Balanced Comparison

労働経済学 2

川田恵介

Table of contents

1	近似的なバランス			2
1.	1.1 手法の分類		 	 2
1.5	1.2 Moment Balance		 	 2
1.3	1.3 例		 	 3
1.4	1.4 定義: 平均値のバランス		 	 3
1.5	1.5 Implied weight in OLS		 	 3
1.0	1.6 Implied weight in OLS		 	 3
1.	1.7 例: OLS		 	 4
1.8	1.8 例: OLS VS Exact		 	 4
1.9	1.9 OLS VS Exact		 	 4
1.	1.10 例: OLS VS Exact		 	 5
1.	1.11 例: OLS VS Exact		 	 5
1.	1.12 高次モーメントのバランス		 	 5
1.	1.13 まとめ		 	 6
2	性質			6
2.	2.1 母集団における Balancing Compariso	n	 	 6
2.5	2.2 必要なバランス		 	 6
2.3	2.3 必要なバランス		 	 7
2.4	2.4 必要なバランス		 	 7
3	OLS の根本的問題点			7
	OLS の根本的問題点 3.1 例:正規/非正規間賃金格差			7
3.				 -
3.1 3.1	3.1 例: 正規/非正規間賃金格差		 	 7
3.3 3.5 3.5	3.1 例: 正規/非正規間賃金格差		 	 7

3.6	OLS の問題点	9
3.7	実例	9
4	Direct optimization	10
4.1	最適化問題	10
4.2	研究者が選ぶもの	10
4.3	問題: OLS	11
4.4	実例: OLS VS Entropy Weight	11
4.5	実例: Balanced Comparison	12
4.6	Direct optimization の利点	12
Refe	erence	12

1 近似的なバランス

- 多くの応用において、Xの完璧なバランスは不可能
 - 事例数に比べて X の組み合わせが多すぎ、データ上で Overlap が成り立たないケースが多い
 - 近似的なバランスを目指す
- 先行研究を再活用するためにも、OLS の性質から議論する

1.1 手法の分類

- X 分布全体をバランス
 - 代表例: 傾向スコアを活用した Inverse Probability Weight
- X 分布の特徴 (モーメント) をバランス
 - 代表例: OLS
 - * より柔軟な枠組みとして、Entropy Balancing、CBPS (Imai and Ratkovic 2014)
- 「後者の方が、Xの分布の分断が大きい場合にも活用可能」という主張も存在

1.2 Moment Balance

- Recap: Balancing weight = X の分布を D 間で均質化 (Balancing) する
- Moment Balance: X の分布の特徴 (モーメント) のみを Balancing する Weight
 - 代表例は平均値の Balance
- X の組み合わせが多い (連続変数が含まれている/X の種類が多い) 場合でも、活用できる

1.3 例

平均年齢	平均調査年	移民割合	平均教育年数	「人種」
47.098	1,990.051	$0.098 \\ 0.157$	12.771	「白人」
41.908	1,991.264		12.077	「白人以外」

- 教育年数 (Y) 以外についても、人種間 (D) で大きな平均差がある
 - 平均差をなくす weight を用いる

1.4 定義: 平均値のバランス

• 以下を満たす $\omega(1,X)$

$$\omega(1,X) \times X$$
の「白人」についての平均値
$$= \omega(0,X) \times X$$
の「白人以外」についての平均値

• Balanced Comparison

$$\omega(1,X) \times Y$$
の「白人」についての平均値
$$-\omega(0,X) \times Y$$
の「白人以外」についての平均値

1.5 Implied weight in OLS

- 一般に平均値を Balance する Weight は無数に存在する
 - OLS も平均値を Balance させた Balanced Comparison を解釈できる (Imbens 2015; Chattopadhyay and Zubizarreta 2022)!!!

1.6 Implied weight in OLS

- $Y=\beta_0+\beta_DD+\beta_1X_1+..+\beta_LX_L+u$ を OLS で推定した β_D は、以下の性質を満たす Weight を使用した Balanced Comparison と一致
 - $-X_1..X_L$ の平均値をバランス
 - $-\omega$ の分散を最小化
 - 問題のある性質も持つ (後述)

1.7 **例**: OLS

• lmw パッケージを使用すれば、OLS が達成するバランスの特徴を調べられる

OLS = lmw::lmw(education ~ ethnicity + year, GSS7402) # 調査年を Balance させる Weight の取得 head(OLS\$weights)

1 2 3 4 5 6 1.1412285 1.1412285 1.1412285 1.1412285 0.9691193

1.8 例: OLS VS Exact

ethnicity	year	データ上の割合	OLS_Weight*データ上の割合	Exact_Weight*データ上の割合
cauc	2002	0.16	0.182	0.166
other	2002	0.193	0.187	0.166
cauc	1974	0.093	0.075	0.086
other	1974	0.058	0.061	0.086
cauc	1978	0.106	0.091	0.096
other	1978	0.056	0.058	0.096
cauc	1982	0.102	0.092	0.117
other	1982	0.178	0.182	0.117
cauc	1986	0.096	0.092	0.092
other	1986	0.076	0.077	0.092
cauc	1990	0.088	0.087	0.084
other	1990	0.07	0.07	0.084
other	1994	0.169	0.167	0.185
cauc	1994	0.189	0.198	0.185
cauc	1998	0.167	0.182	0.173
other	1998	0.2	0.196	0.173

1.9 OLS VS Exact

- Exact Weight を用いれば、完全なバランスが達成できる
- OLS Weight を用いても、完全なバランスは達成できない
- 例:「白人」における 2002 年調査の割合は 0.16/「白人以外では」0.19
 - OLS Weight を用いると、0.18/0/19 に調整
 - Exact Weight を用いると、0.17/0.17 に調整

1.10 例: OLS VS Exact

• OLS weght でも平均値は完全にバランス

```
(OLS$weights*GSS7402$year)[GSS7402$ethnicity == "cauc"] |>
mean()
```

[1] 1991.042

```
(OLS$weights*GSS7402$year)[GSS7402$ethnicity == "other"] |>
mean()
```

[1] 1991.042

• Exact Weight ではもちろんバランス

1.11 例: OLS VS Exact

• 平均差も異なる

1.12 高次モーメントのバランス

- "平均値"のみならず分散などの高次項もバランスできる
- $Y \sim D + X + X^2$ を推定すれば、X の平均値と分散もバランス

- $Y \sim D + X_1 + X_2 + X_1^2 + X_2 + X_1 * X_2$ を推定すれば、 X_1, X_2 の平均値と分散、共分散もバランス
- 増やしすぎると、推定誤差が大きくなる
 - 変数選択を活用 Slide04

1.13 まとめ

- OLS は、データ上での Overlap が成り立たなくても活用できる
 - D=1または D=0 のどちらからしかない組み合わせが存在したとしても、平均値はバランスできる
- 分布をどこまでバランスさせるのか、研究者が選べる
 - 妥協することができる
 - Xの組み合わせが多い場合、必須

2 性質

- 「Population における OLS による Moment Balance の結果」を推定することは容易
 - OLS は Population OLS の優れた推定値なので
- 「Population における分布を Balance させた後の比較結果」の推定値とみなすには、追加の仮定が必要

2.1 母集団における Balancing Comparison

- 本来の推定目標: X の分布をバランスさせた後の平均値の比較
- OLS 推定の実質的な推定目標: X の Moment をバランスさせた後の平均値の比較
 - どのような場合、本来の推定目標と OLS 推定の実質的な推定目標は一致するのか

2.2 必要なバランス

- 必要条件の一つは、Yと X の真の関係性に依存
 - $-Y\sim D+X_1+..+X_L$ の Population OLS が本来の推定目標と一致するためには、母平均が X の平均値のみに依存していることを仮定する必要がある

$$\begin{split} E[Y|D,X_1,..,X_L] &= \beta_0 + \beta_1 X_1 + ... + \beta_L X_L \\ + \beta_{D1}(D\times X_1) + ... + \beta_{DL}(D\times X_L) \end{split}$$

6

2.3 必要なバランス

• $Y \sim D + X_1 + ... + X_L + X_1^2$ の Population OLS が本来の推定目標と一致するためには、母平均が X の平均値のみに依存していることを仮定する必要がある

$$\begin{split} E[Y|D,X_1,..,X_L] &= \beta_0 + \beta_1 X_1 + ... + \beta_L X_L \\ + \beta_{D1}(D\times X_1) + ... + \beta_{DL}(D\times X_L) \\ + \beta_{1,2}X_1^2 \end{split}$$

2.4 必要なバランス

- 一般に分布をどこまでバランスさせれば十分なのか、よくわからない
- 変数選択を活用しつつ、X の二乗項と交差項までをバランスさせるのが、現状の私的おすすめ
 - 定式化を変えた Robustness check も必要

3 OLS の根本的問題点

- 変数選択を用いたとしても問題点が残る
 - 負の荷重を用いて強引にバランスさせる
 - Target が不透明
- X の分断が大きいケースにおいて深刻化しやすい

3.1 例: 正規/非正規間賃金格差

- 正規/非正規労働者間での賃金格差
 - X = 労働時間としてバランスさせたい
 - 「同じぐらい働いているのに賃金が違う」のであれば望ましくない、と定義

3.2 例: データ

ID	月収	形態	週あたり労働時間
1		正規	50
2	30	正規	40

3	30	正規	40
4	15	非正規	24
5	15	非正規	24
6	15	非正規	24

- バランスさせない場合の賃金格差は、(40+25+25)/3-24=6
- 労働時間をバランスさせることは「不可能」に見える

3.3 例: OLS Weight

ID	月収	形態	週あたり労働時間	OLS Weight
1	60	正規	50	-4.8
2	30	正規	40	3.9
3	30	正規	40	3.9
4	15	非正規	24	1.0
5	15	非正規	24	1.0
6	15	非正規	24	1.0

• 労働時間が長い正規労働者に対して、"負の Weight"を設定し、強引に平均値をバランスさせている

3.4 例: OLS Weight

lm(月収 ~ 形態 + 週あたり労働時間, Temp)

Call:

lm(formula = 月収 ~ 形態 + 週あたり労働時間, data = Temp)

Coefficients:

(Intercept)形態非正規 週あたり労働時間-9033

• 非正規の方が賃金が高い!!!

3.5 例: OLS Weight

ID	月収	形態	週あたり労働時間	OLS Weight
1	100	正規	50	-4.8
2	30	正規	40	3.9

3	30	正規	40	3.9
4	15	非正規	24	1.0
5	15	非正規	24	1.0
6	15	非正規	24	1.0

Call:

lm(formula = 月収 ~ 形態 + 週あたり労働時間, data = Temp)

Coefficients:

(Intercept) 形態非正規 週あたり労働時間 -250 97 7

• 正規労働者の賃金が上昇しているのに、より非正規の方が賃金が高くなっている

3.6 OLS **の**問題点

- 事例数がどれだけ増えても、ミスリードな推定結果を(統計的に有意に)導いてしまう
 - 平均値は必ずバランスするが
 - * どのような平均値にバランスするか不透明
 - * 負のウェイトを導いてしまう
 - そもそもの X の分断が大きいケースにおいて深刻
 - * 格差推定は典型例

3.7 実例

ethnicity	age	year	immigrant	Weight	N
cauc	89	1,978	yes	-0.484	2
cauc	88	1,978	yes	-0.459	2
cauc	88	1,982	yes	-0.296	1
cauc	87	1,982	yes	-0.268	1
cauc	80	1,978	yes	-0.245	2
cauc	86	1,982	yes	-0.24	1
cauc	85	1,982	yes	-0.212	1
cauc	89	1,986	yes	-0.178	1
cauc	77	1,978	yes	-0.16	1
cauc	83	1,982	yes	-0.156	1
cauc	76	1,978	yes	-0.131	2

cauc	82	1,982	yes	-0.127	3
cauc	87	1,986	yes	-0.12	1
cauc	75	1,978	yes	-0.102	3
cauc	81	1,982	yes	-0.098	1
cauc	74	1,978	yes	-0.072	1
cauc	80	1,982	yes	-0.068	2
cauc	85	1,986	yes	-0.061	1
cauc	89	1,990	yes	-0.049	1
cauc	73	1,978	yes	-0.042	4
cauc	79	1,982	yes	-0.038	4
cauc	84	1,986	yes	-0.031	2
cauc	88	1,990	yes	-0.018	1
cauc	72	1,978	yes	-0.012	1

4 Direct optimization

- より明示的に Moment Balance を達成する Weight を計算
 - 最適化問題を解く

4.1 最適化問題

• Weight についての最小化問題を解く

$$\min_{\omega}$$
 $\underbrace{b}_{\text{何らかの距離指標}}(\omega(D_1,X_1)) + ... + h(\omega(D_N,X_N))$

• 制約条件: d = 0/1 について

$$(\omega(d,x) \times X_l)$$
の平均 = Target (Moment Balance)
$$\omega(d,x)$$
の総和 = 1
$$\omega(d,x) \geq 0 \; (負のWeightを排除)$$

4.2 研究者が選ぶもの

- Y, D, X に加えて、h と Target を研究者が選ぶ必要がある
- Target = データ全体の平均 /D = 1 における平均など
- h

– Hainmueller (2012) : $h = \omega \log(\omega/q)$ (Entropy)

* デフォルトでは、q=1/事例数

– Zubizarreta (2015) : $h = \omega^2$

4.3 問題: OLS

$$\min \omega(D_1,X_1)^2 + .. + \omega(D_N,X_N)^2$$

• 制約条件: d = 0/1 について

$$\omega(d,x) \times X_l$$
の総和 = $Target$
$$\omega(d,x)$$
の総和 = 1

- Target は"勝手"に選ばれる
- Weight の非負制約が無い

4.4 実例: OLS VS Entropy Weight

4.5 実例: Balanced Comparison

4.6 Direct optimization の利点

- OLS と比べて
 - Target を研究者が選べる (次回の Decomposition 分析において特に重要)
 - Overlap が成り立っていない (X の分断が激しい) ため、Balanced Comparison ができない場合は、Errror Message ともに計算を停止してくれる
 - * ミスリードな結果を報告してしまうリスクが低い

Reference

Chattopadhyay, Ambarish, and José R Zubizarreta. 2022. "On the Implied Weights of Linear Regression for Causal Inference." *Biometrika*, asac058.

Hainmueller, Jens. 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies." *Political Analysis* 20 (1): 25–46.

Imai, Kosuke, and Marc Ratkovic. 2014. "Covariate Balancing Propensity Score." *Journal of the Royal Statistical Society Series B: Statistical Methodology* 76 (1): 243–63.

Imbens, Guido W. 2015. "Matching Methods in Practice: Three Examples." *Journal of Human Resources* 50 (2): 373–419.

Zubizarreta, José R. 2015. "Stable Weights That Balance Covariates for Estimation with Incomplete Outcome Data." *Journal of the American Statistical Association* 110 (511): 910–22.