

РАСЧЕТ ПЛОЩАДИ СТЯГИВАНИЯ МОЛНИИ ПО НАВЕДЕННОМУ ЗАРЯДУ НАЗЕМНОГО ОБЪЕКТА

Шишигин С.Л., Мещеряков В.Е.

ctod28@yandex.ru Вологодский государственный университет, OOO «ЗУМ»

Грозопоражаемость наземных объектов

Среднее число ударов молнии в систему «молниеотвод-объект» [МЭК-62305]

$$N_d = N_g \cdot S_a \cdot C_d \cdot 10^{-6},$$

где N_g -плотность молниевых разрядов; \mathbf{S}_a - площадь стягивания;

 C_d - поправочный коэффициент, учитывающий окружение объекта и рельеф местности

1. Площадь стягивания молнии S_a объектами высотой \boldsymbol{h}

Молниеотвод, башня: S_a = πR_a^{-2}

Воздушная линия длиной L $S_a = 2R_a L$ Здание с основанием $a \times b$ $S_a = (a + 2R_a)(b + 2R_a)$

Радиус стягивания по МЭК **Не очевидно**, поскольку

$$R_a=3h$$

РД -99 РД 153-34.3-35.125-99	$R_a = 20 \cdot h^{0.426}, 25 < h < 125$
Эриксон	$R_a = 16.6 \cdot h^{0.55}$, $h < 100$
Ризк	R_a =2.57· $I^{0.615}h^{0.422}$, 1< I <31, 10< h <50
Курэй	R_a =2.27· $I^ah^{0.46}$, a =0.5 $h^{0.05}$, 3< I <90, 5< h <50
MKC	$R_a = h \cdot (2D(I)/h-1)^{0.5}, D(I) = 10I^{0.65}, D(I) > h$

- 1). ${\pmb R}_a$ пропорционально ${\pmb h}^{{\pmb 0}.{\pmb 5}.}$
- 2). \boldsymbol{R}_a зависит от тока молнии \boldsymbol{I} сильнее, чем от \boldsymbol{h}

Влияние окружения объекта на площадь стягивания.

 C_d =0.25. Объект окружен более высокими объектами:

 C_d =0.5 (?). Объект окружен объектами той же высоты или ниже:

 C_d =?. Объект окружен частично:

Вывод: коэффициент C_d выбирается на основании рекомендаций качественного характера и не отражает многие практические ситуации.

Методы имитационного моделирования

Стохастическая модель лидера

Прямолинейная модель лидера

Две стадии ориентировки:

- 1). Электростатическое стягивание;
- 2) Развитие встречного лидера

Ориентировка начинается в момент возникновения встречного лидера

Критерии возникновения и развития встречного лидера

- 1). Потенциал; 2). Напряженность; 3). Заряд короны > критической величины
- 4). Электро-геометрическая модель

Вывод. Методы имитационного моделирования трудоемки и пока далеки от инженерного применения.

Моделирование на основе наведенного заряда

Модель усредненного лидера

1).Лидер молнии развивается в среднем по направлению силовых линий внешнего поля [РД-99, Э.М.Базелян]
2). Наведенный заряд объекта притягивает (стягивает) молнию до зоны захвата. НАСКОЛЬКО СИЛЬНО?

Модельная задача. ШАР В ОДНОРОДНОМ ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ.

Вывод. 1). Площадь стягивания $Sa=S+\Delta S$ больше площади проекции зоны захвата на поверхность земли S на величину ΔS , которая может быть значительна для высоких объектов. 2). ΔS определяется относительным наведенным зарядом Q/E_0 . 3). Решение задач грозозащиты следует начинать с построения зоны захвата.

Метод Г.Н.Александрова (метод наведенного заряда)

Эксперимент Александрова и Кадзова. Вероятность поражения молнией объекта определяется относительной величиной заряда Q, наведенного на нем развивающимся лидером молнии q $p_{=}-Q/q$

Расчет (очень быстро, сотни тысяч раз при изменении положения лидера молнии)

$$\mathbf{AQ} + \mathbf{B}q = 0; \ \mathbf{Q} = -\mathbf{A}^{-1}\mathbf{B}q \qquad p = \frac{-\sum_{i=1}^{N} Q_{i}}{q} = \sum_{i=1}^{N} \mathbf{A}^{-1}\mathbf{B} = \sum_{i=1}^{N} \left(\sum_{j=1}^{N} A_{j,i}^{-1}\right) B_{i} = \sum_{i=1}^{N} C_{i}B_{i} = \mathbf{C} \cdot \mathbf{B}$$

Методика:

- 1).Расчет наведенного заряда объекта
- 2). Расчет зоны захвата молнии из условия p=const.
- Пояснение. Наведенный заряд пропорционален заряду лидера, поэтому используется в качестве критерия возникновения встречного лидера
- 3).Построение зоны защиты молниеотводов
- 4). Расчет площади стягивания молнии.

Пример. Двойной молниеотвод

Подробности: Электричество №8, 2015 г

Зависимость радиуса стягивания молниеотвода

1). от диаметра d (*I*=10 кA)

Вывод: Ток молнии существенно влияет на площадь стягивания. Поперечные размеры объекта влияют значительно меньше.

Исследование процессов стягивания молнии

3). Влияние высоты молниеотвода на радиус стягивания (I=30 кA)

Вывод: Высота объекта существенно влияет на радиус стягивания. Данные МЭК отличаются от других данных. Но, с увеличением h в расчетах следует увеличивать d и ток молнии I, что увеличивает R_a . Исследовать: R_a = $\mathbf{f}(h, I, d)$

4). Молниеотвод на вершине холма (в виде конуса). Зависимость радиуса и площади стягивания от уклона α (h=30 м, d=0.2 м, I=10 кA)

Вывод. Площадь стягивания молнии S_a пропорциональна уклону холма. В данной задаче C_d =2 при уклоне 8°

выводы:

- 1. Исследованы процессы стягивания лидера молнии к объекту
- 2. Площадь стягивания молнии зависит от тока молнии, высоты объекта, поперечных размеров объекта (в меньшей степени), а также рельефа местности
- 3. Метод наведенного заряда позволяет учесть влияние этих факторов на площадь стягивания расчетным путем.

СПАСИБО ЗА ВНИМАНИЕ!