Algebra II Sommersemester 2021

Prof. Dr. Alexander Schmidt

Teil 1 – Kommutative Algebra

1 Ringe und Ideale

Sei A ein kommutativer Ring (wie immer mit 1) und $\mathfrak{a} \subset A$ ein Ideal. Die Projektion $\phi: A \to A/\mathfrak{a}$ ist ein surjektiver Ringhomomorphismus. Wir erinnern an den folgenden Satz:

Satz 1.1 (Algebra I, Satz 2.5). Die Zuordnung $\mathfrak{b} \mapsto \phi^{-1}(\mathfrak{b})$ induziert eine inklusionserhaltende Bijektion zwischen der Menge der Ideale in A/\mathfrak{a} und der Menge der Ideale in A, die \mathfrak{a} umfassen.

Beweisskizze. Man prüft nacheinander folgendes nach:

- $\phi^{-1}(\mathfrak{b})$ ist ein Ideal in A.
- $\bullet \ \phi^{-1}(\mathfrak{b}) \supset \phi^{-1}(0) = \mathfrak{a}.$
- $\phi^{-1}(\mathfrak{b}_1) = \phi^{-1}(\mathfrak{b}_2) \Rightarrow \mathfrak{b}_1 = \mathfrak{b}_2$ (da ϕ surjektiv).
- Ist $\mathfrak{c} \subset A$ ein Ideal mit $\mathfrak{c} \supset \mathfrak{a}$, so gilt $\phi^{-1}(\phi(\mathfrak{c})) = \mathfrak{c}$.

Erinnerung 1.2. • $x \equiv y \mod \mathfrak{a}$ bedeutet $x - y \in \mathfrak{a}$.

- $x \in A$ heißt Nullteiler, wenn ein $y \in A$, $y \neq 0$, mit xy = 0 existiert.
- ullet A heißt **nullteilerfrei**, wenn A nicht der Nullring und $0 \in A$ der einzige Nullteiler ist.

• $x \in A$ heißt **Einheit**, wenn ein $y \in A$ mit xy = 1 existiert. Die Menge A^{\times} der Einheiten von A ist eine Gruppe unter Multiplikation.

Beispiel 1.3. $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$

Die Vielfachen ax eines Elements $x \in A$ bilden ein **Hauptideal**. Bezeichnung (x) oder auch Ax. Das **Nullideal** (0) wird auch einfach mit 0 bezeichnet. Es gilt (1) = A und $(x) = A \Leftrightarrow x \in A^{\times}$.

Erinnerung 1.4. • $\mathfrak{p} \subset A$ heißt **Primideal**, wenn $\mathfrak{p} \neq (1)$ und es gilt $xy \in \mathfrak{p} \Rightarrow (x \in \mathfrak{p} \text{ oder } y \in \mathfrak{p}).$

- $\mathfrak{p} \subset A$ ist Primideal $\iff A/\mathfrak{p}$ ist nullteilerfrei.
- $\mathfrak{m} \subset A$ heißt **Maximalideal** wenn $\mathfrak{m} \neq (1)$ und es kein Ideal \mathfrak{a} mit $\mathfrak{m} \subsetneq \mathfrak{a} \subsetneq (1)$ gibt.
- $\mathfrak{m} \subset A$ ist Maximalideal $\iff A/\mathfrak{m}$ ist Körper.
- Jedes Maximalideal ist ein Primideal.
- $f:A\to B$ Ringhomomorphismus, $\mathfrak{q}\subset B$ Primideal $\Rightarrow f^{-1}(\mathfrak{q})\subset A$ ist ein Primideal.

Satz 1.5. Jeder Ring $A \neq 0$ besitzt ein Maximalideal.

Beweis. Sei Σ die Menge der Ideale \neq (1) in A. Wegen $A \neq 0$ gilt (0) \subsetneq (1) und damit $\Sigma \neq \emptyset$. Wir ordnen Σ durch die Inklusion, d.h. $\mathfrak{a} \leq \mathfrak{b} \Leftrightarrow \mathfrak{a} \subset \mathfrak{b}$. Sei nun (\mathfrak{a}_{α}) eine Kette in Σ . Für α, β haben wir $\mathfrak{a}_{\alpha} \subset \mathfrak{a}_{\beta}$ oder $\mathfrak{a}_{\beta} \subset \mathfrak{a}_{\alpha}$. Setze $\mathfrak{a} = \bigcup_{\alpha} \mathfrak{a}_{\alpha}$. Dann ist \mathfrak{a} ein Ideal: $a \in A$, $x \in \mathfrak{a} \Rightarrow ax \in \mathfrak{a}$ weil $x \in \mathfrak{a}_{\alpha}$ für ein α und deshalb $ax \in \mathfrak{a}_{\alpha} \subset \mathfrak{a}$. Es sei nun $x \in \mathfrak{a}_{\alpha}$, $y \in \mathfrak{a}_{\beta}$. Gilt $\mathfrak{a}_{\alpha} \subset \mathfrak{a}_{\beta}$ so folgt $x + y \in \mathfrak{a}_{\beta} \subset \mathfrak{a}$, ansonsten gilt $\mathfrak{a}_{\beta} \subset \mathfrak{a}_{\alpha}$ und $x + y \in \mathfrak{a}_{\alpha} \subset \mathfrak{a}$.

Es gilt $\mathfrak{a} \in \Sigma$ wegen $1 \notin \mathfrak{a} = \bigcup \mathfrak{a}_{\alpha}$ und \mathfrak{a} ist obere Schranke für die Kette (\mathfrak{a}_{α}) . Zorn's Lemma $\Rightarrow \Sigma$ besitzt (mindestens) ein maximales Element.

Korollar 1.6. Jedes Ideal $\mathfrak{a} \subsetneq A$ ist in einem Maximalideal enthalten.

Beweis. Nach Satz 1.5 besitzt $0 \neq A/\mathfrak{a}$ mindestens ein Maximalideal. Nach Satz 1.1 erhalten wir ein Maximalideal in A welches \mathfrak{a} umfasst.

Korollar 1.7. Jede Nicheinheit ist in einem Maximalideal enthalten.

Beweis. Ist x Nichteinheit, so gilt $Ax \subsetneq A$. Nach Korollar 1.6 ist Ax und somit auch x in einem Maximalideal enthalten.

Definition 1.8. A heißt **lokal**, wenn es genau ein Maximalideal $\mathfrak{m} \subset A$ gibt. Der Körper $k = A/\mathfrak{m}$ heißt der **Restklassenkörper** von A.

Satz 1.9. Es sei $\mathfrak{m} \subset A$ ein Maximalideal.

- (i) $(A \setminus \mathfrak{m}) \subset A^{\times} \Rightarrow A \text{ ist lokal.}$
- (ii) $1 + \mathfrak{m} \subset A^{\times} \Rightarrow A \text{ ist lokal.}$

Beweis. (i) Sei $\mathfrak{a} \subsetneq A$ ein Ideal. Dann gilt $\mathfrak{a} \cap A^{\times} = \emptyset$, also $\mathfrak{a} \cap (A \setminus \mathfrak{m}) = \emptyset$, d.h. $\mathfrak{a} \subset \mathfrak{m}$. Daher ist \mathfrak{m} das einzige Maximalideal. (ii) Für $x \in A$ ist $Ax + \mathfrak{m}$ ein Ideal. Aus $x \notin \mathfrak{m}$ folgt $Ax + \mathfrak{m} \supsetneq \mathfrak{m}$, also $Ax + \mathfrak{m} = (1)$. Daher existieren $a \in A$, $y \in \mathfrak{m}$ mit ax + y = 1, also $ax = 1 - y \in 1 + \mathfrak{m} \subset A^{\times}$. Aus $ax \in A^{\times}$ folgt $x \in A^{\times}$. Wir erhalten $(A \setminus \mathfrak{m}) \subset A^{\times}$, also A lokal nach (i).

Definition 1.10. Sei A ein kommutativer Ring. $x \in A$ heißt **nilpotent**, wenn $x^n = 0$ für ein $n \in \mathbb{N}$ gilt.

Nilpotente Elemente sind Nullteiler, die Umkehrung ist i.A. falsch.

Satz 1.11. Die Menge $\mathfrak{N} = \mathfrak{N}(A)$ aller nilpotenten Elemente in A ist ein Ideal. Der Faktorring A/\mathfrak{N} hat keine nilpotenten Elemente $\neq 0$.

Beweis. $x \in \mathfrak{N}$, $a \in A \Rightarrow ax \in \mathfrak{N}$ (klar). Seien $x, y \in \mathfrak{N}$, $x^n = 0 = y^m$. Dann gilt $(x+y)^{n+m-1} = 0$ (binomische Formel) also $x+y \in \mathfrak{N}$. Daher ist \mathfrak{N} ein Ideal. Sei nun $x \in A$ und $\bar{x} \in A/\mathfrak{N}$ nilpotent. Dann gilt $\bar{x}^n = 0$ in A/\mathfrak{N} für ein $n \in \mathbb{N}$, also $x^n \in \mathfrak{N}$, und somit $x^{nm} = 0$ für geeignetes $m \in \mathbb{N}$.

Definition 1.12. Das Ideal \mathfrak{N} aller nilpotenten Elemente heißt das Nilradikal.

Satz 1.13. Das Nilradikal von A ist der Durchschnitt aller Primideale.

Beweis. Sei \mathfrak{N}' der Durchschnitt aller Primideale. Sei $x \in \mathfrak{N}$, also $x^n = 0$ für ein n. Dann gilt für jedes Primideal $\mathfrak{p}: x^n \in \mathfrak{p}$, also $x \in \mathfrak{p}$. Dies zeigt $\mathfrak{N} \subset \mathfrak{N}'$. Angenommen es gäbe ein $x \in \mathfrak{N}' \setminus \mathfrak{N}$. Sei Σ die Menge aller Ideale $\mathfrak{a} \subset A$ mit

$$x^n \notin \mathfrak{a}$$
 für alle $n \in \mathbb{N}$.

Wegen $0 \in \Sigma$ ist Σ nichtleer. Wir ordnen Σ durch Inklusion. Nach Zorns Lemma existiert ein maximales Element $\mathfrak{p} \in \Sigma$.

Behauptung: p ist Primideal.

Beweis der Behauptung. Seien $s,t\notin\mathfrak{p}$. Dann gilt $\mathfrak{p}\subsetneq As+\mathfrak{p}$ und $\mathfrak{p}\subsetneq At+\mathfrak{p}$, also $As+\mathfrak{p},\ At+\mathfrak{p}\notin\Sigma$. Nach Definition von Σ existieren $n,m\in\mathbb{N}$ mit $x^n\in As+\mathfrak{p},$ $x^m\in At+\mathfrak{p}$. Dies impliziert $x^{n+m}\in Ast+\mathfrak{p},$ also $Ast+\mathfrak{p}\notin\Sigma$. Aus $st\in\mathfrak{p}$ würde $\mathfrak{p}=Ast+\mathfrak{p}\in\Sigma$ folgen, also $st\notin\mathfrak{p},$ d.h. \mathfrak{p} ist Primideal. Dies zeigt die Behauptung.

Wegen
$$\mathfrak{p} \in \Sigma$$
 gilt $x \notin \mathfrak{p}$. Also $x \notin \mathfrak{N}'$. Widerspruch.

Operationen auf Idealen

Sei $(\mathfrak{a}_i)_{i\in I}$ eine nicht notwendig endliche Familie von Idealen. Dann sind

$$\bigcap_{i \in I} \mathfrak{a}_i \qquad \text{und} \qquad \sum_{i \in I} \mathfrak{a}_i := \{ \sum_{i \in I} \alpha_i \mid \alpha_i \in \mathfrak{a}_i \text{ und } \alpha_i = 0 \text{ f.f.a. } i \}$$

Ideale in A. Ist $I = \{1, ..., n\}$ endlich, haben wir das Produkt

$$\prod_{i=1}^{n} \mathfrak{a}_i = \{ \sum_{\text{endl.}} x_1 x_2 \cdots x_n \mid x_i \in \mathfrak{a}_i \}$$

Bemerkung 1.14. Durchschnitt, Summe und Produkt sind assoziativ und kommutativ. Desweiteren gilt $\mathfrak{a}(\mathfrak{b}+\mathfrak{c})=\mathfrak{a}\mathfrak{b}+\mathfrak{a}\mathfrak{c}$.

Notation: $\mathfrak{a}^n = \mathfrak{a} \cdots \mathfrak{a}$ (*n* Faktoren).

Lemma 1.15. (i) $\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{c}$ falls $\mathfrak{a} \supset \mathfrak{b}$ oder $\mathfrak{a} \supset \mathfrak{c}$.

(ii) $(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) \subset \mathfrak{ab} \subset \mathfrak{a} \cap \mathfrak{b}$.

Beweis. (i) OE sei $\mathfrak{b} \subset \mathfrak{a}$. Für ein Element $b+c \in \mathfrak{a}$, $b \in \mathfrak{b}$, $c \in \mathfrak{c}$ gilt $b \in \mathfrak{a} \cap \mathfrak{b}$ und daher $c \in \mathfrak{a} \cap \mathfrak{c}$. Gilt umgekehrt $b \in \mathfrak{b}$, $c \in \mathfrak{a} \cap \mathfrak{c}$, so gilt $b+c \in \mathfrak{a} \cap (\mathfrak{b}+\mathfrak{c})$. (ii) folgt durch Einsetzen der Definitionen.

Zwei Ideale $\mathfrak{a}, \mathfrak{b} \subset A$ heißen **relativ prim**, wenn $\mathfrak{a} + \mathfrak{b} = (1)$. Für relativ prime Ideale $\mathfrak{a}, \mathfrak{b}$ gilt $\mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b}$ nach Lemma 1.15(ii).

Nun seien A_1, \ldots, A_n Ringe. Ihr Produkt $A = \prod_{i=1}^n A_i$ mit komponentenweiser Addition und Multiplikation ist ein Ring mit Einselement $(1, \ldots, 1)$. Die Projektionen $A \to A_i$, $x = (x_1, \ldots, x_n) \mapsto x_i$ sind Ringhomomorphismen.

Warnung: Die Inklusionen $A_i \hookrightarrow A$, $x_i \mapsto (0, \dots, x_i, \dots 0)$ sind keine Ringhomomorphismen!

Nun sei A ein Ring und $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ Ideale in A. Wir betrachten den Homomorphismus

$$\phi: A \longrightarrow \prod_{i=1}^{n} A/\mathfrak{a}_{i},$$

$$x \longmapsto (x + \mathfrak{a}_{1}, \dots, x + \mathfrak{a}_{n}).$$

Lemma 1.16 (Verallgemeinerter Chinesischer Restsatz). (i) Sind für $i \neq j$ die Ideale \mathfrak{a}_i und \mathfrak{a}_j relativ prim, so gilt

$$\prod_{i=1}^n \mathfrak{a}_i = \bigcap_{i=1}^n \mathfrak{a}_i.$$

(ii) ϕ surjektiv \iff \mathfrak{a}_i und \mathfrak{a}_j sind relativ prim für alle $i \neq j$.

(iii)
$$\phi$$
 injektiv $\iff \bigcap_{i=1}^n \mathfrak{a}_i = 0$.

Beweis. (i) n=2 schon bekannt nach Lemma 1.15(ii). $n\geq 3$ per Induktion. Seien $\mathfrak{a}_1,\ldots,\mathfrak{a}_n$ paarweise relativ prime Ideale und $\mathfrak{b}=\prod_{i=1}^{n-1}\mathfrak{a}_i=\bigcap_{i=1}^{n-1}\mathfrak{a}_i$. Wegen $\mathfrak{a}_i+\mathfrak{a}_n=(1)$ für $i=1,\ldots,n-1$, finden wir Elemente $x_i\in\mathfrak{a}_i,\ y_i\in\mathfrak{a}_n$ mit $x_i+y_i=1$. Es gilt $\prod_{i=1}^{n-1}x_i=\prod_{i=1}^{n-1}(1-y_i)\equiv 1$ mod \mathfrak{a}_n . Daher gilt $\mathfrak{b}+\mathfrak{a}_n=(1)$ und

$$\prod_{i=1}^n \mathfrak{a}_i = \mathfrak{b}\mathfrak{a}_n = \mathfrak{b} \cap \mathfrak{a}_n = \bigcap_{i=1}^n \mathfrak{a}_i.$$

(ii): \Rightarrow . Wir zeigen $\mathfrak{a}_i + \mathfrak{a}_j = (1)$ falls $i \neq j$. Ohne Einschränkung sei i = 1, j = 2. Es existiert ein $x \in A$ mit $\phi(x) = (1, 0, \dots, 0)$, also $x \equiv 1 \mod \mathfrak{a}_1$, $x \equiv 0 \mod \mathfrak{a}_2$, so dass

$$1 = (1 - x) + x \in \mathfrak{a}_1 + \mathfrak{a}_2$$

(ii): \Leftarrow . Es genügt zu zeigen, dass für alle i das Element $(0, \ldots, 0, 1, 0, \ldots, 0)$ (1 an i-ter Stelle) in $\operatorname{im}(\phi)$ liegt. Ohne Einschränkung sei i = 1. Wegen $\mathfrak{a}_1 + \mathfrak{a}_i = (1)$ für $i \geq 2$ haben wir Elemente $u_i \in \mathfrak{a}_1$, $v_i \in \mathfrak{a}_i$ mit $u_i + v_i = 1$. Setze $x = \prod_{i=2}^n v_i$.

Dann gilt $x \equiv 0 \mod \mathfrak{a}_i$ für $i \geq 2$ und $x = \prod_{i=2}^n (1 - u_i) \equiv 1 \mod \mathfrak{a}_1$. Daher gilt $\phi(x) = (1, 0, \dots, 0)$.

(iii) Dies ist klar wegen
$$\ker(\phi) = \bigcap_{i=1}^{n} \mathfrak{a}_{i}$$
.

Die Vereinigung $\mathfrak{a} \cup \mathfrak{b}$ zweier Ideale ist i.A. kein Ideal.

Satz 1.17 (Primvermeidung). (i) Es seien $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ Primideale und \mathfrak{a} ein Ideal mit $\mathfrak{a} \subset \bigcup_{i=1}^n \mathfrak{p}_i$. Dann gilt bereits $\mathfrak{a} \subset \mathfrak{p}_i$ für ein i.

(ii) Es seien $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ Ideale und \mathfrak{p} ein Primideal mit $\mathfrak{p} \supset \bigcap_{i=1}^n \mathfrak{a}_i$. Dann gilt $\mathfrak{p} \supset \mathfrak{a}_i$ für ein i. Aus $\mathfrak{p} = \bigcap_{i=1}^n \mathfrak{a}_i$ folgt $\mathfrak{p} = \mathfrak{a}_i$ für ein i.

Bemerkung 1.18. Eine Umformulierung von (i) ist: Ist \mathfrak{a} in keinem der Primideale \mathfrak{p}_i enthalten, so existiert ein $a \in \mathfrak{a}$ mit $a \notin \mathfrak{p}_i$ für alle i. Daher kommt der Name "Primvermeidung".

Beweis von Satz 1.17. Wir zeigen (i) per Induktion nach n in der Form

$$\mathfrak{a} \not\subset \mathfrak{p}_i \quad \text{für} \quad i = 1, \dots, n \Longrightarrow \mathfrak{a} \not\subset \bigcup_{i=1}^n \mathfrak{p}_i$$

Die Aussage ist trivial für n=1. Sei n>1 und die Aussage richtig für n-1. Dann existiert für jedes $i=1,\ldots,n$ ein $x_i\in\mathfrak{a}$ mit $x_i\notin\mathfrak{p}_j$ für alle $j\neq i$. Gilt $x_i\notin\mathfrak{p}_i$ für ein i, so sind wir fertig. Im anderen Fall gilt $x_i\in\mathfrak{p}_i$ für alle i. Für

$$y = \sum_{i=1}^{n} x_1, \dots, x_{i-1} x_{i+1} x_{i+2} \dots x_n$$

gilt dann $y \in \mathfrak{a}$ und $y \notin \mathfrak{p}_i$ für i = 1, ..., n, also $\mathfrak{a} \not\subset \bigcup_{i=1}^n \mathfrak{p}_i$.

(ii) Wir nehmen an, dass $\mathfrak{p} \not\supset \mathfrak{a}_i$ für alle *i*. Dann existieren Elemente $x_i \in \mathfrak{a}_i$, $x_i \notin \mathfrak{p}$ und wir erhalten

$$x_1 \cdots x_n \in \prod_{i=1}^n \mathfrak{a}_i \subset \bigcap_{i=1}^n \mathfrak{a}_i$$

aber $x_1 \cdots x_n \notin \mathfrak{p}$, da \mathfrak{p} prim. Also folgt $\mathfrak{p} \not\supseteq \bigcap_{i=1}^n \mathfrak{a}_i$.

Gilt schließlich $\mathfrak{p} = \bigcap_{i=1}^n \mathfrak{a}_i$, so haben wir gerade gesehen: $\mathfrak{p} \supset \mathfrak{a}_{i_0}$ für ein i_0 . Aus

$$\mathfrak{a}_{i_0} \subset \mathfrak{p} = \bigcap_{i=1}^n \mathfrak{a}_i \subset \mathfrak{a}_{i_0} \text{ folgt } \mathfrak{p} = \mathfrak{a}_{i_0}.$$

Definition 1.19. Für Ideale $\mathfrak{a},\mathfrak{b}\subset A$ setzt man

$$\mathfrak{a} : \mathfrak{b} = \{ x \in A \mid x\mathfrak{b} \subset \mathfrak{a} \}.$$

Dies ist ein Ideal in A. Das Ideal

$$\operatorname{Ann}(\mathfrak{b}) \stackrel{\mathrm{df}}{=} 0 : \mathfrak{b} = \{ x \in A \mid x\mathfrak{b} = 0 \}$$

heißt der **Annullator** von \mathfrak{b} . Für $x \in A$ schreiben wir $\mathrm{Ann}(x) = \mathrm{Ann}((x))$. Für die Menge D der Nullteiler von A gilt nach Definition:

$$D = \bigcup_{x \neq 0} \operatorname{Ann}(x).$$

Beispiel 1.20. Sei $A = \mathbb{Z}$, $\mathfrak{a} = (m)$, $\mathfrak{b} = (n)$. Dann ist $\mathfrak{a} : \mathfrak{b}$ das durch $\frac{m}{\gcd(m,n)}$ erzeugte Hauptideal.

Lemma 1.21. Es gilt

- (i) $\mathfrak{a} \subset \mathfrak{a} : \mathfrak{b}$.
- (ii) $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subset \mathfrak{a}$.
- (iii) $(\mathfrak{a} : \mathfrak{b}) : \mathfrak{c} = \mathfrak{a} : (\mathfrak{bc}) = (\mathfrak{a} : \mathfrak{c}) : \mathfrak{b}$.
- (iv) $(\bigcap \mathfrak{a}_i) : \mathfrak{b} = \bigcap (\mathfrak{a}_i : \mathfrak{b}).$
- (v) \mathfrak{a} : $(\sum \mathfrak{b}_i) = \bigcap_i (\mathfrak{a} : \mathfrak{b}_i)$.

Beweis. Übungsaufgabe.

Definition 1.22. Das Radikal $r(\mathfrak{a})$ eines Ideals \mathfrak{a} ist definiert durch

$$r(\mathfrak{a}) := \{ x \in A \mid x^n \in \mathfrak{a} \text{ für ein } n \in \mathbb{N} \}.$$

Ist $\phi: A \to A/\mathfrak{a}$ die natürliche Projektion, so gilt

$$r(\mathfrak{a}) = \phi^{-1}(\mathfrak{N}(A/\mathfrak{a})).$$

Daher ist $r(\mathfrak{a})$ ein Ideal.

Lemma 1.23. Es gilt

- (i) $r(\mathfrak{a}) \supset \mathfrak{a}$.
- (ii) $r(r(\mathfrak{a})) = r(\mathfrak{a})$.
- (iii) $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b}).$
- (iv) $r(\mathfrak{a}) = (1) \iff \mathfrak{a} = (1)$.
- (v) $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$
- (vi) Für ein Primideal \mathfrak{p} gilt $r(\mathfrak{p}^n) = \mathfrak{p}$ für alle $n \in \mathbb{N}$.

Beweis. Übungsaufgabe.

Satz 1.24. Das Radikal $r(\mathfrak{a})$ ist der Durchschnitt aller \mathfrak{a} umfassenden Primideale.

Beweis. Sei $\phi: A \to A/\mathfrak{a}$ die kanonische Projektion. Dann gilt

$$r(\mathfrak{a}) = \phi^{-1}(\mathfrak{N}(A/\mathfrak{a})) = \phi^{-1}(\bigcap_{\mathfrak{p} \subset A/\mathfrak{a}} \mathfrak{p}) = \bigcap_{\substack{\mathfrak{p} \subset A \\ \mathfrak{a} \subset \mathfrak{p}}} \mathfrak{p}.$$

Satz 1.25. Für die Menge D der Nullteiler von A gilt

$$D = \bigcup_{x \neq 0} r(\operatorname{Ann}(x)).$$

Beweis. Für eine Teilmenge(!) $E \subset A$ definieren wir r(E) wie für Ideale. Dann ist r(E) wieder eine Teilmenge und man sieht leicht $r(\bigcup_i E_i) = \bigcup_i r(E_i)$. Für ein Element $x \in r(D)$ existiert ein $n \in \mathbb{N}$, so dass x^n Nullteiler ist. Dann ist aber auch schon x Nullteiler. Wir erhalten:

$$\begin{array}{rcl} D = r(D) & = & r(\bigcup\limits_{x \neq 0} (\mathrm{Ann}(x)) \\ & = & \bigcup\limits_{x \neq 0} r(\mathrm{Ann}(x)). \end{array}$$

Beispiel 1.26. Sei $A = \mathbb{Z}$, $\mathfrak{a} = (m)$ und p_1, \ldots, p_n seien die (verschiedenen) Primteiler von m. Dann gilt $r(\mathfrak{a}) = (p_1 \cdots p_n)$.

Satz 1.27.
$$r(\mathfrak{a}) + r(\mathfrak{b}) = (1) \Longrightarrow \mathfrak{a} + \mathfrak{b} = (1)$$
.

Beweis.
$$r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})) = r((1)) = (1)$$
, also $\mathfrak{a} + \mathfrak{b} = (1)$.

Erweiterung und Kontraktion

Sei $f: A \to B$ ein Ringhomomorphismus.

Definition 1.28. (i) Für ein Ideal $\mathfrak{a} \subset A$ nennt man

$$\mathfrak{a}^e := Bf(\mathfrak{a}) = \{ \sum_{\text{endl.}} b_i f(a_i) \mid b_i \in B, \ a_i \in \mathfrak{a} \}$$

die **Erweiterung** von \mathfrak{a} auf B.

(ii) Für ein Ideal $\mathfrak{b} \subset B$ heißt

$$\mathfrak{b}^c := f^{-1}(\mathfrak{b})$$

die Kontraktion von \mathfrak{b} auf A.

Bemerkungen 1.29. \bullet Wir können f in der Form

$$A \stackrel{p}{\twoheadrightarrow} f(A) \stackrel{i}{\hookrightarrow} B$$

faktorisieren. Die Situation für p ist einfach nach Satz 1.1, i ist kompliziert.

- Ist $\mathfrak{q} \subset B$ ein Primideal, so auch $\mathfrak{q}^c \subset A$.
- Ist $\mathfrak{p} \subset A$ ein Primideal, so muss $\mathfrak{p}^e \subset B$ nicht unbedingt ein Primideal sein.

Beispiel 1.30. Wir betrachten $\mathbb{Z} \hookrightarrow \mathbb{Z}[i]$.

Frage: Welche Primideale aus \mathbb{Z} "bleiben" Primideale in $\mathbb{Z}[i]$? Da \mathbb{Z} und $\mathbb{Z}[i]$ euklidisch, also faktoriell sind (siehe Algebra I), stellt sich die Frage: Welche Primzahlen bleiben als Elemente in $\mathbb{Z}[i]$ irreduzibel? Wir brauchen die folgende zahlentheoretische Aussage.

Satz von Lagrange: Eine Primzahl p ist genau dann als Summe zweier Quadratzahlen darstellbar, wenn $p \not\equiv 3 \mod 4$.

Sei $p \in \mathbb{Z}$ eine Primzahl. Aus $p = (x+iy) \cdot (x'+iy')$ folgt $p^2 = N(x+iy) \cdot N(x'+iy')$. Sind beides keine Einheiten, so folgt

$$p = N(x + iy) = (x + iy)(x - iy) = x^{2} + y^{2}.$$

Also: $p \equiv 3 \mod 4 \Rightarrow p$ irreduzibel in $\mathbb{Z}[i]$.

Für p=2 gilt $2=(1+i)(1-i)=-i(1+i)^2$. In Idealen: $(2)^e=(1+i)^2$. Sei nun $p\equiv 1 \bmod 4$ und $x,y\in \mathbb{N}$ mit $p=x^2+y^2$. Dann gilt

$$p = (x + iy)(x - iy).$$

In Idealen $(p)^e = (x+iy) \cdot (x-iy)$. Wegen N(x+iy) = p ist x+iy irreduzibel. Jetzt kann man noch nachrechnen, dass $(x+iy) \not\sim (x-iy)$ und erhält:

Zerlegungsgesetz in $\mathbb{Z}[i]$

$$(p)^e = \begin{cases} \text{Primideal, wenn} & p \equiv 3 \bmod 4, \\ \text{Produkt zweier verschiedener PI, wenn} & p \equiv 1 \bmod 4, \\ \text{Quadrat eines Primideals, wenn} & p = 2. \end{cases}$$

Im Allgemeinen haben wir die folgenden Aussagen. Es sei $f: A \to B$ ein Ringhomomorphismus und $\mathfrak{a} \subset A$, $\mathfrak{b} \subset B$ Ideale.

Satz 1.31. (i) $\mathfrak{a} \subset \mathfrak{a}^{ec}$, $\mathfrak{b} \supset \mathfrak{b}^{ce}$.

(ii)
$$\mathfrak{b}^c = \mathfrak{b}^{cec}$$
, $\mathfrak{a}^e = \mathfrak{a}^{ece}$

(iii) Sei C die Menge der Ideale in A die Kontraktionen von Idealen aus B sind und E die Menge der Ideale in B die Erweiterungen von Idealen in A sind. Dann gilt

$$\begin{array}{rcl} C & = & \{\mathfrak{a} \mid \mathfrak{a}^{ec} = \mathfrak{a}\}, \\ E & = & \{\mathfrak{b} \mid \mathfrak{b}^{ce} = \mathfrak{b}\}. \end{array}$$

Wir haben Bijektionen

$$C \stackrel{\mathfrak{a} \mapsto \mathfrak{a}^e}{\overset{\mathfrak{b}^c \leftrightarrow \mathfrak{h}}{\longleftrightarrow}} E.$$

Beweis. (i) folgt durch Einsetzen der Definitionen.

(ii): Nach (i) erhalten wir

$$\mathfrak{b}^c \subset (\mathfrak{b}^c)^{ec} = \mathfrak{b}^{cec}$$
 und $\mathfrak{b}^c \supset (\mathfrak{b}^{ce})^c = \mathfrak{b}^{cec}$.

Die andere Aussage zeigt man analog.

(iii): Für $\mathfrak{a} \in C$ gilt $\mathfrak{a} = \mathfrak{b}^c$ für ein \mathfrak{b} . Also $\mathfrak{a}^{ec} = \mathfrak{b}^{cec} = \mathfrak{b}^c = \mathfrak{a}$. Analog: $\mathfrak{b} \in E$, $\mathfrak{b} = \mathfrak{a}^e$ für $\mathfrak{a} \subset A$ und $\mathfrak{b}^{ce} = \mathfrak{a}^{ece} = \mathfrak{a}^e = \mathfrak{b}$. Die Bijektion folgt.

Lemma 1.32. Es seien $\mathfrak{a}_1, \mathfrak{a}_2 \subset A, \mathfrak{b}_1, \mathfrak{b}_2 \subset B$. Dann gilt

$$\begin{split} (\mathfrak{a}_1+\mathfrak{a}_2)^e &= \mathfrak{a}_1^e + \mathfrak{a}_2^e, \ (\mathfrak{b}_1+\mathfrak{b}_2)^c \supset \mathfrak{b}_1^c + \mathfrak{b}_2^c, \\ (\mathfrak{a}_1\cap \mathfrak{a}_2)^e &\subset \mathfrak{a}_1^e \cap \mathfrak{a}_2^e, \ (\mathfrak{b}_1\cap \mathfrak{b}_2)^c = \mathfrak{b}_1^c \cap \mathfrak{b}_2^c, \\ (\mathfrak{a}_1\mathfrak{a}_2)^e &= \mathfrak{a}_1^e \mathfrak{a}_2^e, \ (\mathfrak{b}_1\mathfrak{b}_2)^c \supset \mathfrak{b}_1^c \mathfrak{b}_2^c, \\ (\mathfrak{a}_1:\mathfrak{a}_2)^e &\subset (\mathfrak{a}_1^e:\mathfrak{a}_2^e), \ (\mathfrak{b}_1:\mathfrak{b}_2)^c \subset (\mathfrak{b}_1^c:\mathfrak{b}_2^c), \\ r(\mathfrak{a})^e &\subset r(\mathfrak{a}^e), r(\mathfrak{b})^c = r(\mathfrak{b}^c). \end{split}$$

Beweis. Übungsaufgabe.

2 Moduln

Sei R ein Ring, unitär aber hier noch nicht notwendig kommutativ und seien M und N R-(Links-)Moduln. Die Menge der R-Modulhomomorphismen von M nach N wird mit $\operatorname{Hom}_R(M,N)$ bezeichnet und wird zur abelschen Gruppe durch

$$(\varphi + \psi)(m) = \varphi(m) + \psi(m).$$

Ist R = A kommutativ, so wird $Hom_A(M, N)$ zum A-Modul durch

$$(a\varphi)(m) = a(\varphi(m)).$$

Lemma 2.1. Die natürliche Abbildung

$$\operatorname{Hom}_R(R,M) \to M, \ \varphi \mapsto \varphi(1),$$

ist ein Isomorphismus abelscher Gruppen. Ist R = A kommutativ, so ist sie ein Isomorphismus von A-Moduln.

Beweis. Injektivität. $\varphi(1) = 0 \Rightarrow \varphi(r) = r\varphi(1) = 0$ für alle $r \in R$. Surjektivität: Sei $m \in M$ beliebig. Definiere $\varphi : R \to M$ durch $\varphi(r) = rm$. Dann bildet sich φ auf m ab.

Operationen auf Untermoduln.

Sei M ein R-Modul und $(M_i)_{i\in I}$ eine Familie von Untermoduln. Dann ist $\bigcap_{i\in I} M_i$ ein Untermodul, sowie

$$\sum_{i \in I} M_i = \{ \sum_i m_i \mid m_i \in M_i, \ m_i = 0 \text{ für fast alle } i \}.$$

Dies ist der kleinste Untermodul in M, der alle M_i enthält.

Ist $\mathfrak{a} \subset R$ ein (Links)Ideal und M ein R-(Links)Modul, so definiert man den Untermodul $\mathfrak{a}M \subset M$ durch

$$\mathfrak{a}M = \{ \sum_{\text{endl.}} a_i m_i \mid a_i \in \mathfrak{a}, \ m_i \in M \}.$$

Sind N, P Untermoduln in M, so setzt man

$$(N:P) = \{r \in R \mid rP \subset N\}.$$

(N:P) ist ein (Links)Ideal in R. Gilt $P \subset N$, so ist (N:P) = R. Spezialfall:

Definition 2.2.

$$Ann(M) = (0: M) = \{ r \in R \mid rm = 0 \quad \forall m \in M \}$$

heißt der **Annullator** von M. Es heißt M treuer R-Modul, wenn Ann(M) = 0 gilt.

Bemerkung 2.3. Sei R = A kommutativ. Ist M ein A-Modul und $\mathfrak{a} \subset \text{Ann}(M)$ ein Ideal, so können wir M als A/\mathfrak{a} -Modul auffassen: setze $(a+\mathfrak{a})m = am$. Wegen $\mathfrak{a}M = 0$ ist die Definition repräsentantenunabhängig. Als A/Ann(M)-Modul ist M treu.

Lemma 2.4. Es seien $N, P \subset M$ Untermoduln. Dann gilt

(i) $\operatorname{Ann}(N+P) = \operatorname{Ann}(N) \cap \operatorname{Ann}(P)$.

(ii)
$$(N : P) = Ann((N + P)/N)$$
.

Beweis. Übungsaufgabe.

Ist M ein freier A-Modul vom Rang n, so gibt es nach Wahl einer Basis einen Isomorphismus $M \cong A^n$ und einen Isomorphismus

$$\operatorname{End}_A(M) \cong \operatorname{Mat}_{n,n}(A).$$

Für eine $n \times n$ -Matrix M über A haben wir die **Adjunkte** M^{ad}

$$M^{ad} = (y_{ij}) \in \operatorname{Mat}_{n,n}(A)$$

mit $y_{ij} = (-1)^{i+j} \det(M_{j,i})$, wobei $M_{j,i}$ aus M durch Streichen der j-ten Zeile und i-ten Spalte entsteht.

Satz 2.5. (Cramersche Regel) Es gilt

$$M^{ad} \cdot M = M \cdot M^{ad} = \operatorname{diag}(\det(M), \dots, \det(M)).$$

Beweis. Siehe LA I, 4.36.

Satz 2.6. Sei M ein endlich erzeugter A-Modul, $\mathfrak{a} \subset A$ ein Ideal und $\phi \in \operatorname{End}_A(M)$ mit $\phi(M) \subset \mathfrak{a}M$. Dann genügt ϕ einer Gleichung

$$\phi^n + a_{n-1}\phi^{n-1} + \dots + a_0 = 0$$

 $mit \ a_0, \ldots, a_{n-1} \in \mathfrak{a}.$

Beweis. Seien x_1, \ldots, x_n Erzeuger von M. Für jedes

$$x \in \mathfrak{a}M = \{ \sum_{\text{endl.}} \alpha_i y_i \mid \alpha_i \in \mathfrak{a}, \ y_i \in M \}$$

finden wir (stelle y_i als Linearkombination von x_1, \ldots, x_n dar) eine Darstellung der Form

$$x = \sum_{i=1}^{n} a_i x_i, \ a_i \in \mathfrak{a}.$$

Somit gilt für $i = 1, \ldots, n$:

$$\phi(x_i) = \sum_{j=1}^n a_{ij} x_j$$
, mit gewissen $a_{ij} \in \mathfrak{a}$.

Es folgt $\sum_{j=1}^{n} (\delta_{ij}\phi - a_{ij})(x_j) = 0$, wobei $\delta_{ij} = \text{Kronecker-}\delta$.

Wir betrachten nun den von ϕ über A in $\operatorname{End}_A(M)$ erzeugten Teilring

$$A[\phi] = \{ \sum_{\text{endl.}} a_i \phi^i \} \subset \text{End}_A(M),$$

(Konvention: $\phi^0 = \mathrm{id}_M$). Es ist $A[\phi]$ ist kommutativer Ring mit 1 und

$$X := (\delta_{ij}\phi - a_{ij})_{ij}$$

ist eine $n \times n$ -Matrix mit Werten in $A[\phi]$. Nach Satz 2.5 erhalten wir

$$X^{ad} \cdot X = \operatorname{diag}(\det(X)).$$

Durch die Regel $(\sum a_i \phi^i)(x) = \sum a_i \phi^i(x)$ wird M in natürlicher Weise zu einem $A[\phi]$ -Modul. Es gilt

$$X\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$$
, und daher nach Cramer diag $(\det(X)) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$.

Weil nun aber die x_i den A-Modul M erzeugen, folgt $\det(X) \cdot x = 0$ für alle $x \in M$, d.h. $\det(X) = 0 \in A[\phi] \subset \operatorname{End}_A(M)$. Nach der Leibniz-Formel entwickelt, gilt nun

$$\det(X) = \det((\delta_{ij}\phi - a_{ij})_{ij}) = \phi^n + \alpha_{n-1}\phi^{n-1} + \dots + \alpha_0$$

mit gewissen $\alpha_i \in \mathfrak{a}$.

Korollar 2.7. Sei M ein endlich erzeugter A-Modul und \mathfrak{a} ein Ideal mit $\mathfrak{a}M = M$. Dann existiert ein $a \in A$, $a \equiv 1 \mod \mathfrak{a}$, mit aM = 0.

Beweis. Wir benutzen Satz 2.6 mit $\phi = \mathrm{id}_M$ und erhalten $a_0, \ldots, a_{n-1} \in \mathfrak{a}$ mit

$$x + a_{n-1}x + \cdots + a_0x = 0$$
 für alle $x \in M$.

Setze $a = 1 + a_{n-1} + \dots + a_0$.

Satz 2.8. (Nakayamas Lemma) Sei (A, \mathfrak{m}) ein lokaler Ring und M ein endlich erzeugter A-Modul. Dann folgt aus $\mathfrak{m}M = M$, dass M = 0.

Beweis. Nach Korollar 2.7 existiert ein $a \in A$, $a \equiv 1 \mod \mathfrak{m}$, mit aM = 0. Wegen $a - 1 \in \mathfrak{m}$ folgt $a \in A^{\times}$. Es folgt $M = 1 \cdot M = a^{-1}aM = a^{-1}0 = 0$.

Korollar 2.9. Es sei (A, \mathfrak{m}) ein lokaler Ring, M ein endlich erzeugter A-Modul und N ein Untermodul von M. Dann folgt aus $M = \mathfrak{m}M + N$, dass M = N.

Beweis. Es gilt $\mathfrak{m}(M/N) = (\mathfrak{m}M + N)/N$. Nach Voraussetzung gilt $\mathfrak{m}(M/N) = M/N$, also M/N = 0 nach Satz 2.8.

Korollar 2.10. Es sei (A, \mathfrak{m}) ein lokaler Ring, $k = A/\mathfrak{m}$ und M ein endlich erzeugter A-Modul. Für Elemente $x_1, \ldots, x_n \in M$ sind äquivalent:

- (i) x_1, \ldots, x_n erzeugen M als A-Modul.
- (ii) Die Bilder $\bar{x}_1, \ldots, \bar{x}_n$ von x_1, \ldots, x_n in $M/\mathfrak{m}M$ erzeugen den k-Vektorraum $M/\mathfrak{m}M$.

Beweis. Sei N der durch x_1, \ldots, x_n in M erzeugte Untermodul. Die Komposition $N \hookrightarrow M \to M/\mathfrak{m}M$ hat das Bild $(N + \mathfrak{m}M)/\mathfrak{m}M$. Daher gilt

$$\bar{x}_1, \dots, \bar{x}_n$$
 erzeugen $M/\mathfrak{m}M \iff N+\mathfrak{m}M=M \stackrel{2.9}{\iff} N=M.$

3 Tensorprodukte

Es sei A ein kommutativer Ring.

Definition 3.1. Seien M, N, P A-Moduln. Eine Abbildung $f: M \times N \to P$ heißt (A-)bilinear, wenn

- (1) für jedes $m \in M$ ist die Abbildung $N \to P$, $n \mapsto f(m,n)$ A-linear.
- (2) für jedes $n \in N$ ist die Abbildung $M \to P$, $m \mapsto f(m, n)$ A-linear.

Satz 3.2. Seien A-Moduln M, N gegeben. Es gibt ein Paar (T, g) bestehend aus einem A-Modul T und einer bilinearen Abbildung $g: M \times N \to T$ mit folgender Universaleigenschaft:

Zu jedem A-Modul P und jeder bilinearen Abbildung $f : M \times N \to P$ existiert ein eindeutig bestimmter A-Modulhomomorphismus $h : T \to P$, so daß $f = h \circ g$ gilt.

(T, g) ist eindeutig bis auf kanonische Isomorphie.

Beweis. Eindeutigkeit: Diese folgt in der üblichen Weise durch Ausnutzung der Universaleigenschaft.

Existenz: Sei $C = A^{(M \times N)} = \bigoplus_{M \times N} A$. Elemente von C sind formale endliche A-Linearkombinationen von Elementen aus $M \times N$. (Man identifiziere ein Element $i \in M \times N$ mit dem Element in C, dessen i-te Komponente gleich 1 und alle anderen Komponenten gleich 0 sind). Wir betrachten den Untermodul D von C der durch alle Elemente der Form

$$\begin{array}{rcl} (x+x',y) & - & (x,y)-(x',y) \\ (x,y+y') & - & (x,y)-(x,y') \\ a(x,y) & - & (ax,y) \\ a(x,y) & - & (x,ay) \end{array}$$

erzeugt wird und setzen T = C/D. Wir bezeichnen das Bild von $1 \cdot (x, y) \in C$ in T mit $x \otimes y$. Dann ist T durch Elemente der Form $x \otimes y$ erzeugt, und diese erfüllen:

$$(x+x') \otimes y = x \otimes y + x' \otimes y,$$

$$x \otimes (y+y') = x \otimes y + x \otimes y',$$

$$(ax) \otimes y = x \otimes (ay) = a(x \otimes y).$$

M.a.W.: Die Abbildung $g: M \times N \to T$, $(x, y) \mapsto x \otimes y$ ist bilinear.

Ist nun $f: M \times N \to P$ eine bilineare Abbildung, so erhalten wir wegen der universellen Eigenschaft der direkten Summe einen natürlichen Homomorphismus

$$\bar{f}: A^{(M \times N)} = C \to P$$

mit $\sum_{\text{endl.}} a_i(x_i, y_i) \to \sum_{\text{endl.}} a_i f(x_i, y_i)$. \bar{f} verschwindet auf den Erzeugern von D und daher auf ganz D. Daher induziert \bar{f} einen wohldefinierten Homomorphismus $h: C/D = T \to P$ mit

$$h(x \otimes y) = \bar{f}((x,y)) = f(x,y).$$

Der Homomorphismus h ist durch die Eigenschaft eindeutig auf einfachen Tensoren und damit insgesamt eindeutig bestimmt.

Bemerkungen 3.3. 1) T heißt das **Tensorprodukt** von M und N. Schreibweise: $T = M \otimes_A N$ oder auch $T = M \otimes N$.

Gewöhnungsbedürftig: Die Elemente von $M \otimes N$ sind endliche Summen $\sum_{\text{endl.}} x_i \otimes y_i$, die man nicht immer vereinfachen kann.

- 2) Für $x \in M$ gilt $x \otimes 0 = 0$ in $M \otimes N$ wegen $x \otimes 0 = x \otimes (0+0) = x \otimes 0 + x \otimes 0$. Also $x \otimes 0 = 0$.
- 3) Wir werden die Konstruktion des Tensorprodukts nicht mehr brauchen, nur die universelle Eigenschaft und, dass das Tensorprodukt von den einfachen Tensoren $x \otimes y$ erzeugt, wird, sowie die Rechenregeln.
- 4) Ist (x_1, \ldots, x_m) ein Erzeugendensystem von M und (y_1, \ldots, y_n) ein Erzeugendensystem von N, so ist

$$(x_i \otimes y_j)_{\substack{i=1,\dots,m\\j=1,\dots,n}}$$

ein Erzeugendensystem von $M \otimes N$. Insbesondere ist das Tensorprodukt endlich erzeugter A-Moduln wieder endlich erzeugt.

Bemerkung 3.4. Ist R ein nicht-kommutativer Ring, so kann man das Tensorprodukt $M \otimes_R N$ zwischen einem R-Rechtsmodul M und einem R-Linksmodul N definieren. Dieses ist (nur noch) eine abelsche Gruppe.

Multitensorprodukt: Sind M_1, \ldots, M_n und P A-Moduln, so nennen wir eine Abbildung

$$f: M_1 \times \cdots \times M_n \longrightarrow P$$

multilinear, wenn f in jedem Argument linear ist. Ganz analog zeigt man die Existenz des Multi-Tensorprodukts $M_1 \otimes \cdots \otimes M_n$, das universell bezüglich multilinearer Abbildungen ist. Es wird durch Multitensoren $x_1 \otimes \cdots \otimes x_n$, $x_i \in M_i$, $i = 1, \ldots, n$, erzeugt.

Lemma 3.5. Seien M, N, P A-Moduln. Dann gibt es eindeutig bestimmte A-Modulisomorphismen

- (i) $M \otimes N \xrightarrow{\sim} N \otimes M$,
- (ii) $(M \otimes N) \otimes P \xrightarrow{\sim} M \otimes (N \otimes P)$,
- (iii) $(M \oplus N) \otimes P \xrightarrow{\sim} M \otimes P \oplus N \otimes P$,
- (iv) $A \otimes M \xrightarrow{\sim} M$,

so dass entsprechend gilt

- (a) $x \otimes y \longmapsto y \otimes x$,
- (b) $(x \otimes y) \otimes z \longmapsto x \otimes (y \otimes z)$,
- (c) $(x,y) \otimes z \longmapsto (x \otimes z, y \otimes z)$,
- (d) $a \otimes x \longmapsto ax$.

Beweis. Die Eindeutigkeit folgt dadurch, dass die Abbildungen auf den einfachen Tensoren vorgegeben sind, und diese das Tensorprodukt erzeugen.

(i) Betrachte die Komposition $\overline{\phi}: M \times N \xrightarrow{\operatorname{Vert}} N \times M \xrightarrow{\operatorname{kan}} N \otimes M$, also die Abbildung $\overline{\phi}: M \times N \to N \otimes M$, $(x,y) \mapsto y \otimes x$. Es ist $\overline{\phi}$ bilinear. Z.B.

$$\overline{\phi}(x_1+x_2,y)=y\otimes(x_1+x_2)=y\otimes x_1+y\otimes x_2=\overline{\phi}(x_1,y)+\overline{\phi}(x_2,y).$$

Dies zeigt die Existenz einer eindeutig bestimmten Abbildung $\phi \colon M \otimes N \to N \otimes M$ mit $\phi(m \otimes n) = n \otimes m$. Umgekehrt erhalten wir $\psi \colon N \otimes M \to M \otimes N$ mit $\psi(n \otimes m) = m \otimes n$. Schließlich gilt $\psi \circ \phi = \mathrm{id}_{M \otimes N}, \ \phi \circ \psi = \mathrm{id}_{N \otimes M}$ (weil diese Gleichheiten auf einfachen Tensoren stimmen.)

(ii) Betrachte die Abbildung

$$\overline{\phi} \colon M \times N \times P \longrightarrow (M \otimes N) \otimes P, \ (x, y, z) \longmapsto (x \otimes y) \otimes z.$$

Diese Abbildung ist trilinear und induziert so eine Abbildung

$$\phi \colon M \otimes N \otimes P \to (M \otimes N) \otimes P$$

mit $x \otimes y \otimes z \mapsto (x \otimes y) \otimes z$. Nun fixieren wir ein Element $z \in P$. Die Abbildung

$$\overline{f}_z : M \times N \longrightarrow M \otimes N \otimes P, \quad (x,y) \longmapsto x \otimes y \otimes z$$

ist bilinear und induziert eine Abbildung

$$f_z \colon M \otimes N \longrightarrow M \otimes N \otimes P$$

 $mit f_z(x \otimes y) = x \otimes y \otimes z.$

Nun betrachten wir \overline{f} : $(M \otimes N) \times P \to M \otimes N \otimes P$ mit $\overline{f}(t,z) = f_z(t)$ ein Homomorphismus. Desweiteren gilt für festes $t = \sum_{i=1}^{n} x_i \otimes y_i \in M \otimes N$ dass:

$$\overline{f}(t, z_1 + z_2) =
f_{z_1 + z_2}(\sum x_i \otimes y_i) = \sum x_i \otimes y_i \otimes (z_1 + z_2)
= \sum x_i \otimes y_i \otimes z_1 + \sum x_i \otimes y_i \otimes z_2
= f_{z_1}(\sum x_i \otimes y_i) + f_{z_2}(\sum x_i \otimes y_i)
= \overline{f}(t, z_1) + \overline{f}(t, z_2).$$

Analog zeigt man $\overline{f}(t,az)=a\overline{f}(t,z)$. Daher ist \overline{f} bilinear und induziert einen eindeutig bestimmten Homomorphismus $f:(M\otimes N)\otimes P\to M\otimes N\otimes P$ mit $(x\otimes y)\otimes z\mapsto x\otimes y\otimes z$. Wir erhalten $f\circ\phi=\mathrm{id}_{M\otimes N\otimes P}$ und $\phi\circ f=\mathrm{id}_{(M\otimes N)\otimes P}$, d.h. ϕ ist ein Isomorphismus $M\otimes N\otimes P\stackrel{\sim}{\longrightarrow} (M\otimes N)\otimes P$. Analog konstruiert man einen Isomorphismus

$$\psi: M \otimes N \otimes P \xrightarrow{\sim} M \otimes (N \otimes P)$$

mit $\psi(x \otimes y \otimes z) = x \otimes (y \otimes z)$ und die Komposition

$$\psi \circ \phi^{-1} : (M \otimes N) \otimes P \xrightarrow{\sim} M \otimes (N \otimes P)$$

ist ein Isomorphismus der $(x \otimes y) \otimes z$ auf $x \otimes (y \otimes z)$ abbildet.

(iii) Die Kompositionen

$$(M \oplus N) \times P \xrightarrow{((x,y),z) \mapsto (x,z)} M \times P \xrightarrow{kan} M \otimes P$$

$$(M \oplus N) \times P \xrightarrow{((x,y),z) \mapsto (y,z)} N \times P \xrightarrow{kan} N \otimes P$$

setzen sich zu einer Abbildung

$$\overline{\phi}(M \oplus N) \times P \to (M \otimes P) \oplus (N \otimes P)$$

mit $((x,y),z) \to x \otimes z + y \otimes z$ zusammen. Diese Abbildung ist linear in $M \oplus N$ und in P: Z.B. $\overline{\phi}((x_1,y_1)+(x_2,y_2),z)=(x_1+x_2)\otimes z+(y_1+y_2)\otimes z$ $=x_1\otimes z+x_2\otimes z+y_1\otimes z+y_2\otimes z=(x_1\otimes z+y_1\otimes z)+(x_2\otimes z+y_2\otimes z)$ $=\overline{\phi}((x_1,y_1),z)+\overline{\phi}((x_2,y_2),z)$ und wir erhalten einen Homomorphismus

$$\phi \colon (M \oplus N) \otimes P \longrightarrow (M \otimes P) \oplus (N \otimes P)$$

 $\mathrm{mit}\ \phi((x,y)\otimes z)=x\otimes z+\underline{y}\otimes z.$

Umgekehrt betrachten wir $\overline{\psi}_1: M \times P \to (M \oplus N) \otimes P$ mit $\overline{\psi}_1(x,z) = (x,0) \otimes z$ und erhalten $\psi_1: M \otimes P \to (M \oplus N) \otimes P$. Analog $\psi_2: N \otimes P \to (M \oplus N) \otimes P$.

Diese setzen sich zusammen zu einem Homomorphismus $\psi: (M \otimes P) \oplus (N \otimes P) \to (M \oplus N) \otimes P$ und wieder ist $\phi \circ \psi = \mathrm{id}$, $\psi \circ \phi = \mathrm{id}$.

(iv) $\overline{\phi}: A \times M \to M$, $\phi(a,x) = ax$ induziert $\phi: A \otimes M \to M$ wie gewünscht. Betrachten wir umgekehrt die zusammengesetzte Abbildung $\psi: M \to A \times M \mapsto A \otimes M$, $x \mapsto (1,x) \mapsto 1 \otimes x$, so gilt $\phi \circ \psi = \operatorname{id}$ und auch $\psi \circ \phi = \operatorname{id}$ wegen $a \otimes x \mapsto ax \mapsto 1 \otimes ax = a \otimes x$.

Korollar 3.6. Es gilt

$$A^m \otimes A^n \cong A^{mn}$$

Beweis.

$$A^{m} \otimes A^{n} = \underbrace{(A \oplus \cdots \oplus A)}_{\substack{m \text{-mal} \\ m \text{-mal}}} \otimes \underbrace{(A \oplus \cdots \oplus A)}_{\substack{n \text{-mal} \\ mn \text{-mal}}}$$
$$= A^{mn}.$$

Das Tensorprodukt vertauscht nicht nur mit endlichen, sondern auch mit beliebigen direkten Summen

Lemma 3.7. Sei $(M_i)_{i\in I}$ eine Familie von A-Moduln und N ein weiterer A-Modul. Dann gibt es einen natürlichen Isomorphismus

$$\left(\bigoplus_{i\in I} M_i\right)\otimes N\cong \bigoplus_{i\in I} M_i\otimes N.$$

Beweis. Den Beweis lassen wir als Übungsaufgabe.

Korollar 3.8. Ist M ein A-Modul und I eine Indexmenge, so gilt

$$(A^{(I)}) \otimes M \cong M^{(I)}.$$

Beweis. Nach 3.5(iv) gilt $A \otimes M \cong M$. Nach 3.7 folgt

$$(A^{(I)}) \otimes M = (\bigoplus_{i \in I} A) \otimes M \cong \bigoplus_{i \in I} A \otimes M \cong \bigoplus_{i \in I} M = M^{(I)}.$$

Satz 3.9. Sei $\mathfrak{a} \subset A$ ein Ideal und M ein A-Modul. Dann gibt es einen natürlichen Isomorphismus

$$\phi: A/\mathfrak{a} \otimes M \xrightarrow{\sim} M/\mathfrak{a}M$$

 $mit (r + \mathfrak{a}) \otimes m \longmapsto rm + \mathfrak{a}M.$

Beweis. Wir zeigen zunächst:

Behauptung: jedes Element in $A/\mathfrak{a} \otimes M$ ist von der Form $(1+\mathfrak{a}) \otimes m$ für ein $m \in M$.

Beweis der Behauptung: Es gilt

$$\sum (a_i + \mathfrak{a}) \otimes m_i = \sum a_i ((1 + \mathfrak{a}) \otimes m_i)) = (1 + \mathfrak{a}) \otimes (\sum a_i m_i).$$

Nun betrachten wir die Abbildung $\bar{\phi}: A/\mathfrak{a} \times M \to M/\mathfrak{a}M$, $(a+\mathfrak{a}, m) \mapsto am+\mathfrak{a}M$. Diese ist bilinear und induziert die gesuchte Abbildung $\phi: A/\mathfrak{a} \otimes M \stackrel{\sim}{\longrightarrow} M/\mathfrak{a}M$. Es bleibt zu zeigen, dass ϕ ein Isomorphismus ist.

Wegen $m + \mathfrak{a}M = \phi((1+\mathfrak{a}) \otimes m)$ ist ϕ surjektiv. Bleibt zu zeigen, dass ϕ injektiv ist. Sei $x \in \ker(\phi)$. Z.z: $x = 0 \in A/\mathfrak{a} \otimes M$. Nach der obigen Behauptung können wir ohne Einschränkung annehmen, dass $x = (1+\mathfrak{a}) \otimes m$ für ein $m \in M$ gilt. Es folgt $0 = \phi(x) = 1m + \mathfrak{a}M$. Hieraus folgt $m \in \mathfrak{a}M$, also $m = \sum a_i m_i$ mit $a_i \in \mathfrak{a}$, $m_i \in M$. Es folgt

$$x = (1 + \mathfrak{a}) \otimes m = (1 + \mathfrak{a}) \otimes (\sum_{i} a_{i} m_{i}) =$$

$$= \sum_{i} (1 + \mathfrak{a}) \otimes a_{i} m_{i} = \sum_{i} (a_{i} + \mathfrak{a}) \otimes m_{i} = \sum_{i} (0 + \mathfrak{a}) \otimes m_{i} = \sum_{i} 0 = 0.$$

Korollar 3.10. Sind $\mathfrak{a}, \mathfrak{b} \subset A$ Ideale, so gilt

$$A/\mathfrak{a} \otimes A/\mathfrak{b} \cong A/(\mathfrak{a} + \mathfrak{b}).$$

Beweis. Man setzt $M = A/\mathfrak{b}$ in 3.9 und erhält

$$A/\mathfrak{a} \otimes A/\mathfrak{b} \cong (A/\mathfrak{b})/\mathfrak{a}(A/\mathfrak{b}).$$

Nun gilt

$$\mathfrak{a}(A/\mathfrak{b}) = \{ \sum_{\text{endl}} a_i(r_i + \mathfrak{b}) \mid a_i \in \mathfrak{a}, \ r_i \in A \} = (\mathfrak{a} + \mathfrak{b})/\mathfrak{b}.$$

Es folgt

$$(A/\mathfrak{b})/\mathfrak{a}(A/\mathfrak{b}) = (A/\mathfrak{b})/((\mathfrak{a}+\mathfrak{b})/\mathfrak{b}) = A/(\mathfrak{a}+\mathfrak{b}).$$

Funktorielles Verhalten

Seien $f: M_1 \to M_2$, $g: N_1 \to N_2$ A-Modulhomomorphismen. Dann gibt es eine wohldefinierte A-lineare Abbildung

$$f \otimes q \colon M_1 \otimes N_1 \longrightarrow M_2 \otimes N_2$$

$$mit (f \otimes g)(x \otimes y) = f(x) \otimes g(y).$$

Grund: Die bilineare Abbildung $M_2 \times N_2 \to M_2 \otimes N_2$, $(x,y) \to x \otimes y$, induziert über f und g eine bilineare Abbildung $M_1 \times N_1 \to M_2 \otimes N_2$ mit $(x,y) \mapsto f(x) \otimes g(y)$. Nach Universaleigenschaft existiert daher die Abbildung $M_1 \otimes N_1 \to M_2 \otimes N_2$ wie beschrieben.

Lemma 3.11. Sind f und q surjektiv, so auch $f \otimes q$.

Beweis. Sei $z = x_1 \otimes y_1 + \cdots + x_n \otimes y_n \in M_2 \otimes N_2$ beliebig. Setze

$$\bar{z} = \bar{x}_1 \otimes \bar{y}_1 + \dots + \bar{x}_n \otimes \bar{y}_n \in M_1 \otimes N_1$$

mit Urbildern $\bar{x}_1, \ldots, \bar{x}_n$ von x_1, \ldots, x_n unter f und $\bar{y}_1, \ldots, \bar{y}_n$ von y_1, \ldots, y_n unter g. Dann gilt $(f \otimes g)(\bar{z}) = z$.

Warnung: Sind f und g injektiv, so braucht das $f \otimes g$ nicht zu sein.

Beispiel 3.12. Betrachte die injektiven Homomorphismen von Z-Moduln:

$$f: \mathbb{Z} \to \mathbb{Z}, \ x \mapsto 2x, \quad g = \mathrm{id}_{\mathbb{Z}/2\mathbb{Z}} : \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}.$$

Dann ist

$$f \otimes g : \mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$$

die Nullabbildung wegen

$$(f \otimes q)(x \otimes y) = 2x \otimes y = x \otimes 2y = x \otimes 0 = 0$$

für beliebige $x \in \mathbb{Z}, y \in \mathbb{Z}/2\mathbb{Z}$.

Nun sei $f: A \to B$ ein Ringhomomorphismus (man sagt, B ist eine A-Algebra). B wird zum A-Modul durch ab := f(a)b. Allgemeiner können wir jeden B-Modul N durch an := f(a)n als A-Modul auffassen.

Definition/Lemma 3.13. Für einen A-Modul M betrachten wir

$$M_B = M \otimes_A B$$
.

Für $b \in B$ ist die b-Multiplikationsabbildung $b(m \otimes b') := m \otimes bb'$ wohldefiniert und definiert eine B-Modulstruktur auf M_B . Man nennt M_B den **Basiswechsel** von M nach B.

Beweis. Für festes $b \in B$ ist die Abbildung $M \times B \to M \otimes_A B$, $(m, b') \mapsto m \otimes bb'$ A-bilinear und induziert somit die b-Multiplikationsabbildung $\cdot b : M \otimes_A B \to M \otimes_A B$, $b(m \otimes b') := m \otimes bb'$. Dass diese Regel eine B-Modulstruktur auf M_B induziert folgt direkt aus den Rechenregeln für Tensoren.

Satz 3.14. Es sei B eine A-Algebra, M ein A-Modul und N ein B-Modul. Dann gibt es natürliche Isomorphismen von B-Moduln

- (i) $\operatorname{Hom}_B(M \otimes_A B, N) \cong \operatorname{Hom}_A(M, N)$,
- (ii) $(M \otimes_A B) \otimes_B N \cong M \otimes_A N$.

Hier ist die B-Modulstruktur auf $\operatorname{Hom}_A(M,N)$ durch (bf)(m) = bf(m) gegeben und die B-Modulstruktur auf $M \otimes_A N$ durch $b(m \otimes n) = m \otimes bn$.

Beweis. Zunächst bemerken wir, dass für $b \in B$ die beschriebene b-Wirkung auf $M \otimes_A N$ wohldefiniert ist, weil $M \times N \to M \otimes_A N$, $(m, n) \mapsto m \otimes bn$ A-bilinear ist.

(i) Wir betrachten die Abbildung

$$\Phi: \operatorname{Hom}_B(M \otimes_A B, N) \to \operatorname{Hom}_A(M, N), \ \Phi(f)(m) := f(m \otimes 1_B).$$

In der anderen Richtung ist für $g \in \text{Hom}_A(M, N)$ die Abbildung $M \times B \to N$, $(m, b) \mapsto bg(m)$ A-bilinear und induziert damit einen Homomorphismus $M \otimes_A B \to N$, $m \otimes b \mapsto bg(m)$. Daher ist

$$\Psi: \operatorname{Hom}_A(M,N) \to \operatorname{Hom}_B(M \otimes_A B, N), \ \Psi(g)(m \otimes b) = bg(m)$$

wohldefiniert. Man rechnet leicht nach, dass Φ und Ψ zueinander invers sind.

(ii) Für festes $n \in N$ ist $M \times B \to M \otimes_A N$, $(m, b) \mapsto m \otimes bn$, A-bilinear und induziert $\phi_n : M \otimes_A B \to M \otimes_A N$. Die Zuordnung $(M \otimes_A B) \times N \to M \otimes_A N$, $(m \otimes b, n) \mapsto \phi_n(m \otimes b) = m \otimes bn$ ist B-bilinear und induziert

$$\Phi: (M \otimes_A B) \otimes_B N \longrightarrow M \otimes_A N.$$

Man rechnet leicht nach, dass Φ und Ψ zueinander invers sind.

4 Exaktheit

Sei R ein nicht notwendig kommutativer Ring.

Definition 4.1. Eine (endliche, einseitig oder beidseitig unendliche) Folge

$$\ldots \longrightarrow M_{n-1} \xrightarrow{\alpha_{n-1}} M_n \xrightarrow{\alpha_n} M_{n+1} \xrightarrow{\alpha_{n+1}} \ldots$$

von R-Moduln heißt **exakt an der Stelle** n, wenn $\operatorname{im}(\alpha_{n-1}) = \ker(\alpha_n)$ gilt. Die Folge heißt **exakt**, wenn sie an jeder Stelle exakt ist. Eine exakte Folge der Form $0 \to M' \to M \to M'' \to 0$ heißt **kurze exakte Folge**.

Bemerkung 4.2. Die Folge $0 \to M' \xrightarrow{i} M \xrightarrow{j} M'' \to 0$ ist genau dann exakt wenn i injektiv ist, j surjektiv ist und $\ker(j) = \operatorname{im}(i)$ gilt. Insbesondere ist für jeden surjektiven Homomorphismus $\varphi: M \to N$ die Folge $0 \to \ker(\varphi) \to M \to N \to 0$ exakt und für jeden injektiven Homomorphismus $\psi: M \to N$ die Folge $0 \to M \xrightarrow{\psi} N \to N/\psi(M) \to 0$. Für beliebige Moduln M, N ist die Folge $0 \to M \xrightarrow{i_1} M \oplus N \xrightarrow{p_2} N \to 0$ exakt.

Lemma 4.3 (Exaktheit von Produkt und Summe). Sei I eine Indexmenge und seien

$$M_i' \xrightarrow{\alpha_i} M_i \xrightarrow{\beta_i} M_i'', \quad i \in I,$$

exakte Folgen von R-Moduln. Dann sind auch die Folgen

$$\bigoplus_{i \in I} M_i' \xrightarrow{\oplus \alpha_i} \bigoplus_{i \in I} M_i \xrightarrow{\oplus \beta_i} \bigoplus_{i \in I} M_i'', \quad und$$

$$\prod_{i \in I} M_i' \stackrel{\prod \alpha_i}{\longrightarrow} \prod_{i \in I} M_i \stackrel{\prod \beta_i}{\longrightarrow} \prod_{i \in I} M_i''$$

exakt. Umgekehrt folgt aus der Exaktheit der direkten Summe (analog: aus der Exaktheit des Produkts), dass alle Folgen $M_i' \xrightarrow{\alpha_i} M_i \xrightarrow{\beta_i} M_i''$ exakt sind.

Beweis. Exaktheit kann komponentenweise geprüft werden, daher ist die Aussage für das Produkt offensichtlich. Im Fall der direkten Summe bekommt man Urbilder a priori nur im Produkt. Nimmt man für die 0 (die ja in fast allen Komponenten steht) auch die 0 als Urbild in der jeweiligen Komponente, so liegt das Urbild auch wieder in der direkten Summe.

Korollar 4.4. Sei I eine Indexmenge und

$$M' \longrightarrow M \longrightarrow M''$$

eine exakte Folge von R-Moduln. Dann sind auch die Folgen

$$M'^{(I)} \longrightarrow M^{(I)} \longrightarrow M''^{(I)} \quad \text{ und } M'^I \longrightarrow M^I \longrightarrow M''^I$$

exakt.

Beweis. Es gilt nach Definition $M^{(I)} = \bigoplus_{i \in I} M$ und $M^I = \prod_{i \in I} M$. Die Aussage folgt daher aus Lemma 4.3.

R-Modulhomomorphismen $u: M' \to M$ und $v: N \to N'$ induzieren Homomorphismen abelscher Gruppen (im kommutativen Fall von Moduln)

$$u^* : \operatorname{Hom}_R(M, N) \longrightarrow \operatorname{Hom}_R(M', N), \quad f \longmapsto f \circ u, \quad \text{und}$$

 $v_* : \operatorname{Hom}_R(M, N) \longrightarrow \operatorname{Hom}_R(M, N'), \quad f \longmapsto v \circ f.$

Satz 4.5. (i) Sei

$$M' \xrightarrow{u} M \xrightarrow{v} M'' \longrightarrow 0$$
 (1)

eine Folge von R-Moduln. Die Folge (1) ist genau dann exakt, wenn für jeden R-Modul N die Folge abelscher Gruppen

$$0 \longrightarrow \operatorname{Hom}_{R}(M'', N) \xrightarrow{v^{*}} \operatorname{Hom}_{R}(M, N) \xrightarrow{u^{*}} \operatorname{Hom}(M', N)$$
 (2)

exakt ist.

(ii) Sei

$$0 \longrightarrow N' \xrightarrow{u} N \xrightarrow{v} N'' \tag{3}$$

eine Folge von R-Moduln. Die Folge (3) ist genau dann exakt, wenn für jeden R-Modul M die Folge abelscher Gruppen

$$0 \longrightarrow \operatorname{Hom}_{R}(M, N') \xrightarrow{u_{*}} \operatorname{Hom}_{R}(M, N) \xrightarrow{v_{*}} \operatorname{Hom}_{R}(M, N'') \tag{4}$$

exakt ist.

Beweis. Wir zeigen (i) und lassen (ii) als Übungsaufgabe. Sei (1) exakt. Wir betrachten (2) für beliebiges N. Es gilt

- $u^* \circ v^* = (v \circ u)^* = 0^* = 0$, also $\operatorname{im}(v^*) \subset \ker u^*$.
- Wegen v surjektiv folgt v^* injektiv.

Sei nun $\varphi \in \ker(u^*) \subset \operatorname{Hom}_R(M, N)$. Dann gilt $\varphi \circ u = 0$, also faktorisiert φ über $M/\operatorname{im}(u) = M/\ker(v) \cong M''$ und wir erhalten das kommutative Diagramm

Es folgt $\varphi = v^*(\varphi') \in \operatorname{im}(v^*)$. Wir erhalten $\ker(u^*) = \operatorname{im}(v^*)$.

Sei umgekehrt (2) exakt für alle N. Wir betrachten $M \xrightarrow{v} M''$, setzen $N = \operatorname{coker}(v) = M''/\operatorname{im}(v)$ und betrachten die kanonische Projektion $M'' \xrightarrow{\pi} N$. Es ist $v^*(\pi) = \pi \circ v : M \xrightarrow{v} M'' \xrightarrow{\pi} M''/\operatorname{im}(v) = N$ die Nullabbildung. Wegen v^* injektiv folgt $\pi = 0$, was wegen π surjektiv N = 0 impliziert. Daher ist v surjektiv.

Setze nun N = M'' und betrachte $id_{M''} \in Hom(M'', N)$. Dann gilt

$$0 = 0^*(\mathrm{id}_{M''}) = u^* \circ v^*(\mathrm{id}_{M''}) = (v \circ u)^*(\mathrm{id}_{M''}),$$

also ist $M' \xrightarrow{u} M \xrightarrow{v} M'' \xrightarrow{\operatorname{id}_{M''}} M''$ die Nullabbildung, also $\ker(v) \supset \operatorname{im}(u)$.

Setze nun $N = M/\operatorname{im}(u)$ und betrachte die Projektion $\pi : M \to N$. Es gilt $u^*(\pi) = 0$, also $\pi \in \ker(u^*) = \operatorname{im}(v^*)$. Daher existiert $\varphi \in \operatorname{Hom}(M'', N)$ mit $\pi = v^*(\varphi) = \varphi \circ v$, d.h. das Diagramm

kommutiert. Es folgt $\ker(v) \subset \ker(\pi) = \operatorname{im}(u)$.

Lemma 4.6. (5er-Lemma) Sei

ein kommutatives Diagramm von R-Modulhomomorphismen mit exakten Zeilen. Ist φ_1 surjektiv, φ_2 , φ_4 Isomorphismen und φ_5 injektiv, so ist φ_3 ein Isomorphismus.

Beweis. Diagrammjagd.

Lemma 4.7. (Schlangenlemma) Sei

ein kommutatives Diagramm von R-Modulhomomorphismen mit exakten Zeilen. Dann gibt es eine natürliche exakte Folge

$$(0 \to) \ker(\varphi') \to \ker(\varphi) \to \ker(\varphi'') \xrightarrow{\delta} \operatorname{coker}(\varphi') \to \operatorname{coker}(\varphi) \to \operatorname{coker}(\varphi'') (\to 0).$$

Die Klammerinhalte sind so zu interpretieren, dass sie in Voraussetzung und Aussage entweder betrachtet oder ignoriert werden können.

Beweis. Wie ist δ definiert? Sei $m'' \in \ker(\varphi'') \subset M''$. Wähle $m \in M$ mit $\alpha(m) = m''$. Setze $n = \varphi(m)$. Dann gilt $\beta(n) = \varphi''(\alpha(m)) = \varphi''(m'') = 0 \Rightarrow n \in N'$. Setze $\delta(m'') := n + \operatorname{im}(\varphi') \in \operatorname{coker}(\varphi')$.

Wohldefiniertheit: Sei $\tilde{m} \in M$ ein weiteres Element mit $\alpha(\tilde{m}) = m''$. Dann gilt $m - \tilde{m} \in M'$, also $n = \tilde{n} + \varphi'(m - \tilde{m}) \Rightarrow n + \operatorname{im}(\varphi') = \tilde{n} + \operatorname{im}(\varphi')$.

Exaktheit: Übungsaufgabe in Diagrammjagd.

5 Flachheit

Satz 5.1. Sei R = A ein kommutativer Ring, und M, N, P A-Moduln. Dann gilt

$$\operatorname{Hom}_A(M, \operatorname{Hom}_A(N, P)) \cong \operatorname{Hom}_A(M \otimes_A N, P)$$

Beweis. Wir betrachten die Homomorphismen

$$\operatorname{Hom}_A(M, \operatorname{Hom}_A(N, P)) \xrightarrow{f} \operatorname{Bil}_A(M, N; P)$$

mit $f(\varphi)(x,y) = \varphi(x)(y)$ und $g(\gamma)(x)(y) = \gamma(x,y)$. Es gilt $f \circ g = \text{id}$ und $g \circ f = \text{id}$. Daher folgt die Aussage aus der Universaleigenschaft von \otimes .

Sind $f: M \to N$ und $f': M' \to N'$ A-Modulhomomorphismen, so definiert $M \times M' \to N \otimes_A N', (m, m') \mapsto f(m) \otimes f'(m')$ eine A-bilineare Abbildung und somit einen Homomorphismus $f \otimes f': M \otimes_A M' \to N \otimes_A N'$.

Satz 5.2 (Rechtsexaktheit des Tensorprodukts). Sei $M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ eine exakte Folge von A-Moduln. Dann ist für jeden A-Modul N die Folge

$$M' \otimes_A N \xrightarrow{f \otimes \mathrm{id}_N} M \otimes_A N \xrightarrow{g \otimes \mathrm{id}_N} M'' \otimes_A N \longrightarrow 0$$

exakt.

Beweis. Nach Satz 4.5 genügt es zu zeigen: Für jeden A-Modul P ist die Folge $0 \to \operatorname{Hom}_A(M'' \otimes_A N, P) \to \operatorname{Hom}_A(M \otimes_A N, P) \to \operatorname{Hom}(M' \otimes_A N, P)$ exakt. Nach Satz 5.1 identifiziert sich diese Folge mit

$$0 \to \operatorname{Hom}_A(N, \operatorname{Hom}_A(M'', P)) \to \operatorname{Hom}_A(N, \operatorname{Hom}_A(M, P))$$

$$\rightarrow \operatorname{Hom}_A(N, \operatorname{Hom}_A(M', P)),$$

welche nach Satz 4.5 (erst (i), dann (ii) angewendet) exakt ist.

Korollar 5.3. Für einen A-Modul N sind äquivalent:

- (i) Für jede exakte Folge $M' \to M \to M''$ von A-Moduln ist $M' \otimes_A N \to M \otimes_A N \to M'' \otimes_A N$ exakt.
- (ii) Für jede kurze exakte Folge $0 \to M' \to M \to M'' \to 0$ von A-Moduln ist $0 \to M' \otimes_A N \to M \otimes_A N \to M'' \otimes_A N \to 0$ exakt.
- (iii) Für jede Inklusion $M' \hookrightarrow M$ ist $M' \otimes_A N \to M \otimes_A N$ injektiv.

Beweis. Die Äquivalenz (ii) \Leftrightarrow (iii) folgt aus Satz 5.2 und (i) \Rightarrow (ii) ist trivial. Nun gelte (ii) und es sei $M' \stackrel{f}{\to} M \stackrel{g}{\to} M''$ exakt. Setzt man $P' = \operatorname{im}(f) \subset M$ und $P'' = \operatorname{im}(g) \subset M''$, so erhält man drei kurze exakte Folgen $0 \to \ker(f) \to M' \to P' \to 0$, $0 \to P' \to M \to P'' \to 0$ und $0 \to P'' \to M'' \to \operatorname{coker}(g) \to 0$. Diese drei Folgen bleiben exakt nach Tensorieren mit N, d.h. die Folgen $0 \to \ker(f) \otimes_A N \to M' \otimes_A N \to P' \otimes_A N \to 0$ und $0 \to P'' \otimes_A N \to M'' \otimes_A N \to \operatorname{coker}(g) \otimes_A N \to 0$ sind exakt. Hieraus folgt die Exaktheit von $M' \otimes_A N \to M \otimes_A N \to M'' \otimes_A N$.

Definition 5.4. Ein A-Modul N, für den die äquivalenten Eigenschaften von Korollar 5.3 gelten, heißt **flacher** A-Modul.

Lemma 5.5. $\bigoplus_{i \in I} N_i$ flach $\Leftrightarrow N_i$ flach für alle i.

Beweis. Dies folgt direkt aus $M \otimes_A \bigoplus_{i \in I} N_i \cong \bigoplus_{i \in I} (M \otimes_A N_i)$ und aus Lemma 4.3. \square

Lemma 5.6. A ist flacher A-Modul.

Beweis. Dies folgt aus $M \otimes_A A \cong M$.

Wir sagen N sei direkter Summand in einem freien Modul, wenn ein Modul N' existiert, so dass $N \oplus N'$ frei ist.

Korollar 5.7. Ist N direkter Summand in einem freien Modul, so ist N flach.

Beweis. Nach Lemma 5.5 genügt es zu zeigen: freie Moduln sind flach. Wieder nach Lemma 5.5 genügt es zu zeigen: A ist flach. Dies ist Lemma 5.6.

Beispiel 5.8. Sei $A = A_1 \times A_2$ und $\mathfrak{a}_1 = A_1 \times 0$, $\mathfrak{a}_2 = 0 \times A_2$. Dann gilt $A \cong \mathfrak{a}_1 \oplus \mathfrak{a}_2$ als A-Moduln. Daher sind $\mathfrak{a}_1, \mathfrak{a}_2$ flache A-Moduln.

Bemerkung 5.9. Tensorieren mit einem Modul M erhält Kokerne. Ist M flach, so werden auch Kerne und Bilder erhalten.

Kokerne: $\phi: X \to X'$ gibt exakte Folge $X \to X' \to \operatorname{coker}(\phi) \to 0$. Tensorieren mit M liefert nach Satz 5.2 die exakte Folge $X \otimes_A M \to X' \otimes_A M \to \operatorname{coker}(\phi) \otimes_A M \to 0$ und somit $\operatorname{coker}(\phi) \otimes_A M = \operatorname{coker}(\phi \otimes_A M)$.

Bilder: Faktorisieren wir $\phi: X \to X'$ in $X \to \operatorname{im}(\phi) \hookrightarrow X'$ und tensorieren mit dem flachen A-Modul M, so erhalten wir $X \otimes_A M \to \operatorname{im}(\phi) \otimes_A M \hookrightarrow X' \otimes_A M$ und damit $\operatorname{im}(\phi \otimes_A M) = \operatorname{im}(\phi) \otimes_A M$.

Kerne: Aus der exakten Folge $0 \to \ker(\phi) \to X \to X'$ erhalten wir die exakte Folge $0 \to \ker(\phi) \otimes_A M \to X \otimes_A M \to X' \otimes_A M$, also gilt $\ker(\phi \otimes_A M) = \ker(\phi) \otimes_A M$.

Definition 5.10. Ein A-Modul M heißt treuflach, wenn gilt:

$$N' \longrightarrow N \longrightarrow N'' \text{ exakt} \Longleftrightarrow N' \otimes_A M \longrightarrow N \otimes_A M \longrightarrow N'' \otimes_A M \text{ exakt}.$$

Beispiel 5.11. Jeder freie Modul $\neq 0$ ist treuflach (A ist offenbar treuflach, also auch $A^{(I)}$ nach Lemma 4.3).

Eine A-Algebra B heißt (treu)flache Algebra, wenn B (treu)flacher A-Modul ist.

Satz 5.12. Sei B eine flache A-Algebra. Dann sind äquivalent:

- (i) B ist treuflach.
- (ii) $\mathfrak{a}^{ec} = \mathfrak{a} \quad \forall \, \mathfrak{a} \subset A$.
- (iii) jedes Primideal von A ist zurückgezogen.
- (iv) jedes Maximalideal von A ist zurückgezogen.
- (v) es gilt $\mathfrak{m}^e \neq (1)$ für jedes Maximalideal $\mathfrak{m} \subset A$.

Insbesondere sind treuflache Homomorphismen injektiv.

Beweis. Wegen $(0)^{ec} = (0)^c = \ker(f)$ ist f ist genau dann injektiv wenn $(0)^{ec} = (0)$ gilt. Dies zeigt wegen (ii) das "Insbesondere". Für einen A-Modul M schreiben wir $M_B = M \otimes_A B$ und fügen die folgenden Bedingungen hinzu.

- (vi) $M \neq 0 \Longrightarrow M_B \neq 0$.
- (vii) die natürliche Abbildung $M \longrightarrow M_B$, $m \mapsto m \otimes 1$, ist für jeden A-Modul M injektiv.
- (i) \Longrightarrow (vi). Ist $M_B=0$, so ist die Folge $0\to M_B\to 0$ exakt und aus der Treuflachheit von B folgt die Exaktheit von $0\longrightarrow M\longrightarrow 0$, also M=0.
- (vi) \Longrightarrow (i). Sei $N' \xrightarrow{f} N \xrightarrow{g} N''$ so dass $N'_B \xrightarrow{f_B} N_B \xrightarrow{g_B} N''_B$ exakt ist.

Wenden wir Bemerkung 5.9 auf $\phi = g \circ f$ an, erhalten wir $\operatorname{im}(g \circ f)_B = \operatorname{im}(g_B \circ f_B) = 0$, also gilt $\operatorname{im}(g \circ f) = 0$ und daher $g \circ f = 0$. Es folgt $\operatorname{im}(f) \subset \ker(g)$ und wir können den Faktormodul $\ker(g)/\operatorname{im}(f)$ bilden. Erneute Anwendung von Bemerkung 5.9 liefert: $\left(\ker(g)/\operatorname{im}(f)\right)_B = \ker(g_B)/\operatorname{im}(f_B) = 0$. Wir schließen $\ker(g)/\operatorname{im}(f) = 0$. Daher ist die Folge $N' \longrightarrow N \longrightarrow N''$ exakt und somit B treuflach.

 $(vi) \rightarrow (vii)$. Wir zeigen zunächst:

Behauptung: Sei M ein B-Modul den man durch den Homomorphismus $f: A \to B$ als A-Modul auffasst. Dann ist der Homomorphismus $\tau: M \to M_B, m \mapsto m \otimes 1$, injektiv.

Beweis der Behauptung: Die A-bilineare Abbildung

$$M \times B \longrightarrow M$$
, $(m, b) \longmapsto bm$,

induziert einen Homomorphismus $g: M_B \to M$, $m \otimes b \mapsto bm$. Es gilt $g \circ \tau = \mathrm{id}_M$. Daher ist τ injektiv.

Sei nun M ein beliebiger A-Modul und $M' = \ker(\tau)$. Die exakte Folge

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M_B$$

induziert die exakte Folge $0 \to M_B' \to M_B \hookrightarrow (M_B)_B$, also gilt $M_B' = 0$, und daher M' = 0.

(vii) \Rightarrow (ii) Es gilt stets $\mathfrak{a} \subset \mathfrak{a}^{ec}$. Setze $M = A/\mathfrak{a}$. Dann ist die Abbildung $A/\mathfrak{a} \to A/\mathfrak{a} \otimes_A B \stackrel{3.9}{=} B/\mathfrak{a}B = B/\mathfrak{a}^e$ injektiv. Aus $f(a) \in \mathfrak{a}^e$ folgt $a \in \mathfrak{a}$, m.A.W.

$$\mathfrak{a} = \mathfrak{a}^{ec}$$
.

- $(ii) \Longrightarrow (iii) \Longrightarrow (iv) \text{ und } (vii) \Longrightarrow (vi) \text{ sind trivial.}$
- (iv) \Longrightarrow (v). Wäre $\mathfrak{m}^e = (1)$, folgte $\mathfrak{m}^{ec} = (1) \neq \mathfrak{m}$, und \mathfrak{m} wäre kein zurückgezogenes Ideal (vgl. Satz 1.31).
- (v) \Longrightarrow (vi). Sei $0 \neq x \in M$ und $\mathfrak{a} = \operatorname{Ann}(x)$. Sei $M' = Ax \subset M$. Der Homomorphismus $A \to M$, $a \mapsto ax$ induziert nach dem Homomorphiesatz einen Isomorphismus $A/\mathfrak{a} \xrightarrow{\sim} M'$. Nun gilt

$$M_B' \cong A/\mathfrak{a} \otimes_A B = B/\mathfrak{a}B = B/\mathfrak{a}^e$$

Wegen $x \neq 0$ gilt $1 \notin \mathfrak{a}$, also $\mathfrak{a} \subsetneq A$. Daher existiert ein Maximalideal $\mathfrak{m} \subset A$ mit $\mathfrak{a} \subset \mathfrak{m}$ und wir erhalten $\mathfrak{a}^e \subset \mathfrak{m}^e \subsetneq B$. Also gilt $M_B' \neq 0$. Da B flach ist, ist die natürliche Abbildung $M_B' \to M_B$ injektiv, also $M_B \neq 0$.

Definition 5.13. Ein Homomorphismus $f: A \longrightarrow B$ lokaler Ringe heißt **lokal**, wenn $f(\mathfrak{m}_A) \subset \mathfrak{m}_B$ gilt.

Korollar 5.14. Ein flacher lokaler Homomorphismus lokaler Ringe ist treuflach und insbesondere injektiv.

Beweis. Bedingung (v) von Satz 5.12 ist erfüllt. \Box