Mathematics for Machine Learning

— Linear Algebra: Projections & Gram-Schmidt Orthogonalization

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

- Orthogonal Projections
- Gram-Schmidt Orthogonalization
- Rotations

Outline

- Orthogonal Projections
- 2 Gram-Schmidt Orthogonalization
- Rotations

Motivations (1/2)

- In machine learning, we often need to deal with high-dimensional data.
- High-dimensional data is often hard to analyze or visualize.
- Sometimes, only a few dimensions contain most information.
- We might try to project the original high-dimensional data onto a lower-dimensional space and work on it.
- Note: When we compress or visualize high-dimensional data, we will lose information.

Motivations (2/2)

Examples (dimensionality reduction)

- Principal component analysis (PCA)
- Deep neural networks
- Classification
- Linear Regression

Projection

Projection

Let V be a vector space and $U \subseteq V$ be a subspace of V. A linear mapping $\pi: V \mapsto U$ is called a projection if $\pi^2 = \pi \circ \pi = \pi$.

- Recall that linear mappings can be expressed by transformation matrices.
- The projection matrices ${m P}_{\pi}$ exhibit the property that ${m P}_{\pi}^2 = {m P}_{\pi}.$

Illustration of projections onto 1-D

(a) Projection of $x \in \mathbb{R}^2$ onto a subspace U with basis vector \boldsymbol{b} .

(b) Projection of a two-dimensional vector \boldsymbol{x} with $\|\boldsymbol{x}\|=1$ onto a one-dimensional subspace spanned by \boldsymbol{b} .

Illustration of projections onto 1-D

- $\pi_U(\mathbf{x})$: closest to \mathbf{x} .
 - $\|\mathbf{x} \pi_U(\mathbf{x})\|$ is minimal.
 - $\langle \pi_U(\mathbf{x}) \mathbf{x}, \mathbf{b} \rangle = 0.$
- Projection $\pi_U(\mathbf{x})$ of \mathbf{x} onto U must be an element in U.
 - $\pi_U(\mathbf{x}) = \lambda \mathbf{b}$ for some $\lambda \in \mathbb{R}$.
- Determining the coordinates:

Since
$$\pi_U(\mathbf{b}) = \lambda \mathbf{b}$$
:

$$\langle \mathbf{x} - \pi_U(\mathbf{x}), \mathbf{b} \rangle = 0 \iff \langle \mathbf{x} - \lambda \mathbf{b}, \mathbf{b} \rangle = 0.$$

$$\Leftrightarrow \ \langle \mathbf{x}, \mathbf{b} \rangle - \lambda \langle \mathbf{b}, \mathbf{b} \rangle = 0 \ \Leftrightarrow \ \lambda = \frac{\langle \mathbf{x}, \mathbf{b} \rangle}{\langle \mathbf{b}, \mathbf{b} \rangle} = \frac{\mathbf{b}^{\top} \mathbf{x}}{\|\mathbf{b}\|^{2}} = \frac{\mathbf{b}^{\top} \mathbf{x}}{\mathbf{b}^{\top} \mathbf{b}}.$$

• Finding the projection $\pi_U(\mathbf{x}) \in U$:

$$\pi_U(\mathbf{x}) = \lambda \mathbf{b} = \frac{\langle \mathbf{x}, \mathbf{b} \rangle}{\|\mathbf{b}\|^2} \mathbf{b} = \frac{\mathbf{b}^\top \mathbf{x}}{\|\mathbf{b}\|^2} \mathbf{b},$$

Note that $\|\pi_U(\mathbf{x})\| = \|\lambda \mathbf{b}\| = |\lambda| \|\mathbf{b}\|.$

• If we use the dot product as the inner product and let θ be the angle between \mathbf{x} and \mathbf{b} :

$$\|\pi_U(\mathbf{x})\| = \frac{|\mathbf{b}^{\top}\mathbf{x}|}{\|\mathbf{b}\|^2} \|\mathbf{b}\| = |\cos\theta| \|\mathbf{x}\| \|\mathbf{b}\| \frac{\|\mathbf{b}\|}{\|\mathbf{b}\|^2} = |\cos\theta| \|\mathbf{x}\|.$$

- Finding the projection matrix P_{π} :
 - Recall: projection is a linear mapping.
 - With the dot product as the inner product,

$$\|\pi_U(\mathbf{x})\| = \lambda \mathbf{b} = \mathbf{b}\lambda = \mathbf{b} \frac{\mathbf{b}^{\top} \mathbf{x}}{\|\mathbf{b}\|^2} = \frac{\mathbf{b}\mathbf{b}^{\top}}{\|\mathbf{b}\|^2} \mathbf{x}.$$

So,

$$oldsymbol{P}_{\pi} = rac{\mathbf{b} \mathbf{b}^{ op}}{\|\mathbf{b}\|^2}.$$

Note: bb^{\top} is a symmetric matrix.

Projection onto General Subspaces (1/4)

Orthogonal projections of $\mathbf{x} \in \mathbb{R}^n$ onto $U \subseteq \mathbb{R}^n$ with $\dim(U) = m \ge 1$.

Projection onto General Subspaces (2/4)

- Any projection can be represented as a linear combination of the basis vectors $\mathbf{b}_1, \dots, \mathbf{b}_m$ of U.
 - $\pi_U(\mathbf{x}) = \sum_{i=1}^m \lambda_i \mathbf{b}_i$.
- Find the coordinates $\lambda_1, \ldots, \lambda_m$:

$$\pi_U(\mathbf{x}) = \sum_{i=1}^m \lambda_i \mathbf{b}_i = \mathbf{B} \boldsymbol{\lambda}$$
 (closest to \mathbf{x} on U)

for
$$\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_m] \in \mathbb{R}^{n \times m}$$
, $\mathbf{\lambda} = [\lambda_1, \dots, \lambda_m]^{\top} \in \mathbb{R}^m$.

Note: $\mathbf{x} \perp \{\mathbf{b}_1, \dots, \mathbf{b}_m\}$ (: minimum distance)

$$\langle \mathbf{b}_1, \mathbf{x} - \pi_U(\mathbf{x}) \rangle = \mathbf{b}_1^\top (\mathbf{x} - \pi_U(\mathbf{x})) = 0$$

:

$$\langle \mathbf{b}_m, \mathbf{x} - \pi_U(\mathbf{x}) \rangle = \mathbf{b}_m^\top (\mathbf{x} - \pi_U(\mathbf{x})) = 0$$

Projection onto General Subspaces (3/4)

• Any projection can be represented as a linear combination of the basis vectors $\mathbf{b}_1, \dots, \mathbf{b}_m$ of U.

•
$$\pi_U(\mathbf{x}) = \sum_{i=1}^m \lambda_i \mathbf{b}_i$$
.

• Find the coordinates $\lambda_1, \ldots, \lambda_m$:

$$\pi_U(\mathbf{x}) = \sum_{i=1}^m \lambda_i \mathbf{b}_i = \mathbf{B} \lambda$$
 (closest to \mathbf{x} on U)

for
$$\mathbf{\textit{B}} = [\mathbf{b}_1, \dots, \mathbf{b}_m] \in \mathbb{R}^{n \times m}$$
, $\mathbf{\lambda} = [\lambda_1, \dots, \lambda_m]^{\top} \in \mathbb{R}^m$.

Note: $(\mathbf{x} - \pi_U(\mathbf{x})) \perp \{\mathbf{b}_1, \dots, \mathbf{b}_m\}$ (: minimum distance)

$$\mathbf{b}_{1}^{\top}(\mathbf{x} - \boldsymbol{B}\boldsymbol{\lambda}) = 0$$

$$\vdots$$

$$\mathbf{b}_{-}^{\top}(\mathbf{x} - \boldsymbol{B}\boldsymbol{\lambda}) = 0$$

Projection onto General Subspaces (4/4)

Since

$$\mathbf{b}_{1}^{\top}(\mathbf{x} - \mathbf{B}\lambda) = 0$$

 \vdots
 $\mathbf{b}_{m}^{\top}(\mathbf{x} - \mathbf{B}\lambda) = 0$

We have

$$\begin{bmatrix} \mathbf{b}_1^\top \\ \vdots \\ \mathbf{b}_m^\top \end{bmatrix} [\mathbf{x} - \boldsymbol{B}\boldsymbol{\lambda}] = \mathbf{0} \quad \Leftrightarrow \quad \boldsymbol{B}^\top (\mathbf{x} - \boldsymbol{B}\boldsymbol{\lambda}) = \mathbf{0}$$
$$\Leftrightarrow \quad \boldsymbol{B}^\top \boldsymbol{B}\boldsymbol{\lambda} = \boldsymbol{B}^\top \mathbf{x}$$

Note: $\mathbf{B}^{\top}\mathbf{B}$ is invertible $\Rightarrow \lambda = (\mathbf{B}^{\top}\mathbf{B})^{-1}\mathbf{B}^{\top}\mathbf{x}$.

• $\pi_U(\mathbf{x}) = \mathbf{B}(\mathbf{B}^{\top}\mathbf{B})^{-1}\mathbf{B}^{\top}\mathbf{x} \Rightarrow \text{Projection matrix } \mathbf{P}_{\pi} = \mathbf{B}(\mathbf{B}^{\top}\mathbf{B})^{-1}\mathbf{B}^{\top}.$

Example

Example

For a subspace
$$U = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\} \subseteq \mathbb{R}^3 \text{ and } \mathbf{x} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^3.$$

Find

- the coordinates λ of **x** in terms of U
- the projection point $\pi_U(\mathbf{x})$
- the projection matrix P_{π} .
- p. 87; on the black board.

What if $B = (\mathbf{b}_1, \dots, \mathbf{b}_m)$ is orthonormal?

- $\pi_U(\mathbf{x}) = \mathbf{B}(\mathbf{B}^{\top}\mathbf{B})^{-1}\mathbf{B}^{\top}\mathbf{x} \Rightarrow \pi_U(\mathbf{x}) = \mathbf{B}\mathbf{B}^{\top}\mathbf{x}.$ • $\mathbf{B}^{\top}\mathbf{B} = \mathbf{I}.$
- Coordinates: $\lambda = (\mathbf{B}^{\top}\mathbf{B})^{-1}\mathbf{B}^{\top}\mathbf{x} = \mathbf{B}^{\top}\mathbf{x}$.

Outline

- Orthogonal Projections
- Gram-Schmidt Orthogonalization
- Rotations

Illustration of Gram-Schmidt Orthogonalization

• **Goal:** Transform any basis $(\mathbf{b}_1, \dots, \mathbf{b}_n)$ of an *n*-dimensional vector space V into an orthogonal/orthonormal basis of V.

$$\mathbf{u}_{1} := \mathbf{b}_{1}
\mathbf{u}_{k} := \mathbf{b}_{k} - \pi_{\text{span}(\{\mathbf{u}_{1}, \dots, \mathbf{u}_{k-1}\})}(\mathbf{b}_{k}), \quad k = 2, \dots, n.$$

- basis vectors b_1, b_2 .
- Original non-orthogonal (b) First new basis vector (c) Orthogonal basis vectors u_1 $u_1 = b_1$ and projection of b_2 and $u_2 = b_2 - \pi_{\text{span}[u_1]}(b_2)$. onto the subspace spanned by

 u_1 .

Example

Example

Consider a basis
$$(\mathbf{b}_1, \mathbf{b}_2)$$
 of \mathbb{R}^2 , where $\mathbf{b}_1 = \left[\begin{array}{c} 2 \\ 0 \end{array} \right]$, $\mathbf{b}_2 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$.

Apply the Gram-Schmidt method to construct an orthonormal basis $(\mathbf{u}_1, \mathbf{u}_2)$ of \mathbb{R}^2 (assuming the dot product as the inner product).

$$\begin{aligned} \mathbf{u}_1 &:= & \mathbf{b}_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \\ \mathbf{u}_2 &:= & \mathbf{b}_2 - \pi_{\mathsf{span}(\mathbf{u}_1)}(\mathbf{b}_2) = \mathbf{b}_2 - \frac{\mathbf{u}_1 \mathbf{u}_1^\top}{\|\mathbf{u}_1\|^2} \mathbf{b}_2 \\ &= & \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{aligned}$$

Projection onto Affine Spaces

- Given an affine space $L = \mathbf{x}_0 + U$.
 - U is a low-dimensional subspace of V.
- $\pi_L(\mathbf{x}) = \mathbf{x}_0 + \pi_U(\mathbf{x} \mathbf{x}_0)$

(b) Reduce problem to projection π_U onto vector subspace.

(c) Add support point back in to get affine projection π_L .

Outline

- Orthogonal Projections
- 2 Gram-Schmidt Orthogonalization
- Rotations

Rotataions in \mathbb{R}^2 as An Example

- Standard basis $\mathbf{e} = \{\mathbf{e}_1 = [1 \quad 0]^\top, \quad \mathbf{e}_2 = [0 \quad 1]^\top\}.$
- $\mathbf{R}(\theta) = [\Phi(\mathbf{e}_1) \quad \Phi(\mathbf{e}_2)] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

Discussions