

Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék

Fizikai alapú 3D megjelenítés valósidőben

Valasek Gábor tanársegéd Bölöny Zsolt programtervező informatikus

Dr. Magdics Milán adjunktus

Budapest, 2016

Tartalomjegyzék

1.	1. Bevezetés			2
2.	Felhasználói dokumentáció			
	2.1.	kukac		4
3.	Fejlesztői dokumentáció			
	3.1.	A 3D-s	s megjelenítés elméleti háttere	5
		3.1.1.	A megjelenítési egyenlet	5
		3.1.2.	A megjelenítési egyenlet	5

1. fejezet

Bevezetés

A számítógépes grafikával foglalkozó kutatókat, fejlesztőket napjainkban is foglalkoztatja a kérdés, hogyan lehet a számítógép segítségével minél életszerűbb, fotorealisztikus megjelenítést létrehozni. A különféle sugárkövetéses technikákkal már régóta képesek vagyunk rendkívül élethű képek létrehozására, de ezek a módszerek nem minden esetben jelentenek megoldást, hiszen a rendelkezésre álló számítási kapacitástól függően a létrehozás folyamata akár napokig is eltarthat. Míg egy animációs film esetében van lehetőség ezt kivárni, addig a valós idejű megjelenítésben nem áll rendelkezésre ennyi idő: a szinte folyton változó, interaktív 3D-s környezetet a másodperc törtrésze alatt kell a képernyőre vetítenünk.

A grafikus kártyák teljesítménye a megjelenésük óta folyamatosan, gyors ütemben fejlődik. Évről évre újabb és újabb technikák jelennek meg, amelyek igyekeznek kihasználni ezt a folyton növekvő teljesítményt annak érdekében, hogy minél látványosabb, minél valószerűbb legyen a virtuálisan létrehozott 3D-s tartalmak megjelenítése. A fizikai alapú megjelenítés is csupán egy, bár annál jelentősebb módszer ezek közül: nem csak a korábban mindenki által használt Blinn-Phong közelítést cseréli le egy, az anyagok valós, fizikai tulajdonságait figyelembe vevő új módszerre, hanem a megjelenítés bemeneteként szolgáló anyagmodellek előállításának folyamatát is átformálja.

A fizikai alapú megjelenítés (hivatalosan physically based rendering, a továbbiakban PBR) legfontosabb tulajdonsága az, hogy az anyagok ill. fények mérhető fizikai tulajdonságait veszi alapul, és az adott pontban a kamera által érzékelt fény színét és intenzitását igyekszik ismert, valós fizikai képletek közelítéseinek segítségével meghatározni. Habár a PBR alapelvei és összefüggései létrejötte óta változatlanok, a felhasznált különféle egyenletek minél pontosabb és mindeközben minél kevésbé számításigényes közelítése a mai napig aktív kutatási terület.

A fizikai alapú megjelenítés előnyeinek bemutatására egy egyszerű modellek betöltésére képes megjelenítőt hoztam létre, amelynek segítségével akár egy témában kevésbé járatos felhasználó számára is láthatóvá válnak a módszer előnyei. A

program megalkotása komoly kihívást jelentett, hiszen nem csak a CPU-t, hanem a GPU-t is programoznom kellett árnyalók (*shaderek*) segítségével. A felhasznált technológia újdonsága, az implementáció komplexitása és a várható látványos végeredmény miatt esett választásom erre a feladatra.

2. fejezet

Felhasználói dokumentáció

2.1. kukac

nyehehe

3. fejezet

Fejlesztői dokumentáció

3.1. A 3D-s megjelenítés elméleti háttere

3.1.1. A megjelenítési egyenlet

Tetszőleges térbeli jelenet leképezéséhez alapvetően három dolog szükséges:

- a jelenet geometriájának leírása,
- egy pont a térben, ahonnan "nézzük" a jelenetet, továbbá
- legalább egy fényforrás, ill. annak pozíciója.

Valósidejű grafikában a geometriák leírásához háromszöghálókat használunk, mivel a GPU-k térbeli háromszögeken dolgoznak. Domború felületek leírásához ezen háromszögháló felbontását növeljük addig, amíg a végeredmény szempontjából elfogadható közelítést kapunk. Ezt a folyamatot tesszelációnak hívjuk. Az "elfogadhatóság" teljesen szubjektív tulajdonság, így az egyetlen objektív behatároló tényező a grafikus hardver teljesítménye, amelynek folyamatos fejlődése ezen a téren remekül illusztrálható.

Önmagukban a háromszögeket meghatározó térbeli pozíciók még nem elégségesek. Ismernünk kell a felület tetszőleges pontjának irányultságát, amelyet egy, a felületből "kifelé" álló, normalizált vektorral írunk le és (felületi) normálvektornak hívunk. Jelölése: n. Ezeket legegyszerűbben a háromszögeket alkotó pontokkal együtt tárolhatjuk, majd ezeket menet közben interpolálva kaphatjuk meg a háromszög által meghatározott felület tetszőleges pontján vett normálvektort.

3.1.2. A megjelenítési egyenlet

A számítógépes grafika egyik alaptételének tekinthető megjelenítési egyenletet (rendering equation) David Immel et al. és James Kajiya írta le 1986-ban. Az egyenlet segítségével meghatározható a felület egy adott pontját elhagyó sugárzás a felület által kibocsátott ill. visszavert sugárzás összegének geometriai optika alapú közelítésével:

$$L_0(\mathbf{x}, \mathbf{v}) = L_e(\mathbf{x}, \mathbf{v}) + \int_{\Omega} f_r(\mathbf{x}, \mathbf{l}, \mathbf{v}) L_i(\mathbf{x}, \mathbf{l}) (-\mathbf{l} \cdot \mathbf{n}) d\mathbf{l}$$

ahol

- x a felület adott pontja
- v az x vektorból a nézeti pozícióba mutató vektor (nézeti vektor)
- n a korábban bevezetett felületi normálvektor
- l a beérkező fény negatív iránya
- Ω dd
- L_e a felület által kibocsátott fény az adott pontban
- \bullet f_r
- \bullet L_i

Megjegyzés: az eredeti egyenlet figyelembe veszi még az időt és a fény hullámhosszát is. Az egyenlet paraméterei az idő előrehaladtával ritkán változnak, és ebben az esetben is előre kiszámolhatóak, ezért az időt állandónak tekinthetjük, amely így kiesik az egyenletből. A gyakorlatban RGB színtérben dolgozunk, és ennek 3 összetevőjét külön-külön számoljuk, így a hullámhossz paraméter is elhagyható.

Számítógépes grafikában a kimenetünk színértékek kétdimenziós mátrixa, jellemzően a képernyő pixelei. Ahhoz tehát, hogy kimenetet állítsunk elő, ezen