사회조사 사례연구

범주형 자료분석

목 차

제1장	소 개	3
	- 관계의 이해	3
	- 범주형 자료	7
TU a TI		1.0
제2장	두 모비율 차이의 검정	10
	- 2X2 교차표 : 독립표본의 경우	10
	- 2X2 교차표 : 독립표본(예)	11
	- 2X2 교차표 : 대응표본의 경우	15
	- 2X2 교차표 : 대응표본(예)	16
제3장	교차표 분석	19
	- 2X2 에서 확장	19
	- 관찰도수와 기대도수	22

제3장	교차표 분석	19
	- 카이제곱 검정	23
	- 동일성 검정 예	24
	- 열이 순서형일 때	34
	- 독립성 검정 예	38
	- 행과 열이 모두 순서형일 때	40
	- 정확 검정	43
	- 연관성 측도	45
	- 연관성 측도 : 람다	46
	- 연관성 측도 : 감마	51
	- 심슨의 파라독스	55
	- 코호트 연구	57
	- 사례-대조 연구	58

상관계수가 실제의 관계를 과장하는 경우

▶ 집단별 비율이나 평균에 기초하여 구한 상관계수는 실제의 관계를 과장한다.

분기별 음료수 판매 실적과 소아마비 발생률

▶두 변수 사이에 강한 양의 관련성이 있는 것처럼 보인다.

▶관련성을 인과성(causation) 으로 잘못 판단한다면?

소아마비 발생률 낮추기 위해 음료수 판매 중지!

NO !!!!

제1장. 소 개

범주형 변수 (Categorical Variable)
 일반적으로 연산 안됨 (예 : 강원도+여자?)

예 : 성별(gender) - 여(0), 남(1)

출신지역 - 서울·경기(1), 강원(2), 충청(3), 호남(4), 영남(5)

교육수준 - 초등(1), 중(2), 고등(3), 대학(4)

유형: 이항형(binary) 예- 성별

명목형(nominal) 예- 출신지역

순서형(ordered) 예- 교육수준

: 대학생이 고등학교 출신보다 교육을 더 많이 받았다.

가변수 혹은 연속형으로 처리가 가능

- 범주형 자료 (Categorical Data)
 - 일반적으로 반응변수가 이산적(discrete)인 자료
 - ⇒ 범주형 변수만 있거나 반응변수가 범주형인 경우 범주형 자료라 함

제1장. 소 개

?

범주형 짜료의 특성

?

회귀분석 VS 범주형자료분석

?

표본추출모형 (이항표본추출) □

제1장. 소 개 - 범주형 변수의 분포

이항분포 (Binomial Dist.) : B(n,p)

$$P(X=x) = f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n.$$
 약기서, $\binom{n}{x} =_n C_x = \frac{n!}{x!(n-x)!}$

다항분포 (Multinomial Dist.)

$$P(N_1 = n_1, N_2 = n_2, \cdots, N_k = n_k) = \frac{n!}{n_1! n_2! \cdots n_k!} p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$$
 여기서 $n_1 + n_2 + \cdots + n_k = n$ 이고 $p_1 + p_2 + \cdots + p_k = 1$

- 동전 → 이항, 주사위 → 6항 ...p-값 계산 가능

□ 독립표본의 경우

$$\begin{cases} \hat{p}_1 = x_1/n_1 \\ \hat{p}_2 = x_2/n_2 \end{cases}$$
$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

검정통계량:

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}$$

기각역:

	귀무가설	대립가설	기각역
(a)	$H_0: p_1 \le p_2$	$H_1: p_1 > p_2$	$Z \ge z_{\alpha}$
(b)	$H_0: p_1 \ge p_2$	$H_1: p_1 < p_2$	$Z \leq -z_{\alpha}$
(c)	$H_0: p_1 = p_2$	$H_1: p_1 \neq p_2$	$ Z \ge z_{\alpha/2}$

- ✓ Z 검정통계량은 표본크기가 충분히 클 때 근사적으로 표준정규분포에 따름.
- ✔ 정확한 유의확률은 이항분포를 이용하여 계산될 수 있음.

• 어느 지역에서 핵폐기물 처리장 설치에 대한 의견이 성인 남녀별로 차이가 있는가를 알아보기 위해 조사를 해 본 결과, 임의로 뽑은 250명의 정인 남자 중 110명이 핵폐기물 처리장설치를 찬성하였고, 200명의 성인 여자 중 104명이 찬성한 것으로 나타났다. 성인 남녀별로 핵폐기물 처리장 설치 찬성비율에 차이가 있는지를 유의수준 5%하에서 검정하여 보자.

• 표본비율 :
$$\hat{p}_1 = \frac{110}{250} = 0.440, \quad \hat{p}_2 = \frac{104}{200} = 0.520$$

• 공통비율 :
$$\hat{p} = \frac{110 + 104}{250 + 200} = \frac{214}{450} = 0.476$$

• 검정통계량 :
$$Z = \frac{0.440 - 0.520}{\sqrt{(0.476)(0.524)(1/250 + 1/200)}} = 1.69$$

• 검정통계량의 값(Z=1.69)이 기각치($z_{0.025}$ =1.96)보다 작으므로 귀무가설을 기각할 수 없다. 따라서 정부에 대한 지지율이 남녀별로 차이가 있다고 할 수 없다.

• SPSS 사례분석 - 데이터(CAT01.sav)

□ SPSS 사례분석 (CAT01.sav)

케이스 처리 요약

성별 * 응답 교차표

<u> 빈도</u>				
		oļo	답	
		yes	no	전체
성별	남자	110	140	250
	여자	104	96	200
전체		214	236	450

카이제곱 검정

	찺	자유도	점근 유의확률 (양측검정)	정확한 유의확률 (양측검정)	정확한 유의확률 (단측검정)
Pearson 카이제곱	2.851ª	1	.091		
연속수정 ^b	2.540	1	.111		
우도비	2.853	1	.091		
Fisher의 정확한 검정				.106	.055
선형 대 선형결합	2.845	1	.092		
유효 케이스 수	450				

 $Z = \sqrt{\text{Pearson}}$ 카이제곱 $= \sqrt{2.851}$ = 1.688

- a. 0 셀 (.0%)은(는) 5보다 작은 기대 빈도를 가지는 셀입니다. 최소 기대빈도는 95.11입니다.
- b. 2x2 표에 대해서만 계산됨

제2장. 두 모비율 차이 검정-2×2 교차표: 대응표본의 경우

		В		
		예(1)	아니오(0)	합계
A	예(1)	n_{11}	n_{10}	n_A
	아니오(0)	n_{01}	n_{00}	$n-n_A$
	합계	n_B	$n-n_B$	n

두 표본비율 $p_A = n_A/n$ 과 $p_B = n_B/n$ 는 서로 독립이 아니므로 앞에서 설명한 방법을 적용할 수 없으며, 대응표본의 경우 귀무가설 ' H_0 : $p_A = p_B$ ' 하에서 n_{01} 이 이항분포 $B(n_{01} + n_{10}, 1/2)$ 를 따른다는 사실을 이용하여 검정을 수행할 수 있다. 또한 다음과 같은 정규근사를 이용할 수도 있는데,

$$Z = \frac{n_{01} - (n_{01} + n_{10})/2}{\sqrt{(n_{01} + n_{10})/4}} = \frac{n_{01} - n_{10}}{\sqrt{n_{01} + n_{10}}}$$

검정통계량 Z은 귀무가설 하에서 표준정규분포를 따르므로 Z^2 은 자유도 1인 카이제곱분포를 따르며, 이를 맥니머(McNemer)의 카이제곱 통계량이라고도 한다.

• 환경부에서 1회용품 사용을 줄이고자 홍보영상을 만들었다. 100명의 사람을 대상으로 일 회용품 사용 줄이기를 실천여부를 조사하여 홍보영상을 보기 전과 홍보영상을 본 이후의 응답을 얻었다. 1회용 줄이기 홍보영상이 사람들 인식에 변화를 주었다고 할 수 있는지 유의수준 5% 하에서 검정해 보아라.

이후 이전	예	아니오	합계
예	63	4	67
아니오	21	12	33
합계	84	16	100

□ SPSS 사례분석 - 데이터(CAT02.sav)

• 출력결과

이전 * 이후 교차표

ᆔ	

		01		
		yes	no	전체
이전	yes	63	4	67
l	no	21	12	33
전체		84	16	100

카이제곱 검정

	값	자유도	점근 유의확률 (양측검정)	정확한 유의확률 (양측검정)	정확한 유의확률 (단촉검정)
Pearson 카이제곱	15.197ª	1	.000		
연속수정b	13.019	1	.000		
우도비	14.369	1	.000		
Fisher의 정확한 검정				.000	.000
선형 대 선형결합	15.045	1	.000		
McNemar 검정				.001°	
유효 케이스 수	100				

- a. 0 셀 (.0%)은(는) 5보다 작은 기대 빈도를 가지는 셀입니다. 최소 기대빈도는 5.28입니다.
- b. 2x2 표에 대해서만 계산됨
- c. 미항분포를 사용함.

대칭적 촉도

	값	절근 표준오차ª	근사 T 값 ^b	근사 유의확률
일치 측도 카파	.350	.097	3.898	.000
유효 케이스 수	100			

- a. 영가설을 가정하지 않음.
- b. 영가설을 가정하는 점근 표준오차 사용

제3장. 교차표 분석(2×2에서 확장)

두 개의 범주형 변수 A와 B에 대한 교차표(cross table) 혹은 분할표(contingency table)에서, 변수 A가 r개의 범주, 변수 B가 c개의 범주를 가지고 있다면 $r \times c$ 교차표는 다음과 같은 형태를 가진다.

		변수 B					
변수 A	1		j	• • •	c	행 합계	
1	n_{11}	• • •	n_{1j}	• • •	n_{1c}	$n_{1.}$	
÷	:		:		::	÷	
i	n_{i1}		n_{ij}		n_{ic}	$n_{i.}$	
:			:			:	
r	n_{r1}		n_{rj}		n_{rc}	$n_{r.}$	
열 합계	$n_{.1}$		$n_{.j}$	• • •	$n_{.c}$	n	

등급	기계 1	기계 2	기계 3	행 합계
1급	78	65	68	211
2급	22	8	30	60
3급	20	2	7	29
열 합계	120	75	105	300

제3장. 교차표 분석

교차분석 : 범주에 따른 빈도수와 기대도수를 이용하여 범주의 특성을 분석

교차분석의 예

➤ 적합도 검정(Goodness of fit test) : 관측값이 특정한 분포를 따르는지를 검정

- > 독립성 검정(test of independence) : 두 요인 간에 관계가 있는지를 검정
- ➤ 동일성 검정 (test of homogeneity) : 몇 개의 모집단이 분석하고자 하는

 문제의 특성에 대하여 동질성을 갖는지

검정

제3장. 교차표 분석

'청량음료' 데이터

	<u> </u>				
7					
연령	coke	pepsi	fanta	others	행 합계
20대	10	14	4	12	40
30대	13	9	10	8	40
40대	12	8	10	10	40

'교육수준과 소득수준' 데이터 💭

	소	누수		
교육수준	상	중	ㅎ	행 합계
대졸	255	105	81	441
고졸	110	92	66	268
중졸	90	113	88	291
열 합계	455	310	235	1000

독립성 검정

$$H_0:(p_{11},p_{12},\cdots,p_{1c})=\cdots=(p_{r1},p_{r2},\cdots,p_{rc}).$$
 \square $H_0:p_{ij}=p_{i.}p_{.j},\ i=1,\cdots,r;\ j=1,\cdots,c.$

-교차분석 : 2개의 범주형 변수에 대해 빈도표 그린 것(이차원 빈도표, 교차표)->일단 교차표 만듬.

-동일성 : 연령에 따라 선호하는 청량 음료의 분포가 동일한가?

-독립성: 교육수준과 소득수준이 관련이 있는가?

-두 양적 변수의 연관성->상관계수, 두 질적 변수의 연관성->교차표를 이용

제3장. 교차표 분석-관찰도수와 기대도수

관찰도수

 n_{ij}

연령/상품	Α	В	С	전체
30세 이하	20 20%	20 20%	60 60%	100
30세 이상	70 35%	100 50%	30 15%	200
전체	90 30%	120 40%	90 30%	300

기대도수

 e_{ij}

$$e_{ij} = \frac{n_i \cdot n_{\cdot j}}{n}$$

연령/상품	Α	В	С	전체
30세 이하	30 30%	40 40%	30 30%	100
30세 이상	60 30%	80 40%	60 30%	200
전체	90 30%	120 40%	90 30%	300

제3장. 교차표 분석-카이제곱 (Chi-Square) 검정

$$\chi^2 = \sum_{i} \sum_{j} \frac{(n_{ij} - e_{ij})^2}{e_{ij}}$$
: Pearson's chi-square

IxJ 분할표에서 카이제곱에 대한 준거분포는 자유도가 (I-1)x(J-1)인 카이제곱 분포 (대표본 이론)

예)
$$(20-30)^2/30 + (20-40)^2/40 + ... + (30-60)^2/60 = 65$$

p-값 = 0.001, $\chi^2(2) = 5.99$
 \Rightarrow 연령과 상품이 독립이라는 귀무가설을 기각

- ※ 카이제곱 검증을 위한 충분조건(Cochran의 기준):
 - 80% 이상의 칸(cell)들에서 기대빈도 *E_{ij}* ≥5.
- ※ 이 조건을 만족시키지 못하는 경우에는 인접(유사)행 또는 열의 병합 후 카이제곱 검정을 적용하거나 Fisher's Exact Test를 수행해야 함.

H0 : 지점에 관계없이 고객들의 서비스 만족도의 분포는 동일하다.

Store * Service satisfaction 교차표

				Service satisfaction					
			Strongly Negative	Somewhat Negative	Neutral	Somewhat Positive	Strongly Positive	전체	
Store	Store 1	빈도	25	20	38	30	33	146	
		Store 중 %	17.1%	13.7%	26.0%	20.5%	22.6%	100.0%	
	Store 2	빈도	26	30	34	27	19	136	
		Store 중 %	19.1%	22.1%	25.0%	19.9%	14.0%	100.0%	
	Store 3	빈도	15	20	41	33	29	138	
		Store 중 %	10.9%	14.5%	29.7%	23.9%	21.0%	100.0%	
	Store 4	빈도	27	35	44	22	34	162	
		Store 중 %	16.7%	21.6%	27.2%	13.6%	21.0%	100.0%	
전체		빈도	93	105	157	112	115	582	
		Store 중 %	16.0%	18.0%	27.0%	19.2%	19.8%	100.0%	

카이제곱 검정

	찺	자유도	점근 유의확률 (양측검정)
Pearson 카이제곱	16.293 ^a	12	·O
우도비	17.012	12	.149
선형 대 선형결합	.084	1	.772
유효 케이스 수	582		

a. 0 셀 (.0%)은(는) 5보다 작은 기대 빈도를 가지는 셀입니다. 최소 기대빈도는 21.73입니다.

방향성 측도

			찳	점근 표준오차ª	근사ㅜ값 ^b	근사 유의확률
명목척도 대 명목척도	람다	대칭적	.013	.009	1.486	.137
		Store 종속	.026	.017	1.486	.137
		Service satisfaction 종속	.000	.000	.°	.c
	Goodman과 Kruskal 타우	Store 종속	.009	.004		.183d
		Service satisfaction 종속	.007	.003		.226 ^d

- a. 영가설을 가정하지 않음.
- b. 영가설을 가정하는 점근 표준오차 사용
- c. 점근 표준오차가 0이므로 계산할 수 없습니다.
- d. 카이제곱 근사법을 기준으로

대칭적 측도

		값	근사 유의확률
명목척도 대 명목척도	ΠͰΟΙ	.167	.178
	Cramer의 V	.097	.178
	분할계수	.165	.178
유효 케이스 수		582	

Store * Service satisfaction * Contact with employee 교치표

					Ser	vice satisfac	tion		
Contact with employee			Strongly Negative	Somewhat Negative	Neutral	Somewhat Positive	Strongly Positive	전체	
No	Store	Store 1	빈도	16	9	18	17	19	79
			Store 중 %	20.3%	11.4%	22.8%	21.5%	24.1%	100.0%
		Store 2	빈도	2	15	16	13	12	58
			Store 중 %	3.4%	25.9%	27.6%	22.4%	20.7%	100.0%
		Store 3	빈도	9	14	23	22	14	82
			Store 중 %	11.0%	17.1%	28.0%	26.8%	17.1%	100.0%
		Store 4	빈도	17	14	19	10	10	70
			Store 중 %	24.3%	20.0%	27.1%	14.3%	14.3%	100.0%
	전체		빈도	44	52	76	62	55	289
			Store 중 %	15.2%	18.0%	26.3%	21.5%	19.0%	100.0%
Yes	Store	Store 1	빈도	9	11	20	13	14	67
			Store 중 %	13.4%	16.4%	29.9%	19.4%	20.9%	100.0%
		Store 2	빈도	24	15	18	14	7	78
			Store 중 %	30.8%	19.2%	23.1%	17.9%	9.0%	100.0%
		Store 3	빈도	6	6	18	11	15	56
			Store 중 %	10.7%	10.7%	32.1%	19.6%	26.8%	100.0%
		Store 4	빈도	10	21	25	12	24	92
			Store 중 %	10.9%	22.8%	27.2%	13.0%	26.1%	100.0%
	전체		빈도	49	53	81	50	60	293
			Store 중 %	16.7%	18.1%	27.6%	17.1%	20.5%	100.0%

카이제곱 검정

Contact with employee		값	자유도	점근 유의확률 (양측검정)
No	Pearson 카이제곱	20.898ª	12	.052
	우도비	22.937	12	.028
	선형 대 선형결합	3.514	1	.061
	유효 케이스 수	289		
Yes	Pearson 카이제곱	25.726 ^b	12	.012
	우도비	25.777	12	.012
	선형 대 선형결합	1.993	1	.158
	유효 케이스 수	293		

방향성 측도

Conta	ct with employee			값	점근 표준오차ª	근사T값 ^b	근사 유의확률
No	명목척도 대 명목척도	람다	대칭적	.036	.030	1.178	.239
			Store 종속	.068	.044	1.498	.134
			Service satisfaction 종속	.005	.028	.164	.869
		Goodman과 Kruskal 타우	Store 종속	.023	.009		.067°
			Service satisfaction 종속	.016	.006		.112°
Yes	명목척도 대 명목척도	람다	대칭적	.053	.029	1.806	.071
			Store 종속	.080	.037	2.081	.037
			Service satisfaction 종속	.028	.030	.927	.354
		Goodman과 Kruskal 타우	Store 종속	.031	.012		.007°
			Service satisfaction 종속	.020	.008		.021°

- a. 영가설을 가정하지 않음.
- b. 영가설을 가정하는 점근 표준오차 사용
- c. 카이제곱 근사법을 기준으로

대칭적 측도

Contac	t with employee	값	근사 유의확률	
No	명목척도 대 명목척도	파이	.269	.052
		Cramer의 V	.155	.052
		분할계수	.260	.052
	유효 케이스 수		289	
Yes	명목척도 대 명목척도	파이	.296	.012
		Cramer의 V	.171	.012
		분할계수	.284	.012
	유효 케이스 수		293	

제3장. 교차표 분석-행 간 평균 차이(열이 순서형)

• SPSS사례분석-데이터(CAT06.sav)

한 정화시설 처리장에서 세가지 처리(행:무처치(placebo), 표준처치 (standard), 새로운 처치(test))에 있어서 물이 깨끗해지는 정도(열: 물이 깨끗해지는 시간 0, 1, 2, 3, 4시간, 즉 몇 시간이 지나야 물이 깨끗해지는가?)를 77개의 물의 샘플을 대상으로 조사하였다. 세 처리집단의 분포가 같다고 할 수 있는가?

처리 완화시간	무처치	표준처치	새로운처치	
0	6	1	2	
1	9	4	5	
2	6	6	6	
3	3	6	8	
4	1	8	6	

귀무가설: 세 처리 집단의 분포가 같다.

대립가설: 세 처리 집단의 분포가 같지 않다.

제3장. 교차표 분석-행 간 평균 차이(열이 순서형)

• SPSS사례분석-데이터(CAT06.sav)

	이름	유형	너비	소수점이	설명	값	결측값	열	맞춤	측도
1	treat	숫자	8	2		없음	없음	8	≣ 오른쪽	∢ ♡ 도(S) ▼
2	relief	숫자	8	2		없음	없음	8	≣ 오른쪽	
3	count	숫자	8	2		없음	없음	8	≣ 오른쪽	₫ 순서(O)
4										옳 명목(N)
5										

제3장. 교차표 분석-행 간 평균 차이(열이 순서형)

• SPSS사례분석-데이터(CAT06.sav)

제3장. 교차표 분석-행 간 평균 차이(열이 순서형)

• 출력결과

			ueat "	I Gliei Tryta	Ľ			
<u>빈도</u>								
			relief					
		1.00	2.00	3.00	4.00	5.00	전체	
treat	1.00	6	9	6	3	1	25	
1	2.00	1	4	6	6	8	25	
1	3.00	2	5	6	8	6	27	
전체		9	18	18	17	15	77	

troat * rollof JJTLI

카이제곱 검정

	캆	자유도	점근 유의확률 (양측검정)
Pearson 카이제곱	14.593 ^a	8	.068
우도비	15.504	8	.050
선형 대 선형결합	8.067	1	.005
유효 케이스 수	77		

a. 5 셀 (33.3%)은(는) 5보다 작은 기대 빈도를 가지는 셀입니다. 최소 기대빈도는 2.92입니다.

Kruskal-Wallis 검정

순위

	treat	N	평균순위
relief	1.00	25	25.90
	2.00	25	47.28
	3.00	27	43.46
	합계	77	

검정 통계량^{a,b}

	relief
카이제곱	13.689
자유도	2
근사 유의확률	.001

a. Kruskal Wallis 검정

b. 집단변수: treat

제3장. 교차표 분석-독립성 검정

제3장. 교차표 분석-독립성 검정

Shopping frequency * Overall satisfaction 교차표

빈도

<u> 민노</u>							
			Overall satisfaction				
		Strongly Negative	Somewhat Negative	Neutral	Somewhat Positive	Strongly Positive	전체
Shopping frequency	First time	5	13	15	14	5	52
	< 1/month	26	38	39	34	16	153
	1/month	27	43	46	55	30	201
	1/week	7	36	33	40	26	142
	> 1/week	1	8	10	5	10	34
전체		66	138	143	148	87	582

카이제곱 검정

	값	자유도	점근 유의확률 (양측검정 <mark>)</mark>
Pearson 카이제곱	26.121ª	16	.d <mark>%2</mark>).
우도비	27.320	16	.038
선형 대 선형결합	9.873	1	.002
유효 케이스 수	582		

a. 1 셀 (4.0%)은(는) 5보다 작은 기대 빈도를 가지는 셀입니다. 최소 기대빈도는 3.86입니다.

대칭적 측도

	찳	점근 표준오차ª	근사工값 ^b	근사 유의확률
순서척도 대 순서척도 감마	.140	.043	3.267	.001
유효 케이스 수	582			

제3장. 교차표 분석-상관계수(행과 열 모두 순서형)

• SPSS 사례분석- 데이터(CAT07.sav)

제3장. 교차표 분석-상관계수(행과 열 모두 순서형)

• SPSS 사례분석- 데이터(CAT07.sav)

제3장. 교차표 분석-상관계수(행과 열 모두 순서형)

• 출력결과

_			_		
7	ιп	М		м	м
_	U		\blacksquare		0

	캆	자유도	점근 유의확률 (양측검정)
Pearson 카이제곱	55.088ª	4	.000
우도비	58.037	4	.000
선형 대 선형결합	50.602	1	.000
유효 케이스 수	166		

a. 0 셀 (.0%)은(는) 5보다 작은 기대 빈도를 가지는 셀입니다. 최소 기대빈도는 11.64입니다.

비모수 검정

Jonckheere-Terpstra 검정^a

	wash
trt의 수준의 수	3
N	166
관측된 J-T 통계량	6741.500
평균 J-T 통계량	4535.500
J-T 통계량의 표준편차	309.369
표준화 J-T 통계량	7.131
근사 유의확률(양측)	.000

a. 집단변수: trt

제3장. 교차표 분석-정확 검정 (exact test)

□ SPSS 사례분석 - 데이터(CAT03.sav)

제3장. 교차표 분석-정확 검정 (exact test)

• 출력결과

케이스 처리 요약

	케이스					
	유효		결측		전체	
	Z	퍼센트	Z	퍼센트	Z	퍼센트
treat * favorun	18	100.0%	0	.0%	18	100.0%

treat * favorun 교차표

ы	ㄷ
	ㅗ

			favo		
•			favor	unfavor	전체
	treat	placebo	10	2	12
		test	2	4	6
	전체		12	6	18

카이제곱 검정

	값	자유도	점근 유의확률 (양측검정)	정확한 유의확률 (양측검정)	정확한 유의확률 (단측검정)
Pearson 카이제곱	4.500 ^a	1	.034		
연속수정b	2.531	1	.112		\bigcirc
우도비	4.463	1	.035		
Fisher의 정확한 검정				.107	.057
유효 케이스 수	18				

a. 3 셀 (75.0%)은(는) 5보다 작은 기대 빈도를 가지는 셀입니다. 최소 기대빈도는 2.00입니다.

b. 2x2 표에 대해서만 계산됨

제3장. 교차표 분석-연관성 측도

• 파이 계수 (Phi Coefficient)

$$\begin{split} \phi &= \frac{n_{11} \ n_{22} - n_{12} \ n_{21}}{\sqrt{n_{1.} \ n_{2.} \ n_{.1} \ n_{.2}}} \quad \text{ for } 2 \times 2 \text{ tables } \quad -1 \leq \phi \leq 1 \\ \\ \phi &= \sqrt{Q_P/n} \quad \text{ otherwise } \quad 0 \leq \phi \leq \min(\sqrt{R-1}, \sqrt{C-1}) \end{split}$$

• 크래머 V (Cramer's V)

$$V=\phi$$
 for 2×2 tables $-1\leq V\leq 1$
$$V=\sqrt{\frac{Q_P/n}{\min(R-1,C-1)}} \quad \text{otherwise} \quad 0\leq V\leq 1$$

분할계수 (Contingency Coefficient)

$$P = \sqrt{\frac{Q_P}{Q_P + n}} \qquad \boxed{0 \leq P \leq \sqrt{(m-1)/m} \text{ , where } m = min(R,C)}$$

- ✓ 2차원 분할표에서 행과 열의 결합정도를 수량화
- λ(C|R): 명목형 행과 열에 적용.
- 행 수준의 유무에 따라 열에 대한 "예측오류감소"계산.

(예) 1987년 대통령 선거

5대 도시	노태우	김영삼	김대중	김종필	합계
서울	1683	1637	1833	461	5614
부산	641	1117	182	52	1992
대구	800	275	30	23	1128
인천	326	249	177	76	828
광주	23	2	450	1	476
합계	3473	3280	2672	613	10038

(1) 행에 대한 정보를 없애면

5대 도시	노태우	김영삼	김대중	김종필
합계	3473	3280	2672	613

최소 예측오류수 = 0 +3280 +2672 +613 = 6565

(2) 행에 대한 정보를 활용하면 최소 예측오류수 = 5512

5대 도시	노태우	김영삼	김대중	김종필
서울	1683	1637	1833	461
부산	641	1117	182	52
대구	800	275	30	23
인천	326	249	177	76
광주	23	2	450	1

따라서 오류감소 비 = 1-5512/6565 = $0.16 = \lambda(C|R)$: 정의, $0 \le \lambda(C|R) \le 1$

• 분할표에서 두 명목형 변수 사이의 연관성을 재는 측도. (0≤λ≤1)

- $\lambda = 1$
 - 행의 정보를 이용할 때 열의 정보를 예측함에 전혀 오류가 없다.
 - 행변수는 열 변수를 예측하는데 중요한 요인이다.
 - 두 변수간 큰 연관관계가 있다.
- $\lambda = 0$
 - 열에 대한 정보를 예측하는데 행의 정보가 아무런 역할이 없다.
 - 두 변수간에 연관관계가 없다.

• SPSS 사례분석 - 데이터(CAT08.sav)

• 출력결과

city * candidate 교차표

_		
		_
-	۰	ᆂ

<u> </u>								
			candidate					
		KDJ	KDJ KJP KYS RTW					
city	Inchon	177	76	249	326	828		
	Kwangju	450	1	2	23	476		
	Pusan	182	52	1117	641	1992		
	Seoul	1833	461	1637	1683	5614		
	Taegu	30	23	275	800	1128		
전체		2672	613	3280	3473	10038		

카이제곱 검정

	값	자유도	점근 유의확률 (양측검정)
Pearson 카이제곱	2660.777ª	12	.000
우도비	2654.271	12	.000
유효 케이스 수	10038		

a. 0 셀 (.0%)은(는) 5보다 작은 기대 빈도를 가지는 셀입니다. 최소 기대빈도는 29.07입니다.

방향성 측도

			값	점근 표준오차ª	근사工값 ^b	근사 유의확률
명목척도 대 명목척도	람다	대칭적	.096	.006	14.026	.000
		city 종속	.000	.000	.c	۰.۰
		candidate 종속	.160	.011	14.026	.000
	Goodman과 Kruskal 타우	city 종속	.056	.003		.000d
		candidate 종속	.108	.003		.000d

γ : 순서형 행과 열에 적용. 행과 열 결합의 일치성·비일치성의 경우 수를 비교.

(예) 지위에 따른 업무 만족도

	만		
지위	낮음	높음	합계
하	20	10	30
상	5	25	30
합계	25	35	60

지위와 만족도 사이의 일치쌍(concordant pair)의 수 = 20x25 = 500 비일치쌍(discordant pair)의 수 = 5x10 = 50 정의: 감마 = 일치쌍의 수 - 비일치쌍의 수 일치쌍의 수 + 비일치쌍의 수 = 450/550 = 0.82

- 분할표에서 두 순서형 변수 사이의 연관도를 재는 측도. (-1≤γ≤1)
- 일치쌍 (concordant pair) : 각 변수에 대한 관측값이 크기순서에서 같은 방향에 있는 한 쌍의 관측개체. (C)
- 불일치쌍 (discordant pair) : 각 변수에 대한 관측값이 크기순서에서 반대방향에 있는 한 쌍의 관측개 체. (D)

$$\gamma = \frac{(C-D)}{(C+D)}$$

• 감마가 0에 가까울수록 두 범주간 연관관계가 없고, 1에 가까울수록 양(+)의 연관관계, -1에 가까울 수록 음(-)의 연관관계를 가진다.

• SPSS 사례분석-데이터(CAT09.sav)

• 출력결과

position * satisfaction 교차표

<u>빈도</u>

_		satisfa		
		1.00 2.00		전체
position	1.00	20	10	30
	2.00	5	25	30
전체		25 35		60

카이제곱 검정

	값	자유도	점근 유의확률 (양측검정)	정확한 유의확률 (양측검정)	정확한 유익확률 (단측검정)
Pearson 카이제곱	15.429 ^a	1	.000		
연속수정b	13.440	1	.000		
우도비	16.279	1	.000		
Fisher의 정확한 검정				.000	.000
선형 대 선형결합	15.171	1	.000		
유효 케이스 수	60				

a. 0 셀 (.0%)은(는) 5보다 작은 기대 빈도를 가지는 셀입니다. 최소 기대빈도는 12.50입니다.

대칭적 측도

		캆	점근 표준오차ª	근사工값 ^b	근사 유의확률
١	순서척도 대 순서척도 감마	.818	.103	4.557	.000
	유효 케이스 수	60			

a. 영가설을 가정하지 않음.

b. 2x2 표에 대해서만 계산됨

b. 영가설을 가정하는 점근 표준오차 사용

제3장. 교차표 분석-심슨의 파라독스 (Simpson's Paradox)

✔ 분할표 분석에 있어 전체분석결과와 세부분석의 결과가 모순되는 현상

(예) Berkeley Admission Data, 1973

	합격	불합격	지원자 계
남자	1400 (52%)	1291 (48%)	2691 (100%)
여자	772 (42%)	1063 (58%)	1835 (100%)
전체	2172 (48%)	2354 (52%)	4526 (100%)

성차별 주장. 그러나....

	남		Й	
분야	지원자	합격률	지원자	합격률
Α	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	60%	341	70%

제3장. 교차표 분석-심슨의 파라독스 (Simpson's Paradox)

전체	성공	실패	합계
실험군	20 (50%)	20 (50%)	40 (100%)
대조군	16 (40%)	24 (60%)	40 (100%)

실험군이 대조군보다 치료율에 있어 10% 포인트 우세한 것으로 보임.

그러나 전체 사례를 증상의 정도에 따라 분류하여 보면,

결론은 그 정반대로 나온다.

경증	성공	실패	합계
실험군	18 (60%)	12 (40%)	30 (100%)
대조군	7 (70%)	3 (30%)	10 (100%)

중증	성공	실패	합계
실험군	2 (20%)	8 (80%)	10 (100%)
대조군	9 (30%)	21 (70%)	30 (100%)

제3장. 교차표 분석-코호트 연구(Chort Study)

- > 코호트 연구 (Chort Study) : 원인을 알고 결과를 추적해 가는 것
- ➤ 전향적 연구 (prospective study) : 흡연유무에 따른 폐암 발생율 차이
- 추적조사를 해야 하므로 시간이 많이 걸리고 방대한 비용이 들며 연구관리 가 상당히 어렵다.

	비폐암 (Y=0)	폐암 (Y=1)
흡연그룹 (그룹 0)	99.30% $P_{00} = n_{00}/n_0$	$0.70\% \\ \rho_{01} = n_{01}/n_0$
비흡연그룹 (그룹 1)	99.95% $p_{10} = n_{10}/n_1$	0.05% $p_{11} = n_{11}/n_1$

비율의 차 (difference in rate)

$$\Delta = p_{11} - p_{01} = 0.70\% - 0.05\% = 0.65\%$$

• 상대비 (relative rate)

$$\Delta = \rho_{11}/\rho_{01} = 0.70\%/0.05\% = 14.0$$

● 오즈비 (odds ratio)

$$\Psi = (p_{11}/p_{10})/(p_{01}/p_{00})$$
$$= (0.70/99.30)/(0.05/99.95) = 14.09$$

- 반응(Y=1)의 출현비율이 아주 작은 경우 오즈비는 상대비율과 거의 동일한 값을 갖는다.

제3장. 교차표 분석-사례-대조 연구 (Case-Control Study)

- ▶후향적 연구 (retrospective study)
- ▶시간과 비용 측면에서 경제적이다.
- ▶관측 편의 개입소지 있다.

	비폐암 대조군	폐암 사례군
흡연그룹	200	780
(그룹 0)	n_{00}	n_{01}
비흡연그룹	800	220
(그룹 1)	n_{10}	n_{11}
합계	1000	1000

• 오즈비 (odds ratio)

- 사례-대조 연구에서는 ρ_{ij} 를 알 수 없으므로 비율의 차나 상대비율을 계산할 수 없다.
- 이 경우 오즈비가 상대비율의 추정치로 사용될 수 있다.