

Machine Learning – I

Assumptions of Regression and Model Evaluation

Agenda

- Assumptions of Linear Regression
- Tests for Assumptions of Linear Regression
- Model Evaluation Metrics
- Presence of Categorical Variables
- Interaction Effect

Assumptions of Linear Regression

Assumptions of linear regression

- The dependent variable must be numeric
- Linear relationship between dependent and independent variables
- Predictors must not show multicollinearity
- Independence of observations should exist (Absence of Autocorrelation)
- The error terms should be homoscedastic
- The error terms must follow normal distribution

Assumptions of linear regression

Tests for Assumptions of Linear Regression

Tests before model building

The dependent variable must be numeric

Predictors must not show multicollinearity

Is the dependent variable numeric?

 Regression Analysis requires the target variable to be numeric in nature

 For example: returns, sales of a product, yield of a crop, risk in financial services

 In context with our example, we see that Premium is numeric

Mileage	Premium (in dollars)
15	392.5
14	46.2
17	15.7
7	422.2
10	119.4
7	170.9
20	56.9
21	77.5
18	214
11	65.3
7.9	250
8.6	220
12.3	217.5
17.1	140.88
19.4	97.25

Q & A

Question:

If our target variable is: 0, 1, 1, 0, 0, where 0 indicates presence of a disease and 1 indicates absence.

Is it appropriate to use regression to find the whether the person has a disease?

Q & A

Question:

If our target variable is: 0, 1, 1, 0, 0, where 0 indicates presence of a disease and 1 indicates absence. Is it appropriate to use regression to find the whether the person has a disease?

Answer:

No. Because the target variable is a categorical variable. Thus, it is a classification problem.

Tests before model building

The dependent variable must be numeric

Predictors must not show multicollinearity

What is multicollinearity?

 Multicollinearity arises when the independent variables have high correlation among each other

 Multicollinearity may be introduced if there exists empirical relationship among variables such as income = expenditure + saving

In presence of it, the best fit line obtained from OLS method is no more "best"

• Also, the confidence interval obtained for β 's is wider since the SE(β) becomes large

Multicollinearity detection

Determinant of correlation mat

Condition Number (CN)

Correlation matrix

Variance Inflation Number (VIF

Is there multicollinearity present?

Which variables are involved in multicollinearity?

Is there multicollinearity?

Determinant of the correlation matrix:

Let D be the determinant of correlation matrix. Then 0 < D < 1

D=0	High multicollinearity
D=1	No multicollinearity

Condition Number (CN):

CN > 1000	Severe multicollinearity
100 < CN < 1000	Moderate multicollinearity
100 < CN	No multicollinearity

Which variables are involved in multicollinearity?

Correlation matrix:

If the off-diagonal values tend to ±1 then it indicates high correlation between the variable pair. However this inspection is not enough

Which variables are involved in multicollinearity?

Variance Inflation Factor (VIF):

$$VIF = rac{1}{1-R^2}$$

Where R² is obtained by regressing a predictor variable over all the other predictors in the model

Value	Interpretation
VIF > 5	High correlation
5 > VIF >1	Moderate correlation
VIF = 1	No correlation

Sharing or publishing the contents in part or full is liable for legal action.

Tests after model building

Linear relationship between dependent and independent variables

 Independence of observations should exist (i.e. Absence of Autocorrelation)

The error terms should be homoscedastic

The error terms must follow normal distribution

Tests after model building

Linear relationship between dependent and independent variables

 Independence of observations should exist (i.e. Absence of Autocorrelation)

The error terms should be homoscedastic

The error terms must follow normal distribution

Assumption of linearity

An assumption of linear regression is that it should be linear in the parameter

 The independent variables must have a linear relationship with the dependent variable

The residuals and the fitted values should be independent

An assumption of linear regression is that it should be linear in the parameter

Linear Relationship

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2^2 + \epsilon$$

$$y = \beta_0 - \beta_1 \log(x_1) + \beta_2 x_2 + \varepsilon$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 - \beta_3 x_1 x_2 + \epsilon$$

Nonlinear Relationship

$$y = \beta_0 - e^{\beta 1 \times 1} + \epsilon$$

$$y = \beta_0 x_1 / \beta_1 x_1 + \epsilon$$

$$y = \beta_0 + x_1^{\beta 1}.x_2^{\beta 2} + \epsilon$$

Existence of linear relationship

 The independent variables must have a linear relationship with the dependent variable

This can be checked plotting a scatter plot of residuals vs predictors

 A scatter plot depicting no pattern indicates that the variable has a linear relationship with the response variable

Existence of linear relationship

In context with our data, we see a random pattern in all the three plots. Hence, we may say that, the predictors are linearly related with the response variable.

This file is meant for personal use by nbilagi@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

Existence of linear relationship

• The plot of residuals against the fitted tells the presence of linear relationship

 For linear relationship, the points must be at random, i.e., it should not exhibit much distinctive pattern, no non-linear trends or changes in variability

Tests after model building

Linear relationship between dependent and independent variables

 Independence of observations should exist (i.e. Absence of Autocorrelation)

The error terms should be homoscedastic

The error terms must follow normal distribution

Assumption of autocorrelation

- Assumption of autocorrelation is violated when residuals are correlated within themselves, i.e. they are serially correlated
- Autocorrelation does not impact the regression coefficients but the associated standard errors are reduced
- This reduction in standard error leads to a reduction in associated p-value
- It incorrectly concludes that a predictor is statistically significant

Causes of autocorrelation

- Some important variables are not considered in the data
- If the relationship between the target and predictor variables is non-linear and is incorrectly considered linear
- Presence of carry over effect

Example: The additional expenses from the budget for last month are carried over in creating the budget for next month

Durbin - Watson Test

- To test whether the error terms are autocorrelated, we Durbin-Watson test
- We test whether autocorrelation is present or not
- The hypothesis is given by:

H_o:The error terms are not autocorrelated

against

H₁:The error terms are autocorrelated

Failing to reject H₀, will imply that the error terms are autocorrelated

The test statistic is given by

$$d = \frac{\sum \hat{e}_t - \hat{e}_{t-1}}{\sum \hat{e}_t^2} \quad \text{Residual of t$^{\text{th}}$ observation} \\ \text{d} \in [0,4]$$

Value	Interpretation
0 < d <2	Positive autocorrelation
d = 2	No autocorrelation
2 < d < 4	Negative autocorrelation

This file is meant for personal use by nbilagi@gmail.com only

Tests after model building

Linear relationship between dependent and independent variables

 Independence of observations should exist (i.e. Absence of Autocorrelation)

• The error terms should be homoscedastic

The error terms must follow normal distribution

Homoscedasticity assumption

- Variance of the residual is assumed to be independent of the explanatory variables
- Heteroscedasticity: non-constant variance of residuals
- It happens due to the presence of extreme values

- Funnel type shape is seen in the graph
- Hence we can say that there is a presence of "Heteroscedasticity"

Homoscedasticity

- There is no visible funnel or bow type pattern in the plot
- We can see presence of "Homoscedasticity"

 The plot of residuals against the fitted values tells whether the error terms have equal variance

 It should look random, i.e., it should not exhibit much distinctive pattern, no non-linear trends or changes in variability

Homoscedasticity

The statistical test to test for the homoskedasticity of the errors are

- Goldfeld Quandt test
- Breusch Pagan test

Goldfeld-Quandt test

• For presence of a constant variance of error terms, i.e. to test

H₀: The errors terms are homoskedastic

against

H₁: The errors terms are heteroskedastic

Decision rule: Reject H₀, if the p-value associated with test statistic is less than α (level of significance), which implies that there is heteroskedastic, i.e. the error terms have do not equal variance

Breusch Pagan test

• For presence of a constant variance of error terms, i.e. to test

H₀: The errors terms are homoskedastic

against

H₁: The errors terms are heteroskedastic

• Decision rule: Reject H_0 , if the p-value associated with test statistic is less than α (level of significance), which implies that there is heteroskedastic, i.e. the error terms have do not equal variance

Tests after model building

Linear relationship between dependent and independent variables

 Independence of observations should exist (i.e. Absence of Autocorrelation)

The error terms should be homoscedastic

The error terms must follow normal distribution

Normality test

Parametric statistical methods assume that the underlying data has a normal distribution

 Normality tests are used to determine if a data set is well-modeled by a normal distribution

Normality testing techniques

Quantile-Quantile Plot

- Jarque-Bera (JB) Test
- Shapiro-Wilk Test

Quantile-Quantile Plot (QQ plot)

Used to determine whether two datasets follow the same distribution.

The quantiles of two datasets are plotted against each other

A reference line is plotted at 45⁰

If the points lie on the reference line we conclude they follow the same distribution

Normal QQ plot

- The x axis has points from a theoretically calculated normal distribution
- They are compared with sample data on the y axis
- If the sample data has a normal distribution the points lie on the reference line

Normal QQ plot

- The x axis has points from a theoretically calculated normal distribution
- They are compared with sample data on the y axis
- If the sample data has a normal distribution the points lie on the reference line

JB test

 To test whether the data follows normal distribution, we test whether the skewness and kurtosis of the data are same as that of the normal distribution, i.e. to test

$$H_0$$
: Skewness (S) = 0 and Kurtosis (K) = 0

against

$$H_1$$
: Skewness (S) \neq 0 and Kurtosis (K) \neq 0

Failing to reject H₀, implies that the data does not follow normal distribution

$$JB = \frac{n}{6} \left(S^2 + \frac{1}{4} (K - 3)^2 \right)$$
This file is meant for personal use by nbilagi@gmail.com/only.

Sharing or publishing the contents in part or full is liable for legal action.

JB test

The test statistics for n observations is given by

$$JB = rac{n}{6} \left(S^2 + rac{1}{4} (K-3)^2
ight)$$
Sample skewness

 The test statistics asymptotically follows chi squared distribution with 2 degrees of freedom (χ²₂)

Shapiro-Wilk test

To test whether the data follows normal distribution, i.e. to test

H₀: The data is normally distributed

against

H₁: The data is not normally distributed

Failing to reject H₀, implies that the data does not follow normal distribution

Shapiro-Wilk test statistic

The test statistic is given by

$$W = rac{{{{(\sum_{i=1}^{n} {a_i x_i})}^2}}}{{\sum_{i=1}^{n} {{(x_i - \overline{x})}^2}}}$$

n●= sample size

a_i = values computed from n samples (of size n each) from normal distribution based on their means, covariance matrix

 $x_i = i^{th}$ ordered sample values

 \bar{x} =sample mean

Model Evaluation Metrics

Model evaluation metrics

The model evaluation metrics are

- R²
- Adjusted R²
- The F test for overall significance

R-squared

- The R² value gives the percentage of variation in the response variable explained by the predictor variables
- If the values of R^2 = 0.87, it implies that 87% of variation in the response variable is explained by the predictor variables

$$R^2 = \frac{\text{Explained variation}}{\text{Total variation}} = \frac{\text{SSR}}{\text{SST}}$$

Adjusted R-squared

- Adjusted R² gives the percentage of variation explained by independent variables that actually affect the dependent variable
- If the values of R^2 = 0.87, it implies that 87% of variation in the response variable is explained by the predictor variables

$$R^2_{adj} = 1 - rac{(1-R^2)(n-1)}{n-k-1}$$

F test

- To check the significance of the regression model we use the F test
- It is similar to ANOVA for regression
- The test hypothesis is given by

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_1 = 0$$

for at least one of the i values

$$H_1: \beta_i > 0 \text{ or } \beta_i < 0$$

Failing to reject H₀, implies that the model is not significant

The test statistics is given by

$$Fstat = rac{ ext{(SST-SSE)/k}}{ ext{SSE/(n-k-1)}}$$
 $n = ext{sample size}$
 $k = ext{number of predictor variables}$

• Decision rule: Reject H_0 , if $F_0 > F_{(k,n-k-1),\alpha}$ or if the p-value is less than the α (level of significance)

Presence of categorical variable

Linear regression of categorical variable

The regression method fails in presence of categorical variable

Thus we need to convert the categorical variable to numeric variable

In order to so, we use N - 1 dummy encoding

N-1 dummy encoding

Dummy variables are binary variables used to represent categorical data

 For a categorical variable that can take k values k-1 dummy variables need to be created

 Dummy variable is assigned 1 if it takes a particular value else it is assigned 0

Dummy variable example

Consider a variable, Gender, used to represent the gender of a citizen during the census

Gender: Male, Female

Since Gender takes 2 values it can be represented with 1 dummy variable D₁ as:

Value	D ₁
Male	0
Female	1

Data

Let us consider a categorical variable Manufacturer in the data and find out how it behaves.

Mileage	Manufacturer	Premium (in dollars)
15	Ford	392.5
14	Honda	46.2
17	Tata	15.7
7	Ford	422.2
10	Ford	119.4
7	Tata	170.9
20	Tata	56.9
21	Honda	77.5
18	Honda	214
11	Tata	65.3
7.9	Ford	250
8.6	Tata	220
12.3	Tata	217.5
17.1	Ford	140.88
19.4	Honda	97.25

This file is meant for personal use by nbilagi@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

- In context with our example, the categorical variable Manufacturer takes values Ford, Honda and Tata
- Since Manufacturer takes 3 values, two dummy variables Mfr_Honda and Mfr_Tata are created

Value Mfr_Honda		Mfr_Tata
Ford	0	0
Honda	1	0
Tata	0	1

This file is meant for personal use by nbilagi@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

Model with categorical variable

Now our model is

Premium =
$$\beta_0 + \beta_1$$
 Mileage + β_2 Mfr_Honda + β_3 Mfr_Tata + ϵ

Parameter	Description	
β ₀	Premium value where the best fit line cuts the Y-axis (Premium)	
β1	Regression coefficient of the variable Mileage	
β_2	Regression coefficient of the dummy variable Mfr_Honda	
β_3	Regression coefficient of the dummy variable Mfr_Tata	

Linear regression model (dummy variable)

Based on the data, the β parameters are:

$$\beta_0 = 368.93, \, \beta_1 = -9.117,$$

$$\beta_2 = -95.174$$
 and $\beta_3 = -129.216$

Thus the model is

$$Y = 368.93 - 9.117 x_1 - 95.174 x_2 - 129.216 x_3$$

Mileage	Manufacturer	Premium (in dollars)
15	Ford	392.5
14	Honda	46.2
17	Tata	15.7
7	Ford	422.2
10	Ford	119.4
7	Tata	170.9
20	Tata	56.9
21	Honda	77.5
18	Honda	214
11	Tata	65.3
7.9	Ford	250
8.6	Tata	220
12.3	Tata	217.5
17.1	Ford	140.88
19.4	Honda	97.25

That is,

Premium = 368.93 - 9.117 Mileage - 95.174 Mfr_Honda - 129.216 Mfr_Tata

Regression line (dummy variable)

The regression line:

Premium =
$$\beta_0 + \beta_1$$
 Mileage + β_2 Mfr_Honda + β_3 Mfr_Tata + ϵ

If the manufacturer is Honda, the regression line becomes:

Premium =
$$\beta_0 + \beta_1$$
 Mileage + β_2 Mfr_Honda + β_3 Mfr_Tata
= $\beta_0 + \beta_1$ Mileage + β_2 (1)+ β_3 (0)
= $\beta_0 + \beta_1$ Mileage + $\beta_2 + 0$
= $(\beta_0 + \beta_2)$ + β_1 Mileage

Value	Mfr_Honda	Mfr_Tata
Ford	0	0
Honda	1	0
Tata	0	1

Note the change in the intercept value.

Regression line (dummy variable)

The regression line:

Premium =
$$\beta_0$$
 + β_1 Mileage + β_2 Mfr_Honda + β_3 Mfr_Tata + ϵ

Value Mfr_Honda		Mfr_Tata
Ford	0	0
Honda	1	0
Tata	0	1

For manufacturer = Ford,

Premium = $\beta_0 + \beta_1$ Mileage

Actual intercept

For manufacturer = Honda, For manufacturer = Tata, $Premium = (\beta_0 + \beta_2) + \beta_1 Mileage$ Premium = $(\beta_0 + \beta_3) + \beta_1 Mileage$

Change in intercept

Change in intercept

This file is meant for personal use by nbilagi@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

Interaction Effect

Interaction effect

Sentiment

Salt water

Sweet water

Lemon water

Lemonade

This file is meant for personal use by nbilagi@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

Interaction

 An interaction effect occurs when the effect of one variable depends on another variable. This combined effect may or may not improve the performance of the model

Note: It does not imply that the predictor variables are collinear

Example: Salary of an employee increases with experience, but this may vary based whether the person has completed additional courses like MBA

Interaction Effect

- In context with our example, we shall consider the interaction effect of variables
 Engine_Capacity and Mileage
- We obtained Int_EC_Mil by taking the product of Mileage and Engine_Capacity
- Let us check whether the interaction term is adding value to our model

Mileage	Engine_Capacity	Int_EC_Mil	Age	Premium (in dollars)
15	1.8	27	2	392.5
14	1.2	16.8	10	46.2
17	1.2	20.4	8	15.7
7	1.8	12.6	3	422.2
10	1.6	16	4	119.4
7	1.4	9.8	3	170.9
20	1.2	24	7	56.9
21	1.6	33.6	6	77.5
18	1.2	21.6	2	214
11	1.6	17.6	5	65.3
7.9	1.4	11.06	3	250
8.6	1.6	13.76	3	220
12.3	1.2	14.76	2	217.5
17.1	1.6	27.36	1	140.88
19.4	1.2	23.28	6	97.25

Now our model is

Premium = β_0 + β_1 Mileage + β_2 Engine_Capacity + β_3 Age + β_4 Int EC Mil + ϵ

		willeage	
Parameter	Description	15	i
		14	
_R	Premium value where the best fit line cuts the Y-axis (Premium)	17	
β_0	Tremium value where the best in line cuts the 1-axis (Fremium)	7	
_		10	
$ \beta_1 $	Regression coefficient of the variable Mileage	7	
'		20	
β_2	Regression coefficient of the variable Engine_Capacity	21	
P_2	g	18	
	December of the stable Ass	11	
β_3	Regression coefficient of the variable Age	7.9	
		8.6	5
β_4	Regression coefficient of the variable Int_EC_Mil	12.3	
' 4		17.1	

Mileage	Engine_Capacity	Int_EC_Mil	Age	Premium (in dollars)
15	1.8	27	2	392.5
14	1.2	16.8	10	46.2
17	1.2	20.4	8	15.7
7	1.8	12.6	3	422.2
10	1.6	16	4	119.4
7	1.4	9.8	3	170.9
20	1.2	24	7	56.9
21	1.6	33.6	6	77.5
18	1.2	21.6	2	214
11	1.6	17.6	5	65.3
7.9	1.4	11.06	3	250
8.6	1.6	13.76	3	220
12.3	1.2	14.76	2	217.5
17.1	1.6	27.36	1	140.88
om only!	1.2	23.28	6	97.25

This file is meant for personal use by nbilagi@gmail.com orly!

Sharing or publishing the contents in part or full is liable for legal action.

Linear regression model (interaction effect)

Based on the data, the β parameters are:

$$\beta_0 = -502.011$$
, $\beta_1 = 40.306$, $\beta_2 = 568.723$,

$$\beta_3 = -25.781$$
 and $\beta_4 = -30.547$

Thus the model is

$$Y = 502.011 + 40.306 x_{1} + 68.723 x_{2}$$
$$-25.781x_{3} - 30.547 x_{4}$$

That is,

Mileage	Engine_Capacity	Int_EC_Mil	Age	Premium (in dollars
15	1.8	27	2	392.5
14	1.2	16.8	10	46.2
17	1.2	20.4	8	15.7
7	1.8	12.6	3	422.2
10	1.6	16	4	119.4
7	1.4	9.8	3	170.9
20	1.2	24	7	56.9
21	1.6	33.6	6	77.5
18	1.2	21.6	2	214
11	1.6	17.6	5	65.3
7.9	1.4	11.06	3	250
8.6	1.6	13.76	3	220
12.3	1.2	14.76	2	217.5
17.1	1.6	27.36	1	140.88
19.4	1.2	23.28	6	97.25

Thank You

This file is meant for personal use by nbilagi@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.