Appendix A The natural deduction rules

NATURAL DEDUCTION RULE (AXIOM RULE) Let ϕ be a statement. Then

$$\phi$$

is a derivation. Its conclusion is ϕ , and it has one undischarged assumption, namely ϕ .

Natural Deduction Rule $(\land I)$ If

$$\begin{array}{ccc}
D & D' \\
\phi & \text{and} & \psi
\end{array}$$

are derivations of ϕ and ψ , respectively, then

$$\begin{array}{ccc}
D & D' \\
\phi & \psi \\
\hline
(\phi \wedge \psi) & (\wedge I)
\end{array}$$

is a derivation of $(\phi \wedge \psi)$. Its undischarged assumptions are those of D together with those of D'.

Natural Deduction Rule $(\land E)$ If

$$D \\ (\phi \wedge \psi)$$

is a derivation of $(\phi \wedge \psi)$, then

$$\frac{D}{(\phi \wedge \psi)} \text{ (\wedgeE)} \quad \text{and} \quad \frac{D}{(\phi \wedge \psi)} \text{ (\wedgeE)}$$

are derivations of ϕ and ψ , respectively. Their undischarged assumptions are those of D.

NATURAL DEDUCTION RULE $(\rightarrow I)$ Suppose

D ψ

is a derivation of ψ , and ϕ is a formula. Then the following is a derivation of $(\phi \to \psi)$:

$$\frac{\psi}{D}$$

$$\frac{\psi}{(\phi \to \psi)} \quad (\to I)$$

Its assumptions are those of D, except possibly ϕ .

NATURAL DEDUCTION RULE $(\rightarrow E)$ If

$$\begin{array}{ccc}
D & & D' \\
\phi & & (\phi \to \psi)
\end{array}$$

are derivations of ϕ and $(\phi \to \psi)$, respectively, then

$$\frac{D}{\phi} \qquad \frac{D'}{(\phi \to \psi)}$$

$$\psi \qquad (\to E)$$

is a derivation of ψ . Its assumptions are those of D together with those of D'.

Natural Deduction Rule $(\leftrightarrow I)$ If

$$\begin{array}{ccc}
D & & D' \\
(\phi \to \psi) & & (\psi \to \phi)
\end{array}$$

are derivations of $(\phi \rightarrow \psi)$ and $(\psi \rightarrow \phi),$ respectively, then

$$\frac{D}{(\phi \to \psi)} \frac{D'}{(\psi \to \phi)} (\leftrightarrow I)$$

is a derivation of $(\phi \leftrightarrow \psi)$. Its undischarged assumptions are those of D together with those of D'.

Natural Deduction Rule $(\leftrightarrow E)$ If

$$D \\ (\phi \leftrightarrow \psi)$$

is a derivation of $(\phi \leftrightarrow \psi)$, then

$$\frac{D}{(\phi \leftrightarrow \psi)} \xrightarrow{(\leftrightarrow E)} \text{ and } \frac{D'}{(\phi \leftrightarrow \psi)} \xrightarrow{(\leftrightarrow E)}$$

are derivations of $(\phi \to \psi)$ and $(\psi \to \phi)$, respectively. Their undischarged assumptions are those of D.

Natural Deduction Rule $(\neg E)$ If

$$\begin{array}{ccc}
D & & D' \\
\phi & & (\neg \phi)
\end{array}$$

are derivations of ϕ and $(\neg \phi)$, respectively, then

$$\begin{array}{ccc}
D & D' \\
\phi & (\neg \phi) \\
\hline
& & \end{array}$$

is a derivation of \bot . Its undischarged assumptions are those of D together with those of D'.

NATURAL DEDUCTION RULE $(\neg I)$ Suppose

D \perp

is a derivation of \bot , and ϕ is a statement. Then the following is a derivation of $\neg \phi$):

$$\frac{\cancel{\phi}}{D} \\
\frac{\bot}{(\neg \phi)} (\neg I)$$

Its undischarged assumptions are those of D, except possibly ϕ .

Natural Deduction Rule (RAA) Suppose we have a derivation

whose conclusion is \perp . Then there is a derivation

$$\begin{array}{c}
(\phi) \\
D \\
\frac{\perp}{\phi} \text{ (RAA)}
\end{array}$$

Its assumptions are those of D, except possibly $(\neg \phi)$.

NATURAL DEDUCTION RULE (VI) If

D ϕ

is a derivation with conclusion ϕ , then

$$\frac{D}{\phi}$$

$$\frac{\phi}{(\phi \vee \psi)}$$

is a derivation of $(\phi \lor \psi)$. Its undischarged assumptions are those of D. Similarly if

 $D \psi$

is a derivation with conclusion ψ , then

$$\frac{D}{\psi}$$

is a derivation with conclusion $(\phi \lor \psi)$. Its undischarged assumptions are those of D.

NATURAL DEDUCTION RULE (VE) Given derivations

$$\begin{array}{ccc} D & & D' & & D'' \\ (\phi \lor \psi) & & \chi & & \end{array} \quad \text{and} \quad \begin{array}{ccc} D'' & & & \end{array}$$

we have a derivation

Its undischarged assumptions are those of D, those of D' except possibly ϕ , and those of D'' except possibly ψ .