Elementos de Probabilidades e Teoria de Números

Teste - Teoria de Números

		duração: 2	horas _	
Nome:		Número:		
	Grupo I			
Relativamente às questões deste grupo, indique para cada alínea se a afirmação é verdadeira (V) ou falsa (F), marcando x no quadrado respetivo.				
(1),	marcanae x ne quadrade respensor		V	F
1.	O resto r da divisão de -637 por 26 é tal que $0 \leq r \leq 13$.			
2.	Para quaisquer $a,b,c\in\mathbb{Z}$, se $a\nmid b$ e $a\nmid c$, então $a\nmid bc$.			
3.	Se $a,b\in\mathbb{N}$ e m.d.c. $(a,b)=3$, então m.m.c. $(a,b)=\frac{a}{3}\times\frac{b}{3}$.			
4.	Para quaisquer $a,b\in\mathbb{Z}$ tais que $a\neq 0$ ou $b\neq 0$, $\mathrm{m.d.c.}(a,b) (5a-6b).$			
5.	Para quaisquer $a,b,c\in\mathbb{Z}$, se $a\leqb$, então $\mathrm{m.m.c.}(a,c)\leq\mathrm{m.m.c.}(b,c).$			
6.	Seja $n \in \mathbb{N}$ tal que $1 < n < 280$. Se n não admite um divisor d tal que $1 <$ então n é um número primo.	$< d \le 14$,		
7.	Sejam $a,p\in\mathbb{Z}$ e $n\in\mathbb{N}$. Se p é um número primo e $p a^n$, então $p^n a^n$.			
8.	Para todo o inteiro a , se $2a \equiv 6 \pmod{10}$, então $a \equiv 3 \pmod{10}$.			
9.	O sistema de congruências lineares $\left\{\begin{array}{l} x\equiv 8(\bmod{15})\\ x\equiv -1(\bmod{18}) \end{array}\right. \text{ admite soluções}.$			
10.	Todo o inteiro pode ser escrito como combinação linear de 9 e 11.			
Grupo II				

Para cada uma das questões deste grupo, indique a sua resposta no espaço disponibilizado a seguir à questão, justificando sucintamente.

1. Considere as divisões seguintes

Indique o m.d.c. (1591,629) e exprima-o como combinação linear de 1591 e 629.

Resposta:

2. Dê exemplo de um sistema completo de resíduos módulo 7 que contenha cinco inteiros negativos ímpares e dois inteiros positivos que sejam congruentes com 2 módulo 4. Resposta: 3. Determine o resto de $37^{145}+4$ na divisão por 7. Resposta: 4. Indique os inteiros que podem ser representados por $\overline{60a65b}$ e que são simultaneamente divisíveis por 4 e por 11. Resposta:

Grupo III

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

- 1. Para a organização de uma festa foram adquiridas algumas bebidas e snacks. Na compra de latas de refrigerante e de bolachas foram gastos 28,6 euros (28,6 euros = 2860 cêntimos), sendo que cada lata de refrigerante custou 91 cêntimos e o preço de cada pacote de bolachas foi de 65 cêntimos.
 - (a) Escreva uma equação diofantina cuja resolução permita obter o número de latas de refrigerante e o número de pacotes de bolachas adquiridos.
 - (b) Sabendo que foram comprados pelo menos 12 pacotes de bolachas e 18 latas de refrigerantes, determine o número de pacotes de bolachas e o número de latas de refrigerante que foram adquiridos para a festa
- 2. Resolva a congruência linear $8x \equiv 574 \pmod{18}$ e indique duas soluções, uma positiva e outra negativa, não conguentes entre si módulo 18.
- 3. Considere o sistema de congruências lineares (S) a seguir indicado

$$(S) \left\{ \begin{array}{ll} x & \equiv & 1 \, (\mathrm{mod} \, 4) \\ x & \equiv & 2 \, (\mathrm{mod} \, 3) \\ x & \equiv & 3 \, (\mathrm{mod} \, 5) \end{array} \right.$$

Recorrendo ao Teorema Chinês dos Restos, justifique que o sistema (S) é solúvel e resolva-o. Indique a maior solução negativa de (S).

Cotações: Grupo I: 7,5. Grupo II: 6,0. Grupo III: 2,5+1,75+2,25.