Problem Set #3 Palsson

Trevor Klar

July 5, 2018

- P1) Consider the vector space $\ell^p(\mathbb{Z})$ of integer valued sequences $(a_n)_{k=1}^{\infty}$ with $\sum_{k=1}^{\infty} |a_n|^p < \infty$.
 - (a) NTS:
 - i. positive definite
 - ii. scaling
 - iii. triangle inequality

PROOF (Positive definite) Since

$$||\mathbf{a}||_p = \left(\sum_{k=1}^{\infty} |a_k|^p\right)^{1/p}$$

is a sum of nonnegative numbers being raised to a power, $||\mathbf{a}||_p$ is never negative. Furthermore, $||\mathbf{a}||_p = 0$ if and only if $a_k = 0$ for all k. Thus, $||\mathbf{a}||_p = 0 \iff \mathbf{a}_p = 0$.

PROOF (Scaling) Let $\lambda \in \mathbb{R}$. Then,

$$\begin{aligned} ||\lambda \mathbf{a}||_{p} &= \left(\sum_{k=1}^{\infty} |\lambda a_{k}|^{p}\right)^{1/p} \\ &= \left(\sum_{k=1}^{\infty} |\lambda|^{p} |a_{k}|^{p}\right)^{1/p} \\ &= \left(|\lambda|^{p} \sum_{k=1}^{\infty} |a_{k}|^{p}\right)^{1/p} \\ &= |\lambda| \left(\sum_{k=1}^{\infty} |a_{k}|^{p}\right)^{1/p} \\ &= |\lambda| ||\mathbf{a}||_{p} \end{aligned}$$

The third property, the Triangle Inequality, follows immediately by Minkowski's Inequality for Sums (When p > 1):

Theorem (Minkowski's Inequality for Sums). Let a_1, \ldots, a_n and b_1, \ldots, b_n be sequences of non-negative real numbers, and let p > 1 be a real number. Then,

$$\left(\sum_{k=1}^{\infty} (a_k + b_k)^p\right)^{1/p} \le \left(\sum_{k=1}^{\infty} (a_k)^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} (b_k)^p\right)^{1/p}.$$

Now we examine when p=1. First observe that since $\sum_{k=1}^{\infty} |a_n|^1 < \infty$ for all $\mathbf{a} \in \ell^1(\mathbb{Z})$, then all such sequences are finite. Now we can use this to find that

(b) ehh i skipped this one.

P2) Let H_n denote the linear class of functions spanned by

$$\{1, \cos(kx), \sin(kx) : k = 1, 2, \dots, n\}.$$

(a) What is the dimension of H_n ?

Answer: 2n+1

(b) Is H_n a subspace of H_{n+1} ?

Answer: Yes, since $H_n \subset H_{n+1}$, $\vec{0} \in H_n$, and H_n is closed under addition and scalar multiplication by definition. Thus, H_n is a subspace of H_{n+1} by the subspace criterion.

(c) For what values of n is $\sin^2(x)$ an element of H_n ?

Answer: n = 2, since $\sin^2(x) = \frac{1}{2} - \frac{1}{2}\cos(2x)$.