

Rechnernetze und verteilte Systeme

Übungsblatt 0

Koenig.Noah@campus.lmu.de

1. Anforderungen des Internets (H)

Im Internet macht es den Anschein, als wären alle Geräte unmittelbar miteinander verbunden.

(a) Angenommen Sie müssen ein Netz entwerfen, in dem jedes Endgerät mit jedem anderen verkabelt ist, d.h. komplett vermascht.

Wie viele Verbindungen benötigen Sie für:

• 8 Teilnehmer?

• 8 Teilnehmer?

7 Verbindungen für den ersten Teilnehmer, 6 für den zweiten, ...

$$7 + 6 + 5 + 4 + 3 + 2 + 1 = 28$$

• 300 Teilnehmer?

299 + 298 + ... + 1 =
$$\sum_{n=1}^{299} n$$
 = 44850

Anforderungen des Internets

• N Teilnehmer?

Gaußsche Summenformel / kleiner Gauß:

1 + 2 + ... + n =
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} = \frac{n^2 + n}{2}$$

Für N Teilnehmer:

1 + 2 + ... + (N - 1) =
$$\sum_{k=1}^{N-1} k = \frac{(N-1)(N-1+1)}{2} = \frac{(N-1)(N)}{2} = \frac{N^2 - N}{2}$$

- (b) Stattdessen sollen jetzt immer maximal fünf Geräte direkt mit einem *Knoten*, aber nicht untereinander, verbunden sein. Maximal fünf dieser Knoten sind wiederum mit einem Knoten verbunden, usw. Wie viele Verbindungen benötigt man hier für:
 - 8 Teilnehmer?

• 300 Teilnehmer?

Knoten pro Ebene (von unten nach oben):

- 300
- $\left[\frac{300}{5}\right] = 60$
- $\left[\frac{60}{5}\right] = 12$
- $\left[\frac{12}{5}\right] = 3$
- $\left[\frac{3}{5}\right] = 1$

Kanten insgesamt: 300 + 60 + 12 + 3 = 375

- N Teilnehmer? Gehen Sie von $N = 5^a$ mit $a \in \mathbb{N}$ aus.
 - Vollständiger Baum mit Grad 5, N Blättern und log₅(N) + 1= a + 1 Ebenen
 - 5^k Knoten auf Ebene $k \ge 0$
 - Summe der **Knoten**:

$$K = 5^0 + 5^1 + ... + 5^a = \sum_{k=0}^{a} 5^k$$

- N Teilnehmer? Gehen Sie von $N = 5^a$ mit $a \in \mathbb{N}$ aus.
 - Summe der Kanten:

$$K - 1 = 5^0 + 5^1 + ... + 5^a - 1 = (\sum_{k=0}^a 5^k) - 1 = \frac{5^{a+1}-1}{5-1} - 1 = \frac{5^{a+1}-1}{4} - 1$$

- Warum?
 - → Weniger Kanten pro Teilnehmer: https://www.desmos.com/calculator/uikbohp9so

Geometrische Summenformel:

$$\sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q} = \frac{(-1)(-1 + q^{n+1})}{(-1)(-1 + q)} = \frac{(-1)(q^{n+1} - 1)}{(-1)(q - 1)} = \frac{q^{n+1} - 1}{q - 1}$$

Das Stellenwertsystem

2. Das Stellenwertsystem (H)

Bezeichnung	Basis	${f Sasis} {f Ziffern} \; (o \; {f aufsteigende} \; {f Wertigkeit})$									
Dezimalsystem	zehn	0	1	2	3	4	5	6	7	8	9
Oktalsystem	acht	0	1	2	3	4	5	6	7		
Dualsystem/Binärsystem	zwei	0	1								

(a) Welche Ziffern werden normalerweise für das Hexadezimalsystem verwendet? Schreiben Sie alle mit aufsteigender Wertigkeit auf!

Das Stellenwertsystem

(b) Schreiben Sie die Zahlen 2, 4, 8, 10 je im Hexadezimal, Oktal und Binärsystem auf!

Dezimal	Hexadezimal	Oktal	Binär
2	2	2	10
4	4	4	100
8	8	10	1 000
10	A	12	1 010

Das Stellenwertsystem

(c) Konvertieren Sie die folgenden Zahlen je in das Binärsystem und das Hexadezimalsystem! 16, 127, 168, 172, 192, 255

Dezimal	Binär	Hexadezimal
16	10 000	10
127	1 111 111	7F
168	10 101 000	A8
172	10 101 100	AC
192	11 000 000	C0
255	11 111 111	FF

Das Stellenwertsystem

(d) Wieviele Stellen hat die Zahl $2^{32} - 1$ in Binärdarstellung? Wieviele davon sind 1 wieviele 0?

- $(2^{32})_{10} = (1000...)_2$ $\rightarrow 33 \text{ Stellen}$
- $(2^{32} 1)_{10} = (1111...)_2$ $\rightarrow 32$ Stellen (nur 1en)

Rechnen in unterschiedlichen Zahlensystemen

3. Rechnen in unterschiedlichen Zahlensystemen

Zahlensystem	Zahl	multipliziert mit Faktor					
		$(1)_{10}$	$(2)_{10}$	$(8)_{10}$	$(10)_{10}$	$(16)_{10}$	
Dezimalsystem	zwei	2	4	16	20	32	
***	acht	8	16	64	80	128	
Oktalsystem	zwei	2	4	20	24	40	
	acht	10	20	100	120	200	

(a) Tabelle 2 zeigt die Ergebnisse für die Berechnungen $(1,2,8,10,16) \cdot (2,8)$ im Dezimal und Oktalsystem. Führen Sie die selbe Rechnung für das Binär- und Hexadezimalsystem durch!

Rechnen in unterschiedlichen Zahlensystemen

Binär:

Zahl	Faktor							
	1=(1) ₂	2=(10) ₂	8=(1 000) ₂	10=(1 010) ₂	16=(10 000) ₂			
2=(10) ₂	10	100	10 000	10 100	100 000			
8=(1 000) ₂	1 000	10 000	1 000 000	1 010 000	10 000 000			

Regeln:

$$0 * 0 = 0$$

$$0 * 1 = 0$$

Rechnen in unterschiedlichen Zahlensystemen

Hexadezimal:

Zahl	Faktor						
	$1 = (1)_{16}$	$2 = (2)_{16}$	8 = (8) ₁₆	$10 = (A)_{16}$	16 = (10) ₁₆		
$2 = (2)_{16}$	2	4	10	14	20		
8 = (8) ₁₆	8	10	40	50	80		

Rechnen in unterschiedlichen Zahlensystemen

(b) Ergebnisse der folgenden Terme im angegeben Zahlensystem auf ...

i. Als Binärzahl: $2^2, 2^3, 2^4, 2^5, 2^6, 2^7$

ii. Als Oktalzahl: 8², 8³, 8⁴, 8⁵, 8⁶, 8⁷

iii. Als Dezimalzahl: 10^2 , 10^3 , 10^4 , 10^5 , 10^6 , 10^7

iv. Als Hexadezimalzahl: 16^2 , 16^3 , 16^4 , 16^5 , 16^6 , 16^7