Augmented Solow Model - Quantitative Similation

Tomas Oles

2025-03-02

```
# Load necessary libraries
library(ggplot2)

## Warning: package 'ggplot2' was built under R version 4.2.3
library(gridExtra)
```

Parametrize the Solow model per Effective Unit of Labor

```
# Parameters
alpha <- 0.33
s1 <- 0.2
s2 <- 0.3
A <- 1
delta <- 0.1
z < -0.02
n < -0.01
# Steady state capital per effective unit of labor
k_star \leftarrow (s1 * A / ((1 + z) * (1 + n) - (1 - delta))) ** (1 / (1 - alpha))
# Time periods
T <- 50
k_hat <- numeric(T)</pre>
k_hat[1] <- k_star</pre>
# Arrays to store the results
y_hat <- numeric(T)</pre>
c_hat <- numeric(T)</pre>
i_hat <- numeric(T)</pre>
R_t <- numeric(T)</pre>
w_t <- numeric(T)</pre>
```

Initial values for t=0

```
y_hat[1] <- A * k_hat[1] ** alpha
c_hat[1] <- (1 - s1) * A * k_hat[1] ** alpha
i_hat[1] <- s1 * A * k_hat[1] ** alpha
R_t[1] <- alpha * A * k_hat[1] ** (alpha - 1)
w_t[1] <- (1 - alpha) * A * k_hat[1] ** alpha</pre>
```

Iteratively calculate the values for each period

```
for (t in 2:T) {
   if (t < 9) {
      s <- s1
   } else {
      s <- s2
   }

   k_hat[t] <- (1 / ((1 + z) * (1 + n))) * (s * A * k_hat[t - 1] ** alpha + (1 - delta) * k_hat[t - 1])
   y_hat[t] <- A * k_hat[t] ** alpha
   c_hat[t] <- (1 - s) * A * k_hat[t] ** alpha
   i_hat[t] <- s * A * k_hat[t] ** alpha
   i_hat[t] <- s * A * k_hat[t] ** (alpha - 1)
   w_t[t] <- (1 - alpha) * A * k_hat[t] ** alpha
}</pre>
```

Plot the results

```
time <- 1:T
p1 <- ggplot(data.frame(time, k_hat), aes(x = time, y = k_hat)) +
  geom line() +
  geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
  labs(title = "Capital per effective unit of labor", x = "Time", y = expression(widehat(k)[t])) +
  theme_minimal()
p2 <- ggplot(data.frame(time, y_hat), aes(x = time, y = y_hat)) +
  geom_line() +
  geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
  labs(title = "Output per effective unit of labor", x = "Time", y = expression(widehat(y)[t])) +
  theme minimal()
p3 <- ggplot(data.frame(time, c_hat), aes(x = time, y = c_hat)) +
  geom_line() +
  geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
  labs(title = "Consumption per effective unit of labor", x = "Time", y = expression(widehat(c)[t])) +
  theme minimal()
p4 <- ggplot(data.frame(time, i_hat), aes(x = time, y = i_hat)) +
  geom_line() +
  geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
  labs(title = "Investment per effective unit of labor", x = "Time", y = expression(widehat(i)[t])) +
  theme minimal()
p5 <- ggplot(data.frame(time, R_t), aes(x = time, y = R_t)) +
  geom_line() +
  geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
  labs(title = "Rental rate of capital", x = "Time", y = expression(R[t])) +
  theme minimal()
p6 <- ggplot(data.frame(time, w_t), aes(x = time, y = w_t)) +
  geom_line() +
```

```
geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
  labs(title = "Wage per effective unit of labor", x = "Time", y = expression(w[t])) +
  theme_minimal()
# Arrange plots in a grid
grid.arrange(p1, p2, p3, p4, p5, p6, ncol = 2)
```

Capital per effective unit of labor

Output per effective unit of labor

Consumption per effective unit of labor Investment per effective unit of la

Rental rate of capital

Wage per effective unit of labor

Parametrize the Solow Model per Worker

```
rm(list = ls())
# Parameters
alpha <- 0.33
s1 <- 0.2
s2 <- 0.3
A <- 1
delta <- 0.1
z < -0.02
n <- 0.01
# Steady state capital per effective unit of labor
k \text{ star} \leftarrow (s1 * A / ((1 + z) * (1 + n) - (1 - delta))) ** (1 / (1 - alpha))
# Time periods
T <- 50
k hat <- numeric(T)</pre>
```

```
k_hat[1] <- k_star</pre>
# Arrays to store the results
y_hat <- numeric(T)</pre>
c_hat <- numeric(T)</pre>
i_hat <- numeric(T)</pre>
R_t <- numeric(T)</pre>
w_t <- numeric(T)</pre>
# Arrays to store per worker variables
k <- numeric(T)</pre>
y <- numeric(T)
c <- numeric(T)</pre>
i <- numeric(T)</pre>
Z_t <- 1 # Initial level of technology</pre>
# Calculate per worker variables for t=0
k[1] \leftarrow k_{hat}[1] * Z_t
y[1] <- y_hat[1] * Z_t
c[1] <- c_hat[1] * Z_t
i[1] <- i_hat[1] * Z_t
# Iteratively calculate the values for each period
for (t in 2:T) {
  if (t < 9) {
    s <- s1
  } else {
    s <- s2
  k_{t} = (1 / ((1 + z) * (1 + n))) * (s * A * k_{t} = 1] ** alpha + (1 - delta) * k_{t} = 1]
  y_hat[t] <- A * k_hat[t] ** alpha</pre>
  c_{hat[t]} \leftarrow (1 - s) * A * k_{hat[t]} ** alpha
  i_hat[t] <- s * A * k_hat[t] ** alpha</pre>
  R_t[t] \leftarrow alpha * A * k_hat[t] ** (alpha - 1)
  w_t[t] \leftarrow (1 - alpha) * A * k_hat[t] ** alpha
  Z_t \leftarrow Z_t * (1 + z) # Update the level of technology
  # Calculate per worker variables
  k[t] \leftarrow log(k_hat[t] * Z_t)
  y[t] \leftarrow log(y_hat[t] * Z_t)
  c[t] \leftarrow log(c_hat[t] * Z_t)
  i[t] <- log(i_hat[t] * Z_t)</pre>
}
# Replace first observation in each array with NA
k[1] \leftarrow NA
y[1] \leftarrow NA
c[1] \leftarrow NA
i[1] <- NA
```

Plot the dynamic paths per worker variables

```
time <- 1:T
p1 <- ggplot(data.frame(time, k), aes(x = time, y = k)) +
  geom_line() +
  geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
  labs(title = "Log Capital per worker", x = "Time", y = expression(k[t])) +
  theme_minimal()
p2 <- ggplot(data.frame(time, y), aes(x = time, y = y)) +
  geom_line() +
  geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
  labs(title = "Log Output per worker", x = "Time", y = expression(y[t])) +
  theme minimal()
p3 <- ggplot(data.frame(time, c), aes(x = time, y = c)) +
  geom_line() +
  geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
  labs(title = "Log Consumption per worker", x = "Time", y = expression(c[t])) +
 theme_minimal()
p4 \leftarrow ggplot(data.frame(time, i), aes(x = time, y = i)) +
  geom_line() +
  geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
  labs(title = "Log Investment per worker", x = "Time", y = expression(i[t])) +
  theme_minimal()
# Arrange plots in a grid
grid.arrange(p1, p2, p3, p4, ncol = 2)
```


Compute and plot the growth rate per worker output

```
# Array to store the growth rate of per worker output
y_growth <- numeric(T)

# Calculate growth rate of per worker output
for (t in 2:T) {
    y_growth[t] <- (y[t] - y[t-1]) * 100
}

y_growth[1] <- NA

# Plot the growth rate of per worker output
time <- 1:T

ggplot(data.frame(time, y_growth), aes(x = time, y = y_growth)) +
    geom_line() +
    geom_vline(xintercept = 9, color = "red", linetype = "dashed") +
    labs(title = "Growth Rate of Output per Worker", x = "Time", y = "Growth Rate (%)") +
    ylim(1,5)+
    theme_minimal()</pre>
```

Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_line()`).

