BRIAN MRI SEGEMENTATION

WITH DIFFERRENT ENCODERS

Semantic Segmentation

Assigns a class label to each pixel in an image

Brain MRI Semantic Segmentation

Data source: https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation

Training set: 2828

Validation set: 393

Test set: 708

Total: 3929

This dataset contains brain MRI images together with manual FLAIR abnormality segmentation masks.

Brain MRI Semantic Segmentation

Unet

- A CNN architecture specifically designed for biomedical image segmentation
- Symmetric U-shaped structure with contracting and expanding paths
- Enable precise localization and high-resolution feature mapping

Different encoders

- Generic Unet(no pretained encoders)
- VGG16 (retrain all layer)
- ResNet50 (retrain all layer)
- ResNet50 (freeze first two conv blocks)

- Both metrics have values between 0 and 1, where a score of 1 indicates a perfect match between the predicted and ground truth masks.
- The subtle difference between them is that the dice score tends to veer towards the average performance.
 Whereas the IOU helps one understand worst case performance.
- In practice, they're often both used.

Metrics

Prediction

Prediction

Dice =
$$\frac{2 \, X \, Area \, of \, overlap}{Total \, area} = \frac{2 \, x}{Total \, area}$$

Prediction

Ground truth

Ground truth

Unet

VGG 16

VGG 16

ResNet 50

- Has residual connections (also known as skip connections)
- residual connections allow the network to learn residual mappings, bypassing certain layers and enabling the flow of gradients throughout the network.
- Allows for much deeper networks without a decrease in accuracy

ResNet50 fine tuning

Feature Maps

ResNet50 frezee first two conv blocks

IoU Comparision

Unet

ResNet50
finetuning

0.6
0.5
0.5
0.4
0.3

VGG

ResNet50 freeze

Performance Comparision

	unet	vgg16	resnet50	partial_resnet50
Loss	0.000714	0.001196	0.000690	0.002926
Binary_Accuracy	0.998279	0.997081	0.998334	0.993751
IoU	0.703022	0.639999	0.732958	0.468088
Dice_Coefficient	0.999286	0.998804	0.999310	0.997074

Mask Visualization

1/1 [=====] - 0s 29ms/step

Conclusion

- Unet and ResNet50 (retrain all layer) gave better results
- ResNet50 (retrain all layer) converge faster then Unet, so the pretrained weights helped
- ResNet50 (freeze first two conv blocks) gave the worst result, so the pretrained weights that was trained on ImageNet classification task didn't work well on medical image segmentation.

What's next

- Increse training epoches of Unet and ResNet50 (retrain all layer) to improve the results
- Try cyclical leanring rate to fasten training and improve model performance
- Find pretrained models that were trained on medical images, then use the pretrained weights to do transfer learning