

RATIONAL CONNECTEDNESS OF LOG Q -FANO VARIETIES

QI ZHANG

ABSTRACT. In this paper, we give an affirmative answer to a conjecture in the Minimal Model Program. We prove that log Q -Fano varieties are rationally connected. We also study the behavior of the canonical bundles under projective morphisms

§1. Log Q -Fano varieties are rationally connected

Let X be a log Q -Fano variety, i.e, if there exists an effective Q -divisor D such that the pair (X, D) is Kawamata log terminal (*klt*) and $-(K_X + D)$ is nef and big. By a result of Miyaoka-Mori [15], X is uniruled. A standard conjecture ([10], [12], [13], [16]) predicts that X is actually rationally connected. In this paper we apply the theory of weak (semi) positivity of the direct images of (log) relative dualizing sheaves $f_*(K_{X/Y} + \Delta)$ (which has been developed by Fujita, Kawamata, Kollar, Viehweg and others) to show that a log Q -Fano variety is indeed rationally connected.

Remark: The rational connectedness of smooth Fano varieties was established by Campana [1] and Kollar-Miyaoka-Mori [12]. However their approach relies heavily on the (relative) deformation theory which seems quite difficult to extend to the singular case.

Theorem 1. *Let X be a log Q -Fano variety. Then X is rationally connected, i.e., for any two closed points $x, y \in X$ there exists a rational curve C which contains x and y .*

Remark: When $\dim(X) \leq 3$ and $D = 0$, this was proved by Kollar-Miyaoka- Mori in [13]. On the other hand, the result is false for log canonical singularities (see 2.2 in [13]).

As a corollary, we can show the following result which was obtained by S. Takayama [16].

Corollary 1. *Let X be a log Q -Fano variety. Then X is simply connected.*

Proof. $\pi_1(X)$ is finite by Theorem 1 and a result of F. Campana [2]. On the other hand, $h^i(X, \mathcal{O}_X) = 0$ for $i \geq 1$ by Kawamata-Viehweg vanishing ([4], [9]). Thus we have $\chi(X, \mathcal{O}_X) = 1$ and hence X must be simply connected.

Our Theorem 1 is a consequence of the following proposition.

Proposition 1. *Let X be a log Q -Fano variety and let $f : X \dashrightarrow Y$ be a dominant rational map, where Y is a projective variety. Then Y is uniruled if $\dim Y > 0$.*

Let us assume Proposition 1. Let X' be a resolution of X , then X' is uniruled. There exists a nontrivial maximal rationally connected fibration $f : X' \dashrightarrow Y$ ([1], [12]). By a result of Graber-Harris-Starr [5], Y is not uniruled. However Proposition 1 tells us that Y must be a point and hence X is rationally connected.

The general strategy for proving Proposition 1 is as follows. By a result of Miyaoka-Mori [15], it suffices to construct a covering family of curves C_t on Y with $C_t \cdot K_Y < 0$ for every t . To this end, we apply the positivity theorem of the direct images of (log) relative dualizing sheaves to $f : X \dashrightarrow Y$. We show that there exist an ample Q -divisor H on Y and an effective Q -divisor D on X such that $-K_Y = D + f^*H$ (modulo some exceptional divisors). Now let $C_t = f(F_t)$, where F_t are the general complete intersection curves on X . We have a covering family of curves C_t on Y with $C_t \cdot K_Y < 0$ for every t .

Before we start to prove Proposition 1, let us first give some related definitions. Also the proof of Proposition 1 depends heavily on Kawamata's paper [8] and Viehweg's paper [17].

We work over the complex number field \mathbb{C} in this paper.

Definition 1 [9]. *Let X be a normal projective variety of dimension n and K_X the canonical divisor on X . Let $D = \sum a_i D_i$ be an effective Q -divisor on X , where D_i are distinct irreducible divisors and $a_i \geq 0$. The pair (X, D) is said to be Kawamata log terminal (klt) (resp. log canonical) if $K_X + D$ is a Q -Cartier divisor and if there exists a desingularization (log resolution) $f : Z \rightarrow X$ such that the union F of the exceptional locus of f and the inverse image of the support of D is a divisor with normal crossing and*

$$K_Z = f^*(K_X + D) + \sum_i e_j F_j,$$

with $e_j > -1$ (resp. $e_j \geq -1$). X is said to be Kawamata log terminal (resp. log canonical) if so is $(X, 0)$.

Definition 2. Let X be a normal projective variety of dimension n and K_X the canonical divisor on X . We say X is a Q -Gorenstein variety if there exists some integer $m > 0$ such that mK_X is a Cartier divisor. A Q -Cartier divisor D is said to be nef if the intersection number $D \cdot C \geq 0$ for any curve C on X . D is said to be big if the Kodaira-Iitaka dimension $\kappa(D)$ attains the maximum $\dim X$.

The following lemma due to Raynaud [19] is quite useful:

Lemma 1. Let $g : T \rightarrow W$ be surjective morphism of smooth varieties. Then there exists a birational morphism of smooth variety $\tau : W' \rightarrow W$ and a desingularization $T' \rightarrow T \times_W W'$, such that the induced morphism $g' : T' \rightarrow W'$ has the following property: Let B' be any divisor of T' such that $\text{codim}(g'(B')) \geq 2$. Then B' lies in the exceptional locus of $\tau : T' \rightarrow T$.

Proof of Proposition 1. By the Stein factorization and desingularizations, we may assume that Y is smooth. Resolving the indeterminacy of f and taking a log resolution, we have a smooth projective variety Z and the surjective morphisms $g : Z \rightarrow Y$ and $\pi : Z \rightarrow X$,

$$\begin{array}{ccc} Z & \xrightarrow{\pi} & X \\ \downarrow g & & \\ Y & & \end{array}$$

such that

$$K_Z = \pi^*(K_X + D) + \sum_i e_i E_i$$

with $e_i > -1$, where $\sum E_i$ is a divisor with normal crossing.

Since $-(K_X + D)$ is nef and big, by Kawamata base-point free theorem, there exists an effective Q -divisor A on X such that $-(K_X + D) - A$ is an ample Q -divisor. Thus we can choose another ample Q -divisor H on Y and an effective Q -divisor $\Delta = \sum_i \delta_i E_i$ on Z (with small $\delta \geq 0$ and E_i are π -exceptional if $\delta_i > 0$) such that $-\pi^*(K_X + D + A) - \Delta - g^*(H) = L$ is again an ample Q -divisor on Z . We may also assume that $\text{Supp}(\Delta + \cup_i E_i + A)$ is a divisor with simple normal crossing and the pair $(X, L + \Delta + \sum_i \{-e_i\} E_i + A)$ is klt. Thus we have

$$K_{Z/Y} + \sum_i \epsilon_i E_i \sim_Q \sum_i m_i E_i - g^*(K_Y + H)$$

where $m_i = \lceil e_i \rceil$ are non-negative integers ($\{\cdot\}$ is the fractional part and $\lceil \cdot \rceil$ is the round up). Also E_i on the left side contain components of L , A and Δ with $0 \leq \epsilon_i < 1$.

We follow closely from Kawamata's paper [8].

After further blowing-ups if necessary, and by Lemma 1, we may assume that:

- (1) There exists a normal crossing divisor $Q = \sum_l Q_l$ on Y such that $g^{-1}(Q) \subset \sum_i E_i$ and g is smooth over $Y \setminus Q$.
- (2) If a divisor W on Z with $\text{codim}(g(W)) \geq 2$, then W is π -exceptional.

Let $D = \sum_i (\epsilon_i - m_i)E_i = \sum_i d_i E_i = D^h + D^v$, where

- (1) $g : D^h \rightarrow Y$ is surjective and smooth over $Y \setminus Q$ (we say D^h is g -horizontal)
- (2) $g(D^v) \subset Q$ (we say D^v is g -vertical [8]).

Notice that here besides those E_i from the log resolution π , D also contains the components of $\text{Supp}(L + \Delta + A)$. Nevertheless $d_i < 1$ for all i .

We have two cases:

- (1): Every π -exceptional divisor E_i with $d_i < 0$ is g -vertical. In this case, the natural homomorphism $\mathcal{O}_Y \rightarrow g_*([-D])$ is surjective at the generic point of Y .

Let

$$g^*Q_l = \sum_j w_{lj} E_j$$

and

$$a_j = \frac{d_j + w_{lj} - 1}{w_{lj}} \text{ if } g(E_j) = Q_l$$

and

$$b_l = \{\max\{a_j\} : g(E_j) = Q_l\}.$$

Let $N = \sum_l b_l Q_l$ and $M = -H - K_Y - N$. Then by a result of Kawamata [8, Theorem 2], M is nef.

On the other hand, $g^*N = F + G$, where

- (1) $\text{Supp}(F)$ is π -exceptional (from those Q_l with $g^*Q_l = \sum_j w_{lj} E_j$ and each E_j is π -exceptional).
- (2) G is effective (from those Q_l with $g^*Q_l = \sum_j w_{lj} E_j$ and at least one E_j has coefficient $d_j \geq 0$).

Now let C be a general complete intersection curve on Z such that C does not intersect with $\text{Supp}(F)$ (e.g., pull-back a general complete intersection curve from X). Then

$$g_*(C) \cdot (-K_Y - H) = C \cdot g^*(-K_Y - H) = C \cdot g^*(M + N) \geq 0$$

and hence $g_*(C) \cdot K_Y \leq g_*(C) \cdot (-H) < 0$. Since the family of the curves $g(C)$ covers a Zariski open set of Y , by [15] Y is uniruled.

(2): Some π -exceptional divisor is g -horizontal, in particular, D^h is not zero.

We have $K_{Z/Y} + D \sim_Q -g^*(K_Y + H)$. By the stable reduction theorem and the covering trick ([8],[17]), there exists a finite morphism $p : Y' \rightarrow Y$ such that $Q' = \text{Supp}(p^*Q)$ is a normal crossing divisor and the induced morphism $g' : Z' \rightarrow Y'$ from a desingularization $Z' \rightarrow Z \times_Y Y'$ is semistable over $Y' \setminus B$ with $\text{codim}(B) \geq 2$. Let $Z' \rightarrow Z$ be the induced morphism.

$$\begin{array}{ccc} Z' & \xrightarrow{q} & Z & \xrightarrow{\pi} & X \\ g' \downarrow & & g \downarrow & & \\ Y' & \xrightarrow{p} & Y & & \end{array}$$

We can write

$$K_{Z'/Y'} + D' \sim_Q g'^* p^*(-K_Y - H), \text{ where } D' = \sum_{j'} d'_{j'} E'_{j'}.$$

The coefficients $d'_{j'}$ can be calculated as follows [8]:

- (1) If $E'_{j'}$ is g' -horizontal and $q(E'_{j'}) = E_j$, then $d'_{j'} = d_j$.
- (2) If $E'_{j'}$ is g' -vertical with $q(E'_{j'}) = E_j$ and $g'(E'_{j'}) = Q'_{l'}$, then $d'_{j'} = e_{j'}(d_j + w_{lj} - 1)$, where $e_{l'}$ is the ramification index of q at the generic point of $E'_j \rightarrow E_j$.
- (3) We are not concerned with those E'_j such that $g'(E'_j) \subset B$.

Note: In Kawamata's paper [8], he replaced D by $D - g^*N$. Thus all the coefficients there are ≤ 0 . However, here we do not make such replacement and in our case some coefficients $d_i = \epsilon_i > 0$

Therefore, by the standard trick (keep the fractional part on the left side and the integral part on the right side, also blow-up Z' if necessary). We have

$$K_{Z'/Y'} + \sum_{j'} \epsilon'_{j'} E'_{j'} \sim_Q \sum_{k'} n_{k'} E'_{k'} - g'^* p^*(K_Y + H) - V + G$$

such that

- (1) $\sum_{k'} n_{k'} E'_{k'}$ is Cartier, $\text{Supp}(\sum_{k'} E'_{k'})$ is $q \circ \pi$ -exceptional and $g'(\sum_{k'} n_{k'} E'_{k'})$ is not contained in B .
- (2) V is an effective Cartier divisor which is g' -vertical (from those g -vertical E_i with $d_i = \epsilon_i \geq 0$ and $d'_{j'} = e_{j'}(d_j + w_{lj} - 1) \geq 1$ for some l .)

- (3) G is also Cartier and $q \circ \pi$ -exceptional (from those E'_j with $g'(E'_j) \subset B$).
- (4) $\sum_{j'} d_{j'} E'_{j'}$ remains on the left side, where $E'_{j'}$ are g' -horizontal with $0 < d_{j'} = d_j = \epsilon_j < 1$
- (5) If $E'_{k'}$ is g' -horizontal, then $n_{k'} \geq 0$.
- (6) $(Z', \sum_{j'} \epsilon'_{j'} E'_{j'})$ is klt.

There also exists a cyclic cover [9] $p' : Y'' \rightarrow Y'$ such that Y'' is smooth and $p'^* p^*(H) = 2H'$, where H' is an ample Cartier divisor. Since H is an ample Q -divisor, we can choose the covering p' in such way that the ramification locus $R_{p'}$ of p' intersects $\text{Supp } Q$ and B transversely. Let $g'' : Z'' \rightarrow Y''$ be the induced morphism from a desingularization $Z'' \rightarrow Z' \times_{Y'} Y''$.

$$\begin{array}{ccccccc} Z'' & \xrightarrow{q'} & Z' & \xrightarrow{q} & Z & \xrightarrow{\pi} & X \\ g'' \downarrow & & g' \downarrow & & g \downarrow & & \\ Y'' & \xrightarrow{p'} & Y' & \xrightarrow{p} & Y & & \end{array}$$

Since g' is semistable over $Y' \setminus B$, we have $q'*K_{Z'/Y'} = K_{Z''/Y''}$ over $Y'' \setminus p'^{-1}(B)$. Thus again we can write

$$K_{Z''/Y''} + \sum_{j''} \epsilon''_{j''} E''_{j''} \sim_Q \sum_{k''} n_{k''} E''_{k''} - g''^* p'^* p^* K_Y - 2g''^* H' - V' + G'$$

where

- (1) $\sum_{k''} n_{k''} E''_{k''}$ is Cartier and $\text{Supp}(\sum_{k''} E''_{k''})$ is $q' \circ q \circ \pi$ -exceptional.
- (2) V' is an effective Cartier divisor which is g'' -vertical.
- (3) G' is also Cartier and $q' \circ q \circ \pi$ -exceptional (since $\text{codim}_{g''}(G') \geq 2$).
- (4) If $E''_{k''}$ is g'' -horizontal, then $n_{k''} \geq 0$.
- (5) $(Z'', \sum_{j''} \epsilon''_{j''} E''_{j''})$ is klt and $\sum_{j''} \epsilon''_{j''} E''_{j''}$ is Q -linearly equivalent to a Cartier divisor.

Since all the g'' -horizontal divisors $E''_{k''}$ have non-negative coefficients,

$$g''_* (\sum_{k''} n_{k''} E''_{k''} - g''^* p'^* p^* K_Y - 2g''^* H' - V' + G')$$

is not a zero sheaf. Let $\omega = \sum_{k''} n_{k''} E''_{k''} - g''^* p'^* p^* K_Y - V' + G'$.

Applying the results of Kollar [11], Viehweg [17, Lemma 5.1] and Kawamata [7, Theorem 1.2], we may assume that

$$g''_* (\omega - 2g''^* H') = g''_* (\omega) \otimes \mathcal{O}_{Y''}(-2H')$$

is torsion free and weakly positive over Y'' .

Note: In [7], Kawamata proved that in fact (after blow-up Y'' further) we may assume that $g''_*(\omega)$ is locally free and semipositive. However the weak positivity is sufficient in our case.

By the weak positivity of $g''_*(\omega) \otimes \mathcal{O}_{Y''}(-2H')$, we have

$$\hat{\mathcal{S}}^n g''_*(\omega) \otimes \mathcal{O}_{Y''}(-2nH' + nH')$$

is generically generated by its global sections over Y'' for some $n > 0$, where $\hat{\mathcal{S}}^n$ denotes the reflexive hull of \mathcal{S}^n .

We have a natural homomorphism

$$S^n g''^* g''_*(\omega) \otimes g''^* \mathcal{O}_{Y''}(-nH') \rightarrow \omega^n \otimes g''^* \mathcal{O}_{Y''}(-nH')$$

By the torsion freeness of $g''_*(\omega)$, there exists an open set $U \subset Y''$ with $\text{codim}(Y'' \setminus U) \geq 2$ such that

$$\hat{\mathcal{S}}^n g''_*(\omega) \otimes \mathcal{O}_{Y''}(-nH')|_U = S^n g''_*(\omega) \otimes \mathcal{O}_{Y''}(-nH')|_U$$

and hence

$$g''^* \hat{\mathcal{S}}^n g''_*(\omega) \otimes g''^* \mathcal{O}_{Y''}(-nH')|_W = S^n g''^* g''_*(\omega) \otimes g''^* \mathcal{O}_{Y''}(-nH')|_W$$

where $W = g''^{-1}(U)$. If $B' = Z'' \setminus W$, then B' is g'' -exceptional. Since $g''^* \hat{\mathcal{S}}^n g''_*(\omega) \otimes g''^* \mathcal{O}_{Y''}(-nH')$ is also generically generated by its global sections over Z'' , there is a non trivial morphism

$$\bigoplus \mathcal{O}_{Z''}|_W \rightarrow \omega^n \otimes g''^* \mathcal{O}_{Y''}(-nH')|_W$$

i.e., $\omega^n \otimes g''^* \mathcal{O}_{Y''}(-nH')$ admits a meromorphic section which has poles only along B' . Thus we may choose some large integer k such that $\omega^n \otimes g''^* \mathcal{O}_{Y''}(-nH') + kB'$ has a holomorphic section, i.e.,

$$n \left(\sum_{k''} n_{k''} E''_{k''} - g''^* p'^* p^* K_Y - V' + G' \right) - ng''^* H' + kB'$$

is effective.

Again as before, we can choose a family of general complete intersection curves C on Z'' such that C does not intersect with the exceptional locus of $Z'' \rightarrow X$ (such as $E''_{k''}$, B' and G'). Thus $g''_*(C) \cdot p'^* p^*(K_Y) \leq g''_*(C) \cdot (-H') < 0$ and hence Y is uniruled [15]. q.e.d.

§2. The behavior of the canonical bundles under projective morphisms

Let X and Y be two projective varieties and $f : X \rightarrow Y$ be a surjective morphism. Assume that the Kodaira dimension $\kappa(X) \leq 0$. In general, it is almost impossible to predict the Kodaira dimension of Y . The following example shows that even when $\dim Y = 1$, we have no control of the genus of Y :

Example. ([6], [13]): Let C be a smooth curve of arbitrary genus g and A be an ample line bundle on C such that $\deg A > 2\deg K_C$. Let $S = \text{Proj}_C(\mathcal{O}(A) \oplus \mathcal{O}_C)$ be the projective space bundle associated to the vector bundle $\mathcal{O}(A) \oplus \mathcal{O}_C$. Then $K_S = \pi^*(K_C + A) - 2L$, where L is the tautological bundle and $\pi : S \rightarrow C$ is the projection. An easy computation shows that $-K_S$ is big (i.e., $h^0(S, -mK_S) \approx c \cdot m^2$ for $m \gg 0$ and some $c > 0$). In particular, the Kodaira dimension $\kappa(S) = -\infty$. However, the genus of C could be large.

On the other hand, it is not hard to find the following facts:

- (1) Let $D = -K_S = 2(L - \pi^*A) + \pi^*(A - K_C)$, then D is effective and the pair (S, D) is not log canonical [9].
- (2) $-K_S$ is not nef, i.e., there exists some curve B (e.g., choose B to be the section corresponding to $\mathcal{O}(A) \oplus \mathcal{O}_C \rightarrow \mathcal{O}_C \rightarrow 0$) on S such that $(-K_S) \cdot B < 0$.
- (3) For any integer $m > 0$, the linear system $-mK_S$ contains some fixed component (e.g., $m(L - \pi^*A)$) which dominates C .

In view of the above example, we give a few sufficient conditions which guarantees nice behavior of the Kodaira dimension (and the canonical bundle).

Theorem 2. Let $f : X \rightarrow Y$ be a surjective morphism. Assume that $D \equiv -K_X$ is an effective \mathbb{Q} -divisor and the pair (X, D) is log canonical. Moreover assume that Y is normal and \mathbb{Q} -Gorenstein. Then either Y is uniruled or K_Y is numerically trivial. (In particular, $\kappa(Y) \leq 0$.)

Corollary 2. Let $f : X \rightarrow Y$ be a surjective morphism. Assume that X is log canonical and K_X is numerically trivial (e.g., a Calabi-Yau manifold). Moreover assume that Y is normal and \mathbb{Q} -Gorenstein. Then either Y is uniruled or K_Y is numerically trivial.

Theorem 3. Let $f : X \rightarrow Y$ be a surjective morphism. Assume that $-K_X$ is nef and X is smooth. Moreover assume that Y is normal and \mathbb{Q} -Gorenstein. Then either Y is uniruled or K_Y is numerically trivial.

Remark: Theorem 3 was proved in [18] (in particular, the result solved a conjecture proposed by Demailly, Peternell and Schneider [3]). However, the proof given there was incomplete (as pointed out to me by Y. Kawamata. I wish to thank him). The problem lies in Proposition 1 in [18], the point is that the nefness in general is not preserved under the deformations (mod p reductions in our case). We shall present a new proof of this proposition (see Proposition 2).

Theorem 4. *Let $f : X \rightarrow Y$ be a surjective morphism. Assume that there exists some integer $m > 0$ such that $-mK_X$ is effective and has no fixed locus which dominates Y . Moreover assume that X is log canonical and Y is normal and Q -Gorenstein. Then either Y is uniruled or K_Y is numerically trivial.*

As an immediate consequence, we can show the following result about the Albanese maps.

Corollary 3. *Let X be a smooth projective variety. Then the Albanese map $\text{Alb}_X : X \rightarrow \text{Alb}(X)$ of X is surjective and has connected fibers if X satisfies one of the following conditions:*

- (1) *$D \equiv -K_X$ is an effective Q -divisor and the pair (X, D) is log canonical (“ \equiv ” means numerically equivalent).*
- (2) *$-K_X$ is nef.*
- (3) *There exists some integer $m > 0$ such that $-mK_X$ is effective and has no fixed component which dominates $\text{Alb}(X)$.*

The main ingredients of the proofs are the Minimal Model Program (in particular, a vanishing theorem of Esnault-Viehweg, Kawamata and Kollar plays an essential role), and the deformation theory. It is interesting to notice that the proofs of Theorem 2 and Theorem 3 are completely different in nature.

The following vanishing theorem of Esnault-Viehweg, Kawamata and Kollar is important to us:

Vanishing Theorem [4], [22]. *Let $f : X \rightarrow Y$ be a surjective morphism from a smooth projective variety X to a normal variety Y . Let L be a line bundle on X such that $L \equiv f^*M + D$, where M is a Q -divisor on Y and (X, D) is Kawamata log terminal. Let C be a reduced divisor without common component with D and $D + C$ is a normal crossing divisor. Then*

- (1) *$f_*(K_X + L + C)$ is torsion free [20].*
- (2) *Assume in addition that M is nef and big. Then $H^i(Y, \mathcal{R}^j f_*(K_X + L + C)) = 0$ for $i > 0$ and $j \geq 0$.*

Remark: The $C = 0$ case was done by Esnault-Viehweg, Kawamata and Kollar [11]. The generalized version given here essentially was proved by Esnault-Viehweg in [4] and by Fujino in [22]. I thank Professor Viehweg for informing on the matter. C. Hacon pointed out an inaccuracy and informed me of the reference [22]. I would like to thank him. Below, we give an outline of the proof which was provided to me by E. Viehweg.

Sketch of the proof. By [4, 5.1 and 5.12], we have an injective morphism

$$0 \rightarrow H^j(X, K_X + L + C) \rightarrow H^j(X, K_X + L + C + B)$$

for any j , where $B = f^*(F)$ for some divisor F on Y . If we choose F to be a very ample divisor, we have the exact sequence:

$$0 \rightarrow \mathcal{R}^j f_*(K_X + L + C) \rightarrow \mathcal{R}^j f_*(K_X + L + C + B) \rightarrow \mathcal{R}^j f_*(K_B + L + C) \rightarrow 0.$$

By induction on $\dim Y$ and the Leray-spectral sequence associated with $\mathcal{R}^j f_*$, we can prove the result (see [4] for details). q.e.d.

Proof of Theorem 2. : Let $g : Z \rightarrow X$ be a log resolution and let $\pi = f \circ g$. Then

$$K_Z = g^*(K_X + D) + \sum a_i E_i, \text{ where each } a_i \geq -1.$$

We can rewrite $\sum a_i E_i = \sum b_j E_j + \sum c_k E_k + \sum d_l E_l$ where $b_j \geq 0$, $0 > c_k > -1$ and $d_l = -1$.

Let C be a general complete intersection curve on Y and $W = \pi^{-1}(C)$. We have

$$K_Z = K_{Z/Y} + \pi^* K_Y \text{ and } K_{Z/Y}|_W = K_{W/C}$$

Thus

$$K_W + \pi^*(K_Y|_C) + \sum -c_k E_k|_W + \sum \{-b_j\} E_j|_W + \sum d_l E_l|_W \equiv \pi^* K_C + \sum \lceil b_j \rceil E_j|_W$$

Let us assume that $K_Y \cdot C > 0$. Since $(K_W, \sum -c_k E_k|_W + \sum \{-b_j\} E_j|_W)$ is Kawamata log terminal and $\sum \lceil b_j \rceil E_j|_W$ is exceptional, the Vanishing Theorem yields

$$H^1(C, \pi_*(\pi^* K_C + \sum \lceil b_j \rceil E_j|_W)) = H^0(C, \mathcal{O}_C) = 0,$$

a contradiction. So we must have $K_Y \cdot C \leq 0$. If $K_Y \cdot C < 0$, Y is uniruled by [15]. If $K_Y \cdot C = 0$, K_Y is numerically trivial by Hodge index theorem. q.e.d.

Proof of Theorem 3. Let us first establish the following proposition (Proposition 1 in [18]).

Proposition 2. *Let $\pi : X \rightarrow Y$ be a surjective morphism between smooth projective varieties over \mathbb{C} . Then for any ample divisor A on Z , $-K_{X/Y} - \delta\pi^*A$ is not nef for any $\delta > 0$.*

Proof of Proposition 2. We shall give a new proof of this proposition by modifying the arguments we used before [18]. Again, the main idea and method comes from [14].

Let $C \subset X$ be a general smooth curve of genus $g(C)$ such that $C \not\subseteq \text{Sing}(\pi)$. Let $p \in C$ be a general point and $B = \{p\}$ be the base scheme. Denoting by $\nu : C \rightarrow X$ the embedding of C to X . Let $D_Y(\nu, B)$ be the Hilbert scheme representing the functor of the relative deformation over Y of ν . Then by [14], we have

$$\dim_{\nu} D_Y(\nu, B) \geq -\nu_*(C) \cdot K_{X/Y} - g(C) \cdot \dim X$$

Suppose now that $-K_{X/Y} - \delta\pi^*A$ is nef for some $\delta > 0$. Let H be an ample divisor on X and $\epsilon > 0$ be a small number, we may assume that

$$\nu_*(C) \cdot (\delta\pi^*A - \epsilon H) > 0.$$

Then

$$\dim_{\nu} D_Y(\nu, B) \geq \nu_*(C) \cdot (\delta\pi^*A - \epsilon H) - g(C) \cdot \dim X$$

Since $-K_{X/Y} - \delta\pi^*A + \epsilon H$ is an ample divisor on X and the ampleness is indeed an open property in nature. By the method of modulo p reductions [14], after composing ν with suitable Frobenius morphism if necessary, we can assume that there exists another morphism [14] $\nu' : C \rightarrow X$ such that

- (1) $\deg \nu'_*(C) < \deg \nu_*(C)$, where $\deg \nu_*(C) = \nu_*(C) \cdot H$.
- (2) $\pi \circ \nu' = \pi \circ \nu$.

However, we have

$$\nu'_*(C) \cdot (\delta\pi^*A - \epsilon H) > \nu_*(C) \cdot (\delta\pi^*A - \epsilon H)$$

by (1) and (2). This guarantees the existence of a non-trivial relative deformation of ν' . Since $\deg \nu'_*(C) < \deg \nu_*(C)$, this process must terminate, which is absurd. q.e.d.

Proof of Theorem 3 continued: We keep the same notations as in Theorem 2. Let $-K_{W/C} = -K_X|_W + f^*(K_Y|_C)$, where C is a general complete intersection curve on Y and $W = f^{-1}(C)$. Applying Proposition 2, we deduce that $K_Y \cdot C \leq 0$ and we are done. q.e.d.

Proof of Theorem 4. Replacing X by a suitable resolution if necessary, we may assume that $-pK_X = L + N$ for some positive integer p , where $|L|$ is

base-point free and N is the fixed part. Multiplying both sides by some large integer m , we can write $-K_X = \epsilon L_m + N_m$ as Q -divisors, where $\epsilon > 0$ is a small rational number. We may again assume that the linear system L_m is base-point free and N_m is the fixed locus. The point is that $(X, \epsilon L_m)$ is log canonical. If the fixed locus does not dominate Y , we can choose a general complete intersection curve C on Y such that C only intersects $f(\text{Supp}(N_m))$ at some isolated points. Using the same notations as before, we have

$$K_W + f^*(K_Y|_C) + \epsilon L_m|_W \equiv f^*K_C + E - N_m|_W$$

where E is exceptional. If $C \cdot K_Y > 0$, then by the Vanishing Theorem

$$H^1(C, f_*(K_W + f^*(K_Y|_C) + \epsilon L_m|_W + \{N_m\})) = H^0(C, -f_*(-\lfloor N_m|_W \rfloor)) = 0$$

Since $\text{Supp}(N_m)$ is contained in some fibers of f , we reach a contradiction. The remaining arguments are exactly the same as in the proof of Theorem 2. q.e.d.

Proof of Corollary 3. Let $X \xrightarrow{f} Y \xrightarrow{g} \text{Alb}(X)$ be the Stein factorization of Alb_X . Then by Theorem 2-4, we conclude that $\kappa(Y) = 0$. We may assume that Y is smooth, otherwise we can take a desingularization Y' of Y . This will not affect our choices for the general curve C (since Y is smooth in codimension 1). Therefore $\text{Alb}(X)$ must be an abelian variety and hence Alb_X is surjective and has connected fibers (see [18] for details). q.e.d.

Remark: The notion of special varieties was introduced and studied by F. Campana in [20]. He also conjectured that compact Kähler manifolds with $-K_X$ nef are special. S. Lu [21] proved the conjecture for projective varieties. In particular, if X is a projective variety with $-K_X$ nef and if there is a surjective map $X \rightarrow Y$. Then $\kappa(Y) \leq 0$. Our focus however, is on the uniruledness of Y .

Acknowledgments: Part of the results (Theorem 2-4) were obtained while I stayed at the University of Tokyo, Japan and the University of Nancy, France. I would like to thank Professor Y. Kawamata, Professor K. Oguiso and Professor F. Campana for their hospitality. I thank both institutions for the financial support. I am grateful to Professor Y. Kawamata, Professor J. Kollar and Professor E. Viehweg for encouragement, helpful advice, and valuable suggestions. I am grateful to Qihong Xie who has carefully read an earlier version of the paper. His useful comments and suggestions helped to improve the paper. Finally, I would like to thank the referee for valuable suggestions.

REFERENCES

- [1]. F. Campana, *Connexité rationnelle des variétés de Fano*, Ann. Sci. E.N.S **25** (1992), 539-545.
- [2]. F. Campana, *Fundamental group and positivity of cotangent bundles of compact kahler manifolds*, J. Alg. Geom **4** (1995), 487-502.
- [3]. J. Demailly, T. Peternell, M. Schneider, *Kähler manifolds with numerically effective Ricci class*, Compositio Math **89** (1993), 217-240.
- [4]. H. Esnault, E. Viehweg, *Lectures on vanishing theorems*, DMV Seminar 20 (Birkhauser, Basel Boston) (1992).
- [5]. H. T. Graber, J. Harris, J. Starr, *Families of rationally connected varieties*, J. Amer. Math. Soc. **16** (1) (2003), 57-67.
- [6]. R. Hartshorne, *Algebraic Geometry*, (Springer-Verlag) (1977).
- [7]. Y. Kawamata, *On effective non-vanishing and base-point-freeness. Kodaira's issue.*, Asian J. Math. **1** (2000), 173-181.
- [8]. Y. Kawamata, *Subadjunction of log canonical divisors. II*, Amer.J. Math. **120** (5) (1998), 893-899.
- [9]. Y. Kawamata, K. Matsuada, K. Matsuki, *Introduction to the minimal Model Problem*, Adv. Stud. Pure. Math. **10** (1987), 283-360.
- [10].J. Keum, D-Q. Zhang, *Fundamental groups of open K3 surfaces, Enriques surfaces and Fano 3-folds*, J. Pure Appl. Algebra **170** (1) (2002), 67-91.
- [11].J. Kollar, *Shafarevich Maps and Automorphic Forms*, (Princeton University Press) (1995).
- [12].J. Kollar, Y. Miyaoka, S. Mori, *Rational connectedness and boundedness of Fano manifolds*, J. Diff. Geom. **36** (1992), 765-779.
- [13].J. Kollar, Y. Miyaoka, S. Mori, *Rationally connected varieties*, J. Alg. Geom. **1** (1992), 429-448.
- [14].Y. Miyaoka, *Relative deformations of morphisms and applications to fiber spaces*, Commentarii Math. Univ. Sancti Pauli **42**(1) (1993), 1-7.
- [15].Y. Miyaoka, S. Mori, *A numerical criterion for uniruledness*, Ann. of Math. **124** (1986), 65-69.
- [16].S. Takayama, *Simple connectedness of weak Fano varieties*, J. Alg. Geom. **9** (2000), 403-407.
- [17].E. Viehweg, *Weak positivity and the additivity of Kodaira dimension for certain fiber spaces*, Adv. Stud. Pure. Math. **1** (1983), 329-353.
- [18].Q. Zhang, *On projective manifolds with nef anticanonical bundles*, J. reine angew. Math. **478** (1996), 57-60.
- [19].M. Raynaud, *Flat modules in algebraic geometry*, Compo. Math. **24** (1972), 11-31.
- [20].F. Campana, *Orbifolds, Special Varieties and Classification Theory*, Ann. Inst. Fourier, Grenoble **54**(3) (2004), 499-630/math.AG/0110051(2001).
- [21].S. Lu, *A refined Kodaira dimension and its canonical fibration*, math.AG/0211029 (2002).
- [22].O. Fujino, *Higher direct images of log canonical divisors and positivity theorems*, math.AG/0302073 (2003).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MO 65211.
U.S.A

E-mail address: qi@math.missouri.edu