Lab2: Deep Residual Learning

Lab Objective:

In this lab, you will be asked to build the state of the art convolutional neural network architecture: Residual Network (ResNet) [1] and train it on the cifar-10 dataset. Moreover, you need to use data augmentation and learning rate schedule during training.

Important Date:

- 1. Experiment Report Submission Deadline: 8/28 (Wed) 12:00(中午)
- 2. Demo date: 8/28 (Wed)

Turn in:

- 1. Experiment Report (.pdf)
- 2. Source code

Notice: zip all files in one file and name it like 「DLP_LAB2_your studentID_name.zip」, ex: 「DLP_LAB2_0656608_莊祐銓.zip」

Requirements:

- 1. Implement ResNet 18/50 architecture and train on cifar-10 dataset [1]
- 2. Training ResNet with data augmentation and learning rate scheduling
- 3. Compare to **vanilla CNNs** (without skip connection) with same architecture 18/50 and plotting the **comparison figure** (loss curve)

Demo:

- 1. Show your **code** and explain briefly
- 2. Show your **testing results** (accuracy)
- 3. Show your **comparison figure**
- 4. (optimal) Show your **confusion matrix**, if you have completed bonus part
- 5. We will ask some simple questions

Implementation Details:

1. Prepare data

• Cifar-10 dataset

The cifar-10 dataset consists of 60000 32×32 color images (RGB) in 10 classes, shown as below figure. There are 50000 images for training and 10000 images for testing.

Load data

You can use "torchvision" package to read CIFAR-10 data. The "torchvision" package consists of popular datasets, model architectures, and common image transformations for computer vision. The more details can be found in the official documents.

URL: https://pytorch.org/docs/stable/torchvision/datasets.html#cifar

Data preprocessing

A. Color normalization

Normalize each color channel (compute from entire CIFAR10 training set)

Mean
$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{pmatrix} 0.4914 \\ 0.4824 \\ 0.4467 \end{pmatrix}$$
 Standard deviation $\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{pmatrix} 0.2471 \\ 0.2435 \\ 0.2616 \end{pmatrix}$

B. Data augmentation

Translation: pad 4 zeros in each side and random cropping back to 32x32 size

Horizontal flipping: with probability 0.5

Original

Horizontal flipping

2. Deep residual network

ResNet (Residual Network) is the Winner of ILSVRC 2015 in image classification, detection, and localization, as well as Winner of MS COCO 2015 detection.

• Degradation problem

The network depth increasing, accuracy gets saturated (which might be unsurprising) and then degrades rapidly. Not overfitting, it's the vanishing/exploding gradients problem.

• Skip/Short connection

To solve the problem of vanishing/exploding gradients, a skip / shortcut connection is added to add the input x to the output after few weight layers as below.

• Learning better networks as easy as stacking more layer

• Building residual block

• Network architecture

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
		3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $
	1×1	average pool, 1000-d fc, softmax				
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10 ⁹

• Sample code

URL: https://github.com/kuangliu/pytorch-cifar

3. Hyper-parameters

• Optimizer: **SGD** with mometum

• Mini batch size: 128

• Total epochs: **164**, momentum **0.9**

• Initial learning rate: **0.1**, divide by 10 at **81, 122** epoch

• Weight decay = **0.0001**

• Weight initialization: torch.nn.init.kaiming_normal

• Loss function: cross entropy

4. Comparison figure

• Compare to vanilla CNN-18

• Compare to vanilla CNN-50

5. Methodology

- ResNet 18 got 92.37% accuracy, Time: 0.58 hr
- ResNet 50 got 93.53% accuracy, Time: 1.48 hr
- On single Titan X (Maxwell)

Report Spec

1. Introduction (20%)

(簡單說明這次 LAB 的目標以及 ResNet 如何避免 Degradation problem)

- 2. Experiment setup (20%)
 - A. The detail of your model (簡述 code 以及 model 實作細節)
 - B. Report all your training hyper parameters
- 3. Result (40%)
 - A. The comparison between ResNet and vanilla CNNs
 - B. Final Test error (screen shot)
- 4. Discussion (20%)

(任何你想討論的都可寫在這,包含抱怨也可以 XD)

Criterion of result

Accuracy > 91% = 100% Accuracy : 91% ~ 90% = 90% Accuracy : 90% ~ 87% = 80% Accuracy : 87% ~ 10% = 70% Accuracy : 10% = 0%

評分標準:40%*實驗結果+60%*(報告+DEMO)

Bonus (+5) - Confusion matrix

A confusion matrix is a table that is often used to describe the performance of a classification model on a set of test data for which the true values are known. It is extremely useful for measuring Recall, Precision, Specificity, Accuracy and most importantly AUC-ROC curve.

■ Sample code:

You can use the following example and library to conduct this section. https://scikit-

<u>learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py</u>

Reference:

[1] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.