M. Caramihai, © 2020

. .

STRUCTURI DE DATE & ALGORITMI

CURS 6

۵ ۵

Grafuri (1)

Grafuri

- Definiție: o structura de date formata din noduri si arce ce leaga nodurile intre ele
- → mai **simplu**: modelarea unui set de conexiuni
- Instrument foarte util in modelarea problemelor.
- Sunt compuse din:

□ Arce

Nodurile pot fi considerate localitati.

Arcele reprezinta conexiunile (drumurile) de acces.

Exemplu de graf

Sistem de control al zborului

- ☐ Fiecare nod reprezinta un oras
- ☐ Fiecare arc reprezinta zborul direct dintre doua orase
- ☐ O cerere de zbor direct devine o verificare a existentei unui zbor direct.
- ☐ Fiecarui arc i se poate asocia un "cost" (**graf ponderat**): astfel se poate determina zborul cl mai ieftin intre A si B

Terminologie...

- Un graf este un obiect matematic format din două mulţimi: G
 = (V, E), în care V este o mulţime de vârfuri (noduri), iar E o mulţime de muchii (sau arce).
- O muchie de la varful a la varful b este notata cu perechea ordonata (a, b), daca graful este orientat, si cu multimea {a, b}, daca graful este neorientat.
- Doua varfuri unite printr-o muchie se numesc adiacente. Un drum este o succesiune de muchii de forma

sau de forma

dupa cum graful este orientat sau neorientat.

Exemplu

- □ Graf neorientat
 - ☐ Un graf neorientat este specificat prin perechea (V,E), asa cum a fost definita anterior

$$V = \{a, b, c, d, e, f\}$$

$$E = \{\{a,b\}, \{a,c\}, \{b,d\}, \{c,d\}, \{b,e\}, \{c,f\}, \{e,f\}\}\}$$

- 1. Daca A si B sunt legate printr'un arc, ele vor fi adiacente
 - □ A si B sunt varfurile arcului {A, B}
- 2. Daca un arc e este conectat la v, atunci se poate spune ca v este incident la e. Reciproc, arcul e este incident la v.

$$\{\mathbf{v_1}, \ \mathbf{v_2}\} = \{\mathbf{v_2}, \ \mathbf{v_1}\}^*$$

Graf orientat: arcele sunt directionate. Acest lucru presupune ca $\{v_1, v_2\} \neq \{v_2, v_1\}$. Grafurile orientate sunt desenate cu ajutorul unor sageti:

- □ Arcul (u, v) este incident din (pleaca din) u si este incident in (intra in) v.
- ☐ Gradul unui varf deg (v) intr-un graf neorientat, reprezinta numarul muchiilor incidente in acel varf. Un varf izolat este un varf avand gradul 0.
- ☐ Gradul interior (sau gradul de intrare) indeg (v) a unui vârf a unui graf orientat este egal cu numărul arcelor care intră în acel vârf. Un vârf cu gradul interior 0 este un vârf de ieşire (sursă).
- Gradul exterior (sau gradul de iesire) outdeg (v) a unui varf a unui graf orientat este egal cu numarul arcelor care ies din acel varf. Un varf cu gradul exterior 0 este un varf de intrare (pu). Ordinul unui graf este egal cu numarul de varfuri al grafului: $\mathbf{n} = |\mathbf{v}|$.

Dimensiunea unui graf este egală cu numărul de muchii (arce) ale grafului: m = |E|.

- □ Drum:
 - □ Elementar: noduri distincte
 - □ Ciclu: nod initial ≡ nod final
 - □ Bucla: ciclu de lungime 1
- Drum Hamiltonian: drum elementar ce trece prin toate varfurile grafului
- □ Drum Eulerian: drum elementar ce trece prin toate varfurile grafului o singura data

- Un *drum* de lungime p intre două varfuri a si b este o succesiune de varfuri : \mathbf{v}_0 , \mathbf{v}_1 , ..., \mathbf{v}_p , cu $\mathbf{v}_0 = \mathbf{a}$ si $\mathbf{v}_p = \mathbf{b}$ si $\{\mathbf{v}_{i-1}, \mathbf{v}_i\} \in \mathbf{E}$ pentru i=1:p. Drumul contine atat arcele $(\mathbf{v}_0, \mathbf{v}_1)$, ..., $(\mathbf{v}_{p-1}, \mathbf{v}_p)$ cat si nodurile \mathbf{v}_0 , ..., \mathbf{v}_p . Daca exista un drum de la \mathbf{a} la \mathbf{b} , atunci \mathbf{b} este *accesibil* din \mathbf{a} $(\mathbf{a} \rightarrow \mathbf{b})$.
- Un *drum elementar* intr-un graf orientat are toate nodurile de pe el distincte. Un *ciclu* este un drum $(\mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_p)$ în care $\mathbf{v}_0 = \mathbf{v}_p$. O *bucla* (\mathbf{a}, \mathbf{a}) este un ciclu de lungime 1. Un *ciclu elementar* are toate nodurile distincte (exceptand varful de plecare) si nu contine bucle. Un *graf aciclic* (*padure*) nu contine cicluri.

- Un graf neorientat este conex, dacă oricare două vârfuri pot fi unite printr-un drum. Un graf conex aciclic este arbore liber.
- Componentele conexe ale unui graf neorientat sunt clasele de echivalenţă ale varfurilor prin relaţia "este accesibil din". Un graf neorientat este conex, dacă are o singură componentă conexa.
- □ Un graf orientat este *tare conex* daca, pentru oricare două vârfuri a şi b, a este accesibil din b şi b este accesibil din a.
- ☐ Graful $G' = (V', E') \subseteq G$ este *subgraf* al grafului G = (V, E), dacă $V' \subseteq V$ și $E' \subseteq E$.
- □ Subgraful indus de multimea de vârfuri $V' \subseteq V$ este graful: G' = (V', E') în care: $E' = \{(u, v) \in E : u, v \in V'\}$
- ☐ Graful G' = (V, E') este un graf partial (sau subgraf de acoperire) al grafului G = (V, E) daca $E' \subseteq E$.

- Intr-un graf bipartit, multimea varfurilor \mathbf{v} se partiţionează $\mathbf{v} = \mathbf{v}_1 \vee \mathbf{v}_2$, $\mathbf{v}_1 \wedge \mathbf{v}_2 = \emptyset$ astfel încat $(\mathbf{u}, \mathbf{v}) \in \mathbf{E} \Rightarrow \mathbf{u} \in \mathbf{V}_1$, $\mathbf{v} \in \mathbf{V}_2$ sau $\mathbf{u} \in \mathbf{V}_1$, $\mathbf{v} \in \mathbf{V}_2$.
- Dentru un graf neorientat cu m muchii: $\sum_{\mathbf{v} \in \mathbf{v}} \mathbf{deg}(\mathbf{v}) = 2\mathbf{m}$
- Intr-un graf orientat cu m arce $\sum_{v \in V} in deg(v) = \sum_{v \in V} out deg(v) = m$
- □ Intr-un graf G, următoarele conditii sunt echivalente:
 - ☐ **G** este conex aciclic
 - ☐ G este aciclic maximal (prin adaugarea unei muchii apare un ciclu)
 - ☐ G este *conex minimal* (prin stergerea unei muchii graful isi pierde conexitatea).

Graful social (1)

☐ Un **GS** contine relatii de prietenie (muchii) intr'un grup de n persoane (varfuri)

Observatie: o relatie de prietenie este simetrica → 2 varfuri ce nu sunt legate prin muchii sunt dusmani

Probleme

- 1. In raport cu graful:
 - □ Sunt 2 personae conectate
 - □ Care este ciclul de prieteni?
 - Care este cel mai mare ciclu de prieteni?
- 2. In raport cu distanta
 - □ Care este distanta dintre persoana A si persoana B?
 - □ Care este distanta medie intre 2 personae din retea?
 - □ Care este diametrul retelei (= distanta cea mai mare dintre 2 noduri?)

Graful social (2)

Provocari:

- Analiza de centralitate (i.e. "cea mai importanta persoana din retea")
- Pozitia / rolul unei persoane in grup
- Dinamica culturala a grupului (prin analiza difuzarii informatiei in cadrul grupului)

Social Graphs

The Pattern of Social Relationships in Social Networks

Preluat dupa: Social Networks and Recommender Systems:
A World of Current and Future Synergies
Kanna Al Falahi Nikolaos Mavridis Y. Atif, 2014

Reprezentari (1)

Varfurile *a* si *c* sunt *adiacente*; varfurile *f* si *g* nu sunt adiacente.

Varful b si arcul (b, g) sunt *incidente*; Varful e si arcul (d, g) nu sunt incidente. *Vecinatatea* varfului b este setul $N(b) = \{d, e, g\}$. *Gradul* nodului b este b (deg(b) = b).

Reprezentari (2)

Intr'un graf neorientat, arcele sunt *perechi neordonate* (v, w).

Cu alte cuvinte (a, c) si (c, a) sunt exprimari ale unui aceluiasi arc (nu exista determinare a sensului).

Reprezentari (3)

- □ Intr'un graf orientat, arcele reprezinta *perechi ordonate* (*v*, *w*).
- \square Cu alte cuvinte, arcele (v, w) si (w, v) sunt diferite.
- □ Arcul (*a*, *c*) este orientat de la a la c.
- \square Nodul a este **originea** lui (a, c); nodul c este **destinatia** lui (a, c).

Reprezentari (4)

Un drum:

 $P = (v_0, v_1, ..., v_k)$ a.i., pentru $1 \le i \le k$, arcele $(v_{i-1}, v_i) \in E$.

Drumul *P* este *simplu* daca nici un nod nu apare de mai multe ori pe drumul *P*.

Reprezentari (5)

 $P_1 = (g, d, e, b, d, a, h)$ nu este simplu.

 $P_2 = (f, i, c, j)$ este simplu.

Reprezentari (6)

Un *ciclu* este o secventa de noduri:

$$C = (v_0, v_1, ..., v_{k-1})$$
 a.i.
pentru $0 \le i < k$, arcele
 $(v_i, v_{(i+1) \mod k}) \in E$.

Ciclul C este simplu daca drumul $(v_0, v_1, ..., v_{k-1})$ este simplu.

 $C_1 = (a, h, j, c, i, f, g, d)$ este simplu.

 $C_2 = (g, d, b, h, j, c, i, e, b)$ nu este simplu.

Reprezentari (7)

Un graf \mathring{G} este **conex** daca exista un drum intre oricare doua noduri din G.

Componentele conexe ale unui graf sunt date de subgrafurile sale conexate maximal.

Reprezentari (8)

Un *arbore* este un graf conexat si fara cicli.

O *padure* este un graf fara ciclii. Arborii reprezinta elementele conexe ale unei paduri.

Reprezentarea grafurilor

- Exista doua metode uzuale de reprezentare a grafurilor. Ambele reprezinta setul de arce / noduri – dar in forma diferite.
 - Matricea de adiacenta: se utilizeaza o matrice 2D pentru reprezentarea grafului
 - Lista de adiacenta: se utilizeaza un vector 1D de liste inlantuite

Matricea de adiacenta (1)

	a	b	c	d	e	
a	0	0	1	1	1	
b	0	0	0	0	0	
c	1	0	0	0	1	
d	1	0	0	0	1	
e	1	0	1	1	0	

Reprezentare

$$MA[i][j] = \begin{cases} 1 & dacă & (i,j) \in E \\ 0 & dacă & (i,j) \notin E \end{cases}$$

Reprezentarea prin *matrice de adiacenţe* asigură o simplitate a reprezentării, dar utilizează în mod ineficient memoria (consumul de memorie este $O(n^2)$ Algoritmii dezvoltaţi au în general complexitate $O(n^2)$.

Matricea de adiacenta (2)

Lista de adiacenta (1)

Fiecarui varf i se asociază o lista de succesori (sau predecesori).

Graful va fi reprezentat printr-un tablou de pointeri la listele de succesori (sau predecesori) ai fiecarui varf.

Lista de adiacenta (2)

Analiza temporala

Lista de adiacenta

- Parcurgerea varfurilor: O(n), n = numar de varfuri
- Parcurgerea muchiilor: O(m), m = numar muchii

Matrice de adiacenta:

- Parcurgerea varfurilor: O(n), n = numar de varfuri
- □ Parcurgerea muchiilor: O(m), m = numar muchii

Exemplu (1)

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	0	0	1	0
3	0	1	0	0	1	1	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	1	0	0	0	0	1	0	0	0
8	1	0	1	0	0	0	0	0	0	1
9	0	1	0	0	0	0	0	0	1	0

Exemplu (2)

Liste adiacente vs. matrici adiacente

- ☐ Liste adiacente (LA)
 - □ Mai compacte decat MA daca graful are mai putine arce
 - □ Necesita mai mult timp de identificare a existentei unui arc.
- □ Matrici adiacente (MA)
 - ☐ Totdeauna necesita un spatiu n²
 - ☐ Poate conduce la necesitatea unui spatiu mare de memorie
 - □ Necesita putin timp de identificare a existentei unui arc

Tipuri de *paths*

- ☐ Un drum este **simplu** daca si numai daca nu intalneste un nod decat o singura data.
- □ Un drum este **ciclic** daca si numai daca $v_0 = v_k$
 - Inceputul si sfarsitul drumului sunt pe un acelasi nod
- Un drum contine un ciclu daca si numai daca un nod apare de doua sau mai multe ori.

Exemplu

Exista drumuri simple?

Exista cicluri?

Ce reprezinta lungimea unui drum?

- 1. {a,c,f,e}
- 2. {a,b,d,c,f,e}
- 3. {a, c, d, b, d, c, f, e}
- 4. {a,c,d,b,a}
- 5. {a,c,f,e,b,d,c,a}

Explorarea grafurilor

- Un exemplu
 - ☐ Fie o reprezentare de tip *graf* si un nod **s** in cadrul acestui graf
 - ☐ Sa se gaseasca toate drumurile de la nodul **s** la celelalte noduri
- Explorarea (traversarea) unui graf: o metoda sistematica de parcurgere, prin examinarea muchiilor si varfurilor. O traversare eficienta are loc în timp liniar. Metode:
 - ☐ Traversarea în latime Breadth-First Search (BFS) permite calculul distantei (in nr muchii) de la sursa la fiecare varf
 - ⇒Gasirea celui mai scurt drum intr'un graf neponderat
 - ⇒Pentru orice varf **v**, accesibil din sursa **s**, calea in arbore corespunde celui mai scurt drum de la **s** la **v**.
 - ⇒Descoperit in '50 de E. F. Moore
 - □ Traversarea în adancime Depth-First Search (DFS)
 - ⇒Sortare topologica
 - ⇒Gasirea componentelor puternic interconectate
 - ⇒Determina daca un graf este conex

BFS si problema drumului minim

- ☐ Fie un nod sursa s; BFS va vizita celelalte noduri ale grafului pe o distanta crescatoare pornind din s. In acest fel, BFS va descoperi caile ce pornesc din s catre alte noduri.
 - Ce se intelege prin distanta? Numarul de arce de pe un drum ce porneste din s.

Exemple

Fie s=nod 1

Noduri la distanta 1? 2, 3, 7, 9

Noduri la distanta 2? 8, 6, 5, 4

Noduri la distanta 3?

Algoritmul BFS

```
Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
1. for each vertex v
        do flag[v] := false;
3. Q = \text{empty queue};
4. flag[s] := true;
5. enqueue(Q, s);
6. while Q is not empty
7.
       do v := dequeue(Q);
8.
           for each w adjacent to v
9.
              do if flag[w] = false
                    then flag[w] := true;
10.
11.
                          enqueue(Q, w)
```

Exemplu (1)

Lista de adiacente

Tabla de vizitare (T/F)

0	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F
9	F

 $Q = \{ \}$

Initializare Q vid

Initializare tabla (totul False)

Exemplu (2)

Lista de adiacente

Tabla de vizitare (T/F)

_		
	0	F
	1	F
	2	T
	3	F
	4	F
	5	F
	6	F
	7	F
	8	F
	9	F

$$\mathbf{Q} = \{ 2 \}$$

Se pune sursa 2 in coada.

Flag faptul ca 2 a fost vizitat.

Exemplu (3)

Lista de adiacente

Tabla de vizitare (T/F)

0	F
1	Т
2	Т
3	F
4	Т
5	F
6	F
7	F
8	Т
9	F

$$Q = \{2\} \rightarrow \{8, 1, 4\}$$

Dequeue 2.

Plasarea tuturor vecinilor lui 2 nevizitati in coada

Marcare vecini vizitati.

Exemplu (4)

Tabla de vizitare (T/F)

0	T
1	T
2	T
3	F
4	T
5	F
6	F
7	F
8	T
9	T

Se marcheaza noii vecini vizitati.

Dequeue 8.

- -- Se pun toti vecini nevizitati ai lui 8 in coada.
- -- 2 nu mai este pus in coada, el a fost deja vizitat!

 $\mathbf{Q} = \{ 8, 1, 4 \} \rightarrow \{ 1, 4, 0, 9 \}$

Exemplu (5)

Lista de adiacente

Tabla de vizitare (T/F)

0	T
1	T
2	T
3	T
4	T
5	F
6	F
7	T
8	T
9	T

 $\mathbf{Q} = \{ 1, 4, 0, 9 \} \rightarrow \{ 4, 0, 9, 3, 7 \}$

Se marcheaza noii vecini vizitati.

Dequeue 1.

- -- Se pun toti vecini nevizitati ai lui 8 in coada.
- -- Numai nodurile 3 si 7 nu au fost vizitate acum.

Exemplu (6)

Dequeue 4.

-- 4 nu are vecini nevizitati!

Exemplu (7)

0	T
1	T
2	Т
3	Т
4	Т
5	F
6	F
7	T
8	T

Dequeue 0.

-- 0 nu are vecini nevizitati!

Exemplu (8)

Vecini

Lista de adiacente Tabla de vizitare (T/F)

0	Т
1	Т
2	Т
3	Т
4	Т
5	F
6	F
7	Т
8	Т
9	Т

$$\mathbf{Q} = \{ 9, 3, 7 \} \rightarrow \{ 3, 7 \}$$

Dequeue 9.

-- 9 nu are vecini nevizitati!

Exemplu (9)

Lista de adiacente Tabla de vizitare (T/F)

0	T
1	T
2	T
3	T
4	T
5	T
6	F
7	T
8	T
9	T

Dequeue 3.

-- Vecinul 5 este pus in coada.

Se marcheza nodul 5 vizitat

Exemplu (10)

Lista de adiacente Tabla de vizitare (T/F)

	0	T
	1	Т
	2	Т
	3	Т
	4	Т
	5	Т
	6	Т
	7	Т
	8	Т
	9	Т
-		

 $\mathbf{Q} = \{7, 5\} \rightarrow \{5, 6\}$

Dequeue 7.

-- Vecinul 6 este pus in coada.

Se marcheaza nodul 6 vizitat.

Exemplu (11)

Dequeue 5.

-- nu exista vecini nevizitati ai lui 5.

Exemplu (12)

Dequeue 6.

-- nu exista vecini nevizitati ai lui 6.

Exemplu (13)

 $Q = \{ \}$

STOP!!! Q este gol!!!

Lista de adiacente Tabla de vizitare (T/F)

0	Т
1	Т
2	Т
3	Т
4	T
5	Т
6	T
7	T
8	Т
9	Т

Ce se observa?

Exista un drum de la sursa nod 2 la toate drumurile din graf.

Sortare topologica

- □ Intr'un graf orientat, prezenta unui arc (**u,v**) poate fi privita ca o relatie de precedenta (i.e. **u** precede pe **v**)
- Sortarea topologica a unui graf orientat aciclic reprezinta o ordonare liniara de varfuri in care u precede v
- Un algoritm de sortare topologica (d.e. AST) porneste dintr'un varf ce nu este precedat de un altul (i.e. are grad interior nul)

Alocarea de timp (1)

```
□ In cazul listei de adiacenta
      □ n = numar de noduri m = numar de arce
Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
    for each vertex v
       do flag[v] := false;
3. Q = \text{empty queue};
4. flag[s] := true;
5. enqueue(Q, s);
6. while Q is not empty
      do v := dequeue(Q);
8.
          for each w adjacent to v
9.
              do if flag[w] = false
                   then flag[w] := true;
10.
                        enqueue(Q, w)
11.
```

$$O(n + m)$$

Alocarea de timp (2)

☐ Fiind dat un graf cu m arce, care este gradul maxim?

$$\Sigma_{\text{nod } v} \text{ deg(v)} = 2\text{m}$$

☐ Timpul total de rulare pentru bucla *while* este:

$$O(\Sigma_{\text{nod } v} (\text{deg}(v) + 1)) = O(n+m)$$

Alocarea de timp (3)

```
□ In cazul matricei de adiacenta
        □ n = numar de noduri m = numar de arce
Algorithm BFS(s)
                                                                 O(n^2)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
    for each vertex v
2.
        do flag[v] := false;
                                                             Gasirea tuturor nodurilor
  Q = \text{empty queue};
                                                             adiacente ale lui v necesita
4. flag[s] := true;
                                                             checking pentru toate
    enqueue(Q, s);
                                                             elementele din linie. Asta
    while Q is not empty
                                                             presupune un timp linear O(n).
7.
      do v := dequeue(Q);
                                                             Prin insumarea tuturor
8.
          for each w adjacent to v \leftarrow
                                                             iteratiilor timpul total va fi O(n<sup>2</sup>).
9.
             do if flag[w] = false
                   then flag[w] := true;
10.
11.
                        enqueue(Q, w)
```

Astfel, cu matricea de adiacenta, BFS este $O(n^2)$ independent de numarul de arce m. Cu lista de adiacenta, BFS este O(n+m); daca $m=O(n^2) \rightarrow O(n+m)=O(n^2)$.

Aplicatii ale BFS

- O utilizare frecventa consta in gasirea componentelor conectate ale unui graf.
 - □ Drumul cel mai scurt dintre 2 noduri
 - □ Retele sociale: identificarea distantei k intre 2 persoane (k = numarul de nivele)
 - □ Navigare GPS: identificarea vecinatatilor
 - □ Identificarea variantei corecte (cea mai apropiata) intr'un spelling: d.e. readed → reader