Insper

Camada Física da Computação

Aula 9 - Transistores

(2017) Rafael Corsi e Eduardo Marossi

(2016) Fábio Ayres fabio Ayres fabio a@insper.edu.br>

Objetivos

 Explicar o funcionamento do transistor bipolar de junção.

Entender o circuito-modelo do transistor

 Analisar o comportamento do transistor em um circuito amplificador básico.

Usos

- Amplificação de sinais
- Como chave (ON/OFF)
- Como elementos para circuitos lógicos (ultrapassado)

Exemplo: acionamento de motor

No início era a válvula...

By Stefan Riepl (Quark48) - Self-photographed, CC BY-SA 2.0 de, https://commons.wikimedia.org/w/index.php?curid=14682022

Harwell Dekatron vacuum-tube (valve) computer, 1951-57 - National Museum of Computing, Bletchley Park, England

Evolução!

http://mmncny.org/exhibits/296-2/

Evolução !!!

Controle de corrente

 Ideia principal: controlar a corrente elétrica usando outra corrente ou tensão elétrica!

- A mesma ideia se aplica a diodos semicondutores e transistores
 - Usar um sinal fraquinho para controlar um sinal forte!

Transistor de junção bipolar (Bipolar junction transistor – BJT)

John Bardeen, William Shockley and Walter Brattain at Bell Labs, 1948.

Transistores BJT

Dois "diodos" no mesmo silício polarizados reversamente!

BJT

Modelo do transistor

 Vamos resumir o comportamento do transistor em um circuito-modelo simples.
 Temos que considerar:

- A junção base-emissor comporta-se como um diodo
- A soma das correntes é zero
- A corrente do coletor é β vezes a corrente da base

Modelo do transistor

NPN e PNP

Polarização do transistor: meu primeiro amplificador!

Datasheet

ON CHARACTERISTICS

h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 2.0 \text{ mA}$	547	110	800	
			547A	110	220	
			547B	200	450	
			547C	420	800	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0.5 \text{ mA}$			0.25	V
		$I_C = 100 \text{ mA}, I_B = 5.0 \text{ mA}$			0.60	V
V _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 2.0 \text{ mA}$		0.58	0.70	V
		$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$			0.77	V

Exercício

- 1. Calcule a corrente na base e no coletor. Assuma que este transistor tem $\beta = 520$, e que $V_{RF} = 0.7V$.
- 2. Calcule a tensão no coletor.
- 3. Faça uma simulação DC sweep variando a tensão V1 entre 0 e 5V, em passos de 0,1V. Explique o gráfico observado.
- 4. Derive uma expressão para a tensão de saída em função da tensão de entrada, na zona linear de operação do amplificador.
- 5. Compare o ganho obtido analiticamente com a inclinação da curva experimental.

Resolver o circuito a partir do modelo

Handout

Handout 1 - 15 minutos

Como funciona?

Como funciona?

Construção do transistor

• Emissor: altamente dopado

· Coletor: dopagem média, maior extensão

Base: fininha, dopagem baixa

Transistor off

Transistor on

Como funciona?

Como funciona?

Junção base-emissor

Lei de Kirchhoff das correntes!

Amplificação de corrente: a razão-de-ser do transistor!

Insper

MOSFET, CMOS

Evolução da quantidade de transitores em um chip

Tamanho dos transistores no tempo

Tamanho dos transistores no tempo

BJT

O transistor BJT apresenta defeitos:

- opera por corrente -> consumo de energia maior
- difícil de escalar (processo de fabricação)
- grande variação de ganho entre transistores

MOSFET

 Metal-oxide-semiconductor field-effect transistor

Fonte: Wikipedia

Depleção (depletion)

Fonte: Wikipedia

Intensificação (enhancement)

MOSFET

Handout

Handout 2 - 10 minutos

MOSFET intensificação

Valem as mesmas observações do MOSFET depleção, exceto que:

- Note a ausência de canal: o canal será induzido por V_{GS}!
- Equações são diferentes do JFET.
 Feito para trabalhar com V_{GS} > 0V

Como funciona? (MOSFET intensificação)

Caso inicial: $V_{DS} = 0V$

- A tensão V_{GS} atrai elétrons para a proximidade da placa isolante
- Estes elétrons formam um canal
- Este MOSFET é do tipo canal-n (n-channel)
- Quando V_{GS} aumentar o canal permitirá a condução de corrente entre o dreno e a fonte

Resolução

Resolver circuitos com MOSFET não é uma tarefa trivial :

- 1. O MOSFET possui três regiões de operação:
 - Corte (não conduz corrente)
 - Linear (conduz corrente relativo a tensão V_{GS})
 - Saturação (máxima corrente)

Resolução

Corte:

- canal não está formado

$$V_{GS} < V_{TH}$$

Região linear:

- canal formado

$$V_{GS} < V_{TH} e V_{DS} < V_{GS} - V_{TH}$$

Saturação

- canal está no máximo

$$V_{GS} < V_{TH} e V_{DS} >= V_{GS} - V_{TH}$$

Resolução

 Para cada modo de operação, uma equação diferente :

Linear:
$$I_D=\mu_n C_{ox} rac{W}{L} \left((V_{GS}-V_{th})V_{DS}-rac{V_{DS}^2}{2}
ight)$$

Saturação:
$$I_D=rac{\mu_n C_{ox}}{2}rac{W}{L}(V_{GS}-V_{th})^2\left[1+\lambda(V_{DS}-V_{DSsat})
ight].$$

Insper

www.insper.edu.b

http://www.electronics-tutorials.ws/transist or/tran_3.html