Page 026

Questions flash

17 ORAL Pour chacune des propriétés P(n) ci-dessous, dire si P(0) et P(1) sont vraies. Justifier.

1. Pour $n \in \mathbb{N}$, $P(n) : \ll -3n + 5 \ge 0$ ».

2. Pour $n \in \mathbb{N}$, P(n) : « $3^n \le 2$ ».

19 Soit (u_n) une suite telle que, pour tout entier naturel n: $u_{n+1} = 3u_n - 8$. Pour tout entier naturel n, on appelle P(n) la propriété « $u_n = 4$ ». L'objectif de l'exercice est de montrer que P(n) est héréditaire.

1. Soit p un entier naturel tel que P(p) est vraie.

Écrire l'égalité qu'on obtient.

2. Justifier qu'on doit alors montrer que $u_{p+1} = 4$. Le faire, puis conclure.

Page 140

17 On considère la suite (u_n) définie sur \mathbb{N} par $u_n = \sqrt{n}$. Justifier sans calcul qu'il existe un entier naturel N tel que $u_n > 100$ pour tout $n \ge N$.

19 Soit (w_n) la suite définie pour tout entier naturel n par :

Justifier sans calcul qu'il existe un entier naturel N tel que $-0.001 < w_n < 0.001$ pour tout $n \ge N$.

Pour les exercices 22 à 28, déterminer la limite des suites (u_n) .

22 1. $u_n = n^2 + 5$

2.
$$u_n = -2n^2$$

23 1. $u_n = n^2 + 3n$

2.
$$u_n = -n^3 + 5$$

24 1. $u_n = 5n^2 + 2\sqrt{n} + 1$ **2.** $u_n = -n^2 - 2n + 150$

$$y = -n^2 - 2n + 150$$

$$2. u_n = 2n^2 + \frac{5}{3}$$

25 1.
$$u_n = \sqrt{n} + \frac{1}{n^2}$$
 2. $u_n = 2n^2 + \frac{5}{n^3}$ 26 1. $u_n = (-n^3)(3n^2 + 4)$ 2. $u_n = \left(-7 + \frac{2}{\sqrt{n}}\right)(n+1)$

27 1.
$$u_n = \frac{1}{n^2 + 5}$$
 2. $u_n = -\frac{6}{\sqrt{n} + 1}$

28 1. $u_n = \frac{3}{3 - 4n^2}$ **2.** $u_n = \frac{7}{n^2 + 2n + 3}$

2.
$$u_n = \frac{7}{n^2 + 2n + 3}$$

47 \blacksquare CALC Soit (u_n) la suite définie pour tout entier naturel *n* par $u_n = n^2 - 6n + 4$.

1.a. À l'aide d'une calculatrice, calculer les 10 premiers termes de la suite (u_n) .

b. -1 peut-il être un minorant de (u_n) ?

c. 20 peut-il être un majorant de (u_n) ?

2. Montrer que pour tout entier naturel n, $u_n + 5 = (n-3)^2$.

3. En déduire un minorant de (u_n) .

18 Soit (u_n) la suite définie pour tout entier naturel n par : $u_0 = 2$ et $u_{n+1} = 2u_n - 1$.

Pour tout entier naturel n, on pose P(n): « $u_n = 1 + 2^n$ ». Vérifier que P(0) est vraie.

20 Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout entier naturel $n, u_{n+1} = 2u_n - n + 1$.

Pour tout entier naturel n, on note P(n): « $u_n \ge n$ ».

1. Montrer que P(0) est vraie.

2. a. Soit p un entier naturel tel que P(p) est vraie.

Écrire l'inégalité qu'on obtient.

b. Écrire la propriété P(p + 1).

c. Montrer qu'on peut en déduire que P(p + 1) est vraie.

3. Que peut-on en conclure?

18 Soit (v_n) la suite définie pour tout entier naturel n par : $v_n = -n^2$.

Justifier sans calcul qu'il existe un entier naturel N tel que $v_n < -10\,000$ pour tout $n \ge N$.

Questions flash

21 ORAL Soit (u_n) , (v_n) et (w_n) trois suites telles

que $\lim_{n \to +\infty} u_n = 3$, $\lim_{n \to +\infty} v_n = +\infty$ et $\lim_{n \to +\infty} w_n = -\infty$.

Déterminer $\lim_{n\to +\infty} u_n + v_{n'} \lim_{n\to +\infty} u_n \times w_n$ et $\lim_{n\to +\infty} v_n \times w_n$.

29 1. Déterminer les limites des suites (u_n) et (v_n) définies sur N* par $u_n = 2 - \frac{1}{n}$ et $v_n = -7 + \frac{1}{\sqrt{n}}$.

2. En déduire la limite de la suite (w_n) définie sur \mathbb{N}^* par :

$$w_n = \frac{2 - \frac{1}{n}}{-7 + \frac{1}{\sqrt{n}}}.$$

48 Soit (u_n) la suite définie pour tout entier naturel n par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{u_n + 6} \end{cases}.$$

a. Montrer par récurrence que pour tout entier naturel $n_i u_i \leq 3$.

b. On admet que la suite (u_v) est croissante. Est-ce que la suite (u_n) est convergente?

- 49 \blacksquare CALC Soit (u_n) la suite définie pour tout entier naturel *n* par $u_0 = 2$ et $u_{n+1} = \frac{2}{3}u_n + 3$.
- 1. a. À l'aide de la calculatrice, calculer les 10 premiers termes de la suite.
- **b.** Conjecturer le sens de variation de (u_n) et une majoration $de(u_n)$.
- **2.** Montrer par récurrence que (u_n) est majorée par 9.
- 3. Montrer que $u_{n+1} u_n = -\frac{1}{3}u_n + 3$, puis en déduire le sens de variation de la suite (u_n) .
- **4.** Justifier que la suite (u_n) converge.

Pour les exercices 64 et 65, déterminer la limite de la suite (u_n) définie pour tout entier naturel n non nul, en utilisant les théorèmes de comparaison.

64 Capacité 5, p. 133

$$1.u = n - \sin n$$

$$2. u = -n^2 + \cos n$$

3.
$$u_n = \frac{n}{2 + \cos n}$$

1.
$$u_n = n - \sin n$$

2. $u_n = -n^2 + \cos n$
3. $u_n = \frac{n}{2 + \cos n}$
4. $u_n = \frac{n - \sin n}{n^2 + 1}$

65 1.
$$u_n = \frac{4n + (-1)^n}{n+2}$$
 2. $u_n = 5n^3 + (-1)^n$ 3. $u_n = \frac{-n + (-1)^n}{2n - (-1)^n}$ 4. $u_n = \frac{n^2 + (-1)^n \sqrt{n}}{n}$

$$2. u_n = 5n^3 + (-1)^n$$

3.
$$u_n = \frac{-n + (-1)^n}{2n - (-1)^n}$$

4.
$$u_n = \frac{n^2 + (-1)^n \sqrt{n}}{n}$$

67 VRAI/FAUX

Indiquer si l'affirmation est vraie ou fausse, puis justifier. On considère une suite (v_n) . Si, pour tout entier naturel nsupérieur ou égal à 1, $-1 - \frac{1}{n} \le v_n \le 1 + \frac{1}{n}$ alors la suite (v_n) converge.

78 Une question ouverte

1. Soit n un entier naturel supérieur ou égal à 1. Montrer l'égalité suivante :

$$\sum_{k=2}^{n+1} \frac{1}{10^k} = \frac{1}{90} \left(1 - \frac{1}{10^n} \right).$$

2. La suite (v_n) est définie par $v_n = 1,27...$ avec n décimales consécutives égales à 7. Ainsi $v_0 = 1,2$, $v_1 = 1,27$ et $v_2 = 1,277$. Démontrer que la suite (v_n) converge vers un nombre rationnel r.

- 49 \square CALC Soit (u_n) la suite définie pour tout entier naturel *n* par $u_0 = 2$ et $u_{n+1} = \frac{2}{3}u_n + 3$.
- 1. a. À l'aide de la calculatrice, calculer les 10 premiers termes
- **b.** Conjecturer le sens de variation de (u_n) et une majoration $de(u_n)$.
- **2.** Montrer par récurrence que (u_n) est majorée par 9.
- 3. Montrer que $u_{n+1} u_n = -\frac{1}{3}u_n + 3$, puis en déduire le sens de variation de la suite (u_n) .
- **4.** Justifier que la suite (u_n) converge.
- **66** 1. Soit (u_n) une suite qui vérifie $u_n \ge 3n^2 1$ pour tout entier naturel n. Déterminer la limite de la suite (u_n) .
- **2.** Soit (u_n) une suite telle que $u_n \le -5n$ pour tout entier naturel n.

Déterminer la limite de la suite (u_n) .

3. Soit (u_n) une suite telle que $\frac{1}{n} \le u_n \le \frac{2}{n}$ pour tout $n \ge 1$. Déterminer la limite de la suite (u_n) .

69 QCM Choisir la ou les bonnes réponses.

Soit (u_n) une suite.

- **1.** Si $u_n \le \frac{1}{n^2}$ pour tout entier naturel n non nul, alors :
- **a.** la suite (u_n) converge vers 0.
- b. il existe un rang à partir duquel tous les termes sont positifs.
- c. on ne peut pas déterminer si la suite est convergente ou divergente.
- **2.** Si pour tout entier naturel n, $u_n \le 2 3n$, alors :
- $\lim_{n\to +\infty}u_n=-\infty.$
- **b.** la suite (u_n) converge.
- c. il existe un rang à partir duquel tous les termes de la suite sont négatifs.
- **81** On considère la suite définie par $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = 2 u_n + n - 1$.
- 1. Montrer par récurrence que, pour tout entier naturel n :

$$u_n = 2^n - n$$
.

2. Montrer que, pour tout entier naturel n:

$$\frac{u_{n+1}-1}{2^n}=\frac{u_n-1}{2^{n-1}}+\frac{n}{2^n}$$

3. En remarquant qu'on peut alors écrire pour tout entier naturel n non nul

$$\frac{u_n - 1}{2^{n-1}} = \frac{u_{n-1} - 1}{2^{n-2}} + \frac{n - 1}{2^{n-1}}$$

$$\frac{u_{n-1}-1}{2^{n-2}} = \frac{u_{n-2}-1}{2^{n-3}} + \frac{n-2}{2^{n-2}}$$

$$\frac{u_2-1}{2^1} = \frac{u_1-1}{2^{1-1}} + \frac{1}{2^1}$$

$$\frac{u_1-1}{2^0}=\frac{u_0-1}{2^{0-1}}+\frac{0}{2^0}$$

En déduire que pour tout entier naturel n non nul :

$$\sum_{k=0}^{n-1} \frac{k}{2^k} = \frac{u_n - 1}{2^{n-1}}.$$