Practice for Complex Roots

Why?

Exercise 1 Write $3\cos(2x) + 3\sin(2x)$ in the form $R\cos(\beta x - \delta)$.

Exercise 2 Write $2\cos(3x) + \sin(3x)$ in the form $R\cos(\beta x - \delta)$.

Exercise 3 Write $3\cos(x) - 4\sin(x)$ in the form $R\cos(\beta x - \delta)$.

Exercise 4 Show that $e^{2x}\cos(x)$ and $e^{2x}\sin(x)$ are linearly independent.

Exercise 5 Find the general solution of 2y'' + 50y = 0.

Exercise 6 Find the general solution of y'' - 6y' + 13y = 0.

Exercise 7 Find the solution to y'' - 2y' + 5y = 0 with y(0) = 3 and y'(0) = 2.

Exercise 8 Find the general solution of y'' + 2y' - 3y = 0.

Exercise 9 Find the solution to 2y'' + y' + y = 0, y(0) = 1, y'(0) = -2.

Exercise 10 Find the solution to z''(t) = -2z'(t) - 2z(t), z(0) = 2, z'(0) = -2.

Exercise 11 Let us revisit the Cauchy–Euler equations of **Normally a reference to a previous exercise goes** here. Suppose now that $(b-a)^2 - 4ac < 0$. Find a formula for the general solution of $ax^2y'' + bxy' + cy = 0$. Hint: Note that $x^r = e^{r \ln x}$.

Exercise 12 Construct an equation such that $y = C_1 e^{-2x} \cos(3x) + C_2 e^{-2x} \sin(3x)$ is the general solution.

Exercise 13 Find a second order, constant coefficient differential equation with general solution given by $y(t) = C_1 e^x \cos(2x) + C_2 e^{2x} \sin(x)$ or explain why there is no such thing.

Exercise 14 Find a second order, constant coefficient differential equation with general solution given by $y(t) = C_1 e^x \cos(2x) + C_2 e^x \sin(2x)$ or explain why there is no such thing.

Exercise 15 Find the solution to the initial value problem

$$y'' + 4y' + 5y = 0$$
 $y(0) = 3, y'(0) = -1.$

Determine a value T so that |y(x)| < 0.02 for all x > T.

Exercise 16 Find the solution to the initial value problem

$$y'' + 6y' + 13y = 0$$
 $y(0) = 4, y'(0) = 7.$

Determine a value T so that |y(x)| < 0.01 for all x > T.