```
In [1]: from matplotlib import pyplot as plt
        from matplotlib.dates import MonthLocator, num2date
        from matplotlib.ticker import FuncFormatter
        from prophet import Prophet
        from prophet.diagnostics import cross validation, performance metrics
        from prophet.plot import add changepoints to plot
        import pandas as pd
        import numpy as np
        import datetime as dt
        from collections import defaultdict
        import time
        import datetime as dt
        from pytz import timezone
        tz = timezone('EST')
        from tqdm import tqdm
        from sklearn.metrics import mean absolute error, mean absolute percentage error,
        import seaborn as sns
        %config InlineBackend.figure format = 'retina'
        %matplotlib inline
        from matplotlib import pyplot as plt
        from matplotlib import style
        sns.set()
```

```
In [2]: me2011 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    me2011 = pd.read_excel(me2011, 'ME')
    me2012 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    me2012 = pd.read_excel(me2012, 'ME')
    me2013 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    me2013 = pd.read_excel(me2013, 'ME')
    me2014 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    me2014 = pd.read_excel(me2014, 'ME')
    me2015 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    me2015 = pd.read_excel(me2015, 'ME')
    me2016 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    me2016 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    me2016 = pd.read_excel(me2016, 'ME')
```

```
In [3]: me2017 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    me2018 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    me2019 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    me2020 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    me2021 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    me2022 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
```

In [4]: me2022

Out[4]:		Date	Hr_End	DA_Demand	RT_Demand	DA_LMP	DA_EC	DA_CC	DA_MLC	RT_LMP	RT_
	0	2022 - 01-01	1	867.0	1152.722	32.86	32.35	0.23	0.28	26.59	25.
	1	2022 - 01-01	2	978.2	1116.946	33.00	32.31	0.28	0.41	26.50	25.
	2	2022 - 01-01	3	923.3	1093.610	31.52	30.85	0.00	0.67	28.11	27.
	3	2022 - 01-01	4	906.2	1085.773	30.30	29.69	0.00	0.61	25.67	25.
	4	2022 - 01-01	5	921.8	1099.982	31.53	30.86	0.00	0.67	29.99	29
					•••						
	739	2022 - 01-31	20	1633.2	1846.799	222.87	226.40	0.00	-3.53	295.56	295.
	740	2022- 01-31	21	1522.4	1777.463	199.97	202.82	0.00	-2.85	262.68	264.
	741	2022- 01-31	22	1325.4	1699.196	180.35	183.42	0.00	-3.07	250.05	251.
	742	2022- 01-31	23	1177.7	1555.524	177.46	179.93	0.00	-2.47	188.78	190.
	743	2022- 01-31	24	1087.4	1283.547	188.77	190.54	0.00	-1.77	188.83	189.

744 rows × 14 columns

```
In [5]: val2011 = me2011['DEMAND']
    val2012 = me2012['DEMAND']
    val2013 = me2013['DEMAND']
    val2014 = me2014['DEMAND']
    val2015 = me2015['DEMAND']
    val2016 = me2016['RT_Demand']
    val2017 = me2017['RT_Demand']
    val2018 = me2018['RT_Demand']
    val2019 = me2019['RT_Demand']
    val2020 = me2020['RT_Demand']
    val2021 = me2021['RT_Demand']
    val2022 = me2022['RT_Demand']
```

```
In [6]: values = [val2011, val2012, val2013, val2014, val2015, val2016, val2017, val2018,
    values_df = pd.concat(values, axis=0, ignore_index=False)
    values_df = values_df.reset_index()
    period = len(values_df)
```

```
In [7]: rng = pd.date range('2011-01-01', periods=period, freq='1H')
          date_df = pd.DataFrame({ 'ds': rng})
          date_df = date_df.reset_index()
 In [8]: frames = [date df, values df]
          me_load = pd.concat(frames, axis=1, ignore_index=False)
          me load = me load.rename(columns={me load.columns[1]: 'ds', me load.columns[3]:
          frames2 = [me_load['ds'], me_load['y']]
          me_load = pd.concat(frames2, axis=1, ignore_index=False)
          me load
 Out[8]:
                              ds
                                        У
              0 2011-01-01 00:00:00 1048,000
              1 2011-01-01 01:00:00 1000.000
              2 2011-01-01 02:00:00
                                   964.000
              3 2011-01-01 03:00:00
                                   954.000
              4 2011-01-01 04:00:00
                                   960.000
          97171 2022-01-31 19:00:00 1846.799
          97172 2022-01-31 20:00:00 1777.463
          97173 2022-01-31 21:00:00 1699.196
          97174 2022-01-31 22:00:00 1555.524
          97175 2022-01-31 23:00:00 1283.547
          97176 rows × 2 columns
 In [9]: model = Prophet(
                  changepoint prior scale=0.5,
                  seasonality mode='multiplicative',
                  interval width=0.95,
          model.add country holidays(country name='US')
 Out[9]:  cprophet.forecaster.Prophet at 0x20f6219be20>
In [10]: model.fit(me load)
Out[10]:  cprophet.forecaster.Prophet at 0x20f6219be20>
In [11]: | future_pd = model.make_future_dataframe(
                  periods=365,
                  freq='1H',
                  include history=True
              )
          # make predictions
          forecast pd = model.predict(future pd)
```

In [12]: forecast_pd[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

Out[12]:

		ds	yhat	yhat_lower	yhat_upper
•	97536	2022-02-16 00:00:00	1222.310143	1054.757560	1401.791215
	97537	2022-02-16 01:00:00	1181.339685	1006.014964	1343.711103
	97538	2022-02-16 02:00:00	1160.001157	997.737491	1337.266448
	97539	2022-02-16 03:00:00	1165.047049	983.699111	1348.152193
	97540	2022-02-16 04:00:00	1207.842258	1041.070343	1384.551975

In [13]: fig1 = model.plot(forecast_pd)

In [14]: fig2 = model.plot_components(forecast_pd)

In [15]: forecast_pd

Out[15]:

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	Christmas Day	Chr Day
0	2011- 01-01 00:00:00	1233.930190	843.307469	1191.216056	1233.930190	1233.930190	0.0	
1	2011- 01-01 01:00:00	1233.957439	811.022262	1155.098201	1233.957439	1233.957439	0.0	
2	2011- 01-01 02:00:00	1233.984687	797.352995	1149.801963	1233.984687	1233.984687	0.0	
3	2011- 01-01 03:00:00	1234.011935	778.982171	1141.598839	1234.011935	1234.011935	0.0	
4	2011- 01-01 04:00:00	1234.039184	831.992126	1186.027033	1234.039184	1234.039184	0.0	
97536	2022- 02-16 00:00:00	1366.016111	1054.757560	1401.791215	1365.572354	1366.656980	0.0	
97537	2022- 02-16 01:00:00	1366.020876	1006.014964	1343.711103	1365.575664	1366.663952	0.0	
97538	2022 - 02-16 02:00:00	1366.025640	997.737491	1337.266448	1365.565120	1366.670923	0.0	
97539	2022- 02-16 03:00:00	1366.030404	983.699111	1348.152193	1365.542609	1366.682428	0.0	
97540	2022- 02-16 04:00:00	1366.035168	1041.070343	1384.551975	1365.537268	1366.701257	0.0	
07544								

97541 rows × 73 columns

In []: