Good Morning Blinds

ECE 5731 Fall 2020 - 12/2/2020

Group Members

Brian Neumeyer

- Bachelors in Mechanical Engineering
- Currently working at Dataspeed Inc. as a mechanical engineer

Aaron Garofalo

- Bachelors in Mechanical Engineering
- Currently working at MAHLE as a cabin filter development engineer

Lisa Branchick

- Bachelors in Mechanical Engineering
- Recently began working at Ford as an embedded controls engineer

Introduction

- Good Morning Blinds: Intelligent Window Blind Control
- Project scope: Demonstrate an understanding of embedded controls and concepts using PIC32, actuators, sensors, and I/O devices
- Encompases bluetooth, timing, interrupts, analog-to-digital conversion, UART, and pulse-width modulation
- PIC32 I/O determines servo position needed to adjust window blinds and convey information to the user via LCD

State Flow Diagram

Project Components

- Button: auto/manual mode control
- Potentiometers:
 - Manual adjustment
 - Battery level simulation
- LCD (Liquid Crystal Display):
 - Day/night status
 - Ambient light level
 - Servo position
 - Battery level (simulated)
- RTCC (Real Time Clock and Calendar):
 - Controls automatic mode timing
 - Alternative implementation: timer interrupt in place of RTC
- Bluetooth: system control through Android phone
- Photoresistor: measures light
- Servo: open/close operations

PIC32 Pinout/System Diagram

<u>Pin</u>	<u>Function</u>			
B12	Manual control potentiometer			
B13	LCD RS pin			
B14	Photoresistor			
B15	Battery Sim. Potentiometer			
C13	SOCSO for RTCC			
C14	SOSCI for RTCC			
D0	Servo PWM			
D2	UART RX			
D3	UART TX			
D4	LCD E Pin			
D5	LCD R/W Pin			
E0-E7	LCD Pins			

Bill of Materials & Cost

<u>Item</u>	Supplier	Price Per Unit	Qty.	Total Per Item
PIC32	Microchip	\$49.00	1	\$49.00
Elegoo Uno Project Kit	Amazon	\$29.99	1	\$29.99
Photoresistor	Elegoo Kit	Included	1	Included
LCD Display	Elegoo Kit	Included	1	Included
Servo	Elegoo Kit	Included	1	Included
Potentiometer	Elegoo Kit	Included	2	Included
Buttons	Elegoo Kit	Included	1	Included
RTC Module	Microcenter	\$4.99	1	\$4.99
Bluetooth	Amazon	\$9.99	1	\$9.99
			Total:	\$93.97

Project Highlights

- Github for collaboration
 - Modular structure to enable parallel workflow
 - Extensive use of supplementary header & c files
 - 650+ lines of code
 - github.com/66hades/ECE5731_Final_Project
- Course topics utilized:
 - Interrupts
 - Digital I/O
 - Timers 16 & 32 bit
 - PWM (Output Compare)
 - O ADC
 - UART → Terminal (w/library)
 - \circ UART \rightarrow Bluetooth
 - RTCC w/external oscillator
 - LCD

Demonstration

Challenges

- RTCC (Real Time Clock and Calendar):
 - Requires external crystal oscillator
 - Referenced PIC datasheet, reference manual, and online forums
 - Contacted manufacturer no response
 - Attempted debugging using in-script markers
 - Alternatively explored external module requiring I2C
- Subsystem integration
 - Required multiple .c and .h files
 - Simplified overall code for future debugging
 - Interrupt prioritization

Future Development

- Use on-board RTCC to control timing operations
 - Accurate to ±0.66 seconds per month
 - User setting for clock time, alarm, and repetition interval
- Interrupt improvements:
 - Control only function flags inside interrupts to improve process flow
 - Analyze priority levels to improve user experience
- Implement battery and solar subsystems
 - Currently simulated for demonstration purposes
- Integrate PID for user-set light level
 - Ambient level is monitored and blind angle is adjusted for consistency

Conclusion

- Produced a functional proof of concept for intelligent window blind control
- Successfully demonstrated all course objectives
- Learned project-enhancing tools GitHub and Visual Studios
 - Allowed for collaboration and productivity

Video

