Interpretable Machine Learning

GAM & Boosting

Learning goals

- Generalized additive model
- Model-based boosting with simple base learners
- Feature effect and importance in model-based boosting

Interpretable Machine Learning

GAM & Boosting Interpretable Models 1

Learning goals

- Generalized additive model (GAM)
- Model-based boosting with simple base learners
- Feature effect and importance in model-based boosting

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if features act on outcome non-linearly

GENERALIZED ADDITIVE MODEL (GAM) • TIBSHIRANI_1986

Problem: LM not great if features act on outcome non-linearly

Interpretable Machine Learning - 1/6 Interpretable Machine Learning - 1/6

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp or log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

GENERALIZED ADDITIVE MODEL (GAM) TIBSHIRAN_1986

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp, log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

Interpretable Machine Learning - 1/6 Interpretable Machine Learning - 1/6

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp or log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

Idea of GAMs:

• Instead of linear terms $\theta_i x_i$, use flexible functions $f_i(x_i) \rightsquigarrow$ splines

$$g(\mathbb{E}(y \mid \mathbf{x})) = \theta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p)$$

- Preserves additive structure and allows to model non-linear effects
- Splines have a smoothness parameter to control flexibility (prevent overfitting) → Needs to be chosen, e.g., via cross-validation

GENERALIZED ADDITIVE MODEL (GAM) • TIBSHIRANI_1986

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp, log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

Idea of GAMs:

• Instead of linear terms $\theta_i x_i$, use flexible functions $f_i(x_i) \rightsquigarrow$ splines

$$g(\mathbb{E}(y \mid \mathbf{x})) = \theta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_D(x_D)$$

- Preserves additive structure and allows to model non-linear effects
- Splines have smoothness param. to control flexibility (prevent overfitting) → Needs to be chosen, e.g., via cross-validation

Interpretable Machine Learning - 1/6 Interpretable Machine Learning - 1 / 6

GENERALIZED ADDITIVE MODEL (GAM) - EXAMPLE

Fit a GAM with smooth splines for four numeric features of bike rental data \leadsto more flexible and better model fit but less interpretable than LM

	edf	p-value
s(temp)	5.8	0.00
s(hum)	4.0	0.00
s(windspeed)	1.7	0.00
s(days_since_2011)	8.3	0.00

- Interpretation is performed visually and relative to average prediction
- ◆ Edf: effective degrees of freedom
 → represents degree of smoothness/complexity

GENERALIZED ADDITIVE MODEL (GAM) - EXAMPLE

Fit a GAM with smooth splines for four numeric features of bike rental data \leadsto more flexible and better model fit but less interpretable than LM

	edf	p-value
s(temp)	5.8	0.00
s(hum)	4.0	0.00
s(windspeed)	1.7	0.00
s(days_since_2011)	8.3	0.00

Interpretation

- Interpretation is done visually and relative to average prediction
- Edf: effective degrees of freedom
 → represents degree of smoothness/complexity

Interpretable Machine Learning - 2/6

days_since_2011

Interpretable Machine Learning - 2 / 6

MODEL-BASED BOOSTING Bühlmann, Yu 2003 Bühlmann, Hothorn 2008

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g univariate, with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, oldsymbol{ heta}) + b^{[j]}(\mathbf{x}, oldsymbol{ heta}^{\star}) = b^{[j]}(\mathbf{x}, oldsymbol{ heta} + oldsymbol{ heta}^{\star})$$

MODEL-BASED BOOSTING VU_2003 HOTHORN_2008

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g. univar., with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, oldsymbol{ heta}) + b^{[j]}(\mathbf{x}, oldsymbol{ heta}^{\star}) = b^{[j]}(\mathbf{x}, oldsymbol{ heta} + oldsymbol{ heta}^{\star})$$

MODEL-BASED BOOSTING Bühlmann, Yu 2003 Bühlmann, Hothorn 2008

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g univariate, with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x},oldsymbol{ heta}) + b^{[j]}(\mathbf{x},oldsymbol{ heta}^{\star}) = b^{[j]}(\mathbf{x},oldsymbol{ heta}+oldsymbol{ heta}^{\star})$$

$$\hat{f}^{[1]} = \hat{f}_0 + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]})
\hat{f}^{[2]} = \hat{f}^{[1]} + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[2]})
\hat{f}^{[3]} = \hat{f}^{[2]} + \nu b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]})
= \hat{f}_0 + \nu \left(b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]} + \boldsymbol{\theta}^{[2]}) + b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]}) \right)
= \hat{f}_0 + \hat{f}_3(\mathbf{x}_3) + \hat{f}_1(\mathbf{x}_1)$$

• Final model is additive GAM, we can read off effect curves

MODEL-BASED BOOSTING YU_2003 HOTHORN_2008

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g. univar., with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, \boldsymbol{\theta}) + b^{[j]}(\mathbf{x}, \boldsymbol{\theta}^*) = b^{[j]}(\mathbf{x}, \boldsymbol{\theta} + \boldsymbol{\theta}^*)$$

• In each iteration, fit a set of BLs, add best one to model (with step-size ν):

$$\hat{f}^{[1]} = \hat{f}_0 + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]})
\hat{f}^{[2]} = \hat{f}^{[1]} + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[2]})
\hat{f}^{[3]} = \hat{f}^{[2]} + \nu b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]})
= \hat{f}_0 + \nu \left(b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]} + \boldsymbol{\theta}^{[2]}) + b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]}) \right)
= \hat{f}_0 + \hat{f}_3(\mathbf{x}_3) + \hat{f}_1(\mathbf{x}_1)$$

• Final model is additive GAM, we can read off effect curves

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM

1000 iter. with $\nu=$ 0.1	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

⇒ Converges to solution of LM

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \rightsquigarrow ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM

5.1.1.1			
Relative free	juency of se	lected BLs	across iteratio
		0.352	
Cumilated Value		0.355	Top 5 Base-Learner
Valu			a days_since_2011_li
D 88 0.2			a hum_linear
ad B		0.1	15 a season_ridge
E 9 0.1		0.096	a temp_linear
0 2		0.038	a windspeed_linear
5		0.0	82

1000 iter. with $\nu=0.1$	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
-114	4504.05	

⇒ Converges to solution of LM

				0.352	
Cumplated Value			0.355		Top 5 Base-Learner
/alu					a days_since_2011_linear
D 8 0.2					a hum_linear
Z da				0.115	a season_ridge
E 9 0.1			0.09		a temp_linear
<u> </u>			0.08		a windspeed_linear
				0.082	
0.0					
0	250	500 Iteration	750	1000	

Interpretable Machine Learning - 4/6

Interpretable Machine Learning - 4/6

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM
- Early stopping allows feature selection & may prevent overfitting (regularization)

1000 iter. with $\nu=0.1$	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

⇒ Converges to solution of LM

	20 iter, with $\nu=0.1$	Intercept	Weights
:	days since 2011	-1210.27	3.3
	days_since_zorr	1210.27	WINTER: -276.9
	season	0	SPRING: 137.6
	Season	"	SUMMER: 112.8
			FALL: 20.3
	temp	-1118.94	73.2
	offset	4504.35	

⇒ 3 BLs selected after 20 iter. (feature selection)

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM
- Early stopping allows feature selection & may also prevent overfitting (regularization)

1000 iter. with $\nu=0.1$	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

⇒ Converges to solution of LM

20 iter. with $\nu=0.1$	Intercept	Weights
days_since_2011	-1210.27	3.3
season	0	WINTER: -276.9 SPRING: 137.6 SUMMER: 112.8 FALL: 20.3
temp	-1118.94	73.2
offset	4504.35	

⇒ 3 BLs selected after 20 iter. (feature selection)

Interpretable Machine Learning - 4 / 6

ing - 4/6 © Interpretable Machine Learning - 4/6

LINEAR EXAMPLE: INTERPRETATION

Feature importance: aggregated change in risk in each iteration per feature

- E.g. iteration 1: days_since_2011 with risk reduction (MSE) of 140,782.94
- For every iteration the change in risk can be attributed to a feature

In-bag-risk: 434,686.0 OOB risk (10-fold CV): 446,450.0

In-bag-risk: 693,505.0 OOB risk (10-fold CV): 705,776.0

⇒ Difference in risk: 258,819.0 Difference in OOB risk: 259.326.0

LINEAR EXAMPLE: INTERPRETATION

Feature importance: aggregated change in risk in each iteration per feature

- E.g. iter. 1: days_since_2011 with risk reduction (MSE) of 140,782.94
- For every iteration the change in risk can be attributed to a feature

In-bag-risk: 693,505.0 OOB risk (10-fold CV): 705.776.0

⇒ Difference in risk: 258,819.0 Difference in OOB risk: 259.326.0

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.) Daniel Schalk et al. 2018
- BLs: linear and centered splines for numeric features, categorical for season

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.) Schalk 2018
- BLs: linear and centered splines for numeric feat., categorical for season

NON-LINEAR EXAMPLE: INTERPRETATION

• Fit model on bike data with different BL types (1000 iter.) Daniel Schalk et al. 2018

BLs: linear and centered splines for numeric features, categorical for season

- ⇒ In-bag-risk: 250,202.0 ; OOB risk (10-fold CV): 267,497.0 (difference to lin. example: 178,953.0)
- ⇒ In-bag-risk: 434,686.0; OOB risk (10-fold CV): 446,450.0 (previous lin. example with 1000 iter.)
- Feature importance (risk reduction over iter.)
 - → days_since_2011 most important
- Total effect for days_since_2011
- Combination of partial effects of linear BL and centered spline BL

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.)

 Schalk 2018
- BLs: linear and centered splines for numeric feat., categorical for season

- ⇒ In-bag-risk: 250,202.0; OOB risk (10-fold CV): 267,497.0 (difference to lin. example: 178,953.0) ⇒ In-bag-risk: 434.686.0 : OOB risk (10-fold CV): 446.450.0 (previous lin. example with 1000 iter.)
- Feature importance (risk reduction over iter.)
- → days_since_2011 most important
- Total effect for days_since_2011

Interpretable Machine Learning - 6 / 6 Interpretable Machine Learning - 6 / 6