1.	Considere que a arquitetura Y86 suporta uma instrução iaddl C, rB, a qual adiciona
	uma constante C ao valor armazenado no registo especificado pelo campo rB.
	Indique quais os sinais de controlo relevantes da organização sequencial do Y86 ativos em cada fase de execução da instrução.

2. Considere o seguinte programa em Y86. Identifique para cada ciclo do relógio a ocupação de cada estágio do processador, para a versão PIPE do Y86. Justifique a sua resposta indicando quais os valores encaminhados.

i1: irmovl \$10,%ecx
i2: xorl %eax, %eax

i3: jne i6

i4: pushl %eax

i5: halt

i6: pushl %ecx

i7: halt

1	2	3	4	5	6	7	8	9	10	11	12	13	14	Justificação

Nome:	N7./
Nome	Número:
NULLE.	Nullel O.

- 3. Considere o seguinte extrato de programa escrito em Y86:
 - I1: mrmovl 0(%ecx), %edx
 - 12: addl %edx, %eax
 - 13: rmmovl %eax, 1000(%ecx)
 - I4: addl %esi, %ecx
 - I5: mrmovl 0(%ecx), %edx
 - 16: addl %edx, %eax
 - 17: rmmovl %eax, 1000(%ecx)
- 3.1 Identifique as dependências de dados existentes neste programa. Indique quais dessas dependências originam bolhas na arquitetura Y86 PIPE e explique como é que o escalonamento dinâmico e a renomeação de registos permitem remover essas bolhas.

3.2 Apresente o escalonamento dinâmico deste programa (depois de remoção de dependências através da renomeação de registos), numa arquitetura superescalar de duas vias, com a capacidade de executar uma operação aritmética/salto simultaneamente com um acesso à memória. Apresente apenas a fase de execução de cada instrução e considere que a latência de ambas as unidades funcionais corresponde a um só ciclo de execução.

Ciclo	Aritmética/salto	Acesso à memória
1		
2		
3		
4		
5		
6		
7		

Nome:	NI /
Nomo	Número:
NUME.	Municio.

4. Considere o seguinte programa em <i>pseudo</i> X86.
<pre>ciclo: mov 0(%esi), %eax add %eax, \$1000(%esi) add 4, %esi sub 1, %ecx jnz ciclo</pre>
4.1 Explique em que consiste a optimização designada por <i>desdobramento de ciclos</i> e calcule, para este programa, os ganhos obtidos com essa optimização, considerando um desdobramento de 4 vezes e que o valor inicial de %ecx é múltiplo de 4. Para este exercício poderá assumir uma arquitetura com CPI igual a 1 para todas as instruções.
4.2 Indique quais as principais vantagens da utilização do processamento vectorial e indique o ganho potencial da utilização de instruções AVX neste programa, recentemente introduzidas nas arquiteturas Intel. A extensão AVX introduziu suporte a instruções sobre registos vectoriais de 256 bits.

Nome: ______ Número: _____