Enhancement MOSFET structure

Gate

Bio Transistor based on FET technology

Switching Applications of MOS and CMOS Devices

- MOS devices are characterised by their low power consumption
- High Input Impedance
- Ability to form Transistors, Diodes, Capacitors and Resistors from their structure, hence, integrated circuits are constructed from transistors only structure.
- Easy to manufacture, simple device structure, can relate device performance (I_D and gm) to device materials and dimensions.
- Easy to integrate to ultra high scale (ULSI), 7.2 billion transistors per chip(2016).
- Scaling down to nanometre scale is possible, currently (2019) 7 nm technology is available by AMD, TSMC and Samsung
- Can be made from Silicon

Transistor evolution

MOORE'S LAW

* Source: Samsung Electronics Co., Ltd.

*Vdd: Supplying voltage of drain

"Transistor density on integrated circuits doubles about every two years." *

Process Node

More functionality, continuous development

FinFET

FinFET structure cross section and side view

Speed and threshold voltage of FinFET

Transistor Fin Improvement

22 nm 1st Generation Tri-gate Transistor

14 nm 2nd Generation Tri-gate Transistor

SEM image of FinFET developed by Intel

Basic MOSFET Inverter

Basic MOSFET Inverter

MOSFET INVERETER Switching time

- For LOW input the output is HIGH
- For HIGH input the output is LOW
- This is a typical inverter action

Output V_{OUT} is inverted relative to the input pulse V_{IN}

Time delay

Delay times associated with ON and OFF switching

 t_r is the rise time, t_f is the fall time, time it takes to go from 10% to 90% of pulse height t_{THL} and t_{TLH} are the time for the pulse to go from high to low and from low to high respectively.

Voltage Transfer Curve VTC for MOS Inverter

Relationship between input voltage and output voltage

 V_{OH} High Level output voltage V_{OL} Low Level output voltage V_{IL} Low Level input voltage V_{IH} High Level input voltage

MOSFET Inverter with capacitive load C_L

Capacitor is discharging to ground through the ON switched FET, time constant = R_{on} X C_L Switching speed is determined by how fast the capacitive load charge and discharge

Vin LOW, capacitor charging

Capacitor is charging through the pull-up resistor R_D to V_{DD} , Time constant = $C_L X R_D$

Capacitor charging and discharging waveforms

Charging and discharging time depending on the R . C_L time constant

$$C = \frac{\epsilon_o \epsilon_r}{t_{ox}}$$
 A Value of capacitor is determined by the area of device and dielectric properties of the material.

R is determined by the ON resistance of the MOSFET(On state) or the pull up resistor(Off state)

NMOS Switch and DMOS load

DMOS is used as a pull-up resistor, EMOS as switch

EMOS – DMOS Inverter

When the EMOS is OFF, the capacitor is charging through the DMOS to $V_{\rm DD}$

Inverter circuits

Inverters constructed with three design approaches

- a) Inverter with PMOS and NMOS configuration
- b) Inverter with two NMOS FETs, Q2 is acting as the pull-up resistor
- c) Inverter constructed with EMOS(Switch) and DMOS resistive, pull up transistor

Power consumption problem with DMOS, EMOS inverters

When the EMOS is ON, the DMOS is also ON, exposing the power supply to ground and the power consumption is high .

Basic CMOS Inverter

Complementary Metal Oxide Semiconductor Technology Uses EMOS in both PMOS (resistive load) and NMOS(switch)configurations.

When the input voltage is HIGH and larger than the threshold voltage V_T The NOMS is switched ON, V_{OUT} is LOW, The PMOS is OFF, cutting V_{DD} from ground reducing power consumption.

CMOS inverter

Complementary Metal Oxide Semiconductor (CMOS) FET

When the input voltage V_{IN} is LOW NMOS is OFF PMOS is ON and pulling the output voltage V_{OUT} to V_{DD} (HIGH).

CMOS Loading

Capacitive load, charging through the PMOS, Discharging through the NOMS, the ON resistances of the PMOS and NMOS will determine the switching speed

CMOS driver, CMOS load

Output of driver is input to the load. Input is through the gate which is isolated from the channel with oxide, ie capacitive load.

Basic Digital Gates

NOR gate

NAND gate

Implementation of a Boolean function

$$V_{OUT} = \overline{V_{IN}}$$

$$Y = \overline{A+B}$$

$$Y = \overline{A.B}$$

$$Y = A + B.C$$

CMOS Non-Inverting case

4 input NOR gate implemented using CMOS technology

4 input NAND gate implemented using CMOS technology

The output (y) is LOW only when all inputs (A, and B and C and D) are High

CMOS NAND and NOR gates

