What is Quantum Machine Learning (QML)?

It is using Quantum Computers in Machine Learning;)

QML libraries in the field

We'll use Qiskit ;) Created in April 2021

- 1. (IBM) Qiskit Machine Learning
- 2. (Xanadu) PennyLane
- 3. (Google) Tensor Flow Quantum

Qiskit Machine Learning - overview

Example:

Variational Quantum Classification (VQC)

Concept of variational, hybrid algorithms

Variational Quantum Classifier

The circuit

The algorithm

Loop until convergence:

for each data point:

for each circuit execution

- Encode point into feature map
- Append ansatz circuit
- Measure result and decode feature class

Create statistics of probability of every class

Calculate contribution to cost function

Use classical optimizer to propose new circuit parameters

Reading/references:

- Supervised learning with quantum enhanced feature spaces
- Classification with Quantum Neural Networks on Near Term Processors
- Quantum Machine Learning
- Recent advances for quantum classifiers

What other ideas to consider?

- 1. QCs can do the linear algebra in large dimensions
- 2. Multiple data points encoded simultaneously
- 3. Applications beyond binary classifications
- 4. Modelling quantum data instead of classical data
- 5. Quantum-inspired classical algorithms

CC CQ QC QQ

Encoding data on quantum computers

Name	Favorite color
Eve	red
Bob	yellow
Alice	blue
Jane	green

one-hot

Name	Prefers red	Prefers green	Prefers blue	Prefers yellow	Prefers pink
Eve	1	0	0	0	0
Bob	0	0	0	1	0
Alice	0	0	1	0	0
Jane	0	1	0	0	0

Name	Favorite color
Eve	10000
Bob	00010
Alice	00100
Jane	01000

binary

Name	Favorite color
\mathbf{Eve}	$0_{10} = 000_2$
Bob	$3_{10} = 011_2$
Alice	$2_{10} = 010_2$
Jane	$1_{10} = 001_2$

domain wall

Name	Favorite color
Eve	0000
Bob	1110
Alice	1100
Jane	1000

Some QML concepts

- Parametrized quantum circuit can work as NN
- Variational quantum algorithms can be realized on current NISQ computers and used in ML tasks –
 finding NN weights analog to finding optimal circuit parameters
- Quantum computers can work in exponentially higher-dimensional spaces → we can create new models
 to improve accuracy
- Quantum computers create a new potential avenue to increase power of ML models in the situation of quickly growing dimensions
- Kernel function estimation can be easy for QC while very complex for classical
- Hybrid quantum-classical models
- Potential of providing quadratic or even exponential speedups over classical algorithms
- Bottleneck loading large datasets into quantum computer (basis embedding, amplitude embedding, ...)