Development of a Cartesian sinc DVR basis for single and double ionization

Jeremiah Jones Dan Haxton

Lawrence Berkeley National Laboratory Chemical Sciences Division

> DAMOP Conference 2014 June 5, 2014

Molecular Hamiltonian

- Main goal is to solve $\hat{H}\Psi = E\Psi$ for a general molecule
- We use a finite basis set defined on a Cartesian grid
- Non-relativistic Born-Oppenheimer approximation for Hamiltonian
- Assume atomic units: $\hbar = m_e = 4\pi\epsilon_0 = a_0 = 1$

$$\hat{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} - \sum_{i,a} \frac{Z_{a}}{|\vec{r}_{i} - \vec{R}_{a}|} + \sum_{i < j} \frac{1}{|\vec{r}_{i} - \vec{r}_{j}|}$$

- Z_a = nuclear charge
- \vec{R}_a = nuclear coordinates
- \vec{r}_i = electronic coordinates

Grid Basis Properties

- Standard basis set methods can not represent electrons in the continuum
- Basis sets with N functions have $O(N^4)$ two-electron matrix elements
- This is reduced to $O(N^2)$ in a DVR grid basis
- Proven to work well on applications involving ionization
- Main drawback: basis set scales exponentially with number of electrons
- Hamiltonian matrix is very large and sparse which requires an iterative eigenvalue solver
- We develop a representation of the two-electron operator that only requires O(N) storage space and is exact on an infinite grid
- In progress: couple the grid basis with a molecular orbital basis to do problems involving single and double ionization of large molecules

- Potential matrix elements evaluated with numerical quadrature rules
- Integrals approximated as

$$\int_{a}^{b} f(x) \ dx \approx \sum_{k} w_{k} f(x_{k})$$

- x_k are the quadrature nodes and w_k are the weights
- Each node x_k has a corresponding basis function $\chi_k(x)$
- A DVR basis has the property that $\chi_i(x_j) = \delta_{ij} w_i^{-1/2}$
- Any local operator \hat{V} has a diagonal representation

$$\langle \chi_i | \hat{V} | \chi_j \rangle \approx \sum_k w_k \chi_i(x_k) V(x_k) \chi_j(x_k) = \delta_{ij} V(x_i)$$

DVR bases are always orthonormal with respect to the quadrature rule

$$\langle \chi_i | \chi_j \rangle \approx \sum_k w_k \chi_i(x_k) \chi_j(x_k) = \delta_{ij}$$

Properties of the Sinc Basis

$$\chi_k(x) = \frac{1}{\sqrt{\Delta}} \operatorname{sinc}\left(\frac{x - x_k}{\Delta}\right)$$
$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

The nodes are evenly spaced and centered around the origin

$$x_k = k\Delta, \ k = -n, ..., n, \ N = 2n + 1$$

- The weights are all identical, $w_k = \Delta$
- DVR-orthonormal and L^2 -orthonormal
- Kinetic energy matrix elements are evaluated exactly

$$\langle \chi_i | \hat{T} | \chi_j \rangle = T_{ij} = \begin{cases} \pi^2 / (6\Delta^2) & \text{if } i = j \\ (-1)^{i-j} / (\Delta^2 (i-j)^2) & \text{if } i \neq j \end{cases}$$

- T_{ij} only depends on i-j, i.e. T is a Toeplitz matrix
- 3D basis functions defined with 1D products

$$\chi_{ijk}(x, y, z) \equiv \chi_i(x)\chi_j(y)\chi_k(z)$$

• The two-electron matrix elements:

$$[ij|kl] = \int \int d^3\vec{r}_1 d^3\vec{r}_2 \ \chi_i(\vec{r}_1)\chi_j(\vec{r}_1) \frac{1}{|\vec{r}_1 - \vec{r}_2|} \chi_k(\vec{r}_2)\chi_l(\vec{r}_2)$$

• Define the functions

$$y^{kl}(\vec{r}_1) = \int d^3\vec{r}_2 \ \chi_k(\vec{r}_2)\chi_l(\vec{r}_2) \frac{1}{|\vec{r}_1 - \vec{r}_2|}$$

• Applying the Laplacian to both sides results in the Poisson equation

$$\nabla_{\vec{r}_1}^2 y^{kl}(\vec{r}_1) = -4\pi \chi_k(\vec{r}_1) \chi_l(\vec{r}_1)$$

• Expand y^{kl} in the DVR basis

$$y^{kl}(\vec{r}_1) \approx \sum_n y_n^{kl} \chi_n(\vec{r}_1)$$

• This results in the approximation

$$[ij|kl] = \frac{2\pi}{\sqrt{w_i w_k}} \delta_{ij} \delta_{kl} \mathbb{T}_{ik}^{-1}$$

• For a nucleus at grid point \vec{p} , the nuclear-electron attraction matrix elements are

$$y_{ii}(\vec{p}) = 2\pi w_i^{-1} \mathbb{T}_{ip}^{-1}$$

\mathbb{T}^{-1} Approximation

ullet Since ${\mathbb T}$ is a Toeplitz matrix, it can be represented with only one index

$$\mathbb{T}_{ij} \to \mathbb{T}_{i-j}$$

 \bullet On an infinite grid, the same property would apply to $\mathbb{T}^{-1},$ which would satisfy

$$\mathbb{T} * \mathbb{T}^{-1} = \sum_{j=-\infty}^{\infty} \mathbb{T}_{i-j} \mathbb{T}_{j}^{-1} = \delta_{i0}$$

- \bullet \mathbb{T}^{-1} can be thought of as a discretized Green's function for the operator \mathbb{T}
- The Green's function for the exact operator $\hat{\mathbb{T}}$ is

$$G(\vec{r}) = \frac{1}{2\pi |\vec{r}|}$$

- We expect that $\mathbb{T}_i^{-1} \to G(\vec{r_i})$ as $|\vec{r}| \to \infty$
- \bullet Define \mathbb{T}^{-1} on a "big" grid that is at least twice the size of the computational grid
- Numerical strategy: Split \mathbb{T}^{-1} into an unknown short-range term Q and a long-range term using $G(\vec{r})$

$$\mathbb{T}_i^{-1} = Q_i + G(\vec{r_i}), \quad -n_{big} \le i \le n_{big}$$

\mathbb{T}^{-1} Approximation (continued)

- Define an inner "small" box with N_{small} points per dimension
- ullet The short range term Q is zero outside the small box
- ullet The long-range term G is zero inside the small box

$$Q_i = \begin{cases} q_i & \text{if } \vec{r}_i \text{ in small box} \\ 0 & \text{otherwise} \end{cases}$$

$$G_i = \left\{ \begin{array}{ll} 0 & \text{if } \vec{r_i} \text{ in small box} \\ \frac{1}{2\pi |\vec{r_i}|} & \text{otherwise} \end{array} \right.$$

• This defines a system of N_{small}^3 linear equations for q

$$(\mathbb{T}q)_i = 2\pi\delta_{i0} - \Delta^3(\hat{\mathbb{T}}G)_i$$

- System is easily solved with a conjugate gradient method
- Must have $n_{big} \geq 2n$ in order to evaluate \mathbb{T}_{i-j}^{-1} anywhere on the grid

Hydrogen Calculations: DVR vs. Variational

The n = 1, 2 eigenvalues and errors for hydrogen

		DVR		Variational	
State	Exact	Computed	Abs. Error	Computed	Abs. Error
1s	-0.5	-0.4941	5.9E - 3	-0.4881	$1.2E{-2}$
2s	-0.125	-0.1244	$6.0E{-4}$	-0.1206	$4.4E{-3}$
2p	-0.125	-0.1250	$1.8E{-5}$	-0.1238	$1.2E{-3}$

Virial theorem test for the n=1,2 eigenvectors for hydrogen

	DVR		Variational	
State	$\langle \hat{T} \rangle / \langle \hat{V} \rangle$	Abs. Error	$\langle \hat{T} \rangle / \langle \hat{V} \rangle$	Abs. Error
1s	-0.4939	6.0599E - 3	-0.4817	1.8300E-2
2s	-0.4987	1.2724E - 3	-0.5280	2.7996E-2
2p	-0.4998	2.2242E-4	-0.5184	1.8360E-2

Parameter values: N = 45, $\Delta = 0.4$

H₂⁺ Energy Curves

Error in H₂⁺ Energy Curves

Hydrogen Energy vs. Radius

Corrugation Amplitude vs. Grid Spacing

Corrugation Amplitude Table

Δ	(1,0,0)	(1, 1, 0)	(1, 1, 1)	(1, 1, 5)
0.3	$1.9948e{-5}$	$2.5260e{-5}$	3.1757e - 5	$2.6653e{-5}$
0.4	$4.2712e{-5}$	$6.1705e{-5}$	$9.0939e{-5}$	$8.4882e{-5}$
0.5	$7.4941e{-5}$	$1.4621e{-4}$	$2.0954e{-4}$	2.1190e-4
0.6	$1.4243e{-4}$	$2.6965e{-4}$	$4.0165e{-4}$	$4.0363e{-4}$
0.7	2.7172e - 4	5.4138e - 4	$8.0610e{-4}$	$8.0032e{-4}$
0.8	$4.2852e{-4}$	$8.4931e{-4}$	$1.2464e{-3}$	1.1007e - 3
0.9	$6.4024e{-4}$	$1.3035e{-3}$	$1.8771e{-3}$	$1.4918e{-3}$
1.0	$9.5751e{-4}$	$1.8554e{-3}$	2.7377e - 3	$2.1863e{-3}$

Table: The maximum corrugation amplitude for the ground state energy of Hydrogen along different directions and for different grid resolutions with a fixed box size of 8 bohr.

Helium Ground State

- Fixed box size $[-3a_0, 3a_0]$ in each dimension
- Exact value to four digits: $E_0 = -2.9037$
- Quadratic convergence rate observed

N	Δ	E_0
11	0.60	-2.8094
13	0.50	-2.8388
15	0.43	-2.8558
17	0.38	-2.8662
19	0.33	-2.8731
21	0.30	-2.8779
23	0.27	-2.8813

Future Work

- Calculate metastable states of helium and lithium using the method of complex coordinate rotation
- Implement smooth exterior scaling with complex basis functions for arbitrary molecules
- Develop a hybrid basis of sinc DVR functions and molecular orbitals
- \bullet This will make ionization problems for many-electron systems practical
- Most electrons remain in orbitals with only one or two in the continuum