A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 4EH

Bookmark

Show all steps: (

ON

Problem

An integer a is called a *quadratic residue* modulo m if there is an integer x such that $x^2 \equiv a \pmod{m}$. This is the same as saying that \bar{a} is a square in m. If a is not a quadratic residue modulo m, then a is called a *quadratic nonresidue* modulo m. Quadratic residues are important for solving quadratic congruences, for studying sums of squares, etc. Here, we will examine quadratic residues modulo an arbitrary prime p > 2.

Let
$$h: \mathbb{Z}_p^* \to \mathbb{Z}_p^*$$
 be defined by $h(\bar{a}) = \bar{a}^2$.

Evaluate
$$\left(\frac{17}{23}\right)$$
; $\left(\frac{3}{29}\right)$; $\left(\frac{5}{11}\right)$; $\left(\frac{8}{13}\right)$; $\left(\frac{2}{23}\right)$

Step-by-step solution

Step	1	ΟŤ	/
------	---	----	---

Here, objective is to evaluate the given Legendre symbols.

Comment

Step 2 of 7

Consider the congruence $x^2 = a \pmod{p}$ where p is odd prime, is solvable, if and only if the

Legendre symbol
$$\left(\frac{a}{P}\right) = 1$$
 .Where, $\left(\frac{a}{P}\right) = a^{(p-1)/2} \pmod{p}$

Comment

Step 3 of 7

Consider the Legendre symbol $\frac{17}{23}$

$$\frac{17}{23} = \frac{6}{17}$$

$$= \frac{3}{17}$$

$$= \frac{2}{3}$$

$$= -\frac{1}{3}$$

$$= -1$$

Hence, $\frac{17}{23} = -1$

Comment

Step 4 of 7

Consider the Legendre symbol $\frac{3}{29}$

$$\frac{3}{29} = \frac{2}{3}$$
$$= -\frac{1}{3}$$
$$= -1$$

Hence,
$$\frac{3}{29} = -1$$

Comment

Step 5 of 7

Consider the Legendre symbol $\frac{5}{11}$

$$\frac{5}{11} = \frac{1}{5}$$
= 1
= 1
Hence, $\frac{5}{11} = 1$

Comment

Step 6 of 7

Consider the Legendre symbol $\frac{8}{13}$

$$\frac{8}{13} = \frac{6}{17}$$

$$= -\frac{4}{13}$$

$$= \frac{2}{13}$$

$$= -\frac{1}{13}$$

$$= -1$$

Hence, $\frac{8}{13} = -1$

Comment

Step 7 of 7

Consider the Legendre symbol $\frac{2}{23}$

$$\frac{2}{23} = \frac{1}{23} \\
= 1$$
Hence, $\frac{2}{23} = 1$

Comment