

SVMs with Slack (Not Linearly Separable)

Rishabh Iyer
University of Texas at Dallas

Dual SVM

$$\max_{\lambda \ge 0} -\frac{1}{2} \sum_{i} \sum_{j} \lambda_i \lambda_j y_i y_j x^{(i)^T} x^{(j)} + \sum_{i} \lambda_i$$

$$\sum_{i} \lambda_{i} y_{i} = 0$$

- The dual formulation only depends on inner products between the data points
 - Same thing is true if we use feature vectors instead

Dual SVM

$$\max_{\lambda \ge 0} -\frac{1}{2} \sum_{i} \sum_{j} \lambda_i \lambda_j y_i y_j \Phi(x^{(i)})^T \Phi(x^{(j)}) + \sum_{i} \lambda_i$$

$$\sum_{i} \lambda_{i} y_{i} = 0$$

- The dual formulation only depends on inner products between the data points
 - Same thing is true if we use feature vectors instead

The Kernel Trick

- For some feature vectors, we can compute the inner products quickly, even if the feature vectors are very large
- This is best illustrated by example

• Let
$$\phi(x_1, x_2) = \begin{bmatrix} x_1 x_2 \\ x_2 x_1 \\ x_1^2 \\ x_2^2 \end{bmatrix}$$

•
$$\phi(x_1, x_2)^T \phi(z_1, z_2) = x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= (x^T z)^2$$

The Kernel Trick

- For some feature vectors, we can compute the inner products quickly, even if the feature vectors are very large
- This is best illustrated by example

• Let
$$\phi(x_1, x_2) = \begin{bmatrix} x_1 x_2 \\ x_2 x_1 \\ x_1^2 \\ x_2^2 \end{bmatrix}$$

•
$$\phi(x_1, x_2)^T \phi(z_1, z_2) = x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2$$

$$= (x_1 z_1 + x_2 z_2)^2$$
Reduces to a dot product in the original space

The Kernel Trick

• The same idea can be applied for the feature vector ϕ of all polynomials of degree (exactly) d

•
$$\phi(x)^T \phi(z) = (x^T z)^d$$

- More generally, a kernel is a function $k(x,z) = \phi(x)^T \phi(z)$ for some feature map ϕ
- Rewrite the dual objective

$$\max_{\lambda \geq 0, \sum_{i} \lambda_{i} y_{i} = 0} -\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} k(x^{(i)}, x^{(j)}) + \sum_{i} \lambda_{i}$$

Examples of Kernels

Polynomial kernel of degree exactly d

•
$$k(x,z) = (x^T z)^d$$

• General polynomial kernel of degree d for some c

•
$$k(x,z) = (x^Tz + c)^d$$

• Gaussian kernel for some σ

•
$$k(x,z) = \exp\left(\frac{-\|x-z\|^2}{2\sigma^2}\right)$$

- The corresponding ϕ is infinite dimensional!
- So many more...

Gaussian Kernels

Consider the Gaussian kernel

$$\exp\left(\frac{-\|x-z\|^2}{2\sigma^2}\right) = \exp\left(\frac{-(x-z)^T(x-z)}{2\sigma^2}\right)$$

$$= \exp\left(\frac{-\|x\|^2 + 2x^Tz - \|z\|^2}{2\sigma^2}\right)$$

$$= \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right) \exp\left(-\frac{\|z\|^2}{2\sigma^2}\right) \exp\left(\frac{x^Tz}{\sigma^2}\right)$$

Use the Taylor expansion for exp()

$$\exp\left(\frac{x^T z}{\sigma^2}\right) = \sum_{n=0}^{\infty} \frac{\left(x^T z\right)^n}{\sigma^{2n} n!}$$

Gaussian Kernels

Consider the Gaussian kernel

$$\exp\left(\frac{-\|x-z\|^2}{2\sigma^2}\right) = \exp\left(\frac{-(x-z)^T(x-z)}{2\sigma^2}\right)$$

$$= \exp\left(\frac{-\|x\|^2 + 2x^Tz - \|z\|^2}{2\sigma^2}\right)$$

$$= \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right) \exp\left(-\frac{\|z\|^2}{2\sigma^2}\right) \exp\left(\frac{x^Tz}{\sigma^2}\right)$$

Use the Taylor expansion for exp()

$$\exp\left(\frac{x^T z}{\sigma^2}\right) = \sum_{n=0}^{\infty} \frac{\left(x^T z\right)^n}{\sigma^{2n} n!}$$

Polynomial kernels of every degree!

Kernels

- Bigger feature space increases the possibility of overfitting
 - Large margin solutions may still generalize reasonably well
- Alternative: add "penalties" to the objective to disincentivize complicated solutions

SVMs with Slack (Remove Linear Separability)

- Allow misclassification
 - Penalize misclassification linearly (just like in the perceptron algorithm)
 - Again, easier to work with than counting misclassifications
 - Objective stays convex
 - Will let us handle data that isn't linearly separable!
 - Idea: Take the constraints into the main objective
 - The objective function then becomes exactly like what we have seen in Perceptron/Linear Regression

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

Potentially allows some points to be misclassified/inside the margin

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + c \sum_{i} \xi_i$$

such that

Constant c determines degree to which slack is penalized

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

How does this objective change with c?

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- How does this objective change with c?
 - As $c \to \infty$, requires a perfect classifier
 - As $c \to 0$, allows arbitrary classifiers (i.e., ignores the data)

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

• How should we pick c?

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- How should we pick c?
 - Divide the data into three pieces training, testing, and validation
 - Use the validation set to tune the value of the hyperparameter c

Evaluation Methodology

- General learning strategy
 - Build a classifier using the training data
 - Select hyperparameters using validation data
 - Evaluate the chosen model with the selected hyperparameters on the test data

How can we tell if we overfit the training data?

ML in Practice

- Gather Data + Labels
- Select feature vectors
- Randomly split into three groups
 - Training set
 - Validation set
 - Test set
- Experimentation cycle
 - Select a "good" hypothesis from the hypothesis space
 - Tune hyper-parameters using validation set
 - Compute accuracy on test set (fraction of correctly classified instances)

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

• What is the optimal value of ξ for fixed w and b?

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- What is the optimal value of ξ for fixed w and b?
 - If $y_i(w^T x^{(i)} + b) \ge 1$, then $\xi_i = 0$
 - If $y_i(w^T x^{(i)} + b) < 1$, then $\xi_i = 1 y_i(w^T x^{(i)} + b)$

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- We can formulate this slightly differently
 - $\xi_i = \max\{0, 1 y_i(w^T x^{(i)} + b)\}$
 - Does this look familiar?
 - Hinge loss provides an upper bound on Hamming loss

Hinge Loss Formulation

• Obtain a new objective by substituting in for ξ

$$\min_{w,b} \frac{1}{2} ||w||^2 + c \sum_{i} \max\{0, 1 - y_i(w^T x^{(i)} + b)\}$$

Can minimize with gradient descent!

Hinge Loss Formulation

• Obtain a new objective by substituting in for ξ

$$\min_{w,b} \frac{1}{2} ||w||^2 + c \sum_{i} \max\{0, 1 - y_i(w^T x^{(i)} + b)\}$$

Penalty to prevent overfitting

Hinge loss

REGULARIZATION!!!!!

Until now, we have seen the following optimization problems:

$$\min_{w,b} \sum_{i} L(f(x^{(i)}, w, b), y_i)$$

- In the case of Linear regression, L was the squared loss
- In Perceptron, L was Perceptron Loss
- The regularized version of this is:

$$\min_{w,b} \frac{1}{2} ||w||^2 + c \sum_{i} L(f(x^{(i)}, w, b), y_i)$$

c is a hyper-parameter (again, to be tunes on validation set)

Perceptron vs Hinge vs Square vs Zero-One Loss

Imbalanced Data

 If the data is imbalanced (i.e., more positive examples than negative examples), may want to evenly distribute the error between the two classes

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + \frac{c}{N_+} \sum_{i:y_i=1}^{c} \xi_i + \frac{c}{N_-} \sum_{i:y_i=-1}^{c} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

Dual of Slack Formulation

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

Dual of Slack Formulation

$$L(w, b, \xi, \lambda, \mu) = \frac{1}{2} w^T w + c \sum_{i} \xi_i + \sum_{i} \lambda_i (1 - \xi_i - y_i (w^T x^{(i)} + b)) + \sum_{i} -\mu_i \xi_i$$

Convex in w, b, ξ , so take derivatives to form the dual

$$\frac{\partial L}{\partial w_k} = w_k + \sum_i -\lambda_i y_i x_k^{(i)} = 0$$

$$\frac{\partial L}{\partial b} = \sum_{i} -\lambda_{i} y_{i} = 0$$

$$\frac{\partial L}{\partial \xi_k} = c - \lambda_k - \mu_k = 0$$

Dual of Slack Formulation

$$\max_{\lambda \ge 0} -\frac{1}{2} \sum_{i} \sum_{j} \lambda_i \lambda_j y_i y_j x^{(i)^T} x^{(j)} + \sum_{i} \lambda_i$$

$$\sum_{i} \lambda_i y_i = 0$$

$$c \ge \lambda_i \ge 0$$
, for all i

Generalization

- We argued, intuitively, that SVMs generalize better than the perceptron algorithm
 - How can we make this precise?

Roadmap

- Where are we headed?
 - Other simple hypothesis spaces for supervised learning
 - k nearest neighbor
 - Decision trees
 - Learning theory
 - Generalization and PAC bounds
 - VC dimension
 - Bias/variance tradeoff