Introdução a Engenharia de Software

Engenharia de Software N Profa. Karin Becker Instituto de Informática - UFRGS

Mercado de Software

- As economias de TODAS as nações desenvolvidas são dependentes de software
- Cada vez mais sistemas são controlados por software
- Os dispêndios com software representam uma fração significativa do PIB em todos os países desenvolvidos

Mercado Mundial de TI

O Mercado Mundial de TI em 2008 foi de US\$ 1,470 bilhões, sendo os principais

mercados:

O Mercado Mundial de TI - 2008					
País	Mero (U\$ bi				
Hardware 43%	Software 20%		- Services 7%		
UK		2,8			
China),6			
Espanha		2,4			
──→ Brasil	29),3			
Rússia	25	,4			
Índia		2,0			
México		2,2			
Israel		,8			
Irlanda		,3			
Argentina		,2			
Colombia	3,4				

Mercado Mundial de TI (2010)

Fonte: www.abes.org.br/UserFiles/Image/PDFs/Mercado_BR2011.pdf

O Mercado Brasileiro de Software e Serviços - 2008

Software

- Mercado Total de Us\$ 5,07 bilhões
- Representa 1,68 % do mercado mundial
- Atendido em 32,5 % por programas desenvolvidos no país
- Exportação de Us\$ 82 milhões em licenças
- Conta com 6.517 empresas dedicadas à exploração econômica

Serviços

- Mercado Total de Us\$ 9,94 bilhões
- Representa 1,72 % do mercado mundial
- Exportação de Us\$ 258 milhões
- Conta com 1.978 empresas dedicadas à exploração econômica

Indicadores Gerais de TI

- Mercado Total de TI no Brasil Us\$ 29,3 bilhões
- Representa 1,99 % do mercado mundial e 48,0 % do mercado AL
- 11,8 milhões de PC's vendidos em 2008
- 44 milhões de PC's compõe a base instalada
- 58 milhões de usuários da Internet

Principais Indicadores do Mercado Brasileiro - 2008

O Mercado Mundial de Software e Serviços- 2008

O mercado mundial de software e serviços atingiu em 2008 o valor de U\$ 872,8 bilhões, e o Brasil ficou em 12º lugar no ranking mundial com um mercado interno de U\$ 14,67 bilhões.

País	Volume (Us\$ bilhões)	Participação (%)	08/07
USA	339,6	38,9%	-
Japão	7 1,7	8,21%	-
UK	67,1	7,69%	-
Alemanha	62,6	7,17%	
França	49,8	5,71%	
Canadá	24,8	2,84%	-
Itália	24,1	2,76%	
Espanha	19,8	2,27%	
Holanda	18,2	2,08%	
Austrália	15,6	1,79%	
China	15,2	1,74%	
Brasil	14,67	1,68%	
Suécia	11,6	1,33%	•
Suíça	11,25	1,29%	
Coréia	8,10	0,93%	-
ROW	118,7	13,6%	
Total	872,8	100%	+15 %

Tendência de crescimento

A crise de software

www.jetcart.com.br

A crise de software

- "What have been the complaints? Typically, they were:
 - a) Existing software production is done by amateurs (regardless whether at universities, software houses or manufacturers),
 - b) Existing software development is done by tinkering or by the human wave ("million monkey") approach at the manufacturer's,
 - c) Existing software is unreliable and needs permanent "maintenance", the word maintenance being misused to denote fallacies which are expected from the very beginning by the producer,
 - d) Existing software is messy, lacks transparency, prevents improvement or building on (or at least requires too high a price to be paid for this).

Last, but not least, the common complaint is:

Existing software comes too late and at higher costs than expected, and does not fulfil the promises made for it."

F.L. Bauer, <u>Information Processing (IFIP)</u> **1971** <u>Conference Report</u> (Amsterdam: North-Holland Publishing Co, 1972), I, 530-538; extracted from page 530.

Engenharia de Software

- F.L. Bauer, 1968
 - "The whole trouble comes from the fact that there is so much tinkering with software. It is not made in a clean fabrication process, which it should be. What we need, is software engineering."
- Software Engineering (IEEE Std. 610.12 (1990))
 - (1) The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software.
 - (2) The study of approaches as in (1).

A crise de software

- "Software comes too late and at higher costs than expected, and does not fulfil the promises made for it" (Bauer, 1971)
- "Software development fails to deliver, and fails to deliver value. This failure has a huge economic and human impact. We need to find a way to develop software" (Kent Beck, 2004)
 - Desvio nos cronogramas
 - Projetos cancelados
 - Dificuldade de manutenção dos sistemas
 - Custo de mudanças é muito alto, ou gera muitos efeitos colaterais
 - Alta taxa de defeitos
 - Falta de credibilidade, não usado
 - Falta de compreensão do negócio
 - Sistema não atende o problema de negócio que originou o sistema
 - Mudanças nos negócios
 - Prioridade dos problemas de negócio mudam
 - Velocidade crescente
 - Ilusão sobre as funcionalidades existentes
 - Rotatividade das eq uipes

- Standish Chaos Report
 - Análise regular sobre milhares de projetos de desenvolvimento de software nos EUA
 - Desde 1994, a cada 2 anos
 - Dividem projetos pesquisados em três categorias
 - Sucesso: prazo, orçamento, funcionalidades
 - Desafiado: acima do orçamento, desvio de cronograma, menos funcionalidades
 - Falho: cancelado
 - Análise dos fatores de sucesso/insucesso
 - Metodologia questionada
 - http://www.umsl.edu/~sauterv/analysis/Standish/glass.pdf
 - http://www.few.vu.nl/~x/chaos/chaos.pdf

Table 1

Standish project benchmarks over the years

Year	Successful (%)	Challenged (%)	Failed (%)	
1994	16	53	31	
1996	27	33	40	
1998	26	46	28	
2000	28	49	23	
2004	29	53	18	
2006	35	46	19	
2009	32	44	24	

Standish Report (2004)

• Successful Projects: 29%

• Challenged Projects: 53%

Failed Projects: 18% (5 billion \$ Annualy)

Oxford University Regarding IT

Project Success (Saur &

Cuthbertson, 2003)

Successful: 16%

Challenged: 74%

Abandoned: 10%

Tata Consultancy 2007

62% of organizations experienced IT projects that failed to meet their schedules 49% suffered from budget overruns

47% had higher-than-expected maintenance costs

41% failed to deliver the expected business value and ROI

33% failed to perform against expectations

Fonte: www.galorath.com/wp/software-project-failure-costs-billions-better-estimation-planning-can-help.php

Dynamic Markets Limited 2007 Study of of 800 IT managers across eight countries shows that:

Two Reasons Why IT Projects Fail Reports:

62 % of organizations experienced IT projects that failed to meet their schedules

49% budget overruns

47% higher-than-expected maintenance costs

41% failed to deliver expected business value and ROI

25%+ of all software and services projects are canceled before completion up to 80 percent of budgets are consumed fixing self-inflicted problems

Communications of the ACM Nov 2007: Sauer, Gemino, Reich

We used a non-hierarchical clustering method to combine similar projects based on the three performance variances: schedule, budget and scope. Variances were measured as a percentage of targets as originally planned. A schedule variance of +34% therefore indicates the project was 34% later than originally planned. The results suggested separating the 412 IT projects into 5 basic types described below.

Performance Variance	Type I: Abandoned Projects n=38	Challenged n=21	n=74	Type 4: Good Performers n=249	n=30
Performance Variances (Actual as % of Originally Planned) – 100%					
Schedule	N/A	+34%	+82%	+2%	+2%
Budget	N/A	+127%	+16%	+7%	-24%
Scope	N/A	-12%	-16%	-7%	+15%

Da Crise à Agonia Crônica

- Software:
 - Produto n\(\tilde{a}\)o corresponde ao esperado

Da Crise à Agonia Crônica

- Processo de Software
 - Processo com baixos graus de satisfação
 - Baixa produtividade dos projetistas de software
 - TI tem o maior nível de stress profissional

Software: Mitos e Realidade

- Ilusão: Desenvolver Software é "SOFT"
 - Economicamente "soft"
 - Intelectualmente "soft"
 - Operacionalmente "soft"
- Realidade: Desenvolver Software é "HARD"
 - Atender requisitos e satisfazer usuário
 - Respeitar orçamento
 - Respeitar cronograma

Software: Qual é o problema?

Como o cliente explicou...

Como o líder de projeto entendeu...

Como o analista projetou...

Como o programador construiu...

Como o Consultor de Negócios descreveu...

Como o projeto foi documentado...

Que funcionalidades foram instaladas...

Como o cliente foi cobrado...

Como foi mantido...

O que o cliente realmente queria...

Eng. SW busca responder ...

- Por que se demora tanto para concluir um projeto (prazos não cumpridos)?
- Por que custa tanto ?
- Por que n\(\tilde{a}\) descobrimos os erros antes de entregar o software ao cliente?
 - Por que não entregamos o produto esperado?
 - Por que não entregamos o produto sem falhas?
- Porque temos dificuldade de estimar, medir e acompanhar o progresso enquanto o software está sendo desenvolvido?

Causas aparentemente óbvias

- Falhas de comunicação entre cliente e equipe de desenvolvimento
 - Pouca comunicação e falha
- Dificuldade de realizar mudanças no software
 - em qualquer etapa, mas principalmente após entrega
 - Dificuldade em planejar para acomodar a mudança
- Falta de procedimentos de verificação da qualidade do que está sendo desenvolvido
- Falta de maturidade (inadequação) dos profissionais e das técnicas utilizadas.

Causas menos óbvias

- O software não é desenvolvido ou projetado com técnicas de engenharia (é manufaturado de forma artesanal, no sentido clássico)
- Gerentes (ou chefes de projeto) sem (ou com pouco) background em desenvolvimento de SW
- Profissionais recebem pouco treinamento formal e frequentemente n\u00e3o conhecem as t\u00e9cnicas e poss\u00edveis solu\u00e7\u00f3es para seus problemas
 - ou não tem tempo para aplicá-las ⊗
- Empresas investem pouco em Eng. Sw.

Algumas motivações para a Eng. SW

- Atender necessidades dos clientes
- Aumentar a qualidade do software produzido, reduzindo erros e falhas
 - Produto
 - Processo
- Conseguir gerenciar o desenvolvimento de software (incluindo orçamento e cronograma)
- Diminuir a dificuldade de manutenção

Conhecendo nosso time

- A professora
 - 17 anos de experiência acadêmica
 - ES, BD, Modelagem, Mineração de Dados, Data Warehouse,
 SOA e Web Services
 - projetos em parceria com empresas
 - 4 anos na indústria de software
 - Líder técnico de projeto, gerente de projeto, gerente de P&D
- Os alunos
 - Quais suas experiências?
 - Quais suas expectativas?