

Predicting Housing Sale Prices

CKME 136 – Capstone Course

Spring/Summer 2017 | William Wong

Introduction

Research Question

How can we predict housing prices as accurately as possible?

- **Dataset:** Understanding the relationships between different variables.
- **Feature Selection:** Selecting a subset of relevant features for use in model construction
- Model Selection: Picking the model that fits the relation between your predictor and response variables. Selecting the model that gives you the best accuracy

Our Dataset

Ames Housing Dataset

Description: Contains the sales of residential properties in Ames, Iowa, during the period from 2006 to 2010.

From: The data was originally collected from Ames City Assessor's Office. Our data was retrieved from Kaggle's competition website.

Ames Housing Data

Response Variable: Sale Price

Ames Housing Data

SalePrice VS Neighborhood

Our Approach

The Plan:

- Step 1: Download the data and uploading it to the R environment.
- Step 2: Explore the structure of the data. Examine the relationships between attributes. Prepare the data for modeling by filling in the NAs, removing outliers and transforming the data.
- Step 3: Select a set of attributes to model our predictions. The models used include decision tree, multiple regression and random forest.
- **Step 4:** Review the results and select the model with the best results.

2. Data cleaning and data

exploration

4. Review the final 3. Attribute results selection and

model

building

1. Acquiring and loading the dataset

Finding the number of NAs in our dataset

There's a total of 19 attributes that have at least one missing value

LotFrontage	Alley	MasVnrType	MasVnrArea	BsmtQual	BsmtCond	BsmtExposure
259	1369	8	8	37	37	38
BsmtFinType1 Bsm	tFinType2	Electrical	FireplaceQu	GarageType	GarageYrBlt	GarageFinish
37	38	1	690	81	81	81
GarageQual G	arageCond	PoolQC	Fence	MiscFeature		
81	81	1453	1179	1406		

Related values?

There won't be a pool quality rating if the house does not have a pool.

These can be filled with "0"s or "None".

>	head(pool	1,5)		
	PoolArea PoolQC			
1	0	<na></na>		
2	0	<na></na>		
	0	<na></na>		
4	0	<na></na>		
5	0	<na></na>		

Real missing values

	LotFrontage	Neighborhood
8	NA	NWAmes
13	NA	Sawyer
15	NA	NAmes
17	NA	NAmes
25	NA	Sawyer
32	NA	Sawyer
43	NA	SawyerW
44	NA	CollgCr
51	NA	Gilbert
65	NA	CollgCr
67	NA	NAmes
77	NA	NAmes
85	NA	Gilbert

Missing values can be filled in with the attribute's average value.

Lot Frontage: Assumed lot frontage is similar within a specific neighborhood. Average lot frontage values were calculated for each neighborhood. Filled in the missing lot frontage values based on the neighborhood is in.

SalePrice Vs GrLivArea

Removing Outliers

- There are 4 houses with an above grade area over 4000 square feet. These houses are significantly larger than the rest of the data set.
- Two of the largest houses are priced at a very low sale price.

Fireplace Quality Example:

	FireplaceQû	Mean.Price	Count [‡]
- 1	Ро	129764.1	20
2	None	141331.5	690
3	Fa	167298.5	33
4	TA	205723.5	313
5	Gd	226351.4	380
6	Ex	337712.5	24

Transforming ordinal data into numeric data

- Houses with a better quality fire place will generally yield a higher selling price.
- We can assign a numeric value to each of the ordinal values to transform them into numeric data.

Rating	Assigned
	Value
None	0
Poor (Po)	1
Fair (Fa)	2
Average (TA)	3
Good (Gd)	4
Excellent (Ex)	5

Transforming nominal data into numeric data

lacksquare

Houses with a paved driveway are sold at a higher price than houses that have a partially paved or nonpaved driveway.

We can transform these variables into binary variables assigning the value 1 for paved and 0 for non-paved or partially paved.

Variable	Assigned Value
Paved Driveway (Y)	1
Non-Paved (N) or Partially	0
Paved (P)	

Paved Driveway Example:

Step 3: Attribute Selection & Model Building

Decision Tree

Description/Attribute Selection

The pricing level attribute was created and we classified each house based on the sale price range they fell into. A decision tree model will be used to predict the pricing level of the house. All attributes will be used in this model.

Price Level	Sale Price Range
Low	Less than \$140,000
Medium	\$140,000 to \$200,000
High	Greater than \$200,000

Evaluation

- Data split into 70/30 training and testing sets.
- Model will be evaluated by accuracy and true positive rate.

Multiple Regression

There will be 3 variations of the multiple regression model. Each variation will run on a different set of attributes to predict the sale price.

- 1. Regression with 10 highest correlated variables
- 2. Regression with all 89 variables
- 3. Regression with stepwise attribute selection

- Data split into 70/30 training and testing sets.
- Model will be evaluated by the root mean square error (RMSE) and coefficient of determination, R².

Random Forest

The random forest model will use all 89 attributes in the dataset to predict sale prices. The number trees in the model is 500. The total number of variables tried at each split is 29.

- Data split into 70/30 training and testing sets.
- Model will be evaluated by the root mean square error (RMSE) and coefficient of determination, R².

Step 4: Review Results

Decision Tree Model

Confusion Matrix

Pricing Levels	Predicted: High	Predicted : Low	Predicted: Medium
Actual: High	99	0	12
Actual: Low	3	144	43
Actual: Medium	27	27	82

Results

Pricing Levels	High	Low	Medium
True Positive	0.8919	0.7579	0.6029
Model Accuracy	0.7437		

Step 4: Review Results

Multiple Regression Model

Residual Plot - Regression Model 2

Residual Plot - Regression Model 3

Results:

Model	RMSE	% of Variance Explained
Linear Regression (with 10 correlated variables)	\$28,781.54	81.58
Linear Regression (with all variables)	\$23,155.12	89.64
Linear Regression (with Stepwise regression)	\$22,697.29	89.88

Step 4: Review Results

Random Forest Model

Residual Plot - Random Forest

Model	RMSE	% of Variance Explained
Random Forest	\$20,365.42	89.22

Model	RMSE	% of Variance Explained
Linear Regression (with 10 correlated variables)	\$28,781.54	81.58
Linear Regression (with all variables)	\$23,155.12	89.64
Linear Regression (with Stepwise regression)	\$22,697.29	89.88
Random Forest	\$20,365.42	89.22

LASSO Model:

Residual Plot - Lasso Model

Results

Model	RMSE (\$)	RMSE (Log)
LASSO	\$19,543.60	0.112658