МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра механики, мехатроники и робототехники

		УТВЕРЖДАЮ
	Прорект	ор по учебной работе
		О.Г. Локтионова
~	>>	2023 г.

ЭЛЕКТРОМЕХАНИЧЕСКИЕ И МЕХАТРОННЫЕ СИСТЕМЫ

Методические указания по выполнению лабораторных работ для студентов направления 15.03.06 Мехатроника и робототехника

УДК 62.83

Составители: А.В. Мальчиков

Рецензент Кандидат технических наук, доцент Е.Н. Политов

Электромеханические и мехатронные системы: методические указания по выполнения лабораторных работ по дисциплине «Электромеханические и мехатронные системы» для студентов направления подготовки 15.03.06 «Мехатроника и робототехника» / Юго-Зап. гос. ун-т; сост.: А.В. Мальчиков. Курск, 2023. 40с.

Содержатся сведения по вопросам устройства и работы электроприводов различных типов. Приводятся примеры выполнения лабораторных работ, краткие теоретические положения и контрольные вопросы для защиты.

Предназначены для студентов направления подготовки 15.03.06 «Мехатроника и робототехника всех форм обучения.

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1\16 Усл.печ.л. .Уч.изд.л. .Тираж 50 экз.Заказ. Бесплатно. Юго-Западный государственный университет. 305040, г.Курск, ул.50 лет Октября, 94.

Содержание

Лабораторная работа №1. Исследование линии
электропередачи постоянного тока4
Лабораторная работа №2. Исследование идеальных элементов электрической цепи13
Лабораторная работа №3. Исследование электрической цеписинусоидального тока при последовательном соединении R-, L- и С- элементов
Лабораторная работа №4. Исследование электрической цеписинусоидального тока при параллельном соединении25
Лабораторная работа № 5. Исследование трехфазной цепи переменного тока при соединении электроприемников по схеме «звезда»
Лабораторная работа № 6. Исследование трехфазной цепи переменного тока при соединении электроприемников по схеме «треугольник»
Библиографический список40

Лабораторная работа №1. Исследование линии электропередачи постоянного тока

ЦЕЛЬ РАБОТЫ

Изучение линии передачи низкого напряжения в различных режимах при неизменном напряжении источника электрической энергии.

Снятие характеристик линии передачи постоянного тока низкого напряжения.

ПОДГОТОВКА К ИССЛЕДОВАНИЯМ

Изучить по конспекту лекций и рекомендованному учебнику раздел «Цепи постоянного тока».

Освоить методику выполнения лабораторной работы по настоящему пособию.

Заготовить отчет со схемой виртуальной экспериментальной установки, таблицей для экспериментальных и расчетных данных.

ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

Линией передачи называется промежуточное звено, соединяющее источник электрической энергии с ее приемником.

На рисунке 3.1 представлена электрическая схема цепи с линией передачи, где источник и приемник структурно не раскрыты (представлены в виде двухполюсников). Провода линии передачи постоянного тока обладают сопротивлением, определяемым по формуле:

$$R_{_{A}} = \frac{\rho \cdot l}{A} \,, \tag{1.1}$$

где ρ — удельное сопротивление материала, из которого изготовлены провода; l — длина проводов линии передачи (для двухпроводной линии передачи равна удвоенной длине линии передачи); A — площадь сечения проводов.

Рис. 1.1. Цепь с линией передачи

Схема на рисунке 1.1 может быть представлена схемой замещения, изображенной на рисунке 1.2, от которой перейдем к эквивалентной ей схеме электрической цепи, представленной на рисунке 1.3.

Рис. 1.2. Схема замещения цепи с линией передачи

Рис.1.3. Эквивалентная схема цепи с линией передачи

Проведем анализ этой схемы, представляющей собой простую электрическую цепь, для которой справедлив второй закон Кирхгофа (считаем, что $E=U_1$):

$$U_1 = U_2 + \Delta U = U_2 + R_{\pi} \cdot I, \qquad (1.2)$$

где U_1 — напряжение в начале линии передачи; U_2 — напряжение в конце линии передачи (на нагрузке); ΔU — падение напряжения (или потеря напряжения) в линии передачи, которое можно определить как:

$$\Delta U = U_1 - U_2 = R_{\pi} \cdot I . \tag{1.3}$$

Умножая левую и правую часть уравнения (1.2) на I, получаем основное энергетическое соотношение для рассматриваемой электрической цепи:

$$U_1 \cdot I = U_2 \cdot I + \Delta U \cdot I = U_2 \cdot I + R_{_{\mathcal{I}}} \cdot I^2$$
(1.4)

Произведение напряжения на ток есть мощность. Поэтому (1.4) запишется в виде:

$$P_1 = P_2 + \Delta P = P_2 + R_{\pi} \cdot I^2 \tag{1.5}$$

Из полученных уравнений можно определить ряд величин: характеризующих работу линии передачи (характеристики линии передачи):

1) напряжение в конце линии передачи (на приемнике):

$$U_2 = U_1 - \Delta U = U_1 - R_{_{\Lambda}} \cdot I; \tag{1.6}$$

2) мощность, отдаваемая линией передачи нагрузке:

$$P_2 = P_1 - \Delta P = U_1 \cdot I - R_{_{A}} \cdot I^2; \tag{1.7}$$

3) КПД линии передачи:

$$\eta = \frac{P_2}{P_1} = \frac{P_1 - \Delta P}{P_1} = 1 - \frac{\Delta P}{P_1} = 1 - I \cdot \frac{R_x}{U_1}.$$
(1.8)

Сила тока I характеризует величину нагрузки.

По отношению к нагрузке линию передачи и источник электроэнергии можно рассматривать как двухполюсник. Поэтому как для всякого двухполюсника для линии передачи возможны четыре режима работы: номинальный режим, режим холостого хода, режим короткого замыкания, согласованный режим.

- Номинальным называется режим, котором электротехническое устройство работает со значениями тока, напряжения, мощности, на которые оно рассчитано заводомизготовителем И которые называются его номинальными (паспортными) значениями. Большинство электротехнических устройств рассчитывается для работы именно в номинальном режиме.
- 2. Режимом холостого хода (XX) называется режим, при котором сопротивление нагрузки равно бесконечности $R_{\scriptscriptstyle H}=\infty$ (разрыв электрической цепи). При данном режиме справедливо следующее:

$$I = 0$$
; $U_1 = U_2$; $\Delta U = 0$; $P_1 = P_2 = 0$; $\eta = 1$.

Для большинства электрических цепей и устройств режим короткого замыкания является аварийным.

4. Согласованным называется режим, при котором величина мощности нагрузки имеет максимальное значение. Для

определения нагрузки при этом режиме находим производную dP_2/dR_H и приравниваем ее к нулю:

$$\frac{dP_{2}}{dR_{H}} = \frac{d\left(U_{1} \cdot I - R_{_{A}} \cdot I^{2}\right)}{dR_{H}} = \frac{d\left[U_{1} \cdot \frac{U_{1}}{R_{_{A}} + R_{_{H}}} - R_{_{A}} \cdot \left(\frac{U_{1}}{R_{_{A}} + R_{_{H}}}\right)^{2}\right]}{dR_{_{H}}} = 0$$

$${R_{\pi}}^2 - {R_H}^2 = 0$$
, отсюда $R_{\pi} = R_H$.

Таким образом, согласованный режим возникает при равенстве сопротивлений линии и нагрузки. Для данного режима выполняется следующее (следствие согласованного режима):

$$U_2 = \frac{U_1}{2}$$
; $I = \frac{U_1}{R_x + R_H} = 0.5I_{K3}$; $\eta = 0.5$.

Согласованный режим находит применение, например, в линиях связи, где КПД линии не является определяющим фактором, но где необходимо в приемнике иметь максимальную мощность.

ОПИСАНИЕ ВИРТУАЛЬНОЙ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

При выполнении лабораторной работы используются программы, моделирующие (эмулирующие) работу электрических схем.

Примерами таких программ могут быть Electronics Workbench, Proteus, Qucs, Circuit Simulator и др. Применение этих программ позволяет создавать модели электрических схем и исследовать их, используя виртуальные измерительные приборы.

В рамках данного методического руководства будет использоваться онлайн эмулятор электрических схем Circuit Simulator. Это бесплатное программное обеспечение с открытым исходным кодом, доступное по ссылке https://www.falstad.com/circuit.

После перехода по ссылке открывается окно программы с примером для моделирования (рис. 1.4).

This is an electronic circuit simulator. When the applet starts up you will see an animated schematic of a simple LRC circuit. The green color indicates positive voltage. The gray color indicates ground. A red color indicates negative voltage. The moving yellow dots indicate current.

To turn a switch on or off, just click on it. If you move the mouse over any component of the circuit, you will see a short description of that component and its current state in the lower right corner of the window. To modify a component, move the mouse over it, click the right mouse button (or control-click if you have a Mac) and select "Edit".

The "Circuits" menu contains a lot of sample circuits for you to try.

Full Screen version.

Рис. 1.4. Интерфейс программы Circuit Simulator

Для создания нового проекта необходимо нажать «Файл/Новая Схема».

Далее используя вкладку «Рисовать» необходимо добавить необходимые компоненты исследовательской схемы (рис. 1.3). Используемые в лабораторной работе компоненты схемы отмечены стрелками на рис. 1.5-1.6.

Рис. 1.5. Добавление компонентов схемы

Рис. 1.6. Добавление измерительных приборов

При настройке схемы необходимо изменить значения питающего напряжения U_1 и сопротивления линии цепи R_n , согласно варианту (см. табл. 1.2). Изменение параметров любого

компонента в программе осуществляется двойным нажатием на его изображение (рис. 1.7).

Рис. 1.7. Виртуальная экспериментальная установка в Circuit Simulator

ПОРЯДОК ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

- 1. Ознакомиться со схемой экспериментальной установки (рис. 1.3), определить параметры элементов схемы по табл.1.2. согласно варианту задания.
- 2. Собрать электрическую схему в симуляторе и настроить параметры компонентов согласно варианту задания (рис. 1.3).
- 3. Запустить моделирование нажатием кнопки «Start/STOP», замкнуть однополюсный переключатель (SPDT Single Pole, Double Throw) таким образом чтобы задействовать нагрузку (Потенциометр).
- 4 Изменяя положение движка нагрузочного реостата (Resistance) с помощью ползунка в правой части экрана программы из крайнего левого ($R_H = 995$ Ом, максимальная нагрузка), в крайнее правое ($R_H = 5$ Ом, режим близкий к короткому замыканию), будем уменьшать сопротивление нагрузки, записывая показания приборов в таблицу 3.1.

Согласованный режим получают как один из промежуточных режимов при изменении нагрузки, когда $U_2 = U_1/2$.

Табл.1.1. Экспериментальные и расчетные данные

No	И	змере	НО			Вычи	Примечание			
Π/Π	U_1	U_2	I	P_1	P_2	ΔU	ΔP	η	$R_{\scriptscriptstyle \Lambda}$	_
	В	В	A							
1										Режим XX
2										
3										
4										
5										Согласованный
										режим $U_2 = U_1/2$
6										
7										
8										
9										Режим КЗ

Табл. 1.2. Варианты заданий

$\mathcal{N}_{\underline{0}}$	Знач	ения	№	Знач	ения
Варианта	U_1	$R_{\scriptscriptstyle \Lambda}$	Варианта	U_1	$R_{\scriptscriptstyle \Lambda}$,
по списку	В		по списку	В	Ом
1	30	110	11	24	100
2	28	120	12	22	90
3	26	130	13	32	80
4	24	100	14	34	110
5	22	90	15	36	120
6	32	80	16	38	130
7	34	110	17	40	90
8	36	120	18	30	80
9	38	130	19	28	90
10	40	100	20	26	80

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И СОДЕРЖАНИЕ ОТЧЕТА

- 1. По полученным экспериментальным данным подсчитать значения ΔU , P_1 , P_2 , ΔP , η и внести их в таблицу 1.1.
- 2. На основании данных таблицы 1.1 построить характеристики линии передачи (значения тока I откладываются по горизонтальной оси):

$$P_1 = f_1(I), P_2 = f_2(I), \Delta P = f_3(I), U2 = f_4(I), \Delta U = f_5(I), \eta = f_6(I).$$

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. От чего зависит падение напряжения в линии?
- 2. Объяснить вид характеристик линии передачи.
- 3. Какие режимы работы линии передачи Вы знаете?
- 4. От чего зависит ток короткого замыкания линии передачи?
- 5. При каком условии линия передачи передает нагрузке наибольшую мощность? Когда применяются линии, работающие в этом режиме?
- 6. Как изменятся характеристики линии электропередачи, если ее выполнить из медного провода?
- 7. Как изменятся характеристики линии электропередачи, если вместо медного провода взять алюминиевый провод?
- 8. Как изменятся падение напряжения и потери мощности в линии передачи, если увеличить площадь сечения проводов?
- 9. Как изменятся падение напряжения и потери мощности в линии передачи, если увеличить напряжение в начале линии?

Лабораторная работа №2. Исследование идеальных элементов электрической цепи

ЦЕЛЬ РАБОТЫ

Приобретение навыков моделирования идеальных элементов электрической цепи с помощью виртуальной онлайн лаборатории.

Ознакомление с моделями оборудования и измерительных приборов.

Приобретение навыков чтения принципиальных электрических схем.

ПОДГОТОВКА К РАБОТЕ

Изучить по конспекту лекций и рекомендованному учебнику соответствующие разделы дисциплины.

Освоить методику выполнения лабораторной работы по настоящему пособию.

Заготовить отчет со схемой виртуальной экспериментальной установки, таблицей экспериментальных и расчетных данных

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Собрать в виртуальной лаборатории Circuit Simulator, с помощью изученных ранее методов, схему электрической цепи синусоидального тока для исследования резистивного, индуктивного и емкостного элементов (рис. 2.1).

Рис. 2.1 Схема электрической цепи

При составлении модели, желательно следовать следящим правилам:

- а) вход схемы или источник питания расположен слева, а выход или потребители справа;
 - б) проводники изгибаются под прямым углом;

- в) схема скомпонована так, чтобы она занимала наименьшее возможное место и была удобна для чтения;
- г) все элементы имеют позиционные обозначения, нумерация которых расставлена слева направо, сверху вниз (для добавления обозначения можно использовать: «Рисовать» / «Выходы и инф. элементы» / «Добавить надпись»).

Особенностью модели является наличие внутреннего сопротивления источника $R_0 = 1$ Ом. Это сопротивление нужно для моделирования цепи с конденсатором. Без R_0 иногда в схеме будет происходить которое замыкание и программа будет выдавать ошибку.

На схеме для удобства работы и анализа данных добавлен ползунок изменения частоты источника. Для его добавления необходимо нажать на изображение элемента правой кнопкой мыши и выбрать последний пункт в меню (рис.2.2, а). Далее необходимо указать параметры ползунка (рис.2.2, б).

Рис. 2.2 Добавление настройки частоты источника

Также необходимо добавить осциллограммы напряжений на резисторе, катушке индуктивности и конденсаторе. Для чего необходимо нажать на изображение элемента правой кнопкой мыши и выбрать соответствующий пункт (см. рис.2.3).

Рис. 2.3 Добавление осциллографа

2. Установить параметры источника переменного напряжения и элементов схемы согласно варианту задания (табл. 2.2).

Обратите внимание на то, что нужно задать действующее программе значение напряжения источника, a В задается амплитудное. Для получения амплитудного значения напряжения нужно действующее напряжение (оно дано в табл. 2.2) разделить на корень квадратный из двух. Например, если дано напряжение источника U = 200 B, то амплитудное значение составит $U_{\text{max}} =$ 200/0,707 = 282 В и именно это значение нужно ставить в настройки источника. Если параметры заданы верно, то вольтметр, подключенный параллельно источнику, покажет значение близкое к действующему. В нашем примере – близкое к 200 В.

3. Настроить вольтметр на измерение среднеквадратичного напряжения, а амперметр - на измерение среднеквадратичного тока.

Рис.2.4. Настройка вольтметра

В результате должна получиться схема, похожая на ту, которая приведена на рисунке 2.5.

Puc.2.5. Виртуальная экспериментальная установка в Circuit Simulator

- 4. "Запустить" схему, нажав кнопку "START/stop", если она не была нажата. В "нажатом" состоянии (при запущенной симуляции схемы) эта кнопка окрашена в серый цвет, а в "отпущенном" состоянии (при остановленной симуляции схемы) в красный.
- 5 Замкнуть выключатель S1. При этом к источнику будет подключен только резистор это будет режим работы цепи "R".
- 6 Измерить напряжение и ток в этом режиме и записать их значения в строку с наименованием цепи "*R*" таблицы 2.1.
- 7 Разомкнуть выключатель S1 и замкнуть выключатель S2. При этом к источнику будет подключена только катушка индуктивности это будет режим работы цепи "L".
- 8. Измерить напряжение и ток в этом режиме и записать их значения в строку с наименованием цепи "L" таблицы 2.1.
- 9. Разомкнуть выключатель S2 и замкнуть выключатель S3. При этом к источнику будет подключен только конденсатор это будет режим работы цепи "С".
- 10. Измерить напряжение и ток в этом режиме и записать их значения в строку с наименованием цепи "С" таблицы 2.1.

Табл. 2.1. Экспериментальные и расчетные данные

Цепь	Экспер	имент.	Расчетные данные					
	дан	ные						
	U, B	I, A	$\cos \varphi$	Z, Om	R, Om	<i>X</i> , Ом	Р, Вт	Q, BAp
R								
L								
С								

11. Вычислить параметры электрической цепи и записать их таблицу 2.1. Для расчета параметров применяются следующие формулы:

индуктивное сопротивление:

$$x_L = 2\pi f L \tag{2.1}$$

емкостное сопротивление:

$$x_C = \frac{1}{2\pi fC} \tag{2.2}$$

полное сопротивление:

$$Z = \frac{U}{I} \tag{2.3}$$

коэффициент мощности:

$$\cos\varphi = \frac{R}{Z} \tag{2.4}$$

активная мощность:

$$P = I_R^2 \cdot R \tag{2.5}$$

реактивная индуктивную мощность:

$$Q_L = I_L^2 \cdot x_L \tag{2.6}$$

реактивная емкостная мощность:

$$Q_C = I_C^2 \cdot x_C \tag{2.7}$$

12. На основании полученных результатов построить в масштабе векторные диаграммы токов и напряжений для каждого опыта.

Табл. 2.2. Варианты заданий

No		Знач	ения	
Варианта	U_1	R_1	L_1	C_1
по списку	В	кОм	Гн	мкФ
1	220	1,1	10	10
3	230	1,2	11	20
3	210	0,9	9	30
4	200	0,8	12	5
5	190	1	8	15
6	180	1,05	10	25
7	240	1,15	12	10
8	250	1,25	8	5
9	170	0,95	11	7
10	160	1	9	15
11	210	1,05	11	25
12	200	1,15	9	10
13	190	1,25	12	5
14	180	0,95	8	7
15	170	0,85	10	4
16	160	1,1	12	10
17	230	1,2	8	20
18	240	0,9	11	30
19	190	0,8	9	5
20	180	1	10	15

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какие физические процессы, происходящие в электрических цепях, отображают схемы замещения реальных элементов?
- 2. Каковы углы сдвига фаз между напряжением и током на реальных элементах?
- 3. Какие энергетические процессы характеризуют активная и реактивная мощности?

Лабораторная работа №3. Исследование электрической цепи синусоидального тока при последовательном соединении R-, L- и C- элементов

ЦЕЛЬ РАБОТЫ

Проверить на практике выполнение законов Ома и Кирхгофа в неразветвленной цепи синусоидального тока.

Ознакомиться с явлением резонанса напряжений.

Приобрести навыки построения векторных диаграмм токов и напряжений.

ПОДГОТОВКА К ИССЛЕДОВАНИЯМ

Изучить по конспекту лекций и рекомендованному учебнику раздел «Цепи синусоидального тока».

Освоить методику выполнения лабораторной работы по настоящему пособию.

Заготовить отчет со схемой виртуальной экспериментальной установки, таблицей для экспериментальных и расчетных данных.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Собрать в виртуальной лаборатории Circuit Simulator, с помощью изученных методов, схему электрической цепи синусоидального тока для исследования последовательной R, L, C – цепи (рис. 3.1).

Рис. 3.1 Схема электрической цепи

В результате должна получиться схема, похожая на ту, которая приведена на рисунке 3.2.

Рис.3.2. Виртуальная экспериментальная установка в Circuit Simulator

На рисунке 3.2 для удобства работы и анализа данных добавлен ползунок изменения частоты источника, а также выведены осциллограммы напряжений на резисторе, катушке индуктивности и конденсаторе.

2. Установить параметры источника переменного напряжения и элементов схемы согласно варианте задания.

Обратите внимание на то, что нужно задать действующее значение напряжения источника, а в программе задается амплитудное. Для получения амплитудное значения напряжения нужно действующее напряжение (оно дано в табл. 3.2) разделить на корень квадратный из двух. Например, если дано напряжение источника U = 200 В, то амплитудное значение составит $U_{\text{max}} = 200/0,707 = 282$ В и именно это значение нужно ставить в настройки источника. Если параметры заданы верно, то вольтметр, подключенный параллельно источнику, покажет значение близкое к действующему.

- 3. Настроить вольтметр на измерение среднеквадратичного напряжения, а амперметр на измерение среднеквадратичного тока.
- 4. "Запустить" схему, нажав кнопку "START/stop", если она не была нажата. В "нажатом" состоянии (при запущенной симуляции

схемы) эта кнопка окрашена в серый цвет, а в "отпущенном" состоянии (при остановленной симуляции схемы) – в красный.

5. Подготовить таблицу для измерений по образцу Табл.3.1.

Табл. 3.1. Экспериментальные данные

Цепь	U, B	<i>I</i> , A	U_R , B	U_L , B	U_C , B
R, C				_	
R, L					_
R, L, C					
Резонанс					
напряжений					

Табл. 3.2. Варианты заданий

№ Варианта	Значения							
по списку	U_1	$f_{\rm o}$	R_1	L_1	C_1			
	В	Гц	Ом	Гн	мкФ			
1	150	200	100	1,5	3			
2	160	190	110	1,4	2,9			
3	170	180	120	1,3	2,8			
4	180	170	130	1,2	2,7			
5	140	160	140	1,1	2,6			
6	130	150	130	1	2,5			
7	120	160	120	0,9	2,4			
8	155	170	110	0,8	2,3			
9	165	180	100	0,7	2,2			
10	175	190	90	0,6	2,1			
11	145	200	80	0,5	2			
12	135	210	70	0,6	2,5			
13	125	220	80	0,7	2,4			
14	175	210	90	0,8	2,3			
15	170	200	100	0,9	2,2			
16	185	190	110	1	2,1			
17	180	180	120	1,1	2			
18	190	170	130	1,2	2,1			
19	195	160	140	1,3	2,2			
20	200	150	150	1,4	2,3			

6. Настроим схему на режим последовательного соединения RC элементов. Для этого нужно разомкнуть выключатель S1 и замкнуть выключатель S2. При этом ток будет обходить катушку индуктивности через замкнутый выключатель S2 и катушка не будет участвовать в работе схемы.

- 7. Измерить ток и напряжения в этом режиме и записать их значения в строку с наименованием цепи "R, C" таблицы 3.1.
- 8. Настроим схему на режим последовательного соединения RL элементов. Для этого нужно замкнуть выключатель S1 и разомкнуть выключатель S2. При этом ток будет обходить конденсатор через замкнутый выключатель S1 и конденсатор не будет участвовать в работе схемы.
- 9. Измерить ток и напряжения в этом режиме и записать их значения в строку с наименованием цепи "R, L" таблицы 3.1.
- 10. Настроим схему на режим последовательного соединения RLC элементов. Для этого нужно разомкнуть оба выключателя S1 и S2. При этом ток будет проходить по всем элементам схемы.
- 11. Измерить ток и напряжения в этом режиме и записать их значения в строку с наименованием цепи "R, L, C" таблицы 3.1.
- 12. Настроим схему на режим резонанса. Так как резонанс напряжений может возникнуть только в последовательной *RLC* цепи, то нам нужно задействовать все элементы схемы. Для этого нужно разомкнуть оба выключателя *S1* и *S2*. Для того чтобы в полученной цепи возник резонанс воспользуемся регулировкой частоты переменного напряжения. Определим для заданных значений индуктивности и емкости резонансную частоту по формуле (3.1).

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \tag{3.1}$$

Обратите внимание, что в эту формулу индуктивность катушки L нужно подставлять в генри (Γ), а емкость конденсатора C в фарадах (Φ). В этом случае ответ f_0 получим в герцах (Γ ц).

Значение $f_{\rm o}$ установим в источнике через его свойства или воспользовавшись ползунком "Частота" в правой части рабочего экрана.

- 13. Измерить ток и напряжения в этом режиме и записать их значения в строку с наименованием цепи "резонанс напряжений" таблицы
- 14. Вычислить параметры электрической цепи и записать их таблицу 3.3 Для расчета параметров применяются следующие формулы:

индуктивное сопротивление:

$$x_L = 2\pi f L \tag{3.2}$$

емкостное сопротивление:

$$x_C = \frac{1}{2\pi fC} \tag{3.3}$$

полное сопротивление:

$$Z = \frac{U}{I} \tag{3.4}$$

активная мощность:

$$P = I_R^2 \cdot R \tag{3.5}$$

реактивная индуктивную мощность:

$$Q_L = I_L^2 \cdot x_L \tag{3.6}$$

реактивная емкостная мощность:

$$Q_C = I_C^2 \cdot x_C \tag{3.7}$$

полная мощность:

$$S = \sqrt{P^2 + (Q_L - Q_C)^2} \tag{3.8}$$

коэффициент мощность:

$$\cos\varphi = \frac{P}{S} \tag{3.9}$$

- 15. На основании полученных результатов построить в масштабе векторные диаграммы токов и напряжений для каждого опыта. Убедиться в выполнении 2-го закона Кирхгофа.
- 16. На основании четвертого опыта убедиться в выполнении условия резонанса напряжений: $X_L = X_C$.

Табл. 3.3. Расчетные данные

Цепь	Z, Om	<i>R</i> , Ом	X_I , Om	X_C , Om	$\cos \varphi$	P, B _T	Q, BAp	S, BA
R, C			_			ı		
R, L							_	
R, L, C								
Резонанс								
напряжений								

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Почему для получения величины общего напряжения при последовательном соединении резистора и реактивных сопротивлений необходимо векторное сложение активного и реактивного напряжений?
- 2. Каковы необходимые и достаточные условия возникновения резонанса напряжений в цепях переменного тока?

- 3. При каком условии и почему напряжение на индуктивности и емкости при резонансе больше напряжения, приложенного к цепи?
- 4. Какую величину имеет коэффициент мощности при резонансе напряжений?

Лабораторная работа №4. Исследование электрической цепи синусоидального тока при параллельном соединении R-, L- и C- элементов

ЦЕЛЬ РАБОТЫ

Убедиться в том, что 1-ый закон Кирхгофа в цепи синусоидального тока при параллельном соединении R-, L- и С-элементов соблюдается только в векторной или комплексной формах.

Исследовать явление резонанса токов.

Закрепить навыки в построении векторных диаграмм токов и напряжений.

ПОДГОТОВКА К ИССЛЕДОВАНИЯМ

Изучить по конспекту лекций и рекомендованному учебнику раздел «Цепи синусоидального тока».

Освоить методику выполнения лабораторной работы по настоящему пособию.

Заготовить отчет со схемой виртуальной экспериментальной установки, таблицей для экспериментальных и расчетных данных.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Собрать в виртуальной лаборатории Circuit Simulator, с помощью изученных методов, схему электрической цепи синусоидального тока для исследования параллельной R, L, C - цепи (рис. 4.1). В результате должна получиться схема, похожая на ту, которая приведена на рисунке 4.2.

Рис. 4.1 Схема электрической цепи

Рис. 4.2. Виртуальная экспериментальная установка в Circuit Simulator

Особенностью схемы 4.2 является наличие внутреннего сопротивления источника R_0 . Это сопротивление нужно для моделирования конденсатора. Без R_0 иногда в схеме будет происходить которое замыкание и программа будет выдавать ошибку.

На рисунке 4.2 для удобства работы и анализа данных добавлен ползунок изменения частоты источника, а также выведены осциллограммы напряжений на резисторе, катушке индуктивности и конденсаторе.

2. Установить параметры источника переменного напряжения и элементов схемы согласно варианту заданий (Табл. 4.1).

Обратите внимание на то, что нужно задать действующее значение напряжения источника, а в программе задается амплитудное. Для получения амплитудное значения напряжения нужно действующее напряжение (оно дано в таблице 2) разделить на корень квадратный из двух. Например, если дано напряжение источника U = 200~B, то амплитудное значение составит U = 200~J = 282~B и именно это значение нужно ставить в настройки источника. Если параметры заданы верно, то вольтметр, подключенный параллельно источнику, покажет значение близкое к действующему. В нашем примере - близкое к 200 В.

Табл. 4.1. Варианты заданий

№ Варианта		3	начения		•
по списку	U_1	f_{o}	R_1	L_1	C_1
	В	Гц	Ом	Гн	мкФ
1	150	50	200	1,5	10
2	160	55	210	1,4	15
3	170	45	220	1,3	10
4	180	50	230	1,2	15
5	140	55	240	1,1	10
6	130	45	230	1	15
7	120	50	220	0,9	10
8	155	55	210	0,8	15
9	165	45	200	0,7	10
10	175	50	190	0,6	15
11	145	55	180	0,5	10
12	135	45	170	0,6	15
13	125	50	180	0,7	10
14	175	55	190	0,8	15
15	170	45	200	0,9	10
16	185	50	210	1	15
17	180	55	220	1,1	10
18	190	45	230	1,2	15
19	195	50	240	1,3	10
20	200	55	250	1,4	15

- 20 | 200 | 55 | 250 | 1,4 | 15 | 3. Настроить вольтметр на измерение среднеквадратичного напряжения, а амперметр на измерение среднеквадратичного тока.
- 4. "Запустить" схему, нажав кнопку "START/stop", если она не была нажата. В "нажатом" состоянии (при запущенной симуляции схемы) эта кнопка окрашена в серый цвет, а в "отпущенном" состоянии (при остановленной симуляции схемы) в красный.
 - 5. Подготовить таблицу для измерений по образцу Табл.4.2.

Табл. 4.2. Экспериментальные и расчетные данные

Цепь	U, B	I, A	I_R , B	I_L , B	I_C , B
<i>R</i> , <i>C</i>				_	
R, L					_
R, L, C					
Резонанс					
напряжений					

- 6. Настроим схему на режим параллельного соединения RC элементов. Для этого нужно разомкнуть выключатель S1 и замкнуть выключатель S2. При этом ток не будет проходить по катушке индуктивности и она не будет участвовать в работе схемы.
- 7. Измерить напряжение и токи в этом режиме и записать их значения в строку с наименованием цепи "R, C" таблицы 4.2.
- 8. Настроим схему на режим параллельного соединения RL элементов. Для этого нужно замкнуть выключатель S1 и разомкнуть выключатель S2. При этом ток не будет проходить по конденсатору, и он не будет участвовать в работе схемы.
- 9. Измерить напряжение и ток в этом режиме и записать их значения в строку с наименованием цепи "R, L" таблицы 4.2.
- 10. Настроим схему на режим параллельного соединения RLC элементов. Для этого нужно замкнуть оба выключателя S1 и S2. При этом ток будет проходить по всем элементам схемы.
- 11. Измерить напряжение и ток в этом режиме и записать их значения в строку с наименованием цепи "R, L, C" таблицы 4.2.
- 12. Настроим схему на режим резонанса. Так как резонанс напряжений может возникнуть только в параллельной *RLC* цепи, то нам нужно задействовать все элементы схемы. Для этого нужно замкнуть оба выключателя *S1* и *S2*. Для того чтобы в полученной цепи возник резонанс воспользуемся регулировкой частоты переменного напряжения. Определим для заданных значений индуктивности и емкости резонансную частоту по формуле (4.1).

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \tag{4.1}$$

Обратите внимание, что в эту формулу индуктивность катушки L нужно подставлять в генри (Γ), а емкость конденсатора C в фарадах (Φ). В этом случае ответ f_0 получим в герцах (Γ ц).

Значение $f_{\rm o}$ установим в источнике через его свойства или воспользовавшись ползунком "Частота" в правой части рабочего экрана.

- 13. Измерить напряжение и ток в этом режиме и записать их значения в строку с наименованием цепи "резонанс токов" табл. 4.2.
- 14. Вычислить параметры электрической цепи и записать их таблицу 4.3.

Для расчета параметров применяются следующие формулы: полная проводимость:

$$y = \frac{I}{U} \tag{4.2}$$

коэффициент мощность:

$$\cos\varphi = \frac{g}{y} \tag{4.3}$$

реактивная проводимость:

$$b = \sqrt{y^2 - g^2} \tag{4.4}$$

активный ток всей цепи:

$$I_a = I \cdot \cos \varphi \tag{4.5}$$

реактивный ток всей цепи:

$$I_p = \sqrt{I^2 - {I_a}^2} \tag{4.6}$$

полная мощность:

$$S = UI \tag{4.7}$$

реактивная мощность:

$$Q = \sqrt{S^2 - P^2} (4.8)$$

Рассчитанные параметры нужно занести в таблицу 4.3.

Табл. 4.3. Расчетные данные

Цепь	у, См	q, Cm	b, CM	I_a , A	I_p , A	$\cos \varphi$	Q, BAp	S, BA
<i>R</i> , <i>C</i>						1		
R, L				ı			_	
R, L, C								
Резонанс								
напряжений								

- 15. Построить на комплексной плоскости в масштабе треугольник проводимостей для третьего опыта.
- 16. Построить на комплексной плоскости в масштабе векторные диаграммы напряжения и токов для всех опытов.
- 17. Сделать выводы о соответствии векторных диаграмм первому закону Кирхгофа.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Каково необходимое условие для возникновения резонанса токов в однофазных цепях переменного тока?
- 2. Каков характер нагрузки, если при параллельном соединении R-, L-, C- элементов соблюдается условие $b_L < b_C$?
- 3. Что является общим параметром цепи при параллельном соединении ветвей?

Лабораторная работа № 5. Исследование трехфазной цепи переменного тока при соединении электроприемников по схеме «звезда»

ЦЕЛЬ РАБОТЫ

- 1. Ознакомиться с режимом работы трехфазного приемника, соединенного по схеме «звезда».
- 2. Определить соотношение между линейными и фазными параметрами цепи при различных режимах работы трехфазного приемника.
- 3. Изучить некоторые аварийные режимы в трехфазной цепи переменного тока при соединении приемника по схеме «звезда».

ПОДГОТОВКА К ИССЛЕДОВАНИЯМ

Изучить по конспекту лекций и рекомендованному учебнику раздел «Трехфазной цепи переменного тока».

Освоить методику выполнения лабораторной работы по настоящему пособию.

Заготовить отчет со схемой виртуальной экспериментальной установки, таблицей для экспериментальных и расчетных данных.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Собрать в виртуальной лаборатории Circuit Simulator, с помощью изученных методов, схему трехфазной электрической цепи переменного тока согласно рисунку 5.1.

Рис. 5.1 Схема электрической цепи

В результате должна получиться схема, похожая на ту, которая приведена на рисунке 5.2.

Рис. 5.2 Виртуальная экспериментальная установка в Circuit Simulator

Обратите внимание, в модели для удобства настройки режима работы схемы добавлены три ползунка, которые изменяют сопротивления фазных резисторов R_A , R_B и R_C . Пределы изменения сопротивлений резисторов рекомендуется установить от 200 Ом до 2,5 кОм, но Вы можете подобрать их удобными для своего варианта.

2. Установить параметры источников переменного напряжения и элементов схемы согласно Вашего варианта (Табл. 5.2). Для начала установите одинаковые сопротивления всех резисторов, которые будут равны сопротивлению R, заданному для Вашего варианта.

Обратите внимание на то, что нужно задать действующее значение напряжения источника, а в программе задается амплитудное. Для получения амплитудное значения напряжения нужно действующее напряжение разделить на корень квадратный из двух.

Фазы напряжений источников нужно установить для фазы A - 0° , для фазы B - 120° , для фазы C - 240° .

Частоту переменного напряжения источников для всех вариантов нужно установить равную 50 Гц.

- 3. Настроить вольтметры на измерение среднеквадратичного напряжения, а амперметры на измерение среднеквадратичного тока.
- 4. "Запустить" схему, нажав кнопку "START/stop", если она не была нажата.
 - 5. Зарисовать в отчет таблицу 5.1.

 U_A, B U_B, B $U_{\rm C}, B$ U_{AB} , B U_{BC} , B U_{CA} , B I_A, A I_C, A $U_{\rm J}/U_{\rm \Phi}$ I_B, A Режим Симметрич-ный c N Симметрич-ный без N Несимметричный с N Несимметричный без N Обрыв линейного провода

Табл. 5.1. Экспериментальные и расчетные данные

Пояснение. Название первых 4-х режимов состоит из двух частей.

Первая — это нагрузка симметричная или несимметричная. При *симметричной* нагрузке сопротивления всех фаз равны, т.е. $R_A = R_B = R_C = R$.

При *несимметричной* нагрузке сопротивления фаз не равны, т.е. $R_A \neq R_B \neq R_C$. В лабораторной работе примем $R_A = R/2$; $R_B = R$; $R_C = 1,5 \cdot R$.

Вторая — это работа схемы с нейтралью (с N) или без нейтрали (без N). За включение нейтрали отвечает выключатель S2. Если S2 замкнут, то схема работает \mathbf{c} \mathbf{N} , Если S2 разомкнут, то схема работает $\mathbf{6e3}$ \mathbf{N} . При этом S1 всегда (кроме последнего режима) замкнут.

- 6. Зная принцип названия режимов настроим схему на режим симметричной нагрузки с нейтралью. Для этого нужно замкнуть выключатели S1, S2 и выставить одинаковые сопротивления $R_A = R_C = R$.
- 7. Измерить напряжения и токи в этом режиме и записать их значения в строку с наименованием режима "Симметричный с N" таблицы 5.1.

- 8. Настроим схему на режим симметричной нагрузки без нейтрали. Чтобы перейти к этому режиму нужно разомкнуть выключатель S2. Остальные настройки остаются теми же.
- 9. Измерить напряжения и токи в этом режиме и записать их значения в строку с наименованием режима "Симметричный без N" таблицы 5.1.
- 10. Настроим схему на режим несимметричной нагрузки с нейтралью. Чтобы перейти к этому режиму нужно замкнуть выключатель S2. Сопротивления резисторов выставить следующими: $R_A = R/2$; $R_B = R$; $R_C = 1.5 \cdot R$.
- 11. Измерить напряжения и токи в этом режиме и записать их значения в строку с наименованием режима "Несимметричный с N" таблицы 5.1.
- 12. Настроим схему на режим несимметричной нагрузки без нейтрали. Чтобы перейти к этому режиму нужно разомкнуть выключатель S2. Остальные настройки остаются теми же.
- 13. Измерить напряжения и токи в этом режиме и записать их значения в строку с наименованием режима "Несимметричный без N" таблицы 5.1.
- 14. Настроим схему на режим обрыва линейного провода. Чтобы перейти к этому режиму нужно замкнуть выключатель S2, разомкнуть S1. Сопротивления резисторов выставить одинаковыми $R_A = R_B = R_C = R$.
- 15. Измерить напряжения и токи в этом режиме и записать их значения в строку с наименованием режима "Обрыв линейного провода" таблицы 5.1.
- 16. Для всех опытов проверить выполнение равенства $U_{\rm J} = \sqrt{3} U_{\rm \Phi}$, для чего вычислить соотношение $U_{\rm AB}/U_{\rm A}$ и записать его в таблицу 5.1.

Сделать вывод с том, в каких режимах работы трехфазной цепи выполняется равенство, а в каких нет.

- 17. Построить в масштабе векторную диаграмму токов и напряжений для всех опытов, по которым определить величину тока в нейтральном проводе, выраженную через масштаб векторной диаграммы.
- 18. Построить векторную диаграмму токов и напряжений для четвертого опыта. Определить через построение значение напряжения между нейтральными точками U_{nN} .

- 19. По результатам четвертого опыта проанализировать перераспределение фазных напряжений.
- 20. Сделать заключение о работе нагрузки в режиме обрыва линейного провода, анализируя результаты последнего опыта.

Табл. 5.2. Варианты заданий

	Tuesti e.z. Bupitani ibi sugam							
$\mathcal{N}_{\underline{0}}$	R,	Действующие	№	R, Ом	Действующие			
Варианта	Ом	значения	Варианта		значения			
ПО		напряжения	по		напряжения			
списку		источников, В	списку		источников, В			
1	400	210	11	1000	210			
2	450	220	12	1050	220			
3	500	230	13	1100	230			
4	550	240	14	1150	240			
5	600	210	15	1200	210			
6	750	220	16	1250	220			
7	800	230	17	1300	230			
8	850	240	18	1350	240			
9	900	220	19	1400	220			
10	950	230	20	500	230			

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что значит симметричная и несимметричная нагрузка в трехфазных цепях?
- 2. Каковы соотношения между величинами токов и напряжений, если нагрузка симметрична?
- 3. Что понимается под явлением «смещение нейтрали» в трехфазных четырехпроводных цепях?
- 4. Каким образом находится ток в нейтральном проводе четырехпроводной трехфазной цепи, если нагрузка симметрична?
- 5. В каких случаях можно использовать трехфазную трехпроводную цепь?

Лабораторная работа № 6. Исследование трехфазной цепи переменного тока при соединении электроприемников по схеме «треугольник»

ЦЕЛЬ РАБОТЫ

- 1. Ознакомиться с режимом работы трехфазного приемника, соединенного по схеме «треугольник».
- 2. Определить соотношение между линейными и фазными параметрами цепи при различных режимах работы трехфазного приемника.
- 3. Изучить некоторые аварийные режимы в трехфазной цепи переменного тока при соединении приемника по схеме «треугольник».

ПОДГОТОВКА К ИССЛЕДОВАНИЯМ

Изучить по конспекту лекций и рекомендованному учебнику раздел «Трехфазной цепи переменного тока».

Освоить методику выполнения лабораторной работы по настоящему пособию.

Заготовить отчет со схемой виртуальной экспериментальной установки, таблицей для экспериментальных и расчетных данных.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Собрать в виртуальной лаборатории Circuit Simulator, с помощью изученных методов, схему трехфазной электрической цепи переменного тока согласно рис. 6.1.

Рис. 6.1 Схема электрической цепи

В результате должна получиться схема, похожая на ту, которая приведена на рис. 6.2.

Рис. 6.2 Виртуальная экспериментальная установка в Circuit Simulator

На рис. 6.2 для удобства настройки режима работы схемы добавлены три ползунка, которые изменяют сопротивления фазных резисторов R_{AB} , R_{BC} и R_{CA} . Пределы изменения сопротивлений резисторов рекомендуется установить от 200 Ом до 2,5 кОм, но Вы можете подобрать их удобными для своего варианта.

2. Установить параметры источников переменного напряжения и элементов схемы согласно Вашего варианта (Табл. 6.2). Для начала установите одинаковые сопротивления всех резисторов, которые будут равны сопротивлению R, заданному для Вашего варианта.

 Φ азы напряжений источников нужно установить для фазы A - 0°, для фазы B - 120°, для фазы C - 240°.

Частоту переменного напряжения источников для всех вариантов нужно установить равную 50 Гц.

3. Настроить вольтметры на измерение среднеквадратичного напряжения, а амперметры — на измерение среднеквадратичного тока.

- 4. "Запустить" схему, нажав кнопку "START/stop", если она не была нажата.
 - 5. Зарисовать в отчет таблицу 6,1.

Режим	U _{AB} , B	U _{BC} , B	U _{CA} , B	I_{AB}, A	I _{BC} , A	I _{CA} , A	I _A , A	I _B , A	I _C , A	$I_{\rm J}/I_{\rm \Phi}$
Симметрич-ный										
Несимме- тричный										
Обрыв фазы										
Обрыв линей- ного провода										

- 6. Настроим схему на режим симметричной нагрузки. Для этого нужно замкнуть выключатели S1, S2 и выставить одинаковые сопротивления $R_{AB} = R_{BC} = R_{CA} = R$.
- 7. Измерить напряжения и токи в этом режиме и записать их значения в строку с наименованием режима "Симметричный" таблицы 6.1.
- 8. Настроим схему на режим несимметричной нагрузки. Чтобы перейти к этому режиму нужно настроить сопротивления резисторов следующим образом: $R_{AB} = R/2$; $R_{BC} = R$; $R_{CA} = 1.5 \cdot R$.

Положение выключателей остается прежним.

- 9. Измерить напряжения и токи в этом режиме и записать их значения в строку с наименованием режима "Несимметричный" таблицы 6.1.
- 10. Настроим схему на режим обрыва фазы. Чтобы перейти к этому режиму нужно замкнуть выключатель S1 и разомкнуть S2. Сопротивления резисторов выставить одинаковыми: $R_{AB}=R_{BC}=R_{CA}=R$.
- 11. Измерить напряжения и токи в этом режиме и записать их значения в строку с наименованием режима "Обрыв фазы" таблицы 6.1.
- 12. Настроим схему на режим обрыва линейного провода. Чтобы перейти к этому режиму нужно разомкнуть выключатель S1 и замкнуть S2. Сопротивления резисторов выставить одинаковыми: $R_A = R_{BC} = R_{CA} = R$.

- 13. Измерить напряжения и токи в этом режиме и записать их значения в строку с наименованием режима "Обрыв линейного провода" таблицы 6.1.
- 14. Для всех опытов проверить выполнение равенства $I_{\rm Л}=\sqrt{3}I_{\rm \Phi}$, для чего вычислить соотношение $I_{\rm A}/I_{\rm AB}$ и записать его в таблицу 6.1.

Сделать вывод с том, в каких режимах работы трехфазной цепи выполняется равенство $I_{\Lambda} = \sqrt{3} I_{\Phi}$, а в каких нет.

- 15. Для всех опытов построить векторные диаграммы токов и напряжений.
- 16. Сделать заключения об аварийности режимов работы трехфазной цепи.

Табл. 6.2. Варианты заданий

			100	201. O. _ . E	ларианты задан	
$\mathcal{N}_{\underline{o}}$	R,	Действующие	вующие № R, С		Действующие	
Варианта	Ом	значения	Варианта		значения	
ПО		напряжения	по		напряжения	
списку		источников, В	списку		источников, В	
1	400	210	11	1000	210	
2	450	220	12	1050	220	
3	500	230	13	1100	230	
4	550	240	14	1150	240	
5	600	210	15	1200	210	
6	750	220	16	1250	220	
7	800	230	17	1300	230	
8	850	240	18	1350	240	
9	900	220	19	1400	220	
10	950	230	20	500	230	

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Назовите отличительные признаки симметричной трехфазной системы ЭДС.
 - 2. Как на практике получают трехфазную систему ЭДС?
- 3. Как получить трехфазную систему соединения в «треугольник» обмоток источника и фаз приемника?
- 4. Какие напряжения и токи в трехфазной системе называют линейными, а какие фазными?

Библиографический список

- 1. Касаткин А.С. Курс электротехники [Текст]: учебник / А.С. Касаткин, М.В. Немцов. 8-е изд., стер. М.: Высшая школа, 2005. 542 с.
- 2. Иванов И.И. Электротехника [Текст]: учебное пособие. СПб.: Лань, 2009. 496 с.
- 3. Жарова Т.А. Практикум по электротехнике [Текст]: учебное пособие. С-Пб.: Лань, 2009. 127 с.