Graph of a Polynomial Function

End Behavior: the behavior of the graph of a function at the far left or the far right

Turning Point: a point where the graph of a function changes direction from increasing to decreasing or vice versa

The graph of a polynomial function of degree n has, at most, n-1 turning points.

Leading Coefficient Test: as x increases or decreases without bound, the graph of the polynomial function

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

eventually rises or falls.

Case	Leading	Degree	End Behavior	
	Coefficient	Degree	Left-hand	Right-hand
1	Positive	Odd	Falling	Rising
2	Negative	Odd	Rising	Falling
3	Positive	Even	Rising	Rising
4	Negative	Even	Falling	Falling

Steps in Graphing Polynomial Functions

- 1. Write the function in factored form.
- Find the end behavior of the graph using the Leading Coefficient test.
- 3. Find the zeros of the polynomial function and their multiplicity.

Multiplicity of Zero (c)	Graph	Sign of $P(x)$
Even	touches the x -axis at c	does not change from one side to the other side of c
Odd	crosses the <i>x</i> -axis at <i>c</i>	changes from one side to the other side of <i>c</i>

- 4. Make a table of values of x and y.
- Plot the points and connect them with a smooth continuous curve.
- 6. Make sure the graph follows the end behavior.

Graph of a Polynomial Function

End Behavior: the behavior of the graph of a function at the far left or the far right

Turning Point: a point where the graph of a function changes direction from increasing to decreasing or vice versa

The graph of a polynomial function of degree n has, at most, n-1 turning points.

Leading Coefficient Test: as x increases or decreases without bound, the graph of the polynomial function

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x + a_0$$

eventually rises or falls.

Case	Leading	Degree	End Behavior	
	Coefficient		Left-hand	Right-hand
1	Positive	Odd	Falling	Rising
2	Negative	Odd	Rising	Falling
3	Positive	Even	Rising	Rising
4	Negative	Even	Falling	Falling

Steps in Graphing Polynomial Functions

- 1. Write the function in factored form.
- 2. Find the end behavior of the graph using the Leading Coefficient test.
- 3. Find the zeros of the polynomial function and their multiplicity.

Multiplicity of Zero (c)	Graph	Sign of $P(x)$
Even	touches the <i>x</i> -axis at <i>c</i>	does not change from one side to the other side of c
Odd	crosses the <i>x</i> -axis at <i>c</i>	changes from one side to the other side of <i>c</i>

- 4. Make a table of values of x and y.
- 5. Plot the points and connect them with a smooth continuous curve.
- 6. Make sure the graph follows the end behavior.

Practice Exercises

Sketch the graph of each polynomial function.

1.
$$f(x) = (x-2)(x+1)$$

2.
$$f(x) = (x-2)(x+1)(x+3)$$

3.
$$f(x) = (x-2)^2(x+2)^2$$

4.
$$f(x) = x^4 - 2x^3 - 3x^2 + 4x + 4$$

5.
$$f(x) = -x^3 - 9x^2 - 27x - 27$$

Problem Set

Sketch the graph of each polynomial function.

1.
$$f(x) = (x-2)(x-1)(x-3)$$

2.
$$f(x) = x(x+1)^2$$

3.
$$f(x) = x(x-2)(x+1)(x+3)$$

4.
$$f(x) = (x+2)(x-1)(x-3)^2$$

5.
$$f(x) = -x^5 - 6x^4 - 4x^3 - 8x^2$$

Practice Exercises

Sketch the graph of each polynomial function.

1.
$$f(x) = (x-2)(x+1)$$

2.
$$f(x) = (x-2)(x+1)(x+3)$$

3.
$$f(x) = (x-2)^2(x+2)^2$$

4.
$$f(x) = x^4 - 2x^3 - 3x^2 + 4x + 4$$

5.
$$f(x) = -x^3 - 9x^2 - 27x - 27$$

Problem Set

Sketch the graph of each polynomial function.

1.
$$f(x) = (x-2)(x-1)(x-3)$$

2.
$$f(x) = x(x+1)^2$$

3.
$$f(x) = x(x-2)(x+1)(x+3)$$

4.
$$f(x) = (x+2)(x-1)(x-3)^2$$

5.
$$f(x) = -x^5 - 6x^4 - 4x^3 - 8x^2$$