The goal of this lecture is to introduce a combinatorial approach to the homotopy theory of topological spaces, known as **Kan–Quillen model category of simplicial sets**.

1. Simplicial sets

Definition 1.1. For $n \in \mathbb{Z}_{>0}$, let

$$[n] := \{0 < 1 < \dots < n\}$$

be the totally ordered set with (n + 1) objects. We view it as a category in the standard way.

Definition 1.2. The **simplex category** Δ is the full subcategory of Cat consisting of $[n] \in \mathsf{Cat}$, $n \in \mathbb{Z}_{\geq 0}$, i.e.,

$$\mathsf{Hom}_{\Delta}(\lceil m \rceil, \lceil n \rceil) = \{nondecreasing functions \lceil m \rceil \rightarrow \lceil n \rceil \}.$$

Let Δ_{inj} and Δ_{surj} be the subcategories of Δ consisting of injective and surjective morphisms respectively.

1.3. Let \mathcal{C} be a category. We have

$$\mathsf{Hom}_{\mathsf{Cat}}([n],\mathcal{C}) \simeq \{\text{chains in } \mathcal{C} \text{ of length } n\}.$$

The ubiquitous role of the simplex category Δ in category theory can be explained by the following result.

Proposition 1.4. The functor

$$(1.1) Cat \to \operatorname{\mathsf{Fun}}(\Delta^{\operatorname{\mathsf{op}}},\operatorname{\mathsf{Set}}), \ \mathcal{C} \mapsto \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Cat}}}(-,\mathcal{C})$$

is fully faithful.

Definition 1.5. Let \mathcal{D} be a category.

- A simplicial object of \mathcal{D} is a functor $\Delta^{op} \to \mathcal{D}$.
- A cosimplicial object of \mathcal{D} is a functor $\Delta \to \mathcal{D}$.
- 1.6. Let X be a simplicial object, we often write $X_n := X([n])$, and therefore denote this simplicial object also by X_{\bullet} . Similarly, a cosimplicial object is often denoted by Y^{\bullet} .

Definition 1.7. Write

$$\mathsf{Set}_{\Delta} \coloneqq \mathsf{Fun}(\Delta^{\mathsf{op}}, \mathsf{Set})$$

for the category of simplicial sets.

Example 1.8. The representable functor

$$\operatorname{\mathsf{Hom}}_{\Delta}(-, \lceil n \rceil) : \Delta^{\operatorname{\mathsf{op}}} \to \operatorname{\mathsf{Set}}$$

defines a simplicial set Δ^n , called the n-simplex.

Date: Sep. 20, 2024.

1.9. Let X be a simplicial set. By the Yoneda lemma, we have

$$\mathsf{Hom}_{\mathsf{Set}_{\Delta}}(\Delta^n,X) \simeq X_n.$$

This motivates the following definition:

Definition 1.10. Let X_{\bullet} be a simplicial set. An element $x \in X_n$ is called an n-simplex of X.

Definition 1.11. Let

2

$$N_{\bullet}(-): \mathsf{Cat} \to \mathsf{Set}_{\Delta}$$

be the functor (1.1). For a category C, the simplicial set $N_{\bullet}(C)$ is called the **nerve** of C.

1.12. Proposition 1.4 says the theory of categories can be embedded into the theory of simplicial sets via the construction $\mathcal{C} \mapsto \mathsf{N}_{\bullet}(\mathcal{C})$. Therefore,

Slogan 1.13. Simplicial sets generalize categories.

2. Faces and degeneracies

Definition 2.1. For n > 0, let

$$\delta_n^i: [n-1] \to [n]$$

be the unique functor such that $i \in [n]$ is not in the image.

Let X be a simplicial object in a category \mathcal{D} . The i-th face operator on X_n is the morphism

$$d_i^n \stackrel{\text{def}}{=} X(\delta_n^i) : X_n \to X_{n-1}.$$

Definition 2.2. Let X be a simplicial set and $x \in X_n$ be an n-simplex. The (n-1)-simplex $d_i^n(x)$ is called the *i*-th face of x.

More generally, for any injective functor $\iota : [m] \to [n]$, the m-simplex $X(\iota)(x)$ is called the ι -face of x.

Definition 2.3. For $n \ge 0$, let

$$\sigma_n^i: [n+1] \to [n]$$

be the unique surjective functor that is constant on $\{i, i+1\}$.

Let X be a simplicial object in a category \mathcal{D} . The i-th degeneracy operator on X_n is the morphism

$$s_i^n \stackrel{\text{def}}{=} X(\sigma_n^i) : X_n \to X_{n+1}.$$

Definition 2.4. Let X be a simplicial set and $x \in X_n$ be an n-simplex. The (n+1)-simplex $s_i^n(x)$ is called the i-th degeneracy of x.

More generally, for any surjective functor $\pi : [m] \to [n]$, the m-simplex $X(\pi)(x)$ is called the π -degeneracy of x.

Definition 2.5. Let X be a simplicial set and $x \in X_n$ be an n-simplex. We say x is **non-degenerate** if it is not a degeneracy of any m-simplex with m < n.

2.6. The proof of the following result is elementary and left to the readers.

Lemma 2.7. Any degenerate simplex is a π -degeneracy of some non-degenerate simplex x, and the pair (π, x) is unique.

Exercise 2.8. Any morphism in Δ is equal to a composition of δ 's and σ 's.

2.9. It follows that knowing a simplicial object X_{\bullet} is equivalent to knowing objects X_n and morphisms d_i^n , s_i^n satisfying certain relations. These relations, known as **simplicial identities**, can be written down explicitly:

$$\begin{aligned} d_i \circ d_j &= d_{j-1} \circ d_i, \text{ if } i < j; \\ s_i \circ s_j &= s_j \circ s_{i-1}, \text{ if } i > j; \\ d_i \circ s_j &= \left\{ \begin{array}{ll} s_{j-1} \circ d_i, & \text{if } i < j \\ \text{id}, & \text{if } i = j, j+1 \\ s_j \circ d_{i-1}, & \text{if } i > j+1. \end{array} \right. \end{aligned}$$

Here we omit the superscipts from the notations.

2.10. We can depict the face and degeneracy morphisms as a diagram

$$X_0 \Longrightarrow X_1 \Longrightarrow X_2 \cdots$$

Sometimes people omit the degeneracy morphisms, and use

$$X_0 \rightleftharpoons X_1 \rightleftharpoons X_2 \cdots$$

to indicate a simplicial object, especially when they study the colimit of this diagram¹.

3. Dimension and skeletons

Definition 3.1. Let X be a simplicial set and $k \in \mathbb{Z}$, we say X has **dimension** $\leq k$, or $\dim(X) \leq k$, if every n-simplex of X is degenerate for n > k.

Example 3.2. $\dim(\Delta^n) = n$.

Definition 3.3. Let X be a simplicial set and $k \leq \mathbb{Z}$. The k-skeleton $\mathsf{sk}_k(X)$ of X is the largest simplicial subset of X with dimension $\leq k$.

4. Examples

- 4.1. We first introduce a standard way to draw a simplicial set X_{\bullet} , which is also how people actually think about them.
 - Only non-degenerate simplexes are drawn. Degenerate simplexes "collapse" onto the non-degenerate ones that correspond to them in the sense of Lemma 2.7.
 - (0) For each $v \in X_0$, draw a vertex labelled by v.
 - (1) For each non-degenerate $e \in X_1$, draw an arrow labelled by e from $d_0^1(e)$ to $d_1^1(e)$.
 - (n) For each non-degenerate $\sigma \in X_n$, draw a filled n-simplex labelled by σ , with boundary given by $d_0^n(\sigma), d_1^n(\sigma), \dots, d_n^n(\sigma)^2$.
 - When necessary, put symbols inside the simplexes to indicate the order of its vertices.

Exercise 4.2. Find all the non-degenerate simplexes in Δ^n .

Exercise 4.3. Let $\Delta^1 \times \Delta^1$ be the product taken in Set_Δ . Find all the non-degenerate simplexes in $\Delta^1 \times \Delta^1$.

FIGURE 1. The 3-simplex Δ^3

FIGURE 2. The product $\Delta^1 \times \Delta^1$

Exercise 4.4. In the above example, what would happen if we disallow degeneracies in the definition of simplicial sets, i.e., replacing Δ with Δ_{inj} ?

Example 4.5. Let

$$\partial \Delta^n \stackrel{\mathrm{def}}{=} \mathsf{sk}_{n-1}(\Delta^n)$$

be the (n-1)-skeleton of Δ^n . We call it the **boundary of** Δ^n .

FIGURE 3. The 2-simplex Δ^2 and its boundary $\partial \Delta^2$

Example 4.6. Let Λ_i^n be the largest simplicial subset of Δ^n that does not contain the *i*-th face of the unique non-degenerate n-simplex. We call it the *i*-th horn of of Δ^n .

4.7. The readers might entertain themselves with the following exercise to check their understanding about the definitions.

Exercise 4.8. Classify all simplicial quotient sets of Δ^2 , i.e., simplicial sets X equipped with an epimorphism $\Delta^2 \to X$ in Set_Δ . Hint: there are 31 of them.

 $^{^1}$ In future lectures, we will show that the degeneracy morphisms do not affect the ∞ -colimit/homotopy colimit of a simplicial object.

²Note that these faces can be degenerate.

FIGURE 4. The horns Λ_0^2 , Λ_1^2 and Λ_2^2

FIGURE 5. Some quotients of Δ^2

5. SIMPLICIAL SETS AND TOPOLOGICAL SPACES

5.1. The simplex category Δ can be realized as a subcategory of Top as follows

Construction 5.2. Let

$$|\Delta^n| \stackrel{\mathrm{def}}{=} \left\{ (x_0, \cdots, x_n) \in \mathbb{R}^{n+1}_{\geq 0} \, \big| \, x_0 + \cdots + x_n = 1 \right\}$$

be the standard (topological) n-simplex. We have a functor

$$(5.1) \Delta \to \mathsf{Top}, \lceil n \rceil \mapsto |\Delta^n|$$

sending a functor $f:[m] \to [n]$ to the continuous map

$$|\Delta^m| \to |\Delta^n|, (y_0, \dots, y_m) \mapsto (\sum_{j \in f^{-1}(0)} y_j, \dots, \sum_{j \in f^{-1}(n)} y_j).$$

Proposition 5.3. We view Δ as a full subcategory of Set_Δ via the Yoneda embedding. Then the functor (5.1) can be extended to a colimit-preserving functor

$$|-|: \mathsf{Set}_{\Delta} \to \mathsf{Top},$$

which is unique up to a unique equivalence. We call it the **geometric realization** functor.

This functor admits a right adjoint given by

$$\operatorname{\mathsf{Sing}}:\operatorname{\mathsf{Top}}\to\operatorname{\mathsf{Set}}_\Delta,\,X\mapsto\operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Top}}}(|\Delta^\bullet|,X).$$

We call it the singlular simplicial complex³ functor.

³A better name would be singular simplicial *set* functor because we allow degeneracies.

5.4. The adjoint pair

6

$$|-|: \mathsf{Set}_{\Delta} \longrightarrow \mathsf{Top}: \mathsf{Sing}$$

belongs to the following paradigm in category theory.

Exercise 5.5. Let C_0 be a small category. Define the **category of presheaves on** C_0 to be

$$\mathsf{PShv}(\mathcal{C}_0) \stackrel{\mathrm{def}}{=} \mathsf{Fun}(\mathcal{C}_0^{\mathsf{op}},\mathsf{Set}).$$

(1) Prove that $PShv(C_0)$ is the category **freely generated under small colimits** by C_0 . In other words, for any category \mathcal{D} containing all small colimits, the Yoneda embedding $C_0 \to PShv(C_0)$ induces an equivalence

$$\mathsf{LFun}(\mathsf{PShv}(\mathcal{C}_0), \mathcal{D}) \simeq \mathsf{Fun}(\mathcal{C}_0, \mathcal{D}),$$

where $\mathsf{LFun}(-,-) \subset \mathsf{Fun}(-,-)$ consists of colimit-preserving functors.

(2) Let $F : \mathsf{PShv}(\mathcal{C}_0) \to \mathcal{D}$ be a colimit-preserving functor extending $F_0 : \mathcal{C}_0 \to \mathcal{D}$. Prove that F admits a right adjoint given by

$$G: \mathcal{D} \to \mathsf{PShv}(\mathcal{C}_0), \ d \mapsto \mathsf{Hom}_{\mathcal{D}}(F_0(-), d).$$

Exercise 5.6. Challenge: construct an adjoint pair $L: \mathsf{Set}_\Delta \Longrightarrow \mathsf{Cat}: R$ by applying the above paradigm to the functor $\Delta \to \mathsf{Cat}$. Describe the images of the simplicial sets in §4 under the functor.

5.7. Unlike the nerve functor $N_{\bullet}: \mathsf{Cat} \to \mathsf{Set}_{\Delta}$, the functor $\mathsf{Sing}: \mathsf{Top} \to \mathsf{Set}_{\Delta}$ is not fully faithful. Hence we cannot embed the theory of topological spaces into the theory of simplicial sets. Nevertheless, the following result, established by Quillen in the 1960s (see [Qui06]), says the *homotopy theories* of them are the same.

Theorem 5.8 (Quillen). The adjoint pair

$$|-|: \mathsf{Set}_{\Delta} \longrightarrow \mathsf{Top}: \mathsf{Sing}$$

induces an equivalence between the homotopy theories of topological spaces and simplicial sets.

- 6. Classical model structure on Set_Δ
- 6.1. To explain Quillen's result, we need first define a model structure on Set_{Δ} .

Theorem-Definition 6.2. There exists a model structure on Set_{Δ} given by

- (W) A weak homotopy equivalence is a morphism $f: X \to Y$ such that $|f|:|X_{\bullet}| \to |Y_{\bullet}|$ is a weak homotopy equivalence.
- (C) A cofibration is a monomorphism.
- (F) A Kan fibration is a morphism $f: X \to Y$ that has the right lifting property against all horn inclusions $\Lambda_i^n \to \Delta^n$ for $0 \le i \le n$:

$$\Lambda_i^n \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow f$$

$$\Delta^n \longrightarrow Y.$$

We call it the **classical**, or **Kan-Quillen**, **model structure** on Set_{Δ} . Fibrant objects in this model category are called **Kan complexes**.

Exercise 6.3. Find a fibrant replacement of Δ^1 , i.e., a weak homotopy equivalence $\Delta^1 \to X$ such that X is a Kan complex.

Exercise 6.4. Find a fibrant replacement of $\partial \Delta^2$.

7. Equivalence between homotopy theories

7.1. In this section we explain the meaning of an equivalence between two homotopy theories. Let $F: \mathcal{C} \Longrightarrow \mathcal{D}: G$ be an adjoint pair between model categories⁴. We need to answer the following question:

When does this adjoint pair induce an equivalence between the homotopy theories underlying C and D?

The answer would be

• The adjoint pair $F: \mathcal{C} \Longrightarrow \mathcal{D}: G$ should induce an adjoint pair

$$F': \mathcal{C}[W^{-1}] \Longrightarrow \mathcal{D}[W^{-1}]: G'$$

such that F' and G' are inverse⁵ to each other.

However, to make sense of this, we need to articulate the definition of the functors F' and G'. A touchstone for such a definition is the following example from homological algebra.

Example 7.2. Let A_i be abelian categories such that the projective model structures on $\mathsf{Ch}^{\leq 0}(A_i)$ is well-defined (see [Lecture 2, Example 2.7]). We have

$$\mathsf{Ch}^{\leq 0}(\mathcal{A}_i)[W^{-1}] \simeq \mathsf{D}^{\leq 0}(\mathcal{A}_i),$$

where $\mathsf{D}^{\leq 0}(\mathcal{A}_i)$ is the connective (= non-positive) part of the derived category of \mathcal{A}_i . Let $F_0: \mathcal{A}_1 \to \mathcal{A}_2$ be an additive functor and consider the functor

$$F: \mathsf{Ch}^{\leq 0}(\mathcal{A}_1) \to \mathsf{Ch}^{\leq 0}(\mathcal{A}_2)$$

induced by F_0 . Then we want F' to be the **left derived functor** $\mathbb{L}F$, which can be calculated by

$$\mathbb{L}F(M^{\bullet}) \simeq F(P^{\bullet}),$$

where $P^{\bullet} \to M^{\bullet}$ is a cofibrant replacement, a.k.a. a projective resolution, of M^{\bullet} .

One needs additional assumptions on the functor F_0 to guarantee that $F(P^{\bullet}) \in D^{\leq 0}(A_2)$ does not depend on the choice of P^{\bullet} .

Example 7.3. Dually, for the injective model categories $\mathsf{Ch}^{\geq 0}(\mathcal{A}_i)$, we want to recover the definition of **right derived functors**.

7.4. Note that in the above example, the functor F does not preserve quasi-isomorphisms (because F_0 is not exact). Hence in the general setting of §7.1, we should not ask F or G to preserve weak equivalences between all objects. In particular, we cannot expect the following diagram to commute:

$$\begin{array}{ccc} \mathcal{C} & \longrightarrow \mathcal{C}[W^{-1}] \\ \downarrow & & \downarrow_{F'} \\ \mathcal{D} & \longrightarrow \mathcal{D}[W^{-1}] \end{array}$$

⁴We do not require F or G to preserve (W) or (C) or (F).

⁵The classical terminology would be *quasi-inverse*, i.e., we require $\operatorname{Id} \to G' \circ F'$ and $F' \circ G' \to \operatorname{Id}$ to be equivalences rather than equalities. The latter requirement violates the principle of equivalence hence does not make sense in higher category theory. Therefore we omit the prefix *quasi*.

Nevertheless, in homological algebra, derived functors provide best approximations to such a commutative square. To explain what this means, we need some definitions.

Definition 7.5. Let $\pi: \mathcal{C} \to \mathcal{C}'$ be a functor between categories. For any category \mathcal{E} , we have a functor

$$\pi^* : \operatorname{Fun}(\mathcal{C}', \mathcal{E}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{E})$$

given by precomposing with π . The left (resp. right) adjoint of this functor, when exists, is called the **left** (resp. **right**) **Kan extension** along π , and is denoted by

$$\mathsf{LKE}_{\pi} : \mathsf{Fun}(\mathcal{C}, \mathcal{E}) \to \mathsf{Fun}(\mathcal{C}', \mathcal{E}),$$

$$\mathsf{RKE}_{\pi} : \mathsf{Fun}(\mathcal{C}, \mathcal{E}) \to \mathsf{Fun}(\mathcal{C}', \mathcal{E}).$$

Exercise 7.6. For a functor $f: \mathcal{C} \to \mathcal{E}$, find the universal properties that characterize the functors $\mathsf{LKE}_{\pi}f$ and $\mathsf{RKE}_{\pi}f$. Hint:

are closest to be commutative.

Example 7.7. Let $F_0: A_1 \to A_2$ be as in Example 7.2. Then the left derived functor

$$\mathbb{L}F: \mathsf{D}^{\leq 0}(\mathcal{A}_1) \to \mathsf{D}^{\leq 0}(\mathcal{A}_2)$$

is defined as the right Kan extension⁶ of the functor

$$\mathsf{Ch}^{\leq 0}(\mathcal{A}_1) \xrightarrow{F} \mathsf{Ch}^{\leq 0}(\mathcal{A}_2) \xrightarrow{\pi_2} \mathsf{D}^{\leq 0}(\mathcal{A}_2)$$

along

8

$$\mathsf{Ch}^{\leq 0}(\mathcal{A}_1) \xrightarrow{\pi_1} \mathsf{D}^{\leq 0}(\mathcal{A}_1).$$

In diagram:

(7.1)
$$\mathsf{Ch}^{\leq 0}(\mathcal{A}_1) \xrightarrow{\pi_1} \mathsf{D}^{\leq 0}(\mathcal{A}_1) \\ \downarrow \qquad \qquad \qquad \qquad \downarrow \mathbb{E}^{\mathsf{D}} \mathsf{E}^{\mathsf{RKE}}_{\pi_1}(\pi_2 \circ F) \\ \mathsf{Ch}^{\leq 0}(\mathcal{A}_2) \xrightarrow{\pi_2} \mathsf{D}^{\leq 0}(\mathcal{A}_2).$$

Similarly, the right derived functor is defined as a left Kan extension.

Exercise 7.8. Convince yourself that left derived functor should be a right Kan extension rather than a left one by evaluating (7.1) on a complex M^{\bullet} .

 $^{^6{}m This}$ reversal of handedness is unfortunate but unavoidable.

7.9. Motivated by the above, we can define derived functors in *homotopical* algebra.

Definition 7.10. Let $F: \mathcal{C} \to \mathcal{D}$ be a (plain) functor between model categories. The **left derived functor** of F:

$$\mathbb{L}F: \mathcal{C}[W^{-1}] \to \mathcal{D}[W^{-1}]$$

is defined to be the following right Kan extension

$$(7.2) \qquad \qquad \mathcal{C} \longrightarrow \mathcal{C}[W^{-1}]$$

$$\downarrow F \stackrel{\text{def}}{\longrightarrow} \mathbb{R}KE$$

$$\mathcal{D} \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{D}[W^{-1}].$$

Similarly, the right derived functor is defined as a left Kan extension.

7.11. We can abuse notation and write the natural transformation (7.2) as morphisms

$$\mathbb{L}F(X) \to F(X) \text{ in } \mathcal{D}[W^{-1}]$$

that are functorial for X in C.

Similarly, for a functor $G: \mathcal{D} \to \mathcal{C}$, we have

$$G(Y) \to \mathbb{R}G(Y)$$
 in $\mathcal{C}[W^{-1}]$

that are functorial for Y in \mathcal{D} .

7.12. Note that the definition of derived functors does not use the classes of cofibrations and fibrations. The following result provides a convenient tool to calculate derived functors using these morphisms. See e.g. [DS95, §9].

Theorem 7.13. Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be functors between model categories.

- (1) Suppose F sends weak equivalences between cofibrant objects to weak equivalences. Then the left derived functor $\mathbb{L}F$ exists. Moreover, for any cofibrant object X in C, we have $\mathbb{L}F(X) \stackrel{\sim}{\to} F(X)$.
- (2) Suppose G sends weak equivalences between fibrant objects to weak equivalences. Then the right derived functor $\mathbb{R}G$ exists. Moreover, for any fibrant object Y in \mathcal{D} , we have $G(Y) \xrightarrow{\tilde{\sim}} \mathbb{R}G(Y)$.

Exercise 7.14. Explain how to calculate the left/right derived functor using cofibrant/fibrant replacements. What do you get for Example 7.2?

7.15. Motivated by the above, we make the following definition.

Proposition-Definition 7.16. Let $F: \mathcal{C} \Longrightarrow \mathcal{D}: G$ be an adjoint pair between model categories. The following conditions are equivalent:

- (i) F preserves cofibrations and acyclic cofibrations;
- (ii) G preserves fibrations and acyclic fibrations;
- (iii) F preserves cofibrations and G preserves fibrations;
- (iv) F preserves acyclic cofibrations and G preserves acyclic fibrations.

When these conditions hold, we say $F: \mathcal{C} \Longrightarrow \mathcal{D}: G$ is a **Quillen adjunction**, and call F (resp. G) a **left** (resp. **right**) **Quillen functor**.

Exercise 7.17. Let $F: \mathcal{C} \Longrightarrow \mathcal{D}: G$ be a Quillen adjunction. Show that conditions in Theorem 7.13 hold.

Proposition 7.18. Let $F: \mathcal{C} \Longrightarrow \mathcal{D}: G$ be a Quillen adjunction. We have a natural adjunction

$$\mathbb{L}F: \mathcal{C}[W^{-1}] \longleftrightarrow \mathcal{D}[W^{-1}]: \mathbb{R}G.$$

7.19. We are finally ready to give a precise definition to equivalences between homotopy theories.

Definition 7.20. A Quillen adjunction $F: \mathcal{C} \Longrightarrow \mathcal{D}: G$ is called a **Quillen** equivalence if the induced adjunction

$$\mathbb{L}F: \mathcal{C}[W^{-1}] \Longrightarrow \mathcal{D}[W^{-1}]: \mathbb{R}G$$

is an equivalence between categories.

8. Conclusion

Theorem 8.1 (Quillen). The adjoint pair

$$|-|: \mathsf{Set}_{\wedge} \longrightarrow \mathsf{Top}: \mathsf{Sing}$$

is a Quillen equivalence between the classical model structures on both sides.

8.2. Next time, we will construct a Quillen equivalence

$$\mathfrak{C}: \mathsf{Set}^\mathsf{Joyal}_\Delta \Longrightarrow \mathsf{Cat}_\Delta: \mathfrak{N}$$

where

- $\mathsf{Set}^\mathsf{Joyal}_\Delta$ is Joyal model structure on the category of simplicial sets;
- Cat_Δ is the category of small **simplicial categories**, i.e., Set_Δ -enriched categories. We will equip it with the model structure induced from the classical model structure on Set_Δ .

This will identify the homotopy theories underlying these model categories.

On the other hand, Quillen's Theorem 8.1 implies the homotopy theories of Cat_{Δ} and $\mathsf{Cat}_{\mathsf{Top}}$ are equivalent. Combining with the homotopy hypothesis ([Lecture 2, Slogan 0.1]), we will obtain strong evidences for the following:

theory of $(\infty,1)$ -categories = homotopy theory underlying $\mathsf{Set}^\mathsf{Joyal}_\Delta$

Exercise A.1. Let C and D be model categories. Suppose we have an adjoint pair $F': C[W^{-1}] \Longrightarrow \mathcal{D}[W^{-1}]: G'$, is it always possible to lift it to a Quillen adjunction? How about Quillen equivalences?

APPENDIX B. QUILLEN'S COTANGENT COMPLEX

Exercise B.1. People say:

The cotangent complex functor is the left derived functor of the Kähler differentials functor.

Make sense of this statement using derived functors for model categories.

References

[DS95] William G Dwyer and Jan Spalinski. Homotopy theories and model categories. Handbook of algebraic topology, 73(126):21, 1995.

[Qui06] Daniel G Quillen. Homotopical algebra, volume 43. Springer, 2006.