Organisasi Sistem Komputer

Bagian 11 Virtual Memory

Pembahasan

- Fungsi virtual memory
- Penerjemah (translasi) alamat pada virtual memory
- Mempercepat translasi dengan TLB
- Sistem memori sederhana

Fungsi Virtual Memory (VM)

Virtual Memory (VM) memiliki tiga fungsi penting:

- 1. Sebagai perangkat cache
 - VM memanfaatkan memori utama (DRAM) lebih efisien dengan memperlakukannya sebagai cache alamat yang tersimpan dalam disk
 - Memori utama hanya menyimpan data yang aktif
 - VM melakukan transfer data antara disk dan memori seperlunya saja
- 2. Sebagai perangkat manajemen memori
 - VM menyederhanakan manajemem memori dengan melakukan teknik pengalamatan yang seragam untuk setiap proses
 - Pengalamatan disk, memori, cache dilakukan secara uniform
- 3. Sebagai perangkat untuk memproteksi memori
 - VM melindungi alokasi alamat setiap proses terhadap gangguan
 - Suatu proses tidak dapat diganggu oleh proses lain.
 - Proses tidak dapat mengakses informasi yang bukan hak-nya
 - Setiap alokasi alamat memiliki hak yang berbeda-beda

Pengalamatan secara Fisik

- Disebut 'physical addressing'
- Alamat yang dihasilkan CPU menunjukkan langsung lokasi byte dalam memori secara fisik
- Digunakan pada :
 - mesin Cray
 - PC generasi pertama
 - sistem embedded pada umumnya

Sistem dengan Virtual Memory

Penerjemahan/translasi alamat (address translation): berbentuk perangkat keras yang mengkonversi alamat virtual menjadi alamat fisik menggunakan page table Memori (look-up table), dikendalikan oleh sistem operasi 0: **Page Table Alamat** Alamat virtual fisik **CPU** P₋1 Digunakan pada server, M-1 workstation dan PC modern Disk

Address Space

Address space adalah kumpulan alamat-alamat yang letaknya berurutan

```
\{0, 1, 2, \dots\}
```

Pada sistem dengan virtual memory, CPU menghasilkan alamat virtual dari address space N = 2ⁿ alamat, disebut virtual address space

```
{0, 1, 2, ..., N-1}
```

Sistem juga memiliki physical address space yang merupakan memori fisik sebesar M byte

```
\{0, 1, 2, \dots, M-1\}
```

1. VM: Perangkat Caching

- Ukuran seluruh address space sangat besar :
 - Bus alamat 32-bit : dapat mengalamati ~4,000,000,000 (4 milyar) byte
 - Bus alamat 64-bit : ~16,000,000,000,000,000,000 (16 quintilliun) byte
- Harga Harddisk kira-kira 300 kali lebih murah dari DRAM
 - 80 GB DRAM: ~ \$33,000
 - 80 GB harddisk: ~ \$110
- Agar data berukuran besar dapat diakses secara murah, maka data tersebut harus disimpan dalam disk, sementara data yang sedang aktif saja yang disimpan dalam DRAM/SRAM

DRAM vs SRAM sebagai Cache

- DRAM vs. disk lebih ekstrim dari SRAM vs. DRAM
 - Waktu akses :
 - DRAM ~10X lebih lambat SRAM
 - Disk ~100,000X lebih lambat DRAM
 - Pentingnya spatial locality:
 - Byte pertama ~100,000X lebih lambat dari byte yang berurutan pada disk
 - Pertimbangan desain cache menggunakan DRAM harus memperhatikan 'cost' yang timbul akibat miss

SRAM Cache

- Tag disimpan bersama baris cache
- Memetakan dari blok cache ke blok memori
 - Dari bentuk cached ke uncached
- Tag tidak ada bila blok tidak ada dalam cache

DRAM Cache

- Setiap page yang dialokasikan oleh virtual memory memiliki entry pada page table
- Memetakan virtual page ke physical page
 - Dari bentuk uncached menjadi bentuk cached
- Page table entry tetap ada walaupun page belum ada di memori
 - Menunjukkan alamat pada disk

DRAM Cache

- Jika suatu obyek berada dalam disk, bukan di memori, maka :
 - Page table entry memperlihatkan alamat virtual tidak ada di memori
 - OS exception handler melakukan pemindahan data dari disk ke memori

2. VM: Manajemen Memori

- Beberapa proses dapat tersimpan secara bersamaan dalam memori
- Masalah akan timbul bila dua proses mengakses alamat yang sama
 - Konflik alamat tersebut harus diatasi

Solusi: Pisahkan Alamat Virtual

- Ruang alamat virtual dan fisik dibagi menjadi beberapa blok berukuran sama
 - Block disebut "pages" (virtual dan fisik)
- Setiap proses memiliki ruang alamat virtual sendiri
 - Sistem operasi mengendalikan konversi virtual pages ke memori fisik

3. VM: Proteksi Memori

- Page table entry berisi informasi tentang hak akses
 - Proteksi dilakukan secara hardware

Translasi Alamat (Address Translation) Virtual Memory

Translasi Alamat: HIT

Translasi Alamat: MISS

Translasi Alamat VM

Parameters

- $P = 2^p = page size (byte)$
- $Arr N = 2^n = batas alamat virtual$
- $M = 2^m = batas alamat fisik$

Page Table

Operasi Page Table

Operasi Page Table

Translasi

- Pisahkan page tabel per proses
- VPN membentuk indeks pada page table (menunjukkan page table entry)

Menghitung alamat fisik

- Page Table Entry (PTE) memberikan informasi tentang page
 - Jika bit valid =1, maka page berada dalam memori, gunakan physical page number (PPN) untuk mengkonstruksi alamat
 - Jika bit valid = 0, maka page berada dalam disk (page fault)

Cek proteksi

- Cek 'right access' untuk menentukan akses yang diijinkan
 - Read-only, read-write, executy only

Integrasi VM dan Cache

- Cache diakses menggunakan alamat fisik
- Translasi alamat dilakukan sebelum cache lookup

Percepat Translasi dengan TLB

- **♣** TLB = Translation Lookaside Buffer
 - Berbentuk perangkat keras cache yang terletak dalam MMU
 - Memetakan virtual page number (VPN) menjadi physical page number (PPN)
 - Dapat menggantikan page table dalam ukuran yang lebih kecil

Translasi Alamat dengan TLB

Contoh Sistem Memori Sederhana

Pengalamatan

- 14-bit alamat virtual (virtual address)
- 12-bit alamat fisik (physical address)
- Page size = 64 byte = 2⁶

Page Table

VPN	PPN	Valid	VPN	PPN	Valid
00	28	1	80	13	1
01	_	0	09	17	1
02	33	1	OA	09	1
03	02	1	OB	1	0
04	1	0	OC	_	0
05	16	1	0D	2D	1
06	1	0	0E	11	1
07	_	0	OF	0D	1

Tabel di atas hanya menampilkan 16 entry pertama (total 256 entry)

TLB

- 16 entries
- 4-way associative

Set	Tag	PPN	Valid									
0	03	1	0	09	0D	1	00	ı	0	07	02	1
1	03	2D	1	02	1	0	04	1	0	OA	1	0
2	02	-	0	08	1	0	06	ı	0	03	1	0
3	07	_	0	03	0D	1	OA	34	1	02	_	0

Cache

- 16 lines
- 4-byte line size
- Direct mapped

ldx	Tag	Valid	В0	B1	B2	В3	ldx	Tag	Valid	В0	B1	B2	В3
0	19	1	99	11	23	11	8	24	1	3A	00	51	89
1	15	0	1	1	1	1	9	2D	0	-	1	1	_
2	1B	1	00	02	04	80	Α	2D	1	93	15	DA	3B
3	36	0	1	1	1	1	В	0B	0	-	1	1	_
4	32	1	43	6D	8F	09	С	12	0	_	1	1	_
5	0D	1	36	72	FO	1D	D	16	1	04	96	34	15
6	31	0		1		_	E	13	1	83	77	1B	D3
7	16	1	11	C2	DF	03	F	14	0	_	-	_	29 –

Translasi Alamat (1)

♣Alamat virtual 0x03D4

VPN ___ TLBI ___ TLBT ___ TLB Hit? __ Page Fault? __ PPN: ___

♣Alamat fisik

Translasi Alamat (1)

♣Alamat virtual 0x03D4

VPN:OxOF TLBI:OxO3 TLBT:OxO3 TLB Hit?:Y Page Fault?:N PPN:OxOD

♣Alamat fisik

Offset:0x00 CI:0x05 CT:0x0D Hit?:Y Byte:0x36

Translasi Alamat (2)

♣Alamat virtual 0x0B8F

VPN ___ TLBI ___ TLBT ___ TLB Hit? __ Page Fault? __ PPN: ___

♣Alamat fisik

