Supplementary materials

Giada Grottini

May 2024

0.1 Table 3-4

Dataset	Thresh.	Acc.	MCC
Optimization set (subset1)	10^{-4}	1.0	0.907
	10^{-5}	1.0	0.955
	10^{-6}	1.0	0.969
	10^{-7}	1.0	0.984
	10^{-8}	1.0	0.992
	10^{-9}	1.0	1.0
	10^{-10}	1.0	1.0
	10^{-11}	1.0	1.0
Validation set (subset2)	10^{-9}	1.0	0.991

Table 1: Performance of the Markovian Model based on a muktiple sequence alignment using various threshold, subset 1 as optimization set and subset 2 as validation set

Dataset	Thresh.	Acc.	MCC
Optimization set (subset2)	10^{-4}	1.0	0.935
	10^{-5}	1.0	0.984
	10^{-6}	1.0	0.996
	10^{-7}	1.0	0.996
	10^{-8}	1.0	0.996
	10^{-9}	1.0	0.992
	10^{-10}	1.0	0.992
	10^{-11}	1.0	0.992
Validation set (subset1)	10^{-6}	1.0	0.969

Table 2: Performance of the Markovian Model based on a muktiple sequence alignment using various threshold, subset 2 as optimization set and subset 1 as validation set

0.2 Table 5-6

Dataset	Thresh.	Acc.	MCC
Optimization set (subset1)	10^{-4}	1.0	0.913
	10^{-5}	1.0	0.973
	10^{-6}	1.0	0.977
	10^{-7}	1.0	0.992
	10^{-8}	1.0	1.0
	10^{-9}	1.0	1.0
	10^{-10}	1.0	1.0
	10^{-11}	1.0	1.0
Validation set (subset2)	10^{-8}	1.0	0.992

Table 3: Performance of the Markovian Model based on a muktiple structure alignment using various threshold, subset 1 as optimization set and subset 2 as validation set

Dataset	Thresh.	Acc.	MCC
Optimization set (subset2)	10^{-4}	1.0	0.942
	10^{-5}	1.0	0.988
	10^{-6}	1.0	1.0
	10^{-7}	1.0	0.996
	10^{-8}	1.0	0.992
	10^{-9}	1.0	0.992
	10^{-10}	1.0	0.992
	10^{-11}	1.0	0.992
Validation set (subset1)	10^{-6}	1.0	0.977

Table 4: Performance of the Markovian Model based on a muktiple structure alignment using various threshold, subset 2 as optimization set and subset 1 as validation set

0.3 ROC curves

Figure 1: ROC curve obtained from the first cross-validation phase in the multiple sequence alignment model.

Figure 2: ROC curve obtained from the second cross-validation phase in the multiple sequence alignment model

Figure 3: ROC curve obtained from the first cross-validation phase in the multiple structure alignment model.

Figure 4: ROC curve obtained from the second cross-validation phase in the multiple structure alignment model.