Compression for AGI

Yuxuan Lu

Nov. 3 2023

Northeastern Human-Centered AI Lab

Takeaways

- Generative models are Lossless compressors
 - "ChatGPT Is a Blurry JPEG of the Web"? No!
- LLMs are *State-of-the-Art* text compressors
 - comparing to deflate(gzip), Zstd, etc.
- Re-think about the training objective of foundation models

Table of Contents

Revisit the Training Process of LLMs

Compressors and Arithmedic Encoding

Why are LLMs Lossless compressors

Rethink the goal for foundation models

Revisit the Training Process of LLMs

Figure 1: Transformer: A Black Box – step 1

Figure 2: Transformer: A Black Box – step 2

Figure 3: Transformer: A Black Box – training

- We have a sequence: $X = [x_1, x_2, \dots, x_n]$
- We put this sequence into LLM and get a sequence of probabilities:
 - $p_i = P(x_i|x_{< i})$
- We want p_i approachs 1, so we minimize the following loss during pre-training:
 - $L = \sum_{i=1}^n -\log P(x_i|x_{< i})$

Questions?

Compressors and Arithmedic Encoding

- Compressors aims to find a better (smaller) way to express the same thing
- ZIP, JPEG, MP4 (H.264, HEVC), MP3
- Lossy compressor:
 - Task-specific
 - CAN NOT be "decompress" back to the original data
 - Better compression rate while lossing unimportant data
 - Image goes "blurry"
 - Video / Audio

- Lossless compressor
 - General
 - Can be "decompress" back to the original data
 - Find "common part" of the data
 - 111111111 -> 8×1
 - So naturally, not everything are compressable

- Lossless compressor
 - General
 - Can be "decompress" back to the original data
 - Find "common part" of the data
 - 111111111 -> 8×1
 - So naturally, not everything are compressable
 - consider compressor as a mapping between the data and the compressed data

- Lossless compressor
 - General
 - Can be "decompress" back to the original data
 - Find "common part" of the data
 - 111111111 -> 8×1
 - So naturally, not everything are compressable
 - consider compressor as a mapping between the data and the compressed data
 - the mapping is a one-one mapping

- Lossless compressor
 - General
 - Can be "decompress" back to the original data
 - Find "common part" of the data
 - 111111111 -> 8×1
 - So naturally, not everything are compressable
 - consider compressor as a mapping between the data and the compressed data
 - the mapping is a one-one mapping
 - for common cases, the mapped data is shorter

- Lossless compressor
 - General
 - Can be "decompress" back to the original data
 - Find "common part" of the data
 - 111111111 -> 8×1
 - So naturally, not everything are compressable
 - consider compressor as a mapping between the data and the compressed data
 - the mapping is a one-one mapping
 - for common cases, the mapped data is shorter
 - then there must be some cases that the mapped data is longer, i.e. the data is not compressable

Arithmetic Encoding

- Use less bits for most frequent items
- For example, if we want to compress the result of an uneven distribution
 - Respectively 50%, 30%, 10%, 10% probability
- We can use 1, 01, 001, 000 to represent:
 - Take an average of 1.4 bits
 - Naive encoding takes 2 bits

Arithmetic Encoding

- Use less bits for most frequent items
- For example, if we want to compress the result of an uneven distribution
 - Respectively 50%, 30%, 10%, 10% probability
- We can use 1, 01, 001, 000 to represent:
 - Take an average of 1.4 bits
 - Naive encoding takes 2 bits
- Arithmetic encoding:
 - If something have a probability p
 - Represent it with $-\log p$ bits
 - Average of $\frac{1}{n} \sum_{i=1}^{n} -\log p_i$ bits
 - This is also the theoritical upper bound proved by Shannon's Information Theory (the "Entropy" of a distribution)

Conclusion

- Lossy compression take advantage of "knowing" the data
 - Loss unimportant part to provide better compression rate
- Lossless compression aim to be general
- Frequent items can be represented with fewer bits with Arithmetic Encoding

Questions?

Why are LLMs *Lossless* compressors

- Naturally, you would assume an LLM is a lossy compressor
 - That turns training corpus to model parameters
 - For LLaMa, the training dataset is 5.6TB
 - And the 65 billion parameters takes about 130GB of storage
 - So 43x compression rate?
 - Lossy!

- Naturally, you would assume an LLM is a lossy compressor
 - That turns training corpus to model parameters
 - For LLaMa, the training dataset is 5.6TB
 - And the 65 billion parameters takes about 130GB of storage
 - So 43x compression rate?
 - Lossy!
- Actually, LLaMa can compress the entire 5.6TB of training corpus to 397.3 GB losslessly
 - 14x compression
 - Best text compressor: 8.7x compression

LLMs as compressors $11 \ / \ 22$

- To compress the *entire training corpus* C *losslessly*, we only need the CODE to train the models and $\sum_{i \in C} -\log P(x_i|x_{< i})$ bits of imformation.
 - The result size (after compression) ISN'T related the number of parameters!

LLMs as compressors 12 / 22

- To compress the *entire training corpus* C *losslessly*, we only need the CODE to train the models and $\sum_{i \in C} -\log P(x_i|x_{< i})$ bits of imformation.
 - The result size (after compression) *ISN'T* related the number of parameters!
- But, HOW?

LLMs as compressors - How

- Imagine Alice is trying to send some text to Bob through a telephone wire
- Sending the raw text is very expensive
 - too large
- So Alice need to find a way to compress the data losslessly
- Alice needs to encode the data to "something"
- Bob needs to decode the "something" back to data
- So we need an "encoding" algorithm and a "decoding" algorithm

LLMs as compressors 13 / 22

 Let's say we have a vocabulary of V (which should be defined in the training code), and we want to encode the first token x₁.

- Let's say we have a vocabulary of \mathcal{V} (which should be defined in the training code), and we want to encode the first token X_1 .
- First, we initialize the model and fed it the training data
 - and we can get the probability distribution of the first token p and an index $x_1 \in \mathcal{V}$

- Let's say we have a vocabulary of V (which should be defined in the training code), and we want to encode the first token x₁.
- First, we initialize the model and fed it the training data
 - and we can get the probability distribution of the first token p and an index $x_1 \in \mathcal{V}$
- With arithmetic encoding, we can encode the index x_1 with $-\log_2 p_{x_1}$ bits
 - Rather than $-\log_2\frac{1}{|\mathcal{V}|}$ bits

- Let's say we have a vocabulary of V (which should be defined in the training code), and we want to encode the first token x₁.
- First, we initialize the model and fed it the training data
 - and we can get the probability distribution of the first token p and an index $x_1 \in \mathcal{V}$
- With arithmetic encoding, we can encode the index x_1 with $-\log_2 p_{x_1}$ bits
 - Rather than $-\log_2 \frac{1}{|\mathcal{V}|}$ bits
- We send those $-\log_2 p_{x_1}$ bits to Bob
 - Let's call it z₁

- Let's say we have a vocabulary of V (which should be defined in the training code), and we want to encode the first token x₁.
- First, we initialize the model and fed it the training data
 - and we can get the probability distribution of the first token p and an index $x_1 \in \mathcal{V}$
- With arithmetic encoding, we can encode the index x_1 with $-\log_2 p_{x_1}$ bits
 - Rather than $-\log_2 \frac{1}{|\mathcal{V}|}$ bits
- We send those $-\log_2 p_{X_1}$ bits to Bob
 - Let's call it z₁
- ... and update the model to minimize the loss, and repeat these steps for every data

LLMs as compressors 14 / 22

Bob retrives the code for training the model

- Bob retrives the code for training the model
- And he can initialize the exact same model (with random seed defined in the code)

LLMs as compressors 15 / 22

- Bob retrives the code for training the model
- And he can initialize the exact same model (with random seed defined in the code)
- So he will have the *exact same distribution p* for the first token
 - He then can decode the token with p and z₁ with arithmetic decoding, get x₁

LLMs as compressors 15 / 22

- Bob retrives the code for training the model
- And he can initialize the exact same model (with random seed defined in the code)
- So he will have the *exact same distribution p* for the first token
 - He then can decode the token with p and z₁ with arithmetic decoding, get x₁
- And he will run the training loop to update the model with x_1
- Note that the model parameters isn't transmitted through the phone wire

LLMs as compressors 15 / 22

LLMs as compressors - Conclusion

- By sharing the same code, Bob can initialize the same model as Alice's
- With arithmetic encoding and decoding, Bob can decode the token with the same probability distribution produced by the model and the encoding transmitted from Alice
- And by training at the same time, the model is always synced between Alice and Bob

LLMs as compressors $16\ /\ 22$

LLMs as compressors - Conclusion

- With arithmetic encoding, we can use fewer bits to encode something have a higher probability in a distribution.
 - If the distribution is uniform, $-\log_2 p_{x_i} = -\log_2 \frac{1}{|\mathcal{V}|}$, which is same as naive storage
 - And as the model is continually training, it can predict the next token with higher and higher probability.
- Bob can re-construct the entire training corpus C with $\sum_{i \in C} -\log P(x_i|x_{< i})$ bits of information
 - Which is exactly the same with the sum of training loss on all tokens!

LLMs as compressors 17 / 22

Questions?

LLMs as compressors 17 / 2

Rethink the goal for foundation models

- If a computer program translates English and Chinese using an oracle comprising all possible combinations of Chinese and English combinations.
 - Does it have understanding of translation?

- If a computer program translates English and Chinese using an oracle comprising all possible combinations of Chinese and English combinations.
 - Does it have understanding of translation?
 - It has the *least* understanding of translation

- If a computer program translates English and Chinese using an oracle comprising all possible combinations of Chinese and English combinations.
 - Does it have understanding of translation?
 - It has the *least* understanding of translation
- What if it do it by a set of rules?
 - It have some understanding of translation.

- If a computer program translates English and Chinese using an oracle comprising all possible combinations of Chinese and English combinations.
 - Does it have understanding of translation?
 - It has the *least* understanding of translation
- What if it do it by a set of rules?
 - It have *some* understanding of translation.
- If we can make the rule set smaller, it will generalise better.

Lossy V.S. Lossless

- "Lossy" compression means the model "remembers" everything in the training dataset
 - BAD generalization
 - that's why we don't often see the term "epoch" in LLM training
- "Lossless" compression means the model can better predict unseen data samples
 - Better compression means GOOD generalization
 - Because *EVERY* example is unseen

Target for Foundation Models

Figure 4: All data V.S. Training Data

- For foundation models, what we want is good generalization ability
 - i.e. ability to generate or write *UNSEEN* samples.

"A recipe for perception"

A recipe for perception

- Collet all useful perceptual information
- Learn to compress it as best as possible with a powerful fundation model
 - Better architecture
 - Scale
 - Tool use
 - ...

Conclusion

- How LLM works
- How LLM works as a compressor
 - And how should we use LLM
 - LLM isn't a search engine
- How compressor generates intelligence

Questions?