Theoretische Physik II – Quantenmechanik – Blatt 11

Sommersemester 2023

Webpage: http://www.thp.uni-koeln.de/~rk/qm_2023.html/

Abgabe: bis Mittwoch, 05.07.23, 10:00 in elektronischer Form per ILIAS unter https://www.ilias.uni-koeln.de/ilias/goto_uk_crs_5154210.html

41. Zur Diskussion

0 Punkte

- a) Was ist der Zusammenhang zwischen Gesamtdrehimpuls \vec{J} eines quantenmechanischen Systems und den Rotationen im dreidimensionalen Raum?
- b) Wie lauten die Vertauschungsrelationen der Komponenten von Gesamtdrehimpuls \vec{J} , Bahndrehimpuls \vec{L} und Spin \vec{S} ? Worin sind diese Relationen begründet?

42. Geladenes Teilchen im homogenen Magnetfeld 2+1+7=10 Punkte

Ein Teilchen (Masse m, Ladung q) bewegt sich in der x_1x_2 - Ebene unter dem Einfluss eines homogenden Magnetfelds $\vec{B} = B\vec{e}_3$ Der Hamiltonoperator des Teilchens ist

$$H = \frac{1}{2m} \left(\vec{p} - \frac{q}{c} \vec{A}(\vec{r}) \right)^2 ,$$

mit $\vec{p} = (p_1, p_2, 0)$ und $\vec{A}(\vec{r})$ einem Vektorpotenzial des Magnetfelds \vec{B} , d.h. $\mathrm{rot}\vec{A} = \vec{B}$.

- a) Klassisch betrachtet führt das Teilchen bekanntlich eine Zyklotronbewegung aus. Wie groß ist die Zyklotronfrequenz ω_c , mit der bei dieser Bewegung das Teilchen eine Kreisbahn durchläuft?
- b) Verifizieren Sie, dass $\vec{A}(\vec{r})=x_1B\vec{e}_2$ ein geeignetes Vektorpotenzial für das homogene Magnetfeld $\vec{B}=B\vec{e}_3$ ist.
- c) Verwenden Sie zur Bestimmung des Energiespektrums den Ansatz

$$\psi_k(x_1, x_2) = \varphi_k(x_1) e^{ikx_2}$$

für die Eigenfunktion von H mit dem Vektorpotenzial aus **b**). Zeigen Sie, dass die Funktion $\varphi_k(x_1)$ eine Eigenfunktion eines (verschobenen) 1D harmonischen Oszillators der Zyklotronfrequenz ω_c ist und schließen Sie daraus auf das Energiespektrum des Systems. Was lässt sich über die Entartung der Energieniveaus sagen?

43. Drehimpulsvertauschungsrelationen

3+3=6 Punkte

a) Zeigen Sie unter Verwendung von

$$\hat{\vec{L}} = \hat{\vec{r}} \times \hat{\vec{p}}$$

die Drehimpulsvertauschungsrelation

$$[L_1, L_2] = i\hbar L_3.$$

b) Die Drehimpulskomponenten L_1 und L_2 eines Systems mit Hamiltonoperator H seien Erhaltungsgrößen. Zeigen Sie, dass dann auch L_3 eine Erhaltungsgröße des Systems ist.

44. Quantisierung des Bahndrehimpulses

3+3+4=10 Punkte

In dieser Aufgaben Überzeugen Sie sich davon, dass die Komponenten des Bahndrehimpulses $\hat{\vec{L}}$ eines Teilchens nur ganzzahlige Vielfache von \hbar als Eigenwerte haben können.

a) $f(x_1, x_2)$ sei eine differenzierbare Funktion. Zeigen Sie:

$$\frac{\mathsf{d}}{\mathsf{d}\varphi} f(r\cos\varphi, r\sin\varphi) = \left(-x_2 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_2}\right) f(r\cos\varphi, r\sin\varphi) .$$

b) Begründen Sie mittels a), dass die Wirkung des Operators \hat{L}_3 auf eine Wellenfunktion $\psi(r,\varphi,z)$ in Zylinderkoordinaten (r,φ,z) gegeben ist durch

$$\hat{L}_3 \, \psi(r, \varphi, z) \, = \, -i\hbar \frac{\partial}{\partial \varphi} \psi(r, \varphi, z) \, .$$

c) Untersuchen Sie nun das Eigenwertproblem

$$\hat{L}_3 \, \psi_{\lambda}(r, \varphi, z) = \lambda \psi_{\lambda}(r, \varphi, z)$$

mit dem Ansatz

$$\psi_{\lambda}(r,\varphi,z) = g(\varphi)h(r,z)$$

für die Eigenfunktion ψ_{λ} von \hat{L}_3 zum Eigenwert λ . Folgern Sie unter Beachtung der 2π -Periodizität von ψ_{λ} in φ (warum notwendig?), dass der Eigenwert λ in ganzahligen Vielfachen von \hbar quantisiert ist (wie Bohr schon postuliert hatte).