Phylogenetic Inference of Daphnia Genotypes with Varying Degrees of Tolerance to UVR exposure

Elizabeth Brooks, Pfrender Lab

Daphnia melanica with varying tolerance to UV radiation

Lab Clonal Genotypes

Olympic E05	Tolerant	
Olympic Y05	Tolerant	
Olympic Y023	Not Tolerant	
Olympic R2	Not Tolerant	
Sierra	Tolerant	
PA	Not Tolerant	

Alignment Based Methods

Reciprocal Best Hits Approach: RBHB

RBH to PA42 Reference Genome

Olympic E05	12868	69.78%
Olympic Y05	12919	70.06%
Olympic Y023	12934	70.14%
Olympic R2	12883	69.86%
Sierra	13220	71.69%
PA	13451	72.94%

- 0.001 substitutions/site

Oregon "Dune"

How do divergent adaptive phenotypes arise in naturally subdivided populations of Daphnia?

Step 1. Prepare sets of DNA or RNA sequences for each species

Step 2. Estimate Jaccard distances between species DNA or RNA sequences using MinHash sketches

Step 3. Infer dendrograms from pairwise distance matrix using neighbor-joining (NJ) or hierarchical clustering (UPGMA)

Alignment-Free Methods

agenomedistance estimation using MinHash

Alignment-Free Methods: Distance Matrix

Molecular Clock Approach: UPGMA

Step 1: Pick the two most similar taxa clusters and merge them

Molecular Clock Approach: UPGMA

Step 1: Pick the two most similar taxa clusters and merge them

Step 2: Create a new node in the tree for the merged cluster

Molecular Clock Approach: UPGMA

Step 1: Pick the two most similar taxa clusters and merge them

Step 2: Create a new node in the tree for the merged cluster

Minimum Evolution Approach: NJ

Step 1: Select branch lengths by least-squares

Step 2: Choose the topology with the lowest total branch lengths

UPGMA Daphnia RNA Sequences

Daphnia Genotypes

- 1. Pulex 3.0
- 2. Melanica E05
- 3. Melanica Y05
 - 4. Melanica Y023
- 5. Melanica R2

- 6. Pulex PA
- 7. Melanica Sierra
- 8. Magna 1
- 9. Galeata
- 10. Similoides

NJ vs UPGMA: Daphnia RNA Sequences

Daphnia Genotypes

- 1. Pulex 3.0
- 2. Melanica E05
- 3. Melanica Y05
- 4. Melanica Y023
- 5. Melanica R2

- 6. Pulex PA
- 7. Melanica Sierra
 - Magna 1
- 9. Galeata
- 10. Similoides

STAG vs NJ: Daphnia RNA Sequences

10.02

NJ vs UPGMA: Daphnia DNA Sequences

Daphnia Genotypes

- 1. Pulex 3.0
- 2. Pulex 4.1
- 3. Pulex 1.0
- 4. Carinata
- 5. Magna 1

- 6. Magna 2.4
- 7. Dubia

UPGMA Arthropod DNA Sequences

Species include:

- 1. Daphnia pulex 3.0 (common water flea)
- 2. Daphnia pulex 4.1 (common water flea)
- 3. Daphnia pulex 1.0 (common water flea)
- 4. Daphnia carinata (crustaceans)
- 5. Daphnia magna 1 (crustaceans)
- 6. Daphnia magna 2.4 (crustaceans)
- 7. Daphnia dubia (crustaceans)
- 8. Penaeus vannamei (Pacific white shrimp)
- 9. Penaeus monodon (black tiger shrimp)
- 10. Drosophila melanogaster (fruit fly)
- 11. Drosophila pseudoobscura (flies)
- 12. Drosophila mojavensis (flies)
- 13. Anopheles gambiae (African malaria mosquito)
- 14. Culex quinquefasciatus (southern house mosquito)
- 15. Aedes aegypti (yellow fever mosquito)
- 16. Bombyx mori (domestic silkworm)
- 17. Tribolium castaneum (red flour beetle)
- 18. Apis mellifera (honey bee)
- 19. Nasonia vitripennis (jewel wasp)
- 20. Rhodnius prolixus (bugs)
- 21. Acyrthosiphon pisum (pea aphid)
- 22. Pediculus humanus (human body louse)
- 23. Ixodes scapularis (black-legged tick)
- 24. Tetranychus urticae (two-spotted spider mite)

NJ Arthropod DNA Sequences

OrthoMCL vs NJ: Arthropod DNA Sequences

