GROUND WATER DEVELOPMENT

Course Learning Objectives:

The course is designed to

- appreciate groundwater as an important natural resource.
- understand flow towards wells in confined and unconfined aquifers.
- understand the principles involved in design and construction of wells.
- create awareness on improving the groundwater potential using various recharge techniques.
- know the importance of saline water intrusion in coastal aquifers and its control measures.
- appreciate various geophysical approaches for groundwater exploration.
- learn groundwater management using advanced tools.

Course Outcomes

At the end of the course the student will be able to

- estimate aquifer parameters and yield of wells
- analyse radial flow towards wells in confined and unconfined aquifers.
- design wells and understand the construction practices.
- interpret geophysical exploration data for scientific source finding of aquifers.
- determine the process of artificial recharge for increasing groundwater potential.
- take effective measures for controlling saline water intrusion.
- apply appropriate measures for groundwater management.

SYLLABUS:

UNIT – I Introduction Groundwater in the hydrologic cycle, groundwater occurrence, aquifer parameters and their determination, general groundwater flow equation.

Well Hydraulics Steady radial flow and unsteady radial flow to a well in confined and unconfined aquifers, Theis solution, Jocob and Chow's methods, Leaky aquifers.

UNIT – II Well Design Water well design-well diameter, well depth, well screen-screen length, slot size, screen diameter and screen selection, design of collector wells, infiltration gallery

UNIT III Well Construction and Development Water wells, drilling methods-rotary drilling, percussion drilling, well construction-installation of well screens-pull-back method, open-hole, bail- down and wash-down methods, well development-mechanical surging using

compressed air, high velocity jetting of water, over pumping and back washing, well completion, well disinfection, well maintenance.

UNIT IV Artificial Recharge Concept of artificial recharge of groundwater, recharge methods-basin, stream-channel, ditch and furrow, flooding and recharge well methods, recharge mounds and induced recharge

Saline Water Intrusion Occurrence of saline water intrusion, Ghyben- Herzberg relation, Shape of interface, control of saline water intrusion.

UNIT – V Geophysics Surface methods of exploration of groundwater – Electrical resistivity and Seismic refraction methods, Sub-surface methods – Geophysical logging and resistivity logging. Aerial Photogrammetry applications

UNIT – VI Groundwater Modelling and Management Basic principles of groundwater modelling- Analog models-viscous fluid models and membrane models, digital models-Finite difference and finite element models, Concepts of groundwater management, basin management by conjunctive use-case studies.

Text Books:

- 1. Groundwater, Raghunath H M, New Age International Publishers, 2005.
- 2. Groundwater Hydrology, Todd D. K., Wiley India Pvt Ltd., 2014.
- 3. Groundwater Hydrology, Todd D K and L W Mays, CBS Publications, 2005.

References:

- 1. Groundwater Assessment and Management, Karanth K R, Tata McGraw Hill Publishing Co., 1987.
- 2. Groundwater Hydrology, Bouwer H, McGraw Hill Book Company, 1978.
- 3. Groundwater Systems Planning and Management, Willis R and W.W.G. Yeh, Prentice Hall Inc., 1986.
- 4. Groundwater Resources Evaluation, Walton W C, McGraw Hill Book Company, 1978.