# **Supporting Document Mandatory Technical Document**



PP-Module for Virtual Private Network (VPN) Gateways Version: 1.2-Draft 2021-12-03

**National Information Assurance Partnership** 

# **Foreword**

This is a Supporting Document (SD), intended to complement the Common Criteria version 3 and the associated Common Evaluation Methodology for Information Technology Security Evaluation.

SDs may be "Guidance Documents", that highlight specific approaches and application of the standard to areas where no mutual recognition of its application is required, and as such, are not of normative nature, or "Mandatory Technical Documents", whose application is mandatory for evaluations whose scope is covered by that of the SD. The usage of the latter class is not only mandatory, but certificates issued as a result of their application are recognized under the CCRA.

#### **Technical Editor:**

National Information Assurance Partnership (NIAP)

#### **Document history:**

| Version | Date       | Comment                                                                               |
|---------|------------|---------------------------------------------------------------------------------------|
| 1.2     | 2021-09-27 | Format conversion, incorporation of NIAP Technical Decisions                          |
| 1.1     | 2020-06-18 | $Compatibility\ with\ CPP\_ND\_V2.2E,\ incorporation\ of\ NIAP\ Technical\ Decisions$ |
| 1.0     | 2019-09-17 | Initial publication                                                                   |

#### **General Purpose:**

The purpose of this SD is to define evaluation methods for the functional behavior of Virtual Private Network (VPN) Gateways products.

#### **Acknowledgements:**

This SD was developed with support from NIAP Virtual Private Network (VPN) Gateways Technical Community members, with representatives from industry, government agencies, Common Criteria Test Laboratories, and members of academia.

# **Table of Contents**

- 1 Introduction
- 1.1 Technology Area and Scope of Supporting Document
- 1.2 Structure of the Document
- 1.3 Terms
- 1.3.1 Common Criteria Terms
- 1.3.2 Technical Terms
- 2 Evaluation Activities for SFRs
- 2.1 Collaborative Protection Profile for Network Devices
- 2.1.1 Modified SFRs
- 2.1.1.1 Cryptographic Support (FCS)
- 2.1.1.2 Identification and Authentication (FIA)

```
2.1.1.3 Security Management (FMT)
  2.1.1.4 Protection of the TSF (FPT)
2.2 TOE SFR Evaluation Activities
 2.2.1 Security Audit (FAU)
 2.2.2 Cryptographic Support (FCS)
 2.2.3 Security Management (FMT)
 2.2.4 Packet Filtering (FPF)
 2.2.5 Protection of the TSF (FPT)
 2.2.6 Trusted Path/Channels (FTP)
2.3 Evaluation Activities for Optional SFRs
 2.3.1 Packet Filtering (FPF)
2.4 Evaluation Activities for Selection-Based SFRs
 2.4.1 Identification and Authentication (FIA)
 2.4.2 Cryptographic Support (FCS)
2.5 Evaluation Activities for Objective SFRs
 Evaluation Activities for SARs
  Required Supplementary Information
```

# 1 Introduction

Appendix A - References

# 1.1 Technology Area and Scope of Supporting Document

The scope of the PP-Module for Virtual Private Network (VPN) Gateways is to describe the security functionality of Virtual Private Network (VPN) Gateways products in terms of [CC] and to define functional and assurance requirements for them. The PP-Module is intended for use with the following Base-PP:

• Collaborative Protection Profile for Network Devices, Version

This SD is mandatory for evaluations of TOEs that claim conformance to a PP-Configuration that includes the PP-Module for :

• Virtual Private Network (VPN) Gateways, Version 1.2-Draft

As such it defines Evaluation Activities for the functionality described in the PP-Module as well as any impacts to the Evaluation Activities to the Base-PP(s) it modifies.

Although Evaluation Activities are defined mainly for the evaluators to follow, in general they also help developers to prepare for evaluation by identifying specific requirements for their TOE. The specific requirements in Evaluation Activities may in some cases clarify the meaning of Security Functional Requirements (SFR), and may identify particular requirements for the content of Security Targets (ST) (especially the TOE Summary Specification), user guidance documentation, and possibly supplementary information (e.g. for entropy analysis or cryptographic key management architecture).

### 1.2 Structure of the Document

Evaluation Activities can be defined for both SFRs and Security Assurance Requirements (SAR), which are themselves defined in separate sections of the SD.

If any Evaluation Activity cannot be successfully completed in an evaluation, then the overall verdict for the evaluation is a 'fail'. In rare cases there may be acceptable reasons why an Evaluation Activity may be modified or deemed not applicable for a particular TOE, but this must be approved by the Certification Body for the evaluation.

In general, if all Evaluation Activities (for both SFRs and SARs) are successfully completed in an evaluation then it would be expected that the overall verdict for the evaluation is a 'pass'. To reach a 'fail' verdict when the Evaluation Activities have been successfully completed would require a specific justification from the evaluator as to why the Evaluation Activities were not sufficient for that TOE.

Similarly, at the more granular level of assurance components, if the Evaluation Activities for an assurance component and all of its related SFR Evaluation Activities are successfully completed in an evaluation then it would be expected that the verdict for the assurance component is a 'pass'. To reach a 'fail' verdict for the assurance component when these Evaluation Activities have been successfully completed would require a specific justification from the evaluator as to why the Evaluation Activities were not sufficient for that TOE.

### 1.3 Terms

The following sections list Common Criteria and technology terms used in this document.

#### 1.3.1 Common Criteria Terms

| Assurance                                                        | Grounds for confidence that a TOE meets the SFRs [CC].                                                                                                                                                                                                                                       |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Base<br>Protection<br>Profile (Base-<br>PP)                      | Protection Profile used as a basis to build a PP-Configuration.                                                                                                                                                                                                                              |
| Common<br>Criteria (CC)                                          | Common Criteria for Information Technology Security Evaluation (International Standard ISO/IEC 15408).                                                                                                                                                                                       |
| Common<br>Criteria<br>Testing<br>Laboratory                      | Within the context of the Common Criteria Evaluation and Validation Scheme (CCEVS), an IT security evaluation facility, accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) and approved by the NIAP Validation Body to conduct Common Criteria-based evaluations. |
| Common<br>Evaluation<br>Methodology<br>(CEM)                     | Common Evaluation Methodology for Information Technology Security Evaluation.                                                                                                                                                                                                                |
| Distributed<br>TOE                                               | A TOE composed of multiple components operating as a logical whole.                                                                                                                                                                                                                          |
| Operational<br>Environment<br>(OE)                               | Hardware and software that are outside the TOE boundary that support the TOE functionality and security policy.                                                                                                                                                                              |
| Protection<br>Profile (PP)                                       | An implementation-independent set of security requirements for a category of products.                                                                                                                                                                                                       |
| Protection<br>Profile<br>Configuration<br>(PP-<br>Configuration) | A comprehensive set of security requirements for a product type that consists of at least one Base-PP and at least one PP-Module.                                                                                                                                                            |
| Protection<br>Profile Module<br>(PP-Module)                      | An implementation-independent statement of security needs for a TOE type complementary to one or more Base Protection Profiles.                                                                                                                                                              |
| Security<br>Assurance<br>Requirement<br>(SAR)                    | A requirement to assure the security of the TOE.                                                                                                                                                                                                                                             |
| Security<br>Functional<br>Requirement<br>(SFR)                   | A requirement for security enforcement by the TOE.                                                                                                                                                                                                                                           |
| Security<br>Target (ST)                                          | A set of implementation-dependent security requirements for a specific product.                                                                                                                                                                                                              |
| TOE Security<br>Functionality<br>(TSF)                           | The security functionality of the product under evaluation.                                                                                                                                                                                                                                  |
| TOE Summary<br>Specification<br>(TSS)                            | A description of how a TOE satisfies the SFRs in an ST.                                                                                                                                                                                                                                      |
| Target of<br>Evaluation<br>(TOE)                                 | The product under evaluation.                                                                                                                                                                                                                                                                |

# 1.3.2 Technical Terms

| Headend             | VPN use case where the VPN gateway is establishing VPN connectivity with endpoint VPN clients as opposed to other infrastructure devices (e.g. site-to-site).            |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Packet<br>Filtering | The process by which an edge network device determines if traffic bound to or from its external network is passed to its destination or dropped.                         |  |  |
| VPN Gateway         | A type of network device that resides at the edge of a private network and permits the establishment of VPN connectivity from computers residing in an external network. |  |  |
|                     |                                                                                                                                                                          |  |  |

Virtual Private A mechanism for overlaying a cryptographically secured network over distributed wide-Network (VPN) area networks.

# 2 Evaluation Activities for SFRs

The EAs presented in this section capture the actions the evaluator performs to address technology specific aspects covering specific SARs (e.g. ASE\_TSS.1, ADV\_FSP.1, AGD\_OPE.1, and ATE\_IND.1) – this is in addition to the CEM workunits that are performed in Section 3 Evaluation Activities for SARs.

Regarding design descriptions (designated by the subsections labelled TSS, as well as any required supplementary material that may be treated as proprietary), the evaluator must ensure there is specific information that satisfies the EA. For findings regarding the TSS section, the evaluator's verdicts will be associated with the CEM workunit ASE\_TSS.1-1. Evaluator verdicts associated with the supplementary evidence will also be associated with ASE\_TSS.1-1, since the requirement to provide such evidence is specified in ASE in the PP.

For ensuring the guidance documentation provides sufficient information for the administrators/users as it pertains to SFRs, the evaluator's verdicts will be associated with CEM workunits ADV\_FSP.1-7, AGD\_OPE.1-4, and AGD\_OPE.1-5.

Finally, the subsection labelled Tests is where the authors have determined that testing of the product in the context of the associated SFR is necessary. While the evaluator is expected to develop tests, there may be instances where it is more practical for the developer to construct tests, or where the developer may have existing tests. Therefore, it is acceptable for the evaluator to witness developer-generated tests in lieu of executing the tests. In this case, the evaluator must ensure the developer's tests are executing both in the manner declared by the developer and as mandated by the EA. The CEM workunits that are associated with the EAs specified in this section are: ATE\_IND.1-3, ATE\_IND.1-4, ATE\_IND.1-5, ATE\_IND.1-6, and ATE\_IND.1-7

### 2.1 Collaborative Protection Profile for Network Devices

The EAs defined in this section are only applicable in cases where the TOE claims conformance to a PP-Configuration that includes the NDcPP.

#### 2.1.1 Modified SFRs

# 2.1.1.1 Cryptographic Support (FCS)

This PP-Module restricts the Base-PP SFR to a subset of existing permissible functionality and does not introduce any new behavior. The TSF shall perform encryption/decryption in accordance with a specified cryptographic algorithm AES used in CBC GCM and CTR no other mode and cryptographic key sizes 128 bits 256 bits and 192 bits no other cryptographic key sizes that meet the following: AES as specified in ISO 18033-3, CBC as specified in ISO 10116 GCM as specified in ISO 19772 and CTR as specified in ISO 10116 no other standards. This SFR has been modified from its definition in the NDcPP to support this PP-Module's IPsec requirements by mandating support for at least one of CBC or GCM modes and at least one of 128-bit or 256bit key sizes at minimum. Other selections may be made by the ST author but they are not required for conformance to this PP-Module. There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to require the ST author to make certain selections, but these selections are all part of the original definition of the SFR so no new behavior is defined by the PP-Module. This PP-Module restricts the Base-PP SFR to a subset of existing permissible functionality and does not introduce any new behavior. The TSF shall implement the IPsec architecture as specified in RFC 4301. This element is unchanged from its definition in the Base-PP. The TSF shall have a nominal, final entry in the SPD that matches anything that is otherwise unmatched and discards it. This element is unchanged from its definition in the Base-PP. The TSF shall implement transport mode tunnel mode. The selection of supported modes is expected to be performed according to RFC4301. This element is unchanged from the Base-PP. However, it has been included here to note that future versions of this PP-Module will require that the TSF implement both tunnel mode and transport mode. The TSF shall implement the IPsec protocol ESP as defined by RFC 4303 using the cryptographic algorithms AES-CBC-128 (RFC 3602) AES-CBC-256 (RFC 3602) AES-GCM-128 (RFC 4106) AES-GCM-256 (RFC 4106) and AES-CBC-192 (RFC 3602) AES-GCM-192 (RFC 4106) no other algorithm together with a Secure Hash Algorithm (SHA)-based HMAC HMAC-SHA-1 HMAC-SHA-256 HMAC-SHA-384 HMAC-SHA-512 no HMAC algorithm . This element has been modified from its definition in the NDcPP by mandating either 128 or 256 bit key sizes for AES-CBC or AES-GCM, thereby disallowing for the sole selection of 192 bit key sizes. When an AES-CBC algorithm is selected, at least one SHA-based HMAC must also be chosen. If only an AES-GCM algorithm is selected, then a SHA-based HMAC is not required since AES-GCM satisfies both confidentiality and integrity functions. IPsec may utilize a truncated version of the SHA-based HMAC functions contained in the selections. Where a truncated output is utilized, this is described in the TSS. The TSF shall implement the protocol: IKEv1, using Main Mode for Phase 1 exchanges, as defined in RFCs 2407, 2408, 2409, RFC 4109, no other RFCs for extended sequence numbers RFC 4304 for extended sequence numbers and no other RFCs for hash functions RFC 4868 for hash functions IKEv2 as defined in RFC 5996 and with no support for NAT traversal with mandatory support for NAT traversal as specified in RFC 5996, section 2.23 and no other RFCs for hash functions RFC 4868 for hash functions. This element is unchanged from its definition in the Base-PP. The TSF shall ensure the encrypted

payload in the IKEv1 IKEv2 protocol uses the cryptographic algorithms AES-CBC-128 AES-CBC-192 AES-CBC-256 AES-GCM-128 AES-CBC-192 AES-CBC-256 This element is unchanged from its definition in the Base-PP. AES-CBC implementation for IPsec is specified in RFC 3602. AES-GCM implementation for IPsec is specified in RFC 5282. The TSF shall ensure that IKEv1 Phase 1 SA lifetimes can be configured by a Security Administrator based on number of bytes length of time, where the time values can be configured within integer range including 24 hours IKEv2 SA lifetimes can be configured by a Security Administrator based on number of bytes length of time, where the time values can be configured within integer range including 24 hours. This element is unchanged from its definition in the Base-PP. The TSF shall ensure that IKEv1 Phase 2 SA lifetimes can be configured by a Security Administrator based on number of bytes length of time, where the time values can be configured within integer range including 8 hours IKEv2 Child SA lifetimes can be configured by a Security Administrator based on number of bytes length of time, where the time values can be configured within integer range including 8 hours. This element is unchanged from its definition in the Base-PP. The TSF shall generate the secret value x used in the IKE DiffieHellman key exchange ("x" in g^x mod p) using the random bit generator specified in FCS\_RBG\_EXT.1, and having a length of at least (one or more) number(s) of bits that is at least twice the security strength of the negotiated Diffie-Hellman group bits. This element is unchanged from its definition in the Base-PP. The TSF shall generate nonces used in IKEv1 IKEv2 exchanges of length according to the security strength associated with the negotiated Diffie-Hellman group at least 128 bits in size and at least half the output size of the negotiated pseudorandom function (PRF) hash . This element is unchanged from its definition in the Base-PP. The TSF shall ensure that IKE protocols implement DH Group(s) 19 (256-bit Random ECP), 20 (384-bit Random ECP) according to RFC 5114 and 14 (2048-bit MODP) 15 (3072-bit MODP) 16 (4096-bit MODP) 17 (6144-bit MODP) 18 (8192-bit MODP) according to RFC 3526 21 (521-bit Random ECP) 24 (2048-bit MODP with 256-bit POS no other DH Groups according to RFC 5114. This element has been modified from its definition in the NDcPP by mandating DH groups 19 and 20, both of which are selectable in the original definition of the element. Any groups other than 19 and 20 may be selected by the ST author but they are not required for conformance to this PP-Module. The TSF shall be able to ensure by default that the strength of the symmetric algorithm (in terms of the number of bits in the key) negotiated to protect the IKEv1 Phase 1 IKEv2 IKE SA connection is greater than or equal to the strength of the symmetric algorithm (in terms of the number of bits in the key) negotiated to protect the IKEv1 Phase 2 IKEv2 CHILD\_SA connection. This element is unchanged from its definition in the Base-PP. The TSF shall ensure that all IKE protocols perform peer authentication using RSA ECDSA that use X.509v3 certificates that conform to RFC 4945 and Pre-shared keys Pre-shared Keys transmitted via EAP-TLS Preshared Keys transmitted via EAP-TTLS with mutual authentication no other method . This element has been modified from its definition in the NDcPP by defining specific additional methods of pre-shared key authentication as selectable options. The TSF shall only establish a trusted channel if the presented identifier in the received certificate matches the configured reference identifier, where the presented and reference identifiers are of the following fields and types: Distinguished Name (DN), SAN: IP address SAN: Fully Qualified Domain Name (FQDN) SAN: user FQDN CN: IP address CN: Fully Qualified Domain Name (FQDN) CN: user FQDN no other reference identifier types other supported reference identifier types . This PP-Module requires DN to be supported for certificate reference identifiers at minimum. Other selections may be made by the ST author but they are not required for conformance to this PP-Module. In addition to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document the following activities apply: All existing activites regarding "Pre-shared keys" apply to all selections including pre-shared keys. If any selection with "Pre-shared keys" is included, the evaluator shall check to ensure that the TSS describes how the selection works in conjunction with the authentication of IPsec connections. If any selection with "Preshared Keys" is selected, the evaluator shall check that the operational guidance describes any configuration necessary to enable any selected authentication mechanisms. There are no additional testing activities. Session establishment with peer Entire packet contents of packets transmitted/received during session establishment

# $FCS\_COP.1/Data Encryption \ Cryptographic \ Operation \ (AES \ Data \ Encryption/Decryption)$

#### FCS COP.1/DataEncryption

There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to require the ST author to make certain selections, but these selections are all part of the original definition of the SFR so no new behavior is defined by the PP-Module.

### FCS\_IPSEC\_EXT.1 IPsec Protocol

### FCS IPSEC EXT.1

In addition to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document the following activities apply:

#### **TSS**

All existing activites regarding "Pre-shared keys" apply to all selections including pre-shared keys. If any selection with "Pre-shared keys" is included, the evaluator shall check to ensure that the TSS describes how the selection works in conjunction with the authentication of IPsec connections.

#### Guidance

If any selection with "Pre-shared Keys" is selected, the evaluator shall check that the operational guidance describes any configuration necessary to enable any selected authentication mechanisms.

#### Tests

There are no additional testing activities.

### 2.1.1.2 Identification and Authentication (FIA)

This PP-Module does not modify the Base-PP SFR; it only mandates the inclusion of the SFR because a

conformant TOE will always require this functionality that is only conditional in the Base-PP. This is specified as a selection-based SFR in the Base-PP but is mandatory for any TOE that claims conformance to this PP-Module because a conformant TOE will always have the ability to receive an X.509 certificate from an external entity as part of IPsec communications. Therefore, a mechanism for the TSF to validate an X.509 certificate presented to it is required. There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to make it mandatory because of the TOE's required support for IPsec. This PP-Module restricts the Base-PP SFR to a subset of existing permissible functionality and does not introduce any new behavior. The TSF shall use X.509v3 certificates as defined by RFC 5280 to support authentication for IPsec and DTLS HTTPS SSH TLS no other protocols , and code signing for system software updates other uses no additional uses . The Base-PP allows the ST author to specify the TSF's use of X.509 certificates. Because this PP-Module mandates IPsec functionality, the SFR has been refined to force the inclusion of it. Other functions specified by the Base-PP may be chosen without restriction. When the TSF cannot establish a connection to determine the validity of a certificate, the TSF shall allow the Administrator to choose whether to accept the certificate in these cases accept the certificate not accept the certificate. This element is unchanged from its definition in the Base-PP. There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to support its use for IPsec at a minimum. The evaluator shall ensure that all evaluation of this SFR is performed against its use in IPsec communications as well as any other supported usage. This PP-Module does not modify the Base-PP SFR; it only mandates the inclusion of the SFR because a conformant TOE will always require this functionality that is only conditional in the Base-PP. This is specified as a selection-based SFR in the Base-PP but is mandatory for any TOE that claims conformance to this PP-Module because a conformant TOE will always have the ability to present an X.509 certificate to an external entity as part of IPsec communications. Therefore, a mechanism for the TSF to obtain a certificate for its own use is required. There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to make it mandatory because of the TOE's required support for IPsec.

### FIA\_X509\_EXT.1/Rev X.509 Certificate Validation

### FIA X509 EXT.1/Rev

There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to make it mandatory because of the TOE's required support for IPsec.

#### FIA X509 EXT.2 X.509 Certificate Authentication

#### FIA X509 EXT.2

There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to support its use for IPsec at a minimum. The evaluator shall ensure that all evaluation of this SFR is performed against its use in IPsec communications as well as any other supported usage.

#### FIA X509 EXT.3 X.509 Certificate Requests

#### FIA X509 EXT.3

There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to make it mandatory because of the TOE's required support for IPsec.

#### 2.1.1.3 Security Management (FMT)

This PP-Module applies the key management functionality already defined in the Base-PP specifically to functionality related to VPN gateways. The TSF shall restrict the ability to [[manage]] the [cryptographic keys and certificates used for VPN operation] to [Security Administrators]. This SFR, defined in the NDcPP as selection-based, is mandated for inclusion in this PP-Module because the refinements to FMT\_SMF.1 mandate its inclusion. Note that it is also refined to refer specifically to keys and certificates used for VPN operation. There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to make it mandatory because of the TOE's required support for IPsec.

#### FMT MTD.1/CryptoKeys Management of TSF Data

#### FMT MTD.1/CrvptoKevs

There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to make it mandatory because of the TOE's required support for IPsec.

### 2.1.1.4 Proteciton of the TSF (FPT)

This PP-Module refines the Base-PP SFR to mandate a specific type of selftest. This is consistent with the Base-PP because the execution of this selftest is already implied the Base-PP through its entropy requirements. The TSF shall run a suite of the following self-tests during initial start-up (on power on) periodically during normal operation at the request of the authorized user at the conditions conditions under which self-tests should occur to demonstrate the correct operation of the TSF: noise source health tests, list of self-tests run by the TSF. This SFR is modified from its definition in the NDcPP by requiring noise source health tests to be performed regardless of what other testing is claimed. It is expected that the behavior of this testing will be described in the entropy documentation. Other self-tests may be defined at the ST author's discretion; note that the Application Note in the NDcPP regarding what other self-tests are expected is still

applicable here. There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module requires a particular self-test to be performed, but this self-test is still evaluated using the same methods specified in the Supporting Document. This PP-Module restricts the Base-PP SFR to a subset of existing permissible functionality and does not introduce any new behavior. The TSF shall provide Security Administrators the ability to query the currently executing version of the TOE firmware/software and the most recently installed version of the TOE firmware/software no other TOE firmware/software version. This element is unchanged from its definition in the Base-PP. The TSF shall provide Security Administrators the ability to manually initiate updates to TOE firmware/software and support automatic checking for updates support automatic updates no other update mechanism . This element is unchanged from its definition in the Base-PP. The TSF shall provide means to authenticate firmware/software updates to the TOE using a digital signature mechanism and X.509 certificate published hash no other mechanisms prior to installing those updates. The NDcPP provides an option for how firmware/software updates can be verified but this PP-Module requires the digital signature method to be selected at minimum. Note that all other options specified in the NDcPP for this component are permitted so it is possible for the TSF to use code signing certificates to validate updates, in which case FPT\_TUD\_EXT.2 from the Base-PP is also included in the ST. If X.509 certificates are used to verify the integrity of an update, the certificates must conform to FIA X509 EXT.1/Rev. Therefore, certificates that do not (or only partially) conform to FIA X509 EXT.1/REV are not allowed as a means to authenticate firmware/software updates. NDcPP states the ST author may use X.509 certificates that do not meet FIA X509 EXT.1/Rev. This applies to trust anchors as they can be encoded as certificates. Even when they are encoded as certificates, the trust anchor must be protected by another mechanism that ensures its integrity and binds it to the 'code-signing' context. Trust anchors do not need to be validated according to FIA\_X509\_EXT.1, even if they are encoded as certificates; instead they need to be validated as trust anchors. FIA\_X509\_EXT.1/Rev does not require revocation checking of certificates designated as trust store elements. The integrity of trust store elements depends on administrative controls for loading and managing trust stores, and/or functional integrity checks that are described in other SFRs. So, if the certificate used to verify the update is a trust store element (self-signed and specifically trusted for verifying updates, with the integrity of this special purpose certificate protected by administrative controls and/or TOE integrity protections), then revocation checking is not required. However, if the certificate is issued by a trusted root CA, or by a certificate authority which chains to a trusted root CA, then revocation checking is required for all elements of the certificate chain except the trusted root CA, and the TOE must be able to obtain fresh revocation information from an external source. There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to mandate that a particular selection be chosen, but this selection is part of the original definition of the SFR so no new behavior is defined by the PP-Module.

### FPT\_TST\_EXT.1 TSF Testing

#### FPT TST EXT.1

There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module requires a particular self-test to be performed, but this self-test is still evaluated using the same methods specified in the Supporting Document.

#### FPT\_TUD\_EXT.1 Trusted Update

#### FPT TUD EXT.1

There is no change to the Evaluation Activities specified for this SFR in the NDcPP Supporting Document. The PP-Module modifies this SFR to mandate that a particular selection be chosen, but this selection is part of the original definition of the SFR so no new behavior is defined by the PP-Module.

## 2.2 TOE SFR Evaluation Activities

# 2.2.1 Security Audit (FAU)

# FAU\_GEN.1/VPN Audit Data Generation (VPN Gateway)

#### FAU GEN.1/VPN

#### **TSS**

The evaluator shall examine the TSS to verify that it describes the audit mechanism(s) that the TOE uses to generate audit records for VPN gateway behavior. If any audit mechanisms the TSF uses for this are not used to generate audit records for events defined by FAU\_GEN.1 in the Base-PP, the evaluator shall ensure that any VPN gateway-specific audit mechanisms also meet the relevant functional claims from the Base-PP.

For example, FAU\_STG\_EXT.1 requires all audit records to be transmitted to the OE over a trusted channel. This includes the audit records that are required by FAU\_GEN.1/VPN. Therefore, if the TOE has an audit mechanism that is only used for VPN gateway functionality, the evaluator shall ensure that the VPN gateway related audit records meet this requirement, even if the mechanism used to generate these audit records does not apply to any of the auditable events defined in the Base-PP.

#### Guidance

The evaluator shall examine the operational guidance to verify that it identifies all security-relevant auditable events claimed in the ST and includes sample records of each event type. If the TOE uses multiple audit mechanisms to generate different sets of records, the evaluator shall verify that the operational guidance identifies the audit records that are associated with each of the mechanisms such that the source of each

audit record type is clear.

#### **Tests**

The evaluator shall test the audit functionality by performing actions that trigger each of the claimed audit events and verifying that the audit records are accurate and that their format is consistent with what is specified in the operational guidance. The evaluator may generate these audit events as a consequence of performing other tests that would cause these events to be generated.

# 2.2.2 Cryptographic Support (FCS)

### FCS\_CKM.1/IKE Cryptographic Key Generation (for IKE Peer Authentication)

FCS CKM.1/IKE

#### **TSS**

The evaluator shall check to ensure that the TSS describes how the key-pairs are generated. In order to show that the TSF implementation complies with FIPS PUB 186-4, the evaluator shall ensure that the TSS contains the following information:

- The TSS shall list all sections of Appendix B to which the TOE complies.
- For each applicable section listed in the TSS, for all statements that are not "shall" (that is, "shall not," "should," and "should not"), if the TOE implements such options it shall be described in the TSS. If the included functionality is indicated as "shall not" or "should not" in the standard, the TSS shall provide a rationale for why this will not adversely affect the security policy implemented by the TOE.
- For each applicable section of Appendix B, any omission of functionality related to "shall" or "should" statements shall be described.

Any TOE-specific extensions, processing that is not included in the Appendices, or alternative implementations allowed by the Appendices that may impact the security requirements the TOE is to enforce shall be described.

#### Guidance

The evaluator shall check that the operational guidance describes how the key generation functionality is invoked, and describes the inputs and outputs associated with the process for each signature scheme supported. The evaluator shall also check that guidance is provided regarding the format and location of the output of the key generation process.

#### **Tests**

#### For FFC Schemes using "safe-prime" groups:

Testing for FFC Schemes using safe-prime groups is done as part of testing in FCS CKM.2.

#### For all other selections:

The evaluator shall perform the corresponding tests for FCS\_CKM.1 specified in the NDcPP SD, based on the selections chosen for this SFR. If IKE key generation is implemented by a different algorithm than the NDcPP key generation function, the evaluator shall ensure this testing is performed using the correct implementation.

# 2.2.3 Security Management (FMT)

#### FMT SMF.1/VPN Specification of Management Functions

FMT\_SMF.1/VPN

### **TSS**

The evaluator shall examine the TSS to confirm that all management functions specified in FMT\_SMF.1/VPN are provided by the TOE. As with FMT\_SMF.1 in the Base-PP, the evaluator shall ensure that the TSS identifies what logical interfaces are used to perform these functions and that this includes a description of the local administrative interface.

#### Guidance

The evaluator shall examine the operational guidance to confirm that all management functions specified in FMT\_SMF.1/VPN are provided by the TOE. As with FMT\_SMF.1 in the Base-PP, the evaluator shall ensure that the operational guidance identifies what logical interfaces are used to perform these functions and that this includes a description of the local administrative interface.

#### **Tests**

The evaluator tests management functions as part of performing other test EAs. No separate testing for FMT\_SMF.1/VPN is required unless one of the management functions in FMT\_SMF.1.1/VPN has not already been exercised under any other SFR.

# 2.2.4 Packet Filtering (FPF)

### FPF\_RUL\_EXT.1 Rules for Packet Filtering

FPF RUL EXT.1.1

#### **TSS**

The evaluator shall verify that the TSS provide a description of the TOE's initialization/startup process, which clearly indicates where processing of network packets begins to take place, and provides a discussion that supports the assertion that packets cannot flow during this process.

The evaluator shall verify that the TSS also includes a narrative that identifies the components (e.g., active entity such as a process or task) involved in processing the network packets and describes the safeguards that would prevent packets flowing through the TOE without applying the ruleset in the event of a component failure. This could include the failure of a component, such as a process being terminated, or a failure within a component, such as memory buffers full and cannot process packets.

#### Guidance

The operational guidance associated with this requirement is assessed in the subsequent test EAs.

#### **Tests**

The evaluator shall perform the following tests:

- **Test 1:** The evaluator shall attempt to get network traffic to flow through the TOE while the TOE is being initialized. A steady flow of network packets that would otherwise be denied by the ruleset should be sourced and directed to a host. The evaluator shall use a packet sniffer to verify none of the generated network traffic is permitted through the TOE during initialization.
- **Test 2:** The evaluator shall attempt to get network traffic to flow through the TOE while the TOE is being initialized. A steady flow of network packets that would be permitted by the ruleset should be sourced and directed to a host. The evaluator shall use a packet sniffer to verify none of the generated network traffic is permitted through the TOE during initialization and is only permitted once initialization is complete.

Note: The remaining testing associated with application of the ruleset is addressed in the subsequent test EAs.

#### FPF RUL EXT.1.2

There are no EAs specified for this element. Definition of Packet Filtering policy, association of operations with Packet Filtering rules, and association of these rules to network interfaces is described collectively under FPF RUL EXT.1.4.

FPF RUL EXT.1.3

There are no EAs specified for this element. Definition of Packet Filtering policy, association of operations with Packet Filtering rules, and association of these rules to network interfaces is described collectively under FPF\_RUL\_EXT.1.4.

FPF RUL EXT.1.4

### **TSS**

The evaluator shall verify that the TSS describes a Packet Filtering policy that can use the following fields for each identified protocol, and that the RFCs identified for each protocol are supported:

- IPv4 (RFC 791)
  - Source address
  - Destination Address
  - Protocol
- IPv6 (RFC 2460)
  - Source address
  - Destination Address
  - Next Header (Protocol)
- TCP (RFC 793)
  - Source Port
  - Destination Port
- UDP (RFC 768)
  - Source Port
  - Destination Port

The evaluator shall verify that the TSS describes how conformance with the identified RFCs has been determined by the TOE developer (e.g., third party interoperability testing, protocol compliance testing).

The evaluator shall verify that each rule can identify the following actions: permit, discard, and log.

The evaluator shall verify that the TSS identifies all interface types subject to the Packet Filtering policy and explains how rules are associated with distinct network interfaces. Where interfaces can be grouped into a common interface type (e.g., where the same internal logical path is used, perhaps where a common device driver is used), they can be treated collectively as a distinct network interface.

#### Guidance

The evaluator shall verify that the operational guidance identifies the following protocols as being supported and the following attributes as being configurable within Packet filtering rules for the associated protocols:

- IPv4 (RFC 791)
  - Destination Address
  - Protocol
- IPv6 (RFC 2460)
  - Source address
  - Destination Address
  - Next Header (Protocol)
- TCP (RFC 793)
  - Source Port
  - Destination Port
- UDP (RFC 768)
  - Source Port
  - Destination Port

The evaluator shall verify that the operational guidance indicates that each rule can identify the following actions: permit, discard, and log.

The evaluator shall verify that the operational guidance explains how rules are associated with distinct network interfaces.

The guidance may describe the other protocols contained within the ST (e.g., IPsec, IKE, potentially HTTPS, SSH, and TLS) that are processed by the TOE. The evaluator shall ensure that it is made clear what protocols were not considered as part of the TOE evaluation.

#### Tests

The evaluator shall perform the following tests:

- **Test 1:** The evaluator shall use the instructions in the operational guidance to test that packet filter rules can be created that permit, discard, and log packets for each of the following attributes:
  - IPv4
    - Destination Address
    - Protocol
  - IPv6
    - Source address
    - Destination Address
    - Next Header (Protocol)
  - TCP
    - Source Port
    - Destination Port
  - UDP
    - Source Port
    - Destination Port
- **Test 2:** The evaluator shall repeat Test 1 above for each distinct network interface type supported by the TOE to ensure that Packet filtering rules can be defined for each all supported types.

Note that these test activities should be performed in conjunction with those of FPF\_RUL\_EXT.1.6 where the effectiveness of the rules is tested; here the evaluator is just ensuring the guidance is sufficient and the TOE supports the administrator creating a ruleset based on the above attributes. The test activities for FPF\_RUL\_EXT.1.6 define the protocol/attribute combinations required to be tested. If those combinations are configured manually, that will fulfill the objective of these test activities, but if those combinations are configured otherwise (e.g., using automation), these test activities may be necessary in order to ensure the guidance is correct and the full range of configurations can be achieved by a TOE administrator.

### FPF RUL EXT.1.5

#### **TSS**

The evaluator shall verify that the TSS describes the algorithm applied to incoming packets, including the processing of default rules, determination of whether a packet is part of an established session, and application of administrator defined and ordered ruleset.

#### Guidance

The evaluator shall verify that the operational guidance describes how the order of Packet filtering rules is determined and provides the necessary instructions so that an administrator can configure the order of rule processing.

#### **Tests**

The evaluator shall perform the following tests:

- **Test 1:** The evaluator shall devise two equal Packet Filtering rules with alternate operations permit and discard. The rules should then be deployed in two distinct orders and in each case the evaluator shall ensure that the first rule is enforced in both cases by generating applicable packets and using packet capture and logs for confirmation.
- Test 2: The evaluator shall repeat the procedure above, except that the two rules should be devised

where one is a subset of the other (e.g. a specific address vs. a network segment). Again, the evaluator should test both orders to ensure that the first is enforced regardless of the specificity of the rule.

#### FPF RUL EXT.1.6

#### **TSS**

The evaluator shall verify that the TSS describes the process for applying Packet Filtering rules and also that the behavior (either by default, or as configured by the administrator) is to discard packets when there is no rule match. The evaluator shall verify the TSS describes when the IPv4/IPv6 protocols supported by the TOE differ from the full list provided in the RFC Values for IPv4 and IPv6 table.

#### Guidance

The evaluator shall verify that the operational guidance describes the behavior if no rules or special conditions apply to the network traffic. If the behavior is configurable, the evaluator shall verify that the operational guidance provides the appropriate instructions to configure the behavior to discard packets with no matching rules. The evaluator shall verify that the operational guidance describes the range of IPv4/IPv6 protocols supported by the TOE.

#### Tests

The evaluator shall perform the following tests:

- Test 1: The evaluator shall configure the TOE to permit and log each supported IPv4 Transport Layer Protocol (see RFC Values for IPv4 and IPv6 table for full possible list) in conjunction with a specific source address and specific destination address, specific source address and wildcard destination address, wildcard source address and specific destination address, and wildcard source address and wildcard destination address. The evaluator shall generate packets matching each supported IPv4 Transport Layer Protocol and within the configured source and destination addresses in order to ensure that the supported protocols are permitted (i.e., by capturing the packets after passing through the TOE) and logged. Any protocols not supported by the TOE must be denied.
- Test 2: The evaluator shall configure the TOE to permit all traffic except to discard and log each supported IPv4 Transport Layer Protocol (see RFC Values for IPv4 and IPv6 table for full possible list) in conjunction with a specific source address and specific destination address, specific source address and wildcard destination address, wildcard source address and specific destination address, and wildcard source address and wildcard destination address. The evaluator shall generate packets matching each defined IPv4 Transport Layer Protocol and within the configured source and destination addresses in order to ensure that the supported protocols are denied
- Test 3: The evaluator shall configure the TOE to permit and log each supported IPv4 Transport Layer Protocol (see RFC Values for IPv4 and IPv6 table for full possible list) in conjunction with a specific source address and specific destination address, specific source address and wildcard destination address, wildcard source address and specific destination address, and wildcard source address and wildcard destination address. Additionally, the evaluator shall configure the TOE to discard and log each supported IPv4 Transport Layer Protocol (see RFC Values for IPv4 and IPv6 table for full possible list) in conjunction with different (than those permitted above) combinations of a specific source address and specific destination address, specific source address and wildcard destination address, wildcard source address and specific destination address, and wildcard source address and wildcard destination address. The evaluator shall generate packets matching each supported IPv4 Transport Layer Protocol and outside the scope of all source and destination addresses configured above in order to ensure that the supported protocols are denied (i.e., by capturing no applicable packets passing through the TOE) and logged. Any protocols not supported by the TOE must be denied.
- Test 4: The evaluator shall configure the TOE to permit and log each supported IPv6 Transport Layer Protocol (see RFC Values for IPv4 and IPv6 table for full possible list) in conjunction with a specific source address and specific destination address, specific source address and wildcard destination address, wildcard source address and specific destination address, and wildcard source address and wildcard destination address. The evaluator shall generate packets matching each defined IPv6 Transport Layer Protocol and within the configured source and destination addresses in order to ensure that the supported protocols are permitted (i.e., by capturing the packets after passing through the TOE) and logged. Any protocols not supported by the TOE must be denied.
- **Test 5:** The evaluator shall configure the TOE to permit all traffic except to discard and log each supported IPv6 Transport Layer Protocol (see RFC Values for IPv4 and IPv6 table for full possible list) in conjunction with a specific source address and specific destination address, specific source address and wildcard destination address, wildcard source address and specific destination address, and wildcard source address and wildcard destination address. The evaluator shall generate packets matching each defined IPv6 Transport Layer Protocol and within the configured source and destination addresses in order to ensure that the supported protocols are denied (i.e., by capturing no applicable packets passing through the TOE) and logged. Any protocols not supported by the TOE must also be denied but are not required to be logged.
- Test 6: The evaluator shall configure the TOE to permit and log each supported IPv6 Transport Layer Protocol (see RFC Values for IPv4 and IPv6 table for full possible list) in conjunction with a specific source address and specific destination address, specific source address and wildcard destination address, wildcard source address and specific destination address, and wildcard source address and wildcard destination address. Additionally, the evaluator shall configure the TOE to discard and log each supported IPv6 Transport Layer Protocol (see RFC Values for IPv4 and IPv6 table for full possible list) in conjunction with different (than those permitted above) combinations of a specific source address and

specific destination address, specific source address and wildcard destination address, wildcard source address and specific destination address, and wildcard source address and wildcard destination address. The evaluator shall generate packets matching each defined IPv6 Transport Layer Protocol and outside the scope of all source and destination addresses configured above in order to ensure that the supported protocols are dropped (i.e., by capturing no applicable packets passing through the TOE) and logged. Any protocols not supported by the TOE must be denied.

- **Test 7:** The evaluator shall configure the TOE to permit and log protocol 6 (TCP) using a selected source port, a selected destination port, and a selected source and destination port combination. The evaluator shall generate packets matching the configured source and destination TCP ports in order to ensure that they are permitted (i.e., by capturing the packets after passing through the TOE) and logged.
- **Test 8:** The evaluator shall configure the TOE to discard and log protocol 6 (TCP) using a selected source port, a selected destination port, and a selected source and destination port combination. The evaluator shall generate packets matching the configured source and destination TCP ports in order to ensure that they are denied (i.e., by capturing no applicable packets passing through the TOE) and logged.
- **Test 9:** The evaluator shall configure the TOE to permit and log protocol 17 (UDP) using a selected source port, a selected destination port, and a selected source and destination port combination. The evaluator shall generate packets matching the configured source and destination UDP ports in order to ensure that they are permitted (i.e., by capturing the packets after passing through the TOE) and logged. Here the evaluator ensures that the UDP port 500 (IKE) is included in the set of tests.
- **Test 10:** The evaluator shall configure the TOE to discard and log protocol 17 (UDP) using a selected source port, a selected destination port, and a selected source and destination port combination. The evaluator shall generate packets matching the configured source and destination UDP ports in order to ensure that they are denied (i.e., by capturing no applicable packets passing through the TOE) and logged. Again, the evaluator ensures that UDP port 500 is included in the set of tests.

The following table identifies the RFC defined values for the protocol fields for IPv4 and IPv6 to be used in configuring and otherwise testing Packet Filtering rule definition and enforcement:

#### **Protocol Defined Attributes**

- Transport Layer Protocol 1 Internet Control Message
- Transport Layer Protocol 2 Internet Group Management
- Transport Layer Protocol 3 Gateway-to-Gateway
- Transport Layer Protocol 4 IP in IP (encapsulation)
- Transport Layer Protocol 5 Stream
- Transport Layer Protocol 6 Transmission Control
- Transport Layer Protocol 7 UCL
- Transport Layer Protocol 8 Exterior Gateway Protocol
- Transport Layer Protocol 9 any private interior gateway
- Transport Layer Protocol 10 BBN RCC Monitoring
- Transport Layer Protocol 11 Network Voice Protocol
- Transport Layer Protocol 12 PUP
- Transport Layer Protocol 13 ARGUS
- Transport Layer Protocol 14 EMCON
- Transport Layer Protocol 15 Cross Net Debugger
- Transport Layer Protocol 16 Chaos
- Transport Layer Protocol 17 User Datagram
- Transport Layer Protocol 18 Multiplexing
- Transport Layer Protocol 19 DCN Measurement Subsystems
- Transport Layer Protocol 20 Host Monitoring
- Transport Layer Protocol 21 Packet Radio Measurement
- Transport Layer Protocol 22 XEROX NS IDP
- Transport Layer Protocol 23 Trunk-1
- Transport Layer Protocol 24 Trunk-2
- Transport Layer Protocol 25 Leaf-1
- Transport Layer Protocol 26 Leaf-2
- Transport Layer Protocol 27 Reliable Data Protocol
- Transport Layer Protocol 28 Internet Reliable Transaction
- Transport Layer Protocol 29 ISO Transport Protocol Class 4
- Transport Layer Protocol 30 Bulk Data Transfer Protocol
- Transport Layer Protocol 31 MFE Network Services Protocol
   Transport Layer Protocol 32 MERIT Internodal Protocol
- Transport Layer Protocol 33 Sequential Exchange Protocol
- Transport Layer Protocol 34 Third Party Connect Protocol
- Transport Layer Protocol 35 Inter-Domain Policy Routing Protocol
- Transport Layer Protocol 36 XTP
- Transport Layer Protocol 37 Datagram Delivery Protocol
- Transport Layer Protocol 38 IDPR Control Message Transport Protocol
- Transport Layer Protocol 39 TP++ Transport Protocol
- Transport Layer Protocol 40 IL Transport Protocol
- Transport Layer Protocol 41 Simple Internet Protocol
- Transport Layer Protocol 42 Source Demand Routing Protocol

Transport Layer Protocol 43 - SIP Source Route Transport Layer Protocol 44 - SIP Fragment Transport Layer Protocol 45 - Inter-Domain Routing Protocol Transport Layer Protocol 46 - Reservation Protocol Transport Layer Protocol 47 - General Routing Encapsulation IPv4 Transport Layer Protocol 48 - Mobile Host Routing Protocol Transport Layer Protocol 49 - BNA • Transport Layer Protocol 50 - SIPP Encap Security Payload Transport Layer Protocol 51 - SIPP Authentication Header Transport Layer Protocol 52 - Integrated Net Layer Security TUBA Transport Layer Protocol 53 - IP with Encryption Transport Layer Protocol 54 - NBMA Next Hop Resolution Protocol Transport Layer Protocol 61 - Any host internal protocol Transport Layer Protocol 62 - CFTP Transport Layer Protocol 63 - Any local network Transport Layer Protocol 64 - SATNET and Backroom EXPAK Transport Layer Protocol 65 - Kryptolan Transport Layer Protocol 66 - MIT Remote Virtual Disk Protocol Transport Layer Protocol 67 - Internet Pluribus Packet Core Transport Layer Protocol 68 - any distributed file system Transport Layer Protocol 69 - SATNET Monitoring Transport Layer Protocol 70 - VISA Protocol • Transport Layer Protocol 71 - Internet Packet Core Utility Transport Layer Protocol 72 - Computer Protocol Network Executive • Transport Layer Protocol 73 - Computer Protocol Heart Beat • Transport Layer Protocol 74 - Wang Span Network • Transport Layer Protocol 75 - Packet Video Protocol • Transport Layer Protocol 76 - Backroom SATNET Monitoring • Transport Layer Protocol 77 - SUN ND PROTOCOL-Temporary • Transport Layer Protocol 78 - WIDEBAND Monitoring • Transport Layer Protocol 79 - WIDEBAND EXPAK Transport Layer Protocol 80 - ISO Internet Protocol • Transport Layer Protocol 81 - VMTP Transport Layer Protocol 82 - SECURE-VMTP Transport Layer Protocol 83 - VINES Transport Layer Protocol 84 - TTP Transport Layer Protocol 85 - NSFNET-IGP Transport Layer Protocol 86 - Dissimilar Gateway Protocol Transport Layer Protocol 87 - TCF Transport Layer Protocol 88 - IGRP Transport Layer Protocol 89 - OSPFIGP Transport Layer Protocol 90 - Sprite RPC Protocol Transport Layer Protocol 91 - Locus Address Resolution Protocol Transport Layer Protocol 92 - Multicast Transport Protocol Transport Layer Protocol 93 - AX.25 Frames Transport Layer Protocol 94 - IP-within-IP Encapsulation Protocol Transport Layer Protocol 95 - Mobile Internetworking Control Protocol Transport Layer Protocol 96 - Semaphore Communications Security Protocol Transport Layer Protocol 97 - Ethernet-within-IP Encapsulation Transport Layer Protocol 98 - Encapsulation Header

- Transport Layer Protocol 99 Any private encryption scheme
- Transport Layer Protocol 100 GMTP
- Transport Layer Protocol 1 Internet Control Message
- Transport Layer Protocol 2 Internet Group Management
- Transport Layer Protocol 3 Gateway-to-Gateway
- Transport Layer Protocol 4 IPv4 encapsulation
- Transport Layer Protocol 5 Stream
- Transport Layer Protocol 6 Transmission Control
- Transport Layer Protocol 7 CBT
- Transport Layer Protocol 8 Exterior Gateway Protocol
- Transport Layer Protocol 9 any private interior gateway
- Transport Layer Protocol 10 BBN RCC Monitoring
- Transport Layer Protocol 11 Network Voice Protocol
- Transport Layer Protocol 12 PUP
- Transport Layer Protocol 13 ARGUS
- Transport Layer Protocol 14 EMCON
- Transport Layer Protocol 15 Cross Net Debugger
- Transport Layer Protocol 16 Chaos
- Transport Layer Protocol 17 User Datagram
- Transport Layer Protocol 18 Multiplexing
- Transport Layer Protocol 19 DCN Measurement Subsystems
- Transport Layer Protocol 20 Host Monitoring

```
Transport Layer Protocol 21 - Packet Radio Measurement
```

- Transport Layer Protocol 22 XEROX NS IDP
- Transport Layer Protocol 23 Trunk-1
- Transport Layer Protocol 24 Trunk-2
- Transport Layer Protocol 25 Leaf-1
- Transport Layer Protocol 26 Leaf-2 Transport Layer Protocol 27 - Reliable Data Protocol
- Transport Layer Protocol 28 Internet Reliable Transaction
- Transport Layer Protocol 29 Transport Protocol Class 4
- Transport Layer Protocol 30 Bulk Data Transfer Protocol
- Transport Layer Protocol 31 MFE Network Services Protocol
- Transport Layer Protocol 32 MERIT Internodal Protocol
- Transport Layer Protocol 33 Datagram Congestion Control Protocol
- Transport Layer Protocol 34 Third Party Connect Protocol
- Transport Layer Protocol 35 Inter-Domain Policy Routing Protocol
- Transport Layer Protocol 36 XTP
- Transport Layer Protocol 37 Datagram Delivery Protocol
- Transport Layer Protocol 38 IDPR Control Message Transport Protocol
- Transport Layer Protocol 39 TP++ Transport Protocol
- Transport Layer Protocol 40 IL Transport Protocol
- Transport Layer Protocol 41 IPv6 encapsulation
- Transport Layer Protocol 42 Source Demand Routing Protocol
- Transport Layer Protocol 43 Intentionally blank
- Transport Layer Protocol 44 Intentionally blank
- Transport Layer Protocol 45 Inter-Domain Routing Protocol
- Transport Layer Protocol 46 Reservation Protocol
- Transport Layer Protocol 47 General Routing Encapsulation
- Transport Layer Protocol 48 Dynamic Source Routing Protocol
- Transport Layer Protocol 49 BNA
- Transport Layer Protocol 50 Intentionally Blank
- Transport Layer Protocol 51 Intentionally Blank
- Transport Layer Protocol 52 Integrated Net Layer Security
- Transport Layer Protocol 53 IP with Encryption
- Transport Layer Protocol 54 NBMA Address Resolution Protocol
- Transport Layer Protocol 55 Mobility
- Transport Layer Protocol 56 Transport Layer Security Protocol using Kryptonet key management
- Transport Layer Protocol 57 SKIP
- Transport Layer Protocol 58 ICMP for IPv6
- Transport Layer Protocol 59 No Next Header for IPv6
- Transport Layer Protocol 60 Intentionally Blank
- Transport Layer Protocol 61 any host internal protocol
- Transport Layer Protocol 62 CFTP
- Transport Layer Protocol 63 any local network
- Transport Layer Protocol 64 SATNET and Backroom EXPAK
- Transport Layer Protocol 65 Kryptolan
- Transport Layer Protocol 66 MIT Remote Virtual Disk Protocol
- Transport Layer Protocol 67 Internet Pluribus Packet Core
- Transport Layer Protocol 68 any distributed file system
- Transport Layer Protocol 69 SATNET Monitoring
- Transport Layer Protocol 70 VISA Protoco
- Transport Layer Protocol 71 Internet Packet Core Utility
- Transport Layer Protocol 72 Computer Protocol Network Executive
- Transport Layer Protocol 73 Computer Protocol Heart Beat
- Transport Layer Protocol 74 Wang Span Network
- Transport Layer Protocol 75 Packet Video Protocol
- Transport Layer Protocol 76 Backroom SATNET Monitoring
- Transport Layer Protocol 77 SUN ND PROTOCOL-Temporary
- Transport Layer Protocol 78 WIDEBAND Monitoring
- Transport Layer Protocol 79 WIDEBAND EXPAK
- Transport Layer Protocol 80 ISO Internet Protocol
- Transport Layer Protocol 81 VMTP
- Transport Layer Protocol 82 SECURE-VMTP
- Transport Layer Protocol 83 VINES
- Transport Layer Protocol 84 TTP
- Transport Layer Protocol 85 Internet Protocol Traffic Manager
- Transport Layer Protocol 86 NSFNET-IGP
- Transport Layer Protocol 87 Dissimilar Gateway Protocol
- Transport Layer Protocol 88 TCF
- Transport Layer Protocol 89 EIGRP
- Transport Layer Protocol 90 OSPFIGP
- Transport Layer Protocol 91 Sprite RPC Protocol
- Transport Layer Protocol 92 Locus Address Resolution Protocol
- Transport Layer Protocol 93 Multicast Transport Protocol • Transport Layer Protocol 94 - AX.25 Frames

IPv6

- Transport Layer Protocol 95 IP-within-IP Encapsulation Protocol
- Transport Layer Protocol 96 Mobile Internetworking Control Pro.
- Transport Layer Protocol 97 Semaphore Communications Sec. Pro.
- Transport Layer Protocol 98 Ethernet-within-IP Encapsulation
- Italisport Layer Frotocol 90 Ethernet-within-ir Encaps
- Transport Layer Protocol 99 Encapsulation Header
- Transport Layer Protocol 100 GMTP
- Transport Layer Protocol 101 Ipsilon Flow Management Protocol
- Transport Layer Protocol 102 PNNI over IP
- Transport Layer Protocol 103 Protocol Independent Multicast
- Transport Layer Protocol 104 ARIS
- Transport Layer Protocol 105 SCPS Transport Layer Protocol
- Transport Layer Protocol 106 QNX
- Transport Layer Protocol 107 Active Networks
- Transport Layer Protocol 108 Payload Compression Protocol
- Transport Layer Protocol 109 Sitara Networks Protocol
- Transport Layer Protocol 110 Compaq Peer Protocol
- Transport Layer Protocol 111 IPX in IP
- Transport Layer Protocol 112 Virtual Router Redundancy Protocol
- Transport Layer Protocol 113 PGM Reliable Transport Protocol
- Transport Layer Protocol 114 any 0-hop protocol
- Transport Layer Protocol 115 Layer Two Tunneling Protocol
- Transport Layer Protocol 116 D-II Data Exchange (DDX)
- Transport Layer Protocol 117 Interactive Agent Transfer Protocol
- Transport Layer Protocol 118 Schedule Transfer Protocol
- Transport Layer Protocol 119 SpectraLink Radio Protocol
- Transport Layer Protocol 120 UTI
- Transport Layer Protocol 121 Simple Message Protocol
- Transport Layer Protocol 122 SM
- Transport Layer Protocol 123 Performance Transparency Protocol
- Transport Layer Protocol 124 ISIS over IPv4
- Transport Layer Protocol 125 FIRE
- Transport Layer Protocol 126 Combat Radio Transport Protocol
- Transport Layer Protocol 127 Combat Radio User Datagram
- Transport Layer Protocol 128 SSCOPMCE
- Transport Layer Protocol 129 IPLT
- Transport Layer Protocol 130 Secure Packet Shield
- Transport Layer Protocol 131 Private IP Encapsulation within IP
- Transport Layer Protocol 132 Stream Control Transmission Protocol
- Transport Layer Protocol 133 Fibre Channel
- Transport Layer Protocol 134 RSVP-E2E-IGNORE
- Transport Layer Protocol 135 Mobility Header
- Transport Layer Protocol 136 UDPLite
- Transport Layer Protocol 137 MPLS-in-IP
- Transport Layer Protocol 138 MANET Protocols
- Transport Layer Protocol 139 Host Identity Protocol
- Transport Layer Protocol 140 Shim6 Protocol
- Transport Layer Protocol 141 Wrapped Encapsulating Security Payload
- Transport Layer Protocol 142 Robust Header Compression

#### : RFC Values for IPv4 and IPv6

# 2.2.5 Protection of the TSF (FPT)

#### FPT FLS.1/SelfTest Failure with Preservation of Secure State (Self-Test Failures)

### FPT FLS.1/SelfTest

#### TSS

The evaluator shall ensure the TSS describes how the TOE ensures a shutdown upon a self-test failure, a failed integrity check of the TSF executable image, or a failed health test of the noise source. If there are instances when a shut-down does not occur, (e.g., a failure is deemed non-security relevant), the evaluator shall ensure that those cases are identified and a rationale is provided that supports the classification and justifies why the TOE's ability to enforce its security policies is not affected in any such instance.

#### Guidance

The evaluator shall verify that the operational guidance provides information on the self-test failures that can cause the TOE to shut down and how to diagnose the specific failure that has occurred, including possible remediation steps if available.

#### Tests

There are no Test EAs for this component.

FPT TST EXT.3

#### **TSS**

The evaluator shall verify that the TSS describes the method used to perform self-testing on the TSF executable code, and that this method is consistent with what is described in the SFR.

#### Guidance

There are no guidance EAs for this component.

#### Tests

There are no test EAs for this component.

# 2.2.6 Trusted Path/Channels (FTP)

#### FTP ITC.1/VPN Inter-TSF Trusted Channel (VPN Communications)

FTP ITC.1/VPN

#### **TSS**

The EAs specified for FTP\_ITC.1 in the Supporting Document for the Base-PP shall be applied for IPsec VPN communications.

#### Guidance

The EAs specified for FTP\_ITC.1 in the Supporting Document for the Base-PP shall be applied for IPsec VPN communications.

#### Tests

The EAs specified for FTP\_ITC.1 in the Supporting Document for the Base-PP shall be applied for IPsec VPN communications. Additional testing for IPsec is covered in FCS IPSEC EXT.1.

# 2.3 Evaluation Activities for Optional SFRs

# 2.3.1 Packet Filtering (FPF)

# FPF\_MFA\_EXT.1 Multifactor Authentication Filtering

FPF MFA EXT.1

#### TSS

The evaluator shall examine the TSS to verify that it describes how authentication packets are identified and how all other traffic is blocked until secondary authentication is successful.

#### Guidance

The evaluator shall examine the operational guidance to verify that it provides instructions to the administrator on how to configure the secondary HOTP or TOTP factors and any additional details necessary for filtering all other traffic.

#### Tests

• **Test 1:** For each included selection the evaluator shall configure the TOE per the operational guidance. The evaluator shall attempt to connect and verify other traffic is rejected per the filtering rules. The evaluator shall then provide the selected factor and confirm it is accepted and traffic is no longer blocked.

### 2.4 Evaluation Activities for Selection-Based SFRs

# 2.4.1 Identification and Authentication (FIA)

# FIA\_PSK\_EXT.1 Pre-Shared Key Composition

FIA PSK EXT.1

### $TSS^{-}$

The evaluator shall examine the TSS to ensure that it identifies all protocols that allow pre-shared keys. For each protocol identified by the requirement, the evaluator shall confirm that the TSS states which pre-shared key selections are supported.

#### Guidance

The evaluator shall examine the operational guidance to determine that it provides guidance to administrators on how to configure all selected pre-shared key options if any configuration is required.

#### Tests

The evaluator shall also perform the following tests for each protocol (or instantiation of a protocol, if performed by a different implementation on the TOE).

• **Test 1:** For each mechanism selected in FIA\_PSK\_EXT.1.2 the evaluator shall attempt to establish a connection and confirm that the connection requires the selected factors in the PSK to establish the connection.

### FIA\_PSK\_EXT.2 Generated Pre-Shared Keys

FIA PSK EXT.2

#### TSS

If generated is selected the evaluator shall confirm that this process uses the RBG specified in FCS RBG EXT.1 and the output matches the size selected in FIA PSK EXT.2.1.

#### Guidance

The evaluator shall confirm the operational guidance contains instructions for entering generated pre-shared keys for each protocol identified in the FIA\_PSK\_EXT.1.1.

#### **Tests**

• **Test 1:** [conditional] If generate was selected the evaluator shall generate a pre-shared key and confirm the output matches the size selected in FIA PSK EXT.2.1.

#### FIA\_PSK\_EXT.3 Password Based Pre-Shared Keys

FIA PSK EXT.3

#### TSS

The evaluator shall examine the TSS to ensure it describes the process by which the bit-based pre-shared keys used. If generated is selected the evaluator shall confirm that this process uses the RBG specified in FCS RBG EXT.1.

Support for length: The evaluators shall check to ensure that the TSS describes the allowable ranges for PSK lengths, and that at least 64 characters or a length defined by the platform may be specified by the user.

Support for character set: The evaluator shall check to ensure that the TSS describes the allowable character set and that it contains the characters listed in the SFR.

Support for PBKDF: The evaluator shall examine the TSS to ensure that the use of PBKDF2 is described and that the key sizes match that described by the ST author.

The evaluator shall check that the TSS describes the method by which the PSK is first encoded and then fed to the hash algorithm. The settings for the algorithm (padding, blocking, etc.) shall be described, and the evaluator shall verify that these are supported by the selections in this component as well as the selections concerning the hash function itself.

For the NIST SP 800-132-based conditioning of the PSK, the required evaluation activities will be performed when doing the evaluation activities for the appropriate requirements (FCS COP.1/KeyedHash).

The evaluator shall confirm that the minimum length is described.

The ST author shall provide a description in the TSS regarding the salt generation. The evaluator shall confirm that the salt is generated using an RBG described in FCS RBG EXT.1.

[conditional]If password stregnth meter or password blacklist is selected, the evaluator shall examine the TSS to ensure any password checking functionality provided by the TSF is described and contains details on how the function operates.

#### Guidance

The evaluator shall confirm the operational guidance contains instructions for entering bit-based pre-shared keys for each protocol identified in the requirement, or generating a bit-based pre-shared key (or both). The evaluator shall confirm that any management functions related to pre-shared keys that are performed by the TOE are specified in the operational guidance.

The guidance must specify the allowable characters for pre-shared keys, and that list must include, at minimum, the same items contained in FIA PSK EXT.3.2.

The evaluator shall confirm the operational guidance contains any necessary instructions for enabling and configurating password checking functality.

#### Tests

Support for Password/Passphrase characteristics: In addition to the analysis above, the evaluator shall also perform the following tests on a TOE configured according to the Operational Guidance:

- **Test 1:** The evaluator shall compose a pre-shared key of at least 64 characters that contains a combination of the allowed characters in accordance with the FIA\_PSK\_EXT.1.3 and verify that a successful protocol negotiation can be performed with the key.
- **Test 2:** [conditional]: If the TOE supports pre-shared keys of multiple lengths, the evaluator shall repeat Test 1 using the minimum length and invalid lengths that are below the minimum length, above the maximum length, null length, empty length, or zero length. The minimum test should be successful, and the invalid lengths must be rejected by the TOE.
- **Test 3:** [conditional]: If the TOE initiates connections, initiate and establish a remote connection, disconnect from the connection, verify that the PSK is required when initiating the connection a second time
- **Test 4:** [conditional]: If the TOE supports a password meter, the evaluator shall enter a password and verify the password checker responds per the description in the TSS.
- Test 5: [conditional]: If the TOE supports a password blacklist, the evaluator shall enter a blacklisted

password and verify that the password is rejected or flagged as such.

#### FIA\_PSK\_EXT.4 HMAC Based One Time Password Pre-shared Keys Support

FIA\_PSK\_EXT.4

#### **TSS**

The evaluator shall verify the TSS describes how the HOTP is input into the client and how that value is sent to the server.

The evaluator shall verify the TSS describes how the HOTP is accepted from an incoming connection and how that value is verified, either by the TOE or by an external authentication server.

#### Guidance

The evaluator shall verify the operational guidance contains any configuration necessary to enable HOTP.

#### Tests

• **Test 1:** The evaluator shall configure the TOE to use a supported HOTP factor, then attempt to establish a connection using that factor. The evaluator shall verify the client prompts the user for the HOTP before initiating the connection. The evaluator shall verify the server validates the HOTP or receives confirmation from an authentication server before establishing the channel.

#### FIA\_PSK\_EXT.5 Time Based One Time Password Pre-shared Keys Support

FIA PSK EXT.5

#### **TSS**

The evaluator shall verify the TSS describes how the TOTP is input into the client and how that value is sent to the server.

The evaluator shall verify the TSS describes how the TOTP is accepted from an incoming connection and how that value is verified, either by the TOE or by an external authentication server.

#### Guidance

The evaluator shall verify the operational guidance contains any configuration necessary to enable TOTP.

#### **Tests**

• **Test 1:** The evaluator shall configure the TOE to use a supported TOTP factor, then attempt to establish a connection using that factor. The evaluator shall verify the client prompts the user for the TOTP before initiating the connection. The evaluator shall verify the server validates the TOTP or receives confirmation from an authentication server before establishing the channel.

#### FIA\_HOTP\_EXT.1 HMAC-Based One-Time Password Pre-Shared Keys

FIA HOTP EXT.1

#### TSS

The evaluator shall confirm the TSS describes how the TOE complies with the RFC.

The evaluator shall confirm the TSS describes how the HOTP seed is generated and ensure it aligns with FCS RBG EXT.1  $\,$ 

The evaluator shall confirm the TSS describes how the HOTP seed is protected and ensure it aligns with the storage requirements of the base PP.

The evaluator shall confirm the TSS describes how a new HOTP seed is assigned for each client and how each client is uniquely identified.

The evaluator shall confirm the TSS describes how the HOTP seed is conditioned into a HOTP hash and verify it matches the selection in FIA\_HOTP\_EXT.1.4.

The evaluator shall confirm the TSS describes how the HOTP hash is truncated and verify it matches the selection in FIA HOTP EXT.1.5.

The evaluator shall confirm the TSS describes how the TOE handles multiple incoming invalid requests and verify it provides anti-hammer mechanism that matches the selections FIA\_HOTP\_EXT.1.6.

The evaluator shall confirm the TSS describes how the TOE handles resynchronization and how it rejects attempts outside of the look-ahead window selected in FIA TOTP EXT.1.7

The evaluator shall confirm the TSS describes how the TOE how the counter is incremented after each successful authentication.

#### Guidance

The evaluator shall verify the operational guidance contains all configuration guidance for setting any administrative value that is configurable in the FIA\_HOTP\_EXT.1 requirements.

#### **Tests**

The evaluator shall configure the TOE to use a supported HOTP factor then:

• **Test 1:** Attempt to establish a connection using a factor from a different client, the test passes if the

- client fails to connect.
- **Test 2:** Attempt multiple connections outside the limits set in FIA\_HOTP\_EXT.1.6 and verify the remediation is triggered. The test passes if remediation is triggered as defined in the selections and assignments.
- **Test 3:** Attempt to use a HOTP that is outside of the value allowed with for resynchronization. The test passes if the client fails to connect.
- **Test 4:** Attempt to connect with a valid HOTP, disconnect and attempt to authenticate again with the same HOTP value. The test passes if the client connects the first time and fails to connect the second time. If the HOTP generated is duplicated the test may be repeated.

### FIA\_TOTP\_EXT.1 Time-Based One-Time Password Pre-Shared Keys

FIA\_TOTP EXT.1

#### **TSS**

The evaluator shall confirm the TSS describes how the TOE complies with the RFC.

The evaluator shall confirm the TSS describes how the TOTP seed is generated and ensure it aligns with FCS RBG EXT.1  $\,$ 

The evaluator shall confirm the TSS describes how the TOTP seed is protected and ensure it aligns with the storage requirements of the base PP.

The evaluator shall confirm the TSS describes how a new TOTP seed is assigned for each client and how each client is uniquely identified.

The evaluator shall confirm the TSS describes how the TOTP seed is conditioned into a TOTP hash and verify it matches the selection in FIA\_TOTP\_EXT.1.4.

The evaluator shall confirm the TSS describes how the TOTP hash is truncated and verify it matches the selection in FIA TOTP EXT.1.5.

The evaluator shall confirm the TSS describes how the TOE handles multiple incoming requests and verify it provides anti-hammer mechanism that match the selections FIA\_TOTP\_EXT.2.6.

The evaluator shall confirm the TSS describes how the TOE sets a time-step value and verify it matches the selections in the ST.

The evaluator shall confirm the TSS describes how the TOE handles drift and resynchronization and verify it matches the selections. The evaluator shall ensure the TSS describes how time is kept and drift is calculated. If drift is recorded the evaluator shall ensure the TSS how this is done.

#### Guidance

The evaluator shall verify the operational guidance contains all configuration guidance for setting any administrative value that is configurable in the FIA TOTP EXT.1 requirements.

#### Tests

The evaluator shall configure the TOE to use a supported TOTP factor then:

- **Test 1:** Attempt to establish a connection using a factor from a different client, the test passes if the client fails to connect.
- **Test 2:** Attempt multiple connections outside the limits set in FIA\_TOTP\_EXT.1.6 and verify the remediation is triggered. The test passes if remediation is triggered as defined in the selections and assignments.
- **Test 3:** Attempt to use a TOTP that is outside of the value allowed with for resynchronization. The test passes if the client fails to connect.
  - Attempt to connect with a valid TOTP, disconnect and attempt to authenticate again with the same TOTP. The test passes if the client connects the first time and fails to connect the second time. If the TOTP generated is duplicated the test may be repeated.

# 2.4.2 Cryptographic Support (FCS)

## FCS\_EAP\_EXT.1 EAP-TLS

FCS EAP EXT.1

#### **TSS**

TSS TBD after public review of SRFs.

#### Guidance

Guidance TBD after public review of SRFs.

#### Tests

Tests TBD after public review of SRFs.

# 2.5 Evaluation Activities for Objective SFRs

The PP-Module does not define any objective requirements.

# 3 Evaluation Activities for SARs

The PP-Module does not define any SARs beyond those defined within the base NDcPP to which it must claim conformance. It is important to note that a TOE that is evaluated against the PP-Module is inherently evaluated against this Base-PP as well. The NDcPP includes a number of Evaluation Activities associated with both SFRs and SARs. Additionally, the PP-Module includes a number of SFR-based Evaluation Activities that similarly refine the SARs of the Base-PPs. The evaluation laboratory will evaluate the TOE against the Base-PP and supplement that evaluation with the necessary SFRs that are taken from the PP-Module.

# 4 Required Supplementary Information

This Supporting Document has no required supplementary information beyond the ST, operational guidance, and testing.

# Appendix A - References

#### Identifier Title

Common Criteria for Information Technology Security Evaluation 
• Part 1: Introduction and General Model, CCMB-2017-04-001, Version 3.1 Revision 5, April 2017.

• Part 2: Security Functional Components, CCMB-2017-04-002, Version 3.1 Revision 5, April 2017.

• Part 3: Security Assurance Components, CCMB-2017-04-003, Version 3.1 Revision 5, April 2017.

[NDcPP] collaborative Protection Profile for Network Devices, Version 2.2E, March 2020

[ND-SD] Supporting Document - Mandatory Technical Document - Evaluation Activities for Network Device cPP, Version 2.2, December 2019