UPPSALA UNIVERSITET

Matematiska institutionen

Martin Herschend, Thomas Kragh Prov i matematik

K1, STS1, W1, X1, Frist, KandKe1, Gylärarma1

Linjär algebra och geometri I 2013–12–19

Skrivtid: 8.00-13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara försedda med motiveringar. Varje korrekt löst uppgift ger högst 5 poäng. För betygen 3, 4, 5 krävs minst 18, 25 respektive 32 poäng.

1. (Obs: denna uppgift löses inte om man har klarat duggan!)

Lös det linjära ekvationssystemet

$$\begin{cases} x_1 + 3x_2 + x_3 + 2x_4 = 2 \\ -x_1 - 3x_2 + (a-2)x_4 = -2 \\ 4x_1 + 12x_2 + (a+4)x_3 + 9x_4 = 8 \end{cases}$$

för alla värden på $a \in \mathbb{R}$.

2. Låt

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad \text{och} \quad C = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Finn alla matriser X som uppfyller ekvationen

$$AXC + BXC = I$$
.

3. Lös ekvationen

$$\begin{vmatrix} x & 1 & 2x & 1 \\ x & 2x & x & 3x \\ 1 & 2x & 1 & x \\ 2 & x & 2 & x \end{vmatrix} = 0.$$

4. Låt punkterna

$$A: (1,2,2), B: (2,2,3), C: (3,4,3)$$
 och $D: (2,4,2)$

vara givna.

(a) Visa att punkterna är hörnen i en parallellogram där vektorn \overrightarrow{AC} utgör ena diagonalen.

- (b) Bestäm arean av denna parallellogram.
- 5. Låt $T \colon \mathbb{R}^4 \to \mathbb{R}^2$ vara den linjära avbildning som
 - avbilder vektorn (1,0,0,0) på (2,-1),
 - avbilder vektorn (0,1,0,0) på (2,-1),
 - $\bullet\;$ avbilder vektorn(0,0,3,1) på (1,2)och
 - avbilder vektorn (0,0,2,2) på (1,1).
 - (a) Hitta standardmatrisen [T] för T.
 - (b) Hitta bilden av vektorerna (1, -3, 6, 2) och (2, 1, 2, 2) under T.
- **6.** Låt $S: \mathbb{R}^3 \to \mathbb{R}^3$ vara speglingen i planet $\pi: 2x + y z = 0$.
 - (a) Hitta S:s standardmatris [S].
 - (b) Hitta två egenvärden för [S].

(Obs: man kan lösa (b) utan att lösa (a))

7. (a) Ge definitionen av spannet (det linjära höljet) av vektorerna $\vec{v}_1,\dots,\vec{v}_k\in\mathbb{R}^n$. Låt

$$\vec{u}_1 = (1, 1, 1), \quad \vec{u}_2 = (1, 2, 0), \quad \vec{u}_3 = (3, 5, 1) \quad \text{och} \quad \vec{u}_4 = (4, 7, 1).$$

- (b) Avgör om spannet av vektorerna \vec{u}_1 , \vec{u}_2 , \vec{u}_3 och \vec{u}_4 är hela \mathbb{R}^3 .
- (c) För vilka värden på $a \in \mathbb{R}$ tillhör vektorn $\vec{v} = (1, 1, a)$ spannet Span $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$?
- 8. Hitta ekvationen för planet genom origo som skär båda planen

$$\pi_1 : y + 2z = 23$$
 och $\pi_2 : x - y + z = 27$

vinkelrätt.

Lycka till! God jul och gott nytt år.

Lösningar till tentamen i Linjär algebra och geometri I 2013–12–19

Lösning till problem 1. Totalmatrisen är:

$$\begin{pmatrix} 1 & 3 & 1 & 2 & 2 \\ -1 & -3 & 0 & a-2 & -2 \\ 4 & 12 & a+4 & 9 & 8 \end{pmatrix} \xrightarrow{1-4} \sim \begin{pmatrix} 1 & 3 & 1 & 2 & 2 \\ 0 & 0 & 1 & a & 0 \\ 0 & 0 & a & 1 & 0 \end{pmatrix} \xrightarrow{-a} \sim \\ \sim \begin{pmatrix} 1 & 3 & 1 & 2 & 2 \\ 0 & 0 & 1 & a & 0 \\ 0 & 0 & 0 & 1-a^2 & 0 \end{pmatrix} \xrightarrow{1-a^2} \sim \text{om } a \neq \pm 1 \begin{pmatrix} 1 & 3 & 1 & 2 & 2 \\ 0 & 0 & 1 & a & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{-1-a^2} \sim \\ \sim \begin{pmatrix} 1 & 3 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \Rightarrow \text{L\"{o}sningar: } (x_1, x_2, x_3, x_4) = (2-3t, t, 0, 0), t \in \mathbb{R}.$$

Om a = 1 är totalmatrisen ekvivalent med:

och alla lösningar är: $(x_1, x_2, x_3, x_4) = (2 - 3t - s, t, -s, s), t \in \mathbb{R}$. Om a = -1 är totalmatrisen ekvivalent med:

$$\begin{pmatrix} 1 & 3 & 1 & 2 & 2 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{\blacktriangleleft}{\bigcirc 1} \sim \begin{pmatrix} 1 & 3 & 0 & 3 & 2 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

och alla lösningar är: $(x_1, x_2, x_3, x_4) = (2 - 3t - 3s, t, s, s), t \in \mathbb{R}$.

Lösning till problem 2.

$$AXC + BXC = I$$
 \Leftrightarrow $(A+B)XC = I$ \Leftrightarrow $X = (A+B)^{-1}C^{-1} = (C(A+B))^{-1}$

om C(A+B) är inverterbar (observera att detta också medför att C och A+B är inverterbara). Vi ser att

$$C(A+B) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Denna inverteras:

$$\begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \leftarrow \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & -2 \\ 0 & 1 & 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

So omskrivningen gäller och

$$X = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{också:} \left((A+B)^{-1} = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}, C^{-1} = C \right)$$

Lösning till problem 3.

Så lösningarna är $x \in \{0, 7\}$.

Lösning till problem 4.

(a) Vi ser att $\overrightarrow{AB} = (1,0,1), \overrightarrow{AD} = (1,2,0)$ och

$$\overrightarrow{AC} = (2, 2, 1) = (1, 0, 1) + (1, 2, 0) = \overrightarrow{AB} + \overrightarrow{AD}$$

Därför är punkten C mittemot A i parallellogrammen med sidorna \overrightarrow{AB} och \overrightarrow{AD} .

Alternativ: $\overrightarrow{AB}=(1,0,1)$ och $\overrightarrow{DC}=(1,0,1)$ är lika. Så därför är \overrightarrow{AD} och \overrightarrow{BC} också lika och punkterna är hörnen i en parallellogram.

(b) Vi har formeln:

$$\begin{split} \operatorname{Area}(\Diamond ABCD) &= \|\overrightarrow{AB} \times \overrightarrow{AD}\| = \\ &= \| \begin{pmatrix} \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix}, - \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} \end{pmatrix} \| = \\ &= \| (-2, 1, 2) \| = \sqrt{9} = 3. \end{split}$$

Lösning till problem 5. (a) Från uppgiften får vi ekvationen

$$[T] \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 1 & 1 \\ -1 & -1 & 2 & 1 \end{pmatrix}.$$

Vi inverterar 4×4 matrisen:

och vi får att

$$[T] = \begin{pmatrix} 2 & 2 & 1 & 1 \\ -1 & -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{4} & \frac{3}{4} \end{pmatrix} = \begin{pmatrix} 2 & 2 & \frac{1}{4} & \frac{1}{4} \\ -1 & -1 & \frac{3}{4} & -\frac{1}{4} \end{pmatrix}$$

4

(b)

$$\begin{pmatrix} 2 & 2 & \frac{1}{4} & \frac{1}{4} \\ -1 & -1 & \frac{3}{4} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 \\ -3 \\ 6 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 2 & \frac{1}{4} & \frac{1}{4} \\ -1 & -1 & \frac{3}{4} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$$

Lösning till problem 6. (a) normalvektorn (2,1,-1) avbildas på (-2,-1,1) och vektorerna (1,-2,0) och (1,-1,1) (som är parallell med planet) bevaras av S. Så vi får ekvationen:

$$[S] \begin{pmatrix} 1 & 1 & 2 \\ -2 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -2 \\ -2 & -1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

Vi inverterar matrisen precis till höger om [S]

$$\begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ -2 & -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \end{pmatrix} \stackrel{\textcircled{2}}{\longrightarrow} \sim \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 5 & 2 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \end{pmatrix} \stackrel{\longleftarrow}{\longrightarrow} \sim \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 5 & 2 & 1 & 0 \\ 0 & 0 & 1 & \frac{2}{6} & \frac{1}{6} & -\frac{1}{6} \end{pmatrix} \stackrel{\longleftarrow}{\longrightarrow} \sim \begin{pmatrix} 1 & 1 & 0 & \frac{2}{6} & -\frac{2}{6} & \frac{2}{6} \\ 0 & 1 & 0 & \frac{2}{6} & \frac{1}{6} & -\frac{1}{6} \end{pmatrix} \stackrel{\longleftarrow}{\longrightarrow} \sim \begin{pmatrix} 1 & 0 & 0 & \frac{2}{6} & \frac{1}{6} & \frac{5}{6} \\ 0 & 1 & 0 & \frac{2}{6} & \frac{1}{6} & \frac{5}{6} \\ 0 & 0 & 1 & \frac{2}{6} & \frac{1}{6} & \frac{5}{6} \\ 0 & 0 & 1 & \frac{2}{6} & \frac{1}{6} & \frac{5}{6} \end{pmatrix}$$

Så vi får

$$[S] = \begin{pmatrix} 1 & 1 & -2 \\ -2 & -1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \frac{1}{6} \begin{pmatrix} 0 & -3 & -3 \\ 2 & 1 & 5 \\ 2 & 1 & -1 \end{pmatrix} =$$

$$= \frac{1}{6} \begin{pmatrix} -2 & -4 & 4 \\ -4 & 4 & 2 \\ 4 & 2 & 4 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 & -2 & 2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$$

Alternativ beräkna [S]:s (eller dennas kolonner) direkt genom att använda

$$S(\vec{x}) = \vec{x} - 2\operatorname{proj}_{(2,1,-1)}(\vec{x}) = \vec{x} - \frac{\vec{x} \cdot (2,1,-1)}{3}(2,1,-1)$$

(b) Då S är en spegling är $S(\vec{n}) = -\vec{n}$ och $S(\vec{v}) = \vec{v}$ för \vec{n} normalvektor till planet och \vec{v} parallell med planet. Så båda -1 och 1 är egenvärden (och där finns inte andra). Alternativt hitta rötterna i

$$\frac{1}{3^3} \begin{vmatrix} -1 - 3\lambda & -2 & 2 \\ -2 & 2 - 3\lambda & 1 \\ 2 & 1 & 2 - 3\lambda \end{vmatrix} = \frac{1}{3^3} \begin{vmatrix} -1 - 3\lambda & -2 & 2 \\ -2 & 2 - 3\lambda & 1 \\ 0 & 3 - 3\lambda & 3 - 3\lambda \end{vmatrix} =$$

$$= \frac{1 - \lambda}{3^2} \begin{vmatrix} -1 - 3\lambda & -2 & 2 \\ -2 & 2 - 3\lambda & 1 \\ 0 & 1 & 1 \end{vmatrix} - \frac{1 - \lambda}{3^2} \begin{vmatrix} -1 - 3\lambda & -4 \\ -2 & 1 - 3\lambda \end{vmatrix} =$$

$$= \frac{1 - \lambda}{3^2} ((1 + 3\lambda)(-1 + 3\lambda) - 8) = \frac{1 - \lambda}{3^2} (9\lambda^2 - 9) = -(\lambda - 1)^2(\lambda + 1)$$

Lösning till problem 7.

- (a) Spannet av vektorerna $\vec{v}_1, \dots, \vec{v}_k$ är mängden av alla linjära kombinationer av vektorerna. Alternativt $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_k) = \{c_1\vec{v}_1 + \dots + c_k\vec{v}_k \mid c_i \in \mathbb{R}\}.$
- (b+c) Vi sätter vektorerna in som kolonner i en matris och kollar om rangen är lika med antalet rader och vi sätter vektorn (1,1,a) som augmentering för att se när den faktisk kan skrivas som en linjär kombination av \vec{u} :na.

$$\begin{pmatrix} 1 & 1 & 3 & 4 & 1 \\ 1 & 2 & 5 & 7 & 1 \\ 1 & 0 & 1 & 1 & a \end{pmatrix} \xrightarrow{\longleftarrow} \sim \begin{pmatrix} 1 & 1 & 3 & 4 & 1 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 & a - 1 \end{pmatrix} \xrightarrow{\square} \sim \begin{pmatrix} 1 & 1 & 3 & 4 & 1 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & a - 1 \end{pmatrix}$$

Vi är nu på trappstegsform, och då koefficientmatrisen har rang 2 < 3 är spannet inte lika med hela \mathbb{R}^3 . Yttermera, ser vi att (1,1,a) tillhör spannet om och endast om a=1 (precis då har vi lösningar).

Lösning till problem 8. Vi söker ett plan som är parallellt med de två normalvektorerna

$$\vec{n}_1 = (0, 1, 2)$$
 och $\vec{n}_2 = (1, -1, 1)$.

Till normalvektor kan vi ta

$$(0,1,2)\times(1,-1,1)=\left(\begin{vmatrix}1&2\\-1&1\end{vmatrix},-\begin{vmatrix}0&2\\1&1\end{vmatrix},\begin{vmatrix}0&1\\1&-1\end{vmatrix}\right)=(3,2,-1)$$

Då planet går genom origo är ekvationen

$$3x + 2y - z = 0.$$