Matematica Discreta I

Esame del 13-09-2005

Esercizio 1.

Sia
$$F: \mathbb{R}^5 \to \mathbb{R}^5$$
 l'applicazione lineare
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + 2x_2 + 4x_3 + x_4 - x_5 \\ 2x_1 + 2x_2 + 6x_3 + 2x_4 - 4x_5 \\ -x_1 + 2x_2 + 2x_4 - x_5 \\ 3x_1 + 6x_3 - 3x_4 + 3x_5 \\ 3x_2 + 3x_3 + 2x_4 - x_5 \end{pmatrix} \text{ e } \vec{v} = \begin{pmatrix} 1 \\ 4 \\ -2 \\ 3 \\ -1 \end{pmatrix}.$$

- a.) Trovare una base di Ker(F).
- b.) Trovare una base di Im(F). (4 pt)
- c.) E' $\vec{v} \in Im(F)$? (1 pt)

Esercizio 2.

Siano
$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
 un'applicazione lineare, e la base naturale di \mathbb{R}^3 e $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$, dove F è dato dalla matrice $[F]_e^e = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 5 & 3 \\ 0 & -6 & -4 \end{pmatrix}$, $\vec{v}_1 = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ e $\vec{v}_3 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$.

- a.) Dimostrare che $b = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ è una base di \mathbb{R}^3 (1 pt)
- b.) Trovare le matrici di cambiamento di base $[I]_e^b$ e $[I]_b^e$. (3 pt)
- c.) Scrivere la relazione che lega la matrice $[F]_e^b$ con $[F]_b^b$ e calcolare $[F]_b^b$. d.) Trovare tutti i vettori \vec{v} con $F^{123454321}(\vec{v}) = -\vec{v}$. (3 pt)
- (1 pt)

Esercizio 3.

Consideriamo in \mathbb{R}^3 la retta $l = \begin{cases} x = 3+t \\ y = -5 \\ z = 6+t \end{cases}$, $t \in \mathbb{R}$, il piano $\pi_1 : 3x - 2y - 3z = 1$ e i due

- a.) Dimostrare che la retta l e il punto A sono contenuto nel piano π_1 . (1 pt)
- b.) Calcolare la distanza tra $A \in l$. (2 pt)
- c.) Trovare l'equazione cartesiano del piano che contiene i punti A e B e che interseca il piano π_1 in una retta perpendicolare alla retta l. (3 pt)

Siano $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \vec{n} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ e $T : \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare $T : \vec{v} \mapsto \vec{v} - proj_{\vec{n}}(\vec{v})$.

- a.) Trovare una base di Ker(T)(1 pt)
- b.) Trovare una base b di \mathbb{R}^3 tale che $[T]_b^b = M$ o spiegiare perchè non esiste un tale base. (1 pt)

Esercizio 5. (2 pt)

Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ un'applicazione lineare e sia e la base naturale di \mathbb{R}^2 . Sia $\lambda \in \mathbb{R}$ e sia $S_{\lambda}: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare dato da $\vec{x} \mapsto \lambda \vec{x}$. Dimostare che $T = S_{\lambda}$, per certo $\lambda \in \mathbb{R}$, se e solo se $[T]_b^b = [T]_e^e$ per ogni base b di \mathbb{R}^2 .

Esercizio 6. (3 pt)

6.1. Quante possibilità per la dimensione di un sottospazio di \mathbb{R}^3 ci sono?

- d.) infinite
- a.) Z

 6.2. L'insieme $U = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid (x+y)^2 \le 0 \}$ è un sottospazio di \mathbb{R}^2 ?

 a.) Si!

 c.) No, perchè esistono $\vec{v}, \vec{w} \in U$ con $\vec{v} + \vec{w} \notin U$.

 - b.) No, perchè $\vec{0} \notin U$. d.) No, perchè esistono $\vec{v} \in U$ e $k \in \mathbb{R}$ con $k\vec{v} \notin U$.
- 6.3. Sia A una matrice $n \times m$ e siano $\vec{x} \in \mathbb{R}^m$ e $\vec{y} \in \mathbb{R}^n$. Se il sistema d'equazioni lineare omogeneo $A\vec{x} = \vec{0}$ ha un unico soluzione. Allora il sistema d'equazioni lineare omogeneo ${}^{T}\!A\vec{y}=\vec{0}$
 - a.) non ha soluzioni.
- c.) ha infinite soluzioni.
- b.) ha un unico soluzione.
- d.) Non si può dire, dipende da A.

Per gli esercizi 1, 2, 3, 4, e 5 le risposte devono essere giustificate. Per l'esercizio 6, dove ogni parte vale 1 punto, basta solo rispondere. Ogni scorettezza durante la prova comporterà l'immediato annullamento della prova e altre sanzioni in accordo con la presidenza del corso di Laurea.