Grover's algorithm

- Given quantum circuit Q_F implementing $F \colon \{0,1\}^n \to \{0,1\}$, want to find $x \in \{0,1\}^n$ such that F(x) = 1 or become confident none exists
- Key difference from Bernstein–Vazirani / Simon / Shor
 - ullet is not promised to have any special structure / pattern
- Assume hardest case F(x) = 1 for exactly one string $x^* \in \{0,1\}^n$
 - Quantum algorithm uses \sqrt{N} queries

Extension

- What if k=2?
 - After $\sqrt{N}/4$ iterations, find x_1^* or x_2^* with probability 5%
- Use different strategies if we know
 - 10% when $1 \le K < 2$.
 - 5% when $2 \le K < 4$.
 - •
 - $10\%/\log(N/16)$, when $N/32 \le k < N/16$.
 - Random algorithm, when $k \ge N/16$.

Extension

- What if we don't know k?
 - Pretend $1 \le k < 2$, and find x^*
 - Or pretend $2 \le k < 4$, and find x^*
 - •
 - Or pretend $N/32 \le k < N/16$, and find x^*
 - Or pretend $k \ge N/16$, and find x^* via random algorithm
- If found no x^* , conclude F = 0

Quantum query complexity and lower bounds

- Black-box query model
 - Given $F \colon \{0,1\}^n \to \{\text{labels}\}$ and quantum circuit Q_F (or Q_F^\pm) for F
 - ullet Solve some problem about F
- Example: Grover's problem, labels are $\{0, 1\}$. Find x^* s.t. $F(x^*) = 1$ or determine no such x^* exists
- Query complexity model
 - Treat Q_F (or Q_F^{\pm}) as a black box
 - Cost of an algorithm is the number of applications of Q_F (queries)
 - All other computation is free

Why study this model?

- Usually the freee computation is cheap, say poly(n) gates per query, where $n = \log N$
- You can prove lower bounds (no-go / impossibility results)
- Example: Any quantum algorithm that solvers Grover's problem requires at least $c\sqrt{N}$ queries of Q_F

New notation for query complexity

- Given $F: \{0,1\}^n \to \{\text{labels}\}$, think of F as a string of length $N=2^n$
 - $w = w_1 w_2 ... w_N$, where $w_1 = F(00...00), w_2 = F(00...01), ..., w_N = F(11...11)$
 - Classically, you query $i \in \{1, ..., N\}$, get w_i
 - Quantumly, you can query superposition

Decision problems

- Focus on decision (yes or no) tasks, that is, {labels} = {0,1}
- Example: "Decision Grover"
 - Given $w \in \{0,1\}^N$ (unknown)
 - Can query superposition of $i \in \{1,2,...,N\}$
 - Decide whether $w_i = 1$ for some i
 - Output YES / NO, that is, $OR(w_1, ..., w_N)$
- Thank of a decision problem as $\varphi = (YES, NO)$
 - YES = {w : output for w is YES} and NO = {w : output for w is NO}

Decision problems

- Example: Decision Grover
- Decision problems might be
 - Total: YES U NO = {all strings}
 - Partial: YES ∪ NO ⊂ {all strings} (i.e., have some promise on strings)

Lower bounds on quantum query complexity

- [Bennet–Berstein–Brassard–Vazirani '96] Cost for "decision Grover" is at least $c\sqrt{N}$ queries
- [Ambrainis '00] The basic adversary method
- [Høyer-Lee-Špálek '07] General adversary method
- Special case of Basic adversary method
 - For φ = (YES, NO). Suppose $Y \subseteq$ YES and $Z \subseteq$ NO s.t.
 - For each $y \in Y$, there exist m strings $z \in Z$ s.t. dist(y, z) = 1
 - For each $z \in Z$, there exist m' strings $y \in Y$ s.t. dist(y, z) = 1
 - Then cost of quantum query algorithm to solve φ is at least $c\sqrt{mm'}$

Applications

- Decision Grover
- Decide if w has $\geq k$ ones or < k ones
- Partition w into \sqrt{N} blocks of size \sqrt{N} . Decide if there is a one in each block.

Proof of special case

- Generic quantum query algorithm looks like:
- Here $Q_w^{\pm}: |i\rangle \mapsto (-1)^{w_i} |i\rangle$

- What does it imply when we say quantum query algorithm solves ϕ ?
- Imagine an "adversary" picks $y \in YES$ and $z \in NO$ and runs the quantum query algorithm with w = y and w = z respectively
- The final joint states are respectively $|\Psi_y^{\rm final}\rangle$ and $|\Psi_z^{\rm final}\rangle$
- Goal: Discriminate the above two joint states
- In fact, we want $|\langle \Psi_y^{\text{final}} \mid \Psi_z^{\text{final}} \rangle| \leq 0.99$