Statistics: Variables? Numerical disc. Observetoral [Doesn't interor. with how data arived + Retrogrative - propertie

Saupting Metrol!
i) SRS (Simple Rendan Sampley).
ii) Stutified Earnally,
Hos Cluster Samping.
luz multistage sampling.
Placebo - Fale breatmet.
Placebo Effect I Swowing many despite by
Placebo Effect 2 wowing many ang to
placels
15 Sunday

Leagt Sq., Regison, and Psido. in. Ansb.

reladet Me. M. (Short-fact A) Unde detone min UXII2 st. Axob

min UXII2 st. Axob

(min worm sold) Overdebruce. n7m (tall skinny A) o Soluis min MAX-5thz (leart Eq. 8hb) A 2U & VT = A = V Z U E) US VIX h S) UZ VT x = b 2) V Z U U Z V X = V Z U b an nomed ie ut 7) % = V 2 UTD AT := ATB = I

AX = UÉVTVETUTB 2 ÛÛT b project of b into spen (U) 2 & pan (4) Sol of An sb only every is is in solum space of A. * Col (A) Chumn space of A. 2. Col (O). range. * Ker (A?) ortopord Compleme A CA(A) kernel of At. * von (A) von Sporce of A 2 mm (VI) * Ker (A), null space Get of all reen on X. 3-+ Axx0

id · alun (ker. (A)) +0. then D. soli A (X + X null)

33 6 Shoo 52 c one ben 8 con

PC2 will be. I to PC1 and gow. produ and somble.
eigen de onoon op $(x^{T}x) \rightarrow w$. m - mesininguxm uxm uxm. T=XW 7 - Col(w) = brankys. "some" each col. of w. is a PC.
I ondered col. my value of a. Wp = [] W, --. Wp

22 Sunday . Lat has book for

System of linear Eg.
1) inconsistant. + No Solu.
is consintant - One or many sole.
D. Crays Elem of Bo aragmenter noting
(1) Crays Elem. T. 19. aug moure
(A IB) of vow ectoten for or back Supstituon.
(11). Crows Tordon - (A B) - male (A)
reduceda bow etholon. or frale At
-1 1 91
over dernind Sys.
over deprivated Sys. no. of Eq. > no. of unum. Tusually incompliant und debrind Sys! und debrind Sys!
M > July
no. of car. (no of inthorn. (n > m) Luchary Caribrat?

N(A) = \{ n \in R \tag{1.} \Ax = 0. \}
N/MERM.
$A(\alpha x) = \alpha A x = \alpha \cdot 0 = 0$
$\propto x \in N(A)$
A(n-14) = An + Ay n, y E N(A)
Y.
= 6.70.20.
Null Subspaces:
N(A) is the Wall Subspace of A
T- AO. N(A) = { n.c. R Ax = 0.}
3 pan: Sel of all linar combay
3 pan: Sel of all linar combants of Veets sperce is the span of a. Nets.

Span of a Vector spine.

XC, + Bez = (X) rez 1/2// Span & R3 ic, e, e, e, e, - A es + xe es tagle Span (e,, e,) 2, 12 -- lis oz paris velon. V, +Uz + - Vn. EV. Span (V, +V2 # -- 1, Vn) EV & pont we have to prof blosurs profin.
addran. and multipher. BUZ (Ba), V, + (Ba), V2 + -- + (Ba), Vn E Span of (V), V2 + -- Vn)

 $V = \alpha_1 V_1 + \alpha_2 V_2 + - - + 1 \alpha_n V_n$ $W = 5_1 V_1 + 5_2 V_2 + - - + 1 \alpha_n V_n$ V+W = (X+B)V, +(X2+B)V, f--1
(An-Bn)Vy Espen (VIV27 - Va) Spanning Set: Zv, v2 --. Vn 3 spanning set J.V. i. J. Span. (V, V, --. Vn) = V. = n) $= (n_1, n_2) T$ = 0 $= p^2$ $M_1 = -M_2$ Han, dx = (xa, -xa) TES X+Y=(a,-a)+(b,-b)= { (+b) } = { (+b) } (5)

Vedor 2 pace Ch-1) [a, b]. 3 c, Ez --- Cq 7 0 such that, affort coffer coffer - the forto. $+ m \in \{a, b\},\$ $C_1 f_1(n) + C_2 f_2(n) + -- + C_4 f_4(n)$ if if is continue diffrentionsely = 0 c, ti(n) + Gf2(n) + ---+ (nf6(n)=0 c, f,(n) + c, f,(n) + --+ Cu f,(n) =0 c, f(n-1) (n) + C2 f2 (n) + --+ (nfn (n) = 0 for all fixed n'E [a, b] the cay. become;

 $\left| \begin{array}{c} \alpha \\ \alpha \\ 2 \end{array} \right| = \left| \begin{array}{c} \alpha \\ \beta \\ \beta \\ \end{array} \right|$ 4, (m) +2(n) --- fn(n) fi(n) fi(n) --- fi(n) $\begin{cases} \frac{(n-1)}{1} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2} \\ \frac{1}{2} & \frac{(n-1)}{2} & \frac{(n-1)}{2$ will have the same non towar som! itt ett ? [quant [f, t, -- fn] is Sinenty dependent in (n-1) [a, b) worndlean! $\frac{1}{n} = \frac{1}{n} \left(\frac{1}{n} \right) = \frac{1}{n} \left(\frac{1}{n} \right) = \frac{1}{n} \left(\frac{1}{n} \right)$ $\int u(u) - \int u(u)$ y w \$0. -, di -- du linerty independ but W = 0 doesn't mean fifti-fi-linary repurelent.