Semestrální projekt LAR

Matěj Pinkas, Martin Erben, Filip Hudec27.3.2024

Obsah

1	Úvod	2
2	Rozbor problému2.1Návrh řešení2.2Očekávaná funkčnost	2 2 3
3	Řešení problému3.1 Matematický model3.2 Algoritmizace	3 3
4	Implementace 4.1 Hardware & programovací jazyk 4.1.1 Platforma TurtleBot 4.1.2 Python 4.2 Detaily implementace	$\frac{3}{4}$
5	Závěr	4
6	Literatura	4

1 Úvod

Tento projekt slouží jako výstup z předmětu LAR. Cílem je projet stanovenou dráhu s robotem v časovém limitu, kde se bude pohybovat zcela autonomně podle barevných směrovek. Pro splnění tohoto úkolu používáme platformu TurtleBot. Jedná se ve stručnosti o hnaný dvoukolový podvozek, který je doplněn o nástavbu s osazenými senzory (více v sekci 4.1.1). Směrovky jsou tvořeny dvojicí barevných sloupků.

Na výběr jsme dostali ze tří zadání podle úrovně obtížnosti. Náš tým si vybral 2. možnost - průjezd tratě bez překážek s tím, že přidáme zastavení u poslední dvojice zelených sloupků.

2 Rozbor problému

Robot je nejdříve umístěn na startovní pozici, ve výseči první směrovky $\pm 45^{\circ}$, která má vrchol ve středu směrovky. Vzdálenost start – první ukazatel leží v intervalu (a;b) = (500;3000) mm. Robot může být libovolně natočen, takže si musí první směrovku najít s tím, že volí tu nejblíže k němu.

Poté, co spustíme na robotovi program a cvičící stiskne tlačítko pro zahájení pohybu, již nemůžeme robota externě ovládat a musí se rozhodovat autonomně.

Pro případ, že by došlo k chybě (tj. nárazu do jakékoliv překážky) je robot vybaven nárazníkem, který pošle callback řídícímu programu a ten je okamžitě ukončen.

Naše použité směrovky jsou tvořeny modrým a červeným sloupkem. Jejich rozestup je specifikován na 50 ± 5 mm.

Při navigaci od aktuální k následující směrovce musí spojnice středů těchto směrovek s osou následující směrovky vždy svírat úhel $\delta \leq 45^\circ$. Následující směrovka leží vždy vpravo nebo vlevo od aktuální a to ve výseči $\rho = 90^\circ$, která začíná od úhlu $\beta = 45^\circ$ měřeno od osy aktuální směrovky (viz Obr. 1).

Časový limit na kompletní průjezd je v této úloze stanoven na 5 min.

Obr. 1: Parametry vyznačené tratě

2.1 Návrh řešení

Při spuštění programu si robot inicializuje RGB a 3D hloubkovou kameru. Na obrazovce počítače, ze kterého spouštíme řídicí program zobrazujeme 4 okna (viz Obr. 2): obraz z hloubkové kamery; obraz z RGB kamery; obraz z RGB kamery; obraz z RGB kamery s vymaskovanými směrovkami a našemi navigačními body; mapa zobrazující výseč prostoru, kterou robot snímá (top-down view).

Robot si uloží 2 nebližší směrovky, které vidí, podle dat z RGB a hloubkové kamery. Vybere z nich tu bližší a spočítá si 3 virtuální body (M, T, P), podle kterých se bude navigovat k nejbližší směrovce.

Bod M leží v polovině spojnice středů dvou sloupků. Bod T (target) leží na kolmici ke spojnici středů sloupků (kde bod M je průsečík těchto přímek) ve vzdálenosti 50 ± 5 mm od sloupků a je to bod na který se snažíme dostat tak, aby ještě robot neshodil sloupky. Bod P potom leží na stejné kolmici jako T a M, ale leží ve vzdálenosti 100 mm od sloupků.

Robot si uloží z odometrie počáteční bod (resetuje odometrii) a orientuje se nejdříve na bod P, ke kterému se kolmo natočí ze své pozice a potom se k němu pohybuje již po přímce. Zde se natočí kolmo ke sloupkům a pomocí drobných translačních a rotačních pohybů se snaží dostat na požadovaný bod T. Robot se otočí podle směrovek o 90°a celý proces iteruje dokud se nedostane k zelené směrovce.

Obr. 2: Obraz z pohledu robota

2.2 Očekávaná funkčnost

Robot by neměl mít problém se změnou osvětlení prostředí, protože při výpočtu masek pro RGB obraz naše funkce drawMasks upravuje výchozí přednastavený rozsah barev dynamicky podle dat získaných z RGB kamery. Největším problémem kterému jsme čelili, je relativně velká nepřesnost odometrických dat, získaných z motorů robota, což nás při řízení pohybu nutilo k použití experimentálně zjišťovaných konstant, které přesně neodpovídali našim teoretickým očekávaným výsledkům. Podobně bylo třeba upravovat i data získaná z hloubkové kamery, aby jsme docílili požadovaného chování.

3 Řešení problému

3.1 Matematický model

3.2 Algoritmizace

4 Implementace

4.1 Hardware & programovací jazyk

4.1.1 Platforma TurtleBot

Jak už jsme zmínili, používáme open-source platformu TurtleBot 2.0 s podvozkem od firmy Kobuki. Podvozek je vybaven dvěma hnanými koly, z nichž odečítá odometrická data (natočení kol). Dále má na čelní straně blatník, který se dá zmáčknout ve třech segmentech (Right, Left, Center) a v případě srážky s překážkou pošle callback, kterým můžeme zastavit chod řídicího programu.

V nástavbě se schovává počítač Intel NUC, na kterém běží operační systém Linux, a v němž spouštíme náš řídicí program prostřednictvím virtualizace Singularity. Dále zde najdeme senzor Intel RealSense D435/D435i, který obsahuje RGB kameru s rozlišením 640x480 px a 3D hloubkovou kameru se stejným rozlišením.

4.1.2 Python

Celý řídicí program je implementovaný v programovacím jazyce Python. Jedná se o interpretovaný jazyk, což požaduje instalaci interpreteru v místě, kde chceme spouštět program. S robotem komunikujeme voláním jeho třídy TurtleBot, která je implementována v dodaném balíčku $robolab_turtlebot$. Pro zpracování obrazu používáme knihovnu cv2 a pro matematické operace knihovnu NumPy.

- 4.2 Detaily implementace
- 5 Závěr
- 6 Literatura