MATH 262 - Homework 7.1

7. Arguing geometrically, find all eigenvectors and eigenvalues of the linear transformation:

Scaling by 5 in \mathbb{R}^3

Then find an eigenbasis if you can, and thus determine whether the given transformation is diagonalizable.

Below is a plot of a vector and its scaled counterpart.

Notice $T(\mathbf{e}_1) = A\mathbf{e}_1 = 5\mathbf{e}_1$. This follows the form described in the definition of an eigenvalue i.e. a λ such that $A\vec{v} = \lambda \vec{v}$. Thus, the eigenvalue is 5. This also holds for \mathbf{e}_2 and \mathbf{e}_3 . Therefore, \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 form an eigenbasis and all vectors in \mathbb{R}^3 are eigenvectors of this transformation.