(1) 108062211 黄子瑋

(2) 在 HW2/src 資料夾中

Compile:

\$make

Run:

\$../bin/hw2 ../testcases/p2-1.cells ../testcases/p2-1.nets ../output/p2-1.out (3) \ (4)

	Final cut size	Runtime	T _{IO}	$T_{ m computation}$
2-1	290	0.03	0.01	0.02
2-1	2779	1.20	0.01	1.18
2-3	27912	14.69	0.23	14.40
2-4	101444	54.20	0.59	53.46
2-5	259370	24.12	1.35	22.70

(5)

I 課堂上所教的 FM 中無論當回合的 gain 值為多少皆會跑完整趟 iteration,而我在實作中若遇到較大的 input size,則會讓取到的 max gain 值為 0 以下時就放棄該次 iteration 以加快速度。

II 沒有,我使用 unordered_map 以及 unordered_set 來尋找 net 所含的 cell,以及 cell 所在哪些 net,因為 unordered_map 的實作上是使用 hash map 相比 map,他的 access time 只要 O(1),unordered_set 也是如此,因此很方便實作,就不用花太多時間在自行設計資料結構。

III 在取得當回合的 max gain cell 時即把 gain 值以及 cell 分別放進兩個 vector,直到當回合停止後再來一併計算,並依據 vector 內的順序計算 partial sum 以及儲存結果。

IV 在最初分布 cell 時優先將同一 net 的 cell 放至同一 group 內,以此減少需要交換的次數並優化最終結果。

V 無實作

(6)

更加熟悉 FM 演算法,以及更熟悉 STL 內的資料結構。而在本次作業中因為有些設定與以往曾時做過的 FM 稍有不同因此需要更加注重時間以及 cutsize 的取捨。