Одномерное однородное уравнение теплопроводности

Постановка задачи:

Одномерное однородное уравнение теплопроводности

Основное уравнение:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

Конечно-разностная аппроксимация:

$$\frac{\partial u}{\partial t} \approx \frac{u_i^{n+1} - u_i^n}{\tau}$$

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2}$$

$$\frac{u_i^{n+1} - u_i^n}{\tau} = k \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2}$$

Одномерное однородное уравнение теплопроводности

Окончательно:

$$u_i^{n+1} = u_i^n + rac{k au}{h^2} \Big(u_{i+1}^n - 2u_i^n + u_{i-1}^n \Big) \ rac{k au}{h^2} < 1 \Rightarrow au < rac{h^2}{k}$$
 где:

k - коэффициент температуропроводности, u_i^{n+1}

au - шаг по времени,

h - шаг по пространству

относится к процессу 0

1 2	3	4	5	6
-----	---	---	---	---

относится к процессу 1

7 8	9	10	11
-----	---	----	----

Как процессу 0 получить величину в точке u_{i+1}^n ?

Процесс 1 должен отослать сообщение, т.е. величину u_{i+1}^n !

Как процессу 1 получить величину в точке u_{i-1}^n ?

Процесс 1 должен отослать сообщение, т.е. величину u_{i-1}^n !

SPMD-модель (Single Program Multiple Data) параллельного программирования.