COMP 472 Artificial Intelligence State Space Search pert #3 Intro to Heuristics video#3

Russell & Norvig - Sections 3.5.1, 3.5.2, 4.1.1

Today

- 1. State Space Representation
- 2. State Space Search
 - a) Overview
 - b) Uninformed search
 - 1. Breadth-first Search and Depth-first Search
 - 2. Depth-limited Search
 - 3. Iterative Deepening
 - 4. Uniform Cost
 - c) Informed search

- 1. Intro to Heuristics h/n
- 2. Hill climbing
- 3. Greedy Best-First Search
- 4. Algorithms A & A*
- 5. More on Heuristics
- d) Summary

Informed Search (aka heuristic search)

- Most of the time, it is not feasible to do a systematic search, the search space is too large
 - e.g. state space of all possible moves in chess \neq 10¹²⁰
 - 10^{75} = nb of molecules in the universe
 - 10²⁶ = nb of nanoseconds since the "big bang"
- so far, all search algorithms have been uninformed 每个node equally promising でんん
- ie. all nodes are equally promising
- we need a way to visit the most promising nodes first
 - most-promising = close to the goal state
 - so we need a estimate function (i.e. a heuristic function h(n)
 - so the search is now called informed/heuristic search

对children进行 return的值就是actual cost from this node to goal

- Stert

goal/_

Heuristic - Heureka!

Heuristic search:

- A technique that improves the efficiency of search
- \Box Focus on nodes that seem most promising according to some function h(n)
- Need an evaluation function (heuristic function) to estimate how close a node is to the goal
 The cost

• Heuristic function h(n):

- □ a rule of thumb, a good bet, an estimate
- $lue{}$ but has no guarantee to be correct $_{\pi \oplus \mathbb{R} \mathbb{R}^{j}}$
- an approximation of the lowest cost from node n to the goal

 \neg h(n) = estimate of the lowest cost from n to goal

Designing Heuristics

设计h(n)取决于search问题

- h(n) are highly dependent on the search domain
- A h(n) whose value is closer to the actual cost to the goal will lead to:
 - a shorter search path
 - less backtracking
 - i.e. less nodes are visited/searched for nothing
 - but this is not always the best idea...
 - it depends on the computational cost of h(n)

botween broth of the search path by

Example: 8-Puzzle - Heuristic 1 bey: relax constraints of the problem to simplify it

relax的constrait越多, heuristic越快, 越不准

- h1: Simplest heuristic nombered
 - Hamming distance: count number of tiles out of place when compared with goal

实际情况很复杂,但我们减少约束条件,记录有几个方块不在应该在的位置

- $h_1(n) = 6$
 - does not consider the distance tiles have to be moved

Example: 8-Puzzle - Heuristic 2

- h₂: Better heuristic
 - Manhattan distance: sum up all the distances by which tiles are out of place

Example: 8-Puzzle - Heuristic 3

- h₃: Even Better
 - □ sum of permutation inversions 排列反演
 - See next slide...

$h_3(N)$ = sum of permutation inversions

对于每个tile,记录他右边有几个tile实际上应该在左边

For each numbered tile, count how many tiles on its right should be on its left in the goal state.

$$h_3(n) = n_5 + n_8 + n_4 + n_2 + n_1 + n_7 + n_3 + n_6$$

$$= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0$$

$$= 16$$

Goal state

5

8

3

Heuristics for the 8-Puzzle

这个heuristics function和uniform没区别

rm没	fl
	hore
y v	

`		
5		8
4	2	1
7	3	6

1	2	3
4	5	6
7	8	

- not interesting

- interesting

- south

goal 是0其他是11

STATE n

Goal state

•
$$h_2(n)$$
 = Manhattan distance
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

•
$$h_3(n)$$
 = sum of permutation inversions
= $n_5 + n_8 + n_4 + n_2 + n_1 + n_7 + n_3 + n_6$
= $4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16$

is $h_3(n)$ better?

- BUT, h₃(n) may be longer to compute
- maybe overall longer to get the solution path
 solution path may NOT have this later)

better estimate are not better overall estimate

Today

- State Space Representation
- 2. State Space Search
 - a) Overview 🗸
 - b) Uninformed search 🗸
 - Breadth-first and Depth-first
 - 2. Depth-limited Search
 - 3. Iterative Deepening
 - 4. Uniform Cost 🗸

c) Informed search

- Intro to Heuristics
- 2. Hill climbing
- 3. Greedy Best-First Search
- 4. Algorithms A & A*
- 5. More on Heuristics
- d) Summary

Up Next

- State Space Representation
- 2. State Space Search
 - a) Overview
 - b) Uninformed search
 - Breadth-first and Depth-first
 - 2. Depth-limited Search
 - 3. Iterative Deepening
 - 4. Uniform Cost
 - c) Informed search
 - 1. Intro to Heuristics
 - 2. Hill climbing
 - 3. Greedy Best-First Search
 - 4. Algorithms A & A*
 - 5. More on Heuristics
 - d) Summary