Nuclear Fuel Performance

NE-533

Spring 2024

Last Time

- In-pile release Booth model
- Forsberg-Massih 2-stage FGR model
- Three component diffusion
- Swelling/dimensional change
 - densification, thermal expansion, solid/gas fission product swelling, creep
- Fuel fracture

ZIRCONIUM CLADDING

Cladding

- The purpose of the cladding is to:
 - Hold the pellets together so that coolant can freely flow past
 - Transport heat from fuel to the coolant
 - Contain fission products
 - Contain fuel fragments
- We would also prefer if the cladding had little to no impact on the neutron transport in the reactor

Why Zirconium alloys?

Benefits

- Low neutron cross section
- Corrosion resistance in 300°C water
- Resistance to void swelling
- Adequate mechanical properties
- Good thermal conductivity
- Affordable cost
- Available in large quantities

Problems?

- Corrosion under high temperature steam
- Hydride embrittlement
- Anisotropic characteristics lead to creep and growth

Zirconium

- Pure zirconium was not acceptable due to its oxidation behavior
- Oxygen with water reacted to form an oxide layer
- The oxide layer is brittle and flakes off, allowing more oxidation to occur
- Zr alloys were developed to improve corrosion resistance

Commercial Zr Alloys in PWRs

Alloy	Sn %	Nb %	Fe %	Cr %	Ni %	О%
PWRs (structural components and fuel rods)						
Zircaloy-4 (SRA)	1.2-1.7	-	0.18-0.24	0.07-0.13	-	0.1-0.14
ZIRLO (SRA)	1	1	0.1	-	-	0.12
Optimized ZIRLO (pRXA)	0.7	1	0.1	-	-	0.12
M5 (RXA)	-	0.8-1.2	0.015-0.06	-	-	0.09-0.12
HPA-45 (SRA/RXA)	0.6	-	Fe+V	-	-	0.12
NDA (SRA)	1	0.1	0.3	0.2		0.12
MDA (SRA)	0.8	0.5	0.2	0.1		0.12

Alloying Elements

- The alloying elements impact the microstructure of the material
- The intermetallic precipitates significantly improve the oxidation behavior
- In Zircaloy 2, the precipitates are
 - Zr(Cr, Fe)₂
 - Zr₂(Ni, Fe)
- In Zircaloy 4, the precipitates are
 - Zr(Cr, Fe)₂
- Phosphides (Zr₃P) and silicides (Zr₃Si) are also occasionally found
- The precipitate distribution, size, morphology, and composition all impact the properties of the material

Zirconium Phases

- The α-Zr phase has a hexagonal-closepacked (HCP) structure
 - At temperatures below about 863°C
 - Has the most desirable properties
- The β-Zr phase has a body-centered cubic (BCC) structure
 - We try to avoid this phase

Zr Tube Fabrication

- The cladding tubes are fabricated using various processes that SEVERELY deform the material
- The severe plastic deformation causes significant dislocation hardening, that can make the tube material too brittle
- Plastic deformation along slip planes results in reorientation of the grains
- The properties of the material are controlled by heat treatment
- Raising the temperature, but below 863°C, anneals the sample to reduce cold work (stress-relieved)-SRA
- Raising the temperature above 863°C changes to the β phase. They then quench the sample to create a random texture in the α phase-RXA or pRXA

FIG. 48. Strain states for various types of fabrication of Zircaloy-2 [109].

Zr alloy microstructures

Fully recrystallized after quench

Stress-relieved microstructure

Zirconium Creep and Growth

- The cladding undergoes a very large amount of irradiation during its life, the main effects are:
 - Interstitial loops form on prismatic planes
 - Later in the reactor exposure, vacancy loops form on the basal plane
- The overall number of displacements to the cladding can be calculated with the NRT model to be ~ 8 x 10⁻⁸ dpa/s, which, over 3 years exposure gives a total of ~8 dpa (every atom in the solid is displaced on the average eight times)

$$v(T) = \frac{\kappa E_D}{2E_d} = \frac{\kappa (T - \eta)}{2E_d},$$

in-pile Zy4 grid at 325°C

Irradiation Growth

- Irradiation growth results from material anisotropy
- There is corresponding anisotropy in the defect behavior within the unit cell
- There is also a texture formed in the grain orientations
- Interstitial loops form on pyramidal planes, causing shrinkage along the center axis
- Later, vacancy loops form on basal planes, making it even worse
- The result is a change in shape, shrinking in the 0001 direction and expanding in the pyramidal direction

Irradiation Growth

- Three stages of irradiation growth
 - Initial rapid growth to small strains defect generation
 - Slow growth defect accumulation, gets skipped in cold worked material
 - Accelerated or breakaway growth, caused by formation of vacancy loops on the basal plane
- Irradiation growth is affected by:
 - Fluence, Cold work, Texture,
 Irradiation temperature, Material chemistry, Hydrogen effects

Irradiation Growth

- Higher temperature leads to earlier breakaway and higher growth
- Higher temperature adds mobility to defects, allowing them to diffuse faster, form clusters, and exacerbate the defect cluster induced anisotropic growth

