Machine Learning

Last Time

• Bayesian Networks (AIMA Ch 13 & 14)

- Basic premise a Bayesian Network is a directed acyclic graph over random variables, together with conditional probability tables describing each random variable given all of its incoming edges (often referred to as parents).
- A BN can represent a joint probability distribution over N variables with fewer than 2^N parameters (subject to the distribution).
- Bayesian networks allow easy specification of conditional independence relations between random variables.

Figure 14.2 A typical Bayesian network, showing both the topology and the conditional probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary, Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

 $\mathbf{P}(MaryCalls \mid JohnCalls, Alarm, Earthquake, Burglary) = \mathbf{P}(MaryCalls \mid Alarm)$

 $\mathbf{P}(Burglary \mid Alarm, John Calls, Mary Calls) = \mathbf{P}(Burglary \mid Alarm)$

$$P(j, m, a, \neg b, \neg e) = P(j \mid a)P(m \mid a)P(a \mid \neg b \land \neg e)P(\neg b)P(\neg e)$$

= 0.90 × 0.70 × 0.001 × 0.999 × 0.998 = 0.000628

Inference

- Pr(Query | Evidence)
- Pr(Query ^ Evidence) / Pr(Evidence)

- $Pr(Q \land E) = sum_x Pr(Q \land E \land X)$
 - Monstrous exponential sum.
 - Exact algorithms n*2^n, variable ordering gets it to 2^n
 - Approximate algorithms... next time.

Approximate Inference

- What is sampling?
- Generate several random samples, count each of the outcomes for the query, in the long run this approximates the expectation which is the real value.
- How to do sampling?
 - Rejection basic, top-down, reject inconsistent, can reject too much
 - Likelihood weighting no rejection, but still individual contributions of samples can be very small
 - Gibbs sampling conditions on markov blanket, walks state space, ergodicity, markov chains

Figure 14.4 (a) A node X is conditionally independent of its non-descendants (e.g., the Z_{ij} s) given its parents (the U_i s shown in the gray area). (b) A node X is conditionally independent of all other nodes in the network given its Markov blanket (the gray area).

Up Next

• Machine Learning (AIMA Ch 18)

Paradigms

- Most machine learning problems fall into one of three broad categories, based on the kind of feedback or supervision presented to the method.
- No Feedback Clustering
- Rewards / Penalties Reinforcement Learning
- Examples / Labels Supervised Learning
 - + Semi-Supervised methods, too.

Clustering	
Reinforcement Learning	
Supervised Learning	

Clustering	deciphering words in a new language
Reinforcement Learning	
Supervised Learning	

Clustering	deciphering words in a new language
Reinforcement Learning	playing a game of chess
Supervised Learning	

Clustering	deciphering words in a new language
Reinforcement Learning	playing a game of chess
Supervised Learning	predicting weather based on observations

Clustering	???
Reinforcement Learning	???
Supervised Learning	???

Our Focus

- Let's focus on supervised learning for now.
- Today we will understand the general paradigm, later we will look at specific instances based on decision trees, linear models, logistic regression, and neural networks.

Supervised Learning

 Supervised learning problems can be viewed as learning a functional mapping from inputs to outputs.

Regression vs Classification

- Regression mapping from inputs to real numbers
 - Examples estimating stock prices, forecasting temperature, predicting probability of state transitions for actions, enhancing photos with super resolution, ...

Regression vs Classification

- Classification mapping from inputs to categories
 - Examples identifying animals based on images, identifying political party based on social media posts, diagnosing diseases, road sign reader, friend or foe, …

Supervised Learning

 We must select a hypothesis space of candidate mappings. Often our hypothesis space will be associated with a set of numerical parameters and hyper-parameters.

	<u> </u>
Hypothesis space	
Parameters	
Hyperparameters	

Hypothesis space	the set of all polynomial functions in a single variable. $\hat{y} = a_n x^n + \dots + a_1 x + a_0$
Parameters	
Hyperparameters	

Hypothesis space	the set of all polynomial functions in a single variable. $\hat{y} = a_n x^n + \dots + a_1 x + a_0$
Parameters	the coefficients $a_n, a_{n-1}, \cdots, a_1, a_0$
Hyperparameters	

Hypothesis space	the set of all polynomial functions in a single variable. $\hat{y} = a_n x^n + \dots + a_1 x + a_0$
Parameters	the coefficients $a_n, a_{n-1}, \cdots, a_1, a_0$
Hyperparameters	the highest order of the polynomials \boldsymbol{n}

Learn y = f(X) given some training data.

Hypothesis space	the set of all polynomial functions in a single variable. $\hat{y} = a_n x^n + \dots + a_1 x + a_0$
Parameters	the coefficients $a_n, a_{n-1}, \cdots, a_1, a_0$
Hyperparameters	the highest order of the polynomials \boldsymbol{n}

What if the true function is not a polynomial?

Interpolation and Extrapolation

- Machine learning algorithms are *great* at interpolation, which is a kind-of filling-in-the-gaps between data points.
- "It was snowing when I went to bed, and it was snowing when I woke up, so it was probably snowing throughout the night."

Interpolation and Extrapolation

- Machine learning algorithms are *great* at interpolation, which is a kind-of filling-in-the-gaps between data points.
- Most algorithms are *very poor* at extrapolation, which is a kind-of predicting-the-future kind of problem.

Interpolation and Extrapolation

- Most algorithms are *poor* at extrapolation, which is a kind-of predicting-the-future kind of problem.
- "It was 38F Monday morning, and 23F Tuesday morning, so on Wednesday it will be 8F and by December it will be 270 below!"

Generalization vs Overfitting

- Two more defs:
 - **Generalization** the performance of the model is good on unseen inputs (i.e., data which was not used during training).
 - Overfitting the performance on the model becomes artificially good on the training data at the expense of generalization.

Figure 18.1 (a) Example (x, f(x)) pairs and a consistent, linear hypothesis. (b) A consistent, degree-7 polynomial hypothesis for the same data set. (c) A different data set, which admits an exact degree-6 polynomial fit or an approximate linear fit. (d) A simple, exact sinusoidal fit to the same data set.

Causes of Overfitting

- Overfitting can happen when the hypothesis space is overly complex, especially in the presence of noise.
- I.e., increasing the number of parameters increases the likelihood of overfitting.

Preventing Overfitting

- Ockham's Razor i.e., Regularization.
- ``simpler solutions are more likely to be correct than complex ones"

Model Exploration

- General idea:
 - Start with a simple model.
 - Until good enough do:
 - Test performance on training data.
 - Good? Check for overfitting.
 - Bad? Increase parameters/hypothesis space.

Detecting Overfitting

- Cross-Validation a portion of data is 'held out' during training and used for evaluation.
- k-Fold cross-validation partitions a dataset into K equal portions, training on all but one, and evaluating on the held out portion, then repeats and average over all portions.

Training Models

• A hypothesis is (usually) determined by a set of adjustable parameters, so the challenge is to find a **good set of parameters** given some data.

Training Models

- Possible approaches:
 - Guess and check?
 - Someone gives you the parameters?
 - Guess and improve?

How do you know if the parameters are good?

Training Models: Loss

 Most machine learning models involve minimizing some form of loss (or maximizing some form of score).

Training Models: Loss

- · Loss functions are usually defined per example.
- Suppose target is $y = f(\mathbf{x})$ and prediction is $\hat{y} = \hat{f}(\mathbf{x})$.
- Examples:
 - Squared Error
 - Absolute Error
 - Indicator

$$(y_n - \hat{y}_n)^2$$

$$|y_n - \hat{y}_n|$$

$$\begin{cases} 0 & \text{if } y_n = \hat{y}_n \\ 1 & \text{otherwise} \end{cases}$$

Training Models: Loss

- The overall loss of a model is usually with respect to a specific data set — which is just a set of examples.
- Loss can be summarized in many ways:
 - Total

$$L(\theta) = \sum_{n} (y_n - \hat{y_n})^2$$

Mean

$$L(\theta) = \frac{1}{N} \sum_{n} (y_n - \hat{y_n})^2$$

Variance, Max, Min, ...

Training

- A hypothesis is (usually) determined by a set of adjustable parameters, so the challenge is to find a **good set of parameters** given some data.
- Most machine learning models involve minimizing some form of loss (or maximizing some form of score).

Training Models

- Possible approaches:
 - Guess and check?
 - Someone gives you the parameters?
 - Guess and improve?

Training Models

- Possible approaches:
 - Guess and check?
 - Someone gives you the parameters?
 - Guess and improve?

Optimization and Gradient Descent

By far the most common method is gradient descent:

$$\operatorname{arg\,min}_{\theta} L(\theta)$$

$$\theta' = \theta + \gamma \nabla L$$

 We will discuss this in detail week when we do logistic regression and later when we talk about neural networks.

Model Exploration

- General idea:
 - Start by training a simple model.

Note that it is possible that it may never be good enough for any number of parameters or model size, so this could

- Test performance on training data.
- Good? Check for overfitting.
- Bad? Increase parameters/hypothesis space and train a new model.

Model Exploration

- General idea:
 - Start by training a simple model.
 - Note that it is possible that it may never be good enough for any number of parameters or model size, so this could go on forever!
 - Good? Check for overfitting.
 - Bad? Increase parameters/hypothesis space and train a new model.

Supervised Learning

 Supervised learning problems can be viewed as learning a functional mapping from inputs to outputs.

Supervised Learning

- Regression vs Classification
- Hypothesis Spaces and Parameters
- Interpolation vs Extrapolation
- Generalization vs Overfitting and Cross-Validation
- Ockham's Razor and Regularization
- Optimization and Gradient Descent

Next Time

Classification with Decision Trees