

Inverse Kinematics

Inverse kinematic is to determine the joint variables of the manipulators given the position and orientation of the end effector. Simply, finding joints angles given x and y.

Solution is difficult to find and solution is not unique.

Usually there are 2 approach: Geometric and Analytic.

Inverse Kinematics

Following the figure, we wish to find joint angle θ_1 and θ_2 given x and y coordinates.

Now let go through Analytic approach.

Inverse Kinematics : Analytic

Following the figure, we wish to find joint angle θ_1 and θ_2 given x and y coordinates.

Now let go through Analytic approach.

Final orientation is given

$$T_2^0 = \begin{bmatrix} \cos(\phi) & -\sin(\phi) & 0 & x \\ \sin(\phi) & \cos(\phi) & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $Forward\ kinematic\ is\ known\ from\ DH\ table$

$$T_2^0 = \begin{bmatrix} \beta_1 & \beta_2 & 0 & & M \\ \beta_3 & \beta_4 & 0 & & N \\ 0 & 0 & 1 & & 0 \\ 0 & 0 & 0 & & 1 \end{bmatrix}$$

With comparison

$$cos(\phi) = \beta_1, \quad -sin(\phi) = \beta_2$$

 $x = M, \quad y = N$
Obtain β_1, β_2, M and N

Inverse Kinematics : Examples 2 links planar by Analytic approach

From
$$x = a_1c_1 + a_2c_{12}$$
, $y = a_1s_1 + a_2s_{12}$
 $x^2 + y^2 = (a_1c_1 + a_2c_{12})^2 + (a_1s_1 + a_2s_{12})^2$
 $= (a_1c_1)^2 + 2a_1c_1a_2c_{12} + (a_2c_{12})^2 + (a_1s_1)^2 + 2a_1s_1a_2s_{12} + (a_2s_{12})^2$
 $= a_1^2(c_1)^2 + a_1^2(s_1)^2 + a_2^2(c_{12})^2 + a_2^2(s_{12})^2 + 2a_1s_1a_2s_{12} + 2a_1c_1a_2c_{12}$
 $= a_1^2 + a_2^2 + 2a_1s_1a_2(s_1c_2 + c_1s_2) + 2a_1c_1a_2(c_1c_2 - s_1s_2)$
 $= a_1^2 + a_2^2 + 2a_1a_2s_1s_1c_2 + 2a_1a_2s_1s_2c_1 + 2a_1a_2c_1c_1c_2 - 2a_1a_2s_1s_2c_1$
 $= a_1^2 + a_2^2 + 2a_1a_2(s_1s_1 + c_1c_1)c_2$
 $= a_1^2 + a_2^2 + 2a_1a_2c_2$

$$\frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1a_2} = c_2$$

$$\Rightarrow \cos(\theta_2) = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1a_2}$$

Inverse Kinematics : Examples 2 links planar by Analytic approach

$$\cos(\theta_2) = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2} := D$$
$$\sin(\theta_2) = \pm \sqrt{1 - D^2}$$
$$\theta_2 = A \tan 2(D, \pm \sqrt{1 - D^2})$$

Inverse Kinematics : Examples 2 links planar by Analytic approach

Back to:
$$x = a_1c_1 + a_2c_{12}$$
 , $y = a_1s_1 + a_2s_{12}$
 $x = a_1c_1 + a_2(c_1c_2 - s_1s_2)$, $y = a_1s_1 + a_2(s_1c_2 + c_1s_2)$
 $x = a_1c_1 + a_2c_1c_2 - a_2s_1s_2$, $y = a_1s_1 + a_2s_1c_2 + a_2c_1s_2$
 $x = c_1(a_1 + a_2c_2) - (a_2s_2)s_1$, $y = s_1(a_1 + a_2c_2) + c_1(a_2s_2)$
Let $k_1 = a_1 + a_2c_2$ and $k_2 = a_2s_2$ (*refer to Lecture 6 pg.39*)
 \Rightarrow Reform as $x = k_1c_1 - k_2s_1$, $y = k_1s_1 + k_2c_1$
IF $r = \sqrt{k_1^2 + k_2^2}$ so $\gamma = A \tan 2(k_1, k_2)$ r can refer as c in Lecture 6
THEN $k_1 = r \cos \gamma$ and $k_2 = r \sin \gamma$ k_1 and k_2 is known now

Inverse Kinematics : Examples 2 links planar by Analytic approach

From
$$x = k_1 c_1 - k_2 s_1, \ y = k_1 s_1 + k_2 c_1 \ and \ k_1 = r \cos \gamma \ and \ k_2 = r \sin \gamma$$
Now
$$x = r \cos \gamma c_1 - r \sin \gamma s_1, \ y = r \cos \gamma s_1 + r \sin \gamma c_1$$

$$x = r \cos(\gamma + \theta_1), \ y = r \sin(\gamma + \theta_1)$$

$$\therefore \cos(\gamma + \theta_1) = \frac{x}{r}, \sin(\gamma + \theta_1) = \frac{y}{r}$$

$$\gamma + \theta_1 = A \tan 2(\frac{x}{r}, \frac{y}{r}) = A \tan 2(x, y)$$
So
$$\theta_1 = A \tan 2(x, y) - \gamma$$

$$= A \tan 2(x, y) - A \tan 2(k_1, k_2)$$

$$\theta_1 = A \tan 2(x, y) - A \tan 2(k_1, k_2)$$
 where $k_1 = a_1 + a_2 c_2$ and $k_2 = a_2 s_2$
 $\Rightarrow \theta_1 = A \tan 2(x, y) - A \tan 2(a_1 + a_2 c_2, a_2 s_2)$

Inverse Kinematics: Examples 3 links RPP Analytic approach Find the required values for θ_1^*, d_2^*, d_3^* , if desire position is P(3.5,0,2.5), with $L_1 = 0.5, L_2 = 1.5$ $[-\sin(th1), 0, \cos(th1), \cos(th1)*(L2 + d3)]$ P(3.5,0,2.5) $[\cos(th1), 0, \sin(th1), \sin(th1)*(L2 + d3)]$ trom (1) (1200510)=3,5 tram(1) db3 0080 = 35 (X) (2) dessing= 0 (4) Inverse Kinematics: Examples 3 links RPP Analytic approach with $L_1 = 0.5, L_2 = 1.5$ $L_1 + d_2^* = 2.5$ $d_2^* = 2.5 - L_1 = 2$ $\cos \theta_1 (L_2 + d_3^*) = 3.5$ $\sin\theta_1(L_2+d_3^*)=0$ $\theta_1 = A \tan 2(3.5, 0)$ $\theta_1^* = 0^\circ$ with $\theta_1^* = 0^\circ$ $(L_2 + d_3^*) = 3.5$ $d_3^* = 3.5 - L_2 = 2$ To obtain P(3.5,0,2.5), we could set

*check your answer with forward kinematic process.

Trom (3)

Inverse Kinematics : Examples 3 links RPP Analytic approach

Use Forward kinematic obtain the end position

Inverse Kinematics: Examples 3 links RPP Analytic approach (Repeat for different position)

Find the required values for θ_1^*, d_2^*, d_3^* , if desire position is P(1,1.732,2), with $L_1 = 0.5, L_2 = 1.5$

Inverse Kinematics : Examples 3 links RPP Analytic approach

with $L_1 = 0.5, L_2 = 1.5$

To obtain P(1,1.732,2), we could set

 $d_3^* =$

*check your answer with forward kinematic process.

Inverse Kinematics : Examples 3 links RPP Analytic approach

with $L_1 = 0.5, L_2 = 1.5$

Link	α	а	d	θ
1	0	0	L,	θ_i^*
2	90∘	0	ď,	90°
3	0	0	$L_1 + d_1^*$	0

$$\theta_1^* = {}^{\circ}, d_2^* = {}^{\circ}, d_3^* =$$

Use Forward kinematic obtain the end position