Homework Assignment 1

Due via canvas Feb 17th

SDS 384-11 Theoretical Statistics

- 1. Consider a sequence of iid random variables $\{X_n\}$ such that $X_i \sim Beta(\theta, 1)$, where $\theta > 0$. Let \bar{X}_n denote the sample mean. The method of moments estimator of θ is $\hat{\theta}_n = \bar{X}_n/(1-\bar{X}_n)$. Derive the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n \theta)$.
- 2. We will do some examples of convergence in distribution and convergence in probability here.
 - (a) Let $X_n \sim N(0, 1/n)$. Does $X_n \stackrel{d}{\to} 0$?
 - (b) Let $\{X_n\}$ be independent r.v's such that $P(X_n = n^{\alpha}) = 1/n$ and $P(X_n = 0) = 1 1/n$ for $n \ge 1$, where $\alpha \in (-\infty, infty)$ is a constant. For what values of α , will you have $X_n \stackrel{q.m}{\to} 0$? For what values will you have $X_n \stackrel{p}{\to} 0$?
- 3. If $X_n \stackrel{d}{\to} X \sim Poisson(\lambda)$, is it necessarily true that $E[g(X_n)] \to E[g(X)]$?
 - (a) $g(x) = 1(x \in (0, 10))$
 - (b) $g(x) = e^{-x^2}$
 - (c) g(x) = sgn(cos(x)) [sgn(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0.]
 - (d) g(x) = x
- 4. Let X_1, \ldots, X_n be independent r.v's with mean zero and variance $\sigma_i^2 := E[X_i^2]$ and $s_n^2 = \sum_i \sigma_i^2$. If $\exists \delta > 0$ s.t. as $n \to \infty$,

$$\frac{\sum_{i} E|X_{i}|^{2+\delta}}{s_{n}^{2+\delta}} \to 0,$$

then $\sum_i X_i/s_n$ converges weakly to the standard normal.

- 5. Recall the converse of the Lindeberg Feller theorem. We will gather some intuition about that here. Let X_1, \ldots, X_n be independent r.v's with mean zero and variance $\sigma_i^2 := E[X_i^2]$ and $s_n^2 = \sum_i \sigma_i^2$.
 - (a) If $\max_i \sigma_i^2/s_n^2$ does not converge to zero as $n \to \infty$, then the Lindeberg condition does not hold.
 - (b) Construct an example where the above is true, but still we have $\sum_i X_i/s_n$ converges weakly to N(0,1). This shows that the Lindeberg condition is not necessary. You can show this by showing that the moment generating function converges to that of a standard normal.