

Profit Curves & Imbalanced Classes

Galvanize Moses Marsh

OBJECTIVES: answer the following

- How do we incorporate business costs into model evaluation?
- What is a **cost-benefit** matrix?
- How is a profit curve constructed?
- What are some issues with *imbalanced* classes?
- How can the class balance be changed?

- ROC shows TPR (recall) vs FPR
 (1 TNR) at different thresholds
- Confusion matrix:

	Pred: Y	Pred: N
Actual: y	TP	FN
Actual: n	FP	TN

- Let's assign dollar values to true positives, false positives, true negatives, and false negatives
- For example, conside a credit card fraud model. If we think a charge is fraudulent, we will call the customer, which costs us \$5. If we catch a fraudulent charge, we save ourselves \$100. Since it still costs us the \$5 to call, we net \$95.

	Pred: Y	Pred: N
Actual: y	\$95	\$0
Actual: n	-\$5	\$0

 Note that these costs are relative to a baseline model that never predicts fraud

	Pred: Y	Pred: N
Actual: y	\$95	\$0
Actual: n	-\$5	\$0

 Say we have the following confusion matrices. Which model is better?

	Pred: Y	Pred: N
Actual: y	114	11
Actual: n	307	818

	Pred: Y	Pred: N
Actual: y	47	78
Actual:	21	1104

 All we need to do is multiply the entries of the confusion matrix by their corresponding profits, sum the results, and divide by the total number of data points

	Pred: Y	Pred: N
Actual: y	114	11
Actual: n	307	818

	Pred: Y	Pred: N
Actual: y	47	78
Actual:	21	1104

Expected profit per transaction:

From Thresholding to Profit Curves

- If we have a model that outputs probabilities, then every threshold results in a different confusion matrix
- Then we can assign a net profit per instance (data point) to every threshold
- And plot it!

From Thresholding to Profit Curves

Percent of test instances classified as "positive"

Profit Curve:

- Same idea as ROC curve but with expected profit
- For each threshold, compute the expected profit

Percent of test instances classified as "positive"

Profit Curve:

- Same idea as ROC curve but with expected profit
- For each threshold, compute the expected profit

Cost-sensitive evaluation:

- Select threshold with highest expected profit.

Percent of test instances classified as "positive"

QUESTION: how would you pick your favorite cost-benefit matrix?

Α	Pred: pos	Pred: neg
Actual: pos	\$12	\$8
Actual: neg	\$15	\$965

В	Pred: pos	Pred: neg
Actual: pos	\$0	\$20
Actual: neg	\$0	\$980

С	Pred: pos	Pred: neg
Actual: pos	\$15	\$5
Actual: neg	\$115	\$865

D	Pred: pos	Pred: neg
Actual: pos	\$18	\$2
Actual: neg	\$250	\$730

QUESTION: how would you pick your favorite cost-benefit matrix?

Α	Pred: pos	Pred: neg	ı
Actual: pos	\$12	\$8	Act
Actual: neg	\$15	\$965	
		116	N

В	Pred: pos	Pred:
Actual: pos	PR	\$980

ne'	FINE	⊅ 15	\$5
V	Actual: neg	\$115	\$865

D	Pred: pos	Pred: neg
Actual: pos	\$18	\$2
Actual: neg	\$250	\$730

QUESTION: how would you pick your favorite cost-benefit matrix?

Cost-Benefit Matrix (example 1)

Prompt: You are building a model to predict if credit card charges are fraudulent.

- If we predict a fraudulent charge, we'll call the customer to confirm.
- If you miss a fraudulent charge, it on average costs \$100
- Calling someone to confirm if their charge was real costs on average \$4

Question: What is an appropriate cost benefit matrix?

A	Predicted: fraud	Predicted: not fraud
Actual: fraud	\$96	-\$100
Actual: not fraud	-\$4	\$0

В	Predicted: fraud	Predicted: not fraud
Actual: fraud	-\$4	-\$100
Actual: not fraud	-\$4	\$0

C	Predicted: fraud	Predicted: not fraud
Actual: fraud	\$96	\$0
Actual: not fraud	-\$4	\$0

A	Predicted: fraud	Predicted: not fraud
Actual: fraud	\$96	-\$100
Actual: not fraud	-\$4	\$0

В	Predicted: fraud	Predicted: not fraud
Actual: fraud	-\$4	-\$100
Actual: not fraud	-\$4	\$0

C	Predicted: fraud	Predicted: not fraud
Actual: fraud	\$96	\$0
Actual: not fraud	-\$4	\$0

Cost-Benefit Matrix (example 2)

You are building a model to **predict if customers will churn** from your online clothing store. You'll use your model **to send a promotional email** to users you think are going to churn.

You'd like to use a cost benefit matrix so you can build profit curves to determine the optimal model.

- Customers on average spend \$200/month.
 Your profit is 10% of this revenue.
- A promotional email costs on average **\$2/customer** and prevents **50%** of users from churning for **6 months**.
- When the promotional email is sent to users who were not going to churn, it annoys 5% of them and causes them to churn 2 months earlier than they otherwise would have.

	Predicted: churn	Predicted: not churn
Actual: churn	?	?
Actual: Not churn	?	?

Imbalanced Classes

Example: 100 pos, 10000 neg

- Classification datasets can be "imbalanced".
 - o i.e. many observations of one class, few of another

Accuracy-driven models will over-predict the majority class.

- Costs of a false positive is often different from cost of a false negative.
 - e.g. missing fraud can be more costly than screening legitimate activity

What's a possible problem during LEARNING (fitting the model)?

What's a possible problem during EVALUATION (scoring the model)?

Example: 100 pos, 10000 neg

Example : 100 pos, 10000 neg

What's a possible problem during LEARNING (fitting the model)?

The model will overpredict the majority class

What's a possible problem during EVALUATION (scoring the model)?

False positives and false negatives may have different business costs

Example: 100 pos, 10000 neg

What's a possible problem during LEARNING (fitting the model)?

Solution: cost-sensitive learning, oversampling/undersampling

What's a possible problem during EVALUATION (scoring the model)?

Solution: cost-benefit matrix

Solutions

Cost-sensitive learning & evaluation:

- cost-benefit matrices & profit curves
- modified objective functions

Sampling:

- Oversampling
- Undersampling
- SMOTE Synthetic Minority Oversampling Technique

- Models with explicit objective function can be modified to incorporate classification cost.
 - o e.g. logistic regression

Logistic regression's usual objective function:

$$\ln p(\vec{y}|X;\theta) = \sum_{i=1}^{n} (y_i \ln h_{\theta}(x_i) + (1 - y_i) \ln(1 - h_{\theta}(x_i)))$$

New objective function, representing expected cost:

$$J^{c}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(y_{i} (h_{\theta}(X_{i}) C_{TP_{i}} + (1 - h_{\theta}(X_{i})) C_{FN_{i}}) + (1 - y_{i}) (h_{\theta}(X_{i}) C_{FP_{i}} + (1 - h_{\theta}(X_{i})) C_{TN_{i}}) \right).$$

- This will affect optimization.
 - e.g. cost-sensitive logistic regression is not convex!
- Not all models have a cost-sensitive implementation.

Example: 100 pos, 10000 neg

What's a possible problem during LEARNING (fitting the model)?

Solution: cost-sensitive learning

Solution: Train your model on oversampled/undersampled data

What's a possible problem during EVALUATION (scoring the model)?

Solution: cost-benefit matrix

Undersampling

Undersampling randomly discards majority class observations to balance training sample.

PRO: Reduces runtime on very large datasets.

CON: Discards potentially important observations.

Oversampling

Oversampling replicates observations from minority class to balance training sample.

PRO: Doesn't discard information.

CON: Likely to overfit.

Generates new observations from minority class.

For each minority class observation and for each feature, randomly generate between it and one of its k-nearest neighbors.

SMOTE pseudocode

```
synthetic observations = []
while len(synthetic observations) + len(minority observations) < target:</pre>
    obs = random.choice(minority observations):
    neighbor = random.choice(kNN(obs, k)) # randomly selected neighbor
    new observation = {}
    for feature in obs:
        weight = random() # random float between 0 and 1
        new feature value = weight*obs[feature] \
                             + (1-weight) *neighbor[feature]
        new observation[feature] = new feature value
    synthetic observations.append(new observation)
```


Sampling Techniques

What's the right amount of over-/under-sampling?

- The degree & kind of resampling form another set of hyperparameters to tune
- Mix it up! You may get the best results by both oversampling and undersampling
- Evaluation: *profit* if you have a cost-benefit matrix, otherwise *ROC-AUC* score, *F1*, etc.

Cost Sensitivity vs Sampling

- Neither is strictly superior.
- Oversampling tends to work better than undersampling on small datasets.
- Some algorithms don't have an obvious cost-sensitive adaptation, requiring sampling.

See also "Cost-Sensitive Learning vs. Sampling: Which is Best for Handling Unbalanced Classes with Unequal Error Costs?" http://storm.cis.fordham.edu/gweiss/papers/dmin07-weiss.pdf