3D DATA PROCESSING - LAB 3 (Individual assignment)

Topic: Point Cloud Registration

Goal: Given an unaligned source and target point cloud, find the final alignment transformation from the source to the target cloud.

Instructions

You are required to extend the provided C++ software by implementing a global registration step based on feature descriptors, followed by an ICP refinement stage.

STEP1: Descriptor (Initial Alignment)

- You must detect keypoints and compute feature descriptors **manually**, based on techniques introduced during the course
- Do not use high-level Open3D functions such as ComputeFPFHFeature or RegistrationRANSACBasedOnFeatureMatching.
- However, you may use low-level tools (e.g., KDTreeFlann) to assist in implementing your descriptor-based pipeline.
- Once you have computed descriptors and found correspondences by yourself, you
 may use RegistrationRANSACBasedOnCorrespondence() to robustly
 estimate the initial transformation matrix.

STEP2: ICP Refinement

- Implement the full ICP algorithm manually, including:
 - o Implement the full ICP algorithm manually, including:
 - Nearest-neighbor matching (e.g., using KDTreeFlann)
 - Transformation estimation via SVD
 - RMSE-based convergence checking

- You must not use Open3D's RegistrationICP() function in your implementation.
- You may compare your result to Open3D's built-in ICP as a benchmark, but only your custom ICP logic will be graded.

Important Notes

- Open3D's high-level registration functions must not be used for final results.
- Open3D's basic data structures and utilities (e.g., PointCloud, KDTreeFlann, visualization) are allowed.
- If your final code, report, and results rely solely on Open3D's built-in registration functions, they will not be considered for grading.

The provided software already implements the following methods:

- Registration(...)
 - Initialize the source and target point cloud to be processed.
- draw_registration_result()
 - Visualize source and target point cloud.
- get_transformation()
 - Get the current transformation matrix needed to align the source to the target cloud.
- compute_rmse()
 - Compute the RMSE between the points of the source and the target point cloud.

Instead, the the following methods must be completed in order to successfully perform ICP:

- find_closest_point(...)
 - For each point in the source point cloud find the closest one in the target (look at compute_rmse()).
- get_svd_icp_transformation(...)
 - First extract the centroid for each of the two point clouds, after subtracting it use Eigen::JacobiSVD<Eigen::MatrixXd> on the matrix obtained by multiplying the two Nx3 point matrices, ordered following the results of the find_closest_point(...) to successfully perform SVD decomposition.
- execute_icp_registration(...)

 Main ICP loop, check convergence criteria and call find_closest_point(...) followed by either get_svd_icp_registration(...). Feel free to use the class variable source_for_icp_ to store transformed source points.

execute_descriptor_registration()

Implement a feature-based global registration method from scratch:

- Preprocess the point clouds (e.g., downsampling, normal estimation).
- Detect keypoints.
- o Compute local geometric descriptors around each keypoint.
- Do not use any built-in descriptor extractors.
- o Implement from scratch: histogram-based, surface geometry, etc.
- Match descriptors between source and target.
- Estimate a robust initial rigid transformation
- Store the result in transformation_.
- Built-in registration functions or descriptor APIs are not allowed. Only self-implemented methods are permitted.

Compilation instruction

- mkdir build && cd build
- cmake ..
- make

To execute:

./registration path/to/source path/to/target

What you need to deliver

- Source code (without objects and executables)
- A .ply file for the three provided datasets, representing the registered clouds
- A short written report with:
 - A brief description of the work done;
 - Some qualitative results (screenshots of aligned point clouds) for the three provided datasets.
 - \circ $\;$ Quantitative results in ${\tt RMSE}$ and timing for the three provided datasets.