上机实验报告

姓名: 祝海涛

学号: 024415910010

(Lab report: please finish the following tasks and submit your

report to course website)

在超算/lustre/share/class/BIO8402/lab/data/路径下,拟南芥 illumina 测序数据 为SRR5029637.fasta,拟南芥参考基因组 GCF 000001735.3 TAIR10 genomic.fna 及 用 makeblastdb 所建 index,用 BLAST 2.5.0+(blastn)进行比对。 (In Pi2.0, please use makeblastdb to create a database for blast program. Data are under /lustre/share/class/BIO8402/lab/data/, including illumine sequencing data

SRR5029637.fasta, the reference genome **Arabidopsis** for GCF_000001735.3_TAIR10_genomic.fna. Use BLAST 2.5.0+(blastn) for sequence

alignment.)

测序数据:

/lustre/share/class/BIO8402/lab/data/SRR5029637.fasta

```
[stu542@pilogin4 RNA]$ cat /lustre/share/class/BI08402/lab/data/SRR5029637.fasta | head -n 10
>SRR5029637.1 SEQCORE-1795804:236:HWKKCADXX:1:1101:1245:2059 length=101
AANGCCAAAGACTCATACGGACTTTGGCTACACCATGAAAGCTTTGAGAAGCTAGAAGAAGGTTĞGTTAG
TGTTTTGGAGTCGAATATGACTTGATGTCAT
>SRR5029637.2 SEQCORE-1795804:236:HWKKCADXX:1:1101:1185:2076 length=101
ATCCATATTATGCAAGGAGACATTGCTTTTGCTAATTCGAATTGAAGGGTGNTATAAAATCGGTCTATTT
CCAACATCATATCCATAGTTAGCGCATTCAT
>SRR5029637.3 SEQCORE-1795804:236:HWKKCADXX:1:1101:1158:2093 length=101
CTTTGATTATAGATAGAAGAGACCTTAGAGGGCCATCTCAGCCTGTAATGCNGCGAGTTCTTCTTCCTCA
GCAGTCCGCTTCTGGGGAACAGGACGAGCCG
>SRR5029637.4 SEQCORE-1795804:236:HWKKCADXX:1:1101:1358:2058 length=101
[stu542@pilogin4 RNA]$
```

```
参考基因组:/lustre/share/class/BIO8402/lab/data/GCF 000001735.3 TAIR10 genomic.fna
```

/tustre/share/ctass/b100402/tab/data/shk502905/.Tasta/dcr_000001755.5_TATK10_genomic.Tha. Not a directory [stu542@pilogin4 RNA]\$ cat /lustre/share/class/B108402/lab/data/GCF_000001735.3_TAIR10_genomic.fna | head -n 10 >NC_003070.9 Arabidopsis thaliana chromosome 1 sequence $\verb|ccctaaaccctaaaccctaaaccttGAATCCTTAATCCCTAAATCCCTAAATCTTTAAATCCTACATCCATG| |$ CGTTTTTATGTAATTGCTTATTGTTGTGtgtagattttttaaaaatatcatttgagGTCAATACAAATCCTATTTCTTGT GGTTTTCTTTCCTTCACTTAGCTATGGATĞGTŤTATCTTCATTTGTTATATTGĞAŤACAAGCTTTGCTACGATCTACATT TGGGAATGTGAGTCTCTTATTGTAACCTTAGGGTTGGTTTATCTCAAGAATCTTATTAATTGTTTGGACTGTTTATGTTT taGGGATGAAGTCTTTCTTCGTTGTTACTTACCCTTGTCATCTCTCATCTCAATGATATGGGATGGTCCTTTAGCATTTAT TCTGAAGTTCTTCTGCTTGATGATTTTATCCTTAGCCAAAAGGATTGGTGGTTTGAAGACACATCATATCAAAAAAGCTA

makeblastdb 所建 index BLAST 2.5.0+(blastn)

1) 请填写数据量大小?(10分) (what is the size of the input file?, 10 points)

文件大小(file size): 5.8G

read 数 (read number): 33884651

每条 read 长度(the read length): 101 (python和record同)

```
42249645.err 42249645.out blast.slurm chrzi.ndb chrzi.nhr chrzi.nth chrzi.njs chrzi.not chrzi.ns [stu542@pilogin4 RNA]$ ls -lh /lustre/share/class/BI08402/lab/data/SRR5029637.fasta -rw-rwxr--+ 1 stu438 stu438 5.86 Mar 5 2024 /lustre/share/class/BI08402/lab/data/SRR5029637.fasta [stu542@pilogin4 RNA]$
```

```
CIIIZI.IA MJ4IIJ IOOJIJ IO4J4J.JADICAAJ.DAM JIM
 [stu542@pilogin4 data]$ tree -h .
         4.0K] AS
                835]
                         AS.nhr
                1847
                         AS.nin
                29M]
                         AS.nsq
          45M]
                   chr21.fa
         116M]
                   GCF 000001735.3 TAIR10 genomic.fna
                   m54113 160913 184949.subreads.bam
         9.3G1
         5.8G]
                   SRR5029637.fasta
         5.5G
                   SRR5231434.fastq
                   SRR5231434.fastq.gz
         1.2Gl
                   SRR5811639.fastq.gz
         1.4G7
           14M]
                   wget-log
1 directory, 11 files
[stu542@pilogin4 data]$
[stu542@pilogin4 data]$ grep ">" /lustre/share/class/BI08402/lab/data/SRR5029637.fasta | wc -l
[stu542@pilogin4 data]$
>SRR5029637.1 SEQCORE-1795804:236:HWKKCADXX:1:1101:1245:2059 length=101
AANGCCAAAGACTCATACGGACTTTGGCTACACCATGAAAGCTTTGAGAAGCTAGAAGAAGGTTĞGTTAG
TGTTTTGGAGTCGAATATGACTTGATGTCAT
>SRR5029637.2 SEQCORE-1795804:236:HWKKCADXX:1:1101:1185:2076 length=101
ATCCATATTATGCAAGGAGACATTGCTTTTGCTAATTCGAATTGAAGGGTGNTATAAAATCGGTCTATTT
CCAACATCATATCCATAGTTAGCGCATTCAT
>SRR5029637.3 SEQCORE-1795804:236:HWKKCADXX:1:1101:1158:2093 length=101 CTTTGATTATAGATAGAAGAGACCTTAGAGGGCCATCTCAGCCTGTAATGCNGCGAGTTCTTCTTCCTCA
```

2) blastn 支持 MPI 吗?若不支持,为保证在同一个节点上计算,当指定核数-n大于等于 2 时,超算上要和哪个参数一起使用? (10 分)

(Does blastn support MPI? If not, what parameter you need to use to ensure your task will run in one node if you use option $-n \ge 2$?)

Blastn不支持跨节点计算MPI:

★区分-n 和--ntasks-per-node (Note: -n and --ntasks-per-node is different)

②当任务**不支持 MPI** 时时,假如要指定 cpu 节点 8 个核,-n 和--ntasks-per-node 要一起使用才能**保证 8 个核心都来自同一个节点上**。

(If MPI is not required for a task, if you want to assign 8 cores to a cpu node, you should use options -n and -ntasks-per-node simultaneously to ensure the 8 cores are from the same node.)

#SBATCH -n 8 #SBATCH --ntasks-per-node=8

-n和--ntasks-per-node参数一起用

3) 选择什么参数? (20分)

(Which parameter should you choose?, 20 points) 将拟南芥测序数据 SRR5029637.fasta 与其参考基因组进行 blastn 比对,在给定条件下选择 slurm 作业参数:任务名为 blastn,指定核数为 8,指定最大虚拟内存数为 200G,作业结束后发邮件通知,希望输出报错文件。请在要选择的参数处√,需要填写具体数目的请填写。

(Please align a sequence file SRR5029637.fasta to the Arabidopsis reference genome using blastn. Choose the slurm parameters as required: task name as blastn, number of cores 8, maximum verture memory 200GB, send a mail after task finishs, output an error file. Please put a \checkmark if you need to specify this parameter and fill the cell with a value if needed.)

是否选择及数目 (parameter value)

参数(parameters)

#!/bin/bash	
#SBATCH job-name = fastqc	√, blastn
#SBATCHpartition=cpu	√, huge
#SBATCH -n 16	√, 8
#SBATCHntasks-per-node=16	√, 8
#SBATCHmail-type=end	√,结束时通知
#SBATCHmail-user=[your_mail_address]	√, zht161932@sjtu.edu.cn
#SBATCHoutput=%j.out	√,普通输出log
#SBATCHerror=%j.err	√,错误输出文件

Pi2.0 中的队列

- 1) cpu 允许单作业 CPU 核数为 1~24000, 每核配比 4G 内存, 节点可共享使用; 单节点配置为 40 核, 192G 内存
- 2) huge 允许单作业 CPU 核数为 1~80,每核配比 35G 内存,节点可共享使用;单节点配置为 80 核,3T 内存
- 3) 192c6t 允许单作业 CPU 核数为 1~192, 每核配比 31G 内存, 节点可共享使用; 单节点配置为 192 核, 6T 内存

因为是使用cpu队列,

指定最大虚拟内存数为 200G

而每核配比4G内存,所以我们需要申请50核,但是单节点配置最多就是40核,需要多节点因为blastn不支持MPI,

所以我们用其他队列,比如说是huge——》在限制8核内,每个核起码25G内存-n以及-ntasks-per-node

4)阅读以下实例分析,考虑应该选择的线程数 (10) (read the analysis below and give the number of threads you need to set. 10 points) 拟南芥 pacbio 测序数据 subreads-A01.fasta(数据文件未提供),数据量大小: 5.2G, reads 数目: 561176,每条 read 长度不等,碱基总数: 748508361。用 BLAST 2.5.0+与拟南芥参考基因组进行比对,在用整个文件比对前首先用小文件进行测试,选择最重要的参数-n=? -num_threads=?

BLAST 2.5.0+(blastn)

```
[stu542@pilogin3 RNA]$ blastn -help | grep " -n"
  -num_descriptions <Integer, >=0>
  -num_alignments <Integer, >=0>
  -negative_gilist <String>
  -negative_seqidlist <String>
  -negative_taxids <String>
  -negative_taxidlist <String>
  -no_greedy
  -num_threads <Integer, >=1>
[stu542@pilogin3 RNA]$ module load blast-plus
[stu542@pilogin3 RNA]$ blastn
BLAST query/options error: Either a BLAST database or subject sequence(s) must be specified Please refer to the BLAST+ user manual.
[stu542@pilogin3 RNA]$
```

在本例中,选择了 100 条 reads、561 条 reads 和 1000 条 reads 三个文件分别 进行 blastn 比对,选择核数分别为 1, 2, 4, 8, 16, 线程参数选择为 1, 2, 4, 8, 16, 32, 64, 统计出在固定核和固定线程下的计算时间,然后估算出相应参数下整个文件 subreads-A01.fasta 计算完成的时间,并计算出在相应参数下的计算核时。

Supporse we have a sequence file subreads-A01.fasta (data file not provided), the size of the file: 5.2GB, the number of reads: 561176, the length for each read is different, and the total number of bases: 748508361. If you want to align this file to the Arabidopsis reference genome using BLAST 2.5.0+, before you use the whole file you want to test the pipeline with a smaller file. Please choose two important parameters -n=? and -num tread=?)

100 条 reads	的计算时间	(s)	(computing	${\tt time}$	for	100	reads)

thread	1	2	4	8	16	32	64
n1	460	462	462	463	463	463	463
n2		330	267	257	277	262	259
n4			207	205	207	201	199
n8				196	192	191	191
n16					188	190	190

561 条 reads 的计算时间(s)(computing time for 561 reads)

thread	1	2	4	8	16	32	64
n1	1220	1340	1354	1350	1345	1343	1229
n2		753	765	776	778	800	765
n4			623	598	573	570	578
n8				522	517	517	517
n16					505	502	503

1000 条 reads 的计算时间(s)(computing time for 1000 reads)

thread	1	2	4	8	16	32	64
n1	2409	2420	2432	2436	2429	2428	2431
n2		1334	1389	1357	1342	1365	1383
n4			1032	1012	996	1007	1005
n8	·			937	929	932	931
n16					909	910	912

根据 100 条 reads 测试结果估算原文件的计算时间(h) (Estimated computing time (hours) based on 100 reads)

thread	1	2	4	8	16	32	64
n1	717.06	720. 18	720. 18	721.73	721.73	721.73	721.73
n2		514.41	416. 21	400.62	431.79	408.41	403. 73
n4			322.68	319.56	322.68	313.32	310. 21
n8				305. 53	299. 29	297. 74	297. 74
n16					293.06	296. 18	296. 18

根据 561 条 reads 测试结果估算原文件的计算时间(h) (Estimated computing time (hours) based on 561 reads)

thread	1	2	4	8	16	32	64
n1	339.00	372.34	376 . 23	375 . 12	373. 73	373. 17	341.50
n2		209. 23	212. 57	215.62	216. 18	222. 29	212. 57
n4			173. 11	166. 16	159. 22	158.38	160.61
n8				145.05	143.66	143.66	143.66
n16					140. 32	139. 49	139. 77

根据 1000 条 reads 测试结果估算原文件的计算时间(h) (Estimated computing time (hours) based on 1000 reads)

thread	1	2	4	8	16	32	64
n1	375. 52	377. 23	379.11	379.73	378.64	378.48	378. 95
n2		207.95	216. 52	211.53	209. 19	212. 78	215. 59
n4			160.87	157.75	155 . 26	156.97	156 . 66
n8				146.06	144. 81	145. 28	145. 13
n16					141.70	141.85	142. 16

根据 561 条 reads 测试结果估算原文件的计算核时 (h) (Estimated computing core hours based on 561 reads)

thread	1	2	4	8	16	32	64
n1	339.00	372.34	376. 23	375. 12	373. 73	373. 17	341.50
n2		418.46	425. 13	431. 25	432. 36	444. 58	425. 13
n4			692.44	664.65	636. 87	633. 53	642. 42
n8				1160.36	1149. 25	1149. 25	1149. 25
n16					2245. 15	2231.81	2236. 26

根据 1000 条 reads 测试结果估算原文件的计算核时 (h) (Estimated computing core hours based on 1000 reads)

根据 1000 条 reads 测试结果估算原文件的计算核时

thread	1	2	4	8	16	32	64
n1	375 . 52	377. 23	379. 11	379. 73	378.64	378.48	378.95
n2		415.89	433.04	423.06	418.39	425. 56	431. 17
n4			643. 48	631.01	621.03	627.89	626.65
n8				1168. 49	1158. 52	1162. 26	1161.01
n16					2267. 15	2269.65	2274. 63

Python 3.6.8 (default, Oct 10 2022, 21:32:19)
[GCC 8.5.0 20210514 (kos 8.5.0-10.0.1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 561176/100*460/3600
717.058222222223
>>>

从统计结果可以看出,

- ①从估算出的整个文件 subreads-A01.fasta 比对完成的时间来看,561 条和 1000 条统计出的时间几乎一样,而用 100 条估算出的时间与它们相差较大,可能原因为当条数很少时计算时间并不占主要时间,因此不可以选择 100 条 reads 当作测试文件。
- ② 当核数为 1 时,线程为 1 计算最快,在此例子中线程增加没有加快计算速度。
- ③当<mark>核数大于 1</mark> 时,程序实现真正的并行计算,当核数增加时,速度变快,但增速的速度会变慢,从核数 1 到核数 2 速度接近变为 2 倍,从核数 8 到核数 16 速度只变快非常少,因此用 16 个核是非常浪费的,应该在核数 2, 4, 8 中选择。
- ④在核数 2, 4, 8的计算时间对比中,考虑到速度排除核数 2, 因为核数 4和 8比核数 2时要快四五十个小时。核数 4和 8中,虽然当指定 8个核时速度有所提升,但相对差别不大,而计算核时却大大提高。

问题:从速度和经济的综合考虑,这个任务最好应该选择___4个核,__16个线程。

5)你会怎么选择? (How will you choose?)50 points

请在教学服务器上进行以下计算,请用上述提到的拟南芥 illumina 测序数据 SRR5029637.fasta 与其参考基因组进行 blastn 比对,命令行如下:

(Please align the sequence file above to the abrabidopsis reference genome using blastn with the command line below:)

echo -e " -n2-threads2 starts at `date`.\n" >>n2.log
start=\$(date +%s)
blastn -task blastn -query query.fasta -db index -evalue 1e-5 -outfmt 7 max_target_seqs 1 -num_threads 2 -out 2.blastn
end=\$(date +%s)
time=\$((\$end - \$start))
echo -e "difftime is \$time\n" >>n2.log
echo -e " -n2-threads2 ends at `date`.\n" >>n2.log

```
解读:
```

```
[stu542@pilogin4 ~]$ blastn -help | grep -A 3 " -task"
  -task <String, Permissible values: 'blastn' 'blastn-short' 'dc-megablast'</pre>
               'megablast' 'rmblastn' >
   Task to execute
  Default = `megablast'
[stu542@pilogin4 ~]$ blastn -help | grep -A 3 " -query"
 -query <File_In>
   Input file name
   Default = `-'
 -query_loc <String>
   Location on the query sequence in 1-based offsets (Format: start-stop)
 -strand <String, `both', `minus', `plus'>
   Query strand(s) to search against database/subject
[stu542@pilogin4 ~]$
[stu542@pilogin4 ~]$ blastn -help | grep -A 3 " -db"
 -db <String>
   BLAST database name
     * Incompatible with: subject, subject_loc
[stu542@pilogin4 ~]$ blastn -help | grep -A 3 " -evalue"
 -evalue <Real>
   Expectation value (E) threshold for saving hits
   Default = 10'
[stu542@pilogin4 ~]$ blastn -help | grep -A 70 " -outfmt"
 -outfmt <String>
   alignment view options:
     0 = Pairwise,
     1 = Query-anchored showing identities,
     2 = Query-anchored no identities,
     3 = Flat query-anchored showing identities,
     4 = Flat query-anchored no identities,
     5 = BLAST XML
     6 = Tabular,
     7 = Tabular with comment lines,
     8 = Segalign (Text ASN.1),
     9 = Segalign (Binary ASN.1),
    10 = Comma-separated values,
    11 = BLAST archive (ASN.1),
    12 = Segalign (JSON),
    13 = Multiple-file BLAST JSON,
    14 = Multiple-file BLAST XML2,
    15 = Single-file BLAST JSON,
    16 = Single-file BLAST XML2,
    17 = Sequence Alignment/Map (SAM),
    18 = Organism Report
```

```
[stu542@pilogin4 ~]$ blastn -help | grep -A 6 " -max target seqs"
 -max target segs <Integer, >=1>
   Maximum number of aligned sequences to keep
   (value of 5 or more is recommended)
  Default = `500'
    * Incompatible with: num descriptions, num alignments
 *** Discontiguous MegaBLAST options
[stu542@pilogin4 ~]$
[stu542@pilogin4 ~]$ blastn -help | grep -A 6 " -num_threads"
 -num threads <Integer, >=1>
   Number of threads (CPUs) to use in the BLAST search
  Default = `1'
    * Incompatible with: remote
[stu542@pilogin4 ~]$ blastn -help | grep -A 3 " -out"
 -out <File Out, file name length < 256>
  Output file name
  Default = `-'
```

使用 -task blastn 指定基本核酸序列比对,-query SRR5029637.fasta 指定待比对序列文件,-db arabidopsis_index 指定参考基因组数据库前缀,-evalue 1e-5 设置期望值阈值,-outfmt 7 输出为表格格式,-max_target_seqs 1 限定只保留最高匹配结果1条,-num_threads 2 使用 2 个线程加快比对,-out out_2.blastn 定义结果输出文件;

理论上还是使用第8题中所涉及的数据以及指令,理论上应该seqtk随机提取出50000条reads,然后执行命令之后实际记录时间,但是既然要评估整体运行时间,也可以直接跑全程。 但是下方表格已经给出了数据;

自行脚本处理part见该题尾部

请变换不同的指定核数和线程参数进行计算,并填写以下三张表格中的括号处。

(Please use different number of cores and threads to do the computing and file the three tables below.)

50000 条 reads 的计算时间(s)

The computing time using 50000 reads(seconds)

thread	1	2	4	8	16	32	64
n1	1036	652	513	416	418	421	423
n2		646	509	411	412	419	415
n4			509	413	416	417	419

根据 50000 条 reads 测试结果估算原文件的计算时间(h)

The computing time (CPU hours) estimated for the whole file using 50000 reads

thread	1	2	4	8	16	32	64
n1	195. 02	122. 74	96. 57	78. 31	78. 69	79. 25	79.63
n2		121.61	95. 82	77. 37	77. 56	78. 88	78. 12
n4			(95.82)	(77.75)	(78. 31)	(78.50)	(78.88)

33884651这个是原文件的reads数目

>>> 33884651/50000*1036/3600

195.0249913111111

>>> 33884651/50000*652/3600

122.7377358444446

>>> 33884651/50000*513/3600

96.57125535

>>> 33884651/50000*416/3600

78.31119342222223

>>> 33884651/50000*418/3600

78.68768954444445

>>> 33884651/50000*421/3600

79.25243372777777

>>> 33884651/50000*423/3600

79.62892985

>>>

上面是第1行的预估事件计算

然后第3行是:

>>> 33884651/50000*509/3600

95.81826310555556

>>> 33884651/50000*413/3600

77.74644923888889

>>> 33884651/50000*416/3600

78.31119342222223

>>> 33884651/50000*417/3600

78.49944148333334

>>> 33884651/50000*419/3600

78.87593760555556

>>>

根据 50000 条 reads 测试结果估算的原文件的计算核时

The computing core hours estimated for the whole file using 50000 reads(hours)

thread	1	2	4	8	16	32	64
n1	195. 02	122. 74	96. 57	78. 31	78. 69	79. 25	79.63
n2		243. 22	191.64	154. 74	155. 12	157. 75	156. 25
n4			(383. 27)	(310.99	(313. 24	(314.0	(315. 50
))	0)

此处的第3行也就是乘个系数罢了

>>> 33884651/50000*509/3600*4

383.27305242222224

>>> 33884651/50000*413/3600*4

310.98579695555554

>>> 33884651/50000*416/3600*4

313.2447736888889

>>>

KeyboardInterrupt

>>> 33884651/50000*417/3600*4

313.997765933333337

>>> 33884651/50000*419/3600*4

315.50375042222225

四舍五入保留2位小数

(1) 请填写 n=4 时,估算的计算时间和计算核时。

(If n=4, estimate the cpu hours and core hours for the computing task.)

结果填写如上

(2) 根据上述计算结果,你会选择的指定核数为(1),线程参数为(8),此时原文件计算完成估算时间约为(78. 31)小时,计算核时为(78. 31),如果此为在超算上的计算结果,每个核时 0.05 元,则此计算任务需要花费(3. 92)元。 (based on the estimation result, you will choose the number of cores = (), number of threads = (), the computing time for the whole file will be about () hours, () core hours. Every core hour costs 0.05 ¥, and the total cost for this computing task (¥)。)

这是仅仅依据计算运行的时间: 运行时间角度

根据 50000 条 reads 测试结果估算原文件的计算时间(h)

The computing time (CPU hours) estimated for the whole file using 50000 reads

thread	1	2	4	8	16	32	64
n1	195.02	122.74	96. 57	78. 31	78. 69	79. 25	79.63
n2 ←		121.61	95.82	77. 37	77. 56	78.88	78. 12
n4			(95. 82)	(77.75)	(78. 31)	(78.50)	(78. 88)

这是仅仅依据运行核时的角度: 经济收费角度

根据 50000 条 reads 测试结果估算的原文件的计算核时

The computing core hours estimated for the whole file using 50000 reads(hours)

thread	1	2	4	8	16	32	64
n1 ←	195. 02	122.74	96. 57	- 78. 31	78. 69	79. 25	79. 63
n2	8	243. 22	191.64	154. 74	155. 12	157. 75	156. 25
n4			(383. 27)	(310.99)	(313. 24	(314.00	(315.50
)))

其实运行时间上最佳的几个都差不多,所以要考虑的实际上就是运行核时,在物理运行时间 拉不开的情况下, 可以选择尽可能的经济

>>> 78.31*0.05 3.9155 >>>

[stu542@pilogin4 blast_time_test]\$ sbatch blast_test.slurm Submitted batch job 42309524 [stu542@pilogin4 blast_time_test]\$ squeue JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) stu542 PD 42309524 blast 0:00 cpu 1 (Priority) [stu542@pilogin4 blast_time_test]\$ squeue JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) 42309524 blast stu542 R 0:18 1 cas027 cpu

再尝试另外一个脚本,用于seatk抽取5w条read进行处理:

[stu542@pilogin4 5w_test]\$ squeue JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) 42310193 cpu bash stu542 PD 0:00 1 (AssocMaxJobsLimit) 42309524 blast stu542 R 8:55 1 cas027 cpu [stu542@pilogin4 5w_test]\$

先cancel

[stu542@pilogin4 \sim]\$ srun -p cpu -n 4 --pty /bin/bash srun: job 42310193 queued and waiting for resources

srun: job 42310193 has been allocated resources

bash-4.4\$ bash-4.4\$ module load miniconda3 bash-4.4\$ which conda

/lustre/opt/cascadelake/linux-rhel8-skylake_avx512/gcc-8.5.0/miniconda3-24.3.0-3zpgys4jvd5jttc4curqobgdnwpkxawb/condabin

```
bash-4.4$ mamba
bash: mamba: command not found
bash-4.4$ conda search seqtk
Loading channels: done
No match found for: seqtk. Search: *seqtk*
```

PackagesNotFoundError: The following packages are not available from current channels:

- seqtk

Current channels:

- https://repo.anaconda.com/pkgs/main/linux-64
- https://repo.anaconda.com/pkgs/main/noarch
- https://repo.anaconda.com/pkgs/r/linux-64
- https://repo.anaconda.com/pkgs/r/noarch

To search for alternate channels that may provide the conda package you're looking for, navigate to

https://anaconda.org

and use the search bar at the top of the page.

bash-4.4\$ conda search -c bioconda seqtk

ne		
Version	Build	Channel
r75	0	bioconda
r82	Θ	bioconda
r82	1	bioconda
r93	Θ	bioconda
1.2	0	bioconda
1.2	1	bioconda
1.3	h5bf99c6_3	bioconda
1.3	h7132678_4	bioconda
1.3	h7132678_5	bioconda
1.3	h84994c4_1	bioconda
1.3	ha92aebf_0	bioconda
1.3	he4a0461_5	bioconda
1.3	he4a0461_6	bioconda
	Version r75 r82 r82 r93 1.2 1.3 1.3 1.3 1.3	Version Build r75 0 r82 0 r82 1 r93 0 1.2 0 1.2 1 1.3 h5bf99c6_3 1.3 h7132678_4 1.3 h7132678_5 1.3 h84994c4_1 1.3 ha92aebf_0 1.3 he4a0461_5

先创建环境再测试软件下载

```
bash-4.4$ conda create -y -n blast4test
Channels:

    defaults

Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done
## Package Plan ##
 environment location: /lustre/home/acct-stu/stu542/.conda/envs/blast4test
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
# To activate this environment, use
     $ conda activate blast4test
 To deactivate an active environment, use
     $ conda deactivate
bash-4.4$ source activate blast4test
(blast4test) bash-4.4$ conda install seqtk -c bioconda -n blast4test
Channels:

    bioconda

    defaults

Platform: linux-64
Collecting package metadata (repodata.json): -
(blast4test) bash-4.4$ seqtk
          segtk <command> <arguments>
Version: 1.3-r106
Command: seq
                      common transformation of FASTA/Q
                      get the nucleotide composition of FASTA/Q
          comp
                      subsample sequences
          sample
                      extract subsequences from FASTA/Q
          subseq
                      fastq QC (base/quality summary)
          fqchk
                      interleave two PE FASTA/Q files
          mergepe
                      trim FASTQ using the Phred algorithm
          trunfq
          hety
                      regional heterozygosity
                      identify high- or low-GC regions
          qc
                      point mutate FASTA at specified positions
          mutfa
                      merge two FASTA/Q files
          mergefa
                      apply a X-coded FASTA to a source FASTA
          famask
                      drop unpaired from interleaved PE FASTA/Q
          dropse
          rename
                      rename sequence names
                      choose a random base from hets
          randbase
                      cut sequence at long N
          cutN
          listhet
                      extract the position of each het
```

```
50000
(blast4test) bash-4.4$ ■
(blast4test) bash-4.4$ conda deactivate
bash-4.4$ conda remove -n blast4test --all
Remove all packages in environment /lustre/home/acct-stu/stu542/.conda/envs/blast4test:
## Package Plan ##
 environment location: /lustre/home/acct-stu/stu542/.conda/envs/blast4test
The following packages will be REMOVED:
 _libgcc_mutex-0.1-main
_openmp_mutex-5.1-1 gnu
libgcc-ng-11.2.0-h1234567_1
libgomp-11.2.0-h1234567_1
 seqtk-1.3-h5bf99c6_3
zlib-1.2.13-h5eee18b_1
Proceed ([y]/n)? y
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
Executing transaction: done
Everything found within the environment (/lustre/home/acct-stu/stu542/.conda/envs/blast4test), including any conda environment configuration
s and any non-conda files, will be deleted. Do you wish to continue?
(y/[n])? y
bash-4.4$ ■
 [stu542@pilogin4 5w test]$ scancel 42310193
 [stu542@pilogin4 5w test]$ ■
bash-4.4$ srun: Force Terminated job 42310193
srun: Job step aborted: Waiting up to 32 seconds for job step to finish.
slurmstepd: error: *** STEP 42310193.0 ON cas024 CANCELLED AT 2025-03-07T22:05:19 ***
exit
[stu542@pilogin4 ~]$
有了数据再提交
[stu542@pilogin4 5w_test]$ vim blast_test_5w.slurm
[stu542@pilogin4 5w_test]$ sbatch blast_test_5w.slurm
Submitted batch job 42312374
[stu542@pilogin4 5w_test]$ squeue
                JOBID PARTITION
                                      NAME
                                                 USER ST
                                                                  TIME NODES NODELIST(REASON)
            42312374
                             cpu blast 5w
                                               stu542 PD
                                                                  0:00
                                                                              1 (Priority)
[stu542@pilogin4 5w test]$ squeue
                                      NAME
               JOBID PARTITION
                                                 USER ST
                                                                 TIME NODES NODELIST(REASON)
            42312374
                             cpu blast 5w
                                              stu542 R
                                                                 0:02
                                                                             1 cas027
[stu542@pilogin4 5w test]$
[stu542@pilogin4 5w test]$ ls -lh
total 41M
-rw-rw-r-- 1 stu542 stu542
                                          397 Mar
                                                       7 22:09 42312374.err
                                                        7 22:09 42312374.out
-rw-rw-r-- 1 stu542 stu542
                                          879 Mar
                                                        7 22:08 blast test 5w.slurm
 -rw-rw-r-- 1 stu542 stu542
                                          924 Mar
-rw-rw-r-- 1 stu542 stu542 8.9M Mar
                                                        7 22:09 n4t16.out
-rw-rw-r-- 1 stu542 stu542 8.9M Mar
                                                        7 22:09 n4t32.out
 -rw-rw-r-- 1 stu542 stu542 8.9M Mar
                                                        7 22:09 n4t4.out
-rw-rw-r-- 1 stu542 stu542 8.9M Mar
                                                        7 22:09 n4t64.out
 -rw-rw-r-- 1 stu542 stu542 8.9M Mar
                                                       7 22:09 n4t8.out
 [stu542@pilogin4 5w test]$ ■
```

```
[stu542@pilogin4 5w test]$ more 42312374.out
testing -n4 -num threads=4 starts at Fri Mar \, 7 22:09:01 CST 2025.
difftime for -n4 -num threads=4 is 5 s
testing -n4 -num threads=4 ends at Fri Mar 7 22:09:06 CST 2025.
testing -n4 -num_threads=8 starts at Fri Mar 7 22:09:06 CST 2025.
difftime for -n4 -num threads=8 is 5 s
testing -n4 -num_threads=8 ends at Fri Mar 7 22:09:11 CST 2025.
testing -n4 -num_threads=16 starts at Fri Mar 7 22:09:11 CST 2025.
difftime for -n4 -num threads=16 is 4 s
testing -n4 -num_threads=16 ends at Fri Mar 7 22:09:15 CST 2025.
testing -n4 -num threads=32 starts at Fri Mar 7 22:09:15 CST 2025.
difftime for -n4 -num threads=32 is 6 s
testing -n4 -num threads=32 ends at Fri Mar 7 22:09:21 CST 2025.
testing -n4 -num_threads=64 starts at Fri Mar 7 22:09:21 CST 2025.
difftime for -n4 -num threads=64 is 5 s
testing -n4 -num threads=64 ends at Fri Mar 7 22:09:26 CST 2025.
[stu542@pilogin4 5w test]$ more 42312374.err
Warning: [blastn] Examining 5 or more matches is recommended Warning: [blastn] Examining 5 or more matches is recommended Warning: [blastn] Examining 5 or more matches is recommended Warning: [blastn] Examining 5 or more matches is recommended Warning: [blastn] Examining 5 or more matches is recommended Warning: [blastn] Examining 5 or more matches is recommended
Warning: [blastn] Number of threads was reduced to 40 to match the number of available CPUs
```

直到32线程数的数据还是可供参考的

个人脚本如下:

```
#!/bin/bash
#SBATCH --job-name=blast 5w
#SBATCH --partition=cpu
#SBATCH -n 4
#SBATCH --ntasks-per-node=4
#SBATCH --output=%j.out
#SBATCH --error=%j.err
#SBATCH --mail-type=end
#SBATCH --mail-user=zht161932@situ.edu.cn
module load blast-plus
threads list=(4 8 16 32 64)
for threads in "${threads list[@]}";do
 echo -e "testing -n4 -num threads=$threads starts at $(date).\n"
 start=$(date +%s)
 blastn -query /lustre/home/acct-
stu/stu542/hw/test_class3/blast_time_test/SRR5029637_sub5w.fasta \
```

```
-db /lustre/share/class/BIO8402/lab/test/chr21 \
-evalue 1e-5 \
-outfmt 7 \
-max_target_seqs 1 \
-num_threads "$threads" \
-out /lustre/home/acct-
stu/stu542/hw/test_class3/blast_time_test/5w_test/n4t${threads}.out
end=$(date +%s)
time=$(( end - start ))
echo -e "difftime for -n4 -num_threads=$threads is $time s\n"
echo -e "testing -n4 -num_threads=$threads ends at $(date).\n"
done
```

6)、运行太慢且不支持 MPI 怎么办? (10 分)

(What could you do if your program does not support MPI? 10 points)

根据 4 中的估计,原文件计算结束的时间估算约为 156—158 小时,且程序 blastn 不支持跨节点运算,在已经选择了计算速度最快的参数下,可以采取什么 方法?请给出你认为合理的解决方法。

(According to the estimation in 4, the total time to finish the whole file is estimated to be 156-158 hours and program blastn does not support MPI, running in multiple nodes for a task. If you already picked the parameters for fatest speed to run it in a

node, what can you do to speed up the computing? Please give a reasonable solution for this.)

已经选择了计算速度最快的参数——假设对于线程数,以及队列中的线程数、cpu数等都已经在小数据试验中找到了最佳的参数,所以这一部分已经优化好了。

那其他还能优化速度的方法:

我们的任务需求本质上是单节点优化问题:

- (1) 单节点使用更强cpu、更大核心数的队列,例如192c6t队列
- (2) 既然 BLASTN 不支持跨节点并行,那就可以通过"数据并行"的方式来实现; 也就是将输入的 FASTA 文件拆分成多个较小的文件,每个文件独立运行 BLASTN,最后将所有结果合并

——》总之:

拆分输入文件:

将大的输入文件(如 subreads-A01.fasta)拆分成多个较小的文件。

每个小文件包含一定数量的 reads。

生成的文件名可以是 subreads-A01 part 1.fasta, subreads-A01 part 2.fasta, 等。

并行运行 BLASTN:

对每个小文件分别运行 BLASTN。

每个 BLASTN 任务使用相同的参数。

每个任务在不同的节点或核心上运行。

合并结果:

将所有小文件的比对结果合并成一个文件