

SW개발/HW제작 설계서

프로젝트 명: AI를 이용한 쓰레기 분리수거 로봇

2023. 08. 23

(sortics)

| 시장/기술 동향 분석

분리수거가 필요한 폐기물 양 증가 추세

l 시장/기술 동향 분석

재활용 쓰레기 및 음식물쓰레기 분리배출 기준 미준수 경험이 있나 없다 8% 재활용 의건 있다 92%

분리수거 관련 지식 부족

재활용 분리배출 기준 지식 100점 만점에 58점 수준

우리 국민은 분리배출 방법을 얼마나 정확하게 알고 있을까? 재활용 및 음식물 쓰레기 분리배출은 지자체에 따라 그 기준이 각기 다를 수 있다. 본 조사에서는 환경부, 한국환경공단, 한국포장재재 활용사업공제조합, 한국순환자원유통지원센터가 함께 만들어 운영하는 '내 손 안의 분리배출' 애 플리케이션 내용을 활용해 지식 측정 문항을 제시하고 정·오답을 분류했다. 우리 국민의 폐기물 분리배출에 대한 정확한 지식 수준 측정을 위해서는 섬세한 평가모형 설계가 필요하겠으나, 본 조사의 지식 측정 문항은 평소 분리배출 시 애매한 내용을 위주로 구성하였으므로 정답률과 점수 해석시 과대해석을 경계할 필요가 있다.

재활용 분리배출 5개 문항 각각의 정답률을 살펴보면 43~70%까지 다양한 분포를 보였다. 전체 응답자의 평균 정답 개수는 5문항 중 2.9개로 이를 100점으로 환산하면 58점이다. '색깔 있는 유리병 배출 기준'에 대한 정답률이 가장 낮았고(43%) '뽁뽁이 분리배출 기준'에 대한 정답률(70%)이 가장 높았다. 각 분리배출 기준에 대해 '모르겠다'는 응답비율을 살펴보면 '색깔 있는 유리병 배출 기준'이 26%로 가장 높았고, '코팅된 광고지와 전단지 분리배출 기준' 18%, '젤 타입으로 된 아이스팩 분리배출 기준' 15% 순이었다.

출처: '쓰레기 종량제' 26년째...아직도 분리수거함 앞에만 서면 갸우뚱 (한국일보)

| 시장/기술 동향 분석

단순, 위험, 오랜 시간이 드는 작업에 로봇을 이용하는 추세가 증가하고 있다.

출처: <u>"수고하셨습니다,그동안" 로봇이 등떠민다.</u> (조선경제)

| 요구사항 정의서

구분	기능	설명
S/W	실시간 영상 촬영	V2 카메라 모듈에 담기는 영상을 스트리밍함. 스트리밍을 위해 내부에서 프레임을 지속적으로 읽는 스레드가 동작
	객체 인식	프레임을 읽어온 후, TFLite 모델을 이용하여 쓰레기를 인식 및 판별하고, 판별 결과를 상자와 점수로 프레임 위에 표시
	시리얼 통신	라즈베리파이 카메라 영상에서 인식 및 분류된 쓰레기가 존재하는 경우, USB 시리얼 통신을 통해 아두이노로 해당 라벨(결과) 값을 전송
	로봇팔 모션 구현	쓰레기를 분리수거 하기 위해 라즈베리파이가 인식한 라벨을 수신하여 해당 라벨의 따른 동작을 아두이노가 수행
H/W	라즈베리파이 V2 카메라 모듈 실행	실시간 영상을 스트리밍하기 위해 라즈베리파이와 V2 카메라 모듈을 연결
	로봇팔 분리수거 (1~6번 서보 모터 제어)	모터 드라이버로 서보 모터에 전력을 공급하고, 아두이노의 Digital Pin에서 PWM 신호를 보내 로봇팔을 제어
	로봇팔 조이스틱 제어	3개의 조이스틱을 사용하여 로봇팔을 수동으로 제어. 조이스틱 1개당 2개의 서보 모터를 제어하여 총 6개의 서보 모터를 제어

|서비스 구성도 - 서비스 시나리오

1. 로봇 팔 수동 제어

2. 분리수거

로봇팔 수동 제어

- ① 조이스틱 1개당 2개의 모터가 로봇팔과 연결되어 있다.
- ② 사용자가 3개의 조이스틱을 활용해 모터를 동작한다.
- ③ 이를 통해 사용자는 수동으로 로봇팔을 세부 제어할 수 있다.

분리수거

- ① 쓰레기가 카메라에 포착되면, 라즈베리파이 보드와 연결된 카메라가 이를 인식한다.
- ② 인식된 쓰레기를 AI 모델이 분류하여 결과값을 아두이노에 전달한다.
- ③ 전달된 결과값에 따라 로봇팔이 분리수거를 실행한다.

로봇팔(MG996R) 분리수거

|서비스 흐름도

- **1. 카메라(V2 모듈)**: V2 카메라 모듈로 실시간으로 영상을 촬영한다.
- 2. 라즈베리파이 보드: 물체가 감지되면 라즈베리파이에 있는 AI 모델이 쓰레기 여부를 판단하고 분류하여 결과값을 시리얼 통신을 이용해 결과값을 아두이노 우노 보드에 전달한다.

3 아두이노 우노 로봇팔 PWM 제어

- 3. 아두이노: 전달받은 결과를 바탕으로 분리수거 모드 또는 조이스틱 모드에 맞춰 로봇팔 제어를 위한 PWM 신호를 준비한다.
- **4. 조이스틱**: 사용자가 로봇팔을 수동으로 동작을 희망하는 경우, 조이스틱을 이용하여 로봇팔을 동작한다.
- 5. 로봇팔: 로봇팔은 조이스틱의 신호 또는 재활용 쓰레기 결과에 따라 동작하여 목표한 기능을 수행한다.

4 조

조이스틱 로봇팔 수동 제어

| 하드웨어/센서 구성도

종류	연결 핀	설명
V2 카메라	Cammera	카메라 구동을 위해 카메라 핀과 연결
	GND	서보 모터의 5V 인가를 위해 모든 모터와 연결
	Vcc	서보 모터를 동작 시키기 위한 전원부로 모든 모터와 연결
	D3	모터 드라이버 3번 핀에 연결한 0번 서보 모터
MG996R	D2	모터 드라이버 2번 핀에 연결한 1번 서보 모터
서보모터	D9	모터 드라이버 9번 핀에 연결한 2번 서보 모터
	D8	모터 드라이버 8번 핀에 연결한 3번 서보 모터
	D5	모터 드라이버 5번 핀에 연결한 4번 서보 모터
	D4	모터 드라이버 4번 핀에 연결한 5번 서보 모터
	A0,A1	0,1번 모터를 조정하기 위해 연결
조이스틱	A2,A3	2,3번 모터를 조정하기 위해 연결
	A4,A5	4,5번 모터를 조정하기 위해 연결

라즈베리파이, V2 카메라

| 메뉴 구성도

| 기능 처리도(기능 흐름도)

• 로봇팔 동작

| 알고리즘 명세서

• 알고리즘 시나리오

- ① 쓰레기로 추정되는 객체가 카메라 화면에 나타난다.
- ② AI 모델이 해당 쓰레기를 탐지한다. Threadshold를 80으로 설정하고, 80이상이면 인식된 Label로 분류하고 그 이하는 무시한다.
- ③ 로봇팔이 정해진 동작을 수행할 수 있도록, 아두이노에 Label 결과값을 전송한다.
- ④ 아두이노는 라즈베리파이로 부터 데이터를 수신한다. 이때 Label 결과를 받은 경우와 조이스틱 모드 결과를 받은 경우로 나눠서 동작한다.
- ⑤ 분리수거를 위한 Label 결과를 받은 경우 해당 Label에 맞는 분리수거를 진행할 수 있도록, 로봇팔이 정해진 분리수거 동작을 수행하고, 다시 객체를 탐지한다.
- ⑥ Label 결과가 아닌 경우 조이스틱 모드를 수행하여, 사용자가 PWM 으로 연결된 조이스틱을 기반으로 로봇팔을 동작할 수 있게 한다.

알고리즘 상세 설명서

- AI 모델 생성 알고리즘
- ssd-mobilenet-v2-fpnlite-320
- 객체 검출(Object Detection)을 위한 딥러닝 모델 중 하나로, TensorFlow 2 Object Detection Model Zoo에서 제공하는 사전학습된 모델.
- TensorFlow의 모델 아키텍처 중 SSD (Single Shot MultiBox Detector) 아키텍처를 사용하며, MobileNetV2 백본 네트워크와 FPN (Feature Pyramid Network)을 활용한 경량화 버전
- 경량화된 구조이면서도 상당한 객체 검출 성능을 제공하므로, 리소스가 제한된 디바이스에서 실시간 객체 검출 작업을 수행하기에 적합
- TensorFlow Lite
- TensorFlow 모델을 TFLite 포맷으로 최적화 변환하여 모바일 디바이스에서 효율적으로 실행
- 8비트 정밀도로 양자화 모델을 지원하며, 이를 통해 모델의 경량화와 효율적인 실행 가능
- 모바일 애플리케이션과 에지 디바이스에서 실시간 객체 인식 및 분류와 같은 작업을 수행

| 하드웨어 설계도

한이음 ▶ 프로그램 설계서

| 프로그램 - 목록

기능 분류	기능번호	기능 명
	CONTROL-01	MG996R에 서보 모터를 조이스틱으로 동작
CONTROL	CONTROL-02	MG996R에 서보 모터를 라즈베리파이 결과값에 따라 지정한 동작 수행
DETECT	DETECT-01	쓰레기를 인식 및 분류
LEARN	LEARN-01	쓰레기 인식을 위한 AI 모델 훈련 및 생성

핵심소스코드(1)

• AI(모델 생성)

```
chosen_model = 'ssd-mobilenet-v2-fpnlite-320'
num_steps = 5000

if chosen_model == 'efficientdet-d0':
   batch_size = 4
else:
   batch_size = 16
```

- training 설정
- 훈련을 하기 전 필요한 모델, batch_size 등을 정하고 훈련을 시작한다.

```
for i in range(len(scores)):
   if ((scores[i] > min_conf) and (scores[i] <= 1.0)):</pre>
        # Get bounding box coordinates and draw box
        # Interpreter can return coordinates that are outside of image dimensio
        ymin = int(max(1, (boxes[i][0] * imH)))
        xmin = int(max(1,(boxes[i][1] * imW)))
        ymax = int(min(imH,(boxes[i][2] * imH)))
        xmax = int(min(imW,(boxes[i][3] * imW)))
        cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
        # Draw label
        object_name = labels[int(classes[i])] # Look up object name from "label
        label = '%s: %d\%' % (object_name, int(scores[i]*100)) # Example: 'pers
        labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX,
       label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label
        cv2.rectangle(image, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSiz
        cv2.putText(image, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLE
        detections.append([object_name, scores[i], xmin, ymin, xmax, ymax])
```

- 라벨 점수 및 범위 설정
- min_conf라는 threadshold 변수를 기준으로 기준치를 넘으면 Draw label 코드 부분에서 객체 위치를 Display 해준다.

| 핵심소스코드(2)

• 라즈베리파이(촬영 및 시리얼 통신)

```
class VideoStream:
    """Camera object that controls video streaming from th
    def __init__(self,resolution=(640,480),framerate=30):
        # Initialize the PiCamera and the camera image str
        self.stream = cv2.VideoCapture(0)
        ret = self.stream.set(cv2.CAP_PROP_FOURCC, cv2.Vid
        ret = self.stream.set(3,resolution[0])
        ret = self.stream.set(4,resolution[1])

        # Read first frame from the stream
        (self.grabbed, self.frame) = self.stream.read()

# Variable to control when the camera is stopped
        self.stopped = False
```

- 실시간 영상 촬영
- 사용자가 실시간으로 화면을 볼 수 있는 코드이다.

```
if(object_name == "Can"):
    ser.write(b"0")

elif(object_name == "Plastic"):
    ser.write(b"1")

elif(object_name == "Glass"):
    ser.write(b"2")

else:
    ser.write(b"3")

line = ser.readline().decode('utf-8').rstrip()
    print(line)
    time.sleep(1)
```

- 시리얼 통신
- Detect 되어 나온 결과 Label 값을 아두이노 보드로 시리얼 통신을 이용해 전송한다.

핵심소스코드(3)

• 아두이노(로봇팔 분리수거/조이스틱)

```
void loop() {
 if (Serial.available() > 0) {
   String data = Serial.readStringUntil('\n');
   Serial.print("You sent me: "):
    Serial.println(data);
   if(data == "0"){
     delay(1000);
     myservo[0].write(10);
     for(int i = 100; i <170; i+=1){
       myservo[3].write(i);
        delay(100);
     delay(1000);
      myservo[0].write(60);
     for(int i = 90; i<150; i+=1){
       myservo[5].write(i);
       delay(100);
```

- Label 수신 및 동작
- 수신을 완료하면 성공적으로 수신이 완료되었다는 메시지를 전송한다.
- Label에 따라 정해진 분리수거 동작을 수행한다.

```
void loop() {
 delay(50); // 로봇팔 속도조정을 위한 딜레이
   for (int i = 0; i < SERVOS; i++){
     value[i] = analogRead(ANA[i]);
     currentAngle[i] = myservo[i].read();
     if (value[i] > 612) {
       idle[i] = 0;
       if (currentAngle[i] < MAX[i]) ++currentAngle[i];</pre>
       if (!myservo[i].attached()){
         myservo[i].attach(PIN[i]);
       myservo[i].write(currentAngle[i]);
     } else if (value[i] < 412) {
     idle[i] = 0;
     if (currentAngle[i] > MIN[i]) --currentAngle[i];
     if (!myservo[i].attached()){
       myservo[i].attach(PIN[i]);
     myservo[i].write(currentAngle[i]);
   } else {
     ++idle[i];
```

- 조이스틱 기반 동작
- 3개의 조이스틱에 신호를 바탕으로 로봇팔이 동작하도록 설정했다.

| 참조- H/W 기능 실사사진

- 자동 분리수거 모드
- 쓰레기가 인식되면, 로봇팔이 자동으로 분리수거를 진행한다.

Detect

재활용

- 수동 조이스틱 모드
- 3개의 조이스틱에서 전달되는 신호를 바탕으로 수동으로 로봇팔을 제어한다.

한이음 ▶ 프로그램 설계서

| 참조- 개발 환경 및 설명

구분		상세내용	
	OS	라즈베리파이 OS: 라즈베리파이 보드에서 개발	
S/W 개발환경	개발환경(IDE)	Thonny: 간단한 코드 테스트 환경 PyCharm: 영상처리, 객체 인식 알고리즘 개발 환경 Colab: 인공지능 모델 학습 및 생성 환경	
	개발도구	OpenCV: 분류 정확도를 높이기 위한 영상처리 작업 TensorFlow Lite: 모델을 경량화하여 임베디드 환경에서 동작	
	개발언어	Python: AI 모델 학습 및 생성, 영상 처리	
	디바이스	아두이노 Uno, Nano, MG996R 모터, 조이스틱	
H/W 구성장비	통신	Serial 통신: Python 라이브러리인 pyserial을 사용해 라즈베리파이와 아두이노간 데이터 송수신 구현	
	개발언어	아두이노 스케치: 로봇팔 모션 구현	

| 참조-프로젝트 관리

Thank you