MapReduce II

Big Data Management

Knowledge objectives

- 1. Enumerate the different kind of processes in Hadoop MapReduce
- 2. Draw the hierarchy of Hadoop MapReduce objects
- 3. Explain the information kept in the Hadoop MapReduce master node
- 4. Explain how to decide the number of mappers and reducers
- 5. Explain the fault tolerance mechanisms in Hadoop MapReduce in case of
 - a) Worker failure
 - b) Master failure
- 6. Identify query shipping and data shipping in MapReduce
- 7. Explain the effect of using the combine function in MapReduce
- 8. Identify the synchronization barriers of MapReduce
- 9. Explain the main problems and limitations of Hadoop MapReduce

Understanding Objectives

- 1. Apply the different steps of a MapReduce execution at the implementation level
- 2. Decide on the use of the combine function

Architecture

Processes

J. Dean et al.

Architectural decisions

- Users submit jobs to a master scheduling system
 - There is one master and many workers
 - Jobs are decomposed into a set of tasks
 - Tasks are assigned to available workers within the cluster/cloud by the master
 - O(M + R) scheduling decisions
 - Try to benefit from locality
 - As computation comes close to completion, master assigns the same task to multiple workers
- The master keeps all relevant information
 - a) Map and Reduce tasks
 - Worker state (i.e., idle, in-progress, or completed)
 - Identity of the worker machine
 - b) Intermediate file regions
 - Location and size of each intermediate file region produced by each map task
 - Stores O(M * R) states in memory

Design decisions

- Number of Mappers
 - One per split in the input (default one chunk)
 - To exploit data parallelism: 10*N < M <100*N
 - Mappers should take at least a minute to execute
 - Split size depends on the time to process data
- Number of Reducers
 - Many can produce an explosion of intermediate files
 - For immediate launch: 0.95*N*MaxTasks
 - For load balancing: 1.75*N*MaxTasks

Fault-tolerance mechanisms

- Worker failure
 - Master pings workers periodically (heartbeat)
 - Assumes failure if no response
 - Completed/in-progress map and in-progress reduce tasks on failed worker are rescheduled on a different worker node
 - Use chunk replicas
- Master failure
 - Since there is only one, it is less likely it fails
 - Keep checkpoints of data structure

Internal algorithm

Query shipping vs. data shipping (I)

Combiner

- Coincides with reducer function when it is:
 - Commutative
 - Associative
- Exploits data locality at the Mapper level
 - Data transfer diminished since Mapper outputs are reduced
 - Saving both network and storing intermediate results costs
- Only makes sense if |I|/|O|>>#CPU
 - Skewed distribution of input data improves

Query shipping vs. data shipping (II)

Algorithm: Data Load

- 1. Upload the data to the Cloud
 - Partition them into blocks
 - Using HDFS or any other storage (e.g., HBase, MongoDB, Cassandra, CouchDB, etc.)
- 2. Replicate them in different nodes

Algorithm: Map Phase (I)

- 3. Each mapper (i.e., JVM) reads a subset of blocks (i.e., split)
- 4. Divide each split into records
- 5. Execute the map function for each record and keep its results in memory
 - JVM heap used as a circular buffer

Algorithm: Map Phase (II)

- 6. Each time memory becomes full
 - 1. The memory is then partitioned per reducers
 - O Using a hash function f over the new key
 - 2. Each memory partition is sorted independently
 - o If a combine is defined, it is executed locally after sorting
 - 3. Spill partitions into disk (massive writing)

Algorithm: Map phase (III)

- 7. Partitions of different spills are merged
 - Each merge is sorted independently
 - o Combine is applied
- 8. Store the result into disk

Algorithm: Shuffle and Reduce

- 9. Reducers fetch data through the network (massive data transfer)
- 10. Key-Value pairs are sorted and merged
- 11. Reduce function is executed per key
- 12. Store the result into disk

MapReduce objects

Record=Key-Value pair

Synchronization barriers

Tasks and Data Flows

Limitations

- Writes intermediate results to disk
 - Reduce tasks pull intermediate data
 - Improves fault tolerance
- Defines the execution plan on the fly
 - Schedules one block at a time
 - Adapts to workload and performance imbalance
- Does not provide transactions
 - Read-only system
 - Performs analytical tasks
- Does not benefit from compression during processing

Closing

Summary

- MapReduce architecture
 - Processes
 - Fault-tolerance mechanisms
 - Bottlenecks
 - Synchronization barriers
- MapReduce detailed algorithm
 - Query shipping
 - Data shipping
- MapReduce limitations

References

- J. Dean et al. MapReduce: Simplified Data Processing on Large Clusters. OSDI'04
- A. Pavlo et al. A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD, 2009
- J. Dittrich et al. Hadoop++: Making a yellow elefant run like a cheetah (without it even noticing). Proceedings of VLDB 3(1), 2010
- A. Rajaraman et al. *Mining massive data sets*. Cambridge University Press, 2012

