Autonomous Truck Deployment – Impact of Road Construction

June 2025

Present by: Salah Uddin Momtaz

Presented to: Aurora

Construction Impact Analysis

Summary

- Data: US road construction data (2016-2021)
- Critical insights for AV deployment strategy
- Identifying high-impact zones and routes
- Predict affect of Construction

Analysis Methodology

Data Processing Approach

- Ingest Kaggle data using API
- Get the additional data
- Census population, employment
- National Road network for freights: to get the road density of cities generating city size to normalize
- Extract features from additional files

Insight 1: City With Highest Construction Activity

Top Cities Over 6 years

Year	City	Million Hours	Site	Avg. Distance (miles)
2016	Middletown, DE	10.4	299	0.9
2017	York, PA	10.3	841	1.8
2018	Winnfield, LA	9.8	461	1.9
2019	Cle Elum, WA	17.8	1,393	4.0
2020	Phoenix, AZ	11.9	34,240	0.2
2021	Phoenix, AZ	10.3	212,356	0.2

- Phoenix has higher construction site with shorter length
- Cle Elum has long stretched sites

Insight 2: Time Series

Trends

Insight 2: **Time Series Trends (Contd.)**

Insight 3: Compare 10 largest US cities

Insight 3: Compare 10 largest US cities

- Normalization methodology significantly affects how construction impacts appear across different cities
- Freight road length KPI reveals higher impacts in major port cities like NYC, and LA due to their extensive freight infrastructure

Insight 4: **Self-driving Routes' Risk**

Insight 5: **Duration Prediction Model**

Log Linear Regression Model

- Training, Test data split 80% 20%
- Performs poorly

MAE: 1.645

• RMSE: 2.132

• R²: 0.076

Random Forest Regressor

- Training, Test data split 80% 20%
- Performs Decently Good

MAE: 1.2344

• RMSE: 1.851

• R²: 0.303

Overall Summary

Key Findings

- Phoenix, AZ emerges as highest risk city with 212K+ construction sites but shorter duration projects
- COVID-19 shifted construction patterns from Q3 to Q1, requiring adaptive route planning
- SF → Pacifica route shows minimal construction risk, ideal for initial deployment
- Random Forest model achieves over 30% accuracy with distance as primary predictor

Strategic Recommendations

- **Prioritize low-risk routes** like SF-Pacifica for initial autonomous deployment
- Implement dynamic routing algorithms for high-impact cities like Phoenix and Chicago
- Develop seasonal deployment strategies accounting for Q1 construction peaks
- Enhance model accuracy by incorporating road closure interaction variables, or using geospatial modeling approach