

UNIVERSIDAD EAFIT ESCUELA DE INGENIERÍA DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS

Código: ST245
Estructura de
Datos 1

Laboratorio Nro. 3: Backtracking

Mateo Ramírez Hernández

Universidad Eafit Medellín, Colombia marami26@eafit.edu.co

Juan Camilo Echeverri S.

Universidad Eafit Medellín, Colombia jechev60@eafit.edu.co

3) Simulacro de preguntas de sustentación de Proyectos

1. Los algoritmos más importantes son

El algoritmo de Dijkstra resuelve el problema de ruta más corta de fuente única.

El algoritmo Bellman-Ford resuelve el problema de fuente única si los pesos de borde pueden ser negativos.

Un algoritmo de búsqueda * resuelve la ruta más corta de un solo par utilizando heurísticas para intentar acelerar la búsqueda.

El algoritmo Floyd-Warshall resuelve todos los caminos más cortos de los pares.

El algoritmo de Johnson resuelve todos los caminos más cortos de los pares, y puede ser más rápido que Floyd-Warshall en gráficos dispersos .

El algoritmo Viterbi resuelve el problema más corto de la ruta estocástica con un peso probabilístico adicional en cada nodo.

2.

VALOR DE N	FUERZA BRUTA Seg(aprox)	BACKTRACKING Seg(aprox)
4	0.01	0.002
8	0.5	0.06
16	Mas de 5 min	Mas de 5 min
32	Mas de 5 min	Mas de 5 min
N	O(n!)	O(n^n)

3. Para recorrer grafos DFS es mas conveniente cuando el grafo tiene una profundidad corta , pero una gran anchura, mientras que el BFS es más conveniente al revés es decir cuando el grafo tiene una profundidad larga, pero poca anchura

UNIVERSIDAD EAFIT ESCUELA DE INGENIERÍA DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS

Código: ST245
Estructura de
Datos 1

4. Greedy BFS: expande el primer sucesor del padre. Después de que se genera un sucesor

A*: a partir de un nodo específico del grafo, construye un árbol de rutas a partir de ese nodo, ampliando las rutas un paso a la vez, hasta que una de sus rutas termina en el nodo del objetivo predeterminado.

Uniform Cost search: es una variante del algoritmo de Dijkstra, y este consiste en recorrer el vértice no visitado con la distancia más baja, calcula la distancia a través de él a cada vecino no visitado y actualiza la distancia del vecino si es más pequeña.

- **5.** *O*(n+m)
- 6.
- 7. N se refiere a los vértices del grafo y M se refiere a a los bordes del grafo

4) Simulacro de Parcial

- 1.
- a. N-a,a,b,c
- b. Res, solucionar(n-b,a,b,c) + 1
- c. Res, solucionar(n-c,a,b,c) + 1
- 2.
- a. Graph.length
- b. V,graph,path,pos
- c. Graph,path,v
- 3.

DFS:

- 0 -> 3742156
- 1 -> 0374265
- 2 -> 1037546
- 3 -> 7
- 4 -> 2103756
- 5 ->
- 6 -> 2103754
- 7 ->

BFS:

- 0 -> 3427165
- 1 -> 0523467
- 2 -> 1460537

UNIVERSIDAD EAFIT ESCUELA DE INGENIERÍA DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS

Código: ST245
Estructura de
Datos 1

- 3 -> 7
- 4 -> 2160537
- 5 ->
- 6 -> 2140537
- 7 ->

5. Lectura recomendada (opcional)

- a) Título
- b) Ideas principales
- c) Mapa de Conceptos

6. Trabajo en Equipo y Progreso Gradual (Opcional)

- a) Actas de reunión
- b) El reporte de cambios en el código