

	Subject Code: KAS201								01T				
Roll No:													

Printed Page: 1 of 2

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Marks(10X2=20)							
Q1(a)	What is frame of reference in motion?	1						
Q1(b)	Show that massless particles can exist only if the they move with the speed of light							
	and their energy E and momentum p must have the relation E= pc.							
Q1(c)	In an electromagnetic wave, the electric and magnetic fields are 100V/m and	2						
	0.265A/m. What is the maximum energy flow							
Q1(d)	Define the concept of Skin depth for high and low frequency waveforms.	2						
Q1(e)	What is Compton effect and Compton shift?	3						
Q1(f)	Why is black the best emitter?							
Q1(g)	Why the center of Newton's ring in reflected system is dark?	4						
Q1(h)	Explain Rayleigh's criterion of resolution.	4						
Q1(i)	What do you mean by acceptance angle and cone for an optical fiber?	5						
Q1(j)	Differentiate spontaneous emission and stimulated emission.	5						

SECT	TON-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)				
Q2(a)	What is s	pecial theory of relativity? Derive Lorentz transformati	ion equation.	1			
Q2(b)	Assuming	g that all the energy from a 1000 watt lamp is radiated t	uniformly; calculate	2			
	the average values of the intensities of electric and magnetic fields of radiation at a						
	distance of	of 2m from lamp.					
Q2(c)	Calculate the energy difference between the ground state and the first excited state						
	for an electron in a one-dimensional rigid box of length 25Å.						
Q2(d)	Newton's	rings are observed in reflected light of wavelength 59	$00A^0$. The diameter	4			
	of 10 th dark ring is 0.50cm. Find the radius of curvature of the lens.						
Q2(e)	A step inc	dex fibre has $\mu_1 = 1.466$ and $\mu_2 = 1.46$ where μ_1 and μ_2 a	are refractive indices	5			
	of core an	nd cladding respectively. If the operating wavelength o	f the rays is 0.85 μm				
	and the di	iameter of the core = $50 \mu m$, calculate the cut-off param	neter and the number				
	of modes	which the fibre will support.					

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	
Q3(a)	What was the object of conducting Michelson-Morley expe	eriment? Illustrate the	1
	experiment with proper diagram and necessary mathematical	derivations. Also state	
	the outcomes.		
Q3(b)	Deduce Einstein's mass –energy relation E= mc ² . Give some e	evidence showing its	1
	validity.		

	SECT	ON-C Attempt ANY ONE following Question Marks (1X10=10)							
1	Q4(a)	Deduce the Maxwell's equations for free space and prove that electromagnetic	2						
		waves are transverse in nature.							
	Q4(b)	Define radiation pressure and momentum of electromagnetic wave. Also determine							
		an expression for radiation pressure and momentum.							

	Subject Code: KAS2017							01T					
Roll No:													

Printed Page: 2 of 2

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)						
Q5(a)	What is the physical significance of a wave function? Derive Schrodinger								
	independent wave equation.								
Q5(b)	What is C	ompton effect? Deduce an expression for Compton s	shift.	3					
SECT	ION-C	Attempt ANY ONE following Question	Marks (1 X10=10)						
Q6(a)	What is R	ayleigh criterion of resolution how one can increase	the resolving power of	4					
	a diffract	ion grating? Using Rayleigh criterion for just res	olution show that the						
	resolving	power of grating is equal to nN, where n is the order	er of the spectrum, and						
	N is total	no of lines on the grating.							
Q6(b)	Discuss tl	ne phenomena of Fraunhofer diffraction at a single	slit and show that the	4					
	relative intensities of the successive maximum are nearly 1: $4/9\pi^2$: $4/25\pi^2$: $4/49\pi^2$:								
	'								
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)						
Q7(a)	A silicon of	ptical fibre with a core diameter large enough has a core	refractive index of 1.50	5					
	and a clade	ling refractive index 1.47. Determine							
	(i) the criti	cal angle at the core cladding interface,							
	(ii) the nur	nerical aperture for the fibre	7						
	(iii) the acc	ceptance angle in air for the fibre.							
Q7(b)	What do you mean by population inversion? Describe the principle and working of Rub								
	laser system	m with the help of neat diagram.	00000						