

6-axis Inertial Navigation Module Specification

Customer:	
Model Name	: <u>JWT180903</u>
REV:	1.0
PAGE:	1/10
DATE: 2	2018/06/04

Approved by:	Check by:	Prepared by:
Customer check:		

CONTENTS

Contents	2
Introduction	3
Application field	3
Interfaces	3
1. PIN out	4
2. Absolute Maximum Electrical Ratings	5
3. Recommended Operating Conditions	5
4. Performance Characteristics	5
5. Reference circuit	6
6. UART-RVC Protocol	7
7. Example	8
8. Package Outline	8
9. Recommended Operations	8
10. Design Considerations	9
11 Version History	10

Introduction

JWT180903 is a applied in robot navigation of inertial navigation module, internal integration for six axis sensor (3 axis acceleration and 3 axis gyroscope sensor) and an applied to six axis of IMU inertial navigation processor, can complete the accelerometer and gyroscope sensor fusion processing, heading output by the stable and accurate.

Application

- Consumer floor care ROBOT
- Commercial robot
- Garden and lawn robots
- Logistics robot
- Medical-assisted robots
- Nursing robot
- Other mobile robots

Figure 1 JWT180903 Module

Interfaces

UART

Source	PS0	PS1
UART-RVC	1	0
UART-SHTP	0	1

Sheet 1

1. PIN out

Figure 2 JWT180903 PIN Out

TP1	RSV_1	NC	TP14	VMCU	VDD
TP2	RSV_2	NC	TP13	GND	GND
TP3	BOOTN	Boot mode select . Active low.	TP12	PS1	Protocol select 1
TP4	RESET	Reset. Internal pullup.	TP11	H_WAKEN_PS0	Protocol select 0. UART-SHTP mode wake
TDF	LL DV	HART was a data	TD4.0	CAL DD	input (active low).
TP5	H_RX	UART receive data	TP10	CAL_PB	Calibration push button. Active low. Connect to DVDD if not used.
TP6	H_TX_LEDGRN	UART transmit data or calibration status	TP9	H_INTN_LEDRED	Host interrupt (active low) or calibration status
TP7	RSV13	NC	TP8	RSV_14	NC

Sheet 2

2. Absolute Maximum Electrical Ratings

Parameter	Symbol	Conditions	Rating	Unit
Voltage at supply pin	VDD		0 to 3.8	V
Electro Static Discharge	ESD	НВМ	2	KV
Storage temperature	Tstg		-50 to 150	$^{\circ}$

Sheet 3

3. Recommended Operating Conditions

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	VDD		3.0 to 3.6	V
Operating temperature	Та		-40 to 85	${\mathbb C}$

Sheet 4

4. Performance Characteristics

Parameter	Performance Metric	Typical		
Roll/Yaw	Resolution	0.01°		
KOII/Taw	Range	± 180 °		
Ditah	Resolution	0.01°		
Pitch	Range	± 90 °		
	Range	± 8g		
	Resolution	4 mg (12-bit)		
Accelerometer	Noise density	150 μg/√Hz		
Accelerometer	Scale error	1%		
	Zero-g offset initial	70 mg		
	Zero-g offset after dynamic calibration	20 mg		

	Range	± 2000 °/s				
	Resolution	0.06 °/s (16-bit)				
Gyroscope	Noise density	0.014 °/s/√Hz				
	Scale error @25°C uncalibrated	1%				
	Z-axis scale error calibrated	0.3%				
	Scale error over aging	0.7%				
	Scale error over temperature	0.03 %/°C				
	ZRO after dynamic calibration	0.006 °/s				
Startup time	UART reports from reset	1.2 s				
Composite Sensor	Performance Metric	Typical				
	Non-heading Error - dynamic	2.5°				
Gaming Rotation Vector	Non-heading Error - static	1.0°				
	Heading Drift - dynamic	0.3°/min				
Gravity	Angle Error - static	1.0°				
Linear Acceleration	Accuracy - dynamic	0.35 m/s ²				

Sheet 5

5. Reference circuit

Figure 3 JWT180903 Reference circuit

Header

Checksum (Csum)

6. UART-RVC Protocol

The UART operates at 115200 b/s, 8 data bits, 1 stop bit and no parity.

UART Signaling

The JWT180903 transmits the following data at a rate of 100Hz.

Header	Index	Ya	aw	Pitch		Roll		X-axis accel		Y-axis accel		Z-axis accel		Reserved		Csum	
0xAAAA		LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	0	0	0	

UART-RVC packet format

Each report is prefixed with a 0xAAAA header

The 19-byte message has the following fields:

Index	A monotonically increasing 8-bit count is provided (0-255) per
	report
Yaw	The yaw is a measure of the rotation around the Z-axis since reset.
	The yaw has a range of +/- 180° and is provided in 0.01°
	increments, i.e. a report of 8734 is equivalent to 87.34°.
Pitch	The pitch is a measure of the rotation around the Y-axis. The pitch
	has a range of +/- 90° and is provided in 0.01° increments, i.e. a
	report of 1072 is equivalent to 10.72°.
Roll	The roll is a measure of the rotation around the X-axis. The roll has
	a range of +/- 180° and is provided in 0.01° increments, i.e. a
	report of 1072 is equivalent to 10.72°.
X-axis acceleration	The acceleration along the X-axis, presented in mg
Y-axis acceleration	The acceleration along the Y-axis, presented in mg
Z-axis acceleration	The acceleration along the Z-axis, presented in mg
Reserved	The message is terminated with three reserved bytes, currently
	set to zero

www.js-jwt.com 7

are added to produce the 8 bit checksum.

The Index, yaw, pitch, roll, acceleration and reserved data bytes

7. Example

Hea	ader	Index	Ya	aw	Pit	ch	Roll		X-axis accel		Y-axis accel		Z-axis accel		Reserved			Csum
AA	AA	DE	01	00	92	FF	25	80	8D	FE	EC	FF	D1	03	0	0	0	E7

Index = 0xDE = 222

 $Yaw = 00.01^{\circ} (1 = 0x0001)$

Pitch = -1.10° (-110 = 0xFF92)

 $Roll = 20.85^{\circ} (2085 = 0x0825)$

X-acceleration = -371 mg = -3.638 m/s2 (-371 = 0xFE8D)

Y-acceleration = -20 mg = -0.196 m/s2 (-20 = 0 xFFEC)

Z-acceleration = 977 mg = 9.581 m/s2 (977 = 0x03D1)

Checksum = 0xE7

8. Package Outline

Figure 4 Package

9. Recommended Operations

• let the module sit for at least 2 seconds before the test begins:

When the robot is powered on, leaving the module still for at least two seconds before starting the motor will help to estimate accurately ZRO.

- Maintain power to the JWT180903 during power charge:
- Temperature changes during power charge can impact the JWT180903 characteristics of ZRO. IMU uses the temperature data to dynamically calibrate ZRO. Keeping the JWT180903 running during the temperature changes will help to accurately estimate ZRO.
- Add 2 or more seconds pause during the navigation: Two or more seconds pause during the navigation every 5 minutes or less will allow the dynamic calibration algorithm to complete accurate estimation of ZRO. The goal is to eliminate rotational motion for 1 to 2 seconds to allow the system to recalibrate ZRO.
- Use the reset pin to reset the JWT180903 after each navigation:
 Use the reset pin to reset the JWT180903 whenever the device returns to the docking station after navigation. This will allow the dynamic calibration records to be saved into the JWT180903's non-volatile memory. This record will be used after power cycling of the device.
- Take extra rotation to "unwind" the turns during navigation: Monitor the turns and unwind the motion to compensate turns during the navigation. This will cancel the scale error during the turns and improve the heading performance.

Figure 5: Compensated Turns during Navigation

10.Design Considerations

- Consider placing the JWT180903 away from the source of heat or vibration.
- Consider placing a thermal insulator to cover the JWT180903 to avoid rapid temperature changes.

11. Version History

Version	Changes	Date
V1.0	Initial release	2018.6.04

