Problem Set 7 Submit through becourses

1. Noise Figure of Cascade Blocks and Lossy Transmission Line

- (a) For the above two cascade circuits, calculate the power gains and noise figures for each stage (i.e., $S_{21,1}$, $S_{21,2}$, NF_1 , NF_2) and the two-stage circuits ($S_{21,total}$, NF_{total}). The resistors are assumed to be noiseless.
- (b) Is the formula $NF_{total} = NF_1 + \frac{(NF_2 1)}{|S_{21,1}|^2}$ applicable?
- (c) For a lossy transmission line illustrated below, derive its noise figure.

- (d) If the T-line is used to connect the above two cascade circuits to the 50Ω source (e.g. antenna), what will be the new total noise figures?
- 2. Matching for Low Noise versus Matching for High Gain
 - * In this problem, your answers should be functions of frequency.
 - (a) For a simplified common-source model shown below (with noise sources drawn), derive the input referred noise voltage and noise current.

- (b) Following part(a), what is the source impedance that optimizes the noise figure? What is the lowest noise figure?
- (c) In practice, the source impedance is 50Ω (without any matching network). Design a input matching network to achieve the lowest noise figure. For your convenience, you can use an ideal transformer with arbitrary turns ratio and a series reactance to realize the matching network, as illustrated in the below figure.

- (d) Calculate the S_{11} and the achieved trans-conductance for your low-noise design.
- (e) Redesign the input matching network to achieve the maximum trans-conductance. Calculate the new trans-conductance and noise figure.
- (f) For a special case with frequency of 1 GHz, gm of 0.01, C_{gs} of 100 fF, and R_g of 20, verify the calculated results for the two designs in ADS.