

MACHINE LEARNING

¿Qué es Machine Learning?

PhD. César Astudillo | Facultad de Ingeniería

Definición y Contexto

- Machine Learning es una rama de la inteligencia artificial.
- Permite a las máquinas aprender a partir de datos sin ser programadas explícitamente.
- Crece en importancia debido al aumento de datos disponibles y su potencial de análisis.

¿Cómo Funciona ML?

- Ejemplo: Reconocimiento de dígitos escritos a mano.
- Se entrena con imágenes etiquetadas y luego predice nuevas imágenes.
- El modelo identifica patrones en los datos.

Reconocimiento de digitos

https://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f

Reconocimiento de dígitos

https://medium.com/@arunim/56/getting-started-with-machine-learning-98e368db5f0f

Principios Fundamentales de ML

- Fase de Entrenamiento: El modelo aprende con datos etiquetados.
- Fase de Prueba: Se evalúa con datos nuevos para medir precisión.
- Objetivo: Identificar patrones y realizar predicciones.

Ejemplo de conjunto de datos

No	Outlook	Temperatu	Humidity	Windy	Play
1	Sunny	Hot	High	FALSE	No
2	Sunny	Hot	High	TRUE	No
3	Overcast	Hot	High	FALSE	Yes
4	Rain	Mild	High	FALSE	Yes
5	Rain	Cool	Normal	FALSE	Yes
6	Rain	Cool	Normal	TRUE	No
7	Overcast	Cool	Normal	TRUE	Yes
8	Sunny	Mild	High	FALSE	No
9	Sunny	Cool	Normal	FALSE	Yes
10	Rain	Mild	Normal	FALSE	Yes
11	Sunny	Mild	Normal	TRUE	Yes
12	Overcast	Mild	High	TRUE	Yes
13	Overcast	Hot	Normal	FALSE	Yes
14	Rain	Mild	High	TRUE	No

https://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f

Tipos de Machine Learning

- Supervisado: Datos etiquetados (ej. diagnóstico de ansiedad).
- No Supervisado: Datos no etiquetados (ej. agrupación de perfiles).
- Por Refuerzo: Aprendizaje por prueba y error (ej. juegos y robótica).

Tipos de Machine Learning

Types of Machine Learning Algorithms

https://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f

Aprendizaje supervisado

Working of Supervised Learning Models

https://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f

Aprendizaje no supervisado

https://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f
Machine Learning- César Astudillo, PhD
(castudillo@utalca.cl)

Agrupamiento de datos

nttps://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f

Agrupamiento de datos

https://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f

Aprendizaje semi-supervisado

https://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f

Aprendizaje por refuerzo

https://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f Machine Learning- César Astudillo, PhD (castudillo@utalca.cl)

Reflejo condicionado

https://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f

https://medium.com/@arunim756/getting-started-with-machine-learning-98e368db5f0f Machine Learning- César Astudillo, PhD (castudillo@utalca.cl)

Aplicaciones en Psicología y Más

- Diagnóstico asistido de trastornos psicológicos.
- Análisis de patrones en cuestionarios.
- Salud: Detección de enfermedades.
- Finanzas: Predicción de fraudes.
- Marketing: Sistemas de recomendación.

Desafíos en Machine Learning

- Datos de calidad: Necesidad de datos limpios.
- Sobreajuste: El modelo aprende demasiado bien los datos de entrenamiento.
- Interpretabilidad: Dificultad para interpretar modelos complejos.
- Requerimientos computacionales: Recursos avanzados necesarios.

Cómo Empezar en Machine Learning

- Aprender R o Python.
- Dominar fundamentos matemáticos: álgebra y estadística.
- Explorar bibliotecas como Scikit-Learn y caret.
- Practicar con datasets públicos.
- Trabajar en proyectos reales con datos psicológicos.

Conclusión

- Machine Learning es una herramienta poderosa para analizar datos.
- Sus aplicaciones son vastas y abarcan muchas disciplinas.
- Es fundamental entender tanto los principios teóricos como la implementación práctica.
- ¡Sigue explorando y aprendiendo!