Mathematical Physics III

Lab Assignment #7

Ishmeet Singh

College Roll No : 2020PHY1221

University Roll No : 20068567025

Unique Paper Code : 32221401

Paper Title : Mathematical physics III Lab

Course and Semester : B.Sc.(Hons.) Physics, Sem IV

Due Date : 21 March 2022

Date of Submission : 21 March 2022

Lab Report File Name : 2020PHY1221_A7.pdf

Submitted to : Dr. Mamta Dahiya

Team Member:

Name : Sarthak Jain

Roll Number: 2020PHY1201

Shri Guru Tegh Bahadur Khalsa College, University of Delhi New Delhi-110007, India.

Contents

1	$\mathrm{Th}\epsilon$	eory	1					
	1.1 Dirac-delta function							
		1.1.1 Definition of Dirac delta function	1					
		1.1.2 Why δ function is more of a distribution rather than a function	1					
	1.2	Representations of Dirac Delta function $\delta(t)$ as a limit of sequence						
		of functions:						
	1.3	Properties of Dirac Delta Function $\delta(x-a)$ and its 3-dimensional version						
		$\delta^3(\vec{r}-\vec{a})$	3					
	1.4	Evaluating some examples	3					
2	Programming 5							
	2.1	2020PHY1221_A7.py	5					
3	Results 10							
	3.1	Behaviour of $\delta_{\epsilon}(x-a)$ as $\delta \to 0$	10					
		3.1.1 When $a = 0$, i.e., centered at $0 \dots \dots \dots \dots \dots \dots$	10					
		3.1.2 When $a = 1$, i.e., centered at $1 \dots \dots \dots \dots \dots \dots$	11					
	3.2	Evaluating given integrals as per Q2(a) ii	12					
	3.3	Tabulated Data	14					
4	Dis	cussion	14					

1 Theory

1.1 Dirac-delta function

1.1.1 Definition of Dirac delta function

The Dirac delta function a function defined on the real line denoted by δ that is zero everywhere except at the origin where it's functional value is infinitely high and area under the curve is equal to one .

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases}$$

and

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

the practical use for this delta function lies in the physical systems or models that concerns impulse behaviour i.e effects that are concentrated within a very small volume or time .

1.1.2 Why δ function is more of a distribution rather than a function

We can not define the delta function rigorously this way. For any function that is equal to 0 for any $x \neq 0$, and is ∞ at x = 0, it can be shown that the integration of such function on \mathbb{R} line will give 0.

Thus, instead of defining $\delta(x)$ as a function in conventional sense, we (in layman terms) define it as a limit of sequence of functions. In a rigorous setting, this is called a General function or a Distribution.

Hence, $\delta(x)$ is a distribution, not a function!

1.2 Representations of Dirac Delta function $\delta(t)$ as a limit of sequence of functions:

$$\lim_{\epsilon \to 0^+} f_{\epsilon}(t) = \delta(t)$$

where $f_{\epsilon}(t)$ is an absolutely integrable function on \mathbb{R} such that :

$$\int_{-\infty}^{\infty} f_{\epsilon}(t)dt = 1$$

1. As limit of sequence of Rectangles:

$$f_{\epsilon}(t) = \begin{cases} 0 & t < -\epsilon/2 \\ \epsilon/2 & -\epsilon/2 < t < \epsilon/2 \\ 0 & t > \epsilon/2 \end{cases}$$

here the width of the rectangle is ϵ and height is $1/\epsilon$ so the area of the rectangle is 1, also note that the ϵ is an arbitrary number in the \mathbb{R} . So,

$$\delta(t) = \lim_{\epsilon \to 0} f_{\epsilon}(t)$$

2. As limit of sequence of isosceles triangles:

$$f_{\epsilon}(t) = \begin{cases} 0 & |t| > \epsilon \\ (1 - \frac{|t|}{\epsilon})/\epsilon & t > \epsilon/2 \end{cases}$$

hence the base of the triangle is 2ϵ and height is $1/\epsilon$ and hence the area under the curve(triangle) is unity irrespective of our choice of ϵ . hence,

$$\delta(t) = \lim_{\epsilon \to 0} f_{\epsilon}(t)$$

3. As limit of sequence of Gaussian Function:

$$f_{\epsilon}(t) = \frac{1}{\epsilon \sqrt{\pi} e^{-x^2/\epsilon}}$$

The area under the Normal Gaussian curve is well evaluated to be equal to unity , and the peak value at t=0 is $1/\epsilon\sqrt{\pi}$.

4. As the limit of sequence of exponential function:

$$\delta(t) = \lim_{\epsilon \to 0^+} f_{\epsilon}(t)$$

where,

$$f_{\epsilon}(t) = e^{-|x|/\epsilon}/2\epsilon$$

here the area under the curve is unity and the peak value at x = 0 is $1/2\epsilon$

5. As the limit of sequence of Lorentzian:

$$\delta(t) = \lim_{\epsilon \to 0} f_{\epsilon}(t)$$

where,

$$f_{\epsilon}(t) = \frac{1}{\pi \epsilon} \frac{\epsilon^2}{\epsilon^2 + t^2}$$

2

the area under the curve is unity and the peak value at x = 0 is $\frac{1}{\pi \epsilon}$

1.3 Properties of Dirac Delta Function $\delta(x-a)$ and its 3-dimensional version $\delta^3(\vec{r}-\vec{a})$

1.
$$\int_{-\infty}^{+\infty} f(x)\delta(x-a) dx = f(a)$$

3-D version

$$\int_{-\infty}^{+\infty} f(\vec{r}) \delta^3(\vec{r} - \vec{a}) \, d\vec{r} = f(\vec{r})$$

Here,
$$d\vec{r} = (dx\hat{i} + dy\hat{j} + dz\hat{k})$$

and,
$$\vec{r} - \vec{a} = (x - a_1)\hat{i} + (y - a_2)\hat{j} + (z - a_3)\hat{k}$$

$$2. \int_{-\infty}^{+\infty} \delta(x-a) \, dx = 1$$

3-D version

$$\int_{-\infty}^{+\infty} \delta^3(\vec{r} - \vec{a}) \, d\vec{r}$$

OR

$$\iiint_{-\infty}^{+\infty} \delta(x - a_1)\delta(y - a_2)\delta(z - a_3) dx dy dz = 1$$

3.
$$\delta[\alpha(x-a)] = \frac{1}{|\alpha|}\delta(x-a)$$

3-D version

$$\delta^3 \left[\alpha(\vec{r} - \vec{a}) \right] = \frac{1}{|\alpha|^3} \delta^3(\vec{r} - \vec{a})$$

1.4 Evaluating some examples

1.
$$\int_{-\infty}^{+\infty} \delta(x-2)(x+1)^2 dx$$

Ans.) By comparing with
$$\int_{-\infty}^{+\infty} \delta(x-a) f(x) dx$$

$$f(x) = (x+1)^2$$
 and $a = 2$

So,

$$\int_{-\infty}^{+\infty} \delta(x-2)(x+1)^2 dx = f(x)|_{x=2}$$
$$= (x+1)^2|_{x=2}$$
$$= 9$$

2.
$$\int_{-\infty}^{+\infty} 9x^2 \delta(3x+1) \, dx$$
Ans.)
$$= \int_{-\infty}^{+\infty} 9x^2 \delta[3(x+\frac{1}{3})] \, dx$$

$$= \int_{-\infty}^{+\infty} \frac{9x^2}{3} \delta(x+\frac{1}{3}) \, dx \qquad [\because \delta(\alpha x) = \frac{1}{|\alpha|} \delta(x)]$$

$$= 3 \int_{-\infty}^{+\infty} x^2 \delta(x+\frac{1}{3}) \, dx$$
Now, $f(x) = x^2$ and $a = \frac{-1}{3}$
So,
$$3 \int_{-\infty}^{+\infty} x^2 \delta(x+\frac{1}{3}) \, dx = 3 \cdot f(x)|_{x=-1/3}$$

$$= 3 \cdot (x^2)|_{x=-1/3}$$

$$= 3 \cdot \left(\frac{-1}{3}\right)^2$$

$$= \frac{1}{3}$$

3.
$$\int_{-\infty}^{+\infty} 5e^{t^2} \cos(t) \delta(t-3) dt$$
Ans.) $f(t) = 5e^{t^2} \cos(t)$ and $a = 3$
So,
$$\int_{-\infty}^{+\infty} 5e^{t^2} \cos(t) \delta(t-3) dt = f(t)|_{x=3}$$

$$= 5e^{t^2} \cos(t)|_{x=3}$$

$$= 5e^9 \cos(3)$$

2 Programming

2.1 2020PHY1221_A7.py

```
1 import MyIntegration as mi
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import pandas as pd
5 from sympy import var, sympify
6 from sympy.utilities.lambdify import lambdify
                            Roll no. => 2020PHY1221
8 # Name => Ishmeet Singh
9 # Patner's Name => Sarthak Jain
                                   Roll no. => 2020PHY1201
def func1(eps, x0 = 0):
      result = "exp(-(x-{:})**2/(2*({:})**2)) / (2*pi*({:})**2)**(1/2)".
     format(x0, eps, eps)
      return(result)
def func2(eps, x0 = 0):
      result = \{:\}/(pi*((x-\{:\})**2 + (\{:\})**2))".format(eps, x0, eps)
      return((result))
17
18
19 if __name__ == '__main__':
      x_axis = np.linspace(0, 2, 1000)
      epsilon = [0.4/2**i for i in range(1, 6)]
      """Dirac-delta Plots: 2(a) i"""
23
      for j in epsilon:
2.4
          plt.figure("Gaussian")
          x = var("x")
26
          expr1 = sympify(func1(eps = j, x0 = 1))
          function1 = lambdify(x,expr1)
          plt.plot(x_axis, function1(x_axis), label = "$\epsilon = ${:.3e}".
     format(j))
          plt.figure("Lorentzian")
          expr2 = sympify(func2(eps = j, x0 = 1))
          function2 = lambdify(x,expr2)
32
          plt.plot(x_axis, function2(x_axis), label = "$\epsilon = $\{:.3e}\".
     format(j))
34
      plt.figure("Gaussian")
```

```
plt.ylabel("$\delta_{\epsilon}(x-1)$")
37
                       plt.xlabel("x Axis")
                       plt.title("Dirac-delta function as an approximation of Gaussian
                     Distribution\ncentered at $a = 1$")
                       plt.legend()
39
40
                       plt.figure("Lorentzian")
41
                        plt.ylabel("$\delta_{\epsilon}(x-1)$")
                       plt.xlabel("x Axis")
                        plt.title("Dirac-delta function as an approximation of Lorentz/Cauchy
                     Distribution\ncentered at $a = 1$")
                       plt.legend()
45
46
                        """Dirac-delta Properties: 2(a) ii"""
47
                        # Analytic Results
48
                        x_axis2 = np.linspace(-2, 2, 1000)
49
                       res1 , res2 , res3 = np.ones(len(epsilon)) , np.ones(len(epsilon)), np
                     .ones(len(epsilon))
                        # Dirac-delta convolutions using Simpsons 1/3
51
                        Integral1 = [[] for i in range(4)]
                        Integral2 = [[] for i in range(4)]
53
                        Integral3 = [[] for i in range(4)]
54
                        for j in epsilon:
                                       """Integral 1"""
56
                                       int11 = mi.MySimp(func1(eps = j), 2, -2, 1000)
                                       int12 = mi.MySimp(func2(eps = j), 2, -2, 1000)
                                       Herm_int11 = mi.MyHermiteQuad(expression = "exp(x**2)*"+func1(eps
                    = j), n = 50)
                                       Herm_int12 = mi.MyHermiteQuad(expression = "exp(x**2)*"+func2(eps
60
                    = j), n = 50)
                                       Integral1[0].append(int11)
61
                                       Integral1[1].append(int12)
                                       Integral1[2].append(Herm_int11)
                                       Integral1[3].append(Herm_int12)
64
                                       """Integral 2"""
                                       int21 = mi.MySimp("((x+1)**2)*"+func1(eps = j),2,-2,1000)
                                       int22 = mi.MySimp("((x+1)**2)*"+func2(eps = j),2,-2,1000)
68
                                       Herm_int21 = mi.MyHermiteQuad("exp(x**2)*((x+1)**2)*"+func1(eps = function functio
                    j), n = 50)
                                       Herm_int22 = mi.MyHermiteQuad("exp(x**2)*((x+1)**2)*"+func2(eps = mi.MyHermiteQuad("exp(x**2)*((x+1)**2)*"+func2(eps = mi.MyHermiteQuad("exp(x**2)*")*"+func2(eps = mi.MyHermiteQuad("exp(x**2)*")*"+func*****+func***+func***+func***+func***+func***+func**+func***+func**+func**+func**+func**
70
                    j), n = 50)
```

```
Integral2[0].append(int21)
71
72
           Integral2[1].append(int22)
           Integral2[2].append(Herm_int21)
73
           Integral2[3].append(Herm_int22)
74
75
           """Integral 3"""
           int31 = mi.MySimp("((3*x)**2)*"+func1(eps = j, x0 = -1/3)
      , 2, -2, 1000)
           int32 = mi.MySimp("((3*x)**2)*"+func2(eps = j, x0 = -1/3)
      ,2,-2,1000)
           Herm_int31 = mi.MyHermiteQuad("exp(x**2)*((3*x)**2)*"+func1(eps = (2.5)*")
      j), n = 50)
           Herm_int32 = mi.MyHermiteQuad("exp(x**2)*((3*x)**2)*"+func2(eps =
80
      j), n = 50)
           Integral3[0].append(int31)
81
           Integral3[1].append(int32)
           Integral3[2].append(Herm_int31)
           Integral3[3].append(Herm_int32)
      plt.figure("SHI1")
      plt.plot(epsilon, res1, color = "black", label = "Analytical Result")
87
      plt.scatter(epsilon, Integral1[0], label = "$\delta_{\epsilon}(x)$ as
88
      Gaussian Distribution - Simpson 1/3", zorder = 5)
      plt.scatter(epsilon, Integral1[1], label = "$\delta_{\epsilon}(x)$ as
89
      Lorentzian Distribution - Simpson 1/3", zorder = 5)
      plt.scatter(epsilon, Integral1[2], marker = "*", label = "$\delta_{\}
      epsilon \( \text{(x)} \$ as Gaussian Distribution - Gauss-Hermite", zorder = 5)
       plt.scatter(epsilon, Integral1[3], marker = "*", label = "$\delta_{\}
      epsilon \( \text{(x)} \$ as Gaussian Distribution - Gauss-Hermite", zorder = 5)
      plt.xlabel("$\epsilon$")
92
      plt.ylabel("y Axis")
      plt.title("INTEGRAL 1\n")
94
      plt.legend()
95
96
      plt.figure("SHI2")
97
      plt.plot(epsilon, res2, color = "black", label = "Analytical Result")
      plt.scatter(epsilon, Integral2[0], label = "$\delta_{\epsilon}(x)$ as
      Gaussian Distribution - Simpson 1/3", zorder = 5)
       plt.scatter(epsilon, Integral2[1], label = "$\delta_{\epsilon}(x)$ as
100
      Lorentzian Distribution - Simpson 1/3", zorder = 5)
      plt.scatter(epsilon, Integral2[2], marker = "*", label = "$\delta_{\}
      epsilon \( \tau \) as Gaussian Distribution - Gauss-Hermite", zorder = 5)
```

```
plt.scatter(epsilon, Integral2[3], marker = "*", label = "$\delta_{\}
102
      epsilon \ (x) \ as Gaussian Distribution - Gauss-Hermite", zorder = 5)
       plt.xlabel("$\epsilon$")
103
       plt.ylabel("y Axis")
104
       plt.title("INTEGRAL 2\n")
       plt.legend()
106
       plt.figure("SHI3")
108
       plt.plot(epsilon, res3, color = "black", label = "Analytical Result")
       plt.scatter(epsilon, Integral3[0], label = "$\delta_{\epsilon}(x)$ as
      Gaussian Distribution - Simpson 1/3", zorder = 5)
       plt.scatter(epsilon, Integral3[1], label = "$\delta_{\epsilon}(x)$ as
111
      Lorentzian Distribution - Simpson 1/3", zorder = 5)
       plt.scatter(epsilon, Integral3[2], marker = "*", label = "$\delta_{\}
112
      epsilon \( \text{(x)} \$ as Gaussian Distribution - Gauss-Hermite", zorder = 5)
       plt.scatter(epsilon, Integral3[3], marker = "*", label = "$\delta_{\}
113
      epsilon}(x)$ as Gaussian Distribution - Gauss-Hermite", zorder = 5)
       plt.xlabel("$\epsilon$")
114
       plt.ylabel("y Axis")
115
       plt.title("INTEGRAL 3\n")
       plt.legend()
117
118
       plt.show()
119
120
       """Dirac-delta Data Tables: 2(b)"""
       print("\nIntegral 1\n")
       int1 = {"Epsilon": epsilon,
               "Gaussian Dist. - Simpson 1/3": Integral1[0],
               "Lorentzian Dist. - Simpson 1/3": Integral1[1],
               "Gaussian Dist. - Gauss-Hermite": Integral1[2],
126
               "Lorentzian Dist. - Gauss-Hermite": Integral1[3]
127
128
       df1 = pd.DataFrame(int1)
       df1.to_csv(r'F:\Ishu\Dirac delta\Integral1.csv')
130
       print(df1)
       print("\nIntegral 2\n")
133
       int2 = {"Epsilon": epsilon,
134
               "Gaussian Dist. - Simpson 1/3": Integral2[0],
               "Lorentzian Dist. - Simpson 1/3": Integral2[1],
136
               "Gaussian Dist. - Gauss-Hermite": Integral2[2],
137
               "Lorentzian Dist. - Gauss-Hermite": Integral2[3]
138
```

```
139
       df2 = pd.DataFrame(int2)
140
       df2.to_csv(r'F:\Ishu\Dirac delta\Integral2.csv')
141
       print(df2)
142
143
       print("\nIntegral 3\n")
144
       int3 = {"Epsilon": epsilon,
145
               "Gaussian Dist. - Simpson 1/3": Integral3[0],
146
               "Lorentzian Dist. - Simpson 1/3": Integral3[1],
               "Gaussian Dist. - Gauss-Hermite": Integral3[2],
               "Lorentzian Dist. - Gauss-Hermite": Integral3[3]
149
               }
150
       df3 = pd.DataFrame(int3)
151
       df3.to_csv(r'F:\Ishu\Dirac delta\Integral3.csv')
152
       print(df3)
153
```

3 Results

3.1 Behaviour of $\delta_{\epsilon}(x-a)$ as $\delta \to 0$

3.1.1 When a = 0, i.e., centered at 0

Figure 1: Gaussian Distribution

Figure 2: Lorentzian Distribution

3.1.2 When a = 1, i.e., centered at 1

Figure 3: Gaussian Distribution

Figure 4: Lorentzian Distribution

3.2 Evaluating given integrals as per Q2(a) ii.

Integral 1
$$\int_{-\infty}^{\infty} \delta(x) dx$$
 Integral 2
$$\int_{-\infty}^{\infty} \delta(x) (x+1)^2 dx$$
 Integral 3
$$\int_{-\infty}^{\infty} \delta(3x+1) 9x^2 dx$$

Simpson 1/3 Method and Gauss-Hermite Quadrature were used to numerically approximate the above integrals.

The following plots will show the comparison between the two methods:

Figure 5: Integral 1

Figure 6: Integral 2

Figure 7: Integral 3

3.3 Tabulated Data

In	tegral 1				
		Gaussian Dist Simpson 1/3	Lorentzian Dist Simpson 1/3	Gaussian Dist Gauss-Hermite	Lorentzian Dist Gauss-Hermite
0	0.2000	1.0	0.936549	9 . 993896e-01	0.951469
1	0.1000	1.0	0.968195	7.353506e-01	0.757063
2	0.0500	1.0	0.984088	3.767004e-02	0.460770
3	0.0250	1.0	0.992043	3.243477e-08	0.244438
4	0.0125	1.0	0.995985	2.228333e-33	0.124140
In	tegral 2				
	Epsilon	Gaussian Dist Simpson 1/3	Lorentzian Dist Simpson 1/3	Gaussian Dist Gauss-Hermite	Lorentzian Dist Gauss-Hermite
0	0.2000	1.040000	1.153735	1.039762e+00	2.134047
1	0.1000	1.010000	1.085837	7.533238e-01	1.359810
2	0.0500	1.002500	1.045290	3.859034e-02	0.764777
3	0.0250	1.000625	1.023254	3.322717e-08	0.396864
4	0.0125	1.000156	1.011745	2.282772e-33	0.200411
In	tegral 3				
	Epsilon	Gaussian Dist Simpson 1/3	Lorentzian Dist Simpson 1/3	Gaussian Dist Gauss-Hermite	Lorentzian Dist Gauss-Hermite
0	0.2000	1.360000	2.762892	3.633517e-01	10.643196
1	0.1000	1.090000	1.962057	1.617581e-01	5.424727
2	0.0500	1.022500	1.502350	8.282676e-03	2.736064
3	0.0250	1.005625	1.256653	7.131575e-09	1.371841
4	0.0125	1.001406	1.129730	4.899533e-34	0.686433

Figure 8: Data for each integral

4 Discussion

Since for the same epsilon the peak value of Gaussian distribution was higher as compared to Lorentzian Distribution , we can say that Gaussian distribution represents the δ function's impulsive behaviour more accurately.

We can also see through the results that the Simpson 1/3 rule performs better than the Gauss-Hermite Quadrature.