Analiza 2a

27. oktober 2024

Kazalo

Funk	cije v	reč spremenljivk
1.1 I	Prosto	or \mathbb{R}^n
]	1.1.1	Prostor \mathbb{R}^n
1	1.1.2	Zaporedja v \mathbb{R}^n
1.2 7	Zvezno	ost preslikav iz \mathbb{R}^n v \mathbb{R}^m
1	1.2.1	Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}
1	1.2.2	Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m
.3 I	Parcial	lni odvodi in diferenciabilnost
]	1.3.1	Parcialni odvod
1	1.3.2	Diferenciabilnost
1	1.3.3	Višji parcialni odvodi
1	1.3.4	Diferenciabilnost preslikav
4 T	[===1= =	inanliaitai funlaiii

1 Funkcije več spremenljivk

1.1 Prostor \mathbb{R}^n

1.1.1 Prostor \mathbb{R}^n

Definicija 1.1.1. Prostor \mathbb{R}^n je kartezični produkt $\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n}$. Na njem definiramo seštevanje in množenje s skalarjem

po komponentah. S tema operacijama je $(\mathbb{R},+,\cdot)$ vektorski prostor nad $\mathbb{R}.$ Posebej definiramo še skalarni produkt

$$x \cdot y = \sum_{i=1}^{n} x_i y_i,$$

ki nam da normo $||x||=\sqrt{x\cdot x}$ in metriko d(x,y)=||x-y||. (\mathbb{R}^n,d) je tako metrični prostor.

Definicija 1.1.2. Naj bosta $a, b \in \mathbb{R}^n$ vektorja, za katera je $a_i \leq b_i$ za vse $i \in \{1, ..., n\}$. Zaprt kvader, ki ga določata a in b, je množica

$$[a, b] = \{x \in \mathbb{R}^n \mid \forall i \in \{1, \dots, n\} : a_i \le x_i \le b_i\}.$$

Podobno definiramo odprt kvader kot

$$(a,b) = \{x \in \mathbb{R}^n \mid \forall i \in \{1,\ldots,n\} : a_i < x_i < b_i\}.$$

Opomba. Odprte množice v normah $||x||_{\infty}$ in $||x||_2$ so iste.

Izrek 1.1.3. Množica $K \subseteq \mathbb{R}^n$ je kompaktna natanko tedaj, ko je zaprta in omejena.

1.1.2 Zaporedja v \mathbb{R}^n

Definicija 1.1.4. Zaporedje $v \mathbb{R}^n$ je preslikava $a : \mathbb{N} \to \mathbb{R}^n$. Namesto a(m) pišimo $a_m, a_m = (a_1^m, \dots, a_n^m)$.

Opomba. Zaporedje v \mathbb{R}^n porodi n zaporedij v \mathbb{R} .

Trditev 1.1.5. Naj bo $(a_m)_m$ zaporedje v \mathbb{R}^n , $a_m = (a_1^m, \dots, a_n^m)$. Velja:

Zaporedje $(a_m)_m$ konvergia \Leftrightarrow konvergira zaporedja $(a_1^m)_m, \ldots, (a_n^m)_m$.

V primeru konvergence velja:

$$\lim_{m \to \infty} a_m = (\lim_{m \to \infty} a_1^m, \dots, \lim_{m \to \infty} a_n^m).$$

Dokaz. Definicija limite.

1.2 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

1.2.1 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}

Definicija 1.2.1. Če je m=1, potem preslikave rečemo funkcija.

Definicija 1.2.2. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Naj bo $a\in D$. Preslikava f je zvezna v točki a, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x \in D . ||x - a|| \Rightarrow ||f(x) - f(a)||.$$

Preslikava f je zvezna na D, če je zvezna v vsaki točki $a \in D$.

Trditev 1.2.3. Naj bo $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ preslikava. Naj bo $a \in D$. Preslikava f je zvezna v točki a natanko tedaj, ko za vsako zaporedje $(x_n)_n, \ x_n \in D$, ki konvergira proti a, zaporedje $(f(x_n))_n, \ f(x_n) \in \mathbb{R}^m$ konvergira proti f(a).

Definicija 1.2.4. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Preslikava f je enakomerno zvezna na D, če

$$\forall \epsilon > 0. \exists \delta > 0. \forall x, x' \in D. ||x - x'|| < \delta \Rightarrow ||f(x) - f(x')|| < \epsilon.$$

Trditev 1.2.5. Zvezna preslikava na kompaktne množice je enakomerno zvezna.

Trditev 1.2.6. Naj bo $f: K^{\text{komp}} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ zvezna preslikava. Potem je $f_*(K)$ kompaktna.

Definicija 1.2.7. Preslikava $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ je C-lipschitzova, če

$$\exists C \in \mathbb{R} . \forall x, x' \in D . ||f(x) - f(x')|| \le C||x - x'||.$$

Trditev 1.2.8. Za preslikavo $f: D \to X'$ velja:

f je C-lipschitzova $\Rightarrow f$ je enakomerno zvezna $\Rightarrow f$ je zvezna.

Trditev 1.2.9. Naj bosta $f, g: D \subset \mathbb{R}^n \to \mathbb{R}$ zvezni funkciji v $a \in D$. Naj bo $\lambda \in \mathbb{R}$. Tedaj so v a zvezni tudi funkcije:

$$f + g$$
, $f - g$, λf , fg .

Če za vsak $x \in D$, $g(x) \neq 0$, tedaj so v a zvezna tudi funkcija:

 $\frac{f}{g}$.

Trditev 1.2.10. Kompozitum zveznih preslikav je zvezna preslikava.

Dokaz. Z zaporedji kot pri analizi 1.

Zgled. Nekaj primerov zveznih preslikav.

- Preslikava $\Pi_j(x_1,\ldots,x_n)=x_j$ je zvezna na \mathbb{R}^n za vsak $j=1,\ldots,n$.
- Vse polinomi v *n*-spremenljivkah so zvezne funkcije na \mathbb{R}^n .
- Vse racionalne funkcije so zvezne povsod, razen tam, kjer je imenovalec enak 0.

Definicija 1.2.11. Preslikava $f:D\subset\mathbb{R}^n\to\mathbb{R}$ je funkcija n-spremenljivk.

Opomba. Naj bo (M,d) metrični prostor in $N \subset M$. Naj bo $f: M \to \mathbb{R}$ zvezna funkcija na M. Potem $f|_N$ je tudi zvezna funkcija na N.

Trditev 1.2.12. Naj bosta $D \subseteq \mathbb{R}^n$ in $D_j = \Pi_j(D)$. Naj bo $a \in D$, $a = (a_1, \dots, a_n)$ in $f : D \to \mathbb{R}$ zvezna v a. Tedaj za vsak $j = 1, \dots, n$ funkcija $\varphi_j : D_j \to \mathbb{R}$, $\varphi_j(t) = f(a_1, \dots, a_{j-1}, t, a_{j+1}, \dots, a_n)$ zvezna v a_j .

Dokaz. Definicija zveznosti v točki.

Opomba. Če je funkcija več spremenljivk zvezna v neki točki $a \in \mathbb{R}^n$, je zvezna tudi kot funkcija posameznih spremenljivk.

Zgled. Naj bo $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna kot funkcija vsake spremenljivke posebej? Ali je f zvezna na \mathbb{R}^2 ?

Zgled. Naj bo $f(x,y) = \begin{cases} \frac{2x^2y}{x^4+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna kot funkcija vsake spremenljivke posebej? Ali je zvezna na vsaki premici? Ali je f zvezna na \mathbb{R}^2 ?

Opomba. Zgleda pokažeta, da obrat v prejšnji trditvi ne velja.

Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Naj bo $D \subseteq \mathbb{R}^n$ in $F: D \to \mathbb{R}^m$ preslikava. Naj bo $x \in D$, potem $F(x) \in \mathbb{R}^m$, $F(x) = y = (y_1, \dots, y_m)$. Lahko pišemo $F(x) = (f_1(x), \dots, f_m(x))$. Torej F določa m funkcij n-spremenljivk.

Trditev 1.2.13. Naj bo $a \in D \subseteq \mathbb{R}^n$. Naj bo $F = (f_1, \dots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Preslikava F je zvezna v $a \Leftrightarrow f_1, \ldots, f_m$ so zvezne v a.

Dokaz. Definicija zveznosti v točki.

Opomba. Linearne preslikave so zvezne, saj so vse koordinatne funkcije linearne (polinomi 1. stopnje).

Zgled (Omejenost linearnih preslikav). Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava, potem

$$\exists M \in \mathbb{R} . M \ge 0 . \forall x \in \mathbb{R}^n . x \ne 0 . \frac{||\mathcal{A}x||}{||x||} \le M.$$

Lahko zapišemo sup $\frac{||\mathcal{A}x||}{||x||} = \sup_{||x||=1} ||\mathcal{A}x|| = ||A||$. Dobimo eno izmed norm na matrikah. Trdimo: Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Tedaj je \mathcal{A} zvezna na \mathbb{R}^n . Zveznost linearnih preslikav je ekvivalentna zveznosti v točki 0. Vse skupaj je ekvivalentno omejenosti linearnih preslikav.

Dokaz. Definicija zveznosti in omejenosti.

Definicija 1.2.14. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Preslikavo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$, $x \mapsto \mathcal{A}x + b$, $b \in \mathbb{R}^m$ imenujemo afina preslikava.

1.3 Parcialni odvodi in diferenciabilnost

1.3.1 Parcialni odvod

Definicija 1.3.1. Naj bo $f: D \subset \mathbb{R}^n \to \mathbb{R}$ funkcija. Naj bo $a = (a_1, \dots, a_n) \in D$ notranja točka. Funkcija f je parcialno odvedljiva po spremenljivki x_i v točki a, če obstaja limita

$$\lim_{h\to 0} \frac{f(a_1,\ldots,a_{j-1},a_j+h,a_{j+1},\ldots,a_n)-f(a_1,\ldots,a_n)}{h},$$

oz. če je funkcija

$$x_j \mapsto f(a_1, \dots, a_{j-1}, x_j, a_{j+1}, \dots, a_n)$$

odvedliva v točki a_i .

Če je ta limita obstaja, je to parcialni odvod funkcije f po spremenljivki x_j v točki a. Oznaki: $\frac{\partial f}{\partial x_j}(a)$, $f_{x_j}(a)$, $(D_j f)(a)$.

Opomba. Vse elementarne funkcije so parcialno odvedljive po vseh spremenljivkah tam, kjer so definirane.

Zgled. Naj bo $f(x,y,z) = e^{x+2y} + \cos(xz^2)$. Izračunaj $f_x(x,y,z)$, $f_y(x,y,z)$, $f_z(x,y,z)$.

1.3.2 Diferenciabilnost

Definicija 1.3.2. Naj bo $f: D \subset \mathbb{R}^n \to \mathbb{R}$ funkcija. Naj bo $a = (a_1, \dots, a_n) \in D$ notranja točka. Funkcija f je diferenciabilna v točki a, če obstaja tak linearen funkcional $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$, da velja:

$$f(a+h) = f(a) + \mathcal{L}(h) + o(h),$$

kjer

$$\lim_{h \to 0} \frac{||o(h)||}{||h||} = 0.$$

Opomba. Če je tak \mathcal{L} obstaja, je enolično določen.

Dokaz. Pokažemo, da iz $\mathcal{L}(h) = (\mathcal{L}_1 - \mathcal{L}_2)(h) = (o_2 - o_1)(h) = o(h)$ sledi, da je L = 0.

Definicija 1.3.3. Če je f diferenciabilna v a je \mathcal{L} natanko določen in ga imenujemo diferencial funkcije f v točki a. Oznaka: $\mathcal{L} = df_a$. Linearen funkcional \mathcal{L} imenujemo tudi odvod funkcije f v točki a. Oznaka: (Df)(a).

Opomba. Recimo, da je funkcija f diferenciabilna v točki a. Preslikava $h \mapsto f(a) + (df_a)(h)$ je najboljša afina aproksimacija funkcije $h \to f(a+h)$.

Trditev 1.3.4. Naj bo $f: D \subset \mathbb{R}^n \to \mathbb{R}$ diferenciabilna v notranji točki $a \in D$. Tedaj je f v točki a parcialno odvedljiva po vseh spremenljivkah. Poleg tega je zvezna v točki a. Pri tem za $h = (h_1, \ldots, h_n)$ velja:

$$(df_a)(h) = \frac{\partial f}{\partial x_1}(a) \cdot h_1 + \ldots + \frac{\partial f}{\partial x_n}(a) \cdot h_n = f_{x_1}(a) \cdot h_1 + \ldots + f_{x_n}(a) \cdot h_n$$

Opomba. Naj bo $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$ linearen funkcional, $x \in \mathbb{R}^n$, potem $\mathcal{L}(x) = l_1 x_1 + \ldots + l_n x_n = \begin{bmatrix} l_1 & \ldots & l_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$,

kjer $\begin{bmatrix} l_1 & \dots & l_n \end{bmatrix}$ matrika linearnega funkcionala glede na standardne baze.

Dokaz. Zveznost pokažemo z limito. Za parcialno odvedljivost poglejmo kaj se dogaja za $h = (h_1, 0, \dots, 0)$.

Opomba. Trditev pove, da je $(df_a)(h) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(a) & \dots & \frac{\partial f}{\partial x_n}(a) \end{bmatrix} \cdot \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix} = (\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)) \cdot (h_1, \dots, h_n).$

Zapis: $(\vec{\nabla}f)(a) = (\operatorname{grad} f)(a) = (\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)).$

Vektor (grad f)(a) imenujemo gradient funkcije f v točki a. Operator $\vec{\nabla} = (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n})$ je operator Nabla.

Zgled. Naj bo $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f diferenciabilna?

Zgled. Naj bo $f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna? Ali je f parcialno odvedljiva? Ali je f diferenciabilna?

Opomba. Zgleda pokažeta, da obrat v prejšnji trditvi ne velja

Izrek 1.3.5. Naj bo $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija in naj bo $a \in D$ notranja točka. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah v točki a in so parcialni odvodi zvezni v točki a. Tedaj je f diferenciabilna v točki a.

Dokaz. Za n = 2. Definicija diferenciabilnosti + 2-krat Lagrangeev izrek.

1.3.3 Višji parcialni odvodi

Naj bo $f: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah na $D: f_{x_1}, \ldots, f_{x_n}$. To so tudi funkcije n-spremenljivk in morda so tudi te parcialno odvedljive po vseh oz. nekatareih spremenljivkah.

Trditev 1.3.6. Naj bo funkcija f definirana v okolici $a \in \mathbb{R}^n$. Naj bosta $i, j \in \{1, 2, ..., n\}$. Denimo, da na tej okolici obstajata $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_j}$ in tudi druga odvoda $\frac{\partial}{\partial x_j}(\frac{\partial f}{\partial x_i})$, $\frac{\partial}{\partial x_i}(\frac{\partial f}{\partial x_j})$. Če sta $\frac{\partial}{\partial x_j}(\frac{\partial f}{\partial x_i})$, $\frac{\partial}{\partial x_i}(\frac{\partial f}{\partial x_j})$ zvezna v a, potem sta enaka v točki a:

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (a) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (a).$$

Dokaz. Dovolj za n = 2.

Definiramo J = f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b) in $\varphi(x) = f(x,b+k) - f(x,b)$, $\psi(y) = f(a+h,y) - f(a,y)$. Zapišemo J s pomočjo funkcij φ , ψ ter uporabimo 2-krat Lagrangeev izrek in upoštevamo zveznost.

Opomba. Pravimo, da parcialni odvodi komutirajo in pišemo $\frac{\partial^2 f}{\partial x_i \partial x_i}$.

Definicija 1.3.7. Naj bo $D^{\text{odp}} \subseteq \mathbb{R}^n$. Vektroski prostor vseh k-krat zvezno parcialno odvedljivih funkcij označimo z $C^k(D)$. Prostor gladkih funkcij je $C^{\infty}(D) = \bigcap_{k=1}^{\infty} C^k(D)$. Prostor zveznih funkcij na D je C(D).

Opomba. Funkcija $f \in C^k(D)$, če obstajajo vse parcialni odvodi funkcije f do reda k in so vse ti parcialni odvodi zvezni na D.

1.3.4 Diferenciabilnost preslikav

Definicija 1.3.8. Naj bo $F:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava, $a\in D$ notranja točka. Preslikava F je diferenciabilna v točki a, če obstaja taka linearna preslikava $\mathcal{L}:\mathbb{R}^n\to\mathbb{R}^m$, da velja:

$$F(a+h) = F(a) + \mathcal{L}(h) + o(h),$$

kjer je $\lim_{h\to 0}\frac{|o(h)|_m}{|h|_n}.$

Preslikavo \mathcal{L} imenujemo diferencial F v točki a. Oznaka: dF_a . Imenujemo ga tudi odvod F v točki a. Oznaka: (DF)(a).

Opomba. Kot pri funkcijah, če je tak \mathcal{L} obstaja, je enolično določen.

Zgled. Obravnavaj diferenciabilnost preslikav:

- $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna, $F(x) = \mathcal{A}x$.
- $F: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, \ F(X) = X^2$. Namig: S pomočjo neenakosti CSB pokažimo, da $|H^2| \leq |H|^2$.

Izrek 1.3.9. Naj bo $a \in D$ notranja točka. Naj bo $F = (f_1, \dots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Preslikava F je diferenciabilna v $a \in D \Leftrightarrow \text{so } f_1, \dots, f_m$ diferenciabilne v a.

Tedaj

$$(DF)(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{bmatrix}$$

Dokaz. (\Rightarrow) Zapišemo enakost $F(a+h) = F(a) + dF_a(h) + o(h)$ po komponentah. (\Leftarrow) Definicija diferenciabilnosti.

Posledica 1.3.9.1. Naj bo $a \in D$ notranja točka. Naj bo $F = (f_1, \dots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Če so vse funkcije f_1, \ldots, f_m v točki a parcialno odvedlivi po vseh spremenljivkah in so ti vse odvodi zvezni v točki a, potem je F diferenciabilna v točki a.

Zgled. Naj bo $F(x,y,z)=(x^2+2y+e^z,xy+z^2),\ f:\mathbb{R}^3\to\mathbb{R}^2.$ Določi (DF)(1,0,1).

Opomba. Preslikava $F: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ je razreda $C^k(D)$ oz. je k-krat zvezno odvedljiva, če so $f_1, \ldots, f_m \in C^k(D)$.

Izrek 1.3.10 (Verižno pravilo). Naj bo $a \in D \subseteq \mathbb{R}^n$ notranja točka. Naj bo $b \in \Omega \subseteq \mathbb{R}^m$ notranja točka. Naj bo $F:D \to \Omega$ diferenciabilna v točki a in velja F(a)=b. Naj bo $G:\Omega \to \mathbb{R}^k$ diferenciabilna v točki a in velja:

$$D(G \circ F)(a) = (DG)(b) \cdot (DF)(a) = (DG)(F(a)) \cdot (DF)(a).$$

Označimo $F(x_1, ..., x_n) = (f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$ in $G(y_1, ..., y_m) = (g_1(y_1, ..., y_m), ..., g_k(y_1, ..., y_m))$. Potem

$$D(G \circ F)(a) = \begin{bmatrix} \frac{\partial g_1}{\partial y_1} & \cdots & \frac{\partial g_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial g_k}{\partial y_1} & \cdots & \frac{\partial g_k}{\partial y_m} \end{bmatrix} (b) \cdot \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} (a)$$

Dokaz. Definicija diferenciabilnosti.

Posledica 1.3.10.1 (k = 1, G = g funkcija). Naj bo $\Phi(x_1, ..., x_n) = g(f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$. Potem

$$\frac{\partial \Phi}{\partial x_j}(a) = \frac{\partial g}{\partial y_1}(b) \cdot \frac{\partial f_1}{\partial x_j}(a) + \frac{\partial g}{\partial y_2}(b) \cdot \frac{\partial f_2}{\partial x_j}(a) + \ldots + \frac{\partial g}{\partial y_m}(b) \cdot \frac{\partial f_m}{\partial x_j}(a)$$

Zgled. Naj bo $F(x,y)=(x^2+y,xy),\ g(u,v)=uv+v^2.$ Naj bo $\Phi=g\circ F.$ Izračunaj $(D\Phi)(x,y)$ na dva načina.

1.4 Izrek o implicitni funkciji

Radi bi poiskali zadostni pogoji na funkcijo f(x,y), da bi enačba f(x,y) = 0 lokalno v okolici točki (a,b), za katero velja f(a,b) = 0, predstavljala graf funkcije $y = \varphi(x)$.

Izrek 1.4.1 (Osnovna verzija izreka o implicitni funkciji). Naj bo $D^{\text{odp}} \subseteq \mathbb{R}^2$. Naj bo $(a, b) \in D$. Naj bo $f \in C^1(D)$ in naj velja:

- 1. f(a,b) = 0.
- 2. $f_y(a,b) \neq 0$.

Potem obstajata $\delta > 0$ in $\epsilon > 0$, da velja: $I \times J \subseteq D$, kjer je $I = (a - \delta, a + \delta)$, $J = (b - \epsilon, b + \epsilon)$ in enolično določena C^1 funkcija $\varphi : I \to J$, za katero velja:

- 1. $\varphi(a) = b$.
- 2. $\forall (x,y) \in I \times J$. $f(x,y) = 0 \Leftrightarrow y = \varphi(x)$ (rešitve enačbe f(x,y) = 0 so natanko graf funkcije φ).
- 3. $\varphi'(x) = -\frac{f_x(x,\varphi(x))}{f_y(x,\varphi(x))}$ za vsak $x \in I$.