Arduino Sinus-Generator nach der Direkten Digitalen Synthese (DDS)

Um die DDS- Methode in Software zu implementieren, werden folgende Komponenten benötigt:

- 1. Referenztakt
- 2. Phasenschritt
- 3. Phasen-Akkumulator
- 4. Sinustabelle
- 5. Digital-Analog-Wandler (DAC)

Sinustabelle

Die Sinustabelle besteht aus 256 Bytes mit den Werten einer Sinusperiode mit sinus(0) =128 , sinus($\pi/2$) = 255 und sinus($3*\pi/2$) = 0. Da der Ausgang der PWM keine negativen Wert erzeugen kann, erhält der Sinus einen Offset von 128 , entsprechend einem PWM- Ausgang von 2,5 Volt.

Referenztakt

Als Referenztakt wird 32 kHz gewählt; diese Frequenz wird beim 16 Mhz- CPU-Takt durch Teilung 16000000/510 = 31372.55 Hz erzeugt.

Realisierung der DDS

Im Phasen-Akkumulator wird bei jedem Takt ein Phasenschritt-Wert aufaddiert. Die Phase wird dargestellt durch eine Zahl von 0 ... 2**32-1 (32 Bit). Das entspricht einem 'unsigned long' – Datentyp.

Wertezuordnung:

Wei tezadianang.					
Phasen- Akkumulator	Index P	Grad	Winkel	sin	Ausgang D
0x0000000	0	0	0	0	127
0x40000000	64	90	0.5*pi	1	255
0x80000000	128	180	pi	0	127
0xc0000000	192	270	1.5 *pi	-1	0
0xFFFFFFF	255	<360	<2*pi	<0	<127
0x0000000	0	360	2*pi	0	127

Die obersten 8 Bits (grau markiert) können direkt als Index in der Sinus-Tabelle dienen(0x00 = 1. Wert in der Tabelle , 0xFF= letzter Wert in der Tabelle). Diese Rundung betrifft nur die Sinustabelle, der Phasen-Akkumulator behält seine Auflösung von 32 Bit.

Beim Überlauf des Phasen-Akkumulator von 0xFFFFFFFF auf 0x0000000 ergibt sich automatisch ein Sprung zum Beginn der Sinustabelle.

Mit der Größe des Phasenschritts wird die Frequenz eingestellt: kleine Werte ergeben niedrige Frequenz , große Werte hohe Frequenz.

Es gilt folgende Formel:

f = (Phasenschritt * Taktfrequenz) / 2**n n=32 (bits) Taktfrequenz = 31372.55 Hz

f = (Phasenschritt* 31372.55) / 2**32

Aufgelöst nach Phasenschritt:

Phasenschritt= 2**32* f/31372.55)

'Digital Phase Wheel'

Das 'Digital Phase Wheel' demonstriert die Generierung eines Sinus per DDS:

Schaltung

frequenzTabelle[16] =

Digital-Analog-Wandler

Die Digital-Analog-Wandlung wird durch eine Pulsweitenmodulation(PWM) gebildet, deren Pulsweite alle 32 us per Interrupt aktualisiert wird. Durch nachgeschalteten Tiefpass (z.B. R-C-Glied) wird daraus ein Analogwert.

Man benötigt ein Tiefpassfilter, um die 32 kHz Abtastfrequenz im Ausgangssignal zu entfernen.

Programm

```
// Timer2 Interrupt Service at 31372,550 KHz = 32uSec
 // this is the timebase REFCLOCK for the DDS generator
 // FOUT = (M (REFCLK)) / (2 exp 32)
☐ ISR (TIMER2_OVF_vect) {
   // for SIN1
   phaccu_a = phaccu_a + tword_a; // soft DDS, phase accu with 32 bits
   icnt_a = phaccu_a >> 24; // use upper 8 bits for phase accu as frequency information
   // read value from ROM sine table and send to PWM DAC
   OCR2A = pgm read byte near(sine256 + icnt a);
```


