1. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-27x^2 + 16} - \sqrt{24x} = 0$$

- A.  $x_1 \in [-3, 0]$  and  $x_2 \in [-1.9, 0.5]$
- B.  $x \in [-3, 0]$
- C.  $x_1 \in [0, 6]$  and  $x_2 \in [0.7, 2]$
- D.  $x \in [0, 6]$
- E. All solutions lead to invalid or complex values in the equation.
- 2. Choose the graph of the equation below.

$$f(x) = \sqrt[3]{x+10} - 3$$









- E. None of the above.
- 3. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

В.

$$\sqrt{-9x+5} - \sqrt{-4x+2} = 0$$

- A.  $x \in [1.4, 1.49]$
- B.  $x_1 \in [0.55, 0.56]$  and  $x_2 \in [0.59, 0.64]$
- C.  $x \in [0.59, 0.61]$
- D.  $x_1 \in [0.43, 0.53]$  and  $x_2 \in [0.5, 0.58]$
- E. All solutions lead to invalid or complex values in the equation.
- 4. Choose the equation of the function graphed below.



- A.  $f(x) = \sqrt[3]{x-8} + 4$
- B.  $f(x) = \sqrt[3]{x+8} + 4$
- C.  $f(x) = -\sqrt[3]{x+8} + 4$
- D.  $f(x) = -\sqrt[3]{x-8} + 4$
- E. None of the above
- 5. What is the domain of the function below?

$$f(x) = \sqrt[7]{-6x+3}$$

- A. The domain is  $[a, \infty)$ , where  $a \in [-0.3, 1.2]$
- B.  $(-\infty, \infty)$
- C. The domain is  $(-\infty, a]$ , where  $a \in [-2.1, 1.9]$

- D. The domain is  $(-\infty, a]$ , where  $a \in [0.7, 4.1]$
- E. The domain is  $[a, \infty)$ , where  $a \in [1.9, 4]$

debug Version C