Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil C: Berechenbarkeit und Entscheidbarkeit

15: Unentscheidbare Probleme 2

Version von: 14. Juni 2018 (17:29)

Einleitung

- Wie gesagt: es ist möglich, automatisch zu überprüfen, ob die Implementierung einer regulären Sprache (durch einen DFA) korrekt ist bezüglich der Spezifikation (durch einen regulären Ausdruck)
- Es ist auch möglich,
 - eine "optimale" Implementierung aus einer Spezifikation zu konstruieren
 - zu testen, ob zwei Spezifikationen äquivalent sind
 - zu testen, ob zwei Implementierungen äquivalent sind
- Natürlich wäre es schön, wenn dies alles auch allgemeiner möglich wäre:
 - für Programme/Algorithmen statt DFAs und
 - für allgemeine semantische Spezifikationen statt reguläre Ausdrücke

- In diesem Kapitel werden wir sehen:
 - Für allgemeine Programme und Spezifikationen ist **nichts** von dem möglich
 - Semantische Eigenschaften von Programmen sind nicht automatisch überprüfbar
 - * Das ist unterm Strich die Aussage des Satzes von Rice
- Wir werden sogar zeigen, dass die Unmöglichkeit von Äquivalenztests schon für kontextfreie Sprachen und ihre Beschreibungsformen gilt

Komplemente entscheidbarer Sprachen

 Wie verwenden in diesem Kapitel mehrfach die folgende einfache Einsicht

Lemma 15.1

- (a) Ist eine Sprache $oldsymbol{L}$ entscheidbar, dann ist auch ihr Komplement $\overline{oldsymbol{L}}$ entscheidbar
- (b) Ist das Komplement \overline{L} einer Sprache L unentscheidbar

Beweis

- (a) Dazu genügt es in einer TM, die $m{L}$ entscheidet bei allen Transitionen ja durch nein und nein durch ja zu ersetzen
- (b) Durch Kontraposition von (a)

Inhalt

> 15.1 Der Satz von Rice

15.2 Das Postsche Korrespondenzproblem

15.3 Unentscheidbare Grammatikprobleme

Satz von Rice (1/3)

- Wir zeigen jetzt, dass jede nicht-triviale semantische Eigenschaft von Algorithmen (Programmen, Turingmaschinen) unentscheidbar ist
- Wir betrachten dazu zunächst Turingmaschinen, die Funktionen berechnen
- Semantische Eigenschaften formalisieren wir duch Mengen von Funktionen
- ullet Für jede Menge $S\subseteq \mathcal{R}$ berechenbarer Funktionen definieren wir das folgende algorithmische Problem

Definition (Definition: TM-Func(S))

Gegeben: Turingmaschine $oldsymbol{M}$

Frage: Ist $f_M \in S$?

Satz 15.2 [Rice 53]

- ullet Sei S eine Menge berechenbarer partieller Funktionen mit $arnothing + S + \mathcal{R}$
- ullet Dann ist TM-FUNC(S) unentscheidbar
- Wählt man beispielsweise S als Menge aller totalen, berechenbaren Funktionen, so folgt mit dem Satz von Rice, dass es unentscheidbar ist, ob eine gegebene TM eine totale Funktion berechnet
 - Das ist natürlich nicht sehr überraschend, aber wir werden gleich noch weitere Anwendungen betrachten

Satz von Rice: Anwendungen

- Aus dem Satz von Rice lassen sich viele Unentscheidbarkeitsresultate folgern, beispielsweise:
- ullet Für jede feste berechenbare Funktion f ist es unentscheidbar, ob ein gegebenes Programm f berechnet:
 - Wähle $S=\{f\}$
- ullet Für beliebige feste Strings u,w ist es unentscheidbar, ob ein gegebenes Programm bei Eingabe u die Ausgabe w hat:
 - Wähle $S = \{ oldsymbol{f} \mid oldsymbol{f}(oldsymbol{u}) = oldsymbol{w} \}$
- Es ist unentscheidbar, ob zwei gegebene Programme äquivalent sind:
 - Das folgt direkt aus der Unentscheidbarkeit des ersten Problems
 - Dieses lässt sich nämlich auf die Äquivalenz zweier Programme reduzieren

- Auf ähnliche Weise folgt die Unentscheidbarkeit der in der Einleitung genannten Probleme
- Dass wir hier "Programm" statt "TM" schreiben, ist durch die (empirische Gültigkeit der) Church-Turing-These gerechtfertigt

Satz von Rice (2/3)

Beweisskizze

- ullet Sei $f_{\perp}(w)\stackrel{ ext{def}}{=} ot$, für alle $w\in oldsymbol{\Sigma}^*$
- 1. Fall: $f_{\perp} \notin S$:
 - Sei $f \in S$ beliebig, M_f TM für f
- ullet Wir zeigen: TM-E-HALT \leqslant TM-FUNC(S)
- ullet Genauer wollen wir M so auf M' abbbilden, dass gilt:
 - $M(\epsilon)$ terminiert \Rightarrow M' berechnet f
 - $M(\epsilon)$ terminiert nicht \Rightarrow M' berechnet f_{\perp}
- ullet Für jede TM M sei dazu M' die TM, die bei Eingabe x
 - (1) zuerst M bei Eingabe ϵ simuliert (allerdings "hinter x" und ohne x zu verändern)
 - (2) und falls diese Berechnung terminiert, die TM M_f bei Eingabe x simuliert

riangle Ein solches M' kann z.B. mit Satz 13.3 aus einer geeigneten 2-TM gewonnen werden

Beweisskizze (Forts.)

- ullet Wir zeigen, dass $M\mapsto M'$ eine Reduktion von TM-E-HALT auf TM-FUNC(S) ist
- ullet Sei $M\in\mathsf{TM} ext{-}\mathsf{E} ext{-}\mathsf{HALT}$
- $ightharpoonup M(\epsilon)$ terminiert
- ightharpoonup Phase (1) von M' terminiert
- Phase (2) simuliert das Verhalten von M_f bei Eingabe x und gibt also f(x) aus $rac{1}{2}$ falls das definiert ist
- ightharpoonup M' berechnet f
- $ightharpoonup M' \in \mathsf{TM} ext{-}\mathsf{Func}(S)$
 - ullet Sei nun $M
 otin \mathsf{TM-E-HALT}$
- $ightharpoonup M(\epsilon)$ terminiert nicht
- lacktriangledown M' berechnet f_\perp
- ightharpoonup M'
 otin TM-Func(S)

Satz von Rice (3/3)

Beweisskizze (Forts.)

- ullet Im zweiten Fall $(f_{ot} \in S)$ lässt sich analog zeigen, dass TM-E-HALT auf das Komplement TM-Func(S) reduzierbar ist
 - ightharpoonup TM-Func(S) ist unentscheidbar
 - ightharpoonup TM-Func(S) ist unentscheidbar ightharpoonup Lemma 15.1

Inhalt

15.1 Der Satz von Rice

> 15.2 Das Postsche Korrespondenzproblem

15.3 Unentscheidbare Grammatikprobleme

PCP ist unentscheidbar (1/7)

• Zur Erinnerung:

Definition (PCP)

Gegeben: eine Folge $(u_1,v_1),\ldots,(u_k,v_k)$ von Paaren nicht-leerer Strings

Frage: Gibt es eine Indexfolge i_1,\dots,i_n mit $n\geqslant 1$, so dass $u_{i_1}u_{i_2}\cdots u_{i_n}=v_{i_1}v_{i_2}\cdots v_{i_n}?$

Satz 15.3

PCP ist unentscheidbar

Beweisidee

- Wir definieren ein "Zwischen-Problem" SPCP und zeigen:
 - TM-HALT ≤ SPCP und
 - SPCP ≤ PCP
- Daraus folgt mit Lemma 14.3, dass SPCP und dann auch PCP unentscheidbar sind

Definition (PCP-Problem mit Startpaar (SPCP))

Gegeben: eine Folge $(m{u_1},m{v_1}),\dots,(m{u_k},m{v_k})$ von Paaren von Strings

Frage: Gibt es eine Indexfolge i_1,\ldots,i_n mit $n\geqslant 1$, so dass

- $\bullet \ u_{i_1}u_{i_2}\cdots u_{i_n}=v_{i_1}v_{i_2}\cdots v_{i_n}$
- ullet und $i_1=1?$

Die erste Beispiel-TM (leicht modifiziert)

Beispiel

Turing-Maschine zum Test, ob Eingabe von der Form ww^{R} ist

- **a:** 0 und 1 überlesen, nach links falls \triangleright oder \sqcup nach rechts in b
- **b:** Falls 0 nach rechts in c falls 1 nach rechts in d (0/1 durch \sqcup überschreiben) falls \sqcup akz.
- **c:** 0 und 1 überlesen nach rechts bis \square , dann nach links in e
- **d:** 0 und 1 überlesen nach rechts bis \square , dann nach links in f
- **e:** Falls 0 durch \sqcup ersetzen nach links in a falls 1 oder \sqcup ablehnen
- **f:** Falls 1 durch \sqcup ersetzen nach links in a falls 0 oder \sqcup ablehnen

Beispielberechnung:

Beispiel-TM als Diagramm

Beispiel-Turingmaschine als Diagramm

Beispielberechnung als Präfix einer Lösung

Beispiel (Forts.)

- ullet Terminierende Berechnung von M bei Eingabe 11 als Präfix einer SPCP-Lösung
- Präfix des Lösungsstrings:

• Verwendete Steintypen:

PCP ist unentscheidbar (2/7)

Beweisskizze (Forts.)

ullet Wir konstruieren eine Reduktionsfunktion f mit:

$$(m{M},m{x})\in \mathsf{TM} ext{-Halt} \Longleftrightarrow \ m{f}((m{M},m{x}))\in \mathsf{SPCP}$$

- ullet Lösungen von $oldsymbol{f}((oldsymbol{M}, oldsymbol{x}))$ entsprechen dabei terminierenden Berechnungen $oldsymbol{M}(oldsymbol{x})$
- ullet Wir kodieren dazu Konfigurationen $oldsymbol{K}=(oldsymbol{q},(oldsymbol{u},oldsymbol{\sigma},oldsymbol{v})$ von $oldsymbol{M}$ durch Strings $oldsymbol{\hat{K}}\stackrel{ ext{def}}{=}oldsymbol{u}oldsymbol{q}oldsymbol{\sigma}oldsymbol{v}$
- Idee der Reduktion:
- ullet Sei $M(x) = K_0 dash_M \cdots dash_M K_t$ $K_0 \stackrel{ ext{def}}{=} K_0(x)$
- ullet Lösungsstrings für f((M,x)) beginnen mit der Konkatenation der Konfigurationen dieser Berechnung:

$$\hat{K}_0\#\hat{K}_1\#\cdots\#\hat{K}_t$$

□ über das Ende reden wir später

Beweisskizze (Forts.)

- ullet Für jedes $\ell < t$
 - ist $\hat{K}_0 \# \hat{K}_1 \# \cdots \# \hat{K}_\ell$ ein Präfix $u_{i_1} \cdots u_{i_k}$ des Lösungsstrings
 - und $v_{i_1}\cdots v_{i_k}$ ist $\hat{K}_0\#\hat{K}_1\#\cdots\#\hat{K}_{\ell+1}$
- Also übereinander geschrieben:

$$egin{array}{llll} \# & \hat{K}_0 \# & \hat{K}_1 \# & \cdots & \hat{K}_\ell \# \\ \# \hat{K}_0 \# & \hat{K}_1 \# & \hat{K}_2 \# & \cdots & \hat{K}_{\ell+1} \# \end{array}$$

- ullet Es gilt dann für jedes i: wenn u_i eine Position in einer Konfiguration K_j repräsentiert, dann repräsentiert v_i dieselbe Position in K_{j+1}
- Dieses "Übereinanderlegen" aufeinanderfolgender Konfigurationen ermöglicht es, die Konfigurationsfolge auf Korrektheit bezüglich der Transitionsfunktion von M zu testen

PCP ist unentscheidbar (3/7)

Beweisskizze (Forts.)

- ullet Sei $oldsymbol{M} = (oldsymbol{Q}, oldsymbol{\Gamma}, oldsymbol{\delta}, oldsymbol{s})$ TM, $oldsymbol{x} \in oldsymbol{\Sigma}^*$ OBdA: $\# \notin oldsymbol{\Gamma}$
- \bullet Die zugehörige SPCP-Eingabe hat das Alphabet $Q \cup \Gamma \cup \{\#\}$ und die folgenden Regeln:
 - (1) Start: $\#s \triangleright x\#$
 - (2) Kopierregeln:

für jedes $oldsymbol{\sigma} \in \Gamma \cup \{\#\}$

- (3) δ -Regeln: für alle $q,q'\in Q$ und alle $\sigma,\sigma', au\in\Gamma\cup\{\#\}$:
 - falls $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sigma})=(oldsymbol{q}',oldsymbol{\sigma}',\downarrow)$: $oldsymbol{q}'oldsymbol{\sigma}'$
 - falls $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sigma})=(oldsymbol{q}',oldsymbol{\sigma}',oldsymbol{\sigma}')$:
 - falls $oldsymbol{\delta}(oldsymbol{q}, oldsymbol{\sigma}) = (oldsymbol{q}', oldsymbol{\sigma}', lefont{} \leftarrow)$:

 $au q \sigma \ au' au \sigma' \ au' au \sigma' \ au \sigma' \$

Beweisskizze (Forts.)

- (4) δ -Regeln für den "rechten Rand": Für alle $q,q'\in Q$ und alle $\sigma',\tau\in\Gamma\cup\{\#\}$:
 - ullet falls $oldsymbol{\delta}(oldsymbol{q},\sqcup)=(oldsymbol{q}',oldsymbol{\sigma}',\downarrow)$: $egin{array}{c} oldsymbol{q}\# \ oldsymbol{q}'oldsymbol{\sigma}'\# \end{array}$
 - ullet falls $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sqcup})=(oldsymbol{q}',oldsymbol{\sigma}',oldsymbol{ au}')$: $egin{array}{c} oldsymbol{q}\# \ oldsymbol{\sigma}'oldsymbol{q}'\# \end{array}$
 - ullet falls $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sqcup})=(oldsymbol{q}',oldsymbol{\sigma}',\leftarrow)$:

für alle $oldsymbol{ au} \in oldsymbol{\Gamma},$

PCP ist unentscheidbar (4/7)

 Wie gesagt: der erste Teil des Lösungsstrings ist die Konkatenation der Kodierungen aller Konfigurationen der terminierenden Berechnung:

$$\# \hat{K}_0 \# \hat{K}_1 \# \cdots \hat{K}_{t-1} \# \\ \# \hat{K}_0 \# \hat{K}_1 \# \hat{K}_2 \# \cdots \hat{K}_t \#$$

- ullet Dies ist aber noch kein Lösungsstring, da der "u-String" nur ein Präfix des v-Strings ist
 - Der v-String ist genau um $\hat{K}_t \#$ länger
 - Da die Konfiguration K_t (im Gegensatz zu K_0) nicht bekannt ist, kann diese Lücke nicht durch eine einzelne Regel der SPCP-Eingabe überbrückt werden
- Stattdessen verwenden wir zusätzliche Löschregeln der Arten $\frac{\sigma_{ja}}{ja}$ und $\frac{\sigma_{ja}}{ja}$, durch deren Anwendung immer kürzere Teilstrings von \hat{K}_t entstehen, bis der v-String nur noch zwei Zeichen länger ist als der u-String
- ullet Sei dazu $C_0 \stackrel{ ext{def}}{=} \hat{K}_t$ und entstehe C_{i+1} aus C_i jeweils durch Löschen eines Nachbarzeichen des Zustandssymboles (ja, nein, oder h), und sei $C_c \in \{$ ja, nein, $h\}$
- Insgesamt ergibt sich dann folgende Korrespondenz:

PCP-Lösungsstring für die Beispielberechnung

Beispiel (Forts.)

- ullet Terminierende Berechnung von M bei Eingabe 11 als SPCP-Lösung
- Lösungsstring:

Verwendete Steintypen:

PCP ist unentscheidbar (5/7)

Beweisskizze (Forts.)

- ullet Sei $M=(Q,\Gamma,\delta,s)$ TM, $x\in \Sigma^*$ – OBdA: # \notin Γ
- Die zugehörige SPCP-Eingabe hat das Alphabet $Q \cup \Gamma \cup \{\#\}$ und die folgenden Regeln:
 - (1) **Start**:
 - (2) Kopierregeln:

für jedes $oldsymbol{\sigma} \in \Gamma \cup \{\#\}$

- (3) δ -Regeln: für alle $q, q' \in Q$ und alle $\sigma, \sigma', \tau \in \Gamma \cup \{\#\}$:
 - falls $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sigma})=(oldsymbol{q}',oldsymbol{\sigma}',\downarrow)$: $oldsymbol{q'\sigma'}$
 - falls $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sigma})=(oldsymbol{q}',oldsymbol{\sigma}',
 ightarrow)$: $oldsymbol{\sigma}'oldsymbol{q}'$
 - falls $\delta(q,\sigma)=(q',\sigma',\leftarrow)$:

, für alle $oldsymbol{ au} \in \Gamma$,

Beweisskizze (Forts.)

- (4) δ -Regeln für den "rechten Rand": Für alle $q,q'\in Q$ und alle $\sigma', \tau \in \Gamma \cup \{\#\}$:
 - ullet falls $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sqcup})=(oldsymbol{q}',oldsymbol{\sigma}',\downarrow)$:
 - ullet falls $oldsymbol{\delta}(oldsymbol{q},\sqcup)=(oldsymbol{q}',oldsymbol{\sigma}',
 ightarrow)$:
 - falls $\delta(q, \sqcup) = (q', \sigma', \leftarrow)$:

für alle $oldsymbol{ au}\in oldsymbol{\Gamma}$

(5) Löschregeln:

(6) Abschlussregeln:

PCP ist unentscheidbar (6/7)

Beweisskizze (Forts.)

- ullet Falls M(x) anhält, gibt es $\hat{K}_0,\ldots,\hat{K}_t,C_0,\ldots,C_c$, so dass für alle i gilt:
 - $\hat{m{K}}_{m{0}}$ kodiert $m{K}_{m{0}}(m{x}) = (m{s}, (m{x}, m{0}))$,
 - $K_i \vdash_M K_{i+1}$,
 - $-C_0=\hat{K}_t,$
 - C_{i+1} entsteht aus C_i durch Löschen eines Nachbarzeichens von ja, nein, h, und
 - C_c = ja (oder nein oder h)
- Lösungswort:

$$\#\hat{K}_0 \#\hat{K}_1 \# \cdots \hat{K}_t \# C_1 \# \cdots \\ \cdots C_{c-1} \# C_c \# \#$$

Beweisskizze (Forts.)

ullet Umgekehrt gibt es eine Lösung (mit $i_1=1$) nur, falls $M(oldsymbol{x})$ anhält

• Denn:

- Die Regeln der Typen (2), (3) und (4) erzwingen, dass der Anfang des Lösungsstrings das Anfangsstück einer Berechnung von ${m M}({m x})$ kodiert
- Die Regeln (1)-(4) bewirken, dass der v-String zunächst immer länger als der u-String ist
- Ein Längenausgleich zwischen dem $m{v}$ -String und dem $m{u}$ -String ist nur durch Anwendung der Regeln aus (5) und (6) möglich
- Diese k\u00f6nnen jedoch nur angewendet werden, wenn die Berechnungsfolge eine Konfiguration mit einem Endzustand erreicht
- ightharpoonup M(x) terminiert
- Insgesamt haben wir also: TM-HALT ≤ SPCP
- Der vollständige, formale Beweis, dass f eine Reduktion ist, ist natürlich etwas komplizierter

SPCP ≤ PCP: Beispiel

Beispiel

- ullet Die PCP-Eingabe $z=egin{pmatrix} 0 & 1 & 10 \ 01 & 11 & 0 \ \end{bmatrix}$ hat die PCP-Lösungsstrings
 - $\begin{bmatrix} 0 \\ 01 \end{bmatrix}$ mit Indexfolge 1,3 und
- Wir bilden diese PCP-Eingabe ab auf

- ullet Die Indexfolge 2,3 führt dann nicht mehr zu einer Lösung
- ullet Die Indexfolge 1,3 führt jetzt zur Lösung 4,3,5 mit dem Lösungsstring

ullet Allgemein gilt: $oldsymbol{f}(oldsymbol{z})$ hat genau dann eine Lösung, wenn $oldsymbol{z}$ eine Lösung mit $oldsymbol{i_1}=oldsymbol{1}$ hat

PCP ist unentscheidbar (7/7)

Beweisskizze (Forts.)

- Es bleibt zu zeigen: SPCP ≤ PCP
- Wir nehmen dazu an, dass die Zeichen \$ und
 © nicht in den Eingaben für SPCP vorkommen
- ullet Für jeden String $oldsymbol{w} = a_1 \cdots a_m,$ mit $a_i \in \Sigma$ sei $ilde{oldsymbol{w}}$ der String $a_1@a_2@\cdots@a_m$
- ullet Wir definieren die Reduktion f wie folgt:
 - Eine SPCP-Eingabe wird abgebildet auf

Beweisskizze (Forts.)

- Zu zeigen: f ist total und berechenbar und es gilt für alle SPCP-Eingaben z:
 - $m{z}$ hat genau dann eine Lösung mit $m{i_1}=m{1}$, wenn $m{f}(m{z})$ überhaupt eine Lösung hat
- Denn:
- ullet Sei $(1,i_2,\ldots,i_n)$ eine Lösung für z
- $lacktriangledown(k+1,i_2,\ldots,i_n,k+2)$ ist eine Lösung für $f(oldsymbol{z})$
 - ullet Sei umgekehrt (i_1,\ldots,i_n) eine Lösung minimaler Länge für f(z)
- ightharpoonup $i_1=k+1$
 - $i_n=k+2$ sowie
 - $oldsymbol{-}i_{oldsymbol{j}}\in\{oldsymbol{1},\ldots,oldsymbol{k}\}$, für $oldsymbol{j}\in\{oldsymbol{2},\ldots,oldsymbol{n}-oldsymbol{1}\}$
- lacktriangledown $(1,i_2,\ldots,i_{n-1})$ ist Lösung für z

Inhalt

- 15.1 Der Satz von Rice
- 15.2 Das Postsche Korrespondenzproblem
- > 15.3 Unentscheidbare Grammatikprobleme

Unentscheidbare Grammatik-Probleme (1/3)

Satz 15.4

CFG-SCHNITT ist unentscheidbar

Beweis

 Dies folgt sofort aus der Unentscheidbarkeit von PCP und PCP ≤ CFG-SCHNITT
 Satz 14.2, Lemma 14.3

Definition (CFG-UNAMB)

Gegeben: Kontextfreie Grammatik G

Frage: Ist G eindeutig?

Eindeutige Grammatiken heißen auf Englisch unambiguous

Definition (CFGEQUI)

Gegeben: Kontextfreie Grammatiken G_1, G_2

Frage: Ist $L(G_1) = L(G_2)$?

Definition (CFGREGEQUI)

Gegeben: Kontextfreie Grammatik G, RE lpha

Frage: lst $L(G) = L(\alpha)$?

Definition (CFGALL)

Gegeben: Kontextfreie Grammatik G

Frage: Ist $L(G) = \Sigma^*$?

Definition (CFGCONT)

Gegeben: Kontextfreie Grammatiken G_1, G_2

Frage: Ist $L(G_1) \subseteq L(G_2)$?

Satz 15.5

- Die folgenden Entscheidungsprobleme sind unentscheidbar:
 - CFG-UNAMB
 - CFGEqui
 - CFGREGEQUI
 - CFGALL
 - CFGCONT

Weitere unentscheidbare Grammatik-Probleme (2/3)

Beweisskizze: CFG-UNAMB

Beweis durch Reduktion:

- ullet Sei $oldsymbol{z} = (oldsymbol{u_1}, oldsymbol{v_1}), \dots, (oldsymbol{u_k}, oldsymbol{v_k})$ eine Eingabe für PCP
- Wir definieren wieder:

- ullet Klar: G_1 und G_2 sind jeweils eindeutig
 - Die Zahlenfolge am Ende des Strings bestimmt eindeutig den Ableitungsbaum
 sogar die Ableitung
- ullet Sei G nun die durch Vereinigung der Regeln aus G_1 und G_2 entstehende Grammatik, ergänzt um $S o S_1 \mid S_2$

Beweisskizze (Forts.)

- Es gilt:
 - Ist \overrightarrow{i} eine Lösung für z mit Lösungswort w, so hat der String w \overrightarrow{i} zwei Ableitungsbäume
 - Also: z hat Lösung \Rightarrow G ist nicht eindeutig
- Andererseits:
 - Hat ein Wort $w\$\overleftarrow{i}$ zwei Ableitungsbäume, so verwendet der eine S_1 , und der andere S_2 , also:

$$m{w\$\overleftarrow{i}}\in L(m{G_1})\cap L(m{G_2})$$

- $ightharpoonup ec{i}$ ist Lösung von z
 - Also: G ist nicht eindeutig \Rightarrow

 $oldsymbol{z}$ hat Lösung

Insgesamt:

 $z \in \mathsf{PCP} \Longleftrightarrow G$ nicht eindeutig

Weitere unentscheidbare Grammatik-Probleme (3/3)

Beweisskizze (Forts.)

- Die Unentscheidbarkeit von CFGALL folgt ebenfalls aus dem Beweis der Unentscheidbarkeit von CFG-SCHNITT
- ullet Zu den Grammatiken G_1,G_2 aus diesem Beweis lassen sich kontextfreie Grammatiken H_1,H_2 für die Komplemente von $L(G_1)$ und $L(G_2)$ finden
 - Denn: $oldsymbol{L}(oldsymbol{G_1})$ und $oldsymbol{L}(oldsymbol{G_2})$ sind deterministisch kontextfrei
 - lacktriangle Die Komplemente von $oldsymbol{L}(oldsymbol{G_1})$ und $oldsymbol{L}(oldsymbol{G_2})$ sind kontextfrei!
- $lackbox{} L(G_1) \cap L(G_2) = \varnothing \Longleftrightarrow L(H_1) \cup L(H_2) = \Sigma^*$
 - ullet Sei nun H die durch Vereinigung der Regeln von H_1 und H_2 und Hinzufügung einer neuen Startvariablen S und zusätzlichen Regeln $S o S_1 \mid S_2$ entstehende Grammatik
- $lackbox{} L(G_1) \cap L(G_2) = \varnothing \Longleftrightarrow L(H) = \Sigma^*$
 - Wir erhalten insgesamt: PCP ≤ CFGALL
 - Daraus folgt die Unentscheidbarkeit von CFGALL
 - Die Unentscheidbarkeit der anderen Probleme folgt leicht durch Reduktion von CFGALL und damit auch von CFGALL

Zusammenfassung

- Der Satz von Rice sagt aus, dass semantische Aussagen über Programme nicht algorithmisch getestet werden können
- Das Postsche Korrespondenzproblem ist unentscheidbar
- Aus diesem Resultat lässt sich die Unentscheidbarkeit einiger Probleme nachweisen, die mit kontextfreien Sprachen zu tun haben

Literatur

- PCP:
 - Emil L. Post. A variant of a recursively unsolvable problem.
 Bulletin of the American Mathematical Society, 52:264–269,
 1946