

Prüfbericht-Nr.: Auftrags-Nr.: 16803597 001 Seite 1 von 37 1140013772 Test Report No.: Order No.: Page 1 of 37

Kunden-Referenz-Nr.: 412990 Auftragsdatum: 2014-06-18

Client Reference No.: Order date:

Beijing GODA Instruments Co., LTD. Auftraggeber: Hongfu Enterprise Incubation Yard 10, No.2 Workshop 2-4, Chang Ping Dist, Beijing Client:

102209 P.R. China

Prüfgegenstand: **Pulse Radar Level Instrument**

Test item:

Bezeichnung / Typ-Nr.: Refer to section 2.2 Identification / Type No.:

Auftrags-Inhalt:

FCC certification Order content:

Prüfgrundlage:

FCC Part 15 Subpart C Section 15.256 Test specification:

Wareneingangsdatum:

Date of receipt. 2014-06-18

Prüfmuster-Nr.:

Test sample No.: **Engineering sample**

Prüfzeitraum:

2014-08-11 to 2014-08-12 Testing period:

Ort der Prüfung: Refer to section 1.1

Place of testing:

Prüflaboratorium: Refer to section 1.1 Testing laboratory:

Prüfergebnis*: **Pass**

Test result*:

kontrolliert von / reviewed by:

2014-08-12 Yang, Kai/ PE

geprüft von / tested by:

Name / Stellung Datum Unterschrift Name / Position Signature Date

2014-08-12 Sun. Lixun/Reviewer

Unterschrift Datum Name / Stellung Date Name / Position Signature

Refer to external photo

Sonstiges / Other.

Zustand des Prüfgegenstandes bei Anlieferung: Prüfmuster vollständig und unbeschädigt Condition of the test item at delivery: Test item complete and undamaged

Teng Kai

Legende: 1 = sehr aut 2 = gut 5 = mangelhaft 3 = befriedigend 4 = ausreichend P(ass) = entspricht o.g. Prüfgrundlage(n) F(ail) = entspricht nicht o.g. Prüfgrundlage(n) N/A = nicht anwendbar N/T = nicht getestet 3 = satisfactory 4 = sufficient 1 = very good 2 = aoodLegend: 5 = poorP(ass) = passed a.m. test specification(s) F(ail) = failed a.m. test specification(s) N/A = not applicable N/T = not tested

Dieser Prüfbericht bezieht sich nur auf das o.g. Prüfmuster und darf ohne Genehmigung der Prüfstelle nicht auszugsweise vervielfältigt werden. Dieser Bericht berechtigt nicht zur Verwendung eines Prüfzeichens.

This test report only relates to the a. m. test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark. V04

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 2 von 37

 Test Report No.
 Page 2 of 37

TEST SUMMARY

4.1.1 MODULATED BANDWIDTH

RESULT: Passed

4.1.2 FUNDAMENTAL EMISSION

RESULT: Passed

4.1.3 ANTENNA REQUIRMENT

RESULT: Passed

4.1.4 RADIATED SPURIOUS EMISSION

RESULT: Passed

4.1.5 FREQUENCY STABILITY

RESULT: Passed

4.2.1 ELECTROMAGNETIC FIELDS

RESULT: Passed

Products

Prüfbericht - Nr.: 16803597 001 Test Report No.

Seite 3 von 37 Page 3 of 37

Contents

	Contents
1.	TEST SITES4
1.1	TEST FACILITIES4
1.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS4
1.3	TRACEABILITY6
1.4	CALIBRATION6
1.5	MEASUREMENT UNCERTAINTY6
2.	GENERAL PRODUCT INFORMATION7
2.1	PRODUCT FUNCTION AND INTENDED USE
2.2	RATINGS AND SYSTEM DETAILS7
2.3	INDEPENDENT OPERATION MODES
2.4	NOISE GENERATING AND NOISE SUPPRESSING PARTS10
2.5	SUBMITTED DOCUMENTS10
3.	TEST SET-UP AND OPERATION MODES11
3.1	PRINCIPLE OF CONFIGURATION SELECTION11
3.2	TEST OPERATION AND TEST SOFTWARE11
3.3	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT11
3.4	COUNTERMEASURES TO ACHIEVE EMC/RF COMPLIANCE12
3.5	TEST SETUP DIAGRAM12
4.	TEST RESULTS13
4.1 4.1 4.1 4.1 4.1 4.1	2Fundamental Emission
4.2 <i>4.2</i> .	RADIO FREQUENCY EXPROSURE COMPLIANCE
5.	LIST OF TABLES
6.	LIST OF FIGURES 37

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 4 von 37

 Test Report No.
 Page 4 of 37

1. Test Sites

1.1 Test Facilities

Laboratory 1: TA Beijing Limited (FCC Registration No.: 413514)
Address: Building B-4, No.1, JingHai 3rd Road, BDA East Park,Beijing,
100176 China

Laboratory 2: China Household Electrical Appliance Research Institute (FCC Registration Number: 161284)

Address: No.29 Xiaxie Str. XuanWu District, Beijing 100053, P.R. China

Laboratory 3: The State Radio_Monitoring_Center Testing (SRTC) (FCC

Registration No.: 910917)

Address: No.98 BeiLishi Road, Xicheng District, Beijing 100037

1.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Lab 1: (Fundamental emission bandwidth, Fundamental emission(EIRP),

Frequecy stability)

Kind of Equipment	Туре	S/N	Manufacturer	Calibrated until
Signal Analyzer	FSUP	101355	ROHDE & SCHHWARZ	2015-01-29
Horn Antenna	3160-09	00165118	ETS- Lindgren	2017-03-21
DC Power Supply	RS-1303DF	05022506	TFS	2015-05-24
Temperature Chamber	VT4002	58566170850020	Votsch	2015-06-24
Laser Beam	Multi-Point Laser	N/A	Boxin	N/A

Lab 2: (Radiated spurious emission (below 1GHz))

Kind of Equipment	Type	S/N	Manufacturer	Calibrated until
EMI Receiver	ESCI7	0304826-03	R&S	2014-11-11
Bi-log Antenna	HL562	0304826-06	R&S	2014-11-15
Loop Antenna	HFH2-Z2	8486241002	R&S	2014-11-26

Lab 3: (Radiated spurious emission (above 1GHz))

 Prüfbericht - Nr.:
 16803597 001
 Seite 5 von 37

 Test Report No.
 Page 5 of 37

Kind of Equipment	Туре	S/N	Manufacturer	Calibrated until
Spectrum Analyzer	FSQ40	200065	R&S	2015-03-11
Harmonic Mixer(40- 60GHz)	FS-Z60	100053	R&S	2015-03-11
Harmonic Mixer(60- 90GHz)	FS-Z90	100021	R&S	2015-03-11
Harmonic Mixer(75- 110GHz)	FS-Z110	100019	R&S	2015-03-11
Horn Antenna(1- 18GHz)	HF906	100029	R&S	2015-08-20
Horn Antenna(18- 26.5GHz)	3160-09	760840	ETS	2015-08-20
Horn Antenna(26.5- 40GHz)	3160-10	808234	ETS	2015-08-20
Horn Antenna(75- 110GHz)	27240-20	112	FLANN	2015-03-11
Horn Antenna(60- 90GHz)	26240-20	110	FLANN	2015-03-11
Horn Antenna(40- 60GHz)	24240-20	103	FLANN	2015-03-11

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 6 von 37

 Test Report No.
 Page 6 of 37

1.3 Traceability

All measurement equipment calibrations are traceable to NIM (National Institude of Metrology P.R. China) or where calibration is performed outside the United States, to equivalent nationally recognized standards organizations.

1.4 Calibration

Equipment requiring calibration is calibrated periodically by the lab or according to lab's specifications. Additionally all equipment is verified for proper performance on a regular basics using in house standards or comparisons.

1.5 Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO/IEC 17025 are:

Table 2: Measurement Uncertainty

	Items	Extended Uncertainty
RE	Field strength (dBuV/m)	U= \pm 4.94dB, k=2, σ=95%
(30-1000MHz)		
RE	Field strength (dBuV/m)	U=±4.34dB, k=2, σ=95%
(1-110GHz)	_ ,	

 Prüfbericht - Nr.:
 16803597 001
 Seite 7 von 37

 Test Report No.
 Page 7 of 37

2. General Product Information

2.1 Product Function and Intended Use

The EUT (equipment under test) is Pulse Radar Level Instrument which is based on radar technology and is used to detect the distance between product surface and sensor by means of high frequency electromagnetic waves. The electronic part uses the running time of the signals reflected by the product surface to calculate the distance to the product surface, For more information, please refer to the user manual.

2.2 Ratings and System Details

Table 3: Rating and Technical Specification of EUT

Kind of Equipment:	Pulse Radar Level Instrument
Type Designation:	Refer to table 4
FCC ID	2ACSOGDRD5X6XA
Rated Input Voltage	DC 24V
Rated comsuption power	Less than 1W
Operating Frequency band	25.4GHz
Channel Number	1

Table 4: Type Designation:

Model	GDRD56-(1)(2)(3)(4)(5)(6)(7)(8)(9)		
Meaning of wildcard	Option		
(1) Explosion Proof Approval	P: Standard		
	I: Intrinsically Safe Exia IIC T6 Ga		
(2) Shape of Antenna	С: (T)Horn Ф78mm/ L227		
	Н: (T)Horn Ф98mm/ L288		
	J: (T)Horn Φ123mm/ L620		
	Z: (Z)Horn Φ78mm/Flexible		
(3) Process Connection/Material	GP: (H)thread G1/2A/Stainless Steel 316L		
	GA: (H)thread 1 ½NPT/Stainless Steel 316L		
	GB: (G)thread G1 ½PP		
	GC: (J)thread G1 ^{1/2} A/Stainless Steel 316L/temperature(-60~250)°C		
	GE: (I)thread G1 ^{1/2} A/Stainless Steel 316L(Huff)		
(4) Flange/Material	FA:DN50/PP, GA:DN80/PP,HA:DN100/PP, IA:DN125/PP,		
	FB:DN50/PTFE, GB:DN80/PTFE, HB:DN100/PTFE,		

 Prüfbericht - Nr.:
 16803597 001
 Seite 8 von 37

 Test Report No.
 Page 8 of 37

	IB:DN125/PTFE FC:DN50/Stainless Steel, GC:DN80/Stainless Steel, HC:DN100/Stainless Steel, IC:DN125/Stainless Steel MA:ANSI 3"/Stainless Steel MB: ANSI 4"/Stainless Steel MC:ANSI 6"/Stainless Steel NA:ANSI 3"/PTFE NB: ANSI 4"/PTFE NC:ANSI 6"/PTFE F0:NO
(5) Seal/Process Temperature	2: Viton(-60~150) °C 3: Kalrez(-60~250) °C
	4: Graphite(-60~400) °C
(6) Electronic	B: (4-20)mA/HART 2-Wire
(7) Housing/Protection	A: Aluminium/IP67
(8) Cable Entry	M: M20x1.5, N: 1/2NPT
(9) Display/Programming	A: Yes, X:No

Model	GDRD57-(1)(2)(3)(4)(5)(6)
Meaning of wildcard	Option
(1) Explosion Proof Approval	P: Standard
	I: Intrinsically Safe Exia IIC T6 Ga
(2) Shape of Antenna	C:(U)Flange DN80(ANSI 3")
	D:(U)Flange DN100(ANSI 4")
(3) Electronic	B: (4-20)mA/HART 2-Wire
(4) Housing/Protection	A: Aluminium/IP67
(5) Cable Entry	M: M20x1.5, N: 1/2NPT
(6) Display/Programming	A: Yes, X:No

Model	GDRD61-(1)(2)(3)(4)(5)(6)(7)(8)	
Meaning of wildcard	Option	
(1) Explosion Proof Approval	P: Standard	
	I: Intrinsically Safe Exia IIC T6 Ga	
	L:Enhanced	
(2) Shape of Antenna	P: Horn Φ78mm/L221	
(3) Process Connection/Material	GB: (G)thread G1" NPT PP	
	GD: Lifting frame	
(4) Electronic	B: (4-20)mA/HART 2-Wire	
(5) Housing/Protection	A: IP68	
(6) Display/Programming	A: Yes, X:No	
(7) Sun shield	A: Yes, X:No	
(8) Cable	A: Standard twin-core shielded (length of 10m)	
	B: Length of twin-core shielded (length:X m)	
	C: Length of 7-core shielded (length:X m)	

The products are made up of electronic part, housing part, process connection part, flange accessories part and antenna. All electronic parts including RF circuit are same within these models, and differences of other parts such as Explosion Proof Approval, Process Connection/Material, Flange/Material etc. can not affect RF performance of the product. So tests were carried out according to the description of Table 5: Combination Under Test which considering all worst situation and can cover all combination.

 Prüfbericht - Nr.:
 16803597 001
 Seite 9 von 37

 Test Report No.
 Page 9 of 37

Table 5: Antenna Information

Antenna Type	Gain(dBi)	Side lobe gain(dB)	Beam angle
(T)Horn Φ78mm/L227	24.4	-31.8	11°
(T)Horn Φ98mm/L288	27.4	-35.1	8°
(T)Horn Φ123mm/L620	29.2	-37.5	6°
(U)Flange DN80	22.0	-30.0	11°
(U)Flange DN100	24.9	-32.2	8°
(Z)Horn Φ78mm/Flexible	24.0	-30.5	11°
(P)Horn Ф78mm/L221	24.1	-31.4	11°

Table 6: Combination Under Test

For all models have same RF circuit, display circuit, power circuit and similar construction, so for Fundamental emission bandwidth and Frequency stability tests were carried out on Sample 1 which was the most typical one comparing to other models declared by manufacturer, and for Fundamental emission tests were carried out on models that having maximum antenna gain of each type of antenna (Sample 1, Sample 3, Sample 5, Sample 6). For Unwanted emissions tests were carried out on samples which were listed below which cover all types of antenna with maximum and minimum gain:

Description in the report	Model	Antenna
Sample 1	GDRD56-PJGPF02BAMA	(T)Horn Φ123mm/L620
Sample 2	GDRD56-PCGPF02BAMA	(T)Horn Φ78mm/L227
Sample 3	GDRD56-PZGPF02BAMA	(Z)Horn Φ78mm/ Flexible
Sample 4	GDRD57-PCBAMA	(U)Flange DN80
Sample 5	GDRD57-PDBAMA	(U)Flange DN100
Sample 6	GDRD61-PPGBAAAA	(P)Horn Φ78mm/L221

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 10 von 37

 Test Report No.
 Page 10 of 37

2.3 Independent Operation Modes

The basic operation modes are:

- A. On, transmitting
- B. Off

2.4 Noise Generating and Noise Suppressing Parts

Refer to the Circuit Diagram.

2.5 Submitted Documents

- Bill of Material
- PCB Layout
- Photo Document

- Circuit Diagram
- Instruction Manual
- Rating Label

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 11 von 37

 Test Report No.
 Page 11 of 37

3. Test Set-up and Operation Modes

3.1 Principle of Configuration Selection

The equipment under test (EUT) was configured to measure its maximum power level. The test modes were adapted accordingly in reference to the instructions for use.

3.2 Test Operation and Test Software

Test operation refers to test setup in chapter 5. All testing were performed according to the procedures in ANSI C63.10: 2009.

3.3 Special Accessories and Auxiliary Equipment

None.

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 12 von 37

 Test Report No.
 Page 12 of 37

3.4 Countermeasures to achieve EMC/RF Compliance

The test sample which has been tested contained the noise suppression parts as described in the Constructional Data Form or the Technical Construction File. No additional measures were employed to achieve compliance.

3.5 Test Setup Diagram

Diagram of Measurement Configuration for Radiation Test

Diagram of Measurement Equipment Configuration for Transmitter Measurement

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 13 von 37

 Test Report No.
 Page 13 of 37

4. Test Results

4.1 Transmitter Requirement & Test Suites

4.1.1 Modulated Bandwidth

RESULT: Passed

Test date : 2014-08-11

Test standard : FCC Part 15.256(f)(1)

Limit : The minimum fundamental emission bandwidth

shall be 50 MHz

The minimum 10dB bandwidth was measured using a 50 ohm spectrum analyser with the resolution bandwidth set at 1MHz and the video bandwidth set at 3MHz. The spectrum analyser's display markers were set to -10dB using max hold until the spectrum was filled and a plot taken.

Table 7: Test result of 10dB Bandwidth

Channel Frequency (GHz)	10dB Bandwidth (MHz)	Limit(MHz)
25.4	1520	>50

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 14 von 37

 Test Report No.
 Page 14 of 37

Test Graph of Modulated Bandwidth

Note: offset 4.5dB means cable loss compensation.

Products

Seite 15 von 37 Prüfbericht - Nr.: 16803597 001 Page 15 of 37

Test Report No.

4.1.2 Fundamental Emission

RESULT: Passed

Test date 2014-08-11

FCC Part 15.256(g)(3) Test standard

ANSI C63.10: 2009,KDB890966 D01 Basic standard

Meas Level Probing Radars v01r01

-14dBm(measured in 1MHz with average Limit

detector)

26dBm(measured in 50MHz with peak

detector)

Kind of test site 3m full anechoic chamber

Test setup

Operation Mode Ambient temperature **24**°C Relative humidity 47% Atmospheric pressure 101 kPa Number of Sampling 1601

BINS

Measurement 3m

Distance(D)

Site Correction -0.7dB/m

Factor(antenna factor+cable

loss+amplifier gain)

All power averaging (RMS) emission levels are to be measured utilizing a 1 MHz resolution bandwidth with a one millisecond dwell time over each 1 MHz segment. The frequency span of the analyzer should equal the number of sampling bins times 1 MHz and the sweep rate of the analyzer should equal the number of sampling bins times one millisecond. The video bandwidth of the measurement instrument shall not be less than the resolution bandwidth and trace averaging shall not be employed. The RMS average and peak emission measurement is to be repeated over multiple sweeps with the analyzer set for maximum hold until the amplitude stabilizes.

EIRP (dBm) = E (dB μ V/m) – 104.8 + 20 Log D

Prüfbericht - Nr.: 16803597 001

Seite 16 von 37 *Page 16 of 37*

Test Report No.

Table 8: Test result of Fundamental emission							
Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Average result E (dBuV/m)	Final EIRP result(dBm)	Limit (dBm)	Margin (dB)
25.4	Sample 1	64.68	-0.7	63.98	-31.28	-14	17.28
Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Peak result E (dBuV/m)	Final EIRP result(dBm)	Limit ⁽¹⁾ (dBm)	Margin (dB)
25.4	Sample 1	84.66	-0.7	83.96	-11.3	18	29.3
Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Average result E (dBuV/m)	Final EIRP result(dBm)	Limit (dBm)	Margin (dB)
25.4	Sample 3	59.74	-0.7	59.04	-36.22	-14	22.22
						I	
Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Peak result E (dBuV/m)	Final EIRP result(dBm)	Limit ⁽¹⁾ (dBm)	Margin (dB)
25.4	Sample 3	70.57	-0.7	69.87	-25.39	18	43.39
Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Average result E (dBuV/m)	Final EIRP result(dBm)	Limit (dBm)	Margin (dB)
25.4	Sample 5	60.12	-0.7	59.42	-35.84	-14	21.84
Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Peak result E (dBuV/m)	Final EIRP result(dBm)	Limit ⁽¹⁾ (dBm)	Margin (dB)
25.4	Sample 5	80.65	-0.7	79.95	-15.31	18	33.31
Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Average result E (dBuV/m)	Final EIRP result(dBm)	Limit (dBm)	Margin (dB)
25.4	Sample 6	57.23	-0.7	56.53	-38.73	-14	24.73

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 17 von 37

 Test Report No.
 Page 17 of 37

Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Peak result E (dBuV/m)	Final EIRP result(dBm)	Limit ⁽¹⁾ (dBm)	Margin (dB)
25.4	Sample 6	67.7	-0.7	67.0	-28.26	18	46.26

(1)Note: Since the R&S spectrum analyzer had a lower RBW than the 50MHz, a lower RBW of 20MHz was used and a adjustment to the limit is made by 20log(RBW/50) dB. The resolution bandwidth used is 20MHz; therefore 20log(20/50)=-8dB reduction of the limit for the 50MHz EIRP, from 26dBm to 18dBm.

Test Graph of Fundamental Emission

Sample 1 EIRP in 1MHz, Average Detector

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 25 von 37

 Test Report No.
 Page 25 of 37

•

4.1.3 Antenna Requirment

RESULT: Passed

Date of testing : 2014-06-20

Test standard and : FCC Part 15.256(h)(j)

limit

According to the FCC Part 15.256(h), LPR devices operating under the provisions of this section within the 5.925-7.250 GHz and 24.05-29.00 GHz bands must use an antenna with a -3 dB beamwidth no greater than 12 degrees.

According to the FCC Part 15.256(j), LPR devices operating under the provisions of this section must limit the side lobe antenna gain relative to the main beam gain for off-axis angles from the main beam of greater than 60 degrees to the levels provided in the table below:

Frequency Range (GHz)	Antenna Side Lobe Gain Limit Relative to Main Beam Gain
(G112)	(dB)
5.925-7.250	-22
24.05-29.00	-27
75-85	-38

According to the manufacturer's declaration, the parameter of the antennas is:

Antenna Type	Gain(dBi)	Side lobe gain(dB)	Beam angle
(T)Horn Φ78mm/L227	24.4	-31.8	11°
(T)Horn Φ98mm/L288	27.4	-35.1	8°
(T)Horn Φ123mm/L620	29.2	-37.5	6°
(U)Flange DN80	22	-30	11°
(U)Flange DN100	24.9	-32.2	8°
(Z)Horn Φ78mm/Flexible	24	-30.5	11°
(P)Horn Φ78mm/L221	24.1	-31.4	11°

Therefore it compliances with requirement of FCC Part 15.256(h) and (j).

Products

Seite 26 von 37 Prüfbericht - Nr.: 16803597 001 Page 26 of 37

Test Report No.

4.1.4 Radiated Spurious Emission

RESULT: Passed

Date of testing 2014-08-12

FCC part 15.256(h),(k) Test standard Basic standard ANSI C63.10: 2009

Limits Refer to 15.209(a) and 15.256.

Kind of test site 3m Semi-Anechoic Chamber(<1GHz), 5m

Full Anechoic Chamber(>1GHz)

Test setup

Operation mode Α Ambient temperature **25**℃ Relative humidity 51% Atmospheric pressure 101 kPa

Distance of testing 3m(9kHz-18GHz), 0.1m(18-

90GHz),0.01m(90-110GHz)

During the test, the EUT was checked in the three orthogonal planes with the receive antenna in both horizontal and vertical polarizations. A resolution bandwidth of 120kHz was used for frequency under 1GHz, and a resolution bandwidth of 1MHz was used for frequency above

A pre-test was performed on all of the samples listed in the table 6, no radiated harmonics or unintentional emission was found below 30MHz and above 1GHz. The following plots are provided as reference. The 18-90GHz plots were taken with the messure antenna close to the transimit antenna at 0.1m distance and 0.01m for 90-110GHz to reduce the impact of background noise, and the limit at 0.1m converted from 3m limit for 18-90GHz is 83.54dBuV/m and the limit at 0.01m converted from 3m limit for 90-110GHz is 103.54dBuV/m.

9 kHz - 30 MHz emission result was far below limit, hence not presented in this test report.

Products

Prüfbericht - Nr.: 16803597 001

Seite 27 von 37 *Page 27 of 37*

Test Report No.

Emission below 1GHz

Figure 1: Spurious emission measurement results, worst data

Level in dB µV/m

Frequency	QuasiPeak	Height	Polarization	Azimuth	Margin	Limit
(MHz)	(dBµV/m)	(cm)		(deg)	(dB)	(dBµV/m)
97.900000	16.1	100.0	V	0.0	27.4	43.5
102.022500	17.1	100.0	V	0.0	26.4	43.5
106.023750	17.2	100.0	V	0.0	26.3	43.5
110.025000	17.8	100.0	V	359.0	25.7	43.5
113.905000	22.5	200.0	Н	43.0	21	43.5
201.932500	17.5	100.0	Н	74.0	26	43.5

Products

16803597 001 Prüfbericht - Nr.:

Seite 28 von 37 Page 28 of 37

Emission above 1GHz

Test Report No.

Figure 2: Spurious emission measurement results, 1GHz-18GHz, worst data

Final measurement result:

No emission was found above the background noise.

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 29 von 37

 Test Report No.
 Page 29 of 37

Figure 3: Spurious emission measurement results, 18GHz-26.5GHz, worst data

Frequency (GHz)	Direct value measured (dBuV)	Correction Factor(dB/m)	Corrected Measurement (dBuV/m)	Limit at 0.1m (dBµV/m)	Margin (dB)	
No spurio	No spurious emission points over the limit were found.					

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 30 von 37

 Test Report No.
 Page 30 of 37

Figure 4: Spurious emission measurement results, 26.5GHz-40GHz, worst data

Frequency (GHz)	Direct value measured (dBuV)	Correction Factor(dB/m)	Corrected Measurement (dBuV/m)	Limit at 0.1m (dBµV/m)	Margin (dB)
26.77	56.27	10.27	66.54	83.54	17

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 31 von 37

 Test Report No.
 Page 31 of 37

Frequency (GHz)	Direct value measured (dBuV)	Correction Factor(dB/m)	Corrected Measurement (dBuV/m)	Limit at 0.1m (dBµV/m)	Margin (dB)
45.13	28.94	37.62	66.56	83.54	16.98

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 32 von 37

 Test Report No.
 Page 32 of 37

Figure 6: Spurious emission measurement results, 60GHz-90GHz, worst data

Frequency (GHz)	Direct value measured (dBuV)	Correction Factor(dB/m)	Corrected Measurement (dBuV/m)	Limit at 0.1m (dBµV/m)	Margin (dB)
68.12	33.71	42.26	75.97	83.54	7.57

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 33 von 37

 Test Report No.
 Page 33 of 37

Figure 7: Spurious emission measurement results, 90GHz-110GHz, worst data

Frequency (GHz)	Direct value measured (dBuV)	Correction Factor(dB/m)	Corrected Measurement (dBuV/m)	Limit at 0.01m (dBµV/m)	Margin (dB)
91.12	33.85	52.66	86.51	103.54	17.03

Products

Seite 34 von 37 Prüfbericht - Nr.: 16803597 001 Page 34 of 37

Test Report No.

4.1.5 Frequency Stability

RESULT: Passed

Test date 2014-08-11

Test standard FCC KDB890966 D01 Meas Level Probing

Radars v01r01

Limit FCC Part 15.256(f)(2): LPR devices operating under

this section must confine their fundamental emission bandwidth within the 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz bands under all conditions of operation

According to the FCC KDB890966 D01 Meas Level Probing Radars v01r01, the bandwidth of the fundamental emission must be contained within the frequency band over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input

Therefore, the normal and extreme test conditions are listed below:

Normal test condition		Extreme test condition		
Voltage	Temperature	Voltage	Temperature	
DC 24V	20℃	DC 20.4V and DC 27.6V	-20°C and 50°C	

Products

Prüfbericht - Nr.: 16803597 001

Seite 35 von 37 *Page 35 of 37*

Test Report No.

Table 9: Test result of Frequency Stanbility

Test Conditions		Frequency range measured in a 1MHz bandwidth			
Temperature	Voltage (V)	f _L at Low Channel edge (GHz) f _H at High Channel e		nnel edge(GHz)	
		Measure Result	Limit	Measure Result	Limit
T = -20°C	V_{min}	24.839	fL > 24.05	26.513	$f_H < 29.00$
	V_{nor}	24.839	fL > 24.05	26.509	$f_H < 29.00$
	V_{max}	24.839	fL > 24.05	26.509	$f_H < 29.00$
T = -10°C	V_{min}	24.871	fL > 24.05	26.509	$f_H < 29.00$
	V_{nor}	24.823	fL > 24.05	26.513	$f_H < 29.00$
	V_{max}	24.855	fL > 24.05	26.509	$f_H < 29.00$
T = 0°C	V_{min}	24.883	fL > 24.05	26.445	$f_H < 29.00$
	V_{nor}	24.891	fL > 24.05	26.445	$f_H < 29.00$
	V_{max}	24.879	fL > 24.05	26.497	$f_H < 29.00$
T = 10°C	V_{min}	24.887	fL > 24.05	26.389	$f_H < 29.00$
	V_{nor}	24.899	fL > 24.05	26.389	$f_H < 29.00$
	V_{max}	24.883	fL > 24.05	26.389	$f_H < 29.00$
T = 20°C	V_{min}	24.887	fL > 24.05	26.385	$f_H < 29.00$
	V_{nor}	24.899	fL > 24.05	26.353	$f_H < 29.00$
	V_{max}	24.899	fL > 24.05	26.373	$f_H < 29.00$
	V_{min}	24.899	fL > 24.05	26.389	$f_H < 29.00$
T = 30°C	V_{nor}	24.891	fL > 24.05	26.397	$f_H < 29.00$
	V_{max}	24.891	fL > 24.05	26.393	$f_H < 29.00$
T = 40°C	V_{min}	24.891	fL > 24.05	26.389	f _H < 29.00
	V_{nor}	24.891	fL > 24.05	26.389	$f_H < 29.00$
	V_{max}	24.891	fL > 24.05	26.389	$f_H < 29.00$
T = 50°℃	V_{min}	24.887	fL > 24.05	26.357	f _H < 29.00
	V_{nor}	24.883	fL > 24.05	26.393	$f_H < 29.00$
	V _{max}	24.883	fL > 24.05	26.393	f _H < 29.00

Products

Seite 36 von 37 Prüfbericht - Nr.: 16803597 001 Page 36 of 37

Test Report No.

4.2 Radio Frequency Exprosure Compliance

4.2.1 Electromagnetic Fields

RESULT: Passed

Date of testing Test standard 2014-08-11

FCC KDB Publication 447498 D01 General RF Exposure

Guidance v05r02 FCC 1.1310

MPE Calculation According to the formula

$$Pd = \frac{Pout * G}{4\pi R^2}$$

Where

Pd = power density in mW/cm₂

Pout = output power to antenna in mW

G = Antenna gain in numeric

 $\pi = 3.14159$

R = Distance between observation point and the center of radiator in cm

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. Warning statement to the user for keeping the safety distance from the antenna should be included in the user manual.

The highest measured power including antenna gain is -11.3dBm(0.0741mW), hence the Maximum Permissible Exposure (MPE) value:

$$Pd = \frac{Pout * G}{4\pi R^2} = \frac{0.0741 \times 1}{4 \times 3.14159 \times 20^2} = 1.474 \times 10^{-5} \, mW / cm^2 < 1mW / cm^2$$

Therefore the device is exclusion from SAR test, and compliance with MPE limit.

Products

 Prüfbericht - Nr.:
 16803597 001
 Seite 37 von 37

 Test Report No.
 Page 37 of 37

5. List of Tables

Table 1: List of Test and Measurement Equipment	4
Table 2: Measurement Uncertainty	6
Table 3: Rating and Technical Specification of EUT	7
Table 4: Type Designation:	
Table 6: Antenna Information	9
Table 7: Combination Under Test	9
Table 8: Test result of 10dB Bandwidth	13
Table 9: Test result of Fundamental emission	16
Table 10: Test result of Frequency Stanbility	
6. List of Figures	
G	27
Figure 1: Spurious emission measurement results, worst data	
Figure 1: Spurious emission measurement results, worst data	28
Figure 1: Spurious emission measurement results, worst data	28 29
Figure 1: Spurious emission measurement results, worst data	28 29 30
Figure 1: Spurious emission measurement results, worst data	28 29 30