Electrónica Digital II

Santiago Rúa Pérez, PhD.

25 de julio de 2022

Identificación

Datos del curso

Asignatura: Electrónica Digital II

■ Dias: Martes-Jueves 12-2 pm. Salon 3-218

■ Créditos: 3

Docente: Santiago Rúa Pérez

■ Correo: srua@udemedellin.edu.co

Competencias del curso

- Adquirir habilidades en el uso del lenguaje de programación C para sistemas embebidos.
- Manipular, clasificar y desarrollar aplicaciones con los periféricos básicos de un microcontrolador de mediana complejidad.
- Distinguir y aplicar diferentes técnicas de comunicación serial usando un microcontrolador.
- Desarrollar aplicaciones microcontroladas teniendo en cuenta ciertas restricciones de diseño.
- Adoptar buenas prácticas de desarrollo, análisis y depuración de aplicaciones embebidas.

Compromiso académico

Evaluación del curso - teórico

Trabajo I: 25 %, 23 de Agosto

Lab 1: 10 %, 30 de Agosto

Lab 2: 10 %, 8 de Septiembre

Lab 3: 15 %, 27 de Septiembre

Lab 4: 15 %, 20 de Octubre

Trabajo Final: 25 %, 17 de Noviembre

Registro de notas

Registro 75 %: 1 de noviembre. Registro 100 %: 18 de noviembre. Con 6 clases o 12 horas directas se cancela el curso.

Compromiso académico

Cronograma

UNIVERSIDAD DE MEDELLÍN FACULTAD DE INGENIERÍA ELECTRONICA DIGITAL II 2022-20

Software y Hardware

Software

- MCUExpresso
- Compilador de C (VSCode)
- Arduino

Hardware

■ Kit de Laboratorio por estudiante

Kit de Laboratorio

		CANTIDAD POR	
Item	Referencia	ESTUDIANTE	
Freescale Freedom Development Platform K64F	FRDM-K64F	1	
Cable microUSB de 50cm	CA-MICROUSB-50CM	1	
Buzzer-Voltaje variable	BZ-002	1	
Módulo detector de sonido	SEN-SON-2	1	
Kit cables conexión fácil Dupont M/M 20cm x10	EASY-CAB-KIT-MM-20	1	
Kit cables conexión fácil Dupont H/H 20cm x10	EASY-CAB-KIT-HH-20	1	
Módulo SH-HC-08 Bluetooth 4.0 BLE, UART	SH-HC-08	1	
Tarjeta de desarrollo para A9, GSM, GPRS, GPS	A9-DEV1-ANT	1	
Módulo XBee 2.4Ghz Serie1	XB24-API-001	2	
Display LCD 16x2 3.3V	LCD-1602-3V3	1	
Shield LCD 3.5" Touch para Arduino	LCD-3.5-R3A	1	
Sensor de luz y proximidad (I2C)	CJMCU-3216	1	
Termómetro digital de resolución programable TO-92 (1-Wire)	DS18B20+	1	
Sensor de temperatura y humedad SHT30 (I2C)	SHT30-D	1	
Fotorresistencia LDR 9mm	LDR10K9MM	1	
Teclado matricial 4x4 de membrana	TEC-MEM-16	1	
Reloj de tiempo real y memoria (I2C)	RTC-I2C-TINY	1	
Convertidor de nivel lógico bidireccional 8 canales	TXS0108E	1	
sensor ultrasónico HCSR004	HC-SR04	1	
Tarjeta Raspberry Pi 4B 2GB	RPI4-2GB	1	
Adaptador Raspberry Pi 4 - 5V 3A	ADP-RASP4-3A	1	
Kit disipadores para Raspberry Pi 4 con ventilador	BOXRASPB4-VENT-CL	1	
Memoria micro SD 16GB Clase 10 SanDisk	SD-16GB-C10	1	
Arduino Uno	Arduino Uno	1	

Introducción a los sistemas embebidos

- Qué es un sistema embebido?
 - Aplicaciones específicas de los sistemas de cómputo
 - Se utilizan en sistema mas complejos.
- Porque usar un computador en un sistema complejo?
 - Mejor desempeño.
 - Mas funciones y características.
 - Bajo costo.
 - Mayor dependencia.
- Economía
 - Microcontroladores se produce en alto volúmenes.
 - Costo no recurrente dominado por el desarrollo de software
- Red
 - A menudo, el sistema integrado utilizará varios procesadores que se comunican a través de una red para reducir los costos de piezas y ensamblaje y mejorar la confiabilidad.

Opciones para construir Sistemas Embebidos

Dedicated Hardware	
Software Running on	Conorio Hardware

Implementation	Design Cost	Unit Cost	Upgrades & Bug Fixes	Size	Weight	Power	System Speed
Discrete Logic	low	mid	hard	large	high	?	very fast
ASIC	high (\$500K / mask set)	very low	hard	tiny - 1 die	very low	low	extremely fast
Programmable logic – FPGA, PLD	low	mid	easy	small	low	medium to high	very fast
Microprocessor + memory + peripherals	low to mid	mid	easy	small to med.	low to moderate	medium	moderate
Microcontroller (int. memory & peripherals)	low	mid to low	easy	small	low	medium	slow to moderate
Embedded PC	low	high	easy	medium	moderate to high	medium to high	fast

Ejemplo sistema embebido: PC de bicicleta

Funciones

- Medir velocidad y distancia.
- Calcular quema de calorias.

Restricciones

- Tamaño.
- Costo.
- Potencia y consumo de energía.
- Peso.

Entradas

- Sensor de rotación de la rueda.
- Teclado de entrada para modos.

Salida

- Pantalla de cristal líquido.
- MCU de bajo rendimiento
 - 8-bits, 10 MIPS.

Ejemplo: Unidad de control motor de gasolina

Funciones

- Inyección de combustible, toma de aire.
- Tiempo de chispa.
- Circulación de gases de escape.
- Control electrónico acelerador.

Restricciones

- Fiabilidad en entornos hostiles
- Costo y peso.
- Muchas entradas y salidas
 - Sensores discretos y actuadores
 - Interfaz de red en el carro.
- MCU de alto desempeño
 - 32-bits, 3 MB flash, 150-300 MHz.

Beneficios de los sistemas embebidos

- Gran desempeño y eficiencia
 - El software permite proporcionar un control sofisticado.
- Bajo costo
 - Se pueden utilizar componentes menos costosos.
 - Reducción de los costes de fabricación.
 - Costos operativos reducidos.
 - Reducción de los costes de mantenimiento.
- Mas características
 - Muchos no son posibles o prácticos con otros enfoques.
- Mejor confiabilidad
 - Sistema adaptativo que puede compensar fallas.
 - Mejores diagnósticos para mejorar el tiempo de reparación.

Funciones de los sistemas embebidos

- Sistemas de control en lazo cerrado
 - Monitoree un proceso, ajuste una salida para mantener el punto de ajuste deseado (temperatura, velocidad, dirección, etc.)
- Secuenciación
 - Pasar por diferentes etapas según el entorno y el sistema.
- Procesamiento de señales
 - Elimina el ruido, selecciona las funciones de señal deseadas
- Comunicaciones y redes
 - Intercambie información de manera confiable y rápida

Bibliografía

- Deitel, P and Deitel, H (2016). *C how to program with an introduction to C++*. Pearson, Ed. 8, pp 1006
- Dean, A (2017). Embedded systems fundamentals with ARM Cortex-M based Microcontrollers. ARM Education Media, pp 292.
- Ali, M; Chen, S; Naimi, S; and Naimi, S. (2014) Freescale ARM Cortex'M Embedded Programming using C Language. Microdigital, pp 336.