

					P	rinte	d Pa	ge: 1	of 2	,
				S	ubje	ct C	ode:	KM	E301	
Roll No:										l

BTECH (SEM III) THEORY EXAMINATION 2021-22 THERMODYNAMICS

Time: 3 Hours Total Marks: 100

Notes:

• Attempt all Sections and Assume any missing data.

• Appropriate marks are allotted to each question, answer accordingly.

SECTI	ON-A	Attempt All of the following Questions in brief	Marks(10X2=20)	CO				
Q1(a)	Q1(a) Differentiate microscopic and macroscopic point of view.							
Q1(b)	Define the	quasi static process?		1				
Q1(c)	Define the	second law efficiency and why PMM-II is not possible.		2				
Q1(d)	Distinguish	between high grade energy and low-grade energy?		2				
Q1(e)	Explain the	e Joule-Thompson coefficient and Inversion curve?		3				
Q1(f)	Discuss the	e triple point and critical point.		4				
Q1(g)	Define the	refrigeration effect and how it can be improved?		5				
Q1(h)	Explain the	e dryness fraction and how it can be improved?		4				
Q1(i)	How the C	O.P of the vapor compression cycle can be improved?		5				
Q1(j)	Differentia	te between available and unavailable energy?		3				

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO
Q2(a)	A nozzle is certain noz the discha negligible (i) Find the (ii) If the ir flow rate.	is a device for increasing the velocity of a steadily flowing tizle, the enthalpy of the fluid passing is 3000 kJ/kg and targe end, the enthalpy is 2762 kJ/kg. The nozzle is heat loss from it. Evelocity at exists from the nozzle. The read is 0.1 m2 and the specific volume at inlet is 0.1	g stream. At the inlet to a the velocity is 60 m/s. At horizontal and there is 187 m3/kg, find the mass	1
Q2(b)	heat to a re in heat from engine also 5°C reserve (i) The rate	np working on the Carnot cycle takes in heat from a reserver servoir at 60°C. The heat pump is driven by a reversible on a reservoir at 840°C and rejects heat to a reservoir at 60°C drives a machine that absorbs 30 kW. If the heat pump coir, determine to of heat supply from the 840°C source to of heat rejection to the 60°C sink.	heat engine which takes 0°C. The reversible heat	2
Q2(c)	Write dow	n the first and second T-dS equations and derive the expracities, Cp and Cv.	ression for the difference	3
Q2(d)	Define in p Critical Po	oure substance by suitable phase change diagram the term int (iii) Saturation states (iv) Sub cooled state (v) Superhe	eated vapour state.	4
Q2(e)	The atmost compressor pressure of same. It is passed to the (i) The work (ii) C.O.F. For air ass law for compressions of the compression of the c	cheric air pressure 1 bar and temperature -5° C is drawn in a of Bell Coleman refrigerating machine. It is compressed in a cooled to 15° C is drawn in an expansion cylinder cold chamber. Calculate which can be cold chamber. Calculate with done per kg of air cooled to 15° C is drawn in an expansion cylinder cold chamber. Calculate with done per kg of air cooled to 15° C is drawn in an expansion cylinder cold chamber. Calculate with done per kg of air cooled to 15° C is drawn in a co	n the cylinder of the d isentropically to a C, pressure remaining the	5

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q3(a)	u=3.56 pv	al energy of a certain substance is given by the following + 84, where u is given in KJ/Kg, P is in KPa and v is in composed of 3 kg of this substance expands from an ini	equation m ³ /kg	1
	and a volu volume are PV ^{1.2} =Cor		s in which pressure and	

					P	rinte	d Pa	ge: 2	2 of 2	,
				Subject Code: KME301						
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 THERMODYNAMICS

	i. ii.	If the expansion is quasi static find Q,ΔU and W for the process In another process the same expands according to the same pressure –volume relationship as in part (i) and from the same initial state to the same final state as in part (i), but the heat transfer in this case is 30 KJ. Find the work transfer for this process.			
	iii.	Explain the difference in work transfer in parts (i) and (ii)			
Q3(b)	For a s	ample of air having 22 ⁰ DBT, relative humidity 30 % at barometric pressure of 760	4		
	mm of Hg calculate (i) Vapour pressure				
	(ii) Humidity ratio. (iii) Vapour density and (iv) Enthalpy				
	Verif	y yours results by psychometric chart.			

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO		
Q4(a)	Steam at 2	20 bar 360^{0} C is expanded in a steam turbine to 0.0	8 bar. It then enters a	4		
	condenser, where it is condensed to a saturated liquid water. The pump feeds back the water					
	in to the boiler (i) Assuming ideal processes, find the per kg of steams of the network and					
	the cycle efficiency (ii) If the turbine and the pump have each 80% efficiency, find the					
	percentage	reduction in the network and cycle efficiency.				
	Prove that			3		
	$C_P - C_v = -$	$\Gamma(\partial V/\partial T)^2_{p}(\partial P/\partial V)_{T}$				

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q5(a)	State the Clapeyron equation and discuss its importance during	ng phase change of pure	3
	substance. Derive the equation for Clausius-Clapeyron equation for	r evaporation of liquids.	
	A vapour compression refrigeration system uses R-12 refrigerant,		5
	in the evaporator at -15 °C. The Temperature of this refrigerant at	——————————————————————————————————————	
	compressor is 15 °C when the vapour is condensed at 10°C. Find t	he coefficient of	
	performance (i) If there is no under cooling and (ii) the liquid is co	oled by 5°C before	
	expansion by throttling.		

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO			
Q6(a) Draw a neat diagram of lithium bromide water absorption system and explain its working.						
List the ma	jor field of applications of this system.					
Q6(b) (i) One kg	of water at 273 K is brought in to contact with a heat rese	ervoir at 373 K When the	2			
water has r	reached 373 K, find the entropy change of the water of	the heat reservoir and of				
the univers	e					
	rater is heated from 273 K to 373 K by firs bringing					
It in conta	ct with a reservoir at 323 K and then with a reservoir at 3	73 K, what will the				
opy change	ppy change of the universe be?					
(iii) Explair	n how water might be heated from 273 to 373 K with alm	ost no change in the				
opy of the	universe.					

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO			
Q7(a)		lergoes a thermodynamic cycle consisting of the following		1			
	(i) I	Process 1-2 is isochoric heat addition of 325.235 KJ/kg					
	(ii) I	Process 2-3 adiabatic expansion to its original pressure with	loss of 70 KJ/kg in				
	i	nternal energy					
	(iii) I	Process 3-1 isobaric compression to its original volume with heat rejection of 200					
	ŀ	KJ/kg					
	I	Prepare a balance sheet of energy quantities and find the overall changes during the					
	C	cycle					
Q7(b)	Show that	t the Kelvin-Planck and the Clausius statement of the seco	nd law of	2			
	thermody	namics are equivalent.					