Name_

1. The derivative of $f(x) = \sec x$ at $x = \frac{\pi}{6}$ is

C

- A. $\frac{2}{3}$
- B. $\frac{2}{\sqrt{3}}$
- C. $\frac{4}{3}$
- D. 2
- E. 4

2. $\lim_{x \to 0} \frac{1}{e^{-x}}$ equals

- A. −∞
- B. -1
- C. 0
- D. 1
- E. ∞

Name

3. If $f(x) = \tan^{-1}(\sqrt{x})$ then f'(3) equals

A.
$$-\frac{1}{4\sqrt{3}}$$

B.
$$\frac{\sqrt{3}}{8}$$

C.
$$\frac{1}{8\sqrt{3}}$$

D.
$$\frac{1}{4}$$

E.
$$\frac{\pi}{3}$$

4. The tangent line to the graph of $f(x) = 2 \ln(x^2 + 1)$ at x=1 is

A.
$$y = x + 2 \ln 2 - 1$$

B.
$$y = 2x + 2 \ln 2 - 2$$

C.
$$y = 4x + 2 \ln 2 - 4$$

D.
$$y = -2x + 2 \ln 2 + 2$$

E.
$$y = -x + 2 \ln 2 + 1$$

Name.

5. If $y^5 - xy^2 + 2x = 3$, then the value of y' when x=2 and y=1 is:

- A. -1
- B. $-\frac{3}{5}$
- C. 0
- D. $\frac{2}{5}$
- E. $\frac{2}{3}$

6. A particle travels along a line with position $x(t) = 2^t$. The acceleration of the particle at time t=1 is:

- A. 2
- B. $\frac{2}{\ln 2}$
- C. $\frac{2}{(\ln 2)^2}$
- D. 2 ln 2
- E. $2(\ln 2)^2$

Name _____

- 7. The function $f(x) = x^2 e^x$ has local extrema as follows:
 - A. loc max at x = -2 and loc min at x = 0
 - B. $\log \max \text{ at } x = 0 \text{ and } \log \min \text{ at } x = -2$
 - C. local min at x = -2 and x = 0
 - D. local max at x = -2 and x = 0
 - E. no local max or min

- 8. The function $f(x) = \frac{1+x^2}{1-x^2}$ is increasing on the intervals:
 - A. $(-\infty, -1)$ and (0,1)
 - B. (-1,0) and $(1,\infty)$
 - C. (0,1) and $(1,\infty)$
 - D. $(-\infty, -1)$ and (-1, 0)
 - E. $(-\infty, -1)$ and $(1, \infty)$

Name.

- 9. The function $f(x) = \frac{x^2 + 1}{5x^2 2x}$ has:
- A. 2 vertical and 2 horizontal asymptotes
- B. 2 vertical and 1 horizontal asymptotes
- C. 1 vertical and 2 horizontal asymptotes
- D. 1 vertical and 1 horizontal asymptotes
- E. 1 vertical and no horizontal asymptotes

10. The function defined by

$$f(x) = x^2 \text{ for } x < 0,$$

$$f(x) = x + 2$$
 for $0 \le x \le 2$, and

$$f(x) = 4 + \ln(x - 1)$$
 for $x > 2$

has discontinuities at:

- A. no values of x
- B. x=0 and x=2 only
- C. x=2 only
- D. x=0 only
- E. x=0 and x=1 only

Name _____

- 11. The function $f(x) = 2x^3 3x^2 12x$ is concave up on the intervals:
 - A. $(-\infty, -1)$ and $(2, \infty)$
 - B. (-1,2)
 - C. $(-\infty, \frac{1}{2})$
 - D. $(\frac{1}{2},\infty)$
 - E. $(-\infty,\infty)$

- 12. The base of a triangle increases at the rate of 2 in/min while the area increases at the rate of 6 in²/min. At what rate is the altitude of the triangle changing when the altitude is 2 in and the area is 4 in²?
 - A. 1 in/min
 - B. 2 in/min
 - C. 3 in/min
 - D. 4 in/min
 - E. 6 in/min

13. Estimate $\tan\left(\frac{5\pi}{24}\right)$ using differentials near $a=\frac{\pi}{4}$.

- A. $\frac{24 \pi}{24}$
- B. $\frac{12-\pi}{12}$
- C. $\frac{\pi}{12}$
- D. $\frac{-\pi}{12}$
- E. $\frac{\pi}{24}$

- 14. Determine how many critical numbers the function $f(x) = x^7 + 14x$ has.
 - A. none
 - B. 1
 - C. 3
 - D. 5
 - E. 6

- 15. The absolute maximum and minimum values for $f(x) = x^4 8x^2 + 1$ on [-1,3] are respectively
 - A. $\{10, -15\}$
 - B. {3,2}
 - C. $\{2,0\}$
 - D. $\{1, -15\}$
 - E. $\{1, -8\}$

- 16. If $f''(x) = (x+1)^2(x-2)x^3$ then f has inflection points with x values just at
 - A. $\{-1,0,2\}$
 - B. $\{-1,2\}$
 - C. $\{-1\}$
 - D. {0,2}
 - E. $\{-1,0\}$

17. Suppose that f(x) is continuous on [-1,3] and f'(x) exists on (-1,3) such that $-2 \le f'(x) \le 4$. Which one of the following is always true?

A.
$$f(3) - f(-1) \le -2$$

B.
$$f(3) - f(-1) \ge -2$$

C.
$$f(3) - f(-1) \le 4$$

D.
$$f(3) - f(-1) \ge -8$$

E.
$$f(3) - f(-1) \le 3$$

- 20. If $f(x) = x^4 + x + 2$ and $x_1 = 1$ then x_2 from Newton's method is
- A. $\frac{1}{5}$
- B. $-\frac{1}{4}$
- C. $\frac{4}{5}$
- D. $-\frac{1}{5}$
- E. $\frac{1}{4}$

- 21. If $f'(x) = \frac{1}{1+x^2}$ and $f(0) = \frac{\pi}{4}$ then determine f(1).
- A. 0
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{2}$
- D. $\frac{3\pi}{4}$
- Ε. π

22. If
$$\int_{1}^{2} f(x)dx = 3$$
, $\int_{1}^{5} f(x)dx = 4$, and $\int_{4}^{5} f(x)dx = 6$, then $\int_{2}^{4} f(x)dx$ equals

- A. 0
- B. 4
- C. 2
- D. -2
- E. -5

23. If
$$f(x) = \int_{1}^{x} \frac{t^4}{4+t^2} dt$$
 then $f'(2)$ equals

- A. 2
- B. 4
- C. 6
- D. 8
- E. 16

24.
$$\int_{1}^{4} x(5\sqrt{x}+4)dx$$
 equals

Ç.5

- A. 24
- B. 36
- C. 42
- D. 92
- E. 108

25.
$$\int_{2}^{3} \frac{dx}{(2x-3)^2}$$
 equals

- B. $\frac{4}{5}$
- C. 1
 D. $\frac{2}{5}$
- E. $\frac{1}{3}$