Chapitre 4: Statistiques descriptives

1 Proportions et pourcentages

Définition: Population

- Une **population** est un ensemble d'éléments, appelés les **individus**.
- Une **sous-population** est une partie de la population.
- Le nombre total d'individus dans la population est appelé l'effectif total.

Remarque

Les individus d'une population ne sont pas toujours des personnes.

Par exemple, on peut parler de la *population* d'une trousse, dont les *individus* sont les stylos, et une *sous-population* est formée par les stylos rouges.

Définition: Proportion

On considère une population dont l'effectif total est ${\bf N}$, et une sous-population dont l'effectif est n.

- La **proportion** d'individus dans la sous-population est $p = \frac{n}{N}$.
- On peut exprimer cette proportion en pourcentage, en la multipliant par 100 : $\left(\frac{n}{N} \times 100\right)$ % des individus sont dans la sous-population.

Exemple

Dans la population ci-dessus, la proportion de croix est $\frac{4}{10}$ = 0,4, ou 40%.

Remarque

Prendre x% d'une valeur revient à la multiplier par $\frac{x}{100}$.

Propriété: Proportion de proportion, pourcentage de pourcentage

 \Box

On considère une population A, et

- Une sous-population B de A, dont la proportion dans A est $p_{\rm B}$.
- Une sous-population C de B, dont la proportion dans B est $p_{\rm C}$.

Alors la proportion de C dans A est $p = p_{\text{B}} \times p_{\text{C}}$

Exemple

On considère la population des véhicules possédés par une entreprise.

- 75% de ces véhicules sont électriques.
- Parmi les véhicules électriques, 30% sont des deux-roues.

La proportion p de deux-roues électriques dans la population totale est donc

$$p = 0.75 \times 0.3 = 0.225$$

Soit 22,5%.

Variations et évolutions

Définition: Variations

Lorsqu'on passe d'une valeur V_1 à une valeur V_2 , on dit qu'il s'agit d'une **évolution**. On a alors :

- V₂ V₁ est la variation absolue.
- $\frac{V_2 V_1}{V_1}$ est la variation relative, aussi appelée le taux d'évolution.

Exemple

Une personne ayant 1 000 000 d'euros gagne 1 000 000 €.

- la variation absolue est de 1 000 000 €.
- la variation relative est de $\frac{1\ 000\ 000}{100\ 000\ 000} = 0.01$, ou 1%.

Remarque

- Si la variation absolue (ou le taux d'évolution) est positive, c'est que la valeur à augmenté. Sinon, c'est qu'elle a diminué.
- La variation absolue est dans la même unité que V_1 et V_2 .
- Le taux d'évolution n'a pas d'unité.

Propriété

Si t est le taux d'évolution entre deux valeurs A et B, on a

$$B = A \times (1 + t)$$

Démonstration. On sait que
$$t$$
 est le taux d'évolution, donc $t = \frac{B-A}{A}$. Donc $A \times t = B-A$, et donc $B = A \times t + A = A \times (1+t)$.

Remarque

Si t est supérieur à 0, c'est une augmentation. Sinon, c'est une diminution.

Propriété: Évolutions successives et coefficient global

Lorsqu'on applique plusieurs évolutions successives, on obtient le **coefficient global** en multipliant les coefficients.

Exemple

Si on applique une augmentation de 20%, suivie d'une diminution de 20%, l'évolution a pour coefficient global

 $\left(1 + \frac{20}{100}\right) \times \left(1 - \frac{20}{100}\right) = 1,2 \times 0,8 = 0,96$

On a donc globalement une diminution.

Propriété: Évolution réciproque

Pour revenir à la valeur initiale avant une évolution de coefficient c, on doit *diviser* par c. Cette nouvelle évolution est appelée **l'évolution réciproque**, et son coefficient est le **coefficient réciproque** $c_r = \frac{1}{c}$.

3 Séries statistiques