Numerical Methods for Partial Differential Equations A.Y. 2024/2025

Laboratory 03

Finite Element method for the Poisson equation in 2D

One of the key features of deal. II is that it supports dimension-independent programming, that is it is possible and relatively easy to write code that works in any physical dimension (1D, 2D, 3D). This is realized through the extensive use of C++ templates. Indeed, many deal. II classes are actually class templates taking as arguments the physical dimension of the problem.

In this lecture, we will demonstrate this by moving from 1D to 2D problems. As we will see, this mostly requires to change the value of the variable indicating the physical dimension (called dim in previous lectures) from 1 to 2.

Exercise 1.

Let $\Omega = (0,1) \times (0,1)$, and let us decompose its boundary $\partial \Omega$ as follows (see Figure 1):

$$\Gamma_0 = \{x = 0, y \in (0, 1)\},$$

$$\Gamma_1 = \{x = 1, y \in (0, 1)\},$$

$$\Gamma_2 = \{x \in (0, 1), y = 0\},$$

$$\Gamma_3 = \{x \in (0, 1), y = 1\}.$$

Let us consider the following Poisson problem with mixed Dirichlet-Neumann boundary conditions:

$$\begin{cases}
-\nabla \cdot (\mu \nabla u) = f & \mathbf{x} \in \Omega, \\
u = g & \text{on } \Gamma_0 \cup \Gamma_1, \\
\mu \nabla u \cdot \mathbf{n} = h & \text{on } \Gamma_2 \cup \Gamma_2.
\end{cases} \tag{1a}$$

$$(\mathbf{u}\nabla u \cdot \mathbf{n} = h \quad \text{on } \Gamma_2 \cup \Gamma_2, \tag{1c}$$

where
$$\mu(\mathbf{x}) = 1$$
, $f(\mathbf{x}) = -5$, $g(\mathbf{x}) = x + y$ and $h(\mathbf{x}) = y$.

- 1.1. Write the weak formulation and the Galerkin formulation of problem (1).
- 1.2. Implement in deal. II a finite element solver for (1), using triangular elements.

Figure 1: (a) Domain Ω and partition of its boundary into Γ_0 , Γ_1 , Γ_2 and Γ_3 . (b) Mesh obtained by generating a square with 20 subdivisions in deal.II and then converting it to a triangular mesh.

Mesh generation with external tools

For problems defined on non-trivial domains (thus for most practical applications), it is generally not possible to construct the mesh directly from inside the C++ code.

Therefore, external tools are usually required to generate the mesh. Free/open source examples include gmsh (https://gmsh.info/) and VMTK (http://www.vmtk.org/), and most commercial finite elements software relies on some graphical meshing tool.

As an example, you can find in the examples/gmsh folder a gmsh script that generates the mesh shown in Figure 2a. You can edit the script with any text editor, and load it into gmsh (either from the command line or from its GUI). The gmsh website offers a series of tutorials at this link: https://gmsh.info/doc/texinfo/gmsh.html#Gmsh-tutorial. See Figure 2b for an example of numerical solution computed on Figure 2a.

Some general guidelines for mesh generation are the following:

- geometrical accuracy: the mesh should have enough elements so that the geometrical features of the domain are accurately represented;
- solution accuracy: the mesh should have enough elements so that the numerical solution computed on it is accurate. This might also mean that the elements in some regions are smaller than elements in other regions, to capture sharp gradients or to enhance the accuracy in regions of particular interest;
- mesh quality: the elements of the mesh should be as regular as possible (i.e. as close as possible to regular triangles). If elements are distorted, the constant appearing in the error estimate increases, and the accuracy becomes worse. Moreover, the condition number of the linear system resulting from the discretization becomes larger, and if elements are inverted (i.e. they degenerate to have zero or

Figure 2: (a) Example of non-trivial mesh generated using gmsh. (b) Example of numerical solution of a Poisson problem defined in the mesh represented in (a).

negative area/volume) the discrete problem becomes ill-posed.

Generating a mesh satisfying these three requirements is a complex task, especially for 3D problems, and often the mesh generation step is one of the most time consuming ones in the finite element pipeline.