Homework10

Qi'ao Chen 21210160025

May 12, 2022

Exercise 1. Work in a stable theory. Suppose the sequence $(a_1, ..., a_n)$ is independent over \emptyset . Suppose the sequence $(b_1, ..., b_m)$ is independent over \emptyset . Suppose

$$\{a_1,\dots,a_n\} \underset{\emptyset}{\bigcup} \{b_1,\dots,b_m\}$$

Show that $(a_1,\ldots,a_n,b_1,\ldots,b_m)$ is independent over \emptyset

Proof. Let $\bar{a}=(a_1,\ldots,a_n)$, $\bar{b}=(b_1,\ldots,b_m)$, for any $1\leq i\leq n$, since \bar{a} is independent over \emptyset , $a_i \downarrow_{\emptyset} a_{\neq i}$. Also as $\bar{a} \downarrow_{\emptyset} \bar{b}$, we have $a_i a_{\neq i} \downarrow_{\emptyset} \bar{b}$, by base monotonicity, $a_i \downarrow_{a_{\neq i}} \bar{b}$. Then with $a_i \downarrow_{\emptyset} a_{\neq i}$, monotonicity gives $a_i \downarrow_{\emptyset} a_{\neq i} \bar{b}$. Similarly we can prove $b_i \downarrow_{\emptyset} b_{\neq i} \bar{a}$. Therefore $\bar{a}\bar{b}$ is independent over \emptyset

Exercise 2. If $T = \text{Th}(\mathbb{R}, \leq)$ and $A = \mathbb{R}$ and n = 1, show that $R(\mathbb{R}) \geq 3$, i.e., $R(S_1(\mathbb{R})) \geq 3$

Proof. First we prove that $R(U) \ge \alpha$ for any open interval $U = (a, b) \subseteq \mathbb{R}$ and any ordinal α by induction.

- 1. Apparently for any open interval U, $U \neq \emptyset$ and therefore $R(U) \geq 0$.
- 2. For any open interval $U=(a,b)\subseteq\mathbb{R}$, we can take $U_i=(a+\frac{b-a}{i+2},a+\frac{b-a}{i+1})$ for all $i\in\omega$, then U_0,U_1,\ldots are pairwise disjoint \mathbb{R} -definable subsets of U and $R(U_i)\geq\alpha$ for each α , therefore $R(U)\geq\alpha+1$
- 3. Limit ordinal case is obvious.

 $R(\mathbb{R}) \geq 3$ if and only if there are pairwise disjoint \mathbb{R} -definable subseteq $D_1, D_2, \dots \subseteq \mathbb{R}$ such that $R(D_i) \geq 2$, and we can take $D_i = (i, i+1)$ for $i=1,2,3,\dots$ For each D_i , $R(D_i) \geq 2$, therefore $R(\mathbb{R}) \geq 3$

Exercise 3. If $T = \text{Th}(\mathbb{Z}, +)$ and $A = \emptyset$ and n = 1, show that the definable set \mathbb{Z} has Cantor-Bendixon rank ∞ .

Proof. First let $\{0\}$ is defined by $\varphi(y) := \forall x(x+y=x)$. Now we prove that $R(n\mathbb{Z} \setminus \{0\}) \ge \alpha$ for any ordinal α and any $n \in \mathbb{N} \setminus \{0\}$

- 1. As they are all nonempty, $R(n\mathbb{Z}\setminus\{0\})\geq 0$ for any positive integer n
- 2. For any $n \in \mathbb{N} \setminus \{0\}$, then $n\mathbb{Z} \setminus \{0\}$ has disjoint definable subsets $(n \cdot p_1)\mathbb{Z} \setminus \{0\}, (n \cdot p_2)\mathbb{Z} \setminus \{0\}, ...$ where $p_1, p_2, ...$ are strictly increasing primes. As for each i, $R((n \cdot p_1)\mathbb{Z} \setminus \{0\}) \geq \alpha$, then $R(n\mathbb{Z} \setminus \{0\}) \geq \alpha + 1$
- 3. Limit ordinal case is immediate

Therefore $R(\mathbb{Z} \setminus \{0\}) = \infty$ and since $R(\mathbb{Z}) \geq R(\mathbb{Z} \setminus \{0\}), R(\mathbb{Z}) = \infty$

Exercise 4. If $T = ACF_0 = Th(\mathbb{C}, +, \cdot)$ and $A = \mathbb{C}$ and n = 3. Show that the definable set

$$D = \{(x, y, z) \in \mathbb{C}^3 : x + y + z = 0\}$$

has Cantor-Bendixon rank at least 2

Proof. For any $i \in \omega$, let $D_i = \{(x,y,z) \in \mathbb{C}^3 : x+y=i\}$, then D_0, D_1, D_2, \ldots are disjoint \mathbb{C} -definable subsets of D. Now for any $i \in \omega$, for any $j \in \omega$, let $D_{ij} = \{(x,y,z) \in \mathbb{C}^3 : x+y=i \wedge y=j\}$. When fixing i, each D_{ij} is disjoint nonempty set, therefore $R(D_{ij}) \geq 0$ and $R(D_i) \geq 1$. Thus $R(D) \geq 2$.

Exercise 5. Let (M, \approx) be a set M with an equivalence relation \approx , s.t. each equivalence class is infinite and there are infinite many equivalence classes. Show that $S_1(M)$ has Cantor-Bendixson rank at least 2

Proof. As there are infinitely many equivalence class, we can take a_1, a_2, \ldots such that their equivalence class is different. Then $[x \approx a_1], [x \approx a_2], \ldots$ are disjoint clopen subsets of $S_1(M)$. Since each equivalence class is infinite, in $[a_i]$, we can take infinitely many different $a_{i1}, a_{i2}, \cdots \in [a_i]$. Thus for each $[x \approx a_i]$, there are pairwise disjoint M-definable subsets $[x = a_{i1}], [x = a_{i2}], \ldots$ of it and therefore $R([x \approx a_i]) \geq 1$ and so $R(S_1(M)) \geq 2$