Ch 3.3: Even More Linear Regression Lecture 7 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Fri, Sep 16, 2022

Announcements

Last time:

• 3.2 Multiple Linear Regression

Announcements:

• Third homework posted on github

2/29

Office hours

r. Munch (MSU-CMSE) Fri, Sep 16, 2022

Covered in this lecture

- Qualitative predictors
- Extending the linear model with interaction terms
- Hierarchy principle
- Polynomial regression

Or. Munch (MSU-CMSE) Fri, Sep 16, 2022

Section 1

Review from last time

Linear Regression with Multiple Variables

 \bullet Predict Y on a multiple variables X

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p x_p + \varepsilon$$

- Find good guesses for $\hat{\beta}_0$, $\hat{\beta}_1$, \cdots .
- $\bullet \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \dots + \hat{\beta}_p x_p$

- $e_i = y_i \hat{y}_i$ is the *i*th residual
- RSS = $\sum_i e_i^2$
- RSS is minimized at least squares coefficient estimates

Dr. Munch (MSU-CMSE)

Questions to ask of your model

- Is at least one of the predictors X_1, \dots, X_p useful in predicting the response?
- Oo all the predictors help to explain Y, or is only a subset of the predictors useful?
- 4 How well does the model fit the data?
- Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Confidence vs Prediction Model

Confidence Interval

The range likely to contain the population parameter (mean, standard deviation) of interest.

Prediction Interval

The range that likely contains the value of the dependent variable for a single new observation given specific values of the independent variables.

Dr. Munch (MSU-CMSE) Fri, Sep 16, 2022 7 / 29

Specific to the Advertising Data

Confidence interval: quantify the uncertainty surrounding the average sales over a large number of cities.

Advertising example:

If \$100K is spent on TV, and \$20K on radio, in each of *n* cities

95% CI for sales: [10,985, 11,528].

Prediction Interval: quantify the uncertainty in sales for a particular city.

Advertising example:

Given that \$100,000 is spent on TV advertising and \$20,000 is spent on radio advertising in **Gotham City**

95% prediction interval for Gotham: [7,930, 14,580].

Section 2

Qualitative Predictors

r. Munch (MSU-CMSE) Fri, Sep 16, 2022

Reminder: Qualitative vs Quantitative predictors

Quantitative:

Qualitative/Categorical:

New data set! Credit card balance

own: house ownership

student: student status

• status: marital status

• region: East, West, or South

11/29

. Munch (MSU-CMSE) Fri, Sep 16, 2022

What if....

- ... your variables aren't quantitative?
- Home ownership
- Student status
- Major
- Gender
- Ethnicity
- Country of origin

Example

Investigate differences in credit card balance between people who own a house and those who don't, ignoring the other variables.

12 / 29

Dr. Munch (MSU-CMSE) Fri, Sep 16, 2022

One-hot encoding

Create a new variable

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

Model:

$$\begin{aligned} y_i &= \beta_0 + \beta_1 x_i + \varepsilon_i \\ &= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if ith person is student} \\ \beta_0 + \varepsilon_i & \text{if ith person isn't} \end{cases} \end{aligned}$$

. Munch (MSU-CMSE) Fri, Sep 16, 2022

Interpretation

	coef	std err	t	P> t	[0.025	0.975]
Intercept	480.3694	23.434	20.499	0.000	434.300	526.439
Student[T.Yes]	396.4556	74.104	5.350	0.000	250.771	542.140

Model:

$$y = 480.36 + 396.46 \cdot x_{student}$$

Who cares about 0/1?

Old version: 0/1

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

Model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

$$= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i \text{th person is student} \\ \beta_0 + \varepsilon_i & \text{if } i \text{th person isn't} \end{cases}$$

Alternative version: ± 1

$$x_i = egin{cases} 1 & ext{if } i ext{th person is a student} \ -1 & ext{if } i ext{th person is not a student} \end{cases}$$

Model:

$$\begin{aligned} y_i &= \beta_0 + \beta_1 x_i + \varepsilon_i \\ &= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if ith person is student} \\ \beta_0 - \beta_1 + \varepsilon_i & \text{if ith person isn't} \end{cases} \end{aligned}$$

Qualitiative Predictor with More than Two Levels

Region:

South West East

Create spare dummy variables:

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person from South} \\ 0 & \text{if } i \text{th person not from South} \end{cases}$$
$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person from West} \\ 0 & \text{if } i \text{th person not from West} \end{cases}$$

$$\begin{aligned} y_i &= \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i \\ &= \begin{cases} \beta_0 + \beta_1 x_{i1} + \varepsilon_i & \text{if ith person from South} \\ \beta_0 + \beta_2 x_{i2} + \varepsilon_i & \text{if ith person from West} \\ \beta_0 + \varepsilon_i & \text{if ith person from East} \end{cases} \end{aligned}$$

More on multiple levels

	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	531.00	46.32	11.464	< 0.0001
region[South]	-18.69	65.02	-0.287	0.7740
region[West]	-12.50	56.68	-0.221	0.8260

17 / 29

Dr. Munch (MSU-CMSE) Fri, Sep 16, 2022

Do code section on "Playing with multi-level variables"

Dr. Munch (MSU-CMSE) Fri, Sep 16, 2022

Section 3

Extending the linear model

. Munch (MSU-CMSE) Fri, Sep 16, 2022

Assumptions so far

Back to our Advertising data set

$$\hat{Y}_{sales} = \beta_0 + \beta_1 \cdot X_{TV} + \beta_2 \cdot X_{radio} + \beta_3 \cdot X_{newspaper}$$

Assumed (implicitly) that the effect on sales by increasing one medium is independent of the others.

What if spending money on radio advertising increases the effectiveness of TV advertising? How do we model it?

Interaction Term

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

$$Y_{sales} = \beta_0 + \beta_1 X_{TV} + \beta_2 X_{radio} + \beta_3 X_{radio} X_{TV} + \varepsilon$$
$$= \beta_0 + (\beta_1 + \beta_3 X_{radio}) X_{TV} + \beta_2 X_{radio} + \varepsilon$$

Dr. Munch (MSU-CMSE) Fri, Sep 16, 2022

Interaction term

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
$TV \times radio$	0.0011	0.000	20.73	< 0.0001

$Y_{sales} =$	$\beta_0 + \beta_1 X_{TV} + \beta_2 X_{rs}$	$_{adio}+eta_3 X_{radio} X_{TV}+arepsilon$
=	$eta_0 + (eta_1 + eta_3 X_{radio})$	$X_{TV} + eta_2 X_{radio} + arepsilon$

Interpretation

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${\tt TV}{ imes{\tt radio}}$	0.0011	0.000	20.73	< 0.0001

Do the section on "Interaction Terms"

Hierarchy principle

Sometimes *p*-value for interaction term is very small, but associated main effects are not.

The hierarchy principle:

Interaction term for qualitative variables

Without interaction term

For credit data set:

Predict balance using income (quantitative) and student (qualitative)

$$\begin{split} \text{balance}_i &\approx \beta_0 + \beta_1 \cdot \text{income}_i + \begin{cases} \beta_2 & \text{if student} \\ 0 & \text{if not} \end{cases} \\ &\approx \beta_1 \cdot \text{income}_i + \begin{cases} \beta_0 + \beta_2 & \text{if student} \\ \beta_0 & \text{if not} \end{cases} \end{split}$$

Interaction term for qualitative variables

With interaction term

For credit data set:

Predict balance using income (quantitative) and student (qualitative)

$$\begin{aligned} \text{balance}_i &\approx \beta_0 + \beta_1 \cdot \text{income}_i + \begin{cases} \beta_2 + \beta_3 \cdot \text{income}_i & \text{if student} \\ 0 & \text{if not} \end{cases} \\ &\approx \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \cdot \text{income}_i & \text{if student} \\ \beta_0 + \beta_1 \cdot \text{income}_i & \text{if not} \end{cases} \end{aligned}$$

27 / 29

Munch (MSU-CMSE) Fri, Sep 16, 2022

Nonlinear relationships

$$mpg = \beta_0 + \beta_1 \cdot horsepower + \beta_2 \cdot horsepower^2 + \varepsilon$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
${\tt horsepower}^2$	0.0012	0.0001	10.1	< 0.0001

Dr. Munch (MSU-CMSE) Fri, Sep 16, 2022

Next time

Lec#		Date Topic		Reading	Homeworks	
1 W Aug 31		Aug 31	Intro / First day stuff / Python Review Pt 1	1		
2	F	Sep 2	What is statistical learning?	2.1		
	М	Sep 5	No class - Labor day			
3	W	Sep 7	Assessing Model Accuracy	2.2.1, 2.2.2	HW #1 Due	
4	F	Sep 9	Linear Regression	3.1		
5	М	Sep 12	More Linear Regression	3.1/3.2		
6	W	Sep 14	Even more linear regression	3.2.2	HW #2 Due	
7	F	Sep 16	Probably more linear regression	3.3		
8	М	Sep 19	Intro to classification, Logisitic Regression	2.2.3, 4.1, 4.2, 4.3		
9	W	Sep 21	More logistic regression		HW #3 Due	
10	F	Sep 23	Review			
11	М	Sep 26	Midterm #1			
12	W	Sep 28	[No class, Dr Munch out of town]			
13	F	Sep 30	[No class, Dr Munch out of town]			
14	М	Oct 3	Leave one out CV	5.1.1, 5.1.2		
15	W	Oct 5	k-fold CV	5.1.3		
16	F	Oct 7	More k-fold CV	5.1.4		
17	М	Oct 10	CV for classification	5.1.5	HW #4 Due	
18	W	Oct 12	Resampling methods: Bootstrap	5.2		
19	F	Oct 14	Subset selection	6.1		
20	М	Oct 17	Shrinkage: Ridge	6.2.1	HW #5 Due	
21	W	Oct 19	Shrinkage: Lasso	6.2.2		
22	F	Oct 21	Dimension Reduction	6.3		

Dr. Munch (MSU-CMSE) Fri, Sep 16, 2022