

# (19) RU (11) 2 039 019 (13) C1

(51) Int. CI.<sup>6</sup> C 03 C 13/02

#### RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

### (12) ABSTRACT OF INVENTION

(21), (22) Application: 5040473/33, 29.04.1992

(46) Date of publication: 09.07.1995

- (71) Applicant: Nauchno-issledovatel'skaja laboratorija bazal'tovykh volokon Instituta problem materialovedenija AN Ukrainy (UA)
- (72) Inventor: Trefilov Viktor Ivanovich[UA], Sergeev Vladimir Petrovich[UA], Makhova Marija Fedorovna[UA], Dzhigiris Dmitrij Danilovich[UA], Mishchenko Evgenij Semenovich[UA], Chuvashov Jurij Nikolaevich[UA], Bocharova Irina Nikolaevna[UA], Gorbachev Grigorij Fedorovich[UA]

O

တ

ത

3

0

ĸ

(73) Proprietor: Nauchno-issledovatel'skaja laboratorija bazal'tovykh volokon Instituta problem materialovedenija AN Ukrainy (UA)

### (54) GLASS FOR FIBER GLASS

(57) Abstract:

FIELD: glass industry. SUBSTANCE: glass has, wt.-% silicon oxide (SiO<sub>2</sub>) 47.5-57.8; aluminium oxide (Al<sub>2</sub>O<sub>3</sub>) 17.1-19; titanium oxide (TiO<sub>2</sub>) 1.2-2; ferric oxide (Fe<sub>2</sub>O<sub>3</sub>) 3.8-8.5; ferrous oxide (FeO) 3.4-7.0; manganese oxide (MnO) 0.11-0.19; calcium oxide (CaO) 6.5-10.8; magnesium oxide (MgO) 2.3-7.5; potassium oxide (K<sub>2</sub>O) 0.8-2.5; sodium

oxide (Na<sub>2</sub>O) 2.2-4.6; sulfur oxide (SO<sub>2</sub>) 0.01-0.20; phosphorus pentoxide ( $P_2O_5$ ) 1.1-2.0; scandium oxide (Sc<sub>2</sub>O<sub>3</sub>) 0.03-1.2; zinc oxide (ZnO) 0.05-1.0. Ratio is AI  $_2O_3$ /(Ca+MgO)<2,0. Stability in 2N HCl (98 C, 3 h) is 98-98.9% in Ca(OH) $_2$  is 991.-99.8% Glass is used production of unbroken and rough fibers. EFFECT: enhanced quality of glass. 2 cl, 4 tbl



# (19) RU (11) 2 039 019 (13) C1

(51) MITK<sup>6</sup> C 03 C 13/02

## РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

### (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 5040473/33, 29.04.1992
- (46) Дата публикации: 09.07.1995
- (56) Ссылки: Авторское свидетельство СССР N 525634, кл. С 03С 13/00, 1975.Авторское свидетельство СССР N 1261923, кл. С 03С 13/06, 1986.
- (71) Заявитель: Научно-исследовательская лаборатория базальтовых волокон Института проблем материаловедения АН Украины (UA)
- (72) Изобретатель: Трефилов Виктор Иванович[UA], Сергеев Владимир Петрович[UA], Махова Мария Федоровна[UA], Джигирис Дмитрий Данилович[UA], Мищенко Евгений Семенович[UA], Чувашов Юрий Николаевич[UA], Бочарова Ирина Николаевна[UA], Горбачев Григорий Федорович[UA]

O

6

0

ത

CI

2

(73) Патентообладатель: Научно-исследовательская лаборатория базальтовых волокон Института проблем материаловедения АН Украины (UA)

### (54) СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА

(57) Реферат:

Использование: для производства непрерывных и грубых волокон. Сущность изобретения: стекло для стекловолокна содержит, в мас. оксид кремния 47,5 57,8 БФ  $SiO_2$ , оксид алюминия 17,1 19 БФ  $Al_2O_3$ , оксид титана 1,2 2 БФ  $TiO_2$ , оксид железа 3,8 8,5 БФ  $Fe_2O_3$ , оксид железа 3,4 7,0 БФ  $FeO_2$ , оксид марганца 0,11 0,19 БФ  $MnO_2$ , оксид

кальция 6,5 10,8 БФ СаО, оксид магния 2,3 7,5 БФ MgO, оксид калия 0,8 2,5 БФ К  $_2$ О, оксид натрия 2,2 4,6 БФ Na  $_2$ О, оксид серы 0,01 0,20 БФ SO $_3$ , оксид фосфора 1,1 2,0 БФ P $_2$ О $_5$ , оксид скандия 0,03 1,2 БФ Sc  $_2$ О $_3$ , оксид цинка 0,05 1,0 БФ ZnO. Соотношение Al  $_2$ O $_3$ /(Ca+MgO)<2,0. Устойчивость в 2N HCI (98°C, 3 ч) 98 98,9% в Ca(OH) $_2$  99,1 99,8% 1 3.п. ф-лы, 4 табл.

Изобретение относится к составам стекол, предназначенных для производства непрерывных и грубых волокон, которые могут быть использованы для получения различных тканей и нетканых материалов, фильтров, для армирования цементных и гипсовых вяжущих, а также полимеров и других целей.

Цель изобретения снижение кристаллизационной способности, удлинение температурного интервала выработки, обеспечение надежности процесса и повышение устойчивости в кислых средах.

В известных составах стекол, применяемых для стекловолокна, содержится  $SiO_2$ ,  $TiO_2$ ,  $Al_2O_3$ ,  $Fe_2O_3$ , FeO, CaO, MgO, MnO,  $K_2O$ ,  $Na_2O$ ,  $P_2O_5$ ,  $La_2O_3$ . Для составления шихты в качестве исходного материала используют андезит, корректирующийся кварцевым песком, мелом, доломитом, содой и трехокисью лантана, а в ряде случаев пиролюзитом [1]

Известен состав стекла, содержащий  $SiO_2$ ,  $Al_2O_3$ ,  $TiO_2$ ,  $Fe_2O_3$ , FeO, MnO, CaO, MgO, K<sub>2</sub>O, Na<sub>2</sub>O, SO<sub>3</sub> [2]

Исходным сырьем для получения минерального волокна этого состава служит порода типа ортоамфиболитов и амфиболитов как однокомпонентная шихта. Однако такое стекло обладает высокой кристаллизационной способностью, низкой кислотоустойчивостью и из-за узкого интервала выработки не может быть использовано в производстве непрерывных и грубых волокон.

Для устранения указанных недостатков и достижения цели предложены составы, конкретные из которых приведены в табл.1.

Технологические свойства расплавов и физико-химические свойства волокон приведены в табл. 2 и 3 соответственно. Как видно из табл.1, предлагаемое стекло отличается от известного более высоким содержанием оксидов алюминия и трехвалентного железа, что приводит к увеличению кислотоустойчивости. Этот эффект усиливают оксиды фосфора и скандия (как элементы III и V групп таблицы Д.И.Менделеева).

Известно, что оксиды железа, кальция и значительно повышают кристаллизационную способность расплава, что отрицательно отражается на процессе волокнообразования (особенно непрерывных волокон). За счет этого интервал выработки волокон сужается, возрастает обрывность и процесс получения волокон неустойчив. Уменьшение указанных оксидов обеспечивает снижение температуры верхнего предела (Тв.п.к.), кристаллизации удлинение температурного интервала выработки и надежность процесса. Введение оксида цинка приводит к образованию с Al<sub>2</sub>O<sub>3</sub> твердого раствора, устойчивого к кислотам. Важным условием является соблюдение соотношения которое должно быть более 1,2, A1 2 3

### CaO+MgO

N

но менее 2,0.

Стекло указанного состава может быть получено как из обычных, используемых в стекловарении исходных компонентов, так и на основе различных природных материалов,

например андезитов, андезитобазальтов, базальтов, диабазов, габбро.

Процесс варки стекла предлагаемого состава осуществляли в печи при температуре 1450°С до получения гомогенного расплава. Формирование волокон происходило устойчиво.

Как следует из табл.3 в сравнении с прототипом, Тв.п.к. предлагаемого состава стекла на 50-80°С ниже, интервал выработки волокна расширен в 6-9 раз, а кислотоустойчивость выше в 2,2-5,3 раза.

Из предлагаемого состава стекла получены также и грубые волокна. Результаты испытаний их физико-химических свойств представлены в табл.4.

Из табл.4 видно, что грубые волокна из стекла предлагаемого состава обладают высокой стойкостью не только к кислотам, но и к насыщенному раствору Ca(OH)<sub>2</sub>, что предопределяет их использование при изготовлении фибробетона.

Ассортимент получаемых волокон (непрерывных и грубых), высокая химическая устойчивость в агрессивных средах дает возможность использовать их для производства тканых нетканых. фильтровальных материалов, армирующих наполнителей композитов, армирования бетонов на основе минеральных вяжущих и др. стойких при эксплуатации в агрессивных средах в химической и других отраслях промышленности, в качестве фильтров грубой, тонкой и сверхтонкой очистки агрессивных сред.

Долговечность тканей, изготовленных из волокна предлагаемого состава превышает долговечность стеклянных тканей примерно в 1,5 раза. Из стекла предлагаемого состава наработаны и испытаны партии непрерывного и грубого волокна в количестве 800 и 1000 кг соответственно.

Физико-химические исследования полученного волокна подтвердили его высокую химическую устойчивость в агрессивных средах.

### Формула изобретения:

1. СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА, включающее  $SiO_2$ ,  $Al_2O_3$ ,  $TiO_2$ ,  $Fe_2O_3$ ,  $FeO_3$ , MnO, CaO, MgO,  $K_2O$ , Na $_2O$  и  $SO_3$ , отличающееся тем, что оно дополнительно содержит  $P_2O_5$ , ZnO и  $SC_2O_3$  при следующем соотношении компонентов, мас.

SiO<sub>2</sub> 47,5 57,8 Al<sub>2</sub>O<sub>3</sub> 17,1 19,0 TiO<sub>2</sub> 1,2 2,0 Fe<sub>2</sub>O<sub>3</sub> 3,8-8,5 FeO 3,4 7,0 MnO 0,11 0,19 CaO 6,5 10,8 MgO 2,3 7,5 K<sub>2</sub>O 0,8 2,5 Na<sub>2</sub>O 2,2 4,6 SO<sub>3</sub> 0,01 0,20 P<sub>2</sub>O<sub>5</sub> 1,1 2,0 SC<sub>2</sub>O<sub>3</sub> 0,03 1,2 ZnO 0,05 1,0

2. Стекло по п.1, отличающееся тем, что отношение

$$1,2 < \frac{Al_2O_3}{CaO+MgO} < 2,0.$$

50

55

60

Компоненты Состав волокна, мас. % 1 2 3 4 5 SiO<sub>2</sub> 56,26 52,40 49,00 57,8 47,5 19,0 Al<sub>2</sub>O<sub>3</sub> 17,20 17,80 18,28 17,1 TiO<sub>2</sub> 1,20 1,26 1,45 1,2 2,0 5,54 5,80 3,8 7,4 Fe<sub>2</sub>O<sub>3</sub> 4,41 5,2 FeO 3,50 3,98 4,20 3,4 0,11 0,15 MnO0,12 0,13 0,18 CaO 6,90 7,30 8,18 7,2 6,75 4,00 2,3 7,5 MgO 5,00 5,40 K<sub>2</sub>O 2,31 1,56 0,90 8,0 1,2 Na<sub>2</sub>O 2,91 2,28 2,31 2,2 3,0 0,05 0,01 0,05 0,10 0.1 SO3 1,45 2,00 1,4 P<sub>2</sub>O<sub>5</sub> 1,10 1,1 0,03 0,75 1,20 0,04 0,5 Sc<sub>2</sub>O<sub>3</sub> 0,50 1,00 0,2 ZnO 0,05 1,0  $Al_2O_3$ 1,58 1,45 1,35 2,0 1,2  $\overline{\text{CaO} + \text{MgO}}$ 

Таблица 2

| Состав,<br>№          | Вязкость, Па <sup>-</sup> с при <sup>о</sup> С |                                  |                                   |                                    |                                     |  |  |
|-----------------------|------------------------------------------------|----------------------------------|-----------------------------------|------------------------------------|-------------------------------------|--|--|
|                       | 1450                                           | 1400                             | 1350                              | 1300                               | 1250                                |  |  |
| 1<br>2<br>3<br>4<br>5 | 510<br>155<br>76<br>710<br>70                  | 940<br>220<br>135<br>1260<br>124 | 1900<br>500<br>246<br>2250<br>220 | 2900<br>1000<br>565<br>4000<br>395 | 1800<br>200<br>1150<br>8600<br>1250 |  |  |

Таблица 3

| Технологические свойст-<br>ва расплавов и волокон           | Состав волокна |           |           |           |           |  |  |
|-------------------------------------------------------------|----------------|-----------|-----------|-----------|-----------|--|--|
|                                                             | 1              | 2         | 3         | 4         | 5         |  |  |
| Температура верхнего предела кристаллизации, Тв.п.к., °С    | 1220           | 1230      | 1250      | 1210      | 1250      |  |  |
| Температурный интервал выработки, °С                        | 1320-1380      | 1300-1370 | 1280-1370 | 1340-1400 | 1290-1370 |  |  |
| Средний диаметр волок-                                      | 9,0            | 8,9       | 9,3       | -         | -         |  |  |
| Предел прочности при<br>растяжении, МПа                     | 2200           | 2380      | 2240      | -         | -         |  |  |
| Потери массы в 2 HCl<br>(90°C,3 ч). мг/5000 см <sup>2</sup> | 324,1          | 388,5     | 789,4     | -<br>Q. 1 | -         |  |  |

Z

 $\Box$ 

20390

9

C

| Свойства волокон                                                                                | Составы стекол |              |                      |
|-------------------------------------------------------------------------------------------------|----------------|--------------|----------------------|
|                                                                                                 | 1              | 2            | 3                    |
| Диаметр, мкм<br>Предел прочности при растяжении,<br>МПа<br>Устойчивость в средах (98°C, 3 ч), % | 160<br>280     | 150<br>300   | 155<br>305           |
| 2NHCI<br>Ca(OH) <sub>2</sub>                                                                    | 98.9<br>99,1   | 98,0<br>99,6 | 97, <b>1</b><br>99,8 |

R □

2039019

C