Dot-product kernels

Nuno Vasconcelos ECE Department, UCSD

Classification

- a classification problem has two types of variables
 - X vector of observations (features) in the world
 - Y state (class) of the world
- ► Perceptron: classifier implements the linear decision rule

$$h(x) = \operatorname{sgn}[g(x)]$$
 with $g(x) = w^T x + b$

- appropriate when the classes are linearly separable
- ▶ to deal with non-linear separability we introduce a kernel

Kernel summary

- 1. D not linearly separable in X, apply feature transformation $\Phi:X \to Z$, such that dim(Z) >> dim(X)
- 2. computing $\Phi(x)$ too expensive:
 - write your learning algorithm in dot-product form
 - instead of $\Phi(x_i)$, we only need $\Phi(x_i)^T \Phi(x_i) \ \forall_{ij}$
- 3. instead of computing $\Phi(x_i)^T \Phi(x_i) \forall_{ij}$, define the "dot-product kernel"

$$K(X,Z) = \Phi(X)^T \Phi(Z)$$

and compute $K(x_i, x_i) \forall_{ii}$ directly

note: the matrix

$$K = \begin{bmatrix} \vdots \\ \cdots K(x_i, x_j) \cdots \\ \vdots \end{bmatrix}$$

is called the "kernel" or Gram matrix

4. forget about $\Phi(x)$ and use K(x,z) from the start!

Polynomial kernels

- \blacktriangleright this makes a significant difference when K(x,z) is easier to compute that $\Phi(x)^T \Phi(z)$
- ▶ e.g., we have seen that

$$K(X,Z) = (X^T Z)^2 = \Phi(X)^T \Phi(Z)$$

with
$$\Phi: \mathfrak{R}^d \to \mathfrak{R}^{d^2}$$

$$\begin{pmatrix} X_1 \\ \vdots \\ X_d \end{pmatrix} \rightarrow \begin{pmatrix} X_1 X_1, X_1 X_2, \dots, X_1 X_d, \dots, X_d X_1, X_d X_2, \dots, X_d X_d \end{pmatrix}^T$$

- ▶ while K(x,z) has complexity O(d), $\Phi(x)^T\Phi(z)$ is $O(d^2)$
- ▶ for $K(x,z) = (x^Tz)^k$ we go from O(d) to $O(d^k)$

Question

- what is a good dot-product kernel?
 - intuitively, a good kernel is one that maximizes the margin γ in range space
 - however, nobody knows how to do this effectively
- ▶ in practice:
 - pick a kernel from a library of known kernels
 - we talked about
 - the linear kernel $K(x,z) = x^T z$
 - the Gaussian family $K(X,Z) = e^{-\frac{\|X-Z\|^2}{\sigma}}$
 - the polynomial family

$$K(X,Z) = (1 + X^T Z)^k, \quad k \in \{1,2,\cdots\}$$

Question

- "this problem of mine is really asking for the kernel k'(x,z) = ..."
 - how do I know if this is a dot-product kernel?
- ▶ let's start by the definition
- Definition: a mapping

$$k: X \times X \to \mathcal{R}$$

 $(x,y) \to k(x,y)$

is a dot-product kernel if and only if

$$k(x,y) = \langle \Phi(x), \Phi(y) \rangle$$

where $\Phi: X \to \mathcal{H}$, \mathcal{H} is a vector space and, <.,.> a dot-product in \mathcal{H}

Vector spaces

- ▶ note that both \mathcal{H} and <.,.> can be abstract, not necessarily \Re^d
- **Definition:** a vector space is a set \mathcal{H} where
 - addition and scalar multiplication are defined and satisfy:

1)
$$X+(X'+X'') = (X+X')+X''$$

2)
$$X+X'=X'+X\in\mathcal{H}$$

3)
$$0 \in \mathcal{H}, 0 + x = x$$

4)
$$-x \in \mathcal{H}, -x + x = 0$$

5)
$$\lambda x \in \mathcal{H}$$

6)
$$1x = x$$

7)
$$\lambda(\lambda' x) = (\lambda \lambda')x$$

8)
$$\lambda(x+x') = \lambda x + \lambda x'$$

9)
$$(\lambda + \lambda')x = \lambda x + \lambda' x$$

- ▶ the canonical example is R^d with standard vector addition and scalar multiplication
- ▶ another example is the space of mappings $X \to \Re$ with

$$(f+g)(x) = f(x) + g(x) \qquad (\lambda f)(x) = \lambda f(x)$$

Bilinear forms

- to define dot-product we first need to recall the notion of a bilinear form
- ▶ Definition: a bilinear form on a vector space ℋ is a mapping

$$Q: \mathcal{H} \times \mathcal{H} \to \mathcal{R}$$
$$(x,x') \to Q(x,x')$$

such that $\forall x,x',x'' \in \mathcal{H}$

- i) $Q[(\lambda x + \lambda x'), x''] = \lambda Q(x, x'') + \lambda' Q(x', x'')$
- $ii) Q[x",(\lambda x+\lambda x')] = \lambda Q(x",x) + \lambda' Q(x",x')$
- ightharpoonup in \mathcal{R}^d the canonical bilinear form is

$$Q(x,x') = x^T A x'$$

▶ if $Q(x,x') = Q(x',x) \ \forall x,x' \in \mathcal{H}$, the form is symmetric

Dot products

Definition: a dot-product on a vector space \mathcal{H} is a symmetric bilinear form

$$<.,.>: \mathcal{H} \times \mathcal{H} \to \mathcal{H}$$

 $(X,X') \to$

such that

i)
$$\langle x, x \rangle \geq 0$$
, $\forall x \in \mathcal{H}$

i)
$$\langle x,x \rangle \geq 0$$
, $\forall x \in \mathcal{H}$
ii) $\langle x,x \rangle = 0$ if and only if $x = 0$

 \blacktriangleright note that for the canonical bilinear form in \mathcal{R}^d

$$\langle X, X \rangle = X^T A X$$

this means that A must be positive definite

$$x^T A x > 0, \forall x \neq 0$$

Positive definite matrices

- recall that (e.g. Linear Algebra and Applications, Strang)
- ▶ **Definition:** each of the following is a necessary and sufficient condition for a real symmetric matrix *A* to be (semi) positive definite:
 - i) $x^T A x \ge 0$, $\forall x \ne 0$
 - ii) all eigenvalues of A satisfy $\lambda_i \geq 0$
 - iii) all upper-left submatrices A_k have non-negative determinant
 - iv) there is a matrix R with independent rows such that $A = R^T R$
- upper left submatrices:

$$A_{1} = a_{1,1} \qquad A_{2} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \qquad A_{3} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} \qquad \cdots$$

Positive definite matrices

- property iv) is particularly interesting
 - in \mathcal{R}^d , $\langle x, x \rangle = x^T A x$ is a dot-product kernel if and only if A is positive definite
 - from iv) this holds if and only if there is R such that $A = R^T R$
 - hence

$$\langle x,y \rangle = x^T A y = (Rx)^T (Ry) = \Phi(x)^T \Phi(y)$$
 with $\Phi: \mathcal{R}^d \to \mathcal{R}^d$ $x \to Rx$

▶ i.e. the dot-product kernel

$$k(x,z) = x^T A z$$
, (A positive definite)

▶ is the standard dot-product in the range space of the mapping $\Phi(x) = Rx$

Note

▶ there are positive semidefinite matrices

$$x^T A x \ge 0$$

and positive definite matrices

$$x^T A x > 0$$

- we will work with semidefinite but, to simplify, will call definite
- ▶ if we really need > 0 we will say "strictly positive definite"

- how do we define a positive definite function?
- ▶ Definition: a function k(x,y) is a positive definite kernel on $X \times X$ if $\forall I$ and $\forall \{x_1, ..., x_i\}, x_i \in X$, the Gram matrix

$$K = \begin{bmatrix} \vdots \\ \cdots k(x_i, x_j) \cdots \\ \vdots \end{bmatrix}$$

is positive definite.

- ▶ Note: this implies that
 - $k(x,x) \ge 0 \quad \forall x \in X$

•
$$\begin{bmatrix} k(x,x) & k(x,y) \\ k(y,x) & k(y,y) \end{bmatrix}$$
 PD $\forall x,y \in X$ (*) etc...

- ▶ this proves some simple properties
 - a PD kernel is symmetric

$$k(x,y) = k(y,x), \quad \forall x,y \in X$$

Proof:

since PD means symmetric (*) implies $k(x,y) = k(y,x) \ \forall \ x,y \in X$

 Cauchy-Schwarz inequality for kernels: if k(x,y) is a PD kernel, then

$$k(x,y)^2 \le k(x,x)k(y,y), \quad \forall x,y \in X$$

Proof:

from (*), and property iii) of PD matrices, the determinant of the 2x2 matrix of (*) is non-negative. This means that

$$k(x,x)k(y,y) - k(x,y)^2 \ge 0$$

- ▶ it is not hard to show that all dot product kernels are PD
- Lemma 1: Let k(x,y) be a dot-product kernel. Then k(x,y) is positive definite
- proof:
 - k(x,y) dot product kernel implies that
 - $\exists \Phi$ and some dot product <.,.> such that $k(x,y) = \langle \Phi(x), \Phi(y) \rangle$
 - this implies that if:
 - we pick any I, and any sequence $\{x_1, ..., x_l\}$,
 - and let K be the associated Gram matrix
 - then, for $\forall c \neq 0$

$$K = \begin{bmatrix} \vdots \\ \cdots k(X_i, X_j) \cdots \\ \vdots \end{bmatrix}$$

$$C^{T}KC = \sum_{ij} c_{i}c_{j}k(x_{i}, x_{j})$$

$$= \sum_{ij} c_{i}c_{j}\langle\Phi(x_{i}), \Phi(x_{j})\rangle \qquad \text{(k is dot product)}$$

$$= \left\langle \sum_{i} c_{i}\Phi(x_{i}), \sum_{j} c_{j}\Phi(x_{j}) \right\rangle \qquad \text{(<.,,> is a bilinear form)}$$

$$= \left\| \sum_{i} c_{i}\Phi(x_{i}) \right\|^{2} \ge 0 \qquad \text{(from def of dot product)}$$

- the converse is also true but more difficult to prove
- Lemma 2: Let k(x,y), $x,y \in X$, be a positive definite kernel. Then k(x,y) is a dot product kernel
- proof:
 - we need to show that there is a transformation Φ , a vector space $\mathcal{H} = \Phi(X)$, and a dot product $<...>_*$ in \mathcal{H} such that

$$k(x,y) = \langle \Phi(x), \Phi(y) \rangle_*$$

- we proceed in three steps
 - 1. construct a vector space \mathcal{H}
 - 2. define the dot-product $<...>_*$ on \mathcal{H}
 - 3. show that $k(x,y) = \langle \Phi(x), \Phi(y) \rangle_*$ holds

The vector space \mathcal{H}

we define \mathcal{H} as the space spanned by linear combinations of $k(.,x_i)$

$$\mathcal{H} = \left\{ f(.) \mid f(.) = \sum_{i=1}^{m} \alpha_i k(., X_i), \quad \forall m, \forall X_i \in X \right\}$$

- ▶ notation: by $k(.,x_i)$ we mean a function of $g(y) = k(y,x_i)$ of y, x_i is fixed.
- ▶ homework: $\underline{\text{check}}$ that \mathcal{H} is a vector space

• e.g. 2)
$$f(.) = \sum_{j=1}^{m} \alpha_{j} k(., X_{j})$$
$$f'(.) = \sum_{j=1}^{m'} \beta_{j} k(., X'_{j})$$
$$f(.) + f'(.) = f'(.) + f(.) \in \mathcal{H}$$

Example

when we use the Gaussian kernel

$$K(.,X_i) = e^{-\frac{\left\|.-X_i\right\|^2}{\sigma^2}}$$

 $\blacktriangleright k(.,x_i)$ is a Gaussian centered on x_i with covariance σl

e.g.

and

$$\mathbf{H} = \left\{ f(.) \mid f(.) = \sum_{i=1}^{m} \alpha_i e^{-\frac{\|.-x_i\|}{\sigma^2}}, \ \forall m, \forall x_i \right\}$$

is the space of all linear combinations of Gaussians

note that these are not mixtures but close

▶ if f(.) and $g(.) \in \mathcal{H}$, with

$$f(.) = \sum_{j=1}^{m} \alpha_{j} k(., X_{j}) \qquad g(.) = \sum_{j=1}^{m'} \beta_{j} k(., X'_{j}) \qquad (**)$$

▶ we define the operator <.,.>∗ as

$$\langle f, g \rangle_* = \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j k(X_i, X'_j)$$
(***)

Example

▶ when we use the Gaussian kernel

$$K(.,X_i) = e^{-\frac{\left\|.-x_i\right\|^2}{\sigma^2}}$$

▶ the operator <.,.>∗ is a weighted sum of Gaussian terms

$$\langle f, g \rangle_* = \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j e^{-\frac{\left\|x_i - x'_j\right\|^2}{\sigma^2}}$$

- you can look at this as either:
 - a dot product in H (still need to prove this)
 - a non-linear measure of similarity in X, somewhat related to likelihoods

▶ important note: for f(.) and $g(.) \in \mathcal{H}$, the operator <.,.>*

$$\langle f, g \rangle_* = \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)$$

has the property

$$\langle k(.,X_j),k(.,X'_j)\rangle_* = k(X_j,X'_j)$$

▶ proof: just make

$$\begin{cases} \alpha_{i} = 1, & \alpha_{k} = 0 \ \forall k \neq i \\ \beta_{j} = 1, & \beta_{k} = 0 \ \forall k \neq j \end{cases}$$

- ▶ assume that <.,.>* is a dot product in ℋ (proof in moments)
- since $\langle k(., X_i), k(., X_j) \rangle_* = k(X_i, X_j)$
- ▶ then, clearly

with
$$k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle_*$$
$$\Phi : X \to \mathcal{H}$$
$$X \to k(., x)$$

- ▶ i.e. the kernel is a dot-product on \mathcal{H} , which results from the feature transformation Φ
- ▶ this proves <u>Lemma 2</u>

Example

- ▶ when we use the Gaussian kernel $K(x,x_i) = e^{-\frac{||x-x_i||}{\sigma}}$
 - the point $x_i \in \mathcal{R}^d$ is mapped into the Gaussian $G(x,x_i,\sigma l)$
 - \mathcal{H} is the space of all functions that are linear combinations of Gaussians
 - this has infinite dimension
 - the kernel is a dot product in \mathcal{H} , and a non-linear similarity on \mathcal{X}

In summary

- ▶ to show that k(x,y), $x,y \in X$, positive definite $\Rightarrow k(x,y)$ is a dot product kernel
- we need to show that

$$\langle f, g \rangle_* = \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)$$

▶ is a dot product on

$$\mathcal{H} = \left\{ f(.) \mid f(.) = \sum_{i=1}^{m} \alpha_i k(., X_i), \quad \forall m, \forall X_i \in X \right\}$$

▶ this reduces to <u>verifying the dot product conditions</u>

- ▶ 1) is <.,.> $_*$ a bilinear form on \mathcal{H} ?
- ▶ by definition of f(.) and g(.) in (**)

$$\langle f, g \rangle_* = \left\langle \sum_{j=1}^m \alpha_j k(., X_j), \sum_{j=1}^{m'} \beta_j k(., X_j') \right\rangle_*$$

on the other hand,

$$\langle f, g \rangle_* = \sum_{j=1}^m \sum_{j=1}^{m'} \alpha_j \beta_j k(x_j, x'_j)$$
 from (***)
$$= \sum_{j=1}^m \sum_{j=1}^{m'} \alpha_j \beta_j \langle k(., x_j), k(., x'_j) \rangle_*$$
 from (****)

equality of the two left hand sides is the <u>definition of</u>
 <u>bilinearity</u>

- ▶ 2) is <.,.>* symmetric?
- ▶ note that

$$\langle g, f \rangle_* = \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j k(x'_j, x_i) = \langle f, g \rangle_*$$

- ▶ if and only if $k(x_i, x_i') = k(x_i', x_i)$ for all x_i, x_i' .
- but this follows from the positive definiteness of k(x,y)
- we have seen that a PD kernel is always symmetric
- ▶ hence, <.,.>* is symmetric

- ▶ 3) is $\langle f, f \rangle_* \geq 0$, $\forall f \in \mathcal{H}$?
- ▶ by definition of *f(.)* in (**)

$$\langle f, f \rangle_* = \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j k(x_i, x_j) = \alpha^T K \alpha$$

where $\alpha \in \mathcal{R}^m$ and K is the Gram matrix

- ▶ since k(x,y) is positive definite, K is positive definite by definition and $\langle f,f \rangle_* \geq 0$

 (x)
- ► the only non-trivial part of the proof is to show that $\langle f, f \rangle_* = 0 \Rightarrow f = 0$
- we need two more results

- ▶ Lemma 3: <.,.>* is itself a positive definite kernel on $\mathcal{H} \times \mathcal{H}$
- proof:
 - consider any sequence $\{f_1, ..., f_m\}, f_i \in \mathcal{H}$
 - then

$$\sum_{ij} \gamma_{i} \gamma_{j} \left\langle f_{i}, f_{j} \right\rangle_{*} = \left\langle \sum_{i} \gamma_{i} f_{i}, \sum_{j} \gamma_{j} f_{j} \right\rangle_{*} \text{ (by bilinearity of <.,.>*)}$$

$$= \left\langle g_{1}, g_{2} \right\rangle_{*} \qquad \text{(for some } g_{1}, g_{2} \in \mathcal{H})$$

$$\geq 0 \qquad \qquad \text{(by (x))}$$

hence the Gram matrix is always PD and the kernel <.,.>* is PD

- ▶ Lemma 4: $\forall f \in \mathcal{H}, \langle k(.,x), f(.) \rangle_* = f(x)$
- proof:

$$\langle k(.,X), f(.) \rangle_{*} = \left\langle k(.,X), \sum_{i} \alpha_{i} k(.,X_{i}) \right\rangle_{*} \quad \text{(by (***))}$$

$$= \sum_{i} \alpha_{i} \left\langle k(.,X), k(.,X_{i}) \right\rangle_{*} \quad \text{(by bilinearity of <..,.>*)}$$

$$= \sum_{i} \alpha_{i} k(X,X_{i}) = f(X) \quad \text{(by (****))}$$

- ▶ 4) we are now ready to prove that $\langle f, f \rangle_* = 0 \Rightarrow f = 0$
- proof:
 - since <.,.>* is a PD kernel (lemma 3) we can apply Cauchy-Schwarz $k(x,y)^2 \le k(x,x)k(y,y)$, $\forall x,y \in X$
 - using k(.,x) as x and f(.) as y this becomes

$$\langle k(.,X), k(.,X) \rangle_* \langle f, f \rangle_* \ge (\langle k(.,X), f \rangle_*)^2$$

and using <u>lemma 4</u>

$$k(X,X)\langle f,f\rangle_* \geq f^2(X)$$

• from which $\langle f, f \rangle_* = 0 \Rightarrow f = 0$

In summary

we have shown that

$$\langle f, g \rangle_* = \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)$$

▶ is a dot product on

$$\mathcal{H} = \left\{ f(.) \mid f(.) = \sum_{i=1}^{m} \alpha_i k(., X_i), \quad \forall m, \forall X_i \in X \right\}$$

- ▶ and this shows that if k(x,y), $x,y \in X$, is a positive definite kernel, then k(x,y) is a dot product kernel.
- since we had initially proven the converse, we have the following theorem.

Dot product kernels

- ► Theorem: k(x,y), $x,y \in X$, is a dot-product kernel if and only if it is a positive definite kernel
- ▶ this is interesting because it allows us to check whether a kernel is a dot product or not!
 - check if the Gram matrix is positive definite for all possible sequences $\{x_1, ..., x_l\}, x_i \in X$
- but the proof is much more interesting than this result alone
- ▶ it actually gives us insight on what the kernel is doing
- ▶ let's summarize

Dot product kernels

- ▶ a dot product kernel k(x,y), $x,y \in X$:
 - applies a feature transformation

$$\Phi: X \to \mathcal{H}$$
$$x \to k(.,x)$$

to the vector space

$$\mathcal{H} = \left\{ f(.) \mid f(.) = \sum_{i=1}^{m} \alpha_i k(., X_i), \quad \forall m, \forall X_i \in X \right\}$$

where the kernel implements the dot product

$$\langle f, g \rangle_* = \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)$$

Dot product kernels

▶ the dot product

$$\langle f, g \rangle_* = \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)$$

▶ has the reproducing property

$$\langle k(.,X),f(.)\rangle_* = f(X)$$

- you can think of this as analog to the convolution with a Dirac delta
- we will talk about this a lot in the coming lectures
- ▶ finally, <.,.>* is itself a positive definite kernel on $\mathcal{H} \times \mathcal{H}$

A good picture to remember

- ▶ when we use the Gaussian kernel $K(x,x_i) = e^{-\frac{||x_i-x_i||}{\sigma}}$
 - the point $x_i \in \mathcal{R}^d$ is mapped into the Gaussian $G(x,x_i,\sigma l)$
 - \mathcal{H} is the space of all functions that are linear combinations of Gaussians
 - the kernel is a dot product in \mathcal{H}
 - the dot product with one of the Gaussians has the reproducing property

Any Questions