杭州电子科技大学学生考试卷(A) 卷

考试课程	数字电路与逻辑设	计 考试日	期	年 月 日		成绩	Ę
课程号	A0402230	教师号		任课教师姓名		i	刘琦
考生姓名		学号(8 位)		年级		专业	

题目	第一 1 题	第一 2 题	第一3	第一 4 题	第一 5 题	第二 1 题	第二 2 题	第二3	第三 1 题	第三 2 题	第三3
得分											

- 一、基本题: (共36分)
- 1. (6分)设 X=+1011011, Y=+1101101, 用补码计算 Z=X-Y 并求出 Z 的真值。
- 解: [X]ホ=01011011, [-Y]ホ=10010011
- $[Z]_{*}=[X-Y]_{*}=[X]_{*}+[-Y]_{*}=01011011+10010011=11101110$
- Z=-0010010=-18
- 2. (8分) 已知 $\bar{F} = \prod M(0,2,4,6)$,求原函数 F 及对偶函数 F^* 的最小项表达式。

$$\mathfrak{M}: F = m0 + m2 + m4 + m6$$

$$F^* = M_7 \cdot M_5 \cdot M_3 \cdot M_1$$

3. (8分) 化简函数 $Y = \overline{AC + \overline{BC}} + AB\overline{C}$ 并改写为或非-或非表达式。

$$\mathfrak{M}\colon Y = \overline{AC + \overline{B}C} + AB\overline{C} = \overline{(A + \overline{B}) \cdot C} + AB\overline{C} = \overline{AB} + \overline{C} + AB\overline{C} = \overline{AB} + \overline{C}$$
$$= (\overline{A} + \overline{C})(B + \overline{C}) = \overline{(\overline{A} + \overline{C})(B + \overline{C})} = \overline{(\overline{A} + \overline{C})} + \overline{(B + \overline{C})}$$

4. (8分)用卡诺图将下列逻辑函数化简为最简与或表达式:

$$Y = \sum m(2,4,12) + \sum d(0,1,3,8,9,11,15)$$

解:

AB\CD	00	01	11	10		
00	X	X	X	1		
01	1	0	0	0		
11	1	0	X	0		
10	X	X	X	0		
$Y = \bar{A}\bar{B} + \bar{C}\bar{D}$						

5. (6分)指出下列逻辑门的输出状态(高电平/低电平或高阻态)。

解: (a)三态门控制端接高电平,输出端 F1 为高阻态

(b) OC/OD 线与功能, F2 输出为低电平

二、分析题: (共32分)

1. (8分) 分析以下电路, 写出电路的输出函数, 并说明电路功能。

解: $F1 = A \cdot \overline{AB} = A\overline{B}$ $F3 = B \cdot \overline{AB} = \overline{AB}$

 $F2 = \overline{F1 + F3} = \overline{AB} + \overline{AB} = (\overline{A} + B)(A + \overline{B}) = \overline{AB} + AB = A \odot B$ 真值表略,该电路实现一位数据比较器功能。

2. (12分)由 3-8 线译码器 74LS138 构成的电路如图所示,写出函数表达式并说明函数功能。

解: $D = \overline{Y1 \cdot Y2 \cdot Y4 \cdot Y7} = m1 + m2 + m4 + m7$

$$= \overline{B_I}\overline{B}A + \overline{B_I}B\overline{A} + B_I\overline{B}\overline{A} + B_IBA$$

 $BO = \overline{Y1 \cdot Y2 \cdot Y3 \cdot Y7} = m1 + m2 + m3 + m7$

$$= \overline{B_I}\overline{B}A + \overline{B_I}B\overline{A} + \overline{B_I}BA + B_IBA$$

真值表略,该电路实现全减功能,其中A是被减数,B是减数,BI为低位向本位的借位,D是本位差,BO是本位向高位的借位。

3.(12分)分析以下同步时序逻辑电路的功能。写出驱动方程、状态方程和输出方程,并画出状态转换图。

解:驱动方程 J1 = K1 = M ; $J2 = K2 = MQ_1^n$

状态方程 $Q_1^{n+1} = J1\overline{Q_1^n} + \overline{K1}Q_1^n = M\overline{Q_1^n} + \overline{M}Q_1^n = M \oplus Q_1^n$

 $Q_2^{n+1} = J2\overline{Q_2^n} + \overline{K2}Q_2^n = MQ_1^n\overline{Q_2^n} + \overline{MQ_1^n}Q_2^n = (MQ_1^n) \oplus Q_2^n$

输出方程 $Z = Q_1^n Q_2^n$

三、设计题(共32分)

1. (12分)用D触发器(上升沿触发)设计一个"101"的序列检测器,要求每当检测到101序列时,对应序列最后一个数字1的位置输出为1,否则输出为0;序列不可重复(即已出现在某101序列中的数字不可用于新的序列中)。画出状态转换图,并说明每个状态的意义。

其典型输出序列如下:输入 X: 010101110101 输出 Z: 000100000100 解:假设接收到一个或多个"0"的状态为 S0=00,接收到一个或多个"1"的状态为 S1=01,接收到"10"的状态为 S2=10,接收到"101"的状态为 S3=11

X	Q1	Q0	Q1(n+1)	Q0(n+1)	Z
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	0	1	0

卡诺图求得状态方程:

$$Q_1^{n+1} = \bar{X}Q_0^n + XQ_1^n \overline{Q_0^n}$$
 $Q_0^{n+1} = X$

驱动方程: $D1 = \overline{X}Q_0^n + XQ_1^n\overline{Q_0^n}$

D0 = X

输出方程: $Z = XQ_1^n \overline{Q_0^n}$

2. (8分)用8选1数据选择器74LS151设计一个电路,用来判断输入的4位8421BCD码ABCD,当其值大于等于5时,输出为1,否则输出为0。

解:

A	В	C	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

卡诺图降维:

AB\C	0	1
00	0	0
01	D	1
10	1	1
11	1	1

$$F = 0 \cdot m_0 + 0 \cdot m_1 + D \cdot m_2 + 1 \cdot m_3 + 1 \cdot m_4 + 1 \cdot m_5 + 1 \cdot m_6 + 1 \cdot m_7$$

3. (12分)用4位同步二进制加法计数器 74LS161 设计一个模值为9的计数

器电路,并且最高位 QD 的占空比为 1/3。画出状态转换图和逻辑电路图(包

括进位的电路),不考虑自启动。

状态转换图略

反馈置数, 预置数 0010, 置数信号 1010, 进位信号 1010.

解:

计数顺	भे	数	器状	态
序	Q	Q	Q	Q
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0