# RMS TITANIC: Machine learning from disaster

Profielwerkstuk Wiskunde D 7 februari 2019 Myrthe Boone 6E



### Doodle

https://quickdraw.withgoogle.com/

# Inhoudsopgave

- ► Introductie
- Wat is machine learning?
- Mijn onderzoek
  - Algoritmes
  - ► Hoofd- en deelvragen
- Resultaten
- Conclusie
- Discussie
- Afsluiting

# Waarom dit onderwerp?

- ▶ Meer weten over machine learning en programmeren in Python
- Machine learning is overal om ons heen
- Organiseren en analyseren van de werkelijkheid
- ► TU Eindhoven

#### Titanic

- Voorspellen welke groep passagiers een grotere kans had om te overleven.
- 'Vrouwen en kinderen eerst' beleid
- ► Geluk, geslacht, leeftijd, klasse en prijs betaald voor een ticket



Figure: Deck Titanic

# Machine learning

- Zonder specifiek geprogrammeerd te zijn voor de taken
- ► Voorbeeld: spam emails, Google zoekopdrachten



### Soorten machine learning

- Supervised, unsupervised en reinforcement learning
- Unsupervised: Correcte labels zijn niet gegeven
- Supervised: Computer weet welke categorieën er zijn
- Supervised learning kan ingedeeld worden in regression en classification

### Types of Machine Learning



Figure: Machine learning

## Soorten machine learning

Classification: categorieën

▶ Regression: continue variabelen



Figure: Classification vs. Regression

# Soorten machine learning

- Titanic is supervised learning
- Binary classification
- ▶ 1 = overleefd
- ▶ 0 = niet overleefd

## Werkplan

- ▶ We splitsen onze dataset in een training en een test set
- ▶ We trainen / fitten ons model op de training set
- We voorspellen op de test set
- Dus we gebruiken de gegevens van de passagiers (leeftijd, geslacht, prijs betaald voor een ticket, klasse)

## Logistic Regression

- Gebaseerd op de logistische functie
- Grenswaarde p > 0.5, passagier heeft het overleefd

$$\sigma(y) = \frac{e^y}{1 + e^y} \tag{1}$$

▶ Vier variabelen dus *y* is in dit geval:

$$y = a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 + b + \varepsilon_i$$
 (2)



## Hoofd- en deelvragen

- ▶ Is het mogelijk een nauwkeurige voorspelling te maken of de passagiers aan boord van de Titanic het hebben overleefd met behulp van informatie over geslacht, klasse, leeftijd en prijs betaald voor een ticket?
  - ▶ Wat is de invloed van geslacht op de overlevingskans?
  - Wat is de invloed van klasse op de overlevingskans?
  - Wat is de invloed van leeftijd op de overlevingskans?
  - Wat is de invloed van prijs betaald voor een ticket op de overlevingskans?

#### Dataset verkennen

▶ Begonnen met plots maken, dataset ontdekken



Figure: Plot van reisklasse

#### Resultaten

- Coëfficiënten
- ▶ Wat vertellen ze ons?

#### Resultaten

- Coëfficiënt behorend bij leeftijd is negatief
- Coëfficiënt behorend bij ticketprijs is positief
- Geslacht coëfficiënt negatief (dummy)

```
array([[ 0.07374214, 0.00377371, -0.00684224, -2.0694906 ]])
```

Table 7: The mean of Fare, Age and male\_dummy grouped by I

|        | Fare      | Age       | male_dummy |
|--------|-----------|-----------|------------|
| Pclass |           |           |            |
| 1      | 88.683228 | 37.591266 | 0.531646   |
| 2      | 18.444447 | 25.266667 | 0.400000   |
| 3      | 11.027500 | 21.000000 | 0.500000   |

#### Conclusie

- ▶ Het is mogelijk een voorspelling te maken
- Vrouwen hadden een voordeel t.o.v. mannen
- ▶ Jongere passagiers hadden een voordeel t.o.v. oudere
- Passagiers die een hogere ticketprijs hadden betaald hadden voordeel t.o.v. zij die minder betaalden

### Discussie

- ▶ Blijft een ongeluk: toeval, geluk, corruptie etc.
- Meer variabelen
- Nauwkeurigheid?
- Invloed variabelen onderling



# Afsluiting

Zijn er nog vragen?