获得的答案

Incompressible strings:

Let w_i be a string. If w_i doesn't have any description shorter than itself then w_i is incompressible.

Now we have to show that set of incompressible strings is un-decidable.

Let A be the set of incompressible strings and assume the contradiction A is decidable.

We construct a machine M which enumerates A.

Enumeration: $f: A \rightarrow N$ such that f(w1) = 1, f(w2) = 2, f(w3) = 3... where first, second, and third shortest strings are respectively w1, w2, & w3.

Since A reaches infinite there is a string $w_i \in A$.

Define a Turing machine T which computes w_i incompressible string of length n

T =" on input n

1. Returns the first string w_i that M enumerates of length n.

2. If
$$K(\langle T, n \rangle) = c + \log(n)$$
. For any constant c

Then we find n such that

$$|w_i| = n > c + \log(n)$$

The string w_i is shorter description on $\langle M', f(w_i) \rangle$. Where M' is a machine, $f(w_i)$ is input and output as w_i .

Run machine M each string in lexicographic order from and output the same from M.

It contradicts that w_i is compressible. Therefore our assumption that "A is decidable" is wrong. So for A set of incompressible strings A is un-decidable.