Quiz 3

Problem 2 (10 pts). Find a basis for span $\{u_1, \ldots, u_5\}$ from among the vectors u_1, \ldots, u_5 , where

$$oldsymbol{u}_1 = egin{bmatrix} 1 \ 2 \ 2 \end{bmatrix} \qquad oldsymbol{u}_2 = egin{bmatrix} 2 \ 5 \ 4 \end{bmatrix} \qquad oldsymbol{u}_3 = egin{bmatrix} 1 \ 3 \ 2 \end{bmatrix} \qquad oldsymbol{u}_4 = egin{bmatrix} 2 \ 7 \ 4 \end{bmatrix} \qquad oldsymbol{u}_5 = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}$$

Do this by building the matrix consisting of the u_i 's as rows or columns (you must choose correctly) and use Gaussian elimination. This is described carefully in the notes.

Problem 3 (10 pts). Let c_1, c_2, \ldots, c_n be n distinct real numbers. Let $p_i = \prod_{\substack{j=1 \ j \neq i}}^n (x - c_j)/(c_i - c_j)$. Show that $\mathcal{B} = \{p_1, p_2, \ldots, p_n\}$ is a basis for P_{n-1} .

Hint: Compute $p_i(c_j)$ and look at what happens when i=j and when $i\neq j$. Use this to argue the independence of \mathcal{B} .