# BLM2732 Gr.2 Sistem Analizi ve Tasarımı

Yrd.Doç.Dr. Göksel Biricik goksel@ce.yildiz.edu.tr 1.Ders

## Ders Planı-1

| Hafta | Tarih         | İçerik                                                          |
|-------|---------------|-----------------------------------------------------------------|
| 1     | 13 Şubat 2018 | Giriş, Ders Planı, Genel Bilgiler, Sistem Tanımı                |
| 2     | 20 Şubat 2018 | Sistem Tipleri, Tarafları, Sistem Geliştirme Süreci             |
| 3     | 27 Şubat 2018 | Ön İnceleme – Fizibilite Çalışmaları                            |
| 4     | 06 Mart 2018  | Fizibilite Laboratuvar Uygulaması (MS Project)                  |
| 5     | 13 Mart 2018  | Sistem Analizi – Veri Toplama, İş Analizi, Kullanım Senaryoları |

# Ders Planı-2

| Hafta | Tarih         | İçerik                                                            |
|-------|---------------|-------------------------------------------------------------------|
| 6     | 20 Mart 2018  | Sistem Analizi – Veri Modelleme, Fonksiyonel Çözümleme            |
| 7     | 27 Mart 2018  | Sistem Analizi Laboratuvar Uygulaması (VAD+Kavramsal Sınıf D.)    |
| 8     | 03 Nisan 2018 | Sistem Tasarımı – Girdi, Çıktı, Veri Yapısı, Arabirim Tasarımları |
| 9     | 10 Nisan 2018 | Ara Sınav                                                         |
| 10    | 17 Nisan 2018 | Sistem Tasarımı Laboratuvar Uygulaması (VAD→Yapı D. + Ardışıl D.) |

# Ders Planı-3

| Hafta | Tarih         | İçerik                                       |
|-------|---------------|----------------------------------------------|
| 11    | 24 Nisan 2018 | Veritabanı Tasarımı, Kodlama, Test Süreçleri |
| 12    | 01 Mayıs 2018 | Emek ve Dayanışma Günü                       |
| 13    | 08 Mayıs 2018 | Yeni Sisteme Geçiş, Bakım, Destek Süreçleri  |
| 14    | 15 Mayıs 2018 | Proje Sunumları                              |
| 15    | 22 Mayıs 2018 | Proje Sunumları, Telafi Sınavı               |

# Değerlendirme Kriterleri

| Tipi        | Ağırlığı | İçerik                                                                                                                                                                                      | Tarih                                                                                            |
|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Vize        | % 25     | Derste Anlatılan Konuların<br>Değerlendirilmesi                                                                                                                                             | 02/06 Nisan 2018 Haftası                                                                         |
| Proje       | % 20     | Seçilen Bir Konuda Ön İnceleme, Fizibilite,<br>Analiz, Tasarım, Kodlama, Veritabanı<br>Tasarımı ve Destek Aktiviteler de Dahil<br>Olacak Şekilde Bir Bilgi Sisteminin<br>Gerçekleştirilmesi | Öneriler: 27 Şubat 2018<br>Değerlendirme Sonuçları: 02 Mart 2018<br>Rapor Teslimi: 08 Mayıs 2018 |
| Laboratuvar | % 15     | Laboratuvar Çalışmalarındaki Görev<br>Performansı                                                                                                                                           | 06 Mart – 27 Mart – 17 Nisan 2018                                                                |
| Final       | %40      | Dersteki Konuların Tümünün Genel<br>Değerlendirilmesi                                                                                                                                       | 28 Mayıs - 08 Haziran 2018 Arası                                                                 |

# Kaynaklar

- Bilgisayar Bilimlerinde Sistem Analizi ve Tasarımı 3.Basım, O.Kalıpsız, A.Buharalı, G.Biricik, Papatya Yayıncılık.
- System Analysis and Design in a Changing World Sixth Edition, J.W.Satzinger, Cengage Learning.

## Giriş

- · İnsan, hammadde kaynakları önemli
- Günümüzde, bilgi en önemli kaynak
- Bilginin doğru kullanımı, rekabet gücünü arttırır
  - Bilgi üretimi, dağıtımı, işlenmesi, güvenliği, depolanması önemli
  - İnternet, elle üretilen verinin çok daha fazlasını üretiyor
  - Verilerin organizasyonu, kullanım maliyetleri arttı
- Çözüm? → Bilgi Sistemleri

#### Sistem

- Belli bir amacı gerçekleştirmek için
- Bir arada çalışan, birbiriyle ilişkili olan parçalardan oluşan
- Girdi ve çıktıları olan
- Sınırları belirlenmiş bir bütün



#### Sistemin Temel Özellikleri

- Bileşenler: Sistemi oluşturan parçalarDeğişkenler: Değişik değer alan özellikler
- Parametreler: Sabit değerler
- İlişkiler: İlk üç madde arasındaki bağlantılar
- Sınır: Sistem için ortam ayracı
- Arabirim: Ortam veya alt sistemlerle karşılaşma noktası
- Kısıtlar: Değişken değerleri ve kaynak tahsis sınırlamaları
- Ölçüt: Hedef-amaçların değerlendirme standardı
- Ortam: Sistem dışındaki her şey
- *Geri Besleme:* Çıktı kontrolü ve ölçme-değerlendirme ile girdiler ve sistem üzerinde iyileştirme yapma aracı

## Sistem ve Ortam

- Sistem ortama bağlıdır
  - Aralarında doğrudan veya dolaylı ilişki vardır
- Sistem ortamda değişiklik yapabilir



# Sistem Örneği



## Bilgi Sistemi

- İşletmenin ihtiyaçlarını desteklemek için
- Veri toplayan
- İşleyen
- Depolayan
- İnsan, veri, süreçler ve bilgi teknolojilerinin etkileşimde bulunduğu yapı.

## Bilgi Sistemi Bileşenleri

- Donanım Kaynakları
  - Sunucu, bilgisayar, monitor, klavye, yazıcı, tablet, vs. sayısal ürünler
- · Yazılım Kaynakları
  - Veri düzenleme, işleme, analiz programları. Bunlara ait süreçler ve yordamlar
- İnsan Kaynakları
  - Bilgi sistemi sahibi, tasarlayanlar, kuranlar, kullananlar.
- Veri Kaynakları
  - Sistemin kullandığı ve ürettiği verileri tutan veritabanı ve bilgi tabanı
- Ağ Kaynakları
  - İşletme içi ve dışı birimlerin bilgi sistemine bağlanma yapıları

# Bilgi Sistemi Örneği



## Genel Sistem Teorisi

- Sistem; girdiyi çıktıya dönüştürür
  - Bilgi sisteminde veri→bilgi
- Sistemler disiplinler arasıdır
  - Bir daldaki ürün başka dalda kullanılabilir
- · Sistem elemanları arası etkileşim vardır
  - Bir parçadaki etki diğer parçaları da etkiler
- Sistemler farklı elemanlardan oluşur
  - Taşımacılık→ demiryolu, denizyolu, havayolu..
- Sistemler hiyerarşiktir
  - Her sistem alt ve üstünde sistemler vardır
- Sistem ortama göre düzenlenmelidir
  - Entropi ortamla ilişkiyi belirler
- Sistem amaç yönelimlidir
  - Her sistemin belli bir amacı vardır

# inceleyin:

- Örnek bir sistem nedir, bileşenleri, ortamı, sınırları, arabirimleri, ... nelerdir?
- Nasıl işler?
- 1.Kaynakta, Hastane Sistemi Örneği

## **Gelecek Ders**

- Bilgi Sistemi Tipleri
- Bilgi Sistemi Tarafları
- Bilgi Sistemi Geliştirme Süreci

## Sistem Analizi ve Tasarımı

2.Ders

Göksel Biricik

## **Bu Derste**

- Bilgi Sistemi Türleri
- Bilgi Sistemi Tarafları
- Bilgi Sistemi Geliştirme Süreci

## Bilgi Sistemleri

- Amaç: Problemlerin analizi, yeni ürün oluşturulması, karmaşık nesnelerin canlandırılmasında kontrolü ve koordinasyonu sağlayarak karar almaya destek olmak
- · Girdi: Her türlü bilginin toplanması
- İşlem: Bilginin işlenmesi, saklanması, dağıtılması
- Çıktı: İşlenmiş ve ilişkilendirilmiş bilgi



# İşlemsel Bilgi Sistemleri

- Başka sistemlere giriş ve temel oluşturur
- İşlenmiş veriyi:
  - Sınıflar
  - Saklar
  - Bakımını Yapar
  - Değiştirir
  - Güncelleştirir
  - Geri çağırır
- Örnekler
  - Satış izleme
  - Envanter düzenleme
  - Fatura hazırlama
  - Kartlı geçiş



# Yönetim Bilgi Sistemleri

- İşlem boyutu: Rapor, analiz, KDS
  - Uygulama tabanı
  - VTYS
  - VT
- Yönetim boyutu
  - Alt yönetim için işlemsel kontrol ve güncelliği,
  - Orta yönetim için kontrollü kaynak paylaşımı
  - Üst yönetim için stratejik planlama ve hedefler
- İşlevsel boyut
  - Kurumsal işlevler için birimler arası bilgi farkları



## Ofis Otomasyon Sistemleri

- Büro işlemleri
  - Kelime işlemcileri
  - Belge hazırlama, kopyalama, saklama, düzenleme, yazdırma, vs.
  - Tablolama
  - Grafik çizimi
  - Elektronik posta
  - Fax
  - Sunumlar
  - Telekonferans
  - **–** ...

## Karar Destek Sistemleri

- Planlı-plansız karar vermek için tüm aşamaları destekleyen sistem
- Raporlardan çıkan planlı bilgi akışı ile çözüme özel
- İçerebilecekleri:
  - Özelleştirilmiş programlama dili
  - İstatistiksel optimizasyon olasılık finans analizleri
  - Veritabanı
  - Grafik gösterim
  - Tahmin, Hedef arama, Rapor
  - ..
- Uzman Sistemler?



# Üst Yönetim Bilgi Sistemleri

- · Stratejik seviyede:
  - İşletme dışı veriler
  - YBS + KDS ile işletme içi verileri alır
  - Veri madenciliği: OLAP, Drill down analizleri
- Hedefler
  - İşletmenin performansı ve rakip aktivite takibi
  - Sorunların görülmesi
  - Fırsatların değerlendirilmesi
  - İleriye dönük tahmin yapılması



# Bilgi Tabanlı İş Sistemleri

- İnsanların yerini almaz
- Çalışma araştırma sonuçlarını bilgi sistemiyle birleştirir
- CAD/CAM sistemleri
- MR sistemleri

|                       | Bilgi Siste                                                                                                                   | emieri <i>P</i>                                             | Arası III                                                        | şkiler                                                   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|
| Sistem                | Giriş                                                                                                                         | İşlem                                                       | Çıktı                                                            | Kullanıcı                                                |
| ÜBS, EIS              | Dahili ve harici veri                                                                                                         | Grafikler;<br>simülasyonlar;<br>etkileşimli                 | Görsel;<br>sorgulamalara<br>cevaplar                             | Üst yönetim                                              |
| KDS, DSS              | Düşük yoğunlukta veri ya<br>da analiz için optimize<br>edilmiş veritabanları;<br>analitik modeller ve veri<br>analiz araçları | Etkileşimli;<br>simülasyonlar; analiz                       | Özel raporlar;<br>karar analizleri;<br>sorgulamalara<br>cevaplar | Uzmanlar; yöneticiler                                    |
| YBS, MIS              | Özet kayıtlar; büyük<br>miktarda veri; basit<br>modeller                                                                      | Rutin raporlar; basit<br>modelleme; düşük<br>düzeyde analiz | Özet ve istisna<br>raporları                                     | Orta kademe yönetim                                      |
| втіѕ,<br>кws          | Tasarım özellikleri; bilgi<br>tabanı                                                                                          | Modelleme;<br>simülasyon                                    | Modeller;<br>grafikler                                           | Uzmanlar; teknik personel                                |
| OOS,<br>OFFICE<br>SYS | Dokümanlar; planlar                                                                                                           | Doküman yönetimi;<br>planlama; elektronik<br>posta          | Dokümanlar;<br>planlar; elektronik<br>posta                      | Sekreterler;<br>muhasebeciler; alt kademe<br>yöneticiler |
| iBS, TPS              | İşlemler; olaylar                                                                                                             | Sıralama; listeleme;<br>birleştirme;<br>güncelleme          | Detaylı raporlar;<br>listeler; özetler                           | İşletim personeli; şefler                                |



# Bilgi Sistemi Tarafları

- Kullanıcı
- Yönetici
- Sistem Analisti
- Sistem Tasarımcıları
- Programci
- Destek Personeli

## Kullanıcı

- Sistemin varoluş sebebi, en önemli parça
- MÜŞTERİ
- Sistemden beklentileri TAM belirlenmeli
- Sistemin nasıl başarıya ulaşacağı tespit edilmeli
- Teknik değil, işlev ve kullanım önemli

#### Yönetici

- Proje yöneticisi
  - Projenin başarıya ulaşması
  - Proje ekibinin sevk ve idaresi
  - İşlev ve plan önemli
- Üst düzey yönetici
  - Sistemin geliştirilmesi için gerekli kaynak sağlayıcı
  - Maliyet ve fayda önemli

#### Sistem Analisti

- Dersin odak noktası
- Projenin kilit üyesi
- Hem işletme yönetimi, hem bilgi sistemi bilgisi olmalı
- İşletmenin sorunları, ihtiyaçları, iş akışlarını belirlemeli
- Bilgi sistemi ile çözümünü sağlatmalı, uygulamaya karar vermeli
- Problemi görüp anlamalı, çözüm için bilgi sistemini metodolojiye uygun olarak oluşturmalı



#### Analistin Beceri ve Görevleri

- Analitik düşünme bilgi ve becerisi
  - Problemi belirleyip tanımlayabilmeli
  - Sistemin parçalarını inceleyip ilişkileri ortaya koyabilmeli
  - Çözüm alternatifleri sunup değerlendirebilmeli
- · Teknik bilgi ve beceri
  - Donanım, programlama dilleri, işletim sistemleri, vtys, haberleşme protokolleri gibi konularda temelleri bilmeli
  - Farklı teknolojilerin kullanım amaçlarını, nasıl kullanıldığını, nasıl entegre edilebileceklerini bilmeli
  - Bilgi sistemi geliştirme sürecinin tamamı hakkında bilgi sahibi olmalı

#### Analistin Beceri ve Görevleri

- Yönetim ve iş bilgi-becerisi
  - İşin işleyişine ve organizasyon yapısına hakim olmalı
  - Sektör, hedefler, stratejiler, planlar, kurum kültürüne bağlı değerleri bilmeli
  - Kaynak yönetimi, proje yönetimi, risk yönetimi, değişim yönetimi bilgisi olmalı
- İnsan ilişkileri
  - Müşteri ihtiyaçlarını ve isteklerini, kullanıcıların işleri nasıl yaptığını, davranış biçimlerini belirleyebilmeli
  - Tüm çalışanların becerileri, bilgi ve teknolojileri ile ilgili fikri olmalı
  - Rahat iletişim kurmalı, dinlemeli, sorunları anlamalı
  - İlerlemeleri belgelemeli ve paydaşlara aktarmalı

#### Tasarımcılar

- Veritabanı yöneticileri
- Ağ mimarları
- Web mimarları
- Grafik sanatçıları
- Güvenlik uzmanları
- Teknolojik uzmanlar

## Sistem Tasarımcısı – Yazılım Mimarı

- Gereksinimleri belirlenmiş sistemin bilişim modelini kurgular
- · Yazılım mimarilerine hakim olmalı
- Ağ ve donanım kaynaklarını iyi bilmeli
- Veri yönetimi konusunda deneyimli olmalı

#### Programci

- Sistemi yazanlar
- İş süreçleri ve problem gereksinimlerini bilgisayar diline çevirir
- Analist (tasarımcı) girdilerini kullanır
- Sistemin çalışan halini üretir
- CASE araçları ile kod üretimi kolaylaştı
- Kod optimizasyonu ve entegrasyon önemli
- Sistem programcıları
- Veritabanı programcıları
- Test personeli

## Destek Personeli

- Sistemin devamlılığını ve sürekliliğini sağlar
- Sorumlulukları:
  - Ağ iletişimi
  - Donanım
  - Yazılım ve parametreleri
  - Çıktıları düzenleme
  - Ürün desteği
  - Güvenlik
  - Web arayüzleri
  - Dış sistem entegrasyonları

# Bilgi Sistemi Geliştirme Süreci

• Sistemin geliştirilmesi için izlenen süreç ve uyulan metodoloji

| ADIM                 | İŞLEM                                                                        | ÇIKTILAR                                     |
|----------------------|------------------------------------------------------------------------------|----------------------------------------------|
| Problemin Tanımı     | Problemi ortaya koymak                                                       | İhtiyaçlar belirlenir                        |
| Fizibilite Çalışması | Projenin kapsamı ve hedefleri<br>ortaya konarak olabilirliğini<br>belirlemek | Fizibilite çalışması raporu                  |
| Analiz               | Problemin çözümlerini ortaya<br>koymak                                       | Çözümün lojik modeli                         |
| Genel Tasarım        | Sistemin nasıl<br>gerçekleştirileceğini belirleme                            | Sistemin maliyeti ve üst düzey<br>dizaynı    |
| Ayrıntılı Tasarım    | Genel tasarımda belirlenen sisteme ait alt sistemlerin tanımlanması          | Sistemin özellikleri ve ayrıntılı<br>tasarım |
| Gerçekleştirme       | Programı yazma, yükleme ve test                                              | Çalışan sistem ve<br>dokümantasyon           |
| Bakım                | Sistemin bakımını yaparak desteklemek                                        | Çalışan Sistem                               |
|                      |                                                                              |                                              |

# Sistem Geliştirme Yaşam Döngüsü



# Süreç Modelleri

- Klasik Süreç (Waterfall)
- Model Oluşturma
- Evrimsel Süreçler
  - Artımlı Model
  - Spiral Model
- RUP Modeli
- Aykırı Programlama





# Evrimsel Süreçler

- Artımlı: İteratif olarak waterfall uygulanır
- Spiral: Prototipten versiyona doğru evrim ilerler



# Rational Unified Process (RUP)

- Kullanım-senaryosu güdümlü
- Mimari yapı merkezli
- Artımlı ve iteratif





## Aykırı Programlama

4 temel değer

12 Pratik

– İletişim

Sistem metaforuEkip üyesi müşteri

iictişiiii

- Ekip üyesi illüşteri

- Basitlik

Kısa aralıklı yayımlarPlanlama oyunu

Geri besleme

Basit tasarım

Cesaret

Ortak kod mülkiyeti

Kodlama standartları

- Eşli programlama

- Test

- Sürekli tümleştirme

- Devamlı yeniden tasarım

İnceleyin

- Devam ettirilebilir hız: 40saat/hafta

## Aykırı Programlama

- Çevik manifestoya uygundur
- Özellikleri:
  - Müşteri de işin içinde
  - Artımlı planlama, sürekli test ve entegrasyon, küçük sürümler yayımlama, basit tasarımlar
  - Test güdümlü geliştirme
  - Refactoring
  - Eşli Programlama
  - Birlikte sahiplenme ve sürdürülebilir gelişme hızı
  - Çok fazla doküman gerektirmeme

# **Gelecek Ders**

- Ön İnceleme Safhası
- Fizibilite Çalışması

## Sistem Analizi ve Tasarımı

3.Ders

Göksel Biricik

## **Bu Derste**

- Ön İnceleme
- Fizibilite

# Ön İnceleme

- Fizibilitenin ilk aşaması
- Projenin olabilirliği belirlenir
  - Projeye(yeni sisteme) gerçekte ihtiyaç var mı?
  - Sistemin gerçekleştirilmesi için neye ihtiyaç var?
  - Ne kadar süreye ihtiyaç var?
  - Tahmini bütçe nedir?
  - Faydaları ve zorlukları nelerdir?
- Kısaca: Tamam mı? Devam mı?

## Kapsam Tanımlama

• Ürün: Ne isteniyor?

• Kalite: Ne kadar iyi olmalı?

• Zaman: Ne zaman isteniyor?

• Maliyet: Proje bütçesi ne kadar?

• Kaynaklar: Hangi kaynaklar kullanılacaktır?

# Fizibilite Çalışması

- Amaç: Projenin olabilirliğinin araştırılması
- Çıktı: Genel hatlarıyla proje planı ve tahmini bütçe

# Fizibilite Tipleri

- Teknik Fizibilite
- Zaman Fizibilitesi
- Sosyal Fizibilite
- · Yönetim Fizibilitesi
- Yasal Fizibilite
- Ekonomik Fizibilite

## Teknik Fizibilite

- Sistemin her türlü teknik olanaklarının belirlenmesi. Örneğin;
  - Yazılım Fizibilitesi
    - İşletim Sistemi, Yazılım Geliştirme Ortamı, VTYS, Uygulama Sunucu, Destek Yazılımlar, ...
  - Donanım Fizibilitesi
    - Geliştirme ihtiyaçları, kısa-orta vadeli büyüyecek ihtiyaçlar, ...
  - İletişim Fizibilitesi
    - Haberleşme ihtiyaçları, protokoller, ...
- Riskler göz önünde tutulmalı
- Teknik yetersizlikler tamamlanmalı

#### Zaman Fizibilitesi

- Belirlenen zaman içinde projenin nasıl tamamlanacağı belirlenir
- Gantt ve PERT teknikleri kullanılır

#### Gantt

- Problem tanımından işletime kadar süredeki tüm aktivitelerin zamanları ve ilişkileri gösterilir
- Durak noktaları belirlenebilir
- Microsoft Project gibi araçlarla; proje verisi işlem ağı olarak verildiğinde;
  - Yapılacak işleri tarih sırası ile gösteren, durak yerlerini ve iş yoğunluğunun az olduğu işlemleri belirleyen bir Gantt çizelgesi,
  - Yöneticinin proje sürecini izleyebilmesi için, her işlemin süresini en erken ve en geç başlama ve bitme tarihlerini gösteren bir görev durumu çizelgesi,
  - İşlem sırasına göre görev paylaşımını gösteren bir çizelge,
  - Üzerinde kritik yolu koyu çizgilerle belirleyen bir işlem ağı

Otomatik olarak elde edilir





#### **PERT**

- Program Evaluation and Review Techniques
- Zaman araç maliyet kontrol gereklerini cevaplar
- Sistemin oluşmasını sağlayan pek çok faaliyet arasındaki ilişki ve tarih sayesinde ağ şeklinde düzene konulmasını sağlar
- Olayların mantıksal bir süre izleyeceği, bir olaya ancak önceki işlemler bitince ulaşacağı kabul edilir

#### **PERT**

- Süre tahminleri: Sb=(Si+4\*Se+Sk)/6
  - İyimser Süre: İşlemlerde gecikme ve aksama olmadan tamamlanmayı sağlayan en kısa süre
  - Kötümser Süre: Gecikme ve aksamaları dikkate alan en uzun süre
  - En Yaklaşık Süre: Normal gecikme ve aksamaları değerlendirir





## Sosyal Fizibilite

- Oluşturulacak sistemin hedef kitlesi tarafından kabul edilip edilemeyeceğinin araştırılması
- Sistemden direk olarak etkilenecek kullanıcı grupları incelenip kontrol edilir
- İstekleri karşılaması önemli
- Operasyonel Fizibilite oalrak da görebilirsiniz.

#### Yönetim Fizibilitesi

- Geliştirilecek olan sistem yönetimi nasıl etkiliyor?
- Yönetim sistemden ne kadar fayda sağlayacak?

#### Yasal Fizibilite

- Sistem kanun ve yönetmeliklere uygun mu?
- Mevcut patent ve fikri sınai hakları ihlal ediyor mu?
- Belli kaynakların kullanımı için özel izinlere lisanslara gerek var mı?
- Sistem işletmenin yaptığı anlaşmalara uygun mu?

#### **Ekonomik Fizibilite**

- Geliştirilecek sisteme ait tüm maliyetler göz önüne alınıp maliyet-fayda analizi yapılır
  - Teknik (donanım-yazılım), zaman (işgücü, personel), yasal fizibiliteden (patent hakkı-lisanslar) maliyetler doğar
- Maliyet fayda analizi yöntemleriyle bugün yapılan birim yatırımın gelecekte kaç birim olacağı bulunur
  - Bugünkü değer (net present value)
  - İç verim oranı (internal rate return)
  - Başabaş noktası (break-even)
  - Geri ödeme süresi (payback period)

### Bugünkü Değer Yöntemi

- Projenin bütün nakit giriş ve çıkışları bugünkü değere indirilip karşılaştırılır
- Net nakit girişleri > Yatırım harcamaları?
  - Evet: Proje kabul
  - Hayır: Proje red
- Bugünkü değere indirgemek için iskonto oranı kullanılır
  - Farklı yöntemleri mevcuttur
  - En pratiği: Piyasadaki ağırlıklı sektörlerin uyguladığı faiz oranlarını ortalaması
- Q yıl, i iskonto oranı, V indirgenmiş nakit akışı toplamı ise,
- $V = Q_0 + \frac{Q_1}{1+i} + \frac{Q_2}{(1+i)^2} + \dots + \frac{Q_n}{(1+i)^n}$

# İç Verim Oranı Yöntemi

- Paranın zaman değeri ve yatırımın ekonomik ömrü dikkate alınır
- İVO: Nakit girişleri ile yatırım maliyetini eşitleyen iskonto oranı
- T: Yatırımın ömür yılı, x: toplam maliyet, Rt t yılındaki net getiri, d iskonto oranı için

$$x = \sum_{t=1}^{T} \frac{R_t}{(1+d)^t}$$

### Başabaş Noktası Yöntemi

- Proje işletme aşamasına geçtikten sonra;
  - Toplam satışlar ile toplam giderlerin eşit olduğu satış tutarı, miktarı ya da kapasite kullanım oranını bulmak için kullanılır
- Harcamalar, maliyet ve faydalar aynı grafikte gösterilir. İki eğrinin çakıştığı nokta başabaş noktasıdır
- Bu noktadan sora gelir maliyetten yüksek olur



#### Geri Ödeme Süresi Yöntemi

- Gerekli yatırım ve yıllık yarar arası ilişki
- Yıllık yararın yatırım miktarına bölünmesi ile geri ödeme süresi bulunur
- Başlangıçtaki nakit yatırımların kaç yılda elde edilebileceğini belirler

# Farklı Çözüm Önerilerinin Değerlendirilmesi

- Her çözüm için fizibilite çalışması gerçekleştirilir
- Aday sistemler matrisi ile alternatifler karşılaştırılır

|                                                                                       | Önerilen<br>Sistem 1 | Önerilen<br>Sistem 2 | Önerilen<br>Sistem 3 |
|---------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|
| Teknoloji<br>Sistemin teknik alt yapısı                                               |                      |                      |                      |
| Ara Birim<br>Sistemin kullanıcılarla ve diğer<br>sistemlerle olan iletişimi           |                      |                      |                      |
| Veri<br>Sisteme hangi verilerin nasıl girileceği ve<br>buna gore elde edilen çıktılar |                      |                      |                      |
| İşlemler<br>Sistemdeki veriler üzerinde hangi<br>işlemlerin gerçekleştirileceği       |                      |                      |                      |
| Coğrafik Yapı<br>İşlemlerin ve verilerin sistem içinde nasıl<br>dağıtıldığı           |                      |                      |                      |

# Fizibilite Matrisi

- Yapılan çalışmalar değerlendirilir
- Yüzde ağırlıklarla puanlandırma yapılır

| Önerilen Sistem 1 | Önerilen Sistem 2 | Önerilen Sistem 3                   |
|-------------------|-------------------|-------------------------------------|
|                   |                   |                                     |
|                   |                   |                                     |
|                   |                   |                                     |
|                   |                   |                                     |
|                   |                   |                                     |
|                   |                   |                                     |
|                   | Önerilen Sistem 1 | Önerilen Sistem 1 Önerilen Sistem 2 |

|                          | Ağırlık | Önerilen Sistem 1                                                                                                                                                                                                                              | Önerilen Sistem 2                                                                                                                                                                                                                                                      | Önerilen Sistem 3                                                                                                                                                                                                                                                           |
|--------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Teknik Fizibilite        | %30     | Kullanılan ürünün son sürümü sadece 6 haftadır piyasada. Dolayısıyla ürünün gelişimi risk taşımaktadır. Sistemle ilgili gerekli entegrasyonları yapmak için C++ bilen elemana ya da mevcut elemanların bu konuda eğitime ihtiyaç var. Puan: 50 | Sayısı yeterli olmayan mevcut teknik personelin sadece Powerbuilder tecrübesi olmasına rağmen proje yöneticisi, sistemi MS Visual Basic'e çevirmenin basit olduğuna ve VB bilen eleman bulmanın Powerbuilder'e gore daha kolay ve ucuz olduğuna inanmaktadır. Puan: 95 | Şirket bünyesinde MS SQL Servei<br>kullanılmaktadır. Ancak<br>istemci/sunucu veri tabanı<br>yönetimi sektöründeki<br>rekabetten ötürü<br>Powerbuilder'in yeni<br>versiyonlarının SQL Server ile ne<br>kadar uyumlu olacağı belli<br>olmaması risk taşımaktadır.<br>Puan: 60 |
| Ekonomik Fizibilite      | %30     | Yaklaşık 350.000 \$'a mal olan ve<br>geri dönüşümü 4,5 yıl olan<br>sistemin net getirisi 210.000<br>\$'dır                                                                                                                                     | Yaklaşık 418.040 \$'a mal olan ve<br>geri dönüşümü 3,5 yıl olan<br>sistemin net getirisi 306.748<br>\$'dır                                                                                                                                                             | Yaklaşık 400.000 \$'a mal olan ve<br>geri dönüşümü 3,3 yıl olan<br>sistemin net getirisi 325.500<br>\$'dır                                                                                                                                                                  |
|                          |         | Puan: 60                                                                                                                                                                                                                                       | Puan: 85                                                                                                                                                                                                                                                               | Puan: 90                                                                                                                                                                                                                                                                    |
| Zaman Fizibilitesi       | %10     | 3 aydan az<br>Puan : 95                                                                                                                                                                                                                        | 9 – 12 ay<br>Puan : 80                                                                                                                                                                                                                                                 | 9 ay<br>Puan : 85                                                                                                                                                                                                                                                           |
| Operasyonel<br>Fizbilite | %30     | Sadece servis üyelerinin<br>ihtiyaçlarını karşılamakta ve var<br>olan iş süreçlerini yazılıma gore<br>güncellenmesi gerekmektedir.<br>Puan : 60                                                                                                | Kullanıcının tüm ihtiyaçlarını<br>karşılamaktadır.                                                                                                                                                                                                                     | 2. sistem ile aynı                                                                                                                                                                                                                                                          |
|                          |         |                                                                                                                                                                                                                                                | Puan : 100                                                                                                                                                                                                                                                             | Puan: 100                                                                                                                                                                                                                                                                   |
| Sıralama                 | %100    | 60.5                                                                                                                                                                                                                                           | 92                                                                                                                                                                                                                                                                     | 83.5                                                                                                                                                                                                                                                                        |

### **Gelecek Ders**

- Fizibilite Laboratuvar Çalışması
- Sonraki hafta:
- Gereksinim Analizi
- İş Analizi
- Kullanım Senaryoları
- Bilgi Toplama Yöntemleri

### Sistem Analizi ve Tasarımı

4.Ders

Göksel Biricik

### **Bu Derste**

- Gereksinim Analizi
- İş Analizi
- Kullanım Senaryoları
- Bilgi Toplama Yöntemleri

#### Gereksinim Analizi

- Tanım: Problem nedir? Çözümleri nelerdir? Sistem nasıl Çalışır? Sorularını cevaplamak
- Amaç: En uygun çözümü bulmak için ana öğeler ve işlevler ayrıntılarıyla tanımlanır
  - Gelecekteki hedefler detaylandırılır
  - Bilgi kaynakları ve ihtiyaçlar belirlenir
- Çıktılar:
  - Kullanıcının tüm ihtiyaçları
  - Varolan sistemin durumu
  - Seçilen en uygun çözümün değerlendirilmesi
  - Varolan sistemin nasıl iyileştirilebileceği önerileri

#### Gereksinim Analizi

- Öncelikle:
  - Fizibilite raporları gözden geçirilmeli
  - Tüm teknik terimler incelenmeli
  - Ayrıntılı inceleme planı yapılmalı
  - Proje grubunun görev dağılımı yapılmalı
  - Denetleme mekanizması kurulmalı

#### Varolan Sistemin Analizi

- Varolan sistemin nasıl çalıştığı ve maliyetinin anlaşılması çok önemli
- Sistem analisti varolan sisteme tamamen hakim olmali
  - Varolan bilgi kaynakları
  - Kullanılan donanım-yazılım
  - İşlemlerde kullanılan bilgi ve miktarı
  - İç-dış bilgi etkileşimi
  - Sistem döngüsü ve süresi
  - Arşiv bilgisi ve araçları
  - Raporlar ve formatları
  - Personel
  - Maliyetler

#### Sistem Analizi Yöntemleri

- Gereksinimler önceden müşteri ile saptanırsa Akış Diyagramları Gösterimi
  - Bilişim alanı, işlevler, ara birimler, kabul kriterleri belirlenip diyagramlarla gösterilir
- Gereksinimler önceden saptanmazsa Prototip oluşturulur
  - Prototip üzerinden müşteri ile tartışarak gereksinimler kararlaştırılır

#### Sistem Gereksinimleri Spesifikasyonu

- Analist ve müşterinin ortak çalışması ile sistem gereksinimlerinin özellikleri ortaya konulur: Belge haline gelir →Sistem gereksinimleri spesifikasyonu, sistem prototipi
- Sistem geliştirme planı da gözden geçirilir
- Sistem geliştirme planı ile sistem analizi birlikte iç içe gerçekleştirilir: Tanımlama aşaması



#### İdari İncelemede Önemli Noktalar

- İhtiyaçların, işletmenin genel stratejileriyle uyumlu olduğu sürekli kontrol edilmelidir
- · Karar verirken deneyim, bilgi ve öngörü birlikte önemlidir
- Rekabet varsa daha iyi olan sistem tercih edilecektir
- Yeni sistemin sağlayacağı finansal fayda ispatlanmalıdır
- Organizasyondaki değişiklik beceri ve iş yükünü etkiler, değişiklik olmasa da geliştirme sürecinde kaynak ihtiyacı artabilir
- · Hızlı-ayrıntılı raporlama esnek-verimli yönetim için gerekir
- Bilgi akışını iyileştirme ve güncellemeler kullanıcıların daha bilgili olmasını sağlar
- Yeni sistem var olan sisteme göre daha iyi ve hızlı olmalıdır
- Teknoloji bilginin hacmiyle uyumlu olmalıdır
- Kullanıcı dostu olmayan arabirimler ve bilginin yanlış tutulması başarısızlık getirir

### Kullanım Senaryosu Modellemesi

- Kullanım Senaryosu Diyagramları
- Kullanıcının bakış açısından sistemin fonksiyonel çözümlemesini tanımlar
- Sistemin ihtiyaçlarını yerine getirmek için gereken davranıslar için kullanılır
- Aktörler: Kullanıcılar, dış sistemler, fiziksel çevre etmenleri, ...
- Senaryolar: Bir olay akışı şeklinde sistemce sağlanan fonksiyonellik
  - Ön koşullar ve son koşulları, senaryo, birincil ve ilgili aktörleri olmalıdır.





#### Kullanım Senaryoları

- **Use-case model:** isteklerin anlaşılıp ifade edilmesini sağlayan bir yöntem
- **Aktör:** sistemin kullanıcıları (insan, başka sistem veya cihaz). Aktörler hizmet ister ya da verir.
- Birincil aktör: asıl faydayı sağlayan, işlemleri başlatan kullanıcı
- Destek aktörü: bilgi-destek sağlayan aktör(ler)
- Senaryo: Anlamlı bir sonuca ulaşmak için aktörle sistem arasında gerçekleşen olaylar zinciri

# Senaryoların İfade Edilmesi

- İhtiyaç-özellik listesi değil
- Sistem kara kutu olarak alınır, sorumlulukları ifade edilir
- Aktörler-sistem etkileşimi, etken cümlelerle söylenir
- Ne yapar? Cevaplanır. Nasıl yapar? Tasarımın sorusudur.
- Sistemin bitmiş hali hayal edilir. Oluşabilecek senaryolar yazılır.
- Sistemin sınırları doğru belirlenmelidir. Neler dışarıda, neler içeride olmalı?

### Kullanım Senaryolarında Yer Alan Bilgiler

- Önsöz
- Birincil Aktör
- İlgililer ve Beklentileri: Sistemin çalışmasından etkilenen ve beklentileri olan diğer aktörler. İlk başta doğru tanımlanmazsa sistemin sınırları çizilemez. Bazı durumlar unutulabilir.
- Ön koşullar: senaryonun başlaması için gerekli koşullar
- Son koşullar: senaryo tamamlanınca sistemin olacağı durum (ilgililerin beklentileri)
- Ana Başarılı Senaryo: Sistemin en doğal çalışma şekli, adım adım yazılır. Koşul-dallanma olmaz. Etken cümlelerle, kimin ne yaptığı açık şekilde belirtilir. Üç tipi varır: kullanıcı-sistem etkileşimi-tetikleme, onaylama, durum değişikliği-bilgi kaydı.
- Alternatif Akış: Ana senaryo dışındaki başarılı-başarısız sonuçlara götüren kısım. Şart belli olmalı. Bunlarla tüm amaçlar sağlanmış olur.
- Sıra Dışı Durumlar: Hata olunca yapılacaklar.
- Özel istekler: istenen hız, güvenlik vs gibi kalite kısıtları.
- Teknolojik beklentiler: dil-platform vs.

# Senaryolar Arası İlişkiler

- İçerme: Birçok senaryo grubunda kullanılan başka bir senaryo grubu. Alt programa dallanıp geri dönmek gibi.
- Genişletme: Belirli koşulda ana senaryodan ayrılma noktasından sonra çalışan senaryo
- Özelleştirme: Daha genel senaryodan özel senaryolar türetilir (ödeme→ nakitle, kartla, çekle, ...)

### Sözleşmeler (Contracts)

- Bazı durumlarda karmaşık işlemlerin daha iyi anlaşılabilmesi için.
- Ön koşullar sağlandığında sistemin alacağı son durumun daha iyi açıklanmasını sağlar.
- Aktör-sistem etkileşimi yanında sistem içi nesnelerdeki değişim de belirtilir.
- İşlemler belirlenir. Karmaşık olanları için sözleşme yazılır.
- Önemli olan son koşullardır. (bir nesne yaratma yok etme, bir özellik güncellenmesi, bir bağlantı oluşturma-koparma)
- Modele bazı eklentiler (nitelik gibi) yapılmasına neden olabilirler.
- İşin nasıl yapılacağını göstermezler. O, tasarımın işidir.

# Örnek Sözleşme

- Sözleşme SO1: Çalışan Çıkarma
- **İşlem:** calisanCikart(c:Calisan)
- Referans: Kullanım Senaryosu KS3: Bölüm Kapama
- Ön Koşullar: KS3 (Bölüm Kapama) kullanım senaryosunun çalışması gereklidir. Çalışan uygun bir bölüme atanamamış olmalıdır.
- Son Koşullar: Sistem tüm bölüm çalışanlarının tazminatını hesaplamıştır.
- Çalışanın işyeri ile bağlantısı kesilmiştir.

#### Araştırma ve Bilgi Toplama Yöntemleri

- Araştırma sürecinde var olan sistemin eksik ya da yanlış anlaşılmaması için bilgi toplama önemlidir
- · Gözleme Yaklaşımı
  - Mevcut belge-form-dosya örneklemesi
  - iş ortamı gözlenmesi
- Kişisel Görüşme Yöntemi (Toplantı, Mülakat, Ortak Gereksinim Planlaması)
  - Yapılandırılmamış görüşme
  - Yapılandırılmış görüşme
- Anket Yöntemi
  - Açık uçlu sorular
  - Kapalı uçlu sorular

#### Kişisel Görüşme Yöntemi

- Analistin kullanıcı ile işyerinde karşılıklı görüşmesi ve soru sorması
- Randevu alınmalı ve hazırlıklı olunmalı
- Başlangıç konuşması ve konular belirlenmiş olmalı
- Görüşme süresince notlar alınmalı
- Hitap biçimi ve duruşa dikkat edilmeli
- Sonunda görüşmenin başlıca noktaları, sonra konuşulacak ve hiç değinilmemiş konular belirlenmeli, gelecek görüşmeler planlanmalı

### Yapılandırılmış Görüşme

- Amaçlar saptanmış
- Kimle görüşüleceği belli
- Zamanı ve yeri belli
- Taraflara amaç, süre ve gerekli dokümanlar bildirilmiş
- Sorular belli
- Görüşmeden sonra en kısa zamanda sonuçlar değerlendirilip yorumlanmış
- Sonuçlar formal olarak yazılıp tüm ilgililere dağıtılmış



#### Soru Sıralaması

- Tümevarım: piramit yapı. Ayrıntılı-kapalı sorulardan açık uçlu sorulara. Mülakat veren konuya ısınır.
- Tümdengelim: Açık uçludan kapalı uçluya sorular dizilir. Mülakat kolay başlar.

Mülakat veren konu hakkında istekliyse, fikirlerini serbstçe ifade ediyorsa.

#### Anket Yöntemi

- Sorular ve cevap alanlarından oluşan form
- Açıklık: Sorular tam ve açık olmalı, eksik olmamalı
- Hatırlatma: Değerlendirmede bilgi istenen olaydan geçen zaman, cavaplayan için önemi dikkate alınmalı
- Cevap arzusu oluşturma: Özel yaşamla ilgisiz, cevaplaması kolay, ilgi çekici sorular olmalı
- Hataya engel olma: Hatasız cevap için eleme sorusu ya da çoktan seçmeli cevaplama tercih edilmeli
- İfade kolaylığı: Göresel öğelerle istenen cevap desteklenebilir
- Cevaplayıcıyı şartlandırma: Şartlandırma olmamalı, seçim özgürlüğü bırakılmalı

#### Anket Yöntemi

- Çok sayıda kişiden veri toplanabilir.
- Avantajlar:
  - Hızlı cevaplanabilir.
  - Çok sayıda kişiden maliyetsiz veri toplanır.
  - Kimlikler gizli kaldığı için katılanlar düsüncelerini rahat aktarır
  - Analiz hızlı yapılabilir
- Dezavantajlar:
  - Az kişi cevaplar
  - Herkes tüm soruları cevaplamayabilir
  - Gönüllü bilgi edinme kısıtlıdır, esneklik azdır
  - Vücut dili analiz edilemez
  - Bulanık soru varsa cevap açıklığa kavuşmaz

### Anket Soruları: Açık Uçlu Sorular

- · Cevaplayıcıdan kendi ifadelerinden oluşan yanıt ister
- Avantajlar
  - Önceden hazırlanmış cevaplarla alınamayacak bilgiler alınabilir
  - Cevaplayıcı bakış açısı ile yanıtladığından gerçek görüşleri daha iyi anlaşılır, endişenin içeriği ve öncelik sırası anlaşılır
  - Cevaplayıcının duygularını ifade etmesini ve aktarmasını sağlar
- Dezavantailar
  - Tamamlanması zahmetlidir, zaman alır, yorucudur
  - Cevaplayıcı çabadan kaçarak eksik yanıt verebilir
  - Verilerin işlenmesi ve analizi çok çaba ve zaman gerektirir
  - Cevaplayanın eğitim seviyesi cevabın kapsamını etkiler
  - Sayısal bilgi almak için en iyi-en kötü üç madde istenebilir, bunlar sıralanarak değerlendirilebilir

### Anket Soruları: Kapalı Uçlu Sorular

- Cevaplayıcıdan sabit cevap seçenek kümesinden seçim ister. Çoktan seçmeli, iki cevaplı, sıralamalı olabilir.
- Avantajlar
  - Cevap çok kolay ve hızlı bulunur
  - Kodlanması ve işlenmesi sorunsuzdur
  - Cevap olasılıklarını anketin amacıyla ilgili olacak şekilde sınırlar
  - Herkese aynı bakış açısını iletir, cavaplayıcının yorumlama etkisini devre dışı bırakır
  - Hatırlamayı kolaylaştırır: Hangi eğitimleri aldınız sorusu şıklarıyla olunca insan kolay hatırlar
- Dezavantajlar
  - Cevaplayanlar konuyla ilgili gerçek duygularını yansıtmayan seçeneklere maruz kalabilir. Gerçek cevabına benzeyen şıkkı seçerek ince ama önemli farklılıkları yokeder.
  - Kişinin cevabı yoksa da, soruyu anlamasa da cevaba zorlar
  - Soruların çoğu kapalı uçlu olursa görüşlerin ifadesine izin verilmediğinden cevaplayıcılar kendilerini engellenmiş hisseder

## Soru Tiplerinin Karşılaştırılması



#### Anket Formu Düzeni

- Sorular genelden özele ya da özelden genele sıralanabilir
- Cevaplama direnciyle karşılaşmamak için genelden özele tercih edilir
- Sorular basitten zora dizilmeli
- Önceki soru(lar) sonraki soruya hazırlayıcı olmalı
- Cevaplayıcının ilgisi ve işbirliği bu şekilde sağlanmalı
- Sorular arasında bağlantı kurularak ani konu değişikleri yapılmamalı

#### Araştırma Raporu

- Teknik personel için bilgi toplama sonuçlarının teknik raporu
  - Başlık: yürütücü
  - İçindekiler
  - Araştırma amacı
  - Araştırma metodolojisi (yöntem, işlem, analiz, yorum)
  - Sonuç ve öneriler
  - Ekler (veri toplama formları, tablolar, grafikler, bibliyografya)
- Yönetici için özet rapor (Teknik rapordan sonra)
  - Araştırmanın amacı
  - Kullanılan yöntem
  - Elde edilen sonuçlar

# Gelecek Ders

- Sistem Analizi
- Fonksiyonel Çözümleme
- SRS
- Kavramsal Modelin Oluşturulması

### Sistem Analizi ve Tasarımı

5.Ders

Göksel Biricik

### **Bu Derste**

- Sistem Analizi
- Fonksiyonel Çözümleme
- SRS
- Kavramsal Modelin Oluşturulması

#### Gereksinim Analizi

- Sistem analizi modelinin amacı:
  - İhtiyaçları açıklamak
  - Tasarımın nasıl oluşturulacağının temelini oluşturmak
  - Oluşturulan yazılımın ihtiyaçları karşılayıp karşılamadığını onaylayan unsurları belirlemek

#### Gereksinim Analizi Modeli

- Veri Sözlüğü: Tüm veri nesnelerinin tanımları (metadata)
- Varlık İlişki Diyagramı (ERD): Veri nesneleri arası ilişkiler
- Veri Akış Diyagramı (VAD): Verilerin nasıl taşındığı, veri akışını sağlayan fonksiyonların neler olduğu
- Durum Geçiş Diyagramı (STD): Sistem dışındaki olaylar sonucunda sistemin nasıl hareket ettiği



#### Veri Akış Diyagramı

- Sistemdeki
  - Varlıklar
  - Süreçler işlemler
  - Veri depoları
  - Aralarında verinin akışı
- · Birden fazla varlık olabilir
- Okların çakışmaması için aynı varlık tekrarlayabilir
- Oklar tek yönlüdür
- Okların tek bir kaynağı ve hedefi vardır
- İşlemler hiyerarşiye uygun numaralandırılır



# VAD Öğeleri

- Varlıklar: Kişi, kurum, birim, sistem olabilir. Birincil aktörlere karşılık gelir. Sisteme veri sağlar ya da veri alır.
- Veri Akışı: sistemde bir yerden başka bir yere hareket eden veri (ör. barkod no) ya da mantıksal veri koleksiyonu (ör. Rapor çıktısı içeriği).
- Süreç: Belirli bir işi gerçekleştirmek amacıyla elle veya bilgisayarla yürütülen etkinlik/fonksiyon. Emir kipinde yüklemle isimlendirilir. (ör. Randevu al) Her süreçte tek etkinlik gerçekleşir.
- **Veri Deposu:** Verilerin kalıcı olarak bulunduğu yerler (dosya, klasör, veritabanı, form, çıktı, rapor, karekod, ...)









### VAD Düzeyleri: Taslak

- Ön inceleme sonucunda belirlenir
- Sistemle varlıklar arası ilişkiyi gösterir
- Ayrıntılı süreç ve veri depoları bulunmaz

Bağlam diyagramı olarak da bilinir.



# VAD Düzeyleri: 1.Düzey

- Süreçleri ve işlemleri, ilişkili veri depoları, varlıklar ve depolarla işlemler arası ilişkileri gösterir
- Sistemdeki tüm süreçlerin birbiriyle ve dış kaynaklarla olan ilişkisi belirlenir
- Öncesinde
   «Bağlam VAD»
   kullanıldıysa,
   «Düzey 0 VAD»
   olarak de
   isimlendirilir



### VAD Düzeyleri: 2.Düzey

- Her sürecin alt işlemleri ayrıntılarıyla gösterilir
- 1.Düzeydeki her süreç için bir 2.Düzey VAD çizilir
- Tek bir süreçle veri kaynakları arası ilişki detaylı gösterilir
- Öncesinde «Düzey 0 VAD» kullanıldıysa, «Düzey 1 VAD» olarak de isimlendirilir





# Çözümü

 Varlık 3 ve Varlık 4 bağlam VAD'da yer almalıdır.





### Kavramsal Veri Modeli - Varlık İlişki Diyagramları

- Yüksek seviyelidir, kullanıcı topluluğuyla iletişim için kullanılır.
- Veri yapısı, donanım, yazılım bilgisi yer almaz.
- Tam ve yeterli bileşenler ile sistemin bilgi gereksinimlerinin gerçek gösterimini oluşturur.
- Varlık ilişki diyagramları: verinin kavramsal gösterimini sunar.
  - Veri nesneleri ile aralarındaki ilişkilerin grafiksel gösterimi
  - Kavramsal veri modellemesinin yapılmasını sağlar
- İleriki haftalarda

#### Mantıksal ve Fiziksel VAD

- Mantıksal VAD: işler nedir?
  - Faaliyetler, varlıklar ve üretilip kullanılacak veriler tanımlanır
  - Analiz safhası
- Fiziksel VAD: sistem nasıl uygulanacak,
  - Hangi donanım, yazılım, dosya, insan kaynağı nasıl kullanılacak?
  - Tasarım safhası





## Süreçler Nasıl Modellenecek?

- Süreçler tanımlandı ama içindeki işlemlerle ilgili açıklama yok.
- Mantıksal modellemede süreç iç yapıları ve işlevleri ifade edilir.
- Süreç tanımlama formları kullanılır.
  - Mantık tanımlamak için 3 yöntem vardır:
    - Yapısal dil (sözde kod)
    - Karar tabloları
    - Karar Ağaçları

#### Süreç Tanımlama Formu Süreç Tanımlama Fo Ödemeyi Al ve Fatura Ver Reçetedeki ilaçların toplam maliyetine bağlı olarak hasta ödemesi nakit ya da kart ile tahsil edilecek ve fatura verilecek. Süreç 3'ten hesaplanarak gelecek olan "ne kadar ödeme yapılacağı" bilgisi, Girdi Veri Akışı Hastadan yapılacak tahsilat. Cıktı Veri Akışı Fatura ☐ Otomatik ☑ El Île Süreç Tipi ☐ Cevrimiçi READ ÖDENECEK\_MİKTAR Süreç Mantığı READ ÖDENECEK, MİKTAR ÖDEME Aİ SELECT CASE CASE 1 (ÖDEME büyüktür ÖDENECEK, MİKTAR) DÖ Para üstü ver ÖDEME=Tamam CASE 2 (ÖDEME eşittir ÖDENECEK, MİKTAR) DÖ ÖDEME=Tamam CASE 3 (ÖDEME küçüktür ÖDENECEK, MİKTAR) DÖ ÖDEME=Tamam CASE 3 (ÖDEME küçüktür ÖDENECEK, MİKTAR) DÖ ÖDEME=Tamam değil END SELECT IF ÖDEME eşittir Tamam END SELECT IF ÖDEME eşittir Tamam THEN Fatura ver ELSE Hastaya bilgi ver END IF Nakit ödeme dışında bir ödeme biçiminin kabu Çözülmeyen Sorunlar edilip edilemeyeceği belli değil. Reçete kayıp ya da unutulmuş ise nasıl bir işleri

yapılacak?

# Yapısal Dil

- Süreçleri mantıksal olarak ifade edebilmek için standart İngilizce kelimelerden oluşan bir alt küme.
- Sıralı (ardışık), karar, durum ve döngü işlemleri için yapı blokları kullanılır.
- Girintili yazı stili kullanılır.

# Yapısal Dil Blokları

| Yapısal Dil Bloğu                                                                                                                                                                                                   | Örnek                                                                                                                                                                                                                                                    |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ardışık Blok Yapısı:<br>Herhangi bir yönlendirmenin bulunmadığı,<br>özel işlemler ya da kontrol gerektirmeyen<br>işlem bloklarıdır.                                                                                 | Eylem#1<br>Eylem#2<br>Eylem#3<br>Eylem#4                                                                                                                                                                                                                 |  |  |
| Karar İşlem Bloğu:<br>IF ifadesinden sonra verilen koşul doğru<br>Ise THEN ifadesinden sonraki eylemler<br>uygulanır; aksi durumda ELSE ifadesinden<br>sonraki eylemler uygulanır.                                  | IF Koşul 1 Doğru<br>THEN Eylem#1 uygula<br>ELSE Eylem#2 uygula<br>END IF                                                                                                                                                                                 |  |  |
| Durum Kontrol Bloğu:<br>Karar işlem bloğunun özel bir tipidir. Bir<br>koşulun izleyebileceği birden fazla durum<br>varsa ve bu durumlardan biri oluştuğunda<br>diğerleri oluşamıyorsa kullanılan blok<br>yapısıdır. | READ Kontrol-edilecek-değer SELECT CASE CASE 1 (Kontrol-edilecek-deger=Koşul1) DO Eylem#1 CASE 2 (Kontrol-edilecek-deger=Koşul2) DO Eylem#2 CASE 3 (Kontrol-edilecek-deger=Koşul3) DO Eylem#3 CASE 4 (Kontrol-edilecek-deger=Koşul4) DO Eylem#4 END CASE |  |  |
| Döngü Blok Yapısı:<br>Koşul sağlanana kadar tekrarlanması<br>gereken eylemler varsa kullanılır.                                                                                                                     | DO WHILE Koşul1 doğru oldukça<br>Eylem#1<br>ENDDO<br>Veya<br>DO<br>Eylem#1<br>UNTIL Koşul1 doğru olunca                                                                                                                                                  |  |  |

# Yapısal Dil Örneği

READ ILAÇ\_STOK\_MIKTARI

SELECT CASE ILAÇ\_STOK\_MIKTARI

CASE 1 (ILAÇ\_STOK\_MIKTARI büyükse KRITIK\_STOK)
Herhangi bir eylem uygulama

CASE 2 (ILAÇ\_STOK\_MIKTARI esitse KRITIK\_STOK)
Eczane çalışanına bildirimde bulun

CASE 3 (ILAÇ\_STOK\_MIKTARI küçükse KRITIK\_STOK)
Otomatik olarak sipariş üret

CASE 4 (ILAÇ\_STOK\_MIKTARI esitse SIFIR)
Muadil ilaçları göster

IF ILAC\_URETIMI\_DURDU
THEN İlacın reçeteye yazılmasını engelle
END IF
END CASE

#### Karar Tabloları

- Karmaşık kararların mantığını belirleme mekanizması
- Durumlar, Kurallar, İşlemler, Kararlardan oluşur

|                  |                                |   | KL | IRALL | AR | , |
|------------------|--------------------------------|---|----|-------|----|---|
|                  |                                | 1 | 2  | 3     | 4  | 5 |
| υ                | Disiplin cezası almış          | Е | Н  | Н     | Н  | Н |
| R                | Not ortalaması > 70            | Н | Е  | Ι     | Е  | Н |
| U M              | Giriş puanı > Giriş ortalaması | Н | Е  | Е     | Н  | Н |
| İ                | Okul süresince tam burs        |   | Х  |       |    |   |
| İ<br>Ş<br>L<br>E | 1 yıl yarım burs               |   |    | Х     |    |   |
|                  | Okul süresince yarım burs      |   |    |       | Х  |   |
| М                | Burs alamaz                    | Х |    |       |    | Х |

# Karar Tablosu Örneği

| İlaç İndirim Hesapla                    | KURALLAR |   |   |   |
|-----------------------------------------|----------|---|---|---|
| KOŞULLAR                                | _11      | 2 | 3 | 4 |
| Çalışan Hasta                           | E        | E | H | Н |
| Emekli Hasta                            | Н        | Н | E | Ε |
| Toplam Tutar 50 TL'den küçük ya da eşit | Ε        | Н | E | Н |
| Toplam Tutar 50 TL'den büyük            | Н        | E | Н | E |
| EYLEMLER                                |          |   |   |   |
| İndirim Oranı 1 Uygula                  | Х        |   |   |   |
| İndirim Oranı 2 Uygula                  |          | Х |   |   |
| İndirim Oranı 3 Uygula                  |          |   | Х |   |
| İndirim Oranı 4 Uygula                  |          |   |   | Х |
| Ek %10 İndirim Uygula                   |          |   |   | X |

# Karar Ağaçları

- Daha az karmaşık yapılar için uygun
- Olasılıklar kullanılmaz





## Veri Sözlüğü

- Sadece VAD yeterli değil
- Tüm bilişim maddeleri tanımlanmalı
  - Veri Akış Sözlük Girişi
  - Veri Deposu Sözlük Girişi
  - Veri Yapısı Sözlük Girişi
  - Veri Elemanı Sözlük Girişi
  - İşlem Sözlük Girişi
- Veri akış ve işlemler (kısa tanımlanmışlardı) sözlükte tanımlanmalı
- Bileşik veriler öğelerine göre, basit veriler anlamlarına göre tanımlanır

# Veri Akış Sözlük Girişi

#### Veri Akış Sözlük Girişi

Veri Akış Adı : FATURA

Tanım : Müşteriye fatura edilecek doküman için gerekli bilgiler

Nereden : 1.1 Faturayı Hazırla

Nereye : 1.2 Fatura numarasını hazırla

Veri Yapıları : Fatura Detayları (K)

Müşteri Detayları (K) (K: Kompozit, E: Elemanter)

Açıklama : .....

# Veri Deposu Sözlük Girişi

#### Veri Deposu Sözlük Girişi

Veri Depo Adı : SATIŞ SİPARİŞ FORM DOSYASI

Tanım : Satış sipariş formlarının saklandığı arşiv dosyasıdır

Veri Yapıları : Satış sipariş kaydı

Miktar : Günde yaklaşık 100 kayıt
Erişim : Sipariş bölümü personeli

Açıklama : .....

# Veri Yapısı Sözlük Girişi

#### Veri Yapısı Sözlük Girişi

(Her kompozit veri yapısı için olmalıdır)

Veri Yapı Adı : SATIŞ SİPARİŞ KAYDI

Tanım : Müşterinin mal siparişi için kullandığı satış sipariş formu

Veri Elemanları : MusteriNo (E)

SiparisNo (E)
SiparisTarihi (K)
\* ParcaNo (E)
\* Miktar (E)
\* BirimFiyat (E)

Açıklama : \* olanlar, her bir parça kaydı için oluşur.

## Veri Elemanı Sözlük Girişi

#### Veri Elemanı Sözlük Girişi

Veri Elemanı Adı: MusteriNo

Tanım : Müşteriyi tanımlayan numara

Tip : Numerik

Uzunluk : 4

Değer Aralığı : 0001-6999

Diğer Detaylar : .....

Her elemanter veri yapısı için. Sadece değer ise kod tablosu da olabilir

# İşlem Sözlük Girişi

#### İşlem Sözlük Girişi

işlem Adı : 2.0 Sipariş Satış Verisini Gir

Girdi : Satış siparişleri

işlem Tanımı: ... yap, eğer değilse ...... yap vb.

Çıktı : Girilmiş satış siparişleri

#### Problem Uzayının Modellenmesi

- Amaç gerçek dünyanın (problemin) doğru, anlaşılır, sınanabilir modelini oluşturmak
- Problemin anlaşılması aşamasıdır
- Teknik Yorumdan çok müşteri isterleri ön plandadır
- İsteklerin modellenmesi nd değil, burası nd.
- Gerçek dünyadaki kavramsal sınıflar ve nesneler yer alır (nesneler, o anda görülen özellikleri, aralarındaki ilişkiler (bağlantılar)). Yazılım nesneleri henüz düşünülmez
- UML ile görselleştirilir.
- Oluşacak sistem anlaşılır.
- Tasarıma girdi sağlar (sorumlulukları atamak üzere)



# Problem ile Yazılımın Yakınlaşması

 Tasarımda yazılım sınıfları oluşturulurken ve sorumluluklar atanırken uygulama modeli kullanılır



#### Kavramsal Sınıfların Bulunması

- · Gerçek dünyadaki somut/soyut varlıklar
- Kategori listesi: Deneyim sonucu sık karşılaşılan kategoriler. Zaten görülen sınıfları bulur. Gözden kaçırma olasılığı yüksek.
- Senaryolardaki isimler (isim tamlamaları):
   Senaryolardaki tüm isim ve tamlamalar aday sınıf olarak alınır. Çoğunlukla fazla sınıf çıkar, elenir.
- Varolan model güncellemesi: Yayımlanmış modellerin uyarlaması yapılır.

# Örnek: İsim İşaretleme

#### Main Success Scenario (or Basic Flow):

- 1. Customer arrives at a POS checkout with goods and/or services to purchase.
- 2. Cashier starts a new sale.
- 3. Cashier enters item identifier.
- 4. System records **sale line item** and presents **item description**, **price**, and running **total**. Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

- 5. System presents total with  ${\it taxes}$  calculated.
- 6. Cashier tells Customer the total, and asks for payment.
- 7. Customer pays and System handles payment.
- 8. System logs completed sale and sends sale and payment information to the external **Accounting** system (for accounting and **commissions**) and **Inventory** system (to update inventory).
- 9. System presents **receipt**.
- 10.Customer leaves with receipt and goods (if any).

#### Extensions:

- 7a. Paying by cash:
- 1. Cashier enters the cash amount tendered.
- 2. System presents the balance due.

#### Gereksiz Sınıfların Elenmesi

- Fazlalık sınıflar: aynı unsuru ifade edenlerden, daha tanımlayıcı olan. Kişi-müşteri: Müşteri
- İlgisiz sınıflar: çözümle ilgisi olmayan ya da o aşamada ilgilenmeyeceğimiz sınıflar: Kredi Kartı
- **Belirsiz sınıflar:** sınırları iyi çizilmemiş, kaba-geniş tanımlı sınıflar. Genellikle birden fazla sınıftan oluşmuşlardır ya da başka sınıfın parçasıdır: Muhasebe Sistemi
- Nitelikler: kendi başına varlığı anlamlı olmayanlar, sınıfların özellikleridir: Miktar
- **İşlemler:** Sadece nesnelere uygulanan işlemler sınıf olmaz. Kendi nitelikleri olmalı ve hizmet alışverişi yapmalıdır: Ödeme(miktar, para birimi, tarih, ...)
- Roller: Sınıflar arası ilişki olan roller sınıf olamaz.
- Gerçekleme Elemanları: Yazılım sınıfları bu uzayda yer almaz.
- Sınıf olup olmadığının testi için şu sorular sorulabilir:
  - Kavramla ilgili veri saklanması gerekiyor mu?
  - Değişik değerler alabilecek farklı özellikleri var mı?
  - Kavramdan birçok nesne türeyebilir mi?
  - Uygulamanın kapsama alanı içinde mi?
  - Sınırları iyi çizilmiş mi, tanımı yapılabiliyor mu?

# Betimleme Sınıfı (descriptionspecification) İhtiyacı

- Satış yaparken nesneler ürünleri tutsun.
- Bir cinsten tüm malzeme satılırsa, nesne kalmaz. Bilgi kaybı olur.
- Bu yüzden özellikleri ayrı bir sınıf olarak tutmak gerekebilir.



#### Bağlantıların Belirlenmesi

- Bir nesnenin kaç tane nesneyle ilişki içinde olacağı çoğullama ile gösterilir.
- Bağlantılara doğru isimler verilmelidir. Tip-fiil-tip
- Bazı bağlantıların unutulması tasarımı çok etkilemez.
- Kavramsal sınıfların doğru bulunması daha önemlidir.
- Fazla bağlantı anlaşılırlığı azaltır.
- Yaygın bağlantılar listesinden yararlanılabilir:
  - Fiziksel barındırma, mantıksal barındırma, kayıt ilişkisi, kullanım ilişkisi, tanım, sahiplik, ...
  - Kullanım senaryolarındaki fiillerden yararlanılabilir.

## Gereksiz Bağlantıların Elenmesi

- Elenen sınıflar arası bağlantılar gereksizdir
- Sistemin amacı dışındaki bağlantılar gereksizdir
- Gerçeklemeyi ilgilendiren bağlantılar gereksizdir
- Faaliyetler bağlantı değil, etkileşimdir. (ATM kredi kartı kabul eder)
- Üçlü bağlantılar ikili hale çevrilmelidir. Memur hesapla ilgili işlemleri girer → memur işlemleri girer. İşlemler hesapla ilgilidir.

# Örnek: Bağlantılar

- Tasarımı ilgilendiren bağlantıları ortaya çıkarın
- Tip-fiil-tip doğru isim ataması yapın.



#### Özelliklerin Belirlenmesi

- Özellik: nesne yaratıldığında nesneye özgü değer alabilen veri.
- Senaryolarla ilgili nitelikler bulunmalıdır.
- Basit veri tipleri ile ifade edilirler.
  - birimleri varsa doğru değil. (para gibi)
- Karmaşık tipteyse, başka bir sınıf olma olasılığı yüksektir.
  - birden fazla alansa (tel no, ad soyad)
  - işlem yapılıyorsa (kredi kartı ve doğrulama)
  - kendi nitelikleri varsa (fiyat: geçerlilik tarihi))



# Özellikler-Detay

 Analizde kavramsal sınıf özellikleri hakkında detay bilgi varsa, tasarıma kaynak olması için bunlar da belirtilebilir.







## Gelecek Dersler

- Sistem Analizi Laboratuvar Uygulaması (VAD+Kavramsal Sınıf D.)
- Sistem Tasarımı
  - Girdi, Çıktı, Veri Yapısı, Arabirim Tasarımları
- Ara Sınav

#### Sistem Analizi ve Tasarımı

6.Ders

Göksel Biricik

#### **Bu Derste**

- Sistem Tasarımı
  - Altyapı Belirleme
  - Ön (Genel) Tasarım
  - Ayrıntılı Tasarım
  - Tasarım Modelinin Oluşturulması

#### Sistem Tasarımı

- Ön Tasarım
  - Alt yapı belirleme
  - Modül mimarisinin oluşturulması
- Ayrıntılı Tasarım
  - Sistem Etkileşimi tasarımı
    - Çıktı tasarımı
    - Girdi tasarımı
    - · Arabirim tasarımı
  - Program tasarımı
  - Veritabanı tasarımı





#### Sistem Tasarım Yaklaşımları

- Model Güdümlü Yaklaşımlar: Geliştirilen mantıksal modeller kullanılarak model güdümlü tasarım modelleri elde edilir. Bu modeller yeni kurulum ve gerçekleştirme için tasarıdır.
  - Modern Yapısal Tasarım
  - Bilgi Mühendisliği
  - Prototipleme
- Hızlı Uygulama Geliştirme: Model hazırla, prototip yap, model hazırla, prototip yap, vb. döngü. Ortak uygulama geliştirme oturumları
- Ortak Uygulama Geliştirme: Tasarım tüm paydaşların katıldığı atölye çalışmaları ile gerçekleşir.

# Ön (Genel) Tasarım

- Sistem nasıl temin edilecek?
  - Sistem sıfırdan oluşturulabilir: Kurum içi geliştirme +/-?
  - Satın alınıp ihtiyaca göre özelleştirilebilir +/-?
  - Dışarıdan (hizmet olarak) temin edilebilir +/-?
- İşlevsel olmayan gereksinimler mimari tasarımı etkiler
  - Sistem ne kadar hızlı çalışacak? Kapasitesi ne olacak?
     Şifreleme ve virüs kontrol ihtiyacı var mı? Vb.
  - Yeni sistemi desteklemek üzere alınacak donanım ve yazılımlara yönelik mimari kararlar

#### Sistem Mimari Modellemesi

- Bilgi sistemi, merkezi mi yoksa dağıtık mı olacak? (Birçok sistem, ağ üzerinden dağıtık çalışmaktadır.)
- Bir ağ üzerinden depolanan verinin dağıtımı nasıl olacak? (Birçok modern veritabanı, dağıtık ya da ağ üzerinde çok kopyalı olarak bulunabilmektedir.)
- Geliştirilecek yazılım için uygulama teknolojileri ne olacak? Hangi programlama dili ve araçları kullanılacaktır?
- Satın alınabilen ticari yazılımların bütünleştirilmesi nasıl olacak? (Ticari yazılımın gereksinimlere göre düzenlenme ihtiyacı vardır.)
- Kullanıcı arayüz uygulamasında kullanılacak teknolojiler neler olacaktır?
- Diğer sistemlerle arayüz oluşturmak için kullanılacak teknolojiler neler olacaktır?

• ...

# Mimari Tasarım Bileşenleri

- Yazılım
  - Veri Depolama
  - Veri Erişim Mantığı
  - Uygulama Mantığı
  - Sunum Mantığı
- Donanım
  - İstemci bilgisayarlar
  - Sunucu bilgisayarlar
  - Ağ yapısı



#### **Envanter Belirleme**

- Sistem analisti, var olan sistemin alt yapısının durumunu görmek için; teçhizatın
  - modelini ve üreticisini,
  - durumunu (kullanılmıyor, bakıma ihtiyacı var, çalışır durumda vb.),
  - yaşını,
  - planlanan yaşını,
  - işletme içindeki fiziksel yerini,
  - sorumlu çalışanı veya bölümü,
  - finansal durumunu (işletmenin kendi malı, kiralık ve leasing yapılmış vb. şeklinde) belirler.
- Mevcut donanım, gerekli altyapıyla kıyaslanır.

# İş Yüklerinin Tahmini

- Donanım altyapı kapasitesinin yeterliliğini belirlemek için yapılır.
- Zaman-maliyet
   kıyaslaması yapılır,
   gereksiz sistem
   kurulumu
   engellenmeye çalışılır.

|                                      | Mevcut Sistem                                                                                                                                        | Önerilen Sistem                                                                                                                                              |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| İş                                   | Bayi satışlarının aylık raporu                                                                                                                       | Bayi satışlarının aylık raporu                                                                                                                               |  |
| Yöntem                               | Dosya takibi                                                                                                                                         | Bilgisayar tabanlı takip                                                                                                                                     |  |
| Personel                             | Bayi yöneticisi                                                                                                                                      | Bilgisayar uzmanı                                                                                                                                            |  |
| Maliyet / Saat                       | 30 TL                                                                                                                                                | 15 TL                                                                                                                                                        |  |
| Ne Zaman?<br>Nasıl?                  | Günlük : Her bayi için<br>faturaların dosyalanması<br>Aylık : Hesap makinası<br>kullanarak günlük<br>kayıtların özetlenmesi ve<br>rapor hazırlanması | Günlük: Fatura<br>bilgilerinin girilip<br>toplamın alınacağı<br>programın çalıştırılması<br>Aylık: Raporlamayı yapıp<br>yazdıran programın<br>çalıştırılması |  |
| Gerekli Olan<br>İnsan Zamanı         | Günlük : 20 dakika<br>Aylık : 8 saat                                                                                                                 | Günlük : 4 dakika<br>Aylık : 20 dakika                                                                                                                       |  |
| Gerekli Olan<br>Bilgisayar<br>Zamanı | Yok                                                                                                                                                  | Günlük : 4 dakika<br>Aylık : 20 dakika                                                                                                                       |  |

# Donanım Değerlendirme

- İş yükü ve mevcut envantere göre proje ihtiyaçları belirlenir.
- İş yüklerinin farklı sistemlerde simülasyonu yapılarak karşılaştırılır.
- Karşılaştırma kriterleri:
  - İşlemin gerçekleşmesi için geçen ortalama süre (Bu süreye giriş verisinin sisteme girilmesi ve çıkışı elde etme de dahildir.)
  - Sistemin toplam kapasitesi (Herhangi bir problem oluşmadan aynı zamanda kaç işlem gerçekleştirildiği.)
  - CPU'nun atıl zamanı
  - Önerilen belleğin büyüklüğü

| Yazılım Değerlendirme                                |                                                                                                                                                                                                                                                             |                                       |                                                                                                                                                                                                                                     |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Yazılım<br>Gereksinimleri                            | Yazılım Özellikleri                                                                                                                                                                                                                                         | Yazılım<br>Gereksinimleri             | Yazılım Özellikleri                                                                                                                                                                                                                 |  |
| Performans<br>Etkinliği<br>Performans<br>Verimliliği | <ul> <li>İhtiyaç duyulan tüm işleri<br/>yerine getirme</li> <li>Tüm işleri istenildiği şekilde<br/>yerine getirme</li> <li>İyi tasarlanmış ekran çıktıları</li> <li>Yeterli kapasite</li> <li>Hızlı cevap zamanı</li> <li>Verimli giriş ve çıkış</li> </ul> | Esneklik<br>Dökümantasyon<br>Kalitesi | <ul> <li>Girdi seçeneği</li> <li>Çıktı seçeneği</li> <li>Diğer yazılımlarla birlikte kullanılma</li> <li>İyi organizasyon</li> <li>Yeterli çevrim içi kaynak</li> <li>Web sitesinde sık sorulan soruların(FAQ) bulunması</li> </ul> |  |
|                                                      | <ul><li>Verimli veri saklama</li><li>Verimli yedekleme</li></ul>                                                                                                                                                                                            | Üretici Desteği                       | <ul><li>Teknik destek</li><li>Ürün güncellemesinin Web</li></ul>                                                                                                                                                                    |  |
| Kullanım<br>Kolaylığı                                | <ul> <li>İyi tasarlanmış kullanıcı<br/>arabirimi</li> </ul>                                                                                                                                                                                                 |                                       | sitesi üzerinden<br>yapılabilmesi                                                                                                                                                                                                   |  |
|                                                      | <ul><li>Yardım menüleri</li><li>Esnek arabirim</li><li>Yeterli geri besleme</li></ul>                                                                                                                                                                       |                                       |                                                                                                                                                                                                                                     |  |
|                                                      | ■ Hata düzeltme                                                                                                                                                                                                                                             |                                       |                                                                                                                                                                                                                                     |  |

# Satıcı Firmayı Belirleme

| Temel Satıcı Hizmetleri | Satıcının Sunduğu Hizmetler                      |
|-------------------------|--------------------------------------------------|
| Donanım Desteği         | <ul> <li>Ürün kalitesi</li> </ul>                |
|                         | <ul> <li>Garanti</li> </ul>                      |
| Yazılım Desteği         | Toplam yazılım ihtiyacı                          |
|                         | <ul> <li>Özel programlama gereksinimi</li> </ul> |
|                         | ■ Garanti                                        |
| Kuruluş ve Eğitim       | <ul> <li>Zaman programina uyma</li> </ul>        |
|                         | ■ Eğitim                                         |
|                         | Müşteri hizmetleri                               |
| Bakım                   | Rutin bakım işlemleri                            |
|                         | Acil durumdaki cevap verme süresi                |

#### Satın Alma Şeklini Belirleme Satın Alma Uzun dönemde leasing ve kiralamadan İlk ödemenin yüksek olması ucuz olması Eskime riski Sistemin değiştirebilinmesi Seçimin yanlış yapılması sonucu Vergi indirimi sağlaması yatırımın batma riski Tam kontrol Tam sorumluluk Leasing Sermayenin bağlanmaması Sözleşme bittiğinde işletmenin sisteme Finanslamaya ihtiyaç olmaması sahip olamaması Kira bedelinden düşük olması Ödemenin gecikmesi durumunda yüksek faiz oranı Satın almadan daha pahalı olması Kiralama Sermayenin bağlanmaması İşletmenin sistemin gerçek sahibi Finanslamaya ihtiyaç duyulmaması olmaması

Satıcı kendi riskini üstlendiği için kira

bedelinin çok yüksek olması

Sistemin kolayca değiştirilmesi

kapsamında olması

Genelde bakım ve garantinin fiyat

#### Ayrıntılı Tasarım

- Çıktı Tasarımı
- Girdi Tasarımı
- Arabirim Tasarımı
- Uygulama (Program) Tasarımı
- Veritabanı Tasarımı

#### Çıktı Tasarımı

- · Çıktı: Sistemin Kullanıcılara verdiği bilgi, üretilen raporlar
- Amaçlar:
  - Belirlenen amaca hizmet etme
  - Kullanıcı için anlamlı olma
  - Uygun sayıda olma
  - Hangi kullanıcılara dağıtılacağının doğru belirlenmesi
  - Zamanında sağlanma (günlük, aylık, yıllık veya koşula bağlı raporlar)
  - Doğru çıktı yönteminin (ortamının) seçilmesi
- Kullanıcıyı etkileyecek yönlendirme:
  - Bilgilerin belirli kriterlere göre sıralanması
  - Sınırların Belirlenmesi
  - Grafik tipi rengi ölçeğinin belirlenmesi

#### Girdi Tasarımı

- Kaliteli çıktı için girdi kalitesi önemli
- Amaçlar
  - Etkinlik: Form ve ekran görüntülerinin belli bir amacının olması
  - Doğruluk: Analizde tanımlanan tüm işlemleri yerine getirmesi
  - Kullanım kolaylığı: Bilgi girişi kullanıcılarının fazla zamanını almaması ve ergonomik olması
  - Uyumluluk: Bir formda diğerine ya da ekran görüntüsüne geçişte düzenin değişmemesi
  - Basitlik: Gereksiz ayrıntıya yer verilmemesi ve karmaşık olmaması
  - Çekicilik: Ekran ve form yapılarının güzel görünmesi

#### Girdi Tasarımı Prensipleri

- Çevrimiçi işleme ve toplu işleme girdileri uygun olarak kullanılır
- Veri, kaynağında tutulur
- Klavye tuşlamaları azaltılır
- Doğrulama ve geçerleme yapılır
  - Tamlık, Biçim, Aralık, Tutarlılık

#### Girdi Tasarımı - Ekranlar

- Kolay kullanım ve basitlik: Gereksiz bilgi bulunmaması, pencereler içinde girilecek bilgilerle ilgili açıklamalar olması
- Uyumluluk: Bilgi toplama formları ve diğer ekran görünümleri arası
- Hareket kolaylığı: Ekrandan ekrana geçme ve başlık kolonunu sabit tutarak diğer kolonları kaydırma vs.
- Çekici ekran tasarımı: Tüm ekranların belli bir düzene uygun hazırlanması ve imleç yapısı, font tipinin seçimi

#### Kullanıcı Arabirimi Tasarımı

- Arabirim: Sistemin kullanıcıyla iletişime giren elemanı
- Tipleri:
  - Doğal dil arabirimleri
  - Soru-cevap sorgulamalar
  - Menüler
  - Girdi-çıktı formları
  - Komut dili
  - Sistem bildirimleri
- Amaç:
  - Etkinlik: Kullanıcıların gereksinimlerine uygun olarak sisteme erişmelerini sağlama
  - Verimlilik: Hataları azaltma, veri giriş hızını arttırma
  - Kullanıcıların görüşlerinin alınabilmesi
  - Ergonomik olması

#### Kullanıcı Arabirimi Tasarımı

- Yerleşim planı: Ekran iç ana alana bölünür.
  - En üst alan, sistemde gezinim sağlar
  - Orta alan kullanıcı çalışmalarına ayrılır
  - En alt alan, yapılanlarla ilgili durum bilgisi verir

#### Arabirim Tasarım Problemleri

- Bilginin düzensiz görünümde yığınlar şeklinde olması
- Kullanıcının yürütmesi gereken çeşitli görevler arasındaki geçişin uyumlu olmaması
- Ekran üzerindeki komutlarda kullanılan terminolojinin karmaşık olması
- Sistem tarafından verilen hata mesajlarının açıklayıcı olmaması
- El kitaplarının anlaşılmaz derecede karmaşık olması

• ...

#### Sistem(Uygulama) Mimarisini Belirleme

- Modüler program yapısı geliştirilir.
- · Aralarındaki ilişkilerin denetimi belirlenir.
- Veri yapısı ve program birleştirilir, ara birimler tanımlanır.
- VAD ve veri sözlüğüne dayanan yapı diyagramı ile gösterilir.
  - Modüller: Anlaşılması ve bakımı kolay olan, mantıksal program işlem birimleri
  - Veri iletişimi: Modüller arası iletilen veri
  - Kontrol mesajları: Modüller arasında bir durumu ya da hareketi başka modüle aktarma mesajı (örneğin: dosya sonu)
  - Durumlar: Kontrol Modülünün hangi alt modülü çağıracağının gösterimi
  - Döngüler: Bir veya daha fazla tekrar eden alt modül işlemesinin gösterimi

# Ana Modül – Alt Modüller Module 1.1 Module 1.2 Subordinate Module Module 1.3 Library Module Subordinate Module







## Tasarım Spesifikasyonları

- Ön tasarım spesifikasyonları: Yazılım sisteminin genel özellikleri ve ilişkileri
- Mimari tasarım spesifikasyonları: Sistemin yapısı ve kuruluşu
- Ayrıntılı tasarım spesifikasyonları: Modüller içerisindeki kontrol akışı, veri gösterimi ve diğer algoritmik ayrıntılar

#### Hierarchy & Input-Process-Output

- HIPO
- Sistemdeki her fonksiyonun birbiriyle olan ilişkisini belirler.
- Temel fonksiyonlar belirlendikten sonra alt fonksiyonlar tanımlanarak fonksiyon hiyerarşisi oluşturulur.
- Diyagramlar:
  - Görsel içerik tablosu (Visual Table of Contents, VTOC)
  - Genel IPO (Input Process Output ) Diyagramı
  - Ayrıntılı IPO Diyagramı



#### Genel IPO

 VTOC diyagramındaki her fonksiyon için IPO detaylı olarak tanımlanır.





## Nesneye Dayalı Tasarım Modelinin Oluşturulması

- Problemin mantıksal çözümü oluşturulur.
- YAZILIM SINIFLARI ve aralarındaki İŞBİRLİĞİ (etkileşim) belirlenir.
  - Tasarım Sınıf Diyagramı
  - Etkileşim Diyagramları
- Etkileşim: sınıfların davranışlarının belirlenmesi → sorumlulukların atanması



# Etkileşim Diyagramları

- İşbirliği Diyagramları
  - Az yer kaplar
  - Dallanma paralellik ve iterasyonlar kolay gösterilir
  - Mesaj sırasını anlamak zor
- Ardışıl Diyagramlar
  - Fazla yer kaplar
  - Mesaj sırasını anlamak kolaydır















#### Kullanım senaryolarının gerçeklenmesi

- Senaryodaki durumların modellenerek gerçeklenmesi
- Tasarım: yazılım sınıflarına metotların eklenmesi ve istekleri yerine getirmek üzere nesneler arası mesajların belirlenmesi.
- Sorumluluklar:
  - Bilinmesi gerekenler
    - · Kendi özel verileri
    - İlgili diğer nesneler
    - Üzerinde hesap yapabileceği, hesapla elde edebileceği veriler
  - Yapılması gerekenler
    - Hesap yapma, nesne yaratma yok etme
    - · Başka nesneleri harekete geçirme
    - · Başka nesnelerin hareketlerini denetleme

#### Senaryoların gerçeklenmesi

- Sorumlulukları yerine getirmek için metotlar oluşturulur
- Bir sorumluluğu erine getirmek için bir metot başka metotlarla işbirliği yapabilir
- İlk iterasyonda senaryoların ana akışları gerçekleştirilir
- İkinci iterasyonda alternatif akışlar ele alınır ve gerçeklenir.
- Büyük senaryolar birkaç iterasyon sürebilir. Daha küçükleri bir iterasyonda bitebilir.
- Tasarımın sonunda tersine gidilerek, problem domeninin diyagramı çıkarılır. Bu sayede analiz diyagramlarının son hali de elde edilmiş olur.

## Örnek senaryo – Ana Akış

#### Satışın toplam bedelinin hesaplanması:

#### Main Success Scenario (or Basic Flow):

- 1. Customer arrives at POS checkout with goods and/or services to purchase.
- 2. Cashier starts a new sale.
- 3. Cashier enters item identifier.
- 4. System records sale line item and presents item description, price, and running total. Price calculated from a set of price rules. Cashier repeats steps 3-4 until indicates done.
- 5. System presents total with taxes calculated.

Senaryoya göre satışın toplam bedelinin hesaplanması gerekiyor.

# "Yabancılarla Konuşma" Prensibi

- · Don't Talk To Strangers.
- Bir nesne ancak tanıdık (sınırlı sayıda) bir hedefe mesaj göndermelidir.
  - Kendisi (this)
  - Metodun parametresi olan nesne
  - Nesnenin üyesi (özelliği) olan nesne
  - Nesnenin üyesi olan bir grubun (liste, vektör vs) elemanı olan nesne
  - Metodun içinde yaratılan nesne
- Dolaylı (tanıdığın tanıdığı) nesneler ise yabancı nesnelerdir.
- Metot içinden yabancı nesnelere mesaj gönderilmesi, bağımlılık yaratır. Görülmesi zor, olmaması gereken bir bağımlılıktır. Bu yüzden tercih edilmez
- Örnek:Money amount= sale.getPayment().getTenderedAmount(); kötü
- Money amount= sale.getTenderedAmountOfPayment(); iyi
- Gerçekten gerekliyse, tanıdık nesneye sorumluluk olarak atamak gerekir.

#### Senaryoların gerçeklenmesi

- Anlatılan kalıplara uygun olarak
  - Belirlenen tüm senaryolar
  - Tüm sözleşmeler

#### Gerçekleştirilir.

- Kavramsal sınıflardan yola çıkılarak yazılım sınıfları oluşturulur.
- Sorumluluklar, metotlarla gerçekleştirilir.
- Her bir işbirliği, tasarım sınıf diyagramında bir bağlantı olarak gösterilir.

## Başlangıç İşlemleri

- Sistem ilk çalışmaya başladığında yapılacaklar ayrı bir senaryo grubu olarak yazılabilir.
- Bu işleri tasarımın en son aşamasında belirlemek uygundur.
- Bir başlangıç nesnesi (initial domain object) belirlenir.
- Program çalışmaya başlayınca bu nesne yaratılır.
- Doğrudan içerdiği diğer nesneleri yaratma ve aralarındaki bağlantıyı sağlama sorumluluğuna sahiptir.
- Tüm programın çalışmasını denetleyen temel bir nesne gibidir. Ancak bu denetim ana programda veya arayüz nesnesinde de olabilir.
- Başlangıçta arayüz nesnelerine denetçinin referansı da gönderilir.

## Tasarım Sınıf Diyagramı

- Senaryoları gerçeklerken çizilen etkileşim diyagramlarına paralel olarak, yazılım sınıflarından oluşan diyagram(lar) da çizilir.
- Yazılım sınıfları, özellikleri ve tipleri, metotların parametreleri ve erişim hakları büyük ölçüde belirtilir.
- İlişkiler ve bağımlılıklar yönlü olarak gösterilir. (Yeni ilişkiler de bulunabilir)



# **Gelecek Ders**

- Veri Modelleme
- Veri Yapısı ve Veri Tabanı Tasarımı

## Sistem Analizi ve Tasarımı

7.Ders

Göksel Biricik

## **Bu Derste**

- Sistem Tasarımı
  - Veri Modelleme
  - Veri Yapısı ve Veri Tabanı Tasarımı



## Varlık-İlişki Modeli

- Entity-Relationship Model
  - Kavramsal tasarımda veritabanında tutulacak verilerin daha üst seviyede gösterilmesi için
  - Kavramsal tasarım için en çok kullanılan ve en popüler model
  - Diğer modeller?
    - Sıradüzensel: Kayıt kütükleri
    - · Yarı yapılı veri modeli: XML
    - Nesneye dayalı model: Kavramsal nesneler
    - Yapılanmış bellek: NoSQL, MongoDB, AllegroGraph, ...



### Varlık

- Modelin en temel üyesidir.
- Var olan ve benzerlerinden ayırt edilebilen her şey varlıktır.
  - Ör: Kitap, öğrenci, araba birer varlıktır.
- Modelin içerisinde varlık kümesi dikdörtgen ile gösterilir.
- Veritabanı olarak düşünülürse her bir tablo bir varlık kümesidir.

### **Nitelik**

- Varlıkların her bir özelliği bir nitelik olarak ifade edilir.
  - Ör: öğrenci adı ve numarası öğrenci varlığının nitelikleridir.
- Modelin içerisinde nitelikler oval ile gösterilir ve içerisine niteliğin ismi yazılır.
- Veritabanı olarak düşünülürse tablonun her bir sütunu bir niteliği gösterir.

### **Anahtar Nitelik**

- Bir niteliğin değeri her bir varlık için farklıysa bu nitelik anahtar nitelik olarak belirlenir.
- Şemada niteliğin altı çizilerek gösterilir.



# İlişki

- Farklı varlıklar arasındaki ilişkileri ifade eder.
  - Ör: öğrenci ve dersler ayrı varlık kümeleridir ama öğrenciler ders almak zorunda olduğu için iki varlık arasında ders alma ilişkisi vardır.
- Model içerisinde ilişkiler baklava dilimi ile gösterilir ve içerisine ilişkinin adı yazılır.
- Tablolar arasında kullanılan ilişkiler 1-1, 1-n, n-1, n-m ile gösterilir.



# İlişki Tipleri – Birebir İlişki

• Bire-bir İlişki: Herhangi bir varlık kümesindeki her varlık diğer varlık kümesinin en çok bir varlığı ile ilintilidir.



# İlişki Tipleri – Bire-çok İlişki

• Bire-çok ilişki : İlk kümedeki her varlık diğer kümenin en çok bir varlığına ilintidir.



# İlişki Tipleri – Çoka-çok İlişki

 Çoka-çok ilişki: Bir ilişkide herhangi bir kümede bulunan varlıklardan herbiri diğer kümede bulunan birçok varlıkla ilintilidir.



Birincil anahtarları A ve B tablolarının yabancı anahtarlarından oluşan, bağlantı tablosu diye adlandırılan üçüncü bir tablo tanımlayarak oluşturulur.



## Veri Modelinin Gerçeklenmesi

- Varlık kümeleri tablolara dönüştürülür.
- Nitelikler tablonun sütunlarına dönüştürülür.
- Modelde oluşturulan ilişkilerin durumuna göre tabloların ilişkileri ve doğal olarak da anahtar sütunları belirlenir.
- 1-1 İlişkide bir varlık kümesinin birincil anahtarı diğer varlık kümesinin yabancı anahtarı olarak belirlenir.
   Hangisinin birincil hangisinin yabancı anahtar olacağına tablonun içereceği bilgilere göre karar verilir.
- 1-n İlişkinin n tarafındaki tabloya 1 tarafından tablonun birincil anahtar sütunu yabancı anahtar olarak eklenir.



## Çoka-Çok İlişkilerin Gerçeklenmesi

- Varlık kümeleri tablolara dönüştürülür.
- Oluşturulan ilişki isminde tablo oluşturulur.
- Nitelikler tabloların sütunlarına dönüştürülür.
   Tanımlayıcı nitelikler ilişkiden oluşturulan tabloya sütun olarak eklenir.
- İlişkiyi oluşturan tabloların birincil anahtarları ilişkiyi oluşturan tabloya yabancı anahtar olarak eklenir.
- İlişkiden oluşturulan tablonun birincil anahtarı oluşturulan yabancı anahtarların birleşiminden oluşur. Eğer, bu şekilde oluşturulan birincil anahtar ihtiyaçlara cevap vermiyorsa yeni bir sütun eklenerek birincil anahtar yapılır.



## Zayıf Varlık Kümeleri

- Mevcutluğu diğer varlık türüne bağlı olan varlık türüdür.
- Eğer bir varlık kümesinin niteliklerinin tümü alınsa bile bir anahtar oluşturmuyorsa buna zayıf varlık kümesi denir.
- Ör: Üniversite-fakülte ilişkisinde, bir fakülte üniversite olmadan olamayacağı için ve aynı fakülte isminde başka üniversitelerde fakülte olabileceği için fakülte varlık kümesi zayıf varlık kümesidir.



# Zayıf Varlık Kümelerinin Gerçeklenmesi univNo univAdi sahip fakulteNo fakulteAdi Universite (univNo, univAdi) Fakulte (univNo, fakulteNo, fakulteAdi) Zayıf varlık kümeleri çift çizgili dikdörtgen ile gösterilir.

## **Gelecek Ders**

- Kodlama Teknikleri
- Yazılım Kalitesi
- Test Teknikleri
- Yeni Sisteme Geçiş
- Bakım

## Sistem Analizi ve Tasarımı

8.Ders

Göksel Biricik

## **Bu Derste**

- Kodlama
- Yazılım Kalitesi
- Test Teknikleri
- Yeni Sisteme Geçiş
- Bakım

### Kodlama

- Tasarım tamamlanıp diyagram, algoritma ve sözde kodlar oluşturulduktan sonra yapılır.
- Kodlama spesifikasyonlara uymalı, kolay okunabilmeli, düzenlenebilmeli,test edilebilmeli, değiştirilebilmelidir.
- Belirlenen kodlama standartlarına uyulmalıdır.
  - Açıklama satırları kullanılmalıdır.
  - Kod yazım deseni kullanılmalıdır.
- Anlamlı isimlendirmeler yapılmalıdır.

### Programlama Dili ve Ortamı

- Gereksinimlere uygun olacak dil(ler) fizibilitede seçilip analiz aşamasında kesinleştirilmişti.
- Dil Seçiminde dikkat edilmesi gereken faktörler
  - Genel uygulama alanı
  - Algoritma ve veri yapılarının karmaşıklığı
  - Yazılımın kullanılacağı ortam
  - Uygulama koşulları
  - Personelin bilgi düzeyi
  - Yapılacak yatırım miktarı
  - Müşteri koşulları

### Yazılım Kalitesi

- Kalite: işlevsel gereksinimlere, geliştirme standartlarına ve beklenen tüm özelliklere tamamen uygun yazılım
- Kalite Faktörleri:
  - Doğruluk
  - Güvenilirlik
  - Verimlilik
  - Güvenlik
  - Kullanışlılık

- Hata bulma kolaylığı
- Esneklik
- Sınama kolaylığı
- Taşınabilirlik
- Tekrar kullanılabilirlik
- Bağlanabilirlik

## Yazılımda Kalitenin Sağlanması

- Planlama aşamasında kalite kontrolü yöntem ve araçları belirlenmeli
- Geliştirme sürecinde durak noktalarında yapılanlar gözden geçirilmeli
- Kaynak program sınanmalı
- Gerçekleştirilmiş projenin gereksinimleri karşılaması gözden geçirilmeli
- Bunlar plan dahilinde yapılmalı:
  - Yazılım inceleme planı
  - Kaynak programı sınama planı
  - Kabul muayene planı

### Yazılımın Test Edilmesi

- Hataları bulmak için yapılır.
- Fonksiyonel Test: Girdi-işlem-sonuç üçlüsünün doğruluğu test edilir. Uç değer analizi de yapılır.
- Performans Testi: Yanıt süreleri, iç-dış bellek kullanımları, iletişim hızları vs. ölçülür. Darboğazlar belirlenir.
- Dayanıklılık Testi: Aşırı yüklenme, iletişim darboğazı, kullanıcı yüklenmesi gibi durumlarda sistemin tepkisi ölçülür.
- Yapısal Test: Sistemin iç işletimi sınanır. Alt programların mantıksal çalışma yolları denetlenir.



### Test Adımları

- Ünite Testi: Her modüle ayrı uygulanarak kodun doğruluğu test edilir.
- Bütünleme Testi: Modülleri bağlayarak sistemin oluşturulması sırasında yapılır. Bütün olarak ya da arttırmalı yapılabilir.
- Onaylama Testi: Gereksinimleri karşılama derecesi test edilir.
- **Sistem Testi:** Sistemin bütün öğeleri hep birlikte test edilir. Hatalar için düzeltme, güvenlik, dayanıklılık, performans testleri yapılır.

### Yeni Sisteme Geçiş

- Geçiş Adımları:
  - Ön tasarımda belirlenen donanımın kurulumu
  - Ağ yapısının oluşturulması
  - Kayıtların yeni sisteme aktarılması
  - Eğitim
    - Sistemle ilgilenecekler
    - Uç kullanıcılar
    - Üst yönetim
  - Devreye alma

## Geçiş Yöntemleri

Doğrudan geçiş

| Eski Sistem | Yeni Sistem |
|-------------|-------------|
|             |             |

• Prototip geçiş

| Eski Sistem | Yeni Sistem |
|-------------|-------------|
| Prototio    | Ī           |

Paralel geçiş



• Dağıtılmış geçiş



• Dereceli geçiş



### Bakım

- Yazılım yaşayan bir süreçtir, evrimleşir.
- Kullanıma geçişten sonra yazılımdaki değişikliklere bakım denir.
- Zaman içinde ihtiyaçlar değişir. → İyileştirici bakım
- Altyapı değişimi olabilir. 

  Uyarlayıcı bakım
- Testlerde fark edilmeyen hatalar olabilir.
   →Düzeltici bakım

# Gelecek Dersler

• Proje Sunumları