□ Лабораторная работа № 5. Комментарий

Выдержка из Описания.

«Например – выборка № 1 на такте $t/\Delta t = 1$ с 6 нейронами: получим числа на выходах: $c_3 = 0.35$, $c_2 = 0.42$, $c_1 = 0.73$, MSE = 0.0062, отсюда $\sigma = 0.096$. Каждая из разностей выходов: $c_1 - c_2 = 0.31$ и $c_1 - c_3 = 0.38$ превышает $3\sigma = 0.29$, что означает: выход c_1 отличается от выходов c_3 и c_2 на доверительном интервале 99.73%».

В некоторых случаях приходится уменьшать доверительный интервал до 95% (правило 2σ). Тогда допустимо отличие MAX выхода от других на 2σ (это характерно на такте $t/\Delta t = 2$ с 6 нейронами). Для некоторых вариантов допустимо использовать выборку, обеспечивающую разность выходов 1.5σ , если все остальные выборки менее результативны.

А посему, при подборе обучающих выборок по результатам работы CKS следует иметь в виду.

- **1** На заданном диапазоне μ_{max} имеется по крайней мере две области неоднозначности: внутри диапазона и на одной или двух границ диапазона.
- 2 Если использование выборки вблизи одной из областей для обучения нейросети в части однозначного управления результатов не дает, следует использовать выборку вблизи другой области или на границе диапазона.
- **3** При обучении нейросети с 6 нейронами может понадобиться рандомизация параметров (весов) кнопка «Rand» перед кнопкой «Train».

Следует учесть возможное появление коллизии — мертвые нейроны. Избавиться от них можно следующим образом: на финальном этапе поиска выборки в части однозначного управления создайте новую нейросеть на 6 нейронов и примените найденную выборку к этой нейросети.

Процедура поиска выборок для однозначного управления.

- ¹ СКS, программа С2: фиксируем μ_0 и μ_{min} , а μ_{max} варьируем в по заданному варианту.
- **2** Наблюдаем значения μ элементов { c_3 , c_2 , c_1 } в окнах: «Обучение» на такте $t/\Delta t = 2$; «Эксплуатация» на такте $t/\Delta t + \tau = 3$.
- 3 Для однозначного управления (неравенство значений μ элементов $\{c_3, c_2, c_1\}$ в окне «Эксплуатация») сравниваем значения μ элементов $\{c_3, c_2, c_1\}$ в окне «Обучение».
- 4 По MAX различию значений μ элементов { c_3 , c_2 , c_1 } в окне «Обучение» формируем набор выборок. При этом сравнивать максимумы μ : глобальный и локальный.
- 5 B Neuroph Studio выполняем работу № 5 в части однозначного управления.