Matrices and Determinants - Class XII

Past Year JEE Questions

Questions

Quetion: 01

Let the number 2,b,c be in an A.P. and

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & b & c \\ 4 & b^2 & c^2 \end{bmatrix}.$$
 If det(A) \in [2, 16], then c lies in the interval:

A. [2, 3)

B. [4, 6]

C. $(2 + 2^{3/4}, 4)$

D. $[3, 2 + 2^{3/4}]$

Solutions

Solution: 01

Explanation

2, b, c are in AP.

Let common difference = d

$$\therefore$$
 b = 2 + d and c = 2 + 2d

$$|A| = \begin{bmatrix} 1 & 1 & 1 \\ 2 & b & c \\ 4 & b^2 & c^2 \end{bmatrix}$$

$$C_2 = C_2 - C_1$$

$$C_3 = C_3 - C_1$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ 2 & b-2 & c-2 \\ 4 & b^2-4 & c^2-4 \end{vmatrix}$$

$$= (b-2)(c-2)\begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 4 & b+2 & c+2 \end{vmatrix}$$

$$= (b-2)(c-2)[c+2-b-2]$$

$$= (b-2)(c-2)(c-b)$$

[As
$$b = 2 + d$$
 and $c = 2 + 2d$, then $b - 2 = 4$, $c - 2 = 2d$ and $c - b = d$]

$$= (d) (2d) (d)$$

$$= 2d^3$$

Given $|A| \in [2, 16]$

∴
$$2d^3 \in [2, 16]$$

$$\Rightarrow d^3 \in [1, 8]$$

$$\Rightarrow$$
 d \in [1, 2]

As
$$c = 2 + 2d$$

then
$$c \in [4, 6]$$