CONFIGURATION SPACES AND OPERADS

Najib Idrissi (in part j/w Campos, Ducoulombier, Lambrechts, Willwacher) January 2019 @ Higher Structures, CIRM

M: n-manifold

M: n-manifold

M: n-manifold

(name dropping)

M: n-manifold

- · Braid groups
- · Loop spaces

(name dropping)

M: n-manifold

- · Braid groups
- · Loop spaces

(name dropping)

Moduli spaces of curves

M: n-manifold

- · Braid groups
- · Loop spaces
- (name dropping)
- · Moduli spaces of curves
- Particles in movement [physics]

M: n-manifold

$$\mathrm{Conf}_r(M) \coloneqq \{(x_1,\ldots,x_r) \in M^r \mid \forall i \neq j, \; x_i \neq x_j\}$$

- · Braid groups
- · Loop spaces
- (name dropping)
- Moduli spaces of curves
- · Particles in movement [physics]
- · Motion planning [robotics]

Question

Does the homotopy type of M determine the homotopy type of $\operatorname{Conf}_r(M)$? How to compute homotopy invariants of $\operatorname{Conf}_r(M)$?

Question

Does the homotopy type of M determine the homotopy type of $\operatorname{Conf}_r(M)$? How to compute homotopy invariants of $\operatorname{Conf}_r(M)$?

Non-compact manifolds

False: $Conf_2(\mathbb{R}) \not\sim Conf_2(\{0\})$ even though $\mathbb{R} \sim \{0\}$.

Question

Does the homotopy type of M determine the homotopy type of $\operatorname{Conf}_r(M)$? How to compute homotopy invariants of $\operatorname{Conf}_r(M)$?

Non-compact manifolds

False: $Conf_2(\mathbb{R}) \not\sim Conf_2(\{0\})$ even though $\mathbb{R} \sim \{0\}$.

Closed manifolds

Longoni–Salvatore (2005): counter-example (lens spaces)...

Question

Does the homotopy type of M determine the homotopy type of $\operatorname{Conf}_r(M)$? How to compute homotopy invariants of $\operatorname{Conf}_r(M)$?

Non-compact manifolds

False: $\operatorname{Conf}_2(\mathbb{R}) \not\sim \operatorname{Conf}_2(\{0\})$ even though $\mathbb{R} \sim \{0\}$.

Closed manifolds

Longoni–Salvatore (2005): counter-example (lens spaces)... but not simply connected.

Question

Does the homotopy type of M determine the homotopy type of $\operatorname{Conf}_r(M)$? How to compute homotopy invariants of $\operatorname{Conf}_r(M)$?

Non-compact manifolds

False: $Conf_2(\mathbb{R}) \not\sim Conf_2(\{0\})$ even though $\mathbb{R} \sim \{0\}$.

Closed manifolds

Longoni–Salvatore (2005): counter-example (lens spaces)... but not simply connected.

Simply connected closed manifolds

Homotopy invariance is still open.

We can also localize: $M \simeq_{\mathbb{Q}} N \implies \operatorname{Conf}_r(M) \simeq_{\mathbb{Q}} \operatorname{Conf}_r(N)$?

Presentation of $H^*(\operatorname{Conf}_r(\mathbb{R}^n))$ [Arnold, Cohen]

- Generators: ω_{ij} of degree n-1 (for $1 \le i \ne j \le r$)
- · Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

Presentation of $H^*(\operatorname{Conf}_r(\mathbb{R}^n))$ [Arnold, Cohen]

- Generators: ω_{ij} of degree n-1 (for $1 \le i \ne j \le r$)
- · Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

Theorem (Arnold 1969)

Formality: $H^*(\operatorname{Conf}_r(\mathbb{C})) \sim_{\mathbb{C}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_r(\mathbb{C}))$, $\omega_{ij} \mapsto \operatorname{d} \log(z_i - z_j)$.

Presentation of $H^*(\operatorname{Conf}_r(\mathbb{R}^n))$ [Arnold, Cohen]

- Generators: ω_{ij} of degree n-1 (for $1 \le i \ne j \le r$)
- · Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

Theorem (Arnold 1969)

Formality: $H^*(\operatorname{Conf}_r(\mathbb{C})) \sim_{\mathbb{C}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_r(\mathbb{C}))$, $\omega_{ij} \mapsto \operatorname{d} \log(z_i - z_j)$.

Theorem (Kontsevich 1999, Lambrechts-Volić 2014)

$$H^*(\operatorname{Conf}_r(\mathbb{R}^n)) \sim_{\mathbb{R}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_r(\mathbb{R}^n))$$
 for all $r \geq 0$ and $n \geq 2$.

Presentation of $H^*(\operatorname{Conf}_r(\mathbb{R}^n))$ [Arnold, Cohen]

- Generators: ω_{ij} of degree n-1 (for $1 \le i \ne j \le r$)
- · Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

Theorem (Arnold 1969)

Formality: $H^*(\operatorname{Conf}_r(\mathbb{C})) \sim_{\mathbb{C}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_r(\mathbb{C}))$, $\omega_{ij} \mapsto \operatorname{d} \log(z_i - z_j)$.

Theorem (Kontsevich 1999, Lambrechts-Volić 2014)

$$H^*(\operatorname{Conf}_r(\mathbb{R}^n)) \sim_{\mathbb{R}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_r(\mathbb{R}^n))$$
 for all $r \geq 0$ and $n \geq 2$.

Corollary

The cohomology of $\mathrm{Conf}_r(\mathbb{R}^n)$ determines its rational homotopy type.

 $\implies H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = \mathbb{R}\langle \operatorname{graphs} \operatorname{with} r \operatorname{vertices} \rangle / (R_{ijk})$

$$\implies H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = \mathbb{R}\langle \operatorname{graphs} \operatorname{with} r \operatorname{vertices} \rangle / (R_{ijk})$$

 \rightarrow add "internal" vertices and a differential which contracts edges incident to these new vertices:

$$\implies H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = \mathbb{R}\langle \operatorname{graphs} \operatorname{with} r \operatorname{vertices} \rangle / (R_{ijk})$$

→ add "internal" vertices and a differential which contracts edges incident to these new vertices:

$$\begin{array}{ccc}
 & & & \downarrow \\
 & & \downarrow \\
 & & \downarrow \\
 & & & \downarrow \\
 & & & & \downarrow \\
 & & & & & \downarrow \\
 & & & & & \downarrow \\
 & & & & & & \downarrow \\
 & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & \downarrow \\
 & & & & & \downarrow \\
 &$$

Theorem (Kontsevich 1999, Lambrechts–Volić 2014 – Part 1)

We get a quasi-free CDGA $\mathbf{Graphs}_n(r)$ and a quasi-isomorphism $\mathbf{Graphs}_n(r) \xrightarrow{\sim} H^*(\mathrm{Conf}_r(\mathbb{R}^n)).$

The relations R_{ijk} are only satisfied up to homotopy in $\Omega^*(\operatorname{Conf}_r(\mathbb{R}^n))$. How to find representatives to get $\operatorname{\mathbf{Graphs}}_n(r) \xrightarrow{\sim} \Omega^*(\operatorname{Conf}_r(\mathbb{R}^n))$?

The relations R_{ijk} are only satisfied up to homotopy in $\Omega^*(\operatorname{Conf}_r(\mathbb{R}^n))$. How to find representatives to get $\operatorname{Graphs}_n(r) \xrightarrow{\sim} \Omega^*(\operatorname{Conf}_r(\mathbb{R}^n))$?

Let $\varphi \in \Omega^{n-1}(\operatorname{Conf}_2(\mathbb{R}^n))$ be the volume form.

For $\Gamma \in \mathbf{Graphs}_n(r)$ with i internal vertices:

$$\omega(\Gamma) := \int_{\operatorname{Conf}_{r+i}(\mathbb{R}^n) \to \operatorname{Conf}_r(\mathbb{R}^n)} \bigwedge_{(ij) \in \mathcal{E}_{\Gamma}} \varphi_{ij}.$$

The relations R_{ijk} are only satisfied up to homotopy in $\Omega^*(\operatorname{Conf}_r(\mathbb{R}^n))$. How to find representatives to get $\operatorname{Graphs}_n(r) \xrightarrow{\sim} \Omega^*(\operatorname{Conf}_r(\mathbb{R}^n))$?

Let $\varphi \in \Omega^{n-1}(\operatorname{Conf}_2(\mathbb{R}^n))$ be the volume form.

For $\Gamma \in \mathbf{Graphs}_n(r)$ with i internal vertices:

$$\omega(\Gamma) := \int_{\operatorname{Conf}_{r+i}(\mathbb{R}^n) \to \operatorname{Conf}_r(\mathbb{R}^n)} \bigwedge_{(ij) \in \mathcal{E}_{\Gamma}} \varphi_{ij}.$$

Theorem (Kontsevich 1999, Lambrechts-Volić 2014 – Part 2)

We get a quasi-isomorphism $\omega : \mathbf{Graphs}_n(r) \xrightarrow{\sim} \Omega(\mathrm{Conf}_r(\mathbb{R}^n)).$

The relations R_{ijk} are only satisfied up to homotopy in $\Omega^*(\operatorname{Conf}_r(\mathbb{R}^n))$. How to find representatives to get $\operatorname{Graphs}_n(r) \xrightarrow{\sim} \Omega^*(\operatorname{Conf}_r(\mathbb{R}^n))$?

Let $\varphi \in \Omega^{n-1}(\operatorname{Conf}_2(\mathbb{R}^n))$ be the volume form.

For $\Gamma \in \mathbf{Graphs}_n(r)$ with i internal vertices:

$$\omega(\Gamma) := \int_{\operatorname{Conf}_{r+i}(\mathbb{R}^n) \to \operatorname{Conf}_r(\mathbb{R}^n)} \bigwedge_{(ij) \in \mathcal{E}_{\Gamma}} \varphi_{ij}.$$

Theorem (Kontsevich 1999, Lambrechts–Volić 2014 – Part 2)

We get a quasi-isomorphism $\omega : \mathbf{Graphs}_n(r) \xrightarrow{\sim} \Omega(\mathrm{Conf}_r(\mathbb{R}^n)).$

 \triangle I'm cheating! We have to compactify $\mathrm{Conf}_r(\mathbb{R}^n)$ to make sure \int converges and to apply the Stokes formula correctly.

COMPACTIFICATION

Problem: $\operatorname{Conf}_r(\mathbb{R}^n)$ is not compact.

COMPACTIFICATION

Problem: $\operatorname{Conf}_r(\mathbb{R}^n)$ is not compact.

Fulton–MacPherson compactification $\operatorname{Conf}_r(M) \overset{\sim}{\hookrightarrow} \operatorname{\mathsf{FM}}_M(r)$

COMPACTIFICATION

Problem: $\operatorname{Conf}_r(\mathbb{R}^n)$ is not compact.

Fulton–MacPherson compactification $\operatorname{Conf}_r(M) \stackrel{\sim}{\hookrightarrow} \operatorname{FM}_M(r)$

 ${\it M}$ closed manifold \implies semi-algebraic stratified manifold $\dim=nr$

ANIMATION #1

ANIMATION #1

Animation #2

ANIMATION #2

Animation #3

Animation #3

COMPACTIFICATION OF $\operatorname{Conf}_r(\mathbb{R}^n)$

We have to "normalize" $\mathrm{Conf}_r(\mathbb{R}^n)$ to mitigate the non-compacity of \mathbb{R}^n :

$$\mathrm{Conf}_r(\mathbb{R}^n) \xrightarrow{\sim} \mathrm{Conf}_r(\mathbb{R}^n)/(\mathbb{R}^n \rtimes \mathbb{R}_{>0}) \xrightarrow{\sim} \mathsf{FM}_n(r)$$

COMPACTIFICATION OF $\operatorname{Conf}_r(\mathbb{R}^n)$

We have to "normalize" $\operatorname{Conf}_r(\mathbb{R}^n)$ to mitigate the non-compacity of \mathbb{R}^n :

$$\mathrm{Conf}_r(\mathbb{R}^n) \xrightarrow{\sim} \mathrm{Conf}_r(\mathbb{R}^n)/(\mathbb{R}^n \rtimes \mathbb{R}_{>0}) \xrightarrow{\sim} \mathsf{FM}_n(r)$$

 \implies semi-algebraic stratified manifold dim = nr - n - 1

OPERAD

We see a new structure on FM_n : an operad! We can "insert" an infinitesimal configuration in another one:

$$\mathsf{FM}_n(k) \times \mathsf{FM}_n(l) \xrightarrow{\circ_i} \mathsf{FM}_n(k+l-1), \quad 1 \leq i \leq k$$

OPERAD

We see a new structure on FM_n : an operad! We can "insert" an infinitesimal configuration in another one:

$$\mathsf{FM}_n(k) \times \mathsf{FM}_n(l) \xrightarrow{\circ_i} \mathsf{FM}_n(k+l-1), \quad 1 \leq i \leq k$$

Remark

Weakly equivalent to the "little disks operad".

COMPLETE THEOREM

Functoriality $\implies H^*(\mathsf{FM}_n) = H^*(\mathrm{Conf}_{\bullet}(\mathbb{R}^n))$ and $\Omega^*(\mathsf{FM}_n)$ are Hopf cooperads;

COMPLETE THEOREM

Functoriality $\Longrightarrow H^*(\mathsf{FM}_n) = H^*(\mathsf{Conf}_{\bullet}(\mathbb{R}^n))$ and $\Omega^*(\mathsf{FM}_n)$ are Hopf cooperads; Graphs_n is one too, and:

Theorem (Kontsevich 1999, Lambrechts-Volić 2014)

The operad FM_n is formal over \mathbb{R} :

$$\Omega^*(\mathsf{FM}_n) \xleftarrow{\sim}_{\omega} \mathsf{Graphs}_n \xrightarrow{\sim} H^*(\mathsf{FM}_n).$$

COMPLETE THEOREM

Functoriality $\Longrightarrow H^*(\mathsf{FM}_n) = H^*(\mathsf{Conf}_{\bullet}(\mathbb{R}^n))$ and $\Omega^*(\mathsf{FM}_n)$ are Hopf cooperads; Graphs_n is one too, and:

Theorem (Kontsevich 1999, Lambrechts-Volić 2014)

The operad FM_n is formal over \mathbb{R} :

$$\Omega^*(\mathsf{FM}_n) \xleftarrow{\sim}_{\omega} \mathsf{Graphs}_n \xrightarrow{\sim} H^*(\mathsf{FM}_n).$$

Formality has important applications, e.g. Deligne conjecture, deformation quantization of Poisson manifolds, etc.

Remark

 $H_*(\mathbf{FM}_n)$ is the operad governing Poisson n-algebras for $n \geq 2$.

M: oriented closed manifold $A \sim \Omega(M)$: Poincaré duality model of M

M: oriented closed manifold

 $A \sim \Omega(M)$: Poincaré duality model of M

$$G_A(r)$$
: (conjectural) model of $\mathrm{Conf}_r(M) = M^{\times r} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Longrightarrow := \{x_i = x_j\}$

M: oriented closed manifold

 $A \sim \Omega(M)$: Poincaré duality model of M

$$\mathsf{G}_\mathsf{A}(r)$$
: (conjectural) model of $\mathrm{Conf}_r(\mathsf{M}) = \mathsf{M}^{\times r} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Rightarrow := \{x_i = x_i\}$

• "Generators": $\mathsf{A}^{\otimes r}$ and the ω_{ij} from $\mathrm{Conf}_r(\mathbb{R}^n)$

M: oriented closed manifold

 $A \sim \Omega(M)$: Poincaré duality model of M

```
\mathsf{G}_A(r): (conjectural) model of \mathrm{Conf}_r(M) = M^{\times r} \setminus \bigcup_{i \neq j} \Delta_{ij}

• "Generators": A^{\otimes r} and the \omega_{ii} from \mathrm{Conf}_r(\mathbb{R}^n) \Longrightarrow = \{x_i = x_j\}
```

Arnold relations + symmetry

M: oriented closed manifold

 $A \sim \Omega(M)$: Poincaré duality model of M

$$\mathsf{G}_{\mathsf{A}}(r)$$
: (conjectural) model of $\mathrm{Conf}_r(\mathsf{M}) = \mathsf{M}^{\times r} \setminus \bigcup_{i \neq j} \Delta_{ij}$
• "Generators": $\mathsf{A}^{\otimes r}$ and the ω_{ii} from $\mathrm{Conf}_r(\mathbb{R}^n)$ $\Longrightarrow = \{x_i = x_j\}$

- Arnold relations + symmetry
- $d\omega_{ij}$ kills the dual of $[\Delta_{ij}]$.

M: oriented closed manifold

 $A \sim \Omega(M)$: Poincaré duality model of M

$$\mathsf{G}_{\mathsf{A}}(r)$$
: (conjectural) model of $\mathrm{Conf}_r(\mathsf{M}) = \mathsf{M}^{\times r} \setminus \bigcup_{i \neq j} \Delta_{ij}$
• "Generators": $\mathsf{A}^{\otimes r}$ and the ω_{ii} from $\mathrm{Conf}_r(\mathbb{R}^n)$ $\Longrightarrow := \{x_i = x_j\}$

- Arnold relations + symmetry
- $d\omega_{ij}$ kills the dual of $[\Delta_{ij}]$.

Examples:

• $G_A(0) = \mathbb{R}$ is a model of $Conf_0(M) = \{\varnothing\}$ \checkmark

M: oriented closed manifold

 $A \sim \Omega(M)$: Poincaré duality model of M

$$\mathsf{G}_{\mathsf{A}}(r)$$
: (conjectural) model of $\mathrm{Conf}_r(\mathsf{M}) = \mathsf{M}^{\times r} \setminus \bigcup_{i \neq j} \Delta_{ij}$
• "Generators": $\mathsf{A}^{\otimes r}$ and the ω_{ii} from $\mathrm{Conf}_r(\mathbb{R}^n)$ $\Longrightarrow := \{x_i = x_j\}$

- · Arnold relations + symmetry
- $d\omega_{ij}$ kills the dual of $[\Delta_{ij}]$.

Examples:

- $G_A(0) = \mathbb{R}$ is a model of $Conf_0(M) = \{\varnothing\}$ \checkmark
- $G_A(1) = A$ is a model of $Conf_1(M) = M$ \checkmark

M: oriented closed manifold

 $A \sim \Omega(M)$: Poincaré duality model of M

$$\mathsf{G}_{\mathsf{A}}(r)$$
: (conjectural) model of $\mathrm{Conf}_r(\mathsf{M}) = \mathsf{M}^{\times r} \setminus \bigcup_{i \neq j} \Delta_{ij}$
• "Generators": $\mathsf{A}^{\otimes r}$ and the ω_{ii} from $\mathrm{Conf}_r(\mathbb{R}^n)$ $\Longrightarrow := \{x_i = x_j\}$

- · Arnold relations + symmetry
- $d\omega_{ij}$ kills the dual of $[\Delta_{ij}]$.

Examples:

- $G_A(0) = \mathbb{R}$ is a model of $Conf_0(M) = \{\varnothing\}$
- $G_A(1) = A$ is a model of $Conf_1(M) = M$ \checkmark
- $\mathsf{G}_{A}(2) \sim \mathsf{A}^{\otimes 2}/(\Delta_{A})$ should be a model of $\mathrm{Conf}_{2}(\mathsf{M}) = \mathsf{M}^{2} \setminus \Delta$?

M: oriented closed manifold

 $A \sim \Omega(M)$: Poincaré duality model of M

$$\mathsf{G}_{\mathsf{A}}(r)$$
: (conjectural) model of $\mathrm{Conf}_r(\mathsf{M}) = \mathsf{M}^{\times r} \setminus \bigcup_{i \neq j} \Delta_{ij}$
• "Generators": $\mathsf{A}^{\otimes r}$ and the ω_{ii} from $\mathrm{Conf}_r(\mathbb{R}^n)$ $\Longrightarrow := \{x_i = x_j\}$

- Arnold relations + symmetry
- $d\omega_{ij}$ kills the dual of $[\Delta_{ij}]$.

Examples:

- $G_A(0) = \mathbb{R}$ is a model of $Conf_0(M) = \{\varnothing\}$ \checkmark
- $G_A(1) = A$ is a model of $Conf_1(M) = M$ \checkmark
- $\mathsf{G}_\mathsf{A}(2) \sim \mathsf{A}^{\otimes 2}/(\Delta_\mathsf{A})$ should be a model of $\mathrm{Conf}_2(\mathsf{M}) = \mathsf{M}^2 \setminus \Delta$?
- $r \ge 3$: more complicated.

1969 [Arnold, Cohen]
$$H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = G_{H^*(\mathbb{R}^n)}(r)$$

1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = \mathsf{G}_{H^*(\mathbb{R}^n)}(r)$ 1978 [Cohen-Taylor] spectral sequence $E^2 = \mathsf{G}_{H^*(M)}(k) \Rightarrow H^*(\operatorname{Conf}_k(M))$

BRIEF HISTORY OF GA

1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = G_{H^*(\mathbb{R}^n)}(r)$ 1978 [Cohen-Taylor] spectral sequence $E^2 = G_{H^*(M)}(k) \Rightarrow H^*(\operatorname{Conf}_k(M))$ ~1994 For smooth projective complex manifolds (\Longrightarrow Kähler):

- 1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = G_{H^*(\mathbb{R}^n)}(r)$ 1978 [Cohen-Taylor] spectral sequence $E^2 = G_{H^*(M)}(k) \Rightarrow H^*(\operatorname{Conf}_R(M))$ ~1994 For smooth projective complex manifolds (\Longrightarrow Kähler):
 - [Kříž] $G_{H^*(M)}(r)$ is a model of $Conf_r(M)$;

- 1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = G_{H^*(\mathbb{R}^n)}(r)$ 1978 [Cohen-Taylor] spectral sequence $E^2 = G_{H^*(M)}(k) \Rightarrow H^*(\operatorname{Conf}_R(M))$ ~1994 For smooth projective complex manifolds (\Longrightarrow Kähler):
 - [Kříž] $G_{H^*(M)}(r)$ is a model of $Conf_r(M)$;
 - [Totaro] the Cohen–Taylor SS collapses.

- 1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = G_{H^*(\mathbb{R}^n)}(r)$
- 1978 [Cohen–Taylor] spectral sequence $E^2 = G_{H^*(M)}(k) \Rightarrow H^*(\operatorname{Conf}_k(M))$
- ~1994 For smooth projective complex manifolds (⇒ Kähler):
 - · [Kříž] $G_{H^*(M)}(r)$ is a model of $Conf_r(M)$;
 - [Totaro] the Cohen–Taylor SS collapses.
- **2004** [Lambrechts–Stanley] model for r=2 if $\pi_{\leq 2}(\mathsf{M})=0$

- **1969** [Arnold, Cohen] $H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = \mathsf{G}_{H^*(\mathbb{R}^n)}(r)$
- 1978 [Cohen–Taylor] spectral sequence $E^2 = G_{H^*(M)}(k) \Rightarrow H^*(\operatorname{Conf}_k(M))$
- ~1994 For smooth projective complex manifolds (⇒ Kähler):
 - · [Kříž] $G_{H^*(M)}(r)$ is a model of $Conf_r(M)$;
 - [Totaro] the Cohen–Taylor SS collapses.
- **2004** [Lambrechts–Stanley] model for r=2 if $\pi_{\leq 2}(\mathsf{M})=0$
- ~2004 [Félix–Thomas, Berceanu–Markl–Papadima] relation with Bendersky–Gitler spectral sequence

- **1969** [Arnold, Cohen] $H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = \mathsf{G}_{H^*(\mathbb{R}^n)}(r)$
- 1978 [Cohen–Taylor] spectral sequence $E^2 = G_{H^*(M)}(k) \Rightarrow H^*(\operatorname{Conf}_k(M))$
- ~1994 For smooth projective complex manifolds (⇒ Kähler):
 - [Kříž] $G_{H^*(M)}(r)$ is a model of $Conf_r(M)$;
 - [Totaro] the Cohen–Taylor SS collapses.
- **2004** [Lambrechts–Stanley] model for r=2 if $\pi_{\leq 2}(\mathsf{M})=0$
- ~2004 [Félix–Thomas, Berceanu–Markl–Papadima] relation with Bendersky–Gitler spectral sequence
 - 2008 [Lambrechts–Stanley] $H^{i}(G_{A}(r)) \cong_{\Sigma_{r}\text{-Vect}} H^{i}(\operatorname{Conf}_{r}(M))$

- 1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_r(\mathbb{R}^n)) = \mathsf{G}_{H^*(\mathbb{R}^n)}(r)$
- 1978 [Cohen–Taylor] spectral sequence $E^2 = G_{H^*(M)}(k) \Rightarrow H^*(\operatorname{Conf}_k(M))$
- ~1994 For smooth projective complex manifolds (⇒ Kähler):
 - [Kříž] $G_{H^*(M)}(r)$ is a model of $Conf_r(M)$;
 - [Totaro] the Cohen–Taylor SS collapses.
- **2004** [Lambrechts–Stanley] model for r=2 if $\pi_{\leq 2}(M)=0$
- ~2004 [Félix–Thomas, Berceanu–Markl–Papadima] relation with Bendersky–Gitler spectral sequence
 - 2008 [Lambrechts–Stanley] $H^i(G_A(r)) \cong_{\Sigma_r\text{-Vect}} H^i(\operatorname{Conf}_r(M))$
 - **2015** [Cordova Bulens] model for r = 2 if dim M = 2m

By generalizing the proof of Kontsevich & Lambrechts–Volić:

By generalizing the proof of Kontsevich & Lambrechts–Volić:

Theorem (I.)

Let M be a closed simply connected smooth manifold. Let A be any Poincaré duality model of M. Then $G_A(r)$ is a real model of $\operatorname{Conf}_r(M)$.

By generalizing the proof of Kontsevich & Lambrechts–Volić:

Theorem (I.)

Let M be a closed simply connected smooth manifold. Let A be any Poincaré duality model of M. Then $G_A(r)$ is a real model of $\mathrm{Conf}_r(M)$.

Corollaries

 $M \sim_{\mathbb{R}} N \implies \operatorname{Conf}_r(M) \sim_{\mathbb{R}} \operatorname{Conf}_r(N)$ for all r.

By generalizing the proof of Kontsevich & Lambrechts–Volić:

Theorem (I.)

Let M be a closed simply connected smooth manifold. Let A be any Poincaré duality model of M. Then $G_A(r)$ is a real model of $\mathrm{Conf}_r(M)$.

Corollaries

 $M \sim_{\mathbb{R}} N \implies \operatorname{Conf}_r(M) \sim_{\mathbb{R}} \operatorname{Conf}_r(N)$ for all r.

We can "compute everything" over \mathbb{R} for $\operatorname{Conf}_r(M)$.

By generalizing the proof of Kontsevich & Lambrechts–Volić:

Theorem (I.)

Let M be a closed simply connected smooth manifold. Let A be any Poincaré duality model of M. Then $G_A(r)$ is a real model of $\operatorname{Conf}_r(M)$.

Corollaries

 $M \sim_{\mathbb{R}} N \implies \operatorname{Conf}_r(M) \sim_{\mathbb{R}} \operatorname{Conf}_r(N)$ for all r.

We can "compute everything" over \mathbb{R} for $\mathrm{Conf}_r(M)$.

Remark

 $\dim M \leq 3$: only spheres (Poincaré conjecture) and we know that G_A is a model anyway, but adapting the proof is problematic!

MODULES OVER OPERADS

M parallelized \implies $FM_M = \{FM_M(r)\}_{r \ge 0}$ is a right FM_n -module:

MODULES OVER OPERADS

M parallelized \implies $FM_M = \{FM_M(r)\}_{r \ge 0}$ is a right FM_n -module:

We can rewrite:

$$G_A(r) = (A^{\otimes r} \otimes H^*(FM_n(r))/relations, d)$$

MODULES OVER OPERADS

M parallelized \implies $FM_M = \{FM_M(r)\}_{r \ge 0}$ is a right FM_n -module:

We can rewrite:

$$G_A(r) = (A^{\otimes r} \otimes H^*(FM_n(r))/relations, d)$$

A bit of abstract nonsense:

Proposition

$$\chi(M) = 0 \implies G_A = \{G_A(r)\}_{r \ge 0}$$
 is a Hopf right $H^*(FM_n)$ -comodule.

COMPLETE VERSION OF THE THEOREM

Theorem (I. 2018)

M: closed simply connected smooth manifold, $\dim M \geq 4$

$†$
 if $\chi(M)=0$

[‡] if M is parallelized.

$$A \stackrel{\sim}{\leftarrow} R \stackrel{\sim}{\rightarrow} \Omega_{\mathrm{PA}}^*(M)$$

COMPLETE VERSION OF THE THEOREM

Theorem (I. 2018)

M: closed simply connected smooth manifold, $\dim M \geq 4$

$$\mathsf{G}_{\!A} \longleftarrow^{\sim} \mathsf{Graphs}_{\!R} \stackrel{\sim}{\operatorname{----}} \Omega^*_{\operatorname{PA}}(\mathsf{FM}_{\!M})$$

$$\circlearrowleft^{\dagger} \qquad \circlearrowleft^{\dagger} \qquad \circlearrowleft^{\dagger}$$

$$H^*(\mathsf{FM}_n) \longleftarrow^{\sim} \mathsf{Graphs}_n \stackrel{\sim}{\longrightarrow} \Omega^*_{\operatorname{PA}}(\mathsf{FM}_n)$$

† if
$$\chi(M) = 0$$

‡ if M is parall

[‡] if M is parallelized.

$$A \stackrel{\sim}{\leftarrow} R \stackrel{\sim}{\rightarrow} \Omega_{\mathrm{PA}}^*(M)$$

Conclusion

Not only do we have a model of each $\operatorname{Conf}_r(M)$, but also of their richer structure if we look at them all at once.

APPLICATION 1: EMBEDDING SPACES

Space of embeddings: $\text{Emb}(M, N) = \{f : M \hookrightarrow N\}.$

APPLICATION 1: EMBEDDING SPACES

Space of embeddings: $\text{Emb}(M, N) = \{f : M \hookrightarrow N\}.$

Goodwillie–Weiss manifold calculus [Arone, Boavida, Turchin, Weiss...]: for parallelized manifolds of codimension ≥ 3 ,

$$\operatorname{Emb}(M,N) \simeq \operatorname{Mor}^h_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}(\operatorname{Conf}_{\bullet}(M),\operatorname{Conf}_{\bullet}(N)).$$

APPLICATION 1: EMBEDDING SPACES

Space of embeddings: $\text{Emb}(M, N) = \{f : M \hookrightarrow N\}.$

Goodwillie–Weiss manifold calculus [Arone, Boavida, Turchin, Weiss...]: for parallelized manifolds of codimension ≥ 3 ,

$$\operatorname{Emb}(M,N) \simeq \operatorname{Mor}_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}^h(\operatorname{Conf}_{\bullet}(M),\operatorname{Conf}_{\bullet}(N)).$$

LS model is small and explicit \implies hope: computations are tractable

APPLICATION 1: EMBEDDING SPACES

Space of embeddings: $\text{Emb}(M, N) = \{f : M \hookrightarrow N\}.$

Goodwillie–Weiss manifold calculus [Arone, Boavida, Turchin, Weiss...]: for parallelized manifolds of codimension ≥ 3 ,

$$\operatorname{Emb}(M,N) \simeq \operatorname{Mor}^h_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}(\operatorname{Conf}_{\bullet}(M),\operatorname{Conf}_{\bullet}(N)).$$

LS model is small and explicit \implies hope: computations are tractable

Remark

Requires to compare $\operatorname{Mor}^h_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}(\operatorname{Conf}_{\bullet}(M),\operatorname{Conf}_{\bullet}(N))^{\mathbb{R}}$ with $\operatorname{Mor}^h_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)^{\mathbb{R}}}(\operatorname{Conf}_{\bullet}(M)^{\mathbb{R}},\operatorname{Conf}_{\bullet}(N)^{\mathbb{R}})$

Factorization homology = homology where \otimes replaces \oplus + homotopy commutative coefficients.

Factorization homology = homology where \otimes replaces \oplus + homotopy commutative coefficients.

For an E_n -algebra \mathscr{A} ,

$$\int_{M} \mathscr{A} = \operatorname{hocolim}_{(D^{n})^{\sqcup r} \hookrightarrow M} \mathscr{A}^{\otimes r}.$$

Factorization homology = homology where \otimes replaces \oplus + homotopy commutative coefficients.

For an E_n -algebra \mathscr{A} ,

$$\int_{M} \mathscr{A} = \operatorname{hocolim}_{(D^{n})^{\sqcup r} \hookrightarrow M} \mathscr{A}^{\otimes r}.$$

Alternate description: $\int_M \mathscr{A} \sim \mathrm{Conf}_{\bullet}(M) \otimes^h_{\mathrm{Conf}_{\bullet}(\mathbb{R}^n)} \mathscr{A}$ [Francis].

Factorization homology = homology where \otimes replaces \oplus + homotopy commutative coefficients.

For an E_n -algebra \mathscr{A} ,

$$\int_{M} \mathscr{A} = \operatorname{hocolim}_{(D^{n})^{\sqcup r} \hookrightarrow M} \mathscr{A}^{\otimes r}.$$

Alternate description: $\int_M \mathscr{A} \sim \mathrm{Conf}_{\bullet}(M) \otimes^h_{\mathrm{Conf}_{\bullet}(\mathbb{R}^n)} \mathscr{A}$ [Francis].

Theorem (I. 2018, see also Markarian 2017, Döppenschmidt 2018)

M closed simply connected smooth manifold ($\dim \geq 4$),

$$\mathcal{A} := \mathcal{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n])$$

Factorization homology = homology where \otimes replaces \oplus + homotopy commutative coefficients.

For an E_n -algebra \mathscr{A} ,

$$\int_{M} \mathscr{A} = \operatorname{hocolim}_{(D^{n})^{\sqcup r} \hookrightarrow M} \mathscr{A}^{\otimes r}.$$

Alternate description: $\int_M \mathscr{A} \sim \mathrm{Conf}_{\bullet}(M) \otimes^h_{\mathrm{Conf}_{\bullet}(\mathbb{R}^n)} \mathscr{A}$ [Francis].

Theorem (I. 2018, see also Markarian 2017, Döppenschmidt 2018)

M closed simply connected smooth manifold ($\dim \geq 4$),

$$\mathscr{A} := \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) \implies \int_{M} \mathscr{A} \sim_{\mathbb{R}} \mathbb{R}.$$

GENERALIZATION 1: MANIFOLDS WITH BOUNDARY

Theorem (Campos-I.-Lambrechts-Willwacher 2018)

For manifolds with boundary: homotopy invariance of $\mathrm{Conf}_r(-)$, generalization of the Lambrechts–Stanley model (and more); under good conditions, including $\dim M \geq \ldots$

Remark

Poincaré duality models → Poincaré–Lefschetz duality models.

GENERALIZATION 1: MANIFOLDS WITH BOUNDARY

Theorem (Campos-I.-Lambrechts-Willwacher 2018)

For manifolds with boundary: homotopy invariance of $\mathrm{Conf}_r(-)$, generalization of the Lambrechts–Stanley model (and more); under good conditions, including $\dim M \geq \ldots$

Remark

Poincaré duality models → Poincaré-Lefschetz duality models.

Allows to compute $Conf_r$ by "induction":

GENERALIZATION 1: MANIFOLDS WITH BOUNDARY

Theorem (Campos-I.-Lambrechts-Willwacher 2018)

For manifolds with boundary: homotopy invariance of $\operatorname{Conf}_r(-)$, generalization of the Lambrechts–Stanley model (and more); under good conditions, including $\dim M \geq \dots$

Remark

Poincaré duality models → Poincaré–Lefschetz duality models.

Allows to compute Conf_r by "induction":

Roughly: we use 2-colored labeled graphs.

M: oriented manifold → framed configuration space

$$\operatorname{Conf}_r^{\operatorname{fr}}(M) \coloneqq \{(x \in \operatorname{Conf}_r(M), B_1, \dots, B_r) \mid B_i : \text{ orth. basis of } T_{X_i}M\}.$$

M: oriented manifold → framed configuration space

$$\operatorname{Conf}_r^{\operatorname{fr}}(M) := \{ (x \in \operatorname{Conf}_r(M), B_1, \dots, B_r) \mid B_i : \text{ orth. basis of } T_{x_i}M \}.$$

Natural action of the framed little disks operad on $\{Conf_{\bullet}^{fr}(M)\}$.

M: oriented manifold → framed configuration space

$$\operatorname{Conf}_r^{\operatorname{fr}}(M) := \{ (x \in \operatorname{Conf}_r(M), B_1, \dots, B_r) \mid B_i : \text{ orth. basis of } T_{x_i}M \}.$$

Natural action of the framed little disks operad on $\{Conf_{\bullet}^{fr}(M)\}$.

Theorem (Campos–Ducoulombier–I.–Willwacher 2018)

Real model of this module based on graph complexes (little hope of analogue of Lambrechts–Stanley model...)

M: oriented manifold → framed configuration space

$$\operatorname{Conf}_r^{\operatorname{fr}}(M) := \{ (x \in \operatorname{Conf}_r(M), B_1, \dots, B_r) \mid B_i : \text{ orth. basis of } T_{x_i}M \}.$$

Natural action of the framed little disks operad on $\{Conf_{\bullet}^{fr}(M)\}$.

Theorem (Campos-Ducoulombier-I.-Willwacher 2018)

Real model of this module based on graph complexes (little hope of analogue of Lambrechts–Stanley model...)

First step towards embedding spaces of non-parallelized manifolds. (Not enough: need partially framed configurations for the larger manifold N.)

WIP: COMPLEMENTS OF SUBMANIFOLDS

Goal: $Conf(N \setminus M)$ where $\dim N - \dim M \ge 2$.

WIP: COMPLEMENTS OF SUBMANIFOLDS

Goal: Conf($N \setminus M$) where dim $N - \dim M \ge 2$.

Motivation: work of Ayala, Francis, Rozenblyum, Tanaka

Knot complement \leadsto colored Jones polynomial.

WIP: COMPLEMENTS OF SUBMANIFOLDS

Goal: $Conf(N \setminus M)$ where $\dim N - \dim M \ge 2$.

Motivation: work of Ayala, Francis, Rozenblyum, Tanaka

Knot complement → colored Jones polynomial.

There exists an operad VSC_{mn} which models the local situation $\mathbb{R}^n \setminus \mathbb{R}^m$:

Theorem (I. 2018)

The operad VSC_{mn} is formal over \mathbb{R} for $n-m \geq 2$.

THANK YOU FOR YOUR ATTENTION!

THESE SLIDES: https://idrissi.eu