Consecutive ones property (COP) in binary matrix

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$
With COP

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Without COP

- A wide range of applications archaeology (dating artifacts) to biology (DNA sequencing) to computer science
- Interval graph characterization interval graph's maximal clique-vertex incidence matrix has COP [3]
- Characterizing cubic Hamiltonian graphs matrix
 A + I has 2-run COP [4]
- Database consecutive retrieval property testing –
 COP testing

Constraint satisfaction problem: Interval Assignment to Set Subsystem¹

- Set subsystem ~~→ Intervals: Does there exist a **permutation** of a universal set such that given **subsets permute to intervals**?
- Columns = subsets
- Rows = elements of universe
 - Row indices of consecutive ones form an **interval**
- COP problem is equivalent to interval assignment to a set system

Feasible	$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$	0 0 0	1 0 1 0 1	0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1		$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	0 1 1 0 0	1	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	
$\{1, 3\}, \{1,5\}, \{1,3,5\}, \{2,4,5\} \rightarrow \{1,2\}, \{2,3\}, \{1,2,3\}, \{3,4,5\}$										

¹ A set of subsets of a single universe

History

1899	• First montion of COD (archaeology)	Potrio [Kondall 60 Pacific Journal of
1033	 First mention of COP (archaeology) 	Petrie [Kendall 69, Pacific Journal of
		Mathematics]
1951	 Heuristics for COP testing (COT) 	Robinson [51, American Antiquity]
1965	 First poly time algorithm for COT 	Fulkerson, Gross [65, Pacific Jounal of
		Mathematics]
1972	Characterization of COP matrices	Tucker [72, Journal of Combinatorial
	 Forbidden matrix configurations 	Theory]
1976	 First linear time algorithm for COT 	Booth, Lueker [76, Journal of
	PQ trees	Computer System Science]
Circa 2000 ²	 Linear algorithm for COT without PQ trees 	Hsu [02, Journal of Algorithms]
2001	PC trees	Hsu [01, 7 th Annual International
	 A generalization of PQ 	Conference on Computing and
		Combinatorics]
1996	PQR trees	Meidanis, Munuera [96, Proc of III
	 A generalization of PQ to non COP matrices 	South American Workshop on String
	 IDs subcollection of columns preventing COP 	processing]
Circa 1998 ³	 Almost linear time algorithm to construct PQR trees 	Meidanis, Telles [98, Discrete Applied
	-	Mathematics]
2009	A New Characterization of Matrices with the	Narayanaswamy, Subashini [09,
	Consecutive ones property	Discrete Applied Mathematics]

Published 2002Published 2003

Conditions (characterization)

Necessity & Sufficiency: Preserving intersection cardinalities

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 1. Sort the intervals in increasing order of left end point and break ties using the right end points
 - i. Discard identical columns
- 2. Consider (P_i,Q_i)
 - i. P_{i} = row indices in i-th column
 - ii. $\mathbf{Q_{i}}$ = the interval assigned to the i-th column
 - iii. Encodes all permutations in which P_i is mapped to Q_i
- 3. Iteratively filter the current set of permutations
 - i. Using strictly intersecting pairs
 - ii. Pair of intersecting intervals, neither contained in the other

Permutations from an ICPIA

Proof

- 1. Helly property for intervals
 - a. For any 3 mutually intersecting intervals one is contained in the union of the other two.
- 2. Intersection cardinality preserved [1]

Invariants

- 1. For any (P,Q), (P',Q'), (P",Q"):
 - a. Q is an interval
 - b. |P| = |Q|
 - c. $|P' \cap P''| = |Q' \cap Q''|$
- 2. At the end no interval is strictly intersecting with another interval
- 3. Either disjoint or contained

Getting the permutations - Containment Tree

Given an interval assignment, we have a data structure that encodes all permutations, which yield this interval assignment

Finding a good assignment

For a set of proper intervals and its "**flipped**" the intersection graph are isomorphic [1,8],[5,10],[2,7] is isomorphic to [1,6],[3,10],[4,9]

To assign intervals to a set system, there are only two choices and these will be decided at the first step

A New Characterization of Matrices with the Consecutive Ones Property

- 1. First Set left most interval
- 2. Second set has strict intersection with first set. So two interval choices
- 3. Next set (iteratively)-has strict intersection with some interval
- 4. Exactly one choice of interval, given intersection cardinality constraints
- 5. Failure implies no feasible *interval* assignment
- 6. Linear time in the number of sets, but computing intersection is costly

Sets left out:

- 1. Do not have a strict overlap with the sets considered
 - a. Disjoint
 - b. Contained
- 2. Two distinct sets are related if they have a strict overlap
- 3. Consider connected components in this undirected graph

- 1. Each component is a sub-matrix formed by the columns
- 2. Two components are either
 - a. Disjoint
 - b. Or all the sets in one are contained in a single set of the other.
- 3. An interval assignment to each component implies an interval assignment to the whole set system
- 4. Given that an interval assignment to each of the components is feasible.
- 5. Containment tree/forest on the components
 - a. An arc between vertices corresponding to two components if the sets of one are all contained in one set of the other
- 6. Construct the interval assignment in a BFS fashion starting from the root of each tree

Extensions and questions posed

- 1. Natural extension: **paths to trees** (intervals correlate to paths)
 - a. Characterization of tree path assignment is there some nice property here?
 - i. Is an extra condition of 3-way intersection cardinality preservation sufficient?
 - b. What can be its applications?
- 2. **K-run** problem instead of all ones consecutive, are there at most k blocks of consecutive ones?