Deskriptive Statistik

Contents

1	Graphische Darstellung	1				
	.1 Stamm-Blatt-Diagramm					
	.2 Histogramme					
	1.2.1 Häufigkeiten					
	1.2.2 Klassen, Klassenbreite					
	o blabdiagramm					
2	arbeiten mit Quartilen	3				
	.1 1. Quartil					
	.2 2. Quartil (Median)					
	.3 3. Quartil					
	.4 Boxplot	4				
3	tatistische Masszahlen	4				
	.1 Arithmetisches Mittel	4				
	.2 Modalwert (Modus)	4				
4	.	4				
4	treungsmasse 1 Empirische Varianz	4 4				
	2 Empirische Standardabweichung					
	2 Emprisone Standardas werending					
5	Dichtekurven und Normalverteilung	5				
	1 Normalverteilung					
	.2 Dichtekurve	5				
6	1 dehrdimensionale Verteilungen	5				
	.1 Lineare Regression	5				
	.2 Empirische Kovarianz					
	.3 Empirischer Korrelationskoeffizient	6				
7	Binomialverteilung	6				
•	inomatver tenting	U				
8	Geometrische Verteilung					
9	Iypergeometrische Verteilung	6				
10	Poisson Verteilung	7				
11	Bleichverteilung	7				
1 2	unktschätzer	7				
14	2.1 Erwartungswert schätzen	7				
	2.2 Varianz schätzen	7				
1	Graphische Darstellung					
1	Stamm-Blatt-Diagramm					
1.						
4	$\begin{array}{ccc} 3,4,6,1,2,3,8,7,8,8 \\ 4.7.6 & 77 \Rightarrow 0 77 & \longrightarrow 0 8 \end{array}$					
5	$4,7,0$ $104 \rightarrow 104 \longrightarrow 10$					
6	1,2,5,4,3,3 oder mit runden $132 \rightarrow 1 32 \longrightarrow 1 3$					
7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

1.2 Histogramme

1.2.1 Häufigkeiten

Umfang der Stichprobe: n

absolute Häufigkeit: $h(a_j) = \text{Anzahl}$ der Ausprägungen in der Beobachtungsmenge

relative Häufigkeit: $f(a_j) = \frac{Anzahl\ der\ Ausprägungen\ in\ der\ Beobachtungsmenge}{Gr{\ddot{o}}sse\ der\ Beobachtungsmenge\ (Umfang\ der\ Stichprobe)} = \frac{h(a_j)}{n}$

absolute Summenhäufigkeit: $G(x) = \sum_{i}^{n} h(x)$

Verteilungsfunktion: $H(x) = \sum f(x) = \frac{1}{n} \sum h(x) = \frac{G(x)}{n}$

Beispiel

Zwei Würfel werden 1000 mal geworfen:

Ausprägung x	Häufigkeit $h(x)$	relative Häu-	absolute Summen-	Verteilungsfunktion
		figkeit $f(x)$	häufigkeit $G(x)$	H(x)
2	12	0.012	12	0.012
3	46	0.046	58	0.058
4	83	0.083	141	0.141
5	103	0.103	244	0.244
6	160	0.160	404	0.404
7	180	0.180	584	0.584
8	159	0.159	743	0.743
9	125	0.125	868	0.868
10	77	0.077	945	0.945
11	43	0.043	988	0.988
12	12	0.012	1000	1.000

1.2.2 Klassen, Klassenbreite

Umfang der Stichprobe: n

Anzahl Klassen: \sqrt{n}

Klassenbreite: \sqrt{n} oder $10log_{10}(n)$

1.3 Stabdiagramm

2 Arbeiten mit Quartilen

Quartile teilen die Grundgesamtheit in 4 gleich grosse Teile.

2.1 1. Quartil

$$Q_1 = \frac{1}{2} \cdot \left(1 + \frac{n+1}{2}\right) = \frac{n+3}{4}$$

Sollte das Quartil zwischen zwei Indizes liegen $(n_1 \leq Q_1 \leq n_2)$ so gilt:

$$Q_1 = (x_{n2} - x_{n1}) \cdot \frac{n+3}{4} + x_{n1} \cdot n_2 - x_{n2} \cdot n_1$$

2.2 2. Quartil (Median)

n gerade:

$$Q_2 = \frac{1}{2} \cdot (x_{\frac{n}{2}} + x_{\frac{n}{2}+1})$$

n ungerade:

$$Q_2 = x_{\frac{n+1}{2}}$$

2.3 3. Quartil

$$Q_2 = \frac{1}{2} \cdot \left(\frac{n+1}{2} + n \right) = \frac{3n+1}{4}$$

Sollte das Quartil zwischen zwei Indizes liegen $(n_1 \le Q_3 \le n_2)$ so gilt:

$$Q_1 = (x_{n2} - x_{n1}) \cdot \frac{3n+1}{4} + x_{n1} \cdot n_2 - x_{n2} \cdot n_1$$

2.4 Boxplot

3 Statistische Masszahlen

3.1 Arithmetisches Mittel

$$\bar{x} = \frac{1}{n} \sum x_i = \frac{1}{n} (n_1 a_1 + \dots + n_k a_k) = \mu$$

Für Häufigkeitsdaten mit Ausprägungen $a_1,...,a_k$ und relativen Häufigkeiten $f(a_1),...,f(a_k)$ gilt:

$$\bar{x} = \sum_{i=1}^{k} a_i \cdot f(a_i) = a_1 \cdot f(a_1) + \dots + a_k \cdot f(a_k) = \mu$$

Beispiel mit den Würfeln:

$$\bar{x} = \sum_{x=2}^{12} x f(x) = 7.013$$

3.2 Modalwert (Modus)

Der Modalwert gibt an, welche Ausprägung am häufigsten vorkommt.

- $\bullet\ x_{mod}$ bei diskreten Merkmalen: Ausprägung mit grösster Häufigkeit
- ullet x_{mod} bei stetigen Merkmalen: Maximum der Parabel, resp. die Mitte der stärkst besetzten Klasse

4 Streungsmasse

4.1 Empirische Varianz

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 f(x_i)$$

4.2 Empirische Standardabweichung

$$s=\sqrt{s^2}=\sigma$$

Dies hat folgende bedeutung:

- etwa 68.3% aller Messwerte liegen im Intervall $[\bar{x} s, \bar{x} + s]$
- etwa 95.5% aller Messwerte liegen im Intervall $[\bar{x}-2s,\bar{x}+2s]$
- etwa 99.7% aller Messwerte liegen im Intervall $[\bar{x} 3s, \bar{x} + 3s]$

5 Dichtekurven und Normalverteilung

5.1 Normalverteilung

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{(x-\mu)^2}{2\sigma^2}}$$
$$\sigma = s, \ \mu = \bar{x}$$

Je kleiner σ ist, desto steiler ist der Abfall und umso enger ist die Kurve um das Mittel μ konzentriert.

Je grösser σ ist, desto mehr Fläche liegt weiter links oder rechts von μ und umso grösser ist die Streeung der x-Werte.

Erwartungswert

$$E(X) = \mu = \bar{x}$$

Varianz

$$VAR(X) = \sigma^2$$

5.2 Dichtekurve

Eine Funktion f(x) ist eine Dichtekurve, wenn $f(x) \ge 0$ ist und die von f(x) überdeckte Gesamtfläche gleich 1 ist, also gilt.

5

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

Erwartungswert

$$E(X) = \int_{-\infty}^{\infty} t \cdot f(t)dt$$

Varianz

$$Var(X) = E(X^2) - [E(X)]^2$$

Beispiel

$$f(x) = \left\{ \begin{array}{c|c} \frac{11}{54}x & 0 \le x \le 2\\ -\frac{8}{27}x + 1 & 2 \le x \le 3\\ -\frac{2}{27}x + \frac{1}{2} & 3 \le x \le 4.5\\ 0 & sonst \end{array} \right\}$$

Die Funktion f(x) ist eine Dichte, denn $f(x) \ge 0$ für $0 \le x \le 4.5$ und

$$\int\limits_{-\infty}^{\infty} f(x) dx = \int\limits_{0}^{2} \frac{11}{54} x dx + \int\limits_{2}^{3} (-\frac{8}{27} x + 1) dx + \int\limits_{3}^{4.5} (-\frac{2}{27} x + \frac{1}{2}) dx = 1$$

6 Mehrdimensionale Verteilungen

6.1 Lineare Regression

Finde eine gerade y = mx + c die möglichst eng von der Punktewolke umschlossen wird.

$$m = \frac{\sum\limits_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sum\limits_{i=1}^{n} x_i^2 - n\bar{x}^2}$$
 und $c = \bar{y} - m\bar{y}$

6.2 Empirische Kovarianz

$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

dies entspricht auch:

$$cov(x,y) = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i}\right) - \bar{x}\bar{y}$$

6.3Empirischer Korrelationskoeffizient

$$r(x,y) = \frac{1}{n} \sum_{i=1}^{n} \frac{(x_i - \bar{x})}{s(x)} \cdot \frac{(y_i - \bar{y})}{s(y)}$$

wobei s(x) und s(y) die numerische Standartabweichug ist.

7 Binomialverteilung

Wird gebraucht wenn nur 2 Ereignisse eintreten können.

$$q(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

n = Anzahl wiederholungen

p = Wahrscheinlichkeit des Ereignisses

Erwartungswert

$$E(X) = \sum_{x \in \Omega'} q(x) \cdot x = n \cdot p$$

Streuung

$$\sigma = \sqrt{np(1-p)}$$

Geometrische Verteilung 8

Wird verwendet für Lebensdauer oder Wartezeiten

$$q(x) = (1 - p)^{x - 1}p$$

Erwartungswert

$$E(X) = \frac{1}{p}$$

Streuung

$$\sigma = \sqrt{\frac{1-p}{p^2}}$$

Hypergeometrische Verteilung 9

Verwendung:

Eine Menge bestehe aus N Teilen unter denen sich M Teile mit einem Merkmal A befinden. Man entnimmt n Teile ohne Zurücklegen. x zählt die Anzahl der Teile in n mit Merkmal A.

$$q(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}$$

Erwartungswert

$$E(X) = n \frac{M}{N}$$

Streuung
$$\sigma = \sqrt{n \frac{M}{N} (1 - \frac{M}{N}) (1 - \frac{n-1}{N-1})}$$

10 Poisson Verteilung

Verwendung:

- Anzahl Unfälle in einer bestimmten Region und pro Zeiteinheit
- Anzahl Anrufe pro Zeiteinheit
- Irgendetwas pro Zeiteinheit

$$q(x) = \frac{\mu^x}{x!} e^{-\mu}$$

 ${\bf Erwartungswert}$

$$E(X) = \mu$$

Streuung

$$\sigma^2 = \mu$$

11 Gleichverteilung

Unter der Gleichverteilung (Rechteckverteilung/uniforme Verteilung) über dem Intervall (a,b) versteht man die Verteilung einer Variablen X, deren Dichte gegeben ist durch.

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{b-a} & f\ddot{u}r \ a < x < b \\ 0 & sonst \end{array} \right\}$$

Erwartungswert

$$E(X) = \frac{a+b}{2}$$

Varianz

$$Var(x) = \frac{(b-a)^2}{12}$$

12 Punktschätzer

Unbekannte Parameter einer Zufallsvariable

- Erwartungswert
- \bullet Varianz

12.1 Erwartungswert schätzen

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

12.2 Varianz schätzen

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$