Numbers

1 Counting

Our conventional system is *decimal*, which is base-10. We use the following ten symbols to represent natural numbers:

To begin counting, we start with the symbol 0 to represent zero, then move to the next symbol to represent the next number, and so on.

\mathbf{Number}	Base-10 Representation
Zero	0
One	1
Two	2
Three	3
Four	4
Five	5
Six	6
Seven	7
Eight	8
Nine	9

At this point, we have run out of symbols! With every number system:

When you run out of symbols, start over, and add one to the left

For the next number, ten, we would go from 9 back to 0 and add one to the left of it to get

10

Then we can go through all of the symbols again until we get to 19 and repeat the process to get 20.

2 Binary

Binary is a base-2 number system which uses the symbols:

0.1

Let's count in binary.

Number	Base-2 Representation
Zero	0
One	1

We ran out of symbols much more quickly this time! No worries. We just start over and add one to the left. Repeating this process, we'll get:

\mathbf{Number}	Base-2 Representation
Zero	0
One	1
Two	10
Three	11
Four	100
Five	101
Six	110
Seven	111
Eight	1000
Nine	1001

Some very nice patterns emerge. In fact, once we notice patterns in base-2, we might go back and look for similar patterns in base-10.

3 Place-Value

Decimal

A number is composed of multiple *digits* where each digit has a place-value. For base-10, a number like 7248 has its digits in the following place-values:

This is one way to see that this number is

$$7 \cdot 10^3 + 2 \cdot 10^2 + 4 \cdot 10^1 + 8 \cdot 10^0$$

or

7 thousands, 2 hundreds, 4 tens, and 8 ones.

Binary

In binary, we have numbers that look like

10111

which has place values:

This is one way to see that this number is

$$1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

or

1 sixteen, 0 eights, 1 four, 1 two, and 1 one.

which in decimal is

$$16 + 4 + 2 + 1 = 23$$

4 Hexadecimal

Hexadecimal is base-16 and uses the symbols

$$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F$$

Notice that we won't run out of symbols until we reach F (fifteen).

Number	Base-16 Representation
Zero	0
One	1
Two	2
Three	3
Four	4
Five	5
Six	6
Seven	7
Eight	8
Nine	9
Ten	A
Eleven	B
Twelve	C
Thirteen	D
Fourteen	E
Fifteen	F
Sixteen	10
Seventeen	11

Consider the hexidecimal number 3B7E with place-values:

which is

$$3 \cdot 16^3 + 11 \cdot 16^2 + 7 \cdot 16^1 + 14 \cdot 16^0$$

or

3 four thousand ninety-sixes, 11 two hundred fifty-sixes, 7 sixteens, and 14 ones which in decimal is $15230\,$

5 Colors

A hexadecimal color code specifies red-green-blue (RGB) intensities. It is written

where:

- RR represents the intensity of the red component.
- **GG** represents the intensity of the green component.
- **BB** represents the intensity of the blue component.

For example, the color $\#00\mathrm{D}712$ has

00 D7 12

Red (0 in decimal) Green (215 in decimal) Blue (18 in decimal)

This number has no red, a lot of green, and a tiny bit of blue. Basically, it looks green! The table below has several examples of colors and their hexidecimal representation.

Color	Hex Color Code
Red	#FF0000
Green	#00FF00
Blue	#0000 FF
Yellow	#FFFF00
Cyan	#00FFFF
Magenta	#FF00FF
Gray	#808080
Black	#000000
White	$\#\mathrm{FFFFFF}$

F

	White #FFFFF		
Table	1: Common Colors and Their I	Hexadecimal Codes	
Exercises			
1. Convert the following bin	ary numbers to decimal:		
(a) 111	(c) 1010101	(e) 110011	
(b) 10001	(d) 11100001	(f) 100011	
2. Convert the following dec	imal numbers to binary:		
(a) 7	(c) 63	(e) 15	
(b) 100	(d) 64	(f) 16	
3. Demonstrate how to use	the standard algorithm to add 4	86 to 351 by hand.	
	r, convert the numbers to decim	. Use it to add the binary numbers 10 al and check the result. If that goes a	
5. Convert the following hex	radecimal numbers to decimal:		
(a) B	(c) 10	(e) ABC	
(b) 64	(d) A1	(f) 3CD0	
6. Use your understanding of Check your colors with a	_	th educated guesses for the following	colors.
(a) Dark blue	(c) Pink	(e) Brown	
(b) Purple	(d) Orange	(f) Gold	