

第5章 含运算放大器的电阻电路

本章重点

- 1. 运算放大器
- 2. 端子上的电压电流关系
- 3. 理想运放的"两条规则"
- 4. 运算电路分析

5.1 运算放大器

5.1 运算放大器

以典型的 741或 OP07为例:

- •2—反相输入端 3—同相输入端
- •6—输出端
- •7—正电源端 4—负电源端
- •1、5—接调零电位器
- ·8—闲置端 (NC)

5.1 运算放大器

1、电路符号

: 单方向

2. 运算放大器的外特性

在a,b 端分别加输入电压 u^- 和 u^+

- ,则差动输入电压 $u_{\rm d} = u^+ u^-$
- ,则输出 u_0 和输入 u_d 之间有:

$$u_{\rm o} = A(u^+ - u^-) = Au_{\rm d}$$

当:
$$u^+=0$$
, 则 $u_o=-Au^ u_d=-u^-$

当:
$$u^- = 0$$
, 则 $u_o = Au^+$
 $u_d = u^+$

差动输入

倒向输入

非倒向输入

输出 u_0 和输入 u_d 之间的转移特性曲线如下:

分三个区域:

 u_{d} u_{d} u_{d} u_{d} u_{d}

①线性工作区: $|u_{\mathbf{d}}| < \varepsilon = U_{\text{sat}}/A$,则 $u_{\mathbf{o}} = Au_{\mathbf{d}}$

②正向饱和区: $u_{\rm d} > \varepsilon$ 则 $u_{\rm o} = U_{\rm sat}$

③反向饱和区: $u_{\rm d} < - \varepsilon$ 则 $u_{\rm o} = -U_{\rm sat}$

 ε 是一个数值很小的电压,例如 $U_{\rm sat}$ =13V, A =10 5 ,则 ε =0.13mV

0

3. 电路模型

输出电阻阻值很低

$$u_{o} = A\left(u^{+} - u^{-}\right) = Au_{d}$$

当:
$$u^+=0$$
, 则 $u_o=-Au^-$

当:
$$u^-=0$$
, 则 $u_o=Au^+$

在线性放大区,理想运算放大器的条件:

- $\bigcirc R_{\rm in} \rightarrow \infty$
- $2R_0 \rightarrow 0$
- $3A \rightarrow \infty$

理想运放的两条规则:

① R_{in}→∞ "虚断" $i^{+}=0$, $i^{-}=0$ 。 即从输入端看进去,流入每一输入端的电流为零,元件相当于开路(虚断路)。

 $u_0 = A(u^+ - u^-) = Au_d$ $u_d = u^+ - u^- = 0$ u_0 为有限值,则 $u_d = 0$,即 $u^+ = u^-$,同相输

心。为有限值,然他_d—0,然他 — 4 , 四 相 入端与反相输入端等电位,两个输入端之间相当于短路(虚短路)。