6.1 Establish Lemma 6.1.

Solution. It holds that:

$$[A^{n_o}]_{\ell,k} = \sum_{\{j_1,\dots,j_{n_o-1}\}\in\mathcal{P}^{n_o}_{\ell,k}} a_{\ell j_1} a_{j_1 j_2} \cdots a_{j_{n_o-1} k}$$

Here, $\mathcal{P}_{\ell,k}^{n_o}$ denotes the set of agents j_1,\ldots,j_{n_o-1} on the a path of length n_o from agent ℓ to agents k. For a connected graph, we know that for any pair ℓ,k , there exists some $n_o^{\ell,k}$, such that at least one path of non-zero weights exists. In light of the fact that all weights are non-negative, this ensures that $[A^{n_o^{\ell,k}}]_{\ell,k} > 0$. In general, however, this power $n_o^{\ell,k}$ may be different for different pairs of agents. We now aim to show that if there exists at least one agent with a self-loop, then there exists a common n_o , such that $[A^{n_o}]_{\ell,k} > 0$ for all ℓ,k . We make the argument by construction. Let us denote by ℓ^s the agent with the self-loop. Since the graph is connected, we can always construct a path from agent ℓ to ℓ by taking a detour first from ℓ to ℓ^s , and then from ℓ^s to k. Let us denote the length of this path hy $n_o^{\ell k,s}$. Let $n_o^s = \max_{k,\ell} n_o^{\ell k,s}$. We can then take a path from any node ℓ to any other node k of length exactly n_o^s by taking an appropriate number of self-loops at node ℓ^s . It then follows that:

$$[A^{n_o^s}]_{\ell,k} > 0$$

6.2 Establish (6.7).

Solution. We have:

$$\begin{split} &\lim_{i \to \infty} A^i = \left(V_{\epsilon} J V_{\epsilon}^{-1}\right)^i \\ &= V_{\epsilon} \left(\lim_{i \to \infty} J^i\right) V_{\epsilon}^{-1} \\ &= \left[\begin{array}{cc} p & V_R \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & \lim_{i \to \infty} J^i_{\epsilon} \end{array}\right] \left[\begin{array}{c} \mathbb{1}^{\mathsf{T}} \\ V_L^{\mathsf{T}} \end{array}\right] \\ &= \left[\begin{array}{cc} p & V_R \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} \mathbb{1}^{\mathsf{T}} \\ V_L^{\mathsf{T}} \end{array}\right] \\ &= p \mathbb{1}^{\mathsf{T}} \end{split}$$

© 2023. All rights reserved. This draft cannot be copied or distributed in print or electronically without the written consent of the authors S. Vlaski and A. H. Sayed.

6.3 Show that the Laplacian and Metropolis rules in Table 6.1 are doubly-stochastic.

Solution. We begin with the Laplacian. First, for symmetry, we have:

$$A^{\mathsf{T}} = (I - \beta L)^{\mathsf{T}} = I - \beta L^{\mathsf{T}} = I - \beta L = A$$

For stochasticity:

$$A\mathbb{1} = (I - \beta L^{\mathsf{T}}) \mathbb{1} = \mathbb{1} - \beta L \mathbb{1} = \mathbb{1}$$

For the Metropolis rule, symmetry follows directly from:

$$a_{\ell k} = \frac{1}{\max\{n_k, n_\ell\}} = \frac{1}{\max\{n_\ell, n_k\}} = a_{k\ell}$$

For stochasticity, note that:

$$\sum_{k=1}^K a_{\ell k} = a_{kk} + \sum_{\ell \in \mathcal{N}_k \backslash k} a_{\ell k} = 1 - \sum_{\ell \in \mathcal{N}_k \backslash k} a_{\ell k} + \sum_{\ell \in \mathcal{N}_k \backslash k} a_{\ell k} = 1$$

7.1 Establish relation (7.46).

Solution. We can reformulate:

$$\eta \sum_{k=1}^{K} \sum_{\ell \in \mathcal{N}_{k}} c_{\ell k} \| w_{k} - w_{\ell} \|^{2}
= \eta \sum_{k=1}^{K} \sum_{l>k} c_{\ell k} \left(\| w_{k} \|^{2} - 2w_{\ell}^{\mathsf{T}} w_{k} + \| w_{\ell} \|^{2} \right)
= \eta \sum_{k=1}^{K} \sum_{\ell=1}^{K} c_{\ell k} \left(\| w_{\ell} \|^{2} - w_{\ell}^{\mathsf{T}} w_{k} \right)
= \eta \sum_{k=1}^{K} \sum_{\ell=1}^{K} c_{\ell k} \| w_{\ell} \|^{2} - \eta \sum_{k=1}^{K} \sum_{\ell=1}^{K} c_{\ell k} w_{\ell}^{\mathsf{T}} w_{k}
= \eta \sum_{\ell=1}^{K} \left(\sum_{k=1}^{K} c_{\ell k} \right) \| w_{\ell} \|^{2} - \eta \sum_{k=1}^{K} \left(\sum_{\ell=1}^{K} c_{\ell k} w_{\ell}^{\mathsf{T}} \right) w_{k}
= \eta w^{\mathsf{T}} \left(\operatorname{diag} \left\{ C \mathbf{1} \right\} \otimes I_{M} \right) w - \eta w^{\mathsf{T}} \left(C \otimes I_{M} \right) w
= \eta w^{\mathsf{T}} \left(\operatorname{diag} \left\{ C \mathbf{1} \right\} - C \right) \otimes I_{M} \right) w
= \eta w^{\mathsf{T}} \mathcal{L} w \tag{7.1}$$

7.2 We saw at several points throughout this chapter that the mixing rate of an matrix A, quantified through its second-largest singular value $\sigma_2(A)$ plays a key role in quantifying the rate at which averages can be computed. In this problem, we will verify Theorem 7.1 in code. To this end, generate a random collection of signals $\{g_k\}_{k=1}^K$ using a statistical model of your choice. For the graph, we generate Erdos-Renyi graphs with varying edge probability p_{edge} . Any pair of agents ℓ and k is linked with probability p_{edge} , independently of all other edges. Construct the adjacency matrix A following the Metropolis rule of Chapter 6. For different choices of p_{edge} , compute the associated mixing rate $\sigma_2(A)$. Subsequently implement the static consensus algorithm (7.16), plot the evolution of $\sum_{k=1}^K \|\overline{g} - w_{k,i}\|^2$ and discuss the relationship between edge probablities p_{edge} , $\sigma_2(A)$ and the rate of convergence.

^{© 2023.} All rights reserved. This draft cannot be copied or distributed in print or electronically without the written consent of the authors S. Vlaski and A. H. Sayed.

Solution. The solution is provided as a Jupyter notebook in the separate file $Problem_7_2.ipynb$.