Parallel Iterative Matrix Algorithms

CS121 Parallel Computing Fall 2024

Iterative matrix algorithms

- To solve a dense system of linear equations Ax = b, we saw direct methods such as Gaussian Elimination.
- When the A is very large (millions of variables), GE is too slow.
- For structured matrices, e.g. banded matrices, special solution methods can be developed.
- For general sparse matrices, we use iterative algorithms that compute approximate solutions which eventually converge to the true solution.

be.

Iterative matrix algorithms

- Given $A \in \mathbb{R}^{n \times n}$, write A = M N, where M and N are matrices such that M^{-1} is easy to compute (e.g. a diagonal matrix).
 - □ Let x^* be the solution to Ax = b. Then $Mx^* = Nx^* + b$.
- Let $C = M^{-1}N$, $d = M^{-1}b$.
 - \square So $x^* = Cx^* + d$.
- Starting from an initial x, repeatedly compute Cx + d.
 - \square Denote k'th iterate of x as $x^{(k)}$.
 - □ Then $x^{(k+1)} = Cx^{(k)} + d$.

M

Convergence criteria

- We want the iterations to converge, starting from any initial vector $x^{(0)} \in \mathbb{R}^n$.
 - \square I.e. we want $\lim_{k\to\infty} x^{(k)} = x^*$, so that $x^* = Cx^* + d$.
- Since $x^{(k+1)} = Cx^{(k)} + d$, then subtracting, we get $x^{(k+1)} x^* = C(x^{(k)} x^*)$.
 - \square Also, $x^{(k)} x^* = C(x^{(k-1)} x^*)$, etc.
 - \square So in general $x^{(k)} x^* = C^k(x^{(0)} x^*)$.
- Let $\rho(C)$ be the magnitude of the largest eigenvalue of C.
- Thm The following are equivalent
 - \square The iterative algorithm converges for any initial $x^{(0)}$.
 - $\Box \lim_{k \to \infty} C^k = 0.$
 - $\square \rho(\mathcal{C}) < 1.$

M

Jacobi method

- Write A = D L R, where D is the diagonal elements of A, -L is the lower triangular part of A without D, and -R is the upper triangular part without D.
- Let M = D, N = L + R. Note that M is easy to invert.
- Then $C = D^{-1}(L + R)$, and $d = D^{-1}b$.
 - \square So $c_{ij} = -a_{ij}/a_{ii}$ if $j \neq i$, and $c_{ii} = 0$ for all i.
 - \square Also, $d_i = b_i/a_{ii}$ for all i.
- Convergence is guaranteed if the matrix is diagonally dominant, i.e. $|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}|$ for all i.
- Recall $x^{(k+1)} = Cx^{(k)} + d$. So the i'th component of $x^{(k+1)}$ is

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \Big(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \Big).$$

- $x^{(k+1)}$ depends only on $x^{(k)}$, and different components of $x^{(k+1)}$ do not have any dependencies.
 - \square Thus, all components of $x^{(k+1)}$ can be computed in parallel.

Jacobi method example $\left| x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{i=1,i\neq i}^n a_{ij} x_j^{(k)} \right) \right|$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right)$$

Jacobi Method

Consider 4x4 case

$$\begin{bmatrix} 10 & -1 & 2 & 0 \\ -1 & 11 & -1 & 3 \\ 2 & -1 & 10 & -1 \\ 0 & 3 & -1 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 25 \\ -11 \\ 15 \end{bmatrix}$$

Example

given
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1^{(1)} = (x_2^{(0)} - 2x_3^{(0)} + 6)/10$$

$$x_2^{(1)} = (x_1^{(0)} + x_3^{(0)} - 3x_4^{(0)} + 25)/11$$

$$x_3^{(1)} = (-2x_1^{(0)} + x_2^{(0)} + x_3^{(0)} + x_4^{(0)} - 11)/10$$

$$x_4^{(1)} = (-3x_2^{(0)} + x_3^{(0)} + x_3^{(0)} + 15)/(-8)$$

$$x_4^{(1)} = (-3x_2^{(0)} + x_3^{(0)} + x_3^{(0)} + 15)/(-8)$$

Source: https://slideplayer.com/slide/3276935/

ĽΑ

Parallel Jacobi method

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right)$$

- Since all components of $x^{(k+1)}$ are independent, we can use up to n processors.
- In distributed memory, matrix A and vector b are stored in row-wise block format across the processors.
- $x^{(k+1)}$ and $x^{(k)}$ are computed in x_new and x_old, resp.
- Each processor needs all the values of x.
- After all processors compute their part of x_new, the whole vector is distributed to all processors using MPI_Allgather.

Source: Parallel Programming for Multicore and Cluster Systems, Rauber and Runger

```
int Parallel_jacobi(int n, int p, int max_it, float tol)
 int i_local, i_global, j, i;
 int n_local, it_num;
 float x_temp1[GLOB_MAX], x_temp2[GLOB_MAX], local_x[GLOB_MAX];
 float *x_old, *x_new, *temp;
 n_local = n/p; /* local blocksize */
 MPI_Allgather(local_b, n_local, MPI_FLOAT, x_temp1, n_local,
               MPI_FLOAT, MPI_COMM_WORLD);
 x_new = x_temp1;
 x_old = x_temp2;
 it_num = 0;
 do {
   it_num ++;
   temp = x_new; x_new = x_old; x_old = temp;
   for (i_local = 0; i_local < n_local; i_local++) {</pre>
     i_global = i_local + me * n_local;
     local_x[i_local] = local_b[i_local];
     for (j = 0; j < i\_global; j++)
       local_x[i_local] = local_x[i_local] -
                          local_A[i_local][j] * x_old[j];
     for (j = i\_global+1 ; j < n; j++)
       local_x[i_local] = local_x[i_local] -
                          local_A[i_local][i] * x_old[i];
     local_x[i_local] = local_x[i_local]/ local_A[i_local][i_global];
   MPI_Allgather(local_x, n_local, MPI_FLOAT, x_new, n_local,
                 MPI_FLOAT, MPI_COMM_WORLD);
 } while ((it_num < max_it) && (distance(x_old,x_new,n) >= tol));
 output(x_new,global_x);
 if (distance(x_old, x_new, n) < tol ) return 1;
 else return 0;
```

Gauss-Seidel method

- The Gauss-Seidel method usually converges faster than the Jacobi method.
- Again write A = D L R, but set M = D L and N = R.
 - \square Thus, we have $C = (D L)^{-1}R$.
 - \square Since D-L is lower triangular, it can be inverted by forward substitution.
- Convergence is again guaranteed if the matrix is diagonally dominant, i.e. $|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$ for all i.
- As before, $x^{(k+1)} = Cx^{(k)} + d$. So in components form we have $x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)$.
- Unlike Jacobi method, $x_i^{(k+1)}$ depends on all $x_j^{(k+1)}$ for j < i and $a_{ij} \neq 0$.
 - □ Thus, unless many values of $a_{ij} = 0$, different $x_i^{(k+1)}$ cannot be computed in parallel.
- While Gauss-Seidel converges faster than Jacobi, it has less parallelism, and may not run faster.

b/A

SOR method

- Successive over-relaxation modifies the Gauss-Seidel method to obtain faster convergence.
- x is updated as a linear combination of Gauss-Seidel update and its previous value.
- In components form,

$$x_i^{(k+1)} = \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right) + (1 - \omega) x_i^{(k)}.$$

■ Convergence depends on properties of A and ω . E.g. if A is symmetric and positive definite and $\omega \in (0,2)$ then SOR converges.

r,e

Parallel Gauss-Seidel method

- Since in general $x_i^{(k+1)}$ depends on $x_j^{(k+1)}$ for all j<i, we compute the $x_i^{(k+1)}$ sequentially, for i=0,1,2...
- Each $x_i^{(k+1)}$ is a dot product of $\left(x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}, 0, x_{i+1}^{(k)}, x_n^{(k)}\right)$ with the i'th row of A.
 - ☐ This dot product can be split into multiple parts and computed in parallel.
- Use block column-wise decomposition of A and x across the processors.
- Each processor computes part of $x_i^{(k+1)}$.
 - The parts are then summed and distributed to all the processors using MPI_Allreduce.
- Repeat the do loop until x converges.
- Each processor only does n/p computations for each reduce communication step, so speedup is limited unless $n \gg p$.

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right)$$

```
n_{local} = n/p;
   delta_x = 0.0;
   for (i = 0; i < n; i++) {
      s_k = 0.0;
      for (j = 0; j < n\_local; j++)
         if (j + me * n_local != i)
           s_k = s_k + local_A[i][j] * x[j];
      root = i/n_local;
      i_local = i % n_local;
      MPI_Reduce(&s_k, &x[i_local], 1, MPI_FLOAT, MPI_SUM, root,
                 MPI_COMM_WORLD);
      if (me == root) {
        x_new = (b[i_local] - x[i_local]) / local_A[i][i_local];
        delta_x = max(delta_x, abs(x[i_local] - x_new));
        x[i\_local] = x\_new;
   MPI_Allreduce(&delta_x, &global_delta, 1, MPI_FLOAT,
                 MPI_MAX, MPI_COMM_WORLD);
  while(global_delta > tol);
```

M

Poisson's equation

- Poisson's equation is a partial differential equation (PDE) to describe the potential field caused by a mass or electrostatic density distribution.
 - ☐ We'll look at Poisson's equation in 2D space.
- Given a function f(x,y), we want to find a function $\phi(x,y)$ with $-\Delta \phi = f$.
 - $\Box \quad \text{Here } \Delta \phi = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}.$
- Poisson's equation can be solved numerically by discretizing 2D space.
 - For simplicity, we divide $[0,1] \times [0,1]$ evenly into N+1 points along each axis.
 - □ Let h = 1/(N+1), and let $u_{ij} = \phi(x_i, y_j)$, and $f_{ij} = f(x_i, y_j)$.
- Then $\frac{1}{h^2} (4u_{ij} u_{i+1,j} u_{i-1,j} u_{i,j+1} u_{i,j-1}) = f_{ij}$, for $0 \le i, j \le N+1$.
- For simplicity, fix the value of ϕ on the boundary of the square, and divide out both sides by $1/h^2$.
- Look for the value of ϕ in the square's interior.
 - \square This leads to a set of N^2 linear equations, one for each $1 \le i, j \le N$.

DA.

Matrix form of Poisson's equation

- Let $x_k = u_{ij}$ for k = i + (j-1)N, $1 \le i, j \le N$.
- Each equation from the discretization has the form $4x_k x_{k+1} x_{k-1} x_{k+N} x_{k-N} = b_k$, for some $1 \le k \le N^2$ and b_k .
- Let $n = N^2$, and create an $n \times n$ matrix A for the nonzero coefficients of all the equations.
- A has the following nonzero structure.
 - There are three bands of nonzeros, on the diagonal, and above and below the diagonal.
 - □ There are two additional bands of nonzeros distance $N = \sqrt{n}$ above and below the diagonal.

Gauss-Seidel for Poisson's equation

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right).$$

Applied to Poisson's equation, we have

$$\begin{split} x_i^{(k+1)} &= \frac{1}{a_{ii}} \Big(b_i \, - \\ a_{i,i-\sqrt{n}} \cdot x_{i-\sqrt{n}}^{(k+1)} \, - a_{i,i-1} \cdot x_{i-1}^{(k+1)} \, - a_{i,i+1} \cdot x_{i+1}^{(k)} \, - a_{i,i+\sqrt{n}} \cdot x_{i+\sqrt{n}}^{(k)} \Big) \text{,for } i = 1, \dots, n. \end{split}$$

- Each x value depends on value directly above and to its left.
 - □ Ex Point 9 depends on 3 and 8.
- Notice the x values along each diagonal are all independent.
- There are $2\sqrt{n} 1$ diagonals.
 - Each diagonal has $O(\sqrt{n})$ points, giving a large amount of parallelism.
- The first \sqrt{n} diagonals $l=1,...,\sqrt{n}$ each contain l points, with indices $i=l+j(\sqrt{n}-1)$, for $0 \le j \le l$.
- The last $\sqrt{n}-1$ diagonals $l=2,\ldots,\sqrt{n}$ contain $\sqrt{n}-l+1$ points, with indices $i=l\sqrt{n}+j(\sqrt{n}-1)$, for $0\leq j\leq \sqrt{n}-l$.

Gauss-Seidel for Poisson's equation

- We parallelize Gauss-Seidel for Poisson's equation by iterating through the diagonals sequentially, and computing all the values in each diagonal in parallel.
- Given p processors, each processor computes every p'th value x[i] on the 1'th diagonal.
- Notice the sizes of the diagonals first increases, then decreases.
 - The two for loops compute x during the increasing and decreasing phase, resp.
- The function collect_elements sends the x values from the I'th diagonal to neighboring processors to compute the I+1'st diagonal.
- Repeat the do loop until x converges.

```
x_{i}^{(k+1)} = \frac{1}{a_{ii}} (b_{i} - a_{i,i-\sqrt{n}} \cdot x_{i-\sqrt{n}}^{(k+1)} - a_{i,i-1} \cdot x_{i-1}^{(k+1)} - a_{i,i+1} \cdot x_{i+1}^{(k)} - a_{i,i+\sqrt{n}} \cdot x_{i+\sqrt{n}}^{(k)})
```

```
sqn = sqrt(n);
  for (1 = 1; 1 <= sqn; 1++) {
      for (j = me; j < 1; j+=p) {
        i = 1 + j * (sqn-1) - 1; /* start numbering with 0 */
         if (i-sqn >= 0) x[i] = x[i] - a[i][i-sqn] * x[i-sqn];
         if (i > 0) x[i] = x[i] - a[i][i-1] * x[i-1];
         if (i+1 < n) x[i] = x[i] - a[i][i+1] * x[i+1];
         if (i+sqn < n) x[i] = x[i] - a[i][i+sqn] * x[i+sqn];
         x[i] = (x[i] + b[i]) / a[i][i];
      collect_elements(x,1);
  for (1 = 2; 1 \le sqn; 1++) {
      for (j = me -l +1; j \le sqn -l; j+=p) {
        if (j >= 0) {
           i = 1 * sqn + j * (sqn-1) - 1;
           if (i-sqn \ge 0) x[i] = x[i] - a[i][i-sqn] * x[i-sqn];
           if (i > 0) x[i] = x[i] - a[i][i-1] * x[i-1];
           if (i+1 < n) x[i] = x[i] - a[i][i+1] * x[i+1];
           if (i+sqn < n) x[i] = x[i] - a[i][i+sqn] * x[i+sqn];
           x[i] = (x[i] + b[i]) / a[i][i];
      collect_elements(x,1);
} while(convergence_test() < tol);</pre>
```


Red-black ordering

- In Gauss-Seidel, each $x_i^{(k+1)}$ depends on all $x_i^{(k+1)}$ for j < i and $a_{ij} \neq 0$.
- The method is valid for any ordering of the *x* values, so we can choose an ordering that gives best parallelism.
- The diagonals method used the top ordering. We now consider the bottom red-black ordering.
- Assign each mesh point a color, red or black.
 - □ For each mesh point (i,j), if i+j is even, it is colored red (grey in the picture on right). Otherwise color it black.
- Since a point only depends on the points above it and to its left, none of the red points depend on each other, and similarly for the black points.
 - So the red and black x values can be computed in parallel.

Red-black ordering

- Matrix A has a different structure after reordering.
- The red points for $x^{(k+1)}$ only depend on the black points for $x^{(k)}$, and the black points for $x^{(k+1)}$ only depend on the red points for $x^{(k+1)}$.
 - Thus, we can compute all n/2 red points in $x^{(k+1)}$ in parallel, then compute all the n/2 black points in $x^{(k+1)}$ in parallel.
- Write matrix $A = \begin{pmatrix} D_R & F \\ E & D_R \end{pmatrix}$, where D_R and D_B are diagonal matrices corresponding to the red and black points resp, and E and F are banded matrices.
- Also write $x = (x_R \ x_B)$, where x_R , x_B are the set of red and black x values, resp.

Red Black **Black**

Red

Red-black ordering

- Let $D = \begin{pmatrix} D_R & 0 \\ 0 & D_B \end{pmatrix}$, $L = \begin{pmatrix} 0 & 0 \\ -E & 0 \end{pmatrix}$ and $U = \begin{pmatrix} 0 & -F \\ 0 & 0 \end{pmatrix}$.
- Write the Gauss-Seidel iteration as $\begin{pmatrix} D_R & 0 \\ E & D_B \end{pmatrix} \begin{pmatrix} \chi_R^{(k+1)} \\ \chi_R^{(k+1)} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \chi_R^{(k)} \\ \chi_R^{(k)} \end{pmatrix}$.
- So $D_R \cdot x_R^{(k+1)} = b_1 F \cdot x_B^{(k)}$ for k = 1, 2, ..., and $D_B \cdot x_B^{(k+1)} = b_2 E \cdot x_R^{(k+1)}$, for k = 1, 2, ...
- Let n_R and n_B be the number of red and black points, resp.
- For each point i, let N(i) be its neighbors in the grid.
- In component form, we have

$$\left(x_R^{(k+1)}\right)_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \in N(i)} a_{ij} \cdot \left(x_B^{(k)}\right)_j\right) \text{ for } i = 1, \dots, n_R$$

$$\left(x_{B}^{(k+1)}\right)_{i} = \frac{1}{a_{i+n_{R},i+n_{R}}} \left(b_{i+n_{R}} - \sum_{j \in N(i)} a_{i+n_{R},j} \cdot \left(x_{R}^{(k+1)}\right)_{j}\right) \text{ for } i = 1, \dots, n_{B}$$

■ Thus, we first compute $x^{(k+1)}$ for all the red points, then $x^{(k+1)}$ for all the black points.

Parallel red-black algorithm

- Use a block row-wise decomposition of A and x across the processors.
- Use barrier synchronization between the two loops to compute black values after red ones.
- collect_elements sends newly computed values of x that lie on the boundary between two processors to the other processor.

```
local_nr = nr/p; local_nb = nb/p;
do {
   mestartr = me * local_nr;
   for (i= mestartr; i < mestartr + local_nr; i++) {</pre>
       xr[i] = 0;
       for (j \in N(i))
           xr[i] = xr[i] - a[i][j] * xb[j];
       xr[i] = (xr[i]+b[i]) / a[i][i];
   collect_elements(xr);
   mestartb = me * local_nb + nr;
   for (i= mestartb; i < mestartb + local_nb; i++) {</pre>
       xb[i] = 0;
       for (j \in N(i))
           xb[i] = xb[i] - a[i+nr][j] * xr[j];
       xb[i]= (xb[i] + b[i+nr]) / a[i+nr][i+nr];
   collect_elements(xb);
} while (convergence_test());
```