Wersja:

Numer indek	su:
	000000

Grupa ¹ :			
s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	s. 141

Logika dla informatyków

Kolokwium nr 3, 19 stycznia 2018 Czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Rozważmy funkcję $f: \mathbb{R} \to \mathbb{R}$ zdefiniowaną wzorem $f(x) = x^2$. Jeśli istnieje taki zbiór $Y \subseteq \mathbb{R}$, że przeciwobraz $f^{-1}[Y]$ jest przedziałem domkniętym [0,4], to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki zbiór nie istnieje.

Przeciwobraz dowolnego zbioru przez funkcję f wraz z każdą liczbą zawiera liczbę do niej przeciwną; nie może zawierać liczb dodatnich i nie zawierać liczb ujemnych.

Zadanie 2 (2 punkty). Rozważmy relację równoważności \simeq na zbiorze wszystkich funkcji $\mathbb{N}^{\mathbb{N}}$ daną wzorem $f \simeq g \iff f(42) = g(42)$ oraz funkcję $I : \mathbb{N} \to \mathbb{N}$ daną wzorem I(n) = n. W prostokąty poniżej wpisz odpowiednio moc zbioru klas abstrakcji relacji \simeq oraz taką formułę φ , że $[I]_{\simeq} = \{g \in \mathbb{N}^{\mathbb{N}} \mid \varphi\}$.

$$|\mathbb{N}^{\mathbb{N}}/_{\simeq}| =$$
 \aleph_0

$$[I]_{\simeq} = \{g \in \mathbb{N}^{\mathbb{N}} \mid \qquad \qquad g(42) = 42 \qquad \qquad \Big| \}$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Jeśli każda surjekcja (czyli funkcja "na") $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ jest bijekcją, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$f(X) = \{ \lfloor n/2 \rfloor \mid n \in X \}$$

Zadanie 4 (2 punkty). Jeśli istnieją takie zbiory A, B, funkcja $f: A \to B$ oraz dwie różne funkcje $g_1, g_2: B \to A$, że $g_1 f = g_2 f = I_A$, gdzie I_A jest identycznością na zbiorze A, to w prostokąt poniżej wpisz dowolne takie zbiory i funkcje. W przeciwnym przypadku wpisz uzasadnienie, że takie funkcje nie istnieją.

$$A = \{1, 2\}, B = \{1, 2, 3\}, f(x) = x,$$

$$g_1(x) = \begin{cases} 1, & \text{gdy } x = 1 \\ 2, & \text{gdy } x = 2 \text{ lub } x = 3 \end{cases}, g_2(x) = \begin{cases} 1, & \text{gdy } x = 1 \text{ lub } x = 3 \\ 2, & \text{gdy } x = 2 \end{cases}$$

Zadanie 5 (2 punkty). Rozważmy funkcje

$$F: (A^C \times B^C) \to (A \times B)^C,$$
 $g_A: C \to A,$
 $h: A \times B \to (A \times C)^B,$ $g_B: C \to B$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie $g_A(b)$ nie jest poprawne, bo nie dla wszystkich zbiorów A, B i C jest $b \in C$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia $g_A(c)$ jest A. W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE".

$$g_A(c)$$
 A $F(g_A, g_B)$ $(A \times B)^C$ $(h(a, b))(b)$ $A \times C$ $g_A(b)$ NIE $\Big(h \cdot F(g_A, g_B)\Big)(c)$ $\Big(A \times C)^B$ $h(g_A(c), g_B(c))$ $\Big(A \times C)^B$

Wersja:	A

Numer indeksu:	
000	0000

Grupa ¹ :			
s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Rozważmy relację \simeq na parach liczb naturalnych zadaną wzorem

$$\langle m_1, n_1 \rangle \simeq \langle m_2, n_2 \rangle \stackrel{\text{df}}{\iff} m_1 + n_2 = n_1 + m_2.$$

Nietrudno zauważyć, że \simeq jest relacją równoważności; w tym zadaniu nie trzeba tego dowodzić. Jaka jest moc klasy abstrakcji $[\langle 0,0\rangle]_{\simeq}$? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Korzystając z twierdzenia Cantora-Bernsteina udowodnij, że zbiór tych nieskończonych ciągów zero-jedynkowych, które mają nieskończenie wiele jedynek

$$\mathcal{N} = \{ \alpha \in \{0,1\}^{\mathbb{N}} \mid \alpha^{-1}(\{1\}) \text{ jest nieskończony} \}$$

ma moc continuum.

Zadanie 8 (5 punktów). Rozważmy funkcję $F : \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \to (\{0,1\} \times \{0,1\})^{\mathbb{N}}$, która dla $X, Y \subseteq \mathbb{N}$ jest zdefiniowana wzorem

$$F(X,Y): \mathbb{N} \to \{0,1\} \times \{0,1\}$$

$$(F(X,Y))(n) = \begin{cases} \langle 0,0\rangle, & \text{gdy } n \notin X \text{ i } n \notin Y, \\ \langle 0,1\rangle, & \text{gdy } n \notin X \text{ i } n \in Y, \\ \langle 1,0\rangle, & \text{gdy } n \in X \text{ i } n \notin Y, \\ \langle 1,1\rangle, & \text{gdy } n \in X \text{ i } n \in Y. \end{cases}$$

Udowodnij, że F jest różnowartościowa.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

	Numer indeksu:	$Grupa^1$:	
Wersja:	000000	s. 4	s
Weisja.	000000	s. 105	s.

 s. 4
 s. 5
 s. 103
 s. 104

 s. 105
 s. 139
 s. 140
 s. 141

Logika dla informatyków

Kolokwium nr 3, 19 stycznia 2018 Czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Rozważmy relację równoważności \simeq na zbiorze wszystkich funkcji $\mathbb{N}^{\mathbb{N}}$ daną wzorem $f \simeq g \stackrel{\mathrm{df}}{\Longleftrightarrow} f(42) = g(42)$ oraz funkcję $f_0 : \mathbb{N} \to \mathbb{N}$ daną wzorem $f_0(n) = 0$. W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji $[f_0]_{\simeq}$ oraz taką formułę φ , że $[f_0]_{\simeq} = \{g \in \mathbb{N}^{\mathbb{N}} \mid \varphi\}$.

$$|[f_0]_{\simeq}|=$$
 c $[f_0]_{\simeq}=\{g\in\mathbb{N}^\mathbb{N}\mid g(42)=0$ $\}$

Zadanie 2 (2 punkty). Jeśli istnieją takie zbiory A, B, dwie różne funkcje $f_1, f_2 : A \to B$ oraz funkcja $g : B \to A$, że $gf_1 = gf_2 = I_A$, gdzie I_A jest identycznością na zbiorze A, to w prostokąt poniżej wpisz dowolne takie zbiory i funkcje. W przeciwnym przypadku wpisz uzasadnienie, że takie funkcje nie istnieją.

$$A = \{1\}, B = \{1, 2\}, f_1(x) = 1, f_2(x) = 2, g(x) = 1$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Rozważmy funkcję $f: \mathbb{R} \to \mathbb{R}$ zdefiniowaną wzorem $f(x) = x^2$. Jeśli istnieje taki zbiór $X \subseteq \mathbb{R}$, że obraz f[X] jest przedziałem domkniętym [-4,4], to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki zbiór nie istnieje.

Obraz dowolnego zbioru przez funkcję f zawiera wyłącznie liczby nieujemne

Zadanie 4 (2 punkty). Rozważmy funkcje

$$F: (A^C \times B^C) \to (A \times B)^C,$$
 $g_A: C \to A,$
 $h: A \times B \to (A \times C)^B,$ $g_B: C \to B$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie $g_A(b)$ nie jest poprawne, bo nie dla wszystkich zbiorów A, B i C jest $b \in C$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia $g_A(c)$ jest A. W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE".

$$g_A(c)$$
 A $(F(g_A, g_B))(c)$ $A \times B$ $(h(a, b))(g_B(c))$ $A \times C$
$$g_A(b)$$
 NIE $h\Big((F(g_A, g_B))(c)\Big)$ $(A \times C)^B$ $h(a, b) \cdot g_B$ $(A \times C)^C$

Zadanie 5 (2 punkty). Jeśli każda injekcja (czyli funkcja różnowartościowa) $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ jest bijekcją, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$f(X) = \{2*n \mid n \in X\}$$

|--|

Numer indeksu:	
000000	

Grupa ¹ :			
s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Korzystając z twierdzenia Cantora-Bernsteina udowodnij, że rodzina nieskończonych podzbiorów zbioru liczb naturalnych

$$\mathcal{N} = \{X \in \mathcal{P}(\mathbb{N}) \mid X \text{ jest nieskończony} \}$$

ma moc continuum.

Zadanie 7 (5 punktów). Rozważmy relację \simeq na parach liczb naturalnych zadaną wzorem

$$\langle m_1, n_1 \rangle \simeq \langle m_2, n_2 \rangle \iff m_1 + n_2 = n_1 + m_2.$$

Nietrudno zauważyć, że \simeq jest relacją równoważności; w tym zadaniu nie trzeba tego dowodzić. Jaka jest moc zbioru klas abstrakcji tej relacji? Uzasadnij odpowiedź.

Zadanie 8 (5 punktów). Rozważmy funkcję $F: \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \to (\{0,1\} \times \{0,1\})^{\mathbb{N}}$, która dla $X,Y \subseteq \mathbb{N}$ jest zdefiniowana wzorem

$$F(X,Y): \mathbb{N} \to \{0,1\} \times \{0,1\}$$

$$(F(X,Y))(n) = \begin{cases} \langle 0,0\rangle, & \text{gdy } n \notin X \text{ i } n \notin Y, \\ \langle 0,1\rangle, & \text{gdy } n \notin X \text{ i } n \in Y, \\ \langle 1,0\rangle, & \text{gdy } n \in X \text{ i } n \notin Y, \\ \langle 1,1\rangle, & \text{gdy } n \in X \text{ i } n \in Y. \end{cases}$$

Udowodnij, że F jest "na".

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.