If a random variable X is normally distributed with mean μ and standard deviation σ , then

$$(X - \mu)/\sigma$$

is distributed as a normal random variable with mean 0 and standard deviation 1

(i.e. is a standard normal distribution)

The Central Limit Theorem:

Suppose that a <u>sample</u> from a population is obtained containing many <u>observations</u> of fixed size, say, n, each observation being randomly generated in a way that does not depend on the values of the other observations, and that the <u>arithmetic mean</u> (average) statistic, say \overline{X} , of the observed values is computed.

If this procedure is performed many times, the central limit theorem says that the <u>distribution</u> of the arithmetic mean statistic, \overline{X} , will be closely approximated by a <u>normal distribution</u> with

mean given by μ , the mean of the population, and with standard deviation given by σ/\sqrt{n} where σ is the standard deviation of the population.

Equivalently, the distribution of

$$(\overline{X} - \mu) / \sigma / \sqrt{n}$$

will be approximately the standard normal distribution (i.e. with mean 0 and standard deviation 1)

The larger the value of n, the "better" the approximation to normal.

Also note that the larger the value of n, the smaller the standard deviation, σ/\sqrt{n} , becomes.

B Testing Part 1: The Central Limit Theorem medium.com

From https://stackoverflow.com/questions/20626994/how-to-calculate-the-inverse-of-the-normal-cumulative-distribution-function-in-p

Assuming the distribution of X (house price) is normal with mean μ = 60 and standard deviation σ = 40

Python Code:

```
import scipy as sc
import scipy.stats as sct
sc.version.full_version # 0.15.1

#a. Find P(X<50)
print(sct.norm.cdf(x=50,loc=60,scale=40)) # 0.4012936743170763

#b. Find P(X>=50)
print(sct.norm.sf(x=50,loc=60,scale=40)) # 0.5987063256829237

#c. Find P(60<=X<=80)
print(sct.norm.cdf(x=80,loc=60,scale=40) - sct.norm.cdf(x=60,loc=60,scale=40))

#d. how much top most 5% expensive house cost at least? or find x where P(X>=x) = 0.05
print(sct.norm.isf(q=0.05,loc=60,scale=40))

#e. how much top most 5% cheapest house cost at least? or find x where P(X<=x) = 0.05
print(sct.norm.ppf(q=0.05,loc=60,scale=40))</pre>
```

Output:

0.4012936743170763 0.5987063256829237 0.19146246127401312 125.79414507805892 -5.794145078058918

The acronyms

cdf cummulative distribution function

sf survival function

isf inverse survival function

ppf percent point function