Working with Light

Working with Light for Computer Graphics

Physics and Optics:

- Light is <u>emitted</u> from a <u>light source</u>
 - e.g. the sun, a light bulb, computer monitor, cell phone, etc.
- That emitted light impacts various objects, and may be <u>reflected</u> or <u>absorbed</u>
 - This reflection/absorption modifies the light
 - e.g. creating color, brightness, dullness/shininess, highlights, etc.
- In addition, light may pass (transmit) through various materials and (in doing so) be bent, scattered, etc.
 - e.g. prism, stained glass windows, water, etc.

Human Perception:

- Eventually, some light may enter our eyes creating a signal
- Our <u>brain</u> creates an <u>image</u> based on the signals it gets from our eyes

Software/Hardware:

- Understanding the physics of light (i.e. optics) is important
- Understanding human perception allows for MANY optimizations/simplifications in both software/hardware
- The images we create ARE NOT intended to duplicate reality, only to fool humans into believing such

Electromagnetic Spectrum

 The human eye can only see wavelengths between about 400 nm to 700 nm, so we focus on those

Relative Power Distribution of Lights

Adding Light Energy

The human eye perceives combinations of light energy as follows:

Adding Light Energy

- Energy adds (per wavelength) according to: $E(\lambda) = E_1(\lambda) + E_2(\lambda)$
- This leads to the following relative power distributions:

Absorbing & Reflecting Light Energy

Absorbing & Reflecting Light Energy

All light energy is either reflected or absorbed: $\mathbf{r}(\lambda) + a(\lambda) = \mathbf{1}$

×

$$0 \le r(\lambda), a(\lambda) \le 1$$

Reflected light energy (per wavelength) is computed via:

$$Reflected(\lambda) = E(\lambda)r(\lambda) = E(\lambda)(1-a(\lambda))$$

Incoming Energy

Material's Reflectance

Reflected Energy

Sensor Absorption

- Sensors absorb light (per unit time) and create a signal (per unit time)
 - In order to be small (both biologically/mechanically), they are highly specialized

- Specialization leads to sensors only creating one signal (per unit time) for the entire sensor
- They conflate all the various wavelengths of light they absorb into one signal (per unit time)

Not all wavelengths contribute equally to the final signal

Sensors in the Human Eye

- The eye has 3 different kinds of cone sensors and 1 rod sensor
- Proteins in the cone/rod cells absorb photons changing the cell's membrane potential
- At <u>night</u>, cones are under-saturated (no/low/noisy signal), and rods produce most of the understandable signals

• During the day, the rod signals are over-saturated (all clamped to max), and we see

primarily with our cones

Response Functions for Human Eye Sensors

- The 3 cone sensors each have response functions focused on different wavelengths, and are referred to as red, green, and blue cones
 - The single rod sensor is interpreted as a black/white/gray light intensity

Note the similarity in red/green (in regard to red/green colorblindness)

At night, the *single* signal from the rod can at best be understood as a shade of gray

Trichromatic Theory

- Given any human perceived "color"
- Can adjust the brightness of 3 single wavelength lasers (e.g. R = 700 nm, G = 546 nm, B = 435 nm) to fool a human observer into "mistakenly" thinking that the laser combination matches that "color" (i.e. as a single wavelength)
- This is doable because each of the three cones can only send one signal (3 dimensional basis)

- Since the eye only perceives 3 signals (ignoring rods), we only need 3 signals for images, cameras, printers, displays, etc. (human perceived color is a three dimensional space!)
- Image formats store values in the R, G, and B channels

Three-Dimensional Color Space

- Map each primary color (Red, Green, Blue) to the unit distance along the x, y, z axes
- Black at (0,0,0), white at (1,1,1)
- The resulting RGB Color Cube represents all possible colors

Cylindrical HSV Color Space

- A better 3D color space for <u>user interfaces</u> is based on Hue, Saturation, and Value (HSV)
- Hue: rainbow of colors ("wavelength")
- Saturation: intensity for a particular color
- Value: lightness or darkness of a particular color

Luminance and Chrominance (YUV)

- Another 3D color space represents an RGB color via 1 luminance (Y) and 2 chrominance (UV) channels
- Black and White televisions used Y only, which perceptually holds the most spatial details
- Thus, can compress more aggressively in U & V than in Y

Interchangeability of Color Spaces

 One can map back and forth between any two 3D color spaces via matrix multiplication (using an appropriate matrix and its inverse)

• For example:
$$\begin{bmatrix} Y \\ U \end{bmatrix} = \begin{bmatrix} .299 & .587 & .114 \\ -.14713 & -.28886 & .436 \\ 0.615 & -.51499 & -.10001 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

 Aside: note how important the Green channel is for the details in Y, as well as how unimportant the Blue channel is (for detail)

Additive vs. Subtractive Color Spaces

- Additive Color Space:
 - Superimposed colored lights (e.g. computer display)
 - Add spectra (wavelength by wavelength)
 - R + G + B = white

- Subtractive Color Space:
 - Sequence of color filters (e.g. ink pigments or paint)
 - Multiply by all absorption coefficients (wavelength by wavelength)
 - R + G + B = black

Printers (CMYK)

- Printers use a subtractive color model
- Cyan, Magenta, Yellow (CMY) are the three primary colors of the subtractive color model
- These inks partially or entirely mask/filter/absorb colors on a white background, reducing the light that would otherwise be reflected
- Equal mixtures of C, M, Y should (ideally) produce all shades of gray
- However, in practice, mixtures of C, M, Y do not give perfect grays
- In addition, it's difficult to get perfect alignment of the 3 inks
- Instead, most fine details are printed with the Key color (= K = black)
- This also reduces ink bleeding, reduces the time to dry, and saves money on colored ink

Limited Spatial Resolution

- Sensors are have a finite size, or area
- Thus, there is a limited number of signals per square inch, based on how closely they are packed together

Fig. 13. Tangential section through the human fovea. Larger cones (arrows) are blue cones.

- The cones are the most densely packed at the center of the retina (the fovea), giving maximum detail for whatever the eye is looking directly at
- The rods have nearly a zero density at the fovea, which is why astronomers look out of the "side" of their eye

Distance Matters

- Closer/farther away objects project to larger/smaller areas on the cones, meaning more/less cones receive light signals from it
- Thus, closer objects can be seen in higher spatial detail than farther away objects

Resolution: 2048x1080

Size: 13.7m diagonal

4.29 dots per inch (dpi)

- Lower resolution is acceptable for a cinema screen, since viewers sit much farther away from it as compared to a cell phone with 300+ pixels per inch (ppi)
- The number of cones per (image) feature is comparable between cinema screens and cell phones, given the differing distance of the observer

Projectors

Making large displays for far away viewers is difficult; thus, projectors are very important

- A Digital Micro-Mirror Device (DMD) is the core component in Digital Light Processing (DLP)
 projectors
- Each mirror corresponds to one pixel, and has two states; it can either reflect the light into or out of the "pupil" of the projector
- Rapidly toggling a mirror between these two states produces brighter/dimmer light, controlled by the ratio of on-time to off-time

Display Technology

- The closer one sits to a display, the more cones per feature and thus more detail one can see
- Thus, significant efforts have been spent on improving display (spatial) resolution

liquid crystal display (LCD)

plasma

iPhone/i Pad LCD

Electronic ink, ebook readers

Camera Resolution

- Camera pixels use the photelectric effect to generate an election when hit by a photon (with some efficiency/probability)
- They are quite complex and, like cones, take up physical space
- This limits the resolution of what they can capture (just like for cones in the eye)

Camera Resolution

• Each camera sensor records incoming light energy per second (power)

• Each captures only one signal (per unit time) for its entire 2D spatial area

• Color filters are used to limit incident light to a particular color (so the same sensor can be

used for every color)

Note the doubled amount of Green sensors, due to that color's importance in capturing spatial details

Temporal Resolution

- For moving images (animations), 16 Hz (at a minimum) is needed for humans to *not* interpret them as a series of still pictures
 - Movies are recorded at 24 frames per second
 - TV broadcasts at 30 frames per second
- Flicker fusion threshold: frequency at which an intermittent light stimulus appears to be steady to the observer
- Even though motion may seem to be continuous at 24-30 frames per second, the <u>brightness</u> may still seem to flicker
 - Movies are refreshed at 48 or 72 Hz (with each frame projected 2 or 3 times)
 - Computer monitors refresh at 60-80 Hz (or more) independent of what is being displayed
 - TVs (used to) use interlacing to approximate 60 Hz, showing half of each frame at a time

Brightness (Luminance)

- The human eye is much more sensitive to <u>spatial variations</u> in brightness (gray scale) than to spatial variations in color
- The three images on the right add together to give the image on the left
- · Notice which of the three images on the right has the most spatial details!

Brightness Discrimination Experiment

• Changing the brightness (intensity) of the circle by 1 to 2% makes it just noticeable to most people

Discretizing Brightness

- Since our eye can see small brightness changes, we need many levels for brightness
- Otherwise, changing brightness by the smallest amount looks discontinuous
- Thus, we typically use 256 levels for brightness
- That is, we store R, G, B each ranging from 0 to 255
- High Dynamic Range (HDR) image formats use an even larger range than 0-255

Dynamic Range

• World:

Possible: 100,000,000,000:1 (from the sun to pitch black)

Typical Real World Scenes: 100,000:1

• Human Eye:

• Static: 100:1

• Dynamic: 1,000,000:1 (as the eye moves, it adaptively adjusts exposure by changing the pupil size)

• Media:

• Newsprint: 10:1

Glossy print: 60:1

- Samsung F2370H LCD monitor: static 3,000:1, dynamic 150,000:1
 - <u>Static contrast ratio</u> is the luminance ratio between the brightest white and darkest black within a *single* image
 - <u>Dynamic contrast ratio</u> is the luminance ratio between brightest white possible (on any image) and the darkest black possible (on any image) on the same device
- The contrast ratio in a TV monitor specification is measured in a dark room. In normal office lighting conditions, the effective contrast ratio drops from 3,000:1 to less than 200:1

The Real World has High Dynamic Range

The relative irradiance values of the marked pixels

The Real World has High Dynamic Range

- 16 photographs of the Stanford Memorial Church taken at 1-stop increments from 30s to 1/1000s
- No single image captures everything desirable in both the darkest and the brightest regions (some pixels are over-saturated and others have no signal at all)

Tone Mapping

- "Compositing" <u>all</u> the information from <u>all</u> the images gives a result with a <u>High Dynamic</u> <u>Range</u> (i.e., 0-X with X >> 255)
- But that range is too large for the standard image format (i.e., since X > 255)
- Solution #1: Linearly rescale/compress the values so that X=255
 - Small intensity differences are <u>quantized</u> (a range of values map to the same integer), and relative differences (and details) are lost
- Solution #2: Logarithmic map to rescale/compress
 - Information is still quantized, but in a more forgiving way exploiting human's "perceptual space" (once again)
- Solution #3: Other approaches...
 - E.g., Local operators map each pixel value based on surrounding pixel values (human vision is sensitive to *local* contrast)

Human Perception of Intensities

- Brightness intensity differences are better perceived by humans at lower (as opposed to higher) light intensities (a 1-2% difference is smaller at lower intensities)
- Logarithmic compression uses more of the display's brightness resolution for the more important lower intensities in the image (and thus less for the higher intensities)
- This gives less quantization in the lower intensities of the image (than in the higher intensities), and is thus more optimal for human consumption

$$S = I^p$$

Se	nse	Exponent	
Br	ightness	0.33	
Lo	udness	0.60	
Le	ngth	1.00	
He	aviness	1.45	

Linear vs. Logarithmic Compression

Linear

Logarithmic

Gamma Encoding and Correction

- Maximize the use of the information relative to human perception
- More bits are allocated to the lower intensity (darker) regions of the image than to the higher intensity (lighter) regions
- <u>Gamma correction</u> is applied to the <u>gamma encoded</u> images to convert them back to the original scene brightness/luminance

