Confinuation from Class...

Details of how to compute eigenvectors, V2

lale have the $\begin{pmatrix} 2i & -2 \\ 2 & 2i \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ let 42 = 1, 2i4, -24, -0 $u_1 = \frac{2}{\pi} = \frac{1 \times (-i)}{i} = \frac{-i}{-i^2} = -i$ rill = 2 $\vec{V}_{2} = \begin{pmatrix} -c \\ 1 \end{pmatrix}$ - Mark femark Given a ZXZ watrix real matrix with complex eigenvalue), and corresponding eigenvector V. Then the Complex conjugate I is also an eigenvalue of the matrix With corresponding eigenvector Vi.

- de solution of the system is Tett = Genit Vi + Genzt Vz $= Ge^{(1+2i)t}$ $= Ge^{(1-2i)t}$ $= Ge^{(1-2i)t}$ Observe that this solution or complex-valued.

It is important to put the solution in

'real form'. Let's do this! T(t) = 4 et. eit (i) + 4 et. en (-i) = et ((i) (cos (2t) +ism(2t)) + (2(-i) (cos (2t)-ism(2t) = e (, i cos(rt) for (, sm(rt) - 2 i cos(rt) - 1 2 sm (rt) $= \frac{2e}{G\cos(2t) + iG\sin(2t)} + G\cos(2t) - iG\sin(2t)$ $= \frac{e^{-G\sin(2t)} - G\sin(2t)}{G\sin(2t)} + i(G-G)\cos(2t)$ $= \frac{e^{-G\sin(2t)} - G\sin(2t)}{G\sin(2t)} + i(G-G)\sin(2t)$ $= \frac{e^{-G\sin(2t)} + iG\sin(2t)}{G\sin(2t)} + iG\sin(2t)$

Let k1 = 4+62 and k2 = i(4-C2) $\frac{1}{4}(t) = e^{t} \left[-k_1 \operatorname{Sim}(rt) + k_2 \operatorname{cos}(rt) \right] \\
k_1 \operatorname{cos}(rt) + k_2 \operatorname{Sin}(rt)$ T(t) = k, et (-smcrt) + kz et (cos (rt))

(cos (rt)) + kz et (sin (rt)) This is the general solution of the system which is "real form". To pue! To feer a faster way of getting to the 'real solution ? YES! 3 This solution is the same as $\vec{\gamma}(t) = k_i fe \left(e^{\lambda_i t} \vec{v}_i \right) + k_i Im \left(e^{\lambda_i t} \vec{v}_i \right)$ Let as fry this!

We have

$$\lambda_{1} = | t^{2}i \quad \text{and} \quad \vec{V}_{i} = (i)$$

$$e^{\lambda_{1}t} \vec{V}_{i} = e^{(t^{2}i)t} (i^{2}i)$$

$$= e^{t} (i^{2}) (\cos(t^{2}t) + i\sin(t^{2}t))$$

$$= e^{t} (i^{2}) (\cos(t^{2}t) + i\sin(t^{2}t))$$

$$= e^{t} (\cos(t^{2}t) - \sin(t^{2}t))$$

$$= e^{t} (\cos(t^{2}t) + i\sin(t^{2}t))$$

$$= e^{t} (-\sin(t^{2}t) + i\cos(t^{2}t))$$

$$e^{\lambda_{1}t} = e^{t} (-\sin(t^{2}t)) + ie^{t} (\cos(t^{2}t))$$

$$= e^{t} (-\sin(t^{2}t)) + i$$

-. The general solution is Y(t) = k1 et (-sm(rt)) + k2 et (sos(rt))

Which is the same as what we obtained earlier. Let us apply the initial condition $\overrightarrow{(0)} = \left(\frac{1}{2}\right) \text{ fo get } k_1 \text{ and } k_2.$ $\vec{\gamma}(0) = k_1 \begin{pmatrix} 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 2 \end{pmatrix}$ =) k1 = 2, k2 = 1 $\frac{1}{3} + \frac{1}{3} + \frac{1}$

femank
Green a system of ODE
7(t) = KY(t)
where A has complex eigenvalues,
N= Ltip and n= d-iB.
& the real part of the eigenvalue governs
the growth Le cay of the solution
* the Imaginary part of the eigenvalue
governs the frequency of oscillation of
the solution.
If Re (hi) = Pe (hz) >0, the solution of
oscillates and grows.
* If Re (hi) = Re(hi) <0, Solution
oscillates and de cay
* if Re(Xi) = Re (Az) =0, the solution
4 penodic.

VECTOR MELD
Consider
y'(t) = y - 2 y2
y' (t) = 24, +y2
We can unte this system in the form
7'(t) = F(7(+))
where $\overrightarrow{y}(t) = F(y(t))$ and $\overrightarrow{F}(\overrightarrow{y}(t)) = \begin{pmatrix} y_1 - 2y_2 \\ y_2 \end{pmatrix}$
The vector-valued function F is called the
vector field. This function talks were
^
gues the magnifuel and direction of our solution at each point (y, yz).
·

Let us draw the vector field for this y,-242, 24, tyz F(T(41)=F((y1, 1/2))= (1,1), F = (-1,3)(2,2), F= (-2,6) The idea is that for each point (y, yz), we proposed from the point (y, yz), we find the vector \(\vector\) \(in the and direction of this may vector \$ F is plotting on the 1, 1/2 - plane.