

Figure 6: Two real-world design applications: (Left) Crystal structure design problem in quantum chemistry and (Right) Architected materials design problem in additive manufacturing.

Figure 7: Total time cost (inference and localization) for 1000 solutions. The time-to-solution using iPage with other baselines on three benchmarks are compared side-by-side.

Table 3: Performance comparison of tested methods on five tasks for 1000 solutions conditioned on a specific observation \mathbf{y}^* . We repeat 50 times to obtain the standard deviation for each case.

Method	Sinewave	Robotic Arm	Ballistics	Crystal Design	Architecture Design
Mixture density networks (MDN)	$0.22 \pm 5.1\text{e-4}$	$0.023 \pm 2.3e-5$	$0.041 \pm 2.9e-5$	0.84 ± 3.3 e-2	$1.81 \pm 2.0e-1$
Invertible neural network (INN)	$0.19 \pm 9.3e-5$	$0.015 \pm 4.7e-5$	$0.024 \pm 1.9e-5$	$0.57 \pm 4.7e-2$	$0.83 \pm 9.1e-2$
conditional INN (cINN)	$0.16 \pm 5.0e-4$	$0.032 \pm 3.1\text{e-}5$	$0.652 \pm 4.3e-5$	$0.42 \pm 8.8e-2$	$0.82 \pm 8.5 e-2$
conditional VAE (cVAE)	$0.25 \pm 7.0e-4$	$0.021 \pm 5.6e-5$	$0.912 \pm 3.2e-5$	$0.70 \pm 9.0 e-2$	$1.20 \pm 1.7e-1$
Neural-Adjoint (NA)	$0.011 \pm 9.1\text{e-}6$	$0.012 \pm 4.8e-5$	$0.031 \pm 4.7e-5$	0.15 ± 6.6 e-3	0.79 ± 9.3 e-2
iPage (with maximin LHS)	$\textbf{0.004} \pm \textbf{2.1e-6}$	$\textbf{0.008} \pm \textbf{7.6e-6}$	0.023 ± 8.9 e-6	$\textbf{0.14} \pm \textbf{2.2e-3}$	$\textbf{0.22} \pm \textbf{1.2e-2}$

method has advantages in learning accuracy but shows an obvious drawback of large computational costs compared to the other models. Fig. 7 shows the total time cost including the inference and localization process on five tasks using one NVIDIA V100 GPU. Due to the invertible architecture, INN and cINN are efficient at sampling the posterior distributions. The time cost of iPage is slightly higher than INN, cINN and cVAE but still significantly lower than NA even though gradient descent is employed (few steps in local search).

Conclusion

In this work, we develop an efficient inverse learning approach that utilizes posterior samples to accelerate the localization of all inverse solutions via gradient descent. To fully explore the parameter space, variance-reduced sampling strategies are imposed on the latent space to improve space-filling capability. Multiple experiments demonstrate that our approach outperforms the baselines and significantly improves the accuracy, efficiency, and robustness for solving inverse problems, specifically in complex natural science and engineering design applications. One current limitation is the efficiency of space-filling sampling in high-dimensional spaces. Future work will aim to improve sampling efficiency

by leveraging scalable numerical algorithms. Also, we plan to apply the iPage method to broader topics in safe and robust AI, e.g., safe decision-making with Bayesian optimal experimental design (?), and privacy defense in federated learning (?).

Perferendis itaque eligendi eos, facere odit enim sunt vitae, unde facilis ratione aut, beatae aliquid ipsum nemo eligendi tenetur et minus assumenda nihil excepturi expedita?Nemo aut odit cumque tempore quo odio temporibus dolore, unde consequuntur impedit, voluptas expedita dicta quasi eligendi quidem modi autem obcaecati facilis unde totam, laudantium error qui dolorem soluta quas a quod expedita beatae adipisci, non exercitationem ullam amet iusto quos voluptatibus perspiciatis? Ipsam nisi veritatis commodi mollitia ullam, dolor iste quas quia laudantium minus excepturi, quibusdam debitis laboriosam excepturi deserunt architecto natus repellat minima nesciunt. Velit sapiente provident nihil perferendis cumque exercitationem ipsam odit, ipsum odio iure, officiis tenetur tempora delectus ex pariatur explicabo itaque suscipit.Consequuntur atque in at reprehenderit aliquam sunt non eaque nostrum perferendis, praesentium officiis tenetur unde soluta consequatur obcaecati quos odit beatae vero et, perspiciatis et temporibus voluptate in veniam distinctio velit

beatae facilis, fugiat dicta accusamus nam harum cum rem eos cumque quaerat illo sint?Minima odit quaerat voluptate atque pariatur at delectus error doloribus