# Lab 3: BST Comparison:

Performance analysis and detailed approach

Qiying Wu

October 28, 2024

#### Abstract

In this lab, we explore the concurrent computation of binary search tree (BST) hashes and tree comparison using Go's concurrency tools, specifically goroutines, channels, and synchronization primitives. The goal is to optimize the processes of hashing, identifying duplicate hash groups, and performing pairwise tree comparisons to achieve high efficiency while maintaining accuracy. Each BST is represented by a unique hash generated from an in-order traversal using a custom hashing function. Multiple configurations of worker threads handle hash computation and map updates, providing insights into the impact of parallelism on performance. This report evaluates the scalability of different parallelization approaches across several worker configurations, with a focus on balancing computational and synchronization overhead.

## Introduction

Binary Search Trees (BSTs) are a fundamental data structure in computer science, used extensively in applications requiring efficient data retrieval and organization. This lab focuses on implementing a parallelized approach to compare BSTs using a custom hash-based methodology. Given a set of BSTs, we aim to compute a unique hash for each tree using an in-order traversal, group trees with identical hashes, and further compare these groups to identify structurally identical trees. Leveraging Gos concurrency model, the implementation employs goroutines and channels for inter-process communication and synchronization mechanisms such as mutexes and semaphores to ensure data consistency during concurrent hash computations and updates.

The lab is structured in three parts:

• Hash Computation: We compute the hash of each BST in parallel by spawning a designated number of worker goroutines, based on the -hash-workers flag. This step evaluates the efficiency of parallel hash computation and measures the time taken to generate hashes for all BSTs.

- Hash Grouping: Trees with identical hashes are grouped to identify potential duplicates. Different configurations of data worker goroutines are managed by the -data-workers flag to control access to the map holding hash groups. This part evaluates synchronization overhead and seeks to balance hash computation with data aggregation.
- **Tree Comparison**: For each group with duplicate hashes, tree comparisons are performed in parallel using -comp-workers. This step refines the grouping by identifying structurally identical trees, based on a pairwise comparison strategy.

The experimental setup uses multiple input files with varying BST complexities to analyze the performance of each concurrent approach. The results are assessed for both correctness and performance under different configurations, providing insights into how concurrency levels and synchronization impact the speed and scalability of BST hashing and comparison.

This report presents the design and implementation of these different approaches, along with performance analyses based on their execution times for various datasets. We also discuss the challenges encountered during the optimization process, including memory management and non-deterministic behavior caused by atomic operations in CUDA. By comparing the performance of these implementations, we aim to highlight the trade-offs between different levels of abstraction in GPU programming and the impact of hardware-level optimizations on the performance of parallel algorithms like KMeans.

# 1 Background and Hashing Methodology

## 1.1 Binary Search Tree Structure

My implementation of binary search tree (BST) structure is defined by two key components:

- **TreeNode**: Represents a node in the BST with the following fields:
  - Val The integer value stored in the node.
  - Left Pointer to the left child (subtree).
  - Right Pointer to the right child (subtree).
  - Parent (Optional) Pointer to the parent node.
- BinarySearchTree: This structure has the following fields:
  - Id A unique identifier for the BST.
  - Root Pointer to the root TreeNode of the BST.
  - Hash A hash value representing the unique structure and content of the tree.
  - InOrderTraversal A list storing node values in in-order sequence for comparison and hashing.

Operations including:

- Insertion: New values are inserted into the tree following BST rules: values smaller than the current node go to the left child, and values larger go to the right child.
- Traversal: The in-order traversal function captures all node values in sorted order. This sequence is used for generating a hash, which enables efficient comparison and identification of equivalent trees.

#### 1.2 Hash Computation Method

- 1. **In-Order Traversal:** If the **InOrderTraversal** field of the BST is empty, the function **ComputeHash** populates it by performing an in-order traversal of the tree. This traversal arranges the node values in sorted order.
- 2. Hash Calculation: The hash value is initialized to 1. For each value v in the in-order traversal, the following steps are applied:
  - Compute a transformed value, newValue = v + 2.
  - Update the hash using the formula:

```
hash = (hash \times newValue + newValue) \mod 1000
```

This transformation and modulus operation ensures the hash remains within a bounded range (0 to 999).

3. Output: The computed hash uniquely represents the sequence of values in the BSTs in-order traversal, enabling efficient equivalence checks between trees. Trees with different structures but identical contents yield the same hash.

## 2 Implementation

# 2.1 Hash Computation

We are using the hash function provided as above to calculate the hash of a BST and compare them according to ids in same hash group.

#### 2.1.1 Sequential Hash Computation

In the sequential implementation:

- Single-Threaded Execution: Each binary search tree (BST) is processed sequentially in a single thread.
- **Direct Hash Mapping:** For each BST, a hash is computed and stored immediately in a map (hash2bstId) without concurrency handling.
- **Performance:** This approach has minimal overhead but lacks parallelism, limiting speed on large datasets.

#### 2.1.2 Parallel Hash Computation

Parallel hash computation is implemented in three variants:

#### 1. Channel-Based Implementation:

- Hash Workers compute hashes concurrently and send results (BST ID and hash) through a channel.
- Data Workers consume from the channel and update the shared map with a mutex to ensure thread safety.

#### 2. Single-Mutex Implementation:

- Each hash worker both computes the hash and directly updates the shared map.
- A single mutex guards access to the map, simplifying concurrency but risking contention under high load.

#### 3. Semaphpre-based implementation with Fine-Grained Locks:

- The map is partitioned into shards, each with its own lock.
- Hash workers compute hashes and update only relevant shards, reducing contention and improving scalability on larger datasets.

#### 2.2 Hash Grouping

#### 2.2.1 UnionFind data structure for grouping

Components of Union-Find:

- parent []int: An array where parent[i] represents the parent ID of BST i. Initially, each BST is its own parent, forming individual groups.
- rank []int: Tracks the rank (or depth) of each subtree to balance the tree during union operations, favoring higher rank trees as roots.
- locks map[int]\*sync.Mutex: A map of mutex locks for each BST ID to ensure thread-safe access during concurrent union operations.
- mu sync.Mutex: A global mutex that manages access to the locks map, allowing safe, on-demand lock creation.

#### **Key Functions:**

- NewUnionFind(size int): Initializes the UnionFind structure, setting each BST as its own parent and assigning an empty rank.
- getLock(id int): Returns a lock for a given ID, creating it if it does not exist, with mu ensuring thread-safe additions to the locks map.

- Find(x int): Implements path compression by updating the parent of each node in the path to point directly to the root, reducing future access times by flattening the tree structure.
- Union(x, y int): Joins two BST groups represented by IDs x and y.
  - Locks IDs in a consistent order to avoid deadlocks.
  - Finds the root parents of both IDs and merges them based on rank:
    - \* If rank[rootX] < rank[rootY], rootX is attached under rootY.
    - \* If rank[rootX] > rank[rootY], rootY is attached under rootX.
    - \* If ranks are equal, rootY is attached under rootX, and rank[rootX] is incremented.

The UnionFind structure groups BSTs with identical hashes (equivalent trees) by linking their IDs. During comparison, the Union operation connects equivalent BST IDs, and after all comparisons, Find retrieves the root ID for each group. This design enables efficient and concurrent grouping of equivalent BSTs, essential for handling large datasets with parallel comparisons.

#### 2.2.2 Sequential Hash Grouping (channelImpl)

In the sequential approach, hash grouping is handled by the sequentialImpl function:

- Hash Computation: Each binary search tree (BST) in bstList is processed sequentially in a single thread.
- Direct Mapping: For each BST, a hash is computed using ComputeHash, and the hash is used as a key in a map (hash2bstId). Each key points to a list of BST IDs (indices) that share the hash.
- No Concurrency Handling: Since the map is accessed in a single-threaded manner, no additional concurrency controls are needed.

#### 2.2.3 Parallel Hash Grouping

The parallel implementations use different methods to achieve hash grouping, First we need to initializes a map (hash2bstId) to store tree indices by hash value, facilitating efficient grouping and then the remaining hashing is done by different implementations depends on the data-workers and hash-workers value.

#### Channel-Based Implementation (channelImpl)

• Worker Channels: A channel (taskCh) assigns tasks to multiple hashWorkers, each responsible for computing a hash for a different BST. Each worker sends its result (BST ID and hash) to a result channel (resultCh).

• Data Workers: Multiple dataWorkers consume from resultCh. Each worker uses a mutex to safely update the shared map hash2bstId. A lock (hashLocksMu) ensures that each hash has a unique mutex in hashLocks, used to guard entries when appending BST IDs.

#### Single-Mutex Implementation (mutexImpl)

#### • Mutex for Synchronization:

- Uses a single sync. Mutex (mu) to ensure that only one goroutine can update the map at a time, thus preventing data races.

#### • Concurrent Hash Computation:

 Distributes tasks among multiple hashworkers through a channel. Each worker computes hashes and updates the shared map under mutex protection.

#### • Performance Considerations:

- The use of a single mutex simplifies the concurrency model but may lead to contention, limiting scalability when the number of workers is high.

#### Semaphore-based Implementation (semaphoreImpl)

#### • Sharded Map:

- Divides the map into several segments, each with its own lock, allowing more granular concurrency and reducing contention significantly.

#### • Efficient Shard Management:

- Assigns hashes to shards using a modulus operation, ensuring a balanced distribution of data across shards.

#### • Result Merging:

Combines data from all shards into a single map at the end of processing, preparing it for the next steps of tree comparison.

### 2.3 Tree Comparison

#### 2.3.1 Sequential Tree Comparison

In the sequential approach to tree comparison:

• Hash Check: Initially, each BST pair within the same hash group is compared by their hash values. If the hashes are different, the trees are immediately deemed non-equivalent.

• **Direct Comparison:** For BST pairs that share the same hash, a detailed comparison is performed using the CompareBST function. This function checks the in-order traversal of the trees for equivalence. The results are recorded in an adjacency matrix, indicating equivalence between trees.

#### 2.3.2 Parallel Tree Comparison

In the parallel approach to tree comparison:

- Comparison Channel: Pairs of BST IDs from hash groups with identical hashes are sent through a channel (compCh) to worker goroutines dedicated to comparisons.
- Worker Pool: A pre-determined number of comparison workers (compWorkers) retrieve pairs from compCh, conduct the comparisons using CompareBST, and update an adjacency matrix based on whether the trees are structurally identical.
- Synchronization: A sync.WaitGroup is employed to ensure all comparisons are completed before the process moves forward, maintaining data integrity and preventing concurrent access issues.

## **Experimental Setup**

#### 2.4 Input Data and Flags

The BST equivalence program uses the following flags to control input and synchronization:

- -input=<path>: Specifies the path to the input file with binary search trees (BSTs), such as simple.txt, coarse.txt, and fine.txt.
- -hash-workers=<number>: Sets the number of goroutines for hashing the BSTs, enabling parallel computation across threads.
- -data-workers=<number>: Determines the number of goroutines updating the hash map. The combination of hash-workers and data-workers defines the synchronization approach.

## 2.5 Synchronization Strategies

The program adapts its synchronization mechanism based on the following flag combinations:

- -hash-workers=1 -data-workers=1: Sequential mode, where hashing and map updates occur in the main thread without concurrency.
- -hash-workers=i -data-workers=1 (where i > 1): i goroutines compute hashes and send results to a central manager via a channel for map updates.
- -hash-workers=i -data-workers=i (where i > 1): i goroutines compute hashes and update the map independently, using a mutex for thread safety.

• Optional: -hash-workers=i -data-workers=j (where i > j > 1): i goroutines hash the BSTs, and j goroutines update the map, using either semaphores to control map access or multiple central managers with channels.

These flag combinations allow experimentation with different synchronization strategies, enabling performance analysis across parallel configurations while balancing concurrency, locking overhead, and map update efficiency.

#### 3 Performance Metrics

The primary performance metrics in the BST equivalence program are:

#### 1. Hash Computation Time:

- Measures the time taken to compute and group hashes for all binary search trees (BSTs) in the dataset.
- Reflects the efficiency of the hashing phase and the impact of parallelism, such as the number of hash-workers.
- Recorded as hashTime in the program, this metric helps assess how effectively multiple threads manage the workload for hashing large datasets.

#### 2. Tree Comparison Time:

- Captures the time spent comparing trees with identical hashes to determine their equivalency.
- Measures the effectiveness of parallelization in the comparison phase, particularly relevant for larger datasets with numerous tree comparisons.
- Recorded as compareTreeTime, this metric evaluates the scalability of the comparison phase with various thread configurations.
- 3. **Hash Group Time:** is a specific metric in the profiling of our binary search tree comparison program, defined and measured as follows:
  - Start Time: This metric begins immediately after the completion of hashTime, marking the transition from hash computation to data handling.
  - Activities Included: It encompasses the duration spent on processing the hash groups. This includes iterating over the hash map (hash2bstId) to either log, print, or otherwise handle the groups of tree indices grouped by their hash values.
  - End Time: The measurement concludes once all activities related to hash group handling are completed, encapsulating the entire process of dealing with the organized data post-hashing.

# 4 Results and Analysis

# 4.1 Performance Data by Implementation Type with coarse.txt Channel Implementation

| Hash Workers | Data Workers | Hash Time  | Compare Tree Time |
|--------------|--------------|------------|-------------------|
| 1            | 1            | 0.02595379 | 0.00214175        |
| 2            | 1            | 0.01596462 | 0.00047217        |
| 4            | 1            | 0.01118975 | 0.00111958        |
| 6            | 1            | 0.01078404 | 0.00059246        |
| 8            | 1            | 0.00961188 | 0.00112513        |
| 10           | 1            | 0.00626321 | 0.00042579        |
| 12           | 1            | 0.00994050 | 0.00108975        |
| 14           | 1            | 0.01045579 | 0.00044925        |
| 16           | 1            | 0.01162029 | 0.00110000        |
| 18           | 1            | 0.01295263 | 0.00066967        |
| 20           | 1            | 0.01068587 | 0.00045408        |
| 24           | 1            | 0.00860700 | 0.00042721        |
| 28           | 1            | 0.01016667 | 0.00144492        |
| 32           | 1            | 0.01371433 | 0.00049987        |
| 36           | 1            | 0.00948421 | 0.00054458        |
| 48           | 1            | 0.01346096 | 0.00067604        |
| 56           | 1            | 0.01105333 | 0.00113542        |
| 64           | 1            | 0.01264725 | 0.00113696        |
| 100          | 1            | 0.01024737 | 0.00147663        |
| 128          | 1            | 0.01065667 | 0.00046650        |
|              |              |            |                   |

# Mutex Implementation

| Hash Workers | Data Workers | Hash Time  | Compare Tree Time |
|--------------|--------------|------------|-------------------|
| 1            | 1            | 0.02595379 | 0.00214175        |
| 2            | 2            | 0.01447592 | 0.00042912        |
| 4            | 4            | 0.01272117 | 0.00146558        |
| 6            | 6            | 0.01011950 | 0.00139383        |
| 8            | 8            | 0.01241625 | 0.00116621        |
| 10           | 10           | 0.00970850 | 0.00114625        |
| 12           | 12           | 0.00929833 | 0.00046092        |
| 14           | 14           | 0.00962158 | 0.00045333        |
| 16           | 16           | 0.00893458 | 0.00042150        |
| 18           | 18           | 0.00902125 | 0.00110467        |
| 20           | 20           | 0.00955975 | 0.00115712        |
| 24           | 24           | 0.01197079 | 0.00047704        |
| 28           | 28           | 0.01256971 | 0.00095183        |
| 32           | 32           | 0.01085713 | 0.00132167        |
| 36           | 36           | 0.01033062 | 0.00154800        |
| 48           | 48           | 0.01316883 | 0.00113954        |
| 56           | 56           | 0.00984496 | 0.00045733        |
| 64           | 64           | 0.00948858 | 0.00388983        |
| 100          | 100          | 0.01052967 | 0.00048442        |
| 128          | 128          | 0.01046562 | 0.00149058        |

# Semaphore Implementation

| Hash Workers    | Data Workers         | Hash Time               | Compare Tree Time       |
|-----------------|----------------------|-------------------------|-------------------------|
| 1               | 1                    | 0.02595379              | 0.00214175              |
| 4               | 2                    | 0.01068875              | 0.00047758              |
| 6               | 2                    | 0.01029908              | 0.00126367              |
| 6               | 4                    | 0.01070488              | 0.00282254              |
| 8               | $\stackrel{-}{2}$    | 0.00894183              | 0.00046725              |
| 8               | $\overline{4}$       | 0.00906933              | 0.00043554              |
| 8               | 6                    | 0.01333567              | 0.00069412              |
| 10              | $\overset{\circ}{2}$ | 0.01194633              | 0.00115979              |
| 10              | 4                    | 0.00984000              | 0.00118583              |
| 10              | 6                    | 0.00999775              | 0.00047358              |
| 10              | 8                    | 0.01247300              | 0.00113971              |
| 12              | $\overset{\circ}{2}$ | 0.00955579              | 0.00113371              |
| 12              | $\frac{2}{4}$        | 0.01165863              | 0.00057288              |
| 12              | 6                    | 0.00905521              | 0.00046008              |
| $\frac{12}{12}$ | 8                    | 0.00303321 $0.01204983$ | 0.00040003 $0.00101725$ |
| 12              | 10                   | 0.01204905 $0.01086796$ | 0.00101723              |
| 14              | $\frac{10}{2}$       | 0.01080790              | 0.00114088 $0.00107625$ |
| 14              | $\frac{2}{4}$        | 0.00903003 $0.00942733$ | 0.00107025 $0.00112967$ |
| 14              | 6                    | 0.00942733 $0.00960996$ | 0.00112907 $0.00107508$ |
| 14              | 8                    | 0.00900990 $0.00953346$ | 0.00107308              |
|                 |                      |                         |                         |
| 14              | 10                   | 0.01016667              | 0.00118400              |
| 14              | 12                   | 0.01356271              | 0.00044392              |
| 16              | 2                    | 0.00954958              | 0.00120396              |
| 16              | 4                    | 0.00901587              | 0.00115071              |
| 16              | 6                    | 0.00992262              | 0.00108679              |
| 16              | 8                    | 0.00987825              | 0.00107979              |
| 16              | 10                   | 0.01128946              | 0.00108879              |
| 16              | 12                   | 0.01047196              | 0.00108325              |
| 16              | 14                   | 0.00949846              | 0.00139075              |
| 18              | 2                    | 0.01190129              | 0.00110725              |
| 18              | 4                    | 0.00928904              | 0.00117650              |
| 18              | 6                    | 0.01373762              | 0.00168042              |
| 18              | 8                    | 0.00975150              | 0.00112992              |
| 18              | 10                   | 0.01015638              | 0.00124712              |
| 18              | 12                   | 0.00987450              | 0.00109292              |
| 18              | 14                   | 0.01014492              | 0.00108425              |
| 18              | 16                   | 0.01007288              | 0.00107725              |
| 20              | 2                    | 0.00955012              | 0.00112875              |
| 20              | 4                    | 0.00932738              | 0.00120300              |
| 20              | 6                    | 0.01026550              | 0.00045817              |
| 20              | 8                    | 0.00913404              | 0.00046371              |
| 20              | 10                   | 0.00932721              | 0.00108938              |
| 20              | 12                   | 0.01037000              | 0.00122117              |
| 20              | 14                   | 0.01326338              | 0.00130742              |
| 20              | 16                   | $0.01043858^{11}$       | 0.00045058              |

| 24         2         0.01151525         0.00119367           24         4         0.00936083         0.00044613           24         6         0.00874846         0.00045292           24         8         0.00996504         0.00137596           24         10         0.01023475         0.00045229           24         12         0.01001742         0.00108350           24         14         0.00972638         0.00116525           24         16         0.01100238         0.00108450           24         18         0.01152654         0.00110171           24         20         0.0095634         0.00139967           28         2         0.00931412         0.00143600           28         4         0.0096000         0.00047646           28         6         0.00979137         0.00107671           28         8         0.00979137         0.00107673           28         12         0.00943508         0.00045887           28         14         0.00947862         0.0004663           28         14         0.00947862         0.0004663           28         18         0.00926954         0.0004558 <th>Hash Workers</th> <th>Data Workers</th> <th>Hash Time</th> <th>Compare Tree Time</th> | Hash Workers | Data Workers | Hash Time  | Compare Tree Time |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------------|-------------------|
| 24         4         0.00936083         0.00044613           24         6         0.00874846         0.00045292           24         8         0.00996504         0.00137596           24         10         0.01023475         0.00045229           24         12         0.01001742         0.00108350           24         14         0.00972638         0.00116525           24         16         0.01100238         0.00108450           24         18         0.01152654         0.00110171           24         20         0.00956354         0.00139967           28         2         0.00931412         0.00143600           28         4         0.00960000         0.00047646           28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.0091375         0.00108967           28         14         0.009947862         0.00046663           28         14         0.009947862         0.00046663           28         16         0.00917917         0.0004                                                                                        |              |              |            | -                 |
| 24         6         0.00874846         0.00045292           24         8         0.00996504         0.00137596           24         10         0.01023475         0.00045229           24         12         0.01001742         0.00108350           24         14         0.00972638         0.00116525           24         16         0.01100238         0.00108450           24         18         0.01152654         0.00110171           24         20         0.00956354         0.00139967           28         2         0.00931412         0.00143600           28         4         0.00960000         0.0047646           28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.00912350         0.00108967           28         14         0.00947862         0.00046663           28         16         0.0091917         0.00045058           28         16         0.00919917         0.0004505                                                                                        | 24           | 4            | 0.00936083 | 0.00044613        |
| 24         8         0.00996504         0.00137596           24         10         0.01023475         0.00045229           24         12         0.01001742         0.00108350           24         14         0.00972638         0.00116525           24         16         0.01100238         0.00108450           24         18         0.01152654         0.00110171           24         20         0.00956354         0.00139967           28         2         0.00931412         0.00143600           28         4         0.0096000         0.0047646           28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.00912350         0.00108967           28         14         0.00947862         0.00046663           28         16         0.0091917         0.00042954           28         18         0.00926954         0.00045058           28         20         0.01307200         0.00126150           32         2         0.01346712         0.0013799                                                                                        |              | 6            |            |                   |
| 24         10         0.01023475         0.00045229           24         12         0.01001742         0.00108350           24         14         0.00972638         0.00116525           24         16         0.01100238         0.00108450           24         18         0.01152654         0.00110171           24         20         0.00956354         0.00139967           28         2         0.00931412         0.00143600           28         4         0.00960000         0.00047646           28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.00912350         0.00108967           28         14         0.00947862         0.00046663           28         14         0.00947862         0.00046663           28         14         0.00947862         0.00045058           28         18         0.00926954         0.00045058           28         18         0.0026954         0.00137996           32         2         0.01346712         0.0013                                                                                        |              |              |            |                   |
| 24         12         0.01001742         0.00108350           24         14         0.00972638         0.00116525           24         16         0.01100238         0.00108450           24         18         0.01152654         0.00110171           24         20         0.00956354         0.00139967           28         2         0.00931412         0.00143600           28         4         0.00960000         0.00047646           28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.00912350         0.00108967           28         14         0.00947862         0.00046663           28         14         0.00947862         0.00045887           28         16         0.00910917         0.00045954           28         18         0.00926954         0.00045058           28         18         0.00926954         0.000137996           32         2         0.01346712         0.00137996           32         4         0.0127921         0.0004                                                                                        | 24           |              | 0.01023475 | 0.00045229        |
| 24         14         0.00972638         0.00116525           24         16         0.01100238         0.00108450           24         18         0.01152654         0.00110171           24         20         0.00956354         0.00139967           28         2         0.00931412         0.00143600           28         4         0.00960000         0.00047646           28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.00912350         0.00108967           28         14         0.00947862         0.00046663           28         16         0.00910917         0.00042954           28         18         0.00926954         0.00045058           28         20         0.01307200         0.00126150           32         2         0.01346712         0.00137996           32         4         0.01279221         0.00045317           32         4         0.01279221         0.00148467           32         10         0.01037554         0.00200                                                                                        |              |              |            |                   |
| 24         16         0.01100238         0.00108450           24         18         0.01152654         0.00110171           24         20         0.00956354         0.00139967           28         2         0.00931412         0.00143600           28         4         0.00960000         0.00047646           28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.00912350         0.00108967           28         14         0.00947862         0.00046663           28         14         0.00947862         0.00046663           28         16         0.00910917         0.00045058           28         18         0.00926954         0.00045058           28         18         0.00926954         0.00045058           28         2         0.01307200         0.00126150           32         2         0.01346712         0.00137996           32         4         0.0127921         0.00054925           32         8         0.01021221         0.0016847                                                                                        |              |              |            |                   |
| 24         18         0.01152654         0.00110171           24         20         0.00956354         0.00139967           28         2         0.00931412         0.00143600           28         4         0.00960000         0.00047646           28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.00912350         0.00108967           28         14         0.00947862         0.00046663           28         16         0.00910917         0.00042954           28         18         0.00926954         0.00045058           28         20         0.01307200         0.00126150           32         2         0.01346712         0.00137996           32         4         0.01279221         0.00054925           32         6         0.00979858         0.00045317           32         8         0.01027921         0.00108467           32         10         0.01037554         0.00200792           32         12         0.0134808         0.0012838                                                                                        |              |              |            |                   |
| 24         20         0.00956354         0.00139967           28         2         0.00931412         0.00143600           28         4         0.00960000         0.00047646           28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.00912350         0.00108967           28         14         0.00947862         0.0004663           28         16         0.00910917         0.00042954           28         18         0.00926954         0.00045058           28         18         0.00926954         0.00045058           28         20         0.01307200         0.00126150           32         2         0.01346712         0.00137996           32         4         0.01279221         0.00054925           32         32         6         0.00979858         0.00045317           32         32         10         0.01037554         0.00200792           32         12         0.0134808         0.00128338           32         14         <                                                                                             |              |              |            |                   |
| 28         2         0.00931412         0.00143600           28         4         0.00960000         0.00047646           28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.00912350         0.00108967           28         14         0.00947862         0.00046663           28         16         0.00910917         0.00042954           28         18         0.00926954         0.00045058           28         20         0.01307200         0.00126150           32         2         0.01346712         0.00137996           32         4         0.01279221         0.00054925           32         4         0.01279221         0.00054925           32         8         0.01021221         0.00108467           32         10         0.0137554         0.00200792           32         12         0.01037554         0.00200792           32         16         0.0115421         0.00045658           32         16         0.0115421         0.00046654<                                                                                        |              |              |            |                   |
| 28       4       0.00960000       0.00047646         28       6       0.00979604       0.00107671         28       8       0.00979137       0.00107633         28       10       0.00963508       0.00045887         28       12       0.00912350       0.00108967         28       14       0.00947862       0.00046663         28       16       0.00910917       0.00042954         28       18       0.00926954       0.00045058         28       20       0.01307200       0.00126150         32       2       0.01346712       0.000137996         32       4       0.01279221       0.00054925         32       4       0.01279221       0.00045317         32       8       0.01021221       0.00108467         32       10       0.01037554       0.00200792         32       12       0.01034808       0.00128338         32       14       0.00996392       0.00046587         32       16       0.01154421       0.00046854         32       18       0.01159200       0.00118767         32       20       0.0099512       0.00045025                                                                                                                                                                             |              |              |            |                   |
| 28         6         0.00979604         0.00107671           28         8         0.00979137         0.00107633           28         10         0.00963508         0.00045887           28         12         0.00912350         0.00108967           28         14         0.00947862         0.00046663           28         16         0.00910917         0.00042954           28         18         0.00926954         0.00045058           28         20         0.01307200         0.00126150           32         2         0.01346712         0.000137996           32         4         0.01279221         0.00054925           32         6         0.00979858         0.00045317           32         8         0.01021221         0.00108467           32         10         0.01037554         0.00200792           32         12         0.01034808         0.00128338           32         14         0.00996392         0.00046587           32         16         0.0115421         0.00046854           32         18         0.01159200         0.00118767           32         24         0.00969308         0.0006                                                                                        |              |              |            |                   |
| 28       8       0.00979137       0.00107633         28       10       0.00963508       0.00045887         28       12       0.00912350       0.00108967         28       14       0.00947862       0.00046663         28       16       0.00910917       0.00042954         28       18       0.00926954       0.00045058         28       20       0.01307200       0.00126150         32       2       0.01346712       0.00137996         32       4       0.01279221       0.00054925         32       6       0.00979858       0.00045317         32       8       0.01021221       0.00108467         32       10       0.01037554       0.00200792         32       12       0.01034808       0.00128338         32       14       0.00996392       0.00046657         32       16       0.0115421       0.00046654         32       2       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00113204                                                                                                                                                                             |              |              |            |                   |
| 28       10       0.00963508       0.00045887         28       12       0.00912350       0.00108967         28       14       0.00947862       0.00046663         28       16       0.00910917       0.00042954         28       18       0.00926954       0.00045058         28       20       0.01307200       0.00126150         32       2       0.01346712       0.00137996         32       4       0.01279221       0.00054925         32       6       0.00979858       0.00045317         32       8       0.01021221       0.00108467         32       10       0.01037554       0.00200792         32       12       0.01034808       0.00128338         32       14       0.00996392       0.00046587         32       16       0.01154421       0.00046854         32       18       0.01159200       0.00118767         32       20       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00113204         36       4       0.00955950       0.00149012 <t< td=""><td></td><td></td><td></td><td></td></t<>                                                                                                                       |              |              |            |                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |            |                   |
| 28       14       0.00947862       0.00046663         28       16       0.00910917       0.00042954         28       18       0.00926954       0.00045058         28       20       0.01307200       0.00126150         32       2       0.01346712       0.00137996         32       4       0.01279221       0.00054925         32       6       0.00979858       0.00045317         32       8       0.01021221       0.00108467         32       10       0.01037554       0.00200792         32       12       0.01034808       0.00128338         32       14       0.00996392       0.00046587         32       16       0.0115421       0.00046854         32       18       0.01159200       0.00118767         32       20       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00140917         36       2       0.01473925       0.00113204         36       4       0.00955950       0.00046062         36       8       0.0104283       0.00174654                                                                                                                                                                               |              |              |            |                   |
| 28         16         0.00910917         0.00042954           28         18         0.00926954         0.00045058           28         20         0.01307200         0.00126150           32         2         0.01346712         0.00137996           32         4         0.01279221         0.00054925           32         6         0.00979858         0.00045317           32         8         0.01021221         0.00108467           32         10         0.01037554         0.00200792           32         12         0.01034808         0.00128338           32         14         0.00996392         0.00046587           32         16         0.01154421         0.00046854           32         18         0.01159200         0.00118767           32         20         0.00929512         0.00045625           32         24         0.00969308         0.00063079           32         28         0.00969387         0.00140917           36         2         0.01473925         0.00113204           36         4         0.00935188         0.00044912           36         6         0.00955950         0.00046                                                                                        |              |              |            |                   |
| 28       18       0.00926954       0.00045058         28       20       0.01307200       0.00126150         32       2       0.01346712       0.00137996         32       4       0.01279221       0.00054925         32       6       0.00979858       0.00045317         32       8       0.01021221       0.00108467         32       10       0.01037554       0.00200792         32       12       0.01034808       0.00128338         32       14       0.00996392       0.00046587         32       16       0.01154421       0.00046854         32       18       0.01159200       0.00118767         32       20       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00140917         36       2       0.01473925       0.00113204         36       4       0.00935188       0.00044912         36       6       0.00955950       0.00046062         36       8       0.01004283       0.00115829         36       10       0.01283938       0.00174654                                                                                                                                                                              |              |              |            |                   |
| 28       20       0.01307200       0.00126150         32       2       0.01346712       0.00137996         32       4       0.01279221       0.00054925         32       6       0.00979858       0.00045317         32       8       0.01021221       0.00108467         32       10       0.01037554       0.00200792         32       12       0.01034808       0.00128338         32       14       0.00996392       0.00046587         32       16       0.01154421       0.00046854         32       18       0.01159200       0.00118767         32       20       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00140917         36       2       0.01473925       0.00113204         36       4       0.00935188       0.00044912         36       8       0.01004283       0.00115829         36       10       0.01283938       0.00115829         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312                                                                                                                                                                             |              |              |            |                   |
| 32       2       0.01346712       0.00137996         32       4       0.01279221       0.00054925         32       6       0.00979858       0.00045317         32       8       0.01021221       0.00108467         32       10       0.01037554       0.00200792         32       12       0.01034808       0.00128338         32       14       0.00996392       0.00046587         32       16       0.01154421       0.00046854         32       18       0.01159200       0.00118767         32       20       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00140917         36       2       0.01473925       0.00113204         36       4       0.00935188       0.00044912         36       6       0.00955950       0.00046062         36       8       0.0104283       0.00115837         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00045829                                                                                                                                                                               |              |              |            |                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |            |                   |
| 32       6       0.00979858       0.00045317         32       8       0.01021221       0.00108467         32       10       0.01037554       0.00200792         32       12       0.01034808       0.00128338         32       14       0.00996392       0.00046587         32       16       0.01154421       0.00046854         32       18       0.01159200       0.00118767         32       20       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00140917         36       2       0.01473925       0.00113204         36       4       0.00935188       0.00044912         36       6       0.00955950       0.00046062         36       8       0.01004283       0.00115829         36       10       0.01283938       0.00108337         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00045046         36       18       0.00996338       0.00045046 <tr< td=""><td></td><td></td><td></td><td></td></tr<>                                                                                                                      |              |              |            |                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 6            | 0.00979858 | 0.00045317        |
| 32       12       0.01034808       0.00128338         32       14       0.00996392       0.00046587         32       16       0.01154421       0.00046854         32       18       0.01159200       0.00118767         32       20       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00140917         36       2       0.01473925       0.00113204         36       4       0.00935188       0.00044912         36       6       0.00955950       0.00046062         36       8       0.01004283       0.00115829         36       10       0.01283938       0.00108337         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00045046         36       18       0.0096338       0.00045046         36       24       0.01049608       0.00057879         36       24       0.01169700       0.00126321                                                                                                                                                                                                                                 | 32           | 8            | 0.01021221 | 0.00108467        |
| 32       14       0.00996392       0.00046587         32       16       0.01154421       0.00046854         32       18       0.01159200       0.00118767         32       20       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00140917         36       2       0.01473925       0.00113204         36       4       0.00935188       0.00044912         36       6       0.00955950       0.00046062         36       8       0.01004283       0.00115829         36       10       0.01283938       0.00108337         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00046829         36       18       0.0096338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                 | 32           | 10           | 0.01037554 | 0.00200792        |
| 32       16       0.01154421       0.00046854         32       18       0.01159200       0.00118767         32       20       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00140917         36       2       0.01473925       0.00113204         36       4       0.00935188       0.00044912         36       6       0.00955950       0.00046062         36       8       0.01004283       0.00115829         36       10       0.01283938       0.00108337         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00046829         36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                      | 32           | 12           | 0.01034808 | 0.00128338        |
| 32       18       0.01159200       0.00118767         32       20       0.00929512       0.00045625         32       24       0.00969308       0.00063079         32       28       0.00969887       0.00140917         36       2       0.01473925       0.00113204         36       4       0.00935188       0.00044912         36       6       0.00955950       0.00046062         36       8       0.01004283       0.00115829         36       10       0.01283938       0.00108337         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00046829         36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                            | 32           | 14           | 0.00996392 | 0.00046587        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32           | 16           | 0.01154421 | 0.00046854        |
| 32       24       0.00969308       0.00063079         32       28       0.00969887       0.00140917         36       2       0.01473925       0.00113204         36       4       0.00935188       0.00044912         36       6       0.00955950       0.00046062         36       8       0.01004283       0.00115829         36       10       0.01283938       0.00108337         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00046829         36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32           | 18           | 0.01159200 | 0.00118767        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32           | 20           | 0.00929512 | 0.00045625        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32           | 24           | 0.00969308 | 0.00063079        |
| 36       4       0.00935188       0.00044912         36       6       0.00955950       0.00046062         36       8       0.01004283       0.00115829         36       10       0.01283938       0.00108337         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00046829         36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32           | 28           | 0.00969887 | 0.00140917        |
| 36       6       0.00955950       0.00046062         36       8       0.01004283       0.00115829         36       10       0.01283938       0.00108337         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00046829         36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36           | 2            | 0.01473925 | 0.00113204        |
| 36       8       0.01004283       0.00115829         36       10       0.01283938       0.00108337         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00046829         36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36           | 4            | 0.00935188 | 0.00044912        |
| 36       10       0.01283938       0.00108337         36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00046829         36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36           | 6            | 0.00955950 | 0.00046062        |
| 36       12       0.01037033       0.00174654         36       14       0.00983458       0.00118312         36       16       0.01198438       0.00046829         36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36           | 8            | 0.01004283 | 0.00115829        |
| 36       14       0.00983458       0.00118312         36       16       0.01198438       0.00046829         36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36           | 10           | 0.01283938 | 0.00108337        |
| 36       16       0.01198438       0.00046829         36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36           | 12           | 0.01037033 | 0.00174654        |
| 36       18       0.00906338       0.00045046         36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36           | 14           | 0.00983458 | 0.00118312        |
| 36       20       0.00885358       0.00043179         36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36           | 16           | 0.01198438 | 0.00046829        |
| 36       24       0.01049608       0.00057879         36       28       0.01169700       0.00126321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36           | 18           | 0.00906338 | 0.00045046        |
| 36 $28$ $0.01169700$ $0.00126321$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36           | 20           | 0.00885358 | 0.00043179        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36           | 24           | 0.01049608 | 0.00057879        |
| 36 	 32 	 0.01008492 	 0.00061017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36           | 28           | 0.01169700 | 0.00126321        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36           | 32           | 0.01008492 | 0.00061017        |

| Hash Workers | Data Workers    | Hash Time               | Compare Tree Time       |
|--------------|-----------------|-------------------------|-------------------------|
| 48           | 2               | 0.01018833              | 0.00046704              |
| 48           | 4               | 0.00996033              | 0.00045958              |
| 48           | 6               | 0.01049104              | 0.00109162              |
| 48           | 8               | 0.01026462              | 0.00129096              |
| 48           | 10              | 0.01183921              | 0.00152879              |
| 48           | 12              | 0.00908212              | 0.00108804              |
| 48           | $\overline{14}$ | 0.01001512              | 0.00302362              |
| 48           | 16              | 0.01161892              | 0.00119067              |
| 48           | 18              | 0.01028333              | 0.00138683              |
| 48           | 20              | 0.01034700              | 0.00045733              |
| 48           | $\frac{26}{24}$ | 0.00988896              | 0.00110083              |
| 48           | 28              | 0.01046612              | 0.001133775             |
| 48           | $\frac{20}{32}$ | 0.01010012              | 0.00347021              |
| 48           | 36              | 0.01004105              | 0.00047021              |
| 56           | 2               | 0.01031073              | 0.00045217              |
| 56           | $\frac{2}{4}$   | 0.00922542 $0.01010671$ | 0.00121946              |
| 56           | 6               | 0.01010071              | 0.00121940              |
| 56           | 8               | 0.00989029 $0.01028158$ | 0.00128390              |
| 56           | 10              | 0.01028138 $0.01058550$ | 0.00123733              |
| 56           | 10<br>12        | 0.01038330 $0.00981950$ | 0.00122555 $0.00109088$ |
|              |                 |                         |                         |
| 56<br>56     | 14              | 0.01036829              | 0.00131142              |
| 56<br>56     | 16              | 0.01231229              | 0.00101187              |
| 56<br>56     | 18              | 0.01167392              | 0.00243983              |
| 56<br>56     | 20              | 0.01082946              | 0.00136425              |
| 56           | 24              | 0.01092204              | 0.00123338              |
| 56           | 28              | 0.01044738              | 0.00111388              |
| 56           | 32              | 0.00992875              | 0.00118667              |
| 56           | 36              | 0.00976421              | 0.00046171              |
| 56           | 48              | 0.00965508              | 0.00134117              |
| 64           | 2               | 0.00887421              | 0.00042700              |
| 64           | 4               | 0.00961342              | 0.00143392              |
| 64           | 6               | 0.00996783              | 0.00108000              |
| 64           | 8               | 0.00967112              | 0.00115537              |
| 64           | 10              | 0.01040392              | 0.00145854              |
| 64           | 12              | 0.00855333              | 0.00051683              |
| 64           | 14              | 0.01024250              | 0.00108133              |
| 64           | 16              | 0.00961175              | 0.00047362              |
| 64           | 18              | 0.00973175              | 0.00137604              |
| 64           | 20              | 0.00883071              | 0.00042246              |
| 64           | 24              | 0.00965671              | 0.00109996              |
| 64           | 28              | 0.00943121              | 0.00126004              |
| 64           | 32              | 0.01054379              | 0.00129883              |
| 64           | 36              | 0.00965062              | 0.00045713              |
| 64           | 48              | 0.00995046              | 0.00111696              |
| 64           | 56              | 0.00978229              | 0.00129038              |
|              |                 |                         |                         |

| Hash Workers | Data Workers | Hash Time  | Compare Tree Time |
|--------------|--------------|------------|-------------------|
| 100          | 2            | 0.01436167 | 0.00072279        |
| 100          | 4            | 0.00977492 | 0.00124754        |
| 100          | 6            | 0.01198246 | 0.00125421        |
| 100          | 8            | 0.00988108 | 0.00120904        |
| 100          | 10           | 0.01246338 | 0.00105917        |
| 100          | 12           | 0.00913758 | 0.00043279        |
| 100          | 14           | 0.00996704 | 0.00109263        |
| 100          | 16           | 0.00978717 | 0.00112767        |
| 100          | 18           | 0.01000413 | 0.00330904        |
| 100          | 20           | 0.01069738 | 0.00132354        |
| 100          | 24           | 0.00991575 | 0.00045796        |
| 100          | 28           | 0.00973583 | 0.00128375        |
| 100          | 32           | 0.00979758 | 0.00046879        |
| 100          | 36           | 0.00987992 | 0.00047433        |
| 100          | 48           | 0.00975546 | 0.00119992        |
| 100          | 56           | 0.00980475 | 0.00109621        |
| 100          | 64           | 0.01075042 | 0.00046046        |
| 128          | 2            | 0.00942983 | 0.00045696        |
| 128          | 4            | 0.01011679 | 0.00079763        |
| 128          | 6            | 0.00983913 | 0.00046142        |
| 128          | 8            | 0.01006158 | 0.00177029        |
| 128          | 10           | 0.00949279 | 0.00124675        |
| 128          | 12           | 0.01002996 | 0.00131608        |
| 128          | 14           | 0.00951450 | 0.00046113        |
| 128          | 16           | 0.00984492 | 0.00047967        |
| 128          | 18           | 0.01042025 | 0.00269992        |
| 128          | 20           | 0.00972850 | 0.00046288        |
| 128          | 24           | 0.01015767 | 0.00114500        |
| 128          | 28           | 0.01037096 | 0.00170533        |
| 128          | 32           | 0.01061775 | 0.00162079        |
| 128          | 36           | 0.01008721 | 0.00130663        |
| 128          | 48           | 0.01080783 | 0.00127979        |
| 128          | 56           | 0.00980629 | 0.00108000        |
| 128          | 64           | 0.00914829 | 0.00045642        |
| 128          | 100          | 0.01004758 | 0.00113663        |

# 4.2 Performance Data by Implementation Type with fine.txt Channel Implementation with fine.txt

2 0.030306330.045955964 1 0.029999130.042384256 0.036139540.041281298 0.034031960.045610790.0471787110 0.0461030012 0.040392750.0415756214 0.038054170.0413368816 1 0.040328460.0416668318 0.031803250.0416832520 1 0.031324710.04166737240.039892750.0415183328 1 0.038950250.0414304232 0.037034420.0427762536 1 0.037107790.0433162548 0.036732210.0425363856 1 0.037917290.0428507564 0.035099880.04289863100 1 0.037246040.04246108128 1 0.035502330.04210917

# Mutex Implementation with fine.txt

| Hash Workers | Data Workers | Hash Time  | Compare Tree Time |
|--------------|--------------|------------|-------------------|
| 1            | 1            | 0.02595379 | 0.00214175        |
| 2            | 2            | 0.02841629 | 0.04293050        |
| 4            | 4            | 0.02407942 | 0.04274050        |
| 6            | 6            | 0.03490062 | 0.04607396        |
| 8            | 8            | 0.04324150 | 0.04399492        |
| 10           | 10           | 0.04625079 | 0.04157188        |
| 12           | 12           | 0.05325100 | 0.04148504        |
| 14           | 14           | 0.05477742 | 0.04143288        |
| 16           | 16           | 0.05364792 | 0.04160733        |
| 18           | 18           | 0.05538717 | 0.04125792        |
| 20           | 20           | 0.05138083 | 0.04357542        |
| 24           | 24           | 0.05327746 | 0.04150812        |
| 28           | 28           | 0.05635825 | 0.04200138        |
| 32           | 32           | 0.05693896 | 0.04611517        |
| 36           | 36           | 0.04278225 | 0.04385567        |
| 48           | 48           | 0.05482937 | 0.04320475        |
| 56           | 56           | 0.05680254 | 0.04220637        |
| 64           | 64           | 0.05609033 | 0.04253092        |
| 100          | 100          | 0.05711717 | 0.04347637        |
| 128          | 128          | 0.05104746 | 0.04279183        |

| Hash Workers    | Data Workers  | Hash Time               | Compare Tree Time                                                |
|-----------------|---------------|-------------------------|------------------------------------------------------------------|
| 4               | 2             | 0.03633617              | 0.04274392                                                       |
| 6               | 2             | 0.04056079              | 0.04379625                                                       |
| 6               | 4             | 0.04407029              | 0.07987642                                                       |
| 8               | 2             | 0.04060600              | 0.04356071                                                       |
| 8               | 4             | 0.05033217              | 0.04284621                                                       |
| 8               | 6             | 0.05294988              | 0.04531692                                                       |
| 10              | 2             | 0.05549325              | 0.05156400                                                       |
| 10              | 4             | 0.05050579              | 0.04154479                                                       |
| 10              | 6             | 0.05330175              | 0.04129350                                                       |
| 10              | 8             | 0.05713929              | 0.04133775                                                       |
| 12              | 2             | 0.03899954              | 0.04153275                                                       |
| 12              | 4             | 0.04714100              | 0.04184879                                                       |
| 12              | 6             | 0.08057408              | 0.04143346                                                       |
| 12              | 8             | 0.06654762              | 0.04251925                                                       |
| 12              | 10            | 0.05574237              | 0.04160212                                                       |
| 14              | 2             | 0.03720508              | 0.04131725                                                       |
| 14              | 4             | 0.04169067              | 0.04182388                                                       |
| 14              | 6             | 0.06681583              | 0.04147162                                                       |
| $\frac{14}{14}$ | 8             | 0.08259996              | 0.04134112                                                       |
| 14              | 10            | 0.06502679              | 0.04126275                                                       |
| 14              | 12            | 0.05638979              | 0.04118258                                                       |
| 16              | 2             | 0.03878392              | 0.04131733                                                       |
| 16              | 4             | 0.05047588              | 0.04151196                                                       |
| 16              | 6             | 0.06695387              | 0.04173213                                                       |
| 16              | 8             | 0.08638667              | 0.04155408                                                       |
| 16              | 10            | 0.07972821              | 0.04127338                                                       |
| 16              | 12            | 0.06313208              | 0.04103892                                                       |
| 16              | 14            | 0.05615542              | 0.04146412                                                       |
| 18              | 2             | 0.03973279              | 0.04142371                                                       |
| 18              | $\frac{2}{4}$ | 0.04177575              | 0.04396896                                                       |
| 18              | 6             | 0.05590450              | 0.04202162                                                       |
| 18              | 8             | 0.09250392              | 0.04158392                                                       |
| 18              | 10            | 0.07446546              | 0.04582171                                                       |
| 18              | 12            | 0.06596554              | 0.04509908                                                       |
| 18              | 14            | 0.05889912              | 0.04140404                                                       |
| 18              | 16            | 0.05845842              | 0.04144929                                                       |
| 20              | 2             | 0.03774408              | 0.04272363                                                       |
| 20              | $\frac{2}{4}$ | 0.04735771              | 0.04184796                                                       |
| 20              | 6             | 0.04988225              | 0.04104167                                                       |
| 20              | 8             | 0.04300229 $0.07693900$ | 0.04207433                                                       |
| 20              | 10            | 0.09062183              | 0.04107175                                                       |
| 20              | 12            | 0.09002163 $0.08771663$ | 0.04107175                                                       |
| 20              | 14            | 0.06866400              | 0.04130138                                                       |
| 20              | 16            | 0.06126800              | 0.04145540 $0.04152400$                                          |
| 20              | 18            | $0.05616283^{1}$        | $7 \qquad \begin{array}{c} 0.04132400 \\ 0.04110279 \end{array}$ |
| ۷0              | 10            | 0.00010200              | 0.04110413                                                       |

24 0.039635040.0416030824 4 0.050491670.0414047524 6 0.083339710.0462162524 8 0.093797580.0444492524 10 0.095883630.0414527524 12 0.056790330.0416321724 14 0.091553250.0414064224 16 0.090072580.0418256224 18 0.077536250.0415189624 20 0.057260500.0414215028 2 0.039513670.0430916728 4 0.04318783 0.0415612128 0.076103210.041363046 28 8 0.094745040.0412761228 10 0.081169580.0412607128 12 0.090395250.0420738728 14 0.097023040.0412708728 0.0422900816 0.0930817928 18 0.088897500.0413119228 20 0.069762420.0411810828 24 0.058033120.04141983 32 2 0.039099580.0413760032 4 0.04304313 0.0412012132 0.051227426 0.0412461332 8 0.051737580.0410141732 10 0.094918790.0413220832 12 0.096613580.0413288332 14 0.09844183 0.0414303732 16 0.091102080.0411760832 18 0.095581130.0444182532 20 0.097457130.0457078832 24 0.092097000.0629930032 28 0.061307710.0590156736 2 0.039548790.0435573336 0.040790670.043793004 36 6 0.051369210.042557798 0.097229040.0422527136 36 10 0.075504290.0446164236 12 0.097945960.0425516336 14 0.096456670.0427691736 16 0.087324670.0425010036 18 0.09646633 0.0435010436 20 0.094845420.0436844636 240.094907120.0429248828 36 0.083597380.04344233

32

36

0.06036329

0.04357592

0.036150370.0439225848 48 4 0.046359330.0446348748 6 0.074911540.043111380.0895141248 8 0.0424777948 0.091818040.0426722110 48 12 0.097142250.0438872948 14 0.096313750.0435675848 16 0.086824040.0423509248 18 0.097131830.042149330.095906920.0420584248 20 48 24 0.095319540.0419857548 28 0.093484630.0424595448 32 0.078725250.0425961748 36 0.056084000.0434846256 2 0.039109790.0424017956 4 0.042236540.0412291256 6 0.066220580.043121588 0.0666396756 0.0439850056 10 0.097072620.0422749256 12 0.072326790.045330420.097043580.0424329256 14 56 0.087428120.0426113316 56 18 0.098775790.0447574656 20 0.098635080.0423729256 240.096656330.0424281256 28 0.090733380.0418932156 32 0.086668420.042561670.082049250.0422332156 36 56 48 0.066843630.0525871764 2 0.066507500.0430247964 4 0.040827170.0431511264 0.055819460.044034716 0.0799312164 8 0.0423338764 10 0.096071380.0420556264 12 0.097959540.0422576364 14 0.097859330.0423399664 16 0.098886370.0420949264 18 0.098418830.0422687564 20 0.088030170.0430312164 24 0.097030880.0429602564 28 0.064688580.0433957564 32 0.089122670.0423492964 36 0.080540630.0428021364 48 0.043752420.0431251364 56 0.056443290.04495763

| 100 | 2   | 0.03892654 | 0.04328808 |
|-----|-----|------------|------------|
| 100 | 4   | 0.04613908 | 0.04309012 |
| 100 | 6   | 0.07656821 | 0.04276783 |
| 100 | 8   | 0.09460117 | 0.04307250 |
| 100 | 10  | 0.09550996 | 0.04222904 |
| 100 | 12  | 0.09765346 | 0.04241117 |
| 100 | 14  | 0.09951671 | 0.04318579 |
| 100 | 16  | 0.08687017 | 0.04247354 |
| 100 | 18  | 0.09943975 | 0.04217292 |
| 100 | 20  | 0.09601850 | 0.04417833 |
| 100 | 24  | 0.09361387 | 0.04229479 |
| 100 | 28  | 0.09368654 | 0.04214788 |
| 100 | 32  | 0.08692683 | 0.04507308 |
| 100 | 36  | 0.08833396 | 0.04217908 |
| 100 | 48  | 0.06445162 | 0.04612767 |
| 100 | 56  | 0.07617638 | 0.04381258 |
| 100 | 64  | 0.06194413 | 0.04167967 |
| 128 | 2   | 0.03852796 | 0.04462762 |
| 128 | 4   | 0.04674971 | 0.04285463 |
| 128 | 6   | 0.06866633 | 0.05114233 |
| 128 | 8   | 0.09802329 | 0.04365358 |
| 128 | 10  | 0.09472650 | 0.04231717 |
| 128 | 12  | 0.08419675 | 0.04228262 |
| 128 | 14  | 0.09669779 | 0.04277171 |
| 128 | 16  | 0.09328825 | 0.04226246 |
| 128 | 18  | 0.09116354 | 0.04222671 |
| 128 | 20  | 0.09345721 | 0.04383267 |
| 128 | 24  | 0.09676517 | 0.04209258 |
| 128 | 28  | 0.08142325 | 0.04282725 |
| 128 | 32  | 0.07719925 | 0.04246213 |
| 128 | 36  | 0.08276821 | 0.04381946 |
| 128 | 48  | 0.07333517 | 0.04204200 |
| 128 | 56  | 0.08884438 | 0.04280550 |
| 128 | 64  | 0.06414283 | 0.04253804 |
| 128 | 100 | 0.05932346 | 0.04231342 |

# 4.3 Speedup Graphs

## 4.3.1 Hash Computation Time



Figure 1: Hashworkers vs SpeedUp using channel for coarse.txt



Figure 2: Hashworkers vs SpeedUp for coarse.txt using mutex for coarse.txt



Figure 3: Hashworkers vs SpeedUp using semaphore for coarse.txt



Figure 4: Hashworkers vs SpeedUp using channel for fine.txt



Figure 5: Hashworkers vs SpeedUp using mutex for fine.txt



Figure 6: Hashworkers vs SpeedUp using semaphore for fine.txt

# 4.3.2 Tree Comparison Time

| comp-workers | ${\bf compare Tree Time}$ |
|--------------|---------------------------|
| 1            | 0.00057900                |
| 2            | 0.00033346                |
| 4            | 0.00026146                |
| 6            | 0.00024288                |
| 7            | 0.00042671                |
| 8            | 0.00278529                |
| 9            | 0.00022721                |
| 10           | 0.00054133                |
| 12           | 0.00021196                |
| 14           | 0.00043604                |
| 16           | 0.00024308                |
| 18           | 0.00136396                |
| 20           | 0.00059437                |
| 24           | 0.00138379                |
| 28           | 0.00024963                |
| 32           | 0.00022996                |
| 36           | 0.00077021                |
| 48           | 0.00226400                |
| 56           | 0.00025721                |
| 64           | 0.00027312                |
| 100          | 0.00035492                |
| 128          | 0.00075346                |

Table 1: Comparison of Tree Times by Number of Workers for coarse.txt

| comp-workers | ${\bf compare Tree Time}$ |
|--------------|---------------------------|
| 1            | 0.04143842                |
| 2            | 0.05584687                |
| 4            | 0.04198763                |
| 6            | 0.03719104                |
| 7            | 0.03862433                |
| 8            | 0.03703254                |
| 9            | 0.03675567                |
| 10           | 0.03453496                |
| 12           | 0.04155637                |
| 14           | 0.03429696                |
| 16           | 0.04181454                |
| 18           | 0.03734808                |
| 20           | 0.04253371                |
| 24           | 0.03834558                |
| 28           | 0.03861767                |
| 32           | 0.04101271                |
| 36           | 0.04212392                |
| 48           | 0.05031371                |
| 56           | 0.04995446                |
| 64           | 0.05237017                |
| 100          | 0.06949183                |
| 128          | 0.07367017                |

Table 2: Comparison Workers and Tree Comparison Time for fine.txt  $\,$ 



Figure 7: comp workers vs SpeedUp for coarse.txt



Figure 8: comp workers vs SpeedUp for fine.txt

#### 4.4 Correctness Verification

The output is same with expected output provided by one of the student.

```
• -/Desktop/Parrallel systems/projects/lab3 (master*) » ./myprogram -input=./input/coarse.txt -comp-workers=7
hashTime: 0.02401667
31: 0 3 9 3 13 15 16 17 22 24 27 28 30 32 35 37 43 45 46 48 49 52 54 60 64 65 66 74 78 79 86 88 89 90 91 94 98
191: 1 2 4 5 6 7 8 10 11 12 14 18 19 20 21 23 25 26 29 31 33 34 36 38 39 40 41 42 44 47 50 51 53 55 56 57 58 59
61 62 63 67 60 69 70 71 72 73 75 76 77 80 81 82 83 84 85 87 92 93 95 96 97 99
hashGroupTime: 0.000050929
group 0: 10 76
group 1: 10 76
group 1: 10 76
group 1: 19 21
group 3: 30 88
group 4: 41 83
group 5: 56 95
group 1: 45 63 46 33
group 9: 40 62
group 1: 40 62
group 1: 40 57
group 1: 16 59 77
group 12: 99 8
group 13: 20 53 75
group 14: 62 77
group 15: 67 72
group 17: 67 72
group 19: 0 9 45 86
group 20: 53 1
group 21: 11 18 29 96
group 22: 38 93 99
group 24: 23 33 51
group 24: 23 33 51
group 25: 74 79
group 26: 74 79
group 27: 36 69
group 28: 12 73 86
group 28: 12 73 86
group 28: 12 73 87
group 28: 13 75
group 28: 12 73 87
group 28: 13 75
group 29: 40 69
group 28: 12 73 87
group 28: 13 75
group 28: 12 73 87
group 28: 13 75
group 30: 1 55
group 31: 155
group 31: 155
group 31: 155
group 31: 155
group 32: 15 24 49
```

Figure 9: correctness validation

#### 5 Discussion

#### 5.1 Channel Implementation

- Concurrent Processing: As we can see from the graphs, Channel-based implementation excels with larger input size, the workload is large enough to benefit from multiple workers processing in parallel, significantly reducing the total computation time, and result is more consistent.
- Reduced Contention: This approach minimizes direct contention for shared resources by using channels for communication, which can lead to improved throughput on larger datasets.
- Overhead and Blocking: The overhead associated with managing channels and potential blocking on channel operations can become a bottleneck, especially with smaller or unevenly distributed workloads.

#### 5.2 Mutex Implementation

- **Direct Map Access:** Mutex implementation allows workers to directly update the shared map, potentially reducing the complexity of data handling compared to channel-based approaches.
- Contention Issues: The use of a single mutex can lead to significant contention, especially with a high number of concurrent workers, which can negate the benefits of parallelism. That is why with higher number of workers, the speedup drops.
- Scalability Concerns: While simpler to implement, the scalability of this method is limited by the mutex's ability to handle high contention levels effectively. Which is why we can see from the graphs, speedup for mutex impl for coarse.txt and fine.txt does not differ too much.

## 5.3 Semaphore Implementation

- Fine-grained Locking: By using semaphores or fine-grained locking strategies, this implementation can offer better performance scaling by reducing the contention seen in single-mutex setups.
- Complexity and Overhead: However, managing multiple locks or semaphores introduces additional complexity and synchronization overhead, which might not always translate to proportionate performance gains. Which is why we can see for larger input of semaphore speedup graph, there isn't much speedup comparing to sequential implementation. But for medium sized input file, we do observe some kind of speedup.
- Optimal for Medium to Large Workloads: Semaphore strategies are most effective for medium to large workloads where the overhead can be justified by significant performance improvements over simpler locking mechanisms.

#### 5.4 Comparison Workers and Speedup Analysis

We do not observe liner speed up, adding more comp workers suffers from some overheads introduced in task scheduling, worker synchronization. While it does speedup better for coarse.txt with medium sized input, it does not scale well for the larger size input.

Tasks (tree comparisons) are distributed to compWorkers via channels. This involves dynamically allocating pairs of trees to be compared and managing these tasks through channels. Each time a task is sent through a channel, there's an overhead associated with context switching and managing these communications. As the number of workers increases, the overhead associated with scheduling and distributing these tasks also grows.

Depending on how the tree comparisons are batched and distributed, some workers might end up with more work than others. This imbalance can cause some workers to be idle while others are still processing, reducing overall efficiency.

#### 5.4.1 Impact of Number of Workers

- Few Workers: With too few workers, the potential for parallel processing is not fully realized, often leading to underutilization of available processing resources.
- Many Workers: Conversely, too many workers can lead to excessive context switching, increased contention for shared resources, and overall inefficiency, particularly when the number of workers exceeds the number of processing cores.
- Optimal Number of Workers: The optimal number of workers typically lies between these two extremes and is dependent on the specific characteristics of the hardware and the nature of the tasks being processed.

#### 5.4.2 Recommendations for Optimization

- Dynamic Worker Allocation: Implementing a dynamic worker allocation strategy that adjusts the number of workers based on the workload can help in achieving near-optimal performance across different scenarios.
- Workload Balancing: Efforts should be made to ensure that the workload is evenly distributed among the available workers to avoid bottlenecks and idle resources.
- Hardware Considerations: Understanding the underlying hardware capabilities, such as the number of cores and the memory hierarchy, can guide the configuration of the parallel execution environment to better align with the systems strengths.

This analysis underscores the importance of carefully selecting the number of comparison workers to maximize the efficiency of parallel tree comparisons. The insights derived from speedup metrics assist in fine-tuning the concurrency model to better harness the computational power available, ensuring that the parallel algorithm performs optimally under varying operational conditions.

#### 5.5 General Observations

#### • Performance with Larger Inputs:

parallel implementations tend to perform better with larger input sizes where
the benefits of concurrent execution outweigh the overhead of managing parallel
processes, even thought this observation may not hold true for all the implementations.

#### • Performance with Smaller Inputs:

- Challenges such as setup cost, task granularity, and sensitivity to system conditions often result in less consistent performance with smaller datasets.

#### • Optimization Strategies:

 Dynamic adjustment of the concurrency level and employing hybrid strategies that switch between sequential and parallel processing based on the input size could optimize performance across varying workloads.

# 6 Conclusion and Improvement Ideas

The analysis of BST comparison reveals significant insights into the behavior of different concurrency models under varying workloads. While the channel-based implementation showcases its strength in environments with larger datasets by efficiently minimizing contention and maximizing throughput, it struggles with overheads in smaller workloads. Conversely, mutex and semaphore implementations highlight trade-offs between simplicity and scalability, with mutexes facing bottlenecks in high contention scenarios and semaphores introducing complexity that may not always yield proportional benefits. The findings underscore the necessity of a balanced approach in worker allocation and task distribution to harness full computational capabilities. Optimizing the number of workers and refining synchronization mechanisms based on empirical data and hardware capabilities can significantly enhance the performance and scalability of the BST comparison application across diverse operational conditions.

## References

#### **Technical Sources:**

- GoLang document
- Concurrency Synchronization Techniques Provided in the sync Standard Package
- gos-extended-concurrency-semaphores
- understanding-and-implementing-the-semaphore-pattern-in-go