VM Placement Optimization

Decision Variables

- $x_{v,c}$: Binary variable, 1 if VM v is placed in cluster c, 0 otherwise.
- z: Continuous variable representing the minimum utilization across all resources and clusters.

Objective Function

The objective is to maximize the minimum utilization across all resources and clusters:

$$maximize z (1)$$

Constraints

1. Each new VM must be placed exactly once:

$$\sum_{c \in \text{clusters}} x_{v,c} = 1 \quad \forall v \in \text{new_vms}$$
 (2)

2. Resource capacity constraints for each cluster and resource:

$$\sum_{v \in \text{new_vms}} \left(\frac{\text{vm_demand}[v][r] \cdot x_{v,c}}{\text{cluster_capacity}[c][r]} \right) + \frac{\text{current_usage}[c][r] \cdot \text{cluster_capacity}[c][r]}{\text{cluster_capacity}[c][r]} \leq 1$$

$$\forall c \in \text{clusters}, \forall r \in \text{resources} \quad (3)$$

3. Minimum utilization constraints:

$$\frac{\sum_{v \in \text{new_vms}} \text{vm_demand}[v][r] \cdot x_{v,c} + \text{current_usage}[c][r] \cdot \text{cluster_capacity}[c][r]}{\text{cluster_capacity}[c][r]} \geq z$$

$$\forall c \in \text{clusters}, \forall r \in \text{resources} \quad (4)$$