Corrections: Johannes Huebschmann

Plans tangents à un graphe, différentiabilité

Exercice 1

Trouver l'équation du plan tangent pour chaque surface ci-dessous, au point (x_0, y_0, z_0) donné :

1.
$$z = \sqrt{19 - x^2 - y^2}$$
, $(x_0, y_0, z_0) = (1, 3, 3)$;

2.
$$z = \sin(\pi xy) \exp(2x^2y - 1)$$
, $(x_0, y_0, z_0) = (1, 1/2, 1)$.

Indication ▼

Correction ▼

[002628]

Exercice 2

On demande à un étudiant de trouver l'équation du plan tangent à la surface d'équation $z = x^4 - y^2$ au point $(x_0, y_0, z_0) = (2, 3, 7)$. Sa réponse est

$$z = 4x^3(x-2) - 2y(y-3).$$

- 1. Expliquer, sans calcul, pourquoi cela ne peut en aucun cas être la bonne réponse.
- 2. Quelle est l'erreur commise par l'étudiant?
- 3. Donner la réponse correcte.

Indication ▼

Correction ▼

[002629]

Exercice 3

Trouver les points sur le paraboloïde $z = 4x^2 + y^2$ où le plan tangent est parallèle au plan x + 2y + z = 6. Même question avec le plan 3x + 5y - 2z = 3.

Indication ▼

Correction ▼

[002630]

Exercice 4

Soit C le cône d'équation $z^2 = x^2 + y^2$ et C^+ le demi-cône où $z \ge 0$. Pour un point quelconque M_0 de $C \setminus \{(0,0,0)\}$, de coordonnées $(x_0,y_0,\pm\sqrt{x_0^2+y_0^2})$, on note \mathscr{P}_{M_0} le plan tangent au cône C en M_0 .

- 1. Déterminer un vecteur normal et l'équation du plan \mathscr{P}_{M_0} .
- 2. Montrer que l'intersection du cône C avec le plan vertical d'équation y = ax où $a \in \mathbb{R}$ est constituée de deux droites \mathcal{D}_1 et \mathcal{D}_2 et que l'intersection du demi-cône C^+ avec ce plan vertical est constituée de deux demi-droites \mathcal{D}_1^+ et \mathcal{D}_2^+ .
- 3. Montrer que le plan tangent au cône C est le même en tout point de $\mathcal{D}_1 \setminus \{(0,0,0)\}$ (respectivement en tout point de $\mathcal{D}_2 \setminus \{(0,0,0)\}$).

Indication \mathbf{V}

Correction ▼

[002631]

Exercice 5

Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = x^2 - 2y^3$.

- 1. Déterminer l'équation du plan tangent \mathscr{P}_{M_0} au graphe G_f de f en un point quelconque M_0 de G_f .
- 2. Pour le point M_0 de coordonnées (2,1,2), déterminer tous les points M tels que le plan tangent en M soit parallèle à \mathcal{P}_{M_0} .

Indication ▼

Correction ▼

[002632]

Exercice 6

Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \frac{xy^2}{x^2 + y^2}, \quad (x,y) \neq (0,0)$$

et f(0,0) = 0.

- 1. Montrer que f est continue et que, quel que soit $v \in \mathbb{R}^2$, la dérivée directionnelle $D_v f(x, y)$ existe en chaque $(x, y) \in \mathbb{R}^2$ mais que f n'est pas différentiable en (0, 0).
- 2. La dérivée directionnelle $D_{\nu}f(0,0)$ est-elle linéaire en ν ? Les droites appartenant à la famille des droites passant par l'origine et de vecteurs directeurs $(\nu, D_{\nu}f(0,0)) \in \mathbb{R}^3$, forment-elles un plan ? Expliquer comment on peut observer la réponse sur la figure.
- 3. Le vecteur v étant fixé, qu'est-ce qu'on peut dire de la continuité de $D_v f(x, y)$ en (x, y)?

Indication ▼ Correction ▼

[002633]

Exercice 7

Utiliser une approximation affine bien choisie pour calculer une valeur approchée des nombres suivants :

$$exp[sin(3.16) cos(0.02))], \quad arctan[\sqrt{4.03} - 2 \, exp(0.01)].$$

Indication \blacktriangledown

Correction ▼

[002634]

Indication pour l'exercice 1 A

Le plan tangent à la surface d'équation f(x,y,z) = 0 au point (x_0,y_0,z_0) est donné par l'équation

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial f}{\partial z}(x_0, y_0, z_0)(z - z_0) = 0.$$
 (1)

Dans le cas (1.), les calculs deviennt plus simples avec l'équation

$$z^2 = 19 - x^2 - y^2$$
.

Indication pour l'exercice 2

Ne pas confondre les variables pour l'équation de la surface, les variables pour l'équation de la tangente en un point, et les coordonnées du point de contact.

Indication pour l'exercice 3 ▲

Le plan tangent à la surface d'équation z = f(x, y) au point (x_0, y_0, z_0) est donné par l'équation

$$z - z_0 = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0). \tag{2}$$

Indication pour l'exercice 4 ▲

Le vecteur normal de la surface d'équation f(x, y, z) = 0 au point (x_0, y_0, z_0) est le vecteur

$$\left(\frac{\partial f}{\partial x}(x_0, y_0, z_0), \frac{\partial f}{\partial y}(x_0, y_0, z_0), \frac{\partial f}{\partial z}(x_0, y_0, z_0)\right). \tag{3}$$

Indication pour l'exercice 5 ▲

Utiliser la version (2) de l'équation d'un plan tangent à une surface en un point.

Indication pour l'exercice 6 ▲

Pour les majorations, utiliser les coordonnées polaires (r, φ) dans le plan. Distinguer tout de suite les parties triviales des parties non triviales de l'exercice.

Indication pour l'exercice 7 ▲

Prendre

$$f(x,y) = \exp[\sin(\pi + x)\cos y] = \exp[-\sin x \cos y],$$

$$h(x,y) = \arctan[\sqrt{4 + x} - 2\exp(y)].$$

Correction de l'exercice 1

1. Le plan tangent à la surface d'équation $z^2 = 19 - x^2 - y^2$ au point (x_0, y_0, z_0) est donné par l'équation

$$2z_0(z-z_0) = -2x_0(x-x_0) - 2y_0(y-y_0)$$

d'où, au point (1,3,3), cette équation s'écrit

$$6(z-3) = -2(x-1) - 6(y-3)$$

ou

$$x + 3y + 3z = 19$$

2. Soit f la fonction définie par $f(x,y) = \sin(\pi xy) \exp(2x^2y - 1)$. Les dérivées partielles de f sont

$$\frac{\partial f}{\partial x} = \pi y \cos(\pi xy) \exp(2x^2y - 1) + 4xy \sin(\pi xy) \exp(2x^2y - 1)$$
$$\frac{\partial f}{\partial y} = \pi x \cos(\pi xy) \exp(2x^2y - 1) + 2x^2 \sin(\pi xy) \exp(2x^2y - 1)$$

d'où

$$\frac{\partial f}{\partial x}(1,1/2) = 2, \quad \frac{\partial f}{\partial y}(1,1/2) = 2.$$

Le plan tangent à la surface d'équation $z = \sin(\pi xy) \exp(2x^2y - 1)$ au point (x_0, y_0, z_0) est donné par l'équation

$$z - z_0 = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

d'où, au point (1,1/2,1), cette équation s'écrit

$$z-1=2(x-1)+2(y-1/2)$$

ou

$$2x + 2y - z = 2.$$

Correction de l'exercice 2 A

- 1. L'équation d'un plan tangent doit être une équation linéaire!
- 2. La confusion est exactement celle à éviter suivant les indications données.
- 3. D'après (1), le plan tangent à la surface d'équation $z = f(x,y) = x^4 y^2$ au point $(x_0,y_0,z_0) = (2,3,7)$ est donné par l'équation

$$z-7 = \frac{\partial f}{\partial x}(2,3)(x-2) + \frac{\partial f}{\partial y}(2,3)(y-3)$$

c.a.d.

$$z-7 = 32(x-2) - 6(y-3)$$
.

Correction de l'exercice 3

Suivant l'indication, le plan tangent à la surface d'équation $z = 4x^2 + y^2$ au point (x_0, y_0, z_0) est donné par l'équation

$$z = z_0 + 8x_0(x - x_0) + 2y_0(y - y_0)$$

= $8x_0x + 2y_0y + z_0 - 8x_0^2 - 2y_0^2 = 8x_0x + 2y_0y - z_0$

d'où par

$$z - 8x_0x - 2y_0y = z_0. (4)$$

Pour que ce plan soit parallèle au plan d'équation x + 2y + z = 6 il faut et il suffit que $(1,2) = (-8x_0, -2y_0)$ d'où que $x_0 = -1/8$ et $y_0 = -1$. Par conséquent, le point cherché sur le paraboloïde $z = 4x^2 + y^2$ est le point (-1/8, -1, 17/16). De même, pour que le plan (4) soit parallèle au plan d'équation 3x + 5y - 2z = 3 il faut et il suffit que $(3/2, 5/2) = (8x_0, 2y_0)$ d'où que $x_0 = 3/16$ et $y_0 = 5/4$, et le point cherché sur le paraboloïde $z = 4x^2 + y^2$ est alors le point (3/16, 5/4, 9/64 + 25/16) = (3/16, 5/4, 109/64).

Correction de l'exercice 4 A

1. Le vecteur normal du cône C au point (x_0, y_0, z_0) de C est le vecteur $(x_0, y_0, -z_0)$ et le plan tangent au cône C en ce point est donné par l'équation

$$x_0x + y_0y - z_0z = 0$$

car l'origine appartient à ce plan.

2. L'intersection du cône C avec le plan vertical d'équation y = ax où $a \in \mathbb{R}$ est constituée des points $x(1, a, \pm \sqrt{1 + a^2})$ où $x \in \mathbb{R}$, c.a.d. des deux droites

$$\mathscr{D}_1 = \{x(1, a, \sqrt{1 + a^2}); x \in \mathbb{R}\}, \quad \mathscr{D}_2 = \{x(1, a, -\sqrt{1 + a^2}); x \in \mathbb{R}\}.$$

L'intersection du demi-cône C^+ avec ce plan vertical est donc constituée des deux demi-droites

$$\mathcal{D}_{1}^{+} = \{x(1, a, \sqrt{1 + a^{2}}); x \in \mathbb{R}, x \ge 0\}$$

$$\mathcal{D}_{2}^{+} = \{x(-1, -a, \sqrt{1 + a^{2}}); x \in \mathbb{R}, x \ge 0\}.$$

3. Le vecteur normal en un point quelconque $x(1,a,\sqrt{1+a^2})$ de \mathcal{D}_1 respectivement $x(1,a,-\sqrt{1+a^2})$ de \mathcal{D}_2 est le vecteur $x(1,a,-\sqrt{1+a^2})$ respectivement $x(1,a,\sqrt{1+a^2})$ d'où la direction et donc le plan tangent au cône C sont le même en tout point de $\mathcal{D}_1 \setminus \{(0,0,0)\}$ respectivement $\mathcal{D}_2 \setminus \{(0,0,0)\}$.

Correction de l'exercice 5

1. La forme (2) de l'équation du plan tangent au graphe $z = x^2 - 2y^3$ de la fonction f au point (x_0, y_0, z_0) nous donne l'équation

$$z - z_0 = 2x_0(x - x_0) - 6y_0^2(y - y_0) = 2x_0x - 6y_0^2y - 2x_0^2 + 6y_0^3$$

2. Au point (2,1,2), ce plan tangent est ainsi donné par l'équation

$$4x - 6y - z = 0.$$

Pour que ce plan soit parallèle au plan tangent au point (x_1, y_1, z_1) distinct de (x_0, y_0, z_0) il faut et il suffit que $(4, 6, -1) = (2x_1, 6y_1^2, -1)$ et $y_1 \neq 1$, c.a.d. que $(x_1, y_1, z_1) = (2, -1, 6)$.

Correction de l'exercice 6

1. $\lim_{(x,y)\to(0,0)}\frac{xy^2}{x^2+y^2}=\lim_{r\to 0}r\cos\varphi\sin^2\varphi$ existe et vaut zéro puisque $\cos\varphi\sin^2\varphi$ est borné. Par conséquent f est continue à l'origine et donc partout. Il est évident que la fonction f est différentiable en chaque point distinct de l'origine. Soit $v=(a,b)\in\mathbb{R}^2$ non nul. Alors

$$D_{v}f(0,0) = \frac{d}{dt} \left(t \frac{ab^{2}}{a^{2} + b^{2}} \right) \Big|_{t=0} = \frac{ab^{2}}{a^{2} + b^{2}}$$

existe d'où $\frac{\partial f}{\partial x}(0,0) = 0$ et $\frac{\partial f}{\partial y}(0,0) = 0$; puisqu'il existe une dérivée directionnelle non nulle, la fonction f ne peut pas être différentiable en (0,0).

- 2. L'association $\mathbb{R}^2 \to \mathbb{R}$, $v \mapsto D_v f(0,0)$ n'est évidemment pas linéaire et les droites appartenant à la famille des droites passant par l'origine et de vecteurs directeurs $(v, D_v f(0,0)) \in \mathbb{R}^3$ ne forment pas un plan.
- 3. Dans $\mathbb{R}^2 \setminus \{(0,0)\},\$

$$\frac{\partial f}{\partial x} = \frac{y^2(x^2 + y^2) - 2x^2y^2}{(x^2 + y^2)^2} = \frac{y^4 - x^2y^2}{(x^2 + y^2)^2} = \sin^4 \varphi - \sin^2 \varphi \cos^2 \varphi$$
$$\frac{\partial f}{\partial y} = \frac{2xy(x^2 + y^2) - 2xy^3}{(x^2 + y^2)^2} = \frac{2x^3y}{(x^2 + y^2)^2} = 2\sin \varphi \cos^3 \varphi$$

d'où, en coordonnées polaires,

$$D_{\nu}f(x,y) = D_{\nu}f(r\cos\varphi,r\sin\varphi) = a(\sin^4\varphi - \sin^2\varphi\cos^2\varphi) + 2b\sin\varphi\cos^3\varphi$$

et, φ étant fixé,

$$\lim_{r\to 0} D_v f(r\cos\varphi, r\sin\varphi) = a(\sin^4\varphi - \sin^2\varphi\cos^2\varphi) + 2b\sin\varphi\cos^3\varphi.$$

Par conséquent, $D_{\nu}f(x,y)$ n'est pas continu en (x,y) sauf peut-être si a=0. Par exemple, avec $\sin \varphi = 1$, on trouve

$$\lim_{r\to 0} D_{\nu} f(0,r) = a$$

et $a \neq \frac{ab^2}{a^2+b^2}$ sauf si a=0. Si a=0, la dérivée directionnelle D_v est la dérivée partielle $\frac{\partial f}{\partial y}$ et, φ étant fixé,

$$\lim_{r\to 0} D_{\nu} f(r\cos\varphi, r\sin\varphi) = 2b\sin\varphi\cos^3\varphi$$

ce qui n'est pas nul si $\sin \varphi \cos \varphi$ ne l'est pas. Puisque $\frac{\partial f}{\partial y}(0,0) = 0$, la dérivée partielle $\frac{\partial f}{\partial y}$ n'est continue en (0,0) non plus.

Correction de l'exercice 7 ▲

$$\frac{\partial f}{\partial x} = -\cos x \cos y \exp[-\sin x \cos y]$$
$$\frac{\partial f}{\partial y} = \sin x \sin y \exp[-\sin x \cos y]$$

etc. d'où, avec $\frac{\partial f}{\partial x}(0,0) = -1$ et $\frac{\partial f}{\partial y}(0,0) = 0$,

$$f(x,y) = f(0,0) + \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + \dots = 1 - x + \dots$$

Avec x = 0.0184 on trouve, pour $\exp[\sin(3.16)\cos(0.02))]$, la valeur approchée 1 - 0.0184 = 0.9816. N.B. On peut faire mieux si nécessaire : Avec

$$\frac{\partial^2 f}{\partial x^2} = (\sin x \cos y + \cos^2 x \cos^2 y) \exp[-\sin x \cos y]$$

$$\frac{\partial^2 f}{\partial x \partial y} = (\cos x \sin y + \cos x \cos y \sin x \sin y) \exp[-\sin x \cos y]$$

$$\frac{\partial^2 f}{\partial y^2} = (\sin x \cos y + \sin^2 x \sin^2 y) \exp[-\sin x \cos y]$$

on trouve

$$f(x,y) = f(0,0) + \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + \dots = 1 - x + \frac{1}{2}x^2 + \dots$$

etc.

De même,

$$\frac{\partial h}{\partial x} = \frac{1}{2(1 + (\sqrt{4+x} - 2\exp(y))^2)\sqrt{4+x}}$$
$$\frac{\partial h}{\partial y} = -\frac{2\exp(y)}{1 + (\sqrt{4+x} - 2\exp(y))^2}$$

etc. d'où, avec $\frac{\partial h}{\partial x}(0,0) = \frac{1}{4}$ et $\frac{\partial h}{\partial y}(0,0) = -2$,

$$h(x,y) = h(0,0) + \frac{\partial h}{\partial x}(0,0)x + \frac{\partial h}{\partial y}(0,0)y + \dots = \frac{1}{4}x - 2y + \dots$$

Avec x = 0.03 et y = 0.01 on trouve, pour $\arctan[\sqrt{4.03} - 2\exp(0.01)]$, la valeur approchée 0.0075 - 0.02 = -0.00125.