Diffie-Hellmann in modernen Kryptosystemen

Prof. Dr.-Ing. Johann Uhrmann

Kommunikation über unsicheren Kanal

Probleme:

- Wie können Alice und Bob sicherstellen, dass nur sie den geheimen Schlüssel k kennen?
- Wenn k über einen sicheren Kanal ausgetauscht werden muss, warum nicht dann gleich die ganze Nachricht m?
- Wie einen sicherer Kanal für jeden Kommunikationspartner finden?

Eine Möglichkeit: Public-Key Encryption

 pub_{Bob} , sec_{Bob} pub_{Alice}

Eve

Probleme:

- Wie kann sichergestellt werden, dass der Public Key zum angeblichen Eigentümer gehört? → gelöst durch Digitale Signaturen
- Der Secret Key hat eine lange Lebensdauer und wird oft wiederverwendet.
 Wenn er bekannt wird, dann kann aus c im Nachhinein k berechnet werden.

Das Problem: Kompromittierte Schlüssel

- Wird verschlüsselte Kommunikation aufgezeichnet und später der Schlüssel bekannt, dann können die aufgezeichneten Daten durch Unbefugte gelesen werden
- Beispiele für derartige Angriffe:

Angriff	ermöglicht	veröffentlicht
Heartbleed	Auslesen von Speicher via OpenSSL-Lücke, u.U. Private Key des Serverzertifikats	2014-04-07
Bleichenbacher	Ausnutzen von unterschiedlichen Fehlermeldungen zur Berechnung des Session-Keys ("chosen plaintext" mit SSLv2)	1998
DROWN	Verwendung des Bleichenbacher-Angriffs auf ca. 25% - 30% aller SSL-gesicherten Seiten im Internet	2016-03-01
nation state	Beschlagnahmung des Systems mitsamt Schlüsselmaterial	

Lösung: Diffie-Hellman

Idee: Finde und benutze Rechenoperationen ⊙, die

- kommutativ sind: $A \odot B \odot C = A \odot C \odot B$
- einfach durchzuführen, aber sehr schwierig umzukehren sind
 - $A \odot B \rightarrow X$ einfach
 - Berechnung von B aus A und X schwierig

Diffie-Hellman

Beide Kommunikationspartner

- ullet einigen sich auf einen Operator p der Rechenoperation (public)
- wählen den anderen Operator als Secret zufällig (private)
- führen die Operation durch und übertragen das Ergebnis
- berechnen aus dem Ergebnis und dem eigenen Secret den gemeinsamen, geheimen Schlüssel $k=p\odot a\odot b=p\odot b\odot a=A\odot b=B\odot a$

Beispiel: "klassischer DH"

- Mathematisches Konstrukt: Primzahlenkörper
- → Potenzieren ist einfach
- → Logarithmieren ist schwierig
- Public-Informationen:
 - Primzahl p
 - "Generator" g < p
- Alice wählt a, berechnet $A = g^a \mod p$, sendet A
- Bob wählt b, berechnet $B = g^b \mod p$, sendet B
- beide berechnen $k = g^{ab} \mod p = A^b \mod p = B^a \mod p$

Sicherheit von klassischem DH

- Sicherheit von Diffie-Hellman auf Primzahlenkörpern hängt stark von der Länge der Primzahl ab
- bis 512 bit → bereits gebrochen
- 768 bit → mit moderatem Aufwand zu brechen
- Number Field Sieve:

LogJam-Angriff

Client, Server und Angreifer berechnen jetzt die Session-Keys aus g^{ab} , cr und sr.

Elliptic Curves

- neue, alternative Menge, auf der die Rechenoperation durchgeführt wird
- Operation für Diffie-Hellman-Algorithmus:
 Multiplikation von Punkten auf einer Elliptic Curve mit einem Integer
- Public Informationen:
 - Definition der Kurve
 - ein Startpunkt G auf dieser Kurve
 - ein errechneter Punkt Q = n G
- Private Information: die Zahl n

Elliptic Curves

Addition auf Elliptic Curves

Addition auf Elliptic Curves

EC-Diffie-Hellman

unsicherer Kanal

Curve25519

Startpunkt G (x=9)

 d_A zufällig

$$Q_A = d_A G$$

 Q_B

 $X = d_A Q_B = d_A d_B G$

Eve

Curve25519

Startpunkt G (x=9)

 Q_A Q_B

Curve25519 Startpunkt G (x=9)

 d_B zufällig

$$Q_B = d_B G$$

 Q_A

 Q_B

$$X = d_B Q_A = d_B d_A G$$

Zusammenfassung

- Diffie-Hellman erlaubt zwei Kommunikationspartnern das Generieren von einem geheimen Schlüssel über eine unsichere Verbindung
- Für Man-in-the-Middle-Angriffe sind zusätzlich Zertifikate und Signaturen notwendig
- Elliptic Curves lösen Primzahlenkörper als Konstrukt ab, um geeignete Einwegfunktionen zu berechnen