My Project

Generated by Doxygen 1.8.15

1 Class Index	1
1.1 Class List	1
2 Class Documentation	3
2.1 DE_params Struct Reference	3
2.2 functions Class Reference	3
2.2.1 Member Function Documentation	4
2.2.1.1 Ackley_One()	4
2.2.1.2 Ackley_Two()	5
2.2.1.3 Alpine()	5
2.2.1.4 Egg_Holder()	5
2.2.1.5 first_De_Jong()	6
2.2.1.6 Greiwangk()	6
2.2.1.7 Levy()	6
2.2.1.8 Masters_Cosine_Wave()	7
2.2.1.9 Michalewicz()	7
2.2.1.10 Pathological()	8
2.2.1.11 Quartic()	8
2.2.1.12 Rana()	8
2.2.1.13 Rastrigin()	9
2.2.1.14 Rosenbrock()	9
2.2.1.15 Schwefel()	9
2.2.1.16 Sine_Envelope_Sine_Wave()	10
2.2.1.17 Step()	10
2.2.1.18 Stretched_V_Sine_Wave()	11
2.3 GA_params Struct Reference	11
2.4 M_data Struct Reference	11
2.5 matrix Class Reference	12
2.5.1 Constructor & Destructor Documentation	12
2.5.1.1 matrix() [1/2]	12
2.5.1.2 matrix() [2/2]	13
2.6 utilities Class Reference	13
2.6.1 Member Function Documentation	13
2.6.1.1 simulate()	14
2.6.1.2 str_to_tok()	15
2.6.1.3 write_to_file()	15
Index	17

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

DE_params	
functions	:
GA_params	
M_data	
matrix	
utilities	

2 Class Index

Chapter 2

Class Documentation

2.1 DE_params Struct Reference

Public Attributes

- · double cr
- double F
- · double lambda
- double I b
- double u_b
- int dim
- int ns
- int t_max

The documentation for this struct was generated from the following file:

• DE.h

2.2 functions Class Reference

Public Member Functions

• double Schwefel (double *X, int dimension)

Schwefel's function.

• double first_De_Jong (double *X, int dimension)

1st De Jong's function

• double Rosenbrock (double *X, int dimension)

Rosenbrock's function.

• double Rastrigin (double *X, int dimension)

Rastrigin's function.

double Greiwangk (double *X, int dimension)

Greiwangk's function.

• double Sine_Envelope_Sine_Wave (double *X, int dimension)

Sine Envelope Sine Wave's function.

• double Stretched_V_Sine_Wave (double *X, int dimension)

Stretched V Sine Wave's function.

• double Ackley_One (double *X, int dimension)

Ackley's One function.

double Ackley_Two (double *X, int dimension)

Ackley's Two function.

• double Egg_Holder (double *X, int dimension)

Egg Holder's function.

• double Rana (double *X, int dimension)

Rana's function.

• double Pathological (double *X, int dimension)

Pathological's function.

• double Michalewicz (double *X, int dimension)

Michalewicz's function.

• double Masters_Cosine_Wave (double *X, int dimension)

Masters Cosine Wave's function.

• double Quartic (double *X, int dimension)

Quartic's function.

• double Levy (double *X, int dimension)

Levy's function.

• double Step (double *X, int dimension)

Step's function.

double Alpine (double *X, int dimension)

Alpine's function.

2.2.1 Member Function Documentation

2.2.1.1 Ackley_One()

Ackley's One function.

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of Ackley's One function

2.2.1.2 Ackley_Two()

Ackley's Two function.

Parameters

X the input space	
dimension	the size of the input space

Returns

: result of Ackley's Twofunction

2.2.1.3 Alpine()

```
double functions::Alpine ( \label{eq:double} \mbox{double * $\it{X}$,} \\ \mbox{int $\it{dimension}$ )}
```

Alpine's function.

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of Alpine's function

2.2.1.4 Egg_Holder()

Egg Holder's function.

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of Egg Holder's function

2.2.1.5 first_De_Jong()

1st De Jong's function

Parameters

Χ	the input space
dimension	the size of the input space

Returns

: result of 1st De Jong's function

2.2.1.6 Greiwangk()

Greiwangk's function.

Parameters

Χ	the input space
dimension	the size of the input space

Returns

: result of Greiwangk's function

2.2.1.7 Levy()

Levy's function.

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of Levy's function

2.2.1.8 Masters_Cosine_Wave()

Masters Cosine Wave's function.

Parameters

X	the input space
dimension	the size of the input space

Returns

: Masters Cosine Wave's function

2.2.1.9 Michalewicz()

Michalewicz's function.

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Michalewicz's function

2.2.1.10 Pathological()

```
double functions::Pathological ( \label{eq:double} \mbox{double * $X$,} \\ \mbox{int $dimension$ )}
```

Pathological's function.

Parameters

Χ	the input space
dimension	the size of the input space

Returns

: result of Pathological's function

2.2.1.11 Quartic()

```
double functions::Quartic ( \label{eq:double} \mbox{double } * \ \mbox{$X$,} \mbox{int $dimension$ )}
```

Quartic's function.

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Quartic's function

2.2.1.12 Rana()

```
double functions::Rana ( \label{double} \mbox{double * $X$,} \\ \mbox{int $dimension$ )}
```

Rana's function.

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Rana's function

2.2.1.13 Rastrigin()

```
double functions::Rastrigin ( \label{eq:condition} \mbox{double * $X$,} \\ \mbox{int $dimension$ )}
```

Rastrigin's function.

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Rastrigin's function

2.2.1.14 Rosenbrock()

Rosenbrock's function.

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Rosenbrock's function

2.2.1.15 Schwefel()

```
double functions::Schwefel ( \label{eq:double} \mbox{double} \ * \ \mbox{$X$}, int \mbox{dimension} )
```

Schwefel's function.

Parameters

X	the input space	
dimension	the size of the input space	

Returns

: result of Schwefel's function

2.2.1.16 Sine_Envelope_Sine_Wave()

```
double functions::Sine_Envelope_Sine_Wave ( \label{eq:constraint} \mbox{double * $X$,} \\ \mbox{int $dimension$ )}
```

Sine Envelope Sine Wave's function.

Parameters

Χ	the input space	
dimension	the size of the input space	

Returns

: result of Sine Envelope Sine Wave's function

2.2.1.17 Step()

Step's function.

Parameters

Χ	the input space
dimension	the size of the input space

Returns

: result of Step's function

2.2.1.18 Stretched_V_Sine_Wave()

```
double functions::Stretched_V_Sine_Wave ( \label{eq:double} \mbox{double * $X$,} \\ \mbox{int $dimension$ )}
```

Stretched V Sine Wave's function.

Parameters

X	the input space
dimension	the size of the input space

Returns

: result of Stretched V Since Wave's function

The documentation for this class was generated from the following files:

- · functions.h
- · functions.cpp

2.3 GA_params Struct Reference

Public Attributes

- int **ns**
- int dim
- int t_max
- double **I_b**
- double u_b
- · double cr
- double er
- M_data M

The documentation for this struct was generated from the following file:

• GA.h

2.4 M_data Struct Reference

Public Attributes

- double rate
- double range
- · double precision

The documentation for this struct was generated from the following file:

• GA.h

2.5 matrix Class Reference

Public Member Functions

- matrix (int num_rows, int num_columns, int l_b, int h_b, mt19937 &mt_rand)
 generate an empty matrix and fill it up with randomly generated numbers within some range
- matrix (int num_rows, int num_columns)
 generate an empty matrix

Public Attributes

- · const int num rows
- const int num_columns
- const int I_b
- const int h_b
- mt19937 mt_rand
- double ** mat

2.5.1 Constructor & Destructor Documentation

generate an empty matrix and fill it up with randomly generated numbers within some range

Parameters

num_rows	integer respresenting the number of rows in the matrix
dim	integer representing the dimension or number of columns in the matrix
<u> </u> _b	double representing the lowest bound for the random generator
h_b	double representing the highest bound for the random generator

Returns

: a matrix of randomly generated numbers

2.5.1.2 matrix() [2/2]

generate an empty matrix

Parameters

num_rows	integer respresenting the number of rows in the matrix
dim	integer representing the dimension or number of columns in the matrix

Returns

: an empty matrix

The documentation for this class was generated from the following files:

- · matrix.h
- · matrix.cpp

2.6 utilities Class Reference

Public Member Functions

```
• double * str_to_tok (char *string, char *delim, int num_tokens)
```

split a string into double tokens

void write_to_file (matrix *mat, string file_name)

write a 2d array to a csv file

- int get_algorithm_id ()
- int get_selection_id ()
- double find_lowest (const double *list, int len)
- void simulate (int dim, int ns, int num_functions, double *ranges, int algo_id, int select_id, int num_gen, int num_exp, int num_trnmt, double cr, double m_range, double m_rate, double m_precision, double F, double lambda, mt19937 &mt_rand)

simulate both the genetic algorithm and the differential evolution algorithm

2.6.1 Member Function Documentation

2.6.1.1 simulate()

```
void utilities::simulate (
             int dim,
             int ns,
             int num_functions,
             double * ranges,
             int algo_id,
             int select_id,
             int num_gen,
             int num_exp,
             int num_trnmt,
             double cr,
             double er,
             double m_range,
             double m\_rate,
             double m_precision,
             double F,
             double lambda,
             mt19937 & mt_rand )
```

simulate both the genetic algorithm and the differential evolution algorithm

simulate both the genetic algoritm and the differencial evolution algorithm

Parameters

dim : an integer for the dimension of the solutions ns : an integer the number of solutions num_functions : an integer for the number of objective functions to be simulated (the 18 functions) ranges an array of doubles containing the lower and upper bound for each of the objective functions algo_id an integer for the evolutionary algorithm to be simulated select_id an integer for the selection algorithm to be used num_gen : an integer for the number of generations for the evolutionary algorithms num_exp an integer for the number of experimentations to be run num_trnmt an integer for the number of tournaments for the tournameent selection algorithm cr a double for crossover rate er a double for the elitism rate for the genetic algorithm m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation precision for the genetic algorithm F a double lambda a double mt_rand a seeded random generator to generate random numbers (seeded once in main.cpp)		
num_functions : an integer for the number of objective functions to be simulated (the 18 functions) ranges an array of doubles containing the lower and upper bound for each of the objective functions algo_id an integer for the evolutionary algorithm to be simulated select_id an integer for the selection algorithm to be used num_gen : an integer for the number of generations for the evolutionary algorithms num_exp an integer for the number of experimentations to be run num_trnmt an integer for the number of tournaments for the tournament selection algorithm cr a double for crossover rate er a double for the elitism rate for the genetic algorithm m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation precision for the genetic algorithm F a double lambda a double	dim	: an integer for the dimension of the solutions
ranges an array of doubles containing the lower and upper bound for each of the objective functions algo_id an integer for the evolutionary algorithm to be simulated select_id an integer for the selection algorithm to be used num_gen : an integer for the number of generations for the evolutionary algorithms num_exp an integer for the number of experimentations to be run num_trnmt an integer for the number of tournaments for the tournameent selection algorithm cr a double for crossover rate er a double for the elitism rate for the genetic algorithm m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation rate for the genetic algorithm m_precision a double for the mutation precision for the genetic algorithm F a double lambda a double	ns	: an integer the number of solutions
algo_id an integer for the evolutionary algorithm to be simulated select_id an integer for the selection algorithm to be used num_gen : an integer for the number of generations for the evolutionary algorithms num_exp an integer for the number of experimentations to be run num_trnmt an integer for the number of tournaments for the tournameent selection algorithm cr a double for crossover rate er a double for the elitism rate for the genetic algorithm m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation precision for the genetic algorithm F a double lambda a double	num_functions	: an integer for the number of objective functions to be simulated (the 18 functions)
select_id an integer for the selection algorithm to be used num_gen : an integer for the number of generations for the evolutionary algorithms num_exp an integer for the number of experimentations to be run num_trnmt an integer for the number of tournaments for the tournameent selection algorithm cr a double for crossover rate er a double for the elitism rate for the genetic algorithm m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation precision for the genetic algorithm F a double lambda a double	ranges	an array of doubles containing the lower and upper bound for each of the objective functions
num_gen : an integer for the number of generations for the evolutionary algorithms num_exp an integer for the number of experimentations to be run num_trnmt an integer for the number of tournaments for the tournameent selection algorithm cr a double for crossover rate er a double for the elitism rate for the genetic algorithm m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation precision for the genetic algorithm F a double lambda a double	algo_id	an integer for the evolutionary algorithm to be simulated
num_exp an integer for the number of experimentations to be run num_trnmt an integer for the number of tournaments for the tournameent selection algorithm cr a double for crossover rate er a double for the elitism rate for the genetic algorithm m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation precision for the genetic algorithm F a double lambda a double	select_id	an integer for the selection algorithm to be used
num_trnmt an integer for the number of tournaments for the tournameent selection algorithm cr a double for crossover rate er a double for the elitism rate for the genetic algorithm m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation rate for the genetic algorithm m_precision a double for the mutation precision for the genetic algorithm F a double lambda a double	num_gen	: an integer for the number of generations for the evolutionary algorithms
cr a double for crossover rate er a double for the elitism rate for the genetic algorithm m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation rate for the genetic algorithm m_precision a double for the mutation precision for the genetic algorithm F a double lambda a double	num_exp	an integer for the number of experimentations to be run
er a double for the elitism rate for the genetic algorithm m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation rate for the genetic algorithm m_precision a double for the mutation precision for the genetic algorithm F a double lambda a double	num_trnmt	an integer for the number of tournaments for the tournameent selection algorithm
m_range a double for the mutation range for the genetic algorithm m_rate a double for the mutation rate for the genetic algorithm m_precision a double for the mutation precision for the genetic algorithm F a double lambda a double	cr	a double for crossover rate
m_rate a double for the mutation rate for the genetic algorithm m_precision a double for the mutation precision for the genetic algorithm F a double lambda a double	er	a double for the elitism rate for the genetic algorithm
m_precision a double for the mutation precision for the genetic algorithm F a double lambda a double	m_range	a double for the mutation range for the genetic algorithm
F a double lambda a double	m_rate	a double for the mutation rate for the genetic algorithm
lambda a double	m_precision	a double for the mutation precision for the genetic algorithm
	F	a double
mt_rand a seeded random generator to generate random numbers (seeded once in main.cpp)	lambda	a double
	mt_rand	a seeded random generator to generate random numbers (seeded once in main.cpp)

Returns

: None

2.6.1.2 str_to_tok()

split a string into double tokens

Parameters

string	the string to be splitted
delim	the character that separates the tokens in the string
num_tokens	number of tokens to expect

Returns

: an array of doubles

2.6.1.3 write_to_file()

write a 2d array to a csv file

Parameters

mat	a matrix containing the elements to write to the csv file
file_name	the name of the file where data will be saved

Returns

: None

The documentation for this class was generated from the following files:

- · utilities.h
- · utilities.cpp

Index

Ackley_One functions, 4	Quartic functions, 8
Ackley_Two functions, 4 Alpine	Rana functions, 8
functions, 5	Rastrigin functions, 9
DE_params, 3	Rosenbrock functions, 9
Egg_Holder functions, 5 first_De_Jong	Schwefel functions, 9 simulate
functions, 6 functions, 3 Ackley_One, 4 Ackley_Two, 4 Alpine, 5 Egg_Holder, 5 first_De_Jong, 6	utilities, 13 Sine_Envelope_Sine_Wave functions, 10 Step functions, 10 str_to_tok utilities, 14
Greiwangk, 6 Levy, 6 Masters_Cosine_Wave, 7 Michalewicz, 7 Pathological, 7 Quartic, 8 Rana, 8 Rastrigin, 9 Rosenbrock, 9 Schwefel, 9 Sine_Envelope_Sine_Wave, 10 Step, 10 Stretched_V_Sine_Wave, 10	Stretched_V_Sine_Wave functions, 10 utilities, 13 simulate, 13 str_to_tok, 14 write_to_file, 15 write_to_file utilities, 15
GA_params, 11 Greiwangk functions, 6	
Levy functions, 6	
M_data, 11 Masters_Cosine_Wave functions, 7 matrix, 12 matrix, 12 Michalewicz functions, 7	
Pathological functions, 7	