Homework

Steve Mazza

August 4, 2013

Midterm Project

Problem 1

For all of the following, see the attached MATLAB file for the calculation.

(a)

step: 0.6656 **ramp:** 87.1807 **accel:** 1.1663e+04

(b)

step: 0.8002 **ramp:** 19.1654 **accel:** 7.0527e+03

(c)

step: 3.9954

ramp: 4.4321e+04 **accel:** 1.9645e+08

(d)

step: 0.8999ramp: 206.1327accel: 2.1452e+05

Problem 2

- (a)
- (b)
- (c)
- (d)
- (e)
- **(f)**
- (g)

Homework 7

Problem 1

Root-locus plots of the following functions. . .

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Problem 4

First we apply our reduction rules to the system as follows:

$$G(s) = \frac{20}{(s+1)(s+4)}$$

$$= \frac{\frac{20}{(s+1)(s+4)}}{1 + \frac{20}{(s+1)(s+4)} \times K}$$

$$= \frac{20}{s^2 + 5s + 4 + 20K} \times \frac{1}{s}$$

$$= \frac{20}{\frac{20}{s^3 + 5s^2 + 4s + 20Ks}}$$

$$= \frac{20}{s^3 + 5s^2 + 4s + 20Ks}$$

$$= \frac{20}{s^3 + 5s^2 + 4s + 20Ks + 20}$$

Problem 5

Determine damping ration, ζ , for maximum overshoot, M_p , given:

$$M_p = e^{-\left(\zeta/\sqrt{1-\zeta^2}\right)\pi}$$
$$0.1 = e^{-\left(\zeta/\sqrt{1-\zeta^2}\right)\pi}$$
$$\zeta \approx 0.826085$$