WSYZ - PROJEKT

SPRAWOZDANIE ZA ETAP 2 - MODEL OPTYMLIZACYJNY

AUTORZY: Bartosz Han 318658, Mykhailo Marfenko 323558, Igor Matynia 318693

Wstęp

W ramach tego etapu projektu należało stworzyć model optymalizacyjny, który to miał za zadanie minimalizować koszty transportów warzyw – od producentów do sieci magazynów, jak i z magazynów do warzywniaków. Mając podane położenia magazynów i producentów, możliwości produkcyjne producentów oraz pojemności magazynów stworzyliśmy model, który ukazuje, ile, skad i dokad należy dostarczać warzywa, aby optymalizować łączne koszty dostaw. Dodatkowo, w ramach tego zadania, należało dobrać niektóre parametry modelu samodzielnie. Skrócony opis, zawierający m.in. wybrane przez nas położenia sklepów i pojemności magazynów przysklepowych, a także dane o odległościach między różnymi obiektami naszego modelu, sa opisane niżej tym sprawozdaniu.

Opis parametrów, zmiennych decyzyjnych i ograniczeń modelu

Nasz model składa się z zestawu kilkunastu parametrów, zmiennych decyzyjny i zasad, dzięki którym możemy zamodelować plany dostaw. Poniżej znajdują się szczegółowe opisy tych elementów. Jest to także szczegółowy opis danych zawartych w pliku z modelem.

PRODUCENCI – miejsca, gdzie znajdują się producenci. Jest 6 lokacji z producentami – Blonie, Ksiazenice, GoraKalwaria, Otwock, Wolomin i Legionowo.

MAGAZYNY – miejsca, gdzie znajdują się magazyny sieci magazynów. Tutaj trafiają warzywa z producentów i to stąd warzywa są dalej dostarczane do sklepów. Są trzy magazyny: Pruszkow, Zielonka i Piaseczno.

SKLEPY – jest to lista sklepów, do których docelowo mają trafić warzywa i to stąd klienci detaliczni będą kupować dla siebie warzywa. Jest 10 sklepów: UKermita, UAktora, UKarolci, Krzesak, Stoisko, VegitoWarzywa, UCHLOPAKOW, UPanaWojtka, DobryWarzywniak i ArabicGroceryShop. Każdy ze sklepów odpowiada prawdziwemu sklepowi znajdującego sie w Warszawie.

WARZYWA – jest to zestaw warzyw, które są produkowane, magazynowane i sprzedawane. Warzywami tymi są: Ziemniaki, Kapusta, Buraki i Marchew.

TYGODNIE – jest to zbiór tygodni, reprezentowanych jako liczby od 1 do 52.

maks_produkcja - parametr, który oznacza, ile maksymalnie każdy producent może wytworzyć poszczególnych warzyw.

pojemnosc_mag_centrala – parametr, który oznacza, jakie są pojemności poszczególnych <u>magazynów</u> wchodzących w skład sieci magazynów.

dystans_sklep_magazyn – oznacza, jakie są dystanse w kilometrach każdego ze sklepów detalicznych do każdego z magazynów wchodzących w skład sieci magazynów.

dystans_magazyn_producent – oznacza, jakie są dystanse w kilometrach każdego ze magazynów do producentów.

sklep_prognoza_tyg – oznacza, jakie się prognozy sprzedaży poszczególnych warzy, dla każdego poszczególnego sklepu i dla każdego poszczególnego tygodnia.

pojemnosc_mag_sklepu – oznacza, jakie są pojemności <u>przysklepowych magazynów</u>, w których sklepy mogą przechowywać nowo dostarczone warzywa, lub warzywa, które w danym tygodniu się nie sprzedały.

koszt_transportu – oznacza koszt transportu warzyw na odległość jednego kilometra.

min_zapasy_sklep – oznacza, jaki minimalny procent zapasów sklepu musi być zawsze przechowywana w sklepie. Procent ten jest wyznaczany przy nakładaniu ograniczenia mag_sklep_limit_min i może odnosić się do procentu jakiejkolwiek wartości; my w naszym modelu przyjmujemy że w sklepie musi być w każdym tygodniu co najmniej <min_zapasy_sklep> procent prognozowanej na ten tydzień sprzedaży tego warzywa.

W ramach tego modelu będziemy sterować następującymi zmiennymi decyzyjnymi:

transport_do_sklepow_tyg – oznacza, ile w danym tygodniu dany sklep musi dostać od danego magazynu danego warzywa (wyrażone w tonach).

transport_do_magazynow_rok – oznacza, w jakiej ilości dane warzywo musi być dostarczone z danego produenca do danego producenta, na początku roku (wyrażone w tonach).

Dodatkowo, w naszym modelu mamy zmienną pomocniczą **var stan_mag_sklep_tyg**, który oznacza, jaki jest stan magazynu przysklepowego za zakończenie danego tygodnia (tj. po otrzymaniu dostawy warzyw i po sprzedaży ich w danym tygodniu, zgodnie z zakładaną prognozą). Zmienna ta będzie obliczana na podstawie innych zmiennych i stałych wartości.

Naszą funkcją celu, którą chcemy minimalizować, jest **calk_koszt_transportu,** która jest sumą kosztów transportu warzyw z producentów do magazynów i z magazynów do sklepów spożywczych.

Aby stworzyć poprawnie zamodelować nasz problem optymalizacyjny, stworzyliśmy następujące ograniczenia:

aktualny_stan_mag_sklep – ograniczenie te służy do tego, aby móc obliczyć stan magazynu przysklepowego na zakończenie tygodnia. Oblicza się tą wartość następująco: suma wszystkich dotychczasowych dostaw (czyli jeśli mamy tydzień t to liczymy dostawy od tygodnia 1 do tygodnia t) od wszystkich producentów do tego sklepu minus suma dotychczasowej (czyli do tego tygodnia włącznie) sprzedaży warzyw, obliczonej na podstawie prognoz sprzedaży dla tego sklepu i dla danego produktu.

subject to transport_do_sklepow_tyg_min i subject to transport_do_magazynow_rok_min – służą do zapewnienia, aby wszelkie ilości dostaw warzyw były wartościami nieujemnymi.

mag_centrala_limit_max – służy do zapewnienia tego, aby ilość warzyw w magazynach sieci nigdy nie przekroczyła maksymalnej pojemności tego magazynu.

transport_warzyw_z_magaznow_do_sklepow – służy do tego, aby wszystkie warzywa, które są magazynowane w sieci magazynów były później sprzedawane detalicznie w warzywniakach. Jest to jednocześnie nasze założenie, żeby w sieci magazynów magazynować wyłącznie taką ilość warzyw, jaka jest później stosowana (założenie o posiadaniu jakiś zapasów na wypadek błędów prognoz przyjęliśmy tylko dla magazynów przysklepowych).

subject to mag_sklep_limit_max i subject to mag_sklep_limit_min służy do zapewnienia tego, że ilość warzyw w magazynach nie będzie przekraczała pojemności magazynów, ale też zapewnia, aby zawsze była jakaś ilość warzyw w magazynie przysklepowym. W naszym przypadku, chcemy, aby na koniec tygodnia został pewna ilość warzyw, w naszym przypadku, ta ilość będzie równa paru procentom ilości prognozowanych na dany tydzień ilości sprzedanych warzyw.

subject to produkcja_warzyw_max – ograniczenie służące do tego, aby ilość wyprodukowanych warzyw przez producentów nie przekroczyła maksymalnej możliwości produkcyjnej tych producentów.

Szczegółowe opisy stworzonych przez nas parametrów

Położenia wybranych przez nas sklepów:

Odległości sklepów od magazynów w kilometrach

	Pruszkow	Zielonka	Piaseczno
UKermita	22.5	19.1	13
UAktora	18.4	22	19
UKarolci	19.8	18.4	19.4
Krzesak	18.5	22.3	18.1
Stoisko	20.8	20.3	20.7
VegitoWarzywa	20.5	16.5	20.1
UCHLOPAKOW	16.2	23.2	19.1
UPanaWojtka	20.1	20.4	19.8
DobryWarzywniak	18.7	20.5	13.7
ArabicGroceryShop	18	19.6	17.7

Odległości producentów od magazynów w kilometrach

	Pruszkow	Zielonka	Piaseczno
Blonie	16.8	56.5	40.3
Ksiazenice	29.4	55.8	39.5
GoraKalwaria	42.3	46.7	19.6
Otwock	38.6	26.8	29.1
Wolomin	42.8	7.2	37.7
Legionowo	42.5	24.6	56.1

Pojemności magazynów przysklepowych

UKermita	5.2
UAktora	7.5
UKarolci	14
Krzesak	15
Stoisko	7
VegitoWarzywa	10
UCHLOPAKOW	9
UPanaWojtka	8
DobryWarzywniak	7
ArabicGroceryShop	8.2

Prognozy sprzedaży warzyw

Dla każdego sklepu wyliczyliśmy jego prognozę sprzedaży każdego dostępnego warzywa dla każdego tygodnia. Prognozy dla każdego tygodnia są inne – nie tylko wartości te różnią się w niewielki sposób względem dwóch kolejnych tygodni, ale też zapotrzebowanie na dane warzywa może się zmieniać na przestrzeni roku – w różnych sezonach zapotrzebowanie na warzywa mogą wzrastać, albo się zmniejszać. Prognozy sprzedaży, jak i inne parametry modelu znajdują się w pliku generated_data.dat.

Podsumowanie etapu

W ramach tego etapu przygotowaliśmy model matematyczny opisujący problem dostaw warzyw od producentów warzyw do sieci magazynów i od magazynów do warzywniaków. Udało nam się uzyskać wynik optymalizacji – całkowity koszt transportu wynosi 401203.81 PLN. Udało nam się stworzyć plan dostaw z producentów do magazynów i z magazynów do producentów – w tym drugim przypadku, mamy rozpisane, jakie i skąd należy dostarczać warzywa do danych sklepów.

Pliki z rozwigzaniami

W ramach tego etapu projektu przesyłamy dodatkowo pliki:

model.mod – Plik z modelem danych

generated_data.dat - Plik z danymi do modelu

rozwiązania – folder z rozwiązaniem problemu

rok_trans_warz_magazyny.txt - plik z danymi zmiennej decyzyjnej o dostawie warzyw od producentów
do magazynów

tyg_trans_warz_sklep.txt – plik z danymi zmiennej decyzyjnej o dostawie warzyw z magazynów do sklepów.

Różne inne pliki, zawierające różne testy o naszym modelu.