

<u>Course</u> > <u>Unit 2:</u> ... > <u>4 Eigen</u>... > 6. Eige...

6. Eigenspaces

We now know that the eigenvalues of a matrix are the roots of the characteristic equation $\det(\lambda \mathbf{I} - \mathbf{A}) = \mathbf{0}$. Let us proceed to find the eigenvectors corresponding to each eigenvalue.

Definition 6.1 For each eigenvalue λ of \mathbf{A} , define the **eigenspace** of λ to be all eigenvectors associated to the eigenvalue λ .

In other words,

the eigenspace of an eigenvalue
$$\lambda$$
, = {all eigenvectors associated to λ }
= {all solutions to $(\lambda \mathbf{I} - \mathbf{A})\mathbf{v} = \mathbf{0}$ }
= NS($\lambda \mathbf{I} - \mathbf{A}$).

There is one eigenspace for every eigenvalue. Each eigenspace is a vector space, so it can be described as the span of a basis. To compute the eigenspace of λ , compute $\mathbf{NS}(\lambda \mathbf{I} - \mathbf{A})$ by Gaussian elimination and back-substitution.

Finding eigenvalues and eigenvectors: a 2 by 2 example

Video

4/13/2018

Download video file

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

Steps to find all eigenvectors associated to a given eigenvalue λ of a square matrix ${f A}$:

2/6

1. Write down $\lambda \mathbf{I} - \mathbf{A}$.

- 2. Use Gaussian elimination to find a basis of $NS(\lambda I A)$.
- 3. The eigenvectors corresponding to the eigenvalue λ are all the linear combinations of these basis vectors.

Example 6.2 Find all the eigenvalues, eigenvectors, and eigenspaces of

$$\mathbf{A} = egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 1 \end{pmatrix}.$$

Solution:

The eigenvalues are 0, 1, and 2. (We have found these before, by determining the roots of the $P(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A})$).

Eigenspace of 0:

This is NS(0I - A) = NS(-A) = NS(A), i.e. the set of all solutions to

$$\mathbf{A}\mathbf{v} = \mathbf{0}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \mathbf{v} = \mathbf{0}.$$

The first and third rows are the same, and so subtracting row 1 from row 3, we get

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The resulting matrix is in reduced-row-echelon form. The null space of ${f A}$ is

Eigenspace of
$$0 = NS(\mathbf{A}) = Span \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
.

In other words, the eigenspace of the eigenvalue $oldsymbol{0}$ is the 1-dimensional vector space

spanned by the eigenvector $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, and the set of all eigenvectors is all scalar multiples

of $egin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. Geometrically, the eigenspace consists of all vectors along the line containing $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, which is defined by $\pmb{x}=-\pmb{z},\,\pmb{y}=\pmb{0}.$

Terminology: Very often, we say "the eigenvectors of λ " to mean a **basis** of the eigenspace of λ .

Eigenspace of 1:

This is NS(I - A), i.e. the set of all solutions to

$$\begin{pmatrix} 1-1 & 0 & -1 \\ 0 & 1-1 & 0 \\ -1 & 0 & 1-1 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \mathbf{v} = \mathbf{0}.$$

We can immediately see that the first and third components of \mathbf{v} must be zero, while the second component is a free parameter. Hence, the set of all solutions to $(\mathbf{I} - \mathbf{A})\mathbf{v} = \mathbf{0}$ is

Eigenspace of
$$1 = NS(\mathbf{I} - \mathbf{A}) = Span \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
.

The eigenspace of the eigenvalue $m{1}$ is the 1-dimensional vector space spanned by the eigenvector $m{0} \m{1} \m{0}$. Geometrically, this consists of all vectors along the $m{y}$ -axis.

Eigenspace of 2:

This is NS(2I - A), i.e. the set of all solutions to

$$(2\mathbf{I} - \mathbf{A})\mathbf{v} = \mathbf{0}$$

$$\begin{pmatrix} 2-1 & 0 & -1 \\ 0 & 2-1 & 0 \\ -1 & 0 & 2-1 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \mathbf{v} = \mathbf{0}.$$

The matrix can be reduced to:

$$\left(egin{array}{ccc} 1 & 0 & -1 \ 0 & 1 & 0 \ -1 & 0 & 1 \end{array}
ight)
ightarrow \left(egin{array}{ccc} 1 & 0 & -1 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{array}
ight).$$

This gives the set of all solutions to $(2\mathbf{I} - \mathbf{A})\mathbf{v} = \mathbf{0}$ to be

Eigenspace of
$$2 = NS(2\mathbf{I} - \mathbf{A}) = Span \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
.

The eigenspace of the eigenvalue 2 is the 1-dimensional vector space spanned by the eigenvector $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Geometrically, this is the line along the vector $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ (the line defined by $x=z,\ y=0$).

Conclusion: The eigenvalues and corresponding eigenspaces of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ are:}$$

Eigenvalue Corresponding eigenspace

$$\lambda=0 \quad ; \quad \mathrm{Span} \left(egin{array}{c} 1 \ 0 \ -1 \end{array}
ight)$$

$$\lambda=1 \quad ; \quad \mathrm{Span} egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}$$

$$\lambda=2 \quad ; \quad \mathrm{Span} \begin{pmatrix} 1 \ 0 \ 1 \end{pmatrix}$$

The eigenvectors for each eigenvalue are all vectors in the corresponding eigenspace.

© All Rights Reserved