Clase 17: Procedimientos de pruebas de hipótesis, tipos de errores y valor P. Pruebas de hipótesis para medias con poblaciones normales y no normales

Universidad Nacional de Colombia – sede Medellín

Motivación 1

Proceso de llenado de cervezas de 350 ml

Muestra de cervezas

¿Está el proceso de llenado cumpliendo con lo prometido en la etiqueta?

¿Será el contenido medio de cerveza μ igual a 350ml?

Motivación 2

¿Está el saco de café cumpliendo con lo porcentaje de granos defectuosos?

¿Será el porcentaje p de granos defectuosos menor o igual al 3%?

Prueba de hipótesis

Una hipótesis estadística es una aseveración o conjetura con respecto a una o más poblaciones.

Tipos de hipótesis

¿Será lo mismo aceptar H_0 que no rechazar H_0 ?

El sospechoso fue declarado inocente

El Gobierno simplifica los modelos actuales || La reforma recoge las demandas de la CEOE de contratación sin cambiar la legislación

mientras los sindicatos la encuentran inútil

Oferta municipal para at the first and the para deliberation of the par

La ampliación del colegio Agustina de Aragón no está lista para el inicio del curso

Solo el comedor estarà disponible el próximo mes

INVESTIGACIÓN JUDICIAL EIPP destruyó los discos duros de los dos ordenadores de Bárcenas

DURO GOLDE AL PREMER

El Parlamento británico no

Tipos de pruebas

$$H_0$$
: $\theta = \theta_0$

$$H_a$$
: $\theta > \theta_0$

$$H_0$$
: $\theta = \theta_0$ H_0 : $\theta = \theta_0$ H_0 : $\theta = \theta_0$ H_a : $\theta > \theta_0$ H_a : $\theta < \theta_0$ H_a : $\theta \neq \theta_0$

$$H_a$$
: $\theta \neq \theta_0$

Prueba unilateral derecha

Prueba unilateral izquierda

Prueba bilateral

Problemas de pruebas de hipótesis

Proceso de prueba de hipótesis

Tipos de errores en prueba de hipótesis

		Situación real de H_0	
		H_0 es verdadera	H_0 es falsa
Decisión	Aceptar H_0	3	Error tipo II (β)
	Rechazar H_0	Error tipo I (α)	3

Error tipo I versus Error tipo II

Historia

Historia

valor-P

El *valor-p* de una prueba de hipótesis es la probabilidad de obtener un estadístico (evidencias) igual al que se obtuvo o más extremo.

El valor-P es la probabilidad calculada, suponiendo que H_0 es verdadera, de obtener un valor estadístico de prueba por lo menos tan contradictorio a H_0 como el valor que en realidad se obtuvo. Mientras más pequeño es el valor-P, más contradictorios son los datos a H_0 .

valor-P

A tener en cuenta:

- El valor-P es una probabilidad.
- Esa probabilidad es calculada asumiendo que H_0 es verdadera.
- Cuidado, el valor-P no es la probabilidad de que H_0 sea verdadera ni es la probabilidad de un error.
- Para determinar el valor-P debemos decidir cuáles valores del estadístico son al menos tan contradictorios a H_0 .

Toma de decisión en pruebas de hipótesis

Caminos alternativos para hacer una prueba de hipótesis

Región de crítica o de rechazo valor-P

Preguntas frecuentes

¿Cuándo se usa el procedimiento de prueba de hipótesis?

Preguntas frecuentes

¿Qué sucede si no tengo sospechas de nada? ¿Qué sucede si mis sospechas no van en contra de H_0 ?

Preguntas frecuentes

¿De donde sale el valor θ_0 a colocar en la hipótesis nula?

$$H_0$$
: $\theta = \theta_0$

Prueba de hipótesis para μ

Prueba de hipótesis para μ

Se X una variable aleatoria distribuida $N(\mu, \sigma^2)$. Se extrae una muestra aleatoria X_1, X_2, \cdots, X_n y el objetivo es probar una afirmación sobre μ .

- Caso 1: población normal y varianza σ^2 conocida.
- Caso 2: población normal y varianza σ^2 desconocida.
- Caso 3: población no normal, $n \ge 30$ y σ^2 conocida.
- Caso 4: población no normal, $n \ge 30$ y σ^2 desconocida.

Caso 1: Prueba de hipótesis para μ , población normal y σ^2 conocida

Paso 0. ¿Está la variable aleatoria distribuida en forma normal?

Paso 1. Definir las hipótesis

$$H_0$$
: $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_a : $\mu < \mu_0$ H_a : $\mu \neq \mu_0$ H_a : $\mu > \mu_0$

Paso 2. Calcular el estadístico

Paso 3. Calcular el valor-P en una distribución N(0,1).

 H_0 : $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_a : $\mu < \mu_0$ H_a : $\mu \neq \mu_0$ H_a : $\mu > \mu_0$

Cálculo del *valor* – *P*

• Si H_a : $\mu < \mu_0$ $valor - P = P(Z \le z_0).$

• Si H_a : $\mu \neq \mu_0$ $valor - P = 2 \times P(Z \ge |z_0|)$.

• Si H_a : $\mu > \mu_0$ $valor - P = P(Z \ge z_0)$.

Regiones de rechazo

• Si H_a : $\mu < \mu_0$ Se rechaza H_0 si $z_0 < -z_{\alpha}$

• Si H_a : $\mu \neq \mu_0$ Se rechaza H_0 si $|z_0| > z_{\alpha/2}$

• Si H_a : $\mu > \mu_0$ Se rechaza H_0 si $z_0 > z_{\alpha}$

Paso 5. Tomar decisión

Ejemplo 1

Las botellas de cerveza que salen de un proceso de llenado deben tener un contenido medio de 350 ml. El encargado sospecha que el contenido medio (μ) es menor que 350 ml. Por esa razón se tomó una muestra de botellas y sus contenidos fueron:

355, 353, 352, 346, 345, 345, 353, 353, 344, 350

Hacer la prueba con $\alpha=0.05$ asumiendo $\sigma=5$ ml.

Paso 0. Estudiando la normalidad.

Estudiando la normalidad por medio de la prueba Anderson-Darling.

En esta prueba las hipótesis son:

 H_0 : la m.a. viene de una población normal

 H_a : la m.a. NO viene de una población normal

Esta prueba no se hace manualmente, se hace en R así:

Esta prueba se hace en R así:

```
cerveza <- c(355, 353, 352, 346, 345, 345, 353, 353, 344, 350)
shapiro.test(cerveza)
##
## Shapiro-Wilk normality test
##
## data: cerveza
## W = 0.85993, p-value = 0.07617
##</pre>
```

Como el valor-P de la prueba es 7.617% y es mayor que $\alpha=0.05$, no rechazamos H_0 , es decir que la m.a. si viene de una población normal.

Paso 1. Definir las hipótesis

```
H_0: \mu = 350 \, ml
```

 H_a : $\mu < 350 \, ml$

Paso 2. Calcular el estadístico

De la muestra tenemos que:

$$\bar{x} = 349.6 \ ml$$
 $n = 10$

Por tanto el estadístico es:

$$z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{349.6 - 350}{5 / \sqrt{10}} = -0.2530$$

Paso 3. Calcular el valor-P en una distribución N(0,1).

En R la "colita azul" se obtiene así: pnorm (q=-0.2530, lower.tail=TRUE)

Por ser una prueba de una cola, valor - P = 0.4013.

Paso 4. Tomar decisión.

Como $valor-P > \alpha$, entonces NO RECHAZAMOS H_0 .

Las evidencias muestrales no apoyan la sospecha de que $\mu < 350 \ ml$.

Caso 2: Prueba de hipótesis para μ , población normal y σ^2 desconocida

Paso 0. ¿Está la variable aleatoria distribuida en forma normal?

Paso 1. Definir las hipótesis

$$H_0$$
: $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_a : $\mu < \mu_0$ H_a : $\mu \neq \mu_0$ H_a : $\mu > \mu_0$

Paso 2. Calcular el estadístico

Paso 4. Calcular el valor-P en una distribución t-student con n-1 grados de libertad.

 H_0 : $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_a : $\mu < \mu_0$ H_a : $\mu \neq \mu_0$ H_a : $\mu > \mu_0$

Cálculo del *valor* – *P*

• Si H_a : $\mu < \mu_0$ $valor - P = P(T_{n-1} \le t_0).$

• Si H_a : $\mu \neq \mu_0$ $valor - P = 2 \times P(T_{n-1} \ge |t_0|)$.

• Si H_a : $\mu > \mu_0$ $valor - P = P(T_{n-1} \le t_0).$

Regiones de rechazo

- Si H_a : $\mu < \mu_0$ Se rechaza H_0 si $t_0 < -t_{\alpha,n-1}$
- Si H_a : $\mu \neq \mu_0$ Se rechaza H_0 si $|t_0| > t_{\frac{\alpha}{2},n-1}$
- Si H_a : $\mu > \mu_0$ Se rechaza H_0 si $t_0 > t_{\alpha,n-1}$

Paso 4. Tomar decisión.

Ejemplo 2

Para verificar si el proceso de llenado de bolsas de café con 500 gramos está operando correctamente se toman aleatoriamente muestras de tamaño diez cada cuatro horas. Una muestra de bolsas está compuesta por las siguientes observaciones:

510, 492, 494, 498, 492, 496, 502, 491, 507, 496

¿Está el proceso llenando bolsas conforme lo dice la envoltura? Hacer la prueba con $\alpha=0.05$.

Paso 0. Estudiando la normalidad.

Estudiando la normalidad por medio de la prueba Anderson-Darling.

En esta prueba las hipótesis son:

 H_0 : la m.a. viene de una población normal

 H_a : la m.a. NO viene de una población normal

Esta prueba no se hace manualmente, se hace en R así:

Esta prueba se hace en R así:

```
contenido <- c(510, 492, 494, 498, 492, 496, 502, 491, 507, 496)
shapiro.test(contenido)
##
## Shapiro-Wilk normality test
##
## data: contenido
## W = 0.88468, p-value = 0.1476
##</pre>
```

Como el valor-P de la prueba es 0.1476, no rechazamos H_0 , es decir que la m.a. si viene de una población normal.

Paso 1. Definir H_0 y H_a

```
H_0: \mu = 500 \ gr
```

 H_a : $\mu \neq 500 gr$

Paso 2. Calcular el estadístico

De la muestra tenemos que:

$$\bar{x} = 497.8 \ gr$$

 $s = 6.546 \ gr$
 $n = 10$

Por tanto el estadístico es:

$$t_0 = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}} = \frac{497.8 - 500}{6.546/\sqrt{10}} = -1.0629$$

Paso 3. Calcular el valor-P en una distribución t-student con n-1 grados de libertad.

En R la "colita roja" se obtiene así: pt (q=-1.0629, df=9, lower.tail=TRUE)

Por ser una prueba de dos colas, $valor - p = 2 \times 0.1577 = 0.3155$.

Paso 4. Tomar la decisión.

Como $valor-P > \alpha$ entonces NO RECHAZAMOS H_0 .

El proceso está llenando las bolsas conforme al aviso en la envoltura.

Ejemplo 3

Tiempo después se lleva a cabo otra verificación del proceso y se obtiene la siguiente muestra:

500, 495, 494, 498, 495, 500, 500, 496, 498, 493.

¿Está el proceso llenando bolsas conforme lo dice la envoltura?

Usar un nivel de significancia del 5%.

Paso 0. Asumamos que se cumple la normalidad.

Paso 1. Definir las hipótesis.

*H*₀: $\mu = 500 \ gr$ *H*_a: $\mu \neq 500 \ gr$

Paso 2. Calcular el estadístico

De la muestra tenemos que:

$$\bar{x} = 496.9 \ gr$$

 $s = 2.643 \ gr$
 $n = 10$

Por tanto el estadístico es:

$$t_0 = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}} = \frac{496.9 - 500}{\frac{2.643}{\sqrt{10}}} = -3.70$$

Paso 3. Calcular el valor-P en una distribución t-student con n-1 grados de libertad.

En R la "colita roja" se obtiene así: pt (q=-3.70, df=9, lower.tail=TRUE)

Por ser una prueba de dos colas, $valor - p = 2 \times 0.0025 = 0.0049$.

Paso 4. Tomar la decisión.

Como $valor-P < \alpha$ entonces RECHAZAMOS H_0 .

El proceso NO está llenando las bolsas conforme al aviso en la envoltura.

Resumen de los ejemplos 2 y 3

	Ejemplo 2	Ejemplo 3
Muestra	510, 492, 494, 498, 492, 496, 502, 491, 507, 496	500, 495, 494, 498, 495, 500, 500, 496, 498, 493
Media muestral	497.8 gramos	496.9 gramos
Desviación muestral	6.546 gramos	2.643 gramos
Tamaño de muestra	10	10
Hipótesis nula	H_0 : $\mu = 500 \ gr$	H_0 : $\mu = 500 \ gr$
valor−P con R	0.3155	0.0049
Decisión	No rechazamos H_0	Rechazamos H_0

Cuestión importante

¿Será que existe alguna relación entre los intervalos de confianza y las pruebas de hipótesis?

La respuesta se puede encontrar en la sección 10.6 de Walpole et al. (1999) o en la página 339 de Walpole et al. (2011).

Prueba de hipótesis para μ con muestras grandes

Sea X una variable con una <u>distribución cualquiera</u> con media μ .

Se extrae una muestra aleatoria X_1, X_2, \cdots, X_n y el objetivo es probar una afirmación sobre μ .

La muestra aleatoria debe cumplir que $n \geq 30$,

Caso 3: Prueba de hipótesis para μ , población no normal y σ^2 conocida

El estadístico en este caso es:

y Z_0 se distribuye N(0, 1).

Caso 4: Prueba de hipótesis para μ , población no normal y σ^2 desconocida

El estadístico en este caso es:

y Z_0 se distribuye N(0, 1).

Ejemplo

Se afirma que los automóviles recorren en promedio más de 20000 kilómetros por año pero usted cree que el promedio es en realidad menor. Para probar tal afirmación se pide a una muestra de 100 propietarios de automóviles seleccionada de manera aleatoria que lleven un registro de los kilómetros que recorren.

¿Estaría usted de acuerdo con esta afirmación, si la muestra aleatoria indicara un promedio de 19500 kilómetros y una desviación estándar de 3900 kilómetros? Utilice el valor-p en su conclusión y $\alpha = 3\%$.

Paso 1. Definir hipótesis

```
H_0: \mu \ge 20000 \, km
```

 H_a : $\mu < 20000 \, km$

Paso 2. Calcular el estadístico

De la muestra tenemos que:

$$\bar{x} = 19500 \ km$$

 $s = 3900 \ km$
 $n = 100$

Por tanto el estadístico es:

$$z_0 = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}} = \frac{19500 - 20000}{\frac{3900}{\sqrt{100}}} = -1.2820$$

Paso 3. Calcular el valor-P en una distribución normal estándar.

En R la "colita roja" se obtiene así: pnorm (q=-1.2820, lower.tail=TRUE)

Por ser una prueba de dos colas, valor - P = 0.0999.

Paso 4. Tomar decisión.

Como V $alor - P > \alpha$ entonces NO RECHAZAMOS H_0

No hay evidencias suficientes para pensar que ha disminuido el recorrido anual de los autos.