Resumo de aula 2

1 Módulo ou Valor absoluto

Seja x um número real, definimos o módulo ou valor absoluto de x por $\mid x \mid = \begin{cases} x & se & x \geq 0 \\ -x & se & x < 0 \end{cases}$ De acordo com a definição acima, para todo x, $\mid x \mid \geq 0$, isto é, o valor absoluto de um número real é sempre não negativo.

Exemplo 1.1. (a)
$$|5| = 5$$
 (b) $|-3| = -(-3) = 3$

Exemplo 1.2. Temos que, para todo x real, $|x|^2 = x^2$

Demonstração: Se $x \ge 0$, |x| = x, passando o quadrado aos dois lados da igauldade, temos $|x|^2 = x^2$. Se x < 0, |x| = -x, passando o quadrado aos dois lados da igauldade, temos $|x|^2 = (-x)^2 = (-1)^2(x)^2 = x^2$. Portanto $|x|^2 = x^2$.

Exemplo 1.3. Temos que, para todo x real, $\sqrt{x^2} = |x|$

Demonstração: Suponha que $\sqrt{x^2}=y$ (1). Pela definição de raiz quadrada, tem-se $y\geq 0$ e $y^2=x^2$ (2). Por outro lado, $\mid x\mid^2=x^2$ (3). Por (2) e (3), tem-se $\mid x\mid^2=y^2$ (4). Como $y\geq 0$ e $\mid x\mid\geq 0$ e por (4), tem-se $y=\mid x\mid$. Por(1), tem - se $\sqrt{x^2}=\mid x\mid$, o que queríamos provar.

Propriedade do Módulo

Se
$$|x| = k$$
, ento $x = k$ ou $x = -k$

Exemplo 1.4.
$$\mid x \mid = 3 \Longrightarrow x = 3 \text{ ou } x = -3$$

Exemplo 1.5. Resolva a equação | 2x + 1 = 3

Solução:
$$2x + 1 = 3$$
 ou $2x + 1 = -3 \Longrightarrow x = 1$ ou $x = -2$

2 Intervalos

Sejam a e b dois reais, com a < b. Um intervalo em $\mathbb R$ é um subconjunto de $\mathbb R$ que tem uma das seguintes formas:

$$[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$

$$(-\infty,a) = \{x \in \mathbb{R} \mid x < a\}$$

Observação: ∞ e $-\infty$ não são números, ∞ e $-\infty$ são apenas um símbolo. ∞ simboliza um número positivo tão grande quanto quisermos. $-\infty$ simboliza um número negativo cujo módulo será tão grande quanto quisermos.

$$(-\infty, a] = \{x \in \mathbb{R} \mid x \le a\}$$

$$[a, +\infty) = \{x \in \mathbb{R} \mid x \ge a\}$$

$$(a, +\infty) = \{x \in \mathbb{R} \mid x > a\}$$

$$(-\infty, +\infty) = \mathbb{R}$$

3 Inequações do Primeiro Grau

Inequações do Primeiro Grau na incógnita x são aquelas redutíveis a uma das formas:

$$a \cdot x < b$$
 ou $a \cdot x \le b$ ou $a \cdot x > b$ ou $a \cdot x \ge b$

em que a e b são números reais quaisquer com $a \neq 0$. A inequação dada fica satisfeita por alguns valores de x mas não por outros. Resolver uma inequação significa determinar o conjunto de número x para os quais a inequação é verdadeira. Ele é chamado conjunto solução.

A resolução é feita de modo análogo ao das equações do 1° grau, porém lembrando que, quando multiplicamos ou dividimos ambos os membros da inequação por um número negativo, o sentido da desigualdade muda. No caso de multiplicarmos ou dividirmos os membros por um número positivo, o sentido da desigualdade não se altera.

Exemplo 3.1. Resolva inequação 5x + 3 < 2x + 7

Solução:

$$5x + 3 < 2x + 7$$

$$5x < 2x + 7 - 3$$

$$5x < 2x + 4$$

$$5x - 2x < 4$$

$$3x < 4 \ (\div 3 \iff \cdot \frac{1}{3})$$

$$x < \frac{4}{3}$$

Assim, $S = \{x \in \mathbb{R} \mid x < \frac{4}{3}\}$ é o conjunto solução da inequação dada. Na notação de intervalo, o conjunto solução $S = (-\infty, \frac{4}{3})$.

Exemplo 3.2. Resolva inequação $1-4x \ge 0$

Solução:

$$\begin{array}{l} 1 - 4x \ge 0 \\ -4x \ge -1 \ (\div - 4 \Longleftrightarrow \cdot \frac{1}{-4}) \\ x \le \frac{-1}{-4} \end{array}$$

 $x\leq\frac14$ Assim, $S=\{x\in\mathbb R\mid x\leq\frac14\}$ é o conjunto solução da inequação dada. Na notação de intervalo, o conjunto solução $S=(-\infty,\frac14].$