Physikalische Chemie II - FS18

v1

Gleb Ebert

7. August 2018

Vorwort

Diese Formelsammlung basiert auf dem PVK von Alexander Malär (Juni 2018) und soll an der Prüfung verwendet werden können. Ich kann leider weder Vollständigkeit noch die Abwesenheit von Fehlern garantieren. Für Fragen, Anregungen oder Verbesserungsvorschlägen kann ich unter glebert@student.ethz.ch erreicht werden. Die neuste Version dieser Zusammenfassung kann stets unter https://n.ethz.ch/~glebert/ gefunden werden.

1 Einheiten

$$10\,000\,\frac{\rm cm^2}{\rm s} = 1\,\frac{\rm m^2}{\rm s} \qquad 1\,\frac{\rm m^3}{\rm mol\,s} = 1000\,\frac{\rm dm^3}{\rm mol\,s} = 1\,\frac{\rm l}{\rm mol\,s}$$

$$1000\,\frac{\rm g}{\rm cm^3} = 1\,\frac{\rm kg}{\rm m^3} \qquad 1000\,\frac{\rm cm^3}{\rm g} = 1\,\frac{\rm m^3}{\rm kg} \qquad 1\,\rm \mathring{A} = 10\times10^{10}\,\rm m$$

$$[\omega] = \frac{\rm rad}{\rm s} \qquad {\rm Hz} = 2\pi\,\frac{\rm rad}{\rm s} = \frac{2\pi}{60}{\rm RPM}$$

$$M = \frac{\rm mol}{\rm l} \qquad {\rm J} = \frac{\rm kg\,m^2}{\rm s^2} \qquad {\rm V} = \frac{\rm J}{\rm C}$$

2 Transportphänomene

Transport	Eigenschaft
Diffusion	Masse
Wärmeleitfähigekeit	Wärme / Energie
Visuosität	Impuls
Ionenleitfähigkeit	Ladung

 \rightarrow Erzeugt durch Gradient der transportierten Eigenschaft.

2.1 Diffusion

Def. 1: Fluss einer Eigenschaft $[J] = \frac{\text{Eigenschaf}}{\text{Zeit}}$ z.B. $J = \frac{dj}{dt}$; $J = \frac{dN}{dt}$

Def. 2: Flussdichte $\Phi_x = \frac{J}{A}$; $[\Phi] = \frac{[\text{Eigenschaft}]}{[\text{Zeit}][\text{Fläche}]}$

2.1.1 Erstes Fick'sches Gesetz

$$\Phi_i = -D * \frac{\partial N(x)}{\partial x}$$

D: Diffusionskonstante $[D] = \frac{m^2}{s}$

 ∂x : Konzentrationsgradient

N(x): Verteilung der Teilchendichten im Raum

$$D = \frac{\lambda \langle v \rangle}{3} \qquad \langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}} \quad \text{mit} \quad \langle v \rangle \propto \sqrt{T}$$

$$\lambda = \tau \langle v \rangle = \frac{1}{N_0 \sigma}$$
 $\sigma = \pi (\tau_A + \tau_B)^2$

 τ : mittlere Zeit zwischen Stössen; σ : Stossquerschnitt λ : mittlere freie Weglänge

$$p = N_0 k_B T$$
 $N_0 = c N_A = \frac{p}{k_B T}$ $N \propto p$

 $\begin{array}{lll} T\uparrow \Rightarrow & \langle v\rangle \uparrow \Rightarrow & D\uparrow \Leftarrow & \lambda\uparrow \\ D\uparrow \Rightarrow & \Phi\uparrow \Rightarrow & \text{schnellere Diffusion} \end{array}$

GGW: $\frac{\partial N}{\partial x} = 0 \implies \Phi_x = 0$

2.1.2 Zweites Fick'sches Gesetz

$$\frac{\partial N(x,t)}{\partial t} = D \frac{\partial^2 N(x,t)}{\partial x^2}$$

einfache Lösungen unter Randbedingungen:

- 1) $t = 0 \rightarrow$ alle Teilchen bei x = 0
- 2) Diffusion kann bis $\pm \infty$ gehen

$$N(x,t) = \frac{Z_0}{2A\sqrt{\pi Dt}} * e^{\frac{-x^2}{4Dt}}$$

1D: $L_{Diff} = \sqrt{\langle R^2 \rangle} = \sqrt{2Dt}$

2D: $L_{Diff} = \sqrt{4DT}$; **3D**: $L_{Diff} = \sqrt{6Dt}$

L: Diffusionslänge

Bsp. Diffusion im Zylinder aus den Übungen

Bemerkung: Proteinkomplex

 $D_K \approx \frac{1}{2}D_P$

Annahme: Sphäre

$$D = \frac{k_B T}{6\pi \eta \tau} \propto \frac{1}{r}; \quad \tau_K \approx 2\tau_P; \quad M = \rho V \propto \tau^3$$
$$\Rightarrow m_K \approx 8m_P$$

 $\eta \uparrow \Rightarrow z \ddot{a}h fl \ddot{u} s s \dot{g} e r$

2.1.3 Wärmetransport

$$\Phi_{\text{Wärme}} = -\kappa \frac{\partial T}{\partial x} = \frac{\partial Q}{\partial EA}$$

 κ : Wärmeleitfähigkeit; $\kappa \uparrow \Rightarrow \Phi_{\text{Wärme}} \uparrow$ für einatomige Gase:

$$\kappa = \frac{\langle v \rangle k_B}{2\sigma} = \frac{N\lambda \langle v \rangle k_B}{2} \qquad k_B = \frac{2\kappa}{3DN}$$

2.1.4 Viskosität

$$\eta = \frac{N\lambda \langle v \rangle m}{3} = \frac{\langle v \rangle m}{3\sigma} \qquad [\eta] = \frac{\mathrm{kg}}{\mathrm{m}\,\mathrm{s}} \qquad \kappa = \frac{3}{2}\frac{\eta k_B}{m}$$

2.2 Transport durch Zellmembran

Im allgemeinen unterscheided man zwischen folgenden Arten von Transport

- Diffusion hydrophober/lipophiler Moleküle
- $\bullet\,$ Diffusion hydrophiler/lipophober Moleküle
- $\bullet \ \ {\bf Proteinvermittlter} \ {\bf Transport}$
 - passiver Transportaktiver Transport

2.2.1 Aktiver Transport

Konzentration und Membranpotential aussen grösser.

- primär: Energie aus chemischen Reaktionen (ATP, ...)
- sekundär: V_m , Cotransport

Bsp. sekundärer Glucose-Na⁺-Transport

$$\begin{split} \Delta G_{\rm Gluc} > 0 &\to {\rm nicht\ spontan} \\ \Delta G_{\rm Na^+} < 0 &\to {\rm spontan} \\ \Delta G_{\rm Gluc} + \Delta G_{\rm Na^+} = \Delta G_{\rm Total} < 0 \\ &\Rightarrow \Delta G_{\rm Na^+} < -\Delta G_{\rm Gluc} \end{split}$$

$$\Delta G \propto \Delta \mu$$

$$\Delta \widetilde{\mu}_i = \Delta \mu_{i,therm./chem.} + \Delta \mu_{i,elek.} = RT ln \left(\frac{c''}{c'}\right) + zF(\varphi'' - \varphi')$$

z: Molekülladung; F: Faraday-Konstante; $pH = -log_{10}[H^+]$

2.2.2 Passiver Transport

Konzentration und Membranpotential innen grösser.

2-Phasensys.: H_2O und Lipide \rightarrow Sprung an Membrangrenze

$$\gamma = \frac{c'_m}{c'_w} = \frac{c''_m}{c''_w} \qquad P = \frac{D\gamma}{d}$$

 γ : Verteilungskoeffizient (Verhältnis der Teilchendichte in Membran und im Wasser); d: Membrandicke; P: Permeabilitätskonstante; $P\uparrow \ \Rightarrow \ \Phi\uparrow$

$$\Phi_{innen} = -D \frac{\partial c}{\partial x} \stackrel{\text{Ann.}}{=} -D \frac{c'_m - c''_m}{d} = -\frac{D\gamma}{d} (c'_w - c''_w)$$

$$\Phi_{\text{über}} = P(c'_w - c''_w) \qquad \Phi_{\text{über}} = \Phi_{innen}$$

Zeitliche Veränderung der Innenkonzentration: Annahme, dass Aussenkonzentration konstant

$$V \frac{dc''_w(t)}{dtA} = P(c'_w - c''_w)$$

$$V dc''_w(t) = PA(c'_w - c''_w)dt$$

$$\frac{dc''_w(t)}{(-c'_w - c''_w(t))} = -\frac{PA}{V}dt$$

$$\int \cdots dc''_w = \int \cdots dt$$

$$\int_{c'_w(0)}^{c''_w(t)} \frac{dc''_w(t)}{c''_w - c'_w} = -\int \frac{PA}{V} \int_0^t 1dt$$

$$\ln \frac{c''_w(t) - c'_w}{c''_{w,0} - c'_w} = -\frac{PA}{V}t$$

$$\implies c''_w(t) = c'_w(1 - e^{-\frac{PA}{V}t})$$

2.3 Osmose

Zwei Kompartimente mit unterschiedlichen Konzentrationen vom Osmolyten sind durch eine fr das Lösungsmittel semipermeable Membran getrennt. Osmose ist der Fluss des Lösungsmittels vom Kompartiment mit der niedrigeren zu demjenigen mit der höheren Konzentration.

2.3.1 Osmotischer Volumenfluss

$$J_V = L_p(\Delta p - \sigma k_B T \Delta N) \qquad [J_V] = \frac{m^3}{m^2 s}$$

 $L_p \approx 10^{-7} \frac{m}{bar * s}$; $0 < \sigma < 1$ (bei 1 Membran undurchlässig)

GGW: $\Delta p = \sigma T R \Delta c$

2.3.2 Teilchenflussdichte

$$\Phi = P\Delta N + N(1 - \sigma)J_V$$

Membran undurchlässig $\rightarrow \sigma = 1 \Rightarrow \Phi = 0$

3 Membranpotential

$$\Phi_{Diff} = -D\frac{\partial N}{\partial x} \qquad \Phi_{el} = -D\frac{qN}{k_BT}\frac{\partial \varphi}{\partial x} = \frac{I}{qA}$$

Spannung: $V = d\gamma = -Ed$ mit Potential γ

Nernst-Planck-Gleichung

$$\Phi_{Total} = \Phi_{Diff} + \Phi_{el} = -D\left(\frac{\partial N}{\partial x} + \frac{qN}{k_BT}\frac{\partial \varphi}{\partial x}\right) = 0$$

Nernst-Gleichung (1 Ion):

$$V_m = \varphi_i - \varphi_a = \frac{RT}{F} ln \frac{c^a}{c^i} = \frac{k_B T}{ze} ln \frac{c^a}{c^i}$$

Goldman-Gleichung am Bsp. K^+ , Na^+ , Cl^- :

$$V_m = \frac{k_B T}{F} ln \left(\frac{P_{K^+} c_{K^+}^a + P_{Na^+} c_{Na^+}^a + P_{Cl^-} c_{Cl^-}^i}{P_{K^+} c_{K^+}^i + P_{Na^+} c_{Na^+}^i + P_{Cl^-} c_{Cl^-}^a} \right)$$

 V_m : Membran
potential; P_i : Membran
permeabilitätskonstante Gouy-Chapman-Theorie:

$$\varphi(x) = \varphi_0 e^{-\frac{x}{l_D}}$$
 $\varphi_0 = \frac{\sigma l_D}{\varepsilon_0 \varepsilon}$

Debye-Länge: $l_D=\frac{1}{F}\sqrt{\frac{\varepsilon_0\varepsilon RT}{2c}}=\frac{1}{F}\sqrt{\frac{\varepsilon_0\varepsilon RT}{2I}}$ c: Ionenkonzentration; I: Ionenstärke

Plattenkondensator: $c = \varepsilon_0 \varepsilon_1 \frac{A}{d}$

4 Transport durch und von Flüssigkeiten

4.1 Braunsche Bewegung

 $T \uparrow, \eta \uparrow, m \downarrow \Rightarrow \operatorname{Braun} \uparrow$

| 4.2 Driftgeschwindigkeit

im GGW

$$\vec{F}_R = -f\vec{v}, \quad \vec{F}_{el} = q\vec{E} = z\varepsilon_0\vec{E}, \quad \vec{F}_R = -\vec{F}_{el} \quad \Rightarrow v = \frac{qE}{f}$$

Reibungskoeffizient $f = \frac{k_B T}{D}$ $[f] = \frac{kg}{s}$

Annahme: Teilchen ist Kugel

Stoke-Einstein: $f = 6\pi \eta r$

 $f \propto r \quad \Rightarrow D = \frac{k_B T}{6\pi \eta r} \quad \Rightarrow v = \frac{qE}{6\pi \eta r} \, \eta$ ist der Wert des umgebenden Mediums (oft Wasser)

4.3 SDS-Elektrophorese

SDS denaturiert Proteine; Ladung proportional zur Grösse

$$V_{Diff} = \frac{k_B T}{e} \frac{D_+ - D_-}{D_+ + D_-} ln \left(\frac{c_1}{c_2}\right)$$

 V_{Diff} : Diffusionspotential

4.4 Hagen-Poiseuille

$$\frac{\Delta V}{\Delta t} = \frac{\pi r^4}{8\eta} \frac{\Delta p}{\Delta z}$$

$$p = \rho Lg$$
 $\frac{\eta}{t\rho} = K = \text{const.}$

5 Sedimentation

Sedimentierende Teilche spüren drei Kräfte

- Gravitationskraft $\vec{F}_G = m * \vec{g} = V \rho \vec{g}$
- Auftriebskraft (von verdrängter Wassermasse) $\vec{F}_A = -m_{fl} * \vec{g} = -V \rho_{fl} \vec{g}$
- Reibungskraft $\vec{F}_R = -f * v$

5.1 Gravitative Sedimentation

GGW: $\vec{F}_R + \vec{F}_G + \vec{F}_A = 0$ Sedimentationsgeschwindigkeit $v_s = \frac{V(\rho - \rho_{fl})g}{f} = \text{const.}$

Sedimentationskoeffizient $s=\frac{v_s}{g}=\frac{m(1-\tilde{V}\rho_{fl})}{f}$ [s]=S (1 Svedberg = $10^{-13}s$)

5.2 Zentrifugation

$$a_{zp} = R\omega^2$$
 $s = \frac{V(\rho - \rho_{fl})}{f}$

5.3 Differentielle Ultrazentrifugation

$$\begin{aligned} v_s &= \frac{dR}{dt} \\ s &= \frac{\frac{dR}{dt}}{\omega^2 R} = \frac{V(\rho - \rho_{fl})}{f} \\ t &= \frac{9}{2} \frac{\eta}{\omega^2 r^2} \frac{\ln\left(\frac{R_2}{R_1}\right)}{(\rho - \rho_{fl})} \end{aligned}$$

5.4 Massenbestimmung

Lambert-Beer: $A_i \propto c$

1) Analytische Ultrazentrifugation

$$m = \frac{sk_BT}{D(1 - \widetilde{V}\rho_{fl})} \qquad M = \frac{sRT}{D(1 - \widetilde{V}\rho_{fl})} \qquad s = \frac{\ln\left(\frac{R_2}{R_1}\right)}{\omega^2(t_2 - t_1)}$$

2) Gleichgewichts-Ultrazentrifugation: Absorptionswerte können anstelle von Konzentrationen verwendet werden

$$m = \frac{2k_B T \ln\left(\frac{c_2}{c_1}\right)}{\omega^2 (1 - \widetilde{V}\rho_{fl})(R_2^2 - R_1^2)}$$

3) Diffusionsmethode: Probleme: Kugel, Solvation Shell

$$m = \widetilde{\rho}V = \widetilde{\rho} \frac{4}{3}\pi \left(\frac{k_B T}{D6\pi\eta}\right)^3$$

 $\widetilde{\rho}$: mittlere Protonendichte

Vor- und Nachteile der Methoden: Kugelannahme und $\langle \widetilde{v}, p \rangle$ führen je kleinen Fehler ein \to Stokes am ungenausten; GGWUZF am besten, aber GGW-Einstellung kann lange dauern

	GGWUZF	AUZF	Stokes/E
Kugel $\langle \widetilde{v}, p \rangle$	nein	nein	ja
$\langle \widetilde{v}, p angle$	$\mathbf{j}\mathbf{a}$	$_{ m ja}$	ja
D	nein	$_{ m ja}$	ja

6 Kinetik

$$2A + B \rightarrow P$$

Reaktionsgeschwindigkeit v

$$v = -\frac{1}{2} \frac{d[A](t)}{dt} = -\frac{d[B](t)}{dt} = \frac{d[P](t)}{dt} = k[A]^{2}[B]$$
$$[k] = \frac{1}{[\text{Konz.}]^{m-1} * s}$$

Ordnung: Summe der Exponenten; Experimentell zugänglich **Molekularität**: Wieviel Moleküle müssen gleichzeitig aufeinander treffen, damit die Reaktion stattfindet? \rightarrow Mechanismus weit weg von $\mathbf{GGW} \rightarrow$ keine Rückreaktion $\rightarrow k_{-2} = 0$

6.1 Nullte Ordnung

unabhängig von Eduktkonzentration

Bsp.:
$$A \xrightarrow{\text{Kat.}} B$$

$$\frac{d[A]}{dt} = -k_0$$
$$[A](t) = -k_0 t + [A_0]$$

6.2 Erste Ordnung

ein Edukt

$$A \xrightarrow{k} B \qquad \frac{d[A]}{dt} = -k[A]$$

$$ln\left(\frac{[A]}{[A_0]}\right) = -kt \qquad [A](t) = [A]_0 e^{-kt}$$

$$t_{1/2} = \frac{ln(2)}{k} \qquad \tau = \frac{1}{k}$$

t: Halbwertszeit; τ : Lebenszeit (bis nur noch $\frac{1}{e}$ der Ursprungskonzentration vorhanden sind)

6.3 Pseudo Erste Ordnung

Bsp.: Aspirin
$$+ H_2O \rightarrow \cdots$$
 $-\frac{d[\text{Asp.}]}{dt} = k[\text{Asp.}][H_2O]$
mit $k' = k[H_2O]$ $\Rightarrow -\frac{d[\text{Asp.}]}{dt} = k'[\text{Asp.}]$
 $[H_2O] = 55M$ $= \cdots \frac{1}{s}$

6.4 Erste Ordnung mit Rückreaktion

$$A \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} B \qquad \frac{d[A]}{dt} = -\frac{d[B]}{dt} = -k_1[A] + k_{-1}[B]$$

$$GGW : [A] = const. \qquad \Rightarrow 0 = -k_1[A] + k_{-1}[B]$$

$$\Rightarrow k_1[A] = k_{-1}[B] \qquad \Rightarrow \frac{k_1}{k_{-1}} = \frac{[B]}{[A]} = K$$

$$\tau = \frac{1}{k_1 + k_{-1}}$$

K: Gleichgewichtskonstante der Reaktion

6.5 Zweite Ordnung

zwei Edukte

Bsp.:
$$2A \to B$$

$$-\frac{1}{2} \frac{d[A]}{dt} = k_2 [A]^2$$

$$\tau = \frac{1}{[A]_0 k_2} \qquad \frac{1}{[A]} - \frac{1}{[A_0]} = k_2 t$$

6.6 Diffusionskontrollierte Reaktion

Stossrate = Reaktionsrate; Resultat in
$$\frac{\text{m}^3}{\text{mol s}} \xrightarrow{*1000} \frac{\text{dm}^3}{\text{mol s}} = \frac{1}{\text{mol s}}$$

$$A + B \to AB \qquad k_{Diff} = (D_A + D_B) * 4\pi (r_A + r_B) N_A$$

$$[k_{Diff}] = \frac{l}{mol * s} \qquad 10^9 < k_{Diff} < 10^{11}$$

6.7 Parallelreaktion

$$P_{1} \leftarrow A \rightarrow P_{2} \qquad \frac{d[A]}{dt} = -(k_{1} + k_{2})[A]$$

$$(k_{eff} = k_{1} + k_{2}) \qquad [A](t) = [A_{0}]e^{-k_{eff}t}$$

$$\frac{d[P_{i}]}{dt} = k_{i}[A]$$

$$\Rightarrow \frac{d[P_{i}]}{dt} = k_{i}[A_{0}]e^{-k_{eff}t}$$

$$\int d[P_{i}] = k_{i}[A_{0}] \int_{0}^{t} e^{-k_{eff}t} dt$$

$$[P_{i}] = \frac{k_{i}[A]_{0}}{k_{eff}} (1 - e^{-k_{eff}t})$$

6.8 Folgereaktion

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

$$\frac{d[A]}{dt} = -k_1[A]$$

$$\frac{d[B]}{dt} = k_1[A] - k_2[B]$$

$$\frac{d[C]}{dt} = k_2[B]$$

$$[A](t) = [A]_0 e^{-k_1 t}$$

Annahme: Stationärer Zustand für B (oft bei instabilen Zwischenprodukten)

$$\frac{d[B]}{dt} \approx 0 \qquad \Rightarrow k_1[A] = k_2[B]$$

$$\Rightarrow [B] = \frac{k_1}{k_2}[A] = \frac{k_1}{k_2}[A]_0 e^{-k_1 t}$$

$$\Rightarrow \frac{d[C]}{dt} = k_1[A]_0 e^{-k_1 t}$$

6.9 Temperaturabhängigkeit

$$A + B \xrightarrow{k(T)} C$$
 $T \uparrow \Rightarrow k \uparrow$
$$k(t) = Ae^{-\frac{E_a}{RT}}$$

$$E_a = R ln\left(\frac{k_2}{k_1}\right) \frac{T_1 T_2}{T_2 - T_1}$$
 $ln(k(t)) = ln(A) - \frac{E_a}{RT}$

ln(k(t))- $\frac{1}{T}$ -Plot mit Steigung $-\frac{E_a}{R}$, Achsenabschnitt ln(A)

6.10 Theorie des Übergangszutands

Reaktion mit instabilem Zwischenprodukt / Übergangszutand AB^*

$$A + B \stackrel{K^*}{\rightleftharpoons} AB^* \stackrel{k^*}{\rightleftharpoons} P$$

$$\frac{k_1}{k_{-1}} = K^* = e^{-\Delta G_0^*/RT}$$

$$k(T) = \frac{k_B T}{h} * e^{\Delta S_0^*/R} * e^{-\Delta H_0^*/RT}$$

Plank'sche Konstante $h = 6.626\,070\,040 \times 10^{-34}\,\frac{\text{J}}{\text{s}}$

6.11 Michaelis-Menten (Enzymreaktion)

 $k_2 = k_{cat}$: Umsatzrate in $\frac{1}{s}$; Annahme 1: kein k_{-2}

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} P$$

$$\frac{d[E]}{dt} = \frac{d[S]}{dt} = -k_1[E][S] + k_{-1}[ES]$$

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_2[ES]$$

$$\frac{d[P]}{dt} = k_2[ES]$$

Annahme 2: stationärer Zustand für ES $\frac{d[ES]}{dt} \approx 0$ \Rightarrow Michaelis-Menten-Konstante

$$\frac{[E][S]}{[ES]} = \frac{k_{-1} + k_2}{k_1} = K_M$$

Annahme 3: $[E]_0 = [E] + [ES]$

$$v_P = \frac{k_2[S][E]_0}{K_M + [S]}$$

$$v_{max} = k_2[E]_0$$

$$\rightarrow v_P = \frac{v_{max}[S]}{K_M + [S]}$$
Fall 1: $[S] \gg K_M$
$$v_P = \frac{v_{max}[S]}{[S]} = v_{max}$$
Fall 2: $[S] \ll K_M$
$$v_P = \frac{v_{max}[S]}{K_M}$$
Fall 3: $[S] = K_M$
$$v_P = \frac{v_{max}}{2}$$

Fall 1: Reaktion 0. Ordnung; Fall 2: Reaktion 1. Ordnung

6.11.1 Lineweaver-Burk

Linearisierung der Michaelis-Menten Gleichung:

$$\frac{1}{v_p} = \frac{1}{v_{max}} + \frac{K_M}{v_{max}} \frac{1}{[S]}$$

In einem $\frac{1}{v_p}\text{-}\frac{1}{|S|}\text{-Plot}$ findet man eine Gerade mit Steigung $\frac{K_M}{v_{max}}$ und Achsenabschnitt $\frac{1}{v_{max}}.$

6.11.2 Inhibition

Art	v'_{max}	K_M'
keine	$v_{max} = k_2[E]_0$	$K_M = \frac{k_{-1} + k_2}{k_1}$
kompetitiv	v_{max}	$K_M(1+rac{[I]}{K_I})$
unkompetitiv	$\frac{v_{max}}{1 + \frac{[I]}{K_I}}$	$\frac{K_M}{1 + \frac{[I]}{K_I}}$
nicht-kompetitiv	$\frac{v_{max}}{1 + \frac{[I]}{K_I}}$	K_M

7 Bidungslängen

Bindung	Länge [pm]
C-C	154
C - H	109
C = O	148