under Graduate Homework In Mathematics

SetTheory 4

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年11月21日

ROBEM I Consider $\mathbb{Q} = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) / \sim$, where $(a,b) \sim (c,d) \iff ad = bc$. Define $+_{\mathbb{Q}}, \cdot_{\mathbb{Q}}$ and verify that your definitions doesn't depend on the choice of representatives.

SPETION. Let $[(a,b)] +_{\mathbb{Q}} [(c,d)] = [(ad+bc,bd)], [(a,b)] \cdot_{\mathbb{Q}} [(c,d)] = [(ac,bd)],$ and $[(a,b)] <_{\mathbb{Q}} [(c,d)] \iff abd^2 < cdb^2$. Now we prove they are well-defined, i.e., doesn't depend on the choice of representatives.

For $+_{\mathbb{Q}}$, assume $(a,b) \sim (e,f)$, we need to prove $(ad+bc,bd) \sim (ed+fc,df)$. Since af=be, we have $(ad+bc)bf=ad^2f+bdcf=bed^2+bdcf=(ed+fc)bd$. So $+_{\mathbb{Q}}$ is well defined.

For $\cdot_{\mathbb{Q}}$, assume $(a,b) \sim (e,f)$, we need to prove $(ac,bd) \sim (ec,fd)$. Since af = be, we have acfd = bced = bdec. So $\cdot_{\mathbb{Q}}$ is well defined.

For $<_{\mathbb{Q}}$, assume $(a_1, b_1) \sim (a_2, b_2), (c_1, d_1) \sim (c_2, d_2)$ and $(a_1, b_1) < (c_1, d_1)$. Now we need to prove $(a_2, b_2) < (c_2, d_2)$. Since $a_1b_2 = a_2b_1, c_1d_2 = c_2d_1$ we get $a_1b_1d_2^2 < c_2d_2b_1^2$

ROBEM II The set of all continuous functions $f: \mathbb{R} \to \mathbb{R}$ has cardinality \mathfrak{c} (while the set of all functions has cardinality $2^{\mathfrak{c}}$). [A continuous function on \mathbb{R} is determined by its values at rational points.]

SOLITON. Consider $\theta: \mathbb{R} \mathbb{R} \to 2^{\mathbb{Q}}, f \mapsto \{(a,b) \in \mathbb{Q} : f(a) < b\}$. Now we prove f is a injection. Assume $\theta(f) = \theta(g)$, to prove f = g. First we prove for $x \in \mathbb{Q}$ we have f(x) = g(x). We have $f(x) = \sup\{y \in \mathbb{Q} : y < f(x)\} = \sup\{y \in \mathbb{Q} : (x,y) \in \theta(f)\} = \sup\{y \in \mathbb{Q} : (x,y) \in \theta(g)\} = g(x)$. For $x \in \mathbb{R}$, choose a sequence $x_n \in \mathbb{Q}$ such that $x_n \to x$, then $f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = g(x)$. So we get f = g. So $\operatorname{card}^{\mathbb{R}} \mathbb{R} \leq \operatorname{card} 2^{\mathbb{Q}} = 2^{\aleph_0}$. Obviously $\operatorname{card}^{\mathbb{R}} \mathbb{R} \geq 2^{\aleph_0}$, so we get they are equal.

 \mathbb{R}^{OBEM} III There are at least \mathfrak{c} countable order-types of linearly ordered sets.

SOLUTION. For every sequence $a = \langle a_n : n \in \mathbb{N} \rangle$ of natural numbers consider the ordertype

$$\tau_a = \{(x, y) \in \mathbb{Z} \times \mathbb{N} : 2 \nmid y \land 0 < x < a_{\frac{y}{2}}\}$$

And for $(x,y), (z,w) \in \tau_a$ we define $(x,y) < (z,w) \iff y < w \land y = w, x < z$. Now we will show that if $a \neq b$, then $\tau_a \neq \tau_b$. Assume $\tau_a \cong \tau_b$, we need to prove a = b. assume $\theta : \tau_a \to \tau_b$ is the isomorfism.

We know (x,0) can be defined as $\phi(p) = \exists_{k=1}^{x-1} t_k, \land_{1 \leq i < j \leq x-1} t_i \neq t_j, \forall k = 1, \dots x-1, t_k < p$. And θ is isomorphism. So $\theta(x,0) = (x,0)$. For (x,1), we let b_0 satisfy $\theta(0,1) = (b_0,m)$. Since the set $\{(x,y):y=1\}$ can be defined by $\psi(p) = \forall r, s(r,s , where <math>\tau(r) := \{s:s < r\}$ and $[r,s] = \{y:r < y < s\}$. we get $\theta[\{(x,y):y=1\}] = \{(x,y):y=1\}$. So we can delete the element whose second coordinary is 0,1, and θ is isomorphism, too. Do this repeatedly, we get $\theta(x,2n+1) = (x,2n+1)$. So $a_n = \operatorname{card}\{(x,2n+1) \in \tau_a\} = \operatorname{card}\{(x,2n+1) \in \tau_b\} = b_n$ and thus a = b.

ROBEM IV The set of all algebraic reals is countable.

SPETION. Assume $\{f_n : n \in \mathbb{N}\}$ is the set of all integral coefficient polynomial. Consider $A_n := \{x \in \mathbb{C} : f(x) = 0\}$ is finite set. Then we get $\bigcup_{n \in \mathbb{N}} A_n$ is at most countable. Obviouly $\bigcup_{n \in \mathbb{N}} A_n$ is infinite, so it's countable.

ROBEM V If S is a countable set of reals, then $|\mathbb{R} - S| = \mathfrak{c}$. [Use $\mathbb{R} \times \mathbb{R}$ rather than \mathbb{R} (because $|\mathbb{R} \times \mathbb{R}| = 2^{\aleph_0}$).]

SOUTION. Assume $\theta: \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ is bijection, and $T = \theta(S)$. Then T is countable. And $\operatorname{card}(\mathbb{R} \setminus S) = \operatorname{card}(\mathbb{R} \times \mathbb{R} \setminus T)$. So we only need to prove $\mathbb{R} \times \mathbb{R} \approx \mathbb{R} \times \mathbb{R} \setminus T$. Obviously $\operatorname{card}\mathbb{R} \times \mathbb{R} \setminus T \leq \operatorname{card}\mathbb{R} \times \mathbb{R}$, so we only need $\mathbb{R} \times \mathbb{R} \setminus T \geq \mathbb{R}$. Since T is countable, we get $\{x: \exists y, (x,y) \in T\}$ is countable. Choose $t \notin \{x: \exists y, (x,y) \in T\}$. Let $f: \mathbb{R} \to \mathbb{R} \times \mathbb{R} \setminus T, x \mapsto (t,x)$. Easily we get f is injection. So $\operatorname{card}\mathbb{R} \times \mathbb{R} \setminus T = \mathfrak{c}$.

\mathbb{R}^{OBEM} VI Assume T is a tree.

- 1. If $s, t, u \in T$, then $R_{stu} := \{\delta_{st}, \delta_{tu}, \delta_{us}\}$ has at most 2 elements. And if $p, q \in R_{stu}$, then $p \subset q \lor q \subset p$.
- 2. \prec is a linear ordering of T which extends \sqsubseteq .
- 3. For every $t \in T$, Prove $T^t := \{s \in T : t \sqsubset s\}$ is an interval in (T, \prec) .
- SOLITON. 1. First we prove for $p, q \in R_{stu}$ we have $p \subset q \lor q \subset p$. Without loss of generality assume $p = \delta_{st}, q = \delta_{tu}$. We have $p, q \subset (\cdot, t)$. Since (\cdot, t) is well ordered, and easily p, q are initial segment, so $p \subset q \lor q \subset p$.

Now we prove there are at most two elements. From above we know (R_{stu}, \subset) is linear order set, and it's finite. Without loss of generality we assume $\delta_{st} \subset \delta_{tu} \subset \delta_{us}$. Then we get $\delta_{tu} = \delta_{tu} \cap \delta_{us} = (\cdot, t) \cap (\cdot, u) \cap (\cdot, s) \subset \delta_{st}$. That means $\delta_{st} = \delta_{tu}$, so there is at most two elements.

2. Easily to prove $\subset\subset\prec$. Now we prove \prec is linear ordered. Consider a bigger linear ordered set Y is obtained by adding a minimum, $-\infty$, in X. Consider the tree $U := {}^{<\alpha}Y$. We try to

make a map from
$$T$$
 to B_U . Let $\theta: T \to B_U$, $\theta(f)(\beta) := \begin{cases} f(\beta), \beta \in \text{dom } f \\ -\infty, \beta \notin \text{dom } f \end{cases} \quad \forall \beta \in \alpha, f \in T.$

Then we it's easily to prove θ is injective and $f \prec g \iff \theta(f)(\beta) < \theta(g)(\beta)$, where $\beta = \min\{t \in \alpha : \theta(f)(t) \neq \theta(g)(t)\}$. We define $f, g \in B_U, f < g \iff f(\beta) < g(\beta)$, where $\beta = \min\{t \in \alpha : f(t) \neq g(t)\}$. Now we only need to prove $(B_U, <)$ is linear ordered. Easily $f \not < f, \forall f \in B_U$. And for $f \neq g, f < g \lor g < f$. Assume f < g < h, to prove f < h.

If $n_{fg} < n_{gh}$ then we get $f(n_{fg}) < g(n_{fg}) = h(n_{fg})$. So $n_{fh} \le n_{fg}$. From VI.1 we get $n_{fh} = n_{fg} \lor n_{fh} = n_{gh}$. So $n_{fh} = n_{fg}$, and thus f < h.

If $n_{fg} > n_{gh}$, then we get $h(n_{gh}) > g(n_{gh}) = f(n_{gh})$. Same as above we get $n_{fh} = n_{gh}$, so f < h.

If $n_{fg} = n_{gh}$, it's obvious f < h.

So we have proved B_U is linear ordered, and thus (T, \prec) is linear orderd.

3. Only need to prove if $t \sqsubset u, t \sqsubset v, u \prec v$, then $\forall s : u \prec s \prec v, t \sqsubset s$. If $u \sqsubseteq s$ then $t \sqsubset u \sqsubseteq s$. Else we get $u \not\sqsubseteq s$. So we get $s \not\sqsubseteq u \land s(n_{su}) > u(n_{su})$. From VI.2 we get $t \prec s$. So if $t \not\sqsubseteq s$

then $s \not\sqsubseteq t \land s(n_{st}) > t(n_{st})$. Since $t \sqsubseteq v$ we get $s(n_{st}) > t(n_{st}) = v(n_{st})$. Since $t \sqsubseteq v$ we get $n_{st} = n_{sv}$, so $v \prec s$, contradiction! So $t \sqsubseteq s$.

ROBEM VII

- 1. Prove that \prec is linear ordered on $T \cup B_T$.
- 2. For every $t \in T$, prove that $B_t = \{f \in B_T : t \in f\} \cup \{f \in T : t \sqsubset f\}$ is interval in $(T \cup B_T, \prec)$.
- SOUTION. 1. consider a bigger tree U. For $f \in T$ let $\theta(f) = f$, for $f \in B_T$ we let $\theta(f)$ is a map from ordertype(dom(f)) to X, and $\theta(f)(\beta) := g(\beta)$, where $g \in f$ and $\beta \in \text{dom}(g)$. Let $U = \theta(T \cup B_T)$. Then easily $T \subset U$. Now we prove θ is isomorphic from $(T \cup B_T, \prec)$ to (U, \prec) . Easily for $f, g \in T$ we have $f \sqsubset g \iff \theta(f) \sqsubset \theta(g)$.

And for $f \in T, g \in B_T$ we have $f \in g \iff \theta(f) \sqsubset \theta(g)$. So from the defination of \prec we get θ is isomorphic. Since we have proved (U, \prec) is linear order(VI.2), we get $(T \cup B_T, \prec)$ is linear order, too.

2. Since $\theta(B_t) = U^{\theta(t)}$ is an interval(VI.3), we get B_t is interval, too.

ROBEM VIII