Machine Learning for Natural Language Processing

Language Modeling

Lecture 4

Benjamin Muller

INRIA Paris - ALMANACH benjamin.muller@inria.fr

Lecture Outline

- Language Model
- Estimation of Language Model

Language Model

Language Modeling

- What is a Language Model ?
- Modeling language with n-grams

Language modeling

- Language modeling corresponds to assigning a probability to a text
- A text is a sequence of tokens, or characters
- Tokens can be words, sub-words,
- For example:

```
\{a cat\} = \{a, cat\},\
```

- Language modeling corresponds to assigning a probability to a text
- A text is a sequence of tokens, or characters
- Tokens can be words, sub-words,
- For example:

- Language modeling corresponds to assigning a probability to a text
- A text is a sequence of tokens, or characters
- Tokens can be words, sub-words,
- For example:

• Given a sequence $\{w_1, \ldots, w_T\}$ of tokens, a language model estimates its probability:

$$P(w_1,\ldots,w_T)$$

- P depends on a **vocabulary**, i.e., the set of unique tokens.
- Question: How to estimate *P* ?

• Given a sequence $\{w_1, \ldots, w_T\}$ of tokens, a language model estimates its probability:

$$P(w_1,\ldots,w_T)$$

- P depends on a **vocabulary**, i.e., the set of unique tokens.
- Question: How to estimate *P* ?

Language Models

- Causal Language Model
- Mask Language Model

Applications of language modeling

Language models are applied in several fields:

• Speech recognition:

$$P("Vanilla, I scream") < P("Vanilla ice cream").$$

Machine translation:

$$P("$$
Déçu en bien" | "Pleasantly surprised") $< P("$ Agréablement surpris" | "Pleasantly surprised")

Optical Character Recognition:

• Sequence probability as a product of token probabilities:

$$P(w_1,...,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1},...,w_1)$$

• Sequence probability as a product of token probabilities:

$$P(w_1,...,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1},...,w_1)$$

• Indeed we have:

$$P(a,b) = P(a)P(b \mid a)$$

Sequence probability as a product of token probabilities:

$$P(w_1,\ldots,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1},\ldots,w_1)$$

• Indeed we have:

$$P(a,b) = P(a)P(b \mid a)$$

Recursively applied to a sequence:

$$P(w_1, w_2, w_3) = P(w_1)P(w_2, w_3 \mid w_1)$$

= $P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_2, w_1).$

Sequence probability as a product of token probabilities:

$$P(w_1,\ldots,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1},\ldots,w_1)$$

• Indeed we have:

$$P(a,b) = P(a)P(b \mid a)$$

Recursively applied to a sequence:

$$P(w_1, w_2, w_3) = P(w_1)P(w_2, w_3 \mid w_1)$$

= $P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_2, w_1).$

 Causal Language models estimate probability of upcoming token given past:

$$P(w_t \mid w_{t-1}, \ldots, w_1).$$

Estimating Language Models

- Causal Language Model
- Mask Language Model

Mask Language Model 12

Sentence The cat is drinking milk in the kitchen

¹ Devlin et al. (2018) ²also referred as Cloze Task

Mask Language Model 12

Sentence The cat is drinking milk in the kitchen input The cat <MASK> drinking <MASK> in the kitchen

 \bullet Randomly replace 15% of words in sentence with a <MASK> token

¹ Devlin et al. (2018)

²also referred as Cloze Task

Mask Language Model ¹²

Sentence The cat is drinking milk in the kitchen

input The cat <MASK> drinking <MASK> in the kitchen

targets {"is", "milk"}

- ullet Randomly replace 15% of words in sentence with a <MASK> token
- Take the masked words as targets for the model to predict

¹ Devlin et al. (2018)

²also referred as Cloze Task

Mask Language Model ¹²

Sentence The cat is drinking milk in the kitchen

input The cat mushroom drinking shoes in the kitchen

targets {"is", "milk"}

- ullet Randomly replace 15% of words in sentence with a <MASK> token
- Take the masked words as targets for the model to predict
- Extension: use random words from vocabulary instead of <MASK>

¹ Devlin et al. (2018)

²also referred as Cloze Task

Mask language model

Masked Language Modeling estimates the probability of sequence tokens of length T with:

$$P(w_i|w_1,..,w_{i-1},w_i,..,w_T)$$

Language Models in a nutshell

- a Language Model is a model that predicts a token based on its surrounding linguistic context
- Tokens can be words, sub-words or characters
- Context can be the *left sequence*, *left and right sequence*, the sentence, a window around the words, the paragraph...
- We saw two way of defining language models: Causal Language Model and Mask Language Model

Estimating language models

Estimating language models

- Statistical approach: N-Gram model
- Neural Language Models
- Recurrent Neural Networks (LSTM)
 - The Transformer Architecture

Count based language model

Example:

$$P({\sf English} \mid {\sf The \ moment \ one \ learns}) = \frac{c\,({\sf The \ moment \ one \ learns}\, {\sf English})}{c\,({\sf The \ moment \ one \ learns})}$$

$$= \frac{35}{73} = 0.48$$

Sentence "The moment one learns English" appears 35 in dataset Sentence "The moment one learns" appears 75 in dataset

Limitiations of count based language model

- Number of unique sentences increases with dataset size,
- Long sentences are rare: no good statistics for them
- → Too many sentences with not enough statistics (Sparsity due to combinatorial structure of language)

Count based language model

- Solution truncate past to a fixed size window
- For example:

$$P(\text{English} \mid \text{The moment one learns}) \approx P(\text{English} \mid \text{one learns})$$

- Implicit assumption: most important information about a word is in its recent history
- Beware! In general:

$$P(w_1,...,w_T) \neq \prod_{t=1}^T P(w_t \mid w_{t-1},...,w_{t-n+1})$$

Count based language model

- Truncated count based models = *n*-gram models
- "n" refers to the size of past
- Examples:
 - Unigram:

$$P(w_1,\ldots,w_T)=\prod_{t=1}^T P(w_t)$$

• Bigram:

$$P(w_1,...,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1})$$

Count based language model: unigram

• Probability of a sentence with a unigram model:

$$P_U(w_1,...,w_T) = \prod_{t=1}^T P(w_t) = \prod_{t=1}^T \frac{c(w_t)}{N}$$

N = total number of tokens in dataset $c(w_t) = \text{number of occurences of } w_t \text{ in dataset}$

- Unigram only uses word frequency
- Example of text generation with this model:
 the or is ball then car

Count based language model: bigram

• Probability of a sentence with a bigram model:

$$P_U(w_1,\ldots,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1}) = \prod_{t=1}^T \frac{c(w_{t-1}w_t)}{c(w_{t-1})}$$

$$c(w_{t-1}w_t)$$
 = number of occurrences of sequence $w_{t-1}w_t$

Predict a word just with the previous word

Count based language model: bigram

• Example of text generation with bigram model:

new car parking lot of the

- "car" is generated from "new", "parking" from "car"...
- But "new" has no influence on "parking"

Count based language model

- Simple to extend to longer dependencies: trigrams, 4-grams...
- n-grams can be "good enough" in some cases
- But n-grams cannot capture long term dependencies required to truely model language

bigram:

$$P(w_t \mid w_{t-1}) = \frac{c(w_{t-1}w_t)}{c(w_{t-1})}$$

Dataset:

<s>we sat in the house
<s>we sat here we two and we said
<s>how we wish we had something to do

Extract some probabilities:

$$P(sat \mid we) = 0.33, \ P(wish \mid we) = 0.17, \ P(in \mid sat) = 0.5$$

- $\langle s \rangle =$ token for beginning of sentence; $P(\langle s \rangle) = 1$.
- Compute sentence probability with them

- Extract count from Berkeley Restaurant dataset (9222 sentences)
- Unigram counts:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Bigram counts:

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

 The bigram probabilities are obtained by dividing the bigram counts with the unigram counts:

$$P(w_2 \mid w_1) = \frac{c(w_1w_2)}{c(w_1)}$$

• Resulting bigram probabilities:

	i	want	to	eat	chinese	food	lunch	spend
i	0.022	0.33	0	0.036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

• Example:

$$P(\langle s \rangle \text{ i want chinese food})$$
?

$$\langle s \rangle = \text{token for beginning of sentence}; P(\langle s \rangle) = 1.$$

Result:

$$P(<\mathsf{s}>\mathsf{i}\;\mathsf{want}\;\mathsf{chinese}\;\mathsf{food}) = P(<\mathsf{s}>)P(\mathsf{i}|<\mathsf{s}>)P(\mathsf{want}|\mathsf{i})P(\mathsf{chinese}|\mathsf{want})P(\mathsf{food}|\mathsf{chinese})$$

$$=1\times.25\times0.33\times0.0065\times0.52$$

$$=0.00027885$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.022	0.33	0	0.036	0	0	0	0.00079
		•	0.014	•	0.00000	0.0007	•	•
	0.014	0	0.014	0	0.00092	0.0037	Ü	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

• Example:

$$P(\langle s \rangle \text{ i bring my lunch to work})$$
?

Result:

$$P(<$$
s $>$ i bring my lunch to work $) = P(<$ s $>) ... $P($ to $|$ lunch $) ...$
$$= 1 \times \cdots \times 0 \times ...$$
$$= \mathbf{0}$$$

Does not generalize well!

- **Idea** reallocate probability mass of n-grams that occur exactly c+1 times to n-grams that occur exactly c times
- reallocate mass of *n*-grams appearing once to unseen *n*-grams
- ightarrow alternative to Add-1

- **Idea** reallocate probability mass of n-grams that occur exactly c+1 times to n-grams that occur exactly c times
- reallocate mass of *n*-grams appearing once to unseen *n*-grams
- ightarrow alternative to Add-1
 - the adjusted count:

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

where N_c is the number of n-grams that appears exactly c times

- **Idea** reallocate probability mass of n-grams that occur exactly c+1 times to n-grams that occur exactly c times
- reallocate mass of *n*-grams appearing once to unseen *n*-grams
- ightarrow alternative to Add-1
 - the adjusted count:

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

where N_c is the number of n-grams that appears exactly c times

• n-gram probability depends on c^* instead of c

- **Idea** reallocate probability mass of n-grams that occur exactly c+1 times to n-grams that occur exactly c times
- reallocate mass of *n*-grams appearing once to unseen *n*-grams
- ightarrow alternative to Add-1
 - the adjusted count:

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

where N_c is the number of n-grams that appears exactly c times

- n-gram probability depends on c^* instead of c
- **Problem** What if $N_{c+1} = 0$ (but $N_c > 0$)?

Backoff and Interpolation

- If no good statistics on long context: use shorter context
- Backoff: use trigram if enough data, else backoff to bigram.
- Interpolation: mix statistics of trigram, bigram and unigram.

Pros and Cons of N-Gram Language Models

Pros

- Fast at training and inference
- Can reach good accuracy if lots of data

Cons

- Impossible to model very long dependencies (simplistic assumptions done)
- Generalization limited
- Not Deep Learning compatible

References I

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.