Εργασία στο μάθημα

"Τηλεπικοινωνιακά Συστήματα"

(εργασία Σεπτεμβρίου)

Ακαδημαϊκό έτος: 2022-2023

Ημερομηνία παράδοσης: 1/9/2023

Μέρος 10: η συνάρτηση Q

Στο μάθημα είδαμε ότι η συνάρτηση Q(x) η οποία ορίζεται ως:

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{y}^{+\infty} \exp\left(-\frac{z^{2}}{2}\right) dz$$

είναι ιδιαίτερα σημαντική για τον υπολογισμό της πιθανότητας σφάλματος διαφόρων συστημάτων όπως το M-PAM.

Χρησιμοποιώντας την συνάρτηση Qfunction όπως την έχουμε υλοποιήσει στο μάθημα να υλοποιήσετε ένα Python script για να συγκρίνετε τις τιμές του Q(x) για $2 \le x \le 7$ με διάφορες προσεγγίσεις που έχουν προταθεί κατά καιρούς στην βιβλιογραφία:

A1.
$$Q(x) \approx Q_1(x) = \exp(-x^2/2)$$

A2. $Q(x) \approx Q_2(x) = \frac{1}{4} \exp(-x^2) + \frac{1}{4} \exp(-x^2/2)$
A3. $Q(x) \approx Q_3(x) = \frac{1}{12} \exp(-x^2/2) + \frac{1}{4} \exp(-2x^2/3)$

Για να συγκρίνετε τις προσεγγίσεις $Q_i(x)$ θα πρέπει

α) να κάνετε τις γραφικές παραστάσεις των (A1) εώς (A3) στην ίδια γραφική παράσταση με την y=Q(x) όπως αυτή υπολογίζεται στην Qfunction με την matplotlib χρησιμοποιώντας λογαριθμική κλίμακα για τον y άξονα. Προσοχή θα κάνετε μία γραφική παράσταση για κάθε περίπτωση όπου η

συνάρτηση Q(x) θα είναι με συνεχείς γραμμές και η $Q_i(x)$ με διακεκομμένες και κάθε μία θα διαχωρίζεται και με κατάλληλα labels στο σχήμα [20%].

β) να υπολογίσετε το μέσο σχετικό τετραγωνικό σφάλμα ϵ_i στο διάστημα [a,b] για κάθε μία προσέγγιση το οποίο ορίζεται ως εξής:

$$\epsilon_i = \int_a^b \frac{|Q_i(x) - Q(x)|}{|Q(x)|} dx$$

(στην περίπτωση μας, a=2 και b=7). Για κάθε γραφική παράσταση να θεωρήσετε τουλάχιστον 1000 σημεία και για τον υπολογισμο του ϵ_i για κάθε προσέγγιση μπορείτε να χρησιμοποιήσετε την συνάρτηση numpy.trapz για να υπολογίσετε αριθμητικά το ολοκλήρωμα. Ποιά κατά την γνώμη σας είναι η καλύτερη προσέγγιση [30%];

γ) Να υλοποιήσετε μία συνάρτηση στην Python Qinv(y) η οποία να υπολογίζει την αντίστροφη συνάρτηση του Q(x). Δηλαδή εάν $x=Q_{inv}(y)$ τότε y=Q(x). Μπορείτε να χρησιμοποιήσετε όποια μέθοδο θέλετε για τον προσεγγιστικό υπολογισμό της $Q_{inv}(y)$ αλλά θα πρέπει να τεκμηριώσετε την υλοποίηση σας και να μετρήσετε την ακρίβεια της σε συγκεκριμένο διάστημα τιμών που πιστεύετε ότι έχει πρακτική αξία [50%].

Μέρος 20: Κυματομορφή QAM

Letter	ASCII Code	Binary	Letter	ASCII Code	Binary
a	097	01100001	Α	065	01000001
b	098	01100010	В	066	01000010
С	099	01100011	С	067	01000011
d	100	01100100	D	068	01000100
е	101	01100101	Е	069	01000101
f	102	01100110	F	070	01000110
g	103	01100111	G	071	01000111
h	104	01101000	Н	072	01001000
i	105	01101001	I	073	01001001
j	106	01101010	J	074	01001010
k	107	01101011	K	075	01001011
1	108	01101100	L	076	01001100
m	109	01101101	M	077	01001101
n	110	01101110	N	078	01001110
0	111	01101111	О	079	01001111
р	112	01110000	Р	080	01010000
q	113	01110001	Q	081	01010001
r	114	01110010	R	082	01010010
S	115	01110011	S	083	01010011
t	116	01110100	Т	084	01010100
u	117	01110101	U	085	01010101
V	118	01110110	V	086	01010110
W	119	01110111	W	087	01010111
X	120	01111000	X	088	01011000
У	121	01111001	Υ	089	01011001
Z	122	01111010	Z	090	01011010

Ζητείται να υλοποιήσετε ένα Python το οποίο να φτιάχνει τις QAM κυματομορφές για *M*=4 και *M*=16 που αντιστοιχούν στο όνοματεπώνυμο σας. Θεωρούμε τετραγωνικό αστερισμό για το QAM. Για να κάνετε των κωδικοποίηση του ονόματος σας σε σύμβολα PAM ακολουθείστε την παρακάτω διαδικασία:

- Βήμα 10: Ξεκινάμε από το ονοματεπώνυμο μας στα αγγλικά, για παράδειγμα ο "Θωμάς Καμαλάκης" στα αγγλικά γράφεται "Thomas Kamalakis". Κάθε γράμμα που υπάρχει στην αγγλική ονομασία μετατρέπεται σε μία σειρά από 8bits βάσει του κώδικα ASCII (δείτε τον πίνακα παρακάτω). Για παράδειγμα το "Τ" μετατρέπεται σε 01010100", το "h" σε "01101000" κ.ο.κ.
- Βήμα 20: Το σύνολο των bits που λαμβάνονται με αυτή την διαδικασία μετατρέπονται σε σύμβολα του Μ-QAM βάσει του κατάλληλου κώδικα Gray όπως έχουμε περιγράψει στο μάθημα. Σε περίπτωση όπου στην τελευταία ομάδα bits που μεταδίδουμε απομένουν λιγότερα bits τότε συμπληρώνουμε μηδενικά bits ώστε να έχουμε το κατάλληλο πλήθος bits.
- Βήμα 30: Φτιάχνουμε την κυματομορφή QAM θεωρώντας ότι οι βασικοί παλμοί p(t) είναι τετραγωνικοί και η διάρκεια τους $T_{\rm S}$ που στην ουσία είναι η διάρκεια του συμβόλου είναι τέτοια ώστε ο ρυθμός μετάδοσης να είναι $R_{\rm b}=1{\rm Gb/s}$.

Ζητείται να φτιάξετε ένα script που θα παράγει τις γραφικές παραστάσεις των κυματομορφών QAM βάσει της διαδικασίας που αναφέρεται στα παραπάνω βήματα. Θα πρέπει το όνομα σας στα αγγλικά να δίνεται ως παράμετρος μέσα στο script και το script σας να δουλεύει σωστά ακόμα και αν αλλάξουμε το όνομα. Οι γραφικές παραστάσεις θα πρέπει να είναι σε διαφορετικό σχήμα (figure) για κάθε τιμή του M.