Survey: Challenges in Deploying Machine Learning: a Survey of Case Studies

1. INTRODUCTION

ML in business processes grows 25 percent year-over-year growth.

Significant differences between what works in an academic setting and what is required by a real-world system.

8 and 90 days to deploy a single model, and 18% taking even more time

Significant portion of their attempted AI deployments fail, quoting

- lack of expertise,
- bias in data,
- high costs

In our survey, three main types of papers are considered.

- Case studies,
- Rewiev papers,
- Lessons learned

2. ML DEVELOPMENT WORKFLOW Ashmore et. al.

2. ML DEVELOPMENT WORKFLOW Ashmore et. al.

Deployment Stage	Deployment Step	Considerations, Issues and Concerns
Data	Data collection	Data discovery
Management	Data preprocessing	 Data dispersion
		 Data cleaning
	Data augmentation	 Labeling of large volumes of data
		 Access to experts
		 Lack of high variance data
	Data analysis	Data profiling
Model	Model selection	 Model complexity
Learning		 Resource-constrained
		environments
		 Interpretability of the model
	Training	 Computational cost
		 Environmental impact
		 Privacy-aware training
	Hyper-parameter	 Resource-heavy techniques
	selection	 Unknown search space
		 Hardware-aware optimization
Model	Requirement encoding	 Performance metrics
Verification		 Business driven metrics
	Formal verification	 Regulatory frameworks
	Test-based verification	 Simulation-based testing
		 Data validation routines
		• Edge case testing

Deployment Stage	Deployment Step	Considerations, Issues and Concerns
Model Deployment	Integration	 Operational support Reuse of code and models Software engineering antipatterns Mixed team Dynamics
	Monitoring	Feedback loopsOutlier detectionCustom design tooling
	Updating	Concept driftContinuous delivery
Cross-cutting aspects	Ethics	Aggravation of biasesFairness and accountabilityAuthorshipDecision making
	Law	Country-level regulationsAbiding by existing legislationFocus on technical solution only
	End user trust	Involvement of end usersUser experienceExplainability score
	security	Data poisoningModel stealingModel inversion

Consequently, this stage consumes time and energy that is often not anticipated beforehand.

Deployment Stage	Deployment Step	Considerations, Issues and Concerns
Data Management Data collection Data preprocessing Data augmentation Data analysis	Data discovery	
	Data preprocessing	Data dispersionData cleaning
	Data augmentation	 Labeling of large volumes of data Access to experts Lack of high variance data
	Data analysis	Data profiling

3.1. Data Collection

Finding data sources and **understanding their structure** is a major task, which may prevent data scientists from even getting started on the actual application development.

Photo: eventsget.com

Photo: questionpro.com

3.2. Data Preprocessing

Data dispersion

Multiple data sources with:

- Different **schemas**
- Different conventions
- Different ways of storing and accessing data
- Data cleaning

Multiple data sources with:

- Identification of a **schema**
- Imputation
- **Reduction** of data

3.3. Data Augmentation

In Survey:

Real-world data is often **unlabeled** because of:

- limited access to experts,
 - Medical Image analysis
- Absence of high variance data,
 - Especially for Reinforcement Learning (RL)
- Sheer volume
 - Network Domain. Two ways of collection data:
 - Uncontrolled, collecting real traffic,
 - Controlled, emulating or generatic traffic.

In Google:

Data Augmentation

Original Image

Augmented Images

Photo: javatpoint.com

3.4. Data Analysis

Biggest challange: **Data visualisation**

- There are still too few tools for this.
- data issues are the main reason to doubt the quality of the overall work.

Photo: boostlabs.com

Deployment Stage	Deployment Step	Considerations, Issues and
		Concerns
Model Learning	Model selection	 Model complexity Resource-constrained environments Interpretability of the model
	Training	Computational costEnvironmental impactPrivacy-aware training
	Hyper-parameter selection	Resource-heavy techniquesUnknown search spaceHardware-aware optimization

4.1 Model Selection

Maind tradeoff: High accuracy vs low complexity(simpler models)

In practice, **simpler models are often** choosen such as **Shallow NN, PCA, DT, Random Forests.** Simpler models ease the followings:

- proving concept,
- end-to-end solution time,
- moderate hardware
- Interpretability

Some domains using simpler models

- Wireless cellular networks: Limited energy, memory, and data transmission
- Banking Industry: Interpretability
- UAV: Requires complex models but computatiaonal resource demands still blocks online processing.

4.2 Model Training

- Costs:
 - Economic costs
 - Computational resources required
 Often true in NLP
- Environmental Impacts:

ML model training is driving up **energy consumption** and greenhouse **gas emissions.**

Privacy Aware Training:

Two concerns:

- Privacy of data
- Preservation of sensitive data.

Tradeoff between privacy and utility.

- There are two methods to overcome this tradeoff:
 - Homomorphic encyrpition
 - Federated learning

4.3 Hyper-Parameter Selection

Computationally challenging because size of the HPO task grows **exponentially**.

 Hardware-aware ML: One needs to be aware of energy and memory constraints imposed by mobile and embedded devices.

5. MODEL VERIFICATION

Deployment Stage	Deployment Step	Considerations, Issues and Concerns
Model Verification	Requirement encoding	Performance metricsBusiness driven metrics
	Formal verification	 Regulatory frameworks
	Test-based verification	Simulation-based testingData validation routinesEdge case testing

5. MODEL VERIFICATION

5.1. Requirement Encoding

Increase in model performance does not translate into a gain in business value.

- > Additional domain specific metrics need to be defined and measured.
 - > A cross-disciplinary effort is needed

5.2. Formal Verification

Verifying that **software functionality** follows the **requirements** defined within **the scope of the project.**

5. MODEL VERIFICATION

5.3. Test Based Verification

Ensuring that the model generalizes well to previously **unseen** data.

Full scale testing in a real-world environment can be challenging for a variety of

- safety,
- security and
- scale reasons,
 - ➤ It is often substituted with testing in **simulation**. Use of simulations is a de-facto standard in RL for training agents

In addition:

Dataset itself also needs to be constantly validated

Data issues can originate from

- bugs in code,
- feedback loops,
- changes in data dependencies.

Deployment Stage	Deployment Step	Considerations, Issues and Concerns
Model Deployment	Integration	 Operational support Reuse of code and models Software engineering anti-patterns Mixed team Dynamics
	Monitoring	Feedback loopsOutlier detectionCustom design tooling
	Updating	Concept driftContinuous delivery

Production systems are **complex software systems** that have to be **maintained** over time.

DevOps: Discipline that focuses on **techniques** and **tools** required to successfully **maintain** and **support** existing **production systems.**

There is a neccessity to apply DevOps principles to ML systems.

> AlOps

6.1. Integration

Operational Support

Two main activities

- Building the infrastructure to run the model and
- Implementing the model itself in a form that can be consumed and supported.
- Reuse of codes and models

Use of the same codes or models can be challenging in different systems.

Software engineering anti-patterns

ML is used in cases where the software has to take an explicit dependency on external data

Anti-patterns are widely used in ML softwares

6.1. Integration

Mixed team dynamics

Researchers and software **engineers** often **works together** on the same project.

There is **NO clear separation of responsibilities.**

• Contributors in **both roles** often work on the **same code**.

6.2. Monitoring

Monitoring is required for **maintaining** of ML systems.

➤ What are the **key metrics of data and models** to monitor and how to trigger system alarms?

Monitoring of followings is an open problem

- evolving input data,
- prediction bias and
- overall performance of ML models

6.2. Monitoring

Three main issues in model maintanence:

Feed-back loops

ML models in production can **influence their own behavior** over time.

> Tradeoff between **staying up to date** vs **Feedback loops**

Outlier detection

Labeled outlier data is scarce.

> Problem turns into a **semisupervised** or even **unsupervised** problem.

Custom tooling

Out-of-the-box tooling does not fit projects spesific needs well.

6.3. Updating

Two techniques for adapting models to new data:

- Regular training
- Continual learning

Model updating is affected by practical considerations

- Concept drift (aka dataset drift)
 Changes observed in joint distribution.
 - Can be caused by an **inability to avoid fluctuations** in the data collection procedure
 - Microscopic shifts → Noticebla consequences

6.3. Updating

Continuous delivery (CD)

 How to deliver the model artifact to the production environment?

CD for machine learning solutions is **complicated** because unlike regular software projects, ML solutions experience change along three axes:

- o the code,
- o the model,
- o the data.

Deployment Stage	Deployment Step	•	Considerations, Issues and Concerns
Cross-cutting	Ethics	•	Aggravation of biases
aspects		•	Fairness and accountability
		•	Authorship
		•	Decision making
	Law	•	Country-level regulations
		•	Abiding by existing legislation
		•	Focus on technical solution only
	End user trust	•	Involvement of end users
		•	User experience
		•	Explainability score
	security	•	Data poisoning
		•	Model stealing
		•	Model inversion

7.1 Ethics

ML models can rely on **hidden biases** that already exist in data.

Examples:

- Facial analysis: In a facial analysis model, darker skinned females are the most misclassified group since dataset is imbalanced on the basis of skin color.
- Creative Arts: When a trained model is used to create a piece of visual art, it is not entirely clear where the authorship of this piece resides.

7.2 Laws

Various countries have produced **regulations** to **protect personal data** rights.

- More sensitive data → Stronger regulations
 - > Adoption of ML in **healthcare** is particularly difficult.

Legislation takes time to develop.

> Cannot keep up with the speed of ML.

7.3 End Users' Trust

ML is often met cautiously by the end users.

There are three considerations to get end users' trust:

Involvement of end users

Getting the users involved in the early steps of the project helps feel them confident, especially in **medicine**.

Explainability score

Model **interpretability has limits** as a trust-building tool.

- Other ways should be considered.
- User experience

Bad **user interface** → Obstacles in adoption of new technology

7.4 Security

ML opens up opportunities for new types of security attacks. Attacks can ocur on

- o model itself,
- training data,
- o predicitons.

Data poisoning

Corrupting the integrity of the model during the **training phase**

 Particularly relevant with systems which ML models continuously updated with newly incoming data.

Model stealing

Querying model inputs and monitoring outputs.

Model inversion

Recovering parts of the training set.

Further growth of ML adoption can be severely hindered by poor deployment experience.

It is critical to **understand critical pain points** and provide

- o tools,
- o services,
- best practices.

Possible research avenues are categorized into two

- Tools and Services
- Holistic Approach

8.1. Tools and services

Tools can be improved to develop following utilities.

- Data storage facility
- Model hosting with APIs for training and inference operations
- Common metrics to monitor model health
- Interface to accept custom changes from the user
- Quality assurance
- Checklist methodology
- Weak supervision (Snorkel, Snuba, cleanlab)
- AutoML (Auto-Keras, Auto-sklearn, TPOT)
- Detection of mitigation of unnoticed dataset shift (Alibi Detect, services Azure ML, AWS Sagemaker)

8.1. Tools and services

Using a **particular tool** in the project → Additional **dependency** to that tool
The **more tools** used in the project → The **more dependency**

➤ Management becomes a problem.

8.2. Holistic approaches

Managing an ML project is not similar to managing a regular software project. They do not fit well to common management processes like Scrum or Waterfall.

The main differences arise from unique activities like

- data discovery,
- dataset preparation,
- model training,
- deployment success measurement, etc.

8.2. Holistic approaches

Some considerations:

datasheets for datasets

Makes data collection and management easier.

Data Oriented Architecture (DOA)

Makes data collection and management easier.

set of guidelines and best practices

Helps developers make right decisions.

- The Association of German Engineers (VDI) has released a series of guidelines on various aspects of big data applications in the manufacturing industry.
- Zinkevich compiled a collection of best practices for machine learning that are utilized in Google.

It should be noted that

All such approaches assume **significant time investment**, because they represent **significant changes to current norms in project management and development.**