第4回機械力学

剛体に働く力

宇都宮大学 工学研究科 吉田勝俊

講義の情報 http://edu.katzlab.jp/lec/mdyn/

Last update: 2018.4.16

学習目標

- 剛体とは? 質点とは?
- 作用線上の力の平行移動
- 偶力とトルクの平行移動
- 力とトルクの集約
- 剛体の釣合い

学習方法

全ての例題を,何も見ないで解けるまで反復せよ!

剛体とは? 質点とは?

- 初等力学における物体の「運動」
 - ■「位置」の時間変化を 並進運動 という.
 - 「姿勢角」の時間変化を 回転運動 という.
- 剛体 幸 並進運動と回転運動しかできない架空の物体
 - そうなるように「変形」を無視する. (冷凍うどんを投げよ)
 - 変形を無視した物体を 剛体 という.
- 質点 幸 並進運動しかできない架空の物体
 - そうなるように「大きさ」を 0 にする ∵ 姿勢角を無効化
 - 大きさ 0 の物体を 質点 という.

剛体に対する力やトルクの「効果」とは?

剛体に対しては -

「位置」や「姿勢角」を変化させる効果のこと!

作用線上の「力」の平行移動

力学法則 4.1 (p.32)

力 f の着力点を,作用線上の別の点に移しても,力の効果は変らない.

演習タイム 1/3

■ 例題 4.1, p.32

ヒント

- 力は「効果」を変えずに作用線上で平行移動可能(力学法則 4.1)
- $lacksymbol{\blacksquare}$ 着力点が同じ力 f_1, f_2 の合力は $f_1 + f_2$ (力学法則 2.1, p.11)

偶力 (force couple)

 $\stackrel{ alpha \sharp}{\Longleftrightarrow}$ 逆向き・同じ大きさの力のペア(f,-f)のこと.

- 偶力は「回転作用」しか引き起さない.
 - → (剛体の)姿勢角は変えるが,位置は変えない.

偶力が発生するトルク

- lacksquare T= 腕の長さ × 力の大きさ $=\Delta r|m{f}|$
- \blacksquare 幅 Δr を「偶力の腕」という.

偶力の不思議な性質

力学法則 4.2 (p.33)

偶力 (f, -f) を,作用面 (またはそれと平行な面) 内で,平行移動または回転しても,その効果は変らない.

力学法則 4.2 (p.33) の証明

$$T = \mathbf{r}_1 \wedge \mathbf{f} + \mathbf{r}_2 \wedge (-\mathbf{f}) = \mathbf{r}_1 \wedge \mathbf{f} - \mathbf{r}_2 \wedge \mathbf{f} = (\mathbf{r}_1 - \mathbf{r}_2) \wedge \mathbf{f}$$
$$= (\Delta \mathbf{r}) \wedge \mathbf{f}, \quad \Delta \mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2 /\!\!/$$
(4.1)

平行移動しても,腕は共通 $r_2'-r_1'=\Delta r=r_2-r_1$ なので,

$$T' = (\mathbf{r}_1' - \mathbf{r}_2') \wedge \mathbf{f} = (\Delta \mathbf{r}) \wedge \mathbf{f} = (\mathbf{r}_1 - \mathbf{r}_2) \wedge \mathbf{f} = T$$
(4.3)

∴ 偶力の大きさは,偶力を平行移動しても不変//

点に作用するトルク = 幅0の偶力

トルクの平行移動 — 偶力と同じ法則

■ トルク T は偶力の一形態 : 力学法則 4.2 と同じ法則が成立!

力学法則 4.3 (p.35)

トルクTを平行移動しても、剛体に与える効果は不変。

(T & Tとすれば3次元の法則となる)

力とトルクの集約

 \blacksquare 2 力 f_1, f_2 は , 1 対の力とトルクに集約できる!

作図による集約 簡単のため 2 力が平行な場合

- (1) 基準点 $oldsymbol{O}$ に相殺する力 $oldsymbol{f}_i, -oldsymbol{f}_i$ を置く $oldsymbol{\cdot}$ $oldsymbol{f}_i + (-oldsymbol{f}_i) = \mathbb{O}$ より , 剛体への影響は追加されない .
- (2) 偶力を拾って ,トルク T_i に変換する . 基準点 ${f O}$ 以外の力が消える .
- (3) 基準点 O で , 全ての力とトルクを合成 $f=f_1+f_2$, $T=T_1+T_2$ する.力学法則 3.1, p.24
- (4) 得られた f,T が , 基準点 O で測った剛体への全作用を表す .

計算(ベクトル)による集約

力学法則 4.4 (p.37)

力 f_1, f_2, \cdots と , 単独のトルク T_1', T_2', \cdots の全作用は , 勝手に選べる基準点 O における , 次の 2 つの総和 F, T に集約される .

- (1) 基準点 O を着力点とする合力 $F=f_1+f_2+\cdots$.
- (2) f_i が基準点 O に発生する トルク T_i と , その他のトルク T_j' の総和 $T=T_1+T_2+\cdots+T_1'+T_2'+\cdots$.

演習タイム 2/3 (材料力学に必要)

- 例題 4.3, p.37
- 例題 4.4, p.38

剛体の釣合い条件

 $\overset{\overline{m{\epsilon_{m{\epsilon_{m{q}}}}}}}{m{\bowtie}}$ 剛体に働く「力の総和 $m{F}$ 」と「トルクの総和 T 」が $m{0}$:

$$F = 0, \quad T = 0$$
 (4.6) p.38

- 未知数を含む釣合い条件を,釣合い方程式という.
- 剛体に働く力とトルクが釣合い条件を満すとき,これらが「剛体の 運動」に及ぼす効果はゼロになる.

力学法則 4.6 (p.38)

釣合い条件を求める基準点は,どこに置いてもよい.

演習タイム3/3(材料力学に必要)

- 例題 4.5, p.38
- 例題 4.6, p.39

第2回 機械力学レポート

機械力学サイト http://edu.katzlab.jp/lec/mdyn

- 第4週授業にて出題.
- レポート用紙:機械力学サイトからダウンロード・印刷.
 - 1 枚以内 . 裏面使用時は「裏につづく」と明記 . よく似たレポートは不正行為の証拠とする . (当期全単位 0)
- 提出期限:次回の前日 (次々回以降は受け取らない)
 - 公欠などは早めの提出で対応せよ.
- 提出先:機械棟 3F・システム力学研究室 (2) の BOX.