EXISTENCE OF RECURSIVE CONSTRAINED OPTIMA IN THE HETEROGENEOUS AGENT NEOCLASSICAL GROWTH MODEL

Akshay Shanker †

Crawford School of Public Policy, Australian National University

4 August, 2017

Recently, macroeconomists have begun to study optimal policy dynamics in heterogeneous agent models with incomplete markets, or Aiyagari-Huggett models. A natural way to formulate an optimal policy problem in the model is by using a constrained planner. Introduced by Dávila et al. (2012), a constrained planner cannot complete markets but must improve welfare subject to agents' budget constraints. Despite the importance of the constrained planner to understanding optimal macroeconomic policy, existence of constrained optima has not been verified. This paper proves existence of recursive constrained optima in the standard Aiyagari-Huggett framework. A key technical challenge the proof overcomes is non-compactness of feasibility correspondences in the constrained planner's dynamic optimisation problem, brought on by the infinite dimensional structure of the Aiyagari-Hugett model. Because of non-compactness, standard dynamic programming theory fails. This paper addresses the challenge by first showing existence of sequential constrained optima implies existence of recursive constrained optima. The paper then introduces a new existence result for non-compact dynamic optimisation problems and uses the result to verify existence of sequential constrained optima.

KEYWORDS: Neoclassical Growth Models, Incomplete Markets, Heterogeneous Agent, Constrained Planner, Dynamic Optimisation, Existence Result, Recursive Policies, Infinite Dimensional State-Space.

[†]Email: akshay.shanker@anu.edu.au. I thank Dan Cao, Wouter den Haan, Chao He, Warwick McKibbin, Ben Moll, John Stachurski, David Stern and Martin Wolf for discussions and suggestions that have been incorporated into this paper. I also thank seminar participants at the London School of Economics Centre for Macroeconomics and ANU Research School of Economics for useful discussions.

Please download the latest version of the working paper and the online appendix from https://github.com/akshayshanker/Existence_of_Social_Optimia_Aiyagari

1. INTRODUCTION

The neoclassical growth model with idiosyncratic shocks, incomplete insurance markets and production, also known as the Aiyagari-Huggett (Aiyagari, 1994; Huggett, 1993) model, has developed into a leading model of dynamic macroeconomics. Recently, attention has turned to *optimal* policy in the model using the notion of a constrained planner. Like any realistic government, the constrained planner cannot complete insurance markets, but must improve welfare subject to agents' idiosyncratic budget constraints. First introduced in discrete time by Dávila et al. (2012) and continuous time by Nuño and Moll (2017), the constrained planner concept has led to a growing literature on optimal monetary and fiscal policy in incomplete market models (Acikgoz, 2013; Bhandari et al., 2017; Chen et al., 2017; Nuno and Thomas, 2017; Park, 2014).

Despite the relevance of the constrained planner for optimal policy analysis, existence of constrained optimal policies has not been verified. This paper provides a proof for the existence of discrete time recursive constrained optimal policies as originally considered by Dávila et al. (2012).² The paper also presents an easy to verify general result that can be applied to planner problems in other heterogeneous agent models.

From an applied perspective, the existence result will help confirm the surprising policy conclusions emerging from computations of constrained optima are sound. In simulations with high income inequality and a wealth distribution resembling actual U.S. data, Dávila et al. (2012) show a competitive equilibrium in the Aiyagari-Huggett model under-saves compared to the constrained optimum, which features a capital stock *over three times higher than the competitive equilibrium*; Dávila et al. (2012) show the constrained efficient outcome can be achieved saving through subsidies. This is in contrast to the long held belief of sub-optimal oversaving in incomplete market models, which justifies capital taxation (see Aiyagari (1995) and discussion by Acikgoz (2013) and Chen et al. (2017)). Moreover, in another calibration resembling the one proposed originally by Aiyagari (1994), the constrained planner's path does not converge to a steady-state, but displays ever increasing wealth inequality. Verifying existence helps confirm such computed so-

¹ Macroeconomists use the model to study consumption dynamics (Berger and Vavra, 2015; Kaplan and Violante, 2010), shapes of wealth distributions (Benhabib et al., 2015), asset pricing (Krusell et al., 2011) and monetary and fiscal policy dynamics (Kaplan et al., 2016; Heathcote, 2005; Mckay and Reis, 2016), to name a few topics.

²In this basic setting, the government does not consume and there are no net transfers between agents or nominal rigidities.

lutions are not pathological and creates a foundation for further research on optimal policy dynamics in the Aiyagari-Huggett model.

Mathematical Challenges

Because the constrained planner controls the assets of infinitely many agents through time, both the planner's state, a distribution of agents over assets, and action, a policy function, are infinite dimensional. The literature has made significant progress by establishing infinite dimensional necessary conditions (Dávila et al. (2012) in discrete time and Nuño and Moll (2017) and Nuño (2017) in continuous time). However, continuity and compactness, assumptions used by standard dynamic optimisation theory to show existence of solutions, are more difficult to verify when spaces are infinite dimensional (see Mas-colell and Zame (1991) for an overview of issues in infinite dimensional topology). In the case of the constrained planner, the feasibility correspondence fails to have compact image sets, that is, the image of a compact set under the correspondence will not be compact. The standard assumptions of existing dynamic optimisation theory (Stokey and Lucas (1989), Acemoglu (2009) ch.6 or Stachurski (2009)) are thus not satisfied.

The constrained planner's feasibility correspondences fail to have compact image sets for two reasons. First, as suggested by Dávila et al. (2012), individual agents' asset spaces will not be bounded. We are also unable to justify restrictions such as equicontinuity or monotonicity on the space of policy functions. As such, the image sets of the feasibility correspondences will not be compact in the sup-norm topology or topology of point-wise convergence. At the same time, the recursive problem, the form of the problem considered by Dávila et al. (2012), will not be defined on topological spaces where the feasibility correspondence is compact-valued.

Second, the feasibility correspondences have non-compact image sets because of a discontinuity. The discontinuity arises due to the Inada conditions — as capital converges to zero, interest rates diverge and the variance of feasible asset distributions can diverge to infinity as the mean converges to zero.

To resolve the first challenge, the paper transforms the recursive problem to a sequential problem and uses a novel projection argument to show sequential solutions imply recursive solutions. The sequential planner's problem will be well-defined on the space of square integrable random variables. And with the weak topology, the sequential planner's feasibility correspondences will be compact valued.

While feasibility correspondences for the sequential planner have compact values, due to the discontinuity around zero capital, image sets will still be non-compact. To resolve this second challenge, the paper builds on and generalises new work on the theory of non-compact optimisation (Feinberg et al., 2012, 2013) and introduces an existence result for infinite horizon dynamic optimisation with non-compact feasible correspondences. The main assumption of the result can be verified by checking the variance of feasible sequences of asset distributions leading to a strictly positive per-period pay-off at a time in the future is bounded.

Related Literature

Pathologies similar to the second problem discussed above are encountered in existence proofs of general equilibrium in the Aiyagari model with aggregate shocks (Krusell-Smith models), as discussed in detail by Cao (2016). The solution proposed by Cao (2016) involves solving a sequence of finite horizon problems and showing aggregate capital has a strictly positive lower bound using agents' Euler equations. Instead of verifying a lower-bound for capital,³ the approach of this paper is to state a general theorem for the infinite horizon dynamic optimization problem on non-compact spaces.

The Aiyagari-Huggett constrained planner problem is not the only dynamic optimisation problem with infinite dimensional state-spaces. A large literature (Boucekkine et al., 2009; Brock et al., 2014; Fabbri et al., 2015) has shown existence and characterised optimal solutions in models of economic geography in continuous time. Lucas and Moll (2014) also solve an infinite dimensional planner's problem to control individual search efforts subject to the law of motion of a density. However, to the best of my knowledge, these models do not encounter the non-compactness of the Aiyagari-Huggett model.

Other macroeconomic models have infinite dimensional states, but with simplifying assumptions, the dynamics of the distribution may only depend on finite dimensional variable. For example, in the industry dynamics model by Hopenhayn (1992), the planner can control total demand (see p. 1134), in the growth model with financial frictions by Itskhoki and Moll (2014), the planner can control aggregate consumption and in the incomplete markets model with endogenous growth by Brunnermeier and Sannikov (2016), the constrained planner can control

³As we are concerned with existence of optima as opposed to equilibria, we cannot use the Euler conditions, which in the case of the constrained planner have only been shown to be necessary, to restrict the search for an optimiser since optima may not exist.

a common investment rate across heterogeneous households. Other examples also include Koren and Tenreyro (2013), Buera and Moll (2015) and Melitz (2003).

However, the methodology of this paper is directly relevant for future study of constrained planner problems in extensions and applications of the Aiyagari-Huggett model: this includes Aiyagari-Huggett models incorporating aggregate shocks (Den Haan, 1996; Krusell and Smith, 1998), permanent income shocks Kuhn (2013), endogenous labour supply (Marcet et al., 2007), overlapping generations (Heathcote et al., 2010) or monetary and fiscal policy (Kaplan et al., 2016; Heathcote, 2005; Mckay and Reis, 2016; Nuno and Thomas, 2017).

2. CONSTRAINED PLANNER PROBLEMS

This section presents the recursive and sequential constrained planner's problems in a standard Aiyagari (1994) model. Both Dávila et al. (2012) and Nuño and Moll (2017) formulate their problem as a recursive problem; the exposition here will follow the discrete time version in Dávila et al. (2012), only I place more formal mathematical structure on the model.

In the recursive problem, the constrained planner instructs agents on their next period assets based on their current assets, shock and the aggregate distribution of agents. The recursive problem will be a stationary primitive form infinite horizon dynamic optimisation problem, where the planner selects an action (policy function) to drive a state (wealth distribution). (The distinction between primitive form and reduced form problem is discussed by Sorger (2015), section 5.1.)

In the sequential problem, the constrained planner instructs agents each period on next period assets based on their history of shocks up to the period. The sequential problem will be a non-stationary reduced form infinite horizon dynamic optimisation problem, where the planner selects a sequence of states (random variables).⁴

The online appendix contains an overview of mathematical concepts used in this paper.

⁴In the context of a constrained planner, the terminology 'sequential' and 'recursive' problems is overloaded. The distinction here follows the distinction between 'sequential competitive equilibria' and 'recursive competitive equilibria' made by Miao (2006) and Cao (2016). In contrast to the distinction made here, the term sequential problem is often used to refer to the problem maximising the infinite sum of pay-offs as opposed to the Bellman Operator representation of the same problem. For infinite dimensional and stochastic problems, both sequential and recursive formulations can be written as a deterministic sequence problem (maximising the sum of discounted pay-offs) and using a deterministic Bellman Equation. For example, (11) compared below to (F.23) in the online appendix. This paper uses the term *sequence problem* to refer to a problem such as (11).

2.1. The Aiyagari-Hugett Model

Time is discrete and indexed by $t \in \mathbb{N}$. Let (I, \mathcal{I}, ζ) be an atom-less probability space indexing agents. Let A, with $A := [0, \infty)$, be the agents' asset space⁵ and define E as the agents' labour endowment space. Assume E is a closed subset of \mathbb{R}_+ . Let S, where $S := A \times E$, denote the agents' state space.

We do not need further assumptions, such as boundedness, on E for the proofs in this paper. However, computations by Dávila et al. (2012)) and Nuño and Moll (2017) show a solution with diverging variance, implying a sequence of asset distributions with an increasing upper-bound (see fig.3 and discussion at section 5.4 by Dávila et al. (2012)). As such, E will be unbounded above, even if E is bounded.

At time zero, each agent i, with $i \in I$, draws an initial asset level x_0^i , with x_0^i taking values in A. In subsequent periods, each agent receives a sequence of labour endowment shocks $(e_t^i)_{t=0}^{\infty}$, with e_t^i taking values in E for each t and i. Let P denote the probability law or joint distribution of the sequence of shocks, common across i. Assume all shocks are defined on a common probability space $(\bar{\Omega}, \Sigma, \bar{\mathbb{P}})$, that is, x_0^i and $(e_t^i)_{t=0}^{\infty}$ for each i are random variables defined on $(\bar{\Omega}, \Sigma, \bar{\mathbb{P}})$.

ASSUMPTION 2.1 The shocks satisfy the following conditions:

- 1. for each i, the shocks $(e_t^i)_{t=0}^{\infty}$ are a stationary Markov process with common Markov kernel Q and stationary marginal distribution ψ
- 2. for each t and i, e_t^i and x_0^i has finite variance
- 3. for each i, x_0^i is independent of $(e_t^i)_{t=0}^{\infty}$.

Part 1 of Assumption 2.1 can be relaxed to boundedness of the mean of the endowment shock, however, the stationarity assumption simplifies notation. The finite variance assumption allows us to work in the L^2 space of square integrable random variables where compact sets are easier to find.

Let $Z \colon = A \times E^{\mathbb{N}}$ and let $\mathscr{B}(Z)$ be the Borel sets of Z. For each i, let $z^i \colon \bar{\Omega} \to Z$ denote the map $\omega \mapsto \{x_0^i(\omega), e_0^i(\omega), e_1^i(\omega), \dots\}$, where $\omega \in \Omega$. The following assumption formalises no aggregate uncertainty:

⁵As in the computations by Dávila et al. (2012), I assume a zero lower bound on assets to simplify the notation. In general, the Aiyagari model allows a strictly negative lower bound, however a zero lower bound is a common assumption, see also Miao (2006) and Cao (2016). The results here can be extended to a model with a negative lower bound, however an additional constraint on the state-space to ensure interest rates are not so high as to violate budget constraints will need to be added.

⁶Popoviciu's inequality for variance states the variance of any bounded random variable is bounded.

ASSUMPTION 2.2 For any $B \in \mathcal{B}(Z)$,

$$\zeta\{i \in I \mid z^i(\omega) \in B\} = P(B),$$
 $\bar{\mathbb{P}}$ - a.e.

The assumption says the empirical distribution of $i\mapsto z^i(\omega)$ for a draw of ω from $\bar{\Omega}$ agrees with the common theoretical distribution of z^i with probability one. There is no loss of generality in assuming no aggregate uncertainty; following Sun and Zhang (2009), for any distribution P, there will exist suitable probability spaces and a measurable random variable z such that z^i has distribution P for each i and Assumption 2.2 holds.⁷

Aggregate State

Let μ_0 denote the common joint distribution of x_0^i and e_0^i . The distribution μ_0 becomes the initial state for the recursive constrained planner problem. The recursive problem we consider is one where the planner selects a measurable policy function h_t for each t, with $h_t \colon S \to A$. Each h_t instructs agents on t+1 assets given their time t asset and shock. A sequence of policy functions $(h_t)_{t=0}^{\infty}$ chosen by the constrained planner generates a sequence of assets for each agent, $(x_t^i)_{t=0}^{\infty}$, by

(1)
$$x_{t+1}^i = h_t(x_t^i, e_t^i), \qquad t \in \mathbb{N}, i \in [0, 1]$$

Since h_t applies to all agents i, the distribution of $\{x_t^i, e_t^i\}$ will be identical across i. Moreover, $\{x_t^i, e_t^i\} \sim \mu_t$ for each i, where $(\mu_t)_{t=0}^{\infty}$ satisfies the recursion

(2)
$$\mu_{t+1}(B_A \times B_E) = \int \int \mathbb{1}_{B_A} \{h_t(x,e)\} Q(e,B_E) \mu_t(dx,de), \qquad t \in \mathbb{N}$$

for each t and $B_A \times B_E \in \mathcal{B}(S)$. See Claim D.1 in the online appendix for the proof.

Under no aggregate uncertainty, at any time t, aggregate variables depend only on the common theoretical distribution of the shocks rather than individual realisations, with probability one. The next claim is straightforward to prove (see the online appendix) and confirms the intuition.

 $^{^{7}}$ In particular, note Z is a complete and separable metric space (theorems 3.37 and 3.38 by Aliprantis and Border (2006)), then apply Corollary 2 and Lemma 1 by Sun and Zhang (2009). See also discussion below Definition 2.1.5 by Sun (2006) on applying the no aggregate uncertainty results to stochastic processes.

CLAIM 2.1 Let $(\mu_t)_{t=0}^{\infty}$ and $(x_t^i)_{t=0}^{\infty}$ satisfy (2) for a sequence of policy functions $(h_t)_{t=0}^{\infty}$. If Assumption 2.2 holds, then for each t and measurable policy function g,

(3)
$$\int g(x_t^i, e_t^i) \, \xi(di) = \int \int g(x, e) \mu_t(dx, de)$$

holds $\bar{\mathbb{P}}$ -almost everywhere.

Production

Assume a representative firm rents capital (assets) from individuals and hires workers to produce output Y_t :

$$(4) Y_t = F(K(\mu_t), L) - \delta K(\mu_t)$$

where $F: \mathbb{R}^2_+ \to \mathbb{R}_+$. When the state is μ_t , using again the LLN argument from Claim 2.1, total capital and labour in the economy is

(5)
$$K(\mu_t)$$
: $= \int \int x \mu_t(dx, de) = \int x_t^i \zeta(di)$

(6)
$$L = \int e \int \mu_t(dx, de) = \int e_t^i \zeta(di)$$

Labour, *L*, will be constant according to Assumption 2.1.

Assumption 2.3 The production function F is twice differentiable on \mathbb{R}_{++} , homogeneous of degree one, strictly increasing in both arguments, strictly concave and for any $\hat{L}>0$ and $\hat{K}>0$ satisfies

- 1. $\lim_{K\to\infty} F_1(K,\hat{L}) = 0$ and $\lim_{K\to0} F_1(K,\hat{L}) = \infty$ (Inada conditions)
- 2. $F(0,\hat{L}) = F(\hat{K},0) = 0$
- 3. $K \mapsto F(K, \hat{L})$ is bijective.

Budget Constraints and Utility

Interest and wage rates in the economy will be

$$r(\mu_t)$$
: = $F_1(K(\mu_t), L) - \delta$, $w(\mu_t)$: = $F_2(K(\mu_t), L)$

Given the aggregate state μ_t , an agent i with asset x_t^i and endowment shock e_t^i must satisfy their budget constraint

(7)
$$0 \le x_{t+1}^i \le (1 + r(\mu_t))x_t^i + w(\mu_t)e_t^i$$

where x_{t+1}^i is the next period asset. If x_0^i has finite variance and $r(\mu_t)$ is real-valued for each t, then if $(x_t^i)_{t=0}^\infty$ satisfies (7), x_t^i will have finite variance for each t (see Claim D.2 in the online appendix). Consumption for each agent i will be

$$c_t^i = (1 + r(\mu_t))x_t^i + w(\mu_t)e_t^i - x_{t+1}^i$$

Integrating across agents' budget constraints at Equation (7) and using the definition of interest and wages rates, along with homogeneity of the production function (see Theorem 2.1 in Acemoglu (2009)) gives a law of motion for aggregate capital

(8)
$$K(\mu_{t+1}) \le (1 + r(\mu_t))K(\mu_t) + w(\mu_t)L = F(K(\mu_t), L) + (1 - \delta)K(\mu_t)$$

From the law of motion and Assumption 2.3, there exists an upper-bound \bar{K} such that given any initial aggregate level of capital below \bar{K} , aggregate capital for wealth distributions satisfying (7) will never exceed \bar{K} . That is, if $K(\mu_t) \leq \bar{K}$, then $K(\mu_{t+1}) \leq \bar{K}$ (see Proposition 2.2 and section 6.8 by Acemoglu (2009)).

ASSUMPTION 2.4 The initial wealth distribution μ_0 satisfies $K(\mu_0) \leq \bar{K}$.

Turning to consumer utility, let $\nu \colon \mathbb{R}_+ \to \mathbb{R}_+$ be each consumer's utility function. Time t utility for agent i will be $v(c_t^i)$.

Assumption 2.5 The utility function ν is strictly increasing, bijective, concave and upper semicontinuous.

For a definition of a competitive equilibrium, see Aiyagari (1994), Dávila et al. (2012), Kuhn (2013), Miao (2002) or Acikgoz (2015).

2.2. Recursive Constrained Planner

Let $\mathscr{P}(S)$ denote the space of Borel probability measures on S. The recursive planner's state-space, \mathbb{M} , will be a subspace of $\mathscr{P}(S)$ such that each μ , with $\mu \in \mathbb{M}$, satisfies:

- 1. the marginal distribution across E, $\int \mu(dx, \cdot)$, agrees with ψ
- 2. the marginal distribution across A, $\int \mu(\cdot, de)$, has finite variance
- 3. aggregate assets satisfy $\int \int x \mu(dx, de) \in [0, \bar{K}]$.

Let \mathbb{Y} denote the space of measurable functions h where $h: S \to A$. The space \mathbb{Y} will be the *action-space* and the constrained planner picks a policy $h_t \in \mathbb{Y}$ for each t and agents' assets transition according to Equation (1).

Define a correspondence Λ , with $\Lambda \colon \mathbb{M} \to \mathbb{Y}$, mapping a state to feasible policy functions as follows:

(9)
$$\Lambda(\mu) := \begin{cases} h \in \mathbb{Y} \ | 0 \le h(x, e) \le (1 + r(\mu))x + w(\mu)e, & \text{if } K(\mu) > 0 \\ h \in \mathbb{Y} \ | h = 0, & \text{if } K(\mu) = 0 \end{cases}$$

The (in) equalities above hold μ - almost everywhere. We are unable to place restrictions on \mathbb{Y} such that the correspondence Λ has compact image sets in a suitable topology, for details see section 5.

Following Equation (2), given a time t empirical distribution of agents on S, μ , and policy function h, the operator $\Phi \colon Gr \Lambda \to \mathbb{M}$ defined by

(10)
$$\Phi(\mu,h)(B_A \times B_E) := \int \int \mathbb{1}_{B_A} \{h(x,e)\} Q(e,B_E) \mu(dx,de)$$

where $B_A \times B_E \in \mathcal{B}(S)$, gives the time t+1 empirical distribution of agents. We write $\mu_{t+1} = \Phi(\mu_t, h_t)$.

The constrained planner's per-period pay-off, $u \colon Gr \Lambda \to \mathbb{R}_+$, integrates utility across the empirical distribution of agents

$$u(\mu,h) := \begin{cases} \int \int \nu((1+r(\mu))x + w(\mu)e - h(x,e))\mu(dx,de), & \text{if } K(\mu) > 0 \\ 0, & \text{if } K(\mu) = 0 \end{cases}$$

It is a straight-forward use of Jensen's inequality (fact C.4 in the online appendix) and homogeneity of the production function to show the integral is well-defined and real-valued.

Finally, let $\beta \in (0,1)$ be a discount factor and let V, with $V: \mathbb{M} \to \mathbb{R}_+ \cup \{+\infty\}$, denote the constrained planner's value function:

(11)
$$V(\mu_0)$$
: $= \sup_{(\mu_t, h_t)_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(\mu_t, h_t)$

subject to

(12)
$$h_t \in \Lambda(\mu_t)$$
, $\mu_{t+1} = \Phi(\mu_t, h_t)$, $t \in \mathbb{N}$, μ_0 given

DEFINITION 2.1 (Recursive Constrained Planner's Problem)

Given μ_0 , a solution to the recursive constrained planner's problem is a sequence of measurable policy functions $(h_t)_{t=0}^{\infty}$, with $h_t \colon S \to A$ for each t and a sequence of Borel probability measures on S, $(\mu_t)_{t=0}^{\infty}$ satisfying (12) that achieves the value function:

(13)
$$V(\mu_0) = \sum_{t=0}^{\infty} \beta^t u(\mu_t, h_t)$$

I now state the main result of this paper:

THEOREM 2.1 If the recursive constrained planner's problem (Definition 2.1) satisfies assumptions 2.1 - 2.5, then for any $\mu_0 \in \mathbb{M}$, there exists a solution $(\mu_t, h_t)_{t=0}^{\infty}$.

The proof is in section 4. Since Λ does not have compact image sets, standard existence results in dynamic optimisation theory fail (section 5). To prove Theorem 2.1, the paper first defines a sequential planner's problem (section 2.3) and shows existence of a solution for the sequential planner implies existence of a solution for the recursive planner (Theorem 2.2 in section 2.4). The sequential planner's feasibility correspondences will still not have compact image sets around regions where capital is zero. Thus, the paper presents a general existence result for non-compact infinite horizon dynamic optimisation (Theorem 3.1 in section 3), and then checks the sequential planner's problem satisfies the conditions for existence (section 4).

Recursive Policies

If the recursive constrained planner's problem has a solution, $(\mu_t, h_t)_{t=0}^{\infty}$, for each $\mu_0 \in \mathbb{M}$, then following standard arguments, there exists a policy operator $H: \mathbb{M} \to \mathbb{Y}$ such that the sequence $(\mu_t, H(\mu_t))_{t=0}^{\infty}$ with $\mu_{t+1} = \Phi(\mu_t, H(\mu_t))$ solves the recursive problem (Corollary E.1 in the online appendix). Thus, if a solution to the recursive constrained planner's problem exists, then the *policy function* that maps assets and shocks to next period assets depends only on the current distribution.

2.3. Sequential Constrained Planner

Construct a countably generated⁸ probability space $(\Omega, \mathscr{F}, \mathbb{P})$ and a sequence of random variables $\{x_0, e_0, e_1, \dots\}$ on $(\Omega, \mathscr{F}, \mathbb{P})$ such that $(e_t)_{t=0}^{\infty}$ is a Markov process

⁸The *σ*-algebra \mathcal{F} is generated by a countable collection of subsets of Ω .

with Kernel Q that can be written as a stochastic recursive sequence (see section C.4 of the online appendix) and $\{x_0, e_0\} \sim \mu_0$. Intuitively, we may view realisations of $\{x_0, e_0, e_1 \dots\}$ as draws from the empirical distribution of individual shock values. Define $(\mathscr{F}_i)_{i=0}^{\infty}$ as the natural filtration with respect to $\{x_0, e_0, e_1, \dots\}$.

Let X: = $L^2(\Omega, \mathbb{P})$ be the space of square integrable (with respect to \mathbb{P}) real-valued functions on Ω . Equip X with the weak topology. For any $x \in X$, with $\int x \, d\mathbb{P} \ge 0$, define

(14)
$$\tilde{K}(x)$$
: $=\int x \, d\mathbb{P}$

and if $\int x d\mathbb{P} > 0$, define

(15)
$$\tilde{r}(x) := F_1(\tilde{K}(x), L) - \delta$$
$$\tilde{w}(x) := F_2(\tilde{K}(x), L)$$

For each *t*, define the time *t* state-space for the sequential planner:

(16)
$$S_t$$
: = $\left\{ x \in m\mathscr{F}_t \middle| 0 \le x, \int x \, d\mathbb{P} \le \bar{K} \right\}$

where $m\mathscr{F}_t \subset \mathbb{X}$ is the space of \mathscr{F}_t -measurable random variables.

For each t, define the feasibility correspondence $\Gamma_t \colon \mathbb{S}_t \to \mathbb{S}_{t+1}$:

(17)
$$\Gamma_{t}(x) := \begin{cases} y \in \mathbb{S}_{t+1} \mid 0 \leq y \leq (1+\tilde{r}(x)) x + \tilde{w}(x) e_{t}, & \text{if } \tilde{K}(x) > 0 \\ y \in \mathbb{S}_{t+1} \mid y = 0, & \text{if } \tilde{K}(x) = 0 \end{cases}$$

For each t, define the time t pay-offs ρ_t : Gr $\Gamma_t \to \mathbb{R}_+$:

(18)
$$\rho_{t}(x,y):=\begin{cases} \int \nu\left(\left(1+\tilde{r}\left(x\right)\right)x+\tilde{w}\left(x\right)e_{t}-y\right) d\mathbb{P}, & \text{if } \tilde{K}(x)>0\\ 0, & \text{if } \tilde{K}(x)=0 \end{cases}$$

Finally, let \tilde{V} , with $\tilde{V} \colon \mathbb{S}_0 \to \mathbb{R}_+ \cup \{+\infty\}$ denote the time 0 sequential planner's value function:

$$\tilde{V}(x_0)$$
: = $\sup_{(x_t)_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \rho_t(x_t, x_{t+1})$

⁹That is, \mathscr{F}_0 is the *σ*-algebra generated by x_0 and for each $i \ge 1$, \mathscr{F}_i is the *σ*-algebra generated by $\{x_0, e_0, \ldots, e_{i-1}\}$.

subject to

(19)
$$x_{t+1} \in \Gamma_t(x_t)$$
, $\forall t \in \mathbb{N}$, $x_0 \in S_0$ given

DEFINITION 2.2 (Sequential Constrained Planner's Problem)

Given $x_0 \in S_0$, a solution to the sequential constrained planner's problem is a sequence of random variables $(x_t)_{t=0}^{\infty}$ satisfying (19) that achieve the sequential planner's value function:

(20)
$$\tilde{V}(x_0) = \sum_{t=0}^{\infty} \beta^t \rho_t(x_t, x_{t+1})$$

2.4. Sequential Solution Implies Recursive Solution

Let $(x_t)_{t=0}^{\infty}$ be a solution for the sequential problem. Note for each t, the value of $x_{t+1}(\omega)$ depends on the value of the value of the history $\{x_0(\omega), e_0(\omega), \dots, e_t(\omega)\}$ for $\omega \in \Omega$. By contrast, a recursive solution requires x_{t+1} to be $\{x_t, e_t\}$ measurable; that is, we require a function $h_t \colon S \to A$ such that $x_{t+1}(\omega) = h_t(x_t(\omega), e_t(\omega))$. The following procedure projects each period's sequential solution back onto the previous period, furnishing the required measurability from properties of conditional expectation (see 9.2 by Williams (1991) or ch. IV, 1 by Çinlar (2011)).

Given x_0 satisfying $x_0 \in S_0$, let $(y_t)_{t=0}^{\infty}$ be a solution to the sequential planner's problem. Construct a candidate sequence, $(x_t)_{t=0}^{\infty}$, as follows:

$$(21) \quad x_0 = y_0, \quad x_1 = \mathbb{E}(y_1 | \sigma(x_0, e_0))$$

$$x_{t+1} = \mathbb{E}(y_t | \sigma(x_t, e_t)), \quad \forall t \in \mathbb{N}$$

The term $\sigma(x_t, e_t)$ denotes the σ -algebra generated by x_t and e_t . And $\mathbb{E}(y_t | \sigma(x_t, e_t))$ denotes the conditional expectation of y_t with respect to x_t and e_t .

PROPOSITION 2.1 Let assumptions 2.1 - 2.5 hold. If $(y_t)_{t=0}^{\infty}$ is a solution to the sequential problem (Definition 2.2), then $(x_t)_{t=0}^{\infty}$ defined by (21) is a solution to the sequential problem.

See the online appendix for a proof.

THEOREM 2.2 Let assumptions 2.1 - 2.5 hold. If there exists a solution to the sequential problem (Definition 2.2), then there exists a solution to the recursive problem (Definition 2.1) and $V(\mu_0) = \tilde{V}(x_0)$.

The complete proof is in the online appendix. The proof proceeds as follows. Let $(y_t)_{t=0}^{\infty}$ solve the sequential problem and let $(x_t)_{t=0}^{\infty}$ be defined by (21). Since x_{t+1} is $\sigma(x_t, e_t)$ measurable, $x_{t+1} = h_t(x_t, e_t)$ for a measurable function h_t for each t. For each t, define μ_t as

(22)
$$\mu_t(B) = \mathbb{P}\left\{x_t, e_t \in B\right\}, \qquad B \in \mathscr{B}(S)$$

The remainder of the proof verifies $(\mu_t, h_t)_{t=0}^{\infty}$ solves the recursive problem.

3. EXISTENCE THEOREM

I now introduce a general existence result for an infinite horizon dynamic optimisation problem with non-compact feasibility correspondences on arbitrary topological spaces. After stating the general result, this section shows how to verify the conditions for the result on L^2 spaces.

Let (X, τ) be a topological space,

Definition 3.1 A function $f: X \to \mathbb{R} \cup \{-\infty, +\infty\}$ is **mildly sup-compact** if the upper contour sets

(23)
$$UC_f(\epsilon) := \{x \in X \mid f(x) \ge \epsilon\}$$

are sequentially compact for all $\epsilon > \inf f$.

Study of sup-compact (or inf-compact) functions can be traced to Rockafellar and Moreau (see discussion of early literature by Roger and Wets (1973)), however, to the best of my knowledge, the term mildly sup-compact is new. A discussion on the relationship between mild sup-compactness, sup-compactness and upper semicontinuity is given in the online appendix.

3.1. General Existence Theorem

A non-stationary reduced form economy is a 5-tuple

$$\mathscr{E} := ((X, \tau), (S_t)_{t=0}^{\infty}, (\Gamma_t)_{t=0}^{\infty}, (\rho_t)_{t=0}^{\infty}, \beta)$$

consisting of:

- 1. A topological space (X, τ)
- 2. A collection of state-spaces $(\mathbb{S}_t)_{t=0}^{\infty}$, with $\mathbb{S}_t \subset \mathbb{X}$ for each t
- 3. A collection of non-empty feasibility correspondences $(\Gamma_t)_{t=0}^{\infty}$, with $\Gamma_t \colon \mathbb{S}_t \to \mathbb{S}_{t+1}$ for each t
- 4. A collection of per-period pay-offs $(\rho_t)_{t=0}^{\infty}$, with ρ_t : Gr $\Gamma_t \to \mathbb{R}_+$ for each t
- 5. A discount factor $\beta \in (0,1)$.

Define the correspondence of **feasible sequences** $\mathcal{G}_t^T \colon \mathbb{S}_t \twoheadrightarrow \prod_{i=t}^T \mathbb{S}_i$ starting at time t and ending at time T as follows:

(24)
$$\mathcal{G}_{t}^{T}(x) := \left\{ (x_{i})_{i=t}^{T} \mid x_{i+1} \in \Gamma_{i}(x_{i}), x_{t} = x \right\}, \qquad x \in \mathbb{S}_{t}$$

Let \mathcal{G} denote \mathcal{G}_0^{∞} and let \mathcal{G}^T denote \mathcal{G}_0^T .

Define the **value function** $\tilde{V}: \mathbb{S}_0 \to \mathbb{R} \cup \{-\infty, +\infty\}$ as follows:

(25)
$$\tilde{V}(x)$$
: $= \sup_{(x_t)_{t=0}^{\infty} \in \mathcal{G}(x)} \sum_{t=0}^{\infty} \beta^t \rho_t(x_t, x_{t+1})$

Recall a compact-valued upper hemicontinuous correspondence has compact image sets (see Mathematical Preliminaries in the online appendix). The first assumption below is the main assumption of the existence theorem, it relaxes the standard requirement for Γ_t to be upper hemicontinuous and compact valued and for S_t to be a metric space (see by Acemoglu (2009), Assumption 6.2, Kamihigashi (2017), section 6 or Stokey and Lucas (1989), Assumption 4.3, for assumptions used by the standard theory).

ASSUMPTION 3.1 For each $x \in \mathbb{S}_0$ and $t \in \mathbb{N}$, the functions $(x_i)_{i=0}^{t+1} \mapsto \rho_t(x_t, x_{t+1})$ on $\mathcal{G}^{t+1}(x)$ are mildly sup-compact in the product topology (of τ topology in \mathbb{X}).

The next assumption is the standard growth condition (see discussion on Corollary 6.1 by Kamihigashi (2017)).

ASSUMPTION 3.2 For each $x \in \mathbb{S}_0$, there exists a sequence of non-negative real numbers $(m_t)_{t=0}^{\infty}$ such that any $(x_t)_{t=0}^{\infty} \in \mathcal{G}(x)$ satisfies

$$(26) \rho_t(x_t, x_{t+1}) \leq m_t, \forall t \in \mathbb{N}$$

and

$$(27) \qquad \sum_{t=0}^{\infty} \beta^t m_t < \infty$$

Assumption 3.3 The functions $(\rho_t)_{t=0}^{\infty}$ are sequentially upper semicontinuous for all $t \in \mathbb{N}$.

THEOREM 3.1 If $\mathscr E$ satisfies assumptions 3.1 - 3.3, then for every $x \in S_0$, there will exist $(x_t)_{t=0}^{\infty}$ satisfying $(x_t)_{t=0}^{\infty} \in \mathcal G(x)$ such that

$$\tilde{V}(x) = \sum_{t=0}^{\infty} \beta^{t} \rho_{t} (x_{t}, x_{t+1}) < \infty$$

.

See the appendix for a proof. The proof works by showing feasible paths of states converging to the supremum of the problem belong to a compact space in the product topology (of the topology τ in \mathbb{X}). By contrast, the standard assumptions of hemicontinuity and compact-valued correspondences requires that *all* feasible sequences belong to a compact space in the product topology. A further discussion of how standard theory uses these assumptions to verify existence is in section F.1 of the online appendix.

3.2. Checking Mild Sup-Compactness in L² Spaces

Let $(\Omega, \Sigma, \varphi)$ be a finite countably generated measure space and let $\mathbb{X} = L^2(\Omega, \varphi)$ be the space of real-valued measurable function on Ω with

$$||x|| \colon = \left(\int x^2 \, d\varphi\right)^{\frac{1}{2}} < \infty$$

Equip $\mathbb X$ with the weak topology. Recall a sequence $(x_n)_{n=0}^{\infty}$ with $x_n \in \mathbb X$ for each n converges in the weak topology if $\int x_n h \, d\mathbb P \to \int x h \, d\mathbb P$ for each $h \in \mathbb X$. 10

Unless otherwise stated, convergence and topological notions will be with respect to the weak topology.

Assumption 3.4 The state-spaces $(\mathbb{S}_t)_{t=0}^{\infty}$ are sequentially closed in \mathbb{X} for all $t \in \mathbb{N}$.

Assumption 3.5 The correspondences $(\Gamma_t)_{t=0}^{\infty}$ have a sequentially closed graph for all $t \in \mathbb{N}$.

 $^{^{10}}$ See 5.14 and 13.8 by Aliprantis and Border (2006) or 5.10 by Luenberger (1968).

ASSUMPTION 3.6 For each $t \in \mathbb{N}$, $\epsilon > 0$ and $x \in \mathbb{S}_0$, there exists a constant \bar{M} such that if $(x_i)_{i=0}^{t+1} \in \mathcal{G}^{t+1}(x)$ and $u_t(x_t, x_{t+1}) \geq \epsilon$, then $||x_i|| \leq \bar{M}$ for each $i \in \{0, \ldots, t+1\}$.

PROPOSITION 3.1 Consider & where $\mathbb{X} = L^2(\Omega, \varphi)$ and τ is the weak topology. If & satisfies assumptions 3.3 - 3.6, then & satisfies Assumption 3.1.

4. EXISTENCE OF CONSTRAINED OPTIMA

Consider the case of the sequential constrained planner of section 2.3. Let assumptions 2.1 - 2.5 hold and let

$$\mathscr{E} = ((\mathbb{X}, \tau), (\mathbb{S}_t)_{t=0}^{\infty}, (\Gamma_t)_{t=0}^{\infty}, (\rho_t)_{t=0}^{\infty}, \beta)$$

where:

- 1. $X = L^2(\Omega, \mathbb{P})$
- 2. The topology τ is the weak topology
- 3. The sequence of state-spaces $(S_t)_{t=0}^{\infty}$ are defined by (16)
- 4. The sequence of correspondences $(\Gamma_t)_{t=0}^{\infty}$ are defined by (17)
- 5. The sequence of pay-offs $(\rho_t)_{t=0}^{\infty}$ are defined by (18).

PROPOSITION 4.1 (Checking Assumption 3.2) For any $x \in \mathbb{S}_0$, there exists a sequence of non-negative real numbers $(m_t)_{t=0}^{\infty}$ such that $\sum_{t=0}^{\infty} \beta^t m_t < \infty$ and any $(x_t)_{t=0}^{\infty} \in \mathcal{G}(x)$ satisfies $\rho_t(x_t, x_{t+1}) \leq m_t$ for each t.

PROPOSITION 4.2 (Checking Assumption 3.3) The functions $(\rho_t)_{t=0}^{\infty}$ are sequentially upper semicontinuous for each t.

PROPOSITION 4.3 (Checking Assumption 3.4) The state spaces $(S_t)_{t=0}^{\infty}$ are sequentially closed for each t.

PROPOSITION 4.4 (Checking Assumption 3.5) The correspondences $(\Gamma_t)_{t=0}^{\infty}$ have closed graph for each t.

PROPOSITION 4.5 (Checking Assumption 3.6) For any $t \in \mathbb{N}$, $\epsilon > 0$ and $x \in \mathbb{S}_0$, there exists a constant \bar{M} such that if $(x_i)_{t=0}^{t+1} \in \mathcal{G}^{t+1}(x)$ and $\rho_t(x_t, x_{t+1}) \geq \epsilon$, then

$$||x_i|| \leq \bar{M}$$

for all $i \in \{0, 1, ..., t + 1\}$.

The proofs for Propositions 4.1 and 4.3 are in the online appendix. The remaining proofs are in the appendix below.

We are now ready to verify existence of recursive constrained optima.

PROOF OF THEOREM 2.1: Recall the setting of section 2.1 where μ_0 is the initial state of the economy and let the random variables $\{x_0, e_0, e_1, \dots\}$ on $(\Omega, \mathscr{F}, \mathbb{P})$ be as defined in section 2.3. By assumptions 2.1 - 2.5 and propositions 4.1 - 4.5, the economy \mathscr{E} satisfies assumptions 3.2 - 3.6.

Since assumptions 3.3 - 3.6 satisfy the conditions for Proposition 3.1, $\mathscr E$ satisfies Assumption 3.1. As such, $\mathscr E$ satisfies assumptions 3.1 - 3.3 and the conditions for Theorem 3.1.

By Theorem 3.1, there exists $(y_t)_{t=0}^{\infty}$ solving the sequential planner's problem (Definition 2.2) such that $\tilde{V}(x_0) < \infty$. By Proposition 2.1, $(x_t)_{t=0}^{\infty}$ defined by (21) also solves the sequential planner's problem. Moreover, there exists a sequence of measurable policy functions $(h_t)_{t=0}^{\infty}$ with $h_t \colon S \to A$ and $x_{t+1} = h_t(x_t, e_t)$ for each t. By Theorem 2.2, $(h_t)_{t=0}^{\infty}$ and $(\mu_t)_{t=0}^{\infty}$ defined by (22) solve the recursive problem and

(28)
$$V(\mu_0) = \tilde{V}(x_0) = \sum_{t=0}^{\infty} \beta^t \rho_t(x_t, x_{t+1}) = \sum_{t=0}^{\infty} \beta^t u(\mu_t, h_t) < \infty$$

Q.E.D.

5. DISCUSSION

5.1. Non-Compactness of the Feasibility Correspondence

There are two reasons why the constrained planner's feasibility correspondences will not have compact image sets. The first concerns the structure of the recursive problem and the second concerns the behaviour of interest rates around regions where capital is zero.

5.1.1. Structure of Recursive Problem

In the recursive problem, to show Λ has compact image sets, we need to place some further restrictions on the space \mathbb{Y} and equip \mathbb{Y} with a suitable topology. In the sup-norm topology, the Arzela-Arscoli Theorem (see example 6.2, Mas-colell and Zame (1991)) states uniformly bounded, equicontinuous family of functions

on a compact interval will be compact. However, A will not be bounded and policy functions may not be bounded. As such, $\Lambda(\mu)$ cannot be compact valued as it is defined here.

A possible approach could be restricting $\mathbb M$ to measures on a compact support. For each $\mu \in \mathbb M$, we can then restrict policy functions in $\Lambda(\mu)$ to be defined on the bounded support of μ . If the mean of μ is positive, then policy functions in $\Gamma(\mu)$ will also be bounded. Notwithstanding the pathologies (see below) as interest rates diverge, to now use the Arzela-Arscoli Theorem, we also need to restrict feasible policy functions in each period to an equicontinuous family of functions. Similarly, to use Helly's Selection Theorem (see Cao (2016), Lemma 11) to verify compactness in the product topology on $\mathbb Y$, we need to restrict $\mathbb Y$ to the space of monotone policy functions.

However, we cannot use the Euler equations for the constrained planner to restrict the search for an optimiser to the space of an equicontinuous or monotone family of functions; the Euler equations have only been shown to be necessary *and a solution for the constrained planner may not exist*. In particular, there may be pathological sequences of policy functions outside the equicontinuous or monotone family converging to the supremum.

The online appendix gives further detail of pathologies in the weak topology if we let \mathbb{Y} be the space of square integrable functions on S, where Φ fails to be defined.

Note the pathologies in the recursive problem also prevent the use of the non-compact existence result of section 3. This is because we cannot place restrictions such as monotonicity or equicontinuity on policy functions in the upper contour sets of Assumption 3.1.

5.1.2. Non-Compactness Near Zero Capital

Consider the setting and notation of section 4. Once we move to L^2 space with the weak topology, the feasibility correspondence will be compact valued and have a closed graph. The sequential problem will also be well-defined. However, there will exist a compact set $C \subset \mathbb{S}_t$ such that $\Gamma_t(C)$ is not compact. (Recall from section C.1 in the online appendix that the image of a compact set under a compact-valued and upper hemicontinuous is compact.)

For the following claim, assume $F(K, L) = \alpha^{-1}K^{\alpha}$ and $\alpha = .3$. Furthermore, assume $x_0 \in \mathbb{S}_0$, the initial assets for the economy are a uniform random variable on the interval [0,1]. Assume the random variable e_0 is large enough to satisfy $\tilde{w}(x_0)e_0 > 1$.

CLAIM 5.1 There exists a compact set C, satisfying $C \subset S_1$, such that the image set $\Gamma_1(C)$ is not compact.

The proof is in the online appendix. Roughly, we can construct a sequence of asset distributions in $\Gamma_1(C)$ whose means converge but variances diverge. This is because a smaller and smaller measure of agents can accumulate assets that go to infinity due to higher and higher interest rates as aggregate assets converge to zero.

5.2. Relationship to K-Sup-Compactness

To relax compactness and continuity requirements on the feasibility correspondence, Feinberg et al. (2012) introduce a condition (assumption W* in Feinberg et al. (2012)), later defined as K-Sup-Compactness by Feinberg et al. (2013) (Definition 1.1), on per-period pay-offs. Recall the definition of sup-compact from the online appendix, section C.2. While Feinberg et al. (2012) consider stationary problems, for the sequential constrained planner's setting, K-Sup-Compactness of each per-period pay-off ρ_t becomes:

ASSUMPTION 5.1 (**K-Sup-Compact**) Let $t \in \mathbb{N}$. If C is a sequentially compact subset of \mathbb{S}_t , then the function $\{x_t, x_{t+1}\} \mapsto \rho_t(x_t, x_{t+1})$ on $\mathcal{G}_t^{t+1}(C)$ is sup-compact.

The assumption allows the Bellman Equation (in our case, a non-stationary Bellman Equation) to preserve semicontinuity (see Theorem 2 in Feinberg et al. (2012) and Lemma 2.5 in Feinberg et al. (2013)).

With utility bounded below, ρ_t will not satisfy K-Sup-Compactness. To see why, note $\mathcal{G}_t^{t+1}(C) = \{x, y \mid y \in \Gamma_t(x), x \in C\}$. Moreover, the upper-contour set of the function $\{x_t, x_{t+1}\} \mapsto \rho_t(x_t, x_{t+1})$ on $\mathcal{G}_t^{t+1}(C)$ when $\epsilon = 0$ will be:

$$\{x,y \mid y \in \Gamma_t(x), x \in C, \rho_t(x,y) \ge 0\}$$

= $\{x,y \mid y \in \Gamma_t(x), x \in C\} = \mathcal{G}_t^{t+1}(C)$

For the constrained planner, K-Sup-Compactness of ρ_t will then imply compact $\mathcal{G}_t^{t+1}(C)$ for compact C. However, Claim 5.1 constructs an example where $x_n \in C$ and $y_n \in \Gamma(x_n)$ such that the norm of y_n diverges, implying non-compact

 $^{^{11}\}mbox{Feinberg}$ et al. (2013) use term K-Inf-Compactness, as they work with minimisation problems.

 $\mathcal{G}_t^{t+1}(C)$. As such, when utility is bounded below, the main assumption of this paper is weaker than K-Sup-Compactness.

6. CONCLUSION

This paper proved existence of recursive constrained optima in a standard Aiyagari (1994) model, as considered by Dávila et al. (2012). The results here only apply to problems where the planner's pay-offs are bounded below — a key technical contribution of the paper was a general existence result that overcomes the difficulties when a non-compact dynamic optimisation problems has pay-offs bounded below.

Some paths for further work are:

- 1. Explore the application of the already developed non-compact dynamic optimisation theory for unbounded pay-offs (Feinberg et al., 2012) to heterogeneous agent models.
- Explore existence and policy implications of constrained optima in the variety of Aiyagari-Huggett style and other heterogeneous agent models mentioned in the introduction.
- Design computational methods known to converge to the true constrained optima.
- 4. Establish asymptotic properties (stochastic stability) of the solution path.
- 5. Establish existence to recursive competitive equilibria in the Aiyagari-Huggett model outside the steady state (current results, such as Acikgoz (2015), Miao (2002) or Kuhn (2013) focus on stationary steady states). The equilibria will be a special case of the one considered by Miao (2006) and Cao (2016) where aggregate uncertainty is removed.
- 6. Explore the relationship between constrained optima and competitive equilibria, i.e. when does one imply the other?

APPENDIX A: PROOFS

A.1. Proofs for Section 3

Recall the setting and notation of section 3.1, where (X, τ) is a topological vector space. Throughout this section, unless otherwise stated, convergence for sequences

 $^{^{12}}$ The constrained planner's sequential problem will satisfy the stronger condition where Assumption 3.1 holds for the stated functions on $\mathcal{G}^{t+1}(\mathcal{C})$. The stronger condition gives semicontinuity of the value function and compactness of policy correspondences. The details are a work in progress and available on request.

in $\mathbb X$ will be with respect to the τ topology and convergence for sequences in countable Cartesian products of $\mathbb X$ will be in the product topology of the τ topology on $\mathbb X$.

We will use \mathbf{x} to refer to elements of $\mathbb{X}^{\mathbb{N}}$. We can then use $(\mathbf{x}^n)_{n=0}^{\infty}$ to denote a sequence $\{\mathbf{x}^0,\ldots,\mathbf{x}^n,\ldots\}$, where $(\mathbf{x}^n)_{n=0}^{\infty}\in(\mathbb{X}^{\mathbb{N}})^{\mathbb{N}}$.

REMARK A.1 Let $X = \prod_{i \in F} X_i$ denote a Cartesian product of topological spaces. Let $\pi_i \colon X \to X_i$ denote the projection map defined as $\pi_i(x) = x_i$ for each $i \in F$. Recall each projection map will be a continuous function on X when X has the product topology (see section 2.14 by Aliprantis and Border (2006)). Also recall (section 1.8 by Tao (2013)) the image of a (sequentially) compact set under a continuous function is (sequentially) compact. Accordingly, if a set C with $C \subset X$ is (sequentially) compact in the product topology, then $\pi_i(C)$ will be (sequentially) compact.

Finally, let the function $\phi_t \colon \mathcal{G}^{t+1}(x) \to \mathbb{R}_+$ denote $(x_i)_{i=0}^{t+1} \mapsto \rho_t(x_t, x_{t+1})$ for each t and let $U(\mathbf{x}) \colon = \sum_{t=0}^{\infty} \rho_t(x_t, x_{t+1})$.

LEMMA A.1 Let Assumption 3.2 hold and let x satisfy $x \in \mathbb{S}_0$. If $(x^n)_{n=0}^{\infty}$ is a sequence with $x^n \in \mathcal{G}(x)$ for each n and $U(x^n) \to B$ for B > 0, then there exists a sub-sequence $(x^{n_k})_{k=0}^{\infty}$ such that for all $t \in \mathbb{N}$

$$\lim_{k\to\infty} \rho_t(x_t^{n_k}, x_{t+1}^{n_k}) \to c_t$$

where $c_t \in \mathbb{R}_+$ for each t and $c_t > 0$ for at-least one t.

PROOF: By Assumption 3.2, for each t and n,

(A.29)
$$m_t \ge \rho_t(x_t^n, x_{t+1}^n) \ge 0$$

Accordingly, for each n, $(\rho_t(x_t^n, x_{t+1}^n))_{t=0}^\infty$ will belong to the set $\prod_{t=0}^\infty [0, m_t]$, which by Tychonoff's Theorem (see Proposition 1.8.12 by Tao (2010)) will be compact in the product topology. There then exists a sub-sequence of $(\mathbf{x}^n)_{n=0}^\infty$, $(\mathbf{x}^{n_k})_{k=0}^\infty$, such that $(\rho(x_t^{n_k}, x_{t+1}^{n_k}))_{k=0}^\infty$ converges for each t. Let c_t : $=\lim_{k\to\infty} \rho(x_t^{n_k}, x_{t+1}^{n_k})$ and note

(A.30)
$$B = \lim_{k \to \infty} \sum_{t=0}^{\infty} \beta^{t} \rho_{t} \left(x_{t}^{n_{k}}, x_{t+1}^{n_{k}} \right) = \sum_{t=0}^{\infty} \lim_{k \to \infty} \beta^{t} \rho_{t} \left(x_{t}^{n_{k}}, x_{t+1}^{n_{k}} \right) = \sum_{t=0}^{\infty} \beta^{t} c_{t}$$

Since (A.29) holds, and $\sum_{t=0}^{\infty} \beta^t m_t < \infty$ by Assumption 3.2, we can pass limits through in the second equality using dominated convergence theorem (see Corollary 7.3.15 by Stachurski (2009)). If B is strictly positive, the above means there is at least one $c_t > 0$.

Q.E.D.

LEMMA A.2 Let x satisfy $x \in \mathbb{S}_0$. If $(\mathbf{x}^n)_{n=0}^{\infty}$ is a sequence with $\mathbf{x}^n \in \mathcal{G}(x)$ for each n and for some t

$$\rho_t(x_t^n, x_{t+1}^n) \to c_t$$

with $c_t > 0$, then there exists $\epsilon > 0$ and $N \in \mathbb{N}$ such that for all n > N, $(x_i^n)_{i=0}^{t+1} \in UC_{\phi_t}(\epsilon)$.

PROOF: There exists ι such that ϵ : $= c_t - \iota$ is strictly positive. For N large enough and any n > N, $\rho_t(x_t^n, x_{t+1}^n) \in [\epsilon, c_t + \iota]$, implying $\rho_t(x_t^n, x_{t+1}^n) \geq \epsilon$ and $(x_i^n)_{i=0}^{t+1} \in UC_{\phi_t}(\epsilon)$.

Q.E.D.

LEMMA A.3 Let assumptions 3.1- 3.3 hold and let x satisfy $x \in \mathbb{S}_0$. If $(x^n)_{n=0}^{\infty}$ is a sequence such that $x^n \in \mathcal{G}(x)$ for each $n \in \mathbb{N}$ and $U(x^n) \to B$ where B > 0, then:

- 1. $(x^n)_{n=0}^{\infty}$ has a convergent sub-sequence with a limit $x \in \mathcal{G}(x)$, and 2. $B < U(x) < \infty$.
- PROOF: Let x satisfy $x \in S_0$ and let $(\mathbf{x}^n)_{n=0}^{\infty}$ be a sequence such that $\mathbf{x}^n \in \mathcal{G}(x)$ for each n and $U(\mathbf{x}^n) \to B$ where B > 0. By Lemma A.1 there exists a sub-sequence $(\mathbf{x}^{n_j})_{j=0}^{\infty}$ such that for each $t \in \mathbb{N}$, $c_t := \lim_{j \to \infty} \rho_t(x_t^{n_j}, x_{t+1}^{n_j}) > 0$ for at-least one t. Re-label $(\mathbf{x}^{n_j})_{j=0}^{\infty}$ to $(\mathbf{x}^n)_{n=0}^{\infty}$, and let P denote the subset of \mathbb{N} such that $t \in P$ if and only if $c_t > 0$. The set P will be non-empty, but could be finite or infinite.

To prove part 1 of the lemma, consider first the case when *P* is infinite and then the case when *P* is finite.

Suppose P is infinite and consider any $t \in \mathbb{N}$. There will exist k > t such that $c_k > 0$. By Lemma A.2, there exists N and $\epsilon > 0$ such that for all n > N, $(x_i^n)_{i=0}^{k+1} \in UC_{\phi_k}(\epsilon)$.

By Assumption 3.1, $UC_{\phi_k}(\epsilon)$ will be sequentially compact in the product topology. The space $\pi_t(UC_{\phi_k}(\epsilon))$ will also be sequentially compact by the argument in Remark A.1. Let Ξ_t : = $\{x_1^0, \ldots, x_t^N\} \cup \pi_t(UC_{\phi_k}(\epsilon))$. Since $\{x_1^0, \ldots, x_t^N\}$ is sequentially compact, Ξ_t will be sequentially compact. Moreover, note $x_t^n \in \Xi_t$ for each $n \in \mathbb{N}$.

Since t was arbitrary, we can construct a Ξ_t as above for every $t \in \mathbb{N}$. Now let $\Xi \colon = \prod_{t \in \mathbb{N}} \Xi_t$. Using the Sequential Tychonoff Theorem (Proposition 1.8.12 by Tao (2010)), Ξ will be sequentially compact. Since for each t, $x_t^n \in \Xi_t$ for each n, $\mathbf{x}^n \in \Xi$ for each n. There then exists a sub-sequence $(\mathbf{x}^{n_j})_{j=0}^{\infty}$ converging to \mathbf{x} , with $\mathbf{x} \in \Xi$.

We now confirm $\mathbf{x} \in \mathcal{G}(x)$ by showing $x_{t+1} \in \Gamma_t(x_t)$ for all $t \in \mathbb{N}$. Pick any $t \in \mathbb{N}$, there will be a k satisfying k > t such that $c_k > 0$. By Lemma A.2, there exists $\epsilon > 0$ and J such that for all j > J we have $(x_i^{n_j})_{i=0}^{k+1} \in UC_{\phi_k}(\epsilon)$. By 3.1, $UC_{\phi_k}(\epsilon)$ will be sequentially compact, moreover, $UC_{\phi_k}(\epsilon) \subset \mathcal{G}^{k+1}(x)$ by the definition of $UC_{\phi_k}(\epsilon)$ at (23). As such, the sub-sequence $(x_i^{n_j})_{i=0}^{k+1}$ converges to $(x_i)_{i=0}^{k+1}$, with $(x_i)_{i=0}^{k+1} \in \mathcal{G}^{k+1}(x)$, allowing us to conclude $x_{t+1} \in \Gamma(x_t)$. Since the t was arbitrary, $x_{t+1} \in \Gamma_t(x_t)$ for each $t \in \mathbb{N}$ and $\mathbf{x} \in \mathcal{G}(x)$.

Now assume P is finite; P will have a maximum element, which we now call k. By Lemma A.2, there exists $\epsilon > 0$ and $N \in \mathbb{N}$ such that $(x_t^n)_{t=0}^{k+1} \in UC_{\phi_k}(\epsilon)$ for each n > N. By Assumption 3.1, $UC_{\phi_k}(\epsilon)$ will be sequentially compact in the product topology. As such, there exists a sub-sequence $(\mathbf{x}^{n_j})_{j=0}^{\infty}$ such that $(x_t^{n_j})_{j=0}^{\infty}$ for each $t \leq k+1$. Define $(x_t)_{t=0}^{\infty}$ by setting $x_t = \lim_{j \to \infty} x_t^{n_j}$ for $t \leq k+1$ and picking any $x_{t+1} \in \Gamma_t(x_t)$ for $t \geq k+1$.

To confirm $(x_t)_{t=0}^{\infty}$ is feasible, let us check $x_{t+1} \in \Gamma_t(x_t)$ for each t. Once again, note by definition, $UC_{\phi_k}(\epsilon) \subset \mathcal{G}^{k+1}(x)$. Since $UC_{\phi_k}(\epsilon)$ is sequentially compact, $(x_t)_{t=0}^{k+1} \in \mathcal{G}(x)$ and $x_{t+1} \in \Gamma_t(x_t)$ for all t satisfying $t \leq k$. On the other hand, if t > k, by construction, $x_{t+1} \in \Gamma_t(x_t)$, confirming $(x_t)_{t=0}^{\infty} \in \mathcal{G}(x)$.

To prove part 2 of the lemma, by Assumption 3.2,

$$\rho_t(x_t^n, x_{t+1}^n) \le m_t$$

for each t and n, where $\sum_{t=0}^{\infty} \beta^t m_t < \infty$. Whence Fatou's Lemma¹³ gives

(A.31)
$$B = \limsup_{n \to \infty} \sum_{t=0}^{\infty} \beta^t \rho_t(x_t^n, x_{t+1}^n) \le \sum_{t=0}^{\infty} \limsup_{n \to \infty} \beta^t \rho_t(x_t^n, x_{t+1}^n) < \infty$$

¹³See fact C.5 in the online appendix and let $\Omega = \mathbb{Z}_+$ and μ be the counting measure. Also see Equation (1.1) and discussion by Kamihigashi (2017).

Upper-semicontinuity of ρ_t (Assumption 3.3) and the growth condition (Assumption 3.2) imply

(A.32)
$$\limsup_{n\to\infty} \rho_t(x_t^n, x_{t+1}^n) \le \rho_t(x_t, x_{t+1}) \le m_t, \qquad t \in \mathbb{N}$$

To complete the proof, combine (A.32) with (A.31) and conclude

$$B \leq \sum_{t=0}^{\infty} \beta^t \rho_t(x_t, x_{t+1}) = U(\mathbf{x}) < \infty$$

Q.E.D.

PROOF OF THEOREM 3.1: Fix $x \in S_0$. If $U(\mathbf{x}) = 0$ for all $\mathbf{x} \in \mathcal{G}(x)$, then our solution will be any $\mathbf{x} \in \mathcal{G}(x)$.

Next, suppose at-least one \mathbf{x} with $\mathbf{x} \in \mathcal{G}(x)$ satisfies $U(\mathbf{x}) > 0$. By Assumption 3.2, there exists a sequence of real numbers $(m_t)_{t=0}^{\infty}$ such that $\rho_t(x_t, x_{t+1}) \leq m_t$ for any \mathbf{x} in $\mathcal{G}(x)$ and

$$\bar{B} := \sum_{t=0}^{\infty} \beta^t m_t < \infty$$

Any **x** with $\mathbf{x} \in \mathcal{G}(x)$ will satisfy

$$U\left(\mathbf{x}\right) = \sum_{t=0}^{\infty} \beta^{t} \rho_{t}\left(x_{t}, x_{t+1}\right) \leq \bar{B}$$

Consider the set $I: = \{U(\mathbf{x}) \mid \mathbf{x} \in \mathcal{G}(x)\}$. The set I will be a subset of $\mathbb{R} \cup \{-\infty,\infty\}$ and so must have a supremum. Let $B: = \sup I$ and note $0 \le B \le \bar{B} < \infty$.

Construct a sequence $(\mathbf{x}^n)_{n=0}^{\infty}$ with $\mathbf{x}^n \in \mathcal{G}(x)$ for each n and $U(\mathbf{x}^n) \to B$ as follows: for every $n \in \mathbb{N}$, take \mathbf{x}^n such that $B - U(\mathbf{x}^n) < \frac{1}{n+1}$. Such a sequence exists, otherwise for some n, $U(\mathbf{x}) \leq B - \frac{1}{n+1}$ for all $\mathbf{x} \in \mathcal{G}(x)$ and B will not be the supremum of I.

Since $U(\mathbf{x}^n) \to B$, by Lemma A.3, there exists $\mathbf{x} \in \mathcal{G}(x)$ such that $U(\mathbf{x}) \geq B$. Since B was the supremum for I, conclude

$$U(\mathbf{x}) = B = \tilde{V}(x) < \infty$$

Q.E.D.

PROOF OF PROPOSITION 3.1: Let x satisfy $x \in S_0$. Fix any $t \in \mathbb{N}$ and any ϵ satisfying $\epsilon > 0$. We show the upper contour sets $UC_{\phi_t}(\epsilon)$ defined by

(A.33)
$$UC_{\phi_t}(\epsilon) = \{(x_i)_{i=0}^{t+1} \in \mathcal{G}^{t+1}(x) \mid \rho_t(x_t, x_{t+1}) \ge \epsilon \}$$

are sequentially compact. In particular, we first show $UC_{\phi_t}(\epsilon)$ is a sequentially closed sub-set of \mathbb{X}^{t+1} and then show $UC_{\phi_t}(\epsilon)$ is contained within a compact and metrizable set.

To show $UC_{\phi_t}(\epsilon)$ is sequentially closed in \mathbb{X}^{t+1} , take any sequence $(\mathbf{x}^n)_{n=0}^{\infty}$ with $\mathbf{x}^n \in UC_{\phi_t}(\epsilon)$ for each n that converges to $\mathbf{x} = (x_i)_{i=0}^{t+1}$ point-wise. Note $x_i^n \in \mathbb{S}_i$ for each $i \leq t+1$ and n. Since each \mathbb{S}_i is sequentially closed (Assumption 3.4), $x_i \in \mathbb{S}_i$.

By Assumption 3.5, each Γ_i has a sequentially closed graph, and thus $x_{i+1} \in \Gamma_i(x_i)$ for each $i \le t+1$. Noting the definition of $\mathcal{G}(x)^{t+1}$ by (24), conclude $\mathbf{x} \in \mathcal{G}(x)^{t+1}$.

We now confirm $\rho_t(x_t, x_{t+1}) \geq \epsilon$. By upper semi-continuity of ρ_t (Assumption 3.3), $UC_{\rho_t}(\epsilon) = \{(x,y) \in \operatorname{Gr}\Gamma_t \mid \rho_t(x,y) \geq \epsilon\}$ is sequentially closed. The sequence $(x_i^n)_{i=0}^{t+1}$ will satisfy $\rho_t(x_t^n, x_{t+1}^n) \geq \epsilon$ and thus $\{x_t^n, x_{t+1}^n\} \in UC_{\rho_t}(\epsilon)$ for each n. Moreover, $x_{t+1} \in \Gamma_t(x_t)$. Accordingly, $\{x_t, x_{t+1}\} \in UC_{\rho_t}(\epsilon)$ and $\rho_t(x_t, x_{t+1}) \geq \epsilon$. We conclude $\mathbf{x} \in UC_{\phi_t}(\epsilon)$ and $UC_{\phi_t}(\epsilon)$ is sequentially closed.

Since \mathscr{E} satisfies Assumption 3.6, there will exist \bar{M} such that if $(x_i)_{i=0}^{t+1} \in \mathcal{G}^{t+1}(x)$ and $\rho_t(x_t, x_{t+1}) \geq \varepsilon$, then $||x_i|| \leq \bar{M}$ for $i \in \{0, \dots, t+1\}$. Whence $UC_{\phi_t}(\varepsilon)$ will be a sub-set of the space $B_{\bar{M}} : = \prod_{i=0}^{t+1} \{x_i \in \mathbb{S}_i \mid ||x_i|| \leq \bar{M}\}$.

For each $i \leq t+1$, the space $\{x_i \in S_i \mid ||x_i|| \leq \bar{M}\}$ will be compact by Alaoglu's Theorem. Next, $L^2(\Omega, \mathbb{P})$ is a separable space since \mathscr{F} is separable. As such, since $L^2(\Omega, \mathbb{P})$ is reflexive, the spaces $\{x_i \in S_i \mid ||x_i|| \leq \bar{M}\}$ are metrizable and sequentially compact. Moreover, by the Sequential Tychonoff's Theorem, the space $B_{\bar{M}}$ will be sequentially compact in the product topology (of weak topology on X). By the argument in the preceding paragraph, $UC_{\phi_t}(\varepsilon)$ is a sequentially closed sub-set of $B_{\bar{M}}$, allowing us to conclude $UC_{\phi_t}(\varepsilon)$ is sequentially compact.

Q.E.D.

¹⁵Ex. 1.3.9 by Tao (2010).

¹⁴Mas-colell and Zame (1991), section 6.1 or Theorem 6.21 by Aliprantis and Border (2006).

¹⁶See discussion proceeding Corollary 1.9.16 by Tao (2010) or Theorem 6.30 by Aliprantis and Border (2006).

¹⁷Proposition 1.8.12 by Tao (2010).

A.2. Proofs for Section 4

Recall point-wise inequalities in \mathbb{X} hold \mathbb{P} - almost everywhere and convergence of (x^n) with $x^n \in \mathbb{X}$ for each n will be with respect to the weak topology.

Recall the definition of sequential upper semicontinuity from section C.2 in the online appendix. The proof for the following claim is standard and placed in the online appendix.

CLAIM A.1 Let (Ω, Σ, μ) be a finite measure space. Consider a function $g: \mathbb{R} \to \mathbb{R}$. Define $G: L^2(\Omega, \mu) \to \mathbb{R}$ as

$$G(s)$$
: $=\int g(s) d\mu$, $s \in L^2(\Omega, \mu)$

If g is concave and upper semicontinuous, then G will be weak sequentially upper semicontinuous.

PROOF OF PROPOSITION 4.2: Set any $t \in \mathbb{N}$ and consider sequences $(x^n)_{n=0}^{\infty}$ and $(y^n)_{n=0}^{\infty}$ with $\{x^n, y^n\} \in \operatorname{Gr} \Gamma_t$ for each n. Let $x^n \to x$ and $y^n \to y$ with $y \in \Gamma_t(x)$. To verify sequential upper semicontinuity, we show

(A.34)
$$\limsup_{n \to \infty} \rho_t(x^n, y^n) = \limsup_{n \to \infty} \int \nu((1 + \tilde{r}(x^n))x^n + \tilde{w}(x^n)e_t - y^n) d\mathbb{P}$$
$$\leq \rho_t(x, y)$$

By Assumption 2.5, ν is concave and continuous. To use the statement made by Claim A.1, consider a continuous concave extension of ν to $\bar{\nu}$, where $\bar{\nu} \colon \mathbb{R} \to \mathbb{R}$ and $\bar{\nu}|_{\mathbb{R}_+} = \nu$.¹⁸ The mapping $s \mapsto \int \bar{\nu}(s) \, d\mathbb{P}$ for $s \in L^2(\Omega, \mathbb{P})$ will be sequentially upper semicontinuous since $\bar{\nu}$ is concave and upper semicontinuous. As such, for any sequence in $L^2(\Omega, \mathbb{P})$ satisfying $f^n \to f$ weakly,

(A.35)
$$\limsup_{n\to\infty} \int \bar{v}(f^n) d\mathbb{P} \le \int \bar{v}(f) d\mathbb{P}$$

Let f^n : $= (1 + \tilde{r}(x^n))x^n + \tilde{w}(x^n)e_t - y^n$ and note $f^n \in L^2(\Omega, \mathbb{P})$ for each n. First, we show (A.34) for the case $\int x \, d\mathbb{P} > 0$. If $\int x \, d\mathbb{P} > 0$, then

$$\int f^{n}h \, d\mathbb{P} = (1 + \tilde{r}(x^{n})) \int x^{n}h \, d\mathbb{P} + \tilde{w}(x^{n}) \int e_{t}h \, d\mathbb{P} - \int y^{n}h \, d\mathbb{P}$$

$$\to (1 + \tilde{r}(x)) \int xh \, d\mathbb{P} + \tilde{w}(x) \int e_{t}h \, d\mathbb{P} - \int yh \, d\mathbb{P}$$

¹⁸See Corollary 8.3.10 by Borwein and Vanderwerff (2010).

for any $h \in L^2(\Omega, \mathbb{P})$. Thus f^n converges weakly to $f := (1 + \tilde{r}(x))x + \tilde{w}(x)e_t - y$, implying by (A.35),

$$\limsup_{n\to\infty} \int \nu(f^n) \, d\mathbb{P} \le \int \nu(f) \, d\mathbb{P} = \rho_t(x,y)$$

If $\int x \, d\mathbb{P} = 0$, then

$$\limsup_{n \to \infty} \int \nu(f^n) \, d\mathbb{P} \le \limsup_{n \to \infty} \nu \left(\int (1 + \tilde{r}(x^n)) x^n + \tilde{w}(x^n) e_t - y^n \, d\mathbb{P} \right)$$

$$\le \lim_{n \to \infty} \nu(F(\tilde{K}(x^n), L) + (1 - \delta) \tilde{K}(x^n))$$

$$= 0 = \rho_t(x, y)$$

where the first inequality follows from Jensen's inequality (fact C.4 in the online appendix). The second inequality follows from Assumption 2.3 on homogeneity of the production function (recall Equation (8)).

Q.E.D.

PROOF OF PROPOSITION 4.4: Recall the definition of closed graph correspondences from the Mathematical Preliminaries section of the online appendix. Set t and suppose $(x^n, y^n)_{n=0}^{\infty}$ satisfies $y^n \in \Gamma_t(x^n)$ for each n. Suppose $(x^n)_{n=0}^{\infty}$ converges to $x \in S_t$ and $(y^n)_{n=0}^{\infty}$ converges to $y \in S_{t+1}$.

We show $y \in \Gamma_t(x)$ by checking both the cases stated in the definition of Γ_t at Equation (17): either $\int x \, d\mathbb{P} = 0$ or $\int x \, d\mathbb{P} > 0$. First let $\int x \, d\mathbb{P} > 0$, we show $y \leq (1 + \tilde{r}(x))x + \tilde{w}(x)e_t$ for \mathbb{P} -almost everywhere. Suppose by contradiction

$$\mathbb{P}\left\{y > (1 + \tilde{r}(x))x + \tilde{w}(x)e_t\right\} > 0$$

Let
$$B \colon = \{ \omega \in \Omega \mid y(\omega) > (1 + \tilde{r}(x))x(\omega) + \tilde{w}(x)e_t(\omega) \}$$
, we have $\mathbb{P}(B) > 0$ and (A.36) $\int \mathbb{1}_B y \, d\mathbb{P} > \int \mathbb{1}_B \times \left[(1 + \tilde{r}(x))x + \tilde{w}(x)e_t \right] d\mathbb{P}$

Since $\tilde{K}(x^n) \to \tilde{K}(x)$ and $\tilde{K}(x) > 0$, there exists N such that for all n > N, $\tilde{K}(x^n) > 0$. And for the tail sequence $(x^n)_{n=N+1}^{\infty}$, $\tilde{r}(x^n) = F_1(\tilde{K}(x^n), L)$ converges, implying

(A.37)
$$(1 + \tilde{r}(x^n)) \int x^n h \, d\mathbb{P} + \tilde{w}(x^n) \int h e_t \, d\mathbb{P}$$

$$\rightarrow (1 + \tilde{r}(x)) \int x h \, d\mathbb{P} + \tilde{w}(x) \int h e_t \, d\mathbb{P}$$

for any function h satisfying $h \in L^2(\Omega, \mathbb{P})$. In particular, let $h = \mathbb{1}_B$, and note $y^n \in \Gamma_t(x^n)$; by the feasibility condition at (17), we write

$$\int \mathbb{1}_B y^n \, d\mathbb{P} \le (1 + \tilde{r}(x^n)) \int \mathbb{1}_B x^n \, d\mathbb{P} + \tilde{w}(x^n) \int \mathbb{1}_B e_t \, d\mathbb{P}$$

for each n > N. Since the weak inequality above will be preserved under the limits of real-valued sequences, we arrive at

(A.38)
$$\int \mathbb{1}_{B} y \, d\mathbb{P} \le (1 + \tilde{r}(x)) \int \mathbb{1}_{B} x \, d\mathbb{P} + \tilde{w}(x) \int \mathbb{1}_{B} e_{t} \, d\mathbb{P}$$

However, (A.38) is a contradiction to (A.36) and we conclude

$$y \le (1 + \tilde{r}(x))x + \tilde{w}(x)e_t$$

Now suppose $\int x^n d\mathbb{P} \to 0$. Note

$$\int y^n d\mathbb{P} \le \int (1 + \tilde{r}(x^n))x^n + \tilde{w}(x^n)e_t d\mathbb{P} = F(\tilde{K}(x^n), L) + (1 - \delta)\tilde{K}(x^n)$$

The above equality follows from homogeneity of degree one of the production function (Assumption 2.3 and recall discussion preceding Equation (8)). Since $\tilde{K}(x^n) = \int x^n d\mathbb{P} \to 0$, we have $F(\tilde{K}(x^n), L) \to 0$ by Assumption 2.3, and

(A.39)
$$0 = \lim_{n \to \infty} \int y^n = \int y \, d\mathbb{P}$$

Since $y \in \mathbb{S}_{t+1}$, $y \ge 0$ and (A.39) implies y = 0 for \mathbb{P} -almost everywhere.

Thus we have checked $x_t \in \Gamma_t(x)$ under both the cases stated in the definition of Γ_t at (17), completing the proof.

O.E.D.

For the following lemma, consider the setting and notation of the sequential planner's problem in section 4.

LEMMA A.4 Fix x with $x \in \mathbb{S}_0$, $\epsilon > 0$ and $t \in \mathbb{N}$. If assumptions 2.1 - 2.5 hold, then there exists $\bar{r} \in \mathbb{R}_+$ such that for any $(x_i)_{i=0}^{\infty} \in \mathcal{G}(x)$ satisfying $\rho_t(x_t, x_{t+1}) \geq \epsilon$, we have $\tilde{r}(x_i) \leq \bar{r}$ for each $i \leq t$.

¹⁹ If $y \ge 0$, then y = 0 if and only if $\int y \, d\mathbb{P} = 0$. See Theorem 1.1.20 by Tao (2010).

PROOF: Fix x with $x \in \mathbb{S}_0$, $\epsilon > 0$ and $t \in \mathbb{N}$. Select $(x_i)_{i=0}^{\infty}$ satisfying $(x_i)_{i=0}^{\infty} \in \mathcal{G}(x)$ and $\rho_t(x_t, x_{t+1}) \geq \epsilon$.

Since $x_i \in \Gamma_{i-1}(x_{i-1})$, by the feasibility correspondence (Equation (17)) and homogeneity of degree one (Assumption 2.3 and recall discussion preceding Equation (8)) of the production function F, we have

$$\tilde{K}(x_{i}) = \int x_{i} d\mathbb{P} \leq \int (1 + \tilde{r}(x_{i-1}))x_{i-1} + \tilde{w}(x_{i-1})e_{i-1} d\mathbb{P}$$

$$= (1 + F_{1}(\tilde{K}(x_{i-1}), L) - \delta)\tilde{K}(x_{i-1})$$

$$+ F_{2}(\tilde{K}(x_{i-1}), L)L$$

$$= F(\tilde{K}(x_{i-1}), L) + (1 - \delta)\tilde{K}(x_{i-1})$$

for each $i \in \mathbb{N}$.

Define $\hat{F}(K)$: = $F(K, L) + (1 - \delta)K$ and note \hat{F} will be strictly increasing. By (A.40),

(A.41)
$$\tilde{K}(x_i) \leq \hat{F}(\tilde{K}(x_{i-1})), \qquad i \in \mathbb{N}$$

As such, for any k > 1, by a simple inductive argument (Claim D.5 in the online appendix), we can show

(A.42)
$$\tilde{K}(x_k) < \hat{F}^{k-i}(\tilde{K}(x_i)), \quad \forall i < k$$

Next, since ν is concave, from Jensen's inequality (fact C.4 in the online appendix),

(A.43)
$$\epsilon \leq \rho_t(x_t, x_{t+1}) = \int \nu \left((1 + \tilde{r}(x_t)) x_t + \tilde{w}(x_t) e_t - x_{t+1} \right) d\mathbb{P}$$

$$\leq \nu \left(\int (1 + \tilde{r}(x_t)) x_t + \tilde{w}(x_t) e_t d\mathbb{P} \right)$$

$$= \nu(\hat{F}(\tilde{K}(x_t)))$$

Note the inverse of v, v^{-1} , is also increasing since v is increasing. (The inverse of v exists by Assumption 2.5.) From (A.43), $v^{-1}(\epsilon) < \hat{F}(\tilde{K}(x_t))$. And, by (A.42),

(A.44)
$$\nu^{-1}(\epsilon) \le \hat{F}(\tilde{K}(x_t)) \le \hat{F}^{t-i+1}(\tilde{K}(x_i)), \quad \forall i \le t$$

Next, Let G^j denote the inverse of \hat{F}^j . Since \hat{F} is strictly increasing, by (A.44), we have $\tilde{K}(x_i) \geq G^{t-i+1}(v^{-1}(\epsilon))$ for each $i \leq t$. Define

$$\underline{K} := \min_{i \in \{0,\dots,t\}} \{ G^{t-i+1}(\nu^{-1}(\epsilon)) \}$$

and note $\tilde{K}(x_i) \geq \underline{K}$ for each $i \leq t$.

Finally, let \bar{r} : = $F_1(\underline{K}, L) - \delta$. Note $F_1(K, L)$ is decreasing in the first argument since F is concave and conclude

$$\tilde{r}(x_i) = F_1(\tilde{K}(x_i), L) - \delta \le F_1(\underline{K}, L) - \delta := \bar{r},$$
 $\forall i \le t$

Since \bar{r} depends only on t and ϵ , the above will hold for any $(x_i)_{i=0}^{\infty} \in \mathcal{G}(x)$ satisfying $\rho_t(x_t, x_{t+1}) \geq \epsilon$.

O.E.D.

PROOF OF PROPOSITION 4.5: Fix any x satisfying $x \in S_0$, $\epsilon > 0$ and t. By Lemma A.4, there exists $\bar{r} \in \mathbb{R}_+$ such that for any $(x_i)_{i=0}^{\infty} \in \mathcal{G}(x)$ satisfying $\rho_t(x_t, x_{t+1}) \geq \epsilon$, we have

$$r(x_i) \leq \bar{r}, \qquad \forall i \leq t$$

Moreover, since aggregate capital will be bounded from above, the maximum possible wage rate will be bounded above by a constant, which we now denote as \bar{w} .

Let $(x_i)_{i=0}^{\infty}$ be any sequence satisfying $(x_i)_{i=0}^{\infty} \in \mathcal{G}(x)$ and $\rho_t(x_t, x_{t+1}) \geq \epsilon$. For any $i \in \{1, \ldots, t+1\}$,

$$x_{i} \leq (1+\bar{r})x_{i-1} + \bar{w}e_{i-1}$$

$$\leq (1+\bar{r})^{2}x_{i-2} + \bar{w}e_{i-1} + (1+\bar{r})\bar{w}e_{i-2}$$

$$\vdots$$

$$\leq (1+\bar{r})^{i}x + \bar{w}\sum_{i=0}^{i-1} (1+\bar{r})^{j}e_{i-j-1}$$

Let W_i : $= \bar{w} \sum_{j=0}^{i-1} (1+\bar{r})^j e_{i-j-1}$ and note $||W_i||$ will be finite. Next, since $x_i \ge 0$,

$$x_i \le (1+\bar{r})^i x + W_i \Longrightarrow (x_i)^2 \le \left((1+\bar{r})^i x + W_i\right)^2$$

As such, for all $i \in \{1, ..., t + 1\}$,

$$||x_i|| \le ||(1+\bar{r})^i x + W_i||$$

 $\le (1+\bar{r})^i ||x|| + ||W_i||$
 $: = \hat{M}_i \in \mathbb{R}$

To conclude, let \hat{M} : = max{ $\|x\|$, \hat{M}_1 , ..., \hat{M}_{t+1} }. The scalar \hat{M} depends only on x, \bar{r} , \bar{w} , t and ϵ . As such, for any $(x_i)_{i=0}^{\infty} \in \mathcal{G}(x)$ that satisfies $\rho_t(x_t, x_{t+1}) \geq \epsilon$, we have $\|x_i\| \leq \hat{M}$ for each $i \leq t+1$.

Q.E.D.

REFERENCES

Acemoglu, D., 2009. Introduction to Modern Economic Growth. Princeton University Press, Princeton, New Jersey.

Acikgoz, O., 2013. Transitional Dynamics and Long-run Optimal Taxation Under Incomplete Markets. Working Paper.

URL http://mpra.ub.uni-muenchen.de/50160/

Acikgoz, O., 2015. On the Existence and Uniqueness of Stationary Equilibrium in Bewley Economies with Production. Working Paper.

URL https://mpra.ub.uni-muenchen.de/71066/

Aiyagari, S. R., 1994. Uninsured Idiosyncratic Risk and Aggregate Saving. The Quarterly Journal of Economics 109 (3), 659–684.

Aiyagari, S. R., 1995. Optimal Capital Income Taxation with Incomplete Markets, Borrowing Constraints and Constant Discounting. Journal of Political Economy 103 (6), 1158–1175.

Aliprantis, C. D., Border, K. C., 2006. Infinite Dimensional Analysis: A Hitchhiker's Guide. Springer-Verlag, Berlin.

Benhabib, J., Bisin, A., Zhu, S., 2015. The Wealth Distribution in Bewley Economies with Capital Income Risk. Journal of Economic Theory 159, 489–515.

Berger, D., Vavra, J., 2015. Consumption Dynamics During Recessions. Econometrica 83 (1), 101–154.

Bhandari, A., Evans, D., Sargent, T. J., 2017. Optimal Fiscal-Monetary Policy with Redistribution. Working Paper.

URL http://www.tomsargent.com/research/begs2.pdf

Borwein, J. M., Vanderwerff, J. D., 2010. Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press, New York.

Boucekkine, R., Camacho, C., Zou, B., 2009. Bridging the Gap Between Growth Theory and the New Economic Geography: the Spatial Ramsey Model. Macroeconomic Dynamics 13 (01), 20–25.

Brock, W. A., Xepapadeas, A., Yannacopoulos, A. N., 2014. Optimal Agglomerations in Dynamic Economics. Journal of Mathematical Economics 53, 1–15.

Brunnermeier, M. K., Sannikov, Y., 2016. On The Optimal Inflation Rate. American Economic Review 106 (5), 484–489.

Buera, F. J., Moll, B., 2015. Aggregate Implications of a Credit Crunch: The Importance of Heterogeneity. American Economic Journal. Macroeconomics 7 (3), 1–42.

Cao, D., 2016. Existence of Generalized Recursive Equilibrium in Krusell and Smith (1998). Working Paper.

URL http://faculty.georgetown.edu/dc448/KSExistenceV17.pdf

Chen, Y., Chien, Y., Yang, C., 2017. Aiyagari Meets Ramsey: Optimal Capital Taxation with Incomplete Markets. Working Paper.

URL https://papers.ssrn.com/sol3/papers.cfm?abstract{_}id=2918741

Çinlar, E., 2011. Probability and Stochastics. Springer-Verlag New York.

- Dávila, J., Hong, J. H., Krusell, P., Ríos-Rull, J.-V., 2012. Constrained Efficiency in the Neoclassical Growth Model With Uninsurable Idiosyncratic Shocks. Econometrica 80 (6), 2431–2467.
- Den Haan, W. J., 1996. Heterogeneity, Aggregate Uncertainty, and the Short-Term Interest Rate. Journal of Business & Economic Statistics 14 (4), 399–411.
- Fabbri, G., Faggian, S., Freni, G., 2015. On the Mitra-wan Forest Management Problem in Continuous Time. Journal of Economic Theory 157, 1001–1040.
- Feinberg, E. A., Kasyanov, P. O., Zadoianchuk, N. V., 2012. Average Cost Markov Decision Processes with Weakly Continuous Transition Probabilities. Mathematics of Operations Research 37 (4), 591–607.
- Feinberg, E. a., Kasyanov, P. O., Zadoianchuk, N. V., 2013. Berge's Theorem for Non-Compact Image Sets. Journal of Mathematical Analysis and Applications 397 (1), 255–259.
- Heathcote, J., 2005. Fiscal Policy with Heterogeneous Agents and Incomplete Markets. Review of Economic Studies 72 (1), 161–188.
- Heathcote, J., Storesletten, K., Violante, G. L., 2010. The Macroeconomic Implications of Rising Wage Inequality in the United States. Journal of Political Economy 118 (4), 681–722.
- Hopenhayn, H. A., 1992. Entry, Exit, and firm Dynamics in Long Run Equilibrium. Econometrica 60 (5), 1127–1150.
- Huggett, M., 1993. The Risk-Free Rate in Heterogeneous-Agent Incomplete-Insurance Economies. Journal of Economic Dynamics and Control 17, 953–969.
- Itskhoki, O., Moll, B., 2014. Optimal Development Policies with Financial Frictions. Working Paper. URL http://www.nber.org/papers/w19994
- Kamihigashi, T., 2017. A Generalisation of Fatou's Lemma for Extended Real-Valued Functions on sigma-Finite Measure spaces: with an Application to Infinite-Horizon Optimization in Discrete Time. Journal of Inequalities and Applications 2017 (1), 24.
- Kaplan, G., Moll, B., Violante, G. L., 2016. Monetary Policy According to HANK. Working Paper. URL http://www.princeton.edu/{~}moll/HANK.pdf
- Kaplan, G., Violante, G. L., 2010. How Much Consumption Insurance Beyond Self-Insurance? American Economic Journal: Macroeconomics 2 (4), 53–87.
- Koren, M., Tenreyro, S., 2013. Technological Diversification. American Economic Review 103 (1), 378–414.
- Krusell, P., Mukoyama, T., Smith, A. A., 2011. Asset Prices in a Huggett Economy. Journal of Economic Theory 146 (3), 812–844.
- Krusell, P., Smith, A. A., 1998. Income and Wealth Heterogeneity in the Macroeconomy. Journal of Political Economy 106 (5), 867–896.
- Kuhn, M., 2013. Recursive Equilibria in an Aiyagari-Style Economy with Permanent Income Shocks. International Economic Review 54 (3), 807–835.
- Lucas, R. E., Moll, B., 2014. Knowledge Growth and the Allocation of Time. Journal of Political Economy 122 (1).
- Luenberger, D. G., 1968. Optimisation by Vector Space Methods. John Wiley & Sons.
- Marcet, A., Obiols-Homs, F., Weil, P., 2007. Incomplete Markets, Labor Supply and Capital Accumulation. Journal of Monetary Economics 54 (8), 2621–2635.
- Mas-colell, A., Zame, W. R., 1991. Equilibrium Theory in Infinite Dimensional Spaces. In: Hildenbrand, W., Sonnenschein, H. (Eds.), Handbook of Mathematical Economics, Vol. IV. pp. 1835–1890.
- Mckay, A., Reis, R., 2016. The Role of Automatic Stabilizers in the U.S. Business Cycle. Econometrica 84 (1), 141–194.
- Melitz, M. J., 2003. The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry

- Productivity. Econometrica 71 (6), 1695–1725.
- Miao, J., 2002. Stationary Equilibria of Economies with a Continuum of Heterogeneous Consumers. Working Paper.
 - URL http://people.bu.edu/miaoj/shockid48.pdf
- Miao, J., 2006. Competitive Equilibria of Economies with a Continuum of Consumers and Aggregate Shocks. Journal of Economic Theory 128 (1), 274–298.
- Nuño, G., 2017. Optimal Social Policies in Mean Field Games. Applied Mathematics & Optimization Forthcomin.
- Nuño, G., Moll, B., 2017. Controlling a Distribution of Heterogeneous Agents. Working Paper. URL http://www.princeton.edu/{~}moll/SOHA.pdf
- Nuno, G., Thomas, C., 2017. Monetary Policy with Heterogeneous Agents. Working Paper. URL http://ideas.repec.org/p/red/sed013/356.html
- Park, Y., 2014. Optimal Taxation in a Limited Commitment Economy. Review of Economic Studies 81 (2), 884–918.
- Roger, J., Wets, B., 1973. On Inf-Compact Mathematical Programs. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 426–436.
 - URL https://doi.org/10.1007/3-540-06583-0{_}42
- Sorger, G., 2015. Dynamic Economic Analysis: Deterministic Models in Discrete Time. Cambridge University Press.
 - URL https://books.google.com.au/books?id=yfaboAEACAAJ
- Stachurski, J., 2009. Economic Dynamics: Theory and Computation. MIT Press Books, Cambridge, MA.
- Stokey, N., Lucas, R., 1989. Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge, MA.
- Sun, Y., 2006. The Exact Law of Large Numbers via Fubini Extension and Characterization of Insurable Risks. Journal of Economic Theory 126 (1), 31–69.
- Sun, Y., Zhang, Y., 2009. Individual Risk and Lebesgue Extension Without Aggregate Uncertainty. Journal of Economic Theory 144 (1), 432–443.
- Tao, T., 2010. Epsilon of Room, One: Volume 117 of Graduate Studies in Mathematics. American Mathematical Soc.
 - URL https://books.google.com.au/books?id=DhWarYBllZAC
- Tao, T., 2013. Compactness and contradiction. Americal Mathematical Society.
- Williams, D., 1991. Probability with Martingales. Cambridge University Press.