Calculus 3

Math 222

Tuesday April 29, 2014 Time: 14:00 - 17:00

Examiner: Dmitry Jakobson Associate Examiner: Vojkan Jaksic

Student name (last, first)	Student number (McGill ID)

INSTRUCTIONS

- 1. Please write your answers clearly in the space provided.
- 2. This exam is a total of 60 marks.
- 3. This is a closed book exam.
- 4. Translation dictionary is permitted.
- 5. Non-programmable calculators are permitted.

This exam comprises the cover page, and 2 pages of questions.

Problem 1 (6 points)

Let $\mathbf{r}(t) = (t, \cos^2 t, \sin^2 t)$.

- i. Find the velocity $\mathbf{r}'(t)$ and the acceleration $\mathbf{r}''(t)$.
- ii. Find the tangential and normal components of the acceleration

Hint: you can use the formulas $\sin(2\alpha) = 2\sin\alpha \cdot \cos\alpha$ and $\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$.

Problem 2 (6 points)

- i. Write the Taylor series about x = 0 of $\ln(1+x)$. You do not need to justify your answer.
- ii. Use part i. to write the Taylor series about x = 0 of $\ln(1+x^3)$.
- iii. Write the Taylor series about x = 0 of $f(x) = \int_0^x \ln(1+t^3)dt$.

Problem 3 (6 points)

Let $f(x, y, z) = x^2 \cos(y) z^3$.

- i. Find the gradient $\nabla f(p)$ at the point $p = (1, \pi, -1)$. In which direction does the function f increase the most?
- ii. Find the directional derivative $D_u f(p)$ where u is the vector (1, 2, 1).
- iii. Let S be the level surface of f passing through $(1, \pi, -1)$. Find an equation for the tangent plane to S at $(1, \pi, -1)$.

Problem 4 (6 points)

Let x, y, z satisfy an equation: $x^2 - y^2 + z^2 - 2z = 4$. Find $\partial z/\partial x$ and $\partial z/\partial y$.

Problem 5 (6 points)

Find all local maxima, local minima, and saddle points of the function

$$f(x,y) = x\cos y - x^3/3$$

in the region $\{(x,y) : |y| < \pi\}$.

Problem 6 (6 points)

Use the method of Lagrange multipliers to find the minimum value of the function

$$f(x,y) = (x^3 + y^3)/3$$

subject to the constraint g(x, y) = xy = 4.

Problem 7 (6 points)

Use polar coordinates to find the volume of the region bounded by the paraboloids $z = 3x^2 + 3y^2$ and $z = 4 - x^2 - y^2$.

Problem 8 (6 points)

Let D be the bounded region of the plane which is enclosed by the curves $y = 0, y = x^2$ and x = 1. Evaluate the following double integral:

$$\iint\limits_{D} x \sin y \ dA.$$

Problem 9 (6 points)

Use spherical coordinates to evaluate the triple integral

$$\iiint\limits_{D} xyz \ dV,$$

where D is the region lying between the spheres of radius $\rho = 2$ and $\rho = 4$, and above the cone $\phi = \pi/3$.

Problem 10 (6 points)

Use the transformation x = u/v, y = v to evaluate the double integral

$$\iint\limits_{D} xy \ dA,$$

where D is the region in the first quadrant bounded by the lines y = x and y = 3x and the hyperbolas xy = 1 and xy = 3.