Verification of KCL for AC Circuits EXP 8 Report

Course No: EEE 164

Experiment No: 08 Department: CSE

Sec: B2

Student ID: 2405103

Name: Kazi Md. Raiyan

Lab Group No: 03

Date of Performance: 12.07.2025

Date of Submission:

Partners' Student ID:

2405104

2405105

2405106

2405107

2405108

1 Objectives

This experiment is designed to:

• Verify KCL for AC circuits.

Upon successful completion of this experiment, we should be able to:

- Construct RLC circuits.
- Understand the validity of analytical methods used in theory.

2 Apparatus

- 1. Function Generator
- 2. Oscilloscope
- 3. Multimeter
- 4. Two 100Ω resistors
- 5. One $120\,\Omega$ resistor
- 6. One $1\,\mu F$ capacitor
- 7. Breadboard

The ratings of the equipment supplied were checked.

3 Experimental Setup

Fig 1: Circuit 1

Fig 2: Circuit 2

4 Procedure

1. The resistance of the resistors was measured with the help of the multimeter and the values were written down the table below.

- 2. The frequency, f of the function generator was set at 1 kHz. The power source was not turned on yet.
- 3. At first, circuit was setup as shown in Fig 1.
- 4. Then the magnitude and phase of the voltage V_{R_3} were determined using the multimeter and the oscilloscope respectively.
- 5. Then the phasor currents $\mathbf{I}_1 = \mathbf{I}_{R_2} = \mathbf{I}_C = \frac{\mathbf{V}_{R_3}}{Z_{RC}}$ and $\mathbf{I}_2 = \frac{\mathbf{V}_{R_3}}{R_3}$ were determined mathematically, where Z_{RC} is the equivalent impedance of R_2 and C.
- 6. Then the circuit was setup as shown in Fig 2.
- 7. Then the magnitude and phase of the voltage \mathbf{V}_{R_1} were determined using the multimeter and the oscilloscope respectively.
- 8. Then the phasor current $\mathbf{I} = \mathbf{I}_{R_1} = \frac{\mathbf{V}_{R_1}}{R_1}$ was determined mathematically.
- 9. Then the phasor voltage V_{R_2} was determined mathematically.
- 10. The steps 3-9 were repeated for 500 hertz and 2 kHz source frequency.
- 11. The phasor values of \mathbf{I} , \mathbf{I}_1 and \mathbf{I}_2 were determined theoretically for the three frequencies and compared to the experimentally found values.

5 Data Collection

Measurements:

$$R_1 = 98.5 \,\Omega$$

$$R_2 = 99 \Omega$$

$$R_3 = 119 \Omega$$

Table:

f(kHz)	$\mathbf{V}_{R_2}(\mathrm{V})$	$\mathbf{V}_{R_3}(\mathrm{V})$	$\mathbf{I}_1(\mathrm{mA})$	$\mathbf{I}_2(\mathrm{mA})$	$\mathbf{V}_{R_1}(\mathrm{V})$	$\mathbf{I}(\mathrm{mA})$	$\mathbf{I}_1 + \mathbf{I}_2(\mathrm{mA})$
0.5							
1							
2							

6 Report