

Problemática relacionada con sensores

José Mora López Facultad de Informática

Guión

- Guión
- Problemática por capas (OSI)
 - Capa física Hardware
 - Capa de enlace de datos Conexión
 - Capa de red Determinación de ruta
 - Capa de transporte Conexión extremo a extremo
 - Calidad de servicio
 - Nivel de sesión Flujos (Streams)
 - Nivel de presentación Sintaxis y formato
 - Estándares SWE
 - Nivel de aplicación
 - Interfaces estándar de SWE
 - Semántica: Ontologías existentes
- Algunos ejemplos

Capa física - Hardware

Sensores

- Capturan información del mundo real
 - Ruido: precisión en la medición
 - In situ: problemas de transmisión de información

Inalámbricos

- Problemas de coste energético
 - Recargables: posible funcionamiento intermitente
 - No recargables: desechables
- Consumo de energía:
 - Principalmente por transmisión de información
 - Procesamiento no suele ser problema
 - Excepciones. P.Ej: Imágenes
 - Captura de información no suele ser problema

Capa de enlace de datos - Conexión

- Problemas por el consumo energético
 - Información muy compacta (muy pocos bits)
 - Mantener fiabilidad de los datos
 - Seguridad
 - Transmisión muy eventual
- La red es dinámica
 - Los nodos pueden caer o moverse
 - Determinar posición de nodos cercanos
- Dispositivos que tienden a la miniaturización
 - Poco consumo energético
 - Poca batería
 - Poca capacidad de cómputo
 - Centrados en la eficiencia en captar una determinada información del entorno y emitirla

Capa de Red – Determinación de la ruta

- La ruta debe ser mínima en coste energético
 - Balanceo entre número de saltos y longitud de cada uno
 - Rutas no pueden ser fijadas en antemano
 - Disponibilidad de los nodos
- Nodos heterogéneos
 - Sensores / repetidores / sumideros ...
- Balanceo de carga entre nodos
 - Alto consumo cerca del sumidero
 - Balanceo cuesta energía
- Nodos móviles (sumidero)

Capa de transporte – Conexión extremo a extremo

- Red de sensores como una fuente de información.
 - Baja fiabilidad en muchos casos
 - Disponibilidad de la información condicionada
 - Puede forzarse la emisión de información por un evento
- Red activa, puede procesar e integrar la información
 - Disminuye la cantidad de datos transmitidos
 - Eficiencia en ancho de banda y energía
- Posibilidades como factorización de consultas simultáneas para el ahorro de energía
- Calidad de servicio, problema de la escalabilidad
 - Ancho de banda posiblemente compartido con otros servicios Ej: móviles
 - "Internet of many things" (IPv6) ("The embedded fringe")

Nivel de sesión – Flujos (Streams)

- Dos métodos de funcionamiento en redes de sensores
 - Pull (consulta): la red devuelve información bajo petición
 - Push (subscripción): la red lanza valores ante otra clase de eventos
- Si la red lanza estos valores de forma habitual tenemos un flujo de datos (stream)
 - Cantidad de información.
 - Tiempo real
 - Problemas para la integración

Nivel de presentación – Sintaxis y formato

- Información diferente en dos ámbitos
 - Formato dentro de la red
 - Consumo energético: compacto
 - Formato después del sumidero
 - Gran cantidad de datos: compacto y fácil de procesar
- Además: uso de metadatos para descripción
- Sensor Web Enablement (SWE) define varios estándares para datos y metadatos

Estándares SWE

- Observations & measurements
 - Representa observaciones, medidas, procedimientos y metadatos de sensores
 - Información abundante, énfasis en la eficiencia
- SensorML
 - Define sensores funcionalmente, como procesos
 - De medida (físicos) o post-procesamiento (abstractos)
 - Simples o compuestos
 - Para el descubrimiento y uso de los recursos descritos
- Geography Markup Language
 - Representa el mundo como un conjunto de fenómenos (simples o compuestos) localizados
- TransducerML
 - Transductor = superconjunto de sensores y actuadores
 - Información de control (mandatos) y de sensor (estado)

Nivel de aplicación

- Alta heterogeneidad en las fuentes de información
 - Redes de sensores heterogéneas en todos sus niveles
 - Otras fuentes de información a tener en cuenta
- Para tratar con esta heterogeneidad
 - Estándares en las interfaces (SOA) Ej: SWE
 - Semántica
 - Ontologías de sensores
 - Ontologías de dominios relacionados
- Integración de información y planificación de consultas
 - Lidiar con problemas de niveles inferiores
 - Calidad de servicio
 - "Pay-as-you-go"
 - Integración de streams
 - etc

Interfaces estándar SWE

- SWE define varias interfaces
 - Sensor Observation Service
 - Gestionar sensores desplegados
 - Recuperar información de sensores (observaciones)
 - Sensor Alert Service
 - Anunciar y publicar información de observaciones
 - No registro sino endpoint al que el cliente se conecta
 - Sensor Planning Service
 - Pedir información de un SPS
 - Peticiones a sensores:
 - Determinar viabilidad
 Consultar estado
 - Enviar

- Actualizar
 Cancelar

- Web Notification Service
 - Notifica, esperando respuesta o no

Ontologías (1)

Ontosensor

- Basado en sensorML y ISO 19115
- Referencia a SUMO
- Incluye: sensores, medidas, fenómenos, estímulos, CRS y restricciones legales y de seguridad
- Principal concepto: componente
 - Descripción más composicional que procedimental

Semantic Sensor Network Ontology

- Se basa en OWL-S, SensorML, O&M y la ontología CMAR.
- Se pueden encontrar referencias a Ontosensor
- Transformación de SensorML a ontología más directa que Ontosensor
- Deja abiertas secciones (Ej: unidades de medida) para su ampliación con otras ontologías

Ontologías (2)

WISNO

- Ontología dividida en dos partes con diferente granularidad
 - Parte más granular para el análisis de los datos
 - Parte menos granular para procesamiento de alto nivel
- Contiene reglas en SWRL para el procesamiento
- Sensor Hierarchy Ontology y Sensor Data Ontology
 - Reutilizan GML, SWE, SensorML y Ontosensor
 - Basadas en los estándares ISO 19115 y IEEE 1451
 - SHO para modelar sensores en sí mismos
 - SDO para modelar la información procedente de los mismos
 - Permite "Extension Plugins Ontologies" facilitado con SUMO

Ontología de Avancha

- Destinada a la descripción del estado de sensores para predecir el estado de la red y adaptar su comportamiento
- Centrada principalmente en los sensores en sí mismos

Ontologías (3)

- Ontologías en Geon
 - Espacio
 - Conceptos acerca de CRS, posición y objetos geométricos
 - Algunos conceptos e instancias un poco arbitrarios
 - Ej: instancias de "Interval": "km_100-1000" y "km_1000-2500"
 - Tiempo: desde un punto de vista biológico
 - Conceptos: "Season", "Daytime", "Period"...
 - Unidades de medida
 - Separa prefijos de unidades, y los presenta juntos también
 - No descompone las unidades de medida. Ej: "kilogram_meterSquare_perSecondSquare"
 - Fenómenos físicos: aire, agua, arena, condensación, luminiscencia, magnetismo, presión, sublimación, temperatura...
 - Procesos físicos: extinción, calentamiento, evaporación, ...

Algunos ejemplos

- "Internet of things"
 - RFID ≈ URI para sensores
- Seguimiento de personas en un hospital
- Philips
 - Paquetes cilíndricos configurables
 - Sensores para emociones
 - Sensores para detectar presión del neumático
- Taxis robóticos conscientes del tráfico
- ∞
- •
- Y por supuesto: monitorización del medio ambiente

Problemática relacionada con sensores

José Mora López Facultad de Informática

Ontosensor (1)

Ontosensor (2)

SHO

Avancha (1)

Avancha (2)

