# Finding Similar Repositories in Github

Jingci Wang

MS in Data Science Khoury College of Computer Sciences

#### Motivation

Finding relevant projects is beneficial for developers in case of

- Reuse existing functions
- \* Explore ideas of possible features
- Analyze the requirements and possible implementations for their own projects

#### Objective

Given a single software repository, find repositories that are most similar to it

#### Possible Solutions

- Dig patterns in GitHub users's history behaviors
- Find similarity in Readme Files
- Find similarity in Source Code

#### Source Code

Linguist

- Keywords
- Identifiers
- Literals
- Comments
- Strings



Pygments

Token.Name.\*

Token.Comments.\*

#### Data Preparation

- \* Treat every file as a sentence, repo as a document
- Scraped source code identifiers and comments from GitHub repositories
- Split identifiers foo\_BAR —> (foo, bar)
- \* Stemmed identifiers —> Bag-of-Words
- \* Removed repos with less 50 different identifiers or more than 1000000 words in total
- \* Resulted in 1785 repos

#### Evaluation Set \_\_956 Pairs

### Thanks to DéjàVu

| cloneId | #clonedFiles | #totalFiles | clonePercent | hostId | #affectedFiles | #totalFiles | affectPercent |
|---------|--------------|-------------|--------------|--------|----------------|-------------|---------------|
| 7       | 4            | 18          | 22.22        | 521    | 266            | 434         | 61.26         |

$$sim(repo_1, repo_2) = \frac{\#repo_1Files \times cloned\% + \#repo_2Files \times affected\%}{\#repo_1Files + \#repo_2Files}$$



#### Vectorization

CountVectorizer \_\_more than 150000 cols, 99.6% sparsity

```
aa
aaa
aaaa
aaaaa
aaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
aa
aaaaaaaabbbbbbbbbbb
aaaaae
```

Only keep words which appear in more than
 5 repos but less 75% of repos

#### Problem with TFIDF



Dominant topic in each repository is the same

#### Topic Modeling



Log-likehood v.s. #Topics



Perplexity v.s. #Topics



# Perform KMeans resulting ; in 150 clusters

$$Purity_i = \frac{max_j N_j}{C_i}$$



| Recall | Precision | Homogeneity | Completeness | SSE     |
|--------|-----------|-------------|--------------|---------|
| 0.07   | 0.56      | 0.880       | 0.738        | 74.3105 |

 Running time suffers for a giant dataset





|      | #Different Words | #Words |
|------|------------------|--------|
| Mean | 1217             | 74356  |
| 25%  | 301              | 4124   |
| 50%  | 654              | 17201  |
| 75%  | 1400             | 64258  |

#### Hash Method







1785 by 523 Matrix



|             | Recall | Precision | Homogeneity | Completeness | SSE     |
|-------------|--------|-----------|-------------|--------------|---------|
| Hash        | 0.44   | 0.51      | 0.526       | 0.767        | 74.3105 |
| Hash (norm) | 0.15   | 0.47      | 0.789       | 0.723        | 3E+10   |
| LDA         | 0.07   | 0.56      | 0.880       | 0.738        | 836.38  |

#### Results with only identifier names

| Homogeneity | Completeness |
|-------------|--------------|
| 0.6099      | 0.5748       |

#### LDA v.s. Hash

|             | Recall | Precision | Homogeneity | Completeness |
|-------------|--------|-----------|-------------|--------------|
| Hash        | 0.44   | 0.45      | 0.510       | 0.754        |
| Hash (norm) | 0.10   | 0.51      | 0.810       | 0.724        |
| LDA         | 0.07   | 0.54      | 0.869       | 0.731        |

#### Results adding comments

## Examples

WordPress/WordPress

Jumilla/wordpress-plus

dxw/wordpress

mhoofman/wordpressheroku

owen2345/camaleon-cms

torch/nn

pytorch/pytorch

jcjohnson/neuralstyle

keras-team/keras

tensorflow/models

twitter/mysql

Tokutek/mysql-5.5

Tokutek/mariadb-5.5

facebook/mysql-5.6

therecluse26/PHP-Login

## Thanks