Einfürung in die Algebra Hausaufgaben Blatt Nr. 9

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: January 22, 2024)

Problem 1. Seien p,q zwei (nicht notwendigerweise verschiedene) Primzahlen und G eine Gruppe der Ordnung pq. Zeigen Sie, dass G auflösbar ist.

Proof. Sei p=q. Dann ist G eine Gruppe der Ordnung p^2 . Wir wissen, dass solche Gruppen abelsch ist, also $G'=\{e\}$ und G ist auflösbar.

Sei jetzt $p \neq q$. Nach den Sylowsätze gibt es Untergruppen der Ordnung p, für deren Anzahl n_p gilt:

$$n_p \equiv 1 \pmod{p}$$
$$n_p|q$$

Da q eine Primzahl ist, muss $n_p = 1$ gelten. Ähnlich gilt auch $n_q = 1$. Sei P die Untergruppe der Ordnung p. Als Gruppe einer Primzahlordnung ist P zyklisch, insbesondere abelsch und daher auflösbar. |G/P| = q, also |G/Q| ist zyklisch, abelsch und auflösbar.

Dann ist G auflösbar.

Problem 2. Zeigen Sie, dass jede Gruppe G der Ordnung 12 auflösbar ist.

Proof. $12 = 3 \times 2^2$, also es gibt nach den Sylowsätze Gruppen der Ordnung 4 und 3 von Anzahl n_2 bzw. n_3 . Aus den vorherigen Übungsblätter wissen wir, dass $n_2 = 1$ oder $n_3 = 1$ gilt.

1. $n_2 = 1$. Sei H die Untergruppe der Ordnung 4. Als Gruppe der Ordnung $4 = 2^2$ ist H abelsch und auflösbar. Weil |G/H| = 3, ist G/H zyklisch, abelsch und auflösbar. Da sowohl H als auch G/H auflösbar sind, und H ein Normalteiler ist, ist G auflösbar.

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

2. $n_3 = 1$. Sei H die Untergruppe der Ordnung 3. Als Gruppe von Primordnung ist H zyklisch, abelsch und auflösbar. Da $|G/H| = 4 = 2^2$, ist G/H abelsch und daher auflösbar. Da H normal ist und sowohl H als auch G/H auflösbar sind, ist G auflösbar.

Problem 3. Sei R ein Ring, und seien $a, b \in R$. Es gelte ab = 1 und $ba \ne 1$. Ein Element $x \in R$ heißt *nilpotent*, falls es ein $s \in \mathbb{N}$ mit $x^s = 0$ gibt. Ein Element $x \in R$ heißt idempotent, falls $x^2 = x$ gilt.

- (a) Zeigen Sie, dass das Element 1 ba idempotent ist.
- (b) Zeigen Sie, dass das Element $b^n(1-ba)$ für alle $n\in\mathbb{N}^*$ nilpotent ist.
- (c) Zeigen Sie, dass es unendlich viele nilpotente Elemente in *R* gibt.

Proof. (a)

$$(1 - ba)^2 = (1 - ba)(1 - ba)$$

$$= 1 - ba - ba + (-ba)(-ba)$$
Distributivgesetz
$$= 1 - 2(ba) + baba$$
Lemma 3.1
$$= 1 - 2(ba) + b(ab)a$$

$$= 1 - 2ba + ba$$

$$= 1 - ba$$

Problem 4. (a) Sei *R* ein kommutativer Ring. Zeigen Sie die Äquivalenz der folgenden Aussagen:

- (1) Für alle $r, s \in R$ gilt $(r+s)^4 = r^4 + s^4$.
- (2) In R gilt 2 = 0.
- (b) Geben Sie ein Beispiel für einen kommutativen Ring an, der den Bedingungen aus(a) genügt, aber kein Körper ist.

Proof. (a) Es gilt

$$(r+s)^{2} = (r+s)(r+s)$$

$$= r^{2} + sr + rs + s^{2}$$

$$(r+s)^{4} = (r+s)^{2}(r+s)^{2}$$

$$= (r^{2} + sr + rs + s^{2})(r^{2} + sr + rs + s^{2})$$

$$= r^{4} + r^{2}sr + r^{3}s + r^{2}s^{2}$$

$$+ sr^{3} + srsr + srrs + srs^{2}$$

$$+ rsr^{2} + rssr + rsrs + rs^{3}$$

$$+ s^{2}r^{2} + s^{3}r + s^{2}rs + s^{4}$$

$$= r^{4} + r^{3}s + r^{3}s + r^{2}s^{2}$$

$$+ sr^{3} + s^{2}r^{2} + s^{2}r^{2} + s^{3}r$$

$$+ r^{3}s + r^{2}s^{2} + r^{2}s^{2} + rs^{3}$$

$$+ s^{2}r^{2} + s^{3}r + s^{3}r + s^{4}$$
Komm
$$= r^{4} + 4r^{3}s + 6r^{2}s^{2} + 4rs^{3} + s^{4}$$

Kommutativgesetz

Die Behauptung $(s+r)^4 = r^4 + s^4$ ist dann äquivalent zu

$$4r^3s + 6r^2s^2 + 4rs^3 = 0 \ \forall s, r \in \mathbb{R}.$$

Die Rückrichtung ist jetzt klar: Falls 2 = 0, ist

$$2r^3s + 6r^2s^2 + 4rs^2 = 2(2r^3s + 3r^2s^2 + 2rs^3) = 0.$$

Die andere Richtung: Wir nehmen an, dass

$$2(2r^3s + 3r^2s^2 + 2rs^3) = 0 \ \forall r, s \in R.$$

Insbesondere betrachten wir r = -1 und s = 1. Dann ist $r^3 = 1$ und $r^2 = 1$. Alle Potenzen von s sind 1. Es gilt

$$2(2r^3s + 3r^2s^2 + 2rs^3) = 2(-1) = 0.$$

Aber $-1 \neq 0$, also 2 = 0.