Method of Stationary Phase for SAR/ISAR Image Reconstruction

Josiah W. Smith

Abstract—Using the method of stationary phase for spherical wave decomposition.

I. BASIC METHOD OF STATIONARY PHASE

In its simplest form, neglecting amplitude terms, the method of stationary phase (MSP) can be written as:

$$\iint e^{j\phi(x,y)} dxdy \approx e^{j\phi(x_0,y_0)} \tag{1}$$

Where x_0 and y_0 are obtained by the system:

$$\frac{\partial \phi(x,y)}{\partial x} \bigg|_{(x=x_0,y=y_0)} = 0$$
 (2)

$$\left. \frac{\partial \phi(x,y)}{\partial y} \right|_{(x=x_0,y=y_0)} = 0 \tag{3}$$

A. Application to FMCW Wavefront Decomposition

Given that a FMCW signal is transmitted from an ideal, monostatic, full-duplex transceiver scanned across a rectilinear scanner in the x', y' plane, the return signal can be modeled as:

$$s(x', y', k) = \iiint \frac{p(x, y, z)}{R^2} e^{j2kR} dx dy dz$$
 (4)

$$R = \sqrt{(x'-x)^2 + (y'-y)^2 + (Z_1 - z)^2}$$
 (5)

where the transceiver is located at the point (x', y', Z_1) and p(x, y, z) is the complex reflectivity function of the target scene.

This expression can be simplified by ignoring the amplitude terms and reduces to:

$$s(x', y', k) = \iiint p(x, y, z)e^{j2kR}dxdydz$$
 (6)

MSP allows a decomposition of the spherical wavefront contained in the exponential term of equation (4). First, we take a 2D Fourier Transform across the x' and y' domains.

$$FT_{2D}^{(x',y')}[e^{j2kR}] = e^{-j(k_{x'}x+k_{y'}y)} \times \iint e^{j(2k\sqrt{x'^2+y'^2+(Z_1-z)^2}-k_{x'}x'-k_{y'}y')} dx'dy' \quad (7)$$

Note that the exponential term outside of the integrand is from the shift in the spatial domain.

Now, applying MSP to the double integral above:

$$\phi(x',y') = 2k\sqrt{x'^2 + y'^2 + (Z_1 - z)^2} - k_{x'}x' - k_{y'}y' \quad (8)$$

Solving the simultaneous system described in equations (2) and (3) yields the stationary points:

$$x_0 = \frac{k_{x'}(Z_1 - z)}{\sqrt{4k^2 - k_{x'}^2 - k_{y'}^2}} \tag{9}$$

$$y_0 = \frac{k_{y'}(Z_1 - z)}{\sqrt{4k^2 - k_{x'}^2 - k_{y'}^2}}$$
(10)

Substituting these into equation (1) completes the approximation:

$$\iint e^{j(2k\sqrt{x'^2+y'^2+(Z_1-z)^2}-k_{x'}x'-k_{y'}y')}dx'dy' \approx e^{jk_{z'}(Z_1-z)}$$
(11)

$$k_{z'} = \sqrt{4k^2 - k_{x'}^2 - k_{y'}^2} \tag{12}$$

which can then be applied to equation (7) as:

$$FT_{2D}^{(x',y')}[e^{j2kR}] \approx e^{j(-k_{x'}x-k_{y'}y+k_{z'}(Z_1-z))}$$
 (13)

Taking an 2D inverse Fourier transform across the $k_{x'}$ and $k_{y'}$ domains yields:

$$e^{j2kR} \approx \iint \left[e^{j(-k_{x'}x - k_{y'}y + k_{z'}(Z_1 - z))} \right] e^{j(k_{x'}x' + k_{y'}y')} dk_{x'} dk_{y'}$$
(14)

Simplified:

$$e^{j2kR} \approx \iint e^{j(k_{x'}(x'-x)+k_{y'}(y'-y)+k_{z'}(Z_1-z))} dk_{x'} dk_{y'} \quad (15)$$

Substitute into equation (6):

$$s(x', y', k) \approx \iiint p(x, y, z) \iint e^{j(k_{x'}(x'-x) + k_{y'}(y'-y) + k_{z'}(Z_1 - z))} \times dk_{x'} dk_{y'} dx dy dz \quad (16)$$

Rearranging the integrands of equation (16) to produce:

$$s(x', y', k) \approx$$

$$\iint \left[\iiint p(x, y, z) e^{-j(k_{x'}x + k_{y'}y + k_{z'}z)} dx dy dz \right]$$

$$\times e^{j(k_{x'}x' + k_{y'}y' + k_{z'}Z_1)} dk_{x'} dk_{y'}$$
 (17)

where the triple integral inside of the $[\bullet]$ brackets represents the 3D Fourier transform of the reflectivity function.

$$P(k_{x'}, k_{y'}, k_{z'}) = FT_{3D}^{(x,y,z)}[p(x,y,z)]$$

$$= \iiint p(x,y,z)e^{-j(k_{x'}x + k_{y'}y + k_{z'}z)}dxdydz \quad (18)$$

Now, (17) can be updated as:

$$s(x', y', k) \approx \iint P(k_{x'}, k_{y'}, k_{z'}) e^{j(k_{x'}x' + k_{y'}y' + k_{z'}Z_1)} dk_{x'} dk_{y'}$$
 (19)

Rearranged to expose inverse Fourier identity, assuming close approximation to equality:

$$s(x', y', k) = \iint \left[P(k_{x'}, k_{y'}, k_{z'}) e^{jk_{z'}Z_1} \right] e^{j(k_{x'}x' + k_{y'}y')} dk_{x'} dk_{y'}$$
 (20)

$$s(x', y', k) = IFT_{2D}^{(k_{x'}, k_{y'})} \left[P(k_{x'}, k_{y'}, k_{z'}) e^{jk_{z'}Z_1} \right]$$
 (21)

Take a 2D Fourier transform across the x' and y' domains on both sides, dropping distinction between primed and unprimed coordinate systems due to coincidence, yields:

$$FT_{2D}^{(x,y)}[s(x,y,k)] = S(k_x, k_y, k) = P(k_x, k_y, k_z)e^{jk_z Z_1}$$
(22)

Inverting equation (22):

$$p(x, y, z) = IFT_{3D}^{(k_x, k_y, k_z)}[P(k_x, k_y, k_z)]$$
 (23)

$$P(k_x, k_y, k_z) = S(k_x, k_y, k)e^{-jk_z Z_1}$$
 (24)

However, Stolt interpolation must be performed to map (k_x,k_y,k) to (k_x,k_y,k_z) by the dispersion relation for plane waves in free-space or a uniform dielectric, which can also be obtained by solving equation (12) for k as:

$$k = \frac{1}{2}\sqrt{k_x^2 + k_y^2 + k_z^2} \tag{25}$$

where $k_z \in [0, 2k]$ for the visible portion of the spectrum.

Combining the above relations, the resulting image reconstruction algorithm follows:

$$p(x, y, z) = IFT_{3D} \left[FT_{2D}^{(x,y)} [s(x, y, k)] e^{-jk_z Z_1} \right]$$
 (26)