

STUA FILE COPY
D NO. 392

LINEAR LUMPED PARAMETER ANALYSIS OF SYNCHROS VI
Trigonometric Identities Useful in Synchro Analysis

24 June 1952

**U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND**

LINEAR LUMPED PARAMETER ANALYSIS OF SYNCHROS VI
Trigonometric Identities Useful In Synchro Analysis

Prepared by

G. H. Weiss
Electrical Evaluation Division

ABSTRACT: Many of the impedances in a synchro are functions of angle. An analysis of synchros will therefore involve trigonometric relations, which usually simplify greatly because of the symmetries involved. This report contains tabulated the most useful of these identities as well as derivations and suggestions for derivations.

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND

NAVORD Report 2346

24 June 1952

The linear theory of synchro analysis is being investigated under the authorization of Task NOL-Relia-78-1-52; Fire Control Transmitting and Computing Components. The analysis, thus far presented in other papers of this series, involves many trigonometric relations which under suitable manipulations assume convenient form. It is the intent of this report to derive and tabulate the most useful of the identities which occur in synchro analysis.

The relations presented herein will find use not only in the form of analysis adopted in this series of reports, but in any type of theoretical work relating to synchros.

Edward L. Woodyard
Captain, USN
Commander

R. E. Hightower
R. E. HIGHTOWER
By direction

NAVORD Report 2346

	CONTENTS
	Page
A. Introduction	1
B. Notation	1
C. Derivations	2
D. Tables and Formulae	8
 Table I. List of Formulae	 10
Table II. $\int f(\theta) g(\phi) \dots$	14
Table III. $\int f(\theta) g(\Theta) \dots$	14
Table IV. $\int f(\phi) g(\Theta) \dots$	15
Table V _a . $\int A_m g(n\theta) f(\phi) \dots$	16
Table V _b . $\int A_m g(n\theta) f(\Theta) \dots$	17
Table VI _a . $\int A_m g(n\theta) f(2\theta) \dots$	18
Table VI _b . $\int A_m g(n\theta) f(2\Theta) \dots$	19
 E. Bibliography	 21

LINEAR LUMPED PARAMETER ANALYSIS OF SYNCHROS VI

Trigonometric Identities Useful in Synchros Analysis

A. INTRODUCTION

1. Because of the 120° symmetry prevailing in synchros, many trigonometric expressions arising from their analysis reduce to a relatively simple form, although in original appearance they may be ponderous and complicated. It is the purpose of this report to tabulate the more frequently encountered identities and to indicate methods of manipulation that are particularly useful in deriving them. The point of view adopted is to make the compilation a practical one - i.e., to include those forms that arise in practice, so that by reference to these tables the identities can be used without requiring rederivation each time. For completeness some elementary formulae are also included. Probably the best way to take advantage of this report is first to make a hasty survey to become acquainted with its contents.

B. NOTATION

2. To begin with we introduce the following notation:

$$\begin{aligned} e^{j\theta} &= \cos \theta + j \sin \theta \\ \bar{\theta} &= \theta + 120^\circ \\ \underline{\theta} &= \theta - 120^\circ \end{aligned} \tag{1}$$

This process of using bars will apply to Greek letters θ, ϕ, \dots only.

3. We define an operator Γ to be given by

$$\Gamma g(\theta_1, \theta_2, \dots, \theta_n) = g(\theta_1, \theta_2, \dots, \theta_n) + g(\bar{\theta}_1, \bar{\theta}_2, \dots, \bar{\theta}_n) \tag{2}$$

$$+ g(\underline{\theta}_1, \underline{\theta}_2, \dots, \underline{\theta}_n)$$

where in all cases, the bars are considered to operate on each of the variables θ_k . For example

$$\begin{aligned}\overline{\lceil} \sin\theta &= \sin\theta + \sin\theta + \sin\theta \\ \overline{\lceil} \sin 2\theta &= \sin 2\theta + \sin 2\theta + \sin 2\theta \\ \overline{\lceil} \sin\theta \sin 2\theta &= \sin\theta \sin 2\theta + \sin\theta \sin 2\theta + \sin\theta \sin 2\theta.\end{aligned}$$

It is evident, by the last two examples, that when a function of $n\theta$ is involved, the proper use of bars is $n\theta$ and $n\bar{\theta}$, since bars are only applied to Greek letters.

We will also deal with functions of the type

$$A_1g(\theta_1, \theta_2, \dots) + A_2g(\theta_1, \theta_2, \dots) + A_3g(\bar{\theta}_1, \bar{\theta}_2, \dots),$$

where A_1, A_2, A_3 are constants, not necessarily equal. Here we will use a similar notation

$$\begin{aligned}\overline{\lceil} A_m g(\theta_1, \theta_2, \dots) &= A_1g(\theta_1, \theta_2, \dots) + A_2g(\theta_1, \theta_2, \dots) \quad (3) \\ &\quad + A_3g(\bar{\theta}_1, \bar{\theta}_2, \dots).\end{aligned}$$

In other words, if $\overline{\lceil}$ operates on a function which explicitly exhibits a constant as a coefficient, it implies that in the expansion each of the terms includes coefficients which are not necessarily equal. An example is

$$\overline{\lceil} A_k \sin\theta \cos 2\theta = A_1 \sin\theta \cos 2\theta + A_2 \sin\theta \cos 2\theta + A_3 \sin\bar{\theta} \cos 2\theta.$$

C. DERIVATIONS

4. The first expressions, which are cornerstones for the derivation of all succeeding formulae are

$$\overline{\lceil} \sin n\theta = \begin{cases} 0 & (n \neq 3k) \\ 3 \sin n\theta & (n = 3k) \end{cases}$$

$$\overline{\lceil} \cos n\theta = \begin{cases} 0 & (n \neq 3k) \\ 3 \cos n\theta & (n = 3k) \end{cases}$$

These are derived with the aid of (1) in the following manner:

$$\begin{aligned} \int \cos n\theta &= \operatorname{Re} \left(\int e^{jn\theta} \right) \\ \int \sin n\theta &= \operatorname{Im} \left(\int e^{jn\theta} \right) \end{aligned} \quad (4)$$

where

$\operatorname{Re} (A)$ = real part of A

$\operatorname{Im} (A)$ = imaginary part of A.

$$\begin{aligned} \int e^{jn\theta} &= e^{jn\theta} + e^{jn(\theta + 2\pi/3)} + e^{jn(\theta - 2\pi/3)} \\ &= e^{jn\theta} (1 + e^{2j\pi n/3} + e^{-2j\pi n/3}) \\ &= e^{jn\theta} (1 + 2 \cos 2\pi n/3) \\ &= \begin{cases} 0 & (n \neq 3k) \\ 3e^{jn\theta} & (n = 3k). \end{cases} \end{aligned}$$

Therefore, from (4)

$$\begin{aligned} 1) \int \cos n\theta &= \begin{cases} 0 & (n \neq 3k) \\ 3 \cos n\theta & (n = 3k) \end{cases} \\ 2) \int \sin n\theta &= \begin{cases} 0 & (n \neq 3k) \\ 3 \sin n\theta & (n = 3k). \end{cases} \end{aligned}$$

5. In all work relating to the product of trigonometric functions, it is helpful to transform the products to sums by means of the following identities:

- 3) $\sin \theta \sin \phi = (1/2)\cos(\theta - \phi) - (1/2)\cos(\theta + \phi)$
- 4) $\cos \theta \cos \phi = (1/2)\cos(\theta - \phi) + (1/2)\cos(\theta + \phi)$
- 5) $\sin \theta \cos \phi = (1/2)\sin(\theta - \phi) + (1/2)\sin(\theta + \phi).$

For example, substituting $\theta = \phi$ in 3) and 4) yields

$$3a) \sin^2\theta = (1/2)(1 - \cos 2\theta)$$

$$4a) \cos^2\theta = (1/2)(1 + \cos 2\theta) .$$

6. A set of identities which constantly recur in synchro analysis consists of the following:

$$6) \int \sin^2 n\theta = \begin{cases} 3/2 & (n \neq 3k) \\ 3 \sin^2 n\theta & (n = 3k) \end{cases}$$

$$7) \int \cos^2 n\theta = \begin{cases} 3/2 & (n \neq 3k) \\ 3 \cos^2 n\theta & (n = 3k) \end{cases}$$

$$8) \int \sin n\theta \cos n\theta = \begin{cases} 0 & (n \neq 3k) \\ 3 \sin n\theta \cos n\theta & (n = 3k) . \end{cases}$$

These are easily derived using 3a) and 4a). For example,

$$\begin{aligned} \int \cos^2 n\theta &= \int (1/2)(1 + \cos 2n\theta) \\ &= \int (1/2) + (1/2) \int \cos 2n\theta \\ &= \begin{cases} 3/2 & (n \neq 3k) \\ 3 \cos^2 n\theta & (n = 3k) . \end{cases} \end{aligned}$$

7. Two identities which prove to be very useful are

$$9) \sin n(\theta + 240^\circ) = \sin n(\theta - 120^\circ)$$

$$10) \cos n(\theta + 240^\circ) = \cos n(\theta - 120^\circ) .$$

These are simple consequences of the fact that adding 360° or any integral multiple of 360° to the argument of a trigonometric function does not change the value of the function. Thus

$$\sin n(\theta - 120^\circ) = \sin n(\theta - 120^\circ + 360^\circ) = \sin n(\theta + 240^\circ)$$

as stated.

From 9) and 10) it follows that

$$11) \int \sin 3n\theta \cos m\phi = \begin{cases} 0 & (m \neq 3k) \\ 3 \sin 3n\theta \cos m\phi & (m = 3k) \end{cases}$$

$$12) \int \cos 3n\theta \cos m\phi = \begin{cases} 0 & (m \neq 3k) \\ 3 \cos 3n\theta \cos m\phi & (m = 3k) \end{cases}$$

$$13) \int \sin 3n\theta \sin m\phi = \begin{cases} 0 & (m \neq 3k) \\ 3 \sin 3n\theta \sin m\phi & (m = 3k) \end{cases}$$

$$14) \int \cos 3n\theta \sin m\phi = \begin{cases} 0 & (m \neq 3k) \\ 3 \cos 3n\theta \sin m\phi & (m = 3k) \end{cases}$$

since

$$3n\bar{\theta} = n(3\theta + 360^\circ)$$

$$3n\bar{\theta} = n(3\theta - 360^\circ)$$

8. Up till now we have been considering the operator \int as defined in (2). The study of unbalanced synchros requires the operator \int' as defined in (3). For example,

$$\text{or } \int' A_m \cos n\theta = A_1 \cos n\theta + A_2 \cos n\bar{\theta} + A_3 \cos n\tilde{\theta} \quad (5)$$

$$\int' A_m \sin n\theta = A_1 \sin n\theta + A_2 \sin n\bar{\theta} + A_3 \sin n\tilde{\theta}$$

where the A 's are constants.

When $A_1 = A_2 = A_3$, these expressions simplify through the use of 1) and 2).

For the case where they are not equal, we make use of the following notation:

$$A_2 = A_1 + \Delta$$

$$A_3 = A_1 + \tilde{\Delta}$$

$$A = A_1 .$$

Then, for example, the second form of (5) is simply

$$\int A_m \sin n\theta = A \int \sin n\theta + \underline{\Delta} \sin n\underline{\theta} + \bar{\Delta} \sin n\bar{\theta}$$

which, by expanding $n\underline{\theta}$ and $n\bar{\theta}$, can be written as

$$\begin{aligned} A \int \sin n\theta + \underline{\Delta} [\sin n\theta \cos n(120^\circ) - \cos n\theta \sin n(120^\circ)] \\ + \bar{\Delta} [\sin n\theta \cos n(120^\circ) + \cos n\theta \sin n(120^\circ)]. \end{aligned} \quad (6)$$

We now define the following notation:

$$\alpha = (1/2)(\underline{\Delta} + \bar{\Delta})$$

$$\beta = (1/2)(\underline{\Delta} - \bar{\Delta}).$$

When substituted into (6) this gives

$$23) \quad \int A_m \sin n\theta = \begin{cases} (3A + 2\alpha) \sin n\theta & (n = 3k) \\ \alpha \sin n\theta - \sqrt{3} \beta \cos n\theta & (n = 3k+1) \\ -\alpha \sin n\theta + \sqrt{3} \beta \cos n\theta & (n = 3k+2). \end{cases}$$

Similarly we have

$$24) \quad \int A_m \cos n\theta = \begin{cases} (3A + 2\alpha) \cos n\theta & (n = 3k) \\ -\alpha \cos n\theta - \sqrt{3} \beta \sin n\theta & (n = 3k+1) \\ -\alpha \cos n\theta + \sqrt{3} \beta \sin n\theta & (n = 3k+2). \end{cases}$$

It will be noticed that the equations 23) and 24) are linear combinations of $\sin n\theta$ and $\cos n\theta$. These combinations can be put into the handy form of $C [\sin(n\theta - \delta)]$ where C and δ are constants. Let

$$\begin{aligned} A \sin n\theta + B \cos n\theta &= C \sin(n\theta - \delta) \\ &= C [\sin n\theta \cos \delta] - C [\sin \delta \cos n\theta]. \end{aligned}$$

Equating the coefficients of $\sin n\theta$ and $\cos n\theta$ we find

$$\begin{aligned} A &= C \cos \delta \\ B &= -C \sin \delta. \end{aligned}$$

Consequently δ is found from

$$\tan \delta = -B/A$$

and C is given by

$$C = \sqrt{A^2 + B^2}$$

9. An important special case of the identities treated in paragraph 8 is that of

$$\mu = A_1 \sin 2\theta + A_2 \sin 2\phi + A_3 \sin 2\bar{\theta} \quad (7)$$

which is equivalent to

$$\mu = B \sin (2\theta - \delta) \quad . \quad (8)$$

Expanding (7) we obtain

$$\mu = (1/2)(2A_1 - A_2 - A_3)\sin 2\theta + (\sqrt{3}/2)(A_2 - A_3)\cos 2\theta . \quad (9)$$

Equating (8) and (9) we find

$$\tan \delta = (\sqrt{3})(A_2 - A_3)/(2A_1 - A_2 - A_3)$$

and

$$B = \sqrt{A_1^2 + A_2^2 + A_3^2 - A_1A_2 - A_1A_3 - A_2A_3} .$$

10. The next set of identities we treat, which pertain especially to unbalanced synchros, are of the form

$$A_1 \sin n\theta \cos \theta + A_2 \sin n\theta \cos \phi + A_3 \sin n\theta \cos \bar{\theta}$$

or

$$A_1 \cos n\theta \cos 2\theta + A_2 \cos n\theta \cos 2\phi + A_3 \cos n\theta \cos 2\bar{\theta}$$

and other similar combinations which interchange sin and cos. The A's are constants.

11. When $A_1 = A_2 = A_3$ these expressions can be evaluated by the use of Table 4. When this condition does not hold we expand the expressions and combine the resulting terms.

Thus

$$\begin{aligned}
 & A_1 \sin n\theta \cos \theta + A_2 \sin n\theta \cos \underline{\theta} + A_3 \sin n\theta \cos \bar{\theta} \\
 & = A \Gamma \sin n\theta \cos \theta + \underline{A} \sin n\theta \cos \theta + \bar{A} \sin n\theta \cos \bar{\theta} \\
 & = A \Gamma \sin n\theta \cos \theta + (\underline{A}/2) [\sin(n-1)\theta + \sin(n+1)\underline{\theta}] \\
 & \quad + (\bar{A}/2) [\sin(n-1)\bar{\theta} + \sin(n+1)\bar{\theta}] \\
 & = A \Gamma \sin n\theta \cos \theta + \alpha(\sin(n-1)\theta \cos(n-1)\theta 120^\circ + \beta \cos(n-1)\theta \sin(n-1)\theta 120^\circ \\
 & \quad + \alpha(\sin(n+1)\theta \cos(n+1)\theta 120^\circ + \beta \cos(n+1)\theta \sin(n+1)\theta 120^\circ). \quad (10)
 \end{aligned}$$

A complete list of such expressions is tabulated in Tables V and VI.

D. TABLES AND FORMULAS

12. The important identities can be presented in tabular form. Table I is a summary of the relations previously derived, as well as certain other relations which follow by similar processes. Tables II, III, and IV present the results of applying the operator Γ as defined in (2) on specific trigonometric functions which arise in the analysis of balanced synchros. Tables V and VI apply to the operator Γ when defined as in (3) and are particularly useful for the analysis of unbalanced synchros.

13. A few examples will now be given in order to familiarise the reader with the use of the tables.

Example 1. Find $\Gamma \cos \theta \cos \phi$.

Look in Table II in the first row and column and find

$$\Gamma \cos \theta \cos \phi = (3/2) \cos(\theta - \phi).$$

Example 2. Find $\cos \theta \cos \underline{\phi} + \cos \underline{\theta} \cos \phi + \cos \bar{\theta} \cos \bar{\phi}$.

Substitute $\phi = \underline{\phi}$ in example 1 to find

$$\Gamma \cos \theta \cos \underline{\phi} = (3/2) \cos(\theta - \underline{\phi}) = (3/2) \cos(\overline{\theta - \phi}).$$

Example 3. Find $\Gamma \sin 2\phi \sin^2 \phi$.

In Table III, with $\phi = 0$, we find $\Gamma \sin 2\phi \sin^2 \phi = 0$.

Example 4. Find the value of

$$\cos \theta \cos \underline{\theta} \cos 2\bar{\theta} + \cos \underline{\theta} \cos \bar{\theta} \cos 2\theta + \cos \bar{\theta} \cos \theta \cos 2\underline{\theta} .$$

From 15), with θ substituted for ϕ , we see that this expression is equal to $3/4$.

Example 5. Find $\Gamma \sin 7\theta \sin 2\theta$.

With $n = 2$, we find from Table IV that $\Gamma \sin 7\theta \sin 2\theta = -(3/2)\cos 9\theta$.

Example 6. Find $\sin 4\theta \sin \theta + 3 \sin 4\underline{\theta} \sin \underline{\theta} + 5 \sin 4\bar{\theta} \sin \bar{\theta} = p$.

From the given expression, we find $\Delta = 2$, $\bar{\Delta} = 4$. Therefore $\alpha = 3$, $\beta = -1$. From Table V_a, noting that $n = 4$ is of the form $n = 3k+1$, we find

$$\begin{aligned} p &= (3/2) \cos (n+1) \theta + (\sqrt{3}/2) \sin (n+1) \theta + (9/2) \cos (n-1) \theta \\ &= (3/2) \cos 5\theta + (\sqrt{3}/2) \sin 5\theta + (9/2) \cos 3\theta . \end{aligned}$$

TABLE I
List of Formulae

- 1) $\int \cos n\theta = \begin{cases} 0 & (n \neq 3k) \\ 3 \cos n\theta & (n = 3k) \end{cases}$
- 2) $\int \sin n\theta = \begin{cases} 0 & (n \neq 3k) \\ 3 \sin n\theta & (n = 3k) \end{cases}$
- 3) $\sin \theta \sin \phi = (1/2) \cos (\theta - \phi) - (1/2) \cos (\theta + \phi)$
- 4) $\cos \theta \cos \phi = (1/2) \cos (\theta - \phi) + (1/2) \cos (\theta + \phi)$
- 5) $\cos \theta \sin \phi = (1/2) \sin (\phi - \theta) + (1/2) \sin (\theta + \phi)$
- 3a) $\sin^2 \theta = (1/2) (1 - \cos 2\theta)$
- 4a) $\cos^2 \theta = (1/2) (1 + \cos 2\theta)$
- 6) $\int \sin^2 n\theta = \begin{cases} 3/2 & (n \neq 3k) \\ 3 \sin^2 n\theta & (n = 3k) \end{cases}$
- 7) $\int \cos^2 n\theta = \begin{cases} 3/2 & (n \neq 3k) \\ 3 \cos^2 n\theta & (n = 3k) \end{cases}$
- 8) $\sin n\theta \cos n\theta = \begin{cases} 0 & (n \neq 3k) \\ 3 \sin n\theta \cos n\theta & (n = 3k) \end{cases}$
- 9) $\sin n(\theta + 240^\circ) = \sin n(\theta - 120^\circ)$
- 10) $\cos n(\theta + 240^\circ) = \cos n(\theta - 120^\circ)$
- 11) $\int \sin 3n\theta \cos m\phi = \begin{cases} 0 & (m \neq 3k) \\ 3 \sin 3n\theta \cos m\phi & (m = 3k) \end{cases}$
- 12) $\int \cos 3n\theta \cos m\phi = \begin{cases} 0 & (m \neq 3k) \\ 3 \cos 3n\theta \cos m\phi & (m = 3k) \end{cases}$

$$13) \int \sin 3n\theta \sin n\phi = \begin{cases} 0 & (n \neq 3k) \\ 3 \sin 3n\theta \sin n\phi & (n = 3k) \end{cases}$$

$$14) \int \cos 3n\theta \sin n\phi = \begin{cases} 0 & (n \neq 3k) \\ 3 \cos 3n\theta \sin n\phi & (n = 3k) \end{cases}$$

$$15) \cos \theta \cos \frac{\theta}{2} \cos 2\beta + \cos \theta \cos \frac{\theta}{2} \cos 2\beta + \cos \theta \cos \frac{\theta}{2} \cos 2\beta \\ = (3/4)\cos 2(\theta - \beta)$$

$$16) \sin \theta \sin \frac{\theta}{2} \cos 2\beta + \sin \theta \sin \frac{\theta}{2} \cos 2\beta + \sin \theta \sin \frac{\theta}{2} \cos 2\beta \\ = -(3/4)\cos 2(\theta - \beta)$$

$$17) \sin \theta \sin \frac{\theta}{2} \sin 2\beta + \sin \theta \sin \frac{\theta}{2} \sin 2\beta + \cos \theta \cos \frac{\theta}{2} \sin 2\beta \\ = (3/4)\sin 2(\theta - \beta)$$

$$18) \cos \theta \cos \frac{\theta}{2} \sin 2\beta + \cos \theta \cos \frac{\theta}{2} \sin 2\beta + \cos \theta \cos \frac{\theta}{2} \sin 2\beta \\ = -(3/4)\sin 2(\theta - \beta)$$

$$19) \sin \theta \pm \sin \beta = 2 \sin[(1/2)(\theta \pm \beta)] \cos[(1/2)(\theta \mp \beta)]$$

$$20) \cos \theta \pm \cos \beta = 2 \cos[(1/2)(\theta \pm \beta)] \cos[(1/2)(\theta \mp \beta)]$$

$$21) \cos \theta - \cos \beta = -2 \sin[(1/2)(\theta + \beta)] \sin[(1/2)(\theta - \beta)]$$

$$22) \begin{vmatrix} \cos \theta & \sin \theta \\ \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \end{vmatrix} = -(\sqrt{3}/2)$$

$$23) \int A_m \sin n\theta = \begin{cases} (3A + 2\alpha) \sin n\theta & (n = 3k) \\ -\alpha \sin n\theta - \sqrt{3}(\beta \cos n\theta) & (n = 3k+1) \\ -\alpha \sin n\theta + \sqrt{3}(\beta \cos n\theta) & (n = 3k+2) \end{cases}$$

$$24) \int A_m \cos n\theta = \begin{cases} (3A + 2\alpha) \cos n\theta & (n = 3k) \\ -\alpha \cos n\theta - \sqrt{3}(\beta \sin n\theta) & (n = 3k+1) \\ -\alpha \cos n\theta + \sqrt{3}(\beta \sin n\theta) & (n = 3k+2) \end{cases}$$

(see next page for definition of α , β , A)

where

$$\alpha = (1/2)(\Delta + \bar{\Delta})$$

$$\beta = (1/2)(\Delta - \bar{\Delta})$$

$$A_2 = A + \Delta$$

$$A_3 = A + \bar{\Delta}$$

$$A_1 = A$$

$$25) \int A_m \sin 2\theta = B \sin (2\theta - \delta)$$

$$B = \sqrt{A_1^2 + A_2^2 + A_3^2 - A_1 A_2 - A_1 A_3 - A_2 A_3}$$

$$\tan \delta = \sqrt{3}(A_2 - A_3)/(2A_1 - A_2 - A_3)$$

$$26) \int \cos 2\theta \cos \theta \cos \lambda = (3/4) \cos 2[\theta - (\theta + \lambda)/2]$$

$$27) \int \cos 2\theta \cos \theta \sin \lambda = (3/4) \sin 2[\theta - (\theta + \lambda)/2]$$

$$28) \int \cos 2\theta \sin \theta \sin \lambda = -(3/4) \cos 2[\theta - (\theta + \lambda)/2]$$

$$29) \cos 2\theta (\cos \underline{\theta} \cos \bar{\lambda} + \cos \bar{\theta} \cos \lambda)$$

$$+ \cos 2\underline{\theta} (\cos \bar{\theta} \cos \lambda + \cos \theta \cos \bar{\lambda})$$

$$+ \cos 2\bar{\theta} (\cos \theta \cos \lambda + \cos \underline{\theta} \cos \bar{\lambda})$$

$$= (3/2) \cos 2[\theta - (\theta + \lambda)/2]$$

$$30) \cos 2\theta (\sin \underline{\theta} \sin \bar{\lambda} + \sin \bar{\theta} \sin \lambda)$$

$$+ \cos 2\underline{\theta} (\sin \theta \sin \bar{\lambda} + \sin \bar{\theta} \sin \lambda)$$

$$+ \cos 2\bar{\theta} (\sin \theta \sin \lambda + \sin \underline{\theta} \sin \bar{\lambda})$$

$$= -(3/2) \cos 2[\theta - (\theta + \lambda)/2]$$

$$31) \cos 2\theta (\sin \underline{\theta} \cos \bar{\lambda} + \sin \bar{\theta} \cos \lambda)$$

$$+ \cos 2\underline{\theta} (\sin \theta \cos \bar{\lambda} + \sin \bar{\theta} \cos \lambda)$$

$$+ \cos 2\bar{\theta} (\sin \theta \cos \lambda + \sin \underline{\theta} \cos \bar{\lambda})$$

$$= -(3/2) \sin 2[\theta - (\theta + \lambda)/2]$$

32)
$$\begin{bmatrix} \cos \theta & \sin \theta \\ \cos \phi & \sin \phi \\ \cos \bar{\theta} & \sin \bar{\theta} \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta-\phi) & \sin(\theta-\phi) \\ \sin(\theta-\phi) & \cos(\theta-\phi) \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ \cos \phi & \sin \phi \\ \cos \bar{\theta} & \sin \bar{\theta} \end{bmatrix}$$

33)
$$\begin{bmatrix} \cos \theta & \sin \theta \\ \cos \phi & \sin \phi \\ \cos \bar{\theta} & \sin \bar{\theta} \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta-\phi) & -\sin(\theta-\phi) \\ \sin(\theta-\phi) & \cos(\theta-\phi) \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ \cos \phi & \sin \phi \\ \cos \bar{\theta} & \sin \bar{\theta} \end{bmatrix}$$

34)
$$\begin{bmatrix} -\sin \theta & \cos \theta \\ -\sin \phi & \cos \phi \\ -\sin \bar{\theta} & \cos \bar{\theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ \cos \phi & \sin \phi \\ \cos \bar{\theta} & \sin \bar{\theta} \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

35) Let $\sigma = \theta - \phi - \pi/2$. Then

$$\begin{bmatrix} \cos(\theta-\phi) & \sin(\theta-\phi) \\ -\sin(\theta-\phi) & \cos(\theta-\phi) \end{bmatrix} = \begin{bmatrix} -\sin \sigma & \cos \sigma \\ -\cos \sigma & -\sin \sigma \end{bmatrix}$$

TABLE II. $\int f(\phi)g(\theta)$

$f(\phi)$	$g(\theta)$	$(2/3) \cos \theta$	$(2/3) \sin \theta$	$(2/3) \cos 2\theta$	$(2/3) \sin 2\theta$
$\cos \phi$		$\cos (\theta-\phi)$	$\sin (\theta-\phi)$	$\cos (2\theta+\phi)$	$\sin (2\theta+\phi)$
$\sin \phi$		$-\sin (\theta-\phi)$	$\cos (\theta-\phi)$	$\sin (2\theta+\phi)$	$-\cos (2\theta+\phi)$
$\cos 2\phi$		$\cos (2\theta+\phi)$	$\sin (2\theta+\phi)$	$\cos 2(\theta-\phi)$	$\sin 2(\theta-\phi)$
$\sin 2\phi$		$\sin (2\theta+\phi)$	$-\cos (2\theta+\phi)$	$-\sin 2(\theta-\phi)$	$\cos 2(\theta-\phi)$

TABLE III. $\int f(\phi)g(\theta)$

$f(\phi)$	$g(\theta)$	$(4/3) \sin^2 \theta$	$(4/3) \cos^2 \theta$
$\sin \phi$		$-\sin (2\theta+\phi)$	$\sin (2\theta+\phi)$
$\cos \phi$		$-\cos (2\theta+\phi)$	$\cos (2\theta+\phi)$
$\sin 2\phi$		$\sin 2(\theta-\phi)$	$-\sin 2(\theta-\phi)$
$\cos 2\phi$		$-\cos 2(\theta-\phi)$	$\cos 2(\theta-\phi)$

How to read Tables II and III.

The value in each box is $\int f(\phi) g(\theta)$ where $f(\phi)$ and $g(\theta)$ are the headings of the rows and columns respectively to which the box belongs.

For example, in Table II,

$$\int \cos 2\phi \cos \theta = (3/2) \cos (2\phi + \theta)$$

TABLE* IV. $\int f(\theta)g(\theta)$

$f(\theta)$	$g(\theta)$	$(2/3)\cos \theta$	$(2/3)\sin \theta$	$(2/3)\cos 2\theta$	$(2/3)\sin 2\theta$	K = Constant
$\cos (3n+1)\theta$	$\cos 3n\theta$	$-\sin 3n\theta$	$\cos 3(n+1)\theta$	$\sin 3(n+1)\theta$	0	
$\cos (3n+2)\theta$	$\cos 3(n+1)\theta$	$\sin 3(n+1)\theta$	$\cos 3n\theta$	$-\sin 3n\theta$	0	
$\cos 3n\theta$	0	0	0	0	$3K \cos 3n\theta$	
$\sin (3n+1)\theta$	$\sin 3n\theta$	$\cos 3n\theta$	$\sin 3(n+1)\theta$	$-\cos 3(n+1)\theta$	0	
$\sin (3n+2)\theta$	$\sin 3(n+1)\theta$	$-\cos 3(n+1)\theta$	$\sin 3n\theta$	$\cos 3n\theta$	0	
$\sin 3n\theta$	0	0	0	0	$3K \sin 3n\theta$	

* Reprinted from Navord 1710, "Linear Lumped Parameter Analysis of Synchros I" by J. H. Rosembloom, p.28

How to read Table IV.

Read the same as Tables II and III.

TABLE Va: $\int A_m \sin(n\theta) \cos(\theta)$

	$\cos(n+1)\theta$	$\sin(n+1)\theta$	$\cos(n-1)\theta$	$\sin(n-1)\theta$
$\int A_m \cos n\theta \cos \theta$ $n = 3k$	$-\frac{1}{2}\alpha$	$-\frac{\sqrt{3}}{2}\beta$	$-\frac{1}{2}\alpha$	$\frac{\sqrt{3}}{2}\beta$
$n = 3k+1$	$-\frac{1}{2}\alpha$	$\frac{\sqrt{3}}{2}\beta$	α	$-\frac{3}{2}\lambda$
$n = 3k+2$	α	$\frac{3}{2}\lambda$	$-\frac{1}{2}\alpha$	$-\frac{\sqrt{3}}{2}\beta$
$\int A_m \sin n\theta \sin \theta$ $n = 3k$	$\frac{1}{2}\alpha$	$\frac{\sqrt{3}}{2}\beta$	$-\frac{1}{2}\alpha$	$\frac{\sqrt{3}}{2}\beta$
$n = 3k+1$	$\frac{1}{2}\alpha$	$-\frac{\sqrt{3}}{2}\beta$	$\frac{3}{2}\lambda + \alpha$	0
$n = 3k+2$	$-\alpha$	0	$-\frac{3}{2}\lambda - \frac{1}{2}\alpha$	$-\frac{\sqrt{3}}{2}\beta$

How to read Table Va.

See Page 20.

TABLE Vb): $\int A_m g(n\theta) f(\theta)$

	$\cos(n+1)\theta$	$\sin(n+1)\theta$	$\cos(n-1)\theta$	$\sin(n-1)\theta$
$\int A_m \sin n\theta \cos \theta$ $n = 3K$	$\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$	$-\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$
$n = 3K+1$	$-\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$	0	$\frac{3}{2} \alpha + \alpha$
$n = 3K+2$	0	$\frac{3}{2} \alpha + \alpha$	$\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$
$\int A_m \cos n\theta \sin \theta$ $n = 3K$	$\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$	$\frac{\sqrt{3}}{2} \beta$	$\frac{1}{2} \alpha$
$n = 3K+1$	$-\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$	$\frac{3}{2} \alpha$	$-\alpha$
$n = 3K+2$	$\frac{3}{2} \alpha$	α	$-\frac{\sqrt{3}}{2} \beta$	$\frac{1}{2} \alpha$

How to read Table Vb.

See Page 20.

TABLE VIa): $\int A_m g(n\theta) f(2\theta)$

	$\cos(n+2)\theta$	$\sin(n+2)\theta$	$\cos(n-2)\theta$	$\sin(n-2)\theta$
$\int A_m \cos n\theta \cos 2\theta$ $n = 3K$	$-\frac{1}{2}\alpha$	$\frac{\sqrt{3}}{2}\beta$	$-\frac{1}{2}\alpha$	$-\frac{\sqrt{3}}{2}\beta$
$n = 3K+1$	$\frac{3}{2}A+\alpha$	0	$-\frac{1}{2}\alpha$	$\frac{\sqrt{3}}{2}\beta$
$n = 3K+2$	$-\frac{1}{2}\alpha$	$\frac{3}{2}A - \frac{\sqrt{3}}{2}\beta$	α	0
$\int A_m \sin n\theta \sin 2\theta$ $n = 3K$	$\frac{1}{2}\alpha$	$-\frac{\sqrt{3}}{2}\beta$	$-\frac{1}{2}\alpha$	$-\frac{\sqrt{3}}{2}\beta$
$n = 3K+1$	$-\frac{3}{2}A-\alpha$	0	$-\frac{1}{2}\alpha$	$\frac{\sqrt{3}}{2}\beta$
$n = 3K+2$	$\frac{1}{2}\alpha$	$\frac{\sqrt{3}}{2}\beta$	$\frac{3}{2}A+\alpha$	0

How to read Table VIa.

See Page 20.

TABLE VIb): $\Gamma A_m g(n\theta) \epsilon(2\theta)$

	$\cos(n+2)\theta$	$\sin(n+2)\theta$	$\cos(n-2)\theta$	$\sin(n-2)\theta$
$\Gamma A_m \cos n\theta \sin 2\theta$ $n = 3K$	$-\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$	$-\frac{\sqrt{3}}{2} \beta$	$\frac{1}{2} \alpha$
$n = 3K+1$	0	$\frac{3}{2} A + \alpha$	$\frac{\sqrt{3}}{2} \beta$	$\frac{1}{2} \alpha$
$n = 3K+2$	$\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$	0	$-\frac{3}{2} A - \alpha$
$\Gamma A_m \sin n\theta \cos 2\theta$ $n = 3K$	$-\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$	$\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$
$n = 3K+1$	0	$\frac{3}{2} A + \alpha$	$-\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$
$n = 3K+2$	$\frac{\sqrt{3}}{2} \beta$	$-\frac{1}{2} \alpha$	0	$\frac{3}{2} A + \alpha$

How to read Table VIb.

See Page 20.

How to read Tables V and VI.

Compute α , β and λ from

$$\Delta = A_2 - A_1$$

$$\tilde{\Delta} = A_3 - A_1$$

$$\lambda = A_1$$

$$\alpha = (1/2)(\underline{\Delta} + \tilde{\Delta})$$

$$\beta = (1/2)(\underline{\Delta} - \tilde{\Delta})$$

$$\int A_n g(\theta) = A_1 g(\theta) + A_2 \sin(\theta) + A_3 \cos(\theta)$$

Consider a typical row

	$\cos(n+1)\theta$	$\sin(n+1)\theta$	$\cos(n-1)\theta$	$\sin(n-1)\theta$
$A_n g(\theta) \cos \theta$	b_1	b_2	b_3	b_4

Then

$$\begin{aligned} \int A_n g(\theta) \cos \theta &= b_1 \cos(n+1)\theta + b_2 \sin(n+1)\theta + b_3 \cos(n-1)\theta \\ &\quad + b_4 \sin(n-1)\theta \end{aligned}$$

For example, from Table Va,

$$\begin{aligned} \int A_n \cos n\theta \cos \theta &= -(1/2) \alpha \cos(n+1)\theta + (\sqrt{3}/2) \beta \sin(n+1)\theta \\ &\quad + \cos(n-1)\theta = (3/2) \lambda \sin(n-1)\theta . \end{aligned}$$

BIBLIOGRAPHY

1. Rosenthal, J. H. - "Linear Lumped Parameter Analysis of Synchros Part I" - NAVORD Report 1710.
2. Weiss, G. H., and Rosenthal, J. H. - "Linear Lumped Parameter Analysis of Synchros Part II - "Null Voltages in Control Systems" - NAVORD Report 2260.
3. Fried, B. D., and Rosenthal, J. H. - "Linear Lumped Parameter Analysis of Synchros Part III - "Effects of Loads on Synchro Accuracy" - NAVORD Report 2172.
4. Fried, B. D. - "Linear Lumped Parameter Analysis of Synchros Part IV - "Equivalent Circuits for Synchro Networks" - NAVORD Report 2318.

NAVORD Report 2346

DISTRIBUTION

Navord (Reha), Attn: N. B. Berman	3 copies
BuAer, Attn: Gordon Clark	2 copies
BuShips, Attn: J. T. Haropoulos, Code 565B	3 copies
C.G., Frankford Arsenal, Philadelphia, Pa., Fire Control Laboratory, Attn: A. Bruno	1 copy
M. Voss	1 copy
Commander, Materials Laboratory, New York Naval Shipyard, Brooklyn, N. Y., Attn: B. J. Baecher . . .	1 copy
L. Pallechia . . .	1 copy
Reeve Instrument Corporation, 215 East 91st Street, New York, N. Y.	1 copy
Atma Corporation, 254 - 36th St. Ext., Brooklyn, N. Y., Attn: Mr. Schumacker	1 copy
R. W. Mahland	1 copy
Sidney Davis	1 copy
Mr. Spector	1 copy
Bendix Aviation Corporation, Eclipse-Pioneer Division, Teterboro, N. J., Attn: P. F. Bechtburger	1 copy
H. Hymans	1 copy
Mr. Dimond	1 copy
Ketay Manufacturing Company, 555 Broadway, New York, N. Y., Attn: M. F. Ketay	1 copy
Prof. Nudd	1 copy
B. Levine	1 copy
S. Meyers	1 copy
R. Rothschild	1 copy
Ford Instrument Company, 31-10 Thomson Avenue, Long Island City, N. Y., Attn: G. McKenney	1 copy
G. Schroeder	1 copy
K. Dimetriou	1 copy
General Electric Company, Schenectady, N. Y., Attn: R. W. Votaw	1 copy
Gabriel Kron	1 copy
Harold Chestnut	1 copy
Control Instrument Company, 67 - 35th Street, Brooklyn, N. Y., Attn: E. Lohse	1 copy
M.I.T., Servo Laboratory, M.I.T., Cambridge, Mass., Attn: G. Brown	1 copy
D. Campbell	1 copy
Bell Laboratories, Whippny, N. Y., Attn: Mr. Lundstrum	1 copy
J. McLay	1 copy
C.O., Air Materiel Command, Wright Field, Dayton, Ohio, Attn: F. Banta, Code MCREFEL4	1 copy
Doelcam Corporation, 56 Elmwood Street, Newton, Mass., Attn: George J. Schwartz	1 copy

NAWORD Report 2314

Liberascope Incorporate, 1607 Flower Street, Glendale,
Calif., Attn: Mr. Brandon 1 copy
Raytheon Manufacturing Company, 148 California Street,
Newton, Mass., Attn: T. F. Mahoney 1 copy
R. W. Small 1 copy
Sperry Gyroscope Corporation, Great Neck, Long Island,
Attn: Arthur Hauser 1 copy
C. L. Kennedy (Standards Dept) 1 copy
Schwien Engineering Company, 5736 W. Washington Blvd.,
Los Angeles 16, Calif., Attn: Don Rammage 1 copy
Specialties Inc., Skunks Misery Road, Syosset, N. Y., . . . 1 copy
Yale University, School of Engineering, Dunham
Laboratory, 110 Hillhouse Avenue, New Haven Conn.,
Attn: John L. Bower 1 copy
Henschel Corporation, Amesbury, Mass., 1 copy
NRL, Attn: Bruce Stafford 3 copies
C.O., N.O.P., 21 Street & Arlington Avenue, Indianapolis
6, Indiana, Attn: J. L. Montgomery 3 copies
Lear, Inc., 110 Ionia Avenue, N. W., Grand Rapids, Mich.,
Attn: Mel Frontjes 1 copy
Kinetix Instrument Company, Inc., 902 Broadway, New York
10, N. Y., Attn: R. Harris 1 copy
Bendix Aviation Corporation, Montrose Division,
So. Montrose, Pa., Attn: Paul Horlacher 1 copy
Kearfott Company, Inc., 1150 McBride Avenue, Little Falls,
N. J., Attn: J. A. Bronson 1 copy
Electrolux Corporation, Forest Avenue, Old Greenwich,
Conn., Attn: A. E. Rudahl 2 copies
Laboratory for Electronics Inc., 43 Leon Street,
Boston 15, Mass., Attn: G. L. Hollander 1 copy
Robertshaw-Fulton Controls Company, 2907 Clark Avenue,
St. Louis 3, Mo., Attn: J. Devine 1 copy
Evans Signal Laboratory, Belmar, N. J.,
Attn: Martin S. Maurer 1 copy
Herman Mencher 1 copy
Electric Auto-Lite Company, Engineering Department,
Champlin Street, Toledo, Ohio, Attn: Clyde M. Hayes . . 1 copy
Magnavox Company, Fort Wayne, Ind., Attn: A. E. Schmid . . 1 copy
Lou-Bar, 938 Pico Boulevard, Santa Monica Calif.,
Attn: Joseph T. Webber 1 copy
Polytechnic Institute of Brooklyn, Microwave Research
Institute, 55 Johnson Street, Brooklyn 1, N. Y.,
Attn: Dr. E. Webber 1 copy
Ultrasonic Corporation, 61 Rogers Street, Cambridge 42,
Mass., Attn: Glenn H. Roundy, Asst. to President . . . 1 copy
Emhart Manufacturing Company, 333 Homestead Avenue,
Hartford 2, Conn., Attn: C. R. Hammond, Tech.
Analyst 1 copy

NAVORD Report 2346

Rife and Raines, 12 South 12th Street, Philadelphia,
Pa., Attn: A. Raines 1 copy
Herbert Galman 1 copy
Hdqs., Wright Air Development Center, Wright-Patterson
Air Force Base, Dayton, Ohio,
Attn: WCESO-2 1 copy
WCEEI-2 1 copy
WCEFD-Hector Silvestre 1 copy
Ahrendt Instrument Company, College Park, Md.,
Attn: William Ahrendt 1 copy
Rome Air Development Center, (RCRTG2A (Griffiss AFB),
Rome, N. Y., Attn: Haywood E. Webb 1 copy
Martin-Parry Corporation, Toledo, Ohio,
Attn: M. E. Smith 1 copy
Beckman Instruments, Inc., 820 Mission Street, South
Pasadena, Calif., Attn: P. B. Del Valle 1 copy
General Industries Company, Elyria, Ohio,
Attn: Jack Lord 1 copy
QE Laboratory, U. S. NAD, Crane, Indiana,
Attn: W. M. Kolb 1 copy
Illinois Institute of Technology, Department of
Electrical Engineering, Chicago, Illinois,
Attn: Prof. Eric T. B. Gross 1 copy
RCA Victor Division, Gov't. Radar Section, Camden, N. J.,
Attn: R. S. Putnam 1 copy
OCO, Pentagon, Washington, D. C.,
Attn: ORD TR (Lt. Col. W. H. Clifford) 1 copy
British Joint Service Mission (Navy Staff),
Attn: Cdr. F. Dosser, Staff Electrical Officer,
via BuOrd 1 copy
British Admiralty, Attn: J. Doig, Member of Staff of
Admiralty Gunnery, via BuOrd, ONI 1 copy
British Admiralty, Dept. of Director of Electrical
Engineering, Attn: W. H. Allen 1 copy
F. E. Marks 1 copy
via Buord
British Air Ministry, Attn: G. B. Thomas, via Wing
Commander Palmer, via BuOrd, ONI 1 copy