Number theory

Luka Horjak (luka1.horjak@gmail.com)

February 23, 2024

Contents Luka Horjak

Contents

Introduction								
1	Distribution of prime numbers							
	1.1	1 Riemann zeta function						
	1.2	Prime number theorem						
Tn	dev	v.						

Introduction Luka Horjak

Introduction

These are my lecture notes on the course Number theory in the year 2023/24. The lecturer that year was gost. izr. prof. dr. rer. nat. Daniel Smertnig.

The notes are not perfect. I did not write down most of the examples that help with understanding the course material. I also did not formally prove every theorem and may have labeled some as trivial or only wrote down the main ideas.

I have most likely made some mistakes when writing these notes – feel free to correct them.

1 Distribution of prime numbers

1.1 Riemann zeta function

Definition 1.1.1. The *prime counting function* is defined as

$$\pi(x) = |\{ p \in \mathbb{P} \mid p \le x \}|.$$

Definition 1.1.2. Let $(a_n)_n \subseteq \mathbb{C}$ be a sequence. The infinite product

$$\prod_{n=1}^{\infty} a_n$$

converges absolutely if it converges normally as a product of constant functions.

Theorem 1.1.3. Let $\sigma > 1$ be a real number. For $s \in \mathbb{C}$ with $Re(s) \geq \sigma$, we have

$$\sum_{n=1}^{\infty} = \prod_{p \in \mathbb{P}} (1 - p^{-s})^{-1},$$

with both the product and sum converging uniformly and absolutely.¹

Proof. Note that

$$\sum_{n=1}^{\infty} \left| \frac{1}{n^s} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{\text{Re}(s)}} \le \sum_{n=1}^{\infty} \frac{1}{n^{\sigma}}$$

is convergent, hence the given series converges as well. To prove the convergence of the product, first note that

$$\prod_{p \in \mathbb{P}} (1 - p^{-s})^{-1} = \prod_{p \in \mathbb{P}} \left(\sum_{k=0}^{\infty} p^{-sk} \right).$$

As

$$\sum_{p \in \mathbb{P}} \left| \sum_{k=1}^{\infty} p^{-sk} \right| \le \sum_{p \in \mathbb{P}} \left(\sum_{k=1}^{\infty} (p^k)^{-\sigma} \right) \le \sum_{n=1}^{\infty} n^{-\sigma}$$

converges normally, so does the product. To prove equality, we can bound

$$\left| \prod_{\substack{p \in \mathbb{P} \\ n < x}} \frac{1}{1 - p^{-s}} - \sum_{n=1}^{x} \frac{1}{n^{s}} \right| \le \sum_{n=x+1}^{\infty} \left| \frac{1}{n^{s}} \right| \le \sum_{n=x+1}^{\infty} \frac{1}{n^{\sigma}},$$

which converges to 0 as $x \to \infty$.

Definition 1.1.4. The *Riemann zeta function* is defined as

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

for Re(s) > 1.

Lemma 1.1.5. If Re(s) > 1, then $\zeta(s) \neq 0$.

¹ See Complex analysis, section 3 for definition and properties of convergence for products.

Proof. No term in the infinite product is equal to 0.

Proposition 1.1.6. The function $\zeta(s) - \frac{1}{s-1}$ has a holomorphic continuation to Re(s) > 0.

Proof. We can write

$$\zeta(s) - \frac{1}{s-1} = \sum_{n=1}^{\infty} n^{-s} - \int_{1}^{\infty} x^{-s} dx$$
$$= \sum_{n=1}^{\infty} \left(n^{-s} - \int_{n}^{n+1} x^{-s} dx \right)$$
$$= \sum_{n=1}^{\infty} \int_{n}^{n+1} \left(n^{-s} - x^{-s} \right) dx$$

as long as Re(s) > 1. Now, for $n \le x \le n+1$, we can bound

$$\left| n^{-s} - x^{-s} \right| = \left| \int_{n}^{x} s u^{-s-1} du \right| \le \frac{|s|}{n^{\text{Re}(s)+1}}.$$

Let $L \subseteq \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0\}$ be a compact set. As

$$\left| \sum_{n=1}^{\infty} \int_{n}^{n+1} \left(n^{-s} - x^{-s} \right) \, dx \right| \le \sum_{n=1}^{\infty} \frac{|s|}{n^{\text{Re}(s)+1}} \le \|\text{id}\|_{L} \cdot \sum_{n=1}^{\infty} \frac{1}{n^{\sigma+1}}$$

for all $s \in L$, where $\sigma = \min_{L} |z|$, the series converges uniformly on compact sets.

Remark 1.1.6.1. The ζ function can be analytically extended to $\mathbb{C} \setminus \{1\}$ by

$$\zeta(1-s) = 2 \cdot (2\pi)^{-s} \cos\left(\frac{\pi}{2}s\right) \Gamma(s)\zeta(s).$$

It has a simple pole with residue 1 at 1.

Lemma 1.1.7. The equation $\overline{\zeta(\overline{s})} = \zeta(s)$ holds for all $s \in \mathbb{C} \setminus \{1\}$.

Proof. The function $\overline{\zeta(\overline{s})}$ is holomorphic. As it coincides with $\zeta(s)$ for $s \geq 1$, the functions are equal.

1.2 Prime number theorem

Proposition 1.2.1. The series

$$\sum_{p \in \mathbb{P}} \frac{\log(p)}{p^s}$$

converges uniformly and absolutely for $Re(s) \ge \sigma > 1$.

Proof. We can bound

$$\left| \sum_{p \in \mathbb{P}} \left| \frac{\log(p)}{p^s} \right| \le \sum_{p \in \mathbb{P}} \frac{\log(p)}{p^{\sigma}} \le \sum_{n=1}^{\infty} \frac{\log(p)}{n^{\varepsilon}} \cdot \frac{1}{n^{\sigma - \varepsilon}},$$

which clearly converges for $0 < \varepsilon < \sigma - 1$.

Definition 1.2.2. We define functions

$$\theta(x) = \sum_{\substack{p \in \mathbb{P} \\ p \le x}} \log(p)$$

and

$$\phi(s) = \sum_{p \in \mathbb{P}} \frac{\log(p)}{p^s}.$$

Remark 1.2.2.1. The function ϕ is holomorphic for Re(s) > 1.

Proposition 1.2.3. The function ϕ has a meromorphic continuation to $\text{Re}(s) > \frac{1}{2}$. It has simple poles at points s = 1 and zeros of $\zeta(s)$.

Proof. Calculate the logarithmic derivative of ζ as

$$\begin{split} -\frac{\zeta'(s)}{\zeta(s)} &= -\sum_{p \in \mathbb{P}} \frac{\left((1 - p^{-s})^{-1}\right)'}{(1 - p^{-s})^{-1}} \\ &= -\sum_{p \in \mathbb{P}} \frac{-(1 - p^{-s})^{-2} \cdot p^{-s} \log(p)}{(1 - p^{-s})^{-1}} \\ &= \sum_{p \in \mathbb{P}} \frac{\log(p)}{p^s - 1} \\ &= \phi(s) + \sum_{p \in \mathbb{P}} \frac{\log(p)}{p^s(p^s - 1)}. \end{split}$$

Similarly as in the proof of proposition 1.2.1, we can show that the above series converges uniformly and absolutely for $Re(s) > \frac{1}{2}$.

Theorem 1.2.4. If Re(s) = 1, then $\zeta(s) \neq 0$.

Proof. Let $\mu = \operatorname{ord}_{1+ib} \zeta \geq 0$. As $\zeta(\overline{z}) = \overline{\zeta(z)}$, we also have $\mu = \operatorname{ord}_{1-ib} \zeta$. $\theta = \operatorname{ord}_{1+2ib} \zeta = \operatorname{ord}_{1-2ib} \zeta$. As ϕ has a simple pole at 1, we have

$$\lim_{\varepsilon \to 0} \varepsilon \phi(1 + \varepsilon) = 1.$$

Similarly,

$$\lim_{\varepsilon \to 0} \varepsilon \phi (1 + \varepsilon \pm ib) = -\mu,$$

as the logarithmic derivative of ζ at b has residue $-\mu$, and

$$\lim_{\varepsilon \to 0} \varepsilon \phi (1 + \varepsilon \pm 2ib) = -\theta.$$

Now compute

$$f(\varepsilon) = \sum_{r=-2}^{2} \binom{4}{2+r} \phi(1+\varepsilon+rib) = \sum_{p\in\mathbb{P}} \frac{\log(p)}{p^{1+\varepsilon}} \cdot \left(p^{\frac{ib}{2}} - p^{-\frac{ib}{2}}\right)^4 = \sum_{p\in\mathbb{P}} \frac{\log(p)}{p^{1+\varepsilon}} \cdot \left(2\operatorname{Re}\left(p^{\frac{ib}{2}}\right)\right)^4.$$

It follows that

$$0 \le \lim_{\varepsilon \to 0} \varepsilon \cdot f(\varepsilon) = 6 - 8\mu - 2\theta.$$

As $\theta \geq 0$, we have $\mu = 0$.

Corollary 1.2.4.1. The function ϕ is holomorphic for Re(s) = 1, except for a simple pole with residue 1 at 1. In particular, the function

$$g(z) = \frac{\phi(z+1)}{z+1} - \frac{1}{z}$$

is holomorphic for $Re(z) \geq 0$.

Index

\mathbf{A}

absolute convergence, 4

\mathbf{P}

prime counting function, 4

${\bf R}$

Riemann zeta function, 4