Data basics

Lin Guosheng School of Computer Science and Engineering Nanyang Technological University

Outline

- Types of datasets
- Data objects and attributes
- Distance and similarity
- Data normalization

Types of Datasets

1. Record Data

records in a relational database

Person: Pers_ID Surname First_Name City Paul London 0 Miller Alvaro Valencia no relation Ortega 2 Urs Zurich Huber Blanc 3 Gaston Paris Fabrizio Bertolini Rom Car: Model Pers_ID Car_ID Year Value 0 101 Bentley 1973 100000 Rolls Royce 1965 330000 102 0 103 1993 3 500 Peugeot 104 Ferrari 2005 4 150000 1998 Renault 3 105 2000 Renault 2001 3 7000 106 107 Smart 2000 1999

Types of Datasets

2. Graphs and networks

Image credit: Medium

Image credit: Science

Image credit: Lumen Learning

Social Networks

Citation Networks

Economic Networks Communication Networks

Image credit: Missoula Current News

Image credit: The Conversation

Networks of Neurons

Image credit: ese.wustl.edu

lmage credit: <u>Maximilian Nickel et al</u>

Knowledge Graphs

Regulatory Networks

Scene Graphs

NH₂

Image credit: ResearchGate

Image credit: MDPI

Image credit: Wikipedia

Code Graphs

Molecules

3D Shapes

Types of Datasets

3. Multimedia data

Images

Videos / image sequences

Types of Datasets

- 4. Text data
 - Twitter/Facebook posts
 - News
 - Wikipedia texts
 - Shopping item comments
 - Books
 - Transcripts
 - Emails
 - Documents
 - ...

NASA's Perseverance Mars Rover @ @NASAPersevere · Aug 2

Exciting news: Not only did I recently grab a new rock core (#11), but plans are coming together to bring these samples back to Earth. A new group of robots (including next-gen helicopters!) could join me for an unprecedented team-up.

More: go.nasa.gov/3cUWw0U #SamplingMars

Data objects and attributes

- Data objects are also called samples, examples, instances, data points, records, tuples,
- Data attributes are also called dimensions, features, variables, channels, ...
- Data sets are made up of data objects/samples
- Data objects are described by attributes/features

Car:

Car_ID	Model	Year	Value	Pers_ID
101	Bentley	1973	100000	0
102	Rolls Royce	1965	330000	0
103	Peugeot	1993	500	3
104	Ferrari	2005	150000	4
105	Renault	1998	2000	3
106	Renault	2001	7000	3
107	Smart	1999	2000	2

Each row represents a data sample; Each column represents a data attribute.

Attribute Types

- Numeric: real numbers (continuous values)
 - Prices, \$500, \$200; Image pixel intensity: [0 255]
 - temperature, height, or weight
- Nominal: (Categorical) categories, states, or "names of things" (discrete values)
 - Hair_color = {black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes
- Binary (discrete values)
 - Nominal attribute with only 2 states (0 and 1)
 - {true, false},
 - {1, 0} indicates one item exists or not
- Ordinal (discrete values)
 - Values have a meaningful order (ranking)
 but magnitude between successive values is not known
 - Size = {small, medium, large}, grades={A, B, C, D},

Convert raw data into numeric values

- For many data mining (machine learning) tasks, e.g., clustering, classification, regression.
- Nominal ->numeric: use one-hot encoding
- Ordinal->numeric: use numbers to indicate ranking (1,2,3,...)
- Binary -> numeric: convert to {0, 1}

Example: convert nominal values to numeric values using one-hot encoding

id	color	
1 red		
2	blue	
3	green	
4	blue	

id	color_red	color_blue	color_green
1	1	Θ	Θ
2	0	1	Θ
3	0	Θ	1
4	0	1	Θ

A typical pipeline for applying data mining techniques:

Feature vectors: one data sample is represented by one feature vector. e.g., $\mathbf{x} = [x_1, x_2, x_3, x_4, ...]$

- Vector norm
 - also called vector magnitude, the length of the vector

1. Lp-norm (general):

Let $p \geq 1$ be a real number. The p-norm (also called ℓ_p -norm) of vector $\mathbf{x} = (x_1, \dots, x_n)$ is $^{[9]}$

$$\left\|\mathbf{x}
ight\|_p := \left(\sum_{i=1}^n \left|x_i
ight|^p
ight)^{1/p}.$$

2. L1-norm:

$$\|oldsymbol{x}\|_1 := \sum_{i=1}^n |x_i|$$
 .

3. L2-norm:

$$\|oldsymbol{x}\|_2:=\sqrt{x_1^2+\cdots+x_n^2}.$$

Also called Euclidean norm, vector length

Distance

Given two vectors: \mathbf{x}_i and \mathbf{x}_j (they have l dimensions)

- 1. Calculate the vector difference (residual vector): $\mathbf{r} = \mathbf{x}_i \mathbf{x}_j$
- 2. apply vector norm on the vector difference:

$$d_p(i,j) = \left\| \left. \mathbf{r} \, \right\|_p = \left\| \mathbf{x}_i - \mathbf{x}_j
ight\|_p$$

• p = 1: (L₁ norm) Manhattan distance (L1 distance)

$$d(i, j) = |x_{i1} - x_{i1}| + |x_{i2} - x_{i2}| + \dots + |x_{il} - x_{il}|$$

• p = 2: (L₂ norm) Euclidean distance (L2 distance)

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

Metric	Formula	Interpretation
Euclidean distance	$d = \sqrt{\sum_{i}^{n} (x_i - y_i)^2}$	x d y
Manhattan distance	$d = \sum_{i=1}^{n} x_i - y_i $	$d_1 = d_1 + d_2$

https://towardsdatascience.com/similarity-search-knn-inverted-file-index-7cab8occoe79

Distance

Minkowski distance (defined by vector norm):

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two l-dimensional data objects, and p is the order (defined based on L-p norm)

- It has the properties:
 - d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positivity)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)

A distance that satisfies these properties is a metric

Data matrix

- Describe a data set (data samples)
- E.g, a data matrix of n data points with d dimensions
- Each row indicates a feature vector

Data Matrix n=4 (data points), d=2 (dimensions)

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x</i> 2	3	5
<i>x</i> 3	2	0
<i>x4</i>	4	5

Distance example

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x 3	2	0
x4	4	5

Manhattan distance (L₁)

L	x1	x2	x 3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean distance (L₃)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Similarity

Cosine similarity

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

Cosine distance = 1- cosine similarity

Geometry illustration:

https://www.learndatasci.com/glossary/cosine-similarity/

Similarity example

•
$$D1 = [1, 1, 1, 1, 1, 0, 0]$$

•
$$D2 = [0, 0, 1, 1, 0, 1, 1]$$

First, we calculate the dot product of the vectors:

$$D1 \cdot D2 = 1 \times 0 + 1 \times 0 + 1 \times 1 + 1 \times 1 + 1 \times 0 + 0 \times 1 + 0 \times 1 = 2$$

Second, we calculate the magnitude (L2 norm) of the vectors:

$$||D1|| = \sqrt{1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 0^2 + 0^2} = \sqrt{5}$$

 $||D2|| = \sqrt{0^2 + 0^2 + 1^2 + 1^2 + 0^2 + 1^2 + 1^2} = \sqrt{4}$

$$similarity(D1, D2) = \frac{D1 \cdot D2}{\|D1\| \|D2\|} = \frac{2}{\sqrt{5}\sqrt{4}} = \frac{2}{\sqrt{20}} = 0.44721$$

We can further calculate the angle between the vectors:

$$cos(heta) = 0.44721$$
 $heta = rccos(0.44721) = 63.435$

Data normalization

- Data normalization
 - The goal of normalization is to transform attributes/features to be on a similar scale.
 - Algorithms may bias to the features which have a larger magnitude.
 - E.g., L2-distance will be dominated by large attributes

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

Examples:

$$x1=[100, 0.1]$$

 $x2=[120, 0.01]$ \rightarrow $d(x1, x2) \approx d(x1, x3)$

x3= [120, 0.1]

- 1. Max-Min Normalization
 - rescale to a value in [0, 1]

$$x_{\text{norm}} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

- 2. Z-score normalization
 - Also called standardization
 - rescale to ensure the mean and the standard deviation to be 0 and 1
 - More robust to outlier

$$x_{\text{stand}} = \frac{x - \text{mean}(x)}{\text{standard deviation }(x)}$$

Population Standard Deviation

$$\sigma = \sqrt{rac{\sum (X_i - \mu)^2}{N}}$$

 σ = population standard deviation N = the size of the population X_i = each value from the population μ = the population mean

Example

Input dataset

user		Age		Salary
	1		40	100000
	2		32	80000
	3		21	43000
	4		24	51000
	5		35	70000

Age Mean	30.4
Age Std	7.829432
Salary mean	68800
Salary std	22818.85
Age min	21
Age max	40
Salary min	43000
Salary max	100000

Z-score normalization

user	Age	Salary
1	1.2261426	1.367291
2	0.2043571	0.490822
3	-1.200598	-1.13064
4	-0.817428	-0.78006
5	0.5875267	0.052588

Max-Min Normalization

Age	Salary	
1	1	
0.5789474	0.649123	
0	0	
0.1578947	0.140351	
0.7368421	0.473684	
	0.5789474	