Interpretable Machine Learning

Shapley Shapley Values

Learning goals

- Learn cooperative games and value functions
- Define the marginal contribution of a player
- Study Shapley value as a fair payout solution
- Compare order and set definitions

COOPERATIVE GAMES IN GAME THEORY

SHAPLEY 1951

- Game theory: Studies strategic interactions among "players" (who act to maximize their utility), where outcomes depend on collective behavior
- Cooperative games: Any subset $S \subseteq P = \{1, ..., p\}$ can form a coalition to cooperate in a game, each achieving a payout v(S)

COOPERATIVE GAMES IN GAME THEORY

▶ SHAPLEY 1951

- Game theory: Studies strategic interactions among "players" (who act to maximize their utility), where outcomes depend on collective behavior
- Cooperative games: Any subset $S \subseteq P = \{1, ..., p\}$ can form a coalition to cooperate in a game, each achieving a payout v(S)
- Value function: $v: 2^P \to \mathbb{R}$ assigns each coalition S a payout v(S)
 - ullet Convention: $u(\emptyset) = 0 \leadsto$ Empty coalitions generate no gain
 - v(P): Total achievable payout when all players cooperate
 → Forms the game's budget to be fairly distributed
- Marginal contribution: Measure how much value player j adds to coalition S by

$$\Delta(j,S) := v(S \cup \{j\}) - v(S) \quad \text{ (for all } j \in P \ S \subseteq P \setminus \{j\})$$

COOPERATIVE GAMES IN GAME THEORY

► SHAPLEY 1951

- Game theory: Studies strategic interactions among "players" (who act to maximize their utility), where outcomes depend on collective behavior
- Cooperative games: Any subset $S \subseteq P = \{1, ..., p\}$ can form a coalition to cooperate in a game, each achieving a payout v(S)
- Value function: $v: 2^P \to \mathbb{R}$ assigns each coalition S a payout v(S)
 - Convention: $\nu(\emptyset) = 0 \leadsto \mathsf{Empty}$ coalitions generate no gain
 - v(P): Total achievable payout when all players cooperate
 → Forms the game's budget to be fairly distributed
- Marginal contribution: Measure how much value player j adds to coalition S by

$$\Delta(j,S) := v(S \cup \{j\}) - v(S) \quad \text{ (for all } j \in P \ S \subseteq P \setminus \{j\})$$

- Challenge: Players vary in their contrib. & how they influence each other
- **Goal:** Distribute v(P) among players by considering player interactions \rightsquigarrow Assign each player $j \in P$ a fair share ϕ_i (**Shapley value**)

Question: What are individual marginal contributions and what's a fair payout?

Players do not interact (payouts ☆ add up in each coalition)

Player	Coalition S	$v(S \cup \{j\})$	v(S)	$\Delta(j,S)$
0	Ø	1000	0	1000
0	{② }	3000	2000	1000
0	(3)	4000	3000	1000
0	{❷, ❸}	6000	5000	1000
2	Ø	2000	0	2000
2	{● }	3000	1000	2000
2	(6) }	5000	3000	2000
2	$\{ oldsymbol{0}, oldsymbol{6} \}$	6000	4000	2000
3	Ø	3000	0	3000
3	{① }	4000	1000	3000
3	(2)	5000	2000	3000
3	$\{0,2\}$	6000	3000	3000

Players do not interact (payouts and up in each coalition)

Player	Coalition S	$v(S \cup \{j\})$	v(S)	$\Delta(j,S)$
0	Ø	1000	0	1000
0	{② }	3000	2000	1000
0	(3)	4000	3000	1000
0	$\{ {\color{red} oldsymbol{2}}, {\color{red} oldsymbol{3}} \}$	6000	5000	1000
2	Ø	2000	0	2000
2	{● }	3000	1000	2000
2	(6) }	5000	3000	2000
2	$\{ oldsymbol{0}, oldsymbol{6} \}$	6000	4000	2000
3	Ø	3000	0	3000
3	{① }	4000	1000	3000
3	(2)	5000	2000	3000
③	$\{0,2\}$	6000	3000	3000

- No interactions: Each player contrib.s same fixed value to each coalition
 - → Player 1 always adds 1000, 2 adds 2000, and 3 adds 3000
 - \rightsquigarrow Marginal contributions are constant across all coalitions S
- Conclusion: Fair payout = average marginal contribution across all S
 - \rightsquigarrow Total value v(P) = 6000 splits proportionally by individual contribs:

$$\mathbf{0} = \frac{1}{6}, \quad \mathbf{2} = \frac{1}{3}, \quad \mathbf{3} = \frac{1}{2}$$

$$6 = \frac{1}{2}$$

 \Rightarrow Fair payouts are trivial without interactions

⇒ Unclear how to fairly distribute payouts when players interact

Players interact (payouts ☆ do not add up)

Player	Coalition S	$v(S \cup \{j\})$	v(S)	$\Delta(j,S)$
0	Ø	1000	0	1000
0	{② }	4000	2000	2000
0	(3)	4000	3000	1000
0	{❷, ❸}	6000	3000	3000
2	Ø	2000	0	2000
2	{● }	4000	1000	3000
2	(3)	3000	3000	0
2	$\{ oldsymbol{0}, oldsymbol{6} \}$	6000	4000	2000
3	Ø	3000	0	3000
3	{① }	4000	1000	3000
3	(2)	3000	2000	1000
8	$\{0,2\}$	6000	4000	2000

	Players interact (payouts ☆ do not add up)	
*	2	3
100000	2 3	1 3
	1 2 3	

Player	Coalition S	$v(S \cup \{j\})$	v(S)	$\Delta(j,S)$
0	Ø	1000	0	1000
0	{② }	4000	2000	2000
0	(3)	4000	3000	1000
0	{❷, ❸}	6000	3000	3000
2	Ø	2000	0	2000
2	{● }	4000	1000	3000
2	(3)	3000	3000	0
2	$\{ oldsymbol{0}, oldsymbol{6} \}$	6000	4000	2000
8	Ø	3000	0	3000
③	{● }	4000	1000	3000
3	(2)	3000	2000	1000
3	$\{0,2\}$	6000	4000	2000

- With interactions: Players contribute differently depending on coalition
 → Marginal contribs vary across coalitions S (e.g. overlap, synergy)
 - Averaging over subsets does not recover total payout $\nu(D)$
- ullet Averaging over subsets does not recover total payout v(P)
 - \leadsto unfair payout distribution
 - \rightarrow avg. contrib. **1** = 1750 **2** = 1750 **3** = 2250 don't sum to v(P) = 6000
- Value a player adds depends on joining order, not just who's in coalition
 - → Shapley values fairly average over all possible joining orders

3 joins alone: 3 ☆

2 joins: total = 3 %, marginal = 0

1 joins: total = 6 $\stackrel{\triangle}{\approx}$, marginal = +3

But what if 1 joins before 2?

Ordering 2: $\Palpha o \Palpha o \Palpha$

joins alone: 3 ☆

1 joins: total = $4 \stackrel{\triangle}{\Rightarrow}$, marginal = +1

2 joins: total = $6 \stackrel{\triangle}{\propto}$, marginal = +2

Ordering 1: $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$

3 joins alone: 3 ☆

② joins: total = 3 rianglerightarrow riangleri

1 joins: total = 6 $\stackrel{\triangle}{\Rightarrow}$, marginal = +3

But what if 1 joins before 2?

Ordering 2: $\textcircled{3} \rightarrow \textcircled{1} \rightarrow \textcircled{2}$

joins alone: 3 ☆

1 joins: total = 4 \Leftrightarrow , marginal = +1

② joins: total = 6 \Leftrightarrow , marginal = +2

- Order sensitivity: A player's marginal contribution depends on when they join S
- Shapley value: Averages each player's contribution over all possible join orders
 - → Resolves redundancy (e.g., ③'s contribution/skill overlaps with ②'s)
 - → Accounts for order sensitivity (e.g.,
 brings more value if added last)
 - → Ensures fairness (order of joining gives no advantage/disadvantage)

- Generate all possible joining orders (all permutations of full set *P*)
- For each order: track player *j*-th marginal contrib when *j* joins a coalition

- Generate all possible joining orders (all permutations of full set P)
- For each order: track player *j*-th marginal contrib when *j* joins a coalition
- Shapley value of *j*: Average this marginal contrib over all joining orders
- Example: Compute payout diff. after player 1 enters coalition → average

- Generate all possible joining orders (all permutations of full set P)
- For each order: track player *j*-th marginal contrib when *j* joins a coalition
- Shapley value of *j*: Average this marginal contrib over all joining orders
- Example: Compute payout diff. after player 2 enters coalition → average

- Generate all possible joining orders (all permutations of full set P)
- For each order: track player *j*-th marginal contrib when *j* joins a coalition
- Shapley value of *j*: Average this marginal contrib over all joining orders
- Example: Compute payout diff. after player 3 enters coalition → average

- Generate all possible joining orders (all permutations of full set *P*)
- For each order: track player *j*-th marginal contrib when *j* joins a coalition
- Shapley value of *j*: Average this marginal contrib over all joining orders

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value order definition averages the marginal contribution of a player across all possible player orderings:

$$\phi_j = \frac{1}{|P|!} \sum_{\tau \in \Pi} (v(S_j^{\tau} \cup \{j\}) - v(S_j^{\tau}))$$

ullet Π : Set of all permutations (joining orders) of the players -|P|! in total

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value order definition averages the marginal contribution of a player across all possible player orderings:

$$\phi_j = \frac{1}{|P|!} \sum_{\tau \in \Pi} (v(S_j^{\tau} \cup \{j\}) - v(S_j^{\tau}))$$


```
• S_i^{\tau}: Set of players before j joins, for each ordering \tau = (\tau^{(1)}, \dots, \tau^{(p)})
     \vec{\mathsf{E.g.:}} \ \Pi = \{ ( \bullet, @, @), ( \bullet, @, @), ( @, \bullet, @), ( @, \bullet, @), ( @, \bullet, @), ( @, @, \bullet) \}
```

$$\sim$$
 For joining order $\tau = (2, \mathbf{0}, \mathbf{0})$ and player $j = \mathbf{0} \Rightarrow S_i^{\tau} = \{2, \mathbf{0}\}$

$$\sim$$
 For joining order $\tau = (0, 0, 0)$ and player $i = 0 \Rightarrow S^{\tau} = \{0\}$

 \rightsquigarrow For joining order $\tau = (3, 0, 2)$ and player $j = 0 \Rightarrow S_i^{\tau} = \{3\}$

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value order definition averages the marginal contribution of a player across all possible player orderings:

$$\phi_j = \frac{1}{|P|!} \sum_{\tau \in \Pi} (v(S_j^\tau \cup \{j\}) - v(S_j^\tau))$$

- S_j^{τ} : Set of players before j joins, for each ordering $\tau = (\tau^{(1)}, \dots, \tau^{(p)})$ **E.g.:** $\Pi = \{(\mathbf{0}, \mathbf{2}, \mathbf{6}), (\mathbf{0}, \mathbf{6}, \mathbf{2}), (\mathbf{2}, \mathbf{0}, \mathbf{6}), (\mathbf{2}, \mathbf{6}, \mathbf{0}), (\mathbf{6}, \mathbf{0}, \mathbf{2}), (\mathbf{6}, \mathbf{2}, \mathbf{0})\}$ \leadsto For joining order $\tau = (\mathbf{2}, \mathbf{0}, \mathbf{6})$ and player $j = \mathbf{6} \Rightarrow S_j^{\tau} = \{\mathbf{2}, \mathbf{0}\}$ \leadsto For joining order $\tau = (\mathbf{6}, \mathbf{0}, \mathbf{2})$ and player $j = \mathbf{0} \Rightarrow S_j^{\tau} = \{\mathbf{6}\}$
- Order definition allows to approximate Shapley values by sampling permutations
 - \rightsquigarrow Sample a fixed $M \ll |P|!$ random permutations and average:

$$\phi_j pprox rac{1}{M} \sum_{ au \in \Pi_{tr}} \left(v(S_j^ au \cup \{j\}) - v(S_j^ au)
ight)$$

where $\Pi_M \subset \Pi$ is the random sample of M player orderings

- **Note:** The same subset S_j^{τ} can occur in multiple permutations \leadsto Its marginal contribution is included multiple times in the sum in ϕ_j
- Example Π (for players $P = \{ \mathbf{0}, \mathbf{2}, \mathbf{3} \}$, player of interest $j = \mathbf{3} \}$:
 - $\{ (\mathbf{0}, \mathbf{2}, \mathbf{3}), (\mathbf{0}, \mathbf{3}, \mathbf{2}), (\mathbf{2}, \mathbf{0}, \mathbf{3}), (\mathbf{2}, \mathbf{3}, \mathbf{0}), (\mathbf{3}, \mathbf{0}, \mathbf{2}), (\mathbf{3}, \mathbf{2}, \mathbf{0}) \}$
 - \rightarrow In (0, 2, 3) and (2, 0, 3), player 3 joins after coal. $S_j^{\tau} = \{0, 2\}$ \Rightarrow Marginal contribution $v(\{0, 2, 3\}) v(\{0, 2\})$ occurs twice in ϕ_i
- **Reason:** Each subset *S* appears in |S|!(|P|-|S|-1)! orderings before
 - *j* joins \Rightarrow There are |S|! possible orders of players within coalition S
 - \Rightarrow There are (|P| |S| 1)! possible orders of players without S and i

Players before player *j*

player j

Players after player j

- Order view: Each of the |P|! permuts contributes 1 term with weight $\frac{1}{|P|!}$
- Same subset $S \subseteq P \setminus \{j\}$ can appear before j in multiple orders \rightsquigarrow e.g., $S = \{ \bullet, \bullet \} = \{ \bullet, \bullet \}$
- **Set view:** Group by unique subsets *S*, not permutations
- Each S occurs in |S|!(|P|-|S|-1)! orderings \rightsquigarrow Weight: $\frac{|S|!(|P|-|S|-1)!}{|P|!}$

- ullet Order view: Each of the |P|! permuts contributes 1 term with weight $\frac{1}{|P|!}$
- Same subset $S \subseteq P \setminus \{j\}$ can appear before j in multiple orders \rightsquigarrow e.g., $S = \{ \bigcirc, \bigcirc \} = \{ \bigcirc, \bigcirc \}$
- **Set view:** Group by unique subsets *S*, not permutations
- Each S occurs in |S|!(|P|-|S|-1)! orderings \rightsquigarrow Weight: $\frac{|S|!(|P|-|S|-1)!}{|P|!}$

- ullet Order view: Each of the |P|! permuts contributes 1 term with weight $\frac{1}{|P|!}$
- Same subset $S \subseteq P \setminus \{j\}$ can appear before j in multiple orders \rightsquigarrow e.g., $S = \{ \bigcirc, \bigcirc \} = \{ \bigcirc, \bigcirc \}$
- **Set view:** Group by unique subsets *S*, not permutations
- Each S occurs in |S|!(|P|-|S|-1)! orderings \rightsquigarrow Weight: $\frac{|S|!(|P|-|S|-1)!}{|P|!}$

SHAPLEY VALUE - SET DEFINITION

Shapley value via **set definition** (weighting via multinomial coefficient):

$$\phi_j = \sum \frac{|S|!(|P|-|S|-1)!}{|P|!}(v()-v(S))$$

The coefficient gives the probability that, when randomly arranging all |P| players, the exact set S appears before player j, and the remaining players appear afterward.

S ! permutations		player <i>j</i>	(P - S -1)! permutations		
	$\overline{}$	$\overline{}$			
$\tau^{(1)}$	$ au^{(S)}$	$\tau^{(S +1)}$	$ au^{(S +2)}$		$\tau^{(P)}$

SHAPLEY VALUE - SET DEFINITION

Shapley value via **set definition** (weighting via multinomial coefficient):

$$\phi_j = \sum \frac{|S|!(|P|-|S|-1)!}{|P|!}(v()-v(S))$$

The coefficient gives the probability that, when randomly arranging all |P| players, the exact set S appears before player j, and the remaining players appear afterward.

- |S| = 0: player *j* joins first \Rightarrow many permutations \Rightarrow high weight
- |S| = |P| 1: player j joins last \Rightarrow many permutations \Rightarrow high weight
- Middle-sized |S|: fewer exact matches \Rightarrow lower weight
- Result: U-shaped weight distribution

What makes a payout fair? The Shapley value provides a fair payout ϕ_j for each player $j \in P$ and uniquely satisfies the following axioms for any value function ν :

$$\sum_{j\in P}\phi_j=v(P)$$

What makes a payout fair? The Shapley value provides a fair payout ϕ_j for each player $j \in P$ and uniquely satisfies the following axioms for any value function v:

$$\sum_{j\in P}\phi_j=v(P)$$

• **Symmetry**: Indistinguishable players $j, k \in P$ receive equal shares:

If
$$v(S \cup \{j\}) = v(S \cup \{k\})$$
 for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$

What makes a payout fair? The Shapley value provides a fair payout ϕ_j for each player $j \in P$ and uniquely satisfies the following axioms for any value function v:

$$\sum_{j\in P}\phi_j=v(P)$$

• **Symmetry**: Indistinguishable players $j, k \in P$ receive equal shares:

If
$$v(S \cup \{j\}) = v(S \cup \{k\})$$
 for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$

• Null Player (Dummy): Players who contribute nothing receive nothing:

If
$$v(S \cup \{j\}) = v(S)$$
 for all $S \subseteq P \setminus \{j\}$, then $\phi_j = 0$

What makes a payout fair? The Shapley value provides a fair payout ϕ_j for each player $j \in P$ and uniquely satisfies the following axioms for any value function ν :

$$\sum_{j\in P}\phi_j=v(P)$$

• **Symmetry**: Indistinguishable players $j, k \in P$ receive equal shares:

If
$$v(S \cup \{j\}) = v(S \cup \{k\})$$
 for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$

• Null Player (Dummy): Players who contribute nothing receive nothing:

If
$$v(S \cup \{j\}) = v(S)$$
 for all $S \subseteq P \setminus \{j\}$, then $\phi_j = 0$

• Additivity: For two separate games with value functions v_1 , v_2 , define a combined game with $v(S) = v_1(S) + v_2(S)$ for all $S \subseteq P$. Then:

$$\phi_{j,v_1+v_2} = \phi_{j,v_1} + \phi_{j,v_2}$$

→ Payout of combined game = payout of the two separate games

