Computer Science & IT

Discrete Mathematics

Graph Theory

Lecture No. 08

Planar graph

Topics to be Covered

Welsh Powell's Algorithm

Vertex Coloring and Chromatic Number

Topic: Vertex coloring

An assignment of colors to the vertices of graph G, such that no two adjacent vertices of the graph have the same color is called vertex coloring of graph G.

Topic: Chromatic number

Mo two vertices of adjacent have color.

Minimum number of colors needed for the vertex coloring of graph G is called chromatic number of graph G,

It is denoted by $\chi(G)$.

while
$$\frac{1}{2}$$
 white $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Topic: K-colorable vs K-chromatic

* K-colorable *

For a graph on if there exist a vertex coloring of graph of that uses at most k'- colors, then graph will be called k-colorable"

and if graph on is K-colorable. then $\chi(G) \leq K$

K-Chromatic

, for a graph G, if Chromatic number at graph Grisk' then graph is called K-chromatic

if graph G is K-chromatic
then $\chi(G) = K$

Topic: Four-Color Theorem

Every planar graph G is four colorable.

For any planar graph G, $\chi(G) \le 4$

Planar.
$$X(\omega) \leq y$$
 $X(k_1)=1$
 $X(k_2)=2$
 $X(k_3)=3$
 $X(k_1)=y$
 $X(k_2)=y$
 $X(k_3)=3$
 $X(k_1)=y$
 $X(k_2)=y$
 $X(k_3)=y$
 $X(k_3)=y$
 $X(k_1)=y$
 $X(k_2)=y$
 $X(k_3)=y$
 $X(k_3)=y$

Note: For any graph G, $\chi(G) \leq \Delta(G) + 1$

$$\frac{2B}{2R}$$

$$\frac{3R}{3B}$$

$$\frac{3R}{R^2}$$

$$\frac{3R}$$

Note:

Chromatic number of graph Gr Can be I'

if and only if graph Gr is a NULL graph is present in the graph.

Note: If graph Gr is not a NULL graph.

then $\chi(\omega) \geq 2$

Note: In a graph G, $\chi(G) \geq S(G)$

the Chromatic $\mathcal{B}_{\mathcal{A}}$ Find 3-color + 10lor 2 color + 1 color X(W4)-4 $\chi(W_5) = 2 + 1$

chromatic number of Complete bipartite graph Kmin the Gj. Km, n X(Km,n) - 2 ssign one Glor assign some other Glor all vertices of Set V_2 Assign One Glor

for any bi-partite graph GI, with at least one edge Note: X (Bipartite grouph) = 2 Bipartite graphs are also known as bi-Glorable grouph If Chromatic number of a grouph Gris 2; then Gris a bipartite grouph. ie. if $\chi(\sigma)=2$, then on is bartile graph

In a grouph Ginifall the cyles are of even length Note1 then $\chi(G_1) = 2$ If $\chi(G_1) = 2$, then graph on is a bi-partite graph Note 2. In a graph G (Not NULL graph) If all the cycles Note 3. are al even length than graph or is a bipartite graph Every toerhis a hipartite graph, and hence chromatic rumber al every toer is of Note 4

defined with n-vertices 18 graph (n-1) vertices, not adjacent to each other, but all (N-1) vertices are adjacent to hub vertex One hub vertex Stangraph with n-vertices X (Star-graph With N-vertice) = 2

the chromatic number of the Pollowing graph VyBlue) V5 (Red) G We can Color graph or using 2' Glors
i Gi is 2-Glorable, or $\chi(\sigma) \leq 2$ G is not a NULL graph i. $\chi(G) \geq 2 - eq^{h}(2)$

Topic: Welsh Powell's Algorithm

It is a greedy algorithm, oi Need hot produce optimal result

It is used to check the upper bound on chromatic number of a graph.

- Arrange the vertices of the graph in descending order of their degrees.
- 2. If two or more vertices are having the same degree then use alphanumeric order.
- Assign the colors to the vertices in decreasing order of their degrees such that no two adjacent vertices have the same color.
- 44. If Welsh Powell's algorithm uses (m) colors for a graph G then χ(G)≤m) { i.e. G is M-Gloroble?

Topic: Welsh Powell's Algorithm

Welsh Powell's algorithm uses two Colors.

$$\chi(c_1) \geq 2 - eq^2$$

Topic: Welsh Powell's Algorithm

Topic i traisii i ottai s / iigaritii ii	
of Find the horal Colors used of Pollowing graph Using Welsh Powell's algo.	
Using Welsh towell's algo.	same degree s'humenis
VI Vertex a b C d	e f
b a Color C1	
c/e f/f c/e c/e c/e	
SHelsh Powell User (have Color For
(Nelsh Powell Uses (1) bi-partite graph need n	at Produce Dational

number of Wood required

Edge Coloring: An assignment of Colors to the edges of the graph such that no two adjacent edges of the graph are Colored using same Golor, is 'edge coloring' of the graph.

2 mins Summary

Topic

Vertex Coloring and Chromatic Number

Topic

Welsh Powell's Algorithm

THANK - YOU