

MATH135 S115 Mathematics IA Assignment 2 NAME: <u>Carmichael</u> Adam

Student Id: 41963539

Tutorial Group: D2, Wed 15:00, C5C 238

Tutor: Audrey Markowskei

MACQUARIE University

Department of Mathematics

Due 14:00, 07/05 2015

Please sign the declaration below, and staple this sheet to the front of your solutions. Your assignment must be submitted at the Science Centre, E7A Level 1.

Your assignment must be STAPLED, please do not put it in a plastic sleeve.

PLAGIARISM Plagiarism involves using the work of another person and presenting it as one's own. For this assignment, the following acts constitute plagiarism:

- a) Copying or summarizing another person's work.
- b) Where there was collaborative preparatory work, submitting substantially the same final version of any material as another student.

Encouraging or assisting another person to commit plagiarism is a form of improper collusion and may attract the same penalties.

STATEMENT TO BE SIGNED BY STUDENT

- 1. I have read the definition of plagiarism that appears above.
- 2. In my assignment I have carefully acknowledged the source of any material which is not my own work.

SIGNATURE.....

- 3. I am aware that the penalties for plagiarism can be very severe.
- 4. If I have discussed the assignment with another student, I have written the solutions independently.

	FEEDBACK	
Work	Presentation	Total

First downloaded: 4/5/2015 at 9:2::2

CHAPTER

QUESTION 1

1.1 Questions

Given is the function f determined by $f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$.

- (a) Find the natural domain \mathcal{D} of the given functional expression.
- (b) Look at potential symmetry properties of the function.
- (c) Find the roots of the function, that is, the points $x \in D$ where f(x) = 0.
- (d) Asymptotic analysis: check for the existence of horizontal and vertical asymptotes.
- (e) Investigate the behaviour of the first derivative.
- (f) Investigate the behaviour of the second derivative.
- (g) Collect the results in a table, and determine the type of the critical points.
- (h) Finally, sketch the graph of f, using the previous table as a guideline.

1.2 Solutions

C H A P T E R

QUESTION 2

2.1 Questions

The function arcsinh is the inverse function of sinh.

- (a) Find the derivative of the function given by $x \mapsto \sinh = \frac{e^x e^{-x}}{2}$. Show that the derivative is everywhere (strictly) positive. Infer that sinh is injective. What is the range of this function?
- (b) Use the definition of $\cosh x$ and $\sinh x$ to show that $\cosh^2 x \sinh^2 x = 1$.
- (c) Use the chain rule to find the derivative of the function determined by $x \mapsto \operatorname{arcsinh} x$.

2.2 Solutions

CHAPTER CHAPTER

QUESTION 3

3.1 Questions

Hughes-Hallett et al, 2013. Chapter 3, Section 9, Problem 20:

The speed of sound in dry air is: $f(T) = 331.3\sqrt{1 + \frac{T}{273.15}}$ meters/second where T is the temperature in degrees Celsius. Find a linear function that approximates the speed of sound for temperatures near 0°C.

3.2 Solutions

QUESTION 4

4.1 Questions

Hughes-Hallett et al, 2013. Chapter 4, Section 3, Problem 42:

On the same side of a straight river are two towns, and the townspeapple want to build a pumping station, *S*. See figure 4.1. The pumping station is to be at the river's edge with pipes extending straight to the two towns. Where should the pumping station be located to minimize the total length of pipe?

4.2 Solutions

County needs to order about 6.4 miles of pipe. An exact value is presented following verbose working to solutions.

S, Town 1 and Town 2 are awful names. Let Town 1 be North Drysdale and Town 2 be South Drysdale. Pumping Station will be named the Richard Nixon Pumphouse¹.

Recognise there are two Pythaorean triads to be formed where the pipe forms hypotenuse of both triangles to the Watergate Pumphouse. As given in the diagram, *x* is the distance from the intersection of a due North bearing from North Drysdale to the river. This yields two distances.

¹because it's a watergate.

Figure 4.1: Ye olde map

North Drysdale pipe =
$$\sqrt{1+x^2}$$
 (4.1)

South Drysdale pipe =
$$\sqrt{4^2 + (4 - x)^2}$$
 (4.2)

$$=\sqrt{16 + (16 - 8x + x^2)}\tag{4.3}$$

$$=\sqrt{x^2 - 8x + 32}\tag{4.4}$$

Let Total Pipe be given by the function p(x) such that:

$$p(x) = \text{Total Pipe}$$
 (4.5)

$$=\sqrt{1+x^2}+\sqrt{x^2-8x+32}\tag{4.7}$$

Now we seek global minima of p(x). Using Mathematica, p(x) can be plotted (figure 4.2) using the code:

4.2. SOLUTIONS

Plot[Sqrt[1 + x^2] + Sqrt[32 - 8 x + x^2], $\{x, -2, 4\}$, PlotRange \rightarrow {0,10}, ImageSize \rightarrow Large].

Figure 4.2: Plot of $p(x) = \sqrt{1 + x^2} + \sqrt{x^2 - 8x + 32}$

The minima is somewhere near x = 1 indicating around 1 mile is good guess, but a more precise answer can be found if we take find the derivative of p(x), and then the roots of p'(x) should give us the exact distance for x. From here we can also work out how much pipe is required.²

$$p(x) = \sqrt{1 + x^2} + \sqrt{x^2 - 8x + 32}$$

$$p'(x) = (\sqrt{1 + x^2})' + (\sqrt{x^2 - 8x + 32})'$$
(4.8)

Apply chain rule, let $f(x) = \sqrt{x}$ and $g(x) = (1 + x^2)$ st

$$(f(x))' = f'(g(x)) \cdot g'(x)$$
 (4.9)

$$=\frac{1}{2\sqrt{1+x^2}}\cdot 2x\tag{4.10}$$

 $^{^2} A pologies \ if this \ appears \ highly \ verbose, \ but \ I \ don't \ understand \ my \ own \ working \ unless \ I \ annotate \ it.$

Apply chain rule, let $f(x) = \sqrt{x}$ and $g(x) = (x^2 - 8x + 32)$ st

$$(f(x))' = f'(g(x)) \cdot g'(x)$$
 (4.11)

$$=\frac{1}{2\sqrt{x^2-8x+32}}\cdot(2x-8)\tag{4.12}$$

Sum both derivatives

$$p'(x) = \frac{1}{2\sqrt{1+x^2}} \cdot 2x + \frac{1}{2\sqrt{x^2 - 8x + 32}} \cdot (2x - 8)$$
 (4.13)

Collect like terms

$$=\frac{2x}{2\sqrt{1+x^2}} + \frac{2x-8}{2\sqrt{x^2-8x+32}} \tag{4.14}$$

Divide out the twos

$$=\frac{x}{\sqrt{1+x^2}} + \frac{x-4}{\sqrt{x^2-8x+32}}\tag{4.15}$$

Cross multiply to make a single fraction:

$$=\frac{\left(x\sqrt{x^2-8x+32}\right)+\left((x-4)\sqrt{1+x^2}\right)}{\sqrt{1+x^2}\sqrt{x^2-8x+32}}\tag{4.16}$$

Since we want the roots, we need to find when p'(x) = 0

$$0 = \frac{\left(x\sqrt{x^2 - 8x + 32}\right) + \left((x - 4)\sqrt{1 + x^2}\right)}{\sqrt{1 + x^2}\sqrt{x^2 - 8x + 32}}$$
(4.17)

$$= \left(x\sqrt{x^2 - 8x + 32}\right) + \left((x - 4)\sqrt{1 + x^2}\right) \tag{4.18}$$

$$\left(x\sqrt{x^2 - 8x + 32}\right) = -(x - 4)\sqrt{1 + x^2} \tag{4.19}$$

$$\left(x\sqrt{x^2 - 8x + 32}\right)^2 = \left(-(x - 4)\sqrt{1 + x^2}\right)^2 \tag{4.20}$$

$$(x^{2})(x^{2} - 8x + 32) = (-(x - 4))^{2}(1 + x^{2})$$
(4.21)

$$x^4 - 8x^3 + 32x^2 = (x^2 - 8x + 16)(1 + x^2)$$
(4.22)

$$= x^2 - 8x + 16 + x^4 - 8x^3 + 16x^2 (4.23)$$

$$15x^2 + 8x - 16 = 0 (4.24)$$

Apply quadratic formula

$$(3x+4)(5x-4) = 0 (4.25)$$

$$x = \frac{4}{5}$$
 or $\frac{-4}{3}$ (4.26)

4.2. SOLUTIONS

 $\frac{4}{5}$ = 0.8 miles. The negative solution is discounted because it is west of North Drysdale and South Drysdale is south-east resulting in more pipe than necessary.

Finally, the total amount of pipe necessary can be found substituting $x = \frac{4}{5}$ into the original equation,

$$p(\frac{4}{5}) = \sqrt{1 + \frac{4^2}{5}} + \sqrt{\frac{4^2}{5} - 8\frac{4}{5} + 32}$$
 (4.27)

$$=\sqrt{41}\tag{4.28}$$

$$\approx 6.4\tag{4.29}$$

About 6.4 miles of pipe needs to be ordered.

The Unique Solution

In discussion with colleagues, one unique and interesting solution was recognised, however, impractical.

