Movie Genre Classification

Alaa Shehab Bassant Ahmed

Problem Statement

- Multi labeled movie genre classification based on posters analysis, which is achieved through extracting some elements from the poster such as the color, facial expression, objects and many more.

Prediction:

 Horror
 76%

 Action
 22%

 Documentary
 2%

 Romance
 0%

Correct genre: Horror

Prediction:

 Documentary
 96%

 Romance
 3%

 Horror
 1%

 Action
 0%

Close enough?

Yes

Prediction:

Correct genre: Action

Prediction:

 Romance
 49%

 Documentary
 19%

 Action
 17%

 Horror
 15%

Correct genre:

Related Work

- Multi-labeled K-nearest neighbours (2 different papers)
 - First model (34.28%): 40 NN model to predict 20 genres
 - Second model (57%): {GIST, DC, local dominant color, and CM} features to classify 18 genres.
- Naïve Bayes (70%)
 - O Convert multi-labeled data into single labeled data.
 - 18 genre using GIST features and dominant color features.
- RAKEL (Random k label set 2ⁿ)
 - 33% precision and 32% recall

Related Work

- CNN VGG net (50.5%)
 - 4 genres only, Very precise
- CNN YOLO (18.73%)
 - 7 layers CNN with 3 fully connected.
 - Using data augmentation and predicting 23 genre.
- CNN ResNet34 (90%)
 - 28,000 posters and 20 different genres

Proposed solution

We used the model proposed by state of the art paper, which is pretrained ResNet34 to predict 20 different movie genre.

Problems we are solving:

- Solving the problem of unbalanced dataset by collecting the top 1000 most popular movies in each genre.
- We will also try to improve model accuracy by changing the structure or the parameters of the model.

Progress report on deploying the original model

- Paper implementation worst code I have seen in my life!
 - Try to understand/deploy it No luck :(
 - Alternatives Alter another code
- ResNet34 is not supported on keras!
 - Alternatives found API with models trained on imagenet

Progress report on deploying the original model

- Dataset 11k images downloaded
 - 25 epoch
 - Reached accuracy 45%
- Dataset 45k images downloaded
 - Took longer than expected

Progress report on deploying the original model

- Training Model
 - More problems to fix

Problems encountered

Cannot connect to GPU backend

You cannot currently connect to a GPU due to usage limits in Colab. Learn more

CONNECT WITHOUT GPU

CLOSE

Current progress on proposed solution

- Added ~10k images to facilitate balancing the dataset
- Developed a way to balance data
- Updating model (not yet)

Initial results

- Still running epochs
- Result obtained so far from training the model on 3 splits of the data is 63.47% training accuracy

Next steps and timeline for the rest of the project.

Run 50 epoch

- Currently max reached 25

Balance Image

- Already added ~10k images
- Augment before balance (if ds<<)

Predict Revenu

Preprocess images

- Keep only RGB images
- Using keras preprocessing before training

Alter Model

- -FC/Num of layer
- ResNet50 gives high acc
- -Use YOLO feature extraction*

* means maybe