0.1 其他

定理 0.1 (Gauss-Lucas 定理)

设 $f \in \mathbb{C}[x]$ 且 deg $f \ge 1$, 证明 f' 所有零点位于 f 的零点的凸包内.

 \sim

Ŷ 笔记

证明 设 $f(z) = c \prod_{i=1}^{m} (z - z_i)^{m_i}, m_i \in \mathbb{N}, i = 1, 2, \cdots, m, c \in \mathbb{C} \setminus \{0\}, 则$

$$\frac{f'(z)}{f(z)} = \sum_{i=1}^{m} \frac{m_i}{z - z_i}.$$

设 $f'(z_0) = 0, f(z_0) \neq 0$, 则

$$0 = \sum_{i=1}^{m} \frac{m_i}{z_0 - z_i} = \sum_{i=1}^{m} \frac{m_i(\overline{z_0} - \overline{z_i})}{|z_0 - z_i|^2} \implies \sum_{i=1}^{m} \frac{m_i z_0}{|z_0 - z_i|^2} = \sum_{i=1}^{m} \frac{m_i z_i}{|z_0 - z_i|^2},$$

即

$$z_0 = \sum_{i=1}^m \lambda_i z_i, \lambda_i = \frac{m_i}{|z_0 - z_i|^2 \sum_{j=1}^m \frac{m_j}{|z_0 - z_j|^2}} \in [0, 1], j = 1, 2, \dots, m.$$

当 $f'(z_0) = 0 = f(z_0)$, 此时当然定理更成立. 我们完成了证明.

例题 0.1 如果 $f \in \mathbb{R}[x]$ 是非负的, 证明: 存在 $\varphi, \psi \in \mathbb{R}[x]$ 使得

$$f = \varphi^2 + \psi^2.$$

证明 当 f 为常数多项式则显然,下面假设 $\deg f \ge 1$.

设

$$f(x) = a_0(x - \alpha_1)^{k_1}(x - \alpha_2)^{k_2} \cdots (x - \alpha_r)^{k_r} g(x),$$

这里 $a_0 > 0$ 且 k_i , $i = 1, 2, \dots, r$ 都是正偶数且 g 没有实根.

设

$$g(x) = (x - \beta_1)(x - \overline{\beta_1})(x - \beta_2)(x - \overline{\beta_2}) \cdots (x - \beta_s)(x - \overline{\beta_s}),$$

我们有

$$(x - \beta_1)(x - \beta_2) \cdots (x - \beta_s) = \mu(x) + i\nu(x), \mu, \nu \in \mathbb{R}[x].$$

注意到

$$(x - \overline{\beta_1})(x - \overline{\beta_2}) \cdots (x - \overline{\beta_s}) = \mu(x) - i\nu(x),$$

于是

$$g(x) = \mu^2(x) + v^2(x).$$

考虑

$$\varphi(x) \triangleq \sqrt{a_0} \prod_{i=1}^r (x - \alpha_i)^{\frac{k_i}{2}} \mu(x), \psi(x) \triangleq \sqrt{a_0} \prod_{i=1}^r (x - \alpha_i)^{\frac{k_i}{2}} \nu(x),$$

就有

$$f = \varphi^2 + \psi^2.$$

例题 0.2 设 f 是 C 上无重根的非常数多项式且满足

$$f(f(x)) = f^{n}(x) + a_{n-1}f^{n-1}(x) + \dots + a_{1}f(x) + a_{0},$$

这里 $a_0, a_1, \dots, a_{n-1} \in \mathbb{Z}$. 证明 $f \in \mathbb{Z}[x]$ 且若 a_0, a_1, \dots, a_{n-1} 为奇数, 则 f 无偶整数根.

证明 因为 f 值域包含无穷多个点,并且由条件知

$$f(x), x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0,$$

在无穷多个点上相等, 所以

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in \mathbb{Z}[x].$$

若 $a_0, a_1, \cdots, a_{n-1}$ 为奇数, 由有理根的性质, 我们知道 f 的整数根 q 必须满足 $q|a_0$, 从而 q 为奇数, 这就完成了证明.

命题 0.1

设 $f,g \in \mathbb{C}[x]$ 是次数大于等于 1 的互素多项式, 证明必然存在唯一的 $u,v \in \mathbb{C}[x]$ 使得

$$f(x)u(x) + g(x)v(x) = 1,$$

 $\mathbb{L} \deg u < \deg g, \deg v < \deg f.$

证明 存在性: 因为 (f,g) = 1, 故必然存在 $k,h \in \mathbb{C}[x]$ 使得 fh+gk=1. 若 $\deg h > \deg g$, 则做带余除法 $h = gq + u, \deg u < \deg g$.

于是

$$f(gq+u)+gk=1 \implies fu+g(fq+k)=1.$$

令 v = fq + k, 则由 fu + g(fq + k) = 1 和比较两边次数知 $\deg v < \deg f$. 现在我们证明了存在性. 唯一性: 若还有 $u_1, v_1 \in \mathbb{C}[x]$ 满足条件, 则

$$f(u - u_1) = g(v_1 - v).$$

又 f, g 互素, 故 $g|(u-u_1), f|(v_1-v)$, 又 $\deg(u-u_1) < \deg g$, $\deg(v-v_1) < \deg f$, 故 $u = u_1, v = v_1$. 这就证明了唯一性.

例题 0.3 设 \mathbb{F} 是一个数域, $f,g \in \mathbb{F}[x]$, $\deg g \geq 1$, 证明: 存在唯一的 $(f_0,f_1,\cdots,f_r,0,0,\cdots) \in (\mathbb{C}[x])^{\infty}$, 使得

$$\deg f_i < \deg g$$
或者 $f_i = 0, 0 \le i \le r$

且

$$f(x) = f_0(x) + f_1(x)g(x) + f_2(x)g^2(x) + \dots + f_r(x)g^r(x).$$

 \succeq ($\mathbb{C}[x]$)^{∞} 表示 $\mathbb{C}[x]$ 的可数笛卡尔积. 为书写方便, 我们可以记 $f_i = 0, i \geq r + 1$.

证明 为方便, 对 $p \in \mathbb{C}[x]$, 我们约定 $\deg p = -\infty \Leftrightarrow p = 0$.

存在性: 由带余除法, 存在 $r \in \mathbb{N}_0$ 使得 $\deg q_r < \deg g$ (否则, g 就能做无穷次带余除法, 但 g 的次数有限) 且

$$f = q_1g + f_0$$
, deg $f_0 < \deg g$, $q_1 = q_2g + f_1$, deg $f_1 < \deg g$
 $q_2 = q_3g + f_2$, deg $f_2 < \deg g$, $q_3 = q_4g + f_3$, deg $f_3 < \deg g$

:

$$q_{r-1} = q_r g + f_{r-1}, \deg f_{r-1} < \deg g,$$

取 $f_r = q_r$, 我们得

$$f = f_0 + (q_2g + f_1)g = f_0 + f_1g + (q_3g + f_2)g^2 = \cdots$$

$$= f_0 + f_1g + \cdots + f_{r-1}g^{r-1} + q_rg^r = f_0 + f_1g + \cdots + f_rg^r.$$

唯一性: 若有两种不同的表示

$$f = \sum_{i=0}^{\infty} f_i g^i = \sum_{i=0}^{\infty} h_i g^i, \deg h_i, \deg f_i < \deg g, i \in \mathbb{N}_0,$$

我们有

$$\sum_{i=0}^{\infty} (f_i - h_i)g^i = 0.$$

设上式使得 $f_i - h_i \neq 0$ 的最大的 $i \rightarrow k$, 则 $\deg[(f_k - h_k)g^k] \geq k \deg g$ 以及

$$deg[(f_i - h_i)g^i] = deg(f_i - h_i) + i deg g < k deg g, 0 \le i \le k,$$

故 $\sum_{i=0}^{\infty} (f_i - h_i)g^i$ 不可能是 0 多项式 (最高次项消不掉), 矛盾! 这就证明了唯一性.

例题 0.4 设 $p,q \in \mathbb{R}[x]$ 满足

$$p(x^2 + x + 1) = q(x^2 - x + 1),$$

证明 p = q 为常数.

🕏 笔记 利用等式关系反复迭代来得到无穷个根.

证明 事实上

$$(2x+1)p'(x^2+x+1) = (2x-1)q'(x^2-x+1), \forall x \in \mathbb{R},$$

那么 $p'\left(\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 1\right) = 0$, 因此由 (对称轴是 $x = -\frac{1}{2}$)Vieta 定理知

$$\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 1 = \left(-\frac{3}{2}\right)^2 - \frac{3}{2} + 1.$$

从而 $p'\left(\left(-\frac{3}{2}\right)^2 - \frac{3}{2} + 1\right) = 0$, 类似的从而 $q'\left(\left(-\frac{3}{2}\right)^2 + \frac{3}{2} + 1\right) = 0$, (对称轴是 $x = \frac{1}{2}$) 从而 $q'\left(\left(\frac{5}{2}\right)^2 - \frac{5}{2} + 1\right) = 0$ 0, 从而 $p'\left(\left(\frac{5}{2}\right)^2 + \frac{5}{2} + 1\right) = 0$, 依次下去我们得到 p', q' 有无穷多个根, 因此都为 0, 这样结合 p(1) = q(1) 我们就

例题 0.5 计算全部 $f \in \mathbb{C}[x]$ 使得

$$f(x^2) = f(x)f(x+1), \forall x \in \mathbb{C}.$$
 (1)

证明 当 $f = c \in \mathbb{C}$, 我们有 $c = c^2$, 故 f = 0 或者 f = 1 为所求.

当 f 不为常数,设 $f(x_1) = 0, x_1 \in \mathbb{C}$,我们由(1)知

$$f(x_1^2) = 0.$$

反复运用 (1) 得 $x_1^{2^n}, n \in \mathbb{N}_0$ 都是 f 零点. 又非 0 多项式零点有限, 故设 $x_1^{2^n} = x_1^{2^m}, n > m \geq 0$, 则 $x_1^{2^{n}-2^m} = 1$ 或 $x_1 = 0$. 当前者发生, 我们有 $|x_1| = 1$. 从而 f 的所有根都在单位圆周上或者是 0.

设 $f(x_1) = 0, x_1 \in \mathbb{C}$, 由 (1) 知

$$f((x-1)^2) = f(x-1)f(x).$$

故 $f((x_1-1)^2)=0$. 同理可得 $|x_1-1|=1$ 或 $x_1-1=0$. 因此由 $|x_1|=1, |x_1-1|=1, x_1=0$ 或1 可知 f 只可能有 $x_1 = 0, 1, e^{\pm \frac{\pi}{3}i}$ 这四个零点. 但是若 $x_1 = e^{\pm \frac{\pi}{3}i}$ 是 f 的零点,则由(1)知 $x_1^2 = e^{\pm \frac{2\pi}{3}i}$ 也是 f 的零点,矛盾! 从而 f 的零

点只有 0 或者 1. 设 $f(x) = cx^n(x-1)^m$ 代入原方程得

$$f(x^2) = cx^{2n}(x^2 - 1)^m = cx^{2n}(x - 1)^m(x + 1)^m$$
$$= f(x)f(x + 1) = c^2x^{n+m}(x - 1)^m(x + 1)^n$$
$$\implies f(x) = x^n(x - 1)^n, n \in \mathbb{N}.$$

这就完成了证明.

例题 0.6 设 $p \in \mathbb{Z}[x]$ 使得 p 在 7 个不同整数点取值为 7, 证明 p 没有整数根. 证明 由条件可设

$$p(x) - 7 = (x - x_1)(x - x_2) \cdots (x - x_7) q(x)$$
,

其中 x_1, x_2, \dots, x_7 为互不相同的整数 $q \in \mathbb{Z}[x]$. 假设a 为 p(x)的整数根,则

$$-7 = (a - x_1)(a - x_2) \cdots (a - x_7) q(a)$$
,

其中 $a-x_i$ 为互不相同的整数. 故 $(a-x_1)$, $(a-x_2)$, \cdots , $(a-x_7)$ 是-7的7个不同因子. 这与-7只有因子1, -1, 7、之四个不同因子矛盾!