BỘ GIÁO DỰC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC

ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Môn: TOÁN; Khối D (Đáp án - thang điểm gồm 04 trang)

ĐÁP ÁN - THANG ĐIỂM

Câu	Đáp án	Điểm
I	1. (1,0 điểm)	
(2,0 điểm)	• Tập xác định: $D = \mathbb{R} \setminus \{-1\}$.	
	• Sự biến thiên:	0.25
	- Chiều biến thiên: $y' = \frac{1}{(x+1)^2} > 0$, $\forall x \in D$.	0,25
	Hàm số đồng biến trên các khoảng $(-\infty; -1)$ và $(-1; +\infty)$.	
	- Giới hạn và tiệm cận: $\lim_{x \to -\infty} y = \lim_{x \to +\infty} y = 2$; tiệm cận ngang: $y = 2$.	0.25
	$\lim_{x \to (-1)^{-}} y = + \infty, \lim_{x \to (-1)^{+}} y = -\infty; \text{ tiệm cận đứng: } x = -1.$	0,25
	- Bảng biến thiên: $x \mid -\infty$ -1 $+\infty$	
	y' + + y	0,25
	Đồ thị:	
		0,25
	2. (1,0 điểm)	
	Gọi d : $y = kx + 2k + 1$, suy ra hoành độ giao điểm của d và (C) là nghiệm phương trình:	
	$kx + 2k + 1 = \frac{2x+1}{x+1} \iff 2x+1 = (x+1)(kx+2k+1) \text{ (do } x = -1 \text{ không là nghiệm)}$	0,25
	$\Leftrightarrow kx^2 + (3k-1)x + 2k = 0 (1).$	
	d cắt (C) tại hai điểm phân biệt A và B , khi và chỉ khi (1) có hai nghiệm phân biệt	
	$\Leftrightarrow \begin{cases} k \neq 0 \\ \Delta > 0 \end{cases} \Leftrightarrow \begin{cases} k \neq 0 \\ k^2 - 6k + 1 > 0 \end{cases} \Leftrightarrow \begin{cases} k \neq 0 \\ k < 3 - 2\sqrt{2} \lor k > 3 + 2\sqrt{2}. \end{cases} $ (*).	0,25
	Khi đó: $A(x_1; kx_1 + 2k + 1)$ và $B(x_2; kx_2 + 2k + 1)$, x_1 và x_2 là nghiệm của (1). $d(A, Ox) = d(B, Ox) \Leftrightarrow kx_1 + 2k + 1 = kx_2 + 2k + 1 $	0,25

Câu	Đáp án	Điểm
	$\Leftrightarrow k(x_1 + x_2) + 4k + 2 = 0 \text{ (do } x_1 \neq x_2).$ Áp dụng định lý Viét đối với (1), suy ra: $(1 - 3k) + 4k + 2 = 0 \Leftrightarrow k = -3$, thỏa mãn (*). Vậy, giá trị cần tìm là: $k = -3$.	0,25
II	1. (1,0 điểm)	
(2,0 điểm)	Điều kiện: $\cos x \neq 0$, $\tan x \neq -\sqrt{3}$ (*). Phương trình đã cho tương đương với: $\sin 2x + 2\cos x - \sin x - 1 = 0$	0,25
	$\Leftrightarrow 2\cos x(\sin x + 1) - (\sin x + 1) = 0 \Leftrightarrow (\sin x + 1)(2\cos x - 1) = 0.$	0,25
	$\Leftrightarrow \sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi \text{ hoặc } \cos x = \frac{1}{2} \Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi.$	0,25
	Đối chiếu điều kiện (*), suy ra nghiệm: $x = \frac{\pi}{3} + k2\pi$ ($k \in \mathbb{Z}$).	0,25
	2. (1,0 điểm)	
	Điều kiện: $-1 \le x \le 1$ (*).	0.25
	Khi đó, phương trình đã cho tương đương với: $\log_2(8-x^2) = \log_2\left[4\left(\sqrt{1+x} + \sqrt{1-x}\right)\right]$	0,25
	$\Leftrightarrow 8 - x^2 = 4\left(\sqrt{1 + x} + \sqrt{1 - x}\right) \Leftrightarrow (8 - x^2)^2 = 16\left(2 + 2\sqrt{1 - x^2}\right) $ (1).	0,25
	Dặt $t = \sqrt{1-x^2}$, (1) trở thành: $(7+t^2)^2 = 32(1+t) \Leftrightarrow t^4 + 14t^2 - 32t + 17 = 0$ $\Leftrightarrow (t-1)^2(t^2 + 2t + 17) = 0 \Leftrightarrow t = 1$.	0,25
	Do đó, $(1) \Leftrightarrow \sqrt{1-x^2} = 1 \Leftrightarrow x = 0$, thỏa mãn (*). Vậy, phương trình có nghiệm: $x = 0$.	0,25
III (1,0 điểm)	Đặt $t = \sqrt{2x+1} \implies 4x = 2(t^2-1)$, $dx = tdt$. Đổi cận: $x = 0 \implies t = 1$; $x = 4 \implies t = 3$.	0,25
(1,0 atcm)	$I = \int_{1}^{3} \frac{2t^{3} - 3t}{t + 2} dt = \int_{1}^{3} \left(2t^{2} - 4t + 5 - \frac{10}{t + 2} \right) dt$	0,25
	$= \left(\frac{2t^3}{3} - 2t^2 + 5t - 10\ln t + 2 \right)\Big _{1}^{3}$	0,25
	$=\frac{34}{3}+10\ln\frac{3}{5}.$	0,25
IV	Hạ $SH \perp BC$ $(H \in BC)$; $(SBC) \perp (ABC) \Rightarrow SH \perp (ABC)$; $SH = SB.\sin\widehat{SBC} = a\sqrt{3}$.	0,25
(1,0 điểm)	Diện tích: $S_{ABC} = \frac{1}{2}BA.BC = 6a^2$. Thể tích: $V_{S.ABC} = \frac{1}{3}S_{ABC}.SH = 2a^3\sqrt{3}$.	0,25
	$B = \frac{H \perp SK}{C} C$ $Ha HD \perp AC (D \in AC), HK \perp SD (K \in SD)$ $\Rightarrow HK \perp (SAC) \Rightarrow HK = d(H, (SAC)).$ $BH = SB.\cos SBC = 3a \Rightarrow BC = 4HC$ $\Rightarrow d(B, (SAC)) = Ad(H, (SAC)).$	0,25
	Ta có $AC = \sqrt{BA^2 + BC^2} = 5a$; $HC = BC - BH = a \Rightarrow HD = BA$. $\frac{HC}{AC} = \frac{3a}{5}$. $HK = \frac{SH.HD}{\sqrt{SH^2 + HD^2}} = \frac{3a\sqrt{7}}{14}$. Vậy, $d(B, (SAC)) = 4.HK = \frac{6a\sqrt{7}}{7}$.	0,25
V (1,0 điểm)	Hệ đã cho tương đương với: $\begin{cases} (x^2 - x)(2x - y) = m \\ (x^2 - x) + (2x - y) = 1 - 2m. \end{cases}$	0,25

Câu	Đáp án	Điểm
	Đặt $u = x^2 - x$, $u \ge -\frac{1}{4}$; $v = 2x - y$. Hệ đã cho trở thành: $\begin{cases} uv = m \\ u + v = 1 - 2m \end{cases} \Leftrightarrow \begin{cases} u^2 + (2m - 1)u + m = 0 \ (1) \\ v = 1 - 2m - u \end{cases}$ Hệ đã cho có nghiệm, khi và chỉ khi (1) có nghiệm thỏa mãn $u \ge -\frac{1}{4}$.	0,25
	Với $u \ge -\frac{1}{4}$, ta có: (1) $\Leftrightarrow m(2u+1) = -u^2 + u \Leftrightarrow m = \frac{-u^2 + u}{2u+1}$. Xét hàm $f(u) = \frac{-u^2 + u}{2u+1}$, với $u \ge -\frac{1}{4}$; ta có: $f'(u) = -\frac{2u^2 + 2u - 1}{(2u+1)^2}; f'(u) = 0 \Leftrightarrow u = \frac{-1 + \sqrt{3}}{2}.$	0,25
	Bảng biến thiên: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
VI.a	1. (1,0 điểm)	
(2,0 điểm)	Gọi $D(x; y)$ là trung điểm AC , ta có: $\overrightarrow{BD} = 3\overrightarrow{GD}$ $\Leftrightarrow \begin{cases} x + 4 = 3(x - 1) \\ y - 1 = 3(y - 1) \end{cases} \Rightarrow D\left(\frac{7}{2}; 1\right).$	0,25
	Gọi $E(x; y)$ là điểm đối xứng của B qua phân giác trong $d: x-y-1=0$ của góc A . Ta có EB vuông góc với d và trung điểm I của EB thuộc d nên tọa độ E là nghiệm của hệ: $\begin{cases} 1(x+4)+1(y-1)=0 \\ \frac{x-4}{2}-\frac{y+1}{2}-1=0 \end{cases} \Leftrightarrow \begin{cases} x+y+3=0 \\ x-y-7=0 \end{cases} \Rightarrow E(2;-5).$	0,25
	Đường thẳng AC đi qua D và E , có phương trình: $4x - y - 13 = 0$.	0,25
	Tọa độ $A(x; y)$ thỏa mãn hệ: $\begin{cases} x - y - 1 = 0 \\ 4x - y - 13 = 0 \end{cases} \Rightarrow A(4; 3). \text{ Suy ra: } C(3; -1).$	0,25
	2. (1,0 điểm)	·
	Mặt phẳng (P) đi qua A , vuông góc với d , có phương trình: $2x + y - 2z + 2 = 0$.	0,25
	Gọi B là giao điểm của trục Ox với (P) , suy ra Δ là đường thẳng đi qua các điểm A , B .	0,25
	$B \in Ox$, có tọa độ $B(b; 0; 0)$ thỏa mãn phương trình $2b + 2 = 0 \Rightarrow B(-1; 0; 0)$.	0,25
	Phương trình Δ : $\begin{cases} x = 1 + 2t \\ y = 2 + 2t \\ z = 3 + 3t. \end{cases}$	0,25
VII.a	Gọi $z = a + bi$ $(a, b \in \mathbb{R})$, ta có: $z - (2 + 3i)z = 1 - 9i \Leftrightarrow a + bi - (2 + 3i)(a - bi) = 1 - 9i$	0,25

Câu	Đáp án	Điểm
(1,0 điểm)	$\Leftrightarrow -a - 3b - (3a - 3b)i = 1 - 9i$	0,25
	$\Leftrightarrow \begin{cases} -a - 3b = 1\\ 3a - 3b = 9 \end{cases}$	0.25
	3a - 3b = 9	0,25
	$\Leftrightarrow \begin{cases} a = 2 \\ b = -1. \end{cases} \text{Vây } z = 2 - i.$	0,25
VI.b	1. (1,0 điểm)	
(2,0 điểm)	$y \blacktriangle$ Đường tròn (<i>C</i>) có tâm $I(1; -2)$, bán kính bằng $\sqrt{10}$.	
	Ta có: $IM = IN$ và $AM = AN \Rightarrow AI \perp MN$; suy ra phương trình Δ có dạng: $y = m$.	0,25
	Hoành độ M , N là nghiệm phương trình: $x^2 - 2x + m^2 + 4m - 5 = 0 (1).$ $(1) có hai nghiệm phân biệt x_1 và x_2, khi và chỉ khi:m^2 + 4m - 6 < 0 (*); khi đó ta có: M(x_1; m) và N(x_2; m).$	0,25
	$\overrightarrow{AM} \perp \overrightarrow{AN} \Leftrightarrow \overrightarrow{\overrightarrow{AM}}.\overrightarrow{\overrightarrow{AN}} = 0 \Leftrightarrow (x_1 - 1)(x_2 - 1) + m^2 = 0 \Leftrightarrow x_1x_2 - (x_1 + x_2) + m^2 + 1 = 0.$	0,25
	Áp dụng định lý Viét đối với (1), suy ra: $2m^2 + 4m - 6 = 0$ $\Leftrightarrow m = 1 \text{ hoặc } m = -3$, thỏa mãn (*). Vậy, phương trình Δ : $y = 1 \text{ hoặc } y = -3$.	0,25
	2. (1,0 điểm)	
	Gọi I là tâm của mặt cầu. $I \in \Delta$, suy ra tọa độ I có dạng: $I(1 + 2t; 3 + 4t; t)$.	0,25
	Mặt cầu tiếp xúc với (P) , khi và chỉ khi: $d(I, (P)) = 1$ $\Leftrightarrow \frac{\left 2(1+2t)-(3+4t)+2t\right }{3} = 1$	0,25
	$\Leftrightarrow t = 2 \text{ hoặc } t = -1$. Suy ra: $I(5; 11; 2)$ hoặc $I(-1; -1; -1)$.	0,25
	Phương trình mặt cầu: $ (x-5)^2 + (y-11)^2 + (z-2)^2 = 1 \text{ hoặc } (x+1)^2 + (y+1)^2 + (z+1)^2 = 1. $	0,25
VII.b (1,0 điểm)	$y' = \frac{2x^2 + 4x}{(x+1)^2};$	0,25
	$y' = 0 \Leftrightarrow x = -2 \text{ hoặc } x = 0.$	0,25
	$y(0) = 3, y(2) = \frac{17}{3}.$	0,25
	Vậy: $\min_{[0;2]} y = 3$, tại $x = 0$; $\max_{[0;2]} y = \frac{17}{3}$, tại $x = 2$.	0,25

----- Hết -----