

Дальневосточный федеральный университет

И.Д.З. № 6

Γ руппа 9121 sp

Держапольский Юрий Витальевич

1.	Исследуйте на непрерывность на указанном множестве $E.\ f(y) = \int\limits_1^\infty \frac{\cos x}{4 + x^y} dx E = (0; \infty)$
2.	Вычислите интеграл $\int\limits_0^\infty x^{2n+1}e^{-a^2x^2}dx$
	$\int_{0}^{\infty} \sin ax$
3.	С помощью дифференцирования по параметру вычислите интеграл. $\int\limits_0^\infty \frac{\sin ax}{x(1+x^2)}dx a>0$
4.	С помощью дифференцирования по параметру вычислите интеграл. $\int\limits_{-\infty}^{\infty}\cos(ax^2+2bx+c)dx$
5.	Считая известным значение интеграла Дирихле, вычислите $\int\limits_{-\infty}^{\infty} \frac{\sin ax}{x} \frac{\sin bx}{x} e^{-cx} dx$

6. Используя значение интеграла Эйлера-Пуассона, вычислите	$\int_{0}^{\infty} \frac{e^{-ax} \sin^3 bx}{x^2} dx$
,)

7. Используя интегралы Лапласа, вычислите
$$\int_{0}^{1} \frac{\ln(1+a^2x^2)}{\sqrt{1-x^2}} \, dx$$

8. Используя интегралы Френеля, вычислите.
$$\int\limits_0^\infty \frac{\sin ax \sin bx}{x^2} \, dx$$

9. С помощью
$$B$$
 и Γ функций Эйлера вычислите
$$\int\limits_0^{\pi/2} \sin^6 x \cos^4 x \, dx$$

10. Используя эйлеровы интегралы, вычислите
$$\int\limits_0^\infty \frac{dx}{\sqrt{1+x^3}}$$