Carnegie Mellon University

Multilingual Neural Machine Translation with Soft Decoupled Encoding

Hieu Pham ¹,² Xinyi Wang

(1): Carnegie Mellon University

Philip Arthur ³

(2): Google Brain

Graham Neubig ¹

(3): Monash University

Multilingual Neural Machine Translation

• Parameter-efficient for low-resource languages

- Subword is suboptimal for multilingual NMT
- o Joint: low-resource language gets bad segmentation
- o Separate: little lexical overlap between languages
- Training subwords multilingually is difficult

Lexical Representations

• What is a good lexical representation?

- o Accurate representation: words of similar meaning close to each other
- o Maximize parameter sharing between languages
- Three Steps for lexical representation

Existing Methods

Method	Lex Unit	Embedding	Encoding
Johnson et. al. 2016	Subword	Lookup	Identity
Lee et. al. 2017	Character	Lookup	Identity
Gu et. al. 2018	Subword	Lookup	Lookup + Latent
Ataman et. al. 2018	Word	character n -gram	Identity

• Their Properties

Method	Acc	LexShare	Speed
Johnson et al. 2016			
Lee et al. 2017			
Gu et al. 2018			
Ataman et al. 2018			
SDE (ours)			

Soft Decoupled Encoding (SDE)

- 1: Lexical Embedding
 - $c(w) = \tanh(\text{BoN}(w) \cdot \mathbf{W}_{c}).$
- Represents spelling
- o Fr: couleur; En: color
- 2: Language Specific Transform

$$c_i(w) = \tanh(c(w) \cdot \mathbf{W}_{L_i}),$$

- Captures consistent spelling shift
- o Cs: Kryštof; En: Chrsitopher

Analysis

• 3: Latent Semantic Embedding

o Fr: bonjour; En: hello

• 4: Residual Connection

 $e_{\text{latent}}(w) = \text{Softmax}(c_i(w) \cdot \mathbf{W}_s^{\top}) \cdot \mathbf{W}_s.$

Semantic meaning shared by all langs

 $e_{\text{SDE}}(w) = e_{\text{latent}}(w) + c_i(w).$

Combines lexical and semantic meaning

• Why does SDE work?

- o More gains for words split into more BPE pieces (left)
- o More gains for words with similar related language words (right)
- What is the latent semantic embedding like?

- Words of similar meaning attend to similar latent space
- Visualization of the word embedding from SDE

- Words of similar meaning are moved closer
- Some translation examples!

- Some diameter examples.					
\mathbf{glg}	eng	sub-sep	SDE		
Pero non temos a tec- noloxía para resolver iso, temos?	But we don't have a technology to solve that, right?	But we don't have the technology to solve that, we have?	But we don't have the technology to solve that, do we?		
Se queres saber sobre o clima, preguntas a un climatólogo.	If you want to know about climate, you ask a climatologist.	If you want to know about climate, you're asking a college friend.	If you want to know about climate, they ask for a weather.		
Non é dicir que si tivesemos todo o diñeiro do mundo, non o quereríamos facer.	It's not to say that if we had all the money in the world, we wouldn't want to do it.	It's not to say that we had all the money in the world, we didn't want to do it.	It's not to say that if we had all the money in the world, we wouldn't want to do it.		

Experiments

- LRL Train Dev Test HRL Train Datasets 182ko TED: 58 langs to Eng 248664208ko 4 low-resource languages 100710.0k682por o paired with high-resource 61.5k 2271 2445
- Main Results

Lex Unit	Model	aze	bel	glg	slk
Word	Lookup	7.66	13.03	28.65	25.24
Sub-joint	Lookup	9.40	11.72	22.67	24.97
Sub-sep	Lookup (re-imp Neubig et. al.)	10.90	16.17	28.10	28.50
Sub-sep	UniEnc (re-imp Gu et. al.)	4.80	8.13	14.58	12.09
Word	SDE	11.82*	18.71^{*}	30.30^{*}	28.77^{\dagger}

Ablations

Model	aze	bel	glg	slk
SDE	11.82	18.71	30.30	28.77
-Lang-Specific Trans.-Latent-Sem Emb.	12.89*	18.13^{\dagger}	30.07	29.16^{\dagger}
-Latent-Sem Emb.	7.77*	15.66*	29.25^{*}	28.15^*
-Lexical Emb.	4.57*	8.03*	13.77*	7.08*

- Edit Distance
- Lexical embedding has the largest effect
- Lang-specific transform helps more for lang pairs with similar lexicons

Code

• Available here: https://github.com/cindyxinyiwang/SDE