

Computer Course Linear Programming Introduction to Gurobipy

Stefan Kober 28-29 October 2020

Technical University of Munich

Organizational Things

What to expect

What this course offers:

- praxis-oriented introduction to python and gurobipy
- lots of examples
- preparation for further lectures, case studies and theses

What this course does not offer:

- detailed installation instructions
- ▶ the time needed to become an expert in python and gurobipy

Schedule

- ► Wednesday:
 - ► Introduction to Python
 - ► Introduction to Gurobi
- ► Thursday:
 - Features Python (advanced input and output methods)
 - Features Gurobi (advanced variable types and output interpretation)

Schedule

- 10:15 first slot
- 11:45 lunch break
- 13:15 second slot
- 14:45 coffee break
- 15:15 third slot

Work in teams!

Outlook

Structure of Gurobi

Basics

Linear Programming

Modelling

Output Interpretation

Advanced Input Methods

Advanced Gurobi Datatypes

Visualization

Structure of Gurobi

What is Gurobi? Solver for LP, QP, MIP Gurobi

What is Gurobi?

What is Gurobi?

Solver for LP, QP, MIP

Gurobi

Algorithms

Simplex, Barrier, Branchand-Cut, Heuristics,... Features
Parameters,
Datatypes, . . .

What is Gurobi? Solver for Interfaces LP, QP, MIP Python, c++, Java, matlab, Gurobi Algorithms **Features** Simplex, Bar-Parameters, rier, Branch-Datatypes, ... and-Cut, Heuristics,...

process data create model

Input

Python

Credits

The materials used in this course have been developed and improved by

- ▶ Melanie Herzog
- Anja Kirschbaum
- ► Fabian Klemm
- ► Michael Ritter
- Matthias Silbernagel
- Paul Stursberg
- Stefan Kober

Basics

Python

- open source
- most popular programming language
- object-oriented, procedural, functional
- ▶ interactive
- easy to learn

Advantages

- high-level
 - direct interpretation of objects
 - readable and accessible
- many useful libraries (graphs, visualization, computations, data management,...)

Limits

- ► slow running times
- somewhat restricted
- possibly not best choice for large object oriented project

Basic Knowledge

- Datatypes
 - ▶ integer, float, string
 - ▶ list, tuple, dict, set
- ► Indentation
- ► Output
 - print
 - ▶ formatted print
- Imports

Linear Programming

$$\min c^{\top} x$$
 s.t. $Ax < b$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 1 \\ -2 & -2 & 0 \\ -2 & 0 & -3 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ 7 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \quad c = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

$$\min c^{\top} x \quad \text{s.t.}$$
$$Ax \le b$$

- set of variables x
- ightharpoonup set of linear constraints Ax < b
- ▶ linear objective function min $c^{\top}x$

$$\min c^{\top} x \quad \text{s.t.}$$
$$Ax \le b$$

$$\min c^{\top} x \quad \text{s.t.}$$
$$Ax \le b$$

- ► Find a feasible solution
- Travel along improving edge
- ► Terminate at optimal solution

- ► Find a feasible solution

- ► Find a feasible solution
- ► Travel along improving edges

- ► Find a feasible solution
- ► Travel along improving edges

- ► Find a feasible solution
- ► Travel along improving edges
- ► Terminate at optimal solution

The Simplex Algorithm

- ► Find a feasible solution
- ► Travel along improving edges
- ► Terminate at optimal solution

Good News: Gurobi does that for us

Modelling

Modelling

10l crude oil

demand: 3I heavy oil, 5I med. heavy oil, 4I light oil

demand: 3l heavy oil, 5l med. heavy oil, 4l light oil

objective: minimize cost

$$min 3x_1 + 5x_2$$

$$min 3x_1 + 5x_2$$

$$2x_1+1x_2\geq 3$$

$$min 3x_1 + 5x_2$$

$$2x_1+1x_2\geq 3$$

$$2x_1+2x_2\geq 5$$

$$min 3x_1 + 5x_2$$

$$2x_1+1x_2\geq 3$$

$$2x_1+2x_2\geq 5$$

$$1x_1+4x_2\geq 4$$

$$min 3x_1 + 5x_2$$

s.t.

$$2x_1 + 1x_2 \ge 3$$
$$2x_1 + 2x_2 \ge 5$$
$$1x_1 + 4x_2 \ge 4$$

 $x_1, x_2 > 0$

Initialize gurobipy and create set of variables x

```
# Create a new model
m = Model()

# Create variables
x = m.addVar(vtype=GRB.CONTINUOUS)
y = m.addVar(vtype=GRB.CONTINUOUS)
```

from gurobipy import *

Initialize gurobipy and create set of variables x

```
from gurobipy import *

# Create a new model
m = Model()

# Create variables
x = m. addVar(vtype=GRB.CONTINUOUS)
y = m. addVar(vtype=GRB.CONTINUOUS)
```


- ► GRB.CONTINUOUS
- ► GRB.BINARY
- ► GRB.INTEGER
- ▶ GRB.SEMICONT
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY
- GRB.INTEGER
- ► GRB.SEMICONT
- ▶ GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0,1}
- ► GRB.INTEGER
- ► GRB.SEMICONT
- ▶ GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0,1}
- ► GRB.INTEGER {0, 1, 2, ...}
- ▶ GRB.SEMICONT
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0,1}
- ► GRB.INTEGER {0, 1, 2, ...}
- ▶ GRB.SEMICONT $\{0\} \cup (a, b)$
- ► GRB.SEMIINT

- ▶ GRB.CONTINUOUS $(-\infty, \infty)$
- ► GRB.BINARY {0, 1}
- ► GRB.INTEGER {0, 1, 2, ...}
- ▶ GRB.SEMICONT $\{0\} \cup (a, b)$
- ▶ GRB.SEMIINT $\{0\} \cup (a, b) \cap \mathbb{Z}$

Initialize gurobipy and create set of variables x

```
from gurobipy import *

# Create a new model
m = Model()

# Create variables
x = m.addVar(vtype=GRB.CONTINUOUS)
y = m.addVar(vtype=GRB.CONTINUOUS)
```


Add Variables

```
addVar(lb=0,ub=GRB.INFINITY,obj=0.0,vtype=GRB.CONTINUOUS,name="""
```

- ▶ *lb*, *ub*: variable lower and upper bound
- ▶ *obj*: coefficient of the linear objective function
- vtype: variable type
- name: name for further referencing

Add Variables

```
addVars(indices, lb = 0, ub = GRB. INFINITY, obj = 0.0, vtype = GRB. CONTINUOUS, name = "")
```

- Ib, ub: variable lower and upper bound
- ▶ *obj*: coefficient of the linear objective function
- vtype: variable type
- name: name for further referencing
- indices: integer, range, list or dictionary used to generate set of variables

Create set of linear constraints $Ax \ge b$

```
# Add constraints

c1 = m.addConstr(2*x+y>=3)

c2 = m.addConstr(2*x+2*y>=5)

c3 = m.addConstr(x+4*y>=4)

c4 = m.addConstr(x>=0)

c5 = m.addConstr(y>=0)
```


Create set of linear constraints $Ax \ge b$

```
# Add constraints
c1 = m.addConstr(2*x+y>=3)
c2 = m.addConstr(2*x+2*y>=5)
c3 = m.addConstr(x+4*y>=4)
c4 = m.addConstr(x>=0)
c5 = m.addConstr(y>=0)
```


Add Constraints

Basic form:

m.addConstr(LinExpr>=a)

Add Constraints

Basic form:

Linear expressions can be created by:

- ightharpoonup 1e = 2 * x + 3 * y
- ▶ le = x.prod([2, 3])
- ightharpoonup le = x.sum()
- le = quicksum([2 * x, 3 * y])

Set linear objective function $\min c^{\top}x$ and optimize the model

```
# Set objective function
m. setObjective (3*x+5*y, GRB. MINIMIZE)
# Optimize model
m. optimize()
```


Output Interpretation

Gurobi - LP solver

Presolve

```
Optimize a model with 1500 rows,
   2250000 columns and 4497000 nonzeros

Coefficient statistics:
   Matrix range [le+00, le+00]
   Objective range [le+00, le+02]
   Bounds range [0e+00, 0e+00]
   RHS range [le+00, 2e+01]

Presolve removed 0 rows and 1611 columns

Presolve time: 4.37s

Presolved: 1500 rows, 2248389 columns, 4496778 nonzeros
```


Presolve - Example

$$x_1 + x_2 + x_3 \ge 15$$

$$x_1 \le 7$$

$$x_2 \le 3$$

$$x_3 \le 5$$

Presolve - Example

$$x_1 + x_2 + x_3 \ge 15$$

$$x_1 \le 7$$

$$x_2 \le 3$$

$$x_3 \le 5$$

delete constraint and variables in order to reduce the problem

LP methods

- ▶ 3 different methods
 - primal/dual simplex
 - robust
 - easy to restart after model modification
 - barrier
 - can be run on multiple cores
- concurrent optimization

Concurrent Optimization

- run simplex and barrier at the same time
- ▶ first one to finish reports solution
- use multiple cores
- ► fastest choice for general model

Iteration		Objective	Primal Inf.	Dual Inf.	Time				
		-1.2573140e+02	2.968000e+03	5.593346e+11	7s				
	3297	1.2166285e+05	0.000000e+00	6.532640e+07	10s				
	4619	8.3232592e+04	0.000000e+00	1.162234e+08	15s				
	7000	5.2154173e+04	0.000000e+00	4.234078e+06	25s				
	9189	3.7601369e+04	0.000000e+00	1.177763e+07	35s				
	10706	3.0986489e+04	0.000000e+00	2.645246e+06	45s				
	12019	2.7488411e+04	0.000000e+00	4.758955e+06	56s				
	13844	2.3646778e+04	0.000000e+00	3.840044e+05	65s				
	15403	2.1713789e+04	0.000000e+00	3.055039e+04	75s				
	17347	2.1105977e+04	0.000000e+00	1.777696e+01	85s				
	17419	2.1108270e+04	0.000000e+00	0.000000e+00	91s				
Solved in 17419 iterations and 90.82 seconds									
Optimal objective 2.110826998e+04									

```
Primal Inf.
                                             Dual Inf.
Iteration
             Objective
                                                             Time
           -1.2573140e+02
                             2.968000e+03
                                            5.593346e+11
                                                               7s
    3297
            1.2166285e+05
                             0.000000e+00
                                            6.532640e+07
                                                              10s
    4619
            8.3232592e+04
                             0.000000e+00
                                            1.162234e+08
                                                              15s
    7000
            5.2154173e+04
                             0.000000e+00
                                            4.234078e+06
                                                              25s
    9189
            3.7601369e+04
                             0.000000e+00
                                                              35s
                                            1.177763e+07
                                            2.645246e+06
   10706
            3.0986489e+04
                             0.000000e+00
                                                              458
   12019
            2.7488411e+04
                             0.000000e+00
                                            4.758955e+06
                                                              56s
   13844
            2.3646778e+04
                             0.000000e+00
                                            3.840044e+05
                                                              65s
   15403
            2.1713789e+04
                             0.000000e+00
                                            3.055039e+04
                                                              75s
   17347
            2.1105977e+04
                             0.000000e+00
                                            1.777696e+01
                                                              85s
   17419
            2.1108270e+04
                             0.000000e+00
                                            0.000000e+00
                                                              91s
Solved in 17419 iterations and 90.82 seconds
Optimal objective 2.110826998e+04
```

```
Primal Inf.
                                             Dual Inf.
Iteration
             Objective
                                                             Time
                             2.968000e+03
           -1.2573140e+02
                                            5.593346e+11
                                                               7s
    3297
            1.2166285e+05
                             0.000000e+00
                                            6.532640e+07
                                                              10s
    4619
            8.3232592e+04
                             0.000000e+00
                                            1.162234e+08
                                                              15s
    7000
            5.2154173e+04
                             0.000000e+00
                                            4.234078e+06
                                                              25s
    9189
            3.7601369e+04
                             0.000000e+00
                                            1.177763e+07
                                                              35s
                             0.000000e+00
   10706
            3.0986489e+04
                                            2.645246e+06
                                                              458
                             0.000000e+00
   12019
            2.7488411e+04
                                            4.758955e+06
                                                              568
            2.3646778e+04
                                            3.840044e+05
   13844
                             0.000000e+00
                                                              65s
            2.1713789e+04
   15403
                             0.000000e+00
                                            3.055039e+04
                                                              75s
   17347
            2.1105977e+04
                             0.000000e+00
                                            1.777696e+01
                                                              85s
   17419
            2.1108270e+04
                             0.000000e+00
                                            0.000000e+00
                                                              91s
Solved in 17419 iterations and 90.82 seconds
Optimal objective 2.110826998e+04
```

Iteration		Objective	Primal Inf.	Dual Inf.	Time		
		-1.2573140e+02	2.968000e+03	5.593346e+11	7s		
	3297	1.2166285e+05	0.000000e+00	6.532640e+07	10s		
	4619	8.3232592e+04	0.000000e+00	1.162234e+08	15s		
	7000	5.2154173e+04	0.000000e+00	4.234078e+06	25s		
	9189	3.7601369e+04	0.000000e+00	1.177763e+07	35s		
	10706	3.0986489e+04	0.000000e+00	2.645246e+06	45s		
	12019	2.7488411e+04	0.000000e+00	4.758955e+06	56s		
	13844	2.3646778e+04	0.000000e+00	3.840044e+05	65s		
	15403	2.1713789e+04	0.000000e+00	3.055039e+04	75s		
	17347	2.1105977e+04	0.000000e+00	1.777696e+01	85s		
	17419	2.1108270e+04	0.000000e+00	0.000000e+00	91s		
Solved in 17419 iterations and 90.82 seconds							
Optimal objective 2.110826998e+04							

Iteration	Objective	Primal Inf.	Dual Inf.	Time			
0	-1.2573140e+02	2.968000e+03	5.593346e+11	7s			
3297	1.2166285e+05	0.000000e+00	6.532640e+07	10s			
4619	8.3232592e+04	0.000000e+00	1.162234e+08	15s			
7000	5.2154173e+04	0.000000e+00	4.234078e+06	25s			
9189	3.7601369e+04	0.000000e+00	1.177763e+07	35s			
10706	3.0986489e+04	0.000000e+00	2.645246e+06	45s			
12019	2.7488411e+04	0.000000e+00	4.758955e+06	56s			
13844	2.3646778e+04	0.000000e+00	3.840044e+05	65s			
15403	2.1713789e+04	0.000000e+00	3.055039e+04	75s			
17347	2.1105977e+04	0.000000e+00	1.777696e+01	85s			
17419	2.1108270e+04	0.000000e+00	0.000000e+00	91s			
Solved in 17419 iterations and 90.82 seconds							
Optimal objective 2.110826998e+04							

Primal:

Dual:

 $\min c^{\top}x$ s.t.

 $Ax \leq b$

 $\max_{x} b^{\top} y$ s.t.

 $A^\top y = c$

 $y \ge 0$

$$\min c^{\top}x$$
 s.t.

$$Ax \leq b$$

$$\max b^{\top} y \quad \text{s.t.}$$
$$A^{\top} y = c$$

$$A \quad y = c$$
$$y \ge 0$$

$$\min c^\top x \quad \text{s.t.}$$

$$Ax \leq b$$

$$\max_{z} b^{\top} y$$
 s.t.

$$A^{\top}y = c$$
$$y \ge 0$$

$$\min c^{\top}x$$
 s.t.

$$Ax \leq b$$

$$\max b^{\top} y$$
 s.t.

$$A^{\mathsf{T}}y = c$$

$$y \ge 0$$

$$\min c^{\top}x$$
 s.t.

$$Ax \leq b$$

$$\max_{x} b^{\top} y$$
 s.t.

$$A^{\top}y = c$$
$$y \ge 0$$

Primal:

$$\min c^{\top}x \quad \text{s.t.}$$

$$Ax \leq b$$

Dual:

$$\max b^{\top} y$$
 s.t.

$$A^\top y = c$$

$$y \ge 0$$

Primal: Dual:

$$\min c^{\top}x$$
 s.t. $\max b^{\top}y$ s.t.
$$Ax \le b \qquad \qquad A^{\top}y = c \qquad \qquad y \ge 0$$

$$c^{\top}\bar{x} = \bar{y}^{\top}A\bar{x} = (*) \bar{y}^{\top}b$$

Dual Simplex

- ► simplex on dual problem
- obtain primal solution as discussed before
- dominant algorithm used in MIP solving

Idea:

$$\min c^\top x \quad \text{s.t.}$$

$$Ax \leq b$$

Idea:

$$\min f(x)$$
 s.t. $c_i(x) \le 0$

with f and c_i linear

Idea:

$$\min f(x)$$
 s.t. $c_i(x) \le 0$

with f and c_i linear

$$\Downarrow$$

$$\min f(x) - \mu \sum_{i} log(c_{i}(x))$$

$$\min f(x) - \mu \sum_{i} log(c_{i}(x))$$

- \blacktriangleright $\mu \to 0$ and solve as nonlinear optimization problem
- also known as Interior Point Method
- ► few, but expensive calculations
- not clear whether warm start is doable

Advanced Input Methods

Advanced Input

Reading Data from Files

Advantages:

- separation between data and code
- ► faster replacement and sharing of data
- more flexible code
- clearer code

File Formats

- excel (pandas, xlrd)
- csv (csv)
- ▶ json (json)
- basically any text-file of some custom format (write parser)

The JSON File Format

```
{
    "oil_types":[
        "heavy","medium","light"
    "processes": [0,1],
    "production":{
        "heavy": [2,1], "medium": [2,2], "light": [1,4]
    " demand" : {
        "heavy":3,"medium":5,"light":4
    "process_cost":[3,5]
```


Data Types

- Boolean
- Number (integer or floating point)
- String
- Array [] (ordered list of elements of arbitrary type)
- Object {} (unordered collection of name-value pairs)

Data Types

- Boolean
- Number (integer or floating point)
- String
- Array [] (ordered list of elements of arbitrary type)
- Object {} (unordered collection of name-value pairs)

Translates straight-forward to Python!

Reading JSON files in Python

import json

```
with open("data.json") as json_file:
data = json.load(json_file)
```


Read text files

- ▶ generally, input files not given as *json* or *csv* or *xslx*
- any custom format
- solution: read file line by line according to its syntax and create list/dictionary/object

Reading general textfiles in Python

```
filename = 'data.txt'
with open(filename, "r") as file:
    line = file.readline()
    while line:
        print(line.split("separator"))
```


Write text files

- generate different datasets to have stable collection of example data
- straightforward in python (very similar to print())

Writing textfiles in Python

```
filename = 'data.txt'
with open(filename, "w") as file:
    file.write("sometext\n")
    file.close()
```

Advanced Gurobi Datatypes

Advanced Datatypes

Tuplelist

- subclass of python list
- ▶ list of tuples of same size
- easy notation to find specific subsets
- ▶ same is doable with list comprehension *but* tuplelist is faster

Tuplelist

Creation

```
l = tuplelist([(1, 2), (1, 3), (2, 3), (2, 4)])
```


Tuplelist

Creation

```
I = tuplelist([(1, 2), (1, 3), (2, 3), (2, 4)])
```

Queries ('*' is wildcard character)

```
I.select(1, '*')
I.select('*', [2, 4])
I.select('*', '*')
```


Tupledict

- subclass of python dictionary
- dictionary with tuplelist as keys
- usually used for variables of complex systems
- easy access via select
- easy constraint generation via sum and prod

Tupledict

Creation

Tupledict

Creation

```
I = tuplelist([(1, 2), (1, 3), (2, 3), (2, 4)])
d=model.addVars(I)
```

Queries and creation of expressions

```
d.select(1, '*')
d.sum(1, '*')
coeff = [2,5]
d.prod(coeff, 1, '*')
```

Visualization

Visualization of Graphs

- natural connection between many LPs and graphs
- visualizing graphs improves understanding
- matplotlib

Visualizing graphs

```
import networkx as nx
from random import randint
n = 10
position = [[randint(0,100), randint(0,100)]]
    for i in range(n)]
edges = [(randint(0,n-1),randint(0,n-1))]
    for i in range (3*n)
G = nx.Graph()
G.add_nodes_from([(i, {'x': coord[0], 'y': coord[1]}))
    for i, coord in enumerate(position)])
G.add\_edges\_from([(e[0], e[1]) for e in edges])
nx.draw_networkx_nodes(G, position, node_color="black")
nx.draw_networkx_edges(G, position,edge_color="black")
```

