PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

A61K 31/54

(11) International Publication Number: WO 97/15308

(43) International Publication Date: 1 May 1997 (01.05.97)

(21) International Application Number: PCT/US96/17019

(22) International Filing Date: 23 October 1996 (23.10.96)

(30) Priority Data: 60/005,830 23 October 1995 (23.10.95) US

(71) Applicants: ZYMOGENETICS, INC. [US/US]; 1201 Eastlake Avenue East, Seattle, WA 98102 (US). OSTEOSCREEN, INC. [US/US]; Suite 201, 2040 Babcock Road, San Antonio, TX 78229 (US). UNIVERSITY OF TEXAS AT AUSTIN [US/US]; Austin, TX (US).

(72) Inventors: PETRIE, Charles; 18459 N.E. 196th Place, Woodinville, WA 98072 (US). ORME, Mark, W.; 636 N.W. 98th Street, Seattle, WA 98117 (US). BAINDUR, Nand; 13919 57th Place West, Edmonds, WA 98026 (US). ROBBINS, Kirk, G.; 1200 Grant Avenue South #Y-304, Renton, WA 98055 (US). HARRIS, Scott, M.; 6825 31st Avenue N.E., Seattle, WA 98815 (US). KONTOYIANNI, Maria; 769 Hayes Street #504, Seattle, WA 98109 (US). HURLEY, Laurence, H.; 5915 Northwest Place, Austin, TX 78731 (US). KERWIN, Sean, M.; 703 Ivy Court, Round Rock, TX 78681 (US). MUNDY, Gregory, R.; 3719 Morgan's Creek, San Antonio, TX 78230 (US).

(74) Agents: MURASHIGE, Kate, H. et al.; Morrison & Foerster L.L.P., 2000 Pennsylvania Avenue, N.W., Washington, DC 20006-1888 (US).

(81) Designated States: AL, AM, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, FI, GE, HU, IL, IS, JP, KG, KP, KR, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: COMPOSITIONS AND METHODS FOR TREATING BONE DEFICIT CONDITIONS

(57) Abstract

Compounds containing two aromatic systems covalently linked through a linker containing one or more atoms, or "linker" defined as including a covalent bond per se so as to space the aromatic systems at a distance 1.5-15Å, are effective in treating conditions associated with bone deficits. The compounds can be administered to vertebrate subjects alone or in combination with additional agents that promote bone growth or that inhibit bone resorption. They can be screened for activity prior to administration by assessing their ability to effect the transcription of a reporter gene coupled to a promoter associated with a bone morphogenetic protein and/or their ability to stimulate calvarial growth in model animal systems.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	ΙE	Ireland	NZ	New Zealand
BG	Bulgaria	Tì	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	Li	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	ÜA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

COMPOSITIONS AND METHODS FOR TREATING BONE DEFICIT CONDITIONS

Technical Field

5

10

15

20

25

30

The invention relates to compositions and methods for use in limiting undesired bone loss in a vertebrate at risk of such bone loss, in treating conditions that are characterized by undesired bone loss or by the need for bone growth, in treating fractures, and in treating cartilage disorders. More specifically, the invention concerns the use of specific classes of compounds identified or characterized by a high throughput screening assay.

Background Art

Bone is not a static tissue. It is subject to constant breakdown and resynthesis in a complex process mediated by osteoblasts, which produce new bone, and osteoclasts, which destroy bone. The activities of these cells are regulated by a large number of cytokines and growth factors, many of which have now been identified and cloned. Mundy has described the current knowledge related to these factors (Mundy, G.R. Clin Orthop 324:24-28, 1996; Mundy, G.R. J Bone Miner Res 8:S505-10, 1993).

Although there is a great deal of information available on the factors which influence the breakdown and resorption of bone, information on growth factors which stimulate the formation of new bone is more limited. Investigators have searched for sources of such activities, and have found that bone tissue itself is a storehouse for factors which have the capacity for stimulating bone cells. Thus, extracts of bovine bone tissue obtained from slaughterhouses contain not only structural proteins which are responsible for maintaining the structural integrity of bone, but also biologically active bone growth factors which can stimulate bone cells to proliferate. Among these latter factors are transforming growth factor β , the heparin-binding growth factors (acidic and basic fibroblast growth factor), the insulin-like growth factors (insulin-like growth factor I and insulin-like growth factor II), and a recently described family of proteins called bone morphogenetic proteins (BMPs). All of these growth factors have effects on other types of cells, as well as on bone cells.

The BMPs are novel factors in the extended transforming growth factor ß superfamily. They were first identified by Wozney J. et al. Science (1988) 242:1528-34, using gene cloning techniques, following earlier descriptions characterizing the biological activity in extracts of demineralized bone (Urist M. Science (1965) 150:893-99).

5

10

15

20

Recombinant BMP2 and BMP4 can induce new bone formation when they are injected locally into the subcutaneous tissues of rats (Wozney J. Molec Reprod Dev (1992) 32:160-67). These factors are expressed by normal osteoblasts as they differentiate, and have been shown to stimulate osteoblast differentiation and bone nodule formation in vitro as well as bone formation in vivo (Harris S. et al. J. Bone Miner Res (1994) 9:855-63). This latter property suggests potential usefulness as therapeutic agents in diseases which result in bone loss.

The cells which are responsible for forming bone are osteoblasts. As osteoblasts differentiate from precursors to mature bone-forming cells, they express and secrete a number of enzymes and structural proteins of the bone matrix, including Type-1 collagen, osteocalcin, osteopontin and alkaline phosphatase (Stein G. et al. Curr Opin Cell Biol (1990) 2:1018-27; Harris S. et al. (1994), supra). They also synthesize a number of growth regulatory peptides which are stored in the bone matrix, and are presumably responsible for normal bone formation. These growth regulatory peptides include the BMPs (Harris S. et al. (1994), supra). In studies of primary cultures of fetal rat calvarial osteoblasts, BMPs 1, 2, 3, 4, and 6 are expressed by cultured cells prior to the formation of mineralized bone nodules (Harris S. et al. (1994), supra). Like alkaline phosphatase, osteocalcin and osteopontin, the BMPs are expressed by cultured osteoblasts as they proliferate and differentiate.

Although the BMPs are potent stimulators of bone formation in vitro and in vivo,
there are disadvantages to their use as therapeutic agents to enhance bone healing.
Receptors for the bone morphogenetic proteins have been identified in many tissues, and the BMPs themselves are expressed in a large variety of tissues in specific temporal and spatial patterns. This suggests that BMPs may have effects on many tissues other than bone, potentially limiting their usefulness as therapeutic agents when administered
systemically. Moreover, since they are peptides, they would have to be administered by injection. These disadvantages impose severe limitations to the development of BMPs as therapeutic agents.

There is a plethora of conditions which are characterized by the need to enhance bone formation. Perhaps the most obvious is the case of bone fractures, where it would be desirable to stimulate bone growth and to hasten and complete bone repair. Agents that enhance bone formation would also be useful in facial reconstruction procedures. Other bone deficit conditions include bone segmental defects, periodontal disease, metastatic bone disease, osteolytic bone disease and conditions where connective tissue repair would be beneficial, such as healing or regeneration of cartilage defects or injury. Also of great significance is the chronic condition of osteoporosis, including age-related osteoporosis and osteoporosis associated with post-menopausal hormone status. Other conditions characterized by the need for bone growth include primary and secondary hyperparathyroidism, disuse osteoporosis, diabetes-related osteoporosis, and glucocorticoid-related osteoporosis. In addition, or alternatively, the compounds of the present invention may modulate metabolism, proliferation and/or differentiation of normal or aberrant cells or tissues.

10

15

20

25

30

There are currently no satisfactory pharmaceutical approaches to managing any of these conditions. Bone fractures are still treated exclusively using casts, braces, anchoring devices and other strictly mechanical means. Further bone deterioration associated with post-menopausal osteoporosis has been decreased or prevented with estrogens or bisphosphonates.

US Patent 5, 280, 040 discloses a class of compounds which are 3, 4-diaryl chromans. These compounds can be considered derivatives of 2,3,4 triphenyl butanol, where the hydroxy at the 1-position forms an ether with the ortho position of the phenyl group substituted at the 4-position of the butanol. The parent 3,4-diaryl chromans do not contain nitrogen atoms in the aromatic moieties or their linkers. A preferred compound, centchroman, contains a nitrogen substituent only in one of the substituents on a phenyl moiety. These compounds are disclosed in the '040 patent as useful in the treatment of osteoporosis.

The present invention discloses compounds useful for limiting or treating bone deficit conditions, and for other uses that should be apparent to those skilled in the art from the teachings herein.

Disclosure of the Invention

5

10

15

20

30

The invention provides compounds that can be administered as ordinary pharmaceuticals and have the metabolic effect of enhancing bone growth. The compounds of the invention can be identified using an assay for their ability to activate control elements associated with these factors. Thus, the invention is directed to methods and compositions for stimulating the growth of skeletal (bone) tissue, which methods and compositions use, as active ingredients, compounds wherein two aromatic systems are coupled so as to be spaced apart from each other by about 1.5 to about 15 Angstroms. The thus-linked systems (including the linker coupling them) may include at least one nitrogen atom other than a ring substituent.

Therefore, the compounds useful in the invention can be described as having the formula Ar¹-linker-Ar², wherein each of Ar¹ and Ar² is independently an aromatic system and the linker portion of the formula spaces Ar¹ and Ar² apart by a distance of approximately 1.5-15 Angstroms. Ar¹, Ar² and the linker may optionally be substituted with non interfering substituents. In the useful compounds, there may be at least one nitrogen atom in either Ar¹, Ar² and/or the linker, independent of any substituents thereon. Preferably, the compounds of the invention also contain at least one additional heteroatom selected from the group consisting of N, S and O, independent of any substituent.

Other compounds of the invention include particular five membered rings having charge separation.

Thus, the invention is directed to methods to treat bone disorders using the compounds described and to pharmaceutical compositions for this use.

Brief Description of the Drawings

Figure 1 shows the dose response curve for the compound, designated 59-0008. Figures 2 and 3 show illustrative compounds of the invention and the results obtained with them in an *in vitro* test.

Modes of Carrying Out the Invention

A rapid throughput screening test for compounds capable of stimulating expression of a reporter gene linked to a BMP promoter (a surrogate for the production of bone morphogenetic factors that are endogenously produced) is described in U.S. Application

Serial No. 08/458,434, filed 2 June 1995, the entire contents of which are incorporated herein by reference. This assay is also described as a portion of a study of immortalized murine osteoblasts (derived from a mouse expressing a transgene composed of a BMP2 promoter driving expression of T-antigen) in Ghosh-Choudhery, N. et al. Endocrinology (1996) 137:331-39. In this study, the immortalized cells were stably transfected with a plasmid containing a luciferase reporter gene driven by a mouse BMP2 promoter (-2736/114 bp), and responded in a dose-dependent manner to recombinant human BMP2.

Briefly, the assay utilizes cells transformed permanently or transiently with constructs in which the promoter of a bone morphogenetic protein, specifically BMP2 or BMP4, is coupled to a reporter gene, typically luciferase. These transformed cells are then evaluated for the production of the reporter gene product; compounds that activate the BMP promoter will drive production of the reporter protein, which can be readily assayed. Over 40,000 compounds have been subjected to this rapid screening technique, and only a very small percentage are able to elicit a level of production of luciferase 5-fold greater than that produced by vehicle. Compounds that activate the BMP promoter share certain structural characteristics not present in inactive compounds. The active compounds ("BMP promoter-active compounds" or "active compounds") are useful in promoting bone or cartilage growth, and thus in the treatment of vertebrates in need of bone or cartilage growth.

10

15

20

25

30

BMP promoter-active compounds can be examined in a variety of other assays that test specificity and toxicity. For instance, non-BMP promoters or response elements can be linked to a reporter gene and inserted into an appropriate host cell. Cytotoxicity can be determined by visual or microscopic examination of BMP promoter- and/or non-BMP promoter-reporter gene-containing cells, for instance. Alternatively, nucleic acid and/or protein synthesis by the cells can be monitored. For *in vivo* assays, tissues may be removed and examined visually or microscopically, and optionally examined in conjunction with dyes or stains that facilitate histologic examination. In assessing *in vivo* assay results, it may also be useful to examine biodistribution of the test compound, using conventional medicinal chemistry/animal model techniques.

As used herein, "limit" or "limiting" and "treat" or "treatment" are interchangeable terms. The terms include a postponement of development of bone deficit symptoms and/or a reduction in the severity of such symptoms that will or are expected to develop. The

terms further include ameliorating existing bone or cartilage deficit symptoms, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, preventing or reversing bone resorption and/or encouraging bone growth. Thus, the terms denote that a beneficial result has been conferred on a vertebrate subject with a cartilage, bone or skeletal deficit, or with the potential to develop such deficit.

5

10

15

20

25

30

By "bone deficit" is meant an imbalance in the ratio of bone formation to bone resorption, such that, if unmodified, the subject will exhibit less bone than desirable, or the subject's bones will be less intact and coherent than desired. Bone deficit may also result from fracture, from surgical intervention or from dental or periodontal disease. By "cartilage defect" is meant damaged cartilage, less cartilage than desired, or cartilage that is less intact and coherent than desired.

Representative uses of the compounds of the present invention include: repair of bone defects and deficiencies, such as those occuring in closed, open and non-union fractures; prophylactic use in closed and open fracture reduction; promotion of bone healing in plastic surgery; stimulation of bone ingrowth into non-cemented prosthetic joints and dental implants; elevation of peak bone mass in pre-menopausal women; treatment of growth deficiencies; treatment of peridontal disease and defects, and other tooth repair processes; increase in bone formation during distraction osteogenesis; and treatment of other skeletal disorders, such as age-related osteoporosis, post-menopausal osteoporosis, glucocorticoid-induced osteoporosis or disuse osteoporosis and arthritis. The compounds of the present invention can also be useful in repair of congenital, trauma-induced or surgical resection of bone (for instance, for cancer treatment), and in cosmetic surgery. Further, the compounds of the present invention can be used for limiting or treating cartilage defects or disorders, and may be useful in wound healing or tissue repair.

Bone or cartilage deficit or defect can be treated in vertebrate subjects by administering compounds of the invention which exhibit certain structural and functional characteristics. The compositions of the invention may be administered systemically or locally. For systemic use, the compounds herein are formulated for parenteral (e.g., intravenous, subcutaneous, intramuscular, intraperitoneal, intranasal or transdermal) or enteral (e.g., oral or rectal) delivery according to conventional methods. Intravenous administration can be by a series of injections or by continuous infusion over an extended period. Administration by injection or other routes of discretely spaced administration can

be performed at intervals ranging from weekly to once to three times daily. Alternatively, the compounds disclosed herein may be administered in a cyclical manner (administration of disclosed compound; followed by no administration; followed by administration of disclosed compound, and the like). Treatment will continue until the desired outcome is achieved. In general, pharmaceutical formulations will include a compound of the present invention in combination with a pharmaceutically acceptable vehicle, such as saline, buffered saline, 5% dextrose in water, borate-buffered saline containing trace metals or the like. Formulations may further include one or more excipients, preservatives, solubilizers, buffering agents, albumin to prevent protein loss on vial surfaces, lubricants, fillers, stabilizers, etc. Methods of formulation are well known in the art and are disclosed, for example, in Remington's Pharmaceutical Sciences, Gennaro, ed., Mack Publishing Co., Easton PA, 1990, which is incorporated herein by reference. Pharmaceutical compositions for use within the present invention can be in the form of sterile, non-pyrogenic liquid solutions or suspensions, coated capsules, suppositories, lyophilized powders, transdermal patches or other forms known in the art. Local administration may be by injection at the site of injury or defect, or by insertion or attachment of a solid carrier at the site, or by direct, topical application of a viscous liquid, or the like. For local administration, the delivery vehicle preferably provides a matrix for the growing bone or cartilage, and more preferably is a vehicle that can be absorbed by the subject without adverse effects.

10

15

20

25

30

Delivery of compounds herein to wound sites may be enhanced by the use of controlled-release compositions, such as those described in pending U.S. Patent Application No. 07/871,246 (corresponding to WIPO publication WO 93/20859, which is incorporated herein by reference in its entirety). Films of this type are particularly useful as coatings for prosthetic devices and surgical implants. The films may, for example, be wrapped around the outer surfaces of surgical screws, rods, pins, plates and the like. Implantable devices of this type are routinely used in orthopedic surgery. The films can also be used to coat bone filling materials, such as hydroxyapatite blocks, demineralized bone matrix plugs, collagen matrices and the like. In general, a film or device as described herein is applied to the bone at the fracture site. Application is generally by implantation into the bone or attachment to the surface using standard surgical procedures.

In addition to the copolymers and carriers noted above, the biodegradable films and matrices may include other active or inert components. Of particular interest are those

agents that promote tissue growth or infiltration, such as growth factors. Exemplary growth factors for this purpose include epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factors (TGFs), parathyroid hormone (PTH), leukemia inhibitory factor (LIF), and insulin-like growth factors (IGFs) and the like. Agents that promote bone growth, such as bone morphogenetic proteins (U.S. Patent No. 4,761,471; PCT Publication WO 90/11366), osteogenin (Sampath *et al. Proc. Natl. Acad. Sci. USA* (1987) 84:7109-13) and NaF (Tencer *et al. J. Biomed. Mat. Res.* (1989) 23: 571-89) are also preferred. Biodegradable films or matrices include calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyanhydrides, bone or dermal collagen, pure proteins, extracellular matrix components and the like and combinations thereof. Such biodegradable materials may be used in combination with non-biodegradable materials, to provide desired mechanical, cosmetic or tissue or matrix interface properties.

5

10

25

30

Alternative methods for delivery of compounds of the present invention include use
of ALZET osmotic minipumps (Alza Corp., Palo Alto, CA); sustained release matrix
materials such as those disclosed in Wang et al. (PCT Publication WO 90/11366);
electrically charged dextran beads. as disclosed in Bao et al. (PCT Publication WO 92/03125); collagen-based delivery systems, for example, as disclosed in Ksander et al.

Ann. Surg. (1990) 211(3):288-94; methylcellulose gel systems, as disclosed in Beck et al.

J. Bone Min. Res. (1991) 6(11):1257-65; and alginate-based systems, as disclosed in
Edelman et al. Biomaterials (1991) 12:619-26 and the like. Other methods well known in
the art for sustained local delivery in bone include porous coated metal protheses that can
be impregnated and solid plastic rods with therapeutic compositions incorporated within
them.

The compounds of the present invention may also be used in conjunction with agents that inhibit bone resorption. Antiresorptive agents, such as estrogen, bisphosphonates and calcitonin, are preferred for this purpose. More specifically, the compounds disclosed herein may be administered for a period of time (for instance, months to years) sufficient to obtain correction of a bone deficit condition. Once the bone deficit condition has been corrected, the vertebrate can be administered an anti-resorptive compound to maintain the corrected bone condition. Alternatively, the compounds disclosed herein may be administered with an anti-resorptive compound in a cyclical manner

(administration of disclosed compound, followed by anti-resorptive, followed by disclosed compound, and the like).

In additional formulations, conventional preparations such as those described below may be used.

5

10

15

20

25

30

Aqueous suspensions may contain the active ingredient in admixture with pharmacologically acceptable excipients, comprising suspending agents, such as methyl cellulose; and wetting agents, such as lecithin, lysolecithin or long-chain fatty alcohols. The said aqueous suspensions may also contain preservatives, coloring agents, flavoring agents and sweetening agents in accordance with industry standards.

Preparations for topical and local application comprise aerosol sprays, lotions, gels and ointments in pharmaceutically appropriate vehicles which may comprise lower aliphatic alcohols, polyglycols such as glycerol, polyethylene glycol, esters of fatty acids, oils and fats, and silicones. The preparations may further comprise antioxidants, such as ascorbic acid or tocopherol, and preservatives, such as p-hydroxybenzoic acid esters.

Parenteral preparations comprise particularly sterile or sterilized products.

Injectable compositions may be provided containing the active compound and any of the well known injectable carriers. These may contain salts for regulating the osmotic pressure.

If desired, the osteogenic agents can be incorporated into liposomes by any of the reported methods of preparing liposomes for use in treating various pathogenic conditions. The present compositions may utilize the compounds noted above incorporated in liposomes in order to direct these compounds to macrophages, monocytes, other cells and tissues and organs which take up the liposomal composition. The liposome-incorporated compounds of the invention can be utilized by parenteral administration, to allow for the efficacious use of lower doses of the compounds. Ligands may also be incorporated to further focus the specificity of the liposomes.

Suitable conventional methods of liposome preparation include, but are not limited to, those disclosed by Bangham, A.D. et al. J Mol Biol (1965) 23:238-252, Olson, F. et al. Biochim Biophys Acta (1979) 557:9-23, Szoka, F. et al. Proc Natl Acad Sci USA (1978) 75:4194-4198, Mayhew, E. et al. (1984) 775:169175, Kim, S. et al. Biochim Biophys Acta (1983) 728:339:348, and Mayer, et al. Biochim Biophys Acta (1986) 858:161-168.

The liposomes may be made from the present compounds in combination with any of the conventional synthetic or natural phospholipid liposome materials including phospholipids from natural sources such as egg, plant or animal sources such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingomyelin, phosphatidylserine, or phosphatidylinositol. Synthetic phospholipids that may also be used, include, but are not limited to: dimyristoylphosphatidylcholine, dioleoylphosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidycholine, and the corresponding synthetic phosphatidylethanolamines and phosphatidylglycerols. Cholesterol or other sterols, cholesterol hemisuccinate, glycolipids, cerebrosides, fatty acids, gangliosides, sphingolipids, 1,2-bis(oleoyloxy)-3-(trimethyl ammonio) propane (DOTAP), N-[1-(2,3dioleoyl) propyl-N,N,N-trimethylammonium chloride (DOTMA), and other cationic lipids may be incorporated into the liposomes, as is known to those skilled in the art. The relative amounts of phospholipid and additives used in the liposomes may be varied if desired. The preferred ranges are from about 60 to 90 mole percent of the phospholipid; cholesterol, cholesterol hemisuccinate, fatty acids or cationic lipids may be used in amounts ranging from 0 to 50 mole percent. The amounts of the present compounds incorporated into the lipid layer of liposomes can be varied with the concentration of the lipids ranging from about 0.01 to about 50 mole percent.

5

10

15

20

25

30

Using conventional methods, approximately 20 to 30% of the compound present in solution can be entrapped in liposomes; thus, approximately 70 to 80% of the active compound is wasted. In contrast, where the compound is incorporated into liposomes, virtually all of the compound is incorporated into the liposome, and essentially none of the active compound is wasted.

The liposomes with the above formulations may be made still more specific for their intended targets with the incorporation of monoclonal antibodies or other ligands specific for a target. For example, monoclonal antibodies to the BMP receptor may be incorporated into the liposome by linkage to phosphatidylethanolamine (PE) incorporated into the liposome by the method of Leserman, L. et al. Nature (1980) 288:602-604.

Veterinary uses of the disclosed compounds are also contemplated. Such uses would include limitation or treatment of bone or cartilage deficits or defects in domestic animals, livestock and thoroughbred horses. The compounds described herein can also

modify a target tissue or organ environment, so as to attract bone-forming cells to an environment in need of such cells.

5

10

15

20

25

30

The compounds of the present invention may also be used to stimulate growth of bone-forming cells or their precursors, or to induce differentiation of bone-forming cell precursors, either in vitro or ex vivo. As used herein, the term "precursor cell" refers to a cell that is committed to a differentiation pathway, but that generally does not express markers or function as a mature, fully differentiated cell. As used herein, the term "mesenchymal cells" or "mesenchymal stem cells" refers to pluripotent progenitor cells that are capable of dividing many times, and whose progeny will give rise to skeletal tissues, including cartilage, bone. tendon, ligament, marrow stroma and connective tissue (see A. Caplan J. Orthop. Res. (1991) 9:641-50). As used herein, the term "osteogenic cells" includes osteoblasts and osteoblast precursor cells. More particularly, the disclosed compounds are useful for stimulating a cell population containing marrow mesenchymal cells, thereby increasing the number of osteogenic cells in that cell population. In a preferred method, hematopoietic cells are removed from the cell population, either before or after stimulation with the disclosed compounds. Through practice of such methods, osteogenic cells may be expanded. The expanded osteogenic cells can be infused (or reinfused) into a vertebrate subject in need thereof. For instance, a subject's own mesenchymal stem cells can be exposed to compounds of the present invention ex vivo, and the resultant osteogenic cells could be infused or directed to a desired site within the subject, where further proliferation and/or differentiation of the osteogenic cells can occur without immunorejection. Alternatively, the cell population exposed to the disclosed compounds may be immortalized human fetal osteoblastic or osteogenic cells. If such cells are infused or implanted in a vertebrate subject, it may be advantageous to "immunoprotect" these non-self cells, or to immunosuppress (preferably locally) the recipient to enhance transplantation and bone or cartilage repair.

Within the present invention, an "effective amount" of a composition is that amount which produces a statistically significant effect. For example, an "effective amount" for therapeutic uses is the amount of the composition comprising an active compound herein required to provide a clinically significant increase in healing rates in fracture repair; reversal of bone loss in osteoporosis; reversal of cartilage defects or disorders; prevention or delay of onset of osteoporosis; stimulation and/or augmentation of bone formation in

fracture non-unions and distraction osteogenesis; increase and/or acceleration of bone growth into prosthetic devices; and repair of dental defects. Such effective amounts will be determined using routine optimization techniques and are dependent on the particular condition to be treated, the condition of the patient, the route of administration, the formulation, and the judgment of the practitioner and other factors evident to those skilled in the art. The dosage required for the compounds of the invention (for example, in osteoporosis where an increase in bone formation is desired) is manifested as a statistically significant difference in bone mass between treatment and control groups. This difference in bone mass may be seen, for example, as a 5-20% or more increase in bone mass in the treatment group. Other measurements of clinically significant increases in healing may include, for example, tests for breaking strength and tension, breaking strength and torsion, 4-point bending, increased connectivity in bone biopsies and other biomechanical tests well known to those skilled in the art. General guidance for treatment regimens is obtained from experiments carried out in animal models of the disease of interest.

The dosage of the compounds of the invention will vary according to the extent and severity of the need for treatment, the activity of the administered compound, the general health of the subject, and other considerations well known to the skilled artisan. Generally, they can be administered to a typical human on a daily basis on an oral dose of about 0.1 mg/kg-1000 mg/kg, and more preferably from about 1 mg/kg to about 200 mg/kg. The parenteral dose will appropriately be 20-100% of the oral dose.

Screening Assays

5

10

15

20

25

30

The osteogenic activity of the compounds used in the methods of the invention can be verified using *in vitro* screening techniques, such as the assessment of transcription of a reporter gene coupled to a bone morphogenetic protein-associated promoter, as described above, or in alternative assays such as the following:

Technique for Neonatal Mouse Calvaria Assay (In vitro)

This assay is similar to that described by Gowen M. & Mundy G. *J Immunol* (1986) 136:2478-82. Briefly, four days after birth, the front and parietal bones of ICR Swiss white mouse pups are removed by microdissection and split along the sagittal suture. The bones are incubated in BGJb medium (Irvine Scientific, Santa Ana, CA) plus 0.02% (or lower

concentration) β-methylcyclodextrin, wherein the medium also contains test or control substances, at 37°C in a humidified atmosphere of 5% CO₂ and 95% air for 96 hours.

Following this, the bones are removed from the incubation media and fixed in 10% buffered formalin for 24-48 hours, decalcified in 14% EDTA for 1 week, processed through graded alcohols; and embedded in paraffin wax. Three µm sections of the calvaria are prepared. Representative sections are selected for histomorphometric assessment of bone formation and bone resorption. Bone changes are measured on sections cut 200 µm apart. Osteoblasts and osteoclasts are identified by their distinctive morphology.

Other auxillary assays can be used as controls to determine non-BMP promoter-mediated effects of test compounds. For example, mitogenic activity can be measured using screening assays featuring a serum-response element (SRE) as a promoter and a luciferase reporter gene. More specifically, these screening assays can detect signalling through SRE-mediated pathways, such as the protein kinase C pathway. For instance, an osteoblast activator SRE-luciferase screen and an insulin mimetic SRE-luciferase screen are useful for this purpose. Similarly, test compound stimulation of cAMP response element (CRE)-mediated pathways can also be assayed. For instance, cells transfected with receptors for PTH and calcitonin (two bone-active agents) can be used in CRE-luciferase screens to detect elevated cAMP levels. Thus, the BMP promoter specificity of a test compound can be examined through use of these types of auxillary assays.

20

25

30

15

10

In vivo Assay of Effects of Compounds on Murine Calvarial Bone Growth

Male ICR Swiss white mice. aged 4-6 weeks and weighing 13-26 gm, are employed, using 4-5 mice per group. The calvarial bone growth assay is performed as described in PCT application WO 95/24211, incorporated by reference. Briefly, the test compound or appropriate control vehicle is injected into the subcutaneous tissue over the right calvaria of normal mice. Typically, the control vehicle is the vehicle in which the compound was solubilized, and is PBS containing 5% DMSO or is PBS containing Tween (2 μl/10 ml). The animals are sacrificed on day 14 and bone growth measured by histomorphometry. Bone samples for quantitation are cleaned from adjacent tissues and fixed in 10% buffered formalin for 24-48 hours, decalcified in 14% EDTA for 1-3 weeks, processed through graded alcohols; and embedded in paraffin wax. Three to five μm

sections of the calvaria are prepared, and representative sections are selected for histomorphometric assessment of the effects on bone formation and bone resorption. Sections are measured by using a camera lucida attachment to trace directly the microscopic image onto a digitizing plate. Bone changes are measured on sections cut 200 µm apart, over 4 adjacent 1x1 mm fields on both the injected and noninjected sides of the calvaria. New bone is identified by its characteristic woven structure, and osteoclasts and osteoblasts are identified by their distinctive morphology. Histomorphometry software (OsteoMeasure, Osteometrix, Inc., Atlanta) is used to process digitizer input to determine cell counts and measure areas or perimeters.

10

15

20

25

30

·5

Additional In Vivo Assays

Lead compounds can be further tested in intact animals using an *in vivo*, dosing assay. Prototypical dosing may be accomplished by subcutaneous, intraperitoneal or oral administration, and may be performed by injection, sustained release or other delivery techniques. The time period for administration of test compound may vary (for instance, 28 days as well as 35 days may be appropriate). An exemplary, *in vivo* subcutaneous dosing assay may be conducted as follows:

In a typical study, 70 three-month-old female Sprague-Dawley rats are weight-matched and divided into seven groups, with ten animals in each group. This includes a baseline control group of animals sacrificed at the initiation of the study; a control group administered vehicle only; a PBS-treated control group; and a positive control group administered a compound (non-protein or protein) known to promote bone growth. Three dosage levels of the compound to be tested are administered to the remaining three groups.

Briefly, test compound, positive control compound, PBS, or vehicle alone is administered subcutaneously once per day for 35 days. All animals are injected with calcein nine days and two days before sacrifice (two injections of calcein administered each designated day). Weekly body weights are determined. At the end of the 35-day cycle, the animals are weighed and bled by orbital or cardiac puncture. Serum calcium, phosphate, osteocalcin, and CBCs are determined. Both leg bones (femur and tibia) and lumbar vertebrae are removed, cleaned of adhering soft tissue, and stored in 70% ethanol for evaluation, as performed by peripheral quantitative computed tomography (pQCT; Ferretti,

J. Bone (1995) 17:353S-64S), dual energy X-ray absorptiometry (DEXA; Laval-Jeantet A. et al. Calcif Tissue Intl (1995) 56:14-18; J. Casez et al. Bone and Mineral (1994) 26:61-68) and/or histomorphometry. The effect of test compounds on bone remodeling can thus be evaluated.

Lead compounds can also be tested in acute ovariectomized animals (prevention model) using an *in vivo* dosing assay. Such assays may also include an estrogen-treated group as a control. An exemplary subcutaneous dosing assay is performed as follows:

5

10

15

20

25

30

In a typical study, 80 three-month-old female Sprague-Dawley rats are weight-matched and divided into eight groups, with ten animals in each group. This includes a baseline control group of animals sacrificed at the initiation of the study; three control groups (sham ovariectomized (sham OVX) + vehicle only; ovariectomized (OVX) + vehicle only; PBS-treated OVX); and a control OVX group that is administered a compound known to promote bone growth. Three dosage levels of the compound to be tested are administered to the remaining three groups of OVX animals.

Since ovariectomy (OVX) induces hyperphagia, all OVX animals are pair-fed with sham OVX animals throughout the 35 day study. Briefly, test compound, positive control compound, PBS, or vehicle alone is administered subcutaneously once per day for 35 days. Alternatively, test compound can be formulated in implantable pellets that are implanted for 35 days, or may be administered orally, such as by gastric gavage. All animals, including sham OVX/vehicle and OVX/vehicle groups, are injected intraperitoneally with calcein nine days and two days before sacrifice (two injections of calcein administered each designated day, to ensure proper labeling of newly formed bone). Weekly body weights are determined. At the end of the 35-day cycle, the animals' blood and tissues are processed as described above.

Lead compounds may also be tested in chronic OVX animals (treatment model). An exemplary protocol for treatment of established bone loss in ovariectomized animals that can be used to assess efficacy of anabolic agents may be performed as follows. Briefly, 80 to 100 six month old female, Sprague-Dawley rats are subjected to sham surgery (sham OVX) or ovariectomy (OVX) at time 0, and 10 rats are sacrificed to serve as baseline controls. Body weights are recorded weekly during the experiment. After approximately 6 weeks of bone depletion (42 days), 10 sham OVX and 10 OVX rats are randomly selected for sacrifice as depletion period controls. Of the remaining animals, 10 sham OVX and 10

OVX rats are used as placebo-treated controls. The remaining OVX animals are treated with 3 to 5 doses of test drug for a period of 5 weeks (35 days). As a postitive control, a group of OVX rats can be treated with an agent such as PTH, a known anabolic agent in this model (Kimmel et al. Endocrinology (1993) 132:1577-84). To determine effects on bone formation, the following procedure can be followed. The femurs, tibiae and lumbar vertebrae 1 to 4 are excised and collected. The proximal left and right tibiae are used for pQCT measurements, cancellous bone mineral density (BMD) (gravimetric determination), and histology, while the midshaft of each tibiae is subjected to cortical BMD or histology. The femurs are prepared for pQCT scanning of the midshaft prior to biomechanical testing. With respect to lumbar vertebrae (LV), LV2 are processed for BMD (pQCT may also be performed); LV3 are prepared for undecalcified bone histology; and LV4 are processed for mechanical testing.

Nature of the Compounds Useful in the Invention

5

10

15

20

25

30

All of the compounds of the invention contain two aromatic systems, Ar¹ and Ar², spaced apart by a linker at a distance of 1.5-15Å, and may contain at least one nitrogen atom. Both the systems represented by Ar¹ and Ar² may contain non-interfering substituents. The non-interfering substituents on the aromatic system represented by Ar¹ and the non-interfering substituents on the aromatic system represented by Ar² are represented in the formulae herein by R^a and R^b, respectively; however, it is recognized that the designation of one Ar as Ar¹ and the other as Ar² is arbitrary. For ease of reference, each is designated separately, it will, however, be evident that the linkers described below. unless palindromic, could thus exist in the compounds in "reverse" order of atoms. Generally, the non-interfering substituents can be of wide variety. Among substituents that do not interfere with the beneficial effect of the compounds of the invention on bone in treated subjects are included alkyl (1-6C, preferably lower alkyl 1-4C), including straight or branched-chain forms thereof, alkenyl (1-6C, preferably 1-4C), alkynyl (1-6C, preferably 1-4C), all of which can be straight or branched chains and may contain further substituents: halogens, including F, Cl, Br and I; siloxy, OR, SR, NR2, OOCR, COOR, NCOR, NCOOR, and benzoyl, CF₃, OCF₃, SCF₃, N(CF₃)₂, CN, SO, SO₂R and SO₃R wherein R is alkyl (1-6C) or is H. Where two R^a or two R^b substituents are in adjacent positions in the

5

10

15

20

25

30

aromatic system, they may form a ring. Further, rings may be included in substituents which contain sufficient carbon atoms and heteroatoms to provide this possibility.

Preferred non-interfering substituents include hydrocarbyl groups of 1-6C, including saturated and unsaturated, linear or branched hydrocarbyl as well as hydrocarbyl groups containing ring systems; halo groups, alkoxy, hydroxy, amino, monoalkyl- and dialkylamino where the alkyl groups are 1-6C, CN, CF₃, and COOR.

Although the number of R^a and R^b substituents may typically be 0-4 or 0-5 depending on the available positions in the aromatic system, preferred embodiments include those wherein the number of R^a is 0, 1 or 2 and of R^b is 0, 1 or 2.

The linker group, L, may be a covalent bond or any group having a valence of at least two and covering a linear distance of from about 1.5 to about 15 Angstroms, including those that contain cyclic moieties, that meet this spatial requirement. Useful linkers are divided, by definition herein, into three general categories: (1) flexible non-conjugating linkers, (2) flexible conjugating linkers, and (3) constrained linkers. The preferred choice of linker will depend on the choices for Ar¹ and Ar². Not all of the linkers defined below are suitable for all Ar¹ and Ar² combinations.

As defined herein, *flexible non-conjugating* linkers are those that link only one position of Ar¹ to one position of Ar², and provide only a single covalent bond or a single chain between Ar¹ and Ar². The chain may contain branches, but may not contain π-bonds (except in the branches) or cyclic portions in the chain. The linker atoms in the chain itself rotate freely around single covalent bonds, and thus the linker has more than two degrees of freedom. Particularly useful flexible non-conjugating linkers, besides a covalent bond, are those of the formulae: -NR-, -CR₂-, -S-, or -O-, wherein R is H or alkyl (1-6C), more preferably H or lower alkyl (1-4C) and more preferably H. Also preferred are those of the formulae: -NRCO-, -CONR-, -CR₂S-, -SCR₂-, -OCR₂-, -CR₂O-, -NRNR-, -CR₂CR₂-, -NRSO₂-, -SO₂NR-, -CR₂CO-, -COCR₂-, and -NR-NR-CO-CR₂- and its complement -CR₂-CO-NR-NR-, including the isosteres thereof. Also preferred are those of the formulae: -NR(CR₂)₂NR-, -O(CR₂)₂O-, and -S(CR₂)₂S-, including the isosteres thereof. The optimum choice of linker within this group is dependent on the nature of Ar¹ and Ar².

Flexible conjugating linkers are those that link only one position of Ar¹ to one position of Ar², but incorporate at least one double or triple bond and/or one or more cyclic systems and thus have only two degrees of freedom. A flexible conjugating linker may

5

10

15

20

form a completely conjugated π -bond linking system between Ar^1 and Ar^2 , thus providing for co-planarity of Ar^1 and Ar^2 . Examples of useful flexible conjugating linkers include: -RC=CR-; -N=N-; -C=C-; -RC=N-; -N=CR-; -NR-N=CR-; -NR-NR-CO-CR=CR-; and the like, where R is H or alkyl (1-6C); preferably H or lower alkyl (1-4C); and more preferably H.

Constrained linkers are those that have more than one point of attachment to either or both Ar¹ and Ar² and, thus, generally allow for only one degree of freedom. Constrained linkers most frequently form fused 5- or 6-membered cyclic moieties with Ar¹ and/or Ar² where either Ar¹ or Ar² has at least one substituent appropriately positioned to form a second covalent bond with the linker, e.g., where Ar² is a phenyl group with a reactive, ortho-positioned substituent, or is derivatized to the linker directly at the ortho position. (Although the aromatic moieties should properly be referred to as phenylene or naphthylene in such cases, generally the term "phenyl" or "naphthyl" is used herein to include both monovalent and bivalent forms of these moieties.) Examples of particularly useful constrained linkers include

and the like, where X is O, N, S or CR, and Y is CR₂ or C=O.

Many of the compounds useful in the invention are commercially available and can be synthesized by art-known methods. Those compounds useful in the invention which are new compounds, can similarly be obtained by methods generally known in the art.

In one set of compounds of the inventions, Ar¹ is a substituted or unsubstituted aromatic system containing a six-membered heterocycle and the compounds useful in the invention have the formula:

$$R^{a}_{m} = \begin{bmatrix} Z \\ Z \\ X \end{bmatrix} L - Ar^{2}$$

$$Ar^{1}$$

5

10

wherein R^a is a non-interfering substituent;

m is an integer of 0-4;

each dotted line represents an optional π -bond;

each Z is independently N, NR, O, S, CR or CR₂, where each R is independently H or alkyl (1-6C);

X is O, S, SO or SO₂;

L is a flexible linker; and

Ar² is a substituted or unsubstituted 6-membered aromatic ring.

A particularly preferred set of embodiments is of the formula:

15

in which:

R¹ is taken from the group: N=NAr, NR⁶COAr, CONR⁶Ar, CH₂OAr, CH₂NR⁶Ar, where Ar is a six-membered (un)substituted aromatic ring. Allowable substituents on this aromatic ring include:

20

halogen, straight or branched chain lower alkyl, alkenyl, or alkynyl, optionally substituted by a six-membered aromatic, cyclic alkyl, or cyclic alkenyl ring, hydroxyl, siloxy, acyloxy, straight or branched chain lower alkoxyl, benzoyl, carboalkoxy, carbamoyl optionally substituted at nitrogen by lower chain alkyl or phenyl, or carboxy, in which

5

10

15

R⁶ is taken from the group: hydrogen, or straight or branched chain lower alkyl;

R² and R⁵ are individually taken from the group: H,

hydroxy, siloxy, acyloxy, halo, cyano, straight or branched chain lower alkyl, or straight or branched chain lower alkoxyl;

R³ and R⁴ are individually taken from the group: H,

halogen, straight or branched chain lower alkyl, alkenyl, or alkynyl optionally substituted by a six-membered aromatic, cyclic alkyl, or cyclic alkenyl ring, hydroxyl, siloxy, acyloxy, straight or branched chain lower alkoxyl, benzoyl, carboalkoxy, carbamoyl optionally substituted at nitrogen by lower chain alkyl or phenyl, and carboxy;

X and Y are either: NR⁸ and N, respectively, in which case X and Y are singly bonded, or CR⁹ and CR¹⁰, respectively, in which case X and Y are doubly bonded, wherein

R⁸ is either H or lower alkyl;

 R^9 and R^{10} are individually taken from the group: H,

halo, and lower alkyl;

Z is taken from the group: O, S, SO, and SO₂; or salts thereof.

Compounds of the general structure I above can be prepared in a variety of ways, for example:

a) treating thiohydrazides of general structure II, or the corresponding thiohydrazones, in hot acetic acid in air,

b) reacting compounds of the general structure III with bromine,

25

c) heating compounds of general structure IV in a protic solvent,

d) reacting compounds of the general structures V or VI with sodium hydride,

e) reacting compounds of the general structure VII with a base,

10

5

f) reacting pyrylium compounds of general structure VIII with an appropriate nucleophile,

where R², R³, R⁴, R⁵, are as defined above and R is taken from the group: Ar, NHAr, NHNHAr, COAr, carboalkoxy, alkoxy, NR⁶COAr, CH₂OAr, and CH₂NR⁶Ar, in which Ar and R⁶ are as described above, followed, optionally, by conversion of any one or more of the groups, R, R², R³, R⁴, R⁵ into new groups R, R², R³, R⁴, R⁵ by deprotection, coupling, addition, substitution, or elimination; or by oxidation of the sulfur to sulfoxide or sulfone; and, if desired, by converting a compound of the general structure I into its salt or setting it free from its salt.

Example:

Diphenyl thiohydrazone is heated in refluxing acetic acid in air for 30 to 90 minutes to afford benzothiadiazene 1.

Specific representatives of compounds of the general structure I include:

3-phenylazo-1H-4,1,2-benzothiadizine

2-phenylazo-2H-benzopyran

20

15

5

10

Another group of compounds suitable for use in the methods of the invention are compounds of the formula:

wherein R^a is a non-interfering substituent;

n is an integer of 0 and 5;

L is a flexible linker which does not contain nitrogen; and

Ar² is a substituted or unsubstituted phenyl or a substituted or unsubstituted naphthyl.

Particularly preferred embodiments of this group of compounds are those of the formula:

10

5

in which

R³⁵ is taken from the group: H, hydroxy, alkoxyl, acyloxy, and silyloxy, R³⁶ is either Ar, or COAr, in which Ar is (un)substituted phenyl in which the allowed substituents are taken from the group: H, hydroxy, (un)substituted alkoxy, acyloxy, siloxy, (un)substituted alkyl, (un)substituted alkenyl, or (un)substituted alkynyl, carboxy, carboalkoxy, carbamoyl optionally substituted at nitrogen by lower chain alkyl, and aryl;

20

15

R³⁷ is taken from the group: H, hydroxy, alkoxy, halo, acyloxy, and siloxyl; R³⁸ is taken from the group: H, hydroxy, alkoxy, acyloxy, siloxy, (un)substituted alkoxy, acyloxy, siloxy, (un)substituted alkyl, (un)substituted alkynyl, or salts thereof.

Compounds of general structure XXXV can be prepared by treating an acetophenone of general structure XXXVI with an appropriate aldehyde of general structure XXXVII under either basic or acidic conditions,

or by treating an appropriate alkyne of general structure XXXVIII with an acid halide of general structure XXXIX in the presence of a suitable catalyst, such as aluminum trichloride.

or by treating acid halides of the general structure XXXIX with (E)-1,2-bis(tri-n-butylstanyl)ethylene, or with a vinylstanane of general structure XL in the presence of a suitable catalyst, for example, a palladium catalyst.

or by treating an acetophenone of general structure XLI with a strong base,

where R³⁵, R³⁶, R³⁷, and R³⁸ are as defined above, followed, optionally, by conversion of any one or more of the groups R³⁵, R³⁶, R³⁷, and R³⁸ into new groups R³⁵, R³⁶, R³⁷, and R³⁸ by deprotection, coupling, addition, substitution, or elimination, and, if desired, by converting a compound of the general structure XXXV into its salt or setting it free from its salt.

Specific representative compounds of general structure XXXV include:

2,4-dimethoxy-2'-hydroxychalcone

1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)propan-

1,3-dione

1,4-dioxo-1,4-diphenylbut-2-ene

Still another group of compounds useful in the invention are those of the formula:

$$R_n^a$$
 $-L-Ar^2$

15

10

wherein R^a is a non-interfering substituent;

n is an integer of 0 and 5;

L is a constrained linker; and

Ar² is a substituted or unsubstituted phenyl or a substituted or unsubstituted naphthyl.

Particularly preferred compounds in this group are those of formulas IX, XIV, and XX as follows:

$$R^{16}$$
 R^{17}
 R^{16}
 R^{17}
 R^{12}
 R^{15}
 R^{14}
 R^{14}
 R^{15}

in which:

5

10

15

25

ring;

 R^{11} and R^{12} are individually taken from the group:

H, hydroxy, C_{1-6} alkoxy, acetyloxy, and C_{1-12} (un)substituted alkyl; R^{13} , R^{14} and R^{17} are individually taken from the group:

H, hydroxy, C₁₋₆ straight or branched chain alkoxy, and acetyloxy,

 R^{15} is taken from the group: Hydroxy, (un)substituted C_{1-12} alkoxy, C_{1-12} alkyl, (un)substituted alkenyl, and acetyloxy;

R¹⁶ is taken from the group: H, hydroxy, (un)substituted lower alkoxy, acetoxy, (un)substituted alkyl, and (un)substituted alkenyl; where R¹¹, R¹² may form a 5-7 member (un)substituted carbocycle or heterocycle; where R¹⁵, R¹⁶ may form a 5-7 member (un)substituted carbocyclic or heterocyclic

X¹ is either carbonyl or CH₂;

and the dotted line may be a double bond,

in which permissible substituents on the above mentioned substituted groups include: Lower alkyl, lower alkoxyl, hydroxy, siloxy, halo, carboxyl, and aryl, with the following provisions:

if X1 is carbonyl and

if R¹⁵ is hydroxy and if only one of R¹¹, R¹², or R¹³ is hydroxy, then at least one of R¹⁴, R¹⁶, and R¹⁷ must be other than H;

or if R^{15} is alkoxy, and if R^{11} , R^{12} , R^{13} together are H, then R^{17} can be neither H nor hydroxy;

or if R¹⁵ is (un)substituted alkoxy, and if R¹¹, R¹², and R¹³ together consist of only H, or H and one or two alkoxy, and R¹⁷ is H, then R¹⁴ must be other than H. Me or hydroxymethyl;

or if R^{15} is hydroxy or alkoxy, and if R^{11} , R^{12} , R^{13} together consist of only H, or H and one or two alkoxy, or H and only one or two alkyl, and R^{17} is C_{1-4} alkyl, then at least one of R^{14} and R^{16} must be other than H;

or if R¹⁵ is hydroxy and if R¹¹, R¹², R¹³, R¹⁴, and R¹⁶ all are H, R¹⁷ must be neither H nor hydroxy;

or if R^{15} is iso-propoxy, and if R^{11} , R^{12} , and R^{13} together consist of only H, or H and one or two hydroxys, then at least one of R^{14} , R^{16} , R^{17} must be other than H;

or if R^{15} is 1,5 di(lower) alkyl C_{5-10} alkyl, then at least one of R^{11} , R^{12} , R^{13} , R^{14} , R^{16} , and R^{17} must be other than H; or salts thereof.

Compounds of the general structure shown above can be made by a process wherein ketones of the structure (X) shown below:

15

20

5

are reacted with an alkylorthoformate in the presence of a base, or

are reacted with an ethyloxalyl chloride in the presence

of pyridine, followed by hydrolysis and decarboxylation, or

are reacted with an alkyl formate in the presence of an

alkali metal, or

are reacted with an N,N-dialkyl formamide in the presence

of phosphorous oxychloride, or

are reacted with a cyanide in the presence of hydrogen halide,

or by dehydrating 2-hydroxyisoflavanoids of the general structure (XI):

or by subjecting compounds of the general structure XII to catalytic hydrogenation,

or by treating compounds of the general structure XIII,

available from alkylation of the corresponding phenylacetate with an appropriate benzylhalide, followed by reduction, with (PF₆)₂Rh(EtC₅Me₄)(C₆H₆),

in which the groups R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, and R¹⁷ are as defined above,

followed, optionally, by the conversion of any one or more of groups R¹¹, R¹², R¹³, R¹⁴,

R¹⁵, R¹⁶, and R¹⁷ into new groups R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, and R¹⁷ by deprotection,

dehydrogenation, addition, substitution, or elimination, and, if desired, by converting a compound of the general structure IX into its salt or setting it free from its salt.

Example:

1,3,5-trihydroxybenzene is allowed to react with iso-pentynyl chloride, followed by catalytic hydrogenation, to give product 2. The compound 2 is allowed to react with the acid chloride 3 to provide the ketone 4. Ketone 4 is treated with ethyloxalyl chloride in pyridine at 0°C to afford an ester, which is hydrolyzed in aqueous acetone containing sodium carbonate to give the acid 5. When heated in refluxing toluene, acid 5 undergoes decarboxylation to give compound 6, which upon treatment with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone gives the isoflavanoid 7.

Specific representatives of compounds of the general structure IX include:

25 tectorigenin

robustone

robustone methyl ether

7,2',4'-trihydroxyisoflavone

6,2',3'-trihydroxy-7,4'-dimethoxyisoflavan

30 8,4'-dimethoxy-7-hydroxisoflavone

Compounds of XIV have the structure:

in which:

5 R¹⁸ and R¹⁹ are individually taken from the group:

H, hydroxy, (un)substituted alkyl, (un)substituted alkoxy, COR²¹ carboxy, carboalkoxy, OR²², carbamoyl optionally substituted at the nitrogen by lower chain alkyl or phenyl, acyloxy, halo, cyano, and azido.

R²⁰ is taken from the group: H, hydroxy, halo, lower chain alkyl, acyloxy, and

10 siloxy;

20

in which R²¹ is taken from the group: Alkyl, alkenyl,

alkynyl, aralkyl, (un)substituted phenyl, (un)substituted naphthyl, thienyl, furanyl, and pyridyl;

and R²² is comprised of a C₃₋₆ carbohydrate moiety;

or salts thereof.

Compounds of general structure XIV can be prepared by reacting ylides of general structure XV with either acid chlorides of general structure XVI or acid anhydrides of general structure XVII:

or by treating acids of the general structure XVIII with polyphosphoric acid, trifluoracetic anhydride, or similar reagent,

5

or by treating chalcones of general structure XIX with either base, or with base followed by treatment with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.

10

in which the groups R¹⁸, R¹⁹, R²⁰ are as above, followed, optionally, by conversion of any one or more of the groups R¹⁸, R¹⁹, R²⁰ into new groups R¹⁸, R¹⁹, R²⁰ by deprotection, coupling, addition, substitution, or elimination, and, if desired, by converting a compound of general structure XIV into its salt or setting it free from its salt.

15

Specific representatives of compounds of the general structure XIV are:

5,4'-dimethyl-7-acetylflavone

7-benzoyloxyflavanone

apiin acetate

20

Compounds of structure XX are of the formula:

where

R²³, R²⁴, R²⁵, R²⁶ are individually taken from the group:

5

H. hydroxy, (un)substituted alkoxy, siloxy, (un)substituted alkyl, (un)substituted alkenyl, halo, carboxyl, and acyloxy, and where R²³ and R²⁴, and likewise R²⁵ and R²⁶, can together equal a 5-7 member (un)substituted carbocyclic or heterocyclic ring, and where substituents on the above mentioned optionally substituted groups may include lower chain alkyl, lower chain alkoxy, hydroxy, siloxy, acyloxy, halo, benzoyl, carboxy, carboalkoxy, and carbamoyl optionally substituted at nitrogen with lower chain alkyl, phenyl, thienyl, furyl, or pyridinyl;

10

Y¹ is taken from the group: O, -OCH₂CH₂O-, -OCH₂CH₂S-, -OCH₂CH₂CH₂O-, -SCH₂CH₂CH₂S-, and -SCH₂CH₂S-;

X² is taken from the group: CH₂, O, and S;

15

with the following provisions:

if X and Y are O and R^{24} or R^{25} are either both alkoxy, or alkoxy and alkyl, irrespective of order, then at least one of R^{23} and R^{26} must be other than H, or salts thereof.

20

25

Compounds of the general structure XX can be prepared by reacting amides of general structure XXI with sec-butyl lithium and tetramethylethylenediamine in THF, followed by addition of benzaldehydes of general structure XXII, and the addition of acid. The resulting lactones of general structure XXIII can be reduced by catalytic hydrogenation or treatment with activated zinc in acid, followed by dehydration with trifluoracetic anhydride,

or, by treating diaryl ethers of general structure XXIV with sulfuric acid, alumium trichloride, trifluoracetic anhydride, or similar reagent,

$$R^{26}$$
 CO_2H
 R^{25} $O - R^{23}$
 $XXIV$ R^{24}

5

where R²³, R²⁴, R²⁵, R²⁶ are as defined above, followed, optionally, by conversion of any one or more of the groups R²³, R²⁴, R²⁵, R²⁶ into new groups R²³, R²⁴, R²⁵, R²⁶ by deprotection, coupling, addition, substitution, or elimination, and, if desired, by converting a compound of the general structure XX into its salt or setting it free from its salt.

10

Specific representatives of compounds of the general structure XX include: 3-isopropoxyanthrone

Another group that is useful in the invention are of the formula:

$$x^{5} \left(\frac{1}{x^{6}}\right)^{1} - x^{7}$$

XXV

in which:

lower alkyl:

R³⁰ and R³¹ are individually taken from the group:

 X^{3} is NR^{27} , X^{4} is CR^{30} , X^{5} is O, X^{6} is CR^{31} , X^{7} is O^{-1} X^3 is NR^{30} , X^4 is CR^{27} or N, X^5 is NR^{31} , X^6 is CR^{28} , X^7 is O or S. 5 X³ is NR²⁷, X⁴ is CR³⁰, X⁵ is NR²⁸, X⁶ is CR³¹, X⁷ is O or S; or X^3 is NR^{27} . X^4 is CR^{28} or N. X^5 is NR^{30} . X^6 is CR^{29} . X^7 is NR^{32} . ог X^3 is NR^{30} , X^4 is CR^{27} or N, X^5 is NR^{28} , X^6 is CR^{29} , X^7 is NR^{32} ; or X^3 is NR²⁷, X^4 is CR³⁰, X^5 is S, X^6 is CR³¹, X^7 is NR³²; or 10 X^3 is NR^{30} , X^4 is CR^{27} , X^5 is S, X^6 is CR^{28} , X^7 is NR^{32} . or X^3 is S, X^4 is CR^{30} , X^5 is NR^{27} , X^6 is CR^{31} , X^7 is O or S; or X^3 is S, X^4 is CR^{30} , X^5 is NR^{27} , X^6 is CR^{28} , X^7 is NR^{32} . or X^3 is S, X^4 is CR^{27} , X^5 is NR^{30} , X^6 is CR^{28} , X^7 is NR^{32} . or X^3 is S, X^4 is CR^{30} , X^5 is S, X^6 is CR^{27} , X^7 is NR^{32} . ог 15 X^3 is S, X^4 is CR^{30} , X^5 is S, X^6 is CR^{31} , X^7 is O^{-1} or X^3 is NR^{30} , X^4 is CR^{27} or N, X^5 is NR^{31} , X^6 is N, X^7 is O or S'; or X^3 is NR²⁷. X^4 is CR³⁰. X^5 is NR²⁸. X^4 is N. X^7 is NR³² or CZ²Z³. or X^{3} is NR^{27} , X^{4} is CR^{28} or N, X^{5} is NR^{30} , X^{4} is N, X^{7} is NR^{32} or CZ^2Z^3 ; X^3 is NR^{30} , X^4 is N, X^5 is S, X^6 is CR^{31} , X^7 is O. 20 X^3 is S. X^4 is CR^{27} , X^5 is NR^{30} , X^6 is N, X^7 is NR^{32} ; or X^3 is S. X^4 is CR^{30} . X^5 is NR^{27} , X^6 is N, X^7 is NR^{32} . X^{3} is O or S, X^{4} is N, X^{5} is NR³⁰, X^{6} is N, X^{7} is NR³². or in which R^{27} , R^{28} and R^{29} are individually straight or branched chain 25

10

15

hydrogen, straight or branched chain (un)substituted alkyl, (un)substituted aromatic, in which the substituents may include: Halogen, straight or branched chain lower alkyl, alkenyl, alkynyl optionally substituted by a six-membered aromatic, cyclic alkyl, or cyclic alkenyl ring, hydroxyl, straight or branched chain alkoxyl, benzoyl, carboalkoxy, carbamoyl optionally substituted at nitrogen by lower chain alkyl or phenyl, or carboxy;

R³² is taken from the group:

Ar, COAr, COR³³, where Ar is a six-membered (un)substituted aromatic ring, in which substituents on this ring may include: Halogen, straight or branched chain lower alkyl, alkenyl, alkynyl optionally substituted by a six-membered aromatic, cyclic alkyl, or cyclic alkenyl ring, hydroxyl, straight or branched chain alkoxyl, benzoyl, carboalkoxy, carbamoyl optionally substituted at nitrogen by lower chain alkyl or phenyl, or carboxy;

R³³ is taken from the group: Hydrogen, and straight or branched chain alkyl;

 Z^2 and Z^3 are individually taken from the group: CN and CO_2R^{34} ;

R³⁴ is taken from the group: Hydrogen, straight or branched chain alkyl, and (un)substituted aromatic;

or salts thereof.

Compounds of general structure XXV above can be prepared by treating compounds of general structure XXVI, where X^8 is NR^{30} or S, X^9 is CR^{30} or N, X^{10} is NR^{30} or S, Z^4 is CO_2H , CO_2R^{30} or CN, with acid chlorides or anhydrides,

25

$$X^9 = X^8$$
 X^{10}
 $-----Z^4$
 R^{30}
 $XXVI$

or by reacting compounds of general structure XXVII, where X^{11} is NR^{30} or S, X^{12} is N or CR^{30} , X^{13} is halogen, SMe, or OEt, with amines, sulfides or enolates,

$$X^{12}-X^{11}$$
 X^{13}
 X^{14}
 X^{13}

or by reacting compounds of general structure XXVIII, where X¹⁵ is O or S with isocyanates, isothiocyanates, or carbon disulfide.

or by reacting compounds of general structure XXIX with sodium hydroxide,

$$\begin{array}{c}
N \longrightarrow O \\
(+) \\
N \\
N \\
XXIX
\end{array}$$

10

or by reacting compounds of general structure XXX with alkyl tosylates, aryl tosylates or alkyl halides,

or by reacting compounds of general structure XXXI with aryl isocyanide dichlorides, phosgene, thiophosgene, or 3,3-bis(methylthio)acrylonitriles,

$$R^{27}$$
 $=$
 NR^{30}
 R^{31}
 NH_2
 $XXXI$

5

or by reacting compounds of general structure XXXII, where X¹⁶ is O, S, or NH, with sodium ethoxide or HCl in the presence of acid chlorides or HCl in the presence of acid anhydrides,

$$R^{27}$$
 $= 0$
 $R^{30} - N X^{16}$
 $+ N - R^{31}$
 $XXXII$

10

or by reacting compounds of general structure XXXIII, where X^{17} is NH or S, with acid chlorides, acid anhydrides, or HONO,

or by reacting compounds of general structure XXXIV with Cu(acac)2,

where R²², R²⁸, R²⁹, R³⁰, R³¹, R³², R³³, and R³⁴ are as defined above, followed. optionally, by conversion of any one or more of the groups R²², R²⁸, R²⁹, R³⁰, R³¹, R³², R³³, and R³⁴ into new groups R²², R²⁸, R²⁹, R³⁰, R³¹, R³², R³³, and R³⁴ by deprotection, coupling, addition, substitution, or elimination, and, if desired, by converting a compound of the general structure XXV into its salt or setting it free from its salt.

Specific representatives of compounds of the general structure XXV include: 3-(4-chlorophenyl)-1,2,3,4-oxatriazolium-5-(4-chlorophenyl)aminide 1,3-di(4-methylphenyl)-1,2,3,4-tetrazolium-5-oxide.

The following examples are intended to illustrate, but not to limit, the invention.

15

20

25

10

Example 1

Compound 59-0008 was synthesized according to the procedure of McDonald, W. S., et al. Chem Comm (1969) 392-393; Irving, H. N. N. H. et al. Anal Chim Acta (1970) 49:261-266. Briefly, 10.0 g of dithizone was taken up in 100 ml EtOH and 50 ml AcOH and heated at reflux for 18 h. After cooling, this was diluted first with 100 ml water and then with 50 ml 1N NaOH. This was then further neutralized by the addition of 6 N NaOH to bring the pH to 5.0. This deep purple mixture was then concentrated on a rotavapor to remove organics. Once the liquid had lost all of its purple color, this was filtered to collect the dark precipitate. Purification by flash chromatography (4.5 x 25.7 cm; EtAc/Hep. (1:4); Rf 0.22) followed by recrystalization from EtOH gave 2.15 g (25% yield) of dark

purple crystals, mp=184-185 °C. ¹H NMR (CDCl₃) 7.90 (d of d, J₁=7.7, J₂=2.2, 2H), 7.64 (hump, 1H), 7.49 (m, 3H), 7.02 (m, 1H), 6.91 (m, 2H), 6.55 (d, J=8.1, 1H). MS (EI) 254 (47, M+), 105 (26), 77 [100], 51 (27). HRMS (EI, M+) 254.0626 (calcd 254.0626182). Anal. Calcd for C₁₃H₁₀N₄S: C, 61.40; H, 3.96; N, 22.03. Found: C, 61.40; H, 4.20; N, 22.06.

5

15

20

25

Example 2

High Throughput Screening

Several thousand compounds were tested in the assay system set forth in U.S. Serial

No. 08/458,434, filed 2 June 1995, and incorporated herein by reference. The standard
positive control was a compound of the invention, 59-0008 (also denoted "OS8"), which is
of the formula:

In more detail, the 2T3-BMP-2-LUC cells, a stably transformed osteoblast cell line described in Ghosh-Choudhury et al. Endocrinology (1996) 137:331-39, referenced above, was employed. The cells were cultured using α-MEM, 10% FCS with 1% penicillin/streptomycin and 1% glutamine ("plating medium"), and were split 1:5 once per week. For the assay, the cells were resuspended in a plating medium containing 4% FCS, plated in microtiter plates at a concentration of 5 x 10³ cells (in 50 μl)/well, and incubated for 24 hours at 37°C in 5% CO₂. To initiate the assay, 50 μl of the test compound or the control in DMSO was added at 2X concentration to each well, so that the final volume was 100 μl. The final serum concentration was 2% FCS, and the final DMSO concentration was 1%. Compound 59-0008 (10 μM) was used as a positive control.

The treated cells were incubated for 24 hours at 37°C and 5% CO₂. The medium was then removed, and the cells were rinsed three times with PBS. After removal of excess PBS, 25 µl of 1X cell culture lysing reagent (Promega #E153A) was added to each well and incubated for at least ten minutes. Optionally, the plates/samples could be frozen at

this point. To each well was added 50 µl of luciferase substrate (Promega #E152A; 10 ml Promega luciferase assay buffer per 7 mg Promega luciferase assay substrate). Luminescence was measured on an automated 96-well luminometer, and was expressed as either picograms of luciferase activity per well or as picograms of luciferase activity per microgram of protein.

In this assay, compound 59-0008 (3-phenylazo-1H-4,1,2-benzothiadiazine) exhibited a pattern of reactivity, as shown in Figure 1. The activity for compound 59-0008 was maximal at a concentration of approximately 3-10 μ M and, more particularly, at about 3 μ M, and thus provided a response of approximately 175 light emission units.

Accordingly, other tested compounds were evaluated at various concentrations, and these results were compared to the results obtained for 59-0008 at $10 \mu M$ (which value was normalized to 100). For instance, any tested compound in Figure 2 and Figure 3 that showed greater activity than $10 \mu M$ of 59-0008 would result in a value over 100.

As shown in Figure 2 (39 sheets) and Figure 3 (10 sheets), several compounds were found to be particularly effective.

Example 3

In vivo Calvarial Bone Growth Data

Compound 59-0008 was assayed *in vivo* according to the procedure described previously (see "In vivo Assay of Effects of Compounds on Murine Calvarial Bone Growth", supra). As compared to a vehicle control, compound 59-0008 induced a 4-fold increase in width of new calvarial bone.

Example 4

25

30

5

10

15

20

Chondrogenic Activity

Compounds 59-008, 59-0102 and 50-0197 were assayed for effects on the differentiation of cartilage cells, as compared to the action of recombinant human BMP-2. Briefly, a mouse clonal chondrogenic cell line, TMC-23, was isolated and cloned from costal cartilage of transgenic mice containing the BMP-2 gene control region driving SV-40 large T-antigen, generated as described in Ghosh-Choudhury et al Endocrinology 137:331-39, 1996. These cells were cultured in DMEM/10% FCS, and were shown to

express T-antigen, and also to produce aggrecan (toluidine blue staining at pH 1.0) and Type-II collagen (immunostaining) by 7 days after confluence.

5

10

15

20

25

For measurement of alkaline phosphatase (ALP) activity, the technique of LF Bonewald et al. J Biol Chem (1992) 267:8943-49, was employed. Briefly, TMC-23 cells were plated in 96 well microtiter plates in DMEM containing 10% FCS at 4 x 10³ cells/well. Two days after plating, the cells were confluent and the medium was replaced with fresh medium containing 10% FCS and different concentrations of compounds or recombinant BMP-2. After an additional 2 or 5 days incubation, the plates were washed twice with PBS, and then lysing solution (0.05% Triton X-100) was added (100 µl/well). The cells were lysed by three freeze-thaw cycles of -70°C (30 min), followed by 37°C (30 min with shaking). Twenty microliters of cell lysates were assayed with 80 µl of 5 mM p-nitrophenol phosphate in 1.5 M 2-amino-2-methyl-propanol buffer, pH 10.3 (Sigma ALP kit, Sigma Chemical Co., St. Louis, MO) for 10 min at 37°C. The reaction was stopped by the addition of 100 µl of 0.5 M NaOH. The spectrophotometric absorbance at 405 nm was compared to that of p-nitrophenol standards to estimate ALP activity in the samples. The protein content of the cell lysates was determined by the Bio-Rad protein assay kit (Bio-Rad, Hercules, CA). Specific activity was calculated using these two parameters.

At day 2, compounds 59-0008 (10⁻⁹ M), 59-0102 (10⁻⁷ M) and 59-0197 (10⁻⁹ M) increased ALP levels approximately 3-, 2- and 2.5-fold, respectively, as compared to the vehicle control. Recombinant BMP2 at 100, 50 or 10 ng/ml induced ALP levels approximately 10-, 4- or 1.5-fold, respectively, as compared to the vehicle control.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

<u>Claims</u>

A method to treat a condition in a vertebrate animal characterized by a
 deficiency in, or need for, bone growth replacement and/or an undesirable level of bone resorption, which method comprises administering to a vertebrate subject in need of such treatment an effective amount of a compound of the formula:

$$R^{a}_{m} = \begin{bmatrix} Z & Z \\ \vdots & \vdots \\ X & L-Ar^{2} \end{bmatrix}$$

wherein R^a is a non-interfering substituent;

m is an integer of 0-4;

each dotted line represents an optional π -bond;

each Z is independently N, NR, O, S, CR or CR₂, where each R is independently H or alkyl (1-6C);

X is O, S, SO or SO₂;

15 L is a flexible linker; and

Ar² is a substituted or unsubstituted 6-membered aromatic ring.

- 2. The method of claim 1 wherein L is a flexible conjugated linker.
- 3. The method of claim 1 wherein L is selected from the group consisting of a covalent bond, -N=N-, -RC=CR-, -RC=N-, -N=CR-, -NRCO-, -CONR-, -CR₂O-, and -CR₂NR- where each R is independently H or alkyl (1-6C).
 - 4. The method of claim 1 wherein Ar² is

25

where R^b is a non-interfering substituent and n is an integer from 0 to 5.

- 5. The method of claim 4 wherein Ar² is unsubstituted phenyl.
- 6. The method of claim 1 wherein said compound is 59-0008.

7. A pharmaceutical composition for use in a method to treat a condition in a vertebrate animal characterized by a deficiency in, or need for, bone growth replacement and/or an undesirable level of bone resorption,

which composition comprises a pharmaceutically acceptable excipient and an effective amount of a compound of the formula:

wherein R² is a non-interfering substituent;

m is an integer of 0-4;

each dotted line represents an optional π -bond;

each Z is independently N, NR, O, S, CR or CR₂, where each R is independently H or alkyl (1-6C);

X is O, S, SO or SO₂;

L is a flexible linker; and

Ar² is a substituted or unsubstituted 6-membered aromatic ring.

20

- 8. The composition of claim 7 wherein L is a flexible conjugated linker.
- 9. The composition of claim 7 wherein L is selected from the group consisting of a covalent bond, -N=N-, -RC=CR-, -RC=N-, -N=CR-, -NRCO-, -CONR-, -CR₂O, and -CR₂NR- where each R is independently H or alkyl (1-6C).
 - 10. The composition of claim 7 wherein Ar² is

where R^b is a non-interfering substituent and n is an integer from 0 to 5.

- 11. The composition of claim 7 wherein Ar² is unsubstituted phenyl.
- 12. The composition of claim 7 wherein said compound is 59-0008.
- 13. A method to treat a condition in a vertebrate animal characterized by a deficiency in, or need for, bone growth replacement and/or an undesirable level of bone
 resorption, which method comprises administering to a vertebrate subject in need of such treatment an effective amount of a compound of the formula:

$$R^a_n$$
 $-L-Ar^2$

wherein Ra is a non-interfering substituent;

- n is an integer of 0 and 5;
 - L is a flexible linker which does not contain nitrogen; and $Ar^2 is a substituted or unsubstituted phenyl or a substituted or unsubstituted naphthyl.$
- 20 14. The method of claim 13 wherein R² is -NR₂ or -COOR, where R is H or alkyl (1-6C).
 - 15. The method of claim 13 wherein Ar² is substituted or unsubstituted phenyl.
- 25 16. The method of claim 13 wherein Ar¹ and Ar² are different.

17. A pharmaceutical composition for use in a method to treat a condition in a vertebrate animal characterized by a deficiency in, or need for, bone growth replacement and/or an undesirable level of bone resorption,

which composition comprises a pharmaceutically acceptable excipient and an effective amount of a compound of the formula:

$$R_n^a$$
 $L-Ar^2$

wherein Ra is a non-interfering substituent;

n is an integer of 0 and 5;

L is a flexible linker which does not contain nitrogen; and

Ar² is a substituted or unsubstituted phenyl or a substituted or unsubstituted naphthyl.

- The composition of claim 17 wherein R^2 is -NR₂ or -COOR, where R is H or alkyl (1-6C).
 - 19. The composition of claim 17 wherein Ar² is substituted or unsubstituted phenyl.
- 20. The composition of claim 17 wherein Ar¹ and Ar² are different.
 - A method to treat a condition in a vertebrate animal characterized by a deficiency in, or need for, bone growth replacement and/or an undesirable level of bone resorption, which method comprises administering to a vertebrate subject in need of such treatment an effective amount of a compound of the formula:

$$R^{a}_{n}$$
 $-L-Ar^{2}$

15

wherein R* is a non-interfering substituent;

n is an integer of 0 and 5;

L is a constrained linker; and

Ar² is a substituted or unsubstituted phenyl or a substituted or unsubstituted naphthyl.

- 22. The method of claim 21 wherein R^1 is -NR₂ or -COOR, where R is H or alkyl (1-6C).
- The method of claim 21 wherein Ar² is substituted or unsubstituted phenyl.
 - 24. A pharmaceutical composition for use in a method to treat a condition in a vertebrate animal characterized by a deficiency in, or need for, bone growth replacement and/or an undesirable level of bone resorption,
 - which composition comprises a pharmaceutically acceptable excipient and an effective amount of a compound of the formula:

$$R_n^a$$
 $\left(\begin{array}{c} \\ \end{array}\right)$ $-L-Ar^2$

wherein R^a is a non-interfering substituent;

n is an integer of 0 and 5;

L is a constrained linker; and

Ar² is a substituted or unsubstituted phenyl or a substituted or unsubstituted naphthyl.

- 25. The composition of claim 24 wherein R¹ is -NR₂ or -COOR, where R is H or alkyl (1-6C).
 - 26. The composition of claim 24 wherein Ar² is substituted or unsubstituted phenyl.

WO 97/15308

5

10

- 27. The method of any of claims 1, 13 or 21 wherein said condition is osteoporosis, bone fracture or deficiency, primary or secondary hyperparathyroidism, periodontal disease or defect, metastatic bone disease, osteolytic bone disease, post-plastic surgery, post-prosthetic joint surgery, or post-dental implantation.
- The method of any of claims 1, 13 or 21 which further comprises 28. administering to said subject one or more agents that promote bone growth or that inhibit bone resorption.

29. The method of claim 28 wherein said agents are selected from the group consisting of bone morphogenetic factors, anti-resorptive agents, osteogenic factors, cartilage-derived morphogenic proteins, growth hormones, and differentiating factors.

1/50

	CELLS		10/1/96					
x 10 ³ C	elis/well							
	uM	READ 1 'RE	AD 2 IA	ERAGE IN	DUCTION AV	E-BASAL %	MAX	
S-8	100.000	0.21	0.22	0.221	0.18)	-0.99	-17.90	
	31.250	3.98	4.44	4.20	3.49	3.001	54.26	
	9.766	6.991	6.46	6.72	5.59	5.52	100.00	
	3.052	4.621	4.881	4.75	3.95	3.55	64.22	1
	0.954	3.13	3.16	3.14	2.61	1.94	35.12	
	0.298	2.75	2 59	2.67.	2.22	1.47	26.58	
	0.0931	2.10	2.04	2.07	1.72	0.87	15.77	
	0.029	1.56	1.71	1.63	1.36	0.43	7.80	,
	0.0091	1.45	1.42	1.44	1.19	0.23	4.21!	i
	0.0028	1.281	1.37	1.33	1.10.	0.12	2.25	
	0.0000	1.32	1.30	1.31!				
	0.0000	1.20	1.00	1 10'				
	I.A	VERAGE BA	SAL	1.20				
% MAX	50.00 + 60.00 - 40.00 - 20.00 -							<u>→</u> 0S-8
•	o.bo	0 01	l	0.10	1.00	10.00	100.0	00
	-20.00 J			uM OS-			•	
					•			

Tigure 1

		_
	21.433	
233.289		
	0.857	
	0.171	
F CI N CI S2-6363		
92-6363	155.199	-
	31.040	Š
322.166		-
322.166		_
	3,104	
	1.552	
	0.310	
92-8007		
92-8007	181.613	Mu
	36,323	
275.311	18.161	_
	3.632	
	1.818	_
	0.363	_
	0.363	-
92-8215		
92-8215	165.123	M
	33.025	\dashv
302.805	16.512	\dashv
	3.302	\dashv
	1.651	
	0.330	
	0.330	نـــ

	69.74
	31.59
	39.70
	18.29
ļ	
1	
İ	
L	
L	204.14
	154.94
	28.09
	3.53
l	Į
-	
	-16.65
	58.65
	142.33
	40.60
	4.47
	- 1
	[
	32.90
	151.08
	132.29
	59.90
	23.34

		7
1/11/20		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
-s'	1 1	
92-8258		
92-8258	162.102 UM	
	32.420	
308.44	17 16.210	157 44
	3.242	101.04
	1 621	39.02
	0.324	12.78
,		1 - 12.70
 H	1	
	1	
N F F		
	1	
NH F	1 1	
	1	
~~~~	1	1 1
92-8362		1 1
92-8362	154.647 uM	136.79
	30.929	137.00
323.318	15.465	65.02
	3.093	17.34
	1.548	
	0.309	0.41
Br		
	1 1	
	[ ]	
N-W		
H		
92-8372	[ ]	
92-8372	150.045 luM	
	30,000	63.76
333.234	15.004	134.71
	3.001	92.08
	1.500	31,35
	0.300	13.20
0		10.20
<b>&gt;</b> -0	1 1	
	1 1	
	1 1	
۱ ' ا	1 1	
<i>-</i> √	1 1	
22- <del>0</del> 183		

850-7377 850-7377	
	131.062 uM
381.49	13.106
31.48	0.524
	0.1051
	0.1081
850-7413 850-7413	
	111.964 uM
446.572	
	0.4481
	0.090
550.7449	
50-7449	69.938 luM
	6.994
714.923	1.330
	0.280
	0.058

-50.32 68.27 116.61 61.26 35.86
-40.44 -2.55 157.01 78.73 23.91
 -42.42 73.79 112.16 75.24 26.36

ESD-9287	
3337	147 170 uM
	14.717
339.74	
	0.589
#00-80086	
850-8356	99.506 uM
	9.951
502.482	
	0.398
0H 0	0.080
350-9467	1000
	120.646 UM
414.436	12.055
	0.43
	0.097

_		
-	-15.8	2
$\vdash$	130.7	2
	91.1	•
	69.0	5
	-24.650	I
-	168,810	ĺ
	45,470	I
	9.740	İ
	-19.800	
	112,990	
_	43.520	
	33.140	

·> =	
1 1	
- One	
850-9576	
850-9676	111.724 uM
	11.172
447 532	2.234
	0.447
	0.089
0 0	
ပီ င်္ပ	
895-0262	
895-0262	167010.44
	165.019 uM
301.169	16.602
	3.320
	0.332
<b>`</b>	1 1
<u></u>	1 1
	1 1
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
~)	
	1 1
996-0268	
995-0268	128.363 UM
	25.677
389.458	12.838
	2.568 0.257

-27.4 90.8 101.8 44.5 19.5	301 300 310 300
-19. -12. 146. -2. -3.	16 26 23 27
-18.6 40.2 169.9 195.2 14.0	7 5 6 9 9

s, _	
ş =	
s s	
N N	
	1 1
<b>~</b> ~~	
895-0594	
898-0594	120.8961uM
	12.090
413.5	
	0.484
	0.097
,s	
N O O	
	1 1
95-0857	1 1
95-0857	159.028 uM
	15.903
314.40	3.181
	0.636
	0.127
o <u>—</u>	1 1 1
<b>&gt;=</b> /	
7	
, N	
50984	
50984	162.655 UM
	18.265
307,383	3.253
307.393	

	·21. <b>63</b>
-	25.89
-	122.10
	39.42
	30.46
	74.54
	25.62
	3.66
	-31.08 325.08 87.51 40.39 18.03

	T T
a - a -	
M ₂ N	1
<u> </u>	1 1
	1
<b>695-11</b> 61	1
895-1161	
OSE-1161	152.6251uM
	15.2631
327,602	
	0.611
	0.1221
0	[
N	
Ĥ	
395-1420	
95-1420	220.9651uM
	22.0971
226.279	
228.2791	0.884
	0.854
	0.177
~~~	
N N	i
· / /	i
~ _/	I
	ŀ
ΓΙ	ł
<u> </u>	
8-1679	
85-1679	180.9101uM
	18.091 [
278.383	3.618)
	0.724
	0.145
_	1
7,7,7	1
" N OH	1
- 1	
	l
8-1691	
5-1691	182.922 JuM
	18.292
	3.658
273.341	3.0001

5.51 109.31 56.05 29.49 24.71	
.19.47/ 110.90/ 49.94/ 33.65/ 20.05/	
30.36 111,72 102.83 18.01 0.44	
-18.29 50.84 105.70	

NH.		
CI		
895-3846 895-3846		
0.000	193.267	
200	19.327	_
258.708		_
	0773	
	0.155	
, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1		
895-4642 895-4642		
030-032	176 4731	Mu
	17 647	
283.3311	3.529	_
	0.706	
	0.141	-
NH ₂ 0		
895-4843	159.581	<u>.</u>
	15.958	_
313.312	3.192	\dashv
	0.6381	
	0.128	
CI N H		
\$5.5185		_
	162.4331ш	<u> </u>
307.821	16.243	\dashv
327.021	3.249 0.650	\dashv
	0.00	-
	5 1301	_

-21.41 13.40 114.46 52.12 38.29	
6.97 283.96 447.51 304.86 100.45	
-17 18 24.54 100.12 60.37 27.85	
-6.47 213.42 107.63 46.75 16.27	

805-8662 805-8662 805-8662 16:588 301.43 3.318 0.6694 0.133 0.133 0.133 11.3552 440.3265 2.271
865-8662 865-8662 165.8761 16.5881 301.40 3.3181 0.664 0.1331 NH
865-8662 865-8662 165.8761 16.5881 301.40 3.3181 0.664 0.1331 NH
865-8662 865-8662 165.8761 16.5881 301.40 3.318 0.664 0.133 NH
865-8662 865-8662 165.8761 16.5881 301.40 3.318 0.664 0.133 NH
865-8662 865-8662 165.8761 16.5881 301.40 3.318 0.664 0.133 NH
865-8662 865-8662 165.8761 16.5881 301.40 3.318 0.664 0.133 NH
605-8862 165.876 165.876 165.8862 165.876 165.886
H 'S 865-8862 165.876 16.588 301.43 3.318 0.684 0.133 NH NH 11.3552
H 'S 865-8862 165.876 16.588 301.43 3.318 0.684 0.133 NH NH 11.3552
505-8662 165.876 (c) 16.588 301.40 3.318 0.684 0.133
165.8761 16.598 301.43 3.318 0.664 0.133 NH
301.43 3.318 0.664 0.133
301.49 3.318 0.664 0.133 NH NH 113.552 M
0.654 0.133 NH NH 565-0663 113-552 M
0.1533 NH NH 885-9653 113-552 M
885-9683 113.552 us
885-9683 113.552 us
595-0693 595-0693 113.552 UA
0_ 565-9663 895-9663 11.3552 UA
885-9833 113.552 us 11.555
113.552 UA
11.55
440.326 2.271
0.454
0.091
N-N
s
895-9998
895-9898 175.349 UM
17.835
250.349 3.567
0.713
0.143

_	
	54.72
	159.21
	41 98
	38.26
	- 1
	- 1
	1
	- 1
	1
	20.67
2	01.56
	0.50
	0.60
	- 1
	- 1
	- 1
	9.16
	0.62
18	284
11	8.55
4	2.84 8.55 2.75

11/50

464.97	DI
404.97	
	0.430
	0.086
NIN L'S	
595-0390	
	128.718 uM
	12.872
300.44	2.574
	0.515
	0.103
350000	
886-0535	132.810 uM
	13.281
378.478	
	0.531
	0.106
dia:	
898-0564	121.400 UM
	12.150
411.527	2.430
	0.486
	V. 4001
	0.097

	188.94
	108.12
!	
-	37.18
l	1
	1
	ŀ
	Í
	i
	ļ
	i
	j
	1
	- 1
_	-18.90
_	87.23
	310.00
	21025
	73.35
	23.25
	1
	ŀ
	ł
	1
	i
	- 1
	-10.41
	73.84
	199,80
	102.121
_	35 721
_	
	1
	Ī
	- 1
	1
	-16.32
_	105.48
	115.43
_	572
	27.03
	2/113

NNC#	IMOL.WEIGHT	Concentration		% Response
^^				
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1		1
r				
		ico		
50-0194	430.33	100.00	1184	-19.190)
50-0194		31.25		32.450
		9.77		-14.240
		3.05		-11.330
		953.67		-12.790
	1	298.02	nM	-13.450
	i	93.13	nM	-12.290
		29.10		-9.440
		9.09		-6.450
		2.84		-8.130
	<u> </u>	888.18	IPM	-3.320
				ļ
		İ		
		1	l	
	1	ŀ		
50-0195	275.36			!
50-0195		100.00		4.6301
		31.25		16.7901
		9.77		62.830
		3.05		102.720
		953.67	-	32.450
		298.02 93.13		19.340
		29.10		17.220
		9.09		5.640
		2.84		4.8401
		888.18		5.640
		 		
^^				
			İ	
			1	
, , ,				
	1			
1.				
0 ^{-N} =0	(101)			
_			1	1.0
50-0196	276.3		<u> </u>	
50-0196		100.00		-16.210
		31.2		-8.5601 11.6201
			TIUM STUM	27.790
		953.6		18.390
		298.0		6.230
		93.13		12.420
		29.10		12.630
			Maie	6.590
			4InM	7.970
		888.1		5.060

			1
		-	
	1 1		
,	1		
l .			
50-0197	274.37		
50-0197	2/4.3/	100.00 uM	-18.250
		31.25luM	-14.980
		9.77 JuM	4.040
		3.05 uM	93.790
		953.67 InM	205.530
		298.02 nM	242.920
		93.13 nM	195.890
		29.10 nM	115.320
		9.091nM	85.630
	1	2.84 nM	54.380
		888.18 pM	33.180
AN.	1		
l N			
L J J N. A			
~ 'S' N' Y			
~			1
59-0008	254.32		
N.		Ì	
			1 1
[. • []	1 1		
	1		i
N/			
N			
	59-0019	K	
	59-0019	100.00 uM	-22.240
	59-0019	31.25 JuM	-22.6701
	59-0019	31.25 uM 9.77 uM	-22.6701 -17.4701
	59-0019	31.25 uM 9.77 uM 3.05 uM	-22.670 -17.470 74.490
	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM	-22.6701 -17.4701 74.4901 198.0801
	59-0019	31.25 iuM 9.77 iuM 3.05 iuM 953.67 inM 298.02 inM	-22.6701 -17.4701 74.4901 198.0801 258.3401
	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501
	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201
	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301
	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801
	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301
59-0019 59-0019	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801
	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801
	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801
	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801
	59-0019	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801
S9-0019		31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801
9-0020	266.73	31.25 uM 9.77 uM 3.05 iuM 953.67 inM 298.02 inM 93.13 inM 29.10 inM 9.09 inM 2.84 inM 888.18 pM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801 -3.7401
9-0020	266.73	31.25 uM 9.77 uM 3.05 iuM 953.67 inM 298.02 inM 93.13 inM 29.10 inM 9.09 inM 2.84 inM 888.18 pM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801 -3.7401
	266.73	31.25 uM 9.77 uM 3.05 iuM 953.67 inM 298.02 inM 93.13 inM 29.10 inM 9.09 inM 2.84 inM 888.18 pM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801 -3.7401
9-0020	266.73	31.25 IUM 9.77 IUM 3.05 IUM 953.67 INM 298.02 INM 93.13 INM 29.10 INM 9.09 INM 2.84 INM 888.18 IPM 100.00 IUM 31.25 IUM 9.77 IUM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801 -3.7401 -16.5101 -16.0401 -0.2701
9-0019 CI 9-0020	266.73	31.25 IUM 9.77 IUM 3.05 IUM 953.67 INM 298.02 INM 93.13 INM 29.10 INM 9.09 INM 2.84 INM 888.18 IPM 100.00 IUM 31.25 IUM 9.77 IUM 3.05 IUM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801 -3.7401 -16.5101 -16.0401 -0.2701 96.4901
9-0020	266.73	31.25 IUM 9.77 IUM 3.05 IUM 953.67 INM 298.02 INM 93.13 INM 29.10 INM 9.09 INM 2.84 INM 888.18 IPM 100.00 IUM 31.25 IUM 9.77 IUM	-22.6701 -17.4701 74.4901 198.0801 258.3401 225.3501 75.2201 24.0301 34.4801 -3.7401 -16.5101 -16.0401 -0.2701

WO 97/15308

PCT/US96/17019

14/50

29.10 nM	37.870
9.09 nM	24.820
2.84 nM	20.500
888.18 pM	13.310

C' C'			
59-0021	284.72		
59-0021		100.00IuM	-16.310
		31.25luM 9.77luM	-12.850) 84.130)
		3.05 luM	89.9401
		953.67 inM	65.750
		298.02 nM	33.940
		93.13 nM	22.560
		29.10InM	25.020
		9.09InM 2.84InM	13.910
		2.54 INM 888.18 IpM	33.270 15.500
		000. 10 pm	13.3001
1			
N _N			
S N			
	İ		
50 0000			
59-0022 59-0022	268.37		
		100.00 luM 31.25 luM	7.250
		9.77 luM	-2.0701 -0.2701
		3.05 luM	4.390
	i	953.67 InM	3.060
		298.021nM	-1.600
	I	93.13 nM	-0.200
1		29.10inM	-3.270
		9.09(nM	1.130
	-	2.84 nM 888.18 pM	2.5901
<u> </u>	i	000.101pm	2.4801
OHO			
		l l	
*			
*			
	230.28		
i9-0023	239.28	100.00 uM	.12 720
59-0023	239.28	100.00 juM 31.25 juM	-12.720 33.140
i9-0023	239.28		
59-0023	239.28	31.251uM 9.771uM 3.051uM	33.140
59-0023 59-0023		31.25 uM 9.77 uM 3.05 uM 953.67 nM	33.140 56.500 29.550 25.360
59-0023 59-0023		31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM	33.140 56.500 29.550 25.360 15.700
59-0023		31.25 LM 9.77 LM 3.05 LM 953.67 LM 298.02 LM 93.13 LM	33.140 56.5001 29.5501 25.3601 15.7001 7.3801
59-0023		31.25 LM 9.77 LM 3.05 LM 953.67 LM 298.02 LM 93.13 LM 29.10 LM	33.140 56.5001 29.5501 25.3601 15.7001 7.3801 9.7101
59-0023		31.25 LM 9.77 LM 3.05 LM 953.67 LM 298.02 LM 93.13 LM	33.140 56.5001 29.5501 25.3601 15.7001 7.3801

The state of the s			
59-0024	220.28		
₩			
1			
59-0025	224.31		
59-0025	424.57	100.00 uM	-25.5901
		31.25 uM	14.150
		9.77 uM	50.690
		3.05 uM	57.880
		953.67 nM	38.900
		298.02 nM	28.530
		93.13 nM	19.660
		29.10 nM	17.490
		9.09 nM	-0.600
		2.84 nM	-4.190
		888.18 pM	4.670
59-0026	242.20		
59-0026	248.29	100.00 luM	-29.830
		31.25luM	-29.830
		9.77 uM	-10.470
		3.05 uM	46.220
		953.67 InM	107.760)
		298.021nM	85.720
		93.13InM	36.850
		29.10InM	26.7201
		9.09 nM	8.520
		2.84 nM	-1.240
		888.18ipM	4.0201

17/50

O N H H H H H H H H H H H H H H H H H H			
59-0027	250.30		
59-0027		100.00 uM	89.8101
		31.25 uM	54.670
		9.77 uM	44.9401
		3.05 luM	23.780
		953.67 nM	8.380
		298.02 nM	6.330
		93.13 nM	7.3601
		29.10 nM	3.3801
		9.09 nM	-1.620
		2.84 nM	-3.670
		888.18 pM	-0.720
N N N N N N N N N N N N N N N N N N N			
59-0028	226.28		
59-0028		100.00 uM	-26.7501
		31.25 uM	-16.740
		9.77 uM	29.550
		3.05 uM	100.580
		953.67 InM	54.940
		298.02 nM	31.340
		93.13 InM	7.5001
	<u> </u>	29.10 nM	7.500
		9.09 nM	7.880
		2.84 nM	3.140
		888.181pM	4.670

			
	Ì		
0		İ	1
	1		
	}		1
	İ	1	l f
	}		
	!		
59-0029	249.271	400 001 44	10 100
59-0029	:	100.00 luM 31.25 luM	-15.160i 41.940i
		9.77 uM	36.6301
	•	3.05 uM	7.120
	1	953.67InM	21.880
1		298.021nM	15,5401
1	i	93.13 inM	1.810
	i	29,101nM	1.370
	•	9.09 inM	12.1401
	;	2.84 InM	-4.23 01
1		888.181pM	9.0401
	İ		i
	į		
	j		
N N N N N N N N N N N N N N N N N N N			1 1
			1
59-0030	233.28		
59-0030	233.201	100.00 uM	-27.9701
		31.25/uM	-22.830
		9.77 luM	-5.4201
	Ī	3.05 uM	57.2801
	i	953.67 InM	72.6201
		298.02 inM	53.0001
	i	93.13 InM	29.990
		29.10 nM	14.6301
	!	9.09InM	1 3.8701
1	· -	2.84 InM	6.970
· ·		888.18IpM	1.8101
		İ	
		i	
~	İ		
59-0031	231.30		1
59-0031		100.00 luM	-25.7901
		31.25/uM	-17.8101
	1	9.77 JuM	20.8401
		3.051uM	87.3801
		953.671nM	49.3201
		298.021nM	43.110
 :		93.13InM	29.530:
<u> </u>		29.10InM 9.09InM	1.8101
			1.220
		2 841-14	A EEA
		2.84 inM 888.18 ipM	0.550i

59-0032	248.29!	nen I
59-0032	100.001uM	-7.7801
	31.25luM	40.7501
	9.77 uM	42.8201
	1 3.05luM 1 953.67lnM	25.7001
		31.1701
		34.4101
	93.13 InM 29.10 InM	3.570
	9.091nM	4.3201 -10.0001
	2.84 inM	5.6501
	888.18 pM	11.9901
	1	11.000
	1 1	
0		
59-0033		
59-0033	248.29	
	1 100.00 luM	-28.1801
	: 31.25)uM	-11.5901
	9.77 uM	55.3001
<u></u>	3.05luM 953.67lnM	49.710
	298.021nM	47.4101 0.2501
	93.13 nM	7.9801
	29.10inM	-8.9401
	Mn160'6	-7.6301
	2.84InM	-0.4001
	888.181pM	-5.9801
		3.000
	i	
N N		
S N N		
	!	
59-0034	268.34	
59-0034	100.001uM	-28.51
	31.251uM	241
	9.771uM	73.581
	3.051uM	37.91
	953.67InM	20.091
	: 298.02 InM	16.871
	39.1911M	15.231
	29.10inM	28.831
	9.09InM	9.08
	2.84InM 888.18IpM	23.02

	 		
	1	:	
	į	!	
	i		
, N		İ	
	-		
59-0035	291.36		
59-0035	-	100.00 uM	-14.92
		31.25luM	29.171
	ī	9.771uM	15.871
		3.051uM	1 18.81
		953.67 InM	3.88!
		298,021nM	6.15
		93.13InM	3.221
!		29.10InM	-10.031
1		9.09InM	15.581
		2.84InM	-3.561
		888.181pM	-7.13
	1	}	
	1	į	
		ļ	
0			
59-0036	262.31		
59-0036	202.311	100.001uM	-0.981
		31.25luM	-3.251
	1	9.771uM	4.541
	i	3.05luM	-1.951
	:	953.67InM	0.321
	:	298.02InM	-6.491
		93.13!nM	-17.19
		29.10InM	-0.66
		9.091nM	-5.521
i		2.84 inM	-9.41
:		888.181pM	-16.53!
_ !	<i>:</i> !		
он о	j	1	
	i		
N	i		!
	1		!
, N 0	ū.		
		i	
59-0037	308.00	100 001 11	<u> </u>
59-0037	i_	100.00 iuM	-10.691
	i	31.25/uM 9.77/uM	-11.991
:	1	3.05 luM	: -10.03; -19.11i
		953.67 InM	-19.111
	•	~~	
		298.02 InM	2 271
		298.02 inM 93.13 inM	2.271 -2.91
	i	93.131nM	-2.91
	i		-2.9) -10.69
		93.131nM 29.101nM	-2.91 -10.691

0			
No No No No No No No No No No No No No N			
N V			
59-0038	201.05		
59-0038	291.361	100.00 JuM	-23,4301
		31.25luM	-8.3901
		9.77 luM	-0.1001
		3.05luM	-2.8601
		953.67 InM	-2.2401
		298.02 inM 93.13 inM	3.9001
		29.10InM	1.150
		9.09inM	6.960
		2.84 inM	-4.390)
		888.18 pM	-0.380
1 ji		Ì	
ОН			
N N			
S N N N N N N N N N N N N N N N N N N N			
	ļ		
			1
59-0039	312.35		
59-0039		100.00 luM	14.1701
		31.25luM	7.6201
		9.77 JuM	1.9401
		3.05 uM 953.67 nM	-3.1401 -7.770
	***	298.02InM	-5.9801
		93.13 inM	-8.8201
		29.101nM	-2.3901
		9.09 InM	-16.5801
<u> </u>		2.84 inM	4.4801
		888.18 ipM	-0.450i
	İ		
o V _N	ł		
Ĩ	İ		
59-0040	200 27		
59-0040	290.37	100.00 luM	-20.4001
		31.25luM	-17.310;
		9.77 luM	-8.110
		3.05 luM	32.180
		953.67 InM	38.180
		298.02 InM 93.13 InM	1 17.4401
		29.10inM	2.0401
	-	9.09InM	-6.0701
		3.9311171	
		2.84 inM	6.9601

			
	İ		
HN V			
		İ	
Ci A N A	i		
Br	A I	Λ	
59-0041 59-0041	501.90	100.00	
35-0041		100.00 tuM 31.25 tuM	-18.37
		9.77 uM	-5.11
	i	3.051uM	3.31
	i	953.67InM	-0.77
		298.02 InM	-1.56
		93.13 nM	3.55
		29.10InM	-11.24
		9.09InM 2.84InM	-0.25
		2.04 InM 888.18 IpM	2.021
			2.021
o l	1		
	1		
N N N N N N N N N N N N N N N N N N N	1	İ	
59-0042			
59-0042	281.36	100.00 uM	163.51
		31.25luM	-7.67
		9.77 luM	9.41
		3.051uM	0.751
		953.67 nM	6.11
		298.02 nM	3.821
		93.13 nM	2.541
		29.10 nM 9.09 nM	4.071
	i	2.84InM	-9.731 -0.021
		888.18IpM	18.371
	1		10.371
- н О		ŀ	
	-		
		}	
N H	ĺ		
"			
59-0043	280.29		
59-0043	200.23	100.00 uM	20.661
		31.25 luM	7.41
		9.771uM	1 -1.291
		3.05/uM	-2.31
		953.67InM	1.541
		298.02 inM	-0.791
!		93.13 InM 29.10 InM	1.521
	<u>'</u>	9.09InM	2.79
	· · · · · · · · · · · · · · · · · · ·	2.84(nM	-0.271 8.921
	:	888.18IpM	4.34

				
Br ·	-	1	i	
P				
- 6		-		
N N	i			
	İ			
NH	-	ĺ		
	i			
1				
59-0044	341,21			
59-0044		100.001uM	7.38!	
1		31.251uM	11.72	
		9.77 luM	12.491	
<u> </u>		3.051uM	-0.52	
		953.67 nM 298.02 nM	0.5	
		93.13InM	6.11	
1		29.10InM	19.141	
		9.09InM	7.13	
		2.84 nM	-2.061	
		888.181pM	5.841	
о √ он	İ			
N N				
H		A 6		
59-0045	222.22			
59-0045	283.33	100.001uM	52.371	64.460
		31.251uM	148.431	192.960
	- i	9.771uM	204.471	422.540
	i	3.05 luM	280.3	437.020
		953.67InM	254.82	410.890
	<u> </u>	298.021nM	218.21	266.090
<u> </u>	!	93.13InM	196.981	183.730
	1	29.10 InM 9.09 InM	96.06	80.440
		2.84InM	52.99	55.530 44 160
!	i	1	32.53	44 100
		Ì		
	1			
` 😂 `				
. a				
59-0046	389.37			
59-0046	i	100.001uM	79.331	
	1	31.25(uM	2.241	
		9.77 luM	-1.67	
· · · · · · · · · · · · · · · · · · ·		3.05 uM	-6.181	
		953.67InM 298.02InM	0.0011	
		93.13InM	-0.841	
		29.10InM	-8.421	
	•	29.1011171		
		9.091nM	3.921	
				

	1		
__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
N-N			
		İ	
•			
59-0047	303.37		
59-0047	1	100.001uM	-6.73
		31.251uM	10.381
		9.77 JuM	-6.16
		3.051uM	-1.39
		953.67 InM	-10.11
		298.02 nM	-4.49
	!	93.13InM	-7.28
		29,101nM 9,091nM	-12.34
		2.84 InM	-3.08 -2.26
	-	888,18 IpM	-2.20
	 		
. _			
°,s			
000			
59-0048	384.50		
59-0048	354.50	100.00 JuM	-6.731
	i i	31.25 uM	0.27
		9.77 uM	-5.61
	i	3.05 luM	-2.26
		953.67 nM	-12.89
	1	298.02InM	-1.69
		93.13 nM	4.77
•		29.10 nM	-8.14
		9.09 nM	-3.92
		2.84 nM	-11.2 -4.77
	! !	888.18 pM	4.77
]		
	i		
N. N.			
ő			
80.0040			
59-0049 59-0049	251.29	100 001-14	1 4 401
J3-VV-3	<u> </u>	100.001uM 31.251uM	4.49
		9.771uM	-4.77
	 	3.051uM	1.96
			8.691
	i	298.021nM	-5.04
	: 1	93.13 InM	-2.241
	ı	29.10InM	1.691
		9.091nM	-4.49
	1	2.841nM	2.24
	1	888.181pM	-0.31

25/50

59-0050	303.36		
59-0050	303.301	100.00 uM	45.79
	i	31.25 uM	10.02
		9.77 uM	11.29
		3.051uM	4.68
:		953.67 nM	-6.92
		298.02 nM	-5.65
		93.13 nM	1.69
	i	29.10 nM	-7.57
		9.09 nM	-12.05
		2.84 inM	-13.63
	1	888.181pM	5.2
S S		u- , -	
59-0051	251.35		
59-0051		100.00 uM	32.36
		31.25 uM	-18.42
		9.77 uM	-0.551
	!	3.05 uM	-13.94
	<u> </u>	953.67 nM	-12.021
		298.02InM	-14.59
		93.13 nM	-7.55
		29.10 nM	-11.4
<u> </u>		9.09 nM	-14.91
		2.84 nM	-10.74
	i	888.18 pM	-20.03)

26/50

50 0050			
59-0052	393.28		
59-0052		100.00 luM	-21.62
		31.25 uM	-13.32
		9.77 uM	-21.31
		3.05 uM	-11.08
		953.67!nM	-20.66
		298.02 nM	-17.14
	!	93.13 nM	-16.49
		29.10InM	-11.4
		9.09 nM	-10,74
		2.84 nM	-11.08
		888.18 pM	-14.59
59-0053	354.41		
59-0053	į	100.00 uM	-17.14
		31.25 JuM	-21.31
		9.77 uM	-9.47
		3.05 uM	-11.08
	İ	953.67 InM	-0.83)
	}	298.02 nM	-11.4
		93.13 nM	-9.47
		29.10InM	-19.72
		9,09 nM	-18.45
		2.841nM	-10.09
		888.181pM	-2.76

0		
	1	
59-0054	236.28	
59-0054	100.00 uM	-20.04
	31.25luM 9.77luM	-6.95
	3.051uM	-3.37
	953.67 InM	-2.4
	298.02 inM	-0.991
	93,131nM	-0.99
	29.10 nM	-1.94
	9.09InM	5.92
	2.84 nM 888.18 pM	-2.17
	: 666.16(pM	-9.31
∞ ~ ℓ°		
s o oh		
) OH	l i	
N- HO-		
l '		
59-0055	425.51	
59-0055	100.00 uM	-13.76
	31.25 uM	-9.51
<u> </u>	9.77 uM	-2.021
	3.051uM 953.671nM	3.24 -6.27
	298.02 InM	4.051
	93.13 nM	-1.62
	29.10 inM	-7,49
	9.09inM	-7.09
	2.84 inM	-3.04
No.	į l	
ه ا ا		
Ţ • Ţ		
Î		1
~~~		
ò		
59-0056	512.34	
59-0056	100.001uM	-1.42
	! 31.25 JuM	-4.87
	9.77 luM 3.05 luM	0.181 3.841
	953.67InM	-5.071
	298.02 nM	-7.291
	93.13InM	0.001
	29.10 nM	-4.251
	9.091mM	-1.02
	2.84 nM	-3.851

	9.091nM	8.070;
	2.841nM	9.070
5		
N N N		
" \\\"		
<b>V</b>		
59-0063		
59-0063	100.001uM	-2.510
	31.25 uM	-6.1301
	9.77 LUM	-8.950
	3.05 uM	-8.0201
	953.67 nM	-8.0101
<u> </u>	298.02 nM	-2.520
	93.13InM	-5.810
<u> </u>	29.10 nM 9.09 nM	-3.450
	2.84 nM	-4.3901 -6.2801
	2.041fivi	-0.2001
	l i	
59-0064		
59-0064	100.00 luM	-23.090
	31.25luM	-21.040
	9.771uM	78.400
	3.05 uM	155.220
	953.67 nM	113.120
	298.02 nM	30.640
	93.13 nM	15.240!
	29.10inM	22.1501
i	9.09InM	-0.770
	2.84 inM	4.410
5		
OH ,N		
59-0065		
59-0065	100.00 uM	-2.030
	31.25 uM	-2.980
	9.77 uM	-15.240
	3.05 uM	-15.400!
	953.67 InM	15.240i
<u>!</u>	298.02 nM	-10.520
	93.13InM	-13.830
	29.10InM	-5.810 -3.620
	9.09InM	
	2.841nM	-7.070!

	<del></del>	
H ₂ N		
59-0066		No.
59-0066	100.00 uM	10.060
	31.25 uM	2.680
	9 77 UM	10.850
	3.05 uM	14.610
	953.67 nM	0.950
	298.02 nM	3.780
	93.13 nM	1.730
	29.10 nM	-2.820
	9.09 nM	-2.820
	2.84 nM	-3.920
N. N. S. S. S. S. S. S. S. S. S. S. S. S. S.		
59-0067		
59-0067	100.00 uM	-24.040
	31.25 uM	-24.890
	9.77 uM	-1.450
	3.05 uM	60.900
	953.67 nM	133.860
	298.02 nM	75.330
	93.13InM	28.760
	29.10 nM	20.070
	9.09 nM	4.980
	2.84 nM	4 450
S S N N N N		
59-0068		
59-0068	100.00 uM	-22.130
	31.25 luM	-7.880
	9.77 uM	93.900
	3.05 uM	81.0601
	953.67 InM	22.330
	298.02 InM	17.300
	93.13 nM	8.460
	29.10 nM	-3.530
	9.091nM	-4.230
	2.841nM	-=6.1401

30/50

40	i	
HO YOU		İ
ОН		
0"		
59-0069		
59-0069	100.00 uM	5.4901
35-005	31.25luM	9.670
<del></del>	9.77 uM	16.0901
	3.05 uM	-7.180
	953.67 nM	-2.840
	298.021nM	-3.710
	93.13 nM	-11.180
	29.10 nM	-5.790
	9.09 nM	-7.180
	2.84 nM	4.750
°, /=\		
\ \sigma \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
59-0070		
59-0070	100.00 uM	-25.930
	31.25luM	-23.000
	9.77 uM	36.060
	3.05 uM	214.280
	953.67 nM	158.530
	1 298.02 inM	72.890
	93.13 nM	20.940
	29.10 nM	7.760
	9.09 nM	7.590
	2.84 nM	-8.400
N N		i
1		
59-0071		
59-0071	100.00 iuM	-18.6501
	31.25 uM	-15.540
	9.77 uM	17.0601
	3.05 luM	176.090!
	953.67 InM	1 76 0701
	298.021nM	31.260
	93.13 lnM	16.410
	29.10 nM	4.870
	i 9.091nM	-7.330
	2.841nM	-4.6601

		l
s' # o'		
50 0070		
59-0072		
59-0072	100.00 luM	-19.750
	31.25 uM	-18.650
	9.77 uM	-18.430
	3.05 uM	-15.770
	953.67 InM	9.970
	298.02 nM	74.740
	93.13 nM	175.430
	1 29.10 nM	213.580
	9.09 nM	164.320
	2.84 nM	119.100
!	888.18 pM	60.770
F _V F		
N N		
,X *		
		]
59-0073		
59-0073	100.00 uM	-3.010
	31.25 uM	4.830
	9.77 uM	-9.660
	3.05 uM	-4.680
	953.67 nM	-6.500
	298.021nM	-2.510
	93.13 nM 29.10 nM	7.140
	9.09InM	-5.5
	2.84InM	5.31
		) 1
م م		
\N		
<u></u>		
<u>~</u> √. i		
, X		
• •		
59-00/4		1101
59-0074	; 100.00/uM	-2.85
	31.25 uM	2.14
	9.77 uM	4.85
	3.05luM	-3.51
	953.67 nM	-4.85
:		. 0.051
	298.021nM	9.95
	93.13 nM	4.47)
	93.13 nM 29.10 nM	4.471
	93.13 nM	4.47)

32/50

0 0	!	
59-0075		
59-0075	100.001uM	-0.68
	31.25 iuM	-10.16
	9.77 uM	-5.35
	3.051uM	-6.5
<del></del>	953.67 nM 1 298.02 nM	-0.85
	93.13inM	5.97
	29.10inM	-2.35
	9.09InM	0.32
	2.84 nM	10.47
, 0 ,		
<u></u>		
59-0076		
59-0076	100.00 uM	-19.12
	31.25 uM	9.29
	9.77 uM	10.63
	3.05 uM	22.43
<del></del>	953.67 nM	19.93
	298.02 nM 93.13 nM	19.93
	29.10 nM	10.631
	9.09InM	14.28
	2.84 inM	11.3
F_/		
, Ci		
ן אי אי		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	1 1	
u • ×,		
,		
59-0077		
59-0077	100.00 luM	-20.961
	31.25luM	-16.23
	9.77 luM	-10.58
	3.051uM 953.671nM	-11.96 -19.44
	298.02InM	-17.31
	93.13 nM	-13.791
	29.10InM	-15.62
	9.09InM	-14.09
	2.84 nM	-14.4

		-
		1
	i i	
N N N N N N N N N N N N N N N N N N N		
59-0078	400 001.44	20.000
<u> </u>	100.00 uM 31.25 uM	-26.5401 -22.5601
	9.77 uM	71.530
	3.05 uM	207.960
	953.67 nM	379.230
	298.02 nM	241.4601
	93.13InM	136.1001
	9.09InM	84.0201
	2.84 nM	50.3501 56.600)
	0.80InM	92.520
N		
9-0079		
59-0079	100.00 uM	-34.9801
	31.25 uM	-21.3901
	9.771uM	37.200
	3.051uM 953.671nM	122.580
<del></del>	298.02 nM	69.0101 64.0001
	93.13 nM	46.4901
	29.10 nM	30.310
	9.09 nM	33.490
	2.84 nM	29.760
N N N		
·· 🔪		
9-0080	1	
9-0080	1 100.00 uM	5.390
	31.25luM 9.77luM	5.5601 6.4401
	3.05luM	2.4401
	953.67 InM	-5.0301
	298.02 nM	7.6601
	93.13 nM	-3.6301
	29.10InM	3.6501
	9.09InM	1.0501
	2.84InM	6.940
- 'N' 'N'		-
50.00P	'	'

59-0081	Mu100.001	62.8401
	31.25 LuM	1 11.3001
	9.77 uM	-8.6701
	3.05 luM	2.440
	953.67 InM	-5.200
	298 02 InM	-2.080
<del></del>	93.131nM	1.2201
<del></del>	29.101nM 9.091nM	-2.250i 1.050i
	2.84InM	-3.300
	2.5-7744	-5.500
s to		
59-0082	100 001-14	141.70
59-0082	100.001uM	111.79
	31.25 uM 9.77 uM	62.681 32.361
<del></del>	3.05luM	9.11
	953.67 InM	-10.62
	298.02 nM	-1.86
	93.13 nM	-6.891
	29.10InM	-3.91)
	9.09 nM	2.221
	2.84 nM	16.36
S N S N		
59-0083		
59-0083	100.00 uM	48.93
	31.25 uM	40.911
	9.77 uM	25.85
	3.051uM	17.85
	953,67 nM 298.02 nM	8.55 3.91
	93.13 nM	2.051
·		
1		7.99)
	29.10 lnM 9.09 lnM	7.99
	29.10 nM	
	29.10 lnM 9.09 lnM	-3.91
OH OH	29.10 lnM 9.09 lnM	-3.91
59-0084	29.10 nM 9.09 nM 2.84 nM	-3.91 3.35
59-0084 59-0084	29.10 nM 9.09 nM 2.84 nM	-3.91 3.35
59-0084	29.10 nM 9.09 nM 2.84 nM	-3.91 3.35

-	053.631044	
	953.67 inM 298.02 inM	21.700
	93.13InM	5.9001 4.8701
	29.10 nM	-10.9201
	9.09 nM	10.080
	2.84 nM	-2.060
	1 1	
	į	
59-0085		
59-0085	100.00 uM	17.070
	31.25 uM	41.890
	9.77 uM	18.500
	3.05 uM	20.340
	953.67 nM	22.490
	j 298.021nM 93.131nM	8.0901
	29.10lnM	11.790
	9.09InM	-0.760
	2.841nM	5.940
59-0086		
59-0086	100.00 uM	30.7501
	31.25 uM	31.1901
	9.77 uM 3.05 uM	14.790)
	953.67 InM	14.080
	298.021nM	3.940
	93.13 nM	9.370
	29.10 nM	-2.610
	9.091nM	-5.0401
1	2.84 InM	1.530
59-0087		
59-0087	100.00 uM	10.660
	31.25luM	11.080
	9.77 JuM	3.100
	3.05luM	-1.320
	953.67 InM	17.070
	298.021nM	7.9501
	93.131nM	4 460
	93.131nM 29.101nM 9.09 nM	4.510

	,	1
_		
59-0088		
59-0088	100.001uM	
	31.25 juM	
	9.77 uM	
	i 3.051uM	
	953.67 InM	
<del></del>	298.021nM	<del></del>
	93.13InM 29.10InM	+
	9.09InM	
	2.84 nM	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<del></del>
~		
59-0089		
59-0089	100.00luM	60.09
	31.25luM	116.25
	9.77 uM	65,841
1	3.05 uM	36.11
	j 953.67inM	37.96
	298.02 inM 93.13 inM	18.421 6.331
	29.10 nM	13.58
	9.09InM	0.75
	2.84InM	-5.77
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
1		
59-0090		
59-0090	100.001uM	32.771
	31.25luM	24.63
	9.771uM	19.5
	3.05luM	41,311
	953.67 nM	9.81
	298.02inM	-1.76
	93.13InM	3.53
	29.10inM 9.09inM	2.95
	1 9.09inM 2.84inM	7.8
<del></del>	· 2.0-11m	
	ļ	
- " - 1		
-		-
59-0091 :	100 22 11	<u> </u>
9-0091	100.00iuM	1 0.261
	31.25iuM	13.54

	; 9.77 luM	95.941
i	3.051uM	87.71!
	953.67 InM	44.171
	298.02 nM	38.261
	93.13 nM	23.871
	29.10 nM	21.65!
	9.09 nM	10.95
	2.84 nM	20.921
59-0092		
59-0092	100.00 uM	-11.56
	31.25 uM	17.84
	9.77 uM	50.19
	3.05 uM	25.841
	953.67 inM	14.4
ļ	298.02 nM 93.13 nM	8.62
	93.13/nM 29.10/nM	2.22
	9.09InM	8.38
	2.84 nM	1
59-0093		
59-0093	100.00 uM	-11.67
	31.25 uM	15.02
	9.77 uM	35.44 29.89
<u> </u>	3.05 uM 953.67 nM	22.88
-	298.02 nM	19.56
	93.13InM	5.18
	29.10 nM	7.39
	9.09InM	4.56
	2.84 nM	5.9
59-0094		
155-05-		-17.691
59-0094	100.00 uM	
	31.25 uM	45.15
	31.25 uM 9.77 uM	45.15 24.97
	31.25 uM 9.77 uM 3.05 uM	45.15 24.97 19.81
	31.25 uM 9.77 uM 3.05 uM 953.67 nM	45.15 24.97 19.81 9.35
59-0094	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM	45.15 24.97 19.81 9.35 1.36
	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	45.15 24.97 19.81 9.35 1.36 9.24
59-0094	31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	45.15 24.97 19.81 9.35 1.36

		00.401-14	10.60
	<del></del>	93.13InM	10.681
		29.10 nM 9.09 nM	5.89
		2.84 nM	10.24
		0.80 nM	4.14
	1		
1 4 1	1	•	
			1 1
H ₂ N OH			
	İ		
59-0111	152.15		
		100.00 uM	23.360
ļ		9,77 luM	22.330 12.260
		3.051uM	5.390
<del>                                     </del>		953.67 InM	2.190
		298.02 inM	1.230
		93.13 nM	2.430
I		29.101nM	6.350
		9.09 nM	4.350
		2.84 InM	4.350
ļ		0.80 nM	3.230
_ ,			
			1
	İ		
"			
59-0112	149.19		
		100.00 uM	2.670
		31.25 uM	4.670
		9.77 uM	2.750
		3.05 uM 953.67 nM	3.790 4.270
		298.02 nM	1.150
		93.13 nM	9.6301
		29.10 nM	0.920
		9.091nM	0.510
		2.84 InM	12.900
		0.801nM	2.990)
~			
I A A A			
) N			
59-0113	274.37		
		100.00 uM	22.010
		31.25 iuM	25.940
		9.77 luM	7.500
		3.05 luM	3.070
		953.67 inM 298.02 inM	-0.760i -4.690
		93.13InM	4.790
		29.10InM	5.090
		9.091nM	0.150
		2.84 InM	-0.250
		0.80InM	0.1501

	1		]		
			}		
No.	Į ŧ				
59-0114	475.54				
		100.00	uM	52.030	
		31.25		36.120	
		9.77		25.840	
		3.05		16.670	
		953.67 298.02		12.540 9.420	
	<del></del>	93.13		-1.060	
		29.10		2.160	
		9.09	nM	-6.000	_
		2.84		2.470	
		0.80	Mn	-1.460	
l a					
ci.	ļ				
١.	ļ				
N'-					
59-0115	318.87				
		100.00	uM	73.700	
		31.25		2.770	
		9.77		-10.430	
		3.05		-12.340	
		953.67 298.02		-13.750	
		93.13		-13.960 -11.940	
		29.10		-9.830	
		9.09		-8.820	
		2.84	nM	-0.950	
		0.80	nM	-0.050	
O N					
J 55					
59-0116	269.30				
		100.00		31,380	
		31.25	Mu	109.060	
		9.77 3.05		231.070	
		953.67		240.670 132.0201	
		298.02		75.820	
		93.13		53.250	
		29.10		47.500	
		9.09		39.440	二
		2.84		42.170	
		0.80	nM	31.180	
_N _					Ī
	ĺ				
s' N	]			-	ŀ
,		ļ			-:
59-0117	268.38				
	1	100.001	uM	-68.520	

31.25IAM				
3.35times   595.36\text{   571\text{   595.36\text{   571\text{   595.36\text{   571\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\text{   595.36\tex		•		-7.4501
953 571nM				
288 02/INM   -19.270    93.13/INM   -26.860    29.10/INM   -26.860    29.10/INM   -26.860    29.10/INM   -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42.180    -42	<del></del>			
93.13   A	<del></del>			
29.10InM   -28.880    9.09inM   -42.180    -42.180    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300    -41.300				
9 09 InM				
2.84 inM				
59-0118  313.36  100.00 IuM 4-7.170  31.25 IuM -55.860  9.77 IuM -58.001  3.05 IuM -55.720  9.33.07 IuM -8.200  9.33.10 M -33.310  9.33.10 M -33.310  9.33.10 M -33.310  2.29.10 M -47.340  9.90 IuM -47.340  9.90 IuM -47.340  9.90 IuM -55.200  0.80 IuM -57.310  0.80 IuM -57.300  9.77 IuM -57.800  1.977 IuM -57.800  1.99.37 IuM -53.370  9.93.13 IuM -53.370  9.93.13 IuM -53.270  9.93.13 IuM -53.270  9.90 IuM -55.100  9.90 IuM -55.100  9.90 IuM -55.100  9.90 IuM -52.270  9.90 IuM -52.270  9.90 IuM -52.270  9.90 IuM -53.500  1.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -52.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  9.90 IuM -60.700  1.00 IuM -60.700  IuM -60.700  IuM -60.700  IuM -60.700  IuM -6				
59-0118  313.36  100.00 IuM  -57.170  31.25 IuM  -58.6801  9.77 IuM -58.6801  3.05 IuM -55.7201  93.87 InM -48.2001  93.87 InM -48.2001  93.10 InM -49.3101  29.10 InM -49.3101  29.10 InM -55.2001  0.80 InM -57.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101  -77.3101	<u> </u>			
59-0118  312.36  100.00 luM			U.BUINM	-39.2201
59-0118  312.36  100.00 luM		ļ		
100,00 iuM	ĭ \	İ		
100,00 iuM	N.			
100,00 iuM		i		1
100,00 iuM				1
100,00 iuM				
100,00 iuM	Ö			
100,00 iuM				
31.25 uM   -56.580    9.77 uM   -58.080      9.77 uM   -58.080      9.77 uM   -58.080      9.58.081      48.200      9.58.081      48.200      9.58.081      49.300      9.31 nM   -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310        -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310      -33.310        -33.310      -33.310        -33.310      -33.310		313.36	100.00	67.470
9.77 IuM 9.77 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.78 IuM 9.7	<del></del>			
3.05 iuM -55.720   953.67 inM -48.200   929.02 inM -50.300   993.13 inM -33.310   9.09 inM -47.340   9.09 inM -49.310   1.2.84 inM -56.200   9.80 inM -57.310    1.3.1.25 iuM -29.240   9.77 iuM -57.800   9.77 iuM -57.800   9.77 iuM -54.240   9.78 iuM -59.200   9.78 iuM -59.200   9.78 iuM -59.200   9.79 iuM -59.200   9.79 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -59.200   9.70 iuM -60.600   9.70 iuM -60.700   9.70 iuM -60.600   9.70 iuM -60.700   9.70 iuM -60.700   9.70 iuM -60.700   9.70 iuM -60.700   9.70 iuM -60.700   9.70 iuM -60.700   9.70 iuM -60.700   9.70 iuM -60.700   9.70 iuM -60.700	<del></del>			
953.67 inM				
298.02 inM   -50.300	——————————————————————————————————————	<del></del>		<del></del>
93.13 inM -33.310) 29.10 inM -47.3401 9.09 inM -49.310] 28.4 inM -56.200 0.80 inM -57.3101  59-0119 314.34 100.00 iuM -57.3101  1 31.25 iuM -29.2401 9.77 iuM -52.0301 93.3 67 inM -54.2401 93.13 inM -53.8701 93.13 inM -33.1101 93.13 inM -53.8701 93.13 inM -53.8701 99.3 inM -55.500 99.9 inM -55.2701 99.9 inM -55.2701 28.4 inM -53.500 99.9 inM -55.3500 99.9 inM -55.3500 99.9 inM -52.2701 99.9 inM -53.8501 99.9 inM -53.8501 99.9 inM -53.8501 99.9 inM -53.8501	<del> </del>			<del></del>
29.10 inM				
9.09inM -49.310  2.84inM -55.200  0.80inM -57.310i  314.34  100.00iuM 167.500i  31.25iuM -29.240i  9.77iuM -57.800i  3.05iuM -52.030i  93.67inM -54.240i  298.02inM -53.870i  93.13inM -33.110i  29.10inM -55.100i  9.09inM -52.270i  2.84inM -53.500i  0.80inM -43.650i  59.0120 -504.49  100.00iuM -82.790i  31.25iuM -80.470i  9.77iuM -86.800i  3.05iuM -60.790i  9.53.67inM -54.240i				
2.84 inM				
314.34   100.00   100.00   167.500   31.25   1				
59-0119  314.34  100.00 luM 167.500 l 31.25 luM -29.240 l 9.77 luM -57.800 l 3.05 luM -52.030 l 953.67 lnM -54.240 l 298.02 lnM -53.870 l 39.13 lnM -38.110 l 29.10 lnM -55.100 l 9.09 lnM -52.270 l 2.84 lnM -53.500 l 0.80 lnM -43.650 l 59-0120 504.49 l 100.00 luM -82.790 l 31.25 luM -80.470 l 9.77 luM -86.800 l 3.05 luM -50.790 l				
100.00 iuM   167.500    31.25 iuM   -29.240    9.77 iuM   -57.800    3.05 iuM   -52.030    953.67 inM   -54.240    298.02 inM   -53.870    93.13 inM   -38.110    29.10 inM   -55.100    9.09 inM   -52.270    2.84 inM   -53.500    0.80 inM   -43.650    31.25 iuM   -80.470    9.77 iuM   -86.800    3.05 iuM   -60.790    953.67 inM   -54.240			0.007	
100.00 iuM   167.500    31.25 iuM   -29.240    9.77 iuM   -57.800    3.05 iuM   -52.030    953.67 inM   -54.240    298.02 inM   -53.870    93.13 inM   -38.110    29.10 inM   -55.100    9.09 inM   -52.270    2.84 inM   -53.500    0.80 inM   -43.650    31.25 iuM   -80.470    9.77 iuM   -86.800    3.05 iuM   -60.790    953.67 inM   -54.240				1
100.00 iuM   167.500    31.25 iuM   -29.240    9.77 iuM   -57.800    3.05 iuM   -52.030    953.67 inM   -54.240    298.02 inM   -53.870    93.13 inM   -38.110    29.10 inM   -55.100    9.09 inM   -52.270    2.84 inM   -53.500    0.80 inM   -43.650    31.25 iuM   -80.470    9.77 iuM   -86.800    3.05 iuM   -60.790    953.67 inM   -54.240				
100.00 iuM   167.500    31.25 iuM   -29.240    9.77 iuM   -57.800    3.05 iuM   -52.030    953.67 inM   -54.240    298.02 inM   -53.870    93.13 inM   -38.110    29.10 inM   -55.100    9.09 inM   -52.270    2.84 inM   -53.500    0.80 inM   -43.650    31.25 iuM   -80.470    9.77 iuM   -86.800    3.05 iuM   -60.790    953.67 inM   -54.240			j	
100.00 iuM   167.500    31.25 iuM   -29.240    9.77 iuM   -57.800    3.05 iuM   -52.030    953.67 inM   -54.240    298.02 inM   -53.870    93.13 inM   -38.110    29.10 inM   -55.100    9.09 inM   -52.270    2.84 inM   -53.500    0.80 inM   -43.650    31.25 iuM   -80.470    9.77 iuM   -80.800    3.05 iuM   -60.790    953.67 inM   -54.240	ON ON			1
100.00 iuM   167.500    31.25 iuM   -29.240    9.77 iuM   -57.800    3.05 iuM   -52.030    953.67 inM   -54.240    298.02 inM   -53.870    93.13 inM   -38.110    29.10 inM   -55.100    9.09 inM   -52.270    2.84 inM   -53.500    0.80 inM   -43.650    31.25 iuM   -80.470    9.77 iuM   -80.800    3.05 iuM   -60.790    953.67 inM   -54.240			}	
31.25 iuM -29.240 i 9.77 iuM -57.800 i 3.05 iuM -52.030 i 953.67 inM -54.240 i 298.02 inM -53.870 i 93.13 inM -38.110 i 29.10 inM -55.100 i 9.09 inM -52.270 i 2.84 inM -53.500 i 0.80 inM -43.650 i  504.49 i 100.00 iuM -82.790 i 31.25 iuM -80.470 i 9.77 iuM -68.800 i 3.05 iuM -60.790 i 953.67 inM -54.240 i	59-0119	314.34		
9.77 iuM -57.800  3.05 iuM -52.030  953.67 inM -54.240  298.02 inM -53.870  93.13 inM -38.110  29.10 inM -55.100  9.09 inM -52.270  2.84 inM -53.500  0.80 inM -43.650   59-0120 504.49  100.00 iuM -82.790  31.25 iuM -80.470  9.77 iuM -68.800  3.05 iuM -60.790  953.67 inM -54.240				<del></del>
3.05 uM				
953.67 inM -54.240  298.02 inM -53.870  93.13 inM -38.110  29.10 inM -55.100  9.09 inM -52.270  2.84 inM -53.500  0.80 inM -43.650  59-0120 504 49  100.00 iuM -82.790  31.25 iuM -80.470  9.77 iuM -60.790  953.67 inM -54.240	<u> </u>			
298.02 inM		<u> </u> _		
93.13 nM -38.110  29.10 nM -55.100  9.09 nM -52.270  2.84 nM -53.500  0.80 nM -43.650  59-0120  504 49  100.00 iuM -82.790  31.25 iuM -80.470  9.77 iuM -60.790  953.67 inM -54.240				
29.10 nM -55.100  9.09 nM -52.270  2.84 nM -53.500  0.80 nM -43.650  59-0120  504 49  100.00 luM -82.790  31.25 luM -80.470  9.77 luM -86.800  3.05 luM -60.790  953.67 nM -54.240				<del></del>
9.09 nM -52.270   2.84 nM -53.500   0.80 nM -43.650   59-0120   504.49   100.00 luM -82.790   31.25 luM -80.470   9.77 luM -60.790   953.67 lnM -54.240				
2.84 nM -53.500  0.80 nM -43.650  59-0120  504 49  100.00 luM -82.790  31.25 luM -80.470  9.77 luM -60.790  953.67 nM -54.240				
59-0120 504 49 100.001uM -82.790 31.25 luM -80.470 9.77 luM -86.800 3.05 luM -60.790 953.67 lnM -54.240				
59-0120 504 49 100.001uM -82.790 31.251uM -80.470 9.771uM -86.800 3.051uM -60.790 953.671nM -54.240		<del></del>		
59-0120 504 49 100.001uM -82.790 31.251uM -80.470 9.771uM -66.800 3.051uM -60.790 953.671nM -54.240			0.001180	73.0301
59-0120 504.49 100.001uM -82.790 31.251uM -80.470 9.771uM -66.800 3.051uM -60.790 953.671nM -54.240	/	}		
59-0120 504 49 100.001uM -82.790 31.251uM -80.470 9.771uM -66.800 3.051uM -60.790 953.671nM -54.240	· ()	1		
59-0120 504.49 100.001uM -82.790   31.251uM -80.470   9.771uM -66.800   3.051uM -60.790   953.671nM -54.240		[		
59-0120 504.49 100.001uM -82.790   31.251uM -80.470   9.771uM -66.800   3.051uM -60.790   953.671nM -54.240		1		
100.001uM -82.790    31.251uM -80.470    9.771uM -66.800    3.051uM -60.790    953.671nM -54.240	~	ŀ		
100.001uM -82.790    31.251uM -80.470    9.771uM -66.800    3.051uM -60.790    953.671nM -54.240	59-0120	504 40	1	
31.25 IuM -80.470   9.77 IuM -66.800   3.05 IuM -60.790   953.67 InM -54.240			100.001uM	-82 7901
9.77 iuM -66.800   3.05 iuM -60.790   953.67 inM -54.240	<del></del>	<del></del>		
3.05iuM -60.790i 953.67inM -54.240i		<del> i</del>		
953.67 inM -54.240				
93.13 inM : -50.660				

		2.84 InM	6.271	
		0.80InM	3.55	
,		0.00111#	3.331	
- N				
	i			
	İ			
1				
59-0146	246.27			
		100.00 uM	-63.05	
		31.25 uM	4.42	
		9.77 uM	-13.73	
		3.05 uM	-16.45	
		953.67 nM	-35.47	
		298.02 nM	-51.25	
		93.13 nM	-50.13	
		29.10 nM	-42.92	
<del></del>		9.09 nM	-45.64	
<del></del>		2.84 nM	-56.58	
<u> </u>		0.80 nM	-39.68	
	1			1
		ļ		
		•		ļ.
0 / 1				ł
١				
` i		j		- 1
59-0147	314.36			
		100.00 uM	-85	
		31.25 uM	-85	
		9.77 uM	-80.29	
		3.05 uM	-41.67	
		953.671nM	78.69	
		298.021nM	269.13	
		93.13 nM	323.59	
		29.10InM	339.88	
		9.09 nM	270.48	
		2.84 nM	245.58	
		0.80inM	180.331	
, H, 0				
				ļ
ï	- 4			2 N 8
				112
59-0148	291.35			1161
		100.00 uM	-68.38	
		31.25 uM	-36.33	
		9.77 uM	-2.3	
<u> </u>		3.05 uM	12.12	
ļ		953.67 InM	-2.42	
		298.02(nM	-16.21	
		93.131nM	-30.87	
		29.10 nM	-35.58	
		9.091nM	-39.07	
		2.84 nM	-41.181	
[	•	0.801nM	45.531	į.

	i		1 1	
°, 7— ,0	İ			
				}
3 0				
`				
59-0149	329.33			
<u> </u>		100.001uM	-16.91	1
		31.25 uM	-1.8	:
		9.77 uM	-0.53	
		3.05 uM	15.29	
	<u> </u>	953.67InM	78.78	
		298.02 InM	163.5	
		93.13 InM	223.57	
		29.10 nM	173.93	<u> </u>
		9.09inM	122.31	
		2.84 nM	98.021	i i
		0.80 nM	69.061	
				1
		1		i
				1
0 N				
	1			
50.0460		6.1	}	
59-0150	304.39			
		100.00 uM	63.32	
		31.25 luM	193.53	
		9.77 uM	419.26	<u> </u>
		3.05 uM	497.21	
		953.67 InM	295.19	
		298.021nM	193.35	
		93.13 nM	99.461	
		29.10inM	1 69.961	
		9.09)nM	59	t
		2.84 InM	52.161	i
		0.80(nM	48.75	:
		j		
	}			
N N N				
	1			1
0		İ		İ
9-0151				ĺ
	278.311	!		
39-0151		100.00 JuM	-6.660	
		31.25 iuM	16.2401	
		9.77 luM	18.300	!
	<del>i</del>	3.05 iuM	11.690	
		953.67 InM 298.02 InM	8.500	
		93.13 inM	9.0701	
		29.10!nM	6.110	1
	<u> </u>	9.09(nM	5.880	
		2.84 InM	7.700	:
		0.80inM		<del> </del>
		U.OUTIM	1.210	

43/50

F				
59-0152	266.275			
59-0152		100.00 ul	M -6.890	
		31.25 ul	M 12.490	
		9.77 ul	M 21.950	
		3.05 uA	V 12.820	
		953.67 ink	VI 7.350	
		298.02 ink	M 4.290	
		93.13 nA		
		29.10 nA		
		9.09 nk	M 1.320	
		2.84 nA		
		0.80 nh	4.160	
59-0153	282.73	İ		
59-0153		100.00 uN	A -4.150	
		31.25 uN		
		9.77 uN		
		3.05 uN		
		953.67 InN		
		298.02 nN		
		93.13(nM		
		29.101nM		·
		9.09 nM		
		2.84 nM		
		0.80 InM		
59-0154	262.312			
59-0154		100.00 UM	0.290	
		31.25 uM	24.670	
		9.77 uM	15.680	<del></del>
		3.05 luM		
		953.67 nM		
	i	298.02 InM		
		93.13InM		
	<u> </u>	29.10InM		
		9.09InM		
		2.84 inM		
	<u> </u>	0.801nM	1.8901	

					<del></del>	
					·	
F						
59-0155	316.282	400.00		2.050		
59-0155		100.00 31.25		-2.950 1,900		!
		9.77		-9.450		
		3.05		-0.220		
		953.67		0.690		1
		298.02		5.090		i
		93.13		-3.250		<u>:</u>
		29.10		0.530		
		9.09		-1.900		İ
		2.84		9.480		İ
		0.80	nM	-1.130		
59-0156	333.391					
59-0156		100.00	Mu	5.840		
		31.25		2.050		İ
		9.77		7.960		<u> </u>
		3.05		6.890		
		953.67		-0.370	<del></del>	
		298.02		-1.880		
		93.13		-3.550		ļ
		29.10		-7.340		<u> </u>
		9.09		-1.590		!
		2.84		2.650		<u>!</u>
		0.801	nM	2.500		!
59-0157	290.366		1			
59-0157		100.00		-6.440		
		31.25		14.920		
		9.77		19.930		
		3.051		11.4401		
		953.67		8.570		
		298.02		-7.190		
		93.13		0.080		
		29.10		-0.230		
		9.09		-4.460		
	<del></del>	2.84		2.200		
	l l	0.80	(IM	9.920		

45/50

	İ İ		1		
	1				
			1		1
	-			1 1	1
/ 0					
150 0450				1	
59-0158 59-0158	308.337				
39-0138	<u> </u>	100.00		-5.980	
		31.2		3.720	
			7 uM	16.140	
			3 uM	27.060	
		953.67	<u> </u>	9.930	
	<del> </del>	298.02		11.900	
		93.13 29.10		2.810	
	<del> </del>		nM	3.110	
	t		nM	0.690	
	<del>                                     </del>		nM	7.970	
		0.00	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	7.870	<del></del>
	1		1		}
	]		ļ		Ì
	1		Ì		
	1			1 1	
V 102					ł
59-0159	308.337			1 1	
59-0159	306.3371	100.00			
		31.25		2.790	
		9.77		13.530	
		3.05		10.910	
		953.67		2.800	
		298.02		9.710	<del></del>
		93.13		4.830	
		29.10		0.650	
		9.09		5.900	
		2.84	$\overline{}$	6.610	
		0.80		6.250	
	İ				
					1
		}			
	İ				
59-0160	319.408				ļ
59-0160		100.00		-5.060	
		31.25		-3.390	
		9.77		5.300	
		3.05		15.910	
		953.67		6.610	
		298.02		11.380	
		93.13		4.460	
	<del></del>	29.10		3.520	
		9.09		4.700	
		0.80		-0.650	
		0.60(	IINT	7.560	<u> </u>

\$5-0196							
100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   1							
100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   100,00   1	50.0106	222 224			1	İ	1
31.25 (MA ) 9.75 (MA ) 9.75 (MA ) 3.05 (MA ) 3.05 (MA ) 28.0.21 (MA ) 29.0.21 (MA ) 29.10 (MA ) 29.10 (MA ) 29.10 (MA ) 29.01 (MA ) 29.01 (MA ) 29.01 (MA ) 29.01 (MA ) 29.01 (MA ) 29.01 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (MA ) 30.5 (		323.201	100.00	M	<del> </del>	<del> </del>	
9.77 MA 3.05 (MA 953.87 PM 953.87 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95.13 PM 95	35-0150				<del>                                     </del>		<del> </del>
3.05   MM   953.67   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   959.10   MM   95					<del> </del>	<del> </del>	
99.07 inM 93.13 inM 93.13 inM 29.10 inM 9.09 inM 9.09 inM 9.00 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM 9.00 inM					<del>                                     </del>		
298.02 InM		1				<u> </u>	!
29.10 inM 9.00 inM 2.24 inM 0.80 inM  59-0197 323.201 59-0197 323.201 33.25 iuM 9.77 iuM 3.05 iuM 9.31 inM 28.02 inM 9.31 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.77 iuM 9.09 inM 9.09 inM 9.77 iuM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM 9.09 inM							
9.09 inM			93.13	nM			
2.84 nM  0.80 nM  1.59-0197  323.201  59-0197  100.00 uM  9.77 uM  3.05 uM  9.31.31 nM  9.90 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM  100.00 nM							
99-0198 261.324 59-0198 261.324 59-0198 261.324 59-0198 261.324 59-0198 261.324 59-0198 261.324 59-0198 31.25 iuM 31.25 iuM 31.31 iuM 32.00 iuM 32.34 iuM 33.31 iuM 34.32 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35.35 iuM 35		<u> </u>					
\$9-0197 323.201 \$59-0197 31.25 LoM  9.77 LoM  9.30.5 LoM  9.31.3 LoM  9.32.7 LoM  9.32.7 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 LoM  9.32.1 L						ļ	<u> </u>
\$9-0197 323.201  \$9-0197 100.00 LM  9.77 LM  9.77 LM  9.53.67 lM  208.02 lm  9.313 lm  23.13 lm  9.09 lm  9.09 lm  244 lm  0.80 lm  9.77 LM  3.05 LM  9.09 lm  259-0198 261.324  99.135 LM  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.313 lm  99.30 lm  99.313 lm  99.313 lm  99.313 lm  99.30 lm  99.30 lm  99.30 lm  99.30 lm  99.30 lm  99.30 lm  99.30 lm			0.80	nM	<u> </u>		
59-0197 100.00 uM 31.25 LuM 1 9.77 LuM 1 9.77 LuM 1 9.77 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.5							
59-0197 100.00 uM 31.25 LuM 1 9.77 LuM 1 9.77 LuM 1 9.77 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.55 LuM 1 9.5	59.0197	323 201					
31.25 LWM 9.77 LWM 3.05 LWM 953.67 nM 288.02 nM 93.13 lmM 29.10 lnM 9.09 lnM 9.09 lnM 2.84 lnM 0.80 nM 9.77 LWM 3.05 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM 9.77 LWM		323.201	100.00	uM	<del>                                     </del>	<del> </del>	
9.77   UM   3.05   UM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55   VM   9.55	33-0131				1	<del> </del>	
3.05 UAR 953.67 IMM 288.02 IMM 93.13 IMM 29.10 IMM 9.09 IMM 2.84 IMM 0.80 IMM  59-0198 31.25 UM 9.77 UM 3.05 UM 9.77 UM 9.77 UM 9.77 IMM 9.93.67 IMM 9.93.13 IMM 9.93.67 IMM 9.93.13 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM 9.99 IMM	<del></del>					<del></del>	
953.67 nM 288.02 nM 93.13 nM 93.13 nM 9.09 nM  284 nM 0.80 nM  59-0198 281.324  59-0198 100.00 uM 977 uM 977 uM 977 uM 973 nM 983.67 nM 288.02 nM 93.13 nM 289.02 nM 93.13 nM 99.09 nM  298.02 nM 93.13 nM 90.00 nM						-	
93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM  59-0198 261.324  59-0198 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 298.02 nM 9.09 nM 209.02 nM 9.09 nM						<u> </u>	
29.10 nM 9.09 nM 2.84 nM 0.80 nM  59-0198 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 953.67 nM 93.13 nM 29.10 nM 29.01 nM 0.80 nM  284 nM 0.80 nM			298.02	nM			
9.09 nM  2.84 nM  0.80 nM  59-0198  281.324  59-0198  100.00 luM  9.77 luM  9.77 luM  953.67 lnM  953.67 lnM  93.13 lnM  291.01 nM  291.01 nM  90.09 lnM  100.00 luM  90.09 lnM  100.00 luM  100.00 luM							
2.84 nM  0.80 nM  59-0198  281.324  59-0198  100.00 lvM  9.77 lvM  9.77 lvM  9.05 lvM  95.87 lnM  298.02 lnM  93.13 lnM  299.01 lnM  9.09 lnM  9.09 lnM  9.09 lnM  9.09 lnM  9.09 lnM  9.09 lnM  9.09 lnM  9.09 lnM  9.09 lnM							
59-0198 261.324 59-0198 100.00 t/M 59-0198 131.25 t/M 9.77 t/M 3.05 t/M 953.67 t/M 983.67 t/M 298.02 t/M 99.09 t/M 2.84 t/M 0.80 t/M 59-0199 291.35							
59-0198 281.324 59-0198 100.00 luM 59-0198 131.25 luM 9.77 luM 3.05 luM 953.67 lnM 298.02 lnM 93.13 lnM 29.10 lnM 9.09 lnM  2.44 lnM 0.80 lnM					ļ		
59-0198 100.00 iuM 31.25 iuM 9.77 iuM 9.77 iuM 953.67 inM 953.67 inM 93.13 inM 93.13 inM 99.09 inM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 i			0.80	nM			
59-0198 100.00 iuM 31.25 iuM 9.77 iuM 9.77 iuM 953.67 inM 953.67 inM 93.13 inM 93.13 inM 99.09 inM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 i							
59-0198 100.00 iuM 31.25 iuM 9.77 iuM 9.77 iuM 953.67 inM 953.67 inM 93.13 inM 93.13 inM 99.09 inM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 iuM 90.00 i	50.0409	004 004					
31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM		261.324	400.00	1.18.4			<del> </del>
9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM	00.0100		31.25	uM			
3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM			9.77	uM	-	<del></del>	
953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM			3.05	uM	1		<del> </del>
298.02 inM 93.13 inM 29.10 inM 9.09 inM 2.84 inM 0.80 inM 59-0199 291.35			953.67	nM			
93.13 InM 29.10 InM 9.09 InM 2.84 InM 0.80 InM  59-0199 291.35 100.00 IuM			298.02	nM		l	
29.10 InM 9.09 InM 2.84 InM 0.80 InM 59-0199 291.35 100.00 IuM			93.13	nM			
2.84 nM 0.80 nM 59-0199 291.35 100.00 uM			29.10	nM	İ.,		
59-0199 291.35 59-0199 100.00 uM			9.09	nM			
59-0199 291.35 59-0199 100.00 uM			2.84	nM			
59-0199 291.35 59-0199 100.00 uM			0.80	nM			
59-0199 100.00 uM				-			
59-0199 100.00 uM	ĭ			•		†	
	59-0199	291.35					
21.25luM	· · · · · · · · · · · · · · · · · · ·		100.00	uM			
		<u> </u>	31.25	uM	]	1	

			PinM			
	<del>                                     </del>		4 nM		<del></del>	
		U.01	nM			
_ N				1	j	
	1 1		1			
				1		1
0				1	1	i
50 0000			1	1	1	
59-0203 59-0203	292.338		<u> </u>			
39-0203		100.00		ļ		
		31.25				
			uM			
			uM	<b></b>	<del>                                     </del>	<u> </u>
	<del></del>	953.67		<del> </del>	ļ	
		298.02		ļ		
	<del>                                     </del>	93.13 29.10		<del> </del>		1
	<del> </del>	9.09			<del> </del>	<u> </u>
	<del>                                     </del>	2.84		<del> </del>		
	<del>   </del>	0.80		<del>                                     </del>	<del> </del>	<del> </del>
	<del>                                     </del>		1	<del> </del>	<del>                                     </del>	-
/	1				1	
N H O						
	1				1	ì
	]			Ì	İ	
\			ì	1		
o Č				ļ	ļ	
`			1	į	<u> </u>	
59-0204	344.389					- )
59-0204		100.00				
		31.25				
	<del> </del>	9.77				
		3.05		ļ		
	<del> </del>	953.67				
		298.02				
		93.13				
		29.10				
		9.09		-		
	<del> </del>	2.84				
		0,80				
0						
LIS H CILLO						
59-0205	318.782					
59-0205	318.782	0.80	nM			
59-0205	318.782		nM .			
59-0205	318.782	100.00	nM uM uM			
59-0205		100.00 31.25 9.77	uM uM uM uM			
59-0205		100.00 31.25 9.77	uM uM uM uM			
59-0205		100.00 31.25 9.77 3.05 953.67 298.02	nM uM uM uM uM			
59-0205		100.00 31.25 9.77 3.05 953.67 298.02 93.13	uM uM uM uM uM nM			
59-0205		100.00 31.25 9.77 3.05 953.67 298.02 93.13	nM uM uM uM uM nM nM			
59-0205 59-0205		100.00 31.25 9.77 3.05 953.67 298.02 93.13 29.10	nM uM uM uM uM nM nM nM			
59-0205		100.00 31.25 9.77 3.05 953.67 298.02 93.13	nM uM uM uM uM nM nM nM nM			

			<u> </u>			
ОН		•				
59-0209	247.297					
59-0209		100.00	uM			
		31.25	uM			
		9.77				
		3.05 953.67		<del> </del>	<u> </u>	
		298.02		<del> </del>		
		93.13	nM			
		29.10				
		9.09 2.84			ļ	
		0.80		-		
					<u> </u>	
s' _o			1			
)— \				İ		
•	ľ				!	
59-0210	007.000					
59-0210	297.376	100.00				
		31.25		<del> </del>		
		9.77				
		3.05				
		953.67				
		298.02 93.13		-		
		29.10				
		9.09	nM			
		2,84		<u> </u>		
		0.80	nM_			
ОСОН	İ					
	į					
No.				ļ .		
59-8000	298.342					
59-8000		100.00				
		31.25	uM			
		9.77 3.05				
		953.67				
		298.021	nM			
		93.13				
		29.101 9.091	nM nM			
		2.84				
		0.801		1		

ОДОН						
1 4						
	- 1				!	
H	4		]			
59-8001	255.273			<u> </u>		
59-8001		100.00				
	<del></del>	31.25 9.77				
<del></del>		3.05		_		
		953.67			<b>†</b>	<del> </del>
		298.02				
		93.13		ļ	ļ <u>-</u>	
!		29.10		ļ	<u> </u>	
		9.09			<del> </del>	<u> </u>
		0.80			<del> </del>	<del> </del>
					<del>                                     </del>	-
ОДОН						
NH OH OH				0		
NH						
N On						
59-8002 59-8002	302.286	100.00			ļ	
35-5002		31.25		<del> </del>	-	
		9.77				
		3.05	uM			
		953.67				
		298.02				
		93.13 29.10				
		9.09		<del>                                     </del>	<del>-</del>	<u> </u>
		2.84		<del></del>	<del> </del>	
!		0.80				
ОУОН	ĺ			1		
NH ₂						
NH ₂						
H H	1	ļ		1		
				İ	1	<u> </u>
59-8003	270.288	453.35				
59-8003		100.00 31.25		<del> </del>		
<u> </u>		9.77				
		3.05				
		953.67	nM			
		298.02	nM			
		93.13				
		29.10 9.09	nM		<u> </u>	
<u> </u>		2.84			<del> </del>	
	<del> </del>	0.80		i	<del>                                     </del>	<del></del>
			V-1			

		59Xt			_1	)
			ואחוע	1		
	į.		9 nM		<del></del>	<del></del>
			4 nM			
			MnM			<del></del>
O <b>SOH</b>				1	ĺ	-
	ł	İ				
	i	5	1			
		ŀ	1	•		1
N S		}	-	1		ľ
H			1		1	
50 5040			1			
59-8013 59-8013	301.364	ļ				
35-6013		100.00		<del></del>		
	<del> </del>	31.25			<del> </del>	
	<del> </del>	9.77		<del> </del>	<del> </del>	<del> </del>
	+	3.05 953.67		<del> </del> -	<del> </del>	<del> </del>
		298.02		<del> </del>		+
	<del> </del>	93.13			+	<del> </del>
	<del>                                     </del>	29.10		<del> </del>	<del> </del>	+
		9.09		<del> </del>	<del> </del>	<del> </del>
		2.84		<del> </del>	<del> </del>	+
		0.80		1	<del>                                     </del>	<del>                                     </del>
						<del>                                     </del>
° > ° →				İ		1
					1	
			ŀ	ľ	l .	
				ł		1
<b>F</b>			1	1		
<b>`</b> 9				Í		1
<b>'</b>					l	<u>}</u>
59-8014	377.396			Į		
59-8014		100.00	υM			
		31.25	иM			1
		9.77				
		3.05				
	·	953.67		<u> </u>		
		298.02		ļ		
		93.13	nM			
		29.10				
		9.09	nM	<u> </u>	<del> </del> -	!
		2.84 0.80	nM nM			
		0.60	117	<del></del>	<del> </del>	<del> </del>
ОУОН				]	]	
~~··				]		
1				1		
						] <b>!</b>
H						
		1				
ó		}				
						ĺ
	· ·					
59-8015	285.299					
59-8015		100.00	υM			
		31.25	υM			
	!	9.77	u <u>M</u>			
		30 051		ı i		

#### INTERNATIONAL SEARCH REPORT

International a, plication No. PCT/US96/17019

A. CLASSIFICATION OF SUBJECT MATTER  IPC(6) :A61K 31/54  US CL :514/222.8  According to International Patent Classification (IPC) or to both national classification and IPC  B. FIELDS SEARCHED  Minimum documentation searched (classification system followed by classification symbols)  U.S.: 514/222.8
US CL: 514/222.8 According to International Patent Classification (IPC) or to both national classification and IPC  B. FIELDS SEARCHED  Minimum documentation searched (classification system followed by classification symbols)
According to International Patent Classification (IPC) or to both national classification and IPC  B. FIELDS SEARCHED  Minimum documentation searched (classification system followed by classification symbols)
B. FIELDS SEARCHED  Minimum documentation searched (classification system followed by classification symbols)
Minimum documentation searched (classification system followed by classification symbols)
U.S. : 514/222.8
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
none
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
APS AND CAS ONLINE: compounds of the claims with bone, osteoporosis, hyperparathyroidism, periodontal, prosthetic, dental
prostrietic, deritai
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim
A US 5,280,040 A (LABROO ET AL.) 18 January 1994. 1-29
1-25
Further documents are listed in the continuation of Box C. See patent family annex.
Special categories of cited documents:  "T" later document published after the international filing date or priorit date and not in conflict with the application but cited to understand the
A* document defining the general state of the art which is not considered principle or theory underlying the invention to be of particular relevance
document of particular relevance; the claimed invention cannot b
considered novel or cannot be considered to involve an inventive step."  document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other special reason (as specified)  "Y" document of particular relevance; the claimed invention cannot b
Committeed to involve an inventive step when the document of combined with one or more other such documents, such combination or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed
ate of the actual completion of the international search  Date of mailing of the international search report
OF CEDULARY 1997
04 FEBRUARY 1997 2 0 FEB 1997
ame and mailing address of the ISA/US Authorized officer
ame and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT  Authorized officer  KIMBERT Y JORDAN
ame and mailing address of the ISA/US  Commissioner of Patents and Trademarks  Authorized officer