Corrigé du CC3 d'analyse du 30/11/23

Version A

Exercice 1. (5 points)

Pour tout $n \in \mathbb{N}^*$ soit f_n la fonction définie sur \mathbb{R} par : pour tout $x \in \mathbb{R}$,

$$f_n(x) = n^2 \left(1 - \cos\frac{x}{n}\right).$$

- 1. Démontrer que la suite de fonctions (f_n) converge simplement sur \mathbb{R} vers une fonction f que l'on précisera.
- 2. Soit $n \in \mathbb{N}^*$. Justifier la dérivabilité de f_n sur \mathbb{R} et déterminer sa dérivée $g_n = f'_n$.
- 3. Montrer que la suite de fonctions (g_n) converge simplement sur \mathbb{R} vers la fonction $q: x \mapsto x$.
- 4. La suite de fonctions (g_n) converge-t-elle uniformément vers g sur \mathbb{R} ? On pourra considérer la suite (x_n) définie par : pour tout $n \in \mathbb{N}^*$, $x_n = 2\pi n$.
- 5. A-t-on f' = g?
 - 1. Soit $x \in \mathbb{R}$. Alors $\frac{x}{n} \to 0$ quand $n \to +\infty$, donc $\cos(\frac{x}{n}) = 1 \frac{x^2}{2n^2} + o(\frac{1}{n^2})$ quand $n \to +\infty$. Ainsi, $f_n(x) \sim n^2 \frac{x^2}{2n^2}$ donc $f_n(x) \to \frac{x^2}{2}$.

La suite de fonctions (f_n) converge simplement la \mathbb{R} vers la fonction $f: x \mapsto \frac{x^2}{2}$.

2. Soit $n \in \mathbb{N}^*$. La fonction f_n est dérivable sur \mathbb{R} car la fonction cosinus l'est. Pour tout $x \in \mathbb{R}$,

$$g_n(x) = f'_n(x) = n^2 \left(\frac{1}{n} \sin \frac{x}{n}\right) = n \sin \frac{x}{n}.$$

- 3. Soit $x \in \mathbb{R}$. Alors $g_n(x) \sim n \frac{x}{n}$ donc $\lim_{n \to +\infty} g_n(x) = x$. La suite de fonctions (g_n) converge donc simplement sur \mathbb{R} vers la fonction $g: x \mapsto x$.
- 4. Considérons la suite (x_n) définie par : pour tout $n \in \mathbb{N}^*$, $x_n = 2\pi n$. Alors pour tout $n \in \mathbb{N}^*$, $g_n(x_n) = n \sin(2\pi) = 0$, et $g(x_n) = 2\pi n$. La suite $g_n(x_n) g(x_n)$ ne converge donc pas vers 0 (elle diverge), donc la suite de fonctions (g_n) ne converge pas uniformément vers g sur \mathbb{R} .
- 5. On a bien f' = g, car f est dérivable pour tout $x \in \mathbb{R}$, $f'(x) = \frac{1}{2}2x = x = g(x)$, même si le théorème de dérivation ne s'applique pas (la suite (g_n) ne convergeant pas uniformément).

Exercice 2. (6 points)

Étudier la nature des séries suivantes.

$$1. \sum_{n\geqslant 1} \left(n e^{\frac{1}{n}} - n \right)$$

$$2. \sum_{n} \left(\frac{n}{n+1}\right)^{n^2}$$

3.
$$\sum_{n \ge 1} \frac{n^{2023}}{n!}$$

1. Cherchons la limite du terme général de cette série. Comme $\frac{1}{n} \to 0$, on peut utiliser un développement limité de l'exponentielle en 0:

quand
$$n \to +\infty$$
, $ne^{\frac{1}{n}} - n = n(1 + \frac{1}{n} + o(\frac{1}{n})) - n = 1 + o(1)$. Donc

$$\lim_{n \to +\infty} n e^{\frac{1}{n}} - n = 1.$$

La série $\sum_{n\geqslant 1}(ne^{\frac{1}{n}}-n)$ est donc grossièrement divergente (son terme général ne tend pas vers 0).

2. La série est à termes positifs, appliquons-lui la règle de Cauchy.

$$\left(\left(\frac{n}{n+1} \right)^{n^2} \right)^{1/n} = \left(\frac{n}{n+1} \right)^n = e^{n \ln(\frac{n}{n+1})} = e^{-n \ln(1+\frac{1}{n})} \to e^{-1} < 1.$$

D'après la règle de Cauchy, la série $\sum_{n} \left(\frac{n}{n+1}\right)^{n^2}$ est convergente.

3. Notons $u_n = \frac{n^{2023}}{n!} \geqslant 0$ et appliquons la règle de d'Alembert. On a

$$\frac{n_{n+1}}{u_n} = \frac{(n+1)^{2023}n!}{n^{2023}(n+1)!} = \frac{(n+1)^{2022}}{n^{2023}} \to 0 < 1.$$

D'après la règle de d'Alembert, la série $\sum_n \frac{n^{2023}}{n!}$ est convergente.

Exercice 3. (5 points)

Montrer que les séries suivantes sont convergentes et calculer leur somme :

- 1. $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)}$
- 2. $\sum_{n=0}^{+\infty} \frac{(\sin x)^n}{3^n}$, où x est un nombre réel fixé.
 - 1. Décomposons en éléments simples la fraction rationnelle $F=\frac{1}{X(X+1)(X+2)}$. Il existe $a,b,c\in\mathbb{R}$ tels que $\frac{1}{X(X+1)(X+2)}=\frac{a}{X}+\frac{b}{X+1}+\frac{c}{X+2}$.

En multipliant F par X et en évaluant en 0, on a $a = \frac{1}{2}$. En multipliant F par (X+1) et en évaluant en -1, on obtient b=-1. En multipliant F par (X+2) et en évaluant en -2, on obtient $c=\frac{1}{2}$.

Donc
$$\frac{1}{X(X+1)(X+2)} = \frac{1}{2}\frac{1}{X} - \frac{1}{X+1} + \frac{1}{2}\frac{1}{X+2}$$

Soit $N \in \mathbb{N}^*$.

$$\begin{split} \sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)} &= \sum_{n=1}^{N} \left(\frac{1}{2} \frac{1}{n} - \frac{1}{n+1} + \frac{1}{2} \frac{1}{n+2} \right) \\ &= \frac{1}{2} \left[\left(\sum_{n=1}^{N} \frac{1}{n} - \sum_{n=2}^{N} \frac{1}{n+1} \right) + \left(-\sum_{n=1}^{N} \frac{1}{n+1} + \sum_{n=1}^{N} \frac{1}{n+2} \right) \right] \\ &= \frac{1}{2} \left(\left(\frac{1}{1} - \frac{1}{N+1} \right) + \left(-\frac{1}{2} + \frac{1}{N+2} \right) \right) \\ &= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N+1} + \frac{1}{N+2} \right) \\ &\to \frac{1}{4} \quad \text{quand } n \to +\infty. \end{split}$$

La série $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)}$ est donc convergente, et $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$.

2. Soit $x \in \mathbb{R}$. La série $\sum_{n=0}^{+\infty} \frac{(\sin x)^n}{3^n}$ est une série géométrique de raison $\frac{\sin x}{3}$. Comme $\left|\frac{\sin x}{3}\right| \leqslant \frac{1}{3} < 1$, la série $\sum_{n=0}^{+\infty} \frac{(\sin x)^n}{3^n}$ est convergente et

$$\sum_{n=0}^{+\infty} \frac{(\sin x)^n}{3^n} = \frac{1}{1 - \frac{\sin x}{3}} = \frac{3}{3 - \sin x}.$$

Exercice 4. (4 points) Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

- 1. Donner la définition de « la suite (u_n) est de Cauchy ».
- 2. Dire si les affirmations suivantes sont vraies ou fausses, en justifiant la réponse :
 - (a) Si la suite u est de Cauchy, alors $(u_{n+1} u_n)$ converge vers 0.
 - (b) Si $(u_{n+1} u_n)$ converge vers 0, alors la suite u est de Cauchy.
 - 1. La suite (u_n) est dite de Cauchy si et seulement si pour tout $\varepsilon > 0$, il existe un nombre entier naturel N tel que, pour tous $n, m \ge N$, $|u_n u_m| < \varepsilon$.
 - 2. (a) Vrai. Si la suite u est de Cauchy, alors en particulier $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geqslant N$, $|u_{n+1} u_n| < \varepsilon$. Donc $(u_{n+1} u_n)$ converge vers 0.
 - (b) Faux. Posons, pour tout $n \in \mathbb{N}$, $u_n = \sum_{k=0}^n \frac{1}{k+1}$. Alors pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = \frac{1}{n+2}$ converge vers 0. Mais la suite réelle u n'est pas convergente, car la série $\sum \frac{1}{k+1}$ est divergente, donc la suite u n'est pas de Cauchy.

Corrigé du CC3 d'analyse du 30/11/23

Version B

Exercice 1. (5 points)

Pour tout $n \in \mathbb{N}^*$ soit f_n la fonction définie sur \mathbb{R} par : pour tout $x \in \mathbb{R}$,

$$f_n(x) = n \sin \frac{x^2}{n}.$$

- 1. Démontrer que la suite de fonctions (f_n) converge simplement sur \mathbb{R} vers une fonction f que l'on précisera.
- 2. Soit $n \in \mathbb{N}^*$. Justifier la dérivabilité de f_n sur \mathbb{R} et déterminer sa dérivée $g_n = f'_n$.
- 3. Montrer que la suite de fonctions (g_n) converge simplement sur \mathbb{R} vers la fonction $g: x \mapsto 2x$.
- 4. La suite de fonctions (g_n) converge-t-elle uniformément vers g sur \mathbb{R} ? On pourra considérer la suite (x_n) définie par : pour tout $n \in \mathbb{N}^*$, $x_n = \sqrt{\pi n}$.
- 5. A-t-on f' = g?
 - 1. Soit $x \in \mathbb{R}$. Alors $\frac{x^2}{n} \to 0$ quand $n \to +\infty$, donc $f_n(x) \sim n \frac{x^2}{n}$ donc $f_n(x) \to x^2$. La suite de fonctions (f_n) converge simplement la \mathbb{R} vers la fonction $f: x \mapsto x^2$.
 - 2. Soit $n \in \mathbb{N}^*$. La fonction f_n est dérivable sur \mathbb{R} car la fonction sinus l'est. Pour tout $x \in \mathbb{R}$,

$$g_n(x) = f'_n(x) = n\frac{2x}{n}\cos\frac{x^2}{n} = 2x\cos\frac{x^2}{n}.$$

- 3. Soit $x \in \mathbb{R}$. Alors $\lim_{n \to +\infty} \cos \frac{x^2}{n} = 1$ donc $\lim_{n \to +\infty} g_n(x) = 2x$. La suite de fonctions (g_n) converge donc simplement sur \mathbb{R} vers la fonction $g: x \mapsto 2x$.
- 4. Considérons la suite (x_n) définie par : pour tout $n \in \mathbb{N}^*$, $x_n = \sqrt{\pi n}$. Alors pour tout $n \in \mathbb{N}^*$, $g_n(x_n) = 2\sqrt{\pi n}\cos(\pi) = -2\sqrt{\pi n}$, et $g(x_n) = 2\sqrt{\pi n}$. La suite $g_n(x_n) g(x_n)$ ne converge donc pas vers 0 (elle diverge), donc la suite de fonctions (g_n) ne converge pas uniformément vers g sur \mathbb{R} .
- 5. On a bien f' = g, car f est dérivable pour tout $x \in \mathbb{R}$, f'(x) = 2x = g(x), même si le théorème de dérivation ne s'applique pas (la suite (g_n) ne convergeant pas uniformément).

Exercice 2. (6 points)

Étudier la nature des séries suivantes :

$$1. \sum_{n \ge 1} \left(n - n \cos \frac{1}{n} \right)$$

$$2. \sum_{n} \left(\frac{n}{n+2}\right)^{n^2}$$

3.
$$\sum_{n} \frac{n^{2024}}{n!}$$

1. La série est à termes positifs. Cherchons un équivalent du terme général de cette série. Comme $\frac{1}{n} \to 0$, on peut utiliser un développement limité de cosinus en 0: quand $n \to +\infty$, $n-n\cos\frac{1}{n}=n-n(1-\frac{1}{2n^2}+o(\frac{1}{n^2}))=\frac{1}{2n}+o(\frac{1}{n})$. Donc

$$n - n\cos\frac{1}{n} \sim \frac{1}{2n}.$$

Par théorème de comparaison, la série $\sum_{n\geqslant 1}(n-n\cos\frac{1}{n})$ est de même nature que la série de Riemann $\frac{1}{2}\sum\frac{1}{n}$, donc elle est divergente.

2. La série est à termes positifs, appliquons-lui la règle de Cauchy.

$$\left(\left(\frac{n}{n+2} \right)^{n^2} \right)^{1/n} = \left(\frac{n}{n+2} \right)^n = e^{n \ln(\frac{n}{n+2})} = e^{-n \ln(1+\frac{2}{n})} \to e^{-2} < 1.$$

D'après la règle de Cauchy, la série $\sum_{n} \left(\frac{n}{n+2}\right)^{n^2}$ est convergente.

3. Notons $u_n = \frac{n^{2024}}{n!} \geqslant 0$ et appliquons la règle de d'Alembert. On a

$$\frac{n_{n+1}}{u_n} = \frac{(n+1)^{2024}n!}{n^{2024}(n+1)!} = \frac{(n+1)^{2023}}{n^{2024}} \to 0 < 1.$$

D'après la règle de d'Alembert, la série $\sum_{n} \frac{n^{2024}}{n!}$ est convergente.

Exercice 3. (5 points)

Montrer que les séries suivantes sont convergentes et calculer leur somme :

- 1. $\sum_{n=2}^{+\infty} \frac{1}{(n-1)n(n+1)}$
- 2. $\sum_{n=0}^{+\infty} \frac{(\cos x)^n}{5^n}$, où x est un nombre réel fixé.
 - 1. Décomposons en éléments simples la fraction rationnelle $F=\frac{1}{(X-1)X(X+1)}$. Il existe $a,b,c\in\mathbb{R}$ tels que $\frac{1}{(X-1)X(X+1)}=\frac{a}{X-1}+\frac{b}{X}+\frac{c}{X+1}$. La fraction rationnelle est impaire, $F(-X)=-F(X)=\operatorname{donc}-\frac{a}{X+1}-\frac{b}{X}-\frac{c}{X-1}=-\frac{a}{X-1}-\frac{b}{X}-\frac{c}{X+1}$. Par unicité de la décomposition en éléments simples, a=c.

En multipliant F par X-1 et en évaluant en 1, on a $a=c=\frac{1}{2}$. En multipliant F par X et en évaluant en 0, on obtient b=-1.

Donc
$$\frac{1}{(X-1)X(X+1)} = \frac{1}{2} \frac{1}{X-1} - \frac{1}{X} + \frac{1}{2} \frac{1}{X+1}$$
.

Soit $N \in \mathbb{N}^*$.

$$\begin{split} \sum_{n=2}^{N} \frac{1}{(n-1)n(n+1)} &= \sum_{n=2}^{N} \left(\frac{1}{2} \frac{1}{n-1} - \frac{1}{n} + \frac{1}{2} \frac{1}{n+1} \right) \\ &= \frac{1}{2} \left[\left(\sum_{n=2}^{N} \frac{1}{n-1} - \sum_{n=2}^{N} \frac{1}{n} \right) + \left(-\sum_{n=2}^{N} \frac{1}{Xn} + \sum_{n=2}^{N} \frac{1}{n+1} \right) \right] \\ &= \frac{1}{2} \left(\left(\frac{1}{1} - \frac{1}{N} \right) + \left(-\frac{1}{2} + \frac{1}{N+1} \right) \right) \\ &= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N} + \frac{1}{N+1} \right) \right) \\ &\to \frac{1}{4} \quad \text{quand } n \to +\infty. \end{split}$$

La série $\sum_{n=2}^{+\infty} \frac{1}{(n-1)n(n+1)}$ est donc convergente, et $\sum_{n=2}^{+\infty} \frac{1}{(n-1)n(n+1)} = \frac{1}{4}$.

2. Soit $x \in \mathbb{R}$. La série $\sum_{n=0}^{+\infty} \frac{(\arctan x)^n}{5^n}$ est une série géométrique de raison $\frac{\cos x}{5}$. Comme $\left|\frac{\cos x}{5}\right| \leqslant \frac{1}{5} < 1$, la série $\sum_{n=0}^{+\infty} \frac{(\cos x)^n}{5^n}$ est convergente et

$$\sum_{n=0}^{+\infty} \frac{(\cos x)^n}{5^n} = \frac{1}{1 - \frac{\cos x}{5}} = \frac{5}{5 - \cos x}.$$

Exercice 4. (4 points) Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

- 1. Donner la définition de « la suite (u_n) est de Cauchy ».
- 2. Dire si les affirmations suivantes sont vraies ou fausses, en justifiant la réponse :
 - (a) Si la suite u est de Cauchy, alors $(u_{n+1} u_n)$ converge vers 0.
 - (b) Si $(u_{n+1} u_n)$ converge vers 0, alors la suite u est de Cauchy.
 - 1. La suite (u_n) est dite de Cauchy si et seulement si pour tout $\varepsilon > 0$, il existe un nombre entier naturel N tel que, pour tous $n, m \ge N$, $|u_n u_m| < \varepsilon$.
 - 2. (a) Vrai. Si la suite u est de Cauchy, alors en particulier $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geqslant N$, $|u_{n+1} u_n| < \varepsilon$. Donc $(u_{n+1} u_n)$ converge vers 0.
 - (b) Faux. Posons, pour tout $n \in \mathbb{N}$, $u_n = \sum_{k=0}^n \frac{1}{k+1}$. Alors pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = \frac{1}{n+2}$ converge vers 0. Mais la suite réelle u n'est pas convergente, car la série $\sum \frac{1}{k+1}$ est divergente, donc la suite u n'est pas de Cauchy.