





#### Deep Learning methods for Quality Check Algorithms in Mammography

Research Internship (April-October 2019)

**Author**: Baptiste Doyen

**Supervisors**: Pierre Fillard (CSO)

Yaroslav Nikulin (Sr. Research Scientist)

Therapixel - CentraleSupélec/MVA

6th September 2019 - Paris Saclay campus

#### **Context: Breast Cancer, AI & Quality check**

The most diagnosed and lethal cancer for women with 1/4 of total cancers and 627K deaths worldwide<sup>[9]</sup>

- Recurrent screenings
- CAD assistance
- New generation with AI
- Al require both High Volume and High Quality

  Data



**Figure 1:** A malignant lesion on a Mammography

#### **Quality Check**

A crucial step for Cancer Detection algorithms.

Traditionnally performed manually but today automatized

Two main steps:

- Pre-Quality Check: separate screening images from non-screening images
   (global features of the image)
- Geometry Check: ensure that breast geometry on the mammography is correct (more local and constrained features of the image)

#### **Pre-Quality Check**



VS.

Figure 2: Non-Screening



Figure 3: Screening

#### **Geometry Check**

The goal is to extract feature points from the image and check if they comply with set of rules  $S_{geom}$ 



Figure 4: MLO view



Figure 5: CC view

#### **Decision pipeline**



#### Decision pipeline (bis)

- In blue: automatic processes
- $\circ$  In orange: human assistance to improve these processes ( $\sim$  anomaly detection)
- My work was mainly focused on ScreeningNet, Pectoral UNet and Post-Processing

#### **Table of contents**

Mammography Segmentation

Overview

Non Deep Learning methods

Deep Learning methods

Network architecture: UNet<sup>[6]</sup> & Training

Data & Pre-Processing

Experiments, Results & Discussion

ScreeningNet

Conclusion & Future work

## Mammography Segmentation

#### Overview

#### Visual example:



9

#### Overview

#### **Problem definition**:

- $\circ$   $r, c \in \mathbb{N}$
- $\circ x \in \mathbb{R}^{r \times c}$  a mammography image
- ∘  $y \in \{0,1\}^{r \times c \times 3}$  a Ground-Truth (GT) tensor
- $\circ$   $\ell$  a segmentation loss function measuring discrepancy between masks
- $\circ~\mathcal{F}\subset \left(\left.\{0,1\}^{r imes c imes 3}
  ight)^{\mathbb{R}^{r imes c}}$  a function space

We look for:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \, \ell(f(x), y) \tag{1}$$

#### Non Deep Learning methods

#### Test of two classical approaches:

 Frontier estimation with Image gradient and Continuous line search



Figure 6: Success and Failure

2) FloodFill<sup>[1]</sup> algorithm



Figure 7: Success and Failure

⇒ good results only on easy cases

#### **Deep Learning methods**

Method based on **learning**:

we assume  $\mathcal{F}=\mathcal{F}_{\Theta}$  (with  $\Theta\in\mathbb{R}^N$  and N>>1) and we intend to learn a set of parameters  $\Theta^*$  by optimizing  $\ell$  on  $\Theta$  space.

#### More details:

- A similar approach has been developped in 2017 by Alejandro Rodriguez-Ruiz et al.<sup>[4]</sup> (reference paper)
- Advantages:
  - extract more advanced image features (e.g. texture)
  - only few labelled data
- Drawbacks:
  - overfit happens and prevent reproducibility
  - domain transferability

#### **UNet Network:** $f_{\Theta}$

#### A symmetric and fully-convolutional architecture made of:

- Contracting network: what is there?
- Expanding network: where is it?
- short and long Skip connections



Figure 8: end-to-end architecture from Image pixels to GT labels

#### Loss function: $\ell$

Inspired from UNet paper<sup>[6]</sup> and also from Isensee et al.<sup>[2]</sup>

$$\ell(f_{\Theta}(x), y) = (1 - \lambda) \underbrace{\left(-\sum_{c \in C} \sum_{i,j} w_{x}(i,j) y_{i,j,c} log \left(f_{\Theta}(x)_{i,j,c}\right)\right)}_{\mathcal{L}_{CE}} + \lambda \underbrace{\left(-\frac{2}{|C|} \sum_{c \in C} \frac{\sum_{i,j} f_{\Theta}(x)_{i,j,c} y_{i,j,c}}{\sum_{i,j} f_{\Theta}(x)_{i,j,c} + \sum_{i,j} y_{i,j,c}}\right)}_{\mathcal{L}_{Dice}}$$
(2)

<u>with</u>:  $[f_{\Theta}(x)_{i,j,c}]_{i,j,c}$  output tensor,  $[y_{i,j,c}]_{i,j,c}$  GT tensor, C the set of classes,  $\lambda$  a ponderation parameter and  $[w_x(i,j)]_{i,j}$  the weight-map associated to x.

#### Weight-map: $W_x$

- Adaptation of Cross-Entropy (CE) for borders zone
- Equivalent to a 'new' GT distribution:

$$\hat{y}_{i,j} = w_x(i,j) \bullet y_{i,j} \tag{3}$$







#### **Training procedure**

- Stochastic Gradient Descent
  - Gradient: Backpropagation<sup>[5]</sup> to get  $\nabla_{\Theta} \ell(f_{\Theta}(x), y)$
  - Optimizer: Adam<sup>[3]</sup>
- Metrics to assess final performances:
  - Dice Median :  $D\big([x_{i,j,c}],[y_{i,j,c}]\big) = \frac{2 \times \left| \left\{ (i,j), x_{i,j,c=pect} = 1 \right\} \cap \left\{ (i,j), y_{i,j,c=pect} = 1 \right\} \right|}{\left| \left\{ (i,j), x_{i,j,c=pect} = 1 \right\} \right| + \left| \left\{ (i,j), y_{i,j,c=pect} = 1 \right\} \right|}$
  - Inter-Quartile Range (IQR)

#### Data & Pre-Processing

- 169 images labelled manually with software labelme<sup>[8]</sup>
   (121 training/15 validation/33 test)
- o 2 main **constraints** on Data Augmentation:
  - preserve minimal pectoral presence
  - preserve spatial relative arrangement



**Figure 9:** From left to right Missing pectoral, non-natural border and mirroring

#### **Experiments**

#### Which model configuration performs the best?

Impossible to test all hyper-parameter combinations!

#### **But:**

- Accurate enough a priori values
- $\circ$  Not full-independence, batchSize  $\Longrightarrow$   $N_{epochs}, N_{improve}, d$
- $2 regimes (batchSize ∈ {6, 10}) and learnings from one transferred to the second$
- We first fixed a benchmark model for each regime and iterations with small incremental changes one at a time.

#### Results

#### Best model configuration:

$$d=$$
 1% |  $batchSize=$  10 | BN=Yes | L. ReLU | Inv=No |  $\lambda_{loss}=$  0.5 | Depth=5 | flips+elastic |  $N_{init-filters}=$  64

#### • Final results:

| Model(s)                                       | Manufacturer | Result          |
|------------------------------------------------|--------------|-----------------|
| Single best                                    | Hologic      | 0.9647 (0.0243) |
| $\{Single+PP\}$ best                           | Hologic      | 0.9683 (0.0224) |
| Ensemble best                                  | Hologic      | 0.9654 (0.0213) |
| $\{ {\it Ensemble} + {\it PP} \} \ {\it best}$ | Hologic      | 0.9654 (0.0201) |
| <i>Ref</i> . <sup>[4]</sup> best on DBT        | Siemens      | 0.977 (0.0170)  |
| <i>Ref</i> . <sup>[4]</sup> best on DM         | Siemens      | 0.974 (0.0170)  |
| <i>Ref</i> . <sup>[4]</sup> best on DM         | Hologic      | 0.947 (0.0559)  |

### ScreeningNet

#### ScreeningNet

- Binary classification problem to ease Screening process
- $\circ$   $\,$  Model used: modified VGG16^{[7]}-like network with  $\sim$  10K images
- $\circ$  **Global result**: AUC = 0.8259 (validation of the approach)
- $\circ$  More in details: the aim is to minimize FPR (False Positive Rate). For instance,  $FPR = 5\% \implies TPR = 18\%$  (still low)



**Figure 10:** ROC Curve with AUC = 0.8259

**Conclusion & Future work** 

#### Conclusion & Future work

- Quality Check:
   requires both non-DL & DL stand-alone expert modules
- On Mammography Segmentation:
   results similar to the reference paper<sup>[4]</sup>.
   At first sight: same approach but some changes were necessary to achieve reproducibility.
   »Next steps: address domain transferability issue
- On ScreeningNet:
   general approach validated but TPR is still too low.
   »Next steps: More data and multi-class approach.

#### **Future work**

#### New framework for Mammography Segmentation

- Motivations: noisy/leaky/uncomplete results with UNet-only. Post-Processing is here to address this issue but can be improved.
  - A learnt and thus optimized post-processing would be better.
- SegAN<sup>[10]</sup> framework: GAN approach with UNet as Mask Generator and a deep multi-scale concatenated network (critic) as Discriminator.
  - Main innovation: one single loss to train both networks

$$\ell_{SegAN} = \ell_{MAE} \Big[ f_{\Theta_{Critic}} \Big( [x_{i,j}] \bullet [f_{\Theta_{UNet}}(x_{i,j})]_{c=pectoral} \Big),$$

$$f_{\Theta_{Critic}} \Big( [x_{i,j}] \bullet [y_{i,j,c}]_{c=pectoral} \Big) \Big] \quad (4)$$

#### **Future work**

#### New framework for Mammography Segmentation



**Figure 11:** SegAN architecture. Image Credit to Xue Yuan et al. [10]

# Thanks for your attention! :)

#### Bibliographie

#### References

- [1] FloodFill (2001). https://en.wikipedia.org/wiki/Flood\_fill.
- [2] Isensee, F. et al. (2018). nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation. *ArXiv e-prints*.
- [3] Kingma, D. and Lei Ba, J. (2015). Adam: a method for stochastic optimization. ArXiv e-prints.
- [4] Rodríguez-Ruiz, A. et al. (2018). Pectoral muscle segmentation in breast tomosynthesis with deep learning. Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis.
- [5] Rojas, R. (1996). Neural Networks: A Systematic Introduction. New York, NY, USA: Springer-Verlag New York, Inc.
- [6] Ronneberger, O. et al. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. *ArXiv e-prints*.
- [7] Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for Large Scale Image Recognition. International Conference on Learning Representations (ICLR).
- [8] Wada, K. (2016). labelme: Image Polygonal Annotation with Python. https://github.com/wkentaro/labelme.
- [9] WHO (2018). https://www.who.int/cancer/PRGlobocanFinal.pdf.