

Prof Me Eng Marcelo Bianchi Data Scientist

Aula 7 – Machine Learning Data Exploration, Data Visualization and Multiple Linear Regression

Machine Learning

Data Exploration

Multiple Linear Regression

Step 1 – Data Exploration / Data Visualization Step 2 – Multiple Linear Regression

Google Colaboratory

Nossa Missão

Criar um Sistema de análise preditiva para seguros

- Dataset contém os seguintes atributos:
- •Age, Sex, BMI (Base Month Income), Children, Smoker, Region and their charges

Objetivo

• Utilizar o modelo preditivo para realizar predições dos valores cobrados para os clientes (baseado no perfil).

Dataset

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

```
import pandas as pd

# Uncomment this line if using this notebook locally
# insurance = pd.read_csv('./data/insurance/insurance.csv')

file_name = "https://raw.githubusercontent.com/rajeevratan84/datascienceforbusiness/master/insurance.csv"
insurance = pd.read_csv(file_name)

# Preview our data
insurance.head()
```

[2] insurance.info()

[3] insurance.describe()

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

```
[4] print ("Rows : " , insurance.shape[0])
    print ("Columns : " , insurance.shape[1])
    print ("\nFeatures : \n" , insurance.columns.tolist())
    print ("\nMissing values : ", insurance.isnull().sum().values.sum())
    print ("\nUnique values : \n",insurance.nunique())
    Rows
            : 1338
    Columns : 7
    Features :
     ['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges']
    Missing values: 0
    Unique values :
     age
                  47
    sex
                  2
    bmi
                548
    children
                  6
    smoker
    region
    charges
               1337
    dtype: int64
[5] insurance.corr()
```

	age	bmi	children	charges
age	1.000000	0.109272	0.042469	0.299008
bmi	0.109272	1.000000	0.012759	0.198341
children	0.042469	0.012759	1.000000	0.067998
charges	0.299008	0.198341	0.067998	1 000000

```
[6] import matplotlib.pyplot as plt
    def plot_corr(df,size=10):
         '''Function plots a graphical correlation matrix for each pair of columns in the dataframe.
        Input:
            df: pandas DataFrame
            size: vertical and horizontal size of the plot'''
        corr = df.corr()
        fig, ax = plt.subplots(figsize=(size, size))
        ax.legend()
        cax = ax.matshow(corr)
        fig.colorbar(cax)
         plt.xticks(range(len(corr.columns)), corr.columns, rotation='vertical')
        plt.yticks(range(len(corr.columns)), corr.columns)
    plot corr(insurance)
```

No handles with labels found to put in legend.

11

plot_corr(insurance)

- insurance['sex'].value_counts().plot(kind='bar')
- [9] insurance['smoker'].value_counts().plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7f2ec6b10290>


```
[10] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))
    insurance.plot(kind='scatter', x='age', y='charges', alpha=0.5, color='green', ax=axes[0], title="Age vs. Charges")
    insurance.plot(kind='scatter', x='bmi', y='charges', alpha=0.5, color='red', ax=axes[1], title="Sex vs. Charges")
    insurance.plot(kind='scatter', x='children', y='charges', alpha=0.5, color='blue', ax=axes[2], title="Children vs. Charges")
    plt.show()
```


import seaborn as sns # Imorting Seaborn library
pal = ["#FA5858", "#58D3F7"]
sns.scatterplot(x="bmi", y="charges", data=insurance, palette=pal, hue='smoker')

<matplotlib.axes._subplots.AxesSubplot at 0x7f2eb8441c10>

<seaborn.axisgrid.FacetGrid at 0x7f2eb7d68590>


```
import seaborn as sns
[15]
    sns.set(style="ticks")
    pal = ["#FA5858", "#58D3F7"]
    sns.pairplot(insurance, hue="smoker", palette=pal)
    plt.title("Smokers")
    Text(0.5, 1.0, 'Smokers')
          60
          50
        g 40 -
          30
          20
          50
          40
          20
                                                                                             smoker
                                                                          ....
                                   . . . . . .
                                                                                            yes
                                                                                             no
                -
                                     -
                                                                          OCCUPATION OF
        children 3
                                    COMPANIES CONTRACTOR OF THE
                                                                         -
                 .....
                                   .....
                                                                         CHARLEST IN SURE
                ACTION MEDICAL PROPERTY.
                                   **********
                                                                         -
                 ****
                                                                         Smokers
        60000
        50000
     30000
30000
        20000
       10000
                                                                            25000 50000 75000
                 25
                       50
                             75
                                   20
                                                          2 4
children
                                       bmi
                                                                             charges
                    age
```

Preparing Data for Machine Learning Algorithms

```
[16] insurance.head()
```

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

- insurance['region'].unique()
- $\begin{tabular}{ll} \square, & array(['southwest', 'southeast', 'northwest', 'northeast'], & dtype=object) \end{tabular}$
- [18] insurance.drop(["region"], axis=1, inplace=True)
 insurance.head()

	age	sex	bmi	children	smoker	charges
0	19	female	27.900	0	yes	16884.92400
1	18	male	33.770	1	no	1725.55230
2	28	male	33.000	3	no	4449.46200
3	33	male	22.705	0	no	21984.47061
4	32	male	28.880	0	no	3866.85520

```
[19] # Changing binary categories to 1s and 0s
   insurance['sex'] = insurance['sex'].map(lambda s :1 if s == 'female' else 0)
   insurance['smoker'] = insurance['smoker'].map(lambda s :1 if s == 'yes' else 0)
   insurance.head()
```

	age	sex	bmi	children	smoker	charges
0	19	1	27.900	0	1	16884.92400
1	18	0	33.770	1	0	1725.55230
2	28	0	33.000	3	0	4449.46200
3	33	0	22.705	0	0	21984.47061
4	32	0	28.880	0	0	3866.85520

```
[20] X = insurance.drop(['charges'], axis = 1)
    y = insurance.charges
```

Modeling our Data

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
lr = LinearRegression().fit(X_train, y_train)

y_train_pred = lr.predict(X_train)
y_test_pred = lr.predict(X_test)

print(lr.score(X_test, y_test))
```

20

Score is the R2 score, which varies between 0 and 100%. It is closely related to the MSE but not the same.

, " ... is the proportion of the variance in the dependent variable that is predictable from the independent variable(s)." Another definition is "(total variance explained by model) / total variance." So if it is 100%, the two variables are perfectly correlated, i.e., with no variance at all. A low value would show a low level of correlation, meaning a regression model that is not valid, but not in all cases.


```
[34] # Normalize the data
    from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)

[35] pd.DataFrame(X_train).head()
```


[36] pd.DataFrame(y_train).head()

charges 1075 4562.84210 131 13616.35860 15 1837.23700 1223 26125.67477 1137 3176.28770

```
[37] from sklearn.linear_model import LinearRegression # Import Linear Regression model

multiple_linear_reg = LinearRegression(fit_intercept=False) # Create a instance for Linear Regression model
multiple_linear_reg.fit(X_train, y_train) # Fit data to the model

LinearRegression(copy_X=True, fit_intercept=False, n_jobs=None, normalize=False)
```

NOTE: n_estimators represents the number of trees in the forest. Usually the higher the number of trees the better to learn the data. However, adding a lot of trees can slow down the training process considerably, therefore we do a parameter search to find the sweet spot.

```
[38] from sklearn.model_selection import cross_val_predict # For K-Fold Cross Validation
    from sklearn.metrics import r2_score # For find accuracy with R2 Score
    from sklearn.metrics import mean_squared_error # For MSE
    from math import sqrt # For squareroot operation
```

Evaluating Multiple Linear Regression Model

```
# Prediction with training dataset:
y_pred_MLR_train = multiple_linear_reg.predict(X_train)
# Prediction with testing dataset:
v pred MLR test = multiple linear reg.predict(X test)
# Find training accuracy for this model:
accuracy MLR train = r2 score(y train, y pred MLR train)
print("Training Accuracy for Multiple Linear Regression Model: ", accuracy_MLR_train)
# Find testing accuracy for this model:
accuracy_MLR_test = r2_score(y_test, y_pred_MLR_test)
print("Testing Accuracy for Multiple Linear Regression Model: ", accuracy MLR test)
# Find RMSE for training data:
RMSE MLR train = sqrt(mean squared error(y train, y pred MLR train))
print("RMSE for Training Data: ", RMSE_MLR_train)
# Find RMSE for testing data:
RMSE_MLR_test = sqrt(mean_squared_error(y_test, y_pred_MLR_test))
print("RMSE for Testing Data: ", RMSE_MLR_test)
# Prediction with 10-Fold Cross Validation:
y_pred_cv_MLR = cross_val_predict(multiple_linear_reg, X, y, cv=10)
# Find accuracy after 10-Fold Cross Validation
accuracy_cv_MLR = r2_score(y, y_pred_cv_MLR)
print("Accuracy for 10-Fold Cross Predicted Multiple Linaer Regression Model: ", accuracy cv MLR)
```

Training Accuracy for Multiple Linear Regression Model: -0.48956074576438935 Testing Accuracy for Multiple Linear Regression Model: -0.3241102081110292 RMSE for Training Data: 14589.307283298092 RMSE for Testing Data: 14438.16627882823 Accuracy for 10-Fold Cross Predicted Multiple Linaer Regression Model: 0.717113419200113

R^2 (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

▼ Let's test our best regression on some new data

```
[41] input_data = { 'age': [35],
                  'sex': ['male'],
                  'bmi': [26],
                  'children': [0],
                  'smoker': ['no'],
                  'region': ['southeast']}
     input_data = pd.DataFrame(input_data)
     input_data
        age sex bmi children smoker region
     0 35 male 26 0
                                    no southeast
[42] # Our simple pre-processing
    input_data.drop(["region"], axis=1, inplace=True)
    input_data['sex'] = input_data['sex'].map(lambda s :1 if s == 'female' else 0)
    input data['smoker'] = input data['smoker'].map(lambda s :1 if s == 'yes' else 0)
    input data
        age sex bmi children smoker
     0 35 0 26 0
[43] # Scale our input data
    input_data = sc.transform(input_data)
    input_data
    array([[ 3.50000000e+01, 4.25050490e-17, 2.60000000e+01,
             9.74074040e-17, -7.79259232e-17]])
[44] # Reshape our input data in the format required by sklearn models
    input_data = input_data.reshape(1, -1)
    print(input_data.shape)
     input_data
    (1, 5)
     array([[ 3.50000000e+01, 4.25050490e-17, 2.60000000e+01,
             9.74074040e-17, -7.79259232e-17]])
```

Predição

```
[46] # Get our predicted insurance rate for our new customer
    multiple_linear_reg.predict(input_data)
    #random_forest_reg.predict(input_data)
array([174707.25423291])
```


Muito obrigado!