고차원 데이터의 단점: 모델이 과적합하는 경향이 있음

The curse of dimensionality

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen BoeyeMachine Learning Engineer, Faktion

From observation to pattern

City	Price
Berlin	2
Paris	3

ex) 집의 몇 가지 feature을 바탕으로 집이 위치한 도시를 예측

From observation to pattern

City	Price
Berlin	2
Paris	3

작은 data -> model overfit될 것임

From observation to pattern

City	Price
Berlin	2.0
Berlin	3.1
Berlin	4.3
Paris	3.0
Paris	5.2
•••	•••

Building a city classifier - data split

Separate the feature we want to predict from the ones to train the model on.

```
y = house_df['City']

X = house_df.drop('City', axis=1)
```

Perform a 70% train and 30% test data split

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
```

Building a city classifier - model fit

Create a Support Vector Machine Classifier and fit to training data

```
from sklearn.svm import SVC

svc = SVC()

svc.fit(X_train, y_train)
```

Building a city classifier - predict

```
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, svc.predict(X_test)))
```

0.826 test set에서 82.6%의 정확도를 보임

```
print(accuracy_score(y_train, svc.predict(X_train)))
```

0.832

모델이 과적합했는지 알고 싶으면 train set의 accuracy를 살펴보면 됨
-> test set의 accuracy보다 훨씬 높으면 model이 잘 일반화되지 않지만 단순히 모든 훈련 예체를 암기했다는 결론을 내릴수 있지만 여기에는 그렇지 않음

Adding features

City	Price
Berlin	2.0
Berlin	3.1
Berlin	4.3
Paris	3.0
Paris	5.2
•••	•••

모델의 정확도를 높이려면 dataset에 feature을 추가해야 함

Adding features

City	Price	n_floors	n_bathroom	surface_m2
Berlin	2.0	1	1	190
Berlin	3.1	2	1	187
Berlin	4.3	2	2	240
Paris	3.0	2	1	170
Paris	5.2	2	2	290
•••	•••	•••	•••	•••

추가하는 각 기능을 사용하여 dataset에서 주택의 관측 횟수를 늘려야 함. 그렇지 않으면 model이 쉽게 외울 수 있는 feature들의 독특한 조합이 많아질 것임. 실제로 과적합을 방지하려면 관측치의 수가 형상의 수에 따라 기하급수적으로 증가해야 함. 이는 고차원 dataset에서 문제가 되기 때문에 이 현상은 차원의 저주라고 알려져 있는데, 이를 해결할 방법은 차원 축소를 적용하는 것임.

Let's practice!

DIMENSIONALITY REDUCTION IN PYTHON

Features with missing values or little variance

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen Boeye Machine Learning Engineer, Faktion

이 강의에서는 분산이 충분하고 결측값이 너무 많지 않은 feature을 자동으로 선택함

Creating a feature selector

```
print(ansur_df.shape)
```

```
(6068, 94)
```

```
array([ True, True, ..., False, True])
```


Applying a feature selector

```
print(ansur_df.shape)
```

```
(6068, 94)
```

```
reduced_df = ansur_df.loc[:, mask]
print(reduced_df.shape)
```

```
(6068, 93) feature 하나를 줄임
```


Variance selector caveats

buttock_df.boxplot()

분산 임계값의 한가지 문제 : 분산 값이 feature 간에 항상 해석하거나 비교하는 것이 쉽지 않음.

boxplot에서 서로 다른 측정값의 중위, 박스 녹색 수평선, 분산, 박스의 높이 및 수직선의 길이가 다르다는 것을 볼 수 있음.

이 dataset의 경우 값이 클수록 분산이 더 크므로 feature selection에 사용하기 전에 분산을 정규화해야함.

Normalizing the variance

```
from sklearn.feature_selection import VarianceThreshold

sel = VarianceThreshold(threshold=0.005)

sel.fit(ansur_df / ansur_df.mean())
mask = sel.get_support()
reduced_df = ansur_df.loc[:, mask]
print(reduced_df.shape)

selector를 fitting하기 전에 각 열을 해당 평균 값으로 나눔 정규화 후에는 dataset의 분산이 더 낮아짐.
⇒ 따라서 분산 임계값 0.005로 줄었음
selector를 dataset에 적용하면 feature 수가 45개로 절반 이상 감소함.
```

(6068, 45)

Missing value selector

Name	Type 1	Type 2	Total	HP	Attack	Defense
Bulbasaur	Grass	Poison	318	45	49	49
Ivysaur	Grass	Poison	405	60	62	63
Venusaur	Grass	Poison	525	80	82	83
Charmander	Fire	NaN	309	39	52	43
Charmeleon	Fire	NaN	405	58	64	58

결측값 삭제할 수도 있음

Missing value selector

Name	Type 1	T	ype 2	Total	HP	Attack	Defense	
Bulbasaur	Grass	Р	oison	318	45	49	49	
Ivysaur	Grass	Poison		405	60	62	63	
Venusaur	Grass	Poison		525	80	82	83	
Charmander	Fire		NaN	309	39	52	43	
Charmeleon	Fire		NaN	405	58	64	58	

Identifying missing values

pokemon_df.isna()

Name	Type 1	Type 2	Total	HP	Attack	Defense
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False						False
False	False	True	False	False	False	False
False	False	True	False	False	False	False

Counting missing values

```
pokemon_df.isna().sum()
```

```
Name 0
Type 1 0
Type 2 386
Total 0
HP 0
Attack 0
Defense 0
dtype: int64
```

Counting missing values

```
pokemon_df.isna().sum() / len(pokemon_df) 숫자를 데이터 프레임의 총 행 수로 나누면 ₀과 1 사이의 결측값 비율을 얻게됨
```

```
Name
           0.00
           0.00
Type 1
                  Type 2는 절반 이상 결측값
           0.48
Type 2
           0.00
Total
HP
           0.00
Attack
           0.00
           0.00
Defense
dtype: float64
```

Applying a missing value threshold

```
# Fewer than 30% missing values = True value
mask = pokemon_df.isna().sum() / len(pokemon_df) < 0.3
print(mask) 비율을 기반으로 특정 theshold보다 적은 feature에 대한 mask를 만들 수 있음 (여기서 0.3으로 설정)
```

```
Name True
Type 1 True
Type 2 False
Total True
HP True
Attack True
Defense True
dtype: bool
```

Applying a missing value threshold

```
reduced_df = pokemon_df.loc[:, mask]
```

reduced_df.head()

Name	Type 1	Total	HP	Attack	Defense
Bulbasaur	Grass	318	45	49	49
lvysaur	Grass	405	60	62	63
Venusaur	Grass	525	80	82	83
Charmander	Fire	309	39	52	43
Charmeleon	Fire	405	58	64	58

Let's practice

DIMENSIONALITY REDUCTION IN PYTHON

Pairwise correlation

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen BoeyeMachine Learning Engineer, Faktion

Pairwise correlation

sns.pairplot(ansur, hue="gender")

Pairwise correlation

sns.pairplot(ansur, hue="gender")

시각적으로 상관관계를 식별할 수 있음 -> 그러나 feature간의 상관관계를 정량화하기에는 부족함

Correlation coefficient

Dr datacawan

Correlation coefficient

X 실제 데이터에서와 같은 두 feature 사이의 관계가 더 많은 분산을 나타내면 상관관계가 0에 약간 더 가까워 짐.

weights_df.corr() 각 feature 간의 상관관계

	weight_lbs	weight_kg	height_in
weight_lbs	1.00	1.00	0.47
weight_kg	1.00	1.00	0.47
height_in	0.47	0.47	1.00

weights_df.corr()

A와 B의 상관관계는 B와 A의 상관관계와 같기 때문에 두번 표시

	weight_lbs	weig	ht_kg	heig	ht_in
weight_lbs	1.00		1.00		0.47
weight_kg	1.00		1.00		0.47
height_in	0.47		0.47		1.00

weights_df.corr()

kg, lbs는 완벽하게 상관된 feature

weights_df.corr()

	weight_lbs	weight_kg	height_in
weight_lbs	1.00	1.00	0.47
weight_kg	1.00	1.00	0.47
height_in	0.47	0.47	1.00

Visualizing the correlation matrix

```
cmap = sns.diverging_palette(h_neg=10,
                                                             1.00
                                                                      1.00
사용자 지정 색상 팔레트와 스타일링 인수를 전달 _pos=240,
                                                weight_lbs
                              as_cmap=True)
sns.heatmap(weights_df.corr(), center=0,
                                                             1.00
                                                                      1.00
                                                weight_kg
            cmap=cmap, linewidths=1,
            annot=True, fmt=".2f")
                                                                      0.47
                                                             0.47
                                                 height_in
heatmap을 사용하여 correlation matrix를 시각화 할 수 있음.
```


Visualizing the correlation matrix

```
corr = weights_df.corr()

mask = np.triu(np.ones_like(corr, dtype=bool))
```

부울 마스크 생성한 후 one_like()함수를 사용하여 상관 행렬과 동일한 차원을 가진 True값으로 채워진 행렬을 만든 다음이를 Numpy의 triu()로 전달하여, 삼각형 상단의 경우 모든 바상위 삼각성 값을 False로 설정

Visualizing the correlation matrix

Visualising the correlation matrix

Let's practice!

DIMENSIONALITY REDUCTION IN PYTHON

상관계수가 1 or -1인 경우 두 feature 중 하나를 삭제해야함. 또한, 상관계수가 -1 or +1에 가까운 feature은 동일하거나 유사한 feuatre의 측정값일 경우 삭제할 수 있음

Removing highly correlated features

DIMENSIONALITY REDUCTION IN PYTHON

Jeroen BoeyeMachine Learning Engineer, Faktion

Highly correlated data

상완골과 경추는 가슴 부위에 있는 두 개의 뼈이기 때문에 이 세 가지 측정값은 항상 매우 유사

Highly correlated features

단순성을 위해서뿐만 아니라 무의미한 차이들에 지나치게 맞추지 않도록 하기 위해서.

상관관계가 높은 feature을 삭제해도 너무 많은 정보가 손실되지 않을 것으로 확신하는 경우 임계값을 사용하여 해단 feature을 필터링할 수 있음

Removing highly correlated features

```
# Create positive correlation matrix

corr_df = chest_df.corr().abs() 절대값을 취해 음의 상관 관계를 걸러냄

# Create and apply mask

mask = np.triu(np.ones_like(corr_df, dtype=bool)) 위쪽 삼각형을 위해 mask 생성

tri_df = corr_matrix.mask(mask) mask가 Ture 값을 갖는 dataframe의 모든 위치를 NA를 바꿈

tri_df
```

	Suprasternale height	Cervicale height	Chest height
Suprasternale height	NaN	NaN	NaN
Cervicale height	0.983033	NaN	NaN
Chest height	0.956111	0.951101	NaN

Removing highly correlated features

```
# Find columns that meet treshold

to_drop = [c for c in tri_df.columns if any(tri_df[c] > 0.95)] 임계값보다 강한 feature 걸러냄

print(to_drop)
```

['Suprasternale height', 'Cervicale height']

```
# Drop those columns
reduced_df = chest_df.drop(to_drop, axis=1)
```

mask를 사용하여 행렬의 절반을 NA값으로 설정한 이유는 두 feature이 강한 상관관계를 가질 때 두 feature이 제거되지 않도록 하기 위함 drop을 사용하여 선택한 feature를 dataframe에서 삭제

Feature selection

상관관계가 높은 feature를 제거하면 데이터에서 주용한 정보가 제거되는지 확실하지 않지만 차원을 줄여야 하는 경우에는 feature exdtraction을 고려 **Feature extraction**

feature 1	feature 2	feature 3		new feature 1		new feature 2		
			_					

Correlation caveats - Anscombe's quartet

상관관계에서 중요한 점 : 두 feature 사이의 관계가 비선형적이거나 특이치가 관련될 때 이상한 결과가 나올 수 있음. ex) 4가지 모두 동일한 상관 계수를 갖지만 시각적으로 다름

Correlation caveats - causation

강한 상관관계는 인관관계를 의미하지 않음. ex) 소방차 수는 해당 화재로 인해 부상당한 사람의 수와 상관 관계가 잇음. 더 많은 부상자들이 소방차를 더 많이 보내서 발생한다고 결론짓는 것은 잘된 것.

Let's practice!

DIMENSIONALITY REDUCTION IN PYTHON

