Deep Learning for NLP

Lecture 9 – Convolutional neural networks

- Dr. Steffen Eger
- Niraj D Pandey
- Wei Zhao

- Natural Language Learning Group (NLLG)
- Technische Universität Darmstadt

Last lectures

RNNs - Recurrent Neural Nets

Today: Classifying sentences

Motivation

 Problem 1: Variable-sized input standard MLP always expect the same input size

- Problem 2: Relevance of words
 "to" and "a" are not very informative, but content words like "kidnapping" are important for most tasks independent of their position in the input
- Problem 3: MLP may have too many parameters ("too complex models") in certain situations

Today

- 1. Convolution and pooling
- 2. Convolutional networks for NLP
- Lecture based on/inspired by:
 - Lecture Videos by <u>Richard Socher</u> and <u>Andrej Karpathy</u>

tch?v=vYJtZwoO9Rw

vatch?v=AQirPKrAyDg

Idea of convolution

"A convolutional neural network is designed to identify **indicative local predictors** in a large structure, and combine them to produce a fixed size vector representation of the structure, capturing these local aspects that are most informative for the prediction task at hand."

Yoav Goldberg

Convolution in image recognition

Example by Richard Socher:

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

?	?	?
?	•	?
?	?	?

Image representation f

Filter *g* (also known as kernel)

Convolved image representation

Convolved features

Apply the filter to the image, move over different filter regions:

1,	10	1,	0	0
00	1,	1 ₀	1	0
0,	0 ₀	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	3	4
2	4	3
2	3	4

Convolution operation

Convolved features!

Convolved features

Apply the filter to the image, move over different filter regions :

1	1	1	0	0	The task is to learn good filter weights!				
0	1	1	1	0					1
0	0	1,	1 0	1,		4	3	4	
0	0	1 0	1,	0 0		2	4	3	
0	1	1,	0 0	0 1		2	3	4	

Convolution operation

Convolved features!

And in texts?

- Sentiment classification
 - The **movie** was **really good**.
 - We saw this really good movie.
 - The movie, which we saw yesterday with all the colleagues in this tiny movie theatre next to the bridge, was (despite my expectations) really good.

→ For this task, position information does not really matter.

Dimensionality

- Advantages of text flow:
 - Usually only one dimension
 - → as opposed to two dimensions (or even three) in images
- Convolutional networks in NLP are also called time-delay neural networks (TDNN)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean ...

The 1d convolution operation

$$(f * g)[i] = \sum_{m=-M}^{M} f[i-m]g[m]$$
9 7 2 4 8 7 3 1 5 9 8 4

- * is the convolution operator
- f is the input representation
- \bullet *i* is the current position in the input representation
- M is the window size
- g[m] is the weight for an input element with distance m to the current input
 - \rightarrow g it is also often referred to as the *filter* (or *kernel*)
- Careful! You will find many terminological alternatives in the literature:
 - w (for weights) instead of g, n or t (for time) instead of i, a (for age) instead of m, ...

■ Input sentence $x_{i:i+n}$ is a concatenation of the word vectors $x_i, ..., x_{i+n} \in \mathbb{R}^d$

Convolutional filter:

 $w \in R^{hd}$

h is filter size

Convolution operation:

$$w \cdot x_{i:i+h}$$

(Or any other non-linearity)

$$c_i = \tanh(\mathbf{w} \cdot \mathbf{x}_{i:i+h} + b)$$

$$h = 3$$
$$d = 2$$

■ Input sentence $x_{1:n}$ is a concatenation of the word vectors $x_i \in R^d$

■ Convolutional filter: $w \in \mathbb{R}^{hd}$

h is filter size

■ Convolution operation: $\mathbf{w} \cdot \mathbf{x}_{i:i+h}$

$$c_i = \tanh(\mathbf{w} \cdot \mathbf{x}_{i:i+h} + b)$$
 $h = 3$ $d = 2$

■ Input sentence $x_{1:n}$ is a concatenation of the word vectors $x_i \in R^d$

■ Convolutional filter: $w \in \mathbb{R}^{hd}$

h is filter size

■ Convolution operation: $\mathbf{w} \cdot \mathbf{x}_{i:i+h}$

$$c_i = \tanh(\mathbf{w} \cdot \mathbf{x}_{i:i+h} + b)$$
 $h = 3$ $d = 2$

lacksquare Input sentence $oldsymbol{x}_{1:n}$ is a concatenation of the word vectors $oldsymbol{x}_i \in oldsymbol{R}^d$

■ Convolutional filter: $w \in \mathbb{R}^{hd}$

■ Convolution operation: $\mathbf{w} \cdot \mathbf{x}_{i:i+h}$

$$c_i = \tanh(\mathbf{w} \cdot \mathbf{x}_{i:i+h} + b)$$
 $h = 3$ $d = 2$

h is filter size

Different viewpoints on convolution

- Is convolution for text in 1d or in 2d?
- Can also interpret that each input f[i-m] lies in \mathbb{R}^d
- and each weight g[m] also lies in R^d

$$(f*g)[i] = \sum_{m} f[i-m]g[m]$$

Properties of convolutional networks

- Not every input is connected to every output in the following layer
 - > sparse connectivity (vs fully-connected/dense layers)
- For each window, we use the same weights and bias values
 - → parameter sharing

Stride

- The stride specifies the steps size for moving over the sentence
- In NLP, stride 1 is commonly used
- In computer vision, other values might be more useful

Dense layer vs. Convolutional Layer

- In principle, a convolutional layer could handle variable-sized inputs
- But in practice, it handles fixed-sized input, just like in an MLP
 - We usually pad with zeros so that all sequences in our data have the same length
 - Sometimes we also truncate

Dense layer vs. Convolutional Layer

 So, the main difference to our known dense layers is really parameter-sharing and sparse connectivity

Why are these two properties important?

Pooling layer

- Another new building block: pooling layer
 - → Idea: capture the most important activation
- Let $c_1, c_2, ... \in \mathbf{R}$ denote the output values for our convolutional filter
- Compute the output o for a max-over-time pooling layer:

$$o = \max_{i} c_i$$

- Max-over-time pooling is most common in NLP. You can also find minpooling and mean-pooling in other areas. Could also use some other averaging
- Note that there are no associated weights

Classification with convolution and pooling

- Usually we have many filters (hundreds or thousands), not just one
- They may be of same or of different sizes

- Further filters.
- The convolved representation is often called a feature representation.

The movie was awesome

- Further filters.
- The convolved representation is often called a feature representation.

- Further filters.
- The convolved representation is often called a feature representation.

Combining different n-gram sizes

Combining different n-gram sizes

Properties of pooling

- Idea: Extracting relevant features independent of their position in the input
- Problems:
 - Output remains the same if a feature occurs once or multiple times

The music was great, but the cast was horrible, the plot was horrible and the costumes were horrible.

Order of features is not considered
 I don't love it, I hate it.
 vs
 I don't hate it, I love it.

Agenda

- 1. Convolution and pooling
- 2. Convolutional networks for NLP

Convolutional networks for NLP

- Sentence classification
 - Kalchbrenner, Grefenstette, Blunsom, 2014: A Convolutional Neural Network for Modelling Sentences
 - Kim, 2014: Convolutional Neural Networks for Sentence Classification
 - Zhang and Wallace, 2016: A Sensitivity Analysis of (and Practitioners' Guide to)
 Convolutional Neural Networks for Sentence Classification
- Semantic role labeling (SRL)
 - The SENNA framework
 Collobert and Weston, 2011: Natural Language Processing (Almost) from Scratch
- Character-based approach
 - Zhang, Zhao, LeCun 2015: Character-level Convolutional Networks for Text Classification
 - Kim et al., 2016: Character-aware Neural Language Models

Sentence classification tasks

Sentiment classification of movie reviews, product reviews, tweets

Question classification into 6 question types: person, location, numeric information,...

- Classifying sentences into subjective / objective
 "I feel this work is not novel enough."
- Classifying whether a sentence is ironic

What is a word?

- Convolutional approach was first developed for images (group pixels together)
- Our unit: words

"Quarzstaublunge"

■ In Chinese: 乒乓球拍卖完了。

乒乓 /球拍 /卖完了。
ping-pong racket sold out
乒乓球 /拍卖 /完了。
ping-pong ball auction finish

"The ping-pong rackets have been sold out."

"The auction of the ping-pong ball has been finished."

Character-based approach

- Characters as units, smaller vocabulary:
 - 70 characters:26 English letters, 10 digits, 33 other characters and the new line character.

```
abcdefghijklmnopqrstuvwxyz0123456789
-,;.!?:''/\|_@#$%^&*~\+-=<>()[]{}
```

- plus uppercase letters, if required
- No embeddings, just one-hot vectors
 - Blanks and all other characters are all-zero vectors

Character-based approach for text classification

- Classifying
 - articles into topics
 - reviews into positive/negative
- Approach can compete with state-of-the-art, but requires huge datasets
 - Increase the training set by replacing words with their synonyms using a thesaurus
- Fascinating idea, might lead to more language-independent models, but currently word embeddings work better for most tasks
- Has also been used with LSTMs -> next lecture

Summary

- Convolutional networks can deal with variable sized input
 - Sparse connectivity, parameter sharing
 - Narrow vs wide convolution
- Pooling makes it possible to focus on most relevant features
 - Max-over-time pooling
- Convolutional networks for NLP
 - Sentence classification
 - Character-based approaches

References

- The lectures referenced on slide 4
- www.deeplearningbook.org
- Kalchbrenner, Grefenstette, Blunsom, (2014): A Convolutional Neural Network for Modelling Sentences, arXiv preprint arXiv:1404.2188
- Kim(2014): Convolutional Neural Networks for Sentence Classification, in *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*: 1746–1751.
- Zhang and Wallace, 2016: A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification, arXiv preprint arXiv:1510.03820.
- Collobert and Weston (2011): Natural Language Processing (Almost) from Scratch, in The Journal of Machine Learning Research 12: 2493-2537.
- Zhang, Zhao, LeCun (2015): Character-level Convolutional Networks for Text Classification, in *Advances in Neural Information Processing Systems: 649-657*.
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014): Dropout: A simple way to prevent neural networks from overfitting, in *The Journal of Machine Learning Research*, 15(1): 1929-1958.
- Prechelt, L. (1998): Early stopping-but when?, in Neural Networks: Tricks of the trade: 55-69, Springer Berlin Heidelberg.
- Conneau et al. (2016), "Very Deep Convolutional Networks for Text Classification"

