Задача 10-1

На четверку с плюсом.

3d-элементы образуют соединения в самых разных степенях окисления – от отрицательных до высших, часто соответствующих номеру группы. Сравним химию переходных элементов 4-го периода ${\bf A}-{\bf K}$.

Элементы **A** и **Б** не образуют соединений в степени окисления +4. Для **A** наиболее устойчивы соединения в степени окисления +3, а для **Б** - +2.

Для элементов **B**, Γ и \square степень окисления +4 также не характерна, однако их удается стабилизировать в виде фторидных октаэдрических комплексов. Соответствующие цезиевые соли \mathbb{B}_1 , Γ_1 и \square получают фторированием смеси хлорида цезия с дихлоридами элементов \mathbb{B} , Γ и \square , соответственно. Массовая доля цезия увеличивается в ряду \square , Γ_1 , \square .

Элементы E и \mathcal{K} образуют устойчивые оксиды в степени окисления +4. Оксид $\mathcal{K}(IV)$ встречается в природе в виде минерала. Оксид E(IV) можно получить осторожным термическим разложением высшего оксида E, при этом потеря массы составляет 16.00%.

 ${\bf 3}_1$, содержащее металл ${\bf 3}$ в степень окисления ${\bf +4}$, получают нагреванием стехиометрических количеств пероксида натрия ${\bf Na}_2{\bf O}_2$ с оксидом ${\bf 3}_2$. Так, для реакции с ${\bf 1.31}$ г ${\bf 3}_2$ берут ${\bf 2.84}$ г пероксида натрия. При внесении в воду ${\bf 3}_1$ разлагается с образованием красно-фиолетового раствора соли ${\bf 3}_3$ и коричневобурого осадка ${\bf 3}_4$. При пропускании в раствор ${\bf 3}_3$ углекислого газа эта соль также разлагается с образованием бесцветного газа, бесцветного раствора и осадка ${\bf 3}_4$, при прокаливании образующего ${\bf 3}_5$ с массовой долей ${\bf 3}$ 69.94%.

Металлы **И** и **К** образуют устойчивые соединения в степени окисления +4. Так, при их хлорировании образуются жидкие хлорид **И**(IV) (бесцветный) и хлорид **К**(IV) (красно-коричневый). Хлорид **К**(IV) гидролизуется в воде с образованием голубого раствора, имеющего сильно кислую среду, а раствор хлорида **И**(IV) в концентрированной соляной кислоте восстанавливается цинком с образованием сиренево-фиолетового раствора.

Определите элементы A – К. Решение подтвердите расчетом.
Конечный ответ представьте в виде таблицы:

A	Б	В	Γ	Д	E	Ж	3	И	К

2. Определите формулы веществ **B**₁, Γ_1 , \mathcal{I}_1 , \mathcal{I}_1 , \mathcal{I}_3 . Решение подтвердите расчетом.

Конечный ответ представьте в виде таблицы:

\mathbf{B}_1	Γ_1	Д	3 ₁	3 ₂	3 ₃	34	3 ₅

- 3. Напишите уравнения реакций:
- а) синтеза \mathbf{B}_1 ;
- б) гидролиза 3_1 ;
- в) разложения 3_3 при пропускании в раствор CO_2 ;
- Γ) гидролиза хлорида **К**(IV).

Решение задачи 10-1 (автор: Курамшин Б.К.)

1. Из 3d-элементов только цинк и скандий не могут в силу электронного строения иметь степень окисления +4. Значит, \mathbf{A} — Sc (устойчив в степени окисления +3), а \mathbf{F} — Zn (типичная степень окисления +2).

Определим элемент **E** по потере массы при прокаливании высшего оксида $(\mathbf{E}_2 O_n)$ с образованием оксида $\mathbf{E}(\mathrm{IV})$. Уравнение реакции в общем виде имеет вид:

$$\mathbf{E}_2\mathbf{O}_n \to 2\mathbf{E}\mathbf{O}_2 + \left(\frac{n}{2} - 2\right)\mathbf{O}_2$$

Потерю массы выразим через молярные массы оксида и кислорода:

$$0.1600 = \frac{\left(\frac{n}{2} - 2\right) \cdot 32}{2M(\mathbf{E}) + 16n} = \frac{8n - 32}{M(\mathbf{E}) + 8n}$$
$$0.16M(\mathbf{E}) + 1.28n = 8n - 32$$
$$M(\mathbf{E}) = 42n - 200$$

Возможны значения n от 5 до 7.

n	$M(\mathbf{E})$, г/моль	\mathbf{E} и $\mathbf{E}_2\mathrm{O}_n$
5	10	1
6	52	Cr и CrO ₃
7	94	_

Таким образом, \mathbf{E} – \mathbf{Cr} .

Оксид четырехвалентного 3d-металла, встречающийся в природе в виде минерала — это пиролюзит, диоксид марганца. Значит, \mathbf{W} — это Mn.

Вещество 3_5 , образующееся при прокаливании вещества 3_4 – скорее всего, оксид. Элемент 3 можно также найти из массовой доли металла в оксиде: пусть он имеет формулу 3_2O_m .

$$w(3) = 0.6994 = \frac{2M(3)}{2M(3) + 16m} = \frac{M(3)}{M(3) + 8m}$$
$$0.6994M(3) + 5.595m = M(3)$$
$$M(3) = 18.61m$$

m	<i>M</i> (3), г/моль	3 и 3 ₂ О _т
1	18.61	F (???)
2	37.22	_
3	55.83	Fe и Fe ₂ O ₃
4	74.44	As и AsO ₂ (?)
5	93.05	Nb и Nb ₂ O ₅
6	111.66	Cd и CdO ₃ (?)

Получаем 2 разумных варианта — железо и ниобий. Однако ниобий не расположен в третьем периоде, таким образом, **3** – Fe.

Устойчивые растворимые в воде соединения в степени окисления +4 образуют ванадий и титан. Бесцветный хлорид, раствор которого восстанавливается с образованием сиренево-фиолетового раствора, - это $TiCl_4$, а VCl_4 в воде гидролизуется с образованием голубого раствора VO^{2+} . То есть \mathbf{K} – это V, \mathbf{U} – Ti.

Осталось только три переходных элемента 3 периода: медь, никель и кобальт, и нерасшифрованные ${\bf B}$, ${\bf \Gamma}$ и ${\bf \mathcal I}$. Цезиевые соли ${\bf B}_1$, ${\bf \Gamma}_1$, ${\bf \mathcal I}_1$ содержат октаэдрические комплексные частицы, содержащие атомы металла в степени окисления +4. То есть их общая формула — $Cs_2[MF_6]$. Молярные массы металлов растут в ряду Ni, Co, Cu, поэтому массовая доля цезия будет возрастать в обратном порядке: $Cs_2[CuF_6]$, $Cs_2[CoF_6]$, $Cs_2[NiF_6]$, что соответствует ряду ${\bf \mathcal I}_1$, ${\bf \Gamma}_1$, ${\bf B}_1$ в условии. Значит, ${\bf B}$ — Ni, ${\bf \Gamma}$ — Co, ${\bf \mathcal I}$ — Cu.

В итоге получаем:

A	Б	В	Γ	Д	E	Ж	3	И	К
Sc	Zn	Ni	Co	Cu	Cr	Mn	Fe	Ti	V

2. Фторидные комплексы были соотнесены в п.1: \mathbf{B}_1 – $\mathrm{Cs}_2[\mathrm{NiF}_6]$, Γ_1 – $\mathrm{Cs}_2[\mathrm{CoF}_6]$, \mathcal{J}_1 – $\mathrm{Cs}_2[\mathrm{CuF}_6]$.

Пероксид натрия реагирует с одним из оксидов железа ($\mathbf{3}_2$). Это либо FeO, либо Fe₃O₄. Найдем мольное соотношение Na₂O₂ : $\mathbf{3}_2$ для обоих случаев из навесок, данных в условии.

$$n(\text{Na}_2\text{O}_2): n(\text{FeO}) = \frac{m(\text{Na}_2\text{O}_2)}{M(\text{Na}_2\text{O}_2)}: \frac{m(\text{FeO})}{M(\text{FeO})} = \frac{2.84}{77.98}: \frac{1.31}{71.85} = 2.00: 1$$

$$n(\text{Na}_2\text{O}_2): n(\text{Fe}_3\text{O}_4) = \frac{m(\text{Na}_2\text{O}_2)}{M(\text{Na}_2\text{O}_2)}: \frac{m(\text{Fe}_3\text{O}_4)}{M(\text{Fe}_3\text{O}_4)} = \frac{2.84}{77.98}: \frac{1.31}{231.55} = 6.43:1$$

Как видим, отношение целых чисел получается только в случае оксида FeO, значит, $\mathbf{3}_2$ – это FeO. Тогда реагируют $\mathrm{Na}_2\mathrm{O}_2$ с FeO в соотношении 2:1, то есть в $\mathbf{3}_1$ на 1 атом Fe приходится 4 атома Na. Поскольку степень окисления железа по условию +4, а натрия -+1, то формула $\mathbf{3}_1$ – $\mathrm{Na}_4\mathrm{FeO}_4$.

При гидролизе Na_4FeO_4 образуется красно-фиолетовый раствор $\mathbf{3}_3$ и бурый осадок $\mathbf{3}_4$, при прокаливании образующий $\mathbf{3}_5$ (Fe_2O_3). $\mathbf{3}_4$ – это $Fe(OH)_3$ (или $Fe_2O_3\cdot xH_2O$). Тогда в $\mathbf{3}_3$ степень окисления железа должна быть выше +4. Такой солью является феррат(VI) натрия, устойчивый только в сильнощелочной среде, а потому при пропускании углекислого газа окисляющий воду. $\mathbf{3}_3$ – Na_2FeO_4 .

Итого:

\mathbf{B}_1	Γ_1	Д1	31	32	3 ₃	34	35
Cs ₂ [NiF ₆]	Cs ₂ [CoF ₆]	Cs ₂ [CuF ₆]	Na ₄ FeO ₄	FeO	Na ₂ FeO ₄	Fe(OH) ₃	Fe ₂ O ₃

3. Уравнения реакций:

a)
$$2CsCl + NiCl_2 + 3F_2 \rightarrow Cs_2[NiF_6] + 2Cl_2$$

или другие варианты с образованием фторидов хлора (ClF, ClF₃ или ClF₅);

б)
$$3Na_4FeO_4 + 8H_2O \rightarrow Na_2FeO_4 + 2Fe(OH)_3 \downarrow + 10NaOH$$

B)
$$4\text{Na}_2\text{FeO}_4 + 8\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow 4\text{Fe(OH)}_3\downarrow + 3\text{O}_2 + 4\text{Na}_2\text{CO}_3$$

$$\Gamma$$
) $VCl_4 + H_2O \rightarrow VOCl_2 + 2HCl$

Система оценивания:

	Элементы A – K по 1 баллу Ст и Fe без подтверждения расчетом – по 0.5 балла.	10 баллов					
2	Вещества \mathbf{B}_1 , Γ_1 , \mathcal{A}_1 , $\mathcal{A}_1 - \mathcal{A}_5 - \text{по 1 баллу.}$ Na ₄ FeO ₄ без расчета – 0.5 балла.	8 баллов					
3	Уравнения реакций a) – г) – по 0.5 балла.	2 балла					
	ИТОГО: 20 баллов						