République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2009

Session complémentaire

Honneur - Fraternité - Justice

Séries: C & TMGM
Epreuve: Mathématiques
Durée: 4 heures
Coefficients: 9 & 6

Exercice 1 (4 points)

Le plan complexe est muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$. Soit la transformation ponctuelle f_{ω} qui associe à tout point M du plan d'affixe z le point M' d'affixe z' tel que :

$$z' = (\frac{1}{2} + \omega i)z + 1 - 2\omega i, \quad \omega \in \mathbb{C}$$

1. Reconnaître et caractériser la transformation \mathbf{f}_{ω} pour les valeurs suivantes du nombre complexe ω :

a)
$$\omega = \frac{\sqrt{3}}{2}$$

b)
$$\omega = -\frac{1}{2}i$$

c)
$$\omega = 1 + \frac{1}{2}i$$

d)
$$\omega = 2i$$
.

(1,5pt)

2. Dans la suite de l'exercice on considère $\omega \in \mathbb{R}$ et on pose $\theta = \arg(\frac{1}{2} + \omega i)$ avec $\theta \in]-\pi;\pi]$. On considère les points A(2;0) et $M_0(3;0)$. Pour tout $n \in \mathbb{N}$ on pose : $M_{n+1} = f_{\omega}(M_n)$ et on désigne \mathbf{z}_n l'affixe de M_n .

a) Vérifier que $z_1 = \frac{5}{2} + \omega i$ puis calculer z_2 en fonction de ω .

(1pt)

b) Prouver que pour tout $n \in \mathbb{N}$ on a : $z_n = 2 + \left(\frac{1}{2\cos\theta}\right)^n e^{in\theta}$.

(0,5pt)

c) Pour tout $n \in \mathbb{N}$ on pose : $V_n = |z_n - 2|$. Montrer que la suite (V_n) est géométrique puis déterminer les valeurs de θ pour lesquelles la suite (V_n) est convergente.

(0,5pt)

d) Pour tout $\mathbf{n} \in \mathbb{N}$ on pose : $\mathbf{d}_{\mathbf{n}} = \left\|\overline{\mathbf{M}_{\mathbf{n}}\mathbf{M}_{\mathbf{n}+1}}\right\|$. Montrer que $\mathbf{d}_{\mathbf{n}} = \mathbf{V}_{\mathbf{n}+1}$ puis calculer, en fonction de \mathbf{n} la somme $\mathbf{S}_{\mathbf{n}} = \sum_{k=1}^{n} \mathbf{d}_{k}$, en donner une interprétation géométrique.

(0,5pt)

Exercice 2 (5 points)

On considère la fonction numérique f_n définie par : $f_n(x) = \frac{e^{(1-n)x}}{1+e^x}$ où n est un entier naturel. Soit C_n sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

1.a) Dresser le tableau de variation de f_0 où $f_0(x) = \frac{e^x}{1+e^x}$.

(1pt)

b) Montrer que C_0 admet deux asymptotes horizontales que l'on déterminera.

(0,5pt)

c) Montrer que le point $\Omega(0,\frac{1}{2})$ est un centre de symétrie de la courbe C_0 puis construire C_0 .

(0,5pt)

2.a) Vérifier que pour tout réel $x: f_1(x) = f_0(-x)$. En déduire une transformation géométrique simple qui permet de construire C_1 à partir de C_0 .

(0,5pt)

b) Vérifier que pour tout réel x: $f_1(x) = 1 - f_0(x)$. En déduire une transformation géométrique simple qui permet de construire C_1 à partir de C_0 .

c) Construction C_1 à partir de C_0 dans le repère précèdent.

(0,5pt) (0,25pt

3. On pose pour tout entier naturel $n : U_n = \int_0^1 f_n(x) dx$

(A = 4)

a) Calculer U₀ et U₁.

(0,5pt)

b) Prouver que pour tout entier naturel n>1 on a : $0< U_n<\frac{1}{n-1}$. En déduire $\lim_{n\to +\infty}U_n$.

(0,5pt)

4. On pose pour tout entier naturel non nul n : $V_n = \frac{(-1)^n}{n} \left(1 - \frac{1}{e^n}\right)$ et $V_0 = 1$.	1
Soit $S_n = V_0 + V_1 + + V_n$. a) Vérifier que pour tout entier naturel \mathbf{n} non nul on $\mathbf{a} : U_{n+1} + U_n = V_n $.	(0,25pt)
b) Prouver que pour tout entier naturel n non nul on a : $ S_n - U_0 = U_{n+1} $. En déduire $\lim_{n \to \infty} S_n$.	(0,5pt)
Exercice 3 (5 points)	(0,0,0,0)
Dans le plan orienté on considère un triangle équilatéral ABC de sens direct et de coté a . Soit G le	
centre de gravité de ce triangle et soit D le symétrique de A par rapport à C .	(1pt)
1. Faire une figure illustrant les données précédentes. Elle sera complétée au fur et à mesure. 2.a) Prouver qu'il existe une unique rotation r qui transforme A en C et B en D.	(0,5pt)
b) Préciser un angle de r et déterminer son centre E puis le lacer sur la figure.	(0,5pt)
3. Prouver que les points A, B, D et E sont cocycliques, préciser le centre et le rayon de ce cercle	
puis le construire.	(0,5pt)
4. Soit s la similitude directe de centre B et transforme D en C .	
 a) Déterminer un angle et le rapport de s. b) Déterminer l'image du triangle BDE par s o s. 	(0,5pt)
5. On pose $f = r \circ s$ et $g = s \circ r$.	(0,5pt)
a) Préciser et construire f(B), f(E), g(B) et g(A).	(0,5pt)
b) Déterminer la nature et les éléments caractéristiques de f et g.	(0,3pt)
c) Démontrer que les cercles de diamètres respectifs [AG], [BC], [CE] et [DB] ont un point	
commun. Quelle est la particularité de ce point ?	(0,25pt)
Exercice 4 (6 points)	
On considère la fonction numérique définie par : $f(x) = 2x - 3 + \ln\left(\frac{x^2 - 2x + 2}{x^2}\right)$ et soit (C) sa courbe	
représentative dans un repère orthonormé.	
1.a) Vérifier que l'ensemble de définition de f est IR*.	(0,5pt)
b) Calculer $\lim_{x\to 0} f(x)$, interpréter graphiquement;	(0,5pt)
c) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$.	(0,5pt)
d) Montrer que (C) admet deux asymptotes dont l'une notée D est oblique. Etudier la position	
relative de (C) et de D.	(0,75pt)
2.a) Calculer $f'(x)$ puis vérifier que $f'(x) = \frac{2(x-1)}{x} \varphi(x)$ où φ est une fonction strictement positive	
pour tout $x \neq 0$ à déterminer.	(0,5pt)
b) Dresser le tableau de variation de f.	(0,5pt)
c) Démontrer que l'équation $f(x) = 0$ admet trois solutions distinctes α , β et γ dont on donnera un	(0,75pt)
encadrement d'amplitude 5×10^{-1} . d) Construire (C).	
3. On se propose dans cette question de calculer l'aire S du domaine délimité par la courbe et les	(0,25pt)
droites d'équations respectives : $y = 2x - 3$, $x = 2$ et $x = 1 + \sqrt{3}$.	
a) Vérifier que pour tout réel x on a : $\frac{2x-4}{x^2-2x+2} = \frac{2x-2}{x^2-2x+2} = \frac{2}{1+(x-1)^2}$.	(0,5pt)
	(0,5pt)
b) Calculer $A = \int_{2}^{1+\sqrt{3}} \frac{2x-2}{x^2-2x+2} dx$.	(0,5pt)
A MA 1 M	1.7
c) En posant $x = 1 + tant$ pour tout $t \in \left[0; \frac{\pi}{2}\right]$; calculer $B = \int_{2}^{1+\sqrt{3}} \frac{2}{1+(x-1)^2} dx$.	(0,5pt)
d) Déduire de ce qui précède le calcul de l'aire e exprimée en unité d'aire	(0.254)

Fin

d) Déduire de ce qui précède le calcul de l'aire S exprimée en unité d'aire.

(0,25pt)