Bogdan Alex Georgescu and Bernard Sklar Génie Électrique Communications Numériques June 26, 2023

P1. Probabilité d'erreur

FIGURE 1. Fonctions de densité de probabilité conditionnelle: $p(z|s_1)$ and $p(z|s_2)$.

Pour l'exemple binaire de la Fig. 1, les erreurs peuvent se produire de deux manières. Une erreur, e, se produira lorsque $s_1(t)$ est envoyé, et le bruit de canal a pour résultat que le signal de sortie du récepteur z(T) est inférieur à γ_0 . Le probabilité d'un tel événement est :

(1)
$$P(e|s_1) = P(H_2|s_1) = \int_{-\infty}^{\gamma_0} p(z|s_1) dz$$

Ceci est illustré par la zone ombrée à gauche de γ_0 sur la Fig. 1. De même, une erreur se produit lorsque $s_2(t)$ est émis et le bruit de canal se traduit par z(T), supérieur à γ_0 . La probabilité de cet événement est:

(2)
$$P(e|s_2) = P(H_1|s_2) = \int_{\gamma_0}^{\infty} p(z|s_2)dz$$

La probabilité d'une erreur est la somme des probabilités de toutes les façons dont une erreur peut se produire. Dans le cas binaire, nous pouvons exprimer la probabilité d'erreur sur les bits, P_B , comme suit:

(3)
$$P_B = \sum_{i=1}^{2} P(e, s_i)$$

En combinant les trois équations précédentes, on peut écrire :

(4)
$$P_B = P(H_2|s_1)P(s_1) + P(H_1|s_2)P(s_2)$$

Autrement dit, étant donné que le signal $s_1(t)$ a été transmis, une erreur se produit si l'hypothèse H_2 est choisie, ou donnée que le signal $s_2(t)$ a été transmis, une erreur se produit si l'hypothèse H_1 est choisie. Pour le cas où les probabilités a priori sont égales, c'est-à-dire que $P(s_1) = P(s_2) = \frac{1}{2}$,

(5)
$$P_B = \frac{1}{2}P(H_2|s_1) + \frac{1}{2}P(H_1|s_2)$$

et à cause de la symétrie des fonctions de densité de probabilité:

(6)
$$P_B = P(H_2|s_1) = P(H_1|s_2)$$

La probabilité d'une erreur binaire, P_B , est numériquement égale à la zone sous la "queue" de l'une ou l'autre probabilité fonction, $p(z|s_1)$ ou $p(z|s_2)$, tombant du côté "incorrect" du seuil. On peut donc calculer P_B en intégrant $p(z|s_1)$ entre les bornes $-\infty$ et γ_0 , ou comme indiqué ci-dessous, en intégrant $p(z|s_2)$ entre les bornes γ_0 et ∞ :

(7)
$$P_B = \int_{\gamma_0 = (a_1 + a_2)/2}^{\infty} p(z|s_2) dz$$

où $\gamma_0 = (a_1 + a_2)/2$ est le seuil optimal de la Fig. 1. En remplaçant la vraisemblance $p(z|s_2)$ par sa équivalent gaussien, on a :

(8)
$$P_{B} = \int_{\gamma_{0}=(a_{1}+a_{2})/2}^{\infty} \frac{1}{\sigma_{0}\sqrt{2\pi}} exp \left[-\frac{1}{2} \left(\frac{z-a_{2}}{\sigma_{0}} \right)^{2} \right] dz$$

où σ_0^2 est la variance du bruit sortant du corrélateur. Soit $u=(z-a_2)/\sigma_0$. Alors $\sigma_0 du=dz$ et:

(9)
$$P_B = \int_{u=(a_1-a_2)/(2\sigma_0)}^{u=\infty} \frac{1}{\sqrt{2\pi}} exp\left(-\frac{u^2}{2}\right) du = Q\left(\frac{a_1-a_2}{2\sigma_0}\right)$$

où Q(x), appelée fonction d'erreur complémentaire ou fonction de co-erreur, est un symbole couramment utilisé pour la probabilité sous les queues de la distribution gaussienne. Il est défini comme:

(10)
$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} exp\left(-\frac{u^{2}}{2}\right) du$$

APT. 805 80 POINT MCKAY CR NW, CALGARY, ALBERTA, CANADA, T3B 4W4