ECO 4004: Math. Econ. Stat. Problem Set 9: Large Sample Theory

- 1. Let the independent random variables X_1, \dots, X_n be distributed as U(0, 1).
- (1) Use the CLT to find an approximate value for the probability $P(a \le \overline{X} \le b)$.
- (2) What is the numerical value of this probability for n = 12, a = 7/16, b = 9/16?
- 2. Let $X_i\{i=1,2,\cdots,n\}$ and $Y_i\{i=1,2,\cdots,n\}$ be independent random variables such that the X_i 's are identically distributed with $E(X_i)=\mu_X$, $V(X_i)=\sigma^2$ and the Y_i 's are identically distributed with $E(Y_i)=\mu_Y$, $V(Y_i)=\sigma^2$. If \overline{X}_n and \overline{Y}_n are the respective sample means of the X_i 's and Y_i 's.
- (1) Find $E(\overline{X}_n \overline{Y}_n)$, $V(\overline{X}_n \overline{Y}_n)$.
- (2) Is $\bar{X}_n \bar{Y}_n$ a consistent estimator of $\mu_X \mu_Y$? Why?
- (3) Use the CLT to find the asymptotic distribution of $\bar{X}_n \bar{Y}_n$. Why?

Write down the limiting distribution of the above statistics.

- (4) What is a consistent estimator of μ_X / μ_Y if $\mu_Y \neq 0$? Why?
- 3. Let \overline{X} denote the sample mean in random sampling, sample size n, from a population in which $X \sim \exp{onential(\lambda)}$, that is, $f(x) = \lambda e^{-\lambda x}$ for x > 0 and f(x) = 0 elsewhere. For convenience, let $\theta = E(X) = 1/\lambda$. So, $E(\overline{X}) = \theta$, $V(\overline{X}) = \theta^2/n$ and the limiting distribution of $\sqrt{n}(\overline{X} \theta)$ is $N(0, \theta^2)$. Consider the sample statistic $T = 1/\overline{X}$.
- (1) Use a Slutsky theorem to show that $p \lim T = \lambda$.
- (2) Use the Delta method to find the limiting distribution of $\sqrt{n}(T-\lambda)$.
- (3) Use your result to approximate $P(T \le 5/2)$ in random sampling sample size 16, from an exponential population with $\lambda = 2$.
- 4. Let $\hat{\theta}$ be a consistent estimator of $\theta > 0$ and its limiting distribution is as follows: $\sqrt{n}(\hat{\theta} \theta) \xrightarrow{d} N(0, \sigma^2)$. Let $\hat{\gamma} = \log(\hat{\theta})$ be an estimator of $\gamma = \log(\theta)$.
- (1) Is $\hat{\gamma}$ a consistent estimator of γ ? Justify your answer.
- (2) Find asymptotic variance of $\hat{\gamma}$.