This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

Network01a 001 10.0 points

The volume of traffic (in average number of vehicles per minute) through three intersections is shown in

Find all possible values for x_2 in terms of a free variable s.

1.
$$x_2 = 20 + s$$

2.
$$x_2 = 30 + s$$

3.
$$x_2 = 10 + s$$

4.
$$x_2 = 60 + s$$

5.
$$x_2 = -10 + s$$

$\begin{array}{c} Span02a \\ 002 \quad 10.0 \ points \end{array}$

For each of the following pairs of vectors $\{\mathbf{u}, \mathbf{v}\}$ in \mathbb{R}^3 determine whether

$$H = \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}\$$

is a line in \mathbb{R}^3 .

I:
$$\mathbf{u} = \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 6 \\ 2 \\ -4 \end{bmatrix}$,

II:
$$\mathbf{u} = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -6 \\ 2 \\ 4 \end{bmatrix}$,

III:
$$\mathbf{u} = \begin{bmatrix} -2 \\ -1 \\ -3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

- **1.** I only
- 2. III only
- **3.** II and III
- 4. I and III
- 5. I and II
- **6.** II only

LinTrans02a 003 10.0 points

If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\-2\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\-1\end{bmatrix},$$

determine $T(\mathbf{x})$ when $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

1.
$$T(\mathbf{x}) = \begin{bmatrix} 7 \\ -5 \end{bmatrix}$$

2.
$$T(\mathbf{x}) = \begin{bmatrix} 8 \\ -5 \end{bmatrix}$$

3.
$$T(\mathbf{x}) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

4.
$$T(\mathbf{x}) = \begin{bmatrix} 8 \\ -6 \end{bmatrix}$$

$$5. T(\mathbf{x}) = \begin{bmatrix} 7 \\ -6 \end{bmatrix}$$

LinTrans03b 004 10.0 points

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that

$$T(x_1, x_2) = (2x_1 + 2x_2, -3x_1 - x_2).$$

Determine A so that T can be written as the matrix transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$.

1.
$$A = \begin{bmatrix} 2 & 0 & -3 \\ 0 & 1 & 2 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 2 & -3 \\ 2 & -1 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 2 & 2 \\ -3 & -1 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & -3 \end{bmatrix}$$

InverseMatrix03a 005 10.0 points

Determine the product AB^{-1} when

$$A = \begin{bmatrix} 1 & 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 & -3 & 1 \\ 2 & -5 & 2 \\ -2 & 3 & -1 \end{bmatrix}.$$

1.
$$AB^{-1} = [9 -11 -3]$$

2.
$$AB^{-1} = [9 - 7 - 3]$$

3.
$$AB^{-1} = [9 -7 -4]$$

4.
$$AB^{-1} = [7 -7 -3]$$

5.
$$AB^{-1} = [7 -11 -4]$$

6.
$$AB^{-1} = [7 \quad 7 \quad 4]$$

InvertibleTF01c 006 10.0 points

If A is an $n \times n$ matrix, when does the equation $A\mathbf{x} = \mathbf{b}$ have at least one solution for each \mathbf{b} in \mathbb{R}^n ?

- 1. NEVER
- 2. SOMETIMES

3. ALWAYS

LUDecomp05b 007 10.0 points

Determine the unique solution x_2 of the matrix equation

$$A\mathbf{x} = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ -10 \\ -18 \end{bmatrix}$$

when A has an LU-decomposition

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -3 & 1 & 2 \\ 0 & 4 & -1 \\ 0 & 0 & 2 \end{bmatrix}.$$

- 1. $x_2 = -5$
- **2.** $x_2 = -6$
- 3. $x_2 = -4$
- 4. $x_2 = -3$
- 5. $x_2 = -7$

NullSpace01a 008 10.0 points

Find a matrix A so that Nul(A) is the set of all vectors

$$H = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{c} a+3b = 2c, \\ 4a = c-d, \end{array} \right\}$$

in \mathbb{R}^4 .

$$\mathbf{1.} \ A = \begin{bmatrix} 1 & 3 & -2 & 0 \\ 4 & 0 & -1 & -1 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 1 & 3 & 2 & 0 \\ 4 & 0 & 1 & -1 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 1 & -3 & 2 & 0 \\ 4 & 0 & 1 & -1 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 1 & 3 & -2 & 0 \\ 4 & 0 & -1 & 1 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & -3 & -2 & 0 \\ 4 & 0 & 1 & -1 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 1 & -3 & 2 & 0 \\ 4 & 0 & -1 & 1 \end{bmatrix}$$

5

SpanningT/F01a 010 10.0 points

Three linearly independent vectors in \mathbb{R}^3 always span \mathbb{R}^3 . True or False?

- 1. FALSE
- 2. TRUE

Rank02c 009 10.0 points

Determine the rank of the matrix

$$A = \begin{bmatrix} 1 & 1 & -3 \\ -1 & -1 & 1 \\ 2 & 2 & 1 \end{bmatrix}.$$

- 1. rank(A) = 3
- **2.** rank(A) = 4
- 3. rank(A) = 2
- **4.** rank(A) = 5
- **5.** rank(A) = 1

ComputeDeterminant01 011 10.0 points

Compute the determinant of the following elementary matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{bmatrix}.$$

- 1. 1 k
- **2.** 1
- **3.** 1 + k
- **4.** 0
- **5.** *k*

6

$\begin{array}{ccc} VectorSubSpaceTF01f \\ 014 & 10.0 \ points \end{array}$

The set

$$H = \left\{ \begin{bmatrix} a+2b \\ a-b \\ 3b \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$

is a subspace of \mathbb{R}^3 .

True or False?

- 1. FALSE
- 2. TRUE

DetPropTF01c 012 10.0 points

If the columns of an $n \times n$ matrix A are linearly dependent, then $\det A = 0$.

True or False?

- 1. FALSE
- 2. TRUE

SubspaceTF01 013 10.0 points

Let H be the set of points inside and on the unit circle in the xy-plane. That is, let

$$H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}.$$

H is a subspace of \mathbb{R}^2 . True or false?

- 1. TRUE
- 2. FALSE

Find a basis for the Null space of the matrix

$$A = \begin{bmatrix} 3 & -3 & -12 & 3 \\ 3 & -4 & -15 & 5 \\ -1 & -1 & -2 & 3 \end{bmatrix}.$$

- 1. $\left\{ \begin{bmatrix} 1 \\ -3 \\ 1 \\ 0 \end{bmatrix} \right\}$
- $\mathbf{2.} \left\{ \begin{bmatrix} 1\\3\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-2\\0\\1 \end{bmatrix} \right\}$
- 3. $\left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\}$
- $\mathbf{4.} \left\{ \begin{bmatrix} 1 \\ -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\}$
- $5. \left\{ \begin{bmatrix} -1 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\}$
- $\mathbf{6.} \ \left\{ \begin{bmatrix} -1\\3\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\-2\\0\\1 \end{bmatrix} \right\}$

BasisCol01b 016 10.0 points

Find a basis for the column space of the matrix

$$A = \begin{bmatrix} 2 & -2 & 2 & -4 \\ 2 & -5 & -4 & -7 \\ 1 & -4 & -5 & -3 \end{bmatrix}.$$

1.
$$\left\{ \begin{bmatrix} -4 \\ -7 \\ -3 \end{bmatrix} \right\}$$

$$\mathbf{2.} \left\{ \begin{bmatrix} -2\\-5\\-4 \end{bmatrix}, \begin{bmatrix} 2\\-4\\-5 \end{bmatrix} \right\}$$

$$\mathbf{3.} \left\{ \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\-4\\-5 \end{bmatrix}, \begin{bmatrix} -4\\-7\\-3 \end{bmatrix} \right\}$$

4.
$$\left\{ \begin{bmatrix} 2 \\ -4 \\ -5 \end{bmatrix} \right\}$$

$$\mathbf{5.} \left\{ \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \begin{bmatrix} -2\\-5\\-4 \end{bmatrix} \right\}$$

6.
$$\left\{ \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \begin{bmatrix} -2\\-5\\-4 \end{bmatrix}, \begin{bmatrix} -4\\-7\\-3 \end{bmatrix} \right\}$$

with respect to the basis

$$\mathcal{B} = \left\{ \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\-5\\2 \end{bmatrix}, \begin{bmatrix} 4\\-7\\3 \end{bmatrix} \right\}$$

for \mathbb{R}^3 .

$$\mathbf{1.} \ \mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ -5 \end{bmatrix}$$

$$\mathbf{3.} \ \mathbf{x} = \begin{bmatrix} 0 \\ -1 \\ 5 \end{bmatrix}$$

$$\mathbf{4.} \ \mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}$$

5. no such \mathbf{x} exists

LinIndSetsTF01b 017 10.0 points

When $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p$ are vectors in \mathbb{R}^n and

$$H = \operatorname{Span}\{\mathbf{b}_1, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_p\},\,$$

then $\{\mathbf{b}_1, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_p\}$ is a basis for H.

True or False?

- 1. FALSE
- 2. TRUE

CoordVec02a 018 10.0 points

Find the vector \mathbf{x} in \mathbb{R}^3 having coordinate vector

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -4\\8\\-7 \end{bmatrix}$$

Let V be a vector space. If dim V = n and if S spans V, then S is a basis for V.

True or False?

- 1. FALSE
- 2. TRUE

- **2.** $P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 6 & 9 \\ -2 & -4 \end{bmatrix}$
- **3.** $P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 9 & -6 \\ 4 & -2 \end{bmatrix}$
- **4.** $P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 6 & -9 \\ 2 & -4 \end{bmatrix}$
- **5.** $P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} -6 & 9 \\ -2 & 4 \end{bmatrix}$
- **6.** $P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} -9 & 6 \\ -4 & 2 \end{bmatrix}$

$\begin{array}{cc} RankTF03 \\ 020 & 10.0 \ points \end{array}$

When A is a 5×7 matrix, the largest possible dimension of the row space of A is 5.

True or False?

- 1. TRUE
- 2. FALSE

$022\;(\mathrm{part}\;2\;\mathrm{of}\;2)\;10.0\;\mathrm{points}$

Determine $[\mathbf{x}]_{\mathcal{C}}$ when

$$\mathbf{x} = -3\mathbf{b}_1 + 2\mathbf{b}_2.$$

Determine the change of coordinates matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ from basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ to $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ of a vector space V when

$$\mathbf{b}_1 = 6\mathbf{c}_1 - 2\mathbf{c}_2, \quad \mathbf{b}_2 = 9\mathbf{c}_1 - 4c_2.$$

1.
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 9 & 6 \\ -4 & -2 \end{bmatrix}$$

1.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

2.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}$$

3.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

4.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 0 \\ -4 \end{bmatrix}$$

5.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

6.
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

Eigenspace02a 023 10.0 points

Find a basis for the eigenspace of the matrix

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix},$$

corresponding to the eigenvalue $\lambda = -2$.

$$\mathbf{1.} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

2.
$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$\mathbf{3.} \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

$$4. \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{5.} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

EigenTrans01a 024 10.0 points

The vectors \mathbf{u}_1 and \mathbf{u}_2 shown in

are eigenvectors corresponding to eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 2$ respectively for a 2×2 matrix A.

Which of the following graphs contains the vector $A(\mathbf{u}_1 + \mathbf{u}_2)$?

3.

5.

6.

EigenvalueTF02a 025 10.0 points

If A is an $n \times n$ matrix and $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ , then \mathbf{x} is an eigenvector of A.

True or False?

- 1. FALSE
- 2. TRUE

Eigenvalue04a 026 (part 1 of 2) 10.0 points

Determine the Characteristic Polynomial of the matrix $\,$

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

1.
$$6 + 10\lambda - 6\lambda^2 + \lambda^3$$

2.
$$4 + 4\lambda - 10\lambda^2 - \lambda^3$$

3.
$$4 - 4\lambda + 10\lambda^2 - \lambda^3$$

4.
$$4 - 10\lambda + 6\lambda^2 - \lambda^3$$

5.
$$6 - 10\lambda + 6\lambda^2 + \lambda^3$$

6.
$$6 + 4\lambda$$
 $10\lambda^2 + \lambda^3$

027 (part 2 of 2) 10.0 points

One eigenvalue of the matrix A in part (i) is $\lambda=2$. Determine all the other eigenvalues.

1.
$$\lambda = 2\sqrt{2} \pm 2$$

2.
$$\lambda = 2 \pm \sqrt{2}$$

3.
$$\lambda = 1 \pm 2\sqrt{2}$$

4.
$$\lambda = 1 \pm \sqrt{2}$$

5.
$$\lambda = 2 \pm 2\sqrt{2}$$

6.
$$\lambda = 2\sqrt{2} \pm 1$$

Diagonalize03a 028 10.0 points

Find a matrix P so that

$$P\begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix} P^{-1}, \quad d_1 \ge d_2$$

is a diagonalization of the matrix

$$A = \begin{bmatrix} 2 & 5 \\ 0 & 1 \end{bmatrix}$$

1.
$$P = \begin{bmatrix} 5 & -1 \\ 1 & 4 \end{bmatrix}$$

2.
$$P = \begin{bmatrix} -1 & 5 \\ 0 & -1 \end{bmatrix}$$

3.
$$P = \begin{bmatrix} 1 & -5 \\ 0 & -1 \end{bmatrix}$$

$$4. P = \begin{bmatrix} 0 & -1 \\ -1 & 5 \end{bmatrix}$$

5.
$$P = \begin{bmatrix} 4 & -1 \\ -1 & -5 \end{bmatrix}$$

$$6. P = \begin{bmatrix} 5 & -1 \\ -1 & 0 \end{bmatrix}$$

For **u** and **v** in \mathbb{R}^n and any scalar c,

$$\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$$

True or False?

- 1. TRUE
- 2. FALSE

OrthoProj04a 030 10.0 points

Determine the vector \mathbf{z} in \mathbb{R}^3 such that $\mathbf{y} - \mathbf{z}$ is the projection of \mathbf{y} in $\mathrm{Span}(\mathbf{u})$ when

$$\mathbf{y} = \begin{bmatrix} -3 \\ -1 \\ 10 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}.$$

$$\mathbf{1.} \ \mathbf{z} = \begin{bmatrix} -9 \\ 3 \\ 6 \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{z} = \begin{bmatrix} 6 \\ -2 \\ -4 \end{bmatrix}$$

$$\mathbf{3.} \ \mathbf{z} = \begin{bmatrix} -6 \\ 2 \\ 4 \end{bmatrix}$$

$$\mathbf{4.} \ \mathbf{z} = \begin{bmatrix} 9 \\ -3 \\ -6 \end{bmatrix}$$

OrthogProj01a 031 10.0 points

Determine the orthogonal projection of

$$\mathbf{y} = \begin{bmatrix} -9 \\ 6 \\ -3 \end{bmatrix}$$

onto the subspace W of \mathbb{R}^3 spanned by

$$\mathbf{u}_1 = \begin{bmatrix} -2\\2\\1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1\\2\\-2 \end{bmatrix}.$$

$$\mathbf{1.} \ \operatorname{proj}_{W} \mathbf{y} = \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}$$

$$\mathbf{2.} \ \operatorname{proj}_{W} \mathbf{y} = \begin{bmatrix} -5 \\ 2 \\ 1 \end{bmatrix}$$

3.
$$\operatorname{proj}_W \mathbf{y} = \begin{bmatrix} -8 \\ 2 \\ 7 \end{bmatrix}$$

4.
$$\operatorname{proj}_W \mathbf{y} = \begin{bmatrix} -8 \\ 8 \\ 1 \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{v}_1 = \begin{bmatrix} 10 \\ -3 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$

$$\mathbf{3.} \ \mathbf{v}_1 = \begin{bmatrix} 10 \\ -3 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ -3 \end{bmatrix}$$

4.
$$\mathbf{v}_1 = \begin{bmatrix} 10 \\ -3 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -5 \\ 1 \\ 2 \end{bmatrix}.$$

$$\mathbf{5.} \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ -3 \end{bmatrix}$$

$\begin{array}{cc} Gram Schmidt 04 a \\ 032 & 10.0 \ points \end{array}$

Find an orthogonal basis for the column space of A when

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 7 & 6 \\ 1 & -1 & 12 \end{bmatrix}$$

$$\mathbf{1.} \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -5 \\ 1 \\ 2 \end{bmatrix}$$

Least Squares 02a033 10.0 points

Find the least-squares solution of $A\mathbf{x} = \mathbf{b}$ when

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & -3 \\ 0 & 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -3 \\ -5 \\ 2 \end{bmatrix}.$$

1.
$$\begin{bmatrix} 5 \\ 14 \\ 5 \end{bmatrix}$$

2.
$$\begin{bmatrix} -2 \\ -16 \\ 10 \end{bmatrix}$$
3. $\begin{bmatrix} -3 \\ -5 \\ 2 \end{bmatrix}$

3.
$$\begin{bmatrix} -3 \\ -5 \\ 2 \end{bmatrix}$$

$$\mathbf{4.} \begin{bmatrix} -3 \\ 9 \\ 14 \end{bmatrix}$$

5.
$$\begin{bmatrix} -5 \\ 1 \\ 1 \end{bmatrix}$$

RegressionLine01a 03410.0 points

Find the x-intercept of the Least Squares Regression line y = mx + b that best fits the data points

$$(-1, -2), (0, -2), (1, -4).$$

OrthogDiag01b 035 10.0 points

When

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

are eigenvectors of a symmetric 2×2 matrix A corresponding to eigenvalues

$$\lambda_1 = -1, \qquad \lambda_2 = -11,$$

find matrices D and P in an orthogonal diagonalization of A.