

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMËRICA)

FACULTAD DE INGENIERIA ELECTRÓNICA E.A.P. INGENIERIA ELECTRONICA

CURSO DE ELECTROTECNIA

LABORATORIO N° LEYES DE KIRCHHOFF

OBJETIVOS:

- Determinar por cálculo la relación entre la suma de las corrientes que entran en la unión de un circuito eléctrico y la corriente que sale de la unión.
- Determinar por análisis o cálculo la relación entre la suma de las caídas de tensión entre los extremos de resistencias conectadas en serie y la tensión aplicada.

II. INFORME PREVIO:

- 1. Enuncie las Leyes de Kirchhoff. ¿Cuál es la importancia de estas Leyes?
- ¿A qué se denomina "nodo" en un circuito ? ¿A qué se denomina "malla" en un circuito ?
 Diga si es verdadero o falso.
- - a. La ley de nodos de Kirchhoff es frecuentemente usado para calcular corrientes en circuitos complejos ()
 - b. El instrumento indispensable para verificar la ley de nodos de Kirchhoff es el voltímetro ()
 - c. El instrumento indispensable para verificar la ley de mallas de Kirchhoff es el miliamperimetro ()
 - d. Con la ayuda de la 1° y 2° ley de Kirchhoff es posible calcular voltajes y corrientes en circuitos complejos ()
- 4. ¿Qué entiende por "caída de voltaje"?
- 5. ¿Qué determina la polaridad (sentido) de la corriente eléctrica?
- 6. Defina : resistencia interna del amperímetro, resistencia interna del voltímetro, resistencia interna de la fuente de alimentación, corriente máxima de salida de la fuente de alimentación.

III. INSTRUMENTOS Y MATERIALES:

- 01 Fuente de C.C.
- 03 Multímetro (VOM)
- 03 cajas de décadas de resistencias
- Conectores largos, cortos y puntos de prueba para el multímetro

IV. PROCEDIMIENTO:

1. Conecte el circuito de la Fig. 1.

Fig. 1

- 2. Ajuste el voltaje de la fuente de alimentación a 10 voltios. Utilice el voltimetro de c.c no varíe el voltaje de la fuente.
- 3. Mida y anote la intensidad de las corrientes I_1 , I_2 , I_3 y anote los valores experimentales en la Tabla 1.

Datos	I ₁ (mA)	I ₂ (mA)	l ₃ (mA)
Valores teóricos	VIERTY ELEC		,
Valores experimentales	MONITOR AND		

Tabla 1

Fig. 2

5. Mida los voltajes en R₁ y R₂ par los valores de dados en la Tabla 2. Anote los valores experimentales.

,		$R_1 = R_2 = 1.5 \text{ K}\Omega$		$R_1 = 1.5 \text{ K}\Omega$ $R_2 = 1.2 \text{ K}\Omega$		$R_1 = 1 K\Omega$ $R_2 = 500 \Omega$	
		Valor teórico	Valor experimental	Valor teórico	Valor experimental	Valor teórico	Valor experimental
	I (mA)						
	VR ₁						39.0 BE.B
	VR ₂						THE VY DIST

Tabla 2

V. INFORME FINAL:

- 1. Con los datos de la Tabla 1 verifique en cada caso si se cumple la 1° ley de Kirchhoff.
- Con los datos de la Tabla 2 verifique en cada caso si se cumple la 2° ley de Kirchhoff.
 Explique las causas de las discrepancias entre los valores teóricos y experimentales.
- 4. Dar conclusiones.