

Figure 1: Nucleotide (SEQ ID NO: 1) and deduced amino acid sequence of human ChemR23 (AC075748)

1	M	E	D	E	D	Y	N	T	S	I	S	Y	G	D	E	15
175	ATG	GAG	GAT	GAA	GAT	TAC	AAC	ACT	TCC	ATC	AGT	TAC	GGT	GAT	GAA	219
16	Y	P	D	Y	L	D	S	I	V	V	L	E	D	L	S	30
220	TAC	CCT	GAT	TAT	TTA	GAC	TCC	ATT	GTG	GTT	TTG	GAG	GAC	TTA	TCC	264
31	P	L	E	A	R	V	T	R	I	F	L	V	V	V	Y	45
265	CCC	TTG	GAA	GCC	AGG	GTG	ACC	AGG	ATC	TTC	CTG	GTG	GTG	GTC	TAC	309
46	S	I	V	C	F	L	G	I	L	G	N	G	L	V	I	60
310	AGC	ATC	GTC	TGC	TTC	CTC	GGG	ATT	CTG	GGC	AAT	GGT	CTG	GTG	ATC	354
61	I	I	A	T	F	K	M	K	K	T	V	N	M	V	W	75
355	ATC	ATT	GCC	ACC	TTC	AAG	ATG	AAG	AAG	ACA	GTG	AAC	ATG	GTC	TGG	399
76	F	L	N	L	A	V	A	D	F	L	F	N	V	F	L	90
400	TTC	CTC	AAC	CTG	GCA	GTG	GCA	GAT	TTC	CTG	TTC	AAC	GTC	TTC	CTC	444
91	P	I	H	I	T	Y	A	A	M	D	Y	H	W	V	F	105
445	CCA	ATC	CAT	ATC	ACC	TAT	GCC	GCC	ATG	GAC	TAC	CAC	TGG	GTT	TTC	489
106	G	T	A	M	C	K	I	S	N	F	L	L	I	H	N	120
490	GGG	ACA	GCC	ATG	TGC	AAG	ATC	AGC	AAC	TTC	CTT	CTC	ATC	CAC	AAC	534
121	M	F	T	S	V	F	L	L	T	I	I	S	S	D	R	135
535	ATG	TTC	ACC	AGC	GTC	TTC	CTG	CTG	ACC	ATC	ATC	AGC	TCT	GAC	CGC	579
136	C	I	S	V	L	L	P	V	W	S	Q	N	H	R	S	150
580	TGC	ATC	TCT	GTG	CTC	CTC	CCT	GTC	TGG	TCC	CAG	AAC	CAC	CGC	AGC	624
151	V	R	L	A	Y	M	A	C	M	V	I	W	V	L	A	165
625	GTT	CGC	CTG	GCT	TAC	ATG	GCC	TGC	ATG	GTC	ATC	TGG	GTC	CTG	GCT	669
166	F	F	L	S	S	P	S	L	V	F	R	D	T	A	N	180
670	TTC	TTC	TTG	AGT	TCC	CCA	TCT	CTC	GTC	TTC	CGG	GAC	ACA	GCC	AAC	714
181	L	H	G	K	I	S	C	F	N	N	F	S	L	S	T	195
715	CTG	CAT	GGG	AAA	ATA	TCC	TGC	TTC	AAC	AAC	TTC	AGC	CTG	TCC	ACA	759
196	P	G	S	S	S	W	P	T	H	S	Q	M	D	P	V	210
760	CCT	GGG	TCT	TCC	TCG	TGG	CCC	ACT	CAC	TCC	CAA	ATG	GAC	CCT	GTG	804
211	G	Y	S	R	H	M	V	V	T	V	T	R	F	L	C	225
805	GGG	TAT	AGC	CGG	CAC	ATG	GTG	GTG	ACT	GTC	ACC	CGC	TTC	CTC	TGT	849
226	G	F	L	V	P	V	L	I	I	T	A	C	Y	L	T	240
850	GGC	TTC	CTG	GTC	CCA	GTC	CTC	ATC	ATC	ACA	GCT	TGC	TAC	CTC	ACC	894
241	I	V	C	K	L	Q	R	N	R	L	A	K	T	K	K	255
895	ATC	GTC	TGC	AAA	CTG	CAG	CGC	AAC	CGC	CTG	GCC	AAG	ACC	AAG	AAG	939
256	P	F	K	I	I	V	T	I	I	I	T	F	F	L	C	270
940	CCC	TTC	AAG	ATT	ATT	GTG	ACC	ATC	ATC	ATT	ACC	TTC	TTC	CTC	TGC	984

271	W	C	P	Y	H	T	L	N	L	L	E	L	H	H	T	285
985	TGG	TGC	CCC	TAC	CAC	ACA	CTC	AAC	CTC	CTA	GAG	CTC	CAC	CAC	ACT	1029
286	A	M	P	G	S	V	F	S	L	G	L	P	L	A	T	300
1030	GCC	ATG	CCT	GGC	TCT	GTC	TTC	AGC	CTG	GGT	TTG	CCC	CTG	GCC	ACT	1074
301	A	L	A	I	A	N	S	C	M	N	P	I	L	Y	V	315
1075	GCC	CTT	GCC	ATT	GCC	AAC	AGC	TGC	ATG	AAC	CCC	ATT	CTG	TAT	GTT	1119
316	F	M	G	Q	D	F	K	K	F	K	V	A	L	F	S	330
1120	TTC	ATG	GGT	CAG	GAC	TTC	AAG	AAG	TTC	AAG	GTG	GCC	CTC	TTC	TCT	1164
331	R	L	V	N	A	L	S	E	D	T	G	H	S	S	Y	345
1165	CGC	CTG	GTC	AAT	GCT	CTA	AGT	GAA	GAT	ACA	GGC	CAC	TCT	TCC	TAC	1209
346	P	S	H	R	S	F	T	K	M	S	S	M	N	E	R	360
1210	CCC	AGC	CAT	AGA	AGC	TTT	ACC	AAG	ATG	TCA	TCA	ATG	AAT	GAG	AGG	1254
361	T	S	M	N	E	R	E	T	G	M	L	*			372	
1255	ACT	TCT	ATG	AAT	GAG	AGG	GAG	ACC	GGC	ATG	CTT	TGA				1290

Figure 2: Amino acid sequence of human ChemR23 (371 amino acids) (SEQ ID NO 2). The seven predicted transmembrane domains are underlined. The consensus sequence for N-linked glycosylation (N-X-S/T) in the N terminus is bold and the potential site of phosphorylation by PKC (S/T-X-R/K) in the C terminus is in italic.

MEDEDYNTS**I**SYGDEYPDYLD**SIVVLEDLS**PLEARVTRI**F**LVVVYS**I**VCFLGILGNGLV**II**IAT
FKMKKTVNMVWF**LNLA**VADFLFNVFLPIHITYAAMDYHWVFGTAMCKISNF**LIHN**MFTSVFLL
TIISSDRCISVLLPVWSQNHR**SVRLAY**MACMVIWVL**AFFLSSPSLV**FRDTANLHGKISCFNNFS
LSTPGSSSWPTHSQMDPVGYSRHMVVT**TRFLCGFLVPVLI**ITACYLTIVCKLQRNR**LA**TKKP
FKI**I**VT**III**ITFFLCWC**PYHTLNLL**E**LHHTAMPGSVFSLGL**PLATALAIANS**C**MNPILYVFM**QD**
FKKF**KVALFSRLVN**ALSEDTGHSSYP**SHRSFT**KMSSMNERTSMNERETGML

Figure 3: Nucleotide and deduced amino acid sequence of mouse dez (AC u79525 – SEQ ID NOs:3 and 4, respectively)

1	M	E	Y	D	A	Y	N	D	S	G	I	Y	D	D	E	15
265	ATG	GAG	TAC	GAC	GCT	TAC	AAC	GAC	TCC	GGC	ATC	TAT	GAT	GAT	GAG	309
16	Y	S	D	G	F	G	Y	F	V	D	L	E	E	A	S	30
310	TAC	TCT	GAT	GGC	TTT	GGC	TAC	TTT	GTG	GAC	TTG	GAG	GAG	GCG	AGT	354
31	P	W	E	A	K	V	A	P	V	F	L	V	V	I	Y	45
355	CCG	TGG	GAG	GCC	AAG	GTG	GCC	CCG	GTC	TTC	CTG	GTG	GTG	ATC	TAC	399
46	S	L	V	C	F	L	G	L	L	G	N	G	L	V	I	60
400	AGC	TTG	GTG	TGC	TTC	CTC	GGT	CTC	CTA	GGC	AAC	GGC	CTG	GTG	ATT	444
61	V	I	A	T	F	K	M	K	K	T	V	N	T	V	W	75
445	GTC	ATC	GCC	ACC	TTC	AAG	ATG	AAG	AAG	ACC	GTG	AAC	ACT	GTG	TGG	489
76	F	V	N	L	A	V	A	D	F	L	F	N	I	F	L	90
490	TTT	GTC	AAC	CTG	GCT	GTG	GCC	GAC	TTC	CTG	TTC	AAC	ATC	TTT	TTG	534
91	P	M	H	I	T	Y	A	A	M	D	Y	H	W	V	F	105
535	CCG	ATG	CAC	ATC	ACC	TAC	GCG	GCC	ATG	GAC	TAC	CAC	TGG	GTG	TTC	579
106	G	K	A	M	C	K	I	S	N	F	L	L	S	H	N	120
580	GGG	AAG	GCC	ATG	TGC	AAG	ATC	AGC	AAC	TTC	TTG	CTC	AGC	CAC	AAC	624
121	M	Y	T	S	V	F	L	L	T	V	I	S	F	D	R	135
625	ATG	TAC	ACC	AGC	GTC	TTC	CTG	CTG	ACT	GTC	ATC	AGC	TTT	GAC	CGC	669
136	C	I	S	V	L	L	P	V	W	S	Q	N	H	R	S	150
670	TGC	ATC	TCC	GTG	CTG	CTC	CCC	GTC	TGG	TCC	CAG	AAC	CAC	CGC	AGC	714
151	I	R	L	A	Y	M	T	C	S	A	V	W	V	L	A	165
715	ATC	CGC	CTG	GCC	TAC	ATG	ACC	TGC	TCG	GCC	GTC	TGG	GTC	CTG	GCT	759
166	F	F	L	S	S	P	S	L	V	F	R	D	T	A	N	180
760	TTC	TTC	TTG	AGC	TCC	CCG	TCC	CTT	GTC	TTC	CGG	GAC	ACC	GCC	AAC	804
181	I	H	G	K	I	T	C	F	N	N	F	S	L	A	A	195
805	ATT	CAT	GGG	AAG	ATA	ACC	TGC	TTC	AAC	AAC	TTC	AGC	TTG	GCC	GCG	849
196	P	E	S	S	P	H	P	A	H	S	Q	V	V	S	T	210
850	CCT	GAG	TCC	TCC	CCA	CAT	CCC	GCC	CAC	TCG	CAA	GTA	GTT	TCC	ACA	894
211	G	Y	S	R	H	V	A	V	T	V	T	R	F	L	C	225
895	GGG	TAC	AGC	AGA	CAC	GTG	GCG	GTC	ACT	GTC	ACC	CGC	TTC	CTT	TGC	939
226	G	F	L	I	P	V	F	I	I	T	A	C	Y	L	T	240
940	GGC	TTC	CTG	ATC	CCC	GTC	TTC	ATC	ATC	ACG	GCC	TGC	TAC	CTT	ACC	984
241	I	V	F	K	L	Q	R	N	R	L	A	K	N	K	K	255
985	ATC	GTC	TTC	AAG	CTG	CAG	CGC	AAC	CGC	CTG	GCC	AAG	AAC	AAG	AAG	1029
256	P	F	K	I	I	I	T	I	I	I	T	F	F	L	C	270
1030	CCC	TTC	AAG	ATC	ATC	ACC	ATC	ATC	ACC	TTC	TTC	CTC	CTC	TGC		1074
271	W	C	P	Y	H	T	L	Y	L	L	E	L	H	H	T	285
1075	TGG	TGC	CCC	TAC	CAC	ACC	CTC	TAC	CTG	CTG	GAG	CTC	CAC	CAC	ACA	1119
286	A	V	P	S	S	V	F	S	L	G	L	P	L	A	T	300
1120	GCT	GTG	CCA	AGC	TCT	GTC	TTC	AGC	CTG	GGG	CTA	CCC	CTG	GCC	ACG	1164

301	A	V	A	I	A	N	S	C	M	N	P	I	L	Y	V	315
1165	GCC	GTC	GCC	ATC	GCC	AAC	AGC	TGC	ATG	AAC	CCC	ATT	CTG	TAC	GTC	1209
316	F	M	G	H	D	F	R	K	F	K	V	A	L	F	S	330
1210	TTC	ATG	GGC	CAC	GAC	TTC	AGA	AAA	TTC	AAG	GTG	GCC	CTC	TTC	TCC	1254
331	R	L	A	N	A	L	S	E	D	T	G	P	S	S	Y	345
1255	CGC	CTG	GCC	AAC	GCC	CTG	AGT	GAG	GAC	ACA	GGC	CCC	TCC	TCC	TAC	1299
346	P	S	H	R	S	F	T	K	M	S	S	L	N	E	K	360
1300	CCC	AGT	CAC	AGG	AGC	TTC	ACC	AAG	ATG	TCG	TCT	TTG	AAT	GAG	AAG	1344
361	A	S	V	N	E	K	E	T	S	T	L	*			372	
1345	GCT	TCG	GTG	AAT	GAG	AAG	GAG	ACC	AGT	ACC	CTC	TGA			1380	

Figure 4: Nucleotide and deduced amino acid sequence of rat G-protein coupled chemoattractant-1 (AC NM_022218 - SEQ ID Nos: 5 and 6, respectively).

1	M	E	Y	E	G	Y	N	D	S	S	I	Y	G	E	E	15
1	ATG	GAG	TAC	GAG	GGT	TAC	AAC	GAC	TCC	AGC	ATC	TAC	GGT	GAG	GAG	45
16	Y	S	D	G	S	D	Y	I	V	D	L	E	E	A	G	30
46	TAT	TCT	GAC	GGC	TCG	GAC	TAC	ATC	GTG	GAC	TTG	GAG	GAG	GCG	GGT	90
31	P	L	E	A	K	V	A	E	V	F	L	V	V	I	Y	45
91	CCA	CTG	GAG	GCC	AAG	GTG	GCC	GAG	GTC	TTC	CTG	GTG	GTA	ATC	TAC	135
45	S	L	V	C	F	L	G	I	L	G	N	G	L	V	I	60
136	AGC	TTG	GTG	TGC	TTC	CTC	GGG	ATC	CTA	GGC	AAT	GGC	CTG	GTG	ATT	180
61	V	I	A	T	F	K	M	K	K	T	V	N	T	V	W	75
181	GTC	ATC	GCC	ACC	TTC	AAG	ATG	AAG	AAG	ACG	GTG	AAC	ACC	GTG	TGG	225
76	F	V	N	L	A	V	A	D	F	L	F	N	I	F	L	90
226	TTT	GTC	AAC	CTG	GCC	GTG	GCT	GAC	TTC	CTG	TTC	AAC	ATC	TTC	TTG	270
91	P	I	H	¶	T	Y	A	A	M	D	Y	H	W	V	F	105
271	CCC	ATC	CAC	ATC	ACC	TAT	GCC	GCT	ATG	GAC	TAC	CAC	TGG	GTG	TTC	315
106	G	K	A	M	C	K	I	S	S	F	L	L	S	H	N	120
316	GGG	AAA	GCC	ATG	TGC	AAG	ATT	AGT	AGC	TTT	CTG	CTA	AGC	CAC	AAC	360
121	M	Y	T	S	V	F	L	L	T	V	I	S	F	D	R	135
361	ATG	TAC	ACC	AGC	GTC	TTC	CTG	CTC	ACT	GTC	ATC	AGC	TTC	GAC	CGC	405
136	C	I	S	V	L	L	P	V	W	S	Q	N	H	R	S	150
406	TGC	ATC	TCC	GTG	CTC	CTC	CCC	GTC	TGG	TCC	CAG	AAC	CAC	CGC	AGC	450
151	V	R	L	A	Y	M	T	C	V	V	V	W	V	W	L	165
451	GTG	CGT	CTG	GCC	TAC	ATG	ACC	TGC	GTG	GTT	GTC	TGG	GTC	TGG	CTT	495
166	S	S	E	S	P	P	S	L	V	F	G	H	V	S	T	180
496	TCT	TCT	GAG	TCT	CCC	CCG	TCC	CTC	GTC	TTC	GGA	CAC	GTC	AGC	ACC	540
181	S	H	G	K	I	T	C	F	N	N	F	S	L	A	A	195
541	AGC	CAC	GGG	AAG	ATA	ACC	TGC	TTC	AAC	AAC	TTC	AGC	CTG	GCG	GCG	585
196	P	E	P	F	S	H	S	T	H	P	R	T	D	P	V	210
586	CCC	GAG	CCT	TTC	TCT	CAT	TCC	ACC	CAC	CCG	CGA	ACA	GAC	CCG	GTA	630
211	G	Y	S	R	H	V	A	V	T	V	T	R	F	L	C	225
631	GGG	TAC	AGC	AGA	CAT	GTG	GCG	GTC	ACC	GTC	ACC	CGC	TTC	CTC	TGT	675
226	G	F	L	I	P	V	F	I	I	T	A	C	Y	L	T	240
676	GGC	TTC	CTG	ATC	CCC	GTC	TTC	ATC	ATC	ACG	GCC	TGT	TAC	CTC	ACC	720
241	I	V	F	K	L	Q	R	N	R	Q	A	K	T	K	K	255
721	ATC	GTC	TTC	AAG	TTG	CAG	CGC	AAC	CGC	CAG	GCC	AAG	ACC	AAG	AAG	765
256	P	F	K	I	I	I	T	I	I	I	T	F	F	L	C	270
766	CCC	TTC	AAG	ATC	ATC	ATC	ACC	ATC	ATC	ATC	ACC	TTC	TTC	CTC	TGC	810
271	W	C	P	Y	H	T	L	Y	L	L	E	L	H	H	T	285
811	TGG	TGC	CCC	TAC	CAC	ACA	CTC	TAC	CTG	CTG	GAG	CTC	CAC	CAC	ACG	855
286	A	V	P	A	S	V	F	S	L	G	L	P	L	A	T	300

856 GCT GTG CCA GCC TCT GTC TTC AGC CTG GGA CTG CCC CTG GCC ACA 900
301 A V A I A N S C M N P I L Y V 315
901 GCC GTC GCC ATC GCC AAC AGC TGT ATG AAC CCC ATC CTG TAC GTC 945
316 F M G H D F K K F K V A L F S 330
946 TTC ATG GGC CAC GAC TTC AAA AAA TTC AAG GTG GCC CTT TTC TCC 990
331 R L V N A L S E D T G P S S Y 345
991 CGC CTG GTG AAT GCC CTG AGC GAG GAC ACA GGA CCC TCC TCC TAC 1035
346 P S H R S F T K M S S L I E K 360
1036 CCC AGT CAC AGG AGC TTC ACC AAG ATG TCC TCA TTG ATT GAG AAG 1080
361 A S V N E K E T S T L * 372
1081 GCT TCA GTG AAT GAG AAA GAG ACC AGC ACC CTC TGA 1116

Figure 5: Alignment of ChemR23

Alignment of the amino acid sequence of ChemR23 with AT2 receptors, C3a, C5a and fMLP receptor and other chemoattractants related sequences were performed using ClustalX algorithm. Then, the dendrogram was constructed using TreeView algorithm.

Figure 6: Nucleotide and deduced amino acid sequence of human
Tig2 (AC Q99969 - SEQ ID Nos: 7 and 8, respectively)

1	M	R	R	L	L	I	P	L	A	L	W	L	G	A	V	15
97	ATG	CGA	CGG	CTG	CTG	ATC	CCT	CTG	GCC	CTG	TGG	CTG	GGT	GCG	GTG	141
16	G	V	G	V	A	E	L	T	E	A	Q	R	R	G	L	30
142	GCG	GTG	GGC	GTC	GCC	GAG	CTC	ACG	GAA	GCC	CAG	CGC	CGG	GGC	CTG	186
31	Q	V	A	L	E	E	F	H	K	H	P	P	V	Q	W	45
187	CAG	GTG	GCC	CTG	GAG	GAA	TTT	CAC	AAG	CAC	CCG	CCC	GTG	CAG	TGG	231
46	A	F	Q	E	T	S	V	E	S	A	V	D	T	P	F	60
232	GCC	TTC	CAG	GAG	ACC	AGT	GTG	GAG	AGC	GCC	GTG	GAC	ACG	CCC	TTC	276
61	P	A	G	I	F	V	R	L	E	F	K	L	Q	Q	T	75
277	CCA	GCT	GGA	ATA	TTT	GTG	AGG	CTG	GAA	TTT	AAG	CTG	CAG	CAG	ACA	321
76	S	C	R	K	R	D	W	K	K	P	E	C	K	V	R	90
322	AGC	TGC	CGG	AAG	AGG	GAC	TGG	AAG	AAA	CCC	GAG	TGC	AAA	GTC	AGG	366
91	P	N	G	R	K	R	K	C	L	A	C	I	K	L	G	105
367	CCC	AAT	GGG	AGG	AAA	CGG	AAA	TGC	CTG	GCC	TGC	ATC	AAA	CTG	GGC	411
106	S	E	D	K	V	L	G	R	L	V	H	C	P	I	E	120
412	TCT	GAG	GAC	AAA	GTT	CTG	GGC	CGG	TTG	GTC	CAC	TGC	CCC	ATA	GAG	456
121	T	Q	V	L	R	E	A	E	E	H	Q	E	T	Q	C	135
457	ACC	CAA	GTT	CTG	CGG	GAG	GCT	GAG	GAG	CAC	CAG	GAG	ACC	CAG	TGC	501
136	L	R	V	Q	R	A	G	E	D	P	H	S	F	Y	F	150
502	CTC	AGG	GTG	CAG	CGG	GCT	GGT	GAG	GAC	CCC	CAC	AGC	TTC	TAC	TTC	546
151	P	G	Q	F	A	F	S	K	A	L	P	R	S	*	164	
547	CCT	GGA	CAG	TTC	GCC	TTC	TCC	AAG	GCC	CTG	CCC	CGC	AGC	TAA		588

Figure 7: Nucleotide and deduced amino acid sequence of mouse Tig2
(SEQ ID Nos: 9 and 10, respectively)

1	M	K	C	L	L	I	S	L	A	L	W	L	G	T	V	15
102	ATG	AAG	TGC	TTG	CTG	ATC	TCC	CTA	GCC	CTA	TGG	CTG	GGC	ACA	GTG	146
16	G	T	R	G	T	E	P	E	L	S	E	T	Q	R	R	30
147	GGC	ACA	CGT	GGG	ACA	GAG	CCC	GAA	CTC	AGC	GAG	ACC	CAG	CGC	AGG	191
31	S	L	Q	V	A	L	E	E	F	H	K	H	P	P	V	45
192	AGC	CTA	CAG	GTG	GCT	CTG	GAG	GAG	TTC	CAC	AAA	CAC	CCA	CCT	GTG	236
46	Q	L	A	F	Q	E	I	G	V	D	R	A	E	E	V	60
237	CAG	TTG	GCC	TTC	CAA	GAG	ATC	GGT	GTG	GAC	AGA	GCT	GAA	GAA	GTG	281
61	L	F	S	A	G	T	F	V	R	L	E	F	K	L	Q	75
282	CTC	TTC	TCA	GCT	GGC	ACC	TTT	GTG	AGG	TTG	GAA	TTT	AAG	CTC	CAG	326
76	Q	T	N	: C	P	K	K	D	W	K	K	P	E	C	T	90
327	CAG	ACC	AAC	TGC	CCC	AAG	AAG	GAC	TGG	AAA	AAG	CCG	GAG	TGC	ACA	371
91	I	K	P	N	G	R	R	R	K	C	L	A	C	I	K	105
372	ATC	AAA	CCA	AAC	GGG	AGA	AGG	CGG	AAA	TGC	CTG	GCC	TGC	ATT	AAA	416
106	M	D	P	K	C	K	I	L	G	R	I	V	H	C	P	120
417	ATG	GAC	CCC	AAG	GGT	AAA	ATT	CTA	GGC	CGG	ATA	GTC	CAC	TGC	CCA	461
121	I	L	K	Q	G	P	Q	D	P	Q	E	L	Q	C	I	135
452	ATT	CTG	AAG	CAA	GGG	CCT	CAG	GAT	CCT	CAG	GAG	TTG	CAA	TGC	ATT	506
136	K	I	A	Q	A	G	E	D	P	H	G	Y	F	L	P	150
507	AAG	ATA	GCA	CAG	GCT	GGC	GAA	GAC	CCC	CAC	GGC	TAC	TTC	CTA	CCT	551
151	G	Q	F	A	F	S	R	A	L	R	T	K	*		163	
552	GGA	CAG	TTT	GCC	TTC	TCC	AGG	GCC	CTG	AGA	ACC	AAA	TAA			590

Figure 8: Amino acid sequence alignment of human and mouse TIG2.
Identical and similar residues are shaded.

* 20 * 40 *
HUMAN : MPRLLIPLALULGAVGVG--VAELTEAQRRGLQVALEEFHKHPPVQMAFQETSVE : 53
MOUSE : MKCLLISLALULGTVGTRGTEPELSETQRRLSLOVALEEFHKHPPVQLAFQEIGVD : 55

60 * 80 * 100 *
HUMAN : SAVDTPFPAGIFVRLEFKLQQTSCKRKDWKKPECKVRPNGRKRKCLACIKLGSED : 108
MOUSE : RAEEVLFSAGTFVRLEFKLQQTNCPKKDWKKPECTIKPNGRRRKCLACIKMDPKG : 110

120 * 140 * 160 *
HUMAN : KVLGRLVHCPPIETQVLREAEHHQETQCLRVQRAGEDPHSFYFPQGFAFSKALPRS : 163
MOUSE : KILGRIVHCPILKQ---GPQDPQELQCIKIAQAGEDPHGYFLPGQFAFSRALRTK : 162

151 168

mus HGYFLPGQFA FSRALRTK

rat RIYFFPGQFA FSRAL~~~

tig2 HSFYFPGQFA FSKALPRS

sus HSYYFPGQFA FFKALPPS

bos HSYYLPGQFA FIKAL~~~

gallus DVLYLPGMFA FSKGLP~~

Identities :

	bos.pep	mus.pep	sus.pep	gallus	rat.pep
--	---------	---------	---------	--------	---------

tig2.pep	83.750	56.250	86.503	30.675	61.392
----------	--------	--------	--------	--------	--------

bos.pep		54.375	87.500	31.875	56.329
---------	--	--------	--------	--------	--------

mus.pep			54.375	31.677	73.125
---------	--	--	--------	--------	--------

sus.pep				31.288	58.228
---------	--	--	--	--------	--------

gallus.pep					30.818
------------	--	--	--	--	--------

Figure 11: Primary screening of HPLC fractions obtained from the fractionation of human ovary ascites.

The different fractions obtained following fractionation of human ovary ascites were diluted fivefold in the buffer assay and tested in aequorin assay using a cell line expressing ChemR23 (open circles) or cell lines expressing not related receptors (closed triangles and squares). The response obtained for each fraction was normalized using the ATP response of each cell line.

Figure 12: Activation of ChemR23 by cells transfected with TIG2

293 T cells were transiently transfected with pCDNA3-TIG2 or with pCDNA3 alone (mock transfected). Increasing volumes of the supernatant collected 4 days following transfection were analysed in a aequorin-based assay with CHO cells expressing ChemR23. A representative experiment is shown. Assay was performed in triplicate and SD are indicated.

Figure 13: Characterization of antibodies directed against ChemR23

A mixture of recombinant cells made up of 2/3 recombinant ChemR23 CHO cells and 1/3 recombinant HCR CHO cells (negative control) was subject to react with either a supernatant of the anti ChemR23 5C 1H2 monoclonal antibody (thick line) or a supernatant with no known antibody activity (thin line, grey filling). After staining with FITC labeled anti mouse Ig these preparations were analysed by flow cytfluorometry. Results are displayed as a histogram of the number of cells (Events axis) expressing a given fluorescence (FL1-H axis). Monoclonal 5C 1H2 allowed to discriminate the ChemR23 recombinant sub-population of cells from the negative control cells as evidenced by the relative proportions of both type of cells. The background fluorescence of the assay is given by the second staining (grey filling).

