

APRIL 30-MAY, 4, 2023 Austin, TX

Fairness-Aware Clique-Preserving Spectral **Clustering of Temporal Graphs**

Dongqi Fu (UIUC)

(Virginia Tech)

(ASU)

Dawei Zhou Ross Maciejewski Arie Croitoru Marcus Boyd (GMU)

(UMD)

Jingrui He (UIUC)

Presenter: Dongqi Fu (dongqif2@illinois.edu) GitHub: https://github.com/DongqiFu/F-SEGA

Motivation

- Proposed F-SEGA Method
- Experiments
- Conclusion

Fairness-Aware & Clique-Preserving

Fairness-Aware Clustering on Graphs [1]

Comparable-dense but fair (w.r.t. node type distribution)

Clique-Preserving Clustering on Graphs [2]

4-clique

5-clique

Triangle-Preserving Clustering

Why these two need to be co-optimized?

- *k*-clique community (clustering) is densely connected
- When k increases, the meaning of communities is more specialized
 [1], then those communities can be used for
 - Recommendation and voting (based on similar interests) [2]
 - Collaboration (based on similar expertise) [3]

Why these two need to be co-optimized?

- However, without proportional demographics in communities
 - The voice of different groups, especially minority groups, can barely be heard when voting.
 - The team could not handle interdisciplinary tasks requiring diverse backgrounds.

When graph topology starts to evolve ...

- Suppose we already have a static solution for fairness-aware and clique-preserving graph clustering algorithm.
- Will the previous fairness and high-order density be broken, when graph structure evolves?

- Motivation
- Proposed F-SEGA Method
- Experiments
- Conclusion

Problem Setting

- **Input**: Given a temporal graph $G = \{G^{(1)}, G^{(2)}, ..., G^{(T)}\}\$, a number of desired clusters q, and a target k-clique
- **Output**: F-SEGA aims to identify clusters $\left\{C_1^{(t)}, C_2^{(t)}, \dots, C_q^{(t)}\right\}$ for $t \in \{1, 2, ..., T\}$ satisfying

$$\min_{C_i^{(t)}} \sum_{t=1}^{T} CPNcut(C_1^{(t)}, \dots, C_q^{(t)}, \mathbb{N})$$
/* Clique-density Constraint */
$$CPNcut(C_1, \dots, C_q, \mathbb{N}) = \sum_{i=1}^{q} \frac{cut(C_i, V \setminus C_i, \mathbb{N})}{\mu(C_i, \mathbb{N})}$$

$$\forall s \in \{1, \dots, h\}: \frac{|V_s \cap C_i^{(t)}|}{|C_i^{(t)}|} = \frac{|V_s|}{|V|}, t \in \{1, \dots, T\}$$
/* Demographical Fairness Constraint */

Theoretical Contribution of F-SEGA

 First, we propose a static solution for the fairness-aware cliquepreserving spectral clustering on graphs.

- Then, we adapt this solution to dynamic setting, through
 - Laplacian Update via Edge Filtering and Searching
 - Eigen-Pairs Update with Singularity Avoided

Static Solution

- Core Idea
 - Spectral Clustering
- Detail
 - ${\mathcal M}$ is fairness-constrained clique-weighted Laplacian matrix

•
$$\mathcal{M} = Q^{-1}Z^TLZQ^{-1} \in \mathbb{R}^{(n-h+1)\times(n-h+1)}$$
 encode the demographical encodes the clique distribution distribution of the entire graph

• Eigen-decompose \mathcal{M} , get the low-rank matrix and apply the k-means [1,2] for obtaining the clustering

Laplacian Update via Edge Filtering and Searching

- Core Idea
 - Update $\mathcal{M}^{(t)}$

$$\mathcal{G} = \{G^{(1)}, G^{(2)}, \dots, G^{(T)}\}$$

$$\mathcal{M} = Q^{-1}Z^T L Z Q^{-1} \in \mathbb{R}^{(n-h+1)\times (n-h+1)}$$

fairness-constrained clique-weighted Laplacian matrix

- Detail
 - Identify insensitive updated edges those will not change the last time clustering and ignore them
- Time Complexity
 - Given k-clique, $k \ge 2$, updating the clique-weighted adjacency matrix costs $O(k\alpha^{k-2}m^{(t)})$
 - α is the arboricity of snapshot $G^{(t)}$
 - $m^{(t)}$ is the number of edges in $G^{(t)}$

arboricity: minimum number of spanning forests needed to cover all the edges of the graph

Eigen-Pairs Update with Singularity Avoided

- Core Idea
 - Track eigen-pairs of $\mathcal{M}^{(t)}$ instead of solving it from scratch
- Detail
 - Approximate eigen-pair (λ, u) of Laplacian matrix perturbation $\Delta \mathcal{M} = \mathcal{M}^{(t+1)} \mathcal{M}^{(t)}$

$$\lambda_i^{(t+1)} = \lambda_i^{(t)} + \Delta \lambda_i, \quad \text{s.t.} \quad \Delta \lambda_i = \boldsymbol{u}_i^{(t)\top} \Delta \boldsymbol{M} \boldsymbol{u}_i^{(t)} \qquad \text{/* Eigenvalue update*/}$$

$$\boldsymbol{u}_i^{(t+1)} = \boldsymbol{u}_i^{(t)} + \Delta \boldsymbol{u}_i, \quad \text{s.t.} \quad \Delta \boldsymbol{u}_i = \sum_{j=1}^q \frac{\boldsymbol{u}_j^{(t)\top} \Delta \boldsymbol{M} \boldsymbol{u}_i^{(t)}}{\lambda_i^{(t)} - \lambda_i^{(t)}} \boldsymbol{u}_j^{(t)} \qquad \text{/* Eigenvector update*/}$$

- Time Complexity
 - Given ΔM from $M^{(t)}$ to $M^{(t+1)}$, getting new eigen-pair costs $O(q^4 + nq^2)$, where q is num. of clusters and n is num. of nodes

- Motivation
- Proposed F-SEGA Method
- Experiments
- Conclusion

Real-World Datasets

- Highschool-2011
 - 126 nodes (male and female students)
 - 28,561 temporal edges in 4 days
- Highschool-2013
 - 327 nodes (male and female students)
 - 188,509 temporal edges in 5 days

- PrimarySchool
 - 232 nodes (male and female students)
 - 125,773 temporal edges
- ASA
 - 5,767 nodes (male and female employees)
 - 873,716 temporal edges in 10 years

- Hospital
 - 75 nodes (of patients, nurses, medical doctors, and administrative staff)
 - 32,424 temporal edges

Performance over Real-World Graphs

- When the distribution of input graph is not demographically fair
- When the distribution of input graph is already demographically fair

Data	HighSchool-2011 (Small Number of Clusters)			
Method \ Metric	Ncut \	CPNcut ↓	Avg. Balance	Time (cs)
SC	3.1389 ± 0.8599	3.0331 ± 0.9046	0.4596 ± 0.0454	9.5270 ± 2.4491
TripSC	3.9756 ± 1.0791	3.9507 ± 1.1274	0.4519 ± 0.0669	4.7160 ± 0.2390
MSC	3.1443 ± 0.8973	2.9554 ± 0.8900	0.3888 ± 0.0850	17.0819 ± 2.1950
FSC	3.4110 ± 0.7931	3.3047 ± 0.8312	0.4457 ± 0.0185	23.8289 ± 2.3470
F-SEGA	4.4525 ± 0.9885	4.4435 ± 0.9947	0.6281 ± 0.0851	15.4022 ± 0.9090
Data	HighSchool-2013 (Small Number of Clusters)			
Method \ Metric	Ncut \	CPNcut ↓	Avg. Balance	Time (cs) ↓
SC	1.4866 ± 0.4334	0.6458 ± 0.2347	0.4708 ± 0.0135	33.2589 ± 2.3160
TripSC	1.7915 ± 0.2823	1.0755 ± 0.5641	0.4531 ± 0.0182	27.5309 ± 0.4920
MSC	1.4664 ± 0.4205	0.6483 ± 0.1829	0.4695 ± 0.0139	63.0641 ± 2.2970
FSC	1.5203 ± 0.4895	0.6620 ± 0.2860	0.5160 ± 0.0466	52.8459 ± 2.5430
F-SEGA	1.5296 ± 0.3493	0.6728 ± 0.1800	0.4620 ± 0.0058	23.1415 ± 0.1730

Visualization

- Comprehensiveness, i.e., trade-off among
 - Fairness
 - Density
 - Efficiency

- Case Study
 - Proportional human resource allocation in the hospital graph

- Motivation
- **Proposed F-SEGA Method**
- Experiments
- Conclusion

Conclusion

- Problem: Fairness-Aware Clique-Preserving Spectral Clustering of Temporal Graphs
- Algorithm: F-SEGA
 - Static Solution + Dynamic Update
 - Bounded time complexity
 - Easy to code
- Evaluation
 - Effectiveness
 - Efficiency and Robustness
 - Case Study
 - Ablation Studies

Thanks!

Dongqi Fu (UIUC)

(Virginia Tech)

(ASU)

Dawei Zhou Ross Maciejewski Arie Croitoru Marcus Boyd (GMU)

(UMD)

Jingrui He (UIUC)

Presenter: Dongqi Fu (dongqif2@illinois.edu) GitHub: https://github.com/DongqiFu/F-SEGA

