

Credit Card Transaction Fraud Identification

Team member: Rui Liu, Shangfu Chen, Xuanzhong Chen, Yingluo Li Yuquan Zheng, Zezheng Hao

Table of Contents

Exec	cutive Summary	2
1	Data Description	3
1.3	.1 File Description	3
1.2	.2 Summary Statistics Table	4
1	.3 Field Examples	5
2	Data Cleaning	8
3	Variables Creation.	10
3.	.1 Amount Variables	10
3.2	.2 Frequency Variables	11
3	.3 Days-Since Variables	11
3.4	.4 Velocity Variables	12
3.	.5 Target Encoded Variables	12
4	Feature Selection	15
4.2	.1 Filter	16
4.2	.2 Wrapper	17
5	Model Algorithms	19
5.2	.1 Logistic Regression	22
5.2	.2 Neural Network	23
5	.3 Gradient Boosting Decision Tree	24
5.4	.4 Random Forest	25
5.5	.5 Support Vector Machine	26
6	Results	27
7	Conclusion	32
Refe	erences	33
App	oendix A: Data Quality Report	34
App	oendix B: Statistics Variables	45
Ann	pendix C: Top 30 Variables	70

Executive Summary

Credit card fraud is one of the most common frauds worldwide, it was usually committed using a payment card, such as a credit card or debit card, to purchase online goods or services or directly using other one's information to apply for the credit card as application fraud. Since the compromise can occur in a number of ways and can usually occur without the knowledge of the cardholder due to the small amount for each transaction, it has been a major problem for all banks and credit bureaus.

This project will be focusing on identifying suspicious and unusual card transactions in the data by building a data-driven, supervised fraud model that is able to detect and report the abnormal transactions to the bank or credit bureaus. The overall goal of the project is to use proper methodologies to build a supervised fraud model to detect the potential credit fraud.

The report details the creation and completion process of building fraud scores and model which detects potential fraud transactions that is abnormal and unusual. Our team completed the following objectives to accomplish the project goal:

- Data cleaning remove exclusions and fill in missing values for the fields that have missing values.
- Variable creation build many candidates including two target encoded variables: likelihood of fraud for specific day of the week and for the specific state, and z-scale them.
- Feature selection filter out the top 80 variables by their calculated KS and FDR, then do a wrapper to get down to the top 30 variables by multivariate importance. Add in two test variables: fraud label and a random number. Remove the out-of-time records for last 4 months and the first 2 weeks of records.
- Modeling Use the top 30 variables to build the final fraud model with logistic regression, Boost Tree, Random Forest and Neural Network. Test their performances with different choices of hyperparameters and select the model that provides the best performance.

1 Data Description

1.1 File Description

The data is Card Transaction Data, which includes actual credit card purchases' information provided by U.S. government organization during the year 2010. The purpose of this data is to indicate whether the transaction is a fraud or not. There are 10 number of fields in the data: Amount, Recnum, Cardnum, Merchnum, Merch Description, Merch State, Merch Zip, Transtype, Fraud and Data. There are 96,753 number of records in this data, and 1,059 records are indicated as a fraud.

Dataset Name	Card Transaction Data
Dataset Purpose	The data is about credit card transaction information, which indicates whether this transaction is a fraud or not.
Data Source	Came from U.S. government organization
Time Period	From Jan. 1st, 2010 to Dec. 31st, 2010
Number of Fields	10 Fields in total – 1 numeric, 8 categorical, 1date
Number of Records	96,753

Table 1.1: File Description

1.2 Summary Statistics Table

All fields in the data can be treated as categorical, numeric and date: 1 field is numeric, 8 fields are categorical and 1 field is date. Among all fields, 7 fields are fully populated and other 3 fields are not fully populated. Key statistics of these fields are summarized as follows.

1. Numeric Fields:

Variable	Field Type	Count	Mean	Std	Min	Max	Unique Value	# Zero	% Populated
Amount	Numeric	96753	427.89	10,006.14	0.01	3,102,045.53	34909	0	100

Table 1.2.1 Summary Statistics of Numeric Fields

2. Categorical Fields:

Variable	Field Type	Count	% Populated	Unique values	Most Common Field Values
Recnum	Categorical	96753	100	96,753	N/A
Cardnum	Categorical	96753	100	1645	5142148452
Merchnum	Categorical	93378	96.5	13,091	930,090,121,224
Merch Description	Categorical	96753	100	13,126	GSA-FSS-ADV
Merch State	Categorical	95558	98.8	227	TN
Merch Zip	Categorical	92097	95.2	4,567	38118
Transtype	Categorical	96753	100	4	Р
Fraud	Categorical	96753	100	2	0

Table 1.2.2 Summary Statistics of Categorical Fields

3. Date Fields:

Variable	Field Type	count	Unique Values	Most Common Field Values	Min	Max	Records that have a value	% populated
Date	Date	96753	365	2010/2/28	2010/1/1	2010/12/31	96753	100

Table 1.2.3 Summary Statistics of Categorical Fields

1.3 Field Examples

1.3.1 Field "Amount"

Description	The amount of money of each transaction, exclude outliers > 1000, data in histogram is 89.10% populated
Type	Numeric
Mean	427.89
Maximum	3,102,045.53
Minimum	0.01
Std	10,006.14

Table 1.3.1: Amount

Figure 1.3.1: Frequency Distribution of Amount Field

1.3.2 Field "Transtype"

Description	Transaction type of each transaction
Type	Categorical
Most Common	'P' occurred the most for 96,396 times
Field Value	'P' occurred the most for 96,396 times

Table 1.3.2: Transtype

Figure 1.3.2: Frequency Distribution of Transtype Field

1.3.3 Field "Date"

Description	The date of the transaction. Month, day and year only (no time of day). Data in histogram is 100% populated.
Type	Date
Unique Values	365
Maximum	2010/12/31
Minimum	2010/1/1
Most Common Field Value	'2010/2/28' occurred the most for 684 times

Table 1.3.3: Date

Figure 1.3.3: Frequency Distribution of Date Field

2 Data Cleaning

First of all, we checked the only numeric field "Amount" in the data, and we draw a boxplot of the field which is shown below (figure 2.1.1). We found a red outlier in the boxplot whose value is larger than 3 million. Even we checked that the outlier is not recorded as a fraud, we still decide to exclude it for further analysis because it might influence the accuracy of our final result.

Figure 2.1: Boxplot of Field "Amount"

After excluding the outlier, we selected the records with "P" in "Transtype" Field because we would focus on these records. Besides, we check the missing values in all field and the result is given below. There were 3,198 missing values in the "Merchnum" field, 1,020 missing values in the "Merch state" field and 4,300 missin gvalues in the "Merch zip" field. For the missing values in "Merchnum" field, we replaced with "NaN", if the missing value is 0, and we filled in with mode of "Merch Description" Field, and we also filled in with "Unk" for unknown. For the missing values in "Merch zip" field, we filled in with the mode of "Merchnum" Field. For the missing values in "Merch state", we matched the state for the zip in "Merch zip" field if the record had a "Merch zip". Moreover, if the "Merch zip" was in the range of "00600 - 00799" and "00900 - 00999", we filled in "Merch state" with "PR" for Puerto Rico. Besides, we used the mode of "Merchnum" or "Merch Description" for other records with missing values, and we finally filled in with "Unk" for unknown.

Name of Field	Number of Missing Value
Recnum	0
Cardnum	0
Date	0
Merchnum	3198
Merch Description	0
Merch state	1020
Merch zip	4300
Transtype	0
Amount	0
Fraud	0

Table 2.1: Missing values of each field

3 Variables Creation

Before building model, it is critical to create candidate variables. We have examined the clean data set and decide to create a large set of variables for supervised models based on the existing PII fields, such as Cardnum, Merchnum, Merch zip and Merch state and derived PII fields showed in table 3.2. At this step, we will use a variety of method to create many candidate variables as possible and then we will use several feature selection methods to select final variables for models. We will create candidate variables in four aspects, amount, frequency, day-since and velocity.

PII fields	Description		
Cardnum	Card number of each transaction		
Merchnum	Merchant number of each transaction		
Merch zip	The zip code of merchant		
Merch state	State where merchant is in		

Table 3.1

PII combination fields	Algorithm		
Card_merch	Cardnum + Merchnum		
Card_zip	Cardnum + Merch zip		
Card_state	Cardnum + Merch state		
Merch_zip	Merchnum + Merch zip		
Merch_state	Merchnum + Merch state		
Card_merch_zip	Cardnum + Merchnum + Merch zip		
Card_merch_state	Cardnum + Merchnum + Merch state		

Table 3.2

3.1 Amount Variables

First, we create amount candidate variables, which measure amount spent of each transaction over the past period of the same PII fields and PII combination fields. Amount variables are created by average, maximum, median, total, actual/average, actual/max, actual/total, actual/median amount by/at this card, merchant, card at this merchant, card in this zip code over the past 0 days, 1 day, 3 days, 7 days, 14 days, 30 days. Amount variables are important for detecting fraud because anomaly will be detected if there is an unusual amount spent. For example, if one person usually spends around 100 dollars and one day there is a transaction with amount of 1,000 dollars. It would indicate that this transaction may be fraudulent and transactions will be intervened.

Figure 3.1

3.2 Frequency Variables

Beside amount variables, we also create frequency candidate variables, which shows the number of transactions over the past period of the same PII fields or PII combination fields. Frequency variables are generated by number of transactions with this card, merchant, card at this merchant, card in this zip code, card in this state, card at this merchant in this zip code, card at this merchant in this merchant over the past 0 days, 1 days, 3 days, 7 days, 14 days, 30 days. Frequency variables are crucial for finding anomaly in transactions. Fraud will be detected if there is a huge difference in number of transactions during a period. For instance, if one person typically makes 2 transactions daily, but one day he/she makes more than 100 transactions, which would be a signal of fraud. These frequency variables are good predictors to find potential frauds among transactions.

Figure 3.2

3.3 Days-Since Variables

After creating amount variables and frequency variables, we also create day-since variables, which shows the number of days since the last transactions of the same PII fields or PII combination fields. Day-since variables are generated by current date minus date of most recent transaction with same card, merchant, card at this merchant, card in this zip code, card in this state. For records that it is the first time seen, we use 365 for its value instead of 0. Day-since variables can identify frauds in transactions if there is a huge difference in interval between current transaction date and last-time transaction. One good example to illustrate is that if records show that one person makes last transaction 10 months ago, transactions occur during that 10 month or ongoing

transaction might be fraud. Transactions will be prevented if there is a signal of suspicious activities.

Current date minus date of most recent transaction with same

Card Merchant Card at this merchant Card in this zip code Card in this state Card at this merchant in this zip code Card at this merchant in this merchant'

Figure 3.3

3.4 Velocity Variables

After using method of creating variables above, we create velocity variables, which is similar to the frequency variables since it also measures how a person do a large number of transactions over a day compared to his average transactions over a period of time. Velocity variables are created by number or amount of transactions with same card or merchant over the past 0 days, 1 days that is divided by daily average number/amount of transactions with same card/merchant over the past 7 days, 14 days, 30 days. Velocity variables are important since ratio of transactions within one day to transactions over a period of time can be indicative of fraudulent activity. The higher velocity variable value, the high probability of being a fraud. For example, if a person makes 5 transactions on average over past 30 days and he/she makes 20 transactions on one day, it would cause a high value of ratio and such high value of ratio will indicate recent activities are unusual.

$$\frac{\binom{Number}{Amount} \text{ of transactions with same } \binom{Card}{Merchant} \text{ over the past } \binom{0 \text{ days}}{1 \text{ day}}}{\text{Average daily } \binom{Number}{Amount} \text{ of transactions with same } \binom{Card}{Merchant} \text{ over the past } \binom{7 \text{ days}}{14 \text{ days}} \frac{1}{30 \text{ days}}$$

Figure 3.4

3.5 Target Encoded Variables

At last, two target encoded variables, likelihood of fraud by week of day and by state are created. These two variables measure how the likelihood of someone who commits fraud varies from a different day of a week or a different state. Before creating two target encoded variables, the most recent data time, September 2010, is reserved as an OOT, out of time and is not included when creating two target encoded variables. For probability of fraud by weekday also known as weekday risk, it is first calculated on the dataset without recent one-month transactions and then is applied to the whole dataset. The average probabilities of fraud by weekday are listed in Table 3.3 below. Probability of fraud by state is also first calculated on dataset which does not include

recent one-month records and then is applied to the whole dataset. The result, average probabilities of fraud by state is listed in table 3.4. By using method of creating candidate variables, we have 521 variables in total. These 521 candidate variables and statistics of them are listed in Appendix B.

Weekday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Average fraud probability	0.00855	0.006652	0.009811	0.01604	0.040022	0.011144	0.008593

Table 3.3 Average fraud probability by weekday

State	Average fraud probability		
AK	0		
AL	0.004201681		
AR	0		
AZ	0		
BC	0		
CA	0.016839917		
CO	0.000670691		
CT	0.004273504		
DC	0.02125775		
DE	0		
FL	0.000651042		
GA	0.000822594		
HI	0		
IA	0		
ID	0		
IL	0.002398604		
IN	0		
KS	0.001153403		
KY	0.00295858		
LA	0		
MA	0.002054795		
MD	0.021974802		
ME	0		
MI	0.008385744		
MN	0.001538462		
MO	0.00058651		
MS	0		
MT	0		
NC	0.000844238		
ND	0		
NE	0		
NH	0.004983389		
NJ	0.001850481		
NM	0.011363636		
NV	0		
NY	0.027305825		

ОН	0.018390805	
OK	0	
ON	0	
OR	0.028243601	
PA	0.019770774	
PQ	0	
PR	0	
RI	0	
SC	0.009090909	
SD	0.009708738	
TN	0.008748115	
TX	0.013816281	
UT	0.057391304	
Unk	0.001451379	
VA	0.013940703	
VT	0	
WA	0.013673655	
WI	0.001424501	
WV	0	
WY	0	

Table 3.4 Average fraud probability by state

4 Feature Selection

After building all the 521 candidate variables, we would avoid using all of them to build models, for which will result in high dimensionality. Nonintuitive things happen in high dimensions as the data becomes sparse very quickly. All the points will become outliers in an extremely high dimension as figure 4.1 shows. Besides, we will need exponentially more data to see true nonlinearities rather than noise. In order to avoid the curse of high dimensionality, we choose to do a feature selection, which can not only reduce the dimensionality but also help discover the variables with most importance and information.

Figure 4.1 Points go sparse and become outliers with a high dimensionality

For the selection methods, there are 3 ways to categorize a feature selection process. The first one is a filter, which is independent of any modeling method. The second one is a wrapper, which usually uses a model 'wrapped' around the feature selection. It's usually a stepwise selection that can either go forward or backward. The third one is an embedded method, which directly uses the model built in the modeling stage to do a feature selection, such as a decision tree.

Before the selection process, we would add two special test variables - a random number and a fraud label. The random number should behave worse than most of the variables while the fraud label itself should behave perfectly in separating frauds and non-frauds. What's more, in this feature selection stage, we would remove records in the last 4 months since they are out-of-time records which will be used to evaluate the models. Also, we would remove records in the first two weeks since some of our variables are related with past records that are more than two weeks ago.

In our project, we utilized the former two methods – filter and wrapper to reduce the number of variables as the figure 4.2 shows. Using a filter, we get 80 variables from 521 candidate variables. Using a wrapper, we get the final 30 variables from 80 variables.

Figure 4.2 Process of a Feature Selection

4.1 Filter

For the filter, we will use two measures: the univariate Kolmogorov-Smirnov (KS) and the univariate fraud detection rate at 3% population. The KS generally measures the distance between two distributions – in this project they are the good records and the bad ones. So, KS is described as following formula:

$$KS = \frac{max}{x} \int_{xmin}^{x} [P_{goods} - P_{bads}] dx$$

We would build the frauds and non-frauds distribution of each candidate variable and use the KS measure to estimate the effectiveness of that variable in differentiating fraud records and non-fraud records.

Another measure we will use in the filter is the FDR (fraud detection rate) at 3% population. To be specific, FDR at 3% means what % of all the frauds are caught at 3% of the population. For each candidate variable, we will sort the population by the value of the candidate variable. Then we will select the top 3% population and tail 3% population. The ratio of frauds in that population to the total number of frauds in the entire population is then calculated. We will pick the larger ratio (comparing that from the top 3% population and the bottom 3% population) to represent the FDR of the variable. This FDR will also be a good measure to represent the ability of differentiating frauds and non-frauds.

Using these two measures in the filter, we're able to get a table of all the 523 variables with their corresponding KS and FDR. We rank the variables using KS and FDR separately and finally use the average rank to measure the goodness of a variable. The variables with higher average rank are better. The fraud label has the highest rank while the random number stays at the bottom. We sort the variables by average rank and pick the top 80 variables (excluding the fraud label) as the result of filtering process.

4.2 Wrapper

Then we use a wrapper to further reduce the dimensionality from 80 variables to 30 variables. For a typical wrapper, it has a model wrapped around the process. There will be many models built with different variables in the process. The wrapper will change the number of variables based on the result of previous models. The most common wrapper methods are forward selection, backward selection and general stepwise selection. Suppose we have n variables. Forward selection starts with n separate 1-dimension models. Then it will keep the best variable at each step and test which variable is the next best one to add by building all possible models at each step. It keeps adding the best variable until no significant improvement occurs. Backward selection goes with the opposite direction. It starts with a single model using all variables. Then it removes the variable that causes the least model performance decrease at each step and keep doing it until reaching the final model. The general stepwise selection shares the same ideas with the previous two selections. The difference is that it can either add or remove a variable at each step.

Figure 4.3 Forward selection by adding a variable each time

We choose a simple nonlinear model – a random forest model with forward selection for the wrapper. The modeling method inside a wrapper can be any model. In this project, as we are predicting binary outcomes, nonlinear models are used. Since the selection process tries many combinations of variables, a faster modeling method is preferred like the logistic regression or random forest. Random forest is a fast tree-like model algorithm that will be explained in the model algorithm part. And the forward selection will help us find good subset of important variables, remove correlations and reduce dimensionalities. Inside the forward selection, we use the FDR as the scoring metric. This FDR metric helps us determine which sub-models has stronger performances and then we can determine which variable to add each time.

By fitting the 80 variables within the wrapper model, we get the final 30 variables. They are ranked by importance so that we know which variable is more valuable. The final 30 variables ranked by importance are shown in Table 4.1.

Rank	Variables	Rank	Variables
1	card_merch_state_total_14	16	card_state_total_30
2	card_merch_zip_total_7	17	card_zip_max_7
3	card_zip_total_3	18	card_state_max_30
4	card_merch_total_14	19	card_merch_zip_max_7
5	card_state_total_3	20	card_merch_zip_max_3
6	card_merch_zip_total_14	21	card_state_max_1
7	card_merch_state_total_3	22	card_zip_max_1
8	card_state_total_7	23	merch_zip_total_1
9	card_zip_total_1	24	Merchnum_max_0
10	card_merch_state_total_30	25	Merchnum_total_0
11	card_merch_total_1	26	Cardnum_total_1
12	card_merch_zip_total_30	27	Merchnum_total_3
13	card_merch_zip_total_1	28	merch_zip_max_3
14	card_state_max_7	29	card_zip_max_0
15	card_zip_max_30	30	Cardnum_total_0

Table 4.1 Performance of Models

5 Model Algorithms

Before stepping into any specific model, we must think about the results from a model. To ensure a robust model result, typically, the Cross-Validation will be implemented. A standard K-fold Cross-Validation process is to

- Randomly divide data into K groups.
- Consider each group as test data which would be tested based on a training result by the remaining data.
- keeping doing this K times, so that when all groups are tested meaning that each record in the data set was considered as test data in one of the K times.
- Extract and check K time's results.

This skill is commonly useful when we only have a limited number of records. A key disadvantage of this skill is that when K goes up, each group shrinks. If we want to use a mean result of 20 times fitting. Each time, only 5% of the data will be tested.

Therefore, to make the best use of this method to stable results, in this project, instead of shuffling data into K groups, and fitting K times on the one-time shuffle, we divide data before each training. By reshuffling data each time before fitting, we can control the data size used and avoid testing on a too-small test data set.

As for the metrics of results, we use FDR in top 3%, which is to rank model predicted results from top to bottom and considering all top 3% records as "Fraud". Then calculated the ratio of how many real frauds among these top 3%.

In the following modeling, we "Cross Validate" model results 10 times in each specific model, and each time we re-split the whole data set but keeping train and test data set as a 7:3 ratio. Then, we calculate FDR of train, test and OOT data to evaluate the model result. We adapt Logistic regression as a baseline and implement 4 nonlinear models, Neural Network, Gradient Boosting, Random Forest, and SVM, to get an optimized result after parameters tunning. Details of model performances are listed in the following table.

Model	Parameter			Average FDR(%) at 3%				
Logistic Regression	Total Variables		С	class_weight	TRAIN	TEST	OOT	
1	30			1000	balanced	0.692909	0.679418	0.508708
2	30			100	balanced	0.693932	0.676305	0.510112
3	30			10	balanced	0.694614	0.67605	0.513764
4	30			1	balanced	0.690389	0.679658	0.510112
5	30			1000	None	0.670789	0.671726	0.492135
6	30			100	None	0.672442	0.662191	0.490169
7	30			10	None	0.676366	0.656386	0.49382
8	30		1	None	0.672678	0.666992	0.496348	
Neural Net	# of Variables Selected	Layer	Node	max_iter	learning rate	TRAIN	TEST	OOT
1	30	1	10	1000	0.0001	0.821107	0.790421	0.568539
2	30	1	30	1000	0.0001	0.857716	0.817777	0.55927
3	30	1	40	1000	0.0001	0.87318	0.812662	0.555337
4	30	1	50	1000	0.0001	0.871377	0.811954	0.562921
5	30	2	(10,10)	1000	0.0001	0.849261	0.79374	0.560393
6	30	2	(30,10)	1000	0.0001	0.890956	0.821943	0.527247
7	30	2	(30,10)	500	0.0001	0.878125	0.820101	0.546348
8	30	2	(30,10)	500	0.001	0.8629	0.824626	0.566011
9	30	2	(30,10)	500	0.01	0.726586	0.722006	0.597753
10	30	2	(30,10)	500	0.1	0.65959	0.648998	0.513202
Gradient Boosting	# of Variables Selected	# of Trees	Max Depth	Lear	ning Rate	TRAIN	TEST	OOT
1	30	100	2		0.1	0.818234	0.772457	0.576124
2	30	100	2		0.01	0.65237	0.638253	0.527247
3	30	200	2		0.1	0.863685	0.801835	0.582865
4	30	500	2		0.1	0.942135	0.867921	0.591854
5	30	1000	1		0.01	0.699643	0.672664	0.545225
Random Forest	# of Variables Selected # of Trees		Max Depth	Max Features	TRAIN	TEST	OOT	

Model	Parameter		Avera	age FDR(%)	at 3%		
1	30	100	10	20	0.888674	0.832183	0.633708
2	30	60	15	30	0.989147	0.872133	0.62191
3	30	100	20	20	1	0.874301	0.614326
4	30	100	10	20	0.887774	0.818445	0.623315
5	30	100	10	30	0.879317	0.82147	0.628371
6	30	60	20	30	1	0.869344	0.609831
SVM	# of Variables Selected	(Kernel	TRAIN	TEST	OOT
1	30		[poly	0.718059	0.697391	0.49073
2	30	-		sigmoid	0.133322	0.138413	0.124438
3	30	-		rbf	0.764503	0.742637	0.586798
4	30	0	.1	poly	0.691555	0.682982	0.474157
5	30	0	.1	rbf	0.682563	0.680915	0.625562
6	30	0.	01	poly	0.686868	0.67901	0.471067
7	30	0.0	01	rbf	0.691001	0.666645	0.610674

Table 5.0 Performance of Models

5.1 Logistic Regression

Logistics Regression is the most frequently used classification method in industries. It can always serve as a good baseline before going to the nonlinear method. Unlike Linear Regression, whose result will be located beyond 0 and 1. The binary logistic regression can offer prediction within 0 and 1, therefore, based on the distance the result located, we can easily recognize how possible the record belongs to each class (1 or 0). Here is a graph to show the difference between linear regression and logistic regression.

Figure 5.1 Comparison of Linear Regression and Logistic Regression

Because of the simplicity and effectiveness in classification, we firstly build a logistic regression as a reference of our baseline. To get a better result from this model, we also tune the parameters. Here is the list of parameters that we choose to tune.

Parameters	Description
	float, default=1.0
c	Inverse of regularization strength; must be a positive float. Like in support vector
	machines, smaller values specify stronger regularization.
	Weights associated with classes in the form {class_label: weight}. If not given, all
	classes are supposed to have weight one.
class_weight	The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)).

Table 5.1.1 Result of Logistic Regression

After a parameter tuning (see Table 6.0), we get the baseline as followed.

	Average FDR(%) at 3%	
TRAIN	TEST	OOT
0.694614	0.67605	0.513764

Table 5.1.2 Result of Logistic Regression

5.2 Neural Network

Neural Network is an algorithm that was first raised to simulate the mechanism of information transformation in the neurons of the human brain. The algorithm tries to explore the patterns between the input layer and output layer with hidden layers and nodes. Each hidden layer will have multiple nodes, presenting certain transformations. The data were transferred to each node in a specific layer and make certain calculations, then be passed to the next layer. So that through these layers and nodes, the input layer data can be transformed as close as possible to output layer data. The following graph shows how input is transfer to output.

Figure 5.2 Illustration of Neural Network

The certain parameters we choose to tune as list below.

Parameters	Description
Node, Layer	The ith element represents the number of neurons in the ith hidden layer.
	int, default=200
	Maximum number of iterations. The solver iterates until convergence (determined
max iter by 'tol') or this number of iterations. For stochastic solvers ('sgd', 'adam'), no	
_	this determines the number of epochs (how many times each data point will be
	used), not the number of gradient steps.
	double, default=0.001
learning rate	The initial learning rate used. It controls the step-size in updating the weights. Only
3	used when solver='sgd' or 'adam'.

Table 5.2.1 Result of Neural Network

After a parameter tuning (see Table 5.0), we get the best result of Neural Network model.

	Average FDR(%) at 3%	
TRAIN	TEST	OOT
0.8629	0.824626	0.566011

Table 5.2.1 Result of Neural Network

5.3 Gradient Boosting Decision Tree

Boosting is a method to improve the performance of weak learners by ensemble multiple learners. The Gradient Boosting Decision Tree model starts from a single Decision Tree. After each iteration, the model learns from the residual of iteration by adding another "tree" to capture the residual. In Gradient Boosting, the model use gradient decreasing as the direction to reduce residual. Keeping this process, the residual decreased, and overall performance improved. The result is the prediction ensembled through all these "trees" by sequence.

Figure 5.3 Illustration of Neural Network

The certain parameters we choose to tune as list below.

Parameters	Description
n_estimators	int, default=100 The number of boosting stages to perform. Gradient boosting is fairly robust to over- fitting so a large number usually results in better performance.
max_depth	int, default=3 The maximum depth of the individual regression estimators. The maximum depth limits the number of nodes in the tree. Tune this parameter for best performance; the best value depends on the interaction of the input variables
learning_rate	float, default=0.1 Learning rate shrinks the contribution of each tree by learning_rate. There is a trade- off between learning_rate and n_estimators.

Table 5.3.1 Parameters of Gradient Boosting

After a parameter tuning (see Table 5.0), we get the best result of Gradient Boosting Decision Tree.

	Average FDR(%) at 3%	
TRAIN	TEST	OOT
0.863685	0.801835	0.582865

Table 5.3.2 Result of Gradient Boosting Decision Tree

5.4 Random Forest

Random Forest is another model that begins with a Decision Tree. However, instead of adding another tree to capture the residual of each iteration, the Random Forest generates a "forest of trees" to fit the data. Each tree will be allocated a random subset of records and the "tree" grows based on these data. Finally, the model lets every tree "vote" for a certain record based on their classifier and then ensemble the result. In Random Forest, the result does not need to proceed following along the exact sequence of "trees" as Gradient Boosting. Each "tree" grows independently. The following graph shows the theory of Random Forest.

Figure 5.4 Illustration of Random Forest

The certain parameters we choose to tune as list below.

Parameters	Description
	int, default=100
n_estimators The number of trees in the forest.	
	int, default=None
max depth	The maximum depth of the tree. If None, then nodes are expanded until all
	leaves are pure or until all leaves contain less than min samples split samples.
{"auto", "sqrt", "log2"}, int or float, default="auto"	
max_features	The number of features to consider when looking for the best split:

Table 5.4.1 Parameters of Random Forest

After a parameter tuning (see Table 5.0), we get the best result as followed.

	Average FDR(%) at 3%							
TRAIN	TEST	OOT						
0.888674	0.832183	0.633708						

Table 5.4.2 Result of Random Forest

5.5 Support Vector Machine

Support Vector Machine is an algorithm to find the best "separator" between two classes in supervised machine learning. The term "support vector" refers to the records located closest to the "separator". The sum of distances of support vectors of two classes to the "separator" is called Margin. Therefore, the best "separator" is the one that can maximize the Margin so that it can best tolerance the noise of the data. Here is a graph showing the algorithm.

Figure 5.5 Illustration of Support Vector Machine

The certain parameters we choose to tune as list below.

Parameters	Description
	float, default=1.0
c	Regularization parameter. The strength of the regularization is inversely
	proportional to C. Must be strictly positive. The penalty is a squared 12 penalty.
	{'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'}, default='rbf'
	Specifies the kernel type to be used in the algorithm. It must be one of 'linear',
Kernel	'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will
	be used. If a callable is given it is used to pre-compute the kernel matrix from
	data matrices; that matrix should be an array of shape (n_samples, n_samples).

Table 5.5.1 Parameters of Support Vector Machine

After a parameter tuning (see Table 5.0), we get the best result as followed.

	Average FDR(%) at 3%	
TRAIN	TEST	OOT
0.682563	0.680915	0.625562

Table 5.4.2 Result of Support Vector Machine

6 Results

After comparing effects of different models, we choose Random Forest with parameters {n_estimators = 100, max_depth = 10, max_features = 20}. We chose top 20 bins (20% population) for table following. Each of tables below show important model results and from those we can detect that whether the model is working properly, not overfitting and performing well on the OOT population and also, examine trade offs with various choices of cutoff point.

	# Records	# Bads	# Coods	Fraud Rate								
Tueining	43367	# Baus	42943	0.0098								
Training	45567	424										
		I	Bin St	atistics					Cumula	tive Stati		
Population						Total	Cum	Cum			%	
Bin%	# Records	# Goods	# Bads	% Goods	% Bads	# Records	Goods	Bads	FPR	% Good	Bad(FDR)	KS
0	434	92	342	21.2	78.8	434	92	342	0.3	0.2	80.7	80.5
1	434	416	18	95.9	4.2	868	508	360	1.4	1.2	84.9	83.7
2	433	430	3	99.3	0.7	1301	938	363	2.6	2.2	85.6	83.4
3	434	420	14	96.8	3.2	1735	1358	377	3.6	3.2	88.9	85.8
4	434	434	0	100.0	0.0	2169	1792	377	4.8	4.2	88.9	84.8
5	433	431	2	99.5	0.5	2602	2223	379	5.9	5.2	89.4	84.2
6	434	426	8	98.2	1.8	3036	2649	387	6.8	6.2	91.3	85.1
7	433	430	3	99.3	0.7	3469	3079	390	7.9	7.2	92.0	84.8
8	434	433	1	99.8	0.2	3903	3512	391	9.0	8.2	92.2	84.0
9	434	433	1	99.8	0.2	4337	3945	392	10.1	9.2	92.5	83.3
10	433	433	0	100.0	0.0	4770	4378	392	11.2	10.2	92.5	82.3
11	434	432	2	99.5	0.5	5204	4810	394	12.2	11.2	92.9	81.7
12	433	433	0	100.0	0.0	5637	5243	394	13.3	12.2	92.9	80.7
13	434	431	3	99.3	0.7	6071	5674	397	14.3	13.2	93.6	80.4
14	434	434	0	100.0	0.0	6505	6108	397	15.4	14.2	93.6	79.4
15	433	432	1	99.8	0.2	6938	6540	398	16.4	15.2	93.9	78.6
16	434	434	0	100.0	0.0	7372	6974	398	17.5	16.2	93.9	77.6
17	433	432	1	99.8	0.2	7805	7406	399	18.6	17.3	94.1	76.9
18	434	434	0	100.0	0.0	8239	7840	399	19.7	18.3	94.1	75.8
19	434	433	1	99.8	0.2	8673	8273	400	20.7	19.3	94.3	75.1

Table 6.1 Performance of Final model on training data

				l								
	# Records			Fraud Rate								
Testing	22341	267	22074	0.012								
			Bins S	tatistics					Cumulativ	e Statistic	-	
Population	#					Total #	Cum	Cum			%	
Bin%	Records	# Goods	# Bads	% Goods	% Bads	Records	Goods	Bads	FPR	% Good	Bad(FDR)	KS
0	224	49	175	21.9	78.1	224	49	175	0.3	0.2	65.5	65.3
1	223	194	29	87.0	13.0	447	243	204	1.2	1.1	76.4	75.3
2	224	215	9	96.0	4.0	671	458	213	2.2	2.1	79.8	77.7
3	223	219	4	98.2	1.8	894	677	217	3.1	3.1	81.3	78.2
4	223	222	1	99.6	0.5	1117	899	218	4.1	4.1	81.7	77.6
5	224	222	2	99.1	0.9	1341	1121	220	5.1	5.1	82.4	77.3
6	223	213	10	95.5	4.5	1564	1334	230	5.8	6.0	86.1	80.1
7	223	216	7	96.9	3.1	1787	1550	237	6.5	7.0	88.8	81.7
8	224	224	0	100.0	0.0	2011	1774	237	7.5	8.0	88.8	80.7
9	223	220	3	98.7	1.4	2234	1994	240	8.3	9.0	89.9	80.9
10	223	222	1	99.6	0.5	2457	2216	241	9.2	10.0	90.3	80.2
11	224	224	0	100.0	0.0	2681	2440	241	10.1	11.1	90.3	79.2
12	223	223	0	100.0	0.0	2904	2663	241	11.1	12.1	90.3	78.2
13	223	222	1	99.6	0.5	3127	2885	242	11.9	13.1	90.6	77.6
14	224	223	1	99.6	0.5	3351	3108	243	12.8	14.1	91.0	76.9
15	223	223	0	100.0	0.0	3574	3331	243	13.7	15.1	91.0	75.9
16	223	223	0	100.0	0.0	3797	3554	243	14.6	16.1	91.0	74.9
17	224	223	1	99.6	0.5	4021	3777	244	15.5	17.1	91.4	74.3
18	223	222	1	99.6	0.5	4244	3999	245	16.3	18.1	91.8	73.6
19	224	223	1	99.6	0.5	4468	4222	246	17.2	19.1	92.1	73.0

Table 6.2 Performance of Final model on testing data

	# Records	# Bads	# Goods	Fraud Rate									
ООТ	27351	356	26995	0.013									
			Bin St	tatistics			Cumulative Statistics						
Population						Total	Cum	Cum			%		
Bins%	# Records	# Goods	# Bads	% Goods	% Bads	#Records	Goods	Bads	FPR	% Good	Bad(FDR)	KS	
0	274	128	146	46.7	53.3	274	128	146	0.9	0.5	41.0	40.5	
1	273	211	62	77.3	22.7	547	339	208	1.6	1.3	58.4	57.2	
2	274	257	17	93.8	6.2	821	596	225	2.7	2.2	63.2	61.0	
3	273	261	12	95.6	4.4	1094	857	237	3.6	3.2	66.6	63.4	
4	274	268	6	97.8	2.2	1368	1125	243	4.6	4.2	68.3	64.1	
5	273	272	1	99.6	0.4	1641	1397	244	5.7	5.2	68.5	63.4	
6	274	270	4	98.5	1.5	1915	1667	248	6.7	6.2	69.7	63.5	
7	273	266	7	97.4	2.6	2188	1933	255	7.6	7.2	71.6	64.5	
8	274	271	3	98.9	1.1	2462	2204	258	8.5	8.2	72.5	64.3	
9	273	270	3	98.9	1.1	2735	2474	261	9.5	9.2	73.3	64.2	
10	273	269	4	98.5	1.5	3008	2743	265	10.4	10.2	74.7	64.6	
11	274	265	9	96.7	3.3	3282	3008	274	11.0	11.1	77.0	65.8	
12	273	273	0	100.0	0.0	3555	3281	274	12.0	12.2	77.0	64.8	
13	274	272	2	99.3	0.7	3829	3553	276	12.9	13.2	77.5	64.4	
14	273	272	1	99.6	0.4	4102	3825	277	13.8	14.2	77.8	63.6	
15	274	269	5	98.2	1.8	4376	4094	282	14.5	15.2	79.2	64.0	
16	273	270	3	98.9	1.1	4649	4364	285	15.3	16.2	80.1	63.9	
17	274	270	4	98.5	1.5	4923	4634	289	16.0	17.2	81.2	64.0	
18	273	272	1	99.6	0.4	5196	4906	290	16.9	18.2	81.5	63.3	
19	274	271	3	98.9	1.1	5470	5177	293	17.7	19.2	82.3	63.1	

Table 6.3 Performance of Final model on OOT data

From Training, testing and OOT performance table, we can conclude that there is not overfitting happened on the model we chose and its adoption on OOT performed well. To discover a optimal score cutoff point, we adopt 50% population to create 50 bins and make assumptions below to calculate the gains, lost and total savings:

- Assume \$2000 gain for every fraud that's caught (blue curve)
- Assume \$50 loss for every false positive (a good that's flagged as a bad) (orange)
- Since the OOT is 1/3 of the annual transactions, we multiply numbers by 3 and label the plot as annual savings.

Figure 6.1 Gains, Lost and Total Saving under final model performance

From the line plot above, we recommend a score cut off at 3.5%, which is slightly before the highest point.

To explore more useful insights, we chose a certain card number and merchant number separately, creating two plots for each of them. One plot is over time while the other is over transaction count.

For Cardnum 5142299705, we plot its change of average fraud score from September, which is shown below.

Figure 6.2 Change of average fraud score from September

As we can see, there is a greatly score increase between 13th September and 19th September. To figure out the reason behind that, we plot the changes in the score with the number of transactions during this time. From the plot, we find the sudden growth may come from the sharp increase in the number of transactions.

Figure 6.2 the score with the number of transactions during this time

For Merchnum 6005030600003, about change of average fraud score from September to October, and its related changes in the score with the number of transactions. There is a clearly sharp growth from 5th October, which could be explained with a continually transaction increase.

Figure 6.3 Change of average fraud score from September to October

Figure 6.4 the score with the number of transactions during this time

From two cases above, we can generally conclude that our model could perform well for detecting abnormal transaction increase among cards or merchants.

7 Conclusion

In this project, we start with studying the data, evaluating data quality, and filling missing values. Next, we create candidate variables following the logic of common fraud cases in reality. Then using KS and FDR ratio to select the most efficient 80 variables and adapting wrapping to decrease dimension to 30 based on the first 8 months data. The other 4 months are considered as out-of-Time (OOT).

The modeling process uses FDR as a metric of performance. We run each model of different parameters 10 times and extract mean FDR for train, test, and OOT data to compare models. Finally, we implement the model of the best performance to create bins for data by the predicted fraud score and figure out the most profitable threshold of fraud score.

The project also has room for future improvement. Unbalanced is a significant nature of credit card fraud records which is to say that in a large number of records, only very few frauds hidden in it. Therefore, to build a model that can capture these records, a weight factor will be greatly helpful. Another approach to strengthen the accuracy of the model is chopping. This will "chop" the most obvious records and force the model to focus on more ambiguous records.

References

Figure 4.1 Points go sparse and become outliers with a high dimensionality

https://aiaspirant.com/curse-of-dimensionality/

Figure 6.1 Comparison of Linear Regression and Logistic Regression:

http://www.srcmini.com/46323.html

Figure 6.2 Illustration of Neural Network:

https://www.fmi.com.cn/ueditor/php/upload/image/20180729/1532854645968516.jpg

Figure 6.3 Illustration of Neural Network:

 $\frac{https://medium.com/swlh/gradient-boosting-trees-for-classification-a-beginners-guide-596b594a14ea$

Figure 6.4 Illustration of Random Forest:

https://www.cnblogs.com/ooon/p/5674527.html

Figure 6.5 Illustration of Support Vector Machine:

https://zhuanlan.zhihu.com/p/49331510

Appendix A: Data Quality Report

Fild description:

The data is Card Transacation Data, which includes actual credit card purchases' information provided by U.S. government organization during the year 2010. The purpose of this data is to indicate whether the transaction is a fraud or not. There are 10 number of fields in the data: Amount, Recnum, Cardnum, Merchnum, Merch Description, Merch State, Merch Zip, Transtype, Fraud and Data. There are 96,753 number of records in this data, and 1,059 records are indicated as a fraud.

Table 8.1: File Description

Dataset Name	Card Transacation Data
Dataset Purpose	The data is about credit card transaction information, which indicates
	whether this transaction is a fraud or not.
Data Source	Came from U.S. government organization
Time Period	From Jan. 1 st , 2010 to Dec. 31 st , 2010
Number of Fields	10 Fields in total – 1 numeric, 8 categorical, 1date
Number of Records	96,753

Summary Statistics Table:

All fields in the data can be treated as categorical, numeric and date: 1 field is numeric, 8 fields are cateforical and 1 field is date. Among all fields, 7 fields are fully populated and other 3 fields are not fully populated. Key statistics of these fields are summarized as follows.

Table 8.2 Summary Statistics of Numeric Fields

	Field Type	count	mean	std	min	max	Unique Value	# Zero	% populated
Amount	Numeric	96753	427.89	10,006.14	0.01	3,102,045.53	34909	0	100

Table 8.3 Summary Statistics of Categorical Fields

	Field Type	count	% Populated	Unique values	Most Common Field Values
Recnum	Categorical	96753	100	96,753	N/A
Cardnum	Categorical	96753	100	1645	5142148452
Merchnum	Categorical	93378	96.5	13,091	930,090,121,224
Merch Description	Categorical	96753	100	13,126	GSA-FSS-ADV
Merch State	Categorical	95558	98.8	227	TN
Merch Zip	Categorical	92097	95.2	4,567	38118
Transtype	Categorical	96753	100	4	P
Fraud	Categorical	96753	100	2	0

Table 8.4 Summary Statistics of Categorical Fields

	Field Type	count	Unique Values	Most Common Field Values	Min	Max	Records that have a value	% populated
Date	Date	96753	365	2010/2/28	2010/1/1	2010/12/31	96753	100

Field Description and Distribution:

Field 1: Amount

Table 8.5: Amount

Description	The amount of money of each transaction, exclude outliers $>$ 1000, data in histogram is 89.10% populated					
Туре	Numeric					
Mean	427.89					
Maximum	3,102,045.53					
Minimum	0.01					
Std	10,006.14					

Figure 8.1: Frequency Distribution of Amount Field

Field 2: Transtype

Table 8.6: Transtype

Description	Transaction type of each transaction				
Type	Categorical				
Most Common	(P) 1.1 (C) 0(20(1)				
Field Vlaue	'P' occurred the most for 96,396 times				

Figure 8.2: Frequency Distribution of Transtype Field

Field 3: Recnum

Table 8.7: Recnum

Description	Time order of the data				
Туре	Categorical				
Most Common	All the records for this field are unique				
Field Vlaue					

Field 4: Cardnum

Table 8.8: Cardnum

Description	Card number of each transaction				
Type	Categorical				
Most Common	'5142148452' occurred the most for 1,192 times				
Field Vlaue	5172170732 occurred the most for 1,172 times				

Figure 8.3: Frequency Distribution of Cardnum Field

Field 5: Date

Table 8.9: Date

Description	The date of the transaction. Month, day and year only (no time of day). Data in histogram is 100% populated.					
Туре	Date					
Unique Values	365					
Maximum	2010/12/31					
Minimum	2010/1/1					
Most Common Field Value	'2010/2/28' occurred the most for 684 times					

Figure 8.4: Frequency Distribution of Date Field

Field 6: Merchnum

Table 8.10: Merchnum

Description	Merchant number of each transaction				
Type	Categorical				
Most Common	'930090121224' occurred the most for 9,310 times				
Field Vlaue	750070121224 occurred the most for 7,510 times				

Figure 8.5: Frequency Distribution of Merchnum Field

Field 7: Merch Description

Table 8.11: Merch Description

Description	Merchant Company Name				
Type	Categorical				
Most Common	'GSA-FSS-ADV' occurred the most for 1,688 times				
Field Vlaue	GSA-FSS-ADV occurred the most for 1,000 times				

Figure 8.6: Frequency Distribution of Merch Description Field

Field 8: Merch State

Table 8.12: Merch State

Description	State where the Merchant in				
Type	Categorical				
Most Common	'TN' occurred the most for 12,035 times				
Field Vlaue	114 occurred the most for 12,033 times				

Figure 8.7: Frequency Distribution of Merch State Field

Field 9: Merch Zip

Table 8.13: Merch Zip

Description	The zip code of Merchant				
Туре	Categorical				
Most Common	'38118' occurred the most for 11,868 times				
Field Vlaue	38118 occurred the most for 11,808 times				

Figure 8.8: Frequency Distribution of Merch Zip Field

Field 10: Fraud

Table 8.14: Fraud

Description	Whether this transaction is fraud or not ('1' = Fraud, '0' = Not fraud)				
Type	Categorical				
Most Common	(0) accounted the most few 05 604 times "1" accounted few 1 050 times				
Field Vlaue	'0' occurred the most for 95,694 times, "1" occurred for 1,059 times				

Figure 8.9: Frequency Distribution of Fraud Field

Appendix B: Statistics Variables

	mean	std	min	max
Cardnum_day_since	5.419857464443 910	17.18793296218 270	0.0	356.0
Merchnum_day_since	29.84113613494 200	65.91536684347 890	0.0	364.0
card_merch_day_since	81.01504196188 680	99.41050939138 53	0.0	364.0
card_zip_day_since	70.67455418737 100	93.09110136187 31	0.0	364.0
card_state_day_since	38.50597010280 400	67.38494857144 710	0.0	364.0
merch_zip_day_since	30.80756662551 7400	67.04622199079 890	0.0	364.0
merch_state_day_since	29.93547517038 910	66.04981263119 710	0.0	364.0
card_merch_zip_day_sinc	81.72435864186 640	99.90020545096 600	0.0	364.0
card_merch_state_day_si	81.10603027065 160	99.47519095404 210	0.0	364.0
Cardnum_count_past_0	2.473655819164 5000	6.002116198857 810	1.0	146.0
Cardnum_avg_0	393.5574898450 110	726.8458455852 550	0.01	28392.84
Cardnum_max_0	498.2058086869 990	1030.957360074 8500	0.01	47900.0
Cardnum_med_0	381.3521846634 2600	718.7290925073 750	0.01	28392.84
Cardnum_total_0	741.6455649034 840	3431.446130727 6600	0.01	218301.83
Cardnum_actual/avg_0	1.001953580443 1900	0.444928469481 6710	4.20132761952777 E-05	23.79123404209 84
Cardnum_actual/max_0	0.875229792121 2110	0.282848082894 43000	1.4160495050907E -05	1.0
Cardnum_actual/med_0	1.410317499503 0400	9.895889714832 39	8.94674450334385 E-05	657.8947368421 050
Cardnum_actual/total_0	0.772758278215 924	0.350275376101 4780	1.40044253984259 E-05	1.0
Cardnum_count_past_1	3.367106860172 000	7.944994584257 990	1.0	177.0

	mean	std	min	max
Cardnum_avg_1	395.4506854928 5400	675.8256592221 490	0.01	28392.84
Cardnum_max_1	610.8730460491 430	1212.864267337 4200	0.01	47900.0
Cardnum_med_1	364.2218742803 180	658.7215608317 700	0.01	28392.84
Cardnum_total_1	1110.045587207 1100	5669.434126818 710	0.01	307468.0600000 000
Cardnum_actual/avg_1	0.998170708895 4640	0.640166068383 3210	5.52600676935829 E-05	23.79123404209 84
Cardnum_actual/max_1	0.772174927410 3550	0.358505073268 17200	1.4160495050907E -05	1.0
Cardnum_actual/med_1	1.832994612945 0500	13.35120705773 6100	8.94674450334385 E-05	674.7611336032 390
Cardnum_actual/total_1	0.635969355941 2100	0.393745825424 382	1.38150169233957 E-05	1.0
Cardnum_count_past_3	4.794267456456 110	11.45006401985 0400	1.0	251.0
Cardnum_avg_3	395.8529294763 980	629.3743405182 390	0.01	28392.84
Cardnum_max_3	739.7859984231 930	1367.578492720 4600	0.01	47900.0
Cardnum_med_3	341.3568812307 400	592.6485314308 110	0.01	28392.84
Cardnum_total_3	1512.932952374 0700	6115.505328808 330	0.01	310843.0600000 000
Cardnum_actual/avg_3	1.002414631405 8600	0.842901810125 6070	5.52600676935829 E-05	38.00259670364 970
Cardnum_actual/max_3	0.673570178164 9560	0.397369544878 3160	1.4160495050907E -05	1.0
Cardnum_actual/med_3	2.340588008341 570	17.12295891838 2500	0.00022614201718 67930	1570.855614973 260
Cardnum_actual/total_3	0.513770107076 747	0.400487410870 85400	1.38150169233957 E-05	1.0
Cardnum_count_past_7	7.627799620320 130	16.61264164632 5500	1.0	369.0
Cardnum_avg_7	397.1857011977 5000	560.0757100639 390	0.14	25500.0
Cardnum_max_7	960.4289108582 070	1603.129144092 5400	0.14	47900.0
Cardnum_med_7	307.1587480419 520	501.7307719646 100	0.14	25500.0

	mean	std	min	max
Cardnum_total_7	2384.036098115 070	7158.500841268 020	0.14	312616.0600000 000
Cardnum_actual/avg_7	0.994463245132 3750	1.077284733915 2500	5.52600676935829 E-05	59.86750467130 9600
Cardnum_actual/max_7	0.537176386630 2020	0.412783718397 9270	1.4160495050907E -05	1.0
Cardnum_actual/med_7	2.985656466558 7300	27.09115586161 6800	0.00016393442622 95080	5747.538461538 460
Cardnum_actual/total_7	0.357530007905 9750	0.367264858242 58600	1.38150169233957 E-05	1.0
Cardnum_count_past_14	11.80001452327 3500	20.71793318120 3700	1.0	380.0
Cardnum_avg_14	396.9934738377 9300	522.9165589330 730	0.14	25500.0
Cardnum_max_14	1188.636973764 7300	1829.499572152 5500	0.14	47900.0
Cardnum_med_14	279.0155984107 320	456.1247076631 080	0.14	25500.0
Cardnum_total_14	3768.183808106 090	9421.917378764 420	0.14	313995.0600000 000
Cardnum_actual/avg_14	0.998363805118 0760	1.273071911867 6300	5.52600676935829 E-05	71.33216664838 750
Cardnum_actual/max_14	0.437310904490 52900	0.400163720410 8650	1.4160495050907E -05	1.0
Cardnum_actual/med_14	3.472496712532 73	29.24611509463 6500	0.00013931166108 25910	6145.636363636 360
Cardnum_actual/total_14	0.250992811511 247	0.317305317504 2670	1.30748949595626 E-05	1.0
Cardnum_count_past_30	20.35946139402 6800	30.90671048713 2000	1.0	426.0
Cardnum_avg_30	396.5845037368 1200	479.3425190899 4800	0.17	25500.0
Cardnum_max_30	1482.174729711 4800	2076.876144100 0800	0.17	47900.0
Cardnum_med_30	250.9419457555 640	402.4264074932 110	0.17	25500.0
Cardnum_total_30	6675.654419224 700	14591.23285668 2700	0.17	353997.2900000 000
Cardnum_actual/avg_30	1.005521534235 5500	1.610792313333 180	5.00904410741617 E-05	137.9869655724 580
Cardnum_actual/max_30	0.343431492845 4380	0.369031758926 377	9.36886632033091 E-06	1.0

	mean	std	min	max
Cardnum_actual/med_30	3.952411863539 500	32.61331152996 260	0.00011996161228 40690	6288.558139534 8800
Cardnum_actual/total_30	0.158753753406 1380	0.251261213856 4970	5.13177105116632 E-06	1.0
Merchnum_count_past_0	6.880369721049 41	18.99021284732 2900	1.0	260.0
Merchnum_avg_0	395.5387295944 950	753.1442987268 120	0.01	27218.0
Merchnum_max_0	513.8221625154 380	1035.024181655 5500	0.01	47900.0
Merchnum_med_0	379.5289302053 02	742.3346810425 130	0.01	27218.0
Merchnum_total_0	814.2191609697 420	2883.172305421 1200	0.01	217467.18
Merchnum_actual/avg_0	1.003266787220 3500	0.643088902156 0150	8.94674450334385 E-05	37.95614247637 51
Merchnum_actual/max_0	0.806559731520 8760	0.344330922165 9230	4.47357237121704 E-05	1.0
Merchnum_actual/med_0	1.276688925347 1300	3.992757214843 7400	8.94674450334385 E-05	553.819444444 450
Merchnum_actual/total_0	0.711226609138 1920	0.397611498400 7920	4.47337225167192 E-05	1.0
Merchnum_count_past_1	11.74863325622 1700	31.61134067600 5200	1.0	327.0
Merchnum_avg_1	397.4570011754 880	741.7365870103 970	0.01	27218.0
Merchnum_max_1	611.2902195089 120	1293.207788188 6000	0.01	47900.0
Merchnum_med_1	368.7949873440 0900	728.9218755340 770	0.01	27218.0
Merchnum_total_1	1216.608883471 4800	4482.082901617 510	0.01	306633.4100000 000
Merchnum_actual/avg_1	1.000582149140 310	0.785799125865 5910	8.94674450334385 E-05	43.42602163523 040
Merchnum_actual/max_1	0.736261485490 7080	0.385206862454 2630	2.99371249934843 E-05	1.0
Merchnum_actual/med_1	1.398026443962 0100	4.482329832231 520	8.94674450334385 E-05	405.4495912806 54
Merchnum_actual/total_1	0.625597073123 1890	0.422797464050 0190	2.82986486230044 E-05	1.0
Merchnum_count_past_3	21.35273919312 8400	55.15716003845 700	1.0	466.0

	mean	std	min	max
Merchnum_avg_3	397.3007749252 3400	719.5436560091 260	0.01	27218.0
Merchnum_max_3	706.4573087336 930	1417.155324947 2700	0.01	47900.0
Merchnum_med_3	359.1051588223 7400	707.3082219419 440	0.01	27218.0
Merchnum_total_3	1754.265649864 600	5415.770579688 840	0.01	307302.5800000 000
Merchnum_actual/avg_3	1.000874608471 3600	0.939060213096 5250	8.94674450334385 E-05	64.09280649108 990
Merchnum_actual/max_3	0.679868774736 1060	0.408471645121 5100	2.99371249934843 E-05	1.0
Merchnum_actual/med_3	1.490439687099 310	5.016979787456 040	8.94674450334385 E-05	467.8285714285 710
Merchnum_actual/total_3	0.560535632474 3340	0.434005641245 5310	1.84107143507023 E-05	1.0
Merchnum_count_past_7	42.88765210535 6000	106.0713756904 7000	1.0	762.0
Merchnum_avg_7	396.4843626460 5700	682.1470224751 130	0.01	27218.0
Merchnum_max_7	883.3783577289 190	1751.368358069 9000	0.01	47900.0
Merchnum_med_7	344.0485169144 2700	670.4268962989 360	0.01	27218.0
Merchnum_total_7	3005.656703320 6100	7081.889155818 8400	0.01	313984.5500000 000
Merchnum_actual/avg_7	0.997877231203 2250	1.121038198164 34	0.00012441873123 99880	82.46059846404 050
Merchnum_actual/max_7	0.607090948832 3900	0.425472930214 3540	2.99371249934843 E-05	1.0
Merchnum_actual/med_7	1.564416698275 830	4.710161394120 110	0.00013502565487 44260	473.9842105263 160
Merchnum_actual/total_7	0.471664753762 3040	0.433633441730 4750	1.59201112061663 E-05	1.0
Merchnum_count_past_1 4	77.42573939023 000	191.7911544350 6800	1.0	1091.0
Merchnum_avg_14	397.7733047719 7400	655.3880036815 300	0.01	27218.0
Merchnum_max_14	1078.979045613 5200	2154.003783057 9100	0.01	47900.0
Merchnum_med_14	333.7541690094 1500	637.1137130586 920	0.01	27218.0

	mean	std	min	max
Merchnum_total_14	5044.620943079 140	10464.81533776 1000	0.01	319334.6800000 000
Merchnum_actual/avg_14	0.995862127240 4580	1.285389933824 540	0.00012385544300 43790	133.5333353248 190
Merchnum_actual/max_1 4	0.551123219555 2970	0.429712403679 1060	2.99371249934843 E-05	1.0
Merchnum_actual/med_1 4	1.619561274199 4500	4.653939150328 190	0.00013502565487 44260	473.9842105263 160
Merchnum_actual/total_1 4	0.404885632167 1140	0.423644448679 0530	9.04250357416852 E-06	1.0
Merchnum_count_past_3	149.4331981285 7200	376.1625238609 6700	1.0	1828.0
Merchnum_avg_30	397.1855189160 630	614.1737038107 620	0.01	27218.0
Merchnum_max_30	1379.372886293 2100	2925.187661742 5300	0.01	47900.0
Merchnum_med_30	320.0217699202 420	583.3583266833 970	0.01	27218.0
Merchnum_total_30	9414.114866126 810	18306.61809414 610	0.01	320373.0000000 000
Merchnum_actual/avg_30	0.997591458433 0570	1.466343999992 4800	5.05178075271533 E-05	172.6358842587 750
Merchnum_actual/max_3	0.491669234820 5340	0.426585153816 8060	1.83482871873911 E-05	1.0
Merchnum_actual/med_3	1.681732269457 6700	4.519005790107 470	6.75173857268247 E-05	481.5882352941 180
Merchnum_actual/total_3	0.336047956717 7290	0.404478900000 0210	4.0417775141877E -06	1.0
card_merch_count_past_ 0	2.097005093519 510	5.910720315287 180	1.0	145.0
card_merch_avg_0	395.7954882202 7500	796.9244773481 780	0.01	28392.84
card_merch_max_0	421.2988777659 050	935.8048247748 36	0.01	47900.0
card_merch_med_0	393.4523657893 930	790.6278397347 720	0.01	28392.84
card_merch_total_0	528.9286867848 610	2621.904523589 270	0.01	217467.18
card_merch_actual/avg_0	0.999829471433 516	0.220870012622 8540	8.94674450334385 E-05	20.24247672656 420
card_merch_actual/max_ 0	0.956721410691 394	0.166217363283 9750	4.47357237121704 E-05	1.0

	mean	std	min	max
card_merch_actual/med_ 0	1.026648689941 0700	0.676580694790 6870	8.94674450334385 E-05	100.0
card_merch_actual/total_ 0	0.884509056140 4220	0.274822569080 925	4.47337225167192 E-05	1.0
card_merch_count_past_ 1	2.416797203232 470	7.593732798303 420	1.0	177.0
card_merch_avg_1	397.1925216136 950	799.4981746532 920	0.01	28392.84
card_merch_max_1	432.5841540711 83	1010.288987531 200	0.01	47900.0
card_merch_med_1	394.4320962270 640	794.0080605559 890	0.01	28392.84
card_merch_total_1	599.5728184487 100	4020.348698925 0300	0.01	306633.4100000 000
card_merch_actual/avg_1	0.997297976014 8010	0.255018372907 9900	8.94674450334385 E-05	20.24247672656 420
card_merch_actual/max_ 1	0.941339421373 9110	0.193337604986 6120	4.47357237121704 E-05	1.0
card_merch_actual/med_ 1	1.032669356577 0200	0.708329581119 57	8.94674450334385 E-05	71.1111111111 110
card_merch_actual/total_ 1	0.858805712942 2570	0.298807615810 1400	4.47337225167192 E-05	1.0
card_merch_count_past_ 3	3.026370115252 5500	10.97630552745 810	1.0	248.0
card_merch_avg_3	398.1088690521 520	797.2861335451 370	0.01	28392.84
card_merch_max_3	441.4100657696 7900	1014.591478180 4200	0.01	47900.0
card_merch_med_3	394.6648400365 180	792.1178619609 62	0.01	28392.84
card_merch_total_3	631.2334829922 12	4063.002829776 1200	0.01	306633.4100000 000
card_merch_actual/avg_3	0.994800226360 9010	0.296486967527 6880	8.94674450334385 E-05	20.24247672656 420
card_merch_actual/max_3	0.921052594822 0630	0.222844098005 5540	4.47357237121704 E-05	1.0
card_merch_actual/med_3	1.053590655864 0300	1.501127365108 3100	8.94674450334385 E-05	301.1031518624 640
card_merch_actual/total_	0.827975686040 8540	0.324645652588 2020	4.47337225167192 E-05	1.0
card_merch_count_past_ 7	4.050447628038 220	15.65432141903 6400	1.0	358.0

	mean	std	min	max
card_merch_avg_7	399.8202528014 6000	792.5192243040 290	0.01	28392.84
card_merch_max_7	459.0136919198 730	1022.816773245 2100	0.01	47900.0
card_merch_med_7	394.6622679129 090	787.8122005339 970	0.01	28392.84
card_merch_total_7	690.6114004585 240	4104.138244905 570	0.01	306633.4100000 000
card_merch_actual/avg_7	0.989329514985 0480	0.362681049424 0160	8.94674450334385 E-05	20.24247672656 420
card_merch_actual/max_ 7	0.887516750135 4710	0.263025980677 6110	4.47357237121704 E-05	1.0
card_merch_actual/med_ 7	1.079920962105 5200	2.198760889887 7300	8.94674450334385 E-05	442.8697962798 940
card_merch_actual/total_ 7	0.779997728841 6480	0.356570565872 2070	4.47337225167192 E-05	1.0
card_merch_count_past_ 14	5.342469163978 130	19.04450831818 2400	1.0	369.0
card_merch_avg_14	401.8828749171 510	791.3055934531 400	0.01	28392.84
card_merch_max_14	480.7200715789 900	1047.319350532 5500	0.01	47900.0
card_merch_med_14	394.6839375706 8000	787.4954167914 590	0.01	28392.84
card_merch_total_14	772.1092779858 310	4170.644834832 5500	0.01	306633.4100000 000
card_merch_actual/avg_1 4	0.987073248901 7860	0.431808580477 9140	8.94674450334385 E-05	23.11321693279 610
card_merch_actual/max_ 14	0.854350084663 659	0.294168371859 0440	4.47357237121704 E-05	1.0
card_merch_actual/med_ 14	1.112969490651 1800	2.287056816894 250	8.94674450334385 E-05	400.0
card_merch_actual/total_ 14	0.734123038140 9850	0.379470666677 243	4.47337225167192 E-05	1.0
card_merch_count_past_ 30	7.737460709358 180	27.43019758987 7600	1.0	409.0
card_merch_avg_30	404.0915958208 5200	786.6047208729 920	0.01	28392.84
card_merch_max_30	513.7809415230 760	1073.368394879 080	0.01	47900.0
card_merch_med_30	393.3738368414 0500	785.1282599541 560	0.01	28392.84

	mean	std	min	max
card_merch_total_30	926.9286743363 380	4304.302282890 020	0.01	306633.4100000 000
card_merch_actual/avg_3	0.983469699098 9390	0.514109260218 1470	0.00010127265975 76210	25.02564005165 990
card_merch_actual/max_ 30	0.809845451461 5320	0.327917762507 1520	4.47357237121704 E-05	1.0
card_merch_actual/med_ 30	1.151518512246 6000	2.285311759731 140	6.75173857268247 E-05	397.8609625668 450
card_merch_actual/total_ 30	0.674370707060 5940	0.400252731611 5950	3.08737697855255 E-05	1.0
card_zip_count_past_0	2.117991223793 2700	5.940791140554 750	1.0	146.0
card_zip_avg_0	395.6617444020 470	794.7847243557 82	0.01	28392.84
card_zip_max_0	422.7243501353 7600	936.5702474007 11	0.01	47900.0
card_zip_med_0	393.1422954552 550	788.4228313466 89	0.01	28392.84
card_zip_total_0	532.0606200400 460	2623.539536880 330	0.01	217467.18
card_zip_actual/avg_0	0.999843837193 7170	0.231546379788 0300	8.94674450334385 E-05	20.24247672656 420
card_zip_actual/max_0	0.952520197722 9490	0.174740458362 9160	4.47357237121704 E-05	1.0
card_zip_actual/med_0	1.032971403803 560	1.081218354654 5000	8.94674450334385 E-05	234.7928176795 580
card_zip_actual/total_0	0.878923889431 0040	0.279700140000 4950	4.47337225167192 E-05	1.0
card_zip_count_past_1	2.476031411765 930	7.821298032863 150	1.0	177.0
card_zip_avg_1	397.2198064235 460	797.2063169172 440	0.01	28392.84
card_zip_max_1	435.3610908015 750	1011.946164883 8400	0.01	47900.0
card_zip_med_1	394.1932359409 56	791.6672960071 880	0.01	28392.84
card_zip_total_1	605.9220199798 790	4022.902518490 990	0.01	306633.4100000 000
card_zip_actual/avg_1	0.996806686809 4690	0.276836843582 9370	8.94674450334385 E-05	20.17129251217 170
card_zip_actual/max_1	0.933688237727 9630	0.206232745179 4610	4.47357237121704 E-05	1.0

	mean	std	min	max
card_zip_actual/med_1	1.042241323187 3200	1.132681392514 0600	8.94674450334385 E-05	231.5940054495 910
card_zip_actual/total_1	0.849143747596 8800	0.306242587287 4410	4.47337225167192 E-05	1.0
card_zip_count_past_3	3.127649200701 2700	11.28327790265 6700	1.0	251.0
card_zip_avg_3	398.0906138642 790	794.0034844610 900	0.01	28392.84
card_zip_max_3	446.2180177806 3200	1018.075858856 6700	0.01	47900.0
card_zip_med_3	394.0808260630 550	788.8846639027 270	0.01	28392.84
card_zip_total_3	642.0471446206 870	4067.019221539 2200	0.01	306633.4100000 000
card_zip_actual/avg_3	0.993894323824 6760	0.323823952623 6380	8.94674450334385 E-05	20.17129251217 170
card_zip_actual/max_3	0.909413776247 5200	0.239328565789 5630	4.47357237121704 E-05	1.0
card_zip_actual/med_3	1.069885454141 7300	1.853046898890 1700	8.94674450334385 E-05	301.1031518624 640
card_zip_actual/total_3	0.814463946078 6370	0.333507802266 7420	4.47337225167192 E-05	1.0
card_zip_count_past_7	4.249333485481 910	16.30770063308 4400	1.0	369.0
card_zip_avg_7	399.9934485269 2800	787.9391117208 8	0.01	28392.84
card_zip_max_7	467.5064052823 220	1028.991797761 3500	0.01	47900.0
card_zip_med_7	393.7933465771 8400	783.3987815777 450	0.01	28392.84
card_zip_total_7	710.6900768696 170	4112.523138220 700	0.01	306633.4100000 000
card_zip_actual/avg_7	0.987448082917 2540	0.403274535960 9310	8.94674450334385 E-05	32.76300707032 800
card_zip_actual/max_7	0.869420298928 0600	0.282792288087 3230	4.47357237121704 E-05	1.0
card_zip_actual/med_7	1.108493736205 0800	2.780199678814 770	8.94674450334385 E-05	442.8697962798 940
card_zip_actual/total_7	0.760361030973 834	0.366190600175 941	4.47337225167192 E-05	1.0
card_zip_count_past_14	5.695446953743 370	19.97825774999 7800	1.0	380.0

	mean	std	min	max
card_zip_avg_14	402.2413694140 7000	785.7146640785 260	0.01	28392.84
card_zip_max_14	493.6575211884 2000	1055.249289797 6500	0.01	47900.0
card_zip_med_14	393.1961460937 6800	780.9046450105 180	0.01	28392.84
card_zip_total_14	805.6120173864 370	4186.944348413 340	0.01	306633.4100000 000
card_zip_actual/avg_14	0.984949970241 5510	0.476512195764 123	8.94674450334385 E-05	32.76300707032 800
card_zip_actual/max_14	0.830643992224 9370	0.315063988324 8310	4.47357237121704 E-05	1.0
card_zip_actual/med_14	1.151672999973 8000	2.925420846234 4100	8.94674450334385 E-05	400.0
card_zip_actual/total_14	0.708015696574 3170	0.388769566070 2500	4.47337225167192 E-05	1.0
card_zip_count_past_30	8.412606201437 800	28.94920168640 1800	1.0	425.0
card_zip_avg_30	404.3553742996 130	776.7897779032 200	0.01	28392.84
card_zip_max_30	534.0271742896 510	1086.266503340 5500	0.01	47900.0
card_zip_med_30	390.5167198668 1	774.9985390556 500	0.01	28392.84
card_zip_total_30	988.2753613701 760	4344.555905258 04	0.01	306633.4100000 000
card_zip_actual/avg_30	0.981281302740 2250	0.567718529724 3220	0.00010127265975 76210	32.76300707032 800
card_zip_actual/max_30	0.779261146998 9220	0.348161551308 3910	4.47357237121704 E-05	1.0
card_zip_actual/med_30	1.231978585999 6600	7.913666638636 010	6.75173857268247 E-05	2248.7
card_zip_actual/total_30	0.639477706676 7660	0.407812861541 831	3.08737697855255 E-05	1.0
card_state_count_past_0	2.164268597570 4600	5.940302040739 370	1.0	146.0
card_state_avg_0	395.4172805333 5800	787.3466628839 980	0.01	28392.84
card_state_max_0	432.0083419608 490	944.1792525289 100	0.01	47900.0
card_state_med_0	392.1181615610 4700	781.0292374304 400	0.01	28392.84

	mean	std	min	max
card_state_total_0	553.2163506125 740	2639.285818447 8800	0.01	217467.18
card_state_actual/avg_0	1.000585526412 4900	0.260445981412 9140	8.94674450334385 E-05	20.24247672656 420
card_state_actual/max_0	0.941521022050 4240	0.194449291108 7550	4.47357237121704 E-05	1.0
card_state_actual/med_0	1.045655526369 2200	1.412150390417 5000	8.94674450334385 E-05	234.7928176795 580
card_state_actual/total_0	0.861881050439 8870	0.293346686663 6990	4.47337225167192 E-05	1.0
card_state_count_past_1	2.585194559996 6800	7.818864919759 400	1.0	177.0
card_state_avg_1	396.9593546995 090	784.7767688525 020	0.01	28392.84
card_state_max_1	456.9035202340 320	1029.888060513 9500	0.01	47900.0
card_state_med_1	391.4680616098 030	779.0753983663 770	0.01	28392.84
card_state_total_1	657.0016459018 480	4052.081354242 080	0.01	306633.4100000 000
card_state_actual/avg_1	0.997748401314 0610	0.329395968127 9860	8.94674450334385 E-05	20.17129251217 170
card_state_actual/max_1	0.909693067683 7590	0.239522195050 0990	4.47357237121704 E-05	1.0
card_state_actual/med_1	1.072879341467 640	1.608121200417 4600	8.94674450334385 E-05	231.5940054495 910
card_state_actual/total_1	0.812893557546 8900	0.329105867150 3270	4.47337225167192 E-05	1.0
card_state_count_past_3	3.328952145813 6700	11.27574946105 5300	1.0	251.0
card_state_avg_3	397.6039035437 520	771.2263418594 580	0.01	28392.84
card_state_max_3	484.6804003236 640	1055.259879430 5100	0.01	47900.0
card_state_med_3	388.1186040021 980	764.5810674845 470	0.01	28392.84
card_state_total_3	734.9110257580 670	4118.215149664 430	0.01	306633.4100000 000
card_state_actual/avg_3	0.994487583384 1150	0.400925265785 6260	8.94674450334385 E-05	20.17129251217 170
card_state_actual/max_3	0.869780129195 8170	0.282577843527 5610	4.47357237121704 E-05	1.0

	mean	std	min	max
card_state_actual/med_3	1.126189645601 1000	2.345198412592 2600	8.94674450334385 E-05	301.1031518624 640
card_state_actual/total_3	0.756910002163 4650	0.361500026558 8710	4.47337225167192 E-05	1.0
card_state_count_past_7	4.654895899249 9800	16.29109168419 270	1.0	369.0
card_state_avg_7	399.7250000816 710	755.5824872640 320	0.01	28392.84
card_state_max_7	538.4321487183 210	1121.429607922 5300	0.01	47900.0
card_state_med_7	381.6368755770 46	745.0824051951 480	0.01	28392.84
card_state_total_7	896.4804810315 750	4242.361692560 150	0.01	306633.4100000 000
card_state_actual/avg_7	0.990288156748 9600	0.515083170183 8620	8.94674450334385 E-05	32.76300707032 800
card_state_actual/max_7	0.806135121688 5590	0.332175282822 1120	4.47357237121704 E-05	1.0
card_state_actual/med_7	1.224398945770 200	3.664422268071 9000	8.94674450334385 E-05	442.8697962798 940
card_state_actual/total_7	0.670851057372 3900	0.393409493230 5890	4.47337225167192 E-05	1.0
card_state_count_past_14	6.429888896957 370	19.95587933017 5400	1.0	380.0
card_state_avg_14	401.5220656037 990	735.3527778762 170	0.01	28392.84
card_state_max_14	602.0314805439 99	1189.548500645 0800	0.01	47900.0
card_state_med_14	373.4644062574 57	726.8124290688 15	0.01	28392.84
card_state_total_14	1140.085232216 7900	4500.491497464 010	0.01	306633.4100000 000
card_state_actual/avg_14	0.989706614881 1940	0.624111365414 3360	8.94674450334385 E-05	32.76300707032 800
card_state_actual/max_14	0.744122542459 2460	0.365131110726 686	4.47357237121704 E-05	1.0
card_state_actual/med_14	1.327747999118 1600	4.016721997702 380	8.94674450334385 E-05	416.2493333333 330
card_state_actual/total_1 4	0.590067377096 903	0.408841090668 4600	4.47337225167192 E-05	1.0
card_state_count_past_30	9.836685788976 840	28.91499314087 260	1.0	425.0

	mean	std	min	max
card_state_avg_30	402.7642068475 320	694.8836945434 290	0.01	28392.84
card_state_max_30	704.9740406859 070	1299.376795285 9600	0.01	47900.0
card_state_med_30	359.2138497567 390	679.9389545197 370	0.01	28392.84
card_state_total_30	1645.098311358 2200	5158.971888671 390	0.01	306633.4100000 000
card_state_actual/avg_30	0.987914092959 5150	0.748594585972 2530	3.55258717160772 E-05	32.76300707032 800
card_state_actual/max_30	0.664369179160 0630	0.392173422840 6390	9.36886632033091 E-06	1.0
card_state_actual/med_30	1.473264185997 860	4.889567242220 630	6.75173857268247 E-05	452.8575310207 410
card_state_actual/total_3	0.491047624667 7010	0.410797123260 3310	7.10517434321545 E-06	1.0
merch_zip_count_past_0	6.828075562517 510	18.99292580174 8000	1.0	260.0
merch_zip_avg_0	395.4580816466 210	759.3880211880 2	0.01	28392.84
merch_zip_max_0	505.2906640248 190	1012.046722540 2	0.01	47900.0
merch_zip_med_0	380.9141211344 8200	749.9951350743 460	0.01	28392.84
merch_zip_total_0	788.1632752056 700	2853.404879260 310	0.01	217467.18
merch_zip_actual/avg_0	1.003089815002 8700	0.634546671887 9900	8.94674450334385 E-05	37.95614247637 51
merch_zip_actual/max_0	0.811275882492 3570	0.341266744845 0450	4.47357237121704 E-05	1.0
merch_zip_actual/med_0	1.263613861166 52	3.521195957665 380	8.94674450334385 E-05	405.4495912806 54
merch_zip_actual/total_0	0.717410807182 2860	0.395147382742 3800	4.47337225167192 E-05	1.0
merch_zip_count_past_1	11.61279915350 0600	31.61868828890 0200	1.0	327.0
merch_zip_avg_1	397.3722272112 200	748.3649139390 290	0.01	28392.84
merch_zip_max_1	591.8562406506 460	1197.084275274 5000	0.01	47900.0
merch_zip_med_1	371.0131022231 0400	737.3602506461 880	0.01	28392.84

	mean	std	min	max
merch_zip_total_1	1147.479226013 260	4392.427954744 750	0.01	306633.4100000 000
merch_zip_actual/avg_1	1.000140240082 6200	0.774765158422 394	8.94674450334385 E-05	43.42602163523 040
merch_zip_actual/max_1	0.742162063839 7570	0.382512190417 2780	4.47357237121704 E-05	1.0
merch_zip_actual/med_1	1.378114795407 7800	4.139716146052 460	8.94674450334385 E-05	405.4495912806 54
merch_zip_actual/total_1	0.632999437628 1200	0.420889313426 7540	4.47337225167192 E-05	1.0
merch_zip_count_past_3	21.09813583410 270	55.17695445670 2500	1.0	466.0
merch_zip_avg_3	397.2546675919 780	727.5335875454 030	0.01	28392.84
merch_zip_max_3	678.3699130678 530	1274.530042154 950	0.01	47900.0
merch_zip_med_3	361.2709995643 0400	716.0286878358 520	0.01	28392.84
merch_zip_total_3	1626.163569924 3600	5218.261289627 22	0.01	307302.5800000 000
merch_zip_actual/avg_3	1.000822500113 3100	0.929420876255 094	8.94674450334385 E-05	64.09280649108 990
merch_zip_actual/max_3	0.686318032018 3610	0.406483268102 619	4.47357237121704 E-05	1.0
merch_zip_actual/med_3	1.478395783675 0300	5.062506578883 630	8.94674450334385 E-05	467.8285714285 710
merch_zip_actual/total_3	0.568224688576 4270	0.432919452264 5410	1.84107143507023 E-05	1.0
merch_zip_count_past_7	42.32950195545 5000	106.1351366774 2700	1.0	762.0
merch_zip_avg_7	396.5738245292 6200	691.5131037392 46	0.01	28392.84
merch_zip_max_7	837.6895842193 740	1505.050394680 2400	0.01	47900.0
merch_zip_med_7	346.4412469267 720	680.0783355667 15	0.01	28392.84
merch_zip_total_7	2721.561835741 7300	6495.681484956 400	0.01	313984.5500000 000
merch_zip_actual/avg_7	0.998025851367 9290	1.103173428894 290	0.00012441873123 99880	82.46059846404 050
merch_zip_actual/max_7	0.613908268767 8910	0.424464019452 3250	4.47357237121704 E-05	1.0

	mean	std	min	max
merch_zip_actual/med_7	1.562268955509 8100	4.723198286102 180	0.00013502565487 44260	473.9842105263 160
merch_zip_actual/total_7	0.479383139499 3300	0.433926529183 1050	1.80151230673805 E-05	1.0
merch_zip_count_past_14	76.37049908192 160	191.9096145694 2500	1.0	1091.0
merch_zip_avg_14	397.9517045625 9600	665.1963822234 360	0.01	28392.84
merch_zip_max_14	1012.058710125 8800	1832.497456242 0900	0.01	47900.0
merch_zip_med_14	336.1088813967 3000	647.2592986392 140	0.01	28392.84
merch_zip_total_14	4512.051020363 680	9137.405923942 810	0.01	319334.6800000 000
merch_zip_actual/avg_14	0.996013054039 2900	1.269199409027 3800	0.00012385544300 43790	133.5333353248 190
merch_zip_actual/max_1 4	0.558269015843 2440	0.429392923536 3670	4.47357237121704 E-05	1.0
merch_zip_actual/med_1 4	1.614947606182 690	4.669742696806 790	0.00013502565487 44260	473.9842105263 160
merch_zip_actual/total_1 4	0.412489361237 1360	0.425008490770 6850	1.62444880955689 E-05	1.0
merch_zip_count_past_30	147.2561801715 8200	376.3692430509 99	1.0	1828.0
merch_zip_avg_30	397.5939574753 180	626.3698875318 240	0.01	28392.84
merch_zip_max_30	1274.089509632 1000	2441.247829384 0800	0.01	47900.0
merch_zip_med_30	322.6730097409 830	595.6319799315 550	0.01	28392.84
merch_zip_total_30	8317.261575982 920	15001.64988371 5500	0.01	320373.0000000 0000
merch_zip_actual/avg_30	0.997357244034 946	1.449224238562 8700	5.05178075271533 E-05	172.6358842587 750
merch_zip_actual/max_3	0.498795808577 0370	0.427069283547 4520	1.83482871873911 E-05	1.0
merch_zip_actual/med_3	1.674053388784 0300	4.515277393768 7600	6.75173857268247 E-05	481.5882352941 180
merch_zip_actual/total_3	0.343347245519 4510	0.406917983368 8750	6.13117025646685 E-06	1.0
merch_state_count_past_0	6.876489932259 300	18.99055783462 2500	1.0	260.0

	mean	std	min	max
merch_state_avg_0	395.4935219814 540	753.2679594221 17	0.01	27218.0
merch_state_max_0	513.1464754089 930	1034.432224656 5300	0.01	47900.0
merch_state_med_0	379.5579303297 870	742.4100891781 930	0.01	27218.0
merch_state_total_0	812.2904954511 050	2881.420713555 2400	0.01	217467.18
merch_state_actual/avg_0	1.003364617761 8800	0.642600936772 8600	8.94674450334385 E-05	37.95614247637 51
merch_state_actual/max_ 0	0.806957135736 7040	0.344064023475 9550	4.47357237121704 E-05	1.0
merch_state_actual/med_ 0	1.277142919108 9600	4.008545485853 940	8.94674450334385 E-05	553.819444444 450
merch_state_actual/total_ 0	0.711715261540 0380	0.397410165665 4540	4.47337225167192 E-05	1.0
merch_state_count_past_ 1	11.73694202101 7300	31.61176848184 7800	1.0	327.0
merch_state_avg_1	397.4701325882 6900	741.8916610578 320	0.01	27218.0
merch_state_max_1	609.8790436424 430	1283.554525508 1800	0.01	47900.0
merch_state_med_1	368.9248240090 5000	729.0488210170 950	0.01	27218.0
merch_state_total_1	1211.096614936 150	4472.693009185 230	0.01	306633.4100000 000
merch_state_actual/avg_1	1.000595588382 6500	0.785177028223 5870	8.94674450334385 E-05	43.42602163523 040
merch_state_actual/max_ 1	0.736691166834 8510	0.385015400613 5250	2.99371249934843 E-05	1.0
merch_state_actual/med_ 1	1.396475048430 3	4.471090411710 900	8.94674450334385 E-05	405.4495912806 54
merch_state_actual/total_ 1	0.626099743978 3440	0.422651710152 5950	2.82986486230044 E-05	1.0
merch_state_count_past_ 3	21.33048746330 28	55.15822403718 7500	1.0	466.0
merch_state_avg_3	397.3117100627 5700	719.6469064735 290	0.01	27218.0
merch_state_max_3	704.8319598120 46	1408.210739070 8000	0.01	47900.0
merch_state_med_3	359.2214491114 9000	707.3985617039 790	0.01	27218.0

	mean	std	min	max
merch_state_total_3	1745.214551697 6500	5400.807150321 140	0.01	307302.5800000 000
merch_state_actual/avg_3	1.000874722442 1400	0.938478944964 4880	8.94674450334385 E-05	64.09280649108 990
merch_state_actual/max_3	0.680345667033 6430	0.408329151270 5670	2.99371249934843 E-05	1.0
merch_state_actual/med_3	1.489849082482 4400	5.025373090702 200	8.94674450334385 E-05	467.8285714285 710
merch_state_actual/total_3	0.561087327681 677	0.433923867908 8580	1.84107143507023 E-05	1.0
merch_state_count_past_ 7	42.83912362417 920	106.0751821234 230	1.0	762.0
merch_state_avg_7	396.4815328498 180	682.2602386421 580	0.01	27218.0
merch_state_max_7	880.4677548055 950	1730.595748093 120	0.01	47900.0
merch_state_med_7	344.1577902839 310	670.5416929197 980	0.01	27218.0
merch_state_total_7	2984.570750438 27	7033.514884129 1600	0.01	313984.5500000 000
merch_state_actual/avg_7	0.997927665411 093	1.120457201499 4100	0.00012441873123 99880	82.46059846404 050
merch_state_actual/max_ 7	0.607541934285 1770	0.425392026201 9450	2.99371249934843 E-05	1.0
merch_state_actual/med_ 7	1.564566953514 130	4.720861537602 800	0.00013502565487 44260	473.9842105263 160
merch_state_actual/total_7	0.472152904644 3750	0.433635409972 8370	1.59201112061663 E-05	1.0
merch_state_count_past_ 14	77.33626565142 070	191.7980942888 7900	1.0	1091.0
merch_state_avg_14	397.8315339003 3800	655.5978173165 970	0.01	27218.0
merch_state_max_14	1075.652443748 3200	2136.758815391 500	0.01	47900.0
merch_state_med_14	333.8943384130 270	637.2974853080 400	0.01	27218.0
merch_state_total_14	5006.781304501 180	10367.24745897 0300	0.01	319334.6800000 000
merch_state_actual/avg_1 4	0.995855167080 2780	1.284720162077 220	0.00012385544300 43790	133.5333353248 190
merch_state_actual/max_ 14	0.551587755008 5060	0.429675006946 9320	2.99371249934843 E-05	1.0

	mean	std	min	max
merch_state_actual/med_ 14	1.619450997571 4900	4.660031104312 040	0.00013502565487 44260	473.9842105263 160
merch_state_actual/total_ 14	0.405346411184 1520	0.423714302774 5910	9.04250357416852 E-06	1.0
merch_state_count_past_ 30	149.2503086195 6300	376.1731995810 560	1.0	1828.0
merch_state_avg_30	397.2978433794 5700	614.4434360475 900	0.01	27218.0
merch_state_max_30	1375.047321493 470	2907.426818124 0500	0.01	47900.0
merch_state_med_30	320.2229599987 710	583.6327414390 770	0.01	27218.0
merch_state_total_30	9337.042756621 300	18075.76743358 2400	0.01	320373.0000000 000
merch_state_actual/avg_3	0.997505016878 6200	1.465637311526 240	5.05178075271533 E-05	172.6358842587 750
merch_state_actual/max_ 30	0.492094388251 4660	0.426598229095 6930	1.83482871873911 E-05	1.0
merch_state_actual/med_ 30	1.681165152161 6700	4.519008286616 85	6.75173857268247 E-05	481.5882352941 180
merch_state_actual/total_ 30	0.336490137672 7520	0.404627514639 5960	4.07661110889401 E-06	1.0
card_merch_zip_count_p ast_0	2.096164818407 2100	5.910668229775 540	1.0	145.0
card_merch_zip_avg_0	395.8020883305 830	796.9553802411 270	0.01	28392.84
card_merch_zip_max_0	421.2645834413 9300	935.8063314564 060	0.01	47900.0
card_merch_zip_med_0	393.4589484112 590	790.6559639950 370	0.01	28392.84
card_merch_zip_total_0	528.6314148780 590	2621.752534869 9100	0.01	217467.18
card_merch_zip_actual/a vg_0	0.999853517291 7880	0.220736339278 8380	8.94674450334385 E-05	20.24247672656 420
card_merch_zip_actual/m ax_0	0.956792105077 6910	0.166075714085 396	4.47357237121704 E-05	1.0
card_merch_zip_actual/m ed_0	1.026667050498 3200	0.676539608265 5630	8.94674450334385 E-05	100.0
card_merch_zip_actual/to tal_0	0.884774473485 6920	0.274595633727 4420	4.47337225167192 E-05	1.0
card_merch_zip_count_p ast_1	2.415614593815 1600	7.593669202165 6000	1.0	177.0

	mean	std	min	max
card_merch_zip_avg_1	397.1751237751 270	799.5189758294 690	0.01	28392.84
card_merch_zip_max_1	432.4782641575 9600	1010.230384471 7500	0.01	47900.0
card_merch_zip_med_1	394.4298590723 810	794.0340146644 570	0.01	28392.84
card_merch_zip_total_1	598.9970792659 560	4020.006638941 4200	0.01	306633.4100000 000
card_merch_zip_actual/a vg_1	0.997326015302 4170	0.254822741029 3100	8.94674450334385 E-05	20.24247672656 420
card_merch_zip_actual/m ax_1	0.941448680883 8170	0.193151751976 2300	4.47357237121704 E-05	1.0
card_merch_zip_actual/m ed_1	1.032688798118 2100	0.708265025794 619	8.94674450334385 E-05	71.1111111111 110
card_merch_zip_actual/to tal_1	0.859149681103 3860	0.298568010874 3970	4.47337225167192 E-05	1.0
card_merch_zip_count_p ast_3	3.024814050229 780	10.97633845409 7100	1.0	248.0
card_merch_zip_avg_3	398.0799087035 7100	797.3140034977 68	0.01	28392.84
card_merch_zip_max_3	441.2480878035 6	1014.527080514 5600	0.01	47900.0
card_merch_zip_med_3	394.6479938172 380	792.1389064256 750	0.01	28392.84
card_merch_zip_total_3	630.4837220038 000	4062.598677760 760	0.01	306633.4100000 000
card_merch_zip_actual/a vg_3	0.994883017611 8110	0.296182018950 6790	8.94674450334385 E-05	20.24247672656 420
card_merch_zip_actual/m ax_3	0.921272971394 6590	0.222539571377 7360	4.47357237121704 E-05	1.0
card_merch_zip_actual/m ed_3	1.053650924315 5900	1.501070063018 380	8.94674450334385 E-05	301.1031518624 640
card_merch_zip_actual/to tal_3	0.828457059466 5280	0.324356310895 1840	4.47337225167192 E-05	1.0
card_merch_zip_count_p ast_7	4.047823065033 140	15.65438035227 2600	1.0	358.0
card_merch_zip_avg_7	399.8031745302 1600	792.7996465006 560	0.01	28392.84
card_merch_zip_max_7	458.7136246978 6400	1022.683415637 810	0.01	47900.0
card_merch_zip_med_7	394.6616550307 6600	788.0835911348 910	0.01	28392.84

	mean	std	min	max
card_merch_zip_total_7	689.3981304397 480	4103.384530312 490	0.01	306633.4100000 000
card_merch_zip_actual/a vg_7	0.989387867711 614	0.362233169899 2400	8.94674450334385 E-05	20.24247672656 420
card_merch_zip_actual/m ax_7	0.887858701234 2440	0.262679073584 1150	4.47357237121704 E-05	1.0
card_merch_zip_actual/m ed_7	1.079852572561 8600	2.198541089355 900	8.94674450334385 E-05	442.8697962798 940
card_merch_zip_actual/to tal_7	0.780693191586 6960	0.356284738900 9100	4.47337225167192 E-05	1.0
card_merch_zip_count_p ast_14	5.338454516219 380	19.04477918172 6300	1.0	369.0
card_merch_zip_avg_14	401.7661537161 7700	789.9661946928 78	0.01	28392.84
card_merch_zip_max_14	480.0050171685 8400	1043.470578465 870	0.01	47900.0
card_merch_zip_med_14	394.6059527267 530	786.1207942356 15	0.01	28392.84
card_merch_zip_total_14	769.9882665435 680	4168.109411105 910	0.01	306633.4100000 000
card_merch_zip_actual/a vg_14	0.987093025162 0140	0.431227138215 4610	8.94674450334385 E-05	23.11321693279 610
card_merch_zip_actual/m ax_14	0.854862581998 3170	0.293788235015 3200	4.47357237121704 E-05	1.0
card_merch_zip_actual/m ed_14	1.112798140553 4	2.286752118534 170	8.94674450334385 E-05	400.0
card_merch_zip_actual/to tal_14	0.735083182848 6720	0.379216377310 1350	4.47337225167192 E-05	1.0
card_merch_zip_count_p ast_30	7.730987478863 45	27.43106785422 070	1.0	409.0
card_merch_zip_avg_30	403.8529294217 6100	784.3059375736 170	0.01	28392.84
card_merch_zip_max_30	512.4081991140 800	1066.073172787 2700	0.01	47900.0
card_merch_zip_med_30	393.2419436808 290	783.5668451009 590	0.01	28392.84
card_merch_zip_total_30	923.2491665715 740	4299.242153297 42	0.01	306633.4100000 000
card_merch_zip_actual/a vg_30	0.983425218092 392	0.513102933555 5280	0.00010127265975 76210	25.02564005165 990
card_merch_zip_actual/m ax_30	0.810690575917 1090	0.327442177369 7500	4.47357237121704 E-05	1.0

	mean	std	min	max
card_merch_zip_actual/m ed_30	1.151086589085 1400	2.284218939148 5800	6.75173857268247 E-05	397.8609625668 450
card_merch_zip_actual/to tal_30	0.675864187430 89	0.400076849933 1640	3.08737697855255 E-05	1.0
card_merch_state_count_ past_0	2.096984345985 870	5.910722410854 620	1.0	145.0
card_merch_state_avg_0	395.7954882202 7500	796.9244773481 780	0.01	28392.84
card_merch_state_max_0	421.2988777659 050	935.8048247748 36	0.01	47900.0
card_merch_state_med_0	393.4523657893 930	790.6278397347 720	0.01	28392.84
card_merch_state_total_0	528.9235544674 650	2621.904713042 960	0.01	217467.18
card_merch_state_actual/avg_0	0.999829471433 516	0.220870012622 8540	8.94674450334385 E-05	20.24247672656 420
card_merch_state_actual/ max_0	0.956721410691 394	0.166217363283 9750	4.47357237121704 E-05	1.0
card_merch_state_actual/med_0	1.026648689941 0700	0.676580694790 6870	8.94674450334385 E-05	100.0
card_merch_state_actual/total_0	0.884519429907 2400	0.274817491452 8930	4.47337225167192 E-05	1.0
card_merch_state_count_ past_1	2.416776455698 830	7.593735303164 1600	1.0	177.0
card_merch_state_avg_1	397.1925216136 950	799.4981746532 920	0.01	28392.84
card_merch_state_max_1	432.5841540711 83	1010.288987531 200	0.01	47900.0
card_merch_state_med_1	394.4320962270 640	794.0080605559 890	0.01	28392.84
card_merch_state_total_1	599.5676861313 140	4020.348912663 0600	0.01	306633.4100000 000
card_merch_state_actual/avg_1	0.997297976014 8010	0.255018372907 9900	8.94674450334385 E-05	20.24247672656 420
card_merch_state_actual/ max_1	0.941339421373 9110	0.193337604986 6120	4.47357237121704 E-05	1.0
card_merch_state_actual/med_1	1.032669356577 0200	0.708329581119 57	8.94674450334385 E-05	71.1111111111 110
card_merch_state_actual/total_1	0.858816086709 075	0.298803838136 5190	4.47337225167192 E-05	1.0
card_merch_state_count_ past_3	3.026235256283 9100	10.97632144501 6800	1.0	248.0

	mean	std	min	max
card_merch_state_avg_3	398.1077160252 6000	797.2880888359 830	0.01	28392.84
card_merch_state_max_3	441.3971925474 840	1014.593330573 2900	0.01	47900.0
card_merch_state_med_3	394.6649539923 470	792.1192515254 100	0.01	28392.84
card_merch_state_total_3	631.2007192132 560	4063.004320333 8600	0.01	306633.4100000 000
card_merch_state_actual/ avg_3	0.994815908090 1580	0.296447185627 0490	8.94674450334385 E-05	20.24247672656 420
card_merch_state_actual/max_3	0.921086145561 5250	0.222798224117 3410	4.47357237121704 E-05	1.0
card_merch_state_actual/med_3	1.053600664459 5300	1.501121654334 2000	8.94674450334385 E-05	301.1031518624 640
card_merch_state_actual/total_3	0.828038936685 9950	0.324611388929 3160	4.47337225167192 E-05	1.0
card_merch_state_count_ past_7	4.050240152701 850	15.65434925629 3300	1.0	358.0
card_merch_state_avg_7	399.8349951603 1600	792.5273172238 670	0.01	28392.84
card_merch_state_max_7	459.0051619863 690	1022.817434408 6100	0.01	47900.0
card_merch_state_med_7	394.6762665331 9800	787.8207440887 350	0.01	28392.84
card_merch_state_total_7	690.5641550048 280	4104.138786193 850	0.01	306633.4100000 000
card_merch_state_actual/avg_7	0.989302232446 8690	0.362632642055 7430	8.94674450334385 E-05	20.24247672656 420
card_merch_state_actual/ max_7	0.887533725025 9500	0.263015031870 0560	4.47357237121704 E-05	1.0
card_merch_state_actual/med_7	1.079901495106 5100	2.198752093660 190	8.94674450334385 E-05	442.8697962798 940
card_merch_state_actual/ total_7	0.780059936420 2690	0.356556420556 419	4.47337225167192 E-05	1.0
card_merch_state_count_ past_14	5.342074960839 03	19.04457096403 430	1.0	369.0
card_merch_state_avg_14	401.9016837649 370	791.3249723956 890	0.01	28392.84
card_merch_state_max_1	480.6955081589 670	1047.319425618 860	0.01	47900.0
card_merch_state_med_1 4	394.7026344180 92	787.5157525616 360	0.01	28392.84

	mean	std	min	max
card_merch_state_total_1 4	771.9782721454 000	4170.624603431 230	0.01	306633.4100000 000
card_merch_state_actual/avg_14	0.987063095899 2160	0.431761659110 7430	8.94674450334385 E-05	23.11321693279 610
card_merch_state_actual/ max_14	0.854405714570 3620	0.294138242100 1110	4.47357237121704 E-05	1.0
card_merch_state_actual/med_14	1.112994001415 640	2.287105662232 4500	8.94674450334385 E-05	400.0
card_merch_state_actual/ total_14	0.734243412931 0320	0.379449222897 8490	4.47337225167192 E-05	1.0
card_merch_state_count_ past_30	7.736827909582 2500	27.43029949940 7100	1.0	409.0
card_merch_state_avg_30	404.1101791757 680	786.6247640300 260	0.01	28392.84
card_merch_state_max_3	513.7273817649 920	1073.365672223 41	0.01	47900.0
card_merch_state_med_3	393.4056344595 8800	785.1463372824 670	0.01	28392.84
card_merch_state_total_3	926.7034823697 830	4304.260438540 560	0.01	306633.4100000 000
card_merch_state_actual/avg_30	0.983450026143 9720	0.514026901945 3740	0.00010127265975 76210	25.02564005165 990
card_merch_state_actual/ max_30	0.809928963319 6670	0.327883003403 8490	4.47357237121704 E-05	1.0
card_merch_state_actual/med_30	1.151422361665 380	2.285248260688 5000	6.75173857268247 E-05	397.8609625668 450
card_merch_state_actual/ total_30	0.674517727601 4610	0.400238653436 2250	3.08737697855255 E-05	1.0
Cardnum_number0/7	3.321442054597 9900	2.212497514934 530	0.01977401129943 500	7.0000000000000000000000000000000000000
Cardnum_amt0/7	3.206817167241 870	2.614278549190 4600	0.00027518968431 81190	7.0000000000000000000000000000000000000
Cardnum_number0/14	4.723966732057 960	4.015722100015 700	0.03693931398416 8900	14.0000000000 000
Cardnum_amt0/14	4.514457177489 080	4.700536257074 6000	0.00018304852943 38770	14.0000000000 000
Cardnum_number0/30	6.545280440124 33	7.123550194135 620	0.07042253521126 760	30.000000000000000000000000000000000000
Cardnum_amt0/30	6.167426775231 710	8.219552768108 7	0.00021624325636 39490	30.000000000000000000000000000000000000
Cardnum_number1/7	3.991010606747 100	2.134394085208 0000	0.01977401129943 500	7.0000000000000000000000000000000000000

	mean	std	min	max
Cardnum_amt1/7	3.900402622822 5000	2.556275375395 0400	0.00027518968431 81190	7.0000000000000000000000000000000000000
Cardnum_number1/14	5.664782961623 390	4.074512368883 3300	0.03713527851458 890	14.0000000000 000
Cardnum_amt1/14	5.493205448123 460	4.822530667765 430	0.00018304852943 38770	14.0000000000 000
Cardnum_number1/30	7.839466552963 710	7.458252792026 640	0.07058823529411 770	30.000000000000000000000000000000000000
Cardnum_amt1/30	7.508501599209 700	8.675311545538 260	0.00021624325636 39490	30.000000000000000000000000000000000000
Merchnum_number0/7	3.999787708022 970	2.693857118231 0500	0.01044776119402 9900	7.00000000000 000
Merchnum_amt0/7	3.977396809481 850	2.853843905629 7600	0.00012711887943 96000	7.0000000000000000000000000000000000000
Merchnum_number0/14	6.707737604039 3100	5.526370772497 220	0.01382033563672 2600	14.0000000000 000
Merchnum_amt0/14	6.656653937009 0600	5.811223081532 710	0.00017745964284 38280	14.0000000000 000
Merchnum_number0/30	11.69438038704 7900	11.63612748798 6600	0.01678791270285 3900	30.000000000000000000000000000000000000
Merchnum_amt0/30	11.59615942240 5400	12.17904725931 81	0.00020588817575 32520	30.000000000000000000000000000000000000
Merchnum_number1/7	4.490929396030 730	2.422992666500 360	0.0145833333333 3300	7.0000000000000000000000000000000000000
Merchnum_amt1/7	4.472783708432 3300	2.599307332266 13	0.00047258979206 04920	7.0000000000000000000000000000000000000
Merchnum_number1/14	7.354281294668 330	5.245438519089 6200	0.01680672268907 560	14.0000000000 000
Merchnum_amt1/14	7.313637856276 56	5.556322747641 250	0.00094517958412 09830	14.0000000000 000
Merchnum_number1/30	12.58482209498 4200	11.39198135003 0600	0.01781472684085 5100	30.000000000000000000000000000000000000
Merchnum_amt1/30	12.51739205840 6700	11.97366013505 5000	0.00030310684516 29200	30.000000000000000000000000000000000000
Proba DOW	0.011120965818 28100	0.007295916042 69723	0.00665157090291 5370	0.040021929824 5614
Proba state	0.010333128090 98190	0.009438363625 30129	0.0	0.057391304347 8261

Appendix C: Top 30 Variables

	variables
1	card_merch_state_total_14
2	card_merch_zip_total_7
3	card_zip_total_3
4	card_merch_total_14
5	card_state_total_3
6	card_merch_zip_total_14
7	card_merch_state_total_3
8	card_state_total_7
9	card_zip_total_1
10	card_merch_state_total_30
11	card_merch_total_1
12	card_merch_zip_total_30
13	card_merch_zip_total_1
14	card_state_max_7
15	card_zip_max_30
16	card_state_total_30
17	card_zip_max_7
18	card_state_max_30
19	card_merch_zip_max_7
20	card_merch_zip_max_3
21	card_state_max_1
22	card_zip_max_1
23	merch_zip_total_1
24	Merchnum_max_0
25	Merchnum_total_0
26	Cardnum_total_1
27	Merchnum_total_3
28	merch_zip_max_3
29	card_zip_max_0
30	Cardnum_total_0