

Stages of Machine Learning

Given: labeled training data X, Y

• Assumes each $\mathbf{x}_i \leftarrow D(X)$ with $y_i = f_{target}(\mathbf{x}_i)$

Train the model:

 $model \leftarrow classifier.train(X, Y)$

Apply the model to new data:

• Given: new unlabeled instance $\boldsymbol{x} \leftarrow D(X)$ $y_{prediction} \leftarrow model.predict(\boldsymbol{x})$

Sample Dataset (was Tennis Played?)

- Columns denote features X_i
- Rows denote labeled instances x_i, y_i
- Class label denotes whether a tennis game was played

	Response			
Outlook	Temperature	Humidity	Wind	Class
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

 \boldsymbol{x}_i, y_i

Decision Tree

Decision Tree

A possible decision tree for the data:

	Predictors				
Outlook	Temperature	Humidity	Wind	Class	
Sunny	Hot	High	Weak	No	
Sunny	Hot	High	Strong	No	
Overcast	Hot	High	Weak	Yes	
Rain	Mild	High	Weak	Yes	
Rain	Cool	Normal	Weak	Yes	
Rain	Cool	Normal	Strong	No	
Overcast	Cool	Normal	Strong	Yes	
Sunny	Mild	High	Weak	No	
Sunny	Cool	Normal	Weak	Yes	
Rain	Mild	Normal	Weak	Yes	
Sunny	Mild	Normal	Strong	Yes	
Overcast	Mild	High	Strong	Yes	
Overcast	Hot	Normal	Weak	Yes	
Rain	Mild	High	Strong	No	

- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y

Decision Tree

A possible decision tree for the data:

What prediction would we make for
 <outlook=sunny, temperature=hot, humidity=high, wind=weak>?

Basic Algorithm for Top-Down Learning of Decision Trees

[ID3, C4.5 by Quinlan]

node = root of decision tree

Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for the next node.
- 2. Assign A as decision attribute for node.
- 3. For each value of A, create a new descendant of node.
- Sort training examples to leaf nodes.
- 5. If training examples are perfectly classified, stop. Else, recurse over new leaf nodes.

How do we choose which attribute is best?

Choosing the Best Attribute

Key problem: choosing which attribute to split a given set of examples

- Some possibilities are:
 - Random: Select any attribute at random
 - Least-Values: Choose the attribute with the smallest number of possible values
 - Most-Values: Choose the attribute with the largest number of possible values
 - Max-Gain: Choose the attribute that has the largest expected information gain
 - i.e., attribute that results in smallest expected size of subtrees rooted at its children
- The ID3 algorithm uses the Max-Gain method of selecting the best attribute

Information Gain

Which test is more informative?

Split over whether Balance exceeds 50K

Less or equal 50K

Over 50K

Split over whether applicant is employed

Information Gain

Impurity/Entropy (informal)

Measures the level of **impurity** in a group of examples

Entropy: a common way to measure impurity

• Entropy = $\sum_{i} - p_{i} \log_{2} p_{i}$

p_i is the probability of class i

Compute it as the proportion of class i in the set.

• Entropy comes from information theory. The higher the entropy the more the information content.

What does that mean for learning from examples?

2-Class Cases:

Entropy
$$H(x) = -\sum_{i=1}^{N} P(x=i) \log_2 P(x=i)$$

 What is the entropy of a group in which all examples belong to the same class?

$$-$$
 entropy = - 1 log₂1 = 0

not a good training set for learning

- What is the entropy of a group with 50% in either class?
 - entropy = $-0.5 \log_2 0.5 0.5 \log_2 0.5 = 1$

good training set for learning

Minimum impurity

Maximum impurity

Sample Entropy

- \bullet S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- \bullet Entropy measures the impurity of S

$$H(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Information Gain

- We want to determine which attribute in a given set of training feature vectors is most useful for discriminating between the classes to be learned.
- Information gain tells us how important a given attribute of the feature vectors is.

• We will use it to decide the ordering of attributes in the nodes of a decision tree.

Calculating Information Gain

Information Gain = entropy(parent) - [average entropy(children)]

(Weighted) Average Entropy of Children =
$$\left(\frac{17}{30} \times 0.787\right) + \left(\frac{13}{30} \times 0.391\right) = 0.615$$

Information Gain = 0.996 - 0.615 = 0.38

Training Examples

Day	Outlook	Temperature	Humidity	Wind	PlayTenr
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Selecting the Next Attribute

Which attribute is the best classifier?

Which attribute should be tested here?

$$S_{sunny} = \{D1,D2,D8,D9,D11\}$$

 $Gain(S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$
 $Gain(S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$
 $Gain(S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

Slide by Tom Mitchell

Which Tree Should We Output?

- ID3 performs heuristic search through space of decision trees
- It stops at smallest acceptable tree. Why?

Preference bias: Ockham's Razor

- Principle stated by William of Ockham (1285-1347)
 - "non sunt multiplicanda entia praeter necessitatem"
 - entities are not to be multiplied beyond necessity
 - AKA Occam's Razor, Law of Economy, or Law of Parsimony

Idea: The simplest consistent explanation is the best

- Therefore, the smallest decision tree that correctly classifies all of the training examples is best
 - Finding the provably smallest decision tree is NP-hard
 - ...So instead of constructing the absolute smallest tree consistent with the training examples, construct one that is pretty small