Hui Jiang

Department of Electrical Engineering and Computer Science
Lassonde School of Engineering
York University

EECS 6327 Probabilistic Models and Machine Learning

Outline

- 1 What is Machine Learning?
- 2 Basic Concepts in Machine Learning
- 3 General Principles in Machine Learning
- 4 Advanced Topics in Machine Learning

Machine Learning

- artificial intelligence (AI):
 - Al refer to building computers to mimic human intelligence
 - o a long history of Al since 1950s
 - o traditional AI uses the rule-based symbolic approaches
 - o traditional AI relies on manual construction of knowledge bases
- paradigm shift: knowledge-based → data-driven
- **machine learning** (ML): data-driven statistical methods
- ML vs. Al
 - ML is a sub-field in AI
 - ML: automatic learning from training data
- machine learning pipeline:

Basic Concepts in Machine Learning

- classification vs. regression
- supervised vs. unsupervised learning
- simple vs. complex models
- parametric vs. non-parametric models
- over-fitting vs. under-fitting
 - bias-variance tradeoff

Machine Learning: classification vs. regression

Figure: A system view of any machine learning problem

- classification problems: outputs are discrete and finite
- regression problems: outputs are continuous
- **structured prediction**: outputs are structured objects

Machine Learning: supervised vs. unsupervised learning

Figure: A system view of any machine learning problem

- supervised learning
- unsupervised learning
- semi-supervised learning
- weakly-supervised learning
 - self-supervised learning

Advanced Topics

Simple vs. Complex Models

- crucial to choose a right model in machine learning
- simple vs. complex models
- model complexity depends on the function form and the number of free parameters.
- simple models: linear models
 - less training data; less computing resources
 - mediocre performance in practice
- complex models: nonlinear models (e.g. neural networks, decision trees)
 - o superior performance when sufficient training data are available
 - more training data require more computing resources
 - difficult to analyze and interpret

Simple vs. Complex Models

Example: curve fitting

- \circ a regression problem: $x \mapsto y$
- o a simple model: a linear model $y = a_0 + a_1 x$
- a complex model: a 4th-order polynomial $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$

Parametric vs. Non-parametric Models

- parametric models: a.k.a. finite-dimensional models
 - o the function form is given
 - the model is fully determined by a fixed number of parameters
- non-parametric models: a.k.a. distribution-free models
 - the function form is not specified
 - the model complexity depends on the available data

Figure: Decision trees: a non-parametric model

$$data = signal + noise$$

- simple models ⇒ under-fitting
 - too weak to capture the regularities in data
 - increase model complexity
- complex models ⇒ over-fitting
 - perfectly fit random noises
 - o totally useless to fit noises as they vastly change each time
 - o decrease model complexity; add more data; regularization

Figure: under-fitting vs. over-fitting in regression

Figure: under-fitting vs. over-fitting in classification

Bias-Variance Tradeoff

- \blacksquare simple models \Longrightarrow under-fitting \Longrightarrow high biases
- \blacksquare complex models \Longrightarrow over-fitting \Longrightarrow high variances
- bias and variance decomposition:

average learning error = $bias^2 + variance$

High Bias

(a) high learning bias

High Variance

(b) high learning

Bias-Variance Tradeoff

- cannot simultaneously reduce both bias and variance when learning from a fixed amount of data
- tradeoff between bias and variance for the lowest total error

Figure: bias-variance tradeoff as a function of model complexity

General Principles in Machine Learning

- Occam's Razor
- No Free Lunch Theorem
- Law of the Smooth World
- Curse of Dimensionality
- Blessing of Non-uniformity

Occam's Razor

- a general principle in philosophy
 - the simplest solution is most likely the right one
- a preference for simplicity in model selection
- it suggests the **minimum description length** (MDL) principle
 - o an important learning criterion in machine learning
 - the best model to describe the regularities in data is the one that can compress the data most.

No Free Lunch Theorem

- no learning method is universally superior to other methods for all possible learning problems
- no machine learning algorithm can learn anything useful merely from the training data
- a successful machine learning algorithm must have explicitly or implicitly used some knowledge beyond the training data

Figure: An illustration of No Free Lunch Theorem

Law of the Smooth World

- physical processes are smooth due to energy/power constraints
- real-world data are smooth, e.g. audio/speech/images/video
- the smoothness of the ground-truth is mathematically quantified by Lipschitz continuity or bandlimitedness

Figure: How the law of the smooth world helps in machine learning

k-nearest neighbors (k-NN)

- \blacksquare the law of the smooth world suggests the k-nearest neighbors (k-NN) method:
 - an unknown object is classified based on its k nearest neighbors in the training set
- k-NN is simple and intuitive
- how to measure distance? e.g. metric learning
- whether training data are enough to cover the whole space?

Curse of Dimensionality

- **curse of dimensionality**: the dilemma of learning in high-dimensional spaces
 - as the dimensionality grows, it requires the exponentially increasing amount of training data and computing resources to ensure the effectiveness of learning

General Principles

 \blacksquare e.g. the k-NN method requires N training samples to ensure classification error ϵ (0 < ϵ < 1) in a d-dimensional space:

$$N \propto \left(\frac{\sqrt{d}}{\epsilon}\right)^{d+1}$$

Assume $\epsilon = 0.01$, if it requires N = 100 when d = 3. When d=10, it needs $N=2\times 10^8$, and it requires $N=7\times 10^{123}$ when d = 100.

- the worst-case scenarios predicted by the curse of dimensionality normally occur when the data are uniformly distributed in high-dimensional spaces
- blessing of non-uniformility: real-world data never spreads evenly throughout the high-dimensional spaces but rather congregates on
 - linear subspaces
 - lower-dimensional nonlinear subspaces, called manifolds.
- it makes machine learning in high-dimensional spaces feasible
- it suggests dimensionality reduction:
 - linear dimensionality reduction
 - manifold learning

Advanced Topics in Machine Learning

- reinforcement learning
- meta-learning (a.k.a. learning to learn)
- causal inference
- transfer learning (a.k.a. domain adaptation)
- online learning
- active learning
- imitation learning

Advanced Topics