Kubernetes

Divyansh Rajesh Jain

What is Kubernetes?

- Container Orchestration Platform
 - OCI Compliant Images
- Standardized Development and Deployment
 - Virtualizes them to look same
- Allows fast deployment
 - Tools for allow quick & "invisible" updates

High Level Features

- Allow for scalability
 - Deploy many containers of the same image
- Allow for logical grouping
 - Load Balancing for containers
- Self-healing and auto scaling
 - How does Kubernetes self-repair services?

High Level Architecture

Basic Components

- Pod → Smallest unit in Kubernetes
 - Represents a container in Kubernetes
- Deployment → Grouping of Pods
 - Used to start/update all pods originating from a specific image

Basic Components

Persistent Volume → Define persistent storage for

Deployment

- Allows you to store data that outlives Deployment
- Persistent Volume Claim → Defines persistent

storage mapping for cloud resources

Allows you to link to the same volume after every restart

Basic Components

- Secrets → Define any sort of "secret" information
 - Used to specific registry secrets to pull images
- ConfigMaps → Application level configuration
 - Key-value store that applications can read from and write

to

Networking in Kubernetes

- Namespaces
 - Allow "logical" clusters of pods. Can communicate within themselves (Private Network)
- Service
 - Allow to expose a Deployment "externally"

Why Kubernetes?

- Portable Configuration
 - Can change cloud providers to any Kubernete Complaint

Cloud

- Allow for containerization deployment
 - What is the advantage of this?
- Resource allocation is done optimally (Why?)

Common Use Cases

- Microservice Orchestration
 - Deploy Microservices effectively with namespaces
- Multi-Cloud Deployment
 - Abstract Cloud Resources, so Multi-Cloud is very possible
- Al/ML Deployment
 - Dynamic Resource Allocation → Very important for Al

Challenges of Kubernetes

- Very complex to set up
 - Explicitly configure every detail
- kompose → Tool for converting Docker Compose
 - configuration to Kubernetes Configuration
 - Requires very little modification after!

Important Kubernetes Tools

- Kubectl → CLI Client for Kubernetes
 - Interacts with Control Plane for you
- Usually some custom tools are used
 - Automated deployment using Kubernetes API at the end of
 - CI/CD pipelines

Tying back everything

Thank You!

Next Time: Intro to Structured Development

