### Каким из трех алгоритмов следует начать решение исходной задачи?

- а) прямым симплекс-алгоритмом
- б) двойственным симплекс-алгоритмом
- в) двухэтапным симплекс-алгоритмом

$$-x_{2} \to \min$$

$$x_{1} + x_{2} \le 2$$

$$x_{1} + x_{2} \ge 1$$

$$x_{1} - x_{2} \le -1$$

$$x_{1} - x_{2} \le 1$$

$$x_{1}, x_{2} \ge 0$$

### Каким из трех алгоритмов следует начать решение исходной задачи?

- а) прямым симплекс-алгоритмом
- б) двойственным симплекс-алгоритмом
- в) двухэтапным симплекс-алгоритмом

$$2x_1 + x_2 \rightarrow \max$$

$$x_1 + x_2 \leq 4$$

$$x_1 - x_2 \leq 0$$

$$x_2 \leq 5$$

$$x_1 \leq 4$$

$$x_1, x_2 \geq 0$$

### Каким из трех алгоритмов следует начать решение исходной задачи?

- а) прямым симплекс-алгоритмом
- б) двойственным симплекс-алгоритмом
- в) двухэтапным симплекс-алгоритмом

$$2x_{1} + 3x_{2} \rightarrow \min$$

$$-2x_{1} + x_{2} \le 2$$

$$5x_{1} - 4x_{2} \le 40$$

$$x_{1} - 2x_{2} \ge 4$$

$$-5x_{1} + 3x_{2} \le 15$$

$$x_{1}, x_{2} \ge 0$$

Дана транспортная задача линейного программирования (возможности поставщиков и потребности потребителей заданы справа и внизу матрицы) в терминах затрат Оцените план решения задачи методом потенциалов, указав суммарные затраты на перевозку.

|           | $b_1 = 4$           | $b_2 = 4$  |
|-----------|---------------------|------------|
|           | 1                   | 3          |
| $a_1 = 5$ | $x_{12} =$          | $x_{12} =$ |
|           | 4                   | 5          |
| $a_2 = 3$ | $\mathbf{x_{22}} =$ | $x_{22} =$ |

Дана транспортная задача линейного программирования в терминах полезности (возможности поставщиков и потребности потребителей заданы справа и вверху матрицы)

|                   | $b_1 = 6$             | $b_2 = 5$    |
|-------------------|-----------------------|--------------|
|                   | 1                     | 3            |
| $a_1 = 7$         | $x_{12} = 2$          | $x_{12} = 5$ |
|                   | 4                     | 5            |
| a <sub>2</sub> =4 | $\mathbf{x_{22}} = 4$ | $x_{22} = -$ |

Проверьте на оптимальность решение ТЗЛП методом потенциалов

Дана транспортная задача линейного программирования в терминах полезности (возможности поставщиков и потребности потребителей заданы справа и вверху матрицы)

|                    | $b_1 = 10$            | $b_2 = 10$    |
|--------------------|-----------------------|---------------|
|                    | 1                     | 3             |
| $a_1 = 10$         | $x_{12} = 10$         | $x_{12} = -$  |
|                    | 4                     | 5             |
| a <sub>2</sub> =10 | $\mathbf{x_{22}} = 0$ | $x_{22} = 10$ |

Проверьте на оптимальность решение ТЗЛП методом потенциалов

Дана транспортная задача линейного программирования в терминах полезности (возможности поставщиков и потребности потребителей заданы справа и вверху матрицы)

|                    | $b_1 = 10$            | $b_2 = 5$             |
|--------------------|-----------------------|-----------------------|
|                    | 1                     | 3                     |
| $a_1 = 5$          | $x_{12} = 5$          | $x_{12} = -$          |
|                    | 4                     | 5                     |
| a <sub>2</sub> =10 | $\mathbf{x_{22}} = 5$ | $\mathbf{x_{22}} = 5$ |

Проверьте на оптимальность решение ТЗЛП методом потенциалов

# 1. Если в ТЗЛП 100 поставщиков и 10 потребителей, то сколько будет в матрице решения пустых (незаполненных клеток)?

- a) 109
- б) 891
- в) 110

#### 2. Дана ТЗЛП, укажите решение по методу минимального элемента

3.

|           | $b_1 = 5$ | $b_2 = 5$ |
|-----------|-----------|-----------|
|           | 1         | 3         |
| $a_1 = 5$ |           |           |
|           | 4         | 5         |
| $a_2 = 5$ |           |           |

|    |           | $b_1 = 5$ | $b_2 = 5$ |
|----|-----------|-----------|-----------|
| 1  |           | 1         | 3         |
| т. | $a_1 = 5$ | 5         | -         |
|    |           | 4         | 5         |
|    | $a_2 = 5$ | -         | 5         |
|    |           |           | 1         |

|           | $b_1 = 5$ | $b_2 = 5$ |
|-----------|-----------|-----------|
|           | 1         | 3         |
| $a_1 = 5$ | 5         | 0         |
|           | 4         | 5         |
| $a_2 = 5$ | 0         | 5         |

|           | $b_1 = 5$ | $\mathbf{b_2} = 5$ |
|-----------|-----------|--------------------|
|           | 1         | 3                  |
| $a_1 = 5$ | 5         | 0                  |
|           | 4         | 5                  |
| $a_2 = 5$ | •         | 5                  |

|           | $b_1 = 5$ | $b_2 = 5$ |
|-----------|-----------|-----------|
|           | 1         | 3         |
| $a_1 = 5$ | 5         | -         |
|           | 4         | 5         |
| $a_2 = 5$ | 0         | 5         |

В задаче линейного программирования о назначениях известны доходы на выполнение каждым исполнителем соответствующих работ (три исполнителя и три работы).

| 17 | 10 | 16 |
|----|----|----|
| 26 | 9  | 23 |
| 5  | 14 | 24 |

Оцените оптимальный план решения задачи, указав алгоритм решения и суммарные затраты на выполнение всех работ

В задаче линейного программирования о назначениях известны затраты на выполнение каждым исполнителем соответствующих работ (три исполнителя и три работы).

| 7 | 10 | 6 |
|---|----|---|
| 6 | 9  | 2 |
| 5 | 18 | 4 |

Оцените оптимальный план решения задачи, указав алгоритм решения и суммарные затраты на выполнение всех работ

Требуется определить тот город, из которого можно отправить коммивояжера для объезда всех городов, не возвращаясь (найти путь без указания исходного города).

| - | 2 | 4 | 7 |
|---|---|---|---|
| 3 | ı | 5 | 6 |
| 4 | 5 | • | 6 |
| 5 | 5 | 5 | • |



Что нужно сделать с исходной матрицей, чтобы решить данную задачу?

- 1. Добавить фиктивный город с нулевыми затратами на въезд и выезд
- 2. Добавить фиктивный город с запретом на въезд и выезд
- 3. Добавить фиктивный город с запретом на въезд
- 4. Добавить фиктивный город с запретом на выезд

Требуется определить путь с указанием исходного города, из которого можно отправить коммивояжера для объезда всех городов, не возвращаясь

| - | 2 | 4 | 7 |
|---|---|---|---|
| 3 | ı | 5 | 6 |
| 4 | 5 | • | 6 |
| 5 | 5 | 5 | • |



Что нужно сделать с исходной матрицей, чтобы решить данную задачу?

- 1. Добавить фиктивный город с нулевыми затратами на въезд и выезд
- 2. Добавить фиктивный город с запретом на въезд и выезд
- 3. Добавить фиктивный город с запретом на въезд
- 4. Добавить фиктивный город с запретом на выезд
- 5. Иначе

Какой переезд по приведенной матрице затрат (по алгоритму Литтла) следует включить в маршрут, а какой нет?

|   | 1  | 2     | 3     | 4  |
|---|----|-------|-------|----|
| 1 | -  | $0^2$ | 2     | 3  |
| 2 | 01 | -     | 2     | 1  |
| 3 | 00 | 1     | -     | 01 |
| 4 | 00 | 00    | $0^2$ | -  |

Какой переезд по приведенной матрице затрат (по алгоритму Литтла) следует включить в маршрут, а какой нет?

|   | 1  | 2     | 3     | 4  |
|---|----|-------|-------|----|
| 1 | -  | $0^2$ | 2     | 3  |
| 2 | 01 | -     | 2     | 1  |
| 3 | 00 | 1     | -     | 01 |
| 4 | 00 | 00    | $0^2$ | -  |

Какой переезд по приведенной матрице затрат (по алгоритму Литтла) следует включить в маршрут, а какой нет?

|   | 1  | 2  | 3     | 4  | 5     |
|---|----|----|-------|----|-------|
| 1 | -  | 6  | 2     | 3  | $0^3$ |
| 2 | 01 | -  | 2     | 1  | 1     |
| 3 | 00 | 1  | -     | 01 | 2     |
| 4 | 00 | 01 | $0^2$ | -  | 1     |
| 5 | 00 | 00 | 00    | 00 | -     |

Какой переезд по приведенной матрице затрат (по алгоритму Литтла) следует включить в маршрут, укажите степень нулевого элемента для (4,3), что она означает?

|   | 1  | 2  | 3  | 4  | 5     |
|---|----|----|----|----|-------|
| 1 | -  | 6  | 2  | 3  | $0^3$ |
| 2 | 01 | -  | 2  | 1  | 1     |
| 3 | 00 | 1  | -  | 01 | 2     |
| 4 | 00 | 01 | 0? | -  | 1     |
| 5 | 00 | 00 | 00 | 00 | -     |

Эффективность состояния системы на первом этапе определяется ....(продолжить)...

$$Z(X) = x_1 + 2x_2^2 \Rightarrow max$$

$$2\sqrt[2]{x_1} + x_2 \le 8 \\ x_1, x_2 \ge 0$$

Эффективность состояния системы на втором этапе определяется ....(продолжить)...

$$Z(X) = x_1 + 2x_2^2 \Rightarrow max$$

$$2\sqrt[2]{x_1} + x_2 \le 8 \\ x_1, x_2 \ge 0$$

Эффективность состояния системы на первом этапе определяется ....(продолжить)...

$$Z(X) = 4x_1 + 1x_2^2 \Rightarrow max$$

$$2\sqrt[2]{x_1} + \sqrt[2]{x_2} \le 4$$

$$x_1, x_2 \ge 0$$

Эффективность состояния системы на втором этапе определяется ....(продолжить)...

$$Z(X) = 4x_1 + 1x_2^2 \Rightarrow max$$

$$2\sqrt[2]{x_1} + \sqrt[2]{x_2} \le 4$$

$$x_1, x_2 \ge 0$$

Решается транспортная задача перевозки однородных грузов от поставщиков к потребителям (размерность задачи два на два) с учетом двух критериев: К1 — финансовые затраты (т.руб.); К2 — временные затраты (час.).

Возможности поставщиков - a1 и a2, потребности потребителей – b1 и b2, коэффициенты затрат на одну единицу груза для соответствующих критериев приведены в таблицах.

Критерий К1— финансовые затраты (т.руб.);

|      | b1=3 | b2=7 |
|------|------|------|
| a1=5 | 1    | 2    |
| a2=5 | 4    | 3    |

Критерий К2 — временные затраты (час.).

|      | b1=3 | b2=7 |
|------|------|------|
| a1=5 | 5    | 4    |
| a2=5 | 2    | 3    |

В каких пределах будет изменяться оценка компромиссных решений по критерию К1.

Решается транспортная задача перевозки однородных грузов от поставщиков к потребителям (размерность задачи два на два) с учетом двух критериев: К1 — финансовые затраты (т.руб.); К2 — временные затраты (час.).

Возможности поставщиков - a1 и a2, потребности потребителей – b1 и b2, коэффициенты затрат на одну единицу груза для соответствующих критериев приведены в таблицах.

Критерий К1— финансовые затраты (т.руб.);

|      | b1=3 | b2=7 |
|------|------|------|
| a1=5 | 1    | 2    |
| a2=5 | 4    | 3    |

Критерий K2 – временные затраты (час.).

|      | b1=3 | b2=7 |
|------|------|------|
| a1=5 | 5    | 4    |
| a2=5 | 2    | 3    |

В каких пределах будет изменяться оценка компромиссных решений по критерию К2.

Оценка игроков спортивной команды (альтернатив) производится на основании пяти критериев:

К1 - морально-волевая подготовка; К2 — вес игрока; К3 — бег 100м.

Тренер отдает предпочтение игрокам с высокими оценками по всем критериям (для бега — оценки имеют обратное направление шкалы). По принципу взвешенной суммы равнозначных критериев определите лучшего (лучших) спортсменов.

| Игроки | Мор-       | Bec    | Бег 100м |
|--------|------------|--------|----------|
|        | волевая    | (в кг) | (в сек.) |
|        | (в баллах) |        |          |
| X1     | 10         | 100    | 15       |
| X2     | 5          | 110    | 14       |
| Х3     | 8          | 90     | 13       |

Оценка решений производится по двум критериям в ситуациях e1, e2, e3. Матрицы исходов по критериям «Деньги» и «Время» приведены ниже.

Укажите способы получения матрицы исходов в абсолютной шкале измерения

| Дорога | Критерий «Деньги»   |    | Критерий «Время» |    |    |    |
|--------|---------------------|----|------------------|----|----|----|
|        | (в т.руб.) (в днях) |    | (в т.руб.)       |    |    |    |
|        | e1                  | e2 | е3               | e1 | e2 | е3 |
| X1     | 30                  | 40 | 50               | 4  | 4  | 5  |
| X2     | 20                  | 30 | 70               | 3  | 4  | 5  |

- К1 ожидаемая экономическая эффективность (высокая, средняя, низкая);
- К2 срок выполнения проекта (менее 3-х лет, от 3-х до 5-ти лет, более 5-ти лет);
- К3 срок окупаемости проекта (менее 2-х лет, от 2-х до 5-ти лет, более 5-ти лет);
- К4 масштаб внедрения (за рубежом, в стране, в своём регионе).

Оценки проектов по критериям приведены в таблице.

| Проекты | Ожид.экон.<br>эффективн. | Срок<br>выполнения    | Срок<br>окупаемости   | Масштаб<br>внедрения |
|---------|--------------------------|-----------------------|-----------------------|----------------------|
| X1      | Высокая                  | от 3-х до 5-ти<br>лет | от 2-х до 5-ти<br>лет | в своём регионе      |
| X2      | Низкая                   | менее 3-х лет         | более 5-ти лет        | за рубежом           |
| Х3      | Средняя                  | от 3-х до 5-ти<br>лет | менее 2-х лет         | в стране             |

По функции выбора с учетом числа доминирующих критериев определить подмножество наилучших проектов

- К1 ожидаемая экономическая эффективность (высокая, средняя, низкая);
- К2 срок выполнения проекта (менее 3-х лет, от 3-х до 5-ти лет, более 5-ти лет);
- КЗ срок окупаемости проекта (менее 2-х лет, от 2-х до 5-ти лет, более 5-ти лет);
- К4 масштаб внедрения (за рубежом, в стране, в своём регионе).

Оценки проектов по критериям приведены в таблице.

| Проекты | Ожид.экон.<br>эффективн. | Срок<br>выполнения    | Срок<br>окупаемости   | Масштаб<br>внедрения |
|---------|--------------------------|-----------------------|-----------------------|----------------------|
| X1      | Высокая                  | от 3-х до 5-ти<br>лет | от 2-х до 5-ти<br>лет | за рубежом           |
| X2      | Высокая                  | менее 3-х лет         | более 5-ти лет        | в своём регионе      |
| ХЗ      | Средняя                  | от 3-х до 5-ти<br>лет | менее 2-х лет         | в стране             |

По функции выбора с учетом числа доминирующих критериев определить подмножество наилучших проектов

- К1 ожидаемая экономическая эффективность (высокая, средняя, низкая);
- К2 срок выполнения проекта (менее 3-х лет, от 3-х до 5-ти лет, более 5-ти лет);
- К3 срок окупаемости проекта (менее 2-х лет, от 2-х до 5-ти лет, более 5-ти лет);
- К4 масштаб внедрения (за рубежом, в стране, в своём регионе).
- Оценки проектов по критериям приведены в таблице.

| Проекты | Ожид.экон.<br>эффективн. | Срок<br>выполнения | Срок<br>окупаемости | Масштаб<br>внедрения |
|---------|--------------------------|--------------------|---------------------|----------------------|
| X1      | Высокая                  | от 3-х до 5-ти лет | от 2-х до 5-ти лет  | за рубежом           |
| X2      | Низкая                   | менее 3-х лет      | более 5-ти лет      | за рубежом           |
| Х3      | Средняя                  | от 3-х до 5-ти лет | менее 2-х лет       | в стране             |

По функции выбора методом идеальной точки в ранговой шкале измерений определить наилучший проект (проекты). Веса критериев считать равнозначными

- К1 ожидаемая экономическая эффективность (высокая, средняя, низкая);
- К2 срок выполнения проекта (менее 3-х лет, от 3-х до 5-ти лет, более 5-ти лет);
- К3 срок окупаемости проекта (менее 2-х лет, от 2-х до 5-ти лет, более 5-ти лет);
- К4 масштаб внедрения (за рубежом, в стране, в своём регионе).
- Оценки проектов по критериям приведены в таблице.

| Проекты | Ожид.экон.<br>эффективн. | Срок<br>выполнения | Срок<br>окупаемости | Масштаб<br>внедрения |
|---------|--------------------------|--------------------|---------------------|----------------------|
| X1      | Высокая                  | от 3-х до 5-ти лет | от 2-х до 5-ти лет  | за рубежом           |
| X2      | Низкая                   | менее 3-х лет      | более 5-ти лет      | в своём регионе      |
| Х3      | Средняя                  | от 3-х до 5-ти лет | менее 2-х лет       | в стране             |

По функции выбора методом идеальной точки в ранговой шкале измерений определить наилучший проект (проекты). Веса критериев считать равнозначными