

DE3726945

Publication Title:

L-Carnitine derivatives of valproic acid and pharmaceuticals containing these

Abstract:

The invention relates to L-carnitine derivatives of valproic acid, in particular L-carnitine valproate, O-valproyl-L-carnitine and O-valproyl-L-carnitine valproate, as pharmaceuticals, in particular for the treatment of epilepsy.

Data supplied from the esp@cenet database - <http://ep.espacenet.com>

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) **Offenlegungsschrift**
(11) **DE 37 26 945 A 1**

(51) Int. Cl. 4:

A 61 K 31/205

C 07 C 101/30

A 61 K 31/19

// C07C 53/128

(71) Anmelder:

Dietl, Hans, Dipl.-Chem. Dr., 8202 Bad Aibling, DE

(72) Erfinder:

gleich Anmelder

(56) Für die Beurteilung der Patentfähigkeit
in Betracht zu ziehende Druckschriften:

DE 35 22 534 A1

DE 32 40 112 A1

EP 1 67 115 A3

DE-Z: Arzneim.-Forsch. Drug.Res. 34 (II), Nr.8, 1984,
S.910-914;

(54) L-Carnitinderivate der Valproinsäure und diese enthaltende Arzneimittel

Die Erfindung betrifft L-Carnitinderivate der Valproinsäure, und zwar insbesondere L-Carnitinalvalproat, O-Valproyl-L-Carnitin und O-Valproyl-L-Carnitinalvalproat als Arzneimittel, insbesondere zur Behandlung der Epilepsie.

DE 37 26 945 A 1

DE 37 26 945 A 1

Patentansprüche

1. Arzneimittel, dadurch gekennzeichnet, daß eine wirksame Menge an L-Carnitinalproat der Formel

10 enthalten ist.

2. Arzneimittel, dadurch gekennzeichnet, daß eine wirksame Menge an O-Valpropyl-L-Carnitin der Formel

20 und/oder ein pharmazeutisch verträgliches Salz von O-Valpropyl-L-Carnitin enthalten ist.
3. Arzneimittel, dadurch gekennzeichnet, daß eine wirksame Menge an O-Valpropyl-L-Carnitin-Valproat der Formel

enthalten ist.

35 4. Arzneimittel nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß es in intravenös injizierbarer Form vorliegt.

5. Arzneimittel nach dem Anspruch 1 bis 3, dadurch gekennzeichnet, daß es in Form von Tabletten, magensaftresistenten Tabletten, Kapseln, magensaftresistenten Kapseln, den entsprechenden Retardformen oder Saft vorliegt.

40 Beschreibung

Die Erfindung betrifft ein Arzneimittel, das L-Carnitinderivate der Valproinsäure enthält und zwar L-Carnitinalproat und/oder O-Valpropyl-L-Carnitin und/oder ein pharmazeutisch verträgliches Salz hiervon und/oder O-Valpropyl-L-Carnitinvalproat.

45 Es ist bekannt, Valproinsäure oder dessen Natriumsalz als Arzneimittel vorwiegend zur Behandlung von epileptischen Anfällen und Fieberkrämpfen zu verwenden.

Chemisch gehört die Valproinsäure zur Stoffgruppe der niederen Fettsäuren, die eine n-Propylgruppe als Substituent tragen. Valproinsäure hat die Summenformel $\text{C}_8\text{H}_{16}\text{O}_2$, ein Molekulargewicht von 144,2 sowie die Strukturformel

60 Synonyme Bezeichnungen für Valproinsäure sind 2-Propyl-Pentansäure, 2-Propylvaleriansäure und Di-n-Propylessigsäure.

Die Valproinsäure als Arzneimittel wirkt hemmend auf die Gamma-Aminobutyrat- α -Ketoglutarat-Transaminase (GABA-T) und die Succin-Semialdehyd-Dehydrogenase (SSAD) und erhöht so den GABA-Spiegel, wodurch die Erregungsschwelle erhöht wird. Daher wird Valproinsäure bzw. Natriumvalproat in Form von Tabletten, magensaftresistenten Tabletten, Säften und/oder Injektions- und Infusionslösungen zur Behandlung von epileptischen Anfällen und Fieberkrämpfen verwendet.

65 Die Dosierung von Valproinsäure bzw. Natriumvalproat beträgt im allgemeinen ca. 20 bis 30 mg/kg Körpergewicht, wobei sich Plasmaspiegel an Valproinsäure von 50 bis 100 µg/ml einstellen. Für die therapeutische

Anwendung sollte der Plasmaspiegel von Valproinsäure in diesem Bereich liegen.

Trotz der guten Wirkung hat die Anwendung von Valproinsäure jedoch auch schwerwiegende Nachteile. Als Nebenwirkung können nämlich beispielsweise Lebererkrankungen auftreten, die sogar unter Umständen tödlich enden können. Dieses Risiko tödlicher Lebererkrankungen ist besonders bei der häufig notwendigen Kombinationstherapie mit anderen Antiepileptika deutlich erhöht. Tödliche Lebererkrankungen treten, wenn überhaupt, gewöhnlich während der ersten sechs Behandlungsmonate auf. Besondere Vorsicht ist geboten bei Patienten mit Lebererkrankungen in der Vorgeschichte. Immer muß die Leberfunktion (z. B. Transaminasen, Bilirubin, Gesamteiweiß, Thromboplastin, Fibrinogen) engmaschig überwacht werden.

Der Erfinding liegt die Aufgabe zugrunde, ein Arzneimittel, insbesondere zur Behandlung von Epilepsie zu entwickeln, das die Vorteile von Valproinsäure hat, ohne deren Nachteile, insbesondere Lebertoxizität, zu besitzen bzw. die Lebertoxizität wesentlich zu verringern.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein Arzneimittel entwickelt wurde, das gekennzeichnet ist durch die Verwendung von

L-Carnitinvalproat und/oder

**L-Carnitin/Valproat und/oder
O-Valproyl-L-Carnitin und/oder**

O-Valproyl-L-Carnitine and O-

L-Carnitin ist eine körpereigene, natürliche Substanz. L-Carnitin hat die Summenformel $C_7H_{15}O_3N$ und die Strukturformel

Es handelt sich um ein sogenanntes "inneres Salz" (Betain). Im Organismus kommt Carnitin nur in der L-Form vor. Die spezifische optische Drehung beträgt ca. -31 Grad. Der Einsatz von L-Carnitin zur Behandlung von Fettstoffwechselstörungen ist bekannt. Das unphysiologische D-Carnitin ist dabei praktisch unwirksam.

Es wurde nun überraschenderweise gefunden, daß als Arzneimittel, insbesondere zur Behandlung der Epilepsie, chemische Verbindungen des L-Carnitins mit Valproinsäure besonders günstige Eigenschaften zeigen und zwar besonders L-Carnitinvalproat und/oder O-Valproyl-L-Carnitin und/oder O-Valproyl-L-Carnitinvalproat.

L-Carnitinvaproat kann hergestellt werden z. B. durch Umsetzung von L-Carnitin mit Valproinsäure. L-Carnitinvaproat hat die Summenformel $C_{15}H_{31}O_5N$, ein Molekulargewicht von 305,4 sowie die folgende

Alternativ kann die Herstellung beispielsweise auch erfolgen durch Verseifung von Carnitinnitril in Gegenwart von Valproinsäure.

O-Valproyl-L-Carnitin hat die Summenformel $C_{15}H_{29}O_4N$, ein Molekulargewicht von 287,4 sowie die folgende Strukturformel:

Auch ein pharmazeutisch verträgliches Salz von O-Valproyl-L-Carnitin, z. B. O-Valproyl-L-Carnitinchlorid und/oder O-Valproyl-L-Carnitinacetat ist verwendbar.

O-Valproyl-L-Carnitin oder dessen Salze können beispielsweise aus L-Carnitin und Valproinsäure hergestellt werden, indem aus Valproinsäure zunächst ein Valproylhalogenid (= Säurehalogenid), bevorzugt Valproylchlorid hergestellt wird und dieses Valproylhalogenid mit L-Carnitin (oder L-Carnitinchlorid) in einem Lösungsmittel, das bevorzugt unter organischen Säuren und entsprechenden Anhydriden ausgewählt ist, umgesetzt wird. Das Gemisch wird beispielsweise bei 15 bis 60°C während etwa 4 bis 48 Stunden gehalten, wodurch der Valproinsäureester des L-Carnitins anfällt, nämlich O-Valproyl-L-Carnitin. Dem O-Valproyl-L-Carnitin ist selbstverständlich auch das entsprechende Salz, z. B. Chlorid oder Acetat, äquivalent.

Herstellungsschema

20 Als alternative Herstellungsmethode kann auch beispielsweise angewendet werden die Verseifung des entsprechenden Valproylcarnitinnitrils, z. B. schematisch dargestellt wie folgt:

Selbstverständlich kann auch vom D,L-Carnitinnitril ausgegangen werden und das so erhaltene O-Valproyl-D,L-Carnitinchlorid in die D- und L-Form getrennt werden durch geeignete Verfahren.
 O-Valproyl-L-Carnitinvalproat hat die Summenformel $C_{23}H_{45}O_8N$, ein Molekulargewicht von 431,6 und die folgende Strukturformel:

O-Valproyl-L-Carnitinalproat kann hergestellt werden durch Umsetzung von O-Valproyl-L-Carnitin mit Valproinsäure.

Aus den oben beschriebenen L-Carnitinderivaten der Valproinsäure können in an sich bekannter Weise Arzneimittel in Form von Tabletten, magensaftresistenten Tabletten, Retardtabletten, Kapseln, magensaftresistenten Kapseln, Retardkapseln, Säften, Injektionslösungen und Infusionslösungen hergestellt werden.

Diese Arzneimittel werden insbesondere bei Epilepsie eingesetzt, wobei der besondere und überraschende Vorteil darin besteht, daß diese Arzneimittel, obwohl gut wirksam, die Leberfunktion nicht oder nur sehr geringfügig beeinflussen.

So zeigt sich, daß bei Gabe der erfundungsgemäßen Verbindungen bei Tier und Mensch, im Gegensatz zur Gabe von Valproinsäure, es nicht oder in nur sehr geringem Maße zu Funktionsstörungen der Leber kommt, die sich beispielsweise in einer Erhöhung des Ammoniums und der Transaminasen manifestieren.

Dadurch werden überraschenderweise trotz der vorhandenen Wirksamkeit durch die erfundungsgemäßen Verbindungen die entscheidenden Nachteile der Epilepsiebehandlung beseitigt.

Ein weiterer Vorteil der erfundungsgemäßen Verbindungen besteht darin, daß diese in fester, stabiler Form vorliegen, so daß sie problemlos in feste Arzneiformen wie Tabletten und Kapseln verarbeitet werden können. Außerdem sind sie gut wasserlöslich und können daher leicht in Form von Injektionslösungen und Infusionslösungen verarbeitet werden.

Weitere Einzelheiten der Erfahrung werden anhand der folgenden nicht beschränkenden Beispiele beschrieben:

5

10

15

20

25

30

35

40

45

50

55

60

65

Beispiel 1

Herstellung von L-Carnitinalproat (Betainform)

161,2 g L-Carnitin werden in ca. 1 l Äthylalkohol gelöst und dazu 144,2 g Valproinsäure gegeben und 1 Stunde gerührt. Der Äthylalkohol wird im Rotationsverdampfer abgedampft, der erhaltene Rückstand wird aus Isopropanol/Äthyläther umkristallisiert. Man erhält 295 g (= 96% Ausbeute) L-Carnitinalproat.

Analyse: C₁₅H₃₁O₅N

Berechnet:

C 58,99%, H 10,23%, N 4,59%;

Gefunden:

C 58,87%, H 10,29%, N 4,49%.

NMR-Spektrum und IR-Spektrum bestätigen die Analyse.

Das so erhaltene L-Carnitinalproat wird in an sich bekannter Weise in Tabletten, Säfte und Injektionslösungen verarbeitet.

Beispiel 2

Herstellung von O-Valproyl-L-Carnitinchlorid

19,77 g L-Carnitinchlorid werden in 250 ml Eisessig gelöst und dem Gemisch werden 18,0 g Valproylchlorid (hergestellt durch Umsetzung von Valproinsäure mit Thionylchlorid) zugegeben. Es wird 48 Stunden bei Raumtemperatur gerührt. Der Rückstand wird aus Isopropanol/Äthyläther umkristallisiert, wobei ein reines Produkt erhalten wird.

Ausbeute: 90% der Theorie

Analyse: C₁₅H₃₀O₄NCI

Berechnet:

C 55,63, H 9,34, N 4,33, Cl 10,95;

Gefunden:

C 55,72, H 9,26, N 4,19, Cl 11,08.

Neben der Analyse bestätigen NMR-Spektrum und IR-Spektrum, daß es sich um O-Valproyl-L-Carnitinchlorid handelt.

Das so erhaltene O-Valproyl-L-Carnitinchlorid wird in an sich bekannter Weise in Hartgelatine-Kapseln und in Infusionslösungen verarbeitet. Aus dem O-Valproyl-L-Carnitinchlorid läßt sich in an sich bekannter Weise (z. B. mittels Ionenaustausches) das Betain herstellen.

Beispiel 3

Herstellung von O-Valproyl-L-Carnitinalproat

16,12 g L-Carnitin werden in ca. 100 ml Valproinsäure gelöst und dem Gemisch werden 18,0 g Valproylchlorid (hergestellt durch Umsetzung von Valproinsäure mit Thionylchlorid) zugegeben. Es wird 48 Stunden bei Raumtemperatur gerührt. Anschließend wird der Überschuß an Valproylchlorid und Valproinsäure bei 80°C im Vakuum entfernt und auf Raumtemperatur abgekühlt. Der so erhaltene Rückstand wird aus Isopropanol/Äthyläther umkristallisiert, wobei ein reines Produkt von O-Valproyl-L-Carnitinalproat erhalten wird. Die Ausbeute beträgt 41,2 g (95% der Theorie).

Analyse: C₂₃H₄₅O₆N

Berechnet:

C 64,01%, H 10,51%, N 2,32%;

Gefunden:

C 63,91%, H 10,62%, N 2,28%.

NMR-Spektrum und IR-Spektrum bestätigen die Analyse.

Das so erhaltene O-Valproyl-L-Carnitinalproat wird in an sich bekannter Weise in Tabletten in Injektionslösungen verarbeitet.

Beispiel 4

10

Verwendung von O-Valproyl-L-Carnitinalproat

Ein 1 Jahr altes Kind wurde mit Valproinsäure (25 mg/kg Körpergewicht) und Nitrazepam (0,1 mg/kg Körpergewicht) behandelt.

15

Nach 2 Monaten Behandlung zeigte sich ein erhöhtes Blutammoniak von 340 µg/dl sowie eine Erhöhung der Transaminasen (SGOT 120 IU/dl und SGPT 90 IU/dl). Die Valproinsäure-Konzentration betrug 60 µg/ml im Blut. Klinisch zeigten sich die Symptome einer beginnenden Enzephalopathie.

20

Valproinsäure wurde abgesetzt und dem Patienten dafür O-Valproyl-L-Carnitinalproat in einer Dosierung von 37,5 mg/kg Körpergewicht verabreicht als Saft über 2 Monate. Die Valproinsäure-Konzentration im Blut betrug 63 µg/ml.

25

Nach bereits 3 Tagen gingen sowohl Blutammoniak und die Transaminasen auf Normalwerte zurück, klinisch zeigten sich keine Anzeichen einer Enzephalopathie. Das beginnende Leberversagen wurde daher aufgehoben.

Beispiel 5

25

Verwendung von L-Carnitinalproat

Eineige Zwillinge im Alter von 6 Jahren wurden wegen Epilepsie mit Natriumvalproat (25 mg/kg Körpergewicht) und Phenobarbitol (4 mg/kg Körpergewicht) behandelt.

30

Nach dreimonatiger Behandlung zeigten sich bei Patienten klinisch Anzeichen einer beginnenden hepatischen Enzephalopathie.

Die Blutammoniak-Werte lagen zwischen 140 und 200 µg/dl, die Transaminasen waren stark erhöht (SGOT ca. 2900 IU/dl; SGPT ca. 1500 IU/dl). Die Valproinsäure-Konzentrationen im Blut lagen bei 45 µg/ml.

35

Natriumvalproat wurde abgesetzt und statt dessen L-Carnitinalproat (in Saft-Form) in einer Dosierung von 50 mg/kg Körpergewicht verabreicht über einen Zeitraum von 4 Monaten.

In beiden Fällen zeigte sich eine deutliche Besserung der klinischen Symptome, sowohl Blutammoniak wie die Transaminasen normalisierten sich, obwohl die Valproinsäure-Konzentration im Blut weiterhin zwischen 40 und 50 µg/ml lag.

Beispiel 6

40

Verwendung von O-Valproyl-L-Carnitinchlorid

45

Ein sechsjähriger Junge wurde mit Natriumvalproat in einer Dosierung von 30 mg/kg Körpergewicht behandelt. Die Valproinsäure-Konzentration im Blut betrug 55 µg/ml. Nach einmonatiger Behandlung stieg das Blutammoniak auf 170 µg/dl sowie SGOT auf 1400 IU/dl und SGPT auf 1050 IU/dl.

Natriumvalproat wurde abgesetzt und die Behandlung mit O-Valproyl-L-Carnitinchlorid (in Tablettenform) in einer Dosierung von 60 mg/kg Körpergewicht fortgesetzt. Die Valproinsäure-Konzentration im Blut stellt sich auf 58 µg/ml ein.

50

Nach zweiwöchiger Behandlung mit O-Valproyl-L-Carnitinchlorid hatten sich sowohl Blutammoniak wie Transaminasen normalisiert.

55

60

65