# Brain dysfunction in sepsis

Romain Sonneville, M.D., Ph.D.

Médecine Intensive Réanimation Hôpital Bichat Claude Bernard, APHP, Paris INSERM U1148, Université Paris Diderot









Christian et al. Manager

Special Communication | CARING FOR THE CRIT CALLY BURNTIES!

The Third International Consensus Definitions

for Sepsis and Septic Shock (Sepsis-J)

Length Committed Committee (1997) for control (1997) for control control (1997). Also design on (1997) of Color (1997) in the control (1997) in the con

### Box 3. New Terms and Definitions

- Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.
- Organ dysfunction can be identified as an acute change in total
   SOFA score ≥2 points consequent to the infection.

| Table 1. Sequential [Sepsis-Related] Organ Failure Assessment Score <sup>a</sup> |       |   |   |   |   |  |  |
|----------------------------------------------------------------------------------|-------|---|---|---|---|--|--|
|                                                                                  | Score |   |   |   |   |  |  |
| System                                                                           | 0     | 1 | 2 | 3 | 4 |  |  |
| Respiration                                                                      |       |   |   |   |   |  |  |

• A SOFA score ≥2 reflects an overall mortality risk of approximately 10% in a general hospital population with suspected infection. Even patients presenting with modest dysfunction can deteriorate further, emphasizing the seriousness of this condition and the need for prompt and appropriate intervention, if not already being instituted.

Abbreviations: Fio<sub>2</sub>, fraction of inspired oxygen; MAP, mean arterial pressure;

Abbreviations: Fio<sub>2</sub>, fraction of inspired oxygen; MAP, mean arterial pressure; Pao<sub>3</sub>, partial pressure of oxygen.

<sup>a</sup> Adapted from Vincent et al.<sup>27</sup>

<sup>b</sup> Catecholamine doses are given as μg/kg/min for at least 1 hour.

<sup>c</sup> Glasgow Coma Scale scores range from 3-15; higher score indicates better neurological function.

Special Communication | CARINGFOR THE CRIT CALLYHULPATION

The Third International Consensus Definitions

for Sepsis and Septic Shock (Sepsis-3)

kers, stammer 1965 White State and responsible for engine stammer (1965) the stammer of 1965 o

• Patients with suspected infection who are likely to have a prolonged ICU stay or to die in the hospital can be promptly identified at the bedside with qSOFA, ie, alteration in mental status, systolic blood pressure ≤100 mm Hg, or respiratory rate ≥22/min.

## Box 4. qSOFA (Quick SOFA) Criteria

Respiratory rate ≥22/min

Altered mentation

Systolic blood pressure ≤100 mm Hg

## Brain dysfunction in sepsis

- Definitions
- Risk factors and outcomes
- Is clinical evaluation feasible?
- Does EEG help?
- Biomarkers?
- When should we perform brain MRI?
- Major confounders
- Conclusion

# Sepsis-associated encephalopathy

Teneille E. Gofton and G. Bryan Young

Diffuse cerebral dysfunction that accompanies sepsis, in the absence of direct CNS infection

Early feature of infection and might appear before other systemic features of sepsis.

Many synonyms have been used in the literature to describe the same entity (encephalopathy, brain dysfunction....)

At sepsis onset, many patients with **SAE** usually meet diagnostic criteria for **delirium** or coma

# The Spectrum of Septic Encephalopathy

Definitions, Etiologies, and Mortalities

Leonio A. Bidelman, MD; Debby Futterman, MD, Chaim Putterman, MD; Charles L. Sprung, MD

N=50 non-sedated patients with severe sepsis / septic shock Septic encephalopathy, as defined by a GCS < 15 : **27 (54%) patients** 





# Potentially modifiable factors contributing to sepsis-associated encephalopathy

Romain Sonney Ile<sup>1,2</sup>, Ltienne de Montmollin<sup>3,1</sup>, Julien Poujade<sup>1</sup>, Maîté Garrouste-Orgeas<sup>2,3</sup>, Bertrand Souweine<sup>4</sup>, Michael Darmon<sup>3,2</sup>, Lric Mariotte<sup>4</sup>, Laurent Argaud<sup>19</sup>, François Barbie<sup>11</sup>, Dany Gologran-Toledano<sup>12</sup>, Guillaume Marcotte<sup>13</sup>, Anne Sylvie Dumeni<sup>13</sup>, Samir Jamal<sup>13</sup>, Guillaume Lacave<sup>16</sup>, Stéphane Ruckly<sup>3</sup>, Bruno Mouryillie<sup>1,3</sup> and Jean-François Timsti<sup>1,3</sup>



## Brain dysfunction in sepsis

- Definitions
- Risk factors and outcomes
- Is clinical evaluation feasible?
- Does EEG help?
- Biomarkers?
- When should we perform brain MRI?
- Major confounders
- Conclusion

REVIEW Open Access

## Understanding brain dysfunction in sepsis

Romain Sonneville<sup>17</sup>, Franck Verdonk<sup>2</sup>, Cami le Rautur'er<sup>2</sup>, Isabelle F Klein<sup>3</sup>, Michel Wolff<sup>1</sup>, Djillali Annane<sup>4</sup>, Fabrice Chretien<sup>2</sup> and Tarek Sharshar<sup>24\*</sup>



Cognitive and functional impairment

**Predisposing factors** 

Age, neurocognitive disorders, HTA...

Annals of intensive Care, 2013





# Systemic infection and delirium: when cytokines and acetylcholine collide

Willem A van Gool, Diederik van de Beek, Piet Eikelenboom



Lancet 2010; 375: 773-75

# Impact of Hyperglycemia on Neuropathological Alterations during Critical Illness



R Sonneville, J Clin Endoc Metab 2012

### Core-Man

# Potentially modifiable factors contributing to sepsis-associated encephalopathy

Romain Sonney Ile<sup>1,2</sup>, Ltienne de Montmollin<sup>3,1</sup>, Julien Poujade<sup>1</sup>, Maité Garrouste Orgeas<sup>2,3</sup>, Bertrand Souweine<sup>6</sup>, Michael Darmon<sup>3,8</sup>, Lric Mariotte<sup>7</sup>, Laurent Argaud<sup>19</sup>, François Barbier<sup>11</sup>, Dany Gologran-Toledano<sup>12</sup>, Guillaume Marcotte<sup>13</sup>, Anne Sylvie Dumeni<sup>14</sup>, Samir Jamail<sup>15</sup>, Guillaume Lacave<sup>16</sup>, Stéphane Ruckly<sup>2</sup>, Bruno Mourvillie<sup>1,3</sup> and Jean-François Timsit<sup>1,3</sup>

### Risk factors for sepsis-associated encephalopathy, multivariate analysis

| Variable                            | OR   | 95% CI |      | p value |
|-------------------------------------|------|--------|------|---------|
| Age, per 1-year increment           | 1.02 | 1.01   | 1.02 | <0.01   |
| Chronic alcohol abuse               | 3.38 | 2.34   | 4.89 | < 0.01  |
| History of neurological disease     | 1.56 | 1.18   | 2.06 | < 0.01  |
| Pre-existing cognitive impairment   | 2.25 | 1.09   | 4.67 | 0.03    |
| Long-term use of psychoactive drugs | 1.37 | 1.11   | 1.70 | < 0.01  |
| Medical admission <sup>a</sup>      | 1.75 | 1.43   | 2.14 | <0.01   |
| Renal SOFA > 2                      | 1.41 | 1.19   | 1.67 | < 0.01  |
| Hypoglycemia, <3 mmol/l             | 2.66 | 1.27   | 5.59 | < 0.01  |
| Hyperglycemia, >10 mmol/l           | 1.37 | 1.09   | 1.72 | < 0.01  |
| Hypercapnia, >45 mmHg               | 1.91 | 1.53   | 2.38 | <0.01   |
| Hypernatremia, >145 mmol/l          | 2.30 | 1.48   | 3.57 | <0.01   |



# Potentially modifiable factors contributing to sepsis-associated encephalopathy

Romain Sonney Ile<sup>1,2</sup>, Ltienne de Montmollin<sup>3,1</sup>, Julien Poujade<sup>1</sup>, Maité Garrouste Orgeas<sup>2,2</sup>, Bertrand Souweine<sup>6</sup>, Michael Darmon<sup>3,8</sup>, Eric Mariotte<sup>7</sup>, Laurent Argaud<sup>10</sup>, François Barbier<sup>11</sup>, Dany Goldgran-Toledano<sup>12</sup>, Guillaume Marcotte<sup>13</sup>, Anne Sylvie Dumenil<sup>14</sup>, Samir Jamail<sup>15</sup>, Guillaume Lacave<sup>16</sup>, Stéphane Ruckly<sup>2</sup>, Bruno Mourvillie<sup>1,3</sup> and Jean-François Timsit<sup>1,3</sup>

### Short term outcomes

| Variable                        | No SAE<br>N=1172 | SAE<br>N=1341 | р     |
|---------------------------------|------------------|---------------|-------|
| Need for invasive MV, n (%)     | 588 (50)         | 1039 (78)     | <0.01 |
| Need for propofol or BZD, n (%) | 423 (36)         | 796 (59)      | <0.01 |
| Need for vasopressors, n (%)    | 803 (69)         | 1067 (80)     | <0.01 |
| Need for RRT, n (%)             | 231 (20)         | 411 (31)      | <0.01 |
| Length of ICU stay, days        |                  |               |       |
| Whole population                | 5 (3-12)         | 7 (3-15)      | <0.01 |
| Survivors (n=1539)              | 5 (3-11)         | 9 (5-17)      | <0.01 |

Data are numbers (percentage) or median (IQR)



# Potentially modifiable factors contributing to sepsis-associated encephalopathy

Romain Sonneville<sup>1,2</sup>, Ltienne de Montmollin<sup>2,1</sup>, Julien Poujade<sup>1</sup>, Maité Garrouste-Orgeas<sup>2,3</sup>, Bertrand Souweine<sup>6</sup>, Michael Darmon<sup>2,3</sup>, Lric Mariotte<sup>7</sup>, Laurent Argaud<sup>10</sup>, François Barbier<sup>11</sup>, Dany Goldgran-Toledano<sup>12</sup>, Guillaume Marcotte<sup>13</sup>, Anne Sylvie Dumenil<sup>11</sup>, Samir Jamail<sup>15</sup>, Guillaume Lacave<sup>16</sup>, Stéphane Ruckly<sup>7</sup>, Bruno Mourvillie<sup>1,3</sup> and Jean-François Timsti<sup>1,3</sup>

# Multivariate analyis of factors associated with mortality (censored at day 30)

| Variable                         | Adjusted HR* | 95%CI     | р      |
|----------------------------------|--------------|-----------|--------|
| Sepsis-associated encephalopathy |              |           | < 0.01 |
| GCS 3-8                          | 3.37         | 2.82-4.03 |        |
| GCS 9-12                         | 1.80         | 1.41-2.29 |        |
| GCS 13-14                        | 1.38         | 1.09-1.76 |        |
| GCS 15, features of delirium     | 1.06         | 0.80-1.41 |        |
| GCS 15, no feature of delirium   | Ref.         |           |        |

\*Adjusted for age, chronic immunodepression, chronic cardiac disease, chronic respiratory disease, chronic liver disease, year of admission, and non-neurological SOFA

Intensive Care Medicine 2017

# Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis

Figure 2. Cognitive Impairment Among Survivors of Severe Sepsis at Each Survey Time Point



Error bars indicate 95% confidence intervals (Cls); IQR, interquartile range. Interpretive Example: Compared with stable rates before severe sepsis, the prevalence of moderate to severe cognitive impairment increased from 6.1% (95% Cl, 4.2%-8.0%) before severe sepsis to 16.7% (95% Cl, 13.8%-19.7%) at the first survey after severe sepsis (P < .001 by  $\chi^2$  test; Table 2).

EDITORIAL.

Editorials represent the opinions of the authors and JAMA and not those of the American Medical Association.

# The Lingering Consequences of Sepsis

A Hidden Public Health Disaster?



Long term cognitive impairment

Functional dependence

RESEARCH PAPER

# Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors

Alexander Semmler, 1,6 Catherine Nichols Widmann, 1 Thorsten Okulla, 1 Horst Urbach, 2 Markus Kaiser, 3,7 Guido Widman, 4 Florian Mormann, 4,8 Julia Weide, 1 Klaus Fliessbach, 4 Andreas Hoeft, 3 Frank Jessen, 5 Christian Putensen, 3 Michael T Heneka 1

- Cognitive deficits:
  - verbal learning
  - Short term memory
- MRI: significant reduction of hippocampal volume
- EEG: low-frequency activity indicating unspecific brain dysfunction

## Brain dysfunction in sepsis

- Definitions
- Risk factors and outcomes
- Is clinical evaluation feasible?
- Does EEG help?
- Biomarkers ?
- When should we perform brain MRI?
- Major confounders
- Conclusion

# ( CrossMark

## Ten false beliefs in neurocritical care

Geert Meyfroidt <sup>12</sup> <sup>12</sup>, David Menon<sup>5,4,5,6,7</sup> and Alexis F. Turgeon<sup>8</sup>

Clinical examination of neurocritically ill patients is impossible.



# "Red flags"

- Poor motor response (GCS) : M <</li>
- Focalization
- ICU-acquired seizure(s)
- Loss of brainstem reflex(es)
  - pupillary reflex
  - corneal reflex
  - cough
- Myoclonus



# Validation of a New Coma Scale: The FOUR Score



#### FOUR Score

#### Eye response

- 4 eyelids open or opened, tracking, or blinking to command
- 3 = eyelids open but not tracking
- 2 = cyclids closed but open to loud voice
- 1 = eyelids closed but open to pain
- 0 = cyclids remain closed with pain

#### Motor response

- 4 = thumbs-up, fist, or peace sign
- 3 = localizing to pain
- 2 = flexion response to pain
- 1 = extension response to pain
- 0 no response to pain or generalized myoclonus status

#### Brainstem reflexes

- 4 = pupil and corneal reflexes present
- 3 = one pupil wide and fixed
- 2 pupil or corneal reflexes absent
- 1 = pupil and corneal reflexes absent
- 0 = absent pupil, corneal, and cough reflex

#### Respiration

- $\vec{A}$  = not intubated, regular breathing pattern
- 3 = not intubated, Cheyne Stokes breathing pattern
- 2 = not intubated, irregular breathing
- 1 = breathes above ventilator rate
- 0 breathes at ventilator rate or apnea

FOUR = Full Outline of UnResponsiveness.

The FOUR score provides **greater neurological detail** than the GCS, **recognizes a locked-in syndrome**, and is superior to the GCS due to the availability of **brainstem reflexes**, **breathing patterns**, and the ability to recognize different stages of **herniation**.



## Early multimodal non-invasive monitoring



Functional outcome?

EEG Evoked potentials

Minerva anesthesiologica 2015

## Brain dysfunction in sepsis

- Definitions
- Risk factors and outcomes
- Is clinical evaluation feasible?
- Does EEG help?
- Biomarkers?
- When should we perform brain MRI?
- Major confounders
- Conclusion

## Sepsis-associated encephalopathy

Teneille E. Cofton and C. Bryan Young



| Table 1   Changes in EEG recordings in patients with SAE* |                              |                |                |                    |                           |  |
|-----------------------------------------------------------|------------------------------|----------------|----------------|--------------------|---------------------------|--|
| Degree of encephalopathy                                  | EEG findings (% of patients) |                |                |                    |                           |  |
|                                                           | Normal                       | Theta<br>waves | Delta<br>waves | Triphasic<br>waves | Burst-suppression pattern |  |
| None                                                      | 50                           | 38             | 12             | 0                  | 0                         |  |
| Mild                                                      | 0                            | 47             | 54             | 0                  | 0                         |  |
| Severe                                                    | 0                            | 10             | 40             | 20                 | 30                        |  |

<sup>\*</sup> Generated from data provided by Young et al. 86 Abbreviation: SAE, sepsis-associated encephalopathy.

## Sepsis-associated encephalopathy

Teneille E. Cofton and C. Bryan Young

### **EEG CHANGES AND OUTCOMES**







Nat Review Neurol 2012 Young et al., J Clin Neurophysiol 1992



Hereniga ha da e

Early Standard Electroencephalogram Abnormalities Predict Mortality in Septic Intensive Care Unit Patients

Ent. Acabou<sup>3</sup> ", Ent. Magainach", Antoine Braconnich", Lynn Yoldacoff, Criy Moneyor", Nicholine Herning<sup>3</sup> (IJI M. Annarek Jean Nierra), "Barica Cheldent, Marte-Christino Decond<sup>1</sup>, Enhibite Lottere, Rephani Proches<sup>8</sup>, Think Shais in <sup>4</sup>11, Shaipe O Englandama Magain appgropsis Namonalaya (1944–194)







Bedeenge verstere

Early Standard Electroencephalogram Abnormalities Predict Mortality in Septic Intensive Care Unit Patients

Ent. Acateus<sup>2</sup> ", Ent. Magainaces", Antonia, Braconnich", Lynn Yddiaces", Uny Managar<sup>2</sup>, Nicholae Herning<sup>2</sup> (Bl. M. Annarek', Jean Nierral', Tabrica Christiani, Marie-Christian Ceronal<sup>3</sup>, Polykini, Lofano , Rophael Porchos<sup>2</sup>, Tabrica Christiani and <sup>2</sup> in , A cupe of Equipment Herming organization (Herming School)







New York (See No. 1921)

Early Standard Electroencephalogram Abnormalities Predict Mortality in Septic Intensive Care Unit Patients

Ent. Acabou<sup>3</sup> ", Ent. Magainach", Antoine Braconnich", Lynn Yoldacoff, Criy Moneyor", Nicholine Herning<sup>3</sup> (IJI M. Annarek Jean Nierra), "Barica Cheldent, Marte-Christino Decond<sup>1</sup>, Enhibite Lottere, Rephani Proches<sup>8</sup>, Think Shais in <sup>4</sup>11, Shaipe O Englandama Magain appgropsis Namonalaya (1944–194)

Table 4. Adjusted analysis of the association of EEG findings with day 28 mortality.

| Variable                | Adjusted o | Adjusted on SAPS-II at admission and sedation |       |      | Adjusted on SOFA at EEG and sedation |       |  |
|-------------------------|------------|-----------------------------------------------|-------|------|--------------------------------------|-------|--|
|                         | OR         | (95%CI)                                       | Р     | OR   | (95%CI)                              | Р     |  |
| Delta-dominant activity | 3.36       | (1.08 to 10.4)                                | 0.036 | 3.08 | (0.93 to 10.2)                       | 0.066 |  |
| Absence of reactivity   | 4.44       | (1.37 to 14.3)                                | 0.013 | 4.57 | (1.36 to 15.4)                       | 0.014 |  |
| Periodic Discharges     | 3.24       | (1.03 to 10.2)                                | 0.044 | 3.31 | (0.98 to 11.2)                       | 0.054 |  |
| Synek's score ≥ 3       | 5.35       | (1.66 to 17.2)                                | 0.005 | 5.68 | (1.63 to 19.8)                       | 0.006 |  |
| Young's score > 1       | 3.44       | (1.09 to 10.8)                                | 0.035 | 3.43 | (1.02 to 11.6)                       | 0.046 |  |

Abbreviations: SAPS-II: New Simplified Acute Physiology Score: SOFA: Sepsia-related Organ Failure Assessment.

Emily J. Gilmore Nicolas Gaspard Huimahn A. Choi Emily Cohen Kristin M. Burkart David H. Chong Jan Claassen Lawrence J. Hirsch Acute brain failure in severe sepsis: a prospective study in the medical intensive care unit utilizing continuous EEG monitoring

100 septic episodes in 98 patients

Periodic discharges: 25%

Non convulsive seizures: 10%

Unreactive EEG background: 28%





## Brain dysfunction in sepsis

- Definitions
- Risk factors and outcomes
- Is clinical evaluation feasible?
- Does EEG help?
- Biomarkers?
- When should we perform brain MRI?
- Major confounders
- Conclusion

Admission plasma levels of the neuronal injury marker neuron-specific enolase are associated with mortality and delirium in sepsis



Brian J. Anderson, MD, MS <sup>a,b,a</sup>, John P. Reilly, MD, MS <sup>a</sup>, Michael G.S. Shashaty, MD, MS <sup>a,b</sup>, Jessica A. Palakshappa, MD <sup>a,b</sup>, Alex Wysoczanski <sup>a</sup>, Thomas G. Dunn, BA <sup>a</sup>, Altaf Kazi, PhD <sup>a</sup>, Anna Tommasini, BA <sup>a</sup>, Mark E. Mikkelsen, MD, MS <sup>a,b</sup>, William D. Schweickert, MD <sup>a</sup>, Dennis L. Kolson, MD, PhD <sup>a</sup>, Jason D, Christie, MD, MS <sup>a,b,1</sup>, Nuala J, Meyer, MD, MS <sup>a,b</sup>

Retrospective analysis of 124 patients from a large sepsis cohort.

Plasma NSE was measured in the earliest blood draw at intensive care unit admission.

Primary outcomes: 30-day mortality and ICU delirium (chart review)

SAE



Fig. 3. Adjusted probability of delirium according to plasma NSE concentration at ICU admission. Points represent the adjusted delirium risk, and vertical error bars represent 95% Cls. The NSE concentration is plotted on the log base 2 scale. After adjustment for APACHE III score and receipt of sedative and analgesic infusions, each 2-fold increase in the plasma NSE concentration was associated with a 5.2% increased risk of delirium (P < .001).



Fig. 2. Adjusted probability of -81-day mentality according to the plasma NSE concentration at ICU admits ion. Points represent the adjusted mortality risk, and vertical error bars represent 95% Cls. The MSE concentration is plotted on the log base 2 scale. After adjustment for APACHE III score, admission location race, and ARDS, each 2-fold increase in the plasma. NSE concentration was associated with a 73% increased risk or 81-day mortality (P= ,008).

Mortality

Serum S100β is a Better Biomarker than Neuron-Specific Enolase for Sepsis-Associated Encephalopathy and Determining Its Prognosis: A Prospective and Observational Study

Bo Yao · Li-Na Zhang · Yu-Hang Ai · Zhi-Yong liu · li Huang



## Brain dysfunction in sepsis

- Definitions
- Risk factors and outcomes
- Is clinical evaluation feasible?
- Does EEG help?
- Biomarkers?
- When should we perform brain MRI?
- Major confounders
- Conclusion

# Pattern of Brain Injury in the Acute Setting of Human Septic Shock

N=71 septic shock patients underwent MRI because of encephalopathy, focal signs or seizures





72 yr-old patient
Streptococcus pneumoniae pneumonia, normal CSF examination
Septic shock
Persistent encephalopathy

# Brain lesions in septic shock: a magnetic resonance imaging study







# Acute brain MRI lesions: 130/146 (89 %) pts

- White matter lesions (104/146, 71 %)
- Acute cerebral infarcts (59/146, 40 %).

Acute brain MRI lesions were independently associated with

## Brain dysfunction in sepsis

- Definitions
- Risk factors and outcomes
- Is clinical evaluation feasible?
- Does EEG help?
- Biomarkers?
- When should we perform brain MRI?
- Major confounders
- Conclusion

# DAILY INTERRUPTION OF SEDATIVE INFUSIONS IN CRITICALLY ILL PATIENTS UNDERGOING MECHANICAL VENTILATION

JOHN P. KRESS, M.D., ANNE S. POHLMAN, R.N., MICHAEL F. O'CONNOR, M.D., AND JESSE B. HALL, M.D.



Figure 1. Kaplan—Meier Analysis of the Duration of Mechanical Ventilation, According to Study Group. After adjustment for base-line variables (age, sex, weight, APACHE II score, and type of respiratory failure), mechanical ventilation was discontinued earlier in the intervention group than in the control group (relative risk of extubation, 1.9; 95 percent confidence interval, 1.3 to 2.7; P<0.001).

# DAILY INTERRUPTION OF SEDATIVE INFUSIONS IN CRITICALLY ILL PATIENTS UNDERGOING MECHANICAL VENTILATION

JOHN P. KRESS, M.D., ANNE S. POHLMAN, R.N., MICHAEL F. O'CONNOR, M.D., AND JESSE B. HALL, M.D.

#### 128 patients in MICU

Intervention: Interruption of sedative infusions until patients awake, on a daily basis Control: the infusions were interrupted only at the discretion of the clinicians

|                                                             | Intervention (n=68) | Control<br>(n=60) | р    |
|-------------------------------------------------------------|---------------------|-------------------|------|
| Total dose of MDZ, mg                                       | 230 (59–491)        | 425 (208–824)     | .05  |
| Total dose of morphine, mg                                  | 205 (68–393)        | 481 (239–748)     | .009 |
| Median duration of MV, days                                 | 4.9                 | 7.3               | .004 |
| Median duration of ICU stay, days                           | 6.4                 | 9.9               | .02  |
| Diagnostic testing to assess change in mental status, n (%) | 6 (9%)              | 16 (27%)          | .02  |
| Complications (e.g., self-extubation)                       | 3 (4%)              | 4 (7%)            | .88  |

# Effect of Sedation With Dexmedetomidine vs Lorazepam on Acute Brain Dysfunction in Mechanically Ventilated Patients

The MENDS Randomized Controlled Trial

**Table 2.** Outcomes in Mechanically Ventilated Patients Sedated With Dexmedetomidine vs Lorazepam<sup>a</sup>

| Outcome Variable                                                                                                                   | Dexmedetomidine<br>(n = 52)       | Lorazepam<br>(n = 51)            | <i>P</i><br>Value |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-------------------|
| Duration of brain organ dysfunction, d                                                                                             | 7 (1-10)                          | 3 (1-6)                          | .01               |
| Delirium-free <sup>b</sup>                                                                                                         | 9 (5-11)                          | 7 (5-10)                         | .09               |
| Coma-free <sup>b</sup>                                                                                                             | 10 (9-12)                         | 8 (5-10)                         | <.001             |
| Delirium                                                                                                                           | 2.5 (1-5)                         | 4 (1-5)                          | .71               |
| Coma                                                                                                                               | 2 (0-3)                           | 3 (2-5)                          | .003              |
| Prevalence of brain organ dystunction, No. (%) <sup>c</sup><br>Delirium or coma                                                    | 45 (87)                           | 50 (98)                          | .03               |
| Delirium                                                                                                                           | 41 (79)                           | 42 (82)                          | .65               |
| Coma                                                                                                                               | 33 (63)                           | 47 (92)                          | <.001             |
| Other clinical outcomes Mechanical ventilator-free, d <sup>d</sup> Intensive care unit length of stay, d 28-Day mortality, No. (%) | 22 (0-24)<br>7.5 (5-19)<br>9 (17) | 18 (0-23)<br>9 (6-15)<br>14 (27) | .22<br>.92<br>.18 |

<sup>&</sup>lt;sup>a</sup>Median (interquartile range) unless otherwise noted.

bindicates the number of days alive without stated dystunction from study days 1 to 12.

Figure 2. Delirium-Free and Coma-Free Days During Study Dexmedetomidine I orazepam P < .00110-8-6-2-Delirium-Free and Delirium-Free Coma-Free Coma-Free Days Days Days

Provalence is used to describe the rates of brain organ dysfunction instead of incidence because preintensive care until definium or come status could not be determined. Prevalence represents the occurrence of brain organ dysfunction at any time during the 12-day assessment period.

d Indicates the number of days alive, breathing without mechanical ventilator assistance, from study day 1 to 28.

Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an *a priori*-designed analysis of the MENDS randomized controlled trial









JL Stollings, Ann Pharmacotherapy

#### ORIGINAL

Crose-Man c

# Potentially modifiable factors contributing to sepsis-associated encephalopathy

Romain Sonnev IIe<sup>1,2</sup>, Ltienne de Montmollin<sup>3,1</sup>, Julien Poujade<sup>1</sup>, Maité Garrouste Orgeas<sup>2,3</sup>, Bertrand Souweine<sup>6</sup>, Michael Darmon<sup>3,3</sup>, Lric Mariotte<sup>7</sup>, Laurent Argaud<sup>10</sup>, François Barbier<sup>11</sup>, Dany Goldgran-Toledano<sup>12</sup>, Guillaume Marcotte<sup>13</sup>, Anne Sylvie Dumeni<sup>14</sup>, Samir Jamail<sup>15</sup>, Guillaume Lacave<sup>16</sup>, Stépharre Ruckly<sup>2</sup>, Bruno Mourvillie<sup>1,3</sup> and Jean-François Timsit<sup>1,3</sup>

## Risk factors for sepsis-associated encephalopathy, multivariate analysis

| Variable                            | OR   | 95%  | CI   | <i>p</i> value |
|-------------------------------------|------|------|------|----------------|
| Age, per 1-year increment           | 1.02 | 1.01 | 1.02 | <0.01          |
| Chronic alcohol abuse               | 3.38 | 2.34 | 4.89 | < 0.01         |
| History of neurological disease     | 1.56 | 1.18 | 2.06 | < 0.01         |
| Pre-existing cognitive impairment   | 2.25 | 1.09 | 4.67 | 0.03           |
| Long-term use of psychoactive drugs | 1.37 | 1.11 | 1.70 | < 0.01         |
| Medical admission <sup>a</sup>      | 1.75 | 1.43 | 2.14 | < 0.01         |
| Renal SOFA > 2                      | 1.41 | 1.19 | 1.67 | < 0.01         |
| Hypoglycemia, <3 mmol/l             | 2.66 | 1.27 | 5.59 | < 0.01         |
| Hyperglycemia, >10 mmol/l           | 1.37 | 1.09 | 1.72 | < 0.01         |
| Hypercapnia, >45 mmHg               | 1.91 | 1.53 | 2.38 | < 0.01         |
| Hypernatremia, >145 mmol/l          | 2.30 | 1.48 | 3.57 | <0.01          |
|                                     |      |      |      |                |











RESEARCH Open Access

# Cefepime neurotoxicity in the intensive care unit: a cause of severe, underappreciated encephalopathy

Jerniler E Fugate<sup>1</sup>, Gjazz A Kalimulan<sup>1</sup>, Sara Elikober<sup>1</sup>, Saran L Clark<sup>1</sup>, Beko TM Wijcids<sup>1</sup> and Alejandro A Rabinstein<sup>11</sup>

Neuv la et el Am, intersive Care, 1207/1754. DOI 10 1160/17613-017-0255-6 Annals of Intensive Care

#### RESEARCH

Open Access



in ICU: risk factors and side effects

Mathi de Neuville<sup>11</sup> **6**, Najoua E. Helal<sup>2</sup>, His Magalhaes<sup>1</sup>, Aguila Badjou<sup>1</sup>, Boland smortg<sup>1</sup>, Usan François Scutanou<sup>1</sup>, Guillaume Voinet<sup>1</sup>, Alban Le Monner<sup>2</sup>, Siéphane Rui ky<sup>2</sup>. Lib Pouadina<sup>1</sup> <sup>2</sup>, Bonain Sonneville<sup>1</sup>, Jean-Trançois Tinnit<sup>1,3</sup> and Bruno Mourvillier<sup>1,3</sup>

### Brain dysfunction in sepsis

- Definitions
- Risk factors and outcomes
- Is clinical evaluation feasible?
- Does EEG help?
- Biomarkers?
- When should we perform brain MRI?
- Major confounders
- Conclusion

# **Conclusions**

- Neurological dysfunction is observed in 50% of patients with sepsis
- Brain dysfunction is a strong predictor of poor outcome
- A Multimodal non invasive monitoring is feasible in septic patients
  - Clinical examination with appropriate tools
  - EEG: background changes, reactivity
  - Brain MRI for selected patients: white matter abnormalities, ischemia
- Evaluation of confounders is critical for appropriate neurological evaluation
  - Renal failure and metabolic disturbances
  - Antibiotic neurotoxicity
  - Sedatives



# OLC 2018 PARIS 21st-22nd JUNE

Update in Neurocritical Care

www.srlf.org

#### VENUE:

THE HOUSE OF INTENSIVE CARE

48; avenue Claude Vellefaux 75/010 Paris, France

(M) Line 2: station "Colonel Fabier" Line 1t: station "Concourt"

INFORMATIONS:

L +33 (0)145 86 74 00 Secretariatouritorg

