#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

3) 독립성 검정

One-way ANOVA (일원분산분석)

#01. 작업 준비

패키지 가져오기

```
from pandas import read_excel, melt
from scipy.stats import shapiro, normaltest, ks_2samp, bartlett, fligner
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))
from helper import normality_test, equal_variance_test, independence_test
```

#02. 예제 (1)

어떤 지역에서 동일한 제품을 판매하고 있는 두 가게에 대한 일별 매출액

1. 데이터 가져오기

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

3) 독립성 검정

df :	= reac	_excel(("https:/	//data	.hossam	.kr/E02	/store.	xlsx")
df								

	store1	store2
0	46	78
1	47	57
2	58	31
3	47	28
4	27	67
5	58	77
6	56	36
7	26	57
8	47	36
9	25	57

2. 분산분석의 조건 충족 여부 검사

1) 데이터의 정규성 검정

shapiro wilk 검정

샘플의 수가 적을 때 정규성을 확인하는 검정

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정 shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

3) 독립성 검정

(샘플의 수가 대략 50개 미만인 경우, 중심극한 정리는 30개 미만을 권장하기도 함)

가설	내용		
귀무가설	집단간 데이터 분포에는 차이가 없다(정규성을 따름)		
대립가설	집단간 데이터 분포에는 차이가 있다(정규성을 따르지 않음)		

```
shapiro(df['store1'])
```

```
ShapiroResult(statistic=0.8321117162704468, pvalue=0.035477906465530396)
```

```
shapiro(df['store2'])
```

```
ShapiroResult(statistic=0.8993193507194519, pvalue=0.21535511314868927)
```

Normal Test

```
normaltest(df['store1'])
```

c:\Users\leekh\AppData\Local\Programs\Python\Python311\Lib\site-packages warnings.warn("kurtosistest only valid for $n \ge 20$... continuing "

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

3) 독립성 검정

```
NormaltestResult(statistic=1.9891717867491527, pvalue=0.369876581177278)
 normaltest(df['store2'])
 NormaltestResult(statistic=2.081349912435389, pvalue=0.3532161960163575)
콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)
```

정규분포에 국한되지 않고 두 표본이 같은 분포를 따르는지 확인할 수 있는 방법 한 번에 두 개씩 검사 가능

```
ks 2samp(df['store1'], df['store2'])
```

```
KstestResult(statistic=0.4, pvalue=0.41752365281777043, statistic locati
```

함수로 한 번에 처리하기

```
normality test(df['store1'], df['store2'])
```

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

			statistic	p-value	result
condition	test	field			
정규성	shapiro	store1	0.832112	0.035478	False
		store2	0.899319	0.215355	True
	normaltest	store1	1.989172	0.369877	True
		store2	2.081350	0.353216	True
		store1 vs store2	0.400000	0.417524	True
		store2 vs store1	0.400000	0.417524	True

2) 데이터의 등분산성 검정

Bartlett 검정

집단간 분산이 같은지 다른지 여부를 알아볼 때 사용

독립 2표본 t-검정 또는 일원분산분석(one-way ANOVA) 실시 전에 등분산성을 확인하는 용도

Bartlett 검정은 두 집단 뿐만 아니라 세 집단 이상에서도 사용할 수 있음

모든 변수가 정규분포를 따른다는 가정 하에서만 사용 가능함

가설	내용
귀무가설	집단간 분산이 차이가 없다(같다)
대립가설	집단간 분산이 차이가 있다(다르다)

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

3) 독립성 검정

```
bartlett(df['store1'], df['store2'])
```

BartlettResult(statistic=1.0488412011085946, pvalue=0.305774119649436)

fligner 검정

Filgner-Killeen test는 비모수 등분산 검정으로 각 독립 표본들이 정규분포를 따르지 않아도 사용한 검정 방법

가설	내용
귀무가설	집단간 분산이 차이가 없다(같다)
대립가설	집단간 분산이 차이가 있다(다르다)

```
fligner(df['store1'], df['store2'])
```

FlignerResult(statistic=1.3014081560908837, pvalue=0.2539561678380817)

레빈 검정(Levene's test)

통계학에서 등분산성(homoscedasticity)을 검증하기 위해 사용되는 방법

분석하려는 데이터의 그룹이 두 개 이상인 경우에 사용

다른 등분산성 검정 방법과 달리 레빈 검정은 정규성 가정을 거의 하지 않기 때문에 비모수적인 방법으로도 적용할 수 있다.

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

1. 데이터 가져오기

2. 분산분석의 조건 충족 여부 검사

1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

3) 독립성 검정

가설	내용
귀무가설	집단간 분산이 차이가 없다(같다)
대립가설	집단간 분산이 차아가 있다(다르다)

levene(df['store1'], df['store2'])

LeveneResult(statistic=1.333315753388535, pvalue=0.2633161881599037)

함수로 한번에 처리하기

y = equal_variance_test(df['store1'], df['store2'])
y

			statistic	p-value	result
condition	test	field			
등분산성	Bartlett	store1 vs store2	1.048841	0.305774	True
	Fligner	store1 vs store2	1.301408	0.253956	True
	Levene	store1 vs store2	1.333316	0.263316	True

3) 독립성 검정

가설	내용
귀무가설	각 변수는 상관이 없다(독립적이다.)

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

3) 독립성 검정

```
대캅설설 각 변수는 상관이 댔용(독립적이지 않다)
```

```
chi2_contingency(df[['store1', 'store2']])
```

```
Chi2ContingencyResult(statistic=64.44306604494015, pvalue=1.851233643894  
        [47.29240375, 56.70759625],
        [40.47138398, 48.52861602],
        [34.10509886, 40.89490114],
        [42.74505723, 51.25494277],
        [61.38917794, 73.61082206],
        [41.83558793, 50.16441207],
        [37.74297607, 45.25702393],
        [37.74297607, 45.25702393],
        [37.28824142, 44.71175858]]))
```

함수로 처리하기

```
independence_test(df['store1'], df['store2'])
```

			statistic	p-value	result
condition	test	field			
독립성	Chi2	store1 vs store2	64.443066	1.851234e-10	False

4) 모든 조건을 하나의 함수로 확인하기

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기 all_test(df['store1'], df['store2'])

c:\Users\leekh\AppData\Local\Programs\Python\Python311\Lib\site-packages
warnings.warn("kurtosistest only valid for n≥20 ... continuing "

			statistic	p-value	result
condition	test	field			
정규성	shapiro	store1	0.832112	3.547791e-02	False
		store2	0.899319	2.153551e-01	True
	normaltest	store1	1.989172	3.698766e-01	True
		store2	2.081350	3.532162e-01	True
	ks_2samp	store1 vs store2	0.400000	4.175237e-01	True
		store2 vs store1	0.400000	4.175237e-01	True
등분산성	Bartlett	store1 vs store2	1.048841	3.057741e-01	True
	Fligner	store1 vs store2	1.301408	2.539562e-01	True
	Levene	store1 vs store2	1.333316	2.633162e-01	True
독립성	Chi2	store1 vs store2	64.443066	1.851234e-10	False

3. scipy stats 패키지를 사용한 분산분석

3) 독립성 검정

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

3) 독립성 검정

```
f_oneway(df['store1'], df['store2'])
```

```
F_onewayResult(statistic=1.4591624718860445, pvalue=0.24269553293319623)
```

해석

p-value 가 0.05보다 크므로 귀무가설을 기각할 수 없다.

즉, 두 가게의 일별 매출 평균은 같다.

4. statsmodels 패키지를 사용한 일원분산분석

데이터 전처리

데이터 재배치

	store	sales
0	store1	46
1	store1	47
2	store1	58
3	store1	47

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

	store	sales	
4	store1	27	
5	store1	58	
6	store1	56	
7	store1	26	
8	store1	47	
9	store1	25	
10	store2	78	
11	store2	2 57	
12	store2	31	
13	store2	28	
14	store2	67	
15	store2	77	
16	store2	36	
17	store2	57	
18	store2	36	
19	store2	57	

범주형 변수 지정

3) 독립성 검정

#01. 작업 준비

패키지 가져오기

#02. 예제 (1)

- 1. 데이터 가져오기
- 2. 분산분석의 조건 충족 여부 검사
 - 1) 데이터의 정규성 검정

shapiro wilk 검정

Normal Test

콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)

함수로 한 번에 처리하 기

2) 데이터의 등분산성 검정

Bartlett 검정

fligner 검정

레빈 검정(Levene's test)

함수로 한번에 처리하 기

3) 독립성 검정

```
df2['store'] = df2['store'].astype('category')
df2.dtypes
```

store category sales int64 dtype: object

2) 분산분석 시행

	df	sum_sq	mean_sq	F	PR(>F)
C(store)	1.0	378.45	378.450000	1.459162	0.242696
Residual	18.0	4668.50	259.361111	NaN	NaN