OWL

Mario Arrigoni Neri

OWL – Web Ontology Language

- Estende RDF[S] con costrutti aggiuntivi per modellare realtà più complesse
- Contemporaneamente VINCOLA l'uso dei costrutti RDF(S) in modo da rimanere nel primo ordine
- E' proposizionalmente chiuso (comprende ALC.. e molto altro)
- E' strutturato in 3 sottolinguaggi (dialetti o specie)
 - OWL-Lite: permette di definire soltanto tassonomie e minimali vincoli relazionali (solo schema F)
 - OWL-DL: cerca di sfruttare il potere espressivo delle DL (per quanto possibile)
 - OWL-Full: l'utente può utilizzare tutti i costrutti di RDF[S], quindi non è una DL (Metaclassi) e non ci si può aspettare un reasoning completo, corretto e decidibile

Simple Named Classes

- Il tipo owl:Class è un sinonimo di comodo di rdfs:Class
- II ns owl = "http://www.w3.org&2002/07/owl#"
- rdfs:subClassOf

Individui

- Owl:Thing rappresenta l'insieme di tutti gli individui
- Diverso da Resource perché è solo del primo ordine
- Equivale al TOP delle DL
- Owl:Nothing rappresenta il bottom

Proprietà (1)

- "eredita" da RDF
 - Rdfs:subPropertyOf
 - Rdfs:domain
 - Rdfs:range
- Per mantenere compatibilità verso le DL si distinguono le proprietà verso oggetti e le proprietà verso letterali
 - Owl:DatatypeProperty
 - Owl:ObjectProperty

Proprietà (2)

Proprietà transitive

Proprietà (3)

Proprietà simmetriche

Proprietà funzionali

Proprietà (4)

Proprietà inverse

Proprietà inversamente funzionali

Restrizioni (1)

Le restrizioni permettono di definire delle "classi anonime" composte da tutti gli individui che rispettano determinati vincoli rispetto alle relazioni

allValuesFrom

Restrizioni (2)

someValuesFrom

Restrizioni (3)

minCardinality

maxCardinality

Restrizioni (4)

cardinality

hasValue

Mapping

equivalentClass

equivalentProperty

Classi disgiunte

disjointWith

Asserzioni sugli individui

sameAs: nota diverso da equivalentClass se nel secondo ordine FULL

differentFrom

allDifferent

Classi complesse

intersectionOf / unionOf

complementOf

Classi per enumerazione

Fissa l'estensione della classe elencandone i componenti

Equivalenza con le DL

Owl:functionalProperty	<=1R	F
owl:equivalenClass	A=B	
Owl:TransitiveProperty	R∈ R+	S
Owl:Inverseproperty	S=R-	I
Owl:SymmetricProperty	R- <u>⊂</u> R	HI
Owl:subPropertyOf	S <u>⊂</u> R	Н
Owl:min/max/Cardinality	<=nR / >=nR / =nR	N
Owl:oneOf	{a1,,an}	0
Owl:intersectionOf	C1 ∩C2	
Owl:disjointWith	C1 <u>⊆</u> ¬C1 / C1∩C2 = bottom	
Owl:differentFrom	{a1} <u></u>	0

In conclusione

- OWL-DL risulta equivalente alla logica descrittiva SHOIN
- In realtà non basta, bisogna rendere conto delle DatatypePropery
- Si dice che la logica è estesa con dei domini concreti, che non rappresentano individui, ma istanze di tipi XSD
- Quindi, la logica diventa SHOIN(D)