THIS PAPER IS NOT TO BE REMOVED FROM THE EXAMINATION HALLS

UNIVERSITY OF LONDON

CO3326 ZA

BSc Examination

COMPUTING AND INFORMATION SYSTEMS, CREATIVE COMPUTING AND COMBINED DEGREE SCHEME

Computer security

Date and Time:

Thursday 4 May 2017: 10.00 - 12.15

Duration:

2 hours 15 minutes

There are FIVE questions in this paper. Candidates should answer **THREE** questions. All questions carry equal marks, and full marks can be obtained for complete answers to a total of **THREE** questions. The marks for each part of a question are indicated at the end of the part in [.] brackets.

Only your first THREE answers, in the order that they appear in your answer book, will be marked.

There are 75 marks available on this paper.

A hand held calculator may be used when answering questions on this paper but it must not be pre-programmed or able to display graphics text or algebraic equations. The make and type of machine must be stated clearly on the front cover of the answer book.

© University of London 2017

UL17/0497

PAGE 1 of 6

(a) Alice and Bob want to use the Diffie-Hellman Key exchange protocol to generate a shared secret key. They have agreed to use prime number p = 17 with generator g = 3. Alice chooses the secret key a = 6 and Bob chooses secret key b = 11. What is the value of their shared secret key? Show all of your working.
(b) Name and describe a method of law management that involves using

[6]

(b) Name and describe a method of key management that involves using a trusted third party (TTP).

[5]

(c) Describe the web of trust model used for key management in PGP, and which does not involve the use of a TTP. Give one advantage and one disadvantage of the web of trust model compared with the method that you have described in point (b).

[6]

(d) Describe the no-read up and no-write down rules enforced in the secure multi-user Bell-LaPadula model.

[4]

(e) Explain why strict enforcement of the no-read up and no-write down rules could cause a problem for users of a system implementing the Bell-LaPadula model, and how Bell-LaPadula overcomes this problem.

[4]

(a)	Use Fermats little theorem with base 2 to show that 93 is not a prime number.	[6]
(b)	Give the key generation protocol for the RSA public key cryptosystem.	[7]
(c)	Alice has public RSA keys $(e,n)=(13,93).$ Encrypt the message $m=7$ to be sent to Alice. Show all your working.	[4]
(d)	Show that $d=37$ is the value of Alice's private key.	[4]
(e)	Explain how and why Alice and Bob might use RSA to exchange a key for use in a symmetric key cryptosystem.	[4]

The affine cipher is a type of mono-alphabetic substitution cipher: the letters of an alphabet of size m are first mapped to the integers in the range $0 \dots m-1$. Then modular arithmetic is used to transform the integer that each plain-text letter corresponds to. The encryption function for a single letter is $\mathsf{E}(x) = (ax+b) \bmod m$, where m is the size of the alphabet and a and b are the keys of the cipher. Consider that our alphabet consists of the 26 letters m=26 and we know that the cipher is deterministically invertible.

- (a) What is the decryption function? [5]
- (b) What are the restrictions on a? Why? What are the possible values of a?
- (c) The following ciphertext has been encrypted with an affine cipher using a=5 and b=8:

IHHWVCSWFRCP

Decrypt it. Show all your working.

[7]

[2]

[6]

[5]

- (d) What is the relationship between the Affine cipher and the Caesar cipher?
- (e) A block cipher can be used in different modes. Three of these are Electronic Codebook Mode (ECB), Cipher Block Chaining Mode (CBC) and Output Feed-Back Mode (OFB). Briefly explain the differences between these three modes of operation.

(a) Explain how an n of n key escrow protocol works. Why is an n of n key escrow protocol rarely used in the real world?

[6]

(b) The prime number p=37 is used as the modulus to generate three key pieces for a 2 of 3 key escrow scheme. Two of the key pieces are given below. Find the value of the secret key K showing all your working.

$$K_1 = (x_1 = 7, k_1 = 19)$$

$$K_2 = (x_2 = 26, k_2 = 3)$$

[7]

- (c) In the context of cryptographic hash functions, explain briefly the following notions:
 - i. fingerprint
 - ii. collision resistance
 - iii. second pre-image resistance
 - iv. determinism.

[8]

- (d) Suppose m is a positive integer. For the following two functions H(m) give reasons why these are not suitable for use as cryptographically strong hash functions:
 - i. H(m) is defined to be $m \mod d$ where d is the first nonzero decimal digit of m (so, for example, if m=302 then $H(m)=302 \mod 3=2$);
 - ii. H(m) is defined to be the m-th prime number (so, for example, if m=4 then H(m)=7).

[4]

(a) Explain briefly in simple words the *Elliptic Curve Discrete Logarithm Problem (ECDLP)*.

[3]

(b) Consider the following elliptic curve E: $y^2=x^3+2x+2$ over the prime field F_{17} and point P=(5,1). Compute $2\cdot P=P+P=(5,1)+(5,1)=(x_3,y_3)$.

[7]

(c) Features that a good security system might provide include: confidentiality, integrity, availability, non-repudiation, authentication, access controls and accountability. For each, write a sentence explaining the purpose of the feature.

[7]

- (d) Answer the following questions related to hash functions and provide brief explanations for your answers:
 - Contrast MD-5 and SHA-1 in terms of efficiency, security and complexity.
 - ii. Can a Message Authentication Code (MAC) provide non-repudiation?
 - iii. Can a MAC provide authentication?
 - iv. Can hash functions be used in Output Feedback (OFB) mode? If so, what would be the advantage of this?

[8]

END OF PAPER