Course: Data Mining

Student: Ekaterina Eremina

Topic: HW2

Part_1: written assignment

Exercise_1

(a)
$$p(C1) = 5$$
, $n(C2) = 4$.

$$I(C1, C2) = 0.9911$$

	p_{i}	ni	$I(p_i, n_i)$
Height = Tall	3	2	0,9710
Height = Short	2	1	0,9183
Height = Medium	0	1	0
Hair = Blond	2	2	1
Hair = Dark	3	1	0,8113
Hair =Red	0	1	0
Eye = Brown	3	0	0
Eye = Blue	2	4	0,9183

E(Height) =
$$5/9*I(3,2) + 3/9*I(2,1)+1/9*I(0,1) = 0.8455$$

E(Hair) = $4/9*I(2,2) + 4/9*I(3,1) + 1/9*I(0,1) = 0.8050$
E (Eye) = $3/9*I(3,0) + 6/9*I(2,4) = 0.6122$

Exercise_2

 $Z = \{Brown, Blond, Short\} \rightarrow C1$

Let's count probabilities for naive Bayesian classifier.

$$P(C1) = 5/9$$

$$P(C2) = 4/9$$

$$P(Brown|C1) = 3/5$$

$$P(Brown|C2) = 0$$

$$P(Blond|C1) = 2/5$$

$$P(Blond|C2) = 2/4$$

$$P(Short|C1) = 2/5$$

$$P(Short|C2) = 1/4$$

$$P(Z|C1) = 2/5*2/5*3/5 = 12/125$$

$$P(Z|C2) = 1/4*2/4*0 = 0$$

$$P(Z|C1)*P(C1) = 12/125*5/9 = 0.053$$

$$P(Z|C2)* P(C2) = 0$$

Result will be the same: = {Brown, Blond, Short} -> C1.

Exercise_3

(a)

(b) Training = {Medium, Blond, Blue -> C1}

X11	X12	X13	X21	X22	X23	X31	X32
tall	short	medium	blond	dark	red	brown	blue
0	0	1	1	0	0	0	1
W1,9	W1,10	W2,9	W2,10	W3,9	W3,10	W4,9	W4,10
0,2	0,2	-0,1	0,4	0,3	-0,1	-0,2	0,1
W5,9	W5,10	W6,9	W6,10	W7,9	W7,10	W8,9	W8,10
0,2	0,2	0,1	-0,1	0,3	0,2	0,1	0,2
W 9,11	W10,11	θ9	θ_{10}	θ_{11}			
-0,3	0,1	-0,2	0,2	0,3			

Node, j	Input, I _j	Output, O _j
9	0+0+0,3-0,2+0+0+0+0,1-0,2=0	$1/(1+e^0) = 0.5$
10	0+0-0,1+0,1+0+0+0+0,1+0,2=0,3	$1/(1+e^{(-0.3)}) = 0.5744$
11	(-0,3)*0,5+0,1*0,5744+0,1 = 0,00744	$1/(1+e^{(-0.00744)}) = 0.502$

Node, j	Error, Err _j
11	0,502*(1-0,502)*(1-0,502) = 0,1245
10	0,5744*(1-0,5744)*0,125*0,1 = 0,0031
9	0,5*(1-0,5)*0,125*(-0,3) = - 0,0094

W _{1,10}	0.2 + 0.9*(0.0031)*0 = 0.2	W6,10	0.1 + 0.9*(0.0031)*0 = 0.1
W1,9	0.2 + 0.9*(-0.0094)*0 = 0.2	W7,9	0.3 + 0.9*(-0.0094)*0 = 0.3
W2,10	-0.1 + 0.9*(0.0031)*0 = -0.1	W7,10	0.3 + 0.9*(0.0031)*0 = 0.3
W2,9	-0,1 + 0,9*(-0,0094)*0 = -0,1	W8,9	0.1 + 0.9*(-0.0094)*1 = 0.092
W3,10	0.3 + 0.9*(0.0031)*1 = 0.303	W8,10	0.1 + 0.9*(0.0031)*1 = 0.103
W3,9	0.3 + 0.9*(-0.0094)*1 = 0.292	W9,11	-0,3+0,9*(0,1245)*0,5 = -0,244
W4,9	-0,2 + 0,9*(-0,0094)*1 = -0,209	W10,1	0,1+0,9*(0,1245)*0,5744 = 0,164
W4,10	-0,2 + 0,9*(0,0031)*1 = -0,197	θ9	-0,2+0,9*(-0,0094) = -0,209
W5,9	0.2 + 0.9*(-0.0094)*0 = 0.2	θ_{10}	0,2+0,9*(0,0031) = 0,203
W5,10	0.2 + 0.9*(0.0031)*0 = 0.2	θ_{11}	0,3+0,9*(0,1245) = 0,412
W6,9	0,1+0,9*(-0,0094)*0=0,1		

Exercise_4

(a) We have clusters centroids A_1 , B_1 and C_1 . Let's calculate Euclidian distances.

	\mathbf{A}_1	B_1	\mathbf{C}_1
A_2	7,348	9,899	4,123
A ₃	6,403	10,05	7,874
B_2	3,742	2,449	10,817
B ₃	5,745	9,644	11,045
C_2	3,742	5,831	11,874
C ₃	5,477	10	9,644
C ₄	4,583	8,775	8,367

After the first round execution we will have three clusters $\{A_1A_3B_3C_2C_3C_4\}$, $\{B_1B_2\}$ and $\{A_2C_1\}$. Cluster centers are (4,5;4,5;6,83), (1,5;2;1,5) and (10,5;2;2) respectively.

(b)

	(4,5; 4,5; 6,83)	(1,5; 2; 1,5)	(10,5; 2; 2)
A_1	3,138	4,301	7,159
A_2	7,337	9,028	3,041
A ₃	3,54	8,86	9,552
B_1	7,684	1,225	9,605
B_2	5,642	1,225	8,559
B_3	3,035	8,631	11,011
C_1	9,264	11,811	7,018
C_2	3,632	4,95	10,5
C ₃	5,703	9,354	5,315
C ₄	1,59	7,649	8,441

Finally, we have three clusters: $\{A_1A_3B_3C_2C_3C_4\}$, $\{B_1B_2\}$ and $\{A_2C_1\}$.

Part_2: Lab Exercise_1

(1) Decision tree can be seen on the next page.

(2)

(3)

```
1 2 3 4 5 6 7 8 All 🗫 🖫 🕕
formato souce = 1 [Mode: 1]
      tunny= 1 [Mode: 1] - 1
     tunny= 0 [Mode: 1]
        rice = 1 [Mode: 1] - 1
         rice = 0 [ Made: 0]
          — brioches = 1 [Mode: 1] <> 1
         brioches = 0 [Mode: 0]
             — frozen vegetables = 1 [Mode: 1] □ 1
            frozen vegetables = 0 [Mode: 0]

    tomato souce = 0 | Mode: 0 |

   p- rice = 1 [Mode: 0]
      - coffee = 1 [Mode: 1] ⇒ 1
      coffee = 0 [Mode: 0]

    biscuits = 1 [Mode: 1] ⇒ 1

         biscuits = 0 [Mode: 0]
              cake = 1 [Mode: 1] => 1
             - coke = 0 [Mode: 0] => 0
     rice = 0 [Mode 0]
      - tunny=1 [Mode:0] ⇒ 0
      tunny = 0 [Mode: 0]
          - oil = 1 [Mode: 0] ⇒ 0
           oil = 0 [Mode: 0]
             - water = 1 [Mode: 0] ⇒ 0
            water = 0 [Mode: 0]
```


Exercise_2

(1)

(3)

(4)

	sensitivity	specifity	precision	accuracy
decision_tree	0,4884	0,9909	0,7000	0,9700
neural_network	0,7674	0,9778	0,6000	0,9690
logistic_regression	0,2558	0,9667	0,2500	0,9371

After we calculated all measures for evaluation, let's choose the best method. Accuracy of decision_tree and neural_network are almost the same. Next we check sensitivity and specificity - neural_network predict positive values much better, than decision_tree, while difference in negative values prediction is not that dramatic. It allows to conclude, that neural_network is better.