

	Problem 9.3 (Video 9.1, 9.2, 9.3, 9.4 Lecture Problem)
	You measure the sulfate concentration in the local water reservoir over 9 consecutive days and obtain values X_1, \dots, X_9 , which are assumed to be i.i.d. Gaussian. (The units are mg/L and omitted below.) The sample mean is $M_9 = 6.1$ and the sample variance is $V_9 = 0.36$.
	Let W have a t-distribution with 8 degrees-of-freedom. You can assume the following values are available:
	• $F_W(-1.4) = \Phi(-1.3) = Q(1.3) = 0.1$, $F_W(1.4) = \Phi(1.3) = 0.9$
	• $F_W(-1.9) = \Phi(-1.6) = Q(1.6) = 0.05$, $F_W(1.9) = \Phi(1.6) = 0.95$
	• $F_W(-2.3) = \Phi(-2.0) = Q(2.0) = 0.025, \ F_W(2.3) = \Phi(2.0) = 0.975$
	(a) Construct a confidence interval for the mean with confidence level 0.9.
	(b) Is your sample significantly different from the baseline concentration $\mu = 5.4$ at a significance level of 0.05? Justify your approach and support your answer numerically.
	(c) Say you also go out on the $10^{\rm th}$ day and collect measurement $X_{10}=5$. What is the new sample mean M_{10} ?
a) (Mg-tw/2	$n-1\sqrt{\frac{\sqrt{9}}{n}}$, M9+t $_{\alpha\beta}$, n-1 $\sqrt{\frac{\sqrt{9}}{n}}$)
(6.1-1.91	2.36 , 6.1 + 1.9 (0.36)
(5.72,6.4	8)
b) (6.1-2.3 n	$\frac{0.36}{9}$, 6.1 $+ 2.3\sqrt{\frac{0.36}{9}}$
(5.64, 6.9	(56)
c\ \ \ = 9.	Wat 5 = 961+8 = 5.89
C) M10 -	Mq + 5 = 96.1 + 5 = 5.99 10

$$X+V$$
. Determine the LLSE estimator of X given $Y=y$ and the corresponding mean-squared error.

a)
$$\times \text{muse}(y) = E(x(y=y) = \mu x + \rho_{xy} + \frac{\sigma_x}{\sigma_y} (y-My)$$

$$= 1 + (-\frac{1}{2})(\frac{1}{2})(4-2) = |\frac{3}{2} - \frac{1}{4} + \frac{1}{4}$$

$$MSE = (1 - \int_{XY}^{2} 2) = (1 - \frac{1}{4})(1 - |\frac{3}{4}|)$$

My= 1+2 =3

$$= 2 + \frac{300000}{4} (4 - 3)$$

$$= 2 + \frac{1}{4} (4 - 3)$$

 $XLLSE(4) = E(X) + \frac{200 \times 4}{200 \times 4} (4-E(4))$

b)

$$= 2 + \frac{1}{4} (4 - 3) = 2 + \frac{3}{4} - \frac{3}{4} = \frac{1}{4} - \frac{5}{4}$$

$$= \frac{1}{4} - \frac{5}{4}$$

$$= \frac{1}{4} - \frac{5}{4} = \frac{1}{4} - \frac{1}{4} \frac{1}{4} - \frac{1}{4} - \frac{1}{4} = \frac{1}{4} - \frac{$$

$$M_{SE} = -V_{GX} - \frac{1}{100} \times \frac{1}{100} = \frac{1}{100}$$