Master Thesis Presentation

Comparison of Disparity Algorithms for Stereoscopic Videos

Ben John

May 25, 2016

University of Mannheim, Department of Praktische Informatik IV

Table of contents

- 1. Motivation
- 2. Foundations
- 3. Implementation
- 4. Evaluation
- 5. Conclusion

Motivation

Applications

- Depth-estimation via camera settings
- Kinect (sunlight)
- 3DTV (remapping)

Foundations

Epipolar geometry

Figure 1: Epipolar geometry¹

 $^{^1\}mathsf{Source}$ (accessed 02/2016): $\mathtt{https://en.wikipedia.org.}$

Epipolar geometry

Figure 2: Epipolar geometry after image rectification²

 $^{^2}$ Source (accessed 02/2016): https://en.wikipedia.org.

Constraints

- Epipolar
- Uniqueness
- Continuity
- Ordering
- Limit
- Lambertian

Classification

- Local methods
 - Area matching
 - Feature matching
- Global methods
 - Dynamic programming
 - Graph cuts
 - Belief propagation

Classification

- Local methods
 - Area matching
 - Feature matching
- Global methods
 - Dynamic programming
 - Graph cuts
 - Belief propagation

Energy function

$$E(d) = E_{data}(d) + \lambda E_{smooth}(d)$$

Taxonomy

- 1. Computing of matching cost
- 2. Save values in disparity space image
- 3. Aggregation of cost values
- 4. Disparity refinement

Matching cost

- Penalty
- Cost for having dissimilarities
- Optimum = 0

Matching cost

- Penalty
- Cost for having dissimilarities
- Optimum = 0

Sum of absolute differences

$$SAD = \sum_{i,j \in U} |I_1(x_L + i, y_L + j) - I_2(x_R + i, y_R + j)|$$

Disparity space image

Simple block-matching

Figure 4: Illustration of block matching along a scanline.

Example for stereo image pair

(a) left input image

(b) right input image

(c) ground-truth data

Figure 5: Tsukuba benchmark stereo image pair of the University of Tsukuba [1].

Implementation

Overview

Spatiotemporal stereo matcher

Algorithm 1: CREATEDISPARITYSPACEIMAGE

```
Input: I_L, I_R, d_{max}, wSize
    Output: C
 1 step \leftarrow (wSize - 1)/2
 2 C \leftarrow \text{CreateMatrix}(\text{Cols}(I_L), \text{Rows}(I_L), d_{max})
 3 for t \leftarrow 0 to IMAGES(I_L) do
         leftImage \leftarrow I_{I}(t)
         rightImage \leftarrow I_I(t)
 5
         for y \leftarrow 0 + step \ \textbf{to} \ \text{Rows}(I_I(0)) - step \ \textbf{do}
 6
              for x \leftarrow 0 + step \ \textbf{to} \ \text{Cols}(I_L(0)) - step - d_{max} \ \textbf{do}
 7
                   for d \leftarrow 0 to d_{max} do
                         rect_l \leftarrow Rect\{x - step, y - step, wSize, wSize\}
 q
                        rect_R \leftarrow \text{Rect}\{x + d - step, y - step, wSize, wSize\}
10
                        window_l \leftarrow leftImage(rect_l)
11
                        window_R \leftarrow rightImage(rect_R)
12
                       C(x, y, t, d) \leftarrow \text{MATCHINGCOST}(window_L, window_R)
13
14 return C
```

Spatiotemporal stereo matcher

6

```
Algorithm 2: GETDISPARITYMAP
  Input: C, t
  Output: DisparityMap
1 DisparityMap \leftarrow CREATEMATRIX(Cols(C), Rows(C))
2 for t \leftarrow 0 to Frames(C) do
      for y \leftarrow 0 to Rows(C) do
           for x \leftarrow 0 to Cols(C) do
               Cost \leftarrow \frac{1}{4}C(x, y, f_0) + \frac{2}{4}C(x, y, f_1) + \frac{1}{4}C(x, y, f_2)
               DisparityMap(x, y) \leftarrow \text{BESTMATCH}(Cost)
7 return DisparityMap
```

- Non-occluded mask
- Depth-discontinuity mask
- Textureless mask
- Saliency mask

Figure 7: Frame of book sequence

- Non-occluded mask
- Depth-discontinuity mask
- Textureless mask
- Saliency mask

Figure 7: Ground-truth companion

- Non-occluded mask
- Depth-discontinuity mask
- Textureless mask
- Saliency mask

Figure 7: Depth-discontinuity at object borders

- Non-occluded mask
- Depth-discontinuity mask
- Textureless mask
- Saliency mask

Figure 7: Non-occluded mask

- Non-occluded mask
- Depth-discontinuity mask
- Textureless mask
- Saliency mask

Figure 7: Textureless regions

- Non-occluded mask
- Depth-discontinuity mask
- Textureless mask
- Saliency mask

Figure 7: Salient pixels

Image diminisher

Figure 8: Flow of the image diminisher.

Image diminisher

Figure 9: Flow of FFmpeg as image diminisher.

Web viewer

- Visualization of evaluation engine
- Written in Node.js
- Displaying some statistics

Evaluation

Overview

- Targeting videos (mean)
- Looking for outliers
- Masking modes
- Video compression

Datasets

- Cambridge
- SVDDD (high-resolution)

Metrics

Percentage of bad matching pixels

$$\frac{1}{n}\sum_{x,y=0}(|d_a(x,y)-d_e(x,y)|>\delta_t)$$

RMS-Error

$$\sqrt{\frac{1}{n}\sum_{x,y=0}(d_a(x,y)-d_e(x,y))^2}$$

Results

	10 CVSM	11 SNSM	12 SNTU	13 SNTW
S1	32.61%	8.72%	10.07%	9.65%
S2	25.64%	11.79%	8.76%	8.90%
S3	13.26%	6.08%	8.71%	7.29%
S4	38.96%	12.98%	11.15%	11.26%
S5	8.60%	0.93%	4.54%	2.15%
Ø	23,81%	8,10%	8,66%	7,85%

 $\textbf{Table 1:} \ \ \mathsf{Result\ table\ for\ comparison\ of\ own\ implementation}$

Results

 $\textbf{Figure 10:} \ \ \mathsf{Depth\text{-}discontinuity} \ \ \mathsf{mask} \ \ \mathsf{applied} \ \ \mathsf{on} \ \ \mathsf{the} \ \ \mathsf{book} \ \ \mathsf{sequence}.$

 $\textbf{Figure 11:} \ \ \textbf{Chart of textureless region mask applied on the tunnel sequence}.$

Figure 12: Chart of general outliers in a sequence.

Figure 13: Examples for general outliers in the book sequence. The disparity maps are computed with the (3) ELAS algorithm.

Figure 14: Chart of the impact of different σ^2 values for additive Gaussian noise on the result of disparity algorithms focusing on $P_{noc,1px}$.

Figure 15: Example of computed disparity maps with video compression. CRF is set to 40. Frame 23 of the tanks scene.

Figure 16: Chart of the impact of different CRF values for H.265 video compression on the result of disparity algorithms focusing on PBMP $_{noc,1px}$.

Figure 17: Comparison of the runtime of different disparity algorithms with both datasets, Cambridge and SVDDD

Figure 18: Comparison of computed disparity maps regarding negative disparity.

Figure 19: Performance of SVDDD rabbit scene

	1	2	3	4	5	6
02-rabbit-neg	58.62%	61.51%	59.99%	60.58%	57.12%	57.13%
02-rabbit	1.68%	4.31%	2.98%	3.82%	0.65%	0.68%
03-apple	1.69%	4.10%	3.11%	3.44%	0.63%	0.65%
Ø (w/o neg)	1.69%	4.21%	3.05%	3.63%	0.64%	0.67%

Table 2: Result table for general performance of SVDDD (PBMP $_{noc,1px}$)

Conclusion

Conclusion

- surprise candidate ELAS
- camera noise model
- SVDDD dataset
- Salient mask varies a bit
- Immense runtime differences
- Possible outliers in a scene

Contributions

- PFM file reader
- Generic Disparity Interface
- Disparity Executioner
- Evaluation Engine
- Mask creator
- Image diminisher

- Python scripts
- Web result viewer
- Benchmark results
- Skeleton for stereo matcher with separated dsi
- Spatiotemporal stereo matcher

Outlook

- Motion saliency
- Enhancement of spatiotemporal matcher
- Holistic evaluation suite for modern disparity algorithm comparison

Future work

- Multi-view datasets
- High-resolution datasets
- Optical flow regarding spatiotemporal consistency
- Humans depth experience with neuronal networks

References I

S. Martull, M. Peris, and K. Fukui.

Realistic CG stereo image dataset with ground truth disparity maps.

In ICPR workshop TrakMark2012, volume 111, pages 117-118, 2012.