

Structural Characterization of Alkali Metal Cationized Cysteine Complexes

<u>Christian Ieritano</u>, Moaraj Hasan, Michael Burt, Richard Marta, Terry McMahon, W. Scott Hopkins

Biochemical Relevance

Sulphide source in iron-sulphur clusters
 & nitrogenase

Residues in Enzymes

- Alcohol dehydrogenase
- Zinc Fingers
- Thiol affinity for heavy metals
 - Metallothionein

Main interest:

 Evolution of amino acid structure from solution to gas phase

Mcdowell, J. (2007). *Zinc Protein Binding Motifs*.

Hopkins Laboratory

Methods Experimental and Computational

Electrospray Ionization (ESI)

Alkali bound cysteine clusters produced in the gas phase:

1:1 H₂O:MeOH containing:

0.1 mM Cysteine and 0.1 mM M⁺Cl⁻

M⁺ = Li, Na, K, Rb

Also Cu²⁺, Fe²⁺, Ni²⁺, Ag⁺, Au³⁺

Soft Ionization technique

Solution phase structure often conserved

Net Result:

Isolation of ions of interest from solvent Evaporation into gas phase

Octapole Mass Filter

Miller, P., Denton, M. (1986). Octapole Mass Filtering. Journal of Chemical Education.

Chromatography Knowledge Base. (2010). Quadrupole Ion Trap.

Quadrupole Ion-trap

Miller, P., Denton, M. (1986). Paul Traps. *Journal of Chemical Education*.

Chromatography Knowledge Base. (2010). Quadrupole Ion Trap.

Infrared Multiphoton Dissociation (IRMPD)

- IR photon absorption for one normal mode & excitation
- II. Energy redistributed via vibrational relaxations into 'bath states'.
- III. Multiple photons induce further excitations and relaxations into bath states.
- IV. Internal energy is increased; dissociation threshold is passed
- V. Spectra generated by monitoring fragmentation as function of cm⁻¹

Basin Hopping Routine

- Exploration of molecular potential energy surface
- Geometry optimizations identify stationary, stable conformations through random contortions of geometry (Monte Carlo)
- Unique conformers carried into DFT optimizations
 - B3LYP functional, 6-311++g(d,p)

Lithium Cysteine Clusters

THE PLANT OF THE PARTY OF THE P

Sodium Cysteine Clusters

Potassium Cysteine Clusters

Rubidium Cysteine Clusters

Conclusion and Acknowledgements

Computational Summary:

- Computational spectra generated with B3LYP 6-311++G(d,p)
- Binding energies of fragments determined

Computational Future Work:

- **Basin Hop Zwitterions**
- **Anharmonic Calculations**
- MP2 binding Energies
- Continued work with coinage metals

Acknowledgements

M. Lecours

HOPKINS LABORATORY

6-311++(d,p)

number of primitive Gaussians comprising each core atomic orbital basis function

Composition of valence orbitals, combined with particular number of primitive Gaussian functions

Polarizabilty Functions
Important when considering bonding between atoms

Diffuse Functions

Model tail of atomic orbitals (distant from nuclei)