Optimization in Machine Learning

Mathematical Concepts Quadratic functions II

Learning goals

- Geometry of quadratic functions
- Spectrum of Hessian

PROPERTIES OF QUADRATIC FUNCTIONS

- Under symmetry: H = 2A
- Convexity/concavity of q depend on eigenvalues of H

GEOMETRY OF QUADRATIC FUNCTIONS

• Example:
$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \Rightarrow \mathbf{H} = 2\mathbf{A} = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}$$

• Since **H** symmetric: eigendecomposition $\mathbf{H} = \mathbf{V} \wedge \mathbf{V}^T$

$$\mathbf{V} = \begin{pmatrix} | & | \\ \mathbf{v}_{\text{max}} & \mathbf{v}_{\text{min}} \\ | & | \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \text{ orthogonal }$$

$$\Lambda = \begin{pmatrix} \lambda_{\text{max}} & 0 \\ 0 & \lambda_{\text{min}} \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}$$

SPECTRUM AND CURVATURE

× ° ° ×

• \mathbf{v}_{max} direction of highest curvature, with curvature value λ_{max}

$$\mathbf{v}^T \mathbf{H} \mathbf{v} = \mathbf{v}^T \mathbf{V} \Lambda \mathbf{V}^T \mathbf{v} = \mathbf{w}^T \Lambda \mathbf{w} = \sum_{i=1}^d \lambda_i w_i^2 \le \lambda_{\max} \sum_{i=1}^d w_i^2 = \lambda_{\max} ||\mathbf{w}||^2$$

- Since $||\mathbf{v}|| = ||\mathbf{x}||$ (V orthogonal): $\max_{||\mathbf{v}||=1} \mathbf{v}^T \mathbf{H} \mathbf{v} \leq \lambda_{\max}$
- For \mathbf{v}_{max} we obtain this upper bound: $\mathbf{v}_{max}^T \mathbf{H} \mathbf{v}_{max} = \mathbf{e}_1^T \Lambda \mathbf{e}_1 = \lambda_{max}$
- ullet Analogously, $oldsymbol{v}_{\min}$ direction of lowest curvature, with curvature value λ_{\min}
- Contour lines of any quadratic function are ellipses

SECOND ORDER CONDITION

- Recall: Second order condition for optimality is sufficient
- If $H(\mathbf{x}^*) \succ 0$ at stationary point \mathbf{x}^* , then \mathbf{x}^* local minimum (\prec for maximum)

$$f(\mathbf{x}) = f(\mathbf{x}^*) + \underbrace{\nabla f(\mathbf{x}^*)}_{=0} (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} \underbrace{(\mathbf{x} - \mathbf{x}^*)^T H(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*)}_{\geq \lambda_{\min} \|\mathbf{x} - \mathbf{x}^*\|^2} + \underbrace{P_2(\mathbf{x}, \mathbf{x}^*)}_{=o(\|\mathbf{x} - \mathbf{x}^*\|^2)}$$

lacktriangled Choose $\epsilon>0$ s.t. $|R_2(\pmb{x},\pmb{x}^*)|<rac{1}{2}\lambda_{\min}\|\pmb{x}-\pmb{x}^*\|^2$ for $\pmb{x}\neq\pmb{x}^*,\,\|\pmb{x}-\pmb{x}^*\|<\epsilon$

$$f(\mathbf{x}) \ge f(\mathbf{x}^*) + \underbrace{\frac{1}{2} \lambda_{\min} \|\mathbf{x} - \mathbf{x}^*\|^2 + R_2(\mathbf{x}, \mathbf{x}^*)}_{>0} > f(\mathbf{x}^*)$$

EIGENVALUES AND SHAPE

- If spectrum of **A** is known, also that of $\mathbf{H} = 2\mathbf{A}$ is known
- If all eigenvalues of $\mathbf{H} \stackrel{(>)}{\geq} \mathbf{0}$ ($\Leftrightarrow \mathbf{H} \stackrel{(\succ)}{\succcurlyeq} \mathbf{0}$):
 - q (strictly) convex
 - (Unique) global minimum
- If all eigenvalues of $\mathbf{H} \leq 0 \ (\Leftrightarrow \mathbf{H} \ \preccurlyeq \ 0)$:
 - q (strictly) concave
 - (Unique) global maximum
- If **H** has both positive and negative eigenvalues (⇔ **H** indefinite):
 - q neither convex nor concave
 - there is a saddle point

CONDITION AND CURVATURE

- $\kappa(\mathbf{H}) = \kappa(\mathbf{A}) = |\lambda_{\text{max}}|/|\lambda_{\text{min}}|$
- High condition means
 - $\bullet |\lambda_{\mathsf{max}}| \gg |\lambda_{\mathsf{min}}|$
 - Curvature along v_{max} ≫ along v_{min}
 - Problem for algorithms like gradient descent

APPROXIMATION OF SMOOTH FUNCTIONS

ullet Any $f \in \mathcal{C}^2$ can be locally approximated by quadratic function (second order Taylor)

$$f(\boldsymbol{x}) \approx f(\tilde{\boldsymbol{x}}) + \nabla f(\tilde{\boldsymbol{x}})(\boldsymbol{x} - \tilde{\boldsymbol{x}}) + \frac{1}{2}(\boldsymbol{x} - \tilde{\boldsymbol{x}})^T \nabla^2 f(\tilde{\boldsymbol{x}})(\boldsymbol{x} - \tilde{\boldsymbol{x}})$$

f and second order approximation: dark vs bright grid. (Source:
daniloroccatano.blog)

 Hessians provide information about local geometry of a function