PHYS 20323/60323: Fall 2024 - LaTeX Example

- 1. An electron is found to be in the spin state (in the z-basis): $\chi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$
- (a)(5points) Determine the possible values of Asuch that the state is normalized.
- (b)(5points) Find the expectation values of the operators S_x , S_y , S_z , and S^2 .

The matrix representations in the *z*-basis for the components of electron spin operators are given by:

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \quad S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

2. The average electrostatic field in the earth's atmosphere in fair weather is approximately given:

$$\tilde{\mathbf{E}} = E_0 (Ae^{-\alpha z} + Be^{-\beta z})\hat{z}$$

where A, B, α , β are positive constants and z is the height above the (locally flat) earth surface.

- (a) (5 points) Find the average charge density in the atmosphere as a function of height.
 - (b) (5 points) Find the electric potential as a function of height above the earth.
 - 3. The following questions refer to stars in the Table below.

Note: There may be multiple answers.

(a) (4 points) Which of these stars will produce a planetary nebula?

Name	Mass	Luminosity	Lifetime	Temperature	Radius
β Cyg.	$1.3~\mathrm{M}_\odot$	3.5 L _☉			$ m R_{\odot}$
	$1.0~{ m M}_{\odot}$		$8.0 \times 10^{10} \text{ years}$		1 R _⊙
	$60~{\rm M}_{\odot}$				
ε Eri.	$0.6~\mathrm{M}_\odot$	$10^3~{ m L}_{\odot}$	5.0×10^9 years	20,000 K	
δ Scu.	$2.0~{ m M}_{\odot}$		5.0×10^8 years		$2~{ m R}_{\odot}$
γ Del.	$0.7~\mathrm{M}_\odot$		$4.5 \times 10^{10} \text{ years}$	5000 K	

(b) (4 points) Elements heavier than Carbon will be produced in which stars? **LaTeX**

Example 31