CSE215 Foundations of Computer Science

State University of New York, Korea

Agenda

- Functions
- One-on-one functions
- Onto functions

Level test

Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$. Define a function f from X to Y by the arrow diagram in Figure 7.1.3.

- a. Write the domain and co-domain of f.
- b. Find f(a), f(b), and f(c).
- c. What is the range of f?
- d. Is c an inverse image of 2? Is b an inverse image of 3?
- e. Find the inverse images of 2, 4, and 1.
- f. Represent f as a set of ordered pairs.

g. Is function f injective?

h. Is function f surjective?

Figure 7.1.1

Functions are omnipresent in CS applications

- Spam detector
- Housing price prediction
- Speech-to-text converter

Concepts for a function f: X->Y

- Domain = X
- Co-domain = Y
- Range = Image of $X = \{f(x) \mid x \in X\}$
- Inverse image of an $y = \{x \mid x \mid f(x) = y\}$
- Written as {(x1,y3), (x2, y1), ...}

What about spam detection?

- Domain
- Co-domain
- Range
- Inverse image of an y
- Written as {(x1,y3), (x2, y1), ...}

Spam detection

- End-product is a function, or called model of type
 - Emails-> {true, false}
- Machine learning process is a function of type
 - Dataset -> Functions of type (Emails ->{true, false})

Requirement to be a function

• Each element in X maps to a single element in Y

Exercise2: Functions or non-functions

One-to-one functions

Definition

• A function $F: X \to Y$ is one-to-one (or injective) if and only if for all elements x_1 and x_2 in X,

if
$$F(x_1) = F(x_2)$$
, then $x_1 = x_2$, or if $x_1 \neq x_2$, then $F(x_1) \neq F(x_2)$.

• A function $F: X \to Y$ is one-to-one \Leftrightarrow $\forall x_1, x_2 \in X$, if $F(x_1) = F(x_2)$ then $x_1 = x_2$. A function $F: X \to Y$ is not one-to-one \Leftrightarrow $\exists x_1, x_2 \in X$, $F(x_1) = F(x_2)$ and $x_1 \neq x_2$.

One-to-one functions: Proof technique

Problem

Prove that a function f is one-to-one.

Proof

Direct proof.

- Suppose x_1 and x_2 are elements of X such that $f(x_1) = f(x_2)$.
- Show that $x_1 = x_2$.

Problem

Prove that a function f is not one-to-one.

Proof

Counterexample.

• Find elements x_1 and x_2 in X so that $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

Problem

• Define $f: \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Is f one-to-one? Prove or give a counterexample.

Problem

• Define $f: \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Is f one-to-one? Prove or give a counterexample.

Proof

Direct proof.

• Suppose x_1 and x_2 are elements of X such that $f(x_1) = f(x_2)$.

```
\implies 4x_1 - 1 = 4x_2 - 1 (: Defn. of f)
```

$$\implies 4x_1 = 4x_2$$
 (: Add 1 on both sides)

$$\implies x_1 = x_2$$
 (: Divide by 4 on both sides)

Hence, f is one-to-one.

Problem

• Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule $g(n) = n^2$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

Problem

• Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule $g(n) = n^2$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

Proof

Counterexample.

- Let $n_1=-1$ and $n_2=1$. $\implies g(n_1)=(-1)^2=1$ and $g(n_2)=1^2=1$ $\implies g(n_1)=g(n_2)$ but, $n_1\neq n_2$
- Hence, g is not one-to-one.

Onto functions

Definition

- A function $F: X \to Y$ is onto (or surjective) if and only if given any element y in Y, it is possible to find an element x in X with the property that y = F(x).
- A function $F: X \to Y$ is onto \Leftrightarrow $\forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$ A function $F: X \to Y$ is not onto \Leftrightarrow $\exists y \in Y, \forall x \in X \text{ such that } F(x) \neq y.$

Onto functions: Proof technique

Problem

Prove that a function f is onto.

Proof

Direct proof.

- Suppose that y is any element of Y
- Show that there is an element x of X with F(x) = y

Problem

Prove that a function f is not onto.

Proof

Counterexample.

• Find an element y of Y such that $y \neq F(x)$ for any x in X.

Onto functions: Example 1

Problem

• Define $f: \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Is f onto? Prove or give a counterexample.

Proof

Direct proof.

• Let $y \in \mathbb{R}$. We need to show that $\exists x$ such that f(x) = y. Let $x = \frac{y+1}{4}$. Then $f\left(\frac{y+1}{4}\right) = 4\left(\frac{y+1}{4}\right) - 1 \qquad (\because \text{ Defn. of } f)$ $= y \qquad (\because \text{ Simplify})$

Hence, f is onto.

Onto functions: Example 1

Problem

• Define $f: \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Is f onto? Prove or give a counterexample.

Onto functions: Example 2

Problem

• Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule g(n) = 4n - 1 for all $n \in \mathbb{Z}$. Is g onto? Prove or give a counterexample.

Proof

Counterexample.

- We know that $0 \in \mathbb{Z}$.
- Let g(n) = 0 for some integer n.

$$\implies 4n-1=0$$
 (: Defn. of g)

$$\implies n = \frac{1}{4}$$
 (:: Simplify)

But
$$\frac{1}{4} \notin \mathbb{Z}$$
.

So, $g(n) \neq 0$ for any integer n.

Hence, g is not onto.

Exercises

Consider four functions defined below:

1. The function $f_1: \mathbb{Z} imes \mathbb{Z} o \mathbb{Z} imes \mathbb{Z}$ defined by the as

$$f_1(m,n)=(m+n,m+2n).$$

2. The function $f_2:\mathbb{R}{-}\{0\} o\mathbb{R}$ defined as

$$f_2(x)=\frac{1}{x}+1.$$

Fill in the following table with "T" (for true) or "F" (for false). Be careful about the domain and co-domain of each function.

Functions	One-to-one?	Onto?
f_1		
f_2		
f_3		
f_4		

3. The function $f_3:\mathbb{R}^2 o\mathbb{R}^2$ defined as

$$f_3(x,y)=(xy,x^3).$$

4. The function $f_4:\mathbb{R} o \mathbb{R}$ defined as

$$f_4(n)=2n+1.$$

Fill in the following table with "T" (for true) or "F" (for false). Be careful about the domain and co-domain of each function.

Functions	One-to-one?	Onto?
f_1		
f_2		
f_3		
f_4		

Review on injective, surjective, bijective functions

Determine Injectivity

- Def: $x \neq y \rightarrow f(x) \neq f(y)$
- Equivalently: f(x) = f(y) -> x = y
- What is a non-injective function?

Determine surjectivity

- Def: for any y, there exists x such that $f(x) = y -> f(x) \neq f(y)$
- What is a non-surjective function?

- Determine Injectivity and subjectivity for:
 - $\sin : R \rightarrow R$
 - $\sin: R \to [-1,1]$

Inverse functions

Inverse functions

Definition

• Suppose $F:X\to Y$ is a one-to-one correspondence. Then, the inverse function $F^{-1}:Y\to X$ is defined as follows: Given any element y in Y, $F^{-1}(y)=$ that unique element x in X such that F(x)=y.

Does encryption have an inverse function?

Does Java compilation have an inverse function?

Example

Problem

• Define $f: \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Find its inverse function.

Problem

• Define $f: \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Find its inverse function.

Proof

For any y in R, by definition of f^{-1}

- $f^{-1} =$ unique number x such that f(x) = yConsider f(x) = y $\implies 4x - 1 = y$ (: Defn. of f) $\implies x = \frac{y+1}{4}$ (: Simplify)
- Hence, $f^{-1}(y) = \frac{y+1}{4}$ is the inverse function.

 The function g:Z×Z→Z×Z defined by the formula g(m,n)= (m+n, m+2n) is a one-to-one correspondence. Find its inverse.

Function composition

Concept about function equality

- Let f and g two functions A -> B
- We say f = g if for any a in A, f(a) = g(a)
- We say f!=g if ~(f = g), namely, there exists a in A, f(a) != g(a)
- sin(2x) = 2 sin(x) cos(x)
- $(x+1)^2 != x^2 + 1$

Composition of functions

Composition of functions

Definition

- Let $f: X \to Y$ and $g: Y \to Z$. Let the range of f is a subset of the domain of g.
- ullet Define a new composition function $g\circ f:X\to Z$ as follows:

$$(g \circ f)(x) = g(f(x))$$
 for all $x \in X$,

- Write f as a pair of pairs
- Write g as a pair of pairs
- Write g of f as a pair of pairs

Problem

• Let $f: \mathbb{Z} \to \mathbb{Z}$ be the successor function and let $g: \mathbb{Z} \to \mathbb{Z}$ be the squaring function. Then f(n) = n+1 for all $n \in \mathbb{Z}$ and $g(n) = n^2$ for all $n \in \mathbb{Z}$. Find $g \circ f$. Find $f \circ g$. Is $g \circ f = f \circ g$?

- . Define $L: \mathbb{Z} \to \mathbb{Z}$ and $M: \mathbb{Z} \to \mathbb{Z}$ by the rules $L(a) = a^2$ and $M(a) = a \mod 5$ for all integers a.
 - a. Find $(L \circ M)(12)$, $(M \circ L)(12)$, $(L \circ M)(9)$, and $(M \circ L)(9)$.
 - b. Is $L \circ M = M \circ L$?