1. 수를 처리하는 것은 통계학에서 상당히 중요한 일이다. 통계학에서 N개의 수를 대표하는 기본 통계값에는 다음과 같은 것들이 있다. 단, N은 홀수라고 가정하자.

산술평균 : N개의 수들의 합을 N으로 나눈 값

중앙값: N개의 수들을 증가하는 순서로 나열했을 경우 그 중앙에 위치하는 값

최빈값 : N개의 수들 중 가장 많이 나타나는 값 범위 : N개의 수들 중 최댓값과 최솟값의 차이

N개의 수가 주어졌을 때, 네 가지 기본 통계값을 구하는 프로그램을 작성하시오.

입력

첫째 줄에 수의 개수 $N(1 \le N \le 500,000)$ 이 주어진다. 단, N은 홀수이다. 그 다음 N개의 줄에는 정수들이 주어진다. 입력되는 정수의 절댓값은 4,000을 넘지 않는다.

출력

첫째 줄에는 산술평균을 출력한다. 소수점 이하 첫째 자리에서 반올림한 값을 출력한다.

둘째 줄에는 중앙값을 출력한다.

셋째 줄에는 최빈값을 출력한다. 여러 개 있을 때에는 최빈값 중 두 번째로 작은 값을 출력한다.

넷째 줄에는 범위를 출력한다.

예시)

입력	출력
5	
1	2
3	2
8	1
-2	10
2	

2. 배열 array의 i번째 숫자부터 j번째 숫자까지 자르고 정렬했을 때, k번째에 있는 수를 구하려 합니다.

예를 들어 array가 [1, 5, 2, 6, 3, 7, 4], i = 2, j = 5, k = 3이라면

array의 2번째부터 5번째까지 자르면 [5, 2, 6, 3]입니다.

1에서 나온 배열을 정렬하면 [2, 3, 5, 6]입니다.

2에서 나온 배열의 3번째 숫자는 5입니다.

배열 array, [i, j, k]를 원소로 가진 2차원 배열 commands가 매개변수로 주어질 때, commands의 모든 원소에 대해 앞서 설명한 연산을 적용했을 때 나온 결과를 배열에 담아 출력하도록 작성해주세요.

array와 commands 변수는 아래 예시와 같이 정해진 값으로 진행합니다.

예시)

array	commands	출력
[1, 5, 2, 6, 3, 7, 4] [[2, 5, 3], [4, 4, 1], [5,6,3]	[[6 2]	
	[1, 7, 3]]	[5,0,3]

3. 0 또는 양의 정수가 주어졌을 때, 정수를 이어 붙여 만들 수 있는 가장 큰 수를 알아내주세요.

예를 들어, 주어진 정수가 [6, 10, 2]라면 [6102, 6210, 1062, 1026, 2610, 2106]를 만들 수 있고, 이중 가장 큰 수는 6210입니다.

0 또는 양의 정수가 담긴 배열이 매개변수로 주어질 때, 순서를 재배치하여 만들 수 있는 가장 큰 수를 문자열로 바꾸어 출력하도록 작성해주세요.

제한 사항

- 정수의 길이는 1 이상 100,000 이하입니다.
- 정수의 원소는 0 이상 1,000 이하입니다.
- 정답이 너무 클 수 있으니 문자열로 바꾸어 출력합니다.

예시)

입력	출력
[6, 10, 2]	6210
[3, 30, 34, 5, 9]	9534330