3D Graphics Programming Tools Projection

The 3D rendering pipeline

Image

Today's agenda

- Taxonomy of projections
- Parallel projection
- Perspective projection

Planar Geometric Projection

Taxonomy of projections

Classical projections

Taxonomy of projections

Planar geometric projections

University of London

Today's agenda

- Taxonomy of projections
- Parallel projection
- Perspective projection

Parallel projection

Center of projection is at infinity

Direction of projection (DOP) is the same for all points

DOP//VPN//Axis are parallel (the same)

DOP is perpendicular to the view plane

Used for:

- engineering drawings
- working architectural drawingsPros:
- accurate measurement possible
- all views are at same scale

Cons:

- does not appear natural (i.e. they lack perspective foreshortening)
- does not provide "realistic" view or sense of 3D form, usually needs multiple views to get a 3D feeling for object
- hard to deduce 3D nature

Front

Side

Queen Mary
University of London

Exercise

Draw the top, front and right side views

Exercise

Exercise

Simple orthographic transformation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

 Notice that the parallel lines of the tiled floor remain parallel after orthographic projection.

Simple orthographic transformation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

 Notice that the parallel lines of the tiled floor remain parallel after orthographic projection.

Multiview Orthographic

Transform matrices

Front-view:
$$M_{front} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Top-view:
$$M_{top} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Side-view:
$$M_{side} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

multiview orthographic

View volume window to viewport transformation

- Window: Rectangular region in world coordinate system
- Viewport : Rectangular region in screen coordinates on the computer screen
- Window to Viewport Transformation:
 - 1. Translate the window to the origin of word coordinates.
 - 2. Scale the size of the window to be equal to the size of the viewport.
 - 3. Translate it to the final position of screen coordinates.

View volume window to viewport transformation

With
$$(x_{min}, y_{min}) = (-10, -20)$$
, $(x_{max}, y_{max}) = (110, 220)$, $(u_{min}, v_{min}) = (30, 40)$, $(u_{max}, v_{max}) = (80, 140)$, we have

$$\begin{split} M_{W2V} &= T(u_{min}, v_{min}) \cdot S\left(\frac{u_{max} - u_{min}}{x_{max} - x_{min}}, \frac{v_{max} - v_{min}}{y_{max} - y_{min}}\right) \cdot T(-x_{min}, -y_{min}) \\ &= \begin{bmatrix} 1 & 0 & u_{min} \\ 0 & 1 & v_{min} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{u_{max} - u_{min}}{x_{max} - x_{min}} & 0 & 0 \\ 0 & \frac{v_{max} - v_{min}}{y_{max} - y_{min}} & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_{min} \\ 0 & 1 & -y_{min} \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \frac{u_{max} - u_{min}}{x_{max} - x_{min}} & 0 & -x_{min} \cdot \frac{u_{max} - u_{min}}{x_{max} - x_{min}} + u_{min} \\ 0 & \frac{v_{max} - v_{min}}{y_{max} - y_{min}} & -y_{min} \cdot \frac{v_{max} - v_{min}}{y_{max} - y_{min}} + v_{min} \end{bmatrix} \\ &= \begin{bmatrix} \frac{80 - 30}{110 - (-10)} & 0 & -(-10) \cdot \frac{80 - 30}{110 - (-10)} + 30 \\ 0 & \frac{140 - 40}{220 - (-20)} & -(-20) \cdot \frac{140 - 40}{220 - (-20)} + 40 \end{bmatrix} \\ &= \begin{bmatrix} \frac{5}{12} & 0 & 10 \cdot \frac{5}{12} + 30 \\ 0 & \frac{5}{12} & 20 \cdot \frac{5}{12} + 40 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{12} & 0 & \frac{205}{6} \\ 0 & \frac{5}{12} & \frac{145}{3} \\ 0 & 0 & 1 \end{bmatrix} \quad \text{Queen Monitority of London} \end{split}$$

View volume window to viewport transformation

$$P = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = M_{W2V} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{u_{\text{max}} - u_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} & 0 & -x_{\text{min}} \cdot \frac{u_{\text{max}} - u_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} + u_{\text{min}} \\ 0 & \frac{v_{\text{max}} - v_{\text{min}}}{y_{\text{max}} - y_{\text{min}}} & -y_{\text{min}} \cdot \frac{v_{\text{max}} - v_{\text{min}}}{y_{\text{max}} - y_{\text{min}}} + v_{\text{min}} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} u_{\text{min}} + \frac{u_{\text{max}} - u_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} \cdot (x - x_{\text{min}}) & v_{\text{min}} + \frac{v_{\text{max}} - v_{\text{min}}}{y_{\text{max}} - x_{\text{min}}} \cdot (y - y_{\text{min}}) & 1 \end{bmatrix}^{T}$$

$$= \left[u_{\min} + \frac{u_{\max} - u_{\min}}{x_{\max} - x_{\min}} \cdot (x - x_{\min}) \quad v_{\min} + \frac{v_{\max} - v_{\min}}{y_{\max} - y_{\min}} \cdot (y - y_{\min}) \quad 1 \right]^{T}$$

Screen space transformation

The transformation can also be done in 3D normalised viewing space :

- This matrix scales and translates to accomplish the transition in units
 - Left, right, top, bottom refer to the viewing frustum (view volume) in modelling coordinates
 - width and height are in pixel units (viewport)

Isometric Projection

DOP//VPN are parallel (the same), VPN= (1, 1, 1)

Used for:

- catalogue illustrations
- patent office records
- furniture design
- structural design

Pros:

- don't need multiple views
- illustrates 3D nature of object
- measurements can be made to scale along principal axes

Cons:

- lack of foreshortening creates distorted appearance
- more useful for rectangular than curved shapes

Oblique Projections

DOP<>VPN, **DOP**: $D = \begin{bmatrix} D_x & D_y & D_z \end{bmatrix}^T$ Used for skyscrapers.

Pros:

- can present the exact shape of one face of an object (can take accurate measurements)
- makes comparison of sizes easier, no perspective foreshortening
- displays some of object's 3D appearance
 Cons:
- objects can look distorted if careful choice not made about position of projection plane (e.g., circles become ellipses)
- lack of foreshortening (not realistic looking)

Plan oblique projection of a city

M =

Summary of Parallel Projections

Assume object face of interest lies in principal plane, i.e., parallel to xy, yz, or zx planes.

DOP = **Direction of Projection, VPN** = **View Plane Normal**

Multiview Orthographic

- VPN is parallel to a principal coordinate axis
- DOP is parallel to VPN
- shows single face, exact measurements

Axonometric

- VPN is NOT parallel to a principal coordinate axis
- DOP is parallel to VPN
- adjacent faces, none exact,
 uniformly foreshortened (as a function of angle between

Oblique

- VPN is parallel to a principal coordinate axis
- DOP is NOT parallel toVPN
- adjacent faces, one exact, others uniformly foreshortened Outcom Ma

Today's agenda

- Taxonomy of projections
- Parallel projection
- Perspective projection

Perspective

166 pixels tall

370 pixels tall

600 pixels tall

- In the real world, objects exhibit perspective foreshortening
 - distant objects appear smaller
 - objects closer to viewer look larger
- Parallel lines appear to converge to single point (vanishing point)
- First discovered by Donatello, Brunelleschi, and Da Vinci during Renaissance

How many axis vanishing points?

- Axis vanishing point: vanishing point of lines parallel to one of three principle axes. At most 3: x-axis vanishing point, y-axis vanishing point, and z-axis vanishing point.
- The number of axis vanishing points can be used to categorize perspective projections.

- Two vanishing point projections are often used in architecture, engineering, industrial design and advertising.
- Three vanishing point drawings add little additional realism over two vanishing point drawings.

3-point perspective

2-point perspective

1-point perspective

 3-D graphics → think of the screen as a 2-D window onto the 3-D world

Synthetic Camera

The geometry of the situation is that of similar triangles

Perspective projection

• Desired result for a point $[x, y, z, 1]^T$ projected onto the view plane:

$$x' = \frac{d \cdot x}{z} = \frac{x}{z/d}$$
, $y' = \frac{d \cdot y}{z} = \frac{y}{z/d}$, $z' = d = \frac{z}{z/d}$

What could a matrix look like to do this?

$$x' = \frac{d \cdot x}{z} = \frac{x}{z/d}$$
, $y' = \frac{d \cdot y}{z} = \frac{y}{z/d}$, $z' = d = \frac{z}{z/d}$

$$P_{perspective} =$$

$$x' = \frac{d \cdot x}{z} = \frac{x}{z/d}, \quad y' = \frac{d \cdot y}{z} = \frac{y}{z/d}, \quad z' = d = \frac{z}{z/d}$$

We use: w = z/d

We have:
$$x' = \frac{d \cdot x}{z} = \frac{x}{z/d} = \frac{x}{w}$$
,

$$y' = \frac{d \cdot y}{z} = \frac{y}{z/d} = \frac{y}{w},$$

$$z' = d = \frac{z}{z/d} = \frac{z}{w}$$

$$x' = \frac{d \cdot x}{z} = \frac{x}{z/d}, \quad y' = \frac{d \cdot y}{z} = \frac{y}{z/d}, \quad z' = d = \frac{z}{z/d}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

• in 3-D coordinates:

$$\left(\frac{x}{z/d}, \frac{y}{z/d}, d\right)$$

$$x' = \frac{d \cdot x}{z} = \frac{x}{z/d}, \quad y' = \frac{d \cdot y}{z} = \frac{y}{z/d}, \quad z' = d = \frac{z}{z/d}$$

$$P_{perspective} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 1/d & 0 \end{bmatrix}$$

Perspective projection: origin in view plane

• Desired result for a point $[x, y, z, 1]^T$ projected onto the view plane:

$$\frac{x'}{d} = \frac{x}{z+d}$$
, $\frac{y'}{d} = \frac{y}{z+d}$, $z' = 0$

$$x' = \frac{d \cdot x}{z+d} = \frac{x}{z/d+1}, \quad y' = \frac{d \cdot y}{z+d} = \frac{y}{z/d+1}, \quad z' = 0 = \frac{0}{z/d+1}$$

What could a matrix look like to do this?

Perspective projection: origin in view plane

• Desired result for a point $[x, y, z, 1]^T$ projected onto the view plane:

Perspective vs. Parallel

Perspective projection

+ Size varies inversely with distance - looks realistic

Distance and angles are not (in general) preserved

Parallel lines do not (in general) remain parallel

- + Good for exact measurements
- + Parallel lines remain parallel
- Angles are not (in general) preserved
- Less realistic looking

"Isometric" view

Viewing with a Camera: Coordinate Systems

The process of viewing an object in 3D is conceptually similar to viewing it through a camera viewfinder:

- Moving the camera around the scene changes the camera location.
- Zooming the zoom lens changes the part of the scene in the viewfinder; in some sense it changes the viewing plane.
- Pointing the lens in different directions changes the coordinate system of the camera.

Specification of 3D view projection parameters

- Position of the camera (from where it's looking)
- The view vector specifies in what direction the camera is pointing
- The camera's *orientation* is determined by the view direction vector and the angle through which the camera is rotated (rolled) about that vector, i.e., the direction of the view-up vector (VUP). The view-up vector is not necessarily perpendicular to the view vector.

View Reference Coordinate (VRC) System

- View plane (projection plane) is specified by a normal and a point:
 - The view reference point (VRP) is where the camera or eye is, and it is taken as a point on the view plane.
 - The view plane normal (VPN) is the normal to the view plane.

View Reference Coordinate (VRC) System

- View window can be specified by:
 - A width, a height and a point: the centre of the window (CW).
 - Two points: min and max window coordinates for a rectangle.

The window's role is similar to that of a 2D window: its contents are mapped into the viewport, and any part of the 3D world that projects onto the view plane outside of the window is not displayed.

View Reference Coordinate (VRC) System

- VRP is taken as the origin
- Three orthogonal axes in the view plane to define the orientation of the window

View Reference Coordinate (VRC) System

- Three orthogonal axes:
 - VPN is one axis (*n*-axis).
 - The second axis (v-axis): projection of view-up vector (VUP) onto the view plane.
 - The third axis (u-axis) can be easily found in the right-handed coordinate system.

$$n = \frac{\text{VPN}}{|\text{VPN}|}$$

$$u = \frac{\text{VUP} \times \text{VPN}}{|\text{VUP} \times \text{VPN}|}$$

$$v = n \times u$$

View Reference Coordinate (VRC) System

• Finally, the centre of projection (COP) is defined by a projection reference point (PRP).

Transform world coordinate into VRC

1. Translation of the coordinate system to the origin in homogeneous matrix form is: $\begin{bmatrix} 1 & 0 & 0 & -VRP \end{bmatrix}$

$$T = \begin{bmatrix} 1 & 0 & 0 & -VRP_x \\ 0 & 1 & 0 & -VRP_y \\ 0 & 0 & 1 & -VRP_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. Using the unit vectors of the coordinate axes, the resulting rotation matrix is: $\begin{bmatrix} u_x & u_y & u_z & 0 \end{bmatrix}$

$$R = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. Combination for the single transformation matrix (parallel):

$$M = R \cdot T = \begin{bmatrix} u_{x} & u_{y} & u_{z} & -(u_{x} \cdot VRP_{x} + u_{y} \cdot VRP_{y} + u_{z} \cdot VRP_{z}) \\ v_{x} & v_{y} & v_{z} & -(v_{x} \cdot VRP_{x} + v_{y} \cdot VRP_{y} + v_{z} \cdot VRP_{z}) \\ n_{x} & n_{y} & n_{z} & -(n_{x} \cdot VRP_{x} + n_{y} \cdot VRP_{y} + n_{z} \cdot VRP_{z}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Queen

Transform world coordinate into VRC

4. Parallel or Perspective projection:

$$P_{perspective} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \text{ or } P'_{perspective} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1/d & 1 \end{bmatrix} \text{ or } P''_{parallel} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. Combination for the single transformation matrix :

$$\begin{split} M &= P \cdot R \cdot T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix} \cdot \begin{bmatrix} u_x & u_y & u_z & -\left(u_x \cdot VRP_x + u_y \cdot VRP_y + u_z \cdot VRP_z\right) \\ v_x & v_y & v_z & -\left(v_x \cdot VRP_x + v_y \cdot VRP_y + v_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} u_x & u_y & u_z & -\left(u_x \cdot VRP_x + u_y \cdot VRP_y + u_z \cdot VRP_z\right) \\ v_x & v_y & v_z & -\left(v_x \cdot VRP_x + u_y \cdot VRP_y + u_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot VRP_y + n_z \cdot VRP_z\right) \\ n_x & n_y & n_z & -\left(n_x \cdot VRP_x + n_y \cdot$$

or $M' = P' \cdot R \cdot T$ (perspective projection with origin in the view plane) or $M'' = P'' \cdot R \cdot T$ (parallel projection)

Queen Mary University of London

More Direct Method: Eye to Look-at

Specify

- the eye point → a point the camera is located in world space
- the lookat point

 a point in world space that we wish to become the center of view
- the up vector → a vector in world space that we wish to point up in camera image

View Volume and 3D Clipping

Exercise

What kind of projection is represented in the matrix below? Justify your answer.

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

Question

What happens to a projected object when the Centre of Projection is pushed further away from the projection plane?

Question

Is "isometric view" a special case of perspective projection? Justify your answer.

What did we learn?

- Taxonomy of projections
- Parallel projection
- Perspective projection

