

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Selected Topics in Cryptography Quantum cryptanalysis

Szymon Szozda

Department of Telecommunications

04.12.2017

Quantum crypanalysis

Agenda

- 1. Bra-ket notation
- 2. Quantum gates

2/14

- 3. Grover's Database Search
- 4. Shore's factorization algorithm
 - Fast modular exponentiation
 - Quantum Fourier Transform

Bra-ket notation Origins

Bra–ket notation: $\langle x|y\rangle$ is a standard notation for describing quantum states. It can also be used to denote abstract vectors, linear functionals and scalar product in mathematics.

The left part: $\langle x |$, called the bra, is a row vector.

3/14

The right part: $|y\rangle$, called the ket, is a column vector.

QbitOrigins

A pure qubit state is a linear superposition of the basis states. This means that the qubit can be represented as a linear combination of $|0\rangle$ and $+|1\rangle$:

$$|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$$

When we measure this qubit in the standard basis, the probability of outcome $|0\rangle$ is $|\alpha|^2$ and the probability of outcome $1\rangle$ is $|\beta|^2$. Because the absolute squares of the amplitudes equate to probabilities, it follows that α and β must be constrained by the equation

$$|\alpha|^2 + |\beta|^2 = 1$$

Gates Origins

In quantum computing and specifically the quantum circuit model of computation, a quantum gate (or quantum logic gate) is a basic quantum circuit operating on a small number of qubits.

.

5/14

Grover's database search

Grover's database search uses possibility to pararell process of qbit. The algorithm allows us to find selected element in unsorted set with complexity \sqrt{n}

Fast exponentiation

We can calculate $A^B modC$ quickly. Using modular multiplication rules:

$$A^2 modC = (A*A) modC = ((A modC)*(A modC)) modC$$

Grover's database search

Grover diffusion operator

Repeat $O(\sqrt{N})$ times

3.MixColumns

Each column is represented as four-bytes vector.

Each column of State is replaced by a new column which is formed by multiplying that column by a certain matrix of elements of the field.

Together with ShiftRows, MixColumns provides *diffusion* in the cipher.

MixColumns step is used in every cycle except the last one cycle.

3.MixColumns

It is also possible to see this operation as polynomial multiplication where each column is represented with polynomial a(x):

$$a(x) = c(x).a(x)modx^4 + 1 = (03x^3 + 01x^2 + 01x + 02).(a_3x^3 + a_2x^2 + a_1x^1 + a_0)modx^4 + 1$$

$$c(x) = \left[\begin{array}{cc} 02 & 03 \\ 01 & 02 \end{array} \right]$$

Key Schedule: Rcon Table

Rcon Constants			
Round	Constant(Rcon)	Round	Constant(Rcon)
1	01 00 00 00	6	20 00 00 00
2	02 00 00 00	7	40 00 00 00
3	04 00 00 00	8	80 00 00 00
4	08 00 00 00	9	1B 00 00 00
5	10 00 00 00	10	36 00 00 00

Time for questions

Bibliography

Bibliography:

- Joan Daemen, Vincent Rijmen, "The Design of Rijndael: AES The Advanced Encryption Standard", Springer, 2002.
- Joshua Holden, "The Mathematics of Cryptography", Princeton University Press, 2017
- Federal Information Processing Standards Publication 197: the official AES standard, United States National Institute of Standards and Technology, 2001
- Wikipedia, Advanced Encryption Standard, https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Thank you for attention!