

# Fair Dynamic Survival Prediction on Longitudinal Electronic Health Record



Xin Huang, Xiangyang Meng
Department of Information Systems, University of Maryland, Baltimore County

## Introduction

- The longitudinal record in an EHR enables doctors to trend labs over multiple encounters for a more holistic and longitudinal overview of their patient's health. Joint analysis of longitudinal data and survival outcomes is necessary to obtain unbiased inference when the two outcomes are correlated.
- Cox proportional hazards model, a statistical model, can prioritize the process of providing care to the ones in need of treatments. However, the cox model doesn't consider the time varying covariates when fitting for individual and practical treatment questions. Dynamic-DeepHit flexibly incorporates the available longitudinal data comprising various repeated measurements<sup>2</sup>, but fair treatment on different group of patients (gender, race...) remains unexplored.

We aim to develop a **fairness-aware** dynamic survival model for **longitudinal** EHR, to reduce bias, provide a fair prioritization process, and promote fair treatment on certain individuals or demographic groups equally.

# Accomplishment

- Implemented individual and group fairness metrics to evaluate the dynamic survival analysis with time dependent covariates.
- Incorporated **fairness constraint in loss function** to optimize fairness-aware dynamic survival prediction.

#### **Related Work**

<sup>1</sup>Kamrun Naher Keya, Rashidul Islam, Shimei Pan, Ian Stockwell, and James Foulds. Equitable Allocation of Healthcare Resources with Fair Survival Models. SIAM Int. Conference on Data Mining (SDM), 2021. 
<sup>2</sup>C. Lee, etc, "Dynamic-DeepHit: A Deep Learning Approach for Dynamic Survival Analysis With Competing Risks Based on Longitudinal Data," IEEE Trans. on Biomedical Engineering. 2020

#### **Dataset**

pbcseq: Mayo Clinic Primary Biliary Cirrhosis, sequential data, two events, 312 randomized patients | 15 features | 1~16 sequential measurements



Patient measurements frequencies Distribution.

Illustration of survival data with longitudinal measurements where subjects are aligned.<sup>2</sup>

# **Proposed Methods**



Fairness metric for time varying covariates:

- •Individual fairness based on Cumulative Incidence Function: F(t) = P(T<=t)).
- •Group fairness based on CIF.

## Individual fairness:

$$F_{I} = \sum_{i=1}^{N} \sum_{j=i+1}^{N} Max(0, |o_{k,\tau}(x_{i}) - o_{k,\tau}(x_{j})| - D_{Euclidean}(x_{i0}, x_{j0}))$$

#### Group fairness:

$$F_G = \text{Max}_{a \in A} |E[o_{k,\tau}(a)] - E[o_{k,\tau}(x)]|$$

Fairness-aware loss in dynamic prediction model:

Total Loss = Log-likelihood Loss + Ranking Loss + Prediction Loss
+Individual/Group Fairness Regularizer

# **Experiment Results**



| T = 156 (weeks)             | Delta T = 12 | Delta T = 36 | Delta T = 60 |
|-----------------------------|--------------|--------------|--------------|
| Original                    |              |              |              |
| C-Index                     | 0.948882     | 0.929326     | 0.91657      |
| BRIER-SCORE                 | 0.082197     | 0.104873     | 0.117934     |
| Group Fairness              | 0.064016     | 0.064859     | 0.06711      |
| Individual Fairness         | 0.018866     | 0.0173635    | 0.048403     |
| With Group Fair Metric      |              |              |              |
| C-Index                     | 0.939297     | 0.923575     | 0.920046     |
| BRIER-SCORE                 | 0.080842     | 0.102076     | 0.114453     |
| Group Fairness              | 0.061551     | 0.058288     | 0.066522     |
| With Individual Fair Metric |              |              |              |
| C-Index                     | 0.942492     | 0.923575     | 0.920046     |
| BRIER-SCORE                 | 0.081845     | 0.104302     | 0.116512     |
| Individual Fairness         | 0.002008     | 0.0025195    | 0.019375     |
|                             |              |              |              |

## **Future Work**

- Implement ranking-based fairness metric for dynamic survival analysis with competitive risks
- Apply the fairness metrics to more dynamic survival models and conduct more experiments on diverse datasets.
- Improve in leveraging a combination of loss functions to achieve a more efficient accuracy-fairness trade-off.