Analysis 2 Hausaufgabenblatt 01

Patrick Gustav Blaneck

Abgabetermin: 05. April 2021

1. Berechnen Sie die 1. Ableitungen von	
(a) $f(x)$	$=\sin(\cos(x))$
Lċ	ösung:
(b) $g(x)$	$=e^{x^3-\sin^2(x)}$
Lċ	ösung:
(c) $h(x)$	$=3x^2+4x+(3-x^2)^4$
Lċ	ösung:
(d) $k(x)$	$=\frac{1}{\tan\arcsin(x)}$
Lċ	ösung:
(e) $l(x)$	$=e^{3\ln(x^2)}$
Lċ	ösung:
(f) $m(x) = e^{x \cdot \sin^2(5\sqrt{x} + 17)} \cdot e^{x \cdot \cos^2(5\sqrt{x} + 17)}$	
Lċ	ösung:

2. Berechnen Sie die Normen $\left\|\cdot\right\|_1,\,\left\|\cdot\right\|_2$ und $\left\|\cdot\right\|_\infty$ für die folgenden Vektoren:

(a)
$$\begin{pmatrix} 0 \\ 2 \\ 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 9 \\ 0 \\ 6 \\ 0 \end{pmatrix}$$

Lösung:

(b)
$$\begin{pmatrix} 2\\3\\4 \end{pmatrix}$$
, $\begin{pmatrix} 5\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 10\\2\\0 \end{pmatrix}$

Hausaufgabenblatt 01 Analysis 2

3. Berechnen Sie die partiellen Ableitungen erster Ordnung der folgenden Funktionen:

(a) $f(x,y) = \arctan(\frac{x}{y})$

Lösung:

(b) $f(x,y) = \tan x^2 + y^2$

Lösung:

(c) $f(x,y) = \sqrt{9 - x^2 - y^2}$

- 4. Berechnen Sie die partiellen Ableitungen erster Ordnung der folgenden Funktionen:
 - (a) $f(x,y) = 2x^2 3xy 4y^2$

Lösung:

(b) $f(x,y) = \frac{x^2}{y} + \frac{y^2}{x}, x \neq 0, y \neq 0$

Lösung:

(c) $f(x,y) = \sin(2x + 3y)$

- 5. Lassen sich folgende Funktionen im Nullpunkt stetig ergänzen und, wenn ja, wie?
 - (a) $f(x,y) = \frac{xy^2}{x^2 + y^8}$

Lösung:

(b) $f(x,y) = \frac{x^3 + x^2 - y^4 + y^2}{x^2 + y^2}$