4 Linear Models for Classification

Discusses linear models and *generalised linear models* (GLM). GLM means that even if the prediction functions are non-linear, the decision surfaces are linear.

4.1 Discriminant functions

4.1.1 Two Classes

Describes the geometry of a discriminant function $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$. That is, \mathbf{w} 's are orthogonal to decision surface and $|w_0|/||\mathbf{w}||$ describes dislocation from origin.

4.1.2 Multiple Classes

Discuss the limitation of one-vs-rest and one-vs-one classifiers, introduce the benfits of multiclass linear discriminant.

4.1.3 Least-squares Classification

Least squares classification has one extra limitation wrt. limitation of least squares regression: The target vector \mathbf{t} are of 1-of-K type.

4.1.4 Fisher's Linear Discriminant

Perform a dimensionality reduction and then discrimination. $J(\mathbf{w})$ is a function that does this and can be minimised via (4.2.9).

4.1.5 Relation to Least-squares

By changing the target variable representation for the 2-class problem, it's possible to relate Fisher and least-squares.

4.1.6 Fisher's Discriminant for multiclass

Consider generalisation to K > 2 classes. The extension is similar to 2-class. Now there are multiple possible choices of (Fisher) criterion.

4.1.7 The Perceptron Algorithm

Construct GLM $y(\mathbf{x}) = f(\mathbf{w}^T \phi(\mathbf{x}))$ where $f(a) = \begin{cases} +1 & a \ge 0 \\ -1 & a < 0 \end{cases}$. Patterns in C_1 become +1

and for $x_n \in C_1$ we want $\mathbf{w}^T \phi(\mathbf{x}) > 0$ and for $x \in C_2$ we want it to be < 0. Both can be summarised as $t\mathbf{w}^T \phi(\mathbf{x}) > 0$.

The perceptron criterion minimises error only on misclassified patterns. The weight update algorDenemeithm operates for each sample n:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_p(\mathbf{w}) = \mathbf{w}^{(\tau)} + \eta \phi_n t_n \tag{1}$$

where η is the learning rate. The update $(\tau + 1)$ happens in the direction of misclassification and guarantees the error on misclassified sample to be reduced. Of course it doesn't guarantee anything on all training samples.

4.2 Probabilistic Generative Models

Construct posterior $p(C_k|\mathbf{x})$ and represent via logistic sigmoid:

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{\sum\limits_{j \in \{1,2\}} p(\mathbf{x}|C_j)p(C_j)} = \frac{1}{1 + \exp(-\alpha)} = \sigma(\alpha)$$
(2)

where $\alpha = \ln \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$ and $\sigma(\alpha)$ is the logistic sigmoid function.

We are interested in situations where $\alpha(\mathbf{x})$ is linear and therefore creates posteriors governed by GLMs.

4.2.1 Continuous Inputs

We sgtart by assuming that all classes C_k share same cov matrix Σ .

For K classes α_k becomes $\alpha_k(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_{k0}$ where $\mathbf{w}_k = \Sigma^{-1} \boldsymbol{\mu}_k$ and w_{k0} is as in (4.70).

That is, α_k is linear in **x**. Decision boundaries (which correspond to misclassification rate) will be again linear in **x** so again we have GLM.

If we relax the "shared covariance matrix" assumption, then we'll have quadratic discriminant rather than GLM.

4.2.2 Maximum likelihood solution

Once $p(\mathbf{x}|C_k)$ defined, we can determine values of its parameters and parameters of $p(C_k)$ via maximum likelihood. Construct maximum function:

$$p(\mathbf{T}, \mathbf{X} | \pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \Sigma) = \prod_{n} [\pi \mathcal{N}(x_n | \boldsymbol{\mu}_1, \Sigma)]^{t_n} [(1 - \pi) \mathcal{N}(x_n | \boldsymbol{\mu}_2, \Sigma)]^{(1 - t_n)}$$
(3)

In the ML solution we get $\mu = \frac{1}{N_1} \sum_n t_n \mathbf{x}_n$ and $\mu = \frac{1}{N_2} \sum_n (1 - t_n) \mathbf{x}_n$.

For covariance Σ , define $\mathbf{S}_1, \mathbf{S}_2, \ddot{\mathbf{S}}$ as:

$$\mathbf{S}_1 = \frac{1}{N_1} \sum_{n \in C_1} (\mathbf{x}_n - \boldsymbol{\mu}_1) (\mathbf{x}_n - \boldsymbol{\mu}_1)^T$$

$$\tag{4}$$

$$\mathbf{S}_2 = \frac{1}{N_2} \sum_{n \in C_2} (\mathbf{x}_n - \boldsymbol{\mu}_2) (\mathbf{x}_n - \boldsymbol{\mu}_2)^T$$
 (5)

$$\mathbf{S} = \frac{N_1}{N} \mathbf{S}_1 + \frac{N_2}{N} \mathbf{S}_2 \tag{6}$$

Overall, process not robust to outliers because ML is not.

4.2.3 Discrete Features

4.2.4 Exponential Family

We manage to get GLMs for the above types too.

4.3 Probabilistic Discriminative Models

Advantage: There are less parameters to discover and usually leads to improved performance.

4.3.1 Fixed Basis Functions

4.3.2 Logistic Regression

Here we set M params whereas in generative modelling we set (M+5)/2+1 params.

Consider implementing a discriminative function directly as a via logistic sigmoid function:

$$p(C_1|\phi) = y(\phi) = \sigma(\mathbf{w}^T\phi) \tag{7}$$

and naturally $p(C_2|\phi) = 1 - p(C_1|\phi)$. We can set params via ML. We start by seeing that $\frac{d\sigma}{d\alpha} = \sigma(1-\sigma)$ (exercise 4.12). Likelihood can be written as:

$$p(\mathbf{T}|\mathbf{w}) = \prod_{n} y_n^{t_n} (1 - y_n)^{1 - t_n}$$
(8)

cross entropy where $y_n = p(C_1|\phi_n)$. Error function here is also called cross entropy error:

$$E(\mathbf{w}) = -\ln p(\mathbf{T}|\mathbf{w}) = -\sum_{n} [t_n \ln y_n + (1 - t_n) \ln(1 - y_n)]$$

$$\tag{9}$$

Taking the gradient wrt w:

$$\nabla E(\mathbf{w}) = \sum_{n} (y_n - t_n)\phi_n \tag{10}$$

4.3.3 Iterative Reweighted Least Squares

We no longer have closed-form solution (as we did for regression). Fortunately the error function is still convex there is the (iterative) Newton-Raphson or iterative reweighted least squares algorithm:

Newton-Raphson or iterative reweighted least squares

 $\mathbf{w}^{(new)} = \mathbf{w}^{(old)} = \mathbf{H}^{-1} \nabla E(\mathbf{w}) \tag{11}$

where **H** is the hassian matrix whose elements comprise the second derivs of $E(\mathbf{w})$ wrt components of \mathbf{w} .

$$\nabla E(\mathbf{w}) = \sum_{n} (y_n - t_n)\phi_n = \mathbf{\Phi}^T(\mathbf{Y} - \mathbf{T})$$
(12)

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n} y_n (1 - y_n) \phi_n \phi_n^T = \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi}$$
 (13)

design matrix where Φ is the $N \times M$ design matrix whose *n*th row is given by ϕ_n^T and **R** is the $N \times N$ diagonal matrix with elements $\mathbf{R}_{nn} = y_n(1 - y_n)$.

4.3.4 Multiclass logistic regression

The formalism is similar to 2-class logistic regression. Instead of sigmoid we use the *softmax* function. Again we have *cross-entropy* function as error function. The multiclass version of cross-entropy is:

$$E(\mathbf{w}_1, \dots, \mathbf{w}_K) = -lnp(\mathbf{T}|\mathbf{w}_1, \dots, \mathbf{w}_K) = -\sum_n \sum_k t_{nk} - \ln y_{nk}.$$
 (14)

Again we can use iterative reweighted least squares (#210).

4.3.5 Probit regression

The inverse probit function (or the similar erf function) are similar to sigmoid in shape but have more plausible analytical properties. Will be discussed in Sec. 4.5.

4.3.6 Canonical link function

This is one of the most frequently-referred sections of the book. The choices of sigmoid/softmax in earlier sections were not arbitrary — they were chosen to convert the error function to a simple form that involves $y_n - t_n$. This is a general result of assuming a conditional distribution for the activation function known as the canonical link function.

 $\begin{array}{c} canonical \\ link \ function \end{array}$

A GLM is a model for which y is a nonlinear function of a linear combination of input variables:

$$y = f(\mathbf{w}^T \phi) \tag{15}$$

where $f(\cdot)$ is the activation function and $f^{-1}(\cdot)$ is known as the link function.

Let the conditional distro be $p(\mathbf{T}|\eta, s)$. We formulate its derivative in the following form:

$$\nabla_{\mathbf{w}} \ln p(\mathbf{T}|\eta, s) = \dots \text{ (see #213)} = \sum_{n} \frac{1}{s} \psi'(y_n) f'(y_n) \phi_n$$
 (16)

. The canonical link function chosen as $f^{-1}(y) = \psi(y)$ provides a great simplification:

$$\nabla E(\mathbf{w}) = \frac{1}{s} \sum_{n} (y_n - t_n) \phi_n \tag{17}$$

4.4 The Laplace Approximation

To perform closed-form analysis for Bayesian logistic regression, we'll need to do approximation. The Laplace approx. is used for this purpose. Approximation is performed by matching the *mode* of the target distribution with the mode of a Gaussian via Taylor expansion (where the first-order term disappears as expansion is made around a local maximum). Let \mathbf{z}_0 be the mode of the target distribution. The 2^{nd} order Taylor expansion around \mathbf{z}_0 is:

$$f(\mathbf{z}) \approx \ln f(\mathbf{z}_0) - \frac{1}{2} (\mathbf{z} - \mathbf{z}_0)^T \mathbf{A} (\mathbf{z} - \mathbf{z}_0).$$
 (18)

This will enable us to compute the approximated distribtion $q(\mathbf{z})$ directly as $q(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{z}_0, \mathbf{A})$. Better methods will be explored in Chapter 10.

Better methods will be explored in Chapter 10

4.4.1 Model comparison and BIC

We can use the approximation above for model comparison, which will lead to Bayesian Information Criterion (BIC). Start with the normalisation term:

$$Z \approx f(\mathbf{z}_0) \int \exp\left[-\frac{1}{2}(\mathbf{z} - \mathbf{z}_0)^T \mathbf{A}(\mathbf{z} - \mathbf{z}_0)\right] d\mathbf{z} = f(\mathbf{z}_0) \frac{(2\pi)^{M/2}}{|\mathbf{A}|^{1/2}}.$$
 (19)

Consider data set \mathcal{D} and models $\{\mathcal{M}_i\}$ with parameters $\{\boldsymbol{\theta}_i\}$. For each model we define a likelihood function $p(\mathcal{D}|\boldsymbol{\theta}_i, \mathcal{M}_i)$ — or shortly, $p(\mathcal{D}|\boldsymbol{\theta}_i)$.

Defining $f(\boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$ and identifying that $Z = p(\mathcal{D})$, we can apply the result above to get:

$$\ln p(\mathcal{D}) \approx \ln p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}}) + \frac{M}{2} \ln (2\pi) - \frac{1}{2} \ln |\mathbf{A}|.$$
 (20)

With further simplifications via (not necessarily realistic) assumptions (see #217) we get the BIC:

$$\ln p(\mathcal{D}) \approx \ln p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}}) - \frac{1}{2}M \ln N$$
 (21)

Essentially this is an information criterion that penalizes model complexity

4.5 Bayesian Logistic Regression

Again, exact inference for logistic regression is intractable, due to normalisation (which involves likelihood computation, which is a product of sigmoids (one for each data point)). We apply Laplace approximation for tractability.

4.5.1 Laplace Approximation

Because Laplace involves Gaussian approx, we start with Gaussian prior $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0)$. Posterior is $p(\mathbf{w}|\mathbf{T}) \propto p(\mathbf{w})p(\mathbf{T}|\mathbf{w})$. To compute the approx of this posterior, $q(\mathbf{w})$, we first express it in closed form (4.142) and then find the MAP solution, \mathbf{w}_{MAP} . Then we compute the approximation around \mathbf{w}_{MAP} ; that is, we find the cov. matrix S_N by using (4.132) — the mean is already \mathbf{w}_{MAP} – and obtain approx as: $p(\mathbf{w}|\mathbf{T}) \approx q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{w}_{\text{MAP}}, \mathbf{S}_N)$.

Now we'll use this for prediction by computing the *predictive distribution*.

4.5.2 Predictive Distribution

Recall that for 2-class NN the prob of a sample being C_1 is the output of the NN, which is $p(C_1|\boldsymbol{\phi}, \mathbf{w}) = \sigma(\mathbf{w}^T \boldsymbol{\phi})q(\mathbf{w})$. Predictive distribution involves the following marginalization over \mathbf{w} :

$$p(C_1|\boldsymbol{\phi}, \mathbf{T}) = \int p(C_1|\boldsymbol{\phi}, \mathbf{w}) p(\mathbf{w}|\mathbf{T}) \approx \int \sigma(\mathbf{w}^T \boldsymbol{\phi}) q(\mathbf{w}) d\mathbf{w}.$$
 (22)

The problem here is that $\sigma(\cdot)$ is non-linear and again not tractable. Putting this aside for a moment, the section first computes the marginalization of $q(\mathbf{w})$, $\int q(\mathbf{w})d\mathbf{w}$. Then, it computes the overall integral in (22) by approximating the sigma function with the inverse probit function, $\Phi(\cdot)$ — see #219 for details.

5 Neural Networks

This is a critical chapter because many commonly-used techniques are motivated and described in detail. These include the *gradient-descent optimization* and also the *backpropagation* technique which is used for many purposes including *exact Hessian computation*.

5.1 Feed-forward Neural Networks

5.2 Network Training

Again we'll minimize an error function. We can directly minimize a sum-of-squares error such as $E(\mathbf{w}) = \frac{1}{2} \sum ||\mathbf{y}(\mathbf{x}_n - \mathbf{t}_n)||^2$. But we'll give rise to a probabilistic interpretation by considering likelihood maximization. This will be beneficial for many purposes.

The rest of the section derives the energy function and cross-entropy error function in the context of NNs.

5.2.1 Parameter optimisation

Clearly, there is no hope to find an analytical solution to optimum \mathbf{w} . We'll therefore resort to iterative algorithms of the following form:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}. \tag{23}$$

There are many algos of this form, and they differ by their choice of $\Delta \mathbf{w}^{(\tau)}$. Most use gradient information due to reasons discussed in following section.

5.2.2 Local quadratic approximation

Consider second-order Taylor approx of $E(\mathbf{w})$ around some $\hat{\mathbf{w}}$:

$$E(\mathbf{w}) \approx E(\widehat{\mathbf{w}}) + (\mathbf{w} - \widehat{\mathbf{w}})^T \mathbf{b} + \frac{1}{2} (\mathbf{w} - \widehat{\mathbf{w}})^T \mathbf{H} (\mathbf{w} - \widehat{\mathbf{w}})$$
(24)

where $\mathbf{b} = \nabla E_{\mathbf{w}}(\mathbf{w})|_{\mathbf{w} = \widehat{\mathbf{w}}}$ and \mathbf{H} is the Hessian matrix with elements $(\mathbf{H})_{ij} = \frac{\partial^2 E}{\partial w_i \partial w_j}|_{\mathbf{w} = \widehat{\mathbf{w}}}$. If we pick $\widehat{\mathbf{w}}$ to be a minimum, say \mathbf{w}^* the second term above vanishes.

$$E(\mathbf{w}) \approx E(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$$
 (25)

We analyse **H** by considering its eigenvectors, and we see that constant-error contours $E(\mathbf{w}) = C$ are ellipses whose axes are aligned with the eigenvectors of **H**, \mathbf{u}_i , and the length of these axes are inverse proportional to the corresponding eigenvectors, λ_i (see #238-239 and Exercise 5.10).

5.2.3 Use of gradient information

Gradient allows us to compute evaluate E in $O(W^2)$ instead of $O(W^3)$.

5.2.4 Gradient descent optimization

Standard (i.e. batch) gradient descent ($\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w})$.) leads to poor performance. However we can perform gradient-descent for each sample in dataset separately, which is known as on-line gradient descent (or stochastic GD or sequential GD), which proved to be much better.

But for batch optimization there are much more efficient methods such as *conjugate* gradients and quasi-Newton methods.

5.3 Error Backpropagation

The main goal is to find efficient methods to compute the gradient of $E(\mathbf{w})$, $\nabla E(\mathbf{w})$. The importance of backpropagation lies in that it can be used beyond the scope of NNs and gradient descent, such as other derivatives and graphical models etc.

There are 2 steps at each iteration of a backpropt technique:

- 1. Evaluate $\nabla E(\mathbf{w})$ (this is where backpropagation comes to play)
- 2. Update \mathbf{w}^* based on step 1.

5.4 Evaluation of error-function derivatives

We will analyse the error of a single sample, E_n , and the total error is simply the sum over N. Let δ_i be defined as

$$\delta_j = \frac{\partial E_n}{\partial a_j},\tag{26}$$

where δ 's are typically referred to as errors. In the last layer, due to our choice of activation function, we have (see 5.18):

$$\delta_k = \frac{\partial E_n}{\partial a_k} = y_k - t_k \tag{27}$$

The ultimate goal is to compute derivatives $\frac{\partial E_n}{\partial w_{ji}}$ and the δ 's will be the messages that are propagated backwards.

We can express the desired derivative by means of the output and label as:

$$\frac{\partial E_n}{\partial w_{ji}} = (y_{nj} - t_{nj})x_{ni} \tag{28}$$

Note that by feed-forward NN definition we have $a_j = \sum_i w_{ji} z_i$ and $z_j = h(a_j)$. We can therefore express the derivative above through the chain rule as:

$$\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \delta_j \frac{\partial a_j}{\partial w_{ji}} \tag{29}$$

Note that the first derivative on the rhs corresponds to our d_i definition.

Now we can start from the last (output) layer and propagate backwards:

$$\delta_j = \frac{\partial E_n}{\partial a_j} = \sum_k \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial a_j} = \sum_k \delta_k w_{kj}$$
(30)

where the units k are those to which j sends connections. Here $\frac{\partial a_k}{\partial a_j} = w_{kj}$ holds because the kth layers are output layers, and we are considering the regression problem where the activation function $(h(\cdot))$ is simply the unity function and therefore:

$$a_k = \sum_i w_{ki} a_i. (31)$$

Now let us consider a node j that lies in one layer before where the activation function is not unity and therefore:

$$a_j = \sum_i w_{ji} h(a_i) \tag{32}$$

and therefore we have

$$\delta_j = h'(a_j) \sum_k w_{kj} \delta_k. \tag{33}$$

We can summarise backpropagation as follows:

- 1. Apply an input vector \mathbf{x}_n to the network and propagate forwards
- 2. Evaluate δ_k for output units through (5.54) (or (30 above)
- 3. Evaluate δ_i for all hidden units in between input and output layers (or (33) above).
- 4. Finally obtain the derivative $\frac{\partial E_n}{\partial w_{ij}}$ through (5.53), which is $\frac{\partial E_n}{\partial w_{ij}} = \delta_j z_i$

.

Miscellaneous

Model Comparison The more rigorous section is Sec. 3.4 (and 3.5) with a proper treatment of a theoretically plausible model selection approach. AIC (see 1.73) and BIC (Sec 4.4.1, #217) offer simpler model comparison criteria.