Reelle Zahlen

 $(K,+,\cdot)$ angeordneter Körper, $X\subset K$ nicht leer

Sup, Inf, Max, Min

- $s \in K \operatorname{sup}(\mathbf{X}) \Leftrightarrow s$ kleinste obere Schranke
- $s \in K$ inf(X) \Leftrightarrow s größte untere Schranke
- $s \in K \max(\mathbf{X}) \Leftrightarrow s = \sup(\mathbf{X}) \land s \in K$
- $s \in K \min(\mathbf{X}) \Leftrightarrow s = \inf(\mathbf{X}) \land s \in K$

$\varepsilon ext{-}$ Charakterisierung des Supremums

 $s = \sup(X) \Leftrightarrow \forall \varepsilon > 0 \ \exists x \in X : s - \varepsilon < x \le s$ Entsprechendes gilt für das Infimum

Rechenregeln für sup $X,Y \subset \mathbb{R}$ nach oben beschränkt:

- $\sup(X+Y) = \sup(X) + \sup(Y)$
- $\lambda > 0 \Rightarrow \sup(\lambda X) = \lambda \sup(X)$
- $X,Y \subset [0,\infty) \Rightarrow \sup(X) \cdot \sup(Y)$
- $X \subset Y \Rightarrow \sup(X) \le \sup(Y)$

Archimedische Anordnung

- \mathbb{R} archimedisch angeordnet $\Rightarrow \forall x \in \mathbb{R} \ \exists n \in \mathbb{N} : n > x$
- $\forall \varepsilon > 0 \; \exists n \in \mathbb{N} : \frac{1}{\varepsilon} < \varepsilon$
- $\forall a, b \in \mathbb{R} : a < b : \exists q \in \mathbb{Q} : a < q < b$

Def: 2.2 - Grenzwert einer reellen Folge

- $a \in \mathbb{R}$ Grenzwert von $(a_n) \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |a_n a| < \varepsilon$
- Existiert $a \in \mathbb{R}$ Grenzwert $\Rightarrow (a_n)$ konvergent, sonst (a_n) divergent

Nullfolge
$$\lim_{n\to\infty} (a_n) \to 0$$

Satz 2.3 - Rechenregeln für Grenzwerte

 $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ reelle Folgen, $\lim a_n=a$, $\lim b_n=b$

- Folge $(a_n + b_n)$ konvergiert gegen a + b
- Folge $(a_n \cdot b_n)$ konvergiert gegen $a \cdot b$
- $b \neq 0 \Rightarrow \left(\frac{a_n}{b_n}\right)_{n \in \mathbb{N}}$ konvergiert gegen $\frac{a}{b}$
- $a_n < b_n$ für fast alle $n \in \mathbb{N} \to a < b$
- Einschließungskriterium

 $a = b \land a_n \le c_n \le b_n$ für fast alle $n \in \mathbb{N} \Rightarrow c_n \to a$ Spezialfall des Einschließungskriteriums:

 $(x_n)_{n\in\mathbb{N}}Folge, x\in R, (y_n)_{n\in\mathbb{N}}$ Nullfolge, sodass $|x_n-x|\leq y_n$ für fast alle $n \Rightarrow (x_n)_{n \in \mathbb{N}}$ konvergiert gegen x

Satz 2.4 - Eigenschaften konvergenter Folgen

Sei a_n konvergente reelle Folge

- (a_n) beschränkt
- (a_n) besitzt genau einen Grenzwert

Def: 2.5 - Uneigentliche Konvergenz

- $(a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen $\infty \Leftrightarrow$ $\forall K > 0 \; \exists n_0 \in \mathbb{N} \forall n \geq n_0 : a_n > K$
- $(a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen $-\infty \Leftrightarrow$ $(-a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen ∞

Satz 2.6 - Rechenregeln für uneigentliche Konvergenz

 $(b_n)_{n\in\mathbb{N}}$ reelle Folge, $\lim (b_n)_{n\in\mathbb{N}} = \infty$, $(a_n)_{n\in\mathbb{N}}$ reelle Folge, $\lim a_n = \infty$ $a, a \in \mathbb{R} \cup \{\infty, -\infty\}$

- $a \neq -\inf \Rightarrow (a_n + b_n)_{n \in \mathbb{N}} \to \infty$
- $a \neq 0 \Rightarrow (a_n \cdot b_n)_{n \in \mathbb{N}}$ konvergiert
- $a > 0 \Rightarrow \lim_{n \to \infty} a_n b_n = \infty$
- $a < 0 \Rightarrow \lim_{n \to \infty} a_n b_n = -\infty$
- $a \notin \{-\infty, \infty\} \vee (a_n)_{n \in \mathbb{N}}$ beschränkt $\Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}} \to 0$

Def 2.7 - Monotone Folgen $(a_n)_{n\in\mathbb{N}}$ reelle Folge heißt

- monoton wachsend, falls $a_{n+1} \geq a_n, \forall n \in \mathbb{N}$
- streng monoton wachsend, falls $a_{n+1} > a_n, \forall n \in \mathbb{N}$
- monoton fallend, falls $a_{n+1} \leq a_n, \forall n \in \mathbb{N}$
- streng monoton fallend, falls $a_{n+1} < a_n, \forall n \in \mathbb{N}$

Monotoniesatz $(a_n)_{n\in\mathbb{N}}$ monoton wachsend \wedge nach oben beschränkt $\Rightarrow \lim a_n = \sup a_n = \sup \{a_n : n \in \mathbb{N}\}\$

Def 2.9 Häufungspunkt $a \in \mathbb{R}$ Häufungspunkt $\Leftrightarrow \exists (a_{n_k})_{k \in \mathbb{N}}$ Teilfolge **Eigenschaften von exp** $\forall z, w \in \mathbb{C}, x \in \mathbb{R}, n \in \mathbb{N}$ von $(a_n)_{n\in\mathbb{N}}$, die gegen a konvergiert.

Satz v. Bozano-Weierstraß

Jede beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge und • $\lim_{n\to\infty} (1+\frac{z}{n})^n = \exp(z)$ hat min. einen Häufungspunkt

Def 2.11 - Limes superior, limes inferior $(a_n)_{n\in\mathbb{N}}$ nach oben (unten) • $\lim_{x\to 0}\frac{e^x-1}{x}=1$ beschränkt \Rightarrow größter (kleinster) Häufungspunkt: Limes superior (in-

Komplexe und mehrdimensionale Folgen

Grenzwert komplexer Folgen

 $z \text{ GW von } (z_n) \Leftrightarrow \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : |z_n - z| < \varepsilon.$ Existiert $z \Rightarrow (z_n)$ konvergent gegen z.

Konvergenz komplexer Folgen

- $z_n = a_n + ib_n$ konvergiert $\Leftrightarrow a_n$ und b_n konvergieren
- z_n konvergent $\Rightarrow \lim z_n = \lim a_n + i \cdot \lim b_n$

Grenzwert mehrdimensionaler Folgen

 $\lim v_n = v \Leftrightarrow \lim \|v_n - v\|_2 = 0 \Leftrightarrow \lim \|v_n - v\|_{\infty} = 0$

Reihen

Konvergenz $(s_n)_{n\in\mathbb{N}}$ konvergent gg. $s\in\mathbb{C}\Leftrightarrow$ Folge der Partialsummen gg. s konvergiert

Teilfolge, Häufungspunkte $(a_n)_{a\in\mathbb{N}}$ reelle Folge:

- $(n_k)_{k\in\mathbb{N}}$ streng monoton wachsend in \mathbb{N}
- $\Rightarrow (a_{n_k})_{k \in \mathbb{N}}$ Teilfolge von $(a_n)_{n \in \mathbb{N}}$
- $a \in \mathbb{R}$ Häufungspunkt von $(a_n)_{n \in \mathbb{N}} \Leftrightarrow$ \exists Teilfolge, die gg. a konvergiert

Majoranten- & Minorantenkriterium

 $b_n := \sum_{k=0}^{\infty} b_k; (b_k)_{k \in \mathbb{N}}$ relle Folge

 $a_s := \sum_{k=0}^{\infty} a_k, |(a_n)_{n \in \mathbb{N}}| \leq b_k$ für fast alle $k \in \mathbb{N}$

- b_s konvergiert $\Rightarrow a_s$ konvergiert absolut
- a_s divergiert $\Rightarrow b_s$ divergiert

Quotientenkriterum

 $\sum_{k=0}^{\infty} a_k, a \neq 0$ für fast alle $k \in \mathbb{N} \wedge \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| := q$ existiert $\Rightarrow \bigotimes$

Wurzelkriterium

$$\sum_{k=0}^{\infty} a_k; \ a_k \in \mathbb{C} : q := \limsup_{k \to \infty} \sqrt[k]{|a_k|} \Rightarrow \bigotimes$$

- $q < 1 \Rightarrow$ Reihe konvergiert absolut
- $q > 1 \Rightarrow$ Reihe divergiert

Leibnitz-Kriterium $(a_n)_{n\in\mathbb{N}}$ relle, monoton fallende Nullfolge $\Rightarrow \sum_{k=0}^{\infty} (-1)^k a_k \Rightarrow \forall n \in \mathbb{N} | \sum_{k=0}^{\infty} (-1)^k a_k - s_n | \leq a_{n+1}$

Umordnungssatz

- Jede Umordnung einer konvergenten Reihe konvergiert gegen den-
- Konvergiert eine Reihe aus reellen Summanden, aber nicht absolut $\Rightarrow \forall s \in \mathbb{R} \exists$ bijektive Abbildung $\mathbb{N} \to \mathbb{N}$: die umgeordnete Reihe konvergiert gegen s

$$\begin{array}{ll} \textbf{Potenzreihe} & P(z) := \sum_{k=0}^{\infty} c_k z^k; c_k \in \mathbb{C}; z \in \mathbb{C} \\ R := \frac{1}{\limsup\limits_{k \to \infty} \sqrt[k]{|c_k|}} := \text{Konvergenzradius} \end{array}$$

- Seien $\sum_{k=0}^{\infty} a_k$, $\sum_{k=0}^{\infty} b_k$ absolut konvergent $\in \mathbb{C} \Rightarrow (\sum_{k=0}^{\infty} a_k)(\sum_{k=0}^{\infty} b_k) = (\sum_{m=0}^{\infty} c_m)$ mit $c_m = (\sum_{k=0}^{m} a_k b_{m-k})$ mit c_k absolut konvergent.
- Seien $\sum_{k=0}^{\infty} a_k z^k$, $\sum_{k=0}^{\infty} b_k z^k$ zwei Potenzreihen mit Konvergenzradien R_a und $R_b \Rightarrow (\sum_{k=0}^{\infty} a_k z^k)(\sum_{k=0}^{\infty} b_k z^k) = (\sum_{m=0}^{\infty} c_b z^m)$ mit $c_m = \sum_{k=0}^{m} a_k b_{m-k}$ und Konvergenzradius min $\{R_a, R_b\}$

Natürliche Exponentialfunktion

$$exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!} = \sum_{K=0}^{n} {n \choose k} \frac{1}{n^k}$$

- $\exp(z+w) = \exp(z) \cdot \exp(w)$
- $\exp(-z) = \frac{1}{\exp(z)}, \exp(z) \neq 0 \land \exp(\overline{z}) = \exp(z)$
- $|e^{ix}| = 1$
- $\left|\exp(z) \sum_{k=0}^{n} \frac{z^k}{k!}\right| \le 2 \cdot \frac{|z|^{n+1}}{(n+1)!}$
- $\lim x^{-n}e^x = \infty$
- $\bullet \quad \lim^{x \to \infty} x^n e^x = 0$
- $\bullet \quad e^{i\frac{\pi}{2}} = i$
- $e^{i\pi} = -1$ $\bullet \quad e^{z+2\pi i} = e^z$
- $e^{ix} = \cos(x) + i\sin(x)$

Trigonometrische Funktionen

$$\sin(z) := \frac{e^{iz} - e^{-iz}}{2i} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$$

$$\cos(z) := \frac{e^{iz} + e^{-iz}}{2} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}$$

$$\arctan(x) := \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$$

$$\sinh(x) := \frac{1}{2} (e^x - e^{-x}) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2n+1)!}$$

$$\cosh(x) := \frac{1}{2} (e^x + e^{-x}) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2n)!}$$

$$\tanh(x) := \frac{\cosh(x)}{\sinh(x)}$$

Eigenschaften von sin, cos, tan $\forall z, w \in \mathbb{C}, x \in \mathbb{R}$

- $\exp(iz) = \cos(z) + i\sin(w)$
- $(\sin(z))^2 + (\cos(z))^2 = 1$
- $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$
- sin(2z) = 2sin(z)cos(z)
- cos(z+w) = cos(z) sin(w) sin(z) sin(w)
- $\cos(x) = Re(e^{ix}) \sin(x) = Im(e^{ix})$
- $cos(2z) = cos^2(z) sin^2(z)$
- $\arccos(x) + \arcsin(x) = \frac{\pi}{2}$
- $z = \tan(c) : \arctan'(z) = \frac{1}{\tan'(c)} = \frac{1}{1 + (\tan(c))^2} = \frac{1}{1 + z^2}$
- $\cosh^2(x) = \frac{1}{2}\cosh(x) + \frac{1}{2}$ $\cosh^2(x) = \sinh^2(x) = 1$

•	cosn(z) - sinn(z) = 1								
		0	$\frac{\pi}{6} = 30^{\circ}$	$\frac{\pi}{4} = 45^{\circ}$	$\frac{\pi}{3} = 60^{\circ}$	$\frac{\pi}{2} = 90^{\circ}$			
	\sin	$\frac{\sqrt{0}}{2} = 0$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2} = 1$			
	cos	$\frac{\sqrt{4}}{2} = 1$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{0}}{2} = 0$			

Stetigkeit

Definition

stetig in $c \Leftrightarrow \forall (x_n)$ mit $\lim x_n = c$ gilt $\lim f(x_n) = f(c)$

Rechenregeln $D \subseteq \mathbb{R}; f, g: D \to \mathbb{R}; f, g \text{ stetig in } c$ $\Rightarrow f + g, f \cdot g, \frac{f}{g} \ (g \neq 0)$ stetig in c

Komposition $D, D' \subseteq \mathbb{R}, f: D \to \mathbb{R}$ stetig in c

- $y := f(c) \in D' \land g$ stetig in $y \Rightarrow (g \circ f) : D \to \mathbb{R}$ stetig in c
- f, g stetig $\land f(D) \subseteq D' \Rightarrow (g \circ f) : D \to \mathbb{R}$ stetig

 $\begin{array}{ll} \varepsilon\text{-}\delta\text{-}\mathbf{Charakterisierung} & D\subseteq\mathbb{R}, f:D\to\mathbb{R}, c\in D\Rightarrow f \text{ stetig in } \\ c\Leftrightarrow \forall \varepsilon>0 \exists \delta>0: \forall x\in D: |x-c|<\delta\Rightarrow |f(x)-f(c)|<\varepsilon \end{array}$

Zwischenwertsatz $f:[a,b] \rightarrow \mathbb{R}$ stetig $\Rightarrow \forall y \in \mathbb{R}$ mit $\min\{f(a), f(b)\} \le y \le \max\{f(a), f(b)\} : \exists x \in [a, b] : f(x) = y$

Satz v. Max. und Min. [a,b] beschränkt, $f:[a,b] \to \mathbb{R}$ stetig

• $\exists x_{\text{max}}, x_{\text{min}} \in [a, b] : f(x_{\text{max}}) = \sup\{f(x) : x \in [a, b]\} \land f(x_{\text{min}}) = \{f(x) : x \in [$ $\inf\{f(x): x \in [a,b]\}$

Stetigkeit in \mathbb{C} & \mathbb{R}^n wörtlich übertragbar $D\subseteq\mathbb{C}$ oder $D\subseteq\mathbb{R}^n$ abgeschlossen: $\forall f$ stetig : $D\to\mathbb{C}$ bzw. $f:D\to\mathbb{R}^m$ beschränkt und nimmt auf D Maximum und Minimum

Stetigkeit von Potenzreihen $f(z) = \sum_{k=0}^{\infty} c_k z^k$ mit Konvergenzradius $R \Rightarrow f : \{z : |z| < R\} \to \mathbb{C}$ stetig

Differenziation

Definition $I \subseteq \mathbb{R}, f: I \to \mathbb{R}$ $f'(c) := \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$

Diff'barkeit \Rightarrow **Stetigkeit** f diffbar in $c \Rightarrow f$ in \mathbb{C} stetig

Monotonie & Umkehrbarkeit

- fstetig: finjektiv $\Leftrightarrow f$ streng monoton wachsend oder fallend
- f außerdem surjektiv $\Rightarrow f^{-1}$ stetig \land monoton wachsend / fallend

Differentiation v. f^{-1} f bijektiv, $f'(c) \neq 0 \Rightarrow z := f(c)$ diff'bar, $(f^{-1})'(z) = \frac{1}{f'(c)}$

Logarithmus
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$

Diff. v. Potenzreihen
$$f(x)=\sum_{k=0}^{\infty}c_kx^k\in\mathbb{R}: f'(x)=\sum_{k=1}^{\infty}kc_kx^{k-1},\ D=|R|$$

Höhere Ableitungen $\mathscr{C}^n(I)$: Vektorraum aller n-mal stetig diff'baren Funktionen $f: I \to \mathbb{R}$

Extrema

- lokales Maximum $\Leftrightarrow \varepsilon > 0 : f(c) \ge f(x) \forall x \in (c \varepsilon, c + \varepsilon) \cap I$ lokales Minimum $\Leftrightarrow \varepsilon > 0 : f(c) \le f(x) \forall x \in (c \varepsilon, c + \varepsilon) \cap I$
- isoliertes lok. Max/Min $\Leftrightarrow \widetilde{\text{Max/min}} \land x \neq c$
- globales Max (Min) $f(x) \ge (\le) f(c)$

Satz von Rolle $f: [a,b] \to \mathbb{R}, f(a) = f(b) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = 0$

Hinreichend für Extrema f diff'bar, $\exists c : f'(c) = 0$

- f streng monoton wachsend um $c \Rightarrow f$ in c isol. lok. Min. • $f \in \mathscr{C}^2$, $f''(c) = 0 \Rightarrow f$ in c isol. lok. Min.
- f' um c str. monoton fallend \Rightarrow f in c isol. lok. Max.
- $f \in \mathcal{C}^2$, $f''(c) < 0 \Rightarrow f$ in c isol. lok. Max.
- $n \in \{\mathbb{N} \cup \infty\} : T_n f(x;c) := \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$ Potenzreihen: Das n-te Taylorpolynom (im Nullpunkt) von Potenzreihen ist deren n-te Partialsumme

Integration

Riehmann-Integral

 $\varphi \in \tau[a,b]: \int_a^b \varphi dx := \sum_{k=1}^n c_k (x_k - x_{k-1})$

Stetigkeit & Monotonie $\Rightarrow integrierbar \quad f:[a,b] \rightarrow \mathbb{R}$

- f stetig $\Rightarrow f$ integrierbar
- f monoton $\Rightarrow f$ integrierbar
- \exists Unterteilung v. [a, b] stetig oder monoton $\Rightarrow f$ integrierbar

Mittelwertsatz d. Int.-R. $f:[a,b] \rightarrow \mathbb{R}$ stetig, $\exists \xi \in [a,b]:$ $\int_a^b f(x)dx = f(\xi)(b-a)$

Partielle Integration $f,g:[a,b]\to\mathbb{R}$ stetig: $\int_a^b f(x)g'(x)dx=$ $[f(x)g(x)]_a^b - \int_a^b f'(x)g(x)dx$

Substitution $\int_a^b f(g(x))g'(x)dx = \int_{g(x)}^{g(b)} f(y)dy$

Majorantenkriterium f. Int.

f über [a, b] absolut integrierbar \Leftrightarrow

- f in jedem Teilintervall $\in [a, b]$ integrierbar
- $|f(x)| \le g(x) \forall x \in [a,b)$
- g über [a,b) uneig. integrierbar

Folgerung z. uneig. Integrierbarkeit

- $f:(a,b]\to\mathbb{R}$ auf allen Teilintervallen $\in (a,b]$ integrierbar, f(x)= $\mathcal{O}(\frac{1}{|x-a|^s})$ für $x \to a$ mit $s \in [0,1) \Rightarrow$ füber (a,b] uneig. integrierbar
- $f:[a,\infty)\to\mathbb{R}, a< b \text{ integrierbar}, f(x)=\mathcal{O}(\frac{1}{x^s}) \text{ mit } x\to\infty,$ $s > 1 \Rightarrow f$ über $[a, \infty]$ uneig. integrierbar

Integral vergl.krit. $f:[1,\infty]\to\mathbb{R}$ monoton fallend $\forall x:f(x)>0,f$ über $[1,\infty]$ uneig. integr. $\Rightarrow\sum_{k=1}^{\infty}f(k)$ konvergiert

Potenzreihen $f(x) = \sum_{k=0}^{\infty} c_k x^k \Rightarrow \int f(x) dx = \sum_{k=0}^{\infty} \frac{1}{k+1} c_k x^{k+1}$

Diff'bare Kurven

- k regulär in $t \Leftrightarrow k'(t) \neq 0$, sonst singulär
- k singulär in t \Rightarrow # Tangentialvektor
- $k'(t) = (k'_1(t), ...,)$ Tangentialvektor
- $T_k(t) = \frac{1}{\|k'(t)\|_2}$ Tangentialeinheitsvektor in t

Rektifizierbarkeit, Bogenlänge

 $k: [a,b] \to \mathbb{R}^n$ rektifizierbar $\Leftrightarrow \{\sum_{k=1}^N ||\gamma(t_k) - \gamma(t_{k+1})||_2 : \}$ $a = t_0 < t_1 < ... < t_N = b$ Unterteilung v. [a, b]

Bogenlänge stetig diff'barer Kurven

 $k: [a,b] \to \mathbb{R}^n$ stückweise stetig diff'bar $\Rightarrow L(k) = \int_a^b ||k'(t)||_2 dt$

Parametertransformation

- $f: J \to I$ Parameter transformation \Leftrightarrow bijektiv und stetig
- $f, f^{-1}k$ -mal stetig diff'bar $\Rightarrow \mathscr{C}^k$ Parametertransformation
- \mathscr{C}^1 -Par.transf. f orientierungstreu wenn $f'(t) > 0 \ \forall t$; orientierungsumkehrend für <
- k und \tilde{k} äquivalente Kurven wenn mit Par.transf. f: $\tilde{k} = k \circ f$ äquivalente Kurven \Rightarrow gleiche Bogenlänge

Bogenlänge/Umparametrisierung

- $k:[a,b]\to\mathbb{R}^n$ stetig diff'bare Kurve;
- $f:[c,d]\to [a,b]$ $\mathscr{C}^{\mbox{\tiny 1}}\mbox{-Par.transf.}; k$ und $k\circ f$ gleiche Länge
- k regulär \Rightarrow \exists orientierungserhaltende \mathscr{C}^1 -Parameter transformation $f:[a,L(k)] \to [a,b]$, sodass diese Kurve $k:J\to\mathbb{R}, k:=k\circ f$ "mit Einheitsgeschwindigkeit läuft", also $||k'(t)|| = 1 \ \forall t \in [0, L(k)]$
- Man erhält dieses f als Umkehrfunktion von $s \to \int_{-s}^{s} ||k'(t)|| dt$

Krümmung

- $k: I \to \mathbb{R}^2$ regulär in $t \in I \Rightarrow \kappa(t)$ Krümmung im Punkt t
- $k: I \to \mathbb{R}^2$ regulär, zweimal stetig diff'bar, k die dazugehörige unparametrisierte Kurve \Rightarrow Krümmung von k in t als \tilde{k} an \tilde{t} : $k(t) = \tilde{k}(\tilde{t})$ $k: I \to \mathbb{R}^2$ zweimal stetig diff'bar, $t \in I: k$ in t regulär:
- k nach Bogenlänge parametrisiert $\Rightarrow \kappa(t) = \langle k''(t), N(t) \wedge | \kappa(t) | =$ ||T'(t)|| = ||k''(t)||
- $k(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \Rightarrow \kappa(t) = \frac{x'(t)y''(t) y'(t)x''(t)}{\sqrt{(x'(t)^2 + y'(t)^2)^3}}$

Mehrdimensionale Differentialrechnung

 $M \subseteq \mathbb{R}^n$ offen, $f: M \to \mathbb{R}, x \in M$

Richtungsableitung $v \in \mathbb{R}^n \setminus \{0\}$ Richtungsvektor \Rightarrow Richtungsableitung von f in Richtung $v = \partial_v f(x) = \lim_{t \to \infty} \frac{f(x+tv) - f(x)}{t}$

Totale Differenzierbarkeit f in x (total) diff'bar $\Leftrightarrow \exists$ lineare Ab- • $a^2 < 4b$: $\omega = \sqrt{b - (\frac{a}{2})^2}$ bildung L : \mathbb{R}^n \rightarrow \mathbb{R}^n, h \in $\mathbb{R}^n \backslash \{0\}$: $\lim \frac{f(x+h) - f(x) - Lh}{\parallel L \parallel}$ = $\lim_{h\to 0} \frac{f(x+h)-f(x)-\langle w,h\rangle}{\|h\|} = 0$

Diff'barkeit im Mehrdimensionalen $f \text{ (total) diff'bar} \Leftrightarrow \forall x \in M \text{ alle}$ partiellen Ableitungen existieren und stetig sind $\Rightarrow f$ stetig diff'bar, 1. Bestimme allg. Lsg. $y_h(t)$ von $y''_h(t) + ay'_h(t) + by_h(t) = 0$

$$w = \begin{pmatrix} \partial_1 f(x) \\ \vdots \\ \partial_n \dot{f}(x) \end{pmatrix} =: \nabla f(x), \ \partial_v f(x) = \langle \nabla f(x), v \rangle$$

$$\begin{aligned} & \textbf{Hesse-Matrix} \\ & \nabla^2 f(x) = \begin{pmatrix} \partial_{11} f(x) & \cdots & \partial_{1,n} f(x) \\ \vdots & \ddots & \vdots \\ \partial_{n1} f(x) & \cdots & \partial_{nn} f(x) \end{pmatrix} \end{aligned}$$

Taylor in höheren Dimensionen $T_2 f((x,y);(0,0)) = f(0,0) +$ $\langle f(0,0), \begin{pmatrix} x \\ y \end{pmatrix} \rangle + \frac{1}{2} (x y) (\nabla^2 f(x y)) (x y)$

Extrema/Kritische Punkte

- kritischer Punkt: $\nabla f(c) = 0$
- lokales Min.: $\nabla^2 f(c)$ pos. semidefinit
- lokales Max.: $\nabla^2 f(c)$ neg. semidefinit
- $\nabla f(c) = 0$ und $\nabla^2 f(c)$ pos. definit \Rightarrow isoliertes lok. Min.
- $\nabla f(c) = 0$ und $\nabla^2 f(c)$ neg. definit \Rightarrow isoliertes lok. Max.

• $\nabla f(c) = 0$ und $\nabla^2 f(c)$ pos. und neg. EW \Rightarrow Sattelpunkt

Jacobi-Matrix
$$F: \mathbb{R}^n \to \mathbb{R}^m; F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix}$$

f in c (total) diff'bar wenn lin. Abb. (oder Matrix) L existiert mit:

$$\lim_{\substack{h \to 0 \\ h \in \mathbb{R}^n \setminus \{0\}}} \frac{F(x+h) - F(x) - Lh}{\|h\|} = 0$$

Alle $\partial_j f_k(x)$ $(j=1\dots n, k=1\dots m)$ in c stetig \Rightarrow f in c stetig diff'bar und Jacobi-Matrix

$$DF(c) := \begin{pmatrix} \partial_1 f_1(c) & \dots & \partial_n f_1(c) \\ \vdots & \ddots & \vdots \\ \partial_1 f_m(c) & \dots & \partial_n f_m(c) \end{pmatrix}$$

Mehrdimensionale Kettenregel

 $D(G \circ F)(c) = DG(F(c)) \cdot DF(c)$

Mehrdimensionale Integralrechnung

Transformationssatz $T: M_2 \to M_1; f: M_1 \to \mathbb{R}$ $\int \cdots \int f(x) dx = \int \cdots \int f(T(y)) |\det(DT(y))| dy$

Differentialgleichungen

Rezepte

1	$y'(t) = f(t) \cdot g(y(t))$		Funkt. f, g
2	$y'(t) + a(t) \cdot y(t) = 0$		Funkt. a
3	$y'(t) + a(t) \cdot y(t) = f(t)$		Funkt. a, f
4	y''(t) + ay'(t) + by(t) = 0		Konst. a, b
5	y''(t) + ay'(t) + by(t) = p(t)		Konst. a, b ; Polyn. p
6	y''(t) + ay'(t) + by(t)	=	Konst. $\alpha, \beta, a_1, a_2, b \neq 0$
	$e^{\alpha t}(a_1\cos(\beta t) + a_2\sin(\beta t))$		

Meth. 1 $F(t)=\int f(t)\mathrm{d}t;\ G(t)=\int \frac{1}{g(t)\mathrm{d}t}$ Jede allgemeine Lsg für y(t) erfüllt die Gleichung G(y(t))=F(t)+cMit Anfangsbedingung erfüllt jede Lsg. $\int_{y_0}^{y(t)} \frac{1}{g(u)} du = \int_{x_0}^t f(u) du$

Meth. 2 $A(t) = \int a(t)dt$; allgemeine Lsg. $y(t) = ce^{-A(t)}$ Für **AWP**: $y(t_0) = y_0 : y(t) = y_0 e^{A(t_0) - A(t_0)}$

 $\begin{array}{lll} \textbf{Meth. 3} & A(t) = \int a(t) \mathrm{d}t; B(t) = \int e^{A(t)} \cdot f(t) \mathrm{d}t \\ & \text{Allg. Lsg. } y(t) = e^{-A(t)} \cdot (c + B(t)) \\ & F\ddot{u}r \ \textbf{AWP} \colon y(t_0) = y_0 \colon y(t) = e^{A(t_0) - A(t)} (y_0 + \int_{t_0}^t e^{A(s) - A(t_0)} \cdot f(s) ds) \end{array} \\ & \bullet \quad f \in \mathcal{O}(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty \\ & \bullet \quad f \in \Omega(g) \to \mathbb{C}$

allg. Lsg.: $y(t) = (c_1 cos(\omega t) + c_2 sin(\omega t))e^{-\frac{a}{2}t}$ Für **AWP**: $y(t_0) = y_0, y'(t_1) = y_1$ setze $t = t_1, t = t_2$ in allg. Lösung ein und bestimme c_1, c_2

Meth. 5

- 2. Stelle Polyn. $q(t) = a_n t^n + \cdots + a_1 t + a_0$ mit Grad n =deg(p) und Param. a_0, \ldots, a_n auf
- 3. $y_p(t) = \begin{cases} q(t) & b \neq 0 \\ tq(t) & a \neq 0, b = 0 \\ t^2q(t) & a = 0, b = 0 \end{cases}$

in Abhängigkeit von a_0, \ldots, a_n ; $y_p''(t) + ay_p'(t) + by_p(t) = p(t)$

4. Ermittle a_1, \ldots, a_n durch Koeffizientenvergleich 5. Allg. Lsg.: $y(t) = y_h(t) + y_p(t)$

Für AWP: $y(t_0) = y_0, y'(t_1) = y_1$ setze $t = t_1, t = t_2$ in allg. Lösung ein und bestimme c_1, c_2

Meth. 6

- 1. Bestimme allg. Lsg. $y_h(t)$ von $y_h''(t) + ay_h'(t) + by_h(t) = 0$
- 2. Löse $\lambda^2 + a\lambda + b = 0$ 3. In Abhängigkeit von k:

$$y_p(t) = \begin{cases} ke^{ct} & \lambda_1 \neq c \neq \lambda_2 \\ kte^{ct} & \lambda_1 = c \neq \lambda_2 \\ kt^2e^{ct} & \lambda_1 = c = \lambda_2 \end{cases} \text{oder } \lambda_1 \neq c = \lambda_2$$

- 4. $y_p''(t) + ay_p'(t) + by_p(t) = e^{ct}$ ermittle k
- 5. Allg. Lsg.: $y(t) = y_h(t) + y_p(t)$

Für AWP: $y(t_0) = y_0, y'(t_1) = y_1$ setze $t = t_1, t = t_2$ in allg. Lösung ein und bestimme c_1, c_2

Mehrdimensionale DGLs Sei $\{v_1,\ldots,v_n\}\subset\mathbb{R}^n$ Basis von Eigenvektoren von $A\in\mathbb{R}^{n\times n}$ zu EW $\lambda_1,\ldots,\lambda_n$ Lin. unabh. Lösungen v. DGL der Form y' = Ay: $y = e^{\lambda_j t} v_j$

Satz von Picard-Lindelöf f stetig diff'bar bzgl. y, stetig in $t \Rightarrow AWP$ $y'=f(t,y),y(t_0)=y_0$ auf $(t_0-\varepsilon,t_0+\varepsilon)$ genau eine Lösung (für $\varepsilon>0$ klein genug)

Komplexe Zahlen

 $\mathbb{C} = \{ z | z = x + iy, x, y \in \mathbb{R}, i^2 = -1 \}$

- $z_1 + z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$
- $z_1 \cdot z_2 = x_1 x_2 y_1 y_2 + i(x_1 y_2 + x_2 y_1)$
- $\frac{z_1}{z_2} = \frac{x_1x_2 + y_1y_2}{z_1 + z_2} + i\frac{x_2y_1 x_1y_2}{z_1 + z_2} = \frac{z_1\overline{z_2}}{z_1 + z_2}$ $\frac{1}{z_2} - \frac{1}{x_2^2 + y_2^2}$
- $|z| = \sqrt{x^2 + y^2}$

Sonstiges

Bekannte Abl. und Integrale

$\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\right)$	f(x)	$\int (f(x)) dx$				
$\frac{1}{\sqrt{1-x^2}}$	arcsin(x)	$\sqrt{1-x^2} + x\sin^{-1}(x)$				
$-\frac{1}{\sqrt{1-x^2}}$	arccos(x)	$x \arccos^{-1}(x) - \sqrt{1 - x^2}$				
$\frac{1}{x^2+1}$	arctan(x)	$x \tan^{-1}(x) - \frac{1}{2}\ln(x^2 + 1)$				
$\frac{1}{\sqrt{x^2+1}}$	arsinh(x)	$x\sinh^{-1}(x) - \sqrt{x^2 + 1}$				
$\frac{1}{\sqrt{x-1}\sqrt{x+1}}$	arcosh(x)	$x \cosh^{-1}(x) - \sqrt{x-1}\sqrt{x+1}$				
$\frac{1}{1-x^2}$	arctanh(x)	$\frac{1}{2}\ln(1-x^2) + x\tanh^{-1}(x)$				
$\frac{1}{\cos^2(x)}$	tan(x)	$-\ln(\cos(x))$				
$\frac{1}{\cosh^2(x)}$	tanh(x)	$\ln(\cosh(x))$				
$\cos(2x)$	sin(x)cos(x)	$-\frac{1}{2}cos^2(x)$				
$-2\sin(x)\cos(x)$	$cos^2(x)$	$\frac{1}{2}(x+sin(x)cos(x))$				
$\sin(2x)$	$sin^2(x)$	$\frac{1}{2}(x-sin(x)cos(x))$				
$\frac{1}{x}$	ln(x)	$x \cdot ln(x) - x$				
$\frac{x}{\sqrt{1-x^2}}$	$\sqrt{1-x^2}$	$\frac{1}{2}(\sqrt{1-x^2}x + \sin^{-1}(x))$				

Landau-Notation

- $f \in \mathcal{O}(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} < \infty$ $f \in o(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(x)|}{g(x)} = 0$
- $f \in \omega(g) \leftrightarrow \lim_{|f(x)|} \frac{g(x)}{|f(x)|} = 0$

Bekannte Reihen

Harmonische Reihe

 $\begin{array}{l} \sum_{k=1}^{\infty} \frac{1}{k} = +\infty; \sum_{k=1}^{\infty} \frac{1}{k^{a}} \text{ divergiert f. } a \leq 1 \text{ , konvergiert für } a > 1 \\ \sum_{k=1}^{\infty} a_{0} q^{k} = \frac{a_{0}}{1-q} \; \forall |q| < 1 \\ \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{k}}{k} = \ln(1+x) \\ \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{2k+1} = \arctan(x) \text{ in } [-1,1] \\ \sum_{k=0}^{\infty} \frac{z^{k}}{k!} = \exp(z) \\ \sum_{k=0}^{\infty} \frac{1}{k!} = e \end{array}$ Potenzreihe Logarithmusreihe Arcus-Tangens-Reihe

Exponentialreihe

Polarkoordinatentransformationsrezept

- 1. Ersetze dydx bzw. dxdy durch $r \cdot \dot{d}\varphi dr$
- 2. Überlege Grenzen von φ und r graphisch 3. Ersetze x des Integranten durch $r \cdot \cos(\varphi)$
- 4. Ersetze y des Integranten durch $r \cdot \sin(\varphi)$

Allgemeines

- $x > 0 \Rightarrow e^x > \frac{x^{n+1}}{(n+1)!}$ $||a| |b|| \le |a b| \le |a| + |b|, |a + b| \le |a| + |b|$
- $\frac{1}{e} = \lim_{k \to 1} \left(\frac{k}{k+1}\right)^k$
- $\forall n > 0 : (1+x)^n \ge 1 + nx$ (Bernoulli-Ungleichung)