ITERATIVE METHODS

There is a class of methods of solving simultaneous equations called **iterative methods**. In these methods we start with certain assumptions as to the values of the variables. By applying a method of this type we get a better approximation. We repeat (iterate) this procedure as many times as we want till we arrive at a desired accuracy.

JOCOBI'S METHOD:

Consider the following system of equations,

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$ (1)
 $a_3x + b_3y + c_3z = d_3$

When a_1, b_2, c_3 are large as compared to remaining coefficients, we write the equations as

$$x = \frac{1}{a_1}(d_1 - b_1y - c_1z)$$

$$y = \frac{1}{b_2}(d_2 - a_2x - c_2z) \qquad \dots (2)$$

$$z = \frac{1}{c_2}(d_3 - a_3x - b_3y)$$

We now start with the assumption that the roots of these equations are $x = x_0$, $y = y_0$, $z = z_0$.

Putting these values in (2) the first approximation is given by

$$x_1 = \frac{1}{a_1} (d_1 - b_1 y_0 - c_1 z_0)$$

$$y_1 = \frac{1}{b_2} (d_2 - a_2 x_0 - c_2 z_0)$$

$$z_1 = \frac{1}{c_2} (d_3 - a_3 x_0 - b_3 y_0)$$

We now assume that the roots of the equations are $x = x_1$, $y = y_1$, $z = z_1$.

Putting these values in (2), we get better approximation given by

$$x_2 = \frac{1}{a_1}(d_1 - b_1y_1 - c_1z_1)$$

$$y_2 = \frac{1}{b_2}(d_2 - a_2x_1 - c_2z_1)$$

$$z_3 = \frac{1}{c_3}(d_3 - a_3x_1 - b_3y_1)$$

We repeat (iterate) the procedure as many times as we want, till we arrive at a desired accuracy

SOME SOLVED EXAMPLES:

1. Solve the following equations by Jacobi's method

$$4x + y + 3z = 17, x + 5y + z = 14, 2x - y + 8z = 12$$

Solution: We first write the equation as $x = \frac{1}{4}(17 - y - 3z)$

$$y = \frac{1}{5}(14 - x - z) \qquad \dots (1)$$

$$z = \frac{1}{6}(12 - 2x + y)$$

(i) First Iteration: We start with the approximation x=0,y=0,z=0 $\therefore x_1=\frac{17}{4}=4.25, y_1=\frac{14}{5}=2.8, z_1=\frac{12}{8}=1.5$

(ii) Second Iteration: Putting these values on r.h.s. of (1), we get,

$$x_2 = \frac{1}{4}[17 - 2.8 - 3(1.5)] = 2.425$$

$$y_2 = \frac{1}{5}(14 - 4.25 - 1.5) = 1.65$$

$$z_2 = \frac{1}{8}[12 - 2(4.25) + 2.8] = 0.7875$$

(iii) Third Iteration: Putting these values on r.h.s. of (1), we get,

$$x_3 = \frac{1}{4}[17 - 1.65 - 3(0.7875)] = 3.2469$$

 $y_3 = \frac{1}{5}(14 - 2.425 - 0.7875) = 2.1575$
 $z_3 = \frac{1}{8}(12 - 2 \times (2.425) + 1.65) = 1.1$

(iv) Fourth Iteration: Putting these values on r.h.s. of (1)again, we get,

$$x_4 = \frac{1}{4}[17 - 2.1575 - 3(1.1)] = 2.8856$$

$$y_4 = \frac{1}{5}(14 - 3.2469 - 1.1) = 1.9306$$

$$z_4 = \frac{1}{8}[12 - 2(3.2469) + 2.1575] = 0.9580$$

(v) Fifth Iteration: Putting these values on r.h.s. of (1)again, we get,

$$x_5 = \frac{1}{4}[17 - 1.9306 - 3(0.9580)] = 3.0488$$

$$y_5 = \frac{1}{5}(14 - 2.8856 - 0.9580) = 2.0313$$

$$z_5 = \frac{1}{8}[12 - 2(2.8856) + 1.9306] = 1.0199$$

$$\therefore x = 3, y = 2, z = 1$$

We can write above solution in tabular form as follows:

We first write the equation as $x = \frac{1}{4}(17 - y - 3z)$ $y = \frac{1}{5}(14 - x - z)$ (1) $z = \frac{1}{8}(12 - 2x + y)$

We start with the approximation x = 0, y = 0, z = 0

$x = \frac{1}{4}(17 - y - 3z)$	$y = \frac{1}{5}(14 - x - z)$	$z = \frac{1}{8}(12 - 2x + y)$
$x_0 = 0$	$y_0 = 0$	$z_0 = 0$
$x_1 = \frac{17}{4} = 4.25$	$y_1 = \frac{14}{5} = 2.8$	$z_1 = \frac{12}{8} = 1.5$
$x_2 = \frac{1}{4}[17 - 2.8 - 3(1.5)] = 2.425$	$y_2 = \frac{1}{5}(14 - 4.25 - 1.5) = 1.65$	$z_2 = \frac{1}{8}[12 - 2(4.25) + 2.8]$ $= 0.7875$
$x_3 = \frac{1}{4}[17 - 1.65 - 3(0.7875)]$ $= 3.2469$	$y_3 = \frac{1}{5}(14 - 2.425 - 0.7875) = 2.1575$	$z_3 = \frac{1}{8}(12 - 2 \times (2.425) + 1.65)$ $= 1.1$
$x_4 = \frac{1}{4} [17 - 2.1575 - 3(1.1)]$ $= 2.8856$	$y_4 = \frac{1}{5}(14 - 3.2469 - 1.1) = 1.9306$	$z_4 = \frac{1}{8}[12 - 2(3.2469) + 2.1575]$ $= 0.9580$
$x_5 = \frac{1}{4} [17 - 1.9306 - 3(0.9580)]$ $= 3.0488$	$y_5 = \frac{1}{5}(14 - 2.8856 - 0.9580)$ $= 2.0313$	$z_5 = \frac{1}{8} [12 - 2(2.8856) + 1.9306]$ $= 1.0199$

$$x = 3, y = 2, z = 1$$

2. Solve the following equations by Jacobi's method

$$10x - 2y - 3z = 205, 2x - 10y + 2z = -154, 2x + y - 10z = -120$$

Solution: We first write the equation as $x = \frac{1}{10}(205 + 2y + 3z)$

$$y = -\frac{1}{10}(-154 - 2x - 2z)$$
$$z = -\frac{1}{10}(-120 - 2x - y)$$

$$x = 20.5 + 0.2y + 0.3z$$
Or $y = 15.4 + 0.2x + 0.2z$

$$z = 12 + 0.2x + 0.1y$$
.....(1)

We start with the approximation x = 0, y = 0, z = 0

x = 20.5 + 0.2y + 0.3z	y = 15.4 + 0.2x + 0.2z	z = 12 + 0.2x + 0.1y
$x_0 = 0$	$y_0 = 0$	$z_0 = 0$
$x_1 = 20.5$	$y_1 = 15.4$	$z_1 = 12$
$x_2 = (20.5) + (0.2)(15.4) + (0.3)(12)$	$y_2 = (15.4) + (0.2)(20.5) + (0.2)(12)$	$z_2 = (12) + (0.2)(20.5)$
= 27.18	= 21.9	+(0.1)(15.4) = 17.64
$x_3 = (20.5) + (0.2)(21.9)$	$y_3 = (15.4) + (5.436) + (3.528)$	$z_3 = (12) + (5.436) + (2.19)$
+(0.3)(17.64) = 30.172	= 24.364	= 19.626
$x_4 = (20.5) + (4.8728) + (5.8878)$	$y_4 = (15.4) + (6.0344) + (3.9252)$	$z_4 = (12) + (0.2)(30.172)$
= 31.2606	= 25.3596	+(0.1)(24.364) = 20.4708
- 31.2000	_ 23.3370	
$x_5 = (20.5) + (5.07192) + (6.14124)$	$y_5 = (15.4) + (6.25212) + (4.09416)$	$z_5 = (12) + (6.25212) + (2.53596)$
= 31.71316	= 25.74628	= 20.78808
$x_6 = (20.5) + (5.149256)$	$y_6 = (15.4) + (6.342632)$	$z_6 = (12) + (6.342632)$
+(6.236424) = 31.88568	+(4.157616) = 25.900248	+(2.574628) = 20.91726
$x_7 = (20.5) + (5.1800496)$	$y_7 = (15.4) + (6.377136)$	$z_7 = (12) + (6.377136)$
+(6.275178) = 31.9552276	+(4.183452) = 25.960588	+(2.5900248) = 20.9671608
$x_8 = (20.5) + (5.1921176)$	$y_8 = (15.4) + (6.39104552)$	$z_8 = (12) + (6.39104552)$
+(6.29014824) = 31.98226584	+(4.19343216) = 25.98447768	+(2.5960588) = 20.98710432

The value of the 7^{th} and 8^{th} iteration being practically same, we can conclude that the solution of the given system

of equations is $\{x = 32, y = 26, z = 21\}$

GAUSS – SEIDEL METHOD:

This is a modification of Jacobi's method in which as soon as a new approximation of an unknown is obtained, it is

used immediately in the next calculation.

Consider as before the system of equations.

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$ (1)
 $a_3x + b_3y + c_3z = d_3$

When a_1, b_2, c_3 are large as compared to remaining coefficients, we write the equations as

$$x = \frac{1}{a_1}(d_1 - b_1y - c_1z)$$

$$y = \frac{1}{b_2}(d_2 - a_2x - c_2z) \qquad \dots (2)$$

$$z = \frac{1}{c_3}(d_3 - a_3x - b_3y)$$

We now start with the assumption that the roots of these equations are \mathbf{x} = x_0 , \mathbf{y} = y_0 , \mathbf{z} = z_0 .

Putting these values in first equation of (2) , we get $x_1 = \frac{1}{a_1}(d_1 - b_1y_0 - c_1z_0)$

Now, we put $x=x_1, z=z_0$ in the second equation of (2) and get, $y_1=\frac{1}{b_2}(d_2-a_2x_1-c_2z_0)$

We put $x = x_1, y = y_1$ and get $z_1 = \frac{1}{c_3}(d_3 - a_3x_1 - b_3y_1)$

The process is continued till we get desired degree of accuracy

As soon as we obtain a new approximation, it is immediately used in the next calculation

SOME SOLVED EXAMPLES:

1. Solve the following equations by Gauss – Seidel method

$$20x + y - 2z = 17$$
, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$

Solution: We first write the equations as

$$x = \frac{1}{20}[17 - y + 2z] \qquad \dots (1)$$

$$y = \frac{1}{20}[-18 - 3x + z]$$
(2)

$$z = \frac{1}{20} [25 - 2x + 3y] \qquad(3)$$

(i) First Iteration: We start with the approximation y = 0, z = 0 and then get from (1),

$$\therefore x_1 = \frac{17}{20} = 0.85$$

We use this approximation to find y i.e., we put x=0.85, z=0 in (2)

$$\therefore y_1 = \frac{1}{20}[-18 - 3(0.85) - 0] = -1.0275$$

We use these values of x_1 and y_1 to find z_1 i.e., we put x=0.85, y=-1.0275 in (3)

$$\therefore z_1 = \frac{1}{20} [25 - 2(0.85) + 3(-1.0275)] = 1.0109$$

(ii) Second Iteration: We use latest values of y and z to find x i.e., we put y = -1.0275,

$$z = 1.0109$$
 in (1)

$$\therefore x_2 = \frac{1}{20} [17 - (-1.0275) + 2(1.0109)] = 1.0025$$

We put
$$x=1.0025$$
, $z=1.0109$ in (2)

$$\therefore y_2 = \frac{1}{20} [-18 - 3(1.0025) + 1.0109] = -0.9998$$

We put
$$x = 1.0025$$
, $y = -0.9998$ in (3)

$$\therefore z_2 = \frac{1}{20} [25 - 2(1.0025) + 3(-0.9998)] = 0.9998$$

(iii) Third Iteration: We use latest values of y and z to find x i.e., we put y = -0.9998,

$$z = 0.9998$$
 in (1)

$$\therefore x_3 = \frac{1}{20} [17 - (-0.9998) + 2(0.9998)] = 1.000$$

We put
$$x = 1.000$$
, $z = 0.9998$ in (2)

$$\therefore y_3 = \frac{1}{20}[-18 - 3(1.000) + 0.9998] = -1.000$$

We put
$$x = 1.000$$
, $y = -1.000$ in (3)

$$\therefore z_3 = \frac{1}{20} [25 - 2(1.000) + 3(-1.000)] = 1$$

Hence, we get
$$x = 1$$
, $y = -1$, $z = 1$

We can write above solution in tabular form as follows:

We first write the equations as

$$x = \frac{1}{20} [17 - y + 2z] \qquad \dots (1)$$

$$y = \frac{1}{20}[-18 - 3x + z]$$
(2)

$$z = \frac{1}{20}[25 - 2x + 3y]$$
(3

We start with the approximation x = 0, y = 0, z = 0

$x = \frac{1}{20}[17 - y + 2z]$	$y = \frac{1}{20} \left[-18 - 3x + z \right]$	$z = \frac{1}{20}[25 - 2x + 3y]$
$x_0 = 0$	$y_0 = 0$	$z_0 = 0$
$x_1 = \frac{17}{20} = 0.85$	$y_1 = \frac{1}{20} [-18 - 3(0.85) - 0]$	$z_1 = \frac{1}{20} [25 - 2(0.85)]$
20	=-1.0275	+3(-1.0275)] = 1.0109
$x_2 = \frac{1}{20} [17 - (-1.0275)]$	$y_2 = \frac{1}{20}[-18 - 3(1.0025) + 1.0109]$	$z_2 = \frac{1}{20}[25 - 2(1.0025)]$
+2(1.0109)] = 1.0025	=-0.9998	+3(-0.9998)] = 0.9998
$x_3 = \frac{1}{20} [17 - (-0.9998)]$	$y_3 = \frac{1}{20}[-18 - 3(1.000) + 0.9998]$	$z_3 = \frac{1}{20} [25 - 2(1.000)]$
+2(0.9998)] = 1.000	=-1.000	+3(-1.000)] = 1

Hence, we get x = 1, y = -1, z = 1

2. Solve the following equations by Gauss – Seidel method

$$3x_1 - 0.1x_2 - 0.2x_3 = 7.85$$
 , $0.1x_1 + 7x_2 - 0.3x_3 = -19.3$, $0.3x_1 - 0.2x_2 + 10x_3 = 71.4$

Solution: We first write the equations as

$$x_1 = \frac{1}{3}[7.85 + 0.1x_2 + 0.2x_3]$$
(1)

$$x_2 = \frac{1}{7}[-19.3 - 0.1x_1 + 0.3x_3]$$
(2)

$$x_3 = \frac{1}{10} [71.4 - 0.3x_1 + 0.2x_2]$$
(3)

We start with the approximation x = 0, y = 0, z = 0

$x_1 = \frac{1}{3} [7.85 + 0.1x_2 + 0.2x_3]$	$x_2 = \frac{1}{7} [-19.3 - 0.1x_1 + 0.3x_3]$	$x_3 = \frac{1}{10} [71.4 - 0.3x_1 + 0.2x_2]$
$x_0 = 0$	$y_0 = 0$	$z_0 = 0$
$x_{1,1} = \frac{7.85}{3} = 2.6167$	$x_{2,1} = \frac{1}{7}[-19.3 - 0.1(2.6167) +$	$x_{3,1} = \frac{1}{10} [71.4 - 0.3(2.6167)]$
31,1 3	0.3(0)] = -2.7945	+0.2(-2.7945)] = 7.0056
$x_{1,2} = \frac{1}{3}[7.85 + 0.1(-2.7945)]$	$x_{2,2} = \frac{1}{7}[-19.3 - 0.1(2.9906)]$	$x_{3,2} = \frac{1}{10} [71.4 - 0.3(2.9906)]$
+0.2(7.0056)] = 2.9906	-0.3(7.0056)] = -2.4996	+0.2(-3.1001)] = 6.98828
$x_{1,3} = \frac{1}{3}[7.85 - 0.1(-3.1001)]$	$x_{2,3} = \frac{1}{7}[-19.3 - 0.1(3.000)]$	$x_{3,3} = \frac{1}{10} [71.4 - 0.3(3.000)]$
[+0.2(6.98828)] = 3.000	+0.3(6.98828)] = -2.500	+0.2(-2.500)] = 7.000

Hence, the values are $x_1 = 3$, $x_2 = -2.5$, $x_3 = 7$

3. Solve the following equations by Gauss – Seidel method

$$28x + 4y - z = 32$$
, $2x + 17y + 4z = 35$, $x + 3y + 10z = 24$

Solution: We first write the equations as $x = \frac{1}{28}(32 - 4y + z)$ (1)

$$y = \frac{1}{17}(35 - 2x - 4z) \qquad \dots (2)$$

$$z = \frac{1}{10}(24 - x - 3y) \qquad \dots (3)$$

We start with the approximation x = 0, y = 0, z = 0

$x = \frac{1}{28}(32 - 4y + z)$	$y = \frac{1}{17}(35 - 2x - 4z)$	$z = \frac{1}{10}(24 - x - 3y)$
$x_0 = 0$	$y_0 = 0$	$z_0 = 0$
$x_1 = \frac{32}{28} = 1.1429$	$y_1 = \frac{1}{17}[35 - 2(1.1429)] = 1.9244$	$z_1 = \frac{1}{10} [24 - 1.1429 - 3(1.9244)]$ $= 1.7084$
$x_2 = \frac{1}{28} [32 - 4(1.9244) + 1.7084]$ $= 0.9289$	$y_2 = \frac{1}{17} [35 - 2(0.9289) - 4(1.7084)]$ $= 1.5476$	$z_2 = \frac{1}{10} [24 - 0.9289 - 3(1.5476)]$ $= 1.8428$

$x_3 = \frac{1}{28}[32 - 4(1.5476) + 1.8428]$	$y_3 = \frac{1}{17}[35 - 2(0.9876) - 4(1.8428)]$	$z_3 = \frac{1}{10}[24 - 0.9876 - 3(1.5090)]$
= 0.9876	= 1.5090	= 1.8485
$x_4 = \frac{1}{28}[32 - 4(1.5090) + 1.8485]$	$y_4 = \frac{1}{17}[35 - 2(0.9933) - 4(1.8485)]$	$z_4 = \frac{1}{10} [24 - (0.9933) - 3(1.5070)]$
= 0.9933	= 1.5070	= 1.8486

Since, the third and fourth iterations give the same value upto two places of decimals, we get after rounding

$$x = 0.99, y = 1.51, z = 1.85$$

EXERCISE

1. Solve the following equations by Jacobi's method

(i)
$$15x + y - z = 14$$
, $x + 20y + z = 23$, $2x - 3y + 18z = 37$

(ii)
$$12x + 2y + z = 27, 2x + 15y - 3z = 16, 2x - 3y + 25z = 23$$

(iii)
$$14x - y + 3z = 18, 2x - 14y + 3z = 19, x - 3y + 16z = 20$$

2. Solve the following equations by Gauss – Seidel method

(i)
$$27x + 6y - z = 85$$
, $6x + 15y + 2z = 72$, $x + y + 54z = 110$

(ii)
$$10x_1 + x_2 + x_3 = 12$$
, $2x_1 + 10x_2 + x_3 = 13$, $2x_1 + 2x_2 + 10x_3 = 14$

(iii)
$$5x + y - z = 10$$
, $2x + 4y + z = 14$, $x + y + 8z = 20$

ANSWERS

(These are actual answers, please write numerical answers you obtained as final solutions)

1. (i)
$$x = 1, y = 1, z = 2$$

(ii)
$$x = 2, y = 1, z = 1$$

(iii)
$$x = 1, y = -1, z = 1$$

2. (i)
$$x = 2.43$$
, $y = 3.57$, $z = 1.93$

(ii)
$$x_1 = 1, x_2 = 1, x_3 = 1$$

(iii)
$$x = 2, y = 2, z = 2$$
.