MATH 51 Homework #3
Tamir Enkhjargal
April 2019

Section 1.4

10.

Let C(x) be the statement "x has a cat" Let D(x) be the statement "x has a dog" Let F(x) be the statement "x has a ferret"

- a $\exists !x, (C(x) \land D(x) \land F(x))$
- b $\forall x, (C(x) \lor D(x) \lor F(x))$
- c $\exists x, (C(x) \land F(x) \land \neg D(x))$
- d $\forall x, \neg (C(x) \land D(x) \land F(x))$
- e $(\exists x, C(x)) \wedge (\exists x, D(x)) \wedge (\exists x, F(x))$

18.

- a $P(-2) \vee P(-1) \vee P(0) \vee P(1) \vee P(2)$
- b $P(-2) \wedge P(-1) \wedge P(0) \wedge P(1) \wedge P(2)$
- c $\neg P(-2) \lor \neg P(-1) \lor \neg P(0) \lor \neg P(1) \lor \neg P(2)$
- d $\neg P(-2) \land \neg P(-1) \land \neg P(0) \land \neg P(1) \land \neg P(2)$
- e $\neg (P(-2) \lor P(-1) \lor P(0) \lor P(1) \lor P(2))$
- $f \neg (P(-2) \land P(-1) \land P(0) \land P(1) \land P(2))$

32.

- a Domain: D all dogs. F(D) = "D has fleas". $\forall D, F(D)$.
 - Negation: $\exists D, \neg F(D)$. There is a dog that doesn't have fleas.
- b Domain: H all horses. A(H) = "H can add". $\exists H, A(H)$.
 - Negation: $\forall H, \neg A(H)$. All horses can't add.
- c Domain: K all koalas. C(K) = "K can climb". $\forall K, C(K)$.
 - Negation: $\exists K, \neg C(K)$. There exists a koala that can't climb.
- d Domain: M all monkeys. F(M) = "M can speak French. $\forall M, \neg F(M)$.
 - Negation: $\exists M, F(M)$. There is a monkey that can speak French.
- e Domain: P all pigs. S(P) = "P can swim." F(P) = "P can catch fish". $\exists P, (S(P) \land F(P))$
 - Negation: $\forall P, (\neg S(P) \lor \neg F(P))$. All pigs can't swim or can't catch fish.

36.

- a $\exists x, (-2 \ge x \ge 3)$
- b $\exists x, (0 > x \ge 5)$
- c $\forall x, (-4 > x > 1)$
- d $\forall x, (-5 \ge x \ge -1)$

46.

These are not logically equivalent. The reasoning comes from when you choose your x. With $\forall x, (...)$, you choose a single x that is input into both P(x) and Q(x). On the other hand, with $\forall x, P(x) \leftrightarrow \forall x, Q(X)$ you are stating that for all x you choose for P(x) works for any other all x for Q(x). Because of this difference, the outputs for P(x) or Q(x) can be different.