

HPDC'22 Summary June 27 – July 1 2022

Norbert Egi Infrastructure Software

Agenda

Session 1: Data Centers and HPC Systems

- DAOS: Data Access-aware Operating System
- FPVM: Towards a Floating Point Virtual Machine
- Lifting and Dropping VMs to Dynamically Transition Between Time- and Space-sharing for Large-Scale HPC Systems

Session 2: HPC Memory, I/O, and Storage Systems

- Access Patterns and Performance Behaviors of Multi-layer Supercomputer I/O Subsystems under Production Load
- NVMe-oAF: Towards Adaptive NVMe-oF for IO-Intensive Workloads on HPC Cloud
- Capri: Compiler and Architecture Support for Whole-System Persistence

Session 3: Reliability and Scheduling

- Understanding Memory Failures on a Petascale Arm System
- SchedInspector: A Batch Job Scheduling Inspector Using Reinforcement Learning
- Holmes: SMT Interference Diagnosis and CPU Scheduling for Job Co-location
- TLPGNN: A Lightweight Two-Level Parallelism Paradigm for Graph Neural Network Computation on GPU

Agenda

Session 4: HPC Algorithms

- TAC: Optimizing Error-Bounded Lossy Compression for Three Dimensional Adaptive Mesh Refinement Simulations
- Communication-aware Sparse Patterns for the Factorized Approximate Inverse Preconditioner
- Ultra-fast Error-bounded Lossy Compression for Scientific Dataset
- Optimizing the Bruck Algorithm for Non-uniform All-to-all Communication

Session 5: HPC Toolchains, Traces, and More

- SciStream: Architecture and Toolkit for Data Streaming between Federated Science Instruments
- Machine Learning Assisted HPC Workload Trace Generation for Leadership Scale Storage Systems
- PROV-IO: An I/O-Centric Provenance Framework for Scientific Data on HPC Systems

Session 6: Cloud Computing and Machine Learning

- Locality-aware Load-Balancing For Serverless Clusters
- Practical Efficient Microservice Autoscaling with QoS Assurance
- Hare: Exploiting Inter-job and Intra-job Parallelism of Distributed Machine Learning on Heterogeneous GPUs
- Efficient Design Space Exploration for Sparse Mixed Precision Neural Architectures

Selected Papers of Key Interest

- SchedInspector: A Batch Job Scheduling Inspector Using Reinforcement Learning
- ➤ Efficient Design Space Exploration for Sparse Mixed Precision Neural Architectures

SchedInspector: A Batch Job Scheduling Inspector Using Reinforcement Learning

Di Zhang¹, Dong Dai¹, Bing Xie²

¹University of North Carolina at Charlotte ²Oak Ridge National Laboratory

Job Queue (Waiting Jobs)

Motivation Example

Smallest Job First(Small)

Job Queue (Waiting Jobs)

Motivation

Motivation

Without Inspector

Completion Time: 10

With Inspector

Completion Time : 9

Challenges

Current Status Future Job Arrival

Understanding of historical data

Attributes of the selected job

Impact of the rejection

Number of rejected times

Whether the job is runnable

. . .

Reinforcement Learning

David Silver, et. al. Mastering the game of Go with deep neural networks and tree search, Nature vol. 529 (2016)

Volodymyr Mnih, et. al. Playing Atari with Deep Reinforcement Learning arXiv:1312.5602 (cs)

From https://www.selfdrivingcars360.com/how-autonomous-vehicles-fit-into-our-ai-enabled-future/

Our Contribution

- The first scheduling inspector for HPC systems.
- New optimizations of the state and reward to enable efficient RL training.
- Extensively evaluations on efficiency, stability and interpretability of SchedInspector.

Design of State

Naïve Features

Compacted Features

Jc: Scheduled Job RT: Rejected Times

CA: Cluster Avail.

Run: Runnable

Design of State

SchedInspector

QD: Queue Delay

BF: Backfilling

Design of Reward

Naïve: Metric_{inspect} - Metric_{orig}

Win/Loss: $Integer(Metric_{inspect} > Metric_{orig})$

✓ Percentage: (Metric_{inspect} - Metric_{orig})/ Metric_{orig}

Testing for Different Job Traces and Policies

SchedInspector has significant improvement for the two scheduling policies on all job traces.

Impact on System Utilization 500

	SJF			F1		
	BASE	INSP	Δ	BASE	INSP	Δ
Scheduling without B <mark>ickfilling</mark>						
SDSC-SP2	59.64%	59.37%	-0.27%	60.18%	60.59%	+0.41%
CTC-SP2	51.35%	49.92%	-1.43%	54.40%	54.23%	-0.17%
Lublin	61.49%	61.06%	-0.43%	67.37%	63.04%	-4.33%
HPC2N	23.72%	23.47%	-0.25%	24.00%	23.79%	-0.21%
Schedulin <mark>g with Bac</mark> kfilling						
SDSC-SP2	78.45%	78.37%	-0.08%	76.71%	76.93%	+0.22%
CTC-SP2	74.98%	74.89%	-0.09%	75.47%	76.05%	+0.58%
Lublin	79.38%	77.71%	-1.67%	80.38%	78.08%	-2.30%
HPC2N	56.81%	57.10%	+0.29%	57.11%	56.57%	-0.54%

SchedInspector has barely noticeable reduction (1% difference) on system utilization

Training on **Different Job Traces**

SchedInspector converges in all of the workloads within 100 training epochs and different job traces have different converge pattern.

Training on Different Scheduling Policies

SchedInspector converges in all scheduling policies. For some scheduling policies, the converged value is near 0 and the rejection ratio is low.

Training for **Different Metrics**

SchedInspector converges towards two new metrics but with different patterns.

What SchedInspector Learns

SchedInspector has obvious patterns for different features which indicates the effectiveness of feature selection

Hare: Exploiting Inter-job and Intra-job Parallelism of Distributed Machine Learning on Heterogeneous GPUs

Fahao Chen¹, Peng Li¹, Celimuge Wu², Song Guo³

¹The University of Aizu

²University of Electro-Communications

³The Hong Kong Polytechnic University & The Hong Kong Polytechnic University Shenzhen Research Institute

ACM HPDC 2022 Minneapolis, Minnesota, United States

Why Do We Need to Consider GPU Heterogeneity?

(a) Training speedup of different jobs on different GPUs.

(b) Round time of ResNet152 under different GPU combinations.

- Different GPUs provide different performance speedups for different jobs. (inter-job parallelism)
- Different GPU combinations provide different performance speedups. (intra-job parallelism)

Existing Works on Heterogeneous GPUs

They treat DML jobs as unsplittable units and ignore the intra-job parallelism.

^[6] Chaudhary, Shubham, et al. "Balancing efficiency and fairness in heterogeneous GPU clusters for deep learning." Proceedings of the Thirteenth EuroSys Conference. 2020.

^[7] Le, Tan N., et al. "Allox: compute allocation in hybrid clusters." Proceedings of the Thirteenth EuroSys Conference. 2020.

^[8] Narayanan, Deepak, et al. "Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads." 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).

Hare: An Efficient DML Job Training System

Overview of Hare

System Goals: High training efficiency, High GPU utilization, and Starvation-free

Compared with other scheduling algorithms

Scheduling Algorithm: Problem Statement

1. Model:

Tasks must wait for the completion of all tasks

- 2. Task scheduling problem
- Objective: minimize the total weighted job completion time
- Solution: the start running time of each task

Theorem: The above problem is NP-hard, which cannot be solved within a polynomial time.

**Proof: Reduce the well-known SS13 problem [11].

[11] Garey, Michael R., and David S. Johnson. Computers and intractability. Vol. 174. San Francisco: freeman, 1979.

Scheduling Algorithm: Algorithm Design

Step 1: Problem relaxation [12]

Step 2: Task scheduling

- Decide the scheduling ordering of tasks according to the solution of relaxed problem
- Greedily assign tasks to GPUs with the earliest available time

Theorem: Our scheduling algorithm is $\alpha(2 + \alpha)$ -approximation.

Proof: Please refer to our paper.

 $\alpha = \max_{task} \{ \frac{T^{c,max}}{T^{c,min}}, \frac{T^{s,max}}{T^{s,min}} \}$ $T^{c}: \text{ task training time}$ $T^{s}: \text{ task synchronization time}$

[12] Queyranne, Maurice. "Structure of a simple scheduling polyhedron." Mathematical Programming 58.1 (1993): 263-285.

Evaluation: Experimental settings

Testbed: 15 heterogeneous GPUs (V100 + T4 + K80 + M60)

Simulator: up to 200 GPUs and 300 DML jobs

Workload: 8 popular models across domains of CV, NLP, Speech, and Recognition

Baseline: 4 popular scheduling schemes.

(*Please refer to our paper for more details on experimental settings.)

Evaluation: Testbed

- Our scheduling algorithm reduces the total weighted JCT by 47.6% to 75.3% by others.
- About 90.5% of jobs can complete within 25 minutes based on our scheduling algorithm.

Evaluation: Simulation

- The maximum performance gap between the testbed and simulator is only 5%.
- Our scheduling algorithm outperforms others under a scaling of GPUs and jobs.

Evaluation: Simulation

Our scheduling algorithm outperforms others under various settings.

Conclusion

 Hare: An DML jobs training system with the objectives of high training efficiency, high GPU utilization, and starvation-free

Task Scheduling Algorithm:

- Minimize total weighted JCT
- Reduce total weighted JCT by 47.6% to 75.3% over other schemes

Constraint:

- Jobs with changed setting may incur high overhead when scheduling
- Hare is short in handling dynamic jobs

Efficient Design Space Exploration for Sparse Mixed Precision Neural Architectures

Krishna Teja Chitty-Venkata¹, Arun Somani¹ Murali Emani², Venkatram Vishwanath²

¹Iowa State University, Ames, IA, USA ²Argonne National Laboratory, Lemont, IL, USA

ACM HPDC 2022

The 31st International Symposium on High-Performance Parallel and Distributed Computing

Deep Neural Network Optimization

Pruning

- Pruning in general refers to cutting down branches/leaves
- Neural Network Pruning refers to removing weights/connection without compromising the accuracy
- The parameters which do not contribute to the final accuracy are removed to save memory
- Example: Magnitude-based

Neural Network Pruning

Weight/Irregular Pruning

- Creates Sparse Matrices
- Requires sparse decoding
- Irregular memory accesses if not stored contigously

Node/Structured Pruning

Weight Matrix						
0	1	9	0	2	0	
0	8	2	0	9	0	
0	1	5	0	1	0	
0	3	8	0	7	0	
0	5	3	0	7	0	
0	2	7	0	1	0	

- Regular Dense Matrices
- Regular DNN implementation
- Regular memory accesses as easily stored in contiguous memory

2:4 (two-to-four) Sparsity Pattern by Nvidia A100 GPU Tensor Cores:

- The 2:4 pattern mandates that for each group of 4 values, at least 2 must be zero
- The pattern leads to 50% sparsity while maintaining accuracy

Example Pruning Strategy:

1.2 0.2 -5.1 3.2

.2 0 0

3.2

Types of Multiplications Supported by Nvidia A100 GPU

Pruned (0) Non-pruned Non-pruned

Deep Neural Network Optimization

Types of Precisions Supported by Nvidia A100 Tensor Cores

Summary of Sparse-Precisions Supported by Nvidia A100 GPU

Multiplication	FP16	BF16	Int8	Int4	Int1
2:4 Sparse	Yes	Yes	Yes	Yes	No
Dense	Yes	Yes	Yes	Yes	Yes

Summary of Sparse-Precisions Supported by Nvidia A100 GPU Tensor Cores

Nvidia State-of-the-art

- 4x Latency
- ~ Accuracy

Latency vs Accuracy

• Example:

ResNet50 on Imagenet Dataset

• Latency: Time taken for all the matrix multiplications in the Network

• Accuracy: Percentage of images correctly classified

Problem: Need for Automated Search Method

- Total Number of distinct combinations for "N" layer = 9^N
- Example: For Resnet50, number of combinations = 9^{50} (practically impossible to go through each combination)
- Hence, automated Neural Architecture Search method is required to find optimal combination

Deep Neural Network Optimization

Neural Architecture Search (NAS)

Neural Architecture Search (NAS)

Neural Architecture Search Schematic for A100 GPUs

Mixed Sparse & Precision Search (MSPS) - Sparse and Mixed Precision Quantized Supernetwork

Results: ResNet50 on Imagenet Dataset

Uniform Sparse Int8 Network on Resnet50

Latency on Nvidia A100 GPU : 52.8 ms

Our Mixed Searched Network on Resnet50

Latency on Nvidia A100 GPU : 52.37 ms

Accuracy of Resnet50 on Imagenet: 73.32 %

Neural Architecture, Sparsity and Precision Search (ASPS)

- Problem: Simultaneously search for the following dimensions for Ampere 100 Tensor Cores:
 - **Architecture Choices:** Kernel Size and Number of Filters
 - **Optimization:** Mixed Sparse and Precision Combination

Benchmark: ResNet50 Network on Imagenet dataset

= 0.5

= 0.5

Architecture and Sparse-Precision Search Space on ResNet50 Network

Number of Distinct Combinations: $17^{36} * 9^{35}$

Architecture Search Supernetwork

R

Architecture, Sparse & Mixed Precision Search Supernetwork

Sampling the best Architecture, Sparse and Precision Combination

Searched Resnet50 Network on Imagenet dataset

End-to-end Microarchitecture on Resnet50 Search Space

End-to-end Sparse and Mixed Precision Quantization Combination of the corresponding Searched Network

Architecture, Mixed Sparse & Precision Search (ASPS) -

Performance Comparison between Uniform Sparse Int8 and our Searched Networks **CIFAR dataset**

Configuration	Lat.	CIFAR10	CIFAR100
Comiguration	(ms)	Acc. (%)	Acc. (%)
Uniform Sparse Int8	5.4	94.32	74.29
MSPS Most Efficient Model	5.27	94.76	74.54
ASPS best Model	5.19	94.38	74.7

Imagenet dataset

Configuration	Lat. (ms)	Acc. (%)
Uniform Sparse Int8	52.8	73.15
MSPS Most Efficient Model	49.44	72.86
ASPS Model ($\lambda = 0$)	52.8	73.42
ASPS best Model	49.36	73.72

Conclusion

We developed the following methods:

- *Mixed Sparse and Precision Search (MSPS)*: to search for the optimal weight matrix type (sparse or dense) and precision (FP16, BF16, Int8, Int4, Int1) combination for every layer
- Architecture, Sparsity, and Precision Search (ASPS): a method to search for better hyperparameters (kernel and filter sizes) along with the matrix type and bitwidth in the same loop
- Our searched models on Resnet50 Search Space outperforms the manually designed models on the ImageNet dataset
- For example, our best ASPS model is ~1.1x faster and 0.57% more accurate than the baseline sparse-only Integer 8 ResNet50 network