WHAT IS CLAIMED IS:

1	1. A method of providing supply to a space platform, comprising:
2	launching a supply canister into orbit using a launch vehicle, wherein the supply
3	canister includes at least two docking ports and is adapted to allow for the at
4	least two docking ports to be used simultaneously;
5	docking an intermediate space vehicle to a first docking port of the at least two
6	docking ports while the supply canister is docked to the launch vehicle element
7	at a second docking port of the at least two docking ports, wherein the launch
8	vehicle element is at least a stabilized component of the launch vehicle used to
9	launch the supply canister into orbit;
10	using the intermediate space vehicle to position the supply canister relative to the
11	space platform; and
12	docking the supply canister to the space platform while the intermediate space
13	vehicle is attached to the supply canister.
1	2. The method of claim 1, further comprising a step of pressurizing the
2	supply cargo canister.
_	supply cargo carnstor.
1	3. The method of claim 1, wherein the stabilization provided by the
2	launch vehicle is three-axis stabilization.
1	4. The method of claim 1, further comprising signalling between two
2	docking elements to facilitate a docking of the supply canister to a first of the two
3	docking elements while the supply canister is docked to the second of the two docking
4	elements, wherein such signalling passes through signalling extensions of the supply
5	canister.
•	Cumotor.
1	5. The method of claim 4, wherein the first docking element is the
2	intermediate space vehicle and the second docking element is the launch vehicle element.
1	6. The method of claim 4, wherein the first docking element is the space
2	platform and the second docking element is the intermediate space vehicle.
~	provident and the second docking element is the intermediate space venicle.
1	7. The method of claim 4, wherein the signalling is passive radar.
1	8. The method of claim 4, wherein the signalling is active radar.
-	o. The incured of claim 4, wherein the signaling is active fadar.

1	9. The method of claim 4, wherein the signalling is rendezvous signalling.
1	10. A supply canister, usable in orbit, comprising:
2	an internal space for containing supply materiel; and
3	at least two docking ports adapted to allow for simultaneous docking of two
4	elements,
5	wherein the supply canister relies on a docket element to provide at least one of
6	orbital stability and propulsion from one or both of the docked elements.
1	11. The supply canister of claim 10, wherein the supply canister is an
2	unpressurized canister.
1	12. The supply canister of claim 10, wherein the supply canister is a
2	pressurized canister.
1	13. The supply canister of claim 10, wherein the supply canister has no
2	means for propulsion while in orbit and no means for stabilizing the supply canister
3	against rotation while in orbit and has means for connecting supply canister electrical
4	system with an electrical system of an element docked at a docking port of the supply
5	canister.
1	14. The supply canister of claim 10, wherein the supply canister is
2	approximately cylindrical and the at least two docking ports include one docking port at a
3	first axial location of an approximate cylinder and a second docking port at a second axial
4	location opposite the first axial location.
1	15. The supply canister of claim 10, wherein the supply canister is
2	approximately cylindrical and the at least two docking ports include one docking port at a
3	first axial location of an approximate cylinder and a second docking port at a second axial
4	location opposite the first axial location.
1	16. The supply canister of claim 10, wherein the supply canister is
2	approximately cylindrical and is shaped to support pressurization without concentrated
3	stress points.

1	17. The supply canister of claim 10, wherein the at least two docking ports
2	include a first docking port at a first axial location of an approximate cylinder that is a
3	Cone docking port and a second docking port at a second axial location opposite the first
4	axial location that is a Probe docking port.
1	18. The supply canister of claim 10, further comprising a power
2	subsystem for supplying power to canister components.
1	19. The supply canister of claim 10, further comprising a communication
2	subsystem for communicating with elements docked to the supply canister or elements to
3	be docked to the supply canister.
1	20. The supply canister of claim 10, further comprising a rendezvous
2	subsystem for assisting in automated or semi-automated docking of the supply canister
3	with a docking element
1	21. The supply canister of claim 10, further comprising:
2	a power subsystem for supplying power to canister components;
3	a communication subsystem for communicating with elements docked to the supply
4	canister or elements to be docked to the supply canister; and
5	a rendezvous subsystem for assisting in automated or semi-automated docking of the
6	supply canister with a docking element
1	22. The supply canister of claim 10, wherein the at least two docking ports
2	include a first docking port that is a Cone docking port and a second docking port that is a
3.	Probe docking port, wherein the supply canister is adapted to be docked to an
4	intermediate space vehicle at the Cone docking port and a launch vehicle at the Probe
5	docking port simultaneously.
1	23. The supply canister of claim 10, wherein the at least two docking ports
2	include a first docking port that is a Cone docking port and a second docking port that is a
3	Probe docking port, wherein the supply canister is adapted to be docked to an
4	intermediate space vehicle at the Cone docking port and a space platform at the Probe
5	docking port simultaneously.

24. A supply canister, usable in orbit, comprising:

2	an internal space for containing supply materiel; and
3	at least two docking ports adapted to allow for simultaneous docking of two
4	elements; and
5	pass-through signal means for passing signals between a first element docked to the
6	supply canister and a second element to which the supply canister is to be
7	docked.
1	25. The supply canister of claim 24, wherein the docking elements are an
2	intermediate space vehicle and a launch vehicle element.
1	26. The supply canister of claim 24, wherein the docking elements are a
2	space platform and an intermediate space vehicle.
1	27. The supply canister of claim 24, wherein the signalling is passive
2	radar.
1	28. The supply canister of claim 24, wherein the signalling is active radar.
1	29. The supply canister of claim 24, wherein the signalling is rendezvous
2	signalling.