Shopify Data Science Internship Challenge 2022

Joshua Boehm

1/17/2022

Our examination of sneaker shops hosted with Shopify begins with simply calculating the mean order amount as things stand.

```
prices <- shop$order_amount
mean(prices)</pre>
```

```
## [1] 3145.128
```

As mentioned in the original prompt, this is an oddly high average considering the context. Consequently, this leads me to think that there could be outliers in our data. This does appear to be the case:

```
# Sort order amounts descending
head <- prices[order(-prices)]
# Examining the 30 highest unique order amounts
unique(head)[1:30]</pre>
```

```
[1] 704000 154350 102900
                                         51450
                                                 25725
                                                          1760
                                                                  1408
                                                                          1086
                                                                                  1064
                                 77175
## [11]
           1056
                    980
                            965
                                    960
                                            948
                                                   935
                                                           920
                                                                   890
                                                                           885
                                                                                   880
## [21]
            865
                    845
                            830
                                    816
                                            815
                                                   810
                                                           805
                                                                   804
                                                                           800
                                                                                   790
```

Quickly looking at the first thirty unique order amounts, most on the lower end are around \$1,000. After this, however, order numbers increase suddenly and sharply, going as high as \$50,000, \$100,000, and even \$700,000. When we have extreme outliers in this case, it's a sign that we should be considering a different statistic.

Let's see what's happening with these \$700,000 orders.

```
outliers <- subset(shop, shop$order_amount > 700000)
kable(outliers)
```

order_id	$shop_id$	$user_id$	$order_amount$	$total_items$	payment_method	created_at
16	42	607	704000	2000	credit _card	2017-03-07 4:00:00
61	42	607	704000	2000	credit card	2017-03-04 4:00:00

order_id	shop_id	user_id	order_amount	total_items	payment_method	created_at
521	42	607	704000	2000	credit _card	2017-03-02 4:00:00
1105	42	607	704000	2000	credit _card	2017-03-24 4:00:00
1363	42	607	704000	2000	credit _card	2017-03-15 4:00:00
1437	42	607	704000	2000	credit _card	2017-03-11 4:00:00
1563	42	607	704000	2000	credit _card	2017-03-19 4:00:00
1603	42	607	704000	2000	credit _card	2017-03-17 4:00:00
2154	42	607	704000	2000	credit _card	2017-03-12 4:00:00
2298	42	607	704000	2000	credit _card	2017-03-07 4:00:00
2836	42	607	704000	2000	credit _card	2017-03-28 4:00:00
2970	42	607	704000	2000	credit _card	2017-03-28 4:00:00
3333	42	607	704000	2000	credit _card	2017-03-24 4:00:00
4057	42	607	704000	2000	credit _card	2017-03-28 4:00:00
4647	42	607	704000	2000	credit _card	2017-03-02 4:00:00
4869	42	607	704000	2000	credit _card	2017-03-22 4:00:00
4883	42	607	704000	2000	credit_card	2017-03-25 4:00:00

These outlandishly-expensive orders have multiple things in common: all were placed at shop number 42, ordered by user_id 607, consist of 2000 items, and placed at exactly 4:00:00. It should be undoubtedly irrational for one person to make orders like this over multiple days at 4AM. With all of this considered, we may have enough evidence to drop these data points *if needed*. Perhaps these are bot orders, or possibly maintenance/testing being done—in other words, not normal consumer behavior.

The next unique order numbers still seem to be a little high based on orders from shoe shops, so we should look into these as well.

```
outliers <- subset(shop, shop$order_amount > 20000 & shop$order_amount < 700000)
```

Some facets of this subset differ from the previous subset. For example, there's nothing too suspicious about the order dates and user IDs associated with orders. One thing that stands out is that all of these expensive orders were all placed at shop number 78. We know that each shop only sells one type of shoe, and the order amounts are all multiples of \$25,725. It's possible that this one shop just happens to be selling exorbitantly expensive shoes (resale prices on some shoes can get pretty crazy). In comparison to the other shops/order amounts, this shop is an outlier, but we can't necessarily consider it to be irrelevant like we might have done with the \$700,000 orders.

The average after removing orders over \$700,000 is significantly lower than before (\sim \$754), but still somewhat high.

```
prices_adj <- subset(shop, shop$order_amount < 700000)
mean(prices_adj$order_amount)</pre>
```

[1] 754.0919

Let's switch gears and think about any new metrics that can be used to get more insight into what's being purchased. The simplest possible alternative would be to calculate the median, which would give the most typical total order amount.

```
median(prices_adj$order_amount)
```

```
## [1] 284
```

While looking at the median is more realistic than the mean, since it's not affected as heavily by outliers, it's still not as insightful as we might want to be. We have access to the number of total items in an order, so it would make sense to consider the average price per item in an order. For instance, an order of three shoes for a total of \$900 means that the average price per item is \$300.

For visualization purposes only, I've omitted all orders with amounts greater than \$2000 from the general histogram. To get a sense of the overall shape, a histogram of the log of average price per item is provided as well.

```
prices_adj <- subset(shop, shop$order_amount < 2000)

n <- length(prices_adj$order_id)

avgs <- numeric(n)

for (i in 1:n) {
    avgs[i] <- prices_adj$order_amount[i] / prices_adj$total_items[i] }

hist(avgs)</pre>
```

Histogram of avgs


```
# ----
prices_adj <- subset(shop, shop$order_amount < 700000)

n <- length(prices_adj$order_id)

log_avgs <- numeric(n)

for (i in 1:n) {
    log_avgs[i] <- log(prices_adj$order_amount[i] / prices_adj$total_items[i])
}

hist(log_avgs, breaks=50, xlim=c(4,11))</pre>
```

Histogram of log_avgs

One final metric that we might want to consider is the average total order price per shop. This is in the same vein as the original proposal of average order value, but provides a bit more specific insight when filtering by individual shops. This could also account for overall outliers—for example, we saw previously that shop 78 has items worth \$25,000.

Avg. log order amt. by shop


```
df <- data.frame("shop_id" = c(1:100), "avg_order_amt" = avgs)
kable(df)</pre>
```

shop_id	avg_order_amt
1	308.8182
2	174.3273
3	305.2500
4	258.5098
5	290.3111
6	383.5085
7	218.0000
8	241.0435
9	234.0000
10	332.3019
11	356.7347
12	352.6981
13	345.3968
14	242.0000
15	308.9423
16	270.1463
17	332.0755
18	342.5882
19	320.9062
20	251.5577

$\frac{\text{shop}_{_}}{}$	_id	avg	_order	$\underline{}$
	21			.6957
	22		273	.7500
	23		317	.6727
	24			.7273
	25		232	.9167
	26		341	.2245
	27		334	.8704
	28		320	.3721
	29		331	.6207
	30			.0714
	31		268	.9787
	32		189	.9762
	33		376	.2750
	34		_	.2400
	35		328	.0000
	36			.8000
	37		340	.2083
	38		390	.8571
	39		268	.0000
	40		295	.1667
	41		254	.0000
	42		235101	.4902
	43			.9138
	44		262	.1538
	45			.3103
	46			.4419
	47			.1489
	48			.7750
	49			.9057
	50			.5455
	51			.8043
	52			.9268
	53			.1176
	54			.6400
	55 5c			.7500
	56			.1892
	57 58			.7736
				.9492
	59 60			.9667 .2340
	61			.2340 $.4400$
	62			.8372
	63			.0012 .9655
	64			.9655
	65			.1800
	66			.8148 .8868
	67		-	.0000 .6216
	68			.6383
	69			.0303 .1833
	70			.1655 .0678
	70			.0303
	72			.0303 .5652
	12		309	.5052

shop_id	avg_order_amt
73	335.6897
74	306.0000
75	240.7619
76	321.0714
77	280.8000
78	49213.0435
79	328.4815
80	299.6667
81	384.0000
82	349.7857
83	248.7857
84	342.3051
85	329.2571
86	277.5000
87	292.2692
88	355.5200
89	379.1475
90	403.2245
91	325.9259
92	162.8571
93	214.4746
94	297.7778
95	318.7692
96	330.0000
97	324.0000
98	245.3621
99	339.4444
100	213.6750