ReC²S: Reliable Cloud Computing System

Alecsandru Pătrașcu - Master SCPD, An II

Scientific lead:

Prof. Dr. Ing. Valentin Cristea As. Dr. Ing. Cătălin Leordeanu

Contents

- Introduction
- Goals
- Architecture
- Implementation
- Results
- Future work
- Conclusion

Introduction

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction."

Goals

- To create a unified and self-contained platform and framework for resource management
- To help users develop applications that automatically scale horizontally and vertically
- To implement custom security policies
- Seamlessly interconnect with other Clouds

Architecture – Top view

o 6 layers:

Architecture - Implementation

o 7 modules:

General building block

- Master-slave framework
- Process based parallelism
- One worker per CPU
- Workers are automatically restored on crash

GUI

- Responsible for user interaction
- Web interface

Frontend

- Maps over the "Intrusion detection filter" and "ReC²S API"
- Receives authentication requests from GUI
- Legit requests are passed to the "User Manager"

User Manager

- Maps over the "Validation engine"
- Authentication and lease validation
- Stores details about the user
 - Username
 - Password
 - etc

Lease Manager

- Maps over the "Job and Lease Manager" layer
- Save the leases into jobs
- Plug-and-play store engine
- Automatic lease backup and restore

Scheduler

- Maps over the "Scheduler & System manager" layer
- Checks for lease resource availability
- Plans leases to run on the attached Cloud interfaces
- It runs the ReC2Sched algorithm which proved to be about 35% faster that FIFO/SJF

Monitor

Hyperviso

 ReC^2S

A. Pătrașcu, C. Leordeanu, C. Dobre and V. Cristea, "ReC2S: Reliable Cloud Computing System", European Concurrent Engineering Conference, Bucharest, April 2012

Hypervisor Manager

- Maps over the "Virtual machine preparation" and "Cloud specific interface" layers
- Receives requests to start/check a new lease
- Plug-and-play hypervisor engine
 - VMware ESX
 - VirtualBox
 - OpenNebula
 - Eucalyptus
 - Amazon EC2

Monitor

- Monitors the entire activity of the system
- Openion of the property of
 - Preempt a lease
 - Increase the number of VMs from the lease
 - Decrease the number of VMs from the lease

Database Layer

- DB management for the entire system
- Plug-and-play DB engine

Implementation

Element	Programming Language
Backend modules	Server-side JavaScript (Node.JS)
Frontend module	Grails
Hypervisor drivers	Java

Results

Lease Manager

#	Lease creation time (ms)	Lease check-up (ms)	Lease store (ms)
1	204	10	1
2	205	11	1
3	289	11	1
4	208	10	1
5	262	10	1

Results

Hypervisor manager

#	Lease retrieve (ms)	Lease resource check (ms)
1	3	25
2	3	28
3	2	51
4	2	26
5	3	39

Future work

- Further optimize the whole framework
- Security improvements
 - Trust management
 - Information security and privacy (homomorphic encryption schemes)
- Integration with other Cloud infrastructures

Conclusions

- We presented a reliable framework for cloud infrastructures
- We provide performance and security
- We provide compatibility with different cloud systems

Thank You!