Solution of extended Graetz problem by Integral transform with orthotropic duct

Lucas Coelho da Silva

Advisor: Daniel J. N. M. Chalhub

Dep. of Mech. Engineering – PPG-EM, Universidade do Estado do Rio de Janeiro, Rio de Janeiro - RJ, Brazil

Seminário PPG-EM - November 2016

Introduction

Motivation and application

- Industry, ducts
- Advantages
 - safety
 - financial alternative (cost)
 - optimization

GITT History

- Koshlyakov(1936)
- Grimnberg(1948)
- Ozisik and Tranter
- Europe and USA
- Ozisik and Murray(1974)

Wolfram Mathematica 10.4

- Applications
 - Numerical calculation
 - Functions presentations
 - Equations resolution
 - Graphics plot
 - Advantages
 - Fast calculation and graphics presentation
 - Simple language

Steps

- Energy equation
- Dimensionless groups
- Bessel equation
- Transformation pair
- Mathematica
- Convergence analysis

Problem formulation

General heat conduction equation

$$\rho c_p \frac{DT}{Dt} = \nabla \cdot (k\nabla T) + \mu \phi + \beta_e T \frac{Dp}{Dt} + \dot{g}^*$$

Assumptions

$$u\frac{\partial T}{\partial z} + v\frac{\partial T}{\partial r} = \alpha \left(\frac{\partial T^2}{\partial^2 z} + \frac{\partial T^2}{\partial^2 r} \right)$$

- Permanent regime;
- Newtonian fluid, incompressible laminar flow ($\beta_e = 0$);
- $(\dot{g}^* = 0 \text{ and } \phi = 0)$;
- constant thermophysical properties;
- hydrodynamically developed flow, but thermally developing;
- axysimmetric flow and orthotropic duct.

Specific formulation

Figure: axysimmetric duct

$$u(r)\,w_f\frac{\partial T}{\partial z}=\frac{1}{r}\frac{\partial}{\partial r}\left(k_r(r)\,r\frac{\partial T}{\partial r}\right)+\frac{\partial}{\partial z}\left(k_z(r)\frac{\partial T}{\partial z}\right)\quad\text{for}\quad 0\leq z\leq\infty\quad\text{and}\quad 0\leq r\leq b$$

$$T=T_{\text{in}}\quad\text{for}\quad z=0\quad\text{and}\quad 0\leq r\leq b$$

$$\frac{\partial T}{\partial z}=0\quad\text{for}\quad z\to\infty\quad\text{and}\quad 0\leq r\leq b$$

$$\frac{\partial T}{\partial r}=0\quad\text{for}\quad r=0\quad\text{and}\quad z\geq 0$$

$$-k_r(r)\frac{\partial T}{\partial r}=h\left(T-T_f\right)\quad\text{for}\quad r=b\quad\text{and}\quad z\geq 0$$

Dimensionless groups

The following dimensionless groups are defined:

$$K_{r}(\eta) = \frac{k_{r}(r)}{k_{f}}; \quad K_{z}(\eta) = \frac{k_{z}(r)}{k_{f}}; \quad \tilde{k}_{r} = \frac{k_{sr}}{k_{f}}; \quad \tilde{k}_{z} = \frac{k_{sz}}{k_{f}};$$

$$\xi = \frac{z k_{f}}{b^{2} \bar{u} w_{f}}; \quad \eta = \frac{r}{b}; \quad \beta = \frac{a}{b}; \quad \theta = \frac{T - T_{f}}{T_{\text{in}} - T_{f}}; \quad u^{*}(r) = \frac{u(r)}{\bar{u}};$$

$$\text{Pe} = \frac{(2a)\bar{u} k_{f}}{w_{f}}; \quad \text{Bi} = \frac{hb}{k_{sr}}; \quad w^{*}(\eta) = \frac{w(r)}{w_{f}}; \quad \tilde{w} = \frac{w_{s}}{w_{f}}$$

$$u^{*}(\eta) = \begin{cases} 2(1 - \frac{\eta^{2}}{\beta^{2}}) & \text{if } \eta \leq \beta \\ 0 & \text{if } \eta > \beta \end{cases}$$

$$K_{r}(\eta) = \begin{cases} 1 & \text{if } \eta \leq \beta \\ \tilde{k}_{r} & \text{if } \eta > \beta \end{cases}$$

$$K_{z}(\eta) = \begin{cases} 1 & \text{if } \eta \leq \beta \\ \tilde{k}_{z} & \text{if } \eta > \beta \end{cases}$$

$$w^{*}(\eta) = \begin{cases} 1 & \text{se } \eta \leq \beta \\ \tilde{w} & \text{se } \eta > \beta \end{cases}$$

Nusselt number

$$\begin{split} u^*(\eta)w^*(\eta)\frac{\partial\theta}{\partial\xi} &= \frac{1}{\eta}\frac{\partial}{\partial\eta}\left(K_r(\eta)\eta\frac{\partial\theta}{\partial\eta}\right) + \frac{4K_z(\eta)\beta^2}{\mathrm{Pe}^2}\frac{\partial^2\theta}{\partial\xi^2} \quad \text{for} \quad 0 \leq \xi \leq \infty \quad \text{and} \quad 0 \leq \eta \leq 1 \\ \theta(0,\eta) &= 1; \\ \left. \frac{\partial\theta}{\partial\eta} \right|_{\eta=0} &= 0 \\ \left. \frac{\partial\theta}{\partial\eta} \right|_{\eta=1} &= -\mathrm{Bi}\,\theta(\xi,1); \\ \left. \frac{\partial\theta}{\partial\xi} \right|_{\xi=\infty} &= 0; \end{split}$$

$$\mathrm{Nu}(\xi) &= \frac{2\beta(\partial\theta/\partial\eta)_{\eta=\beta}}{\theta(\xi,\beta) - \frac{2}{2^2}\int_0^\beta u^*\theta\eta\,\mathrm{d}\eta} \end{split}$$

Generalized Integral Transform Technique - GITT

Equations

• Bessel eigenvalue problem

$$\frac{1}{\eta} \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\eta \frac{\mathrm{d}R_n}{\mathrm{d}\eta} \right) + \lambda_n^2 R_n = 0$$

Transformation Pair

Transformation
$$\Rightarrow$$
 $\bar{\theta}_n(\xi) = \int_0^1 \theta(\xi, \eta) R_n(\eta) \eta \, \mathrm{d}\eta$ Inversion \Rightarrow $\theta(\xi, \eta) = \sum_{i=1}^\infty \frac{\bar{\theta}_n(\xi) R_n(\eta)}{N_n}$

Transformed equation

$$\sum_{m=1}^{\infty} B_{n,m} \bar{\theta}_m''(\xi) = \sum_{m=1}^{\infty} A_{n,m} \bar{\theta}_m'(\xi) + \sum_{m=1}^{\infty} C_{n,m} \bar{\theta}_m(\xi)$$

$$\begin{split} A_{n,m} &= -\frac{1}{N_m} \int_0^1 u^* R_m R_n \eta \, \mathrm{d} \eta \\ B_{n,m} &= \frac{4 \, \beta^2}{\mathrm{Pe}^2 N_m} \int_0^1 K_z R_m R_n \eta \, \mathrm{d} \eta \\ C_{n,m} &= \frac{1}{N_m} \left[\mathrm{Bi} \, \tilde{k}_{sr} \, R_n(1) \, R_m(1) + \int_0^1 K_r R_m' R_n' \eta \, \mathrm{d} \eta \right] \end{split}$$

$$\bar{\theta}_n(0) = \int_0^1 R_n(\eta) \, \eta \, \mathrm{d}\eta = b_n$$

$$\bar{\theta}_n \left(\xi \to \infty \right) = 0$$

Proposed analytical solution

$$\begin{split} \boldsymbol{y}\left(\xi\right) &= \left(\bar{\boldsymbol{\theta}}_{1}\left(\xi\right), \bar{\boldsymbol{\theta}}_{2}\left(\xi\right), \bar{\boldsymbol{\theta}}_{3}\left(\xi\right), ..., \bar{\boldsymbol{\theta}}_{n_{\max}}\left(\xi\right), \bar{\boldsymbol{\theta}}_{1}'\left(\xi\right), \bar{\boldsymbol{\theta}}_{2}'\left(\xi\right), \bar{\boldsymbol{\theta}}_{3}'\left(\xi\right), ..., \bar{\boldsymbol{\theta}}_{n_{\max}}'\left(\xi\right)\right) \\ &\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}\xi} = \mathbf{M}\boldsymbol{y} \\ \\ \mathbf{M} &= \left(\begin{array}{ccc} \mathbf{O} & \mathbf{I} \\ \mathbf{E} & \mathbf{D} \end{array}\right) \\ \\ \boldsymbol{y}_{n}\left(\xi\right) &= \sum_{m=1}^{2n_{\max}} G_{n,m}c_{m} \exp\left(\omega_{m}\,\xi\right), & \text{for} & n=1,2,3,\ldots,2n_{\max} \\ \\ \boldsymbol{c}_{n} &= 0 & \text{if} & \omega_{n} > 0 & \text{for} & n=1,2,3,\ldots,2n_{\max} \\ \\ \\ \sum_{m=1}^{2n_{\max}} G_{n,m}c_{m} &= b_{n} & \text{for} & n=1,2,3,\ldots,n_{\max} \\ \\ \mathbf{N}\mathbf{u}(\xi) &= \frac{2\beta\sum_{n=1}^{\infty} \frac{\bar{\boldsymbol{\theta}}'}{N_{n}K_{r}(\beta)\beta}\int_{0}^{\beta}\eta u^{*}w^{*}R_{n}(\beta)\mathrm{d}\eta - \sum_{n=1}^{\infty} \frac{4\,\beta\,\bar{\boldsymbol{\theta}}''}{\mathrm{Pe}^{2}N_{n}K_{r}(\beta)}\int_{0}^{\beta}\eta K_{z}(\beta)R_{n}(\beta)\mathrm{d}\eta}{\boldsymbol{\theta}(\xi,\beta) - \frac{2}{\beta^{2}}\int_{0}^{\beta}u^{*}\theta\eta\,\mathrm{d}\eta} \end{split}$$

Finite Differences Method

$$\begin{split} \theta_{i-1,j} \left(\frac{\gamma_j}{2\Delta\xi} + \frac{\nu_j}{\Delta\xi^2} \right) + \theta_{i+1,j} \left(\frac{\nu_j}{\Delta\xi^2} - \frac{\gamma_j}{2\Delta\xi} \right) + \theta_{i,j} \left(-\frac{2\phi_j}{\Delta\eta^2} - \frac{2\nu_j}{\Delta\xi^2} \right) + \theta_{i,j-1} \left(\frac{\phi_j}{\Delta\eta^2} - \frac{\sigma_j}{2\Delta\eta} \right) + \\ + \theta_{i,j+1} \left(\frac{\phi_j}{\Delta\eta^2} + \frac{\sigma_j}{2\Delta\eta} \right) = 0 \quad \text{ for } \quad 2 \leq i \leq i_{\max} - 1 \quad \text{ and } \quad 2 \leq j \leq j_{\max} - 1 \quad \text{ (2)} \end{split}$$

where:

$$\begin{split} \gamma_j &= \eta_j u^*(\eta_j) \\ \nu_j &= \frac{4\beta^2 \eta_j K_x(\eta_j)}{\text{Pe}} \\ \sigma_j &= \frac{\eta_j \left[K_r(\eta_{j+1}) - K_r(\eta_{j-1}) \right]}{2\Delta \eta} + K_r(\eta_j) \\ \phi_j &= \eta_j K_r(\eta_j) \end{split}$$

Table: Nusselt convergence solved by GITT for Pe=1, $\beta=0.8$, and different Biot numbers.

Incicit	DIOL HU	mbers.							
	$ ilde{k}_z=0.5$ and $ ilde{k}_r=1.5$				$ ilde{k}_z=1.5$ and $ ilde{k}_r=0.5$				
n_{\max}	$\xi = 0.01$	$\xi = 0.1$	$\xi=1$	$\xi=10$	$\xi = 0.01$	$\xi = 0.1$	$\xi=1$	$\xi=10$	
	Bi=1								
10	24.9386	8.73310	4.59526	4.07013	59.3387	12.7663	8.09697	7.34972	
20	16.6396	8.86891	4.60797	4.07462	52.9510	10.0700	8.07524	7.34203	
30	13.0605	8.93626	4.60793	4.07225	38.9362	9.51772	8.03717	7.31200	
40	11.4494	8.96457	4.60399	4.06759	29.9504	9.35841	7.99681	7.27766	
50	10.6344	8.97535	4.59823	4.06179	24.2268	9.28162	7.95492	7.24100	
60	10.1871	8.97664	4.59131	4.05521	20.3801	9.22285	7.91115	7.20213	
70	9.92637	8.97182	4.58341	4.04790	17.6561	9.16620	7.86468	7.16052	
80	9.76651	8.96220	4.57443	4.03971	15.6269	9.10620	7.81402	7.11493	
90	9.66558	8.94766	4.56385	4.03018	14.0046	9.03792	7.75585	7.06237	
100	9.66424	8.92294	4.54882	4.01676	11.9168	8.93935	7.67148	6.98587	
				Bi=	=10				
10	38.3267	11.1952	4.38735	3.76267	60.3647	18.9176	8.60404	7.22643	
20	33.5521	11.3415	4.37869	3.75031	103.777	13.6426	8.61157	7.25189	
30	24.1883	11.4465	4.37421	3.74462	95.0136	12.0450	8.57293	7.22679	
40	19.1150	11.4958	4.36862	3.73889	76.3690	11.6154	8.52947	7.19407	
50	16.4139	11.5182	4.36216	3.73279	60.7474	11.4569	8.48415	7.15827	
60	14.9104	11.5259	4.35497	3.72625	49.0647	11.3640	8.43690	7.12003	
70	14.0381	11.5241	4.34705	3.71919	40.3727	11.2860	8.38686	7.07897	
80	13.5166	11.5150	4.33821	3.71143	33.7381	11.2077	8.33244	7.03393	
90	13.2079	11.4989	4.32793	3.70247	28.3613	11.1207	8.27005	6.98195	
100	13.2781	11.4689	4.31342	3.68994	21.2508	10.9969	8.17962	6.90615	

Table: Nusselt convergence solved by GITT for Pe=10, $\beta=0.8$, and different Biot numbers

TICICITE	DIOL IIU	IIIDCI3.							
	$ ilde{k}_z=0.5$ and $ ilde{k}_r=1.5$				$ ilde{k}_z=1.5$ and $ ilde{k}_r=0.5$				
n_{\max}	$\xi = 0.01$	$\xi = 0.1$	$\xi=1$	$\xi=10$	$\xi = 0.01$	$\xi = 0.1$	$\xi=1$	$\xi=10$	
	Bi=1								
10	8.79019	4.24575	3.44971	3.44971	13.5674	7.80217	6.28704	6.28701	
20	8.86173	4.23896	3.44112	3.44112	11.6492	7.83561	6.31029	6.31026	
30	8.89617	4.23253	3.43481	3.43481	11.2722	7.81772	6.29521	6.29519	
40	8.90681	4.22568	3.42871	3.42871	11.1662	7.78809	6.27113	6.27110	
50	8.90678	4.21846	3.42252	3.42251	11.1092	7.75311	6.24285	6.24282	
60	8.90083	4.21082	3.41610	3.41610	11.0577	7.71432	6.21155	6.21152	
70	8.89086	4.20266	3.40932	3.40931	11.0020	7.67176	6.17726	6.17723	
80	8.87744	4.19373	3.40196	3.40195	10.9388	7.62442	6.13912	6.13909	
90	8.86003	4.18350	3.39357	3.39357	10.8635	7.56924	6.09469	6.09466	
100	8.83319	4.16932	3.38200	3.38199	10.7501	7.48813	6.02939	6.02937	
				Bi=	=10				
10	10.7146	4.02746	3.26900	3.26900	17.3373	7.75672	6.01095	6.01095	
20	10.7943	4.00833	3.25229	3.25229	13.5830	7.81416	6.05585	6.05584	
30	10.8635	4.00033	3.24520	3.24520	12.5117	7.79792	6.04412	6.04411	
40	10.8937	3.99326	3.23913	3.23913	12.2288	7.76808	6.02157	6.02156	
50	10.9047	3.98617	3.23317	3.23317	12.1203	7.73270	5.99454	5.99453	
60	10.9051	3.97881	3.22706	3.22706	12.0490	7.69358	5.96449	5.96448	
70	10.8984	3.97101	3.22063	3.22063	11.9820	7.65077	5.93152	5.93151	
80	10.8861	3.96251	3.21366	3.21366	11.9097	7.60325	5.89484	5.89484	
90	10.8680	3.95280	3.20573	3.20573	11.8253	7.54796	5.85212	5.85211	
100	10.8375	3.93930	3.19474	3.19474	11.6999	7.46670	5.78924	5.78923	

Table: Nusselt convergence solved by GITT for Pe=1, $\beta=0.9$, and different Biot numbers.

umerent blot numbers.									
	$ ilde{k}_z=0.5$ and $ ilde{k}_r=1.5$				$ ilde{k}_z=1.5$ and $ ilde{k}_r=0.5$				
$n_{ m max}$	ξ=0.01	$\xi = 0.1$	$\xi=1$	$\xi=10$	$\xi = 0.01$	$\xi = 0.1$	$\xi=1$	$\xi=10$	
	Bi=1								
10	-24.9032	11.8685	4.77098	4.00867	292.464	9.05233	8.71448	7.50106	
20	25.8121	12.3238	4.80417	4.02972	72.0341	14.4669	8.63079	7.44034	
30	8.58828	12.4807	4.81216	4.03386	-38.2978	13.0112	8.56437	7.38832	
40	18.3809	12.5577	4.81225	4.03262	44.7887	13.2422	8.50752	7.34213	
50	12.9224	12.5965	4.80881	4.02895	-11.3675	13.0378	8.45427	7.29795	
60	16.3312	12.6146	4.80333	4.02383	30.9638	12.9724	8.40169	7.25377	
70	14.2496	12.6197	4.79635	4.01760	-1.48503	12.8691	8.34772	7.20805	
80	15.6137	12.6152	4.78794	4.01026	23.7744	12.7753	8.29012	7.15898	
90	14.7446	12.6018	4.77769	4.00146	3.15032	12.6673	8.22471	7.10302	
100	15.4236	12.5733	4.76291	3.98893	18.3959	12.5194	8.13165	7.02309	
				Bi=	=10				
10	815.415	15.7255	4.50087	3.62432	86.3093	8.72404	9.03581	7.07751	
20	45.6724	16.2721	4.49508	3.61661	112.879	19.8168	9.03687	7.08931	
30	3.72534	16.4895	4.49511	3.61519	-152.590	16.6098	8.98032	7.05089	
40	30.2469	16.6048	4.49228	3.61212	93.2234	17.3239	8.92428	7.01032	
50	15.3625	16.6663	4.48753	3.60782	-50.6483	16.9232	8.86976	6.96968	
60	24.7440	16.6979	4.48147	3.60262	63.4281	16.8717	8.81517	6.92830	
70	18.9663	16.7102	4.47431	3.59662	-22.1934	16.7200	8.75882	6.88511	
80	22.7733	16.7086	4.46598	3.58975	45.5964	16.5981	8.69848	6.83853	
90	20.3730	16.6943	4.45604	3.58163	-9.26427	16.4531	8.62983	6.78522	
100	22.3424	16.6586	4.44187	3.57014	31.5850	16.2578	8.53171	6.70865	

Table: Nusselt convergence solved by GITT for Pe=10, $\beta=0.9$, and different Biot numbers

ITCICITE	DIOL IIU	IIIDCI3.							
	$ ilde{k}_z=0.5$ and $ ilde{k}_r=1.5$				$ ilde{k}_z=1.5$ and $ ilde{k}_r=0.5$				
n_{max}	$\xi = 0.01$	$\xi = 0.1$	$\xi=1$	$\xi=10$	$\xi = 0.01$	$\xi = 0.1$	$\xi=1$	$\xi=10$	
	Bi=1								
10	11.5356	4.45525	3.39984	3.39981	10.4834	8.35705	6.38527	6.38515	
20	11.9049	4.47013	3.40800	3.40797	15.1630	8.32587	6.35740	6.35728	
30	12.0262	4.47165	3.40791	3.40788	13.9792	8.27996	6.32234	6.32222	
40	12.0836	4.46871	3.40502	3.40499	14.1941	8.23433	6.28772	6.28760	
50	12.1106	4.46369	3.40080	3.40078	14.0253	8.18845	6.25288	6.25277	
60	12.1209	4.45738	3.39574	3.39571	13.9671	8.14131	6.21704	6.21693	
70	12.1207	4.45002	3.38995	3.38992	13.8715	8.09172	6.17931	6.17920	
80	12.1125	4.44156	3.38336	3.38333	13.7799	8.03792	6.13833	6.13822	
90	12.0968	4.43155	3.37563	3.37560	13.6716	7.97607	6.09120	6.09109	
100	12.0671	4.41747	3.36482	3.36479	13.5181	7.88706	6.02335	6.02324	
				Bi=	=10				
10	14.8838	4.20730	3.19321	3.19320	9.93832	8.20466	5.96452	5.96448	
20	15.3400	4.19445	3.18350	3.18350	18.6137	8.24153	5.98720	5.98715	
30	15.5207	4.19169	3.18104	3.18104	16.1234	8.20474	5.96074	5.96069	
40	15.6155	4.18761	3.17771	3.17770	16.6997	8.16138	5.92971	5.92967	
50	15.6648	4.18231	3.17353	3.17353	16.3874	8.11634	5.89738	5.89733	
60	15.6886	4.17607	3.16870	3.16869	16.3423	8.06965	5.86375	5.86370	
70	15.6960	4.16897	3.16323	3.16323	16.2137	8.02041	5.82820	5.82815	
80	15.6913	4.16090	3.15705	3.15705	16.1045	7.96693	5.78953	5.78948	
90	15.6754	4.15140	3.14980	3.14979	15.9725	7.90542	5.74499	5.74495	
100	15.6400	4.13802	3.13962	3.13961	15.7892	7.81664	5.68065	5.68061	

Table: Nusselt convergence solved by GITT for $Pe=10^3$, $\beta = 1$ and $Bi=10^6$.

		$\tilde{k}_z=0.5$ an	nd $\tilde{k}_r=1.5$	5	$ ilde{k}_z=1.5$ and $ ilde{k}_r=0.5$			
n_{max}	$\xi = 0.01$	$\xi=0.1$	$\xi=1$	$\xi=10$	$\xi = 0.01$	$\xi=0.1$	$\xi=1$	$\xi=10$
10	7.49530	4.00603	3.65744	3.65744	7.49543	4.00611	3.65751	3.65751
20	7.48211	4.00499	3.65682	3.65682	7.48239	4.00514	3.65696	3.65696
30	7.48065	4.00484	3.65672	3.65672	7.48108	4.00508	3.65693	3.65693
40	7.48023	4.00478	3.65667	3.65667	7.48081	4.00509	3.65695	3.65695
50	7.48004	4.00473	3.65662	3.65662	7.48077	4.00512	3.65698	3.65698
60	7.47991	4.00468	3.65659	3.65659	7.48079	4.00516	3.65702	3.65702
70	7.47980	4.00464	3.65655	3.65655	7.48083	4.00520	3.65705	3.65705
80	7.47973	4.00460	3.65651	3.65651	7.48087	4.00523	3.65709	3.65709
90	7.47969	4.00456	3.65647	3.65647	7.48091	4.00527	3.65713	3.65713
100	7.47965	4.00453	3.65644	3.65644	7.48094	4.00530	3.65716	3.65716

Schedule

- Introduction and abstract 01/2016
- Literature review 03/2016
- GITT code at Mathematica 06/2016
- Results for GITT 06/2016
- ENCIT publication 07/2016
- FDM code 08/2016
- Results for FDM 08/2016
- Final convergence analysis and comparison between the methods - 11/2016
- Final presentation 12/2016