UNIVERSIDADE FEDERAL DO TOCANTINS

Câmpus Universitário de **Palmas** Laboratório de Ensino de Física

TÍTULO DO ROTEIRO

1. INTRODUÇÃO

O estudo dos fluidos, sejam eles líquidos ou gases, é fundamental para compreender uma vasta gama de fenômenos naturais e aplicações tecnológicas. Dentro desse campo, dois conceitos interligados e de grande importância são a **densidade** e o **empuxo**, este último magistralmente descrito pelo **Princípio de Arquimedes**. A compreensão dessas grandezas nos permite explicar por que alguns objetos flutuam enquanto outros afundam, como navios colossais conseguem navegar e como balões de ar quente se elevam aos céus (Halliday; Resnick; Walker, 2016).

A densidade, ou massa específica (ρ) de um corpo é uma propriedade fundamental que relaciona sua massa (m) ao seu volume V, sendo expressa por:

$$\rho = \frac{m}{V} \tag{1}$$

Tabela 1: Densidade de algumas substâncias

Material	Densidade ρ (g/cm ³)
Cobre	8,93
Ferro	7,87
Aço	7,85
Alumínio	2,70
Água	1,00

Fonte: Halliday; Resnick; Walker (2016)

Essa grandeza nos permite entender o quão "compacta" é a matéria e é uma propriedade crucial para determinar o comportamento de um objeto quando imerso em um fluido.

De acordo com o *Princípio de Pascal*, quando imerso em um fluido, um corpo sofre a ação de pressões sobre sua superfície, maiores em sua parte inferior do que em sua parte superior. Como consequência, o corpo sofre ação de uma força vertical para cima, denominada **empuxo** (Halliday; Resnick; Walker, 2016).

Esse fenômeno é governado pelo Princípio de Arquimedes, de acordo com o qual o empuxo sobre um corpo imerso num fluido é uma força cujo módulo (E) é igual ao peso do volume de fluido deslocado pelo corpo no processo de imersão. Além disso, como dito acima, esta força tem direção vertical e sentido orientado para cima.

$$E = \rho_f g V_{des} \tag{2}$$

em que ρ_f é a densidade do fluido, $g=9,8~{\rm m/s^2}$ é a aceleração da gravidade local e V_{des} é o volume de fluido deslocado.

Para demonstrar esse fato, consideremos um corpo de massa m, volume V e densidade $\rho = \frac{m}{V}$, totalmente subserso em água e sustentado por um fio conectado a um dinamômetro.

Figura 1: Aparato expperimental

Fonte: Labfis (2025)

Como ilustrado na Figura 1, sobre o corpo atuam três forças. Além da força de empuxo E, definida pela Equação 2, autam a força peso P devido a atração gravitacional terrestre, cujo módulo é dado por

$$P = mg (3)$$

e a tensão T no fio, cujo valor é registrado pelo dinamômetro. Dado que o corpo está em equilíbrio, podemos escrever:

$$\begin{split} T+E &= P \Rightarrow T + \rho_f g V_{des} = mg \\ &\Rightarrow T + \rho_f g V = (\rho V) g \\ &\Rightarrow \rho = \rho_f + \frac{T}{g V} \end{split} \tag{4}$$

Observe que no desenvolvimento acima, utilizamos a definição de densidade para substituir a massa m ($\rho = \frac{m}{V} \Rightarrow m = \rho V$). Além disso, dado que o corpo está totalmente subserso, temos que o volume deslocado é igual ao volume do corpo $(V_{des} = V)$.

2. OBJETIVOS

- **2.1.** Compreender os conceitos de densidade e empuxo;
- **2.2.** Confirmar que o empuxo é igual ao peso do fluido deslocado;
- **2.3.** Calcular a densidade de corpos de prova de materiais por métodos diferentes;

3. MATERIAL NECESSÁRIO

- Paquímetro ou régua milimetrada;
- Proveta graduada em milílitros;
- Água;
- Balança digital;
- Corpos de prova de materiais distintos.

4. PROCEDIMENTOS

4.1. PRIMEIRA PARTE

Nesta etapa o aluno deverá determinar a densidade de diferentes materiais utilizando a definição desta grandeza dada pela Equação 1.

- **4.1.1.** Ordene os corpos de prova conforme suas características visuais.
- **4.1.2.** Com a balança digital, meça as massas de cada corpo de prova. Anote os resultados na Tabela 2.
- **4.1.3.** Adicione água na proveta até a marcação de $V_i = 70 \text{ ml.}$
- **4.1.4.** Cuidasosamente, mergulhe completamente cada um dos corpos de prova e verifique a marcação V_f na proveta.

Atenção

Cada "traço" na escala da proveta equivale a 1 ml. Conversão: 1 ml $\equiv 1 \mathrm{cm}^3$

- **4.1.5.** Calcule o volume dos corpos de prova $V = V_f = V_i$. Converta o resultado de mililitros (ml) para centímetros cúbicos (cm³).
- **4.1.6.** Usando a Equação 1, calcule a densidade de cada um dos corpos de prova.

Título do roteiro 3

Tabela 2: Coleta de dados - Primeira Parte

	m(g)	$V_i(\mathrm{ml})$	$V_f(\mathrm{ml})$	$V({ m cm}^3)$	$ ho({ m g/cm^3})$
1					
2					
3					

4.2. SEGUNTA PARTE

Nesta etapa o aluno deverá determinar a densidade de diferentes materiais utilizando o Princípio de Arquimedes e a Equação 4.

- **4.2.1.** Execute os passos seguintes com os corpos de prova na mesma ordem da Primeira Parte.
- **4.2.2.** Cuidadosamente, conecte o primeiro corpo de prova ao dinamômetro.
- **4.2.3.** Ajuste a altura do sistema até que o corpo de prova fique completamente submerso na água.

Atenção

- Faça a leitura da força de tensão na escala em Newton;
- Cada "traço" na escala do dinamômetro equivale a 0,02N. Por exexmplo, se a leitura indica o terceiro traço após 1N, o valor da força de tensão será:

$$1 + 3 \cdot 0,02 = 1,06N$$

- **4.2.4.** Faça a leitura da força de tensão T mascada no dinamômetro. Anote o resultado na
- **4.2.5.** Colete o volume V de cada corpo de prova obtido na Tabela 2. Converta a unidade de ml para m^3 e anote no campo correspondente da Tabela 3.
- **4.2.6.** Utilizando a Equação 4, deduzida a partir do Princípio de Arquimedes, calcule a densidade de cada corpo de prova.
- **4.2.7.** Converta o valor encontrado para a densidade de cada corpo de prova de kg/m^3 para g/cm^3 (Lembre-se que $1kg/m^3 \equiv 10^{-3}g/cm^3$).

Tabela 3: Coleta de dados - Segunda Parte

	T(N)	$V(\mathrm{m}^3)$	$ ho({ m kg/m^3})$	$ ho({ m g/cm^3})$
1				
2				
3				

5. ANÁLISE DE DADOS

Nesta seção, consideraremos os valores de densidade encontrados na Primeira Parte como *valores esperados* para a densidade de cada corpo de prova, representando-os por ρ_{esp} . Em contrapartida, os valores encontrados na Segunda Parte serão nossos *valores experimentais*, representados por ρ_{exp} .

Vamos avaliar a qualidade do experimento, calculando o erro percentual por meio da fórmula:

erro (%) =
$$\frac{|\rho_{esp} - \rho_{exp}|}{\rho_{esp}} \cdot 100\%$$
 (5)

- **5.1.** Colete os valores da densidade de cada corpo de prova na Primeira Parte e anote no campo correspondente da Tabela 4. Repita com os dados de densidade da Segunda Parte.
- **5.2.** Usando a Equação 5, calcule o erro percentual erro (%) na determinação da densidade de cada corpo de prova.
- **5.3.** Você é capaz de determinar o material de que cada corpo de prova é feito? Discuta os resultados.

Tabela 4: Análise do erro experimental

	Primeira Parte $ ho_{esp}({ m g/cm^3})$	Segunda Parte $ ho_{exp}({ m g/cm^3})$	erro (%)	Material
1				
2				
3				

REFERÊNCIAS

HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física: Gravitação. 10. ed. Rio de Janeiro: LTC, 2016. v. 2