## Recall

On a finite dimensional vector space, all the norms are equivalent. For normed spaces, finite dimensionality  $\iff$  locally compactness.

Let X, Y be normed spaces and  $(T_n)_{n=1}^{\infty}, T: X \to Y$  be linear operators.

- T continuous  $\iff T$  continuous at  $0 \iff T$  bounded.
- If dim  $X < \infty$ , then T must be countinous. Moreover,  $T_n x \to Tx$  for all  $x \in X \iff T_n \xrightarrow{\|\cdot\|} T$ . The direction  $\implies$  may not hold when dim  $X = \infty$ .
- If dim  $Y < \infty$ , then T bounded  $\iff$  ker T closed. In particular, this holds for linear functionals. The direction  $\iff$  may not hold when dim  $Y = \infty$ .
- Equivalent definitions of the operator norm

$$||T|| = \sup\{\frac{||Tx||}{||x||} \colon x \in X, ||x|| \neq 0\}$$

$$= \sup\{||Tx|| \colon x \in X, ||x|| = 1\}$$

$$= \sup\{||Tx|| \colon x \in X, ||x|| \leq 1\}$$

$$= \inf\{M > 0 \colon ||Tx|| \leq M||x||, \ \forall x \in X\}.$$

The operator norm depends on both of the norms in the domain X and in the range Y.

## Dual space

**Example 1** (Dual-space relationship). Let  $1 \le p < \infty$  and  $1 < q \le \infty$  such that  $\frac{1}{p} + \frac{1}{q} = 1$ . Then  $(\ell^p)^* = \ell^q$ .

*Proof.* We begin with some convenient notations. For  $x = (x(i))_{i=1}^{\infty} \in \ell^p$  and  $y = (y(i))_{i=1}^{\infty} \in \ell^q$ , define a pairing

$$\langle x, y \rangle := \sum_{i=1}^{\infty} x(i)y(i).$$
 (1)

By Hölder's inequality,

$$|\langle x, y \rangle| \le \sum_{i=1}^{\infty} |x(i)y(i)| \le ||x||_p ||y||_q < \infty.$$
(2)

Hence  $\langle \cdot, \cdot \rangle \colon \ell^p \times \ell^q \to \mathbb{K}$ , where  $\mathbb{K} = \mathbb{R}$  or  $\mathbb{C}$ . It is readily checked that for  $\alpha \in \mathbb{K}, x, \tilde{x} \in \ell^p$  and  $y \in \ell^q$ ,

$$\langle \alpha x + \tilde{x}, y \rangle = \alpha \langle x, y \rangle + \langle \tilde{x}, y \rangle \text{ and } \langle x, y \rangle = \langle y, x \rangle.$$
 (3)

By (2) and (3), for any fixed  $y \in \ell^q$ , the map  $\langle \cdot, y \rangle \colon \ell^p \to \mathbb{K}$  is continuous and linear, i.e.,  $\langle \cdot, y \rangle \in (\ell^p)^*$ . To prove  $(\ell^p)^* = \ell^q$ , we will show that the map

$$T \colon \ell^q \to (\ell^p)^*$$
$$y \mapsto \langle \cdot, y \rangle$$

is an isometric isomorphism.

- (i) (linear and injective) By (3), T is linear. If  $\langle \cdot, y \rangle$  is identically zero on  $\ell^p$ , then by applying  $\langle \cdot, y \rangle$  to  $e_i$ , we get  $y = 0 \in \ell^q$ , thus T is injective.
- (ii) (surjective) Let  $\Lambda \in (\ell^p)^*$ . We will find  $y \in \ell^q$  such that for all  $x \in \ell^p$ ,  $\Lambda x = \langle x, y \rangle$ . If  $\Lambda = 0$ , then y = 0 satisfying the requirement. Below assume  $\Lambda \neq 0$ . (Recall basis is like the skeleton of a vector space. To determine the behavior of a linear map  $\Lambda$  on the whole space, it is often enough to determine the how  $\Lambda$  acts on the basis vectors.) For  $i \in \mathbb{N}$ , let  $e_i$  be the sequence taking 1 on i-th term and 0 on all the other terms. Define a sequence  $y = (\Lambda e_i)_{i=1}^{\infty}$ . We will check y is the desired sequence.

Let  $x \in \ell^p$ . In Homework 2, we have proved  $\{e_i\}_{i=1}^{\infty}$  is a Schauder basis in  $\ell^p$   $(1 \le p < \infty)$ . Then  $x = \sum_{i=1}^{\infty} x(i)e_i \in \ell^p$ . Since  $\Lambda$  is continuous and linear,

$$\Lambda x = \Lambda \left( \sum_{i=1}^{\infty} x(i)e_i \right) = \sum_{i=1}^{\infty} x(i)\Lambda e_i = \langle x, y \rangle.$$
 (4)

Next we check  $y \in \ell^q$ .

When  $q = \infty$ . Suppose on the contrary that  $y \notin \ell^{\infty}$ . Then there exist  $i_0 \in \mathbb{N}$  such that  $|y(i_0)| > 2||\Lambda||$ . However,  $|y(i_0)| = |\Lambda e_{i_0}| \leq ||\Lambda||$ , which is a contradiction. Hence  $y \in \ell^{\infty}$ .

When  $q < \infty$ . Define  $y_n = \begin{cases} |y(i)|^{q-1} \exp(-\theta_i) &, i \leq n; \\ 0 &, i > n. \end{cases}$  Then  $y_n \in \ell^p$ . By (4) and the boundedness of  $\Lambda$ ,

$$\sum_{i=1}^{n} |y(i)|^{q} = |\langle y_{n}, y \rangle| = |\Lambda y_{n}| \le ||\Lambda|| ||y_{n}||_{p} = ||\Lambda|| (\sum_{i=1}^{n} |y(i)|^{q})^{1/p}.$$

Dividing both sides by  $(\sum_{i=1}^{n} |y(i)|^q)^{1/p}$  (that is nonzero when n large enough),

$$(\sum_{i=1}^{n} |y(i)|^{q})^{1/q} \le ||\Lambda||.$$

Letting  $n \to \infty$ , we have  $y \in \ell^q$ .

(iii) (isometric) Let  $y \in \ell^q$ . By (2),  $||Ty|| \le ||y||_q$ . If y = 0, then Ty = 0. Below assume  $y \ne 0$ . When  $q = \infty$ . For any  $\varepsilon > 0$ , there exists  $i \in \mathbb{N}$  such that  $|y(i)| \ge ||y||_{\infty} - \varepsilon$ . Hence

$$|\langle e_i, y \rangle| = |y(i)| \ge ||y||_{\infty} - \varepsilon.$$

Letting  $\varepsilon \to 0$  and since  $||e_i||_1 = 1$  for all  $i \in \mathbb{N}$ , we have  $||Ty|| \ge ||y||_{\infty}$ .

When  $q < \infty$ . Write  $y(i) = |y(i)| \exp(\theta_i)$  for  $i \in \mathbb{N}$ . Define the 'conjugate function'

$$y^* = ||y||_q^{1-q} \left( |y(i)|^{q-1} \exp(-\theta_i) \right)_{i=1}^{\infty}.$$
 (5)

Then  $||y^*||_p = 1$  and  $\langle y^*, y \rangle = ||y||_q$ . Hence  $||Ty|| \ge ||y||_q$ .

Remark. Example 1 can be generalized to  $L^p(\mu)$  with  $\mu$  being  $\sigma$ -finite. In the general proof, we can use  $\int fgd\mu$  as the pairing in (1), integral-version Hölder inequality in (2), apply Radon-Nikodym to find the candidate 'y' in (ii). The proof idea of the other parts is similar. The construction in (5) is an explicit example of [LN, Prop. 4.5].

For vector spaces A and B, denote  $A \hookrightarrow B$  if  $A \subset B$ . For Banach spaces X and Y, denote  $X \xrightarrow{*} Y$  if  $Y = X^*$ . Recall  $(c_0)^* = \ell^1$ . Let  $1 and <math>2 < q < \infty$  with  $\frac{1}{p} + \frac{1}{q} = 1$ . Then we can summarize



Remark. For a locally compact Hausdorff space X (Here  $X = \mathbb{N}$  for  $c_0$ ), Riesz representation characterizes that  $C_0(X)^* = M(X)$ , where M(X) denotes the space of regular Borel measures.

(Take a  $\sigma$ -finite measure  $\mu$  on X and define the  $L^1(\mu)$ . There is a natural way to conclude  $L^1(\mu) \subset M(X)$  where the inclusion is usually strict. However, in our case where  $X = \mathbb{N}$  and  $\mu = \#$  (the counting measure), we have  $C_0(\mathbb{N}) = c_0$  and  $L^1(\#) = \ell^1$ . The counting measure # has a special property that every measure  $\eta \in M(\mathbb{N})$  is absolutely continuous with respect to #. By Radon-Nikodym, we can identify  $M(\mathbb{N}) = L^1(\#) = \ell^1$ . Hence  $M(\mathbb{N}) = c_0^* = \ell^1$  becomes reasonable.)

Below is an application of the representation of  $(\ell^2)^*$ .

**Example 2.** For  $x = (x(i))_{i=1}^{\infty} \in \ell^2$ , define  $\Lambda x = \sum_{i=1}^{\infty} \frac{x(2i)}{i}$ . Show that  $\Lambda \in (\ell^2)^*$  and compute  $\|\Lambda\|$ .

*Proof.* For  $i \in \mathbb{N}$ , define

$$y(i) = \Lambda(e_i) = \begin{cases} \frac{1}{k} &, i = 2k, \\ 0 &, i = 2k - 1, \end{cases}$$

where  $\{e_i\}_{i=1}^{\infty}$  is the standard Schauder basis of  $\ell^2$ . Let  $y=(y(i))_{i=1}^{\infty}$ . Then  $\Lambda \cdot = \langle \cdot, y \rangle$ .

Since  $||y||_2 = (\sum_{k=1}^{\infty} \frac{1}{k^2})^{1/2} = \pi/\sqrt{6}$ , it follows from Example 1 that  $\Lambda \in (\ell^2)^*$  and  $||\Lambda|| = ||y||_2 = \pi/\sqrt{6}$ .