Analyzing YRBS Data Using R's Survey Package: A Comprehensive Guide

Analyzing YRBS Data Using R's Survey Package: A Comprehensive Guide

Introduction

This guide will walk you through analyzing Youth Risk Behavior Survey (YRBS) data using R, with a particular focus on the survey package. If you're transitioning from SAS to R or are new to working with complex survey data, this guide will help you understand both the "how" and "why" of each analytical step.

Prerequisites

Before beginning your analysis, you'll need to install and load several key R packages:

```
#install.packages(c("tidyverse", "vroom", "survey", "magrittr", "here", "data.table", "quest
```

Pro-tip: Typically, you only need to use install.packages() once. Once you've run the above code, you can comment it out by putting a '#' in front of install.packages. This prevents the code from running next time you start the program.

Why These Packages?

- tidyverse: Provides essential data manipulation tools (similar to PROC SQL in SAS)
- vroom: Enables fast loading of large CSV files
- survey: Handles complex survey designs (analogous to PROC SURVEYFREQ in SAS)
- here: Manages file paths consistently across different computers
- data.table: Offers efficient data manipulation for large datasets

• questionr: Enables efficient odds ratio calculation

After installing the packages, you'll need to load the individual packages' libraries.

Note: You'll have to run the library() statements each time you start your program.

```
library(tidyverse)
library(vroom)
library(survey)
library(magrittr)
library(here)
library(data.table)
library(questionr)
```

Data Loading and Initial Processing

Loading YRBS Data + Selective Variable Selection

Why Select Only Some Variables?

- 1. Improves computational efficiency
- 2. Reduces memory usage
- 3. Makes the dataset more manageable
- 4. Helps focus the analysis on relevant variables

Data Preparation

Removing Incomplete Cases

Before we create our survey designs later, we'll need to remove incomplete observations from our 'weight' variable. In this example, we're using ADJWEIGHT15_21. There may be cases where you use another ADJWEIGHT value, or simply the weight variable that comes with the YRBS dataset.

```
# Filter out blank weight values
YRBSdata <- YRBSdata %>%
filter(complete.cases(YRBSdata$ADJWEIGHT15_21))
```

Converting Categorical Variables to Factors

Why Convert to Factors?

- Ensures R treats these variables as categorical rather than continuous
- Enables proper statistical analysis
- Prevents errors in survey calculations
- Similar to FORMAT statements in SAS

Creating Separate Datasets for Different Analyses

A critical step in YRBS analysis is creating two separate datasets:

```
YRBSdata_tables <- YRBSdata
```

Why Create Two Datasets?

- 1. YRBSdata (for Logistic Regression)
 - Contains binary (0/1) coded variables needed for logistic regression
 - Used for calculating odds ratios
 - Variables like genderexp are coded as 1/0 for statistical modeling
 - Similar to creating dummy variables in SAS

2. YRBSdata_tables (for Frequency Tables)

- Maintains original categorical labels
- Used for creating readable frequency tables and cross-tabulations
- Keeps text values (e.g., "SOMEWHAT MASC" instead of 1)
- Makes output tables more interpretable

This separation allows us to:

• Maintain data integrity for different types of analyses

- Avoid repeatedly recoding variables
- Generate both statistical results and human-readable tables

Preparing Binary Variables (YRBSdata only)

For logistic regression, convert categorical variables to binary (0/1):

Survey Design Implementation

Creating Separate Survey Design Objects

Because we have two differently formatted datasets, we need two survey design objects:

Why Create Two Survey Designs?

- 1. yrbsdes (for Regression)
 - Uses the binary-coded dataset
 - Optimized for statistical modeling

• Produces odds ratios and other statistical measures

2. yrbsdes tables (for Tables)

- Uses the categorical-labeled dataset
- Creates readable frequency tables
- Maintains original variable labels for clear reporting

Important Notes:

- 1. Complete all data preparation BEFORE creating survey designs
- 2. The survey design objects "lock in" your data configuration
- 3. Set options(survey.lonely.psu="adjust") to handle single-PSU strata

Analysis Techniques

Creating Weighted Frequency Tables

Using yrbsdes_tables for human-readable output:

```
# Example: Demographics by gender expression
prop.table(svytable(~genderexp + race7, yrbsdes_tables), margin=1) %>%
   multiply_by(100) %>%
   round(digits=1)
```

1	cace7					
genderexp	American	Indian/A	Alaskan	Native	Asian	
EQUALLY FEM AND MASC				1.1	9.8	
MOSTLY FEM				0.6	7.5	
MOSTLY MASC				0.6	9.0	
SOMEWHAT FEM				0.9	11.0	
SOMEWHAT MASC				1.2	10.4	
VERY FEM				0.7	5.0	
VERY MASC				0.9	6.2	
1	race7					
genderexp	Black or	African	America	n Hispa	nic/La	atino
EQUALLY FEM AND MASC			15.	4		35.2
MOSTLY FEM			13.	6		28.2
MOSTLY MASC			9.	9		27.5
SOMEWHAT FEM			13.	6		33.2
SOMEWHAT MASC			11.	5		28.6
VERY FEM			17.	1		35.9
VERY MASC			21.	6		28.7

race7

genderexp	Multiple Races	(Non-His)	${\tt Native}$	Hawaiian/Other PI	White
EQUALLY FEM AND MASC		3.5		0.9	34.0
MOSTLY FEM		4.0		0.4	45.7
MOSTLY MASC		3.8		0.5	48.6
SOMEWHAT FEM		4.6		0.5	36.0
SOMEWHAT MASC		3.7		0.5	44.1
VERY FEM		2.7		0.6	38.0
VERY MASC		3.1		0.5	38.9

Running Logistic Regression

Using yrbsdes for statistical analysis:

Warning in eval(family\$initialize): non-integer #successes in a binomial glm!

```
# Get odds ratios
odds.ratio(logit_model, level = 0.95)
```

```
OR 2.5 % 97.5 % p
(Intercept) 0.057658 0.048749 0.0682 < 2e-16 ***
genderexp 0.545402 0.353371 0.8418 0.00644 **
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Best Practices and Tips

1. Data Management

- Always check for missing values before analysis
- Document variable recoding decisions
- Keep original and analysis datasets separate

2. Survey Design

- Create separate design objects for different analyses
- Always specify the correct weight variable
- Handle lonely PSUs appropriately

3. Analysis

- Use weighted analyses for all estimates
- Check assumptions before running models
- Document all analytical decisions

Common Troubleshooting

1. Missing Values

- Use na.omit() or filter(!is.na()) before analysis
- Check codebook for expected missing value codes

2. Survey Design Errors

- Ensure all strata have multiple PSUs
- Verify weight variable is numeric and non-missing
- Check for proper factor levels in categorical variables

3. Results Interpretation

- Always use weighted percentages for population estimates
- Report confidence intervals with point estimates
- Document any subpopulation analyses

Additional Resources

- R Survey Package Documentation
- CDC YRBS Data User's Guide