FIG. 1A

Met Let I	ı Ala	Arg Ala	a Leu Le	u Leu	Cys A		Leu	Ala Le	eu Ser 15	His
Thr Ala	Asn	Pro Cys 20	Cys Se		Pro Cys 25	s Gln 2	Asn A	rg Gly 30	y Val (Cys
Met Ser	Val 35	Gly Phe	Asp Gi	n Tyr! 40	Lys Cy	's Asp		Thr Ar 45	g Thr	Gly
Phe Tyr 50	Gly	Glu Asr	C <u>y</u> s Se 55	r Thr l	Pro Gh		Leu T 60	hr Arg	g lle L	ys
Leu Phe 65	Leu	Lys Pro	The Pro 70	Asn'	Thr Va	l His 7 75	Γyr Ile	E Leu	Thr Hi 80	
Phe Lys	Gly	Phe Trp 85	Asn Va		Asn As 90	in Ile I	Pro Pi	ne Leu	Arg A	Asn
Ala Ile l	Met S	Ser Tyr V 00	Val Leu	Thr Se	er Arg)5	Ser Hi	s Leu	Ile A:	sp Ser	
Pro Pro	Thr 115	Tyr Asn	Ala Asp	Tyr (120	Gly Ty	r L ys S	Ser Tr 12		Ala Pl	he
Ser Asn 130	Leu	Ser Tyr	Tyr Thr 135	Arg A	Ala Lei		ro Va 40	d Pro	Asp A	sp
Cys Pro 145	Thr	Pro Leu	Gly Val	Lys (Gly Ly:	s Lys (155	Gln L	eu Pro	Asp S	Ser 60
Asn Glu	Tle V	Val Glu 165	Lys Leu	Leu L	eu Arg	g Arg	Lys P	he Ile	Pro A: 175	sp
Pro Gln	Gly	Ser Asn 180	Met Me	t Phe	Ala Ph 185	e Phe	Ala C	iln His 190		Chr
His Gln	Phe 1	Phe Lys	Thr Asp	His I 200	Lys Arg	g Gly	Pro A 20	la Phe)5	Thr A	sn
Gly Leu 210	Gly	His Gly	Val Asp 215	Leu .	Asn Hi	is lle T	yr Gl 220	y Glu	Thr L	eu
Ala Arg 225	Gln	Arg Lys	Leu Ar 230	g Leu	Phe Ly	/s Asp 235	Gly l	Lys M	et Lys	Ту: 240
Gln Ile I	le As	sp G ly C 245	ilu Met	Tyr Pr	o Pro 7 250	Thr Va	l Lys		hr Glt 55	1
Ala Glu	Met	lle Tyr i 260	Pro Pro (G]n V; 20	al Pro (65	Glu Hi	s Leu	Arg F 270	he Al	a
Val Gly	Gln 275	Glu Val	Phe Gly	Leu V 280	Val Pro	Gly I	eu M	let Me 85	t Tyr A	Ala

Thr Ile Trp Leu Arg Glu His Asn Arg Val Cys Asp Val Leu Lys Gln 290 295 300

FIG. 1B

Glu 305	His Pro	Glu	Trp Gly 310	Asp G	lu Gln Le	n Phe Gi 315	In Thr S		.ец 320
Ile I	Leu Ile (Gly C	Hu Thr I 25	le Lys	lle Val Ile 330	Glu As _l		'al Gln 35	
His	Leu Ser	Gly 340	Туг His	Phe Ly	s Leu Ly 345	s Phe As		Glu Leu L 550	.eu
Phe	Asn Ly: 355	s Gln	Phe Gl	n T yr C	iln Asn A 160	rg Ile Al	a Ala C 365	ilu Phe A	Lsn
Thr	Leu Tyı 370	His	Trp His	Pro Le 375	u Leu Pro	Asp Th 38		iln Ne Hi	s
Asp 385	Gln Ly	з Туг	Asn Ty 39	r Gln C 0	in Phe II	e Tyr As 395	n Asn S	Ser Ile Le 40	
Leu	Glu His	Gly	lle Thr 405	Gln Ph	e Val Glu 410		Thr Ar	g Gln Ile 415	;
Ala	Gly Arg	Val 420	Ala Gly	Gly A	rg Asn V 425	al Pro Pr		7al Gln L 130	ys
Val	Ser Gln 435	Ala	Ser Ile A	Asp Glr 440	Ser Arg	Gln Met	Lys Ty 445	r Gln Se	r
Phe	Asn Glu 450	л Туг	Arg Ly	s Arg F 455	he Met L	eu Lys F 4	ro Tyr 60	Glu Ser I	Phe
Glu 465	Glu Lei	Thr	Gly Glu 470	ı Lys C	lu Met S	er Ala Gi 475	lu Leu (Leu 80
Tyr	Gly Asp	lle .	Asp Ala 485	Val Gl	u Leu Ty 490	r Pro Ala	Leu L	eu Val G 495	lu
Lys	Pro Arg	Pro	A A 1	lia Dh					
		500	Asp Aia	i iic Fili	e Gly Glu 505	Thr Me		lu Val G 10	ly
Ala	Pro Phe 515	500	•		505 u Met Gl		5	10	•
	212	Ser	Leu Lys Pro Ser	Gly Le	505 u Met Gl	y Asn V	5; al Ile C 525 I Gly Pl	10 ys Ser Pi	ro
Ala	7) Tyr Trp 530	Ser Lys	Leu Lys Pro Ser	Gly Le 52 Thr Ph 535	505 eu Met Gl 20	y Asn V Glu Vai 54 ys Asn A	5; al Ile C 525 I Gly Pl 0	10 ys Ser Pr he Gln II	ro e
Ala Ile A	715 Tyr Trp 530 Asn Thr	Ser Lys Ala S	Leu Lys Pro Ser Ser lle C 550	Gly Le 52 Thr Ph 535 Gln Ser	505 eu Met Gl 20 e Gly Gly Leu Ile C	y Asn V Glu Val 54 ys Asn A 55 Pro Glu	al Ile C 525 I Gly Pl 0 Asn Val	10 ys Ser Pr he Gln II Lys Gly 560	ro e
Ala Ile A 545 Cys	Tyr Trp 530 Asn Thr Pro Phe	Ser Lys Ala S	Pro Ser Ser Ile C 550 Ser Phe 565	Gly Le 52 Thr Ph 535 Gln Ser Ser Va	505 Eu Met Gl 20 e Gly Gly Leu Ile C 55 al Pro Asp	y Asn V Glu Val 54 ys Asn A 55 Pro Glu	5 al Ile C 525 I Gly Pl 0 Asn Val	ys Ser Pr he Gln II Lys Gly 560 e Lys Th 575 p IIe Asn	ro e

FIG. 2A

GTCCAGGAAC TCCTCAGCAG CGCCTCCTTC AGCTCCACAG CCAGACGCCC TCAGACAGCA	60
AAGCCTACCC CCGCGCCGCG CCCTGCCGGC CGCTGCGATG CTCGCCCGCG CCCTGCTGCT	120
GTGCGCGGTC CTGGCGCTCA GCCATACAGC AAATCCTTGC TGTTCCCACC CATGTCAAAA	180
CCGAGGTGTA TGTATGAGTG TGGGATTTGA CCAGTATAAG TGCGATTGTA CCCGGACAGG	240
ATTCTATGGA GAAAACTGCT CAACACCGGA ATTTTTGACA AGAATAAAAT TATTTCTGAA	300
ACCCACTCCA AACACAGTGC ACTACATACT TACCCACTTC AAGGGATTTT GGAACGTTGT	360
GAATAACATT CCCTTCCTTC GAAATGCAAT TATGAGTTAT GTGTTGACAT CCAGATCACA	420
TTTGATTGAC AGTCCACCAA CTTACAATGC TGACTATGGC TACAAAAGCT GGGAAGCCTT	480
CTCTAACCTC TCCTATTATA CTAGAGCCCT TCCTCCTGTG CCTGATGATT GCCCGACTCC	540
CTTGGGTGTC AAAGGTAAAA AGCAGCTTCC TGATTCAAAT GAGATTGTCG AAAAATTGCT	600
TCTAAGAAGA AAGTTCATCC CTGATCCCCA GGGCTCAAAC ATGATGTTTG CATTCTTTGC	660
CCAGCACTTC ACGCACCAGT TTTTCAAGAC AGATCATAAG CGAGGGCCAG CTTTCACCAA	720
CGGGCTGGGC CATGGGGTGG ACTTAAATCA TATTTACGGT GAAACTCTGG CTAGACAGCG	780
TAAACTGCGC CTTTTCAAGG ATGGAAAAAT GAAATATCAG ATAATTGATG GAGAGATGTA	840
TCCTCCCACA GTCAAAGATA CTCAGGCAGA GATGATCTAC CCTCCTCAAG TCCCTGAGCA	900
TCTACGGTTT GCTGTGGGGC AGGAGGTCTT TGGTCTGGTG CCTGGTCTGA TGATGTATGC	960
CACAATCTGG CTGCGGGAAC ACAACAGAGT ATGTGATGTG	1020
ATGGGGTGAT GAGCAGTTGT TCCAGACAAG CAGGCTAATA CTGATAGGAG AGACTATTAA	1080
GATTGTGATT GAAGATTATG TGCAACACTT GAGTGGCTAT CACTTCAAAC TGAAATTTGA	1140
CCCAGAACTA CTTTTCAACA AACAATTCCA GTACCAAAAT CGTATTGCTG CTGAATTTAA	1200
CACCCTCTAT CACTGGCATC CCCTTCTGCC TGACACCTTT CAAATTCATG ACCAGAAATA	1260
CAACTATCAA CAGTTTATCT ACAACAACTC TATATTGCTG GAACATGGAA TTACCCAGTT	1320
TGTTGAATCA TTCACCAGGC AAATTGCTGG CAGGGTTGCT GGTGGTAGGA ATGTTCCACC	1380
CGCAGTACAG AAAGTATCAC AGGCTTCCAT TGACCAGAGC AGGCAGATGA AATACCAGTC	1440
TTTTAATGAG TACCGCAAAC GCTTTATGCT GAAGCCCTAT GAATCATTTG AAGAACTTAC	1500
AGGAGAAAAG GAAATGTCTG CAGAGTTGGA AGCACTCTAT GGTGACATCG ATGCTGTGGA	1560
GCTGTATCCT GCCCTTCTGG TAGAAAAGCC TCGGCCAGAT GCCATCTTTG GTGAAACCAT	1620
GGTAGAAGTT GGAGCACCAT TCTCCTTGAA AGGACTTATG GGTAATGTTA TATGTTCTCC	1680
TGCCTACTGG AAGCCAAGCA CTTTTGGTGG AGAAGTGGGT TTTCAAATCA TCAACACTGC	1740

FIG. 2B

CTCAATTCAG TCTCTCATCT GCAATAACGT GAAGGGCTGT CCCTTTACTT CATTCAGTGT	1800
TCCAGATCCA GAGCTCATTA AAACAGTCAC CATCAATGCA AGTTCTTCCC GCTCCGGACT	1860
AGATGATATC AATCCCACAG TACTACTAAA AGAACGGTCG ACTGAACTGT AGAAGTCTA	1920
TGATCATATT TATTTATITA TATGAACCAT GTCTATTAAT TTAATTATTT AATAATATTT	1980
ATATTAAACT CCTTATGTTA CTTAACATCT TCTGTAACAG AAGTCAGTAC TCCTGTTGCG	2040
GAGAAAGGAG TCATACTTGT GAAGACTTTT ATGTCACTAC TCTAAAGATT TTGCTGTTGC	2100
TGTTAAGTTT GGAAAACAGT TTTTATTCTG TTTTATAAAC CAGAGAGAAA TGAGTTTTGA	2160
CGTCTTTTA CTTGAATTTC AACTTATATT ATAAGGACGA AAGTAAAGAT GTTTGAATAC	2220
TTAAACACTA TCACAAGATG CCAAAATGCT GAAAGTTTTT ACACTGTCGA TGTTTCCAAT	2280
GCATCTTCCA TGATGCATTA GAAGTAACTA ATGTTTGAAA TTTTAAAGTA CTTTTGGGTA	2340
TITTTCTGTC ATCAAACAAA ACAGGTATCA GTGCATTATT AAATGAATAT TTAAATTAGA	2400
CATTACCAGT AATTICATGT CTACTITITA AAATCAGCAA TGAAACAATA ATTIGAAATT	2460
TCTAAATTCA TAGGGTAGAA TCACCTGTAA AAGCTTGTTT GATTTCTTAA AGTTATTAAA	2520
CTTGTACATA TACCAAAAAG AAGCTGTCTT GGATTTAAAT CTGTAAAATC AGATGAAATT	2580
TTACTACAAT TGCTTGTTAA AATATTTTAT AAGTGATGTT CCTTTTTCAC CAAGAGTATA	2640
AACCTTTTTA GTGTGACTGT TAAAACTTCC TTTTAAATCA AAATGCCAAA TTTATTAAGG	2700
TGGTGGAGCC ACTGCAGTGT TATCTCAAAA TAAGAATATC CTGTTGAGAT ATTCCAGAAT	2760
CTGTTTATAT GGCTGGTAAC ATGTAAAAAC CCCATAACCC CGCCAAAAGG GGTCCTACCC	2820
TTGAACATAA AGCAATAACC AAAGGAGAAA AGCCCAAATT ATTGGTTCCA AATTTAGGGT	2880
TTAAACTTIT TGAAGCAAAC TTITTTTAG CCTTGTGCAC TGCAGACCTG GTACTCAGAT	2940
TTTGCTATGA GGTTAATGAA GTACCAAGCT GTGCTTGAAT AACGATATGT TTTCTCAGAT	3000
TITCTGTTGT ACAGTTTAAT TTAGCAGTCC ATATCACATT GCAAAAGTAG CAATGACCTC	3060
ATAAAATACC TCTTCAAAAT GCTTAAATTC ATTTCACACA TTAATTTTAT CTCAGTCTTG	3120
AAGCCAATTC AGTAGGTGCA TTGGAATCAA GCCTGGCTAC CTGCATGCTG TTCCTTTTCT	3180
TITCTTCTTT TAGCCATTTT GCTAAGAGAC ACAGTCTTCT CAAACACTTC GTTTCTCCTA	3240
TITTGTTTTA CTAGTTTTAA GATCAGAGTT CACTTTCTTT GGACTCTGCC TATATTTTCT	3300
TACCTGAACT TTTGCAAGTT TTCAGGTAAA CCTCAGCTCA GGACTGCTAT TTAGCTCCTC	3360
TTAAGAAGAT TAAAAAAAA AAAAAAG	3387