Linear Regression (part 1)

Predictive Modeling & Statistical Learning

Gaston Sanchez

CC BY-SA 4.0

Linear Regression

Advertising Data

```
# file in folder data/ of github repo
Advertising <- read.csv("data/Advertising.csv", row.names = 1)</pre>
```

```
TV
          Radio
                 Newspaper
                           Sales
   230.1
           37.8
                     69.2
                           22.1
    44.5 39.3
                     45.1 10.4
   17.2
           45.9
                    69.3
                           9.3
4
   151.5 41.3
                     58.5
                            18.5
5
   180.8
        10.8
                     58.4 12.9
6
                           7.2
   8.7
           48.9
                     75.0
    57.5
           32.8
                     23.5
                            11.8
   120.2
           19.6
                     11.6
                            13.2
```

(first 8 rows)

Advertising Data

Advertising consists of:

- ▶ the Sales of a product in 200 different markets
- the advertising budgets for three different media:
 - TV
 - Radio
 - Newspaper
- It is not possible to directly increase the sales of the product
- On the other hand, it is possible to control the advertising expenditure in each of the 3 media

Introduction

- ▶ Suppose we observe a quantitative response Y and p different predictors, X₁, X₂,..., X_p
- We assume there is some relationship between Y and $[X_1, \ldots, X_p]$. that can be written in a general form as

$$Y = f(X_1, X_2, \dots, X_p) + \epsilon$$

- \blacktriangleright f represents the systematic information that the predictors provide about Y
- $ightharpoonup \epsilon$ represents an \emph{error} term that is a catch-all for what we miss with the model

Data set Advertising

Response:

▶ Y: Sales

Predictors:

► X₁: TV

 $ightharpoonup X_2$: Radio

 $ightharpoonup X_3$: Newspaper

Relationship:

Sales = $f(TV, Radio, Newspaper) + \epsilon$

Introduction

One possibility for f() is a linear relationship of the form:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon$$

Introduction

One possibility for f() is a linear relationship of the form:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon$$

- ▶ It assumes a linear dependence of *Y* on the predictors
- $\triangleright \beta_0, \beta_1, \dots, \beta_p$ are unknown constants also known as the model *coefficients* or *parameters*
- ▶ The linearity is in the parameters (i.e. coefficients)

Linear relationship

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

Sales = $\beta_0 + \beta_1 \text{ TV} + \beta_2 \text{ Radio} + \beta_3 \text{ Newspaper} + \epsilon$

Examples of linear models

A couple of examples of other possible linear models

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 log(X_2) + \beta_3 X_1 X_2 + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 (X_1^{X_2}) + \varepsilon$$

Non-linear models

Some models are not linear in the parameters:

$$Y = \beta_0 + \beta_1 X_1^{\beta_2} + \varepsilon$$

Some relationships can be transformed to linearity, for example:

$$Y = \beta_0 X_1^{\beta_1} \varepsilon$$

can be linearized by taking logs (and reexpressing some of the parameters)

$$log(Y) = log(\beta_0) + \beta_1 log(X_1) + log(\varepsilon)$$

Introduction

The challenge involves finding parameter estimates denoted by

$$\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$$

that provide the "best" approximation for Y:

$$Y \approx \hat{\beta_0} + \hat{\beta_1} X_1 + \dots + \hat{\beta_p} X_p$$

or more commonly

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \dots + \hat{\beta}_p X_p$$

Introduction

- Linearity is a BIG assumption.
- ▶ True regression functions are rarely linear.
- ► Although it may seem overly simplistic, linear regression is extremely useful both conceptually and practically.

Simple Linear Regression

- ► Simple Linear Regression = Univariate regression
- ▶ One predictor varibale X and one response variable Y
- lacktriangle One predictor varibale x and one response variable y

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

We assume a linear model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

where:

- \triangleright β_0 and β_1 are two unknown constants also known as coefficients or parameters
- \triangleright β_0 represents the *intercept*
- β_1 represents the *slope*
- ϵ is a vector if error terms

In vector notation:

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \boldsymbol{\varepsilon}$$

where:

- y is the vector representing the response variable
- ▶ x is the vector representing the predictor variable
- \triangleright ε is the vector representing the error term

Some vector-matrix notation

In matrix notation:

$$\mathbf{y}_{n \times 1} = \mathbf{X}_{n \times 2} \times \boldsymbol{\beta}_{2 \times 1} + \boldsymbol{\varepsilon}_{n \times 1}$$

which can be represented by:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Note that if the data is center (mean = 0)

$$\mathbf{y} = \beta_1 \mathbf{x} + \boldsymbol{\varepsilon}$$

then there is no intercept term β_0

Some vector-matrix notation

With centered data we have:

$$\mathbf{y}_{n\times 1} = \mathbf{x}_{n\times 1} \times \beta + \mathbf{\varepsilon}_{n\times 1}$$

which can be represented by:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Various simple regressions

Assuming the model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \boldsymbol{\epsilon}$$

and given some estimates $\hat{\beta_0}$ and $\hat{\beta_1}$ for the model coefficients, we predict future sales using

$$\hat{\mathbf{y}} = \hat{\beta_0} + \hat{\beta_1} \mathbf{x}$$

where $\hat{\mathbf{y}}$ indicates a prediction of \mathbf{y}

How to find the "best" fitting line?

Estimation of Parameters

Let $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for y based on the ith value of x

- Let $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for y based on the ith value of \mathbf{x}
- ▶ Then $e_i = y_i \hat{y_i}$ represents the *i*th residual

- Let $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for y based on the ith value of x
- ▶ Then $e_i = y_i \hat{y_i}$ represents the *i*th residual
- ▶ We define the Residual Sum of Squares (RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

► The **Least Squares** approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS

The starting point is to write the model as:

$$\mathbf{e} = \mathbf{y} - (\beta_0 + \beta_1 \mathbf{x})$$

For convenience we define a quadratic loss function

$$L = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

To minimize L we we take partial derivatives with respect to each of the two parameters

Estimation of the parameters

Thus,

$$\frac{\partial L}{\partial \beta_0} = 2 \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)(-1) = 0$$

and

$$\frac{\partial L}{\partial \beta_1} = 2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)(-x_i) = 0$$

Estimation of the parameters

The solutions for β_0 and β_1 would be ontained by solving the so-called *normal equations*

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

and

$$\sum_{i=1}^{n} (x_i y_i - x_i \beta_0 - \beta_1 x_i^2) = 0$$

Estimation of the parameters by OLS

The **Least Squares** coefficients are:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta_0} = \bar{y} - \hat{\beta_1}\bar{x}$$

where:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 and $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Estimation of the parameters by OLS

Notice that:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

is equivalent to:

$$\hat{\beta}_1 = \frac{cov(\mathbf{x}, \mathbf{y})}{var(\mathbf{x})}$$

```
# number of observations
n <- nrow(Advertising)

# model matrix
x <- Advertising$TV

# reponse variable
y <- Advertising$Sales</pre>
```

```
# slope
b1 \leftarrow cov(x, y) / var(x)
b1
## [1] 0.04753664
# intercept
b0 \leftarrow mean(y) - b1 * mean(x)
b0
## [1] 7.032594
```


The least squares fit for the regression of Sales on TV. In this case a linear fit captures the essence of the relationship, although it is somewhat deficient in the left of the plot.

Another perspective

Projection

Notice that:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Can be expressed in vector notation as:

$$\hat{\beta_1} = \frac{\mathbf{y}^\mathsf{T} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}}$$

with x and y mean-centered.

Projection

Thus, with centered variables $\mathbf x$ and $\mathbf y,$ the fitted values $\hat{\mathbf y}$ are given by:

$$\begin{split} \hat{\mathbf{y}} &= \hat{\beta}_1 \mathbf{x} \\ &= \left(\frac{\mathbf{y}^\mathsf{T} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}}\right) \mathbf{x} \\ &= \mathbf{x} \left(\frac{\mathbf{y}^\mathsf{T} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}}\right) \\ &= \mathbf{x} (\mathbf{x}^\mathsf{T} \mathbf{x})^{-1} \mathbf{x}^\mathsf{T} \mathbf{y} \end{split}$$

From variables perspective

From variables perspective


```
# number of observations
n <- nrow(Advertising)

# model matrix
x <- Advertising$TV - mean(Advertising$TV)

# reponse variable
y <- Advertising$Sales - mean(Advertising$Sales)</pre>
```

```
# slope
b1 \leftarrow sum(x * y) / sum(x * x)
b1
## [1] 0.04753664
# intercept
b0 <- mean(Advertising$Sales) - b1 * mean(Advertising$TV)
b<sub>0</sub>
## [1] 7.032594
```

From variables perspective

Some Remarks

- There is nothing in the Least Squares method that requires statistical inference: formal tests of null hypotheses or confidence intervals.
- ▶ In its simplest form, regression analysis can be performed without statistical inference.
- ► The inferential part can sometimes be very useful but goes beyond the definition of a regression analysis.

Some Comments

- ► Linear Regression is a "simple" approach to supervised learning.
- ▶ Don't get fooled by the word "simple".
- "simple" ≠ easy / boring / uninteresting.
- ▶ I will use the terms Regression Analysis and Regression Model interchangeably.