10721478

Ŗ

SCIENTIFIC REPORT No. 10

INFLUENCE OF IN-PLANE BOUNDARY CONDITIONS ON BUCKLING OF RING-STIFFENED CYLINDRICAL SHELLS

BY

TANCHUM WELLER MENAHEM BARUCH JOSEF SINGER

Department of Aeronautical Engineering
Technion — Israel Institute of Technology,
Haifa, Israel

TAE REPORT No. 101

The document has been approved for rubbing the course and sale; its distribution is unlimited.

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

6 1

This document has been approved for public release and sale; its distribution is unlimited.

Qualified requestors may obtain additional copies from the Defense Documentation Center; all others should apply to the Clearinghouse for Federal Scientific and Technical Information.

SCIENTIFIC REPORT No. 10

INFLUENCE OF IN-PLANE BOUNDARY CONDITIONS ON BUCKLING OF RING STIFFENED CYLINDRICAL SHELLS.

by

TANCHUM WELLER MENAHEM BARUCH JOSEF SINGER

Department of Aeronautical Engineering Technion - Israel Institute of Technology, Haifa, Israel

TAE REPORT No. 101

This document has been approved for public release and sale; its distribution is unlimited.

The research reported in this document has been sponsored by the Air Force Office of Scientific Research, through the European Office of Aerospace Research, United States Air Force under Contract AF61(052)-905 and Contract \(\cap{6}\)1052-69-C0040.

TABLE OF CONTENTS

	PAGE No.
ABSTRACT	I
LIST OF SYMBOLS	II - IV
LIST OF TABLES	v
LIST OF FIGURES	VI
1. INTRODUCTION	1 - 2
2. EQUATIONS AND BOUNDARY CONDITIONS	3 - 8
3. COMPLIANCE WITH IN-PLANE BOUNDARY CONDITIONS	9 - 11
4, SOLUTION	12 - 13
5. AXISYMMETRIC BUCKLING	14 - 15
6. NUMERICAL RESULTS AND DISCUSSION	16 - 22
7. CONCLUSIONS	23 - 24
ACKNOWLEDGEMENT	24
REFERENCES	25 - 29
TABLES	30 - 37

ABSTRACT

The effect of in-plane boundary conditions on the buckling loads of simply supported ring-stiffed cylindrical shells is studied. As in the case of unstiffened shells, the "weak" in-plane boundary conditions SSI and SS2 yield here critical loads about one half of the "classical" loads. It was observed that the SS1 critical loads are identical with the SS2 loads and the SS4 loads are almost the same as the "classical" SS3 loads.

The combined effect of stiffener parameters and in-plane boundary conditions is studied. For internally stiffened shells the influence of in-plane boundary conditions is found to diminish with increasing values of stiffener eccentricity and area. No such effect is observed for externally stiffened shells. The buckling modes are also studied and found that they are dependent upon shell length (or Z) and upon stiffener location and parameters.

LIST OF SYMBOLS

A, B	- coefficients of additional displacements - Eqs. (9)
A_n , B_n , C_n	- coefficients of displacements - Eqs. (6)
A _{jn} , B _{jn}	- coefficients of additional displacements - Eqs. (13)
$A_{1n}A_{4n}$	- coefficients of additional displacements - Eqs. (14)
A(n,m),B(n,m),D(n,m)	- defined by Eqs. (23)
$(A_{o1})_{Ax}$, $(A_{o2})_{Ax}$	- coefficients of axisymmetric displacement - Eqs. (25)
A ₂	- cross sectional area of ring
a.	- distance between rings (see Fig. 1)
a _n , b _n	- defined by Eqs. (7)
D	$- Eh^3/12(1-v^2)$
D _{on} , D _{ln} , D _{ln}	- defined by Eqs. (7)
E	- moduli of elasticity
e ₂	- distance between centroid of stiffener cross-section
	and middle surface of shell, positive when inside (see
	Fig. 1)
G	- shear moduli
h	- thickness of shell
122	- moment of inertia of ring cross-section about its
	centroidal axis
I _{c/2}	- moment of inertia of ring cross-section about the
	middle surface of the shell.
I _{t2}	- torsion constant of ring cross-section

```
-(1 + \mu_2)
k
                      - length of shell between bulkheads
                      -(L/2)
                      - moment resultants acting on element - Eqs. (2)
M<sub>x</sub>,M<sub>o</sub>,M<sub>xo</sub>, M<sub>ox</sub>
                      - integer
N<sub>x</sub>, N , N<sub>x</sub> ,
                      - membrane forces resultants acting on element
                       - integer, also number of half axial waves
                       - axial load
                       - defined by Eqs. (23)
Q(n,t)
                       - radius of shell
R
                       - defined by Eqs. (23)
R(m)
                      - defined by Eqs. (23)
S(m)
                      - defined by Eqs. (23)
T(n)
                       - number of circumferential waves
t
                       - uefined by Eqs. (23)
U(n,t)
u, v, w
                       - displacements (see Fig. 1)
                      - non-dimensional displacements ( = u^*/R; v^*/R; w^*/R
u, v, w
                        respectively)
u_o(x), v_o(x), w_o(x) - additional displacements - Eqs. (6)
(u_0)_n, (v_0)_n - displacements defined by Eqs. (9)

x^*, y^*, z^*, \phi - coordinates (See Fig. 1)
                      - non-dimensional coordinates (= x*/R; y*/R; z*/R)
x, y, z
                       -(1-v^2)^{1/2}(L/R)^2(R/h)
Z
```

Subscripts following a comma indicate differentiation.

LIST OF TABLES.

TABLE No.

- Dimensions and Critical Loads of Simply Supported Ring-Stiffened Shells for Different in-Plane Boundary Conditions, (e₂/h) = ± 1.
- Dimensions and Critical Loads of Simply Supported Ring-Stiffened Shells for Different in-Plane Boundary Conditions, $(e_2/h) = \pm 5$.
- 2 Dimensions and Critical Loads for Study of Effect of Increase of Stiffener Eccentricity.
- Dimensions and Critical Loads for Investigation of Effect of Increase of Stiffener Area.
- 4 Effect of Increased Moment of Inertia of Stiffener on the Critical Loads.
- 5 Dimensions and Critical Loads for Study of Effect of Increase of Stiffener Moment of Inertia

LIST OF FIGURES

FIGURE No.

- 1 Notation
- Variation of Ratio of Buckling Loads with Shell Geometry, (e₂/h) = ± 1.
- 2b Variation of Ratio of Buckling Loads with Shell Geometry, $(\epsilon_2/h) = \pm 5$.
- Variation of Ratio of Buckling Loads with Shell Length for Different (R/h) Ratios.
- Effect of Stiffener Eccentricity on the Ratio of Buckling Loads.
- 5 Effect of Stiffener-Area on the Ratio of Buckling Loads.
- Effect of Stiffener Moment of Inertia on the Ratio of Buckling Loads.
- 7 Buckling Modes of "Thick" Shells, (R/h) = 100 with Low Eccentricity, (E₂/h) = ±1.
- 8 Effect of Stiffener Eccentricity (e₂/h) = ± 5, on the Buckling Modes of "Thick" Shells, (R/h) = 100.
- 9 Buckling Modes of "Thin" Shells, (k/h) = 2000.
- Effect of Stiffener Eccentricity, (E₂/h) = ± 5, on the Buckling Modes of "Thin" Shells, (R/h) = 2000
- Effect of Stiffener Moment of Inertia and Large Values of 2 on the Buckling Modes.

INTRODUCTION

The influence of the in-plane boundary conditions on the buckling load of unstiffened cylindrical shells under axial compression or longitudinal shear has been the subject of many studies [1-14]. For simply supported end conditions, the most significant result obtained was that the zero shear stress boundary conditions, SS1 $(N_x = N_{x\phi} = 0)$ and SS2 $(u = N_{x\phi} = 0)$, reduce the critical load to one half of the "classical" load - that obtained for the SS3 $(v = N_x = 0)$ boundary conditions, while for the SS4 (u = v = 0) boundary conditions critical loads equal to the "Classical" ones were obtained. For unstiffened conical shells the effect was studied in [15], [16] and [17].

The influence of the in-plane end constraints on the buckling under lateral and hydrostatic pressure of unstiffened cylindrical shells was investigated in [18] and [19]. The effect in the case of free vibrations was also studied in [20] and [21]. The effect of prebuckling deformations on the buckling load of unstiffened shells was shown by different investigators [9, 20, 23] to be small except for very short shells. For stiffened shells this effect was found to be even smaller [24] and [25].

For stiffened-cylindrical shells the effect of the in-plane boundary conditions on the buckling load was studied in Refs. [26] and [27]. Axi-symmetric buckling modes were not examined in these studies. Since, however,

earlier studies [28] showed that in the case of externally ring-stiffened cylindrical shells under axial compression these modes are the critical buckling modes, they should also be considered.

In the present report a different approach is employed to study the influence of the in-plane boundary conditions on the buckling under axial compression and hydrostatic pressure of simply supported ring-stiffened shells. The displacement method employed for conical shells in [29] and [15] and for cylindrical shells in [14] (which is an extension of that used earlier for classical boundary conditions [30]) is applied. In the analysis, a solution is assumed for the w displacement, which solves the first two equilibrium equations exactly. The solution yields four constants which are determined by compliance with the appropriate boundary conditions (SS1; 2; 3 and 4) Then the third equation is solved by a standard Galerkin procedure. Axisymmetric buckling modes are included and an extensive parametric study is carried out,

It may be noted that the stiffening is assumed to be closely spaced and hence the stiffeners are taken as "smeared" or "distributed" over the entire shell, which implies that discreteness effects - usually negligible [31] and [32] - are not considered. The effects of eccentricity of loading are also not included in the present study.

2. EQUATIONS AND BOUNDARY CONDITIONS

The analysis is based on the stability equation of [30] for buckling under combined axial compression and hydrostatic pressure. For ring-stiffened cylindrical shells these equations become:

$$\begin{split} & Eh/(1-v^2) \left[u_{,xx} + (\frac{1-v}{2})u_{,\phi\phi} + (\frac{1+v}{2})v_{,x\phi} - vw_{,x} \right] = 0 \qquad (1a) \\ & Eh/(1-v^2) \left[(\frac{1+v}{2})u_{,x\phi} + (1+\mu_2)v_{,\phi\phi} + (\frac{1-v}{2})v_{,xx} - (1+\mu_2)w_{,\phi} - \chi_2 w_{,\phi\phi\phi} \right] = 0 (1b) \\ & - (D/R) \left\{ \zeta_2 (2w_{,\phi\phi}^-, \phi\phi\phi) + w_{,xxxx} + (2+\eta_{t2})w_{,xx\phi\phi} + (1+\eta_{o2})w_{,\phi\phi\phi\phi} \right. \\ & + \left. 12 (R/h)^2 \left[(1+\mu_2) (w-v_{,\phi}) - vu_{,x} \right] + \lambda (\frac{w_{,xx}}{2}) + \\ & + \lambda_p \left[(\frac{w_{,xx}}{2}) + w_{,\phi\phi} \right] \right\} = 0 \qquad (1c) \end{split}$$

and the forces and moments acting on an element are given by:

$$N_{X} = Eh/(1-v^{2}) [u_{,X} + v(v_{,\phi} - w)]$$

$$N_{\phi} = Eh/(1-v^{2}) [(1+\mu_{2})(v_{,\phi} - w) + vu_{,X} - \chi_{2}w_{,\phi\phi}]$$

$$N_{X\phi} = N_{\phi X} = Eh/2(1+v) [u_{,\phi} + v_{,X}]$$

$$M_{X} = -(D/R) [w_{,xX} + vw_{,\phi\phi}]$$

$$M_{\phi} = -(D/R) [w_{,\phi\phi} (1 + \eta_{o2}) + vw_{,xX} - \zeta_{2}(v_{,\phi} - w)]$$

$$M_{X\phi} = (D/R) (1 - v)w_{,X\phi}$$

$$M_{\phi X} = -(D/R) [(1 - v) + \eta_{c2}]w_{,X\phi}$$

In the case of simply supported shells the usual out of plane boundary conditions to be satisfied at the edges are:

$$w = M_{X} = 0$$
 at $x = -(\ell/R)$ or $y = 0$
 $x = (\ell/R)$ or $y = (\pi/\beta)$

The displacements u, v and w, which are the solutions of Eqs. (1), must also satisfy the appropriate in-plane boundary conditions, one of the following 4 sets,

SS1;
$$N_{X} = N_{X\phi} = 0$$

SS2: $u = N_{X\phi} = 0$
"Classical "SS3; $v = N_{X} = 0$
 $x = (t/R)$ or $y = 0$
 $x = (t/R)$ or $y = (\pi/8)$
SS4; $u = v = 0$

Since w = 0 at the edges also $w_{,\phi\phi}$ = 0 at the boundaries and the condition for M_x = 0 at the boundaries can be replaced by

$$w = w_{,xx} = 0$$
 at $x = -(\ell/R)$ or $y = 0$ (5)
 $x = (\ell/R)$ or $y = (\pi/\beta)$

On the basis of [14], [28] and [30] the displacements for the solution of Eqs. (1) are chosen as

$$u = \left[u_{O}(x) + \sum_{n=1}^{\infty} A_{n}\cos(n\beta y)\right]\sin(t\phi)$$

$$v = \left[v_{O}(x) + \sum_{n=1}^{\infty} B_{n}\sin(n\beta y)\right]\cos(t\phi)$$

$$w = \left[w_{O}(x) + \sum_{n=1}^{\infty} C_{n}\sin(n\beta y)\right]\sin(t\phi)$$
(6)

The Fourier series terms of the displacements are solutions of Eqs. (1), as was shown in [28] and [30], and their substitution in Eqs. (1) yield the coefficients A_n and B_n in terms of C_n as in Eq. (16) of [30].

$$a_{n} = \frac{A_{n}}{C_{n}} = \frac{D_{1n}}{D_{on}}$$

$$b_{n} = \frac{B_{n}}{C_{n}} = \frac{D_{2n}}{D_{on}}$$
(7)

where

$$D_{1n} = -(\frac{1+\nu}{2})\chi_{2} n\beta t^{4} + (1 + \mu_{2})(\frac{1-\nu}{2})n\beta t^{2} - \nu(\frac{1-\nu}{2})n^{3}\beta^{3}$$

$$D_{2n} = (\frac{1-\nu}{2})\chi_{2}t^{5} + [\chi_{2}n^{2}\beta^{2} - (\frac{1-\nu}{2})(1 + \mu_{2})]t^{3} + ((\frac{1+\nu}{2})\nu - (1 + \mu_{2})]n^{2}\beta^{2}t$$

$$D_{0n} = (\frac{1-\nu}{2})(1 + \mu_{2})t^{4} + [(1 + \mu_{2}) - \nu] n^{2}\beta^{2}t^{2} + (\frac{1-\nu}{2})n^{4}\beta^{4}$$

The additional displacement $w_0(x)$ is arbitrarily assumed to be equal to zero since the Fourier series terms fulfil the boundary conditions Eqs. (5). Substitution of $w_0(x) = 0$ in the first two stability equations Eqs. (1a) and (1b) yields two homogeneous differential equations for the additional displacements u_0 and v_0 .

$$u_{o,xx} + (\frac{1-\nu}{2})u_{o,\phi\phi} + (\frac{1+\nu}{2})v_{o,x\phi} = 0$$

$$(\frac{1+\nu}{2})u_{o,x\phi} + (1+\mu_2)v_{o,\phi\phi} + (\frac{1-\nu}{2})v_{o,xx} = 0$$
(8)

The solution of Eqs. (8) can be written as

$$(u_{\alpha_n}) = A_{\alpha_n} \sin(t\phi)$$

$$(v_{\alpha_n}) = Be^{\alpha_n} \cos(t\phi)$$
(9)

Substitution of Eqs. (8) into (9) yields the following homogeneous algebraic equation

$$\begin{bmatrix} \left[\alpha^{2} - \left(\frac{1-\nu}{2}\right)t^{2}\right] - \left(\frac{1+\nu}{2}\right)\alpha t \\ \left(\frac{1+\nu}{2}\right)\alpha t & \left[\left(\frac{1-\nu}{2}\right)\alpha^{2} - \left(1+\mu_{2}\right)t^{2} \end{bmatrix} \times \begin{cases} A \\ B \end{bmatrix} = 0$$
(10)

and non vanishing values for A and B are obtained if the determinant of the coefficients of A and B is vanishing. Thus the characteristic equation for α is obtained

$$(\frac{1-\nu}{2})\alpha^4 - t^2[(1+\mu_2) - \nu] \alpha^2 + t^4(1+\mu_2)(\frac{1-\nu}{2}) = 0$$
 (11)

and the roots of this equation are

$$\alpha_{1} = -\alpha_{2} = t \left[\frac{(k - \nu) + \sqrt{(k - 1)(k - \nu^{2})}}{(1 - \nu)} \right]^{1/2}$$

$$\alpha_{3} = -\alpha_{4} = t \left[\frac{(k - \nu) - \sqrt{(k - 1)(k - \nu^{2})}}{(1 - \nu)} \right]^{1/2}$$
(12)

where
$$k = (1 + \mu_2)$$

It can be shown that α_1 and α_2 are always real, because $(k-1)(k-\nu^2) > 0$. Similarly α_2 and α_4 are always real for all practical applications because

$$(k-\nu) \rightarrow \sqrt{(k-1)(k-\nu^2)}$$
 for a large range of k.

With the above calculated values of $\alpha_{\text{\tiny o}}$ the additional displacements $u_{\text{\tiny o}}$ and $v_{\text{\tiny o}}$ become

$$(u_{o_n}) = C_n \sin(t\phi) \sum_{j=1}^{4} A_{jn} t^{\alpha_j x}$$

$$(v_{o_n}) = C_n \cos(t\phi) \sum_{j=1}^{4} B_{jn} t^{\alpha_j x}$$
(13)

From Eqs. (10) the relation between A_{jn} and B_{jn} is given by

where
$$\theta_{j} = \frac{2\alpha_{j} - (1 - \nu)t^{2}}{(1 + \nu)\alpha_{j}t}$$
and
$$\theta_{1} = -\theta_{2} ; \quad \theta_{3} = -\theta_{4}$$
(14)

Hence the complete displacements can be written as

$$u = \sin(t\phi) \sum_{\substack{n=1 \\ n=1}}^{\infty} C_n [a_n \cos(n\beta y) + A_{1n} \sinh(\alpha_1 x) + A_{2n} \sinh(\alpha_3 x) + A_{3n} \cosh(\alpha_1 x) + A_{4n} \cosh(\alpha_3 x)]$$

$$v = \cos(t\phi) \sum_{\substack{n=1 \\ n=1}}^{\infty} C_n [b_n \sin(n\beta y) + \theta_1 A_{1n} \cosh(\alpha_1 x) + \theta_3 A_{2n} \cosh(\alpha_3 x) + \theta_1 A_{3n} \sinh(\alpha_1 x) + \theta_3 A_{4n} \sinh(\alpha_3 x)]$$

$$+ \theta_3 A_{4n} \sinh(\alpha_3 x)]$$

$$w = \sin(t\phi) \sum_{\substack{n=1 \\ n=1}}^{\infty} C_n \sin(n\beta y)$$
(15)

These equations include four constants of integration A_{jn} which will be determined from the appropriate in-plane boundary conditions.

3. COMPLIANCE WITH IN-PLANE BOUNDARY CONDITIONS

The values of the constants A_{jn} are determined by enforcing the four sets of boundary conditions listed in (4).

For example, in case SS4 the requirement

$$u = v = 0$$
 at $x = -(\ell/R)$ or $y = 0$
 $x = (\ell/R)$ or $y = (\pi/\beta)$

yields

$$\begin{bmatrix} \operatorname{sh}(\alpha_1 t/R) & \operatorname{sh}(\alpha_3 t/R) & -\operatorname{ch}(\alpha_1 t/R) & -\operatorname{ch}(\alpha_3 t/R) \\ \operatorname{sh}(\alpha_1 t/R) & \operatorname{sh}(\alpha_3 t/R) & \operatorname{ch}(\alpha_1 t/R) & \operatorname{ch}(\alpha_1 t/R) \\ \theta_1 \operatorname{ch}(\alpha_1 t/R) & \theta_3 \operatorname{ch}(\alpha_3 t/R) & -\theta_1 \operatorname{sh}(\alpha_1 t/R) & -\theta_3 \operatorname{sh}(\alpha_3 t/R) \\ \theta_1 \operatorname{ch}(\alpha_1 t/R) & \theta_3 \operatorname{ch}(\alpha_3 t/R) & \theta_1 \operatorname{sh}(\alpha_1 t/R) & \theta_3 \operatorname{sh}(\alpha_3 t/R) \\ \end{bmatrix} \begin{bmatrix} A_{1n} \\ A_{2n} \\ A_{3n} \\ A_{3n} \\ A_{4n} \end{bmatrix} = \begin{bmatrix} a_n \\ (-1)^n a_n \\ 0 \\ 0 \end{bmatrix}$$

(16)

This matrix equation can be divided into two matrix equations one yielding symmetric modes of buckling - n = 1, 3, 5... and one antisymmetric modes - n = 2, 4, 6...

For symmetric modes:
$$n = 1, 3, 5...$$

$$A_{3n} = A_{4n} = 0$$

$$sh(\alpha_1 t/R) \quad sh(\alpha_3 t/R)$$

$$\theta_1 ch(\alpha_1 t/R) \quad \theta_3 ch(\alpha_3 t/R)$$

$$A_{2n} = A_{4n} = 0$$

$$A_{3n} = A_{4n} = 0$$

For antisymmetric modes:

$$a = 2, 4, 6...$$

$$A_{1n} = A_{2n} = 0$$

$$\begin{bmatrix} \operatorname{ch}(\alpha_1 \mathfrak{t}/R) & \operatorname{ch}(\alpha_3 \mathfrak{t}/R) \\ \theta_1 \operatorname{sh}(\alpha_1 \mathfrak{t}/R) & \theta_3 \operatorname{sh}(\alpha_3 \mathfrak{t}/R) \end{bmatrix} = \begin{cases} A_{3n} \\ A_{4n} \end{cases} = \begin{cases} -a_n \\ 0 \end{cases}$$
(17b)

In case SS3

$$N_x = v = 0$$

In a similar manner to case SS4, a set of 4 homogeneous equations is obtained for which only the trivial vanishing solution exists

$$A_{1n} = A_{2n} = A_{3n} = A_{4n} = 0 (18)$$

and the "classical" solution of [28] is obtained.

In case SS 2

$$u = N_{x\phi} = 0$$

For symmetric modes: n = 1, 3, 5

$$A_{3n} = A_{4n} = 0$$

$$\begin{bmatrix} sh(\alpha_1 t/R) & sh(\alpha_3 t/R) \\ \alpha_1 \theta_1 sh(\alpha_1 t/R) & \alpha_3 \theta_3 sh(\alpha_3 t/R) \end{bmatrix} \begin{bmatrix} A_{1n} \\ A_{2n} \end{bmatrix} = \begin{bmatrix} a_n \\ n \beta b_n \end{bmatrix}$$
(19a)

antisymmetric

whereas for asymmetric modes: n = 2,4,6...

$$A_{1n} = A_{2n} = 0$$

and

$$\begin{bmatrix} \operatorname{ch}(\alpha_{1} \mathfrak{k}/R) & \operatorname{ch}(\alpha_{3} \mathfrak{k}/R) \\ \alpha_{1} \theta_{1} \operatorname{ch}(\alpha_{1} \mathfrak{k}/R) & \alpha_{3} \theta_{3} \operatorname{ch}(\alpha_{3} \mathfrak{k}/R) \end{bmatrix} \begin{bmatrix} A_{3n} \\ A_{4n} \end{bmatrix} = \begin{bmatrix} -a_{n} \\ -n\beta b_{n} \end{bmatrix}$$
(19b)

In case SS 1

$$N_{X} = N_{X\dot{\phi}} = 0$$

For symmetric modes: n=1, 3, 5...

$$A_{3n} = A_{4n} = 0$$

and

$$\begin{bmatrix} (\alpha_1 - vt\theta_1) \operatorname{ch}(\alpha_1 t/R) & (\alpha_3 - vt\theta_3) \operatorname{ch}(\alpha_3 t/R) \\ (t + \alpha_1 \theta_1) \operatorname{sh}(\alpha_1 t/R) & (t + \alpha_3 \theta_3) \operatorname{sh}(\alpha_3 t/R) \end{bmatrix} \begin{bmatrix} A_{1n} \\ A_{2n} \end{bmatrix} \begin{bmatrix} 0 \\ ta_n + n\beta b_n \end{bmatrix}$$
(20a)

antisymmetric

whereas for asymmetric modes: n = 2,4,6...

$$A_{1n} = A_{2n} = 0$$

and

$$\begin{bmatrix} (\alpha_1 - vt\theta_1) \operatorname{sh}(\alpha_1 t/R) & (\alpha_3 - vt\theta_3) \operatorname{sh}(\alpha_3 t/R) \\ (t + \alpha_1 \theta_1) \operatorname{ch}(\alpha_1 t/R) & (t + \alpha_3 \theta_3) \operatorname{ch}(\alpha_3 t/R) \end{bmatrix} \begin{bmatrix} A_{3n} \\ A_{4n} \end{bmatrix} = \begin{bmatrix} 0 \\ -ta_n - n\beta b_n \end{bmatrix}$$
(20b)

4. SOLUTION

Now every term of the displacements series Eqs. (15) is a solution of the first two stability equations (1a) and (1b).

The third equation (lc) is solved by a Galerkin procedure.

$$2\pi \frac{(\ell/R); (\pi/\beta)}{\int d\phi} \int_{0}^{\pi/\beta} -(D/R) \{\zeta_{2}(2w_{,\phi\phi}^{-v},\phi\phi^{)+w_{,xxxx}^{+}(2+\eta_{t1})w_{,xx\phi\phi}^{+}(1+\eta_{02})w_{,\phi\phi\phi\phi}^{+}(1+\eta_{02})w_{,\phi\phi\phi\phi}^{+}(1+\eta_{02})w_{,\phi\phi\phi\phi\phi}^{+}(1+\eta_{02}^{-v})\psi_{,\phi\phi\phi\phi}^{-v}, \psi_{,\phi\phi\phi\phi}^{-v}, \psi_{,\phi\phi\phi}^{-v}, \psi_{,\phi\phi}^{-v}, \psi_{,\phi\phi}$$

Substitution of Eqs. (15) and performing the necessary integration yields a system of linear homogeneous algebraic equations for the unknowns λ and λ_p which are the critical load parameters

$$\sum_{n}^{\infty} C_{n}[A(n,m) + \lambda B(n,m) + \lambda_{p} D(n,m)] = 0$$

$$m = 1,2,3,...$$

m; n = 1,3, 5... for symmetric modes of buckling and

where

m; n = 1,3, 5... for symmetric modes or buckling and

m; n = 2,4, 6... for asymmetric modes of buckling

and where for the symmetric modes

$$A(r_{1},m) = \delta_{mn} \frac{\pi^{2}}{2\beta} Q(n,t) + ch(\alpha_{1} \ell/R) R(m) A_{3n} + ch(\alpha_{3} \ell/R) S(m) A_{2n}$$
(23a)

 $B(n,m) = \delta_{mn}T(n)$ (23b)

$$D(n,m) = \delta_{mn}U(n, t)$$
 (23c)

antisymmetric

and for the asymmetric modes

$$A(n,m) = \delta_{mn} \pi^2 / 2\beta \, Q(n,t) - sh(\alpha_1 \ell / R) R(m) \, A_{3n} - sh(\alpha_3 \ell / R) S(m) \, A_{4n}$$
 (23d)

$$B(n,m) = \delta_{mn} T(n)$$
 (23e)

$$D(n,m) = \delta_{mn}U(n,t)$$
 (23f)

Q(n,t), R(m), S(m), T(n), U(n,t) in Eqs. (23) are defined as follows:

$$Q(n,t) = \{ [\zeta_2 t^2 - 12(R/h)^2 (1 + \mu_2)] tb_n - 12(R/h)^2 [vn\beta a_n + (1 + \mu_2)] - n^4 \beta^4 - t^2 [t^2 (1 + \eta_{02}) + (2 + \eta_{t2}) n^2 \beta^2 - 2\zeta_2] \}$$

$$\frac{2\theta_1 m\beta \pi}{2} \left\{ \frac{3}{2} + 2\pi \mu_2 \frac{2}{2} + \frac{\alpha_1}{2} +$$

$$R(m) = \frac{2\theta_1 m\beta \pi}{\alpha_1^2 + m^2 \beta^2} \{ \zeta_2 t^3 - 12(R/h)^2 [t(1 + \mu_2) - \nu(\frac{\alpha_1}{\theta_1})] \}$$

$$S(m) = \frac{2\theta_3 m \beta \pi}{\alpha_3^2 + m^2 \beta^2} \{ \zeta_2 t^3 - 12(R/h)^2 [t(1 + \mu_2) - \nu(\frac{\alpha_3}{\theta_3})] \}$$

$$T(n) = (\pi^2/2\beta) \frac{n^2\beta^2}{2}$$

$$U(n,t) = (\pi^2/2\beta)[t^2 + \frac{n^2\beta^2}{2}]$$

Truncating of the displacement series at n = N yields a NxN stability matrix Eq. (22) whose lewest eigenvalue yields the critical load for n = N. In the calculations, the circumferential number of waves (t) is treated as a parameter for which the minimal critical value is found for a given n. The size NxN of the matrix is determined by the convergence criterion for the critical load.

5. AXISYMMETRIC BUCKLING.

For this mode of buckling t = 0 and there is no dependence on v and θ and the equilibrium equation (1) degenerate to

$$(Eh/1-v^2) u_{xx} - vw_x]=0$$
 (24a)

$$-(D/R)[-w_{,xxxx} + 12(R/h)^{2}(vu_{,x} - w) - (\lambda + \lambda_{p})(\frac{w_{,xx}}{2})] = 0$$
 (24b)

If as before, $w_0 = 0$, the additional displacement u_0 becomes

$$u_0 = (A_{01})_{Ax} X + (A_{02})_{Ax}$$
 (25)

and the complete displacements are then

$$u = \sum_{n=1}^{\infty} C_n [a_n \cos(n\beta y) + (A_{o1})_{AX} X + (A_{o2})_{AX}]$$

$$w = \sum_{n=1}^{\infty} C_n \sin(n\beta y)$$
(26)

and, as before, the coefficients are determined by compliance with the appropriate boundary conditions.

For axisymmetric buckling the in-plane boundary conditions (4) are given by:

In cases S.S.1 and S.S.3:
$$N_{\chi} = 0$$
 at $x = -(t/R)$ or $y = 0$
and cases S.S.2 and S.S.4: $u = 0$ $x = (t/R)$ or $y = (\pi/\beta)$ (27)

The coefficients are therefore:

For S S 4 and S.S.2

$$(A_{01})_{Ax} = \begin{cases} \frac{2\beta}{\pi} a_n & n = 1, 3, 5... \\ 0 & n = 2, 4, 6... \end{cases}$$

$$(A_{02})_{AX} = \begin{cases} 0 & n = 1.3.5... \\ -a_n & n = 2.4.6... \end{cases}$$
 (28)

and for SS3 and SS1

$$(A_{o1})_{Ax} = (A_{o2})_{Ax} = 0$$
 (29)

 $(A_{o2})_{Ax}$ is assumed to vanish because it represents a rigid body translation in the axial direction and thus can be ignored:

The second stability equation (24b) is again solved by the Galerkin procedure:

$$\frac{2\pi}{\int d\phi} \int \frac{(D/R)}{\int (D/R)} [w]_{,xxxx} + \frac{12(R/h)^{2}(1+\mu_{2})(vu]_{,x}-w}{(1+\mu_{2})(vu]_{,x}-w} + \frac{w}{2} (\lambda+\lambda_{p})]w_{m}dx = 0$$
(30)

which yields for the symmetric modes n = 1,3,5... the set of linear algebraic homogeneous equation

$$C_{n} \{ (-\pi^{2}/2\beta) \delta_{mn} \{ 24(R/h)^{2} [a_{n} n\beta v + (1+\mu_{2})] + 2 n^{4}\beta^{4}] \} + (48/m\beta) (A_{o1})_{Ax} (R/h)^{2} \pi v + n^{2}\beta^{2} (\pi^{2}/2\beta) \delta_{mn} (\lambda + \lambda_{p}) \} = 0 \quad m = 1,3,5,...$$
 (31)

and for the asymmetric modes - $n \approx 2$, 4,6.. another set

$$\delta_{mn}C_{n}(\pi^{2}/2\beta)\{24(R/h)^{2}[a_{n} n\beta\nu + (1+\mu_{2})] + 2n^{4}\beta^{4} + n^{2}\beta^{2}(\lambda+\lambda_{p})\} = 0$$

$$m = 2,4,6,...$$
(32)

6. NUMERICAL RESULTS AND DISCUSSION

In the numerical work two main stiffener configurations, differing in their eccentricity, were studied, one with $(e_2/h) = {}^{2}1$, $(A_2/ah) = 0.5$, $(I_{22}/ah^3) = 2$ and $n_{t2} = 3$ (Table 1a) and the other one with $(e_2/h) = {}^{2}5$, $(A_2/ah) = 0.5$, $(I_{22}/ah^3) = 2$ and $n_{t2} = 3$ (Table 1b). In both studies the shell geometry was varied in the ranges $0.03 \le (L/R) \le 2.00$ and $100 \le R/h \le 2000$. The critical loads obtained for these geometries of shells and stiffeners are presented in Tables 1a and 1b. These loads are computed for the four simple support in-plane boundary conditions SS1 to SS4. The calculated critical loads are compared with the "classical" bucklings loads (SS3 boundary conditions) and the results are plotted as a function of the Batdorf parameter 2 in Figs. 2a and 2b and as a function of the nondimensionalized shell length (L/R) in Fig. 3 with (R/h) as an additional parameter.

From Figs. 2a and 2b, as well as Fig. 3, it can be seen that the SS1 boundary conditions yield exactly the same critical loads as the SS2 boundary conditions and that the SS4 boundary conditions yield the same loads as the "classical" SS3 conditions. From Figs. 2a and 2b it can be seen that in the very low range of the Batdorf parameter Z < 0.2 the different in-plane boundary conditions do not differ the critical loads. But from Tables1a and 1b one may also observe that, though the critical loads are identical the corresponding buckling modes are completely different.

The SS1 and SS2 boundary conditions yield asymmetric buckling modes whereas the SS3 and SS4 boundary conditions yield axisymmetric buckling modes.

It may be noted that for asymmetric modes the critical number of circumferential waves is t = 2 in many cases. For such small numbers of circumferential waves the Donnell type stability equations employed in the analysis are inaccurate in general. However, since the critical loads are found to increase only very slightly if t is increased from 2 to 4 or 5 (usually by less than 1%), the buckling loads with t = 2 can here be taken as close approximations.

With increasing values of Z up to values of $Z \approx 4.7$ the critical loads corresponding to SS1 and SS2 boundary conditions decrease to values as low as 35% of the "classical" critical loads for $Z \approx 4.7$. Beyond this value of Z, the SS1 and SS2 critical loads increase with Z, reaching values of about one half of the "Classical" load for $Z \approx 10$. For Z > 10 there is a slight increase of the SS1 and SS2 critical loads with increasing Z. This behavior differs slightly from that of unstiffened shells for which the SS1 and SS2 boundary conditions yield half the critical "classical" load independent of _ (See [6], [7], [13] and [14]).

Figures 2a and 2b show clearly that the influence of the in-plane boundary conditions depends on the eccentricity of the stiffeners. In Fig. 2a it is observed that in the case of low values of eccentricity, $(e_2/h) = \pm 1$ both externally or internally stiffened shells are equally affected by the in-plane boundary conditions for values of Z larger than 10. A noticeable

difference between external and internal stiffening appears there only in the range 4 < Z < 10 where first external stiffening yields lower ratios of critical loads than internal stiffening and then the effect is inverted but of smaller magnitude.

With the larger values of eccentricity $(e_2/h) = \pm 5$ in Fig. 2b a noticeable difference is evident between internal and external stiffening for low value of Z (Z > 1) as well as for larger values of Z. External stiffening yields lower ratios of SS1 and SS2 to SS3 loads for most shell geometries, except for a small region 6 < Z < 9 where the effect is inverted. Similar conclusions can be drawn from Fig. 3.

There is some scatter of the points representing the ratios of the critical loads when plotted versus the shell geometry parameter Z. There are two reasons for this scatter. First the shell geometry parameter is only an approximate overall parameter in the case of stiffened shells and hence most of the scatter disappears when the ratios are plotted for the separate geometric parameters (See Fig. 3). Secondly the critical values occur at different circumferential curve numbers for different in-plane boundary conditions. The necessity of integral values causes the well known "ripples" in the curves of buckling load versus geometry parameters, which differ for each case and result in scatter when divided to give the ratios of the buckling loads.

In [28] it was concluded that externally ring-stiffened cylindrical shells should always buckle in an axisymmetric mode. The present results (Tables la and lb) extend this conclusion in the SS 4 boundary conditions which are also shown to yield axisymmetric modes of buckling for such shells.

In Table 2 and Fig.4 the variation of the influence of the in-plane boundary conditions with increasing eccentricity is studied. The geometries of the shells are given in Table 2. From Fig. 4 it can be seen that for external stiffening the influence of in plane-boundary conditions does not change with magnitude of the eccentricity. For inside stiffening, on the other hand, the magnitude of the eccentricity affects the influence of the in-plane-boundary conditions which is reduced with increasing eccentricity.

The variation of the influence of the in-plane boundary conditions with increase of the rings area parameters (A_2/ah) is investigated in Table 3 and Fig. 5. Geometry and dimensions of the shells studied are presented in Table 3. From Fig. 5 it is seen that for externally stiffened shells the magnitude of the ring-area is practically inmaterial whereas for inside stiffening it is a major factor. The SSI and SS2 critical loads increase noticeably with increasing values of the area parameter (A_2/ah) and approach the "classical" (SS3) critical load.

In Table 4, the effect of increasing the moment of inertia parameters (I_{22}/ah^3) , in relation to the influence of the in-plane boundary conditions is studied on some of the shells. The dimensions and geometry of the shells examined are given in Table 4. The moment of inertia is found to have no

effect on the critical load ratios of the "weak" boundary conditions SS1 and SS2. In Table 5 and Fig. 6 the effect of increase of moment of inertia is also studied for a wider range of the parameter, $1 < I_{22}/ah^3 < 50$, with the same negative result. The dimensions and geometry of the shells are listed in Table 5.

The buckling modes of the w displacement (radially inwards) were also studied (Tables la and lb). Some of the results are given in Figs. 7 to 11.

In Figs. 7a to 7d the buckling modes for "thick" shells with (R/h)=100 and low eccentricity (e₂/h) = ±1 are presented. It can be seen from these figures that short shells (Fig. 7a - Z = .954 and Fig. 7b Z = 8.59) yield identical modes for all the in-plane of boundary conditions (SS1 to SS4). Note also that the modes are identical for internal and external stiffening. As the length of shells increases (Fig. 7c - Z = 95.4 and Fig. 7d - Z = 382), the buckling modes for the SS1 and SS2 boundary conditions remain identical and independent or stiffener location. It can be seen that these "weak" boundary conditions are characterized by edge buckling which is the reason for their low critical loads. On the other hand the SS3 and SS4 boundary conditions yield modes that differ completely from those of SS1 and SS2 and depend also slightly on the stiffener location. Note that for internal stiffening the SS4 mode differs slightly from the SS5 mode while for external stiffening the modes are identical. Fig. 7d shows a more pronounced difference between the SS3 and SS4 modes with further increase of the shell length. The

SS3 mode now significantly differs from the SS4 mode, and internal and external stiffeners yield different modes of buckling.

In Figs. 8a to 8d the buckling modes are given for similar shells but with a larger ring-eccentricity- (e₂/h) = ±5. Increase in eccentricity changes the buckling modes. The SS3 and SS4 buckling modes are now not identical with the SS1 and SS2 modes, even for short shells: Fig. 8a- Z = .954 and Fig. 8b - Z = 8.59 . For the short shell (Fig. 8a) no dependence upon the location of stiffeners is observed for all in-plane boundary conditions, whereas location dependence can be seen for the medium shell of Fig. 8b. For this shell, the SS3 mode differs for internal and external stiffeners. With increase of the shell length, the modes of Figs. 8c and 8d are obtained which exhibit a behavior similar to that in Figs. 7c and 7d.

In Figs. 9a to 9d the buckling modes are presented for thin shells, (R/h) = 2000, having a low value of eccentricity. The reduction of shell thickness, or rather the inrease in Z, yields different modes for the SS1 and SS2 boundary conditions than for SS3 and SS4. Note that for the short shell of Fig. 9a - Z = 19.1 the modes are location independent. With increase in length of shell (Fig. 9b - Z = 477) the SS3 modes begin to differ from the SS4 modes, and the SS4 modes are also dependent upon the location of stiffeners. From Figs. 9c and 9d it can be seen that with further increase in shell length the SS1 and SS2 boundary conditions yield identical buckling modes that are location independent. Similar conclusions apply to the SS3 and SS4 boundary conditions.

In Figs. 10a to 10d the buckling modes are studied for shells with the same geometry as Figs.9a to 9d, except for larger eccentricity, $(e_2/h) = \pm 5$. For short shells, the results of Fig. 10a - Z = 19.1 and Fig. 10b - Z = 477 are similar to those of Fig. 9a and 9b. With a further increase of shell length, a significant effect of the increased eccentricity is noted for SS4 modes of internally stiffened shells (Figs. 10c - Z = 1910 and 10d - Z = 7630). For corresponding externally stiffened shells no similar effect is observed.

The influence of stiffener eccentricity on the SS4 modes in the case of long shells is studied in Figs. 11a to 11c. A significant effect is only observed for large values of eccentricity (Figs. 11b - Z = 8600; $e_2/h = 5$ and 11c - z = 8600; $(e_2/h) = 5$). From Figs. 11b and 11c it can also be seen that an increase in the moment of inertia of the stiffeners changes the SS.4 modes noticeably.

It should be pointed out that in all the "long" shells the SS1 and SS2 modes are always characterized by edge buckling, which can explain the significant reduction in the critical loads corresponding to these boundary conditions. These boundary conditions yield buckling modes which were almost always one sided - inwards (positive w displacement), except for long shells with large eccentricities as in Figs. !lb and llc.

7. CONCLUSIONS

- a. As for unstiffened shells, the critical loads of ring-stiffened shells depend on the in-plane boundary conditions. The "weak" SS1 and SS2 condition yield identical buckling loads which are about one half the "classical" SS3 loads. The SS4 boundary conditions yield critical loads which are practically equal to the "classical" loads, or very slightly larger.
- b. The buckling loads of very short shells Z < 0.1 are independent of the in-plane boundary conditions.
- c. In the range of 0.1 < Z < 10 the SS1 and SS2 boundary conditions yield critical loads which are as low as 35% of the corresponding "classical" load.
- d. For externally stiffened shells the influence of in-plane boundary conditions is not affected by the stiffener geometry.
- e. For internally stiffened shell, on the other hand, critical loads for the "weak" in-plane boundary conditions SS1 and SS2 increase with stiffener area and eccentricity. For very large stiffener area they approach the classical SS3 critical loads. Changes in the moment of inertia of stiffeners have a negligible effect on the influence of in-plane boundary conditions.

f. The buckling modes depend on the shell length (or Z) and on the stiffeners geometry.

ACKNOWLEDGEMENT

The authors would like to thank Mr. Z. Yerushalmi for assistance with the programming and Mrs. A. Harari for assistance with the computations.

REFERENCES

- Ohira, H., "Local Buckling Theory of Axially Compressed Cylinders" Proceedings of the Eleventh Japan National Congress for Applied Mechanics, 1961, pp. 37-41.
- Singer, J., "The Effect of Axial Constraint on the Instability of Thin Cylindrical Shells Under Uniform Axial Compression", International Journal of Mechanical Sciences, Vol. 4, No. 2, May 1962, pp.253-258; Also TAE Report 16, Sept. 1961.
- 3. Ohira, H. "Linear Local Buckling Theory of Axially Compressed Cylinders and Various Eigenvalues" Proceedings, 5th International Symposium on Space Technology and Science, Tokyo, 1963, pp.511-526.
- 4. Hoff, N.J. and Rehfield L.A., "Buckling of Axially Compressed Cylindrical Shells at Stresses Smaller than the Classical Critical Value", Journal of Applied Mechanics, Vol. 32, No. 3, Trans. ASME, Vol. 87, Series E, Sept. 1965. pp. 542-546; also SUDAER Report 191, May 1964.
- 5. Hoff, N.J., "Low Buckling Stresses of Axially Compressed Circular Cylindrical Shells of Finite Length", Journal of Applied Mechanics, Vol. 32, No. 3, Trans. ASME, Series E. Vol. 87, Sept. 1965, pp. 533-541; also SUDAER Report 192, July 1964.
- 6. Hoff, N.J. and Soong, T.C., "Buckling of Circular Shells in Axial Compression," International Journal of Mechanical Sciences, Vol. 7, 1965, pp.489-520; also SUDAER Report 204, Aug. 1964.
- 7. Hoff, N.J., "The Effect of Edge Conditions on the Buckling of Thin-Walled Circular Cylindrical Shells in Axial Compression", Proc. of the 11th International Congress of Applied Mechanics, Munchen, 1964, Springer Verlag 1966, pp.376-331.

- 8. Thielemann, W., and Esslinger, M., "Einfluss der Randbedingungen auf die Beullast von Kreiszylinderschalen", Der Stahlbau, Vol. 33,, No. 12, Dec. 1964. pp. 3-11.
- 9. Almroth, B.O., "Influence of Edge Conditions on the Stability of Axially Compressed Cylindrical Shells", AIAA Journal, Vol. 4, No. 1, Jan.1966, pp.134-140; Also NASA Contractor Report CR-161, Feb. 1965.
- 10. Ohira, H., "Local Buckling Theory for an Axially Compressed Circular Cylinder of Finite Length", Proc. of the 14th Japan National Congress for Applied Mechanics, 1964.
- 11. Fischer, G., "Influence of Boundary Conditions on Stability of Thin-Walled Cylindrical Shells under Axial Load and Internal Pressure", AIAA Journal, Vol. 3, No. 4, Apr. 1965, pp. 736-738.
- 12. Almroth, B.O., "Influence of Imperfections and Edge Restraint on the Buckling of Axially Compressed Cylinders", presented at the AIAA/ASME 7th Structure and Materials Conference, Cocoa Beach, Fla., April 18-20, 1966.
- 13. Kobayashi, S., "The influence of the Boundary Conditions on the Buckling Load of Cylindrical Shells under Axial Compression", NASA Contractor Report CR-558, Aug. 1966.
- 14. Baruch, M., and Harari, O., "Buckling of Cylindrical Shells under Longitudinal Shear Loads", TAE Report 81, Technion Research and Development Foundation," Haifa, Israel, November 1967.
- 15. Baruch, M., Harari, O. and Singer J., "Low Buckling Loads of Axially Compressed Conical Shells", J. App. Mech. paper No. 70-APM-AA.

- 16. Tani, J., and Yamaki, N., "Buckling of Truncated Conical Shells under Axial Compression" AIAA J. Vol. 8, No. 3, pp. 568-571, March 1970.
- 17. Singer, J., Barcuh, M., and Reichental, Y., "Influence of In-Plane
 Boundary Conditions on the Buckling of Clamped Conical Shells", to
 be published as TAE Report No. 93, Technion Research and Development
 Foundation, Haifa, Israel.
- 18. Sobel, L.H., "Effects of Boundary Conditions on the Stability of Cylinders Subject to Lateral and Axial Pressures", AIAA J., Vol. 2, No. 8, pp. 1437-1449, August 1964.
- 19. Yamaki, N., "Buckling of Circular Cylindrical Shells under External Pressure", Reports of the Inst. of High Speed Mechanics, THOKU University, Vol. 20, pp. 35-55, 1968/1969.
- 20. Forsberg, K. " Influence of Boundary Conditions on the Model Characteristics of Thin Cylindrical Shells", AIAA Journal, Vol. 2, No. 12,pp.2150-2157,

 December 1964.
- 21. Seggelke, P., Schwingungsverhalten von axialsymmetrisch belasteten dünnenwandigen Kreiszylindern bei verchidenen Randbedingungen"

 Deutsche Luft-und Raumfahrt DLR FB 64-63, December 1964.
- 22. Yamaki, N., "Influence of Prebuckling Deformations on the Buckling of Circular Cylindrical Shells Under External Pressure", AIAA J., Vol. 7, No. 4, pp.753-755, April 1969.
- 23. Kobayashi, S., "The Influence of Prebuckling Deformations on the Buckling Load of Cylindrical Shells under Axial Compression", Journal of the Japan Society for Aeronautical and Space Sciences, Vol. 15, No. 163, pp.258-263, 1967/1969 (In Japanese with English Abstract).

- 24. Kobayashi, S. "The Influence of Prebuckling Deformations on the Buckling Load of Orthotropic Cylindrical Shells under Axial Compression",

 Transactions of the Japan Society for Aeronautical and Space Sciences,

 Vol. 11, No. 19, pp.60-68, 1968.
- 25. Singer, J., Arbocz, J. and Babcock, C.D. Jr., "Buckling of Imperfect Stiffened Cylindrical Shells under Axial Compression" presented at the 11th AIAA/ASME Structures, Structural Dynamics and Materials Conference, Denver, Colorado, April 1970.
- 26. Soong, T.C., "Influence of Boundary Constraints on the Buckling of Eccentrically Stiffened Orthotropic Cylinders", presented at the 7th International Symposium on Space Technology and Science, Tokyo, May, 1967.
- 27. Seggelke, P., and Geier, B., "Das Beulverhalten Versteifter Zylinder-schalen", Zeitschrift für Flugwissenschaften, Vol. 15, No. 12, pp.477-490, December 1967.
- 28. Singer, J., Baruch, M., and Harari, O., "On the Stability of Eccentrically Stiffened Cylindrical Shells under Axial Compression", Int. J. of Solids and Structures, Vol. 3, No. 4, pp.445-470, July 1967, Also TAE Report No. 44, Technion Research and Development Foundation, Haifa, Israel, December 1965.
- 29. Baruch, M., Harari, O., and Singer, J., "Effect of In-Plane Boundary Conditions on the Stability of Conical Shells Under Hydrostatic Pressure",

 Proceedings of the 9th Israel Annual Conf. on Aviation and Astronautics,

 Israel Journal of Technology, Vol. 5, No. 1, pp. 12-24, Feb. 1967.

- 30. Baruch, M., and Singer, J., "Effect of Eccentricity of Stiffeners on the General Instability of Stiffened Cylindrical Shalls under Hydrostatic Pressure", J. of Mechanical Engineering Sciences, Vol. 5, No. 1. pp. 23-27, March 1963.
- 31. Singer, J., and Haftka, R., "Buckling of Discretely Ring Stiffened Cylindrical Shells" Proceedings of the 10th Israel Annual Conf. on Aviation and Astronautics, Israel Journal of Technology, Vol. 6, No. 1-2, pp.125-137, February 1968. Also TAE Report No. 67, Technion Research and Development Foundation, Haifa, Israel, August 1967.
- 32. Block, D., "Influence of Discrete Ring Stiffeners and Prebuckling deformations on the Buckling of Eccentrically Stiffened Orthotropic Cylinders, NASA TN D-4283, Jan. 1968.

TABLE 12 - DINENSIONS AND CRITICAL LOADS OF SIMPLY SUPPORTED RING STIFFEMED-SHELLS FOR DIFFERENT IN-PLANE BOUNDARY CONDITIONS (e,/h) = 1

									A./ah = .5:	<i>.</i>	•	e_/h = 1:	::	-	I. /ah = 2:	2.	•	K7							
1						-			7			7		7	- 7		-	7				1	1		
2					SS1						SS2						553						SS4		
3						•			•				,		٠			'			•			•	-
			٨	æ	-	~	E	٠	۲	=	4	~	ĸ	*	۲	- u		۲	- E		~	E .	11	~	c
	100	.0859	0859 22000	m	0	22000	м	0	22000	~	0	22000	~	0	22000	ю	0	22000	5	0	22000	1	0	22000	
	200	.429	22100	-	7	22100		7	22100	_	7	22100	-	7	22700	٠,	0	22700	m	0	22700	_	0	22700	- ;
.03	1000	.859	22600	м	۲,	22600	٠,	7	22600	ы	7	22600	м	7	24900		<u> </u>	24900	_	0	25100		0	25100	_
	2000	1.72	24200	3	2	24300	3	7	24200	~	7	24300	3	7	33900	3	0	33900	5	0	34500	٠.	0	34500	7
	100	.238	7950	_	2	7950	~	N	7950	-	7	7950	-	7	7980	_	C	7980	-	0	7980	-	0	7980	_
;	200	1.19	8330	ы	7	8330	n	7	8330	m 	7	8330	m	7	9970		0	9970	-	0	10100	-	0	10100	
53	1000	2.38	9490	17)	7	9500	м	7	9490	м	7	9500	ω.	7	16100	_	^	16200	_	с 	16500	_	6	16600	
	2000	4.77	14100	5	7	14100	5	7	14100	S	~	14100	2	7	35605		20	39900	7	c	35800	1	1 21	39900	2
	192	.954	7080	113	2	2080	1)	~	2080	m	7	2080	m	7	27.10		0	2310	ы	0	2320	1	0	2320	3
	200	4.77	3540	S	7	3550	S	7	3540	S	7	3550	v	7	8890	_	91	9970	7	° —-	8970	_	1 10	9970	2
∹.	1000	9.54	1590	Ŋ	7	7610	S	7	7590	s	7	7610	s	7	16100	7	7	16200	7	_	16100	7	7	16200	~
	7000	19.1	15700	7	2	16700	7	7	15700	7	2	16700	7	7	32500	3	4	32500	3	٥	32600	3	5	32600	3
	100	2.15	1060	177	2	1060	м	7	1060	m	7	1060	m	7	1620	-	0	1620		0	1660	3	2	1660	1
	cos	2.01 005	3930	S	7	3950	S	7	3930	S	7	3950	s	7	8070	4	_	8180	*	0	8070	2	7	8180 4	4
.15	1000 21.5	21.5	8270	7	7	8290	7	7	8270	7	7	8290	7	7	16100	S	7	16200	S	0	16260	₩.	7	16200 3	٠,
	2000 42.9	42.9	16200	6	~	16200	2	7	16200	6	2	16200	6	7	32300	9	13	32700	9	0	32300	4	4 13	32700 6	۔۔

		TABLE 1	TABLE 18 - CONTINUED		٠.			Ì						+									554			
					3						SS2	1		-			SS.			+			-		١.	
1./R	K/h	2			<u> </u>			-	'		_				•				,	-		-	+	1		T
			•		-			4	+	-	+	-	-	+			-				~		-	~	=	-[
						~	- L	_	-	4	+	1	-	+		=	-	1	١.	ļ	0.71	-	4	1879		7
				╁╴	-	90,	7		780 : 3	 		790	m	~	1690			1820					 . c	8150	ю	0
	100	3.82	280	5		06/		_			4	4200			8130	м		8130 -	د		0010			16200	4	0
	2005	80.61	4180			4260	_					8110	6		16100	Ŷ		16200	4		00191	* .		22500	9	0
.2	2 1000	38.2						7 6						2	32500	٥	4	32500	٥	ŀ-	32500	۰		1780	7	0
]	2000	76.3	16300	=	_	+	·	4-	+-	T	-	740	5	7	1780	7	0	1790	7	<u> </u>	00/1	٠, ١		8300	•	0
	100	5.96	07/	رب م		740	<u> </u>	, ,	- 620			4090	7		8230	Ŋ		8300	9		8240	າ ບ	, r	16200	ı va	0
.25	ડ	29.8	4070			4090				. 6		8160	==	~	16100	7		16200	<u></u>		16200	n 1	•	12500		٥
	1000	59.6	8160	6		8160				_		16300	22		32200	6	=	32200	-	_	32300	1	= °	25.30	. ,	0
	2000 119	611	16300	2	7	16300		4		十	. Ļ . 1	787	5	2	1620	2	0	1620	~	ت-	1620	7	>	1070	•	
L	907	8.59	760	S	7	783	2	7	760	_		3			8070	4	7	3180	4	0	8070	4	~	8180	•	•
			4070	6	7	4090	<u>о</u>	2 2			~	4090	'n :		16100	- 2		16200	9	•	16100	9	^	16200	∞0	> ·
			8150	=	7	8170	11	7	8150	<u>``</u> =		8170	1 :	, ,	00101	, «	- <u>-</u>	32500	6	0	32300	80	22	32600	=	0
:			16300	15	2 1	16300	-21	7 7	16300	21	7	16300	2 .	, , ,	25.50	, "	1	1630	2	0	1620	65	м	1640	ы	0
ļ	9		$\overline{}$	-	7	870	~	7	848	~	~	870	, ;	٠ ,	0401		, v	8100	7	0	8070	7	9	8110	٠.	0
	3 0			13	7	4110	13	7	4090	21		4110	13	7 (2000		, ^	16200	<u></u> 2	0	16200	2	^	16200	2	c
			8180	17	7	8200	17	~				8200	<u> </u>	٠	32200		=======================================	32400	14	0	32400	7	0	32400	1	0
<u>. </u>			16400	23	2	16400	23	7	-	+	╁		3 :	1	1610	و إ	2	1630	9	8	1610	9	17	1630	•	-
	001	_	853	11	~	873	=		820	= :	~~	6/8	; ;	, ~	8060		2	8100	=	0	8100	14	0	8100		
	200	477	4120	23	7	4140	23		4120	2 2	· ·	220		. ~	16100	19	6	16200	20	0	16200	20	0	16200	3 :	
	1000	954	8300	29	7	8320	53		8300	57	٠, ١	2500		. ~	32200	28	11	32400	52	0	32400	82	0	32400		
	2000	2000 1908	16600	4	7	16700	82	+	16700	3	,,	8	+-	~	1610	11	3	1620	13	0	1620	21	m	1630		_
<u>. </u>	101	100 382	876	23	7	006	21	~	876	21	~ (424		. ~	8060	28	Ŋ	8100	52	0	8100	28	0	8100		
	Sos	500 1908	4200	39	7	4230	39	7	4200	20	• •	0534		. 6	16100	38	0	16200	4	0	16200		0	16200		
	2 1000	1000 3820	8500	21	7	8530	S		8500	51	, ,	17.00		. 7	32400	92 -0	0	32400	95 0	0	32400	25		32400	2	2
		2000 7630	17200	3	7	17200	8	2	307/1	ŝ			-1													

TABLE 18 - CONTINUED.

TABLE 15 - DIMENSIONS AND CRITICAL LOADS OF SIMPLY SUPPORTED RING-STIFFENED SHELLS FOR DIFFERENT IN-PLANE BOUNDARY CONDITIONS, (e, Zh) = 3 5.

							A ₂ /ah	٠ چ	.s.	•2/h	•	5:	I22/2h	. F	- 2	2; 7t2	7t2 = 3						i			
; 						551	12					SS2	2					553	53				-	SS4		
<u> </u>		R/h	2	•						•			•			•			•			•]
				γ	E	+	γ		*		ď	4		n		٧	u	ţ	*	u	••			۲ ح	u	ų
L	-	100	6580	22005	3	0	22000	3	0	22000	3	0	22000	~	0	22000	ะ	0	22000	3	0 12	22000	<u> </u>	0 22000	-	0
	š	- 005	.429	22100		2	22100	-	7	22100	~	~	22100	-	7	22700	·	•	22700	м	0 5	122700	=	0 22700	-1	0
.03	3 1000	00	.859	22600	м	7	22600	n	7,	22600	۳.	~	22600	ы	7	25000	~	4	25000	3	0 12	125190	_	4:25100	-	0
	2000	-	1.72	24200	2	2	24300		7	24200	~	7	24300	3	2	32600	3	14	33900	3	0 13	33100	3 1.	3 14 34500	3	0
L .	=	100	.238	0562	7	2	0562	7	7	7950	3	7	7950		2	7980	1	0	7980	7	0 7	7980	1	0 7980	-	0
~ ~	Ñ	200	1.19	8320	m	7	8340	n	~	8320	ъ	7	8340	13	7	9890	2	S	9970	ъ	0	0666		6 10100		0
.05	s 1000		2.38	9480	м	2	9520	r	7	9480		7	9520	м	7	14800	м	11	16200	5		15100	77	1 11 16600	-	0
	2000		4.77	14000	S	3	14100	5	2	14000	2	3	14100	S	2	51100	3	17	39900	4	0 3	31800	1 1	1 17 39900	4	0
	=	100	.954	2070	m	7	2090	м	7	2070	65	7	2090	М	2	2300	-	2	2300	3	0	2320	-	2 2320	~	0
		200	4.77	3500	m	2	3590	s	7	3500		(4	3590	v	~	7800	~	œ	9970	2	o	1980	<u>-</u>	9 9970	7	0
<u>-</u> -		1000	9.54	7480	3	4	0292	S	~. %	7480	s	~	7670	s	~	14800	4	11	16200	7	0	14800	2 1	2 11 16200	7	0
	ž	2000	1.61	16600	-	S	16790	7	7	16600	_	2	16700	^	7	30300	м	15	32590	3	0 3	30400	3	3 15 32600	3	0
_	=	100	2.15	1040	ы	7	1030	m	7	1040	m	7	1080	ы	~	1510	₩.	м	1620	ĸ	0	1540	-	3 1660	~	0
	<u>~</u>	200 10	10.7	3860	S	ы	4010	S	7	3860	s	17	4010	ห	7	7270	~	∞	8180	*	0	7270	7	8 8180	*	0
.15		1000 21	21.5	8220	~	м	8330	7	7	8220	_	m	8330	7	7	14800	m	11	16200	S	0	14800	3	3 11 16240	м	0
	2000		42.9	16100	6	3	16300	6	~	16100	6	4	16300	6	7	29100	٥	16	32700	9	0	291001	4 17	4 116 32700	9	0
	=	100	3.82	260	m 	7	826	۳,	~ ~	760		7	826	m	7	1480		4.	1820	7	0	1520		4 1890	-	0
	<u>"</u>	200 12	39.08	4140	_	7	4250	7	7	4140	~	7	4250	7	7	7590	m	7	8130	ю	0	2000	m	7 8150	м	0
		1000 38	38.2	8040	6	m	8160	0	7	8040	6	м	8160	6	7	14800	4	7	16200	*	0	14890	9	6 11 16200	*	0
_	2000		76.3	15200	=	3	16300	=	7	16200	=	4	16300	Ξ	7	28900	7	2	32500	9	0	29000	7	7 16 32500	<u> </u>	9

	7-1	TABLE 16 - CONTINUED	NTIME	اہے																						1
					Š	198					88	SS2					553						Š	3		
												·				1		'						}	١,	- 1
<u>;</u>	~~~ & &	7	٦	=	د ا	~	E		۲	u	*	X	r.	4	*	E	4	۲	E	4	~	2	-	۲	=	4
<u>L</u> _	100	5.96	704	5	7	797	S	~	704	5	2	798	2	2	1690	3	*	1780	2	0	1720		•	1780	.4	0
	200	29.8	4030	~	~	4140	2	7	4030	^	۲.	4140	7	7	7260	 s	00	8300	•	0	7220	m	œ	8300	•	0
**	1000	59.6	8120	a	ю	8200	=	~	8120	о	~	8200	11	7	14700	9	77	16200	~	•	14700	*	12	16200	10	0
	2000	119	16200	13	3	16400	13	2	16200	1.3	2	16400	13	7	29000	8	2	32400	6	0	29100	٤	97	32500	7	०
<u> </u>	100	8.59	730	2	2	856	S	2	740	s	2	828	5	7	1520	4	ы	1620	7	0	1520	7	+2	1620	~	0
	200	42.9	4030	σ.	2	4140		7	4030	6	7	4140	o	7	7270	₹	∞	8180	•	0	7280	*	••	8180	4	0
٠;	1000	85.9	8110	==	7	8220	==	7	8116	==	۰,۰	\$220	=======================================	~	14600	s	12	16200	9	0	14600	s	11	16200	9	0
	2000	172	16300	15	n	16400	15	2	16300	15	3	10400	15	2	29100	8	16	32500	6	•	29200	2	9	32600 11	司	0
	100	23.8	850	-	2	940	4	2	850	7	2	950	7	6)	1470	m	m	1630	м	0	1470	м	15	1640	**	0
	200	119	4060	2	7	4170	13	~	4060	13	7	4170	13	7	7260	9	60	8100	7	0	7270	ø	••	8110	^	0
٠.	_	238	8150	17	7	\$260	17	7	8150	17	7	8260	11	7	14560	0	Ξ	16200	91	•	14500	6	11	16200	2	0
		477	16400	23	2	16500	23	2	16400	23	2	16500	23	2	29000	13	16	32400	14	0	29100	12	91	32400 14	3	0
_	100	95.4	880	=	~	980	==	2	880	11	2	066	11	7	1470	٥	2	1630	٥	0	1470	9	м	1630	9	0
	115	109.7	986	23	~								-		1670	•	*									
~	200	477	4100	23	~	4220	23	7	4100	23	7	4220	23	(4	7240	13	w	\$100	7	0	7280	77	•	8100 14	3	0
	1000	954	8270	29	7	8390	59	7	8270	53	7	8390	53	7	14500	81	=	16200	22	•	14600	81	31	16200 20	20	0
	2000	1910	16790	39	7	16800	39	2	16700	39	2	16300	39	7	28900	25	2	32400	29	٥	29200	22	16	32400 28	2	र्ग
L	100	382	006	70	2	1010	20	2	096	21	7	1070	21	7	1460	=	*	1620	13	0	1460	11	4	1630 15	15	0
	Š	1910	4220	39	7	4330	39	7	4220	39	7	4340	39	7	7230	25	∞	8100	29	0	7300	22	•••	\$10C	60	0
~	1000	3820	8500	51	7	8620	23	~	\$500	53	~	\$630	s	7	14500	36	=	16200	ş	0	14600	36	7	16200 40		0
	2000	7630	1720c	2	~	17200	69	~	17200	3	2	17300	69	7	290'30	\$	2	32400	26	0	29300	49 16	16	32400 56	-	0

TABLE 2 - DIMENSIONS AND CRITICAL LOADS FOR STUDY OF EFFECT OF INCREASE OF STIFFENER ECCENTRICITY

								A ₂ /ah = .5;	1 	:5:	R/h		R/h = 1000;	122,	/ah ³	$I_{22}/ah^3 = 5;$		η _{ε2} = 3	. .						
				S	SS1						SS2					553							554	Í	
	-			П				•						٠	ı	1		٠	1	•	Ì	1		1	
<u>}</u>	•2/h	~	Ŀ	4	X	E	ţ	γ		٠	~	-		~	Ľ.		۲	٦		~	-		~	=	۰
		8300	29	2	8330	29	7	8300	29	7	8330	59	7	16200	20	•	16200	20		16200	20 0	0	16200	20	0
	·n	8290	59	7	8360	53	~	8290	29	7	8360	53	2	15400	19 10	 2	16200	20	0	15600	19 10	9	16200	20	0
	د.	8280	29	7	8400	53	7	8280	59	63	8400	29	7	14800	18 11	::	16200	20	•	14900	18 10	9	16200	20	0
<u>'</u>	•	8280	29	7	8470	53	~	8290	29	7	8470	53	7	14200	18	g,	16200	20	0	14300	18	a	16200	20	0
	01	8290	29	7	8520	53	2	8300	29	2	8530	59	2	14000	20	6	16200	20	0	14100	61	6	16200	20	0
<u> </u>	-	8730	7,	2	8750	17	2	8730	2	7	8750	7.1	2	16200	57	7	16200	59	0	16300	58	•	16300	58	0
	<u></u>	8720	71	7	8800	12	~	8720	7	~	8800	17	7	15500	54 11		16200	59	0	15700	53 11	=	16300	58	0
м	S	8720	72	2	ა888	72	7	8740	71	7	8870	7	. •	14800	53 11	=======================================	16200	59	0	15000	52 11	=	16300	58	0
	20	8710	72	7	8920	72	~	8800	12	7	9020	7	7	14300	52 10	 91	16200	59	0	14400	52 10	2	16300	58	0
	10	8870	72	7	8980	72	8	8870	11	7	9140	11	2	14000	53 9	6	16200 59	59	0	14200	52 9	6	16300	58 0	٥

22 0

24 0

54 C 58 O 0 63 18700 16300 13900 16200 21000 18800 21000 **SS4** 0 11 21 21 0 0 0 12 12 13 13 13 8 8 8 8 8 52 52 52 53 0 13900 0 14900 0 15100 0 13900 0 15000 0 15200 0 15200 0 13600 S 19 19 20 22 23 29 55 59 63 66
 18
 2
 13600

 19
 2
 13900

 18
 11
 16200

 18
 12
 18700

 18
 12
 20900

 18
 13
 32400
 18700 21000 0 13900 11 16200 12 55 53 52 52 2 13900 2 14800 2 15100 2 15000 2 14800 2 13600 Š × I_{22}^{ah} ³ 27 29 29 31 33 67 71 77 79 e²/n 2 7150 2 8400 2 9730 2 10900 2 7490 2 8870 2 10300 7150 17000 **\$**5; **SS**2 12 ĸ 67 71 75 56 27 27 29 29 31 31 2 10100 2 10600 7460 8740 7120 8280 9530 e₂/h 14600 2 15100 1000; 2 2 7 . ጸ⁄ሕ 67 72 77 80 27 27 29 29 31 33 35 96 10900 e₂/h 7150 8400 9730 7490 8850 17000 10200 11600 0 0 0 0 N N H N 12 27 27 29 29 31 21 67 76 76 79 7120 8280 9530 8710 10100 10600 14900 7460 11300 .05 1.5 ~ v: 1./K A/ah M

TABLE 3 - DIMENSIONS AND CRITICAL LOADS FOR INVESTIGATION OF EFFECT OF INCREASE OF STIFFENER AREA

						124	A2/ath .	.5;	2	-	R/h = 1000;		122/	I ₂₂ /ah ³ * 5;	5;		"t2 #	м							
9				SS1	11					SS2	2					SS3	2					SS4	4		
د ک	r/v e ₂ /n	*							•	\dashv	٠			*						+				.[
		٧	r	t	κ	E	•	~	=	4	٧	E	-		c	4	~	u	14	~	٦	ų	۲	٦	4
	* 1	8300 29	59	8	8330	29	7	8300	53	C4	8330	62	7	2 16200	20	v	16200	20	0	16200	20	0	16200	20	0
~	\$ ¥	8280 29	53	2	8400	29	~	8280	29	۲3	8400	53	7	14800	18	11	18 11 16200	20	0	14900	18	10	02 00291	20	O
	-	8730 71	2	2	8750	1,	7	8750	7.7	77	8750	12	7	16200	57	7	16200 59	59	0	16300 58	28	0	16300	58	0
٧,	1.5	8720 72	7.2	2	8850	72	2	8740	12	2	8870	12	2	14800 51	21	12	16200	89	0	15000	52	11	16300	58	0

TABLE 4 - EFFECT OF INCREASED KAMENT OF INERTIA OF STIFFENER ON THE CRITICAL LOADS.

TARLE 5 - DINENSIONS AND CRITICAL LOADS FOR STUDY OF EFFECT OF INCREASE OF STIFFENER MOMENT OF INERTIA

					R/'n	R/h = 1000;	98 ;	A2/2h =		;s:	e ² /	e ₂ /h = :	5;	"£2"								į	1
				SS	12					\$32	2					553	3			\$34			
<u>×</u>	122/ah				•			•						*	į		٠	Ì	•	-	-	1	- [
		~	g -	-	1	۽	٠	٨	£:	7	Y	r	t	۲	E	٠	γ	ا		- 7	۳.	. i	-
<u> </u> _		8270	62 :	7	2390	29	7	8270	6;	~	8390	67	2	1:1400	ec _	12	16200 20	<u>9</u>	14500 17 12	71	162001 20) 5	~
	(4	8270	52	7	8390	53	~	8270	53	7	8390	29	~	14500	18 11		02 0291	0	14600 18, 11 16200 20	=======================================	1020C	o 	
	м	8280	29	~	8390	53	7	8280	29	~	8390	29	~	14600	20 11		16200 20	0	24700 18 11		16200 20	<u>ာ</u>	_
- 	s	8286	29	2	8400	53	7	8280	53	7	8400	59	7	14800	18 11		16200 20	0	14900 18 10		16200 20	0	
_	70	8290	53	7	3400	59	7	8290	29	7	8400	29	7	15000	18 10		16200 20	0	15100 18 10		16200 20	<u>。</u>	
_	2	8300	53	~	8410	67	~	8300	53	7	8410	59	2	15100	19	6	16200 20	0	15200 19	o	16200 20	0	
	20	8410	53	132	8520	59	7	8410	29	7	8520	53	~	15800	2	o	16200 20	0	15000 20	٥	16200 20	0	
	-	8710	22	7	8840	72	2	8710	1,	2	8840	2	2	14400	51 12		16200 59	0	14500 51 12		16300 58		0
	7	8710	72	7	88.40	72	~	8720	77	7	8850	7.1	8	14500	51 12		16200 59	ن 	14700 51 12		16300 58	о ~	_
17	m	8710	72	7	8840	72	7	8720	2	7	8860	7	7	1,4600	52 11		16200 59	•	14800 52 11		16300 58		0
	ι η	8720	72	7	8350	22	7	8740	17	7	8870	7.1	7	14800	53 11		16200 59	0	15000 52 11		16300 58	<u>8</u>	
	•	8720	72	7	8860	72	7	8760	77.	7	8900	11	7	15000 54 10	24		16200 59	0	15200 53 10		16300 58	<u>s</u>	_
															٦	\dashv	-					\dashv	١

FIG. 1 NOTATION

FIG. 2a

FIG. 2b VARIATION OF RATIO OF BUCKLING LOADS WITH SHELL GEOMETRY, (e₂/h) = ±5

FIG. 3 VARIATION OF RATIO OF BUCKLING LOADS WITH SHELL LENGTH FOR DIFFERENT (R/h) RATIOS

Q. RATIO 出 EFFECT OF STIFFENER ECCENTRICITY ON BUCKLING LOADS

FIG. 7 BUCKLING MODES OF "THICK" SHELLS (R/h) = 100 .
WITH LOW ECCENTRICITY (%/n) = 1, (A7/ah) = 05, (122/ah) = 2

FIG. 8 EFFECT OF STIFFENER ECCENTRICITY, $(e_1/h)=25$ ON THE BUCKLING MODES OF "THICK" SHELLS, (R/n)=100 $(A_2/ah)=05$, $(I_{12}/ah^3)=2$

FIG. 9 BUCKLING MODES OF "THIN" SHELLS, (R/h) = 2000e₁/h = 21 , A₂/ah = 05 , $1_{22}/ah^3 = 2$

FIG. 10 EFFECT OF STIFFENER ECCENTRICITY (e_1/h) =±5, ON THE BUCKLING MODES OF "THIN" SHELLS, (R/h) =2000 A_2/ah =05, I_{12}/ah^3 =2

UNCLASSIFIED

Security Classification			
DOCUMENT CON'	ROL DATA - R	& D intered when the	orerall report is classified)
TECHNION RESEAR 'H AND DEVELOPMENT FOUNDA	·	2. REPORT S	SIFIED
DEPARTMENT OF AERONAUTICAL ENGINEERING HAIFA, ISRAEL		26. ÇROUD	
3. REPORT TITLE			
INFLUENCE OF IN-PLANE BOUNDARY CONDITIONS SHELLS	NS C'N BUCKLIN	G OF RING-	STIFFENED CYLINDRICAL
4. DESCRIPTIVE NOTE: (Type of report and inclusive dates) Scientific Interim			
5. AUTHORIS' (Fyret neme, middle initial, last name)			
TANCHUM WELLER MENAHEM BARUCH J	OSEF SINGER		
6 REPORT DATE .	70. TOTAL HO O	F PAGES	76. NO OF REFS
October 1970	55		32
Se CONTRACT OR GRANT NO	Se. ORIGINATOR	S REPORT NUM	BER(S)
AF 61(052)-0905	TAE REPOR	T No. 10	l
& PROJECT NO.			
9782-01	SO. OTHER REPO	RY NO(5) (Any o	ther numbers that may be assigned
← 61102F	this report)		
_{d.} 681307	A.FOS	1-12- 71-	S 1 G
10 DISTRIBUTION STATEMENT			
1. This document has been approved for its distribution is unlimited.	public relea	ise and sal	le;
11 SUPPLEMENTARY NOTES	12. SPONSORING		ivity tific Research (NAM)
Tech, other	2	on Bouleva	
	Arlington	ı, Virginia	a 22209
13 ABSTRACT			
The effect of in-plane boundary conditi	ons on the bi	ckling loa	ads of simply
supported ring-stiffened cylindrical sh			
unetiffened shalls the "week" in-plane	houndary cor	ditions S	blaty C22 bns 12

The effect of in-plane boundary conditions on the buckling loads of simply supported ring-stiffened cylindrical shells is studied. As in the case of unstiffened shells, the "weak" in-plane boundary conditions SS1 and SS2 yield here critical loads about one half of the "classical" loads. It was observed that the SS1 critical loads are identical with the SS2 loads and the SS4 loads are almost the same as the "classical" SS3 loads. The combined effect of stiffener parameters and in-plane boundary conditions is studied. For internally stiffened shells the influence of in-plane boundary conditions is found to diminish with increasing values of stiffener eccentricity and area. No such effect is observed for externally stiffened shells. The buckling modes are also studied and found that they are dependent upon shell length (or Z) and upon stiffener location and parameters.

DD . FORM . 1473

UNCLASSIFIED
Security Classification

UNCLASSIFIED

Security Classification	LINK	A	LINI	(B	LIN	KC
KEY WORDS	ROLE	WT	ROLE	WT	HOLE	WT
STIFFENED CYLINDRICAL SHELLS	\			1		}
		l				
INFLUENCE OF IN-PLANE BOUNDARY CONDITIONS			1			
INFLUENCE OF RINGS ON BOUNDARY CONDITION		1		1	1	l
EFFECTS	1	1		}	1	
		1	l		1	
	1	1	1	1	1	
		1	}	1	· }	
	1	1	1		{	1
		}		1	-	
	1	}		}		
·	1			}	1	
		1	1	1		1
		[1	1		1
	1	1	1	ĺ		
	1		Î	1	1	
	1	1		1		
		ì				
		1	1	1		i
		ļ			}	ļ
•	1	1	{	}	1	Ì
	i	1	1	1	1	}
	}	ì	- 1	- 1		1
	}	}			}	1
	1			1	i i	
		1		}		1
	{		Ì	1	1	
· •	-			, per		į
	1	Ì			1	1
	Ì	}				1
•			1		}	
	1			j		
	1	1				
		į	1			ļ
				1		
		Ì		1		
		}				
		1	1	Ì		
			Í	1	1	1
	1					

UNCLASSIFIED

Security Classification