YEAR 12 PHYSICS ASSIGNMENT 5 - INDUCED EMF

Nam	e:								Ма	rk:			
1.	A rectangular wire loo perpendicular to the n field is directed into th magnitude of the mag	nagne ie pag	etic fie ge. A f	ld. Thorce	ne wire F of 3	e carr .20 ×	ries a d 10 ⁻² N	currer I is m	nt <i>I</i> of 0 easure	.250 d. Ca	A. The	magne the	
		Х	X	X	×	X	← I						
		Х	х	X	X	X		↑					
		х	$\stackrel{F}{\longrightarrow}$	Χ	X	Χ	=).0 cm				
		Х	×	Х	X	Х							
		Х	X	Х	X	Х		, ,					
					An	swer:					Un	its:	_
2.	An AC generator has a magnetic field of str generated.											s EMF	
									Answe	er (pe	eak): _		V
									Answe	er (rn	ns):		V

- 3. A circular wire loop is placed near a long, straight wire carrying a constant current in the direction shown. The loop moves three times:
 - A it rotates once, uniformly along the X-axis with the resistor R moving out of the page initially.
 - B it moves parallel to the straight wire with constant speed.
 - C it moves away perpendicularly from the straight wire with constant speed.

(8 marks)

Complete the table in terms of Motions A, B and C by sketching the EMF induced in the loop and state whether the direction of EMF is clockwise, anticlockwise or not relevant.

Motion	Possible induced emf in the circular loop with respect to time	The direction of emf (clockwise/anticlockwise/ not relevant)
A	emf (V)	
В	emf (V)	
С	emf (V)	

4.	A generator is capable of producing 3.00×10^2 kW of electricity at 415 V AC. Its output is stepped up to 11.0 kV for transmission.							
	(a)	Determine the primary to secondary turns ratio of the step-up transformer upower station.	used at the (2 marks)					
	(b)	Determine the current available at the output of the step-up transformer.	(2 marks)					
5.	of 30 overl	m is powered by four identical electric motors. Each motor has a maximum 0.0 kW. The motors are connected in parallel and powered by 6.00×10^2 V Dhead power lines. When the motors are operating at maximum power output EMF of 5.20×10^2 V with an internal resistance of $1.39~\Omega$. Calculate the current drawn by each motor when operating at maximum possible.	C from t, there is a					

4.

	(b)	After operating for a while, one of the motors becomes jammed. Describe, reason, what happens to the current in that motor when it becomes jamme	
6.	7.00 by e rech	ctangular coil of a car alternator (AC generator) has 3.20×10^2 turns, cm and a length of 6.00 cm. The coil rotates in a uniform magnetic fielectromagnets. The alternator is designed to produce sufficient output large the car battery, even when the alternator rotates at 6.00×10^2 rpout voltage is steady at $14.5 V_{rms}$.	eld supplied voltage to
	(a)	Determine the peak voltage output of this alternator.	(1 mark)
	(b)	Calculate the magnetic field strength needed to produce this peak or voltage. If you were unable to obtain an answer for part (a), use 25.0	utput V. (4 marks)

7. A permanent magnet is moved toward a coil at a constant velocity, causing an EMF to be induced across the ends of the coil.

Using an appropriate equation from the Formulae and Data booklet, explain why a larger EMF would be detected if the magnet was moved at a greater velocity toward the coil. (4 marks)

8. A coil with a radius of 50.0 cm and 25 turns is moved at a constant velocity of 0.80 ms⁻¹ to the right of the page into, through and out of a uniform magnetic field of strength 0.280 T. The total distance from the centre of the coil at A to the centre of the coil at F is 8.00 m and the distance from A to B is the same as E to F.

(a) Calculate the average EMF induced as the coil moves from B to C. (4 marks)

(b) On the axes below, show the induced EMF versus time as the coil moves from A to F. (Note: only include specific values on the time axis.) (8 marks)

