Układy cyfrowe i systemy wbudowane

Sprawozdanie z laboratorium

Data	Tytuł zajęć	Uczestnicy
22.11.2017 13:00	Implementacja detektora sekwencji w języku VHDL	lwo Bujkiewicz (226203) Adrian Wąż (226042)

Zadania

Na zajęciach należało opisać za pomocą języka VHDL, a następnie zaprogramować na mikroukładzie CPLD, układ logiczny detektora sekwencji binarnej, zaprojektowany jako maszyna stanów.

Kolejne etapy realizacji

Detektor sekwencji

Detektor sekwencji miał za zadanie realizować dokładnie tą samą funkcjonalność, co na zajęciach z 25.10.2017, tj. przyjmować na wejściu sygnał (Z) z odpowiednim taktowaniem i informować za pomocą sygnały wyjściowego, czy została wykryta sekwencja 10110 . Poniżej znajduje się graf automatu Moore'a detektora oraz listing kodu VHDL.


```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity passlock is
    Port ( CLK : in STD_LOGIC;
           X : in STD_LOGIC;
           CLR : in STD_LOGIC;
           Y : out STD_LOGIC;
           STATE : inout STD_LOGIC_VECTOR (3 downto 0));
end passlock;
architecture Behavioral of passlock is
    process (CLK, X, CLR)
    begin
        if CLR = '1' then
            STATE <= "0000";
        elsif (rising_edge(CLK)) then
            case STATE is
                when "0000" =>
                    if (X = '1') then
                         STATE <="0001";
                    end if;
                when"0001" =>
                    if (X = '0') then
                         STATE <= "0010";
                    end if;
                when "0010" =>
                    if (X = '1') then
                         STATE <= "0011";
                    else
                         STATE <= "0000";
                    end if:
                when "0011" =>
                    if (X = '1') then
                         STATE <= "0100";
                    else
                         STATE <= "0010";
                    end if;
                when "0100" =>
                    if (X = '1') then
                         STATE <="0001";
                    else
                         STATE <= "0101";
                end if;
when "0101" =>
                    if (X = '1') then
                         STATE <= "0011";
                         STATE <= "0000";
                    end if;
                when others =>
                    STATE <= "0000";
            end case;
        end if;
    end process;
    process (STATE)
    begin
        case STATE is
            when "0000" =>
                Y <= '0';
            when"0001" =>
                Y <= '0';
            when "0010" =>
                Y <= '0';
            when "0011" =>
                Y <= '0';
            when "0100" =>
                Y <= '0';
            when "0101" =>
                Y <= '1';
            when others =>
                Y <= '0';
```

```
end case;
end process;
end Behavioral;
```

Mikroukład CPLD zaprogramowany na podstawie powyższego kodu działał zgodnie z oczekiwaniami. Wejścia i wyjścia wyprowadzono na porty mikroukładu zgodnie z poniższą tabelą.

Nazwa portu	Węzeł
Clk_LF	IN_CLK
K0	IN_X
K1	IN_CLR
LED0	OUT_Y
D7S_S0	OUT_DISP(0)
D7S_S1	OUT_DISP(1)
D7S_S2	OUT_DISP(2)
D7S_S3	OUT_DISP(3)
D7S_S4	OUT_DISP(4)
D7S_S5	OUT_DISP(5)
D7S_S6	OUT_DISP(6)