Lemma: If $(\alpha, \alpha)(\beta, \beta) \neq 0$ and $|\alpha| = |\beta|$, then $\alpha = \beta$. Proof: WOLOG suppose α is a prefix of β . Then $\alpha = \beta\beta'$ for some β . But $|\alpha| = |\beta|$, so $|\beta'| = 0$, meaning $\beta' = s(\beta)$. Thus $\alpha = \beta s(\beta) = \beta$. An immediate consequence of this is that a proper filter contains at most one path of any given length.

Let E be a directed graph, and $\alpha \in E^*$ such that $|r^{-1}\{s(\alpha)\}| = \infty$. Let $X, Y \subseteq_{\text{fin}} E(S(E))$, and Z be a finite cover of $E^{X,Y}$. If $\xi_{\alpha} \in \mathcal{U}(X,Y)$, then $\xi_{\alpha} \cap Z \neq \emptyset$. Proof:

First note:

$$\begin{split} E^{X,Y} &= \{e \in E(S(E)) \colon e \leq x \; \forall x \in x \text{ and } ey = 0 \; \forall y \in Y\} \\ &= \{e \in E(S(E)) \colon e \leq \min(X) \text{ and } ey = 0 \; \forall y \in Y\} \\ &= E^{\{\min(X)\},Y} \end{split}$$

Letting $\min(X) = (x, x)$,

$$E^{X,Y} = \{(xx', xx'): x' \in E^*, r(x') = s(x) \text{ and } (xx', xx')y = 0 \ \forall y \in Y\}$$