7 APPENDIX

Proof of Corollary 1. For DkS, we set |S| = k, it has an upper bound as follows:

$$\rho(S) = \frac{\sum_{e \in \mathcal{E}(S)} w_e}{|S|} = \frac{\sum_{e = (u,v), u,v \in S} f_e(u) + f_e(v)}{|S|}$$

$$\leq \frac{\sum_{e = (u,v), u,v \in S} (f_e(u) + f_e(v)) + \sum_{e = (u,v), u \in S, v \notin S} f_e(u)}{|S|}$$

$$= \frac{\sum_{u \in S} \sum_{e \ni u} f_e(u)}{|S|} = \frac{\sum_{u \in S} l_u}{|S|}$$

$$= \frac{\sum_{i=0}^{j-1} \lambda_i * |B_i| + (k - |B_{j-1}|) * \lambda_j}{k}$$

Therefore, result 2 holds up. As for result 1, if $k = |B_j|$, according to property 3 the equivalency condition in line 2 holds up because $f_e(u) = 0$ if $u \in \mathcal{S}$ and $v \notin \mathcal{S}$, then result 1 holds up. These results also hold up for DalkS because if |S| > k, it will add more nodes into \mathcal{S} with lower upper bounds on their loads.

Before proofs of Lemma 2, we introduce the definition of k-core from [43]: k-core is the maximal subgraph G_k in graph G, the degree of where any vertex v in G_k is satisfied with $\mathrm{d}_{G_k}(v) \geq k$.

PROOF OF LEMMA 2. The Greedy algorithm just moves any node whose degree is the lowest in the remaining graph \mathcal{H} . Let us remark A(k) as the nodeset of k-core for specific k. We claim that when deleting a node $u \in A(k)$, there mustn't be any node $v \notin A(k)$ in the remaining graph \mathcal{H} . We prove it by way of contradiction, w.l.o.g, we set u as the first node to be deleted in A(k) in Greedy, therefore u has the lowest degree in \mathcal{H} and $d_{\mathcal{H}}(v) \geq d_{\mathcal{H}}(u) \geq d_{A(k)}(u) \geq k$ for any node v in \mathcal{H} , which produces a k-core subgraph with a larger size, and it leads to a contradiction.

Proof of Theorem 5. We set $\mathcal{H}_k(k>0)$ is the remaining graph after k iterations in Algorithm 2 and \mathcal{H}_0 is the initial whole graph, \mathcal{H}_{k+1}' is the nodeset to be deleted in k+1 iteration. Therefore, $\mathcal{H}_{k+1}=\mathcal{H}_k\setminus\mathcal{H}_{k+1}'$,

$$\begin{split} \rho(\mathcal{H}_{k+1}) &= \rho(\mathcal{H}_k \setminus \mathcal{H}_{k+1}^{'}) \\ &= \frac{\mathcal{W}(\mathcal{E}(\mathcal{H}_k)) - \mathcal{W}(\mathcal{E}(\mathcal{H}_{k+1}^{'}))}{|\mathcal{H}_k| - |\mathcal{H}_{k+1}^{'}|} \\ &\geq \frac{\rho(\mathcal{H}_k) \cdot |\mathcal{H}_k| - \sum_{v \in \mathcal{H}_{k+1}^{'}} \mathrm{d}_{\mathcal{H}_k}(v)}{|\mathcal{H}_k| - |\mathcal{H}_{k+1}^{'}|} \\ &> \frac{\rho(\mathcal{H}_k) \cdot |\mathcal{H}_k| - \sum_{v \in \mathcal{H}_{k+1}^{'}} \rho(\mathcal{H}_k)}{|\mathcal{H}_k| - |\mathcal{H}_{k+1}^{'}|} \\ &= \frac{\rho(\mathcal{H}_k) \cdot |\mathcal{H}_k| - \rho(\mathcal{H}_k) \cdot |\mathcal{H}_{k+1}^{'}|}{|\mathcal{H}_k| - |\mathcal{H}_{k+1}^{'}|} \\ &= \rho(\mathcal{H}_k) \end{split}$$

That means the density of graph $\mathcal H$ monotonically increases in iterations, then any deleted node has a lower degree (when it is being deleted) than the final density, i.e., δ . Therefore, the remaining graph $\mathcal H$ is a δ -core and it is the graph of some time of the greedy search according to Lemma 2.

We claim that the process before getting the δ -core is a monotonic increasing phase of density in Greedy. We can confirm two facts:

- 1. During Greedy, if there is a node $u \in \mathcal{H}'_1$ existing in the remaining graph, the deletion in Greedy will increase the density of the remaining graph. That's because if Greedy deletes a node $v \notin \mathcal{H}'_1$, then $d_{\mathcal{H}}(v) \leq d_{\mathcal{H}}(u) < \rho(\mathcal{G}) \leq \rho(\mathcal{H})$. $\rho(\mathcal{H})$ will increase and $\rho(\mathcal{G}) \leq \rho(\mathcal{H})$ still holds up. If Greedy deletes the node u, now that $d_{\mathcal{H}}(u) \leq \rho(\mathcal{H})$, then $\rho(\mathcal{H})$ will also increase and $\rho(\mathcal{G}) \leq \rho(\mathcal{H})$ holds up.
- 2. During Greedy, if there is a node $u \in \mathcal{H}_{k+1}'$ existing in the remaining graph $\mathcal{H} > \mathcal{H}_k$, and there isn't any node belonging to \mathcal{H}_k' . Then: $\rho(\mathcal{H}) \geq \rho(\mathcal{H}_k)$ because we delete more nodes with lower degrees. Therefore, when we deletes a node $v \notin \mathcal{H}_{k+1}'$, then $d_{\mathcal{H}}(v) \leq d_{\mathcal{H}}(u) < \rho(\mathcal{G}) \leq \rho(\mathcal{H}_k) \leq \rho(\mathcal{H})$, then $\rho(\mathcal{H})$ will increase and $\rho(\mathcal{G}) \leq \rho(\mathcal{H})$ holds up. If Greedy deletes the node u, now that $d_{\mathcal{H}}(v) \leq \rho(\mathcal{H})$, $\rho(\mathcal{H})$ will also increase and $\rho(\mathcal{G}) \leq \rho(\mathcal{H})$ holds up.

Therefore, the density monotonically increases in Greedy before getting δ -core.

Figure 7: Exponential decrease in the number of deleted nodes.

Algorithm 3: Greedy DSPSolver

```
Input: Undirected graph \mathcal{G}; density metric \rho(\cdot)
Output: S^*: the nodeset of the densest subgraph of \mathcal{G}.

1 S, S^* \leftarrow \mathcal{V}
2 while S \neq \emptyset do
3 | \triangleright find the vertex u^* with the lowest degree in S
4 | u^* \leftarrow \arg\min_{u \in S} d_S(u))
5 | Remove u^* and all its adjacent edges from \mathcal{G}.
6 | \triangleright S \setminus \{u\}: the remaining nodeset without u
7 | S \leftarrow S \setminus \{u\}
8 | if \rho(S) > \rho(S^*) then
9 | S^* \leftarrow S^*
```

10 return S^* .

Table 5: Dataset source and density of algorithms

Dataset	Source	Туре	Pruning	w_app	exact	DLL	uw_Pruning+DLL
ca-HepPh	Stanford's SNAP database	scholar collaboration network	119	119	119	119	119
comm-EmailEnron	Stanford's SNAP database	communication	37.316	37.344	37.344	37.337	37.337
ca-AstroPh	Stanford's SNAP database	scholar collaboration network	28.481	29.616	32.11	29.552	29.552
PP-Pathways	Stanford's SNAP database	protein interaction network	74.159	77.995	77.995	77.995	77.995
soc-Twitter_ICWSM	konect	social network	25.678	25.683	25.69	25.686	25.685
soc-sign_slashdot	Stanford's SNAP database	social network	39.376	42.132	42.132	42.132	42.132
rating-StackOverflow	konect	social network	20.209	20.209	20.21	20.209	20.209
soc-sign_epinion	Stanford's SNAP database	social network	80.168	85.599	85.637	85.589	85.589
ego-twitter	Stanford's SNAP database	social network	59.281	68.414	69.622	68.414	68.414
soc-Youtube	Stanford's SNAP database	social network	45.545	45.58	45.599	45.576	45.577
comm-WikiTalk	Stanford's SNAP database	communication	114.139	114.139	114.139	114.139	114.139
nov_user_msg_time	We own it privately.	social network	278.815	278.815	278.815	278.815	278.815
cit-Patents	AMiner scholar datasets	scholar collaboration network	132.776	135.706	137.261	135.706	135.706
soc-Twitter_ASU	ASU	social network	593.847	593.847	593.847	593.847	593.847
soc-Livejournal	Livejournal	social network	104.596	104.601	104.609	104.603	104.603
soc-Orkut	Stanford's SNAP database	social network	227.861	227.872	227.874	227.872	227.872
soc-SinaWeibo	Network Repository	social network	164.967	165.193	165.415	165.196	165.191
wang-tripadvisor	konect	rating network	13.442	13.873	14.082	-	=
rec-YelpUserBusiness	Network Repository	rating network	87.825	87.912	87.921	-	=
bookcrossing	konect	rating network	92.148	92.322	92.374	-	=
librec-ciaodvd-review	konect	rating network	233.553	233.59	233.597	-	=
movielens-10m	konect	rating network	1351.35	1351.35	1351.35	-	=
epinions	konect	rating network	595.302	595.314	595.316	-	=
libimseti	konect	social network	1645.71	1645.73	1645.73	-	=
rec-movielens	Network Repository	rating network	1801.16	1801.16	1801.16	-	_
yahoo-song	konect	rating network	46725.2	46725.2	46725.2	_	_

note: : **Pruning** (w_Pruning,uw_Pruning). w_app: approximation algorihtms on weighted graph(Priority Tree,Pruning+Priority Tree,BBST). **exact**: exact algorithms(maxflow,w_Pruning+maxflow). **DLL**:Doubly-linked list.

Figure 6: Comparison on detecting the densest subgraph without pruning.

Table 6: Comparison on detecting the densest subgraph without pruning.

	Running time/s				iteration count T					
Dataset	LOWD	Greedy++	FW	FISTA	FW_M	LOWD	Greedy++	FW	FISTA	FW_M
ca-HepPh	0.0168	0.0159	0.0208	0.1109	0.0161	1	1	2	3	1
comm-EmailEnron	0.1516	0.0714	0.5551	27.5346	0.3012	19	2	88	567	46
ca-AstroPh	0.3158	0.8396	2.312	24.2470	0.6593	36	33	343	375	92
PP-Pathways	0.1174	0.0333	0.3214	12.6981	1.7086	8	1	18	131	167
soc-sign_slashdot	0.2275	0.0704	0.7881	11.6623	1.1051	11	1	44	81	64
soc-sign_epinion	0.3213	1.4706	1.1853	11.1319	0.9581	9	12	40	46	33
soc-Twitter_ICWSM	1.8343	30.6654	96.3405	1207.2601	6.1467	49	114	2816	4901	175
rating-StackOverflow	2.1887	1.0537	10.0728	567.1578	18.7819	32	2	178	1125	341
ego-twitter	1.6001	2.9768	22.0971	2567.2520	1.7266	34	21	550	8115	41
soc-Youtube	6.5253	133.3086	82.3855	1001.4894	22.0866	46	129	612	929	161
comm-WikiTalk	4.6758	1.984	118.307	1933.6041	414.9261	15	1	407	1151	1386
nov_user_msg_time	341.1144	4464.4998	2581.9086	9826.2465	718.8805	97	174	624	454	177
cit-Patents_AMINER	291.4452	846.3628	837.8446	27554.332	1523.2698	104	56	259	1913	471
soc-Twitter_ASU	120.8906	19.2912	511.3170	12174.952	2047.9598	40	1	156	1244	603
soc-Livejournal	_	-	_	-	_	_	_	_	_	-
soc-Orkut	_	_	_	_	_	_	_	-	_	-
soc-SinaWeibo_NETREP	_	_	_	_	_	_	_	-	_	-
wang-tripadvisor	0.6686	23.6761	30.209	198.1408	15.6705	93	187	3894	4512	2007
rec-YelpUserBusiness	0.4621	24.5879	5.1698	62.8514	2.1192	54	228	626	886	239
bookcrossing	1.5177	92.9406	27.4916	910.8345	8.877	78	259	1398	5510	448
librec-ciaodvd-review	4.2248	75.7599	231.5822	1882.2756	38.6405	79	143	4635	4339	773
movielens-10m	49.2341	2.7029	129.6344	5329.5159	60.719	159	1	450	1611	211
epinions	30.4071	3957.2229	4302.242	>37786.731	743.6429	64	688	8893	>10000	1582
libimseti	25.7101	5276.5399	751.3750	24832.745	146.2627	39	710	1196	4632	234
rec-movielens	50.4427	6928.9143	306.0513	24923.281	148.2539	54	733	355	3195	172
yahoo-song	_	_	_	_	_	_	_	_	_	-

note: We ignore some datasets which are very large.">10000" and ">37786.731" means we run 10000 iterations(running time: 37786.731s) and can't still detect the densest subgraph.