Note on an arithmetical property of recurring series.

Von

Morgan Ward in Pasadena.

1. In 1921, Siegel¹) proved by the use of Thue's theorem a result equivalent to the following:

"If the sequence

$$(U) \qquad \qquad U_{\mathfrak{o}}, U_{\mathfrak{i}}, U_{\mathfrak{g}}, \dots$$

is a rational solution of the difference equation

(1.1) $\Omega_{n+3} = P\Omega_{n+2} - Q\Omega_{n+1} + \Omega_n$, P,Q rational integers, then only a finite number of terms of the sequence can vanish unless the polynomial

$$(1.2) F(x) = x^3 - Px^2 + Qx \pm 1$$

associated with (1.1) is of one or the other of the forms

$$(x\pm 1)(x^3+1)$$
 or $(x\pm 1)(x^3\pm x+1)$ ".

I wish to show here that as a simple consequence of the fundamental results of Delaunay²) and Nagell³) concerning the solution of the cubic diophantine equation

(1.3)
$$\Phi(u, v) = A u^3 + B u^2 v + C u v^2 + D v^3 = 1,$$

 A, B, C, D rational integers,

that in general at most three terms of the sequence (U) can vanish provided that the discriminant of the associated polynomial is negative 4).

2. For let us assume that the polynomial F(x) is irreducible in the field of rationals, has a negative discriminant, and that the sequence (U) contains $N \geq 1$ vanishing terms. Without affecting N, we may assume that the constant Term of F(x) is +1, and that the first non-vanishing term of (U) is U_0 , and that U_1 and U_2 are co-prime integers.

If (X), (Y), (Z) denote those particular solutions of (1,1) with the initial values 1,0,0;0,1,0;0,0,1 respectively, then it is easily shown that $U_n = U_0 X_n + U_1 Y_n + U_2 Z_n$, $\alpha^n = X_n + Y_n \alpha + Z_n \alpha^2$, $n = 0,1,\ldots$,

¹⁾ Tohoku Journal 20 (1921), S. 26-31.

²) Compt. Rend. 171 (1920), S. 136.

³⁾ Math. Zeitschr. 28 (1928), S. 10-29.

⁴⁾ If the discriminant of F(x) is positive, so that all the roots of F(x) = 0 are real, the finiteness of the number of zeros in the sequence (U) is trivial, and extends to the case when P, Q, U_0 , U_1 , U_2 are real numbers and the constant term of F(x) is not unity.

212 M. Ward.

where α is any root of F(x)=0. Since $U_0=0$, $(U_1,U_2)=1$, $U_n=0$ when and only when $Y_n=U_2\,T_n$, $Z_n=-\,U_1\,T_n$, T_n an integer. Thus $U_n=0$ when and only when the norm of the algebraic integer $X_n+\,T_n\,(U_2\,\alpha-U_1\,\alpha^2)$ is unity; that is when and only when

(2.1)
$$AX_n^3 + BX_n^2 T_n + CX_n T_n^2 + DT_n^3 = 1$$

where

$$A = 1,$$
 $C = Q U_2^3 + (3 - PQ) U_1 U_2 + (Q^2 - 2P) U_1^3,$ $B = P U_2 + (2Q - P^2) U_1,$ $D = U_2^3 - P U_2^2 U_1 + Q U_2 U_1^2 - U_1^3.$

Hence $u = X_n^*$, $v = T_n$ is a solution of the diophantine equation (1.2).

Owing to our hypotheses upon F(x), the form $\Phi(u, v)$ is irreducible and has a negative discriminant. Therefore, by Nagell's main theorem⁵), the diophantine equation has at most three integral solutions unless the form $\Phi(u, v)$ is equivalent to $u^3 + u v^2 + v^3$ or $u^3 - u^2 v + u v^2 + v^3$, when it has exactly four solutions, or to $u^3 - u^2 v + v^3$ when it has exactly five solutions.

Since F(x) is irreducible, we cannot have $X_n = X_{n'}$, $T_n = T_{n'}$ unless n = n'. Hence the sequence (U) has in general at most three vanishing terms, and never more than five if the discriminant of F(x) is negative.

- 3. It is possible to obtain a result analogous to Siegel's for the quartic difference equation
- (3.1) $\Omega_{n+4} = P\Omega_{n+3} Q\Omega_{n+2} + R\Omega_{n+1} \pm \Omega_n$, P, Q, R rational integers by a similar use of Thue's theorem; namely,

"If the sequence

$$(V) V_0, V_1, V_2, \dots$$

is a rational solution of the difference equation (3.1), and if a is a fixed positive integer, then there are only a finite number of pairs of terms

$$V_{n_1}, V_{n_1+a}; V_{n_2}, V_{n_2+a}; V_{n_3}, V_{n_3+a}; \dots \qquad n_1 < n_2 < n_3 < \dots$$

of the sequence (V) can vanish, provided that the associated polynomial

(3.2)
$$G(x) = x^4 - Px^3 + Qx^2 - Rx \pm 1$$

is irreducible, and that its roots cannot be obtained by solving a chain of quadratic equations".

We may assume that V_0 , V_a is the first pair of terms of (V) to vanish, and that V_1 , V_2 , V_3 are co-prime rational integers.

⁵⁾ Math. Zeitschr. 28 (1928), S. 10.