UNIVERSITY OF BOTSWANA DEPARTMENT OF COMPUTER SCIENCE

Test I

COURSE NO: CSI354

TITLE OF PAPER: OPERATING SYSTEMS

TITLE OF EXAMINATION: BSC III SUBJECT: COMPUTER SCIENCE

DATE: SEPTEMBER 2022 **DURATION:** 1 HR 30MINS

INSTRUCTIONS:

ANSWER ALL QUESTION.

TOTAL MARKS: 54

DO NOT OPEN THIS PAPER UNTIL YOU HAVE BEEN TOLD TO DO SO BY THE INVIGILATOR.

NUMBER OF PAGES (including cover page) 3

Question 1 (15 Marks)

a) Describe the following scheduler concepts:

i.Turnaround Time [2 marks]

ANS: Amount of time to execute a process

ii. Response Time [2 marks]

ANS: Amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

iii. Throughput [2 marks]

ANS: # of processes that complete their execution per time unit

iv. Dispatch Latency

[2 marks]

ANS: Time it takes for the dispatcher to stop one process and start another running.

b) Describe how Context Switching occurs (Show all steps incurred). [3 marks]

Explain why Thread switching is considered less costly compared to switching of Processes?
 [3 marks]

ANS:

- Threads share same address space as that of the process that initiated it.
- Threads make use of caching technique Threads accessing the same data can now have private copies of the data in their local cache.

- Economical
- Scalable
- Resource sharing.
- **d)** What is meant by context switching overheads?

[1 mark]

ANS: Time wasted while CPU is doing nothing but saving context of a process and reloading another process.

Question 2 (15 Marks)

a) Differentiate between local procedure calls and remote procedure calls.[4 marks]

ANS:

LPC: Internal within one system. Uses ports like mailboxes to establish and maintain communication channels.

RPC: Between systems on a networked environment.

Uses the stub – client-side proxy for the actual procedure on the server Stub is a piece of code used to convert parameters during a remote procedure call (RPC). An RPC allows a client computer to remotely call procedures on a server computer. The parameters used in a function call have to be converted because the client and server computers use different address spaces. Stubs perform this conversion so that the remote server computer perceives the RPC as a local function call.

b) Justify the need for a hybrid Threading model.

[2 marks]

ANS:

- Overcome limitations of one-level models
- Flexibility when assigning user level threads to kernel level threads
- c) For each of the following operations, indicate whether each could cause an Interrupt (I), generates a Trap (T), or does Neither (N). [8marks]
 - Disk device controller signaling the completion of a block write I
 - ii. Procedure call N
 - iii. Writing to a device I/O register N
 - iv. System call T
- d) State one reason why symmetric multiprocessing is complex to design compared to asymmetric processing systems? [1 mark]

ANS: Balancing work among multiple CPU requires complex programming to

achieve vs focusing on one master processor to assign others work.

Question 3 (24 Marks)

a. Given the following list of processes and CPU burst times;

Process	Burst Time		
P1	13		
P2	5		
P3	23		
P4	3		
P5	31		
P6	3		
P7	14		

Calculate the average waiting time for each of the following scheduling algorithms. Assume a time quantum of 8 is being used.

i. First Come First Served (FCFS) [4 marks]

FCFS

Process	Burst Time	Wait Time
P_1	13	0
\mathbf{P}_2	5	13
P ₃	23	18
P ₄	3	41
P ₅	31	44
P ₆	3	75
P ₇	14	78

The average wait time is calculated as Σ WaitTime = (0 + 13 + 1)

$$\Sigma$$
WaitTime / No Of Processes
= $(0 + 13 + 18 + 41 + 44 + 75 + 78) / 7$
= $269 / 7$

= 32.43

ii. Shortest Job First (SJF), non-preemptive [4 marks]

SHORTEST JOB FIRST

Process	Burst Time	Wait Time
P_6	3	0
P ₄	3	3
P ₂	5	6
\mathbf{P}_{1}	13	11
P ₇	14	24
P ₃	23	38
P ₅	31	61

The average wait time is calculated as

$$\Sigma$$
WaitTime / No Of Processes
= $(0 + 3 + 6 + 11 + 24 + 38 + 61) / 7$
= $143 / 7$
= 20.43

iii. Round Robin (Time Quantum = 8) [4 marks]

ROUND ROBIN (Q=8)

	P1	P2	P3	P4	P5	P6	P7
	8	5	8	3	8	3	8
	5		8		8		6
			7		8		
					7		
Waiting Times	35	8	54	21	61	32	56

b. Describe One technique used to avoid indefinite waiting for system resources.

[1 mark]

ANS: Aging

c. Illustrate (by drawing), all Java Thread States and their associated transitions.

[8 marks]

ANS:

d. List three ways used to pass parameters to a system call when requesting OS services.
 [3 marks]

ANS:

- Simplest: pass the parameters in *registers*
- Parameters stored in a *block*, or table, in memory, and address of block passed as a parameter in a register
- Parameters placed, or pushed, onto the stack by the program and popped off the stack by the operating system

END OF TEST