Linear Algebra: Midterm Exam 2A

This is a 120-minutes exam.

4 pages in total

- 1. (30 pts) Determine whether the following statements are true (T) or false (F)? (A reasoning is required.)
 - (1) If a 5×3 matrix A has a rank 3, then the dimension of N(A) is 3.
 - (2) The set $\{x + 1, x + 3, x^2 1\}$ is spanning the vector space P_3 .
 - (3) Let A be a $n \times n$ matrix. If $N(A) = \{0\}$, then then system $A\mathbf{x} = \mathbf{b}$ has infinite solution for a given vector $\mathbf{b} \in \mathbb{R}^n$.
 - (4) The following vectors $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 4 & 2 \\ 0 & 4 \end{bmatrix}$ are linearly independent in $M_{2\times 2}$.
 - (5) Let V have two bases by $B = \{\sin(x) + \cos(x), 2\sin(x)\}$ and $B' = \{\sin(x), \cos(x)\}$, then the transition matrix from B to B' is $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$.
 - (6) Let A be a 4×5 matrix. If $\mathbf{a_1}, \mathbf{a_2}$, and $\mathbf{a_4}$ are linearly independent and $\mathbf{a_3} = \mathbf{a_1} + 2\mathbf{a_2}, \mathbf{a_5} = 2\mathbf{a_1} \mathbf{a_2} + 3\mathbf{a_4}$, the reduced row echelon form of A is $\begin{bmatrix} 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 \end{bmatrix}.$
 - (7) The following transformation $L: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\mathbf{L}(\mathbf{x}) = \begin{bmatrix} 1 + x_1 \\ x_1 + x_2 \\ x_1 2x_3 \end{bmatrix}$ is a linear transformation.
 - (8) If A is a 4×5 matrix, then rank of A is at most 5.
 - (9) Let A be a 2×2 matrix, and let L_A be the linear operator defined by $L_A(\mathbf{x}) = A\mathbf{x}$. We can conclude that L_A maps the vector space R^2 onto the row space of A.

- (10) The matrix $\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ is a rotation matrix.
- (11) Let $L_1: R^2 \to R^2$ be the orthogonal projection onto the *x*-axis, and $L_2: R^2 \to R^2$ be the rotation counterclockwise with the angle θ , then $L_2 \circ L_1 = L_1 \circ L_2$.
- (12) If A is a nonsingular matrix, and B is similar to A, then A^{-1} is also similar to B^{-1} .
- (13) If the subspace S of R^3 is spanned by $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$, then $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is in the orthogonal complement of S
- (14) Is it possible for a matrix A to have the vector $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$ in row space of A and
 - $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ in the null space of A?
- (15) Let $x = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, then the angle between x and y is $\theta = 30^{\circ}$.
- 2. (8 pts) Determine the kernel and range of each of the following linear operators on \mathbb{R}^3

(a)
$$L(\mathbf{x}) = \begin{bmatrix} x_1 - x_2 \\ x_2 - 2x_3 \\ x_1 + x_3 \end{bmatrix}$$
 (b) $L(\mathbf{x}) = \begin{bmatrix} x_1 \\ 2x_1 \\ x_1 \end{bmatrix}$

- 3. (5 pts) Given the two bases $V = \{v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \}$, and $U = \{u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \}$, please find the transition matrix from V to U.
- 4. (12 pts) Consider a set of matrices with size 2×2 : $\mathbf{S} = \begin{bmatrix} A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$.

- (1) Find the coordinate vector of the matrix $B_1 = \begin{bmatrix} 3 & -18 \\ -18 & 10 \end{bmatrix}$ with respect to the basis S.
- (2) Find the coordinate vector of the matrix $B_2 = \begin{bmatrix} 3 & 9 \\ -9 & 10 \end{bmatrix}$ with respect to the basis S.
- (3) Does the matrix $B_3 = \begin{bmatrix} 3 & -9 \\ -9 & 10 \end{bmatrix}$ be in the vector space $M = Span\{A_1, A_2, A_3\}$.
- 5. (9 pts) Let $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ be a linear transformation such that

$$\boldsymbol{L}\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}2\\1\\2\\0\end{bmatrix}, \ \boldsymbol{L}\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\-3\\1\end{bmatrix}, \boldsymbol{L}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}2\\2\\-9\\2\end{bmatrix}.$$

- (1) Find the representing matrix A for the linear transformation L.
- (2) If $\mathbf{L}(\mathbf{x}) = \begin{bmatrix} 3 \\ 3 \\ -26 \\ 5 \end{bmatrix}$, then find \mathbf{x} .
- (3) For the matrix A found in (1), if we are given a vector $\mathbf{b} \in \mathbb{R}^4$, then please find the solution of the system $A\mathbf{x} = \mathbf{b}$.
- 6. (12 pts) Let $L_1, L_2, L_3, L_4: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the following linear transformations:

 L_1 : Reflection with respect to the *x-axis*;

 L_2 : Reflection with respect to the line l of angle 30°;

 L_3 : Rotation counterclockwise by the angle 60°;

 L_4 : Deformation: x_1 direction with factor k = 2.

- (1) Find the representing matrices A_1 , A_2 , A_3 and A_4 of $L_1(x) = A_1x$, $L_2(x) = A_2x$, $L_3(x) = A_3x$, and $L_4(x) = A_4x$, respectively.
- (2) Find the representing matrix $\ \mathcal{C}$ of the composition transformation $\ L_2 \circ L_1$
- (3) Find the vector of $L_1 \circ L_3 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- (4) Plot the composite transformation $L_4 \circ L_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ in geometric diagram.

7. (12 pts) Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 & 3 \\ 3 & 0 & 3 & 4 & 5 \\ 0 & 4 & 0 & 4 & 4 \end{bmatrix}$$
.

- (1) Find a basis for N(A) (the null space of A) and the nullity of A.
- (2) Find a basis for the row space of A and find a basis for the column space of A.
- (3) Find the $N(A^T)$ and the nullity of A^T
- (4) Find the range space of A^T and prove that $N(A) \perp R(A^T)$.
- 8. (12 pts) Let the operator $L: P_3 \to P_3$ be defined by $L(f(x)) = x^2 f(1) + f'(x)$.
 - (1) Find the matrix A representing L with respect to the basis $\{x^2, x, 1\}$.
 - (2) Find the matrix *B* representing *L* with respect to the basis $\{x^2 + 1, x + 1, 1\}$.
 - (3) Find the matrix S such that $B = S^{-1}AS$.