Übungsblatt 22 zur Homologischen Algebra II

Aufgabe 1. Erzeugte Unterkategorie

Sei X ein Objekt einer abelschen Kategorie \mathcal{A} . Sei $\langle X \rangle \subseteq \mathcal{A}$ die volle Unterkategorie aller direkten Summen direkter Summanden von X. Diese Unterkategorie wird eine additive Kategorie.

- a) Sei $\operatorname{Ext}_{\mathcal{A}}^i(X,X)=0$ für alle i>0. Zeige, dass der kanonische Funktor $K^b(\langle X\rangle)\to D^b(\mathcal{A})$ volltreu ist.
- b) Gelte außerdem, dass jedes Objekt aus \mathcal{A} eine endliche Auflösung durch Objekte aus $\langle X \rangle$ besitzt. Zeige, dass der Funktor aus a) dann sogar eine Äquivalenz ist.

Aufgabe 2. Auflösungen unbeschränkter Komplexe

Eine projektive Linksauflösung eines Komplexes K^{\bullet} ist ein Komplex P^{\bullet} aus Projektiven zusammen mit einem Quasiisomorphismus $P^{\bullet} \to K^{\bullet}$. Zeige, dass unbeschränkte Komplexe auch bis auf Homotopieäquivalenz nicht unbedingt eindeutige projektive (ihrerseits unbeschränkte) Linksauflösungen besitzen müssen.

Tipp: Zeige, dass der Komplex $P^{\bullet}: \cdots \xrightarrow{2} \mathbb{Z}/(4) \xrightarrow{2} \cdots$ abelscher Gruppen eine projektive Linksauflösung des Nullkomplexes ist, aber nicht homotopieäquivalent zum Nullkomplex ist.

Aufgabe 3. Kategorielle Charakterisierung von Endlichkeitseigenschaften

a) Zeige, dass ein A-Modul M genau dann endlich erzeugt ist, wenn der Funktor $\operatorname{Hom}(M,_):\operatorname{Mod}(A)\to\operatorname{Set}$ mit filtrierten Kolimiten von Monomorphismen vertauscht, dass also für jedes filtrierte Diagramm $(V_i)_i$, in der die Übergangsabbildungen $V_i\to V_j$ alle injektiv sind, folgende kanonische Abbildung bijektiv ist.

$$\operatorname{colim}_i \operatorname{Hom}(M, V_i) \longrightarrow \operatorname{Hom}(M, \operatorname{colim}_i V_i)$$

b) Zeige, dass ein A-Modul M genau dann endlich präsentiert ist, wenn der Funktor $\text{Hom}(M,_)$ mit beliebigen filtrierten Kolimiten vertauscht.

Wird nach dem Mittagessen noch ergänzt.