## Riemann manifold Langevin and Hamiltonian Monte Carlo methods

Clément Chadebec

ENS - MVA

January 9, 2020

## Overview

- Rational for new methods
- 2 Hamiltonian Monte Carlo methods
- Parameters Influence
- 4 Riemann Manifold HMC
- 5 Comparison with MCMC Algorithms Example of Bayesian Logistic Regression
- **6** Conclusion

## Shortcomings of Monte Carlo algorithms

- Not scalable for target densities in high dimension
- Can demonstrate high correlations
- Can demonstrate low acceptation rates
  - ⇒ Need for new methods

## **HMC**

<u>Goal</u>: Simulate a random variable  $\theta \in \mathbb{R}^D \sim \pi$  a target density.

- Introduction of an **independent** auxiliary variable  $\mathbf{Y} \in \mathbb{R}^D \sim \nu = \mathcal{N}(0, M)$  where M is called the mass matrix
- The negative log-proba of the joint distribution follows:

$$H(\theta, \mathbf{Y}) = -\underbrace{\mathcal{L}(\theta)}_{\text{energy function}} + \frac{1}{2} \log[(2\pi)^D |M|] + \underbrace{\frac{1}{2} \mathbf{Y}^\top M^{-1} \mathbf{Y}}_{\text{kinetic energy}}$$

• The derivatives of H give

$$\begin{aligned} \frac{d\theta}{d\tau} &= \frac{\partial H}{\partial \mathbf{Y}} = \mathbf{M}^{-1}\mathbf{Y} \\ \frac{d\mathbf{Y}}{d\tau} &= \frac{\partial H}{\partial \theta} = \nabla_{\theta} \mathcal{L}(\mathbf{X}) \end{aligned}$$

#### **HMC**

Stormer - Verlet (leapfrog) integrator

$$\begin{aligned} \mathbf{Y}(\tau+\varepsilon/2) &= \mathbf{Y}(\tau) + \varepsilon \nabla_{\theta} \mathcal{L}(\theta)/2 \\ \theta(\tau+\varepsilon) &= \theta(\tau) + \varepsilon M^{-1} \mathbf{Y}(\tau+\varepsilon/2) \\ \mathbf{Y}(\tau+\varepsilon) &= \mathbf{Y}(\tau+\varepsilon/2) + \varepsilon \nabla_{\theta} \mathcal{L}(\theta(\tau+\varepsilon))/2 \end{aligned} \tag{Stormer - Verlet}$$

• HMC sampling of  $\pi(\theta)$  as a Gibbs sampler:

$$egin{aligned} \mathbf{Y}^{n+1} | heta^n &\sim \mathbf{Y}^{n+1} \sim \mathcal{N}(0, M) \ heta^{n+1} | \mathbf{Y}^{n+1} &\sim \mu( heta^{n+1} | \mathbf{Y}^{n+1}) \end{aligned}$$

- $\mu(\theta^{n+1}|\mathbf{Y}^{n+1})$  simulated using Stormer Verlet scheme and  $(\tilde{\theta}, \tilde{\mathbf{Y}})$  is accepted with with probability  $\min\{1, \exp(-H(\tilde{\theta}, \tilde{\mathbf{Y}}) + H(\theta^n, \mathbf{Y}^{n+1}))\}$
- $\bullet \Longrightarrow \mathsf{produces}$  an ergodic, time reversible Markov Chain with stationary density  $\pi$
- Difficulty to select M regardless of the target density

## Leapfrog Impact

Sampling of 
$$\mathcal{N}(\mathbf{5}, \mathbf{\Sigma})$$
 where  $\mathbf{\Sigma} = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.8 \end{pmatrix}$ 



Figure: Leapfrog steps = 2,  $\varepsilon$  = 0.01



Figure: Leapfrog steps = 5,  $\varepsilon$  = 0.01

## Leapfrog Impact



Figure: Leapfrog steps = 10,  $\varepsilon$  = 0.01



Figure: Leapfrog steps = 20,  $\varepsilon$  = 0.01

## Acceptance Ratio

- Dimensions ranging from D=1 to 50
- Sampling of  $\mathcal{N}(\mathbf{5}, \mathbf{I})$



Figure: Leapfrog steps = 20,  $\varepsilon$  = 0.01



Figure: Sampled from  $\mathcal{N}(\mathbf{0}, \mathbf{I})$ 

- Sampling of  $\mathcal{N}(\mathbf{5}, \mathbf{I})$
- Leapfrog steps = 20,  $\varepsilon$  = 0.01 (HMC)
- Sampled from  $\mathcal{N}(\mathbf{0}, \mathbf{I})$  (HM)



Figure: HMC (D = 2)



Figure: HM (D = 2)

- Sampling of  $\mathcal{N}(\mathbf{5}, \mathbf{I})$
- Leapfrog steps = 20,  $\varepsilon$  = 0.01 (HMC)
- Sampled from  $\mathcal{N}(\mathbf{0}, \mathbf{I})$  (HM)



Figure: HMC (D = 5)



Figure: HM (D = 5)

- Sampling of  $\mathcal{N}(\mathbf{5}, \mathbf{I})$
- Leapfrog steps = 20,  $\varepsilon$  = 0.01 (HMC)
- Sampled from  $\mathcal{N}(\mathbf{0}, \mathbf{I})$  (HM)



Figure: HMC (D = 10)



Figure: HM (D = 10)

- Sampling of  $\mathcal{N}(\mathbf{5}, \mathbf{I})$
- Leapfrog steps = 20,  $\varepsilon$  = 0.01 (HMC)
- Sampled from  $\mathcal{N}(\mathbf{0}, \mathbf{I})$  (HM)



Figure: HMC (D = 20)



Figure: HM (D = 20)

## Influence of M

- Leapfrog steps = 20,  $\varepsilon$  = 0.01
- warm start = 5000



Figure: M = I



Figure: M = 10

## Influence of M

- Leapfrog steps = 20,  $\varepsilon$  = 0.01
- warm start = 5000



Figure: 
$$M = \begin{pmatrix} 1 & 0 \\ 0 & 10 \end{pmatrix}$$
.



Figure: 
$$M = \begin{pmatrix} 10 & 0 \\ 0 & 1 \end{pmatrix}$$
.

### Riemann Manifold HMC

• Distance between two density functions  $\Longrightarrow p(\mathbf{X}; \theta)$  and  $p(\mathbf{X}; \theta + \delta \theta) = \delta \theta^{\top} \mathbf{G}(\theta) \delta \theta$  where  $G(\theta)$  is the expected Fisher information matrix

$$\mathbf{G}(\theta) = -\mathbb{E}_{\mathbf{X}|\theta} \Big[ \frac{\partial^2}{\partial \theta^2} \log(\rho(\mathbf{X}|\theta)) \Big] = \text{cov} \Big[ \frac{\partial}{\partial \theta} \log(\rho(\mathbf{X}|\theta)) \Big]$$

⇒ position specific metric on a Riemann manifold

The Hamiltonian follows

$$H(\theta, \mathbf{Y}) = -\underbrace{\mathcal{L}(\theta)}_{\text{energy function}} + \frac{1}{2} \log[(2\pi)^D |G(\theta)|] + \underbrace{\frac{1}{2} \mathbf{Y}^\top \mathbf{G}(\theta)^{-1} \mathbf{Y}}_{\text{kinetic energy}}$$

• Baysian approach  $\Longrightarrow$   $\mathbf{G}(\theta) = -\mathbb{E}_{\mathbf{X}|\theta} \Big[ \frac{\partial^2}{\partial \theta^2} \log(p(\mathbf{X},\theta)) \Big]$ 

### Riemann Manifold HMC

• Again the Riemann HMC sampling of  $\pi(\theta)$  can be seen as a Gibbs sampler:

$$\mathbf{Y}^{n+1}| heta^n \sim \mathcal{N}(0,\mathbf{G}( heta^n))$$
  
 $heta^{n+1}|\mathbf{Y}^{n+1} \sim \mu( heta^{n+1}|\mathbf{Y}^{n+1})$ 

- $\mu(\theta^{n+1}|\mathbf{Y}^{n+1})$  simulated using generalized Stormer Verlet scheme and  $(\tilde{\theta}, \tilde{\mathbf{Y}})$  is accepted with with probability  $\min\{1, \exp(-H(\tilde{\theta}, \tilde{\mathbf{Y}}) + H(\theta^n, \mathbf{Y}^{n+1}))\}$
- $\bullet \Longrightarrow \mathsf{produces}$  an ergodic, time reversible Markov Chain with stationary density  $\pi$
- M mass matrix replaced by position specific metric  $\mathbf{G}(\theta) \longrightarrow$  no need to tune the M coefficients
  - $\Longrightarrow$  Need for a new time-reversible numerical integrator for solving the non-separable Hamiltonian
- How to choose the metric G?

## Example of Bayesian Logistic Regression

- The model:
  - Let  $\mathbf{X} \in \mathbb{R}^{N \times D}$  be the design matrix
  - $\beta \in \mathbb{R}^D$  regression parameter with  $\beta \sim \pi = \mathcal{N}(\mathbf{0}, \alpha \mathbf{I})$  with  $\alpha$  given
  - We look for  $\beta$  such that  $\mathbf{Y}_n = s(\mathbf{X}_n^\top \beta^\top)$  where s is the sigmoid function
- The metric tensor follows:

$$\begin{aligned} \mathbf{G}(\beta) &= -\mathbb{E}_{\mathbf{Y}|\beta} \Big[ \frac{\partial^2}{\partial \beta^2} \log(p(\mathbf{Y},\beta)) \Big] \\ &= \underbrace{\mathbb{E}_{\mathbf{Y}|\beta} \Big[ \frac{\partial^2}{\partial \beta^2} \log(p(\mathbf{Y}|\beta)) \Big]}_{\text{Fisher-Rao}} - \underbrace{\frac{\partial^2}{\partial \beta^2} \log(\pi(\beta))}_{\text{NegativeHessian}} \\ &= \mathbf{X}_n^\top \Lambda \mathbf{X} + \alpha^{-1} \mathbf{I} \end{aligned}$$

where  $\Lambda$  is diagonal and  $\Lambda_{n,n} = s(\beta^{\top} \mathbf{X}_n^{\top})(1 - s(\beta^{\top} \mathbf{X}_n^{\top}))$ 

# Comparison

- Models considered
  - Component-wise adaptive MH
  - Joint updating Gibbs
  - MALA
  - HMC
  - RHMC Student
  - Iterated weighted least squares

| Name              | Covariates<br>(D) | Data points<br>(N) | Dimension of $\beta(b)$ |
|-------------------|-------------------|--------------------|-------------------------|
| Pima Indian       | 7                 | 532                | 8                       |
| Australian credit | 14                | 690                | 15                      |
| German credit     | 24                | 1000               | 25                      |
| Heart             | 13                | 270                | 14                      |
| Ripley            | 2                 | 250                | 7                       |

Figure: Dataset

### Results

• Criteria:  $ESS = N(1 + 2\sum_k \gamma(k))$  on each covariate. N: the number of posterior samples  $\sum_k \gamma(k)$ : sum of the K monotone sample auto-correlations.

| Method     | Time  | ESS (min, avg, max) | s/min ESS | Relative speed |
|------------|-------|---------------------|-----------|----------------|
| Metropolis | 23.4  | (167, 613, 1015)    | 0.140     | 13.3           |
| Mala       | 3.5   | (95.5, 316, 667)    | 0.037     | 50.3           |
| НМС        | 117.9 | (3182, 3632, 3986)  | 0.037     | 50.3           |
| IWLS       | 7.8   | (4.2, 9.9, 69)      | 1.1862    | 1              |
| RHMC - S   | 257.4 | (3981, 4934, 5000)  | 0.065     | 28.6           |
| RMHMC      | 246.6 | (4757, 5000, 5000)  | 0.052     | 35.8           |

Table: Results (D = 24, N = 1000)

#### Conclusion

- Strong demonstrated results
- Choice of the metric to be further investigated (Student, ...)
- Choice of the kinetic energy to be further investigated
- What about even bigger dimensions (100, 1000, ...) ?
  - ⇒ Computation cost scaling

## **Proposition**

**Proposition:** The transition kernel:

$$P(\theta, A) = \int_{\mathcal{Y}} \mathbf{1}(\tilde{\Phi}^{N}(\theta, y)) \alpha((\theta, y, \Phi^{N}(\theta, y)) \nu(y) dy$$
$$+ \mathbf{I}_{\theta}(A) \int_{\mathcal{Y}} (1 - \alpha((\theta, y, \Phi^{N}(\theta, y)) \nu(y) dy$$

where  $\Phi^N$  is the outcome of N leapfrog step and  $\tilde{\Phi}(\theta,y)=\theta$ 

**Proposition:**  $\pi$  is stationary for P

### **Proof**

#### Proof let f be a Borel function

$$\begin{split} \mathbb{E}\Big[f(\theta^{n+1})|\mathcal{F}_n\Big] &= \mathbb{E}_{\mathbf{Y}}\Big[\mathbb{E}\Big[f(\theta^{n+1}|\mathcal{F}_n,\mathbf{Y}_{n+1}]\Big] \\ &= \int_{\mathcal{Y}} \mathbb{E}_{(U,\theta)}\Big[f(\tilde{\Phi}^N(\theta,y)\mathbf{I}_{\{U \leq \alpha((\theta,y,\Phi^N(\theta,y))\}} \\ &+ f(\theta^n)\mathbf{I}_{\{U > \alpha((\theta,y,\Phi^N(\theta,y))\}}\Big]\nu(y)dy \\ &= \int_{\theta} \int_{\mathcal{Y}} f(\tilde{\Phi}^N(\theta,y))\alpha((\theta,y,\Phi^N(\theta,y))\nu(y)dyd\theta \\ &+ \int_{\theta} \delta_{\theta^n}(f) \int_{\mathcal{Y}} (1 - \alpha((\theta,y,\Phi^N(\theta,y)))\nu(y)dyd\theta \end{split}$$

### **Proof**

Sketch of proof: We use the balanced equation  $\pi(\theta)P(\theta',\theta) = \pi(\theta')P(\theta,\theta')$ "

0

$$\pi(\theta) * \alpha((\theta, y, \theta', y') * \nu(y) = \pi(\theta) * \min\left(1, \frac{\pi(\theta')\nu(y')}{\pi(\theta)\nu(y)}\right) * \nu(y)$$
$$= \pi(\theta') * \alpha(\theta', y', \theta, y) * \nu(y')$$

•

$$\int_{A \times B} \pi(d\theta) P_2(\theta, d\theta') = \int_{A \cap B} \pi(d\theta) h(\theta, \cdot)$$

$$= \int_{A \cap B} \pi(d\theta') h(\theta, \cdot)$$

$$= \int_{A \times B} \pi(d\theta') P_2(\theta', d\theta)$$