	Ryan Pollack
1.	I think my buildy's concern is valid because Big D's are based
	only di an upper bound and there can be one's much
	closer. If we were to continue the equation, we would have
	Xo. 1 X . 5 X . 3(5) + 5(1) , 8 X , 3(8) + 5(5) , 58
	X4.3(58).5(8).100
	To compare with 5"
	52.1. 21. 22. 22. 23.15. 24.625
	We can compare to something like 4":
	40.1 41.16 43.64 44.256
	From this, we can see how 4" is growing quicker
	than the function well but is much closer, showing
	that my buddy's concern of O(5") being too big is valid.
2	Ease Case:
	h = 7
	Inductive Hypothesis:
	let's assume Xn 'n! for all n'??.
	Inductive Stepi
	Try h: 7,8, and 9 for Xh and n! 50,
	· ~ X ~ ~ ^ h! ~
	X = 3(100) 1 2(58) 2 32P
	x = 3(356) · 2(100) = 1,268 x · 720
	X, 3(1, 268) 2(356) = 4,516 x, 5,040
	X8, 3(4,516), 5(1,768): 16,084 X8, 40,320
	Xq · 3(16,084) · 2(4,516) : 57,284 Xq · 362,880
	After ho? 7, h! stays larger and grows at a exponentially
-(-)	quicker rate than Mulherefore, Mush for all 137

From what we did in problem I B mul be less than 4 because We proved 4 grew at a higher rate than Xp. Of course, it we made & a traction B could be much higher than 4. The largest of could be in 1. For example, if Bwar also I, as X, grove a. B' vould remain at I because an expensal to any nos I will remain 1s. This valissies hio where Xo's and MB. I and all the others as in grove but of stops constartilf & could be a super small fraction, Bould be a super larger hunter But, il & mull be integer like 1, 3 could at its largest be I because when hil, i, il and (1)B' would take on the volue of wholever Bir, and that must 22. The istend of like problem 3 but reverse as we Die Gring from the top. The absolute smallert either Yord (an beine), When he O, Xosl so it's smollest we can get is I. Y, much like & His serves as the Constant, He already know any Sofe 4 will always be higher than Xy aril grows exporentially quicker so is docin't reed to serve as a multiplier. Hovever, when hio, Sowill glugy be 1 so Y has to be 1 so X of and 150 +1 works. When Y wants to be a large contant, S can be just above I when it still harslighty exposition growth and a large contact What gives it the custion to grow radialy

5	Plus in: N'I
	1. (2) = .693 [x(8) = 1.03 [x(28) 1.11
	7
	Nº 4 We can also use 3°, which is smaller than XA
	1/1001 1.15 lim 3 ' w since the smaller 3 over
	1/200) 1.15 1m 3 0 , since the since of
	15/1001 1.15 1m 3 00 5 10 00 1m 1x (Xx)/1 goes
	10 00.
D I	Let's say Yn'x". Then:
Bonus	$\frac{\lambda_{\nu} = (1 - \alpha) \lambda_{\nu+1} + \alpha \lambda_{\nu+1}}{16 \cdot 1}$
	$x_1 - (1 - d)x - d = 0$
Titerati samente ini	Think this is some sort of recurrence relation, so
	should get Yn = \(\langle\) ignething! \(\alpha\) and
	then solve.
Ponus.	Pared on what it's asking, the function moves by taking
	the middle of the previous 2 values, so:
	X 7 X 1 X
	Following this function, We yet
	X 1 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	x. 5 1.75 1.6875 X1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	A (x' ope) to infinity the function you somewhere in
	the middle of , 6797 and , 6719.
/ h	
- 1.	