Notes on Algebraic Topology

Author: 秦宇轩 (QIN Yuxuan) Last compiled at 2025-09-03

Contents

1.	Basic Definitions	. 1
	1.1. Relative Homotopy	. 1
	1.2. Retract and Deformation Retract	
2.	Covering Space	. 2
	2.1. Lebesgue in Algebraic Topology	
	0 0 1 0,	

I plan to learn algebraic topology with Prof. Löh's notes, some other references:

- A Basic Course in Algebraic Topology (GTM 127), William S. Massey, Springer.
- A concise course in Algebraic Topology, Peter May.

1. Basic Definitions

1.1. Relative Homotopy

Two morphisms f and g from topology space X to Y is called *homotopic relative to* A for $A \subset X$, denoted as $f \simeq g$ rel A, if there exists a morphism $h: X \times I \to Y$ such that

- h(x,0) = f(x) for all $x \in X$;
- h(x,1) = g(x) for all $x \in X$;
- h(a,t) = f(a) = g(a) for all $a \in A, t \in I$.

Remark. So the classical homotopic relation between two paths with same end points is exactly the relative homotopy when $A = \{\text{initial point}, \text{final point}\}.$

1.2. Retract and Deformation Retract

- A subspace $i: A \hookrightarrow X$ is called a *retract* of X if i admits a left inverse $r: X \twoheadrightarrow A$, i.e. $r \circ i = \mathrm{id}_A$;
- It is called a deformation retract of X if $i \circ r \simeq \mathrm{id}_X$ rel A.

Remark. Note that $r \circ i = \mathrm{id}_A$ is equivalent to $r \circ i \simeq \mathrm{id}_A$ rel A – so the condition of deformation retract is rather natural – indeed:

- If $r \circ i = \mathrm{id}_A$, then define the homotopy $h(x,t) = r \circ i(x) = \mathrm{id}_A(x) = x$, which is of course continuous in both x and t;
- If $r \circ i \simeq \mathrm{id}_A$ rel A, then by definition there exists a homotopy $h : A \times I \to A$ such that $h(a,t) = r \circ i(a) = \mathrm{id}_A(a)$, implies that $r \circ i = \mathrm{id}_A$.

The main importance of deformation retract is embodied in the following theorem:

Theorem 1.2.1 (A deformation retract shares the same fundamental group of the ambinent sapce)

For a deformation retract $i:A\hookrightarrow X$, we have $\pi_1(A,a)=\pi_1(X,a)$ for all $a\in A$.

Proof. Suppose the relative homotopy is witness by h.

Then by the proposition in Section 4, Chapter 1 of [May], we need only to prove that $\gamma[h(a,-)] = \mathrm{id}$, but by the definition of relative homotopy, h(a,-) == a so the equation is tautology.

Remark

We can prove it directly, first we need a lemma: if $f,g:X\to Y$ is relative homotopic respect to $x_0\in X$, i.e. there exists a homotopy $h:f\simeq g$ rel $\{x_0\}$, we claim that $f_*=g_*:\pi_1(X,x_0)\to\pi_1(Y,y_0)$ where $y_0:=f(x_0)=g(x_0)$.

By this lemma, and note that $i \circ r \simeq \mathrm{id}_A$ rel $\{a\}$, we have $(i \circ r)_* = i_* \circ r_* = (\mathrm{id}_A)_*$. Furthur since A is a retract, $r \circ i = \mathrm{id}$ and thus $r_* \circ i_* = \mathrm{id}$. So we finish the proof of the theorem.

For the lemma, suppose $[p] \in \pi_1(X,x_0)$ is a path, we prove that $f \circ p \simeq g \circ p$: the homotopy $\hat{h}: I \times I \to Y$ is given by

Note that $\hat{h}(s,t) = h(p(s),t)$ is indeed a homotopy between f and g. We are finished.

This can be used to compute the fundamental group $\pi_1(\mathbb{R}^n, x_0)$ for all $x_0 \in \mathbb{R}^n$: we claim that $\{x_0\}$ is a deformation retract of \mathbb{R}^n , and one of the required homotopies is given by $h: \mathbb{R}^n \times I \to \mathbb{R}^n$ which sends (x,t) to $tx + (1-t)x_0$.

So
$$\pi_1(\mathbb{R}^n, x_0) = \pi_1(\{x_0\}, x_0) = \{*\}.$$

2. Covering Space

There are (at least) two definitions of covering spaces over a given base topological space X:

- The "new" fashion: A covering space over X is a morphism $p: E \to X$ such that: for all $x \in X$, there exists an open neihgbourhood $x \in U_x$ such that $p^{-1}(U_x) \cong U_x \times p^{-1}(x)$.
- The "old" fashion: A covering space over X is a morphism $p: E \to X$ such that: for all $x \in X$, there exists an *path-connected* open neihgbourhood U_x such that each path-connected component of $p^{-1}(U_x)$ is homeomorphic to U_x via p.

The new fashion can be found in [Wedhorn], and <u>covering space</u> on <u>nLab</u> while the old one can be found in [Massey] and [May].

Remark

The old fashion definition is in fact not consistent:

- [Massey] requires that both covering spaces and base spaces are *path-connected* and *locally path-connected*
- [May] requires nothing

TODO: Verify that nLab's definition of covering space coinsides with May's: the number of path-connected components of $p^{-1}(U_x)$ equals to $|p^{-1}(x)|$

In short: Covering space is a discrete bundle.

2.1. Lebesgue in Algebraic Topology

Yes, Lebesgue and algebraic topology. We should thanks to him for the following useful lemma:

Theorem 2.1.1 (Lebesgue number)

For an open covering $\{U_i\}$ of a *compact metric space* X, there exists $\delta>0$, which is called a Lebesgue number, such that for all $x\in X$ the open ball centered x with radius δ is fully contained in one of those open sets, formally: $B(x,\delta)\subset U_i$ for some U_i .

Proof. Suppose not, that is, for all n, there exists x_n such that $B(x_n, \frac{1}{n})$ does not fully contained any U_i .

Since X is compact, $\{x_n\}$ has a coverage subsequence $\{y_n\}$ tends to y_0 . Let ε_n the associated radius of y_n . Since $\{U_i\}$ is an open cover of X, there exists $\varepsilon_0>0$ and N such that $B(y_0,\varepsilon)\subset U_i$ for some i, and for all m>N we have $y_m\in B(y_0,\frac{\varepsilon_0}{2})$.

Now make m so large that $\varepsilon_m<\frac{\varepsilon_0}{2}$ and m>N, so $B(y_m,\varepsilon_m)\subset B(y_0,\varepsilon_0)\subset U_i$, contradiction to our assumption!