2. Maximum power point tracking

PV Power Plant configuration

Part of PVPP for researching

Research facility

2. MPPT. Partial Shading Research

2. MPPT. Partial Shading Research

2. MPPT. Modelling

Equivalent scheme of PV module

Math model of PV module

$$\begin{cases} I = I_{sc} - I_0 \cdot \left(\exp\left(\frac{q \cdot V_d}{A \cdot k \cdot T}\right) - 1 \right) - \frac{V_d}{R_p}; \\ V = V_d - I \cdot R_s; \\ I_{sc} = \left(I_{sc}^{ref} + k_I \cdot \left(T - T_{ref}\right)\right) \cdot \frac{S}{1000}; \\ I_0 = I_0^{ref} \cdot \left(\frac{T}{T_{ref}}\right) \cdot \exp\left(\frac{q \cdot E_{Si}}{A \cdot k}\right) \cdot \left(\frac{1}{T_{ref}} - \frac{1}{T}\right) \end{cases}$$

Program algorithm

2. MPPT. Modelling

PV Power Plant configuration model

PV module parameters

2. MPPT. Simulation

Application for calculating V-I and V-P characteristics in C++ Builder

