Стабілізатор

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

9 листопада 2022

FACULTY OF MECHANICS AND MATHEMATICS

1/8

Стабілізатор

Нехай група G діє на множині M.

Стабілізатором точки $m \in M$ називається множина

$$\operatorname{St}_G(m) = \left\{ g \in G \,|\, m^g = m \right\}.$$

2/8

Приклад

• Нехай

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 1 & 3 & 6 \end{pmatrix} = (124)(35).$$

Знайдемо стабілізатор точок 1, 3 та 6 у групі $G = \langle \sigma \rangle = \{ \varepsilon, (124)(35), (142), (35), (124), (142)(35) \}$:

$$St_G(1) = \{\varepsilon, (35)\},\$$

 $St_G(3) = \{\varepsilon, (142), (124)\},\$
 $St_G(6) = G.$

② G діє на собі спряженням. Тоді стабілізатор = нормалізатор.

Твердження

Нехай (G, M), $m \in M$. Тоді $St_G(m)$ — підгрупа групи G.

Доведення.

$$e \in \operatorname{St}_G(m) \Rightarrow \operatorname{St}_G(m) \neq \emptyset$$
.
Для довільних $g_1, g_2 \in \operatorname{St}_G(m)$:

$$m^{g_1g_2} = (m^{g_1})^{g_2} = m^{g_2} = m \implies g_1g_2 \in St_G(m).$$

Для довільного $g \in St_G(m)$:

$$m = m^e = m^{gg^{-1}} = (m^g)^{g^{-1}} = m^{g^{-1}} \implies g^{-1} \in St_G(m).$$

Теорема

Нехай група G діє на множині M. Тоді існує взаємно однозначна відповідність між елементами орбіти $\mathfrak{O}(m)$ елемента $m \in M$ та правими класами суміжності групи G за підгрупою $\mathsf{St}_G(m)$.

Зокрема, якщо G — скінченна, то $|\mathfrak{O}(m)| = |G: \mathsf{St}_G(m)|$.

Доведення.

Нехай $\alpha \in \mathcal{O}(m)$. Нехай $g \in G$: $\alpha = m^g$. Тоді для $h \in G$:

$$m^h = \alpha \Leftrightarrow (m^h)^{g^{-1}} = \alpha^{g^{-1}} \Leftrightarrow (m^h)^{g^{-1}} = m \Leftrightarrow hg^{-1} \in \operatorname{St}_G(m) \Leftrightarrow h \in \operatorname{St}_G(m)g.$$

Наслідок

- Якщо G скінченна, то |𝔻(m)| ділить |G|.
- ullet Якщо $a,b\in \mathcal{O}(m)$, то $\left|\operatorname{St}_g(a)\right|=\left|\operatorname{St}_G(b)\right|$.

Задача

Знайдіть кількість k-елементних підмножин n-елементної множини.

Розв'язання.

Hexaй $M = \{a_1, \ldots, a_n\}.$

Задамо на ній природну діє групу S_n .

 $M^{\{k\}}$ — всі k-елементні підмножини множини M.

Група S_n діє природним чином на $M^{\{k\}}$.

Нехай $A = \{i_1, \dots, i_k\} \in M^{\{k\}}$.

 $\operatorname{St}_G(A)$ містить елементи, що переставляють елементи A та $M \setminus A \Rightarrow |\operatorname{St}_G(A)| = k!(n-k)!$. Тоді

$$\left|M^{\{k\}}\right| = |\mathcal{O}(A)| = |\mathcal{S}_n : \mathsf{St}_G(A)| = \frac{|\mathcal{S}_n|}{|\mathsf{St}_G(A)|} = \frac{n!}{k!(n-k)!}.$$

Теорема

Стабілізатори елементів, що належать одній орбіті, є спряженими підгрупами.

Доведення.

(G,M). Нехай $m\in M$, $\mathbb O$ — орбіта елемента, яка містить m, тобто $\mathbb O=\mathbb O(m)$. Досить довести: $\operatorname{St}_G(m^g)=g^{-1}\operatorname{St}_G(m)g, g\in G$. Нехай $g'\in \operatorname{St}_G(m)$. Тоді

$$(m^g)^{g^{-1}g'g} = m^{gg^{-1}g'g} = m^{g'g} = (m^{g'})^g = m^g.$$

Звідси

$$g^{-1}g'g \in \operatorname{St}_G(m^g) \Rightarrow g^{-1}\operatorname{St}_G(m)g \subseteq \operatorname{St}_G(m^g).$$

Нехай h ∈ $\operatorname{St}_G(m^g)$. Тоді $m^{gh} = m^g$. Звідси

$$m^{ghg^{-1}} = m \Rightarrow ghg^{-1} \in \operatorname{St}_G(m) \Rightarrow h \in g^{-1} \operatorname{St}_G(m)g \Rightarrow \operatorname{St}_G(m^g) \subseteq g^{-1} \operatorname{St}_G(m)g.$$

$$\operatorname{St}_G(m^g) = g^{-1} \operatorname{St}_G(m)g$$
. \square