Comentarios de las Actividades

Bloque 4 Actividad 1

- 1. En el lenguaje cotidiano, la realización de un trabajo se relaciona con el consumo de energía. En la Física, es la fuerza necesaria para poder desplazar un objeto cierta distancia.
- 2. Respuesta libre.
- 3. Factores que intervienen al realizar un trabajo:
 - · La aplicación de una fuerza.
 - La fuerza debe actuar a través de cierta distancia, llamada desplazamiento.
 - La fuerza debe tener una componente a lo largo del desplazamiento.
- 4. Porque no se está desplazando el objeto ninguna distancia.
- 5. Con un ángulo pequeño, ya que entre más horizontal sea el desplazamiento se obtiene un mayor trabajo.

6.

a)

Datos	Fórmula y despejes	Sustitución
m = 20 kg T = 8 kJ = 8,000 J d = 2.7	T = Fd d = - F = mg	$F = (20 \text{ kg})(9.81 \text{ m/s}^2) = 196.2 \text{ N}$ $d = \frac{8, \text{Nm}}{196.2 \text{ N}}$

Resultado: d = 40.77 m

b)

Datos	Fórmula y despejes	Sustitución
F = 3,700 N d = 50 m T = ¿?	T = Fd	T = (3,700 N)(50 m)

Resultado: T = 185,000 J

Comentarios de las Actividades

c)

Datos	Fórmula y despejes	Sustitución
F = ¿? d = 3 m T = 75 J	T = Fd F = d	$F = \frac{75 \text{ Nm}}{3 \text{ m}}$

Resultado: F = 25 N

d) Respuesta libre.

e)

Datos	Fórmula y despejes	Sustitución
m = 1,500 kg F = 4,500 N d = 500 m $\theta = 30^{\circ}$ $T = \cdot ?$	T = Fdcosθ	T = (4,500 N)(500 m)(cos 30°)

Resultado: *T* = 1948557.2 J

f)

Datos	Fórmula y despejes	Sustitución
m = 70 kg d = 25 m F = 150 N $\theta = 50^{\circ}$	F = mg F = N	$F = (70 \text{ kg})(9.81 \text{ m/s}^2) = 686.7 \text{ N}$
$_{s}=0.1$ $f_{s}=\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$f_s = (\mu_s)(N)$ $T_{800 N} = Fd$ $T_{fs} = (f_s)(d)\cos 50^\circ$ $T_{neto} = T_{mueble} + T_{fs}$	$f_s = (0.1)(686.7 \text{ N}) = 68.67 \text{ N}$ $T_{150 \text{ N}} = (150 \text{ N})(25 \text{ m}) = 3750 \text{ J}$ $T_{fs} = (68.67 \text{ N})(25 \text{ m})(\cos 50^\circ) = 1103.5 \text{ J}$ $T_{neto} = 3750 \text{ J} - 1103.5 \text{ N} = 2646.5 \text{ J}$

Resultado: $T_{neto} = 2646.5 \text{ J}$