

BINF 511, Winter 2017

This week's goal:
To learn about files and directories and how to handle them with basic unix commands

Operating system

Makes the machine work

Operating system

- Makes the machine work
- Enables you to talk with the machine

Operating system

- Makes the machine work
- Enables you to talk with the machine
- Examples:
 - DOS (PCs)
 - Mac OS
 - Unix

Unix operating system

For large, multi user systems

Unix operating system

- For large, multi user systems
- Unix is the world wide web

Unix operating system

- For large, multi user systems
- Unix is the world wide web
- Different versions
 - Commercial (e.g.)
 - IRIX (Silicon Graphics)
 - SOLARIS (SUN Microsystems)
 - OS X (Apple)
 - Open source
 - Linux

Interfacing with the operating system

• Luckily, we don't need to know all about OS to be a user!

Interfacing with the operating system

- Luckily, we don't need to know all about OS to be a user!
- E.g. DOS on PCs -> Windows

Interfacing with the operating system

- Luckily, we don't need to know all about OS to be a user!
- E.g. DOS on PCs -> Windows
- Unix systems use X-window
 - You can have many windows open at once

File systems

A file is a physical location written on a disc

File systems

- A file is a physical location written on a disc
- It can be read and manipulated if we can locate it

File systems

- A file is a physical location written on a disc
- It can be read and manipulated if we can locate it
- Directories are 'containers' for groups of files

File systems

- A file is a physical location written on a disc
- It can be read and manipulated if we can locate it
- Directories are 'containers' for groups of files
- (Directories can also be treated as files)

Human-readable vs. Machine-readable files

- Human readable text files
- Machine readable binary files
 - E.g image files, Word docs etc

Directory structures

 Consistency in directories is the best way to find your files efficiently

Directory structures

- Consistency in directories is the best way to find your files efficiently
 - My own few files here and there (human readable directory structure)

Directory structures

- Consistency in directories is the best way to find your files efficiently
 - My own few files here and there (human readable directory structure)
 - Large data collections (machine readable)
 HAVE to be consistent

Directory structures

- Consistency in directories is the best way to find your files efficiently
 - My own few files here and there (human readable directory structure)
 - Large data collections (machine readable)
 HAVE to be consistent
 - The difference is scale, purpose and means of finding what you need

Directory structures

 README files (plain text) often included to give some basic info on directories or software

To find files

- We need to navigate through the system and find files
- To describe the location of files we use paths

To find files

- We need to navigate through the system and find files
- To describe the location of files we use paths
- Example of the path through the system to Sara's final thesis directory /Users/Sara/Thesis/Final/

THE PROMPT This is the prompt (can be different characters) hugin:~ stromvik%

Prompt characters % \$ >>

pwd print working directory

Examples:

hugin:~ stromvik% pwd
/Users/stromvik

Commands to navigate

pwd print working directory

Examples:

hugin:~ stromvik% pwd
/Users/stromvik

hugin:~/Public/BINF511_dir stromvik% pwd

pwd print working directory

Examples:

hugin:~ stromvik% pwd
/Users/stromvik

hugin:~/Public/BINF511_dir stromvik% pwd
/Users/stromvik/Public/BINF511_dir

Commands to navigate

ls list

Default is listing working directory

To specify which dir to list

Example:

hugin:~/Public/ stromvik% ls BINF511_dir/
AJ318219.2.seq AJ421799.2.seq AJ516088.1.seq
AJ419573.2.seq AJ516086.1.seq AJ516089.1.seq

Is -I list long
Will tell you more info for each file
Example:

```
hugin:~/Public/ stromvik% ls -1 BINF511_dir/
-rw-r--r- 1 stromvik staff 940 7 Nov 20:12 AJ318219.2.seq
-rw-r--r- 1 stromvik staff 906 7 Nov 20:11 AJ419573.2.seq
-rw-r--r- 1 stromvik staff 925 7 Nov 20:11 AJ421799.2.seq
-rw-r--r- 1 stromvik staff 674 7 Nov 20:13 AJ516086.1.seq
-rw-r--r- 1 stromvik staff 675 7 Nov 20:13 AJ516088.1.seq
-rw-r--r- 1 stromvik staff 671 7 Nov 20:12 AJ516089.1.seq
```

Permissions

Will tell you who has right to do what with each file and directory

Permissions

Dir?	Owner			Group			World		
d	r	W	X	r	w	X	r	W	X
	4	2	1	4	2	1	4	2	1

r = read

w = write

x =execute (for e.g. scripts)

means everybody can do everything

means owner can read and write to file, group and world can read

Permissions (mode)

Dir?	Owner			Group			World		
d	r	w	X	r	w	X	r	w	X
	4	2	1	4	2	1	4	2	1

w = write x = execute (for e.g. scripts)

means everybody can do everything means owner can read and write to file, group and world can read

chmod 777 mytestfile.txt

will change the permissions on the file mytestfile.txt

File system naming conventions

- Name directories and files consistently
- E.g. directories with images
 - Thesis_img
 - Publication_img
- E.g. all thesis files:
 - Version_1_thesis.doc
 - Draft 56 thesis.doc
 - Chpt_2_Figure5_thesis.tiff

Commands to navigate

cd change directory

Default is change to home directory

To specify which dir to change to, use absolute and relative paths

Example:

hugin:~/Public/ stromvik% cd BINF511_dir/ hugin:~/Public/BINF511 dir stromvik%

whoami
cp file newlocation
mv file file2

print username copy a file rename a file

Commands to navigate

whoami
cp file newlocation
mv file file2
mv file new_dir/

print username copy a file rename a file move a file to a new location

whoami
cp file newlocation
mv file file2
mv file new_dir/
mkdir new_dir/

print username
copy a file
rename a file
move a file to a new location
create a new directory

Commands to navigate

whoami
cp file newlocation
mv file file2
mv file new_dir/
mkdir new_dir/
rm file2

print username
copy a file
rename a file
move a file to a new location
create a new directory
remove a file

whoami
cp file newlocation
mv file file2
mv file new_dir/
mkdir new_dir/
rm file2
chmod 644 file

print username
copy a file
rename a file
move a file to a new location
create a new directory
remove a file
change permissions on file

How to use a command?

- Check 'man' pages
- If we want to know how to use 'ls', at the prompt, type

man 1s

The unix shell

- Interprets commands that you enter
- Lets you talk with the machine
- Examples: sh, bash, csh, tcsh, ksh, zsh
- May be differences in commands

Which shell do you use?

hugin:~ stromvik% echo \$shell /bin/tcsh

Standard in and standard out

 Standard input is what you tell the computer by typing after the prompt and pressing [return] or [enter]

Standard in and standard out

- Standard output is the computer (program) writing results to the screen
 - If you don't specify where you want the results written, it will print to standard out

cat file

 "flashes" the contents of your file to standard out

Viewing files

more file

- Lets you page through your file
- Space bar to page down
- Type b to go back or page up
- Type q to quit

less file

Basically the same as more

Viewing files

head file

Displays the first part of your file

head file

- Displays the first part of your file
- head -20 file displays the first 20 rows

Viewing files

tail file

Displays last part of your file

tail file

- Displays last part of your file
- tail -342 file displays the last 342 lines

Redirecting

- < read from a file and use as standard in
 - E.g.
 - myscript < myinfile

Redirecting

- > print output to a file
 - E.g.
 - myscript < myinfile > myoutfile

Redirecting

- >> means append to the end of the
 - file
 - E.g.
 - cat file >> big_file

Operators

- Most useful is pipe |
- Pipes output from one command as input to another

Operators

- Most useful is pipe |
- Pipes output from one command as input to another
- Examples:

Is | wc

Operators

- Most useful is pipe |
- Pipes output from one command as input to another
- Examples:

Is | wc

lists a dir and then counts how many files and dirs there are

Operators

- Most useful is pipe |
- Pipes output from one command as input to another
- Examples:

head file | wc

Operators

- Most useful is pipe |
- Pipes output from one command as input to another
- Examples:

head file | wc

head the file and

count

how many rows you

have 'headed'

Wildcards

- * means any character
- Use if you want to do something with files that have partly the same pattern
- E.g. mv *.doc old_dir/
 - Will move all word docs to the directory old_dir/

Manipulating files grep split cut paste join comm sort uniq diff

Editors Most used: vi, emacs

vi

- To open a file type vi filename
- To edit go into insert mode by typing i where you want to insert text
- Hit the esc button to exit insert mode

Vi

- To save, type :w [return]
- To save and quit, type :wq [return]
- To quit without saving, type :q! [return]

tar archives

tar

 Creates an archive of your filesystem or selected parts thereof (tape archive)

tar archives

tar

- Creates an archive of your filesystem or selected parts thereof (tape archive)
- Does not compress the size of the files

tar archives

tar

- Creates an archive of your filesystem or selected parts thereof (tape archive)
- Does not compress the size of the files
- Normally you add the extension .tar to a tarfile
- A "tarred archive" is also called a "tarball"

Compressing data commandline

gzip file will

will compress your file and

add the extension .gz

Is

file.gz

Compressing data commandline

If you want to compress all your files of a certain type, use wildcards *

Example:

gzip *thesis.tiff

Chpt2_Fig1_thesis.tiff.gz Chpt5_Fig1_thesis.tiff.gz

Chpt5_Fig2_thesis.tiff.gz

Un-compressing data commandline

gunzip file.gz will uncompress the specified

file with the .gz extension

ls

file (.gz will be gone)

Un-compressing data commandline

gunzip file.gz will uncompress the specified

file with the .gz extension

Is

file (.gz will be gone)

Use wildcards to gunzip all files with a certain pattern in the file name

gunzip *.tiff.gz

To make a compressed backupfile (archive) of your directories

% tar -tvf new_backup_file.tar

% Is

new_backup_file.tar

% gzip new_backup_file.tar

% Is

new_backup_file.tar.gz

```
To un-compress backupfile (archive) and get your directories readable again

% gunzip new_backup_file.tar.gz
% ls
new_backup_file.tar
% tar -xvf new_backup_file.tar
% ls
new_backup_file.tar
my_dir1
my_dir1
my_dir1/file
my_dir2
my_dir2/file.tiff
```

File transfer, file editing and shell scripts

connecting

- To connect to another machine, use ssh, telnet or rlogin (ssh preferred)
 - Use IP addresses or computer names
 eg. 66.218.71.198 or freya.agrenv.mcgill.ca
 - You will work on the remote machine as if you were there

connecting

- To transfer files between two machines use ftp or sftp
 - You are working on both machines
 - (To just one-time-copy from one machine to another you can use scp)

File Transfer Protocol (FTP)

 An electronic, non-email way of sending files from one computer to another

File Transfer Protocol (FTP)

- An electronic, non-email way of sending files from one computer to another
- Commandline or different interfaces

File Transfer Protocol (FTP)

- An electronic, non-email way of sending files from one computer to another
- Commandline or different interfaces
- Either way specify binary or ASCII format!

File Transfer Protocol (FTP)

- An electronic, non-email way of sending files from one computer to another
- Commandline or different interfaces
- Either way specify binary or ASCII format!
- (BTW, you can send email commandline if the permissions are right)

Some commands in common with unix

- To print remote working dir = pwd
- To print local working dir = Ipwd

Some commands in common with unix

- To change dir remotely = cd
- To change dir locally = lcd

Transfer of files

- To transfer files from local machine to remote machine use command put
- To transfer many files at once use mput (multiple put)
 - Use wildcards!

Transfer of files

- To transfer files from the remote machine to your local machine use command get
- To transfer many files use mget
 - Wildcards!

Filenames

Note that you cannot have spaces or special characters in your filenames. If you want to, use underscores or periods, but no spaces or special characters (&*>\$#%@= etc).

Foreach loops

- "Foreach loops"
 - To automate a set of commands so you don't need to type the commands over and over

Foreach loops

 Example: To make one dir for each sequence file in a dir and then move each file into it's own dir

Foreach loops

 Example: To make one dir for each sequence file in a dir and then move each file into it's own dir

foreach file (*.seq)

loop: echo working on \$file!

loop: mkdir \$file.dir

loop: mv \$file \$file.dir

loop: end

HTML

- Hyper Text Markup Language
- The language used to format and structure information for webpages

HTML

- Hyper Text Markup Language
- The language used to format and structure information for webpages
- HTML tags everything is ordered within tags
- Use file suffix .html or .htm
- To interpret, you use a browser
 - Internet Explorer, Netscape, Mozilla, Safari


```
<html>
<title> My homepage </title>
<head> Welcome to my Home! </head>
<body>
</body>
</html>
```


XML

- Extensible Markup Language
- Use to write data files that can be parsed easily
- Attempt to make one seamless layer where many programs and databases can use standard tags and share information

ASN.1

- Abstract Syntax Notation One
- Formal language to structure information to share between applications (like XML)

ASN.1

- Abstract Syntax Notation One
- Formal language to structure information to share between applications (like XML)
- GenBank is based on ASN.1
 - Because of the popularity of XML in the bioinformatics field - GenBank downloads also available in xml