Labyrinthulomycete genome codon usage calculation code

Joshua Rest, Jackie Collier

Abstract

We analyzed the recently available whole genome sequences from two thraustochytrids (Aurantiochytrium limacinum ATCC MYA-1381, Schizochytrium aggregatum ATCC 28209) and one aplanochytrid (Aplanochytrium PBS07) We then calculated the genome-wide relative synonymous codon usage, codon frequencies and GC content for predicted coding sequences from each of the three species. We compared these to other stramenopiles: the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, and the oomycete Phytophthora sojae, as well as to the ascomycete fungus Saccharomyces cerevisiae. See this page for further description.

This code was run in R version 3.3.2 (2016-10-31)

Package info: RCurl_1.95-4.8 bitops_1.0-6 ape_4.0 reshape_0.8.6 seqinr_3.3-3

Citation: Joshua Rest, Jackie Collier Labyrinthulomycete genome codon usage calculation code. protocols.io

dx.doi.org/10.17504/protocols.io.hgyb3xw

Published: 29 Mar 2017

Protocol

Coding sequences from Labyrinthulomycete and other genomes

Step 1.

Coding sequences were downloaded from the following files / URLs:

Schag1 GeneCatalog CDS 20121220.fasta from

http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=Schag1

Aurli1 GeneCatalog CDS 20120618.fasta from

http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=Aurli1

Aplke1 GeneCatalog CDS 20121220.fasta from

http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=Aplke1

Physo3 GeneCatalog CDS 20110401.fasta from

http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=Physo3

Thalassiosira pseudonana. ASM14940v1.30.cds. all.fa from

ftp://ftp.ensemblgenomes.org/pub/protists/release-30/fasta/thalassiosira pseudonana/cds/

Phaeodactylum tricornutum.ASM15095v2.30.cds.all.fa

from ftp://ftp.ensemblgenomes.org/pub/protists/release-30/fasta/phaeodactylum tricornutum/cds/

Saccharomyces cerevisiae.R64-1-1.30.cds.all.fa

from ftp://ftp.ensemblgenomes.org/pub/release-30/fungi/fasta/saccharomyces_cerevisiae/cds/

DATASET

Coding Sequences

R: Prepare the workspace

Step 2.

Load libraries; define file names of coding sequences to be loaded

```
cmd COMMAND
library(seqinr)
library(reshape)
library(ape)
library(RCurl)
eval( expr = parse( text = getURL("https://raw.githubusercontent.com/talgalili/R-code-snipp
ets/master/boxplot.with.outlier.label.r")))
allcds <-
    c("Aplke1_GeneCatalog_CDS_20121220.fasta", "Aurli1_GeneCatalog_CDS_20120618.fasta", "Phaeoda
ctylum_tricornutum.ASM15095v2.30.cds.all.fa", "Physo3_GeneCatalog_CDS_20110401.fasta", "Sacch
aromyces_cerevisiae.R64-1-1.30.cds.all.fa", "Schag1_GeneCatalog_CDS_20121220.fasta", "Thalass
iosira_pseudonana.ASM14940v1.30.cds.all.fa")</pre>
```

R: Calculate GC content for each species

Step 3.

Create a vector of GC content values of the coding sequences - one for each genome.

Output example: Table 2

```
gwGC <- lapply(allcds,function(species){
print(species)
jgil <- read.fasta(species)
jgilb <- unlist(jgil)
jgi3b <- GC(jgilb)
return(jgi3b)
})

gwGC2 <- do.call("rbind",gwGC)
rownames(gwGC2) <-
c("Aplanochytrium kerguelense","Aurantiochytrium limacinum","Phaeodactylum tricornutum","P
hytophthora sojae","Saccharomyces cerevisiae","Schizochytrium aggregatum","Thalassiosira ps
eudonana")</pre>
```

R: Calculate codon usage frequency of rscu use across all coding sequences in each genome

Step 4.

Calculate frequency or rscu of the 64 codon triplets across all genes in each genome.

```
cmd COMMAND
metric <- "freq" #freq or rscu
gwRscu <- lapply(allcds,function(species){</pre>
print(species)
jgil <- read.fasta(species)</pre>
jgi1b <- unlist(jgi1)</pre>
jgi3b <- uco(jgi1b, index = metric)</pre>
return(jgi3b)
})
gwRscu2 <- do.call("rbind",gwRscu)</pre>
rownames(gwRscu2) <-</pre>
 c("Aplanochytrium kerguelense", "Aurantiochytrium limacinum", "Phaeodactylum tricornutum", "P
hytophthora sojae", "Saccharomyces cerevisiae", "Schizochytrium aggregatum", "Thalassiosira ps
eudonana")
gwRscu2b <- gwRscu2
rownames(gwRscu2b) <- c("Ak","Al","Pt","Ps","Sc","Sa","Tp")</pre>
save(gwRscu2,file=paste("gwRscu2",metric,"rda",sep="."))
save(gwRscu2b,file=paste("gwRscu2b",metric,"rda",sep="."))
```

R: Reformat and plot the results.

Step 5.

Make a boxplot of RSCU or codon frequency across genomes, where each column is a codon, with outliers labelled

Output example.

```
cmd COMMAND
#re-format
gwRscu3b <- melt(gwRscu2b)
save(gwRscu3b,file=paste("gwRscu3b",metric,"rda",sep="."))

png(paste("Boxgw2",metric,"png",sep="."))
par(family="mono")
boxplot.with.outlier.label(gwRscu3b$value~gwRscu3b$X2,gwRscu3b$X1,las=2, cex.axis = 0.7, xl
ab="codon",ylab=metric)
points(gwRscu3$X2,gwRscu3$value,cex=0.5,col=gwRscu3$X1)
savefont <- par(font=3)
legend("topright",legend=unique(gwRscu3$X1),col=unlist(subset(gwRscu3,X2=="aaa",select=X1))
,pch=1,cex=0.7)
par(savefont)
dev.off()</pre>
```