CAMBRIDGE INTERNATIONAL EXAMINATIONS

NOVEMBER 2002

GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT:9709/2

MATHEMATICS (Pure 2)

www.studyguide.pk

Page 1	Mark Scheme	Syllabus	Paper	l
	AS Level Examinations – November 2002	9709	2	

1	EITHER:	State or imply non-modular inequality $(2x-1)^2 < (3x)^2$, or corresponding equation Expand and make reasonable solution attempt at $2/\sqrt{x}$ 3-term quadratic, or equivalent	B1 M1	0
		Obtain critical values -1 and $\frac{1}{5}$	A1	
		State correct answer $x < -1$, $x > \frac{1}{5}$	Al	
	OR:	State one correct equation for a critical value e.g. $2x - 1 = 3x$	Ml	0
		State two relevant equations separately e.g. $2x - 1 = 3x$ and $2x - 1 = -3x$	A1	
		Obtain critical values -1 and $\frac{1}{5}$. A1	
		State correct answer $x < -1$, $x > \frac{1}{5}$	Al	
4'	OR:	State one critical value (probably $x = -1$), from a graphical method or by inspection or by	B1	
		solving a linear inequality State the other critical value correctly	B2	
		State correct answer $x < -1$, $x > \frac{1}{5}$	Bi	4
		[The answer $\frac{1}{5} < x < -1$ scores B0.]	, -	• •
2	State or o	obtain $-2 + a + b = 0$, or equivalent	· B1	
		$e^{-x} = -2$ and equate to -5	M1	
	Obtain 3-	term equation, or equivalent	A 1	٠
		elevant pair of equations, obtaining a or b	Ml	
	Obtain bo	oth answers $a = 3$ and $b = -1$	A1	5
3	(i) State	or imply that $9^x = y^2$	B 1	1
_		out recognisable solution method for quadratic in y	Ml	_
	Obtai	$y = \frac{1}{2}$ and $y = 3$ from $2y^2 - 7y + 3 = 0$	A1	
		og method to solve an equation of the form $3^x = k$	M1	
	Obtai	in answer $x = -\frac{\ln 2}{\ln 3}$, or exact equivalent $\{ l_b, \lambda_b \}$	Al"	•
		exact answer $x = 1$ (no penalty if logs used)	В1	5
		1		
4	(i) Make	recognisable sketches over the given range of a suitable pair of graphs e.g. $y = \sin x$ and $y = \frac{1}{x^2}$	B1	
	State	or imply connection between intersections and roots and justify given statement	B1	2
	(ii) Calcu	plate values (or signs) of $\sin x - \frac{1}{x^2}$ at $x = 1$ and $x = 1.5$	M1	
		ve given result correctly	A1	2
		range $\sin x = \frac{1}{x^2}$ and obtain given answer	BI	1
		*		
		he iterative formula correctly with $1 \le x_n \le 1.5$ in final answer 1.07	M1 A1	
		v sufficient iterations to justify its accuracy to 3d.p., or show there is a sign change in the	AI	
		val (1.065, 1.075)	_ A1	3
	.			•

Page 2	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9709	2

5	(i)	Use relevant formulae for $\cos (x - 30^\circ)$ and $\sin (x - 60^\circ)$	{ allow	one sign	error	M1*	0
	,,,	Use $\sin 30^\circ = \cos 60^\circ = \frac{1}{2}$ and $\sin 60^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2}$				M1(dep)*)
	,	Collect terms and obtain given answer correctly Carry out correct processes to evaluate a single trig ratio Obtain answer 73.9° Obtain second answer 253.9° and no others State or imply that $\cos^2 x = \frac{1}{13}$ or $\sin^2 x = \frac{12}{13}$				A1 M1 A1 A1 B1	3
4" "		Use a relevant trig formula to evaluate $\cos 2x$ Obtain exact answer $-\frac{11}{13}$ correctly			•	MI Al	3
		[Use of only say $\cos x = +\frac{1}{\sqrt{13}}$, probably from a right triang	gle, can earn	B1M1A0.]			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
6	(a)	Obtain indefinite integral $-\frac{1}{2}\cos 2x + \sin x$				B1 + B1	•
	(b)	 Use limits with attempted integral Obtain answer 2 correctly with no errors (i) Identify R with correct definite integral and attempt to in Obtain indefinite integral ln (x + 1) Obtain answer R = ln (p + 1) - ln 2 (ii) Use exponential method to solve an equation of the form Obtain answer p = 13.8 				MI AI MI BI AI MI	3 2
					:	, ı <u>l</u> .	·
7	(i)	State $6y \frac{dy}{dx}$ as the derivative of $3y^2$				ВІ	
		State $\pm 2x \frac{dy}{dx} \pm 2y$ as the derivative of $-2xy$ (allow any con	mbination of	signs here)		B1 ·	
		Equate attempted derivative of LHS to 0 (or 10) and solve f	for $\frac{dy}{dx}$			M1	
	(ii)	Obtain the given answer correctly [The M1 is dependent on at least one of the B marks being State or imply the points lie on $y-2x=0$ $cx/(y-2)$. Carry out complete method for finding one coordinate of a	121/(34.	-34) = 0	= lor with the	AI BI	4
•	٠	given curve	Laure or meer	orthon or y	-we rrates this	MI	
		Obtain $10x^2 = 10$ or $2\frac{1}{2}y^2 = 10$ or 2-term equivalent	$t_0 = T$	`\		Ai	
		Obtain one correct point e.g. $(1,2)$ \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} Obtain a second correct point e.g. $(-1,-2)$	es of oil	or y)		A1 A1	, 5⊙

