDTTVHLN GIGSTLTDTL
151 LNTGATTNVT NDNVTDDEKK RAASVKDVLN AGWNIKGVKP GTTASDNVDF
201 VRTYDTVEFL SADTKTTTVN VESKDNGKKT EVKIGAKTSV IKEKD...
```

Further work revealed the complete DNA sequence <SEQ ID 3>:

			•			
35	1	ATGAACAAAA	TATACCGCAT	CATTTGGAAT	AGTGCCCTCA	ATGCCTGGGT
	51	CGTCGTATCC	GAGCTCACAC	GCAACCACAC	CAAACGCGCC	TCCGCAACCG
	101	TGAAGACCGC	CGTATTGGCG	ACACTGTTGT	TTGCAACGGT	TCAGGCAAGT
•	151	GCTAACAATG	AAGAGCAAGA	AGAAGATTTA	TATTTAGACC	CCGTACAACG
	201	CACTGTTGCC	GTGTTGATAG	TCAATTCCGA	TAAAGAAGGC	ACGGGAGAAA
40	251	AAGAAAAAGT	AGAAGAAAAT	TCAGATTGGG	CAGTATATTT	CAACGAGAAA
	301	GGAGTACTAA	CAGCCAGAGA	AATCACCCTC	AAAGCCGGCG	ACAACCTGAA
	351	AATCAAACAA	AACGGCACAA	ACTTCACCTA	CTCGCTGAAA	AAAGACCTCA
	401	CAGATCTGAC	CAGTGTTGGA	ACTGAAAAAT	TATCGTTTAG	CGCAAACGGC
	451	AATAAAGTCA	ACATCACAAG	CGACACCAAA	GGCTTGAATT	TTGCGAAAGA
45	501	AACGGCTGGG	ACGAACGGCG	ACACCACGGT	TCATCTGAAC	GGTATTGGTT
	551	CGACTTTGAC	CGATACGCTG	CTGAATACCG	GAGCGACCAC	AAACGTAACC
	601	AACGACAACG	TTACCGATGA	CGAGAAAAAA	CGTGCGGCAA	GCGTTAAAGA

	651	CGTATTAAAC	GCTGGCTGGA	ACATTAAAGG	CGTTAAACCC	GGTACAACAG
	701			GTCCGCACTT		
	751	AGCGCAGATA	CGAAAACAAC	GACTGTTAAT	GTGGAAAGCA	ÁAGACAACGG
	801	CAAGAAAACC	GAAGTTAAAA	TCGGTGCGAA	GACTTCTGTT	ATTAAAGAAA
5	851	AAGACGGTAA	GTTGGTTACT	GGTAAAGACA	AAGGCGAGAA	TGGTTCTTCT
	901	ACAGACGAAG	GCGAAGGCTT	AGTGACTGCA	AAAGAAGTGA	TTGATGCAGT
	951			TGAAAACAAC		
	1001			ACCGTTACAT		
	1051			TGCGACTGTA		
10	1101			TAAATGTCGG		
	1151			AATTTGGATT		
	1201			CAATGTTTCG		
	1251	TGAAACCGTC	AACATTAATG	CCGGCAACAA	CATCGAGATT	ACCCGCAACG
	1301	GTAAAAATAT	CGACATCGCC	ACTTCGATGA	CCCCGCAGTT	TTCCAGCGTT
15	1351	TCGCTCGGCG	CGGGGGGGGA	TGCGCCCACT	TTGAGCGTGG	ATGGGGACGC
	1401	ATTGAATGTC	GGCAGCAAGA	AGGACAACAA	ACCCGTCCGC	ATTACCAATG
	1451	TCGCCCCGGG	CGTTAAAGAG	GGGGATGTTA	CAAACGTCGC	ACAACTTAAA
	1501	GGCGTGGCGC	AAAACTTGAA	CAACCGCATC	GACAATGTGG	ACGGCAACGC
	1551	GCGTGCGGGC	ATCGCCCAAG	CGATTGCAAC	CGCAGGTCTG	GTTCAGGCGT
20	1601	ATTTGCCCGG	CAAGAGTATG	ATGGCGATCG	GCGGCGGCAC	TTATCGCGGC
	1651	GAAGCCGGTT	ACGCCATCGG	CTACTCCAGT	ATTTCCGACG	GCGGAAATTG
	1701	GATTATCAAA	GGCACGGCTT	CCGGCAATTC	GCGCGGCCAT	TTCGGTGCTT
	1751	CCGCATCTGT	CGGTTATCAG	TGGTAA		

This corresponds to the amino acid sequence <SEQ ID 4; ORF40-1>:

```
25
                      MNKIYRIIWN SALNAWVVVS ELTRNHTKRA SATVKTAVLA TLLFATVQAS
                      ANNEEQEEDL YLDPVQRTVA VLIVNSDKEG TGEKEKVEEN SDWAVYFNEK
                      GVLTAREIFL KAGDNLKIKO NGTNFTYSLK KDLTDLTSVG TEKLSFSANG
NKVNITSDTK GLNFAKETAG TNGDTTVHLN GIGSTLTDTL LNTGATTNVT
                 151
                      NDNVTDDEKK RAASVKDVLN AGWNIKGVKP GTTASDNVDF VRTYDTVEFL
                 201
30
                 251
                      SADTKTTTVN VESKDNGKKT EVKIGAKTSV IKEKDGKLVT GKDKGENGSS
                 301
                      TDEGEGLVTA KEVIDAVNKA GWRMKTTTAN GQTGQADKFE TVTSGTNVTF
                 351
                      ASGKGTTATV SKDDQGNITV MYDVNVGDAL NVNQLQNSGW NLDSKAVAGS
                 401
                      SGKVISGNVS PSKGKMDETV NINAGNNIEI TRNGKNIDIA TSMTPQFSSV
                      SLGAGADAPT LSVDGDALNV GSKKDNKPVR ITNVAPGVKE GDVTNVAQLK
                 451
35
                      GVAQNLNNRI DNVDGNARAG IAQAIATAGL VQAYLPGKSM MAIGGGTYRG
                 501
                 551
                      EAGYAIGYSS ISDGGNWIIK GTASGNSRGH FGASASVGYQ W*
```

Furness work identified the corresponding gene in strain A of N. meningitidis see SEQ ID 5 >:

	1	ATGAACAAAA	TATACCGCAT	CATTTGGAAT	AGTGCCCTCA	ATGCCTGNGT
	51	CGCCGTATCC	GAGCTCACAC	GCAACCACAC	CAAACGCGCC	TCCGCAACCG
40	101	TGAAGACCGC	CGTATTGGCG	ACACTGTTGT	TTGCAACGGT	TCAGGCGAAT
	151	GCTACCGATG	AAGATGAAGA	AGAAGAGTTA	GAATCCGTAC	AACGCTCTGT
	201	CGTAGGGAGC	ATTCAAGCCA	GTATGGAAGG	CAGCGGCGAA	TTGGAAACGA
	251	TATCATTATC	AATGACTAAC	GACAGCAAGG	AATTTGTAGA	CCCATACATA
	301	GTAGTTACCC	TCAAAGCCGG	CGACAACCTG	AAAATCAAAC	AAAACACCAA
45	351	TGAAAACACC	AATGCCAGTA	GCTTCACCTA	CTCGCTGAAA	AAAGACCTCA
	401	CAGGCCTGAT	CAATGTTGAN	ACTGAAAAAT	TATCGTTTGG	CGCAAACGGC
	451	AAGAAAGTCA	ACATCATAAG	CGACACCAAA	GGCTTGAATT	TCGCGAAAGA
	501	AACGGCTGGG	ACGAACGCCG	ACACCACGGT	TCATCTGAAC	GGTATCGGTT
	551	CGACTTTGAC	CGATACGCTT	GCGGGTTCTT	CTGCTTCTCA	CGTTGATGCG
50	601	GGTAACCNAA	GTACACATTA	CACTCGTGCA	GCAAGTATTA	AGGATGTGTT
	651	GAATGCGGGT	TGGAATATTA	AGGGTGTTAA	ANNNGGCTCA	ACAACTGGTC
	701	AATCAGAAAA	TGTCGATTTC	GTCCGCACTT	ACGACACAGT	CGAGTTCTTG
	751	AGCGCAGATA	CGNAAACAAC	GACNGTTAAT	GTGGAAAGCA	AAGACAACGG
	801	CAAGAGAACC	GAAGTTAAAA	TCGGTGCGAA	GACTTCTGTT	ATTAAAGAAA
55	851	AAGACGGTAA	GTTGGTTACT	GGTAAAGGCA	AAGGCGAGAA	TGGTTCTTCT
	901	ACAGACGAAG	GCGAAGGCTT	AGTGACTGCA	AAAGAAGTGA	TTGATGCAGT
	951	AAACAAGGCT	GGTTGGAGAA	TGAAAACAAC	AACCGCTAAT	GGTCAAACAG
	1001	GTCAAGCTGA	CAAGTTTGAA	ACCGTTACAT	CAGGCACAAA	TGTAACCTTT
	1051	GCTAGTGGTA	AAGGTACAAC	TGCGACTGTA	AGTAAAGATG	ATCAAGGCAA
60	1101	CATCACTGTT	ATGTATGATG	TAAATGTCGG	CGATGCCCTA	AACGTCAATC
	1151	AGCTGCAAAA	CAGCGGTTGG	AATTTGGATT	CCAAAGCGGT	TGCAGGTTCT
	1201	TCGGGCAAAG	TCATCAGCGG	CAATGTTTCG	CCGAGCAAGG	GAAAGATGGA
	1251	TGAAACCGTC	AACATTAATG	CCGGCAACAA	CATCGAGATT	AGCCGCAACG
	1301	GTAAAAATAT	CGACATCGCC	ACTTCGATGG	CGCCGCAGTT	TTCCAGCGTT
65	1351			TGCGCCCACT		
	1401	CGCGTTGAAT	GTCGGCAGCA	AGGATGCCAA	CAAACCCGTC	CGCATTACCA

							111 /11 /2
	1.1	1451	ATGTCGCCCC	GGGCGTTAAA	GANGGGGATG	TTACAAACGT	CNCACAACTT
		1501	AAAGGCGTGG	CGCAAAACTT	GAACAACCGC	ATCGACAATG	TGGACGGCAA
		1551	CGCGCGTGCN	GGCATCGCCC	AAGCGATTGC	AACCGCAGGT	CTGGTTCAGG
		1601	CGTATCTGCC	CGGCAAGAGT	ATGATGGCGA	TCGGCGGCGG	CACTTATCGC
5		1651	GGCGAAGCCG	GTTACGCCAT	CGGCTACTCC	AGTATTTCCG	ACGGCGGAAA
		1701	TTGGATTATC	AAAGGCACGG	CTTCCGGCAA	TTCGCGCGGC	CATTTCGGTG
		1751	CTTCCGCATC	TGTCGGTTAT	CAGTGGTAA		

This encodes a protein having amino acid sequence <SEQ ID 6; ORF40a>

```
MNKIYRIIWN SALNAXVAVS ELTRNHTKRA SATVKTAVLA TLLFATVQAN
                    ATDEDEEEL ESVQRSVVGS IQASMEGSGE LETISLSMTN DSKEFVDPYI
10
                    VVTLKAGDNL KIKONTNENT NASSFTYSLK KDLTGLINVX TEKLSFGANG
               101
               151
                    KKVNIISDTK GLNFAKETAG TNGDTTVHLN GIGSTLTDTL AGSSASHVDA
                    GNXSTHYTRA ASIKDVLNAG WNIKGVKXGS TTGQSENVDF VRTYDTVEFL
               201
                    SADTXTTTVN VESKDNGKRT EVKIGAKTSV IKEKDGKLVT GKGKGENGSS
15
               301
                    TDEGEGLVTA KEVIDAVNKA GWRMKTTTAN GQTGQADKFE TVTSGTNVTF
                    ASGKGTTATV SKDDQGNITV MYDVNVGDAL NVNQLQNSGW NLDSKAVAGS
               351
                    SGKVISGNVS PSKGKMDETV NINAGNNIEI SRNGKNIDIA TSMAPQFSSV
               401
               451
                    SLGAGADAPT LSVDDEGALN VGSKDANKPV RITNVAPGVK XGDVTNVXQL
                    KGVAONLNNR IDNVDGNARA GIAOAIATAG LVQAYLPGKS MMAIGGGTYR
               501
20
                    GEAGYAIGYS SISDGGNWII KGTASGNSRG HFGASASVGY QW*
               551
```

The originally-identified partial strain B sequence (ORF40) shows 65.7% identity over a 254aa overlap with ORF40a:

```
TLLFATVQASANQEEQEEDLYLDPVQRTVA
        orf40.pep
                                           SALNAXVAVSELTRNHTKRASATVKTAVLATLLFATVQANATDEDEEEEL-
        orf40a
                                         40
30
                   VLIVNSDKEGTGEKEKVEEN-SDWAVYFNEKGVLTAREITXKAGDNLKIKQN
        orf40.pep
                     ;| |||||||||||||
                   VGSIQASMEGSGELETISLSMTNDSKEFVDPYIV-
                                                 -VTLKAGDNLKIKQNTNENTNAS
        orf40a
                                    90
                                           100
                                                      110
35
                                      110
                   NFTYSLKKDLTDLTSVGTEKLSFSANGNKVNITSDTKGLNFAKETAGTNGDTTVHLNGIG
        orf40.pep
                   SFTYSLKKDLTGLINVXTEKLSFGANGKKVNIISDTKGLNFAKETAGTNGDTTVHLNGIG
        orf40a
                      130
                              140
                                      150
                                              160
                                                      170
40
                                                    190
                                              180
                                      170
                   STLTDTLINTGATTNVTNDNVTDDEKKRAASVKDVLNAGWNIKGVKPGTTA--SDNVDFV
        orf40.pep
                                  1111111 :::1: :1
                   STLTDTLAGSSAS-HVDAGNXST-HYTRAASIKDVLNAGWNIKGVKXGSTTGQSENVDFV
        orf40a
45
                                        210
                                                220
                               200
                                220
                                        230
                   RTYDTVEFLSADTKTTTVNVESKDNGKKTEVKIGAKTSVIKEKD
        orf40.pep
                   50
                   RTYDTVEFLSADTXTTTVNVESKDNGKRTEVKIGAKTSVIKEKDGKLVTGKGKGENGSST
        orf40a
                                                280 .
                        250
```

The complete strain B sequence (ORF40-1) and ORF40a show 83.7% identity in 601 aa overlap:

	•	10	20	30	40	50	60
55	orf40-1.pep	MNKIYRIIWNSALNA	WVVVSELT	RNHTKRASATVK	TAVLATLLE	Patvoasanne	EQEEDL
		1111111111111111	1:11111		11111111	111111:1::1	::11:1
	orf40a	MNKIYRIIWNSALNA	XVAVSELT	RNHTKRASATVE	TAVLATLLE	TATVQANATDE	DEEEEL
		10	20	30	40	, 50	60
					•		
60		70	80	90	100	. 110	119
	orf40-1.pep	YLDPVQRTVAVLIVN	ISDKEGTGE	KEKVEEN-SDW <i>i</i>	VYFNEKGVI	TAREITLKAG	DNLKIK
		: : ::	:: 11:11	1:::::	: : ::	: : : : : : : : : : : : : : : : : : : :	$\Pi\Pi\Pi\Pi$

WO 99/36544

				-07,	9			
	orf40a	FCVOR	CV_VCCTON	MECCCET E	PUT CT CMUNIC	CVECUNDVI	VVTLKAG	יראז עדע
Whi.	OLITUA	ESVQR	3V-VGS1QA:	80	90 1112121111	100	VVILKAG	110
	•		: ,,,	00	50	100		110
		120	130) 1	L40	150	160	170
[*] 5	orf40-1.pep	QN	-GTNFTYSLI	KKDLTDLTS	SVGTEKLSFS	ANGNKVNIT	SDTKGLNFAKE	
		- 11	:::11111	11111 1 :	:1 1111111:	111:1111	111111111	111111
	orf40a						SDTKGLNFAKE	
	•	· 120	130) 1	L40	150	160	170
-10		180	190	. ,	200	210	200	000
10	orf40-1.pep					210	220 DVLNAGWNIKO	230
	Off40-1.pep							
	orf40a						DVLNAGWNIKO	
•		180			200	210	220	230
15								
		_		250	260	270	280	290
	orf40-1.pep						GAKTSVIKEKI	
• • * * * * * * * * * * * * * * * * * *							11111111111	
20	orf40a			250	TTVNVESKI 260	NGKKTEVKI 270	GAKTSVIKEKI 280	290
20		2	40 2	230	200	210	200	290
		3	00 :	310	320	330	340	350
\$.50 J. J.	orf40-1.pep	KDKGENG	SSTDEGEGLY	TAKEVIDA	AVNKAGWRME	TTTANGQTG	DADKFETVTS	TNVTFA
선생 기기성							!!!!!!!!!!!!	
25	orf40a						QADKFETVTSG	
gradientsbur		3	00 :	310	320	· , `330	340	350
	•		60 :	370	380	390	400	410
(f)	orf40-1.pep	-					KAVAGSSGKVI	
.30	OZZIV MIPOP		_		_	-		
树林 一群	orf40a	,	_			_	KAVAGSSGKV1	SGNVSP
		3	60 :	370	380	390	400	410
			20	430	440	450	460	470
35	orf40-1.pep						460 GADAPTLSVDG	,
	Oll40-l.pep						1111111111	
	orf40a						GADAPTLSVDI	
	· .	4	20	430	440	450	460	470
40	•	•						
40			480	490	500	510	520	530
•	orf40-1.pep						DGNARAGIAQA 	
6.55	orf40a						DGNARAGIAO <i>I</i>	
	011100			490	500	510	520	530
45			•		:			
			540	550	560	570	580	590
111	orf40-1.pep						SGNSRGHFGAS	
1944. E. 1								
50	orf40a	., –		FYRGEAGY <i>I</i> 550	AIGYSSISDO 560	GNWIIKGTA: 570	SGNSRGHFGAS 580	SASVGYQ 590
<i>5</i> 0		. 3	40	JJ0	300	310	300	390
se to	orf40-1.pep	wx				•		
		II						
	orf40a	.WX						
		•						

55 Computer analysis of these amino acid sequences gave the following results:

Homology with Hsf protein encoded by the type b surface fibrils locus of *H.influenzae* (accession number U41852)

ORF40 and Hsf protein show 54% aa identity in 251 aa overlap:

60	Orf40	1	TLLFATVQASANQEEQEEDLYLDPVQRTVAVLIVNSDXXXXXXXXXXXXXXDWAVYFNEK 6 TLLFATVQA+A E++E LDPV RT VL +SD NS+W +YF+ K	0
	Hsf	41	TLLFATVQANATDEDEELDPVVRTAPVLSFHSDKEGTGEKEVTE-NSNWGIYFDNK 9	5
	Orf40	61	GVLTAREITXKAGDNLKIKQNGTNFTYSLKKDLTDLTSVGTEKLSFSANGNKVN 1 GVL A IT KAGDNLKIKQN ++FTYSLKKDLTDLTSV TEKLSF ANG+KV+	14
65	Hsf	96	GVLKAGAITLKAGDNLKIKQNTDESTNASSFTYSLKKDLTDLTSVATEKLSFGANGDKVD 1	55

• 😿

45

50

55

60

```
Orf40
                  115 ITSDTKGLNFAKETAGTNGDTTVHLNGIGSTLTDTLLNTGAXXXXXXXXXXXXXXXKKRAAS
                      ITSD GL AK
                                        G+ VHLNG+ STL D + NTG
                                      -TGNGNVHLNGLDSTLPDAVTNTGVLSSSSFTPNDV-EKTRAAT 209
                     ITSDANGLKLAK-
           Hsf
                  175 VKDVLNAGWNIKGVKPGTTASDNVDFVRTYDTVEFLSADTKTTTVNVESKDNGKKTEVKI 234
           Orf40
                      VKDVLNAGWNIKG K
                                           ++VD V Y+ VEF++ D T
                                                                  V + +K+NGK TEVK
                     VKDVLNAGWNIKGAKTAGGNVESVDLVSAYNNVEFITGDKNTLDVVLTAKENGKTTEVKF 269
           Hsf
10
                     GAKTSVIKEKD 245
           Orf40
                        KTSVIKEKD
                  270 TPKTSVIKEKD 280
           Hsf
     ORF40a also shows homology to Hsf:
           gi|1666683 (U41852) hsf gene product [Haemophilus influenzae] Length = 2353
            Score = 153 (67.7 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116
15 ·:
            Identities = 33/36 (91%), Positives = 34/36 (94%)
                     16 VAVSELTRNHTKRASATVKTAVLATLLFATVQANAT 51
           Query:
                        V VSELTR HTKRASATV+TAVLATLLFATVQANAT
20
                     17 VVVSELTRTHTKRASATVETAVLATLLFATVQANAT 52
           Sbjct:
            Score = 161 (71.2 bits), Expect = 1.5e-116, Sum P(11)
            Identities = 32/38 (84%), Positives = 36/38 (94%)
25
                    101 VTLKAGDNLKIKONTNENTNASSFTYSLKKDLTGLINV 138
           Ouerv:
                        +TLKAGDNLKIKONT+E+TNASSFTYSLKKDLT L +V
                    103 ITLKAGDNLKIKONTDESTNASSFTYSLKKDLTDLTSV 140
           Sbjct:
            Score = 110 (48.7 bits), Expect = 1.5e-116, Sum P(11)
            Identities = 21/29 (72%), Positives = 25/29 (86%)
30
                    138 VTEKLSFGANGKKVNIISDTKGLNFAKET 166
           Ouerv:
                        V++KLS G NG KVNI SDTKGLNFAK++
                   1439 VSDKLSLGTNGNKVNITSDTKGLNFAKDS 1467
           Sbjct:
35
            Score = 85 (37.6 bits), Expect = 1.5e-116, Sum P(11)
            Identities = 18/32 (56%), Positives = 20/32 (62%)
```

Query: 169 TNGDTTVHLNGIGSTLTDTLAGSSASHVDAGN 200 T D +HLNGI STLTDTL S A+ GN

Sbjct: 1469 TGDDANIHLNGIASTLTDTLLNSGATTNLGGN 1500

Score = 92 (40.7 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116 Identities = 16/19 (84%), Positives = 19/19 (100%)

Query: 206 RAASIKDVLNAGWNIKGVK 224 RAAS+KDVLNAGWN++GVK Sbjct: 1509 RAASVKDVLNAGWNVRGVK 1527

Score = 90 (39.8 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116 Identities = 17/28 (60%), Positives = 20/28 (71%)

Query: 226 STTGQSENVDFVRTYDTVEFLSADTTTT 253 S Q EN+DFV TYDTV+F+S D TT Sbjct: 1530 SANNQVENIDFVATYDTVDFVSGDKDTT 1557

Based on homology with Hsf, it was predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

ORF40-1 (61kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 1A shows the results of affinity purification of the His-fusion protein, and Figure 1B shows the

results of expression of the GST-fusion in *E.coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for FACS analysis (Figure 1C), a bactericidal assay (Figure 1D), and ELISA (positive result). These experiments confirm that ORF40-1 is a surface-exposed protein, and that it is a useful immunogen.

5 Figure 1E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF40-1.

Example 2

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 7>

```
ATGTTACGTT TGACTGCTTT AGCCGTATGC ACCGCCCTCG CTTTGGGCGC
                    GTGTTCGCCG CAAAATTCCG ACTCTGCCCC ACAAGCCAAA GAACAGGCGG
                51
10
                    TTTCCGCCGC ACAAACCGAA GGCGCGTCCG TTACCGTCAA AACCGCGCGC
               . 101
                    GGCGACGTTC AAATACCGCA AAACCCCGAA CGCATCGCCG TTTACGATTT
               151
                    GGGTATGCTC GACACCTTGA GCAAACTGGG CGTGAAAACC GGTTTGTCCG
               201
               251
                    TCGATAAAAA CCGCCTGCCG TATTTAGAGG AATATTTCAA AACGACAAAA
               301
                    CCTGCCGGCA CTTTGTTCGA GCCGGATTAC GAAACGCTCA ACGCTTACAA
15
                    ACCGCAGCTC ATCATCATCG GCAGCCGCGC CGCCAAGGCG TTTGACAAAT
               351
                    TGAACGAAAT CGCGCCGACC ATCGrmwTGA CCGCCGATAC CGCCAACCTC
               401
               451
                    AAAGAAAGTG CCAArGAGGC ATCGACGCTG GCGCAAATCT TC..
```

This corresponds to the amino acid sequence <SEQ ID 8; ORF38>:

```
20 MLRLTALAVC TALALGACSP ONSDSAPOAK EQAVSAAOTE GASVTVKTAR
20 51 GDVQIPONPE RIAVYDLGML DTLSKLGVKT GLSVDKNRLP YLEEYFKTTK
101 PAGTLFEPDY ETLNAYKPOL IIIGSRAAKA FDKLNEIAPT IXXTADTANL
151 KESAKEASTL AOIF..
```

Further work revealed the complete nucleotide sequence <SEO ID 9>:

```
ATGTTACGTT TGACTGCTTT AGCCGTATGC ACCGCCCTCG CTTTGGGCGC
                    GTGTTCGCCG CAAAATTCCG ACTCTGCCCC ACAAGCCAAA GAACAGGCGG
                    TTTCCGCCGC ACAAACCGAA GGCGCGTCCG TTACCGTCAA AACCGCGCGC
               101
               151
                    GGCGACGTTC AAATACCGCA AAACCCCGAA CGCATCGCCG TTTACGATTT
               201
                    GGGTATGCTC GACACCTTGA GCAAACTGGG CGTGAAAACC GGTTTGTCCG
                    TCGATAAAAA CCGCCTGCCG TATTTAGAGG AATATTTCAA AACGACAAAA
               251
                    CCTGCCGGCA CTTTGTTCGA GCCGGATTAC GAAACGCTCA ACGCTTACAA
30
               301
               351
                    ACCGCAGCTC ATCATCATCG GCAGCCGCGC CGCCAAGGCG TTTGACAAAT
               401
                    TGAACGAAAT CGCGCCGACC ATCGAAATGA CCGCCGATAC CGCCAACCTC
                    AAAGAAAGTG CCAAAGAGCG CATCGACGCG CTGGCGCAAA TCTTCGGCAA
               451
               501
                    ACAGGCGGAA GCCGACAAGC TGAAGGCGGA AATCGACGCG TCTTTTGAAG
35
               551
                    CCGCGAAAAC TGCCGCACAA GGTAAGGGCA AAGGTTTGGT GATTTTGGTC
                    AACGGCGGCA AGATGTCGGC TTTCGGCCCG TCTTCACGCT TGGGCGGCTG
               601
                    GCTGCACAAA GACATCGGCG TTCCCGCTGT CGATGAATCA ATTAAAGAAG
               651
                    GCAGCCACGG TCAGCCTATC AGCTTTGAAT ACCTGAAAGA GAAAAATCCC
               701
                    GACTGGCTGT TTGTCCTTGA CCGAAGCGCG GCCATCGGCG AAGAGGGTCA
               751
40
                    GGCGGCGAAA GACGTGTTGG ATAATCCGCT GGTTGCCGAA ACAACCGCTT
               801
                    GGAAAAAAGG ACAGGTCGTG TACCTCGTTC CTGAAACTTA TTTGGCAGCC
               851
                    GGTGGCGCGC AAGAGCTGCT GAATGCAAGC AAACAGGTTG CCGACGCTTT
               901
                    TAACGCGGCA AAATAA
```

This corresponds to the amino acid sequence <SEQ ID 10; ORF38-1>:

```
45

1 MLRLTALAVC TALALGACSP QNSDSAPQAK EQAVSAAQTE GASVTVKTAR
51 GDVQIPQNPE RIAVYDLGML DTLSKLGVKT GLSVDKNRLP YLEEYFKTTK
101 PAGTLFEPDY ETLNAYKPQL IIIGSRAAKA FDKLNEIAPT IEMTADTANL
151 KESAKERIDA LAQIFGKQAE ADKLKAEIDA SFEAAKTAAQ GKGKGLVILV
201 NGGKMSAFGP SSRLGGWLHK DIGVPAVDES IKEGSHGQPI SFEYLKEKNP
50 251 DWLFVLDRSA AIGEEGQAAK DVLDNPLVAE TTAWKKGQVV YLVPETYLAA
```

301 GGAQELLNAS KOVADAFNAA K*

Computer analysis of this amino acid sequence reveals a putative prokaryotic membrane lipoprotein lipid attachment site (underlined).

Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 11>:

```
5
                    ATGTTACGTT TGACTGCTTT AGCCGTATGC ACCGCCCTCG CTTTGGGCGC
                51
                    GTGTTCGCCG CAAAATTCCG ACTCTGCCCC ACAAGCCAAA GAACAGGCGG
                    TTTCCGCCGC ACAATCCGAA GGCGTGTCCG TTACCGTCAA AACGGCGCGC
               151
                    GGCGATGTTC AAATACCGCA AAACCCCGAA CGTATCGCCG TTTACGATTT
               201
                    GGGTATGCTC GACACCTTGA GCAAACTGGG CGTGAAAACC GGTTTGTCCG
10
               251
                    TCGATAAAAA CCGCCTGCCG TATTTAGAGG AATATTTCAA AACGACAAAA
                    CCTGCCGGAA CTTTGTTCGA GCCGGATTAC GAAACGCTCA ACGCTTACAA
               301
               351
                    ACCGCAGCTC ATCATCATCG GCAGCCGCGC AGCCAAAGCG TTTGACAAAT
               401
                    TGAACGAAAT CGCGCCGACC ATCGAAATGA CCGCCGATAC CGCCAACCTC
                    AAAGAAAGTG CCAAAGAGCG TATCGACGCG CTGGCGCAAA TCTTCGGCAA
               451
15
               501
                    AAAGGCGGAA GCCGACAAGC TGAAGGCGGA AATCGACGCG TCTTTTGAAG
               551
                    CCGCGAAAAC TGCCGCGCAA GGCAAAGGCA AGGGTTTGGT GATTTTGGTC
                    AACGGCGGCA AGATGTCCGC CTTCGGCCCG TCTTCACGAC TGGGCGGCTG
               601
                    GCTGCACAAA GACATCGGCG TTCCCGCTGT TGACGAAGCC ATCAAAGAAG
               651
               701
                    GCAGCCACGG TCAGCCTATC AGCTTTGAAT ACCTGAAAGA GAAAAATCCC
20
               751
                    GACTGGCTGT TTGTCCTTGA CCGCAGCGCG GCCATCGGCG AAGAGGGTCA
               801
                    GGCGGCGAAA GACGTGTTGA ACAATCCGCT GGTTGCCGAA ACAACCGCTT
               851
                    GGAAAAAAGG ACAAGTCGTT TACCTTGTTC CTGAAACTTA TTTGGCAGCC
                    GGTGGCGCC AAGAGCTACT GAATGCAAGC AAACAGGTTG CCGACGCTTT
               901
               951
                    TAACGCGGCA AAATAA
```

25 This encodes a protein having amino acid sequence <SEQ ID 12; ORF38a>:

```
1 MLRLTALAVC TALALGACSP QNSDSAPQAK EQAVSAAQSE GVSVTVKTAR
51 GDVQIPQNPE RIAVYDLGML DTLSKLGVKT GLSVDKNRLP YLEEYFKTTK
101 PAGTLFEPDY ETLNAYKPQL IIIGSRAAKA FDKLNEIAPT IEMTADTANL
151 KESAKERIDA LAQIFGKKAE ADKLKAEIDA SFEAKTAAQ GKGKGLVILV
30 201 NGGKMSAFGP SSRLGGWLHK DIGVPAVDEA IKEGSHGQPI SFEYLKEKNP
251 DWLFVLDRSA AIGEEGQAAK DVLNNPLVAE TTAWKKGQVV YLVPETVLAA
301 GGAQELLNAS KQVADAFNAA K*
```

The originally-identified partial strain B sequence (ORF38) shows 95.2% identity over a 165aa overlap with ORF38a:

35		10	20	30	40	50	60
	orf38.pep	MLRLTALAVCTAI	ALGACSPONS	dsapqakeqav	SAAQTEGASV	TVKTARGDV	ZIPQNPE
				111111111111	1111:11:11	111111111	111111
	orf38a	MLRLTALAVCTAI	ALGACSPONS	DSAPQAKEQAV	/Saaqsegvsv	TVKTARGDV	ZIPQNPE
		10	20	30	40	50	60
40							
		70	80	90	100	110	120
	orf38.pep	RIAVYDLGMLDTI	LSKLGVKTGLS	VDKNRLPYLEE	EYFKTTKPAGI	LFEPDYETL	NAYKPQL
		- []]]]][][]		11111111111			
	orf38a	RIAVYDLGMLDTI					
45		70	80	90	100	110	120
		130	140	. 150	160		
•	orf38.pep	IIIGSRAAKAFD	KLNEIAPTIXX			: T	
			[]]]]] []	11111111111			
50	orf38a	IIIGSRAAKAFD					
		130	140	150	160	170	180
	orf38a	SFEAAKTAAQGK(
		190	200	210	220	230	240

The complete strain B sequence (ORF38-1) and ORF38a show 98.4% identity in 321 aa overlap:

		or the state of th
	orf38a.pep	MLRLTALAVCTALALGACSPONSDSAPQAKEQAVSAAQSEGVSVTVKTARGDVQIPQNPE
	orf38-1	MIRLTALAVCTALALGACSPQNSDSAPQAKEQAVSAAQTEGASVTVKTARGDVQIPQNPE
5	orf38a.pep	RIAVYDLGMLDTLSKLGVKTGLSVDKNRLPYLEEYFKTTKPAGTLFEPDYETLNAYKPQL
	orf38-1	RIAVYDLGMLDTLSKLGVKTGLSVDKNRLPYLEEYFKTTKPAGTLFEPDYETLNAYKPQL
10	orf38a.pep	IIIGSRAAKAFDKLNEIAPTIEMTADTANLKESAKERIDALAQIFGKKAEADKLKAEIDA
	orf38-1	IIIGSRAAKAFDKLNEIAPTIEMTADTANLKESAKERIDALAQIFGKQAEADKLKAEIDA
	orf38a.pep	SFEAAKTAAQGKGKGLVILVNGGKMSAFGPSSRLGGWLHKDIGVPAVDEAIKEGSHGQPI
15	orf38-1	SFEAAKTAAQGKGKGLVILVNGGKMSAFGPSSRLGGWLHKDIGVPAVDESIKEGSHGQPI
	orf38a.pep	SFEYLKEKNPDWLFVLDRSAAIGEEGQAAKDVLNNPLVAETTAWKKGQVVYLVPETYLAA
20	orf38-1	SFEYLKEKNPDWLFVLDRSAAIGEEGQAAKDVLDNPLVAETTAWKKGQVVYLVPETYLAA
	orf38a.pep	GGAQELLNASKQVADAFNAAK

Computer analysis of these sequences revealed the following:

25 Homology with a lipoprotein (lipo) of C. jejuni (accession number X82427)

GGAQELLNASKQVADAFNAAK

ORF38 and lipo show 38% as identity in 96 as overlap:

orf38-1

30

35

40

```
Orf38: 40 EGASVTVKTARGDVQIPQNPERIAVYDLGMLDTLSKLGVKTGLS-VDKNRLPYLEEYFKT 98
EG S VK + G+ + P+NP ++ + DLG+LDT L + ++ V LP + FK

Lipo: 51 EGDSFLVKDSLGENKTPKNPSKVVILDLGILDTFDALKLNDKVAGVPAKNLPKYLQQFKN 110

Orf38: 99 TKPAGTLFEPDYETLNAYKPQLIIIGSRAAKAFDKL 134
G + + D+E +NA KP LIII R +K +DKL

Lipo: 111 KPSVGGVQQVDFEAINALKPDLIIISGRQSKFYDKL 146
```

Based on this analysis, it was predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

ORF38-1 (32kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 2A shows the results of affinity purification of the His-fusion protein, and Figure 2B shows the results of expression of the GST-fusion in *E.coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for Western blot analysis (Figure 2C) and FACS analysis (Figure 2D). These experiments confirm that ORF38-1 is a surface-exposed protein, and that it is a useful immunogen.

Figure 2E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF38-1

Example 3

45 The following *N.meningitidis* DNA sequence was identified <SEQ ID 13>:

			3 14 - 4			
	1	ATGAAACTTC	TGACCACCGC	AATCCTGTCT	TCCGCAATCG	CGCTCAGCAG
	51	TATGGCTGCC	GCCGCTGGCA	CGGACAACCC	CACTGTTGCA	AAAAAAACCG
	101	TCAGCTACGT	CTGCCAGCAA	GGTAAAAAAG	TCAAAGTAAC	CTACGGCTTC
	151	AACAAACAGG	GTCTGACCAC	ATACGCTTCC	GCCGTCATCA	ACGGCAAACG
5	201	CGTGCAAATG	CCTGTCAATT	TGGACAAATC	CGACAATGTG	GAAACATTCT
,,,	251	ACGGCAAAGA	AGGCGGTTAT	GTTTTGGGTA	CCGGCGTGAT	GGATGGCAAA
•	301	TCCTACCGCA	AACAGCCCAT	TATGATTACC	GCACCTGACA	ACCAAATCGT
	351	CTTCAAAGAC	TGTTCCCCAC	GTTAA		

This corresponds to the amino acid sequence <SEQ ID 14; ORF44>:

1 MKLLTTAILS SAIALSSMAA AAGTDNPTVA KKTVSYVCQQ GKKVKVTYGF
51 NKQGLTTYAS AVINGKRVQM PVNLDKSDNV ETFYGKEGGY VLGTGVMDGK
101 SYRKOPIMIT APDNQIVFKD CSPR*

Computer analysis of this amino acid sequence predicted the leader peptide shown underlined.

Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 15>:

```
1 ATGAAACTTC TGACCACCGC AATCCTGTCT TCCGCAATCG CGCTCAGCAG
51 TATGGCTGCT GCTGCCAGCA CGAACAACCC CACCGTTGCC AAAAAAAACCG
101 TCAGCTACGT CTGCCAGCAA GGTAAAAAAG TCAAAGTAAC CTACGGCTTT
151 AACAAACAGG GCCTGACCAC ATACGCTTCC GCCGTCATCA ACGGCAAACG
201 TGTGCAAATG CCTGTCAATT TGGACAAATC CGACAATGTG GAAACATTCT
20 251 ACGGCAAAGA AGGCGGTTAT GTTTTGGGTA CCGGCGTGAT GGATGGCAAA
301 TCCTATCGCA AACAGCCTAT TATGATTACC GCACCTGACA ACCAAATCGT
351 CTTCAAAGAC TGTTCCCCAC GTTAA
```

This encodes a protein having amino acid sequence <SEQ ID 16; ORF44a>:

```
1 MKLLTTAILS SAIALSSMAA AAGTNNPTVA KKTVSYVCQQ GKKVKVTYGF
25 51 NKQGLTTYAS AVINGKRVQM PVNLDKSDNV ETFYGKEGGY VLGTGVMDGK
101 SYRKQPIMIT APDNQIVFKD CSPR*
```

The strain B sequence (ORF44) shows 99.2% identity over a 124aa overlap with ORF44a:

```
MKLLTTAILSSAIALSSMAAAAGTDNPTVAKKTVSYVCQQGKKVKVTYGFNKQGLTTYAS
        orf44.pep
                  30
                  <u>MKLLTTATLSSAIALSSMAAAAGTNNPTVAKKTVSYVCQQGKKVKVTYGFNKQGLTTYAS</u>
        orf44a
                                                 40
                                                         50
                                                100
                                         90
                                                        110
                                                                120
                        .70
                                 80
                  AVINGKRVQMPVNLDKSDNVETFYGKEGGYVLGTGVMDGKSYRKQPIMITAPDNQIVFKD
        orf44.pep
                  orf44a
                  {	t AVINGKRVQMPVNLDKSDNVETFYGKEGGYVLGTGVMDGKSYRKQPIMITAPDNQIVFKD
                                         90
                                                100
                                                        110
40
        orf44.pep
                  CSPRX
                  111111
        orf44a
                  CSPRX
```

Computer analysis gave the following results:

Homology with the LecA adhesin of Eikenella corrodens (accession number D78153)

ORF44 and LecA protein show 45% as identity in 91 as overlap:

```
Orf44 33 TVSYVCQQGKKVKVTYGFNKQGLTTYASAVINGKRVQMPVNLDKSDNVETFYGKEGGYVL 92
+V+YVCQQG+++ V Y FN G+ T A +N + +++P NL SDNV+T + GY L
Leca 135 SVAYVCQQGRRLNVNYRFNSAGVPTSAELRVNNRNLRLPYNLSASDNVDTVF-SANGYRL 193

Orf44 93 GTGVMDGKSYRKQPIMITAPDNQIVFKDCSP 123
T MD +YR Q I+++AP+ Q+++KDCSP
```

Leca 194 TTNAMDSANYRSQDIIVSAPNGQMLYKDCSP 224

Based on homology with the adhesin, it was predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

ORF44-1 (11.2kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 3A shows the results of affinity purification of the His-fusion protein, and Figure 3B shows the results of expression of the GST-fusion in *E.coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for ELISA, which gave positive results, and for a bactericidal assay (Figure 3C). These experiments confirm that ORF44-1 is a surface-exposed protein, and that it is a useful immunogen.

Figure 3D shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF44-1.

Example 4

5

10

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 17>

```
..GGCACCGAAT TCAAAACCAC CCTTTCCGGA GCCGACATAC AGGCAGGGGT
15
                51
                       GGGTGAAAAA GCCCGAGCCG ATGCGAAAAT TATCCTAAAA GGCATCGTTA
                       ACCGCATCCA AACCGAAGAA AAGCTGGAAT CCAACTCGAC CGTATGGCAA
                101
                       AAGCAGGCCG GAAGCGGCAG CACGGTTGAA ACGCTGAAGC TACCGAGCTT
                151
                       TGAAGGGCCG GCACTGCCTA AGCTGACCGC TCCCGGCGGC TATATCGCCG
                201
                       ACATCCCCAA AGGCAACCTC AAAACCGAAA TCGAAAAGCT
                                                                    GGCCAAACAG
                251
                       CCCGAATATG CCTATCTGAA ACAGCTTCAG ACGGTUAAGG ACGTGAACTG
20
                301
                       GAACCAAGTA CAGCTCGCTT ACGACAAATG GGACTATAAA CAGGAAGGCC
                351
                       TAACCGGAGC CGGAGCCGCA ATTANCGCAC TGGCCGTTAC CGTGGTCACC
                401
                       TCAGGCGCAG GAACCGGAGC CGTATTGGGA TTAANACGNG TGGCCGCCGC
                451
                       CGCAACCGAT GCAGCATTT...
```

25 This corresponds to the amino acid sequence <SEQ ID 18; ORF49>:

```
1 ..GTEFKTTLSG ADIQAGVGEK ARADAKIILK GIVNRIQTEE KLESNSTVWQ
51 KQAGSGSTVE TLKLPSFEGP ALPKLTAPGG YIADIPKGNL KTEIEKLAKQ
101 PEYAYLKQLQ TVKDVNWNQV QLAYDKWDYK QEGLTGAGAA IXALAVTVVT
151 SGAGTGAVLG LXRVAAAATD AAF..
```

30 Further work revealed the complete nucleotide sequence <SEQ ID 19>:

```
ATGCAACTGC TGGCAGCCGA AGGCATTCAC CAACACCAAT TGAATGTTCA
                    GAAAAGTACC CGTTTCATCG GCATCAAAGT GGGTAAAAGC AATTACAGCA
                51
                    AAAACGAGCT GAACGAAACC AAACTGCCCG TACGCGTTAT CGCCCAAACA
               101
                    GCCAAAACCC GTTCCGGCTG GGATACCGTA CTCGAAGGCA CCGAATTCAA
               151
                    AACCACCCTT TCCGGAGCCG ACATACAGGC AGGGGTGGGT GAAAAAGCCC
35
               201
                    GAGCCGATGC GAAAATTATC CTAAAAGGCA TCGTTAACCG CATCCAAACC
                251
                    GAAGAAAAGC TGGAATCCAA CTCGACCGTA TGGCAAAAGC AGGCCGGAAG
                301
                     CGGCAGCACG GTTGAAACGC TGAAGCTACC GAGCTTTGAA GGGCCGGCAC
                351
                    TGCCTAAGCT GACCGCTCCC GGCGGCTATA TCGCCGACAT CCCCAAAGGC
                401
                    AACCTCAAAA CCGAAATCGA AAAGCTGGCC AAACAGCCCG AATATGCCTA
40
                451
                     TCTGAAACAG CTTCAGACGG TCAAGGACGT GAACTGGAAC CAAGTACAGC
                501
                    TCGCTTACGA CAAATGGGAC TATAAACAGG AAGGCCTAAC CGGAGCCGGA
                551
                    GCCGCAATTA TCGCACTGGC CGTTACCGTG GTCACCTCAG GCGCAGGAAC
                601
                    CGGAGCCGTA TTGGGATTAA ACGGTGCGGC CGCCGCCGCA ACCGATGCAG
```

```
CATTTGCCTC TTTGGCCAGC CAGGCTTCCG TATCGTTCAT CAACAACAAA
               701
                    GGCAATATCG GTAACACCCT GAAAGAGCTG GGCAGAAGCA GCACGGTGAA
               751
                    AAATCTGATG GTTGCCGTCG CTACCGCAGG CGTAGCCGAC AAAATCGGTG
                    CTTCGGCACT GAACAATGTC AGCGATAAGC AGTGGATCAA CAACCTGACC
               851
                    GTCAACCTGG CCAATGCGGG CAGTGCCGCA CTGATTAATA CCGCTGTCAA
 5
               901
                    CGGCGGCAGC CTGAAAGACA ATCTGGAAGC GAATATCCTT GCGGCTTTGG
                951
                    TGAATACTGC GCATGGAGAG GCAGCAAGTA AAATCAAACA GTTGGATCAG
              1001
                    CACTACATTG CCCATAAGAT TGCCCATGCC ATAGCGGGCT GTGCGGCAGC
              1051
                    GGCGGCGAAT AAGGGCAAGT GTCAAGATGG TGCGATCGGT GCGGCGGTCG
              1101
10.,
                    GTGAAATCCT TGGCGAAACC CTACTGGACG GCAGAGACCC TGGCAGCCTG
              1151
                    AATGTGAAGG ACAGGGCAAA AATCATTGCT AAGGCGAAGC TGGCAGCAGG
              1201
                    GGCGGTTGCG GCGTTGAGTA AGGGGGATGT GAGTACGGCG GCGAATGCGG
              1251
                    CTGCTGTGGC GGTAGAGAAT AATTCTTTAA ATGATATACA GGATCGTTTG
              1301
                    TTGAGTGGAA ATTATGCTTT ATGTATGAGT GCAGGAGGAG CAGAAAGCTT
               1351
15
                    TTGTGAGTCT TATCGACCAC TGGGCTTGCC ACACTTTGTA AGTGTTTCAG
              1401
                    GAGAAATGAA ATTACCTAAT AAATTCGGGA ATCGTATGGT TÄATGGAAAA
              1451
                    TTAATTATTA ACACTAGAAA TGGCAATGTA TATTTCTCTG TAGGTAAAAT
               1501
              1551
                    ATGGAGTACT GTAAAATCAA CAAAATCAAA TATAAGTGGG GTATCTGTCG
                    GTTGGGTTTT AAATGTTTCC CCTAATGATT ATTTAAAAGA AGCATCTATG
               1601
                    AATGATTTCA GAAATAGTAA TCAAAATAAA GCCTATGCAG AAATGATTTC
20
               1651
                    CCAGACTTTG GTAGGTGAGA GTGTTGGTGG TAGTCTTTGT CTGACAAGAG
               1701
                     CCTGCTTTTC GGTAAGTTCA ACAATATCTA AATCTAAATC TCCTTTTAAA
               1751
                     GATTCAAAAA TTATTGGGGA AATCGGTTTG GGAAGTGGTG TTGCTGCAGG
               1801
                    AGTAGAAAAA ACAATATACA TAGGTAACAT AAAAGATATT GATAAATTTA
               1851
25
                    TTAGTGCAAA CATAAAAAA TAG
               1901
```

This corresponds to the amino acid sequence <SEQ ID 20; ORF49-1>:

```
MQLLAAEGIH QHQLNVQKST RFIGIKVGKS NYSKNELNET KLPVRVIAQT
                    AKTRSGWDTV LEGTEFKTTL SGADIQAGVG EKARADAKII LKGIVNRIQT
                51
                    EEKLESNSTV WOKQAGSGST VETLKLPSFE GPALPKLTAP GGYIADIPKG
               101
                    NLKTEIEKLA KQPEYAYLKQ LQTVKDVNWN QVQLAYDKWD YKQEGLTGAG
30
                    AAIIALAVTV VTSGAGTGAV LGLNGAAAAA TDAAFASLAS QASVSFINNK
               201
                    GNIGNTLKEL GRSSTVKNLM VAVATAGVAD KIGASALNNV SDKQWINNLT
               251
                    VNLANAGSAA LINTAVNGGS LKDNLEANIL AALVNTAHGE AASKIKQLDQ
               301
                    HYIAHKIAHA IAGCAAAAAN KGKCQDGAIG AAVGEILGET LLDGRDPGSL
               351
35
                    NVKDRAKIIA KAKLAAGAVA ALSKGDVSTA ANAAAVAVEN NSLNDIQDRL
               401
                    LSGNYALCMS AGGAESFCES YRPLGLPHFV SVSGEMKLPN KFGNRMVNGK
               451
                    LIINTRNGNV YFSVGKIWST VKSTKSNISG VSVGWVLNVS PNDYLKEASM
               501
                    NDFRÆSNONK AYAEMISQTL VGESVGGSLC LTRACFSVSS TISKSKSPFK
               551
                    DSKIIGEIGL GSGVAAGVEK TIYIGNIKDI DKFISANIKK *
                601
```

Computer analysis predicts a transmembrane domain and also indicates that ORF49 has no significant amino acid homology with known proteins. A corresponding ORF from *N. meningitidis* strain A was, however, identified:

ORF49 shows 86.1% identity over a 173aa overlap with an ORF (ORF49a) from strain A of N. meningitidis:

45					10	20	30
	orf49.pep	:		GTE	FKTTLSGADI		
	• -			- 111	11111:111		111111
	orf49a	SKNELNETKLPVF	WVAQXAATRS	GWDTVLEGTE	FKTTLAGADI	QAGVXEKARV	DAKIILK
		40	50	60	70	80	90
50							
50		40	50	60	70	80	90
	orf49.pep	GIVNRIQTEEKLE	ESNSTVWQKQA	GSGSTVETLK	LPSFEGPALP	KLTAPGGYIA	DIPKGNL
	• -				111111:1: 1		
	orf49a	GIVNRIQSEEKL	ETNSTVWQKQA	GRGSTIETLK	LPSFESPTPF	KLSAPGGYIV	DIPKGNL
55		100	110	120	130	140	150
•		100	110	120	130	140	150
	orf49.pep	KTEIEKLAKQPE	YAYLKQLQTVI	CDVNWNQVQLA	YDKWDYKQEG	LTGAGAAIXA	LAVTVVT
		1111111:111		::	11:111111	11 11111	

	WO 99/36544			70		P	CIMBAAM
		•	-	-72-		•	
	a=£40a	Ameteri cavones	VAVI POI OUAV	NT NUMBER	T AVDDWDVVA	PCI	T NIMITED
	orf49a	KTEIEKLSKOPEY	IAILKQLQVAKI 170	180 180	190	200	210
		200	1.0			. 200	
-		160	170				**
5	orf49.pep	SGAGTGAVLGLXI					
	orf49a		 	24024.124	SVSETNNKGDV	CKTT.KET.CRSS1	מעע זומאעי
	UIIIJA	220	230	240	250	260	270
							•
	ORF49-1 and ORI	749a show 83.29	% identity in	457 aa (overlap:		
10	orf49a.pep	XQLLAEEGIHKH					
	•••						
	orf49-1	MQLLAAEGIHQH	<u> 2LNVQKSTRFI</u>	GIKVGKSI	NYSKNELNETK	LPVRVIAQTAKI	RSGWDTV
	orf49a.pep	LEGTE FKTTLAG	ADIOAGVXEKA	RVDAKII	LKGIVNRIOSĒ	EKLETNSTVWOR	COAGRGST
15		1111111111111111	HI HI HE	1:11111	11111111111111	1111:111111	ÜH 141 °
	orf49-1	LEGTEFKTTLSG	ADIQAGVGEKA	RADAKIII	LKGIVNRIQTE	eklesnstvwqf	QAGSGST
	orf49a.pep	IETLKLPSFESP:	PPPKT.SAPGGY	TVDTPKCI	NI.KTETEKI.SK	OPEYAYTKOTO	7AKN TNWN
	Oll45u.pcp	:					
20	orf49-1	VETLKLPSFEGP	ALPKLTAPGGY	IADIPKG	NLKTEIEKLAK	QPEYAYLKQLQ1	VKDVNWN
	-	OUOT BADDINDAN	OPCIMENCANT	TATAIIMI	.mecaemeass	CI NCAVARADO	AFACTAC
	orf49a.pep	QVQLAYDRWDYK	-				
	orf49-1	QVQLAYDKWDYK					
25	***						
	orf49a.pep	QASVSFINNKGD					
	orf49-1	QASVSFINNKGN:					
•	•	_		,			
30	orf49a.pep	VNLANAGSAALII					
	orf49-1	VNLANAGSAALI					
	* .				<i>i</i> .		
35	orf49a.pep	IAGCAAAAANKG					
33	orf49-1						
	orf49a.pep	GVVGGDVNAAAN				NXPQLCRKNTVI	KKYQNVAD
40	orf49-1	:: :: ALSKGDVSTAAN	: : AAAVAVENNSI			GGAESFCESYRI	PLGLPHFV
••		125105151122					
	orf49a.pep	KRLAASIAICTD	ISRSTECRTIR	KQHLIDS	RSLHSSWEAGI	IGKDDEWYKLF:	SKSYTQAD
	orf49-1	SVSGEMKLPNKF	GNRMVNGKT.TT	NTRNGNV	YESVGKTWSTV	KSTKSNTSGVS	VGWVI.NVS
					•		· ciii · ziii · c
45	The complete leng	th ORF49a nuc	leotide sequ	ence <sl< td=""><td>EQ ID 21> i</td><td>s:</td><td>,</td></sl<>	EQ ID 21> i	s:	,
	_						
	1 N	TGCAACTGC TGGC	AGAAGA AGGC	ATCCAC .	AAGCACGAGT	TGGATGTCCA	
		AAAAGCCGC CGCT					
		AAACGAACT GAAC CAGCCACCC GTTC					
50		ACCACGCTG GCCG					
30		TGTCGATGC GAAA					
		AAGAAAAT TAGA					
		GGCAGCACT ATCG					
55		GCCCAAATT GTCC ATCTGAAAA CCGA					
))	501 T	CTGAAACAG CTCC	AAGTAG CGAJ	AAAACAT	CAACTGGAAT	CAGGTGCAGC	
	551 T	TGCTTACGA CAGA	TGGGAC TACA	AAACAGG	AGGGCTTAAC	CGAAGCAGGT	
	601 G	CGGCGATTA TCGC	ACTGGC CGT1	PACCGTG	GTCACCTCAG	GCGCAGGAAC	
60	651 C	GGAGCCGTA TTGG	GATTAA ACGO	TGCGNC	UGCUGCCGCA	ACCGATGCAG	
ou	701 C 751 G	ATTUGUETU TTTG GCGATGTCG GCAA	AACCCT GAA!	AGAGCTG	GGCAGAAGCA	GCACGGTGAA	
	801 A	AATCTGGTG GTTG	CCGCCG CTAC	CCGCAGG	CGTAGCCGAC	AAAATCGGCG	
	851 C	TTCGGCACT GANC	AATGTC AGC	GATAAGC	AGTGGATCAA	CAACCTGACC	
65		TCAACCTAG CCAA :GGCGGCAGC CTGA					
O.		CAATACCGC GCAT					
			J.J. J.				

```
CHCTACATAG TCCACAAGAT TGCCCATGCC ATAGCGGGCT GTGCGGCAGC
              1051
              1101
                    GGCGGCGAAT AAGGGCAAGT GTCAGGATGG TGCGATAGGT GCGGCTGTGG
                    GCGAGATAGT CGGGGAGGCT TTGACAAACG GCAAAAATCC TGACACTTTG
              1151
                    ACAGCTAAAG AACGCGAACA GATTTTGGCA TACAGCAAAC TGGTTGCCGG
              1201
5
              1251
                    TACGGTAAGC GGTGTGGTCG GCGGCGATGT AAATGCGGCG GCGAATGCGG
                    CTGAGGTAGC GGTGAAAAAT AATCAGCTTA GCGACNAAGA GGGTAGAGAA
              1301
                    TTTGATAACG AAATGACTGC ATGCGCCAAA CAGAATANTC CTCAACTGTG
              1351
                    CAGAAAAAAT ACTGTAAAAA AGTATCAAAA TGTTGCTGAT AAAAGACTTG
              1401
                    CTGCTTCGAT TGCAATATGT ACGGATATAT CCCGTAGTAC TGAATGTAGA
              1451
10
              1501
                    ACAATCAGAA AACAACATTT GATCGATAGT AGAAGCCTTC ATTCATCTTG
                    GGAAGCAGGT CTAATTGGTA AAGATGATGA ATGGTATAAA TTATTCAGCA
              1551
                    AATCTTACAC CCAAGCAGAT TTGGCTTTAC AGTCTTATCA TTTGAATACT
              1601
                    GCTGCTAAAT CTTGGCTTCA ATCGGGCAAT ACAAAGCCTT TATCCGAATG
              1651
                    GATGTCCGAC CAAGGTTATA CACTTATTTC AGGAGTTAAT CCTAGATTCA
              1701
                    TTCCAATACC AAGAGGGTTT GTAAAACAAA ATACACCTAT TACTAATGTC
15
              1751
              1801
                    AAATACCCGG AAGGCATCAG TTTCGATACA AACCTANAAA GACATCTGGC
                    AAATGCTGAT GGTTTTAGTC AAGAACAGGG CATTAAAGGA GCCCATAACC
              1851
                    GCACCAATNT TATGGCAGAA CTAAATTCAC GAGGAGGANG NGTAAAATCT
              1901
                    GAAACCCANA CTGATATTGA AGGCATTACC CGAATTAAAT ATGAGATTCC
              1951
                    TACACTAGAC AGGACAGGTA AACCTGATGG TGGATTTAAG GAAATTTCAA
20
              2001
                    GTATAAAAAC TGTTTATAAT CCTAAAAANT TTTNNGATGA TAAAATACTT
              2051
                    CAAATGGCTC AANATGCTGN TTCACAAGGA TATTCAAAAG CCTCTAAAAT
              2101
                    TGCTCAAAAT GAAAGAACTA AATCAATATC GGAAAGAAAA AATGTCATTC
              2151
                    AATTCTCAGA AACCTTTGAC GGAATCAAAT TTAGANNNTA TNTNGATGTA
              2201
                    AATACAGGAA GAATTACAAA CATTCACCCA GAATAATTTA A
25
              2251
```

This encodes a protein having amino acid sequence <SEQ ID 22>:

```
XQLLAEEGIH KHELDVQKSR RFIGIKVGXS NYSKNELNET KLPVRVVAQX
                     AATRSGWDTV LEGTEFKTTL AGADIQAGVX EKARVDAKII LKGIVNRIQS
                 51
                     EEKLETNSTV WQKQAGRGST IETLKLPSFE SPTPPKLSAP GGYIVDIPKG
                101
30
                     NLKTEIEKLS KOPEYAYLKO LQVAKNINWN QVQLAYDRWD YKQEGLTEAG
                151
                     AAIIALAVTV VTSGAGTGAV LGLNGAXAAA TDAAFASLAS QASVSFINNK
GDVGKTLKEL GRSSTVKNLV VAAATAGVAD KIGASALXNV SDKQWINNLT
                201
                     VNLANAGSAA LINTAVNGGS LKDXLEANIL AALVNTAHGE AASKIKQLDQ
                301
                     HYIVHKIAHA IAGCAAAAAN KGKCQDGAIG AAVGEIVGEA LTNGKNPDTL
                351
                      TAKEREQILA YSKLVAGTVS GVVGGDVNAA ANAAEVAVKN NQLSDXEGRE
35
                401
                     FDNEMTACAK QNXPQLCRKN TVKKYQNVAD KRLAASIAIC TDISRSTECR
                451
                      TIRKOHLIDS RSLHSSWEAG LIGKDDEWYK LFSKSYTQAD LALQSYHLNT
                501
                      AAKSWLQSGN TKPLSEWMSD QGYTLISGVN PRFIPIPRGP VKQNTPITNV
                      KYPEGISFDT NLXRHLANAD GFSQEQGIKG AHNRTNXMAE LNSRGGXVKS
                601
                      ETXTDIEGIT RIKYEIPTLD RTGKPDGGFK EISSIKTVYN PKXFXDDKIL
40
                651
                      QMAQXAXSQG YSKASKIAQN ERTKSISERK NVIQFSETFD GIKFRXYXDV
                      NTGRITNIHP E*
```

Based on the presence of a putative transmembrane domain, it is predicted that these proteins from *N.meningitidis*, and their epitopes, could be useful antigens for vaccines or diagnostics.

45 Example 5

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 23>

```
1 ...CGGATCGTTG TAGGTTTGCG GATTTCTTGC GCCGTAGTCA CCGTAGTCCC
51 AAGTATAACC CAAGGCTTTG TCTTCGCCTT TCATTCCGAT AAGGGATATG
101 ACGCTTTGGT CGGTATAGCC GTCTTGGGAA CCCTTTGTCCA CCCAACGCAT
50 151 ATCTGCCTGC GGATTCTCAT TGCCGCTTCT TGGCTGCTGA TTTTTCTGCC
201 TTCGCGTTTT TCAACTTCGC GCTTGAGGGC TTCGGCATAT TTGTCGGCCA
251 ACGCCATTC TTTCGGATGC AGCTGCCTAT TGTTCCAATC TACATTCGCA
301 CCCACCACAG CACCACCAC ACCACCAGTT GCATAG
```

This corresponds to the amino acid sequence <SEQ ID 24; ORF50>:

55 1 .RIVVGLRISC AVVTVVPSIT QGFVFAFHSD KGYDALVGIA VLGTFVHPTH
51 ICLRILIAAS WLLIFLPSRF STSRLRASAY LSANAISFGC SCLLFQSTFA
101 PTTAPPLPFV A*

701

751

801

851

901

951

1001

1051

50

Computer analysis predicts two transmembrane domains and also indicates that ORF50 has no significant amino acid homology with known proteins.

Based on the presence of a putative transmembrane domain, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 6

	The follo	wing pa	artial DNA sequence was identified in N. meningitidis < SEQ ID 2
		1	AAGTTTGACT TTACCTGGTT TATTCCGGCG GTAATCAAAT ACCGCCGGTT
		51	GTTTTTGAA GTATTGGTGG TGTCGGTGGT GTTGCAGCTG TTTGCGCTGA
		101	TTACGCCTCT GTTTTTCCAA GTGGTGATGG ACAAGGTGCT GGTACATCGG
10			GGATTCTCTA CTTTGGATGT GGTGTCGGTG GCTTTGTTGG TGGTGTCGCT
IU		151	GTTTGAGATT GTGTTGGGCG GTTTGCGGAC GTATCTGTTT GCACATACGA
1963	1 - 11/4. v	201	CTTCACGTAT TGATGTGGAA TTGGGCGCGC GTTTGTTCCG GCATCTGCTT
		251	TCCCTGCCTT TATCCTATTT CGAGCACAGA CGAGTGGGTG ATACGGTGGC
	1.5	301	TCCCTGCCTT TATCCTATTT CGAGCACAGA CGAGTGGGTG ATACGGTGGC TCGGGTGCGG GAATTGGAGC AGATTCGCAA TTTCTTGACC GGTCAGGCGC
		351	
15	1	401	TGACTTCGGT GTTGGATTTG GCGTTTTCGT TTATCTTTCT GGCGGTGATG
1 Ag		451	TGGTATTACA GCTCCACTCT GACTTGGGTG GTATTGGCTT CGTTG
, , _} ,		1451 1501	
20		1551	CAACCGGACG GTGCTGATTA TCGCCCACCG TCTGTCCACT GTTAAAACGG
20			CACACCGGAT CATTGCCATG GATAAAGGCA GGATTGTGGA AGCGGGAACA
		1601	CAGCAGGAAT TGCTGGCGAA CGAACGGA TATTACCGCT ATCTGTATGA
		1651	
		1701	TTTACAGAAC GGGTAG
	This corr	espond	s to the amino acid sequence <seq 26;="" id="" orf39="">:</seq>
	•		
25 1	100	1	KFDFTWFIPA VIKYRRLFFE VLVVSVVLQL FALITPLFFQ VVMDKVLVHR
,,		51	GFSTL::VVSV ALLVVSLFEI VLGGLRTYLF AHTTSRIDVE LGARLFRHLL
		101	SLPLSYFEHR RVGDTVARVR ELEQIRNFLT GQALTSVLDL AFSFIFLAVM
200	•4	151	WYYSSTLTWV VLASL
			//
30		501	
30,	Ç	551	QQELLANXNG YYRYLYDLQN G*
		331	QUODE MINE TITLE SONE.
	Further v	vork rev	vealed the complete nucleotide sequence <seq 27="" id="">:</seq>
		1	ATGTCTATCG TATCCGCACC GCTCCCCGCC CTTTCCGCCC TCATCATCCT
	·	51	CGCCCATTAC CACGGCATTG CCGCCAATCC TGCCGATATA CAGCATGAAT
35		101	TTTGTACTTC CGCACAGAGC GATTTAAATG AAACGCAATG GCTGTTAGCC
,		151	GCCAAATCTT TGGGATTGAA GGCAAAGGTA GTCCGCCAGC CTATTAAACG
		201	TTTGGCTATG GCGACTTTAC CCGCATTGGT ATGGTGTGAT GACGGCAACC
		251	ATTTCATTTT GGCCAAAACA GACGGTGAGG GTGAGCATGC CCAATTTTTG
		301	ATACAGGATT TGGTTACGAA TAAGTCTGCG GTATTGTCTT TTGCCGAATT
40		351	TTCTAACAGA TATTCGGGCA AACTGATATT GGTTGCTTCC CGCGCTTCGG
40			TATTGGGCAG TTTGGCAAAG TTTGACTTTA CCTGGTTTAT TCCGGCGGTA
		401	ATCAAATACC GCCGGTTGTT TTTTGAAGTA TTGGTGGTGT CGGTGGTGTT
1.7		451	GCAGCTGTTT GCGCTGATTA CGCCTCTGTT TTTCCAAGTG GTGATGGACA
		501	AGGTGCTGGT ACATCGGGGA TTCTCTACTT TGGATGTGGT GTCGGTGGCT
AF		551	
45		601	TTGTTGGTGG TGTCGCTGTT TGAGATTGTG TTGGGGGGGTT TGCGGACGTA

GTGGGTGATA CGGTGGCTCG GGTGCGGGAA

TCTGTTTGCA CATACGACTT CACGTATTGA TGTGGAATTG GGCGCGCGTT

TGTTCCGGCA TCTGCTTTCC CTGCCTTTAT CCTATTCGA GCACAGACGA

CTTGACCGGT CAGGCGCTGA CTTCGGTGTT GGATTTGGCG TTTTCGTTTA

TCTTTCTGGC GGTGATGTGG TATTACAGCT CCACTCTGAC TTGGGTGGTA

TTGGCTTCGT TGCCTGCCTA TGCGTTTTGG TCGGCATTTA TCAGTCCGAT

ACTGCGGACG CGTCTGAACG ATAAGTTCGC GCGCAATGCA GACAACCAGT

CGTTTTTAGT AGAAAGCATC ACTGCGGTGG GTACGGTAAA GGCGATGGCG

GTGGAGCCGC AGATGACGCA GCGTTGGGAC AATCAGTTGG CGGCTTATGT

TTGGAGCAGA TTCGCAATTT

```
GGCTTCGGGA TTTCGGGTAA CGAAGTTGGC GGTGGTCGGC CAGCAGGGGG
              1151
                    TGCAGCTGAT TCAGAAGCTG GTGACGGTGG CGACGTTGTG GATTGGCGCA
              1201
                    CGGCTGGTAA TTGAGAGCAA GCTGACGGTG GGGCAGCTGA TTGCGTTTAA
              1251
                    TATGCTCTCG GGACAGGTGG CGGCGCCTGT TATCCGTTTG GCGCAGTTGT
 5
              1301
                    GGCAGGATTT CCAGCAGGTG GGGATTTCGG TGGCGCGTTT GGGGGATATT
              1351
                    CTGAATGCGC CGACCGAGAA TGCGTCTTCG CATTTGGCTT TGCCCGATAT
              1401
                    CCGGGGGGAG ATTACGTTCG AACATGTCGA TTTCCGCTAT AAGGCGGACG
              1451
                    GCAGGCTGAT TTTGCAGGAT TTGAACCTGC GGATTCGGGC GGGGGAAGTG
              1501
                    CTGGGGATTG TGGGACGTTC GGGGTCGGGC AAATCCACAC TCACCAAATT
10
              1551
                    GGTGCAGCGT CTGTATGTAC CGGAGCAGGG ACGGGTGTTG GTGGACGGCA
              1601
                    ACGATTTGGC TTTGGCCGCT CCTGCCTGGC TGCGGCGGCA GGTCGGCGTG
              1651
                    GTCTTGCAGG AGAATGTGCT GCTCAACCGC AGCATACGCG ACAATATCGC
              1701
                    GCTGACGGAT ACGGGTATGC CGCTGGAACG CATTATCGAA GCAGCCAAAC
                    TGGCGGGCGC ACACGAGTTT ATTATGGAGC TGCCGGAAGG CTACGGCACC
              1751
15
                    GTGGTGGGCG AACAAGGGGC CGGCTTGTCG GGCGGACAGC GGCAGCGTAT
              1801
              1851
                    TGCGATTGCC CGCGCGTTAA TCACCAATCC GCGCATTCTG ATTTTTGATG
              1901
                    AAGCCACCAG CGCGCTGGAT TATGAAAGTG AACGAGCGAT TATGCAGAAC
                    ATGCAGGCCA TTTGCGCCAA CCGGACGGTG CTGATTATCG CCCACCGTCT
              1951
                    GTCCACTGTT AAAACGGCAC ACCGGATCAT TGCCATGGAT AAAGGCAGGA
              2001
                    TTGTGGAAGC GGGAACACAG CAGGAATTGC TGGCGAAGCC GAACGGATAT
20
              2051
                    TACCGCTATC TGTATGATTT ACAGAACGGG TAG
```

This corresponds to the amino acid sequence <SEQ ID 28; ORF39-1>:

•	1	MSIVSAPLPA	LSALIILAHY	HGIAANPADI	QHEFCTSAQS	DLNETQWLLA
,	51	AKSLGLKAKV	VRQPIKRLAM	ATLPALVWCD	DGNHFILAKT	DGEGEHAQFL
25	101	IQDLVTNKSA	VLSFAEFSNR	YSGKLILVAS	RASVLGSLAK	<i>FD</i> FTWFIPAV
	151	IKYRRLFFEV	LVVSVVLQLF	ALITPLFFQV	VMDKVLVHRG	FSTLDVVSVA
	201	LLVVSLFEIV	LGGLRTYLFA	HTTSRIDVEL	GARLFRHLLS	LPLSYFEHRR
	251	VGDTVARVRE	LEQIRNFLTG	QALTSVLDLA	FSFIFLAVMW	YYSSTLTWVV
	301		SAFISPILRT			
30	351	VEPOMTORWD	NQLAAYVASG	FRVTKLAVVG	QQGVQLIQKL	VTVATLWIGA
	401	RLVIESKLTV	GQLIAFNMLS	GQVAAPVIRL	AQLWQDFQQV	GISVARLGDI
	451	LNAPTENASS	HLALPDIRGE	ITFEHVDFRY	KADGRLILQD	LNLRIRAGEV
	501	LGIVGRSGSG	KSTLTKLVQR	LYVPEQGRVL	VDGNDLALAA	PAWLRRQVGV
	551	VLQENVLLNR	SIRDNIALTD	TGMPLERIIE	AAKLAGAHEF	IMELPEGYGT
35	601	VVGEQGAGLS	GGQRQRIAIA	RALITNPRIL	IFDEATSALD	YESERAIMQN
	651	MQA ICANRTV	LIIAHRLSTV	KTAHRIIAMD	KGRIVEAGTQ	QELLAKPNGY
	701	YRYLYDLQNG	*			-

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

40 ORF39 shows 100% identity over a 165aa overlap with an ORF (ORF39a) from strain A of N. meningitidis:

						10	20	30
•	orf39.pep	•			KFDFTW	FIPAVIKYRR	LFFEVLVVSV	VLQL
					111111	1111111111		$\overline{1111}$
45	orf39a	AVLSFAE	FSNRYSGKL	ILVASRASVL		FIPAVIKYRR		VLQL
		110	120	130	140	150	160	
			40	50	60	70	80	00
			40	50		-		90
	orf39.pep	<u>FALI</u> TPI	.FFQVVMDKV	LVHRGFSTLD	VVSVALLVVS	LFEIVLGGLR	TYLFAHTTSR	IDVE
50		1111111	111111111	1111111111	111111111	11111111111	11111111	$\Pi\Pi\Pi$
	orf39a	FALITPI	FFQVVMDKV	LVHRGFSTLD		LFEIVLGGLR	TYLFAHTTSR	IDVE
		170	180	190	200	210	220	
				110	100	120	140	150
			100	110	120	130	140	150
55	orf39.pep	LGARLFF	HLLSLPLSY	FEHRRVGDTV	ARVRELEQIA	NFLTGQA <u>LTS</u>	VLDLAFSFIF	LAVM
		111111	111111111	1111111111	1311111111	1111111111	11111111	1111
	orf39a	LGARLFI	RHLLSLPLSY	FEHRRVGDTV	ARVRELEQIE	NFLTGQALTS	VLDLAFSFIF	LAVM
		230	240	250	260	270	280	
60			160	170	180	190	200	210
	orf39.pep	WYYSSTI	.TW <u>VVLASL</u> X	XXXXXXXXX	XXXXXXXXXX	XXXXXXXICA	nrtvli lahr	LSTV

ORF39-1 and ORF39a show 99.4% identity in 710 aa overlap:

		•
5	orf39-1.pep	MSIVSAPLPALSALIILAHYHGIAANPADIQHEFCTSAQSDLNETQWLLAAKSLGLKAKV
10	orf39-1.pep	VRQPIKRLAMATLPALVWCDDGNHFILAKTDGEGEHAQFLIQDLVTNKSAVLSFAEFSNR
15	orf39-1.pep	YSGKLILVASRASVLGSLAKFDFTWFIPAVIKYRRLFFEVLVVSVVLQLFALITPLFFQV
	orf39-1.pep	VMDKVLVHRGFSTLDVVSVALLVVSLFEIVLGGLRTYLFAHTTSRIDVELGARLFRHLLS
20	orf39a	VMDKVLVHRGFSTLDVVSVALLVVSLFEIVLGGLRTYLFAHTTSRIDVELGARLFRHLLS LPLSYFEHRRVGDTVARVRELEQIRNFLTGQALTSVLDLAFSFIFLAVMWYYSSTLTWVV
	orf39-1.pep orf39a	LPLSYFEHRRYGDIVARVRELEQIRNFLIGQALISVIDBATSTITLAVIMITOTISTIC LPLSYFEHRRYGDIVARVRELEQIRNFLIGQALISVLDLAFSFIFLAVMWYYSSILIWVV
25	orf39-1.pep	LASLPAYAFWSAFISPILRTRLNDKFARNADNQSFLVESITAVGTVKAMAVEPQMTQRWD
.*.	orf39a	LASLPAYAFWSAFISPILRTRLNDKFARNADNQSFLVESITAVGTVKAMAVEPQMTQRWD NQLAAYVASGFRVTKLAVVGQQGVQLIQKLVTVATLWIGARLVIESKLTVGQLIAFNMLS
30	orf39-1.pep orf39a	NOLAAYVASGERVIKLAVVGQQGVQLIQKLVIVAILWIGARLVIESKLIVGQLIAFNMLS NOLAAYVASGERVIKLAVVGQQGVQLIQKLVIVAILWIGARLVIESKLIVGQLIAFNMLS
25	orf39-1.pep	GQVAAPVIRLAQLWQDFQQVGISVARLGDILNAPTENASSHLALPDIRGEITFEHVDFRY
35	orf39a	GQVAAPVIRLAQLWQDFQQVGISVARLGDILMAFIEMASSHILADFDIRGSTTEMVDFRI KADGRLILQDLNLRIRAGEVLGIVGRSGSGKSTLTKLVQRLYVPEQGRVLVDGNDLALAA
	orf39-1.pep orf39a	
40	orf39-1.pep	PAWLRRQVGVVLQENVLLNRSIRDNIALTDTGMPLERIIEAAKLAGAHEFIMELPEGYGT
45	orf39a orf39-1.pep	VVGEQGAGLSGGQRQRIAIARALITNPRILIFDEATSALDYESERAIMQNMQAICANRTV
**************************************	orf39a	
50	orf39-1.pep	LIIAHRLSTVKTAHRIIAMDKGRIVEAGTQQELLAKPNGYYRYLYDLQNGX
•	orf39a The complete length	ORF39a nucleotide sequence <seq 29="" id=""> is:</seq>
•	1 AMON	CTATCG TATCCGCACC GCTCCCCGCC CTTTCCGCCC TCATCATCCT
55	51 CGCC 101 TTTG 151 GCCA 201 TTTG	CATTAC CACGGCATTG CCGCCAATCC TGCCGATATA CAGCATGAAT STACTTC CGCACAGAGC GATTTAAATG AAACGCAATG GCTGTTAGCC LAATCTT TGGGATTGAA GGCAAAGGTA GTCCGCCAGC CTATTAAACG HGCTATG GCGACTTTAC CCGCATTGGT ATGGTGTGAT GACGGCAACC
60	251 ATTT 301 ATAC 351 TTCT 401 TATT	TATTTT GGCTAAAACA GACGGTGGGG GTGAGCATGC CCAATATCTA CAGGATT TAACTACGAA TAAGTCTGCG GTATTGTCTT TTGCCGAATT CAACAGA TATTCGGGCA AACTGATATT GGTTGCTTCC CGCGCTTCGG CGGGCAG TTTGGCAAAG TTTGACTTTA CCTGGTTTAT TCCGGCGGTA
65	501 GCAG 551 AGGT 601 TTGT	ARATACC GCCGGTTGTT TTTTGAAGTA TTGGTGGTGT CGGTGGTGTT GCTGTTT GCGCTGATTA CGCCTCTGTT TTTCCAAGTG GTGATGGACA FGCTGGT ACATCGGGA TTCTCTACTT TGGATGTGGT GTCGGTGGCT FTGGTGG TGTCGCTGTT TGAGATTGT TTGGCCGTT TGCGACGTA GTTTTGCA CATACGACTT CACGTATTGA TGTGGAATTG GGCGCGCGTT

```
TGTTCCGGCA TCTGCTTTCC CTGCCTTTAT CCTATTCGA GCACAGACGA
                    CTGGCTGATA CGGTGCCTCG GGTGCGGGAA TTGGAGCAGA TTCGCAATTT
               751
                    CTTGACCGGT CAGGCGCTGA CTTCGGTGTT GGATTTGGCG TTTTCGTTTA
               801
               851
                    TCTTTCTGGC GGTGATGTGG TATTACAGCT CCACTCTGAC TTGGGTGGTA
5
               901
                    TTGGCTTCGT TGCCTGCCTA TGCGTTTTGG TCGGCATTTA TCAGTCCGAT
                    ACTGCGGACG CGTCTGAACG ATAAGTTCGC GCGCAATGCA GACAACCAGT
               951
              1001
                    CGTTTTTAGT AGAAAGCATC ACTGCGGTGG GTACGGTAAA GGCGATGGCG
              1051
                    GTGGAGCCGC AGATGACGCA GCGTTGGGAC AATCAGTTGG CGGCTTATGT
                    GGCTTCGGGA TTTCGGGTAA CGAAGTTGGC GGTGGTCGGC CAGCAGGGGG
              1101
10
              1151
                    TGCAGCTGAT TCAGAAGCTG GTGACGGTGG CGACGTTGTG GATTGGCGCA
                    CGGCTGGTAA TTGAGAGCAA GCTGACGGTG GGGCAGCTGA TTGCGTTTAA
              1201
                    TATGCTCTCG GGACAGGTGG CGGCGCCTGT TATCCGTTTG GCGCAGTTGT
              1251
                    GGCAGGATTT CCAGCAGGTG GGGATTTCGG TGGCGCGTTT GGGGGATATT
              1301
                    CTGAATGCGC CGACCGAGAA TGCGTCTTCG CATTTGGCTT TGCCCGATAT
              1351
15
              1401
                    CCGGGGGGAG ATTACGTTCG AACATGTCGA TTTCCGCTAT AAGGCGGACG
                    GCAGGCTGAT TTTGCAGGAT TTGAACCTGC GGATTCGGGC GGGGGAAGTG
              1451
                    CTGGGGATTG TGGGACGTTC GGGGTCGGGC AAATCCACAC TCACCAAATT
              1501
                    GGTGCAGCGT CTGTATGTAC CGGCGCAGGG ACGGGTGTTG GTGGACGGCA
              1551
                    ACGATTTGGC TTTGGCCGCT CCTGCTTGGC TGCGGCGGCA GGTCGGCGTG
              1601
20
                    CTCTTGCAGG AGAATGTGCT GCTCAACCGC AGCATACGCG ACAATATCGC
              1651
                     GCTGACGGAT ACGGGTATGC CGCTGGAACG CATTATCGAA GCAGCCAAAC
              1701
                     TGGCGGGCGC ACACGAGTTT ATTATGGAGC TGCCGGAAGG CTACGGCACC
              1751
                    GTGGTGGGCG AACAAGGGCC CGGCTTGTCG GGCGGACAGC GGCAGCGTAT
              1801
                     TGCGATTGCC CGCGCGTTAA TCACCAATCC GCGCATTCTG ATTTTTGATG
              1851
25
              1901
                    AAGCCACCAG CGCGCTGGAT TATGAAAGTG AACGAGCGAT TATGCAGAAC
                    ATGCAGGCCA TTTGCGCCAA CCGGACGGTG CTGATTATCG CCCACCGTCT
              1951
                     GTCCACTGTT AAAACGGCAC ACCGGATCAT TGCCATGGAT AAAGGCAGGA
              2001
              2051
                     TTGTGGAAGC GGGAACACAG CAGGAATTGC TGGCGAAGCC GAACGGATAT
              2101
                    TACCGCTATC TGTATGATTT ACAGAACGGG TAG
30
     This encodes a protein having amino acid sequence <SEQ ID 30>:
                    MSIVSAPLPA LSALIILAHY HGIAANPADI QHEFCTSAQS DLNETQWLLA
                     AKSLGLKAKV VRQPIKRLAM ATLPALVWCD DGNHFILAKT DGGGEHAQYL
                 51
                     IQDLTTNKSA VLSFAEFSNR YSGKLILVAS RASVLGSLAK FDFTWFIPAV
                101
                     IKYRRLFFEV LVVSVVLQLF ALITPLFFQV VMDKVLVHRG FSTLDVVSVA
                151
```

```
35
                     LLVVSLFEIV LGGLRTYLFA HTTSRIDVEL GARLFRHLLS LPLSYFEHRR
                201
                251
                     VGDTVARVRE LEQIRNFLTG QALTSVLDLA FSFIFLAVMW YYSSTLTWVV
                     LASLPAYAFW SAFISPILRT RLNDKFARNA DNQSFLVESI TAVGTVKAMA
                301
                     VEPOMTORWD NOLAAYVASG FRVTKLAVVG QQGVQLIQKI. VTVATLWIGA
                351
                     RLVIESKLTV GQLIAFNMLS GQVAAPVIRL AQLWQDFQQV GISVARLGDI
                401
40
                     LNAPTENASS HLALPDIRGE ITFEHVDFRY KADGRLILQD LNLRIRAGEV
                451
                     LGIVGRSGSG KSTLTKLVQR LYVPAQGRVL VDGNDLALAA PAWLRRQVGV
                501
                     VLQENVLLNR SIRDNIALTD TGMPLERIIE AAKLAGAHEF IMELPEGYGT
                551
                     VVGEQGAGLS GGQRQRIAIA RALITNPRIL IFDEATSALD YESERAIMQN
                601
                     MQAICANRTV LIIAHRLSTV KTAHRIIAMD KGRIVEAGTQ QELLAKPNGY
                651
45
                     YRYLYDLQNG *
                701
```

ORF39a is homologous to a cytolysin from A. pleuropneumoniae:

```
SP|P26760|RT1B ACTPL RTX-I TOXIN DETERMINANT B (TOXIN RTX-I SECRETION ATP-
           BINDING PROTEIN) (APX-IB) (HLY-IB) (CYTOLYSIN IB) (CLY-IB)
           >gi|97137|pir||D43599 cytolysin IB - Actinobacillus pleuropneumoniae (serotype 9)
           >gi|38944 (X61112) ClyI-B protein [Actinobacillus pleuropneumoniae] Length = 707
Score = 931 bits (2379), Expect = 0.0
50
            Identities = 472/690 (68%), Positives = 540/690 (77%), Gaps = 3/690 (0%)
                      YHGIAANPADIQHEFCTSAQSDLNETQWXXXXXXXXXXXXVVRQPIKRLAMATLPALVWC 79
           Query: 20
55
                      YH IA NP +++H+F
                                         + L+ T W
                                                                V++ I RLA
                                                                            LPALVW
                      YHNIAVNPEELKHKFDLEGKG-LDLTAWLLAAKSLELKAKQVKKAIDRLAFIALPALVWR 78
           Sbjct: 20
                      DDGNHFILAKTDGGGEHAQYLIQDLTTNKSAVLSFAEFSNRYSGKLILVASRASVLGSLA 139
                      +DG HFIL K D E +YLI DL T+ +L AEF + Y GKLILVASRAS++G LA
                      EDGKHFILTKIDN--EAKKYLIFDLETHNPRILEQAEFESLYQGKLILVASRASIVGKLA 136
60
           Sbjct: 79
           Query: 140 KFDFTWFIPAVIKYRRXXXXXXXXXXXXXXXXITPLFFQVVMDKVLVHRGFXXXXXXXX 199
                                                        ITPLFFOVVMDKVLVHRGF
                      KFDFTWFIPAVIKYR+
           Sbjct: 137 KFDFTWFIPAVIKYRKIFIETLIVSIFLQIFALITPLFFQVVMDKVLVHRGFSTLNVITV 196
65
           Query: 200 XXXXXXXFEIVLGGLRTYLFAHTTSRIDVELGARLFRHLLSLPLSYFEHRRVGDTVARVR 259
```

```
FEIVL GLRTY+FAH+TSRIDVELGARLFRHLL+LP+SYFE+RRVGDTVARVR
          Sbjct: 197 ALAIVVLFEIVLNGLRTYIFAHSTSRIDVELGARLFRHLLALPISYFENRRVGDTVARVR
          Query: 260 ELEQIRNFLTGQALTSVLDLAFSFIFLAVMWYYSSTLTWVVLASLPAYAFWSAFISPILR 319
                     EL+QIRNFLTGQALTSVLDL FSFIF AVMWYYS LT V+L SLP Y WS FISPILR
          Sbjct: 257 ELDQIRNFLTGQALTSVLDLMFSFIFFAVMWYYSPKLTLVILGSLPFYMGWSIFISPILR 316
          Query: 320 TRLNDKFARNADNQSFLVESITAVGTVKAMAVEPQMTQRWDNQLAAYVASGFRVTKLAVV
                      RL++KFAR ADNQSFLVES+TA+ T+KA+AV PQMT WD QLA+YV++GFRVT LA +
10
          Sbjct: 317 RRLDEKFARGADNQSFLVESVTAINTIKALAVTPQMTNTWDKQLASYVSAGFRVTTLATI 376
          Query: 380 GQQGVQLIQKLVTVATLWIGARLVIESKLTVGQLIAFNMLSGQVAAFVIRLAQLWQDFQQ
                      GQQGVQ IQK+V V TLW+GA LVI
                                                L++GQLIAFNMLSGQV APVIRLAQLWQDFQQ
          Sbjct: 377 GQQGVQFIQKVVMVITLWLGAHLVISGDLSIGQLIAFNMLSGQVIAPVIRLAQLWQDFQQ 436
15
          Query: 440 VGISVARLGDILNAPTENASSHLALPDIRGEITFEHVDFRYKADGRLILQDLNLRIRAGE 499
                     VGISV RLGD+LN+PTE+
                                           LALP+I+G+ITF ++ FRYK D +IL D+NL I+ GE
          Sbict: 437 VGISVTRLGDVLNSPTESYQGKLALPEIKGDITFRNIRFRYKPDAPVILNDVNLSIQQGE 496
20
          Query: 500 VLGIVGRSGSGKSTLTKLVQRLYVPAQGRVLVDGNDLALAAPAWLRRQVGVVLQENVLLN 559
                      V+GIVGRSGSGKSTLTKL+QR Y+P G+VL+DG+DLALA P WLRRQVGVVLQ+NVLLN
          Sbjct: 497 VIGIVGRSGSGKSTLTKLIQRFYIPENGQVLIDGHDLALADPNWLRRQVGVVLQDNVLLN 556
          Query: 560 RSIRDNIALTDTGMPLERIIEAAKLAGAHEFIMELPEGYGTVVGEQGAGLSGGQRQRIAI
25
                      RSIRDNIAL D GMP+E+I+ AAKLAGAHEFI EL EGY T+VGEQGAGLSGGQRQRIAI
          Sbjct: 557 RSIRDNIALADPGMPMEKIVHAAKLAGAHEFISELREGYNTIVGEQGAGLSGGQRQRIAI 616
           Query: 620 ARALITNPRILIFDEATSALDYESERAIMONMOAICANRTVLIIAHRLSTVKTAHRIIAM
                      ARAL+ NP+ILIFDEATSALDYESE IM+NM IC RTV+IIAHRLSTVK A RII M
          Sbjct: 617 ARALVNNPKILIFDEATSALDYESEHIIMRNMHQICKGRTVIIIAHRLSTVKNADRIIVM 676
30
          Query: 680 DKGRIVEAGTQQELLAKPNGYYRYLYDLQN 709
                      +KG+IVE G +ELLA PNG Y YL+ LQ+
           Sbjct: 677 EKGQIVEQGKHKELLADPNGLYHYLHQLQS 706
35
```

Homology with the HlyB leucotoxin secretion ATP-binding protein of Haemophilus actinomycetemcomitans (accession number X53955)

ORF39 and HlyB protein show 71% and 69% amino acid identity in 167 and 55 overlap at the N-and C-terminal regions, respectively:

```
40
                     KFDFTWFIPAVIKYRRXXXXXXXXXXXXXXXXXXXXITPLFFQVVMDKVLVHRGFXXXXXXXXX 60
          Orf39 1
                      KFDFTWFIPAVIKYR+
                                                       ITPLFFQVVMDKVLVHRGF
                 137 KFDFTWFIPAVIKYRKIFIETLIVSIFLQIFALITPLFFQVVMDKVLVHRGFSTLNVITV 196
          Orf39 61 XXXXXXFEIVLGGLRTYLFAHTTSRIDVELGARLFRHLLSLPLSYFEHRRVGDTVARVR 120
45
                             FEI+LGGLRTY+FAH+TSRIDVELGARLFRHLL+LP+SYFE RRVGDTVARVR
          HlyB 197 ALAIVVLFEIILGGLRTYVFAHSTSRIDVELGARLFRHLLALPISYFEARRVGDTVARVR 256
                 121 ELEQIRNFLTGQALTSVLDLAFSFIFLAVMWYYSSTLTWVVLASLIC 167
                     EL+QIRNFLTGQALTS+LDL FSFIF AVMWYYS LT VVL SL C
50
                 257 ELDQIRNFLTGQALTSILDLLFSFIFFAVMWYYSPKLTLVVLGSLPC 303
          HlyB
                 166 ICANRTVLIIAHRLSTVKTAHRIIAMDKGRIVEAGTQQELLANXNGYYRYLYDLQ 220
55
                      IC NRTVLIIAHRLSTVK A RII MDKG I+E G QELL +
                 651 ICQNRTVLIIAHRLSTVKNADRIIVMDKGEIIEQGKHQELLKDEKGLYSYLHQLQ 705
```

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 7

60 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 31>

- 1 ATGAAATACT TGATCCGCAC CGCCTTACTC GCAGTCGCAG CCGCCGGCAT
 51 CTACGCCTGC CAACCGCAAT CCGAAGCCGC AGTGCAAGTC AAGGCTGAAA
- 101 ACAGCCTGAC CGCTATGCGC TTAGCCGTCG CCGACAAACA GGCAGAGATT
- 151 GACGGGTTGA ACGCCCAAAK SGACGCCGAA ATCAGA...
- 5 This corresponds to the amino acid sequence <SEQ ID 32; ORF52>:
 - 1 MKYLIRTALL AVAAAGIYAC QPQSEAAVQV KAENSLTAMR LAVADKQAEI

51 DGLNAQXDAE IR..

Further work revealed the complete nucleotide sequence <SEQ ID 33>:

- 1 ATGAATACT TGATCCGCAC CGCCTTACTC GCAGTCGCAG CCGCCGGCAT
 10 51 CTACGCCTGC CAACCGCAAT CCGAAGCCGC AGTGCAAGTC AAGGCTGAAA
 101 ACAGCCTGAC CGCTATGCGC TTAGCCGTCG CCGACAAACA GGCAGAGATT
 151 GACGGTTGA ACGCCCAAAT CGACGCCGAA ATCAGACAAC GCGAAGCCGA
 201 AGAATTGAAA GACTACCGAT GGATACACGG CGACGCGGAA GTGCCGGAGC
 251 TGGAAAAATG A
- 15 This corresponds to the amino acid sequence <SEQ ID 34; ORF52-1>:
 - 1 MKYLIRTALL AVAAAGIYAC QPQSEAAVQV KAENSLTAMR LAVADKQAEI 51 DGLNAQIDAE IRQREAEELK DYRWIHGDAE VPELEK*

Computer analysis of this amino acid sequence predicts a prokaryotic membrane lipoprotein lipid attachment site (underlined).

ORF52-1 (7kDa) was cloned in the pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 4A shows the results of affinity purification of the GST-fusion. Figure 4B shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF52-1.

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 8

25

The following DNA sequence was identified in N. meningitidis <SEQ ID 35>

1 ATGGTTATCG GAATATTACT CGCATCAAGC AAGCATGCTC TTGTCATTAC
51 TCTATTGTTA AATCCCGTCT TCCATGCATC CAGTTGCGTA TCGCGTTSGG
30 101 CAATACGGAA TAAAAACCTGC TGTTCTGCTT TGGCTAAATT TGCCAAATTG
151 TTTATTGTTT CTTTAGGAGC AGCTTGCTTA GCCGCCTTCG CTTTCGACAA
201 CGCCCCCACA GGCGCTTCCC AAGCGTTGCC TACCGTTACC GCACCCGTGG
251 CGATTCCCGC GCCCGCTTCG GCAGCCTGA

This corresponds to the amino acid sequence <SEQ ID 36; ORF56>:

1 MVIGILLASS KHALVITLLL NPVFHASSCV SRXAIRNKIC CSALAKFAKL
51 FIVSLGAACL AAFAFDNAPT GASQALPTVT APVAIPAPAS AA*

Further work revealed the complete nucleotide sequence <SEQ ID 37>:

1 ATGGCTTGTA CAGGTTTGAT GGTTTTTCCG TTAATGGTTA TCGGAATATT

51 ACTTGCATCA AGCAAGCCTG CTCCTTTCCT TACTCTATTG TTAAATCCCG
101 TCTTCCATGC ATCCAGTTGC GTATCGCGTT GGGCAATACG GAATAAAATC
151 TGCTGTTCTG CTTTGGCTAA ATTTGCCAAA TTGTTTATTG TTTCTTTAGG
201 AGCAGCTTGC TTAGCCGCCT TCGCTTTCGA CAACGCCCCC ACAGGCGCTT
251 CCCAAGCGTT GCCTACCGTT ACCGCACCCG TGGCGATTCC CGCGCCCGCT

This corresponds to the amino acid sequence <SEQ ID 38; ORF56-1>:

1 MACTGLMVFP LMVIGILLAS SKPAPFLTLL LNPVFHASSC VSRWAIRNKI 51 CCSALAKFAK LFIVSLGAAC LAAFAFDNAP TGASQALPTV TAPVAIPAPA

Computer analysis of this amino acid sequence predicts a leader peptide (underlined) and suggests that ORF56 might be a membrane or periplasmic protein.

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

15 Example 9

5

10

20

25

35

301

TCGGCAGCCT GA

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 39>

1 ATGTTCAGTA TTTTAAATGT GTTTCTTCAT TGTATTCTGG CTTGTGTAGT
51 CTCTGGTGAG ACGCCTACTA TATTTGGTAT CCTTGCTCTT TTTTACTTAT
101 TGTATCTTTC TTATCTTGCT GTTTTTAAGA TTTTCTTTC TTTTTCTTA
151 GACAGAGTTT CACTCCGGTC TCCCAGGCTG GAGTGCAAAT GGCATGACCC
251 CAGGG...

This corresponds to the amino acid sequence <SEQ ID 40; ORF63>:

1 MFSILNVFLH CILACVVSGE TPTIFGILAL FYLLYLSYLA VFKIFFSFFL 51 DRVSLRSPRL ECKWHDPLAH WLTATSAILP PQPPG...

Computer analysis of this amino acid sequence predicts a transmembrane region.

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 10

30 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 41>

1 ...GTGCGGACGT GGTTGGTTTT TTGGTTGCAG CGTTTGAAAT ACCCGTTGTT
51 GCTTTGGATT GCGGATATGT TGCTGTACCG GTTGTTGGGC GGCGCGGAAA
101 TCGAATGCGG CCGTTGCCCT GTGCCGCCGA TGACGGATTG GCAGCATTTT
151 TTGCCGGCGA TGGGAACGGT GTCGGCTTGG GTGCCGGTGA TTTGGGCATA
201 CCTGATGATT GAAAGTGAAA AAAACGGAAG ATATTGA

This corresponds to the amino acid sequence <SEQ ID 42; ORF69>:

1 ..VRTWLVFWLQ RLKYPLLLWI ADMLLYRLLG GAEIECGRCP VPPMTDWQHF 51 LPAMGTVSAW VAVIWAYLMI ESEKNGRY* Computer analysis of this amino acid sequence predicts a transmembrane region.

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF69 shows 96.2% identity over a 78aa overlap with an ORF (ORF69a) from strain A of N meningitidis:

The ORF69a nucleotide sequence <SEQ ID 43> is:

```
1 GTGCGGACGT GGTTGGTTTT TTGGTTGCAG CGTTTGAAAT ACCCGTTGTT
51 GCTTTGTATT GCGGATATGC TGCTGTACCG GTTGTTGGGC GGCGCGGAAA
20 101 TCGAATGCGG CCGTTGCCCT GTACCGCCGA TGACGGATTG GCAGCATTTT
151 TTGCCGACGA TGGGAACGGT GGCGGCTTGG GTGGCGGTGA TTTGGGCATA
201 CCTGATGATT GAAAGTGAAA AAAACGGAAG ATATTGA
```

This encodes a protein having amino acid sequence <SEQ ID 44>:

```
1 VRTWLVFWLQ RLKYPLLLCI ADMLLYRLLG GAEIECGRCP VPPMTDWQHF
51 LPTMGTVAAW VAVIWAYLMI ESEKNGRY*
```

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 11

25

The following DNA sequence was identified in N. meningitidis <SEQ ID 45>

	14,	•	1	ATGTTTCAAA	ATTTTGATTT	GGGCGTGTTC	CTGCTTGCCG	TCCTCCCCGT
	***	•	51	GCTGCCCTCC	ATTACCGTCT	CGCACGTGGC	GCGCGGCTAT	ACGGCGCGCT
			101		CAACACTGCC			
			151	CTGCCCCATA	TCGATTTGGT	CGGCACAATC	ATCGTACCGC	TGCTTACTTT
35	.,		201	GATGTTCACG	CCCTTCCTGT	TCGGCTGGGC	GCGTCCGATT	CCTATCGATT
			251	CGCGCAACTT	CCGCAACCCG	CGCCTTGCCT	GGCGTTGCGT	TGCCGCGTCC
			301	GGCCCGCTGT	CGAATCTAGC	GATGGCTGTW	CTGTGGGGCG	TGGTTTTGGT
			351	GCTGACTCCG	TATGTCGGCG	GGGCGTATCA	GATGCCGTTG	GCTCAAATGG
			401	CAAACTACGG	TATTCTGATC	AATGCGATTC	TGTTCGCGCT	CAACATCATC
40			451	CCCATCCTGC	CTTGGGACGG	CGGCATTTTC	ATCGACACCT	TCCTGTCGGC
			501	GAAATATTCG	CAAGCGTTCC	GCAAAATCGA	ACCTTATGGG	ACGTGGATTA
		• •	551	TCCTACTGCT	GATGCTGACC	sGGGTTTTGG	GTGCGTTTAT	WGCACCGATT
			601	sTGCGGmTGc	GTGATTGCrT	TTGTGCAGAT	GTWCGTCTGA	CTGGCTTTCA
			CCI	CACCCCATIAA				

This corresponds to the amino acid sequence <SEQ ID 46; ORF77>:

```
1 MFQNFDLGVF LLAVLPVLPS ITVSHVARGY TARYWGDNTA EQYGRLTLNP
51 LPHIDLVGTI IVPLLTLMFT PFLFGWARPI PIDSRNFRNP RLAWRCVAAS
101 GPLSNLAMAV LWGVVLVLTP YVGGAYQMPL AQMANYGILI NAILFALNII
151 PILPWDGGIF IDTFLSAKYS QAFRKIEPYG TWIILLLMLT XVLGAFIAPI
201 XRXRDCXCAD VRLTGFQTA*
```

Further work revealed the complete nucleotide sequence <SEQ ID 47>:

```
ATGTTTCAAA ATTTTGATTT GGGCGTGTTT CTGCTTGCCG TCCTGCCCGT
                 51
                     GCTGCTCTCC ATTACCGTCA GGGAGGTGGC GCGCGGCTAT ACGGCGCGCT
                101
                     ACTGGGGAGA CAACACTGCC GAACAATACG GCAGGCTGAC ACTGAACCCC
10
                     CTGCCCCATA TCGATTTGGT CGGCACAATC ATCGTACCGC TGCTTACTTT
                151
                201
                     GATGTTCACG CCCTTCCTGT TCGGCTGGGC GCGTCCGATT CCTATCGATT
                251
                     CGCGCAACTT CCGCAACCCG CGCCTTGCCT GGCGTTGCGT TGCCGCGTCC
                     GGCCCGCTGT CGAATCTAGC GATGGCTGTT CTGTGGGGCG TGGTTTTGGT
                301
                351
                     GCTGACTCCG TATGTCGGCG GGGCGTATCA GATGCCGTTG GCTCAAATGG
15
                401
                     CAAACTACGG TATTCTGATC AATGCGATTC TGTTCGCGCT CAACATCATC
                     CCCATCCTGC CTTGGGACGG CGGCATTTTC ATCGACACCT TCCTGTCGGC
                451
                     GAAATATTCG CAAGCGTTCC GCAAAATCGA ACCTTATGGG ACGTGGATTA
                551
                     TCCTACTGCT GATGCTGACC GGGGTTTTGG GTGCGTTTAT TGCACCGATT
                     GTGCGGCTGG TGATTGCGTT TGTGCAGATG TTCGTCTGA
```

20 This corresponds to the amino acid sequence <SEQ ID 48; ORF77-1>:

```
1 MFONFDLGVF LLAVLPVLLS ITVREVARGY TARYWGDNTA EQYGRLTLNP
51 LPHIDLVGTI IVPLLTLMFT PFLFGWARPI PIDSRNFRNP RLAWRCVAAS
101 GPLSNLAMAV LWGVVLVLTP YVGGAYQMPL AQMANYGILI NAILFALNII
151 PILPWDGGIF IDTFLSAKYS QAFRKIEPYG TWIILLLMLT GVLGAFIAPI
201 VRLVIAFVOM FV*
```

Computer analysis of this amino acid sequence reveals a putative leader sequence and several transmembrane domains.

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF77 shows 96.5% identity over a 173aa overlap with an ORF (ORF77a) from strain A of N. meningitidis:

	orf77.pep	10 MFQNFDLGVFLI	20 LAVLPVLPSIT	30 VSHVARGYTAR	40 YWGDNTAEQ	50 YGRLTLNPLPI	60 HIDLVGTI
35	orf77a			RGYTAR	YWGDNTAEQ 10	YGR <u>LTLNPLPI</u> 20	HIDLVGTI 30
	orf77.pep	70	80 FT.FGWARPTPT	90 DSRNFRNPRLA	100 WRCVAASGP	110 LSNI.AMAVI.W	120 SVVI.VI.TP
40 ,	orf77a	IVPLLTLMFTP					SVATATLE
		40 130	. 50 . 140	60 150	70 160	80 170	90 180
45	orf77.pep	YVGGAYQMPLA					
	orf77a	YVGGAYQMPLA 100	OMANYXILINA 110	ILXALNIIPII 120	PWDGGIFID 130	TFLSAKXSQAI 140	FRKIEPYG 150
50	·cnn	190	200	210	220		
	orf77.pep	TWIILLLMLTX	<u>VLGAFIAPIXR</u> 	XRDCXCADVRI	TGFQTAX		
	orf77a	TWIIXLLMLTG	VLGAXIAPIVO 170	LVIAFVQMFVX 180	ζ		

-8

ORF77-1 and ORF77a show 96.8% identity in 185 aa overlap:

```
20
                                  30
       orf77-1.pep MFQNFDLGVFLLAVLPVLLSITVREVARGYTARYWGDNTAEQYGRLTLNPLPHIDLVGTI
                                 5
       orf77a
                                 RGYTARYWGDNTAEQYGRLTLNPLPHIDLVGTI
                                      10
                                             20
               orf77-1.pep
10
               orf77a
               IVPLLTLMFTPFLFGWARPIPIDSRNFRNPRLAWRCVAASGPLSNLAMAVLWGVVLVLTP
                                60
                                       70 -
                    130
15
               YVGGAYQMPLAQMANYGILINAILFALNIIPILPWDGGIFIDTFLSAKYSQAFRKIEPYG
       orf77-1.pep
               orf77a
               YVGGAYOMPLAOMANYXILINAILXALNIIPILPWDGGIFIDTFLSAKXSQAFRKIEPYG
                               120
                                      130
                                             140
20
                    190
                           200
       orf77-1.pep
               TWIILLIMLTGVLGAFIAPIVRLVIAFVOMFVX
               1111 HHIIII HHIII HIII
               TWIIXLLMLTGVLGAXIAPIVQLVIAFVQMFVX
```

A partial ORF77a nucleotide sequence <SEQ ID 49> was identified:

```
..CGCGGCTATA CAGCGCGCTA CTGGGGTGAC AACACTGCCG AACAATACGG
                      CAGGCTGACA CTGAACCCCC TGCCCCATAT CGATTTGGTC GGCACAATCA
               101
                      TCGTACCGCT GCTTACTTTG ATGTTTACGC CCTTCCTGTT CGGCTGGGCG
30
               151
                      CGTCCGATTC CTATCGATTC GCGCAACTTC CGCAACCCGC GCCTTGCCTG
               201
                      GCGTTGCGTT GCCGCGTCCG GCCCGCTGTC GAATCTGGCG ATGGCTGTTC
                      TGTGGGGCGT GGTTTTGGTG CTGACTCCGT ATGTCGGTGG GGCGTATCAG
               251
                      ATGCCGTTGG CNCAAATGGC AAACTACNNN ATTCTGATCA ATGCGATTCT
               301
               351
                      GTNCGCGCTC AACATCATCC CCATCCTGCC TTGGGACGGC GGCATTTTCA
35
               401
                      TCGACACCTT CCTGTCGGCN AAATANTCGC AAGCGTTCCG CAAAATCGAA
                      CCTTATGGGA CGTGGATTAL CCNGCTGCTT ATGCTGACCG GGGTTTTGGG
                451
               501
                      TGCGTNTATT GCACCGATTG TGCAGCTGGT GATTGCGTTT GTGCAGATGT
```

This encodes a protein having amino acid sequence <SEO ID 50>:

1 ... RGYTARYWGD NTAEQYGRLT LNPLPHIDLV GTIIVPLLTL MFTPFLFGWA
51 RPIPIDSRNF RNPRLAWRCV AASGPLSNLA MAVLWGVVLV LTPYVGGAYQ
101 MPLAQMANYX ILINAILXAL NIIPILPWDG GIFIDTFLSA KXSQAFRKIE
151 PYGTWIIXLL MLTGVLGAXI APIVQLVIAF VQMFV*

Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 12

45

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 51>

	1	ATGAACCTGA	TTTCACGTTA	CATCATCCGT	CAAATGGCGG	TTATGGCGGT
	51	TTACGCGCTC	CTTGCCTTCC	TCGCTTTGTA	CAGCTTTTTT	GAAATCCTGT
50	101	ACGAAACCGG	CAACCTCGGC	AAAGGCAGTT	ACGGCATATG	GGAAATGCTG
	151	GGCTACACCG	CCCTCAAAAT	GCCCGCCCGC	GCCTACGAAC	TGATTCCCCT
	201	CGCCGTCCTT	ATCGGCGGAC	TGGTCTCCCT	CAGCCAGCTT	GCCGCCGGCA
	251	GCGAACTGAC	CGTCATCAAA	GCCAGCGGCA	TGAGCACCAA	AAAGCTGCTG
	301	TTGATTCTGT	CGCAGTTCGG	TTTTATTTT	GCTATTGCCA	CCGTCGCGCT
55	. 351	CGGCGAATGG	GTTGCGCCCA	CACTGAGCCA	AAAAGCCGAA	AACATCAAAG

```
401 CCGCCGCCAT CAACGGCAAA ATCAGCACCG GCAATACCGG CCTTTGGCTG
451 AAAGAAAAA ACAGCGTGAT CAATGTGCGC GAAATGTTGC CCGACCAT..
```

This corresponds to the amino acid sequence <SEQ ID 52; ORF112>:

```
1 MNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG KGSYGIWEML
5 51 GYTALKMPAR AYELIPLAVL IGGLVSLSQL AAGSELTVIK ASGMSTKKLL
101 LILSQFGFIF AIATVALGEW VAPTLSQKAE NIKAAAINGK ISTGNTGLWL
151 KEKNSVINVR EMLPDH...
```

Further work revealed further partial nucleotide sequence <SEQ ID 53>:

```
ATGAACCTGA TTTCACGTTA CATCATCCGT CAAATGGCGG TTATGGCGGT
10
                    TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT GAAATCCTGT
                    ACGAAACCGG CAACCTCGGC AAAGGCAGTT ACGGCATATG GGAAATGCTG
               101
               151
                    gGCTACACCG CCCTCAAAAT GCCCGCCCGC GCCTACGAAC TGATTCCCCT
                    CGCCGTCCTT ATCGGCGGAC TGGTCTCCCT CAGCCAGCTT GCCGCCGGCA
               201
                    GCGAACTGAC CGTCATCAAA GCCAGCGGCA TGAGCACCAA AAAGCTGCTG
               251
15
               301
                    TTGATTCTGT CGCAGTTCGG TTTTATTTTT GCTATTGCCA CCGTCGCGCT
                    CGGCGAATGG GTTGCGCCCA CACTGAGCCA AAAAGCCGAA AACATCAAAG
               351
                    CCGCCGCCAT CAACGCCAAA ATCAGCACCG GCAATACCGG CCTTTGGCTG
               401
               451
                    AAAGAAAAA ACAGCITKAT CAATGTGCGC GAAATGTTGC CCGACCATAC
                    GCTTTTGGGC ATCAAAATTT GGGCGCGCAA CGATAAAAAC GAATTGGCAG
               501
                    AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG CAGTTGGCAG
20
               551
                    TTGAAAAACA TCCGCCGCAG CACGCTTGGC GAAGACAAAG TCGAGGTCTC
               601
                    TATTGCGGCT GAAGAAAACT GGCCGATTTC CGTCAAACGC AACCTGATGG
               651
                    ACGTATTGCT CGTCAAACCC GACCAAATGT CCGTCGGCGA ACTGACCACC
               701
                    TACATCCGCC ACCTCCAAAA CAACAGCCAA AACACCCGAA TCTACGCCAT
                    CGCATGGTGG CGCAAATTGG TTTACCCCGC CGCAGCCTGG GTGATGGCGC
               801
                    TCGTCGCCTT TGCCTTTACC CCGCAAACCA CCCGCCACGG CAATATGGGC
               851
               901
                    TTAAAACTCT TCGGCGGCAT CTGTsTCGGA TTGCTGTTCC ACCTTGCCGG
                    ACGGCTCTTT GGGTTTACCA GCCAACTCGG...
```

This corresponds to the amino acid sequence <SEQ ID 54; ORF112-1>:

```
1 MNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG KGSYGIWEML
51 GYTALKMPAR AYELIPLAVL IGGLVSLSQL AAGSELTVIK ASGMSTKKLL
101 LILSQFGFIF ALATVALGEW VAPTLSQKAE MIKAAAINGK ISTGNTGLWL
151 KEKNSXINVR EMLPDHTLLG IKIWARNDKN ELAEAVEADS AVLNSDGSWQ
201 LKNIRRSTLG EDKVEVSIAA EENWPISVKR NLMDVLLVKP DQMSVGELTT
35 251 YIRHLQNNSQ NTRIYAIAWW RKLVYPAAAW VMALVAFAFT PQTTRHGNMG
301 LKLFGGICKG LLFHLAGRLF GFTSQL...
```

Computer analysis of this amino acid sequence predicts two transmembrane domains.

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF112 shows 96.4% identity over a 166aa overlap with an ORF (ORF112a) from strain A of N.

meningitidis:

11		10	20	30	40	50	60.
:	orf112.pep	MNLISRYIIROMAV		LALYSFFEIL	ETGNLGKGS	(GIWEMLGYTA	LKMPAR
	• •						
45	orfl12a	MNLISRYIIRQMAV	MAVYALLAFI	LALYSFFEIL	YETGNLGKGS?	(GIWEMXGYTA	LKMXAR
• ? •	· ·	10	20	30	40	50	60
		70	80	90	100	110	120
	orf112.pep	AYELIPLAVLIGGL	VSLSQLAAG:	SELTVIKASG	MSTKKLLLIL	SQFGFIFAIAT	VALGEW
50		1111:111111111	11 111111	111:111111			111111
-	orfl12a	AYELMPLAVLIGGL	VSXSQLAAG:	SELXVIKASG	MSTKKLLLIL	SQFGFIFAIAT	VALGEW
		70	80	90	100	110	120

	WO 99/36544			-85-			РСТ/ІВ99/0010
	orf112.pep	VAPTLSQ	130 14 KAENIKAAAINO		LKEKNSV INVRE		
5	orf112a	VAPTLSQ	KAENIKAAAIN		LKEKNSIINVRE		KIWARNDKN 180
	orf112a		ADSAVLNSDGSV 190 20	QLKNIRRSTLO 00 210		EEXWPISVKRNI 230	LMDVLLVKP 240
	A partial ORF112	a nucleotic	le sequence <	SEQ ID 55	> was identif	ied:	
10			TTTCACGTTA				
			CTTGCCTTCC				
			CCCTCAAAAT				
			ATCGGCGGAC				
15			CGTCATCAAA				
			CGCAGTTCGG				
			GTTGCGCCCA				
			CAACGGCAAA ACAGCATTAT				
20			ATTAAAATCT				
20			AGCCGATTCC				
			TCCGCCGCAG				
			GAAGAAAANT				
			CGTCAAACCC				
25			ACCTCCAAAN				
			CGCAAATTGG TGCCTTTACC				
			TCGGCGGCAT				
			NGGTTTACCA				
30		NCGGCGCACT	ACCTACCATA	GCCTTCGCCT	TGCTCGCCGT	TTGGCTGATA	
	1051	CGCAAACAGG	AAAAACGCTA	A			
	This encodes a pr	otein havin	g amino acio	l sequence <	SEQ ID 56>	:	
			QMAVMAVYAL				
25	· 51 (GYTALKMXAR	AYELMPLAVL AIATVALGEW	1GGLVSXSQL	AAGSELXVIK	ASGMSTRKLL	
35			EMLPDHTLLG				
			EDKVEVSIAA				
	251	YIRHLOXXSO	NTRIYAIAWW	RKLVYPAAAW	VMALVAFAFT	POTTRHGNMG	
	301	LKXFGGICLG	LLFHLAGRLF	XFTSQLYGIP	PFLXGALPTI	AFALLAVWLI	
40		RKQEKR*					
	OPE112a and OR	2F112-1 ch	ow 96 3% id	entity in 326	sa overlan:		

ORF112a and ORF112-1 show 96.3% identity in 326 aa overlap:

	orf112a.pep	MNLISRYIIRQMAVMAVYALLAFLALYSFFEILYETGNLGKGSYGIWEMXGYTALKMXAR
45	orf112-1	MNLISRYIIRQMAVMAVYALLAFLALYSFFEILYETGNLGKGSYGIWEMLGYTALKMPAR
15	orf112a.pep	AYELMPLAVLIGGLVSXSQLAAGSELXVIKASGMSTKKLLLILSQFGF1FAIATVALGEW
	orf112-1	AYELIPLAVLIGGLVSLSQLAAGSELTVIKASGMSTKKLLLILSQFGFIFAIATVALGEW
50	orf112a.pep	VAPTLSQKAENIKAAAINGKISTGNTGLWLKEKNSIINVREMLPDHTLLGIKIWARNDKN
	orf112-1	VAPTLSQKAENIKAAAINGKISTGNTGLWLKEKNSXINVREMLPDHTLLGIKIWARNDKN
55	orf112a.pep	ELAEAVEADSAVLNSDGSWQLKNIRRSTLGEDKVEVSIAAEEXWPISVKRNLMDVLLVKP
55	orf112-1	ELAEAVEADSAVLNSDGSWQLKNIRRSTLGEDKVEVSIAAEENWPISVKRNLMDVLLVKP
	orf112a.pep	DQMSVGELTTYIRHLQXXSQNTRIYAIAWWRKLVYPAAAWVMALVAFAFTPQTTRHGNMG
60	orf112-1	DQMSVGELTTYIRHLQNNSQNTRIYAIAWWRKLVYPAAAWVMALVAFAFTPQTTRHGNMG
	orf112a.pep	LKXFGGICLGLLFHLAGRLFXFTSQLYGIPPFLXGALPTIAFALLAVWLIRKQEKRX

H(t)

orf112-1

LKLFGGICXGLLFHLAGRLFGFTSQL

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 13

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 57>

```
..GCAGTAGCCG AAACTGCCAA CAGCCAGGGC AAAGGTAAAC AGGCAGGCAG
                       TTCGGTTTCT GTTTCACTGA AAACTTCAGG CGACCTTTGC GGCAAACTCA
                 51
                101
                       AAACCACCCT TAAAACTTTG GTCTGCTCTT TGGTTTCCCT
                                                                    GAGTATGGTA
10
                       TTGCCTGCCC ATGCCCAAAT TACCACCGAC AAATCAGCAC CTAAAAACCA
                151
                201
                       GCAGGTCGTT ATCCTTAAAA CCAACACTGG TGCCCCCTTG GTGAATATCC
                251
                       AAACTCCGAA TGGACGCGGA TTGAGCCACA ACCGCTA.TA CGCATTTGAT
                301
                       GTTGACAACA AAGGGGCAGT GTTAAACAAC GACCGTAACA ATAATCCGTT
                351
                       TGTGGTCAAA GGCAGTGCGC AATTGATTTT GAACGAGGTA CGCGGTACGG
                401
                       CTAGCAAACT CAACGCCATC GTTACCGTAG GCGGTCAAAA GGCCGACGTG
                       ATTATTGCCA ACCCCAACGG CATTACCGTT AATGGCGGCG GCTTTAAAAA
                451
                501
                       TGTCGGTCGG GGCATCTTAA CTACCGGTGC GCCCCAAATC GGCAAAGACG
                551
                       GTGCACTGAC AGGATTTGAT GTGCGTCAAG GCACATTGGA CCGTAGRAGC
                601
                       AGCAGGTTGG AATGATAAAG GCGGAGCmrm yTACACCGGG GTACTTGCTC
20
                       GTGCAGTTGC TTTGCAGGGG AAATTWIRINGG GTAAA.AACT GGCGGTTTCT
                651
                701
                       ACCGGTCCTC AGAAAGTAGA TTACGCCAGC GGCGAAATCA GTGCAGGTAC
                       GGCAGCGGGT ACGAAACCGA CTATTGCCCT TGATACTGCC GCACTGGGCG
                751
                       GTATGTACGC CGACAGCATC ACACTGATTG CCAATGAAAA AGGCGTAGGC
                801
                851
                       GTCTAA
```

25 This corresponds to the amino acid sequence <SEQ ID 58; ORF114>:

```
1 ..AVAETANSQG KGKQAGSSVS VSLKTSGDLC GKLKTTLKTL VCSLVSLSMV
51 LPAHAQITTD KSAPKNQQVV ILKTNTGAPL VNIQTPNGRG LSHNRXYAFD
101 VDNKGAVLNN DRNNNPFVVK GSAQLILNEV RGTASKLNGI VTVGGQKADV
151 IIANPNGITV NGGGFKNVGR GILTTGAPQI GKDGALTGFD VVKAHWTVXA
30 201 AGWNDKGGAX YTGVLARAVA LQGKXXGKXL AVSTGPQKVD YASGEISAGT
251 AAGTKPTIAL DTAALGGMYA DSITLIANEK GVGV*
```

Further work revealed the complete nucleotide sequence <SEQ ID 59>:

	1	ATGAATAAAG	GTTTACATCG	CATTATCTTT	AGTAAAAAGC	ACAGCACCAT
	 51	GGTTGCAGTA	GCCGAAACTG	CCAACAGCCA	GGGCAAAGGT	AAACAGGCAG
35	101	GCAGTTCGGT	TTCTGTTTCA	CTGAAAACTT	CAGGCGACCT	TTGCGGCAAA
	151	CTCAAAACCA	CCCTTAAAAC	TTTGGTCTGC	TCTTTGGTTT	CCCTGAGTAT
	201	GGTATTGCCT	GCCCATGCCC	AAATTACCAC	CGACAAATCA	GCACCTAAAA
	251	ACCAGCAGGT	CGTTATCCTT	AAAACCAACA	CTGGTGCCCC	CTTGGTGAAT
	301	ATCCAAACTC	CGAATGGACG	CGGATTGAGC	CACAACCGCT	ATACGCAGTT
40	351	TGATGTTGAC	AACAAAGGGG	CAGTGTTAAA	CAACGACCGT	AACAATAATC
•	401		CAAAGGCAGT			
•	451	ACGGCTAGCA	AACTCAACGG	CATCGTTACC	GTAGGCGGTC	AAAAGGCCGA
•	501		GCCAACCCCA			
	551	AAAATGTCGG	TCGGGGCATC	TTAACTACCG	GTGCGCCCCA	AATCGGCAAA
45	601	GACGGTGCAC	TGACAGGATT	TGATGTGCGT	CAAGGCACAT	TGACCGTAGG
	651	AGCAGCAGGT	TGGAATGATA	AAGGCGGAGC	CGACTACACC	GGGGTACTTG
	701	CTCGTGCAGT	TGCTTTGCAG	GGGAAATTAC	AGGGTAAAAA	CCTGGCGGTT
	751		CTCAGAAAGT			
	801		GGTACGAAAC			
50	851	GCGGTATGTA	CGCCGACAGC	ATCACACTGA	TTGCCAATGA	AAAAGGCGTA
•	901	+	ATGCCGGCAC			
	951	TTCGTCAGGC	CGCATTGAAA	ACAGCGGCCG	CATCGCCACC	ACTGCCGACG
	1001		TTCACCGACT			
	1051		CATTTATCTC			
55	1101		GAGACGGGAG			
	1151		CGGCAGTCGC			
	1201	AATTTGGTGA	TTGAGAGCAA	AACTAATGTG	AACAATGCCA	AAGGCCCGGC

	1251	TACTCTGTCG	GCCGACGGCC	GTACCGTCAT	CAAGGAGGCC	AGTATTCAGA
	1301	CTGGCACTAC	CGTATACAGT	TCCAGCAAAG	GCAACGCCGA	ATTAGGCAAT
1	1351	AACACACGCA	TTACCGGGGC	AGATGTTACC	GTATTATCCA	ACGGCACCAT
	1401	CAGCAGTTCC	GCCGTAATAG	ATGCCAAAGA	CACCGCACAC	ATCGAAGCAG
5	1451			GCTTCAACAG		
	1501			CGGCAAGCAG		
	1551	TAACATTACT	GCCAAAACTA	CCAATCTGAA	TACTCCCGGC	AATCTGTATG
	1601	TTCATACAGG	TAAAGATCTG	AATTTGAATG	TTGATAAAGA	TTTGTCTGCC
10	1651	GCCAGCATCC	ATTTGAAATC	GGATAACGCT	GCCCATATTA	CCGGCACCAG
10	1701			AAGACATGGG		
	1751 1801			CGTACCAACT		
	1851			GCTTCGCAAT TGCAGGGCAA		
	1901			CATGTATCCT		
15	1951			CCTGACAGCC		
	2001			TGAAAGCAGA		
	2051	CTTCAGGAGA	TATTACGTTG	GTTGCCGGCA	ACGGTATTCA	GCTTGGTGAC
• • •	2101			CAACGGAAAA		
	2151	CGGTGGTAAT	GCCGACTTAA	AAAACCTTAA	CGTCCATGCC	AAAAGCGGGG
20	2201	CATTGAACAT	TCATTCCGAC	CGGGCATTGA	GCATAGAAAA	TACCAAGCTG
	2251	GAGTCTACCC	ATAATACGCA	TCTTAATGCA	CAACACGAGC	GGGTAACGCT
	2301			CACACCGTCA		
•	2351			CTGCCTTCTG		
	2401			GCGCTATTCC		
25	2451			ACCTTACTGC		
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2501 2551			ACCGTTTCGA		
	2601	CACAMITAA	AMCCALIGGC	CGGACGGCTG CCAACCGCAT	CACTCCCCAT	ACCCACCTCA
30	2651			TTGCTGTTGT		
30	2701			TTCCTCATTG		
	2751			ATTTAAGAGG		
	2801	AAAACTTGGT	TGTCGCCACC	ACCAAAGGCA	AGTTGAATAT	CGAAGCCGTA
•	2851			TTTTCCTACA		
26	2901			AACAGCAGAT		
35	2951	CGCCTAAAAG	CAAGCTGATT	CCAACCCTGC	AAGAAGAACG	CGACCGTCTC
•	3001 3051			CAACAAGGAA		
	3101			CCAAGCTTTC ATCAGCGGTT		
•	3151			AGGCGTATTG		
40	3201			ACGGCATAAC		
	3251			TACGACAAAG		
	3301	CGTTTGACCG	GACGTACAGG	GGTAAGTATT	CATGCAGCTG	CGGCACTCGA
	3351			GTGCATCCGA		
45	3401			AGTGATATTG		
45	3451 3501			AACCAAAGGT CCCGCGACCA		
	3551			ATAACGCTTC		
:	3601			TGCCCCTGCA		
	3651			TGGCAGAAGA		
50	3701			CGCTTTATCG		
	3751			GAACGAAACC		
	3801	CGCCCAAACT	GCAGCCACCC	GTTCAGGCTG	GGATACCGTG	CTCGAAGGTA
	3851			GCCGGTGCGG		
	3901			GAAAATTATC		
55	3951			TAGAAACCAA		
	4001			ATCGAAACGC		
;	4051			GACCGCCCCC		
3	4101 4151			CCGAAATCGA CTCCAAGTAG		
60	4201			TAAATGGGAC		
	4251			TTACCATAAT	_	
	4301			GGCGGTGTAG		
	4351			CGCCACAACG		
	4401			AAACCGCTGC		
65	4451			AATAATAAAG		
	4501			TACGGTCAAG		
	4551			AGATGGGCGC		
	4601			TTCAGCAGTA		
20	4651			TACCAATCTC		
70	4701			ACGGCGGCAG		
	4751			GTTAATAGCT		
	4801	AAAATCAAAA	CAACCTTCAG	CGACGATTAT	GTTGCCAAAC	MGTTCGCCCA

•	4851	CGCTTTGGCT	GGGTGTGTTA	GCGGATTGGT	ACAAGGAAAA	TGTAAAGACG
	4901	GGGCAATTGG	CGCAGCAGTT	GGGGAAATCG	TAGCCGACTC	CATGCTTGGC
	4951	GGCAGAAACC	CTGCTACACT	CAGCGATGCG	GAAAAGCATA	AGGTTATCAG
	5001	TTACTCGAAG	ATTATTGCCG	GCAGCGTGGC	GGCACTCAAC	GGCGGCGATG
5	5051	TGAATACTGC	GGCGAATGCG	GCTGAGGTGG	CGGTAGTGAA	TAATGCTTTG
	5101	AATTTTGACA	GTACCCCTAC	CAATGCGAAA	AAGCATCAAC	CGCAGAAGCC
	5151	CGACAAAACC	GCACTGGAAA	AAATTATCCA	AGGTATTATG	CCTGCACATG
	5201	CAGCAGGTGC	GATGACTAAT	CCGCAGGATA	AGGATGCTGC	CATTTGGATA
	5251	AGCAATATCC	GTAATGGCAT	CACAGGCCCG	ATTGTGATTA	CCAGCTATGG
10	5301	GGTTTATGCT	GCAGGTTGGA	CAGCTCCGCT	GATCGGTACA	GCGGGTAAAT
	5351	TAGCTATCAG	CACCTGCATG	GCTAATCCTT	CTGGTTGTAC	TGTCATGGTC
	5401	ACTCAGGCTG	CCGAAGCGGG	CGCGGGAATC	GCCACGGGTG	CGGTAACGGT
	5451	AGGCAACGCT	TGGGAAGCGC	CTGTGGGGGC	GTTGTCGAAA	GCGAAGGCGG
	5501	CCAAGCAGGC	TATACCAACC	CAGACAGTTA	AAGAACTTGA	TGGCTTACTA
15	5551	CAAGAATCAA	AAAATATAGG	TGCTGTAAAT	ACACGAATTA	ATATAGCGAA
	5601	TAGTACTACT	CGATATACAC	CAATGAGACA	AACGGGACAA	CCGGTATCTG
	5651	CTGGCTTTGA	GCATGTTCTT	GAGGGGCACT	TCCATAGGCC	TATTGCGAAT
	5701	AACCGTTCAG	TTTTTACCAT	CTCCCCAAAT	GAATTGAAGG	TTATACTTCA
	5751	AAGTAATAAA	GTAGTTTCTT	CTCCCGTATC	GATGACTCCT	GATGGCCAAT
20	5801	ATATGCGGAC	TGTCGATGTA	GGAAAAGTTA	TTGGTACTAC	TTCTATTAAA
	5851	GAAGGTGGAC	AACCCACAAC	TACAATTAAA	GTATTTACAG	ATAAGTCAGG
	5901	AAATTTGATT	ACTACATACC	CAGTAAAAGG	AAACTAA	

This corresponds to the amino acid sequence <SEQ ID 60; ORF114-1>:

```
MNKGLHRIIF SKKHSTMVAV AETANSQGKG KQAGSSVSVS LKTSGDLCGK
25
                    LKTTLKTLVC SLVSLSMVLP AHAQITTDKS APKNQOVVIL KTNTGAPLVN
                    IQTPNGRGLS HNRYTQFDVD NKGAVLNNDR NNNPFVVKGS AQLILNEVRG
               101
                    TASKLNGIVT VGGQKADVII ANPNGITVNG GGFKNVGRGI LTTGAPQIGK
               201
                    DGALTGFDVR QGTLTVGAAG WNDKGGADYT GVLARAVALQ GKLQGKNLAV
                    STGPOKVDYA SGEISAGTAA GTKPTIALDT AALGGMYADS ITLIANEKGV
               251
30
                    GVKNAGTLEA AKQLIVTSSG RIENSGRIAT TADGTEASPT YLSIETTEKG
               301
               351
                    AAGTFISNGG RIESKGLLVI ETGEDISLRN GAVVQNNGSR PATTVLNAGH
                    NLVIESKTNV NNAKGPATLS ADGRTVIKEA SIQTGTTVYS SSKGNAELGN
               401
                    NTRITGADVT VLSNGTISSS AVIDAKDTAH IEAGKPLSLE ASTVTSDIRL
               451
                    NGGSIKGGKQ LALLADDNIT AKTTNLNTPG NLYVHTGKDL NLNVDKDLSA
               501
35
               551
                    ASIHLKSDNA AHITGTSKTL TASKDMGVEA GSLNVTNTNL RTNSGNLHIQ
                    AAKGNIQLRN TKLNAAKALE TTALQGNIVS DGLHAVSADG HVSLLANGNA
               601
               651
                    DFTGHNTLTA KADVNAGSVG KGRLKADNTN ITSSSGDITL VAGNGIQLGD
               701
                    GKQRNSINGK HISIKNNG ADLKNLNVHA KSGALNIHSD RALSIENTKL
               751
                    ESTHNTHLNA QHERVTLNQV DAYAHRHLSI TGSQIWQNDK LPSANKLVAN
                    GVLALNARYS QIADNTTLRA GAINLTAGTA LVKRGNINWS TVSTKTLEDN
40
               801
               851
                    AELKPLAGRL NIEAGSGTLT IEPANRISAH TDLSIKTGGK LLLSAKGGNA
               901
                    GAPSAQVSSL EAKGNIRLVT GETDLRGSKI TAGKNLVVAT TKGKLNIEAV
                    NNSFSNYFPT QKAAELNQKS KELEQQIAQL KKSSPKSKLI PTLQEERDRL
               951
                    AFYIQAINKE VKGKKPKGKE YLQAKLSAQN IDLISAQGIE ISGSDITASK
               1001
45
                    KLNLHAAGVL PKAADSEAAA ILIDGITDQY EIGKPTYKSH YDKAALNKPS
               1051
                    RLTGRTGVSI HAAAALDDAR IIIGASEIKA PSGSIDIKAH SDIVLEAGON
               1101
                     DAYTFLKTKG KSGKIIRKTK FTSTRDHLIM PAPVELTANG ITLQAGGNIE
              1151
               1201
                    ANTTRFNAPA GKVTLVAGEE LQLLAEEGIH KHELDVQKSR RFIGIKVGKS
                    NYSKNELNET KLPVRVVAQT AATRSGWDTV LEGTEFKTTL AGADIQAGVG
               1251
50
                    EKARADAKII LKGIVNRIQS EEKLETNSTV WQKQAGRGST IETLKLPSFE
               1301
                     SPTPPKLTAP GGYIVDIPKG NLKTEIEKLA KQPEYAYLKQ LQVAKNVNWN
               1351
                     QVQLAYDKWD YKQEGLTRAG AAIVTIIVTA LTYGYGATAA GGVAASGSST
               1401
               1451
                    AAAAGTAATT TAAATTVSTA TAMQTAALAS LYSQAAVSII NNKGDVGKAL
                     KDLGTSDTVK OIVTSALTAG ALNOMGADIA QLNSKVRTEL FSSTGNQTIA
               1501
                     NLGGRLATNL SNAGISAGIN TAVNGGSLKD NLGNAALGAL VNSFQGEAAS
55
               1551
               1601
                     KIKTTFSDDY VAKQFAHALA GCVSGLVQGK CKDGAIGAAV GEIVADSMLG
                     GRNPATLSDA EKHKVISYSK IIAGSVAALN GGDVNTAANA AEVAVVNNAL
               1651
                     NFDSTPTNAK KHQPQKPDKT ALEKIIQGIM PAHAAGAMTN PQDKDAAIWI
               1701
               1751
                     SNIRNGITGP IVITSYGVYA AGWTAPLIGT AGKLAISTCM ANPSGCTVMV
60
                     TOAAEAGAGI ATGAVTVGNA WEAPVGALSK AKAAKQAIPT QTVKELDGLL
               1801
                     QESKNIGAVN TRINIANSTT RYTPMRQTGQ PVSAGFEHVL EGHFHRPIAN
               1851
               1901
                     NRSVFTISPN ELKVILQSNK VVSSPVSMTP DGQYMRTVDV GKVIGTTSIK
                    EGGQPTTTIK VFTDKSGNLI TTYPVKGN*
```

Computer analysis of this amino acid sequence predicts a transmembrane region and also gives the

65 following results:

1101

1151

1201

Homology with a predicted ORF from N. meningitidis (strain A)

ORF114 shows 91.9% identity over a 284aa overlap with an ORF (ORF114a) from strain A of N. meningitidis:

	A.			10	20	30	40
5	orf114.pep		AVAET	ansogkgkoæ	AGSSVSVSLK	TSGDLCGKLKT	TLKTLVC
	12	•	· HIII	#17 F F F F F F F F F F		11111111111	
	orf114a	MNKGLHRIIFSK	KHSTMVAVAET	ansogkgko <i>f</i>	agssvsvslk	TSGDLCGKLKT	TLKTLVC
	***	10	20	. 30	40	50	60
•							
10		50	60	70	80	90	· 100
	orfl14.pep	SLVSLSMVLPAH	AOITTDKSAPK	NOOVVILKT	NTGAPLVNIQ	TPNGRGLSHNF	XYAFDVD
12.35		1111111	іннинні	1 3 13 11 11	1111111111	11111111111	1111
	orf114a	SLVSLSMXXXXX	KOITTOKSAPK	NXOVVILKT	NTGAPLVNIO	TPNGRGLSHNP	YTQFDVD
	0111110	70	80	90	100	110	120
15	•	••					
13		110	120	130	140	150	160
٠.	e=#114 non	NKGAVLNNDRNN					
1.77	orf114.pep	111111111111	111.11111111 111.1111111	THEARCIN	1111111111		
7,77,		NKGAVLNNDRNN			LIIIIIIIIIII	COKADUTTANI	NCTTVNC
20	orf114a				160	170	180
20,	. 13 154	130	140	150	100	170	100
	ferne	1.1	100	100	200	210	220
i = i		170	180	190	200		
	orfl14.pep	GGFKNVGRGILT	TGAPQIGKDGA	LIGIDVVKA	HWIVAAAGWA	IDVGGWY I I GAI	WKWAND
	· .	1111111111111	11111111	::			TITLE TO
25	orf114a	GGFKNVGRGILT				IDKGGADITGVI	AKAVALQ
	1	190	200	210	220	230	240
		230	240	250	260	270	280
	orf114.pep	GKXXGKXLAVST	GPQKVDYASGE	ISAGTAAGT	KPTIALDTA	ALGGMYADSITI	LIANEKGV
30		- 11 11 11111	111111111111	11111111	11111111111		
	. orfll4a	GKLQGKNLAVST		ISAGTAAGT	KPTIALDTA	ALGGMYADSITI	LIAXEKGV
		250	260	270	280	290 ·	300
·,	•			•			
* •	•				•		
35 -	orf114.pep	GVX					
35 .	orf114.pep	1.1			•		
35	orf114.pep	1.1	QLIVTSSGRIE	NSGRIATTA	DGTEASPTYI	LXIETTEKGAX	GTFISNGG
35	-	-	QLIVTSSGRIE 320	NSGRIATTA 330	DGTEASPTYI 340	LXIETTEKGAX0 350	GTFISNGG 360
35	orfll4a	II GVKNAGTLEAAK 310	320	330	340	350	GTFISNGG 360
35	orfl14a	II GVKNAGTLEAAK 310	320	330	340	350	GTFISNGG 360
35	-	II GVKNAGTLEAAK 310	320	330	340	350	GTFISNGG 360
35	orfl14a	II GVKNAGTLEAAK 310	320	330	340	350	GTFISNGG 360
35	orf114a The complete leng	GVKNAGTLEAAK 310 gth ORF114a nu	320 cleotide seq	330 uence <se< th=""><th>340 Q ID 61> i</th><th>350 is: ACAGCACCAT</th><th>STFISNGG 360</th></se<>	340 Q ID 61> i	350 is: ACAGCACCAT	STFISNGG 360
35 40	orf114a The complete leng	GVKNAGTLEAAK 310 gth ORF114a nu	320 cleotide seq	330 uence <se< th=""><th>340 Q ID 61> i</th><th>350 is: ACAGCACCAT</th><th>STFISNGG 360</th></se<>	340 Q ID 61> i	350 is: ACAGCACCAT	STFISNGG 360
35 40	orf114a The complete leng	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT	320 cleotide seq	330 uence <se acagcca="" ag="" gg<="" ratcttt="" th=""><th>340 Q ID 61> STAAAAAGC 1 SGCAAAGGT 1</th><th>350 is: ACAGCACCAT AAACAGGCAG</th><th>GTFISNGG 360</th></se>	340 Q ID 61> STAAAAAGC 1 SGCAAAGGT 1	350 is: ACAGCACCAT AAACAGGCAG	GTFISNGG 360
35 40	orf114a The complete leng	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC	320 cleotide sequences carranacte ccarranacte ccarrana	330 uence <se aaaactt="" acagcca="" ag="" ca<="" gg="" patcttt="" th=""><th>340 Q ID 61> STAAAAAGC A GCAAAGGT A AGGCGACCT S</th><th>350 is: ACAGCACCAT AAACAGGCAG ITGCGGCAAA</th><th>GTFISNGG 360</th></se>	340 Q ID 61> STAAAAAGC A GCAAAGGT A AGGCGACCT S	350 is: ACAGCACCAT AAACAGGCAG ITGCGGCAAA	GTFISNGG 360
35 40	orf114a The complete leng 1	GVKNAGTLEAAK 310 oth ORF114a nu atgaataaag gtti ggttgcagta gccc gcagttcggt ttci	320 cleotide sequences carranacts ccarrenates ctarranacts ctarranacts ctarranacts ctarranacts ctarranacts ctarranacts	330 uence <se aaaactt="" acagcca="" ag="" ca="" fatcttt="" gg="" ggtctgc="" th="" to<=""><th>340 CQ ID 61> TAAAAAGC 1 GCCAAAGGT 1 GGCGACCT TTTGGTTT</th><th>350 is: ACAGCACCAT AAACAGGCAG ITGCGGCAAA CCCTGAGTAT</th><th>GTFISNGG 360</th></se>	340 CQ ID 61> TAAAAAGC 1 GCCAAAGGT 1 GGCGACCT TTTGGTTT	350 is: ACAGCACCAT AAACAGGCAG ITGCGGCAAA CCCTGAGTAT	GTFISNGG 360
40	orf114a The complete leng 1 # 51 6 101 6	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GGTTCGGT TTCT CTCAAAACCA CCCT	320 cleotide sequence carranacts ccarranacts ctarranacts ctarranacts ctarranacts ctarranacts carranacts carran	330 uence <se aaaactt="" acagcca="" ag="" ca="" gg="" ggtctgc="" tatcttt="" th="" to<=""><th>340 CQ ID 61> TAAAAAGC 1 GGCAAAGGT 1 GGCGACCT TITTGGTTT GACAAATCA</th><th>350 is: ACAGCACCAT AAACAGGCAG ITGCGGCAAA CCCTGAGTAT GCACCTAAAA</th><th>GTFISNGG 360</th></se>	340 CQ ID 61> TAAAAAGC 1 GGCAAAGGT 1 GGCGACCT TITTGGTTT GACAAATCA	350 is: ACAGCACCAT AAACAGGCAG ITGCGGCAAA CCCTGAGTAT GCACCTAAAA	GTFISNGG 360
40 45	orf114a The complete leng 1	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GCAGTTCGGT TTCT CTCAAAACCA CCCT GGNATTNCNN NNCACCANCAGGT CGTT	320 cleotide sequence carries constitute con	330 uence <se aaactt="" acagcca="" accaaca="" ag="" ca="" cg="" ct<="" gg="" ggtctgc="" patcttt="" tc="" th="" ttaccac=""><th>340 EQ ID 61> ETAAAAAGC EGCAAAGGT EGCGACCT ETTTGGTTT EACAAATCA EGGTGCCCC</th><th>350 is: ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT</th><th>GTFISNGG 360</th></se>	340 EQ ID 61> ETAAAAAGC EGCAAAGGT EGCGACCT ETTTGGTTT EACAAATCA EGGTGCCCC	350 is: ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT	GTFISNGG 360
40	orf114a The complete leng 1	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GCAGTTCGGT TTCT CTCAAAACCA CCCT AGCANCAGGT CGTT ATCCAACGGT CGTA	320 Cleotide sequence CATTE CARCES CATTE CARCES CAR	330 uence <se aaactt="" acagcca="" accaaca="" ag="" attcac="" attgagc="" ca="" ca<="" cc="" ct="" gg="" ggtctgc="" patcttt="" tc="" th=""><th>340 EQ ID 61> ETAAAAAGC 1 EGCAAAGGT 1 EGCGCACCT 1 ETTTGGTTT 1 EGCTGCCC 1 EGGTGCCC 1 EGCAACCGCT 1</th><th>350 is: ACAGCACCAT AAACAGGCAG ITGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT</th><th>GTFISNGG 360</th></se>	340 EQ ID 61> ETAAAAAGC 1 EGCAAAGGT 1 EGCGCACCT 1 ETTTGGTTT 1 EGCTGCCC 1 EGGTGCCC 1 EGCAACCGCT 1	350 is: ACAGCACCAT AAACAGGCAG ITGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT	GTFISNGG 360
40	orf114a The complete leng 1	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GCAGTTCGGT TTCT CTCAAAACCA CCCT GCAATTNCNN NNCI ACCANCAGGT CGTA	320 Cleotide sequence CATE CAACTG CATE CAACTG CCAE CATTCA CTG TAAAAC CTTC INTNCCC AAAI CATCCTT AAAI CATGACG CGG	330 uence <se aaaactt="" acagcca="" accaaca="" ag="" attgagc="" ca="" ca<="" catcttt="" cg="" ct="" gg="" ggtctgc="" taccac="" tc="" th=""><th>340 EQ ID 61> ETAAAAAGC 1 EGCAAAGGT 1 EGCGACCT 1 EACAAATCA EGGTGCCC 1 EACAACCGCT 1 EACAACCGCT 1 EACAACCGCT 1</th><th>350 is: ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC</th><th>GTFISNGG 360</th></se>	340 EQ ID 61> ETAAAAAGC 1 EGCAAAGGT 1 EGCGACCT 1 EACAAATCA EGGTGCCC 1 EACAACCGCT 1 EACAACCGCT 1 EACAACCGCT 1	350 is: ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC	GTFISNGG 360
40	orfl14a The complete leng 1	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GCAGTTCGGT TTCT CTCAAAACCA CCCT GCAACAGC CGTT ACCAACAGC CGTT ACCAACAGC CGTT GGATGTTGAC AACC	320 Cleotide sequence carries cancer	330 uence <se aaactt="" acagcca="" accaaca="" actgagc="" ca="" cg="" ct="" ct<="" gg="" ggtctgc="" taccac="" tc="" th=""><th>340 CQ ID 61> CGCAAAGGT CGCGACCT CTTGGTTT CACAATCA CACACCCT ACCACCGCT CTTGAACGA</th><th>350 is: ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT</th><th>GTFISNGG 360</th></se>	340 CQ ID 61> CGCAAAGGT CGCGACCT CTTGGTTT CACAATCA CACACCCT ACCACCGCT CTTGAACGA	350 is: ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT	GTFISNGG 360
40 45	orf114a The complete leng 1 # 51 6 101 6 201 6 251 7 301 8 351 7 401 6	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GCAGTTCGGT TTCT CTCAAAACCA CCCT ATCCAACCA CGAA ATCCAACTA CAAA ACGGCTAGGCA AACC	320 Cleotide sequence carries constructed carries carr	330 uence <se aaactt="" acagcca="" accaaca="" atgagc="" ca="" cg="" cgttaac="" ct="" gg="" ggtctgc="" gt<="" taccac="" tc="" tgttaaa="" th="" tt=""><th>340 EQ ID 61> ETAAAAAGC 1 EGCAAAGGT 1 EGCGACCT 1 EACAACGCT 1 ACAACGCT 1 ACAACGCT 1 ACGACGGT 2 ETTGAACGC 1 ETTGAACGC 1</th><th>350 ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA</th><th>GTFISNGG 360</th></se>	340 EQ ID 61> ETAAAAAGC 1 EGCAAAGGT 1 EGCGACCT 1 EACAACGCT 1 ACAACGCT 1 ACAACGCT 1 ACGACGGT 2 ETTGAACGC 1	350 ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA	GTFISNGG 360
40	orfl14a The complete leng 1 # 51 6 101 6 151 6 201 6 251 # 301 # 351 7 401 6	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GGAATTCGGT TTCT TCAAAACCA CCCT ATCCAAACTC CGAI ATCCAAACTC CGAI GGATGTTGAC AACA CGTTTTCTGGT CAAA ACGGCTAGGA AACCCCTTGATTATT GCCC	320 cleotide sequence carrianacte ccarrianace ctromante	330 uence <se aaactt="" acagcca="" accaaca="" ag="" atcttt="" attgagc="" ca="" caattga="" cg="" cgttaaa="" cgttacc="" ct="" gcattacc="" gccattacc="" gctatcc="" gg="" gg<="" ggtctgc="" tc="" th="" tt="" ttaccac=""><th>340 EQ ID 61> ETAAAAAGC EGCAAAGGT ETTTGGTTT EACAAATCA EGGTGCCCC EACAACGGT EACGACGGT EACGACGT EACGACGGT EACGACGGT EACGACGGT EACGACGGT EACGACGGT EACGACGGT EAC</th><th>350 ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA</th><th>GTFISNGG 360</th></se>	340 EQ ID 61> ETAAAAAGC EGCAAAGGT ETTTGGTTT EACAAATCA EGGTGCCCC EACAACGGT EACGACGGT EACGACGT EACGACGGT EACGACGGT EACGACGGT EACGACGGT EACGACGGT EACGACGGT EAC	350 ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA	GTFISNGG 360
40 45	orfl14a The complete leng 1 # 51 6 101 6 151 6 201 6 251 # 301 # 351 7 401 6 551 6	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GGAATTCGAT ATCCAAACCA CCTT ATCCAAACTC CGAI ATCCAACTC CGAI ATCCAACTC CGAI ACGTTTCTGGT CAAI ACGGCTAGGA AACCCGTTATTT GCCC AAAAATGTCGG TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGAAAAATGTCGGT TCGAAAAAATGTCGGT TCGAAAAAATGTCGGT TCGAAAAAATGTCGGT TCGAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCGGT TCGCAAAAATGTCAAAATGTCAAAAATGTCAAAAATGTCAAAAATGTCAAAAAAATGTCAAAAAATGTCAAAAATGTCAAAAAATGTCAAAAATGTCAAAAAATGTCAAAAAAAA	Cleotide sequences of the control of	330 uence <se aaactt="" acagcca="" accaaca="" actatcg="" attgagc="" ca="" cattaca="" cattacc="" cg="" ct="" gcattac="" gg="" ggtcac="" gt="" gt<="" th=""><th>340 EQ ID 61> ETAAAAAGC EGCAAAGGT EACAAATCA EACACGCT EACAACCGCT EACAACCGCT ETTGAACGA ETTGAACGA ETTGAACGA ETTGAATGGC ETTTAATGGC</th><th>350 is: ACAGCACCAT AAACAGGCAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGT AAAAGCCGA GGCGGCTTTA AATCGCAAAA</th><th>GTFISNGG 360</th></se>	340 EQ ID 61> ETAAAAAGC EGCAAAGGT EACAAATCA EACACGCT EACAACCGCT EACAACCGCT ETTGAACGA ETTGAACGA ETTGAACGA ETTGAATGGC ETTTAATGGC	350 is: ACAGCACCAT AAACAGGCAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGT AAAAGCCGA GGCGGCTTTA AATCGCAAAA	GTFISNGG 360
40 45 50	orfl14a The complete leng 1	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GCAGTTCGGT TCCT CTCAAAACCA CCCT ATCCAAACTC CGAA ACCANCAGGT CGAA ACGATTCTGGT CAAA ACGGCTAGCA AACC CGTTGTTGTTGT GCCAAAACTC GCAAAAATGTCGG TCGG AAAAATGTCGG TCGG	320 cleotide sequence carried	330 uence <se aaactt="" acagcca="" accaaca="" ag="" attgagc="" ca="" cattaca="" cattgagc="" cg="" ct="" ct<="" gg="" gttaccac="" patcttt="" th=""><th>340 EQ ID 61> ETAAAAAGC EGCAAAGGT EGCGGCGCCC ACAACCGCT ACGACCGCT ETTGAACGA PAGGCGCCCA AAGGCACAT</th><th>350 is: ACAGCACCAT AAACAGGCAG ITGCGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA AGCGGCTTTA AATCGCAAA TGACCGGTAAG</th><th>GTFISNGG 360</th></se>	340 EQ ID 61> ETAAAAAGC EGCAAAGGT EGCGGCGCCC ACAACCGCT ACGACCGCT ETTGAACGA PAGGCGCCCA AAGGCACAT	350 is: ACAGCACCAT AAACAGGCAG ITGCGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA AGCGGCTTTA AATCGCAAA TGACCGGTAAG	GTFISNGG 360
40 45 50	orfl14a The complete leng 1	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GCAGTTCGGT TTCT TCAAAACCA CCCT ACCANCAGGT CGTT ACCANCAGGT CAAA ACGGCTAGCA AACC CGTTTCTGGT CAAA ACGGCTAGCA AACC AAAAATGTCGG TCGA AAAAATGTCGG TCGA AAGCAGCAGGT TGGA	320 Cleotide sequence carries constructed cannot construct analytication constructed carries c	330 uence <se aaactt="" acagcca="" accaaca="" attgagc="" ca="" caattga="" ccc="" ccc<="" cgt="" cgttaaa="" cgttacc="" ct="" gcattac="" gcgagc="" gcggagc="" gg="" ggtctgc="" gt="" tc="" th="" tt=""><th>TAAAAAGC AGCACACC AAGGCACAT AAGGCACACCACAC</th><th>350 is: ACAGCACCAT AAACAGGCAG ITGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA GGCGGCTTTA AATCGCAAA TGACCGTAGG</th><th>GTFISNGG 360</th></se>	TAAAAAGC AGCACACC AAGGCACAT AAGGCACACCACAC	350 is: ACAGCACCAT AAACAGGCAG ITGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA GGCGGCTTTA AATCGCAAA TGACCGTAGG	GTFISNGG 360
40 45 50	orfl14a The complete leng 1	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GCAGTTCGGT TTCT CTCAAAACCA CCCT ACCANCAGGT CGTT ATCAAACTC CGAA ACCANCAGGT CAAA ACGGCTAGCA AACC CGTGATTATT GCCC AAAATGTCGG TCGC AAAATGTCGG TCGC AGCAGCAGGT TGGC CTCGTGCAGT TGCC CTCGTGCAGT TGCC	Cleotide sequences of the sequences of t	330 uence <se aaaactt="" acagcca="" accaaca="" actatca="" actatca<="" actatcg="" acttaaa="" ag="" atcttt="" attgagc="" ca="" caattga="" cgttaac="" ct="" gg="" ggtctgc="" gt="" th="" ti="" to=""><th>340 EQ ID 61> ETAAAAAGC EGCAAAGGT ETTTGGTTT EGTGCCC ACGACCGCT ACGACCGCT ETTGAACGA FAGGCGGTC ETTAATGGC EGCGCCCA AAGGCACAT EGCGCCCA AAGGCACAT EGCGCCCCA EGCGCACAT EGCGCACAT EGCGCACAT EGCGCACAT EGCGCACAT EGCGCACAT EGCGCACAT</th><th>350 ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA AGCGCGTTTA AATCGCAAA TTGACCGTAGG GGGGTACTTG CCTGGCGGTT</th><th>GTFISNGG 360</th></se>	340 EQ ID 61> ETAAAAAGC EGCAAAGGT ETTTGGTTT EGTGCCC ACGACCGCT ACGACCGCT ETTGAACGA FAGGCGGTC ETTAATGGC EGCGCCCA AAGGCACAT EGCGCCCA AAGGCACAT EGCGCCCCA EGCGCACAT EGCGCACAT EGCGCACAT EGCGCACAT EGCGCACAT EGCGCACAT EGCGCACAT	350 ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA AGCGCGTTTA AATCGCAAA TTGACCGTAGG GGGGTACTTG CCTGGCGGTT	GTFISNGG 360
40 45 50	orf114a The complete leng 1	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GCAGTTCGGT TTCT CTCAAACCA CCCT ATCCAAACTC CGAA ATCCAAACTC CGAA ATCCAAACTC CGAA CGGTTTCTGGT CAAA ACGGCTAGCA AACC CGTGATTATT GCCC AAAATGTCGG TCGC GACGGTGCAGT TGGC CTCGTGCAGT TGCC CTCGTGCAGT TGCC CTCGTGCAGT TGCC CTCGTGCAGT TGCC CTCGTGCAGT TGCC CTCGTGCAGT TGCC CTCGTCCAGTC CTCC	320 Cleotide sequence carries can control can	330 uence <se aaactt="" ac<="" acagcca="" accaaca="" actaaca="" actatca="" actatcg="" ag="" atcttt="" attgagc="" ca="" caattga="" caattgc="" cgttaaa="" gcgttac="" gg="" ggtctgc="" gi="" gtgtgcgt="" tc="" th="" ti=""><th>340 EQ ID 61> ETAAAAAGC EGCAAAGGT ETTTGGTTT EACAATCA EACAACCGCT ETTGAACGA EACGCGCCCA EAGGCGCCCA EAGGCGCCCA EAGGCACAT EAGGCACAT</th><th>350 ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA AGCGGCTTTA AATCGCAAA TGACCGTAGG GGGGTACTGG GCGGTACTGG</th><th>GTFISNGG 360</th></se>	340 EQ ID 61> ETAAAAAGC EGCAAAGGT ETTTGGTTT EACAATCA EACAACCGCT ETTGAACGA EACGCGCCCA EAGGCGCCCA EAGGCGCCCA EAGGCACAT	350 ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA AGCGGCTTTA AATCGCAAA TGACCGTAGG GGGGTACTGG GCGGTACTGG	GTFISNGG 360
40 45 50	orfl14a The complete leng 1	GVKNAGTLEAAK 310 gth ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GCAGTTCGGT TTCT CTCAAAACCA CCCT GCAATTNCNN NNCI ACCANCAGGT CGAA ACCANCAGGT CGAA ACCACCAACTTCTGGT CAAA ACGGCTAGCA AACC CGTGATTATT GCCC AAAAATGTCGG TCGC GACGGTGCAC TGAC AGCAGCAGGT TGCC CTCGTGCAGT TGCC CTCGTGCAGT TGCC TCTCACGGCAGCG GGTC TACGGCAGCG GGTC TACGGCAGCG GGTC TACGGCAGCG GGTC TACGGCAGCG GGTC TACGGCAGCG GGTC TACGGCAGCG GGTC	320 Cleotide sequence carries cancer	330 uence <se aaactt="" acagcca="" actatca="" actatcg="" ag="" atcttt="" attgagc="" c<="" ca="" cac="" cactatcg="" cc="" cgttaca="" ctattgc="" cttacgc="" gcattac="" gcgagc="" gg="" ggtctgc="" gt="" tc="" th="" ti=""><th>340 CQ ID 61> CGCAAAGGT CGCGACCT CACAACCCT ACGACCGCT ACGACCGCT ACGACCGCT ACGACCGCT ACGACCGCT ACGACCGCT ACGACCGCT CACACCGCT CACACCGCT CACACCGCT CACACCGCCCCA CACACCGCCCCA CACACCCCCCCC</th><th>350 ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA GGCGCTTTA AATCGCAAAA TGACCGTAGG GGCGTACTGG</th><th>GTFISNGG 360</th></se>	340 CQ ID 61> CGCAAAGGT CGCGACCT CACAACCCT ACGACCGCT ACGACCGCT ACGACCGCT ACGACCGCT ACGACCGCT ACGACCGCT ACGACCGCT CACACCGCT CACACCGCT CACACCGCT CACACCGCCCCA CACACCGCCCCA CACACCCCCCCC	350 ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA GGCGCTTTA AATCGCAAAA TGACCGTAGG GGCGTACTGG	GTFISNGG 360
40 45 50	orfl14a The complete leng 1	GVKNAGTLEAAK 310 The ORF114a nu ATGAATAAAG GTTT GETTGCAGTA GCCC GEGATTCGGT TCCT ACCANCAGGT CGAT ATCCAAACTC CGAT ATCCAAACTC CGAT ATCCAAACTC CGAT ACCGCTAGCA AACT CGTTACTGGT TCGC GACGGTGCAC TGGC GACGGTGCAC TGGC TCTCTGCTGCAGT TGCC TCTACCGGTC CTCT TACGGCAGCG GGTT TCTACCGGTC CGCC GCCGCAGTGCAC CGCC GCCGCAGTGCAC CGCC TCTACCGGTC CCCC TCTACCGGTC CGCC GCCGCAGTGCAC CGCC GCCGCAGTGCAC CGCC TCCTACCGGTC CCCC TCTACCGGCCAGCG GGTT GCCCGCCAGTC CGCC GCCGCAGTAGTACCGCC GCCGCAGTAGTACCGCC GCCGCAGTAGGTACCCCC TCCCCCCCCC TCCCCCCCCCC	320 Cleotide sequence carries cancer	TATCTTT AGACAGCCA GGAAACTT CAACTACAC CGACTACA CTATTGAGC CAACTACA CTATTGAGC CAACTACA GGAGTTACA CTATTGAGC CAACTATAC ACTATTGC CAACTACAC CAACTGAGC CAACTGAGC CAACTGA TTACACC CAACTGA TATGAGC CAACTGA TATGAGC CAACTGA TATACACC ACCTATTGC CAACACTGA TATACACC ACCTATTGC CAACACTGA TATACACC ACCACTGA TATACACC ACCACTGA TATACACC ACCACTGA TATACACC ACCACTGA TATACACTGA TATACACTACAC	340 CQ ID 61> CTAAAAAGC CGCAAAGGT CACAACGCT CACAACGCT AACGACGCT CTTGATCA CACACCGCT CTTAATGGC CTTAATGGC CTTAATGGC CTTAATGGC CGCCCCA AAGGCACAT CACACCCT CACCCCAAAGCACAT CACCCCCAAAGCACAT CACCCCCAAAGCACAT CACCCCCAAACACACCCCAAACACACCCCCAAACACACCCC	ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA GGCGCTTTA AATCGCAAA TGACCGTAGG GGGGTACTTG CCTGGCGGTT TCAGTGCAGG GCCGCACTGG AAAAGGCGTA	GTFISNGG 360
40 45 50	orfl14a The complete leng 1 # 51 6 101 6 151 6 201 6 251 # 301 # 351 7 401 6 551 6 651 7 701 6 751 801 6 851 6 901 6	GVKNAGTLEAAK 310 The ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GGAGTTCGGT TTCT TCAAAACCA CCCT ACCANCAGGT CGTT ACCANCAGGT CGAA ACGGCTAGGA AAC CGTGATTTTTGG CAAA ACGGCTAGGA ACC CGTGATTATT GCC AAAATGTCGG TCGA AACAGCGTGCAC TGAC AGCAGCAGGT TGC TCTACCGGTC CTC TCACCGGTC CTC TCACCGGTC CGC GCCGCTATGTA ATG	Cleotide sequences of the control of	JANO LUENCE SE PATCTTT AG ACAGCCA GG AAAACTT CA GTTACCAC CG ACCAACA CT ATTGAGC CA CATTACAC CG ACTATCA CG ACTATCA GG ACTATCA GG ACTATCA GG ACTATCA GG ACTATCA GG ACTATCA GG ACTATCA CC ACTATCA CC ACTATCA CC ACACTATCA CC ACACTATCA CC ACACTGA TI CGAAGCG GG ACACTGA TI CGAAGCG GG	340 EQ ID 61> ETAAAAAGC EGCAAAGGT EGCCACCC EACACCGCT EACACCGCT EACGACCGCT ETTEAACGA EGTGCCCC ETTAATGGC EGTAAAGC EGGCACAT EACTACACC EGGTAAAAA ECGGCGCAAA ECGGCGCAAAAA ECGGCGCAAAAA ECGGCGCAAAAAA ECGGCGCAAAAAA ECGCGCAAAAAA ECGCGCAAAAAA ECGCCAATGACT ETTGATACT EGCCANTGA	ACAGCACCAT AAACAGGCAA TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTAGCCGGT AAAAGGCCGA AATCGGCAAA TGACCGTAGG GGGGTACTTG CCTGGCGTT TCAGTGCAGG GCCGCACTGG GCCGCACTGG AAAAGGCGTA TGATTGTGAC	GTFISNGG 360
40 45 50	orfl14a The complete leng 1 # 51 6 101 6 151 6 201 6 251 # 301 # 351 7 401 6 551 6 651 7 701 6 751 801 6 851 6 901 6	GVKNAGTLEAAK 310 The ORF114a nu ATGAATAAAG GTTT GGTTGCAGTA GCCC GGAGTTCGGT TTCT TCAAAACCA CCCT ACCANCAGGT CGTT ACCANCAGGT CGAA ACGGCTAGGA AAC CGTGATTTTTGG CAAA ACGGCTAGGA ACC CGTGATTATT GCC AAAATGTCGG TCGA AACAGCGTGCAC TGAC AGCAGCAGGT TGC TCTACCGGTC CTC TCACCGGTC CTC TCACCGGTC CGC GCCGCTATGTA ATG	Cleotide sequences of the control of	JANO LUENCE SE PATCTTT AG ACAGCCA GG AAAACTT CA GTTACCAC CG ACCAACA CT ATTGAGC CA CATTACAC CG ACTATCA CG ACTATCA GG ACTATCA GG ACTATCA GG ACTATCA GG ACTATCA GG ACTATCA GG ACTATCA CC ACTATCA CC ACTATCA CC ACACTATCA CC ACACTATCA CC ACACTGA TI CGAAGCG GG ACACTGA TI CGAAGCG GG	340 EQ ID 61> ETAAAAAGC EGCAAAGGT EGCCACCC EACACCGCT EACACCGCT EACGACCGCT ETTEAACGA EGTGCCCC ETTAATGGC EGTAAAGC EGGCACAT EACTACACC EGGTAAAAA ECGGCGCAAA ECGGCGCAAAAA ECGGCGCAAAAA ECGGCGCAAAAAA ECGGCGCAAAAAA ECGCGCAAAAAA ECGCGCAAAAAA ECGCCAATGACT ETTGATACT EGCCANTGA	ACAGCACCAT AAACAGGCAA TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTAGCCGGT AAAAGGCCGA AATCGGCAAA TGACCGTAGG GGGGTACTTG CCTGGCGTT TCAGTGCAGG GCCGCACTGG GCCGCACTGG AAAAGGCGTA TGATTGTGAC	GTFISNGG 360
40 45 50	orfl14a The complete leng 1	GVKNAGTLEAAK 310 The ORF114a nu ATGAATAAAG GTTT GETTGCAGTA GCCC GEGATTCGGT TCCT ACCANCAGGT CGAT ATCCAAACTC CGAT ATCCAAACTC CGAT ATCCAAACTC CGAT ACCGCTAGCA AACT CGTTACTGGT TCGC GACGGTGCAC TGGC GACGGTGCAC TGGC TCTCTGCTGCAGT TGCC TCTACCGGTC CTCT TACGGCAGCG GGTT TCTACCGGTC CGCC GCCGCAGTGCAC CGCC GCCGCAGTGCAC CGCC TCTACCGGTC CCCC TCTACCGGTC CGCC GCCGCAGTGCAC CGCC GCCGCAGTGCAC CGCC TCCTACCGGTC CCCC TCTACCGGCCAGCG GGTT GCCCGCCAGTC CGCC GCCGCAGTAGTACCGCC GCCGCAGTAGTACCGCC GCCGCAGTAGGTACCCCC TCCCCCCCCC TCCCCCCCCCC	320 cleotide sequence carried	330 uence <se aaactt="" acactac="" acagcca="" accaaca="" actatac="" ag="" atcttt="" attgagc="" ca="" cattacac="" cc="" ccaacac="" cccaacc="" cccacc="" ccccacc="" cccccc<="" cg="" ct="" ctactac="" gc="" gg="" gt="" gttaccac="" th=""><th>340 EQ ID 61> ETAAAAAGC EGCAAAGGT EGCGACCT EACAATCA EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACACCGCT EACACCGCT EACACCCCCA EAGGCACAT EACCACCCCC EGGTAAAAA ECGGCGCAAA ECGGCGAAA ECCAACCACC EACAACCACC EACAACCACC EACAACCACC EACAACCACC EACAACCACC EACAACCACC EACAACCACC</th><th>ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA TGACCGTAGG GGGGTACTGCAGG GGGGTACTTG CCTGGCGGTT TCAGTGCAGG GCCGCACTGG AAAAGGCGTA TGACTGCAGG ACAGGGTA</th><th>GTFISNGG 360</th></se>	340 EQ ID 61> ETAAAAAGC EGCAAAGGT EGCGACCT EACAATCA EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACAACCGCT EACACCGCT EACACCGCT EACACCCCCA EAGGCACAT EACCACCCCC EGGTAAAAA ECGGCGCAAA ECGGCGAAA ECCAACCACC EACAACCACC EACAACCACC EACAACCACC EACAACCACC EACAACCACC EACAACCACC EACAACCACC	ACAGCACCAT AAACAGGCAG TTGCGGCAAA CCCTGAGTAT GCACCTAAAA CTTGGTGAAT ATACGCAGTT AACAATAATC GGTACGCGGT AAAAGGCCGA TGACCGTAGG GGGGTACTGCAGG GGGGTACTTG CCTGGCGGTT TCAGTGCAGG GCCGCACTGG AAAAGGCGTA TGACTGCAGG ACAGGGTA	GTFISNGG 360

GCNNCAGGCA CATTTATCTC CAATGGTGGT CGGATCGAGA GCAAAGGCTT

ATTGGTTATT GAGACGGGAG AAGATATCAN CTTGCGTAAC GGAGCCGTGG

TGCAGAATAA CGGCAGTCGC CCAGCTACCA CGGTATTAAA TGCTGGTCAT

AATTTGGTGA TTGAGAGTAA AACTAATGTG AACAATGCCA AAGGCTCGNC

	1251	ም ል አጥርጥርጥርር	CCCCCCCCTC	GTACTACGAT	СУУДСТОТСТ	ACTATTCAAG
	1301	CCCCCACTTC	CCTGTACAGC	TCCACCAAAG	GCGATACTGA	NTTGGGTGAA
	1351	AATACCCGTA	TTATTGCTGA	AAACGTAACC	GTATTATCTA	ACGGTAGTAT
	1401	TGGCAGTGCT	GCTGTAATTG	AGGCTAAAGA	CACTGCACAC	ATTGAATCGG
5	1451	GCAAACCGCT	TTCTTTAGAA	ACCTCGACCG	TTGCCTCCAA	CATCCGTTTG
_	1501	AACAACGGTA	ACATTAAAGG	CGGAAAGCAG	CTTGCTTTAC	TGGCAGACGA
	1551	TAACATTACT	GCCAAAACTA	CCAATCTGAA	TACTCCCGGC	AATCTGTATG
	1601			AATTTGAATG		
	1651	GCCAGCATCC	ATTTGAAATC	GGATAACGCT	GCCCATATTA	CCGGCACCAG
10	1701	TAAAACCCTC	ACTGCCTCAA	AAGACATGGG	TGTGGAGGCA	GGCTTGCTGA
	1751			CGTACCAACT		
	1801			GCTTCGCAAT		
	1851			TGCAGGGCAA CATGTATCCT		
1.5	1901			CCTGACAGCC		
15	1951 2001	ATCCCTTCCT	ANACCOCCTO	TGAAAGCAGA	TAAOOCCAAIG	ATCACTTCAT
	2001	CTTCACCACA	TATTOCCCGIC	GTTGCCGNNN	NCGGTATTCA	GCTTGGTGAC
	2101	CITCAGGAGA	GCAATTCAAT	CAACGGAAAA	CACATCAGCA	TCAAAAACAA
	2151	CCCTCCTAAT	GCCGACTTAA	AAAACCTTAA	CGTCCATGCC	AAAAGCGGGG
20	2201			CGGGCATTGA		
20	2251	GAGTCTACCC	ATAATACGCA	TCTTAATGCA	CAACACGAGC	GGGTAACGCT
	2301	CAACCAAGTA	GATGCCTACG	CACACCGTCA	TCTAAGCATT	ANCGGCAGCC
	2351	AGATTTGGCA	AAACGACAAA	CTGCCTTCTG	CCAACAAGCT	GGTGGCTAAC
	2401	GGTGTATTGG	CANTCAATGC	GCGCTATTCC	CAAATTGCCG	ACAACACCAC
25	2451	GCTGAGAGCG	GGTGCAATCA	ACCTTACTGC	CGGTACCGCC	CTAGTCAAGC
	2501	GCGGCAACAT	CAATTGGAGT	ACCGTTTCGA	CCAAGACTTT	GGAAGATAAT
	2551	GCCGAATTAA	AACCATTGGC	CGGACGGCTG	AATATTGAAG	CAGGTAGCGG
	2601	CACATTAACC	ATCGAACCTG	CCAACCGCAT TTGCTGTTGT	CAGTGCGCAT	ACCUACCIGA
20	2651	GCATCAAAAC	AGGCGGAAAA	TTCCTCATTG	CARCCARAGE	CCARTATCCC
30	2701	GGTGCGCNTA TCTCCTTTACA	CCACNAACAC	ATTTAAGAGG	TTCTAAAATT	ACAGCCGGTA
	2751 2801	AAAACTTCCT	TCTCCCCACC	ACCAAAGGCA	AGTTGAATAT	CGAAGCCGTA
•	2851	AAAACTIGGT	TCAGCAATTA	TTTTCNTACA	CAAAAAGNGN	NNGNNCTCAA
	2901	CCAAAAATCC	AAAGAATTGG	AACAGCAGAT	TGCGCAGTTG	AAAAAAAGCT
35	2951	CGCNTAAAAG	CAAGCTGATT	CCAACCCTGC	AAGAAGAACG	CGACCGTCTC
30	3001	GCTTTCTATA	TTCAAGCCAT	CAACAAGGAA	GTTAAAGGTA	AAAAACCCAA
•	3051	AGGCAAAGAA	TACCTGCAAG	CCAAGCTTTC	TGCACAAAAT	ATTGACTTGA
	3101	TTTCCGCACA	AGGCATCGAA	ATCAGCGGTT	CCGATATTAC	CGCTTCCAAA
	3151	AAACTGAACC	TTCACGCCGC	AGGCGTATTG	CCAAAGGCAG	CAGATTCAGA
40	3201	GGCGGCTGCT	ATTCTGATTG	ACGGCATAAC	CGACCAATAT	GAAATTGGCA
•	3251	AGCCCACCTA	CAAGAGTCAC	TACGACAAAG	CTGCTCTGAA	CCCCACTCCA
	3301	CGTTTGACCG	GACGTACGGG	GGTAAGTATT GTGCATCCGA	AATGCAGCTG	CCCTCACCCA
	3351	TGATGCACGT	Charcecear	AGTGATATTG	TACTCCACCC	TCCACAAAAC
15	3401	CATAGACAT	CAMAGCCCAT	AACCAAAGGT	DADAGCGGCA	NAATNATCAG
45	3451 3501			CCNGCGANCA		
	3551			ATCACGCTTC		
	3601	GCTAATACCA	CCCGCTTCAA	TGCCCCTGCA	GGTAAAGTTA	CCCTGGTTGC
	3651	GGGTGAANAG	NTGCAACTGC	TGGCAGAAGA	AGGCATCCAC	AAGCACGAGT
50	3701	TGGATGTCCA	AAAAAGCCGC	CGCTTTATCG	GCATCAAGGT	AGGTNAGAGC
50	3751	AATTACAGTA	AAAACGAACT	GAACGAAACC	AAATTGCCTG	TCCGCGTCGT
	3801	CGCCCAAANT	GCAGCCACCC	GTTCAGGCTG	GGATACCGTG	CTCGAAGGTA
•	3851	CCGAATTCAA	AACCACGCTG	GCCGGTGCCG	ACATTCAGGC	AGGTGTANGC
	3901	GAAAAAGCCC	GTGTCGATGC	GAAAATTATC	CTCAAAGGCA	TTGTGAACCG
55	3951	TATCCAGTCG	GAAGAAAAT	TAGAAACCAA	CTCAACCGTA	TGGCAGAAAC
	4001	AGGCCGGACG	CGGCAGCACT	ATCGAAACGC	TAAAACTGCC	CAGCITCGAA
		AGCCCTACTC	CGCCCAAATT	GTCCGCACCC	GGCGGNTATA	TCGTCGACAT
	4101	TCCGAAAGGC	AATCTGAAAA	CCGAAATCGA	AAAGCTGTCC	AAACAGCCCA
(0	4151	AGTATGCCTA CAGGTGCAGC	TCTGAAACAG	CICCAAGIAG	COMMMUNCAT	ACCCCUTUDAL.
60	4201	CAGGTGCAGC	CCCCCCATTA	TOTAL CAGAL	CCTTACCAGG	CTCACCTCAG
	4201	GCGCAGGAAC	CCCACCCATTA		ACCCATC OT A	CGCCGCCGCA
	4301 4301	ACCGATGCAG	CATTCCCCTC	TTTGGCCAGC	CAGGCTTCCG	TATCGTTCAT
	4401	CAACAACAAA	GGCGATGTCG	GCAAAACCCT	GAAAGAGCTG	GGCAGAAGCA
65	4451	GCACGGTGAA	AAATCTGGTG	GTTGCCGCCG	CTACCGCAGG	CGTAGCCGAC
0.5	4501	AAAATCGGCG	CTTCGGCACT	GANCAATGTC	AGCGATAAGC	AGTGGATCAA
	4551	CAACCTGACC	GTCAACCTAG	CCAATGNCGG	GCAGTGCCGC	ACTGAttaa

This encodes a protein having amino acid sequence <SEQ ID 62>:

77/30344

	51	LKTTLKTLVC	SLVSLSMXXX	XXXQITTDKS	APKNXQVVIL	KTNTGAPLVN
	101	IQTPNGRGLS	HNRYTQFDVD	NKGAVLNNDR	NNNPFLVKGS	AQLILNEVRG
	151	TASKLNGIVT	VGGQKADVII	ANPNGITVNG	GGFKNVGRGI	LTIGAPQIGK
	201	DGALTGFDVR	QGTLTVGAAG	WNDKGGADYT	GVLARAVALQ	GKLQGKNLAV
5	251	STGPQKVDYA	SGEISAGTAA	GTKPTIALDT	AALGGMYADS	ITLIAXEKGV
	301	GVKNAGTLEA	AKQLIVTSSG	RIENSGRIAT	TADGTEASPT	YLXIETTEKG
	351	AXGTFISNGG	RIESKGLLVI	ETGEDIXLRN	GAVVQNNGSR	PATTVLNAGH
	401	NLVIESKTNV	NNAKGSXNLS	AGGRTTINDA	TIQAGSSVYS	STKGDTXLGE
	451	NTRIIAENVT	VLSNGSIGSA	AVIEAKDTAH	IESGKPLSLE	TSTVASNIRL
10	501	NNGNIKGGKQ	LALLADDNIT	AKTTNLNTPG	NLYVHTGKDL	NLNVDKDLSA
•	551	ASIHLKSDNA	AHITGTSKTL	TASKDMGVEA	GLLNVTNTNL	RTNSGNLHIQ
	601	AAKGNIQLRN	TKLNAAKALE	TTALQGNIVS	DGLHAVSADG	HVSLLANGNA
	651	DFTGHNTLTA	KADVXAGSVG	KGRLKADNTN	ITSSSGDITL	VAXXGIQLGD
	701	GKQRNSINGK	HISIKNNGGN	ADLKNLNVHA	KSGALNIHSD	RALSIENTKL
15	751	ESTHNTHLNA	QHERVTLNQV	DAYAHRHLSI	XGSQIWQNDK	LPSANKLVAN
	801	GVLAXNARYS	QIADNTTLRA	GAINLTAGTA	LVKRGNINWS	TVSTKTLEDN
•,•	851	AELKPLAGRL	NIEAGSGTLT	IEPANRISAH	TDLSIKTGGK	LLLSAKGGNA
	901			GXTDLRGSKI		
	951			KELEQQIAQL		_
20	1001			YLQAKLSAQN		
	1051			ILIDGITDQY		
	1101			IIIGASEIKA		
	1151			FTSTXXHLIM		
	1201			XQLLAEEGIH		
25	1251			AATRSGWDTV		
	1301			EEKLETNSTV		
,	1351			NLKTEIEKLS		
	1401			AAIIALAVTV		
	1451			GDVGKTLKEL		VAAATAGVAD
30	1501	KIGASALXNV	SDKQWINNLT	VNLANXGQCR	TD*	

ORF114-1 and ORF114a show 89.8% identity in 1564 aa overlap

	orfll4a.pep	MNKGLHRIIFSKKHSTMVAVAETANSQGKGKQAGSSVSVSLKTSGDLCGKLKTTLKTLVC
35	orf114-1	MNKGLHRIIFSKKHSTMVAVAETANSQGKGKQAGSSVSVSLKTSGDLCGKLKTTLKTLVC
	orf114a.pep	SLVSLSMXXXXXQITTDKSAPKNXQVVILKTNTGAPLVNIQTPNGRGLSHNRYTQFDVD
•	crf.14-1	SLVSLSMVLPAHAQITTDKSAPKNQQVVILKTNTGAPLVNIQTPNGRGLSL*RYTQFDVD
40	orf114a.pep	${\tt NKGAVLNNDRNNNPFLVKGSAQLILNEVRGTASKLNGIVTVGGQKADVIIANPNGITVNG}$
	orf114-1	
45	orfl14a.pep	GGFKNVGRGILTIGAPQIGKDGALTGFDVRQGTLTVGAAGWNDKGGADYTGVLARAVALQ
43	orf114-1	GGFKNVGRGILTTGAPQIGKDGALTGFDVRQGTLTVGAAGWNDKGGADYTGVLARAVALQ
	orfll4a.pep	GKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEKGV
50	orf114-1	GKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIANEKGV
	orfl14a.pep	GVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXGTFISNGG
55	orf114-1	GVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLSIETTEKGAAGTFISNGG
	orfl14a.pep	RIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKTNVNNAKGSXNLS
	orf114-1	RIESKGLLVIETGEDISLRNGAVVQNNGSRPATTVLNAGHNLVIESKTNVNNAKGPATLS
60	orfll4a.pep	AGGRTTINDATIQAGSSVYSSTKGDTXLGENTRIIAENVTVLSNGSIGSAAVIEAKDTAH
	orf114-1	ADGRTVIKEASIQTGTTVYSSSKGNAELGNNTRITGADVTVLSNGTISSSAVIDAKDTAH
<i>(5</i>	orfll4a.pep	${\tt IESGKPLSLETSTVASNIRLNNGNIKGGKQLALLADDNITAKTTNLNTPGNLYVHTGKDL}$
65	orf114-1	: :
	orfl14a.pep	NLNVDKDLSAASIHLKSDNAAHITGTSKTLTASKDMGVEAGLLNVTNTNLRTNSGNLHIQ

D	/TR99	/AA1	13
r	 / I BYY	/ (1717)	.UJ

	WO 99/36544	РСТ/ІВ99/0010	13
	orf114-1	. NLNVDKDLSAASIHLKSDNAAHITGTSKTLTASKDMGVEAGSLNVTNTNLRTNSGNLHIQ	
5	orf114a.pep	AAKGNIQLRNTKLNAAKALETTALQGNIVSDGLHAVSADGHVSLLANGNADFTGHNTLTA	
10	orfl14a.pep	KADVXAGSVGKGRLKADNTNITSSSGDITLVAXXGIQLGDGKQRNSINGKHISIKNNGGN	
10 ,	orfll4a.pep	ADLKNLNVHAKSGALNIHSDRALSIENTKLESTHNTHLNAQHERVTLNQVDAYAHRHLSI	
15	orfll4a.pep	XGSQIWQNDKLPSANKLVANGVLAXNARYSQIADNTTLRAGAINLTAGTALVKRGNINWS:	
20	orfl14a.pep	TVSTKTLEDNAELKPLAGRLNIEAGSGTLTIEPANRISAHTDLSIKTGGKLLLSAKGGNA	
.25	orfll4a.pep	GAXSAQVSSLEAKGNIRLVTGXTDLRGSKITAGKNLVVATTKGKLNIEAVNNSFSNYFXT	
30	orfl14a.pep	QKXXXLNQKSKELEQQIAQLKKSSXKSKLIPTLQEERDRLAFYIQAINKEVKGKKPKGKE	
	orfll4a.pep	YLQAKLSAQNIDLISAQGIEISGSDITASKKLNLHAAGVLPKAADSEAAAILIDGITDQY 	
35	orfl14a.pep orfl14-1	EIGKPTYKSHYDKAALNKPSRLTGRTGVSIHAAAALDDARIIIGASEIKAPSGSIDIKAH 	
40	orf114a.pep orf114-1	SDIVLEAGQNDAYTFLXTKGKSGXXIRKTKFTSTXXHLIMPAPVELTANGITLQAGGNIE	
45	orf114a.pep	ANTTRFNAPAGKVTLVAGEXXQLLAEEGIHKHELDVQKSRRFIGIKVGXSNYSKNELNET	
50	orfl14a.pep	KLPVRVVAQXAATRSGWDTVLEGTEFKTTLAGADIQAGVXEKARVDAKIILKGIVNRIQS	
	orf114a.pep	EEKLETNSTVWQKQAGRGSTIETLKLPSFESPTPPKLSAPGGYIVDIPKGNLKTEIEKLS	
55	orf114a.pep	KQPEYAYLKQLQVAKNINWNQVQLAYDRWDYKQEGLTEAGAAIIALAVTVVTSGAGTGAV 	
60	orf114a.pep orf114-1	LGLNGAXAAATDAAFASLASQASVSFINNKGDVGKTL : :: : : : : : : GGVAASGSSTAAAAGTAATTTAAATTVSTATAMQTAALASLYSQAAVSIINNKGDVGKAL	
65	orf114a.pep orf114-1	KELGRSSTVKNLVVAAATAGVADKIGASALXNVSDKQWINNLTVNL : : ::: :: KDLGTSDTVKQIVTSALTAGALNQMGADIAQLNSKVRTELFSSTGNQTIANLGGRLATNL	
70	orf114a.pep	ANXGQCRTDX : SNAGISAGINTAVN	

Homology with pspA putative secreted protein of *N.meningitidis* (accession number AF030941) ORF114 and pspA protein show 36% as identity in 302as overlap:

```
AVAETANSQGKGKQAGSSVSVSL----KTSGDXXXXXXXXXXXXXXXXXXXXXXXXXAAHAQ 56
          Orf114: 1
                      AVAE + GK Q + SV +
                                                  S
                                                                            PA A
 5
                      AVAENVHRDGKSMQDSEAASVRVTGAASVSSARAAFGFRMAAFSVMLALGVAAFSPAPAS 78
          pspA:
          Orf114: 57
                      -ITTDKSAPKNQQVVILKTNTGAPLVNIQTPNGRGLSHNRXYAFDVDNKGAVLNNDRNN- 114
                       I DKSAPKNQQ VIL+T G P VNIQTP+ +G+S NR FDVD KG +LNN R+N
                      GIIADKSAPKNQQAVILQTANGLPQVNIQTPSSQGVSVNRFKQFDVDEKGVILNNSRSNT 138
          pspA:
10
          Orf114: 115 -----PFVVKGSAQLILNEV-RGTASKLNGIVTVGGQKADVIIANPNGITVNGG 163
                                                    S LNG + VGG++A+V++ANP+GI VNGG
                                NP + +G A++I+N++
                  139 QTQLGGWIQGNPHLARGEARVIVNQIDSSNPSLLNGYIEVGGKRAEVVVANPSGIRVNGG 198
          :Ageg
          Orf114: 164 GFKNVGRGILTTGAPQIGKDGALTGFDVVKAHWTVXAAGWNDKGGAXYTGVLARAVALOG 223
15
                               LT+G P + +G LTGFDV
                                                       + G D A YT +L+RA +
                  199 GLINAASVTLTSGVPVL-NNGNLTGFDVSSGKVVIGGKGL-DTSDADYTRILSRAAEINA 256
          : Agag
          Orf114: 224 KXXGKXLAVSTGPQKVDYASGEISAGTAAGTK----PTIALDTAALGGMYADSITLIANE 279
20
                         GK + V +G K+D+
                                                +A +
                                                         PT+A+DTA LGGMYAD ITLI+ +
                  257 GVWGKDVKVVSGKNKLDFDGSLAKTASAPSSSDSVTPTVAIDTATLGGMYADKITLISTD 316
          pspA:
          Orf114: 280 KG 281
25
                  317 NG 318
          pspA:
     ORF114a is also homologous to pspA:
          qi|2623258 (AF030941) putative secreted protein [Neisseria meningitidis] Length
          = 2273
           Score = 261 bits (659), Expect = 3e-68
           Identities = 203/663 (30%), Positives = 314/663 (46%), Gaps = 76/663 (11%)
30
                     MNKGLHRIIFSKKHSTMVAVAETANSQGKGKQAGSSVSVSLK----TSGDXXXXXXXXX 55
          Query: 1
                     MNK +++IF+KK S M+AVAE + GK Q + SV +
                                                                   +S
                     MNKRCYKVIFNKKRSCMMAVAENVHRDGKSMQDSEAASVRVTGAACVSSARAAFGFRMAA 60
          Sbjct: 1
35
          Query: 56 XXXXXXXXXXXXXXXXXXXQITTDKSAPKNXQVVILKTNTGAPLVNIQTPNGRGLSHNRYT 115
                                        I DKSAPKN Q VIL+T G P VNIQTP+ +G+S NR+
          Sbjct: 61 FSVMLALGVAAFSPAPASGIIADKSAPKNQQAVILQTANGLPQVNIQTPSSQGVSVNRFK 120
          Query: 116 QFDVDNKGAVLNNDRNN------NPFLVKGSAQLILNEV-RGTASKLNGIVTVGG 163
40
                                                NP L +G A++I+N++
                                                                     S LNG + VGG
                     OFDVD KG +LNN R+N
          Sbjct: 121 QFDVDEKGVILNNSRSNTQTQLGGWIQGNPHLARGEARVIVNQIDSSNPSLLNGYIEVGG 180
          Query: 164 QKADVIIANPNGITVNGGGFKNVGRGILTIGAPQIGKDGALTGFDVRQGTLTVGAAGWND 223
                                               LT G P + +G LTGFDV G + +G G D
45
                      ++A+V++ANP+GI VNGGG N
          Sbjct: 181 KRAEVVVANPSGIRVNGGGLINAASVTLTSGVPVL-NNGNLTGFDVSSGKVVIGGKGL-D 238
          Query: 224 KGGADYTGVLARAVALQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTK----PTIALD 279
                        ADYT +L+RA + + GK++ V +G K+D+
                                                                 +A +
                                                                           PT+A+D
50
          Sbict: 239 TSDADYTRILSRAAEINAGVWGKDVKVVSGKNKLDFDGSLAKTASAPSSSDSVTPTVAID 298
          Query: 280 TAALGGMYADSITLIAXEKGVGVKNAGTLEAAK-QLIVTSSGRIENSGRIATTADGTEAS 338
                     TA LGGMYAD ITLI+ + G ++N G + AA + +++ G++ NSG I
          Sbjct: 299 TATLGGMYADKITLISTDNGAVIRNKGRIFAATGGVTLSADGKLSNSGSI-
                                                                             -DAA 351
55
          Query: 339 PTYLXIETTEKGAXGTFISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNA 398
                                                   V+++I+G+
                                       + GIS
                                                                      GS
                        + +T +
          Sbjct: 352 EITISAQTVD-
                                      -NROGFIRSGKGSVLKVSDGINNQAGLI--
                                                                    --GSAGLLDIRDT 399
           Query: 399 GHNLVIESKTNVNNAKGS----XNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRI 454
60
                           +S ++NN G+ ++S ++ ND + A V S + D G+
           Sbjct: 400 G----KSSLHINNTDGTIIAGKDVSLQAKSLDNDGILTAARDV-SVSLHDDFAGKRDIE 453
           Query: 455 IAENVTVLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASNIRLNNGNIKGGKQLALL 514
```

+T + G + + +I+A DT + + + + + + S R

```
Sbjct: 454 AGRTLTFSTQGRLKNTRIIQAGDTVSLTAAQIDNTVSGKIQSGNRTGLNGKNGITNRGLI
                              --AKTTNLNTPGNLYVHTGKDLNLNVDKDLSAASIHLKSDNAAHITGTSKT 569
                                                 G + + D L+
                                AK+ N T G +Y
          Sbjct: 514 NSNGITLLQTEAKSDNAGT-GRIY---GSRVAVEADTLLNREETVNGETKAA-
          Query: 570 LTASKDMGVEAGXXXXXXXXXXXXSGNLHIQAA-
                                                         -KGNIQLRNTKL-NAAKALETTALQ 625
                                              SG+LHI '+A
                                                             +O NT L N + A+E++
                     + A + + + A
          Sbjct: 563 IAARERLDIGAREIENREAALLSSSGDLHIGSALNGSRQVQGANTSLHNRSAAIESS
10
          Query: 626 GNI 628
                     GNI
          Sbjct: 620 GNI 622
15
            Score = 37.5 \text{ bits } (85), \text{ Expect = } 0.53
            Identities = 87/432 (20%), Positives = 159/432 (36%), Gaps = 62/432 (14%)
                      LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK 298
20
                       LQG LQGKN+ + G
                                         + +GIAA
           Sbjct: 1023 LQGDLQGKNIFAAAGSDITN--TGSIGAENALLLK-
                                                                  -ASNNIESRSETRSNONE 1072
           Query: 299 GVGVKNAGTLEAAKQLIVTSSGRI--ENSGRIATTADGTEASPTYLXIETTEKGAXG-TF 355
                                           +G + + 1 TA
                                                                     ET+
           Sbjct: 1073 QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTAS
                                                                       -ELTNQSEDGQTV 1120
                      ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESK-
                                                            +T+
                                                                  GNL + +K
                                               + V++
           Sbjct: 1121 LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTRG-NLSLNAKGDIRIRAA 1179
30
                      NVNNAKGSXNLSAGGRTTINDATIQAGSS-
                                                            -VYSSTKGDTXLGENTRIIAENVT 460
                                                             `Y+
                                           D ++AG +
                                                                        + TR +
                                          RDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNONG 1234
           Sbjct: 1180 EVGSEQGRLKLAAG
           Query: 461 VLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASNIRLNNGNIKGGKQLALLADDNIT 520
35
                                                    + T+ S
                                                              NN +K +
                                                             -AKNNIVLKAAETRSRSAEMNKK 1292
           Sbjct: 1235 QAVSGTLDGKEIILVSGRDITVTGSNIIADNHTILS-
                      AKTTNLNTPG-NLYVHTGKDLNLNVDKDLSAASIHLKSDN-
                                                                   ----AAHITGTSKTLTA 572
           Query: 521
                                              N + +S
                                                          + S N
40
                                       + KD
           Sbjct: 1293 EKSGLMGSGGIGFTAGSKKDTQTNRSETVSHTESVVGSLNGNTLISAGKHYTQTGSFYS 1352
                       SK-DMGVEAGXXXXXXXXXXXXSGNLHIQAAKG-
                                                            '. ++ + NT + A A++
                                                  + KG
           Sbjct: 1353 PQGDVGISSGKISIDAAQNRYSQESKQVYEQKGVTVAISVPVVNTVMGAVDAVKAVQTVG 1412
45
           Query: 627 NIVSDGLHAVSA 638
           Sbjct: 1413 KSKNSRVNAMAA 1424
```

Amino acids 1-1423 of ORF114-1 were cloned in the pGex vector and expressed in *E.coli*, as described above. GST-fusion expression was visible using SDS-PAGE, and Figure 5 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF114-1.

Based on these results, including the homology with the putative secreted protein of *N. meningitidis* and on the presence of a transmembrane domain, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 14

50

55

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 63>

```
..CGCTTCATTC ATGATGAAGC AGTCGGCAGC AACATCGGCG GCGGCAAAAT
                  1
                        GATTGTTGCA GCCGGCAGG ATATCAATGT ACGCGGCANA AGCCTTATTT
                 51
                101
                        CTGATAAGGG CATTGTTTTA AAAGCAGGAC ACGACATCGA TATTTCTACT
                        GCCCATAATC GCTATACCGG CAATGAATAC CACGAGAGCA WAAAWTCAGG
                151
 5
                        CGTCATGGGT ACTGGCGGAT TGGGCTTTAC TATCGGTAAC CGGAAAACTA
                201
                        CCGATGACAC TGATCGTACC AATATTGTsC ATACAGGCAG CATTATAGGC
                251
                        AGCCTGA&TG GAGACACCGT TACAGTTGCA GGAAACCGCT ACCGACAAAC
                301
                351
                        CGGCAGTACC GTCTCCAGCC CCGAGGGGCG CAATACCGTC ACAGCCAAAw
                        GCATAGATGT AGAGTTCGCA AACAACCGGT ATGCCACTGA CTACGCCCAT
                401
                        ACCCAGGGAA CAAAAAGGCC TTACCGTCGC CCTCAATGTC CCGGTTGTCC
10
                451
                        AAGCTGCACA AAACTTCATA CAAGCAGCCC AAAATGTGGG CAAAAGTAAA
                501
                        ANTANACGCG TTANTGCCAT GGCTGCAGCC ANTGCTGCAT GGCAGAGTTA
                551
                        TCAAGCAACC CAACAAATGC AACAATTTGC TCCAAGCAGC AGTGCGGGAC
                601
                        AAGGTCAAAA CTACAATCAA AGCCCCAGTA TCAGTGTGTC CATTAC.TAC
                651
                        GGCGAACAGA AAAGTCGTAA CGAGCAAAAA AGACATTACA CCGAAGCGGC
15
                701
                751
                        AGCAAGTCAA ATTATCGGCA AAGGGCAAAC CACACTTGCG GCAACAGGAA
                        GTGGGGAGCA GTCCAATATC AATATTACAG GTTCCGATGT CATCGGCCAT
                801
                        GCAGGTACTC C.CTCATTGC CGACAACCAT ATCAGACTCC AATCTGCCAA
                851
                        ACAGGACGGC AGCGAGCAAA GCAAAAACAA AAGCAGTGGT TGGAATGCAG
                901
                        GCGTACGTnn CAAAATAGGC AACGGCATCA GGTTTGGAAT TACCGCCGGA
20
                951
                        GGAAATATCG GTAAAGGTAA AGAGCAAGGG GGAAGTACTA CCCACCGCCA
               1001
                        CACCCATGTC GGCAGCACAA CCGGCAAAAC TACCATCCGA AGCGGCGGGG
               1051
                        GATACCACCC TCAAAGGTGT GCAGCTCATC GGCAAAGGCA TACAGGCAGA
               1101
                        TACGCGCAAC CTGCATATAG AAAGTGTTCA AGATACTGAA ACCTATCAGA
               1151
25
                        GCAAACAGCA AAACGGCAAT GTCCAAGTTL ACTGTCGGTT ACGGATTCAG
               1201
                        TGCAAGCGGC AGTTACCGCC AAAGCAAAGT CAAAGCAGAC CATGCCTCCG
               1251
                        TAACCGGGCA AAGCGGTATT TATGCCGGAG AAGACGGCTA TCAAATYAAA
               1301
               1351
                        GTYAGAGACA ACACAGACCT YAAGGGCGGT ATCATCACGT CTAGCCAAAG
                        CGCAGAAGAT AAGGGCAAAA ACCTTTTTCA GACGGCCACC CTTACTGCCA
GCGACATTCA AAACCACAGC CGCTACGAAG GCAGAAGCTT CGGCATAGGC
               1401
30
               1451
                        GGCAGTTTCG ACCTGAACGG CGGCTGGGAC GGCACGGTTA CCGACAAACA
               1501
                        AGGCAGGCCT ACCGACAGGA TAAGCCCGGC AGCCGGCTAC GGCAGCGACG
GAGACAGCAA AAACAGCACC ACCCGCAGGG GCGTCAACAC CCACAACATA
               1551
               1601
                        CACATCACCG ACGAAGCGGG ACAACTTGCC CGAACAGGCA GGACTGCAAA
               1651
               1701
                        AGAAACCGAA GCGCGTATCT ACACCGGCAT CGACACCGAA ACTGCGGATC
35
                        AACACTCAGG CCATCTGAAA AACAGCTTCG AC...
               1751
```

This corresponds to the amino acid sequence <SEQ ID 64; ORF116>:

```
..RFIHDEAVGS NIGGGKMIVA AGQDINVRGX SLISDKGIVL KAGHDIDIST
                  51
                        AHNRYTGNEY HESXXSGVMG TGGLGFTIGN RKTTDDTDRT NIVHTGSIIG
                        SLNGDTVTVA GNRYRQTGST VSSPEGRNTV TAKXIDVEFA NNRYATDYAH
40
                101
                        TOEOKGLTVA LNVPVVQAAQ NFIQAAQNVG KSKNKRVNAM AAANAAWQSY
                 151
                 201
                        QATQQMQQFA PSSSAGQGQN YNQSPSISVS IXYGEQKSRN EQKRHYTEAA
                        ASQIIGKGOT TLAATGSGEQ SNINITGSDV IGHAGTXLIA DNHIRLQSAK
QDGSEQSKNK SSGWNAGVRX KIGNGIRFGI TAGGNIGKGK EQGGSTTHRH
                 251
                 301
45
                 351
                        THVGSTTGKT TIRSGGDTTL KGVQLIGKGI QADTRNLHIE SVQDTETYQS
                        KQQNGNVQVT VGYGFSASGS YRQSKVKADH ASVTGQSGIY AGEDGYQIKV
                 401
                        RDNTDLKGGI ITSSQSAEDK GKNLFQTATL TASDIQNHSR YEGRSFGIGG
                 451
                        SFDLNGGWDG TVTDKQGRPT DRISPAAGYG SDGDSKNSTT RSGVNTHNIH
                 501
                        ITDEAGQLAR TGRTAKETEA RIYTGIDTET ADQHSGHLKN SFD...
```

50 Computer analysis of this amino acid sequence gave the following results:

Homology with pspA putative secreted protein of N. meningitidis (accession number AF030941)

ORF116 and pspA protein show 38% aa identity in 502aa overlap:

. (18)	Orfl16:	126	GRNTVTAKXIDVEFANNRYATDYAHTQEQKGLTVALNVPXXXXXXXXXXXXXXXXXGKS G +++ I ++ A NRY+ + EQKG+TVA++VP GKS	182
∵.	PspA:	1355	GDVGISSGKISIDAAQNRYSQESKQVYEQKGVTVAISVPVVNTVMGAVDAVKAVQTVGKS	1414
5	Orf116:	183	KNKRVXXXXXXXXQSYQATQQMQQFAPSSSAGQGQNYNQSPSISVSIXYGEQKSRN KN RV + + + A P +AGQG ISVS+ YGEQK+ +	240
	PspA:	1415	KNSRVNAMAAANALNKGVDSGVALYNAARNPKKAAGQGISVSVTYGEQKNTS	1466
10	Orf116:		EQKRHYTEAAASQIIGKGQTTLAATGSGEQSNINITGSDVIGHAGTXLIADNHIRLQSAK E + T+ +I G G+ +L A+G+G+ S I ITGSDV G GT L A+N +++++A+	300
10 .	PspA:		ESRIKGTQVQEGKITGGGKVSLTASGAGKDSRITITGSDVYGGKGTRLKAENAVQIEAAR	1526
	Orf116:	301	QDGSEQSKNKSSGWNAGVRXKIGNGIRFGITAXXXXXXXXXXXXTTHRHTHVGSTTGKT O E+5+NKS+G+NAGV I GI FG TA T +R++H+GS +T	360
15	PspA:	1527	QTHQERSENKSAGFNAGVAIAINKGISFGFTAGANYGKGYGNGDETAYRNSHIGSKDSQT	1586
	Orf116:	361	TIRSGGDTTLKGVQLIGKGIQADTRNLHIESVQDTETYQSKQQNGNVQVTVGYGFSASGS I SGGDT +KG QL GKG+ +LHIES+QDT ++ KQ+N + QVTVGYGFS GS	420
20	PspA:	1587	AIESGGDTVIKGGQLKGKGVGVTAESLHIESLQDTAVFKGKQENVSAQVTVGYGFSVGGS	1646
20	Orf116:	421	YRQSKVKADHASVTGQSGIYAGEDGYQIKVRDNTDLKGGIITSSQSAEDKGKNLFQTATL Y +SK +D+ASV QSGI+AG DGY+I+V T L G + S DK KNL +T+ +	480
	PspA:	1647	YNRSKSSSDYASVNEQSGIFAGGDGYRIRVNGKTGLVGAAVVSDADKSKNLLKTSEI	1703
25	Orf116:	481	TASDIONHSRYEGRSFGIGGSF 502 DIONH+ + G+ G F	
	PspA:	1704	WHKDIONHASAAASALGLSGGF 1725	

Based on homology with pspA, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

30 Example 15

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 65>

	1	ACGACCGGCA	GCCTCGGCGG	CATACTGGCC	GGCGGCGCA	CTTCCCTTGC
	51	CGCACCGTAT	TTGGACAAAG	CGGCGGAAAA	CCTCGGTCCG	GCGGGCAAAG
	101	CGGCGGTCAA	CGCACTGGGC	GGTGCGGCCA	TCGGCTATGC	AACTGGTGGT
35	151	AGTGGTGGTG	CTGTGGTGGG	TGCGAATGTA	GATTGGAACA	ATAGGCAGCT
(.	201		GAAATGGCGT			
	251	GCGAAGTTGA	AAAACGCGAA	GGCAGAAAAA	TCAGCAGCCA	AGAAGCGGCA
•	301		GCAGGCAGAT			
	351	GGCTATACCG	ACCAAAGCGT	CATATCCCTT	ATCGGAATGA	

40 This corresponds to the amino acid sequence <SEQ ID 66; ORF118>

1 ..TTGSLGGILA GGGTSLAAPY LDKAAENLGP AGKAAVNALG GAAIGYATGG 51 SGGAVVGANV DWNNRQLHPK EMALADKYAE ALKREVEKRE GRKISSQEAA

101 MRIRRQICVG WTKVPKTAIP TKASYPLSE*

Computer analysis of this amino acid sequence reveals two putative transmembrane domains.

Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 16

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 67>

1 ... CAATGCCGTC TGAAAAGCTC ACAATTTTAC AGACGGCATT TGTTATGCAA

· ' ;	5	1 GTACA				AGrkGCGTGC	
	10	1 ACACC	CCCTA	CGCTTGCTAT	TTGrAACAGC	TCCAAGTCAC	CAAAGACGTC
	15	1 AACTO	GAACC	AGGTACWACT	GGCGTACGAC	AAATGGGACT	ATAAACAGGA
	20	1 AGGCT				TGCGCTGGCT	
· 5	25	1 TTACT	CCCCC	CGCGGGAgCC	GGAGCCGCAC	TGGGCTTAAA	CGGCGCGGCc
	. 30					CTGGCCAGCC	
	35	1 ATCGC	TCATC	AaCAACAAAG	GCAATATCGG	TAaCACCCTG	AAAGAGCTGG
	40	1 GCAGA	AGCAG	CACGGTGAAA	AATCTGATGG	TTGCCGTCGc	tACCGCAgGC
	45	1 GTag(CcgaCA	AAATCGGTGC	TTCGGCACTG	AACAATGTCA	GCGATAAGCA
10	50	1 GTGG	TCAAC	AACCTGACCG	TCAACCTGGC	CAATGCGGGC	AGTGCCGCAC
	55	1 TGATT	CAATAC	CGCTGTCAAC	GGCGGCAGCc	tgAAAGACAA	TCTGGAAGCG
	. 60	1 AATAT	CCTTG	CGGCTTTGGT	GAATACTGCG	CATGGAGAAG	CAGCCAGTAA
	. 65	1 AATC	AAACAG	TTGGATCAGC	ACTACATTAC	CCACAAGATT	GCCCaTGCCA
	70	1 TAGCO				AGGGCAAGTG	
15	75	1 GCGAT	AgGTG	CGGCTGTGGG	CGAGATAGTC	GGGGAgGCTT	TGACAAACGG
	80	1 CAAAA				ACGCGaACAG	
	80 85	1 ACAGO				GTGTGGTCGG	
	90		CGGCGG	CGAATGCGGC	TGAGGTAGCG	GTGAAAAATA	ATCAGCTTAG
	95	1 CGAC	AAAtGA				

This corresponds to the amino acid sequence <SEQ ID 68; ORF41>:

	1	QCRLKSSQFY	RRHLLCKYIY	RFPIYCPXAC	VAEDTPYACY	LXQLQVTKDV
	51	NWNQVXLAYD	KWDYKQEGLT	GAGAAIIALA	VTVVTAGAGA	GAALGLNGAA
	101	AAATDAAFAS	LASQASVSLI	NNKGNIGNTL	KELGRSSTVK	NLMVAVATAG
	151	VADKIGASAL	NNVSDKQWIN	NLTVNLANAG	SAALINTAVN	GGSLKDNLEA
•	201	NILAALVNTA	HGEAASKIKQ	LDQHYITHKI	AHAIAGCAAA	AANKGKCQDG
	251	AIGAAVGEIV	GEALTNGKNP	DTLTAKEREQ	ILAYSKLVAG	TVSGVVGGDV
	301	NAAANAAEVA	VKNNOT.SDK*			

Further work revealed the complete nucleotide sequence <SEQ ID 69>:

•							
		. 1	ATGCAAGTAA	ATATTCAGAT	TCCCTATATA	CTGCCCAGAT	GCGTGCGTGC
30	-	. 51	TGAAGACACC	CCCTACGCTT	GCTATTTGAA	ACAGCTCCAA	GTCACCAAAG
		101	ACGTCAACTG	GAACCAGGTA	CAACTGGCGT	ACGACAAATG	GGACTATAAA
		151	CAGGAAGGCT	TAACCGGAGC	CGGAGCAGCG	ATTATTGCGC	TGGCTGTTAC
		201	CGTGGTTACT	GCGGGCGCGG	GAGCCGGAGC	CGCACTGGGC	TTAAACGGCG
		251	CGGCCGCAGC	GGCAACCGAT	GCCGCATTCG	CCTCGCTGGC	CAGCCAGGCT
35		301				ATCGGTAACA	
		351	GCTGGGCAGA	AGCAGCACGG	TGAAAAATCT	GATGGTTGCC	GTCGCTACCG
		401	CAGGCGTAGC	CGACAAAATC	GGTGCTTCGG	CACTGAACAA	TGTCAGCGAT
		451	AAGCAGTGGA	TCAACAACCT	GACCGTCAAC	CTGGCCAATG	CGGGCAGTGC
	*	501	CGCACTGATT	AATACCGCTG	TCAACGGCGG	CAGCCTGAAA	GACAATCTGG
40		551	AAGCGAATAT	CCTTGCGGCT	TTGGTGAATA	CTGCGCATGG	AGAAGCAGCC
		601	AGTAAAATCA	AACAGTTGGA	TCAGCACTAC	ATTACCCACA	AGATTGCCCA
	11-30	651	TGCCATAGCG	GGCTGTGCGG	CTGCGGCGGC	GAATAAGGGC	AAGTGTCAGG
		701	ATGGTGCGAT	AGGTGCGGCT	GTGGGCGAGA	TAGTCGGGGA	GGCTTTGACA
	•	751	AACGGCAAAA	ATCCTGACAC	TTTGACAGCT	AAAGAACGCG	AACAGATTTT
45		801	GGCATACAGC	AAACTGGTTG	CCGGTACGGT	AAGCGGTGTG	GTCGGCGGCG
		851	ATGTAAATGC	GGCGGCGAAT	GCGGCTGAGG	TAGCGGTGAA	AAATAATCAG
		901	CTTAGCGACA	AAGAGGGTAG	AGAATTTGAT	AACGAAATGA	CTGCATGCGC
		951	CAAACAGAAT	AATCCTCAAC	TGTGCAGAAA	AAATACTGTA	AAAAAGTATC
		1001	AAAATGTTGC	TGATAAAAGA	CTTGCTGCTT	CGATTGCAAT	ATGTACGGAT
50	7.	1051	ATATCCCGTA	GTACTGAATG	TAGAACAATC	AGAAAACAAC	ATTTGATCGA
		1101		CTTCATTCAT	CTTGGGAAGC	AGGTCTAATT	GGTAAAGATG
		1151	ATGAATGGTA	TAAATTATTC	AGCAAATCTT	ACACCCAAGC	AGATTTGGCT
		1201				AAATCTTGGC	
	87.	1251	CAATACAAAG	CCTTTATCCG	AATGGATGTC	CGACCAAGGT	TATACACTTA
55		1301	TTTCAGGAGT	TAATCCTAGA	TTCATTCCAA	TACCAAGAGG	GTTTGTAAAA
		1351	CAAAATACAC	CTATTACTAA	, TGTCAAATAC	CCGGAAGGCA	TCAGTTTCGA
		1401	TACAAACCTA	AAAAGACATC	TGGCAAATGC	TGATGGTTTT	AGTCAAAAAC
		1451	AGGGCATTAA	AGGAGCCCAT	' AACCGCACCA	ATTTTATGGC	AGAACTAAAT
		1501	TCACGAGGAG	GACGCGTAAA	ATCTGAAACC	CAAACTGATA	TTGAAGGCAT
60		1551	TACCCGAATT	AAATATGAGA	TTCCTACACT	AGACAGGACA	GGTAAACCTG
		1601	ATGGTGGATT	TAAGGAAATT	TCAAGTATAA	AAACTGTTTA	TAATCCTAAA
	•	1651	AAATTTTCTG	ATGATAAAAT	' ACTTCAAATG	GCTCAAAATG	CTGCTTCACA
		1701	AGGATATTCA	AAAGCCTCTA	AAATTGCTCA	AAATGAAAGA	ACTAAATCAA
		1751	TATCGGAAAG	AAAAAATGTC	: ATTCAATTCT	CAGAAACCTT	TGACGGAATC
65		1801			TGTAAATACA	GGAAGAATTA	CAAACATTCA
		1851	CCCAGAATAA	1			

This corresponds to the amino acid sequence <SEQ ID 70; ORF41-1>:

	1	MQVNIQIPYI	LPRCVRAEDT	PYACYLKQLQ	VTKDVNWNQV	QLAYDKWDYK
	51	QEGLTGAGAA	IIALAVTVVT	AGAGAGAALG	LNGAAAAATD	AAFASLASQA
	101	SVSLINNKGN	IGNTLKELGR	SSTVKNLMVA	VATAGVADKI	GASALNNVSD
5	151	KQWINNLTVN	LANAGSAALI	NTAVNGGSLK	DNLEANILAA	LVNTAHGEAA
	201	SKIKQLDQHY	ITHKIAHAIA	GCAAAAANKG	KCQDGAIGAA	VGEIVGEALT
	251	NGKNPDTLTA	KEREQILAYS	KLVAGTVSGV	VGGDVNAAAN	AAEVAVKNNQ
	301	LSDKEGREFD	NEMTACAKON	NPQLCRKNTV	KKYQNVADKR	LAASIAICTD
	351	ISRSTECRTI	RKQHLIDSRS	LHSSWEAGLI	GKDDEWYKLF	SKSYTQADLA
10	401	LQSYHLNTAA	KSWLQSGNTK	PLSEWMSDQG	YTLISGVNPR	FIPIPRGFVK
	451	QNTPITNVKY	PEGISFDTNL	KRHLANADGF	SQKQGIKGAH	NRTNFMAELN
	501	SRGGRVKSET	QTDIEGITRI	KYEIPTLDRT	GKPDGGFKEI	SSIKTVYNPK
	551	KFSDDKILQM	AQNAASQGYS	KASKIAQNER	TKSISERKNV	IQFSETFDGI
	601	KFRSYFDVNT	GRITNIHPE*			

15 Computer analysis of this amino acid sequence predicts a transmembrane domain, and homology with an ORF from *N.meningitidis* (strain A) was also found.

ORF41 shows 92.8% identity over a 279aa overlap with an ORF (ORF41a) from strain A of N. meningitidis:

		10	20	30	40	50	60	69
20	orf41.pep	YRRHLL	CKYIYRF	PIYCPXACVAE				
						111:1::111		
	orf41a				YLKQ	LQVAKNINWN(
						10	20	30
26	,	7.0	00	00	100	110	. 100	129
25		70	80	90	100	110	120	
	orf41.pep			VTAGAGAGAA				
		, ,,,,		: : : VVTSGAGTGAV			<i></i>	
	orf41a	TEAGAA	40	50	60	70	80 Waase Tunk	90
20	•		40	30	60	70	80	90
30		130	140	150	160	170	180	189
	£41 man			MVAVATAGVAD				
	orf41.pep			: :		TITLE TRANSIT		HIIII '
	orf41a					IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIII	
35	OFT41a	PVETG	100	110	120	130	140	150
33			100	110	120	150	140	130
		190	200	210	220	230	240	249
	orf41.pep		CONLEANI	LAALVNTAHGE	AASKIKOLDO	HYITHKIAHA:	IAGCAAAAAN	KGKCQD
		111111	111111	111111111111	нинийні	111:11111	11111111111	HIHI
40	orf4la	NGGSLI	COXLEANI	LAALVNTAHGE	AASKIKQLDQ	HYIVHKIAHA	IAGCAAAAAN	KGKCQD
			160	170	180	190	200	210
								•
		250	260	270	280	290	300	309
	orf41.pep	GAIGA	AVGEIVGE	ALTNGKNPDTL	TAKEREQILA	YSKLVAGTVS	GVVGGDVNAA	ANAAEV
45	•			111111111111				
	orf41a	GAIGA	AVGEIVGE	ALTNGKNPDTL				
			220	230	240	250	260	270
		310	320					
50	orf41.pep		<u>O</u> LSDKX	•				
		11111						,
	orf41a	AVKNN		EFDNEMTACAK				
			280	290	300	310	320	330

A partial ORF41a nucleotide sequence <SEQ ID 71> is:

55	1	TATCTGAAAC	AGCTCCAAGT	AGCGAAAAAC	ATCAACTGGA	ATCAGGTGCA
	51	GCTTGCTTAC	GACAGATGGG	ACTACAAACA	GGAGGGCTTA	ACCGAAGCAG
	101	GTGCGGCGAT	TATCGCACTG	GCCGTTACCG	TGGTCACCTC	AGGCGCAGGA
	151	ACCGGAGCCG	TATTGGGATT	AAACGGTGCG	NCCGCCGCCG	CAACCGATGC

			="				7 454
		201	AGCATTCGCC	TCTTTGGCCA	GCCAGGCTTC	CGTATCGTTC	ATCAACAACA
		251	AAGGCGATGT	CGGCAAAACC	CTGAAAGAGC	TGGGCAGAAG	CAGCACGGTG
		301	AAAAATCTGG	TGGTTGCCGC	CGCTACCGCA	GGCGTAGCCG	ACAAAATCGG
		351	CGCTTCGGCA	CTGANCAATG	TCAGCGATAA	GCAGTGGATC	AACAACCTGA
5		401	CCGTCAACCT	AGCCAATGCG	GGCAGTGCCG	CACTGATTAA	TACCGCTGTC
-		451	AACGGCGGCA	GCCTGAAAGA	CANTCTGGAA	GCGAATATCC	TTGCGGCTTT
		501	GGTCAATACC	GCGCATGGAG	AAGCAGCCAG	TAAAATCAAA	CAGTTGGATC
		551	AGCACTACAT	AGTCCACAAG	ATTGCCCATG	CCATAGCGGG	CTGTGCGGCA
		601	GCGGCGGCGA	ATAAGGGCAA	GTGTCAGGAT	GGTGCGATAG	GTGCGGCTGT
10		651	GGGCGAGATA	GTCGGGGAGG	CTTTGACAAA	CGGCAAAAAT	CCTGACACTT
		701	TGACAGCTAA	AGAACGCGAA	CAGATTTTGG	CATACAGCAA	ACTGGTTGCC
		751	GGTACGGTAA	GCGGTGTGGT	CGGCGGCGAT	GTAAATGCGG	CGGCGAATGC
		801	GGCTGAGGTA	GCGGTGAAAA	ATAATCAGCT	TAGCGACNAA	GAGGGTAGAG
		851				AACAGAATAN	
15		901				AATGTTGCTG	
		951				ATCCCGTAGT	
•		1001				GTAGAAGCCT	
		1051				GAATGGTATA	
		1101				ACAGTCTTAT	
20		1151				ATACAAAGCC	
		1201				TCAGGAGTTA	
		1251				AAATACACCT	
•		1301				CAAACCTANA	
		1351				GGCATTAAAG	
25							NGNGTAAAAT
and the second		1451					ATATGAGATT
		1501				GGTGGATTTA	
		1551				NTTTTNNGAT	
		1601				GATATTCAAA	
30	+ *.	1651				TCGGAAAGAA	
	• -	1701					TATNTNGATG
		1751	TAAATACAGG	AAGAATTACA	AACATTCACC		

This encodes a protein having the partial amino acid sequence <SEQ ID 72>:

```
YLKQLQVAKN INWNQVQLAY DRWDYKQEGL TEAGAAIIAL AVTVVTSGAG
35
                      TGAVLGLNGA XAAATDAAFA SLASQASVSF INNKGDVGKT LKELGRSSTV
                      KNLVVAAATA GVADKIGASA LXNVSDKOWI NNLTVNLANA GSAALINTAV
                151
                      NGGSLKDXLE ANILAALVNT AHGEAASKIK QLDQHYIVHK IAHAIAGCAA
                      AAANKGKCQD GAIGAAVGEI VGEALTNGKN PDTLTAKERE QILAYSKLVA
                201
                      GTVSGVVGGD VNAAANAAEV AVKNNQLSDX EGREFDNEMT ACAKQNXPQL
                 251
                      CRKNTVKKYQ NVADKRLAAS IAICTDISRS TECRTIRKQH LIDSRSLHSS
                 301
                      WEAGLIGKDD EWYKLFSKSY TQADLALQSY HLNTAAKSWL QSGNTKPLSE
                351
                      WMSDQGYTLI SGVNPRFIPI PRGFVKQNTP ITNVKYPEGI SFDTNLXRHL
ANADGFSQEQ GIKGAHNRTN XMAELNSRGG XVKSETXTDI EGITRIKYEI
                 401
                      PTLDRTGKPD GGFKEISSIK TVYNPKXFXD DKILQMAQXA XSQGYSKASK
                 501
                     IAQNERTKSI SERKNVIQFS ETFDGIKFRX YXDVNTGRIT NIHPE*
45
```

ORF41a and ORF41-1 show 94.8% identity in 595 aa overlap:

					10	20	30	
				VT		NWNQVQLAYDR		PAGAA
•	orf41a.pep							
					: ::			
50	orf41-1	MOANIOI				NMNÖNÖTYÄDK		
			10	20	30	∕ 4 0	50	, 60
			•				•	
		40	50	60	70	80	90	
	orf4la.pep	IIALAVTV	/VTSGAGTG	AVLGLNGAXA	AATDAAFAS:	Lasqasvsfin	NKGDVGKTL	KELGR
55		1111111	111:111:1	1:111111 1	шини	11111111:11	111::1:11	ШП
33	orf41-1	TTALAVTY	VVTAGAGAG	AALGLNGAAA	AATDAAFAS	LASQASVSLIN	NKGNIGNTL	KELGR
	01141 1		70	80	90	100	110	120
			. •					
*		100	110	120	130	140	150	
60	orf4la.pep		VVDATAGV	ADKTGASALX	NVSDKOWIN	NLTVNLANAGS	AALTNTAVN	GGSLK
00	Ortara.beb	1111111	· · .		111111111	11111111111	11111111	11111
	544 4	1111111	• •		HILLIIIIII	NLTVNLANAGS	ייייוויייי געט מידער זממי	
	orf41-1					160	170	180
			130	140	150	100	170	100
65		160	170	180	190	200	- 210	
	orf41a.pep	DXLEANI	Laalvntah	GEAASKIKQI	'DÖHAIAHKI	AHAIAGCAAA <i>F</i>	ANKGKCQDG	AIGAA

				PCT/IB99/00103
WO 99/36544				r C 1/1D77/00103
YY C 77130377			* .	

		-100-	
(}` ::(a')	$\Lambda_{pN}^{(i)}$		
1	orf41-1	DNLEANILAALVNTAHGEAASKIKQLDQHYITHKI	
* 1997 ****		190 200 210	220 230 240
5		220 230 240 250 VGEIVGEALTNGKNPDTLTAKEREOILAYSKLVAG	260 270
1,	orf4la.pep		111111111111111111111111111111111111111
· , ·	orf41-1	VGEIVGEALTNGKNPDTLTAKEREQILAYSKLVAG 250 260 270	TVSGVVGGDVNAAANAAEVAVKNNQ 280 290 300
10	4	280 290 300 310	320 330
	orf41a.pep	LSDXEGREFDNEMTACAKQNXPQLCRKNTVKKYQN	IVADKRLAASIAICTDISRSTECRTI
	orf41-1		
15	02002	310 320 330	340 350 360
	•	340 350 360 370	380 390
•	orf41a.pep	RKQHLIDSRSLHSSWEAGLIGKDDEWYKLFSKSYT	
20	orf41-1	RKOHLIDSRSLHSSWEAGLIGKDDEWYKLFSKSYT	PQADLALQSYHLNTAAKSWLQSGNTK 400 410 420
i gara	•		440 450
1.01	orf4la.pep	PLSEWMSDQGYTLISGVNPRFIPIPRGFVKQNTP	TNVKYPEGISFDTNLXRHLANADGF
25	orf41-1	PLSEWMSDQGYTLISGVNPRFIPIPRGFVKQNTP	
		430 440 450	460 470 480
20		460 470 480 490	500 510
30	orf41a.pep	SQEQGIKGAHNRTNXMAELNSRGGXVKSETXTDI	
	orf41-1	SQKQGIKGAHNRTNFMAELNSRGGRVKSETQTDII 490 500 510	EGITRIKYEIPTLDRTGKPDGGFKEI 520 530 540
35	• •	520 530 540 550	560 570
5.0	orf41a.pep	SSIKTVYNPKXFXDDKILQMAQXAXSQGYSKASK:	IAQNERTKSISERKNVIQFSETFDGI
. 🕌	orf41-1		IAQNERTKSISERKNVIQFSETFDGI
40		550 560 570	580 590 600
10		500 590	•
	orf4la.pep	KFRXYXDVNTGRITNIHPEX	
45	orf41-1	KFRSYFDVNTGRITNIHPEX 610 620	•

Amino acids 25-619 of ORF41-1 were amplified as described above. Figure 6 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF41-1.

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

0 Example 17

The following DNA sequence was identified in N. meningitidis <SEQ ID 73>

*V	1	ATGGCAATCA	TTACATTGTA	TTATTCTGTC	AATGGTATTT	TAAATGTATG
	51	TGCAAAAGCA	AAAAATATTC	AAGTAGTTGC	CAATAATAAG	AATATGGTTC
	101	TTTTTGGGTT	TTTGGsmrGC	ATCATCGGCG	GTTCAACCAA	TGCCATGTCT
55	151	CCCATATTGT	TAATATTTT	GCTTAGCGAA	ACAGAAAATA	AAAATcgTAT
	201	CGTAAAATCA	AGCAATCTAT	GCTATCTTTT	GGCGAAAATT	GTTCAAATAT
	251	ATATGCTAAG	AGACCAGTAT	TGGTTATTAA	ATAAGAGTGA	ATACGdTTTA
	301	ATATTTTTAC	TGTCCGTATT	GTCTGTTATT	GGATTGTATG	TTGGAATTCG
	351	GTTAAGGACT	AAGATTAGCC	CAaATTTTTT	TAAAATGTTA	ATTTTTATTG

401 ttttattggt attggctctg aaaatcgggc attcgggttt aatcaaactt

This corresponds to the amino acid sequence <SEQ ID 74; ORF51>:

```
5 MAIITLYYSV NGILNVCAKA KNIQVVANNK NMVLFGFLXX IIGGSTNAMS
51 PILLIFLLSE TENKNRIVKS SNLCYLLAKI VQIYMLRDQY WLLNKSEYXL
101 IFLLSVLSVI GLYVGIRLRT KISPNFFKML IFIVLLVLAL KIGHSGLIKL
151 *
```

Further work revealed the complete nucleotide sequence <SEQ ID 75>:

	1	ATGCAAGAAA	TAATGCAATC	TATCGTTTTT	GTTGCTGCCG	CAATACTGCA
10	51	CGGAATTACA	GGCATGGGAT	TTCCGATGCT	CGGTACAACC	GCATTGGCTT
•	101	TTATCATGCC	ATTGTCTAAG	GTTGTTGCCT	TGGTGGCATT	ACCAAGCCTG
	151	TTAATGAGCT	TGTTGGTTCT	ATGCAGCAAT	AACAAAAAGG	GTTTTTGGCA
	201	AGAGATTGTT	TATTATTTAA	AAACCTATAA	ATTGCTTGCT	ATCGGCAGCG
	251	TCGTTGGCAG	CATTTTGGGG	GTGAAGTTGC	TTTTGATACT	TCCAGTGTCT
15	301	TGGCTGCTTT	TACTGATGGC	AATCATTACA	TTGTATTATT	CTGTCAATGG
	351	TATTTTAAAT	GTATGTGCAA	AAGCAAAAAA	TATTCAAGTA	GTTGCCAATA
•	401	ATAAGAATAT	GGTTCTTTTT	GGGTTTTTGG	CAGGCATCAT	CGGCGGTTCA
	451	ACCAATGCCA	TGTCTCCCAT	ATTGTTAATA	TTTTTGCTTA	GCGAAACAGA
,	501	TAAAAAAAA	CGTATCGTAA	AATCAAGCAA	TCTATGCTAT	CTTTTGGCGA
20	551	AAATTGTTCA	AATATATATG	CTAAGAGACC	AGTATTGGTT	ATTAAATAAG
	601	AGTGAATACG	GTTTAATATT	TTTACTGTCC	GTATTGTCTG	TTATTGGATT
	651	GTATGTTGGA	ATTCGGTTAA	GGACTAAGAT	TAGCCCAAAT	TTTTTTAAAA
	701	TGTTAATTTT	TATTGTTTTA	TTGGTATTGG	CTCTGAAAAT	CGGGCATTCG
	751	GGTTTAATCA	AACTTTAA			

25 This corresponds to the amino acid sequence <SEQ ID 76; ORF51-1>:

```
1 MQEIMQSIVF VAAAILHGIT GMGFPMLGTT ALAFIMPLSK VVALVALPSL
51 IMSLLVLCSN NKKGFWQEIV YYLKTYKLLA IGSVVGSILG VKLLLILPVS
101 WLLLLMAIIT LYYSVNGILN VCAKAKNIQV VANNKNMVLF GFLAGIIGGS
151 TNAMSPILLI FLLSETENKN RIVKSSNLCY LLAKIVQIYM LRDQYWLLNK
30 201 SEYGLIFLLS VLSVIGLYVG IRLRTKISPN FFKMLIFIVL LVLALKIGHS
```

Computer analysis of this amino acid sequence reveals three putative transmembrane domains. A corresponding ORF from strain A of *N.meningitidis* was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF51 shows 96.7% identity over a 150aa overlap with an ORF (ORF51a) from strain A of N. meningitidis:

40	orf51.pep	YKLLAIGSVV 80	GSILGVK <u>LLL</u> 90	Ī	10 ALLTLYYSVNO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	111111111	11111111
45	orf51.pep	40 NMVLFGFLXX NMVLFGFLAG 140	IIGGSTNAMS	PILLIFLLSET	70 PENKNRIVKSSI : PENKNRIAKSSI 170		111111111
50	orf51.pep orf51a	100 WLLNKSEYX <u>I</u> !!!!!!!! WLLNKSEYG <u>I</u> 200	IFLLSVLSVI	GLYVGIRLRTF	130 (ISPNFFKMLI) (ISPNFFKMLI) 230	1111111111	T1:111111

ORF51-1 and ORF51a show 99.2% identity in 255 aa overlap:

```
orf51a.pep
                 MQEIMQSIVFVAAAILHGITGMGFPMLGTTALAFIMPLSKVVALVALPSLLMSLLVLCSN
                 orf51-1
                 MQEIMQSIVFVAAAILHGITGMGFPMLGTTALAFIMPLSKVVALVALPSLLMSLLVLCSN
5
                 NKKGFWQEIVYYLKTYKLLAIGSVVGSILGVKLLLILPVSWLLLLMAIITLYYSVNGILN
       orf5la.pep
                 NKKGFWQEIVYYLKTYKLLAIGSVVGSILGVKLLLILPVSWLLLLMAIITLYYSVNGILN
       orf51-1
10
       orf51a.pep
                 VCAKAKNIQVVANNKNMVLFGFLAGIIGGSTNAMSPILLIFLLSETENKNRIAKSSNLCY
                 orf51-1
                 VCAKAKNIQVVANNKNMVLFGFLAGIIGGSTNAMSPILLIFLLSETENKNRIVKSSNLCY
       orf51a.pep
                 LLAKIVQIYMLRDQYWLLNKSEYGLIFLLSVLSVIGLYVGIRLRTKISPNFFKMLIFIVL
15
                 orf51-1
                 LLAKIVQIYMLRDQYWLLNKSEYGLIFLLSVLSVIGLYVGIRLRTKISPNFFKMLIFIVL
                 LVLALKIGYSGLIKLX
       orf51a.pep
                 11111111:111111
20
       orf51-1
                 LVLALKIGHSGLIKLX
```

The complete length ORF51a nucleotide sequence <SEQ ID 77> is:

```
1
                    ATGCAAGAAA TAATGCAATC TATCGTTTTT GTTGCTGCCG CAATACTGCA
                    CGGAATTACA GGCATGGGAT TTCCGATGCT CGGTACAACC GCATTGGCTT
                51
               101
                    TTATCATGCC ATTGTCTAAG GTTGTTGCCT TGGTGGCATT ACCAAGCCTG
25
                    TTAATGAGCT TGTTGGTTCT ATGCAGCAAT AACAAAAAGG GTTTTTGGCA
               151
               201
                    AGAGATTGTT TATTATTAA AAACCTATAA ATTGCTTGCT ATCGGCAGCG
               251
                    TCGTTGGCAG CATTTTGGGG GTGAAGTTGC TTTTGATACT TCCAGTGTCT
                    TGGCTGCTTT TACTGATGGC AATCATTACA TTGTATTATT CTGTCAATGG
               301
                    TATTTTAAAT GTATGTGCAA AAGCAAAAAA TATTCAAGTA GTTGCCAATA
               351
30
                    ATAAGAATAT GGTTCTTTTT GGGTTTTTGG CAGGCATCAT CGGCGGTTCA
                401
                    ACCAATGCCA TGTCTCCCAT ATTGTTAATA TTTTTGCTTA GCGAAACAGA
               451
                    GAATAAAAAT CGTATCGCAA AATCAAGCAA TCTATGCTAT CTTTTGGCAA
               501
                551
                    AAATTGTTCA AATATATAT CTAAGAGACC AGTATTGGTT ATTAAATAAG
                601
                    AGTGAATACG GTTTAATATT TTTACTGTCC GTATTGTCTG TTATTGGATT
                    GTATGTTGGA ATTCGGTTAA GGACTAAGAT TAGCCCAAAT TTTTTTAAAA
35
                651
                701
                    TGTTAATTTT TATTGTTTTA TTGGTATTGG CTCTGAAAAT CGGGTATTCA
                    GGTTTAATCA AACTTTAA
```

This encodes a protein having amino acid sequence <SEQ ID 78>:

```
1 MQEIMQSIVF VAAAILHGIT GMGFPMLGTT ALAFIMPLSK VVALVALPSL
40 51 LMSLLVLCSN NKKGFWQEIV YYLKTYKLLA IGSVVGSILG VKLLLILPVS
101 WLLLLMAIIT LYYSVNGILN VCAKAKNIQV VANNKNMVLF GFTAGIIGGS
151 TNAMSPILLI FLLSETENKN RIAKSSNLCY LLAKIVQIYM LRDQYWLLNK
201 SEYGLIFLLS VLSVIGLYVG IRLRTKISPN FFKMLIFIVL LVLALKIGYS
251 GLIKI*
```

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 18

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 79>

	1	ATGAGACATA	TGAAAATACA	AAATTATTTA	CTAGTATTTA	TAGTTTTACA
50	51	TATAGCCTTG	ATAGTAATTA	ATATAGTGTT	TGGTTATTTT	GTTTTTCTAT
	101	TTGATTTTTT	TGCGTTTTTG	TTTTTTGCAA	ACGTCTTTCT	TGCTGTAAAT
	151	TTATTATTTT	TAGAAAAAA	CATAAAAAAC	AAATTATTGT	TTTTATTGCC
	201	GATTTCTATT	ATTATATGGA	TGGTAATTCA	TATTAGTATG	AATAAATA
	251	AATTTTATAA	ATTTGAGCAT	CAAATAAAGG	AACAAAATAT	ATCCTCGATT
55	301	ACTGGGGTGA	TAAAACCACA	TGATAGTTAT	AATTATGTTT	ATGACTCAAA

- 351 TGGATATGCT AAATTAAAAG ATAATCATAG ATATGGTAGG GTAATTAGAG
 401 AAACACCTTA TATTGATGTA GTTGCATCTG ATGTTAAAAA TAAATCCATA
- 451 AGATTAAGCT TGGTTTGTGG TATTCATTCA TATGCTCCAT GTGCCAATTT
- 501 TATAAAATTT GTCAGG..
- 5 This corresponds to the amino acid sequence <SEQ ID 80; ORF82>:
 - 1 MRHMKIQNYL LVFIVLHIAL IVINIVFGYF VFLFDFFAFL FFANVFLAVN 51 LLFLEKNIKN KLLFLLPISI IIWMVIHISM INIKFYKFEH QIKEQNISSI
 - 101 TGVIKPHDSY NYVYDSNGYA KLKDNHRYGR VIRETPYIDV VASDVKNKSI
 - 151 RLSLVCGIHS YAPCANFIKF VR..
- 10 Further work revealed the complete nucleotide sequence <SEQ ID 81>:

	1	ATGAGACATA	TGAAAAATAA	AAATTATTTA	CTAGTATTTA	TAGTTTTACA
	51	TATAGCCTTG	ATAGTAATTA	ATATAGTGTT	TGGTTATTTT	GTTTTTCTAT
	101	TTGATTTTTT	TGCGTTTTTG	TTTTTTGCAA	ACGTCTTTCT	TGCTGTAAAT
	151	TTATTATTTT	TAGAAAAAAA	CATAAAAAAC	AAATTATTGT	TTTTATTGCC
15	201	GATTTCTATT	ATTATATGGA	TGGTAATTCA	TATTAGTATG	ATAAATATAA
	251	AATTTTATAA	ATTTGAGCAT	CAAATAAAGG	AACAAAATAT	ATCCTCGATT
	301	ACTGGGGTGA	TAAAACCACA	TGATAGTTAT	AATTATGTTT	ATGACTCAAA
	351	TGGATATGCT	AAATTAAAAG.	ATAATCATAG	ATATGGTAGG	GTAATTAGAG
	401	AAACACCTTA	TATTGATGTA	GTTGCATCTG	ATGTTAAAAA	TAAATCCATA
. 20	451	AGATTAAGCT	TGGTTTGTGG	TATTCATTCA	TATGCTCCAT	GTGCCAATTT
	501	TATAAAATTT	GCAAAAAAAC	CTGTTAAAAT	TTATTTTTAT	AATCAACCTC
	551	AAGGAGATTT	TATAGATAAT	GTAATATTTG	AAATTAATGA	TGGAAACAAA
	601	AGTTTGTACT	TGTTAGATAA	GTATAAAACA	TTTTTTTTTA	TTGAAAACAG
	651	TGTTTGTATC	GTATTAATTA	TTTTATATTT	AAAATTTAAT	TTGCTTTTAT
25	701	ATAGGACTTA	CTTCAATGAG	TTGGAATAG		V.*

This corresponds to the amino acid sequence <SEQ ID 82; ORF82-1>:

```
1 MRHMKNKYL LVFIVLHIAL IVINIVFGYF VFLFDFFAFL FFANVFLAVN
51 LLFLEKNIKN KLLFLLPISI IIWMVIHISM INIKFYKFEH QIKEQNISSI
101 TGVIKPHDSY NYVYDSNGYA KLKDNHRYGR VIRETPYIDV VASDVKNKSI
151 RLSLVCGIHS YAPCANFIKF AKKPVKIYFY NQPQGDFIDN VIFEINDGNK
201 SLYLLDKYKT FFLIENSVCI VLIILYLKFN LLLYRTYFNE LE*
```

Computer analysis of this amino acid sequence reveals a predicted leader peptide.

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF82 shows 97.1% identity over a 172aa overlap with an ORF (ORF82a) from strain A of N. meningitidis:

		10	20	30	40	50	60
	orf82.pep	MRHMKIONYLL	VFIVLHIALIVI	NIVFGYFVFLF	DFFAFLFFAN	<u>vyfla</u> vnllfli	EKNIKN
				TEELHELLE	HILLIAH		
40	orf82a	MRHMKNKNYLL	VFIVLHITLIVI			<u>ivfla</u> vnllfl	
		10	20	30	40	50	60 -
		70	. 80	90	100	110	120
	orf82.pep	KLLFLLPISII	<u>IWMVIHI</u> SMINI	KFYKFEHQIKE	:QNISSITGV	CKPHDSYNYVY	DSNGYA
45		$\Pi\Pi\Pi\Pi\Pi\Pi\Pi\Pi$	<u> </u>	11111111111		1111111111	11111
	orf82a	KLLFLLPISII	<u>IWMVIHISMINI</u>	KFYKFEHQIKE	QNISSITGV:	IKPHDSYNYVY	DSNGYA
		70	80	90	100	110	120
		130	140	150	160	170	
50	orf82.pep	KLKDNHRYGRV	IRETPYIDVVAS	DVKNKSIRLSI	LVCGIHSYAP(CANFIKFVR	
			11111111111	JIIIIIIIII	1111111		
	orf82a	KLKDNHRYGRV	IRETPYIDVVAS	DVKNKSIRLSI	CVCGIHSYAP	Canfikfakkp	VKIYFY
		130	140	150	160	170	180

ORF82a and ORF82-1 show 99.2% identity in 242 aa overlap:

	orf82a.pep	MRHMKNKNYLLVFIVLHITLIVINIVFGYFVFLFDFFAFLFFANVFLAVNLLFLEKNIKN
	500 1	
5	orf82-1	MRHMKNKNYLLVFIVLHIALIVINIVFGYFVFLFDFFAFLFFANVFLAVNLLFLEKNIKN
3	orf82a.pep	KLLFLLPISIIIWMVIHISMINIKFYKFEHQIKEQNISSITGVIKPHDSYNYVYDSNGYA
•	orf82-1	KLLFLLPISIIIWMVIHISMINIKFYKFEHQIKEQNISSITGVIKPHDSYNYVYDSNGYA
10	orf82a.pep	KLKDNHRYGRVIRETPYIDVVASDVKNKSIRLSLVCGIHSYAPCANFIKFAKKPVKIYFY
	orf82-1	
		· ·
15	orf82a.pep	NQPQGDFIDNVIFEINDGKKSLYLLDKYKTFFLIENSVCIVLIILYLKFNLLLYRTYFNE
13	orf82-1	
	orf82a.pep	LEX
		III
20	orf82-1	LEX

The complete length ORF82a nucleotide sequence <SEQ ID 83> is

•		1	ATGAGACATA	TGAAAAATAA	AAATTATTTA	CTAGTATTTA	TAGTTTTACA
		51	TATAACCTTG	ATAGTAATTA	ATATAGTGTT	TGGTTATTTT	GTTTTTCTAT
25		101	TTGATTTTTT	TGCGTTTTTG	TTTTTTGCAA	ACGTCTTTCT	TGCTGTAAAT
		151	TTATTATTTT	TAGAAAAAA	CATAAAAAAC	AAATTATTGT	TTTTATTGCC
<i>;</i> *		201	GATTTCTATT	ATTATATGGA	TGGTAATTCA	TATTAGTATG	ATAAATATAA
		251	AATTTTATAA	ATTTGAGCAT	CAAATAAAGG	AACAAAATAT	ATCCTCGATT
•		301	ACTGGGGTGA	TAAAACCACA	TGATAGTTAT	AATTATGTTT	ATGACTCAAA
30	:	351	TGGATATGCT	AAATTAAAAG	ATAATCATAG	ATATGGTAGG	GTAATTAGAG
		401	AAACACCTTA	TATTGATGTA	GTTGCATCTG	ATGTTAAAAA	TAAATCCATA
•		451	AGATTAAGCT	TGGTTTGTGG	TATTCATTCA	TATGCTCCAT	GTGCCAATTT
		501	TATAAAATTT	GCAAAAAAAC	CTGTTAAAAT	TTATTTTTAT	AATCAACCTC
	•	551	AAGGAGATTT	TATAGATAAT	GTAATATTTG	AAATTAATGA	TGGAAAAAA
35	•	601	AGTTTGTACT	TGTTAGATAA	GTATAAAACA	TTTTTTTTTA	TTGAAAACAG
		651	TGTTTGTATC	GTATTAATTA	TTTTATATTT	AAAATTTAAT	TTGCTTTT:
		701	ATAGGACTTA	CTTCAATGAG	TTGGAATAG		:

This encodes a protein having amino acid sequence <SEQ ID 84>:

```
1 MRHMKNKYL LVFTVLHITL IVINIVFGYF VFLFDFFAFL FFANVFLAVN
40 51 LLFLEKNIKN KLLFLLPISI IIWMVIHISM INIKFYKFEH QIKEQNISSI
101 TGVIKPHDSY NYVYDSNGYA KLKDNHRYGR VIRETPYIDV VASDVKNKSI
151 RLSLVCGIHS YAPCANFIKF AKKPVKIYFY NQPQGDFIDN VIFEINDGKK
201 SLYLLDKYKT FFLIENSVCI VLIILYLKFN LLLYRTYFNE LE*
```

Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 19

45

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 85>

	1	ACCCCCAACA	GCGTGACCGT	CTTGCCGTCT	TTCGGCGGAT	TCGGGCGTAC
•	51	CGGCGCGACC	ATCAATGCAG	CAGGCGGGGT	CGGCATGACT	GCCTTTTCGA
50	101	CAACCTTAAT	TTCCGTAGCC	GAGGGCGCGG	TTGTAGAGCT	GCAGGCCGTG
	151	AGAGCCAAAG	CCGTCAATGC	AACCGCCGCT	TGCATTTTTA	CGGTCTTGAG
	201	TAAGGACATT	TTCGATTTCC	TTTTTATTTT	CCGTTTTCAG	ACGGCTGACT
	251	TCCGCCTGTA	TTTTCGCCAA	AGCCATGCCG	ACAGCGTGCG	CCTTGACTTC
	301	AAAATTTAAAA	GCTTCCGCGC	GTGCCAGTTC	CAGTTCGCGC	GCATAGTTTT
55	351	GAGCCGACAA	CAGCAGGGCT	TGCGCCTTGT	CGCGCTCCAT	CTTGTCGATG

1					
401	ACCGCCTGCA	GCTTCGCAAA	TGCCGACTTG	TAGCCTTGAT	GGTGCGACAC
451	AGCCAAGCCC	GTGCCGACAA	GCGCGATAAT	GGCAATCGGT	TGCCAGTAAT
501	TCGCCAGCAG	TTTCACGAGA	TTCATTCTCG	ACCTCCTGAC	GCTTCACGCT
551	GA	•			

5 This corresponds to the amino acid sequence <SEQ ID 86; ORF124>:

```
1 .TPNSVTVLPS FGGFGRTGAT INAAGGVGMT AFSTTLISVA EGAVVELQAV
51 RAKAVNATAA CIFTVLSKDI FDFLFIFRFQ TADFRLYFRQ SHADSVRLDF
[01 IFKSFRACQF QFARIVLSRQ QQGLRLVALH LVDDRLQLRK CRLVALMVRH
[51 SQARADKRDN GNRLPVIRQQ FHEIHSRPPD ASR*
```

10 Computer analysis of this amino acid sequence predicts a transmembrane domain.

Further work revealed the complete nucleotide sequence <SEQ ID 87>:

```
ATGACTGCCT TTTCGACAAC CTTAATTTCC GTAGCCGAGG GCGCGGTTGT
                 51
                     AGAGCTGCAG GCCGTGAGAG CCAAAGCCGT CAATGCAACC GCCGCTTGCA
                     TTTTTACGGT CTTGAGTAAG GACATTTTCG ATTTCCTTTT TATTTTCCGT
                101
                151
                     TTTCAGACGG CTGACTTCCG CCTGTTTTTT CGCCAAAGCC ATGCCGACAG
                201
                     CGTGCGCCTT GACTTCATAT TTTTTAGCTT CCGCGCGTGC CAGTTCCAGT
                     TCGCGCGCAT AGTTTTGAGC CGACAACAGC AGGGCTTGCG CCTTGTCGCG
                251
                     CTCCATCTTG TCGATGACCG CCTGCTGCTT CGCAAATGCC GACTTGTAGC
                301
                     CTTGATGGTG CGACACAGCC AAGCCCGTGC CGACAAGCGC GATAATGGCA
                351
20
                     ATCGGTTGCC AGTTATTCGC CAGCAGTTTC ACGAGATTCA TTCTCGACCT
                401
                     CCTGACGCTT CACGCTGA
                451
```

This corresponds to the amino acid sequence <SEQ ID 88; ORF124-1>:

```
1 MTAFSTTLIS VAEGAVVELQ AVRAKAVNAT AACIFTVLSK DIFDFLFIFR
51 FQTADFRLFF RQSHADSVRL DFIFFSFRAC QFQFARIVLS RQQQGLRLVA
```

101 LHLVDDRLLL RKCRLVALMV RHSQARADKR DNGNRLPVIR QQFHEIHSRP

151 PDASR*

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF124 shows 87.5% identity over a 152aa overlap with an ORF (ORF124a) from strain A of N.

30 🦈 meningitidis:

C C	4	10	20	30	40	50	60
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	orf124.pep	TPNSVTVLPSFG	GFGRTGATINI	aaggvgmtafs	TTLISVAEGA	VVELQAVRAK	AVNATAA
	137			11111			111:111
	orf124a	•		MTAFS		LVELQAVMAK	
35				•	10	20	30
	1						100
		70	80	90	100	110	120
	orf124.pep	CIFTVLSKDIFD	flfifrfqtai	dfrlyfrosha	DSVRLDFIF	(SFRACQFQF#	
				: :		111: 1111	:
40	orf124a	CIFTVLSKDIFD	FLFIFRFQTA	DFRLFFRQSHA	DGVRLDFIFE		
		40	50	60	70	80	90
	,						
4	•	130	140	150	160	170	180
	orf124.pep	QQGLRLVALHLV	DDRLQLRKCR	LVALMVRHSQA	RADKRDNGNI	RLPVIRQQFH	EIHSRPPD
45	• •						· · · · · · · ·
	orf124a	QQGLRLVALHFL	NDRLLLRKSR	LVALMVRHRQT	RADKRDDGNI	RLPVIRQQFHI	EIHSRPPD
		100	110	120	130	140	150
	*						
50	orf124.pep	ASRX					
		:					
	orf124a	VX					

ORF124a and ORF124-1 show 89.5% identity in 152 aa overlap:

_		~		1004	~~
D/	L -1.	/1 Н	uu	/001	114

WO 99/36544		PCT/UB99
	-106-	

•	orf124-1.pep	MTAFSTTLISVAEGAVVELQAVRAKAVNATAACIFTVLSKDIFDFLFIFRFQTADFRLFF
	orf124a	MTAFSTTLISVAEGALVELQAVMAKAVNTTAACIFTVLSKDIFDFLFIFRFQTADFRLFF
5	orf124-1.pep	RQSHADSVRLDFIFFSFRACQFQFARIVLSRQQQGLRLVALHLVDDRLLLRKCRLVALMV
	orf124a	RQSHADGVRLDFIFFSFRTRLFQFAGVVLSRQQQGLRLVALHFLNDRLLLRKSRLVALMV
	orf124-1.pep	RHSQARADKRDNGNRLPVIRQQFHEIHSRPPDASRX
10	orf124a	: :

The complete length ORF124a nucleotide sequence <SEQ ID 89> is:

	1	ATGACCGCCT	TTTCGACAAC	CTTAATTTCC	GTAGCCGAGG	GCGCGCTTGT
	51	AGAGCTGCAA	GCCGTGATGG	CCAAAGCCGT	CAATACAACC	GCCGCCTGCA
15	101	TTTTTACGGT	CTTGAGTAAG	GACATTTTCG	ATTTCCTTTT	TATTTTCCGT
	151		CTGACTTCCG			
	201	CGTGCGCCTT	GACTTCATAT	TTTTTAGCTT	CCGCACGCGC	CTGTTCCAGT
	251	TCGCGGGCGT	AGTTTTGAGC	CGACAACAGC	AGGGCTTGCG	CCTTGTCGCG
	301	CTTCATTTTC	TCAATGACCG	CCTGCTGCTT	CGCAAAAGCC	GACTTGTAGC
20	351		CGACACCGCC			
	401	ATCGGTTGCC	AGTTATTCGC	CAGCAGTTTC	ACGAGATTCA	TTCTCGACCT
	451	CCTGACGTTT	GA			

This encodes a protein having amino acid sequence <SEQ ID 90>:

- 25 51 MTAFSTTLIS VAEGALVELQ AVMAKAVNTT AACIFTVLSK DIFDFLFIFR
 101 LHFLNDRLLL RKSRLVALMV RHRQTRADKR DDGNRLPVIR QQFHEIHSRP
 151 PDV*
- ORF124-1 was amplified as described above. Figure 7 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF124-1.

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

It will be appreciated that the invention has been described by means of example only, and that modifications may be made whilst remaining within the spirit and scope of the invention.

TABLE I – PCR primers

ORF	Primer	Sequence	Restriction sites
ORF 38	Forward	CGC <u>GGATCCCATATG</u> -TCGCCGCAAAATTCCGA	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -TTTTGCCGCGTTAAAAGC	XhoI
ORF 40	Forward	CGC <u>GGATCCCATATG</u> -ACCGTGAAGACCGCC	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -CCACTGATAACCGACAGA	XhoI
ORF 41	Forward	CGC <u>GGATCCCATATG</u> -TATTTGAAACAGCTCCAAG	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -TTCTGGGTGAATGTTA	XhoI
ORF 44	Forward	GC <u>GGATCCCATATG</u> -GGCACGGACAACCCC	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -ACGTGGGGGAACAGTCT	XhoI
ORF 51	Forward	GC <u>GGATCCCATATG</u> -AAAAATATTCAAGTAGTTGC	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -AAGTTTGATTAAACCCG	XhoI
ORF 52	Forward	CGC <u>GGATCCCATATG</u> -TGCCAACCGCAATCCG	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -TTTTTCCAGCTCCGGCA	XhoI
ORF 56	Forward	GCGGATCCCATATG-GTTATCGGAATATTACTCG	BamHI-NdeI
	Reverse	CCCGCTCGAG-GGCTGCAGAAGCTGG	XhoI
ORF 69	Forward	CGC <u>GGATCCCATATG</u> -CGGACGTGGTTGGTTTT	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -ATATCTTCCGTTTTTTCAC	XhoI
ORF 82	Forward	CGC <u>GGATCCGCTAGC</u> -GTAAATTTATTATTTTAGAA	BamHI-Nhel
	Reverse	CCCG <u>CTCGAG</u> -TTCCAACTCATTGAAGTA	XhoI
ORF 114	Forward	CGC <u>GGATCCCATATG</u> -AATAAAGGTTTACATCGCAT	BamHI-Nhel
	Reverse	CCCG <u>CTCGAG</u> -AATCGCTGCACCGGCT	Xhol
ORF 124	Forward	CGC <u>GGATCCCATATG</u> -ACTGCCTTTTCGACA	BamHI-NheI
	Reverse	CCCG <u>CTCGAG</u> -GCGTGAAGCGTCAGGA	XhoI

TABLE II - Cloning, expression and purification

ORF	PCR/cloning	His-fusion expression	GST-fusion expression	Purification
orf 38	+	+	+	His-fusion
orf 40	+	+	+	His-fusion
orf 41	+	n.d.	n.d.	
orf 44	+	+ ;:	+	His-fusion
orf 51	+	n.d.	n.d.	
orf 52	+	n.d.	+	GST-fusion
orf 56	+	n.d.	n.d.	
orf 69	+	n.d.	n.d.	digital milks
orf 82	+	n.d.	n.d.	A . NAM.
orf 114	+	7 n.d. 1139	+	GST-fusion
orf 124	+	n.d.	n.d.	11

CLAIMS

- 1. A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, and 6.
- 2. A nucleic acid molecule which encodes a protein according to claim 1
- A nucleic acid molecule according to claim 2, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, and 5.
 - 4. A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, and 90.
- 10 5. A protein having 50% or greater sequence identity to a protein according to claim 4.
 - 6. A protein comprising a fragment of an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, and 90.
 - 7. An antibody which binds to a protein according to any one of claims 4 to 6.
- 15 8. A nucleic acid molecule which encodes a protein according to any one of claims 4 to 6.
 - 9. A nucleic acid molecule according to claim 8, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, and 89.
- 10. A nucleic acid molecule comprising a fragment of a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, and 89.
 - 11. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to any one of claims 8 to 10.

- 12. A nucleic acid molecule comprising a nucleotide sequences having 50% or greater sequence identity to a nucleic acid molecule according to any one of claims 8 to 11.
- 13. A nucleic acid molecule which can hybridise to a nucleic acid molecule according to any one of claims 8 to 12 under high stringency conditions.
- 5 14. A composition comprising a protein, a nucleic acid molecule, or an antibody according to any preceding claim.
 - 15. A composition according to claim 14 being a vaccine composition or a diagnostic composition.
 - 16. A composition according to claim 14 or claim 15 for use as a pharmaceutical.
- 10 17. The use of a composition according to claim 14 in the manufacture of a medicament for the treatment or prevention of infection due to Neisserial bacteria, particularly Neisseria meningitidis.

1/11

FIG. 4A

SUBSTITUTE SHEET (RULE 26)

WO 99/36544 PCT/IB99/00103

2/11

SUBSTITUTE SHEET (RULE 26)

WO 99/36544 PCT/IB99/00103

5/11

SUBSTITUTE SHEET (RULE 26)

6/11

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

WO 99/36544 PCT/IB99/00103

8/11

SUBSTITUTE SHEET (RULE 26)

ANTIGENIC INDEX HYDROPHILICITY 1600 1400 1200 1000 800 009 400 200 3.187

-2.9-

SUBSTITUTE SHEET (RULE 26)

0

Best Available Copy

Best Available Copy

