

X

Codeforces Round #768 (Div. 1)

A. And Matching

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

You are given a set of n (n is always a power of 2) elements containing all integers $0, 1, 2, \ldots, n-1$ exactly once.

Find $\frac{n}{2}$ pairs of elements such that:

- Each element in the set is in exactly one pair.
- The sum over all pairs of the bitwise AND of its elements must be exactly equal to k. Formally, if a_i and b_i are the elements of the i-th pair, then the following must hold:

$$\sum_{i=1}^{n/2}a_i\&b_i=k,$$

where & denotes the bitwise AND operation.

If there are many solutions, print any of them, if there is no solution, print -1 instead.

Input

The input consists of multiple test cases. The first line contains a single integer t ($1 \le t \le 400$) — the number of test cases. Description of the test cases follows.

Each test case consists of a single line with two integers n and k ($4 \le n \le 2^{16}$, n is a power of 2, $0 \le k \le n - 1$).

The sum of n over all test cases does not exceed 2^{16} . All test cases in each individual input will be pairwise **different**.

Output

For each test case, if there is no solution, print a single line with the integer -1.

Otherwise, print $\frac{n}{2}$ lines, the i-th of them must contain a_i and b_i , the elements in the i-th pair.

If there are many solutions, print any of them. Print the pairs and the elements in the pairs in any order.

Example

input 4 4 4 0 4 1 4 1 4 2 4 3 output 0 3 1 2 0 2 1 3 0 1 2 3 -1

Note

In the first test, (0&3) + (1&2) = 0.

In the second test, (0&2) + (1&3) = 1.

In the third test, (0&1) + (2&3) = 2.

In the fourth test, there is no solution.

B. Range and Partition

Given an array a of n integers, find a range of values [x,y] ($x \le y$), and split a into **exactly** k ($1 \le k \le n$) subarrays in such a way that:

- Each subarray is formed by several continuous elements of a, that is, it is equal to $a_l, a_{l+1}, \ldots, a_r$ for some l and r ($1 \le l \le r \le n$).
- ullet Each element from a belongs to exactly one subarray.
- In each subarray the number of elements inside the range [x, y] (inclusive) is **strictly greater** than the number of elements outside the range. An element with index i is inside the range [x, y] if and only if $x \le a_i \le y$.

Print any solution that minimizes y-x.

Input

The input consists of multiple test cases. The first line contains a single integer t ($1 \le t \le 3 \cdot 10^4$) — the number of test cases. Description of the test cases follows.

The first line of each test case contains two integers n and k ($1 \le k \le n \le 2 \cdot 10^5$) — the length of the array a and the number of subarrays required in the partition.

The second line of each test case contains n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le n$) where a_i is the i-th element of the array.

It is guaranteed that the sum of n over all test cases does not exceed $2 \cdot 10^5$.

Output

For each test case, print k+1 lines.

In the first line, print x and y — the limits of the found range.

Then print k lines, the i-th should contain l_i and r_i ($1 \le l_i \le r_i \le n$) — the limits of the i-th subarray.

You can print the subarrays in any order.

Example

input	
3	
3 2 1	
1 2 4 2	
4 2	
1 2 2 2	
11 3	
5 5 5 1 5 5 1 5 5 5 1	
output	
1 2 1 2 2 2 1 3 4 4 5 5 1 1 2 2 3 11	

Note

In the first test, there should be only one subarray, which must be equal to the whole array. There are 2 elements inside the range [1,2] and 0 elements outside, if the chosen range is [1,1], there will be 1 element inside (a_1) and 1 element outside (a_2) , and the answer will be invalid.

In the second test, it is possible to choose the range [2,2], and split the array in subarrays (1,3) and (4,4), in subarray (1,3) there are 2 elements inside the range $(a_2$ and $a_3)$ and 1 element outside (a_1) , in subarray (4,4) there is only 1 element (a_4) , and it is inside the range.

In the third test, it is possible to choose the range [5,5], and split the array in subarrays (1,4), (5,7) and (8,11), in the subarray (1,4) there are 3 elements inside the range and 1 element outside, in the subarray (5,7) there are 2 elements inside and 1 element outside and in the subarray (8,11) there are 3 elements inside and 1 element outside.

C. Paint the Middle

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

You are given n elements numbered from 1 to n, the element i has value a_i and color c_i , initially, $c_i=0$ for all i.

The following operation can be applied:

• Select three elements i, j and k ($1 \le i < j < k \le n$), such that c_i , c_j and c_k are all equal to 0 and $a_i = a_k$, then set $c_j = 1$.

Find the maximum value of $\sum_{i=1}^{n} c_i$ that can be obtained after applying the given operation any number of times.

Input

The first line contains an integer n ($3 \le n \le 2 \cdot 10^5$) — the number of elements.

The second line consists of n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le n$), where a_i is the value of the i-th element.

Output

Print a single integer in a line — the maximum value of $\sum_{i=1}^{n} c_i$ that can be obtained after applying the given operation any number of times.

Examples

input	
7 1 2 1 2 7 4 7	
output	
2	

input		
13 1 2 3 2 1 3 3 4 5 5 5 4 7		
output		
7		

Note

In the first test, it is possible to apply the following operations in order:

а	1	2	1	2	7	4	7
С	0	0	0	0	0	0	0
	Ji.	j	k				
а	1	2	1	2	7	4	7
С	0	1	0	0	0	0	0
					j	j	k
а	1	2	1	2	7	4	7
С	0	1	0	0	0	1	0
			-				

D. Flipping Range

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

You are given an array a of n integers and a set B of m positive integers such that $1 \le b_i \le \lfloor \frac{n}{2} \rfloor$ for $1 \le i \le m$, where b_i is the i-th element of B.

You can make the following operation on a:

- 1. Select some x such that x appears in B.
- 2. Select an interval from array a of size x and multiply by -1 every element in the interval. Formally, select l and r such that

 $1 \leq l \leq r \leq n$ and r-l+1=x, then assign $a_i:=-a_i$ for every i such that $l \leq i \leq r$.

Consider the following example, let a = [0, 6, -2, 1, -4, 5] and $B = \{1, 2\}$:

- 1. [0,6,-2,-1,4,5] is obtained after choosing size 2 and l=4, r=5.
- 2. [0,6,2,-1,4,5] is obtained after choosing size 1 and l=3, r=3.

Find the maximum $\sum\limits_{i=1}^n a_i$ you can get after applying such operation any number of times (possibly zero).

Input

The input consists of multiple test cases. The first line contains a single integer t ($1 \le t \le 10^5$) — the number of test cases. Description of the test cases follows.

The first line of each test case contains two integers n and m ($2 \le n \le 10^6$, $1 \le m \le \lfloor \frac{n}{2} \rfloor$) — the number of elements of a and B respectively.

The second line of each test case contains n integers a_1, a_2, \ldots, a_n ($-10^9 \le a_i \le 10^9$).

The third line of each test case contains m distinct positive integers b_1, b_2, \dots, b_m $(1 \le b_i \le \lfloor \frac{n}{2} \rfloor)$ — the elements in the set B.

It's guaranteed that the sum of n over all test cases does not exceed 10^6 .

Output

For each test case print a single integer — the maximum possible sum of all a_i after applying such operation any number of times.

Example

Note

5000000000

In the first test, you can apply the operation x = 1, l = 3, r = 3, and the operation x = 1, l = 5, r = 5, then the array becomes [0, 6, 2, 1, 4, 5].

In the second test, you can apply the operation x=2, l=2, r=3, and the array becomes [1,1,-1,-1,1], then apply the operation x=2, l=3, r=4, and the array becomes [1,1,1,1,1,1]. There is no way to achieve a sum bigger than 5.

E. Expected Components

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

Given a cyclic array a of size n, where a_i is the value of a in the i-th position, **there may be repeated values**. Let us define that a permutation of a is equal to another permutation of a if and only if their values are the same for each position i or we can transform them to each other by performing some cyclic rotation. Let us define for a cyclic array b its number of components as the number of connected components in a graph, where the vertices are the positions of b and we add an edge between each pair of adjacent positions of b with equal values (note that in a cyclic array the first and last position are also adjacents).

Find the expected value of components of a permutation of a if we select it equiprobably over the set of all the different permutations of a.

Input

The input consists of multiple test cases. The first line contains a single integer t ($1 \le t \le 10^5$) — the number of test cases. Description of the test cases follows.

The first line of each test case contains a single integer n ($1 \le n \le 10^6$) — the size of the cyclic array a.

The second line of each test case contains n integers, the i-th of them is the value a_i ($1 \le a_i \le n$).

It is guaranteed that the sum of n over all test cases does not exceed 10^6 .

It is guaranteed that the total number of different permutations of a is not divisible by M

Output

For each test case print a single integer — the expected value of components of a permutation of a if we select it equiprobably over the set of all the different permutations of a modulo $998\,244\,353$.

Formally, let $M=998\,244\,353$. It can be shown that the answer can be expressed as an irreducible fraction $\frac{p}{q}$, where p and q are integers and $q\not\equiv 0\pmod M$. Output the integer equal to $p\cdot q^{-1}\mod M$. In other words, output such an integer x that $0\le x< M$ and $x\cdot q\equiv p\pmod M$.

Example

```
input

5
4
1111
4
1121
4
1212
5
43251
12
132321331332

output

1
2
3
5
5
558642921
```

Note

In the first test case there is only 1 different permutation of a:

- [1, 1, 1, 1] has 1 component.
- Therefore the expected value of components is $\frac{1}{1}=1$

In the second test case there are 4 ways to permute the cyclic array a, but there is only 1 different permutation of a:

- [1, 1, 1, 2], [1, 1, 2, 1], [1, 2, 1, 1] and [2, 1, 1, 1] are the same permutation and have 2 components.
- Therefore the expected value of components is $\frac{2}{1}=2$

In the third test case there are 6 ways to permute the cyclic array a, but there are only 2 different permutations of a:

- [1, 1, 2, 2], [2, 1, 1, 2], [2, 2, 1, 1] and [1, 2, 2, 1] are the same permutation and have 2 components.
- ullet [1,2,1,2] and [2,1,2,1] are the same permutation and have 4 components.
- Therefore the expected value of components is $\frac{2+4}{2}=\frac{6}{2}=3$

In the fourth test case there are 120 ways to permute the cyclic array a, but there are only 24 different permutations of a:

- ullet Any permutation of a has 5 components.
- Therefore the expected value of components is $\frac{24\cdot 5}{24}=\frac{120}{24}=5$

F. Making It Bipartite

time limit per test: 4 seconds memory limit per test: 512 megabytes input: standard input output: standard output

You are given an undirected graph of n vertices indexed from 1 to n, where vertex i has a value a_i assigned to it and all values a_i are **different**. There is an edge between two vertices u and v if either a_u divides a_v or a_v divides a_u .

Find the minimum number of vertices to remove such that the remaining graph is bipartite, when you remove a vertex you remove all the edges incident to it.

Input

The input consists of multiple test cases. The first line contains a single integer t ($1 \le t \le 10^4$) — the number of test cases. Description of the test cases follows.

The first line of each test case contains a single integer n ($1 \le n \le 5 \cdot 10^4$) — the number of vertices in the graph.

The second line of each test case contains n integers, the i-th of them is the value a_i ($1 \le a_i \le 5 \cdot 10^4$) assigned to the i-th vertex, all values a_i are **different**.

It is guaranteed that the sum of n over all test cases does not exceed $5 \cdot 10^4$.

Output

For each test case print a single integer — the minimum number of vertices to remove such that the remaining graph is bipartite.

Example

```
input

4
4
4
8 4 2 1
4
30 2 3 5
5
12 4 6 2 3
10
85 195 5 39 3 13 266 154 14 2

output

2
0
1
1
2
```

Note

In the first test case if we remove the vertices with values 1 and 2 we will obtain a bipartite graph, so the answer is 2, it is impossible to remove less than 2 vertices and still obtain a bipartite graph.

test case #1

In the second test case we do not have to remove any vertex because the graph is already bipartite, so the answer is 0.

test case #2

In the third test case we only have to remove the vertex with value 12, so the answer is 1.

test case #3

In the fourth test case we remove the vertices with values 2 and 195, so the answer is 2.

Before After

Codeforces (c) Copyright 2010-2022 Mike Mirzayanov The only programming contests Web 2.0 platform