Projekt

WIZUALIZACJA DANYCH SENSORYCZNYCH

Wizualizacja danych z czujników otoczenia robota mobilnego "Wędrowiec"

Michał Dołharz, 248943

Prowadzący: dr inż. Bogdan Kreczmer

Katedra Cybernetyki i Robotyki Wydziału Elektroniki Politechniki Wrocławskiej

Spis treści

1	Charakterystyka tematu projektu	1
2	Podcele i etapy realizacji projektu	1
3	Specyfikacja finalnego produktu	2
4	Harmonogram prac 4.1 Terminarz realizacji poszczególnych podcelów	3 3
	4.2 Namene miowe	

1 Charakterystyka tematu projektu

Celem projektu jest stworzenie aplikacji ostrzegającej o przeszkodach w otoczeniu robota mobilnego w oparciu o biblioteki Qt [10] języka C++, czujniki ultradźwiękowe HC-SR04 [5] oraz mikrokontroler Arduino Nano [1]. Wizualizacja ma przypominać wizualizację danych z czujników samochodu, wyświetlaną na wewnętrznym, wbudowanym ekranie.

Robot mobilny o kryptonimie "Wędrowiec" będzie budowany w ramach projektu z kursu Roboty mobilne. W założeniu ma obsługiwać dwa tryby pracy: autonomiczny, gdzie po wykryciu przeszkody na drodze zmienia trajektorię ruchu oraz zdalnie sterowany z pilota budowanego również w ramach tego kursu. Integracja obu projektów przewidziana jest jako ostatni etap ich realizacji.

Projekt samej aplikacji będzie zależał od wyników testów czujników. W najbardziej optymistycznej wersji aplikacja będzie obsługiwała trzy widoki: czujniki przednie (pięć czujników jak na rysunku 1), czujniki tylne (analogicznie jak przednie, ale widok odbity w poziomie) oraz całe otoczenie pojazdu. Odpowiednie widoki będą wywoływane automatycznie przy wykryciu przeszkody.

Przy tworzeniu aplikacji zostaną wykorzystane materiały pomocnicze dostępne w Internecie [9][3][4][2][8]. Podobnie przy projektowaniu schematu ideowego oraz programowaniu mikrokontrolera zostaną wykorzystane internetowe żródła wiedzy [12][13], a także materiały drukowane [6][7].

Rysunek 1: Rysunek koncepcyjny okna aplikacji.

2 Podcele i etapy realizacji projektu

Każdy etap budowy aplikacji lub platformy czujników wymieniony poniżej będzie podlegał serii testów. Po ich analizie korygowane będą rzeczy takie jak ustawienie czujników, oprogramowanie czy kod aplikacji. Wyniki niektórych testów będą dodatkowo podstawą do dalszych konfiguracji i doboru optymalnych parametrów.

Podział na główne etapy prezentuje się następująco:

- 1. Zebranie literatury na tematy powiązane z tematem projektu.
- 2. Projekt układu elektronicznego (schemat ideowy). Projekt interfejsu graficznego.
- 3. Tworzenie aplikacji oraz testowanie czujników jeszcze bez platformy:
 - (a) Stworzenie wstępnej wersji aplikacji komunikującej się z mikrokontrolerem.
 - (b) Rozbudowa aplikacji o obsługę jednego czujnika. Wyświetlanie tekstowe danych.

- (c) Rozbudowa aplikacji o obsługę pięciu czujników.
- (d) Rozbudowa aplikacji o graficzną wizualizację danych.
- (e) Testowanie modułu czujnika VL53L1X [11] pod kątem użycia jako czujnika wspomagającego.
- 4. Budowa platformy czujników.
- 5. Rozbudowa aplikacji o obsługę przednich oraz tylnych czujników.
- 6. Integracja platformy z robotem mobilnym.
 - (a) Prawdopodobne poprawki oprogramowania.
 - (b) Możliwe poprawki ustawienia czujników.
 - (c) Testy gotowego urządzenia.

3 Specyfikacja finalnego produktu

Finalna wersja aplikacja powinna charakteryzować się:

- poprawnym połączeniem z urządzeniem oraz poprawną komunikacją,
- poprawną interpretacją i graficzną wizualizacją danych pochodzących z czujników,
- obsługą dziesięciu niezależnych czujników HC-SR04,
- prostym, intuicyjnym i automatycznym interfejsem (ewentualnie z minimalną interakcją użytkownika) składającym się z trzech widoków: przedniego, tylnego, oraz całościowego.

Wykonana platforma czujników (bez integracji z robotem mobilnym) powinna charakteryzować się:

- zamocowaniem dziesięciu czujników HC-SR04,
- zasięgiem dobranym jako optymalny w trakcie testów czujników,
- możliwością przymocowania do robota mobilnego (a zatem dostosowanie do niego pod względem rozmieszczenia elementów),

Robot mobilny zintegrowany z platformą czujników powinien charakteryzować się:

- odmienną reakcją w zależności od trybu pracy i czujników wykrywających przeszkodę,
- zredukowaną maksymalną prędkością w trakcie wizualizacji (kwestia bezpieczeństwa ze względu na komunikację przewodową).

4 Harmonogram prac

4.1 Terminarz realizacji poszczególnych podcelów

(z dokładnością do 1 tygodnia)

Każdy tydzień pracy w poniższym rozkładzie oprócz opisanych czynności zakłada testowanie wprowadzanych rozwiązań na bieżąco.

Harmonogram prac w rozkładzie tygodniowym prezentuje się następująco (podkreślone terminy oznaczają kolejne terminy oddania raportów z postępu prac nad projektem):

- <u>22 marca 2020</u> zakończenie przeglądu materiałów związanych z tematem.
- <u>29 marca 2020</u> zaprojektowanie schematu układu elektronicznego z uwzględnieniem wersji z jednym czujnikiem, pięcioma oraz dziesięcioma oraz zaprojektowanie interfejsu graficznego.
- 12 kwietnia 2020 wstępna wersja aplikacji, komunikacja z mikrokontrolerem.
- <u>19 kwietnia 2020</u> rozbudowanie aplikacji o obsługę jednego czujnika (tekstowe wyświetlanie danych).
- 26 kwietnia 2020 rozbudowanie aplikacji o obsługę pięciu czujników (bez uwzględniania ich rozmieszczenia na platformie lub robocie).
- 4 maja 2020 praca nad rozbudowaniem aplikacji o graficzną wizualizację danych (wersja uproszczona graficznie).
- 10 maja 2020 stworzenie graficznej wizualizacji danych z uwzględnieniem przyszłej implementacji dodatkowych okien widoków oraz rozmieszczenia czujników na platformie.
- 17 maja 2020 zbudowanie platformy czujników z uwzględnieniem przyszłego mocowania na robocie.
- <u>24 maja 2020</u> praca nad rozbudowaniem aplikacji o obsługę czujników przednich i tylnych (łącznie dziesięć czujników).
- 31 maja 2020 zaimplementowanie obsługi wszystkich dziesięciu czujników oraz trzech okien widoków i ich automatycznego wywoływania.
- 7 czerwca 2020 praca nad integracją platformy i robota. Fizyczne mocowanie platformy do robota. Przeprojektowanie (połaczenie) schematów ideowych.
- <u>14 czerwca 2020</u> Przeprogramowanie mikrokontrolerów robota i platformy do komunikacji i współpracy. Testy gotowego urządzenia w obu trybach robota.

Rysunek 2: Diagram Gannta wykonywanych prac.

4.2 Kamienie milowe

W harmonogramie prac nad projektem wyszczególnione są cztery kamienie milowe:

- 1. Pierwszy kamień milowy zakłada stworzenie aplikacji zdolnej do komunikacji z mikrokontrolerem oraz tekstowym wyświetlaniem danych pochodzących z jednego czujnika.
- 2. Drugi kamień milowy zakłada rozbudowanie aplikacji do obsługi pięciu czujników (nieprzymocowanych do platformy) i graficznego wyświetlania danych. Na tym etapie gotowe jest okno widoku przednich czujników.
- 3. Trzeci kamień milowy zakłada rozbudowę aplikacji o obsługę czujników tylnych oraz budowę właściwej platformy czujników. Na tym etapie aplikacja jest gotowa.
- 4. Czwarty kamień milowy zakłada połączenie robota mobilnego i platformy czujników. Robot jest odpowiednio przeprogramowany, aby jego reakcja zależała od odpowiednich czujników.

Literatura

- [1] Arduino. Arduino Nano (V2.3) User Manual.
- [2] Cairns B. Qt 5 Core Advanced with C++. Udemy, 2020. www.udemy.com/course/qt-core-advanced.
- [3] Cairns B. Qt 5 Core for Begginers with C++. *Udemy*, 2020. www.udemy.com/course/qt-core-for-beginners.
- [4] Cairns B. Qt 5 Core Intermediate with C++. *Udemy*, 2020. www.udemy.com/course/qt-core-intermediate.
- [5] Elecfreaks. HC-SR04 Datasheet.
- [6] Kardaś M. *Mikrokontrolery AVR Język C podstawy programowania*. Atnel, Szczecin, wydanie II poprawione i uzupełnione, 2013.

- [7] Kardaś M. Język C. Pasja programowania mikrokontrolerów 8-bitowych. Atnel, Szczecin, wydanie II poprawione i uzupełnione, 2014.
- [8] Munteanu D. Robust Qt & C++ Gui Programming 2D Graphics App Tutorial. *Udemy*, 2020. www.udemy.com/course/qt5-gui-cpp-programming-tutorial-2d-graphics.
- [9] Patyk M. Kurs Qt. Forbot, 2021.
- [10] Qt Development Frameworks. Strona Internetowa biblioteki Qt. www.qt.io.
- [11] STMicroelectronics. VL53L1X Datasheet.
- [12] Szymański D. Kurs Arduino. Poziom I. Forbot, 2021. www.forbot.pl/blog/kurs-arduino-podstawy-programowania-spis-tresci-kursu-id5290.
- [13] Szymański D. Kurs Arduino. Poziom II. Forbot, 2021. www.forbot.pl/blog/kurs-arduino-ii-wstep-spis-tresci-id15494.