Boolean Operations in ZW3D

George Boole 1815 - 1864

Why

编辑、组合、修剪模型,构造出复杂的模型

Set operations in 2D

$$A \cup B = \{x \in A \ or \ x \in B\}$$

$$A \cap B = \{x \in A \text{ and } x \in B\}$$

$$A - B = \{x \in A \text{ and } x \notin B\}$$

Set Operations in 3D

 $S \cup B$

ADD

 $S \cap B$

INTERSECT

$$B-S$$

REMOVE

S-B

REMOVE

Commands related to Boolean

- Combine(Add Shape, Remove Shape, Intersect Shape)
- Divide
- Trim
- Split with Faces
- Interference Check

The basic algorithm

The basic algorithm

1. 求交线

2. 面分割

3. 区域划分

4. 拓扑重构

SSi

面面求交使用的是交线追踪法

Find intersections

Break into disjoint regions – Face Split

Intersection curves

Break into regions

- Join intersection curves into boundaries.
- Create separate shells on different sides of boundary

Classify each region

Operation	A out B	B in A	A in B	B out A
Union	Кеер	Delete	Delete	Keep
Intersection	Delete	Кеер	Кеер	Delete
Remove (A-B)	Кеер	Кеер	Delete	Delete

Operation	A out B	B in A	A in B	B out A
Union	Кеер	Delete	Delete	Keep
Intersection	Delete	Кеер	Кеер	Delete
Remove (A-B)	Кеер	Кеер	Delete	Delete

In or Out?

If shape is **closed** you can use ray-casting.

- -Even number of hits means outside
- -Odd number of hits means inside

Using topological direction

Testing cases

Many operand shells

Testing cases

- Tolerant models
- High continuity
- Sliver faces
- Type of Spheres
- Type of torus

Testing cases

- Coincident faces
- Non-manifold
- Trim at tolerant vertex

