Operating System
Blen Daniel Assefa

OS 2021 Problem Sheet #12

Problem 12.1: redundant arrays of independent disks

Failure probability = pIdentical storage disks = n

a) Failure probability F_0 of a RAID 0 (striping) configuration of all n disks is:

Probability of not failure for each disk = 1 - pProbability of any one of the disk fails = 1 - (Probability of none of the disks failing)

General expression for n number of disks: $f_0(p, n) = 1 - (1 - p)^n$

b) Failure probability F_1 of a RAID 0 (mirroring) configuration of all n disks is:

Probability of not failure for each disk = pProbability of any one of the disk fails = (Probability of none of the disks failing)

General expression for n number of disks: $f_1(p, n) = (p)^n$

- c) Assumptions:
 - n is an even number

Failure probability of $f_{10}(p, n) = f_0(f_1(p, 2), \frac{n}{2})$

$$f_1(p, 2) = (p)^2$$

 $f_{10}(p, 2) = f_0(p^2, \frac{n}{2})$

Failure probability of $f_{10}(p, 2) = 1 - (1 - p^2)^{\frac{n}{2}}$

- d) Assumptions:
 - n is an even number

Failure probability of
$$f_{01}(p, n) = f_1(f_0(p, \frac{n}{2}), 2)$$

$$f_0(p, \frac{n}{2}) = 1 - (1 - p)^{\frac{n}{2}}$$

$$f_{01}(p, 2) = f_1(1 - (1 - p)^{\frac{n}{2}}, 2)$$

Failure probability of
$$f_{01}(p, 2) = (1 - (1 - p)^{\frac{n}{2}})^2$$

e) I would prefer to use the smallest one which is RAID 10.

Problem 12.2: Logical volume management