Two analogues of the Rademacher symbol

Toshiki Matsusaka (Nagoya University)

Rademacher symbol

Dedekind (1892)

$$\log \Delta(\gamma z) - \log \Delta(z) = 12 \operatorname{sgn}(c)^2 \log \left(\frac{cz+d}{i \operatorname{sgn}(c)}\right) + 2\pi i \Phi(\gamma)$$

[Note]
$$\Delta(z) := q \prod_{n=1}^{\infty} (1 - q^n)^{24}, \quad \gamma \in SL_2(\mathbb{Z}), \quad \gamma z := \frac{az + b}{cz + d}$$

Rademacher (1956) defined the function $\Psi: SL_2(\mathbb{Z}) \to \mathbb{Z}$ by

$$\Psi(\gamma) := \Phi(\gamma) - 3\operatorname{sgn}(c(a+d))$$

For any $g \in SL_2(\mathbb{Z})$, $\Psi(\gamma) = \Psi(-\gamma) = -\Psi(\gamma^{-1}) = \Psi(g^{-1}\gamma g)$

Atiyah's "omnibus theorem" : Seven definitions of $\Psi(\gamma)$!

É. Ghys (2007) For $\gamma \in SL_2(\mathbb{Z})$: hyperbolic i.e. $|tr(\gamma)| > 2$

$$\Psi(\gamma) = \text{Lk}(C_{\gamma}, K_{2,3})$$

$$\mathrm{SL}_2(\mathbb{Z})\backslash\mathrm{SL}_2(\mathbb{R})\cong S^3-K_{2,3}$$

$$\Psi(\gamma) = \text{Lk}(C_{\gamma}, K_{2,3}) = 0$$

$$Linking # = \frac{intersection #}{2}$$

Today

Replace $Lk(C_{\gamma}, K_{2,3})$ with $Lk(*, *) \rightarrow analogue of <math>\Psi(\gamma)$?

Plan

1. Lk
$$(C_{\gamma}, K_{2,3}) \longrightarrow \text{Lk}(C'_{\gamma}, C'_{\sigma}) \quad (\gamma, \sigma \in \text{SL}_2(\mathbb{Z}) : \text{hyperbolic})$$

Duke-Imamoglu-Tóth (2017) introduced $\Psi_{\gamma}(\sigma)$ and showed

$$\Psi_{\gamma}(\sigma) = \operatorname{Lk}(C'_{\gamma}, C'_{\sigma})$$

In this talk, we give explicit formulas for $\Psi_{\gamma}(\sigma)$

(T. Matsusaka, A hyperbolic analogue of the Rademacher symbol, arXiv:2003.12354)

2.
$$Lk(C_{\gamma}, K_{2,3}) \longrightarrow Lk(C_{\gamma}'', K_{p,q}) \quad (\gamma \in \Gamma_{p,q} : hyp, K_{p,q} : (p,q)-torus knot)$$

We introduce $\Psi_{p,q}:\Gamma_{p,q}\to\mathbb{Z}$ for the triangle group $\Gamma_{p,q}$ and show some arithmetic properties

(Joint work (in progress) with Jun Ueki (Tokyo Denki University))

§1. Duke-Imamoglu-Tóth's $\Psi_{\gamma}(\sigma)$ (summary)

- 1. Recall the definition of $\Psi_{\gamma}(\sigma)$
- 2. Eisenstein series $E_{\gamma}(z,s)$ (Re(s) > 0), σ : hyperbolic

•
$$\gamma = T \rightarrow \lim_{s \to 0^+} E_T(z, s) \rightarrow E_2(z) \rightarrow \Psi(\sigma) = \lim_{n \to \infty} \operatorname{Re} \int_{\sigma^n z_0}^{\sigma^{n+1} z_0} E_2(z) dz$$

•
$$\gamma: \text{hyp} \longrightarrow \lim_{s \to 0^+} E_{\gamma}(z, s) \longrightarrow F_{\gamma}(z) \longrightarrow \Psi_{\gamma}(\sigma) = 4 \lim_{n \to \infty} \text{Re} \int_{\sigma^n z_0}^{\sigma^{n+1} z_0} \frac{1}{2\pi i} F_{\gamma}(z) dz$$

3. Two explicit formulas for $\Psi_{\gamma}(\sigma)$

Recall: Recipe for the classical Rademacher symbol $\Psi(\sigma)$

1.
$$F(z) := 2\pi i E_2(z) = 2\pi i \left(1 - 24\sum_{n=1}^{\infty} \sigma_1(n)q^n\right)$$

2.
$$r(\sigma, z) := (cz + d)^{-2} F(\sigma z) - F(z) = \frac{12c}{cz + d}$$
: wt 2 rational cocycle

- 3. $G(z) := \log \Delta(z) \xrightarrow{\frac{d}{dz}} F(z)$: primitive function of F(z)
- 4. $R(\sigma, z) := G(\sigma z) G(z) = 12\operatorname{sgn}(c)^2 \log\left(\frac{cz+d}{i\operatorname{sgn}(c)}\right) + 2\pi i\Phi(\sigma)$
- 5. $\Phi(\sigma) = \frac{1}{2\pi} \lim_{y \to \infty} \text{Im } R(\sigma, iy)$: Dedekind symbol
- 6. $\Psi(\sigma) = \lim_{n \to \infty} \frac{\Phi(\sigma^n)}{n}$ (if σ : hyp): Rademacher symbol

Recipe for
$$\Psi_{\gamma}(\sigma)$$
 $(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}) \in SL_2(\mathbb{Z})$, prim. $a + d > 2$, $c > 0$)

2. Rational cocycle (Choie-Zagier 1993)

$$r_{\gamma}(\sigma, z) = \sum_{g \in \Gamma_{w_{\gamma}} \setminus \Gamma} \left(\frac{1}{z - w_{g^{-1}\gamma g}} - \frac{1}{z - w'_{g^{-1}\gamma g}} \right)$$

$$w'_{g^{-1}\gamma g} < \sigma^{-1} i \infty < w_{g^{-1}\gamma g}$$

[Note] $w_{\gamma} > w'_{\gamma}$: fixed points of γ , $\Gamma_{w_{\gamma}} = \pm \langle \gamma \rangle$

1. Duke-Imamoglu-Tóth (2011) : $F_{\gamma}(z) = \sum_{n=0}^{\infty} \widetilde{\operatorname{val}}_{n}(\gamma)q^{n}$

$$\widetilde{\operatorname{val}}_{n}(\gamma) := \int_{z_{0}}^{\gamma z_{0}} j_{n}(z) \frac{-\sqrt{D}dz}{Q_{\gamma}(z,1)}$$
 (Cycle integral)

[Note] $Q_{\gamma}(X, Y) = cX^2 + (d - a)XY - bY^2$, $D = (a + d)^2 - 4$

$$j_n(z) = q^{-n} + O(q) \in M_0^!(SL_2(\mathbb{Z})), \quad r_{\gamma}(\sigma, z) = (cz + d)^{-2}F_{\gamma}(\sigma z) - F_{\gamma}(z)$$

3.4.5.6.
$$R_{\gamma}(\sigma, z) = G_{\gamma}(\sigma z) - G_{\gamma}(z), \quad \Phi_{\gamma}(\sigma) = \frac{2}{\pi} \lim_{y \to \infty} \operatorname{Im} R_{\gamma}(\sigma, iy), \quad \Psi_{\gamma}(\sigma) = \lim_{n \to \infty} \frac{\Phi_{\gamma}(\sigma^n)}{n}$$

Question 1: Relation $E_2(z) \leftrightarrow F_{\gamma}(z)$?

Def (Eisenstein series)

For
$$\pm I \neq \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}), \ Q_{\gamma}(X,Y) = cX^2 + (d-a)XY - bY^2$$

$$E_{\gamma}(z,s) := \sum_{Q \sim Q_{\gamma}} \frac{\text{sgn}(Q)y^{s}}{Q(z,1) |Q(z,1)|^{s}} \quad (\text{Re}(s) > 0)$$

[Note]
$$Q \sim Q_{\gamma} \Longleftrightarrow \exists g \in \operatorname{SL}_2(\mathbb{Z}) \text{ s.t. } Q = Q_{\gamma} \circ g$$

$$sgn([a, b, c]) = sgn(a)$$
 if $a \neq 0$, $= sgn(c)$ if $a = 0$

Known: For
$$\gamma = T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
,

$$E_T(z,s) = \frac{1}{2} \sum_{(c,d)=1} \frac{y^s}{(cz+d)^2 |cz+d|^{2s}} \xrightarrow{s \to 0} E_2^*(z) := E_2(z) - \frac{3}{\pi y}$$

For $S=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$ and $U=\begin{pmatrix}1&-1\\1&0\end{pmatrix}$ (Essentially by Bringmann-Kane 2016)

$$\lim_{s \to 0^+} E_S(z, s) = \frac{\pi}{2} \left(\frac{j'(z)}{j(z) - 1728} + E_2^*(z) \right), \quad \lim_{s \to 0^+} E_U(z, s) = \frac{2\pi}{3\sqrt{3}} \left(\frac{j'(z)}{j(z)} + E_2^*(z) \right)$$

Thm (M.)

For a primitive hyperbolic $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with a+d>2, c>0,

$$\lim_{s \to 0^+} E_{\gamma}(z, s) = -\frac{2}{\sqrt{D}} \left(F_{\gamma}(z) - \widetilde{\operatorname{val}}_{0}(\gamma) E_{2}^{*}(z) \right)$$

(idea) Fourier expansion of $E_{\gamma}(z,s)$

By the definition of $E_{\gamma}(z,s)$ and theorem, it follows that

$$(cz + d)^{-2} F_{\gamma}(\sigma z) - F_{\gamma}(z) = r_{\gamma}(\sigma, z) = \sum_{g \in \Gamma_{w_{\gamma}} \setminus \Gamma} \left(\frac{1}{z - w_{g^{-1}\gamma g}} - \frac{1}{z - w'_{g^{-1}\gamma g}} \right)$$

$$w'_{g^{-1}\gamma g} < \sigma^{-1} i \infty < w_{g^{-1}\gamma g}$$

Question 2: $\Psi_{\gamma}(\sigma) - \Phi_{\gamma}(\sigma)$?

Recall: $R_{\gamma}(\sigma, z) = G_{\gamma}(\sigma z) - G_{\gamma}(z), \quad \Phi_{\gamma}(\sigma) = \frac{2}{\pi} \lim_{y \to \infty} \operatorname{Im} R_{\gamma}(\sigma, iy), \quad \Psi_{\gamma}(\sigma) = \lim_{n \to \infty} \frac{\Phi_{\gamma}(\sigma^n)}{n}$

Prop: For a hyperbolic $\sigma \in SL_2(\mathbb{Z})$,

$$\Psi_{\gamma}(\sigma) = \frac{2}{\pi} \lim_{n \to \infty} \text{Im } R_{\gamma}(\sigma, \sigma^n z) \quad (z \in \mathbb{H})$$

(idea) Explicit formula for $R_{\gamma}(\sigma,z)$ given by DIT (2017)

In other words,
$$\Psi_{\gamma}(\sigma) = 4 \lim_{n \to \infty} \operatorname{Re} \int_{\sigma^n z_0}^{\sigma^{n+1} z_0} \frac{1}{2\pi i} F_{\gamma}(z) dz$$

[Note]
$$\Psi(\sigma) = \lim_{n \to \infty} \operatorname{Re} \int_{\sigma^n z_0}^{\sigma^{n+1} z_0} E_2(z) dz$$

Thm (M.) Let
$$\sigma$$
: hyp, $w_{\sigma}^{\infty} := \lim_{n \to \infty} \sigma^n z$

$$\Psi_{\gamma}(\sigma) = \Phi_{\gamma}(\sigma) + 2 \sum_{g \in \Gamma_{w_{\gamma}} \setminus \Gamma} 1$$

$$w'_{g^{-1}\gamma g} < \sigma^{-1} i \infty, w_{\sigma}^{\infty} < w_{g^{-1}\gamma g}$$

[Note]
$$\Psi(\sigma) = \Phi(\sigma) - 3\operatorname{sgn}(c(a+d))$$

[Note] Duke-Imamoglu-Tóth (2017)

$$\Phi_{\gamma}(\sigma) = -\sum_{g \in \Gamma_{w_{\gamma}} \backslash \Gamma} 1$$

$$w'_{g^{-1}\gamma g} < \sigma^{-1}i\infty < w_{g^{-1}\gamma g}$$

Example:
$$\gamma = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$
, $\sigma = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, $\Phi_{\gamma}(\sigma) = -6$, $\Psi_{\gamma}(\sigma) = -4$

Question 3: Another explicit formula for $\Psi_{\gamma}(\sigma)$?

Prop:
$$\Phi_{\gamma}(\sigma_{1}\sigma_{2}) = \Phi_{\gamma}(\sigma_{1}) + \Phi_{\gamma}(\sigma_{2}) + 2\sum_{g \in \Gamma_{w_{\gamma}} \setminus \Gamma} 1$$
$$w'_{g^{-1}\gamma g} < \sigma_{1}^{-1}i\infty, \sigma_{2}i\infty < w_{g^{-1}\gamma g}$$

[Note]
$$\Phi(\sigma_1\sigma_2) = \Phi(\sigma_1) + \Phi(\sigma_2) - 3\operatorname{sgn}(c_1c_2c_{12})$$
 $\sigma_i = \begin{pmatrix} * & * \\ c_i & * \end{pmatrix}$, $\sigma_1\sigma_2 = \begin{pmatrix} * & * \\ c_{12} & * \end{pmatrix}$

Let
$$\gamma = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_{2n-1} & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma = \begin{pmatrix} b_0 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} b_{2m-1} & 1 \\ 1 & 0 \end{pmatrix} \quad (a_i, b_j \in \mathbb{Z}_{>0})$$

$$w_{\gamma} = [\overline{a_0, \dots, a_{2n-1}}], \qquad \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b & 1 \\ 1 & 0 \end{pmatrix} = T^a S T^{-b} S^{-1}$$

We can compute $\Phi_{\gamma}(\sigma)$ inductively, and $\Psi_{\gamma}(\sigma) = \lim_{n \to \infty} \frac{\Phi_{\gamma}(\sigma^n)}{n}$

Thm (M.) Let
$$\gamma = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_{2n-1} & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma = \begin{pmatrix} b_0 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} b_{2m-1} & 1 \\ 1 & 0 \end{pmatrix}$,

$$\Psi_{\gamma}(\sigma) = -2\left(\sum_{\substack{0 \le i < 2n \\ 0 \le j < 2m}} \min(a_i, b_j) - \psi_{\gamma}(\sigma)\right) \in 2\mathbb{Z}_{<0}, \quad (0 \le \psi_{\gamma}(\sigma) \le 2mn)$$

$$\psi_{\gamma}(\sigma) = \sum_{0 \leq k < n} \sum_{0 \leq \ell < m} \left(\delta(a_{2k} \geq b_{2\ell-1}) \delta([\overline{b_{2\ell}, \dots, b_{2\ell+2m-1}}] \geq [\overline{a_{2k-1}, \dots, a_{2k-2n}}]) + \delta(a_{2k-1} \geq b_{2\ell-1}) \delta([\overline{b_{2\ell}, \dots, b_{2\ell+2m-1}}] \geq [\overline{a_{2k}, \dots, a_{2k+2n-1}}]) + \delta(a_{2k} \geq b_{2\ell}) \delta([\overline{b_{2\ell+1}, \dots, b_{2\ell+2m}}] > [\overline{a_{2k+1}, \dots, a_{2k+2n}}]) + \delta(a_{2k-1} \geq b_{2\ell}) \delta([\overline{b_{2\ell+1}, \dots, b_{2\ell+2m}}] > [\overline{a_{2k-2}, \dots, a_{2k-2n-1}}]) \right).$$

Example:
$$\gamma = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$
, $\sigma = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, $\Psi_{\gamma}(\sigma) = -2(4 - \psi_{\gamma}(\sigma)) = -4$

$$\psi_{\gamma}(\sigma) = \delta(2 \ge 1)\delta([\overline{1,1}] \ge [\overline{1,2}]) + \delta(1 \ge 1)\delta([\overline{1,1}] \ge [\overline{2,1}]) + \delta(2 \ge 1)\delta([\overline{1,1}] > [\overline{1,2}]) + \delta(1 \ge 1)\delta([\overline{1,1}] > [\overline{2,1}]) = 2.$$

Plan

1. Lk
$$(C_{\gamma}, K_{2,3}) \longrightarrow \text{Lk}(C'_{\gamma}, C'_{\sigma}) \quad (\gamma, \sigma \in \text{SL}_2(\mathbb{Z}) : \text{hyperbolic})$$

Duke-Imamoglu-Tóth (2017) introduced $\Psi_{\gamma}(\sigma)$ and showed

$$\Psi_{\gamma}(\sigma) = \operatorname{Lk}(C'_{\gamma}, C'_{\sigma})$$

In this talk, we give explicit formulas for $\Psi_{\gamma}(\sigma)$

(T. Matsusaka, A hyperbolic analogue of the Rademacher symbol, arXiv:2003.12354)

2.
$$Lk(C_{\gamma}, K_{2,3}) \longrightarrow Lk(C_{\gamma}'', K_{p,q}) \quad (\gamma \in \Gamma_{p,q} : hyp, K_{p,q} : (p,q)-torus knot)$$

We introduce $\Psi_{p,q}:\Gamma_{p,q}\to\mathbb{Z}$ for the triangle group $\Gamma_{p,q}$ and show some arithmetic properties

(Joint work (in progress) with Jun Ueki (Tokyo Denki University))

§2. $\Psi_{p,q}(\gamma)$ for triangle group $\Gamma_{p,q}$ (summary)

- 1. Eisenstein series $E_2^{(p,q)}(z)$ on $\Gamma_{p,q}$
- 2. $\log \Delta_{p,q}(\gamma z) \log \Delta_{p,q}(z) = 2pq \log(cz + d) + 2\pi i \psi_{p,q}(\gamma)$
- 3. $\widetilde{\Gamma}_{p,q} \subset \widetilde{\operatorname{SL}}_2(\mathbb{R})$: universal covering group

$$\chi_{p,q}: \widetilde{\Gamma}_{p,q} \to \mathbb{Z}$$
 (character), $\psi_{p,q}(\gamma) = \chi_{p,q}(\widetilde{\gamma})$

4.
$$\Psi_{p,q}(\gamma) = \psi_{p,q}(\gamma) + \frac{pq}{2} \operatorname{sgn}(\gamma) \left(1 - \operatorname{sgn}(\operatorname{tr}(\gamma)) \right)$$

Triangle group

(p,q): coprime pair, $2 \le p < q$

$$\Gamma_{p,q} = \left\langle T_{p,q} = \begin{pmatrix} 1 & 2\left(\cos\frac{\pi}{p} + \cos\frac{\pi}{q}\right) \\ 0 & 1 \end{pmatrix}, S_p = \begin{pmatrix} 0 & -1 \\ 1 & 2\cos\frac{\pi}{p} \end{pmatrix} \right\rangle$$

$$(\Gamma_{2,3} = \operatorname{SL}_2(\mathbb{Z}))$$

$$\lambda := 2\left(\cos\frac{\pi}{p} + \cos\frac{\pi}{q}\right), \quad U_q = \begin{pmatrix} 2\cos\frac{\pi}{q} & -1\\ 1 & 0 \end{pmatrix} = -T_{p,q}S_p^{-1}$$

Def:
$$E_{2k}^{(p,q)}(z,s) = \sum_{\gamma \in (\Gamma_{p,q})_{\infty} \backslash \Gamma_{p,q}} \operatorname{Im}(z)^{s-k} \bigg|_{2k} (\sigma^{-1}\gamma)$$
 (Re(s) > 1)

[Note]
$$\sigma = \begin{pmatrix} \lambda^{1/2} & 0 \\ 0 & \lambda^{-1/2} \end{pmatrix}$$
, $\operatorname{Res}_{s=1} E_0^{(p,q)}(z,s) = \frac{1}{\operatorname{vol}(\Gamma_{p,q}\backslash \mathbb{H})}$

Eisenstein series of weight 2

By
$$\xi_{2k}E_{2k}^{(p,q)}(z,s) = (\overline{s}-k)E_{2-2k}(z,\overline{s}), \quad \xi_k := 2iy^k \frac{d}{d\overline{z}}$$

•
$$E_2^{(p,q),*}(z) = \lim_{s \to 1+0} E_2^{(p,q)}(z,s) \in H_2(\Gamma_{p,q})$$

•
$$E_2^{(p,q)}(z) := E_2^{(p,q),*}(z) + \frac{1}{\operatorname{vol}(\Gamma_{p,q}\backslash \mathbb{H})} \frac{1}{y}$$
 is holomorphic

Lemma: For any $\gamma \in \Gamma_{p,q}$

$$(cz+d)^{-2}E_2^{(p,q)}(\gamma z) - E_2^{(p,q)}(z) = \frac{pq}{pq-p-q} \frac{c}{\pi i(cz+d)}$$

Goal: Define $\Psi_{p,q}:\Gamma_{p,q}\to\mathbb{Z}$

$$G_{p,q}(z) \stackrel{\frac{d}{dz}}{\rightarrow} 2\pi i r E_2^{(p,q)}(z), \quad r := pq - p - q$$

For any $\gamma \in \Gamma_{p,q}$, there exists $\psi_{p,q} : \Gamma_{p,q} \to \mathbb{C}$ s.t.

$$G_{p,q}(\gamma z) - G_{p,q}(z) = 2pq \log(cz + d) + 2\pi i \psi_{p,q}(\gamma)$$

[Note] Im $\log z \in [-\pi, \pi)$

Lemma: $\psi_{p,q}(S_p) = -q$, $\psi_{p,q}(T_{p,q}) = r$. In particular, $\psi_{p,q}(\gamma) \in \mathbb{Z}$

Let
$$\Delta_{p,q}(z) := \exp G_{p,q}(z)$$

- ightarrow · holomorphic · cusp form of weight 2pq on $\Gamma_{p,q}$
 - no zero and no pole on \mathbb{H} $\Delta_{p,q}(z) = e^{2\pi i r z/\lambda} + \cdots$

$$\log \Delta_{p,q}(\gamma z) - \log \Delta_{p,q}(z) = 2pq \log(cz + d) + 2\pi i \psi_{p,q}(\gamma)$$

Cor (Limit formula)

$$\lim_{s \to 1+0} \left(E_0^{(p,q)}(z,s) - \frac{1}{\operatorname{vol}(\Gamma_{p,q}\backslash \mathbb{H})} \frac{1}{s-1} \right) = -\frac{1}{\operatorname{vol}(\Gamma_{p,q}\backslash \mathbb{H})} \log(y |\Delta_{p,q}(z)|^{1/pq}) + C_{p,q}$$

For
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_{p,q}$$
 with $a+d>2$, $c>0$

$$\int_{z_0}^{\gamma z_0} E_2^{(p,q),*}(z) dz = \frac{\psi_{p,q}(\gamma)}{pq - p - q} \quad (z_0 \in S_{\gamma})$$

 \rightarrow This relates to Lk($C_{\gamma}, K_{p,q}$)

[Note]
$$G_r \backslash \widetilde{SL}_2(\mathbb{R}) \cong S^3 - K_{p,q}$$
 ((p,q)-torus knot)

$$\Gamma_{p,q}\backslash \mathrm{SL}_2(\mathbb{R})\cong L(pq-p-q,p-1)-\overline{K}_{p,q}$$
 (in Lens space)

The universal covering group $\widetilde{SL}_2(\mathbb{R})$

2-cocycle $W: \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R}) \to \mathbb{Z}$

$$W(\gamma_1, \gamma_2) = \frac{1}{2\pi i} \left(\log j(\gamma_1, \gamma_2 z) + \log j(\gamma_2, z) - \log j(\gamma_1 \gamma_2, z) \right)$$

[Note] $j(\gamma, z) = cz + d$, Im $\log z \in [-\pi, \pi)$

Def:
$$\operatorname{sgn}(\gamma) = \begin{cases} \operatorname{sgn}(c) & \text{if } c \neq 0 \\ \operatorname{sgn}(a) = \operatorname{sgn}(d) & \text{if } c = 0 \end{cases}$$

$\operatorname{sgn}(\gamma_1)$	$\operatorname{sgn}(\gamma_2)$	$\mid \operatorname{sgn}(\gamma_1 \gamma_2) \mid$	$\mid W(\gamma_1, \gamma_2) \mid$
1	1	-1	1
-1	-1	$ $	$\begin{vmatrix} & -1 & \end{vmatrix}$
	otherwise		0

Prop:
$$\psi_{p,q}(\gamma_1 \gamma_2) = \psi_{p,q}(\gamma_1) + \psi_{p,q}(\gamma_2) + 2pqW(\gamma_1, \gamma_2)$$

If $f: \Gamma_{p,q} \to \mathbb{C}$ satisfies the above, then $f = \psi_{p,q}$

The universal covering group $\widetilde{\mathrm{SL}}_2(\mathbb{R}) = \{(\gamma, n) \mid \gamma \in \mathrm{SL}_2(\mathbb{R}), n \in \mathbb{Z}\},\$

[Note]
$$(\gamma_1, n_1) \cdot (\gamma_2, n_2) = (\gamma_1 \gamma_2, n_1 + n_2 + W(\gamma_1, \gamma_2))$$

Let
$$\widetilde{\Gamma}_{p,q} = \{(\gamma,n) \mid \gamma \in \Gamma_{p,q}, n \in \mathbb{Z}\} \subset \widetilde{\mathrm{SL}}_2(\mathbb{R}) \text{ and } \widetilde{\gamma} = (\gamma,0)$$

Consider an additive character $\chi_{p,q}: \widetilde{\Gamma}_{p,q} \to \mathbb{Z}$

Generators satisfy
$$(\widetilde{S}_p)^p = (\widetilde{U}_q)^q \quad \rightarrow \quad p \cdot \chi_{p,q}(\widetilde{S}_p) = q \cdot \chi_{p,q}(\widetilde{U}_q)$$

Thm Let $\chi_{p,q}(\widetilde{S}_p) = -q$ and $\chi_{p,q}(\widetilde{U}_q) = -p$. For any $\gamma \in \Gamma_{p,q}$

$$\psi_{p,q}(\gamma) = \chi_{p,q}(\widetilde{\gamma})$$

Def

$$\Psi_{p,q}(\gamma) = \psi_{p,q}(\gamma) + \frac{pq}{2} \operatorname{sgn}(\gamma) \left(1 - \operatorname{sgn}(\operatorname{tr}(\gamma)) \right)$$

Thm (M.-Ueki) For any $\gamma, g \in \Gamma_{p,q}$

$$\Psi_{p,q}(\gamma) = \Psi_{p,q}(-\gamma) = -\Psi_{p,q}(\gamma^{-1}) = \Psi_{p,q}(g^{-1}\gamma g)$$

If $\gamma \in \Gamma_{p,q}$ is not elliptic, $\Psi_{p,q}(\gamma^n) = n\Psi_{p,q}(\gamma)$

Thm (M.-Ueki) For a prim. hyp. $\gamma \in \Gamma_{p,q}$ with a+d>2, c>0

Let
$$1 \le n \le r$$
 s.t. $n = (2pq)^{-1} \Psi_{p,q}(\gamma) \in \mathbb{Z}/r\mathbb{Z}$

• We define n modular knots $C_{\gamma}^{(j)}$ in $S^3 - K_{p,q}$ $(0 \le j \le n)$

•
$$\operatorname{Lk}(C_{\gamma}^{(j)}, K_{p,q}) = \frac{1}{\gcd(n,r)} \Psi_{p,q}(\gamma) \in \mathbb{Z}$$