Point out the difference between one-tail and twotail tests. Briefly explain how a statistical hypothesis is tested. [8,7] [This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 5539

Unique Paper Code : 2372012401

. Name of the Paper : Sampling Distributions

Name of the Course : B.Sc. (Hons.), Statistics

(NEP-UGCF)

Semester : IV

Duration: 3 Hours Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll. No. on the top immediately on receipt of this question paper.
- 2. Attempt six questions in all by selecting three questions from each section.
- 3. All questions carry equal marks.
- 4. Use of simple calculator is allowed.

SECTION I

- 1. (a) If X is a chi-square variate with n d.f., then prove that for large n, $\sqrt{2X} \sim N(\sqrt{2n}, 1)$
 - (b) Let t has Student's t-distribution with 2 d.f.. Find the probability $P[t \ge 2]$.
 - (c) X is a F-variate with 2 and n ($n \ge 2$) d.f.. Find the probability $p = P[F \ge k]$ and deduce the significance level of F corresponding to the significance level of probability p.

[5, 5, 5]

- 2. (a) Let $X_1, X_2, ..., X_n$, be a random sample from $N(\mu, \sigma^2)$, and k be a positive integer. Find $E[S^{2k}]$. In particular, find $E[S^2]$ and $V[S^2]$.
 - (b) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$.

 $n\lambda$ if and only if each X_i is exponential with parameter λ . [8,7]

- 8. (a) Explain the term Sampling distribution and standard error of a statistic.
 Derive the expression for the standard error of
 - (i) the sample mean of a random sample of size n from a population having finite population variance σ^2
 - (ii) the difference of means of two independent random samples of size n_1 and n_2 from two populations having finite variances of σ_1^2 and σ_2^2 respectively.
 - (b) What are the two types of errors that arise in testing of hypothesis?

- (b) Define convergence in law, convergence in probability and convergence with probability one.
 State the relationship between convergence in probability and convergence with probability one and prove it.
- 7. (a) Let $X_1, X_1, ..., X_{2n-1}$ be an odd -size random sample from a $N(\mu, \sigma^2)$ population.

Find p.d.f. of the sample median and show that it is symmetric about μ and has the mean μ .

(b) Let $X_1, X_1, ..., X_n$ be a random sample from a population with continuous density. Show that $Y_1 = Min(X_1, X_2, ..., X_n)$ is exponential with parameter

Let \overline{X} and S^2 be the sample mean and sum of squares of the deviations from the mean respectively. Let X' be one more observation independent of previous ones. Find the Sampling distribution of

$$U = \frac{X' - \overline{X}}{S} \left[\frac{n(n-1)}{n+1} \right]^{\frac{1}{2}}$$

[8, 7]

- 3. (a) Define Student's t-statistic and Fisher's t-statistic.

 Show that Student's t-statistic may be regarded as a particular case of Fisher's t-statistic. Obtain the p.d.f. of Student's t-statistic.
 - (b) Find the p.d.f. of $\chi_n = +\sqrt{\chi_n^2}$ and $\mu_r = E[\chi_n^r]$, where χ_n^2 is a χ^2 -variate with n d.f.

Hence, establish that for large n, $E[\chi_n^2] = [E(\chi_n)]^2$

[8, 7]

4. (a) Let $X \sim F_{m,n}$. Find the mean, and mode of X. Also, find the distribution of

$$U = \frac{mX}{n + mX}$$

(b) Show that a χ^2 -test involving two sample proportions is equivalent to a large sample significance test of difference in the proportions.

[8,7]

SECTION II

5. (a) State and prove Chebychev's Inequality. Use Chebychev's inequality to show that for n>36, the

probability that in n throws of a fair die, the number of sixes lies between $\frac{n}{6} - \sqrt{n}$ and $\frac{n}{6} + \sqrt{n}$ is at least 31/36.

- (b) Let $\{X_n\}$ be a sequence of mutually independent random variables such that: $X_n = \pm 1$ with probability $\frac{1-2^{-n}}{2}$ and $X_n = \pm 2^{-n}$ with probability 2^{-n-1} . Examine whether the W.L.L.N. holds for the sequence $\{X_n\}$. [8,7]
- (a) Show that the central limit theorem holds for the sequence $\{X_k\}$ of independent random variables defined as $P[X_k=0]=1-k^{1-2\alpha}$, $P[X_k=\pm k^{\alpha}]$ $=\frac{1}{2}k^{-2\alpha} \text{ if } \alpha < \frac{1}{2}.$

P.T.O.