Разностные схемы для уравнений эллиптического типа. Итерационные методы решений сеточных уравнений. Вариант 12.

Содержание

Условие
Начальные данные
Метод итерации с оптимальным параметром
Метод Зейделя
Итерационный метод с чебышевским набором параметров
Попеременно-треугольный итерационный метод с чебышевским набором параметров
Метод переменных направлений

Условие

Найти решение задачи

```
\begin{split} Lu &= -f(x,y) \\ Lu &= \frac{\partial}{\partial x} \left( (1 + \frac{x}{2}) \frac{\partial u}{\partial x} \right) + \frac{\partial^2 u}{\partial y^2}, \ 0 < x < 1, 0 < y < 1 \\ u(x,y)|_{\Gamma} &= \mu(x,y) \end{split}
```

следующими методами:

- 1. Методом итерации с оптимальным параметром;
- 2. Методом Зейделя;
- 3. Итерационным методом с чебышевским набором параметров;
- 4. Попеременно-треугольным итерационным методом с чебышевским набором параметров.
- 5. Методом переменных направлений.

Отладить решение на функции $u^*(x,y) = xy^2(1+y)$

Начальные данные

```
addpath("methods\","norms\","utils\")
global f;
global mu_bot;
global mu_top;
global mu_left;
global mu_right;
global lx;
global ly;
global eps;
global eps;
global p;
global p;
global pk;
global c1;
```

```
global c2;
global d12;
global U_exact;
global k_max;
syms x;
syms y;
1x = 1;
ly = 1;
eps = 0.001;
q = 1;
p = 1 + x/2;
pk = 1;
c1 = 1;
c2 = 1.5;
d12 = 1;
U_{exact} = x*y^2*(1+y);
[f, mu_bot, mu_top, mu_left, mu_right] = initConditions(U_exact);
N = 10;
M = 10;
k_max = 50;
par = 3;
```

Метод итерации с оптимальным параметром

```
u_opt = OptimalSimpleIteration(N, M);

Метод простой итерации с оптимальным параметром:
```

1. Мера аппроксимации точного решения ||F-Au*||: norm1 = 3.8475
2. Мера аппроксимации нулевого приближения ||F-Au0||: norm2 = 395.7255
3. Оценка количества итераций norm3 = 173
4. Спектральный радиус матрицы перехода: ro = 0.9607

k	F-AU^(k)	rel.d.	U^(k)-u*	rel.error	U^(k)-U^(k-1)	apostest	p_k
1	152.8033	0.3861	0.9395	0.6783	0.7953	19.4180	0.3861
2	73.6572	0.1861	0.7950	0.5740	0.3071	7.4980	0.4820
3	54.5816	0.1379	0.7039	0.5082	0.1480	3.6143	0.7410
4	43.1206	0.1090	0.6162	0.4449	0.1097	2.6783	0.7900
5	31.9191	0.0807	0.5492	0.3965	0.0867	2.1159	0.7402
6	26.2600	0.0664	0.4850	0.3502	0.0642	1.5663	0.8227
7	22.2599	0.0563	0.4473	0.3230	0.0528	1.2886	0.8477
8	17.3516	0.0438	0.4206	0.3036	0.0447	1.0923	0.7795
9	15.8167	0.0400	0.3964	0.2862	0.0349	0.8514	0.9115
10	12.7273	0.0322	0.3726	0.2690	0.0318	0.7761	0.8047
11	11.5450	0.0292	0.3515	0.2538	0.0256	0.6245	0.9071
12	9.7690	0.0247	0.3314	0.2392	0.0232	0.5665	0.8462
13	8.6441	0.0218	0.3136	0.2264	0.0196	0.4794	0.8849
14	7.7611	0.0196	0.2969	0.2143	0.0174	0.4242	0.8978
15	6.9036	0.0174	0.2820	0.2036	0.0156	0.3808	0.8895
16	6.2287	0.0157	0.2685	0.1939	0.0139	0.3388	0.9022
17	5.7341	0.0145	0.2576	0.1860	0.0125	0.3056	0.9206
18	5.1615	0.0130	0.2476	0.1787	0.0115	0.2814	0.9001
19	4.7868	0.0121	0.2382	0.1720	0.0104	0.2533	0.9274
20	4.3371	0.0110	0.2295	0.1657	0.0096	0.2349	0.9061
21	4 0203	0.0102	0.2214	0.1599	0.0087	0.2128	ก จวธจ

6. Приближенное решение на крупной сетке:

```
ans = 6 \times 6
                  0
                                                 0
        0
                            0
            -0.0183
                               -0.0100
                                                      0.0480
        0
                     -0.0218
                                            0.0148
        0
           -0.0128
                     0.0067
                                  0.0557
                                            0.1300
                                                      0.2240
        0
             0.0329
                        0.1155
                                  0.2359
                                            0.3896
                                                      0.5760
        0
             0.1497
                        0.3535
                                  0.5879
                                            0.8502
                                                      1.1520
        0
              0.4000
                        0.8000
                                  1.2000
                                            1.6000
                                                      2.0000
7. Таблица точного решения на крупной сетке:
ans = 6 \times 6
             0.0096
                        0.0192
                                  0.0288
                                            0.0384
                                                      0.0480
        0
        0
             0.0448
                        0.0896
                                  0.1344
                                            0.1792
                                                      0.2240
        0
             0.1152
                        0.2304
                                  0.3456
                                            0.4608
                                                      0.5760
         0
              0.2304
                        0.4608
                                  0.6912
                                            0.9216
                                                      1.1520
         0
              0.4000
                        0.8000
                                  1.2000
                                            1.6000
                                                      2.0000
```

Метод Зейделя

u_zeid = ZeidelMethod(N, M);

```
    Мера аппроксимации точного решения ||F-Au*||:
norm1 = 3.8475
    Мера аппроксимации нулевого приближения ||F-Au0||:
```

norm2 = 395.7255 3. Оценка количества итераций

norm3 = 87

4. Спектральный радиус матрицы перехода:

ro = 0.9229

k	F-AU^(k)	rel.d.	U^(k)-u*	rel.error	U^(k)-U^(k-1)	apostest	p_k
1	142.7204	0.3607	0.9548	0.6893	1.0015	11.9809	0.3964
2	81.7433	0.2066	0.7581	0.5473	0.3970	4.7490	0.5801
3	48.6065	0.1228	0.6230	0.4498	0.2303	2.7547	0.6111
4	28.7479	0.0726	0.5239	0.3782	0.1407	1.6833	0.6988
5	20.6745	0.0522	0.4679	0.3378	0.0983	1.1763	0.6949
6	15.4451	0.0390	0.4140	0.2989	0.0683	0.8174	0.7781
7	12.0467	0.0304	0.3648	0.2634	0.0532	0.6360	0.7840
8	9.3585	0.0236	0.3265	0.2357	0.0417	0.4986	0.8283
9	7.3345	0.0185	0.2972	0.2145	0.0345	0.4130	0.8242
10	6.0247	0.0152	0.2721	0.1964	0.0285	0.3404	0.8262
11	5.0221	0.0127	0.2529	0.1826	0.0235	0.2812	0.8307
12	4.3035	0.0109	0.2355	0.1700	0.0195	0.2336	0.8363
13	3.7107	0.0094	0.2198	0.1587	0.0163	0.1954	0.8657
14	3.2032	0.0081	0.2058	0.1486	0.0141	0.1691	0.8766
15	2.7722	0.0070	0.1934	0.1397	0.0124	0.1483	0.8865
16	2.4070	0.0061	0.1824	0.1317	0.0110	0.1314	0.8865
17	2.0973	0.0053	0.1727	0.1247	0.0097	0.1165	0.8872
18	1.8479	0.0047	0.1641	0.1185	0.0086	0.1034	0.8883
19	1.6498	0.0042	0.1564	0.1129	0.0077	0.0918	0.8896
20	1.4744	0.0037	0.1496	0.1080	0.0068	0.0817	0.8910
21	1 3232	0.0033	0.1435	0.1036	0.0061	0.0728	0.8923

```
6. Приближенное решение на крупной сетке: ans = 6 \times 6
```

```
0
                                     0
                                          0.0480
      0 -0.0153 -0.0165 -0.0043 0.0186
      0 -0.0064 0.0176 0.0671
                                  0.1373
                                          0.2240
                                  0.3982
      0
         0.0410 0.1290
                          0.2497
                                          0.5760
      0
         0.1556 0.3632
                          0.5977
                                  0.8563
                                          1.1520
          0.4000 0.8000
                          1.2000
                                  1.6000
                                          2.0000
7. Таблица точного решения на крупной сетке:
ans = 6 \times 6
         0.0096 0.0192
                          0.0288
                                  0.0384
                                          0.0480
      0
```

0.0448 0.0896 0.1344 0.1792 0.2240 0.2304 0.1152 0.3456 0.4608 0.5760 0.2304 0.4608 0 0.6912 0.9216 1.1520 0.4000 0.8000 1.2000 1.6000 2.0000

Итерационный метод с чебышевским набором параметров

u_cheb = ChebIterationMethods(N, M, par);

Метод итераций с оптимальным Чебышевским параметром:

1. Мера аппроксимации точного решения ||F-Au*||: norm1 = 3.8475

2. Мера аппроксимации нулевого приближения ||F-Au0||: norm2 = 395.7255

3. Оценка количества итераций norm3 = 27

4. Спектральный радиус матрицы перехода: ro = 0.9607

k	F-AU^(k)	rel.d.	U^(k)-u*	rel.error	U^(k)-U^(k-1)	apostest	p_k
1	5.0481e+03	12.7565	12.3737	8.9335	13.7588	335.9173	0.6210
2	1.1300e+03	2.8555	4.3162	3.1162	8.5445	208.6106	0.3271
3	464.7888	1.1745	1.8750	1.3537	2.7949	68.2367	0.1858
4	227.9768	0.5761	1.3952	1.0073	0.5193	12.6793	4.3841
5	334.5661	0.8455	1.0203	0.7366	2.2768	55.5871	0.1926
6	173.2973	0.4379	0.7671	0.5538	0.4384	10.7041	1.7037
7	61.0088	0.1542	0.2151	0.1553	0.7470	18.2367	0.0845
8	35.2373	0.0890	0.1969	0.1421	0.0631	1.5414	19.4057
9	362.6235	0.9164	1.1598	0.8373	1.2252	29.9117	0.5010
10	129.3112	0.3268	0.5723	0.4132	0.6138	14.9853	0.5211
11	46.8131	0.1183	0.3206	0.2315	0.3198	7.8087	0.1635
12	28.5925	0.0723	0.2697	0.1947	0.0523	1.2770	5.4592
13	37.7966	0.0955	0.1939	0.1400	0.2856	6.9716	0.1735
14	18.2797	0.0462	0.1737	0.1254	0.0495	1.2093	1.5908
15	15.7135	0.0397	0.1069	0.0772	0.0788	1.9236	0.2064
16	8.0831	0.0204	0.1074	0.0775	0.0163	0.3970	17.2833
17	102.7630	0.2597	0.2242	0.1619	0.2810	6.8615	0.6189
18	22.8337	0.0577	0.1074	0.0775	0.1739	4.2466	0.3247
19	9.3065	0.0235	0.1034	0.0746	0.0565	1.3789	0.1841
20	4.6962	0.0119	0.1024	0.0739	0.0104	0.2539	4.5103
21	6 9965	0.0177	0.0952	0.0688	0.0469	1 1/51	0 1955

6. Приближенное решение на крупной сетке:

```
ans = 6 \times 6
                                  0
                  0
      0 -0.0101 -0.0091 0.0034 0.0226 0.0480
      0 0.0044 0.0321 0.0790 0.1437 0.2240
      0 0.0505 0.1420 0.2611 0.4039 0.5760
      0 0.1612 0.3708 0.6038
                                 0.8590 1.1520
      0
          0.4000 0.8000 1.2000 1.6000
                                         2.0000
7. Таблица точного решения на крупной сетке:
ans = 6 \times 6
      0 0.0096 0.0192 0.0288
                                 0.0384
                                         0.0480
      0 0.0448 0.0896 0.1344
                                 0.1792
                                         0.2240
        0.1152 0.2304 0.3456
                                 0.4608
                                         0.5760
                  0.4608
                          0.6912
         0.2304
      0
                                  0.9216
                                         1.1520
                  0.8000
                          1.2000
          0.4000
                                 1.6000
                                         2.0000
```

Попеременно-треугольный итерационный метод с чебышевским набором параметров.

AlternateTriangularMethod(N, M, par);

```
Поперемено-треугольный метод с оптимальными чебышевскими параметрами:

1. Мера аппроксимации точного решения ||F-Au*||:
norm1 = 3.8475

2. Мера аппроксимации нулевого приближения ||F-Au0||:
norm2 = 395.7255
```

3. Оценка количества итераций

Считаем отдельно.

4. Спектральный радиус матрицы перехода:

ro = 0.6058

3. Оценка количества итераций

	F-AU^(k)	rel.d.	U^(k)-u*	rel.error	U^(k)-U^(k-1)	apostest	p_k
1	545.7555	1.3791	1.7528	1.2655	3.1379	4.8221	0.4747

```
6. Приближенное решение на крупной сетке: ans = 6 \times 6
```

```
0
0
                          0
                                     0
  -0.0035 -0.0096 -0.0047
                                 0.0480
                          0.0175
0
  0.0062 0.0393 0.0896
                          0.1609
                                 0.2240
0
  0.0452 0.1844 0.3537
                          0.5257
                                 0.5760
   0.1361 0.4195
                  0.7605
                          1.1414
                                 1.1520
   0.4000
         0.8000
                  1.2000
                          1.6000
                                 2.0000
```

7. Таблица точного решения на крупной сетке:

ans = 6×6

0	0	0	0	0	0
0	0.0096	0.0192	0.0288	0.0384	0.0480
0	0.0448	0.0896	0.1344	0.1792	0.2240
0	0.1152	0.2304	0.3456	0.4608	0.5760
0	0.2304	0.4608	0.6912	0.9216	1.1520
0	0.4000	0.8000	1.2000	1,6000	2.0000

Метод переменных направлений

u_dir_var = DirectionVariablesMethod(N, M);

```
Схема переменных направлений:
```

1. Мера аппроксимации точного решения ||F-Au*||:

norm1 = 3.8475

2. Мера аппроксимации нулевого приближения ||F-Au0||: norm2 = 395.7255

3. Оценка количества итераций

norm3 = 11

4. Спектральный радиус матрицы перехода:

_

k	F-AU^(k)	rel.d.	U^(k)-u*	rel.error	U^(k)-U^(k-1)	apostest	p_k
1	49.3952	0.1248	0.3751	0.2708	1.3540	0	0.1618
2	23.8738	0.0603	0.1936	0.1397	0.2191	0	0.4246
3	8.6554	0.0219	0.1409	0.1017	0.0930	0	0.3561
4	4.5133	0.0114	0.1217	0.0879	0.0331	0	0.6049
5	2.1716	0.0055	0.1091	0.0788	0.0200	0	0.4934
6	1.1846	0.0030	0.1045	0.0754	0.0099	0	0.5309
7	0.6653	0.0017	0.1007	0.0727	0.0052	0	0.5928
8	0.3378	8.5350e-04	0.0993	0.0717	0.0031	0	0.4726

6. Приближенное решение на крупной сетке:

ans = 6×6

0 0 0 0 0 0 0 0

0 -0.0092 -0.0079 0.0032 0.0223 0.0480

0 0.0027 0.0303 0.0781 0.1428 0.2240

0 0.0493 0.1405 0.2597 0.4032 0.5760

0 0.1602 0.3696 0.6031 0.8589 1.1520

0 0.4000 0.8000 1.2000 1.6000 2.0000

7. Таблица точного решения на крупной сетке:

ans = 6×6

_					
0	0	0	0	0	0
0	0.0096	0.0192	0.0288	0.0384	0.0480
0	0.0448	0.0896	0.1344	0.1792	0.2240
0	0.1152	0.2304	0.3456	0.4608	0.5760
0	0.2304	0.4608	0.6912	0.9216	1.1520
0	0.4000	0.8000	1.2000	1.6000	2.0000