Details of Rubin and Terman's model

Alejandro Pascual

October 4, 2005

1 Details of Rubin and Terman's model

In this report we describe the mathematical model extracted from an XPPAUT file provided by David Terman. Each cell type is modeled with a single-compartment conductance-based biophysical Hodgkin-Huxley-like model. Every modification we made to the original file in order to perform our own simulations is indicated explicitly.

1.1 Differential equations associated to each cell model

For clarity, dependences of ion currents on membrane voltage and gating variables are omitted. See subsection 1.2 of this appendix for the details of these dependences.

1.1.1 Differential equations for STN cells

• v is the voltage of STN neurons.

$$\begin{split} &\forall j \in \{1, \dots, 8\} : \\ \frac{d}{dt} v_M^{STN, j} &= \frac{-i_L^{STN, j} - i_{Na}^{STN, j} - i_{K}^{STN, j} - i_{Ca}^{STN, j} - i_{T}^{STN, j} - i_{GPe \to STN}^{STN, j} + jI_0^{STN} + i_{HFS}^{STN, j}}{C_M^{STN}} \\ \frac{d}{dt} h^{STN, j} &= \phi_h^{STN} \frac{h_{\infty}^{STN} (v_M^{STN, j}) - h^{STN, j}}{\tau_h^{STN} (v_M^{STN, j})} \\ \frac{d}{dt} n^{STN, j} &= \phi_n^{STN} \frac{n_{\infty}^{STN} (v_M^{STN, j}) - n^{STN, j}}{\tau_n^{STN} (v_M^{STN, j})} \\ \frac{d}{dt} r^{STN, j} &= \phi_r^{STN} \frac{r_{\infty}^{STN} (v_M^{STN, j}) - r^{STN, j}}{\tau_r^{STN} (v_M^{STN, j})} \\ \frac{d}{dt} x_{Ca}^{STN, j} &= \phi_{xCa}^{STN} \epsilon_{xCa}^{STN} \left(-i_{Ca}^{STN, j} - i_T^{STN, j} - k_{Ca}^{STN} x_{Ca}^{STN, j} \right) \\ \frac{d}{dt} s^{STN, j} &= \alpha^{STN} \left(1 - s^{STN, j} \right) H_{\infty}^{STN} \left(v_M^{STN, j} - \theta_g^{STN} \right) - \beta^{STN} s^{STN, j} \end{split}$$

1.1.2 Differential equations for GPe cells

$$\begin{split} \forall j \in \{1, \dots, 8\} : \\ \frac{d}{dt} v_M^{GPe, j} &= \frac{-i_L^{GPe, j} - i_{Na}^{GPe, j} - i_{K}^{GPe, j} - i_{AHP}^{GPe, j} - i_{T}^{GPe, j} - i_{T}^{GPe, j} - i_{GPe \to GPe}^{GPe, j} - i_{STN \to GPe}^{GPe, j} + jI_0^{GPe} + I_{app}^{GPe} \\ \frac{d}{dt} h^{GPe, j} &= \phi_h^{GP} \frac{h_\infty^{GP} (v_M^{GPe, j}) - h^{GPe, j}}{\tau_h^{GP} (v_M^{GPe, j})} \\ \frac{d}{dt} n^{GPe, j} &= \phi_n^{GP} \frac{n_\infty^{GP} (v_M^{GPe, j}) - n^{GPe, j}}{\tau_n^{GP} (v_M^{GPe, j})} \end{split}$$

$$\begin{split} \frac{d}{dt}r^{GPe,j} &= \phi_r^{GP} \frac{r_{\infty}^{GP} \left(v_M^{GPe,j}\right) - r_{-}^{GPe,j}}{\tau_r^{GP}} \\ \frac{d}{dt}x_{Ca}^{GPe,j} &= \epsilon_{x_{Ca}}^{GP} \left(-i_{Ca}^{GPe,j} - i_{T}^{GPe,j} - k_{Ca}^{GP} x_{Ca}^{GPe,j} \right) \\ \frac{d}{dt}s^{GPe,j} &= \alpha^{GP} \left(1 - s^{GPe,j} \right) H_{\infty}^{GP} \left(v_M^{GPe,j} - \theta_g^{GP} \right) - \beta^{GPe} s^{GPe,j} \end{split}$$

1.1.3 Differential equations for GPi cells

$$\begin{split} &\forall j \in \{1, \dots, 8\} : \\ &\frac{d}{dt} v_M^{GPi,j} = \frac{-i_L^{GPi,j} - i_{Na}^{GPi,j} - i_K^{GPi,j} - i_{Ca}^{GPi,j} - i_{T}^{GPi,j} - i_{STN \to GPi}^{GPi,j} + I_{app}^{GPi} \}}{C_M^{GP}} \\ &\frac{d}{dt} h^{GPi,j} = \phi_h^{GP} \frac{h_\infty^{GP} \left(v_M^{GPi,j}\right) - h^{GPi,j}}{\tau_h^{GP} \left(v_M^{GPi,j}\right)} \\ &\frac{d}{dt} n^{GPi,j} = \phi_n^{GP} \frac{n_\infty^{GP} \left(v_M^{GPi,j}\right) - n^{GPi,j}}{\tau_n^{GP} \left(v_M^{GPi,j}\right)} \\ &\frac{d}{dt} r^{GPi,j} = \phi_r^{GP} \frac{r_\infty^{GP} \left(v_M^{GPi,j}\right) - r^{GPi,j}}{\tau_r^{GP}} \\ &\frac{d}{dt} r_{Ca}^{GPi,j} = \epsilon_{XCa}^{GP} \left(-i_{Ca}^{GPi,j} - i_T^{GPi,j} - k_{Ca}^{GP} x_{Ca}^{GPi,j} \right) \\ &\frac{d}{dt} s^{GPi,j} = \alpha^{GP} \left(1 - s^{GPi,j} \right) H_\infty^{GP} \left(v_M^{GPi,j} - \theta_g^{GP} \right) - \beta^{GPi} s^{GPi,j} \end{split}$$

1.1.4 Differential equations for thalamic cells

$$\begin{split} \forall j \in \{1,2\} : \\ \frac{d}{dt} v_M^{Thl,j} &= \frac{-i_L^{Thl,j} - i_{Na}^{Thl,j} - i_L^{Thl,j} - i_{Thl,j}^{Thl,j} - i_{SM}^{Thl,j}}{C^{Thl}} \\ \frac{d}{dt} h^{Thl,j} &= \phi_h^{Thl} \frac{h_\infty^{Thl} \left(v_M^{Thl,j} \right) - h^{Thl,j}}{\tau_h^{Thl} \left(v_M^{Thl,j} \right)} \\ \frac{d}{dt} r^{Thl,j} &= \phi_r^{Thl} \frac{r_\infty^{Thl} \left(v_M^{Thl,j} \right) - r^{Thl,j}}{\tau_r^{Thl} \left(v_M^{Thl,j} \right)} \\ \frac{d}{dt} r^{Thl,j} &= \phi_r^{Thl} \frac{r_\infty^{Thl} \left(v_M^{Thl,j} \right) - r^{Thl,j}}{\tau_r^{Thl} \left(v_M^{Thl,j} \right)} \end{split}$$

1.2 Ion currents

1.2.1 STN cells' currents

$$\begin{split} \forall j \in \{1, \dots, 8\} : \\ i_L^{STN,j} &= g_L^{STN} \left(v_M^{STN,j} - V_L^{STN} \right) \\ i_{Na}^{STN,j} &= g_{Na}^{STN} \left(m_{\infty}^{STN} \left(v_M^{STN,j} \right) \right)^3 h^{STN,j} \left(v_M^{STN,j} - V_{Na}^{STN} \right) \\ i_K^{STN,j} &= g_K^{STN} \left(n^{STN,j} \right)^4 \left(v_M^{STN,j} - V_K^{STN} \right) \\ i_{KHP}^{STN,j} &= g_{AHP}^{STN} \left(v_M^{STN,j} - V_K^{STN} \right) \frac{x_{Ca}^{STN,j}}{x_{Ca}^{STN,j} + k_1^{STN}} \\ i_{Ca}^{STN,j} &= g_{Ca}^{STN} \left(s_{\infty}^{STN} \left(v_M^{STN,j} \right) \right)^2 \left(v_M^{STN,j} - V_{Ca}^{STN} \right) \\ i_T^{STN,j} &= g_T^{STN} \left(a_{\infty}^{STN} \left(v_M^{STN,j} \right) \right)^3 \left(b_{\infty}^{STN} \left(r^{STN,j} \right) \right)^2 \left(v_M^{STN,j} - V_{Ca}^{STN} \right) \\ i_{GPe \to STN}^{STN,j} &= g_{GPe \to STN} \left(v_M^{STN,j} - V_{GPe \to STN} \right) s_{GPe \to STN}^{STN,j} \\ i_{HFS}^{STN,j} &= \begin{cases} I_{HFS}^{STN} Y \left(\sin \left(\omega_{HFS}^{STN,j} \right) - a_{HFS}^{STN} \right) & \text{(Terman's file)} \\ I_{HFS}^{STN,j} \left(\sin \left(\frac{2\pi t}{T_{HFS}^{STN}} \right) \right) \left(1 - Y \left(\sin \left(\frac{2\pi \left(t + w_{HFS}^{STN}}{T_{HFS}^{STN}} \right) \right) \right) & \text{(Our simulations)} \end{cases} \end{split}$$

1.2.2 GPe cells' currents

$$\begin{split} &\forall j \in \{1,\dots,8\}:\\ i_L^{GPe,j} = g_L^{GP} \left(v_M^{GPe,j} - V_L^{GP}\right)\\ i_{Na}^{GPe,j} = g_{Na}^{GP} \left(m_\infty^{GP} \left(v_M^{GPe,j}\right)\right)^3 h^{GPe,j} \left(v_M^{GPe,j} - V_{Na}^{GP}\right)\\ i_{K}^{GPe,j} = g_K^{GP} \left(n^{GPe,j}\right)^4 \left(v_M^{GPe,j} - V_K^{GP}\right)\\ i_{K}^{GPe,j} = g_{AHP}^{GP} \left(v_M^{GPe,j} - V_K^{GP}\right)\frac{x_{Ca}^{GPe,j}}{x_{Ca}^{GPe,j} + k_1^{GP}}\\ i_{Ca}^{GPe,j} = g_{Ca}^{GP} \left(s_\infty^{GP} \left(v_M^{GPe,j}\right)\right)^2 \left(v_M^{GPe,j} - V_{Ca}^{GP}\right)\\ i_{T}^{GPe,j} = g_T^{GP} \left(a_\infty^{GP} \left(v_M^{GPe,j}\right)\right)^3 r^{GPe,j} \left(v_M^{GPe,j} - V_{Ca}^{GP}\right)\\ i_{GPe\rightarrow GPe}^{GPe} = g_{GPe\rightarrow GPe} \left(v_M^{GPe,j} - V_{GPe\rightarrow GPe}\right) s_{GPe\rightarrow GPe}^{GPe,j}\\ i_{STN\rightarrow GPe}^{GPe,j} = g_{STN\rightarrow GPe} \left(v_M^{GPe,j} - V_{STN\rightarrow GPe}\right) s_{STN\rightarrow GPe}^{GPe,j} \end{split}$$

1.2.3 GPi cells' currents

$$\begin{split} \forall j \in \{1, \dots, 8\} : \\ i_L^{GPi,j} &= g_L^{GP} \left(v_M^{GPi,j} - V_L^{GP} \right) \\ i_{Na}^{GPi,j} &= g_{Na}^{GP} \left(m_{\infty}^{GP} \left(v_M^{GPi,j} \right) \right)^3 h^{GPi,j} \left(v_M^{GPi,j} - V_{Na}^{GP} \right) \\ i_K^{GPi,j} &= g_K^{GP} \left(n^{GPi,j} \right)^4 \left(v_M^{GPi,j} - V_K^{GP} \right) \\ i_K^{GPi,j} &= g_{AHP}^{GP} \left(v_M^{GPi,j} - V_K^{GP} \right) \frac{x_{Ca}^{GPi,j}}{x_{Ca}^{GPi,j} + k_1^{GP}} \\ i_{Ca}^{GPi,j} &= g_{Ca}^{GP} \left(s_{\infty}^{GP} \left(v_M^{GPi,j} \right) \right)^2 \left(v_M^{GPi,j} - V_{Ca}^{GP} \right) \\ i_T^{GPi,j} &= g_T^{GP} \left(a_{\infty}^{GP} \left(v_M^{GPi,j} \right) \right)^3 r^{GPi,j} \left(v_M^{GPi,j} - V_{Ca}^{GP} \right) \\ i_{STN \to GPi}^{GPi,j} &= \begin{cases} g_{STN \to GPi} \left(v_M^{GPi,j} - V_{STN \to GPi} \right) Y \left(v_{STN \to GPi}^{GPi,j} - \theta_{STN \to GPi} \right) & \text{(Terman's file)} \\ g_{STN \to GPi} \left(v_M^{GPi,j} - V_{STN \to GPi} \right) s_{STN \to GPi}^{GPi,j} & \text{(Our simulations)} \end{cases} \end{split}$$

1.2.4 Thalamic cells' currents

$$\begin{split} &\forall j \in \{1,2\}: \\ &i_L^{Thl,j} = g_L^{Thl} \left(v_M^{Thl,j} - V_L^{Thl} \right) \\ &i_{Na}^{Thl,j} = g_{Na}^{Thl} \left(m_{\infty}^{Thl} \left(v_M^{Thl,j} \right)^3 h^{Thl,j} \left(v_M^{Thl,j} - V_{Na}^{Thl} \right) \\ &i_K^{Thl,j} = g_K^{Thl} \left(0.75 \left(1 - h^{Thl,j} \right) \right)^4 \left(v_M^{Thl,j} - V_K^{Thl} \right) \\ &i_K^{Thl,j} = g_T^{Thl} \left(p_{\infty}^{Thl} \left(v_M^{Thl,j} \right) \right)^2 r^{Thl,j} \left(v_M^{Thl,j} - V_T^{Thl} \right) \\ &i_T^{Thl,j} = g_T^{Thl} \left(p_{\infty}^{Thl} \left(v_M^{Thl,j} - V_{GPi \to Thl} \right) s_{GPi \to Thl}^{Thl,j} \right) \\ &i_{SM}^{Thl,j} = I_{SM}^{Thl} Y \left(\sin \left(\frac{2\pi \left(t - d_{SM}^{Thl} \right)}{T_{SM}^{Thl}} \right) \right) \left(1 - Y \left(\sin \left(\frac{2\pi \left(t - d_{SM}^{Thl} + w_{SM}^{Thl} \right)}{T_{SM}^{Thl}} \right) \right) \right) \end{split}$$

1.3 Gating functions

1.3.1 STN cells' gating functions

$$\begin{split} m_{\infty}^{STN}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{\cdot - \theta_{m}^{STN}}{\sigma_{m}^{STN}}\right)} \\ h_{\infty}^{STN}\left(\cdot\right) &= \frac{1}{1 + \exp\left(\frac{\cdot - \theta_{m}^{STN}}{\sigma_{n}^{STN}}\right)} \\ n_{\infty}^{STN}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{\cdot - \theta_{m}^{STN}}{\sigma_{n}^{STN}}\right)} \\ s_{\infty}^{STN}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{\cdot - \theta_{m}^{STN}}{\sigma_{m}^{STN}}\right)} \\ a_{\infty}^{STN}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{\cdot - \theta_{m}^{STN}}{\sigma_{m}^{STN}}\right)} - \frac{1}{1 + \exp\left(\frac{\theta_{m}^{STN}}{\sigma_{m}^{STN}}\right)} \\ t_{\infty}^{STN}\left(\cdot\right) &= \frac{1}{1 + \exp\left(\frac{\cdot - \theta_{m}^{STN}}{\sigma_{m}^{STN}}\right)} - \frac{1}{1 + \exp\left(\frac{\theta_{m}^{STN}}{\sigma_{m}^{STN}}\right)} \\ \tau_{\infty}^{STN}\left(\cdot\right) &= \tau_{n0}^{STN} + \frac{\tau_{n1}^{STN}}{1 + \exp\left(\frac{\cdot - \theta_{m}^{STN}}{\sigma_{m}^{STN}}\right)} \\ \tau_{n}^{STN}\left(\cdot\right) &= \tau_{n0}^{STN} + \frac{\tau_{n1}^{STN}}{1 + \exp\left(\frac{\cdot - \theta_{m}^{STN}}{\sigma_{m}^{STN}}\right)} \\ \tau_{r}^{STN}\left(\cdot\right) &= \tau_{r0}^{STN} + \frac{\tau_{r1}^{STN}}{1 + \exp\left(\frac{\cdot - \theta_{m}^{STN}}{\sigma_{r}^{STN}}\right)} \\ H_{\infty}^{STN}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{\cdot - \theta_{m}^{STN}}{\sigma_{gH}^{STN}}\right)} \\ H_{\infty}^{STN}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{\cdot - \theta_{m}^{STN}}{\sigma_{m}^{STN}}\right)} \\ H_{\infty}^{STN}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{\cdot - \theta_{m}^{STN}}$$

1.3.2 GPe and GPi cells' shared gating functions

$$\begin{split} m^{GP}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(\frac{--\theta_{n}^{GP}}{\sigma_{m}^{GP}}\right)} \\ h^{GP}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(\frac{--\theta_{h}^{GP}}{\sigma_{n}^{GP}}\right)} \\ n^{GP}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(\frac{--\theta_{h}^{GP}}{\sigma_{n}^{GP}}\right)} \\ s^{GP}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{--\theta_{n}^{GP}}{\sigma_{n}^{GP}}\right)} \\ a^{GP}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(\frac{--\theta_{n}^{GP}}{\sigma_{n}^{GP}}\right)} \\ r^{GP}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(\frac{--\theta_{n}^{GP}}{\sigma_{n}^{GP}}\right)} \\ \tau^{GP}_{h}\left(\cdot\right) &= \tau^{GP}_{h0} + \frac{\tau^{GP}_{h1}}{1 + \exp\left(\frac{--\theta_{n}^{GP}}{\sigma_{n}^{GP}}\right)} \\ \tau^{GP}_{n}\left(\cdot\right) &= \tau^{GP}_{n0} + \frac{\tau^{GP}_{n1}}{1 + \exp\left(\frac{--\theta_{n}^{GP}}{\sigma_{n}^{GP}}\right)} \\ H^{GP}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{--\theta_{n}^{GP}}{\sigma_{n}^{GP}}\right)} \end{split}$$

1.3.3 Thalamic cells' gating functions

$$\begin{split} m^{Thl}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{\cdot - \theta^{Thl}_{Thl}}{\sigma^{Thl}_{mhl}}\right)} \\ h^{Thl}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(\frac{\cdot - \theta^{Thl}_{Thl}}{\sigma^{Thl}_{mhl}}\right)} \\ p^{Thl}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(-\frac{\cdot - \theta^{Thl}_{Thl}}{\sigma^{Thl}_{p}}\right)} \\ r^{Thl}_{\infty}\left(\cdot\right) &= \frac{1}{1 + \exp\left(\frac{\cdot - \theta^{Thl}_{Thl}}{\sigma^{Thl}_{p}}\right)} \\ a^{Thl}_{h}\left(\cdot\right) &= a^{Thl}_{h0} \exp\left(-\frac{\cdot - \theta^{Thl}_{nhl}}{\sigma^{Thl}_{nhl}}\right) \\ b^{Thl}_{h}\left(\cdot\right) &= \frac{b^{Thl}_{h0}}{1 + \exp\left(-\frac{\cdot - \theta^{Thl}_{hhl}}{\sigma^{Thl}_{phl}}\right)} \\ \tau^{Thl}_{h}\left(\cdot\right) &= \frac{1}{a^{Thl}_{h}(\cdot) + b^{Thl}_{h}(\cdot)} \\ \tau^{Thl}_{r}\left(\cdot\right) &= \tau^{Thl}_{r0} + \tau^{Thl}_{r1} \exp\left(-\frac{\cdot - \theta^{Thl}_{rr}}{\sigma^{Thl}_{rr}}\right) \end{split}$$

1.3.4 Auxiliary sigmoidal function

$$Y\left(\cdot\right) = \frac{1}{1 + \exp\left(-\frac{\cdot}{\sigma_Y}\right)}$$

1.4 Connections among cells

1.4.1 From GPe to STN

$$\begin{pmatrix} s_{GPe \to STN}^{STN,1} \\ s_{GPe \to STN}^{STN,2} \\ s_{GPe \to STN}^{STN,3} \\ s_{GPe \to STN}^{STN,4} \\ s_{GPe \to STN}^{STN,4} \\ s_{GPe \to STN}^{STN,5} \\ s_{STN,7}^{STN,6} \\ s_{TN,7}^{STN,7} \\ s_{GPe \to STN}^{STN,7} \\ s_{GPe \to STN}^{STN,7} \\ s_{GPe \to STN}^{STN,7} \\ s_{GPe \to STN}^{STN,7} \\ s_{GPe \to STN}^{STN,8} \\ s_{GPe \to STN}^{STN,8} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} s^{GPe,1} \\ s^{GPe,2} \\ s^{GPe,2} \\ s^{GPe,3} \\ s^{GPe,4} \\ s^{GPe,5} \\ s^{GPe,6} \\ s^{GPe,6} \\ s^{GPe,6} \\ s^{GPe,7} \\ s^{GPe,8} \end{pmatrix}$$

1.4.2 From GPe to GPe

$$\begin{pmatrix} s_{GPe \to GPe}^{GPe,1} \\ s_{GPe \to GPe}^{GPe,2} \\ s_{GPe \to GPe}^{GPe,3} \\ s_{GPe \to GPe}^{GPe,6} \\ s_{GPe,5}^{GPe,6} \\ s_{GPe \to GPe}^{GPe,6} \\ s_{GPe \to GPe}^{GPe,8} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} s^{GPe,1} \\ s^{GPe,2} \\ s^{GPe,3} \\ s^{GPe,4} \\ s^{GPe,5} \\ s^{GPe,5} \\ s^{GPe,6} \\ s^{GPe,7} \\ s^{GPe,6} \\ s^{GPe,7} \\ s^{GPe,8} \end{pmatrix}$$

1.4.3 From STN to GPe

$$\begin{pmatrix} s_{STN \to GPe}^{GPe,1} \\ s_{STN \to GPe}^{GPe,2} \\ s_{STN \to GPe}^{GPe,3} \\ s_{STN \to GPe}^{GPe,3} \\ s_{STN \to GPe}^{GPe,5} \\ s_{STN \to GPe}^{GPe,5} \\ s_{STN \to GPe}^{GPe,6} \\ s_{STN \to GPe}^{STN \to GPe} \\ s_{STN \to GPe}^{SPe,7} \\ s_{STN \to GPe}^{SPe,7} \\ s_{STN \to GPe}^{STN \to GPe} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} s^{STN,1} \\ s^{STN,2} \\ s^{STN,3} \\ s^{STN,4} \\ s^{STN,5} \\ s^{STN,6} \\ s^{STN,6} \\ s^{STN,7} \\ s^{STN,7} \\ s^{STN,8} \end{pmatrix}$$

1.4.4 From STN to GPi

$$\begin{pmatrix} v_{STN \to GPi}^{GPi,1} \\ v_{STN \to GPi}^{GPi,2} \\ v_{STN \to GPi}^{GPi,3} \\ v_{STN \to GPi}^{GPi,3} \\ v_{STN \to GPi}^{GPi,5} \\ v_{STN \to GPi}^{GPi,5} \\ v_{STN \to GPi}^{GPi,7} \\ v_{STN \to GPi}^{GPi,7} \\ v_{STN \to GPi}^{GPi,6} \\ v_{STN \to GPi}^{GPi,6} \\ v_{STN \to GPi}^{GPi,6} \\ v_{STN \to GPi}^{GPi,5} \\ v_{STN \to GPi}^{GPi,5} \\ v_{STN \to GPi}^{GPi,5} \\ v_{STN \to GPi}^{GPi,1} \\ v_{STN \to GPi}^{GPi,5} \\ v_{STN \to GPi}^{GPi,1} \\ v_{STN \to GPi}^{GPi,5} \\ v_{M}^{GPi,5} \\ v_{M}^{GPi,5} \\ v_{M}^{GPi,5} \\ v_{M}^{GPi,5} \\ v_{M}^{GPi,5} \\ v_{M}^{GN,6} \\ v_{M}^{GN,6} \\ v_{M}^{GN,7} \\ v_{M}^{GN,6} \\ v_{M}^{GN,6} \\ v_{M}^{GN,6} \\ v_{M}^{GN,7} \\ v_{M}^{GN,6} \\ v_{M}^{G$$

1.4.5 From GPi to Thl

$$\begin{pmatrix} s_{GPi \to Thl,1}^{Thl,1} \\ s_{GPi \to Thl}^{GPi \to Thl} \\ s_{GPi \to Thl}^{Thl,2} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} s^{GPi,1} \\ s^{GPi,2} \\ s^{GPi,3} \\ s^{GPi,3} \\ s^{GPi,4} \\ s^{GPi,5} \\ s^{GPi,6} \\ s^{GPi,7} \\ s^{GPi,8} \end{pmatrix}$$

1.5 Parameters

1.5.1 STN cells' parameters

• Membrane capacitance:

Parameter	Value
C_M^{STN}	$1 \frac{pF}{(\mu m)^2}$

 \bullet Leak current related parameters:

Parameter	Value
g_L^{STN}	$2.25 \frac{nS}{(\mu m)^2}$
V_L^{STN}	-60mV

• Sodium current related parameters:

Parameter	Value
g_{Na}^{STN}	$37.5 \frac{nS}{(\mu m)^2}$
V_{Na}^{STN}	55mV
θ_m^{STN}	-30mV
σ_m^{STN}	15mV
θ_h^{STN}	-39mV
σ_h^{STN}	3.1mV
$ au_{h0}^{STN}$	1ms
$ au_{h1}^{STN}$	500ms
$\theta_{h au}^{STN}$	-57mV
$\sigma^{STN}_{h au}$	3mV
ϕ_h^{STN}	0.75

• Potasium current related parameters:

Parameter	Value
g_K^{STN}	$45 \frac{nS}{(\mu m)^2}$
V_K^{STN}	-80mV
θ_n^{STN}	-32mV
σ_n^{STN}	8mV
$ au_{n0}^{SIN}$	1ms
$ au_{n1}^{STN}$	100ms
$\theta_{n au}^{STN}$	-80mV
$\sigma^{STN}_{n au}$	26mV
ϕ_n^{STN}	0.75

 \bullet High-threshold calcium current related parameters:

Parameter	Value
g_{Ca}^{STN}	$0.5 \frac{nS}{(\mu m)^2}$
V_{Ca}^{STN}	140mV
θ_s^{STN}	-39mV
σ_s^{STN}	8mV

• Low-threshold T-type calcium current related parameters:

7

Parameter	Value
g_T^{STN}	$0.5 \frac{nS}{(\mu m)^2}$
θ_a^{STN}	-63mV
σ_a^{STN}	7.8mV
$\frac{\theta_a}{\theta_b^{STN}}$	0.25mV
σ_b^{STN}	0.07mV
θ_r^{STN}	-67mV
σ_r^{STN}	2mV
$ au_{r0}^{STN}$	7.1ms
$ au_{r1}^{STN}$	17.5ms
$\theta_{r au}^{STN}$	68mV
$\sigma_{r au}^{STN}$	2.2mV
ϕ_r^{STN}	0.5

 \bullet Calcium-activated voltage-independent "after hyperpolarization" potasium current related parameters:

Parameter	Value
g_{AHP}^{STN}	$9 \frac{nS}{(\mu m)^2}$
k_1^{STN}	15
k_{Ca}^{STN}	$22.5 \frac{pA}{(\mu m)^2}$
$\phi_{x_{Ca}}^{STN}$	0.75
$\epsilon^{STN}_{x_{Ca}}$	$5 \times 10^{-5} \frac{(\mu m)^2}{pA} (ms)^{-1}$

• Synaptic state-variables related parameters:

Parameter	Value
α^{STN}	5
β^{STN}	1
θ_g^{STN}	30mV
θ_{gH}^{STN}	-39mV
σ_{aH}^{STN}	8mV

• Afferent synaptic currents related parameters:

Parameter	Value
$g_{GPe \rightarrow STN}$	$0.9 \frac{nS}{(\mu m)^2}$
$V_{GPe \rightarrow STN}$	-100mV

• Constant current (used to multiply by the cell index number to create slight imbalance):

Parameter	Value
I_0^{STN}	$2 \frac{pA}{(\mu m)^2}$

• HFS related parameters (Terman's file):

Parameter	Value
I_{HFS}^{STN}	$0 \frac{pA}{(\mu m)^2}$ (no HFS); $400 \frac{pA}{(\mu m)^2}$ (HFS)
ω_{HFS}^{STN}	$0.5 \frac{rad}{ms}$
a_{HFS}^{STN}	0.9

 \bullet HFS related parameters (Our simulations):

Parameter	Value
I_{HFS}^{STN}	$0 \frac{pA}{(\mu m)^2}$ (no HFS);
	21.43, 42.86, 64.29, 85.71, 107.1, 128.6, 150.0, 171.4
	192.9, 214.3, 235.7, 257.1, 278.6, 300.0 $\frac{pA}{(\mu m)^2}$ (HFS)
T_{HFS}^{STN}	3.00, 6.00, 20.0, 40.0 ms
w_{HFS}^{STN}	0.150, 0.300, 0.600, 0.900 ms

1.5.2 GPe and GPi cells' shared parameters

 $\bullet\,$ Membrane capacitance:

Parameter	Value
C_M^{GP}	$1 \frac{pF}{(\mu m)^2}$

 $\bullet \;\; \underline{\text{Leak current related parameters:}}$

Parameter	Value
g_L^{GP}	$0.1 \frac{nS}{(\mu m)^2}$
V_L^{GP}	-55mV

• Sodium current related parameters:

	1
Parameter	Value
g_{Na}^{GP}	$120 \frac{nS}{(\mu m)^2}$
V_{Na}^{GP}	55mV
θ_m^{GP}	-37mV
σ_m^{GP}	10mV
θ_h^{GP}	-58mV
σ_h^{GP}	12mV
$ au_{h0}^{GP}$	0.05ms
$ au_{h1}^{GP}$	0.27ms
$ heta_{h au}^{GP}$	-40mV
$\sigma_{h au}^{GP}$	12mV
ϕ_h^{GP}	0.05

• Potasium current related parameters:

Parameter	Value
g_K^{GP}	$30 \frac{nS}{(\mu m)^2}$
V_K^{GP}	-80mV
θ_n^{GP}	-50mV
σ_n^{GP}	14mV
$ au_{n0}^{GP}$	0.05ms
$ au_{n1}^{GP}$	0.27ms
$\theta_{n au}^{GP}$	-40mV
$\sigma_{n au}^{GP}$	12mV
ϕ_n^{GP}	0.05

• High-threshold calcium current related parameters:

Parameter	Value
g_{Ca}^{GP}	$0.1 \frac{nS}{(\mu m)^2}$
V_{Ca}^{GP}	120mV
$ heta_s^{GP}$	-35mV
σ_s^{GP}	2mV

• Low-threshold T-type calcium current related parameters:

Parameter	Value
g_T^{GP}	$0.5 \frac{nS}{(\mu m)^2}$
θ_a^{GP}	-57mV
σ_a^{GP}	2mV
θ_r^{GP}	-70mV
σ_r^{GP}	2mV
$ au_r^{GP}$	30ms
ϕ_r^{GP}	1

• Calcium-activated voltage-independent "afterhyperpolarization" potasium current related parameters:

	1
Parameter	Value
g_{AHP}^{GP}	$30 \frac{nS}{(\mu m)^2}$
k_1^{GP}	30
k_{Ca}^{GP}	$20 \frac{pA}{(\mu m)^2}$
$\epsilon^{GP}_{x_{Ca}}$	$1 \times 10^{-4} \frac{(\mu m)^2}{pA} (ms)^{-1}$

• Synaptic state-variables related parameters:

Parameter	Value
α^{GP}	2
θ_g^{GP}	20mV
θ_{gH}^{GP}	-57mV
σ_{qH}^{GP}	2mV

1.5.3 GPe cells' non-shared parameters

• Synaptic state-variables related parameter:

· ·	
Parameter	Value
β^{GPe}	0.04

• Afferent synaptic currents related parameters:

Parameter	Value
$g_{GPe \rightarrow GPe}$	$1 \frac{nS}{(\mu m)^2}$ (normal); $0 \frac{nS}{(\mu m)^2}$ (Parkinsonian)
$V_{GPe \rightarrow GPe}$	-80mV
$g_{STN \to GPe}$	$0.3 \frac{nS}{(\mu m)^2}$
$V_{STN \to GPe}$	0mV

• Constant current (used to multiply by the cell index number to create slight imbalance):

Parameter	Value
I_0^{GPe}	$0.3 \frac{pA}{(\mu m)^2}$

• External applied current:

ſ	Parameter	Value
ĺ	I_{app}^{GPe}	$-0.5 \frac{pA}{(\mu m)^2}$ (normal); $-2.3 \frac{pA}{(\mu m)^2}$ (Parkinsonian)

1.5.4 GPi cells' non-shared parameters

• Synaptic state-variables related parameters:

Parameter	Value
β^{GPi}	0.08

• Afferent synaptic currents related parameters:

Parameter	Value
$g_{STN \to GPi}$	$1 \frac{nS}{(\mu m)^2}$
$V_{STN \to GPi}$	0mV
$\theta_{STN \to GPi}$	0mV

 \bullet External applied current:

Parameter	Value
I_{app}^{GPi}	$-1.2 \frac{pA}{(\mu m)^2}$

1.5.5 Thalamic cells' parameters

• Membrane capacitance:

Parameter	Value
C_M^{Thl}	$1 \frac{pF}{(\mu m)^2}$

 \bullet Leak current related parameters:

Parameter	Value
g_L^{Thl}	$0.05 \frac{nS}{(\mu m)^2}$
V_L^{Thl}	-70mV

• Sodium current related parameters:

Parameter	Value
g_{Na}^{Thl}	$3 \frac{nS}{(\mu m)^2}$
V_{Na}^{Thl}	50mV
θ_m^{Thl}	-37mV
σ_m^{Thl}	7mV
$ heta_h^{Thl}$	-41mV
σ_h^{Thl}	4mV
a_{h0}^{Thl}	$0.128 (ms)^{-1}$
θ_{ah}^{Thl}	-46mV
σ_{ah}^{Thl}	18mV
b_{h0}^{Thl}	$4 (ms)^{-1}$
$ heta_{bh}^{Thl}$	-23mV
σ_{bh}^{Thl}	5mV
ϕ_h^{Thl}	1

• Potasium current related parameters:

Parameter	Value
g_K^{Thl}	$5 \frac{nS}{(\mu m)^2}$
V_K^{Thl}	-90mV

• Low-threshold T-type calcium current related parameters:

Parameter	Value
g_T^{Thl}	$5\frac{nS}{(\mu m)^2}$
V_T^{Thl}	0mV
ρThl	-60mV
σ_p^{Thl}	6.2mV
$ heta_r^p$	-84 mV (but see note 1 below)
σ_r^{Thl}	4mV
$ au_{r0}^{Thl}$	28 ms (but see note 2 below)
$ au_{r1}^{Thl}$	1ms
$\theta_{r au}^{Thl}$	-25mV
$\sigma_{r au}^{Thl}$	10.5mV (but see notes 1 and 2 below)
ϕ_r^{Thl}	2.5

Note 1: For the perturbation example we took $\theta_r^{Thl}=-79.8\,mV$ and $\sigma_{r\tau}^{Thl}=11.025\,mV$. Note 2: For the simulation of a "fast" T-current we took $\tau_{r0}^{Thl}=5\,ms$ and $\sigma_{r\tau}^{Thl}=15\,mV$.

• Afferent synaptic currents related parameters:

Parameter	Value
$g_{GPi \rightarrow Thl}$	$0.15 \frac{nS}{(\mu m)^2}$
$V_{GPi \rightarrow Thl}$	-85mV

• Sensorimotor signal related parameters:

Parameter	Value	
I_{SM}^{Thl}	$8\frac{pA}{(\mu m)^2}$	
T_{SM}^{Thl}	25 ms (Terman's file); $50 ms$ (Our simulations)	
w_{SM}^{Thl}	5ms	
d_{SM}^{Thl}	80ms	

Auxiliary sigmoidal function related parameter:

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Parameter	Value
σ_{V}	0.001