Lecture 8: Sequence learning & peeking at RL

MADE, Moscow 20.05.2020

Radoslav Neychev

References

These slides are deeply based on Practical RL course week 7 slides. Special thanks to YSDA team for making them publicly available.

Original slides link: week07_seq2seq

General formalism

• Maximize
$$J = E_{\substack{s \sim d(s) \\ a \sim \pi \, (a | obs(s))}} R(s, a)$$
 over π

- R(s,a) or G(s,a) is a black box
 - Special case: $G(s,a) = r(s,a) + \gamma G(s',a')$
- Markov property: P(s'|s,a,*) = P(s'|s,a)
 - Special case: obs(s) = s , fully observable

General approaches

- Idea 1: evolution strategies
 - pertrubate π, take ones with higher J

- Idea 2: value-based methods
- estimate J as a function of a, pick best a

- Idea 3: policy gradient
 - ascend J over π(a|s) using ∇J

General approaches

- Idea 4: Bayesian optimization
 - build a model of J, pick π that is most informative
 - to finding maximal J
 - e.g. Gaussian processes (low-dimensional only)

- Idea 5: simulated annealing
- Idea 6: crossentropy method
- ...

Encoder-decoder architectures

- Read input data (sequence / arbitrary)
- Generate output sequence

Trivia: what problems match this formulation?

Encoder-decoder tasks

- Machine translation
- Image to caption
- Word to transcript

- Conversation system
- Image to latex
- Code to docstring

Machine translation

- Problem:
- Read sentence in Chinese
- Generate sentence in English
- Sentences must mean the same thing

• Solution?

Machine translation

- Problem:
- Read sentence in Chinese
- Generate sentence in English
- Sentences must mean the same thing

- Solution:
- Take large dataset of (source,translation) pairs
- Maximize log P(translation|source)

Digression: attentive translation

Let decoder choose where to look on each tick

image source: https://qithub.com/qoogle/seg2seg

Digression: attentive translation

Simultaneously learns

- Word alignment
- Word translation

Differentiable attention:

$$\bar{a} = W \cdot \bar{h} + \bar{b}$$

$$inp = \langle \overline{x}, softmax(\overline{a}) \rangle$$

Machine translation, again

- Problem:
- Read sentence in Chinese
- Generate sentence in English
- Sentences must mean the same thing (e.g. BLEU)

- Solution:
- Take large dataset of (source,translation) pairs
- Maximize log P(translation|source)

Conversation systems

- Problem:
- Read sentence from user
- Generate response sentence
- System must be able to support conversation

- Solution:
- Take large dataset of (phrase, response) pairs
- Maximize log P(response|phrase)

Grapheme to phoneme

- Problem:
- Read word (characters): "hedgehog"
- Generate transcript (phonemes): "hεjhag"
- Transcript must read like real word (Levenshtein)

- Solution:
- Take large dataset of (word,transcript) pairs
- Maximize log P(transcript|word)

Yet another problem

- Problem:
- Read x~X
- Produce answer y~Y
- Answer should be argmax R(x,y)

- Solution:
- Take large dataset of (x,y) pairs with good R(x,y)
- Maximize log P(y|x) over those pairs

Works great as long as you have **good** data!

good = abundant + near-optimal R(x,y)

What could possibly go wrong?

Distribution shift

Supervised seq2seq learning:

$$P(y_{t+1}|x, y_{0:t}), y_{0:t} \sim reference$$

Inference

Pinterence
$$P(y_{t+1}|x,\hat{y}_{0:t}), \qquad \hat{y}_{0:t} \sim ???$$

Distribution shift

Supervised seq2seq learning:

$$P(y_{t+1}|x, y_{0:t}), y_{0:t} \sim reference$$

Inference

Interence
$$P(y_{t+1}|x,\hat{y}_{0:t}), \qquad \hat{y}_{0:t} \sim \textit{model}$$

If model ever makes something that isn't in data, It gets volatile from next time-step!

Works great as long as you have **good** data!

good = abundant + near-optimal R(x,y)
... and a perfect network ...

What could possibly go wrong?

Works great as long as you have good data!

good = abundant + near-optimal R(x,y)

Spoiler: most of the time we don't. Too bad.

Works great as long as you have good data!

good = abundant + near-optimal R(x,y)

Spoiler: most of the time we **don't**. Too bad.

Machine translation issues

There's more then one correct translation.

Source: 在找给家里人的礼物.

Versions:

- i 'm searching for some gifts for my family.
- i want to find something for my family as presents.
- i 'm about to buy some presents for my family.
- i 'd like to buy my family something as a gift.
- i 'm looking for a present for my family.

...

Sample from IWSLT 2009 Ch-En: link

Machine translation issues

There's more than one correct translation.

You don't need to learn all of them.

Source: 在找给家里人的礼物.

Versions:

i 'm searching for some gifts for my family.

i want to find something for my family as presents.

i 'm about to buy some presents for my family.

i 'd like to buy my family something as a gift.

i 'm looking for a present for my family.

. . .

Sample from IWSLT 2009 Ch-En: link

Machine translation issues

There's more than one correct translation. You don't need to learn all of them.

Source: 在找给家里人的礼物.

Versions:	Model 1 p(y x)	Model 2 p(y x)	
(version 1)	1e-2	0.99	Question: which model has better Mean log p(y x)?
(version 2)	2e-2	1e-100	
(version 3)	1e-2	1e-100	
(all rubbish)	0.96	0.01	

This one. While it predicts 96% rubbish

Conversation system issues

Two kinds of datasets:

Big enough, but suboptimal R(x,y)

- Large raw data
 - twitter, open subtitles, books, bulk logs
 - 10^6-8 samples, http://opus.nlpl.eu/OpenSubtitles.php
- Small clean data
 - moderated logs, assessor-written conversations
 - 10^2~4 samples

Motivational example

So you want to train a Q&A bot for a bank.

Motivational example

So you want to train a Q&A bot for a bank. Let's scrape some data from social media!

Motivational example

So you want to train a Q&A bot for a bank. Let's scrape some data from social media!

MICROSOFT | WEB | TL;DR

Twitter taught Microsoft's AI chatbot to be a racist asshole in less than a day

Source: wikipedia, theverge.com, twitter

Seq2seq as a POMDP

Hidden state **s** = translation/conversation state Initial state **s** = encoder output Observation **o** = previous words Action **a** = write next word Reward **r** = domain-specific reward (e.g. BLEU)

Policy Gradient

Our objective:

ective: Reward (e.g. BLEU)
$$J = \sum_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} R(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) R(s,a) da \, ds$$
parameters are hidden here

We can approximate the expectation with mean:

$$J \approx \frac{1}{N} \sum_{i=0}^{N} R(s, a)$$

Policy Gradient

Our objective:

$$J = \mathop{E}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} R(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) R(s,a) da ds$$

$$\nabla J = \int_{s} p(s) \int_{a} \nabla \pi_{\theta}(a|s) R(s,a) da ds$$

Expectation is lost!

We don't know how to compute the gradient w.r.t. parameters

Optimization

Problem: we need gradients on parameters

$$J = \mathop{E}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} R(s,a) = \mathop{\int}_{s} p(s) \mathop{\int}_{a} \pi_{\theta}(a|s) R(s,a) da ds$$

Potential solution: Finite differences

$$\nabla J \approx \frac{J_{\theta+\epsilon} - J_{\theta}}{\epsilon}$$

Very noisy, especially if both J are sampled

Optimization

Problem: we need gradients on parameters

$$J = \mathop{E}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} R(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) R(s,a) da ds$$

Wish list:

- Analytical gradient
- Easy/stable approximations

Log-derivative trick

Simple math question:

$$\nabla \log \pi(z) = ???$$

(try chain rule)

Log-derivative trick

Simple math question:

$$\nabla \log \pi(z) = ???$$

$$\pi \cdot \nabla \log \pi(z) = \nabla \pi(z)$$

Policy Gradient

$$\nabla J = \int_{s} p(s) \int_{a} \nabla \pi_{\theta}(a|s) R(s,a) da ds$$

$$\pi \cdot \nabla \log \pi(z) = \nabla \pi(z)$$

$$\nabla J = \int_{a}^{b} p(s) \int_{a}^{b} \pi_{\theta}(a|s) \nabla \log \pi_{\theta}(a|s) R(s,a) da ds$$

Question: does it look familiar?

Policy Gradient

$$\nabla J = \int p(s) \int \nabla \pi_{\theta}(a|s) R(s,a) da ds$$

 $\nabla J \approx \frac{1}{N} \sum_{s=0}^{N} \nabla \log \pi_{\theta}(a|s) \cdot R(s,a)$

Supervised learning:

$$\nabla llh = \mathop{E}_{s, a_{opt} \sim D} \nabla \log \pi_{\theta}(a_{opt}|s)$$

Policy gradient:

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi_{\theta}(a|s) Q(s,a)$$

Question: what is different? (apart from Q(s, a))

Supervised learning:

$$\nabla llh = E \sum_{s, a_{opt} \sim D} \nabla \log \pi_{\theta}(a_{opt}|s)$$

reference

Policy gradient:

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi_{\theta}(a|s) Q(s,a)$$
generated

Supervised learning:

- Need (near-)optimal dataset
- Trains on reference sessions

Policy gradient:

- Need ~some data and reward function
- Trains on its own output

Supervised Learning

Reinforcement Learning

Need good reference (y_opt)

If model is *imperfect* [and **it is**], training:

P(y_next|x,y_prev_ideal)

prediction:

P(y_next|x,y_prev_predicted)

Model learns to improve current policy. If policy is pure random, local improvements are unlikely to produce good translation.

Supervised Learning

Reinforcement learning

- + Rather simple + Small variance

Only needs x and r(s,a)

No distribution shift

- Need good reference (y opt) – Distribution shift:
 - different **h** distribution when training vs generating

- Cold start problem
 - Large variance (so far)

Supervised Learning

pre-training

+ Rather simple

- Need good reference (y_opt)
- Distribution shift:
 different h distribution
 when training vs generating

Reinforcement learning

post-training

- Cold start problem
- Large variance (so far)

- Only needs x and r(s,a)
- No distribution shift

Recap: encoder-decoder rnn

Recap: encoder-decoder rnn

output sequence

Recap: encoder-decoder rnn

Recap: encoder-decoder rnn

Simplified scheme

Self-critical sequence training

Idea: use inference mode as a baseline!

Self-critical sequence training

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi_{\theta}(a|s) A(s,a)$$

$$A(s,a) = R(s,a) - R(s,a_{inference}(s))$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow qreedy \qquad mode \qquad (inference)$$

Self-critical sequence training

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi_{\theta}(a|s) A(s,a)$$

$$A(s,a)=R(s,a)-R(s,a_{inference}(s))$$
 sampling mode is more

Question:

why don't we use

sampling mode for

baseline?

Sampling mode is more

noisy due to... sampling

Also it isn't what we'll use in

production

Image captioning with SCST

- Problem:
- Process image
- Generate caption
- Caption must describe image (CIDEr)
- Dataset: MSCOCO, http://mscoco.org

What do we do?

Image captioning with SCST

- Problem:
- Process image
- Generate caption
- Caption must describe image (CIDEr)
- Dataset: MSCOCO, http://mscoco.org
- Pre-training: maximize log P(caption|image)
- Fine-tuning: maximize expected CIDEr
 - Used self-critical baseline to reduce variance

SCST: results

Training	Evaluation Metric			
Metric	CIDEr	BLEU4	ROUGEL	METEOR
XE	90.9	28.6	52.3	24.1
XE (beam)	94.0	29.6	52.6	25.2
CIDEr	106.3	31.9	54.3	25.5
BLEU	94.4	33.2	53.9	24.6
ROUGEL	97.7	31.6	55.4	24.5
METEOR	80.5	25.3	51.3	25.9

Table: validation score on 4 metrics (columns) for models that optimize crossentropy (supervised) or one of those 4 metrics (scst).

Source: https://arxiv.org/pdf/1612.00563.pdf

MSCOCO: objects out of context

- a blue of a building with a blue umbrella on it -1.234499
- a blue of a building with a blue and blue umbrella -1.253700
- 3. a blue of a building with a blue umbrella 1.261105
- a blue of a building with a blue and a blue umbrella on top of it -1.277339
- a blue of a building with a blue and a blue umbrella -1.280045
 - (a) Ensemble of 4 Attention models (Att2in) trained with XE.

- a blue boat is sitting on the side of a building -0.194627
- a blue street sign on the side of a building -0.224760
- 3. a blue umbrella sitting on top of a building -0.243250
- 4. a blue boat sitting on the side of a building -0.248849
- 5. a blue boat is sitting on the side of a city street -0.265613
 - (b) Ensemble of 4 Attention models (Att2in) trained with SCST.

Source: https://arxiv.org/pdf/1612.00563.pdf

MSCOCO: objects out of context

- a man in a red shirt standing in front of a green field -0.890775
- a man in a red shirt is standing in front of a tv -0.897829
- 3. a man in a red shirt standing in front of a tv -0.900520
- a man in a red shirt standing in front of a field -0.912444
- a man standing in front of a green field -0.924932
 - (a) Ensemble of 4 Attention models (Att2in) trained with XE.

- a man standing in front of a street with a television -0.249860
- 2. a man standing in front of a tv -0.256185
- a man standing in front of a street with a tv -0.280558
- a man standing in front of a street -0.295428
- a man standing in front of a street with a frisbee -0.309342
 - (b) Ensemble of 4 Attention models (Att2in) trained with SCST.

Source: https://arxiv.org/pdf/1612.00563.pdf

Common pitfalls

What can go wrong

- Make sure agent didn't cheat R(s,a)
 - https://openai.com/blog/faulty-reward-functions/

- Model can overfit data
 - Check validation performance

Duct tape zone

Pre-train model in supervised mode

- RL methods takes longer to train from scratch

- Take a look at policy-based tricks
 - Regularize with entropy / L2 logits
 - Better sampling techniques (tree, vine, etc.)

- Most seq2seq tricks apply
 - Use bottleneck If vocabulary is large
 - Some (but not all) softmax improvements

Q&A

Let's code!

Generalized GAN scheme

Generalized GAN scheme

Standard scheme fails if G(z) is discrete

- generating text
- generating music notes

- generating molecules
- binary image masks

We can train generator with Reinforcement Learning methods!

$$\nabla J = \mathop{E}_{\substack{z \sim p(z) \\ x \sim P(x|G_{\theta}(z))}} \nabla \log P(x|G_{\theta}(z)) D(x)$$

We can fit discrete things with policy gradient:

- "hard" attentionbinary networks
- discrete loss functions
 rnn augmentations

Notes:

- It's less computation-efficient than backprop
- Use SCST and other tricks where possible
- There are alternatives (e.g. gumbel-softmax)

Links

Great RL course (and source of this materials):

Practical RL

Great RL course by David Silver:

https://www.davidsilver.uk/teaching/

Great book by Richard S. Sutton and Andrew G. Barto

Reinforcement Learning: An Introduction