SYNTHETIC ORGANIC CHEMICALS

PUBLISHED BY

Eastman Kodak Company, Rochester, N. Y.

VOLUME 15 • 1943 • NUMBER 3

Simple Halogen Derivatives of Acetylene

By STEPHEN C. POOL*

In 1861 Sawitsch and Reboul (1) prepared compounds which could be represented by formulas such as C₂HCl and C₂Cl₂. Before 1890 many such halogen substitution products of acetylene had been prepared, and it was known that most of them were poisonous and explosive or spontaneously inflammable in air, and had sharp odors like phosphine or phosgene. About 1897 Nef (2), contrasting the mono- and dihalogen compounds with the more harmless and stable methyl- and dimethylacetylenes, CH: CCH₃ and CCH₃: CCH₃, proposed the acetylidene structure for halogen compounds: CHX: C < and CX₂: C <.

The conception of divalent carbon advanced by Nef and Lawrie (3) seemed to explain some of the properties of the halogenated acetylene derivatives. Studies of carbon monoxide, with its divalent carbon and great affinity for oxygen, formed the basis for the acetylidene structure hypothesis. Many derivatives in which two halogen atoms were attached to the same carbon atom were prepared in attempts to establish the acetylidene structure. For instance, dibromoiodoethylene was formed by the addition of hydrogen iodide to C₂Br₂, produced by treating tribromoethylene with alcoholic potassium hydroxide. By oxidation of the dibromoiodoethylene

with fuming nitric acid, iodine and dibromoacetic acid were obtained.

After a period of some controversy, the hypothesis of the acetylidene structure gained ground and was published in textbooks. It seemed to have been generally accepted when Biltz in 1913 published a paper (4) in which he attacked the conclusions of Nef and Lawrie on the ground that derivatives having two halogen atoms on the same carbon atom could be produced from symmetrical dihalogen-substituted acetylenes. This is brought about through a mechanism of "oxidation rearrangement" analogous to the pinacoline rearrangement.

In 1930 it was recognized by Straus, Kollek, and Heyn (5), who had produced many new halogen substitution derivatives of acetylene and diacetylene, that the question of structure of these compounds had not been settled. In 1935 de Laszlo (6) measured the carbonhalogen link distances in dibromoacetylene and diiodoacetylene. He used a new electron-diffraction method. His measurements were 1.84 A. for C-Br and 2.03 A. for C-I—distances shorter than those found for carbon-halogen linkages in di- and tetrabromoethylenes (1.91 A.) and in di- and tetraiodoethylenes (2.10 A.). This is a good indication that the halogens in the acetylene derivatives are linked to carbon-carbon triple bonds. In

^{*}Eastman Kodak Company, Rochester, N. Y.

1941 Finbak and Hassel (7) made physical measurements of dichloroacetylene by Debye's rotating sector method of electron interference. They found it to be a linear symmetrical molecule in which the C-C bond distance is 1.195 A. and the C-Cl bond distance is 1.640 A., definitely proving that the compound is not an acetylidene.

Among the methods by which halogen substitution products of acetylene may be formed, the one used by Sawitsch and Reboul (1) is probably of most general interest to the organic chemist. This is the well-known reaction of a di- or trihalogen ethylene with alkali:

CHX: CHX + KOH
$$\longrightarrow$$
 CH : CX + KX + H₂O
CHX: CX₂ + KOH \longrightarrow CX : CX + KX + H₂O

Ott, Ottemeyer, and Packendorff (8) showed that dichloroacetylene, a liquid which boils at 32°C., could be prepared by distilling trichloroethylene at 130°C. (in an atmosphere free from oxygen) through solid granulated potassium hydroxide previously dehydrated so that it would solidify at about 200°C. If pure caustic potash was used, violent explosions occurred. Explosions were prevented by using impure potassium hydroxide, or by adding a small proportion (less than one per cent) of a silicate to pure potassium hydroxide. No satisfactory explanation has yet been proposed to account for the moderating influence of this small concentration of silicate upon the behaviour of the halogen-substituted acetylene produced. However, dichloroacetylene obtained with potash contaminated by a silicate does ignite spontaneously in air, and has the physical properties normally attributed to this compound.

Dichloroacetylene may also be formed by heating barium trichloroacrylate. Monochloroacetylene, a gas boiling at -31°C., is a decomposition product of the dichloroacrylate. Diiodoacetylene, which melts at 80°C., may be produced by reaction of iodine and acetylene. The method is not suitable for preparing other halogen-substituted acetylenes because addition products are formed.

In 1932 Nieuwland and Vaughn (9) prepared diiodoacetylene by the reaction of iodine and acetylene in liquid ammonia. Vaughn later prepared the same compound by the reaction of iodine and calcium carbide in liquid ammonia.

Straus, Kollek, and Heyn (5) discovered that halogen-substituted acetylenes could be formed by the reaction of acetylene or some of its derivatives with alkaline hypohalogenite solutions:

$CH: CH + 2NaOX \longrightarrow CX: CX + 2NaOH$

They patented the process and produced a large number of compounds which they found to be of interest as drugs valuable for various pharmacological properties many as soporifics or narcotics. Among these compounds were chloro- and bromophenylacetylene, dichlorodiacetylene, and a series of dialkylhalogenacetenyl carbinols, RR'C(OH)C:CX. Their method of preparation of these carbinols is especially valuable because the hydroxyl group interferes with utilization of most other methods, such as the use of a Grignard procedure. In the table on the following page are some of the members of this series of compounds.

During the era when acetylene was used for lighting purposes, explosions sometimes occurred while the acetylene was being purified by washing with hypochlorite solution; these explosions are now believed to have been caused by the formation of dichloroacetylene.

It is interesting to note that, although dichloroacetylene may be formed from caustic potash and trichloroethylene, an old process by which sym-tetrachloroethane reacts with aqueous alkali to form trichloroethylene is still one of the most important commercial procedures for making this chlorinated solvent. The boiling points of sym-tetrachloroethane, trichloroethylene, and dichloroacetylene are respectively 146°, 87°, and 32°C. Fortunately, dichloroacetylene is formed quite slowly by the reaction of trichloro-

ACETYLENE ALCOHOLS WITH HYPOHALOGENITE SALTS

Compound	Formula	Boiling Point
Dimethylbromoacetenyl carbinol	$(CH_3)_2C(OH)C : CBr$	68° (15 mm.)
Methylethylbromoacetenyl carbinol	$(CH_3)(C_2H_5)C(OH)C \ \vdots \ Br$	77° (15 mm.)
Diethylbromoacetenyl carbinol	$(C_2H_5)_2C(OH)C \stackrel{\cdot}{\cdot} CBr$	87° (15 mm.)
Methyl tertiary butylbromo- acetenyl carbinol	CH₃ C(OH)C : CBr	44° (11 mm.)
Bromoacetenylcyclohexanol	CH_2 — CH_2 OH CH_2 — CH_2 — C	114° (12 mm.)
Chlorine compound corresponding to	the preceding structure.	98° (13 mm.)

ethylene with aqueous alkali.

The greatest danger connected with the labile halogen-substituted acetylenes is that they may be formed inadvertently through lack of knowledge of the possibility of their formation. An example of this type of hazard occurred in a large solvent recovery plant last year. Crude acetone was being distilled from a mixture of the solvent with aqueous caustic soda, normally used in the process to remove certain impurities in the acetone. It was not known that the acetone had been contaminated with trichloroethylene. A small amount of dichloroacetylene was formed and was absorbed in acetone as the solvent condensed. Fortunately, the concentration of dichloroacetylene was so small that it ignited spontaneously only when portions of the distillate were

mixed with water (which removed the acetone, leaving the acetylene derivative on the surface), and no serious fire or explosion occurred.

Literature Cited

- (1) Sawitsch, V., and Reboul, A., Annalen 119, 182 (1861); 125, 81 (1863).
- (2) Nef, J. U., Annalen 298, 332 (1897).
- (3) Lawrie, J. W., American Chem. Journal 36, 487 (1906).
- (4) Biltz, H., Berichte 46, 143 (1913).
- (5) Straus, F., Kollek, L., and Heyn, W., Berichte 63, 1868 (1930).
- (6) Laszlo, H. de, Nature 135, 474 (1935).
- (7) Finbak, C., and Hassel, O., Arch. Math. Naturvidenskab 45, No. 3, 8 pp. (1941); see Chem. Abstracts 36, 6408 (1942).
- (8) Ott, E., Ottemeyer, W., and Packendorff, K., Berichte 63, 1941 (1930); 64, 1324 (1931).
- (9) Nieuwland, J. A., and Vaughn, T. H., J. Am. Chem. Soc. 54, 787 (1932); U. S. Patent 2,124,218 (July 19, 1938).

A Stillhead Suitable for the Preparation of Esters

The reaction of an acid and an alcohol to form an ester and water is a common organic synthesis. In order to complete this reaction, it is necessary to remove one of the constituents, usually water, from the mixture by chemical or physical means. The most common physical

means is distillation. A fractionating column is a desirable aid for this process. Two such columns have previously been described in *Synthetic Organic Chemicals*; namely, in Vol. 9, No. 3 (1936) and Vol. 11, No. 1 (1938).

To reduce the amount of the lower-

boiling reactant, the time of esterification, and the temperature of the reaction, a water-immiscible solvent such as benzene, toluene, carbon tetrachloride, etc., is added to the mixture. In practice a binary or ternary mixture is vaporized as the lowest boiling constituent of the esterification reaction. On condensing this vapor, two layers are formed, one of which is aqueous. Continued distillation would, therefore, complete the reaction by entire removal of the water. The proportion of water in the condensate may be very small, however, and to avoid the use of large volumes of solvent, methods have been devised to return the nonaqueous layer to the column or to the reaction mixture. For this purpose a stillhead has been constructed as part of a simple Vigreux-type column, as shown in the accompanying illustration. This column is designed for use with waterimmiscible solvents which are lighter than the aqueous layer. A slight modification of the stillhead is necessary for use with heavy solvents.

Vapors from the column pass through the upper connecting tube to a reflux condenser. The vapors condense and drop into the side arm. Here they separate by gravity, and the light, nonaqueous portion returns to the column through the lower connecting tube. The bottom layer, or water, is drawn off through the stopcock as necessary. A baffle opposite the lower return tube prevents the return of water droplets from the splash-agitated liquid.

The column illustrated is about one meter long and 35 mm. in diameter. It has been used successfully for the preparation of several alkyl halides such as butyl and amyl bromides. High-boiling esters such as amyl acetates, phthalates, salicylates, and synthetic fats such as tripalmitin and trimyristin have been prepared. In the last two cases mentioned, xylene is used to aid in the removal of water.

A characteristic use of this type of column is in the preparation of n-amyl

phthalate. The excess amyl alcohol is the water-carrying agent. The following materials—10,560 g. n-amyl alcohol (120 moles), 7500 g. phthalic acid (45.2 moles), and 25 g. p-toluenesulfonic acid—are mixed in a 22-liter flask, which is heated about 24 hours over a steam bath with mechanical stirring until all the solid phthalic acid has gone into solution. The mixture is then refluxed over a free flame (without any mechanical stirring), using the column as already described. About 1400 cc. of water is collected; this requires 20 hours. The reaction mixture is allowed to cool, and is then neutralized with a weak solution of potassium carbonate. The ester layer is washed with water, and distilled under reduced pressure. The boiling point is 204-206°C. at a pressure of 10 mm. The yield is 12,900 g. of n-amyl phthalate, which is 93% of the theoretical amount, 13,830 g.

Modified Vigreux-type column

INDEX OF CONTENTS

Synthetic Organic Chemicals

VOLUMES I TO VII SEPTEMBER, 1927—July, 1934

General Articles

	Vol. No.	Issue No.
Acids and Alcohols, Preparation of Esters for Identifying	VI	3
Aldehydes, Preparation of	VI	5
Aliphatic Alcohols, Sources of the Common	II	2
Alkylating Agents	V	2
Azoxy Compounds, Preparation of	VII	1
B. Coli versus B. Aerogenes	VI	1
Carbohydrates, Some	I	1
Cellulose Acetate Plasticizers	IV	4
Cellulose Acetate Solvents	II	. 5
Chelate Compounds	VII	5
Determination of Metals with 8-Hydroxyquinoline	IV	3
Diazonium Compounds—Their Use in Organic Synthesis	V	4
Diphenylthiocarbazone—A New Reagent for Heavy Metals	VII	4
Dry-Cleaning Industry, Organic Chemicals in the	VI	2
Ergosterol, Story of	I	3
Ethylene Oxide and Some of Its Reactions	VII	3
Flotation Reagents	IV	5
Fries Reaction	VII	4
Furfural Derivatives	V	1
Grignard Reagents, Reactions with	V	3
Halogenated Phenolphthaleins in X-ray Examinations of the		
Gall Bladder	I	4
Healing Activity of Organic Compounds Containing the		
Sulfhydryl Group	III	5
Heavy Organic Liquids	III	4
Indicators, Synthetic Chemicals as	II	4
Ketenes, Preparation and Reactions of	VII	2
Microscope as an Aid to Organic Chemistry, The	VI	4
Molecular Weight Determination by the Freezing Point		
Method, Liquids for		.1
Natural Gas and Its Uses	III	2
Non-Aqueous Solutions	VII	3

SYNTHETIC ORGANIC CHEMICALS

	Vol. No.	Issue No.
Photographic Sensitizers	I.	2
Plant Stimulants, Organic Chemicals as	III	1
Preparation of Synthetic Organic Chemicals at Kodak Park.	I	1
Pyrrole and Some of Its Derivatives	VI	1
Quinhydrone Electrode	II	1
Racemic Substances, Resolution of	V	5
Reference Fuels Used as Anti-Knock Standards	IV	2
Refractive Index, Liquids for Measuring	V	4
Removal of Water from Organic Compounds	IV	1
Rubber Accelerators, Organic Chemicals as	III	3
Sugar Acids	VII	5
Thionyl Chloride in Organic Synthesis	III	4
Use of Organic Chemicals in Analytical Procedures	VII	2
Laboratory Apparatus and Proceed	lures	
Bubbler-Type Distilling Column, Improvement in the	IV	5
Constant Temperature Bath	II	1
Distillation Flask, Anti-Creep	VI	4
Distillations, "Bumping"	III	. 5
Distillation, Continuous Low Pressure	III	3
Distillations, Tackling Difficult	II	3
Extraction Apparatus for the Laboratory	I	5
Filtration Aids, Novel	III	4
Filtration in Organic Preparations, Hints on	I	3
Fractionating Columns for the Laboratory, Efficient	III	1
Frothing Liquids, Distillation Set-up for	IV	2
Glass Blowing Technique	II	4
Glass Condenser, Rugged	V	2
Indicator Chart, Improved	V	5
Laboratory Distilling Head, Convenient	II	5
Liebig Condenser, Modified	VII	1
Manometer for the Organic Laboratory, Improved	IV	1
Micro Molecular Weight Determinations	VI	5
Pipette for Measuring Corrosive and Toxic Liquids	II	2
Separator for Organic Liquids, Continuous	I	4
Steam Distillation Set-up, Compact	VII	4
Still Head, Water-Cooled	VI	2
Stirrer for Taking Melting Points, Convenient	V	3
Stirrers, Laboratory	IV	4

Organic Chemicals as Analytical Reagents

	Vol. No.	Issue No.
ALUMINUM— Alizarin S; Aurin Tricarboxylic Acid (Ammonium Salt); Hematoxylin; o-Hydroxyquinoline	II	3
Antimony— Pyrogallol; Hexamethylenetetramine; Phenylthiohydantoic Acid	VI	1
BERYLLIUM— Curcumin; 8-Hydroxyquinoline	iv	5
BISMUTH— Cinchonine; Dimethylglyoxime; 8-Hydroxyquinoline; Pyrogallol	v	5
Formaldehyde; 8-Hydroxyquinoline; Quinoline; Thiourea.	VII	5
Boron— Curcumin; Mannitol; Methyl Alcohol	V	2
Cadmium— Hexamethylenetetramine Alliodide; Ethylenediamine; Allylthiourea; Pyridine	IV	4
CALCIUM— Alizarin; Aminonaphthol Sulfonic Acid; Malonic Acid, Potassium Cyanate; Oleic Acid; Thymolphthalein	III	2
Chromium— 1,8-Dihydroxynaphthalene-3,6-Disulfonate; Pyrogallol Dimethyl Ether; Diphenylcarbazide; Diphenylamine	II	4
Cobalt— Dimethylglyoxime; Dinitrosoresorcinol; Nitroso-β-Naphthol; Nitroso-R-Salt; Phenylthiohydantoic Acid	I	4
COPPER—	-	
α-Benzoinoxime (Cupron); Phenylthiohydantoic Acid; s-Diphenylcarbazide	I	1
Dinitrosoresorcinol; Hydroquinone; α-Naphthol; Phenolphthalin; Pyridine; Benzidine, Tolidine; Isatin	I	2
Sodium Diethyldithiocarbamate; p-Dimethylaminobenzal-Rhodanine	IV	3
Gold— Formaldehyde; Phenylhydrazine; Benzidine; o-Tolidine; m-Phenylenediamine	П	5
Iron—		
Thioglycollic Acid; Alloxantin; Dinitrosoresorcinol; Diphenylamine	I	5
Ethyl Ether; Cysteine; Hexamethylenetetramine; α-Nitroso-β-Naphthol, Dimethylaminoazobenzene;		1
Sulfosalicylic Acid	II	2

SYNTHETIC ORGANIC CHEMICALS

	· · ·	
	Vol. No.	Issue No.
Cupferron; Dimethylglyoxime; Iso-Nitrosoacetophenone;		
Acetylacetone; Salicylic Acid	II	1
LEAD—	37 1	
Ammonium Thiocyanate-Pyridine; s-Diphenylcarbazide;		/ .
Aniline; Tetramethyldiaminodiphenylmethane	III	1
Magnesium—		,
Hydroquinone; p-Nitrobenzeneazoresorcinol; Clayton	***	-
Yellow.	III	5
Dimethylamine; 8-Hydroxyquinoline; Oleic Acid	IV	1
Manganese—		
Benzidine Hydrochloride; Potassium Periodate; Tetra-		2
methyldiaminodiphenylmethane	VII	3
MERCURY—	1	
p-Dimethylaminobenzal-Rhodanine; Propylenediamine;	VII	1
Diphenylthiocarbazone; Pyridine	VII	4
MOLYBDENUM— Ethal Ethan Dhandhadagina Datasium Ethal Vanthata		
Ethyl Ether; Phenylhydrazine; Potassium Ethyl Xanthate,	V	4
Chloroform; Tannic Acid		7
α-Benzil Dioxime; Dicyandiamidine Sulphate; Dimethyl-		
glyoxime; Potassium Dithio-Oxalate	T	3
PLATINUM AND PALLADIUM—	1	3
p-Dimethylaminobenzalrhodanine; Dimethylglyoxime;		
Formic Acid; 6-Nitroquinoline	VI	4
Potassium—		
N-Butyl Alcohol, Ethyl Acetate, Perchloric Acid; Sodium		
5-Nitro-6-Chlorotoluene-3-Sulfonate	VII	1
SELENIUM AND TELLURIUM—		•
Hydrazine Hydrochloride; Hydriodic Acid; Hydroquinone;		
Hydroxylamine Hydrochloride, Hydrazine Hydrochlo-		
ride; Oxalic Acid	VI	3
SILVER—		
p-Dimethylaminobenzal-Rhodanine; Dichlorofluorescein;		
Chromotropic Acid; Methylamine	IV	2
TITANIUM—		
Cupferron; 8-Hydroxyquinoline; 5,7-Dibromo-8-Hydroxy-		
	VI	2
TITANIUM AND MOLYBDENUM—		
Cupferron; α-Benzoin Oxime	VII	2
Tungsten—		
Benzidine; Cinchonine; Phenylhydrazine Hydrochloride;		
Uric Acid	V	3
Vanadium		
	V	1
ZINC—		
	0.33	3
Diphenylamine; Pyridine	111	4
Cupferron; α-Benzoin Oxime Tungsten— Benzidine; Cinchonine; Phenylhydrazine Hydrochloride; Uric Acid Vanadium— Aniline; Diphenylbenzidine; Safranine	VII	2

INDEX OF CONTENTS

SYNTHETIC ORGANIC CHEMICALS

VOLUMES VIII TO XV 1934-1943

General Articles

	Vol. No.	Issue No.	YEAR
Acetylene, Simple Halogen Derivatives of	XV	3	1943
Alkanesulfonic Acids, Formation and Properties of		4	1942
Amide in Organic Synthesis, The Use of Sodium		5	1941
Amino Acids in Growth, The Role of		2	1937
Analytical Chemistry, Specific Organic Reagents of		5	1942
Aromatic Acid Chlorides with Grignard Reagents,			
Reactions of	XIII	. 2	1941
Aromatic Aldehydes, A Survey of Preparative Methods for	XV	2	1943
Catalysts, Organic	\mathbf{X}	1	1936
Cellulose Mixed Esters	XII	1	1939
Cellulose, Oxidized	XV	1	1943
Chlorophyll	VIII	5	1935
Co-ordinate Valence in Organic Chemistry	VIII	2	1934
De-Ashed Gelatin in a New Form, Eastman	IX	2	1936
Diene Synthesis, The Diels-Alder		5	1937
Drying Oils, The Hardening of		1	1938
Esters, Preparation of		3	1936
Ethanes, Hexasubstituted		4	1935
Fatty Acids, Oxidation of		1	1934
Fischer Reagent for Determination of Water, Karl		3	1941
Free Radicals in Organic Chemistry, The Role of		5	1936
Furan, Some Metallic Compounds of		3	1936
Gelatin in a New Form, Eastman De-Ashed		2	1936
Heterocyclic Systems in Dye Chemistry		2	1938
Hexasubstituted Ethanes		4	1935
Hydrogen Bridges	XII	2	1939
Immersion Media for Determining Refractive Index	VIII	4	1935
Indicator Solutions, Preparation of	IX	4	1936
Indicators, Oxidation-Reduction	VIII	3	1935
Isotopes, Experimental Methods in Research with Stable	XIV	3	1942
Isotopes as Tracers. Recent Applications of		4	1942

Vol. No. Issue No. YEAR

Isotopes for the Chemist and Biologist, Separated Stable.	XIV	1	1942
Ketonic Cyclopropanes, The Synthesis and Relative	111	•	
Stability of Certain	\mathbf{X}	3	1937
Macrocyclic Compounds, Synthesis of—Depolymerization			
or Radical-Interchange Method—Part I	XII	3	1940
Macrocyclic Compounds, Synthesis of—High-Dilution			
Method—Part II	XII	4	1940
Microscopic Technique, The Use of 1,4-Dioxane in	X	3	1937
National Symposium of Organic Chemistry, The	IX	1	1935
Oligosaccharides, Synthesis of		1	1941
Orthoesters, Some Reactions and Applications of	X	4	1937
Oxidation-Reduction Indicators	VIII	3	1935
Perfumery, Synthetics Used in—Part I	XI	3	1938
Perfumery, Synthetics Used in—Part II	XI	4	1938
Phthalocyanine Dyes and Pigments		2	1942
Plant Growth Stimulants, Organic Chemicals as	IX	2	1936
Polyene Compounds	XIII	4	1941
Quinoline and Its Derivatives	XI	5	1938
Reagents of Analytical Chemistry, Specific Organic	XIV	5	1942
Refractive Index, Immersion Media for Determining	VIII	4	1935
Sodium Amide in Organic Synthesis, The Use of		5	1941
Surface-active Compounds		3	1941
Vacuum Distillation in Organic Research		5	1941
Valence, Types of		1	1934
Water, Karl Fischer Reagent for Determination of	XIII	3	1941
	_		
Laboratory Apparatus and Pro	cedu	res	
Adapter, A Convenient	X	4	1937
Antifoam Device	XIV	3	1942
Chemiluminescence Demonstrations	VIII	3	1935
Concentrator, A Vacuum	IX	5	1936
Constant-Temperature Bath	XV	1	1943
Distillations, Apparatus for Eastman	X	1	1936
Drier, Apparatus	X	5	1937
Extraction Apparatus, A Laboratory	XIII	4	1941
Fractionation Column	XIV	5	1942
Melting Point Apparatus	X	2	1937
Pump and Some New Pump Oils, A Fractionating Vacuum	IX	1	1935
Reflux Condenser for Preparation of Esters		1	1700
		1	1038
	XI	1	1938 1942
Shaker for Chemicals, A Mechanical	XI XIV	1	1942
Shaker for Chemicals, A Mechanical	XI XIV XV	1.	1942 1943
Shaker for Chemicals, A Mechanical	XI XIV	1	1942

Organic Chemicals as Analytica	l Rea	gents	
Aluminum	Vol. No.	Issue No.	YEAR
8-Hydroxyquinoline; Cupferron; Salicylic Acid		5	1936
Arsenic and Barium 8-Hydroxyquinoline Sulfate	VIII	2	1934
BERYLLIUM			
p-Nitrobenzeneazoorcinol; Quinalizarin; Ethylenediamine	XI	1	1938
Візмитн			
Quinoline (1st method); Quinoline (2nd method); Mercaptobenzothiazole	\mathbf{X}	1	1936
CADMIUM AND MOLYBDENUM α-Benzoinoxime; Cyclohexanol; 1-(2 Quinolyl)-	IX	2	1936
4-Allyl Thiosemicarbazide	IA	3	1930
O-Tolidine; Dichlorofluorescein; Nitrosodimethylaniline;	VIII	3	1935
Sodium Nitroprusside	VIII	3	1933
Cobalt Pyridine; Dimethylglyoxime; Ethylenediamine; α-Ni- troso-β-Naphthol; Ammonium Thiocyanate	XIII	1	1941
GOLD			
Dimethylglyoxime; Hydroquinone; 4,4'-Tetramethyldi-			
aminotriphenylmethane	XI	2	1938
HALOGENS			
Bromide—Phenol Red; Fuchsin	VIII	5	1935
Chlorides or Bromides—Brom Phenol Blue	VIII	5	1935
Chlorine or Bromine—Resorufin		4	1935
Fluorides—Triphenyltin Chloride		4	1935
Fluorine (in water)—Sodium Alizarinsulfonate	VIII	4	1935
IRON December on a 7 Inda 9 Hudrowayin aline 5 Sulfania			
Resacetophenone; 7-Iodo-8-Hydroxyquinoline-5-Sulfonic	\mathbf{X}	4	1937
	Λ	4	1937
Iron Quercetin; α , α' -Dipyridyl	XIII	2	1941
Potassium			
Nitroso-R Salt; Dipicrylamine; dl-Tartaric Acid	\mathbf{X}	3	1937
RARE EARTH METALS			
Cerium-Methylene Blue; Arsanilic Acid; 4,4'-Tetra-			
methyldiaminotriphenylmethane; Brucine	XI	5	1938
Europium (bivalent)—Cacotheline	XI	5	1938
Lanthanum — 8-Hydroxyquinoline	XI	5	1938
SELENIUM			
1,8-Diaminonaphthalene; Thiourea; Pyrrole	XI	3	1938
SODIUM (IN BLOOD)			
α-Naphthylamine and Sulfanilic Acid	VIII	2	1934
TIN Cupferron; Dimethylglyoxime; Phenylarsonic Acid	VIII	1	1934

VANADIUM	Vol. No.	Issue No.	YEAR
8-Hydroxyquinoline-5-Sulfonic Acid; Cupferron; p-			
Phenetidine; Barium Diphenylamine Sulfonate; Ro-			
chelle Salt; Mannitol; Glycerol; Sucrose; α-Nitroso-			
β-Naphthol	XII	4	1940
ZINC			
Quinaldinic Acid; Methyl Red	\mathbf{X}	5	1937
ZIRCONIUM			
n-Propylarsonic Acid; p-Dimethylaminoazophenylar-	495		
sinic Acid; β-Nitroso-α-Naphthol; Cupferron and			
8-Hydroxyquinoline; Alizarin		4	1938
Eastman Organic Chemic			
Analytical Reagents, Organic Chemicals as		4	1936
Chemicals for Immediate Shipment	XII	3	1940
Eastman Organic Chemicals	XI	3	1938
Organic Chemicals in Commercial Quantities	XIII	2	1941
Packaging of Eastman Organic Chemicals, The	XII	1	1939
Testing of Eastman Organic Chemicals	XIV	3	1942
Tests Prove the Quality		4	1938
Author Index			
Allen, C. F. H		3	1938
Allen, C. F. H.		4	1938
Bachman, G. B	X	5	1937
Bell, A	XII	3	1940
Brooker, L. G. S.		4	1941
Cressman, H. W. J.	X	3	1937
Fierke, S. S.		2	1937
Fordyce, C. R.		1	1938
Frame, G. F		4	1940
Hickman, K. C. D.		5	1941
Huggins, M. L.		2	1939
Jones, J. E		2	1943
Lowe, W. G	IX	3	1936
Murray, T. F., Jr		5	1936
Perry, E. S		5	1942
Peterson, W. D.	XI	2	1938
Pool, S. C	XV	3	1943
Porter, H. D.	XIII	5	1941
Reynolds, D. D	XIII	1	1941
Sawdey, G. W	\mathbf{X}	4	1937
Stewart, D. W	XIV	1	1942
Stewart, D. W	XIV	3	1942
Straley, J. M	XI	5	1938
Swan, D. R.		3	1941
Taylor, G. J		2	1942
Unruh, C. C.		1	1943
VanCampen, J. H	XIII	2	1941
Weissberger, A	\mathbf{X}	1	1936
Williams, W. W.	XIV	4	1942

