Wave function, Operators and Schrödinger Wave Equation

Wave function

A microscopic particle is described by a **wave** function (ψ) which contains all the information about the physical properties of the particle.

In one dimension $\Psi(x,t)$

The probability of finding the particle between x and x+dx at time t is given by

$$|\Psi(x,t)|^2 dx$$

Normalization: The probability of finding the particle somewhere should be **one**. This in one-dimension would mean the following.

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = \int_{-\infty}^{\infty} \Psi^*(x,t) \Psi(x,t) dx = 1$$

Operator:

An operator (\hat{O}) is one that turns functions into functions. Example: The derivative operator $O = \frac{d}{dx}$

$$\hat{O}f(x) = \frac{d}{dx}f(x)$$
 if $f(x) = \sin kx$ $\hat{O}f(x) = k\cos kx$

In quantum physics we come across several operators.

For every physical quantity there is an operator.

Consider an operators \hat{A} such that

$$\hat{A}\Psi(x,t) = \alpha \Psi(x,t)$$
 where α is called the eigenvalue.

 $\Psi(x,t)$ is called eigenfunction belonging to the eigenvalue α .

In Quantum Physics, eigenvalues are related to Observables

Examples (common life)

$$\hat{A} = \frac{d}{dx} \qquad f(x) = e^{\alpha x} \qquad \hat{A}f(x) = \alpha e^{\alpha x} = \alpha f(x)$$

$$\hat{A} = \frac{d^2}{dx^2} \qquad f(x) = \sin bx + \cos bx \qquad \hat{A}f(x) = -b^2 f(x)$$

$$\hat{A} = x \frac{d}{dx} \qquad f(x) = ax^n \qquad \hat{A}f(x) = nf(x)$$

Commuting and Non-commuting Operators

Consider two operators A and B, and perform the operation

$$A\{Bf(x)\}-B\{Af(x)\}=(AB-BA)f(x)$$

Notation:
$$[A,B] = AB - BA$$
 is called commutator

Two operators A and B are said to be **commuting** if

$$[A,B]=0$$
 Order in which the operators operate is not important

Two operators A and B are said to be non commuting if

$$[A,B] \neq 0$$
 Order in which the operators operate is important

Observables belonging to commuting operators can be measured simultaneously with unlimited precision. Observables of Non commuting operators follow Heisenberg uncertainty relation!

Expectation value:

It is the average value of an operator (O) that one would get after a very large number of measurements are made on identical systems.

$$\langle \hat{O} \rangle = \int_{-\infty}^{\infty} \Psi^*(x,t) \hat{O} \Psi(x,t) dx$$

Example,
$$\langle x(t) \rangle = \int_{-\infty}^{\infty} \Psi^*(x,t) x \Psi(x,t) dx$$

How to obtain equation that governs the evolution of wave function?

Particle

$$\overline{F} = m \frac{d^2 \overline{r}}{dt^2}$$

Wave

$$\frac{\partial^2 E}{\partial x^2} = \frac{1}{c^2} \frac{\partial E}{\partial t}$$

What about

de Broglie wave

$$\Psi(x,t) = Ae^{i(kx-\omega t)}$$

$$k = \frac{2\pi}{\lambda} = \frac{2\pi p_x}{h} = \frac{p_x}{\hbar}$$

$$\omega = \frac{E}{\hbar}$$

$$\frac{\partial \Psi(x,t)}{\partial t} = -i\omega A e^{i(kx - \omega t)} = -i\omega \Psi(x,t) = -\frac{iE}{\hbar} \Psi(x,t)$$

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = E\Psi(x,t)$$

Energy operator=
$$\hat{E} = i\hbar \frac{\partial}{\partial t}$$

Operation of $\hat{E} = i\hbar \frac{\partial}{\partial t}$

on $\Psi(x,t)$ gives energy E

de Broglie wave

$$\Psi(x,t) = Ae^{i(kx-\omega t)}$$

$$\frac{\partial \Psi}{\partial x} = ikAe^{i(kx - \omega t)} = ik\Psi = \frac{ip_x}{\hbar}\Psi$$

$$-i\hbar\frac{\partial}{\partial x}\Psi = p_x\Psi$$

Momentum operator: $\hat{p}_x = -i\hbar \frac{C}{\partial x}$

Operation of $\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$ on $\Psi(x,t)$ gives momentum p_x

Kinetic energy operator

Consider a nonrelativistic particle

$$K = KE = \frac{p_x^2}{2m} \qquad \qquad \hat{p}_x = -i\hbar \frac{\partial}{\partial x}$$

$$\hat{K} = \frac{1}{2m} \left(-i\hbar \frac{\partial}{\partial x} \right)^2 = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$$

Kinetic energy operator
$$=\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2}$$

Operation of
$$\hat{K} = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$$
 on $\Psi(x,t)$ gives kinetic energy

Momentum operator $\hat{p}_x = -i\hbar \frac{C}{\partial x}$

$$\left\langle p_{x}\right\rangle = \int_{-\infty}^{\infty} \Psi^{*}(x,t) \left(-i\hbar \frac{\partial}{\partial x}\right) \Psi(x,t) dx = -i\hbar \int_{-\infty}^{\infty} \Psi^{*}(x,t) \frac{\partial}{\partial x} \Psi(x,t) dx$$

Energy operator $\hat{E} = i\hbar \frac{\partial}{\partial t}$

$$\langle E \rangle = \int_{-\infty}^{\infty} \Psi^*(x,t) \left(i\hbar \frac{\partial}{\partial t} \right) \Psi(x,t) dx = i\hbar \int_{-\infty}^{\infty} \Psi^*(x,t) \frac{\partial}{\partial t} \Psi(x,t) dx$$

Kinetic energy operator $\hat{K} = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$

$$\langle K \rangle = \int_{-\infty}^{\infty} \Psi^*(x,t) \left(\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \right) \Psi(x,t) dx = \frac{-\hbar^2}{2m} \int_{-\infty}^{\infty} \Psi^*(x,t) \frac{\partial^2}{\partial x^2} \Psi(x,t) dx$$

Energy operator
$$\hat{E}=i\hbar\frac{\partial}{\partial t}$$
 Momentum operator $\hat{p}_{x}=-i\hbar\frac{\partial}{\partial x}$

Consider the following operation:

$$(xp_{x} - p_{x}x)\psi(x,t)$$

$$= x \left(-i\hbar \frac{\partial \psi(x,t)}{\partial x}\right) - \left(-i\hbar \frac{\partial}{\partial x}\right)x\psi(x,t)$$

$$= -i\hbar x \frac{\partial \psi(x,t)}{\partial x} + i\hbar \psi(x,t) + i\hbar x \frac{\partial \psi(x,t)}{\partial x} \left(=i\hbar \psi(x,t)\right)$$

Therefore,
$$(xp_x - p_x x)\psi(x,t) = i\hbar \psi(x,t)$$

$$\therefore xp_x - p_x x = i\hbar \qquad |x, p_x| = i\hbar$$

Position and momentum operators do not commute!

Commutation relation between \hat{K} and \hat{p}

$$\hat{K} = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \qquad \hat{p}_x = -i\hbar \frac{\partial}{\partial x}$$

$$[\hat{K}, \hat{p}] = \hat{K}\hat{p} - \hat{p}\hat{K}$$

$$(\hat{K}\hat{p}-\hat{p}\hat{K})\psi(x,t)$$

$$= \left(\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\right)\left(-i\hbar\frac{\partial}{\partial x}\psi(x,t)\right) - \left(-i\hbar\frac{\partial}{\partial x}\right)\left(\frac{-\hbar^2}{2m}\frac{\partial^2\psi(x,t)}{\partial x^2}\right)$$

$$= \left(\frac{i\hbar^3}{2m}\frac{\partial^3}{\partial x^3} - \frac{i\hbar^3}{2m}\frac{\partial^3}{\partial x^3}\right)\psi(x,t) = 0(\psi(x,t))$$

$$\therefore [\hat{K}, \hat{p}] = \hat{K}\hat{p} - \hat{p}\hat{K} = 0$$

Kinetic energy operator and momentum operator commute

Constructing Schrodinger Wave Equation

(for a nonrelativistic particle in 1-d)

Kinetic energy operator
$$\hat{K} = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$$
 Energy operator
$$\hat{E} = i\hbar \frac{\partial}{\partial t}$$

$$\hat{K} = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$$

$$\hat{E} = i\hbar \frac{\partial}{\partial t}$$

Energy = E = KE + PE

Writing in operator form
$$\hat{E}\Psi(x,t) = E\Psi(x,t)$$

$$\hat{E}\Psi(x,t) = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\Psi(x,t)$$

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)\right) \Psi(x,t)$$

Schrodinger Equation

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\Psi(x,t)$$
 Time dependent Schrodinger Equation

Let the wave function be separable, $\Psi(x,t) = \psi(x)\phi(t)$

Introducing this for into the Time Dependent Schrodinger Equation

$$i\hbar \frac{\partial \phi(t)}{\partial t} \psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} \phi(t) + V(x)\psi(x)\phi(t)$$

Divide both sides by $\Psi(x,t) = \psi(x)\phi(t)$

$$\frac{i\hbar(\partial\phi(t)/\partial t)}{\phi(t)} = \frac{-(\hbar^2/2m)(\partial^2\psi/\partial x^2) + V(x)\psi(x)}{\psi(x)}$$

$$\frac{i\hbar(\partial\phi(t)/\partial t)}{\phi(t)} = \frac{-(\hbar^2/2m)(\partial^2\psi/\partial x^2) + V(x)\psi(x)}{\psi(x)}$$

Left side is a function of t while right side is a function of x

$$\frac{i\hbar(\partial\phi/\partial t)}{\phi(t)} = \frac{-(\hbar^2/2m)(\partial^2\psi/\partial^2x) + V(x)\psi(x)}{\psi(x)} = C \qquad \text{C is a constant!}$$

$$\frac{i\hbar(\partial\phi(t)/\partial t)}{\phi(t)} = C \qquad \qquad i\hbar\frac{\partial\phi}{\partial t} = C\phi$$

But,
$$i\hbar \frac{\partial}{\partial t} = \hat{E}$$
 is Energy operator $C = E$

$$\frac{i\hbar(\partial\phi/\partial t)}{\phi(t)} = \frac{-(\hbar^2/2m)(\partial^2\psi/\partial x^2) + V(x)\psi(x)}{\psi(x)} = E$$

$$i\hbar \frac{\partial \phi(t)}{\partial t} = E\phi(t)$$
 $\phi(t) = e^{-iEt/\hbar} = e^{-i\omega t}$

Therefore
$$\Psi(x,t) = \psi(x)\phi(t) = \psi(x)e^{-iEt/\hbar}$$

 $\psi(x)$ is to be determined from

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x)}{\partial x^2} + V(x)\psi(x) = E\psi(x)$$

Time independent Schrodinger Equation

Separability of wave function $\Psi(x,t) = \psi(x)\phi(t)$

It permits us to solve time independent Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x)}{\partial x^2} + V(x)\psi(x) = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\psi(x) = E\psi(x)$$

and get $\psi(x)$ and the energy eigen values (E) of a given problem. These are related to the 'stationary' states.

Normalization

$$\Psi(x,t) = \psi(x)\phi(t) = \psi(x)e^{-iEt/\hbar}$$

$$\left|\Psi(x,t)\right|^2 = \left|\psi(x)\right|^2$$

Hamiltonian (H)

Time independent Schrodinger Equation

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\psi(x) = E\psi(x)$$

$$H = KE + PE = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)$$

$$H\psi(x) = E\psi(x)$$

E is an eigenvalue and ψ is an eignfunction.

Energy can also be found from the expectation value of H

$$\langle E \rangle = \int_{-\infty}^{\infty} \psi^*(x) H \psi(x) dx = \int_{-\infty}^{\infty} \psi^*(x) \left(\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right) \psi(x) dx$$

Time independent Schrodinger Equation

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\psi(x) = E\psi(x)$$

 $\psi(x)$ must be everywhere finite, single-valued, and continuous.

 $\psi(x)$ must be "smooth" that is, the slope of the wave $d\psi/dx$ also must be continuous wherever V(x) has a finite value.

Solution is subject to the 'boundary' conditions of a given problem.

Generalization to 3-d

$$H = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + V(x, y, z) = -\frac{\hbar^2}{2m} \nabla^2 + V(x, y, z)$$

$$i\hbar \frac{\partial \Psi(x, y, z, t)}{\partial t} = H\Psi(x, y, z, t)$$
$$= -\frac{\hbar^2}{2m} \nabla^2 \Psi(x, y, x, t) + V(x, y, z) \Psi(x, y, z, t)$$

After separation of variables $\Psi(x, y, z, t) = \psi(x, y, z)\phi(t)$

$$\phi(t) = e^{-iEt/\hbar}$$

$$H\psi(x, y, z) = E\psi(x, y, z)$$