1

Assignment 15

Pulkit Saxena

1 Problem Hoffman Pg 230 Q2

Let T be a linear operator on \mathbb{R}^3 which is represented in standard ordered basis by matrix

$$\begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{pmatrix}$$
(1.0.1)

Prove that T has no cyclic vector. What is the T-cyclic subspace generated by the vector $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$?

2 Theorems

Theorem 1	T be a linear operator on vector space $\mathbb V$ of n dimensional.		
	There exist a cyclic vector for <i>T</i> if and only if minimal polynomial and characteristic polynomial are same. Characteristics Polynomial:-		
	$f(x) = (\mathbf{x} - \lambda_1)^{d_1} \dots (\mathbf{x} - \lambda_k)^{d_k}$ Minimal Polynomial:-		
	$p_a(x) = (\mathbf{x} - \lambda_1)(\mathbf{x} - \lambda_k)$ for the given eigen values $\lambda_1\lambda_k$		
Theorem 2	$\mathbb{Z}(\mathbf{a};T)$ is the subspace spanned by vectors $T^k\mathbf{a}$, $k\geq 0$, and \mathbf{a} is a cyclic vector for T		
	if and only if these vector span \mathbb{V} , the α is called cyclic vector of T .		
Theorem 3 Cyclic Base	Let a be any non-zero vector in \mathbb{V} and let $p_a(minimal polynomial)$ be the T -annihilator of a If the degree of p_a is k , then vectors $\mathbf{a}, T\mathbf{a}, T^2\mathbf{a}, \dots, T^{k-1}\mathbf{a}$ form of a basis for $\mathbb{Z}(\mathbf{a}; T)$.		

TABLE 1: Illustration of theorem.

3 Solution

	3 Bolletton
proof of T doesn't have cyclic vector	Characteristics polynomial of the matrix is $det(x\mathbf{I} - \mathbf{A})$
	$\det(x\mathbf{I} - \mathbf{A}) = \begin{vmatrix} (x-2) & 0 & 0 \\ 0 & (x-2) & 0 \\ 0 & 0 & (x+1) \end{vmatrix}$
	Characteristic Polynomial = $(x-2)^2(x+1)$
	Minimal Polynomial= $p_a(x)$ = $(x-2)(x+1)$ degree =2
	Minimal Polynomial ≠ Characteristic Polynomial
	Thus from Theorem 1 T doesn't have cyclic vector.
Cyclic subspace	For the given matrix $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
	$T(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (2\mathbf{x}, 2\mathbf{y}, -\mathbf{z})$
	$T \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -3 \end{pmatrix}$
	Since we know T^2 a = $T(T$ a)
	$T^{2} \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} = T \begin{pmatrix} 2 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix}$
	$\begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix} \text{ is a linear combination of } \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \text{ and } \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}.$
	Degree of minimal polynomial is 2 therefore from Theorem 3
	Thus cyclic subspace of $\mathbb{Z}(\mathbf{a};T)$ spans $\{\mathbf{a},T\mathbf{a}\}$
	Hence <i>T</i> -cycle subspace generated by $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$
	$= \operatorname{span}\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \end{pmatrix}\right)$

TABLE 2: Solution Table