

# **BCI** for everyone

A subject-independent approach to EEG data

# Introduction

### What is BCI?



# Why EEG data?

Compared to other approaches, EEG devices are:

- Non invasive
- Easier to use
- More affordable
- Of high portability



# **Related work**

#### **Related work**

A study on current Deep Learning techniques for EEG classification in MI-based BCI offered some insights:

- 1. Signal preprocessing should be minimal
- 2. **Input formulation** should be raw signals
- 3. **CNNs** are the most popular architectural choice

#### **Related work**

Another study investigated data augmentation methods on EEG data, including:

#### 1. ChannelsDropout

#### 2. **BandstopFilter**



Fig. 1 Frequency response of a bandstop filter

# Signals and features

#### **Dataset**

Motor imagery dataset for BCI applications

60 hours of EEG recordings:

- 13 participants
- 75 recording sessions

Four different MI paradigms



Fig. 2 HaLT graphical user interface

## **Experimental Design**

**Signals:** recorded at 200 Hz and filtered by a 0.53-70 Hz bandpass filter

**Trial:** action signals (1 s) + off-time (1.5 to 2 s)

Trials repeated 900 times per recording session

Channels: Last channel used for data synchronization

# Signal preprocessing

1. Low bandpass filtering with 38 Hz cut-off



Fig. 3 Frequency response of a low bandpass filter

2. Segmentation of trials (210 samples)

# Processing pipeline

# Processing pipeline



# **Learning Framework**

# **Learning Framework**

#### Goal: Evaluate subject-independent performance through a LOSO CV technique

We considered the following architectures:

- 1. EEGNet (2016, Lawhern)
- 2. EEG-Inception (2021, Zhang)
- 3. Shallow ConvNet (2017, Schirrmeister)
- 4. Deep ConvNet (2017, Schirrmeister)



## **Learning Framework**

#### Goal: Evaluate subject-independent performance through a LOSO CV technique

- 1. We chose the EEGNet architecture as a startpoint for our experimentations.
- 2. This decision was solely based on the lightweight nature of this architecture, which meant:
  - Fewer parameters to train and store.
  - Preferable memory usage and time complexity values.

# **Proposed architecture**

**Total params:** 58,854 (229.90 KB)

**Trainable params:** 57,638 (225.15 KB)

Non-trainable params: 1,216 (4.75 KB)



# **Experiments setup**

### **LOSO Cross Validation**

|        | Training set |   |   |   |   |   | Valid | lation set |  |   |          |
|--------|--------------|---|---|---|---|---|-------|------------|--|---|----------|
| Fold 1 | В            | С | F | G | Н | I | K     | L          |  | Α |          |
| Fold 2 | Α            | С | F | G | Н | I | K     | L          |  | В |          |
| Fold 3 | Α            | В | F | G | Н | В | K     | L          |  | С |          |
| Fold 4 | Α            | В | С | G | Н | В | K     | С          |  | F | Test set |
| Fold 5 | Α            | В | С | F | Н | I | K     | L          |  | G | E M J    |
| Fold 6 | Α            | В | С | F | G | I | K     | L          |  | Н |          |
| Fold 7 | Α            | В | С | F | G | Н | K     | L          |  | I |          |
| Fold 8 | Α            | В | С | F | G | Н | I     | L          |  | K |          |
| Fold 9 | Α            | В | С | F | G | Н | I     | К          |  | L |          |

# Hyperparameters selection

#### **Hyperparameters for our models**

| Hyperparameter         | Value |
|------------------------|-------|
| Kernel length          | 75    |
| Temporal filters (F1)  | 32    |
| Pointwise filters (F2) | 64    |
| Spatial filters (D)    | 16    |
| Dropout rate           | 0.25  |

### **Model candidates**

|                 |                                                                   | Model         |
|-----------------|-------------------------------------------------------------------|---------------|
| Base model      | EEGNet-based model                                                | (1)           |
| Bandstop Filter | BM + BF (width <b>0.5</b> ) BM + BF (width <b>1.0</b> )           | (II)<br>(III) |
| Channel Dropout | BM + CD                                                           | (IV)          |
| Mixed approach  | BM + CD + BF (width <b>0.5</b> ) BM + CD + BF (width <b>1.0</b> ) | (V)<br>(VI)   |

| Model | Details                           | CV Mean Accuracy     |
|-------|-----------------------------------|----------------------|
| I     | EEGNet-based model                | 0.4967               |
| II    | BM + BF ( width <b>0.5</b> )      | 0.5069               |
| III   | BM + BF (width 1.0)               | 0.5254 (Best result) |
| IV    | BM + CD                           | 0.5120               |
| V     | BM + CD + BF ( width <b>0.5</b> ) | 0.4977               |
| VI    | BM + CD + BF ( width 1.0 )        | 0.5013               |

- Prediction of 6 classes and subject-independent model factors contributed to lower overall accuracies.
- No data augmentation resulted in the lowest accuracy.
- Best accuracy achieved with a Bandstop Filter of width 1.
- Significant variability in validation results among subjects.

- Prediction of 6 classes and subject-independent model factors contributed to lower overall accuracies.
- No data augmentation resulted in the lowest accuracy.
- Best accuracy achieved with a Bandstop Filter of width 1.
- Significant variability in validation results among subjects.

## Results analysis

#### Raw signal from Subject 'L'



#### Raw signal from Subject 'H'



# Results analysis

#### Filtered signal from Subject 'H'



# Results analysis





#### **Best model**

Base Model + Bandstop Filter (width 1.0)

#### **Performance metrics**

|              | Subjects                  | Accuracy |
|--------------|---------------------------|----------|
| Training set | A, B, C, F, G, H, I, K, L | 0.6650   |
| Test set     | E, M , J                  | 0.5943   |

#### **Best model**

Base Model + Bandstop Filter (width 1.0)

 Prone to correctly predict the 'tongue' and 'right leg' classes, compared to other classes. While the class with the least accuracy is "left hand"

#### **Confusion Matrix**



# **Concluding Remarks**

 The obtained results indicate that for a subject-independent classification task, incorporating additional layers that enhance regularization improves performance.

 An appealing direction of improvement would be performing data augmentation with GANs networks, which has showed a significant increase in performance in EEG-related tasks.

# **Concluding Remarks**

 Another interesting approach for a future work is using a Multilevel Weighted Feature Fusion architecture on the layers of the CNN. This approach has yielded competitive results in subject-independent tasks.

Subject-independent EEG analysis remains a very challenging task. Extensive work
is needed to account for the significant variability in regards to session, recording
method, environment conditions, but particularly to subjects since it would make
the adoption of this technology easier and more interpretable for different
individuals.