

# planetmath.org

Math for the people, by the people.

## division algebra

Canonical name DivisionAlgebra
Date of creation 2013-03-22 16:52:03
Last modified on 2013-03-22 16:52:03
Owner Algeboy (12884)
Last modified by Algeboy (12884)

Numerical id 6

Author Algeboy (12884)

Entry type Definition
Classification msc 16K99
Related topic octonion
Related topic Octonion

Defines division algebra

Let K be a unital ring and A a K-algebra. Defining "division" requires special considerations when the algebras are non-associative so we introduce the definition in stages.

### 1 Associative division algebras

If A is an associative algebra then we say A is a division algebra if

(i) A is unital with identity 1. So for all  $a \in A$ ,

$$a1 = 1a = a$$
.

(ii) Also every non-zero element of A has an inverse. That is  $a \in A$ ,  $a \neq 0$ , then there exists a  $b \in A$  such that

$$ab = 1 = ba$$
.

We denote b by  $a^{-1}$  and we may prove  $a^{-1}$  is unique to a.

The standard examples of associative division algebras are fields, which are commutative, and the non-split quaternion algebra:  $\alpha, \beta \in K$ ,

$$\left(\frac{\alpha,\beta}{K}\right) = \left\{a_1 1 + a_2 i + a_3 j + a_4 k : i^2 = \alpha 1, j^2 = \beta 1, k^2 = -\alpha \beta 1, ij = k = -ji.\right\}$$

where  $x^2 - \alpha$  and  $x^2 - \beta$  are irreducible over K.

#### 2 Non-associative division algebras

For non-associative algebras A, the notion of an inverse is not immediate. We use x.y for the product of  $x, y \in A$ .

**Invertible as endomorphisms:** Let  $a \in A$ . Then define  $L_a : x \mapsto a.x$  and  $R_a : x \mapsto x.a$ . As the product of A is distributive, both  $L_a$  an  $R_a$  are additive endomorphisms of A. If  $L_a$  is invertible then we may call a "left invertible" and similarly, when  $R_a$  is invertible we may call a "right invertible" and "invertible" if both  $L_a$  and  $R_a$  are invertible.

In this model of invertible, A is a division algebra if, and only if, for each non-zero  $a \in A$ , both  $L_a$  and  $R_a$  invertible. Equivalently: the equations

a.x = b and y.a = b have unique solutions for nonzero  $a, b \in A$ . However, x and y need not be equal.

A common method to produce non-associative division algebras of this sort is through Schur's Lemma.

**Invertible in the product:** In some instances, the notion of invertible via endomorphisms is not sufficient. Instead, assume A has an identity, that is, an element  $1 \in A$  such that for all  $a \in A$ ,

$$1.a = a = a.1.$$

Next if  $a \in A$ , we say a is *invertible* if there exists a  $b \in A$  such that

$$a.b = 1 = b.a \tag{1}$$

and furthermore that for all  $x \in A$ ,

$$b.(a.x) = x = (x.a).b.$$
 (2)

Evidently (??) can be inferred from (??). This added assumption substitutes for the need of associativity in the proofs of uniqueness of inverses and in solving equations with non-associative products.

**Proposition 1.** If A is a finite dimensional algebra over a field, then invertible in this sense forces both  $L_a$  and  $R_a$  to be invertible as well.

Proof. Let  $x \in A$ . Then  $xL_1 = 1.x = x = b.(a.x) = xL_aL_b$ . So  $L_1 = L_aL_b$ . As  $L_1$  is the identity map,  $L_a$  is injective and  $L_b$  is surjective. As A is finite dimensional, injective and surjective endomorphisms are bijective.

In this model, a non-associative algebra is a division algebra A if it is unital and every non-zero element is invertible.

#### 3 Alternative division algebras

The standard examples of non-associative division algebras are actually alternative alegbras, specifically, the composition algebras of fields, non-split quaternions and non-split octonions – only the latter are actually not associative. Invertible in the octonions is interpreted in the second stronger form.

**Theorem 2** (Bruck-Klienfeld). Every alternative division algebra is either associative or a non-split octonion.

This result is usually followed by two useful results which serve to omit the need to consider non-associative examples.

**Theorem 3** (Artin-Zorn, Wedderburn). A finite alternative division algebra is associative and commutative, so it is a finite field.

**Theorem 4.** An alternative division algebra over an algebraically closed field is the field itself.