CORROSION PROTECTION OF ALUMINUM ALLOYS BY VANADATE PIGMENTS IN EPOXY PRIMERS

M. Iannuzzi*, K. Evans*, and J. E. Ramos-Nervi**

*Corrosion and Materials Technology Laboratory
•Det Norske Veritas – Columbus
•Dublin – OH 43017
** Institute of Technology Professor Jorge Sabato

Buenos Aires, Argentina

a. REPORT unclassified	T b. ABSTRACT c. THIS PAGE		17. LIMITATION OF ABSTRACT Same as Report (SAR)	18. NUMBER OF PAGES 18	19a. NAME OF RESPONSIBLE PERSON	
15. SUBJECT TERMS						
14. ABSTRACT						
13. SUPPLEMENTARY NOTES 2009 U.S. Army Corrosion Summit, 3-5 Feb, Clearwater Beach, FL						
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Corrosion and Materials Technology Laboratory, Det Norske Veritas? Columbus, Dublin, OH, 43017 8. PERFORMING ORGANIZATION REPORT NUMBER						
				5f. WORK UNIT NUMBER		
				5e. TASK NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
4. TITLE AND SUBTITLE Corrosion Protection of Aluminum Alloys by Vanadate Pigments in Epoxy Primers				5c. PROGRAM ELEMENT NUMBER		
				5b. GRANT NUMBER		
				5a. CONTRACT NUMBER		
1. REPORT DATE FEB 2009		2. REPORT TYPE		3. DATES COVERED 00-00-2009		
maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	

Report Documentation Page

Form Approved OMB No. 0704-0188

Traditional Protection Schemes for Al Alloys

- Aluminum alloys for the most demanding aerospace applications are protected by Chromate based systems → have to be replaced due to Cr⁶⁺ toxicity.
- Coating systems based on the release of anionic (or cationic) species
- These species have to be corrosion inhibitors

Release of an anionic/cationic specie from the coating to the damaged area.

Objective: To Evaluate the performance of metavanadates as pigments for epoxy-based coatings

Overview

Introduction

Inhibition Mechanisms – Aqueous Solutions

Metavanadates as Pigments in Organic Coatings

Vanadate Speciation – A complex System

- Metavanadates = V₁, V₂, V₄ and V₅
- Decavanadates = V₁₀
- Metavanadate solutions remain colorless.
- Solutions containing decavanadates become yellow-orange.

Effects of Environment - pH

- 1. Initial solution 100 mM NaVO₃
- 2. Acidified to pH 4 by addition of HCl
- 3. Readjusted to pH 8.71 with NaOH

- Acidification to pH 4 polymerizes all the metavanadates to form V₁₀
- Re-adjusting pH to 8.71 partially de-polymerizes V₁₀ to form V₂, V₄ and V₅ but no V₁
- V₄ is the predominant metavanadate specie at pH 8.71
- All colored solutions contain V₁₀
- No colored solutions contain V₁

MONOVANADATES – Alkaline DECAVANADATES - Acidification

Overview

Introduction

Inhibition Mechanisms – Aqueous Solutions

Metavanadates as Pigments in Organic Coatings

Inhibition Mechanisms

AA2024-T3 in aerated 0.5 M NaCl

- Presence of monovanadate (V₁) is critical for obtaining the largest decrease in O₂ reduction kinetics
- Inhibition increases with incremental [V₁]
- Inhibition decreases with incremental [V₁₀]

Inhibition Mechanisms (Cont.)

- Monovanadates had a large effect on AA2024 cathodic curve.
- Monovanadates increased the pitting corrosion potential (E_P) of S-Phase particles
- Intersection in passive region.

Inhibition Mechanisms - Summary

Overview

Introduction

Inhibition Mechanisms – Aqueous Solutions

Metavanadates as Pigments in Organic Coatings

Vanadates as Pigments in Organic Coatings

- The extraordinary inhibition efficiency of **clear metavanadate** solutions suggested that monovanadates could be used in coating formulations as corrosion inhibitor.
- Guan and Buchheit developed a conversion coating based on acidic vanadate formulas. However, those coatings did not impart the same extent of protection as CCC.
- Multilayer protection schemes rely on the release of the inhibitor to a damaged area. Release can be controlled by a concentration gradient or it can be smartly manipulated.
- Smith et al. and Nazarov et al. used several vanadate pigments such as strontium metavanadate and magnesium metavanadate with good results →speciation?
- Can we find a vanadate pigment that will release monovanadate to a damage area?

Procedure

- An inhibitor-free aeronautical epoxybase primer from Henkel was used.
- NaVO₃ powder was added to the primer (2 wt%) and sonicated for 1h.
- Curing agent added prior application.
- Coatings sprayed on pre-cleaned AA2024-T3 panels.
- After curing a set of samples was scribed and exposed to the salt fog chamber for 2 weeks (two 1-week exposures). Duplicates.
- Samples were analyzed by EIS, SEM-EDS, and optical microscopy

Plain Epoxy - Control

Epoxy + Cr⁺⁶ - Control

Epoxy + NaVO₃

ASTM B117 Test Setup

Salt Fog after 2 Weeks

- Blistering on the plain epoxy control specimens occurred after 1 week.
- No corrosion products or blistering observed on the specimens coated with epoxy+NaVO₃ even after 2 weeks of exposure.

EIS after 2 Weeks Exposure

Samples loaded with NaVO₃ showed a significantly larger low frequency impedance value, inline with the absence of attack shown previously.

SEM-EDS Analysis

- The improved corrosion protection imparted by coatings loaded with NaVO₃ likely related to the diffusion of metavanadates from the coating to the scribe.
- SEM-EDS was used to evaluate whether traces of vanadium could be detected at the bare Al surface.

Traces of vanadium found along the scribe

Ongoing Work

- Artificial scratch cell:
 - The artificial scratch cell setup is being used to further evaluate whether metavanadates released from the coating could protect bare Al surfaces.
- Coating degradation:
 - A detailed EIS analysis on coatings with and without intentional defects is also being conducted. Results thus far have shown lower break point frequencies and larger Z_{10mHz} values when vanadates were added to the primer in line with the results of ASTM B117 testing.
- Inhibition studies on aeronautical magnesium alloys by metavanadates are being conducted.

Conclusions

- Adding NaVO₃ to plain epoxy primers greatly improved coating performance.
- In the presence of metavanadates **no blistering** or corrosion products were found after 2 weeks of exposure to the salt fog chamber.
- Vanadium was found along the scribe, likely suggesting diffusion of the inhibitor from the coating to the bare Al surface.
- The slightly alkaline environment of the chamber could reduce the risk of decavanadate precipitation.

Acknowledgements

Project funded by the Corrosion and Materials Technology Laboratory at DNV- Columbus.