

UNIVERSIDADE FEDERAL DO CEARÁ - UFC

Campus de Sobral

Departamento de Engenharia Elétrica

Disciplina: Variáveis Complexas SBL0095

Prof. Ailton Campos

Data: 27/06/2022 Período: 2023.1

Nome:

3ª Lista de Exercícios

- 1. Fazer todos os exercícios pares dos capítulos 5,6 e 7 (Séries, Resíduos) do livro texto.
 - (a) Considere a sequência

$$z_n = -1 + i \frac{(-1)^n}{n^2}, (n = 1, 2, ...).$$

Resolva os seguintes itens

- a) Mostre que a sequência z_n acima converge para -1.
- b) Usando as coordenadas polares $r_n = |z_n|$ e $\Theta_n = \text{Arg}z_n$ em que $\text{Arg}z_n$ denota os argumentos principais $-\pi < \Theta_n \leq \pi$, mostre que não existe o limite de Θ_n se n tender ao infinito.
- (b) Obtenha os seguintes desenvolvimentos, validos para todo z nas regiões indicadas.

a)
$$\frac{1}{z} = \sum_{n=0}^{\infty} (-1)^n (z-1)^n, |z-1| < 1.$$

b)
$$\frac{e^z}{(z+1)^2} = \sum_{n=0}^{\infty} \frac{(z+1)^{n-2}}{n!e}, \ 0 < |z+1| < \infty.$$

c)
$$z \cosh(z^2) = \sum_{n=0}^{\infty} \frac{z^{4n+1}}{(2n)!}, \ |z| < \infty.$$

(c) Encontre o resíduo em z = 0 das seguintes funções.

a)
$$f(z) = \frac{1}{z + z^2}$$
.

b)
$$f(z) = z\cos(\frac{1}{z})$$
.

- (d) Use o Teorema dos Resíduos para calcular as seguintes integrais.
 - a) $\int_{-2}^{2} \frac{e^{z}-1}{z^{4}} dz$, onde C é o círculo unitário |z|=1 orientado positivamente.
 - b) $\int_C \frac{dz}{z(z-2)^5} dz$, onde C é o círculo |z-2|=1 orientado positivamente.
- (e) Em cada caso, escreva a parte principal da função na singularidade isolada e determine se esse ponto é uma singularidade removível, essêncial ou polo.
 - a) $z \exp(\frac{1}{z})$.
 - b) $\frac{z^2}{1+z}$.
 c) $\frac{\operatorname{sen} z}{z}$.
- (f) Use o Teorema dos Resíduos para calcular a integral

$$\int_{\mathcal{C}} \frac{4z - 5}{z(z - 1)} dz = 8\pi i,$$

onde C é o círculo |z|=2 descrito no sentido anti-horário.

Bom Trabalho!!!