

School of Electrical Engineering and Computer Science

NationalUniversity of Sciences & Technology (NUST)

Home Assignment No-3

Subject: <u>Digital Logic Design</u> Marks: <u>50</u>

 Course:
 BSCS-10AB
 Issue:
 May 02, 2021

 Teacher:
 Engr. Arshad Nazir
 Due:
 May 09, 2021

 Note:
 (10:00 PM)

✓ Attempt the given problem set in a sequential order.

- ✓ Make an index showing summary of the problems solved with page numbers and also specify the missing ones.
- ✓ No late submissions will be accepted and the assignments submitted after the due date/time will be graded **zero**.
- √ No copying is allowed and assignments found copied will be marked zero.
- ✓ The students will submit a certificate with the assignment work stating the originality of their efforts and no copying from others.
- ✓ **Five** marks are reserved for neat and clean work, table of contents, and certificate to be attached with the assignment work.

Problem No-1

Optimize the following Boolean functions together with the don't care conditions d in the forms indicated using map method by finding all the prime implicants and essential prime implicants and apply the selection rule:

a.	$F(W,X,Y,Z)=\pi_N$	ر (0,1,6,8,11 <mark>(</mark>	$1,12$). π_D (3,7,14,15)	SOP

b. g=(a´+c+d)(a´+b+e)(a+c´+e´)(c+d+e´)(b+c+d´+e)(a´+b´+c+e´) **SOP**

c. $h(a,b,c,d,e) = \sum_{m} (1,5,12,13,14,16,17,21,23,24,30,31) + \sum_{d} (0,2,3,4)$ **POS**

d. $f(w,x,y,z)=\sum_{m}(0,1,3,7,8,11,12,13,15)$ **SOP & POS**

Problem No-2

Braille is a system which allows a blind person to read alphanumeric by feeling a pattern of raised dots. Design a circuit that converts BCD to Braille. The table shows the correspondence between BCD and Braille.

				W	Х
A	В	c	D	z	Y
0	0	0	0		:
0	0	0	1		
0	0	1	0	:	
0	0	1	1		•
0	1	0	0		:
0	1	0	1		
0	1	1	0	:	•
0	1	1	1	:	:
1	0	0	0	:	
1	0	0	1		•

Implement your design with two-level (a) NAND-AND, (b) OR-NAND forms. Assume that double rail inputs are available.

Problem No-3

Implement the following two-level function using multi-level NOR gates:

 $f(x_1,x_2,x_3,x_4,x_5,x_6,x_7)=x_1x_4x_5+x_1x_4x_6+x_1x_7+x_2x_3x_4x_5+x_2x_3x_4x_6+x_2x_3x_7$ Assume that logic gates have a maximum fan in of 2 and the input variables are available in uncomplemented form only.

"Stay Home, Stay Safe"