Section 3: Knowledge Representation

- Basis of each AI concept or system!
- Representation without processing makes no sense (therefore we started with knowledge processing)
- Same knowledge can be represented very differently:
 - Spectrum: computer friendly human friendly
 - Levels of abstraction
 - Different views on problem
 - Different processing techniques

Note: transformations are possible!

CPSC 533 - Artificial Intelligence

Jörg Denzinger

Syntax and Semantics

- Similar to programming languages, in knowledge representation we have to look at syntax and semantics of a representation approach
- Syntax: What symbols, data types, etc. are allowed; sorts, number of arguments (multiplicity) and so on? What symbols have special meaning (and therefore have to be used with this meaning in mind)?
- Semantics: What do the symbols mean, what has knowledge processing to accomplish?
- we have to look at both

CPSC 533 - Artificial Intelligence

Jörg Denzinger

3.1 Logics

- Considered by humans as the knowledge representation (and processing) method of computers
- Clear mathematical foundation: syntax describes formulas; axioms what is considered true; inference rules how to get other true formulas
- Many different kinds of logics
- Meaning of a formula usually not easy to determine by humans (rather formal semantics)

CPSC 533 - Artificial Intelligence

Jörg Denzinger

General Definitions (I)

Syntax

Terms (without sorts): $\mathcal{F} = F$ (function symbols) \square V (function variables); \square \square multiplicity $\operatorname{Term}(\mathcal{F})$ recursively defined by

$$\begin{split} f \ \boxdot \ \mathcal{F} \ with \ \fbox{\square}(f) = n \ and \ t_1, ..., t_n \ \boxdot \ Term(\mathcal{F}) \ then \\ f(t_1, ..., t_n) \ \boxdot \ Term(\mathcal{F}) \end{split}$$

 $\begin{array}{ll} Atoms: \mathcal{P} = P \ (predicate \ symbols) \ | \ PI \ (interpreted \\ predicate \ symbols) \ | \ PV \ (predicate \ variables); \ | \ (A) \\ | \ | \ | \ multiplicity \end{array}$

 $Atom = Atom(\mathcal{P}, Term(\mathcal{T})) = \{A(t_1, ..., t_n) \mid A \sqsubseteq \mathcal{P}, \\ \sqsubseteq (A) = n, t_1, ..., t_n \sqsubseteq Term(\mathcal{T}) \}$

CPSC 533 - Artificial Intelligence

Jörg Denzinger

General Definitions (II)

Formulas: sets J (Junctors), Q (Quantifiers); $\square(\star)$ \square multiplicity

Form = Form(J,Q,Atom(P,Term(F))) recursively def.

- \bullet A \square Form, if A \square Atom
- $\star \square$ J, $\square(\star) = n$, $A_1, ..., A_n \square$ Form $\Rightarrow \star(A_1, ..., A_n) \square$ Form
- \square \square Q, A \square Form, $x_1, ..., x_n$ \square V \square PV \mathscr{F} $\square x_1, ..., x_n$.A \square Form

CPSC 533 - Artificial Intelligence

Jörg Denzinger

General Definitions (III)

Adding Meaning:

 $\label{eq:continuity} Interpretation: Given Form(J,Q,Atom(\mathcal{P},Term(\mathcal{F}))) \ , \ set \\ D \ of \ objects \ (domain), \ set \ W \ of \ truth \ values \\ Interpretation \ I$

- Assigns to each f ☐ F a function over D and to each A ☐ P a predicate over D in the truth values of W
- Assigns to each ★ □ J, □(★) = n, a function
 Wⁿ □ W

CPSC 533 - Artificial Intelligence

Jörg Denzinger

General Definitions (IV)

 Assigns to each □ □ Q a combination rule for truth values in W, such that I(□x₁,...,x_n.B) is determined by combining the truth values of all the formulas that are generated by substituting the variables x₁,...,x_n in B by arbitrary (but fitting) combinations of functions and/or predicates over

CPSC 533 - Artificial Intelligence

Jörg Denzinger

General Definitions (V)

All together:

Logic: Form, $\mathcal{I} = \{I_1, I_2, \ldots\}$ a set of interpretations with

- $I_i(\star) = I_i(\star)$ for all i,j and $\star \square J$
- \bullet $I_i(\square) = I_i(\square)$ for all i,j and $\square \square Q$
- \bullet $I_i(A) = I_j(A)$ for all i,j and $A \square PI$

☞ (Form, 1) logic

Note: there are many different logics!

CPSC 533 - Artificial Intelligence

Jörg Denzinger

Working with a Logic

Calculus:

(Form, 1) logic to W. Ax ☐ Form set of Axioms; R set of

(Ax,R) calculus to (Form, 1) and w \square W, if

B \square Form with I(B) = w for all I \square 1 can be transformed into subset of Ax by applying the rules of R

Note: this still allows for different search models using the calculus rules!

CPSC 533 - Artificial Intelligence

Jörg Denzinger

3.1.1 Propositional logic

General idea:

- Formulas describe combinations of statements (propositions) that are either truth or false and this way build statements themselves.
- No parameterized statements!
- Basis of the logics of gates, circuits and micro chips

CPSC 533 - Artificial Intelligence

Jörg Denzinger

Basic knowledge structures

- $Term(\mathcal{F}) = \emptyset$
- P = P and [(A) = 0 for all A [] P
 (elements of P often called propositional variables; very unfortunate naming!)
- $\blacksquare \ J = \{ [\ , [\ , \ \ , [\ , [\] \] \}, \ Q = \emptyset$
- W = {true, false}
- I = all possible interpretations (Interpretation here is an assignment of truth values to the propositions in P)

CPSC 533 - Artificial Intelligence

Jörg Denzinger

Semantics

- \blacksquare Look for tautologies, i.e. formulas that are interpreted to true by all I \square ${\it I}$
- I([p]) = true, if I(p) = false; false else
- \blacksquare I(p q) = true, if I(p) or I(q) = true; false else
- $I(p \square q) = \text{true}$, if I(p) and I(q) = true; false else
- $I(p \square q) = \text{false}$, if I(p) = true and I(q) = false; true else
- $I(p \square q) = true$, if I(p) = I(q); false else

CPSC 533 - Artificial Intelligence

Jörg Denzinger

How to get knowledge into the representation structure

- assign predicate symbols to simple positive statements
- Connect them to form complicated statements
- But be careful: "tertium non datur"
 - The car is green =: p
 - \bullet The car is red =: q
 - ullet We need in addition: $q \ \square \ \square p$

CPSC 533 - Artificial Intelligence

Jörg Denzinger

Discussion

- + decidable, but NP complete
- ☐ not very expressive
- ☐ knowledge bases get very large

CPSC 533 - Artificial Intelligence

Jörg Denzinger

And what about processing data?

- Calculus used in most (best) systems: Davis-Putnam (working on clauses; special case of Modelelimination)
- Each formula can be transformed into equivalent set of clauses (remember: formula with $J = \{[], \}$)
 - "defining" equations for □ and □
 - DeMorgan's laws to move negation inward
- For deciding tautologies, we use and-tree-based search
- For testing for satisfiability, we see clauses as constraints and use or-tree-based search

CPSC 533 - Artificial Intelligence

Jörg Denzinger

Example

- Represent the following statements in propositional logic:
 - A Ferrari is a red car.
 - Red cars are fast cars.
 - Bad cars are slow cars.
- Show that the following statement is a logical consequence of the statements above:
 - \bullet A Ferrari is a good car.

CPSC 533 - Artificial Intelligence

Jörg Denzinger