Assignment 5 Problem Two

Michael Cai

February 27, 2016

2. In this problem, we explore whether for any continuous functions f(x),

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{-b}^{b} f(x)dx$$

$$\int_0^\infty \frac{2x}{x^2 + 1} dx = \lim_{b \to \infty} \int_0^b \frac{2x}{x^2 + 1} dx$$

(a) Find
$$\int_0^\infty \frac{2x}{x^2+1} dx$$

 $\int_0^\infty \frac{2x}{x^2+1} dx = \lim_{b\to\infty} \int_0^b \frac{2x}{x^2+1} dx$
Now we use u-substitution and let $u=x^2+1$ and thus $du=2xdx$.
This changes the upper limit to be equal to b^2+1 and the lower limit equals 1.
Thus $\lim_{b\to\infty} \int_0^b \frac{2x}{x^2+1} dx = \lim_{b\to\infty} \int_1^{b^2+1} \frac{du}{u}$
 $= ln|u| \int_1^{b^2+1} = ln|b^2+1| - ln|1| = ln|b^2+1|$ as b approaches ∞ , which thus equals ∞ .

(b) Using your solution to part (b), determine whether $\int_{-\infty}^{\infty} \frac{2x}{x^2+1} dx$ is convergent or diver-

To solve an integral which has the bounds $-\infty$ and ∞ , each of the separate components of the integral

when split into the pieces $\int_{-\infty}^{0}$ and \int_{0}^{∞} must be separately convergent. Because we have already checked \int_{0}^{∞} and found it to be divergent, then we can conclude that the two-sided $[-\infty, \infty]$ integral must also be divergent.

(c) Find $\lim_{b\to\infty} \int_{-b}^{b} \frac{2x}{x^2+1} dx$

We have already solved for the portion, $\lim_{b\to\infty} \int_0^b \frac{2x}{x^2+1} dx$, so now we just need to solve for the portion from the bound $-\infty$ to 0. $\lim_{b\to -\infty} \int_b^0 \frac{2x}{x^2+1} dx$ Using the same u-substitution as we used in the previous problem, we get the answer:

$$= ln|u| \Big|_{b^2+1}^1 = ln|1| - ln|b^2 + 1| = -ln|b^2 + 1| \text{ as b approaches } -\infty, \text{ which thus equals } \infty.$$
 Therefore the $\lim_{b\to\infty} \int_{-b}^b \frac{2x}{x^2+1} dx = \infty - \infty$, which is still divergent.

(d) State your conclusion. Is it true that for all continuous functions f(x),

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{-b}^{b} f(x)dx?$$

Yes, this statement is true for all continuous functions because of the definition of a limit.

If the limit, which is the approximation of a finite number, b, as it approaches an infinite value, ∞ , exists then the improper integral is convergent, but if the limit does not exist as a finite number then the improper integral is divergent.

1