

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08315981 A

(43) Date of publication of application: 29.11.96

(51) Int. CI

H05B 33/10 H05B 33/14

(21) Application number: 07293107

(22) Date of filing: 10.11.95

(30) Priority:

13.03.95 JP 07 53011

(71) Applicant:

PIONEER ELECTRON CORP

(72) Inventor:

NAGAYAMA KENICHI MIYAGUCHI SATOSHI

(54) ORGANIC ELECTROLUMINESCENT DISPLAY PANEL AND ITS MANUFACTURE

(57) Abstract:

PURPOSE: To pattern an organic EL medium layer or negative electrode into a free form without deteriorating the characteristic of an element by providing overhang parts protruding in the direction parallel to a base on the upper parts of a plurality of electric insulating bulkheads protruding onto the base.

CONSTITUTION: On a base for organic EL display panel, first display electrode lines 3 consisting of ITO are provided. The electrode lines 3 are arranged in the form of a plurality of parallel strips. A plurality of electric insulating bulkheads 7 protruding from the base 2 are formed extending over the base 2 and the electrode lines 3 so as to orthogonal to the electrode lines 3. Overhang parts 7a protruding in the direction parallel to the base are formed on the upper parts of the bulkheads 7 along the extending direction of the bulkheads 7. A thin film of an organic EL medium 8 is formed on each part of the exposed electrode lines 3. A second display electrode line 9 is formed on the thin film of the organic EL medium 8 along its extending

direction.

COPYRIGHT: (C)1996,JPO

(12)公開特許公報 (A) (11)特許出願公開番号

特開平8-315981

(43)公開日 平成8年(1996)11月29日

技術表示箇所

(51) Int. Cl. 6

H 0 5 B

33/10

33/14

識別記号

庁内整理番号

FΙ

H 0 5 B

33/10

33/14

審査請求 未請求 請求項の数13

ΟL

(全11頁)

(21)出願番号

特願平7-293107

(22)出願日

平成7年(1995)11月10日

(31)優先権主張番号 特願平7-53011

(32)優先日

平7(1995)3月13日

(33)優先権主張国

日本(JP)

(71)出願人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(72)発明者 永山 健一

埼玉県鶴ヶ島市富士見6丁目1番1号パイオ

ニア株式会社総合研究所内

(72)発明者 宮口 敏

埼玉県鶴ヶ島市富士見6丁目1番1号パイオ

ニア株式会社総合研究所内

(74)代理人 弁理士 藤村 元彦

(54)【発明の名称】有機エレクトロルミネッセンスディスプレイパネルとその製造方法

(57)【要約】

【目的】 有機EL媒体層や陰極が素子の特性を劣化す ることなく自由な形状にパターニングできるディスプレ イパネル及びその製造方法を提供する。

【構成】 複数の発光部からなる画像表示配列を有して いる有機ELディスプレイパネルであって、発光部に対 応する複数の第1表示電極が表面上に形成された基板 と、少なくとも第1表示電極の一部分を露出せしめる基 板上に突出する複数の電気絶縁性の隔壁と、露出した第 1表示電極の部分の各々上に形成された少くとも1層の 有機EL媒体の薄膜と、有機EL媒体の薄膜の上に形成 された複数の第2表示電極とからなり、隔壁の上部に基 板に平行な方向に突出するオーバーハング部を有するこ とを特徴とする。

【特許請求の範囲】

【請求項1】 複数の発光部からなる画像表示配列を有 している有機エレクトロルミネッセンスディスプレイパ ネルであって、

前記発光部に対応する複数の第1表示電極が表面上に形 成された基板と、

少なくとも前記第1表示電極の一部分を露出せしめる前 記基板上に突出する複数の電気絶縁性の隔壁と、

露出した前記第1表示電極の部分の各々上に形成された 少くとも1層の有機エレクトロルミネッセンス媒体の薄 10 の製造方法。

前記有機エレクトロルミネッセンス媒体の薄膜上に形成 された複数の第2表示電極とからなり、前記隔壁の上部 に前記基板に平行な方向に突出するオーバーハング部を 有することを特徴とする有機エレクトロルミネッセンス ディスプレイパネル。

【請求項2】 前記オーバーハング部の下の前記第1表 示電極上又は前記露出した前記第1表示電極の部分の縁 部の少なくとも一方に形成された絶縁膜を有することを 特徴とする請求項1記載の有機エレクトロルミネッセン 20 スディスプレイパネル。

【請求項3】 前記第1表示電極、前記有機エレクトロ ルミネッセンス媒体の薄膜及び前記第2表示電極上に形 成された絶縁性封止膜を有し、前記絶縁性封止膜は少な くとも前記第2表示電極を完全に覆っていることを特徴 とする請求項1又は2記載の有機エレクトロルミネッセ ンスディスプレイパネル。

【請求項4】 前記第1表示電極及び第2表示電極は、 複数のストライプ状の電極でありかつ互いに直交する位 置に配列されたことを特徴とする請求項1記載の有機エ 30 レクトロルミネッセンスディスプレイパネル。

【請求項5】 前記基板及び前記第1表示電極が透明で あることを特徴とする請求項1記載の有機エレクトロル ミネッセンスディスプレイパネル。

【請求項6】 前記第2表示電極上に形成された反射膜 を有することを特徴とする請求項5記載の有機エレクト ロルミネッセンスディスプレイパネル。

【請求項7】 前記第2表示電極が透明であることを特 徴とする請求項 1 記載の有機エレクトロルミネッセンス ディスプレイパネル。

【請求項8】 前記第1表示電極の外側に形成された反 射膜を有することを特徴とする請求項7記載の有機エレ クトロルミネッセンスディスプレイパネル。

【請求項9】 複数の発光部からなる画像表示配列を有 している有機エレクトロルミネッセンスディスプレイパ ネルの製造方法であって、

基板上に、前記発光部に対応する複数の第1表示電極を 形成するパターニング工程と、

少なくとも前記第1表示電極の一部分を露出せしめか つ、全体が前記基板上から突出しかつ、その上部に前記 50

2 基板に平行な方向に突出するオーバーハング部を有する 電気絶縁性の隔壁を形成する隔壁形成工程と、

露出した前記第1表示電極の部分の各々上に有機エレク トロルミネッセンス媒体を堆積させ、少くとも1層の有 機エレクトロルミネッセンス媒体の薄膜を形成する発光 層形成工程と、

前記有機エレクトロルミネッセンス媒体の薄膜の複数の 上に第2表示電極を形成する工程とを含むことを特徴と する有機エレクトロルミネッセンスディスプレイパネル

【請求項10】 前記隔壁形成工程は、前記基板上に隔 壁材料層を成膜し、その上にフォトリソグラフィ法によ って少なくとも前記第1表示電極の一部分を露出せしめ るレジストマスクを形成し、ドライエッチング法又はウ エットエッチング法によって前記オーバーハング部を有 する隔壁を食刻する工程を含むことを特徴とする請求項 9記載の有機エレクトロルミネッセンスディスプレイパ ネルの製造方法。

【請求項11】 前記発光層形成工程は、前記露出した 第1表示電極の部分に対応した複数の開口を有するマス クを、前記隔壁の上面に載置し、有機エレクトロルミネ ッセンス媒体を前記開口を介して前記隔壁内の前記第1 表示電極の各々上に堆積させ、1つの前記開口が1つの 前記第1表示電極上からその隣接する前記第1表示電極 上へ配置されるように前記マスクを順次移動せしめて前 記発光層形成工程を順次繰り返すことを特徴とする請求 項9記載の有機エレクトロルミネッセンスディスプレイ パネルの製造方法。

【請求項12】 前記第1表示電極を形成するパターニ ング工程と前記隔壁形成工程との間に、絶縁膜を、少な くとも前記オーバーハング部の下の部分となるべき前記 第1表示電極上及び又は露出した前記第1表示電極の部 分の縁部に、形成する工程を含むことを特徴とする請求 項9記載の有機エレクトロルミネッセンスディスプレイ パネルの製造方法。

【請求項13】 前記第2表示電極を形成する工程の後 に、絶縁性封止膜を、少なくとも前記第2表示電極を完 全に覆うように形成する工程を含むことを特徴とする請 求項9又は12記載の有機エレクトロルミネッセンスデ 40 ィスプレイパネルの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電流の注入によって発 光する有機化合物材料のエレクトロルミネッセンス(以 下、ELという)を利用して、かかる有機EL材料の薄 膜からなる発光層を備えた有機EL素子の複数をマトリ クス状に配置した有機ELディスプレイパネルに関す る。

[0002]

【従来の技術】一般に、有機EL素子の陰極や有機EL

10

媒体層をマイクロパターニングすることは、電荷注入層 や発光層に用いられる有機EL媒体の耐熱性(一般に1 00℃以下)、耐溶剤性、耐湿性の低さのため困難であ る。例えば、通常薄膜のパターニングに用いられるフォ トリソグラフィ法を有機EL素子に用いると、フォトレ ジスト中の溶剤の素子への侵入や、フォトレジストペー ク中の高温雰囲気や、フォトレジスト現像液またはエッ チング液の素子への浸入や、ドライエッチング時のプラ ズマによるダメージ等の原因により有機EL素子特性が 劣化する問題が生じる。

[0003]また、蒸着マスクを用いてパターニングす る方法もあるが、基板及び蒸着間のマスクの密着不良に よる蒸着物の回り込みや、強制的に基板と蒸着マスクを 密着させた場合のマスクとの接触により有機EL媒体層 が傷ついてインジウム錫酸化物(以下、ITOという) などからなる陽極と陰極がショートすることや、陰極の ストライプ状パターンなど開口部が大きくマスク部が細 いパターンの場合にはマスク強度が不足しマスクが撓む こと等の問題により、微細なパターンが形成できない。 【0004】現在、有機EL材料を用いたディスプレイ パネルとしては、特開平2-66873号、特開平第5 - 275172号、特開平第5-258859号及び特 開平第5-258860号の公報に開示されているもの がある。このフルカラーディスプレイは、交差している 行と列において配置された複数の発光画素からなる画像 表示配列を有している発光装置である。

【0005】この発光装置においては、各々の画素が共 通の電気絶縁性の光透過性基板上に配置されている。各 行内の画素は、基板上に伸長して配置された共通の光透 過性第1電極を含有し且つ該電極によって接合されてい る。隣接行内の第1電極は、基板上で横方向に間隔をあ けて配置されている。有機EL媒体は、第1電極及び基 板によって形成された支持面の上に配置されている。各 列の画素は、有機EL媒体上に配置された共通に伸長し た第2電極を含有し且つ該電極によって接続されてい る。隣接列内の第2電極は、有機EL媒体上で横方向に 間隔をあけて配置されている。この発光装置においては 有機EL媒体を挟んで交差している第1及び第2電極の ラインを用いた単純マトリクス型を採用している。

【0006】前述の問題を解決する方法が、上記公開公 報に開示されている。たとえば、特開平2-66873 号開示の技術は、有機EL媒体を溶解しない溶剤を用い たフォトレジストを累子上にパターニングし、希硫酸を 用いて陰極をエッチングする方法である。しかし、エッ チングの際、希硫酸により有機EL媒体が損傷を受け る。

[0007]また、特開平第5-275172号、特開 平第5-258859号及び特開平第5-258860 号開示の技術は、ITOパターニング後の基板上に平行 作製し、その基板に隔壁に対して垂直方向、基板面に対 して斜めの方向から有機EL媒体や陰極材料を蒸着する ことによりパターニングする方法である。即ち、第1電 極ライン及び有機EL媒体の薄膜を、予め基板に設けら れている境界の高い壁により所定気体流れを遮って、選 択的に斜め真空蒸着して形成する製造方法が採用されて いる。しかし、この方法は、斜めの蒸着方向に対し垂直

な方向にしかパターニングできず、ストライプ状の形状 にしかならない。このため、RGBがデルタ配置された ものや、陰極が屈曲もしくは蛇行するようなディスプレ イパネルは実現できない。

[0008]

【発明が解決しようとする課題】この従来技術は基板に 垂直な高い壁を設けてその高い壁を蒸着マスクとして使 用するというものだが、特にパターンが微細になった場 合、断面のアスペクト比(底辺/高さ)の非常に大きな 高い壁をフォトレジスト等で形成するのは困難であり、 また、その形成後の第1及び第2電極ライン及び有機E L媒体膜の信頼性に不安定要素が大きい。また、斜め真 空蒸着の精度、工程の複雑さ等の問題点がある。

【0009】本発明は、この様な問題を解決すべくなさ れ、本発明の目的は、有機EL媒体層や陰極が素子の特 性を劣化することなく自由な形状にパターニングできる ディスプレイを提供することにある。

[0010]

【課題を解決するための手段】本発明は、複数の発光部 からなる画像表示配列を有している有機ELディスプレ イパネルであって、前記発光部に対応する複数の第1表 示電極が表面上に形成された基板と、少なくとも前記第 1表示電極の一部分を露出せしめる前記基板上に突出す る複数の電気絶縁性の隔壁と、露出した前記第1表示電 極の部分の各々上に形成された少くとも 1 層の有機 E L 媒体の薄膜と、前記有機EL媒体の薄膜の上に形成され た複数の第2表示電極とからなり、前記隔壁の上部に前 記基板に平行な方向に突出するオーバーハング部を有す ることを特徴とする。

【0011】上記有機ELディスプレイパネルにおい て、前記オーバーハング部の下の前記第1表示電極上又 は前記蕗出した前記第1表示電極の部分の縁部の少なく とも一方に形成された絶縁膜を有することができ、これ により、前記第1及び第2表示電極間の短絡を防止する ことができる。上記有機ELディスプレイパネルにおい て、前記第1表示電極、前記有機エレクトロルミネッセ ンス媒体の薄膜及び前記第2表示電極上に形成された絶 縁性封止膜を有し、前記絶縁性封止膜は少なくとも前記 第2表示電極を完全に覆っていることができ、これによ り、当該パネルの劣化を防止することができる。

【0012】上記有機ELディスプレイパネルにおい て、前記第1表示電極及び第2表示電極は、複数のスト に配置したストライプ状の数~数十µmの高さの隔壁を 50 ライブ状の電極でありかつ互いに直交する位置に配列す

ることもできる。また、上記有機ELディスプレイパネ ルにおいて、前記基板及び前記第1表示電極が透明であ ること、また、前記第2表示電極に金属光沢があるか、 前記第2表示電極上に形成された反射膜を有することが 好ましい。

【0013】さらにまた他の実施例の有機ELディスプ レイパネルにおいて、前記第2表示電極が透明である場 合、前記第1表示電極に金属光沢があるか、前記第1表 示電極の外側に形成された反射膜を有することが好まし い。本発明は、複数の発光部からなる画像表示配列を有 10 している有機ELディスプレイパネルの製造方法であっ て、基板上に、前記発光部に対応する複数の第1表示電 極を形成するパターニング工程と、少なくとも前記第1 表示電極の一部分を露出せしめかつ、全体が前記基板上 から突出しかつ、その上部に前記基板に平行な方向に突 出するオーバーハング部を有する電気絶縁性の隔壁を形 成する隔壁形成工程と、露出した前記第1表示電極の部 分の各々上に有機EL媒体を堆積させ、少くとも1層の 有機EL媒体の薄膜を形成する発光層形成工程と、前記 有機EL媒体の薄膜の複数の上に第2表示電極を形成す 20 る工程とを含むことを特徴とする。

【0014】上記有機ELディスプレイパネルの製造方 法において、前記隔壁形成工程は、前記基板上に隔壁材 料層を成膜し、その上にフォトリソグラフィ法によって 少なくとも前記第1表示電極の一部分を露出せしめるフ ォトレジストマスクを形成し、ドライエッチング法又は ウエットエッチング法によって前記オーバーハング部を 有する隔壁を食刻する工程を含むこともできる。

【0015】また、上記有機ELディスプレイパネルの 製造方法において、前記露出した第1表示電極の部分に 30 対応した複数の開口を有するマスクを、前記隔壁の上面 に載置し、有機EL媒体を前記開口を介して前記隔壁内 の前記第1表示電極の各々上に堆積させ、1つの前記開 口が1つの前記第1表示電極上からその隣接する前記第 1表示電極上へ配置されるように前記マスクを順次移動 せしめて前記発光層形成工程を順次繰り返し、より効率 良く製造することも可能である。

【0016】このように、有機EL媒体の例えばストラ イブ状パターンなど開口部が大きくマスク部が細いパタ ーンの場合にマスク強度が不足する傾向にあるマスクを 40 基板に密着させても、前記隔壁が有機EL膜の発光層を 保護するので、微細なパターンが形成でき発光層に損傷 を与えることがなくなり、隔壁及びマスクによりRGB 有機層の分離が確実に行なえ、精度良くRGBの媒体の 塗り分けができる。

【0017】さらに、本発明の有機ELディスプレイパ ネルの製造方法によれば、前記第1表示電極を形成する パターニング工程と前記隔壁形成工程との間に、絶縁膜 を、少なくとも前記オーバーハング部の下の部分となる

電極の部分の縁部に、形成する工程を含むことにより、 かかる少なくとも前記オーバーハング部の下の前記第1 表示電極上及び又は前記露出した前記第1表示電極の部 分の縁部に形成された絶縁膜が、前記第1及び第2表示 霞極間の短絡を防止することができる。

【0018】またさらに、本発明の有機ELディスプレ イパネルの製造方法によれば、前記第2表示電極を形成 する工程の後に、絶縁性封止膜を、少なくとも前記第2 表示電極を完全に覆うように形成する工程を含むことに より、かかる前記第1表示電極、前記有機エレクトロル ミネッセンス媒体の薄膜及び前記第2表示電極上に形成 された絶縁性封止膜が、有機ELディスプレイパネルの 劣化非発光部の拡大を防止することができる。

[0019]

【実施例】以下に、本発明による実施例を図面を参照し つつ説明する。図1に示すように、実施例の有機ELデ ィスプレイパネルはマトリクス状に配置されかつ各々が 赤R、緑G及び青Bの発光部からなる発光画素1の複数 からなる画像表示配列を有している。また、RGBの発 光部に代えてすべてを単色の発光部としてモノクロムデ ィスプレイパネルを形成できる。

【0020】図2に示すように、この有機ELディスプ レイパネルの基板2上には、ITOなどからなる第1表 示電極ライン3が設けられている。第1表示電極ライン 3は互いに平行な複数のストライプ状に配列されてい る。さらに基板2上から突出する複数の電気絶縁性の隔 壁7が、図2及び図3に示すように、第1表示電極ライ ン3に直交するように基板2及び第1表示電極ライン3 上にわたって形成されている。すなわち、隔壁?が少な くとも第1表示電極ライン3の一部分を露出せしめるよ うに、形成されている。

【0021】隔壁7の上部に基板に平行な方向に突出す るオーバーハング部7aが、隔壁7の伸長方向に沿って 形成されている。 露出している第1表示電極ライン3の 部分の各々上に、少くとも1層の有機EL媒体8の薄膜 が形成されている。たとえば、有機EL媒体8は、有機 発光層の単一層、あるいは有機正孔輸送層、有機発光層 及び有機電子輸送層の3層構造の媒体、または有機正孔 輸送層及び有機発光層2層構造の媒体などである。

【0022】有機EL媒体8の薄膜上にその伸長方向に 沿って第2表示電極ライン9が形成されている。この様 に、第1及び第2表示電極ラインが交差して挟まれた有 機EL媒体の部分が発光部に対応する。この単純マトリ クス型のパネルの第2表示電極9の上には保護膜10ま たは保護基板が設けられることが好ましい。また、上記 実施例の有機ELディスプレイパネルにおいて、基板及 び第1表示電極が透明であり、発光は基板側から放射さ れるので、図3に示すように、発光効率を高めるために 第2表示電極上または保護膜を介して反射膜21を設け べき前記第1表示電極上及び又は露出した前記第1表示 50 ることが好ましい。逆に、他の実施例の有機ELディス

20

プレイパネルにおいて、第2表示電極を透明材料で構成して、発光を第2表示電極側から放射させることもできる。この場合、発光効率を高めるために第1表示電極の外側に反射膜を設けることが好ましい。

【0023】次に、有機ELディスプレイパネル製造工程を説明する。図4に示すように、パターニング工程により、第1表示電極3として1TO等からなる導電性透明膜(例えば、0.3mピッチ、0.28 m幅、0.2μm膜厚)が複数本平行に成膜されているガラス等の透明基板2を用意する。次に、隔壁形成工程では、隔壁材 10料の非感光性のポリイミド70を、例えばスピンコート法で3μm膜厚に透明基板2の第1表示電極3上に形成し、さらに隔壁の上部のオーバーハング部の材料のSiO $_2$ 71を、ポリイミド膜70上に例えばスパッタ法で0.5μm膜厚に形成する。

【0024】次に、図5(a)に示すように、 SiO_2 膜 71上に、フォトレジストをスピンコートで例えば 1 μ m膜厚に成膜して、例えば 20 μ mの幅のフォトレジストリッジ 72 を残すように通常のフォトリソグラフィ法等の手法を用いてフォトレジストパターンを形成する。続いて図5(b)に示すように、該フォトレジストリッジ 72 をマスクとして、リアクティブイオンエッチング等を手法を用いて SiO_2 膜 71をフォトレジストと同一のパターン形状にエッチングする。このリアクティブイオンエッチングを行う時は、例えばエッチングガスは CF_4 を用いてガス流量 100 sccm、RFパワー 100 Wで 10 分間でエッチングが完了する。

【0026】このT字型隔壁7は、図6(a)に示すように、初めに○2などのガスを用いてリアクティブイオンエッチング(異方性エッチング)を行い、ポリイミド膜70をアンダーカットがないように垂直にドライエッチングし、その後図6(b)に示すように、アルカリ溶液で30秒間程度ウエットエッチングを行いポリイミド膜70の側面70aを等方的にエッチングすることで形成できる。この2段階エッチングプロセスでは、均一なサイドエッチングが行える。図7(a)はこの2段階工程で作成した丁字型隔壁7の断面図である。

【0027】ポリイミド膜70をエッチングする他の方で、成膜用マスクの位置合わせ、移動載置した蒸着の法としては、異方性エッチングを予め行わず、ポリイミ 50 に、マスクによる有機 E L 媒体層を傷つけることがな

ドのエッチャントであるアルカリ溶液で1~2分間、等方的にエッチングを行うことでSiOz膜71をマスクとしてポリイミド膜70がエッチングできる。この時ウエットエッチングでポリイミドをエッチングするので、等方性エッチングとなり、図7(b)に示すように、アンダーカットの状態となる。

【0028】尚、これまでポリイミドと称していたのは、イミド化する前の前駆体状態の物質であり図3の状態の段階で300℃で硬化せしめると本当のポリイミドとなるのはもちろんである。しかし、強度その他不都合がなければ、その物質を硬化させなくても構わない。また、ポリイミド及びSiO₂の代わりの材質としては、下部の隔壁材料と上部のオーバーハング部の材料がそれぞれエッチングされる際に、これら自体がエッチングされない絶縁物であれば何でもよく、有機EL媒体の成膜前に強度を保持できる電気絶縁性物質を用いることが出来る。

【0029】また、このような2層構造隔壁の代わりに、図7(c)~(h)に示すように、フォトレジストをクロルベンゼン処理する等の方法でT字形状断面あるいは、逆テーパ断面(図7(c),(d))を有する隔壁など上部のオーバーハング部を有する隔壁を形成しても構わない。その後、図8(a)~(d)に示すように、発光層形成工程にて、露出した第1表示電極3の部分の各々上に有機EL媒体を堆積させ、少くとも1層の有機EL媒体の薄膜を形成し、つぎの第2表示電極形成工程にて、有機EL媒体の薄膜の複数の上に第2表示電極形成工程にて、有機EL媒体の薄膜の複数の上に第2表示電極形成する。図ではRGB3色の2画素のみの説明であるが、実際は2次元に複数個の画素を同時に形成する。

【0030】まず、発光層形成工程では図8(a)に示すように、隔壁7が形成された基板2の凹部の各1つに成膜用マスク30の各1つの穴部31を位置合わせした後、隔壁上にマスクを載置して、1番目(例えば赤色)の有機EL媒体8aを例えば蒸着などの方法を用いて所定厚さに成膜する。基板は有機EL媒体の蒸気流に対して自由な角度で行っても良いが、蒸気流が隔壁のオーバーハング部を回り込む様にすることが好ましい。

【0031】図8(b)の工程では、例えば成膜用マスクを左に隔壁1個分ずらして位置合わせをした後、隔壁上にマスクを載置して2番目(例えば緑色)の有機EL媒体8bを所定膜厚に成膜する。図8(c)の工程で残った1個の凹部に成膜用マスクを位置合わせをした残いなりでで、の開口が1つの第1表示電極上からその隣接するもした。第1の開口が1つの第1表示電極上からその隣接するのの開口が1つの第1表示電極上からその隣接するのの開口が1つの第1表示電極上があるの際を完成工程を順次繰り返す。また、隔壁7があるので、成膜用マスクの位置合わせ、移動載置した蒸着の際で、成膜用マスクの位置合わせ、移動載置した蒸着の際で、成膜用マスクの位置合わせ、移動載置した蒸着の際で、成膜用マスクの位置合わせ、移動載置した蒸着機下して、

10

いり

【0032】図8(d)の第2表示電極形成工程では、 RGB3種類の有機EL媒体を所定の個所に成膜した 後、成膜用マスクを取り除き、ステップカバレッジのな い方法 (例えば蒸着等) で、金属蒸気を、基板と略垂直 に真上から、3種類の有機EL媒体の各々の上に所定厚 に被着させ、第2表示電極の陰極9を形成する。金属蒸 気の垂直入射により、隔壁のオーバーハング部7aで陰 極9が分断され、その結果、図8(d)のように隔壁両 側の陰極9は電気的に絶縁される。また、金属蒸気が隔 壁のオーバーハング部7aを回り込む程度が、有機EL 媒体材料粒子流の程度よりも小さくなり、図8(d)の ように有機EL媒体8が陰極9からはみ出し、陰極9と ITO陽極3とのショートを生じさせない。この電気的 に導通する陰極9の膜厚は、支障のない限り厚く被着さ せても構わない。陰極の材質は電気的に導通のあるもの ならなんでもよいが、Al、Cu、Auなど抵抗率の低 い金属が望ましいのはもちろんである。

【0033】次に、他の実施例である有機ELディスプ レイパネル製造方法を説明する。

図9 (a) に示すよう に、予めITO陽極3が所定の形状にパターニングされ た基板2上に、逆テーパー断面形状をもった隔壁?を、 その上部のオーバーハング部7aが後の金属蒸着におけ る陰極縁部9aを遮るように、形成する。図9(b)に 示すように、上記同様に、この基板2に蒸着マスク30 を用いて、RGBの有機EL媒体をそれぞれ蒸着する。 有機EL媒体の蒸着は基板と蒸着マスクを密着させて行 うが、このとき、隔壁がスペーサとなり蒸着マスクとI TO上の有機EL媒体の間に隙間ができるので、両者が 接触して有機EL媒体に損傷を与えることはない。更 に、この蒸着は基板を自公転させたり、複数の蒸発源を 用いて他方向から行ったりして、逆テーパーの隔壁の根 本付近まで回り込ませる。これは、後に陰極材料を蒸着 した際、陰極が有機EL媒体層をはみ出して、ITO陽 極とショートするのを防ぐためである。

【0034】次に、図9(c)に示すように、陰極材料 を基板面に対して略垂直な方向から蒸着する。図のよう に、逆テーパー形状断面隔壁のオーバーハング部?aが 陰極縁部9aを遮るため、隔壁の上面と隔壁の根本で陰 極が分断され、隣り合った陰極パターンは電気的に絶縁 40 される。最後に防湿封止を行い、有機ELフルカラーデ ィスプレイが完成する。

【0035】図9 (b) 及び図8 (a)~(c)の工程 で3色の有機EL媒体ではなく1色分の有機EL媒体を 全面に成膜すれば、単色のディスプレイができるのは明 らかである。また、この1色の色を白色にして、RGB のフィルターと組み合わせれば、フルカラーディスプレ イにもなる。本発明による有機ELディスプレイは、有 機EL媒体層成膜後に湿式の工程がないため本来の特性 を損なうことが無く高効率である。更に、陰極を略垂直 50 のパターニングが完了する。また、隔壁とマスクとを突

方向から成膜するため任意の陰極パターンの形状が可能 である。また、逆テーパーの隔壁は通常、フォトリソグ ラフィーの技術を用いて作るため、10 μm以下の微細 なパターニングが可能である。

【0036】この発明の特徴は、有機ELディスプレイ 用基板上に、T字断面形状または断面形状の1部もしく は全部が逆テーパーであるオーバーハング部を有する隔 壁があることと、その逆テーパーの隔壁の根本で、陰極 金属材料の粒子流よりも有機EL媒体材料の粒子流の方 が回り込みが大きいことである。

(実施例1)

<u>化学増幅型レジストを隔壁材料として用い有機ELディ</u> スプレイパネル製造した場合

ストライプ状にITOがパターニングされたガラス基板 を十分洗浄し、日本ゼオン製ネガフォトレジストLAX - 1 を 5 . 6 μmスピンコートした。次に、温風循環式 オーブンにてブリベークをした後、ITOと直交するス トライプ状のフォトマスク(陰極ギャップ20μm)を 用いて、露光を行った。更に、温風循環式オーブンにて P. E. Bをしてから現像を行い、幅20μm高さ5. 6 μmの隔壁を形成した(図10の図面代用写真参 照)。この基板を回転しながら、TPDを700オング ストローム、Ala₃を550オングストローム蒸着し た後、基板の回転を止めて基板面に対して垂直な方向か らA1を1000オングストーム蒸着した(図11の図 面代用写真参照)。図11に示すように隔壁の上面と根 本でA1膜は切れており、隣同士の陰極ラインは完全に 絶縁されていた。更に、有機EL媒体層のエッジはAl のエッジよりはみ出ていたのでA1-ITO間でのショ 30 一トは起きなかった。

(実施例2)

C₆H₅Cl処理したレジストを用い有機ELディスプレ イパネル製造した場合

ストライプ状にITOがパターニングされたガラス基板 を十分洗浄し、ヘキスト製ポジフォトレジストAZ61 12を約1µmスピンコートし、温風循環式オーブンに てプリベークをした後、32℃のC。H。C1溶液中に3 0分浸した。次に、 ITOと直交するストライプ状のフ オトマスク(陰極ギャップ2μm)を用いて露光を行っ てから、現像を行って、幅2μm高さ1μmの隔壁を形 成した(図12の図面代用写真参照)。後は、実施例1 と同様の工程で蒸着を行った。その結果、隔壁の上面と 根本でA1膜は切れており隣同士の陰極ラインは完全に 絶縁されていた。更に、有機EL媒体層のエッジはAl のエッジよりはみ出ていたのでA1-ITO間でのショ ートは起きなかった。

【0037】この様に本発明よって、隔壁の上部と有機 EL媒体が成膜された部分との電気的絶縁が確保され、 後にフォトリソグラフィ等の工程を経ずに自動的に陰極

させて行うが、このとき、隔壁 7 がスペーサとなり蒸着マスクと第 1 表示電極上の有機 E L 媒体の間に隙間ができるので、両者が接触して有機 E L 媒体に損傷を与えることはない。

12

き合わせて有機EL媒体を成膜することで、有機EL媒体を劣化させる事なく、また隔壁があるため隣接した画素に成膜された有機EL媒体が回り込まずに微細な領域に塗り分けることが可能となり、高精彩なフルカラーディスプレイが実現できる。

【0041】次に、図14(d)に示すように、更に、少なくとも基板の表示領域を覆うような全面に第2表示電極材料を蒸着する。この第2表示電極材料の蒸着は、基板からの法線からの逆テーパー隔壁のテーパー角度 θ 、より小さい角度 θ (θ < θ < > θ < $> <math>\theta$ $> \theta$ < $> <math>\theta$ $> <math>\theta$ $> <math>\theta$ $> \theta$ $> <math>\theta$ $> <math>\theta$ $> \theta$ $> \theta$ $> <math>\theta$ $> <math>\theta$ $> \theta$ $> <math>\theta$ $> \theta$ $> <math>\theta$ $> \theta$ $> <math>\theta$ $> <math>\theta$ $> \theta$ $> <math>\theta$ $> \theta$ $> <math>\theta$ $> \theta$ >

(実施例3)他に微細なピッチのディスプレイを実現するものとして、図13に示すように、第2表示電極に接続された非線形素子(たとえば薄膜トランジスタ(TFT)、コンデンサなど)が、データ信号ライン及び走査信号ラインとともに基板平面上に形成したフルカラーディスプレイがある。図示するように、上記実施例と同様にITO膜3、有機EL媒体層8及び第2表示電極9を成膜した前面ガラス基板2を形成し、そして、この前面基板とは別に所定の画素数だけ第2表示電極と接続すべきTFTなどの非線形素子101を作り込んである裏面用ガラス基板102を形成し、両基板を非線形素子101が対応する第2表示電極9だけと電気的に導通するように異方導電性接着剤103にて張り合わせてディスプレイとする。

【0042】最後に、防湿のための封止を行い、有機E Lフルカラーディスプレイが完成する。図14(c)の 20 工程で3色ではなく1色分の材料を全面に成膜すれば、 単色のディスプレイができるのは明らかである。また、 この1色の色を白色にして、RGBのフィルターと組み 合わせれば、フルカラーディスプレイになる。

【0038】この方法でディスプレイを作製する際は、20 画素ひとつひとつに独立した陰極が有機EL媒体の上部に成膜されしかも他の画素の陰極とは絶縁されていなければならない。この条件を実現するためには、上記したような丁字型の隔壁を2次元マトリクス状に作製して解決出来る。さらに、本発明は、第1及び第2表示電極並びに有機EL層の絶縁破壊の問題を解決し、素子の特性を劣化することなく発光機能層や第2電極を自由な形状にパターニングしたディスプレイを歩留まり良く生産できる素子及びその方法をも提供する。すなわち、実施例4として隔壁のオーバーハング部下の第1及び第2表示電極上に絶縁封止膜を追加する方法及び素子と、実施例5として隔壁及び第2表示電極上に絶縁封止膜を追加する方法及び素子と、を本発明は実現する。

[0043]図14(a)の工程で形成した絶縁膜の形 成範囲は、少なくとも隔壁によって分断された第2表示 電極のエッジ部、最大で表示ドット(セグメント)を除 く基板全面である。例えば、この絶縁膜形成工程におけ る基板の平面図で示せば、絶縁膜は、図15に示すよう に、第1表示電極3に垂直に伸長する平行な一対の絶縁 膜ストライプ40a、40bであって、図16に示すよ うに、後に形成される隔壁7の根本を挟むように形成さ れる。また、図17に示すように、絶縁膜を、図15に 示す一対のストライプを1つにまとめて、図18に示す ように、その中心線上で隔壁7が伸長できるようなスト ライブとすることもできる。さらにまた、図19に示す ように、絶縁膜を第1表示電極伸長方向に連結させて、 画緊すなわち第1表示電極の露出部分50を除く全面に 且つ、第1表示電極のエッジ60を覆うように形成すれ ば、第1表示電極エッジと第2表示電極のショートをも 防止できる。

(実施例4) 絶縁膜の追加

【0044】本発明による有機ELディスプレイは、発光機能層成膜後に湿式の工程がないため本来の特性を損なうことが無く高効率であり、第2表示電極の蒸着方向に自由度があるため、任意の第2表示電極パターンの形状が可能である。また、第2表示電極エッジ部及び第1表示電極間に絶縁膜が挿入されているため、この部分でのショートが起きない。更に、絶縁膜や逆テーパーの隔壁は通常、フォトリソグラフィーの技術を用いて作るため、10μm以下の微細なパターニングが可能である。

第2表示電極第1及び第2表示電極のショート、特に第 2表示電極エッジ部の短絡を防止する。

【0039】図14 (a) に示すように、予め第1表示

電極3 (ITO陽極) が所定の形状にパターニングされ

た基板上に、少なくとも後に蒸着する第2表示電極パタ ーンのエッジにあたる部分に絶縁膜40を形成する。次 40

に、図14(b)に示すように、逆テーパ断面形状をも

った隔壁7を、その上部のオーバーハング部7aが後の 金属蒸着における第2表示電極の縁部、すなわち絶縁膜

40を遮るように、形成する。絶縁膜40は第2表示電

極パターンのギャップにあたる部分に形成される。 【0040】次に、図14(c)に示すように、この基板2に蒸着マスク30を用いて、RGBの有機材料を上記同様に、それぞれ蒸着する。この基板に蒸着マスク30を用いて、R、G及びBの有機EL媒体をそれぞれ蒸着する。有機EL媒体の蒸着は基板と蒸着マスクを密着50

【0045】具体的に、上記実施例1におけると同様の

第1表示電極及び隔壁形成工程間に絶縁膜を形成する工 程を挿入して有機ELディスプレイを作製した。例え は、第1表示電極としてITOがストライプ状にパター ニングされたガラス基板を十分洗浄し、絶縁膜として東 京応化製フォトレジストOFPR-8000を約1µm スピンコート、温風循環式オーブンにてプリベーク、I TOと直交するストライプ状のフォトマスク(ライン幅 20 μm) を用いて露光、現像、リンスの後、温風循環 式オーブンにてポストペークを行った。図17に示すス トライプ絶縁膜40を形成した。次に、日本ゼオン製ネ 10 ガフォトレジストLAX-1を5.6μmスピンコート し、温風循環式オーブンにてブリベークをした後、先に 形成した絶縁膜のパターンと中心線が一致するようなス トライプ状のフォトマスク (ライン幅18μm) を用い て露光を行った。更に、温風循環式オープンにてP. E. Bをしてから現像を行い、幅20 μ m高さ5.6 μ mの逆テーパー隔壁を形成した。この逆テーパー隔壁の テーパー角度θ'を測定したところ約30度であった。 【0046】次に、図20のような位置関係、すなわ ち、基板2を蒸着装置の真空処理室内のターンテブルに 20 らの非発光部の拡大が抑えられた。 取付け、この室内を-5×10⁻⁶torrまでに排気 し、基板の第1表示電極形成面の1つの法線に対して自 転するように回転させながら、抵抗加熱により、発光機 能層としてTPDを700Å膜厚で、Alq1を550 A膜厚で、第2表示電極としてAlを1000A膜厚で 蒸着した。基板2の回転中心線上に種々の材料の蒸発源 55を配置して、蒸着は、蒸発源から回転基板縁部まで の円錐母線と基板法線とのなす角度 8=20度で逆テー パー隔壁のテーパー角度 θ '=30度より小さい角度で 行った。できあがった素子について隣り合うA1ライン 同士の導通を調べたところ、完全に絶縁されていた。ま た、この素子のITO-A1間に10Vの電圧を印加し たところ、選択された部分が明るく緑色に発光しITO - A 1 間でのショートは起きなかった。

(実施例5) 封止膜の追加

実施例4の絶縁膜の追加と封止効果を高めるため、封止 膜を逆テーパー隔壁の裏側に回り込ませ、第2表示電極 パターンを完全に被覆する。実施例4同様に図14

(a) ~ (d) に示す工程で第2表示電極を成膜した基 板に、防湿効果の高い絶縁性封止膜45を、基板を自公 40 パネルの基板の概略斜視図。 転させた蒸着、スパッタ、CVD方法など回り込みの良 い方法で成膜する。

【0047】この封止膜は、図21に示すように、逆テ 一パー隔壁7の裏側に良く回り込んで付着するので、図 22に示すように、絶縁膜40に達して第2表示電極ラ イン9を完全に覆う形状になる。さらに封止膜45は、 図23に示すように、絶縁膜40の逆テーパー側壁をも 復うように、第2表示電極ラインを完全に覆えばどんな 形状でもかまわない。

がない上記実施例の場合にも応用でき、図24に示すよ うに、封止膜材料を逆テーパー隔壁7の裏側に良く回り 込ませ第1表示電極及び基板上に付着させたり、図25 に示すように、逆テーパー側壁をも覆うようにして第2 表示電極ライン9を完全に覆うこともできる。本発明に よる有機ELディスプレイは、実施例4と同様の効果が あるほか、封止膜が第2表示電極パターンを完全に覆う ため第2表示電極エッジからの非発光部の進行を防止で きる。すなわち耐久性が非常に高い。

14

【0049】具体的に、上記実施例4の第2表示電極形 成工程の後に封止膜を追加して有機ELディスプレイを 作製した。実施例4と同様の工程でAlの蒸着まで行い 素子を作製した後、更にスパッタ法によりSiО₂を1 μm成膜した。こうして作製した素子について隣り合う Alライン同士の導通を調べたところ、完全に絶縁され ていた。また、この素子のITO-Al間に10Vの電 圧を印加したところ、選択された部分が明るく緑色に発 光しITO-A1間でのショートは起きなかった。更 に、この素子を大気中に放置したところ、Alエッジか

[0050]

【発明の効果】以上の如く本発明によれば、以下の効果 が得られる。

(1) 有機EL膜を成膜後はパターニング等有機EL媒体 に損傷を与える工程を行う必要がない。隔壁により、有 機EL媒体層へ傷付けを防止でき有機機能層の保護が達 成できる。

【0051】(2) 従来の有機ELディスプレイパネル製 造方法より工程が少なく、RGB有機層の分離が確実に 30 行なえ、精度良くRGBの媒体の塗り分けができる。

(3) 自由な形状に電極をパターニングできる。

【図面の簡単な説明】

本発明による有機ELディスプレイパネルの 【図1】 概略部分拡大平面図。

本発明による有機ELディスプレイパネルの [図2] 概略部分斜視図。

本発明による有機ELディスプレイパネルの 【図3】 概略部分断面図。

本発明による実施例の有機ELディスプレイ [図4]

【図5】 本発明による実施例の有機ELディスプレイ パネル製造工程における基板の概略部分断面図。

[図6] 本発明による実施例の有機ELディスプレイ パネル製造工程における基板の概略部分拡大断面図。

本発明による実施例の有機ELディスプレイ パネルにおける隔壁の概略部分拡大断面図。

本発明による実施例の有機ELディスプレイ 【図8】 パネル製造工程における基板の概略部分断面図。

【図9】 本発明による他の実施例の有機ELディスプ 【0048】また、この封止構造は、実施例4の絶縁膜 50 レイパネル製造工程における基板の概略部分断面図。

【図10】 本発明による実施例1の有機ELディスプレイパネルにおける隔壁を撮影した図面代用顕微鏡 (SEM) 写真。

【図11】 本発明による実施例1の有機ELディスプレイパネルにおける隔壁付近を撮影した図面代用顕微鏡(SEM)写真。

【図12】 本発明による実施例2の有機ELディスプレイパネルにおける隔壁を撮影した図面代用顕微鏡 (SEM) 写真。

【図13】 本発明による実施例3の有機ELディスプ 10 レイパネルの概略部分断面図。

【図14】 本発明による実施例4の有機ELディスプレイパネル製造工程における基板の概略部分断面図。

【図15】 本発明による実施例4の有機ELディスプレイパネル製造工程における基板の概略部分平面図。

【図16】 図15の線AAに沿った断面図。

【図17】 本発明による実施例4の有機ELディスプレイパネル製造工程における基板の概略部分平面図。

【図18】 図17の線AAに沿った断面図。

【図19】 本発明による実施例4の有機ELディスプ 20 レイパネル製造工程における基板の概略部分平面図。

【図20】 本発明による実施例4の有機ELディスプレイパネル製造工程における蒸着装置内の基板及び蒸着

源の概略図。

【図21】 本発明による実施例5の有機ELディスプレイパネル製造工程における基板の概略部分断面図。

【図22】 本発明による実施例5の有機ELディスプレイパネル製造工程における基板の概略部分断面図。

【図23】 本発明による実施例5の有機ELディスプレイパネル製造工程における基板の概略部分断面図。

【図24】 本発明による実施例5の有機ELディスプレイパネル製造工程における基板の概略部分断面図。

【図25】 本発明による実施例5の有機ELディスプレイパネル製造工程における基板の概略部分断面図。 【主要部分の符号の説明】

1 発光画素

- 2 基板
- 3 第1表示電極ライン
- 5 非線形素子
- 7 隔壁

7a オーバーハング部

- 8 有機EL媒体
- 20 9 第2表示電極ライン
 - 10 保護膜
 - 40 絶縁膜
 - 45 封止膜

 $\begin{array}{c} (\boxtimes 1) \\ (\boxtimes 2) \\ (\boxtimes 4) \\ (\boxtimes 4) \\ (\boxtimes 6) \\ (\boxtimes 3) \\ (\boxtimes 5) \\ (\boxtimes 5) \\ (\boxtimes 5) \\ (\boxtimes 7) \\ (\boxtimes 7)$

