Непрерывная зависимость решения задачи Коши от начального вектора

Пусть $B_r(X_0)$ — шар радиуса r с центром в X_0 , т.е множество точек Y , удовлетворяющих неравенству $|Y-X_0| < r$

Иначе говоря, это — r-окрестность точки X_0 .

Пусть Ω — область в (n+1)-мерном пространстве переменных $t,\;x_1$, x_2 , x_3 , ... , x_n , $\;\Omega=(a;b)\times D\;$, где D — область в R^n .

F(t,X) и ее частные производные по переменным x_1 , x_2 , x_3 , ... , x_n непрерывна по всем переменным в области Ω .

Приведем без доказательства две теоремы.

Теорема 1. $\forall \ X_0 \in D \quad \exists \ \varepsilon > 0$, что решение $X(t,X_0)$ задачи Коши

$$X' = F(t, X), \quad X(t_0) = X_0, \quad t_0 \in (a, b)$$

существует, единственно и определено на $(t_0 - \varepsilon, \ t_0 + \varepsilon) \subset (a,b)$.

Пусть $X_1 \epsilon B_\delta(X_0)$ — любая точка . По теореме 1 решение $X(t,X_1)$ также существует и единственно, но интервал $(t_0-\varepsilon_1,\ t_0+\varepsilon_1)$, на котором решение определено, может отличаться от интервала $(t_0-\varepsilon,\ t_0+\varepsilon)$. Тем не менее справедлива теорема.

Теорема 2.
$$\forall \sigma>0$$
 $\exists \delta_1<\delta$ и $\varepsilon_1<\varepsilon$ что $|X(t,X_1)-X(t,X_0)|<\sigma$ при $\forall t\in (t_0-\varepsilon_1,\ t_0+\varepsilon_1)$ и $|X_1-X_0|<\delta_1$.

В упрощенной формулировке Теорема 2 означает, что решение задачи Коши непрерывно зависит от начального вектора, т.е. бесконечно малым изменениям начального вектора соответствуют бесконечно малые изменения решения. При этом близость решений оценивается по

$$\max_{|t-t_0|<\varepsilon_1} |X(t,X_1) - X(t,X_0)|$$

Если же рассматривать $|X(t,X_1)-X(t,X_0)|$ при всех значениях t, то она может оказаться не бесконечно малой даже при бесконечно малой $|X_1-X_0|$. Иначе говоря, близость начальных векторов не гарантирует близости соответствующих решений при всех $t \geq t_0$.

Устойчивость решений

Рассмотрим систему

$$X' = F(t, X) \,, \tag{1}$$

где X(t), F(t,X) — вектор-функции в n-мерном пространстве.

Особые точки

Если $F(t,X_0)\equiv 0,\; t\geq t_0$, то X_0 наз. **особой точкой** системы или точкой равновесия.

Как и раньше, $X(t, X_0)$ — решение задачи Коши с начальным условием $X(t_0) = X_0$

Определение 1

Решение $X(t, X_0)$ наз. **устойчивым по Ляпунову**, если

- 1. $\exists B_r(X_0)$, что решение X(t,Y) существует $\forall Y \in B_r(X_0)$ и всех $t \ge t_0$;
- 2. $\forall \ \varepsilon>0 \ \exists \ \delta \epsilon(0;r)$, что неравенство $|X(t,Y)-X(t,X_0)|<\varepsilon$ выполняется при всех $t\geq t_0$ и всех $Y\epsilon B_\delta(X_0)$.

Пример.

 $x'=x-x^2$, две особые точки: $x_1=1;\; x_2=0$ и соответственно два решения $x(t,1),\; x(t,0)\equiv 0$

- а) Пусть $x_0 < 0$. Тогда $x'(t,x_0) < 0$ и $x(t,x_0)$ убывает, т.е. отходит от x(t,0) как бы ни была мала величина $|x_0|$ и, значит, неустойчиво.
- б) Пусть $0 < x_0 < 1$. Тогда $x'(t,x_0) > 0$ и $x(t,x_0)$ возрастает . Поэтому $x(t,x_0) \to 1$ при $t \to +\infty$. (почему?). Аналогично при $x_0 > 1$ имеем $x'(t,x_0) < 0$ и $x(t,x_0)$

убывает . Поэтому снова $x(t,x_0) \to 1$ при $t \to +\infty$. (почему?). Согласно определению 1 решение x(t,1) устойчиво по Ляпунову.

Определение 2

Решение $X(t, X_0)$ наз. асимптотически устойчивым, если

- 1. оно устойчиво по Ляпунову;
- 2. $\exists \beta \leq \delta$, что при всех $Y \in B_{\beta}(X_0)$ выполняется

$$X(t,Y) - X(t,X_0) \to 0$$
 при $t \to +\infty$

В рассмотренном выше примере решение x(t,1) устойчиво по Ляпунову.

Определение 3

Решение $X(t, X_0)$ наз. **неустойчивым**, если не выполняется п.2 из определения 1. Равносильная формулировка:

 $\exists \; \varepsilon>0 \;$ и такая последовательности начальных точек $Y_k o X_0$ и чисел $t_k o +\infty$, для которых при всех k и $t \ge t_0$ выполняется

$$|X(t_k, Y_k) - X(t_k, X_0)| > \varepsilon$$

Вопрос об устойчивости любого решения $X(t, X_0)$ сводится к вопросу об устойчивости точки покоя, причем ее можно считать нулевой. Действительно, обозначим

$$U(t) = X(t, Y) - X(t, X_0) \Rightarrow U(t_0) = Y - X_0.$$

$$U' = X'(t, Y) - X'(t, X_0) = F(t, X(t, X_0) + U(t)) - F(t, X(t, X_0))$$

Здесь $X(t, X_0)$ —заданное решение, а U(t) — отклонение от него. Обозначим

$$G(t,U) = F(t,X(t,X_0) + U(t)) - F(t,X(t,X_0))$$

Тогда получим задачу Коши для новой системы

$$U' = G(t, U), \quad U(t_0) = Y - X_0$$
 (2)

Устойчивость решения $X(t, X_0)$ системы (1) равносильна устойчивости нулевого решения системы (2).

Об устойчивости линейной системы

Если некоторое решение линейной системы устойчиво, то и все решения системы будут устойчивы

$$X' = A(t)X + F(t) \tag{3}$$

Пусть $X(t, X_0)$ — устойчивое решение, а X(t, Y) другое решение.

Тогда $U(t, U_0) = X(t, Y) - X(t, X_0)$ решение однородной системы.

Устойчивость $X(t,X_0)$ означает, что $|U(t,U_0)|<\varepsilon$ при всех $t\geq t_0$, если $|Y-X_0|<\delta$. Это и есть устойчивость нулевого решения однородной системы.

Поэтому, в отличие от системы общего вида, для линейной системы можно говорить об устойчивости самой системы, а не отдельного решения.

Устойчивость линейной однородной системы с постоянными коэффициентами (двумерный случай)

Рассмотрим систему
$$\begin{cases} x_1' = a_{11}x_1 + a_{12}x_2 \\ x_1' = a_{21}x_1 + a_{22}x_2 \end{cases}$$
 (4)

Требуется исследовать устойчивость системы и нарисовать ее фазовый портрет и исследовать устойчивость системы в каждом из рассмотренных ниже случаев (фазовые портреты, см. рис) Пусть

 λ_1, λ_2 — собственные числа матрицы коэффициентов.

Выбирая подходящую замену =BY, приводим систему к простейшему виду. Возможны следующие случаи.

1. $\lambda_1 \neq \lambda_2$, вещественные. Тогда преобразованная система принимает вид

$$\begin{cases} y_1' = \lambda_1 y_1 \\ y_2' = \lambda_2 y_2 \end{cases}$$

Общее решение

$$y_1 = c_1 e^{\lambda_1 t}; \ y_2 = c_2 e^{\lambda_2 t}$$
 (5)

При построении фазовых траекторий следует рассмотреть разные варианты.

а) λ_1 , λ_2 одного знака

Если собственные числа положительны, то система неустойчива (объясните, почему).

Если собственные числа отрицательны, то система асимптотически устойчива (объясните, почему). Здесь особая точка (0;0) называется узлом.

б) λ_1 , λ_2 разных знаков.

Здесь особая точка (0;0) называется седлом.

Система неустойчива, так как одно из собственных чисел положительно.

B)
$$\lambda_1 = 0$$
, $\lambda_2 \neq 0$.

Если $\lambda_2 < 0$, то имеет место асимптотическая устойчивость (почему?).

Если $\lambda_2 > 0$, то имеет место неустойчивость.

2. $\lambda_1=\lambda_2=\lambda$, вещественные. Тогда преобразованная система принимает вид

$$\begin{cases} y_1' = \lambda y_1 + y_2 \\ y_2' = \lambda y_2 \end{cases}$$

Общее решение

$$y_1 = c_1 t e^{\lambda t}; \ y_2 = c_2 e^{\lambda t}$$
 (6)

Здесь особая точка (0;0) называется **диакритической**. Система асимптотически устойчива при $\lambda < 0$ и неустойчива при $\lambda \leq 0$. (почему?)

3. $\pmb{\lambda_{1,2}} = \pmb{\alpha} \pm \pmb{\beta i}$, комплексные. Тогда преобразованная система принимает вид $\begin{cases} y_1' = \alpha y_1 - \beta y_2 \\ y_2' = \beta y_1 + \alpha y_2 \end{cases}$ (7)

$$\begin{cases} y_1' = \alpha y_1 - \beta y_2 \\ y_2' = \beta y_1 + \alpha y_2 \end{cases}$$
 (7)

Общее решение

$$y_1 = c_1 e^{\alpha t} \cos \beta t$$
; $y_2 = c_2 e^{\alpha t} \sin \beta t$

Если $\alpha \neq 0$, то особая точка (0;0) называется фокусом. Устойчивость или неустойчивость определяется знаком α .

Если $\alpha=0$, то особая точка (0;0) называется **центром**. Система устойчива, но не асимптотически.

Замечание. Фазовый портрет для исходной системы не отличается качественно от портрета преобразованной системы, так как линейное преобразование сводится к растяжению (сжатию) и повороту.

Упражнение.

Случаи 1., 2., 3., нужно разобрать для следующих частных случаев.

- 2. $\lambda_{1,2} = -1 \pm 2i$,.
- 3. $\lambda_{1,2} = 1 \pm 2i$.

Устойчивость линейной однородной системы с постоянными коэффициентами (общий случай)

Пусть λ_k , k=1,2,...,n- собственные числа матрицы A.

- 1. Если все $Re\lambda_k < 0$, то система асимптотически устойчива.
- 2. Если хотя бы для одного собственного числа $Re\lambda_k > 0$, то система неустойчива.
- 3. Если все $Re\lambda_k \leq 0$, но все чисто мнимые собственные числа некратные, то точка покоя устойчива по Ляпунову, но не асимптотически.
- 4. Если все $Re\lambda_k \leq 0$, но среди чисто мнимых собственных чисел есть кратные, то система неустойчива.

Идея доказательства

Каждая координата вектора X(t) это линейная комбинация функций вида $t^m e^{\lambda_k t}$. Поведение этих функций при $t \to +\infty$ определяет устойчивость системы. Некоторого пояснения, может быть, требует пункт 3. В этом случае решение представимо в виде $X(t) = \Phi(t) X_0$, причем все элементы матрицы Φ это линейные комбинации синусов и косинусов, т.е. ограничены. Поэтому

$$|X(t)| \le M|X_0|$$

и отсюда следует устойчивость по Ляпунову (почему?). Объясните, почему в этом случае не может быть асимптотической устойчивости.

<u>Упражнения</u>

- 1. $x'' + \omega^2 x = 0$;
- 2. x'' + 2x' + 10x = 0
- 3. x'' + 2x' + x = 0

Устойчивость линейной однородной системы с периодическими коэффициентами

$$X' = A(t)X, \quad A(t+T) = A(t).$$
 (8)

Было доказано ранее, что решение системы (7) представимо в виде

$$X(t) = \Phi(t)X_0 \tag{9}$$

где $\Phi(t)$ — фундаментальная матрица системы (7), удовлетворяющая у,словию $\Phi(t_0)=E$, а X_0 — начальный вектор. Также было доказано, что существует такая матрица C , называемая основной, что

$$\Phi(t + mT) = \Phi(t)C^m \tag{10}$$

Пусть $t = \tau + mT$, $0 \le \tau < T$. Тогда из (9) и (8) получим

$$X(t) = \Phi(\tau)C^m X_0 \tag{10}$$

Множитель $\Phi(\tau)$ ограничен на отрезке [0;T] в силу непрерывности, поэтому поведение X(t) при $t\to +\infty$ определяется поведением C^m при $m\to +\infty$, а оно зависит от собственных чисел матрицы C.

Действительно, если все собственные числа некратные, то матрица C подобна диагональной, т.е. существует такая невырожденная матрица B , что $C=B^{-1}DB$, где D- диагональная матрица, у которой на диагонали собственные числа. Имеем $C^m=B^{-1}D^mB$. Матрица D^m тоже диагональная с диагональными элементами λ_k^m . В случае кратных собственных чисел матрица C приводится к форме Жордана. Тогда D не диагональная матрица и D^m имеет более сложную структуру. Убедитесь в этом сами на простом примере $D=\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$, вычислив D^m . Тем не менее

Теорема. Пусть λ_k , k=1,2,...,n, — собственные числа основной матрицы (характеристические множители системы).

1. Если $|\lambda_k| < 1, \; k=1,2,...,n$, то система асимптотически устойчива.

справедлива

- 2. Если хотя бы для одного k выполняется $|\lambda_k| > 1$, то система неустойчива.
- 3. Если $|\lambda_k|=1,\ k=1,2,...,n,$ и нет кратных собственных чисел, то система устойчива, но не асимптотически.
- 4. Если $|\lambda_k|=1,\;k=1,2,...,n,$ и есть кратные собственные числа, то система неустойчива.