# 3 Exchanging Money Optimally

#### **Problem Introduction**

Now, you would like to compute an optimal way of exchanging the given currency  $c_i$  into all other currencies. For this, you find shortest paths from the vertex  $c_i$  to all the other vertices.

## **Problem Description**

**Task.** Given an directed graph with possibly negative edge weights and with n vertices and m edges as well as its vertex s, compute the length of shortest paths from s to all other vertices of the graph.

**Input Format.** A graph is given in the standard format.

Constraints.  $1 \le n \le 10^3$ ,  $0 \le m \le 10^4$ ,  $1 \le s \le n$ , edge weights are integers of absolute value at most  $10^9$ .

**Output Format.** For all vertices i from 1 to n output the following on a separate line:

- "\*", if there is no path from s to u;
- "-", if there is a path from s to u, but there is no shortest path from s to u (that is, the distance from s to u is  $-\infty$ );
- the length of a shortest path otherwise.

#### Time Limits.

| language   | С | C++ | Java | Python | C# | Haskell | JavaScript | Ruby | Scala |
|------------|---|-----|------|--------|----|---------|------------|------|-------|
| time (sec) | 2 | 2   | 3    | 10     | 3  | 4       | 10         | 10   | 6     |

Memory Limit. 512MB.

### Sample 1.



Output:

```
Output:
0
10
-
-
-
*
```



The first line of the output states that the distance from 1 to 1 is equal to 0. The second one shows that the distance from 1 to 2 is 10 (the corresponding path is  $1 \to 2$ ). The next three lines indicate that the distance from 1 to vertices 3, 4, and 5 is equal to  $-\infty$ : indeed, one first reaches the vertex 3 through edges  $1 \to 2 \to 3$  and then makes the length of a path arbitrary small by making sufficiently many walks through the cycle  $3 \to 5 \to 4$  of negative weight. The last line of the output shows that there is no path from 1 to 6 in this graph.

#### Sample 2.

Input:

5 4 1 2 1 4 1 2 2 3 2

3 1 -5

Output:

---0 \*



In this case, the distance from 4 to vertices 1, 2, and 3 is  $-\infty$  since there is a negative cycle  $1 \to 2 \to 3$  that is reachable from 4. The distance from 4 to 4 is zero. There is no path from 4 to 5.