Heart Disease Classification

Rayyan Kazim 2024-10-15

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, plot_tree
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import neighbors
from sklearn import metrics
from sklearn.preprocessing import scale
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA, TruncatedSVD, FactorAnalysis
```

```
df = pd.read_csv("heart-disease.csv")
df.head(10)
```

	age	sex	cp	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
5	57	1	0	140	192	0	1	148	0	0.4	1	0	1	1
6	56	0	1	140	294	0	0	153	0	1.3	1	0	2	1
7	44	1	1	120	263	0	1	173	0	0.0	2	0	3	1
8	52	1	2	172	199	1	1	162	0	0.5	2	0	3	1

	age	sex	cp	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
9	57	1	2	150	168	0	1	174	0	1.6	2	0	2	1

Classification Problem

We will be using supervised machine learning to understand heart disease, predict it, and figure out the main causes of it.

Dataset Exploration

```
df.shape
```

(303, 14)

df.dtypes

age	int64
sex	int64
ср	int64
trestbps	int64
chol	int64
fbs	int64
restecg	int64
thalach	int64
exang	int64
oldpeak	float64
slope	int64
ca	int64
thal	int64
target	int64

dtype: object

df.isna().sum()

0 age 0 sex 0 ср trestbps 0 chol 0 fbs 0 restecg 0 thalach0 exang oldpeak 0 slope 0 0 ca thal 0 target

dtype: int64

df.describe()

	age	sex	cp	trestbps	chol	fbs	restecg	thalach
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000

Based on our exploritary analysis, this dataset has 14 variables. There are 303 observations, and

none of the variables have any N/A or missing values. All of the variables are 'int64' variables, except for 'oldpeak', which is a 'float64' variable.

Lets see the distribution of gender and age in this dataset.

```
df.sex.value_counts()
```

sex 1 207 0 96

Name: count, dtype: int64

Sex = 1 implies a male observation, whereas Sex = 0 implies a female. Clearly, this dataset has a lot more male than female observations.

```
df.age.plot.hist()
plt.xlabel('Age')
plt.title("Age Distribution of Dataset")
```

Text(0.5, 1.0, 'Age Distribution of Dataset')

df.target.value_counts()

target

1 165

0 138

Name: count, dtype: int64

The 'target' variable represents whether or not an individual has heart disease (target = 1 implies heart disease). Of all 303 people in this dataset, 165 have heart disease and 138 do not.

Lets also have a look at the correlations between variables. We can use a correlation matrix.

df.corr()

	age	sex	cp	trestbps	chol	fbs	restecg	thalach	exang
age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.116211	-0.398522	0.09680
sex	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.058196	-0.044020	0.14166
cp	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.044421	0.295762	-0.39428
trestbps	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.114103	-0.046698	0.06761
chol	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.151040	-0.009940	0.06702
fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.084189	-0.008567	0.02566
restecg	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.000000	0.044123	-0.07073
thalach	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.044123	1.000000	-0.3788
exang	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.070733	-0.378812	1.00000
oldpeak	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.058770	-0.344187	0.28822
slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.093045	0.386784	-0.2577
ca	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.072042	-0.213177	0.11573
thal	0.068001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.011981	-0.096439	0.20675
target	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.137230	0.421741	-0.4367

Data Splitting

Let's split are dataset into 2, one with the predictor/explanitory variables, and one with the response variable.

```
x = df.drop('target', axis=1)
y=df['target']
```

```
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.2, random_state=1, stratify=y)
```

Supervised Classification

We will compare 3 supervised learning classifiers: Logistic Regression, KNN, Random Forest

Accuracy Scores

```
def accuracy(classifier, X_train, X_test, Y_train, Y_test):
    accuracy_scores = {}

    for Classifier, Algorithm in Classifiers.items():
        fitting = Algorithm.fit(X_train, Y_train)
        prediction = fitting.predict(X_test)
        acc_score = metrics.accuracy_score(Y_test, prediction)

        accuracy_scores[Classifier] = acc_score

return accuracy_scores
```

```
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(
```

accuracy(Classifiers, x_train, x_test, y_train, y_test)

```
{'Logistic Regression': 0.8360655737704918,
  'KNN Classification': 0.6557377049180327,
  'Random Forest': 0.8032786885245902}
```

Based on accuracy score, Logistic Regression is a better choice for the classifier than both KNN and Random Forest.

Confusion Matrices

```
lr = LogisticRegression()
lr.fit(x_train, y_train)
predicted_lr = lr.predict(x_test)

sns.heatmap(confusion_matrix(y_test, predicted_lr), annot=True)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title("Logistic Regression Classification Confusion Matrix")
```

```
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
   n_iter_i = _check_optimize_result(
Text(0.5, 1.0, 'Logistic Regression Classification Confusion Matrix')
```



```
kNN = KNeighborsClassifier()
kNN.fit(x_train, y_train)
predicted_kNN = kNN.predict(x_test)

sns.heatmap(confusion_matrix(y_test, predicted_kNN), annot=True)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title("KNN Classification Confusion Matrix")
```

Text(0.5, 1.0, 'KNN Classification Confusion Matrix')


```
rf = RandomForestClassifier()
rf.fit(x_train, y_train)
predicted_rf = rf.predict(x_test)

sns.heatmap(confusion_matrix(y_test, predicted_rf), annot=True)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title("Random Forest Classification Confusion Matrix")
```

Text(0.5, 1.0, 'Random Forest Classification Confusion Matrix')

For confusion matrices, we would look for high true (positive and negative) values. We would also look for low false (positive and negative values). In this case, the best options (based on confusion matrices) is Random Forest. Logistic Regression is also a good option.

When comparing Logistic Regression and Random Forest, we can conclude that Logistic Regression is slightly better in terms of accuracy score, and Random Forest is slightly better in terms of the confusion matrix.

Let's use Random Forest as our supervised classifier.

Feature Importance

```
rf_classifier = RandomForestClassifier(
    random_state=0
    )
rf_classifier.fit(x, y)
```

RandomForestClassifier(random_state=0)

```
feature_importances = rf_classifier.feature_importances_
sorted_indices = feature_importances.argsort()[::-1]
feature_names = x_train.columns[sorted_indices]
importances = feature_importances[sorted_indices]
```

```
sns.barplot(x = importances, y = feature_names)
plt.ylabel("Predictor Variable")
plt.xlabel("Feature Importance in Predicting Heart Disease")
plt.title("Significant Variables in Predicting Heart Disease")
plt.show()
```


Using our Random Forest Classifier, we can conclude that the most important factors in predicting heart disease are Chest Pain (cp), ST Depression (oldpeak) and Maximum Heart Rate Achieved (thalach). Other important factors to mention are Age and Number of Major Vessels (ca).