1 Sets

1.1 Basic Definitions

 $\mathbb{N} = \{0, 1, 2, \ldots\} \text{ - natural numbers}$ $\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\} \text{ - integers}$ $\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\} \text{ - rationals}$ $\mathbb{R} \text{ - real numbers}$ $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\} \text{ - complex numbers}$ $i^2 = -1 \text{ (imaginary unit)}$ $\mathbb{R}^n = \{(x_1, \ldots, x_n) : x_i \in \mathbb{R}\} \text{ - } n\text{-dimensional space}$ $\mathbb{R}^{\infty} = \{(x_1, x_2, \ldots) : x_i \in \mathbb{R}\} \text{ - space of infinite sequences of reals}$

1.2 Set Operations

Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$ Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$ Difference: $A \setminus B = \{x \in A : x \notin B\}$ Symmetric difference: $(A \setminus B) \cup (B \setminus A)$

1.3 Examples

Let $\{a_n\}_{n\in\mathbb{N}}$ be an indexed family of sets (for $n\in\mathbb{N}$).

$$\bigcup_{n\in\mathbb{N}} A_n = \{x : x \in A_n \text{ for some } n \in \mathbb{N}\}$$
$$\bigcap_{n\in\mathbb{N}} A_n = \{x : x \in A_n \text{ for every } n \in \mathbb{N}\}$$

Note: If $\exists n_0 \in \mathbb{N} : A_n = \emptyset$ (empty set), then $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$.

1.4 Functions

A function is a mapping or transformation.

Let A, B be sets. $A \xrightarrow{f} B$

 $f:A\to B$ is a rule that assigns to each $a\in A$ a unique $b\in B.$

 Δ is called the *domain* (by definition) of f.

B is called the *codomain* or target space of f.

1.5 Image and Preimage

If $A' \subset A$, then the *image* of A' under f is:

$$f(A') = \{ f(x) : x \in A' \}$$

This is called the *restriction* of f to A' (denoted by $f|_{A'}$). If $B' \subset B$, then the *preimage* of B' under f is:

$$f^{-1}(B') = \{ x \in A : f(x) \in B' \}$$

1.6 Examples

1.
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$

2.
$$f: \mathbb{R}^+ \to \mathbb{R}, x \mapsto \log x$$

3.
$$g: \mathbb{R} \to \mathbb{R}, x \mapsto e^x$$

4.
$$h: \mathbb{R} \to \mathbb{R}, x \mapsto \sin x$$

5.
$$f: \mathbb{C} \to \mathbb{C}, z \mapsto z^2$$

6.
$$D: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), f \mapsto f'$$
 (derivative)