Meta-learners for estimating heterogeneous treatment effects using machine learning

Künzel, Sekhon, Bickel, and Yu

Proceedings of the National Academy of Sciences - June 2017

Heterogeneous Treatment Effects

```
Generating model: (Y_i(0), Y_i(1), X_i, W_i) \sim \mathcal{P}
Observations: \mathcal{D}_N = (Y_i(W_i), X_i, W_i)_{1 \leq i \leq N}, W_i \in \{0, 1\}.
```

- Individual Treatment Effect: $D_i := Y_i(1) Y_i(0)$, yet only one potential outcome is observed for each unit.
- Average Treatment Effect: ATE := $\mathbb{E}[Y(1) Y(0)]$.
- Conditional ATE: $\tau(x) := \mathbb{E}[Y(1) Y(0)|X = x]$.

The responses under control/treatment will be useful: $\mu_0(x) := \mathbb{E}[Y(0)|X=x]$ and $\mu_1(x) := \mathbb{E}[Y(1)|X=x]$. Those are such that: $\tau(x) = \mu_1(x) - \mu_0(x)$.

Two simple existing methods for CATE estimation

• **T-learner**: build estimators $\hat{\mu}_0(x)$ and $\hat{\mu}_1(x)$, recall that $\tau(x) = \mu_1(x) - \mu_0(x)$ and use the estimator:

$$\hat{\tau}_T(x) := \hat{\mu}_1(x) - \hat{\mu}_0(x)$$

• S-learner: estimate the combined response function $\mu(x,w):=\mathbb{E}[Y^{obs}|X=x,W=w]$ using all observed data and all covariates including w (with no particular role) and build the estimator by shifting the value of w:

$$\hat{\tau}_S(x) := \hat{\mu}(x, 1) - \hat{\mu}(x, 0)$$

The X-learner

1. Estimate μ_0 , μ_1

- 2. Impute *D* using the other estimator
- 3. Estimate τ in each group
- 4. Combine them with a convex combination

X-learner with unbalanced design

Description of the simulations

Step 1:

$$X_i \sim \mathcal{N}(0, \Sigma) \text{ with } i \in [1, d]$$

Step 2:

$$Y_i(1) = \mu_1(X_i) + \epsilon_i(1) \text{ with } \epsilon_i(1) \sim \mathcal{N}(0,1)$$

$$Y_i(0) = \mu_0(X_i) + \epsilon_i(0)$$
 with $\epsilon_i(0) \sim \mathcal{N}(0, 1)$

Step 3:

$$W_i \sim Bern(e(X_i))$$

Examples of the simulations

Simulation with "simple" τ and "complex" μ :

$$\mu_0(x) = x^T \beta + 5 \times \mathbf{1}_{x_1 > 0.5} \text{ with } \beta \in \mathbb{R}^{20}$$

$$\mu_1(x) = \mu_0(x) + 8 \times \mathbf{1}_{x_2 < 0.1}$$

$$\tau(x) = 8 \times \mathbf{1}_{x_2 < 0.1}$$

Simulation with the same effect:

$$\mu_0(x) = \mu_1(x)$$

Simulation non linear:

$$\mu_0(x) = \frac{1}{2}\zeta(x_1)\zeta(x_2)
\mu_1(x) = -\frac{1}{2}\zeta(x_1)\zeta(x_2)
\zeta(x) = \frac{2}{1 + \exp^{-12(x - \frac{1}{2})}}$$

Simulation with "simple" τ and "complex" μ results

Simulation with the same effect results

Simulation with confound results

Application: Social pressure and voter turnout

Application: Reducing transphobia

Minimax rates of estimation

- EMSE of estimator $\hat{\mu}_N$ for \mathcal{P} : $\mathbb{E}_{(\mathcal{D}_N,\mathcal{X})}\left[(\hat{\mu}_N(\mathcal{X}) \mu(\mathcal{X}))^2\right]$
- Family with bounded minimax rate a: family F of distributions $\mathcal P$ s.t. $\min_{\hat{\mu}_N} \max_{\mathcal P \in F} \mathrm{EMSE}(\mathcal P, \hat{\mu}_N) = O(N^{-a})$

Theorem 1: Minimax rates of the T-learner

Suppose we can estimate μ_0 and μ_1 at rate a_μ . Then some T-learner can estimate τ with an EMSE of order $O(m^{-a_\mu} + n^{-a_\mu})$.

Conjecture 1: Minimax rates of the X-learner

Suppose we can estimate μ_0 and μ_1 at rate a_μ , and the imputed treatment effects at rate a_τ . Then some X-learner can estimate τ_1 with an EMSE of order $O(m^{-a_\mu} + n^{-a_\tau})$.

Two situations where the conjecture holds

Theorem 2: Minimax rates of the X-learner, linear case

Assume that:

- μ_0 can be estimated at rate a_{μ}
- The treatment effect is linear. This implies $a_{\tau}=1$

Some X-learner can estimate τ_1 with error $O(m^{-a_{\mu}} + n^{-1})$

Theorem 7: Minimax rates of the X-learner, smooth case

Assume that:

- The features are $\mathcal{U}([0,1]^d)$ and the noise $\mathcal{N}(0,\sigma^2)$
- μ_0 and μ_1 are L-Lipschitz. This implies $a_\mu = a_\tau = 2/(2+d)$

Some X-learner can estimate τ_1 with error $O\left(m^{-\frac{2}{2+d}} + n^{-\frac{2}{2+d}}\right)$ and this rate is optimal for any estimator.

Pros & cons: the cons

- Unjustified assumptions to create situations where the X-learner outperforms the T-learner:
 - Simple τ but complicated μ_i , even though $\tau = \mu_1 \mu_0$
 - \bullet τ and μ_i depending on separate feature subsets
- ullet No rule or heuristic for choosing the weights of $\hat{ au}_0$ and $\hat{ au}_1$
- Base estimators (BART, RF) only tree-based, probably chosen because the authors had implemented them
- X-learner has high bias and low coverage of the bootstrap CI

Pros & cons: the pros

• X-learner can exploit class imbalance in observational data

• X-learner can exploit structure in the CATE function

Partial theoretical justification for performance

Empirical testing on simulated and field data