ECONOMICS 2 Tutorial 6

Diego Battiston

diego.battiston@ed.ac.uk

Questions 1,5,6,14,16

http://personal.lse.ac.uk/BATTISTO/T6_slides.pdf

The Black Death – bubonic plague – wiped out between a third and a half of the population of medieval Western Europe. In England, the plague struck in 1348-1349, 1360-1361, 1369, and 1375. The average real wage in England rose by 25% in the second half of the fourteenth century compared to the first half. Explain why that happened. What do you think happened to real prices of capital and land?

Optimal Hiring Rule:

$$MRP_L = MC_L$$

 $MR \times MP_L = MC_L$

In words: What you earn for one extra worker = what the extra worker costs

- In competitive markets (of product) MR = p
- In competitive markets (of labour) $MC_L = w$

$$p.MP_L = w$$

The Black Death – bubonic plague – wiped out between a third and a half of the population of medieval Western Europe. In England, the plague struck in 1348-1349, 1360-1361, 1369, and 1375. The average real wage in England rose by 25% in the second half of the fourteenth century compared to the first half. Explain why that happened. What do you think happened to real prices of capital and land?

 $\frac{w}{p}$ increased because \uparrow MPL (see graph in whiteboard)

 $\frac{r}{p}$ decreased because \downarrow MPK (see graph in whiteboard)

A firm is Monopolist AND Monopsonist:

- Demand product P = 100 Q,
- Production function Q = 4L
- Labour Supply W = 40 + 2L

Find L and W (you can also find Q and p)

Optimal Hiring Rule:

$$MR \times MP_L = MC_L$$

- Monopoly: MR = 100 2Q
- Monopsony: Total cost of hiring is $w(L) \cdot L = (40 + 2L)L$

Then,
$$MC_L = 40 + 4L$$

Replace in the equation and solve for L

$$MR \times MP_L = MC_L$$
 $(100 - 2Q) 4 = 40 + 4L$
 $(100 - 8L)4 = 40 + 4L$
 $L = 10$

$$W = 60$$

- a) Firm is Monopsonist in labour market BUT price taker in product market:
 - P = 8
 - $MP_L = 5$
 - Labour Supply W = 10 + L

Find L, W, Q

Replace in the optimal condition equation and solve for L

$$MR \times MP_L = MC_L$$

$$8 \times 5 = 10 + 2L$$

$$L = 15$$

$$W = 25$$

$$Q = 75$$

- b) Firm is Monopsonist in labour market AND Monopolist in product market:
 - P = 102 1.96Q
 - $MP_L = 5$
 - Labour Supply W = 10 + L

Find L, W, Q, P

$$MR \times MP_L = MC_L$$

 $(102 - 3.92Q) \times 5 = 10 + 2L$
 $(102 - 3.92(5L)) \times 5 = 10 + 2L$

$$L = 5$$
 $W = 15$
 $Q = 25$
 $P = 53$

c) Starting from L=5 and w=15: The firm can hire additional workers (at higher wage) but it does not have to pay more to already hired workers.

Will Lincrease?

Extra worker:

- Will cost W=17
- Will produce 5 units, but price will drop from 53 to $102 1.96 \times 30 = 43.2$
 - Raises revenues by $5 \times 43.2 = 216$
 - But decreases revenues of (previous units) by $25 \times (53 43.2) = 245$

Not convenient to hire an extra worker

Short answer: $MRP_L(L) = (102 - 3.92(5L)) \times 5 < 0$ if L=6

Competitive labour market:

$$L_S = 50w - 100$$

 $L_D = 650 - 25w$

a) Equilibrium if no union

$$L_S = L_D$$

$$650 - 25w = 50w - 100$$

$$w = 10$$

$$L = 400$$

b) Union maximizes rents of workers

This problem is similar to a Monopolist "selling labour" and facing whole demand for it

- "MR" = 26 0.08L (labour demand with x2 slope)
- "MC" = 2 + 0.02L (labour supply, i.e. cost of providing one extra worker)

Equating both, we get L=240 and from the labour demand, w=16.4

c) Union maximizes aggregated wages

This problem is similar to a Monopolist maximizing revenues

• Aggregated Wages = $w^d(L)$. L = (26 - 0.04L)L

• Derivative = 0 gives $\, \mathbf{L} = \mathbf{325} \,$, then from the labour demand $\mathbf{w} = \mathbf{13} \,$

Given
$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 5 \\ 1 & -3 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 7 & -5 & 3 \\ 1 & 4 & -1 \end{bmatrix}$, find \mathbf{AB}

Matrix Multiplication

$$(2,3,5).\begin{pmatrix} 1\\7\\1 \end{pmatrix} = (2 \times 1) + (3 \times 7) + (5 \times 1) = 28$$

$$\begin{bmatrix} 2 & 3 & 5\\1 & -3 & 1\\1 & -1 & 2 \end{bmatrix}.\begin{bmatrix} 1\\7\\1 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 28\\1 & 4 & -1 \end{bmatrix}$$

Given
$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 5 \\ 1 & -3 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 7 & -5 & 3 \\ 1 & 4 & -1 \end{bmatrix}$, find \mathbf{AB}

Matrix Multiplication

$$\begin{pmatrix}
 1 \\
 7 \\
 1
 \end{pmatrix} = -19$$

$$\begin{bmatrix}
 2 & 3 & 5 \\
 1 & -3 & 1 \\
 1 & -1 & 2
 \end{bmatrix}
 \cdot
 \begin{bmatrix}
 1 & 2 & 3 \\
 7 & -5 & 3 \\
 4 & -1
 \end{bmatrix}
 =
 \begin{bmatrix}
 28 \\
 -19
 \end{bmatrix}$$

Given
$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 5 \\ 1 & -3 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 7 & -5 & 3 \\ 1 & 4 & -1 \end{bmatrix}$, find \mathbf{AB}

Matrix Multiplication

$$\begin{bmatrix} 2 & 3 & 5 \\ 1 & -3 & 1 \\ 1 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 7 & -5 & 3 \\ 1 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 28 & 9 & 10 \\ -19 & 21 & -7 \\ -4 & 15 & -2 \end{bmatrix}$$

Transition probability matrix is given by:

$$\mathbf{P} = \begin{bmatrix} Pr(E, E) & Pr(E, U) \\ Pr(U, E) & Pr(U, U) \end{bmatrix} = \begin{bmatrix} 0.9 & 0.7 \\ 0.1 & 0.3 \end{bmatrix}$$

Initial State
$$\mathbf{x}_0 = \begin{bmatrix} E \\ U \end{bmatrix} = \begin{bmatrix} 0 \\ 1200 \end{bmatrix}$$

a) What will be the number of unemployed people after (i) 2 periods; (ii) 3 periods; (iii) 5 periods; (iv) 10 periods?

First period:

We start with 0 employed, so the only transitions are $U \rightarrow E$ (1200x0.7) = 840 and $U \rightarrow U$ (1200x0.3)=360

Note this is similar to doing:

$$\begin{bmatrix} 0.9 & 0.7 \\ 0.1 & 0.3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1200 \end{bmatrix} = \begin{bmatrix} 840 \\ 360 \end{bmatrix}$$
$$P \cdot \begin{bmatrix} 0 \\ 1200 \end{bmatrix} = \begin{bmatrix} 840 \\ 360 \end{bmatrix}$$

Second period:

Now, all possible transitions:

$$E \rightarrow E = 840 \times 0.9$$
, $E \rightarrow U = 840 \times 0.1$, $U \rightarrow E = 360 \times 0.7$, $U \rightarrow U = 360 \times 0.3$

$$P. \begin{bmatrix} 840 \\ 360 \end{bmatrix} = \begin{bmatrix} 1008 \\ 192 \end{bmatrix}$$

We can write it as

$$P.\left(P.\left[\begin{array}{c}0\\1200\end{array}\right]\right) = \left[\begin{array}{c}1008\\192\end{array}\right]$$

Or

$$P^2$$
. $\begin{bmatrix} 0 \\ 1200 \end{bmatrix}$

After n periods:

$$P^n$$
. $\begin{bmatrix} 0 \\ 1200 \end{bmatrix}$

b) Steady State

Option 1: Keep iterating P^n to see the convergency matrix

Option 2: Write the dynamic of unemployment

$$U_n = 0.1E_{n-1} + 0.3U_{n-1}$$

$$U_n = 0.1(1200 - U_{n-1}) + 0.3U_{n-1}$$

In steady State: $U_n = U_{n-1} = U$

$$U = 0.1(1200 - U) + 0.3U$$

$$U = 150$$