Communication/Networking Protocols – Part 1

Instructor: Deepak Gangadharan

IoT Architecture

Source- Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges, 2012

Perception Layer

- Also known as the Device Layer
- Consists of physical objects and sensor devices (i.e., RFID, 2-D barcode, or any sensor depending on the functionality)
- Collection of object specific information by the sensor devices
- Collected information is passed to Network layer for secure transmission to the information processing system in the middleware layer

Network Layer

- Also called Transmission Layer
- Securely transfers the information from sensor devices to the information processing system
- Transmission medium can be wired or wireless and technology can be 3G/4G/5G, WiFi, Bluetooth, ZigBee, infrared, etc depending upon the sensor devices
- Supports the communication requirements of latency, bandwidth and security

Middleware Layer

- Each device connects and communicates with only those devices that implement similar type of service
- Main responsibility of service management
- Receives information from network layer and stores in the database
- Performs information processing and ubiquitous computation and takes automatic decision based on results

Application Layer

• Provides global management of the application based on the information processed in the Middleware Layer

• Different applications implemented can be smart health, smart farming, smart home, intelligent transportation, etc.

Business Layer

- Responsible for management of the overall IoT system including the applications and services
- Builds business models, graphs, flow charts, etc. based on data received from Application Layer
- Analyzing and monitoring of model results, which help to determine the future actions and business strategies

Communication Protocols

- Sensors and things need a way to communicate information
- In IoT, communication to a sensor or actuator can be via a copper wire or wireless medium
- Wireless Personal Area Networks (WPANs) are prevalent method for industrial, commercial and consumer connections to things
- Wires are used in legacy industries and areas that are not radio frequency friendly
- Wide variety of communication possibilities some built on traditional IP stack and some use non-IP based communication (such as BLE)
- Non-IP based communications are optimized for cost and energy usage, while IP-based techniques do not have many constraints

Protocols for IoT

Security

TCG,
Oath 2.0,
SMACK,
SASL,
ISASecure,
ace,
DTLS,
Dice, ...

Management

IEEE 1905, IEEE 1451,

Desired characteristics of IoT communications

- Low cost
- Low power
- Long battery duration
- High number of connections
- Low bitrate (not broadband)
- Long or short range
- Low processing capacity
- Low storage capacity
- Small size devices
- Simple network architecture and protocols

IoT network general architecture

IoT Connectivity Technologies

- Short Range
 - > RFID
 - > Bluetooth
 - > Zigbee
 - > WiFi

RFID

What is RFID?

- RFID stands for Radio Frequency identification.
- Wireless non-contact use of radio-frequency electromagnetic fields to transfer data
- For the purpose of automatic identification & tracking of tags attached to assets

RFID Tags

- RFID tags may or may not have a battery in them.
- Those that do not have a battery are called passive tags
- Those that use a battery are called **active tags**. The battery mostly assists in boosting the read range of the RFID tag (greater range but higher cost and finite life)
- Passive tags are powered by the RF signal from the interrogator/reader (smaller, lighter and less expensive, and almost unlimited life)

RFID

Frequencies

- LF Low frequency @ 125 khz
- HF: High frequency @ 13.56 Mhz
- UHF: Ultra high frequency @ 860 960 Mhz

Why 3 different frequencies?

- Different applications demand different frequencies to be effective & operational
- **LF tags** are ideal for reading metal objects or objects with high water content such as fruit & veg/Animals. But the read range is limited to inches or cms.
- HF tags work fairly well on metal objects and objects with medium to high water content. Max read range is 3 feet to 1 meter
- UHF offers better read ranges(inches to 50ft +, depending on the strength of the RFID reader/interrogator), can transfer data much faster, however since they have a shorter wave length compared to LF or HF tags, the signal does not pass through metal or objects with water content

RFID – How does it work?

Tag

- Microchip connected to an antenna
- Can be attached to an object as his identifier

Reader

 RFID reader communicating with the RFID tag through radio waves

RFID – How does it work?

- Host manages Reader(s) and issues commands
- Reader and tag communicate via RF signal
- Carrier signal generated by the reader
- Carrier signal sent out through the antennas
- Carrier signal hits tag(s)
- Tag receives and modifies carrier signal
- Antennas receive the modulated signal and send them to the Reader
- Reader decodes the data
- Results returned to the host application

What has changed for RFIDs?

- Cost has decreased due to improvements in micro-chips
- Smaller micro-chip width size lowers power needs and size of the chip
- Better antennas allow smaller tags that can be embedded in labels and products
- Higher frequency means more data can be transmitted
- Multiple tags can be read by a reader

Bluetooth

- Low power wireless technology
- First conceived at Ericsson in 1994 with an intent to replace wires with wireless alternative
- Short range radio frequency at 2.4 GHz ISM Band
- Creating Personal Area Networks
- Supports data rate of I Mbps
- Uses frequency hopping spread spectrum technique

Class	Maximum Power	Range
1	100 mW (20 dBm)	~100 m
2	2,5 mW (4 dBm)	~10 m
3	1 mW (0 dBm)	~1 m

Piconet

- Devices can form a quick ad-hoc network called "piconet" and start communication
- Connections in the piconet can happen even when mobile
- A piconet starts with two connected devices and may grow to eight connected devices
- All Bluetooth devices are peer units and have identical implementations. However, when establishing a piconet, one unit will act as a *Master* and the other(s) as *Slave*(s) for the duration of the piconet connection

Piconet vs Scatternet

Modes of Operation

- Low Energy (LE) mode
 - ➤ Uses 2.4 GHz ISM band
 - >Uses Frequency Hopping Spread Spectrum (FHSS) for interference protection
 - ➤ Bit rate of I Mbps
- Basic Rate/Enhanced Data Rate mode (BR/EDR)
 - >Operates in 2.4 GHz ISM band but radio is different than LE and AMP
 - ➤ Basic radio operation supports a bit rate of I Mbps
 - ➤ EDR supports a data rate of 2 or 3 Mbps
 - ➤ Uses FHSS for interference protection
- Alternative MAC/PHY (AMP)
 - ➤ Optional feature that uses 802.11 for high speed transport up to 24 Mbps
 - > Requires both master and slave device to support AMP

BR/EDR Operation

- Classic Bluetooth (BR/EDR) mode is connection-oriented
- A device must be discoverable to respond to physical channel scans with address and other parameters
- Three steps in connection process:
 - ► Inquiry: Devices discover each other through an inquiry request → if the other device is listening, it may respond with its address
 - Paging: Forms a connection between two devices and each knows the address of the other
 - Connected: Four sub-modes of the connection state
 - Active mode: Normal mode of operation for transmission and receiving data
 - Sniff mode: Power saving mode → Asleep but will listen for transmissions in specific slots
 - Hold mode: Temporary low power mode initiated by the master or slave → no sniffing
 - o Park mode: Not there is Bluetooth 5

BLE operation

- Five link states negotiated by the host and device
 - Advertising: Devices transmit advertising packets on the advertising channels
 - Scanning: Receive advertising on the advertising channels without intention to connect
 - Active scanning
 - Passive scanning
 - Initiating: Devices intending to form connection listen for connectable advertising packets and initiate by sending connect packet
 - Connected: Master is the initiator and slave is the advertiser
 - >Standby: Device in unconnected state

Phases of BLE operation

Bluetooth Low Energy (BLE)

- Low Energy: Upto 50% of Bluetooth classic
- For short broadcast: Your body temperature, Heart rate, Wearables, sensors, automotive, industrial Not for voice/video, file transfers
- Small messages: Data rate is I Mbps sending just small data packets
- Battery Life: In years from coin cells
- Simple: Star topology, no scatter nets, mesh
- Lowest cost and easy to implement
- Discovery and connection improvements
- Low latency, fast transaction (3 ms from start to finish)

Bluetooth Smart Applications

- Proximity: In car, In the room
- Locator: Keys, watches, animals
- Health devices: Heart rate monitor, physical activities monitor, thermometer
- Sensors: Temperature, Battery Status, tire pressure
- Remote control: Open/close locks, turn on lights

Use Cases – Physical Security

Use Cases – Home Automation

What is ZigBee

- An open, global, packet-based protocol designed to provide an easy to use architecture for secure, reliable, low power wireless networks
- Technological Standard created for control and sensor networks
- Based on IEEE 802.15.4 standard
- Created by ZigBee Alliance
- Enables a Wireless Personal Area Network (WPAN)
- IEEE 802.15.4 protocol operates in the unlicensed spectrum in three different radio frequency bands: 868 MHz, 915 MHz and 2400 MHz
- Lower frequencies pose fewer issues with RF interference, but 2.4 GHz band is the most often used band worldwide

802.15.4 bands

- Range: 200 meters in open air line of sight test. Indoors 30 meters
- Higher power transceivers or mesh networking can extend range

Frequency range (MHz)	Channel numbers	Modulation	Data rate (Kbps)	Region
868.3	1 channel: 0	BPSK O-QPSK ASK	20 100 250	Europe
902-928	10 channels: 1-10	BPSK O-QPSK ASK	40 250 250	North America, Australia
2405-2480	16 channels: 11-26	O-QPSK	250	Worldwide

ZigBee

- Designed for low power consumption allowing batteries to last for a long time
- Provides network, security and application support services operating on top of the IEEE 802.15.4 standard

Advantages of ZigBee

- Low power consumption
- Low cost (device, installation and maintenance)
- High density of nodes per network
- Simple protocol ZigBee protocol stack around 1/4th of Bluetooth's or WiFi

Network Topologies Supported

Topology of a network describes how the nodes are connected

ZigBee Network Devices

- Three different ZigBee device types
 - ➤ ZigBee coordinator node
 - Root of the network tree and a bridge to other network
 - Stores information about the network
 - Only one coordinator node for a network
 - Full Function Device (FFD)
 - An intermediate router transmitting data from other devices
 - Needs lesser memory than coordinator node
 - Can also act as coordinator
 - Supports any network topology
 - Reduced Function Device (RF)
 - Capable of talking in the network
 - Cannot relay data from other device
 - Talks only to the network coordinator
 - Limited to only Star topology

IEEE 802.15.4 Start-up Sequence

- Process of startup, network configuration and joining of existing networks
 - ➤ Device initializes its stack (PHY and MAC layers)
 - >PAN coordinator is created (each network has only one)
 - PAN coordinator will listen to other networks and derives a PAN ID that is unique
 - >PAN coordinator will choose a specific radio frequency for the network
 - ➤ Network started by configuring PAN coordinator and starting the device in coordinator mode → PAN coordinator can accept requests
 - Nodes can join the network by finding the PAN coordinator using an active channel scan. Passive channel scan used in beacon-based network
 - PAN coordinator decides whether the device can join based on access control rules or resource availability of the PAN coordinator

Comparison of Wireless Standards

Wireless Parameter	Bluetooth	Wi-Fi	ZigBee
Frequency band	2.4 GHz	2.4 GHz	2.4 GHz
Physical/MAC layers IEEE 802.15		IEEE 802.11b	IEEE 802.15.4
Range	9 m	75 to 90 m	Indoors: up to 30 m Outdoors (line of sight): up to 100 m
Current consumption	60 mA (Tx mode)	400 mA (Tx mode) 20 mA (Standby mode)	25-35 mA (Tx mode) 3 μA (Standby mode)
Raw data rate	1 Mbps	11 Mbps	250 Kbps
Protocol stack size	250 KB	1 MB	32 KB 4 KB (for limited function end devices)
Typical network join time	>3 sec	variable, 1 sec typically	30 ms typically
Interference avoidance method	FHSS (frequency- hopping spread spectrum)	DSSS (direct-sequence spread spectrum)	DSSS (direct-sequence spread spectrum)
Minimum quiet bandwidth required	15 MHz (dynamic)	22 MHz (static)	3 MHz (static)
Maximum number of nodes per network	7	32 per access point	64 K
Number of channels	19	13	16

Thank You