10/00

PART IV = Soil with Water - No Flow or Steady Flow (Ce, U in soil controlled by u at boundaries)

EFFECTIVE STRESS PRINCIPLE AND CAPILLARITY

	Page No	
1. Effective Stress Concept		
1.1 Defention and Miscellaneous	,	
1.2 Physio-Chemial Effective Stress Equation (5=100%)	1	
· Equation · Defenction of Un · actual pore water pressure		
2. Capillarity		
2.1 Surface Tension (Ts)	3	
2.2 Capulary Pressure (21c)	3	
2.3 Capillary Rese in Tute (hc)	3	.:
2.4 Examples: Capillary Rise & Fall	4	
2.5 Soil Capullary (Fig. 16.4 LIW)	4	
2.6 Soil Suction in Cohesin Soils (5)	5	
· Tensile shength of water of negative un in clays		
· Components of soil suction		
· Laboratory measurement technique	6	
· Fuld "	. 7	
· Some values of 5 for compacted soils	7	,

2.6 Soil Suction in Cohesive Soils

- 1) Tensile strength of water [Ridley & Burland, 1993: Geot. 43(2)]
- · Tabo (1979): there tical value of Uw = 5000 bar!
- · However, very small amount of dissolved gas in measurement septem
 Caritation at Hw >> thenetical value, i.e., typical

 feeld prizometers { lab tensionneters will

 Caritate at Hw = -0.8 bar
 - · With Carefully degassed, smooth realled chamber,

 have measured Uw = -500 bar [Temperly & Chambers 1946: Prac. Royal Sa., London]
- 2) Can cohesive sorts develop large negetive values of Uw?

 . Look at drying rs 1-D consolidation of Resedemented BBC (Ip = 252)

- · Conclusion: Cohesire soils can develop negative un tens hundrede atm.
- 3) Components of soil suction, S= 40-4w [Artchism & Richards. 1965 Spm.] in australia: Buttersonth
 - · Total suction (S) = Matric suction (Sm) that cancer of to act on soil skeleton
 - + Solute suction (Ss) due to osmotic presure of dissolved salts in bulk pore water of soil
 - · Total suction is a measure of the free energy of the buth water in the soil Compared to pure 140 at atmospheric pressure (at same temp. felevalui)

3) Continued

Solute suchin 5s (bar) = 24.4 [total satt cone. = \(\) (ca + Cc) in moles flete = M]

(from Section 2.3, Part II-2), at T = 20°C) & Ss (bar) = 24.4 (2Co) for Co = Co

Examples: Cone (m) = 10 Nacl 0:1 Nacl Security 359/2= C/M (Ca+C)

Ss(bar = 0.05 4.9 27

- 4) Laboratory measurements of soil suction (Fredlind & Rahardjo 1993: Soil Med.

 for Unsaturated Soils, John Willy)
 - a) Direct: Tensiometer = minicature prezoneter

 with a fine porous stone (BP = bubbling pressure must be \ge measured 5m)

 Ridley & Burland (1993) & Kent Sjobbon (MIT PhD, 9/00) have developed devices to measure 5m \rightarrow 15 bar. in few minutes. Key feature = 15 bar stone,

 very small water reservoir, v. still transducer \ge 10 bar saturation pressure
 - b) Semi-Oweit: Pressure Plate (and similar variations)

- (1) house He to get Uw above 1 atm to prevent caretation within system
- (2) $S_m = U_c = (U_a U_w)$. However, uncertain interpretation unless have either S = 100 or continuous an voide
- (3) Reed to remove specimen after each "fest"
 to measure w. Hence take days to obtain
 Soil Moisture Characteristic curre =
 Son re w

c) Inducit

Section 2.1, Part II-2

- (1) Measure w at varying relative humidity. Total 5, = 1350 ln (100/RH) & 20°C Takes weeks/measurement { restricted to 57 > 10 bar (RH = 992)
- (2) Filter paper (FP). Need calebrate w of FP as f (RH) via different salt solutions of use above egn. to get 5 = f(RH).

 FP in contact with soil → Sm } Takes 1-2 weeks I measurement.

 ·FP not 12 " " → ST Not accurate 5 < 1 box
- (3) Thermal conductivity measured for ceramic sensor in contact with soil.

 Need calebration of TC = f (w of ceramic) = f (applied suction).

 Takes = 1 week / measurement.

- 5) Fuld measurements of soil surtion
 See Stannard [1992, ASTM, GTJ, 15(1)]
- 6) Some values of matrix suction for soils compacted at optenim water content for "Standard" Compaction effort
 - Olson { Langfelder [1965, ASCE, JSMFD, 91(4)]
 - (Krahn & Fredlund [1972, J. Soil Scure, 114(5)]

