Set the set of the set

المراجمة رقم (1)

اختبار شمر فبراير

Mathematics

للصف 2 الإعدادي

نماذج الأضواء الاسترشادية لشهر فبراير

العام الدراسي 2025

Model (1)

1 Choose the correct answer:

- a Two times the square of the number x is $(2x^2, 2+x^2, \frac{x^2}{2}, x^2)$
- b If the sum of the ages of Alaa and Soha now is 12 years, then the sum of their ages after 7 years equals ——years. (19 , 5 , 16 , 23)
- d If x = -3 is one of the roots of the equation: $x^2 2x a = 0$, then a = -3

e If $x^3 + m = (x + 3)(x^2 - 3x + 9)$, then $m = \dots$

2 Answer the following:

- a If (x + 2) is a factor of the expression: $x^2 5x 14$, find the other factor.
- **b** If $x^2 m + 14 = (x 7)(x 2)$, then find the value of m.
- c If x + y = 6 and y x = 5, then find the value of $x^2 y^2$.
- **d** Factorize the following expression: $x^2 x 56$
- e Find the value of k which makes the expression: $4x^2 + kx + 16$ a perfect square.

Model (2)

1 Choose the correct answer:

a The missing term in the expression: $16x^2 + \dots xy + 25y^2$ to be a perfect square.

b
$$(x+2)(x^2-2x+4) = \dots$$
 $(x^3+8, x^3-8, (x-2)^3, (x+2)^3)$

c
$$3x^2 - 9x - 12 = (3x + 3)(x - \dots)$$
 (4 , -4 , 12 , -12)

d The expression:
$$x^2 + 5x + n$$
 can be factorized if $n = \dots$

e Three times the cube of the number
$$x$$
 is =

$$(3x^3, 3+x^3, \frac{x^3}{3}, (3x)^3)$$

2 Answer the following:

- a Find in \mathbb{R} the S.S. of the following equation: $2x^2 + x 15 = 0$
- **b** If the side length of a square is (x + 3), and its area = 16 cm², find its side length.
- c What is the positive number if it is added to its square, the result will be 30?
- d A real number, its twice increased its multiplicative inverse by 1, find the number.
- e Find the value of m which makes the expression: $x^2 + mx + 49$ a perfect square.

Moedl (3)

1 Choose the correct answer:

a If the age of Ali 3 years ago was m years, then his age now isyears.

$$(3-m, 3+m, 3m, m \div 3)$$

b If
$$M^2 - a + 12 = (M - 4) (M - 3)$$
, then $a = \dots (-7m , 7M , 7 + M , 12M)$

$$(-7m, 7M, 7+M, 12M)$$

c If
$$x + y = 7$$
, $y - x = 2$, then $x^2 - y^2 = \dots$ (7 + 2 , 7 - 2 , 7 × -2 , 7 ÷ 2)

$$(7+2, 7-2, 7 \times -2, 7 \div 2)$$

d If the expression: $x^2 + 6x + k$ is a perfect square, then $k = \dots$

e The solution set of the equation: $x^3 + 16x = 0$ in \mathbb{R} is =

$$(\{0,4,-4\},\{4,-4\},\{0\},\{4\})$$

2 Answer the following:

- a Find in \mathbb{R} the S.S. of the following equation: $x^2 7x + 12 = 0$
- **b** Factorize the following expressions completely:

$$(1) bx + by + cx + cy$$

$$(2) xy + 2x + 6y + 12$$

c Use the factorization to get the value of the following:

$$(1.5)^2 + 2 \times 1.5 \times 5.5 + (5.5)^2$$

- d What is the positive number if it is subtracted from its square, the result will be 56?
- e If (x 9) is a factor of the expression: $x^2 13x + 36$, find the other factor.

Model (1)

1 Choose the correct answer:

- b If the sum of the ages of Alaa and Soha now is 12 years, then the sum of their ages after 7 years equals ————years. (19, 5, 16, 23)
- **c** The S.S. of the equation: $x^2 3x = 0$ in \mathbb{R} is $(\{0,3\}, \{0\}, \{3\}, \emptyset)$
- d If x = -3 is one of the roots of the equation: $x^2 2x a = 0$, then a = -4
- e If $x^3 + m = (x + 3)(x^2 3x + 9)$, then m = (9 , 3 , 27 , 8)

2 Answer the following:

a If (x + 2) is a factor of the expression: $x^2 - 5x - 14$, find the other factor.

$$x^2 - 5x - 14 = (x + 2) \times (x - 7)$$

- \therefore the other factor is (x 7)
- **b** If $x^2 m + 14 = (x 7)(x 2)$, then find the value of m.

To get the middle term

$$(-2 \times x) + (-7 \times x) = -m$$
$$-2x - 7x$$
$$= -9x$$

$$\therefore$$
 m = 9 x

c If x + y = 6 and y - x = 5, then find the value of $x^2 - y^2$.

$$x^{2}-y^{2} = (x + y)(x - y)$$

= 6 × -5
= -30

d Factorize the following expression: $x^2 - x - 56$

$$x^{2}-x-56 = (x-8)(x+7)$$

 $x=8$ or $x=-7$

e Find the value of k which makes the expression: $4x^2 + kx + 16$ a perfect square.

To get a perfect square, the middle term must equal $\pm 2 \times \sqrt{\text{first term}} \times \sqrt{\text{third term}}$

Then,
$$kx = \pm 2 \times \sqrt{4x^2} \times \sqrt{16} = \pm 2 \times 2x \times 4 = \pm 16x$$

$$\therefore kx = \pm 16x$$

$$\therefore k = \pm 16$$

Model (2)

1 Choose the correct answer:

a The missing term in the expression: $16x^2 + \dots xy + 25y^2$ to be a perfect square.

(20 , 40 , 16 , 25)

b $(x+2)(x^2-2x+4) = \dots$

$$(x^3+8, x^3-8, (x-2)^3, (x+2)^3)$$

c $3x^2 - 9x - 12 = (3x + 3)(x - \dots)$

d The expression: $x^2 + 5x + n$ can be factorized if $n = \dots$

(12, 7, -14, -2)

e Three times the cube of the number x is =

 $(3x^3, 3+x^3, \frac{x^3}{3}, (3x)^3)$

2 Answer the following:

a Find in \mathbb{R} the S.S. of the following equation: $2x^2 + x - 15 = 0$

$$2x^2 + x - 15 = 0$$

$$(2x-5)(x+3)$$

$$x = \frac{5}{2}$$
 or $x = -3$

∴ The S.S. =
$$\{\frac{5}{2}, -3\}$$

b If the side length of a square is (x + 3), and its area = 16 cm², find its side length.

Area of a square = side length \times side length

$$\therefore$$
 16 = $(x + 3) \times (x + 3)$

$$\therefore 16 = (x+3)^2$$

$$\therefore x + 3 = \pm 4$$

$$\therefore x = 4 - 3$$

$$\therefore x = 1$$

- \therefore then the side length = 4 cm
- C What is the positive number if it is added to its square, the result will be 30? Let the number be *x*

$$\therefore x^2 + x = 30$$

$$\therefore x^2 + x - 30 = 0$$

$$\therefore (x+6)(x-5)=0$$

$$\therefore (x+6)(x-5)=0$$
 $\therefore x=-6$ (refused) or $x=5$ \therefore the number is 5

d A real number, its twice increased its multiplicative inverse by 1, find the number. Let the number be x

$$\therefore 2x - \frac{1}{x} = 1$$

$$\therefore 2x^2 - x - 1 = 0$$

$$\therefore (2x+1)(x-1)=0$$

$$\therefore x = -\frac{1}{2} \quad or \quad x = 1$$

 $\therefore (2x+1)(x-1) = 0 \qquad \qquad \therefore x = -\frac{1}{2} \quad or \quad x = 1 \qquad \qquad \therefore \text{ the number is 1} \quad or \quad -\frac{1}{2}$

e Find the value of m which makes the expression: $x^2 + mx + 49$ a perfect square.

To get a perfect square, the middle term must equal \pm 2 \times $\sqrt{$ first term \times $\sqrt{}$ third term

Then,
$$\mathbf{m}x = \pm 2 \times \sqrt{x^2} \times \sqrt{49} = \pm 2 \times x \times 7 = \pm 14x$$

$$\therefore$$
 mx = $\pm 14x$ \therefore m = ± 14

$$\therefore$$
 m = +14

Model (3)

1 Choose the correct answer:

a If the age of Ali 3 years ago was m years, then his age now isyears.

$$(3-m, 3+m, 3m, m \div 3)$$

b If
$$M^2 - a + 12 = (M - 4) (M - 3)$$
, then $a = (-7m)$, $(-7m)$, $(-7m)$, $(-7m)$, $(-7m)$, $(-7m)$, $(-7m)$

c If
$$x + y = 7$$
, $y - x = 2$, then $x^2 - y^2 = \dots$ (7 + 2 , 7 - 2 , 7×-2 , $7 \div 2$)

d If the expression:
$$x^2 + 6x + k$$
 is a perfect square, then $k = \frac{1}{2}$ (6, 3, 9, 12)

2 Answer the following:

a Find in \mathbb{R} the S.S. of the following equation: $x^2 - 7x + 12 = 0$

$$x^{2}-7x+12=0$$

 $(x-4)(x-3)$
 $x=4$ or $x=3$ \therefore The S.S. = $\{4,3\}$

b Factorize the following expressions completely:

(1)
$$bx + by + cx + cy$$
 (2) $xy + 2x + 6y + 12$

(1)
$$bx + by + cx + cy = b(x + y) + c(x + y)$$

= $(x + y)(b + c)$

(2)
$$xy + 2x + 6y + 12 = xy + 6y + 2x + 12$$

= $y(x + 6) + 2(x + 6)$
= $(y + 2)(x + 6)$

Use the factorization to get the value of the following:

$$(1.5)^2 + 2 \times 1.5 \times 5.5 + (5.5)^2$$

 $(1.5)^2 + 2 \times 1.5 \times 5.5 + (5.5)^2$
 $= (1.5 + 5.5)^2$
 $= (7)^2 = 49$

d What is the positive number if it is subtracted from its square, the result will be 56? Let the number be x

$$\therefore x^2 - x = 56$$

$$\therefore x^2 - x - 56 = 0$$

$$(x-8)(x+7)=0$$

$$(x-8)(x+7)=0$$
 $\therefore x=8$ or $x=-7$ (refused) \therefore the number is 8.

- e If (x-9) is a factor of the expression: $x^2 13x + 36$, find the other factor.

$$\therefore x^2 - 13x + 36 = (x - 9) \times (x - 4)$$

 \therefore the other factor is (x - 4).

Mathematics

للصف 2 الإعدادي

نماذج الأضواء الاسترشادية لشهر فبراير

العام الدراسي 2025

Model (1)

1 Choose the correct answer:

- a If the base length of a parallelogram is 9 cm and the corresponding height is 7 cm, then its area = \dots cm² (36, 63, 45, 54)
- c A triangle has a base length of 7 cm and its corresponding height is 4 cm, then its area equals ____ cm² (28 , 14 , 22 , 17)
- e ABCD is a parallelogram in which: AB = 8 cm, BC = 14 cm, and its greater height is 5 cm, then its area iscm² (40 , 35 , 20 , 70)

2 Answer each of the following:

a XYZ is a triangle in which L, M are the midpoints of \overline{XZ} , \overline{ZY} respectively.

Prove that: The area of $\Delta XML = \frac{1}{4}$ the area of ΔXYZ .

b ABCD is a parallelogram, AB = 10 cm, BC = 16 cm, DX = 8 cm. Find the area of the parallelogram ABCD.

© In the opposite figure:
$\overline{LM} // \overline{QO}$, PN = MO
Prove that: The area of $\triangle PQN =$ The area of $\triangle LOQ$
W "O P"
d In the opposite figure:
XYZ is a triangle, $M \in \overline{XZ}$, $L \in \overline{XY}$, $O \in \overline{YZ}$, \overline{LM} // \overline{YO}
Prove that: The area of the figure XMOL = the area of Δ XMY.
\bigvee_{Y} \bigvee_{O}
e A trapezium in which the lengths of the two parallel bases are 7 cm
and 10 cm, and its height is 6 cm, find its area.

	4.5	
7	15	
NΙ	lark	S
		~

Model (2)

1 Choose the correct answer:

- a A triangle with an area of 36 cm², and its base length is 12 cm, then its corresponding height equalscm. (4 , 5 , 6 , 7)

$$(> , < , = , \leqslant)$$

(equal in perimeter , similar , equal in area , congruent)

- d If the area of a parallelogram is 60 cm² and the length of its base is 15 cm, then its corresponding height equalscm. (3 , 4 , 5 , 6)
- e The ratio between the area of a triangle and the area of a parallelogram with a common base where the vertex of the triangle lies on the side opposite to the common base is:

(1:2 , 2:1 , 1:3 , 3:1)

2 Answer each of the following:

a In the opposite figure:

ABCD is a rectangle, \overline{AE} // \overline{DF} , $E \in \overline{BC}$, $F \in \overline{BC}$.

Prove that: The area of figure ABCM = The area of figure DMEF.

A rhombus whose perimeter is 32 cm, and its height is 3 cm, then find its area.				
O In the appacite figures				
In the opposite figure: LMNO is a quadrilateral, \overline{LM} // \overline{ON} . Prove that: The area of Δ MPN = The area of Δ LPO	$\begin{array}{c} L \\ \hline \\ O \\ \end{array} \begin{array}{c} M \\ \\ \end{array}$			
d In the opposite figure: ABCD is a rectangle, \overline{AE} // \overline{DB} , find the area of ΔEBD .	A B B D 9 cm C			

e LMNO is a quadrilateral whose diagonals intersect at P , $S \subseteq \overline{PN}$ where PS = PL , the area of $\Delta MPN =$ the area of ΔOPS . Prove that: \overline{ML} // \overline{NO}

	4 = 1	١
_	15	
A N	larks	
II.	iai K5	

Model (3)

1 Choose the correct answer:

- a A trapezium its area is 45 cm², and its height is 5 cm, then the length of its middle base iscm. (45 , 9 , 5 , 6)
- b A rhombus whose diagonal lengths are 8 cm and 6 cm, and its height is 4.8 cm, then its side length is ———— cm. (5 , 6 , 10 , 12)
- c If the area of a square is 32 cm², then the length of its diagonal iscm.

 (6 , 32 , 8 , 16)
- e A parallelogram in which the lengths of two adjacent sides are 4 cm and 6 cm, and its smaller height is 2 cm, then its area =cm². (8 , 12 , 28 , 48)

2 Answer each of the following:

a In the opposite figure:

If the area of the parallelogram ABCD = 620 cm²,

and the length of EF = 5 cm.

Find: The length of \overline{BC} .

b In the opposite figure: M is the midpoint of \overline{LN} , the area of $\triangle ABM =$ the area of $\triangle CMB$, Prove that : \overline{AC} // \overline{LN}	A L M B
C A trapezium in which the lengths of the two parallel and its height is 5 cm. Find its area.	bases are 8 cm, and 10 cm,
In the opposite figure: ABCD is a parallelogram, E is midpoint of \overline{AB} , and the area of triangle AED is 40 cm ² . Find the area of Δ EDC.	A E B D C

Model (1)

1 Choose the correct answer:

- a If the base length of a parallelogram is 9 cm and the corresponding height is 7 cm, then its area = \dots cm² (36, 63, 45, 54)

2 Answer each of the following:

Answer:

a XYZ is a triangle in which L , M are the midpoints of \overline{XZ} , \overline{ZY} respectively. Prove that: The area of $\Delta XML = \frac{1}{4}$ the area of ΔXYZ .

- \therefore XM is a median in the triangle XYZ,
- ∴ The area of $\triangle XMZ = \frac{1}{2}$ the area of $\triangle XYZ$ ———(1)
- , $\because \overline{ML}$ is a median in the triangle XMZ.
- ... The area of $\triangle XML = \frac{1}{2}$ the area of $\triangle XMZ (2)$ From (1) and (2): The area of $\triangle XML = \frac{1}{4}$ the area of $\triangle XYZ$
- **b** ABCD is a parallelogram, AB = 10 cm, BC = 16 cm, DX = 8 cm. Find the area of the parallelogram ABCD.

Answer:

The area of the parallelogram ABCD = The base length \times its corresponding height

$$= 16 \times 8 = 128 \text{ cm}^2$$

c In the opposite figure:

$$\overline{LM} // \overline{QO}$$
, PN = MO

Prove that: The area of $\triangle PQN =$ The area of $\triangle LOQ$

Answer:

- ∴ △△MOQ and NPQ have equal bases in length and they are drawn on one straight line and they have the same vertex Q.
- :. The area of $\triangle MOQ =$ The area of $\triangle NPQ$ ———(1)
- $\therefore \triangle \triangle LOQ$ and MOQ have the common base \overline{OQ} , \overline{LM} // \overline{QO}
- :. The area of $\triangle LOQ =$ The area of $\triangle MOQ (2)$

From (1) and (2): The area of $\triangle PQN =$ the area of $\triangle LOQ$

d In the opposite figure:

XYZ is a triangle, $M \in \overline{XZ}$, $L \in \overline{XY}$, $O \in \overline{YZ}$, \overline{LM} // \overline{YO}

Prove that: The area of the figure XMOL = the area of Δ XMY.

Answer:

- ∴ △△LMY and LMO have common base LM, LM // YO
- ... The area of \triangle LMY = The area of \triangle LMO Adding the area of \triangle XML to both areas.
- \therefore The area of the figure XMOL = the area of \triangle XMY
- A trapezium in which the lengths of the two parallel bases are 7 cm and 10 cm, and its height is 6 cm, find its area.

Answer:

The area of trapezium = half the sum of lengths of the two parallel bases \times height

$$= \frac{1}{2} \times (7 + 10) \times 6$$
$$= \frac{1}{2} \times 17 \times 6$$
$$= 51 \text{ cm}^2$$

Model (2)

1 Choose the correct answer:

- a A triangle with an area of 36 cm², and its base length is 12 cm, then its corresponding height equalscm. (4, 5, 6, 7)
- **b** The area of the rectangle whose dimensions are 9 cm and 5 cm ———— the area of the triangle whose base length is 8 cm and its corresponding height is 6 cm.

$$(>,<,=,\leqslant)$$

c The parallelogram and the rectangle with a common base and lying between two parallel straight lines are

(equal in perimeter , similar , equal in area , congruent)

- d If the area of a parallelogram is 60 cm² and the length of its base is 15 cm, then its corresponding height equalscm. (3, 4, 5, 6)
- e The ratio between the area of a triangle and the area of a parallelogram with a common base where the vertex of the triangle lies on the side opposite to the common base is

(1:2 , 2:1 , 1:3 , 3:1)

2 Answer each of the following:

a In the opposite figure:

ABCD is a rectangle, \overline{AE} // \overline{DF} , $E \in \overrightarrow{BC}$, $F \in \overrightarrow{BC}$.

Prove that: The area of figure ABCM = The area of figure DMEF.

Answer:

- \therefore ABCD is a rectangle. $\therefore \overline{AD} // \overline{BC}$, $\overline{AD} // \overline{EF}$

, ∵ AE // DF

- ∴ AEFD is a parallelogram.
- \because the rectangle ABCD and the parallelogram AEFD have a common base AD , AD // EF
- ∴ The area of rectangle ABCD = the area of parallelogram AEFD

By subtracting the area of triangle AMD from both sides

∴ The area of figure ABCM = The area of figure DMEF

b A rhombus whose perimeter is 32 cm, and its height is 3 cm, then find its area.

Answer:

The perimeter of the rhombus = the side length \times 4

The side length = The perimeter of the rhombus $\div 4$

$$= 32 \div 4 = 8 \text{ cm}$$

The area of rhombus = the side length \times the height

$$= 8 \times 3 = 24 \text{ cm}^2$$

c In the opposite figure:

LMNO is a quadrilateral, $\overline{LM} // \overline{ON}$.

Prove that: The area of \triangle MPN = The area of \triangle LPO

Answer:

- \therefore $\triangle \triangle MNO$, LNO have a common side \overline{ON} , \overline{LM} // \overline{ON} .
- \therefore The area of \triangle MNO= The area of \triangle LNO

By subtracting the area of \triangle PNO from both sides

- \therefore The area of \triangle MPN = The area of \triangle LPO
- d In the opposite figure:

ABCD is a rectangle, \overline{AE} // \overline{DB} , find the area of ΔEBD .

Answer:

- **∵** DB is a diagonal in the rectangle ABCD.
- ∴ Area of \triangle ABD = $\frac{1}{2}$ Area of the rectangle ABCD = $\frac{1}{2} \times 6 \times 9 = 27$ cm²
- $\therefore \triangle \triangle ABD$, EBD have a common base \overline{BD} , \overline{AE} // \overline{BD}
- ∴ The area of \triangle EBD = The area of \triangle ABD = 27 cm²

e LMNO is a quadrilateral whose diagonals intersect at P

,
$$S \in \overline{PN}$$
 where $PS = PL$

, the area of \triangle MPN = the area of \triangle OPS.

Prove that: \overline{ML} // \overline{NO}

_(2)

Answer:

∴ PS = PL ∴ \overline{OP} is a median in $\triangle LOS$.

 \therefore the area of $\triangle LOP =$ the area of $\triangle SOP$

, \because the area of \triangle MPN = the area of \triangle OPS

From (1) and (2)

 \therefore the area of \triangle MPN = the area of \triangle LOP

By adding the area of \triangle LPM to both sides

, \therefore the area of \triangle MLO = the area of \triangle MLN. and the two triangles have a common base $\overline{\text{LM}}$

∴ ML // NO

Model (3)

1 Choose the correct answer:

- a A trapezium its area is 45 cm², and its height is 5 cm, then the length of its middle base iscm. (45 , 9 , 5 , 6)
- c If the area of a square is 32 cm², then the length of its diagonal iscm. (6 , 32 , 8 , 16)
- e A parallelogram in which the lengths of two adjacent sides are 4 cm and 6 cm, and its smaller height is 2 cm, then its area =cm². (8, 12, 28, 48)
- 2 Answer each of the following:

a In the opposite figure:

If the area of the parallelogram ABCD = 620 cm²,

and the length of EF = 5 cm.

Find: The length of \overline{BC} .

Answer:

The area of parallelogram = the length of the base \times its corresponding height

620	=	Length of BC	×	Length of EF
620	=	ВС	×	5
BC	=	620	÷	5
BC = 124	cm			

b In the opposite figure:

M is the midpoint of \overline{LN} ,

the area of $\triangle ABM =$ the area of $\triangle CMB$,

Prove that : \overline{AC} // \overline{LN}

Answer:

- \therefore M is the midpoint of \overline{LN} .
- :. The area of \triangle ABM the area of \triangle BLM = the area of \triangle CMB the area of \triangle BMN
- \therefore The area of \triangle ALM = the area of \triangle CNM
- \therefore M is the midpoint of \overline{LN} .
- ∴ AC // LN
- c A trapezium in which the lengths of the two parallel bases are 8 cm, and 10 cm, and its height is 5 cm. Find its area.

Answer:

Area of trapezium = half the sum of lengths of the two parallel bases \times height

$$=\frac{1}{2}(8+10)\times 5=45 \text{ cm}^2$$

d In the opposite figure:

ABCD is a parallelogram, E is midpoint of \overline{AB} , and the area of triangle AED is 40 cm².

Find the area of Δ EDC.

Answer:

- $\therefore \triangle \triangle EBC$, EAD have equal sides (EB = EA).
- ∵ ABCD is a parallelogram, AB // DC
- \therefore Area of \triangle AED = Area of \triangle EBC = 40 cm²
- \therefore Area of \triangle EDC = 40 + 40 = 80 cm²

e If ABCD is a parallelogram, its area is 120 cm², then find the area of triangle ABC.

Answer:

- ∵ The area of a triangle is equal to half the area of a parallelogram if they have a common base lying on one of two parallel straight lines including them.
- ∴ The area of triangle ABC = $\frac{1}{2}$ × the area of parallelogram ABCD (Have a common base \overline{BC}) $= \frac{1}{2} \times 120 = 60 \text{ cm}^2$

ပြူတွင်္ကြောက်ကို ရှိသည် လျှောက်ကို ရှိသည်။ မြောက်ကို မြ

وثلاراي لطبع العثمات من عثمت 4 الباطبع العثمان والمستقال الباراي العثمان والمستقال وال

المرابعة رقور (2) (2)

اختبار شمر فبراير

Monthly Tests

on Algebra and Statistics

March tests

Total mark

Answer the following questions:

-								
1	Choose the	correct	answer	from	the	given	ones	
	CIRCODO MAD	COLLECT	WHITE AL CT	TI AIT	CHIC	MAY CHE	ALTERNO.	

(3 marks)

- 1 If x y = 5, x + y = 3, then $x^2 y^2 = \dots$
 - (a) 8

- (b) 15
- (c) 2

(d) $\frac{5}{3}$

- 2 Twice the square of the number X is
 - (a) $(2 x)^2$
- (b) $4 x^2$
- (c) $2 x^2$
- (d) 2 X
- 3 The expression: $x^2 5x + c$ is factorizable when $c = \cdots$
 - (a) 7

- (b) 8
- (c) 3
- (d).6

2 Complete:

(3 marks)

- If (x + 5) is a factor of the expression: $2x^2 + 13x + 15$, then the other factor is
- If the expression: $9 x^2 + k x + 25$ is a perfect square, then $k = \dots$

3 Factorize:

(2 marks)

 $[1]x^3-8$

2 a X - 5 X + 3 a - 15

4 A real number is added to its square and the result is 12

(2 marks)

What is the number?

Total mark 10

Answer the following questions:

1 Choose the correct answer from the given ones:

(3 marks)

- 1 The expression: a $x^2 + 24x + 9$ is a perfect square, then a =
 - (a) 25

- (b) 8
- (c) 16
- (d)4
- **2** The S.S. of the equation : $x^2 + 9 = 0$ in \mathbb{R} is
 - (a) $\{3\}$

- (b) $\{-3\}$ (c) $\{3,-3\}$
- (d) Ø
- 3 If the age of Sameh 5 years ago was X years, then his age now is years.
 - (a) X 5
- (b) X + 5
- (c) 5 x
- (d) 5 X

Complete :

(3 marks)

- 1 If $x^2 + \ell 9 = (x 3)(x + 3)$, then $\ell = \dots$
- If x = 1 is a root of the equation : $x^2 5x + 4 = 0$, then the other root is
- 3 If $a^3 + b^3 = 9$, $a^2 ab + b^2 = 3$, then $a + b = \dots$
- 3 Use the factorization to find: $(98)^2 4$

(2 marks)

4 Factorize:

(2 marks)

 $13x^2 + 7x + 2$

 $2 \times 4 + 4 y^4$

Monthly Tests on Geometry

Warch tests

on Geometry

Answer the following questions:

(1) 41		C	41			Adag
Choose the correct	answer	rcom	rue	given	ones	9

(3 Marks)

- 1 The area of the rhombus of diagonal lengths 6 cm. , 8 cm. is cm. 2
 - (a) 48
- (b) 14
- (c) 24
- (d) 28
- [2] The area of a rectangle is 40 cm² and its length 8 cm. , then its width cm.
 - (a) 32
- (b) 5
- (c) 48
- (d) 320
- - (a) 32
- (b) 40
- (c)5
- (d) 36

2 Complete:

(3 Marks)

- 2 A square of area 50 cm², then its diagonal length equal cm.
- 3 In the opposite figure:

In \triangle ABC: D is the midpoint of \overline{BC}

- ₂ the area of \triangle ABD = 10 cm.²
- , then the area of \triangle ABC = em.²

3 In the opposite figure:

(2 Marks)

ABCD, EBCF are two parallelograms

- $,\overline{BE}\cap\overline{CD}=\{L\},D\in\overline{AF}$
- $, E \in \overline{AF}$

Prove that: The area of $\triangle ABL =$ the area of $\triangle FCL$

4 In the opposite figure:

(2 Marks)

ABCD is a quadrilateral, its diagonals intersect at M

- , $E \subseteq \overline{BM}$ where ME = MD
- ₂ the area of \triangle AMB = the area of \triangle CME

Prove that: AD // BC

2

Total mark

Answer the following questions:

Choose the correct answer from the given ones:

(3 Marks)

- 1 The area of triangle = \cdots of the length of the base \times its corresponding height.
 - (a) $\frac{1}{4}$
- (b) $\frac{1}{3}$
- (c) twice
- (d) $\frac{1}{2}$
- If the lengths of the two parallel bases of a trapezium are 15 cm., 11 cm., then the length of its middle base is cm.
 - (a) 4
- (b) 26
- (c) 13
- (d) 12
- The ratio between the area of the triangle and the area of the parallelogram which have a common base and between two parallel straight lines is
 - (a) 1:3
- (b) 2:4
- (c) 2:1
- (d) 1:1

2 Complete:

(3 Marks)

- 1 The area of the parallelogram = ×
- If ABCD is a parallelogram of area 100 cm², $E \in \overline{AD}$, then the area of $\Delta EBC = \cdots$
- 3 A rhombus of area 30 cm² and side length 6 cm., then its height equals cm.

In the opposite figure:

(2 Marks)

E is the midpoint of BC

Prove that:

The area of the figure ABEM = the area of the figure DCEM

In the opposite figure:

(2 Marks)

ABCD is a rectangle, ABEF is a parallelogram

- $D \in \overline{CF}, E \in \overline{CF}, X \in \overline{BE}$
- $_{9}AB = 4 \text{ cm}. _{9}BC = 10 \text{ cm}.$

Find:

- 1 Area of \triangle ABEF
- 2 Area of Δ XAF

Total mark

1 Choose the correct answer from those given:

(3 marks)

- 1 If $X^2 + k X + 36$ is a perfect square, then $k = \cdots$
 - $(a) \pm 6$

 $(b) \pm 8$

- $(c) \pm 12$
- \bigcirc ± 18
- 2 If the expression: $x^2 + kx + 2$ can be factorized, then k may be equal to
 - (a) 3

 \bigcirc -1

(c) 1

- (d) 0
- 3 If (2 X + 3) is a factor of the expression : $2 X^2 X 6$, then the second factor is
 - (a) X 6
- (b) x-2
- (c) x + 6
- (d) x + 2

2 Factorize each of the following:

(2 marks)

- (a) $2 X^3 8 X$
- **(b)** $x^3 + 8$

Test 2

1 Choose the correct answer from those given :

(3 marks)

- 1 If $x^2 y^2 = 12$, x + y = 3, then $x y = \cdots$
 - $a\sqrt{3}$

(b) 4

(c) 36

- $(d) \pm 2$
- 2 If the expression: a $X^2 + 36X + 81$ is a perfect square, then a =
 - (a) 2

(b) 4

(c) 8

(d) 16

- 3 If $X^2 + a = (X 5)(X + 5)$, then $a = \cdots$
 - (a) 5

(b) 25

- (c) 25
- $(d) \pm 25$

2 Factorize each of the following:

(2 marks)

- (a) $2 X^2 5 X + 2$
- **(b)** $4 \times ^2 25 \text{ y}^2$

Total mark
5

1 Choose the correct answer from those given:

(3 marks)

- 1 If $a^2 + 2ab + b^2 = 25$, then $a + b = \dots$
 - (a) 5

(b) 5

 $(c) \pm 5$

- (d) 6
- 2 If $2 X^2 5 X + a = (2 X 3) (X 1)$, then $a = \cdots$
 - (a) 2

b 3

(c) – 3

(d) 5

- 3 If $(X + y)^2 = 36$, Xy = 9, then $X^2 + y^2 = \cdots$
 - (a) 4

(b) 27

(c) 18

(d) 45

2 Use factorization to get the value of each of the following:

(2 marks)

- (a) $(87)^2 + 2 \times 13 \times 87 + (13)^2$
- **(b)** $(78)^2 (77)^2$

Test

4

Total mark

1 Choose the correct answer from those given :

(3 marks)

- 1 If X + y = 4, X y = 2, then $X^2 y^2 = \cdots$
 - (a) 2

(b) 4

(c) 6

- (d) 8
- 2 If (X + 8) is a factor of the expression : $X^2 + 6X 16$, then the other factor is
 - (a) x 2
- (b) x-4
- (c) x + 2
- (d) X + 4
- 3 If the expression: $\chi^2 + 14 \chi + b$ is a perfect square, then $b = \dots$
 - (a) 2

(b) 7

© 14

(d) 49

2 The area of a rectangle is $(2 \times ^2 + 19 \times + 35)$ cm.²

(2 marks)

Find two possible dimensions of the rectangle in terms of X, then find its perimeter as X = 3

Total mark

1 Choose the correct answer from those given:

(3 marks)

- 1 If $a^2 b^2 = 20$, a + b = 5, then $a^2 2$ a $b + b^2 = \cdots$
 - (a) 4

(b) 5

(c) 20

- (d) 16
- 2 If the expression: $\chi^2 + b \chi 10$ can be factorized, then b may be equal to
 - (a) 3

(b) 2

(c) 1

(d)-1

- 3 If $x^3 + 27 = (x + 3)(x^2 + k + 9)$, then $k = \dots$
 - (a) 6 χ
- \bigcirc 3 \times
- $\bigcirc 3x$
- (d) 6 X

2 Factorize each of the following:

(2 marks)

- (a) $3 X^2 15 X + 12$
- **(b)** $\frac{1}{2} X^3 4$

1

1 Choose the correct answer from those given:

(3 marks)

- 1 If the area of the triangle is 24 cm. and its height is 8 cm., then the length of the corresponding base equals
 - (a) 16 cm.
- (b) 6 cm.
- (c) 3 cm.
- (d) 2 cm.
- 2 If the lengths of two adjacent sides of a parallelogram are 8 cm. and 10 cm. and its greater height is 5 cm., then its area =
 - (a) 80 cm²
- (b) 50 cm^2
- (c) 40 cm²
- (d) 18 cm²
- 3 The median of the triangle divides its surface into two triangles
 - a congruent.

b equal in area.

© equal in perimeter.

d similar.

2 In the opposite figure :

(2 marks)

ABCD is a parallelogram

 $, E \in \overrightarrow{CB}, \text{ where BC} = BE$

Prove that : The area of \triangle EFC = The area of \triangle ABCD

Total mark

1 Choose the correct answer from those given:

(3 marks)

- 1 The ratio between the area of the triangle and the area of the parallelogram whose base is common and are included between two parallel straight lines =
 - (a) 1 : 2
- (b) 1:3
- (c) 2:1
- (d) 2:3
- **2** ABC is a triangle, \overline{AD} is a median, then the area of \triangle ABC =
 - (a) the area of \triangle ABD

(b) the area of Δ ACD

(c) 2 the area of \triangle ABD

(d) 3 the area of \triangle ACD

3 In the opposite figure:

The area of the parallelogram $ABCD = 24 \text{ cm}^2$.

- , then the area of \triangle ABE = cm²
- (a) 24

b 12

(c) 8

(d) 6

2 In the opposite figure :

(2 marks)

If area of \triangle ADC = area of \triangle AEB

Prove that : $\overline{DE} // \overline{BC}$

1 Choose the correct answer from those given:

(3 marks)

- $\fbox{1}$ ABCD is a parallelogram with area 100 cm² and $E \in \overline{AD}$
 - , then the area of Δ EBC =
 - (a) 50

b 60

(c) 100

- d 200
- 2 If ABCD is a parallelogram in which AB = 5 cm. BC = 10 cm. and its smaller height is 4 cm., then its greater height equals
 - (a) 2 cm.

(b) 4 cm.

© 8 cm.

(d) 10 cm.

3 In the opposite figure :

If the area of \triangle ABC = 24 cm².

- , then the area of \triangle ADE =
- (a) 6 cm²

(b) 12 cm².

 \odot 24 cm².

 \bigcirc 48 cm².

2 In the opposite figure :

ABCD and ABMN are two parallelograms.

Prove that:

The area of \triangle EBC = $\frac{1}{2}$ the area of \triangle ABMN

(2 marks)

Total mark

1 Choose the correct answer from those given:

(3 marks)

- 1 The triangle whose base length 7 cm. and its area is 28 cm.²
 - , then the corresponding height equals
 - (a) 2

(b) 4

(c) 6

(d) 8

12cm.

- 2 If the area of \triangle ABCD = 48 cm², then the area of \triangle ABC =
 - (a) 96

(b) 48

(c) 24

(d) 12

3 In the opposite figure:

ABCD is a parallelogram

- , then area of ABCD =
- (a) 32

b 16

© 48

(d) 24

2 In the opposite figure :

(2 marks)

D is midpoint of \overline{BC} , $E \in \overline{AD}$

Prove that:

The area of \triangle ABE = the area of \triangle ACE

Total mark 5

1 Choose the correct answer from those given:

(3 marks)

1 In the opposite figure:

ABCD is a parallelogram

, then $DF = \cdots$

- (a) 40 cm.
- (c) 6 cm.

- ⓑ $6\frac{2}{3}$ cm.
- (d) 30 cm.

- 2 The area of a right-angled triangle in which the lengths of the sides of the right angle are 8 cm. and 13 cm. equals
 - (a) 104 cm²
 - (c) 26 cm²

- (b) 52 cm^2
- (d) 202 cm²

3 In the opposite figure:

If the area of \triangle ABC = The area of \triangle DBC

- , then
- (a) AB // CD
- \bigcirc AD // \overline{BC}

- (b) AB = CD
- (d) AD = BC

2 In the opposite figure :

(2 marks)

ME = MD

The area of \triangle AMB = the area of \triangle CME

Prove that : AD // BC

(Algebra and Statistics)

Answers of Test

11(c)

2 (a)

- 3 (b)
- (a) $2 \times (x^2 4) = 2 \times (x 2) \times (x + 2)$
 - **(b)** $(X+2)(X^2-2X+4)$

Answers of Test 2

11(b)

2(b)

3 (C)

- (a) (2 X 1) (X 2)
 - **(b)** (2 X 5 y) (2 X + 5 y)

Answers of Test 3

11c

2 (b)

3 (c)

- (a) $(87 + 13)^2 = 100^2 = 10000$
 - **(b)** $(78 77)(78 + 77) = 1 \times 155 = 155$

Answers of Test 4

11 (d)

2 (a)

- 3 (d)
- $2 : 2 x^2 + 19 x + 35 = (2 x + 5) (x + 7)$
 - \therefore The two dimensions are (2×4) cm. $(\times 4)$ cm.
 - when X = 3, then the two dimensions are 11 cm. and 10 cm.
 - , the perimeter = 2(11 + 10) = 42 cm.

Answers of Test 5

11 (d)

2 (a)

- 3 (b)
- (a) $3(X^2-5X+4)=3(X-4)(X-1)$
- **(b)** $\frac{1}{2} (X^3 8) = \frac{1}{2} (X 2) (X^2 + 2 X + 4)$

Answers of Mathematics (Geometry)

Answers of Test

11b

2 C

- 3 (b)
- 2 : Δ BFC, ABCD have the common base BC
 - $, :: F \in \overline{AD}$
 - :. The area of \triangle BFC = $\frac{1}{2}$ the area of \triangle ABCD(1)
 - \therefore FB is a median in \triangle FEC
 - .. The area of \triangle BFC = $\frac{1}{2}$ the area of \triangle FEC (2) From (1) and (2):
 - \therefore The area of \triangle FEC = The area of \triangle ABCD

(Q.E.D.)

Answers of Test

2

11 1 a

2 C

- 3 (d)
- The area of Δ ABE = the area of Δ ACD and subtracting the area of Δ ADE from both sides.
 - \therefore the area of \triangle DEB = the area of \triangle DEC

but they have the common base \overline{DE} and on one side of it.

Answers of Test

11 1 a

2 C

- 3 (a)
- $\underline{2} : \Delta EBC$ has the common base \overline{BC} with the $\square ABCD$, $E \in \overline{AD}$
 - \therefore The area of \triangle EBC = $\frac{1}{2}$ the area of \triangle ABCD
 - , ∵ ∠ ABCD , ∠ ABMN have the common base AB and AB // CN
 - \therefore The area of \square ABCD = the area of \square ABMN
 - :. The area of \triangle EBC = $\frac{1}{2}$ the area of \triangle ABMN

(Q. E. D.)

Answers of Test 4

11(d)

2 (C)

3 (C)

2 In Δ ABC:

- : AD is a median
- $\therefore \text{ area of } \triangle ABD = \text{ area of } \triangle ACD \qquad (1)$
- , in \triangle BEC
- : ED is a median
- \therefore Area of \triangle EBD = area of \triangle ECD (2)

by subtracting (2) from (1)

 \therefore area of \triangle ABE = area of \triangle ACE

(Q.E.D.)

Answers of Test

- \therefore The area of \triangle CME = the area of \triangle CMD
- , : the area of \triangle CME = the area of \triangle AMB
 - \therefore The area of \triangle AMB = the area of \triangle CMD

Adding the area of Δ AMD to both sides.

- \therefore The area of \triangle ABD = the area of \triangle ACD and they have the common base AD and on one side of it.
- $\therefore \overline{AD} // \overline{BC}$ (Q.E.D.)

ENOS

المراجمة رقم (3)

Sala Sayed

اختبار شمر فبرايل

PREP 2 - ALGEBRA

OI: CHOOSE THE CORRECT ANSWER

2	If $(X + 3)$ is one	factor of the exp	ression $\cdot x^2 + x -$	6 then the	other factor is
	11 (X + 3) IS ONE	ractor or the exp	ression: x + x -	o, then the	other factor is

$$\bigcirc$$
 x + 3

$$(b)$$
 x -4

$$(c)$$
 x + 1

$$(d) x - 2$$

If the expression:
$$x^2 + b \times -10$$
 can be factorized, then b may be equal to

$$\overline{(d)} - 1$$

For the expression:
$$x^2 - 2x - k$$
 can be factorized, then $k \neq \dots$

4)
$$5x^2 - 7x - 6 = (5x + 3)(x -)$$

$$(c) - 3$$

$$(d) - 2$$

8 If
$$x - y = 5$$
, $x^2 + xy + y^2 = 7$, then $x^3 - y^3 = \dots$

9 If
$$a^2 + b^2 = 15$$
, $2ab = 10$, Then $a + b = \dots$

$$(b) - 5$$

10 If the expression
$$x^2 + ax + 64$$
 is a perfect square, then $a = \dots$

11) If
$$x^2 - y^2 = 12$$
, $x + y = 4$, then $X - y = \dots$

PREP 2 - ALGEBRA

12	If v ² + 4 v +	k is a norfe	t sauare t	hen k =	•••••
	, II X T 4 X T	k is a peried	i square, i	nen k –	

(a) 1

(b) 2

C 3

d 4

If
$$(x - 3)$$
 is a factor of the expression: $x^2 - 4x + 3$, then the other factor is

- (a)(x+1)
- (b) (x-1)
- (c)(x+3)
- (d)(x-3)

a 10

- **b** 20
- (c) 30

d) 40

15 If
$$x^3 + 27 = (x + 3)(x^2 + k + 9)$$
, then $k = \dots$

- \bigcirc 6x
- b 3x
- (c) 3x

d) 6x

16 If
$$x + y = 3$$
, $x^2 - xy + y^2 = 12$, then $X^3 - y^3 = \dots$

(a) 4

b 36

c) 9

d 24

17 If
$$x^3 + y^3 = 24$$
, $x + y = 6$, then $x^2 - xy + y^2 = \dots$

a 4

(b) 12

C 18

(d) 30

18 If
$$x^2 - a = (x - 5) (x + 5)$$
, Then $a = \dots$

a 5

- (b) 25
- (c) 25

(d) 10

02:COMPLETE THE FOLLOWING

NASSR

$$1)x^3 - 8 = (....)(x^2 + 2x +)$$
 EACHER

If the expression:
$$x^2 + 4x + a$$
 is a perfect square, then $a = \dots$

5 If
$$a^2 - b^2 = a + b$$
, then $a - b = \dots$

$$6) 8x^3 - \dots = (\dots - \dots)(\dots + \dots + 9)$$

8 If
$$x^2 - 2xy - 3y^2 = 8$$
, $x + y = 4$, then $x - 3y = ...$

PREP 2 - ALGEBRA

9	The quotient: x ³ – 8 by x – 2 is	(when a	≠ 2`
	The quotient X Oby X = 15 mmm	100.00.0	

- 10) If (X 5) is a factor of the expression: $x^2 10 \times +25$, then the other factor is
- If $5a^2 5b^2 = 100$, a b = 4, Then $a + b = \dots$
- If $x^2 K = (x 3)(x + 3)$, Then the value of K =
- a² 6a + (Complete to be perfect square)

Q3: ANSWER THE FOLLOWING

1) Factorize each of the fol	lowing complete	·lv:
radionize each or the lor	io iiiig oompiete	,.

$$(1)x^2 + 13x - 30$$

$$23x^3 - 81$$

$$(3)$$
 2x² + 7x + 3

$$4 x^4 - 64y^4$$

$$(5) 6m^2 - n + 2 m - 3mn$$

$$(6)$$
 $x^2 - 10x - 24$

$$7a^3 + a^2 + a + 1$$

$$82-2(x-1)^3$$

$$9 (a + b)^2 - 4$$

$$(78)^2 - (77)^2$$

$$(78)^2 - (77)^2 \quad H \quad M \quad E \quad (11)^3 + 8 \quad A \quad S \quad S \quad R \qquad (12)^2 + 2x^2 - 32$$

$$(12)$$
 $2x^2 - 32$

If xy = 8, find the numerical value of the expression
$$(x + y)^2 - (x - y)^2$$

If (x+1) is a factor of the expression: $5x^2-2x-7$, then find the second factor

4) If
$$x + y = 6$$
, $x^2 - y^2 = 12$, $x^2 + xy + y^2 = 28$
Find the value of: $x^3 - y^3$

PREP 2 - GEOMETRY

OI: CHOOSE THE CORRECT ANSWER

CHOUGE THE COINT	LOT AND WEIL				
The lengths of two adjacent sides of a parallelogram are 8 cm. and 5 cm. and the smaller height is 4 cm, then its area equals cm ² .					
a 17	b 32	© 20	d 52		
The area of a parallelogram is the area of a triangle if they have a common base lying on one of two parallel straight lines including them.					
a half	b equal to	© twice	d quarter		
The ratio between the area of the parallelogram and the area of the triangle whose base iscommon and are included between two parallel straight lines equals					
a 1:2	b 1:3	C 2:1	d 2:3		
			F is the midpoint of BC		
, Then the area of	Δ EBF = c	m ²			
a 60	b 30	C 20	d 120		
The triangle whose	e base length is 12 cm	n. and its area is 48	8 cm²,		
then the correspond	nding height is b 4	C H E	R _d 8		
The median of the	triangle divides its s	urface into two tri	angles		
a congruent.	b equal in area	© similar	d equal in perimete		
The sum of measures of the interior angles of a triangle equals					
a 120°	b 60°	© 180°	d 360°		
The parallelogram	and with co	mmon base and be	etween two parallel		
straight lines are e	qual in area.				
a polygon		b rectangle	Section 1		
© triangle		d trapezium			

FOLLOW US

02:

FEBRUARY REVISION 2025 - SECOND TERM

PREP 2 - GEOMETRY

If the area of a triangle is 24 cm², and its height is 8 cm. then its					
corresponding base	e length is	cm.			
<u>a</u> 16	b 6	C 3	d 2		
10) The two triangle w	hich are equal in ar	ea, drawn on o	ne base and o	n the same	
side of it, their ver	tices lie on a line	this bas	se.		
a parallel to	b equal in area	© intersec	ting d pe	erpendicular <mark>t</mark>	to
11) A parallelogram w	hose area <mark>= 50</mark> cm² a	and the length	of its base equ	ıals	
twice the correspo	onding h <mark>eight, th</mark> en t	this height equ	als cm		
a 50	b 25	© 10	d 5		
2 A parallelogram w	hose are <mark>a = 70 cm² a</mark>	and the length	of one of its si	des is 14 cm,	
then the length of	the corresponding h	<mark>ne</mark> ight equals	cm		
a 7	b 5	C 8	d 6		
COMPLETE THE FO	INWING				
COMITELIE THE TO	LLOWING				
The two triangles of	drawn on a comm <mark>on</mark>	<mark>r base and</mark> thei	r vertices locat	ted	
on a straight line p	arallel to the base a	re			
2) The number of axe	es of symmetry of <mark>an</mark>	is <mark>osceles tr</mark> iar	ngle equals		
3 ABCD is a parallelo	gram of area 100 cn	n². E∈AD. The	n area of Δ EB	C = cm ²	
The right-angled tr	iangle whose side le	ength are 3 cm	, 4 cm, 5 cm,		
its area =	. cm².				
If two straight lines	s are intersecting, th	nen each two v	ertically oppos	ite	
angles are	••••				
Surfaces of two pa	rallelograms with co	ommon base a	nd between tw	o parallel	
straight lines, one	is carrying this base,	, are	Δ		
In the opposite fig					_ 7
If the area of Δ AD	B = $\frac{1}{2}$ the area of Δ	ADC			7
Then BD =	_	B	D C		
The area of a tria	angle is equal to half	f of the area of	а	普爾蒙古	ŧ

parallelogram if they havea common

PREP 2 - GEOMETRY

03: ANSWER THE FOLLOWING

In the opposite figure:

ABCD is a quadrilateral where
AB // CD and EB = BC, Prove that:

The area of Δ EBM = The area of Δ ADM

2) In the opposite figure:

ABCD is a parallelogram: AB = 12 cm.

BC = 18 cm, DX = 10 cm.

Find: The area of parallelogram ABCD

bThe lenght of DY

3) In the opposite figure:

The area of \triangle AEB = the area of \triangle DEC

Prove that : AD // BC

In the opposite figure:

The area of \triangle ABE = the area of \triangle ACD

Prove that : DE // BC

5 In the opposite figure:

DBFE and DFCE are two parallelograms and $F \in \overline{BC}$

Prove that:

The area of the figure ABFE = the area of the figure ADFC

1 In the opposite figure:

ABCD is a rectangle, \overrightarrow{AE} // \overrightarrow{DF} , $\overrightarrow{E} \in \overrightarrow{BC}$ and $\overrightarrow{F} \in \overrightarrow{BC}$

Prove that:

The area of the figure ABCM = the area of the figure DMEF

PREP 2 - ALGEBRA

OI: CHOOSE THE CORRECT ANSWER

1	If $(X + 3)$ is one factor of the expression : $x^2 + x - 6$, then the other factor is
	y in (A + 5) is one factor of the expression (A + A - 5) their time of the factor is thin

$$\bigcirc$$
 x + 3

$$(b)$$
 x -4

$$\bigcirc$$
 x + 1

If the expression:
$$x^2 + b \times - 10$$
 can be factorized, then b may be equal to

$$\overline{(d)} - 1$$

For the expression:
$$x^2 - 2x - k$$
 can be factorized, then $k \neq \dots$

4)
$$5x^2 - 7x - 6 = (5x + 3)(x -)$$

$$(c) - 3$$

$$d$$
 – 2

$$(c) - 5$$

$$7)(\sqrt{5} - 3)(\sqrt{5} + 3) = \dots$$

8 If
$$x - y = 5$$
, $x^2 + xy + y^2 = 7$, then $x^3 - y^3 = \dots$

9 If
$$a^2 + b^2 = 15$$
, $2ab = 10$, Then $a + b = \dots$

$$(b) - 5$$

If the expression
$$x^2 + ax + 64$$
 is a perfect square, then $a = \dots$

11) If
$$x^2 - y^2 = 12$$
, $x + y = 4$, then $X - y = \dots$

PREP 2 - ALGEBRA

12	If v ² + 4 v +	k is a norfe	t sauare t	hen k =	•••••
	, II X T 4 X T	k is a peried	i square, i	nen k –	

(a) 1

(b) 2

C 3

d 4

If
$$(x - 3)$$
 is a factor of the expression: $x^2 - 4x + 3$, then the other factor is

- (a)(x+1)
- **b** (x 1)
- (c)(x+3)
- (d)(x-3)

14) If
$$(35)^2 - (15)^2 = 50x$$
, then $x =$

- **a** 10
- **b** 20
- (c) 30

d 40

15 If
$$x^3 + 27 = (x + 3)(x^2 + k + 9)$$
, then $k = \dots$

- \bigcirc 6x
- **b** 3x
- **c** 3x

(d) 6x

16 If
$$x + y = 3$$
, $x^2 - xy + y^2 = 12$, then $X^3 - y^3 = \dots$

(a) 4

b 36

c) 9

d) 24

17 If
$$x^3 + y^3 = 24$$
, $x + y = 6$, then $x^2 - xy + y^2 = ...$

a 4

b 12

C 18

(d) 30

18) If
$$x^2 - a = (x - 5)(x + 5)$$
, Then $a = ...$

a 5

- (b) 25
- C 25
- (d) 10

02:COMPLETE THE FOLLOWING

NASSR

$$1$$
) $x^3 - 8 = (.X. - .2...) (x^2 + 2x + ..4....) EACHER$

- If the expression: $x^2 + 4x + a$ is a perfect square, then $a = \frac{4}{100}$
- 3 $4x^2 + 28 x + ... 49...$ (Complete to be perfect square)
- $18y^2 + 81$ (Complete to be perfect square)

5 If
$$a^2 - b^2 = a + b$$
, then $a - b = \frac{1}{a^2 - b^2}$

$$x^2 + ... + 35 = (x + ... + 5)$$

8 If
$$x^2 - 2xy - 3y^2 = 8$$
, $x + y = 4$, then $x - 3y =$

PREP 2 - ALGEBRA

		$(x^2 + 2)$	(+4)	
9)	The quotient: $x^3 - 8$ by $x - 2$ is		(when ≠ 2)

- 10) If (X 5) is a factor of the expression : $x^2 10 \times +25$, then the other factor is
- If 5a² 5b² = 100, a b = 4, Then a + b =<mark>5</mark>........
- If $x^2 K = (x 3)(x + 3)$, Then the value of K = ...9...
- \mathbf{R} a² 6a + (Complete to be perfect square)

Q3: ANSWER THE FOLLOWING

1) Factorize each of the fol	lowing complete	·lv:
radionize each or the lor	io iiiig oompiete	,.

- $1 x^2 + 13x 30$
- $(2)3x^3 81$

(3) 2x² + 7x + 3

- (x+15)(x-2) (2x+1)(x+2)

- $(x^4 64y^4)(x^2 + 8y^2)(x^2 + 8y^2)$
- $(5) 6m^2 n + 2 m 3mn$ (2m-n)(3m+1) (x+2)(x-12)
- $6 x^2 10x 24$

- (7) $a^3 + a^2 + a + 1$ $(a^2 + 1)(a + 1)$

- $(10)(78)^2 (77)^2$

 $(12) 2x^2 - 32$

- (78 77)(78 + 77)
 -).....(x. \pm .2)(x². \pm .2x. \pm .4).
- 2(x-4)(x+4)
- If xy = 8, find the numerical value of the expression $(x + y)^2 (x y)^2$

32

If (x+1) is a factor of the expression: $5x^2 - 2x - 7$, then find the second factor

5x - 7

4) If x + y = 6, $x^2 - y^2 = 12$, $x^2 + xy + y^2 = 28$ Find the value of: $x^3 - y^3$

56

PREP 2 - GEOMETRY

OI: CHOOSE THE CORRECT ANSWER

CHOOCE THE COM	Edi Allewell				
The lengths of two adjacent sides of a parallelogram are 8 cm. and 5 cm. and the smaller height is 4 cm, then its area equals cm ² .					
and the smaller ne	eight is 4 cm, then its	area equais	cm		
a 17	b 32	© 20	d 52		
2 The area of a para	llelogram i <mark>s</mark>	. the area of a tria	ngle if they have a		
common base lyin	g on one <mark>of two</mark> para	llel straight lines i	ncluding them.		
a half	b equal to	© twice	d quarter		
3 The ratio between	the are <mark>a of the par</mark> a	llelogram and the	area of the triangle		
whose base iscom	mon and <mark>are include</mark>	d between two pa	rallel		
straight lines equa	ıls				
a 1:2	b 1:3	C 2:1	d 2:3		
4 If ABCD is a paralle	elogram who <mark>se area i</mark>	<mark>s 60 c</mark> m² , E∈AD,	F is the midpoint of BC		
, Then the area of	Δ EBF = c	m ²			
a 60	b 30	C 20	d 120		
5 The triangle whos	e base length is 12 cn	n. and its area is 4	8 cm²,		
then the correspo	nding height is		D		
a 3	b 4	© 6	d 8		
6 The median of the	triangle divides its s	urface into two tri	angles		
a congruent.	b equal in area	© similar	d equal in perimete		
The sum of measu	res of the interior angl	es of a triangle eq	uals		
a 120°	b 60°	© 180°	d 360°		
The parallelogram	and with co	mmon base and b	etween two parallel		
straight lines are e	qual in area.				
a polygon		b rectangle	2022		
© triangle		d trapezium			

FOLLOW US

02:

FEBRUARY REVISION 2025 - SECOND TERM

PREP 2 - GEOMETRY

AHMED NASSR							
9 If the area of a triangle is 24 cm², and its height is 8 cm. then its corresponding base length is cm.							
<u>a</u> 16	b 6	© 3	d 2	2			
10 The two triangle v	which are equal in a	area, drawn on d	one base and	on the same			
side of it, their ve	rtices lie on a line .	this bas	se.				
a parallel to	(b) equal in are	a © intersec	ting d	perpendicular <mark>t</mark>			
	vhose area <mark>= 50</mark> cm onding h <mark>eight, th</mark> ei						
a 50	b 25	© 10	d :	5			
12 A parallelogram v	vhose are <mark>a = 70 cm</mark>	² and the length	of one of its	sides is 14 cm,			
then the length o	f the corres <mark>pondin</mark> រូ	<mark>g he</mark> ight equals .	cm				
(a) 7	(b) 5	(c) 8	(d)	5			
COLUDITE THE EC							
COMPLETE THE FO	ILLUWING		V				
	drawn on a commo			ated			
	es of symmetry of			1			
	ogram of area 100						
IVI		LACI		BC CIII			
	riangle whose side	length are 3 cm	, 4 cm, 5 cm,				
its area =6				••			
angles areequ	es are intersecting, ual.in measure	then each two v	ertically opp	osite			
6 Surfaces of two page	arallelograms with	common base a	nd between	two parallel			
straight lines, one	is carrying this bas	se, are	n area				
In the opposite fig	gure:						
If the area of Δ ΑΓ	OB = $\frac{1}{2}$ the area of	Δ ADC					
Then BD = $\dots \frac{1}{3}$		base and indu	ided (
1 The area of a tri	angle is equal to hat they have a comm	alf of the area of	parallel lin				
parallelogram if	they havea comm	QUCCII CAAO	paraner iiii				

FOLLOW US

PREP 2 - GEOMETRY

03: ANSWER THE FOLLOWING

In the opposite figure:

ABCD is a quadrilateral where

AB // CD and EB = BC, Prove that:

The area of Δ EBM = The area of Δ ADM

In the opposite figure:

ABCD is a parallelogram: AB = 12 cm.

BC = 18 cm, DX = 10 cm.

Find: The area of parallelogram ABCD

bThe lenght of DY

3) In the opposite figure:

The area of \triangle AEB = the area of \triangle DEC

Prove that : AD // BC

4 In the opposite figure:

The area of \triangle ABE = the area of \triangle ACD

Prove that : DE // BC

5 In the opposite figure:

DBFE and DFCE are two parallelograms and $F \in \overline{BC}$

Prove that:

The area of the figure ABFE = the area of the figure ADFC

1 In the opposite figure:

ABCD is a rectangle, \overrightarrow{AE} // \overrightarrow{DF} , $\overrightarrow{E} \in \overrightarrow{BC}$ and $\overrightarrow{F} \in \overrightarrow{BC}$

Prove that:

The area of the figure ABCM = the area of the figure DMEF

Se la company de la company de

اختبارشمر فبراير

Question (1) Choose the correct answer.

1)
$$\frac{6}{}$$
 = 1

$$(5 - 7 - 6 - 10)$$

2) Any number other 0 with indices 0 equals

$$(2 - 3 - 1 - 10)$$

3) The expression $X^2 + 7X + a$ can be factorized, Then a maybe equal

$$(8 - 10 - 18 - 49)$$

4) The expression X^2 - 3X + a can be factorized, Then a maybe equal

$$(1 - 2 - 4 - 6)$$

5) The expression X² - aX + 12 can be factorized, Then a maybe equal

$$(-1 - 4 - 7 - 1)$$

6) The expression X² - X - a can be factorized, Then a maybe equal

$$(8 - 12 - 30 - 6)$$

7) The expression $X^2 + aX + 25$ is a perfect square, Then a maybe equal

$$(5 - 10 - \pm 5 - \pm 10)$$

8) The expression $X^2 + 14X + a$ is a perfect square, Then a maybe equal

$$(2 - 7 - 14 - 49)$$

9) The expression $36X^2 + aX + 1$ is a perfect square, Then a maybe equal

$$(6 - 12 - \pm 6 - \pm 12)$$

10) If $a^2 + 2ab + b^2 = 25$, Then $a + b = \dots$

$$(-5 - 5 - \pm 5 - \pm 12)$$

11) If $X^2 - a = (X - 3)(X + 3)$, Then $a = \dots$

$$(3 - 6 - 9 - 0)$$

12) If $X^2 + M - 16 = (X - 4)(X + 4)$, Then $M = \dots$

$$(3 - 6 - 9 - 0)$$

13) If $(50)^2 - (40)^2 = 10a$, Then $a = \dots$

$$(10 - 20 - 30 - 40)$$

14) If $a^2 - b^2 = 30$, a - b = 5, Then $a + b = \dots$

$$(3 - 6 - 9 - 0)$$

15) If X + Y = 4 and $X^2 - XY + Y^2 = 9$, Then $X^3 + Y^3 = \dots$

$$(18 - 27 - 36 - 40)$$

16) If $X^3 - Y^3 = 48$ and $X^2 + XY + Y^2 = 8$, Then $X - Y = \dots$

$$(3 - 6 - 9 - 0)$$

17) If $X^3 - a^3 = (X - a)(X^2 + 3X + a^2)$, Then $a = \dots$

$$(3 - 6 - 9 - 0)$$

Question (2) Complete the Following.

1) Any number divided by itself equals

2) Is the additive identity.

3)
$$\frac{15}{}$$
 = 5

4) 0 divided by any number equals

5) The number which has only 2 factors is

6) The number which has more than 2 factors is

7) The smallest odd prime number is

8) The only even prime number is

9) Means ordering numbers from the greatest to the smallest.

10) Means ordering numbers from the smallest to the greatest.

11) is the multiplicative identity.

12)
$$X^2 - 11X + 18 = (X) (X)$$

13)
$$X^2 + 5X + 6 = (X) (X)$$

14)
$$X^2 - 8X + 12 = (X) (X)$$

15)
$$X^2 + 5X + 6 = (X) (X)$$

16)
$$5a^2 - 2a - 7 = (\dots) (\dots)$$

17)
$$3m^2 + 10mn + 8n^2 = (....) (....)$$

18)
$$3b^2 - 7b + 2 = (....) (....)$$

19)
$$5a^2 - 3ab - \dots = (a - b) (\dots + \dots)$$

20)
$$m^2$$
 - 2m + 1 = (.....) (.....)

21)
$$a^2 - 9^2 = (\dots)$$

22)
$$4c^4 - 12c^2d - 9d^2 = (....)$$

23)
$$(X + \dots - 2Y) = 4X^2 - \dots$$

25)
$$a + b = 5(a - b) = 10$$
, Then $a^2 - b^2 = \dots$

26) If
$$3(X - Y)(X + Y) = 12$$
, Then $X^2 - Y^2 = \dots$

27) If
$$m^2 - n^2 = 63$$
 and $m + n = 7$, Then $\sqrt{m - n} = \dots$

28)
$$(99)^2 - (98)^2 = \dots$$

29)
$$a^3 - 1 = (a - 1)$$
 (.....)

30)
$$m^{18} + m^{15} = \dots (\dots) (\dots)$$

31) If (a – b) is a factor of the expression of difference between two square then the other factor is

Mathe	matics
-------	--------

32) If (a – b) is a factor of the expression of difference between two cube then the other factor is

Question (3) Essay problems.

1) The area of rectangle is X²+6X+8 cm², and its width is X+2, Find each of length and perimeter of the rectangle.

2) Factorize each of the following.

A) $X^4 + 9X^2 + 18$.

.....

B) $5X^2 - 10X - 15$.

.....

C) $X^2 (X - 23) + 60X$.

D) (X-4)(X-9)-2(X+5).

.....

E) $(X-1)^2-2(X-1)-8$.

Mathematics

F) $6X^2 - 21X + 18$.

G) $12(c + d)X^2 + 68(c + d)X + 80(c + d)$.

.....

H) 2X(X + 3) + 13X + 24.

1) $5Y^2 - 4X(7Y + 3X)$.

3) The area of rectangle is $X^2+6X+8\ cm^2$, and its width is X+2, Find each of length and perimeter of the rectangle.

4) Complete the missing term in each of the following trinomials to be a perfect square trinomial.

A) 4X² + 1

B) Z⁴ + 49L⁴

C) $4X^2 + 28X + \dots$

D) a² – 6a +

E) - $18Y^2 + 81$

F) - $24ab + 16b^2$

M	ath	nem	nati	CS
	C C C C			90

5) Factorize each of the following.

A) $X^4 - 6X^2 + 26$.

B) $1 + 14X + 49X^2$.

C) $\frac{1}{16}$ a² + $\frac{1}{10}$ a + $\frac{1}{25}$.

D) $(X - y)^2 + 4XY$.

.....

6) Use factorization to get value of each of the following.

A) $(87)^2 + 2 \times 13 \times 87 + (13)^2$.

B) $(7.3)^2 + 2 \times 7.3 \times 2.7 + (2.7)^2$.

C) $(99)^2 + 2 \times 99 \times 98 + (98)^2$.

		- N			_ 0	
M//	വ			ma	ነፋትስ	RR
UV	u	الك	اکا	UUQ	الى ا	69

D) 25 + 2×45 + 81.
7) If XY = 8, Find the numerical value of the expression $(X + Y)^2 - (X - Y)^2$.
5) Use factorization to get value of each of the following.
A) $(77)^2 - (23)^2$.
B) (999) ² - (1) ² .
C) (98) ² - (2) ² .
D) (11.6) ² - (1.6) ² .
8) Use the idea of factorizing the difference between two square for each of the following.
A) 31 × 29.

		- N			_ 0	
M//	വ			ma	ነፋትስ	RR
UV	u	الك	اکا	UUQ	الى ا	69

	ivia di le i i la dies	
B) 103 × 97.		
•		
9) Factorize each of the follo	owing.	
A) $16X^3Y^2 - 686Y^5$.		
7, 207.		
B) $0.064a^3 - 0.027b^3$.		
0.0275		
C) (m+3) ³ – 27.		
C) (III+3)* – 27.		
D) 2 2(1.4)3		
D) $3 - 3(L+1)^3$.		
		•••••
40) 15 - 2 1 2 20 - 1 2		1.11 C - 2 - L 2
10) If $a^2 - b^2 = 20$, $a - b = 2$ a	ina a- – ap + p- = 28, Find	i the value of a ³ – b ³ .

Question (1) Choose the correct answer.

1) The area of rectangle =

$$(L \times W - L + W - [L + W] \times 2 - \frac{1}{2} \times [L \times W])$$

2) The area of parallelogram =

$$(b \times h - b + h - [b + h] \times 2 - \frac{1}{2} \times [b \times h])$$

3) In parallelogram the smaller height corresponding to Base.

4) In parallelogram the greater height corresponding to Base.

is 7 cm then its area = cm² (17 - 35 - 70 - 34)

6) If the base length of the parallelogram is 12 cm and its corresponding height is 5 cm then its area = cm² (17 - 30 - 60 - 34)

7) If the base lengths of the parallelogram is 10 cm and 8 cm and its greater height is 7 cm then its area = cm² (70 - 56 - 28 - 35)

8) If the base lengths of the parallelogram is 10 cm and 8 cm and its smaller height is 7 cm then its area = cm² (70 - 56 - 28 - 35)

9) If the base lengths of the parallelogram is 10 cm and 8 cm and its greater height is 5 cm then its smaller height = cm (3 - 3.5 - 4 - 4.5)

10) If the base lengths of the parallelogram is 6 cm and 9 cm and its smaller height is 4 cm then its greater height = cm (4 - 5 - 6 - 7)

11) A parallelogram with area 27 cm² and its base = $3 \times$ its corresponding height then its base = cm (3 - 6 - 9 - 12)

12) A parallelogram with area 32 cm² and its base = $2 \times$ its corresponding height then its base = cm (4 - 6 - 8 - 12)

13) Surface of parallelogram Another surface of parallelogram have a common base and between two parallel lines. $(< - > - = - \ge)$

14) Surface of parallelogram Another surface of triangle have a common base and between two parallel lines. (< - > - = - ≥)

15) The area of triangle =

$$(b \times h - b + h - [b + h] \times 2 - \frac{1}{2} \times [b \times h])$$

16) If the base length of the triangle is 10 cm and its corresponding height is 7 cm then its area = cm² (17 - 35 - 70 - 34

17) If the base length of the triangle is 5 cm and its corresponding height is 8 cm then its area = cm² (40 - 30 - 20 - 10)

18) A triangle with area 27 cm² and its base = 6 cm then its height = cm

(3 - 6 - 9 - 12)

19) A triangle with area 24 cm² and its height = 8 cm then its base = cm

(3 - 6 - 9 - 12)

20) A triangle with area 6 cm² and its base = $3 \times$ its corresponding height then its base = cm (3 - 6 - 9 - 12)

21) A triangle with area 16 cm² and its base = $2 \times$ its corresponding height then its height = cm (2 - 4 - 6 - 8)

22) The point of intersection of the heights in the acute angled triangle is
..... the triangle (Inside – outside – at the right angle)

23) The point of intersection of the heights in the obtuse angled triangle is the triangle (Inside – outside – at the right angle)

24) The point of intersection of the heights in the right angled triangle is the triangle (Inside – outside – at the right angle)

Question (2) Complete the Following.

- 1) Surfaces of 2 parallelogram with common base and between two parallel straight line are
- 2) Surfaces of 2 parallelogram and rectangle with common base and between two parallel straight line are
- **3)** The area of rectangle =

..... area triangle of ABC.

- 4) The area of parallelogram =
- 5) Surfaces of 2 parallelogram with base equal in length and lying on a straight line and opposite side to it lying on another parallel straight line are.....
- 6) If the base length of the parallelogram is 5 cm and its corresponding height is 6 cm then its area = cm²
- 7) If the base length of the parallelogram is 12 cm and its corresponding height is 11 cm then its area = cm²
- 8) If the base length of the parallelogram is 15 cm and its corresponding height is 5 cm then its area = cm²
- 9) If the base lengths of the parallelogram is 5 cm and 7 cm and its greater height is 7 cm then its area = cm²

10) If the base lengths of the parallelogram is 8 cm and 11 cm and its greater height is 9 cm then its area = cm²

11) If the base lengths of the parallelogram is 10 cm and 8 cm and its smaller height is 5 cm then its area = cm²

12) If the base lengths of the parallelogram is 5 cm and 7 cm and its smaller height is 5 cm then its greater height = cm

13) A parallelogram with area 48 cm^2 and its base = $3 \times \text{its}$ corresponding height then its base = cm

14) A parallelogram with area 64 cm² and its base = 4 × its corresponding height then its base = cm

15) The area of triangle =

16) If the base length of the triangle is 7 cm and its corresponding height is 8 cm then its area = cm²

17) If the base length of the triangle is 6 cm and its corresponding height is 7 cm then its area = cm²

18) A triangle with area 84 cm² and its base = 12 cm then its height =cm

19) The ratio between the area of triangle and the area of parallelogram which have common base and between two parallel straight lines is

20) The ratio between the area of parallelogram and the area of parallelogram which have common base and between two parallel straight lines is

21) The area of right angled triangle which the lengths of the two sides of the right angle are 5 cm and 4 cm is

22) The length of two adjacent sides of the parallelogram is 10 cm and 8 cm and its greater height is 6 cm then its area =

23) ABC is a right angled triangle and AD is perpendicular to

BC, Then × ×

24) If the base length of 2 triangle are equal and their corresponding heights length are equal, Then their areas are

25) Two triangle which have a common base and their vertices on a straight line parallel to the base are

26) Triangles of bases equal in length and lying between two parallel lines are

27) The median of triangle divides its surface into two triangles are

28) Triangles which have congruent bases and have a common vertex are

29) If ABC is a triangle and D is the midpoint of BC, Then area of triangle ABD = area of triangle, and = $\frac{1}{2}$ area of triangle

30) If XYZ is a triangle and M is the midpoint of YZ and the area of XYM = 30 cm² Then the area of triangle XYZ =, and the area of XZM =

Question (3) Essay problems.

1) In each of the following find the area of ABCD.

A) _D

Area of ABCD =

B)

Area of ABCD =

- 0	- 0
Mathema	ക്ക്രഭ
Milantinienni	allucs

2) ABCD is a parallelogram in which m (\angle ABC) = 150°,

, $E \in \overrightarrow{CB}$ and $\overrightarrow{AE} \perp \overrightarrow{CB}$

AD = 12 cm. AB = 8 cm.

« 48 cm² »

Find: The area of ∠ ABCD

3) In the opposite figure :

 $\overrightarrow{AB} / / \overrightarrow{DE}, X \in \overrightarrow{AB}, Y \in \overrightarrow{AB}$

, XDEY is a rectangle and \overline{AD} // \overline{BE}

1 Find the area of the figure ABED

			_	- 0
V/V		കര	തച	2001
ושנ	ાવાદા		l la	tics

4) In the opposite figure : ABCD and XBCY are two parallelograms , $X \in \overrightarrow{AD}$ and the area of $\triangle XCY = 15 \text{ cm}^2$. Find : The area of $\triangle ABCD$	Y X D A C B « 30 cm ² , »
 5) In the opposite figure: DBFE and DFCE are two parallelograms and F∈BC Prove that: The area of the figure ABFE = the area of the figure ADFC 	A D D C F B
DBFE and DFCE are two parallelograms and $F \in \overline{BC}$ Prove that:	E D D B
DBFE and DFCE are two parallelograms and $F \in \overline{BC}$ Prove that:	E D D B
DBFE and DFCE are two parallelograms and $F \in \overline{BC}$ Prove that:	E D D
DBFE and DFCE are two parallelograms and $F \in \overline{BC}$ Prove that:	E D D
DBFE and DFCE are two parallelograms and $F \in \overline{BC}$ Prove that:	C F B

6) In the opposite figure :

ABCD is a parallelogram whose area is 240 cm².

$$\ell_1: h_1 = 5:3$$
, $\ell_1: \ell_2 = 4:3$ Find: h_2

7)

In the opposite figure:

ABXF is a rectangle

, ABCD and AMEF are two parallelograms

Prove that:

The area of \square ABCD = The area of \square AMEF

	hama	д 8
Matl	hema	tics

	_
0	١
0	1

In the opposite figure:

ABCD is a rectangle

, XEFC is a parallelogram. Prove that: The area of the rectangle ABCD = The area of the parallelogram XEFC

9)

In the opposite figure:

ABCD and EBCF are two parallelograms

$$,D\in\overline{AF},E\in\overline{AF}$$

$$,\overline{\mathrm{CD}}\cap\overline{\mathrm{BE}}=\left\{ \mathrm{M}\right\}$$

Prove that: The area of the figure ABMD = The area of the figure EMCF

10)

In the opposite figure :

ABCD and BECD are two parallelograms, where

 $\overline{AC} \cap \overline{BD} = \{M\}$

Prove that:

The area of \triangle ABD = the area of \triangle MEC

11)

In the opposite figure:

ABCD and AEFD are two parallelograms and $\overline{AE} \cap \overline{CD} = \{M\}$

11

where $E \in \overline{BF}$ and $C \in \overline{BF}$

The area of \triangle ABM = the area of \triangle DMF

012032063*4A*

Mr. Mohammed Hamdy

	_	_
$\mathbf{M} \sim \mathbf{M}$	h = ====	₩8
		וזרווריכי
uvuau	hema	

12)

In the opposite figure :

 $\overrightarrow{AD} \perp \overrightarrow{CB}$, $\overrightarrow{BE} \perp \overrightarrow{AC}$, $\overrightarrow{AC} = 16$ cm.,

BC = 10 cm. and AD = 8 cm.

Find:

- 1 The area of \triangle ABC

« 40 cm² , 5 cm. »

13)

In the opposite figure:

 \triangle ABC is right-angled at B, $D \in \overline{AC}$ such that : $\overline{BD} \perp \overline{AC}$, if AB = 6 cm. and BC = 8 cm.

Find: The length of BD

01203806344

14) In the opposite figure: ABCD is a quadrilateral. Its diagonals intersect at M , $\overline{AD} / / \overline{EF} / / \overline{BC}$ Prove that: The area of \triangle ABE = the area of \triangle DFC 15) In the opposite figure: ABCD is a parallelogram, $F \subseteq \overline{AD}$ and E is the midpoint of \overline{BC} Prove that: The area of \triangle BEF = $\frac{1}{4}$ the area of \triangle ABCD

16)

In the opposite figure:

ABCD and BCEF are two parallelograms.

Prove that:

The area of Δ CEM = $\frac{1}{2}$ The area of the parallelogram ABCD

17)

In the opposite figure:

 $\overline{AD} / / \overline{BC}, E \in \overline{BC}, F \in \overline{BC}$

where BE = CF, $\overline{AF} \cap \overline{ED} = \{M\}$

Prove that:

- 1 The area of \triangle AME = The area of \triangle DMF
- 2 The area of the figure ABEM = The area of the figure DCFM

18)

In the opposite figure:

 $\overline{AD} / / \overline{BC}$, $\overline{AC} \cap \overline{BD} = \{M\}$,

E is the midpoint of \overline{BC}

Prove that : The area of the figure ABEM = the area of the figure DMEC

19)

In the opposite figure:

D is the midpoint of \overline{BC} ,

E is the midpoint of \overline{AC} ,

the area of \triangle DEC = 5 cm².

Calculate: The area of \triangle ABC

2	~	١
71		1
_	•	,

ABCD is a parallelogram. $E \in \overrightarrow{CB}$, where BC = BE

Prove that : The area of \triangle FEC = the area of \triangle ABCD

المراجعة رقم (5)

اختبار شمر فبراير

Complete

Algebra

1 If (x + 1) is a factor of the expression: $2x^2 - x - 3$, then the other factor is

2 If
$$(x + 2)(x + 3) = x^2 + ax + 6$$
, then $a = \dots$

3 If (x-5) is a factor of the expression: $x^2 - 10x + 25$, then the other factor is

4 If (x + 3) is a factor of the expression: $x^2 + 7x + 12$, then the other factor is

5 If
$$a^2 + k + 6 = (a - 3) (a - 2)$$
, then $k = \dots$

6 If $(x + y)^2 = 36$, $x^2 + y^2 = 26$, then $xy = \cdots$

If (2×-1) is a factor of the expression : $2 \times ^2 + 9 \times -5$, then the other factor is

8
$$2 x^2 + x - 6 = (\dots - \dots - \dots - \dots) (x + \dots - \dots)$$

9 5 x^2 - 2 x - 7 = (5 x -) (x +)

10 3
$$x^2 + 7 x - 6 = (3 x - \dots + 3)$$

If the expression: $x^2 + 6x - k$ is a perfect square, then $k = \dots$

12 If $k x^2 - 10 x + 1$ is a perfect square, then $k = \dots$

13 If the expression: $9 x^2 + k x + 25$ is a perfect square, then $k = \dots$

14 If the trinomial: $x^2 + kx + 36$ is a perfect square, then $k = \dots$

15 If a + b = 5, a - b = 3, then $a^2 - b^2 = \dots$

16 If $x^2 - y^2 = 24$, x - y = 3, then $x + y = \dots$

17 $x^3 - 8 = (x - 2) (\dots + 4)$

18 $(2 \times 3) (4 \times 2 + 6 \times y + 9) = \dots$

19 If $x^3 + c = (x+2)(x^2 - 2x + 4)$, then $c = \cdots$

If $(4 a^2 - 2 a + 1)$ is one factor of the expression: $8 a^3 + 1$, then the other factor is

22 If a + b = 5, x - y = 3

• then the numerical value of the expression : a $(X - y) + b(X - y) = \cdots$

Choose:

- 1 The expression: $x^2 x a$ can be factorized if $a = \cdots$
 - (a) 3

(b) 4

(c) 5

(d) 6

- 2 If $x^2 + ax 13 = (x + 1)(x 13)$, then $a = \dots$
 - (a) zero.

(b) 25

(c) - 12

- (d) 12
- 3 If the expression: $\chi^2 c \chi + 12$ can be factorized, then $c = \dots$
 - (a) 1

(b) 4

(c)7

- (d) 1
- 4 Which of the following numbers can be added to the expression: $x^2 8x + 5$ to be factorized?
 - (a) 1

(b) 2

(c) 4

- (d) 5
- 5 The expression: $x^2 + 5x + m$ can be factorized, if $m = \dots$
 - (a) 12

(b) 7

- (c) 14
- (d) 2
- 6 The expression: $x^2 + 5x + m$ can be factorized, if $m = \dots$
 - (a) 5

(b) 1

(c) 6

- (d) 7
- 7 The expression: $x^2 + 7x + b$ can be factorized, if $b = \dots$
 - (a) 3

(b) 4

(c) 6

- (d)7
- - (a) X-2

- (b) X 3
- (c) X + 2
- (d) X + 6
- 9 If the expression: $x^2 + ax 12$ can be factorized, then a may be equal to
 - (a) 12

(b) - 8

(c) 8

- (d) 1
- 10 The number can be added to the expression: $2x^2 + 5x 10$ to be factorized is
 - (a) 1

(b) -2

(c) - 3

(d) - 4

- 11 5 x^2 7 x 6 = (5 x + 3) (x
 - (a) 3

(b) 2

(c) - 3

(d)-2

12	2 If $(2 a - 5) (3 a - 2) = 6 a^2 + k a + 10$, then $k = \dots$					
	(a) 15	(b) 19	(c) – 19	(d) 4		
13	$2 x^2 + 5 x + 3 = (\cdots$	···· + 3) (X + 1)				
	(a) X	(b) 2 X	(c) 3 X	(d) 5 X		
14	If $x^2 + kx + 25$ is a per	fect square, then k =				
	(a) 5	(b) 10	(c) ± 10	$(d) \pm 5$		
15	If $x^2 - kx + 25$ is a per	fect square , then k =	***********			
	(a) 2	(b) 10	(c) 5	(d) 50		
16	If k $x^2 + 12x + 9$ is a p	erfect square, then k =				
	(a) 3	(b) 4	(c) 9	(d) 16		
17	$(x + 3 y)^2 = x^2 + \cdots$	···· + 9 y ²				
	(a) 6 X y	(b) 9 x y	(c) 3 X y	(d) 6		
18	If $y^2 + 12y + m$ is a perf	Sect square, then $m = \cdots$				
	(a) 25	(b) 36	(c) - 36	(d) 100		
19	If the expression: $x^2 - 6$	6 X - m is a perfect squa	re , then m =			
	(a) - 9	(b) 1	(c) 2	(d) 9		
20	The missing term in the cis	expression: $9x^2 + \cdots$	+ 16 y ² to be a	perfect square		
	(a) 12 X y	(b) 24 X	(c) 24 X y	(d) $12 x^2 y^2$		
21	If $x^2 - a = (x - 3)(x + 3)$	3) , then a =				
	(a) 3	(b) - 3	(c) 9	(d) - 9		
22	If $x - y = 3$, $x + y = 0$	6, then $x^2 - y^2 = \dots$				
	(a) 12	(b) 9	(c) 3	(d) 18		
23	If $x^2 - y^2 = 16$, $x - y$	$y = 2$, then $x + y = \cdots$	******			
	(a) 4	(b) 8	(c) - 8	(d) 2		

24 If x + y = 3, $x^2 - xy + y^2 = 5$, then $x^3 + y^3 = \dots$

(a) 15

(b) 25

(c) 8

(d) 7

25 If $a^3 - b^3 = 64$, $a^2 + ab + b^2 = 16$, then $a - b = \dots$

(a) 8

(b) - 4

(c) 4

26 $(x+1)(x^2-x+1) = \cdots$

- (a) $x^3 1$
- (b) $x^3 + 1$
- (c) $(x-1)^3$
- (d) $(x+1)^3$

27 $(75)^2 - (25)^2 = 100 \times \dots$

(a) 75

(b) 50

- (c) 100
- (d) 25

28 If $x^3 + y^3 = 28$, x + y = 2, then $x^2 - xy + y^2 = \dots$

(a) 48

(b) 14

- (c) 2
- (d)7

Word Problems:

1 Factorize each of the following completely:

$$1 a X + b X + 5 a + 5 b$$

$$4x^2 + 13x - 30$$

$$73 x^2 + 7 x + 2$$

$$10 \ 2 \ x^2 - 5 \ x - 12$$

13 8
$$\chi^3$$
 + 125

$$2x^2 + 8x + 15$$

$$[5] x^2 - 3x - 18$$

$$[8]$$
 2 $X^2 + X - 6$

$$11 x^2 - 9$$

$$143 x^3 - 81$$

$$3 \chi^2 - 8 \chi + 12$$

$$6(c+d)^2 + 5(c+d) + 6$$

$$92x^2-3x+1$$

$$12 \cdot 16 \times 2 - 9$$

$$15 a^3 + 0.008$$

Complete

Geometry

- If ABCD is a parallelogram in which AB = 5 cm. and BC = 10 cm. and its smaller height is 4 cm., then its greater height is

- The area of a parallelogram is 48 cm² and its base length is 12 cm., then the corresponding height to this base is cm.
- A triangle has a base of length 8 cm. and its corresponding height is 5 cm., its area is cm².
- If ABCD is a parallelogram its area is 100 cm², then the area of \triangle ABC = cm².

Choose:

	If the base length of a parallelogram is 7 cm. and the corresponding height is 4 cm.					
then its area equal (a) 11 cm ²	(b) 14 cm ² .	(c) 22 cm ² .	(d) 28 cm ²			
	llelogram is 35 cm ² and the ding height to this side is		sides is 7 cm.			
(a) 10	(b) 5	(c) 7	(d) $\frac{5}{2}$			
	allelogram in which the lean naller height is 4 cm. equa		sides are 5 cm.			
(a) 120	(b) 28	(c) 35	(d) 20			
	o adjacent sides of a parallen its area equals		d 7 cm. and its greater			
(a) 30	(b) 35	(c) 42	(d) 49			
	o adjacent sides of a paral en its greater height is		d 6 cm. and its smaller			
(a) 36	(b) 24	(c) 12	(d) 6			
	gle is the area of parallel straight lines inc		y have a common base			
(a) equal to	(b) half	(c) twice	(d) quarter			
	The ratio between the area of the parallelogram and the area of the triangle whose base is common and are included between two parallel straight lines equals					
(a) 1:2	(b) 1:3	(c) 2:1	(d) 2:3			
	lelogram, $E \subseteq \overline{AD}$, the a		.2			
(a) 35	(b) 70	(c) 17	(d) 17.5			

If ABCD is a parallelogram,

its area = 24 cm^2 .

- then the area of \triangle ABE = cm².
- (a) 24

- (b) 12
- (c) 8

(d) 6

- The triangle whose base length is 12 cm. and its area is 48 cm², then the corresponding height is
 - (a) 3 cm.

- (b) 4 cm.
- (c) 6 cm.
- (d) 8 cm.
- - (a) 16

(b) 6

(c)3

- (d) 2
- The area of the rectangle whose dimensions are 6 cm. and 4 cm. the area of the triangle whose base length is 12 cm. and its corresponding height is 4 cm.
 - (a) <

(b) >

(c) =

(d) ≠

Word Problems:

- Find the area of the parallelogram in which the lengths of two adjacent sides are 6 cm. and 8 cm. and its greater height is 5 cm.
- 2 In the opposite figure:

ABCD is a parallelogram, AB = 12 cm.

, BC = 18 cm., DX = 10 cm.

Find: 1 The area of $\angle 7$ ABCD

3 In the opposite figure:

ABCD is a rectangle, AE // DF

$$, E \in \overrightarrow{BC}, F \in \overrightarrow{BC}$$

Prove that:

The area of the figure ABCM = the area of the figure DMEF

4 In the opposite figure:

 $\overrightarrow{AB} / \overrightarrow{DE}, X \in \overrightarrow{AB}, Y \in \overrightarrow{AB}$

, XDEY is a rectangle, $\overline{AD} // \overline{BE}$

DE = 12 cm. YE = 24 cm.

Find: The area of the figure ABED

5 In the opposite figure:

ABZF is a rectangle

, ABCD , AMEF are two parallelograms

Prove that:

The area of \square ABCD = the area of \square AMEF

6 In the opposite figure:

 $\overline{DY} // \overline{AC}$, BX = YC

Prove that:

The area of \triangle BDX = the area of \triangle AYD

7 In the opposite figure:

ABCD is a parallelogram whose area is 40 cm².

• F is the midpoint of \overline{EC} • $E \in \overline{AD}$

Find: The area of Δ BEF

8 In the opposite figure :

ABCD, ABMN are two parallelograms

Prove that:

The area of \triangle EBC = $\frac{1}{2}$ the area of \triangle ABMN

In the opposite figure :

ABCD, AEFD are two parallelograms

$$,\overrightarrow{AE}\cap\overrightarrow{DC}=\{X\}$$

Prove that:

The area of \triangle ABX = the area of \triangle DFX

10 In the opposite figure:

 $\overline{AD} // \overline{BC}$

Prove that:

The area of \triangle AMB = the area of \triangle DMC

11 In the opposite figure:

ABC is a triangle $D \in \overline{AB}$

- $, E \in \overline{AC}$
- , Such that the area of \triangle ABE = the area of \triangle ACD

Prove that : $\overline{DE} // \overline{BC}$

Algebra

The Answers

Complete

1 (2×-3) 2 5 3 $(\times -5)$ 4 $(\times +4)$

$$3 (\chi - 5)$$

$$4(x+4)$$

7.
$$(x + 5)$$

$$5-5a$$
 6 5 $7(x+5)$ 8 2 x , 3 , 2

$$97,1 \quad 102,x \quad 11-9 \quad 25$$

$$\chi^2$$
, 2χ

$$(7)$$
 χ^2 , 2 χ (8) 8 χ^3 – 27 χ^3

19 8 20
$$2a+1$$
 21 b, x, y

Choose

Word Problems

1 a
$$(x + 5) + b (x + 5) = (x + 5) (a + b)$$

$$2(x+3)(x+5)$$
 $3(x-2)(x-6)$

$$[3](x-2)(x-6)$$

$$4(x-2)(x+15)$$

$$[5](x+3)(x-6)$$

6
$$((c+d)+2)((c+d)+3)$$
 7 $(3 x+1)(x+2)$

$$7(3 x+1) (x+2)$$

$$8(2x-3)(x+2)$$
 $9(2x-1)(x-1)$

$$9(2x-1)(x-1)$$

$$11(x-3)(x+3)$$

$$(4 \times -3) (4 \times +3)$$

$$13(2x+5)(4x^2-10x+25)$$

14 3
$$(x-3)(x^2+3x+9)$$

15
$$(a + 0.2) (a^2 - 0.2 a + 0.04)$$

The Answers

Complete

1 8 cm. 2 24

3 equal in area

5 base, one of two parallel straight lines including them.

6 20

7 10

8 50

Choose

11 (d)

11 (b)

2 (b)

3 (b)

7 (c) 8 (b) 9 (d)

(Q.E.D.)

Word Problems

The area of the parallelogram = $6 \times 5 = 30$ cm².

1 The area of \triangle ABCD = BC \times DX = 18 \times 10 $= 180 \text{ cm}^2$

 $\mathbf{DY} = \frac{\text{the area}}{4R} = \frac{180}{100} = 15 \text{ cm}.$

: ABCD is a rectangle : AD // BC

∴ AD // EF

, · · AE // DF

:. AEFD is a parallelogram

, : the rectangle ABCD , AEFD have the common base AD , AD // BF

.. The area of the rectangle ABCD

= the area of AEFD

Subtracting the area of Δ AMD from both sides

.. The area of the figure ABCM

= the area of the figure DMEF

(Q.E.D.)

4

∵ AB // DE

, AD // BE

.. ABED is a parallelogram

, \because the rectangle XYED , \square ABED have the common base DE, AB // DE

... The area of ABED

= The area of the rectangle XYED

, : the area of the rectangle XYED = 12×24

 $= 288 \text{ cm}^2$

 \therefore The area of \triangle ABED = 288 cm²

(The req.)

5

: ABCD, ABZF have the common base AB

, AB // CF

.. The area of ABCD = The area of ABZF (1)

, ∵ ∠ AMEF , ABZF have the common base AF

, AF // BE

∴ The area of AMEF = The area of ABZF (2) From (1) and (2):

... The area of ABCD = The area of AMEF

 $\because \Delta \Lambda \ BDX$, DCY have equal bases in length and on one straight line and they have the same vertex D

 \therefore The area of \triangle BDX = The area of \triangle DCY (1)

, .. AA DCY , AYD have the common base \overline{DY}

, DY // AC

 \therefore The area of \triangle DCY = The area of \triangle AYD (2)From (1) and (2):

 \therefore The area of \triangle BDX = The area of \triangle AYD (Q.E.D.)

∴ A EBC • ∠ ABCD have the common base BC

,E∈AD

∴ The area of \triangle BEC = $\frac{1}{2}$ The area of \triangle ABCD $=\frac{1}{2} \times 40 = 20 \text{ cm}^2$

→ ∵ F is the midpoint of CE

∴ BF is a median in A BEC

 \therefore The area of \triangle BEF = $\frac{1}{2}$ The area of \triangle BEC

 $=\frac{1}{2} \times 20 = 10 \text{ cm}^2$. (The req.)

8

 \therefore \triangle EBC and \square ABCD have the common base \overline{BC}

 $, E \in \overline{AD}$

:. The area of \triangle EBC = $\frac{1}{2}$ The area of \triangle ABCD (1)

, \therefore ABCD and \square ABMN have the common base \overline{AB}

, AB // NC

 \therefore The area of \square ABCD = The area of \square ABMN (2)

From (1) and (2):

∴ The area of \triangle EBC = $\frac{1}{2}$ The area of \square ABMN (Q.E.D.)

9

∴ The two parallelograms ABCD and AEFD have the common base AD

BF // AD

 \therefore The area of \square ABCD = The area of \square AEFD (1)

.: Δ ABX, ABCD have the common base AB

,x∈DC

∴ The area of \triangle ABX = $\frac{1}{2}$ The area of \triangle ABCD (2)

∴ ∆ DFX and ∠ AEFD have the common base DF

 $X \in \overrightarrow{AE}$

∴ The area of \triangle DFX = $\frac{1}{2}$ The area of \triangle AEFD (3)

From (1), (2) and (3):

... The area of \triangle ABX = The area of \triangle DFX (Q.E.D.)

10

 \therefore $\triangle \triangle$ ABC, DBC have the common base \overline{BC}

 $\overline{AD} / \overline{BC}$

:. The area of \triangle ABC = The area of \triangle DBC

Subtracting the area of Δ BMC from both sides

 \therefore The area of \triangle AMB = The area of \triangle DMC

(Q.E.D.)

: The area of \triangle ABE = The area of \triangle ACD

Subtracting the area of Δ ADE from both sides

.. The area of \triangle BDE = the area of \triangle CDE and they have the common base \overline{DE} and on one side of it.

 $\therefore \overline{DE} // \overline{BC}$

(Q.E.D.)

ပြူတွင်္ကြောက်ကို ရှိသည် လျှောက်ကို ရှိသည်။ မြောက်ကို ရှိသည်။ မြောက်ကို မြော

وثلاراي لطبع العثمات من عثمت 4 الباطبع العثمان والمستقال الباراي العثمان والمستقال وال

