# CSCI 3313 SPRING 22 LAB I: MATH REVIEW [DISCRETE 1&2]

Jan. I 2<sup>th.</sup> 2022

#### SETS AND SET OPERATIONS

- Set: intuitively, a collection of non-repeating objects  $S = \{1, a, \{x, y\}\}, |S| = 3$ 
  - $\mathbb{Z}$ : set of integers  $\mathbb{Z}^+$ : set of positive integers  $\mathbb{Z}^*$ : set of non-negative integers
  - $\mathbb{N}$ : set of natural numbers  $\mathbb{R}$ : set of real numbers  $\mathbb{Q}$ : set of rational numbers (quotients)
  - $\emptyset$  or {}: the empty set (not  $\{\emptyset\}$ , though it makes sense in some other circumstances)
  - *U*: the universal set, set containing all concerned elements.
- Set Relations and Operators
  - Membership Relation:  $5 \in \mathbb{Z}$   $5.1 \notin \mathbb{Z}$   $\{1,2\} \in \{\{1\},\{2\},\{1,2\}\}$  (set of sets)
  - Subset Relation:  $\{1,2\} \subseteq \mathbb{Z}$   $\{1,2\} \subset \{1,2,3\}$
  - Union:  $A \cup B$  Intersection:  $A \cap B$  Complement:  $\bar{A}$
  - De Morgan's Law:  $\overline{A \cup B} = \overline{A} \cap \overline{B}$  and  $\overline{A \cap B} = \overline{A} \cup \overline{B}$
  - Set Difference, Symmetric Difference, Set XOR, etc.
  - Cartesian Product: if  $A = \{1,2,3\}, B = \{x,y\}$ , then  $A \times B = \{(1,x), (1,y), (2,x), (2,y), (3,x), (3,y)\}$ , set of <u>ordered</u> pairs

#### ALPHABET AND FORMAL LANGUAGES

#### One of the Main Topics of this course

- Alphabet: a finite non-empty set of symbols (over which we form strings)
  - e.g.,  $\Sigma = \{0, 1\}$  the binary symbols (bits) and strings are binary numbers; or  $\Sigma = \{a, b, ..., z\}$  the English alphabet and words written in English alphabet.
- Words/Strings over an Alphabet: finite sequences consisted of members in the alphabet; e.g., w = 1001, or s = helloworld.
- $\Sigma^* = \{ \text{ set of all strings over the alphabet} \}$
- Language: set of strings following certain constraints; e.g.,  $L = \{a^n \mid n \text{ is a multiple of 3.}\}$ , or  $L = \{a^m b^n \mid m = n, m, n \in \mathbb{Z}^*\}$ , or  $L = \{ww \mid w \in \{0,1\}^*\}$ .
  - Language L is a subset of  $\Sigma^*$
- String Symbols and Operators
  - Denoted  $\epsilon$  (epsilon) or  $\lambda$  (lambda), the empty string; NOT to be confused with the EMPTY SET.
  - |w|, length of the string w, where  $|\epsilon| = 0$ .
  - $w^R$ , reverse of the string; e.g., w = abcd, then  $w^R = dcba$ .
  - $s \circ w$ , string concatenation; e.g., s = hello and w = there, then  $s \circ w = hellothere$ .
  - Substring: if w = foundations and v = found then v is a substring of w.

## REVIEW: OPERATIONS ON LANGUAGES

- Set operations (Union, Intersection, etc.)
- Concatenation, Reversal, Star closure
- Question I: If  $L_1 = \{ a^n b^n \mid n \ge 0 \}$  and  $L_2 = \{ ab, aa \}$ 
  - Union:  $L_1 \cup L_2 = ?$
  - Intersection:  $L_1 \cap L_2 = ?$
  - Difference :  $L_2$   $L_1$  = ?
- Question 2:
  - Reverse:  $L_2^R = ?$
  - Concatenation:  $L_1L_2 = ?$
  - Star-Closure:  $L_2^* = L_2^0 U L_2^1 U L_2^2 U L_2^3 U ...$ 
    - Positive Closure:  $L_2^+ = L_2^I U L_2^2 U L_2^3 U ...$

#### **GRAPHS AND TREES**

- Graph: A graph G is consisted of a Vertex Set  $V(G) = \{v_1, v_2, v_n\}$  and edge set  $E(G) \subset \{(x, y) \mid x, y \in V(G)\} = V \times V$ 
  - Edge Set also defined as  $E(G) = \{e_1, e_2, \dots, e_m\}$  where  $e_i = (x, y)$ , where  $x, y \in V(G)\}$ , (as a matrix, or transition function)
  - Undirected:

v1 v2 v4 v4

Directed: of particular relevance in this course, **State Diagrams** to represent



• Tree: **Definition TI**: A tree T = (V, E) is a graph that is acyclic (has no cycles) and has one distinct vertex called the root such that there is exactly one path from root to every vertex.



#### **GRAPHS AND TREES**

- **Directed Graph**: A graph G = (V, E) consists of a Vertex Set V(G) and an Edge Set E(G) (or simply V and E)
  - Direction is associated with each edge, for example: edge (vI,v2) from vI to v2
    - Outgoing edge from v1, and incoming edge to v2
  - A Path is a sequence of edges from vi to vj and corresponds to sequence of vertices
  - Path is simple if no vertex is repeated (except possibly the last)
  - The length of a path is the number of edges in the path
  - A simple path from vertex to itself is called a cycle
- Examples:
  - Simple acyclic path from vI to  $v3:\{(vI,v2),(v2,v3)\}$  with vertex sequence vI,v2,v3
  - Cycle from vI to itself:  $\{(vI,v2), (v2,v4), (v4,vI)\}$  with vertex sequence vI,v2,v4,vI



#### **TREES**

- Trees (in our case we consider directed graphs that are trees) are a type of graph
- **Definition TI**: A tree (with directed edges) T = (V, E) is a graph that is *acyclic* (has no cycles) and has one *distinct* vertex called the root such that there is exactly one path from root to every vertex.
  - Root has no incoming edges
  - Leaves are vertices with no outgoing edges
  - If there is an edge  $(v_i \ v_j)$  then  $v_i$  is parent of  $v_j$  and  $v_j$  is child of  $v_i$
  - The **level** of a vertex is the length of the path from the root to the vertex
  - The **height** of a tree is the largest level of any vertex in the tree
- Root node= v2
- How many Leaves = ?
- What is the height of this tree = ?



### TREES- DEFINITION

- **Definition T2**: Trees can be formally defined using recursive (inductive) definition as:
- Basis: A single node is a tree, and that node is the root of a tree
- Recursive step: If  $T_1, T_2, ..., T_k$  are trees (each less than n nodes) then we can form a new tree as follows:
  - I. Begin with a new node N, which is the root of this new tree
  - 2.Add copies of the trees T<sub>1</sub>,T<sub>2</sub>,...T<sub>k</sub>
  - 3.Add edges from root node N to roots for each tree  $T_1, T_2, ..., T_K$

 Note: the two definitions T1,T2 are equivalent – i.e., we can prove Def.T1 from the formal definition given in Def.T2.



### PROOF METHODS

- What is a proof:
  - A sequence of logical steps, each following from previous steps
  - In logic terms: a propositional formula whose truth can be derived from a sequence of propositions (using the different rules of logical inference)
- Direct
- Induction
- Contradiction
- Contrapositive
- Counter example
- Constructive

#### PROOF METHOD: DIRECT

Produce a chain of logically sound deductions that ultimately justifies the expected conclusion.

#### PROOF METHOD: INDUCTION

- Outline
  - **I.** Base Step: Verify the base case(s), e.g., f(1) satisfies the conditions for a proposition.
  - 2. Induction Hypothesis: Assume that f(k) satisfies the conditions for some arbitrary intermediate step k.
  - 3. Induction Step: Prove that f(k+1) also satisfies the conditions. QED
- Example:  $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{(n+1)n}{2}$  for some  $n \in \mathbb{Z}^+$ .
- Proof: Let f(n) be the proposition that  $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$ .
  - I. Base Case:
  - 2. Induction Hypothesis:
  - 3. Induction Step:

```
Comment: Why does induction work? Repeated application of modus ponens: P(0) true, P(0) \Rightarrow P(1) true; P(1) \Rightarrow P(2) true; ... P(n) \Rightarrow P(n+1); ... Therefore P(n).
```

#### PROOF METHOD: INDUCTION

- Example:  $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{(n+1)n}{2}$  for some  $n \in \mathbb{Z}^+$ .
- *Proof*: Let f(n) be the proposition that  $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$ .
  - 1. For n = 1, the summation on the LHS is 1, and the formula on the RHS gives  $\frac{(1+1)\times 1}{2} = 1$ . Thus, f(1) is proven to be true.
  - 2. Assume f(k) is true for some integer k > 1; i.e.,  $\sum_{i=1}^{k} i = \frac{(k+1)k}{2}$ .
  - 3. Now for f(k+1), we observe  $\sum_{i=1}^{k+1} i = \frac{(k+1)k}{2} + (k+1) = \frac{k^2 + 3k + 2}{2} = \frac{(k+2)(k+1)}{2}$  which is the RHS when n = k+1. QED
- Pro: Straightforward (more mechanical).
- Con: Need to know (guess?) the answer first. Leads to a lot of computations.
- Usually used for proving correctness. Foundation in computer-based proofs particularly in recursive algorithms.
- In this course: Induction proofs on lengths of some strings to show that they belong to a certain language and can be recognized by its associated machine/automaton.

### **EXERCISE I: PROOF BY INDUCTION**

Refer to the formal (recursive) definition of trees for this proof.



• Exercise: Theorem – Every tree T = (V, E) has one more node than it has edges, i.e., |V| = |E| + 1

#### **Instruction**:

- Work in breakout groups; members' names.
- Take a screenshot and submit on BB by end of today.
- Everyone will need to submit a copy.



### (DIS)PROOF METHOD: CONTRADICTION

#### Proof by Contradiction

- 1. Assume to the contrary of a proposition.
- 2. By reaching a contradiction, conclude the initial assumption was incorrect. QED

Reductio ad absurdum

- Example: For any integer n, if  $n^2$  is odd, then n is odd.  $\neg(p \Rightarrow q) \Leftrightarrow \neg(\neg p \lor q) \Leftrightarrow (p \land \neg q)$
- Proof: Assume to the contrary that, given  $n^2$  is odd and n is not odd.
  - Hence, there exists some integer k such that n = 2k.
    - Definition of an even number is n can be expressed as a multiple of 2; odd is 2k+1
  - Then we can derive  $n^2 = (2k)(2k) = 2(2k^2)$ . Contradiction.
  - Therefore, the assumption was incorrect, and the proposition itself is true. QED
- In this course: Prove by contradiction on certain properties of a language to show that the language CANNOT be recognized (i.e., solved) by the assumed machine model [via Pumping Lemma]

- Proof by Counter-example: Disprove using a counter-example.
- Example: For any integer n, if  $n^2$  is odd, then n is even. Let  $n^2=9$ , then  $n=\pm 3$  which is not even.

#### PROOF METHOD: CONTRAPOSITIVE

- Proof by Contrapositive
- Rational: A proposition  $A \Rightarrow B$  (if A then B) is logically equivalent to  $\neg B \Rightarrow \neg A$  (if not B then not A).

**Modus Tollens** 

- Example: For any integer n, if  $n^2$  is even, then n is even.
- Proof: To prove the stated proposition is to prove the proposition that "If n is not even, then  $n^2$  is not even."
  - Hence, there exists some integer k such that n = 2k + 1 is not even, i.e., odd.
  - Then it is obvious that  $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2k' + 1$  is odd, i.e., not even. QED

### **EXERCISE 2: PROOF BY CONTRADICTION**

- **Definition CI**: An integer at least 2, is a prime number if it is not divisible by any integer other than itself and 1.
- Assumption (this is actually **Theorem C2 Integer Factorization**): Every positive integer can be expressed as a unique product of prime numbers (including powers of primes). [Fundamental Theorem of Arithmetic]
  - $864 = 32 * 27 = (2*2*2*2*2) * (3*3*3) = 2^5 * 3^3$
- Exercise: Prove that there are an infinitely many prime numbers.

#### PROOF METHOD: CONSTRUCTION

- Rational: Construct mathematical object(s) based on the constraints and prove/disprove the argument.
- Example: Is there a set R containing all other sets (without any other constraints, or unrestricted comprehension)?
- Proof [Russell's Paradox]:
  - Construction: Let R be the set of sets that are not members of themselves, i.e.,  $R = \{x \mid x \notin x\}$ .
  - Such construction is equivalent to saying  $R \in R \Leftrightarrow R \notin R$ .
  - In other words: in the forward direction, if R is a member of R, then by the definition of the construction, R is not a member of R in the first place; contradiction. Or conversely, if R is not a member of R, i.e., not a member of itself, then R must have been included in R by the construction; contradiction.
  - Therefore, there's no such *R* exists.
- In this course: a similar constructive proof is applied to prove the Halting Problem is not Turing-Decidable.
- Different from the universal set U, which usually has some restrictions, e.g.,  $U = \Sigma^* = \{0,1\}^*$  or  $U = a^*b^*$ .

## ADDITIONAL EXAMPLES

#### PROOF METHOD: INDUCTION

- **Exercise 3:** Prove that  $1^2 + 2^2 + \dots + n^2 = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$  for some  $n \in \mathbb{Z}^+$ .
- Proof: Let f(n) be the proposition that  $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ .
  - **I.** Base Case: For n = 1, the summation on the LHS is 1, and the formula on the RHS gives  $\frac{1 \times (1+1)(2+1)}{6} = 1$ . Thus, f(1) is true.
  - **2.** Induction Hypothesis: Assume f(k) is true for some integer k > 1; i.e.,  $\sum_{i=1}^{k} i = \frac{k(k+1)(2k+1)}{6}$ .
  - **3.** Induction Step: Now for f(k + 1), we observe ...

#### MODULAR ARITHMETIC

#### Modular Arithmetic

- A positive integer n equals to b modulo a, for positive integers a, b is equivalent to saying n = ka + b for some positive integer k; i.e., b is the remainder of n divided by a.
- A positive integer n is congruent to another positive integer m modulo a, or  $n \equiv m \pmod{a}$ , if they have the same remainder when divided by a; an alternative but equivalent way to say is that m n divides a (assuming  $m \ge n$  with out loss of generality).
- $13 \equiv 3 \pmod{5} \Leftrightarrow 2 \times 5 + 3 = 13$ ; equivalently, (13 3) = 10 divides 5.
- $x \equiv 3 \pmod{5}$ , then  $x \in \{3, 8, 13, 18, ...\}$  if we focus on the positive side of the number line.
- Parity: An integer n is even if and only if  $(\Leftrightarrow)$   $n \equiv 0 \pmod{2}$ ; and n is odd iff  $n \equiv 1 \pmod{2}$ .
  - From above it follows that an even integer can be written as n=2k and an odd integer is (2k+1) for some integer k

## (DIS)PROOF METHOD: CONTRADICTION

- **Exercise 4**: Prove  $\sqrt{2}$  is irrational. What we do: Assume to the contrary that  $\sqrt{2}$  is rational; then it can be written in the form of a/b for two integers that has no common divisors.
  - Definition: a rational number a/b where a,b have no common divisors
- Proof: Assume to the contrary that  $\sqrt{2}$  is a rational number, i.e.,  $\sqrt{2} = p/q$

- **Exercise 5**: For any integer n, if  $n \equiv 2 \pmod{4}$ , then  $n \not\equiv 3 \pmod{6}$ .
- Proof: Assume to the contrary that, given  $n \equiv 2 \pmod{4}$ , it is also true that  $n \equiv 3 \pmod{6}$ .