erweiterter Euklid

$$x * a + y * b = d$$
 $d = gqT(a, b) \rightarrow erw.Euklid(1, 0, 0, 1)$ $A'' = A - q * A'$ | $B'' = B - q * B'$ (1)

Starke Primzahlen zu Basis b Fermat Test erfuellt?

$$b^{n-1} \equiv 1 \mod n \quad \land \quad n-1 = 2^s * t \quad s \in \mathbb{N} \quad und \quad t \in ungerade$$
 (2)

$$[b^t \mod n] = 1 \vee [b^t \mod n] = n - 1 \vee [b^{2t} \mod n] = n - 1 \vee \dots \vee [b^{2^{s-1}t} \mod n] = n - 1 \qquad (3)$$

Wird der Test einmal $1 \to \text{stopp} \to \text{erfllt}$

Starke Primzahlen zu Basis b auch Pseudoprimzahl zur Basis b

$$b^{n-1} = (b^{2^{s}*t} - 1) = (b^{t} - 1)(b^{t} + 1)(b^{2^{s}t} + 1)(b^{2^{s}t} + 1)...(b^{2^{s-1}*t} + 1)$$

$$(4)$$

Pseudoprimzahl Sei n eine zusammengesetzte Zahl n heisst Pseudoprimzahl zur Basis b wenn gilt: $b^{n-1} = 1 \mod n$ Sei n eine Pseudoprimzahl zu b_1 und b_2 dann ist sie auch Pseudoprim zu den Basen $b_1 * b_2$ und $b_1 * b_2^{-1}$

Miller Rabin Gegeben ist eine ungerade Zahl n:

$$n-1 = 2^s * t \quad s \in \mathbb{N} \quad t = ungerade \quad \text{W\"{a}hlen} \quad von \quad 1 < b < n-1$$
 (5)

Berechne
$$[b^t \mod n] = (-1 \lor 1 \to (8)) \lor (\neq 1 \land \neq -1 \to (7))$$
 (6)

$$[b^{2^1*t} \mod n], [b^{2^2*t} \mod n], \dots, [b^{2^{s-1}*t} \mod n] = n-1 \to (8), sonst \quad n \neq prim$$
 (7)

Falls die Anzahl der gewhlten Basen
$$\leq 40$$
, gehe zu (5) sonst ist n vermutlich prim (8)

Anzahl Primzahlen zwischen n und m m groessere Zahl, n kleinere Zahl

$$0.91...\frac{m}{ln(m)} - 2.13...\frac{n}{ln(n)}$$
(9)

Faktorisieren mit Methode von Fermat

$$n = p * n = (\frac{p+q}{2})^2 - (\frac{p-q}{2})^2 = x^2 - y^2 = (x-y)(x+y)$$

 $y^2 = x^2 - n$ How to:

$$k = \lceil \sqrt{n} \rceil \to \sqrt{n} = \sqrt{p * q} \to \text{geometrisches Mittel}; x = k$$

 $x^2 - n$ Quadratzahl? endet sie auf 2, 3, 7 oder 8, dann sicher keine Quadratzahl, sonst $\sqrt{x^2 - n}$ Es ist eine Quadratzahl \rightarrow wir sind fertign = (x - y)(x + y) Es ist keine Quadratzahl $\rightarrow k + 1$

x ist das letzte k, y wird berechnet via k++, danach noch p und q

Pollards (y-1) Methode p = Prim, b = Basis mit ggT(b,y) = 1. dann gilt: $b^{y-1} \equiv 1 \mod p$. Einer der beiden Primfaktoren muss in lauter kleine Primfaktoren zerfallen. Sei M eine Zahl mit folgenden Eigentschaften: 1. $p-1 \mid M$ (p-1 ist ein Teiler von M) 2. $M \nmid p-1$ (M ist kein Teiler von p-1)

Sei b eine Basis mit ggT(b,n)=1. M waehlen: k! oder kgv(1,2,3,...,k)

$$b^M-1 \rightarrow [b^M-1 \mod n] = [b^M \mod n] -1 \rightarrow d := ggT([b^M \mod n] -1, n) \qquad (10)$$

$$d = \begin{cases} 1 & b^M \not\equiv 1 \mod p \land b^M \not\equiv 1 \mod q & \text{M groesser waehlen} \\ n & b^M \equiv 1 \mod p \land b^M \equiv 1 \mod q & \text{Basis b wechseln oder M kleiner waehlen} \\ p & b^M \equiv 1 \mod p \land b^M \not\equiv 1 \mod q \\ q & b^M \not\equiv 1 \mod p \land b^M \equiv 1 \mod q \end{cases}$$

$$(11)$$

Ordnung eines Elementes in einer zyklischen Gruppe (G, *) \mathbb{Z}_n^* Alle Teiler in \mathbb{N} sind mgliche Ordnungen der Elemente. Ein Generator der Gruppe ist ein Element, wenn es dieselbe Ordnung besitzt wie die Gruppe. Mit dem Generator kann die gesamte Gruppe erzeugt werden. $g^{TeilerderGruppen-1}, g^x, \dots g^{n-1}$, wobei $g^{n-1} = 1 \mod n$ ist, wenn es ein Generator der Gruppe ist. Kommutativ \to a, b sind Elemente der Gruppe, g ein Generator: $a*b = g^m*g^m = g^{m+n} = g^n*g^m = b*a$. Operation ist assoziativ (a*b)*c = a*(b*c) Es existiert ein Neutralelement a*e = e*a = a Zu jedem Element existiert ein Inverses, sodass: $a*a^{-1} = a^{-1}*a = e$

Babystep Giantstep Algorithmus $y=g^x$ gesucht ist x, y, g und p (Gruppenordnung) sind gegeben. $Q=\lceil \sqrt{p-1}=N \rceil$ Q ist also die kleinste natrliche Zahl mit $Q^2 \geq N$ x=k*Q-l wobei $1 \geq k \geq Q$ $0 \geq l \geq Q-1$ $y=g^{k*Q-l} \rightarrow g^{k*Q}=g^l*y$ Babystep Liste: $\{[y*g^l \mod p]: l=\{0,1,2,...,Q-1\}\}$ ACHTUNG 0 Giantstep Liste: $\{[g^{k*Q} \mod p]: k=\{1,2,3,...,Q\}\}$ ACHTUNG 1 Die Babystep Liste wird sortiert nach Resultat (Resultat, Index). In Giantstep Liste suchen nach vorkommen eines Babystep Elementes. $k=x \rightarrow g^{x*Q} \mod p=(\text{Resultat}, \text{Index})$ (Babystep Liste)), dann sind k und k klar. k0 k1

DH Keyexchange Public: g und p Alice bestimmt Zufallszahl $a \in \{1, 2, 3, ..., p-1\}$ und publiziert $[A := g^a \mod p]$ Bob tut dasselbe für $[B := g^b \mod p]$ Beide können den geheimen Schlüssel k berechnen mit: $A^b = B^a = g^{a*b} \mod p = k$ Für Elliptische Kurven (gegeben a, b, p): Basispunkt $B = (x_1, y_1)$; Alice nimmt Zufallszahl k_a , Bob k_b . Alice rechnet $k_a * B = (x_1, y_1) * k_a \to \alpha \equiv (3x_1^2 + a)(2y_1)^{-1}$ $x_3 \equiv \alpha^2 - 2x_1$ $y_3 = \alpha(x_1 - x_3) - y_1$ Task von Alice, dasselbe fr Bob, publiziert wird dann jeweils $n * B = \operatorname{pk}$ (n* addierter Basispunkt). Sessionkey $= (n * B) * k_x$ (erneut Punktaddition)

El Gamal Public: g und p Schlsselerzeugung: Zufallszahl a in der Menge [1,2,3,...p-1] wählen (sk) $A:=g^a \mod p$ ist pk Alice will eine Nachricht m an Bob senden. B = pk von Bob. Randomanteil: $R=[g^r \mod p] \quad r\in\{1,2,3,...,p-1\}$ $c=m*B^R \mod p$, sie schickt das Tupel (R,c) an Bob. Bob dechiffriert folgendermassen: $R^b=g^{k*b} \mod p \to B^k=g^{kb}$ Aus c kann er anhand von $g^{(kb)^{-1}}$ m berechnen. $g^{(kb)^{-1}}*c \mod p=m$ Elliptische Kurven: Alice an Bob, $B=(x,y), PK_b=b*B$ und p sind public. Nachricht $=P_m$ Alice nimmt Zufallszahl k und schickt $(k*B,P_m+k(PK_b))$ Bob seinerseits muss folgendes machen: $P_m+k(PK_b)-b(k*B)$ Subtraktion b*kB was er erhalten hat.

Elliptische Kurven $y^2=x^3+a*x+b$ Alle Punkte auf dieser Kurve. Hinzu kommt ein Punkt im Unendlichen σ . 1.) $P=\sigma:-P=\sigma$ 2.) $P=(x,y)\neq\sigma:-P=(x,-y)$ Addition zweier Punkte $P_1=(x_1,y_1)$ und $P_2=(x_2,y_2)$ $P_1\wedge P_2\neq\sigma$ $x_1\neq x_2$

$$P_1 + P_2 = P_3(x_3, y_3) \quad \alpha = \frac{y_2 - y_1}{x_2 - x_1} = (y_2 - y_1)(x_2 - x_1)^{-1} \mod p \begin{cases} x_3 = \alpha^2 - x_1 - x_2 \\ y_3 = \alpha(x_1 - x_3) - y_1 \end{cases}$$

$$P_1 + P_2 = \sigma \quad x_1 = x_2 \land y_1 \neq y_2 \qquad P_1 = P_2 \land y_1 = 0 \rightarrow P_1 + P_2 = \sigma$$

$$P_1 = P_2 \land y_1 \neq 0 \begin{cases} x_3 = \alpha^2 - 2x_1 \mod p \\ y_3 = \alpha(x_1 - x_3) - y_1 \mod p \\ \alpha = (3x_1^2 + a)(2y_1)^{-1} \end{cases}$$

Quadratische Reste $p = Prim \text{ und } a \in F_p; x^2 \mod p$ ist ein quadratischer Rest wenn $x^2 \equiv a \mod p$ Die hälfte der Elemente des Fields sind quad. Reste resp. quad-nicht-Reste.

$$a^{\frac{p-1}{2}} \begin{cases} 1 \mod p & \text{a quad Rest mod p} \\ -1 \mod p & \text{a quad Nicht-Rest mod p} \end{cases}$$
 (12)

Ist $a \in F_p$ ein quad. Rest, dann gilt für die Wurzel: $r_1 = a^{\frac{p+1}{4}}$ falls $p \equiv 3 \mod 4$ und $r_2 = p - r_1$