SEP. 28. 2006 9:41AM ZILKA-KOTAB, PC NO. 4255 P. 5

AMENDMENT TO THE SPECIFICATION

On page 1 lines 1-2, please amend the Title of the Invention as follows:

PERPENDICULAR MAGNETIC RECORDING HEAD HAVING A TRAILING SHIELD STRUCTURE AND METHOD FOR CREATING SAME.

On page 22 lines 1-2 please amend the Title of the Invention as follows:

<u>PERPENDICULAR MAGNETIC RECORDING HEAD HAVING A TRAILING</u>
SHIELD STRUCTURE AND METHOD FOR CREATING SAME.

AMENDMENT TO THE CLAIMS:

This listing of claims will replace all prior versions of claims in the application:

LISTING OF CLAIMS:

- 1 1. (Currently Amended) A magnetic head having an air bearing surface (ABS),
- 2 comprising:
- 3 a writing pole, comprising:
- 4 a pole tip for writing data to magnetic media via lines of flux emitted
- from an ABS end of the writing pole;

Ь		a shaping layer coupled to the pole tip, the shaping layer being for
7		focusing flux to the pole tip;
8		a trailing shield spaced apart from the writing pole, the trailing shield causing the
9		lines of flux to enter the media at an angle from a plane perpendicular to a
10		surface of the media facing the writing pole; and
11		a non-magnetic mask layer co-planar to the trailing shield which defines the
12		height of the trailing shield;
13		wherein a throat height of the trailing shield is less than a distance from the ABS
14		end of the writing pole to the shaping layer.
1	2.	(Cancelled) A magnetic head as recited in claim 1, wherein a throat height of the
2		trailing shield is less than a distance from the ABS end of the writing pole to the
3		shaping layer.
1	3.	(Original) A magnetic head as recited in claim 1, wherein a ratio of a distance
2		between the pole tip and the trailing shield, and a distance between the ABS end
3		of the pole tip and a writeable layer of the media, is between about 2:1 and about
4		1:2.
1	4.	(Original) A magnetic head as recited in claim 1, wherein a distance between the
2		pole tip and the trailing shield is less than about 50 nm.

- 1 5. (Original) A magnetic head as recited in claim 1, wherein the trailing shield is not
- 2 magnetically continuous to a back gap of the magnetic head.
- 1 6. (Currently Amended) A magnetic head as recited in claim 1, wherein the trailing
- 2 shield is magnetically continuous to a back gap connected with a return pole of
- 3 the magnetic head.
- 1 7. (Original) A magnetic head as recited in claim 1, further comprising a return
- 2 pole, the trailing shield being positioned between the writing pole and the return
- 3 pole.
- 1 8. (Original) A magnetic head as recited in claim 7, wherein the return pole is
- 2 stitched to the trailing shield at a position recessed from the ABS.
- 1 9. (Original) A magnetic head as recited in claim 1, wherein the head is a
- 2 perpendicular head.
- 1 10. (Original) A magnetic head as recited in claim 1, wherein the trailing shield is
- 2 positioned adjacent a mask material, the mask material defining a throat height of
- 3 the trailing shield.
- 1 11. (Original) A magnetic head as recited in claim 10, wherein a height of the mask
- 2 material is greater than a distance from the trailing shield to the ABS.

HIT1P035/HSJ9-2003-0154US1

1	12.	(Currently Amended) A magnetic head structure for perpendicular recording and
2		reading, the magnetic head structure having an air bearing surface (ABS),
3		comprising:
4		a write head portion for writing data to magnetic media, the write head portion
5 ·		including:
б		a first pole piece, the first pole piece having a first pole tip;
. 7		a probe pole piece, the probe pole piece having a probe pole tip for
8		emitting magnetic flux from an ABS end thereof;
9		an insulation stack positioned between the pole pieces;
10		at least one write coil embedded in the insulation stack;
11		a shaping layer positioned between the probe pole piece and the
12		insulation stack first pole piece, the shaping layer being for
13		focusing flux to the probe pole tip; and
14		a trailing shield spaced apart from the probe pole piece, the trailing
15		shield causing the magnetic flux to enter the media at an
16		angle from a plane perpendicular to a surface of the media
17		facing the probe pole tip; and
18		a return pole piece; and
19		a non-magnetic mask layer which is coplanar to the trailing shield;
20		wherein a throat height of the trailing shield is less than a distance from the ABS
21		end of the probe pole tip to the shaping layer.

HIT1P035/HSJ9-2003-0154US1

- 1 13. (Cancelled) A magnetic head structure as recited in claim 12, wherein a throat
- 2 height of the trailing shield is less than a distance from the ABS end of the probe
- 3 pole tip to the shaping layer.
- 1 14. (Original) A magnetic head structure as recited in claim 12, wherein a ratio of a
- distance between the probe pole tip and the trailing shield, and a distance between
- 3 the ABS end of the probe pole tip and a writeable layer of the media, is between
- 4 about 2:1 and about 1:2.
- 1 15. (Original) A magnetic head structure as recited in claim 12, wherein a distance
- between the probe pole tip and the trailing shield is less than about 50 nm.
- 1 16. (Currently Amended) A magnetic head structure as recited in claim 12, wherein
- 2 the trailing shield is not magnetically continuous to a back gap of the magnetic
- 3 head structure.
- 1 17. (Original) A magnetic head structure as recited in claim 12, wherein the trailing
- 2 shield is magnetically continuous to a back gap connected with a return pole of
- 3 the magnetic head structure.
- 1 18. (Currently Amended) A magnetic head structure as recited in claim 12, wherein
- 2 the return pole piece is stitched to the trailing shield at a position recessed from
- 3 the ABS.

- 1 19. (Original) A magnetic head structure as recited in claim 12, wherein the trailing shield is positioned adjacent a mask material, the mask material defining a throat height of the trailing shield.
- 1 20. (Original) A magnetic head structure as recited in claim 19, wherein a height of 2 the mask material is greater than a distance from the trailing shield to the ABS.
- 1 21. (Withdrawn) A method for forming a head having a trailing shield, comprising:
 2 forming a gap layer above a pole;
 3 forming a mask above the gap layer; and
- forming a trailing shield above the gap layer and adjacent the mask, a throat

 height of the trailing shield being defined between the mask.
- 1 22. (Withdrawn) A method as recited in claim 21, wherein the pole has a pole tip for
 2 writing data to magnetic media via lines of flux emitted from an air bearing
 3 surface (ABS) of the pole, the pole also having a shaping layer coupled to the pole
 4 tip, the shaping layer being for focusing flux to the pole tip.
- 1 23. (Withdrawn) A method as recited in claim 21, wherein the gap layer is a nonmagnetic metal, wherein the trailing shield is formed by plating.

- 1 24. (Withdrawn) A method as recited in claim 23, wherein the trailing shield is
- 2 overplated such that the trailing shield covers a portion of the mask.
- 1 25. (Withdrawn) A method as recited in claim 21, further comprising forming a
- 2 return pole such that the trailing shield is positioned between the pole and the
- 3 return pole.
- 1 26. (Withdrawn) A method as recited in claim 25, wherein the return pole is stitched
- 2 to the trailing shield.
- 1 27. (Withdrawn) A method as recited in claim 21, wherein the mask is not removed
- 2 from the head.
- 1 28. (Withdrawn) A method as recited in claim 21, wherein a height of the mask is
- 2 greater than a distance from the trailing shield to the ABS.
- 1 29. (Withdrawn) A method as recited in claim 21, wherein a throat height of the
- 2 trailing shield less than a distance from the ABS end of the pole to the shaping
- 3 layer.
- 1 30. (Withdrawn) A method as recited in claim 21, wherein a ratio of a distance
- between the pole tip and the trailing shield, and a distance between the ABS end

HTT1P035/HSJ9-2003-0154US1

3		of the pole tip and a writeable layer of the media, is between about 2:1 and about
4		1:2.
1	31.	(Withdrawn) A method as recited in claim 21, wherein a distance between the
2		pole tip and the trailing shield is less than about 50 nm.
1	32.	(Withdrawn) A magnetic storage system, comprising:
2		magnetic media;
3		at least one head for reading from and writing to the magnetic media, each head
4		having:
5		a write head portion for writing data to the medium via lines of flux
6		oriented substantially perpendicular to a surface of the media
7		facing the write head portion, the write head portion including:
8		a pole tip for writing data to magnetic media via lines of
9		flux emitted from an ABS end of the pole;
10		a shaping layer coupled to the pole tip, the shaping layer
11		being for focusing flux to the pole tip; and
12		a trailing shield spaced apart from the pole, the trailing
13		shield causing the lines of flux to enter the media at
14		an angle from a plane perpendicular to a surface of
15		the media facing the pole;
16		a non-magnetic mask layer which is coplanar to the trailing sheild;
17		a slider for supporting the head; and

a control unit coupled to the head for controlling operation of the head.