Podobieństwo spiralne

Łukasz Skiba

25.09.2023r.

1 Teoria

Def. 1 Podobieństwo spiralne to przekształcenie płaszczyzny, które jest złożeniem jednokładności oraz obrotu w tym samym punkcie.

Ważną obserwacją jest fakt, że dla $A, B \neq X$ istnieje dokładnie jedno podobieństwo spiralne f o środku w X, że f(A) = B.

Twierdzenie 1 (Lemat o podobieństwie spiralnym) Niech proste AC i BD przecinają się w punkcie P, a okręgi (ABP) i (CDP) w punkcie O. Wówczas O jest środkiem unikalnego podobieństwa spiralnego przerzucającego $AB \to CD$.

Dalej będziemy używać zapisu $O:AB\to CD$ oznaczającego, że istnieje podobieństwo spiralne f o środku w O, że f(A)=C i f(B)=D.

Warto również znać kilka ważnych wniosków płynacych z definicji i powyższego lematu:

Wniosek 1 Jeśli $O: AB \to CD$ to również $O: AC \to BD$.

Wniosek 2 Niech $O: AB \to CD$ oraz proste AC i BD przecinają się w P. Wówczas czworokąty OPAB oraz OPCD są cykliczne.

Wniosek 3 Niech $O: AB \to CD$. Niech E i F leżą na prostych AB i CD odpowiednio, tak że $\frac{\overrightarrow{AE}}{\overrightarrow{AB}} = \frac{\overrightarrow{CF}}{\overrightarrow{CD}}$. Wówczas dla tego samego podobieństwa spiralnego f zachodzi f(E) = F ($O: AE \to CF$).

2 Zadania

- 1. Dane są dwa nienakładające się trójkąty równoboczne ABC i ADE o tej samej orientacji. Okręgi opisane na nich przecinają się drugi raz w punkcie X. Udowodnij, że B, X i D są współliniowe.
- 2. Dany jest trójkąt ABC o obwodzie 60. Na boku BC leży punkt D. Okręgi (ABD) i (ADC) przecinają AC i AB w punktach E i F odpowiednio. Wiedząc, że $\angle EBC = \angle BCF$, DE = 8 i DF = 7 oblicz stosunek $\frac{AE}{AF}$.
- 3. Wewnątrz trójkąta ABC, gdzie $\angle A = 60^\circ$ leży punkt P, że $\angle APB = \angle APC = 120^\circ$. Udowodnij, że $\angle APO = 90^\circ$, gdzie O środek (ABC).
- 4. W trójkącie ABC punkt P leży na (ABC). X i Y są rzutami P na AB i BC odpowiednio. M i N są środkami XY i AC odpowiednio. Uż $\angle PMN = \pi/2$.
- 5. Niech ABCDE będzie takim pięciokątem wypukłym, że

$$\angle BAC = \angle CAD = \angle DAE, \angle CBA = \angle DCA = \angle EDA$$

Przekątne BD i CE przecinają się w P. Wykaż, że AP przecina CD w połowie.

- 6. Na bokach AD i BC czorokąta leżą odpowiednio takie punkty E i F, że AE/ED = BF/FC. Prosta FE przecina proste BA i CD w punktach S i T odpowiednio. Udowodnij, że (SAE), (SBF), (TCF) i (TDE) mają punkt wspólny.
- 7. Przekatne AC i BD czworokąta ABCD przecinają się w P. Punkty O_1 i O_2 są środkami (APD) i (BPC). Niech M, N, O będą środkami AC, BD i O_1O_2 odpowiednio. Udowodnij, że O jest środkiem (MNP).

- 8. Punkty P i Q leżą odpowiednio wewnątrz boków AB i AC trójkąta ABC, przy czym spełniona jest równość BP = CQ. Odcinki BQ i CP przecinają się w punkcie R. (BPR) i (CQR) przecinają się w punktach R i S. Udowodnij, że S leży na dwusiecznej $\angle BAC$.
- 9. Dany trójkąt ABC. Na boku BC lezy D. E leży na (ABC) i $\angle BAE = \angle DAC$. Udowodnij, że proste łączące środki okręgów wpisanych w ABD i ACE przechodzą przez stały punkt (proste są w zależności od D).
- 10. Niech ABC będzie trójkątem, w którym $AB = AC \neq BC$ oraz niech I będzie środkiem jego okręgu wpisanego. Prosta BI przecina AC w D, natomiast prosta przechodząca przez D i prostopadła do AC przecina AI w E. Wykaż, że odbicie punktu I względem prostej AC leży na okręgu opisanym na trójkącie BDE.
- 11. Dany jest trapez ABCD o podstawach AD i BC, gdzie $\angle ABC > 90^{\circ}$. Na prostej AB znajduje się punkt M. O_1 i O_2 są środkami (MAD) i (MBC) odpowiednio. Okręgi (MO_1D) i (MO_2C) przecinają się ponownie w N. Udowodnij, że O_1, O_2 i N są współliniowe.
- 12. Dany jest trójkąt różnoboczny ABC i punkty D i E na bokach AB i AC odpowiednio, że CA = CD i BA = BE. P jest odbiciem A względem BC. Proste PD i PE przecinają ponownie (ADE) w punktach X i Y odpowiednio. Udowodnij, że BX i CY przecinają się na (ADE).
- 13. Okrąg wpisany w ABC, gdzie $AB \neq AC$, jest styczny do odcinków BC, CA i AB odpowiednio w punktach D, E i F. Prosta prostopadła do EF przechodząca przez D przecina odcinek AB w punkcie X. Punkt $T \neq A$ jest punktem przecięcia okręgów opisanych na AEF i ABC. Udowodnij, że $TX \perp TF$.

3 Dodatek

Konstrukcja podobieństwa spiralnego AB na BC (A B i C niewspółliniowe).

W/realiza¢jjų././

Okazuje się, że ma to dużo więcej wspólnego z symedianami - odpowiednie dowody będą na kółeczku z symedian.

Konstrukcja: Poprowadźmy symedianę z punktu B trójkąta ABC - odbicie środkowej wychodzącej z punktu B względem dwusiecznej wewnętrznej kąta ABC. Przecięcie tej symetralnej z okręgiem opisanym na ABC oznaczmy przez D. Wówczas środek odcinka BD - M jest środkiem podobieństwa spiralnego $AB \to BC$.

Dla dociekliwych na takiej konfiguracji jest dużo więcej podobieństw spiralnych.

Jednakże, konstrukcja ta jest rzadkim widokiem na OM
ie. Jeżeli nie jesteśmy w stanie skorzystać z lematu o podobieństwie spiralnym, a chcemy udowodnić, że dany punkt jest środkiem jakiegoś podobieństwa spiralnego (np. $AB \to CD$, gdzie A, B i C są współliniowe), należy znaleźć taki punkt i udowodnić podobieństwo trójkątów, używając którejś z cech.