Electronic Supplementary Material:

Effects of *Bromus tectorum* invasion on microbial carbon and nitrogen cycling in two adjacent undisturbed arid grassland communities

Sean M. Schaeffer*^{1,2}, Susan E. Ziegler³, Jayne Belnap⁴, and R.D. Evans¹

¹Washington State University, School of Biological Sciences and Laboratory for Biotechnology and Bioanalysis Stable Isotope Core, Pullman, Washington 99164-4236 USA

²University of Arkansas Stable Isotope Laboratory, University of Arkansas, School of Biological Sciences, Fayetteville, Arkansas 72701 USA

³Memorial University, Department of Earth Sciences, St. John's, Newfoundland A1B 3X5 Canada

⁴United States Geological Survey, Biological Resources Division, 2290 S Resource Boulevard, Moab, Utah 84532 USA

Correspondence to:
Sean Schaeffer
Department of Ecology, Evolution, and Marine Biology
University of California, Santa Barbara
Santa Barbara, CA 92106 USA

Phone: 805-893-4543 Fax: 805-893-4724

Email: sschaeffer@lifesci.ucsb.edu

Figure 1. Relationship between resin-extractable N and precipitation. Panels a) and b) show resin-extractable N in the C_3 grassland soils versus a) total precipitation (mm), and b) precipitation normalized for the amount of time a given resin bag was in the ground (mm d⁻¹). The same are shown for the C_4 grassland soils in panels c) and d). Error bars represent the standard error of the mean. In general, wetter conditions lead to greater N release from soils.

Figure 2. a) Cumulative N mineralized and b) CO_2 evolved over the course of the long-term incubation of soils. Asterix (*) denote significantly different (P < 0.05) means. Error bars represent the standard error of the mean.