

TEAM:

Nimisha - PES1201700083 Shashank - PES1201700667 Suhail - PES1201701420 Riya - PES1201701814

ASSIGNMENT 8

Problem statement:

Implement machine learning techniques to design a classifier using decision trees.

Dataset:

GALEX_data-extended-feats data

CODE:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.metrics import accuracy_score

data = pd.read_csv("GALEX_data-extended-feats.csv")
X=data.drop('class', axis=1)
y= data['class']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state=23)

clf_entropy = DecisionTreeClassifier( criterion = "entropy", random_state = 100, max_depth = 6, min_samples_leaf = 6)

clf_entropy.fit(X_train, y_train)
y_pred = clf_entropy.predict(X_test)
print("Predicted values:")
print("Predicted values:")
print("Confusion Matrix: ", confusion_matrix(y_test, y_pred))

print("Accuracy: ", accuracy_score(y_test,y_pred)*100)

print("Report: ", classification_report(y_test, y_pred))
```


RESULT:

Predicted values:

[0 1 1 ... 0 1 1]

Confusion Matrix: [[82 7 40]

[6 795 24] [31 25 251]]

Accuracy: 89.45281522601111

Report:			precision	recall	f1-score	support
	0	0.69	0.64	0.66	129	
	1	0.96	0.96	0.96	825	
	2	0.80	0.82	0.81	307	
micro	avg	0.89	0.89	0.89	1261	
macro	avg	0.82	0.81	0.81	1261	
weighted	avg	0.89	0.89	0.89	1261	