

Modélisation de systèmes

CeTI / Semestre 5 / Institut d'Optique / B1_1

Des systèmes partout

Biological object

Tomographie à Cohérence Optique / OCT Preuve de concept / TP

Nision Industrielle

Vision Industrielle / Banc Démonstrateur

Modulation en longueur d'onde / WDM Démonstrateur

Des systèmes qui intègrent...

Des composants

D'autres systèmes

Caractérisation de systèmes / dipôles

DIPÔLES / CAPTEURS

Transforment une grandeur physique en une autre

SYSTEMES

Transfèrent de l'énergie

De l'expérience au modèle

Expérience

Épreuve

qui a pour objet, par l'étude d'un phénomène naturel ou provoqué, de

vérifier une hypothèse

ou de l'induire de cette observation

Modèle

mathématique

Représentation

réalisée afin de pouvoir

mieux étudier

un phénomène physique

Rôle des physicien.nes

PHYSICIEN.NE

Expérience

Modèle mathématique

étude du phénomène physique « réel »

en faisant varier un paramètre physique

dans des conditions particulières!

« mise en équation » de

l'évolution des grandeurs physiques

en fonction du paramètre

en généralisant

Rôle des physicien.nes

Expérience

étude du phénomène physique « réel »

en faisant varier le même paramètre physique

dans de nouvelles conditions!

« mise en équation » de l'évolution des grandeurs physiques

en fonction du paramètre

en généralisant

Modèles en électronique / Dipôles

Résistance

Condensateur

$$i = C \cdot du / dt$$

$$Z_{\mathbb{C}} = 1 / j\mathbb{C}\omega$$

Inductance

$$U = L \cdot di / dt$$

$$Z_{L} = i L \omega$$

Diode

$$i = I_0 [exp(u / n.V0) - 1]$$

Modèles en électronique

Frequency Response

PREMIER ORDRE

$$H(j\omega) = \frac{A}{1 + j \cdot \frac{\omega}{\omega_0}}$$

Modèles en électronique

SECOND ORDRE

$$H(j\omega) = \frac{A}{1 + 2 \cdot m \cdot j \cdot \frac{\omega}{\omega_0} + j^2 \cdot \frac{\omega^2}{\omega_0^2}}$$

Comment établir le modèle

- COMPORTEMENT DYNAMIQUE / REPONSE EN FREQUENCE
 - Système : étude en fréquence ou étude en temporel

- GBF
- Oscilloscope
- dBmètre

FREQUENTIEL / BODE

INDICIELLE

IMPULSIONNEL

Comment établir le modèle

- COMPORTEMENT DYNAMIQUE / REPONSE EN FREQUENCE
 - Système : étude en fréquence ou étude en temporel

FREQUENTIEL / BODE

Comment établir le modèle

- COMPORTEMENT DYNAMIQUE / REPONSE EN FREQUENCE
 - Système : étude en fréquence ou étude en temporel

Vs(t) = h(t) * Ve(t)

FREQUENTIEL / BODE

$$S(f) = H(f) \cdot E(f)$$

Si Ve(t) =
$$\delta(t)$$
 alors Vs(t) = h(t)
Par TF, S(f) = TF(Vs(t)) = H(f)

IMPULSIONNEL

