EJERCICIOS PARA ENTREGAR. TEMA 1

Conjuntos, aplicaciones y relaciones

Ejercicio 1. Sea A el conjunto de los números racionales positivos, y sean $f, g, h : A \rightarrow A$ las aplicaciones definidas por:

$$f(x) = \frac{1}{x^2 + 1};$$
 $g(x) = x + 2;$ $h(x) = \frac{1}{x}$

- 1. Estudia cuál de estas aplicaciones es inyectiva y/o sobreyectiva.
- 2. Para las que sean inyectivas da una inversa por la izquierda, y para las que sean sobreyectivas da una inversa por la derecha.
- 3. Calcula las aplicaciones $f \circ g$, $g \circ f$, $f \circ f$, $f \circ (g \circ h)$, $f \circ (h \circ g)$.

Ejercicio 2. Sea $X = \{1, 2, 3, 4, 5, 6\}$ y $S = \{2, 5\}$. En $\mathcal{P}(X)$ definimos la relación:

$$AR_SB \text{ si, y s\'olo si, } A\Delta B \subseteq S$$

- 1. Comprueba que R_S es una relación de equivalencia.
- 2. Calcula las clases de equivalencia de \emptyset , $\{2\}$, $\{1, 2, 3\}$, $\{1, 3, 5\}$, $\{2, 3, 4, 5\}$.
- 3. Comprueba que para cualquier clase de equivalencia hay una biyección entre dicha clase y el conjunto $\mathcal{P}(S)$.
- 4. Comprueba que hay una biyección entre el conjunto cociente $\mathcal{P}(X)/R_S$ y el conjunto $\mathcal{P}(X \setminus S)$.

Ejercicio 3. Sea $X = D(24) \times D(72)$. Consideramos en X el orden producto (los conjuntos D(24) y D(72) están ordenados por divisibilidad). Calcula (cuando existan) cotas superiores e inferiores, supremo e ínfimo, máximo y mínimo y elementos maximales y minimales de cada uno de los siguientes subconjuntos de X:

- 1. $\{(2,1), (12,9), (8,6), (6,12), (6,3), (4,3)\}$.
- 2. $\{(x,x): x \in D(24)\}\$ (es decir, $\{(1,1), (2,2), (3,3), (4,4), (6,6), (8,8), (12,12), (24,24)\}$).
- 3. $\{(x, \frac{72}{x}) : x \in D(24)\}.$
- 4. $\{(x,3x):x\in D(24)\}.$

Ejercicio 4. Sea X = D(10) e $Y = \mathcal{P}(\{a,b\})$. Consideramos en X el orden dado por la divisibilidad y en Y el orden dado por la inclusión. Dibuja los diagramas de Hasse del conjunto $X \times Y$ con el orden producto y el orden lexicográfico.