

Description and Analysis of Systems

UNIT 2

Systems

- Broadly speaking, a system is anything that responds when stimulated or excited
- The systems most commonly analyzed by engineers are artificial systems designed by humans
- Engineering system analysis is the application of mathematical methods to the design and analysis of systems

Systems

- · Systems have inputs and outputs
- Systems accept excitation signals at their inputs and produce response signals at their outputs
- Systems are often usefully represented by block diagrams

A single-input, single-output system block diagram

System Examples

A Multiple-Input, Multiple-Output System Block Diagram

CT and DT Systems

CT systems respond to and produce CT signals

DT systems respond to and produce DT signals

Ex.1 RLC circuit, example of a CT system.

$$R i(t) + L \frac{di(t)}{dt} + y(t) = x(t)$$
$$i(t) = C \frac{dy(t)}{dt}$$

Ex. 2 Mechanical system, example of a CT system

x(t) - applied force

K - spring constant

D - damping constant

y(t) - displacement from rest

Force Balance:

$$M\frac{d^2y(t)}{dt^2} = x(t) - Ky(t) - D\frac{dy(t)}{dt}$$

$$M\frac{d^2y(t)}{dt^2} + D\frac{dy(t)}{dt} + Ky(t) = x(t)$$

Observation: Very different physical systems may be modeled mathematically in very similar ways.

Ex.3. Example of a DT system.

Balance in a bank account from month to month

y[n] = Balance at end of the nth month

x[n] = net deposit in n^{th} month (deposits - withdrawals)

1% interest each month

$$y[n] = 1.01y[n-1] + x[n]$$

Observations:

- 1) Systems are described by differential and difference equations.
- 2) Such an equation, by itself, does not completely describe the input-output behavior of a system: we need auxiliary conditions (initial conditions, boundary conditions).
- 3) In some cases the system of interest has time as the natural independent variable and is causal. However, that is not always the case.
- 4) Very different physical systems may have very similar mathematical descriptions.

Different Properties of Systems

- · Time Invariance
- Stability
- Causality
- Memory
- Invertibility
- · Homogeneity
- Additivity
- Linearity

Time Invariance

• If an excitation causes a response and delaying the excitation simply delays the response by the same amount of time, regardless of the amount of delay, then the system is time invariant

Time Invariant System

Example:

$$y(t) = \sin(x(t))$$

$$x_1(t) = x(t - t_0)$$
 (Delayed Input)

$$y_1(t) = \sin(x_1(t)) = \sin(x(t-t_0))$$

Delayed output

$$y_2(t) = y(t - t_0) = \sin(x(t - t_0))$$

$$As, y_1(t) = y_2(t)$$

∴ Time Invarient

Example:

$$y[n] = nx[n]$$

$$x_1[n] = x[n - n_0]$$
 (Delayed input)

$$\mathbf{y}_1[n] = nx[n - n_0]$$

Delayed Output

$$y_2[n] = y[n-n_0] = [n-n_0](x[n-n_0])$$

$$y_1[n] \neq y_2[n]$$

Time Varying System

Stability

 Any system for which the response is bounded for any arbitrary bounded excitation, is called a bounded-input-bounded-output (BIBO) stable system

$$y(t) = tx(t) - B < x(t) < B$$

As $t \to \infty$, $y(t) \to \infty$. Unstable system

$$y(t) = e^{x(t)} - B < x(t) < B$$

Causality

- Any system for which the response occurs only during or after the time in which the excitation is applied is called a causal system.
- Strictly speaking, all real physical systems are causal

$$y[n] = x[n-1] \rightarrow causal \text{ system}$$

$$y[n] = x[n] - x[n+1] \rightarrow \text{non causal system}$$

Memory

- If a system's response at any arbitrary time depends only on the excitation at that same time and not on the excitation or response at any other time is called a static system and is said to have no memory
- A system whose response at some arbitrary time does depend on the excitation or response at another time is called a dynamic system and is said to have memory.

$$y[n] = (2x[n] - x^2[n])^2 \rightarrow \text{Memoryless system}$$

 $y[n] = y[n-1] + x[n] \rightarrow \text{System with memory}$

Invertibility

• A system is said to be invertible if unique excitations produce unique responses.

$$y(t) = 2x(t), w(t) = \frac{1}{2}y(t) \rightarrow \text{combination gives invertible system}$$

 $y(t) = x^2(t) \rightarrow \text{non invertible system}$

Homogeneity

• In a homogeneous system, multiplying the excitation by any constant (including complex constants), multiplies the response by the same constant.

Homogeneous System

Additivity

• If one excitation causes a response and another excitation causes another response and if, for any arbitrary excitations, the sum of the two excitations causes a response which is the sum of the two responses, the system is said to be additive

Linearity and LTI Systems

- If a system is both homogeneous and additive it is *linear*.
- If a system is both linear and timeinvariant it is called an LTI system
- Some systems which are non-linear can be accurately approximated for analytical purposes by a linear system for small excitations

Example -

$$y(t) = tx(t)$$

$$y_1(t) = tax_1(t)$$

$$y_2(t) = tbx_2(t)$$

$$x_3(t) = ax_1(t) + bx_2(t)$$

$$y_3(t) = tx_3(t) = t[ax_1(t) + bx_2(t)]$$

$$y_3(t) = y_1(t) + y_2(t) \rightarrow \text{Linear System}$$

Example -

$$y[n] = \text{Re}\{x[n]\}$$

$$x_1[n] = r[n] + js[n]$$

$$y_1[n] = r_1[n]$$

$$x_2[n] = jx_1[n] = jr[n] - s[n]$$

$$y_2[n] = \text{Re}\{x_2[n]\} = -s[n] \neq jy_1[n]$$

System violates homogeinity property.

Hence, it is non linear system.

