Motif Analysis

Alessandro Romanel

Bioinformatics Resources 2019-2020

Questions...

- How to find DNA motifs?
- Relations between motifs and transcription factors (TF)?
- Given a motif, which is the corresponding TF?
- Given a set of initial sequences, which are the more represented motifs?
- Given a set of transcripts, which are the motifs (and hence the TFs) in the promoters of the corresponding genes?

Questions...

- Given a set of motifs, which are the involved signaling pathways?
- Given a set of motifs, which are the signaling pathways that are more represented?

•

DNA motif (definition)

- Pattern of nucleotide sequences
- Usually they are associated to DNA-protein binding sites (regulatory regions)
- Small pattern (5-30bp) that can recur many times in the genome and many times for the same gene
- Standard motifs, palindromes and gapped

DNA motifs (definition)

DNA motifs (functions)

- Sequence specific binding sites
 - TF, Nuclease, Ribosome
- mRNA processing
 - Splicing: Exonic Splicing Enhancer (ESE)
 - Editing: Protospacer adjacent motif (PAM), DNA sequence that immediately follow the target DNA sequence of Cas9 nuclease in the CRISPR system
 - Polyadenilation
 - Transcription termination

Motifs and TFs

- Motifs in regulatory regions are often similar but variable
- Transcription factors are often pleiotropic (1:N)
 - Regulate a lot of genes but need to be expressed at different levels
- An effect of degenerate motifs is the non-specific binding
 - A protein can bind in genomic positions that are different with respect to the one corresponding to the expected functional sites

Motif search (objectives)

- Identify over-represented motifs in the genome
- Identify motifs that are conserved in ortholog sequences
- Identify sequences that can be a candidate for TF binding

How to represent motifs

- Consensus sequences
- Profiles
 - Positional matrix
 - Hidden Markov Model (HMM)

Represent motifs

- TF binding sites are often represented a consensus binding sites
- Consensus sequence
 - Represents the result of multiple sequence alignments with the goal of finding recurrent motifs across the sequences
 - Potentially different from all input sequences
 - Presents only the most conserved sequences for each position

Consensus sequence

Consensus sequence

```
      T
      A
      C
      G
      A
      T
      A
      A
      G

      T
      A
      T
      A
      A
      T
      A
      A
      G

      T
      A
      T
      A
      A
      C
      T
      A
      A
      C

      T
      A
      T
      G
      A
      T
      A
      A
      A
      T

      T
      A
      T
      G
      T
      T
      A
      A
      T
```

TATGATAG

Remember IUPAC notation

Symbol ^[2]	Description	Bas	ses	repre	esen	ted
Α	Adenine	Α				
С	Cytosine		С			
G	Guanine			G		1
Т	Thymine				Т	
U	Uracil				U	
w	Weak	Α			Т	
S	Strong		С	G		
M	aMino	Α	С			2
K	Keto			G	Т	2
R	puRine	Α		G		
Y	p Y rimidine		С		Т	
В	not A (B comes after A)		С	G	Т	
D	not C (D comes after C)	Α		G	Т	3
н	not G (H comes after G)	Α	С		Т	3
V	not T (V comes after T and U)	Α	С	G		
N or -	any Nucleotide (not a gap)	Α	С	G	Т	4

Consensus sequence

Τ	Α	С	G	Α	Т	Α	Α	G
Τ	Α	Τ	Α	Α	Т	Α	G	G
Τ	Α	Т	Α	Α	Т	Α	Α	С
Τ	Α	Т	Α	С	Т	Α	Α	С
Τ	Α	Т	G	Α	Т	Α	Α	Α
Т	Α	Т	G	Т	Т	Α	Α	Т
_	_	_	_	_	_	_	_	_

Sequenza consenso IUPAC?

Symbol ^[2]	Description	Bases represented				
A	Adenine	Α				
С	Cytosine		С			
G	Guanine			G		1
Т	Thymine				Т	
U	Uracil				U	
w	Weak	Α			Т	
S	Strong		С	G		
М	aMino	Α	С			2
K	Keto			G	Т	_
R	puRine	Α		G		
Y	p Y rimidine		С		Т	
В	not A (B comes after A)		С	G	Т	
D	not C (D comes after C)	Α		G	Т	3
Н	not G (H comes after G)	Α	С		Т	3
V	not T (V comes after T and U)	Α	С	G		
N or -	any Nucleotide (not a gap)	Α	С	G	Т	4

https://en.wikipedia.org/wiki/Nucleic_acid_notation

Consensus sequence

Т	Α	Υ	R	Н	Т	Α	R	N
т	A	Т	G	A	Т	A	A	G
'	\wedge	'	a	'	'	\wedge	\wedge	'
Т	Δ	Т	G	Т	Т	Δ	Δ	Т
Т	Α	Т	G	Α	Т	Α	Α	Α
Т	Α	Т	Α	С	Т	Α	Α	С
Τ	Α	Т	Α	Α	Т	Α	Α	С
Т	Α	Т	Α	Α	Т	Α	G	G
Τ	Α	С	G	Α	Τ	Α	Α	G

Symbol ^[2]	Description	Bases represer				ted
Α	Adenine	Α				
С	Cytosine		С			
G	Guanine			G		1
Т	Thymine				Т	
U	Uracil				U	
w	Weak	Α			Т	
S	Strong		С	G		
M	aMino	Α	С			2
K	Keto			G	Т	_
R	puRine	Α		G		
Y	p Y rimidine		С		Т	
В	not A (B comes after A)		С	G	Т	
D	not C (D comes after C)	Α		G	Т	3
Н	not G (H comes after G)	Α	С		Т	3
V	not T (V comes after T and U)	Α	С	G		
N or -	any Nucleotide (not a gap)	Α	С	G	Т	4

https://en.wikipedia.org/wiki/Nucleic_acid_notation

Positional matrix

- Alternative to consensus
- The elements in the matrix represent all possible bases at each position

- Position Frequency Matrix (PFM) (PSWM)
- Position Probability Matrix (PPM) (PFM)
- Position Weight Matrix (PWM) (PSSM)

PFM matrix

С G A Τ Α Τ Α Α Α G G Τ Α Τ Α Α Α Τ С Τ Α Α Τ G Α Τ Α Α Τ Τ G Τ Τ Α Α

1 2 3 4 5 6 7 8 9

A 0

C

G 0

T 6

PFM matrix

Τ С G Α Α Τ Α Α Α Α Α Τ Α Α С Α Τ Α Τ G Α Τ Α Α Τ G Τ Τ Α Α

	1	2	3	4	5	6	7	8	9
A	0	6	0	3	4	0	6	5	1
C	0	0	1	0	1	0	0	0	2
G	0	0	0	3	0	0	0	1	2
т	6	0	5	0	1	6	0	0	1

		1	2	3	4	5	6	7	8	9
PEN	Α	0	6	0	3	4	0 0	6	5	1
	C	0	0	1	0	1	0	0	0	2
	G	0	0	0	3	0	0	0	1	2
	Т	6	0	5	0	1	6	0	0	1

		1	2	3	4	5	6	7	8	9
	A	0	6	0	3	4	0	6	5	1
PEN	C	0	0	1	0	1	0	0	0	2
	G	0		0	3	0	0	0	1	2
	Т	6	0	5	0	1	6	0	0	1
		1	2	3	4	5	6	7	8	9
	Α	0								
12	C	0								
PRM	G	0								
·	Т	1								

		1	2	3	4	5	6	7	8	9
	Α	0	6	0	3	4	0	6	5	1
SEN	C	0	0	1	0	1	0	0	0	2
	G	0	0	0	3	0	0	0	1	2
	Т	6	0	5	0	1	6	0	0	1
		1	2	3	4	5	6	7	8	9
	A	0	1	0		0.67	0	1	0.83	0.17
12	C	0	0	0.17	0	0.17	0	0	0	0.34
PRM	G	0	0	0	0.5	0	0	0	0.17	0.34
•	Т	1	0	0.83	0	0.17	1	0	0	0.17

_		1	2	3	4	5	6	7	8	9
	Α	0	6	0	3	4	0	6	5	1
SEN	C	0	0	1	0	1	0	0	0	2
	G	0	0	0	3	0	0	0	1	2
	Т	6	0	5	0	1	6	0	0	1
		ı								
		1	2	3	4	5	6	7	8	9
	A	0	1	0	0.5	0.67	0	1	0.83	0.17
120	C	0	0	0.17	0	0.17	0	0	0	0.34
PRM	G	0	0	0	0.5	0	0	0	0.17	0.34
•	Т	1	0	0.83	0	0.17	1	0	0	0.17
_		1	2	3	4	5	6	7	8	9
. 1	Α	-inf	1.38	-inf	0.69	0.99	-inf	1.38	1.20	-0.39
RAM	C	-inf	-inf	-0.39	-inf	-0.39	-inf	-inf	-inf	0.31
*	G	-inf	-inf	-inf	0.69	-inf	-inf	-inf	-0.39	0.31
	Т	1.38	-inf	1.20	-inf	-0.39	1.38	-inf	-inf	-0.39

	1	2	3	4	5	6	7	8	9
Α	0	1	0	0.5	0.67	0	1	0.83	0.17
C	0	0	0.17	0	0.17	0	0	0	0.34
G	0	0	0	0.5	0	0	0	0.17	0.34
Т	1	0	0.83	0	0.17	1	0	0	0.17

$$M_{k,j}=rac{1}{N}\sum_{i=1}^N I(X_{i,j}=k)$$

- k is the set of all symbols in the alphabet (A,C,G,T)
- *N* is the number of aligned sequences
- *I* is an indicator function (1 if Xi,j=k, 0 otherwise)
- *j* ranges from the 1 to the length of the sequences

	1	2	3	4	5	6	7	8	9
Α	0	1	0	0.5	0.67	0	1	0.83	0.17
C	0	0	0.17	0	0.17	0	0	0	0.34
G	0	0	0	0.5	0	0	0	0.17	0.34
Т	1	0	0.83	0	0.17	1	0	0	0.17

Probabilities are calculated for each position independently

- ?

	1	2	3	4	5	6	7	8	9
A	0	1	0	0.5	0.67	0	1	0.83	0.17
					0.17				
G	0	0	0	0.5	0	0	0	0.17	0.34
Т	1	0	0.83	0	0.17	1	0	0	0.17

- Probabilities are calculated for each position independently
 - We assume there is no statistical dependence between position in the pattern

	1	2	3	4	5	6	7	8	9
Α	0	1	0	0.5	0.67	0	1	0.83	0.17
C	0	0	0.17	0	0.17	0	0	0	0.34
G	0	0	0	0.5	0	0	0	0.17	0.34
Т	1	0	0.83	0	0.17	1	0	0	0.17

 Given an input sequence, which is the probability to belong to a PPM?

S: TACACTAGT

P(S|M) = ?

	1	2	3	4	5	6	7	8	9
A	0	1	0	0.5	0.67	0	1	0.83	0.17
					0.17				
G	0	0	0	0.5	0	0	0	0.17	0.34
Т	1	0	0.83	0	0.17	1	0	0	0.17

• Given an input sequence, which is the probability to *belong* to a PPM?

S: TACACTAGT

P(S|M) = 1*1*0.17*0.5*0.17*1*1*0.17*0.17= 0.000417605

	1	2	3	4	5	6	7	8	9
Α	0	1	0	0.5	0.67	0	1	0.83	0.17
C	0	0	0.17	0	0.17	0	0	0	0.34
G	0	0	0	0.5	0	0	0	0.17	0.34
Т	1	0	0.83	0	0.17	1	0	0	0.17

• Given an input sequence, which is the probability to *belong* to a PPM?

S: TAC**C**CTAGT

P(S|M) = ?

	1	2	3	4	5	6	7	8	9
A	0	1	0	0.5	0.67	0	1	0.83	0.17
C	0	0	0.17	0	0.17	0	0	0	0.34
G	0	0	0	0.5	0	0	0	0.17	0.34
Т	1	0	0.83	0	0.17	1	0	0	0.17

 Given an input sequence, which is the probability to belong to a PPM?

S: TAC**C**CTAGT

$$P(S|M) = ?$$

<u>Laplace smoothing (pseudocounts):</u>
<u>Allows to estimate probabilities in case of</u>
few observations

Pseudocounts

- A pseudocount is an amount (integer or double) added to the number of observed cases in order to change the expected probability
 - When values not known to be 0

$$p_{i, ext{ empirical}} = rac{x_i}{N} \qquad p_{i, ext{ $lpha$-smoothed}} = rac{x_i + lpha}{N + lpha d}$$

d is the number of observations

Pseudocounts

			3						
Α	0	6	0 1 0	3	4	0	6	5	1
C	0	0	1	0	1	0	0	0	2
G	0	0	0	3	0	0	0	1	2
	6	0	5	0	1	6	0	0	1

S: TACACTAGT P(S|M) = ?

S: TACCCTAGT P(S|M) = ?

	1	2	3	4	5	6	7	8	9
Α	1	7	1	4	5	1	7	6	2
C	1	1	2	1	2	1	1	1	3
G	1	1	1	4	1	1	1	2	3
Т	7	1	6	1	2	7	1	1	2

$$M_{k,j} = \log_2 \left(M_{k,j}/b_k
ight)$$

b represents a background model

$$b_k=1/|k|$$

- b=0.25 for nucleotides (n=4) and 0.05 for amino acids (n=20)
- b can vary across nucleotide for organisms with high GC content

		1	2	3	4	5	6	7	8	9
М	Α	-inf	1.38	-inf	0.69	0.99	-inf	1.38	1.20	-0.39
	C	-inf	-inf	-0.39	-inf	-0.39	-inf	-inf	-inf	0.31
	G	-inf	-inf	-inf	0.69	-inf	-inf	-inf	-0.39	0.31
	Т	1.38	-inf	1.20	-inf	-0.39	1.38	-inf	-inf	-0.39

$$M_{T,1} = ln (1/0.25) = 1.38$$

		1	2	3	4	5	6	7	8	9
М	Α	-inf	1.38	-inf	0.69	0.99	-inf	1.38	1.20	-0.39
	C	-inf	-inf	-0.39	-inf	-0.39	-inf	-inf	-inf	0.31
	G	-inf	-inf	-inf	0.69	-inf	-inf	-inf	-0.39	0.31
	Т	1.38	-inf	1.20	-inf	-0.39	1.38	-inf	-inf	-0.39

$$M_{T,1} = \ln (1/0.25) = 1.38$$

$$M_{C,3} = In (0.17/0.25) = -0.39$$

		1	2	3	4	5	6	7	8	9
М	Α	-inf	1.38	-inf	0.69	0.99	-inf	1.38	1.20	-0.39
	C	-inf	-inf	-0.39	-inf	-0.39	-inf	-inf	-inf	0.31
	G	-inf	-inf	-inf	0.69	-inf	-inf	-inf	-0.39	0.31
	Т	1.38	-inf	1.20	-inf	-0.39	1.38	-inf	-inf	-0.39

$$M_{T,1} = \ln (1/0.25) = 1.38$$

$$M_{C,3} = ln (0.17/0.25) = -0.39$$

$$M_{G,6} = In (0/0.25) = -inf$$

		1	2	3	4	5	6	7	8	9
Μ	Α	-inf	1.38	-inf	0.69	0.99	-inf	1.38	1.20	-0.39
	C	-inf	-inf	-0.39	-inf	-0.39	-inf	-inf	-inf	0.31
						-inf				
	Т	1.38	-inf	1.20	-inf	-0.39	1.38	-inf	-inf	-0.39

• Given an input sequence, which is the probability to *belong* to a PPM?

S: TACACTAGT

Score = ?

		1	2	3	4	5	6	7	8	9
Μ	Α	-inf	1.38	-inf	0.69	0.99	-inf	1.38	1.20	-0.39
	C	-inf	-inf	-0.39	-inf	-0.39	-inf	-inf	-inf	0.31
						-inf				
	Т	1.38	-inf	1.20	-inf	-0.39	1.38	-inf	-inf	-0.39

• Given an input sequence, which is the probability to *belong* to a PPM?

S: TACACTAGT

 The score indicates how much the sequence is different from a random sequence

		1	2	3	4	5	6	7	8	9
М	Α	-inf	1.38	-inf	0.69	0.99	-inf	1.38	1.20	-0.39
	C	-inf	-inf	-0.39	-inf	-0.39	-inf	-inf	-inf	0.31
						-inf				
	Т	1.38	-inf	1.20	-inf	-0.39	1.38	-inf	-inf	-0.39

• Given an input sequence, which is the probability to *belong* to a PPM?

S: TACCCTAGT

Score = ?

		1	2	3	4	5	6	7	8	9
Μ	Α	-inf	1.38	-inf	0.69	0.99	-inf	1.38	1.20	-0.39
	C	-inf	-inf	-0.39	-inf	-0.39	-inf	-inf	-inf	0.31
						-inf				
	Т	1.38	-inf	1.20	-inf	-0.39	1.38	-inf	-inf	-0.39

• Given an input sequence, which is the probability to *belong* to a PPM?

S: TACCCTAGT

Score = ?

PSEUDOCOUNTS!!!!

- HMM: Hidden Markov Model
- A Markov chain is a mathematical system that experiences transitions from one state to another according to certain probabilistic rules
 - no matter how the process arrived at its present state, the possible future states are fixed

- In a Markov chain, the state is directly visible to the observer
 - state transition
 probabilities are the
 only parameters
- In a HMM the state is not directly visible, but the output, dependent on the state, is visible

https://en.wikipedia.org/wiki/Hidden_Markov_model

- A HMM of the first order is defined as:
 - A finite set of states S
 - A discrete alphabet of symbols
 - A matrix of transition probabilities
 T = P(i|j)
 probability of transition from state j to i
 - A matrix of emission probabilities
 T = P(X|i)
 probability of X emission in state i

A C A C A A
A T A C A A
T T T C T G
T T C C G
C T C T C G

ACACAA

ATACAA

TTTCTG

TTTCTG

CTCCCG

CTCTCG

S = CCATAAP(S|M) = ?

S = CCATAA P(S|M) = 1/3*1*

1/6*1*

1/3*1*

1/6*1*

1/3*1*

1/3*1

HMM and score

Background model

A=1/4 C=1/4 G=1/4 T=1/4

A=1/3 C=1/3 T=1/3

ACACAA

ATACAA

TTTCTG

TTTCTG

CTCCCG

CTCTCG

C=5/6 T=1/6

C=1/6 T=5/6

A=1/3 C=1/3 T=1/3

A=1/3 G=2/3

HMM and score

S = CCATAA Score(S) = log((1/3)/(1/4))+ log((1/6)/(1/4))+

Background model

A=1/4 C=1/4 G=1/4 T=1/4

HMM profile (insertions/deletions)

A C A C A A
A T A - A A
T T T C T G
T T C C G
C - C T C G

HMM profile (insertions/deletions)

A C A C A - A
A T A - A - A
T T T C T - G
C T C C C - G

C - CTCCG

Match a sequence to the HMM profile

S: ATG P(S | Model)=?

Match a sequence to the HMM profile

S: ATG

BMMME

Match a sequence to the HMM profile

S: ATG

P(S | Model)=0.8*0.1*0.7*0.2*0.6*0.1*0.9 = 0.0006048

BMMME

 $P(S \mid Model) = 0.8*0.1*0.2*0.4*0.25*0.75 = 0.0012$

BMDMIE

Match a sequence to the HMM profile

S: ATG

 $P(S \mid Model) = 0.8*0.1*0.7*0.2*0.6*0.1*0.9 = 0.0006048$

BMMME

 $P(S \mid Model) = 0.8*0.1*0.2*0.4*0.25*0.75 = 0.0012$

BMDMIE

P(S | Model)=0.2*0.6*0.2*0.25*0.75*0.1*0.9 = 0.000405 BDMIME

 What is the probability that a given sequence S was generated by the HMM?

$$P(S \mid w) = \sum_{\pi} P(S, \pi \mid w)$$

- S = sequence
- w = parameters (probabilities)
- $-\pi$ = all possible paths
- Computationally inefficient
 - There are efficient algorithms
 - Forward-Backwad and Viterbi

Match a sequence to the HMM profile

Finding the path with highest probability means to find the best alignment to the HMM profile