

Neural Network

GENERATIVE BREAST CANCER IMAGING

Lesion Synthesis and Risk Prediction with Latent Diffusion Models

OVERVIEW

Motivation

Overcoming data scarcity in breast cancer imaging by generating lesion-conditioned synthetic mammograms to boost diagnostic accuracy

Data Scarcity in Breast
Cancer Imaging

Need for Synthetic Data

Augmentation

Impact on Diagnostic
Research

Medical Imaging

RELATED WORK

High-resolution image synthesis using LDMs

Anatomicallycontrollable models with segmentation priors

Contributions from recent literature in tumor synthesis

How our approach builds on and extends these works

Synthetic Mass

Dataset

VinDr-Mammo csv

Preprocessing

- normalization
- cropping (for visualization)
- resize 224x224

masking Rol

DATA & **PREPROCESSING**

Medical Data

Density: DENSITY B, View: MLO, Category: ['Mass'], BIRADS: BI-RADS 4, Split: training

Image with Mask Highlighted

Masked (zoom)

METHODOLOGY

Pipeline Architecture

Architecture

- Conditioning
- Latent Noising
- Multi-scale Denoising 😝
- High-res Decoding

Conditioning

CONDITIONING & RECONSTRUCTION MECHANISMS

Benefits

In our diffusion-based pipeline, features from the ViT-encoded masked image, the anatomical attribute embedder, and the encoder's latent vector are fused via multi-head cross-attention within a transformer-based (or U-Net) denoising module, before being decoded into a synthetic mammogram. This conditioning enables the model to generate images that reflect both visual and anatomical information.

- Conditioning
 - cross-attention
 - FiLM layers
- Integration of
 - patient metadata
 - radiology report embeddings
- Reconstruction loop to verify
 - lesion integrity
 with a classifier model

Practice

EXPERIMENTS & EVALUATION

- Datasets used: VinDr-Mammo
- Evaluation metrics for image quality:
 - Peak Signal-to-Noise Ratio (PSNR)
 - Structural Similarity Index Measure (SSIM)

Average SSIM: 0.84

Average PSNR: 22.5 dB

RESULTS, EXTENSIONS & FUTURE WORK

Future enhancements

- Temporal lesion evolution modeling
- Counterfactual synthesis for risk assessment
- Multimodal image generation (e.g., ultrasonography pairs)
- Reconstruction Loop for Risk Prediction

Generated Mammogram

Diagnostic performance: cycle-consistency check results

BREAST CANCER Let's Fight together

THANK YOU FOR YOUR ATTENTION

Repository:

GBCI - Repository

thomaschen178egmail.com todaronicola97egmail.com

Presented By:

Nicola Todaro and Thomas Chen