STC15F2K60S2 芯片 PWM 的应用

1.目的

脉宽调制(PWM, Pulse Width Modulation)是一种使用程序来控制波形占空比、周期、相位波形的技术,在三相电机驱动、 D/A 转换等场合有广泛的应用。

STC15 系列单片机的 PCA 模块可以通过设定各自的寄存器 PCA_PWMn (n=0,1,2.下同)中的位 EBSn_1/PCA_PWMn.7 及 EBSn_0/PCA_PWMn.6, 使其工作于 8 位 PWM 或 7 位 PWM 或 6 位 PWM 模式。

2.与 CCP/PWM/PCA 应用有关的特殊功能寄存器

符号	描述	位地址及其符号							复位值		
10 🗁	通应	地址	B7	B6	B5	B4	B3	B2	B1	B0	
CCON	PCA Control Register	D8H	CF	CR	-	-	-	CCF 2	CCF 1	CCF 0	00xx xx00
CMOD	PCA Mode Register	D9H	CIDL	-	-	-	CPS2	CPS1	CPS0	ECF	0xxx 0000
CCAPM0	PCA Module 0 Mode Register	DAH	-	ECO M0	CAPP 0	CAP N0	MAY 0	TOG0	PWM 0	ECCF 0	x000 000
CCAPM1	PCA Module 1 Mode Register	DBH	-	ECO M1	CAPP 1	CAP N1	MAY 1	TOG1	PWM 1	ECCF 1	x000 0000
CCAPM2	PCA Module 2 Mode Register	DCH	-	ECO M2	CAPP 2	CAP N2	MAY 2	TOG2	PWM 2	ECCF 2	x000 0000
CL	PCA Base Timer	E9H									0000
СН	PCA Base Timer High	F9H									0000
CCAP0L	PCA Module-0 Capture Register Low	EAH									0000
CCAP0H	PCA Module-0 Capture Register High	FAH									0000 0000
CCAP1L	PCA Module-1 Capture Register Low	ЕВН									0000 0000
CCAP1H	PCA Module-1 Capture Register High	FBH									0000 0000
CCAP2L	PCA Module-2 Capture Register Low	ECH									0000 0000
CCAP2H	PCA Module-2Capture Register High	FCH									0000 0000
PCA_PW M0	PCA PWM Mode Auxiliary Register 0	F2H	EBS0 _1	EBS0 _0	-	-	-	-	EPC0 H	EPC0 L	00xx xx00
PCA_PW M1	PCA PWM Mode Auxiliary Register 1	F3H	EBS1 _1	EBS1 _0	-	-	-	-	EPC1 H	EPC1	00xx xx00
PCA_PW M2	PCA PWM Mode Auxiliary Register 2	F4H	EBS2 _1	EBS2 _0	-	-	-	_	EPC2 H	EPC2 L	00xx xx00
AUXRI P_SW1	Auxiliary Register 1	A2H	S1_S1	S1_S0	CCP_ S1	CCP_ S0	SP1_ S1	SP1_ S0	-	DPS	0100 0000

CMOD

CCON

CCAPMO

PCA 工作模式寄存器的格式如下:

CMOD: PCA 工作模式寄存器

SFR name	Address	bit	B7	В6	B5	B4	В3	B2	B1	В0
CCON	D9H	name	CIDL	-	-	-	CPS2	CPS1	CPS0	ECF

CIDL : 空闲模式下是否停止 PCA 计数的控制位。

当CIDL=0时,空闲模式下 PCA 计数器继续工作;

当CIDL=1时,空闲模式下 PCA 计数器停止工作;

CPS2、CPS1、CPS0: PCA 计数脉冲源选择控制位。

PCA 计数脉冲选择如下表所示。

		1131311 1 1	17A 1 12//1/3/0
CPS2	CPS1	CPS0	选择 PCA/PWM 时钟源输入
0	0	0	0,系统时钟, SYSclk/12
0	0	1	1,系统时钟, SYSclk/2
0	1	0	2,定时器 0的溢出脉冲。由于定时器 0可以工作在 T1模式,所以可以达到记一个时钟就溢出,从而达到最高频率 CPU工作时钟 SYSclk,通过改变定时器 0 的溢出率,可以实现可调频率的 PWM 输出
0	1	1	3,ECI/P1.2(或 P4.1)脚输入的外部时钟(最大速率 =SYSclk/2)
1	0	0	4,系统时钟, SYSclk
1	0	1	5,系统时钟 /4, SYSclk/4
1	1	0	6,系统时钟 /6, SYSclk/6
1	1	1	7,系统时钟 /8 ,SYSclk/8

例如, CPS2/CPS1/CPS0 = 1/0/0 时, CCP/PCA/PWM 的时钟源是 SYSclk,不用定时器 0, PWM 的频率为 SYSclk/256.

如果要用系统时钟 /3 来作为 PCA 的时钟源,应选择 T0 的溢出作为 CCP/PCA/PWM 的时钟源,此时应让 T0 工作在 1T 模式,计数 3 个脉冲即产生溢出。用 T0 的溢出可对系统时钟进行 1~65536 级分频(T0 工作在 16 为重装载模式)。

ECF: PCA 计数溢出中断使能位。

当 ECF = 0 时,禁止寄存器 CCON 中 CF 位的中断;

当 ECF = 1 时,允许寄存器 CCON 中 CF 位的中断。

2.2. PCA 控制寄存器 CCON

PCA 控制寄存器的格式如下:

CCON: PCA 控制寄存器

SFR name	Address	bit	В7	B6	B5	B4	В3	B2	B1	В0
CCON	D8H	name	CF	CR	-	-	-	-	CCF1	CCF0

CF: PCA 计数器阵列溢出标志位。 当 PCA 计数器溢出时 , CF 由硬件置位。 如果 CMOD 寄存器的 ECF 位置位 ,则 CF 标志可用来产生中断。 CF 位可通过硬件或软件置位 ,但只能通过软件清零。

CR: PCA 计数器阵列运行控制位。该位通过软件置位,用来启动计数器阵列计数。该位通过软件清零,用来 关闭 PCA 计数器。

CCF2: PCA 模块 2 中断标志。当出现匹配或捕捉时该位由硬件置位。该位必须通过软件清零。

CCF1: PCA 模块 1 中断标志。当出现匹配或捕捉时该位由硬件置位。该位必须通过软件清零。

CCF0: PCA 模块 0 中断标志。当出现匹配或捕捉时该位由硬件置位。该位必须通过软件清零。

2.3.PCA 比较/捕获寄存器 CCAPM0 、CCAPM1 和 CCAPM2

PCA 模块 0 的比较 /捕获寄存器的格式如下:

CCAPMO: PCA 模块 0 的比较 /捕获寄存器

	•••		, о н	7 PU 1 A 7 3113 37	<u> </u>					
SFR name	Address	Bit	В7	B6	B5	B4	В3	B2	B1	В0
CCAPM0	DAH	name	-	ECOM0	CAPP0	CAPN0	мато	TOG0	PWM0	ECCF0

B7:保留为将来之用。

ECOMO:允许比较器功能控制位。

当 ECOM0 = 1 时,允许比较器功能。

CAPPO: 正捕获控制位。

当 CAPP0 = 1 时,允许上升沿捕获。

CAPNO: 负捕获控制位。

当 CAPN0 = 1 时,允许下降沿捕获。

MATO: 匹配控制位。

当 MATO = 1 时, PCA 计数值与模块的比较 / 捕获寄存器的值的匹配将置位 CCON 寄存器的中断标志位 CCFO。

TOG0:翻转控制位。

当 TOG0 = 1 时,工作在 PCA 高速脉冲输出模式, PCA 计数器的值与模块的比较 / 捕获寄存器的值的匹配将使 CCP0 脚翻转。

PWM0: 脉宽调制模式。

当 PWM0 = 1 时,允许 CCP0 脚用作脉宽调节输出。

ECCF0: 使能 CCF0 中断。使能寄存器 CCON 的比较 /捕获标志 CCF0,用来产生中断。

PCA 模块 1 的比较 /捕获寄存器的格式如下:

CCAPM1: PCA 模块 1的比较/捕获寄存器

SFR name	Address	Bit	B7	B6	B5	B4	В3	B2	B1	В0
CCAPM1	рвн	name	-	ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1

B7:保留为将来之用。

ECOM1:允许比较器功能控制位。

当 ECOM1 = 1 时,允许比较器功能。

CAPP1: 正捕获控制位。

当 CAPP1 = 1 时,允许上升沿捕获。

CAPN1:负捕获控制位。

当 CAPN1 = 1 时,允许下降沿捕获。

MAT1 : 匹配控制位。

当 MAT1 = 1 时,PCA 计数值与模块的比较/捕获寄存器的值的匹配将置位 CCON 寄存器的中断标志位 CCF1。

TOG1:翻转控制位。

当 TOG1 = 1 时,工作在 PCA 高速脉冲输出模式, PCA 计数器的值与模块的比较 / 捕获寄存器的值的匹配将使 CCP1 脚翻转。

PWM1: 脉宽调制模式。

当 PWM1 = 1 时,允许 CCP1 脚用作脉宽调节输出。

ECCF1: 使能 CCF1 中断。使能寄存器 CCON 的比较 /捕获标志 CCF1, 用来产生中断。

PCA 模块 2 的比较 /捕获寄存器的格式如下:

CCAPM2: PCA 模块 2的比较/捕获寄存器

SFR name	Address	Bit	В7	B6	B5	B4	В3	B2	B1	B0
CCAPM2	DCH	name	-	ECOM2	CAPP2	CAPN2	MAT2	TOG2	PWM2	ECCF2

B7:保留为将来之用。

ECOM2:允许比较器功能控制位。

当 ECOM2 = 1 时,允许比较器功能。

CAPP2: 正捕获控制位。

当 CAPP2 = 1 时,允许上升沿捕获。

CAPN2:负捕获控制位。

当 CAPN2 = 1 时,允许下降沿捕获。

MAT2 : 匹配控制位。

当 MAT2 = 1 时,PCA 计数值与模块的比较/捕获寄存器的值的匹配将置位 CCON 寄存器的中断标志位 CCF2。

TOG2:翻转控制位。

当 TOG2 = 1 时,工作在 PCA 高速脉冲输出模式, PCA 计数器的值与模块的比较 / 捕获寄存器的值的匹配将使 CCP2 脚翻转。

PWM2: 脉宽调制模式。

当 PWM2 = 1 时,允许 CCP2 脚用作脉宽调节输出。

ECCF2: 使能 CCF2 中断。使能寄存器 CCON 的比较 /捕获标志 CCF2,用来产生中断。 2.4.PCA 的 16 位计时器 — 低 8 位 CL 和高 8 位 CH

CCAPM2

CCAPM1

CL 和 CH 地址分别为 E9H 和 F9H , 复位值均为 00H , 用于保存 PCA 的装载值。

2.5.PCA 捕捉/比较寄存器 — CCAPnL (低位字节)和 CCAPnH (高位字节)

当 PCA 模块用于捕获或比较时,它们用于保存各个模块的 16 位捕捉计数值;当 PCA 模块用于 PWM 模式时,它们用来控制输出的占空比。其中, n = 0、1、2,分别 对应模块 0、模式 1 和模块 2。复位值均为 00H。它们对应的地址分别为:

CCAP0L — EAH、CCAP0H — FAH:模块 0的捕捉/比较寄存器。

CCAP1L — EBH、CCAP1H — FBH:模块 1的捕捉/比较寄存器。

CCAP2L — ECH、CCAP2H — FCH:模块 2的捕捉/比较寄存器。

2.6.PCA 模块 PWM 寄存器 PCA_PWM0 、PCA_PWM1 和 PCA_PWM2

PCA 模块 0的 PWM 寄存器的格式如下:

PCA PWM0: PCA 模块 0的 PWM 寄存器

SFR name	Address	Bit	B7	B6	B5	B4	В3	B2	B1	B0
PCA_PWM0	F2H	name	EBS0_1	EBS0_0	-	-	-	-	EPC0H	EPC0L

EBS0_1,EBS0_0:当 PCA 模块 0工作于 PWM 模式时的功能选择位。

0,0:PCA 模块 0工作于 8位 PWM 功能;

0,1:PCA 模块 0工作于 7位 PWM 功能;

1,0:PCA 模块 0 工作于 6 位 PWM 功能;

1,1:无效, PCA 模块 0工作于 8 位 PWM 模式。

EPC0H:在 PWM 模式下,与 CCAP0H 组成 9 位数。

EPC0L:在 PWM 模式下,与 CCAP0L 组成 9 位数。

PCA 模块 1 的 PWM 寄存器的格式如下:

PCA_PWM1 : PCA 模块 1 的 PWM 寄存器

SFR name	Address	Bit	B7	B6	B5	B4	ВЗ	B2	B1	B0
PCA_PWM1	F3H	name	EBS2_1	EBS2_0	-	-	-	-	EPC1H	EPC1L

EBS1_1,EBS1_0: 当 PCA 模块 1 工作于 PWM 模式时的功能选择位。

0,0:PCA 模块 1 工作于 8 位 PWM 功能;

0,1:PCA 模块 1工作于 7位 PWM 功能;

1,0:PCA 模块 1工作于 6位 PWM 功能;

1,1:无效, PCA 模块 1工作于 8 位 PWM 模式。

EPC1H:在 PWM 模式下,与 CCAP1H 组成 9 位数。

EPC1L:在 PWM 模式下,与 CCAP1L 组成 9 位数。

PCA 模块 2 的 PWM 寄存器的格式如下:

PCA_PWM2 : PCA 模块 2 的 PWM 寄存器

SFR name	Address	Bit	B7	B6	B5	B4	В3	B2	B1	В0
PCA_PWM2	F4H	name	EBS2_1	EBS2_0	-	-	-	-	EPC2H	EPC2L

EBS2_1,EBS2_0: 当 PCA 模块 2 工作于 PWM 模式时的功能选择位。

0,0:PCA 模块 2 工作于 8 位 PWM 功能;

0,1:PCA 模块2工作于7位PWM功能;

1,0:PCA 模块2工作于6位PWM功能;

1,1:无效, PCA 模块 2工作于 8 位 PWM 模式。

EPC2H:在 PWM 模式下,与 CCAP2H 组成 9 位数。

EPC2L:在 PWM 模式下,与 CCAP2L 组成 9 位数。

PCA 模块的工作模式设定表如下表所列:

ECOMn	CAP Pn	CAPNn	MATn	TOGn	PWMn	ECCFn	模块功能
0	0	0	0	0	0	0	无此操作
1	0	0	0	0	1	0	8 位 PWM , 无中断
1	1	0	0	0	1	1	8 位 PWM 输出,由低变高产生中断
1	0	1	0	0	1	1	8 位 PWM 输出,由高变低产生中断
1	1	1	0	0	1	1	8 位 PWM 输出,由高变低或由低到高
Х	1	0	0	0	0	Х	16 位捕获模式,由 CEXn/PCAn 的上升沿 触发

Х	0	1	0	0	0	Х	16 位捕获模式,由 CEXn/PCAn 的下降沿触发
Х	1	1	0	0	0	Х	16 位捕获模式,由 CEXn/PCAn 的跳变触 发
1	0	0	1	0	0	Х	16 位软件定时器
1	0	0	1	1	0	Х	16 位高速输出

PCA 模块工作模式设定 (CCAPMn 寄存器 , n = 0 、1、2)

3.原理图

3.1 8 位脉宽调节模式 (PWM)

当[EBSn_1,EBSn_0]=[0,0] 或[1,1] 时,PCA 模块 n 工作 8 位 PWM 模式,此时将 {0 CL[7:0]} 与捕获寄存器 [EPCnL,CCAPnL[7:0]] 进行比较。

PWM 模式的结构如下图所示。

PCA PWM mode/ 可调制脉冲宽度输出模式结构图 (PCA 模块工作于 8 位 PWM 模式) 当 PCA 模块工作于 8 位 PWM 模式时,由于所有模块共用仅有的 PCA 定时器,所有它 们的输出频率相同。各个模块的输出占空比是独立变化的 , 与使用的捕获寄存器 {EPCnL,CCAPnL[7:0]} 有关。当 {0 , CL[7:0]} 的值小于 {EPCnL , CCAPnL[7:0]} 时,输出为 低;当 {0, CL[7:0]}的值等于或大于 {EPCnL,CCAPnL[7:0]} 时,输出为高。当 CL的值由 FF 变为 00 溢出时 , {EPCnH,CCAPnH[7:0]} 的内容装载到 {EPCnL,CCAPnL[7:0]} 中。这样就实 现无干扰地更新 PWM。要使能 PWM 模式,模块 CCAPMn 寄存器的 PWMn 和 ECOMn 位 必须置位。

PCA 时钟输入源频率

当 PWM 是 8 位的时: PWM 的频率 =

256

PCA 时钟输入源可以从以下 8 中中选择一种: SYSclk , SYSclk/2 , SYSclk/4 , SYSclk/6 , SYSclk/8 , SYSclk/12 , 定时器 0 的溢出 , ECI/P1.2 输入。

如果要实现可调频率的 PWM 输出,可选择定时器0的溢出率或者 ECI 脚的输入作为

PCA/PWM 的时钟输入源

当 EPCnL = 0 及 CCAPnL = 00H 时, PWM 固定输出高 当 EPCnL = 1 及 CCAPnL = 0FFH 时 , PWM 固定输出低

当某个 I/O 作为 PWM 使用时,该口的状态:

PWM 之前口的状态	PWM 输出时的状态	
弱上拉 /准双向	强推挽输出/强上拉输出,要加输出限流电阻	1K~10K
强推挽输出/强上拉输出	强推挽输出/强上拉输出,要加输出限流电阻	1K~10K
仅为输入 /高阻	PWM 无效	
开漏	开漏	

3.2 7 位脉宽调节模式 (PWM)

当[EBSn_1,EBSn_0]=[0,1] 时, PCA 模块 n 工作 7 位 PWM 模式,此时将 {0, CL[6:0]} 与捕获寄存器 [EPCnL,CCAPnL[6:0]] 进行比较。 PWM 模式的结构如下图所示。

PCA PWM mode/ 可调制脉冲宽度输出模式结构图(PCA 模块工作于 7 位 PWM 模式)当 PCA 模块工作于 7 位 PWM 模式时,由于所有模块共用仅有的PCA 定时器,所有它们的输出频率相同。各个模块的输出占空比是独立变化的,与使用的捕获寄存器 {EPCnL,CCAPnL[6:0]}有关。当 {0,CL[6:0]}的值小于 {EPCnL,CCAPnL[6:0]}时,输出为低;当 {0,CL[6:0]}的值等于或大于 {EPCnL,CCAPnL[6:0]}时,输出为高。当CL的值由7F变为00溢出时,{EPCnH,CCAPnH[6:0]}的内容装载到 {EPCnL,CCAPnL[6:0]}中。这样就实现无干扰地更新PWM。要使能PWM模式,模块CCAPMn寄存器的PWMn和ECOMn位必须置位。

PCA时钟输入源频率

当 PWM是 7位的时: PWM的频率 =

128

PCA 时钟输入源可以从以下 8 中中选择一种: SYSclk , SYSclk/2 , SYSclk/4 , SYSclk/6 , SYSclk/8 , SYSclk/12 , 定时器 0 的溢出 , ECI/P1.2 输入。

如果要实现可调频率的 PWM 输出,可选择定时器0的溢出率或者 ECI 脚的输入作为 PCA/PWM 的时钟输入源

当 EPCnL = 0 及 CCAPnL = 80H 时, PWM 固定输出高

当 EPCnL = 1 及 CCAPnL = 0FFH 时 , PWM 固定输出低

3.2 6 位脉宽调节模式 (PWM)

当[EBSn_1,EBSn_0]=[1,0] 时, PCA 模块 n 工作 6 位 PWM 模式,此时将 {0, CL[5:0]} 与捕获寄存器 [EPCnL,CCAPnL[5:0]] 进行比较。 PWM 模式的结构如下图所示。

PCA PWM mode/ 可调制脉冲宽度输出模式结构图 (PCA 模块工作于 6 位 PWM 模式)当 PCA 模块工作于 6 位 PWM 模式时,由于所有模块共用仅有的 PCA 定时器,所有它们的输出频率相同。各个模块的输出占空比是独立变化的,与使用的捕获寄存器{EPCnL,CCAPnL[5:0]}有关。当 {0,CL[5:0]}的值小于 {EPCnL, CCAPnL[5:0]}时,输出为

低;当 {0, CL[5:0]}的值等于或大于 {EPCnL,CCAPnL[5:0]} 时,输出为高。当 CL的值由 3F 中。这样就实 变为 00 溢出时 , {EPCnH,CCAPnH[5:0]} 的内容装载到 {EPCnL,CCAPnL[5:0]} 现无干扰地更新 PWM。要使能 PWM 模式,模块 CCAPMn 寄存器的 PWMn 和 ECOMn 位 必须置位。

PCA时钟输入源频率

```
当 PWM是 6 位的时: PWM的频率 = —
                                         64
PCA 时钟输入源可以从以下
                         8中中选择一种: SYSclk , SYSclk/2 , SYSclk/4 , SYSclk/6 ,
SYSclk/8 , SYSclk/12 , 定时器 0 的溢出 , ECI/P1.2 输入。
                       PWM 输出,可选择定时器 0 的溢出率或者
    如果要实现可调频率的
                                                                 ECI 脚的输入作为
PCA/PWM 的时钟输入源
    当 EPCnL = 0 及 CCAPnL = 0C0H 时, PWM 固定输出高
    当 EPCnL = 1 及 CCAPnL = 0FFH 时 , PWM 固定输出低
4.程序
//P3.7 输出 PWM 波形
#include<reg51.h>
sfr CCON = 0xd8;
sfr CMOD = 0xd9;
sfr CCAPM2 = 0xdc;
sfr CL = 0xe9;
sfr CH = 0xf9:
sfr CCAP2L = 0xec;
sfr CCAP2H = 0xfc;
sfr PCA_PMW2 = 0xf4;
code unsigned char seven_seg[] = \{0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90\};
unsigned char cp1,cp2 = 255;
unsigned int cp0;
sbit P3_4 = P3^4;
sbit P3_5 = P3^5;
sbit P3_6 = P3^6;
void timer0_isr(void) interrupt 1
TH0 = (65536 - 1000) / 256; // 重装初值
TL0 = (65536 - 1000) % 256; //重装初值
cp0++;
            //中断 1 次 , 变量加 1
          100) //1 秒到了
if(cp0 >=
 cp0 = 0;
 cp2--; //cp2 为脉宽控制变量
 if(cp2 \ll 1)
 cp2 = 255;
P2 = 0xff;
P3 = 0xff;
switch(cp1)
```

{

```
case 0: P2 = seven_seg[cp2 % 100 % 10]; P3_6 = 0;break;
case 1: P2 = seven_seg[cp2 % 100 / 10]; P3_5 = 0;;break;
case 2: P2 = seven_seg[cp2 / 100]; P3_4 = 0;break;
cp1++;
if(cp1>= 3)cp1 = 0;
/*****Timer0
                             初始化函数 *************/
void timer0_init(void)
                             //T0 工作方式 1
\mathsf{TMOD} = \mathsf{0x01};
TH0 = (65536 - 1000) / 256; // 对机器脉冲计数 1000 个计满溢出引发中断
TL0 = (65536 - 1000) % 256;
                      //开总中断
EA = 1;
ET0 = 1;
          //开 T0 中断
                      //启动定时器 T0
TR0 = 1;
void pwm0_init(void)
CCON = 0x00;
CL = 0x00;
CH = 0x00;
PCA_PMW2 = 0x00; //8 位 PMW , 占空比的第九位 EPC0L 为 0
CCAPM2 = 0x42; //允许比较 , P3.7 输出
CCON = 0x40; //允许 PAC 计数
void main(void)
timer0_init();
pwm0_init();
while(1)
if(CL == 0xff)
 CCAP2L = cp2;
 CCAP2H = cp2;
```