

Exame Final Nacional de Matemática A Prova 635 | Época Especial | Ensino Secundário | 2022

12.º Ano de Escolaridade

Decreto-Lei n.º 55/2018, de 6 de julho | Decreto-Lei n.º 27-B/2022, de 23 de março

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 7 Páginas

A prova inclui 12 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 6 itens da prova, apenas contribuem para a classificação final os 3 itens cujas respostas obtenham melhor pontuação.

Para cada resposta, identifique o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui um formulário.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$$

Área lateral de um cone: $\pi rg(r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho} e^{i\theta} = \sqrt[n]{\rho} e^{i\frac{\theta + 2k\pi}{n}}$$
 $(k \in \{0, ..., n-1\} \in n \in \mathbb{N})$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Na Figura 1, está representado, em referencial o.n. Oxyz, o prisma hexagonal reto [ABCDEFGHIJKL], cujas bases são hexágonos regulares.

Sabe-se que:

- os vértices A e B pertencem ao semieixo positivo Ox , e o vértice F pertence ao semieixo positivo Oy ;
- o plano BCJ é definido pela equação $3x \sqrt{3}y 6 = 0$;
- o centro do prisma, ponto equidistante de todos os seus vértices, é o ponto $M\left(\frac{4}{3},\frac{2\sqrt{3}}{3},2\right)$.
- *** 1.1.** Qual das seguintes equações define o plano que contém a face [GHIJKL]?

Figura 1

(A)
$$z = 2$$

(B)
$$z = 4$$

(C)
$$x = \frac{4}{3}$$

(D)
$$x = \frac{8}{3}$$

 \bigstar 1.2. Determine, sem recorrer à calculadora, uma equação cartesiana do plano LEF .

Apresente a equação na forma ax + by + cz + d = 0, em que a, b, c e d são números reais.

2. Na Figura 2, está representado um triângulo, [ABC], inscrito numa semicircunferência de diâmetro $\overline{AC}=4$.

Seja $\,lpha\,$ a amplitude do ângulo $\,\mathit{CAB}\,$.

Mostre que a área da região sombreada na figura é dada, em função de $\, {\it \Omega} \,$, $\,$ por

Figura 2

$$2\pi - 4 \operatorname{sen}(2\alpha)$$

 \bigstar 3. Considere todos os números naturais de cinco algarismos diferentes que se podem formar com os algarismos de 0 a 5 .

Destes números, quantos têm o algarismo das unidades igual a 5 ?

- (A) 625
- **(B)** 256
- **(C)** 128
- **(D)** 96

- *** 4.** Uma empresa tem 60 funcionários. Todos trabalham cinco dias por semana, mas fazem-no em regimes diferentes, como a seguir se descreve:
 - 40% trabalham todos os dias em regime presencial;
 - 25% trabalham todos os dias à distância;
 - os restantes trabalham dois dias em regime presencial e três dias à distância.

Selecionam-se, ao acaso, quatro funcionários dessa empresa.

A expressão seguinte permite determinar a probabilidade de serem selecionados, no máximo, três funcionários que trabalham em regime presencial, pelo menos, dois dias por semana.

$$\frac{{}^{60}C_4 - {}^{45}C_4}{{}^{60}C_4}$$

Explique esta expressão no contexto descrito.

Na sua resposta:

- enuncie a regra de Laplace;
- explique o número de casos possíveis;
- explique o número de casos favoráveis.
- 5. Seja $\,\Omega\,$, conjunto finito, o espaço amostral associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos independentes $(A \subset \Omega)$ e $B \subset \Omega$, com $P(A) \neq 0$.

Mostre que $P(B) + P(A) \times (1 - P(B|A)) = P(A) + P(B) \times P(\overline{A})$.

*** 6.** Seja *k* um número natural.

Qual é o limite da sucessão (u_n) definida por $u_n = \left(\frac{n+k}{n}\right)^n$?

(A) 1

- (B) $+\infty$
- (C) e^k
- **(D)** e^{-k}
- 7. De uma progressão aritmética, (v_n) , sabe-se que $v_3=1$ e $v_{10}=\frac{5}{4}v_9$.

Averigue, sem recorrer à calculadora, se -50 é termo da progressão (v_n) .

f x 8. Em $\Bbb C$, conjunto dos números complexos, considere o número complexo $z=e\,e^{ie}$.

Seja P o afixo de z no plano complexo.

Em qual das opções seguintes pode estar representado, no plano complexo, o ponto P?

(A)

(B)

(C)

(D)

9. Em $\,\mathbb{C}\,$, conjunto dos números complexos, considere os números complexos $\,z_1\,$ e $\,z_2\,$, dados por:

- $z_1 = (1+i)^2 \times (2+i) + i^7$;
- $z_2 = \sin \theta + i \cos \theta$, com $\theta \in [0, 2\pi[$.

Determine, sem recorrer à calculadora, o valor de $\,\theta\,$ tal que $\,z_1 \times z_2 = 3 + 2\,i\,$.

igstar 10. Seja f a função, de domínio $\, \mathbb{R} \,$, definida por

$$f(x) = \begin{cases} \frac{3x}{e^{5x} - 1} & \text{se } x \neq 0\\ \frac{3}{5} & \text{se } x = 0 \end{cases}$$

Averigue, sem recorrer à calculadora, se a função f é contínua em $\ x=0$.

11. Seja g a função, de domínio \mathbb{R} , definida por $g(x) = \ln(1 + e^x) - x$.

Resolva os itens 11.1. e 11.2. sem recorrer à calculadora.

*** 11.1.** O gráfico de g tem uma assíntota oblíqua, quando x tende para $-\infty$, e tem uma assíntota horizontal, quando x tende para $+\infty$.

Determine uma equação de cada uma dessas assíntotas.

11.2. Num referencial o.n. Oxy, seja r a reta tangente ao gráfico de g no ponto de abcissa 0.

Sejam A e B os pontos de intersecção da reta r com os eixos coordenados.

Mostre que a área do triângulo [OAB] é igual a $(\ln 2)^2$.

12. Na Figura 3, estão representadas, em referencial o.n. Oxy, parte do gráfico de uma função, h, e uma reta, s.

Sabe-se que:

- a função h, de domínio \mathbb{R} , é definida por $h(x) = x^2$;
- ullet a reta s tem declive positivo, m , e intersecta o gráfico da função h nos pontos A e B ;
- o ponto A tem coordenadas (-1,1).

Figura 3

- *** 12.1.** Qual das expressões seguintes representa a ordenada na origem da reta *s* ?
 - (A) m+1

(B) m + 2

(C) $(m+1)^2$

- **(D)** $(m+2)^2$
- *** 12.2.** Sabe-se que as coordenadas do ponto B são da forma $(m+1,(m+1)^2)$.

Considere o ponto $\ C$, projeção ortogonal do ponto $\ B$ sobre o eixo $\ Oy$.

Determine, recorrendo às capacidades gráficas da calculadora, o valor de m para o qual a área do triângulo [ABC] é igual a 4, sabendo-se que existe e é único.

Apresente o valor de m arredondado às centésimas.

Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- apresente uma equação que lhe permita obter o valor de m;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação e apresente a(s) abcissa(s) do(s) ponto(s) relevante(s) arredondada(s) às milésimas.

*** 13.** Seja g uma função, de domínio \mathbb{R}^+ , cuja derivada, de domínio \mathbb{R}^+ , é definida por $g'(x) = \frac{x - e^{3x}}{x}$.

Estude, sem recorrer à calculadora, a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de g tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de g tem concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de g .
- 14. Determine, sem recorrer à calculadora, o conjunto dos números reais que são solução da equação

$$\frac{1}{2}\log_2(9x+1) = \log_2(6x)$$

*** 15.** Seja k um número real positivo.

Considere a função f, de domínio $]0, +\infty[$, definida por $f(x) = \sqrt{kx} - \ln(kx)$.

Determine, sem recorrer à calculadora, o contradomínio da função f.

FIM

COTAÇÕES

As pontuações obtidas nas respostas a estes 12 itens da prova contribuem obrigatoriamente para a classificação final.	1.1.	1.2.	3.	4.	6.	8.	10.	11.1.	12.1.	12.2.	13.	15.	Subtotal
Cotação (em pontos)	12	14	12	14	12	12	14	14	12	14	14	14	158
Destes 6 itens, contribuem para a classificação final da prova os 3 itens cujas respostas obtenham melhor pontuação.	2.		5.		7.		9.		11.2.		14.		Subtotal
Cotação (em pontos)	3 × 14 pontos												42
TOTAL												200	