Introducing Graphics Architecture

Chakrit Watcharopas

Introducing Graphics Architecture

3D rendering

Image credit: Henrik Wann Jensen

Model of a scene:

3D surface geometry (e.g., triangle mesh)
surface materials
lights
camera

Image

How does each triangle contribute to each pixel in the image?

Real-time graphics pipeline (entities)

Real-time graphics pipeline (operations)

Real-time graphics pipeline (state)

Memory Buffers (system state)

Motherboard

Central Processor Unit (CPU)

System Memory

Bus Port (PCI, AGP, PCIe)

Video Memory

Graphics Processor Unit (GPU)

Video Board

"Historic" Phase Evolution of Interactive 3D Graphics

First generation - wireframe

Vertex: transform, clip, and project

Rasterization: color interpolation (points, lines)

Fragment: overwrite

Dates: prior to 1987

Second generation - shaded solids

Vertex: lighting calculation

Rasterization: depth interpolation (triangles)

Fragment: depth buffer, color blending

Dates: 1987 - 1992

Third generation - texture mapping

Vertex: texture coordinate transformation

Rasterization: texture coordinate interpolation

Fragment: texture evaluation, antialiasing

Dates: 1992 - 2000

Texture Mapping

- AGP: Accelerated Graphics Port
- NVIDIA's TNT, ATI's Rage

Multitexturing

Base Texture

modulated by

Light Map

from UT2004 (c)
Epic Games Inc.
Used with permission

1999-2000: Transform and Lighting

- Register Combiner: Offers many more texture/color combinations
- NVIDIA's GeForce 256 and GeForce2, ATI's Radeon 7500, S3's Savage3D

Bump Mapping

 Bump mapping is about fetching the normal from a texture (called a normal map) instead of using the interpolated normal to compute lighting at a given pixel

Diffuse light without bump

Diffuse light with bumps

Cube Texture Mapping

Environment Mapping (the reflection vector is used to lookup the cubemap)

"Modern" Phase Evolution of Interactive 3D Graphics

2001: Programmable Vertex Shader

- Z-Cull: Predicts which fragments will fail the Z test and discards them
- Texture Shader: Offers more texture addressing and operations
- NVIDIA's GeForce3 and GeForce4 Ti, ATI's Radeon 8500

Volume Texture Mapping

Volume Texture (3D Noise)

2002-03: Programmable Pixel Shader

- MRT: Multiple Render Target
- NVIDIA's GeForce FX, ATI's Radeon 9600 to 9800 and X600 to X800

2004: Shader Model 3 & 64-Bit Color

- PCle: Peripheral Component Interconnect Express
- NVIDIA's GeForce 6 Series (6800 and 6600)

Shader Model 3.0 Unleashed

64-Bit Color Support

- 64-bit color means one 16-bit floating-point value per channel (R, G, B, A)
- Alpha blending works with 64-bit color buffer (as opposed to 32-bit fixed-point color buffer only)
- Texture filtering works with 64-bit textures
 (as opposed to 32-bit fixed-point textures only)
- Applications:
 - High-precision image compositing
 - High dynamic range imagery

High Dynamic Range Imagery

- The dynamic range of a scene is the ratio of the highest to the lowest luminance
- Real-life scenes can have high dynamic ranges of several millions
- Display and print devices have a low dynamic range of around 100
- Tone mapping is the process of displaying high dynamic range images on those low dynamic range devices
- High dynamic range images use floating-point colors
- OpenEXR is a high dynamic range image format that is compatible with NVIDIA's 64-bit color format

Real-Time Tone Mapping

 The image is entirely computed in 64-bit color and tone-mapped for display

From low to high exposure image of the same scene

PC Graphics Software Architecture

- The application, 3D API and driver are written in C or C++
- The vertex and pixel programs are written in a high-level shading language (Cg, DirectX HLSL, OpenGL Shading Language)

OpenGL Version Progression

Classic OpenGL State Machine

- From 1991-2007
 - vertex & fragment processing became programmable

[source: GL 1.0 specification]

- 32
 - Intended for hair, particular animation and combing
 - Scientific visualization applications too

References

- Fatahalian, K. (2011). CMU 15-869 Graphics and Imaging Architectures [Lecture notes]. Retrieved from www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www.
- Kilgard, M. and Lichtenbelt, B. 2010. OpenGL 4 for 2010.
 Presented at Siggraph 2010, Los Angeles, July 28, 2010.
- Zeller, C. 2004. Introduction to the Hardware Graphics Pipeline. Tutorial presented at Eurographics 2004, Grenoble (France). Retrieved from <u>developer.nvidia.com/</u> <u>system/files/akamai/gamedev/docs/EG_04_IntroductionToG</u> <u>PU.pdf</u>, [Dec. 12, 2011].