夾捲案 2 分析參考

從事金屬材料裁切作業遭切割致死災害調查分析報告

重要提醒:本分析報告是基於所提供案例的有限資訊,並結合事故調查的專業方法論 進行。部分內容為根據邏輯與經驗所做的合理推斷,並會明確標示為(推斷)。一場實際、完整的事故調查,需要更詳盡的現場勘查、人員訪談與物證檢驗來支持所有結 論。

事故基本資料

• 行業分類: 金屬建築組件製造業

災害類型: 被刺、割、擦傷

媒介物: 切管機 (圓盤鋸)

• **罹災情形**: 死亡1人

• 事故時間: 113 年 11 月oo日 11 時 45 分許

事故地點: 廠內門扇組裝區

事故摘要: 移工鄭員於門扇組裝區操作切管機,在按下開關使圓盤鋸運轉後,屈身往前拿取右前方的待切物料。過程中,其衣物被旋轉中的圓盤鋸捲入,隨後身體被衣物牽引撞向鋸台,導致頸部遭鋸片切割,因大量出血當場傷重不治死亡。

一、 事件成因分析圖 (ECFC)

此圖將事故發生的事件及相關條件按時間順序,由左至右呈現,以視覺化方式釐清因 果關係。

二、 時間序列表

此表以表格形式記錄事故發生的先後順序和相關條件,為後續分析奠定基礎。

日期/時間	事件描述	事	主(P)/	相關條件 1 (直接條	相關條件 2 (條件 1 的背景
		實/	次(S)事	件)	或前提)
		推	件軸		
113/11/XX	罹災者鄭員按下切管機	事	Р	機器於待料、取料	未建立或未落實「人離
11:45 許	之按鈕開關,使圓盤鋸	實		期間,危險源(轉動	機、機暫停」或「取料前
	進入運轉狀態。			的鋸片)持續暴露。	應停機」的安全作業程
					序。(推斷)
113/11/XX	鄭員屈身往前拿取右前	事	Р	身體活動範圍與運	1. 作業動線規劃不良,物
11:45 許	方尚未裁切之封邊料。	實		轉中的危險區域重	料放置在需跨越危險區才
					能取得的位置。(推斷)
					2. 安全意識不足,低估了
					靠近運轉機具的風險。(推
					壁)
113/11/XX	其衣服被旋轉中圓盤鋸	事	Р	1. 身體過於靠近鋸	1. 圓盤鋸的固定式護罩開
11:45 許	捲入·	實		片。	口過大或防護範圍不足,
				2. 穿著的衣物可能	未能有效隔離鋸片。(推
				不夠合身。(推斷)	鑑斤)
					2. 缺乏穿著合身工作服的
					規定與監督。
113/11/XX	衣服隨即牽引鄭員身體	事	Р	捲入的力量巨大且	機械能量遠大於人體所能
11:45 許	靠向圓盤鋸,導致其頸	實		快速・人員無法反	抗衡。
後 	部左側遭圓盤鋸切割。			應。	
113/11/XX	罹災者因大量出血,經	事	Р	頸部動脈遭切割,	高速旋轉的切割工具對人
11:45 許	119 救護人員現場急救	實		造成急速大量失	體造成的傷害是毀滅性
後	後,仍因傷重不治死			<u> </u>	的。
	亡。				

三、 為何樹分析 (Why-Tree)

本分析從最終的傷害事件開始,透過不斷追問「為什麼」來探究事件的根本原因。

四、 屏障分析 (Barrier Analysis)

本分析旨在識別應有但失效、缺失或不足的屏障,導致危害接觸到目標。

• 危害: 機械能 (高速旋轉的圓盤鋸切割動能)

• 目標: 罹災者鄭員

屏障	屏障	屏障表	屏障失效原因	屏障如何影響事故 (失效的後果)
類型		現 (事		
		故時狀		
		態)		
工程	1. 有效的物理	不足或	採用了固定式護罩,但其開口	最關鍵的屏障功能不足。 未能依
控制	護罩 (如:自閉	失效	過大或防護範圍不足,在作業	據作業員的實際動作範圍來設計防
(最關	式護罩、與進料		員靠近取料時,仍將危害的鋸	護・導致防護形同虛設・讓身體部
鍵屏	連鎖的護罩)		片暴露在外。 (推斷)	位有機會接觸到危險源。
障)				

行政	2. 安全作業程	不存在	未針對此作業流程制定標準化	缺乏明確的作業指南,導致勞工僅
管理/	序(SOP) (包含	或無效	SOP,特別是「禁止身體任何	憑直覺進行操作・採取了「彎腰、
程序	取料、置料規	(推斷)	部位跨越運轉中的機台」、	伸手、跨越」等一系列高風險動
性	範)		「取放物料應先停機」等關鍵	作。
			規定。	
行政	3. 作業環境與	嚴重不	將待切物料放置在需要作業員	創造了不必要的暴露。 不良的佈
管理	動線規劃	足 (推	彎腰並伸手跨越危險區才能取	局迫使作業員必須將身體置於險境
		斷)	得的地方。	才能完成工作・是典型的「人去配
				合機器」而非「機器配合人」的不
				安全規劃。
行政	4. 作業前風險	不存在	管理階層與作業人員未能辨識	因為沒有辨識出風險・所以完全沒
管理	評估與危害告知	或無效	出「彎腰取料」這個動作會造	有規劃任何對應的控制措施(如:改
		(推斷)	成致命的捲入風險。	善物料位置、更新護罩、修訂
				SOP)·導致作業在高度風險下進
				行。
個人	5. 合身的工作	不足或	作業員可能穿著寬鬆或不合身	成為危害的媒介。寬鬆的衣物下襬
層面	服	失效	的工作服・増加了被捲入的機	或袖口,大幅增加了被旋轉機具勾
		(推斷)	率。	到或捲入的機會・最終將人員帶向
				危害源。

五、 變更分析 (Change Analysis)

本分析比較「事故狀況」與一個「理想的無事故狀況」,以識別導致事故的關鍵差異。

因素	事故狀況	先前、理想或未發生事	差異(變更)	效果評估 (此差異對事故的
(Factor)		故狀況 (比較基準)		影響)
WHERE	待切物料被放置	物料被放置在作業員無	物料位置由	核心佈局差異。 這個變更
(物料位置/	在需 跨越運轉中	需移動或彎腰跨越即可	「安全區」變	迫使作業員必須執行「彎
動線)	機台 才能取得的	安全拿到的位置(如左側	為「危險	腰跨越」這個極度危險的
	右前方	或後方)。	區」。	動作,是後續所有不安全
				行為的直接起因。
HOW (方	在機器**「持續	遵循「一動作、一指	作業程序由	允許了危害能量在不必要
法/程序)	運轉」**的狀態	令」原則・在進行非切	「動靜分離」	時持續存在,大幅增加了
	下,進行非切割	割動作(如取料)前・應	變為「持續運	人員暴露於危害下的時間
	的「取料」動	先**「停止機器」**。	轉」。	與機率,剝奪了安全的緩
	作。			衝時間。
WHAT (設	圓盤鋸的**「固	設備應配備**「全方位	設備防護由	屏障的有效性出現漏洞。
備/防護)	定式護罩」**存	或隨動式護罩」**,確	「有效隔離」	一個看似有防護的設備,
	在防護死角,未	保在任何作業角度下,		實際上卻因設計不當而存

能完全隔離危	鋸片非切割部分均被有	變為「存在間	在致命缺陷,給予了作業
害。 (推斷)	效遮蔽。	隙」。	員虛假的安全感。

六、 人為失誤分析 (Human Failure Analysis)

本分析探討影響人員行為的深層次原因,而非僅歸咎於個人。

失誤類型	主要不安全行為/失誤	根本原因 (組織與系統層面)
技術性失誤 (Skill-	罹災者鄭員彎腰跨越運轉	1. 極度不安全的作業環境設計: 將物料放在需要跨
based Slip) 或	中的機台取料。	越機台才能拿到的地方,這種設計本身就在誘發或迫
常規性違規	此行為可能是因注意力不	使人員犯錯。這是系統性、源頭性的規劃失敗。
(Routine	集中而發生的 失誤	2. 安全程序與監督的真空: 缺乏明確禁止此類行為
Violation)	(Slip),也可能是為了求	的 SOP·也沒有現場監督機制來即時糾正這種致命的
	快,長期養成的 常規性違	「捷徑」。管理階層的失能,為不安全行為的發生提
	棄(Violation)。	供了溫床。
知識性錯誤	雇主/現場負責人未能提	1. 風險評估的系統性失敗: 管理階層從未對「切管
(Knowledge-based	供安全的作業環境與設	機操作」的完整流程(包含取料、置料、切割、廢料處
Mistake)	備。	理)進行系統性的風險評估。他們只看到了「切割」的
		危害·卻完全忽略了「取料動線」中隱藏的致命風
		險。
		2. 「有護罩就好」的淺層安全思維: 管理者可能認
		為裝了固定式護罩就已足夠・缺乏對護罩「有效性」
		的深入評估知識。這反映出安全管理的專業能力不
		足,僅停留在滿足最低要求的層面。

七、根本原因分析與矯正改善措施

本章節匯總前述六項分析的結果,旨在明確事故的直接原因與根本原因,並依據控制階層理論,提出能有效防止災害再次發生的系統性改善建議。

(一) 立即原因

- 不安全的狀況 (Unsafe Conditions):
 - 1. 圓盤鋸於待料(非切割)期間,鋸片仍處於高速運轉狀態。
 - 2. 待切物料放置於作業員右前方,其拿取路徑與運轉中的鋸片區域重疊。
 - 3. 切管機的固定式護罩未能完全遮蔽鋸片,存在防護死角或開口過大。(推斷)

• 不安全的行為 (Unsafe Acts):

- 1. 作業員彎腰並伸手跨越運轉中的圓盤鋸去拿取物料。
- 2. 穿著可能不合身或寬鬆的衣物在旋轉機械旁作業。(推斷)

(二) 根本原因

- 1. **作業流程與工作地佈置的規劃失敗**: 這是本次事故最核心的根本原因。將物料放置在會迫使人員暴露於危害下的位置,是源頭設計上的重大缺陷。管理階層完全沒有從「人因工程」與「安全動線」的角度來規劃作業環境。
- 2. **設備安全防護的本質性缺陷**: 選用或安裝的「固定式護罩」無法應對實際作業中人員可能的活動範圍,其防護是無效的。這顯示在設備採購或設置時,缺乏對其安全性能的有效性評估。
- 3. **安全作業程序的闕如與執行不力**: 公司未建立針對此項作業的 SOP·特別是缺乏「取/放料前應停機」、「禁止身體跨越機台」等關鍵安全規定。即使有,也顯然 未落實到現場作業與監督。
- 4. **危害辨識與風險評估不足**: 管理階層未能辨識出「不當的物料擺放」與「持續運轉的機器」組合下,會產生致命的捲夾與切割風險,顯示其風險評估未能涵蓋完整的作業週期。

(三) 矯正改善措施建議

- 依據風險控制階層 (消除 > 取代 > 工程控制 > 管理控制 > 個人防護具)·提出以下矯正措施:
- 消除/工程控制層面 (最優先):
 - 1. **立即重新規劃作業動線與物料配置 (消除危害暴露)**: 重新設計工作站佈局,將待切物料架、成品架等,全數規劃於作業員無需轉身、彎腰或跨越機台即可安全拿取的位置。這是最根本、最有效的改善措施。
 - 2. **改善機台安全護罩:** 將現有的固定式護罩, 改為與切割動作連鎖的「**自閉式或隨動式護罩**」,確保鋸片在非切割狀態下, 大部分都被遮蔽, 大幅縮小危害暴露區域。
 - 3. 增設安全連鎖裝置: 評估加裝「雙手啟動裝置」或「安全光柵」,要求在 切割時,作業員雙手必須在安全區內,徹底防止手部或身體靠近鋸片。

• 制度/管理層面:

- 1. **建立並嚴格執行「切割機安全作業標準(SOP)」**: SOP 應圖文並茂,明確規 範物料如何放置、取料前是否需停機、切割時的正確姿勢、禁止事項(如跨 越機台),並翻譯成移工熟悉的母語。
- 2. **強制落實作業前設備檢點**: 規定每日開機前,必須由作業員及主管雙重確認安全護罩、緊急停止按鈕等裝置功能正常,並留下書面紀錄。
- 3. **將本次事故納入教育訓練:** 立即將此案例製作成教材,對全體相關人員(含本國籍與外國籍勞工)進行再訓練,強調不安全動作的致命性。

人員層面:

1. **嚴格執行工作服穿著規定**: 要求在操作旋轉機具時,必須穿著合身的工作服,並將袖口、衣襬束緊,現場主管需負責監督檢查。