MTH1002M Calculus

1. Write down the domain and range of the following functions:

a)
$$f(x) = x^2$$

$$f(x) = x^5$$

a)
$$f(x) = x^2$$
 b) $f(x) = x^5$ c) $f(x) = \sqrt{5 - x^2}$ d) $f(x) = 4\sqrt{x}$

$$f(x) = 4\sqrt{x}$$

e)
$$f(x) = \frac{1}{x^5}$$

$$(x) = \frac{1}{x^5}$$

$$f(x) = \frac{1}{x^2}$$

g)
$$f(x) = \frac{1}{2}$$

e)
$$f(x) = \frac{1}{x^5}$$
 f) $f(x) = \frac{1}{x^4}$ g) $f(x) = \frac{1}{(x-3)}$ h) $f(x) = \frac{1}{\sqrt{4-x^2}}$

i)
$$f(x) = \sqrt{a-x}$$
, where a is a constant

$$f(x) = \sqrt{a-x}$$
, where a is a constant j) $f(x) = \frac{1}{(x-b)^2}$, where b is a constant

2. Write down the degree of the following polynomials:

a)
$$y = x + 1$$

b)
$$v = 1 + x + 3x^3$$

a)
$$y = x + 1$$
 b) $y = 1 + x + 3x^3$ c) $y = 3 + 2x^7 + 5x^2 + x^4$

d)
$$y = \pi$$

- 3. Sketch the graph of $y = \cos x$ for $-2\pi < x < 2\pi$, and use your result to help you sketch a graph of $y = \sec x = 1/\cos x$ over the same interval. Clearly label your axes in both cases. State the domain and range of $y = \cos x$ and $y = \sec x$.
- 4. Sketch the graph of the function $f(x) = x^2 2x + 1$, and state its domain and range.
- 5. In the lectures, we saw that a circle in the (x, y) plane is not the graph of a function. We were able to define two functions, $y = \sqrt{r^2 - x^2}$ and $y = -\sqrt{r^2 - x^2}$, to represent the top and bottom of the circle respectively. Is it possible to define other sets of functions to represent the circle? If so, give an example, both as a sketch and as a set of formulas.
- 6. What happens to the function $G(x) = (x^2 4)/(x + 2)$ when x = -2? Should this point be included in the domain?
- 7. Write down the first three terms in the power series definition of cos x given in the lecture notes and confirm that differentiating these gives the first two terms in the power series of -sin x.
- 8. Use the trigonometric identity $\sin^2 x + \cos^2 x = 1$ to show that

(a)
$$\cot^2 x + 1 \equiv \csc^2 x$$

(b)
$$\frac{2\sin x}{1-\cos x} - \frac{2\cos x}{\sin x} = 2 \csc x$$

- 9. In the lectures, we saw the general form of the graphs of $f(x) = 1/x^n$ for both odd and even *n*. How do these graphs change as *n* increases?
- 10. Write the power series definitions of $\sin x$ and $\cos x$ given in the lectures in sigma notation i.e. an expression involving a sum from 0 to ∞ written as \sum .