Foundations of Linear Models, Assignment 1

Ayder Tanriver Ezgi (1541821), Oana Petrof (1541809), Olusoji Oluwafemi Daniel (1541893), Van Baelen Wessel (1234318) Owokotomo Olajumoke Evangelina (1539654)

26 September 2016

Problem 1

(i) Is the matrix of full rank?

Performing elementary row reduction on $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$

$$\begin{array}{c}
 \xrightarrow{r_2/2} \\
 \xrightarrow{r_3-r_1} \\
 \end{array}$$

$$\begin{bmatrix}
 1 & 0 & 1 \\
 0 & 1 & 1 \\
 0 & 2 & 2
\end{bmatrix}$$

$$\xrightarrow{r_3 - 2r_1} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

and counting the number of non-zero rows gives a rank of 2. Also, computing the determinant of the matrix A,

$$1 \begin{vmatrix} 2 & 2 \\ 2 & 3 \end{vmatrix} - 0 \begin{vmatrix} 0 & 2 \\ 1 & 3 \end{vmatrix} + 1 \begin{vmatrix} 0 & 1 \\ 0 & 2 \end{vmatrix} = 0$$

The two approach showed that the matrix is not of full rank since the matrix has rank = 2 which does not span the maximum space in dimension, which is 3. Also, the determinant of the matrix is 0 which implies that one of the rows of the matrix is linearly dependent on another row (row3 = row2 + 1), leading to the same conclusion that the matrix is not of full rank.

(ii) Determine the eigenvalues and eigenvectors

To obtain the eigen values of the matrix A, the equation $|A - \lambda I_3| = 0$ is solved. λ is scalar and I_3 is a (3×3) identity matrix and 0 is a (3×1) column vector. Solving the system;

$$\left| \begin{array}{ccccc} 1 & 0 & 1 & & \lambda & 0 & 0 \\ 0 & 2 & 2 & - & 0 & \lambda & 0 \\ 1 & 2 & 3 & & 0 & 0 & \lambda \end{array} \right| = 0$$

results into the equation $\lambda(6\lambda - \lambda^2 - 6) = 0$ which results in the roots $0, 3 + \sqrt{3}$ and $3 - \sqrt{3}$. Therefore, the eigen values of the matrix are; 4.732, 1.268, 0 and solving the system $(A - \lambda I_3)X = 0$ for each lambda gives the eigen vectors which are;

$$(0.5774, 0.5774, -0.5774)$$
 for 0

(0.2114, 0.5774, 0.7887) for $3 + \sqrt{3}$

and

$$(0.7887, -0.5774, 0.2114)$$
 for $3 - \sqrt{3}$

.

Since the determinant of the matrix is 0 and it is as well symmetric, the product of the eigen values should be 0, i.e. $\prod_{i=1}^{3} \lambda_i = 0$ and the sum of the eigen values should give 6 (trace of the matrix), i.e. $\sum_{i=1}^{3} \lambda_i = 6$. $0 \times (3 + \sqrt{3}) \times (3 - \sqrt{3}) = 0$ and $0 + (3 + \sqrt{3}) + (3 - \sqrt{3}) = 6$ which validates lemma 2(i).

(iii) Check for the validity of Lemma 2(iii)

Lemma 2(iii) is valid if $UDU^{-1} = A$ where U is the eigen vector of the matrix A, U^{-1} is the inverse of the eign vectors of the matrix A and D is a diagonal matrix of the eigenvalues of A.

$$U = \begin{pmatrix} 0.2113 & 0.7887 & 0.5774 \\ 0.5774 & -0.5774 & 0.5774 \\ 0.7887 & 0.2113 & -0.5774 \end{pmatrix}$$

$$D = \left(\begin{array}{ccc} 4.732 & 0.000 & 0.000 \\ 0.000 & 1.268 & 0.000 \\ 0.000 & 0.000 & 0.000 \end{array}\right)$$

and

$$U^{-1} = \begin{pmatrix} 0.2113 & 0.5774 & 0.7887 \\ 0.7887 & -0.5774 & 0.2113 \\ 0.5774 & 0.5774 & -0.5774 \end{pmatrix}$$

Multiplying the matrix, gives;

$$\left(\begin{array}{cccc} 0.2113 & 0.7886751 & 0.5774 \\ 0.5774 & -0.5773503 & 0.5774 \\ 0.7887 & 0.2113 & -0.5774 \end{array} \right) \times \left(\begin{array}{ccccc} 4.732 & 0.000 & 0.000 \\ 0.000 & 1.268 & 0.000 \\ 0.000 & 0.000 & 0.000 \end{array} \right) \times \left(\begin{array}{ccccc} 0.2113 & 0.5774 & 0.7887 \\ 0.7887 & -0.5774 & 0.2113 \\ 0.5774 & 0.5774 & -0.5774 \end{array} \right)$$

The result of the multiplication gives the matrix below which is exactly A, hence the Lemma holds.

(iv) Check for the Validity of Lemma 2(iv)

rank(A) = number of nonzero eigenvalues. This lemma is true for the matrix in question as the number of non-zero eigen values is 2 which is the same as the rank of the matrix.

Problem 2

 $P = X(X'X)^{-1}X'$ is the orthogonal projection onto the column space of the design matrix which maps the vector of reponse values to the vector of the predicted values. $I_n - P$ is the orthogonal to the information contained in the design matrix. Both P and $I_n - P$ gives the solution to the least square problem when the model matrix has linearly independent columns. Intuitively, P projects the response into the plane, and it acts as an identity matrix to the design matrix X, since $PX = X(X'X)^{-1}X'X = X$ and $I_n - P$ on the other hand acts as a 0 matrix to X, since $I_n - P(X) = X - P(X) = X$

The property $(I_n - P)X = 0$ is also crucial to derivation of other theorem as it is used on **page 13**, **line 22** for **part III** of **theorem 5** to show that $\hat{\beta}$ and MSE are independent and also on **page 14**, **line 8** for **part 4** of **theorem 5** to show that $\frac{(n-p)MSE}{\sigma^2} \sim \chi^2_{n-p}$.

Problem 7

Correlation Matrix

The correlation matrix for the model $LOS_1 = \beta_0 + \beta_1 Age_1 + \beta_2 IR_1 + \beta_3 AFAS_1 + \epsilon_1$ is;

	LOS	Age	IR	AFAS
LOS	1.00000	0.18891	0.53344	0.35554
		(0.0451)	(<.0001)	(0.0001)
\overline{Age}	0.18891	1.00000	0.00109	-0.04045
	(0.0451)		(0.9908)	(0.6705)
\overline{IR}	0.53344	0.00109	1.00000	0.41260
	(<.0001)	(0.9908)		(< .0001)
\overline{AFAS}	0.35554	-0.04045	0.41260	1.00000
	(0.0001)	(0.6705)	(< .0001)	

while that of the model $LOS_1 = \beta_0 + \beta_1 NumofBeds_1 + \beta_2 IR_1 + \beta_3 AFAS_1 + \epsilon_1$ is;

	LOS	Num of Beds	IR	AFAS
\overline{LOS}	1.00000	0.40927	0.53344	0.35554
		(0.0451)	(< .0001)	(0.0001)
NumofBeds	0.40927	1.00000	0.35977	0.79452
	(< .0001)		(< .0001)	(< .0001)
IR	0.53344	0.35977	1.00000	0.41260
	(< .0001)	(< .0001)		(< .0001)
\overline{AFAS}	0.35554	0.79452	0.41260	1.00000
	(0.0001)	(0.79452)	(< .0001)	

Appendix (Graphs & SAS Code)

SAS Codes

Codes for Question 1

PROC IML;

*DEFINE THE MATRIX WHICH IS A IN THIS CASE; A={1 0 1, 0 2 2, 1 2 3};

RANKOFMATRIX = ROUND(TRACE(GINV(A)A)); GETTING THE RANK OF THE MATRIX;

DETERMI = DET(A); *DETERMINANT OF MATRIX A;

EVECTOR = EIGVEC(A); *GETTING THE EIGEN VECTOR;

EVALUE = EIGVAL(A); *GETTING THE EIGEN VALUE;

INVEVECTOR = INV(EVECTOR); *GETTING THE INVERSE OF THE EIGENVECTOR;

DIAGONALEVALUE = DIAG(EVALUE); *CONVERTING THE EIGEN VALUE TO DIAGONAL MATRIX;

ORIGINALMATRIX = EVECTOR * DIAGONALEVALUE * INVEVECTOR; *TESTING THE LEMMA 2(IV) IN THE TEXTBOOK;

PRINT RANKOFMATRIX DETERMI EVALUE EVECTOR INVEVECTOR DIAGONALEVALUE ORIGINALMATRIX;

QUIT; Codes for Question 7 DATA SENIC; infile "C:\Users\00D00E\Downloads\Video\Second Year\ First Semester\Foundation\foundation_assignment1\Data\APPENC01.txt"; input IDNUM LOS Age IR RCR RCXR NumOfBeds MSA Region ADC NumberOfNurses AFAS; label LOS='Length of Patient Stay' Age='Age of patients' IR='Infection Risk' AFAS='Available Facilities and Services' NumOfBeds='Number of Beds'; run; data hw1; set SENIC; keep IDNUM LOS Age NumOfBeds IR AFAS; run; *Scatter plot for each of the predictor variables; title 'Stem and Leaf Plot'; ods listing; ods graphics off; ods select Plots SSPlots; proc univariate data=Senic plot; var Age IR AFAS NumofBeds; run; title; *Scatter Plot and Correlation Matrix for Model 1; title 'Correlation Matrix and Scatter Plots for Model 1'; ods graphics on; proc corr data=Senic plots=matrix(histogram); var LOS Age IR AFAS; run;

ods graphics off;

*Scatter Plot and Correlation Matrix for Model 2;

title;

```
title 'Correlation Matrix and Scatter Plots for Model 2'; ods graphics on; proc corr data=Senic plots=matrix(histogram); var LOS IR AFAS NumofBeds; run; ods graphics off; title;
```

Stem and Leaf Plot For Predictor Variables

Figure 1: Age Stem and Leaf Plot

Figure 2: Infectious Risk Stem and Leaf Plot

Figure 3: Available Facilities and Services and Leaf Plot

The UNIVARIATE Procedure Variable: NumOfBeds (Number of Beds)					
Stem Leaf	#	Boxplot			
8 334	3	0			
7 57	2	0			
7					
6					
6 0024	4	0			
5 5779	4	I			
5 14	2	I .			
4 6899	4	I			
4 24	2	I .			
3 5669	4	I I			
3 00000011222	11	++			
2 55567788	8	+			
2 0000001244	10	1 1			
1 555666777788888999	18	**			
1 00000001111222333333	4 21	++			
0 56667777788888899999	19	I			
0 3	1	I			

Figure 4: Available Facilities and Services and Leaf Plot

Scatter Plots

Figure 5: ScatterPlot for Model1

Figure 6: ScattePlot for Model2