Understanding and Overcoming Common Problems in Data Modeling

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Identifying and mitigating common biases

Overfitted models

Bias/variance trade-off

Evaluating models using accuracy, precision, and recall

Understanding the ROC curve

Overfitting and Preventing Overfitting

Challenge: Find the "best" curve through these points

Good Fit?

A curve has a "good fit" if the distances of points from the curve are small

We could draw a pretty complex curve

We can even make it pass through every single point

But given a new set of points, this curve might perform quite poorly

The original points were "training data", the new points are "test data"

Overfitting

Great performance in training, poor performance in real usage

A simple straight line performs worse in training, but better with test data

Overfitting

Low Training Error

Model does very well in training...

High Test Error

...but poorly with real data

Cause of Overfitting

Sub-optimal choice in the bias-variance trade-off

An overfitted model has:

- high variance error
- low bias error

Low bias

Few assumptions about the underlying data

High bias

More assumptions about the underlying data

Model too complex

Training data all-important, model parameter counts for little

Model too simple

Model parameter all-important, training data counts for little

Variance

High variance

The model changes significantly when training data changes

Low variance

The model doesn't change much when the training data changes

Variance

Model too complex

Model varies too much with changing training data

Model too simple

Model not very sensitive to training data

Bias-Variance Trade-off

Model too complex

High variance error

Model too simple
High bias error

Bias-Variance Trade-off

- High-bias algorithms: simple parameters
 - Regression
- High-variance algorithms: complex parameters
 - Decision trees
 - Dense neural networks

Preventing Overfitting

Regularization

Cross-validation

Ensemble learning

Dropout

Regularization

Penalize complex models

Add penalty to objective function

Forces optimizer to keep it simple

Cross-Validation

Distinct training and validation phases

Train different models (with training data only)

Select model that does best on validation data

"Hyperparameter tuning"

Ensemble Learning

Construct several models and then combine their outputs

Each individual model could be a relatively weak learner

Combining many weak learners can yield a strong learner

Dropout

Specialized technique used in training deep learning

Deep learning models consist of layers of interconnected neurons

Dropout involves intentionally turning off some neurons at random

Each iteration during training thus has subtly different architecture

Accuracy, Precision, Recall

The most ground-breaking applications of ML in recent years have been to classification problems

Accuracy

Compare predicted and actual labels

More matches = higher accuracy

High accuracy is good, but...

An algorithm might have high accuracy but still be a poor machine learning model

Its predictions are useless

All-is-well Binary Classifier

Here, accuracy for rare cancer may be 99.9999%, but...

Accuracy

Some labels maybe much more common/rare than others

Such a dataset is said to be skewed

Accuracy is a poor evaluation metric here

Confusion Matrix

Predicted Labels

	FI	edicted Labels	_
∧ otus!		Cancer	No Cancer
Actual	Label		
	Cancer	10 instances	4 instances
	No Cancer	5 instances	1000 instances

Confusion Matrix

Predicted Labels

Actual Label

Cancer

No Cancer

Cancer	No Cancer
10	4
5	1000

True Positive

False Positive

True Negative

Predicted Labels

False Negative

Predicted Labels

Confusion Matrix

Predicted Labels

Actual Label

Cancer

No Cancer

Predicted Labels

Actual Label

Cancer

No Cancer

Predicted Labels

Actual Label = Predicted Label

Predicted Labels

Accuracy = 99.12%

Classifier gets it right 99.12% of the time

But...

Predicted Labels

People on chemotherapy, radiation when not required

Predicted Labels

Cancer not detected, no treatment prescribed

Accuracy is not a good metric to evaluate whether this model performs well

Predicted Labels

Actual Label

Cancer

No Cancer

Predicted Labels

Precision = Accuracy when classifier flags cancer

Predicted Labels

Precision = 66.67%

1 in 3 cancer diagnoses is incorrect

Predicted Labels

Actual Label

Cancer

No Cancer

Predicted Labels

Recall = Accuracy when cancer actually present

Predicted Labels

Actual Label	Cancer	No Cancer	
Cancer	10 TP	4	FN
No Cancer	FP 5	1000	TN
Reca		$- = \frac{10}{14} =$	71.42%

Recall = 71.42%

2 in 7 cancer cases missed

The ROC Curve

The Logistic Regression S-curve

"Always Negative"

Pthreshold = 1

- Recall = 0%
- Precision = Infinite
- Classifier too conservative

Precision vs. "Conservativeness"

"Always Positive"

 $P_{threshold} = 0$

- Recall = 100%
- Precision = 14/1019 = 13.7%
- Classifier not conservative enough

Recall vs. "Conservativeness"

Precision-Recall Tradeoff

Precision-Recall Tradeoff

Heuristics to Choose a Model

F1 Score

Harmonic mean of precision and recall

ROC Curve

Plot a curve to maximize true positives, minimize false positives

Heuristics to Choose a Model

F1 Score

Harmonic mean of precision and recall

ROC Curve

Plot a curve to maximize true positives, minimize false positives

F₁ Score

Precision x Recall

$$F_1 = 2 \times$$

Precision + Recall

- Harmonic mean of precision, recall
- Closer to lower of two
- Favors even tradeoff

Heuristics to Choose a Model

F1 Score

Harmonic mean of precision and recall

ROC Curve

Plot a curve to maximize true positives, minimize false positives

False Positive Rate

False Positive Rate

False Positive Rate

ROC Curve

Demo

Build and train a classification model for cancer detection

Summary

Identifying and mitigating common biases

Overfitted models

Bias/variance trade-off

Evaluating models using accuracy, precision, and recall

Understanding the ROC curve