## Отчёт по лабораторной работе №2

Сетевые технологии

Бызова Мария Олеговна

# Содержание

| 1 | Цель работы                                      |    |  |  |  |
|---|--------------------------------------------------|----|--|--|--|
| 2 | Задание                                          |    |  |  |  |
| 3 | Выполнение лабораторной работы 3.1 Первая модель | 9  |  |  |  |
|   | 3.2 Вторая модель                                |    |  |  |  |
| 4 | Выводы                                           | 12 |  |  |  |

# Список иллюстраций

| 2.1 | Варианты заданий.                                            | 6 |
|-----|--------------------------------------------------------------|---|
| 2.2 | Топология сети.                                              | 7 |
| 2.3 | Предельно допустимый диаметр домена коллизий в Fast Ethernet | 7 |
| 2.4 | Временные задержки компонентов сети Fast Ethernet            | 8 |

## Список таблиц

## 1 Цель работы

Целью данной работы является изучение принципов технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

## 2 Задание

Требуется оценить работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями. Конфигурации сети приведены на рис. 1.1 (рис. 2.1) Топология сети представлена на рис. 1.2 (рис. 2.2):

| No | Сегмент 1 | Сегмент 2 | Сегмент 3 | Сегмент 4 | Сегмент 5 | Сегмент 6 |
|----|-----------|-----------|-----------|-----------|-----------|-----------|
| 1. | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  |
|    | ТХ, 96 м  | ТХ, 92 м  | ТХ, 80 м  | ТХ, 5 м   | ТХ, 97 м  | ТХ, 97 м  |
| 2. | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  |
|    | ТХ, 95 м  | ТХ, 85 м  | ТХ, 85 м  | ТХ, 90 м  | ТХ, 90 м  | ТХ, 98 м  |
| 3. | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  |
|    | ТХ, 60 м  | ТХ, 95 м  | ТХ, 10 м  | ТХ, 5 м   | ТХ, 90 м  | ТХ, 100 м |
| 4. | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  |
|    | ТХ, 70 м  | ТХ, 65 м  | ТХ, 10 м  | ТХ, 4 м   | ТХ, 90 м  | ТХ, 80 м  |
| 5. | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  |
|    | ТХ, 60 м  | ТХ, 95 м  | ТХ, 10 м  | ТХ, 15 м  | ТХ, 90 м  | ТХ, 100 м |
| 6. | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  | 100BASE-  |
|    | ТХ, 70 м  | ТХ, 98 м  | ТХ, 10 м  | ТХ, 9 м   | ТХ, 70 м  | ТХ, 100 м |

Рисунок 2.1: Варианты заданий.



Рис. 2.4. Топология сети

Рисунок 2.2: Топология сети.

| Тип повторителя                                | Все сегменты<br>ТХ или Т4 | Все сегменты<br>FX | Сочетание<br>сегментов<br>(Т4 и ТХ/FX) | Сочетание<br>сегментов<br>(ТХ и FX) |
|------------------------------------------------|---------------------------|--------------------|----------------------------------------|-------------------------------------|
| Сегмент, соединяющий два узла без повторителей | 100                       | 412,0              | _                                      | _                                   |
| Один повтори-<br>тель класса I                 | 200                       | 272,0              | 231,0                                  | 260,8                               |
| Один повтори-<br>тель класса II                | 200                       | 320,0              | _                                      | 308,8                               |
| Два повторителя класса II                      | 205                       | 228,0              | _                                      | 216,2                               |

Рисунок 2.3: Предельно допустимый диаметр домена коллизий в Fast Ethernet.

| Компонент                                       | Удельное время двойно-<br>го оборота (би/м) | Максимальное время<br>двойного оборота (би) |
|-------------------------------------------------|---------------------------------------------|---------------------------------------------|
| Пара терминалов TX/FX                           | _                                           | 100                                         |
| Пара терминалов Т4                              | _                                           | 138                                         |
| Пара терминалов Т4 и ТХ/FX                      | -                                           | 127                                         |
| Витая пара категории 3                          | 1,14                                        | 114 (100 м)                                 |
| Витая пара категории 4                          | 1,14                                        | 114 (100 м)                                 |
| Витая пара категории 5                          | 1,112                                       | 111,2 (100 м)                               |
| Экранированная витая пара                       | 1,112                                       | 111,2 (100 м)                               |
| Оптоволокно                                     | 1,0                                         | 412 (412 м)                                 |
| Повторитель класса I                            | -                                           | 140                                         |
| Повторитель класса II, имеющий порты типа ТХ/FX | -                                           | 92                                          |
| Повторитель класса II, имеющий порты типа Т4    | -                                           | 67                                          |

Рисунок 2.4: Временные задержки компонентов сети Fast Ethernet.

# 3 Выполнение лабораторной работы

Для каждого из 6 вариантов конфигурации сети мне необходимо проверить два условия:

По первой модели (на основе диаметра): Сумма длин всех сегментов между двумя самыми удалёнными узлами не должна превышать предельно допустимый диаметр для вашей конфигурации.

По второй модели (на основе времени двойного оборота): Суммарная задержка сигнала на наихудшем пути не должна превышать 512 битовых интервалов (би).

### 3.1 Первая модель

Из Рис. 2.4 в методичке видно, что топология сети для всех вариантов одинаковая: есть два повторителя класса II, между ними соединительный сегмент, от повторителей отходят сегменты к узлам (Узел1, Узел2, Узел3, Узел4, Узел5). Поскольку во всех вариантах используется только витая пара типа 100ВАЅЕ-ТХ, мы смотрим на столбец «Все сегменты ТХ или Т4». Предельный диаметр для нашей конфигурации: 205 метров.

#### Вариант 1:

Сегменты: 96 м, 92 м, 80 м, 5 м, 97 м, 97 м Наихудший путь: Один из сегментов 96 м (на 1-м повторителе) + Сегмент 4 (5 м) + один из сегментов 97 м (на 2-м повторителе). Расчет: 96 + 5 + 97 = 198 м Оценка: 198 м < 205 м. Удовлетворяет.

#### Вариант 2:

Сегменты: 95 м, 85 м, 85 м, 90 м, 90 м, 98 м Наихудший путь: Самый длинный сегмент на 1-м повторителе (95 м) + Сегмент 4 (90 м) + самый длинный сегмент на 2-м повторителе (98 м). Расчет: 95 + 90 + 98 = 283 м Оценка: 283 м > 205 м. Не удовлетворяет

#### Вариант 3:

Сегменты: 60 м, 95 м, 10 м, 5 м, 90 м, 100 м Наихудший путь: Самый длинный сегмент на 1-м повторителе (95 м) + Сегмент 4 (5 м) + самый длинный сегмент на 2-м повторителе (100 м). Расчет: 95 + 5 + 100 = 200 м Оценка: 200 м < 205 м. Удовлетворяет

#### Вариант 4:

Сегменты: 70 м, 65 м, 10 м, 4 м, 90 м, 80 м Наихудший путь: Самый длинный сегмент на 1-м повторителе (70 м) + Сегмент 4 (4 м) + самый длинный сегмент на 2-м повторителе (90 м). Расчет: 70 + 4 + 90 = 164 м Оценка: 164 м < 205 м. Удовлетворяет Вариант 5:

Сегменты: 60 м, 95 м, 10 м, 15 м, 90 м, 100 м Наихудший путь: Самый длинный сегмент на 1-м повторителе (95 м) + Сегмент 4 (15 м) + самый длинный сегмент на 2-м повторителе (100 м). Расчет: 95 + 15 + 100 = 210 м Оценка: 210 м > 205. Не удовлетворяет

#### Вариант 6:

Сегменты: 70 м, 98 м, 10 м, 9 м, 70 м, 100 м Наихудший путь: Самый длинный сегмент на 1-м повторителе (98 м) + Сегмент 4 (9 м) + самый длинный сегмент на 2-м повторителе (100 м). Расчет: 98 + 9 + 100 = 207 м Оценка: 207 м > 205 м. Не удовлетворяет

## 3.2 Вторая модель

Условие: Суммарное время двойного оборота (RTD) для наихудшего пути должно быть  $\leq 512$  битовых интервалов (би).

Формула для расчета:

RTD = (Задержка пары терминалов) + (Задержки всех повторителей) + (Сумма длин сегментов на пути \* Удельное время)

Значения из таблиц:

Пара терминалов ТХ/FX: 100 би

Повторитель класса II (порты TX/FX): 92 би (за один). У нас два повторителя, поэтому 92 \* 2 = 184 би

Удельное время двойного оборота для витой пары Cat 5 (100BASE-TX): 1,112 би/м Итоговая формула с учётом страхового запаса:

$$RTD = 100 + 184 + (L_total * 1.112) + 4$$

$$RTD = 288 + (L_total * 1.112)$$

Вариант 1:

 $L_{total} = 96 + 5 + 97 = 198$  м Расчет: 288 + (198 \* 1.112) = 288 + 220.176 = 508.176 би Оценка: 508.176 би < 512 би. Удовлетворяет

Вариант 2:

 $L_{total} = 95 + 90 + 98 = 283$  м Расчет: 288 + (283 \* 1.112) = 288 + 314.696 = 602.696 би Оценка: 602.696 би > 512 би. Не удовлетворяет

Вариант 3:

 $L_{total} = 95 + 5 + 100 = 200$  м Расчет: 288 + (200 \* 1.112) = 288 + 222.4 = 510.4 би Оценка: 510.4 би < 512 би. Удовлетворяет

Вариант 4:

 $L_{total} = 70 + 4 + 90 = 164$  м Расчет: 288 + (164 \* 1.112) = 288 + 182.368 = 470.368 би Оценка: 470.368 би < 512 би. Удовлетворяет

Вариант 5:

 $L_{total} = 95 + 15 + 100 = 210$  м Расчет: 288 + (210 \* 1.112) = 288 + 233.52 = 521.52 би Оценка: 521.52 би > 512 би. Не удовлетворяет

Вариант 6:

 $L_{total} = 98 + 9 + 100 = 207$  м Расчет: 288 + (207 \* 1.112) = 288 + 230.184 = 518.184 би Оценка: 518.184 би > 512 би. Не удовлетворяет

## 4 Выводы

В ходе выполнения лабораторной работы мы изучили принципы технологий Ethernet и Fast Ethernet и практически освоили методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet.