Distributed Abstract Optimization via Constraints Consensus

Francesco Bullo

Center for Control,
Dynamical Systems & Computation
University of California at Santa Barbara

http://motion.me.ucsb.edu

Workshop on Network Induced Constraints in Control Stuttgart, Germany, September 29, 2009

Joint work with Giuseppe Notarstefano, University of Lecce

Preliminary #1: Consensus algorithms

$simplest\ distributed\ algorithm = linear\ averaging$

each node contains a value x_i and repeatedly executes:

$$x_i^+ := average(x_i, \{x_j, \text{ for all in-neighbor nodes } j\})$$

each node's value converges to common value (for strongly connected and aperiodic digraphs)

Preliminary #1: Consensus algorithms

simplest distributed algorithm = linear averaging

each node contains a value x_i and repeatedly executes:

$$x_i^+ := \operatorname{average}(x_i, \{x_j, \text{ for all in-neighbor nodes } j\})$$

each node's value converges to common value (for strongly connected and aperiodic digraphs)

Preliminary #1: Distributed algorithms on networks

Distributed algorithm for a network of processors consists of

- \bullet *W*, the processor state set
- ② A, the communication alphabet
- **3** stf : $W \times \mathbb{A}^n \to W$, the state-transition map
- lacktriangledown msg : $W \to \mathbb{A}$, the message-generation map (often identity map)

Preliminary #2: Optimization problems

Standard LP in *d* variables with *n* constraints

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ $i \in \{1, ..., n\}$

cost function = direction
linear inequalities = halfspace constraints

solution uniquely determined by precisely of constraints
(For special cases, use lexicographic minimum solution)

Howto setup a "distributed optimization problem" from this LP?

Preliminary #2: Optimization problems

Standard LP in d variables with n constraints

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ $i \in \{1, ..., n\}$

cost function = direction
linear inequalities = halfspace constraints

solution uniquely determined by precisely *d* constraints (For special cases, use lexicographic minimum solution)

Howto setup a "distributed optimization problem" from this LP?

Preliminary #2: Optimization problems

Standard LP in *d* variables with *n* constraints

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ $i \in \{1, ..., n\}$

cost function = direction
linear inequalities = halfspace constraints

solution uniquely determined by precisely *d* constraints (For special cases, use lexicographic minimum solution)

Howto setup a "distributed optimization problem" from this LP?

- each sensor/camera i provides "convex set" measurement
- 2 set-membership localization = intersection of n convex sets

- each sensor/camera i provides "convex set" measurement
- 2 set-membership localization = intersection of n convex sets

1 intersection of n convex sets \subset axis-aligned bounding box

axis-aligned bounding box = 4 LPs wrt cardinal directions

Each LP has 2 variables and (# constraints) = (# sensors) × (# edges of each measurement)

- **1** intersection of n convex sets \subset axis-aligned bounding box
- 2 axis-aligned bounding box = 4 LPs wrt cardinal directions

Each LP has 2 variables and (# constraints) = (# sensors) × (# edges of each measurement)

Problem statement: Distributed optimization

A distributed LP

Assume

- {direction, n halfspace constraints} is feasible LP in d variables
- $oldsymbol{Q}$ G is directed graph with n nodes, strongly connected
- memory of node i contains {direction, ith halfspace constraint}

Design distributed algorithm so each node computes global LP solution

Dimensionality assumption

$$d \ll n$$

- network with many nodes (order n) and finite memory (order d)
- network with bounded node degree, also
- for $d \sim n$, see "Parallel Computation" by Bertsekas & Tsitsiklis

Problem statement: Distributed optimization

A distributed LP

Assume

- $\{direction, n \text{ halfspace constraints}\}\$ is feasible LP in d variables
- $oldsymbol{Q}$ G is directed graph with n nodes, strongly connected
- memory of node i contains {direction, ith halfspace constraint}

Design distributed algorithm so each node computes global LP solution

Dimensionality assumption

$$d \ll n$$

- network with many nodes (order n) and finite memory (order d)
- network with bounded node degree, also
- for $d \sim n$, see "Parallel Computation" by Bertsekas & Tsitsiklis

Problem statement: Distributed optimization

A distributed LP

Assume

- {direction, n halfspace constraints} is feasible LP in d variables
- \bigcirc *G* is directed graph with *n* nodes, strongly connected
- memory of node i contains {direction, ith halfspace constraint}

Design distributed algorithm so each node computes global LP solution

Dimensionality assumption

$$d \ll n$$

- network with many nodes (order n) and finite memory (order d)
- network with bounded node degree, also
- ullet for $d \sim n$, see "Parallel Computation" by Bertsekas & Tsitsiklis

Simple observations

- each node knows some local constraints
- each node can solve "local LP" & compute "local active constraints"
- achieve consensus upon "global active constraints"

Solution: first attempt

processor state: a set of constraints C_i — initialized $C_i := \{(a_i, b_i)\}$

message generation: transmit the set of constraints C_i

state update rule:

collect all constraints

$$\mathcal{C}_{\mathsf{tmp}} := \mathcal{C}_i \cup ig(\cup_{\mathsf{for all in-neighbor } j} \mathcal{C}_j ig)$$

solve local LP

minimize
$$c^T x$$

subject to $a_k^T x \leq b_k$ for all $(a_k, b_k) \in \mathcal{C}_{\mathsf{tmp}}$

3 store $C_i :=$ active constraints in solution of local LP

But constraints need to be re-examined!

Note: h_2 is a global active constraints, but not local:

- **1** $\{h_1, h_2\}$ is a basis for $\{h_1, h_2, h_3, h_4\}$, but
- **2** $\{h_3, h_4\}$ is a basis for $\{h_2, h_3, h_4\}$

Solution: Constraints Consensus

processor state: a set of constraints C_i — initialized $C_i := \emptyset$

message generation: transmit the set of constraints C_i

state update rule:

collect all constraints

$$\mathcal{C}_{\mathsf{tmp}} := \mathcal{C}_i \cup \big(\cup_{\mathsf{for\ all\ in-neighbor}\ j} \mathcal{C}_j \big) \cup \{(a_i,b_i)\}$$

solve local I P

minimize
$$c^T x$$

subject to
$$a_k^T x \leq b_k$$
 for all $(a_k, b_k) \in \mathcal{C}_{tmp}$

store

$$\mathcal{C}_i := egin{cases} ext{active constraints} & ext{if local LP is bounded} \ \emptyset & ext{if local LP is unbounded} \end{cases}$$

if local LP is unbounded

(Assume one node has bounded solution at initial time)

Monotonicity: the LP value at each node is monotonically non-decreasing

Finite time: the LP value at each node converges in finite time

Consensus: the LP values at all node are equal in finite time

LP solution: after convergence, the LP constraints set at each node is

an active constraint set for global LP

Uniqueness: if global LP has unique set of active constraints, then the LP

constraint set at each node converges that unique set

(Assume one node has bounded solution at initial time)

Monotonicity: the LP value at each node is monotonically non-decreasing

Finite time: the LP value at each node converges in finite time

Consensus: the LP values at all node are equal in finite time

LP solution: after convergence, the LP constraints set at each node is

an active constraint set for global LP

Uniqueness: if global LP has unique set of active constraints, then the LP

constraint set at each node converges that unique set

(Assume one node has bounded solution at initial time)

Monotonicity: the LP value at each node is monotonically non-decreasing

Finite time: the LP value at each node converges in finite time

Consensus: the LP values at all node are equal in finite time

LP solution: after convergence, the LP constraints set at each node is

an active constraint set for global LP

Uniqueness: if global LP has unique set of active constraints, then the LP

constraint set at each node converges that unique set

(Assume one node has bounded solution at initial time)

Monotonicity: the LP value at each node is monotonically non-decreasing

Finite time: the LP value at each node converges in finite time

Consensus: the LP values at all node are equal in finite time

LP solution: after convergence, the LP constraints set at each node is an active constraint set for global LP

Uniqueness: if global LP has unique set of active constraints, then the LP constraint set at each node converges that unique set

(Assume one node has bounded solution at initial time)

Monotonicity: the LP value at each node is monotonically non-decreasing

Finite time: the LP value at each node converges in finite time

Consensus: the LP values at all node are equal in finite time

LP solution: after convergence, the LP constraints set at each node is an active constraint set for global LP

Uniqueness: if global LP has unique set of active constraints, then the LP constraint set at each node converges that unique set

(Assume one node has bounded solution at initial time)

Monotonicity: the LP value at each node is monotonically non-decreasing

Finite time: the LP value at each node converges in finite time

Consensus: the LP values at all node are equal in finite time

LP solution: after convergence, the LP constraints set at each node is an active constraint set for global LP

Uniqueness: if global LP has unique set of active constraints, then the LP constraint set at each node converges that unique set

Linear time complexity via Monte Carlo analysis

Nominal problem: d=4, graph = line graph, random LP = hyperplanes with normal vectors uniformly distributed on the unit sphere, and at unit distance from the origin.

Monte Carlo probability estimation: With 99% confidence, there is 99% probability that a nominal problem with $n \in \{40, 60, 80\}$ is solved via constraints consensus in time bounded by 4(n-1)

Linear time complexity via Monte Carlo analysis

Nominal problem: d=4, graph = line graph, random LP = hyperplanes with normal vectors uniformly distributed on the unit sphere, and at unit distance from the origin.

Monte Carlo probability estimation: With 99% confidence, there is 99% probability that a nominal problem with $n \in \{40, 60, 80\}$ is solved via constraints consensus in time bounded by 4(n-1).

End of story ... almost

- we only considered distributed LPs!
- what about more general optimization problems?
- how to generalize constraints consensus?
- what about formation control?

End of story ... almost

- we only considered distributed LPs!
- what about more general optimization problems?
- o how to generalize constraints consensus?
- what about formation control?

Abstract Optimization

Abstract optimization problem is (H, ω)

- *H* is a finite set of constraints,
- $\omega(G)$ is the value function (minimum value attainable by cost function subject to $G \subset H$)

Axioms

Monotonicity: For any F, G, with $F \subset G \subset H$

$$\omega(F) \leq \omega(G)$$

Locality: For any $F \subset G \subset H$ with $\omega(F) = \omega(G)$ and any $h \in H$, then

$$\omega(G) < \omega(G \cup \{h\}) \implies \omega(F) < \omega(F \cup \{h\})$$

abstract framework that captures the main features of LP rich lit: Matousek, Sharir, Welzl, Gärtner, Agarwal, ...

Abstract Optimization

Abstract optimization problem is (H, ω)

- *H* is a finite set of constraints,
- $\omega(G)$ is the value function (minimum value attainable by cost function subject to $G \subset H$)

Axioms

Monotonicity: For any F, G, with $F \subset G \subset H$

$$\omega(F) \leq \omega(G)$$

Locality: For any $F \subset G \subset H$ with $\omega(F) = \omega(G)$ and any $h \in H$, then

$$\omega(G) < \omega(G \cup \{h\}) \implies \omega(F) < \omega(F \cup \{h\})$$

abstract framework that captures the main features of LP rich lit: Matousek, Sharir, Welzl, Gärtner, Agarwal, ...

Ex #1: Distributed training of Support Vector Machines

Max Margin Problem

Separable training set = a separable set $\{(x_i, \ell_i)\}$ of n examples $x_i \in \mathbb{R}^k$ and labels $\ell_i \in \{-1, +1\}$. Find $(t_+, t_-) \in \mathbb{R}^2$ and $w \in \mathbb{R}^k$

minimize
$$\frac{1}{2}\|w\|^2 - (t_+ - t_-)$$

subject to $w \cdot x_i \ge t_+$ if $\ell_i = +1$
 $w \cdot x_i \le t_-$ if $\ell_i = -1$

Balcázar et al, TCS '08: Max Margin satisfies axioms

Distributed Max Margin Problem

- ① a separable training set $\{(x_i, \ell_i)\}$
- ② G is directed graph with n nodes, strongly connected
- 3 memory of node i contains the example-label pair (x_i, ℓ_i)

Constraints Consensus solves the Distributed Max Margin

Ex #1: Distributed training of Support Vector Machines

Max Margin Problem

Separable training set = a separable set $\{(x_i, \ell_i)\}$ of n examples $x_i \in \mathbb{R}^k$ and labels $\ell_i \in \{-1, +1\}$. Find $(t_+, t_-) \in \mathbb{R}^2$ and $w \in \mathbb{R}^k$

minimize
$$\frac{1}{2}\|w\|^2 - (t_+ - t_-)$$

subject to $w \cdot x_i \ge t_+$ if $\ell_i = +1$
 $w \cdot x_i \le t_-$ if $\ell_i = -1$

Balcázar et al, TCS '08: Max Margin satisfies axioms

Distributed Max Margin Problem

- **①** a separable training set $\{(x_i, \ell_i)\}$
- \bigcirc G is directed graph with n nodes, strongly connected
- **1** memory of node i contains the example-label pair (x_i, ℓ_i)

Constraints Consensus solves the Distributed Max Margin

Ex #2: Distributed geometric optim & formation control

 Smallest enclosing ball, ellipsoid and axis-aligned bounding box

Smallest enclosing annulus

Application to motion coordination in robotic networks

- computing optimal shapes in distributed fashion
- ② from distributed shape consensus, easy to design formation control

Ex #2: Distributed geometric optim & formation control

 Smallest enclosing ball, ellipsoid and axis-aligned bounding box

 Smallest enclosing stripe (generic points)

• Smallest enclosing annulus

Application to motion coordination in robotic networks

- computing optimal shapes in distributed fashion
- from distributed shape consensus, easy to design formation control

End of story

- distributed abstract optimization
- consensus constraints: correctness and time complexity
- applications to target tracking & formation control

References:

- B. Gärtner. A subexponential algorithm for abstract optimization problems. SIAM J Computing, 24(5):1018–1035, 1995
- P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Computing Surveys, 30(4):412–458, 1998
- G. Notarstefano and F. Bullo. Network abstract linear programming with application to minimum-time formation control. In *Proc CDC*, pages 927–932, New Orleans, LA, December 2007
- G. Notarstefano and F. Bullo. Distributed abstract optimization via constraints consensus: theory and applications, October 2009. Available at http://arxiv.org/abs/0910.5816