Alkalmazott fizikai módszerek laboratórium II.: Optikai pumpálás

Pál Balázs* Somogyfoki Réka*,^m, Tuhári Richárd*,^m

2019. szeptember 29.

Abstract

Az Alkalmazott fizikai módszerek laboratórium második alkalmával az optikai pumpálás módszerét jártuk körül, mely során egy 85 Ru és 87 Ru izotópokat tartalmazó rubídiumgázt sugároztunk be lézerrel. A labormunka során egy Rb- és Kr-tartalmú kisülési cső segítségével megmértük a rendszerre jellemző $\tau=\left(1/T_p+1/T_1\right)^{-1}$, valamint a T_2 relaxációs időket. Ezt követően egy rádiófrekvenciás jelgenerátorral 4 különböző frekvencián feltérképeztük a két rubídiumizotóphoz tartozó rezonanciaátmenetek pozícióját, mely során megmértük a Föld mágneses terének nagyságát is. Végül megpróbáltuk meghatározni a két rubídiumizotóphoz tartozó g_F -et – a hiperfinom kölcsönhatást is figyelembevevő Landé-féle g-faktort – mely azonban a laborban található eszköz műszaki hibájából fakadóan csupán az I=3/2 magspinnel rendelkező 87 Rb izotópra sikerült.

I. BEVEZETÉS

Az optikai pumpálás alatt azt a folyamatot értjük, mely során fény (koherens lézer) besugárzásával egy mintában található elektronokat magasabb energiaszintre gerjesztünk, ezzel populáció inverziót létrehozva, vagyis megfordítva az egyes energiaszintek – egyensúlyban a Boltzmann-eloszlásból várható – betöltöttségi értékét.

^{*}Eötvös Loránd Tudományegyetem

 $^{^{\}mathrm{m}}\mathrm{M\acute{e}r\acute{o}t\acute{a}rsak}$

APPENDIX A. - AZ AKTIVITÁS SZÁMÍTÁSA