Insurance Charges Prediction

Problem Statement:

To predict the Insurance charges based on the various parameters as per the given dataset.

About DataSet:

Dataset consists 6 columns and 1338 rows

5 columns are the Inputs (age, sex, bmi, children, smoker)

1 column is the Output (charges)

Domain:

Machine Learning (Since datasets are numbers)

Learning:

Supervised Learning

Requirements are clear

Both I/P's and O/P's are present in the dataset

It is Regression since the O/P values are continuous values.

PreProcessing

Nominal values needs to be converted (One Hot Encoding)

Sex and Smoker inputs are preprocessed like sex_male (1 means Male & 0 means Female) & smoker_yes (1 means smoker & 0 means non smoker)

Various Algorithm Outputs

> Support Vector Machine

SVM						
Hyper Parameter	Linear	RBF	POLY	Sigmoid		
C10	0.4624	-0.0322	0.03871	0.0393		
C100	0.6288	0.32	0.6179	0.5276		
C500	0.7631	0.6642	0.8263	0.4446		
C1000	0.7649	0.8102	0.8566	0.2874		
C2000	0.744	0.8547	0.8605	-0.5939		
C3000	0.7414	0.8663	0.8598	-2.1244		

Decision Tree

Decision Tree					
Criterion	Max_features	Splitter	R Score		
squared_error	sqrt	best	0.6665		
squared_error	sqrt	random	0.6499		

squared_error	log2	best	0.7764
squared_error	log2	random	0.6465
friedman_mse	sqrt	best	0.7225
friedman_mse	sqrt	random	0.7233
friedman_mse	log2	best	0.7336
friedman_mse	log2	random	0.6542
absolute_error	sqrt	best	0.6666
absolute_error	sqrt	random	0.6264
absolute_error	log2	best	0.7237
absolute_error	log2	random	0.6742
poisson	sqrt	best	0.6698
poisson	sqrt	random	0.6654
poisson	log2	best	0.7304
poisson	log2	random	0.6803

Random Forest

Random Forest						
n_estimators	criterion	max_features	random_state	r_score		
10	squared_error	sqrt	0	0.852		
50	squared_error	sqrt	0	0.8695		
100	squared_error	sqrt	0	0.871		
10	squared_error	log2	0	0.852		
50	squared_error	log2	0	0.8695		
100	squared_error	log2	0	0.871		
10	absolute_error	sqrt	0	0.8574		
50	absolute_error	sqrt	0	0.8708		
100	absolute_error	sqrt	0	0.871		
10	absolute_error	log2	0	0.8574		
50	absolute_error	log2	0	0.8708		
100	absolute_error	log2	0	0.871		
10	friedman_mse	sqrt	0	0.8502		
50	friedman_mse	sqrt	0	0.8702		
100	friedman_mse	sqrt	0	0.871		
10	friedman_mse	log2	0	0.8502		
50	friedman_mse	log2	0	0.8702		
100	friedman_mse	log2	0	0.871		
10	poisson	sqrt	0	0.8544		
50	poisson	sqrt	0	0.8632		
100	poisson	sqrt	0	0.868		
10	poisson	log2	0	0.8544		
50	poisson	log2	0	0.8632		
100	poisson	log2	0	0.868		

Result:

Maximum R² value is 0.871 in Random Forest (No of estimators 100 with squared_error, absolute_error & friedman_mse with both log2 & sqrt). We can go with any of these 6 models.