Bayesian Games

J. Leite (adapted from Kevin Leyton-Brown)

Figure: Tea Auction, Melbourne, Australia, 1885

Figure: Bluefin Tuna Auction, Tokyo, Japan, 2008

Figure: Auction of seized horses, Dixon, IL

Larger Picture

7-day listing

Start time:

History:

High bidder:

Ends Nov-22-04

Nov-15-04 17:22:07 PST

4 bids (US \$3,000.00 starting bid)

User ID kept private

Member since Jul-03-02 in United States

Read feedback comments Add to Favorite Sellers Ask seller a question View seller's other items

Safe Buying Tips

Financing available Now

No payments until April, and no interest if naid by April

Figure: A silent auction – looks suspiciously like a game

Section 1

Bayesian Games

- Choose a phone number none of your neighbours knows; consider it to be ABCDEFGHI
 - ▶ take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation

Questions

- what is the role of uncertainty here?
- can we model this uncertainty using an imperfect information extensive form game?
 - imperfect info means not knowing what node you're in in the info se
 - here we're not sure what game is being played (though if we allow a move by nature, we can do it)

- Choose a phone number none of your neighbours knows; consider it to be ABCDEFGHI
 - ▶ take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation

Questions

- what is the role of uncertainty here?
- can we model this uncertainty using an imperfect information extensive form game?
 - imperfect info means not knowing what node you're in in the info se
 - here we're not sure what game is being played (though if we allow a move by nature, we can do it)

- Choose a phone number none of your neighbours knows; consider it to be ABCDEFGHI
 - ▶ take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation
- Questions
 - what is the role of uncertainty here?
 - can we model this uncertainty using an imperfect information extensive form game?
 - imperfect info means not knowing what node you're in in the info se
 - here we're not sure what game is being played (though if we allow a move by nature, we can do it)

- Choose a phone number none of your neighbours knows; consider it to be ABCDEFGHI
 - ▶ take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation
- Questions
 - what is the role of uncertainty here?
 - can we model this uncertainty using an imperfect information extensive form game?
 - imperfect info means not knowing what node you're in in the info set
 - here we're not sure what game is being played (though if we allow a move by nature, we can do it)

- Choose a phone number none of your neighbours knows; consider it to be ABCDEFGHI
 - ▶ take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation
- Questions:
 - what is the role of uncertainty here?
 - can we model this uncertainty using an imperfect information extensive form game?
 - imperfect info means not knowing what node you're in in the info se
 - here we're not sure what game is being played (though if we allow a move by nature, we can do it)

- Choose a phone number none of your neighbours knows; consider it to be ABCDEFGHI
 - ▶ take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation
- Questions:
 - what is the role of uncertainty here?
 - can we model this uncertainty using an imperfect information extensive form game?
 - imperfect info means not knowing what node you're in in the info set
 - here we're not sure what game is being played (though if we allow a move by nature, we can do it)

Introduction

- ► So far, we've assumed that all players know what game is being played. Everyone knows:
 - the number of players
 - the actions available to each player
 - the payoff associated with each action vector
- Why is this true in imperfect information games?
- ▶ We'll now consider games of incomplete (not imperfect) information: players are uncertain about the game being played.

Introduction

- ► So far, we've assumed that all players know what game is being played. Everyone knows:
 - the number of players
 - the actions available to each player
 - the payoff associated with each action vector
- Why is this true in imperfect information games?
- ▶ We'll now consider games of incomplete (not imperfect) information: players are uncertain about the game being played.

- Consider the payoff matrix shown here
 - ightharpoonup is a small positive constant
 - Agent 1 knows its value

	L	R
Γ	100, a	$1-\epsilon, b$
В	2, c	1, d

- lacktriangle Agent 1 doesn't know the values of a, b, c, d
 - Thus the matrix represents a set of games
 - Agent 1 doesn't know which of these games is the one being played
- Agent 1 wants a strategy that makes sense despite this lack of knowledge
- ▶ If Agent 1 thinks Agent 2 is malicious, then Agent 1 might want to play a maxmin, or "safety level" strategy
 - ightharpoonup minimum payoff of T is $1-\epsilon$
 - ightharpoonup minimum payoff of B is 1
- \blacktriangleright So, agent 1's maxmin strategy is B

- Consider the payoff matrix shown here
 - ightharpoonup is a small positive constant
 - Agent 1 knows its value

	L	R
Γ	100, a	$1-\epsilon, b$
В	2, c	1, d

- lacktriangle Agent 1 doesn't know the values of a, b, c, d
 - Thus the matrix represents a set of games
 - Agent 1 doesn't know which of these games is the one being played
- Agent 1 wants a strategy that makes sense despite this lack of knowledge
- ▶ If Agent 1 thinks Agent 2 is malicious, then Agent 1 might want to play a maxmin, or "safety level" strategy
 - minimum payoff of T is $1-\epsilon$
 - ightharpoonup minimum payoff of B is 1
- \triangleright So, agent 1's maxmin strategy is B

- Consider the payoff matrix shown here
 - $ightharpoonup \epsilon$ is a small positive constant
 - Agent 1 knows its value

	L	R
Γ	100, a	$1-\epsilon, b$
В	2, c	1, d

- ▶ Agent 1 doesn't know the values of a, b, c, d
 - Thus the matrix represents a set of games
 - Agent 1 doesn't know which of these games is the one being played
- Agent 1 wants a strategy that makes sense despite this lack of knowledge
- ▶ If Agent 1 thinks Agent 2 is malicious, then Agent 1 might want to play a maxmin, or "safety level" strategy
 - minimum payoff of T is $1-\epsilon$
 - ightharpoonup minimum payoff of B is 1
- \triangleright So, agent 1's maxmin strategy is B

- Consider the payoff matrix shown here
 - ightharpoonup is a small positive constant
 - Agent 1 knows its value

	L	R
Γ	100, a	$1 - \epsilon, b$
В	2, c	1, d

- ▶ Agent 1 doesn't know the values of a, b, c, d
 - Thus the matrix represents a set of games
 - Agent 1 doesn't know which of these games is the one being played
- Agent 1 wants a strategy that makes sense despite this lack of knowledge
- ▶ If Agent 1 thinks Agent 2 is malicious, then Agent 1 might want to play a maxmin, or "safety level" strategy
 - ▶ minimum payoff of T is 1ϵ
 - minimum payoff of B is 1
- \blacktriangleright So, agent 1's maxmin strategy is B

Bayesian Games

- lackbox Suppose we know the set G of all possible games and we have enough information to put a probability distribution over the games in G
- ▶ A Bayesian Game is a class of games *G* that satisfies two fundamental conditions:
- Condition 1 All possible games have the same number of agents and the same strategy space for each agent; they differ only in their payoffs.
- Condition 2 Agent's beliefs are posteriors, obtained by conditioning a common prior on individual private signals.

- ► All possible games have the same number of agents and the same strategy space for each agent; they differ only in their payoffs.
- ► This condition isn't very restrictive. Other types of uncertainty can be reduced to the above, by reformulating the problem
- ▶ Suppose we don't know whether player 2 only has strategies L and R, or also an additional strategy C:

▶ If player 2 doesn't have strategy *C*, this is equivalent to having a strategy *C* that's strictly dominated by other strategies:

▶ The Nash equilibria for G'_1 are the same as those for G_1

- ▶ All possible games have the same number of agents and the same strategy space for each agent; they differ only in their payoffs.
- ► This condition isn't very restrictive. Other types of uncertainty can be reduced to the above, by reformulating the problem
- Suppose we don't know whether player 2 only has strategies L and R, or also an additional strategy C:

▶ If player 2 doesn't have strategy *C*, this is equivalent to having a strategy *C* that's strictly dominated by other strategies:

The Nash equilibria for G'_1 are the same as those for G_1

- ▶ All possible games have the same number of agents and the same strategy space for each agent; they differ only in their payoffs.
- ► This condition isn't very restrictive. Other types of uncertainty can be reduced to the above, by reformulating the problem
- ▶ Suppose we don't know whether player 2 only has strategies *L* and *R*, or also an additional strategy *C*:

	L	C	R
Game G_2 : T	1, 1	0, 2	1,3
B	0, 5	2, 8	1,13

▶ If player 2 doesn't have strategy *C*, this is equivalent to having a strategy *C* that's strictly dominated by other strategies:

lacktriangle The Nash equilibria for G_1' are the same as those for G_1

- ► All possible games have the same number of agents and the same strategy space for each agent; they differ only in their payoffs.
- ► This condition isn't very restrictive. Other types of uncertainty can be reduced to the above, by reformulating the problem
- ▶ Suppose we don't know whether player 2 only has strategies *L* and *R*, or also an additional strategy *C*:

Game
$$G_1$$
: $T = \begin{bmatrix} L & R \\ \hline 1,1 & 1,3 \\ B & 0,5 & 1,13 \end{bmatrix}$

Game
$$G_2$$
: T

$$\begin{array}{c|cccc}
 & L & C & R \\
\hline
 & 1,1 & 0,2 & 1,3 \\
 & 0,5 & 2,8 & 1,13
\end{array}$$

▶ If player 2 doesn't have strategy C, this is equivalent to having a strategy C that's strictly dominated by other strategies:

	L	C	R
Game G_1' : T	1, 1	0, -100	1,3
B	0, 5	2, -100	1,13

lacktriangle The Nash equilibria for G_1' are the same as those for G_1

- ► All possible games have the same number of agents and the same strategy space for each agent; they differ only in their payoffs.
- ► This condition isn't very restrictive. Other types of uncertainty can be reduced to the above, by reformulating the problem
- ▶ Suppose we don't know whether player 2 only has strategies *L* and *R*, or also an additional strategy *C*:

Game
$$G_1$$
: $T = \begin{bmatrix} L & R \\ \hline 1,1 & 1,3 \\ B & 0,5 & 1,13 \end{bmatrix}$

Game
$$G_2$$
: T

$$\begin{array}{c|cccc}
 & L & C & R \\
\hline
 & 1,1 & 0,2 & 1,3 \\
\hline
 & 0,5 & 2,8 & 1,13
\end{array}$$

▶ If player 2 doesn't have strategy C, this is equivalent to having a strategy C that's strictly dominated by other strategies:

	L	C	R
Game G_1' : T	1, 1	0, -100	1,3
B	0, 5	2, -100	1,13

▶ The Nash equilibria for G'_1 are the same as those for G_1 .

- ► Agent's beliefs are posteriors, obtained by conditioning a common prior on individual private signals.
- ▶ The probability distribution over the games in *G* is common knowledge (i.e., known to all the agents).
- ▶ The beliefs of the different agents are posterior probabilities
 - Combine the common prior distribution with individual "private signals" (what's "revealed" to the individual players)

- ► Agent's beliefs are posteriors, obtained by conditioning a common prior on individual private signals.
- ► The probability distribution over the games in *G* is common knowledge (i.e., known to all the agents).
- ▶ The beliefs of the different agents are posterior probabilities
 - Combine the common prior distribution with individual "private signals" (what's "revealed" to the individual players)

- ► Agent's beliefs are posteriors, obtained by conditioning a common prior on individual private signals.
- ► The probability distribution over the games in *G* is common knowledge (i.e., known to all the agents).
- ▶ The beliefs of the different agents are posterior probabilities
 - Combine the common prior distribution with individual "private signals" (what's "revealed" to the individual players)

Bayesian Games

- ► So a Bayesian game defines
 - the uncertainties of agents about the game being played,
 - what each agent believes the other agents believe about the game being played
- We'll discuss three, essentially equivalent, different ways to define Bayesian Games.
 - based on Information Sets
 - based on Extensive Form with Chance Moves
 - based on Epistemic Types

Bayesian Games

- ► So a Bayesian game defines
 - ▶ the uncertainties of agents about the game being played,
 - what each agent believes the other agents believe about the game being played
- We'll discuss three, essentially equivalent, different ways to define Bayesian Games.
 - based on Information Sets
 - based on Extensive Form with Chance Moves
 - based on Epistemic Types

Definition 1: Information Sets

Bayesian game: a set of games that differ only in their payoffs, a common prior defined over them, and a partition structure over the games for each agent.

Definition (Bayesian Game: Information Sets)

A Bayesian game is a tuple (N,G,P,I) where

- ► N is a set of agents,
- ▶ G is a set of games with N agents each such that if $g,g' \in G$ then for each agent $i \in N$ the strategy space in g is identical to the strategy space in g',
- ▶ $P \in \Pi(G)$ is a common prior over games, where $\Pi(G)$ is the set of all probability distributions over G, and
 - common: common knowledge (known to all the agents)
 - prior: probability before learning any additional information
- ▶ $I = (I_1, ..., I_N)$ is tuple of information sets i.e. a tuple of partitions of G, one for each agent.

- Suppose the randomly chosen game is MP
- ► Agent 1's information set is $I_{1,1}$ ► 1 knows it's MP or PD
- ▶ Agent 2's information set is $I_{2,1}$

- Suppose the randomly chosen game is MP
- ▶ Agent 1's information set is I₁,
 ▶ 1 knows it's MP or PD
- ▶ Agent 2's information set is I_{2,1}
 ≥ 2 knows it's MP or Coord

- Suppose the randomly chosen game is MP
- Agent 1's information set is I_{1,1}
 ▶ 1 knows it's MP or PD
- ► Agent 2's information set is $I_{2,1}$ ► 2 knows it's MP or Coord

- Suppose the randomly chosen game is MP
- Agent 1's information set is I_{1,1}
 ▶ 1 knows it's MP or PD
- ▶ Agent 2's information set is $I_{2,1}$
 - ▶ 2 knows it's MP or Coord

- Suppose the randomly chosen game is MP
- Agent 1's information set is I_{1,1}
 ▶ 1 knows it's MP or PD
- ▶ Agent 2's information set is I_{2,1}
 - ▶ 2 knows it's MP or Coord

▶ 1 can infer posterior probabilities for each

- Suppose the randomly chosen game is MP
- ▶ Agent 1's information set is I_{1,1}
 ▶ 1 knows it's MP or PD
- Agent 2's information set is I_{2,1}
 - ▶ 2 knows it's MP or Coord

▶ 1 can infer posterior probabilities for each

$$Pr(MP|I_{1,1}) = \frac{Pr(MP)}{Pr(MP) + Pr(PD)} = \frac{3}{4}$$

$$Pr(PD|I_{1,1}) = \frac{Pr(PD)}{Pr(MP) + Pr(PD)} = \frac{1}{4}$$

- Suppose the randomly chosen game is MP
- ▶ Agent 1's information set is I_{1,1}
 ▶ 1 knows it's MP or PD
- Agent 2's information set is I_{2,1}
 - 2 knows it's MP or Coord

1 can infer posterior probabilities for each

$$Pr(MP|I_{1,1}) = \frac{Pr(MP)}{Pr(MP) + Pr(PD)} = \frac{3}{4}$$

 $Pr(PD|I_{1,1}) = \frac{Pr(PD)}{Pr(PD)} = \frac{1}{4}$

$$Pr(PD|I_{1,1}) = \frac{Pr(PD)}{Pr(MP) + Pr(PD)} = \frac{1}{4}$$

2 can infer posterior probabilities for each

$$Pr(MP|I_{2,1}) = \frac{Pr(MP)}{Pr(MP) + Pr(Coord)} = \frac{3}{5}$$

$$Pr(Coord|I_{2,1}) = \frac{Pr(Coord)}{Pr(MP) + Pr(Coord)} = \frac{2}{5}$$

- Add an agent, "Nature," who follows a commonly known mixed strategy, according to the common prior, and has no utility function.
- ▶ At the start of the game, Nature makes its move
- ▶ The agents receive individual signals about Nature's choice
 - Some of Natures choices are revealed to some players, others to other players
- Thus, reduce Bayesian games to extensive form games of imperfect information.
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's Dilemma
 - however, it makes sense when the agents really do move sequentially and at least occasionally observe each other's actions.
 - extensions exist where Nature makes choices and sends signals throughout the game.
 - ► This allows to model e.g. Backgammon and Bridge

- ► Add an agent, "Nature," who follows a commonly known mixed strategy, according to the common prior, and has no utility function.
- ▶ At the start of the game, Nature makes its move
- ▶ The agents receive individual signals about Nature's choice
 - Some of Natures choices are revealed to some players, others to other players
- Thus, reduce Bayesian games to extensive form games of imperfect information
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's Dilemma
 - however, it makes sense when the agents really do move sequentially and at least occasionally observe each other's actions.
 - extensions exist where Nature makes choices and sends signals throughout the game.
 - ▶ This allows to model e.g. Backgammon and Bridge

- ► Add an agent, "Nature," who follows a commonly known mixed strategy, according to the common prior, and has no utility function.
- ▶ At the start of the game, Nature makes its move.
- ► The agents receive individual signals about Nature's choice
 - Some of Natures choices are revealed to some players, others to other players
- Thus, reduce Bayesian games to extensive form games of imperfect information
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's Dilemma
 - however, it makes sense when the agents really do move sequentially and at least occasionally observe each other's actions.
 - extensions exist where Nature makes choices and sends signals throughout the game.
 - ▶ This allows to model e.g. Backgammon and Bridge

- ► Add an agent, "Nature," who follows a commonly known mixed strategy, according to the common prior, and has no utility function.
- ▶ At the start of the game, Nature makes its move.
- ► The agents receive individual signals about Nature's choice
 - Some of Natures choices are revealed to some players, others to other players
- Thus, reduce Bayesian games to extensive form games of imperfect information.
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's Dilemma
 - however, it makes sense when the agents really do move sequentially and at least occasionally observe each other's actions.
 - extensions exist where Nature makes choices and sends signals throughout the game.
 - ▶ This allows to model e.g. Backgammon and Bridge

- ► Add an agent, "Nature," who follows a commonly known mixed strategy, according to the common prior, and has no utility function.
- ▶ At the start of the game, Nature makes its move.
- ► The agents receive individual signals about Nature's choice
 - Some of Natures choices are revealed to some players, others to other players
- ► Thus, reduce Bayesian games to extensive form games of imperfect information.
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's Dilemma
 - however, it makes sense when the agents really do move sequentially, and at least occasionally observe each other's actions.
 - extensions exist where Nature makes choices and sends signals throughout the game.
 - ▶ This allows to model e.g. Backgammon and Bridge

- ► Add an agent, "Nature," who follows a commonly known mixed strategy, according to the common prior, and has no utility function.
- ▶ At the start of the game, Nature makes its move.
- ► The agents receive individual signals about Nature's choice
 - Some of Natures choices are revealed to some players, others to other players
- ► Thus, reduce Bayesian games to extensive form games of imperfect information.
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's Dilemma
 - however, it makes sense when the agents really do move sequentially and at least occasionally observe each other's actions.
 - extensions exist where Nature makes choices and sends signals throughout the game.
 - ▶ This allows to model e.g. Backgammon and Bridge

- Add an agent, "Nature," who follows a commonly known mixed strategy, according to the common prior, and has no utility function.
- ▶ At the start of the game, Nature makes its move.
- ► The agents receive individual signals about Nature's choice
 - Some of Natures choices are revealed to some players, others to other players
- ► Thus, reduce Bayesian games to extensive form games of imperfect information.
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's Dilemma
 - however, it makes sense when the agents really do move sequentially, and at least occasionally observe each other's actions.
 - extensions exist where Nature makes choices and sends signals throughout the game.
 - ▶ This allows to model e.g. Backgammon and Bridge

- Add an agent, "Nature," who follows a commonly known mixed strategy, according to the common prior, and has no utility function.
- ▶ At the start of the game, Nature makes its move.
- ► The agents receive individual signals about Nature's choice
 - Some of Natures choices are revealed to some players, others to other players
- ► Thus, reduce Bayesian games to extensive form games of imperfect information.
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's Dilemma
 - however, it makes sense when the agents really do move sequentially, and at least occasionally observe each other's actions.
 - extensions exist where Nature makes choices and sends signals throughout the game.
 - ► This allows to model e.g. Backgammon and Bridge

▶ Same example as before, but translated into extensive form

- ► Recall that we can assume the only thing players are uncertain about is the game's utility function.
- We can directly represent uncertainty over utility function, using the notion of epistemic type.
- An agent's epistemic type consists of all the information it has that isn't common knowledge, e.g.,
 - ► The agent's actual payoff function
 - The agent's beliefs about other agents' payoffs,
 - ▶ The agent's beliefs about their beliefs about his own payoff
 - ► Any other higher-order beliefs

- ► Recall that we can assume the only thing players are uncertain about is the game's utility function.
- We can directly represent uncertainty over utility function, using the notion of epistemic type.
- An agent's epistemic type consists of all the information it has that isn't common knowledge, e.g.,
 - ► The agent's actual payoff function
 - The agent's beliefs about other agents' payoffs,
 - ► The agent's beliefs about their beliefs about his own payoff
 - Any other higher-order beliefs

- Recall that we can assume the only thing players are uncertain about is the game's utility function.
- We can directly represent uncertainty over utility function, using the notion of epistemic type.
- ► An agent's epistemic type consists of all the information it has that isn't common knowledge, e.g.,
 - ► The agent's actual payoff function
 - The agent's beliefs about other agents' payoffs,
 - The agent's beliefs about their beliefs about his own payoff
 - Any other higher-order beliefs

- ► Recall that we can assume the only thing players are uncertain about is the game's utility function.
- We can directly represent uncertainty over utility function, using the notion of epistemic type.
- An agent's epistemic type consists of all the information it has that isn't common knowledge, e.g.,
 - ► The agent's actual payoff function
 - ► The agent's beliefs about other agents' payoffs,
 - ► The agent's beliefs about their beliefs about his own payoff
 - Any other higher-order beliefs

Definition

A Bayesian game is a tuple (N, A, Θ, p, u) where

- ► N is a set of agents,
- ▶ $A = A_1 \times ... \times A_n$, where A_i is the set of actions available to player i,
- $\Theta = \Theta_1 \times ... \times \Theta_n$, where Θ_i is the set of possible types of player i,
- $p:\Theta \to [0,1]$ is the common prior over types,
- ▶ $u = (u_1, ..., u_n)$, where $u_i : A \times \Theta \to \mathbb{R}$ is the utility function for player i.
- All this is common knowledge among the players, and each agent knows its own type.

- Agent 1's possible types: $\theta_{1,1}$ and $\theta_{1,2}$ 1's type is $\theta_{1,2} \Leftrightarrow 1$'s info set is $I_{1,2}$
- Agent 2's possible types: $\theta_{2,1}$ and $\theta_{2,2}$ = 2's type is $\theta_{2,j}$ \Leftrightarrow 2's info set is $I_{2,j}$
- ▶ Joint distribution on the types: $Pr(\theta_{1,1}, \theta_{2,1}) = 0.3; \ Pr(\theta_{1,1}, \theta_{2,2}) = 0.1$ $Pr(\theta_{1,2}, \theta_{2,1}) = 0.2; \ Pr(\theta_{1,2}, \theta_{2,2}) = 0.4$

- ► Conditional probabilities for agent 1: $Pr(\theta_{2,1}|\theta_{1,1}) = 0.3/(0.3+0.1) = 3/4; Pr(\theta_{2,2}|\theta_{1,1}) = 0.1/(0.3+0.1) = 1/4 Pr(\theta_{2,1}|\theta_{1,2}) = 0.2/(0.2+0.4) = 1/3; Pr(\theta_{2,2}|\theta_{1,2}) = 0.4/(0.2+0.4) = 2/3$
- ► Conditional probabilities for agent 2: $Pr(\theta_{1,1}|\theta_{2,1}) = 0.3/(0.3+0.2) = 3/5; \quad Pr(\theta_{1,2}|\theta_{2,1}) = 0.2/(0.3+0.2) = 2/5$ $Pr(\theta_{1,1}|\theta_{2,2}) = 0.1/(0.1+0.4) = 1/5; \quad Pr(\theta_{1,2}|\theta_{2,2}) = 0.4/(0.1+0.4) = 4/5$

- ▶ Agent 1's possible types: $\theta_{1,1}$ and $\theta_{1,2}$ ▶ 1's type is $\theta_{1,j} \Leftrightarrow$ 1's info set is $I_{1,j}$
- Agent 2's possible types: $\theta_{2,1}$ and $\theta_{2,2}$ = 2's type is $\theta_{2,j}$ \Leftrightarrow 2's info set is $t_{2,j}$
- ▶ Joint distribution on the types: $Pr(\theta_{1,1}, \theta_{2,1}) = 0.3; \ Pr(\theta_{1,1}, \theta_{2,2}) = 0.1$ $Pr(\theta_{1,2}, \theta_{2,1}) = 0.2; \ Pr(\theta_{1,2}, \theta_{2,2}) = 0.4$

- Conditional probabilities for agent 1: $Pr(\theta_{2,1}|\theta_{1,1}) = 0.3/(0.3+0.1) = 3/4; \quad Pr(\theta_{2,2}|\theta_{1,1}) = 0.1/(0.3+0.1) = 1/4 \\ Pr(\theta_{2,1}|\theta_{1,2}) = 0.2/(0.2+0.4) = 1/3; \quad Pr(\theta_{2,2}|\theta_{1,2}) = 0.4/(0.2+0.4) = 2/3$
- Conditional probabilities for agent 2: $Pr(\theta_{1,1}|\theta_{2,1}) = 0.3/(0.3+0.2) = 3/5; Pr(\theta_{1,2}|\theta_{2,1}) = 0.2/(0.3+0.2) = 2/5$ $Pr(\theta_{1,1}|\theta_{2,2}) = 0.1/(0.1+0.4) = 1/5; Pr(\theta_{1,2}|\theta_{2,2}) = 0.4/(0.1+0.4) = 4/5$

- ▶ Agent 1's possible types: $\theta_{1,1}$ and $\theta_{1,2}$ ▶ 1's type is $\theta_{1,j} \Leftrightarrow$ 1's info set is $I_{1,j}$
- ▶ Agent 2's possible types: $\theta_{2,1}$ and $\theta_{2,2}$ ▶ 2's type is $\theta_{2,j} \Leftrightarrow$ 2's info set is $I_{2,j}$
- ▶ Joint distribution on the types: $Pr(\theta_{1,1}, \theta_{2,1}) = 0.3; \ Pr(\theta_{1,1}, \theta_{2,2}) = 0.1$ $Pr(\theta_{1,2}, \theta_{2,1}) = 0.2; \ Pr(\theta_{1,2}, \theta_{2,2}) = 0.4$

Conditional probabilities for agent 1: $Pr(\theta_{2,1}|\theta_{1,1}) = 0.3/(0.3+0.1) = 3/4; \quad Pr(\theta_{2,2}|\theta_{1,1}) = 0.1/(0.3+0.1) = 1/4 \\ Pr(\theta_{2,1}|\theta_{1,2}) = 0.2/(0.2+0.4) = 1/3; \quad Pr(\theta_{2,2}|\theta_{1,2}) = 0.4/(0.2+0.4) = 2/3$

► Conditional probabilities for agent 2: $Pr(\theta_{1,1}|\theta_{2,1}) = 0.3/(0.3+0.2) = 3/5; Pr(\theta_{1,2}|\theta_{2,1}) = 0.2/(0.3+0.2) = 2/5$ $Pr(\theta_{1,1}|\theta_{2,2}) = 0.1/(0.1+0.4) = 1/5; Pr(\theta_{1,2}|\theta_{2,2}) = 0.4/(0.1+0.4) = 4/5$

- ► Agent 1's possible types: $\theta_{1,1}$ and $\theta_{1,2}$ ► 1's type is $\theta_{1,i} \Leftrightarrow$ 1's info set is $I_{1,i}$
- ▶ Agent 2's possible types: $\theta_{2,1}$ and $\theta_{2,2}$ ▶ 2's type is $\theta_{2,j} \Leftrightarrow$ 2's info set is $I_{2,j}$
- ▶ Joint distribution on the types: $Pr(\theta_{1,1}, \theta_{2,1}) = 0.3; \ Pr(\theta_{1,1}, \theta_{2,2}) = 0.1$ $Pr(\theta_{1,2}, \theta_{2,1}) = 0.2; \ Pr(\theta_{1,2}, \theta_{2,2}) = 0.4$

Conditional probabilities for agent 1: $Pr(\theta_{2,1}|\theta_{1,1}) = 0.3/(0.3+0.1) = 3/4; Pr(\theta_{2,2}|\theta_{1,1}) = 0.1/(0.3+0.1) = 1/4$ $Pr(\theta_{2,1}|\theta_{1,2}) = 0.2/(0.2+0.4) = 1/3; Pr(\theta_{2,2}|\theta_{1,2}) = 0.4/(0.2+0.4) = 2/3$

Conditional probabilities for agent 2: $Pr(\theta_{1,1}|\theta_{2,1}) = 0.3/(0.3 + 0.2) = 3/5; Pr(\theta_{1,2}|\theta_{2,1}) = 0.2/(0.3 + 0.2) = 2/5$ $Pr(\theta_{1,1}|\theta_{2,2}) = 0.1/(0.1 + 0.4) = 1/5; Pr(\theta_{1,2}|\theta_{2,2}) = 0.4/(0.1 + 0.4) = 4/5$

- Agent 1's possible types: $\theta_{1,1}$ and $\theta_{1,2}$
 - ▶ 1's type is $\theta_{1,j} \Leftrightarrow$ 1's info set is $I_{1,j}$
- ▶ Agent 2's possible types: $\theta_{2,1}$ and $\theta_{2,2}$
 - ▶ 2's type is $\theta_{2,j} \Leftrightarrow$ 2's info set is $I_{2,j}$
- ▶ Joint distribution on the types:

$$Pr(\theta_{1,1}, \theta_{2,1}) = 0.3; Pr(\theta_{1,1}, \theta_{2,2}) = 0.1$$

 $Pr(\theta_{1,2}, \theta_{2,1}) = 0.2; Pr(\theta_{1,2}, \theta_{2,2}) = 0.4$

► Conditional probabilities for agent 1:

$$Pr(\theta_{2,1}|\theta_{1,1}) = 0.3/(0.3+0.1) = 3/4; Pr(\theta_{2,2}|\theta_{1,1}) = 0.1/(0.3+0.1) = 1/4$$

 $Pr(\theta_{2,1}|\theta_{1,2}) = 0.2/(0.2+0.4) = 1/3; Pr(\theta_{2,2}|\theta_{1,2}) = 0.4/(0.2+0.4) = 2/3$

Conditional probabilities for agent 2: $Pr(\theta_{1,1}|\theta_{2,1}) = 0.3/(0.3 + 0.2) = 3/5; \quad Pr(\theta_{1,2}|\theta_{2,1}) = 0.2/(0.3 + 0.2) = 2/5$ $Pr(\theta_{1,1}|\theta_{2,1}) = 0.1/(0.1 + 0.4) = 1/5; \quad Pr(\theta_{1,2}|\theta_{2,1}) = 0.4/(0.1 + 0.4) = 4/5$

- ► Agent 1's possible types: $\theta_{1,1}$ and $\theta_{1,2}$ ► 1's type is $\theta_{1,i} \Leftrightarrow 1$'s info set is $I_{1,i}$
- ▶ Agent 2's possible types: $\theta_{2,1}$ and $\theta_{2,2}$
 - ▶ 2's type is $\theta_{2,j} \Leftrightarrow$ 2's info set is $I_{2,j}$
- ▶ Joint distribution on the types: $Pr(\theta_{1.1}, \theta_{2.1}) = 0.3$; $Pr(\theta_{1.1}, \theta_{2.2}) = 0.1$

$$Pr(\theta_{1,2}, \theta_{2,1}) = 0.2; Pr(\theta_{1,2}, \theta_{2,2}) = 0.4$$

► Conditional probabilities for agent 1:

$$Pr(\theta_{2,1}|\theta_{1,1}) = 0.3/(0.3+0.1) = 3/4;$$
 $Pr(\theta_{2,2}|\theta_{1,1}) = 0.1/(0.3+0.1) = 1/4$ $Pr(\theta_{2,1}|\theta_{1,2}) = 0.2/(0.2+0.4) = 1/3;$ $Pr(\theta_{2,2}|\theta_{1,2}) = 0.4/(0.2+0.4) = 2/3$

► Conditional probabilities for agent 2:

$$Pr(\theta_{1,1}|\theta_{2,1}) = 0.3/(0.3 + 0.2) = 3/5;$$
 $Pr(\theta_{1,2}|\theta_{2,1}) = 0.2/(0.3 + 0.2) = 2/5$ $Pr(\theta_{1,1}|\theta_{2,2}) = 0.1/(0.1 + 0.4) = 1/5;$ $Pr(\theta_{1,2}|\theta_{2,2}) = 0.4/(0.1 + 0.4) = 4/5$

- ► The players' payoffs depend on both their types and their actions
 - ► The types determine what game it is
 - ► The actions determine the payoff within that game

- ► The players' payoffs depend on both their types and their actions
 - ► The types determine what game it is.
 - ► The actions determine the payoff within that game

- ► The players' payoffs depend on both their types and their actions
 - ► The types determine what game it is.
 - ► The actions determine the payoff within that game

a_1	a_2	$ heta_1$	θ_2	u_1	u_2
U	L	$\theta_{1,1}$	$\theta_{2,1}$	2	0
U	L	$\theta_{1,1}$	$\theta_{2,2}$	2	2
U	L	$\theta_{1,2}$	$\theta_{2,1}$	2	2
U	L	$\theta_{1,2}$	$\theta_{2,2}$	2	1
U	R	$\theta_{1,1}$	$\theta_{2,1}$	0	2
U	R	$\theta_{1,1}$	$\theta_{2,2}$	0	3
U	R	$\theta_{1,2}$	$\theta_{2,1}$	0	0
U	R	$\theta_{1,2}$	$\theta_{2,2}$	0	0

a_1	a_2	θ_1	θ_2	u_1	u_2
D	L	$\theta_{1,1}$	$\theta_{2,1}$	0	2
D	L	$\theta_{1,1}$	$\theta_{2,2}$	3	0
D	L	$\theta_{1,2}$	$\theta_{2,1}$	0	0
D	L	$\theta_{1,2}$	$\theta_{2,2}$	0	0
D	R	$\theta_{1,1}$	$\theta_{2,1}$	2	0
D	R	$\theta_{1,1}$	$\theta_{2,2}$	1	1
D	R	$\theta_{1,2}$	$\theta_{2,1}$	1	1
D	R	$\theta_{1,2}$	$\theta_{2,2}$	1	2

Section 2

Analyzing Bayesian games

Bayesian (Nash) Equilibrium

- A plan of action for each player as a function of types that maximize each type's expected utility:
 - expecting over the actions of other players
 - expecting over the types of other players

- ▶ Pure strategy: $s_i: \Theta_i \to A_i$
 - a mapping from every type agent i could have to the action he would play if he had that type.
- ▶ Mixed strategy: $s_i : \Theta_i \to \Pi(A_i)$
 - a mapping from i's type to a probability distribution over his action choices.
- $ightharpoonup s_j(a_j|\theta_j)$
 - denotes the probability under mixed strategy s_j that agent j plays action a_j , given that j's type is θ_j .

- ▶ Pure strategy: $s_i: \Theta_i \to A_i$
 - a mapping from every type agent i could have to the action he would play if he had that type.
- ▶ Mixed strategy: $s_i : \Theta_i \to \Pi(A_i)$
 - a mapping from i's type to a probability distribution over his action choices.
- $ightharpoonup s_j(a_j|\theta_j)$
 - denotes the probability under mixed strategy s_j that agent j plays action a_j , given that j's type is θ_j .

- ▶ Pure strategy: $s_i: \Theta_i \to A_i$
 - ▶ a mapping from every type agent i could have to the action he would play if he had that type.
- ▶ Mixed strategy: $s_i : \Theta_i \to \Pi(A_i)$
 - a mapping from i's type to a probability distribution over his action choices.
- $ightharpoonup s_j(a_j|\theta_j)$
 - denotes the probability under mixed strategy s_j that agent j plays action a_j , given that j's type is θ_j .

- ▶ Pure strategy: $s_i: \Theta_i \to A_i$
 - a mapping from every type agent i could have to the action he would play if he had that type.
- ▶ Mixed strategy: $s_i : \Theta_i \to \Pi(A_i)$
 - a mapping from i's type to a probability distribution over his action choices.
- $ightharpoonup s_j(a_j|\theta_j)$
 - denotes the probability under mixed strategy s_j that agent j plays action a_j , given that j's type is θ_j .

- ▶ ex-post
 - ▶ the agent knows all agents' types.
- ex-interim
 - an agent knows his own type but not the types of the other agents;
- ► ex-ante
 - the agent knows nothing about anyone's actual type;

- ► ex-post
 - ▶ the agent knows all agents' types.
- ex-interim
 - ▶ an agent knows his own type but not the types of the other agents
- ▶ ex-ante
 - the agent knows nothing about anyone's actual type;

- ► ex-post
 - ▶ the agent knows all agents' types.
- ► ex-interim
 - ▶ an agent knows his own type but not the types of the other agents;
- ex-ante
 - the agent knows nothing about anyone's actual type;

- ► ex-post
 - ▶ the agent knows all agents' types.
- ► ex-interim
 - ▶ an agent knows his own type but not the types of the other agents;
- ▶ ex-ante
 - the agent knows nothing about anyone's actual type;

Ex-post expected utility

Definition (*Ex-post* expected utility)

Agent i 's $\emph{ex-post}$ expected utility in a Bayesian game (N,A,Θ,p,u) , where the agents' strategies are given by s and the agents' types are given by θ , is defined as

$$EU_i(s,\theta) = \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a,\theta).$$

- ► The only uncertainty here concerns the other agents' mixed strategies, since *i* knows everyone's type.
- In a Bayesian game, no agent will know the others' types. So why is this notion useful?
 - Because it is used in defining the other notions of expected utility.
 - And also for defining a specialized notion of equilibrium.

Ex-post expected utility

Definition (*Ex-post* expected utility)

Agent i 's $\emph{ex-post}$ expected utility in a Bayesian game (N,A,Θ,p,u) , where the agents' strategies are given by s and the agents' types are given by θ , is defined as

$$EU_i(s,\theta) = \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a,\theta).$$

- ► The only uncertainty here concerns the other agents' mixed strategies, since *i* knows everyone's type.
- ► In a Bayesian game, no agent will know the others' types. So why is this notion useful?
 - Because it is used in defining the other notions of expected utility.
 - And also for defining a specialized notion of equilibrium.

Ex-post expected utility

Definition (*Ex-post* expected utility)

Agent i 's $\emph{ex-post}$ expected utility in a Bayesian game (N,A,Θ,p,u) , where the agents' strategies are given by s and the agents' types are given by θ , is defined as

$$EU_i(s,\theta) = \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a,\theta).$$

- ► The only uncertainty here concerns the other agents' mixed strategies, since *i* knows everyone's type.
- ▶ In a Bayesian game, no agent will know the others' types. So why is this notion useful?
 - Because it is used in defining the other notions of expected utility.
 - ► And also for defining a specialized notion of equilibrium.

Ex-interim expected utility

Definition (ex-interim expected utility)

Agent i's ex-interim expected utility in a Bayesian game (N,A,Θ,p,u) , where i's type is θ_i and where the agents' strategies are given by the mixed strategy profile s, is defined as

$$EU_i(s, \theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} p(\theta_{-i}|\theta_i) EU_i(s, (\theta_{-i}, \theta_i)).$$

or, equivalently:

$$EU_i(s,\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} p(\theta_{-i}|\theta_i) \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j|\theta_j) \right) u_i(a,\theta_{-i},\theta_i).$$

- ▶ *i* must consider every θ_{-i} and every *a* to evaluate $u_i(a, \theta_i, \theta_{-i})$.
- ▶ *i* must weight this utility value by:
 - ▶ the probability that *a* would be realized given all players' mixed strategies and types;
 - the probability that the other players' types would be θ_{-i} given that his own type is θ_i .

Ex-ante expected utility

Definition (Ex-ante expected utility)

Agent i's ex-ante expected utility in a Bayesian game (N,A,Θ,p,u) , where the agents' strategies are given by the mixed strategy profile s, is defined as

$$EU_i(s) = \sum_{\theta \in \Theta} p(\theta) EU_i(s, \theta)$$

or equivalently as

$$EU_i(s) = \sum_{\theta \in \Theta} p(\theta) \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a, \theta).$$

Bayesian Equilibrium or Bayes-Nash Equilibrium

Definition (Bayesian Equilibrium)

A Bayes-Nash equilibrium is a mixed strategy profile \boldsymbol{s} that satisfies

$$s_i \in \arg\max_{s_i'} EU_i(s_i', s_{-i}|\theta_i).$$

for each i and $\theta_i \in \Theta_i$.

- The above is defined based on interim maximization. It is equivalent to an ex-ante formulation:
- ▶ If $p(\theta_i) > 0$ for all $\theta_i \in \Theta_i$, then this is equivalent to requiring that

$$s_i \in \arg\max_{s_i'} EU_i(s_i', s_{-i}) = \arg\max_{s_i'} \sum_{\theta_i \in \Theta_i} p(\theta_i) EU_i(s_i', s_{-i} | \theta_i)$$

for each i

Bayesian Equilibrium or Bayes-Nash Equilibrium

Definition (Bayesian Equilibrium)

A Bayes-Nash equilibrium is a mixed strategy profile \boldsymbol{s} that satisfies

$$s_i \in \arg\max_{s_i'} EU_i(s_i', s_{-i}|\theta_i).$$

for each i and $\theta_i \in \Theta_i$.

- The above is defined based on interim maximization. It is equivalent to an ex-ante formulation:
- ▶ If $p(\theta_i) > 0$ for all $\theta_i \in \Theta_i$, then this is equivalent to requiring that

$$s_i \in \arg\max_{s_i'} EU_i(s_i', s_{-i}) = \arg\max_{s_i'} \sum_{\theta_i \in \Theta_i} p(\theta_i) EU_i(s_i', s_{-i} | \theta_i)$$

for each i.

► The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

- First, write each of the pure strategies as a list of actions, one for each type.
- Agent 1's pure strategies:

Agent 2's pure strategies:

► The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

- ► First, write each of the pure strategies as a list of actions, one for each type.
- Agent 1's pure strategies:

Agent 2's pure strategies:

► The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

- First, write each of the pure strategies as a list of actions, one for each type.
- Agent 1's pure strategies:
 - ▶ UU: U is type $\theta_{1,1}$, U if type $\theta_{1,2}$
 - ▶ UD: U is type $\theta_{1,1}$, D if type $\theta_{1,1}$
 - ▶ DU: D is type $\theta_{1,1}$, U if type $\theta_{1,1}$
 - ▶ DD: D is type $\theta_{1,1}$, D if type $\theta_{1,2}$
- Agent 2's pure strategies:
 - \blacktriangleright LL: L is type $\theta_{2,1}, L$ if type $\theta_{2,2}$
 - ▶ LR: L is type $\theta_{2,1}$, R if type $\theta_{2,2}$
 - $\triangleright RL: R \text{ is type } \theta_{2} = L \text{ if type } \theta_{2}$
 - ightharpoonup RR: R is type $heta_{2,1},\ R$ if type $heta_2$

► The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

- ► First, write each of the pure strategies as a list of actions, one for each type.
- Agent 1's pure strategies:
 - ▶ UU: U is type $\theta_{1,1}$, U if type $\theta_{1,2}$
 - ▶ UD: U is type $\theta_{1,1}$, D if type $\theta_{1,2}$
 - ▶ DU: D is type $\theta_{1,1}$, U if type $\theta_{1,2}$
 - ▶ DD: D is type $\theta_{1,1}$, D if type $\theta_{1,2}$
- Agent 2's pure strategies:

The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

- ► First, write each of the pure strategies as a list of actions, one for each type.
- Agent 1's pure strategies:
 - ▶ UU: U is type $\theta_{1,1}$, U if type $\theta_{1,2}$
 - ▶ UD: U is type $\theta_{1,1}$, D if type $\theta_{1,2}$
 - ▶ DU: D is type $\theta_{1,1}$, U if type $\theta_{1,2}$
 - ▶ DD: D is type $\theta_{1,1}$, D if type $\theta_{1,2}$
- ► Agent 2's pure strategies:
 - ▶ LL: L is type $\theta_{2,1}$, L if type $\theta_{2,2}$
 - LR: L is type $\theta_{2,1}$, R if type $\theta_{2,2}$
 - RL: R is type $\theta_{2,1}$, L if type $\theta_{2,2}$
 - RR: R is type $\theta_{2,1}$, R if type $\theta_{2,2}$

► The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

 Next, compute the ex ante expected utility for each pure-strategy profile

$$EU_i(s) = \sum_{\theta \in \Theta} p(\theta)u_i(s,\theta)$$

► For example:

$$EU_{2}(UD, LR) = \sum_{\theta \in \Theta} p(\theta)u_{i}(UD, LR, \theta)$$

$$= p(\theta_{1,1}, \theta_{2,1})u_{2}(U, L, \theta_{1,1}, \theta_{2,1}) +$$

$$= p(\theta_{1,1}, \theta_{2,2})u_{2}(U, R, \theta_{1,1}, \theta_{2,1}) +$$

$$= p(\theta_{1,2}, \theta_{2,1})u_{2}(D, L, \theta_{1,1}, \theta_{2,1}) +$$

$$= p(\theta_{1,2}, \theta_{2,2})u_{2}(D, R, \theta_{1,1}, \theta_{2,1}) =$$

$$= 0.3(0) + 0.1(3) + 0.2(0) + 0.4(2) =$$

$$= 1.1$$

► The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

► Next, compute the ex ante expected utility for each pure-strategy profile

$$EU_i(s) = \sum_{\theta \in \Theta} p(\theta)u_i(s, \theta)$$

► For example:

$$EU_{2}(UD, LR) = \sum_{\theta \in \Theta} p(\theta)u_{i}(UD, LR, \theta)$$

$$= p(\theta_{1,1}, \theta_{2,1})u_{2}(U, L, \theta_{1,1}, \theta_{2,1}) +$$

$$= p(\theta_{1,1}, \theta_{2,2})u_{2}(U, R, \theta_{1,1}, \theta_{2,1}) +$$

$$= p(\theta_{1,2}, \theta_{2,1})u_{2}(D, L, \theta_{1,1}, \theta_{2,1}) +$$

$$= p(\theta_{1,2}, \theta_{2,2})u_{2}(D, R, \theta_{1,1}, \theta_{2,1}) =$$

$$= 0.3(0) + 0.1(3) + 0.2(0) + 0.4(2) =$$

► The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

 Next, compute the ex ante expected utility for each pure-strategy profile

$$EU_i(s) = \sum_{\theta \in \Theta} p(\theta)u_i(s,\theta)$$

► For example:

$$EU_{2}(UD, LR) = \sum_{\theta \in \Theta} p(\theta)u_{i}(UD, LR, \theta)$$

$$= p(\theta_{1,1}, \theta_{2,1})u_{2}(U, L, \theta_{1,1}, \theta_{2,1}) +$$

$$= p(\theta_{1,1}, \theta_{2,2})u_{2}(U, R, \theta_{1,1}, \theta_{2,1}) +$$

$$= p(\theta_{1,2}, \theta_{2,1})u_{2}(D, L, \theta_{1,1}, \theta_{2,1}) +$$

$$= p(\theta_{1,2}, \theta_{2,2})u_{2}(D, R, \theta_{1,1}, \theta_{2,1}) =$$

$$= 0.3(0) + 0.1(3) + 0.2(0) + 0.4(2) =$$

$$= 1.1$$

► The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

► Then, put all of the ex ante expected utilities into a payoff matrix

• e.g.
$$EU_2(UD, LR) = 1.1$$

 Now we can compute best responses and Nash equilibria

► The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

- ► Then, put all of the ex ante expected utilities into a payoff matrix
 - e.g. $EU_2(UD, LR) = 1.1$

	LL	LR	RL	RR
JU	2,1	1,0.7	1, 1.2	0, 0.9
ID	0.8, 0.2	1, 1.1	0.4, 1	0.6, 1.9
DU	1.5, 1.4	0.5, 1.1	1.7, 0.4	0.7, 0.1
D	0.3, 0.6	0.5, 1.5	1.1, 0.2	1.3, 1.1

► Now we can compute best responses and Nash equilibria

► The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

- ► Then, put all of the ex ante expected utilities into a payoff matrix
 - e.g. $EU_2(UD, LR) = 1.1$

	LL	LR	RL	RR
JU	2,1	1,0.7	1, 1.2	0, 0.9
ID	0.8, 0.2	1, 1.1	0.4, 1	0.6, 1.9
DU	1.5, 1.4	0.5, 1.1	1.7, 0.4	0.7, 0.1
D	0.3, 0.6	0.5, 1.5	1.1, 0.2	1.3, 1.1

 Now we can compute best responses and Nash equilibria

ex-post Equilibrium

Ex-post utilities allows for a stronger equilibrium:

Definition (ex-post equilibrium)

A ex-post equilibrium is a mixed strategy profile s that satisfies $\forall \theta, \ \forall i, s_i \in \arg\max_{s_i' \in S_i} EU_i(s_i', s_{-i}, \theta)$.

- ▶ Note that this notion does not presume that each agent actually does know the others' types.
- ▶ Instead, it says that no agent would ever want to deviate from his mixed strategy even if he knew the complete vector θ
- somewhat similar to dominant strategy, but not quite
 - EP: agents do not need to have accurate beliefs about the type distribution
 - DS: agents do not need to have accurate beliefs about others' strategies

Section 3

Bayesian Games: Example

A sheriff faces an armed suspect and they each must (simultaneously) decide whether to shoot the other or not, and:

- ▶ the suspect is either a criminal with probability p or not with probability 1 − p.
- the sheriff would rather shoot if the suspect shoots, but not if the suspect does not.
- the criminal would rather shoot even if the sheriff does not, as the criminal would be caught if does not shoot.
- the innocent suspect would rather not shoot even if the sherifl shoots.

A sheriff faces an armed suspect and they each must (simultaneously) decide whether to shoot the other or not, and:

- ightharpoonup the suspect is either a criminal with probability p or not with probability 1-p.
- the sheriff would rather shoot if the suspect shoots, but not if the suspect does not.
- the criminal would rather shoot even if the sheriff does not, as the criminal would be caught if does not shoot.
- the innocent suspect would rather not shoot even if the sheriff shoots.

A sheriff faces an armed suspect and they each must (simultaneously) decide whether to shoot the other or not, and:

- ▶ the suspect is either a criminal with probability p or not with probability 1-p.
- the sheriff would rather shoot if the suspect shoots, but not if the suspect does not.
- the criminal would rather shoot even if the sheriff does not, as the criminal would be caught if does not shoot.
- the innocent suspect would rather not shoot even if the sheriff shoots.

A sheriff faces an armed suspect and they each must (simultaneously) decide whether to shoot the other or not, and:

- ▶ the suspect is either a criminal with probability p or not with probability 1-p.
- the sheriff would rather shoot if the suspect shoots, but not if the suspect does not.
- the criminal would rather shoot even if the sheriff does not, as the criminal would be caught if does not shoot.
- the innocent suspect would rather not shoot even if the sheriff shoots.

A sheriff faces an armed suspect and they each must (simultaneously) decide whether to shoot the other or not, and:

- ▶ the suspect is either a criminal with probability p or not with probability 1-p.
- the sheriff would rather shoot if the suspect shoots, but not if the suspect does not.
- the criminal would rather shoot even if the sheriff does not, as the criminal would be caught if does not shoot.
- the innocent suspect would rather not shoot even if the sheriff shoots.

A sheriff faces an armed suspect and they each must (simultaneously) decide whether to shoot the other or not, and:

- ▶ the suspect is either a criminal with probability p or not with probability 1-p.
- the sheriff would rather shoot if the suspect shoots, but not if the suspect does not.
- the criminal would rather shoot even if the sheriff does not, as the criminal would be caught if does not shoot.
- the innocent suspect would rather not shoot even if the sheriff shoots.

Innocent	Shoot	Not
Shoot	-3, -1	-1, -2
Not	-2, -1	0,0

Criminal	Shoot	Not
Shoot	0,0	2, -2
Not	-2, -1	-1.1

Summary: Bayesian (Nash) Equilibrium

- Explicitly models behavior in an uncertain environment
- Players choose actions to maximize their payoffs in response to others accounting for:
 - strategic uncertainty about how others will play and
 - payoff uncertainty about the value to their actions