(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(10) International Publication Number WO 01/90358 A2

- (51) International Patent Classification⁷: C12N 15/12, C07K 14/715, 16/18, G01N 33/53, C12N 5/10
- (21) International Application Number: PCT/US01/16767
- (22) International Filing Date: 23 May 2001 (23.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/206,862

24 May 2000 (24.05.2000) US

- (71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (72) Inventor: GORMAN, Daniel, M.; 6371 Central Avenue, Newark, CA 94560 (US).
- (74) Agent: ZARADIC, Sandy; Schering-Plough Corporation, Patent-Department, K-6-1, 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ, VN, YU, ZA.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

 as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular-issue of the PCT Gazette.

A4 - 09/899,471

(54) Title: MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

(57) Abstract: Nucleic acids encoding mammalian, e.g., primate, receptors, purified receptor proteins and fragments thereof. Antibodies, both polyclonal and monoclonal, are also provided. Methods of using the compositions for both diagnostic and therapeutic utilities are described.

WO 01/90358 PCT/US01/16767

5

MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

10

FIELD OF THE INVENTION

The present invention relates to compositions and methods for affecting mammalian physiology, including immune system function. In particular, it provides methods to regulate development and/or the immune system. Diagnostic and therapeutic uses of these materials are also disclosed.

15

20

BACKGROUND OF THE INVENTION

Recombinant DNA technology refers generally to techniques of integrating genetic information from a donor source into vectors for subsequent processing, such as through introduction into a host, whereby the transferred genetic information is copied and/or expressed in the new environment. Commonly, the genetic information exists in the form of complementary DNA (cDNA) derived from messenger RNA (mRNA) coding for a desired protein product. The carrier is frequently a plasmid having the capacity to incorporate cDNA for later replication in a host and, in some cases, actually to control expression of the cDNA and thereby direct synthesis of the encoded product in the host. See, e.g., Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.) vols. 1-3, CSH Press, NY.

25

30

35

For some time, it has been known that the mammalian immune response is based on a series of complex cellular interactions, called the "immune network". Recent research has provided new insights into the inner workings of this network. While it remains clear that much of the immune response does, in fact, revolve around the network-like interactions of lymphocytes, macrophages, granulocytes, and other cells, immunologists now generally hold the opinion that soluble proteins, known as lymphokines, cytokines, or monokines, play critical roles in controlling these cellular interactions. Thus, there is considerable interest in the isolation, characterization, and mechanisms of action of cell modulatory factors, an understanding of which will lead to significant advancements in the diagnosis and therapy of numerous medical abnormalities, e.g., immune system disorders.

The immune system of vertebrates consists of a number of organs and several different cell types. Two major cell types include the myeloid and lymphoid lineages. Among the lymphoid cell lineage are B cells, which were originally characterized as differentiating in fetal liver or adult bone marrow, and T cells, which were originally characterized as differentiating in the thymus. See, e.g., Paul (ed. 1998) Fundamental Immunology (4th ed.) Raven Press, New York; and Thomson (ed. 1994) The Cytokine Handbook 2d ed., Academic Press, San Diego. Lymphokines apparently mediate cellular activities in a variety of ways. They have been shown to support the proliferation, growth, and/or differentiation of cells, e.g., pluripotential hematopoietic stem cells, into vast numbers of progenitors comprising diverse cellular lineages which make up a complex immune system. Proper and balanced interactions between the cellular components are necessary for a healthy immune response. The different cellular lineages often respond in a different manner when lymphokines are administered in conjunction with other agents.

5

10

15

20

25

30

35

Cell lineages especially important to the immune response include two classes of lymphocytes: B-cells, which can produce and secrete immunoglobulins (proteins with the capability of recognizing and binding to foreign matter to effect its removal), and T-cells of various subsets that secrete lymphokines and induce or suppress the B-cells and various other cells (including other T-cells) making up the immune network. These lymphocytes interact with many other cell types.

Research to better understand and treat various immune disorders has been hampered by the general inability to maintain cells of the immune system in vitro. Immunologists have discovered that culturing many of these cells can be accomplished through the use of T-cell and other cell supernatants, which contain various growth factors, including many of the lymphokines.

Various growth and regulatory factors exist which modulate morphogenetic development. And many receptors for cytokines are also known. Often there are at least two critical subunits in the functional receptor. See, e.g., Gonda and D'Andrea (1997) Blood 89:355-369; Presky, et al. (1996) Proc. Nat'l Acad. Sci. USA 93:14002-14007; Drachman and Kaushansky (1995) Curr. Opin. Hematol. 2:22-28; Theze (1994) Eur. Cytokine Netw. 5:353-368; and Lemmon and Schlessinger (1994) Trends Biochem. Sci. 19:459-463.

From the foregoing, it is evident that the discovery and development of new soluble proteins and their receptors, including ones similar to lymphokines, should contribute to new therapies for a wide range of degenerative or abnormal conditions which directly or indirectly involve development, differentiation, or function, e.g., of the

immune system and/or hematopoietic cells. In particular, the discovery and understanding of novel receptors for lymphokine-like molecules which enhance or potentiate the beneficial activities of other lymphokines would be highly advantageous. However, the lack of understanding of how the immune system is regulated or differentiates has blocked the ability to advantageously modulate the normal defensive mechanisms to biological challenges. Medical conditions characterized by abnormal or inappropriate regulation of the development or physiology of relevant cells thus remain unmanageable. The discovery and characterization of specific cytokines and their receptors will contribute to the development of therapies for a broad range of degenerative or other conditions which affect the immune system, hematopoietic cells, as well as other cell types. The present invention provides new receptors for ligands exhibiting similarity to cytokine like compositions and related compounds, and methods for their use.

15

20

10

5

SUMMARY OF THE INVENTION

The present invention is directed to novel receptors related to cytokine receptors, e.g., primate, cytokine receptor like molecular structures, designated DNAX Cytokine Receptor Subunits (DCRS), and their biological activities. In particular, it provides description of various subunits, designated DCRS6, DCRS7, DCRS8, DCRS9, and DCRS10. Primate, e.g., human, and rodent, e.g., mouse, embodiments of the various subunits are provided. It includes nucleic acids coding for the polypeptides themselves and methods for their production and use. The nucleic acids of the invention are characterized, in part, by their homology to cloned complementary DNA (cDNA) sequences enclosed herein.

25

30

35

The present invention provides a composition of matter selected from: a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 2, 5, 8, 11, 23, or 26; a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 14; a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 14; a natural sequence DCRS8 comprising mature SEQ ID NO: 14; a fusion polypeptide comprising DCRS8 sequence; a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 17 or 20; a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 17 or 20; a natural

sequence DCRS9 comprising mature SEQ ID NO: 17 or 20; or a fusion polypeptide comprising DCRS9 sequence. Preferably, wherein the distinct nonoverlapping segments of identity include: one of at least eight amino acids; one of at least four amino acids and a second of at least five amino acids; at least three segments of at least four, five, and six amino acids, or one of at least twelve amino acids. In other embodiments, the: polypeptide: comprises a mature sequence of Tables 1, 2, 3, 4, or 5; is an unglycosylated form of DCRS8 or DCRS9; is from a primate, such as a human; comprises at least seventeen amino acids of SEQ ID NO: 14 or 17; exhibits at least four nonoverlapping segments of at least seven amino acids of SEQ ID NO: 14 or 17; is a natural allelic variant of DCRS8 or DCRS9; has a length at least about 30 amino acids; exhibits at least two non-overlapping epitopes which are specific for a primate DCRS8 or DCRS9; is glycosylated; has a molecular weight of at least 30 kD with natural glycosylation; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence.

The invention further embraces a composition comprising: a substantially pure DCRS8 or DCRS9 and another cytokine receptor family member; a sterile DCRS8 or DCRS9 polypeptide; the DCRS8 or DCRS9 polypeptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration. Additional embodiments include a polypeptide comprising: mature protein sequence of Tables 1, 2, 3, 4, or 5; a detection or purification tag, including a FLAG, His6, or Ig sequence; or sequence of another cytokine receptor protein. Kit embodiments include ones comprising a described polypeptide, and: a compartment comprising the protein or polypeptide; or instructions for use or disposal of reagents in the kit.

Binding compositions are provided, e.g., comprising an antigen binding site from an antibody, which specifically binds to a natural DCRS8 or DCRS9 polypeptide, wherein: the binding compound is in a container; the DCRS8 or DCRS9 polypeptide is from a human; the binding compound is an Fv, Fab, or Fab2 fragment; the binding compound is conjugated to another chemical moiety; or the antibody: is raised against a peptide sequence of a mature polypeptide of Table 3 or 4; is raised against a mature DCRS8 or DCRS9; is raised to a purified human DCRS8 or DCRS9; is immunoselected; is a polyclonal antibody; binds to a denatured DCRS8 or DCRS9; exhibits a Kd to antigen of at least 30 µM; is attached to a solid substrate, including a bead or plastic membrane; is in a sterile composition; or is detectably labeled, including a radioactive or fluorescent label. Kits include ones comprising such a binding compound, and: a compartment

WO 01/90358 PCT/US01/16767

. 2

comprising the binding compound; or instructions for use or disposal of reagents in the kit.

5

10

15

20

25

30

·35

The invention also provides methods of producing an antigen:antibody complex, comprising contacting under appropriate conditions a primate DCRS8 or DCRS9 polypeptide with a described antibody, thereby allowing the complex to form. Preferred methods include ones wherein: the complex is purified from other cytokine receptors; the complex is purified from other antibody; the contacting is with a sample comprising an interferon; the contacting allows quantitative detection of the antigen; the contacting is with a sample comprising the antibody; or the contacting allows quantitative detection of the antibody. Further compositions include those comprising: a sterile binding compound, as described, or the binding compound and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration.

Nucleic acid compositions include an isolated or recombinant nucleic acid encoding a desribed polypeptide wherein the: DCRS8 or DCRS9 is from a human; or the nucleic acid: encodes an antigenic peptide sequence of Table 3 or 4; encodes a plurality of antigenic peptide sequences of Table 3 or 4; exhibits identity over at least thirteen nucleotides to a natural cDNA encoding the segment; is an expression vector; further comprises an origin of replication; is from a natural source; comprises a detectable label; comprises synthetic nucleotide sequence; is less than 6 kb, preferably less than 3 kb; is from a primate; comprises a natural full length coding sequence; is a hybridization probe for a gene encoding the DCRS8 or DCRS9; or is a PCR primer, PCR product, or mutagenesis primer. Also provided are a cell or tissue comprising such a recombinant nucleic acid, e.g., where the cell is: a prokaryotic cell; a eukaryotic cell; a bacterial cell; a yeast cell; an insect cell; a mammalian cell; a mouse cell; a primate cell; or a human cell.

Kit embodiments include those comprising a described nucleic acid and: a compartment comprising the nucleic acid; a compartment further comprising a primate DCRS8 or DCRS9 polypeptide; or instructions for use or disposal of reagents in the kit.

Other nucleic acids provided include ones which: hybridize under wash conditions of 30 minutes at 30° C and less than 2M salt to the coding portion of SEQ ID NO: 13 or 16; or exhibit identity over a stretch of at least about 30 nucleotides to a primate DCRS8 or DCRS9. Preferably, such will be nucleic acids where: the wash conditions are: at 45° C and/or 500 mM salt; at 55° C and/or 150 mM salt; or the stretch is at least 55 or 75 nucleotides.

Also provided are methods of modulating physiology or development of a cell or tissue culture cells comprising contacting the cell with an agonist or antagonist of a

mammalian DCRS8 or DCRS9. Preferably, the cell is transformed with a nucleic acid encoding the DCRS8 or DCRS9 and another cytokine receptor subunit.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

5

OUTLINE

_	_	•
ł	(Janai	2
1.	Gener	Lau

- II. Activities
- III. Nucleic acids
- A. encoding fragments, sequence, probes
 - B. mutations, chimeras, fusions
 - C. making nucleic acids
 - D. vectors, cells comprising
 - IV. Proteins, Peptides
- A. fragments, sequence, immunogens, antigens
 - B. muteins
 - C. agonists/antagonists, functional equivalents
 - D. making proteins
 - V. Making nucleic acids, proteins
- A. synthetic
 - B. recombinant
 - C. natural sources

VI._Antibodies

- A. polyclonals
- B. monoclonal
 - C. fragments; Kd
 - D. anti-idiotypic antibodies
 - E. hybridoma cell lines
- VII. Kits and Methods to quantify DCRSs
- 30

25

- A. ELISA
- B. assay mRNA encoding
- C. qualitative/quantitative
- D. kits
- VIII. Therapeutic compositions, methods
- A. combination compositions
 - B. unit dose
 - C. administration
 - IX. Screening
 - X. Ligands

40

45

I. General

The present invention provides the amino acid sequence and DNA sequence of mammalian, herein primate, cytokine receptor-like subunit molecules, these designated DNAX Cytokine Receptor Subunits 6 (DCRS6), 7 (DCRS7), 8 (DCRS8), 9 (DCRS9), and 10 (DCRS10) having particular defined properties, both structural and biological.

5

10

15

20

25

30

35

40

Various cDNAs encoding these molecules were obtained from primate, e.g., human, and/or rodent, e.g., mouse, cDNA sequence libraries. Other primate or other mammalian counterparts would also be desired.

Some of the standard methods applicable are described or referenced, e.g., in Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.), vols. 1-3, CSH Press, NY; Ausubel, et al., Biology, Greene Publishing Associates, Brooklyn, NY; or Ausubel, et al. (1987 and periodic supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York; each of which is incorporated herein by reference.

Nucleotide (SEQ ID NO: 1) and corresponding amino acid sequence (SEQ ID NO: 2) of a primate, e.g., human, DCRS6 coding segment is shown in Table 1 along with reverse translation (SEQ ID NO: 3). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 4-6.

Similarly, nucleotide (SEQ ID NO: 7) and corresponding amino acid sequence (SEQ ID NO: 8) of a primate, e.g., human, DCRS7 coding segment is shown in Table 2 along with reverse translation (SEQ ID NO: 9). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 10-12. Nucleotide (SEQ ID NO: 13) and corresponding amino acid sequence (SEQ ID NO: 14) of a primate, e.g., human, DCRS8 coding segment is shown in Table 3 along with reverse translation (SEQ ID NO: 15).

Nucleotide (SEQ ID NO: 16) and corresponding amino acid sequence (SEQ ID NO: 17) of a primate, e.g., human, DCRS9 coding segment is shown in Table 4 along with reverse translation (SEQ ID NO: 18). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 19-21. Nucleotide (SEQ ID NO: 22) and corresponding amino acid sequence (SEQ ID NO: 23) of a primate, e.g., human, DCRS10 coding segment is shown in Table 5 along with reverse translation (SEQ ID NO: 24). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 26-27.

Table 1: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS6). Primate, e.g., human, embodiment (see SEQ ID NO: 1 and 2). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.

gcg atg tcg ctc gtg cta agc ctg gcc gcg ctg tgc agg agc gcc 48

Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala

-10 -5 -1 1

gta ccc cga gag ccg acc gtt caa tgt ggc tct gaa act ggg cca tct
Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro Ser

5 10 15

						caa Gln											144
5	ctc Leu	cga Arg 35	gta Val	gaa Glu	cct Pro	gtt Val	aca Thr 40	act Thr	agt Ser	gtt Val	gca Ala	aca Thr 45	eja aaa	gac Asp	tat Tyr	tca Ser	192
10	att Ile 50	Leu	atg Met	aat Asn	gta Val	agc Ser 55	tgg Trp	gta Val	ctc Leu	cgg Arg	gca Ala 60	gat Asp	gcc Ala	agc Ser	atc Ile	cgc Arg 65	240
15						aag Lys											288
20	tcc Ser	tac Tyr	agc Ser	tgt Cys 85	gtg Val	agg Arg	tgc Cys	aat Asn	tac Tyr 90	aca Thr	gag Glu	gcc Ala	ttc Phe	cag Gln 95	act Thr	cag Gln	336
20	acc Thr	aga Arg	ccc Pro 100	tct Ser	ggt Gly	ggt Gly	aaa Lys	tgg Trp 105	aca Thr	ttt Phe	tcc Ser	tat Tyr	atc Ile 110	Gly ggc	ttc Phe	cct Pro	384
25	gta Val	Glu	ctg Leu	aac Asn	aca Thr	gtc Val	Tyr	ttc Phe	att Ile	glà aaa	gcc Ala	cat His 125	aat Asn	att Ile	cct Pro	aat Asn	432
		115					120					143					
-30	gca Ala 130	aat	atg Met	aat Asn	gaa Glu	gat Asp 135	ggc	cct Pro	tcc Ser	Met	tct Ser 140	gtg	aat Asn	ttc Phe	acc Thr	tca Ser 145	480
35	Ala 130 cca	aat -Asn ggc	Met	Asn cta	Glu gac	Asp	ggc Gly ata	Pro atg	Ser	Met tat	Ser 140 aaa	gtg Val	Asn	Phe	Thr gtc	Ser 145 aag	480 528
35	Ala 130 cca Pro	aat -Asn- ggc Gly	Met tgc Cys	Asn cta Leu ctg	gac Asp 150	Asp 135 cac	ggc Gly ata Ile	atg Met	aaa Lys atc	tat Tyr 155	Ser 140 aaa Lys gct	gtg Val aaa Lys	aag Lys aag	tgt Cys aag	Thr gtc Val 160 aat	aag Lys	
	Ala 130 cca Pro gcc Ala	aat Asn ggc Gly gga Gly	Met tgc Cys agc ser	cta Leu ctg Leu 165	gac Asp 150 tgg Trp	Asp 135 cac His	ggc Gly ata Ile ccg Pro	Pro atg Met aac Asn	aaa Lys atc Ile 170	tat Tyr 155 act Thr	Ser 140 aaa Lys gct Ala	gtg Val aaa Lys tgt Cys	aag Lys aag Lys	tgt Cys aag Lys 175	Thr gtc Val 160 aat Asn	ser 145 aag Lys gag Glu tac	528
35	Ala 130 cca Pro gcc Ala gag Glu	aat Asn ggc Gly gga Gly aca Thr	tgc Cys agc ser gta Val 180	cta Leu ctg Leu 165 gaa Glu	gac Asp 150 tgg Trp gtg Val	Asp 135 cac His gat Asp	ggc Gly ata Ile ccg Pro ttc Phe	et aac Asn aca Thr 185	aaa Lys atc Ile 170 acc Thr	tat Tyr 155 act Thr act	ser 140 aaa Lys gct Ala ccc Pro	gtg Val aaa Lys tgt Cys ctg Leu	aag Lys aag Lys gga Gly 190	tgt Cys aag Lys 175 aac Asn	gtc Val 160 aat Asn aga Arg	aag Lys gag Glu tac Tyr	528
35	Ala 130 cca Pro gcc Ala gag Glu atg Met	aat Asn ggc Gly gga Gly aca Thr gct Ala 195	tgc Cys agc ser gta Val 180 ctt Leu	cta Leu ctg Leu 165 gaa Glu atc Ile	gac Asp 150 tgg Trp gtg Val caa Gln	Asp 135 cac His gat Asp aac Asn	ggc Gly ata Ile ccg Pro ttc Phe agc Ser 200 caa	atg Met aac Asn aca Thr 185 act	aaa Lys atc Ile 170 acc Thr atc	tat Tyr 155 act Thr act Thr	ser 140 aaa Lys gct Ala ccc Pro ggg Gly	gtg Val aaa Lys tgt Cys ctg Leu ttt Phe 205	aag Lys aag Lys gga Gly 190 tct Ser	tgt Cys aag Lys 175 aac Asn cag Gln	gtc Val 160 aat Asn aga Arg gtg Val	aag Lys gag Glu tac Tyr ttt Phe	528 576 624

	tgt Cys								816
5	caa Gln								864
10	ggc Gly 275								912
15	ctg Leu								960
20	act Thr								1008
	gtt Val								1056
25	gaa Glu								1104
30	cag Gln 355								1152
35	caa Gln								1200
40	aac Asn								1248
	gag Glu								1296
45	gat Asp								1344
50	aga Arg 435								1392
55	aag Lys								1440

PCT/US01/16767

·	ctc cat gtc aag cag cag gtg tca gca gga aaa aga tca caa gcc tgc Leu His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys 470 475 480	1488
5	cac gat ggc tgc tgc tcc ttg tagcccaccc atgagaagca agagacctta His Asp Gly Cys Cys Ser Leu 485	1539
10	aaggetteet ateccaccaa ttacagggaa aaaacgtgtg atgateetga agettactat	1599
10	gcagcctaca aacagcctta gtaattaaaa cattttatac caataaaatt ttcaaatatt	1659
	gctaactaat gtagcattaa ctaacgattg gaaactacat ttacaacttc aaagctgttt	1719
15	tatacataga aatcaattac agctttaatt gaaaactgta accattttga taatgcaaca	1779
	ataaagcatc ttcagcc	1796
20	MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYSILM RADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGA NMNEDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKKNEETVEVNFTTTPLGNRYMAI IGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDM GWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEI SEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLA	AHNIPNA LIQHSTI NKSKPO PLQNHCI
25	DLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHDO	
	Reverse translation of primate, e.g., human, DCRS6 (SEQ ID NO: 3):	
30	atgwsnytng tnytnytnws nytngengen ytntgymgnw sngengtnee nmgngareen	60
	acngtncart gyggnwsnga racnggnccn wsnccngart ggatgytnca rcaygayytn	120

athconggng ayytnmgnga yytnmgngtn garcongtna cnacnwsngt ngcnacnggn 180 35 gaytaywsna thytnatgaa ygtnwsntgg gtnytnmgng cngaygcnws nathmgnytn 240 ytnaargcna cnaarathtg ygtnacnggn aarwsnaayt tycarwsnta ywsntgygtn 300 40 mgntgyaayt ayacngargc nttycaracn caracnmgnc cnwsnggngg naartggacn 360 ttywsntaya thggnttycc ngtngarytn aayacngtnt ayttyathgg ngcncayaay 420 athccnaayg cnaayatgaa ygargayggn ccnwsnatgw sngtnaaytt yacnwsnccn 480 45 ggntgyytng aycayathat gaartayaar aaraartgyg tnaargcngg nwsnytntgg 540 gayccnaaya thacngcntg yaaraaraay gargaracng tngargtnaa yttyacnacn 600 50 acncenytng gnaaymgnta yatggenytn athearcayw snacnathat hggnttywsn 660 carginatyg arcencayea raaraarear acnmgngenw snginginat heenginaen 720 ggngaywsng arggngcnac ngtncarytn acncentayt tycenaentg yggnwsngay 780 55 tgyathmgnc ayaarggnac ngtngtnytn tgyccncara cnggngtncc nttyccnytn 840 gayaayaaya arwsnaarcc nggnggntgg ytnccnytny tnytnytnws nytnytngtn 900

	genachtggg thytngtngc nggnathtay ytnatgtggm gncaygarmg nathaaraar	960
5	acnienttyw snachachac nythythech cenathaarg thythgtngt ntaycenwsn	102
3	garathtgyt tycaycayac nathtgytay ttyacngart tyytncaraa ycaytgymgn	108
	wsngargtna thytngaraa rtggcaraar aaraarathg engaratggg neengtnear	114
10	tggytngcna cncaraaraa rgcngcngay aargtngtnt tyytnytnws naaygaygtn	120
	aaywsngtnt gygayggnac ntgyggnaar wsngarggnw snccnwsnga raaywsncar	126
15	gayytnttyc cnytngcntt yaayytntty tgywsngayy tnmgnwsnca rathcayytn	132
13	cayaartayg tngtngtnta yttymgngar athgayacna argaygayta yaaygcnytn	138
	wsngtntgyc cnaartayca yytnatgaar gaygcnacng cnttytgygc ngarytnytn	144
20	caygtnaarc arcargtnws ngcnggnaar mgnwsncarg cntgycayga yggntgytgy	1500
	wsnytn	1500
25	Rodent, e.g., mouse embodiment (see SEQ ID NO: 4 and 5).	
	gat ttc agc agc cag acg cat ctg cac aaa tac ctg gag gtc tat ctt Asp Phe Ser Ser Gln Thr His Leu His Lys Tyr Leu Glu Val Tyr Leu 1 5 10 15	48
30	ggg gga gca gac ctc aaa ggc gac tat aat gcc ctg agt gtc tgc ccc Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro 20 25 30	96
35	caa tat cat ctc atg aag gac gcc aca gct ttc cac aca gaa ctt ctc Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu 35 40 45	144
40	aag gct acg cag agc atg tca gtg aag aaa cgc tca caa gcc tgc cat Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His 50 55 60	192.
45	gat agc tgt tca ccc ttg tagtccaccc gggggaatag agactctgaa Asp Ser Cys Ser Pro Leu 65 70	240
	gccttcctac tctcccttcc agtgacaaat gctgtgtgac gactctgaaa tgtgtgggag	300
50	aggctgtgtg gaggtagtgc tatgtacaaa cttgctttaa aactggagtt tgcaaagtca	360
50	acctgagcat acacgcctga ggctagtcat tggctggatt tatgaagaca acacagttac	420
	agacaataat gagtgggacc tacatttggg atatacccaa agctgggtaa tgattatcac	480
55	tgagaaccac gcactctggc catgaggtaa tacggcactt ccctgtcagg ctgtctgtca	540
	ggttgggtct gtcttgcact gcccatgctc tatgctgcac gtagaccgtt ttgtaacatt	600
	theatgraph aatgaataat cogtttggga ggctctc	637

 ${\tt DFSSQTHLHKYLEVYLGGADLKGDYNALSVCPQYHLMKDATAFHTELLKATQSMSVKKRSQACHDSCSPL.}$

5	Reverse translation of rodent, e.g., mouse, DCRS6 (SEQ ID NO: 6):	
	gayttywsnw sncaracnca yytncayaar tayytngarg tntayytngg nggngcngay 6	0
10	ytnaarggng aytayaaygc nytnwsngtn tgyccncart aycayytnat gaargaygcn 1	.20
10	acngenttye ayacngaryt nytnaargen acnearwsna tgwsngtnaa raarmgnwsn 1	.80
	cargentgyc aygaywsntg ywsnccnytn 2	10
15 20	Table 2: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS7). Primate, e.g., human, embodiment (see SEQ ID NO: 7 and 8). Predicted signal sequence indicated, but may vary by a few positions and depending upon c type.	
20	gagtcaggac teccaggaca gagagtgeac aaactaceca geacageece etecgeecee 60	0
	tetggagget gaagagggat tecageceet gecacecaca gacaeggget gactggggtg 12	20
25	tetgecece ttgggggcan ccacagggee teaggeetgg gtgccacetg gcactagaag 1	80
20	atg cct gtg ccc tgg ttc ttg ctg tcc ttg gca ctg ggc cga agc cag Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser Gln -20 -15 -10 -5	28
30		76
	Trp Ile Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala Thr His -1 1 5 10	
35	tgc tct ccg ggc ctc tcc tgc cgc ctc tgg gac agt gac ata ctc tgc 33 Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp Ile Leu Cys 15 20 25	24
40	ctg cct ggg gac atc gtg cct gct ccg ggc ccc gtg ctg gcg cct acg 3' Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val Leu Ala Pro Thr 30 35 40	72
45	cac ctg cag aca gag ctg gtg ctg agg tgc cag aag gag acc gac tgt 4: His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln Lys Glu Thr Asp Cys 45 50 55 60	20
50	gac ctc tgt ctg cgt gtg gct gtc cac ttg gcc gtg cat ggg cac tgg 40 Asp Leu Cys Leu Arg Val Ala Val His Leu Ala Val His Gly His Trp 65 70 75	68
50	gaa gag cct gaa gat gag gaa aag ttt gga gga gca gct gac tta ggg 5 Glu Glu Pro Glu Asp Glu Glu Lys Phe Gly Gly Ala Ala Asp Leu Gly 80 85 90	16
55	gtg gag gag cct agg aat gcc tct ctc cag gcc caa gtc gtg ctc tcc 5 Val Glu Glu Pro Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser 95 100 105	64

		cag Gln 110															612
5		gct Ala															660
10		tgc Cys															708
15		cag Gln															756
20	gac Asp	tgc Cys	agg Arg 175	gly aaa	ctc Leu	gaa Glu	gtc Val	tgg Trp 180	aac Asn	agc Ser	atc Ile	ccg Pro	agc Ser 185	tgc Cys	tgg Trp	gcc Ala	804
		ccc Pro 190														gtt Val	852
25	ctg Leu 205	aat Asn	gtc Val	tct Ser	gag Glu	gag Glu 210	cag Gln	cac His	ttc Phe	ggc Gly	ctc Leu 215	tcc Ser	ctg Leu	tac Tyr	tgg Trp	aat Asn 220	900
30		gtc Val															948
35	ccg Pro	cag Gln	atc Ile	att Ile 240	acc Thr	ttg Leu	aac Asn	cac His	aca Thr 245	gac Asp	ctg Leu	gtt Val	ccc Pro	tgc Cys 250	ctc Leu	tgt Cys	996
40		cag Gln															1044
	ccc Pro	ttc Phe 270	agg Arg	gag Glu	gac Asp	ccc Pro	cgc Arg 275	gca Ala	cac His	cag Gln	aac Asn	ctc Leu 280	tgg Trp	caa Gln	gcc Ala	gcc Ala	1092
45		ctg Leu															1140
50	tcg Ser	ctg Leu	ccc Pro	gca Ala	gaa Glu 305	gcg Ala	gca Ala	ctg Leu	tgc Cys	tgg Trp 310	cgg Arg	gct Ala	ccg Pro	ggt Gly	999 Gly 315	gac Asp	1188
55	ccc Pro	tgc Cys	cag Gln	cca Pro 320	ctg Leu	gtc Val	cca Pro	ccg Pro	ctt Leu 325	tcc Ser	tgg Trp	gag Glu	aat Asn	gtc Val 330	act Thr	gtg Val	1236
	gac Asp	gtg Val	aac Asn 335	agc Ser	tcg Ser	gag Glu	aag Lys	ctg Leu 340	cag Gln	ctg Leu	cag Gln	gag Glu	tgc Cys 345	ttg Leu	tgg Trp	gct Ala	1284

5					cct Pro												1332
·					aac Asn												1380
10				Pro	agc Ser 385												1428
15					gac Asp												1476
20	Āsp	Asp	Leu 415	Gly	Ala	Leu	Trp	Ala 420	Сув	Pro	Met	Asp	Lys 425	Tyr	Ile	His	1524
§ 25	Lys	Arg 430	Trp	Ala	ctc Leu	Val	Trp 435	Leu	Ala	Cys	Leu	Leu 440	Phe	Ala	Ala	Ala	1572
					ctc Leu												1620
30	Arg	Leu	Leu	Lys	cag Gln 465	Asp	Val	Arg	Ser	Gly- 470	Ala	Ala-	Ala_	Arg_	Gly 475	Arg	1668
30	Arg gcg Ala	Leu gct Ala	Leu ctg Leu	Lys ctc Leu 480	Gln 465 ctc Leu	Asp tac Tyr	Val tca Ser	Arg gcc Ala	Ser gat Asp 485	Gly 470 gac Asp	Ala tcg Ser	Ala ggt Gly	ttc Phe	Arg gag Glu 490	Gly 475 cgc Arg	Arg ctg Leu	1668
	gcg Ala gtg Val	gct Ala ggc Gly	ctg Leu gcc Ala 495	ctc Leu 480 ctg Leu	Gln 465 ctc Leu gcg Ala	tac Tyr tcg ser	Val tca Ser gcc Ala	gcc Ala ctg Leu 500	gat Asp 485 tgc Cys	Gly 470 gac Asp cag Gln	tcg ser ctg Leu	ggt Gly ccg Pro	ttc Phe ctg Leu 505	gag Glu 490 cgc Arg	Gly 475 cgc Arg gtg Val	ctg Leu gcc Ala	
35	gcg Ala gtg Val	gct Ala ggc Gly	ctg Leu gcc Ala 495	ctc Leu 480 ctg Leu	Gln 465 ctc Leu gcg	Asp tac Tyr tcg ser	Val tca Ser gcc Ala	gcc Ala ctg Leu 500	gat Asp 485 tgc Cys	Gly 470 gac Asp cag Gln	tcg Ser ctg Leu	ggt Gly ccg Pro	ttc Phe ctg Leu 505	gag Glu 490 cgc Arg	Gly 475 cgc Arg gtg Val	ctg Leu gcc Ala	1716
35 40	gcg Ala gtg Val gta Val	gct Ala ggc Gly gac Asp 510	ctg Leu gcc Ala 495 ctg Leu	ctc Leu 480 ctg Leu tgg Trp	Gln 465 ctc Leu gcg Ala	tac Tyr tcg ser cgt Arg	Val tca ser gcc Ala cgt Arg 515	gcc Ala ctg Leu 500 gaa Glu	gat Asp 485 tgc Cys ctg Leu	Gly 470 gac Asp cag Gln agc ser	tcg Ser ctg Leu gcg Ala	ggt Gly ccg Pro cag Gln 520	ttc Phe ctg Leu 505 ggg Gly	gag Glu 490 cgc Arg ccc Pro	Gly 475 cgc Arg gtg Val gtg Val	ctg Leu gcc Ala gct Ala	1716
35 40	gcg Ala gtg Val gta Val tgg Trp 525	gct Ala ggc Gly gac Asp 510 ttt Phe	Leu ctg Leu gcc Ala 495 ctg Leu cac	ctc Leu 480 ctg Leu tgg Trp gcg Ala	Gln 465 ctc Leu gcg Ala agc Ser	tac Tyr tcg ser cgt Arg cgg Arg 530	tca ser gcc Ala cgt Arg 515 cgc Arg	gcc Ala ctg Leu 500 gaa Glu cag Gln gcg	gat Asp 485 tgc Cys ctg Leu acc Thr	Gly 470 gac Asp cag Gln agc ser ctg Leu	tcg Ser ctg Leu gcg Ala cag Gln 535	ggt Gly ccg Pro cag Gln 520 gag Glu	ttc Phe ctg Leu 505 ggg Gly ggc Gly	gag Glu 490 cgc Arg ccc Pro	Gly 475 cgc Arg gtg Val gtg Val gtg	ctg Leu gcc Ala gct Ala gtg Val 540 cta	1716 1764 1812

5	cgc gcc tcg ctc agc tgc gtg ctg ccc gac ttc ttg cag ggc cgg gcg 2004 Arg Ala Ser Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala 575 580 585
	Pro Gly Ser Tyr Val Gly Ala Cys Phe Asp Arg Leu Leu His Pro Asp 595 600
10	gcc gta ccc gcc ctt ttc cgc acc gtg ccc gtc ttc aca ctg ccc tcc 2100 Ala Val Pro Ala Leu Phe Arg Thr Val Pro Val Phe Thr Leu Pro Ser 610 615 620
15	caa ctg cca gac ttc ctg ggg gcc ctg cag cag cct cgc gcc ccg cgt 2148 Gln Leu Pro Asp Phe Leu Gly Ala Leu Gln Gln Pro Arg Ala Pro Arg 625 630 635
20	tcc ggg cgg ctc caa gag aga gcg gag caa gtg tcc cgg gcc ctt cag 2196 Ser Gly Arg Leu Gln Glu Arg Ala Glu Gln Val Ser Arg Ala Leu Gln 640 645 650
27	cca gcc ctg gat agc tac ttc cat ccc ccg ggg acn tcc gcg ccg gga 2244 Pro Ala Leu Asp Ser Tyr Phe His Pro Pro Gly Xaa Ser Ala Pro Gly 655 660 665
25	cgc ggg gtg gga cca ggg gcg gga cct ggg gcg ggg gac ggg act 2289 Arg Gly Val Gly Pro Gly Ala Gly Pro Gly Ala Gly Asp Gly Thr 670 675
30	taaataaagg cagacgctg
35	MPVPWFILSLALGRSQWILSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGPVLAPTHLQTELVL RCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADLGVEEPRNASLQAQVVLSFQAYPTARCVLLEVQV PAALVQFGQSVGSVVYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPDCRGLEVWNSIPSCWALPWLNVSA DGDNVHLVLNVSEEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDLVPCLCIQVWPLEPDSVRTNIC PFREDPRAHQNLWQAARLRLLTLQSWLLDAPCSLPAEAALCWRAPGGDPCQPLVPPLSWENVTVDVNSSEKL QLQECLWADSLGPLKDDVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRAARLGEVILODLOGGGG
40	DDLGALWACPMDKYIHKRWALVWLACILFAAALSLILLLKKDHAKGWLRLKQDVRSGAAARGRAALILYSA DDSGFERLVGALASALCQLPLRVAVDLWSRRELSAQGPVAWFHAQRRQTLQEGGVVVLLFSPGAVALCSEWL QDGVSGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFTLPSQLPDFLGA LQQPRAPRSGRLQERAEQVSRALQPALDSYFHPPGTSAPGRGVGPGAGDGT.
	Reverse translation of primate, e.g., human, DCRS7 (SEQ ID NO: 9):
45	atgeengtne entggttyyt nytnwsnytn genytnggnm gnwsneartg gathytnwsn 60
	ytngarmgny tngtnggncc ncargaygcn acncaytgyw snccnggnyt nwsntgymgn 120
50	ytntgggayw sngayathyt ntgyytnccn ggngayathg tnccngcncc nggnccngtn 180
	ytngcnccna cncayytnca racngarytn gtnytnmgnt gycaraarga racngaytgy 240
	gayytntgyy tnmgngtngc ngtncayytn gcngtncayg gncaytggga rgarccngar 300
55	gaygargara arttyggngg ngengengay ytnggngtng argareenmg naaygenwsn 360
	ytncargene argtngtnyt nwsnttycar gentaycena engenmgntg ygtnytnytn 420
	garginearg incendence nythigenear thyggnearw shifting nythigen 420

	gaytgyttyg	argcngcnyt	nggnwsngar	gtnmgnatht	ggwsntayac	ncarccnmgn	540
-	taygaraarg	arytnaayca	yacncarcar	ytnccngayt	gymgnggnyt	ngargtntgg	600
5	aaywsnathc	cnwsntgytg	ggcnytnccn	tggytnaayg	tnwsngcnga	yggngayaay	660
	gtncayytng	tnytnaaygt	nwsngargar	carcayttyg	gnytnwsnyt	ntaytggaay	720
10	cargtncarg	gnccnccnaa	rccnmgntgg	cayaaraayy	tnacnggncc	ncarathath	780
	acnytnaayc	ayacngayyt	ngtnccntgy	ytntgyathc	argtntggcc	nytngarccn	840
15	gaywsngtnm	gnacnaayat	htgyccntty	mgngargayc	cnmgngcnca	ycaraayytn	900
13	tggcargcng	cnmgnytnmg	nytnytnacn	ytncarwsnt	ggytnytnga	ygcnccntgy	960
	wsnytnccng	cngargcngc	nytntgytgg	mgngcnccng	gnggngaycc	ntgycarccn	1020
20	ytngtnccnc	cnytnwsntg	ggaraaygtn	acngtngayg	tnaaywsnws	ngaraarytn	1080
	carytncarg	artgyytntg	ggcngaywsn	ytnggnccny	tnaargayga	ygtnytnytn	1140
25	ytngaracnm	gnggnccnca	rgayaaymgn	wsnytntgyg	cnytngarcc	nwsnggntgy	1200
25	acnwsnytnc	cnwsnaargc	nwsnacnmgn	gengenmgny	tnggngarta	yytnytncar	1260
	gayytncarw	snggncartg	yytncarytn	tgggaygayg	ayytnggngc	nytntgggcn	1320
30	-tgyccnatgg_	ayaartayat	hcayaarmgn	tgggcnytng	tntggytngc	ntgyytnytn	1380
	ttygcngcng	cnytnwsnyt	nathytnytn	ytnaaraarg	aycaygcnaa	rggntggytn	1440
35	mgnytnytna	arcargaygt	nmgnwsnggn	gengengenm	gnggnmgngc	ngcnytnytn	1500
	ytntaywsng	cngaygayws	nggnttygar	mgnytngtng	gngcnytngc	nwsngcnytn	1560
	tgycarytnc	cnytnmgngt	ngcngtngay	ytntggwsnm	gnmgngaryt	nwsngcncar	1620
40	ggnccngtng	cntggttyca	ygcncarmgn	mgncaracny	tncargargg	nggngtngtn	1680
	gtnytnytnt	tywsnccngg	ngcngtngcn	ytntgywsng	artggytnca	rgayggngtn	1740
45	wsnggnccng	gngcncaygg	nccncaygay	gcnttymgng	cnwsnytnws	ntgygtnytn	1800
	ccngayttyy	tncarggnmg	ngcnccnggn	wsntaygtng	gngcntgytt	ygaymgnytn	1860
	ytncaycong	aygcngtncc	ngcnytntty	mgnacngtnc	cngtnttyac	nytnccnwsn	1920
50	carytnccng	ayttyytngg	ngcnytncar	carconmgng	cnccnmgnws	nggnmgnytn	1980
	cargarmgng	cngarcargt	nwsnmgngcn	ytncarcong	cnytngayws	ntayttycay	2040
、 5 <i>5</i>	ccnccnggna	cnwsngcncc	nggnmgnggn	gtnggnccng	gngcnggncc	nggngcnggn	2100
	gayggnacn						2109

	Rodent, e.g., mouse, embodiment (see SEQ ID NO: 10 and 11). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.
5	ccaaatcgaa agcacgggag ctgatactgg gcctggagtc caggctcact ggagtgggga 60
	agcatggctg gagaggaatt ctagcccttg ctctctccca gggacacggg gctgattgtc 120
	agcagggggg aggggtctgc cccccttgg gggggcagga cggggcctca ggcctgggtg 180
10	ctgtccggca cctggaag atg cct gtg tcc tgg ttc ctg ctg tcc tgg
	-20 -15 Leu Leu Ser Leu Ala
15	ctg ggc cga aac cct gtg gtc gtc tct ctg gag aga ctg atg gag cct 279 Leu Gly Arg Asn Pro Val Val Val Ser Leu Glu Arg Leu Met Glu Pro -5 -1 1 5
20	cag gac act gca cgc tgc tct cta ggc ctc tcc tgc cac ctc tgg gat 327 Gln Asp Thr Ala Arg Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp 10 15 20
25	ggt gac gtg ctc tgc ctg cct gga agc ctc cag tct gcc cca ggc cct 375 Gly Asp Val Leu Cys Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro 25 30 35
	gtg cta gtg cct acc cgc ctg cag acg gag ctg gtg ctg agg tgt cca 423 Val Leu Val Pro Thr Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro 45 50 55
30	cag aag aca gat tgc gcc ctc tgt gtc cgt gtg gtg gtc cac ttg gcc 471 Gln Lys Thr Asp Cys Ala Leu Cys Val Arg Val Val Val His Leu Ala 60 65 70
35	gtg cat ggg cac tgg gca gag cct gaa gaa gct gga aag tct gat tca 519 Val His Gly His Trp Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser 75 80 85
40	gaa ctc cag gag tct agg aac gcc tct ctc cag gcc cag gtg gtg ctc 567 Glu Leu Gln Glu Ser Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu 90 95 100
45	tcc ttc cag gcc tac ccc atc gcc cgc tgt gcc ctg ctg gag gtc cag 615 Ser Phe Gln Ala Tyr Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln 105 110
·	gtg ccc gct gac ctg gtg cag cct ggt cag tcc gtg ggt tct gcg gta 663 Val Pro Ala Asp Leu Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val 125 130 135
50	ttt gac tgt ttc gag gct agt ctt ggg gct gag gta cag atc tgg tcc 711 Phe Asp Cys Phe Glu Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser 140 145 150
55	tac acg aag ccc agg tac cag aaa gag ctc aac ctc aca cag cag ctg 759 Tyr Thr Lys Pro Arg Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu 155 160 165

					ggt Gly											tgg Trp	807
5					ctc Leu												855
10					tct Ser												903
15					gat Asp 220												951
20					att Ile												999
_,					tgg Trp												1047
25					gaa Glu												1095
30					gta Val												1143
35		Cys			300 Gly Ggc												1191
40					cca Pro												1239
	gtg Val	aat Asn	gag Glu 330	cca Pro	caa Gln	gat Asp	ttc Phe	cag Gln 335	ttg Leu	gtg Val	gca Ala	ggc	cac His 340	ccc Pro	aac Asn	ctc Leu	1287
45					agc Ser												1335
50					ttg Leu												1383
55	atg Met	aaa Lys	acc Thr	ggc Gly	ctc Leu 380	aac Asn	aac Asn	aca Thr	tca Ser	gtc Val 385	tgt Cys	gcc Ala	ttg Leu	gaa Glu	ccc Pro 390	agt Ser	1431
					ctg Leu												1479

5	gga gag gag ttg ctg caa gac ttc cga tca cac cag tgt atg cag ctg 1527 Gly Glu Glu Leu Leu Gln Asp Phe Arg Ser His Gln Cys Met Gln Leu 410 415 420
	tgg aac gat gac aac atg gga tcg cta tgg gcc tgc ccc atg gac aag 1575 Trp Asn Asp Asn Met Gly Ser Leu Trp Ala Cys Pro Met Asp Lys 435
10	tac atc cac agg cgc tgg gtc cta gta tgg ctg gcc tgc cta ctc ttg 1623 Tyr Ile His Arg Arg Trp Val Leu Val Trp Leu Ala Cys Leu Leu Leu 440 455
15	gct gcg gcg ctt ttc ttc ttc ctc ctt cta aaa aag gac cgc agg aaa 1671 Ala Ala Ala Leu Phe Phe Phe Leu Leu Leu Lys Lys Asp Arg Arg Lys 460 465 470
20	gcg gcc cgt ggc tcc cgc acg gcc ttg ctc ctc cac tcc gcc gac gga 1719 Ala Ala Arg Gly Ser Arg Thr Ala Leu Leu His Ser Ala Asp Gly 485
25	gcg ggc tac gag cgc ctg gtg gga gca ctg gcg tcc gcg ttg agc cag 1767 Ala Gly Tyr Glu Arg Leu Val Gly Ala Leu Ala Ser Ala Leu Ser Gln 490 495 500
	atg cca ctg cgc gtg gcc gtg gac ctg tgg agc cgc cgc gag ctg agc 1815 Met Pro Leu Arg Val Ala Val Asp Leu Trp Ser Arg Arg Glu Leu Ser 505 510 515
30	gcg cac gga gcc cta gcc tgg ttc cac cac cag cga cgc cgt atc ctg 1863 Ala His Gly Ala Leu Ala Trp Phe His His Gln Arg Arg Ile Leu 525 530 535
35	cag gag ggt ggc gtg gta atc ctt ctc ttc tcg ccc gcg gcc gtg gcg 1911 Gln Glu Gly Gly Val Val Ile Leu Leu Phe Ser Pro Ala Ala Val Ala 540 545 550
40	cag tgt cag cag tgg ctg cag ctc cag aca gtg gag ccc ggg ccg cat 1959 Gln Cys Gln Gln Trp Leu Gln Leu Gln Thr Val Glu Pro Gly Pro His 555 560 565
45	gac gcc ctc gcc gcc tgg ctc agc tgc gtg cta ccc gat ttc ctg caa 2007 Asp Ala Leu Ala Ala Trp Leu Ser Cys Val Leu Pro Asp Phe Leu Gln 570 575 580
	ggc cgg gcg acc ggc cgc tac gtc ggg gtc tac ttc gac ggg ctg ctg 2055 Gly Arg Ala Thr Gly Arg Tyr Val Gly Val Tyr Phe Asp Gly Leu Leu 585 590 595
50	Cac cca gac tct gtg ccc tcc ccg ttc cgc gtc gcc ccg ctc ttc t
55	ctg ccc tcg cag ctg ccg gct ttc ctg gat gca ctg cag gga ggc tgc Leu Pro Ser Gln Leu Pro Ala Phe Leu Asp Ala Leu Gln Gly Gly Cys 620 625 630

WO 01/90358

PCT/US01/16767

20

				gcg Ala 635													2199
5				tcc Ser													2247
10				gag Glu													2292
	taaa	aagco	ga t	acag	gtatt	c ct	:										2314
15	RCP(VQP(VLL:	OKTDO SQSVO FLDVS	CALCY SSAVI SEEQI	/RVV\ FDCFI OFSFI	/HLA\ EASLO LLYLF	HGHV AEVÇ RPVPI	VAEPI QIWS'Y DALKS	EEAGI TKPI LWYI	CSDSI CYQKI CNLTC	ELQES ELNLT EPQNI	RNAS TQQLI TLNI	SLQA(PDCR(HTDL\	PCLC PLEVE PCLC	FQAY RDSIÇ CIQVV	(PIAI SCW\ ISLEI	RCALLEY /LPWLNY PDSERVI	LQTELVL /QVPADL /STDGDN EFCPFRE FQLVAGH
20	PNLO QDFI ADGI LQLO	CVQVS RSHQC AGYER QTVER	ETWEI CMQLV RLVGI PGPHI	(VQL) VNDDI ALAS!	QACLV MGSI ALSQN AWLSO	VADSI LWACI VPLRV CVLPI	GPFI MDK VAVDI OFLQC	ODMI LHRI LWSRI BRATO	LVEN RWVL\ RELSA BRYVO	KTGI WLAC HGAI VYFI	LAWFI CLLLA LAWFI CGLLI	EVCAI AALI IHQRI IPDS\	EPSC FFLI RRILC PSPI	ECTPI LLKKI QEGGV	IPSMA RRKA VILI	ASTRAAI AARGSR: LFSPAAI	RLGEELL FALLLHS VAQCQQW AFLDALQ
25																	

Reverse translation of rodent, e.g., mouse, DCRS7 (SEQ ID NO: 12):

30	atgccngtnw	sntggttyyt	nytnwsnytn	gcnytnggnm	gnaayccngt	ngtngtnwsn	60
50	ytngarmgny	tnatggarcc	ncargayacn	gcnmgntgyw	snytnggnyt	nwsntgycay	-1-20-
	ytntgggayg	gngaygtnyt	ntgyytnccn	ggnwsnytnc	arwsngcncc	nggnccngtn	180
35	ytngtnccna-	cnmgnytnca	racngarytn	gtnytnmgnt	gyccncaraa	racngaytgy	240
	gcnytntgyg	tnmgngtngt	ngtncayytn	gcngtncayg	gncaytgggc	ngarccngar	300
40	gargenggna	arwsngayws	ngarytncar	garwsnmgna	aygcnwsnyt	ncargenear	360
40	gtngtnytnw	snttycargc	ntayccnath	gcnmgntgyg	cnytnytnga	rgtncargtn	420
	ccngcngayy	tngtncarcc	nggncarwsn	gtnggnwang	cngtnttyga	ytgyttygar	480
45	gcnwsnytng	gngcngargt	ncarathtgg	wsntayacna	arccnmgnta	ycaraargar	540
	ytnaayytna	cncarcaryt	nccngaytgy	mgnggnytng	argtnmgnga	ywsnathcar	600
~ 0	wsntgytggg	tnytnccntg	gytnaaygtn	wsnacngayg	gngayaaygt	nytnytnacn	660
50	ytngaygtnw	sngargarca	rgayttywsn	ttyytnytnt	ayytnmgncc	ngtnccngay	720
	gcnytnaarw	snytntggta	yaaraayytn	acnggnccnc	araayathac	nytnaaycay	780
55	acngayytng	tnccntgyyt	ntgyathcar	gtntggwsny	tngarccnga	ywsngarmgn	840
	gtngarttyt	gyccnttymg	ngargayccn	ggngcncaym	gnaayytntg	gcayathgcn	900
	mgnytnmgng	tnytnwsncc	nggngtntgg	carytngayg	cnccntgytg	yytnccnggn	960

WO 01/90358

	aargtnacny tntgytggca rgcnccngay carwsnccnt gycarccnyt ngtnccnccn 1020
5	
	ccnaayytnt gygtncargt nwsnacntgg garaargtnc arytncargc ntgyytntgg 1140
	gengaywany tnggneentt yaargaygay atgytnytng tngaratgaa raenggnytn 1200
10	aayaayacnw sngtntgygc nytngarccn wsnggntgya cnccnytncc nwsnatggcn 1260
	wsnacnmgng engenmgnyt nggngargar utnutngga encenytnee nwsnatggen 1260
1.5	wsnacnmgng cngcnmgnyt nggngargar ytnytncarg ayttymgnws ncaycartgy 1320 atgcarytnt ggaaygayga yaayatggg yaayat
15	atgcarytnt ggaaygayga yaayatgggn wsnytntggg cntgyccnat ggayaartay 1380 athcaymgnm gntgggtnyt ngtntggytn
	athcaymgnm gntgggtnyt ngtntggytn gcntgyytny tnytngcngc ngcnytntty 1440
20	ttyttyytny tnytnaaraa rgaymgnmgn aargengenm gnggnwsnmg naengenytn 1500
	ytnytncayw sngcngaygg ngcnggntay garmgnytng tnggngcnyt ngcnwsngcn 1560
	ytnwsncara tgccnytnmg ngtngcngtn gayytntggw snmgnmgnga rytnwsngcn 1620
25	cayggngcny tngcntggtt ycaycaycar mgnmgnmgna thytncarga rggnggngtn 1680
	gendenythy thttywsnee ngengength geneartgyc areartggyt nearythear 1740
30	active the condition of
50	osyleneary ghmgngenae nggnmgntay gtnggngtnt ayttygaygg nytnytngay 1860
	ongay wang theenwance nttymgngtn geneenytht tywanythee nwancaryth 1920
35	oomgenetyy theargenyt neargengen telegranus angengenme neengengay 1990
40	gargeneeng gntgytgyga rgartgggay ytnggneent gyacnacnyt ngar 2094
40	
45	Table 3: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS8). Primate, e.g., human, embodiment (see SEQ ID NO: 13 and 14). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.
73	cccacgente cgggccagca gcgggcggcc ggggcgcaga gaacggcctg gctgggcgag 60
	egeacgged atg ged eeg tag etg gag etg.
50	-15 -10 -5
55	aac gcc tgc ctc aac ggc tcg cag ctg gct gtn gcc gct ggc ggg tcc 159 Asn Ala Cys Leu Asn Gly Ser Gln Leu Ala Xaa Ala Ala Gly Gly Ser 10
	ggc cgc gcg cng ggc gcc gac acc tgt agc tgg ang gga gtg ggg cca 207 Gly Arg Ala Xaa Gly Ala Asp Thr Cys Ser Trp Xaa Gly Val Gly Pro 25

~	gcc Ala	agc Ser	aga Arg	aac Asn	agt Ser 35	gly aaa	ctg Leu	tac Tyr	aac Asn	atc Ile 40	acc Thr	ttc Phe	aaa Lys	tat Tyr	gac Asp 45	aat Asn	255
5	tgt Cys	acc Thr	acc Thr	tac Tyr 50	ttg Leu	aat Asn	cca Pro	gtg Val	999 Gly 55	aag Lys	cat His	gtg Val	att Ile	gct Ala 60	gac Asp	gcc Ala	303
10	cag Gln	aat Asn	atc Ile 65	acc Thr	atc Ile	agc Ser	cag Gln	tat Tyr 70	gct Ala	tgc Cys	cat His	gac Asp	caa Gln 75	gtg Val	gca Ala	gtc Val	351
15	acc Thr	att Ile 80	ctt Leu	tgg Trp	tcc Ser	cca Pro	85 Gly 999	gcc Ala	ctc Leu	ggc	atc Ile	gaa Glu 90	ttc Phe	ctg Leu	aaa Lys	gga Gly	399
20	ttt Phe 95	cgg Arg	gta Val	ata Ile	ctg Leu	gag Glu 100	gag Glu	ctg Leu	aag Lys	tcg Ser	gag Glu 105	gga Gly	aga Arg	cag Gln	ngc Xaa	caa Gln 110	447
25	caa Gln	ctg Leu	att Ile	cta Leu	aag Lys 115	gat Asp	ccg Pro	aag Lys	cag Gln	ntc Xaa 120	aac Asn	agt Ser	agc Ser	ttc Phe	aaa Lys 125	aga Arg	495
	act Thr	gga Gly	atg Met	gaa Glu 130	tct Ser	caa Gln	cct Pro	ttn Xaa	ctg Leu 135	aat Asn	atg Met	aaa Lys	ttt Phe	gaa Glu 140	acg Thr	gat Asp	543
30	tat Tyr	ttc Phe	gta Val	-agg- Arg	_ttg_ Leu	tcc_ Ser	ttt Phe	tcc Ser	ttc Phe	att Ile	aaa Lys	aac Asn	gaa Glu	agc Ser	aat Asn	tac Tyr	591
30	Tyr	Phe	Val 145	Arg	Leu	Ser	Phe	Ser 150	Phe	Ile	Lys	Asn	-Glu- 155	-Ser-	-Asn	Tyr	
35	Tyr	Phe	val	Arg	Leu	Ser	Phe	Ser 150 cga	Phe	Ile tgt	Lys	Asn	-Glu- 155 ttg	Ser tta	-Asn cag	Tyr ccg	591 639
	cac His	Phe cct Pro 160	Val 145 ttc	Arg ttc Phe	ttt Phe tgt	ser aga Arg	Phe acc Thr 165	Ser 150 cga Arg	Phe gcc Ala tgg	Ile tgt Cys	Lys gac Asp	ctg Leu 170	Glu- 155 ttg Leu aac	tta Leu ctg	cag Gln aac	Tyr ccg Pro	
35 40	cac His gac Asp 175	Phe cct Pro 160 aat Asn	Val 145 ttc Phe	ttc Phe gct Ala	ttt Phe tgt Cys	ser aga Arg aaa Lys 180	Phe acc Thr 165 ccc Pro	Ser 150 cga Arg ttc Phe	Phe gcc Ala tgg Trp	tgt Cys aag Lys	gac Asp cct Pro 185	Asn ctg Leu 170 cgg Arg	ttg Leu aac Asn	tta Leu ctg Leu gca	cag Gln aac Asn	CCG Pro atc Ile 190 Cac	639
35	cac His gac Asp 175 agc Ser	Phe cct Pro 160 aat Asn cag Gln	Val 145 ttc Phe cta Leu cat	ttc Phe gct Ala ggc Gly	ttt Phe tgt Cys tcg ser 195	aga Arg aaa Lys 180 gac Asp	acc Thr 165 ccc Pro atg Met	ser 150 cga Arg ttc Phe cag Gln	gcc Ala tgg Trp gtg Val	tgt Cys aag Lys tcc Ser 200	gac Asp cct Pro 185 ttc Phe	ctg Leu 170 cgg Arg gac Asp	ttg Leu aac Asn cac His	tta Leu ctg Leu gca Ala	cag Gln aac Asn ccg Pro 205	CCG Pro atc Ile 190 Cac His	639
35 40	cac His gac Asp 175 agc Ser aac	Phe cct Pro 160 aat Asn cag Gln ttc Phe	Val 145 ttc Phe cta Leu cat His	ttc Phe gct Ala ggc Gly ttc Phe 210	ttt Phe tgt Cys tcg ser 195 cgt Arg	aga Arg aaa Lys 180 gac Asp ttc Phe	Phe acc Thr 165 ccc Pro atg Met ttc Phe acc	ser 150 cga Arg ttc Phe cag Gln tat Tyr	Phe gcc Ala tgg Trp gtg Val ctt Leu 215	tgt Cys aag Lys tcc ser 200 cac His	gac Asp cct Pro 185 ttc Phe tac	ctg Leu 170 cgg Arg gac Asp aag Lys	ttg Leu aac Asn cac His	tta Leu ctg Leu gca Ala aag Lys 220 aca	cag Gln aac Asn ccg Pro 205 cac His	Ccg Pro atc Ile 190 cac His gaa Glu	639 687 735

		gtg Val															927
5 .		cca Pro															975
10	aca Thr	gtg Val															1023
15		tgc Cys															1071
20		agc Ser 320															1119
20		cgg Arg															1167
25	cag Gln	aat Asn	cac His	atg Met	aat Asn 355	gtc Val	gtc Val	cag Gln	tgt Cys	ttc Phe 360	gcc Ala	tac Tyr	ttc Phe	ctc Leu	cag Gln 365	gac Asp	1215
30		tgt Cys													Ser		1263
35	tgt Cys	aga Arg	gaa Glu 385	gjå aaa	cag Gln	aga Arg	gaa Glu	tgg Trp 390	gtc Val	atc Ile	cag Gln	aag Lys	atc Ile 395	cac His	gag Glu	tcc Ser	1311
40	cag Gln	ttc Phe 400															1359
		aag Lys															1407
45	gag Glu	ctc Leu	ttc Phe	ctg Leu	gtg Val 435	gcg Ala	gtg Val	tca Ser	gcc Ala	att Ile 440	gcc Ala	gaa Glu	aag Lys	ctc Leu	cgc Arg 445	cag Gln	1 4 55
50	Ala	aag Lys	Gln	Ser 450	Ser	Ser	Ala	Ala	Leu 455	Ser	Lys	Phe	Ile	Ala 460	Val	Tyr	1503
· 55		gat Asp															1551
		aag Lys 480														ctg Leu	1599

	cac His 495	tcc Ser	cga Arg	gac Asp	cac His	ggc Gly 500	ctc Leu	cag Gln	gag Glu	ccg Pro	999 905	cag Gln	cac His	acg Thr	cga Arg	cag Gln 510	1647
5	ggc	agc Ser	aga Arg	agg Arg	aac Asn 515	tac Tyr	ttc Phe	cgg Arg	agc Ser	aag Lys 520	tca Ser	gg¢	cgg Arg	tcc Ser	cta Leu 525	tac Tyr	1695
10	gtc Val	gcc Ala	att Ile	tgc Cys 530	aac Asn	atg Met	cac His	cag Gln	ttt Phe 535	att Ile	gac Asp	gag Glu	gag Glu	ccc Pro 540	gac Asp	tgg Trp	1743
15			aag Lys 545														1791
20	gag Glu	cca Pro 560	gtc Val	ttg Leu	gag Glu	aaa Lys	ttt Phe 565	gat Asp	tcg Ser	ggc	ttg Leu	gtt Val 570	tta Leu	aat Asn	gat Asp	gtc Val	1839
20	atg Met 575	tgc Cys	aaa Lys	cca Pro	glà aaa	cct Pro 580	gag Glu	agt Ser	gac Asp	ttc Phe	tgc Cys 585	cta Leu	aag Lys	gta Val	gag Glu	gcg Ala 590	1887
25	gct Ala	gtt Val	ctt Leu	gjå aaa	gca Ala 595	acc Thr	gga Gly	cca Pro	gcc Ala	gac Asp 600	tcc Ser	cag Gln	cac His	gag Glu	agt Ser 605	cag Gln	1935
_30	cat His	gjà aaa	ggc	ctg Leu 610	gac Asp	caa Gln	gac Asp	gly aaa	gag Glu 615	gcc Ala	cgg Arg	Pro	gcc Ala	Leu	Asp	ggt Gly	1983
35	agc Ser	Āla	gcc Ala 625	ctg Leu	caa Gln	ccc Pro	ctg Leu	ctg Leu 630	cac His	acg Thr	gtg Val	aaa Lys	gcc Ala 635	ggc	agc Ser	ccc Pro	2031
40	tcg Ser	gac Asp 640	atg Met	ccg Pro	cgg Arg	gac Asp	tca Ser 645	ggc Gly	atc Ile	tat Tyr	gac Asp	tcg Ser 650	tct. Ser	gtg Val	ccc Pro	tca Ser	2079
40	tcc Ser 655	gag Glu	ctg Leu	tct Ser	ctg Leu	cca Pro 660	ctg Leu	atg Met	gaa Glu	Gly	ctc Leu 665	tcg Ser	acg Thr	gac Asp	cag Gln	aca Thr 670	2127
45	gaa Glu	acg Thr	tct Ser	tcc Ser	ctg Leu 675	acg Thr	gag Glu	agc Ser	gtg Val	tcc Ser 680	tcc Ser	tct Ser	tca Ser	ggc	ctg Leu 685	ggt Gly	2175
50	gag Glu	gag Glu	gaa Glu	cct Pro 690	cct Pro	gcc Ala	ctt Leu	cct Pro	tcc Ser 695	aag Lys	ctc Leu	ctc Leu	tct Ser	tct Ser 700	eja aaa	tca Ser	2223
55	tgc Cys	aaa Lys	gca Ala 705	gat Asp	ctt Leu	ggt Gly	tgc Cys	cgc Arg 710	agc Ser	tac Tyr	act Thr	gat Asp	gaa Glu 715	ctc Leu	cac His	gcg Ala	2271
	_	-	cct Pro			caaa	acg	aaag	agtc	ta a	gcat	tgcc	a ct	ttag	ctgc		2323

FDHAPHNFGFRFFYLHYKLKHEGPFKRKTCKQEQTTEMTSCLLQNVSPGDYIIELVDDTNTTRKVMHYALKP
VHSPWAGPIRAVAITVPLVVISAFATLFTVMCRKKQQENIYSHLDEESSESSTYTAALPRERLRPRPKVFLC
YSSKDGQNHMNVVQCFAYFLQDFCGCEVALDLWEDFSLCREGQREWVIQKIHESQFIIVVCSKGMKYFVDKK
NYKHKGGGRGSGKGELFLVAVSAIAEKLRQAKQSSSAALSKFIAVYFDYSCEGDVPGILDLSTKYRLMDNLP
QLCSHLHSRDHGLQEPGQHTRQGSRRNYFRSKSGRSLYVAICNMHQFIDEEPDWFEKQFVPFHPPPLRYREP
VLEKFDSGLVLNDVMCKPGPESDFCLKVEAAVLGATGPADSQHESQHGGLDQDGEARPALDGSAALQPLLHT
VKAGSPSDMPRDSGIYDSSVPSSELSLPLMEGLSTDQTETSSLTESVSSSSGLGEEEPPALPSKLLSSGSCK
ADLGCRSYTDELHAVAPL.

Reverse translation of primate, e.g., human, DCRS8 (SEQ ID NO: 15):

35

40

45

50

55

atggeneent ggytnearyt ntgywsngtn ttyttyaeng tnaaygentg yytnaayggn 60 wsncarytng engtngenge nggnggnwsn ggnmgngenn nnggngenga yaentgywsn 120 tggnnnggng tnggnccngc nwsnmgnaay wsnggnytnt ayaayathac nttyaartay 180 gayaaytgya cnacntayyt naayccngtn ggnaarcayg tnathgcnga ygcncaraay 240 athacnathw sncartaygc ntgycaygay cargtngcng tnacnathyt ntggwsnccn 300 ggngcnytng gnathgartt yytnaarggn ttymgngtna thytngarga rytnaarwsn 360 garggnmgnc arnnncarca rytnathytn aargayccna arcarnnnaa ywsnwsntty 420 aarmgnacng gnatggarws ncarconnnn ytnaayatga arttygarac ngaytaytty 480 gtnmgnytnw snttywsntt yathaaraay garwsnaayt aycayccntt yttyttymgn 540 acnmgngcnt gygayytnyt nytncarccn gayaayytng cntgyaarcc nttytggaar 600 conmgnaayy tnaayathws ncarcayggn wsngayatgc argtnwsntt ygaycaygcn 660 ccncayaayt tyggnttymg nttyttytay ytncaytaya arytnaarca ygarggnccn 720 ttyaarmgna aracntgyaa rcargarcar acnacngara tgacnwsntg yytnytncar 780 aaygtnwsnc enggngayta yathathgar ytngtngayg ayacnaayac nacnmgnaar 840

55

	gtnatgcayt	aygcnytnaa	rccngtncay	wsnccntggg	cnggnccnat	hmgngcngtn	900
5	gcnathacng	tnccnytngt	ngtnathwsn	gcnttygcna	cnytnttyac	ngtnatgtgy	960
5	mgnaaraarc	arcargaraa	yathtaywsn	cayytngayg	argarwsnws	ngarwsnwsn	1020
	acntayacng	cngcnytncc	nmgngarmgn	ytnmgnccnm	gnccnaargt	nttyytntgy	1080
10	taywsnwsna	argayggnca	raaycayatg	aaygtngtnc	artgyttygc	ntayttyytn	1140
	cargayttyt	gyggntgyga	rgtngcnytn	gayytntggg	argayttyws	nytntgymgn	1200
15	garggncarm	gngartgggt	nathcaraar	athcaygarw	sncarttyat	hathgtngtn	1260
13	tgywsnaarg	gnatgaarta	yttygtngay	aaraaraayt	ayaarcayaa	rggnggnggn	1320
	mgnggnwsng	gnaarggnga	rytnttyytn	gtngcngtnw	sngcnathgc	ngaraarytn	1380
20	mgncargcna	arcarwsnws	nwsngcngcn	ytnwsnaart	tyathgcngt	ntayttygay	1440
	taywsntgyg	arggngaygt	nccnggnath	ytngayytnw	snacnaarta	ymgnytnatg	1500
25	gayaayytnc	cncarytntg	ywsncayytn	caywanmgng	aycayggnyt	ncargarccn	1560
<i>4.3</i>	ggncarcaya	cnmgncargg	nwsnmgnmgn	aaytayttym	gnwsnaarws	nggnmgnwsn	1620
	ytntaygtng	cnathtgyaa	yatgcaycar	ttyathgayg	argarccnga	ytggttygar	1680
30	aarcarttyg	tnccnttyca	yccnccnccn	ytnmgntaym	gngarccngt	nytngaraar	1740
	ttygaywang	gnytngtnyt	naaygaygtn	atgtgyaarc	cnggnccnga	rwsngaytty	1800
35	tgyytnaarg	tngargcngc	ngtnytnggn	gcnacnggnc	cngcngayws	ncarcaygar	1860
33	wsncarcayg	gnggnytnga	ycargayggn	gargcnmgnc	cngcnytnga	yggnwangcn	1920
	genythcare	cnytnytnca	yacngtnaar	genggnwane	cnwsngayat	gccnmgngay	1980
40	wsnggnatht	aygaywsnws	ngtnccnwsn	wsngarytnw	snytnccnyt	natggarggn	2040
	ytnwsnacng	aycaracnga	racnwsnwsn	ytnacngarw	sngtnwsnws	nwsnwsnggn	2100
45	ytnggngarg	argarccncc	ngcnytnccn	wsnaarytny	tnwsnwsngg	nwsntgyaar	2160
	gcngayytng	gntgymgnws	ntayacngay	garytncayg	cngtngcncc	nytn	2214
	<i>,</i> •						

Table 4: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS9). Primate, e.g., human, embodiment (see SEQ ID NO: 16 and 17). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.

atg ggg agc tcc aga ctg gca gcc ctg ctc ctg cct ctc ctc ctc ata 48
Met Gly Ser Ser Arg Leu Ala Ala Leu Leu Leu Pro Leu Leu Leu Ile
-20 -15 -10

	gto Val	ato Ile	gac Asp	, пет	tct Sei	gac Asp	tct Ser	: Ala	a GLy	g att	t ggd e Gly	/ Phe	c cgo	c cad	c cto	g ccc u Pro	96
5	cac His 10	***	g aac Asn	acc Thr	cgo Arg	tgt J Cys 15	Pro	cto Lev	g gco ı Ala	tco Ser	c cac His	Thr	g gaa Glu	gtt Va]	cto Le	g cct 1 Pro 25	144
10	ata Ile	too Ser	ctt Leu	gcc Ala	gca Ala 30	Pro	ggt Gly	gjy aaa	r CCC	tct Ser 35	Ser	cca Pro	caa Gln	ago Ser	ctt Leu	ggt Gly	192
15	gtg Val	tgc Cys	gag Glu	tct Ser 45	ggc	act Thr	gtt Val	ccc Pro	gct Ala 50	Val	tgt Cys	gcc Ala	agc Ser	ato Ile 55	Cys	tgt Cys	240
20	cag Gln	gtg Val	gct Ala 60	cag Gln	gtc Val	ttc Phe	aac Asn	Gly Ggg	gcc Ala	tct Ser	tcc Ser	acc Thr	tcc Ser 70	tgg Trp	tgo Cys	aga Arg	288
	aat Asn	cca Pro 75	ааа Ъув	agt Ser	ctt Leu	cca Pro	cat His 80	tca Ser	agt Ser	tct Ser	ata Ile	gga Gly 85	gac Asp	aca Thr	aga Arg	tgc Cys	336
25	cag Gln 90	cac His	ctg Leu	ctc Leu	aga Arg	gga Gly 95	agc Ser	tgc Cys	tgc Cys	ctc Leu	gtc Val 100	gtc Val	acc Thr	tgt Cys	ctg Leu	aga Arg 105	384
30	aga Arg	gcc Ala	atc Ile	aca Thr	ttt Phe 110	cca Pro	tcc Ser	cct Pro	ccc Pro	cag Gln 115	aca Thr	tct Ser	ccc Pro	aca Thr	agg Arg 120	gac Asp	432
35	ttc Phe			цув 125	σтλ	Pro	Asn	Leu	Arg 130	Ile	Gln	Arg	His	Gly 135	Lys	Val	480
40	ttc (Phe	cca Pro	gat Asp 140	tgg Trp	act Thr	cac His	гла	ggc Gly 145	atg Met	gag Glu	gtg Val	Gly	act Thr 150	Gly	tac Tyr	aac Asn	528
	agg a	aga Arg 155	tgg Trp	gtt Val	cag Gln	Leu	agt Ser 160	ggt Gly	gga Gly	ccc Pro	gag Glu	ttc Phe 165	tcc Ser	ttt Phe	gat Asp	ttg Leu	576
45	ctg o Leu 1 170	eat Pro	gag Glu	gcc Ala	Arg	gct Ala 175	att Ile 1	cgg Arg	gtg Val	acc Thr	ata Ile 180	tct Ser	tca Ser	Gly ggc	cct Pro	gag Glu 185	624
50	gtc a Val s	ser	val .	arg	ьеи 190	Cys 1	His (Gln '	Trp	Ala 195	Leu	Glu	Сув	Glu	Glu 200	Leu	672
55	agc a Ser S	er.	PIO :	205	Asp	val (Jin 1	rys :	11e 210	Val	Ser (Gly (Gly :	His 215	Thr	Val	720
	gag c Glu I	eu .	cct i Pro : 220	tat (Tyr (gaa Glu	ttc (Phe)	Leu 1	ctg (Leu : 225	ccc Pro	tgt Cys	ctg (Leu (Cys :	ata (Ile (230	gag Glu	gca Ala	tcc Ser	768

5	tac Tyr	ctg Leu 235	caa Gln	gag Glu	gac Asp	act Thr	gtg Val 240	agg Arg	cgc Arg	aaa Lys	aaa Lys	tgt Cys 245	ccc Pro	ttc Phe	cag Gln	agc Ser	816
3	tgg Trp 250	cca Pro	gaa Glu	gcc Ala	tat Tyr	ggc Gly 255	tcg Ser	gac Asp	ttc Phe	tgg Trp	aag Lys 260	tca Ser	gtg Val	cac His	ttc Phe	act Thr 265	864
10	gac Asp	tac Tyr	agc Ser	cag Gln	cac His 270	act Thr	cag Gln	atg Met	gtc Val	atg Met 275	gcc Ala	ctg Leu	aca Thr	ctc Leu	cgc Arg 280	tgc Cys	912
15	cca Pro	ctg Leu	aag Lys	ctg Leu 285	gaa Glu	gct Ala	gcc Ala	ctc Leu	tgc Cys 290	cag Gln	agg Arg	cac His	gac Asp	tgg Trp 295	cat His	acc Thr	960
20	Leu	Сув	100 100	Asp	ctc Leu	Pro	Asn	Ala 305	Thr	Ala	Arg	Glu	Ser 310	Asp	Gly	Trp	1008
25	Tyr	Val 315	Leu	Glu	aag Lys	Val	Asp 320	Leu	His	Pro	Gln	Leu 325	Сув	Phe	ГÀЗ	Val	1056
	caa Gln 330	cca Pro	tgg Trp	ttc Phe	tct Ser	ttt Phe 335	gga Gly	aac Asn	agc Ser	agc Ser	cat His 340	gtt Val	gaa Glu	tgc Cys	ccc Pro	cac His 345	1104
30	cag Gln	Thr	Gly	Ser	350	aca Thr	Ser	Trp	Asn	Val 355	agc Ser	Met	Asp	Thr-	Gln- 360	-Ala	1152
30	cag Gln cag Gln	Thr cag Gln	Gly ctg Leu	ser att Ile 365	Leu 350 ctt Leu	aca Thr cac His	Ser ttc Phe	Trp tcc Ser	tca Ser 370	Val 355 aga Arg	agc Ser atg Met	Met cat His	Asp gcc Ala	acc Thr 375	Gln- 360 ttc Phe	Ala agt Ser	1200
	cag Gln cag Gln gct	Thr cag Gln gcc Ala	ctg Leu tgg Trp	att Ile 365 agc Ser	Leu 350 ctt Leu ctc Leu	aca Thr cac His cca	Ser ttc Phe ggc Gly	tcc ser ttg Leu 385	tca Ser 370 ggg Gly	Val 355 aga Arg cag Gln	agc Ser atg Met gac Asp	Met cat His act Thr	gcc Ala ttg Leu 390	acc Thr 375 gtg Val	Gln- 360 ttc Phe ccc Pro	agt Ser ccc Pro	1200
35	cag Gln cag Gln gct Ala gtg Val	Thr cag Gln gcc Ala tac Tyr 395	ctg Leu tgg Trp 380 act	att Ile 365 agc ser gtc Val	Leu 350 ctt Leu ctc Leu agc Ser	aca- Thr cac His cca Pro	ttc Phe ggc Gly gtg Val 400	tcc ser ttg Leu 385 tgg	tca ser 370 ggg Gly cgg Arg	Val 355 aga Arg cag Gln tca Ser	agc Ser atg Met gac Asp	cat His act Thr gtc Val 405	gcc Ala ttg Leu 390 cag Gln	acc Thr 375 gtg Val ttt Phe	Gln- 360 ttc Phe ccc Pro	agt Ser CCC Pro	1200 1248 1296
35 40 45	cag Gln cag Gln gct Ala gtg Val aag Lys 410	Thr cag Gln gcc Ala tac Tyr 395 cac His	ctg Leu tgg Trp 380 act Thr	att Ile 365 agc Ser gtc Val ttg Leu	Leu 350 ctt Leu ctc Leu agc ser tgt	cac His cca Pro cag Gln cca Pro 415	ttc Phe ggc Gly gtg Val 400 gat Asp	tcc ser ttg Leu 385 tgg Trp gtc Val	tca ser 370 ggg Gly cgg Arg tct	Val 355 aga Arg cag Gln tca ser tac	agc Ser atg Met gac Asp gat Asp	cat His act Thr gtc Val 405 cac	gcc Ala ttg Leu 390 cag Gln ctg	acc Thr 375 gtg Val ttt Phe	Gln- 360 ttc Phe ccc Pro gcc Ala ctc Leu	agt Ser ccc Pro tgg Trp ttg Leu 425	1200 1248 1296
35 40	cag Gln cag Gln gct Ala gtg Val aag Lys 410 atc	Thr cag Gln gcc Ala tac Tyr 395 cac His	ctg Leu tgg Trp 380 act Thr ctc Leu gca	att Ile 365 agc Ser gtc Val ttg Leu ctg	Leu 350 ctt Leu ctc Leu agc ser tgt Cys ctg Leu 430	Thr cac His cca Pro cag Gln cca Pro 415	ttc Phe ggc Gly gtg Val 400 gat Asp	tcc ser ttg Leu 385 tgg Trp gtc Val	tca ser 370 ggg Gly cgg Arg tct ser	Val 355 aga Arg cag Gln tca Ser tac Tyr cta Leu 435	agc Ser atg Met gac Asp gat Asp aga Arg 420 ctg Leu	Met cat His act Thr gtc Val 405 cac His	gcc Ala ttg Leu 390 cag Gln ctg Leu gtt Val	acc Thr 375 gtg Val ttt Phe ggg Gly	Gln-360 ttc Phe ccc Pro gcc Ala ctc Leu ctg Leu 440	agt Ser ccc Pro tgg Trp ttg Leu 425	1200 1248 1296

5	ctc ctc ctg cac gcg gcg gac tcg gag gcg cag cgg cgc ctg gtg gga 1488 Leu Leu Leu His Ala Ala Asp Ser Glu Ala Gln Arg Arg Leu Val Gly 460 465 470
. 5	Ala Leu Ala Glu Leu Leu Arg Ala Ala Leu Gly Gly Gly Arg Asp Val 475 480 485
10	atc gtg gac ctg tgg gag ggg agg cac gtg gcg cgc gtg ggc ccg ctg 1584 Ile Val Asp Leu Trp Glu Gly Arg His Val Ala Arg Val Gly Pro Leu 495 500 505
15	ccg tgg ctc tgg gcg cgg acg cgc gta gcg cgg gag cag ggc act 1632 Pro Trp Leu Trp Ala Ala Arg Thr Arg Val Ala Arg Glu Gln Gly Thr 510 515 520
20	gtg ctg ctg tgg agc ggc gcc gac ctt cgc ccg gtc agc ggc ccc 1680 Val Leu Leu Trp Ser Gly Ala Asp Leu Arg Pro Val Ser Gly Pro 525 530 535
25	gac ccc cgc gcc gcg ccc ctg ctc gcc ctg ctc cac gct gcc ccg cgc 1728 Asp Pro Arg Ala Ala Pro Leu Leu Ala Leu Leu His Ala Ala Pro Arg 540 545 550
25	ccg ctg ctg ctc gct tac ttc agt cgc ctc tgc gcc aag ggc gac 1776 Pro Leu Leu Leu Ala Tyr Phe Ser Arg Leu Cys Ala Lys Gly Asp 555 560 565
30	atc ccc ccg ccg ctg cgc ctg ccg cgc tac cgc ctg ctg cgc gac 1824 Ile Pro Pro Pro Leu Arg Ala Leu Pro Arg Tyr Arg Leu Leu Arg Asp 570 580 585
35	ctg ccg cgt ctg ctg cgg gcg ctg gac gcg cgt ctt c gca gag gcc 1872 Leu Pro Arg Leu Leu Arg Ala Leu Asp Ala Arg Pro Phe Ala Glu Ala 590 595 600
40	acc agc tgg ggc cgc ctt ggg gcg cgg cag cgc agg cag agc cgc cta 1920 Thr Ser Trp Gly Arg Leu Gly Ala Arg Gln Arg Arg Gln Ser Arg Leu 605 610 615
45	gag ctg tgc agc cgg ctc gaa cga gag gcc gcc cga ctt gca gac cta 1968 Glu Leu Cys Ser Arg Leu Glu Arg Glu Ala Ala Arg Leu Ala Asp Leu 620 625 630
73	ggt tgagcagage tecacegeag tecegggtgt etgeggeege t 2012
50	MGSSRLAALLLPLLLIVIDLSDSAGIGFRHLPHWNTRCPLASHTEVLPISLAAPGGPSSPQSLGVCESGTVP AVCASICCQVAQVFNGASSTSWCRNPKSLPHSSSIGDTRCQHLLRGSCCLVVTCLRRAITFPSPPQTSPTRD FALKGPNLRIQRHGKVFPDWTHKGMEVGTGYNRRWVQLSGGPEFSFDLLPEARAIRVTISSGPEVSVRLCHQ WALECEELSSPYDVQKIVSGGHTVELPYEFLLPCLCIEASYLQEDTVRRKKCPFQSWPEAYGSDFWKSVHFT DYSQHTQMVMALTLRCPLKLEAALCQRHDWHTLCKDLPNATARESDGWYWLEYNDLWDST
55	DYSQHTQMVMALTLRCPLKLEAALCQRHDWHTLCKDLPNATARESDGWYVLEKVDLHPQLCFKVQPWFSFGN SSHVECPHQTGSLTSWNVSMDTQAQQLILHFSSRMHATFSAAWSLPGLGQDTLVPPVYTVSQVWRSDVQFAW KHLLCPDVSYRHLGLLILALLALLTLLGVVLALTCRRPQSGPGPARPVLLLHAADSEAQRRLVGALAELLRA ALGGGRDVIVDLWEGRHVARVGPLPWLWAARTRVAREQGTVLLLWSGADLRPVSGPDPRAAPLLALLHAAPR PLLLLAYFSRLCAKGDIPPPLRALPRYRLLRDLPRLLRALDARPFAEATSWGRLGARQRRQSRLELCSRLER EAARLADLG.

Reverse translation of primate, e.g., human, DCRS9 (SEQ ID NO: 18): atgggnwsnw snmgnytngc ngcnytnytn ytnccnytny tnytnathgt nathgayytn 60 5 wsngaywsng cnggnathgg nttymgncay ytnccncayt ggaayacnmg ntgyccnytn 120 genwancaya engargtnyt necnathwan ytngengene enggnggnee nwanwancen 180 10 carwsnytng gngtntgyga rwsnggnacn gtnccngcng tntgygcnws nathtgytgy 240 cargtngcnc argtnttyaa yggngcnwsn wsnacnwsnt ggtgymgnaa yccnaarwsn 300 ytnccncayw snwsnwsnat hggngayacn mgntgycarc ayytnytnmg nggnwsntgy 360 15 tgyytngtng tnacntgyyt nmgnmgngcn athacnttyc cnwsnccncc ncaracnwsn 420 ccnacnmgng ayttygcnyt naarggnccn aayytnmgna thcarmgnca yggnaargtn 480 20 ttyccngayt ggacncayaa rggnatggar gtnggnacng gntayaaymg nmgntgggtn 540 carythweng gnggnccnga rttywentty gayythythc cngargenmg ngcnathmgn 600 gtnacnathw snwsnggncc ngargtnwsn gtnmgnytnt gycaycartg ggcnytngar 660 25 tgygargary tnwsnwsncc ntaygaygtn caraarathg tnwsnggngg ncayacngtn 720 garytnccnt aygarttyyt nytnccntgy ytntgyathg argcnwsnta yytncargar 780 30 gayacngtnm-gnmgnaaraa rtgyccntty carwsntggc cngargcnta yggnwsngay 840 ttytggaarw sngtncaytt yacngaytay wsncarcaya cncaratggt natggcnytn 900 acnytnmgnt gyccnytnaa rytngargcn gcnytntgyc armgncayga ytggcayacn 960 35 ytntgyaarg ayytnccnaa ygcnacngcn mgngarwsng ayggntggta ygtnytngar 1020 aargtngayy tncayccnca rytntgytty aargtncarc cntggttyws nttyggnaay 1080 wsnwsncayg tngartgycc ncaycaracn ggnwsnytna cnwsntggaa ygtnwsnatg 1140 40 gayacncarg cncarcaryt nathytncay ttywsnwsnm gnatgcaygc nacnttywsn 1200 gengentggw snytneengg nytnggnear gayaenytng tneeneengt ntayaengtn 1260 45 wsncargtnt ggmgnwsnga ygtncartty gcntggaarc ayytnytntg yccngaygtn 1320 wsntaymgnc ayytnggnyt nytnathytn gcnytnytng cnytnytnac nytnytnggn 1380 gtngtnytng cnytnacntg ymgnmgnccn carwsnggnc cnggnccngc nmgnccngtn 1440 50 ytnytnytnc aygcngcnga ywsngargcn carmgnmgny tngtnggngc nytngcngar 1500 ytnytnmgng cngcnytngg nggnggnmgn gaygtnathg tngayytntg ggarggnmgn 1560 55 caygtngcnm gngtnggncc nytncentgg ytntgggeng enmgnaenmg ngtngenmgn 1620 garcarggna cngtnytnyt nytntggwsn ggngcngayy tnmgnccngt nwsnggnccn 1680

	gayeenmgng engeneenyt nytngenytn ytneaygeng encenmgnee nytnytnytn 17	40
	ytngcntayt tywsnmgnyt ntgygcnaar ggngayathc cnccnccnyt nmgngcnytn 18	00
5	ccnmgntaym gnytnytnmg ngayytneen mgnytnytnm gngenytnga ygenmgneen 186	
	ttygcngarg cnachwantg gggnmgnyth ggngchmgnc armgnmgnca rwanmgnyth 192	5 0
10	garytntgyw snmgnytnga rmgngargen genmgnytng engayytngg n	}0
10		1
	Rodent, e.g., mouse, embodiment (see SEQ ID NO: 19 and 20). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.	
15	cageteeggg ceaggeeetg etgeeetett geagacagga aagacatggt etetgegeee 60	
	tgatcctaca gaagctc atg ggg agc ccc aga ctg gca gcc ttg ctc ctg 110 Met Gly Ser Pro Arg Leu Ala Ala Leu Leu Leu	
20	-20 -15	
	tct ctc ccg cta ctg ctc atc ggc ctc gct gtg tct gct cgg gtt gcc 158 Ser Leu Pro Leu Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala -10 -5 -1 1	
25	tgc ccc tgc ctg cgg agt tgg acc agc cac tgt ctc ctg gcc tac cgt 206 Cys Pro Cys Leu Arg Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg 5 10 15 20	
30	gtg gat aaa cgt ttt gct ggc ctt cag tgg ggc tgg ttc cct ctc ttg 254 Val Asp Lys Arg Phe Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu 25 30 35	
35	gtg agg aaa tot aaa agt oot oot aaa ttt gaa gao tat tgg agg oac 302 Val Arg Lys Ser Lys Ser Pro Pro Lys Phe Glu Asp Tyr Trp Arg His 40 45 50	
40	agg aca cca gca tcc ttc cag agg aag ctg cta ggc agc cct tcc ctg 350 Arg Thr Pro Ala Ser Phe Gln Arg Lys Leu Leu Gly Ser Pro Ser Leu 55 60 65	
	tct gag gaa agc cat cga att tcc atc ccc tcc tca gcc atc tcc cac 398 Ser Glu Glu Ser His Arg Ile Ser Ile Pro Ser Ser Ala Ile Ser His 70 75 80	
45	aga ggc caa cgc acc aaa agg gcc cag cct tca gct gca gaa gga aga 446 Arg Gly Gln Arg Thr Lys Arg Ala Gln Pro Ser Ala Ala Glu Gly Arg 85 90 95 100	
50	gaa cat ctc cct gaa gca ggg tca caa aag tgt gga gga cct gaa ttc 494 Glu His Leu Pro Glu Ala Gly Ser Gln Lys Cys Gly Gly Pro Glu Phe 105 110 115	
55	tcc ttt gat ttg ctg ccc gag gtg cag gct gtt cgg gtg act att cct 542 Ser Phe Asp Leu Leu Pro Glu Val Gln Ala Val Arg Val Thr Ile Pro 120 125 130	

	gca Ala	ggc Gly	ccc Pro 135	aag Lys	gca Ala	cgt Arg	gtg Val	cgc Arg 140	ctt Leu	tgt Cys	tat Tyr	cag Gln	tgg Trp 145	gca Ala	ctg Leu	gaa Glu	590
5	tgt Cys	gaa Glu 150	gac Asp	ttg Leu	agt Ser	agc Ser	cct Pro 155	ttt Phe	gat Asp	acc Thr	cag Gln	aaa Lys 160	att Ile	gtg Val	tct Ser	gga Gly	638
10	999 Gly 165	cac His	act Thr	gta Val	Asp	ctg Leu 170	cct Pro	tat Tyr	gaa Glu	ttc Phe	ctt Leu 175	ctg Leu	ccc Pro	tgc Cys	atg Met	tgc Cys 180	686
15	ata Ile	gag Glu	gcc Ala	tcc Ser	tac Tyr 185	ctg Leu	caa Gln	gag Glu	gac Asp	act Thr 190	gtg Val	agg Arg	cgc Arg	aaa Lys	agt Ser 195	gtc Val	734
20	cct Pro	tcc Ser	aga Arg	gct Ala 200	ggc	ctg Leu	aag Lys	ctt Leu	atg Met 205	gct Ala	cag Gln	act Thr	tct Ser	ggc Gly 210	agt Ser	caa Gln	782
20					act Thr				ac							•	808
25	WRHI PEVÇ	RTPAS VAVAÇ	FQRI TIP	KLLGS AGPK	PSLS RVRI	EESI LCYQV	IRIS	[PSS]	\ISH	RGQR:	rkrag	QPSA/	\EGRI	EHLP	EAGS	QKCGGPI	PPKFEDY EFSFDLL QEDTVRR
	V V	SRAC	اللكاباة	MAQTS	sgsQ3	(ASL:	rtas										
30								mou	se, D	CRS	9 (SI	EO II)-NO	:-21)	!		
30	Reve	erse t	ransl	ation	of ro	dent,	e.g.,									ggnytn	60
30	Reve	erse t	ransl	ation	of ro	dent,	e.g.,	enytr	ı ytı	nwsny	ytnc	cnyt	inyti	nyt 1	nath	ggnytn ytnytn	
	Reve	erse t	ransl	ation enmgr	of ronytng	dent, ge no	e.g., genyt	enytr	ı ytı y ytı	nwsny	ytnc wsnt	cnyt	cnyti	nyt i	nath ytgy:		120
35	Reve	erse t ggnwa gtnwa caymo	ransl	ation cnmgr cnmgr	of ronytne	dent, ge ng ge nt	e.g., genyt egyec etygo	enyti entgj	ı ytı yytı ı ytı	nwsny nmgny ncar	ytnc wsnt tggg	ggad gntg	inyti inwsi ggtt:	nyt i nca j	nath ytgy: nytn:	ytnytn	120 180
	Reve	erse t ggnws gtnws caymo	ransl	ation cnmgr cnmgr cnmgr	of ronythe	dent, ge ng ge ni ng ni	e.g., genyt tgyco ttygo aartt	enytr entgy enggr tygar	n yti y yti n yti r gaj	nwsny nmgny ncart	ytnc wsnt tggg tggm	ggad gntg	enyti enwsi ggtt:	nyt naca naca naca naca naca naca naca nac	nath ytgy: nytn; nccn;	ytnytn ytngtn	120 180 240
35	Reve	erse t ggnws gtnws caymo	ransl	ation cnmgr cnmgr tngay arwsi	of rongtness	dent, ge ng ge nt ng nt ce na	e.g., genyt tgycc ttygc aartt	enytr entgy enggr tygar enwsr	n yti y yti n yti r ga; n yti	nwsny nmgn ncari ytayi nwsng	ytnc wsnt tggg tggm	ggad gntg gnca arwa	enyti enwsi ggtt: aymgi anca;	nyt maca maca maca maca maca maca maca mac	natho ytgy: nytn; nccno	ytnytn ytngtn gcnwsn	120 180 240 300
35	Reverse at general general mgnatty convergence gard	erse t	ransl snc o sng o gng d sna a gna a gna a	ation cnmgr cnmgr tngay arwsr arytr cnatl	of ronythe	dent, ge ng ge ni	e.g., genyt tgyco ttygo aartt wanco mgngg	enytr entgy enggr enwsr enwsr enggr	n yti y yti n yti n yti n yti n wsi	nwsny nmgny ncari ytayi nwsng nacna	ytnc went tggg tggm garg aarm	gnts gnca arwa gnga gnca arwa	enyti enwer ggtt; aymgr anca; enca; enca;	nyt inca ; yee inac ; ymg ; rec ;	nathonytry nytry nccno nathony nwsno	ytnytn ytngtn gcnwsn wsnath gcngcn ttywsn	120 180 240 300 360 420
35 40	Reverse at general general megnature transfer general	erse t	ransl snc of ging of g	ation cnmgr cnmgr tngay arwsr arytr cnatl arcay	of ronythouse of the second se	dent, ge ng gg nt gg nt ce ng gg nt	e.g., genyt tgyce ttyge aartt wance mgnge garge carge	enytrentgrentgrentgrentgrentgrentgrentgrent	n yti y yti n yti n gan n yti n wan	nwsny nmgnv ncari ytayi nwsno nacni ncari	ytnc went tggg tggm garg aarm aart	gnts gnca arwa gngo gygs the	enyti enwsi ggtty aymgi enca: enca: enggi	nyt i nca ; ycc i nac ; ymg ; rcc ; ncc ;	nathorytay nytny nccno nathory nwsno ngar	ytnytn ytngtn gcnwsn wsnath gcngcn ttywsn aargcn	120 180 240 300 360 420 480
35 40	Reverse at general general megneral transfer at the general transfer at the ge	erse t	ransl snc of sng of gng f sna a gna a gng a tny gny	ation cnmgr cnmgr tngay arwsr arytr cnatl arcay tnccr	of ronythogonyaarronythogonystoo	dent, ge ng ge ni	e.g., genyt tgyco ttygo aartt wanco mgngo gargo cargo	enytrenggrenggrenggrenggrenggrenggrenggreng	n yti y yti n yti n yti n yti n mgi n wai n mgi n gai	nwsny nmgnv ncari ytayi nwsno nacni ncari	ytnc went tggg tggm garg aarm aart acna	gnts gnca arwa gngo theo	enyticnyticnyticnyticnyticnyticnyticnytic	nyt inca ; yee inac ; ymg ; rec ; nec ; nec ;	nathorytay nytny nccno nathory nwsno ngar nccn	ytnytn ytngtn gcnwsn wsnath gcngcn ttywsn aargcn	120 180 240 300 360 420 480 540
35 40 45	Reverse at 199 gents mgna ttyc cenv gard ttyg mgna acno	erse t	ransl snc of sng of gng of sna of gng of tny of gny ara	ation cnmgr cnmgr tngay arwsr arytr cnatl arcay tnccr tntgr	of ronythogonyaarronythogonyth	dent, ge ng ge ni	e.g., genyt tgyco ttygo aartt wanco mgngo gargo taggo	enytrenggrenggrenggrenggrenggrenggrenggreng	n yti y yti n yti n yti n yti n mgi n wai n mgi n gai	nwsny nmgny ncari ytayi nwsny nacna ncara ncara ngtna	ytnc went tggg tggm garg aarm aart acna garg ytnc	gnts gnca arwa gngo theo ayy	enyticnyticnysicon	nyt inca ; yee inae ; ymg ; ree ; nee ; nee ; nee ;	nathorytay nytny nccno nathory ngar nccn nccn	ytnytn ytngtn genwsn wsnath gengen ttywsn aargen ttygay ytneen	120 180 240 300 360 420 480 540
35404550	Reverse at 199	erse t	ransl snc of sng of gng of gna of gng of gng of tny gny ara	ation cnmgr cnmgr tngay arwsr arytr cnatl arcay tnccr tntgr	of ronythogonyaarronythogonyth	dent, ge ng ge ni	e.g., e.g., tegyco teygo aarti wanco mgngo gargo tegggo tegggo tayy	enytrenggrenggrenggrenggrenggrenggrenggreng	n yti y yti n yti n yti n yti n wsi n mgi n gai	nwsny nmgny ncari ytayi nwsny nacn; ncar; ngtn; rtgy	ytnc went tggg tggm garg aarm aart acna garg ytnc acng	gnts gnca arwa gngo theo ayy cnta	enyticnyticnyticnyticnyticnyticnyticnytic	nyt inca : yee : nac : ymg : nec : nec : ngg : nws : rtt	nathorytay nytny nccno nathory ngar nccn nccn nccn yytn	ytnytn ytngtn genwan wanath gengen ttywan aargen ttygay ytneen gtneen	120 180 240 300 360 420 480 540 600
35 40 45	Reverse at 199	erse t	ransl snc of sng of gng of gna of gng of gng of tny gny ara	ation cnmgr cnmgr tngay arwsr arytr cnatl arcay tnccr tntgr	of ronythogonyaarronythogonyth	dent, ge ng ge ni	e.g., e.g., tegyco teygo aarti wanco mgngo gargo tegggo tegggo tayy	enytrenggrenggrenggrenggrenggrenggrenggreng	n yti y yti n yti n yti n yti n wsi n mgi n gai	nwsny nmgny ncari ytayi nwsny nacn; ncar; ngtn; rtgy	ytnc went tggg tggm garg aarm aart acna garg ytnc acng	gnts gnca arwa gngo theo ayy cnta	enyticnyticnyticnyticnyticnyticnyticnytic	nyt inca : yee : nac : ymg : nec : nec : ngg : nws : rtt	nathorytay nytny nccno nathory ngar nccn nccn nccn yytn	ytnytn ytngtn genwsn wsnath gengen ttywsn aargen ttygay ytneen	120 180 240 300 360 420 480 540 600

	Table 5: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS10). Primate, e.g., human, embodiment (see SEQ ID NO: 22 and 23).
5	ttttgagcag aggetteeta ggeteegtag aaatttgeat acagetteea etteetgett 60
	cagageetgt tettetaett acetgggeee ggagaaggtg gagggagaeg agaageegee 120
10	gagageegae taceeteegg geeeagtetg tetgteegtg gtggatetaa gaaactaga 179
	atg aac cga agc att cct gtg gag gtt gat gaa tca gaa cca tac cca 227 Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro 1 5 10 15
15	agt cag ttg ctg aaa cca atc cca gaa tat tcc ccg gaa gag gaa tca 275 Ser Gln Leu Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Glu Ser 20 25 30
20	gaa cca cct gct cca aat ata agg aac atg gca ccc aac agc ttg tct 323 Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser 35 40 45
25	gca ccc aca atg ctt cac aat tcc tcc gga gac ttt tct caa gct cac 371 Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His 50 55 60
30	tca acc ctg aaa ctt gca aat cac cag cgg cct gta tcc cgg cag gtc 419 Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val 65 70 75 80
0.5	acc tgc ctg cgc act caa gtt ctg gag gac agt gaa gac agt ttc tgc 467 Thr Cys Leu Arg Thr Gln Val Leu Glu Asp Ser Glu Asp Ser Phe Cys 85 90 95
35	agg aga cac cca ggc ctg ggc aaa gct ttc cct tct ggg tgc tct gca 515 Arg Arg His Pro Gly Leu Gly Lys Ala Phe Pro Ser Gly Cys Ser Ala 100 105 110
40	gtc agc gag cct gcg tct gag tct gtg gtt gga gcc ctc cct gca gag 563- Val Ser Glu Pro Ala Ser Glu Ser Val Val Gly Ala Leu Pro Ala Glu 115 120 125
45	cat cag ttt tca ttt atg gaa aaa cgt aat caa tgg ctg gta tct cag His Gln Phe Ser Phe Met Glu Lys Arg Asn Gln Trp Leu Val Ser Gln 130 135 140
50	ctt tca gcg gct tct cct gac act ggc cat gac tca gac aaa tca gac 659 Leu Ser Ala Ala Ser Pro Asp Thr Gly His Asp Ser Asp Lys Ser Asp 150 155 160
	Caa agt tta cct aat gcc tca gca gac tcc ttg ggc ggt agc cag gag 707 Gln Ser Leu Pro Asn Ala Ser Ala Asp Ser Leu Gly Gly Ser Gln Glu 165 170 175
55	atg gtg caa cgg ccc cag cct cac agg aac cga gca ggc ctg gat ctg 755 Met Val Gln Arg Pro Gln Pro His Arg Asn Arg Ala Gly Leu Asp Leu 180 185 190

	cca Pro	acc Thr	ata Ile 195	gac Asp	acg Thr	gga Gly	tat Tyr	gat Asp 200	tcc Ser	cag Gln	ccc Pro	cag Gln	gat Asp 205	gtc Val	ctg Leu	ggc Gly	803
5	atc Ile	agg Arg 210	cag Gln	ctg Leu	gaa Glu	agg Arg	ccc Pro 215	ctg Leu	ccc Pro	ctc Leu	acc Thr	tcc Ser 220	gtg Val	tgt Cys	tac Tyr	ccc Pro	851
10	cag Gln 225	gac Asp	ctc Leu	ccc Pro	aga Arg	cct Pro 230	ctc Leu	agg Arg	tcc Ser	agg Arg	gag Glu 235	ttc Phe	cct Pro	cag Gln	ttt Phe	gaa Glu 240	899
15	cct Pro	cag Gln	agg Arg	tat Tyr	cca Pro 245	gca Ala	tgt Cys	gca Ala	cag Gln	atg Met 250	ctg Leu	cct Pro	ccc Pro	aat Asn	ctt Leu 255	tcc Ser	947
20													gga Gly				995
	cac His	cag Gln	gtg Val 275	cca Pro	tat Tyr	gly ggc	His	gac Asp 280	tac Tyr	cct Pro	cga Arg	gca Ala	gcc Ala 285	tac Tyr	cag Gln	caa Gln	1043
25	gtg Val	atc Ile 290	cag Gln	ccg Pro	gct Ala	ctg Leu	cct Pro 295	gly aaa	cag Gln	ccc Pro	ctg Leu	cct Pro 300	gga Gly	gcc Ala	agt Ser	gtg Val	1091
30	aga Arg 305	ggc	ctg Leu	cac His	cct Pro	gtg Val 310	cag Gln	aag Lys	Val	Ile	Leu	Asn	tat Tyr	Pro	Ser	Pro	1139
35	tgg Trp	Asp	caa Gln	gaa Glu	gag Glu 325	agg Arg	ccc Pro	gca Ala	cag Gln	aga Arg 330	gac Asp	tgc Cys	tcc Ser	ttt Phe	ccg Pro 335	gjå aaa	1187
40	ctt Leu	cca Pro	agg Arg	cac His 340	cag Gln	gac Asp	cag Gln	cca Pro	cat His 345	cac His	cag Gln	cca Pro	cct Pro	aat Asn 350	aga Arg	gct Ala	1235
70	ggt Gly	gct Ala	cct Pro 355	gjå aaa	gag Glu	tcc Ser	ttg Leu	gag Glu 360	tgc Cys	cct Pro	gca Ala	gag Glu	ctg Leu 365	aga Arg	cca Pro	cag Gln	1283
45	gtt Val	ccc Pro 370	cag Gln	cct Pro	ccg Pro	tcc Ser	cca Pro 375	gct Ala	gct Ala	gtg Val	cct Pro	aga Arg 380	ccc Pro	cct Pro	agc Ser	aac Asn	1331
50	cct Pro 385	cca Pro	gcc Ala	aga Arg	gga Gly	act Thr 390	cta Leu	aaa Lys	aca Thr	agc Ser	aat Asn 395	ttg Leu	cca Pro	gaa Glu	gaa Glu	ttg Leu 400	1379
55	cgg Arg	aaa Lys	gtc Val	ttt Phe	atc Ile 405	act Thr	tat Tyr	tcg Ser	atg Met	gac Asp 410	aca Thr	gct Ala	atg Met	gag Glu	gtg Val 415	gtg Val	1427
	aaa Lys	ttc Phe	gtg Val	aac Asn 420	ttt Phe	ttg Leu	ttg Leu	gta Val	aat Asn 425	ggc	ttc Phe	caa Gln	act Thr	gca Ala 430	att Ile	gac Asp	1475

5	Il∈	Phe	Glu 435	Asp	aga Arg	Ile	cga Arg	ggc Gly 440	Ile	gat Asp	atc Ile	att Ile	aaa Lys 445	tgg Trp	atg Met	gag Glu	1523
	cgc Arg	tac Tyr 450	ctt Leu	agg Arg	gat Asp	aag Lys	acc Thr 455	gtg Val	atg Met	ata Ile	atc Ile	gta Val 460	gca Ala	atc Ile	agc Ser	ccc Pro	1571
10	aaa Lys 465	-7	aaa Lys	cag Gln	gac Asp	gtg Val 470	gaa Glu	ggc	gct Ala	gag Glu	tcg Ser 475	cag Gln	ctg Leu	gac Asp	gag Glu	gat Asp 480	1619
15	gag Glu	cat His	Gly	tta Leu	cat His 485	act Thr	aag Lys	tac Tyr	att Ile	cat His 490	cga Arg	atg Met	atg Met	cag Gln	att Ile 495	gag Glu	1667
20	ttc Phe	ata Ile	aaa Lys	caa Gln 500	gga Gly	agc Ser	atg Met	aat Asn	ttc Phe 505	aga Arg	ttc Phe	atc Ile	cct Pro	gtg Val 510	ctc Leu	ttc Phe	1715
25	cca Pro	aat Asn	gct Ala 515	aag Lys	aag Lys	gag Glu	cat His	gtg Val 520	ccc Pro	acc Thr	tgg Trp	ctt Leu	cag Gln 525	aac Asn	act Thr	cat His	1763
	gtc Val	tac Tyr 530	agc Ser	tgg Trp	ccc Pro	aag Lys	aat Asn 535	aaa Lys	aaa Lys	aac Asn	Ile	ctg Leu 540	ctg Leu	cgg Arg	ctg Leu :	ctg Leu	1811
30	aga Arg 545	gag Glu	gaa Glu	gag Glu	ıyr	gtg Val 550	gct Ala	cct Pro	cca Pro .	Arg	933 939	cct Pro	ctg Leu	ccc Pro	Thr 1	ctt Leu 560	1859
35	cag Gln	gtg Val	gtt Val	PIO .	ttg † Leu 565	tgac	accg	tt c	atcc	ccag	a tc	actg	aggc	cag	gccai	igt	1914
	ttgg	ggcc	tt g	ttct	gacaç	g cat	ttate	ggct	gag	gatg	gtc (ggtag	gcact	ta al	tggct	ggtt	1974
40	tttt	tctg	tt c	ctcc	ccgag	g agg	gaaat	ctg	gcc	ccaç	gga a	acci	gtt	gt go	cagag	gctct	2034
	tccc	cgga	ga c	ctcca	acaca	cc.	ctgg	ttt	gaag	gtgga	agt o	etgte	gacto	gc to	tgca	ttct	2094
45																ttga	
																agca	
£0																tage	
50													ataa	ıa at	gttt	actc	2334
	ttttg	gtaaa	aa aa	aaaa	ıaaaa	aaa	aaaa	aag	aaaa	aaaa	aa a	aa					2377

MNRSIPVEVDESEPYPSQLLKPIPEYSPEESEPPAPNIRNMAPNSLSAPTMLHNSSGDFSQAHSTLKLANH QRPVSRQVTCLRTQVLEDSEDSFCRRHPGLGKAFPSGCSAVSEPASESVVGALPAEHQFSFMEKRNQWLVSQ LSAASPDTGHDSDKSDQSLPNASADSLGGSQEMVQRPQPHRNRAGLDLPTIDTGYDSQPQDVLGIRQLERPL PLTSVCYPQDLPRPLRSREFPQFEPQRYPACAQMLPPNLSPHAPWNYHYHCPGSPDHQVPYGHDYPRAAYQQ VIQPALPGQPLPGASVRGLHPVQKVILNYPSPWDQEERPAQRDCSFPGLPRHQDQPHHQPPNRAGAPGESLE CPAELRPQVPQPPSPAAVPRPPSNPPARGTLKTSNLPEELRKVFITYSMDTAMEVVKFVNFLLVNGFQTAID IFEDRIRGIDIIKWMERYLRDKTVMIIVAISPKYKQDVEGAESQLDEDEHGLHTKYIHRMMQIEFIKQGSMN FRFIPVLFPNAKKEHVPTWLQNTHVYSWPKNKKNILLRLLREEEYVAPPRGPLPTLQVVPL

atgaaymgnw snathccngt ngargtngay garwsngarc cntayccnws ncarytnytn 60

10

5

Reverse translation of primate, e.g., human, DCRS10 (SEQ ID NO: 24):

15		_		_	_		
13	aarccnathc	cngartayws	nccngargar	garwsngarc	cnccngcncc	naayathmgn	120
	aayatggcnc	cnaaywsnyt	nwsngcnccn	acnatgytnc	ayaaywsnws	nggngaytty	180
20	wsncargcnc	aywsnacnyt	naarytngcn	aaycaycarm	gnccngtnws	nmgncargtn	240
	acntgyytnm	gnacncargt	nytngargay	wsngargayw	snttytgymg	nmgncayccn	300
25	ggnytnggna	argcnttycc	nwsnggntgy	wangcngtnw	sngarccngc	nwsngarwsn	360
23	gtngtnggng	cnytnccngc	ngarcaycar	ttywsnttya	tggaraarmg	naaycartgg	420
	ytngtnwsnc	arytnwsngc	ngcnwsnccn	gayacnggnc	aygaywsnga	yaarwsngay	480
30	carwsnytnc	cnaaygcnws	ngcngaywsn	ytnggnggnw	sncargarat	ggtncarmgn	540
	ccncarccnc	aymgnaaymg	ngenggnytn	gayytnccna	cnathgayac	nggntaygay	600
35	wsncarccnc	argaygtnyt	nggnathmgn	carytngarm	gnccnytncc	nytnacnwsn	660
33	gtntgytayc	cncargayyt	nccnmgnccn	ytnmgnwsnm	gngarttycc	ncarttygar	720
	ccncarmgnt	ayccngcntg	ygcncaratg	ytnecneena	ayytnwsncc	ncaygeneen	780
40	tggaaytayc	aytaycaytg	yccnggnwsn	ccngaycayc	argtnccnta	yggncaygay	840
	tayccnmgng	cngcntayca	rcargtnath	carcengeny	tnccnggnca	rccnytnccn	900
45	ggngcnwsng	tnmgnggnyt	ncaycongtn	caraargtna	thytnaayta	yccnwsnccn	960
73	tgggaycarg	argarmgncc	ngcncarmgn	gaytgywsnt	tyccnggnyt	nccnmgncay	1020
	cargaycarc	cncaycayca	rccnccnaay	mgngcnggng	cnccnggnga	rwsnytngar	1080
50	tgyccngcng	arytnmgncc	ncargtnccn	carcencenw	snccngcngc	ngtnccnmgn	1140
	ccnccnwsna	ayccnccngc	nmgnggnacn	ytnaaracnw	snaayytncc	ngargarytn	1200
55	mgnaargtnt	tyathacnta	ywsnatggay	acngcnatgg	argtngtnaa	rttygtnaay	1260
<i>JJ</i>	ttyytnytng	tnaayggntt	ycaracngcn	athgayatht	tygargaymg	nathmgnggn	1320
	athgayatha	thaartggat	ggarmgntay	ytnmgngaya	aracngtnat	gathathgtn	1380

	gcr	nath	vsnc	cnaa	artay	/aa 1	carg	aygt	n ga	arggr	geng	g arv	vsnca	aryt	ngay	/gargay	1440
	gar	cay	gny	tnca	ayacı	naa r	taya	thca	ıy mç	nate	gatgo	c ara	athga	artt	yatl	naarcar	1500
5	ggn	wsna	itga	aytt	ymgr	itt y	atho	cngt	n yt	ntty	ccna	ayç	gcnaa	ıraa	rgar	caygtn	1560
	ccn	acnt	ggy	tnca	raay	rac n	cayg	tnta	y ws	ntgg	ccna	ara	ayaa	raa	raay	athytn	1620
10	ytn	mgny	tny	trimg	ngar	ga r	gart	aygt	n go	nccn	ccn	gng	gnco	nyt	nccr	acnytn	1680
	car	gtng	tnc	cnyt	n		•										1695
15	Rod	ent, e	e.g., m	ouse,	, emb	odime	ent (se	ee SE	Ф	NO: 2	25 an	d 26).	ı				
	cag Gln 1	Asp	ctc Leu	cct Pro	ggg Gly 5	Pro	ctg Leu	agg Arg	tcc Ser	agg Arg 10	Glu	ttg Leu	cca Pro	cct Pro	cag Gln 15	ttt Phe	48
20	gaa Glu	ctt Leu	gag Glu	agg Arg 20	tat Tyr	cca Pro	atg Met	aac Asn	gcc Ala 25	cag Gln	ctg Leu	ctg Leu	ccg Pro	ccc Pro 30	cat His	cct Pro	96
25	tcc Ser	cca Pro	cag Gln 35	gcc Ala	cca Pro	tgg Trp	aac Asn	tgt Cys 40	cag Gln	tac Tyr	tac Tyr	tgc Cys	ccc Pro 45	gga Gly	gjà aaa	ccc Pro	144
30	tac Tyr	cac His 50	cac His	cag Gln	gtg Val	cca Pro	cac His 55	ggc ggc	cat His	ggc	tac Tyr	cct Pro 60	cca Pro	gca Ala	gca Ala	gcc Ala	192
35	tac Tyr 65	cag Gln	caa Gln	gta Val	ctc Leu	cag Gln 70	cct Pro	gct Ala	ctg Leu	cct Pro	999 Gly 75	cag Gln	gtc Val	ctt Leu	cct Pro	80 GJA aaa	240
	gca Ala	agg Arg	gca Ala	aga Arg	ggc Gly 85	cca Pro	cgc Arg	cct Pro	gtg Val	cag Gln 90	aag Lys	gtc Val	atc Ile	ctg Leu	aat Asn 95	gac Asp	288
40	tcc Ser	agc Ser	ccc Pro	caa Gln 100	qaA	caa Gln	gaa Glu	gag Glu	aga Arg 105	cct Pro	gca Ala	cag Gln	aga Arg	gac Asp 110	ttc Phe	tct Ser	336
45	ttc Phe	ccg Pro	agg Arg 115	ctc Leu	ccg Pro	agg Arg	gac Asp	cag Gln 120	ctc Leu	tac Tyr	cgc Arg	cca Pro	cca Pro 125	tct Ser	aat Asn	gga Gly	384
50	Val	gaa Glu 130	gcc Ala	cct Pro	gag Glu	gag Glu	tcc Ser 135	ttg Leu	gac Asp	ctt Leu	cct Pro	gca Ala 140	gag Glu	ctg Leu	aga Arg	cca Pro	432
55	cat His 145	ggt Gly	ccc Pro	cag Gln	gct Ala	cca Pro 150	tcc Ser	cta Leu	gct Ala	gcc Ala	gtg Val 155	cct Pro	aga Arg	ccc Pro	cct Pro	agc Ser 160	480
	aac Asn	ccc Pro	tta Leu	gcc Ala	cga Arg 165	gga Gly	act Thr	cta Leu	Arg	acc Thr 170	agc Ser	aat Asn	ttg Leu	cca Pro	gaa Glu 175	gaa : Glu	528

	tta Leu	cgg Arg	aaa Lys	gtc Val 180	ttt Phe	atc Ile	act Thr	tat Tyr	tct Ser 185	atg Met	gac Asp	aca Thr	gcc Ala	atg Met 190	gag Glu	gtg Val	576
5	gtg Val	aaa Lys	ttt Phe 195	gtg Val	aac Asn	ttt Phe	ctg Leu	ttg Leu 200	gtg Val	aac Asn	Gly ggc	ttc Phe	caa Gln 205	act Thr	gcg Ala	att Ile	624
10	gac Asp	ata Ile 210	ttt Phe	gag Glu	gat Asp	aga Arg	atc Ile 215	cgg Arg	ggt Gly	att Ile	gat Asp	atc Ile 220	att Ile	aaa Lys	tgg Trp	atg Met	672
15	gag Glu 225	cgc Arg	tat Tyr	ctt Leu	cga Arg	gat Asp 230	aag Lys	aca Thr	gtg Val	atg Met	ata Ile 235	atc Ile	gta Val	gca Ala	atc Ile	agc Ser 240	720
20	ccc Pro	aaa Lys	tac Tyr	aaa Lys	cag Gln 245	gat Asp	gtg Val	gaa Glu	ggc	gct Ala 250	gag Glu	tcg Ser	cag Gln	ctg Leu	gac Asp 255	gag Glu	768
20	gac Asp	gag Glu	cat His	ggc Gly 260	tta Leu	cat His	act Thr	aag Lys	tac Tyr 265	att Ile	cat His	Arg	atg Met	atg Met 270	cag Gln	att Ile	816
25	gag Glu	ttc Phe	ata Ile 275	agt Ser	cag Gln	gga Gly	agc Ser	atg Met 280	aac Asn	ttc Phe	aga Arg	ttc Phe	atc Ile 285	cct Pro	gtg Val	ctc Leu	864
30	ttc Phe	cca Pro 290	Asn	gcc Ala	aag Lys	гàз	gag Glu -295-	His	Val	Pro	acc Thr	${\tt Trp}$	Leu	cag Gln	aac Asn	act Thr	912
35	cat His 305	Val	tac Tyr	agc Ser	tgg Trp	ccc Pro 310	aag Lys	aat Asn	aag Lys	aaa Lys	aac Asn 315	atc Ile	ctg Leu	ctg Leu	cgg Arg	ctg Leu 320	960
40	ctc Leu	agg Arg	gag Glu	gaa Glu	gag Glu 325	tat Tyr	gtg Val	gct Ala	cct Pro	ccc Pro 330	cga Arg	ggc Gly	cct Pro	ctg Leu	ccc Pro 335	acc Thr	1008
40			gtg Val					cgat	ggc (cacto	ccag	ct c	agtgo	ccag	c ·		1056
45	ctgi	ttct	cac a	agca	ttati	tc ta	agcg	gagc	t gg	ctgg	tggc	acc	cagg	caa i	tggaa	acacct	1116
	ctt	ctac	aga 🤉	gtcc	tctg	tc t	cctg	agtc	t ga	gttg	tcct	cgc	tggg	ctt (ccag	agcttc	1176
50	agtgcctgga tgctgcaggt gacagaaaca aacatctatg accacaaaaa ctctcatcac 1												1236				
	ttcagctact tttatgagtc ggtcagatgc tctgtgtcct tagaccagtc taaatcatgc												1296				
	tca	aata	ata	aaat	gatt	at t	cttt	gt									1323
55	LPG HGP GID	QVLP QAPS IIKW	GARA LAAV MERY	RGPR PRPP LRDK	PVQK SNPL	VILN ARGT: IVAI	DSSP LRTS SPKY	QDQE NLPE KQDV	ERPA ELRK EGAE	QRDF: VFIT SQLD:	SFPR YSMD EDEH	LPRD TAME GLHT	KAIH AAKE, ÕPAK	PPSN VNFL RMMQ	GVEA:	PEESLD! FQTAID:	QQVLQPA LPAELRP IFEDRIR FRFIPVL

FPNAKKEHVPTWLQNTHVYSWPKNKKNILLRLLREEEYVAPPRGPLPTLQVVPL.

Reverse translation of rodent, e.g., mouse, DCRS6 (SEQ ID NO: 27):

5 cargayytnc enggneenyt nmgnwsnmgn garytneene encarttyga rytngarmgn 60 tayccnatga aygcncaryt nytnccnccn cayccnwsnc cncargence ntggaaytgy 120 cartaytayt gyccnggngg nccntaycay caycargtnc cncayggnca yggntayccn 180 10 congongong entayearca rgtnytnear congonytne enggneargt nytneenggn 240 gcnmgngcnm gnggnccnmg nccngtncar aargtnathy tnaaygayws nwsnccncar 300 15 gaycargarg armgnccngc ncarmgngay ttywsnttyc cnmqnytncc nmqnqaycar 360 ytntaymgnc cnccnwsnaa yggngtngar gcnccngarg arwsnytnga yytnccngcn 420 garytnmgnc cncayggncc ncargencen wsnytnqcnq cnqtnccnmq nccncenwsn 480 20 aayccnytng cnmgnggnac nytnmgnacn wsnaayytnc cngargaryt nmgnaargtn 540 ttyathacnt aywsnatgga yacngcnatg gargtngtna arttygtnaa yttyytnytn 600 25 gtnaayggnt tycaracngc nathgayath ttygargaym gnathmqnqq nathqayath 660 athaartgga tggarmgnta yytnmgngay aaracngtna tgathathgt ngcnathwsn 720 ccnaartaya arcargaygt ngarggngcn garwsncary tngaygarga ygarcayggn 780 30 ytncayacna artayathca ymgnatgatg carathqart tyathwsnca rggnwsnatg 840 aayttymgnt tyathccngt nytnttyccn aaygcnaara argarcaygt nccnacntgg 900 35 ytncaraaya cncaygtnta ywsntggccn aaraayaara araayathyt nytnmgnytn 960 ytnmgngarg argartaygt ngcnccnccn mgngqnccny tnccnacnyt ncarqtngtn 1020 ccnytn 1026 40

Table 6: Alignment of the cytoplasmic portions of various cytokine receptor subunits. The IL-17R_Hu (SEQ ID NO: 28) is GenBank AAB99730.1(U58917), gi|7657230; the IL-17R_Mu (SEQ ID NO: 29) is GenBank AAC52357.1(U31993), gi|6680411; the IL-17R_Ce (SEQ ID NO: 30) is GenBank AAA811100.1(U39997), gi|1353171; and the DCRS6_Ce (SEQ ID NO: 31) is EMBCAA90543.1(Z50177), gi|7503597. Of particular interest are motifs or features corresponding, in primate DCRS8 to: R/K at 339/340; D/E at 348/349; alpha helical regions from H353-Q365, C370-S381, E389-H396, K410-D414, and D485-H495; beta sheet regions correspond to F400-V404 and F458-Y462; E at 431; E/D at 442/443; Y/F at 458; D/E at 468-470; Y/F at 481; and Q/R/F at 523.

	DCRS7_Mu DCRS7_Hu IL-17R Hu	RTALLHSADG-AGYERLVGALASALSQMPLRVAVDLWSRRE-LSAHGALAWFHHQR RAALLLYSADD-SGFERLVGALASALCQLPLRVAVDLWSRRE-LSAQGPVAWFHAQR RKVWIIYSADH-PLYVDVVLKFAQFLLTACGTEVALDLLEEQA-ISEAGVMTWVGRQK
5	IL-17R_Mu DCRS10	RKVWIVYSADH-PLYVEVVLKFAQFLITACGTEVALDLLEEQV-ISEVGVMTWVSRQK RKVFITYSMDTAMEVVKFVNFLLVNGFQTAIDIFEDRIRGIDIIKWMERYL
	DCRS10_Mu DCRS9_Hu	RKVFITYSMDTAMEVVKFVNFLLVNGFQTAIDIFEDRIRGIDIIKWMERYL RPVLLLHAADS-EAQRRLVGALAELLRAALGGGRDVIVDLWEGRH-VARVGPLPWLWAAR
10	DCRS8_Hu IL-17R_Ce	PKVFLCYSSKDGQNHMNVVQCFAYFLQDFCGCEVALDLWEDFS-LCREGQREWVIQKI VKVMIVYADDN-DLHTDCVKKLVENLRNCASCDPVFDLEKLITAEIVPSRWLVDQI
	DCRS6_Hu DCRS6_Ce	IKVLVVYPSEICFHHTICYFTEFLQNHCRSEVILEKWQKKK-IAEMGPVQWLATQK FKVMLVCPEVS-GRDEDFMMRIADALKKSNNKVVCDRWFEDSKNAEENMLHWVYEQT
	Demo_ee	. : . : : * : *.
15	DCRS7_Mu	RRILQEGGVVILLFSPAAVAQCQQWLQLQTVEPGPHDALAAWLSCVLPDFLRQTLQEGGVVVLLFSPGAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFL
	DCRS7_Hu IL-17R Hu	QEMVESNSKIIVLCSRGTRAKWQALLGRGAP-VRLRCDHGKPV-GDLFTAAMNMILPDFK
	IL-17R_Mu	QEMVESNSKIIILCSRGTQAKWKAILGWAEPAVQLRCDHWKPA-GDLFTAAMNMILPDFK
20	DCRS10	RDKTVMIIVAISPKYKQDVEGAESQLDED-EHGLHTKYIHRM-MQIEFIK RDKTVMIIVAISPKYKQDVEGAESQLDED-EHGLHTKYIHRM-MQIEFIS
20	DCRS10_Mu DCRS9 Hu	TRVAREQGTVLLLWSGADLRPVSGPDP-RAAPLLALLHAAP
	DCRS8 Hu	HESQFIIVVCSKGMKYFVDKKNYKHKGGGRGSGKGELFLVAVSAIAEKLR
	IL-17R_Ce	SSLKKFIIVVSDCAEKILDTEASETHQLVQARPFADLFGPAMEMIIRDAT
25	DCRS6_Hu	KAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLAFNLFCSDLR
25	DCRS6_Ce	KIAEKIIVFHSAYYHPRCGIYDVINNFFPCTDPRLAHIALTPEAQ .:. *
	DCRS7_Mu	QGRATGRYVGVYFDGLLHPDSVPSPFRVAPLFSLP-SQLPAFLDALQGGCSTS
20	DCRS7_Hu	QGRAPGSYVGACFDRLLHPDAVPALFRTVPVFTLP-SQLPDFLGALQQPRAPR
30	IL-17R_Hu IL-17R_Mu	RPACFGTYVVCYFSEVSCDGDVPDLFGAAPRYPLM-DRFEEVYFRIQDLEMFQ RPACFGTYVVCYFSGICSERDVPDLFNITSRYPLM-DRFEEVYFRIQDLEMFE
	DCRS10	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA
	DCRS10_Mu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA
0.5	DCRS9_Hu	RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE
35	DCRS8_Hu	QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER
	IL-17R_Ce DCRS6_Hu	SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ
	DCRS6_Ce	RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC
40		
	DCRS7 Mu	AGRPADRVERVTQALRSALDSCTS
	DCRS7_Hu	SGRLQERAEQVSRALQPALDSYFHPP
	IL-17R_Hu	PGRMHRVGELSGDNYLRSPGGRQLRAALDRFRDWQVRCPDW
15	IL-17R_Mu	PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW
45	DCRS10 DCRS10 Mu	PPRGPLPTLQVVPL PPRGPLPTLQVVPL
	DCRS9 Hu	ATSWGRLGARQRRQSRLELCSR
	DCRS8_Hu	PGQHTRQGSRRNYFRSKSGRSLYVAICNMHQFIDEEPDW
	IL-17R_Ce	ANVTQNISEAQIHEWNLCASRMMSFFVRNPNW
50	DCRS6_Hu	VSAGKRSQACHDGCCSL
	DCRS6_Ce	DSIDSRNNSKTHSTDSGVSSLSSNS

various other receptors. Various conserved residues are aligned and indicated. The structually homologous cytoplasmic domains most likely signal through pathways like IL-17, e.g., through NFkB. Similar to IL-1 signalling, it is likely that these receptors are invloved in innate immunity and/or development.

5

10

15

20

25

30

35

As used herein, the term DCRS shall be used to describe a protein comprising amino acid sequences shown in Tables 1-5, respectively. In many cases, a substantial fragment thereof will be functionally or structurally equivalent, including, e.g., an extracellular or intracellular domain. The invention also includes a protein variation of the respective DCRS allele whose sequence is provided, e.g., a mutein or soluble extracellular construct. Typically, such agonists or antagonists will exhibit less than about 10% sequence differences, and thus will often have between 1 and 11 substitutions, e.g., 2-, 3-, 5-, 7-fold, and others. It also encompasses allelic and other variants, e.g., natural polymorphic, of the protein described. Typically, it will bind to its corresponding biological ligand, perhaps in a dimerized state with an alpha receptor subunit, with high affinity, e.g., at least about 100 nM, usually better than about 30 nM, preferably better than about 10 nM, and more preferably at better than about 3 nM. The term shall also be used herein to refer to related naturally occurring forms, e.g., alleles, polymorphic variants, and metabolic variants of the mammalian protein. Preferred forms of the receptor complexes will bind the appropriate ligand with an affinity and selectivity appropriate for a ligand-receptor interaction.

This invention also encompasses combinations of proteins or peptides having substantial amino acid sequence identity with an amino acid sequence in Tables 1-5. It will include sequence variants with relatively few residue substitutions, e.g., preferably less than about 3-5.

A substantial polypeptide "fragment", or "segment", is a stretch of amino acid residues of at least about 8 amino acids, generally at least 10 amino acids, more generally at least 12 amino acids, often at least 14 amino acids, more often at least 16 amino acids, typically at least 18 amino acids, more typically at least 20 amino acids, usually at least 22 amino acids, more usually at least 24 amino acids, preferably at least 26 amino acids, more preferably at least 28 amino acids, and, in particularly preferred embodiments, at least about 30 or more amino acids. This includes, e.g., 40, 50, 60, 70, 85, 100, 115, 130, 150, and other lengths. Sequences of segments of different proteins can be compared to one another over appropriate length stretches, typically between conserved motifs. In many situations, fragments may exhibit functional properties of the intact subunits, e.g., the extracellular domain of the transmembrane receptor may retain the ligand binding features, and may be used to prepare a soluble receptor-like complex.

5

10

15

20

25

30

35

Amino acid sequence homology, or sequence identity, is determined by optimizing residue matches. In some comparisons, gaps may be introduces, as required. See, e.g., Needleham, et al., (1970) J. Mol. Biol. 48:443-453; Sankoff, et al., (1983) chapter one in Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA; and software packages from IntelliGenetics, Mountain View, CA; and the University of Wisconsin Genetics Computer Group (GCG), Madison, WI; each of which is incorporated herein by reference. This changes when considering conservative substitutions as matches. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. Homologous amino acid sequences are intended to include natural allelic and interspecies variations in the cytokine sequence. Typical homologous proteins or peptides will have from 50-100% homology (if gaps can be introduced), to 60-100% homology (if conservative substitutions are included) with an amino acid sequence segment of, e.g., Table 3 or 4. Homology measures will be at least about 70%, generally at least 76%, more generally at least 81%, often at least 85%, more often at least 88%, typically at least 90%, more typically at least 92%, usually at least 94%, more usually at least 95%, preferably at least 96%, and more preferably at least 97%, and in particularly preferred embodiments, at least 98% or more. The degree of homology will vary with the length of the compared segments. Homologous proteins or peptides, such as the allelic variants, will share most biological activities with the embodiments described in Tables 1-5.

As used herein, the term "biological activity" is used to describe, without limitation, effects on inflammatory responses, innate immunity, and/or morphogenic development by cytokine-like ligands. For example, these receptors should mediate phosphatase or phosphorylase activities, which activities are easily measured by standard procedures. See, e.g., Hardie, et al. (eds. 1995) The Protein Kinase FactBook vols. I and II, Academic Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al. (1991) Cold Spring Harbor Symp. Quant. Biol. 56:449-463; and Parker, et al. (1993) Nature 363:736-738. The receptors, or portions thereof, may be useful as phosphate labeling enzymes to label general or specific substrates. The subunits may also be functional immunogens to elicit recognizing antibodies, or antigens capable of binding antibodies.

The terms ligand, agonist, antagonist, and analog of, e.g., a DCRS8 or DCRS9, include molecules that modulate the characteristic cellular responses to cytokine ligand proteins, as well as molecules possessing the more standard structural binding competition features of ligand-receptor interactions, e.g., where the receptor is a natural

receptor or an antibody. The centuar responses likely are typically mediated through receptor tyrosine kinase pathways.

Also, a ligand is a molecule which serves either as a natural ligand to which said receptor, or an analog thereof, binds, or a molecule which is a functional analog of the natural ligand. The functional analog may be a ligand with structural modifications, or may be a wholly unrelated molecule which has a molecular shape which interacts with the appropriate ligand binding determinants. The ligands may serve as agonists or antagonists, see, e.g., Goodman, et al. (eds. 1990) Goodman & Gilman's: The Pharmacological Bases of Therapeutics, Pergamon Press, New York.

Rational drug design may also be based upon structural studies of the molecular shapes of a receptor or antibody and other effectors or ligands. See, e.g., Herz, et al. (1997) J. Recept. Signal Transduct. Res. 17:671-776; and Chaiken, et al. (1996) Trends Biotechnol. 14:369-375. Effectors may be other proteins which mediate other functions in response to ligand binding, or other proteins which normally interact with the receptor. One means for determining which sites interact with specific other proteins is a physical structure determination, e.g., x-ray crystallography or 2 dimensional NMR techniques. These will provide guidance as to which amino acid residues form molecular contact regions. For a detailed description of protein structural determination, see, e.g., Blundell and Johnson (1976) Protein Crystallography, Academic Press, New York, which is hereby incorporated herein by reference.

II. Activities

The cytokine receptor-like proteins will have a number of different biological activities, e.g., modulating cell proliferation, or in phosphate metabolism, being added to or removed from specific substrates, typically proteins. Such will generally result in modulation of an inflammatory function, other innate immunity response, or a morphological effect. The subunit will probably have a specific low affinity binding to the ligand.

The DCRS8 and DCRS9 have characteristic motifs of receptors signaling through the JAK pathway. See, e.g., Ihle, et al. (1997) Stem Cells 15(suppl. 1):105-111; Silvennoinen, et al. (1997) APMIS 105:497-509; Levy (1997) Cytokine Growth Factor Review 8:81-90; Winston and Hunter (1996) Current Biol. 6:668-671; Barrett (1996) Baillieres Clin. Gastroenterol. 10:1-15; and Briscoe, et al. (1996) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351:167-171.

The biological activities of the cytokine receptor subunits will be related to addition or removal of phosphate moieties to substrates, typically in a specific manner, but occasionally in a non specific manner. Substrates may be identified, or conditions for

35

5

10

15

20

25

30

enzymatic activity may be assayed by standard methods, e.g., as described in Hardie, et al. (eds. 1995) The Protein Kinase FactBook vols. I and II, Academic Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al. (1991) Cold Spring Harbor Symp. Ouant. Biol. 56:449-463; and Parker, et al. (1993) Nature 363:736-738.

The receptor subunits may combine to form functional complexes, e.g., which may be useful for binding ligand or preparing antibodies. These will have substantial diagnostic uses, including detection or quantitation.

III. Nucleic Acids

5

10

15

20

25

30

35

This invention contemplates use of isolated nucleic acid or fragments, e.g., which encode these or closely related proteins, or fragments thereof, e.g., to encode a corresponding polypeptide, preferably one which is biologically active. In addition, this invention covers isolated or recombinant DNAs which encode combinations of such proteins or polypeptides having characteristic sequences, e.g., of the DCRSs. Typically, the nucleic acid is capable of hybridizing, under appropriate conditions, with a nucleic acid sequence segment shown in Tables 1-5, but preferably not with a corresponding segment of other receptors described in Table 6. Said biologically active protein or polypeptide can be a full length protein, or fragment, and will typically have a segment of amino acid sequence highly homologous, e.g., exhibiting significant stretches of identity, to one shown in Tables 1-5. Further, this invention covers the use of isolated or recombinant nucleic acid, or fragments thereof, which encode proteins having fragments which are equivalent to the DCRS8 or DCRS9 proteins. The isolated nucleic acids can have the respective regulatory sequences in the 5' and 3' flanks, e.g., promoters, enhancers, poly-A addition signals, and others from the natural gene. Combinations, as described, are also provided.

An "isolated" nucleic acid is a nucleic acid, e.g., an RNA, DNA, or a mixed polymer, which is substantially pure, e.g., separated from other components which naturally accompany a native sequence, such as ribosomes, polymerases, and flanking genomic sequences from the originating species. The term embraces a nucleic acid sequence which has been removed from its naturally occurring environment, and includes recombinant or cloned DNA isolates, which are thereby distinguishable from naturally occurring compositions, and chemically synthesized analogs or analogs biologically synthesized by heterologous systems. A substantially pure molecule includes isolated forms of the molecule, either completely or substantially pure.

An isolated nucleic acid will generally be a homogeneous composition of molecules, but will, in some embodiments, contain heterogeneity, preferably minor. This

heterogeneity is typically found at the polymer ends or portions not critical to a desired biological function or activity.

5

10

15

20

25

30

35

A "recombinant" nucleic acid is typically defined either by its method of production or its structure. In reference to its method of production, e.g., a product made by a process, the process is use of recombinant nucleic acid techniques, e.g., involving human intervention in the nucleotide sequence. Typically this intervention involves in vitro manipulation, although under certain circumstances it may involve more classical animal breeding techniques. Alternatively, it can be a nucleic acid made by generating a sequence comprising fusion of two fragments which are not naturally contiguous to each other, but is meant to exclude products of nature, e.g., naturally occurring mutants as found in their natural state. Thus, for example, products made by transforming cells with an unnaturally occurring vector is encompassed, as are nucleic acids comprising sequence derived using any synthetic oligonucleotide process. Such a process is often done to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a restriction enzyme sequence recognition site. Alternatively, the process is performed to join together nucleic acid segments of desired functions to generate a single genetic entity comprising a desired combination of functions not found in the commonly available natural forms, e.g., encoding a fusion protein. Restriction enzyme recognition sites are often the target of such artificial manipulations, but other site specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design. A similar concept is intended for a recombinant, e.g., fusion, polypeptide. This will include a dimeric repeat. Specifically included are synthetic nucleic acids which, by genetic code redundancy, encode equivalent polypeptides to fragments of DCRSs and fusions of sequences from various different related molecules, e.g., other cytokine receptor family members.

A "fragment" in a nucleic acid context is a contiguous segment of at least about 17 nucleotides, generally at least 21 nucleotides, more generally at least 25 nucleotides, ordinarily at least 30 nucleotides, more ordinarily at least 35 nucleotides, often at least 39 nucleotides, more often at least 45 nucleotides, typically at least 50 nucleotides, more typically at least 55 nucleotides, usually at least 60 nucleotides, more usually at least 66 nucleotides, preferably at least 72 nucleotides, more preferably at least 79 nucleotides, and in particularly preferred embodiments will be at least 85 or more nucleotides. Typically, fragments of different genetic sequences can be compared to one another over appropriate length stretches, particularly defined segments such as the domains described below.

A nucleic acid which codes for the DCRS8 or DCRS9 will be particularly useful to identify genes, mRNA, and cDNA species which code for itself or closely related proteins, as well as DNAs which code for polymorphic, allelic, or other genetic variants, e.g., from different individuals or related species. Preferred probes for such screens are those regions of the interleukin which are conserved between different polymorphic variants or which contain nucleotides which lack specificity, and will preferably be full length or nearly so. In other situations, polymorphic variant specific sequences will be more useful.

5

10

15

20

25

30

35

This invention further covers recombinant nucleic acid molecules and fragments having a nucleic acid sequence identical to or highly homologous to the isolated DNA set forth herein. In particular, the sequences will often be operably linked to DNA segments which control transcription, translation, and DNA replication. These additional segments typically assist in expression of the desired nucleic acid segment.

Homologous, or highly identical, nucleic acid sequences, when compared to one another, e.g., DCRS8 sequences, exhibit significant similarity. The standards for homology in nucleic acids are either measures for homology generally used in the art by sequence comparison or based upon hybridization conditions. Comparative hybridization conditions are described in greater detail below.

Substantial identity in the nucleic acid sequence comparison context means either that the segments, or their complementary strands, when compared, are identical when optimally aligned, with appropriate nucleotide insertions or deletions, in at least about 60% of the nucleotides, generally at least 66%, ordinarily at least 71%, often at least 76%, more often at least 80%, usually at least 84%, more usually at least 88%, typically at least 91%, more typically at least about 93%, preferably at least about 95%, more preferably at least about 96 to 98% or more, and in particular embodiments, as high at about 99% or more of the nucleotides, including, e.g., segments encoding structural domains such as the segments described below. Alternatively, substantial identity will exist when the segments will hybridize under selective hybridization conditions, to a strand or its complement, typically using a sequence derived from Tables 1-5. Typically, selective hybridization will occur when there is at least about 55% homology over a stretch of at least about 14 nucleotides, more typically at least about 65%, preferably at least about 75%, and more preferably at least about 90%. See, Kanehisa (1984) Nucl. Acids Res. 12:203-213, which is incorporated herein by reference. The length of homology comparison, as described, may be over longer stretches, and in certain embodiments will be over a stretch of at least about 17 nucleotides, generally at least about 20 nucleotides, ordinarily at least about 24 nucleotides, usually at least about 28 nucleotides, typically at least about 32 nucleotides, more typically at least about 40 nucleotides, preferably at least

This includes, e.g., 125, 150, 175, 200, 225, 246, 273, and other lengths.

Stringent conditions, in referring to homology in the hybridization context, will be stringent combined conditions of salt, temperature, organic solvents, and other parameters typically controlled in hybridization reactions. Stringent temperature conditions will usually include temperatures in excess of about 30 C, more usually in excess of about 37 C, typically in excess of about 45 C, more typically in excess of about 55 C, preferably in excess of about 65 C, and more preferably in excess of about 70 C. Stringent salt conditions will ordinarily be less than about 500 mM, usually less than about 400 mM, more usually less than about 300 mM, typically less than about 200 mM, preferably less than about 100 mM, and more preferably less than about 80 mM, even down to less than about 20 mM. However, the combination of parameters is much more important than the measure of any single parameter. See, e.g., Wetmur and Davidson (1968) J. Mol. Biol. 31:349-370, which is hereby incorporated herein by reference.

The isolated DNA can be readily modified by nucleotide substitutions, nucleotide deletions, nucleotide insertions, and inversions of nucleotide stretches. These modifications result in novel DNA sequences which encode this protein or its derivatives. These modified sequences can be used to produce mutant proteins (muteins) or to enhance the expression of variant species. Enhanced expression may involve gene amplification, increased transcription, increased translation, and other mechanisms. Such mutant DCRS8—like derivatives include predetermined or site-specific mutations of the protein or its fragments, including silent mutations using genetic code degeneracy. "Mutant DCRS8" as used herein encompasses a polypeptide otherwise falling within the homology definition of the DCRS8 as set forth above, but having an amino acid sequence which differs from that of other cytokine receptor-like proteins as found in nature, whether by way of deletion, substitution, or insertion. In particular, "site specific mutant DCRS8" encompasses a protein having substantial sequence identity with a protein of Table 3, and typically shares most of the biological activities or effects of the forms disclosed herein.

Although site specific mutation sites are predetermined, mutants need not be site specific. Mammalian DCRS8 mutagenesis can be achieved by making amino acid insertions or deletions in the gene, coupled with expression. Substitutions, deletions, insertions, or many combinations may be generated to arrive at a final construct. Insertions include amino- or carboxy- terminal fusions. Random mutagenesis can be conducted at a target codon and the expressed mammalian DCRS mutants can then be screened for the desired activity, providing some aspect of a structure-activity relationship. Methods for making substitution mutations at predetermined sites in DNA

having a known sequence are well known in the art, e.g., by M13 primer mutagenesis. See also Sambrook, et al. (1989) and Ausubel, et al. (1987 and periodic Supplements).

The mutations in the DNA normally should not place coding sequences out of reading frames and preferably will not create complementary regions that could hybridize to produce secondary mRNA structure such as loops or hairpins.

The phosphoramidite method described by Beaucage and Carruthers (1981) <u>Tetra.</u> <u>Letts.</u> 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Polymerase chain reaction (PCR) techniques can often be applied in mutagenesis. Alternatively, mutagenesis primers are commonly used methods for generating defined mutations at predetermined sites. See, e.g., Innis, et al. (eds. 1990) PCR Protocols: A Guide to Methods and Applications Academic Press, San Diego, CA; and Dieffenbach and Dveksler (1995; eds.) PCR Primer: A Laboratory Manual Cold Spring Harbor Press, CSH, NY.

Certain embodiments of the invention are directed to combination compositions comprising the receptor or ligand sequences described. In other embodiments, functional portions of the sequences may be joined to encode fusion proteins. In other forms, variants of the described sequences may be substituted.

IV. Proteins, Peptides

5

10

15

20

25

30

35

As described above, the present invention encompasses primate DCRS6-10, e.g., whose sequences are disclosed in Tables 1-5, and described above. Allelic and other variants are also contemplated, including, e.g., fusion proteins combining portions of such sequences with others, including, e.g., epitope tags and functional domains.

The present invention also provides recombinant proteins, e.g., heterologous fusion proteins using segments from these primate or rodent proteins. A heterologous fusion protein is a fusion of proteins or segments which are naturally not normally fused in the same manner. Thus, the fusion product of, e.g., a DCRS8 with another cytokine receptor is a continuous protein molecule having sequences fused in a typical peptide linkage, typically made as a single translation product and exhibiting properties, e.g., sequence or antigenicity, derived from each source peptide. A similar concept applies to heterologous nucleic acid sequences. Combinations of various designated proteins into complexes are also provided.

In addition, new constructs may be made from combining similar functional or structural domains from other related proteins, e.g., cytokine receptors or Toll-like

be "swapped" between different new fusion polypeptides or fragments. See, e.g., Cunningham, et al. (1989) Science 243:1330-1336; and O'Dowd, et al. (1988) J. Biol. Chem. 263:15985-15992, each of which is incorporated herein by reference. Thus, new chimeric polypeptides exhibiting new combinations of specificities will result from the functional linkage of receptor-binding specificities. For example, the ligand binding domains from other related receptor molecules may be added or substituted for other domains of this or related proteins. The resulting protein will often have hybrid function and properties. For example, a fusion protein may include a targeting domain which may serve to provide sequestering of the fusion protein to a particular subcellular organelle.

5

10

15

20

25

30

35

Candidate fusion partners and sequences can be selected from various sequence data bases, e.g., GenBank, c/o IntelliGenetics, Mountain View, CA; and BCG, University of Wisconsin Biotechnology Computing Group, Madison, WI, which are each incorporated herein by reference. In particular, combinations of polypeptide sequences provided in Tables 1-5 are particularly preferred. Variant forms of the proteins may be substituted in the described combinations.

The present invention particularly provides muteins which bind cytokine-like ligands, and/or which are affected in signal transduction. Structural alignment of human DCRSs with other members of the cytokine receptor family show conserved features/residues. See Table 6. Alignment of the human DCRS8 sequence with other members of the cytokine receptor family indicates various structural and functionally shared features. See also, Bazan, et al. (1996) Nature 379:591; Lodi, et al. (1994) Science 263:1762-1766; Sayle and Milner-White (1995) TIBS 20:374-376; and Gronenberg, et al. (1991) Protein Engineering 4:263-269.

Substitutions with either mouse sequences or human sequences are particularly preferred. Conversely, conservative substitutions away from the ligand binding interaction regions will probably preserve most signaling activities; and conservative substitutions away from the intracellular domains will probably preserve most ligand binding properties.

"Derivatives" of the primate DCRS8 include amino acid sequence mutants, glycosylation variants, metabolic derivatives and covalent or aggregative conjugates with other chemical moieties. Covalent derivatives can be prepared by linkage of functionalities to groups which are found in the DCRS8 amino acid side chains or at the N- or C- termini, e.g., by means which are well known in the art. These derivatives can include, without limitation, aliphatic esters or amides of the carboxyl terminus, or of residues containing carboxyl side chains, O-acyl derivatives of hydroxyl group-containing residues, and N-acyl derivatives of the amino terminal amino acid or amino-group

containing residues, e.g., lysine or arginine. Acyl groups are selected from the group of alkyl-moieties, including C3 to C18 normal alkyl, thereby forming alkanoyl aroyl species.

In particular, glycosylation alterations are included, e.g., made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing, or in further processing steps. Particularly preferred means for accomplishing this are by exposing the polypeptide to glycosylating enzymes derived from cells which normally provide such processing, e.g., mammalian glycosylation enzymes. Deglycosylation enzymes are also contemplated. Also embraced are versions of the same primary amino acid sequence which have other minor modifications, including phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.

5

10

15

20

25

30

35 🔭

A major group of derivatives are covalent conjugates of the receptors or fragments thereof with other proteins of polypeptides. These derivatives can be synthesized in recombinant culture such as N- or C-terminal fusions or by the use of agents known in the art for their usefulness in cross-linking proteins through reactive side groups. Preferred derivatization sites with cross-linking agents are at free amino groups, carbohydrate moieties, and cysteine residues.

Fusion polypeptides between the receptors and other homologous or heterologous proteins are also provided. Homologous polypeptides may be fusions between different receptors, resulting in, for instance, a hybrid protein exhibiting binding specificity for multiple different cytokine ligands, or a receptor which may have broadened or weakened specificity of substrate effect. Likewise, heterologous fusions may be constructed which would exhibit a combination of properties or activities of the derivative proteins. Typical examples are fusions of a reporter polypeptide, e.g., luciferase, with a segment or domain of a receptor, e.g., a ligand-binding segment, so that the presence or location of a desired ligand may be easily determined. See, e.g., Dull, et al., U.S. Patent No. 4,859,609, which is hereby incorporated herein by reference. Other gene fusion partners include glutathione-S-transferase (GST), bacterial \(\beta\)-galactosidase, trpE, Protein A, \(\beta\)-lactamase, alpha amylase, alcohol dehydrogenase, and yeast alpha mating factor. See, e.g., Godowski, et al. (1988) Science 241:812-816. Labeled proteins will often be substituted in the described combinations of proteins.

The phosphoramidite method described by Beaucage and Carruthers (1981) <u>Tetra.</u> <u>Letts.</u> 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Such polypeptides may also have amino acid residues which have been chemically modified by phosphorylation, sulfonation, biotinylation, or the addition or removal of

other moieties, particularly those which have molecular shapes similar to phosphate groups. In some embodiments, the modifications will be useful labeling reagents, or serve as purification targets, e.g., affinity ligands.

Fusion proteins will typically be made by either recombinant nucleic acid methods or by synthetic polypeptide methods. Techniques for nucleic acid manipulation and expression are described generally, for example, in Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed.), Vols. 1-3, Cold Spring Harbor Laboratory, and Ausubel, et al. (eds. 1987 and periodic supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York, which are each incorporated herein by reference. Techniques for synthesis of polypeptides are described, for example, in Merrifield (1963) J. Amer. Chem. Soc. 85:2149-2156; Merrifield (1986) Science 232: 341-347; and Atherton, et al. (1989) Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford; each of which is incorporated herein by reference. See also Dawson, et al. (1994) Science 266:776-779 for methods to make larger polypeptides.

This invention also contemplates the use of derivatives of a DCRS8 other than variations in amino acid sequence or glycosylation. Such derivatives may involve covalent or aggregative association with chemical moieties. These derivatives generally fall into three classes: (1) salts, (2) side chain and terminal residue covalent modifications, and (3) adsorption complexes, for example with cell membranes. Such covalent or aggregative derivatives are useful as immunogens, as reagents in immunoassays, or in purification methods such as for affinity purification of a receptor or other binding molecule, e.g., an antibody. For example, a cytokine ligand can be immobilized by covalent bonding to a solid support such as cyanogen bromide-activated Sepharose, by methods which are well known in the art, or adsorbed onto polyolefin surfaces, with or without glutaraldehyde cross-linking, for use in the assay or purification of a cytokine receptor, antibodies, or other similar molecules. The ligand can also be labeled with a detectable group, for example radioiodinated by the chloramine T procedure, covalently bound to rare earth chelates, or conjugated to another fluorescent moiety for use in diagnostic assays.

A combination, e.g., including a DCRS8, of this invention can be used as an immunogen for the production of antisera or antibodies specific, e.g., capable of distinguishing between other cytokine receptor family members, for the combinations described. The complexes can be used to screen monoclonal antibodies or antigen-binding fragments prepared by immunization with various forms of impure preparations containing the protein. In particular, the term "antibodies" also encompasses antigen binding fragments of natural antibodies, e.g., Fab, Fab2, Fv, etc. The purified DCRS8 can also be used as a reagent to detect antibodies generated in response to the presence of

elevated levels of expression, or immunological disorders which lead to antibody production to the endogenous receptor. Additionally, DCRS8 fragments may also serve as immunogens to produce the antibodies of the present invention, as described immediately below. For example, this invention contemplates antibodies having binding affinity to or being raised against the amino acid sequences shown in Tables 1-5, fragments thereof, or various homologous peptides. In particular, this invention contemplates antibodies having binding affinity to, or having been raised against, specific fragments which are predicted to be, or actually are, exposed at the exterior protein surface of the native DCRS8 or DCRS9. Complexes of combinations of proteins will also be useful, and antibody preparations thereto can be made.

The blocking of physiological response to the receptor ligands may result from the inhibition of binding of the ligand to the receptor, likely through competitive inhibition. Thus, in vitro assays of the present invention will often use antibodies or antigen binding segments of these antibodies, or fragments attached to solid phase substrates. These assays will also allow for the diagnostic determination of the effects of either ligand binding region mutations and modifications, or other mutations and modifications, e.g., which affect signaling or enzymatic function.

This invention also contemplates the use of competitive drug screening assays, e.g., where neutralizing antibodies to the receptor complexes or fragments compete with a test compound for binding to a ligand or other antibody. In this manner, the neutralizing antibodies or fragments can be used to detect the presence of a polypeptide which shares one or more binding sites to a receptor and can also be used to occupy binding sites on a receptor that might otherwise bind a ligand.

V. Making Nucleic Acids and Protein

5

10

15

20

25

30

35

DNA which encodes the protein or fragments thereof can be obtained by chemical synthesis, screening cDNA libraries, or by screening genomic libraries prepared from a wide variety of cell lines or tissue samples. Natural sequences can be isolated using standard methods and the sequences provided herein, e.g., in Tables 1-5. Other species counterparts can be identified by hybridization techniques, or by various PCR techniques, combined with or by searching in sequence databases, e.g., GenBank.

This DNA can be expressed in a wide variety of host cells for the synthesis of a full-length receptor or fragments which can in turn, for example, be used to generate polyclonal or monoclonal antibodies; for binding studies; for construction and expression of modified ligand binding or kinase/phosphatase domains; and for structure/function studies. Variants or fragments can be expressed in host cells that are transformed or transfected with appropriate expression vectors. These molecules can be substantially

host, and therefore are particularly useful in pharmaceutical compositions when combined with a pharmaceutically acceptable carrier and/or diluent. The protein, or portions thereof, may be expressed as fusions with other proteins. Combinations of the described proteins, or nucleic acids encoding them, are particularly interesting.

Expression vectors are typically self-replicating DNA or RNA constructs containing the desired receptor gene or its fragments, usually operably linked to suitable genetic control elements that are recognized in a suitable host cell. These control elements are capable of effecting expression within a suitable host. The multiple genes may be coordinately expressed, and may be on a polycistronic message. The specific type of control elements necessary to effect expression will depend upon the eventual host cell used. Generally, the genetic control elements can include a prokaryotic promoter system or a eukaryotic promoter expression control system, and typically include a transcriptional promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of mRNA expression, a sequence that encodes a suitable ribosome binding site, and sequences that terminate transcription and translation. Expression vectors also usually contain an origin of replication that allows the vector to replicate independently of the host cell.

The vectors of this invention include those which contain DNA which encodes a combination of proteins, as described, or a biologically active equivalent polypeptide. The DNA can be under the control of a viral promoter and can encode a selection marker. This invention further contemplates use of such expression vectors which are capable of expressing eukaryotic cDNAs coding for such proteins in a prokaryotic or eukaryotic host, where the vector is compatible with the host and where the eukaryotic cDNAs are inserted into the vector such that growth of the host containing the vector expresses the cDNAs in question. Usually, expression vectors are designed for stable replication in their host cells or for amplification to greatly increase the total number of copies of the desirable gene per cell. It is not always necessary to require that an expression vector replicate in a host cell, e.g., it is possible to effect transient expression of the protein or its fragments in various hosts using vectors that do not contain a replication origin that is recognized by the host cell. It is also possible to use vectors that cause integration of the protein encoding portions into the host DNA by recombination.

Vectors, as used herein, comprise plasmids, viruses, bacteriophage, integratable DNA fragments, and other vehicles which enable the integration of DNA fragments into the genome of the host. Expression vectors are specialized vectors which contain genetic control elements that effect expression of operably linked genes. Plasmids are the most commonly used form of vector but all other forms of vectors which serve an equivalent

function and which are, or become, known in the art are suitable for use herein. See, e.g., Pouwels, et al. (1985 and Supplements) <u>Cloning Vectors: A Laboratory Manual</u>, Elsevier, N.Y., and Rodriguez, et al. (eds. 1988) <u>Vectors: A Survey of Molecular Cloning Vectors and Their Uses</u>, Buttersworth, Boston, which are incorporated herein by reference.

5

10

15

20

25

30

35

Transformed cells are cells, preferably mammalian, that have been transformed or transfected with vectors constructed using recombinant DNA techniques. Transformed host cells usually express the desired proteins, but for purposes of cloning, amplifying, and manipulating its DNA, do not need to express the subject proteins. This invention further contemplates culturing transformed cells in a nutrient medium, thus permitting the proteins to accumulate. The proteins can be recovered, either from the culture or, in certain instances, from the culture medium.

For purposes of this invention, nucleic sequences are operably linked when they are functionally related to each other. For example, DNA for a presequence or secretory leader is operably linked to a polypeptide if it is expressed as a preprotein or participates in directing the polypeptide to the cell membrane or in secretion of the polypeptide. A promoter is operably linked to a coding sequence if it controls the transcription of the polypeptide; a ribosome binding site is operably linked to a coding sequence if it is positioned to permit translation. Usually, operably linked means contiguous and in reading frame, however, certain genetic elements such as repressor genes are not contiguously linked but still bind to operator sequences that in turn control expression.

Suitable host cells include prokaryotes, lower eukaryotes, and higher eukaryotes. Prokaryotes include both gram negative and gram positive organisms, e.g., <u>E. coli</u> and <u>B. subtilis</u>. Lower eukaryotes include yeasts, e.g., <u>S. cerevisiae</u> and <u>Pichia</u>, and species of the genus <u>Dictyostelium</u>. Higher eukaryotes include established tissue culture cell lines from animal cells, both of non-mammalian origin, e.g., insect cells, and birds, and of mammalian origin, e.g., human, primates, and rodents.

Prokaryotic host-vector systems include a wide variety of vectors for many different species. As used herein, <u>E. coli</u> and its vectors will be used generically to include equivalent vectors used in other prokaryotes. A representative vector for amplifying DNA is pBR322 or many of its derivatives. Vectors that can be used to express the receptor or its fragments include, but are not limited to, such vectors as those containing the lac promoter (pUC-series); trp promoter (pBR322-trp); Ipp promoter (the pIN-series); lambda-pP or pR promoters (pOTS); or hybrid promoters such as ptac (pDR540). See Brosius, et al. (1988) "Expression Vectors Employing Lambda-, trp-, lac-, and Ipp-derived Promoters", in <u>Vectors: A Survey of Molecular Cloning Vectors and Their Uses</u>, (eds. Rodriguez and Denhardt), Buttersworth, Boston, Chapter 10, pp. 205-236, which is incorporated herein by reference.

Lower eukaryotes, e.g., yeasts and <u>Dictyostelium</u>, may be transformed with DCRS8 sequence containing vectors. For purposes of this invention, the most common lower eukaryotic host is the baker's yeast, <u>Saccharomyces cerevisiae</u>. It will be used to generically represent lower eukaryotes although a number of other strains and species are also available. Yeast vectors typically consist of a replication origin (unless of the integrating type), a selection gene, a promoter, DNA encoding the receptor or its fragments, and sequences for translation termination, polyadenylation, and transcription termination. Suitable expression vectors for yeast include such constitutive promoters as 3-phosphoglycerate kinase and various other glycolytic enzyme gene promoters or such inducible promoters as the alcohol dehydrogenase 2 promoter or metallothionine promoter. Suitable vectors include derivatives of the following types: self-replicating low copy number (such as the YRp-series), self-replicating high copy number (such as the YEp-series); integrating types (such as the YIp-series), or mini-chromosomes (such as the YCp-series).

15

20

25

10

5

Higher eukaryotic tissue culture cells are normally the preferred host cells for expression of the functionally active interleukin or receptor proteins. In principle, many higher eukaryotic tissue culture cell lines are workable, e.g., insect baculovirus expression systems, whether from an invertebrate or vertebrate source. However, mammalian cells are preferred. Transformation or transfection and propagation of such cells has become a routine procedure. Examples of useful cell lines include HeLa cells, Chinese hamster ovary (CHO) cell lines, baby rat kidney (BRK) cell lines, insect cell lines, bird cell lines, and monkey (COS) cell lines. Expression vectors for such cell lines usually include an origin of replication, a promoter, a translation initiation site, RNA splice sites (if genomic DNA is used), a polyadenylation site, and a transcription termination site. These vectors also usually contain a selection gene or amplification gene. Suitable expression vectors may be plasmids, viruses, or retroviruses carrying promoters derived, e.g., from such sources as from adenovirus, SV40, parvoviruses, vaccinia virus, or cytomegalovirus. Representative examples of suitable expression vectors include pCDNA1; pCD, see Okayama, et al. (1985) Mol. Cell Biol. 5:1136-1142; pMC1neo PolyA, see Thomas, et al. (1987) Cell 51:503-512; and a baculovirus vector such as pAC 373 or pAC 610.

30

For secreted proteins and some membrane proteins, an open reading frame usually encodes a polypeptide that consists of a mature or secreted product covalently linked at its N-terminus to a signal peptide. The signal peptide is cleaved prior to secretion of the mature, or active, polypeptide. The cleavage site can be predicted with a high degree of accuracy from empirical rules, e.g., von-Heijne (1986) Nucleic Acids Research 14:4683-4690; and Nielsen, et al. (1997) Protein Eng. 10:1-12, and the precise amino acid composition of the signal peptide often does not appear to be critical to its function, e.g.,

35

Randall, et al. (1989) <u>Science</u> 243:1156-1159; and Kaiser, et al. (1987) <u>Science</u> 235:312-317. The mature proteins of the invention can be readily determined using standard methods.

It will often be desired to express these polypeptides in a system which provides a specific or defined glycosylation pattern. In this case, the usual pattern will be that provided naturally by the expression system. However, the pattern will be modifiable by exposing the polypeptide, e.g., an unglycosylated form, to appropriate glycosylating proteins introduced into a heterologous expression system. For example, the receptor gene may be co-transformed with one or more genes encoding mammalian or other glycosylating enzymes. Using this approach, certain mammalian glycosylation patterns will be achievable in prokaryote or other cells. Expression in prokaryote cells will typically lead to unglycosylated forms of protein.

5

10

15

20

25

30

35

The source of DCRS8 can be a eukaryotic or prokaryotic host expressing recombinant DCRS8, such as is described above. The source can also be a cell line, but other mammalian cell lines are also contemplated by this invention, with the preferred cell line being from the human species.

Now that the sequences are known, the primate DCRS9 or DCRS9, fragments, or derivatives thereof can be prepared by conventional processes for synthesizing peptides. These include processes such as are described in Stewart and Young (1984) Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, IL; Bodanszky and Bodanszky (1984) The Practice of Peptide Synthesis, Springer-Verlag, New York; and Bodanszky (1984) The Principles of Peptide Synthesis, Springer-Verlag, New York; all of each which are incorporated herein by reference. For example, an azide process, an acid chloride process, an acid anhydride process, a mixed anhydride process, an active ester process (for example, p-nitrophenyl ester, N-hydroxysuccinimide ester, or cyanomethyl ester), a carbodiimidazole process, an oxidative-reductive process, or a dicyclohexylcarbodiimide (DCCD)/additive process can be used. Solid phase and solution phase syntheses are both applicable to the foregoing processes. Similar techniques can be used with partial DCRS8 or DCRS9 sequences.

The DCRS8 proteins, fragments, or derivatives are suitably prepared in accordance with the above processes as typically employed in peptide synthesis, generally either by a so-called stepwise process which comprises condensing an amino acid to the terminal amino acid, one by one in sequence, or by coupling peptide fragments to the terminal amino acid. Amino groups that are not being used in the coupling reaction typically must be protected to prevent coupling at an incorrect location.

If a solid phase synthesis is adopted, the C-terminal amino acid is bound to an insoluble carrier or support through its carboxyl group. The insoluble carrier is not

particularly limited as long as it has a binding capability to a reactive carboxyl group. Examples of such insoluble carriers include halomethyl resins, such as chloromethyl resin or bromomethyl resin, hydroxymethyl resins, phenol resins, tert-alkyloxycarbonylhydrazidated resins, and the like.

An amino group-protected amino acid is bound in sequence through condensation of its activated carboxyl group and the reactive amino group of the previously formed peptide or chain, to synthesize the peptide step by step. After synthesizing the complete sequence, the peptide is split off from the insoluble carrier to produce the peptide. This solid-phase approach is generally described by Merrifield, et al. (1963) in <u>J. Am. Chem.</u> Soc. 85:2149-2156, which is incorporated herein by reference.

The prepared protein and fragments thereof can be isolated and purified from the reaction mixture by means of peptide separation, e.g., by extraction, precipitation, electrophoresis, various forms of chromatography, and the like. The receptors of this invention can be obtained in varying degrees of purity depending upon desired uses. Purification can be accomplished by use of the protein purification techniques disclosed herein, see below, or by the use of the antibodies herein described in methods of immunoabsorbant affinity chromatography. This immunoabsorbant affinity chromatography is carried out by first linking the antibodies to a solid support and then contacting the linked antibodies with solubilized lysates of appropriate cells, lysates of other cells expressing the receptor, or lysates or supernatants of cells producing the protein as a result of DNA techniques, see below.

Generally, the purified protein will be at least about 40% pure, ordinarily at least about 50% pure, usually at least about 60% pure, typically at least about 70% pure, more typically at least about 80% pure, preferable at least about 90% pure and more preferably at least about 95% pure, and in particular embodiments, 97%-99% or more. Purity will usually be on a weight basis, but can also be on a molar basis. Different assays will be applied as appropriate. Individual proteins may be purified and thereafter combined.

VI. Antibodies

5

10

15

20

25

30

35

Antibodies can be raised to the various mammalian, e.g., primate DCRS8 or DCRS9 proteins and fragments thereof, both in naturally occurring native forms and in their recombinant forms, the difference being that antibodies to the active receptor are more likely to recognize epitopes which are only present in the native conformations. Denatured antigen detection can also be useful in, e.g., Western analysis. Anti-idiotypic antibodies are also contemplated, which would be useful as agonists or antagonists of a natural receptor or an antibody.

Antibodies, including binding fragments and single chain versions, against predetermined fragments of the protein can be raised by immunization of animals with conjugates of the fragments with immunogenic proteins. Monoclonal antibodies are prepared from cells secreting the desired antibody. These antibodies can be screened for binding to normal or defective protein, or screened for agonistic or antagonistic activity. These monoclonal antibodies will usually bind with at least a K_D of about 1 mM, more usually at least about 300 μ M, typically at least about 100 μ M, more typically at least about 30 μ M, preferably at least about 30 μ M, and more preferably at least about 3 μ M or better.

10

5

The antibodies, including antigen binding fragments, of this invention can have significant diagnostic or therapeutic value. They can be potent antagonists that bind to the receptor and inhibit binding to ligand or inhibit the ability of the receptor to elicit a biological response, e.g., act on its substrate. They also can be useful as non-neutralizing antibodies and can be coupled to toxins or radionuclides to bind producing cells, or cells localized to the source of the interleukin. Further, these antibodies can be conjugated to drugs or other therapeutic agents, either directly or indirectly by means of a linker.

15

The antibodies of this invention can also be useful in diagnostic applications. As capture or non-neutralizing antibodies, they might bind to the receptor without inhibiting ligand or substrate binding. As neutralizing antibodies, they can be useful in competitive binding assays. They will also be useful in detecting or quantifying ligand. They may be used as reagents for Western blot analysis, or for immunoprecipitation or immunopurification of the respective protein. Likewise, nucleic acids and proteins may be immobilized to solid substrates for affinity purification or detection methods. The substrates may be, e.g., solid resin beads or sheets of plastic.

25

30

20

Protein fragments may be joined to other materials, particularly polypeptides, as fused or covalently joined polypeptides to be used as immunogens. Mammalian cytokine receptors and fragments may be fused or covalently linked to a variety of immunogens, such as keyhole limpet hemocyanin, bovine serum albumin, tetanus toxoid, etc. See (1969) Microbiology, Hoeber Medical Division, Harper and Row; Landsteiner (1962) Specificity of Serological Reactions, Dover Publications, New York; and Williams, et al. (1967) Methods in Immunology and Immunochemistry, Vol. 1, Academic Press, New York; each of which is incorporated herein by reference, for descriptions of methods of preparing polyclonal antisera. A typical method involves hyperimmunization of an animal with an antigen. The blood of the animal is then collected shortly after the repeated immunizations and the gamma globulin is isolated.

35 🚾

In some instances, it is desirable to prepare monoclonal antibodies from various mammalian hosts, such as mice, rodents, primates, humans, etc. Description of

techniques for preparing such monoclonal antibodies may be found in, e.g., Stites, et al. (eds.) <u>Basic and Clinical Immunology</u> (4th ed.), Lange Medical Publications, Los Altos, CA, and references cited therein; Harlow and Lane (1988) <u>Antibodies: A Laboratory</u> <u>Manual</u>, CSH Press; Goding (1986) <u>Monoclonal Antibodies: Principles and Practice</u> (2d ed.) Academic Press, New York; and particularly in Kohler and Milstein (1975) <u>Nature</u> 256:495-497, which discusses one method of generating monoclonal antibodies. Each of these references is incorporated herein by reference. Summarized briefly, this method involves injecting an animal with an immunogen. The animal is then sacrificed and cells taken from its spleen, which are then fused with myeloma cells. The result is a hybrid cell or "hybridoma" that is capable of reproducing <u>in vitro</u>. The population of hybridomas is then screened to isolate individual clones, each of which secrete a single antibody species to the immunogen. In this manner, the individual antibody species obtained are the products of immortalized and cloned single B cells from the immunogenic substance.

15

20

25

10

5

Other suitable techniques involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors. See, Huse, et al. (1989) "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda," Science 246:1275-1281; and Ward, et al. (1989) Nature 341:544-546, each of which is incorporated herein by reference. The polypeptides and antibodies of the present invention may be used with or without modification, including chimeric or humanized antibodies. Frequently, the polypeptides and antibodies will be labeled by joining, either covalently or non-covalently, a substance which provides for a detectable signal. A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, magnetic particles, and the like. Patents, teaching the use of such labels include U.S. Patent Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Also, recombinant or chimeric immunoglobulins may be produced, see Cabilly, U.S. Patent No. 4,816,567; or made in transgenic mice, see Mendez, et al. (1997) Nature Genetics 15:146-156; Abgenix; and Medarex. These references are incorporated herein by reference.

30

The antibodies of this invention can also be used for affinity chromatography in isolating the DCRS8 proteins or peptides. Columns can be prepared where the antibodies are linked to a solid support, e.g., particles, such as agarose, Sephadex, or the like, where a cell lysate may be passed through the column, the column washed, followed by increasing concentrations of a mild denaturant, whereby the purified protein will be

35

5

10

15

20

25

30

35

released. Alternatively, the protein may be used to purify antibody. Appropriate cross absorptions or depletions may be applied.

The antibodies may also be used to screen expression libraries for particular expression products. Usually the antibodies used in such a procedure will be labeled with a moiety allowing easy detection of presence of antigen by antibody binding.

Antibodies raised against a cytokine receptor will also be used to raise antiidiotypic antibodies. These will be useful in detecting or diagnosing various immunological conditions related to expression of the protein or cells which express the protein. They also will be useful as agonists or antagonists of the ligand, which may be competitive inhibitors or substitutes for naturally occurring ligands.

A cytokine receptor protein that specifically binds to or that is specifically immunoreactive with an antibody generated against a defined immunogen, such as an immunogen consisting of the amino acid sequence of SEQ ID NO: 14, is typically determined in an immunoassay. The immunoassay typically uses a polyclonal antiserum which was raised, e.g., to a protein of SEQ ID NO: 14. This antiserum is selected to have low crossreactivity against other cytokine receptor family members, preferably from the same species, and any such crossreactivity is removed by immunoabsorption prior to use in the immunoassay.

In order to produce antisera for use in an immunoassay, the protein, e.g., of SEQ ID NO: 14, is isolated as described herein. For example, recombinant protein may be produced in a mammalian cell line. An appropriate host, e.g., an inbred strain of mice such as Balb/c, is immunized with the selected protein, typically using a standard adjuvant, such as Freund's adjuvant, and a standard mouse immunization protocol (see Harlow and Lane, supra). Alternatively, a synthetic peptide derived from the sequences disclosed herein and conjugated to a carrier protein can be used an immunogen. Polyclonal sera are collected and titered against the immunogen protein in an immunoassay, e.g., a solid phase immunoassay with the immunogen immobilized on a solid support. Polyclonal antisera with a titer of 10⁴ or greater are selected and tested for their cross reactivity against other cytokine receptor family members using a competitive binding immunoassay such as the one described in Harlow and Lane, supra, at pages 570-573. Preferably at least two cytokine receptor family members are used in this determination. These cytokine receptor family members can be produced as recombinant proteins and isolated using standard molecular biology and protein chemistry techniques as described herein.

Immunoassays in the competitive binding format can be used for the crossreactivity determinations. For example, the protein of SEQ ID NO: 14 can be immobilized to a solid support. Proteins added to the assay compete with the binding of

the binding of the antisera to the immobilized protein is compared to the other proteins.

The percent crossreactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% crossreactivity with each of the proteins listed above are selected and pooled. The cross-reacting antibodies are then removed from the pooled antisera by immunoabsorption with the above-listed proteins.

The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein to the immunogen protein (e.g., the DCRS8 like protein of SEQ ID NO: 14). In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required is less than twice the amount of the protein of the selected protein or proteins that is required, then the second protein is said to specifically bind to an antibody generated to the immunogen.

15

20

25

30

35

10

5

It is understood that these cytokine receptor proteins are members of a family of homologous proteins that comprise at least 9 so far identified members, 6 mammalian and 3 worm embodiments. For a particular gene product, such as the DCRS8, the term refers not only to the amino acid sequences disclosed herein, but also to other proteins that are allelic, non-allelic, or species variants. It is also understood that the terms include nonnatural mutations introduced by deliberate mutation using conventional recombinant technology such as single site mutation, or by excising short sections of DNA encoding the respective proteins, or by substituting new amino acids, or adding new amino acids. Such minor alterations typically will substantially maintain the immunoidentity of the original molecule and/or its biological activity. Thus, these alterations include proteins that are specifically immunoreactive with a designated naturally occurring DCRS8 protein. The biological properties of the altered proteins can be determined by expressing the protein in an appropriate cell line and measuring the appropriate effect, e.g., upon transfected lymphocytes. Particular protein modifications considered minor would include conservative substitution of amino acids with similar chemical properties, as described above for the cytokine receptor family as a whole. By aligning a protein optimally with the protein of the cytokine receptors and by using the conventional immunoassays described herein to determine immunoidentity, one can determine the protein compositions of the invention.

VII. Kits and quantitation

Both naturally occurring and recombinant forms of the cytokine receptor like molecules of this invention are particularly useful in kits and assay methods. For

example, these methods would also be applied to screening for binding activity, e.g., ligands for these proteins. Several methods of automating assays have been developed in recent years so as to permit screening of tens of thousands of compounds per year. See, e.g., a BIOMEK automated workstation, Beckman Instruments, Palo Alto, California, and Fodor, et al. (1991) Science 251:767-773, which is incorporated herein by reference. The latter describes means for testing binding by a plurality of defined polymers synthesized on a solid substrate. The development of suitable assays to screen for a ligand or agonist/antagonist homologous proteins can be greatly facilitated by the availability of large amounts of purified, soluble cytokine receptors in an active state such as is provided by this invention.

Purified protein can be coated directly onto plates for use in the aforementioned ligand screening techniques. However, non-neutralizing antibodies to these proteins can be used as capture antibodies to immobilize the respective receptor on the solid phase, useful, e.g., in diagnostic uses.

15

10

5

This invention also contemplates use of receptor subunit, fragments thereof, peptides, and their fusion products in a variety of diagnostic kits and methods for detecting the presence of the protein or its ligand. Alternatively, or additionally, antibodies against the molecules may be incorporated into the kits and methods. Typically the kit-will have a compartment containing, e.g., a DCRS8 peptide or gene segment or a reagent which recognizes one or the other. Typically, recognition reagents, in the case of peptide, would be a receptor or antibody, or in the case of a gene segment, would usually be a hybridization probe.

20

25

A preferred kit for determining the concentration of DCRS8 in a sample would typically comprise a labeled compound, e.g., ligand or antibody, having known binding affinity for DCRS8, a source of DCRS8 (naturally occurring or recombinant) as a positive control, and a means for separating the bound from free labeled compound, e.g., a solid phase for immobilizing the DCRS8 in the test sample. Compartments containing reagents, and instructions, will normally be provided. Appropriate nucleic acid or protein containing kits are also provided.

30

Antibodies, including antigen binding fragments, specific for mammalian DCRS8 or a peptide fragment, or receptor fragments are useful in diagnostic applications to detect the presence of elevated levels of ligand and/or its fragments. Diagnostic assays may be homogeneous (without a separation step between free reagent and antibody-antigen complex) or heterogeneous (with a separation step). Various commercial assays exist, such as radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), enzyme-multiplied immunoassay technique (EMIT), substrate-labeled fluorescent immunoassay (SLFIA) and the like. For example, unlabeled

35

antibodies can be employed by using a second antibody which is labeled and which recognizes the antibody to a cytokine receptor or to a particular fragment thereof. These assays have also been extensively discussed in the literature. See, e.g., Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH, and Coligan (ed. 1991 and periodic supplements) Current Protocols In Immunology Greene/Wiley, New York.

Anti-idiotypic antibodies may have similar use to serve as agonists or antagonists of cytokine receptors. These should be useful as therapeutic reagents under appropriate circumstances.

5

10

15

20

25

30

35

Frequently, the reagents for diagnostic assays are supplied in kits, so as to optimize the sensitivity of the assay. For the subject invention, depending upon the nature of the assay, the protocol, and the label, either labeled or unlabeled antibody, or labeled ligand is provided. This is usually in conjunction with other additives, such as buffers, stabilizers, materials necessary for signal production such as substrates for enzymes, and the like. Preferably, the kit will also contain instructions for proper use and disposal of the contents after use. Typically the kit has compartments for each useful reagent, and will contain instructions for proper use and disposal of reagents. Desirably, the reagents are provided as a dry lyophilized powder, where the reagents may be reconstituted in an aqueous medium having appropriate concentrations for performing the assay.

The aforementioned constituents of the diagnostic assays may be used without modification or may be modified in a variety of ways. For example, labeling may be achieved by covalently or non-covalently joining a moiety which directly or indirectly provides a detectable signal. In many of these assays, a test compound, cytokine receptor, or antibodies thereto can be labeled either directly or indirectly. Possibilities for direct labeling include label groups: radiolabels such as ¹²⁵I, enzymes (U.S. Pat. No. 3,645,090) such as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensity, wavelength shift, or fluorescence polarization. Both of the patents are incorporated herein by reference. Possibilities for indirect labeling include biotinylation of one constituent followed by binding to avidin coupled to one of the above label groups.

There are also numerous methods of separating the bound from the free ligand, or alternatively the bound from the free test compound. The cytokine receptor can be immobilized on various matrixes followed by washing. Suitable matrices include plastic such as an ELISA plate, filters, and beads. Methods of immobilizing the receptor to a matrix include, without limitation, direct adhesion to plastic, use of a capture antibody, chemical coupling, and biotin-avidin. The last step in this approach involves the precipitation of antibody/antigen complex by any of several methods including those

5

10

15

20

25

30

utilizing, e.g., an organic solvent such as polyethylene glycol or a salt such as ammonium sulfate. Other suitable separation techniques include, without limitation, the fluorescein antibody magnetizable particle method described in Rattle, et al. (1984) Clin. Chem. 30(9):1457-1461, and the double antibody magnetic particle separation as described in U.S. Pat. No. 4,659,678, each of which is incorporated herein by reference.

The methods for linking protein or fragments to various labels have been extensively reported in the literature and do not require detailed discussion here. Many of the techniques involve the use of activated carboxyl groups either through the use of carbodiimide or active esters to form peptide bonds, the formation of thioethers by reaction of a mercapto group with an activated halogen such as chloroacetyl, or an activated olefin such as maleimide, for linkage, or the like. Fusion proteins will also find use in these applications.

Another diagnostic aspect of this invention involves use of oligonucleotide or polynucleotide sequences taken from the sequence of an cytokine receptor. These sequences can be used as probes for detecting levels of the respective cytokine receptor in patients suspected of having an immunological disorder. The preparation of both RNA and DNA nucleotide sequences, the labeling of the sequences, and the preferred size of the sequences has received ample description and discussion in the literature. Normally an oligonucleotide probe should have at least about 14 nucleotides, usually at least about 18 nucleotides, and the polynucleotide probes may be up to several kilobases. Various labels may be employed, most commonly radionuclides, particularly ³²P. However, other techniques may also be employed, such as using biotin modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed which can recognize specific duplexes, including DNA duplexes, RNA duplexes, DNA-RNA hybrid duplexes, or DNA-protein duplexes. The antibodies in turn may be labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. The use of probes to the novel RNA may be carried out in conventional techniques such as nucleic acid hybridization, plus and minus screening, recombinational probing, hybrid released translation (HRT), and hybrid arrested translation (HART). Antisense nucleic acids, which may be used to block protein expression, are also provided. See, e.g., Isis Pharmaceuticals, Sequitur, Inc., or Hybridon. This also includes amplification techniques 35 --- such as polymerase chain reaction (PCR).

Diagnostic kits which also test for the qualitative or quantitative presence of other markers are also contemplated. Diagnosis or prognosis may depend on the combination

of multiple indications used as markers. Thus, kits may test for combinations of markers. See, e.g., Viallet, et al. (1989) <u>Progress in Growth Factor Res.</u> 1:89-97.

VIII. Therapeutic Utility

5

10

15 .

20

25

30

35

This invention provides reagents with significant therapeutic value. See, e.g., Levitzki (1996) Curr. Opin. Cell Biol. 8:239-244. The cytokine receptors (naturally occurring or recombinant), fragments thereof, mutein receptors, and antibodies, along with compounds identified as having binding affinity to the receptors or antibodies, should be useful in the treatment of conditions exhibiting abnormal expression of the receptors of their ligands. Such abnormality will typically be manifested by immunological disorders, e.g., innate immunity, or developmentally. Additionally, this invention should provide therapeutic value in various diseases or disorders associated with abnormal expression or abnormal triggering of response to the ligand. For example, the IL-1 ligands have been suggested to be involved in morphologic development, e.g., dorso-ventral polarity determination, and immune responses, particularly the primitive innate responses. See, e.g., Sun, et al. (1991) Eur. J. Biochem. 196:247-254; and Hultmark (1994) Nature 367:116-117.

Recombinant cytokine receptors, muteins, agonist or antagonist antibodies thereto, or antibodies can be purified and then administered to a patient. These reagents can be combined for therapeutic use with additional active ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, along with physiologically innocuous stabilizers and excipients. These combinations can be sterile, e.g., filtered, and placed into dosage forms as by lyophilization in dosage vials or storage in stabilized aqueous preparations. This invention also contemplates use of antibodies or binding fragments thereof which are not complement binding.

Ligand screening using cytokine receptor or fragments thereof can be performed to identify molecules having binding affinity to the receptors. Subsequent biological assays can then be utilized to determine if a putative ligand can provide competitive binding, which can block intrinsic stimulating activity. Receptor fragments can be used as a blocker or antagonist in that it blocks the activity of ligand. Likewise, a compound having intrinsic stimulating activity can activate the receptor and is thus an agonist in that it simulates the activity of ligand, e.g., inducing signaling. This invention further contemplates the therapeutic use of antibodies to cytokine receptors as antagonists.

The quantities of reagents necessary for effective therapy will depend upon many different factors, including means of administration, target site, reagent physiological life, pharmacological life, physiological state of the patient, and other medicants administered. Thus, treatment dosages should be titrated to optimize safety and efficacy. Typically,

dosages used in vitro may provide useful guidance in the amounts useful for in situ administration of these reagents. Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage. Various considerations are described, e.g., in Gilman, et al. (eds. 1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; each of which is hereby incorporated herein by reference. Methods for administration are discussed therein and below, e.g., for oral, intravenous, intraperitoneal, or intramuscular administration, transdermal diffusion, and others. Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, e.g., in the Merck Index, Merck & Co., Rahway, New Jersey. Because of the likely high affinity binding, or turnover numbers, between a putative ligand and its receptors, low dosages of these reagents would be initially expected to be effective. And the signaling pathway suggests extremely low amounts of ligand may have effect. Thus, dosage ranges would ordinarily be expected to be in amounts lower than 1 mM concentrations, typically less than about 10 µM concentrations, usually less than about 100 nM, preferably less than about 10 pM (picomolar), and most preferably less than about 1 fM (femtomolar), with an appropriate carrier. Slow release formulations, or slow release apparatus will often be utilized for continuous administration.

20

25

30

35

5

10

15

antagonists, and agonists, may be administered directly to the host to be treated or, depending on the size of the compounds, it may be desirable to conjugate them to carrier proteins such as ovalbumin or serum albumin prior to their administration. Therapeutic formulations may be administered in many conventional dosage formulations. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical formulation. Formulations comprise at least one active ingredient, as defined above, together with one or more acceptable carriers thereof. Each carrier must be both pharmaceutically and physiologically acceptable in the sense of being compatible with the other ingredients and not injurious to the patient. Formulations include those suitable for oral, rectal, nasal, or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by methods well known in the art of pharmacy. See, e.g., Gilman, et al. (eds. 1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; Avis, et al. (eds. 1993) Pharmaceutical Dosage Forms: Parenteral Medications Dekker, NY; Lieberman, et al. (eds. 1990) Pharmaceutical Dosage Forms: Tablets Dekker, NY; and

Cytokine receptors, fragments thereof, and antibodies or its fragments,

Lieberman, et al. (eds. 1990) <u>Pharmaceutical Dosage Forms: Disperse Systems</u> Dekker, NY. The therapy of this invention may be combined with or used in association with other therapeutic agents, particularly agonists or antagonists of other cytokine receptor family members.

5

IX. Screening

Drug screening using DCRS8 or fragments thereof can be performed to identify compounds having binding affinity to the receptor subunit, including isolation of associated components. Subsequent biological assays can then be utilized to determine if the compound has intrinsic stimulating activity and is therefore a blocker or antagonist in that it blocks the activity of the ligand. Likewise, a compound having intrinsic stimulating activity can activate the receptor and is thus an agonist in that it simulates the activity of a cytokine ligand. This invention further contemplates the therapeutic use of antibodies to the receptor as cytokine agonists or antagonists.

15

10

Similarly, complexes comprising multiple proteins may be used to screen for ligands or reagents capable of recognizing the complex. Most cytokine receptors comprise at least two subunits, which may be the same, or distinct. Alternatively, the transmembrane receptor may bind to a complex comprising a cytokine-like ligand associated with another soluble protein serving, e.g., as a second receptor subunit.

20

25

30

One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant DNA molecules expressing the DCRS8 in combination with another cytokine receptor subunit. Cells may be isolated which express a receptor in isolation from other functional receptors. Such cells, either in viable or fixed form, can be used for standard antibody/antigen or ligand/receptor binding assays. See also, Parce, et al. (1989) Science 246:243-247; and Owicki, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:4007-4011, which describe sensitive methods to detect cellular responses. Competitive assays are particularly useful, where the cells (source of putative ligand) are contacted and incubated with a labeled receptor or antibody having known binding affinity to the ligand, such as ¹²⁵I-antibody, and a test sample whose binding affinity to the binding composition is being measured. The bound and free labeled binding compositions are then separated to assess the degree of ligand binding. The amount of test compound bound is inversely proportional to the amount of labeled receptor binding to the known source. Many techniques can be used to separate bound from free ligand to assess the degree of ligand binding. This separation step could typically involve a procedure such as adhesion to filters followed by washing, adhesion to plastic followed by washing, or centrifugation of the cell membranes. Viable cells could also be used to screen for the effects of drugs on cytokine mediated functions, e.g., second messenger

35

levels, e.g., Ca⁺⁺; cell proliferation; inositol phosphate pool changes; and others. Some detection methods allow for elimination of a separation step, e.g., a proximity sensitive detection system. Calcium sensitive dyes will be useful for detecting Ca⁺⁺ levels, with a fluorimeter or a fluorescence cell sorting apparatus.

5

10

15

20

X. Ligands

The descriptions of the DCRS8 herein provides means to identify ligands, as described above. Such ligand should bind specifically to the respective receptor with reasonably high affinity. Various constructs are made available which allow either labeling of the receptor to detect its ligand. For example, directly labeling cytokine receptor, fusing onto it markers for secondary labeling, e.g., FLAG or other epitope tags, etc., will allow detection of receptor. This can be histological, as an affinity method for biochemical purification, or labeling or selection in an expression cloning approach. A two-hybrid selection system may also be applied making appropriate constructs with the available cytokine receptor sequences. See, e.g., Fields and Song (1989) Nature 340:245-246.

Most likely candidates will be structually related to members of the IL-17 family. See, e.g., USSN 09/480,287.

The broad scope of this invention is best understood with reference to the following examples, which are not intended to limit the inventions to the specific embodiments.

EXAMPLES

25

30

35

I. General Methods

Some of the standard methods are described or referenced, e.g., in Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.), vols. 1-3, CSH Press, NY; or Ausubel, et al. (1987 and Supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York. Methods for protein purification include such methods as ammonium sulfate precipitation, column chromatography, electrophoresis, centrifugation, crystallization, and others. See, e.g., Ausubel, et al. (1987 and periodic supplements); Coligan, et al. (ed. 1996) and periodic supplements, Current Protocols In Protein Science Greene/Wiley, New York; Deutscher (1990) "Guide to Protein Purification" in Methods in Enzymology, vol. 182, and other volumes in this series; and manufacturer's literature on use of protein purification products, e.g., Pharmacia, Piscataway, N.J., or Bio-Rad, Richmond, CA. Combination

with recombinant techniques allow fusion to appropriate segments, e.g., to a FLAG sequence or an equivalent which can be fused via a protease-removable sequence. See, e.g., Hochuli (1990) "Purification of Recombinant Proteins with Metal Chelate Absorbent" in Setlow (ed.) Genetic Engineering, Principle and Methods 12:87-98, Plenum Press, N.Y.; and Crowe, et al. (1992) QIAexpress: The High Level Expression & Protein Purification System QUIAGEN, Inc., Chatsworth, CA.

Computer sequence analysis is performed, e.g., using available software programs, including those from the GCG (U. Wisconsin) and GenBank sources. Public sequence databases were also used, e.g., from GenBank and others.

Many techniques applicable to IL-10 receptors may be applied to the DCRSs, as described, e.g., in USSN 08/110,683 (IL-10 receptor), which is incorporated herein by reference.

II. Computational Analysis

5

10

15

20

25

30

35

Human sequences related to cytokine receptors were identified from genomic sequence database using, e.g., the BLAST server (Altschul, et al. (1994) Nature Genet. 6:119-129). Standard analysis programs may be used to evaluate structure, e.g., PHD (Rost and Sander (1994) Proteins 19:55-72) and DSC (King and Sternberg (1996) Protein Sci. 5:2298-2310). Standard comparison software includes, e.g., Altschul, et al. (1990) J. Mol. Biol. 215:403-10; Waterman (1995) Introduction to Computational Biology: Maps. Sequences, and Genomes Chapman & Hall; Lander and Waterman (eds. 1995)

Calculating the Secrets of Life: Applications of the Mathematical Sciences in Molecular Biology National Academy Press; and Speed and Waterman (eds. 1996) Genetic Mapping and DNA Sequencing (IMA Volumes in Mathematics and Its Applications, Vol 81)

Springer Verlag. Each reference is incorporate herein by reference.

III. Cloning of full-length cDNAs; Chromosomal localization

PCR primers derived from the sequences are used to probe a human cDNA library. Sequences may be derived, e.g., from Tables 1-5, preferably those adjacent the ends of sequences. Full length cDNAs for primate, rodent, or other species DCRS8 are cloned, e.g., by DNA hybridization screening of λgt10 phage. PCR reactions are conducted using T. aquaticus Taqplus DNA polymerase (Stratagene) under appropriate conditions. Extending partial length cDNA clones is typically routine.

Chromosome spreads are prepared. In situ hybridization is performed on chromosome preparations obtained from phytohemagglutinin-stimulated human lymphocytes cultured for 72 h. 5-bromodeoxyuridine was added for the final seven hours

of culture (60 µg/ml of medium), to ensure a posthybridization chromosomal banding of good quality.

A PCR fragment, amplified with the help of primers, is cloned into an appropriate vector. The vector is labeled by nick-translation with ³H. The radiolabeled probe is hybridized to metaphase spreads at final concentration of 200 ng/ml of hybridization solution as described, e.g., in Mattei, et al. (1985) <u>Hum. Genet.</u> 69:327-331.

After coating with nuclear track emulsion (KODAK NTB₂), slides are exposed. To avoid any slipping of silver grains during the banding procedure, chromosome spreads are first stained with buffered Giemsa solution and metaphase photographed. R-banding is then performed by the fluorochrome-photolysis-Giemsa (FPG) method and metaphases rephotographed before analysis.

Similar appropriate methods are used for other species.

IV. Localization of mRNA

5

10

15

20

25

30

35

Human multiple tissue (Cat# 1, 2) and cancer cell line blots (Cat# 7757-1), containing approximately 2 μg of poly(A)⁺ RNA per lane, are purchased from Clontech (Palo Alto, CA). Probes are radiolabeled with [α-32P] dATP, e.g., using the Amersham Rediprime random primer labeling kit (RPN1633). Prehybridization and hybridizations are performed, e.g., at 65° C in 0.5 M Na₂HPO₄, 7% SDS, 0.5 M EDTA (pH 8.0). High stringency washes are conducted, e.g., at 65° C with two initial washes in 2 x SSC, 0.1% SDS for 40 min followed by a subsequent wash in 0.1 x SSC, 0.1% SDS for 20 min. Membranes are then exposed at -70° C to X-Ray film (Kodak) in the presence of intensifying screens. More detailed studies by cDNA library Southerns are performed with selected appropriate human DCRS clones to examine their expression in hemopoietic or other cell subsets.

Alternatively, two appropriate primers are selected from Tables 1-5. RT-PCR is used on an appropriate mRNA sample selected for the presence of message to produce a cDNA, e.g., a sample which expresses the gene.

Full length clones may be isolated by hybridization of cDNA libraries from appropriate tissues pre-selected by PCR signal. Northern blots can be performed.

Message for genes encoding DCRS will be assayed by appropriate technology, e.g., PCR, immunoassay, hybridization, or otherwise. Tissue and organ cDNA preparations are available, e.g., from Clontech, Mountain View, CA. Identification of sources of natural expression are useful, as described. And the identification of functional receptor subunit pairings will allow for prediction of what cells express the combination of receptor subunits which will result in a physiological responsiveness to each of the cytokine ligands.

enzymes to release the inserts, run on a 1% agarose gel and transferred to a nylon membrane (Schleicher and Schuell, Keene, NH).

5

10

15

20

25

30

35

Samples for mouse mRNA isolation may include: resting mouse fibroblastic L cell line (C200); Braf:ER (Braf fusion to estrogen receptor) transfected cells, control (C201); T cells, TH1 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IFN-y and anti IL-4; T200); T cells, TH2 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IL-4 and anti-IFN-γ; T201); T cells, highly TH1 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T202); T cells, highly TH2 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T203); CD44- CD25+ pre T cells, sorted from thymus (T204); TH1 T cell clone D1.1, resting for 3 weeks after last stimulation with antigen (T205); TH1 T cell clone D1.1, 10 ug/ml ConA stimulated 15 h (T206); TH2 T cell clone CDC35, resting for 3 weeks after last stimulation with antigen (T207); TH2 T cell clone CDC35, 10 µg/ml ConA stimulated 15 h (T208); Mel14+ naive T cells from spleen, resting (T209); Mel14+ T cells, polarized to Th1 with IFN-y/IL-12/anti-IL-4 for 6, 12, 24 h pooled (T210); Mel14+ T cells, polarized to Th2 with IL-4/anti-IFN-y for 6, 13, 24 h pooled (T211); unstimulated mature B cell leukemia cell line A20 (B200); unstimulated B cell line CH12 (B201); unstimulated large B cells from spleen (B202); B cells from total spleen, LPS activated (B203); metrizamide enriched dendritic cells from spleen, resting (D200); dendritic cells from bone marrow, resting (D201); monocyte cell line RAW 264.7 activated with LPS 4 h (M200); bone-marrow macrophages derived with GM and M-CSF (M201); macrophage cell line J774, resting (M202); macrophage cell line J774 + LPS + anti-IL-10 at 0.5, 1, 3, 6, 12 h pooled (M203); macrophage cell line J774 + LPS + IL-10 at 0.5, 1, 3, 5, 12 h pooled(M204); aerosol challenged mouse lung tissue, Th2 primers, aerosol OVA challenge 7, 14, 23 h pooled (see Garlisi, et al. (1995) Clinical Immunology and Immunopathology 75:75-83; X206); Nippostrongulus-infected lung tissue (see Coffman, et al. (1989) Science 245:308-310; X200); total adult lung, normal (O200); total lung, rag-1 (see Schwarz, et al. (1993) Immunodeficiency 4:249-252; O205); IL-10 K.O. spleen (see Kuhn, et al. (1991) Cell 75:263-274; X201); total adult spleen, normal (O201); total spleen, rag-1 (O207); IL-10 K.O. Peyer's patches (O202); total Peyer's patches, normal (O210); IL-10 K.O. mesenteric lymph nodes (X203); total mesenteric lymph nodes, normal (O211); IL-10 K.O. colon (X203); total colon, normal (O212); NOD mouse pancreas (see Makino, et al. (1980) Jikken Dobutsu 29:1-13; X205); total thymus, rag-1 (O208); total kidney, rag-1 (O209); total heart, rag-1 (O202); total brain, rag-1 (O203);

10

15

20

25

30

35

total testes, rag-1 (O204); total liver, rag-1 (O206); rat normal joint tissue (O300); and rat arthritic joint tissue (X300).

Samples for human mRNA isolation may include, e.g.: peripheral blood mononuclear cells (monocytes, T cells, NK cells, granulocytes, B cells), resting (T100); peripheral blood mononuclear cells, activated with anti-CD3 for 2, 6, 12 h pooled (T101); T cell, TH0 clone Mot 72, resting (T102); T cell, TH0 clone Mot 72, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T103); T cell, TH0 clone Mot 72, anergic treated with specific peptide for 2, 7, 12 h pooled (T104); T cell, TH1 clone HY06, resting (T107); T cell, TH1 clone HY06, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T108); T cell, TH1 clone HY06, anergic treated with specific peptide for 2, 6, 12 h pooled (T109); T cell, TH2 clone HY935, resting (T110); T cell, TH2 clone HY935, activated with anti-CD28 and anti-CD3 for 2, 7, 12 h pooled (T111); T cells CD4+CD45RO- T cells polarized 27 days in anti-CD28, IL-4, and anti IFN-7, TH2 polarized, activated with anti-CD3 and anti-CD28 4 h (T116); T cell tumor lines Jurkat and Hut78, resting (T117); T cell clones, pooled AD130.2, Tc783.12, Tc783.13, Tc783.58, Tc782.69, resting (T118); T cell random γδ T cell clones, resting (T119); Splenocytes, resting (B100); Splenocytes, activated with anti-CD40 and IL-4 (B101); B cell EBV lines pooled WT49, RSB, JY, CVIR, 721.221, RM3, HSY, resting (B102); B cell line JY, activated with PMA and ionomycin for 1, 6 h pooled (B103); NK 20 clones pooled, resting (K100); NK 20 clones pooled, activated with PMA and ionomycin for 6 h (K101); NKL clone, derived from peripheral blood of LGL leukemia patient, IL-2 treated (K106); NK cytotoxic clone 640-A30-1, resting (K107); hematopoietic precursor line TF1, activated with PMA and ionomycin for 1, 6 h pooled (C100); U937 premonocytic line, resting (M100); U937 premonocytic line, activated with PMA and ionomycin for 1, 6 h pooled (M101); elutriated monocytes, activated with LPS, IFNy, anti-IL-10 for 1, 2, 6, 12, 24 h pooled (M102); elutriated monocytes, activated with LPS, IFNy, IL-10 for 1, 2, 6, 12, 24 h pooled (M103); elutriated monocytes, activated with LPS, IFNy, anti-IL-10 for 4, 16 h pooled (M106); elutriated monocytes, activated with LPS, IFNy, IL-10 for 4, 16 h pooled (M107); elutriated monocytes, activated LPS for 1 h (M108); elutriated monocytes, activated LPS for 6 h (M109); DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, resting (D101); DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, activated with PMA and ionomycin for 1 hr (D102); DC 70% CD1a+, from CD34+ GM-CSF, TNFa 12 days, activated with PMA and ionomycin for 6 hr (D103); DC 95% CD1a+, from CD34+ GM-CSF, TNFa 12 days FACS sorted, activated with PMA and ionomycin for 1, 6 h pooled (D104); DC 95% CD14+, ex CD34+ GM-CSF, TNFa 12 days FACS sorted, activated with PMA and ionomycin 1, 6 hr pooled (D105); DC CD1a+ CD86+, from CD34+ GM-CSF, TNFa 12 days FACS sorted, activated with PMA and

10107); DC from monocytes GM-CSF, IL-4 5 days, resting (D108); DC from monocytes GM-CSF, IL-4 5 days, activated LPS 4, 16 h pooled (D109); DC from monocytes GM-CSF, IL-4 5 days, activated TNFα, monocyte supe for 4, 16 h pooled (D110); leiomyoma L11 benign tumor (X101); normal myometrium M5 (O115); malignant leiomyosarcoma GS1 (X103); lung fibroblast sarcoma line MRC5, activated with PMA and ionomycin for 1, 6 h pooled (C101); kidney epithelial carcinoma cell line CHA, activated with PMA and ionomycin for 1, 6 h pooled (C102); kidney fetal 28 wk male (O100); lung fetal 28 wk male (O101); liver fetal 28 wk male (O102); heart fetal 28 wk male (O103); brain fetal 28 wk male (O107); adipose tissue fetal 28 wk male (O108); ovary fetal 25 wk female (O109); uterus fetal 25 wk female (O110); testes fetal 28 wk male (O111); spleen fetal 28 wk male (O112); adult placenta 28 wk (O113); and tonsil inflamed, from 12 year old (X100).

5

10

15

20

25

30

35

TaqMan quantitative PCR techniques have shown the DCRS6, in both mouse and human, to be expressed on T cells, including thymocytes and CD4+ naive and differentiated (hDCRS6 is also expressed on dendritic cells), in gastrointestinal tissue, including stomach, intestine, colon and associated lymphoid tissue, e.g., Peyer's patches and mesenteric lymph nodes, and upregulated in inflammatory models of bowel disease, e.g., IL-10 KO mice. The hDCRS7 was detected in both resting and activated dendritic cells, epithelial cells, and mucosal tissues, including GI and reproductive tracts. These data suggest that family members are expressed in mucosal tissues and immune system cell types, and/or in gastrointestinal, airway, and reproductive tract development.

As such, therapeutic indications include, e.g., short bowel syndrome, post chemo/radio-therapy or alcoholic recovery, combinations with ulcer treatments or arthritis medication, Th2 pregnancy skewing, stomach lining/tissue regeneration, loss of adsorptive surface conditions, etc. See, e.g., Yamada, et al. (eds. 1999) Textbook of Gastroenterology; Yamada, et al. (eds. 1999) Textbook and Atlas of Gastroenterology; Gore and Levine (2000) Textbook of Gastrointestinal Radiology; and (1987) Textbook of Pediatric Gastroenterology.

Similar samples may isolated in other species for evaluation.

Primers specific for IL-17RA were designed and used in Taqman quantative PCR against various human libraries. IL-17RA is highly expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in T-cell libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for IL-17RA	
library description	CT for IL-
• • • • • • • • • • • • • • • • • • •	17RA H
DC ex monocytes GM-CSF, IL-4, resting	16.97
U937 premonocytic line, activated	17.14
DC ex monocytes GM-CSF, IL-4, resting	17.53
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	18.17
resting	
monocytes, LPS, gIFN, anti-IL-10	18.27
DC ex monocytes GM-CSF, IL-4, LPS	18.51
activated 4+16 hr	
DC ex monocytes GM-CSF, IL-4, monokine	18.68
activated 4+16 hr	20.00
•	18.69
activated	10.05
monocytes, LPS, 1 hr	18.72
monocytes, LPS, 6 hr	18.72
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	18.91
activated 1 hr	10.91
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	18.94
activated 6 hr	10.94
T cell, TH1 clone HY06, activated	18.99
lung fetal	19.15
T cell, TH1 clone HY06, resting	19.18
T cell, TH1 clone HY06, resching	19.23
monocytes, LPS, gIFN, IL-10, 4+16 hr	19.3
spleen fetal	19.51
testes fetal	19.7
T cell, THO clone Mot 72, resting	19.71
T cell, THO clone Mot 72, resting	19.84
DC CD1a+ CD86+, ex CD34+ GM-CSF, TNFa,	19.94
activated 1+6 hr	1J.J 1
peripheral blood mononuclear cells,	20.01
activated	20.01
hematopoietic precursor line TF1, activated	20 07
lung fibroblast sarcoma line MRC5,	20.18
activated	20.10
Splenocytes, activated	20.21
T cell gd clones, resting	20.27
ovary fetal	20.45
T cells CD4+, TH2 polarized, activated	20.57
Splenocytes, resting	20.6
uterus fetal	20.62
DC 95% CD1a+, ex CD34+ GM-CSF, TNFa, activated 1+6 hr	20.94
epithelial cells, unstimulated	20.96
	
peripheral blood mononuclear cells, resting	
adipose tissue fetal	21.13

B cell line JY, activated	21.28
monocytes, LPS, gIFN, IL-10	21.37
placenta 28 wk	21.38
NK 20 clones pooled, activated	21.55
pool of two normal human lung samples	21.63
normal human thyroid	21.65
epithelial cells, IL-1b activated	21.72
normal human skin	21.84
T cell, THO clone Mot 72, anergic	21.87
small intestine fetal	22.01
CD28- T cell clone in pME	22.08
T cell, TH2 clone HY935, activated	22.09
T cell clones, pooled, resting	22.29
Hashimoto's thyroiditis thyroid sample	22.3
NK 20 clones pooled, resting	22.4
B cell EBV lines, resting	22.45
T cell, TH2 clone HY935, resting	22.86
T cell, THO clone Mot 72, activated	23.3
monocytes, LPS, gIFN, anti-IL-10, 4+16 hr	23.39
T cell lines Jurkat and Hut78, resting	23.4
T cell, THO clone Mot 72, activated	23.56
Pneumocystic carnii pneumonia lung sample	24.05
U937 premonocytic line, resting	25.01
pool of rheumatoid arthritis samples, human	
pool of three heavy smoker human lung	26.1
samples	
DC 95% CD14+, ex CD34+ GM-CSF, TNFa,	32.69
activated 1+6 hr	
kidney fetal	33.7
liver fetal	34.4
NK cytotoxic clone, resting	34.49
tonsil inflammed	35.02
normal w.t. monkey lung	35.45
gallbladder fetal	35.84
TR1 T cell clone	35.86 36.39
allergic lung sample	36.39
Psoriasis patient skin sample	37.34
normal human colon	37.35
brain fetal	37.75
Ascaris challenged monkey lung, 4 hr.	40
Ascaris-challenged monkey lung, 24 hr. heart fetal	40
neart retar normal w.t. monkey colon	40
ulcerative colitis human colon sample	40
diceracive collers unuman colon samble	- - 0,

Primers specific for DCRS6_H were designed and used in Taqman quantative PCR against various human libraries. DCRS6_H is expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in T-cell libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for DCRS6 H	•
library description	CT for DCRS6 H
T cell, THO clone Mot 72, resting	15.54
T cell, THO clone Mot 72, resting	15.7
DC ex monocytes GM-CSF, IL-4, resting	17.84
DC ex monocytes GM-CSF, IL-4, resting	18.19
DC ex monocytes GM-CSF, IL-4, LPS	18.3
activated 4+16 hr	·
DC ex monocytes GM-CSF, IL-4, monokine	18.3
activated 4+16 hr	
T cell, TH1 clone HY06, resting	18.43
NK cytotoxic clone, resting	18.53
T cell clones, pooled, resting	18.8
T cell, TH1 clone HY06, activated	19.03
T cell, TH2 clone HY935, activated	19.1
TR1 T cell clone	19.12
T cells CD4+, TH2 polarized, activated	20.06
B cell EBV lines, resting	20.3
T cell, TH2 clone HY935, resting	20.48
kidney epithelial carcinoma cell line CHA,	21.07
activated	
T cell, TH1 clone HY06, anergic	21.14
normal human colon	21.29
NK 20 clones pooled, resting	21.49
T cell gd clones, resting	21.58
gallbladder fetal	22.21
kidney fetal	22.79
liver fetal	22.8
Pneumocystic carnii pneumonia lung sample	23.06
CD28- T cell clone in pME	23.18
T cell, THO clone Mot 72, anergic	23.2
ovary fetal	23.51
normal human thyroid	24.03
small intestine fetal	24.13
testes fetal	24.82
epithelial cells, IL-1b activated	26.08
pool of three heavy smoker human lung	26.49
samples	
placenta 28 wk	26.56
normal w.t. monkey lung	28.65
peripheral blood mononuclear cells,	33.39

activated	
Ascaris-challenged monkey lung, 4 hr.	
spleen fetal	
peripheral blood mononuclear cells, res	38.43
T cell lines Jurkat and Hut78, resting	40
Splenocytes, resting	
Splenocytes, activated	40
B cell line JY, activated	40
NK 20 clones pooled, activated	40
nematopoletic precursor line TELL	40
Promonocytic line, resting	
093/ premonocytic line activated	40
monocytes, LPS, aTFN anti TI 10	40
MONOCYTES, LPS, GTFM II, 10	40
monocytes, LPS, gTFN anti-TT 10 4.55	40 ar 40
	40
monocyces, LPS, 1 hr	40
monocytes, LPS, 6 hr	40
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	40
rescriid	10
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa, activated 1 hr	40
activated i nr	
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa, activated 6 hr	40
DC 95% CD12 - cm CD24	
DC 95% CD1a+, ex CD34+ GM-CSF, TNFa, activated 1+6 hr	40
DC 95% CD14+, ex CD34+ GM-CSF, TNFa,	
activated 1+6 hr	40
DC CD1a+ CD86+, ex CD34+ GM-CSF, TNFa,	•
accivated 1+6 nr	40
epithelial cells, unstimulated	
lung fibroblast sarcoma line MRC5,	40
activated	40
Ascaris-challenged monkey lung, 24 hr.	4-
Poor or two normal human lung gammia.	40
direigic lund sample	40
normal w.t. monkey colon	40
ulcerative colitis human color	40 40
mashimoto's envroiditie threads and	
Poor or incumatold arthritic camples 1	40 an 40
	40
Psoriasis patient skin sample	40
consil inflammed	40
lung fetal	40
heart fetal	40
brain fetal	40
adipose tissue fetal	40
uterus fetal	40

T cell, THO clone Mot 72, activated

40

Primers specific for DCRS7_H were designed and used in Taqman quantative PCR against various human libraries. DCRS7_H is expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in fetal libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

•	for RS7_H
fetal uterus	19.05
DC mix	19.34
fetal small intestine	19.46
fetal ovary	19.68
fetal testes	19.75
fetal lung	20.04
CHA	20.24
normal thyroid	20.32
DC/GM/IL-4	20.52
fetal spleen	20.86
normal lung	20.94
TF1	21_
allergic lung #19	21.02
Psoriasis skin	21.07
fetal liver	21.15
MRC5	21.15
24 hr. Ascaris lung	21.17
hi dose IL-4 lung	21.23
CD1a+ 95%	21.32
Hashimotos thyroiditis	21.35
Crohns colon 4003197A	21.35
normal lung pool	21.36
70% DC resting	21.42
fetal kidney	21.58
adult placenta	21.68
lung 121897-1	21.8
Pneumocystis carnii lung #20	21.81
A549 unstim.	21.89
normal colon #22	21.94
18 hr. Ascaris lung	22.09
normal skin	22.1
Crohns colon 9609C144	22.13
fetal adipose tissue	22.35
D6	22.39

DC resting CD34-derived	
DC TNF/TGFb act CD34-der	22.45
retal brain	22.54
DC CD40L activ. mono-	22.9
deriv.	22.91
Crohns colon 403242A	
ulcerative colitis colon	22.91
#26	23
RA synovium pool	22.25
A549 activated	23.06
mono + IL-10	23.06
DC LPS	23.42
Mot 72 activated	23.49 23.66
CD1a+ CD86+	23.86
HY06 resting	
U937 activated	23.87 23.97
inflammed tonsil	23.97
D1	24.06
M1	24.17
CD14+ 95%	24.21
lung 080698-2	24.28
4 hr. Ascaris lung	24.37
Jurkat activated pSPORT	24.42
DC resting mono-derived	24.48
HY06 activated	24.54
- •	24.64
Splenocytes resting	24.65
U937/CD004 resting PBMC resting	24.96
Mot 72 resting	25.8
mono + anti-IL-10	25.91
NK pool	26.14
HY06 anti-peptide	26.99
mast cell pME	27.34
To gamma delta	27.38
TC1080 CD28- pMET7	28.14
PBMC activated	31.05
NK non cytotox.	31.89
RV-C30 TR1 pMET7	32.3
Вс	32.5
C-	33.72
Splenocytes activated	33.8
JY	34.7
NK cytotox.	35.05
NKL/IL-2	36.44
HY935 resting	37.59
NK pool activated	37.6
Mot 72 anti-peptide	38.15
fetal heart	38.87
	40.92

B21 resting	42.05
Jurkat resting pSPOR	T 42.8
B21 activated	43.09
NKA6 pSPORT	44.85
HY935 activated	45
M6	45

Primers specific for DCRS9_H were designed and used in Taqman quantative PCR against various human libraries. DCRS9_H is expressed T-cells, fetal lung, and resting monocytes. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for DCRS9_H library description CT for

	DCRS9_H
HY06 resting	22.35
fetal lung	22.63
HY06 anti-peptide	22.72
HY06 activated	22.96
U937/CD004 resting	24.16
fetal small	24.94
intestine	
-JY	25.04
Mot 72 resting	25.12
Jurkat activated	25.2
pSPORT	
RV-C30 TR1 pMET7	26.51
fetal kidney	26.76
MRC5	27.2
Psoriasis skin	27.3
Tc gamma delta	27.37
Crohns colon	27.44
4003197A	
fetal spleen	27.72
normal lung	27.83
Hashimotos	28.03
thyroiditis	
B21 resting	28.32
TF1	28.39
NK cytotox.	28.44
TC1080 CD28- pMET7	
Pneumocystis carnii	29.05
lung #20	
U937 activated	29.06
HY935 resting	29.09
CD1a+ 95%	29.13

•	
B21 activated	29.2
Mot 72 activated	29.21
fetal testes	29.21
lung 080698-2	
Jurkat resting	29.32
pSPORT	29.38
CD14+ 95%	20.20
normal thyroid	29.38
Mot 72 anti-	29.53
peptide	29.65
Splenocytes	20.0=
resting	29.85
Crohns colon	22.22
9609C144	30.28
lung 121897-1	
24 hr. Ascaris lung	30.37
hi dose IL-4 lung	30.59
CD1a+ CD86+	30.8
normal skin	31.42
fetal uterus	31.73
PBMC activated	31.79
inflammed tonsil	31.82
fetal brain	31.98
RA synovium pool	32.21
allergic lung #19	32.77
18 hr. Ascaris lung	33.18
adult placenta	33.42
normal lung pool	33.43
Crohns colon	33.45
403242A	33.52
NK pool	
HY935 activated	33.72
DC/GM/IL-4	33.75
DC resting mono-	34.28
derived	34.57
fetal ovary	25 24
fetal adipose	35.06
tissue	35.07
CHA	25.0
PBMC resting	35.2
Bc	35.95
A549 unstim.	36.19
fetal heart	36.4
ulcerative colitis	36.87
colon #26	37.83
C-	20.5=
4 hr. Ascaris lung	38.32
D6	40.2
C+	40.62
, - •	44.38

A549 activated	44.58
Splenocytes	45
activated	
NK pool activated	45
NKA6 pSPORT	45
NKL/IL-2	45
NK non cytotox.	45
mono + anti-IL-10	45
mono + IL-10	45
M1	45
M6	45
70% DC resting	45
D1	45
DC LPS	45
DC mix	45
fetal liver	45
mast cell pME	45
DC CD40L activ.	45
mono-deriv.	
DC resting CD34-	45
derived	
DC TNF/TGFb act	45
CD34-der.	
normal colon #22	45

Various strategies are used to obtain species counterparts of the DCRSs, preferably from other primates or rodents. One method is by cross hybridization using closely related species DNA probes. It may be useful to go into evolutionarily similar species as intermediate steps. Another method is by using specific PCR primers based on the identification of blocks of similarity or difference between genes, e.g., areas of highly conserved or nonconserved polypeptide or nucleotide sequence. Sequence database searches may identify species counterparts.

VI. Production of mammalian protein

5

10

15

20

25

30

35

An appropriate, e.g., GST, fusion construct is engineered for expression, e.g., in E. coli. For example, a mouse IGIF pGex plasmid is constructed and transformed into E. coli. Freshly transformed cells are grown, e.g., in LB medium containing 50 µg/ml ampicillin and induced with IPTG (Sigma, St. Louis, MO). After overnight induction, the bacteria are harvested and the pellets containing the appropriate protein are isolated. The pellets are homogenized, e.g., in TE buffer (50 mM Tris-base pH 8.0, 10 mM EDTA and 2 mM pefabloc) in 2 liters. This material is passed through a microfluidizer (Microfluidics, Newton, MA) three times. The fluidized supernatant is spun down on a Sorvall GS-3 rotor for 1 h at 13,000 rpm. The resulting supernatant containing the cytokine receptor protein is filtered and passed over a glutathione-SEPHAROSE column equilibrated in 50 mM Tris-base pH 8.0. Fractions containing the DCRS8-GST fusion protein are pooled and cleaved, e.g., with thrombin (Enzyme Research Laboratories, Inc., South Bend, IN). The cleaved pool is then passed over a Q-SEPHAROSE column equilibrated in 50 mM Tris-base. Fractions containing DCRS8 are pooled and diluted in cold distilled H2O, to lower the conductivity, and passed back over a fresh Q-Sepharose column, alone or in succession with an immunoaffinity antibody column. Fractions containing the DCRS8 protein are pooled, aliquoted, and stored in the -70° C freezer.

Comparison of the CD spectrum with cytokine receptor protein may suggest that the protein is correctly folded. See Hazuda, et al. (1969) <u>J. Biol. Chem.</u> 264:1689-1693.

VII. Preparation of specific antibodies

Inbred Balb/c mice are immunized intraperitoneally with recombinant forms of the protein, e.g., purified DCRS8 or stable transfected NIH-3T3 cells. Animals are boosted at appropriate time points with protein, with or without additional adjuvant, to further stimulate antibody production. Serum is collected, or hybridomas produced with harvested spleens.

Alternatively, Balb/c mice are immunized with cells transformed with the gene or fragments thereof, either endogenous or exogenous cells, or with isolated membranes enriched for expression of the antigen. Serum is collected at the appropriate time, typically after numerous further administrations. Various gene therapy techniques may be useful, e.g., in producing protein in situ, for generating an immune response. Serum or antibody preparations may be cross-absorbed or immunoselected to prepare substantially purified antibodies of defined specificity and high affinity.

Monoclonal antibodies may be made. For example, splenocytes are fused with an appropriate fusion partner and hybridomas are selected in growth medium by standard procedures. Hybridoma supernatants are screened for the presence of antibodies which bind to the DCRS8, e.g., by ELISA or other assay. Antibodies which specifically recognize specific DCRS8 embodiments may also be selected or prepared.

In another method, synthetic peptides or purified protein are presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g., Coligan (ed. 1991) Current Protocols in Immunology Wiley/Greene; and Harlow and Lane (1989) Antibodies: A Laboratory Manual Cold Spring Harbor Press. In appropriate situations, the binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods. Nucleic acids may also be introduced into cells in an animal to produce the antigen, which serves to elicit an immune response. See, e.g., Wang, et al. (1993) Proc. Nat'l. Acad. Sci. 90:4156-4160; Barry, et al. (1994)—BioTechniques 16:616-619; and Xiang, et al. (1995) Immunity 2: 129-135.

VIII. Production of fusion proteins

5

10

15

20

25

30

35

Various fusion constructs are made with DCRS8 or DCRS9. A portion of the appropriate gene is fused to an epitope tag, e.g., a FLAG tag, or to a two hybrid system construct. See, e.g., Fields and Song (1989) Nature 340:245-246.

The epitope tag may be used in an expression cloning procedure with detection with anti-FLAG antibodies to detect a binding partner, e.g., ligand for the respective cytokine receptor. The two hybrid system may also be used to isolate proteins which specifically bind to the receptor subunit.

IX. Structure activity relationship

Information on the criticality of particular residues is determined using standard procedures and analysis. Standard mutagenesis analysis is performed, e.g., by generating many different variants at determined positions, e.g., at the positions identified above, and evaluating biological activities of the variants. This may be performed to the extent of determining positions which modify activity, or to focus on specific positions to

biological activity.

Alternatively, analysis of natural variants can indicate what positions tolerate natural mutations. This may result from populational analysis of variation among individuals, or across strains or species. Samples from selected individuals are analyzed, e.g., by PCR analysis and sequencing. This allows evaluation of population polymorphisms.

X. Isolation of a ligand

10

A cytokine receptor can be used as a specific binding reagent to identify its binding partner, by taking advantage of its specificity of binding, much like an antibody would be used. The binding receptor may be a heterodimer of receptor subunits; or may involve, e.g., a complex of the DCRS8 with another cytokine receptor subunit. A binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods.

The binding composition is used to screen an expression library made from a cell line which expresses a binding partner, i.e., ligand, preferably membrane associated. Standard staining techniques are used to detect or sort surface expressed ligand, or surface expressing transformed cells are screened by panning. Screening of intracellular expression is performed by various staining or immunofluorescence procedures. See also McMahan, et al. (1991) EMBO J. 10:2821-2832.

For example, on day 0, precoat 2-chamber permanox slides with 1 ml per chamber of fibronectin, 10 ng/ml in PBS, for 30 min at room temperature. Rinse once with PBS. Then plate COS cells at $2-3 \times 10^5$ cells per chamber in 1.5 ml of growth media. Incubate overnight at 37 C.

On day 1 for each sample, prepare 0.5 ml of a solution of 66 µg/ml DEAEdextran, 66 µM chloroquine, and 4 µg DNA in serum free DME. For each set, a positive control is prepared, e.g., of DCRS8-FLAG cDNA at 1 and 1/200 dilution, and a negative mock. Rinse cells with serum free DME. Add the DNA solution and incubate 5 hr at 37 C. Remove the medium and add 0.5 ml 10% DMSO in DME for 2.5 min. Remove and wash once with DME. Add 1.5 ml growth medium and incubate overnight.

On day 2, change the medium. On days 3 or 4, the cells are fixed and stained. Rinse the cells twice with Hank's Buffered Saline Solution (HBSS) and fix in 4% paraformaldehyde (PFA)/glucose for 5 min. Wash 3X with HBSS. The slides may be stored at -80 C after all liquid is removed. For each chamber, 0.5 ml incubations are performed as follows. Add HBSS/saponin (0.1%) with 32 µl/ml of 1 M NaN3 for 20 min. Cells are then washed with HBSS/saponin 1X. Add appropriate DCRS8 or

20

15

5

30

35

DCRS8/antibody complex to cells and incubate for 30 min. Wash cells twice with HBSS/saponin. If appropriate, add first antibody for 30 min. Add second antibody, e.g., Vector anti-mouse antibody, at 1/200 dilution, and incubate for 30 min. Prepare ELISA solution, e.g., Vector Elite ABC horseradish peroxidase solution, and preincubate for 30 min. Use, e.g., 1 drop of solution A (avidin) and 1 drop solution B (biotin) per 2.5 ml HBSS/saponin. Wash cells twice with HBSS/saponin. Add ABC HRP solution and incubate for 30 min. Wash cells twice with HBSS, second wash for 2 min, which closes cells. Then add Vector diaminobenzoic acid (DAB) for 5 to 10 min. Use 2 drops of buffer plus 4 drops DAB plus 2 drops of H₂O₂ per 5 ml of glass distilled water.

5

10

15

20

25

30

35

Carefully remove chamber and rinse slide in water. Air dry for a few minutes, then add 1 drop of Crystal Mount and a cover slip. Bake for 5 min at 85-90 C.

Evaluate positive staining of pools and progressively subclone to isolation of single genes responsible for the binding.

Alternatively, receptor reagents are used to affinity purify or sort out cells expressing a putative ligand. See, e.g., Sambrook, et al. or Ausubel, et al.

Another strategy is to screen for a membrane bound receptor by panning. The receptor cDNA is constructed as described above. Immobilization may be achieved by use of appropriate antibodies which recognize, e.g., a FLAG sequence of a DCRS8 fusion construct, or by use of antibodies raised against the first antibodies. Recursive cycles of selection and amplification lead to enrichment of appropriate clones and eventual isolation of receptor expressing clones.

Phage expression libraries can be screened by mammalian DCRS8. Appropriate label techniques, e.g., anti-FLAG antibodies, will allow specific labeling of appropriate clones.

We tested the ability of DCRS receptors to specifically bind IL-17 family cytokines. Recombinant FLAG-hIL-17 family cytokines were used in binding experiments on Baf/3 DCRS receptor transfected expressing recombinant IL-17R_H, DCRS6_H, DCRS7_H, DCRS8_H and DCRS9_H and analyzed by FACS. We can demonstrate specific binding of IL-17 family member IL-74 to DCRS6 expressing Baf/3 cells. In additional experiments we have shown IL-17 specific binding to IL-17R_H, DCRS7_H, DCRS8_H. Further experiments show IL-71 binding to DCRS8_Hu transfectants. These experiments demonstrate the sequence homology among IL-17 related cytokine receptors confers functional binding to IL-17 cytokines.

All citations herein are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled; and the invention is not to be limited by the specific embodiments that have been presented herein by way of example.

10

15

25

30

35

WHAT IS CLAIMED IS:

- 1. A composition of matter selected from:
 - a) a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 14;
 - b) a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 14;
 - c) a natural sequence DCRS8 comprising mature SEQ ID NO: 14;
 - d) a fusion polypeptide comprising DCRS8 sequence;
 - e) a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 17 or 20;
 - f) a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 17 or 20;
 - g) a natural sequence DCRS9 comprising mature SEQ ID NO: 17 or 20; or
 - h) a fusion polypeptide comprising DCRS9 sequence.
- 20 2. The substantially pure or isolated antigenic polypeptide of Claim 1, wherein said distinct nonoverlapping segments of identity include:
 - a) one of at least eight amino acids;
 - b) one of at least four amino acids and a second of at least five amino acids;
 - c) at least three segments of at least four, five, and six amino acids, or
 - d) one of at least twelve amino acids.
 - 3. The composition of matter of Claim 1, wherein said:
 - a) polypeptide:
 - i) comprises a mature sequence of Table 3 or 4;
 - ii) is an unglycosylated form of DCRS8 or DCRS9;
 - iii) is from a primate, such as a human;
 - iv) comprises at least seventeen amino acids of SEQ ID NO: 14 or 17;
 - v) exhibits at least four nonoverlapping segments of at least seven amino acids of SEQ ID NO: 14 or 17;
 - vi) is a natural allelic variant of DCRS8 or DCRS9;
 - vii) has a length at least about 30 amino acids;

	x) has a molecular weight of at least 30 kD with natural glycosylation;	
5	xi) is a synthetic polypeptide;	
	xii) is attached to a solid substrate;	
	xiii) is conjugated to another chemical moiety;	
	xiv) is a 5-fold or less substitution from natural sequence; or	
	xv) is a deletion or insertion variant from a natural sequence.	
10		
	4. A composition comprising:	
	a) a substantially pure DCRS8 or DCRS9 and another cytokine receptor family member;	
	b) a sterile DCRS8 or DCRS9 polypeptide of Claim 1;	
15	c) said DCRS8 or DCRS9 polypeptide of Claim 1 and a carrier, wherein said carrier is:	
	i) an aqueous compound, including water, saline, and/or buffer; and/or	
	ii) formulated for oral, rectal, nasal, topical, or parenteral administration.	
20	5. The fusion polypeptide of Claim 1, comprising:	
	a) mature protein sequence of Table 3 or 4;	
	b) a detection or purification tag, including a FLAG, His6, or Ig sequence; or	
	c) sequence of another cytokine receptor protein.	
25	6. A kit comprising a polypeptide of Claim 1, and:	-
	a) a compartment comprising said protein or polypeptide; or	
	b) instructions for use or disposal of reagents in said kit.	
	7. A binding compound comprising an antigen binding site from an antibod	y,
30	which specifically binds to a natural DCRS8 or DCRS9 polypeptide of Claim 1, wherein a) said binding compound is in a container;	1:
	b) said DCRS8 or DCRS9 polypeptide is from a human;	
	c) said binding compound is an Fv, Fab, or Fab2 fragment;	
	d) said binding compound is conjugated to another chemical moiety; or	
35	e) said antibody:	
JJ	i) is raised against a peptide sequence of a mature polypeptide of Table 3	j
	or 4;	

- ii) is raised against a mature DCRS8 or DCRS9; iii) is raised to a purified human DCRS8 or DCRS9; iv) is immunoselected; v) is a polyclonal antibody; vi) binds to a denatured DCRS8 or DCRS9; 5 vii) exhibits a Kd to antigen of at least 30 μM; viii) is attached to a solid substrate, including a bead or plastic membrane; ix) is in a sterile composition; or x) is detectably labeled, including a radioactive or fluorescent label. 10 8. A kit comprising said binding compound of Claim 7, and: a) a compartment comprising said binding compound; or b) instructions for use or disposal of reagents in said kit. 15 9. A method of producing an antigen:antibody complex, comprising contacting under appropriate conditions a primate DCRS8 or DCRS9 polypeptide with an antibody of Claim 7, thereby allowing said complex to form. 10. The method of Claim 9, wherein: 20 a) said complex is purified from other cytokine receptors; b) said complex is purified from other antibody; c) said contacting is with a sample comprising an interferon; d) said contacting allows quantitative detection of said antigen; e) said contacting is with a sample comprising said antibody; or 25 f) said contacting allows quantitative detection of said antibody.
 - 11. A composition comprising:
 - a) a sterile binding compound of Claim 7, or
 - b) said binding compound of Claim 7 and a carrier, wherein said carrier is:
 - i) an aqueous compound, including water, saline, and/or buffer; and/or
 - ii) formulated for oral, rectal, nasal, topical, or parenteral administration.
 - 12. An isolated or recombinant nucleic acid encoding said polypeptide of Claim 1, wherein said:
 - a) DCRS8 or DCRS9 is from a human; or
 - b) said nucleic acid:

35

i) encodes an antigenic peptide sequence of Table 3 or 4;

		encoding said segment;
		iv) is an expression vector;
5		v) further comprises an origin of replication;
		vi) is from a natural source;
		vii) comprises a detectable label;
		viii) comprises synthetic nucleotide sequence;
		ix) is less than 6 kb, preferably less than 3 kb;
10		x) is from a primate;
		xi) comprises a natural full length coding sequence;
		xii) is a hybridization probe for a gene encoding said DCRS8 or DCRS9;
		or
		xiii) is a PCR primer, PCR product, or mutagenesis primer.
15		
	13.	A cell or tissue comprising said recombinant nucleic acid of Claim 12.
	14.	The cell of Claim 13, wherein said cell is:
		a) a prokaryotic cell;
20		b) a eukaryotic cell;
		c) a bacterial cell;
		d) a yeast cell;
		e) an insect cell;
•		f) a mammalian cell;
25		g) a mouse cell;
		h) a primate cell; or
		i) a human cell.
	15.	A kit comprising said nucleic acid of Claim 12, and:
30		a) a compartment comprising said nucleic acid;
		b) a compartment further comprising a primate DCRS8 or DCRS9 polypeptide;
		or
		c) instructions for use or disposal of reagents in said kit.
35	16.	A nucleic acid which:
		a) hybridizes under wash conditions of 30 minutes at 30° C and less than 2M salt
		to the coding portion of SEQ ID NO: 13 or 16; or

iii) exhibits identity over at least thirteen nucleotides to a natural cDNA

PCT/US01/16767

5

15

- b) exhibits identity over a stretch of at least about 30 nucleotides to a primate DCRS8 or DCRS9.
- 17. The nucleic acid of Claim 16, wherein:
 - a) said wash conditions are at 45° C and/or 500 mM salt; or
 - b) said stretch is at least 55 nucleotides.
- 18. The nucleic acid of Claim 16, wherein:
 - a) said wash conditions are at 55° C and/or 150 mM salt; or
- b) said stretch is at least 75 nucleotides.
 - 19. A method of modulating physiology or development of a cell or tissue culture cells comprising contacting said cell with an agonist or antagonist of a mammalian DCRS8 or DCRS9.
- 20. The method of Claim 19, wherein said cell is transformed with a nucleic acid encoding said DCRS8 or DCRS9 and another cytokine receptor subunit.

IKVLVVYPSEI – – CFHHTICYFTEFLQNHCR – – SEVILEKWQKKK – IAEMGPVQWLATQK FKVMLVCPEVS-GRDEDFMMRIADALKKSN---NKVVCDRWFEDSKNAEENMLHWVYEQT RAALLLYSADD-SGFERLVGALASALCOLP---LRVAVDLWSRRE-LSAOGPVAWFHAOR RKVWIIYSADH-PLYVDVVLKFAQFLLTACG--TEVALDLLEEQA-ISEAGVMTWGRQK RPVLLLHAADS-EAQRRLVGALAELLRAALGGGRDVIVDLWEGRH-VARVGPLPWLWAAR --LRVAVDLWSRRE-LSAHGALAWFHHOR RKVWIVYSADH-PLYVEVVLKFAQFLİTACG--TEVALDLLEEQV-ISEVGVMTWVSRQK RKVFITYSMD----TAMEVVKFVNFLLVNG---FQTAIDIFEDR--IRGIDIIKWMERYL RKVFITYSMD~---TAMEVVKFVNFLİVNG---FQTAIDIFEDR--IRGIDIIKWMERYL VKVMIVYADDN-DLHTDCVKKLVENLRNCAS--CDPVFDLEKLI--TAEIVPSRWLVDQI PKVFLCYSSKDGQNHMNVVQCFAYFLQDFCG--CEVALDLWEDFS-LCREGQREWVIQKI RTALLLHSADG-AGYERLVGALASALSOMP-IL-17R_Mu DCRS10 Mu IL-17R_Ce IL-17R_Hu DCRS6_Hu DCRS6_Ce DCRS7_Mu DCRS7_Hu DCRS9_Hu DCRS8_Hu DCRS10

TRVAREQGTVLLLWSGADIRPVS-------LLHAAP ROTLOEGGVVVJLFSPGAVALCS---|EWLQDGVSGPGAHGP---HDAFRASLSCVLPDFL QEMVESNSKIIVLCSRGTRAKWQALLGRGAP-VRLRCDHGKPV-GDLFTAAMMILPDFK QEMVESNSKIIILCSRGTQAKWKAILGWAEPAVQLRCDHWKPA-GDLFTAAMMILPDFK R---DKTVMIIVAISPKYKQDVE--¦-GAESQLDED-EHGL---HTKYIHRM-MQIEFIK R---DKTVMIIVAISPKYKQDVE----GAESQLDED-EHGL---HTKYIHRM-MQIEFIS H----ESQFIIVVCSKGMKYFVD---KKNYKHKGGGRGSGK---GELFLVAVSAIAEKLR -TEASETHQLVQARP--FADLFGPAMEMIIRDAT -GICGKSEGSPSENS---QDLFPLAFNLFCSDLR RRILQEGGVVILLFSPAAVAQCQ---|QWLQLQTVEP---GP---HDALAAWLSCVLPDFL --IAEKIIVFHSAYYHPRCG--|-IYDVINNFFPCTDPR-----LAHIALT---AADKVVFLLSNDVNSVCD--S---SLKKFIIVVSDCAEKILD--

> DCRS9_Hu DCRS8_Hu IL-17R_Ce

DCRS6_Hu DCRS6_Ce

DCRS10 Mu

DCRS10

DCRS7_Hu IL-17R_Hu IL-17R_Mu

DCRS7_Mu

FIG. 1A

QGRATGRYVGVYFDGLLHPDSVPSPFRVAPLFSLP-SQLPAFLDALQGGCSTS QGRAPGSYVGACFDRLLHPDAVPALFRTVPVFTLP-SQLPDFLGALQQPRAPR RPACFGTYVVCYFSEVSCDGDVPDLFGAAPRYPLM-DRFEEVYFRIQDLEMFE QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRLLLAYFSRLCAKGDIPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC	
YVGVYFDGLLHPDSVPSPFRYVGACFDRLLHPDAVPALFRYVVCYFSEVSCDGDVPDLFGYVVCYFSGICSERDVPDLFGFIPVLFPNAK-KEHVPTWLQFIPVLFPNAK-KEHVPTWLQLLLAYFSRLCAKGDIPPPLR LSKFIAVYFDYSC-EGDVPGILD -KKYAVVRFNYSPHVPPNLAYVVVYFREID-TKDDYNALSEYVLPRDQKLLEDAFDITI	AGRPADRVERVTQALRSALDSCTS SGRLIQERAEQVSRALQPALDSYFHPP PGRMHRVGELSGDNYLRSPGGRQLRAALDRFRDWQVRCPDW PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW PPRGPL
QGRATGR QGRAPGS RPACFGT QGSMNFR QGSMNFR QGSMNFR RPL RPL RALSSSAALSK HNFPEARKK SQIHLHK RSVPKEV	AGRPADRVE SGRLQERAE PGRMHRVGE PGRMHHVRE PPRGP PPRGP ATSWGRLGA PGQHTRQGS ANVTQNISE VSAGK DSIDSRNNS
DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Hu	DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10 DCRS10 DCRS9_Hu DCRS8_Hu DCRS8_Hu DCRS8_Hu DCRS8_Hu DCRS8_Hu DCRS8_Hu

FIG. 1B

Homo sapiens

1

SEQUENCE SUBMISSION

```
SEQ ID NO: 1 is primate DCRS6 nucleotide sequence.
SEQ ID NO: 2 is primate DCRS6 polypeptide sequence.
SEQ ID NO: 3 is primate DCRS6 reverse translation.
SEQ ID NO: 4 is rodent DCRS6 nucleotide sequence.
SEQ ID NO: 5 is rodent DCRS6 polypeptide sequence.
SEQ ID NO: 6 is rodent DCRS6 reverse translation.
SEQ ID NO: 7 is primate DCRS7 nucleotide sequence.
SEQ ID NO: 8 is primate DCRS7 polypeptide sequence.
SEQ ID NO: 9 is primate DCRS7 reverse translation.
SEQ ID NO: 10 is rodent DCRS7 nucleotide sequence.
SEQ ID NO: 11 is rodent DCRS7 polypeptide sequence.
SEQ ID NO: 12 is rodent DCRS7 reverse translation.
SEQ ID NO: 13 is primate DCRS8 nucleotide sequence.
SEQ ID NO: 14 is primate DCRS8 polypeptide sequence.
SEQ ID NO: 15 is primate DCRS8 reverse translation.
SEQ ID NO: 16 is primate DCRS9 nucleotide sequence.
SEQ ID NO: 17 is primate DCRS9 polypeptide sequence.
SEQ ID NO: 18 is primate DCRS9 reverse translation.
SEQ ID NO: 19 is rodent DCRS9 nucleotide sequence.
SEQ ID NO: 20 is rodent DCRS9 polypeptide sequence.
SEQ ID NO: 21 is rodent DCRS9 reverse translation.
SEQ ID NO: 22 is primate DCRS10 nucleotide sequence.
SEQ ID NO: 23 is primate DCRS10 polypeptide sequence.
SEQ ID NO: 24 is primate DCRS10 reverse translation.
SEQ ID NO: 25 is rodent DCRS10 nucleotide sequence.
SEQ ID NO: 26 is rodent DCRS10 polypeptide sequence.
SEQ ID NO: 27 is rodent DCRS10 reverse translation.
SEO ID NO: 28 is primate IL-17 receptor peptide sequence.
SEQ ID NO: 29 is rodent IL-17 receptor peptide sequence.
SEQ ID NO: 30 is worm IL-17 receptor peptide sequence.
SEQ ID NO: 31 is worm DCRS6 nucleotide sequence.
<110> Schering Corporation
<120> Mammalian Receptor Proteins; Related Reagents and
      Methods
<130> DX01170K PCT
<140>
<141>
<150> US 60/206,862
<151> 2000-05-24
<160> 31
<170> PatentIn Ver. 2.0
<210> 1
<211> 1796
<212> DNA
<213> Unknown
<220>
<223> Description of Unknown Organism: primate; surmised
```

<220> <221> CDS <222> (4)..(1509) <220> <221> mat_peptide <222> (46) .. (1509) <400> 1 geg atg teg ete gtg eta eta age etg gee geg etg tge agg age gee 48 Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala gta ccc cga gag ccg acc gtt caa tgt ggc tct gaa act ggg cca tct 96 Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro Ser 1.0 cca gag tgg atg cta caa cat gat cta atc ccg gga gac ttg agg gac 144 Pro Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu Arg Asp 20 ctc cga gta gaa cct gtt aca act agt gtt gca aca ggg gac tat tca 192 Leu Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly Asp Tyr Ser 35 40 att ttg atg aat gta agc tgg gta ctc cgg gca gat gcc agc atc cgc 240 Ile Leu Met Asn Val Ser Trp Val Leu Arg Ala Asp Ala Ser Ile Arg ttg ttg aag gcc acc aag att tgt gtg acg ggc aaa agc aac ttc cag 288 Leu Leu Lys Ala Thr Lys Ile Cys Val Thr Gly Lys Ser Asn Phe Gln tcc tac agc tgt gtg agg tgc aat tac aca gag gcc ttc cag act cag 336 Ser Tyr Ser Cys Val Arg Cys Asn Tyr Thr Glu Ala Phe Gln Thr Gln 90 acc aga ccc tct ggt ggt aaa tgg aca ttt tcc tat atc ggc ttc cct Thr Arg Pro Ser Gly Gly Lys Trp Thr Phe Ser Tyr Ile Gly Phe Pro 105 gta gag ctg aac aca gtc tat ttc att ggg gcc cat aat att cct aat 432 Val Glu Leu Asn Thr Val Tyr Phe Ile Gly Ala His Asn Ile Pro Asn gca aat atg aat gaa gat ggc cct tcc atg tct gtg aat ttc acc tca 480 Ala Asn Met Asn Glu Asp Gly Pro Ser Met Ser Val Asn Phe Thr Ser 135 cca qqc tqc cta qac cac ata atq aaa tat aaa aaa tat gtc aag 528 Pro Gly Cys Leu Asp His Ile Met Lys Tyr Lys Lys Cys Val Lys gcc gga agc ctg tgg gat ccg aac atc act gct tgt aag aag aat gag 576 Ala Gly Ser Leu Trp Asp Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu 165 gag aca gta gaa gtg aac ttc aca acc act ccc ctg gga aac aga tac 624 Glu Thr Val Glu Val Asn Phe Thr Thr Pro Leu Gly Asn Arg Tyr

185

							act Thr									672
							acg Thr									720
act Thr	gjå aaa	gat Asp	agt Ser	gaa Glu 230	ggt Gly	gct Ala	acg Thr	gtg Val	cag Gln 235	ctg Leu	act Thr	cca Pro	tat Tyr	ttt Phe 240	cct Pro	768
act Thr	tgt Cys	gly ggc	agc Ser 245	gac Asp	tgc Cys	atc Ile	cga Arg	cat His 250	aaa Lys	gga Gly	aca Thr	gtt Val	gtg Val 255	ctc Leu	tgc Cys	816
							cct Pro 265									864
gga Gly	ggc Gly 275	tgg Trp	ctg Leu	cct Pro	ctc Leu	ctc Leu 280	ctg Leu	ctg Leu	tct Ser	ctg Leu	ctg Leu 285	gtg Val	gcc Ala	aca Thr	tgg Trp	912
gtg Val 290	ctg Leu	gtg Val	gca Ala	gly aaa	atc Ile 295	tat Tyr	cta Leu	atg Met	tgg Trp	agg Arg 300	cac His	gaa Glu	agg Arg	atc Ile	aag Lys 305	960
224	244	taa	+++	+	200	200	aca	cta	cta	ccc	ccc	att	aacr	att	ctt	1008
							Thr									
		202		310					315					320		
														•		1056
gtg Val	gtt Val	tac Tyr	cca Pro 325	tct Ser	gaa Glu	ata Ile	tgt Cys	Phe 330	cat His	cac His	aca Thr	Ile	Cys 335	Tyr	Phe	1056
act	gaa	ttt	ctt	caa	aac	cat	tgc	aqa	agt	gag	gtc	atc	ctt	gaa	aag	1104
							Cys 345									
tgg Trp	cag Gln 355	aaa Lys	aag Lys	aaa Lys	ata Ile	gca Ala 360	gag Glu	atg Met	ggt Gly	cca Pro	gtg Val 365	cag Gln	tgg Trp	ctt Leu	gcc Ala	1152
act Thr 370	caa Gln	aag Lys	aag Lys	gca Ala	gca Ala 375	gac Asp	aaa Lys	gtc Val	gtc Val	ttc Phe 380	ctt Leu	ctt Leu	tcc Ser	aat Asn	gac Asp 385	1200
gtc Val	aac Asn	agt Ser	gtg Val	tgc Cys 390	gat Asp	ggt Gly	acc Thr	tgt Cys	ggc Gly 395	aag Lys	agc Ser	gag Glu	ggc Gly	agt Ser 400	ccc Pro	1248
agt Ser	gag Glu	aac Asn	tct Ser 405	caa Gln	gac Asp	ctc Leu	ttc Phe	ccc Pro 410	ctt Leu	gcc Ala	ttt Phe	aac Asn	ctt Leu 415	ttc Phe	tgc Cys	1296
agt Ser	gat Asp	cta Leu 420	aga Arg	agc Ser	cag Gln	att Ile	cat His 425	ctg Leu	cac His	aaa Lys	tac Tyr	gtg Val 430	gtg Val	gtc Val	tac Tyr	1344

ttt aga gag att gat aca aaa gac gat tac aat gct ctc agt gtc tgc 1 Phe Arg Glu Ile Asp Thr Lys Asp Asp Tyr Asn Ala Leu Ser Val Cys 435 440 445	.392
ccc aag tac cac ctc atg aag gat gcc act gct ttc tgt gca gaa ctt Pro Lys Tyr His Leu Met Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu 450 465	.440
ctc cat gtc aag cag gtg tca gca gga aaa aga tca caa gcc tgc 1 Leu His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys 470 475 480	.488
cac gạt ggc tgc tgc tcc ttg tagcccaccc atgagaagca agagacctta 1 His Asp Gly Cys Cys Ser Leu 485	.539
aaggetteet ateecaceaa ttacagggaa aaaacgtgtg atgateetga agettactat 1	.599
gcagcctaca aacagcctta gtaattaaaa cattttatac caataaaatt ttcaaatatt 1	659
gctaactaat gtagcattaa ctaacgattg gaaactacat ttacaacttc aaagctgttt 1	719
tatacataga aatcaattac agctttaatt gaaaactgta accattttga taatgcaaca 1	779
ataaagcatc ttcagcc 1	796

<210> 2 <211> 502 <212> PRT

<213> Unknown

<400>. 2

Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala Val
-10 -5 -1 1

Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro Ser Pro 5 10 15

Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu Arg Asp Leu 20 25 30

Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly Asp Tyr Ser Ile 35 40 45 50

Leu Met Asn Val Ser Trp Val Leu Arg Ala Asp Ala Ser Ile Arg Leu
55 60 65

Leu Lys Ala Thr Lys Ile Cys Val Thr Gly Lys Ser Asn Phe Gln Ser
70 75 80

Tyr Ser Cys Val Arg Cys Asn Tyr Thr Glu Ala Phe Gln Thr Gln Thr 85 90 95

Arg Pro Ser Gly Gly Lys Trp Thr Phe Ser Tyr Ile Gly Phe Pro Val 100 105 110

Glu Leu Asn Thr Val Tyr Phe Ile Gly Ala His Asn Ile Pro Asn Ala 115 120 125 130

Asn	Met	Asn	Glu	Asp 135	Gly	Pro	Ser	Met	Ser 140	Val	Asn	Phe	Thr	Ser 145	Pro
Gly	Сув	Leu	Asp 150	His	Ile	Met	Lys	Tyr 155	ГÀЗ	Lys	ГÀЗ	Cys	Val 160	ŗàa	Ala
Gly	Ser	Leu 165	Trp	Asp	Pro	Asn	Ile 170	Thr	Ala	Cys	Lys	Lys 175	Asn	Glu	Glu
Thr	Val 180	Glu	Val	Asn	Phe	Thr 185	Thr	Thr	Pro	Leu	Gly 190	Asn	Arg	Tyr	Met
Ala 195	Leu	Ile	Gln	His	Ser 200	Thr	Ile	Ile	Gly	Phe 205	Ser	Gln	Val	Phe	Glu 210
Pro	His	Gln	Ьys	Lys 215	Gln	Thr	Arg	Ala	Ser 220	Val	Val	Ile	Pro		Thr
Gly	Asp	Ser	Glu 230	Gly	Ala	Thr	Val	Gln 235	Leu	Thr	Pro	Tyr	Phe 240	Pro	Thr
Cys	Gly	Ser 245	Asp	Сув	Ile	Arg	His 250	Lys	Gly	Thr	Val	Val 255	Leu	Сув	Pro
Gln	Thr 260	Gly	Val	Pro	Phe	Pro 265	Leu	Asp	Asn	Asn	Lys 270	Ser	Lys	Pro	Gly
Gly 275	Trp	Leu	Pro	Leu	Leu 280	Leu	Leu	Ser	Leu	Leu 285	Val	Ala	Thr	Trp	Val 290
Leu	Val	Ala	Gly	Ile 295	Tyr	Leu	Met	Trp	Arg 300	His	Glu	Arg	Ile	Lys 305	Lys
			_		_			_	300					305	
Thr	Ser	Phe	Ser 310	295	Thr	Thr	Leu	Leu 315	300 Pro	Pro	Ile	Lys	Val 320	305 Leu	Val
Thr Val	Ser Tyr	Phe Pro 325	Ser 310 Ser	295 Thr	Thr	Thr Cys	Leu Phe 330	Leu 315 His	300 Pro	Pro Thr	Ile	Lys Cys 335	Val 320 Tyr	305 Leu Phe	Val Thr
Thr Val Glu	Ser Tyr Phe 340	Phe Pro 325 Leu	Ser 310 Ser Gln	295 Thr Glu	Thr Ile	Thr Cys Cys 345	Leu Phe 330 Arg	Leu 315 His	300 Pro His	Pro Thr Val	Ile Ile Ile 350	Lys Cys 335 Leu	Val 320 Tyr Glu	205 Leu Phe Lys	Val Thr Trp
Thr Val Glu Gln 355	Ser Tyr Phe 340 Lys	Phe Pro 325 Leu Lys	Ser 310 Ser Gln Lys	295 Thr Glu Asn	Thr Ile His Ala 360	Thr Cys Cys 345 Glu	Leu Phe 330 Arg	Leu 315 His Ser	300 Pro His Glu Pro	Pro Thr Val Val 365	Ile Ile 350 Gln	Lys Cys 335 Leu Trp	Val 320 Tyr Glu Leu	205 Leu Phe Lys Ala	Val Thr Trp Thr 370
Thr Val Glu Gln 355	Ser Tyr Phe 340 Lys	Phe Pro 325 Leu Lys	Ser 310 Ser Gln Lys	295 Thr Glu Asn Ile Ala	Thr Ile His Ala 360	Thr Cys Cys 345 Glu Lys	Leu Phe 330 Arg Met	Leu 315 His Ser Gly	300 Pro His Glu Pro	Pro Thr Val Val 365	Ile Ile 350 Gln Leu	Lys Cys 335 Leu Trp	Val 320 Tyr Glu Leu Asn	Phe Lys Ala Asp 385	Val Thr Trp Thr 370 Val
Thr Val Glu Gln 355 Gln Asn	Ser Tyr Phe 340 Lys Lys	Phe Pro 325 Leu Lys Val	Ser 310 Ser Gln Lys Ala Cys 390	295 Thr Glu Asn Ile Ala 375	Thr Ile His Ala 360 Asp	Thr Cys Cys 345 Glu Lys	Leu Phe 330 Arg Met Val	Leu 315 His Ser Gly Val Gly 395	300 Pro His Glu Pro Phe 380 Lys	Pro Thr Val Val 365 Leu Ser	Ile Ile 350 Gln Leu Glu	Lys Cys 335 Leu Trp Ser	Val 320 Tyr Glu Leu Asn Ser 400	105 Leu Phe Lys Ala Asp 385 Pro	Val Thr Trp Thr 370 Val
Thr Val Glu Gln 355 Gln Asn	Ser Tyr Phe 340 Lys Lys Ser Asn	Phe Pro 325 Leu Lys Val Ser 405	Ser 310 Ser Gln Lys Ala Cys 390 Gln	295 Thr Glu Asn Ile Ala 375 Asp	Thr Ile His Ala 360 Asp Gly Leu	Thr Cys Cys 345 Glu Lys Thr	Leu Phe 330 Arg Met Val Cys Pro 410	Leu 315 His Ser Gly Val Gly 395 Leu	300 Pro His Glu Pro Phe 380 Lys	Pro Thr Val Val 365 Leu Ser	Ile Ile 350 Gln Leu Glu Asn	Lys Cys 335 Leu Trp Ser Gly Leu 415	Val 320 Tyr Glu Leu Asn Ser 400 Phe	105 Leu Phe Lys Ala Asp 385 Pro	Val Thr Trp Thr 370 Val Ser

Lys Tyr His Leu Met Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu Leu 455 460 465

His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys His
470 475 480

Asp Gly Cys Cys Ser Leu 485

<210> 3

<211> 1506

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(1506)

<223> n may be a, c, g, or t

<400> 3

atgwsnytng tnytnytnws nytngcngcn ytntgymgnw sngcngtncc nmgngarccn 60 acngtncart gyggnwsnga racnggnccn wsnccngart ggatgytnca rcaygayytn 120 athconggng ayytnmgnga yytnmgngtn garcongtna cnacnwsngt ngcnacnggn 180 qaytaywsna thytnatgaa ygtnwsntgg gtnytnmgng cngaygcnws nathmgnytn 240 ytnaargcna cnaarathtg ygtnacnggn aarwsnaayt tycarwsnta ywsntgygtn 300 mqntgyaayt ayacngargc nttycaracn caracnmgnc cnwsnggngg naartggacn 360 ttywsntaya thggnttycc ngtngarytn aayacngtnt ayttyathgg ngcncayaay 420 athccnaayg cnaayatgaa ygargayggn ccnwsnatgw sngtnaaytt yacnwsnccn 480 ggntgyytng aycayathat gaartayaar aaraartgyg tnaargcngg nwsnytntgg 540 ... gayccnaaya thacngcntg yaaraaraay gargaracng tngargtnaa yttyacnacn 600 acncenytng gnaaymgnta yatggenytn atheareayw snaenathat hggnttywsn 660 carginityg arceneayea raaraarear aenmgngenw snginginat heenginaen 720 ggngaywsng arggngcnac ngtncarytn acncentayt tycenaentg yggnwsngay 780 tgyathmgnc ayaarggnac ngtngtnytn tgyccncara cnggngtncc nttyccnytn 840 gayaayaaya arwsnaarcc nggnggntgg ytnccnytny tnytnytnws nytnytngtn 900 gcnacntggg tnytngtngc nggnathtay ytnatgtggm gncaygarmg nathaaraar 960 acnwsnttyw snacnacnac nytnytncen cenathaarg tnytngtngt ntayeenwsn 1020 garathtgyt tycaycayac nathtgytay ttyacngart tyytncaraa ycaytgymgn 1080 wsngargtna thytngaraa rtggcaraar aaraarathg cngaratggg nccngtncar 1140

tggytngcna cncaraaraa rgcngcngay aargtngtnt tyytnytnws naaygaygtn 1200 aaywsngtnt gygayggnac ntgyggnaar wsngarggnw snccnwsnga raaywsncar 1260 gayytnttyc cnytngcntt yaayytntty tgywsngayy tnmgnwsnca rathcayytn 1320 cayaartayg tngtngtnta yttymgngar athgayacna argaygayta yaaygcnytn 1380 wsngtntgyc cnaartayca yytnatgaar gaygcnacng cnttytgygc ngarytnytn 1440 caygtnaarc arcargtnws ngcnggnaar mgnwsncarg cntgycayga yggntgytgy 1500 wsnytn

<210> 4 <211> 637 <212> DNA <213> Unknown <220>

<223> Description of Unknown Organism:rodent; surmised Mus musculus .

<220> <221> CDS <222> (1)..(210)

ggg gga gca gac ctc aaa ggc gac tat aat gcc ctg agt gtc tgc ccc 96 Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro 20 25 30

caa tat cat ctc atg aag gac gcc aca gct ttc cac aca gaa ctt ctc 144
Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu
35 40 45

aag got acg cag agc atg toa gtg aag aaa cgc toa caa goc tgc cat 192 Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His 50 55 60

gat agc tgt tca ccc ttg tagtccaccc gggggaatag agactctgaa 240
Asp Ser Cys Ser Pro Leu
65 70

geetteetae teteeettee agtgacaaat getgtgtgae gaetetgaaa tgtgtgggag 300 aggetgtgtg gaggtagtge tatgtacaaa ettgetttaa aactggagtt tgcaaagtea 360 acetgageat acacgeetga ggetagteat tggetggatt tatgaagaca acacagttae 420 agacaataat gagtgggace tacatttggg atatacecaa agetgggtaa tgattateae 480 tgagaaceae geaetetgge catgaggtaa tacggeaett eeetgteagg etgtetgtea 540 ggttgggtet gtettgeaet geeeatgete tatgetgeae gtagaeegtt ttgtaacatt 600

8

```
ttaatctqtt aatgaataat ccgtttggga ggctctc
                                                                   637
<210> 5
<211> 70
<212> PRT
<213> Unknown
<400> 5
Asp Phe Ser Ser Gln Thr His Leu His Lys Tyr Leu Glu Val Tyr Leu
Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro
Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu
Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His
Asp Ser Cys Ser Pro Leu
<210> 6
<211> 210
<212> DNA
<213> reverse translation
<220>
<221> misc_feature
<222> (1)..(210)
<223> n may be a, c, g, or t
<400> 6
gayttywsnw sncaracnca yytncayaar tayytngarg tntayytngg nggngcngay 60
ytnaarggng aytayaaygc nytnwsngtn tgyccncart aycayytnat gaargaygcn 120
acngenttyc ayacngaryt nytnaargen acnearwsna tgwsngtnaa raarmgnwsn 180
                                                                   210
cargentqyc aygaywsntg ywsnccnytn
<210> 7
<211> 2308
<212> DNA
<213> Unknown
<223> Description of Unknown Organism: primate; surmised
      Homo sapiens
<220>
<221> CDS
<222> (181)..(2289)
```

<220>

756

9

<221> mat_peptide <222> (241)..(2289) <220> <221> misc_feature <222> (664) <223> Xaa translation depends on genetic code <400> 7 gagtcaggac tcccaggaca gagagtgcac aaactaccca gcacagcccc ctccgccccc 60 totggaggot gaagagggat tocagcocot gocaccoaca gacacgggot gactggggtg 120 tetgecece ttgggggcan ccacagggee tcaggcetgg gtgccacetg gcactagaag 180 atg cct gtg ccc tgg ttc ttg ctg tcc ttg gca ctg ggc cga agc cag 228 Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser Gln tgg atc ctt tct ctg gag agg ctt gtg ggg cct cag gac gct acc cac 276 Trp Ile Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala Thr His tge tet eeg gge ete tee tge ege ete tgg gae agt gae ata ete tge 324 Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp Ile Leu Cys 15 20 ctg cct ggg gac atc gtg cct gct ccg ggc ccc gtg ctg gcg cct acg 372 Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val Leu Ala Pro Thr 30 _ 35 cac ctg cag aca gag ctg gtg ctg agg tgc cag aag gag acc gac tgt 420 His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln Lys Glu Thr Asp Cys 45 60 gac ctc tgt ctg cgt gtg gct gtc cac ttg gcc gtg cat ggg cac tgg 468 Asp Leu Cys Leu Arg Val Ala Val His Leu Ala Val His Gly His Trp 516 gaa gag cct gaa gat gag gaa aag ttt gga gga gca gct gac tta ggg Glu Glu Pro Glu Asp Glu Glu Lys Phe Gly Gly Ala Ala Asp Leu Gly gtg gag gag cet agg aat gee tet ete eag gee eaa gte gtg ete tee 564 Val Glu Glu Pro Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser tte cag gee tae cet act gee ege tge gte etg etg gag gtg caa gtg 612 Phe Gln Ala Tyr Pro Thr Ala Arg Cys Val Leu Leu Glu Val Gln Val cct gct gcc ctt gtg cag ttt ggt cag tct gtg ggc tct gtg gta tat 660 Pro Ala Ala Leu Val Gln Phe Gly Gln Ser Val Gly Ser Val Val Tyr 130 135 708 gac tgc ttc gag gct gcc cta ggg agt gag gta cga atc tgg tcc tat Asp Cys Phe Glu Ala Ala Leu Gly Ser Glu Val Arg Ile Trp Ser Tyr

act cag ccc agg tac gag aag gaa ctc aac cac aca cag cag ctg cct

Thr	Gln	Pro	Arg 160	Tyr	Glu	Lys	Glu	Leu 165	Asn	His	Thr	Gln	Gln 170	Leu	Pro	
gac Asp	tgc Cys	agg Arg 175	Gly 999	ctc Leu	gaa Glu	gtc Val	tgg Trp 180	aac Asn	agc Ser	atc Ile	ccg Pro	agc Ser 185	tgc Cys ·	tgg Trp	gcc Ala	804
ctg Leu	ccc Pro 190	tgg Trp	ctc Leu	aac Asn	gtg Val	tca Ser 195	gca Ala	gat Asp	ggt Gly	gac Asp	aac Asn 200	gtg Val	cat His	ctg Leu	gtt Val	852
ctg Leu 205	aat Asn	gtc Val	tct Ser	gag Glu	gag Glu 210	cag Gln	cac His	ttc Phe	gly	ctc Leu 215	tcc Ser	ctg Leu	tac Tyr	tgg Trp	aat Asn 220	900
cag Gln	gtc Val	cag Gln	Gly ggc	ccc Pro 225	cca Pro	aaa Lys	ccc Pro	cgg Arg	tgg Trp 230	cac His	aaa Lys	aac Asn	ctg Leu	act Thr 235	gga Gly	948
										ctg Leu						996
att Ile	cag Gln	gtg Val 255	tgg Trp	cct Pro	ctg Leu	gaa Glu	cct Pro 260	gac Asp	tcc Ser	gtt Val	agg Arg	acg Thr 265	aac Asn	atc Ile	tgc Cys	1044
Pro	Phe 270	Arg	Glu	Asp	Pro	Arg 275	Ala	His	Gln	aac Asn	Leu 280	Trp	Gln	Ala	Ala	1092
cga Arg 285	ctg Leu	cga Arg	ctg Leu	ctg Leu	acc Thr 290	ctg Leu	cag Gln	agc Ser	tgg Trp	ctg Leu 295	ctg Leu	gac Asp	gca Ala	ccg Pro	tgc Cys 300	1140
Ser	Leu	Pro	Ala	Glu 305	Ala	Ala	Leu	Сув	tgg Trp 310	cgg Arg	gct Ala	ccg Pro	ggt	Gly 315	Asp	1188
ccc Pro	tgc Cys	cag	cca	ctg	gtc	cca									ata	1236
		GIII	9ro 320	Leu	Val	Pro	Pro	ctt Leu 325	Ser	tgg Trp	gag Glu	aat Asn	gtc Val 330	act Thr	Val	
gac Asp	gtg Val	aac	320 agc	Leu	Val gag	Pro	Pro ctg	Leu 325 cag	ser	tgg Trp cag Gln	Glu gag	Asn	Val 330 ttg	Thr	Val gct	1284
Asp	Val	aac Asn 335	agc ser	tcg Ser	Val gag Glu ctc	Pro aag Lys aaa	ctg Leu 340	Leu 325 cag Gln gat	Ser ctg Leu	Trp	Glu gag Glu ctg	tgc Cys 345 ttg	Val 330 ttg Leu gag	Thr tgg Trp	yal gct Ala cga	1284
Asp gac Asp	Val tcc Ser 350	aac Asn 335 ctg Leu	agc ser ggg Gly	tcg ser cct Pro	yal gag Glu ctc Leu	Pro aag Lys aaa Lys 355	ctg Leu 340 gac Asp	Leu 325 cag Gln gat Asp	ser ctg Leu gtg Val	Trp cag Gln cta	gag Glu ctg Leu 360	tgc Cys 345 ttg Leu	Val 330 ttg Leu gag Glu	tgg Trp aca Thr	yal gct Ala cga Arg	
Asp gac Asp ggc Gly 365 act	Val tcc ser 350 ccc Pro	aac Asn 335 ctg Leu cag Gln	agc ser ggg Gly gac Asp	tcg ser cct Pro aac Asn	yal gag Glu ctc Leu aga Arg 370	Pro aag Lys aaa Lys 355 tcc Ser	ctg Leu 340 gac Asp ctc Leu	Leu 325 cag Gln gat Asp tgt Cys	ser ctg Leu gtg Val gcc Ala	cag Gln cta Leu ttg Leu	gag Glu ctg Leu 360 gaa Glu	tgc Cys 345 ttg Leu ccc Pro	Val 330 ttg Leu gag Glu agt Ser	tgg Trp aca Thr ggc Gly	gct Ala cga Arg tgt Cys 380	1332

	Tyr	Leu	Leu	Gln 400	Asp	Leu	Gln	Ser	Gly 405	Gln	Cys	Leu	Gln	Leu 410	Trp	Asp	
						cta Leu											1524
						gtg Val											1572
						ctt Leu 450											1620
		Leu	Leu		Gln	gac Asp											1668
		_	_			tac Tyr		_	_	_	_				_	_	1716
						tcg Ser											1764
						cgt Arg											1812
-						cgg Arg 530											1860
	Trp 525 gtc	Phe	His	Ala	Gln	Arg	Arg	Gln	Thr gtg	Leu	Gln 535 ctg	Glu	Gly	Gly	Val	Val 540 cta	1860
	Trp 525 gtc Val cag	Phe ttg Leu gat	His ctc Leu 999	Ala ttc Phe	Gln tct ser 545	Arg 530	Arg ggt Gly ccc	Gln gcg Ala	Thr gtg Val gcg	gcg Ala 550	Gln 535 ctg Leu	Glu tgc Cys	Gly agc Ser	Gly gag Glu gac	tgg Trp 555	Val 540 cta Leu ttc	
	Trp 525 gtc Val cag Gln	Phe ttg Leu gat Asp	His ctc Leu ggg Gly tcg	Ala ttc Phe gtg Val 560 ctc	tct ser 545 tcc ser	Arg 530 ccc Pro	Arg ggt Gly ccc Pro	Gln gcg Ala ggg Gly ctg	Thr gtg Val gcg Ala 565	gcg Ala 550 cac His	Gln 535 ctg Leu ggc Gly	tgc Cys ccg Pro	Gly agc ser cac His	gag Glu gac Asp 570	tgg Trp 555 gcc Ala	Val 540 cta Leu ttc Phe	1908
	Trp 525 gtc Val cag Gln cgc Arg	Phe ttg Leu gat Asp gcc Ala	ctc Leu ggg Gly tcg ser 575	Ala ttc Phe gtg Val 560 ctc Leu tac	tct ser 545 tcc ser agc ser	Arg 530 ccc Pro ggg Gly	ggt Gly ccc Pro gtg Val	Gln gcg Ala ggg Gly ctg Leu 580	Thr gtg Val gcg Ala 565 ccc Pro	gcg Ala 550 cac His gac Asp	Gln 535 ctg Leu ggc Gly ttc Phe	tgc Cys ccg Pro ttg Leu	agc ser cac His cag Gln 585	gag Glu gac Asp 570 ggc Gly	tgg Trp 555 gcc Ala cgg Arg	Val 540 cta Leu ttc Phe gcg Ala	1908 1956
	Trp 525 gtc Val cag Gln cgc Arg	Phe ttg Leu gat Asp gcc Ala ggc Gly 590 gta	ctc Leu ggg Gly tcg ser 575 agc ser	Ala ttc Phe gtg Val 560 ctc Leu tac Tyr	tct ser 545 tcc ser agc ser gtg Val	Arg 530 ccc Pro ggg Gly tgc Cys	ggt Gly ccc Pro gtg Val gcc Ala 595	gcg Ala ggg Gly ctg Leu 580 tgc Cys	Thr gtg Val gcg Ala 565 ccc Pro ttc Phe	gcg Ala 550 cac His gac Asp	Gln 535 ctg Leu ggc Gly ttc Phe agg Arg	tgc Cys ccg Pro ttg Leu ctg Leu 600	agc ser cac His cag Gln 585 ctc Leu	gag Glu gac Asp 570 ggc Gly cac His	tgg Trp 555 gcc Ala cgg Arg	Val 540 cta Leu ttc Phe gcg Ala gac Asp	1908 1956 2004
	Trp 525 gtc Val cag Gln cgc Arg ccc Pro gcc Ala 605 caa	Phe ttg Leu gat Asp gcc Ala ggc Gly 590 gta Val	ctc Leu ggg Gly tcg ser 575 agc ser ccc Pro	Ala ttc Phe gtg Val 560 ctc Leu tac Tyr gcc Ala	tct ser 545 tcc ser agc ser gtg Val ctt Leu	Arg 530 ccc Pro ggg Gly tgc Cys ggg Gly ttc Phe	ggt Gly ccc Pro gtg Val gcc Ala 595 cgc Arg	Gln gcg Ala ggg Gly ctg Leu 580 tgc Cys acc Thr	Thr gtg Val gcg Ala 565 ccc Pro ttc Phe gtg Val ctg	gcg Ala 550 cac His gac Asp gac Asp ccc Pro	Gln 535 ctg Leu ggc Gly ttc Phe agg Arg gtc Val 615 cag	tgc Cys ccg Pro ttg Leu 600 ttc	agc ser cac His cag Gln 585 ctc Leu aca Thr	gag Glu gac Asp 570 ggc Gly cac His ctg Leu	tgg Trp 555 gcc Ala cgg Arg ccg Pro	Val 540 cta Leu ttc Phe gcg Ala gac Asp tcc ser 620 cgt	1908 1956 2004 2052

Ser	Gly	Arg	Leu 640	Gln	Glu	Arg	Ala	Glu 645	Gln	Val	Ser	Arg	Ala 650	Leu	Gln	
					tac Tyr											2244
					gjà aaa											2289
taaa	taaa	agg d	cagad	gctg	3								,			2308
<212	L> 70 2> PE		vn .											,		
<400 Met		Val	Pro.	Trp	Phe	Leu	Leu	Ser	Leu	Ala	Leu	Gly	Arg	Ser	Gln	
~20					-15				.1	-10					-5	
Trp	Ile	Leu	Ser -1	Leu 1	Glu	Arg	Leu-	Val 5	Gly	Pro	Gln	Asp	Ala 10	Thr	His	
Cys	Ser	Pro 15	Gly	Leu	Ser		Arg 20	Leu	Trp	Asp	Ser	Asp 25	Ile	Leu	Сув	
Leu	Pro 30	Gly	Asp	Ile	Val	Pro 35	Ala	Pro	Gly	Pro	Val 40	Leu	Ala	Pro	Thr	
His 45	Leu	Gln	Thr	Glu	Leu 50	Val	Leu	Arg	Cys	Gln 55	Lys	Glu	Thr	Asp	Cys 60	
Ąsp	Leu	Сув	Leu	Arg 65	Val	Ala	Val	His	Leu 70	Ala	Val	His	Gly	His 75	Trp	
Glu	Glu	Pro	Glu 80	Asp	Glu	Glu	Lуs	Phe 85	Gly	Gly	Ala	Ala	Asp 90	Leu	Gly	
Val	Glu	Glu 95	Pro	Arg	Asn	Ala	Ser 100	Leu	Gln	Ala	Gln	Val 105	Val	Leu	Ser	
Phe	Gln 110	Ala	Tyr	Pro	Thr	Ala 115	Arg	Сув	Val	Leu	Leu 120	Glu	Val	Gln	Val	•
Pro 125	Ala	Ala	Leu	Val	Gln 130	Phe	Gly	Gln	Ser	Val 135	Gly	Ser	Val	Val	Tyr 140	
Asp	Сув	Phe	Glu	Ala 145	Ala	Leu	Gly	Ser	Glu 150	Val	Arg	Ile	Trp	Ser 155		
Thr	Gln	Pro	Arg 160	Tyr	Glu	Lys	Glu	Leu 165	Asn	His	Thr	Gln	Gln 170	Leu	Pro	
Asp	Cys	Arg 175	Gly	Leu	Glu	Val	Trp 180	Asn	Ser	Ile	Pro	Ser 185	Сув	Trp	Ala	
Leu	Pro	Trp	Leu	Asn	Val	Ser	Ala	Asp	Gly	Asp	Asn	Val	His	Leu	Val	

	190					195					200				
Leu 205	Asn	Val	Ser	Glu	Glu 210	Gln	His	Phe	Gly	Leu 215	Ser	Leu	Tyr	Trp	Asn 220
Gln	Val	Gln	Gly	Pro 225	Pro	Lys	Pro	Arg	Trp 230	His	Lys	Asn	Leu	Thr 235	Gly
Pro	Gln	Ile	Ile 240	Thr	Leu	Asn	His	Thr 245	Asp	Leu	Val	Pro	Cys 250	Leu	Cys
Ile	Gln	Val 255	Trp	Pro	Leu	Glu	Pro 260	Asp	Ser	Val	Arg	Thr 265	Asn	Ile	Cys
Pro	Phe 270	Arg	Glu	Asp	Pro	Arg 275	Ala	His	Gln	Asn	Leu 280	Trp	Gln	Ala	Ala
Arg 285	Leu	Arg	Leu	Leu	Thr 290	Leu	Gln	Ser	Trp	Leu 295	Leu	Asp	Ala	Pro	Сув 300
Ser	Leu	Pro	Ala	Glu 305	Ala	Ala	Leu	Сув	Trp 310	Arg	Ala	Pro	Gly	Gly 315	Asp
Pro	Cys	Gln	Pro 320	Leu	Val	Pro	Pro	Leu 325	Ser	Trp	Glu	Asn	Val 330	Thr	Val
Asp	Val	Asn 335	Ser	Ser	Glu	ГЛа	Leu 340	Gln	Leu	Gln	Glu	Cys 345	Leu	Trp	Ala
Asp	Ser	Leu	Gly	Pro	Leu	Lys	Asp	Asp	Val	Leu	Leu	Leu	Glu	Thr	Arg
	350					355			•		360				
~ 1		_		_		~	T	Cvs	Δla	Leu	Glu	Dro	Car	~-7	Cara
365	Pro	Gln	Asp	Asn	370	ser	ьец	CID		375		FIO	SCI	GTA	380
365			Asp		370					375					380
365 Thr	Ser	Leu		Ser 385	370 Lys	Ala	Ser	Thr	Arg 390	375 Ala	Ala	Arg	Leu	Gly 395	380 Glu
365 Thr Tyr	Ser	Leu Leu	Pro Gln	Ser 385 Asp	370 Lys Leu	Ala Gln	Ser Ser	Thr Gly 405	Arg 390 Gln	375 Ala Cys	Ala Leu	Arg Gln	Leu Leu 410	Gly 395 Trp	380 Glu Asp
365 Thr Tyr Asp	Ser Leu Asp	Leu Leu Leu 415	Pro Gln 400	Ser 385 Asp	170 Lys Leu Leu	Ala Gln Trp	Ser Ser Ala	Thr Gly 405 Cys	Arg 390 Gln Pro	375 Ala Cys Met	Ala Leu Asp	Arg Gln Lys 425	Leu Leu 410 Tyr	Gly 395 Trp Ile	380 Glu Asp His
365 Thr Tyr Asp Lys	Ser Leu Asp Arg 430	Leu Leu 415 Trp	Pro Gln 400	Ser 385 Asp Ala Leu	170 Lys Leu Leu Val	Ala Gln Trp Trp 435	Ser Ser Ala 420 Leu	Thr Gly 405 Cys Ala	Arg 390 Gln Pro	375 Ala Cys Met Leu	Ala Leu Asp Leu 440	Arg Gln Lys 425 Phe	Leu Leu 410 Tyr	Gly 395 Trp Ile Ala	380 Glu Asp His
365 Thr Tyr Asp Lys Leu 445	Ser Leu Asp Arg 430	Leu Leu 415 Trp	Pro Gln 400 Gly Ala	Ser 385 Asp Ala Leu	170 Lys Leu Leu Val Leu 450	Ala Gln Trp Trp 435 Leu	Ser Ala 420 Leu Lys	Thr Gly 405 Cys Ala	Arg 390 Gln Pro Cys	375 Ala Cys Met Leu His 455	Ala Leu Asp Leu 440	Arg Gln Lys 425 Phe	Leu 410 Tyr Ala Gly	Gly 395 Trp Ile Ala	380 Glu Asp His Ala Leu 460
365 Thr Tyr Asp Lys Leu 445 Arg	Ser Leu Asp Arg 430 Ser	Leu Leu 415 Trp Leu	Pro Gln 400 Gly Ala	Ser 385 Asp Ala Leu Leu Gln 465	170 Lys Leu Leu Val Leu 450 Asp	Ala Gln Trp Trp 435 Leu Val	Ser Ala 420 Leu Lys	Thr Gly 405 Cys Ala Lys Ser	Arg 390 Gln Pro Cys Asp Gly 470	Ala Cys Met Leu His 455	Ala Leu Asp Leu 440 Ala	Arg Gln Lys 425 Phe Lys	Leu 410 Tyr Ala Gly	Gly 395 Trp Ile Ala Trp Gly 475	3800 Gluu Asp
365 Thr Tyr Asp Lys Leu 445 Arg	Ser Leu Asp Arg 430 Ser Leu Ala	Leu Leu 415 Trp Leu Leu	Pro Gln 400 Gly Ala Ile Lys	Ser 385 Asp Ala Leu Leu Gln 465 Leu	170 Lys Leu Leu Val Leu 450 Asp	Ala Gln Trp Trp 435 Leu Val	Ser Ala 420 Leu Lys Arg	Thr Gly 405 Cys Ala Lys Ser Asp 485	Arg 390 Gln Pro Cys Asp Gly 470 Asp	375 Ala Cys Met Leu His 455 Ala Ser	Ala Leu Asp Leu 440 Ala Ala	Arg Gln Lys 425 Phe Lys Ala	Leu Leu 410 Tyr Ala Gly Arg Glu 490	Gly 395 Trp Ile Ala Trp Gly 475 Arg	3800 Glu Asp His Ala Leu 4600 Arg

14

510 515 520 Trp Phe His Ala Gln Arg Arg Gln Thr Leu Gln Glu Gly Gly Val Val 535 Val Leu Leu Phe Ser Pro Gly Ala Val Ala Leu Cys Ser Glu Trp Leu 545 Gln Asp Gly Val Ser Gly Pro Gly Ala His Gly Pro His Asp Ala Phe 565 Arg Ala Ser Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala Pro Gly Ser Tyr Val Gly Ala Cys Phe Asp Arg Leu Leu His Pro Asp 590 Ala Val Pro Ala Leu Phe Arg Thr Val Pro Val Phe Thr Leu Pro Ser 615 Gln Leu Pro Asp Phe Leu Gly Ala Leu Gln Gln Pro Arg Ala Pro Arg Ser Gly Arg Leu Gln Glu Arg Ala Glu Gln Val Ser Arg Ala Leu Gln 645 Pro Ala Leu Asp Ser Tyr Phe His Pro Pro Gly Xaa Ser Ala Pro Gly Arg Gly Val Gly Pro Gly Ala Gly Pro Gly Ala Gly Asp Gly Thr 675

<210> 9

<211> 2109

<212> DNA

<213> reverse translation

<220>

<221> misc feature

<222> (1) .. (2109)

<223> n may be a, c, g, or t

<400> 9

atgcengtne entggttyyt nytnwsnytn genytnggnm gnwsneartg gathytnwsn 60 ytngarmgny tngtnggnee neargaygen aeneaytgyw sneenggnyt nwsntgymgn 120 ytntgggayw sngayathyt ntgyytneen ggngayathg tneengenee nggneengtn 180 ytngeneena eneayytnea raengarytn gtnytnmgnt gyearaarga raengaytgy 240 gayytntgyy tnmgngtnge ngtneayytn gengtneayg gneaytggga rgareengar 300 gaygargara arttyggngg ngengengay ytnggngtng argareenmg naaygenwsn 360 ytneargene argtngtnyt nwsnttyear gentayeena engenmgntg ygtnytnytn 420 gargtnearg tneengenge nytngtnear ttyggnearw sngtnggnws ngtngtntay 480

gaytgyttyg argengenyt nggnwsngar gtnmgnatht ggwsntayac nearcenmgn 540 taygaraarg arytnaayca yacncarcar ytnccngayt gymgnggnyt ngargtntgg 600 aaywsnathc cnwsntgytg ggcnytnccn tggytnaayg tnwsngcnga yggngayaay 660 gtncayytng tnytnaaygt nwsngargar carcayttyg gnytnwsnyt ntaytggaay 720 cargingary gnccnccnaa recnmgntgg cayaaraayy tnacnggncc ncarathath 780 acnytnaayc ayacngayyt ngtnccntgy ytntgyathc argtntggcc nytngarccn 840 gaywsngtnm gnacnaayat htgyccntty mgngargayc cnmgngcnca ycaraayytn 900 tggcargeng enmgnytnmg nytnytnacn ytnearwsnt ggytnytnga ygencentgy 960 wsnytnccng cngargenge nytntgytgg mgngeneeng gnggngayee ntgyeareen 1020 ytngtnccnc cnytnwsntg ggaraaygtn acngtngayg tnaaywsnws ngaraarytn 1080 carythcarg artgyythtg ggcngaywsn ytnggnccny thaargayga ygtnythyth 1140 ytngaracnm gnggnccnca rgayaaymgn wsnytntgyg cnytngarcc nwsnggntgy 1200 acnwsnytnc cnwsnaargc nwsnacnmgn gengenmgny tnggngarta yytnytnear 1260 gayytncarw snggncartg yytncarytn tgggaygayg ayytnggngc nytntgggcn 1320 tgyccnatgg ayaartayat hcayaarmgn tgggcnytng tntggytngc ntgyytnytn 1380 ttygcngcng-cnytnwsnyt-nathytnytn ytnaaraarg aycaygcnaa rggntggytn 1440 mgnytnytna arcargaygt nmgnwsnggn gcngcngcnm gnggnmgngc ngcnytnytn 1500 ytntaywsng cngaygayws nggnttygar mgnytngtng gngcnytngc nwsngcnytn 1560 tgycarytnc cnytnmgngt ngcngtngay ytntggwsnm gnmgngaryt nwsngcncar 1620 ggncengtng entggttyca ygencarmgn mgncaraeny theargargg nggngtngtn 1680 gtnytnytnt tywsnccngg ngcngtngcn ytntgywsng artggytnca rgayggngtn 1740 wsnggnccng gngcncaygg nccncaygay gcnttymgng cnwsnytnws ntgygtnytn 1800 ccngayttyy tncarggnmg ngcnccnggn wsntaygtng gngcntgytt ygaymgnytn 1860 ytncaycong aygongtnoc ngonythtty mgnacngtno cngtnttyac nytnocnwsn 1920 carytneeng ayttyytngg ngenytnear careenmgng encenmgnws nggnmgnytn 1980 cargarmgng cngarcargt nwsnmgngcn ytncarccng cnytngayws ntayttycay 2040 ccnccnggna cnwsngcncc nggnmgnggn gtnggnccng gngcnggncc nggngcnggn 2100 2109 gayggnacn

<210> 10

<211> 2314

<212> DNA

<213> Unknown <220> <223> Description of Unknown Organism:rodent; surmised Mus musculus <220> <221> CDS <222> (199)..(2292) <220> <221> mat peptide <222> (259)..(2292) <400> 10 ccaaatcgaa agcacgggag ctgatactgg gcctggagtc caggctcact ggagtgggga 60 ageatggetg gagaggaatt ctagecettg etetetecea gggacaeggg getgattgte 120 agcagggggg aggggtctgc cccccttgg gggggcagga cggggcctca ggcctgggtg 180 ctgtccggca cctggaag atg cct gtg tcc tgg ttc ctg ctg tcc ttg gca 231 Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala -15 ctg ggc cga aac cct gtg gtc gtc tct ctg gag aga ctg atg gag cct Leu Gly Arg Asn Pro Val Val Val Ser Leu Glu Arg Leu Met Glu Pro ~5 -1 cag gac act gca cgc tgc tct cta ggc ctc tcc tgc cac ctc tgg gat 327 Gln Asp Thr Ala Arg Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp 10 ggt qae gtg ete tge etg eet gga age ete eag tet gee eea gge eet 375 Gly Asp Val Leu Cys Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro 25 gtg cta gtg cct acc cgc ctg cag acg gag ctg gtg ctg agg tgt cca 423 Val Leu Val Pro Thr Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro cag aag aca gat tgc gcc ctc tgt gtc cgt gtg gtc cac ttg gcc 471 Gln Lys Thr Asp Cys Ala Leu Cys Val Arg Val Val His Leu Ala gtg cat ggg cac tgg gca gag cct gaa gaa gct gga aag tct gat tca 519 Val His Gly His Trp Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser 80 qaa ctc caq qag tct agg aac gcc tct ctc cag gcc cag gtg gtg ctc 567 Glu Leu Gln Glu Ser Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu tcc ttc cag gcc tac ccc atc gcc cgc tgt gcc ctg ctg gag gtc cag 615 Ser Phe Gln Ala Tyr Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln 110 663 gtg ccc gct gac ctg gtg cag cct ggt cag tcc gtg ggt tct gcg gta Val Pro Ala Asp Leu Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val 135 120 130

					gct Ala											711
	_	_			tac Tyr	_							_	_	_	759
					ctt Leu											807
															ctg Leu	855
					gag Glu 205										ctg Leu 215	903
					gct Ala											951
					act Thr										ctc Leu	999
tgc	att	cag	gtg	tgg	tcg	cta	gag	cca	gac	tct	qaq	aqq	qtc	gaa	ttc	1047
Cys	Ile	Gln	val		Ser		Glu	Pro-	_		_		_	_		
Cys	Ile	Gln 250	Val		Ser		Glu- 255	Pro-	_		_		_	_		
tgc	ccc	250 ttc	cgg	Trp	Ser gat Asp	Leu	255 ggt	gca	Asp-	-Ser agg	-Glu- aac	Arg 260 ctc	Val tgg	Glu	Phe	1095
tgc Cys gcc	ccc Pro 265	250 ttc Phe	cgg Arg	Trp gaa Glu gta	gat Asp ctg	ccc Pro 270 tcc ser	ggt Gly cca	gca Ala	cac His	agg Arg	aac Asn 275	Arg 260 ctc Leu cta	Val tgg Trp	Glu cac His	Phe	1095
tgc Cys gcc Ala 280	ccc Pro 265 agg Arg	250 ttc Phe ctg Leu	cgg Arg cgg Arg	gaa Glu gta Val	gat Asp ctg Leu	ccc Pro 270 tcc Ser	ggt Gly cca Pro	gca Ala ggg Gly	cac His gta Val	agg Arg tgg Trp 290	aac Asn 275 cag Gln	Arg_ 260 ctc Leu cta Leu	tgg Trp gat Asp	cac His gcg Ala	ata Ile cct Pro 295	
tgc Cys gcc Ala 280 tgc Cys	ccc Pro 265 agg Arg tgt Cys	250 ttc Phe ctg Leu ctg Leu tgc	cgg Arg cgg Arg ccg Pro	gaa Glu gta Val ggc Gly 300	gat Asp ctg Leu 285 aag Lys	ccc Pro 270 tcc Ser gta Val	ggt Gly cca Pro aca Thr	gca Ala ggg Gly ctg Leu	cac His gta Val tgc Cys 305	agg Arg tgg Trp 290 tgg Trp	aac Asn 275 cag Gln cag	Arg- 260 ctc Leu cta Leu gca Ala	tgg Trp gat Asp cca Pro	cac His gcg Ala gac Asp 310	ata Ile cct Pro 295 cag Gln act	1143
tgc Cys gcc Ala 280 tgc Cys agt Ser	ccc Pro 265 agg Arg tgt Cys	250 ttc Phe ctg Leu ctg Leu tgc Cys	cgg Arg cgg Arg ccg Pro cag Gln 315	gaa Glu gta Val ggc Gly 300 cca Pro	gat Asp ctg Leu 285 aag Lys	ccc Pro 270 tcc Ser gta Val gtg Val	ggt Gly cca Pro aca Thr	gca Ala ggg Gly ctg Leu cca Pro 320	cac His gta Val tgc Cys 305 gtg Val	agg Arg tgg Trp 290 tgg Trp ccc Pro	aac Asn 275 cag Gln cag Gln	Arg- 260 ctc Leu cta Leu gca Ala aag Lys	tgg Trp gat Asp cca Pro aac Asn 325	cac His gcg Ala gac Asp 310 gcc Ala	ata Ile cct Pro 295 cag Gln act Thr	1143
tgc Cys gcc Ala 280 tgc Cys agt ser gtg Val	ccc Pro 265 agg Arg tgt Cys ccc Pro aat Asn	250 ttc Phe ctg Leu ctg Leu tgc Cys gag Glu 330 cag	cgg Arg cgg Arg ccg Pro cag Gln 315 cca Pro	gaa Glu gta Val ggc Gly 300 cca Pro caa Gln	gat Asp ctg Leu 285 aag Lys ctt Leu	ccc Pro 270 tcc Ser gta Val gtg Val	ggt Gly cca Pro aca Thr cca Pro cag Gln 335	gca Ala ggg Gly ctg Leu cca Pro 320 ttg Leu	cac His gta Val tgc Cys 305 gtg Val gtg	agg Arg tgg Trp 290 tgg Trp ccc Pro	aac Asn 275 cag Gln cag Gln ggc Gly ctg	Arg_260 ctc Leu cta Leu gca Ala aag Lys cac His 340 caa	tgg Trp gat Asp cca Pro aac Asn 325 ccc Pro	cac His gcg Ala gac Asp 310 gcc Ala aac Asn	Phe ata Ile cct Pro 295 cag Gln act Thr ctc Leu	1143 1191 1239

					aac Asn											1431
					ccc Pro											1479
					caa Gln											1527
					atg Met											1575
					tgg Trp 445											1623
					ttc Phe											1671
					cgc Arg											1719
					ctg											1767
Λla	GIV	ጥላፖሥ														
ALG	QL,	490	GIU	Arg	Leu	vaı	G1y ⁻ 495	AIa	Leu	Ala	-Ser-	Ala 500	Leu	-ser-	-Gln	
atg	cca	490 ctg	cgc.	gtg	gcc Ala	gtg	495 gac	ctg	tgg	agc	cgc	500 cgc	gag	ctg	agc	1815
atg Met gcg	cca Pro 505	490 ctg Leu gga	cgc Arg	gtg Val cta	gcc	gtg Val 510	495 gac Asp	ctg Leu cac	tgg Trp cac	agc Ser	cgc Arg 515 cga	500 cgc Arg	gag Glu cgt	ctg Leu atc	agc Ser ctg	1815
atg Met gcg Ala 520	cca Pro 505 cac His	490 ctg Leu gga Gly	cgc Arg gcc Ala	gtg Val cta Leu	gcc Ala gcc Ala	gtg Val 510 tgg Trp	495 gac Asp ttc Phe	ctg Leu cac His	tgg Trp cac His	agc Ser cag Gln 530	cgc Arg 515 cga Arg	cgc Arg cgc Arg	gag Glu cgt Arg	ctg Leu atc Ile	agc Ser Ctg Leu 535	
atg Met gcg Ala 520 cag Gln	cca Pro 505 cac His gag Glu	deu ctg Leu gga Gly ggt Gly cag	cgc Arg gcc Ala ggc Gly	gtg Val cta Leu gtg Val 540	gcc Ala gcc Ala 525	gtg Val 510 tgg Trp atc Ile	495 gac Asp ttc Phe ctt Leu	ctg Leu cac His ctc Leu	tgg Trp cac His ttc Phe 545	agc Ser cag Gln 530 tcg ser	cgc Arg 515 cga Arg ccc Pro	cgc Arg cgc Arg gcg Ala	gag Glu cgt Arg gcc Ala	ctg Leu atc Ile gtg Val 550	agc Ser ctg Leu 535 gcg Ala	1863
atg Met gcg Ala 520 cag Gln cag	cca Pro 505 cac His gag Glu tgt Cys	den den den den den den den den den den	cgc Arg gcc Ala ggc Gly cag Gln 555	gtg Val cta Leu gtg Val 540 tgg Trp	gcc Ala gcc Ala 525 gta Val	gtg Val 510 tgg Trp atc Ile cag Gln	495 gac Asp ttc Phe ctt Leu ctc Leu agc	ctg Leu cac His ctc Leu cag Gln 560	tgg Trp cac His ttc Phe 545 aca Thr	agc Ser cag Gln 530 tcg Ser gtg Val	cgc Arg 515 cga Arg ccc Pro	cgc Arg cgc Arg gcg Ala ccc Pro	gag Glu cgt Arg gcc Ala ggg Gly 565	ctg Leu atc Ile gtg Val 550 ccg Pro	agc Ser ctg Leu 535 gcg Ala cat His	1863
atg Met gcg Ala 520 cag Gln cag Gln gac Asp	cca Pro 505 cac His gag Glu tgt Cys gcc Ala	d90 ctg Leu gga Gly ggt Gly cag Gln ctc Leu 570 gcg	cgc Arg gcc Ala ggc Gly cag Gln 555 gcc Ala	gtg Val cta Leu gtg Val 540 tgg Trp gcc Ala	gcc Ala gcc Ala 525 gta Val ctg Leu	gtg Val 510 tgg Trp atc Ile cag Gln ctc Leu	495 gac Asp ttc Phe ctt Leu ctc Leu agc ser 575 gtc	ctg Leu cac His ctc Leu cag Gln 560 tgc Cys	tgg Trp cac His ttc Phe 545 aca Thr gtg Val	agc Ser cag Gln 530 tcg Ser gtg Val cta Leu	cgc Arg 515 cga Arg ccc Pro gag Glu ccc Pro	cgc Arg cgc Arg gcg Ala ccc Pro gat Asp 580 gac	gag Glu cgt Arg gcc Ala ggg Gly 565 ttc Phe	ctg Leu atc Ile gtg Val 550 ccg Pro ctg Leu	agc Ser Ctg Leu 535 gcg Ala cat His	1863 1911 1959

															ggc 630		2151
	tcc Ser	act Thr	tcc Ser	gcg Ala 635	eja aaa	cga Arg	ccc Pro	gcg Ala	gac Asp 640	cgg Arg	gtg Val	gaa Glu	cga Arg	gtg Val 645	acc Thr	cag Gln	2199
	gcg Ala	ctg Leu	cgg Arg 650	tcc Ser	gcc Ala	ctg Leu	gac Asp	agc Ser 655	tgt Cys	act Thr	tct Ser	agc Ser	tcg Ser 660	gaa Glu	gcc Ala	cca Pro	2247
	ggc ggc	tgc Cys 665	tgc Cys	gag Glu	gaa Glu	tgg Trp	gac Asp 670	ctg Leu	gga Gly	ccc Pro	tgc Cys	act Thr 675	aca Thr	cta Leu	gaa Glu		2292
	taaa	agco	ga t	cacag	gtatt	c ct	:				٠						2314
	<211 <212)> 11 .> 69 !> PF !> Ur	8 RT	wn													
)> 11 Pro		Ser	Trp	Phe -15	Leu	Leu	Ser	Leu	Ala -10	Leu	Gly	Arg	Asn	Pro -5	
_	Val	Val	Val	Ser -1	Leu 1	Glu	Arg	Leu	Met 5		Pro	Gln	Asp	Thr 10	Ala	Arg	
	Cys	Ser	Leu 15	Gly	Leu	Ser	Cys	His 20	Leu	Trp	Asp	Gly	Asp 25	Val	Leu	Сув	
	Leu	Pro 30	Gly	Ser	Leu	Gln	Ser 35	Ala	Pro	Gly	Pro	Val 40	Leu	Val	Pro	Thr	
	Arg 45	Leu	Gln	Thr	Glu	Leu 50	Val	Leu	Arg	Cys	Pro 55	Gln	Lys	Thr	Asp	Сув 60	
	Ala	Leu	Cys	Val	Arg 65	Val	Val	Val	His	Leu 70	Ala	Val	His	Gly	His 75	Trp	
	Ala	Glu	Pro	Glu 80	Glu	Ala	Gly	Lys	Ser 85	Asp	Ser	Glu	Leu	Gln 90	Glu	Ser	
	Arg	Asn	Ala 95	Ser	Leu	Gln	Ala	Gln 100	Val	Val	Leu	Ser	Phe 105	Gln	Ala	Tyr	
	Pro	Ile 110	Ala	Arg	Cys	Ala	Leu 115	Leu	Glu	Val	Gln	Val 120	Pro	Ala	Asp	Leu	
	Val 125	Gln	Pro	Gly	Gln	Ser 130	Val	Gly	Ser	Ala	Val 135	Phe	Asp	Сув	Phe	Glu 140	
	Ala	Ser	Leu	Gly	Ala 145	Glu	Val	Gln	Ile	Trp 150	Ser	Tyr	Thr	Lys	Pro 155	Arg	
	Tyr	Gln	Lys	Glu	Leu	Asn	Leu	Thr	Gln	Gln	Leu	Pro	Asp	Cys	Arg	Gly	

			100					100					170		
Leu	Glu	Val 175	Arg	Asp	Ser	Ile	Gln 180	Ser	Сув	Trp	Val	Leu 185	Pro	Trp	Let
Asn	Val 190	Ser	Thr	Asp	Gly	Asp 195	Asn	Val	Leu	Leu	Thr 200	Leu	Asp	Val	Ser
Glu 205	Glu	Gln	Asp		Ser 210	Phe	Leu	Leu	Tyr	Leu 215	Arg	Pro	Val	Pro	Asp 220
Ala	Leu	ГÀЗ	Ser	Leu 225	Trp	Tyr	ГÀЗ	Asn	Leu 230	Thr	Gly	Pro	Gln	Asn 235	Ile
Thr	Leu	Asn	His 240	Thr	Asp	Leu	Val	Pro 245	Сув	Leu	Cys	Ile	Gln 250	Val	Trp
Ser	Leu	Glu 255	Pro	Asp	Ser	Glu	Arg 260	Val	Glu	Phe	Сув	Pro 265	Phe	Arg	Glu
Asp	Pro 270	Gly	Ala	His	Arg	Asn 275	Leu	Trp	His	Ile	Ala 280	Arg	Leu	Arg	Val
Leu 285	Ser	Pro	Gly	Val	Trp 290	Gln	Leu	Asp	Ala	Pro 295	Cys	Cys	Leu	Pro	Gly 300
ГÀв	Val	Thr	Leu	Cys 305	Trp	Gln	Ala	Pro	Asp 310	Gln	Ser	Pro	Сув	Gln 315	Pro
Leu	Val	Pro	Pro -320-			Gln								Pro	Gln
Asp	Phe	Gln 335	Leu	Val	Ala	Gly	His 340	Pro	Asn	Leu	Cys	Val 345	Gln	Val	Ser
Thr	Trp 350	Glu	ГЛЗ	Val	Gln	Leu 355	Gln	Ala	Сув	Leu	Trp 360	Ala	Asp	Ser	Leu
Gly 365	Pro	Phe	ьуз	Asp	Asp 370	Met	Leu	Leu	Val	Glu 375	Met	ГЛЗ	Thr	Gly	Leu 380
Asn	Asn	Thr	Ser	Val 385	сув	Ala	Leu	Glu	Pro 390	Ser	Gly	Сув	Thr	Pro 395	Leu
Pro	Ser	Met	Ala 400	Ser	Thr	Arg	Ala	Ala 405	Arg	Leu	Gly	Glu	Glu 410	Leu	Leu
Gln	Asp	Phe 415	Arg	Ser	His	Gln	Cys 420	Met	Gln	Leu	Trp	Asn 425	Asp	Asp	Asn
Met	Gly 430	Ser	Leu	Trp	Ala	Сув 435	Pro	Met	Asp	Lys	Tyr 440	Ile	His	Arg	Arg
Trp 445	Val	Leu	Val	Trp	Leu 450	Ala	Сув	Leu	Leu	Leu 455	Ala	Ala	Ala	Leu	Phe 460
Phe	Phe	Leu	Leu	Leu 465	ГÀЗ	ГЛЗ	Asp	Arg	Arg 470	ГÀЗ	Ala	Ala	Arg	Gly 475	Ser
Arq	Thr	Ala	Leu	Leu	Leu	His	Ser	Ala	Asp	Gly	Ala	Gly	Tyr	Glu	Arg

21

480 485 490 Leu Val Gly Ala Leu Ala Ser Ala Leu Ser Gln Met Pro Leu Arg Val 495 Ala Val Asp Leu Trp Ser Arg Glu Leu Ser Ala His Gly Ala Leu 515 Ala Trp Phe His His Gln Arg Arg Ile Leu Gln Glu Gly Val 535 Val Ile Leu Leu Phe Ser Pro Ala Ala Val Ala Gln Cys Gln Gln Trp 550 Leu Gln Leu Gln Thr Val Glu Pro Gly Pro His Asp Ala Leu Ala Ala Trp Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala Thr Gly Arg Tyr Val Gly Val Tyr Phe Asp Gly Leu Leu His Pro Asp Ser Val 590 595 Pro Ser Pro Phe Arg Val Ala Pro Leu Phe Ser Leu Pro Ser Gln Leu 610 615 Pro Ala Phe Leu Asp Ala Leu Gln Gly Gly Cys Ser Thr Ser Ala Gly Arg Pro Ala Asp Arg Val Glu Arg Val Thr Gln Ala Leu Arg Ser Ala -645 Leu Asp Ser Cys Thr Ser Ser Ser Glu Ala Pro Gly Cys Cys Glu Glu 665 Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu 670 675

<210> 12

<211> 2094

<212> DNA

<213> reverse translation

<220>

<221> misc feature

<222> (1)..(2094)

<223> n may be a, c, g, or t

<400> 12

atgccngtnw sntggttyyt nytnwsnytn gcnytnggnm gnaayccngt ngtngtnwsn 60 ytngarmgny tnatggarcc ncargayacn gcnmgntgyw snytnggnyt nwsntgycay 120 ythtgggayg gngaygtnyt ntgyythccn ggnwsnythc arwsngcncc nggnccngtn 180 ytngtnccna cnmgnytnca racngarytn gtnytnmgnt gyccncaraa racngaytgy 240 gcnytntgyg tnmgngtngt ngtncayytn gcngtncayg gncaytgggc ngarccngar 300

WO 01/90358 PCT/US01/16767

22

gargenggna arwsngayws ngarytnear garwsnmgna aygenwsnyt neargenear 360 gtngtnytnw snttycargc ntayccnath gcnmgntgyg cnytnytnga rgtncargtn 420 congongayy tngtncarco nggncarwsn gtnggnwsng ongtnttyga ytgyttygar 480 gcnwsnytng gngcngargt ncarathtgg wsntayacna arccnmgnta ycaraargar 540 ytnaayytna cncarcaryt nccngaytgy mgnggnytng argtnmgnga ywsnathcar 600 wsntgytggg tnytnccntg gytnaaygtn wsnacngayg gngayaaygt nytnytnacn 660 ytngaygtnw sngargarca rgayttywsn ttyytnytnt ayytnmgncc ngtnccngay 720 gcnytnaarw snytntggta yaaraayytn acnggnccnc araayathac nytnaaycay 780 acngayytng tnccntgyyt ntgyathcar gtntggwsny tngarccnga ywsngarmgn 840 gtngarttyt gyccnttymg ngargayccn ggngcncaym gnaayytntg gcayathgcn 900 mgnytnmgng tnytnwsncc nggngtntgg carytngayg cnccntgytg yytnccnggn 960 aargtnacny tntgytggca rgcnccngay carwsnccnt gycarccnyt ngtnccnccn 1020 gtnccncara araaygcnac ngtnaaygar ccncargayt tycarytngt ngcnggncay 1080 ccnaayytnt gygtncargt nwsnachtgg garaargtnc arythcargc htgyythtgg 1140 gcngaywsny tnggnccntt yaargaygay atgytnytng tngaratgaa racnggnytn 1200 aayaayacnw-sngtntgygc-nytngarcen-wsnggntgya-eneenytnee-nwsnatggen—1260wsnacnmgng cngcnmgnyt nggngargar ytnytncarg ayttymgnws ncaycartgy 1320 atgcarytnt ggaaygayga yaayatgggn wsnytntggg cntgyccnat ggayaartay 1380 athcaymgnm gntgggtnyt ngtntggytn gcntgyytny tnytngcngc ngcnytntty 1440 ttyttyytny tnytnaaraa rgaymgnmgn aargengenm gnggnwsnmg naengenytn 1500 ytnytncayw sngcngaygg ngcnggntay garmgnytng tnggngcnyt ngcnwsngcn 1560 ytnwsncara tgccnytnmg ngtngcngtn gayytntggw snmgnmgnga rytnwsngcn 1620 cayggngcny tngcntggtt ycaycaycar mgnmgnmgna thytncarga rggnggngtn 1680 gtnathytny tnttywsnec ngengengtn geneartgye areartggyt nearytnear 1740 acngtngarc cnggnccnca ygaygcnytn gengentggy tnwsntgygt nytneengay 1800 ttyytncarg gnmgngcnac nggnmgntay gtnggngtnt ayttygaygg nytnytncay 1860 ccngaywang tnccnwance nttymgngtn geneenytht tywanythce nwancaryth 1920 congenttyy tngaygonyt nearggnggn tgywsnacnw sngenggnmg neengengay 1980 mgngtngarm gngtnacnca rgcnytnmgn wsngcnytng aywsntgyac nwsnwsnwsn 2040 2094 gargeneeng gntgytgyga rgartgggay ytnggneent gyacnaenyt ngar

```
<210> 13
<211> 2786
<212> DNA
<213> Unknown
<220>
<223> Description of Unknown Organism:primate; surmised
      Homo sapiens
<220>
<221> CDS
<222> (70)..(2283)
<220>
<221> mat peptide
<222> (118)..(2283)
<220>
<221> misc feature
<222> (9)..(134)
<223> Xaa translation (9, 18,26, 109,120, 134) depends
      on genetic code
<400> 13
cccacgente egggecagea gegggeggec ggggegeaga gaaeggeetg getgggegag 60
egeaeggee atg gee eeg tgg etg eag etc tge tee gte tte ttt acg gte 111
          Met Ala Pro Trp Leu Gln Leu Cys Ser Val Phe Phe Thr Val
aac gcc tgc ctc aac ggc tcg cag ctg gct gtn gcc gct ggc ggg tcc
                                                                   159
Asn Ala Cys Leu Asn Gly Ser Gln Leu Ala Xaa Ala Ala Gly Gly Ser
                                                                   207
ggc cgc gcg cng ggc gcc gac acc tgt agc tgg ang gga gtg ggg cca
Gly Arg Ala Xaa Gly Ala Asp Thr Cys Ser Trp Xaa Gly Val Gly Pro
                                                                   255
gcc agc aga aac agt ggg ctg tac aac atc acc ttc aaa tat gac aat
Ala Ser Arg Asn Ser Gly Leu Tyr Asn Ile Thr Phe Lys Tyr Asp Asn
tgt acc acc tac ttg aat cca gtg ggg aag cat gtg att gct gac gcc
                                                                   303
Cys Thr Thr Tyr Leu Asn Pro Val Gly Lys His Val Ile Ala Asp Ala
cag aat atc acc atc agc cag tat gct tgc cat gac caa gtg gca gtc
                                                                   351
Gln Asn Ile Thr Ile Ser Gln Tyr Ala Cys His Asp Gln Val Ala Val
                                                                   399
acc att ctt tgg tcc cca ggg gcc ctc ggc atc gaa ttc ctg aaa gga
Thr Ile Leu Trp Ser Pro Gly Ala Leu Gly Ile Glu Phe Leu Lys Gly
ttt cgg gta ata ctg gag gag ctg aag tcg gag gga aga cag ngc caa
                                                                   447
Phe Arg Val Ile Leu Glu Glu Leu Lys Ser Glu Gly Arg Gln Xaa Gln
                    100
                                         105
                                                                   495
caa ctg att cta aag gat ccg aag cag ntc aac agt agc ttc aaa aga
```

Gln	Leu	Ile	Leu	Lys 115	Asp	Pro	Lys	Gln	Xaa 120	Asn	Ser	Ser	Phe	Lys 125	Arg	
	gga Gly															543
	ttc Phe															591
	cct Pro 160															639
	aat Asn															687
	cag Gln															735
Asn	ttc Phe	ĞÎy	Phe 210	Arg	Phe	Phe	Tyr	Leu 215	His	Tyr	Lys	Leu	Lys 220	His	Glu	783
Gly	cct Pro	Phe 225	Lys	Arg	Lys	Thr	Сув 230	Lys	Gln	Glu	Gln	Thr 235	Thr	Glu	Met	831
acc	agc	tgc	ctc	ctt	caa	aat	gtt	tct	cca	999	gat	tat	ata	att	gag	879
Thr	240					245					250					
Thr ctg Leu 255	240 gtg Val	gat Asp	gac Asp	act Thr	aac Asn 260	245 aca Thr	aca Thr	aga Arg	aaa Lys	gtg Val 265	250 atg Met	cat His	tat Tyr	gcc Ala	tta Leu 270	927
Thr ctg Leu 255 aag Lys	gtg Val cca Pro	gat Asp gtg Val	gac Asp cac His	act Thr tcc ser 275	aac Asn 260 ccg Pro	245 aca Thr tgg Trp	aca Thr gcc Ala	aga Arg ggg Gly	aaa Lys ccc Pro 280	gtg Val 265 atc Ile	atg Met aga Arg	cat His gcc Ala	tat Tyr gtg Val	gcc Ala gcc Ala 285	tta Leu 270 atc Ile	975
Thr ctg Leu 255 aag Lys aca Thr	gtg Val cca Pro gtg Val	gat Asp gtg Val cca Pro	gac Asp cac His ctg Leu 290	act Thr tcc Ser 275 gta Val	aac Asn 260 ccg Pro gtc Val	aca Thr tgg Trp ata Ile	aca Thr gcc Ala tcg ser	aga Arg 999 Gly gca Ala 295	aaa Lys ccc Pro 280 ttc	gtg Val 265 atc Ile gcg Ala	atg Met aga Arg acg Thr	cat His gcc Ala ctc Leu	tat Tyr gtg Val ttc Phe 300	gcc Ala gcc Ala 285 act Thr	tta Leu 270 atc Ile gtg Val	975
Thr ctg Leu 255 aag Lys aca Thr	240 gtg Val cca Pro	gat Asp gtg Val cca Pro	gac Asp cac His ctg Leu 290	act Thr tcc Ser 275 gta Val	aac Asn 260 ccg Pro gtc Val	aca Thr tgg Trp ata Ile	aca Thr gcc Ala tcg ser	aga Arg ggg Gly gca Ala 295	aaa Lys ccc Pro 280 ttc Phe	gtg Val 265 atc Ile gcg Ala	250 atg Met aga Arg acg Thr	cat His gcc Ala ctc Leu	tat Tyr gtg Val ttc Phe 300	gcc Ala gcc Ala 285 act Thr	tta Leu 270 atc Ile gtg Val	975
Thr ctg Leu 255 aag Lys aca Thr atg Met gag Glu	240 gtg Val cca Pro gtg Val tgc Cys agc Ser 320	gat Asp gtg Val cca Pro cgc Arg 305 tct	gac Asp Cac His Ctg Leu 290 aag Lys	act Thr tcc Ser 275 gta Val aag Lys tct	aac Asn 260 ccg Pro gtc Val caa Gln tcc Ser	245 aca Thr tgg Trp ata Ile caa Gln aca Thr 325	aca Thr gcc Ala tcg ser gaa Glu 310 tac	aga Arg ggg Gly gca Ala 295 aat Asn	aaa Lys ccc Pro 280 ttc Phe ata Ile	gtg Val 265 atc Ile gcg Ala tat Tyr	atg Met aga Arg acg Thr tca ser ctc Leu 330	cat His gcc Ala ctc Leu cat His 315 cca Pro	tat Tyr gtg Val ttc Phe 300 tta Leu aga Arg	gcc Ala gcc Ala 285 act Thr gat Asp	tta Leu 270 atc Ile gtg Val gaa Glu agg Arg	975
Thr ctg Leu 255 aag Lys aca Thr atg Met gag Glu ctc Leu 335	240 gtg Val cca Pro gtg Val tgc Cys agc Ser	gat Asp gtg Val cca Pro cgc Arg 305 tct ser ccg	gac Asp cac His ctg Leu 290 aag Lys gag Glu cgg Arg	act Thr tcc ser 275 gta Val aag Lys tct ser ccg Pro	aac Asn 260 ccg Pro gtc Val caa Gln tcc Ser aag Lys 340	aca Thr tgg Trp ata Ile caa Gln aca Thr 325 gtc Val	aca Thr gcc Ala tcg ser gaa Glu 310 tac Tyr ttt Phe	aga Arg Gly gca Ala 295 aat Asn act Thr	aaa Lys ccc Pro 280 ttc Phe ata Ile gca Ala	gtg Val 265 atc Ile gcg Ala tat Tyr gca Ala tat Tyr	atg Met aga Arg acg Thr tca Ser ctc Leu 330 tcc Ser	cat His gcc Ala ctc Leu cat His 315 cca Pro	tat Tyr gtg Val ttc Phe 300 tta Leu aga Arg	gcc Ala gcc Ala 285 act Thr gat Asp	tta Leu 270 atc Ile gtg Val gaa Glu agg Arg ggc Gly 350	975 1023 1071

25

Gln	Asn	His	Met	Asn 355	Val	Val	Gln	Cys	Phe 360	Ala	Tyr	Phe	Leu	Gln 365	Asp	
														agc Ser		1263
														gag Glu		1311
cag Gln	ttc Phe 400	atc Ile	att Ile	gtg Val	gtt Val	tgt Cys 405	tcc Ser	aaa Lys	ggt Gly	atg Met	aag Lys 410	tac Tyr	ttt Phe	gtg Val	gac Asp	1359
														aaa Lys		1407
gag Glu	ctc Leu	ttc Phe	ctg Leu	gtg Val 435	gcg Ala	gtg Val	tca Ser	gcc Ala	att Ile 440	gcc Ala	gaa Glu	aag Lys	ctc Leu	cgc Arg 445	cag Gln	1455
gcc Ala	aag Lys	cag Gln	agt Ser 450	tcg Ser	tcc Ser	gcg Ala	gcg Ala	ctc Leu 455	agc Ser	aag Lys	ttt Phe	atc Ile	gcc Ala 460	gtc Val	tac Tyr	1503
 ttt Phe	gat Asp	tat Tyr 465	tcc Ser	tgc Cys	gag Glu	gga Gly	gac Asp 470	gtc Val	ccc Pro	ggt Gly	atc Ile	cta Leu 475	gac Asp	ctg Leu	agt Ser	1551
														cac His		1599
														cga Arg		1647
ggc	agc Ser	aga Arg	agg Arg	aac Asn 515	tac Tyr	ttc Phe	cgg Arg	agc Ser	aag Lys 520	tca Ser	gly ggc	cgg Arg	tcc Ser	cta Leu 525	tac Tyr	1695
														gac Asp		1743
													Arg	tac Tyr		1791
														gat Asp		1839
														gag Glu		1887
gct	gtt	ctt	ggg	gca	acc	gga	cca	gcc	gac	tcc	cag	cac	gag	agt	cag	1935

Ala	Val	Leu	Gly	Ala 595	Thr	Gly	Pro	Ala	Asp 600	Ser	Gln	His	Glu	Ser 605	Gln	
cat His	gly aaa	ggc Gly	ctg Leu 610	gac Asp	caa Gln	gac Asp	gjå aaa	gag Glu 615	gcc Ala	cgg Arg	cct Pro	gcc Ala	ctt Leu 620	gac Asp	gly	1983
					ccc											2031
tcg Ser	gac Asp 640	atg Met	ccg Pro	cgg Arg	gac Asp	tca Ser 645	ggc	atc Ile	tat Tyr	gac Asp	tcg Ser 650	tct Ser	gtg Val	ccc Pro	tca Ser	2079
					cca Pro 660											2127
gaa Glu	acg Thr	tct Ser	tcc Ser	ctg Leu 675	acg Thr	gag Glu	agc Ser	gtg Val	tcc Ser 680	tcc Ser	tct Ser	tca Ser	gly ggc	ctg Leu 685	ggt Gly	2175
					gcc Ala											2223
	Lys	Ala	Asp	Leu	ggt Gly	Сув	Arg									2271
_	gcc Ala 720		_	taad	caaaa	acg a	aaga	agtet	ca aç	gcatt	tgcca	a ctt	tago	etge		2323
tgc	ctcc	ctc 1	tgati	taca	ca go	ctcai	ctc	c cts	gtt	gcat	ggc	ccact	tg g	gagct	gaggt	2383
ctc	ataca	aag g	gatai	tttg	ga gt	gaaa	atgct	gg	ccagt	act	tgtt	ctc	cat t	gaad	ccaacc	2443
ctt	tacc	gga t	tatc	ttga	ca aa	actci	ccaa	a tti	tcta	aaaa	tgat	atg	gag d	ctcts	gaaagg	2503
cat	gtcc	ata a	aggto	ctga	ca a	caget	tgc	c aaa	attt	ggtt	agto	cctt	gga 1	tcaga	agcctg	2563
ttg	tggg	agg 1	tagg	gagg	aa at	tatg	caaa	g aaa	aaaca	agga	agat	cacct	gc a	acta	atcatt	2623
			,												gaaat	
gct	ttgt	gaa a	aaaa	ggca	ct ti	ttaad	catca	a tag	gcca	caga	aato	caagt	ge (cagto	ctatct	
gga	atcca	atg 1	ttgt	attg	ca g	ataa	tgtt	c tca	attta	attt	ttg					2786

<210> 14

<211> 738

<212> PRT

<213> Unknown

<400> 14

Met Ala Pro Trp Leu Gln Leu Cys Ser Val Phe Phe Thr Val Asn Ala
-15 -10 -5 -1

Cys 1	ьец	ASII	GTA	5	GIII	пеп	Ala	Add	10	ATG	GIY	GIY	Der	15	ALG
Ala	Xaa	Gly	Ala 20	Asp	Thr	Cys	Ser	Trp 25	Xaa	Gly	Val	Gly	Pro 30		Ser
Arg	Asn	Ser 35	Gly	Leu	Tyr	Asn	Ile 40	Thr	Phe	Lys	Tyr	Asp 45	Asn	Cys	Thr
Thr	Tyr 50	Leu	Asn	Pro	Val	Gly 55	Lys	His	Val	Ile	Ala 60	Asp	Ala	Gln	Asn
Ile 65	Thr	Ile	Ser	Gln	Tyr 70	Ala	Сув	His	Asp	Gln 75	Val	Ala	Val	Thr	Ile 80
Leu	Trp	Ser	Pro	Gly 85	Ala	Leu	Gly	Ile	Glu 90	Phe	Leu	Lys	Gly	Phe 95	Arg
Val	Ile	Leu	Glu 100	Glu	Leu	Lys	Ser	Glu 105	Gly	Arg	Gln	Xaa	Gln 110	Gln	Leu
Ile	Leu	Lув 115	Asp	Pro	Lys	Gln	Xaa 120	Asn	Ser	Ser	Phe	Lys 125	Arg	Thr	Gly
Met	Glu 130	Ser	Gln	Pro	Xaa	Leu 135	Asn	Met	Lys	Phe	Glu 140	Thr	Asp	Tyr	Phe
Val 145	Arg	Leu	Ser	Phe	Ser 150	Phe	Ile	ГÀЗ	Asn	Glu 155	Ser	Asn	Tyr	His	Pro 160
Phe	Phe	Phe	Arg	Thr 165	Arg	Ala	Сув	Asp	Leu 170	Leu	Leu	Gln	Pro	Asp 175	Asn
				165	Arg Phe		_	_	170					175	
Leu	Ala	Сув	Lys 180	165 Pro	_	Trp	Lys	Pro 185	170 Arg	Asn	Leu	Asn	Ile 190	175 Ser	Gln
Leu His	Ala Gly	Cys Ser 195	Lys 180 Asp	165 Pro Met	Phe	Trp Val	Lys Ser 200	Pro 185 Phe	170 Arg Asp	Asn His	Leu Ala	Asn Pro 205	Ile 190 His	175 Ser Asn	Gln Phe
Leu His Gly	Ala Gly Phe 210	Cys Ser 195 Arg	Lys 180 Asp	Pro Met	Phe	Trp Val Leu 215	Lys Ser 200 His	Pro 185 Phe Tyr	170 Arg Asp Lys	Asn His Leu	Leu Ala Lys 220	Asn Pro 205 His	Ile 190 His Glu	175 Ser Asn Gly Thr	Gln Phe Pro
Leu His Gly Phe 225	Ala Gly Phe 210 Lys	Cys Ser 195 Arg	Lys 180 Asp Phe	Pro Met Phe	Phe Gln Tyr Cys	Trp Val Leu 215 Lys	Lys Ser 200 His	Pro 185 Phe Tyr	170 Arg Asp Lys Gln	Asn His Leu Thr 235	Leu Ala Lys 220 Thr	Asn Pro 205 His	Ile 190 His Glu Met	175 Ser Asn Gly Thr	Gln Phe Pro Ser 240
Leu His Gly Phe 225 Cys	Ala Gly Phe 210 Lys Leu	Cys Ser 195 Arg Arg	Lys 180 Asp Phe Lys	165 Pro Met Phe Thr Asn 245	Phe Gln Tyr Cys 230	Trp Val Leu 215 Lys Ser	Lys Ser 200 His Gln	Pro 185 Phe Tyr Glu	170 Arg Asp Lys Gln Asp 250	Asn His Leu Thr 235	Leu Ala Lys 220 Thr	Asn Pro 205 His Glu	Ile 190 His Glu Met	175 Ser Asn Gly Thr Leu 255	Gln Phe Pro Ser 240 Val
Leu His Gly Phe 225 Cys	Ala Gly Phe 210 Lys Leu Asp	Cys Ser 195 Arg Arg Leu	Lys 180 Asp Phe Lys Gln Asn 260	165 Pro Met Phe Thr Asn 245 Thr	Phe Gln Tyr Cys 230 Val	Trp Val Leu 215 Lys Ser	Lys Ser 200 His Gln Pro	Pro 185 Phe Tyr Glu Gly Val 265	Arg Asp Lys Gln Asp 250 Met	Asn His Leu Thr 235 Tyr	Leu Ala Lys 220 Thr Ile	Asn Pro 205 His Glu Ile	Ile 190 His Glu Met Glu Leu 270	175 Ser Asn Gly Thr Leu 255 Lys	Gln Phe Pro Ser 240 Val
Leu His Gly Phe 225 Cys Asp	Ala Gly Phe 210 Lys Leu Asp	Ser 195 Arg Arg Leu Thr	Lys 180 Asp Phe Lys Gln Asn 260	165 Pro Met Phe Thr Asn 245 Thr	Phe Gln Tyr Cys 230 Val	Trp Val Leu 215 Lys Ser Arg	Lys Ser 200 His Gln Pro Lys Pro 280	Pro 185 Phe Tyr Glu Gly Val 265 Ile	170 Arg Asp Lys Gln Asp 250 Met	Asn His Leu Thr 235 Tyr His	Leu Ala Lys 220 Thr Ile Tyr	Asn Pro 205 His Glu Ile Ala Ala 285	Ile 190 His Glu Met Glu Leu 270 Ile	175 Ser Asn Gly Thr Leu 255 Lys	Gln Phe Pro Ser 240 Val Pro

Ser	Glu	Ser	Ser	Thr 325	Tyr	Thr	Ala	Ala	Leu 330	Pro	Arg	Glu	Arg	Leu 335	Arg
Pro	Arg	Pro	Lys 340	Val	Phe	Leu	Cys	Tyr 345	Ser	Ser	ГЛЗ	Asp	Gly 350	Gln	Asn
His	Met	Asn 355	Vaĺ	Val	Gln	Сув	Phe 360	Ala	Tyr	Phe	Leu	Gln 365	Asp	Phe	Сув
Gly	Cys 370	Glu	Val	Ala	Leu	Asp 375	Leu	Trp	Glu	Asp	Phe 380	Ser	Leu	Сув	Arg
Glu 385	Gly	Gln	Arg	Glu	Trp 390	Val	Ile	Gln	Lys	Ile 395	His	Glu	Ser	Gln	Phe 400
Ile	Ile	Val	Val	Сув 405	Ser	Lys	Gly	Met	Lys 410	Tyr	Phe	Val	Asp	Lys 415	Lys
Asn	Tyr	ГЛS	His 420	Lys	Gly	Gly	_	Arg 425	Gly	Ser	Gly	Lys	Gly 430	Glu	Leu
Phe	Leu	Val 435	Ala	Val	Ser	Ala	Ile 440	Ala	Glu	Lys	Leu	Arg 445	Gln	Ala	ГÀЗ
Gln	Ser 450	Ser	Ser	Ala	Ala	Leu 455	Ser	Lys	Phe	Ile	Ala 460	Val	Tyr	Phe	Asp
Tyr 465		Сув	Glu	Gly	Asp 470	Val	Pro	Gly	Ile	Leu 475	Asp	Leu	Ser	Thr	Lys 480
Tyr	Arg	Leu	Met	Asp 485	Asn	Leu	Pro	Gln	Leu 490	Суз	Ser	His	Leu	His 495	Ser
-	_			485	Asn Gln				490					495	
Arg	Asp	His	Gly 500	485 Leu	Gln	Glu	Pro	Gly 505	490 Gln	His	Thr	Arg	Gln 510	495 Gly	
Arg	Asp	His Asn 515	Gly 500 Tyr	485 Leu Phe	Gln Arg	Glu Ser	Pro Lys 520	Gly 505 Ser	490 Gln Gly	His Arg	Thr Ser	Arg Leu 525	Gln 510 Tyr	495 Gly Val	Ser
Arg Arg	Asp Arg Cys 530	His Asn 515 Asn	Gly 500 Tyr Met	485 Leu Phe His	Gln Arg Gln	Glu Ser Phe 535	Pro Lys 520 Ile	Gly 505 Ser Asp	dely Glu	His Arg Glu	Thr Ser Pro 540	Arg Leu 525 Asp	Gln 510 Tyr Trp	495 Gly Val	Ser Ala
Arg Arg Ile Lys 545	Asp Arg Cys 530 Gln	His Asn 515 Asn Phe	Gly 500 Tyr Met Val	485 Leu Phe His	Gln Arg Gln Phe	Glu Ser Phe 535 His	Pro Lys 520 Ile Pro	Gly 505 Ser Asp	490 Gln Gly Glu Pro	His Arg Glu Leu 555	Thr Ser Pro 540 Arg	Arg Leu 525 Asp	Gln 510 Tyr Trp Arg	495 Gly Val Phe	Ser Ala Glu Pro 560
Arg Ile Lys 545 Val	Asp Cys 530 Gln Leu	His Asn 515 Asn Phe Glu	Gly 500 Tyr Met Val	485 Leu Phe His Pro	Gln Arg Gln Phe 550 Asp	Glu Ser Phe 535 His	Pro Lys 520 Ile Pro	Gly 505 Ser Asp Pro	490 Gln Gly Glu Pro Val 570	His Arg Glu Leu 555 Leu	Thr Ser Pro 540 Arg	Arg Leu 525 Asp Tyr	Gln 510 Tyr Trp Arg Val	495 Gly Val Phe Glu Met 575	Ser Ala Glu Pro 560
Arg Ile Lys 545 Val	Asp Cys 530 Gln Leu Pro	His Asn 515 Asn Phe Glu Gly	Gly 500 Tyr Met Val Lys	485 Leu Phe His Pro Phe 565 Glu	Gln Arg Gln Phe 550 Asp	Glu Ser Phe 535 His Ser	Pro Lys 520 Ile Pro Gly Phe	Gly 505 Ser Asp Pro Leu Cys 585	Glu Glu Pro Val 570 Leu	His Arg Glu Leu 555 Leu	Thr Ser Pro 540 Arg Asn	Arg Leu 525 Asp Tyr Asp	Gln 510 Tyr Trp Arg Val	495 Gly Val Phe Glu Met 575 Ala	Ser Ala Glu Pro 560 Cys
Arg Ile Lys 545 Val Lys	Asp Cys 530 Gln Leu Pro	Asn 515 Asn Phe Glu Gly Ala 595	Gly 500 Tyr Met Val Lys Pro 580	A85 Leu Phe His Pro Phe 565 Glu Gly	Gln Arg Gln Phe 550 Asp Ser	Glu Ser Phe 535 His Ser Asp	Pro Lys 520 Ile Pro Gly Phe Asp 600	Gly 505 Ser Asp Pro Leu Cys 585 Ser	Glu Glu Pro Val 570 Leu Gln	His Arg Glu Leu 555 Leu Lys	Thr Ser Pro 540 Arg Asn Val	Arg Leu 525 Asp Tyr Asp Glu Ser 605	Gln 510 Tyr Trp Arg Val Ala 590 Gln	495 Gly Val Phe Glu Met 575 Ala	Ser Ala Glu Pro 560 Cys

WO 01/90358 PCT/US01/16767

29

Met Pro Arg Asp Ser Gly Ile Tyr Asp Ser Ser Val Pro Ser Ser Glu
655

Leu Ser Leu Pro Leu Met Glu Gly Leu Ser Thr Asp Gln Thr Glu Thr
660 665 670

Ser Ser Leu Thr Glu Ser Val Ser Ser Ser Ser Gly Leu Gly Glu Glu
675 680 685

Glu Pro Pro Ala Leu Pro Ser Lys Leu Leu Ser Ser Gly Ser Cys Lys 690 695 700

Ala Asp Leu Gly Cys Arg Ser Tyr Thr Asp Glu Leu His Ala Val Ala 705 710 715 720

Pro Leu

<210> 15

<211> 2214

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(2214)

<223> n may be a, c, g, or t

<400> 15

atggeneent ggytnearyt ntgywsngtn ttyttyaeng tnaaygentg yytnaayggn 60
wsnearytng engtngenge nggnggnwsn ggnmgngenn nnggngenga yaentgywsn 120
tggnnnggng tnggneenge nwsnmgnaay wsnggnytnt ayaayathae nttyaartay 180
gayaaytgya enacntayyt naayeengtn ggnaareayg tnathgenga ygenearaay 240
athaenathw sneartayge ntgycaygay eargtngeng tnaenathyt ntggwsneen 300
ggngenytng gnathgartt yytnaarggn ttymgngtna thytngarga rytnaarwsn 360
garggnmgne arnnnearea rytnathytn aargayeena arearnnnaa ywsnwsntty 420
aarmgnaeng gnatggarws neareennnn ytnaayatga arttygarae ngaytaytty 480
gtnmgnytnw snttywsntt yathaaraay garwsnaayt ayeayeentt yttyttymgn 540
aenmgngent gygayytnyt nytneareen gayaayytng entgyaaree nttytggaar 600
ceneayaayt tyggnttymg nttyttytay ytneaytaya argtnwsntt ygargageen 720
ttyaarmgna araentgyaa reargarear aenaengara tgaenwsntg yytnytnear 780
aaygtnwsne enggngayta yathathgar ytngtngayg ayaenaayae naenmgnaar 840
gtnatgeayt aygenytnaa reengtneay wsneentggg enggneenat hmgngengtn 900

PCT/US01/16767

gcnathacng tnccnytngt ngtnathwsn gcnttygcna cnytnttyac ngtnatgtgy 960 mgnaaraarc arcargaraa yathtaywsn cayytngayg argarwsnws ngarwsnwsn 1020 achtayachg engenythee hmghgarmgh ythmgheenm gheenaargt httyythtgy 1080 taywsnwsna argayggnca raaycayatg aaygtngtnc artgyttygc ntayttyytn 1140 cargayttyt gyggntgyga rgtngcnytn gayytntggg argayttyws nytntgymgn 1200 garggncarm gngartgggt nathcaraar athcaygarw sncarttyat hathgtngtn 1260 tgywsnaarg gnatgaarta yttygtngay aaraaraayt ayaarcayaa rggnggnggn 1320 mgnggnwsng gnaarggnga rytnttyytn gtngcngtnw sngcnathgc ngaraarytn 1380 mgncargena arcarwsnws nwsngengen ytnwsnaart tyathgengt ntayttygay 1440 taywsntgyg arggngaygt nccnggnath ytngayytnw snacnaarta ymgnytnatg 1500 gayaayytnc cncarytntg ywsncayytn caywsnmgng aycayggnyt ncargarccn 1560 ggncarcaya cnmgncargg nwsnmgnmgn aaytayttym gnwsnaarws nggnmgnwsn 1620 ytntaygtng cnathtgyaa yatgcaycar ttyathgayg argarccnga ytggttygar 1680 aarcarttyg tnccnttyca yccnccncen ytnmgntaym gngarccngt nytngaraar 1740 ttygaywsng gnytngtnyt naaygaygtn atgtgyaarc cnggnccnga rwsngaytty 1800 tgyytnaarg tngargenge ngtnytnggn genaenggne engengayws neareaygar 1860 wsncarcayg gnggnytnga ycargayggn gargcnmgnc cngcnytnga yggnwsngcn 1920 genytheare enythythea yaengthaar gengghwsne enwsngayat geenmgngay 1980 wsnggnatht aygaywsnws ngtnccnwsn wsngarytnw snytnccnyt natggarggn 2040 ytnwsnacng aycaracnga racnwsnwsn ytnacngarw sngtnwsnws nwsnwsnggn 2100 ytnggngarg argarcence ngenytneen wsnaarytny tnwsnwsngg nwsntgyaar 2160 gengayytng gntgymgnws ntayaengay garytneayg engtngenee nytn 2214

<220>

<221> mat_peptide <222> (70)..(1971)

	2> ('	_	. (19°													
atg	0> 10 ggg	agc Ser														48
	atc Ile															96
	tgg Trp															144
	tcc Ser															192
	tgc Cys															240
	gtg Val															288
	cca Pro					His					Gly					336
	75					80					85				•	
	cac His					agc					gtc					384
Gln 90 aga	cac His	Leu	Leu	Arg	Gly 95 cca	agc Ser	Cys	Cys	Leu	Val 100 aca	gtc Val tct	Thr	Cys	Leu	Arg 105 gac	384 432
Gln 90 aga Arg	cac His	atc Ile	Leu aca Thr	ttt Phe 110	Gly 95 cca Pro	agc Ser tcc Ser	Cys cct Pro ctt Leu	Cys ccc Pro	cag Gln 115 atc	Val 100 aca Thr	gtc Val tct Ser	Thr ccc Pro cat	Cys aca Thr	agg Arg 120	Arg 105 gac Asp	
Gln 90 aga Arg ttc Phe	cac His gcc Ala	atc Ile cta Leu gat Asp 140	Leu aca Thr aaa Lys 125	ttt Phe 110 gga Gly	Gly 95 cca Pro ccc Pro	agc Ser tcc Ser aac Asn	Cys cct Pro ctt Leu	Cys ccc Pro cgg Arg 130	cag Gln 115 atc Ile	Val 100 aca Thr cag Gln gtg	gtc Val tct ser aga Arg	Thr ccc Pro cat His	cys aca Thr ggg Gly 135	Leu agg Arg 120 aaa Lys	Arg 105 gac Asp gtc Val	432
Gln 90 aga Arg ttc Phe ttc	cac His gcc Ala gct Ala	atc Ile cta Leu gat Asp 140	Leu aca Thr aaa Lys 125 tgg Trp	ttt Phe 110 gga Gly act Thr	Gly 95 cca Pro ccc Pro	agc Ser tcc Ser aac Asn aaa Lys	Cys cct Pro ctt Leu ggc Gly 145	Cys ccc Pro cgg Arg 130 atg Met	cag Gln 115 atc Ile gag Glu	Val 100 aca Thr cag Gln gtg Val	gtc Val tct ser aga Arg ggc Gly	Thr ccc Pro cat His act Thr 150	aca Thr ggg Gly 135 ggg Gly	agg Arg 120 aaa Lys tac Tyr	Arg 105 gac Asp gtc Val aac Asn	432
Gln 90 aga Arg ttc Phe ttc Phe agg Arg	cac His gcc Ala gct Ala cca Pro aga Arg 155 cct	atc Ile cta Leu gat Asp 140 tgg Trp gag	Leu aca Thr aaa Lys 125 tgg Trp gtt Val	ttt Phe 110 gga Gly act Thr	Cly 95 CCa Pro CCC Pro Cac His	agc ser tcc ser aac Asn aaa Lys agt ser 160	cct Pro ctt Leu ggc Gly 145 ggt Gly	Cys ccc Pro cgg Arg 130 atg Met gga Gly	cag Gln 115 atc Ile gag Glu ccc Pro	Val 100 aca Thr cag Gln gtg Val gag Glu ata	gtc Val tct ser aga Arg ggc Gly ttc Phe 165 tct	Thr ccc Pro cat His act Thr 150 tcc Ser	cys aca Thr ggg Gly 135 ggg Gly ttt Phe	agg Arg 120 aaa Lys tac Tyr gat Asp	Arg 105 gac Asp gtc Val aac Asn ttg Leu	432 480 528
gln 90 aga Arg ttc Phe ttc Phe agg Arg ctg Leu 170 gtc	cac His gcc Ala gct Ala cca Pro aga Arg 155 cct	atc Ile cta Leu gat Asp 140 tgg Trp gag Glu gtg	Leu aca Thr aaa Lys 125 tgg Trp gtt Val gcc Ala	ttt Phe 110 gga Gly act Thr cag Gln cgg Arg	Gly 95 cca Pro ccc Pro cac His ctg Leu gct Ala 175	agc ser tcc ser aac Asn aaa Lys agt ser 160 att Ile	Cys cct Pro ctt Leu ggc Gly 145 ggt Gly cgg Arg	Cys ccc Pro cgg Arg 130 atg Met gga Gly gtg Val	cag Gln 115 atc Ile gag Glu ccc Pro acc Thr	Val 100 aca Thr cag Gln gtg Val gag Glu ata Ile 180 ctg	gtc Val tct Ser aga Arg ggc Gly ttc Phe 165 tct Ser	Thr ccc Pro cat His act Thr 150 tcc ser tca ser	cys aca Thr ggg Gly 135 ggg Gly ttt Phe ggc Gly	agg Arg 120 aaa Lys tac Tyr gat Asp cct Pro	Arg 105 gac Asp gtc Val aac Asn ttg Leu gag Glu 185 ctg	432 480 528

														act Thr		720
			Tyr											gca Ala		768
														cag Gln		816
														ttc Phe		864
														cgc Arg 280		912
														cat His		960
														gjà aaa		1008
	Val	Leu				Asp					Leu			aag Lys		1056
		tgg							agc					ccc	cac	1104
330		: ^	Pne	Ser	335	GТĀ	Asn	Ser	Ser	His 340	Val	GIU	Сув	Pro	His 345	
cag	act	a aa	tct	ctc	335 aca	tcc	tgg	aat	gta	340 agc	atg	gat	acc	caa Gln 360	345 gcc	1152
cag Gln cag	act Thr	ggg ggg	tct Ser	ctc Leu 350 ctt	335 aca Thr	tcc Ser	tgg Trp tcc	aat Asn tca	gta Val 355 aga	agc ser	atg Met cat	gat Asp gcc	acc Thr	caa Gln	345 gcc Ala agt	1152 1200
cag Gln cag Gln	act Thr cag Gln gcc	ggg Gly ctg Leu	tct Ser att Ile 365 agc	ctc Leu 350 ctt Leu	aca Thr cac His	tcc Ser ttc Phe	tgg Trp tcc Ser	aat Asn tca Ser 370	gta Val 355 aga Arg	agc Ser atg Met	atg Met cat His	gat Asp gcc Ala	acc Thr acc Thr 375 gtg	caa Gln 360 ttc	gcc Ala agt Ser	
cag Gln cag Gln gct Ala	act Thr cag Gln gcc Ala	ggg Gly ctg Leu tgg Trp 380	tct Ser att Ile 365 agc Ser	ctc Leu 350 ctt Leu ctc Leu	aca Thr cac His cca Pro	tcc Ser ttc Phe ggc Gly	tgg Trp tcc ser ttg Leu 385	aat Asn tca Ser 370 ggg Gly	gta Val 355 aga Arg cag Gln	agc Ser atg Met gac Asp	atg Met cat His act Thr	gat Asp gcc Ala ttg Leu 390 cag	acc Thr acc Thr 375 gtg Val	caa Gln 360 ttc Phe	gcc Ala agt ser ccc Pro	1200
cag Gln cag Gln gct Ala gtg Val	act Thr cag Gln gcc Ala tac Tyr 395 cac	ggg Gly ctg Leu tgg Trp 380 act Thr	tct Ser att Ile 365 agc Ser gtc Val	ctc Leu 350 ctt Leu ctc Leu agc ser	aca Thr cac His cca Pro cag Gln	tcc ser ttc Phe ggc Gly gtg Val 400 gat	tgg Trp tcc Ser ttg Leu 385 tgg Trp	aat Asn tca ser 370 ggg Gly cgg Arg	gta Val 355 aga Arg cag Gln tca ser	agc ser atg Met gac Asp gat Asp	atg Met cat His act Thr gtc Val 405 cac	gat Asp gcc Ala ttg Leu 390 cag Gln	acc Thr acc Thr 375 gtg Val ttt Phe	caa Gln 360 ttc Phe ccc Pro	gcc Ala agt ser ccc Pro tgg Trp	1200

ctc Leu	acc Thr	tgc Cys	cgg Arg 445	cgc Arg	cca Pro	cag Gln	tca Ser	ggc Gly 450	ccg Pro	ggc	cca Pro	gcg Ala	cgg Arg 455	cca Pro	gtg Val	1440
ctc Leu	ctc Leu	ctg Leu 460	His	gcg Ala	gcg Ala	gac Asp	tcg Ser 465	gag Glu	gcg Ala	cag Gln	cgg Arg	cgc Arg 470	ctg Leu	gtg Val	gga Gly	1488
gcg Ala	ctg Leu 475	gct Ala	gaa Glu	ctg Leu	cta Leu	cgg Arg 480	gca Ala	gcg Ala	ctg Leu	ggc ggc	ggc Gly 485	gjà aaa	cgc Arg	gac Asp	gtg Val	1536
atc Ile 490	gtg Val	gac Asp	ctg Leu	tgg Trp	gag Glu 495	ejà aaa	agg Arg	cac His	gtg Val	gcg Ala 500	cgc Arg	gtg Val	ggc Gly	ccg Pro	ctg Leu 505	1584
ccg Pro	tgg Trp	ctc Leu	tgg Trp	gcg Ala 510	gcg Ala	cgg Arg	acg Thr	cgc Arg	gta Val 515	gcg Ala	cgg Arg	gag Glu	cag Gln	ggc Gly 520	act Thr	1632
gtg Val	ctg Leu	ctg Leu	ctg Leu 525	tgg Trp	agc Ser	ggc Gly	gcc Ala	gac Asp 530	ctt Leu	cgc Arg	ccg Pro	gtc Val	agc Ser 535	ggc	ccc Pro	1680
gac Asp	ccc Pro	cgc Arg 540	gcc Ala	gcg Ala	ccc Pro	ctg Leu	ctc Leu 545	gcc Ala	ctg Leu	ctc Leu	cac His	gct Ala 550	gcc Ala	ccg Pro	cgc Arg	1728
													aag Lys			1776
atc Ile 570	ccc Pro	Pro	ccg Pro	ctg Leu	cgc Arg 575	gcc Ala	ctg Leu	ccg Pro	cgc Arg	tac Tyr 580	cgc Arg	ctg Leu	ctg Leu	cgc Arg	gac Asp 585	1824
ctg Leu	ccg Pro	cgt Arg	ctg Leu	ctg Leu 590	cgg Arg	gcg Ala	ctg Leu	gac Asp	gcg Ala 595	cgg Arg	cct Pro	ttc Phe	gca Ala	gag Glu 600	gcc Ala	1872
acc Thr	agc Ser	tgg Trp	ggc Gly 605	cgc Arg	ctt Leu	gly aaa	gcg Ala	cgg Arg 610	cag Gln	cgc Arg	agg Arg	cag Gln	agc Ser 615	cgc Arg	cta Leu	1920
gag Glu	ctg Leu	tgc Cys 620	agc Ser	cgg Arg	ctc Leu	gaa Glu	cga Arg 625	gag Glu	gcc Ala	gcc Ala	cga Arg	ctt Leu 630	gca Ala	gac Asp	cta Leu	1968
ggt Gly		gcaga	agc 1	tcca	ccgc	ag to	ccg	ggtg	t ct	acaa	ccgc	t			٠	2012

<210> 17

<211> 657

<212> PRT

<213> Unknown

<400> 17

Met Gly Ser Ser Arg Leu Ala Ala Leu Leu Leu Pro Leu Leu Leu Ile
-20 -15 -10

vaı	тте	-5	ьeu	ser	Asp	-1	A1a	GIĀ	тте	GTĀ	Pne 5	Arg	HIS	цеи	PIC
His 10	Trp	Asn	Thr	Arg	Сув 15	Pro	Leu	Ala	Ser	His 20	Thr	Glu	Val	Leu	Pro 25
Ile	Ser	Leu	Ala	Ala 30	Pro	Gly	Gly	Pro	Ser 35	Ser	Pro	Gln	Ser	Leu 40	Gly
Val	Cys	Glu	Ser 45	Gly	Thr	Val	Pro	Ala 50	Val	Сув	Ala	Ser	Ile 55	Cys	Сув
Gln	Val	Ala 60	Gln	Val	Phe	Asn	Gly 65	Ala	Ser	Ser	Thr	Ser 70	Trp	Сув	Arg
Asn	Pro 75	Lys	Ser	Leu	Pro	His 80	Ser	Ser	Ser	Ile	Gly 85	Asp	Thr	Arg	Cys
Gln 90	His	Leu	Leu	Arg	Gly 95	Ser	Cys	Cys	Leu	Val 100	Val	Thr	Cys	Leu	Arg 105
Arg	Ala	Ile	Thr	Phe 110	Pro	Ser	Pro	Pro	Gln 115	Thr	Ser	Pro	Thr	Arg 120	Asp
Phe	Ala	Leu	Lys 125	Gly	Pro	Asn	Leu	Arg 130	Ile	Gln	Arg	His	Gly 135	Lys	Val
Phe	Pro	Asp 140	Trp	Thr	His	Гув	Gly 145	Met	Glu	Val	Gly	Thr 150	Gly	Tyr	Asn
Arg	Arg 155	Trp	Val	Gln	Leu	Ser 160	Gly	Gly	Pro	Glu	Phe 165	Ser	Phe	Asp	Leu
Leu 170	Pro	_Gl _u	Ala	Arg	Ala 175	Ile	Arg	Val	Thr	Ile 180	Ser	Ser	Gly	Pro	Glu 185
Val	Ser	Val	Arg	Leu 190	Cys	His	Gln	Trp	Ala 195	Leu	Glu	Сув	Glu	Glu 200	Leu
Ser	Ser	Pro	Tyr 205	Asp	Val	Gln	ГЛЗ	Ile 210	Val	Ser	Gly	Gly	His 215	Thr	Val
Glu	Leu	Pro 220	Tyr	Glu	Phe	Leu	Leu 225	Pro	Cys	Leu	Сув	Ile 230	Glu	Ala	Ser
Tyr	Leu 235		Glu	Asp	Thr	Val 240	Arg	Arg	ГÀЗ	Lys	Cys 245	Pro	Phe	Gln	Ser
Trp 250	Pro	Glu	Ala	Tyr	Gly 255	Ser	Asp.	Phe	Trp	Lys 260	Ser	Val	His	Phe	Thr 265
Asp	Tyr	Ser	Gln	His 270	Thr	Gln	Met	Val	Met 275	Ala	Leu	Thr	Leu	Arg 280	Суз
Pro	Leu	ГÀв	Leu 285	Glu	Ala	Ala	Leu	Суs 290	Gln	Arg	His	qaA	Trp 295	His	Thr
Leu	Сув	Lys	Asp	Leu	Pro	Asn	Ala	Thr	Ala	Arg	Glu	Ser	Asp	Gly	Trp

WO 01/90358 PCT/US01/16767

35

Tyr	Val 315	Leu	Glu	ГÀЗ	Val	Asp 320	Leu	His	Pro	Gln	Leu 325	Cys	Phe	Lys	Val
Gln 330	Pro	Trp	Phe	Ser	Phe 335	Gly	Asn	Ser	Ser	His 340	Val	Glu	Cys	Pro	His 345
Gln	Thr	Gly	Ser	Leu 350	Thr	Ser	Trp	Asn	Val 355	Ser	Met	Asp	Thr	Gln 360	Ala
Gln	Gln	Leu	Ile 365	Leu	His	Phe	Ser	Ser 370	Arg	Met	His	Ala	Thr 375	Phe	Ser
Ala	Ala	Trp 380	Ser	Leu	Pro	Gly	Leu 385	Gly	Gln	Asp	Thr	Leu 390	Val	Pro	Pro
Val	Tyr 395	Thr	Val	Ser	Gln	Val 400	Trp	Arg	Ser	Asp	Val 405	Gln	Phe	Ala	Trp
Lys 410	His	Leu	Leu	Cys	Pro 415	Asp	Val	Ser	Tyr	Arg 420	His	Leu	Gly	Leu	Leu 425
Ile	Leu	Ala	Leu	Leu 430	Ala	Leu	Leu	Thr	Leu 435	Leu	Gly	Val	Val	Leu 440	Ala
Leu	Thr	Cys	Arg 445	Arg	Pro	Gln	Ser	Gly 450	Pro	Gly	Pro	Ala	Arg 455	Pro	۷al
Leu	Leu	Leu 460	His	Ala	Ala	Asp	Ser 465	Glu	Ala	Gln	Arg	Arg 470	Leu	Val	Gly
Ala	Leu 475	Ala	Glu	Leu	Leu	Arg 480	Ala	Ala	Leu	Gly	Gly 485	Gly	Arg	Asp	Val
Ile 490	Val	qaA	Leu	Trp	Glu 495	Gly	Arg	His	Val	Ala 500	Arg	Val	Gly	Pro	Leu 505
Pro	Trp	Leu	Trp	Ala 510	Ala	Arg	Thr	Arg	Val 515	Ala	Arg	Glu	Gln	Gly 520	Thr
Val	Leu	Leu	Leu 525	Trp	Ser	Gly	Ala	Asp 530	Leu	Arg	Pro	Val	Ser 535	Gly	Pro
Asp	Pro	Arg 540	Ala	Ala	Pro	Leu	Leu 545	Ala	Leu	Leu	His	Ala 550	Ala	Pro	Arg
Pro	Leu 555		Leu	Leu	Ala	Tyr 560	Phe	Ser	Arg	Leu	Сув 565	Ala	ГЛS	Gly	Asp
Ile 570	Pro	Pro	Pro	Leu	Arg 575	Ala	Leu	Pro	Arg	Tyr 580	Arg	Leu	Leu	Arg	Asp 585
Leu	Pro	Arg	Leu	Leu 590	Arg	Ala	Leu	Asp	Ala 595	Arg	Pro	Phe	Ala	Glu 600	Ala
Thr	Ser	Trp	Gly 605	Arg	Leu	Gly	Ala	Arg 610	Gln	Arg	Arg	Gln	Ser 615	Arg	Lev
Glu	Leu	Cys 620	Ser	Arg	Leu	Glu	Arg 625	Glu	Ala	Ala	Arg	Leu 630	Ala	Asp	Let

Gly

<210> 18

```
<211> 1971
<212> DNA
<213> reverse translation
<220>
<221> misc_feature
<222> (1)..(1971)
<223> n may be a, c, g, or t
<400> 18
atgggnwsnw snmgnytngc ngcnytnytn ytnccnytny tnytnathgt nathgayytn 60
wsngaywsng cnggnathgg nttymgncay ytnccncayt ggaayacnmg ntgyccnytn 120
genwancaya engargtnyt necnathwan ytngengene enggnggnee nwanwancen 180
carwsnytng gngtntgyga rwsnggnacn gtnccngcng tntgygcnws nathtgytgy 240
cargtngcnc argtnttyaa yggngcnwsn wsnacnwsnt ggtgymgnaa yccnaarwsn 300
ytnccncayw snwsnwsnat hggngayacn mgntgycarc ayytnytnmg nggnwsntgy 360
tgyytngtng tnacntgyyt nmgnmgngcn athacnttyc cnwsnccncc ncaracnwsn 420
ccnacnmgng ayttygcnyt naarggnccn aayytnmgna thcarmgnca yggnaargtn 480
ttyccngayt ggacncayaa rggnatggar gtnggnacng gntayaaymg nmgntgggtn 540
carythwsng gnggncenga rttywsntty gayythythe engargenmg ngenathmgn 600
gtnacnathw snwsnggncc ngargtnwsn gtnmgnytnt gycaycartg ggcnytngar 660
tgygargary tnwsnwsncc ntaygaygtn caraarathg tnwsnggngg ncayacngtn 720 -
garytnccnt aygarttyyt nytnccntgy ytntgyathg argcnwsnta yytncargar 780
gayacngtnm gnmgnaaraa rtgyccntty carwsntggc cngargcnta yggnwsngay 840
ttytggaarw sngtncaytt yacngaytay wsncarcaya cncaratggt natggcnytn 900
acnytnmgnt gyccnytnaa rytngargcn gcnytntgyc armgncayga ytggcayacn 960
ytntgyaarg ayytnccnaa ygcnacngcn mgngarwsng ayggntggta ygtnytngar 1020
aargtngayy tncayccnca rytntgytty aargtncarc cntggttyws nttyggnaay 1080
wsnwsncayg tngartgycc ncaycaracn ggnwsnytna cnwsntggaa ygtnwsnatg 1140
gayacncarg cncarcaryt nathytncay ttywsnwsnm gnatgcaygc nacnttywsn 1200
gengentggw snytneengg nytnggnear gayaenytng tneeneengt ntayaengtn 1260
wsncargtnt ggmgnwsnga ygtncartty gcntggaarc ayytnytntg yccngaygtn 1320
```

wsntaymgnc ayytnggnyt nytnathytn gcnytnytng cnytnytnac nytnytnggn 1380 gtngtnytng cnytnacntg ymgnmgnccn carwsnggnc cnggncengc nmgncengtn 1440 ytnytnytnc aygengenga ywsngargen carmgnmgny tngtnggngc nytngengar 1500 ytnytnmgng engenytngg nggnggnmgn gaygtnathg tngayytntg ggarggnmgn 1560 caygtngenm gngtnggncc nytnecntgg ytntgggeng enmgnaenmg ngtngenmgn 1620 garcarggna engtnytnyt nytntggwsn ggngengayy tnmgneengt nwsnggneen 1680 ytngentayt tywsnmgnyt ntgygenaar ggngayathe enceneenyt nmgngenytn 1740 ytngentayt tywsnmgnyt ntgygenaar ggngayathe enceneenyt nmgngenytn 1800 cenmgntaym gnytnytnmg ngayytneen mgnytnytnm gngenytnga ygenmgneen 1860 ttygengarg enacnwsntg gggnmgnytn ggngenmgne armgnmgnea rwsnmgnytn 1920 garytntgyw snmgnytnga rmgngargen genmgnytng engayytngg n

```
<210> 19
<211> 808
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:rodent; surmised

Mus-musculus
```

<220>

<221> CDS

<222> (7.8)...(806)

<220>

<221> mat_peptide

<222> (147)..(806)

<400> 19

cageteeggg ecaggeeetg etgeeetett geagacagga aagacatggt etetgegeee 60

tgatcctaca gaagctc atg ggg agc ccc aga ctg gca gcc ttg ctc ctg 110 Met Gly Ser Pro Arg Leu Ala Ala Leu Leu Leu -20 -15

tot oto oog ota oto oto ato ggo oto gct gtg tot gct cgg gtt gcc 158 Ser Leu Pro Leu Leu Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala -10 -5 -1 1

tgc ccc tgc ctg cgg agt tgg acc agc cac tgt ctc ctg gcc tac cgt 206 Cys Pro Cys Leu Arg Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg 5 10 15 20

gtg gat aaa cgt ttt gct ggc ctt cag tgg ggc tgg ttc cct ctc ttg 254 Val Asp Lys Arg Phe Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu 25 30 35

gtg agg aaa tot aaa agt oot oot aaa tit gaa gao tat tgg agg cac 302

Val	Arg	Lys	Ser 40	Lys	Ser	Pro	Pro	Lys 45	Phe	Glu	Asp	Tyr	Trp 50	Arg	His	
agg Arg	aca Thr	cca Pro 55	gca Ala	tcc Ser	ttc Phe	cag Gln	agg Arg 60	aag Lys	ctg Leu	cta Leu	ggc	agc Ser 65	cct Pro	tcc Ser	ctg Leu	350
		gaa Glu														398
		caa Gln														446
		ctc Leu														494
tcc Ser	ttt Phe	gat Asp	ttg Leu 120	ctg Leu	ccc Pro	gag Glu	gtg Val	cag Gln 125	gct Ala	gtt Val	cgg Arg	gtg Val	act Thr 130	att Ile	cct Pro	542
gca Ala	Gly	ccc Pro 135	aag Lys	gca Ala	cgt Arg	gtg Val	cgc Arg 140	ctt Leu	tgt Cys	tat Tyr	cag Gln	tgg Trp 145	gca Ala	ctg Leu	gaa Glu	590
tgt Cys	gaa Glu 150	gac Asp	ttg Leu	agt Ser	agc Ser	cct Pro 155	ttt Phe	gat Asp	acc Thr	cag Gln	aaa Lys 160	att Ile	gtg Val	tct Ser	gga Gly	638
		act Thr														686
		gcc Ala														734
		aga Arg														782
	_	tca Ser 215	_			_	_	ac						-		808
<210)> 20)								•						

<211> 243

<212> PRT

<213> Unknown

<400> 20

Met Gly Ser Pro Arg Leu Ala Ala Leu Leu Leu Ser Leu Pro Leu Leu -15 -20

Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala Cys Pro Cys Leu Arg
-5 -1 1 5

39

Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg Val Asp Lys Arg Phe
10 15 20 25

Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu Val Arg Lys Ser Lys 30 35 40

Ser Pro Pro Lys Phe Glu Asp Tyr Trp Arg His Arg Thr Pro Ala Ser 45 50 55

Phe Gln Arg Lys Leu Leu Gly Ser Pro Ser Leu Ser Glu Glu Ser His
60 65 70

Arg Ile Ser Ile Pro Ser Ser Ala Ile Ser His Arg Gly Gln Arg Thr
75 80 85

Lys Arg Ala Gln Pro Ser Ala Ala Glu Gly Arg Glu His Leu Pro Glu 90 95 100 105

Ala Gly Ser Gln Lys Cys Gly Gly Pro Glu Phe Ser Phe Asp Leu Leu 110 115 120

Pro Glu Val Gln Ala Val Arg Val Thr Ile Pro Ala Gly Pro Lys Ala 125 130 135

Arg Val Arg Leu Cys Tyr Gln Trp Ala Leu Glu Cys Glu Asp Leu Ser 140 145 150

Ser Pro Phe Asp Thr Gln Lys Ile Val Ser Gly Gly His Thr Val Asp 155 160 165

Leu Pro Tyr Glu Phe Leu Leu Pro Cys Met Cys Ile Glu Ala Ser Tyr 170 175 180 185

Leu Gln Glu Asp Thr Val Arg Arg Lys Ser Val Pro Ser Arg Ala Gly
190 195 200

Leu Lys Leu Met Ala Gln Thr Ser Gly Ser Gln Tyr Ala Ser Leu Thr 205 210 215

Thr Ala Ser 220

<210> 21

<211> 729

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(729)

<223> n may be a, c, g, or t

<400> 21

atgggnwsnc cnmgnytngc ngcnytnytn ytnwsnytnc cnytnytnyt nathggnytn 60 gengtnwsng cnmgngtngc ntgycentgy ytnmgnwsnt ggacnwsnca ytgyytnytn 120 gentaymgng tngayaarmg nttygenggn ytncartggg gntggttycc nytnytngtn 180

mgnaarwsna	arwsnccncc	naarttygar	gaytaytggm	gncaymgnac	nccngcnwsn	240
ttycarmgna	arytnytngg	nwsnccnwsn	ytnwsngarg	arwsncaymg	nathwsnath	300
ccnwsnwsng	cnathwsnca	ymgnggncar	mgnacnaarm	gngcncarcc	nwsngcngcn	360
garggnmgng	arcayytncc	ngargenggn	wsncaraart	gyggnggncc	ngarttywsn	420
ttygayytny	tnccngargt	ncargengtn	mgngtnacna	thccngcngg	nccnaargcn	480
mgngtnmgny	tntgytayca	rtgggcnytn	gartgygarg	ayytnwsnws	nccnttygay	540
acncaraara	thgtnwsngg	nggncayacn	gtngayytnc	cntaygartt	yytnytnccn	600
tgyatgtgya	thgargcnws	ntayytncar	gargayacng	tnmgnmgnaa	rwsngtnccn	660
wsnmgngcng	gnytnaaryt	natggcncar	acnwsnggnw	sncartaygc	nwsnytnacn	720
acngenwsn						729

<210> 22

<211> 2377

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:primate; surmised Homo sapiens

<220>-

<221> CDS

<222> (180)..(1874)

<400> 22

ttttgageag aggetteeta ggeteegtag aaatttgeat acagetteea etteetgett 60 cagageetgt tettetaett acetgggeee ggagaaggtg gagggagaeg agaageegee 120 gagageegae taceeteegg geeeagtetg tetgteegtg gtggatetaa gaaactaga 179 atg aac ega age att eet gtg gag gtt gat gaa tea gaa eea tac eea 227

atg aac cga agc att cct gtg gag gtt gat gaa tca gaa cca tac cca 2
Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro
1 5 10 15

agt cag ttg ctg aaa cca atc cca gaa tat tcc ccg gaa gag gaa tca 275 Ser Gln Leu Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Glu Ser 20 25 30

gaa cca cct gct cca aat ata agg aac atg gca ccc aac agc ttg tct 323
Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser

gca ccc aca atg ctt cac aat tcc tcc gga gac ttt tct caa gct cac 371
Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His
50 55 60

tca acc ctg aaa ctt gca aat cac cag cgg cct gta tcc cgg cag gtc 419 Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val 65 70 75 80

					caa Gln											467
					ctg Leu											515
gtc Val	agc Ser	gag Glu 115	cct Pro	gcg Ala	tct Ser	gag Glu	tct Ser 120	gtg Val	gtt Val	gga Gly	gcc Ala	ctc Leu 125	cct Pro	gca Ala	gag Glu	563
cat His	cag Gln 130	ttt Phe	tca Ser	ttt Phe	atg Met	gaa Glu 135	ааа Ьуз	cgt Arg	aat Asn	caa Gln	tgg Trp 140	ctg Leu	gta Val	tct Ser	cag Gln	611
					cct Pro 150											659
					gcc Ala											707
					cag Gln											755
					gga Gly											803
atc Ile	agg Arg 210	cag	ctg Leu	gaa Glu	agg Arg	ccc Pro 215	ctg	ccc Pro	ctc Leu	acc Thr	tcc Ser 220	gtg	tgt Cys	tac Tyr	ccc Pro	851
					cct Pro 230											· 899
cct Pro	cag Gln	agg Arg	tat Tyr	cca Pro 245	gca Ala	tgt Cys	gca Ala	cag Gln	atg Met 250	ctg Leu	cct Pro	ccc Pro	aat Asn	ctt Leu 255	tcc Ser	947
					aac Asn										gat Asp	995
					ggc Gly			Tyr								1043
gtg Val	atc Ile 290	cag Gln	.ccg Pro	gct Ala	ctg Leu	cct Pro 295	gly ggg	cag Gln	ccc Pro	ctg Leu	cct Pro 300	gga Gly	gcc Ala	agt Ser	gtg Val	1091
									atc	_						1139

WO 01/90358

					agg Arg											1187
					gac Asp											1235
					tcc Ser											1283
					tcc Ser											1331
					act Thr 390											1379
					act Thr											1427
					ttg Leu											1475
					atc Ile											1523
		435					440		_			445				
cgc Arg	tac Tyr 450	ctt Leu	agg Arg	gat Asp	aag Lys	acc Thr 455	gtg Val	atg Met	ata Ile	atc Ile	gta Val 460	gca Ala	atc Ile	agc Ser	ccc Pro	1571
aaa Lys 465	tac Tyr	aaa Lys	cag Gln	gac Asp	gtg Val 470	gaa Glu	ggc Gly	gct Ala	gag Glu	tcg Ser 475	cag Gln	ctg Leu	gac Asp	gag Glu	gat Asp 480	1619
					act Thr											1667
					agc Ser										ttc Phe	1715
					gag Glu											1763
					aag Lys											1811
					gtg Val 550											1859

cag gtg gtt ccc ttg tgacaccgtt catcccaga tcactgaggc caggccatgt 1914 Gln Val Val Pro Leu

<210> 23

<211> 565

<212> PRT

<213> Unknown

<400> 23

Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro

1 10 15

Ser Gln Leu Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Glu Ser 20 25 30

Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser 35 40 45

Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His
50 55 60

Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val 65 70 75 80

Thr Cys Leu Arg Thr Gln Val Leu Glu Asp Ser Glu Asp Ser Phe Cys 85 90 95

Arg Arg His Pro Gly Leu Gly Lys Ala Phe Pro Ser Gly Cys Ser Ala
100 105 110

Val Ser Glu Pro Ala Ser Glu Ser Val Val Gly Ala Leu Pro Ala Glu 115 120 125

His Gln Phe Ser Phe Met Glu Lys Arg Asn Gln Trp Leu Val Ser Gln 130 135 140

Leu Ser Ala Ala Ser Pro Asp Thr Gly His Asp Ser Asp Lys Ser Asp 145 150 155 160

Gln Ser Leu Pro Asn Ala Ser Ala Asp Ser Leu Gly Gly Ser Gln Glu 165 170 175

Met	Val	Gln	Arg 180	Pro	Gln	Pro	His	Arg 185	Asn	Arg	Ala	Gly	Leu 190	Asp	Leu
Pro	Thr	Ile 195	Asp	Thr	Gly	Tyr	Asp 200	Ser	Gln	Pro	Gln	Asp 205	Val	Leu	Gly
Ile `	Arg 210	Gln	Leu	Glu	Arg	Pro 215	Leu	Pro	Leu	Thr	Ser 220	Val	Cys	Tyr	Pro
Gln 225	Asp	Leu	Pro	Arg	Pro 230	Leu	Arg	Ser	Arg	Glu 235	Phe	Pro	Gln	Phe	Glu 240
Pro	Gln	Arg	Tyr	Pro 245	Ala	Cys	Ala	Gln	Met 250	Leu	Pro	Pro	Asn	Leu 255	Ser
Pro	His	Ala	Pro 260	Trp	Asn	Tyr	His	Tyr 265	His	Cys		Gly		Pro	Asp
His	Gln	Val 275	Pro	Tyr	Gly	His	Asp 280	Tyr	Pro	Arg	Ala	Ala 285	Tyr	Gln	Gln
Val	Ile 290	Gln	Pro	Ala	Leu	Pro 295	Gly	Gln	Pro	Leu	Pro 300	Gly	Ala	Ser	Val
Arg 305	Gly	Leu	His	Pro	Val 310	Gln	Lys	Val	Ile	Leu 315	Asn	Tyr	Pro	Ser	Pro 320
Trp	Asp	Gln	Glu	Glu 325	Arg	Pro	Ala	Gln	Arg 330	Asp	Сув	Ser	Phe	Pro 335	Gly
Leu	Pro	Arg	His 340	Gln	qaA	Gln	Pro	His 345	His	Gln	Pro	Pro	Asn 350	Arg	Ala
Gly	Ala	Pro 355	Gly	Glu	Ser	Leu	Glu 360	Сув	Pro	Ala	Glu	Leu 365	Arg	Pro	Gln
Val	Pro 370	Gln	Pro	Pro	Ser	Pro 375	Ala	Ala	Val	Pro	Arg 380	Pro	Pro	Ser	Asn
Pro 385	Pro	Ala	Arg	Gly	Thr 390	Leu	Lys	Thr	Ser	Asn 395	Leu	Pro	Glu	Glu	Leu 400
Arg	ГÀЗ	Val	Phe	Ile 405	Thr	Tyr	Ser	Met	Asp 410	Thr	Ala	Met	Glu	Val 415	Val
ГÀв	Phe	Val	Asn 420	Phe	Leu	Leu	Val	Asn 425	Gly	Phe	Gln	Thr	Ala 430	Ile	Asp
Ile	Phe	Glu 435	Asp	Arg	Ile	Arg	Gly 440	Ile	Asp	Ile	Ile	Lув 445	Trp	Met	Glu
Arg	Tyr 450	Leu	Arg	Asp	Lys	Thr 455	Val	Met	Ile	Ile	Val 460	Ala	Ile	Ser	Pro
Lys 465	Tyr	Lys	Gln	Asp	Val 470	Glu	Gly	Ala	Glu	Ser 475	Gln	Leu	Asp	Glu	Asp 480

WO 01/90358 PCT/US01/16767

45

Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe 500 505 510

Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His 515 520 525

Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu 530 535 540

Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu 545 550 555 560

Gln Val Val Pro Leu 565

<210> 24

<211> 1695

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(1695)

<223> n may be a, c, g, or t

<400> 24

atgaaymgnw snathcongt ngargtngay garwsngarc cntayconws ncarytnytn 60 aarccnathc-cngartayws-nccngargar-garwsngarc-cnccngcncc_naayathmgn_12.0_ aayatggcnc cnaaywsnyt nwsngcnccn acnatgytnc ayaaywsnws nggngaytty 180 wsncargcnc aywsnacnyt naarytngcn aaycaycarm gnccngtnws nmgncargtn 240 acntgyytnm gnacncargt nytngargay wsngargayw snttytgymg nmgncayccn 300 ggnytnggna argenttyce nwsnggntgy wsngengtnw sngareenge nwsngarwsn 360 gtngtnggng cnytnecnge ngarcayear ttywsnttya tggaraarmg naayeartgg 420 ytngtnwsnc arytnwsngc ngcnwsnccn gayacnggnc aygaywsnga yaarwsngay 480 carwsnythc chaaygenws ngcngaywsn ytnggnggnw shcargarat ggthcarmgn 540 ccncarccnc aymgnaaymg ngcnggnytn gayytnccna cnathgayac nggntaygay 600 wsncarcene argaygtnyt nggnathmgn carytngarm gneenytnee nytnaenwsn 660 gtntgytayc cncargayyt nccnmgnccn ytnmgnwsnm gngarttycc ncarttygar 720 concarment ayeongente yecncarate ytnecneena ayytnwsnee neayeeneen 780 tggaaytayc aytaycaytg yccnggnwsn ccngaycayc argtnccnta yggncaygay 840 tayccnmgng cngcntayca rcargtnath carcengeny tncenggnea rcenytncen 900 ggngcnwsng tnmgnggnyt ncaycongtn caraargtna thytnaayta yccnwsncon 960

tgggaycarg argarmgnec ngenearmgn gaytgywant tycenggnyt neenmgneay 1020 cargaycarc encayeayca reencenaay mgngenggng encenggnga rwanytngar 1080 tgycengeng arytnmgnec neargtneen careencenw aneengenge ngtneenmgn 1140 ecneconwana ayeencenge nmgnggnaen ytnaaraenw anaayytnee ngargarytn 1200 mgnaargtnt tyathacnta ywanatggay aengenatgg argtngtnaa rttygtnaay 1260 ttyytnytng tnaayggntt yearaengen athgayatht tygargaymg nathmgnggn 1320 athgayatha thaartggat ggarmgntay ytnmgngaya araengtnat gathathgtn 1380 genathwane enaartayaa reargaygtn garggngeng arwanearyt ngaygargay 1440 garcayggny tneayaenaa rtayatheay mgnatgatge arathgartt yathaarear 1500 ggnwanatga ayttymgntt yatheengtn ytnttyeena aygenaaraa raayathytn 1660 eenaentggy tnearaayae neaygtntay wantggeena araayaaraa raayathytn 1620 ytnmgnytny tnmgngarga rgartaygtn geneencenm gnggneenyt neenaenytn 1680 eargtngtne enytn

<210> 25 <211> 1323 <212> DNA

WO 01/90358

<213> Unknown

<220>

<220>

<221> CDS

<222> (1)..(1026)

<400> 25

cag gac ctc cct ggg cct ctg agg tcc agg gaa ttg cca cct cag ttt 48 Gln Asp Leu Pro Gly Pro Leu Arg Ser Arg Glu Leu Pro Pro Gln Phe 1 5 10 15

gaa ctt gag agg tat cca atg aac gcc cag ctg ctg ccg ccc cat cct 96 Glu Leu Glu Arg Tyr Pro Met Asn Ala Gln Leu Leu Pro Pro His Pro 20 25 30

tec cca cag gcc cca tgg aac tgt cag tac tac tgc ccc gga ggg ccc 144 Ser Pro Gln Ala Pro Trp Asn Cys Gln Tyr Tyr Cys Pro Gly Gly Pro

tac cac cac cag gtg cca cac ggc cat ggc tac cct cca gca gca gcc 192
Tyr His His Gln Val Pro His Gly His Gly Tyr Pro Pro Ala Ala Ala
50 55 60

tac cag caa gta ctc cag cct gct ctg cct ggg cag gtc ctt cct ggg 240 Tyr Gln Gln Val Leu Gln Pro Ala Leu Pro Gly Gln Val Leu Pro Gly 65 70 75 80

					cca Pro											288
					caa Gln											336
	_				agg Arg		_			_						384
					gag Glu											432
					cca Pro 150											480
			_	_	gga Gly			_		_		_		_	-	528
					atc Ile											576
					ttt											624
Val	Lys	Phe 195	Vai	Asn	Phe	Leu	Leu 200	Val	Asn	GTA	Phe	G1n 205	Thr	Ala	Ile	
					aga Arg											672
					gat Asp 230											720
					gat Asp											768
	Glu				cat His											816
					gga Gly											864
				_	aag Lys								_			912
cat His		tac	366	taa	999	224	t	220	222	220	ata	at a	at-a	caa	ata	960

					Tyr									Pro 335	Thr	
				ccc Pro	ttg Leu	tgad	cgate	ggc (cacto	cago	ct ca	gtgo	ccag	3		1056
ctgt	tete	cac a	agcat	tctt	c ta	agcgg	gagct	gg	ctggt	ggc	acco	caggo	ccc 1	tggaa	cacct	1116
ctto	taca	iga ç	gtcct	ctgt	c to	ctga	igtct	gag	gttgt	cct	cgct	ggg	ett o	ccaga	agcttc	1176
agtgcctgga tgctgcaggt gacagaaaca aacatctatg accacaaaaa ctctcatcac														1236		
ttcagctact tttatgagtc ggtcagatgc tctgtgtcct tagaccagtc taaatcatgc														1296		
tcaaataata aaatgattat tctttgt														1323		
<211 <212)> 26 > 34 > PF > Ur	2	vn		·		. · .			·	٠					
)> 26 Asp		Pro	Gly 5	Pro	Leu	Arg	Ser	Arg 10	Glu	Leu	Pro	Pro	Gln 15	Phe	
Glu	Leu	Glu	Arg 20	Tyr	Pro	Met	Asn	Ala 25	Gln	Leu	Leu	Pro	Pro	His	Pro	
Ser	Pro	Gln 35		Pro	Trp	Asn	Cys 40		Tyr	Tyr	Сув	Pro 45		Gly	Pro	
Tyr	His 50	His	Gln	Val	Pro	His 55	Gly	His	Gly	Tyr	Pro 60	Pro	Ala	Ala	Ala	
Tyr 65	Gln	Gln	Val	Leu	Gln 70		Ala	Leu	Pro	Gly 75	Gln	Val	Leu	Pro	Gly 80	
Ala	Arg	Ala	Arg	Gly 85	Pro	Arg	Pro	Val	Gln 90	Lys	Val	Ile	Leu	Asn . 95	Asp	
Ser	Ser	Pro	Gln 100	Asp	Gln	Glu	Glu	Arg 105	Pro	Ala	Gln	Arg	Asp 110	Phe	Ser	
Phe	Pro	Arg 115	Leu	Pro	Arg	qaA	Gln 120	Leu	Tyr	Arg	Pro	Pro 125	Ser	Asn	Gly	
Val	Glu 130	Ala	Pro	Glu	Glu	Ser 135	Leu	Asp	Leu	Pro	Ala 140	Glu	Leu	Arg	Pro	
His 145		Pro	Gln	Ala	Pro 150	Ser	Leu	Ala	Ala	Val 155	Pro	Arg	Pro	Pro	Ser 160	
Asn	Pro	Leu	Ala	Arg 165	Gly	Thr	Leu	Arg	Thr 170	Ser	Asn	Leu	Pro	Glu 175	Glu	
Leu	Arg	Lys	Val	Phe	Ile	Thr	Tyr	Ser	Met	Asp	Thr	Ala	Met	Glu	Val	

WO 01/90358 PCT/US01/16767

49

180 185 190

Val Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile 195 200 205

Asp Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met 210 215 220

Glu Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser 225 230 235 240

Pro Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu
245 250 255

Asp Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile 260 265 270

Glu Phe Ile Ser Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu 275 280 285

Phe Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr 290 295 300

His Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu 305 310 315 320

Leu Arg Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr 325 330 335

Leu Gln Val Val Pro Leu

340

<210> 27

<211> 1026

<212> DNA

<213> reverse translation

<220>

<221> misc feature

<222> (1).:(1026)

<223> n amy be a, c, g, or t

<400> 27

cargayytho chagacenyt nmanwanman garythoche chearttyda rythagarman 60 tayeenata ayacharyt nythochech cayeenwane cheargenee ntagaaytay 120 cartaytayt gyeenggnag nechtayeay cayearathe cheayagnea yaghayeen 180 cengengeng chtayearea rathythear cengenythe chagaaytay nythochagan 240 genmangenm ghaganeenma nechathar aarathathy thaayaaywa nwancenear 300 gayearaara armaneenge nearmangay ttywanttye chaganythee nmanaayear 360 ythaymane cheenwanaa yaghathar geneengara arwanythaa yythochagan 420 garythmagne cheayagnee neargeneen wanythageng engtheenman neencenwan 480

aayccnytng cnmgnggnac nytnmgnacn wsnaayytnc cngargaryt nmgnaargtn 540 ttyathacnt aywsnatgga yacngcnatg gargtngtna arttygtnaa yttyytnytn 600 gtnaayggnt tycaracngc nathgayath ttygargaym gnathmgngg nathgayath 660 athaartgga tggarmgnta yytnmgngay aaracngtna tgathathgt ngcnathwsn 720 ccnaartaya arcargaygt ngarggngcn garwsncary tngaygarga ygarcayggn 780 ytncayacna artayathca ymgnatgatg carathgart tyathwsnca rggnwsnatg 840 aayttymgnt tyathccngt nytnttyccn aaygcnaara argarcaygt nccnacntgg 900 ytncaraaya cncaygtnta ywsntggccn aaraayaara araayathyt nytnmgnytn 960 ytnmgngarg argartaygt ngcnccnccn mgnggnccny tnccnacnyt ncargtngtn 1020 ccnytn

<210> 28

<211> 207

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism:primate; surmised
Homo sapiens

<4005 28

Arg Lys Val Trp Ile Ile Tyr Ser Ala Asp His Pro Leu Tyr Val Asp 1 5 10 15

Val Val Leu Lys Phe Ala Gln Phe Leu Leu Thr Ala Cys Gly Thr Glu 20 25 30

Val Ala Leu Asp Leu Leu Glu Glu Gln Ala Ile Ser Glu Ala Gly Val 35 40 45

Met Thr Trp Val Gly Arg Gln Lys Gln Glu Met Val Glu Ser Asn Ser 50 55 60

Lys Ile Ile Val Leu Cys Ser Arg Gly Thr Arg Ala Lys Trp Gln Ala 65 70 75 80

Leu Leu Gly Arg Gly Ala Pro Val Arg Leu Arg Cys Asp His Gly Lys 85 90 95

Pro Val Gly Asp Leu Phe Thr Ala Ala Met Asn Met Ile Leu Pro Asp 100 105 110

Phe Lys Arg Pro Ala Cys Phe Gly Thr Tyr Val Val Cys Tyr Phe Ser 115 120 125

Glu Val Ser Cys Asp Gly Asp Val Pro Asp Leu Phe Gly Ala Ala Pro 130 135 140

Arg Tyr Pro Leu Met Asp Arg Phe Glu Glu Val Tyr Phe Arg Ile Gln 145 150 155 160

THIS PAGE ALLIER (USPTO)

51

Asp Leu Glu Met Phe Gln Pro Gly Arg Met His Arg Val Gly Glu Leu 165 170 175

Ser Gly Asp Asn Tyr Leu Arg Ser Pro Gly Gly Arg Gln Leu Arg Ala 180 185 190

Ala Leu Asp Arg Phe Arg Asp Trp Gln Val Arg Cys Pro Asp Trp
195 200 205

<210> 29

<211> 208

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism:rodent; surmised
 Mus musculus

<400> 29

Arg Lys Val Trp Ile Val Tyr Ser Ala Asp His Pro Leu Tyr Val Glu
1 5 10 15

Val Val Leu Lys Phe Ala Gln Phe Leu Ile Thr Ala Cys Gly Thr Glu 20 25 30

Val Ala Leu Asp Leu Leu Glu Glu Gln Val Ile Ser Glu Val Gly Val
35 40 45

Met-Thr-Trp-Val-Ser-Arg-Gln-Lys-Gln-Glu-Met-Val-Glu-Ser-Asn-Ser 50 55 60

Lys Ile Ile Ile Leu Cys Ser Arg Gly Thr Gln Ala Lys Trp Lys Ala 65 70 75 80

Ile Leu Gly Trp Ala Glu Pro Ala Val Gln Leu Arg Cys Asp His Trp 85 90 95

Lys Pro Ala Gly Asp Leu Phe Thr Ala Ala Met Asn Met Ile Leu Pro 100 105 110

Asp Phe Lys Arg Pro Ala Cys Phe Gly Thr Tyr Val Val Cys Tyr Phe 115 120 125

Ser Gly Ile Cys Ser Glu Arg Asp Val Pro Asp Leu Phe Asn Ile Thr 130 135 140

Ser Arg Tyr Pro Leu Met Asp Arg Phe Glu Glu Val Tyr Phe Arg Ile 145 150 155 160

Gln Asp Leu Glu Met Phe Glu Pro Gly Arg Met His His Val Arg Glu 165 170 175

Leu Thr Gly Asp Asn Tyr Leu Gln Ser Pro Ser Gly Arg Gln Leu Lys
180 185 190

Glu Ala Val Leu Arg Phe Gln Glu Trp Gln Thr Gln Cys Pro Asp Trp 195 200 205

<212> PRT <213> Unknown

<220>

<210> 30 <211> 190 <212> PRT <213> Unknown <220> <223> Description of Unknown Organism:worm; surmised Caenorabditis elegans <400> 30 Val Lys Val Met Ile Val Tyr Ala Asp Asp Asn Asp Leu His Thr Asp Cys Val Lys Lys Leu Val Glu Asn Leu Arg Asn Cys Ala Ser Cys Asp 25 Pro Val Phe Asp Leu Glu Lys Leu Ile Thr Ala Glu Ile Val Pro Ser 35 40 Arg Trp Leu Val Asp Gln Ile Ser Ser Leu Lys Lys Phe Ile Ile Val 55 Val Ser Asp Cys Ala Glu Lys Ile Leu Asp Thr Glu Ala Ser Glu Thr His Gln Leu Val Gln Ala Arg Pro Phe Ala Asp Leu Phe Gly Pro Ala **—85**— 90-Met Glu Met Ile Ile Arg Asp Ala Thr His Asn Phe Pro Glu Ala Arg 105 Lys Lys Tyr Ala Val Val Arg Phe Asn Tyr Ser Pro His Val Pro Pro Asn Leu Ala Ile Leu Asn Leu Pro Thr Phe Ile Pro Glu Gln Phe Ala Gln Leu Thr Ala Phe Leu His Asn Val Glu His Thr Glu Arg Ala Asn 145 Val Thr Gln Asn Ile Ser Glu Ala Gln Ile His Glu Trp Asn Leu Cys Ala Ser Arg Met Met Ser Phe Phe Val Arg Asn Pro Asn Trp 190 185 <210> 31 <211> 178

<223> Description of Unknown Organism:worm; surmised

Caenorabditis elegans

	Dys - 1		Met	Leu 5	Val	Cys	Pro	Glu	Val 10	Ser	Gly	Arg	Asp	Glu 15	As
	Met	Met	Arg 20	Ile	Ala	Asp	Ala	Leu 25		Lys	Ser	Asn	Asn 30		Va
Val	Cys	Asp 35	Arg	Trp	Phe	Glu	Asp 40	Ser	Lys	Asn	Ala	Glu 45	Glu	Asn	Me
Leu	His 50	Trp	Val	Tyr	Glu	Gln 55	Thr	Lys	Ile	Ala	Glu 60	Lys	Ile	Ile	۷a:
Phe 65	His	Ser	Ala	Tyr	Tyr 70	His	Pro	Arg	Cys	Gly 75	Ile	Tyr	Asp	Val	11¢
Asn	Asn	Phe	Phe	Pro 85	Cys	Thr	Asp	Pro	Arg 90	Leu	Ala	His	Ile	Ala 95	Le
Thr	Pro	Glu	Ala 100	Gln	Arg	Ser	Val	Pro 105	Lys	Glu	Val	Glu	Tyr 110	Val	Let
Pro	Arg	Asp 115	Gln	ГХа	Leu	Leu	Glu 120	Asp	Ala	Phe	Ąap	11e 125	Thr	Ile	Ala
Asp	Pro 130	Leu	Val	Ile	Asp	Ile 135	Pro	Ile	Glu	Asp	Val 140	Ala	Ile	Pro	Glı
Asn 145	Val	Pro	Ile	His	His 150	Glu	Ser	Сув	qaA	Ser 155	Ile	qaA	Ser	Arg	As:

Asn Ser Lys Thr His Ser Thr Asp Ser Gly Val Ser Ser Leu Ser Ser 165 170 175

Asn Ser

THIS PAGE BLANK (CONT.)