Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego

Laboratorium z przedmiotu: <u>Architektura i organizacja komputerów</u>

Sprawozdanie z ćwiczenia laboratoryjnego nr 4:

Mikroprogramy rozkazów logicznych i skoków

Spis treści

Treść zadania	2
Wydruk zawartości PM	3
Wydruk zawartości PAO	
Wydruk logu z wykonania ćwiczenia	18
Opis działania mikroprogramu	40
Rozkaz dla LR = 90 (rozkaz ADD 101 10)	40
Rozkaz dla LR = 91 (rozkaz LLA 5)	42
Rozkaz dla LR = 92 (rozkaz LPR(LAND) 010 2)	43
Rozkaz dla LR = 93 (rozkaz BAN 111 10)	45
Rozkaz dla LR = 90 (rozkaz ADD 101 10) – ponowne wykonanie	46

Treść zadania

Lab4_IY4

Dana jest zawartość początkowa rejestrów i pamięci operacyjnej PAO jak w poniższej tabeli:

Rejestry	
Α	-(32400+nr)
LR	80+nr
RI	10+nr
MQ	444
PAO	
Adres	Zawartość
0	LR
10+nr+nr	255
LR	ADD 101 nr
LR+1	LLA 5
LR+2	LPR(LAND) 010 2
LR+3	BAN 111 nr
LR+4	AAAAh
255	-(29700)

Pozostałe komórki PAO są wyzerowane.

Uwaga rozkaz w formacie zwykłym o kodzie OP=26 jest opisany w Ziarko jako LPR (stary kod z poprzedniej wersji programu), ale w LabZSK przy edycji komórki kod 26 jest opisany mnemonikiem LAND czyli logiczny AND.

Stopień trudności zadania:

- Na dostatecznie poprawnie pobrać i wykonać 3 rozkazy, począwszy od PAO[LR].
- Na dobrze poprawnie pobrać i wykonać 4 rozkazy, począwszy od PAO[LR].
- Na bardzo dobrze poprawnie pobrać i wykonać 5 rozkazów, począwszy od PAO[LR].

Pozostałe komórki PAO są wyzerowane.

W Pamięci Mikroprogramów mają być wpisane do wytworzenia sprawozdania (najlepiej przed zajęciami, ale niekoniecznie) mikroprogramy, realizujące wszystkie rozkazy z grup, **objętych tematyką poprzednich i dzisiejszych** zajęć (bez mnożenia i dzielenia oraz pozostałych z zestawu: MUL, DIV, SIO, LIO, BDN, CND, ENI, LDS),

Brak kompletnej PM dla bieżących grup rozkazów w sprawozdaniu **oznacza pół oceny w dół** - nie dotyczy: MUL, DIV, SIO, LIO, BDN, CND, ENI, LDS.

Uwaga: w trakcie tego ćwiczenia nie wolno edytować RAPS na zero po zakończeniu pobierania każdego rozkazu.

Niepoprawne (niezgodne z definicją z listy rozkazów) działanie któregokolwiek rozkazu z grupy na dst oznacza po wykonaniu innych wymagań ocenę ndst.

Wydruk zawartości PM

0	TestTINT	Brak przerwania
	NA48	
1	TestUNE	Zawsze pozytywny
	NA52	
2	TestUNE	Zawsze pozytywny
	NA54	
5	TestUNE	Zawsze pozytywny
	NA56	
6	TestUNE	Zawsze pozytywny
	NA58	
7	TestUNE	Zawsze pozytywny
	NA60	

8	TestUNB	Zawsze pozytywny
	NA62	
9	TestUNB	Zawsze pozytywny
	NA64	
10	Test UNB	Zawsze pozytywny
	NA66	. ,, ,
11	Test UNB	Zawsze pozytywny
	NA68	, , , , , ,
12	Test UNB	Zawsze pozytywny
	NA69	
	03	
13	Test UNB	Zawsze pozytywny
13	NA70	Zawsze pożytywny
16	Test LINR	Zawsze pozytywny
10	NA72	Zawsze pozytywny
17	Test LINR	Zawsze pozytywny
_,	NA74	Zawsze pożytywny
	NA/4	
10	Tost IINR	Zawsze pozytywny
10	NA76	Zawsze pozytywny
	IVA/0	
10	Took LIND	7
19		Zawsze pozytywny
	NA78	

20	Test	UNB	Zawsze pozytywny
	NA .	80	
21	Test	UNB	Zawsze pozytywny
	NA .	82	
22	Test	UNB	Zawsze pozytywny
	NA	86	
23	Test	UNB	Zawsze pozytywny
	NA	88	
24	Test	UNB	Zawsze pozytywny
	NA	90	
25	Test	UNB	Zawsze pozytywny
	NA		
	•		
26	Test	UNB	Zawsze pozytywny
	NA		
	-		
27	Test	UNB	Zawsze pozytywny
		100	
	-		
28	Test	UNB	Zawsze pozytywny
	NA	102	
	-		
29	Test	UNB	Zawsze pozytywny
		104	
	-		
33	Test	UNB	Zawsze pozytywny

34	TestUNB	Zawsze pozytywn
35	TestUNB NA112	Zawsze pozytywn
36	TestUNB	Zawsze pozytywn
37	TestUNB NA116	Zawsze pozytywn
38	TestUNB NA118	Zawsze pozytywn
39	TestUNB NA120	Zawsze pozytywn
40	TestUNB NA122	Zawsze pozytywn
41	TestUNB NA124	Zawsze pozytywn
42	TestUNB NA125	Zawsze pozytywn
43	TestUNB	Zawsze pozytywn

NA ___106

44	Test	UNB Zawsze pozytywny
	NA	128
48	S1	OLR LR -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IRR BUS -> RR
	C1	RRC Rozpoczęcie RRC
49	S1	ORR RR -> BUS
	D1	ILK BUS -> LK
	S2	IRAE SUMA -> RAE
	D2	NSI LR+1 -> LR
	C2	CEA Oblicz adres efektywny
	Test	TIND Adresowanie pośrednie
	NA	50
50	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
51	S2	OX X -> BUS
	D2	IBI BUS -> RAE
	C2	OPC OP albo AOP+32 -> RAPS
52	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S 3	ORBP RBP -> BUS

	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
53	S1	IALU A -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	ADD ALU = LALU + RALU
54	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
55	S1	IALU A -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	SUB ALU = LALU - RALU
56	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	OMQ MQ -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
57	C1	END Koniec mikroprogramu

58	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	OA A -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
59	C1	END Koniec mikroprogramu
60	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORI RI -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
61	C1	END Koniec mikroprogramu
62	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IA BUS -> A
	C1	RRC Rozpoczęcie RRC
63	C1	END Koniec mikroprogramu
64	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IRI BUS -> RI
	C1	RRC Rozpoczęcie RRC
65	C1	END Koniec mikroprogramu

66	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	OLR LR -> BUS
	D3	IRBP BUS -> RBP
	C1	CWC Rozpoczęcie CWC
67	C1	END Koniec mikroprogramu
68	S2	ORI RI -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
69	S2	OMQ MQ -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
70	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
71	S1	IXRE RI -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IRI BUS -> RI
	C1	END Koniec mikroprogramu
	ALU	ADD ALU = LALU + RALU

72 S3 ___ORAE RAE -> BUS

D3 ___ILR BUS -> LR C1 ___END Koniec mikroprogramu 74 Test ____TAO OFF = 0 NA ___110 75 Test ___UNB Zawsze pozytywny NA ___16 76 Test ___TXP RI <= 0 NA ___110 77 Test ___UNB Zawsze pozytywny NA ___16 78 Test ___TXZ BXZ i RI != 0 || TLD i RI = 0 NA ___16 79 C1 ___END Koniec mikroprogramu 80 Test ___TXS RI >= 0 NA ___110 81 Test ___UNB Zawsze pozytywny NA ___16 82 Test ___TXP RI <= 0 NA ___110 83 C2 ___DRI RI = RI-1

Test ___UNB Zawsze pozytywny

NA ___16

86 Test ___TAP A <= 0

NA ___110

87 Test ___UNB Zawsze pozytywny

NA ___16

88 Test ____TAZ A = 0

NA ___16

89 C1 ___END Koniec mikroprogramu

90 Test ____TAS A >= 0

NA ___110

91 Test ___UNB Zawsze pozytywny

NA ___16

94 S1 ___ORAE RAE -> BUS

D1 ___IRAP BUS -> RAP

S3 ___ORBP RBP -> BUS

D3 ___IX BUS -> X

C1 ____RRC Rozpoczęcie RRC

95 S1 ___IALU A -> LALU

D1 ___OXE X -> RALU

S2 ___OBE ALU -> BUS

D2 ___IA BUS -> A

C1 ___END Koniec mikroprogramu

ALU ___OR ALU = LALU OR RALU

96	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP
	S3	ORBP RBP -> BUS
	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
97	S1	IALU A -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	AND ALU = LALU AND RALU
98	S3	OLR LR -> BUS
	D3	IX BUS -> X
99	S1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	ILR BUS -> LR
	C1	END Koniec mikroprogramu
	ALU	DECR ALU = RALU - 1
100	S1	IALU A -> LALU
	S2	OBE ALU -> BUS
	D2	IA BUS -> A
	C1	END Koniec mikroprogramu
	ALU	NOTL ALU = NOT LALU
102	S1	ORAE RAE -> BUS
	D1	IRAP BUS -> RAP

S3ORBP RBP -> BUS
D3IX BUS -> X
C1RRC Rozpoczęcie RRC
103 S1IALU A -> LALU
D1OXE X -> RALU
S2OBE ALU -> BUS
D2IA BUS -> A
C1END Koniec mikroprogramu
ALUEOR ALU = LALU XOR RALU
104 S1ORAE RAE -> BUS
D1IRAP BUS -> RAP
S3OLR LR -> BUS
D3IRBP BUS -> RBP
C1CWC Rozpoczęcie CWC
105 S2ORAE RAE -> BUS
D2ILR BUS -> LR
D3NSI LR+1 -> LR
C1END Koniec mikroprogramu
106 S1IALU A -> LALU
S2OBE ALU -> BUS
D2IA BUS -> A
C1END Koniec mikroprogramu
ALUCMA ALU = (NOT LALU)+1
108 D2ALA arytmetyczne A w lewo
C1SHT Operacja przesunięcia
C2DLK LK = [LK]-1

```
Test ___TLK SHT, LK=0 || !SHT, LK!=0
   NA ___110
109 Test ___UNB Zawsze pozytywny
   NA ___108
110 C1 ____END Koniec mikroprogramu
112 D2 ___ARA arytmetyczne A w prawo
   C1 ___SHT Operacja przesunięcia
   C2 ___DLK LK = [LK]-1
   Test ___TLK SHT, LK=0 || !SHT, LK!=0
   NA ___110
113 Test ___UNB Zawsze pozytywny
   NA ___112
114 D2 ___LRQ logiczne A i MQ w prawo
   C1 ___SHT Operacja przesunięcia
   C2 ___DLK LK = [LK]-1
   NA ___110
115 Test ___UNB Zawsze pozytywny
   NA ___114
116 D2 ___LLQ logiczne A i MQ w lewo
   C1 ___SHT Operacja przesunięcia
   C2 ___DLK LK = [LK]-1
   Test ____TLK SHT, LK=0 || !SHT, LK!=0
   NA ___110
```

117 TestUNB Zawsze pozytywny
NA116
118 D2LLA logiczne A w lewo
C1SHT Operacja przesunięcia
C2DLK LK = [LK]-1
TestTLK SHT, LK=0 !SHT, LK!=0
NA110
119 TestUNB Zawsze pozytywny
NA118
120 D2LRA logiczne A w prawo
C1SHT Operacja przesunięcia
C2DLK LK = [LK]-1
TestTLK SHT, LK=0 !SHT, LK!=0
NA110
121 TestUNB Zawsze pozytywny
NA120
122 D2LCA cykliczne A w lewo
C1SHT Operacja przesunięcia
C2DLK LK = [LK]-1
TestTLK SHT, LK=0 !SHT, LK!=0
NA110
123 TestUNB Zawsze pozytywny
NA 122

124	S2	IRAE SUMA -> RAE
	S3	ORAE RAE -> BUS
	D3	IA BUS -> A
	C1	END Koniec mikroprogramu
125	S2	IRAE SUMA -> RAE
	S3	ORAE RAE -> BUS
	D3	IRI BUS -> RI
	C1	END Koniec mikroprogramu
126	S2	IRAE SUMA -> RAE
	S3	ORAE RAE -> BUS
	D3	IX BUS -> X
127	S1	IXRE RI -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IRI BUS -> RI
	C1	END Koniec mikroprogramu
	ALU	ADD ALU = LALU + RALU
128	S2	IRAE SUMA -> RAE
	S3	ORAE RAE -> BUS
	D3	IX BUS -> X
129	S1	IXRE RI -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IRI BUS -> RI
	C1	END Koniec mikroprogramu
	ALU	SUB ALU = LALU – RALU

Wydruk zawartości PAO

0	000000001011010b	005Ah	90		
30	000000011111111b	00FFh	255		
90	0000110100001010b	0D0Ah	OP=1	XSI=101	DA=10
91	0000001100000101b	0305h	AOP=6	N=	:5
92	1101001000000010b	D202h	OP=26	XSI=010	DA=2
93	1100011100001010b	C70Ah	OP=24	XSI=111	DA=10
94	1010101010101010b	AAAAh	-21846		
255	1000101111111100b	8BFCh	-29700		

Wydruk logu z wykonania ćwiczenia

Start symulatora 17.11.2021 14:19:46

Stacja "DESKTOP-TA2A43K"

Zalogowano jako: "Radosław"

Wersja aplikacji: 1.2.3.0

Dostępne interfejsy sieciowe: 192.168.1.72

192.168.56.1

0

RBP = 0h

```
ALU = 0h
```

BUS =
$$0h$$
 0

$$RR = 0h$$
 0

$$LR = 5Ah$$
 90

$$RAPS = 0h 0$$

$$RAE = 0h 0$$

$$L = 0h$$

$$R = 0h$$

$$SUMA = 0h 0$$

$$MAV = 1$$
, $IA = 0$, $INT = 0$

$$ZNAK = 0$$
, $XRO = 0$, $OFF = 0$

MAKRO

Takt0: RBPS=000000020030h

Takt7:

$$INT = 0$$

TEST | TINT : Brak przerwania(INT ?= 0)

$$RAPS = 48 / 30h$$

MAKRO

Takt0: RBPS=5006C4000000h

Takt1:

S1 | OLR : LR -> BUS

BUS = 90 / 5Ah

D1 | IRAP : BUS -> RAP

RAP = 90 / 5Ah

C1 | RRC : Rozpoczęcie RRC

```
RBP = 3338 / DOAh
Takt7:
  S3 | ORBP : RBP -> BUS
     BUS = 3338 / DOAh
   D3 | IRR : BUS -> RR
      RR = 3338 / D0Ah
     RAPS = 49 / 31h
MAKRO
Takt0: RBPS=68C801830032h
Takt1:
  S1 | ORR: RR-> BUS
     BUS = 3338 / D0Ah
   D1 | ILK : BUS -> LK
      LK = 10 / Ah
   C2 | CEA: Oblicz adres efektywny
      L = 10 / Ah
      R = 20 / 14h
     SUMA = 30 / 1Eh
     XRO = 0
Takt6:
  S2 | IRAE : SUMA -> RAE
     RAE = 30 / 1Eh
   D2 | NSI: LR+1 -> LR
      LR = 91 / 5Bh
Takt7:
 TEST | TIND : Adresowanie pośrednie
```

RAPS = 50 / 32h

MAKRO

```
Takt0: RBPS=900624000000h
Takt1:
  S1 | ORAE : RAE -> BUS
    BUS = 30 / 1Eh
  D1 | IRAP : BUS -> RAP
    RAP = 30 / 1Eh
  C1 | RRC : Rozpoczęcie RRC
    RBP = 255 / FFh
Takt7:
  S3 | ORBP: RBP -> BUS
    BUS = 255 / FFh
  D3 | IX : BUS -> X
     X = 255 / FFh
    RAPS = 51/33h
MAKRO
Takt0: RBPS=03A801600000h
Takt6:
  S2 | OX : X -> BUS
    BUS = 255 / FFh
  D2 | IBI: BUS -> RAE
    RAE = 255 / FFh
Takt7:
  C2 | OPC: OP albo AOP+32 -> RAPS
    RAPS = 1 / 1h
MAKRO
```

Takt0: RBPS=00000010034h

```
Takt7:
 TEST | UNB : Zawsze pozytywny
     RAPS = 52 / 34h
MAKRO
========52========
Takt0: RBPS=900624000000h
Takt1:
  S1 | ORAE: RAE -> BUS
     BUS = 255 / FFh
  D1 | IRAP: BUS -> RAP
     RAP = 255 / FFh
  C1 | RRC : Rozpoczęcie RRC
     RBP = -29700 / 8BFCh
Takt7:
  S3 | ORBP : RBP -> BUS
     BUS = -29700 / 8BFCh
  D3 | IX : BUS -> X
      X = -29700 / 8BFCh
     RAPS = 53 / 35h
MAKRO
Takt0: RBPS=BC300E000100h
Takt1:
  S1 | IALU : A -> LALU
     LALU = -32410 / 8166h
  D1 | OXE: X -> RALU
     RALU = -29700 / 8BFCh
```

Takt2:

ALU | ADD : ALU = LALU + RALU

```
ALU = 3426 / D62h
            ZNAK = 0, OFF = 1
Takt6:
  S2 | OBE : ALU -> BUS
     BUS = 3426 / D62h
  D2 | IA: BUS -> A
      A = 3426 / D62h
Takt7:
  C1 | END: (Cykl 8) Koniec mikroprogramu (15:00.06)
    RAPS = 0 / 0h
MAKRO
Takt0: RBPS=000000020030h
Takt7:
     INT = 0
 TEST | TINT : Brak przerwania(INT ?= 0)
    RAPS = 48 / 30h
MAKRO
Takt0: RBPS=5006C4000000h
Takt1:
  S1 | OLR: LR -> BUS
     BUS = 91 / 5Bh
  D1 | IRAP : BUS -> RAP
     RAP = 91 / 5Bh
  C1 | RRC : Rozpoczęcie RRC
     RBP = 773 / 305h
Takt7:
```

S3 | ORBP: RBP -> BUS

```
BUS = 773 / 305h
  D3 | IRR: BUS->RR
     RR = 773 / 305h
     RAPS = 49 / 31h
MAKRO
=========49==========
Takt0: RBPS=68C801830032h
Takt1:
  S1 | ORR: RR-> BUS
     BUS = 773 / 305h
  D1 | ILK : BUS -> LK
     LK = 5 / 5h
  C2 | CEA: Oblicz adres efektywny
      L = 5 / 5h
      R = 0 / 0h
     SUMA = 5 / 5h
Takt6:
  S2 | IRAE : SUMA -> RAE
     RAE = 5 / 5h
  D2 | NSI: LR+1 -> LR
     LR = 92 / 5Ch
Takt7:
 TEST | TIND : Adresowanie pośrednie
     RAPS = 50 / 32h
MAKRO
Takt0: RBPS=900624000000h
Takt1:
```

S1 | ORAE: RAE -> BUS

```
BUS = 5 / 5h

D1 | IRAP : BUS -> RAP

RAP = 5 / 5h

C1 | RRC : Rozpoczęcie RRC

RBP = 0 / 0h
```

Takt7:

S3 | ORBP: RBP -> BUS

BUS = 0 / 0h

D3 | IX : BUS -> X

X = 0 / 0h

RAPS = 51/33h

MAKRO

Takt0: RBPS=03A801600000h

Takt6:

S2 | OX: X -> BUS

BUS = 0 / 0h

D2 | IBI: BUS -> RAE

RAE = 0 / 0h

Takt7:

C2 | OPC: OP albo AOP+32 -> RAPS

RAPS = 38 / 26h

MAKRO

Takt0: RBPS=00000010076h

Takt7:

TEST | UNB : Zawsze pozytywny

RAPS = 118 / 76h

MAKRO

========118=========

Takt0: RBPS=00800A27006Eh

Takt1:

D2 | LLA : logiczne A w lewo

C1 | SHT: Operacja przesunięcia

A = 6852 / 1AC4h

Takt6:

C2 | DLK : LK = [LK]-1

LK = 4/4h

Takt7:

TEST | TLK: SHT, LK=0 | | !SHT, LK!=0

RAPS = 119 / 77h

MAKRO

========119========

Takt0: RBPS=00000010076h

Takt7:

TEST | UNB : Zawsze pozytywny

RAPS = 118 / 76h

MAKRO

=========118========

Takt0: RBPS=00800A27006Eh

Takt1:

D2 | LLA : logiczne A w lewo

C1 | SHT : Operacja przesunięcia

A = 13704 / 3588h

Takt6:

C2 | DLK : LK = [LK]-1

LK = 3/3h

Takt/:
TEST TLK: SHT, LK=0 !SHT, LK!=0
RAPS = 119 / 77h
MAKRO
======119=======
Takt0: RBPS=00000010076h
Takt7:
TEST UNB : Zawsze pozytywny
RAPS = 118 / 76h
MAKRO
======118=======
Takt0: RBPS=00800A27006Eh
Takt1:
D2 LLA : logiczne A w lewo
C1 SHT : Operacja przesunięcia
A = 27408 / 6B10h
Takt6:
C2 DLK : LK = [LK]-1
LK = 2 / 2h
Takt7:
TEST TLK: SHT, LK=0 !SHT, LK!=0
RAPS = 119 / 77h
MAKRO
======119=======
Takt0: RBPS=00000010076h
Takt7:
TEST UNB : Zawsze pozytywny

```
RAPS = 118 / 76h
MAKRO
Takt0: RBPS=00800A27006Eh
Takt1:
  D2 | LLA : logiczne A w lewo
  C1 | SHT: Operacja przesunięcia
     A = -10720 / D620h
Takt6:
  C2 | DLK : LK = [LK]-1
     LK = 1/1h
Takt7:
 TEST | TLK: SHT, LK=0 | | !SHT, LK!=0
    RAPS = 119 / 77h
MAKRO
Takt0: RBPS=00000010076h
Takt7:
 TEST | UNB : Zawsze pozytywny
    RAPS = 118 / 76h
MAKRO
========118========
Takt0: RBPS=00800A27006Eh
Takt1:
  D2 | LLA : logiczne A w lewo
  C1 | SHT: Operacja przesunięcia
```

C2 | DLK : LK = [LK]-1

Takt6:

A = -21440 / AC40h

```
LK = 0 / 0h
Takt7:
 TEST | TLK : SHT, LK=0 || !SHT, LK!=0
    RAPS = 110 / 6Eh
MAKRO
=========110=========
Takt0: RBPS=00000E000000h
Takt7:
  C1 | END: (Cykl 24) Koniec mikroprogramu (15:09.26)
    RAPS = 0 / 0h
MAKRO
Takt0: RBPS=000000020030h
Takt7:
     INT = 0
 TEST | TINT : Brak przerwania(INT ?= 0)
    RAPS = 48 / 30h
MAKRO
Takt0: RBPS=5006C4000000h
Takt1:
  S1 | OLR: LR -> BUS
     BUS = 92 / 5Ch
  D1 | IRAP : BUS -> RAP
```

Takt7:

RAP = 92 / 5Ch

C1 | RRC : Rozpoczęcie RRC

RBP = -11774 / D202h

```
S3 | ORBP : RBP -> BUS
      BUS = -11774 / D202h
   D3 | IRR : BUS -> RR
      RR = -11774 / D202h
     RAPS = 49 / 31h
MAKRO
=========49==========
Takt0: RBPS=68C801830032h
Takt1:
   S1 | ORR: RR-> BUS
      BUS = -11774 / D202h
   D1 | ILK : BUS -> LK
      LK = 2/2h
   C2 | CEA : Oblicz adres efektywny
     B_{4}(1): L = 92 / 5Ch (Poprawna L = 2 / 2h)
       R = 92 / 5Ch
     SUMA = 94 / 5Eh
      XRO = 0
Takt6:
   S2 | IRAE : SUMA -> RAE
      RAE = 94 / 5Eh
   D2 | NSI: LR+1 -> LR
      LR = 93 / 5Dh
Takt7:
 TEST | TIND : Adresowanie pośrednie
     RAPS = 26 / 1Ah
MAKRO
```

Takt0: RBPS=00000010060h Takt7: TEST | UNB : Zawsze pozytywny RAPS = 96 / 60h **MAKRO** Takt0: RBPS=900624000000h Takt1: S1 | ORAE: RAE -> BUS BUS = 94 / 5Eh D1 | IRAP : BUS -> RAP RAP = 94 / 5EhC1 | RRC : Rozpoczęcie RRC RBP = -21846 / AAAAhTakt7: S3 | ORBP : RBP -> BUS BUS = -21846 / AAAAh D3 | IX : BUS -> X X = -21846 / AAAAh RAPS = 97 / 61hMAKRO Takt0: RBPS=BC300E000600h Takt1: S1 | IALU : A -> LALU LALU = -21440 / AC40h D1 | OXE: X -> RALU RALU = -21846 / AAAAh

Takt2:

```
ALU | AND : ALU = LALU AND RALU
     ALU = -22528 / A800h
            ZNAK = 1, OFF = 0
Takt6:
  S2 | OBE : ALU -> BUS
     BUS = -22528 / A800h
  D2 | IA : BUS -> A
      A = -22528 / A800h
Takt7:
  C1 | END: (Cykl 30) Koniec mikroprogramu (15:13.30)
     RAPS = 0 / 0h
MAKRO
Takt0: RBPS=000000020030h
Takt7:
     INT = 0
 TEST | TINT : Brak przerwania(INT ?= 0)
     RAPS = 48 / 30h
MAKRO
Takt0: RBPS=5006C4000000h
Takt1:
  S1 | OLR: LR -> BUS
     BUS = 93 / 5Dh
  D1 | IRAP : BUS -> RAP
     RAP = 93 / 5Dh
  C1 | RRC : Rozpoczęcie RRC
     RBP = -14582 / C70Ah
```

Takt7:

```
S3 | ORBP: RBP -> BUS
     BUS = -14582 / C70Ah
  D3 | IRR : BUS -> RR
     RR = -14582 / C70Ah
     RAPS = 49 / 31h
MAKRO
Takt0: RBPS=68C801830032h
Takt1:
  S1 | ORR: RR-> BUS
     BUS = -14582 / C70Ah
  D1 | ILK : BUS -> LK
     LK = 10 / Ah
  C2 | CEA: Oblicz adres efektywny
      L = 0 / 0h
      R = 0 / 0h
    SUMA = 0 / 0h
     XRO = 1
Takt6:
  S2 | IRAE : SUMA -> RAE
     RAE = 0 / 0h
  D2 | NSI : LR+1 -> LR
     LR = 94 / 5Eh
Takt7:
 TEST | TIND : Adresowanie pośrednie
    RAPS = 50 / 32h
MAKRO
```

Takt0: RBPS=900624000000h

```
Takt1:
  S1 | ORAE : RAE -> BUS
     BUS = 0 / 0h
  D1 | IRAP : BUS -> RAP
     RAP = 0 / 0h
  C1 | RRC : Rozpoczęcie RRC
     RBP = 90 / 5Ah
Takt7:
  S3 | ORBP: RBP -> BUS
     BUS = 90 / 5Ah
  D3 | IX : BUS -> X
     X = 90 / 5Ah
    RAPS = 51/33h
MAKRO
Takt0: RBPS=03A801600000h
Takt6:
  S2 | OX : X -> BUS
     BUS = 90 / 5Ah
  D2 | IBI: BUS -> RAE
     RAE = 90 / 5Ah
Takt7:
  C2 | OPC: OP albo AOP+32 -> RAPS
    RAPS = 24 / 18h
MAKRO
Takt0: RBPS=0000001005Ah
Takt7:
```

TEST | UNB: Zawsze pozytywny

RAPS = 90 / 5Ah
MAKRO
======90=======
Takt0: RBPS=00000004006Eh
Takt7:
TEST TAS : A >= 0
RAPS = 91 / 5Bh
MAKRO
======91=======
Takt0: RBPS=00000010010h
Takt7:
TEST UNB : Zawsze pozytywny
RAPS = 16 / 10h
MAKRO
MAKRO ====================================
=======================================
======================================
======================================
======================================
======================================
======================================
======================================
======================================
======================================
======================================
======================================

C1 | END: (Cykl 40) Koniec mikroprogramu (15:17.00)

RAPS = 0 / 0h**MAKRO** Takt0: RBPS=000000020030h Takt7: INT = 0TEST | TINT : Brak przerwania(INT ?= 0) RAPS = 48 / 30h**MAKRO** =========48======== Takt0: RBPS=5006C4000000h Takt1: S1 | OLR : LR -> BUS BUS = 90 / 5Ah D1 | IRAP : BUS -> RAP RAP = 90 / 5AhC1 | RRC : Rozpoczęcie RRC RBP = 3338 / DOAh Takt7: S3 | ORBP : RBP -> BUS BUS = 3338 / D0Ah D3 | IRR: BUS -> RR RR = 3338 / D0Ah RAPS = 49 / 31h**MAKRO**

Takt0: RBPS=68C801830032h

=========49==========

```
Takt1:
   S1 | ORR: RR-> BUS
      BUS = 3338 / D0Ah
   D1 | ILK : BUS -> LK
      LK = 10 / Ah
   C2 | CEA: Oblicz adres efektywny
      L = 10 / Ah
      R = 20 / 14h
     SUMA = 30 / 1Eh
      XRO = 0
Takt6:
   S2 | IRAE : SUMA -> RAE
      RAE = 30 / 1Eh
   D2 | NSI : LR+1 -> LR
      LR = 91 / 5Bh
Takt7:
 TEST | TIND : Adresowanie pośrednie
     RAPS = 50 / 32h
MAKRO
========50========
Takt0: RBPS=900624000000h
Takt1:
   S1 | ORAE: RAE -> BUS
      BUS = 30 / 1Eh
   D1 | IRAP : BUS -> RAP
      RAP = 30 / 1Eh
   C1 | RRC : Rozpoczęcie RRC
```

Takt7:

S3 | ORBP: RBP -> BUS

RBP = 255 / FFh

```
BUS = 255 / FFh
  D3 | IX : BUS -> X
     X = 255 / FFh
    RAPS = 51/33h
MAKRO
========51========
Takt0: RBPS=03A801600000h
Takt6:
  S2 | OX: X -> BUS
     BUS = 255 / FFh
  D2 | IBI: BUS -> RAE
     RAE = 255 / FFh
Takt7:
  C2 | OPC: OP albo AOP+32 -> RAPS
    RAPS = 1 / 1h
MAKRO
Takt0: RBPS=00000010034h
Takt7:
 TEST | UNB : Zawsze pozytywny
    RAPS = 52 / 34h
MAKRO
========52========
Takt0: RBPS=900624000000h
Takt1:
  S1 | ORAE : RAE -> BUS
     BUS = 255 / FFh
```

D1 | IRAP: BUS-> RAP

```
RAP = 255 / FFh
```

C1 | RRC : Rozpoczęcie RRC

RBP = -29700 / 8BFCh

Takt7:

S3 | ORBP : RBP -> BUS

BUS = -29700 / 8BFCh

D3 | IX : BUS -> X

X = -29700 / 8BFCh

RAPS = 53 / 35h

MAKRO

Takt0: RBPS=BC300E000100h

Takt1:

S1 | IALU : A -> LALU

LALU = -22528 / A800h

D1 | OXE : X -> RALU

RALU = -29700 / 8BFCh

Takt2:

ALU | ADD : ALU = LALU + RALU

ALU = 13308 / 33FCh

ZNAK = 0, OFF = 1

Takt6:

S2 | OBE: ALU -> BUS

BUS = 13308 / 33FCh

D2 | IA : BUS -> A

A = 13308 / 33FCh

Takt7:

C1 | END: (Cykl 48) Koniec mikroprogramu (15:20.44)

RAPS = 0 / 0h

=====Stop symulacji=====

Ocena: 5 Błędy: 1

? •

Opis działania mikroprogramu

Rejestry wykorzystywane w ćwiczeniu (ich mnemoniki wraz z nazwą):

- A Akumulator (przechowuje wyniki operacji)
- LK Licznik Kroków
- LR Licznik Rozkazów
- MQ Rejestr Iloczynu/Ilorazu
- RAE Rejestr Adresu Efektywnego
- RAP Rejestr Adresowy pamięci
- RAPS Rejestr Adresowy Pamięci Stałej
- RBP Rejestr Buforowy Pamięci (na podstawie indeksu z RAP)
- RI Rejestr Indeksowy (wartość modyfikująca adres rozkazu)
- RR Rejestr rozkazów
- SUMA Rejestr sumy adresowej (suma wartości rejestrów L oraz R)
- X Rejestr danych (pomocniczy)

Kolejne działania przy wykonywaniu rozkazu będą opisane w takiej konstrukcji:

Nr. [Sygnał Sterujący]: [Definicja] – [działanie lub po prostu przekazywana wartość]

Do każdego rozkazu załączona jest graficzna prezentacja algorytmu w postaci schematu blokowego.

Rozkaz dla LR = 90 (rozkaz ADD 101 10)

Wartości po pobraniu rozkazu:

- a) LR = 91 / 5Bh adres komórki PAO zawierający adres następnego rozkazu.
- b) RAPS = 52 / 34h adres pierwszego wiersza PM zawierającego mikrorozkazy wykonania aktualnego rozkazu.
- c) RAE = 255 / FFh pobrana metodą pośrednią (rozkaz zwykły, I=1), wartość z komórki pamięci o indeksie równym obliczonego adresu efektywnego.
- d) LK = 10 / Ah liczba kroków wyznaczona na podstawie 7 najmniej znaczących bitów wartości komórki PAO o indeksie równym aktualnego licznika rozkazów
- e) XRO = 0 brak ustawionej flagi

Schemat blokowy:

Opis rozkazu ADD 101 10 (Dodawanie):

Rozkaz ADD dodaje do wartości rejestru A wartość komórki pamięci o indeksie równym wartości rejestru RAP.

- 1. TEST | UNB: Zawsze pozytywny nastąpiło przejście do wiersza PM z wykonaniem rozkazu
- 2. Wartość RAE wynosi 255 / FFh, wartość A wynosi -32410 / 8166h
- 3. ORAE: RAE -> BUS 255 / FFh
- 4. IRAP: BUS -> RAP 255 / FFh
- 5. RRC : Rozpoczęcie RRC przekazanie do RBP wartości (-29700 / 8BFCh) na podstawie indeksu z RAP (255 / FFh)
- 6. ORBP: RBP -> BUS (-29700 / 8BFCh)
- 7. IX: BUS -> X (-29700 / 8BFCh)
- 8. IALU: A -> LALU (-32410 / 8166h)
- 9. OXE: X -> RALU (-29700 / 8BFCh)

- 10. ADD : ALU = LALU + RALU wpisuje do rejestru ALU wartość sumy wartości w rejestrach LALU oraz RALU. LALU = -32410 / 8166h, a RALU = -29700 / 8BFCh. W związku z tym ALU = 3426 / D62h. Wynik jest dodatni, ZNAK = 0. Argumenty dodawania są ujemnego znaku, a wynik jest dodatni, dlatego OFF = 1.
- 11. OBE: ALU -> BUS 3426 / D62h
- 12. IA: BUS -> A 3426 / D62h
- 13. Wartość A wynosi 3426 / D62h
- 14. END: Koniec mikroprogramu przejście do zerowego wiersza PM

Rozkaz dla LR = 91 (rozkaz LLA 5)

Wartości po pobraniu rozkazu:

- a) LR = 92 / 5Ch adres komórki PAO zawierający adres następnego rozkazu.
- b) RAPS = 118 / 76h adres pierwszego wiersza PM zawierającego mikrorozkazy wykonania aktualnego rozkazu.
- c) RAE = 0 / 0h pobrana metodą pośrednią (rozkaz rozszerzony), wartość z komórki pamięci o indeksie równym obliczonego adresu efektywnego.
- d) LK = 5 / 5h liczba kroków wyznaczona na podstawie 7 najmniej znaczących bitów wartości komórki PAO o indeksie równym aktualnego licznika rozkazów
- e) XRO = 0 brak ustawionej flagi

Schemat blokowy:

Opis rozkazu LLA 5 (Przesunięcie logiczne w lewo A):

Rozkaz LLA przesuwa wszystkie cyfry zapisu binarnego liczby A w lewo o N miejsc (N najbardziej znaczących znaków pierwotnej liczby jest tracona, N znaków na początku liczby to zera).

- 1. TEST | UNB: Zawsze pozytywny nastąpiło przejście do wiersza PM z wykonaniem rozkazu
- 2. Wartość A wynosi 6852 / 1AC4h, wartość LK wynosi 5 / 5h
- 3. LLA: logiczne A w lewo
 - a. SHT: Operacja przesunięcia:
 - 1) A = 3426 / D62h = 0000 1101 0110 0010 binarnie
 - 2) Nowe A: 0 0001 1010 1100 0100 "0" jest tracone, "0" jest dostawiane
 - 3) A = 0001 1010 1100 0100 binarnie = 6852 / 1AC4h
 - b. DLK: LK = [LK]-1 4/4h
- 4. TLK: SHT, LK=0 | SHT, LK!=0 ponieważ LK jest różne od zera, wracamy do 119 wiersza PM, a następnie z powrotem do 118 wiersza PM, żeby ponownie wykonać operacje przesunięcia.
- 5. LLA: logiczne A w lewo
 - a. SHT: Operacja przesunięcia:
 - 1) A = 6852 / 1AC4h = 0001 1010 1100 0100 binarnie
 - 2) Nowe A: 0 0011 0101 1000 1000 "0" jest tracone, "0" jest dostawiane
 - 3) A = 0011 0101 1000 1000 binarnie = 13704 / 3588h
 - b. DLK: LK = [LK]-1 3 / 3h
- 7. LLA: logiczne A w lewo
 - a. SHT: Operacja przesunięcia:
 - 1) A = 13704 / 3588h = 0011 0101 1000 1000 binarnie
 - 2) Nowe A: 0 0110 1011 0001 0000 "0" jest tracone, "0" jest dostawiane
 - 3) A = 0110 1011 0001 0000 binarnie = 27408 / 6B10h
 - b. DLK: LK = [LK]-1 2 / 2h
- 9. LLA: logiczne A w lewo
 - a. SHT: Operacja przesunięcia:
 - 1) A = 27408 / 6B10h = 0110 1011 0001 0000 binarnie
 - 2) Nowe A: 0 1101 0110 0010 0000 "0" jest tracone, "0" jest dostawiane
 - 3) A = 0110 1011 0001 0000 binarnie = -10720 / D620h (overflow)
 - b. DLK: LK = [LK]-1 1 / 1h
- 11. LLA: logiczne A w lewo
 - a. SHT: Operacja przesunięcia:
 - 1) A = -10720 / D620h = 0110 1011 0001 0000 binarnie
 - 2) Nowe A: 0 1101 0110 0010 0000 "0" jest tracone, "0" jest dostawiane
 - 3) A = 1101 0110 0010 0000 binarnie = -21440 / AC40h
 - b. DLK: LK = [LK]-1 0 / 0h
- 13. Wartość A wynosi -21440 / AC40h
- 14. END: Koniec mikroprogramu przejście do zerowego wiersza PM

Rozkaz dla LR = 92 (rozkaz LPR(LAND) 010 2)

Wartości po pobraniu rozkazu:

- a) LR = 93 / 5Dh adres komórki PAO zawierający adres następnego rozkazu.
- b) RAPS = 96 / 60h adres pierwszego wiersza PM zawierającego mikrorozkazy wykonania aktualnego rozkazu.
- c) RAE = 94 / 5Eh pobrana metodą bezpośrednią (rozkaz zwykły, I=0), wartość obliczonego adresu efektywnego.
- d) LK = 2 / 2h liczba kroków wyznaczona na podstawie 7 najmniej znaczących bitów wartości komórki PAO o indeksie równym aktualnego licznika rozkazów
- e) XRO = 0 brak ustawionej flagi

Schemat blokowy:

Opis rozkazu LAND 010 2 (Iloczyn logiczny A i komórki):

Rozkaz LAND zwraca na rejestr A iloczyn logiczny rejestru A i danej komórki PAO

- 1. TEST | UNB: Zawsze pozytywny nastąpiło przejście do wiersza PM z wykonaniem rozkazu
- 2. Wartość RAE wynosi 94 / 5Eh, wartość A wynosi -21440 / AC40h

- 3. ORAE: RAE -> BUS 94 / 5Eh
- 4. IRAP: BUS -> RAP 94 / 5Eh
- 5. RRC : Rozpoczęcie RRC przekazanie do RBP wartości (-21846 / AAAAh) na podstawie indeksu z RAP (94 / 5Eh)
- 6. ORBP: RBP -> BUS (-21846 / AAAAh)
- 7. IX : BUS -> X (-21846 / AAAAh)
- 8. IALU: A -> LALU (-21440 / AC40h)
- 9. OXE: X -> RALU (-21846 / AAAAh)
- 10. AND : ALU = LALU AND RALU lloczyn logiczny zwraca najmniejszą wartość z podanych argumentów. Dlatego do rejestru ALU zwracana jest wartość RALU, czyli -21846 / AAAAh. Wynik jest ujemny, ZNAK = 1. Argumenty dodawania są tego samego znaku, dlatego OFF = 0.
- 11. OBE: ALU -> BUS (-22528 / A800h)
- 12. IA: BUS -> A (-22528 / A800h)
- 13. Wartość A wynosi -22528 / A800h
- 14. END: Koniec mikroprogramu przejście do zerowego wiersza PM

Rozkaz dla LR = 93 (rozkaz BAN 111 10)

Wartości po pobraniu rozkazu:

- a) LR = 94 / 5Eh adres komórki PAO zawierający adres następnego rozkazu.
- b) RAPS = 90 / 5Ah adres pierwszego wiersza PM zawierającego mikrorozkazy wykonania aktualnego rozkazu.
- c) RAE = 94 / 5Eh pobrana metodą pośrednią (rozkaz zwykły, I=1), wartość z komórki pamięci o indeksie równym obliczonego adresu efektywnego.
- d) LK = 10 / Ah liczba kroków wyznaczona na podstawie 7 najmniej znaczących bitów wartości komórki PAO o indeksie równym aktualnego licznika rozkazów
- e) XRO = 1 wystąpiła niedozwolona metoda adresacji. Program chce przenieść 2 różne wartości w jeden rejestr, co jest nie może mieć miejsca. Stąd flaga XRO została zmieniona na wartość 1.

Schemat blokowy:

Opis rozkazu BAN 111 10 (Skocz, jeśli A ujemny):

Rozkaz BAN wykonuje skok licznika rozkazu do wartości rejestru RAE pod warunkiem, że A jest ujemne.

Kolejne działania:

- 1. TEST | UNB: Zawsze pozytywny nastąpiło przejście do wiersza PM z wykonaniem rozkazu
- 2. Wartość A wynosi -22528 / A800h
- 3. TEST | TAS : A >= 0 wynik testu to fałsz, więc A jest ujemne, dlatego RAPS przechodzi kolejno na wiersz 91, potem 16, a na końcu na 72, gdzie wykonywany jest skok licznika rozkazów.
- 4. Wartość RAE wynosi 90 / 5Ah
- 5. ORAE: RAE -> BUS 90 / 5Ah
- 6. ILR: BUS -> LR 90 / 5Ah
- 7. Wartość LR wynosi 90 / 5Ah
- 8. END: Koniec mikroprogramu przejście do zerowego wiersza PM

Rozkaz dla LR = 90 (rozkaz ADD 101 10) – ponowne wykonanie

Wartości po pobraniu rozkazu:

a) LR = 91 / 5Bh – adres komórki PAO zawierający adres następnego rozkazu.

- b) RAPS = 52 / 34h adres pierwszego wiersza PM zawierającego mikrorozkazy wykonania aktualnego rozkazu.
- c) RAE = 255 / FFh pobrana metodą pośrednią (rozkaz zwykły, I=1), wartość z komórki pamięci o indeksie równym obliczonego adresu efektywnego.
- d) LK = 10 / Ah liczba kroków wyznaczona na podstawie 7 najmniej znaczących bitów wartości komórki PAO o indeksie równym aktualnego licznika rozkazów
- e) XRO = 0 brak ustawionej flagi

Schemat blokowy:

Opis rozkazu ADD 101 10 (Dodawanie):

Rozkaz ADD dodaje do wartości rejestru A wartość komórki pamięci o indeksie równym wartości rejestru RAP.

- 1. TEST | UNB: Zawsze pozytywny nastąpiło przejście do wiersza PM z wykonaniem rozkazu
- 2. Wartość RAE wynosi 255 / FFh, wartość A wynosi -32410 / 8166h
- 3. ORAE: RAE -> BUS 255 / FFh
- 4. IRAP: BUS->RAP-255/FFh
- 5. RRC : Rozpoczęcie RRC przekazanie do RBP wartości (-29700 / 8BFCh) na podstawie indeksu z RAP (255 / FFh)
- 6. ORBP: RBP -> BUS (-29700 / 8BFCh)
- 7. IX: BUS -> X (-29700 / 8BFCh)
- 8. IALU: A -> LALU (-22528 / A800h)

- 9. OXE: X -> RALU (-29700 / 8BFCh)
- 10. ADD : ALU = LALU + RALU wpisuje do rejestru ALU wartość sumy wartości w rejestrach LALU oraz RALU. LALU = -22528 / A800h, a RALU = -29700 / 8BFCh. W związku z tym ALU = 13308 / 33FCh. Wynik jest dodatni, ZNAK = 0. Argumenty dodawania są ujemnego znaku, a wynik jest dodatni, dlatego OFF = 1.
- 11. OBE: ALU -> BUS 13308 / 33FCh
- 12. IA: BUS -> A 13308 / 33FCh
- 13. Wartość A wynosi 13308 / 33FCh
- 14. END : Koniec mikroprogramu przejście do zerowego wiersza PM