$$\begin{cases} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$$

(4)
$$\frac{4}{9} = \frac{4}{9} + \frac{6}{9} + \frac{11}{9} = \frac{1}{9} =$$

(2)
$$(2\pi)$$
 $f_{n}(x)$ (2π) $f_{n}(x)$ (2π) $f_{n}(x)$ (2π) $f_{n}(x)$ (2π) $f_{n}(x)$ (2π) $f_{n}(x)$ $f_{n}(x$

散学

$$f_{R/x}) = \frac{1}{2\pi} + \sum_{n=1}^{\infty} \left\{ \frac{2}{n^2 \pi n^2} \left(1 - \cos \chi n \right) \cos n \chi \right\}$$

$$(3) \lim_{n \to +\infty} \alpha(n) = \lim_{n \to +\infty} \frac{1}{\pi} \cdot \frac{4}{n^2 n^2} \sin^2 \left(\frac{\pi n}{2} \right)$$

$$= \lim_{n \to +\infty} \frac{1}{\pi} \cdot \frac{\sin \left(\frac{\pi n}{2} \right) \sin \left(\frac{\pi n}{2} \right)}{\left(\frac{\pi n}{2} \right)} \frac{\sin \left(\frac{\pi n}{2} \right)}{\left(\frac{\pi n}{2} \right)}$$

$$= \frac{1}{\pi}$$