No	Туре	Description
1	Addition I Halogenation	Halogens add across a C=C double bond e.g. F ₂ , Cl ₂ . Br ₂ , I ₂ H H + Cl ₂ H-C-C-C=C-H H H H H H H H H H
2	Addition II Hydration	Water adds across a C=C double bond. Two products are possible. H H H OH H H H H H H H H H H H H H H
3	Addition III Hydrogenation	Hydrogen adds across a C=C double bond H H + H ₂ H H H H H-C-C-C-C-C-H H H H H H H H H H
4	Addition IV Hydrogen Halides	Hydrogen Halides (HF, HCl, HBr, HI) add across a C=C double bond H H H Cl H H C-C-C-C-H H H H H H H H C H H H H H H H H H H
5	Enthalpy of Combustion	The energy change for the complete combustion of 1 mole of a substance: $C_3H_7OH(1) + 4\frac{1}{2}O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(1)$
6	Oxidation I	Primary Alcohol \longrightarrow Carboxylic Acid H H H C C C OH hot CuO H H NB: Aldehyde is produced in this reaction but is quickly turned into carboxylic acid

7	Oxidation II	Primary Alcohol $ \begin{array}{cccccccccccccccccccccccccccccccccc$
8	Oxidation III	Secondary Alcohol \longrightarrow Ketone H OH H H - C - C - C - H $\xrightarrow{\text{acidified} \atop \text{dichromate}}$ H - C - C - C - H H H H orange $\xrightarrow{\text{colour change}}$ green
9	Oxidation IVa	Aldehyde \longrightarrow Carboxylic Acid H H C Tollen's H Reagent H Colour change silver mirror produced
10	Oxidation IVb	Aldehyde \longrightarrow Carboxylic Acid H H C Fehling's \longrightarrow Solution \longrightarrow H blue \longrightarrow brick red
11	Condensation (Esterification)	$\begin{array}{c} H \\ H - C - OH \\ H \\ H \end{array}$ $\begin{array}{c} C - C - H \\ H \\ \text{methanol} \end{array}$ $\begin{array}{c} conc \\ H_2 SO_4 \end{array}$ $\begin{array}{c} H \\ H - C - O - C - C - H \\ H \\ \text{methyl ethanoate} \end{array}$ $\begin{array}{c} + H_2O \end{array}$

12	Hydrolysis I Esters	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
13	Hydrolysis II Fats → Fatty Acids	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14	Hydrolysis III Protein → Amino Acids	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15	Addition Polymerisation	H Cl C= $C+C=C+C=C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-$
16	Reduction	MnO4 ⁻ + 8H ⁺ + 5e ⁻ → Mn ²⁺ + 4H ₂ O NB Electrons always before arrow in Reduction
17	Oxidation	Fe ²⁺ → Fe ³⁺ + e ⁻ NB Electrons always after arrow in Oxidation
18	Redox	MnO4 ⁻ + 8H ⁺ + 5Fe ²⁺ → 5Fe ³⁺ + Mn ²⁺ + 4H ₂ O NB No Electrons appear in a Redox Equation

19	Haber Process	Nitrogen + Hydrogen ^{iron catalyst} ► Ammonia
20	Ostwald Process	Ammonia + Oxygen platinum Nitrogen Monoxide + Water Nitrogen Monoxide dissolves in Water to make Nitric Acid
21	Neutralisation T	$ACID + Metal \longrightarrow SALT + WATER$
	Acid + Metal Oxide	sulphuric + sodium
22	Neutralisation II	ACID + Metal → SALT + WATER
	Acid + Metal Hydroxide	hydrochloric sodium sodium + water chloride
23	Neutralisation III	$ACID + Metal \longrightarrow SALT + WATER + Carbon$ $Carbonate \longrightarrow Calcium \longrightarrow Calcium \longrightarrow Carbon$
	Acid + Metal Carbonate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
24	1 st Ionisation Energy	The energy to remove 1 mole of electrons from 1 mole of atoms in the gaseous state: $ K_{(g)} \longrightarrow K^+_{(g)} + e^- $
25	2 nd Ionisation Energy	The energy to remove 1 mole of electrons from 1 mole of 1+ ions in the gaseous state: $ K^+(g) \longrightarrow K^{2+}(g) + e^- $
26	Initiation In Free Radical Chain Reaction	Free radicals are created in the initiation step of a free radical chain reaction: • Free radicals are only found after the arrow. • Ultraviolet light required to provide the energy for initiation Cl ₂ — Cl' + Cl'
27	Propagation In Free Radical Chain Reaction	Free radicals react with molecules to form new molecules and other free radicals • Free radicals found on both sides of the arrow Cl^{\cdot} + CH_4 \longrightarrow CH_3^{\cdot} + HCl CH_3^{\cdot} + Cl_2 \longrightarrow Cl^{\cdot} + CH_3Cl
28	Termination In Free Radical Chain Reaction	Free radicals join together to form molecules. • Free radicals only found before the arrow. CH_3 + CI \longrightarrow CH_3CI CI + CI \longrightarrow CI_2 CH_3 + CH_3 \longrightarrow C_2H_6