z5242692

Chenqu Zhao

COMP9101 (T2-2020)

Homework 2 - Q1

First, we write n in binary format, $n=2^{k_1}+2^{k_2}+\cdots+2^{k_m}$ where $k_1>k_2>\cdots>k_m$ and $K_1=\lfloor\log_2 n\rfloor$. This way $M^n=M^{2^{k_1}}\cdot M^{2^{k_2}}\cdots M^{2^{k_m}}$, which takes $\lfloor\log_2 n\rfloor-1$ multiplications.

To compute $M^{2^j}(1 \leq j \leq \lfloor \log_2 n \rfloor)$, we apply repeated squaring algorithm as follows. As the value $k_1, k_2, k_3 \cdots k_m$ is continuous integer, we can compute $M^{2^{k_m}}$ first, then multiply it by $M^{2^{k_m}}$ each time to obtain other values of M^{2^j} . There are 2^j values which requires 2^j-1 multiplications. Since that $2^j \leq 2^{\log_2 n} = n$, the computation of all M^{2^j} take at most $\lfloor \log_2 n \rfloor - 1$ multiplications.

Therefore, the total multiplications time is $\lfloor \log_2 n \rfloor + \lfloor \log_2 n \rfloor - 2 = O(\log n)$.