Цепные дроби

Конечной цпеной дробью называется выражение

$$[a_0, a_1, ..., a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + ... + \frac{1}{a_{n-1} + \frac{1}{a_n}}}}},$$

где числа a_i — целые.

Любое действительное число α можно разложить в «почти цепную дробь», т. е. $\alpha = [a_0,...,\alpha_n]$, где $a_i \in \mathbb{N}$, а $\alpha_n \in \mathbb{R}$. Для этого нужно на каждом шаге выделять целую часть, а дробную — переворачивать $\left(x = \frac{1}{2}\right)$.

Если проделывать этот процесс долго, то мы будем приближаться к числу α всё ближе, т. е. $\lim_{n \to \infty} [a_0,...,a_n] = \alpha$ — но это не очевидно!

Символом 👱 обозначены наиболее важные задачи.

- 1. Представьте числа $\frac{7}{11}$ и $\sqrt{3}$ в виде цепных дробей.
- **2.** Как представление обыкновенной дроби в непрерывном виде связано с алгоритмом Евклида?
- **3.** \oint Докажите, что если цепная дробь бесконечна и периодична, то она имеет вид $a+b\sqrt{c}$ для целых a,b и натурального c, т. е. является квадратичной иррациональностью. Обозначим $r_n = [a,...,a_n] = \frac{p_n}{q_n} nodxodящая дробъ.$

$$\begin{cases} p_{n+1} = p_n a_{n+1} + p_{n-1}, \\ q_{n+1} = q_n a_{n+1} + q_{n-1}. \end{cases}$$

Как следствие, последовательности p_n и q_n монотонно возрастают по абслоютной величине, т. е. $p_n,\ q_n \to \infty$.

5. $\underline{\bullet}$ Докажите, что при всех $n \geqslant 1$

$$p_{n-1}q_n - p_nq_{n-1} = (-1)^n.$$

- 6. Пусть натуральное число n чётно, и m>n. Тогда $r_n<\alpha$ и $r_n< r_m$. Если же n нечётно, и m>n, то $r_n>\alpha$ и $r_n< r_m$.
- **7.** Почему

$$\left| \frac{p_n}{q_n} - \alpha \right| \leqslant \frac{1}{q_n^2}?$$

Из задач выше и некоторых утверждений анализа следует

Теорема. Последовательность подходящих дробей r_n сходится κ числу α .

Оказывается, справедлива следующая неожиданная

Теорема. Если несократимая дробь $\frac{p}{q}$ очень хорошо приближает число α , а именно

$$\left| \frac{p}{q} - \alpha \right| < \frac{1}{2q^2},$$

то она является подходящей для числа α .