数据分析 课程期末 答题纸 B

姓名:

学号: 201707010119

班级: 信 171

1、考生必须将姓 名、学号等项填 写在装订线左 侧内,不得超 出,否则按违纪 处理。

- 2、请将证件放在 桌角处备查。
- 3、遵守考场规则。
- 4、凡违反考纪者 按规定给予相 应处分。

表 1-1-1 均值

报告

HbA1C	HDLC	LDLC
6. 6027	1. 1747	4. 3618
110	110	110
1. 21968	. 26734	1. 38226
	6. 6027	6. 6027 1. 1747 110 110

由表 1-1-1 ,可以得到 HbA1C 的平均值为 6.6027, HDLC 的平均值为 1.1747,LDLC 的平均值为 4.3618

2)

表 1-2-1 方差、标准差、偏度、峰度

描述统计

	个案							
	数	平均值	标准差	方差	偏	度	峰	度
						标准		标准
	统计	统计	统计	统计	统计	误差	统计	误差
HbA1C	110	6. 6027	1. 21968	1. 488	1. 031	. 230	. 395	. 457
HDLC	110	1. 1747	. 26734	. 071	004	. 230	478	. 457
LDLC	110	4. 3618	1. 38226	1. 911	. 033	. 230	648	. 457
有效个案数	110							
(成列)								

由表1-2-1, HbA1C 的方差为 1.488、标准差为 1.21968、偏度为 1.031、峰度为 0.395; HDLC的方差为 0.071、标准差为 0.26734、偏度为 -0.004、峰度为 -0.478; LDLC的方差为 1.911、标准差为 1.38226、偏度为 0.033、峰度为 -0.648

表 1-3-1 中位数、上下四分位数

统计

HbA1C

IIDATO		
个案数	有效	11
	缺失	
中位数		6. 300
百分位数	25	5. 700
	50	6. 300
	75	7. 600

由表 1-3-1, 可以得到 HbA1C 的中位数为 6.3000、上四分位数为 5.7000, 下四分位数为 7.6000.

4)

5)

图1-4-1 直方图

表1-5-1 相关性矩阵

相关性

		HbA1C	HDLC	LDLC
HbA1C	皮尔逊相关性	1	17 9	067
	显著性 (双尾)		. 061	. 485
	个案数	110	110	110
HDLC	皮尔逊相关性	−. 179	1	132
	显著性 (双尾)	. 061		. 170
	个案数	110	110	110
LDLC	皮尔逊相关性	067	132	1
	显著性 (双尾)	. 485	. 170	
	个案数	110	110	110

由表1-5-1,可以得出假设概率p值为0.05,则 HbA1C、HDLC、LDLC 三者的相关显著性均大于0.05,则说明三者没有线性关系。

数据分析 课程期末 答题纸

姓名: 李金哲

学号: 201707010119

班级: 信 171

- 1、考生必须将姓名、学号等订有写在装订有不侧内,不则超出,否则接纪处理。
- 2、请将证件放在 桌角处备查。
- 3、遵守考场规则。
- 4、凡违反考纪者 按规定给予相 应处分。

表 2-1-1 主体间效应检验

主体间效应检验

因变量: time

. , , , , , , , , , , , , , , , , , , ,					
	类平方				
源	和	自由度	均方	F	显著性
修正模型	373. 105ª	8	46. 638	774. 910	. 000
截距	1857. 610	1	1857. 610	30864. 905	. 000
repairer	220. 020	2	110. 010	1827. 858	. 000
type	123. 660	2	61. 830	1027. 329	. 000
repairer * type	29. 425	4	7. 356	122. 227	. 000
误差	1. 625	27	. 060		
总计	2232. 340	36			
修正后总计	374. 730	35			

a. R 方 = .996 (调整后 R 方 = .994)

由于 repairer*type 的 F 统计量对饮的概率 P-值近似为 0, 小于显著性水平 0.05, 因此不应拒绝原假设,认为不同剂量混合对病情缓解时间产生了显著的交互作用。

2)

1)

表 2-2-1 repairer 表

repairer

因变量: time

			95% 置信区间		
repairer	平均值	标准误差	下限	上限	
1	3. 883	. 289	3. 294	4. 473	
2	7. 833	. 289	7. 244	8. 423	
3	9. 833	. 289	9. 244	10. 423	

表2-2-2 type表

2. type

因变量: time

			95% 置	信区间
type	平均值	标准误差	下限	上限
1	4. 633	. 289	4. 044	5. 223
2	7. 933	. 289	7. 344	8. 523
3	8. 983	. 289	8. 394	9. 573

根据表 **2-2-1** 和表 **2-2-2** 可知 repairer 类别 1 的置信区间(3.294102.4.472565),类别 2 的置信区间(7.244102, 8.422565),类别 3 的置信区间(9.244102,10.422565);

type 类别 1 的置信区间(4.044102, 5.222565), 类别 2 的置信区间(7.344102, 8.522565), 类别 3 的置信区间(8.394102, 9.572565)

第2页 共 5 页

数据分析 课程期末 答题纸

姓名: 李金哲

学号: 201707010119

班级: 信 171

1、考生必须将姓 名、学号等项 填写在装订线 左侧内,不则 超出,否则接 违纪处理。

- 2、请将证件放在 桌角处备查。
- 3、遵守考场规则。
- 4、凡违反考纪者 按规定给予相 应处分。

三、

1)

由表3-1-1可知,回归方程显著性检验的 F 统计量的观测值为 87.134,其对应的概率 P值近似为 0。若显著性水平 a 为 0.05,因概率 P 值小于 a,拒绝回归方程显著性检验的原假设,即回归系数不同时为 0,解释变量与被解释变量间存在显著的线性关系,选择线性模型具有合理性。

根据表3-1-2, 可以得到回归方程为:

y = -18.895 * 0.158 * X1 + 0.011 * X2

但是若显著性水平a为0.05,常数的概率p值0.006、X1的概率p值0.001、X2的概率p值0.004,均小于a。 故可以认为常数、X1、X2接受原假设。能够判断该回归方程是最优解

表3-1-1 检验结果

ANOVA*								
模型		平方和	自由度	均方	F	显著性		
1	回归	12204. 035	2	6102. 017	87. 134	. 000 ^b		
	残差	1190. 515	17	70. 030				

a. 因变量: Y

b. 预测变量: (常量), X2, X1

总计 13394.550

表3-1-2 系数表

	系数*										
				标准化系			B 的 95.	0% 置信			
		未标准	化系数	数			区	间			
			标准误								
模型		В	差	Beta	t	显著性	下限	上限			
1	(常	-18. 895	5. 973		-3. 163	. 006	-31. 496	-6. 293			
	量)										
	X1	. 158	. 042	. 530	3. 796	. 001	. 070	. 246			
	X2	. 011	. 003	. 460	3. 294	. 004	. 004	. 019			

a. 因变量: Y

2)

根据表3-1-2,可以得到线性方程系数的置信度为95%的置信区间,常量的置信区间为(-31.496 - -6.293), X1的置信区间为(0.070 - 0.246), X2的置信区间为(0.004 - 0.019)

3)

24:PRE_1						
	∳ Y					
19	70	268	3590	64.31212	60.02219	68.60206
20	48	168	2345	34.33848	29.28433	39.39263
21		180	3240	46.40197	40.06778	52.73617

图3-3-1 预测结果

由图3-3-1,可以得出当该市 X1=180 (万人),人均月收入 X2=3240 的新的城市中销售其产品,求其销量的预测值为46.40197万台,其置信度为95%的置信区间为(40.06778 - 52.73617)万台。

数据分析 课程期末 答题纸

姓名: 李金哲

学号: 201707010119

班级: 信 171

- 1、考生必须将姓 名、学号等项 填写在装订线 左侧内,不得 超出,否则按 违纪处理。
- 2、请将证件放在 桌角处备查。
- 3、遵守考场规
- 4、凡违反考纪者 按规定给予相 应处分。

1)

表4-1-1是原有变量的相关系数矩阵。可以看到:存在部分的相关系数都较高,各变量呈较强的线 性关系,够从中提取公共因子,适合进行因子分析

表4-1-1 相关性矩阵

相关性矩阵

		V2	V3	V4	V 5	V6	V 7	V8	V9
相关	V2	1. 000	. 334	055	061	289	. 199	. 349	. 319
性	V3	. 334	1.000	023	. 399	15 6	. 711	. 414	. 835
	V4	055	023	1. 000	. 533	. 497	. 033	139	258
	V 5	061	. 399	. 533	1. 000	. 698	. 468	171	. 313
	V6	289	−. 156	. 497	. 698	1.000	. 280	208	081
	V 7	. 199	. 711	. 033	. 468	. 280	1. 000	. 417	. 702
	V8	. 349	. 414	139	171	208	. 417	1. 000	. 399
	V9	. 319	. 835	258	. 313	081	. 702	. 399	1. 000

表4-1-2 巴特利特球度检验

KMO 和巴特利特检验

KMO 取样适切性量数。	. 569	
巴特利特球形度检验	近似卡方	142. 983
	自由度	28
	显著性	. 000

由表4-1-2, 可知巴特利特球度检验统计量的观测值为142.983, 相应的概率P-值接近0。如果显著 性水平a为0.05,由于概率P值小于显著性水平a,则应拒绝原假设,认为相关系数矩阵与单位阵有显著 差异。同时,KMO值为0.569,根据 Kaiser给出的KMO度量标准可知原有变量适合进行因子分析。

2)

由表 4-2-1 可以得出,:第1个因子的方差贡献为 3.096,解释原有 8个变量总方差的 38.7%(即 3. 096÷8×100%), 累计方差贡献率为 38. 7%; 第 2 个因子的方差贡献为 2. 367, 解释原有 8 个变量总 方差的 29.59% (即 2.367÷8×100%), 累计方差贡献率为 68.294% [即 (3.096+2.367)÷8×100%]. 其 余数据含义类似。在初始解中由于提取了 8 个因子, 原有变量的总方差均被解释, 累计方差贡献率为

图 4.1 所示显示了旋转后所有因子的载荷图,可以直观看出: X6、X9,即人均衣着商品支出和人均 非商品支出比较靠近两个因子坐标轴。

表4-2-1 总方差解释

总方差解释

							旋转载荷平
	初始特征值			提取载荷平方和			方和 ^a
		方差百分			方差百分		
成分	总计	比	累积%	总计	比	累积%	总计
1	3. 096	38. 704	38. 704	3. 096	38. 704	38. 704	3. 070
2	2. 367	29. 590	68. 294	2. 367	29. 590	68. 294	2. 380
3	. 920	11.500	79. 794				
4	. 706	8. 824	88. 618				
5	. 498	6. 231	94. 848				
6	. 230	2. 874	97. 722				
7	. 131	1. 635	99. 357				
8	. 051	. 643	100.000				

提取方法: 主成分分析法。

a. 如果各成分相关时,则无法添加载荷平方和以获取总方差。

旋转后的空间中的组件图

图4-2-1 旋转图

根据谱系图4-3-1可得,上海为一类,广州为一类,其他的28个成员分为一类。总共为3类;具体的成员分类见表4-3-2。

第4页 共 5页

姓名: 李金哲

学号: 201707010119

班级: 信 171

- 1、考生必须将姓 名、学号等订 填写在装订线 左侧内,不则 超出,否则 违纪处理。
- 2、请将证件放在 桌角处备查。
- 3、遵守考场规则。
- 4、凡违反考纪者 按规定给予相 应处分。

表4-3-1 聚类个案数

12:51 1450 1 1630				
每个聚类中的个案数量				
	1	28		
聚类	2	1		
	3	1		
有	30			
缺	0			

表4-3-1 聚类成员数据

聚类成员

个案	3 个聚类	2 个聚类	个案	3 个聚类	2 个聚类	个案	3 个聚类	2 个聚类
1: 山西	1	1	11:新疆	1	1	21:福建	1	1
2:内蒙古	1	1	12:湖北	1	1	22:广西	1	1
3:吉林	1	1	13:云南	1	1	23:海南	1	1
4: 黑龙江	1	1	14:湖南	1	1	24:天津	1	1
5:河南	1	1	15:安徽	1	1	25:江苏	1	1
6: 甘肃	1	1	16:贵州	1	1	26:浙江	1	1
7: 青海	1	1	17:辽宁	1	1	27:北京	1	1
8:河北	1	1	18:四川	1	1	28: 西藏	1	1
9:陕西	1	1	19:山东	1	1	29:上海	2	2
10:宁夏	1	1	20:江西	1	1	30:广东	3	2

第5页 共 5页

	北京建筑大学 2019/ 2020 学年 第 2 学期 考试	
姓名: 李金哲		
学号:		
201707010119		
班级:		
信 171		
1 本件以前收集		
1、考生必须将姓 名、学号等项 填写在装订线		
左侧内,不得 超出,否则按		
违纪处理。 2、请将证件放在		
桌角处备查。 3、遵 守 考 场 规		
则。 4、凡违反考纪者		
按规定给予相 应处分。		