

Inspire...Educate...Transform.

Stat Skills

Confidence Intervals, t- Distribution, Hypothesis Testing, t-Tests

Dr. Anand Jayaraman

Apr 8, 2017

Thanks to Dr.Sridhar Pappu for the material

Review

- Probability Distributions
 - Bernoulli, Geometric, Binomial, Poisson, Exponential
- Gaussian Distribution
 - Areas under the curve
 - Reading the normal distribution table
 - Approximating B(n,p) with Normal distribution
 - Continuity correction
- Central Limit Theorem

Activity – R

According to the US Bureau of the Census, about 75% of the commuters in the United States drive to work alone. Suppose 150 US commuters are randomly sampled.

- What is the probability that fewer than 105 commuters drive to work alone?
- What is the probability that between 110 and 120 (inclusive) commuters drive to work alone?
- What is the probability that more than 95 commuters drive to work alone?

Answers: 0.0657, 0.6485, 0.9993

- Expected Mean = 0.75*150=112.5
- Variance = n*p*q=150*0.75*0.25
- 1. Area under the curve from —Infinity to 104.5 (continuity correction)

```
> pnorm(104.5,112.5,sqrt(150*0.75*0.25))
[1] 0.06571401
```

2. Area under the curve between 120.5 and 109.5

```
> pnorm(120.5,150*0.75,sqrt(150*0.75*0.25)) - pnorm(109.5,150*0.75,sqrt(150*0.75*0.25))
[1] 0.6484822
```

3. Area under the curve above 95.5

```
> 1-pnorm(95.5,112.5,sqrt(150*0.75*0.25))
[1] 0.999326
```


Activity – R

According to National Center for Health Statistics of the US, the distribution of serum cholesterol levels for 20-74 year old males has a mean of 211mg/dl with a standard deviation of 46mg/dl.

- What is the probability that the serum cholesterol level of a male is >230mg/dl?
- What is the probability that the average serum cholesterol level of a random sample of 36 males will be >230mg/dl?


```
1) > 1-pnorm(230,mean=211,sd=46)
[1] 0.3397874
```

2) Expected value for the Average of the group = 211

SD of the sampling distribution for the group of 36 = 46/sqrt(36)

```
> 1-pnorm(230, mean=211, sd=46/sqrt(36))
[1] 0.006601229
```


PRESENT DAY

"I got the instructions from my Statistics Professor. He was 80% confident that the true location of the restaurant was in this neighborhood."

CONFIDENCE INTERVALS

When we use samples to provide population estimates, we cannot be CERTAIN that they will be accurate. There is an amount of uncertainty, which needs to be calculated.

Publish Date	Source	Polling Organisation	NDA	UPA	Other
	[177]	CNN-IBN - CSDS - Lokniti	276 (±6)	97 (±5)	148 (±23)
	[177][178]	India Today – Cicero	oday – Cicero 272 (±11) 115 (±5)		156 (±6)
40.88 2044	[177][179]	News 24 – Chanakya	340 (±14)	70 (±9)	133 (±11)
12 May 2014	[177]	Times Now – ORG	249	148	146
	[177][180]	ABP News - Nielsen	274	97	165
	[177]	India TV – CVoter	289	101	148
14 May 2014	[181][182]	NDTV - Hansa Research	279	103	161
12 May 2014	[177]	Poll of Polls	283	105	149
16 May 2014		Actual Results ^[2]	336	58	149

Source: http://en.wikipedia.org/wiki/Indian_general_election, 2014

Last accessed: March 27, 2015

Polling Organisation	NDA	UPA	Other
CNN-IBN - CSDS - Lokniti	276 (±6)	97 (±5)	148 (±23)
India Today – Cicero	272 (±11)	115 (±5)	156 (±6)
News 24 – Chanakya	340 (±14)	70 (±9)	133 (±11)

Incorrect way to present data as it gives the feeling that the population parameter will lie within these ranges.

Standard Error (SE) is the same as Standard Deviation of the sampling distribution and a sample with 1 SE may or may not include the population parameter.

73156

Sampling distribution of sample means

We have seen that ~ 95% of the samples will have a mean value within the interval +/- 2 SE of the population mean (recall the Empirical Rule for Normal Distribution).

Alternatively, 95% of such intervals include the population mean. Here, 95% is the Confidence Level and the interval is called the Confidence Interval.

SE, Margin of Error, Confidence Interval and Sample Size

$$SE = \frac{\sigma}{\sqrt{n}}$$

$$Margin of Error = z * SE$$

Margin of error is the maximum expected difference between the true population parameter and a sample estimate of that parameter.

Margin of error is meaningful only when stated in conjunction with a probability (confidence level).

SE, Margin of Error, Confidence Interval and Sample

Size Sample size = 2,401Margin of error = 2%Sample size = 1,067Margin of error = 3%Margin of error is the radius or Sample size = 600half-width of a confidence Margin of error = 4% Sample size = 384interval. Margin of error = 5%Sample size = 96Margin of error =10% 40% 45% 50% 55% 60% 1,067

5%

10%

Source: https://en.wikipedia.org/wiki/Margin_of_error

Last accessed: June 18, 2015

96

384

SE, Margin of Error, Confidence Interval and Sample Size

Just like Mean, <u>Proportion</u> is another common parameter of interest in many problems.

Expectation of a sample proportion = p

SE of a sample proportion =
$$\sqrt{\frac{pq}{n}}$$

SE, Margin of Error, Confidence Interval and Sample

Size

In a poll by FOX News conducted between November 1 –3 2016, a survey of 1107 randomly sampled likely voters predicted that 45% would vote for Hillary Clinton.

What is the margin of error at 95% confidence level (z = 1.96)?

Check qnorm(0.975, 0, 1). Why 0.975?

	X NEWS Presidential	THE PROPERTY.	
Clinton	Now 45%	0ct. 22-25 44%	0ct. 15-17 45%
Trump	43%	41%	39%
	November 1-3, 20 Likely Voters +/- 3%	116 % Pts.	

SE, Margin of Error, Confidence Interval and Sample Size

If the desired margin of error at 95% confidence level is 1%, what should be the sample size?

$$0.01 = 1.96 * \sqrt{\frac{0.45 * 0.55}{n}}$$

$$\therefore n = \left(\frac{1.96}{0.01} * \sqrt{0.45 * 0.55}\right)^2 = 9508$$

A survey was taken of US companies that do business with firms in India. One of the survey questions was: Approximately how many years has your company been trading with firms in India?

A random sample of 44 responses to this question yielded a mean of 10.455 years. Suppose the population standard deviation for this question is 7.7 years. Using this information, construct a 90% confidence interval for the mean number of years that a company has been trading in India for the population of US companies trading with firms in India.

17

- n = 44
- $\bar{x} = 10.455$
- $\sigma = 7.7$

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
 or Margin of error = $z * \frac{\sigma}{\sqrt{n}}$

∴ Confidence Interval for the Population Mean is Sample Mean ± Margin of Error

Find z_a and z_b where $P(z_a < Z < z_b) = 0.90$

$$P(Z < z_a) = 0.05 \text{ and } P(Z > z_b) = 0.05$$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

From probability tables using interpolation, we get $z_a = -1.645$ and $z_b = 1.645$.

Check qnorm(0.05, 0, 1) and qnorm(0.95, 0, 1) in R.

Margin of error at 90% Confidence Level = 1.645 * $\frac{7.7}{\sqrt{44}}$ = 1.91

Recall Confidence Interval for the Population Mean is Sample Mean \pm Margin of Error

$$\bar{X} - 1.91 < \mu < \bar{X} + 1.91$$

Since the sample mean is 10.455 years, we get the confidence interval for 90% as $8.545 < \mu < 12.365$.

The analyst is 90% confident that if a census of all US companies trading with firms in India were taken at the time of the survey, the actual population mean number of trading years of such firms would be between 8.545 and 12.365 years.

Shortcuts for Calculating Confidence Intervals

Population Parameter	Population Distribution	Conditions	Confidence Interval
μ	Normal	You know σ^2 n is large or small \overline{X} is the sample mean	$(\bar{X}-z\frac{\sigma}{\sqrt{n}},\bar{X}+z\frac{\sigma}{\sqrt{n}})$
μ	Non-normal	You know σ^2 n is large (> 30) \overline{X} is the sample mean	$(\bar{X}-z\frac{\sigma}{\sqrt{n}},\bar{X}+z\frac{\sigma}{\sqrt{n}})$
μ	Normal or Non-normal	You don't know σ^2 n is large (> 30) \bar{X} is the sample mean s^2 is the sample variance	$(\bar{X}-z\frac{s}{\sqrt{n}},\bar{X}+z\frac{s}{\sqrt{n}})$
p	Binomial	n is large p_s is the sample proportion	$(p_s - z) \frac{p_s q_s}{p_s q_s}, p_s + z \frac{p_s q_s}{p_s q_s}$

 q_s is $1 - p_s$

Т

Shortcuts for Calculating Confidence Intervals

Level of Confidence	Value of z
90%	1.64
95%	1.96
99%	2.58

You took a sample of 50 Gems and found that in the sample, the proportion of red Gems is 0.25. Construct a 99% confidence interval for the proportion of red Gems in the population.

$$0.25 - 2.58 * \sqrt{\frac{0.25 * 0.75}{50}}
$$0.09$$$$

Shortcuts for Calculating Confidence Intervals

Level of confidence	Value of z
90%	1.64
95%	1.96
99%	2.58

The lung function in 57 people is tested using FEV1 (Forced Expiratory Volume in 1 Second) measurements. The mean FEV1 value for this sample is 4.062 litres and standard deviation, s is 0.67 litres. Construct the 95% Confidence Interval.

FEV1 values of 57 male medical students

Level of confidence	Value of z
90%	1.64
95%	1.96
99%	2.58

2.85	2.85	2.98	3.04	3.10	3.10	3.19	3.20	3.30	3.39
3.42	3.48	3.50	3.54	3.54	3.57	3.60	3.60	3.69	3.70
3.70	3.75	3.78	3.83	3.90	3.96	4.05	4.08	4.10	4.14
4.14	4.16	4.20	4.20	4.30	4.30	4.32	4.44	4.47	4.47
4.47	4.50	4.50	4.56	4.68	4.70	4.71	4.78	4.80	4.80
4.90	5.00	5.10	5.10	5.20	5.30	5.43			

95%
$$CI$$
: $\left(4.062 - 1.96 * \frac{0.67}{\sqrt{57}}, 4.062 + 1.96 * \frac{0.67}{\sqrt{57}}\right)$
= (3.89,4.23)

Attention Check

What happens to confidence interval as confidence level changes?

As confidence level increases, the confidence interval becomes wider and *vice-versa*.

What happens to the confidence interval as sample size changes?

As sample size increases, the confidence interval becomes narrower.

Remember
$$(\bar{X} - z \frac{\sigma}{\sqrt{n}}, \bar{X} + z \frac{\sigma}{\sqrt{n}})$$
.

Confidence Intervals for a Sample Median

Confidence limits are given by actual values in the sample using the following formulae:

Lower 95% Confidence Limit: $\frac{n}{2} - 1.96 * \frac{\sqrt{n}}{2}$ ranked value.

Upper 95% Confidence Limit: $1 + \frac{n}{2} + 1.96 * \frac{\sqrt{n}}{2}$ ranked value.

Confidence Intervals for a Sample Median

Lower 95% Confidence Limit: $\frac{57}{2} - 1.96 * \frac{\sqrt{57}}{2} = 21.10$ ranked value. 21st ranked value is 3.70.

Upper 95% Confidence Limit: $1 + \frac{57}{2} + 1.96 * \frac{\sqrt{57}}{2} = 36.90$ ranked value. 37^{th} ranked value is 4.32.

95% CI: (3.70,4.32) Recall 95% CI using Mean: (3.89,4.23)

Confidence Intervals for a Sample Median

- Lack of distributional assumptions makes it difficult to obtain an exact CI for the median.
- Cl are not necessarily symmetric around the sample estimate.

The Summary of CI

Probability density.

Area under the curve between the limits.

The best place for students to learn Applied Engineering

Probability that a certain % of samples will contain the population meal within this interval.

Standard deviation of the population: Measure of deviation from the mean.

http://www.insofe.edu.in

A short detour – Variance Formula

Population Parameter
 Sample Statistic

$$\mu = \frac{\Sigma x}{N}$$

Variance
$$\sigma^2 = \frac{\Sigma(x-\mu)^2}{N}$$

$$\bar{x} = \frac{\sum x}{n}$$

Variance
$$s^2 = \frac{\sum (x - \bar{x})^2}{n-1}$$

t-Distribution

Ref: <a href="http://image.slidesharecdn.com/2013-ingenious-ireland-theingeniousirishiet-slideshow-130524065705-phpapp01/95/2013-ingeniousirelandthe-ingenious-irishietslideshow-43-638.jpg?cb=1369825611

Last accessed: October 31, 2015

t-Distribution

If the sample size is small (<30), the variance of the population is not adequately captured by the variance of the sample. Instead of z-distribution, t-distribution is used. It is also the appropriate distribution to be used when <u>population variance</u> is **not known**, irrespective of sample size.

Ref: http://demonstrations.wolfram.com/ComparingNormalAndStudentsTDistributions/

Last accessed: October 31, 2015

t-Distribution

t statistic (or t score),
$$t = \frac{(\bar{x} - \mu)}{\frac{S}{\sqrt{n}}}$$

Degrees of freedom, v: # of independent observations for a source of variation minus the number of independent parameters estimated in computing the variation.*

When estimating mean or proportion from a single sample, the # of independent observations is equal to n-1.

^{*} Roger E. Kirk, Experimental Design: Procedures for the Behavioral Sciences. Belmont, California: Brooks/Cole, 1968.

Properties of t-Distribution

- Mean of the distribution = 0
- Variance = $\frac{\nu}{\nu 2}$, where $\nu > 2$
- Variance is always greater than 1, although it is close to 1 when there are many degrees of freedom (sample size is large)
- With infinite degrees of freedom, t distribution is the same as the standard normal distribution

Confidence Interval to Estimate μ

 Population standard deviation UNKNOWN and the population normally distributed.

$$\bullet \ \bar{x} - t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

- Sample mean, standard deviation and size can be calculated from the data; t value can be read from the table or obtained from software.
- α is the area in the tail of the distribution. For 90% Confidence Level, α =0.10. In a Confidence Interval, this area is symmetrically distributed between the 2 tails (α /2 in each tail).

t-table

Percentage Points of the *t* Distribution; $t_{\nu,\alpha}$ $P(T > t_{\nu,\alpha}) = \alpha$

								α						
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42.434	63.657	127.322	636.590
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	4.849	5.643	6.965	8.073	9.925	14.089	31.598
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	2.328	2.491	2.718	2.879	3.106	3.497	4.437
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	2.197	2.336	2.528	2.661	2.845	3.153	3.850
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	2.183	2.320	2.508	2.639	2.819	3.119	3.792
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	2.177	2.313	2.500	2.629	2.807	3.104	3.768
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	2.172	2.307	2.492	2.620	2.797	3.091	3.745
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	2.158	2.291	2.473	2.598	2.771	3.057	3.690
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	2.154	2.286	2.467	2.592	2.763	3.047	3.674
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	2.150	2.282	2.462	2.586	2.756	3.038	3.659
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	2.123	2.250	2.423	2.542	2.704	2.971	3.551
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	2.099	2.223	2.390	2.504	2.660	2.915	3.460
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2.617	2.860	3.373
00	0.253	0.524	0.842	1.036	1.282	1.645	1.960	2.054	2.170	2.326	2.432	2.576	2.807	3.291

The labeled potency of a tablet dosage form is 100 mg. As per the quality control specifications, 10 tablets are randomly assayed.

A researcher wants to estimate the interval for the true mean of the batch of tablets with 95% confidence. Assume the potency is normally distributed.

Data are as follows (in mg):

98.6 102.1 100.7 102.0 97.0

103.4 98.9 101.6 102.9 105.2

38

Mean, $\bar{x} = 101.24 \text{ mg}$

Standard deviation, s = 2.48

$$n = 10$$

$$\nu = 10 - 1 = 9$$

At 95% level,
$$\alpha = 0.05$$
, and $:, \frac{\alpha}{2} = 0.025$

t-table

Percentage Points of the *t* Distribution; $t_{\nu,\alpha}$ $P(T > t_{\nu,\alpha}) = \alpha$

								α						
ν	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42.434	63.657	127.322	636.590
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	4.849	5.643	6.965	8.073	9.925	14.089	31.598
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	2.328	2.491	2.718	2.879	3.106	3.497	4.437
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	2.197	2.336	2.528	2.661	2.845	3.153	3.850
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	2.183	2.320	2.508	2.639	2.819	3.119	3.792
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	2.177	2.313	2.500	2.629	2.807	3.104	3.768
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	2.172	2.307	2.492	2.620	2.797	3.091	3.745
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	2.158	2.291	2.473	2.598	2.771	3.057	3.690
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	2.154	2.286	2.467	2.592	2.763	3.047	3.674
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	2.150	2.282	2.462	2.586	2.756	3.038	3.659
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	2.123	2.250	2.423	2.542	2.704	2.971	3.551
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	2.099	2.223	2.390	2.504	2.660	2.915	3.460
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2.617	2.860	3.373
œ	0.253	0.524	0.842	1.036	1.282	1.645	1.960	2.054	2.170	2.326	2.432	2.576	2.807	3.291

 $t_{9,0.025} = 2.262$

Mean, \bar{x} = 101.24 mg, Standard deviation, s = 2.48

n = 10,
$$\nu = 10 - 1 = 9$$

$$\bar{x} - t_{n-1,\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$$

$$\bar{x} - t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

$$101.24 - 2.262 * \frac{2.48}{\sqrt{10}} \le \mu \le 101.24 + 2.262 * \frac{2.48}{\sqrt{10}}$$

$$99.47 \le \mu \le 103.01$$

The batch mean is 101.24 mg with an error of $\pm 1.77 \text{ mg}$. The researcher is 95% confident that the average potency of the batch of tablets is between 99.47 mg and 103.01 mg.

A researcher wants to examine CD4 counts for HIV+ patients at her clinic. She randomly selects a sample of 25 HIV+ patients and measures their CD4 levels. Calculate a 95% CI for population mean given the following sample results:

make more virus

Variable	n	\overline{x}	SE of Mean	S	Min	Q1	Median	Q3	Max
CD4 (cells/ μ l)	25	321.4	14.8	73.8	208.0	261.5	325.0	394.0	449.0

Variable	n	\overline{x}	SE of Mean	S	Min	Q1	Median	Q3	Max
CD4 (cells/μl)	25	321.4	14.8	73.8	208.0	261.5	325.0	394.0	449.0

$$CI(0.05): \bar{x} - t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

$$321.4 - t_{25-1,\frac{0.05}{2}} \frac{73.8}{\sqrt{25}} \le \mu \le 321.4 + t_{25-1,\frac{0.05}{2}} \frac{73.8}{\sqrt{25}}$$

$$t_{24,0.025} = 2.064$$

∴ CI(0.05): [290.85,351.95]

43

t-table

Percentage Points of the *t* Distribution; $t_{\nu,\alpha}$ $P(T > t_{\nu,\alpha}) = \alpha$

								α						
ν	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42.434	63.657	127.322	636.590
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	4.849	5.643	6.965	8.073	9.925	14.089	31.598
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	2.328	2.491	2.718	2.879	3.106	3.497	4.437
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	2.197	2.336	2.528	2.661	2.845	3.153	3.850
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	2.183	2.320	2.508	2.639	2.819	3.119	3.792
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	2.177	2.313	2.500	2.629	2.807	3.104	3.768
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	2.172	2.307	2.492	2.620	2.797	3.091	3.745
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	2.158	2.291	2.473	2.598	2.771	3.057	3.690
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	2.154	2.286	2.467	2.592	2.763	3.047	3.674
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	2.150	2.282	2.462	2.586	2.756	3.038	3.659
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	2.123	2.250	2.423	2.542	2.704	2.971	3.551
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	2.099	2.223	2.390	2.504	2.660	2.915	3.460
120		0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2.617	2.860	3.373
œ	0.253	0.524	0.842	1.036	1.282	1.645	1.960	2.054	2.170	2.326	2.432	2.576	2.807	3.291

Interview Question

If you toss a coin 20 times and get 15 heads, would you say the coin is biased?

Let us apply our learning thus far...

- Q. What distribution is it?
- A. Binomial; $X^B(20,0.5)$ assuming the coin is fair.
- Q. What is the expectation?
- A. np = 10
- Q. What is the standard deviation?
- A. $\sqrt{npq} = \sqrt{5} = 2.236$
- Q. How many standard deviations away from the mean is 15?

A.
$$\frac{15-10}{2.236} = 2.236$$

- Q. What is the probability of getting 15 or more heads?
- A. $P(X \ge 15) = P(X = 15) + P(X = 16) + P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20) = 0.021$
- Q. Can it be approximated to a normal distribution?
- A. np = 10 and nq = 10. Since both are greater than 5, it can be approximated to X^N(10,5)
- Q. What is the probability of getting 15 or more heads?
- A. P(X > 14.5) = 1 P(X < 14.5)
- Q. What is the z-score?

A.
$$\frac{14.5-10}{\sqrt{5}} = 2.01$$
. $\therefore P = 1 - 0.9778 = 0.0222$

47

"I've narrowed it to two hypotheses: it grew or we shrunk."

HYPOTHESIS TESTS

 Hypothesis tests give a way of using samples to test whether or not statistical claims are likely to be true or not.

Hypothesis Testing

- A school principal claims that the students from her school have an average score of 7/10 in a English Proficiency test.
- You doubt that claim and take a random sample of 40 students and you find a mean score of 5.5/10, with a sample standard deviation of 1. Can you reject the principal's claim?

Hypothesis Testing Process

Step 1: Decide on the hypothesis

Average score on the test is 7/10.

This is called Null Hypothesis and is represented by H_0 .

In this case, H_0 : $\mu = 0.7$

If Null Hypothesis is rejected based on evidence, an Alternate Hypothesis, H_1 , needs to be accepted. We always start with the assumption that Null Hypothesis is true.

In this case, H_1 : μ < 0.7

Examples of Hypotheses

- Two hypotheses in competition:
 - H₀: The NULL hypothesis, usually the most conservative.
 - H₁ or H_A: The ALTERNATIVE hypothesis, the one we are actually interested in.
- Examples of NULL Hypothesis:
 - The coin is fair
 - The new drug is no better (or worse) than the placebo
- Examples of ALTERNATIVE hypothesis:
 - The coin is biased (either towards heads or tails)
 - The coin is biased towards heads
 - The coin has a probability 0.6 of landing on tails
 - The drug is better than the placebo

Step 2: Choose your statistic

Sample size = 40

Normal distribution is a good approximation

Std Err =
$$\frac{s}{\sqrt{n}} = \frac{1.0}{\sqrt{40}} = 0.158$$

$$X \sim N(0.7, 0.158^2) = N(0.7, 0.025)$$

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{0.55 - 0.7}{0.158} = -0.94$$

Step 3: Specify the Significance Level

First, we must decide on the Significance Level, α . It is a measure of how unlikely you want the results of the sample to be before

Step 4: Determine the critical region

If X represents the sample mean score, the critical region is defined as $P(X < c) < \alpha$ where $\alpha = 5\%$.

Recall that in a 95% CI, there is a 5% chance that the sample will not contain the population mean. Hence if the sample falls in the critical region, the null hypothesis that 0.7 is the mean score is rejected.

That is the reason 5% or 0.05 is called the Significance Level. In a 99% CI, 0.01 is the Significance Level.

73150

Step 5: Find the *p*-value

p-value is the probability of getting a value up to and including the one in the sample in the direction of the critical region.

It is a way of taking the sample and working out whether the result falls within the critical region of the hypothesis test.

Essentially, this is the value used to determine whether or not to reject the null hypothesis.

p-valueProbability densityArea under the curve

Step 5: Find the *p*-value

In our sample, we found a mean score of 5.5/10. This means our p-value is $P(X \le 0.55)$, where X is the distribution of the mean scores in the sample.

If $P(X \le 0.55) < 0.05$ (Significance Level), it indicates that 0.55 is inside the critical region, and hence H_0 can be rejected.

Given that Z = -0.94, $P(X \le 0.55) = 0.171$

The best place for students to learn Applied Engineering

> pnorm(0.55,0.7,1/sqrt(40)

So there is a 17% probability of find a mean score of 5.5/10 or less.

Step 6: Is the sample result in the critical region?

Step 7: Make your decision

There isn't sufficient evidence to reject the null hypothesis and so, the claims of the principal are accepted.

Would your conclusion be any different if the same average score of 5.5/10 was found from a sample of size 400?

What are the null and alternate hypotheses?

$$H_0$$
: $\mu = 0.7$

$$H_1$$
: μ < 0.7

What is the test statistic?

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{0.55 - 0.7}{\frac{1}{\sqrt{400}}} = -3$$

$$p$$
-value = $P(Z < -3.0) = 0.00135$

Since the p-value (0.00135) is less than the Significance Level of 0.05, the null hypothesis can be rejected.

Attention Check

In hypothesis testing, do you assume the null hypothesis to be true or false? True.

If there is sufficient evidence against the null hypothesis, do you accept it or reject it?

Reject it.

Attention Check

If the p-value is less than 0.05 for the above significance level, will you accept or reject the null hypothesis?

Reject it.

Do you need weaker evidence or stronger to reject the null hypothesis if you were testing at the 1% significance level instead of the 5% significance level? Stronger.

Critical Region Up Close

One-tailed tests

The position of the tail is dependent on H_1 . If H_1 includes a < sign, then the **lower tail** is used. If H_1 includes a > sign, then the **upper tail** is used.

Critical Region Up Close

Two-tailed tests

Critical region is split over both ends. Both ends contain $\alpha/2$, making a total of α .

If H_1 includes a \neq sign, then the two-tailed test is used as we then look for a change in parameter, rather than an increase or a decrease.

67

Critical Region Up Close

For each of the scenarios below, identify what type of test you would require.

- Average test score problem as discussed till now.
 One-tailed/Lower-tailed
- If we were checking whether the average is significantly different from 7/10, i.e., H_1 : $\mu \neq 0.7$. Two-tailed test
- The coin is biased.
 Two-tailed test
- The coin is biased towards heads with probability 0.8.
 One-tailed/Upper-tailed

The Missing Link in the Interview

Q. What is the probability of getting 15 or more heads?

A.
$$P(X \ge 15) = P(X = 15) + P(X = 16) + P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20) = 0.021$$

What can you now say about the coin being biased or

The hypothesis test doesn't answer the question whether the coin is biased or not; it only states whether the evidence is enough to reject the null hypothesis or not *at the chosen significance level*.

Errors

- Type I: We reject the NULL hypothesis incorrectly
- Type II: We "accept" it incorrectly

		State of Nature						
		Null true	Null false					
Action	Fail to reject null (negative)	Correct decision True Negative Specificity $P(Accept H_0 \mid H_0 True)$	Type II error (β) False Negative P(Accept H ₀ H ₀ False)					
	Reject null (positive)	Type I error (α) False Positive P(Reject H ₀ H ₀ True)	Correct decision (Power) True Positive Sensitivity/Recall P(Reject H ₀ H ₀ False)					

Probability of Getting Type I Error

P(Type I error) = α

			Sta	te of Nature
			Null true	Null false
		Fail to reject null (negative)	Correct decision True Negative Specificity	Type II error (β) False Negative
Ac	tion	Reject null (positive)	Type I error (α) False Positive	Correct decision (Power) True Positive Sensitivity/Recall

Probability of Getting Type II Error

P(Type II error) = β To find β ,

- 1. Check that you have a specific value for H₁.
- Find the range of values outside the critical region of the test. If the test statistic has been standardized, it needs to be de-standardized for the purpose.
- 3. Find the probability of getting this range of values, assuming H₁ is true. In other words, find the probability of getting the range of values outside the critical region, but this time using the test statistic described by H₁ and not H₀.

		State of Nature		
		Null true	Null false	
Action	Fail to reject null (negative)	Correct decision True Negative Specificity	Type II error (β) False Negative	
	Reject null (positive)	Type I error (α) False Positive	Correct decision (Power) True Positive Sensitivity/Recall	

A new miracle drug claims that it cures common cold and it has had a success rate of 90%. You conduct a random sample test with 100 patients and you find that 80 of them are cured.

At 5% significant level, do you reject or accept the claim by the drug company?

What are the null and alternate hypotheses?

 H_0 : p = 0.9

 H_1 : p < 0.9

What is the test statistic?

 $X \sim B(100, 0.9)$

Since np>5 and nq>5, Normal distribution can be used instead.

 $X \sim N(np, npq)$

 $X \sim N(90, 9)$

What is the probability of 80 or fewer getting cured?

$$Z = \frac{80.5 - 90}{\sqrt{9}} = -3.17$$

$$p$$
-value = $P(Z < -3.17) = 0.0008$

Probabilities of Errors in Our Example

P(Type I error) = 0.05

To calculate P(Type II error)

 H_0 : p = 0.9

 H_1 : p = 0.8

P(Z < c) = 0.05 for 5% Significance Value. From probability tables, c = -1.64.

To de-standardize and find values outside the critical region,

 $\frac{X-90}{\sqrt{9}} \ge -1.64$; $X \ge 85.08$, i.e., we would accept null hypothesis if 85.08 or more people had been cured.

Probabilities of Type I and Type II Errors

Type I (α)

Type II (β)

Probabilities of Errors in Our Example

Finally, we need to calculate $P(X \ge 85.08)$, assuming H_1 is true.

 $X \sim N(np, npq)$ where n=100 and p=0.8. This gives $X \sim N(80, 16)$.

To calculate P(X \geq 85.08) where X $^{\sim}$ N(80, 16), we find

$$z = \frac{85.08 - 80}{\sqrt{16}} = 1.27$$

$$P(Z \ge 1.27) = 1 - P(Z < 1.27) = 1-0.8980 = 0.102$$

P(Type II error) = 0.102

The probability of accepting the null hypothesis that 90% are cured when its actually 80% is 10.2%.

Power of Hypothesis Test

			State of Nature			
			Null true	Null false		
	Action	Fail to reject null (negative)	Correct decision True Negative Specificity $P(Accept H_0 \mid H_0 True)$	Type II error (β) False Negative P(Accept H ₀ H ₀ False)		
		Reject null (positive)	Type I error (α) False Positive P(Reject H ₀ H ₀ True)	Correct decision (Power) True Positive Sensitivity/Recall P(Reject H ₀ H ₀ False)		

Power of a Hypothesis Test

We reject null hypothesis correctly when it is false.

It is actually the opposite of Type II error, and therefore,

Power = $1 - \beta = 1-0.102 = 0.898$, i.e., the probability that we will make the correct decision in rejecting the null hypothesis is 89.8%.

http://www.insofe.edu.in

Hypothesis Testing

A prisoner is on trial and you are on the jury. The jury's task is to assume that the accused is innocent, but if there is enough evidence, the jury needs to convict him.

In the trial, what is the null hypothesis?

The prisoner is innocent (or not guilty).

What is the alternate hypothesis?

The prisoner is guilty.

Hypothesis Testing

What are the possible ways of the jury coming to an incorrect verdict?

If the prisoner is innocent, and the jury gives a 'guilty' verdict.

If the prisoner is guilty, and the jury gives an 'innocent' verdict.

Which one is Type I and which one Type II?

First one is Type I because null hypothesis actually was correct but rejected incorrectly.

Second one is Type II because null hypothesis was false but was accepted incorrectly.

What is the Power of the test?

Since it is opposite of Type II, it will be finding the prisoner guilty when the prisoner is actually guilty, i.e., rejecting the null hypothesis correctly.

Common Test Statistics for Inferential Techniques

Inferential techniques (Confidence Intervals and Hypothesis Testing) most commonly use 4 test statistics:

- Z
- t
- χ^2 (Chi-squared)
- F

Closely related to Sampling Distribution of **Means**

Closely related to Sampling Distribution of **Variances**

Derived from Normal Distribution

TWO-SAMPLE t-TEST FOR MEANS

- Do two samples come from the same population?
- If they come from different populations, what is the difference in the means of the two populations?

- Does the average cost of a two-bedroom flat differ between Bengaluru and Hyderabad? What is the difference?
- What is the difference in the strength of steel produced under two different temperatures?
- Does the effectiveness of Head & Shoulders anti-dandruff shampoo differ from Pantene anti-dandruff shampoo?
- What is the difference in the productivity of men and women on an assembly line under certain conditions?
- Does an antibiotic affect the efficacy of another drug being taken by a patient?

Two-sample t-Test

Paired Data

- You have two sets of data, where there is a natural pairing in the elements. Eg: BloodPressure from 30 people – one from before a treatment and other from after treatment.
- Unpaired Data
 - Comparing apartment costs from two cities
 - Two data sets of different length
 - No Natural pairing

Two-Sample t-Test for Paired Data

When the effects of two alternative treatments is to be compared, sometimes it is possible to make comparisons in pairs, where, e.g., the pair can be the same person at two different occasions or matched pairs where they are alike in all respects.

To study if their means are the same – we can create a new data set from the difference of the individual data points.

$$X_{\text{new}} = X_1 - X_2$$

We can then look at how far away from zero is the mean $E(X_{new})$

$$t = \frac{\overline{X_{new}} - 0}{SE(\overline{X_{new}})}$$

Two-Sample t-Test for Paired Data

A Yoga guru suggests that meditation increases concentration. To test this hypothesis, you get 12 volunteers and get them to complete a puzzle and you measure the time taken for completing the puzzle. The next day, you put them through a 30 minute meditation routine and have them complete another puzzle of similar difficulty. The time taken for completion is measured again.

You want to test at 5% Significance Level (or 95% Confidence Level) if the time taken is shorter after meditation.

Yoga Paired Data

Time to Solve the puzzle(min)					
Patient	After Yoga(A)	Before Yoga (B)	A-B		
1	63	55	8		
2	54	62	-8		
3	79	108	-29		
4	68	77	-9		
5	87	83	4		
6	84	78	6		
7	92	79	13		
8	57	94	-37		
9	66	69	-3		
10	53	66	-13		
11	76	72	4		
12	63	77	-14		
TOTAL	842	920	-78		
MEAN	70.17	76.67	-6.5		

Yoga Paired Data

What are the null and alternate hypotheses?

$$H_0$$
: $\bar{d} = 0$

$$H_1: \bar{d} < 0$$

One tail test or two tailed test?

One tail test

Significance level

$$\alpha = 0.05$$

Test statistic?

 $t_{n-1,\alpha}$ (for two – tailed we would use $t_{n-1,\frac{\alpha}{2}}$)

CSE 78150

Mean of the differences, $\bar{d}=-6.5$ Standard Deviation of the differences, $s_d=15.1$ Standard Error of the mean, $SE(\bar{d})=\frac{s_d}{\sqrt{n}}=4.37$

$$t = \frac{\bar{d}}{SE(\bar{d})} = \frac{-6.5}{4.37} = -1.487$$

• Number of degrees of freedom= 12-1 = 11

Two-Sample t-Test for Paired Data

$$t = -1.487$$

Numbers in each row of the table are values on a t-distribution with (df) degrees of freedom for selected right-tail (greater-than) probabilities (p).

$$t_{11,0.05} = 1.795885$$

Comparing the absolute t-value we cannot reject the null hypothesis that the mean completion time is the same.

	5.	9			t (p, at)		8 93	
df/p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005
1	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.6192
2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31.5991
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240
4	0.270722	0.740697	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688
6	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	3.70743	5.9588
7	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	3.49948	5.4079
8	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413
9	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	3.24984	4.7809
10	0.260185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5869
11	0.259556	0.697445	1.363430	1.795885	2.20099	2.71808	3.10581	4.4370
12	0.259033	0.695483	1.356217	1.782288	2.17881	2.68100	3.05454	43178
13	0.258591	0.693829	1.350171	1.770933	2.16037	2.65031	3.01228	4.2208
14	0.258213	0.692417	1.345030	1.761310	2.14479	2.62449	2.97684	4.1405
15	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728
16	0.257599	0.690132	1.336757	1.745884	2.11991	2.58349	2.92078	4.0150
17	0.257347	0.689195	1.333379	1.739607	2.10982	2.56693	2.89823	3.9651
18	0.257123	0.688364	1.330391	1.734064	2.10092	2.55238	2.87844	3.9216
19	0.256923	0.687621	1.327728	1.729133	2.09302	2.53948	2.86093	3.8834
20	0.256743	0.686954	1.325341	1.724718	2.08596	2.52798	2.84534	3.8495
21	0.256580	0.686352	1.323188	1.720743	2.07961	2.51765	2.83136	3.8193
22	0.256432	0.685805	1.321237	1.717144	2.07387	2.50832	2.81876	3.7921
23	0.256297	0.685306	1.319460	1.713872	2.06866	2.49987	2.80734	3.7676
24	0.256173	0.684850	1.317836	1.710882	2.06390	2.49216	2.79694	3.7454
25	0.256060	0.684430	1.316345	1.708141	2.05954	2.48511	2.78744	3.7251
26	0.255955	0.684043	1.314972	1.705618	2.05553	2.47863	2.77871	3.7066
27	0.255858	0.683685	1.313703	1.703288	2.05183	2.47266	2.77068	3.6896
20	0.055700	0.000050	1.010507	1.701101	2.04041	0.40714	0.70000	0.0700

Two-Sample t-Test for Paired Data

The 95% CI for the mean difference is given by $\bar{d} \pm t_{n-1,\alpha} * SE(\bar{d}) -6.5 - 1.796 * 4.37 \le D \le -6.5 + 1.796 * 4.37$ 95% CI: (-14.35, 1.35).

As zero is included in the CI, we cannot reject the null hypothesis.

Business Decision (Yogic Decision?)

Although zero is included in CI, the range is very wide, which should lead the us to conduct a larger study to be sure.

Resources

- Standard deviation why use (n-1) instead of n?
 - https://www.khanacademy.org/video/review-and-intuition-why-we-divide-by-n-1-forthe-unbiased-sample-variance
 - http://nebula.deanza.edu/~bloom/math10/m10divideby_nminus1.pdf
- Z-statistic vs t-statistic: https://www.khanacademy.org/video/z-statistics-vs-t-statistics
- Hypothesis testing: https://www.khanacademy.org/video/hypothesis-testing-and-p-values

International School of Engineering

Plot 63/A, Floors 1&2, Road # 13, Film Nagar, Jubilee Hills, Hyderabad - 500 033

For Individuals: +91-9502334561/63 or 040-65743991

For Corporates: +91-9618483483

Web: http://www.insofe.edu.in

Facebook: https://www.facebook.com/insofe

Twitter: https://twitter.com/Insofeedu

YouTube: http://www.youtube.com/InsofeVideos

SlideShare: http://www.slideshare.net/INSOFE

LinkedIn: http://www.linkedin.com/company/international-

school-of-engineering

This presentation may contain references to findings of various reports available in the public domain. INSOFE makes no representation as to their accuracy or that the organization subscribes to those findings.