Our current design uses 4 instances of DNN in the GNN module.

The number of multipliers and adders were reduced to decrease power consumption and area at the expense of increased turnaround time (latency) in the DNN module. Number of multipliers were reduced from 24 to 8, and number of adders were reduced from 18 to 6.

P1	P2	Р3
	Apply ReLu to Layer-1 outputs	Send final output
Multiply aggregated X inputs with weights	Aggregate ReLu outputs	
1	Multiply aggregated ReLu outputs with weights	
	Accumulate multiplier outputs to calculate final outputs	

P1	P2	Р3	P4	P5
	aggregated X		Aggregate ReLu outputs	Accumulate multiplier outputs to
	weights for Y6 and Y7	-		calculate final outputs
aggregated X inputs with weights for Y4 and Y5		Y4, Y5, Y6, Y7	Multiply aggregated ReLu outputs with weights	Send final output

This optimization has resulted in:

- 1. Decrease in area from ~16.62k cells to 9.59K cells
- 2. Reduction in power consumption from 2.238 mW to 1.62 mW
- 3. Increase in latency from 3 cycles to 5 cycles

We also encountered setup time violations on nodes:

- 1. y6_aggr_p4_reg[*],
- 2. y7_aggr_p4_reg,
- 3. mul*_out_reg[20]

We fixed these timing errors, we adjusted the bit-widths of the following signals to minimize critical path delay:

- 1. y*_relu_p3, y*_aggr_p4
- 2. Internal multiplier signals: mulitiplicand1/2/3/4, mul* out
- 3. mac 1/2