Series de números reales (Cálculo I)

Grado en Matemáticas y doble grado Mat-Ing Inf.

20 de diciembre de 2011

Series de números reales.

Con frecuencia aparece el problema de sumar los términos a_n de una sucesión dada de números reales $a_1 + a_2 + a_3 + \cdots + a_n + a_{n+1} + \cdots$

(Recordemos, p.e., que
$$1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+\ldots$$
 nos da el número e).

A este procedimiento lo denominaremos serie (infinita).

Para dar sentido a esto, consideramos sumas parciales, que no es más que ir sumando poco a poco los a_n 's. Así escribimos

- la suma $s_1 = a_1$:
- la suma $s_2 = a_1 + a_2$;
- la suma $s_3 = a_1 + a_2 + a_3$;
- y en general $s_n = a_1 + a_2 + a_3 + \cdots + a_n$

Estas sumas (llamadas *sumas parciales*) forman una sucesión $s_1, s_2, s_3, \ldots, s_N, s_{N+1}, \ldots$ que puede tener un límite o no tenerlo.

2 / 16

Series convergentes y divergentes

Se dice que la serie

$$\sum_{n=1}^{\infty} a_n$$

es **convergente** si el la sucesión formada por las sumas parciales $s_1, s_2, s_3, \ldots, s_N, \ldots$ es convergente. Si lím $s_N = L$ escribiremos directamente

$$\sum_{n=1}^{\infty} a_n = L.$$

Si la sucesión de sumas parciales $s_1, s_2, s_3, \ldots, s_N, \ldots$ no converge, entonces se dice que la serie $\sum_{n=1}^{\infty} a_n$ es divergente (o simplemente que no converge).

Criterios de convergencia/divergencia

A menudo las sumas parciales no se pueden calcular de forma sencilla, y esto hace necesario recurrir a criterios que nos digan si una serie dada converge o diverge.

Teorema

SI una serie
$$\sum_{n=1}^{\infty} a_n$$
 converge, entonces lím $a_n = 0$.

Observación muy útil:

Si una serie
$$\sum_{n=1}^{\infty} a_n$$
 tiene lím $a_n \neq 0$, entonces $\sum_{n=1}^{\infty} a_n$ diverge.

Muchísimo cuidado:

Si una serie $\sum a_n$ tiene lím $a_n=0$, entonces **HAY QUE SEGUIR MIRANDO**

CON OTROS CRITERIOS, porque la serie puede converger o diverger.

Ejemplo: la serie $\sum_{n=1}^{\infty} \frac{1}{n}$ tiene lím $a_n =$ lím $\frac{1}{n} =$ 0, pero es una serie *divergente*.

Criterio de convergencia de Cauchy

Recordamos que una sucesión de números reales es convergente si y solo si es de Cauchy. Además observamos que

$$s_p - s_q = \sum_{n=q+1}^p a_n$$
, si $p > q$.

Por lo tanto se tiene el siguiente criterio, llamado de Cauchy,

Teorema

La serie $\sum_{n=1}^{\infty} a_n$ converge si y solo si dado $\epsilon > 0$, existe $N \in \mathbb{N}$ de forma que

$$\left|\sum_{n=q+1}^{p} a_n\right| < \epsilon, \quad \operatorname{si} p > q \ge N.$$

Algunos ejemplos de series convergentes y divergentes

- La serie $\sum_{n=0}^{\infty} \frac{1}{n!}$ es convergente y su valor es e. (Obsérvese el comienzo en n=0 en vez de en n=1; esto es irrelevante para la convergencia).
- La serie geométrica, de razón r, $\sum_{n=1}^{\infty} a \, r^n$ es convergente $\iff |r| < 1$. De hecho sabemos que $s_n = a \frac{1 r^{n+1}}{1 r}$ y el lím s_n existe $\iff |r| < 1$ y, en ese caso, vale $\frac{a}{1 r}$
- La serie "p-armónica" $\sum_{p=1}^{\infty} \frac{1}{n^p}$ es convergente $\iff p > 1$

Series de términos positivos

Si todos los términos a_n son positivos entonces la sucesión $\{s_n\}_n$ es creciente porque $s_{n+1}=s_n+a_{n+1}\geq s_n$. Usando los resultados de convergencia de sucesiones deducimos entonces

Teorema

Si
$$a_n \ge 0$$
, $\forall n$ entonces $\sum_{n=1}^{\infty} a_n$ converge \iff la sucesión $\{s_n\}_n$ está acotada.

Términos positivos: Criterio de comparación

Como consecuencia de lo anterior se obtiene el siguiente criterio:

Supongamos que tenemos dos series, $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ tal que $a_n \ge 0$, $b_n \ge 0$.

- si $\sum_{n=1}^{\infty} b_n$ es convergente y $a_n \leq b_n$ para todo n, entonces $\sum_{n=1}^{\infty} a_n$ es convergente;
- si $\sum_{n=1}^{\infty} a_n$ es divergente y $a_n \leq b_n$, entonces $\sum_{n=1}^{\infty} b_n$ es divergente.

Términos positivos: Criterio de comparación con límite

Supongamos que tenemos dos series, $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ tal que $a_n > 0$, $b_n > 0$.

- Si el límite lím $\frac{a_n}{b_n}=c>0$ entonces $\sum_{n=1}^\infty a_n$ y $\sum_{n=1}^\infty b_n$ son a la vez convergentes, o a la vez divergentes (lo que no se puede dar es que una sea convergente y la otra no). Ojo: c>0 es un número real, no puede ser ∞ .
- si el límite lím $\frac{a_n}{b_n} = 0$ y $\sum_{n=1}^{\infty} b_n$ converge, entonces $\sum_{n=1}^{\infty} a_n$ converge;
- si el límite lím $\frac{a_n}{b_n} = \infty$ y $\sum_{n=1}^{\infty} b_n$ diverge, entonces $\sum_{n=1}^{\infty} a_n$ diverge.

Términos positivos: Criterio del cociente

Si
$$\sum_{n=1}^{\infty} a_n$$
 cumple

- $\mathbf{0}$ $a_n > 0$ para todo n,
- ② y existe el límite lím $\frac{a_{n+1}}{a_n} = L$,

entonces

- si L < 1 entonces la serie $\sum_{n=1}^{\infty} a_n$ es convergente;
- si L > 1 o $L = \infty$ entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente;
- si L = 1 hay que seguir mirando.

La demostración se hace por comparación con una serie geométrica.

Términos positivos: Criterio de la raíz

Si
$$\sum_{n=1}^{\infty} a_n$$
 cumple

- $\mathbf{0}$ $a_n > 0$ para todo n,
- 2 y existe el límite lím $\sqrt[n]{a_n} = L$,

entonces

- si L < 1 entonces la serie $\sum_{n=1}^{\infty} a_n$ es convergente;
- si L > 1 o $L = \infty$ entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente;
- si L = 1 hay que seguir mirando.

La demostración se hace por comparación con una serie geométrica.

Términos positivos: Criterio de la integral

Si cada uno de los términos a_n es la imagen $f(n) = a_n$ de una función positiva y decreciente, f, entonces se tienen las estimaciones

•
$$\int_{1}^{N} f(x)dx \leq \sum_{n=1}^{N} f(n) \leq f(1) + \int_{1}^{N} f(x)dx$$
,

de donde deducimos el siguiente criterio:

Teorema

SI los términos a_n son imágenes $f(n)=a_n$ de una función positiva y decreciente, f, entonces la serie $\sum_{n=1}^{\infty}a_n$ converge \iff la integral impropia $\int_{1}^{\infty}f(x)dx$ es convergente.

Ejemplo: La serie "p-armónica" $\sum_{n=1}^{\infty} \frac{1}{n^p}$ es convergente si y solo si p > 1 porque

la integral impropia $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ es convergente si y solo si p > 1.

Términos positivos: Criterio de condensación diádica

Si además de ser positivos, los términos a_n forman una sucesión decreciente $a_n \geq a_{n+1}$, entonces se tiene la siguiente estimación en los bloques de índices diádicos $2^k \leq n \leq 2^{k+1}$

$$2^k a_{2^{k+1}} \le \sum_{n=2^k}^{2^{k+1}-1} a_n \le 2^k a_{2^k},$$

de donde deducimos el siguiente criterio:

Teorema

SI los términos a_n son positivos y forman una sucesión decreciente entonces la serie $\sum_{n=1}^{\infty} a_n$ converge \iff la serie $\sum_{k=1}^{\infty} 2^k a_{2^k}$ es convergente.

Ejemplo: La serie $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ es convergente porque $a_n = \frac{1}{n(\ln n)^2}$ es decreciente y

$$\sum_{k=1}^{\infty} 2^k a_{2^k} = \sum_{k=1}^{\infty} \frac{1}{k^2 (\ln 2)^2}$$
 es la serie 2-armónica.

Series con términos positivos y negativos

Hasta aquí los criterios que hemos considerado sólo se usan para series con términos positivos. En el caso en que una serie $\sum_{n=1}^{\infty} a_n$ tenga términos de ambos signos, hay que afinar un poco más:

A veces es posible utilizar el siguiente resultado:

Teorema

$$Si\sum_{n=1}^{\infty}a_n$$
 es una serie para la que $\sum_{n=1}^{\infty}|a_n|$ es convergente, entonces la serie original $\sum_{n=1}^{\infty}a_n$ también es convergente. ^a

^apara probarlo, basta usar el criterio de Cauchy

Convergencia absoluta y condicional

Definición

Sea $\sum_{n=1}^{\infty} a_n$ una serie cuyos términos pueden ser positivos y negativos:

- es absolutamente convergente si $\sum_{n=1}^{\infty} |a_n|$ converge;
- es condicionalmente convergente si $\sum_{n=1}^{\infty} a_n$ converge pero no absolutamente.

- Si una serie converge absolutamente, entonces converge;
- Una serie que diverge no converge ni absoluta ni condicionalmente.

Criterio de Leibniz

Las series de la forma $\sum_{n=1}^{\infty} (-1)^n a_n$ se llaman alternadas porque el signo de sus términos va alternando entre positivo y negativo.

Teorema

 $Si \sum_{n=1}^{\infty} (-1)^n a_n$ es una serie tal que

- $a_n \geq 0$,
- $a_n \geq a_{n+1}$, $\forall n, y$
- $\lim a_n = 0$

entonces la la serie $\sum_{n=1}^{\infty} (-1)^n a_n$ es convergente.