

cosmicpi.org

An open source detector for cosmic rays

J. Devine, C. Cantini, E. Noah, H. Day J. Salmon, L. Haegel, R. Asfandiyarov 11th October 2015

Agenda

What is it?
Science goals
Architecture
Current status
What's next...

An open hardware detector that anyone can buy or build to detect cosmic rays individually, and connect to a network creating a cosmic ray telescope.

The Science bit...

Cosmic Rays

Muons Mean energy 4GeV Secondary particles

Hardware challenges:

High stability HV Power (70V)
High gain amplifiers (>1e6)
Trigger generation
High speed timing & ADC synch.
Integration of other sensors

All in a USB Device

Hardware model

Detector module

- scintillator tile
- two SiPM
- light tight enclosure

Analog Processing

- trigger generation
- signal amplification
- signal shaping

Digital Processing

- analog signal digitization
- sensors readout
- data organization
- power supply control
- Communication and data display via touchscreen

Data Processing

- data acquisition
- data storage
- data analysis
- communication with central server or local computer
- datavisualization

Hardware (Version 1, Oct 2014)

Scintillator

Pi Hat

Architecture (Version 1)

Lessons Learned (Version 1)

- Raspberry Pi too slow (non RT-PREEMPT)
- Hardware timing limits event rate to 1Hz
- Lots of effort into choosing ADC, wasted!
- HV PSU too noisy
- Analog Front End needs matching to SiPM

Hardware (Version 1.1, Oct 2015)

Modular Approach: Dev Boards NIM Crate

Integrate
components into
circuit & firmware
one at a time

Analog Architecture Prototype

- Based on real world detectors
- 2 channels required for coincidence
- Raw output SiPM = 5ns pulse, mV range
- Pulse shaper
- Simple trigger

Architecture (Version 1.1)

Still a work in progress

Lessons Learned (Version 1.1)

- Single core is challenging when communicating over serial
- Integrated ADC in Arduino DUE (SAM3X8E M3 -32 bit ARM) is adequate, 1 MSPS
- ADC continuous read and buffering essential
- Operational stability/reliability work in progress
- JSON is quite heavyweight for Arduino

Mechanical Hardware: Scintillator tiles

- Extruded plastic with a chemical additive, few manufacturers
- Light reflective coating on the outside
- Detector specific geometry
- Wavelength shifting fibre → for silicon detector
- High mechanical precision & alignment

Current Status

- Able to detect cosmic rays using our prototype
- Maxim 1932 Boost IC integrated last week for high voltage
- Analog Front End needs moving from a 19" Rack to a PCB
- Open format for Cosmic Ray data exchange
- Prototype Version 2!

What's next?

A finished product?

- Fully integrated prototype
- Firmware robustness
- Improve software stack
- Open source scintillator design?
- Design → Production

Follow us at

Contino soon on cosmicpi.org