Optimizirane aktivacijske funkcije klasifikatora temeljenog na umjetnim neuronskim mrežama u domeni implementacijskih napada na kriptografske uređaje

Juraj Fulir

Sveučilište u Zagrebu
Fakultet elektrotehnike i računarstva
Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Mentor: prof. dr. sc. Domagoj Jakobović, Karlo Knežević, mag. ing. comp.

DIPLOMSKI RAD

Sadržaj

- Uvod
- 2 Implementacijski napadi
 - Napad analizom potrošnje električne energije
 - Podatkovni skupovi
- Odabir arhitekture
 - Rezultati DPAv4 (oktet)
 - Rezultati DPAv4 (HW)
- Izgradnja aktivacijskih funkcija
 - Rezultati DPAv4 (oktet)
 - Rezultati DPAv4 (HW)
- Zaključak

Uvod

- Kriptografski uređaji su nezamjenjiv element digitalne infrastrukture modernog društva
- Pametne kartice (bankovne kartice, identifikacijski dokumenti)
- Kriptoalgoritam štiti povjerljive podatke
- Dobar kriptoalgoritam može biti siguran, no sklopovlje emitira informacije u okolinu

Implementacijski napadi

- Pretpostavka: emitirane informacije i sadržaj registara su korelirani
- Cilj: otkriti tajni ključ na temelju izmjerenih emisija (razlučitelj)
- Uvjeti: uređaj mora biti uključen i mora sadržavati tajni ključ
- Postoji više vrsta napada, grupirani su u aktivne i pasivne

Analiza potrošnje električne energije

- Ideja: iskoristiti korelaciju između potrošnje el. energije uređaja i podataka zapisanih na uređaju
- Napad koji je iznimno teško detektirati
- Postoji više pristupa, među najpoznatijim je diferencijalna analiza potrošnje el. energije

Podatkovni skupovi

- Napad na AES-128
- Ulaz: trag potrošnje el. energije, reduciran Pearsonovom korelacijom
- Izlaz: predikcija vrijednosti okteta ili Hammingove težine
- DPAv2: FPGA implementacija
- DPAv4: programska implementacija

(a) Vrijednosti okteta, DPAv4

(b) Hammongove težine, DPAv4

Odabir arhitekture

Neuronska mreža

- Arhitektura: potpuno povezana, relativno plitka (do 4 skrivena sloja)
- Optimizacija: Adam, smanjivanje stope učenja, rano zaustavljanje
- Regularizacija: L2, normalizacija grupom

Pretraga hiperparametara po rešetki

- Optimizacija stope učenja i L2 koeficijenta
- Usporedba arhitektura i aktivacijskih funkcija
- Odabir arhitektura, optimalnih za većinu funkcija
- F1 mjera harmonijska sredina preciznosti i odziva (makro)

Rezultati DPAv4 (oktet)

Rezultati DPAv4 (HW)

Izgradnja aktivacijskih funkcija

Genetsko programiranje

- Populacijski algoritam
- Tabu lista
- Paralelna evaluacija

Evolucija aktivacijske funkcije

- AF kao simboličko stablo
- Čvorovi: ulaz, konstanta, matematičke op. i popularne AF
- Po nekoliko operatora križanja i mutacije
- Usporedba rezultata po veličini tabu liste s prethodno ostvarenim (rešetkom)

Slika: Funkcija LReLU

Rezultati DPAv4 (oktet)

Rezultati DPAv4 (HW)

Zaključak

- Odabir AF ima utjecaj na performanse mreže
- Utjecaj AF može biti nepredvidiv
- Tabu lista pokazuje znakove poboljšanja

Otvorena pitanja za budući rad:

- Zašto su pronađene AF dobre (distribucija ulaza, kvaliteta gradijenta)?
- Kakav utjecaj ima periodičnost AF?
- Kakve AF algoritam pronalazi za dublje arhitekture?
- Kakav je utjecaj tabu liste na širem skupu evolucijskih algoritmima i problema na kojima se primijenjuju?