DEVOIR DE MATHS

Niveau: 7D Durée:4h Proposé le 16 Mai 2014 de 8h à 12h

Exercice 1 (3 points)

Un questionnaire à choix multiples (QCM) comporte 10 questions indépendantes. Pour chacune d'elles, quatre réponses sont proposées dont une seule correcte. Un élève répond au hasard à chaque question du QCM. On note X le nombre de réponses correctes qu'il a données. On considère les événements :

A: L'élève a exactement six réponses correctes.

B: L'élève n'a aucune réponse correcte.

C : L'élève a au moins une réponse correcte.

D: L'élève a toutes les réponses correctes.

Parmi les réponses proposées pour chaque question ci-après, une seule réponse est exacte.

N	© Question	Réponse A	Réponse B	Réponse C
1	L'ensemble de valeurs de X est :	{1,2,,10}	{0,1,,4}	{0,1,2,,10}
W	La probabilité de l'événement A est :	2. M4r	$C_{10}^4 \left(\frac{1}{4}\right)^6 \left(\frac{3}{4}\right)^4$	$C_6^4 \left(\frac{1}{4}\right)^6 \left(\frac{3}{4}\right)^4$
3	La probabilité de l'événement B est :	$\left(\frac{3}{4}\right)^6$	$1-\left(\frac{3}{4}\right)^6$	$\left(\frac{3}{4}\right)^{10}$
4	La probabilité de l'événement C est :	$V = (\frac{1}{4})^{10}$		$2 - \left(\frac{1}{4}\right)^1 \left(\frac{3}{4}\right)^9$
	La probabilité de l'événement D est :	$\left(\frac{3}{4}\right)^{10}$	$\left(\frac{1}{4}\right)^{10}$	$1 - \left(\frac{3}{4}\right)^{10}$
W.	Le nombre de réponses correctes de l'élève, que l'on peut espérer est :	. M ₃ r	4	5

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse.

	Question n°	1	2	3_	4	5	6
,	Réponse	772	20	111	7 7		

Exercice 2 (4 points)

- 1) Résoudre dans l'ensemble des nombre complexe l'équation : $z^2 4z + 13 = 0$ et soient z_1 et z_2 ses solutions telles que $Im(z_1) > 0$.
- solutions telles que $\text{Im}(z_1) > 0$. 2) On considère, dans le plan complexe, les points A et B d'affixes respectives $z_A = 1 + z_1$ et $z_B = i + z_2$.
 - a) Ecrire les nombres $z_A = 1 + z_1$ et $z_B = i + z_2$ sous formes algébrique et trigonométrique.
 - b) Représenter, dans le repère (O;u,v), les points A et B . Déterminer la nature du triangle OAB .
 - c) Déterminer et placer le point $\, C \,$ tel que le quadrilatère $\, OACB \,$ soit un parallélogramme.
 - d) Construire l'ensemble des M du plan d'affixe z tel que le complexe $\frac{z-2+2i}{z-3-3i}$ soit imaginaire pur.

Exercice 3 (5 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = 2x + (x-1)e^x$. Soit (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

Partie A: étude d'une fonction auxiliaire

Soit g la fonction définie sur \mathbb{R} par $g(x) = 2 + xe^x$.

- 1) Dresser le tableau de variation de g.
- 2) En déduire le signe de g(x) pour tout réel x.

Partie B : étude et représentation de la fonction f

- 1.a) Calculer $\lim_{x \to a} f(x)$.
- b) Montrer que la droite (D) d'équation y = 2x est asymptote à la courbe (C) au voisinage de $-\infty$
- c) Etudier la position de (C) par rapport à (D).

- 2) Calculer $\lim_{x \to +\infty} f(x)$, $\lim_{x \to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement.
- 3.a) Calculer f'(x) puis, à l'aide de la partie A, dresser le tableau de variation de f.
 - b) Montrer que f réalise une bijection de $\mathbb R$ sur un intervalle J que l'on déterminera.
 - c) Montrer que l'équation f(x) = 0 admet une solution unique x_0 dans \mathbb{R} . Vérifier que $0,4 < x_0 < 0,5$.
- 4.a) Déterminer les coordonnées du point A de la courbe (C) où la tangente T à la courbe est parallèle à l'asymptote (D). Donner l'équation de T.
 - b) Tracer (C), T et (D).
 - c) Discuter graphiquement le nombre de solutions de l'équation $x-1-me^{-x}=0$.

Exercice 4 (8 points) amimath. mr

Le plan est rapporté à un repère orthonormé $(O; \vec{i}, \vec{j})$.

<u>Partie A</u>: On considère la fonction définie sur $]0;+\infty[$ par : $g(x)=x\ln x-x+1$ et soit Γ sa courbe. 1) Calculer les limites de g en 0 et en $+\infty$.

- 2) Etudier les variations de g et préciser le signe de g(x) suivant les valeurs de x.
- 3) On désigne par Γ ' la courbe de la fonction $u(x) = \ln x$.
- - b) Soit g_1 la fonction définie par : $\begin{cases} g_1(x) = x \ln x x + 1 \\ g_1(0) = 1 \end{cases}$.

Montrer que \mathbf{g}_1 est un prolongement continu de \mathbf{g} en $\mathbf{0}$. Etudier la dérivabilité de \mathbf{g}_1 en $\mathbf{0}$.

- c) Soit Γ_1 la courbe de g_1 . Tracer les courbes Γ' et Γ_1 . (fig:1).
- 4. a) En utilisant une intégration par parties, calculer l'intégrale : $J = \int_{1}^{e} (t-1) \ln t dt$.
- b) Soit Δ la partie du plan définie par : $\Delta = \{M(x,y)/1 \le x \le e; g(x) \le y \le \ln x\}$. Calculer, en cm² l'aire de

- Partie B: Soit f la fonction définie sur $]0,+\infty[$ par : $f(x) = \frac{\ln x}{x-1}$. 1) Dresser le tableau de variation de f. (On remarquera que f'(x) s'exprime en fonction de g(x)).
- 2) Montrer que l'équation $f(x) = \frac{1}{2}$ admet une solution unique α et que $3.5 < \alpha < 3.6$. 3) Soit h la fonction définie sur $\left[1, +\infty\right[par : h(x) = \ln x + \frac{1}{2}x + \frac{1}{2} \right]$.
- a) Vérifier que $h(\alpha) = \alpha$.
- b) Etudier les variations de h. c) On pose I = [3,4]. Montrer que si $x \in I$ alors $h(x) \in I$ et $|h'(x)| \le \frac{5}{6}$.
- 4) On définit la suite (u_n) par : $u_0 = 3$ et $u_{n+1} = h(u_n)$.
- a) Vérifier que $\alpha \in I$ et que pour tout $n \in \mathbb{N}$, $u_n \in I$. Montrer que pour tout $n \in \mathbb{N}$: $|u_{n+1} \alpha| \le \frac{5}{6} |u_n \alpha|$.
- b) Montrer que pour tout $n \in \mathbb{N}$, $|u_{n+1} \alpha| \le \left(\frac{5}{6}\right)^n$.
- c) Montrer que $(u)_n$ est convergente vers α .

Fin.