Lista 3

Contents

Problem 1.																					1
Problem 2.																					2
Problem 3 .																					5
Problem 4 .																					6

Problem 1 Consider a symplectic manifold (M^{2n}, ω) with hamiltonian $H \in \mathcal{C}^{\infty}(M)$. Let $f_1, \ldots, f_k \in \mathcal{C}^{\infty}(M)$ be first integrals of the flow of H, i.e., $\{H, f_i\} = 0$. Let $F = (f_1, \ldots, f_k) : M \longrightarrow \mathbb{R}^k$, and let $c \in \mathbb{R}^k$ be a regular value. Note that $M_c := F^{-1}(c)$ is invariant by the flow of H. We will show that M_c carries a natural invariant volume form.

- a. Take a neighborhood $\mathcal U$ of M_c where df_1,\ldots,df_k are linearly independent pointwise. Show that the Liouville volume form $\Lambda_\omega=\omega^n/n!$ can be written in $\mathcal U$ as $\Lambda_\omega=df_1\wedge\ldots\wedge df_k\wedge\sigma$ for some $\sigma\in\Omega^{2n-k}(M)$. We then define a volume form $\Lambda_c:=i\sigma\in\Omega^{2n-k}(M_c)$ where $i:M_c\to M$ is the inclusion.
- b. Show that $df_1 \wedge \ldots \wedge df_k \wedge \mathcal{L}_{X_H} \sigma = 0$ and use this fact to see that we can write $\mathcal{L}_{X_H} \sigma = \sum_{i=1}^k df_i \wedge \rho_i$. Conclude that Λ_c is invariant by the flow of H.
- c. Show that Λ_c does not depend on the choice of σ .

Solution.

a. (Ver StackExchange.) Note que como dim $\Omega^{2n}(M)=1$, basta mostrar que existe $\sigma \in \Omega^{2n-k}(M)$ tal que $df_1 \wedge ... \wedge df_k \wedge \sigma \in \Omega^{2n}(W)$.

Sabemos que para qualquer ponto $p \in M_c$ existe uma vizinhança V de p com coodenadas locais $(f_1,\ldots,f_k,x_{k+1},\ldots,x_{2n})$. Daí, uma base de T_x^*V é df_1,\ldots,df_k , dx_{k+1},\ldots,dx_{2n} . Defina $\sigma_V=dx_{k+1}\wedge\ldots\wedge dx_{2n}$. Pegue uma coberta aberta V_α de $\mathcal U$ e defina uma partição da unidade ρ_α para estender cada forma σ_{V_α} a uma forma em $\mathcal U$, $\sigma_{V_\alpha}\rho_\alpha$. A forma $\sum_\alpha \sigma_{V_\alpha}\rho_\alpha$ é a buscada.

Outra ideia que tive: pegue um ponto $p \in \mathcal{U} \subset M$. Podemos completar $(df_1)_p,\ldots,(df_k)_p$ a uma base de T*M. Também podemos extender essa base para uma vizinhança $p \in V \subset \mathcal{U}$ como segue: extenda os covectores a toda M usando uma função "quindim" (=bump function) que seja 1 num compacto perto de p—i.e. estamos extendedo essas formas que achamos em p para um campo covetorial constante. Daí, como os covectores são linearmente independentes em p, o determinante da função de coeficentes deles é não zero em p, mas como o determinante é contínuo, existe uma vizinhança de p onde é não zero. Defina $\tilde{\sigma}$ como o wedge product

dos covectores que acabamos de achar. Daí, de novo, é so estender cada $\tilde{\sigma}$ a uma forma em \mathcal{U} . O problema aquí é comprovar que a escolha dos covetores coincide nas interseções dos abertos—algo que não acontece na construção anterior porque estamos usando un atlas de M.

b. Pela fórmula de Cartan, em cada vizinhança V como no item anterior,

$$\begin{split} \pounds_{X_H} \sigma_V &= \pounds_{X_H} (dx_{k+1} \wedge \ldots \wedge dx_{2n}) \\ &= \pounds_{X_H} dx_{k+1} \wedge dx_{k+2} \wedge \ldots \wedge dx_{2n} \\ &+ dx_{k+1} \wedge \pounds_{X_H} x_{k+2} \wedge \ldots \wedge dx_{2n} \\ &+ \ldots + dx_{k+1} \wedge \ldots \wedge \pounds_{X_H} dx_{2n}. \end{split}$$

Só note que cada termo dessa suma que não é zero deve conter um múltiplo de alguma df_j porque essa é a única maneira de ter formas linealmente independentes no wedge product.

Sabendo que $\mathcal{L}_{X_H} \sigma = \sum_j df_j \wedge \rho_j$, temos que

$$\begin{split} \pounds_{X_H} i^* \sigma &= i^* \pounds_{X_H} \sigma \\ &= i^* \left(\sum_j df_j \wedge \rho_j \right) \\ &= \sum_j di^* f_j \wedge i^* \rho \\ &= 0 \end{split}$$

já que f_i é constante em M_c .

c. Suponha que $\tilde{\sigma}\in\Omega^{2n-k}(M)$ também é tal que $\Lambda_{\omega}=df_1\wedge\dots df_k\wedge\tilde{\sigma}.$ Então

$$\begin{split} df_1 \wedge \ldots \wedge df_k \wedge (\sigma - \tilde{\sigma}) &= 0 \\ &\implies \sigma \wedge \tilde{\sigma} = df_1 \wedge \ldots df_{k+1} \wedge \gamma, \qquad \gamma \in \Omega^{2n-k}(M) \\ &\implies \mathfrak{i}^*(\sigma - \tilde{\sigma}) = \mathfrak{i}^*(df_1 \wedge \ldots df_{k+1} \wedge \gamma) = 0 \\ &\implies \mathfrak{i}^*\sigma = \mathfrak{i}^*\tilde{\sigma} \end{split}$$

já que o wedge product igual a zero e equivalente a dependendência linear e de novo porque f_i são constantes em M_c .

Problem 2 Let M be a symplectic manifold, $\Psi = (\psi^1, \dots, \psi^k) : M \to \mathbb{R}^k$ a smooth map, and c a regular value. Consider a submanifold $N = \Psi^{-1}(c) \hookrightarrow M$.

a. Show that N is coisotropic if and only if $\{\psi^i, \psi^j\}_{N} = 0$ for all i, j = 1, ..., k.

b. Show that N is symplectic if and only if the matrix (c^{ij}) , with $c^{ij} = \{\psi^i, \psi^j\}$, is invertible for all $x \in N$. In this case, verify that we have the following expression for the Poisson bracket $\{\cdot, \cdot\}_N$ on N (known as *Dirac's bracket*):

$$\{f,g\}_N = \left(\{\tilde{f},\tilde{g}\} = \sum_{ij} \{\tilde{f},\tilde{g}\}c_{ij}\{\psi^j,\tilde{g}\}\right)\bigg|_N$$

where $(c_{ij}) = (c^{ij})^{-1}$, f, $g \in C^{\infty}(N)$, and $\tilde{f}, \tilde{g} \in C^{\infty}(M)$ are arbitrary extensions of f and g.

Solution.

a. Since M is symplectic we have a bundle isomorphism

$$\omega^{\flat}:TM\longrightarrow T^{*}M$$

$$\nu\longmapsto i_{\nu}\omega$$

Then

$$TN^{\omega}=(\omega^{\flat})^{-1}(Ann(TN)).$$

Since M is the level set of a regular value, there are local coordinates of the form $(\psi^1,\ldots,\psi^k,\chi^{k+1},\ldots,\chi^{2n})$. Vectors tangent to N are expressed only in terms of the vectors $\vartheta_{k+1},\ldots,\vartheta_{2n}$ and thus covectors that vanish on TN are those which vanish on $\vartheta_{k+1},\ldots,\vartheta_{2n}$. This means that a basis for Ann(TN) is given by $d\psi^1,\ldots,d\psi^k$ (an explanation of this might be that the canonical basic covectors for the coordinates ψ^i are the differentials $d\psi^i$, which maybe can be checked using the usual change of coordinates formula). These generators map to their hamiltonian vector fields under $(\omega^\flat)^{-1}$:

$$\left(\omega^{\flat}\right)^{-1}(d\psi^{\mathfrak{i}})=X_{\psi^{\mathfrak{i}}}$$

So TN^ω is generated by the X_{ψ^i} . Notice that any vector $v \in TM$ is actually in TN iff $\alpha(v)=0 \ \forall \alpha \in Ann(TN)$. Then we see that

$$\begin{split} \mathsf{TN}^\omega \subset \mathsf{TM} &\iff X_{\psi^\mathfrak{i}} \in \mathsf{TN} \quad \mathfrak{i} = 1, \dots, k \\ &\iff d\psi^\mathfrak{j}(X_{\psi^\mathfrak{i}})|_{\mathsf{N}} = 0 \quad \mathfrak{i}, \mathfrak{j} = 1, \dots, k \\ &\iff \omega(X_{\psi^\mathfrak{i}}, X_{\psi^\mathfrak{j}})|_{\mathsf{N}} = 0 \quad \mathfrak{i}, \mathfrak{j} = 1, \dots, k \\ &\iff \{\psi^\mathfrak{i}, \psi^\mathfrak{j}\}|_{\mathsf{N}} = 0 \quad \mathfrak{i}, \mathfrak{j} = 1, \dots, k \end{split}$$

b. Em qualquer sistema de coordenadas (x^1,\ldots,x^{2n}) , os vetores hamilatonianos $X_{x^1},\ldots,X_{x^{2n}}$ formam uma base do espaço tangente. Nessa base, os coeficientes da matriz que representa ω^{\flat} são exatamente os colchetes de Poisson $\{x^i,x^j\}$. A forma ω é não degenerada se e somente se a sua matriz é invertível (já que nesse caso temos o isomofismo ω^{\flat} bem definido). Então, o que queremos é ver que a restrição $\omega|_N$ é invertível em cada ponto de N.

Nas coordenadas de subvariedade $(\psi^1,\ldots,\psi^k,\chi^{k+1},\ldots,\chi^{2n})$, a matrix que representa ω^\flat é

$$\begin{pmatrix} \{\psi^{1}, \psi^{1}\} & \cdots & \{\psi^{k}, \psi^{1}\} & \{x^{k+1}, \psi^{1}\} & \cdots & \{x^{2n}, \psi^{1}\} \\ \vdots & & \vdots & & \vdots \\ \{\psi^{1}, \psi^{k}\} & \cdots & \{\psi^{k}, \psi^{k}\} & \{x^{k+1}, \psi^{k}\} & \cdots & \{x^{2n}, \psi^{k}\} \\ \{\psi^{1}, x^{k+1}\} & \cdots & \{\psi^{k}, x^{k+1}\} & \{x^{k+1}, x^{k+1}\} & \cdots & \{x^{2n}, x^{k+1}\} \\ \vdots & & & \vdots \\ \{\psi^{1}, x^{2n}\} & \cdots & \{\psi^{k}, x^{2n}\} & \{x^{k+1}, x^{2n}\} & \cdots & \{x^{2n}, x^{2n}\} \end{pmatrix}$$

No entanto,

$$\{x^{i}, \psi^{j}\} = dx^{i}(X_{\psi^{j}}) = 0$$

 $\{\psi^{j}, x^{i}\} = d\psi^{j}(X_{x^{i}}) = 0$

se os covetores dx^i e $d\psi^j$ são de fato a base dual de X_{x^i} , X_{ψ^j} . Se isso for certo, podemos escrever a matriz representada acima como

$$\left(\begin{array}{c|c} \{\psi^i,\psi^j\} & 0 \\ \hline 0 & \{x^i,x^j\} \end{array}\right),$$

cujo determinante é o produto dos determinantes das matrizes de bloco não zero. Algo neste argumento não funcionona, pois o determinante da matriz $\{x^i, x^j\}$ pode ser zero se k=n e tomamos uma carta coordenada de Darboux. Perguntei no StackExchange, mas sem resposta por enquanto.

Para a última parte do exercício suponha por enquanto que dadas as projeções

é verdade que

$$X_f = q_1(X_{\tilde{f}}), \qquad q_2(Y) = \sum_{\mathfrak{i},\mathfrak{j}} d\psi^{\mathfrak{i}}(Y) c_{\mathfrak{i}\mathfrak{j}} X_{\psi^{\mathfrak{j}}}.$$

Então, (para facilitar leitura não escrevo a resitrição à N, mas isso só tem sentido em N)

$$\begin{split} \{\tilde{\mathbf{f}}, \tilde{\mathbf{g}}\} &= \omega(X_{\tilde{\mathbf{f}}}, X_{\tilde{\mathbf{g}}}) \\ &= \omega(q_1(X_{\tilde{\mathbf{f}}}), q_1(X_{\tilde{\mathbf{g}}})) + \omega(q_1(X_{\tilde{\mathbf{f}}}), q_2(X_{\tilde{\mathbf{g}}})) \\ &+ \omega(q_2(X_{\tilde{\mathbf{f}}}), q_1(X_{\tilde{\mathbf{g}}})) + \omega(q_2(X_{\tilde{\mathbf{f}}}), q_2(X_{\tilde{\mathbf{g}}})) \\ &= \omega(X_{\mathbf{f}}, X_{\mathbf{g}}) + \omega(q_2(X_{\tilde{\mathbf{f}}}), q_2(X_{\tilde{\mathbf{g}}})) \\ &= \{\mathbf{f}, \mathbf{q}\}_N + \omega(q_2(X_{\tilde{\mathbf{f}}}), q_2(X_{\tilde{\mathbf{g}}})) \end{split}$$

para calcular o último termo notamos que

$$\begin{split} q_2(X_{\tilde{f}}) &= \sum_{i,j} d\psi^i(X_{\tilde{f}}) c_{ij} X_{\psi^j} & q_2(X_{\tilde{g}}) = \sum_{k,\ell} d\psi^k(X_{\tilde{g}}) c_{k\ell} X_{\psi^\ell} \\ &= \sum_{i,j} - \{\tilde{f}, \psi^i\} c_{ij} X_{\psi^j} & = \sum_{k,\ell} \{\psi^k, \tilde{g}\} c_{k\ell} X_{\psi^\ell} \end{split}$$

de modo que

$$\begin{split} \omega(q_2(X_{\tilde{f}}),q_2(X_{\tilde{g}})) &= \sum_{i,j,k,\ell} - \{\tilde{f},\psi^i\} c_{ij} \{\psi^k,\tilde{g}\} c_{k\ell} \omega(X_{\psi^j},X_{\psi^\ell}) \\ &= \sum_{i,j,k,\ell} - \{\tilde{f},\psi^i\} c_{ij} c^{j\ell} c_{k\ell} \{\psi^k,\tilde{g}\} \\ &= \sum_{i,j,k,\ell} \{\tilde{f},\psi^i\} c_{ij} c^{j\ell} c_{\ell k} \{\psi^k,\tilde{g}\} \\ &= \sum_{i,k} \{\tilde{f},\psi^i\} c_{ik} \{\psi^k,\tilde{g}\} \end{split}$$

usando que a $c_{\ell k}=-c_{k\ell}$ por ser uma matriz antisimétrica. Com isso seria demonstrado o exercício.

O fato de que $X_f = q_1(X_{\tilde{f}})$ segue de que tanto M quanto N são variedades simpléticas, de modo que existe um único campo vetorial associado à $df = d\tilde{f}|_N$ em N.

A falta de uma prova rigurosa, a equação $q_2(Y)=\sum_{i,j}d\psi^i(Y)c_{ij}X_{\psi^j}$ é simplesmente a expresão em coordenadas de Y na base de vetores Hamiltonianos X_{ψ^j} do espaço TN^ω .

Problem 3 Let $D \subseteq TM$ be a vector subbundle, and let $Ann(D) \subseteq T^*M$ be its annihilator. Show that D is involutive iff Ann(D) is a coisotropic submanifold of T^*M .

Solution. For the implication \implies we use Frobenius theorem to obtain an integral manifold of D, which means that Ann(D) is just the conormal bundle of such a manifold. We have seen in class that the conormal bundle of any manifold is a lagrangian submanifold of the cotangent bundle, so in particular it is coisotropic.

Para a implicação \Leftarrow proponho o seguinte esquema:

$$D \subset TM \longrightarrow Ann(Ann(D)) \subset T^*(T^*M) \xrightarrow{\omega^{\sharp}} Ann(D)^{\omega} \subset T(T^*M)$$

$$X \longmapsto X^* : T^*M \longrightarrow \mathbb{R} \longrightarrow \mathfrak{p}(X) \longmapsto \omega^{\sharp}(X^*)$$

Por um argumento análogo ao Problema 2a, sabemos que $\mathrm{Ann}(D)^\omega$ está generado pelas diferenciais de funções que se anulam em $\mathrm{Ann}(D)$. Isso significa que $\omega^\sharp X^*$ é uma combinação linear de campos Hamiltonianos X_f com $f|_{\mathrm{Ann}(D)}=0$, digamos $X=\sum_i X_{f_i}$.

Como Ann(D) é coisotrópica, o colchete de Poisson de duas funções que se anulam em Ann(D) é zero (isso também é análogo ao Problema 2a). Segue que, para $X, Y \in D$,

$$\begin{split} [\omega^{\sharp}X^{*}, \omega^{\sharp}Y^{*}]_{\mathsf{T}(\mathsf{T}^{*}M)} &= \left[\sum_{i} X_{f_{i}}, \sum_{j} X_{g_{j}}\right]_{\mathsf{T}(\mathsf{T}^{*}M)} \\ &= \sum_{i,j} [X_{f_{i}}, X_{g_{j}}]_{\mathsf{T}(\mathsf{T}^{*}M)} \\ &= -\sum_{i,j} X_{\{f_{i},g_{j}\}} \\ &= -\sum_{i,j} X_{0} \\ &= 0 \end{split}$$

Finalmente, podemos restringir o colchete $[\cdot,\cdot]_{\mathsf{T}(\mathsf{T}^*M)}$ à D vendo D como subvariedade de T^*M na seção zero. Isso implica que de fato o colchete de Lie em D é zero.

Problem 4 Consider a smooth map $\phi: Q_1 \rightarrow Q_2$, and let

$$R_{\Phi} := \{((x, \xi), (y, \eta)) : y = \Phi(x), \ \xi = (T\Phi)^*\eta\} \subset T^*Q_1 \times T^*Q_2.$$

Verify that R_{φ} is a lagrangian submanifold of $T^*Q_1 \times \overline{T^*Q_2}$. Whenever φ is a diffeo, what is the relation between R_{φ} and the cotangent lift $\hat{\varphi}$?

Denote by $\Gamma_{\varphi} \subset Q_1 \times Q_2$ the graph of φ . What is the relation between N^*T_{φ} (the conormal bundle of Γ_{φ}) and R_{φ} ?

Solution. A notação $(T\varphi)^*$ é um pouco confusa, mas terminhei por interpreta-lá como simplesmente a precomposição, ie. $(T\varphi)^* = \varphi \circ T\varphi$, ou seja, o pullback usual φ^* . Daí, é fácil ver que se φ é um difeomorfismo, R_φ é justamente o grafo do pullback

$$\begin{split} \varphi^*: T^*Q_2 &\longrightarrow T^*Q_1 \\ (\varphi(x), \eta) &\longmapsto (x, \varphi^*\eta) \end{split}$$

que por definição é o inverso do levantamento cotangente de φ . Porém, se φ não é injetiva, esse mapa não está bem definido. Mas ainda, parece que R_{φ} é lagrangiana além disso. É facil ver que a dimensão de R_{φ} é a metade do espaço ambiente, já que está parametrizado por pares $(x,\eta) \in Q_1 \times T^*Q_2$. Isso significa que a dimensão dele é dim $Q_1 + \dim Q_2 = \frac{1}{2}\dim(T^*Q_1 \times T^*Q_2)$. Para comprovar que é um subvariedade lagrangiana basta ver que o mergulho $\gamma: R^{\varphi} \hookrightarrow T^*Q_1 \times \overline{T^*Q_2}$ puxa a forma canónica em zero (ie. é isotrópica).

(Ver StackExchange.)A forma canónica em $T^*Q_1 \times \overline{T^*Q_2}$ é $\omega := pr_1^* \omega_1 - pr_2^* \omega_2$ onde ω_1, ω_2 são as formas canónicas nos fibrados cotangentes. Queremos ver que $\gamma^*\omega = 0$.

Temos que:

$$\begin{split} \gamma^* \omega &= \gamma^* (pr_1^* \, \omega_1 - pr_2^* \, \omega_2) \\ &= (pr_1 \, \circ \gamma)^* \omega_1 - (pr_2 \, \circ \gamma)^* \omega_2 \\ &= \sum_i dx^i \wedge d((\mathsf{T} \varphi)^* \eta) - d\varphi \wedge d\eta^i \end{split}$$

e isso deve dar zero. Não fiquei muito seguro de por que, mas a idea e assim: quando derivamos o termo que inclui $(T\varphi)^*$ vira uma soma de dois termos, um dos quais se cancela com $d\varphi \wedge d\eta^i$, e o outro é zero por antisimetría.

Por último vejamos a relação de R_{Φ} com o anulador $N^*\Gamma_{\Phi}$:

$$N^*\Gamma_{\Phi} = \{ \big((x,\xi), (y,\eta) \big) \in T^*Q_1 \times T^*Q_2 \cong T^*(Q_1 \times Q_2) : \text{se anula em } T_{(x,\Phi(x))}\Gamma_{\Phi} \}$$

Agora note que o espaço tangente $T_{(x,\varphi(x))}\Gamma_{\varphi}$ está generado por pares de vetores da forma $\frac{\partial}{\partial x^i} + \varphi_* \frac{\partial}{\partial x^i}$. Isso segue simplesmente do fato de que em coordenadas locais, os vetores canónicos são as derivadas de curvas $(x_i,\varphi(x_i))$. Então, um elemento $((x,\xi),(y,\eta))$ em $N^*\Gamma_{\varphi}$ deve satisfacer que quando $y=\varphi(x)$, essas formas se anulan no subespaço tangente generado por $\frac{\partial}{\partial x^i} + \varphi_* \frac{\partial}{\partial x^i}$. Em símbolos:

$$0 = \xi \left(\frac{\partial}{\partial x^{i}} \right) + \eta \left(\phi_{*} \frac{\partial}{\partial x^{i}} \right)$$

$$\iff \xi \left(\frac{\partial}{\partial x^{i}} \right) = -\eta \left(\phi_{*} \frac{\partial}{\partial x^{i}} \right)$$

$$\iff \xi = -(T\phi)^{*}\eta$$

notando que a reflexão $(T\varphi)^*\eta\mapsto -(T\varphi)^*\eta$ é um simplectomorfismo, vemos que $N^*\Gamma_\varphi$ de fato é simplectomorfo à R_φ .