Probabilidades y Estadística

Ramiro Dibur

2025

Índice general

1.	Noc	ciones básicas	2
	1.1.	Modelo probabilístico	2
	1.2.	Eventos	3
	1.3.	Eventos aleatorios	4
	1.4.	Definición de probabilidad	6

Prefacio

Estas son mis notas de Probabilidades y Estadística del segundo cuatrimentre de 2025. Las escribo más que nada para estudiar yo, pero las publico por si le llegan a ser útil a alguien.

Nociones básicas

Formalizamos algunas conceptos de probabilidad que vienen de la intuición.

1.1 Modelo probabilístico

Consideremos un experimento con distintos posibles resultados.

Definición 1.1. El $espacio\ muestral$ de un experimento es el conjunto de posibles resultados del experimento.

Usualmente denotamos un espacio muestral con Ω .

Observación 1.2. Todo resultado corresponde con un único elemento $\omega \in \Omega$.

Veamos algunos ejemplos.

Ejemplo 1.3. Consideremos el siguiente experimento:

- 1. Se tira un dado balanceado de 6 caras.
- 2. Se graba el resultado.

En este caso, el espacio muestral es el conjunto

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

Cabe aclarar que no importa de qué manera escribimos los resultados siempre y cuando la correspondencia con el resultado sea clara. Por ejemplo, podríamos haber definido el espacio muestral como

$$\Omega = \{ \mathbf{O}, \mathbf{O}, \mathbf{O}, \mathbf{O}, \mathbf{O}, \mathbf{O}, \mathbf{O}, \mathbf{O} \}.$$

Ejemplo 1.4. Consideremos el siguiente experimento:

- 1. Se tira una moneda 3 veces.
- 2. Se graba el resultado.

El espacio muestral es

$$\Omega = \{CCC, CCS, \dots, SSC, SSS\}.$$

Nótese que Ω se puede escribir como $\{C, S\}^3$.

1.2. EVENTOS 3

Ejemplo 1.5. Consideremos el siguiente experimento:

- 1. Se elije un habitante de Buenos Aires al azar.
- 2. Se mide su altura en metros.

El espacio muestral podría ser

$$\Omega = \mathbb{R}$$
.

Uno podría argumentar que el espacio muestral debería ser

$$\Omega = [0, 3],$$

ya que es imposible que alguien mida -1 m o 100 m. Sin embargo, lo único que nos interesa es que, al medir a alguien, caiga dentro de Ω .

1.2 Eventos

Definición 1.6. Sea Ω un espacio muestral. Un *evento* es un subconjunto de Ω .

Veámoslo en algunos ejemplos.

Ejemplo 1.7. Consideramos el experimento del ejemplo 1.3. El conjunto

$$A = \{\text{el resultado es un número par}\} = \{2, 4, 6\}$$

es un evento dado que $A \subseteq \Omega$.

Por ahora, usemos la noción intuitiva de probabilidades.

La probabilidad se le asigna a un evento, no a un resultado. Por ejemplo, cuando decimos

$$P(\mathbf{E}) = \frac{1}{6}$$

en realidad queremos decir

$$P(\{\boxdot\}) = \frac{1}{6}.$$

No obstante, por practicidad acudiremos a la primera notación.

Usualmente calculamos la probabilidad de un evento de la siguiente manera:

$$P(A) = \frac{\text{\# casos donde sucede } A}{\text{\# casos totales}}.$$

Veamos por qué esto no es generalizable.

Ejemplo 1.8. Consideremos el siguiente experimento:

- 1. Se tiran 2 dados balanceados de 6 caras.
- 2. Se suman los números de las caras.
- 3. Se graba el resultado.

Un espacio muestral podría ser

$$\Omega = \{2, 3, \dots, 12\}.$$

Sin embargo, $P(2) \neq \frac{1}{10}$. Esto se puede resolver tomando el espacio muestral

$$\Omega = \{ \mathbf{OO}, \mathbf{OO}, \dots, \mathbf{IO}, \mathbf{III} \}.$$

Por lo tanto, para todo resultado $\omega \in \Omega$,

$$P(\omega) = \frac{\text{\# casos donde sucede } A}{\text{\# casos totales}} = \frac{1}{36}.$$

A partir de este ejemplo surge una definición.

Definición 1.9. Sea Ω un espacio muestral. Si Ω es finito y todos sus elementos tienen la misma probabilidad, decimos que Ω es un *espacio muestral equiprobable*.

Sin embargo, hasta ahora únicamente tratamos con espacios muestrales finitos. Veamos qué pasa con los infinitos.

Ejemplo 1.10. Consideremos el siguiente experimento:

- 1. Se elije un punto del disco unitario $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ al azar.
- 2. Se graba el resultado.

Sea
$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le \frac{1}{2}\}.$$

Por lo que

$$P(A) = \frac{\operatorname{área}(A)}{\operatorname{área}(\Omega)}$$

1.3 Eventos aleatorios

No podemos definirle una probablidad a todos los eventos de un espacio muestral.

Definición 1.11. Un evento al cual le podemos definir una probabilidad es llamado un *evento aleatorios*.

Agregamos algunas reglas adicionales.

Definición 1.12. Llamamos \mathcal{F} a una familia de eventos a los cuales podemos calcularles su probabilidad si cumple los siguientes axiomas:

- (F1) $\Omega \in \mathcal{F}$.
- (F2) Si $A \in \mathcal{F}$, entonces $A^{c} \in \mathcal{F}$. (F3) Si $\{A_{n}\}_{n \in \mathbb{N}} \subseteq \mathcal{F}$, entonces $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{F}$.

Observación 1.13. Si una familia cumple los axiomas (F1), (F2) y (F3), entonces se llama una σ -álgebra de conjuntos.

Ejemplo 1.14. En el ejemplo 1.3, el espacio muestral

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

tiene a la familia de eventos $\mathcal{F} = \mathcal{P}(\Omega)$ que se les puede asignar una probabilidad.

Veamos algunas propiedades que podemos deducir.

Proposición 1.15. Sea Ω un espacio muestral y $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ una σ -álgebra. Las $siguientes\ proposiciones\ son\ verda de ras:$

- 2. Si {A_n}_{1≤n≤N} ⊆ F, entonces ∪_{1≤n≤N} A_n ∈ F.
 3. Si {A_n}_{n∈ℕ} ⊆ F, entonces ∩_{n∈ℕ} A_n ∈ F. (También la versión finita.)
 4. Si A, B ∈ F, entonces A \ B ∈ F.

Demostración. (1.) Dado que $\Omega \in \mathcal{F}$ por (F1), obtenemos que $\emptyset = \Omega^{c} \in \mathcal{F}$ por (F2).

(2.) Sea $\{A_n\}_{1\leq n\leq N}\subseteq \mathcal{F}$. Consideremos la familia $\{B_n\}_{n\in\mathbb{N}}$ tal que

$$B_n = \begin{cases} A_n & \text{si } 1 \le n \le N, \\ \varnothing & \text{si } n \ge N. \end{cases}$$

Entonces, por (F3),

$$\bigcup_{1 \le n \le N} A_n = \bigcup_{n \in \mathbb{N}} B_n \in \mathcal{F}.$$

(3.) Sea $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{F}$. Por (F3),

$$\bigcap_{n\in\mathbb{N}} A_n = \left(\bigcup_{n\in\mathbb{N}} A_n^{\mathrm{c}}\right)^{\mathrm{c}} \in \mathcal{F}.$$

(4.) Sean $A, B \in \mathcal{F}$. Dado que B^c ,

$$A \setminus B = A \cap B^{c} \in \mathcal{F}.$$

Ejemplo 1.16. Consideremos el siguiente experimento:

- 1. Se elije un número real del intervalo [0, 1] al azar.
- 2. Se graba el resultado.

Sea $\Omega=[0,1]$ el espacio muestral y sea $\mathcal F$ la familia de eventos a los cuales les podemos asignar una probabilidad. Para un intervalo [a,b] la probabilidad se puede calcular como

$$P([a,b]) = b - a.$$

Aplicando las propiedades de la proposición 1.15, podemos deducir que en $\mathcal F$ están los eventos:

- Los intervalos abiertos y cerrados.
- Uniones e intersecciones numerables de cerrados y/o abiertos.
- Los puntos $\{x\}$ con $x \in [0,1]$.
- Los números racionales Q.

¿Cuál es la probabilidad de \mathbb{Q} ? Basta con tomar $\{B_m\} = \{B(q_m, \frac{\varepsilon}{2^{m+1}})\}_{m \in \mathbb{N}}$ y ver que

$$P\left(\bigcup_{m\in\mathbb{N}} B_m\right) \le \sum_{m\in\mathbb{N}} P(B_m)$$
$$\le \sum_{m\in\mathbb{N}} \frac{\varepsilon}{2^m}$$
$$< \varepsilon.$$

Tomando $\varepsilon \to 0$, obtenemos que $P(\mathbb{Q}) = 0$.

1.4 Definición de probabilidad

La *idea de Laplace* de probabilidad consta en que la probabilidad de un evento es el límite de la frecuencia con la que sucede cuando la cantidad de ensayos tiende a infinito.

Por otro lado, está la axiomatización de Kolmogorov:

Definición 1.17. Sea Ω un espacio muestra y $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ una σ -álgebra. Una función probabilidad es una función $P: \mathcal{F} \to [0,1]$ que cumple los siguientes axiomas:

- (P1) $P(\Omega) = 1$.
- (P2) $P(A) \ge 0$ para todo $A \in \mathcal{F}$.
- (P3) Si $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{F}$ una familia de eventos disjuntos, entonces $P(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n=1}^{\infty}P(A_n)$.

Con esto podemos definir un espacio de probabilidad.

Definición 1.18. Sea Ω un espacio muestral, $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ una familia de eventos y $P: \mathcal{F} \to [0,1]$ una función probabilidad. Entonces, la terna (Ω, \mathcal{F}, P) es un *espacio* de probabilidad.

Probamos algunos resultados inmediatos.

Proposición 1.19. Sea (Ω, \mathcal{F}, P) un espacio de probabilidad. Entonces, las siguientes proposiciones son verdaderas:

- 1. $P(\emptyset) = 0$.
- 2. Si A y B son eventos disjuntos, entonces $P(A \cup B) = P(A) + P(B)$.
- 3. Si $\{A_n\}_{1\leq n\leq N}$ es una familia de eventos disjuntos, entonces $P(\bigcup_{1\leq n\leq N}A_n)=\sum_{n=1}^N P(A_n)$.
- 4. P(A^c) = 1 − P(A).
 5. Si A ⊆ B, entonces P(A) ≤ P(B).
- 6. $P(\bigcup_{n\in\mathbb{N}} A_n) \leq \sum_{n=1}^{\infty} P(A_n)$.

Demostración. (1.) Consideremos la familia $\{\Omega, \emptyset, \ldots\}$. Por (P3),

$$P(\Omega) = P(\Omega \cup \varnothing \cup \cdots)$$
$$= P(\Omega) + \underbrace{P(\varnothing) + \cdots}_{=0}$$

- (2.) La propiedad sale utilizando (P3) y tomando la familia $\{A, B, \varnothing, \ldots\}$.
- (3.) Se prueba por inducción y ussando la proposición anterior.
- (4.) Podemos escribir como unión disjunta $\Omega = A \cup A^{c}$. Y con la propiedad 2. obtenemos que

$$1 = P(\Omega) = P(A) + P(A^{c}),$$

entonces

$$P(A^{c}) = 1 - P(A).$$

(5.) Como $B = (B \setminus A) \cup A$,

$$P(A) < P(B \setminus A) + P(A) = P(B).$$

(6.) Sea $\{A_n\}_{n\in\mathbb{N}}$ una familia de eventos. Consideremos $\{B_n\}_{n\in\mathbb{N}}$ tal que

$$B_n = A_n \setminus \bigcup_{1 \le k \le n-1} A_k.$$

Como los eventos B_n son disjuntos dos a dos,

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right) = P\left(\bigcup_{n\in\mathbb{N}}B_n\right) = \sum_{n=1}^{\infty}P(B_n) \le \sum_{n=1}^{\infty}P(A_n).$$