Алгоритм 4

Обозначения

В данной работе рассматривается и имплементируется предложенный Огита и Аишима итеративный метод уточнения сингулярных значений для полного сингулярного разложения [2].

Рассмотрим данный итеративный метод уточнения сингулярных значений для матрицы с действительными коэффициентами $A \in \mathbb{R}^{m \times n}$, $m \ge n$. В случае m < n будет решаться задача для транспонированной матрицы A^{T} , поскольку сингулярное разложение A^{T} и A совпадает [7].

Пусть $\sigma_i \in \mathbb{R}$, i=1,2,...,n — сингулярные числа. Полным сингулярным разложением матрицы A будем считать такое разложение

$$A = U\Sigma V^{\mathrm{T}}$$
, $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$, $\Sigma \in \mathbb{R}^{m \times n}$, где

матрицы U и V ортогональные, матрица Σ диагональная и $\Sigma_{ii} = \sigma_i$.

Далее будем считать, что $\sigma_1 > \sigma_2 > \cdots > \sigma_n > 0$, то есть все сингулярные значения различные. Также $||\cdot||$ обозначает спектральную норму, т. е. $\sigma_{max}(A)$. E — единичная матрица. В тексте различаются приблизительные значения и посчитанные значения соответственно \tilde{a} и \hat{a} .

Описание исходного алгоритма

Известно, что вычисление сингулярного разложения преимущественно ограниченно матричным умножением, что и является основной вычислительной сложностью алгоритма. Есть несколько подходов к матричному умножению с высокой точностью: XBLAS [3], быстрые и точные вычисления скалярного произведения [4] и произведений матриц [5], основанные на error-free transformations.

Рассматриваемый алгоритм использует такие соотношения:

1. В силу ортогональности U:

$$U^{\mathrm{T}}U = E \tag{1}$$

2. В силу ортогональности V:

$$V^{\mathrm{T}}V = E \tag{2}$$

3. В силу диагонализируемости А:

$$U^{\mathrm{T}}AV = \Sigma \tag{3}$$

Пусть $\widehat{U} \in \mathbb{R}^{m \times m}$ и $\widehat{V} \in \mathbb{R}^{n \times n}$ приближенные значения матриц U и V. Корректирующими матрицами $F \in \mathbb{R}^{m \times m}$ и $G \in \mathbb{R}^{n \times n}$ будем называть такие матрицы, которые удовлетворяют равенствам $U = \widehat{U}(E+F)$ и $V = \widehat{V}(E+G)$. Пусть ϵ определяется как

$$\epsilon \coloneqq \max(\epsilon_F, \epsilon_G), \quad \epsilon_F \coloneqq ||F||, \quad \epsilon_G \coloneqq ||G||.$$

Полагаем, что ϵ мало и $\epsilon < 1$, тогда обе матрицы (E + F) и (E + G) невырожденные и можно разложить в ряд Тейлора [9] обратные матрицы

$$(E+F)^{-1}=E-F+\Delta_F, \ \Delta_F:=\sum_{k=2}^{\infty}(-F)^k, \ ||\Delta_F||\leq \frac{\epsilon_F}{1-\epsilon_F},$$

$$(E+G)^{-1}=E-G+\Delta_G,\ \Delta_G\coloneqq\sum_{k=2}^{\infty}(-G)^k,\ ||\Delta_G||\leq\frac{\epsilon_G}{1-\epsilon_G}.$$

Подставив $U = \widehat{U}(E + F)$ в (1), получим

$$(E+F^T)\widehat{U}^T\widehat{U}(E+F) = E \quad \Rightarrow \quad \widehat{U}^T\widehat{U} = (E+F^T)^{-1}(E+F)^{-1}$$
$$\widehat{U}^T\widehat{U} = (E-F^T+\Delta_F^T)(E-F+\Delta_F),$$

из последнего следует

$$F + F^{T} = E - \widehat{U}^{T}\widehat{U} + \Delta_{1}, \qquad \Delta_{1} = \Delta_{F} + \Delta_{F}^{T} + (F - \Delta_{F})^{T}(F - \Delta_{F}). \tag{4}$$

Аналогичное выражение можно получить, подставив $V = \hat{V}(E+G)$ в (2)

$$G + G^T = E - \hat{V}^T \hat{V} + \Delta_2, \qquad \Delta_2 = \Delta_G + \Delta_G^T + (G - \Delta_G)^T (G - \Delta_G). \tag{5}$$

Проделаем те же операции и подставим $U = \widehat{U}(E+F)$ и $V = \widehat{V}(E+G)$ в уравнение (3)

$$\Sigma - F^T \Sigma - \Sigma G = \widehat{U}^T A \widehat{V} + \Delta_3, \ \Delta_3 = -\Sigma \Delta_3 - \Delta_F^T \Sigma - (F - \Delta_F)^T \Sigma (G - \Delta_G).$$
 (6)

Проведем оценку остаточных членов:

$$\begin{split} \|\Delta_1\| \leq & \frac{(3-2\epsilon_F)\epsilon_F^2}{(1-\epsilon_F)^2} \leq \chi(\epsilon)\epsilon^2, \\ \|\Delta_2\| \leq & \frac{(3-2\epsilon_G)\epsilon_G^2}{(1-\epsilon_G)^2} \leq \chi(\epsilon)\epsilon^2, \\ \|\Delta_3\| \leq & \frac{\epsilon_F^2 + \epsilon_G^2 + (1-\epsilon_F - \epsilon_G)\epsilon_F\epsilon_G}{(1-\epsilon_F)(1-\epsilon_G)} \|\Sigma\| \leq \chi(\epsilon)\epsilon^2 \|A\|, \text{где} \end{split}$$

$$\chi(\epsilon) = \frac{3 - 2\epsilon}{(1 - \epsilon)^2}.$$

Опустим слагаемые второго порядка у Δ_1 , Δ_2 , Δ_3 в (4), (5), (6) и получим систему матричных уравнений для $\tilde{F} = \left(\tilde{f}_{ij}\right) \in \mathbb{R}^{m \times m}$, $\tilde{G} = \left(\tilde{g}_{ij}\right) \in \mathbb{R}^{n \times n}$ и $\tilde{\Sigma} = diag(\tilde{\sigma}_i) \in \mathbb{R}^{m \times n}$

$$\begin{cases}
\tilde{F} + \tilde{F}^T = R, & R = E - \hat{U}^T \hat{U} \\
\tilde{G} + \tilde{G}^T = S, & S = E - V^T \hat{V} \\
\tilde{\Sigma} - \tilde{F}^T \tilde{\Sigma} - \tilde{\Sigma} \tilde{G} = T, & T = \hat{U}^T A \hat{V}
\end{cases} \tag{7}$$

Таким образом, остается решить систему уравнений и найти \tilde{F} , \tilde{G} , $\tilde{\Sigma}$. Эффективнее всего это сделать, представив матрицы \tilde{F} , $\tilde{\Sigma}$, R, T как блочные:

$$\widetilde{F} = \begin{bmatrix}
\widetilde{F}_{11} & \widetilde{F}_{12} \\
\widetilde{F}_{21} & \widetilde{F}_{22} \\
\widetilde{n} & m-n
\end{bmatrix}$$

$$\begin{cases}
n \\ 3m-n
\end{cases}$$

$$\widetilde{\Sigma} = \begin{bmatrix}
\widetilde{\Sigma}_{n} \\
\widetilde{\Sigma}_{n}
\end{bmatrix}$$

$$\begin{cases}
n \\ 3m-n
\end{cases}$$

$$R = \begin{bmatrix}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{bmatrix}$$

$$\begin{cases}
n \\ 3m-n
\end{cases}$$

$$T = \begin{bmatrix}
n \\
\widetilde{T}_{1} \\
T_{2}
\end{bmatrix}$$

$$\begin{cases}
n \\ 3m-n
\end{cases}$$

Тогда первое уравнение системы можно переписать:

$$\tilde{F}_{11} + \tilde{F}_{11}^T = R_{11},\tag{7a}$$

$$\tilde{F}_{21} + \tilde{F}_{12}^T = R_{21},\tag{7b}$$

$$\tilde{F}_{22} + \tilde{F}_{22}^T = R_{22},\tag{7c}$$

третье уравнение системы перепишется так

$$\tilde{\Sigma}_n - \tilde{F}_{11}^T \tilde{\Sigma}_n - \tilde{\Sigma}_n \tilde{G} = T_1, \tag{7d}$$

$$\tilde{F}_{12}^T \tilde{\Sigma}_n = -T_2 \Leftrightarrow \tilde{\Sigma}_n \tilde{F}_{12} = -T_2^T. \tag{7e}$$

Очевидно, что диагональные элементы матриц \tilde{F} и \tilde{G} достаточно просто выражаются

$$\tilde{f}_{ii} = \frac{r_{ii}}{2}$$
, $\tilde{g}_{ii} = \frac{s_{ii}}{2}$, $1 \le i \le n$.

Третье уравнение системы для диагональных элементов выглядит так

$$(1 - \tilde{f}_{ii} - \tilde{g}_{ii})\tilde{\sigma}_i = \left(1 - \frac{r_{ii} + s_{ii}}{2}\right)\tilde{\sigma}_i = t_{ii}, \quad 1 \le i \le n.$$

$$\tilde{\sigma}_i = \frac{t_{ii}}{1 - \frac{(r_{ii} + s_{ii})}{2}}, \text{ если } r_{ii} + s_{ii} \ne 2.$$

$$(8)$$

Замечание. В общем случае возможно равенство $r_{ii} + s_{ii} = 2$, однако на самом деле R и S это невязки с точки зрения ортогональности U и V, поэтому зачастую на практике $|r_{ii}| \ll 1$, $|s_{ii}| \ll 1$ и $|r_{ii} + s_{ii}| \ll 1$.

Остается найти недиагональные значения матриц \tilde{F}_{11} и \tilde{G} . Рассмотрим систему уравнений (7) и (8):

$$\begin{cases} \tilde{f}_{ij} + \tilde{f}_{ji} = r_{ij} \\ \tilde{g}_{ij} + \tilde{g}_{ji} = s_{ij} \\ \tilde{\sigma}_i \tilde{f}_{ij} + \tilde{\sigma}_j \tilde{g}_{ji} = -t_{ji} \end{cases}, \quad 1 \leq i, j \leq n, i \neq j.$$
$$\tilde{\sigma}_j \tilde{f}_{ji} + \tilde{\sigma}_i \tilde{g}_{ij} = -t_{ij}$$

Умножим третье и четвертое уравнения системы на $\tilde{\sigma}_i$ и $\tilde{\sigma}_j$ соответственно,

$$\tilde{\sigma}_{i}^{2}\tilde{f}_{ij} + \tilde{\sigma}_{i}\tilde{\sigma}_{j}\tilde{g}_{ji} = -\tilde{\sigma}_{i}t_{ji},
\tilde{\sigma}_{i}^{2}\tilde{f}_{ji} + \tilde{\sigma}_{i}\tilde{\sigma}_{i}\tilde{g}_{ij} = -\tilde{\sigma}_{i}t_{ij}.$$

Сложив полученные уравнения и подставив второе уравнение, получим

$$\tilde{\sigma}_{i}^{2}\tilde{f}_{ij} + \tilde{\sigma}_{j}^{2}\tilde{f}_{ji} + \tilde{\sigma}_{i}\tilde{\sigma}_{j}(\tilde{g}_{ji} + \tilde{g}_{ij}) = -\tilde{\sigma}_{i}t_{ji} - \tilde{\sigma}_{j}t_{ij} \Rightarrow$$

$$\Rightarrow \tilde{\sigma}_{i}^{2}\tilde{f}_{ij} + \tilde{\sigma}_{j}^{2}\tilde{f}_{ji} = -\tilde{\sigma}_{i}t_{ji} - \tilde{\sigma}_{j}t_{ij} - \tilde{\sigma}_{i}\tilde{\sigma}_{j}s_{ij}.$$

В найденное выражение подставим первое уравнение системы

$$(\tilde{\sigma}_j^2 - \tilde{\sigma}_i^2)\tilde{f}_{ij} = \tilde{\sigma}_j^2 r_{ij} + \tilde{\sigma}_i t_{ji} + \tilde{\sigma}_j t_{ij} + \tilde{\sigma}_i \tilde{\sigma}_j s_{ij} = \tilde{\sigma}_j (t_{ij} + \tilde{\sigma}_j r_{ij}) + \tilde{\sigma}_i (t_{ji} + \tilde{\sigma}_j s_{ij}).$$

Аналогичное выражение можно получить и для \tilde{G}

$$(\tilde{\sigma}_j^2 - \tilde{\sigma}_i^2)\tilde{g}_{ij} = \tilde{\sigma}_i(t_{ij} + \tilde{\sigma}_j r_{ij}) + \tilde{\sigma}_j(t_{ji} + \tilde{\sigma}_j s_{ij}).$$

Таким образом, получаем выражения для недиагональных элементов

$$\tilde{f}_{ij} = \frac{\alpha_{ij}\tilde{\sigma}_j + \beta_{ij}\tilde{\sigma}_i}{\tilde{\sigma}_j^2 - \tilde{\sigma}_i^2}, \quad \tilde{g}_{ij} = \frac{\alpha_{ij}\tilde{\sigma}_i + \beta_{ij}\tilde{\sigma}_j}{\tilde{\sigma}_j^2 - \tilde{\sigma}_i^2}, \quad \tilde{\sigma}_i \neq \tilde{\sigma}_j \text{ для } 1 \leq i, j \leq n, i \neq j, \quad (9)$$
 где $\alpha_{ij} = t_{ij} + \tilde{\sigma}_i r_{ij}$ и $\beta_{ij} = t_{ij} + \tilde{\sigma}_i s_{ij}$.

Все эти рассуждения применимы для нахождения элементов остальных матриц \tilde{F}_{12} , \tilde{F}_{21} , \tilde{F}_{22} . Например, совместив уравнения (7e) и (8), значения матрицы \tilde{F}_{12} получатся

$$\tilde{f}_{ij} = -\frac{t_{ji}}{\tilde{\sigma}_i}, \tilde{\sigma}_i \neq 0, 1 \leq i \leq n, n+1 \leq j \leq m.$$

Из (7*b*) уравнения выражается \tilde{F}_{21} : $\tilde{F}_{21} = R_{21} - \tilde{F}_{12}^T$.

И значения элементов соответственно

$$\tilde{f}_{ij} = r_{ij} - \tilde{f}_{ji} = r_{ij} + \frac{t_{ij}}{\tilde{\sigma}_j}, \tilde{\sigma}_j \neq 0, n+1 \leq i \leq m, 1 \leq j \leq n.$$

Благодаря условию (7c) определяется \tilde{F}_{22} .

$$\tilde{f}_{ij} = \frac{r_{ij}}{2}, \qquad n+1 \le i, j \le m, i \ne j.$$

Замечание. В этом алгоритме мы полагаем, что $\tilde{\sigma}_i \neq \tilde{\sigma}_j$ для всех пар (i, j). Если же это условие не выполняется, то существует подход для решения этой проблемы [6].

Модифицированный алгоритм

Для реализации алгоритма [1] выполним часть вычислений исходного алгоритма в матричном виде. Этот подход увеличивает сложность алгоритма за счёт дополнительного матричного умножения, но дает возможность получить высокую точность при помощи точных матричных умножений [5].

Заменим вычисление коэффициентов α_{ij} и β_{ij} в формуле (9) на аналогичное вычисление коэффициентов в матричном виде. Тогда получится

$$C\alpha = T_1 + R_{11} * \tilde{\Sigma}_n$$
 и $C\beta = T_1^T + S * \tilde{\Sigma}_n$.

Введем матрицы D и E

$$D = \tilde{\Sigma}_n * C\alpha + C\beta * \tilde{\Sigma}_n,$$

$$E = C\alpha * \tilde{\Sigma}_n + \tilde{\Sigma}_n * C\beta.$$

Тогда значение недиагональных элементов матриц \tilde{F}_{11} и \tilde{G} примет вид

$$\tilde{f}_{ij} = \frac{e_{ij}}{\tilde{\sigma}_i^2 - \tilde{\sigma}_i^2}$$
 и $\tilde{g}_{ij} = \frac{d_{ij}}{\tilde{\sigma}_i^2 - \tilde{\sigma}_i^2}$.

```
Вход: A \in \mathbb{R}^{m \times n}, m \ge n, \widehat{U} \in \mathbb{R}^{m \times m}, \widehat{V} \in \mathbb{R}^{n \times n}
Выход: \widehat{U}' \in \mathbb{R}^{m \times m}, \widehat{V}' \in \mathbb{R}^{n \times n}, \widetilde{\Sigma}' = diag(\widetilde{\sigma}_i) \in \mathbb{R}^{m \times n}
R \leftarrow E - \widehat{U}^T \widehat{U}; \quad S \leftarrow E - \widehat{V}^T \widehat{V}; \quad T \leftarrow \widehat{U}^T A \widehat{V}
# счет приблизительных сингулярных значений
for i \leftarrow 1 to n do
      sigma[i] \leftarrow t[i][i]/(1 - (r[i][i] + s[i][i])/2)
sigma_arr \leftarrow diag(sigma)
# счет диагональных элементов матриц \tilde{F}_{11} и \tilde{G}
for i \leftarrow 1 to n do
      f[i][i] \leftarrow r[i][i]/2
      \mathsf{g}[i][i] \leftarrow \mathsf{g}[i][i]/2
# Выделение квадратных матриц n x n из T и R
T1 = T.topRows(n)
R11 = R.topLeftCorner(n, n)
# Вычисление матриц коэффициентов
Ca \leftarrow (T1 + R11 * sigma\_arr)
Cb \leftarrow (T1.transpose() + S * sigma\_arr)
D \leftarrow (sigma\_arr * Ca + Cb * sigma\_arr)
E \leftarrow (Ca * sigma\_arr + sigma\_arr * Cb)
for i \leftarrow 1 to n do
     # Вычисление недиагональных элементов \tilde{F}_{11} и \tilde{G}
     for j \leftarrow 1 to n do
            if i!= j then
                  f[i][j] \leftarrow (E[i][j])/(sigma[j] - sigma[i])
                  g[i][j] \leftarrow (D[i][j])/(sigma[j] - sigma[i])
            endif
     # Вычисление \tilde{F}_{12}
     for j \leftarrow n + 1 to m do
            f[i][j] \leftarrow -t[j][i]/sigma[i]
for i \leftarrow n + 1 to m do
     # Вычисление 	ilde{F}_{21}
     for j \leftarrow 1 to n do
            \mathbf{f}[i][j] \leftarrow r[i][j] - f[j][i]
    # Вычисление 	ilde{F}_{22}
     for j \leftarrow n + 1 to m do
            \mathbf{f}[i][j] \leftarrow r[i][j]/2
# Обновление значений \widehat{U}', \widehat{V}'
U new \leftarrow U + U * F
V_{\text{new}} \leftarrow V + V * G
```

Листинг 1. Полный алгоритм итеративного уточнения сингулярных значений.

В представленном алгоритме есть функции, которые ранее не упоминались: diag(sigma) создает диагональную матрицу с переданными

значениями sigma, topRows(n) возвращает первые n строк в матрице, topLeftCorner(n) возвращает верхнюю левую квадратную матрицу размера $n \times n$ из исходной, transpose() транспонирует матрицу.

Данный алгоритм обладает квадратичной сходимостью, это следует из следующей теоремы.

Теорема. Пусть $A \in \mathbb{R}^{m \times n}$, $\widehat{U} \in \mathbb{R}^{m \times m}$, $\widehat{V} \in \mathbb{R}^{n \times n}$ при $m \geq n$. $\sigma_{n+1} \coloneqq 0$, $U = \widehat{U}(E+F)$ и $V = \widehat{V}(E+G)$, ϵ определяется как $\epsilon \coloneqq \max(\|F\|, \|G\|)$. Аналогично определим $U' = \widehat{U}'(E+F')$ и $V' = \widehat{V}'(E+G')$, $\epsilon' \coloneqq \max(\|F'\|, \|G'\|)$, где U' и V' это результат работы описанного алгоритма уточнения сингулярных значений. Если выполняется условие

$$\epsilon < \frac{\min\limits_{1 \le i \le n} (\sigma_i - \sigma_{i+1})}{30m||A||},$$

тогда

$$\epsilon' < \frac{7}{10}\epsilon, \quad \lim_{\epsilon \to 0} \sup_{\epsilon} \frac{\epsilon'}{\epsilon^2} \le \frac{18m||A||}{\min\limits_{1 \le i \le n} (\sigma_i - \sigma_{i+1})}.$$

Доказательство: [2].

Воспользуемся этой теоремой. Пусть $d\coloneqq \lceil -\log_{10}\tilde{\epsilon} \rceil$, где $\tilde{\epsilon}\coloneqq \max(\lVert \tilde{F}\rVert, \lVert \tilde{G}\rVert)$. Тогда учитывая, что $F\approx \tilde{F}$ и $G\approx \tilde{G}$, получаем

$$\max\left(\frac{\left\|U-\widehat{U}\right\|}{\left\|\widehat{U}\right\|}, \frac{\left\|V-\widehat{V}\right\|}{\left\|\widehat{V}\right\|}\right) \le \epsilon \approx \tilde{\epsilon} \approx O(10^{-d}).$$

Применяя теорему, найдем, что

$$\max\left(\frac{\left\|U-\widehat{U}\right\|}{\left\|\widehat{U}\right\|},\frac{\left\|V-\widehat{V}\right\|}{\left\|\widehat{V}\right\|}\right) \leq \widetilde{\epsilon} \leq \frac{18m\|A\|}{\min\limits_{1\leq i\leq n}(\sigma_i-\sigma_{i+1})}\epsilon^2 \approx \frac{18m\|A\|}{\min\limits_{1\leq i\leq n}(\sigma_i-\sigma_{i+1})}\widetilde{\epsilon}^2 \approx O(10^{-2d}),$$
 при $\epsilon \to 0$.

Таким, образом требуемая арифметическая точность алгоритма составляет около 2d десятичных цифр. Хотя арифметическая точность в двух последних строках алгоритма составляет d десятичных цифр. Это происходит ввиду того, что только первые d десятичных цифр \widehat{U} и \widehat{V} точны, и только первые d десятичных цифр \widehat{U} и \widehat{V} могут повлиять на результат [1]. В итоге, вычислительная сложность алгоритма (количество требуемых операций) с точностью 2d и d десятичных цифр соответственно $m^3 + 2m^2n + 2mn^2 + n^3$ до $2m^3 + 2m^2n + 2mn^2 + 2n^3$ [1].

Тестирование алгоритма

Тестирование алгоритма проводилось на прямоугольных и квадратных матрицах разного размера. Сначала генерировались сингулярные значения в некотором интервале, по которым восстанавливались матрицы A, U, V. После в матрицы U, V добавлялся псевдослучайный шум, применялся алгоритм Огиты – Аишимы и оценивалась точность полученных ошибок для матриц U, Σ, V . Полученные результаты представлены в файле results.csv.

проведено было следующее тестирование. Аналогично прошлому варианту генерировались сингулярные значения в некотором восстанавливались матрицы A, U, V. которым применялся алгоритм сингулярного разложения *Jacobi* [8] с последующим Огиты-Аишимы. результатов алгоритмом Полученные уточнением результаты представлены в файле results2.csv.

При проведении тестов, представленных ниже, помимо уточнения сингулярных чисел, оценивалась невязка по фробениусовой норме исходной матрицы и восстановленной матрицы после 1-й итерации алгоритма.

Случай действительной матрицы

Приведем примеры работы алгоритма для 5 итераций на действительной матрице со следующим тестированием: сгенерируем сингулярные значения на интервале [0, 10] и восстановим матрицы A, U, V. В матрицы U, V добавим псевдослучайный шум с уровнем 10^{-15} .

Исходные матрицы.

A:

```
\begin{pmatrix} 4.10336775836158208428 & 3.29563031926548808499 & 2.98311937547734791184 \\ -1.83714064901915822723 & 4.81146718285331530772 & -0.87937211634792041172 \\ -0.413078857471356775686 & -1.60458059115785352266 & -6.20393499587064470259 \\ -3.69810676996781650429 & -3.80611558124069507682 & 0.0584196681479766436699 \end{pmatrix},
```

U:

```
 \begin{pmatrix} -0.661193247515689906798 & -0.00581964040032574632407 & -0.315945468585783538571 & 0.680417579215422818541 \\ -0.19512644118361285494 & -0.625048023017053313904 & 0.740952971895699201443 & 0.149095051267379271345 \\ 0.543644913118715171127 & -0.633279208211400235239 & -0.453856886273380980999 & 0.31212430163240725237 \\ 0.478747710000599719911 & 0.456331617527457849545 & 0.381026352239936521508 & 0.646050310666811316478 \end{pmatrix}
```

S:

```
\begin{pmatrix} 8.89835108803662434059 & 0 & 0 \\ 0 & 5.85432592672243339417 & 0 \\ 0 & 0 & 4.45451069918437993515 \\ 0 & 0 & 0 \end{pmatrix}
```

V:

```
 \begin{pmatrix} -0.488817833901195703764 & -0.0515085409020628741562 & -0.870863936257716188174 \\ -0.653197892368087485956 & -0.640087489851553540019 & 0.404500332189512224964 \\ -0.578264332866926389874 & 0.766573463896108172396 & 0.279240909940307091889 \end{pmatrix}
```

Матрицы после применения алгоритма.

Â:

```
\begin{pmatrix} 4.10336775836158208384 & 3.29563031926548808499 & 2.98311937547734791184 \\ -1.83714064901915822702 & 4.81146718285331530772 & -0.879372116347920411775 \\ -0.413078857471356775143 & -1.60458059115785352266 & -6.20393499587064470259 \\ -3.69810676996781650429 & -1.60458059115785352266 & 0.0584196681479766437512 \end{pmatrix}
```

 \widehat{U} :

```
-0.661193247515689906852
                        -0.00581964040032574642868
                                                      -0.315945468585783538517
                                                                                0.680417579215422818595
-0.19512644118361285494
                          -0.625048023017053313688
                                                      0.740952971895699201606
                                                                                0.149095051267379271332
0.543644913118715171181
                          -0.633279208211400235348
                                                      -0.453856886273380980782
                                                                                0.312124301632407252343
0.478747710000599719965
                           0.456331617527457849653
                                                       0.3810263522399365214
                                                                                0.646050310666811316424
```

Ŝ:

$$\begin{pmatrix} 8.89835108803662433972 & 0 & 0 \\ 0 & 5.85432592672243339374 & 0 \\ 0 & 0 & 4.45451069918437993515 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Û:

```
\begin{pmatrix} -0.48881783390119570371 & -0.0515085409020628744036 & -0.870863936257716188174 \\ -0.653197892368087485956 & -0.640087489851553539965 & 0.404500332189512225181 \\ -0.578264332866926389874 & 0.766573463896108172504 & 0.279240909940307091645 \end{pmatrix}
```

Посчитаем невязки матриц.

$$\begin{split} \left\|A - \hat{A}\right\|_{1} &= 1.54499 * 10^{-18}; \ \left\|A - \hat{A}\right\|_{2} = 7.65208 * 10^{-19}. \\ \left\|U - \widehat{U}\right\|_{2} &= 4.30403 * 10^{-19}; \ \left\|S - \hat{S}\right\|_{2} = 9.6974 * 10^{-19}; \\ \left\|V - \widehat{V}\right\|_{2} &= 4.30506 * 10^{-19}. \end{split}$$

Случай комплексной матрицы.

Для вычисления сингулярного разложения комплексной матрицы 6×5 используется Jacobi [8] с последующим уточнением алгоритмом Огиты - Аишимы.

Оригинальная матрица:

```
0.127171 - 0.997497i
                                                                                                 0.49321 + 0.64568i
                       0.617481 - 0.613392i
                                              -0.0402539 + 0.170019i
                                                                        0.791925 - 0.299417i
0.717887 - 0.651784i
                      0.0270699 + 0.421003i
                                               -0.970031 - 0.39201i
                                                                        -0.271096 - 0.817194i
                                                                                                -0.668203 - 0.705374i
-0.108615 + 0.97705i
                      -0.990661 - 0.761834i
                                               -0.24424 - 0.982177i
                                                                        0.142369 + 0.0633259i
                                                                                                0.214331 + 0.203528i
0.32609 - 0.667531i
                     -0.295755 - 0.0984222i
                                               0.215369 - 0.885922i
                                                                        0.605213 + 0.566637i
                                                                                                -0.3961 + 0.0397656i
                                                                                                -0.580798 + 0.724479i
0.453352 + 0.751946i
                       0.851436 + 0.911802i
                                              -0.715323 + 0.0787072i
                                                                       -0.529344 - 0.0758385i
0.687307 + 0.559313i
                                                                                                -0.952513 + 0.680288i
                       0.99939 + 0.993591i
                                               -0.215125 + 0.222999i
                                                                        -0.405438 - 0.467574i
```

Восстановленная матрица после Jacobi:

```
0.617482 - 0.613392i
0.127171 - 0.997498i
                                               -0.0402537 + 0.170019i
                                                                        0.791925 - 0.299417i
                                                                                                  0.49321 + 0.64568i
0.717888 - 0.651784i
                        0.02707 + 0.421004i
                                                -0.970032 - 0.39201i
                                                                        -0.271096 - 0.817195i
                                                                                                -0.668203 - 0.705374i
-0.108615 + 0.97705i
                      -0.990662 - 0.761834i
                                               -0.244239 - 0.982177i
                                                                        0.142369 + 0.0633259i
                                                                                                 0.214332 + 0.203528i
0.326091 - 0.667532i
                      -0.295755 - 0.0984224i
                                               0.215369 - 0.885922i
                                                                        0.605213 + 0.566638i
                                                                                                -0.396099 + 0.0397656i
0.453353 + 0.751946i
                       0.851436 + 0.911802i
                                               -0.715324 + 0.0787074i
                                                                       -0.529344 - 0.0758386i
                                                                                                -0.580798 + 0.724479i
0.687308 + 0.559313i
                        0.99939 + 0.993592i
                                               -0.215125 + 0.222999i
                                                                       -0.405439 - 0.467574i
                                                                                                -0.952514 + 0.680289i
```

Восстановленная матрица после алгоритма Ogita-Aishima:

1	0.127171 - 0.997497i	0.617481 - 0.613391i	-0.040254 + 0.170019i	0.791925 - 0.299417i	0.49321 + 0.64568i	
1	0.717887 - 0.651784i	0.0270699 + 0.421003i	-0.970031 - 0.39201i	-0.271096 - 0.817194i	-0.668203 - 0.705374i	
-	-0.108615 + 0.97705i	-0.990661 - 0.761834i	-0.24424 - 0.982177i	0.142369 + 0.0633259i	0.214332 + 0.203528i	
-	0.32609 - 0.667531i	-0.295755 - 0.0984222i	0.215369 - 0.885922i	0.605213 + 0.566637i	-0.3961 + 0.0397657i	
- (0.453353 + 0.751946i	0.851436 + 0.911802i	-0.715323 + 0.0787073i	-0.529344 - 0.0758386i	-0.580798 + 0.724479i	
1	0.687307 + 0.559313i	0.99939 + 0.993591i	-0.215125 + 0.222999i	-0.405438 - 0.467574i	-0.952513 + 0.680288i	

Таким образом, тест на комплексных матрицах показал, что имплементированный алгоритм работает не только на действительных матрицах, но и на комплексных матрицах. Однако это подлежит дальнейшему изучению.

Дополнительные тесты

 Таблица 1.
 Значение характеристик для псевдослучайных действительных матриц.

Matrix	Relative Error	$\max(F , G)$	$\max(R , S)$	Elapsed Time
Size	$(\ A - U^*S^*V^T\ / \ A\)$			(s)
10×10	7.12345e-08	8.74816e-08	1.74963e-07	0.0032547
30×30	1.14187e-07	2.67087e-07	5.34173e-07	0.0243358
50×50	1.33093e-07	3.75116e-07	7.50232e-07	0.110236
60×45	6.47478e-07	3.02241e-06	6.04481e-06	0.182544

Применение безошибочного преобразования матричного умножения в алгоритме Огиты – **А**ишимы

Одним из существенных недостатков алгоритма (рисунок 1) является частое применение матричного умножения, что влияет на сложность алгоритма и его точность. Попробуем применить один из методов безошибочного матричного умножения [5], чтобы повысить точность алгоритма. В статье [5] применяются быстрые рутины в *BLAS*, в настоящей имплементации мы воспользуемся инструментами *eigen* [8].

Проведем тесты с применением *eigen* умножения и имплементированного алгоритма точного умножения в алгоритме Огиты-Аишимы на 10 итерациях. Проведем тестирование на матрицах размера 30×30 , 60×60 , 100×100 с генерацией сингулярных значений на отрезке [0,10], в восстановленные матрицы U,V добавим псевдослучайный шум с уровнем 10^{-15} .

Таблица 2. Сравнение результатов работы алгоритма Огиты-Аишимы с применением встроенного матричного умножения и безошибочного

матричного умножения [5] для действительных матриц.

	<u> </u>	.	<u> </u>
		Время	
Размер матрицы	$\left\ A - \widehat{U} * \widehat{S} * \widehat{V}^{\mathrm{T}} \right\ _{2}$	выполнения (мс)	Метод
30×30	$6,42142 * 10^{-18}$	282,256	eigen (c)
30×30	$9,53216*10^{-14}$	1048,95	алгоритм [5]
60×60	$1,11905 * 10^{-17}$	2132,03	eigen (c)
60×60	$1,42568 * 10^{-13}$	6581,68	алгоритм [5]
100×100	$1,82237 * 10^{-17}$	4092,89	eigen (c)
100×100	$8,11211*10^{-13}$	28115,3	алгоритм [5]

При тестировании алгоритма для уточнения сингулярных значений с применением точного матричного умножения были получены результаты хуже, чем с применением средств *eigen*. Вероятнее всего, алгоритм плохо протестирован и требует улучшений.

Список литературы

- [1] Uchino Y., Terao T., Ozaki K.: Acceleration of iterative refinement for singular value decomposition / Numerical Algorithms. 2024. № 95. C. 979–1009.
- [2] Ogita, T., Aishima, K.: Iterative refinement for singular value decomposition based on matrix multiplication / J. Comput. Appl. 2020. №369. 112512.
- [3] Li X. S., Demmel J. W., Bailey D. H., Henry G., Hida Y., Iskandar J., Kahan W., Kang S. Y., Kapur A., Martin M. C., Thompson B. J., Tung T., Yoo D.: Design, implementation and testing of extended and mixed precision BLAS, ACM Trans. / Math. Software. —2002. № 28. C. 152–205.
- [4] Ogita T., Rump S. M., Oishi S.: Accurate sum and dot product / SIAM J. Sci. Comput. —2005. № 26:6. C. 1955–1988.
- [5] Ozaki K., Ogita T., Oishi S., Rump S. M.: Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications / Numerical Algorithms. 2012. 59:1. C. 95-118.
- [6] Ogita T., Aishima K.: Iterative refinement for symmetric eigenvalue decomposition / Japan J. Indust. Appl. Math. 2018, № 35:3. C. 1007–1035.
- [7] Golub G. Matrix Computations / Gene H. Golub, Charles F. Van Loan. 4th ed. Baltimore : Johns Hopkins University Press, 2013. C. 756.
- [8] Eigen [Электронный ресурс]: библиотека для линейной алгебры на C++ / разработчики G. Guennebaud, B. Jacob и др. URL: https://eigen.tuxfamily.org.
- [9] Зорич В. А. Математический анализ. Ч. 1 / В. А. Зорич. 6-е изд., испр. М.: МЦНМО, 2012. 564 с.