Bachelorarbeit

mein thema

vorgelegt von

Maximilian Huber

am

Institut für Mathematik

der

Universität Augsburg

betreut durch

Prof. Dr. Marco Hien

abgegeben am

noch nicht

stand: 31. Januar 2013

Inhaltsverzeichnis

0	Mathematische Grundlagen $Moduln\ \ddot{uber}\ \mathcal{D}_k$		
1			
	1.1	Weyl-Algebra und der Ring \mathcal{D}_k	6
		1.1.1 Alternative Definition / Sichtweise	8
	1.2	(Links) \mathcal{D} -Moduln	9
		1.2.1 Holonome \mathcal{D} -Moduln	10
	1.3	Lokalisierung von $\mathbb{C}\{x\}$ -Moduln	11
	1.4	Lokalisierung eines (holonomen) \mathcal{D} -Moduls	11
2	Der	Meromorphe Zusammenhang	12
	2.1	Systeme von ODEs und Meromorphe Zusammenhänge	12
	2.2	Alternativer Zugang	14
	2.3	Eigenschaften	14
	2.4	Newton Polygon	17
	2.5	Formale Meromorphe Zusammenhänge	19
	2.6	Formale Struktur regulärer Zusammenhänge	20
	2.7	pull-back und push-forward	21
3	Eler	nentare Meromorphe Zusammenhänge	31
4	Leve	elt-Turrittin-Theorem	36
	4.1	Klassische Definition	37
	12	Sabbah's Refined version	37

Inhaltsverzeichnis

5	Beispiel		
	5.1	Allgemein	39
	5.2	Explizit	39
Anhang			
A Aufteilung von			

0 Mathematische Grundlagen

Hier werde ich mich auf [Sab90] und [Cou95] beziehen.

Wir betrachten \mathbb{C} hier als Complexe Mannigfaltigkeit mit der Klassischen Topologie. In dieser Arbeit spielen die folgenden Funktionenräume eine große Rolle:

- $\mathbb{C}[x] := \{\sum_{i=1}^N a_i x^i | N \in \mathbb{N}\}$ die einfachen Potenzreihen
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenzradius}\} = (\mathcal{O}_{\mathbb{C}})_0$ die formalen Potenzreihen mit positivem Konvergenzradius ([HTT07, Chap 5.1.1])
- $\mathbb{C}[\![x]\!] := \{\sum_{i=1}^{\infty} a_i x^i\}$ die formalen Potenzreihen
- $K := \mathbb{C}(\{x\}) := \mathbb{C}\{x\}[x^{-1}]$ der Ring der Laurent Reihen.
- $\hat{K} := \mathbb{C}(\!(x)\!) := \mathbb{C}[\![x]\!][x^{-1}]$ der Ring der formalen Laurent Reihen.
- \bullet $\tilde{\mathcal{O}}$ als der Raum der Keime aller (möglicherweise mehrdeutigen) Funktionen. (bei [HTT07] mit \tilde{K} bezeichnet)

Wobei offensichtlich die Inclulsionen $\mathbb{C}[x] \subsetneq \mathbb{C}\{x\} \subsetneq \mathbb{C}[\![x]\!]$ und $K \subsetneq \hat{K}$ gelten.

Es bezeichnet der Hut (^) das jeweils formale äquivalent zu einem konvergentem Objekt.

Lemma 0.1 (Seite 2). ein paar eigenschaften

1. $\mathbb{C}[x]$ ist ein graduierter Ring, durch die Grad der Polynome. Diese graduierung induziert eine aufsteigende Filtrierung.

alle Ideale haben die form (x - a) mit $a \in \mathbb{C}$

2. wenn \mathfrak{m} das maximale Ideal von $\mathbb{C}[x]$ (erzeugt von x ist), so ist

$$\mathbb{C}[[x]] = \varprojlim_{k} \mathbb{C}[X] \backslash \mathfrak{m}^{k}$$

The ring $\mathbb{C}[[x]]$ ist ein nöterscher lokaler Ring: jede Potenzreihe mit konstantem $term \neq 0$ ist invertierbar.

Der ring ist ebenfalls ein diskreter ??? Ring (discrete valuation ring)

Die Filtrierung nach grad des Maximalen Ideals, genannt \mathfrak{m} -adische Fitration, ist die Filtrierung $\mathfrak{m}^k = \{ f \in \mathbb{C}[[x]] | v(f) \geq k \}$

und es gilt
$$gr_{\mathfrak{m}}(\mathbb{C}[[x]]) = \mathbb{C}[x]$$

Für $v = (v_1, \dots, v_n)$ ein Vektor, bezeichnet

$${}^tv := \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

den Transponierten Vektor. Es bezeichnet $M(n \times m, k)$ die Menge der n mal m Dimensionalen Matritzen mit einträgen in k.

Definition 0.2 (Direkte Summe). [Sta12, 4(Categories).5.1] Seien $x, y \in \text{Ob}(\mathcal{C})$, eine Direkte Summe oder das coprodukt von x und y ist ein Objekt $x \oplus y \in \text{Ob}(\mathcal{C})$ zusammen mit Morphismen $i \in \text{Mor}_{\mathcal{C}}(x, x \oplus y)$ und $j \in \text{Mor}_{\mathcal{C}}(y, x \oplus y)$ so dass die folgende universelle Eigenschaft gilt: für jedes $w \in Ob(\mathcal{C})$ mit Morphismen $\alpha \in \text{Mor}_{\mathcal{C}}(x, w)$ und $\beta \in \text{Mor}_{\mathcal{C}}(y, w)$ existiert ein eindeutiges $\gamma \in \text{Mor}_{\mathcal{C}}(x \oplus y, w)$ so dass das Diagram

kommutiert.

Definition 0.3 (Tensorprodukt). [Sta12, 3(Algebra).11.21]

Faserprodukt: [Sta12, 4(Categories).6.1]

Für eine Abbildung $f:M\to M'$ definiere das Tensorprodukt davon über R mit N als

$$\operatorname{id}_N \otimes f: N \otimes_R M \to N \otimes_R M'$$

 $n \otimes m \mapsto n \otimes f(m)$

Bemerkung0.4. Hier ein paar Rechenregeln für das Tensorprodukt, Sei $f:M'\to M$ eine Abbildung, so gilt

$$N \otimes_R (M/\operatorname{im}(f)) \cong N \otimes_R M/\operatorname{im}(\operatorname{id}_R \otimes f)$$
 (0.1)

Definition 0.5 (Exacte Sequenz). Eine Sequenz

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$$

heißt exact, wenn für alle i gilt, dass $\operatorname{im}(f_{i-1}) = \ker f_i$.

Definition 0.6 (Kurze exacte Sequenz). Eine kurze exacte Sequenz ist eine Sequenz

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

welche exact ist.

Definition 0.7 (Kokern). Ist $f: M' \to M$ eine Abbildung, so ist der *Kokern* von f definiert als $\operatorname{coker}(f) = M/\operatorname{im}(f)$.

Proposition 0.8. Ist $f: M' \to M$ eine injektive Abbildung, so ist

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} M/f(M') \longrightarrow 0$$
$$m \longmapsto m \mod f(M')$$

eine kuze exacte Sequenz.

Beweis. \Box

Definition 0.9 (Filtrierung). [Sta12, Def 10.13.1.] [Ell10, Rem 2.5.] Eine aufsteigende Filtrierung F von einem Objekt (Ring) A ist eine Familie von $(F_iA)_{i\in\mathbb{Z}}$ von Unterobjekten (Unterring), so dass

$$0 \subset \cdots \subset F_i \subset F_{i+1} \subset \cdots \subset A$$

und definiere weiter $gr_i^FA:=F_iA/F_{k-1}A$ und damit das zu A mit Filtrierung F assoziierte graduierte Modul

$$gr^F A := \bigoplus_{k \in \mathbb{Z}} gr_i^F A$$
.

 gr_i^F als was??

Definition 0.10. [Ayo09] [Sab90, Def 3.2.1] Eine Filtrierung heißt *gut*, falls ...

Definition 0.11 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = a \cdot b - b \cdot a$$

als der Kommutator von a und b definiert.

Proposition 0.12. Sei $k \in \{\mathbb{C}[x], \mathbb{C}\{x\}, \mathbb{C}[x], K, \hat{K}\}$. Sei $\partial_x : k \to k$ der gewohnte Ableitungsoperator nach x, so gilt

- 1. $[\partial_x, x] = \partial_x x x \partial_x = 1$
- 2. $f\ddot{u}r f \in k \text{ ist}$

$$[\partial_x, f] = \frac{\partial f}{\partial x}.$$

3. Es gelten die Formeln

$$\begin{split} [\partial_x, x^k] &= kx^{k-1} \\ [\partial_x^j, x] &= j\partial_x^{j-1} \\ [\partial_x^j, x^k] &= \sum_{i \geq 1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i} \end{split}$$

Beweis. 1. Klar.

2. Für ein Testobjekt $g \in k$ ist

$$[\partial_x, f] \cdot g = \partial_x (fg) - f \partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g$$

3. Siehe [AV09, ???]

1 Moduln über \mathcal{D}_k

Ich werde hier die Weyl Algebra, wie in [Sab90, Chapter 1], in einer Veränderlichen einführen. Ab hier sei $k \in \{\mathbb{C}[x], \mathbb{C}[x], K, \hat{K}\}.$

1.1 Weyl-Algebra und der Ring \mathcal{D}_k

Sei dazu $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in k$. Man hat die folgende Kommutations-Relation zwischen dem *Ableitungsoperator* und dem *Multiplikations Operator* f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.1}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man

$$\left[\frac{\partial}{\partial x}, f\right] \cdot g = \frac{\partial fg}{\partial x} - f\frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g.$$

Definition 1.1. Definiere nun den Ring \mathcal{D}_k als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring in k zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.1). Wir schreiben diesen Ring auch als

- $A_1(\mathbb{C}) := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x], \text{ und nennen ihn die Weyl Algebra}$
- $\mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{falls } k = \mathbb{C}\{x\}$
- $\hat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x]$
- $\mathcal{D}_K := \mathbb{C}(\{x\}) < \partial_x > \text{falls } k = K \stackrel{\text{def}}{=} = \mathbb{C}\{x\}[x^{-1}]$

•
$$\mathcal{D}_{\hat{K}} := \mathbb{C}(\!(x)\!) < \partial_x > \text{falls } k = \hat{K} \stackrel{\text{def}}{=} \mathbb{C}[\![x]\!][x^{-1}]$$

Bemerkung 1.2. Es gilt $\mathcal{D}[x^{-1}] = \mathcal{D}_K$ und $\hat{\mathcal{D}}[x^{-1}] = \mathcal{D}_{\hat{K}}$.

Lemma 1.3. Sei A einer der 3 soeben eingeführten Objekten, so definieren die Addition

$$+: A \times A \rightarrow A$$

und die Multiplikation

$$\cdot: A \times A \to A$$

eine Ringstruktur auf A.

Beweis. [AV09, Kapittel 2 Section 1]

Proposition 1.4. [Sab90, Proposition 1.2.3] Jedes Element in \mathcal{D}_k kann auf eindeutige weiße als $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, mit $a_i(x) \in k$, geschrieben werden.

Beweis. Siehe [Sab90, Proposition 1.2.3]

ein teil des Beweises ist "left as an exersice"

Besser?:

erst Filtrierung definieren und dadurch dann den Grad?

Definition 1.5. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, wie in Proposition 1.4, gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

als den Grad von P.

In natürlicher Weise erhält man die aufsteigende Filtrierung $F_N\mathcal{D}:=\{P\in\mathcal{D}|\deg P\leq N\}$ mit

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} \stackrel{\text{def}}{=} F_N \mathcal{D}/F_{N-1} \mathcal{D} = \{ P \in \mathcal{D} | \deg P = N \} \cong \mathbb{C}\{x\}.$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 1.6. Es gilt:

 $gr^{F}\mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_{N}^{F}\mathcal{D} = \bigoplus_{N \in \mathbb{N}_{0}} gr_{N}^{F}\mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_{0}} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{N \in \mathbb{N}_{0}} \mathbb{C}\{x\} \cdot \xi^{N}$ $isomorph \ a \stackrel{\cong}{ls} \overline{grad. \ Ringe}$

also $gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$ als graduierte Ringe.

Beweis. TODO

Treffen?

1.1.1 Alternative Definition / Sichtweise

[Kas03, Chap 1.1.] Sei X eine 1-Dimensionale Complexe Mannigfaltigkeit und \mathcal{O}_X die Garbe der holomorphen Funktionen auf X. Ein (holomorpher) differential Operator auf X ist ein Garben-Morphismus $P: \mathcal{O}_X \to \mathcal{O}_X$, lokal in der Koordinate x und mit holomorphen Funktionen $a_n(x)$ als

$$(Pu)(x) = \sum_{n\geq 0} a_n(x)\partial_x^n u(x)$$

geschrieben (für $u \in \mathcal{O}_X$). Zusätzlich nehmen wir an, dass $a_n(x) \equiv 0$ für fast alle $n \in \mathbb{N}$ gilt. Wir setzten $\partial_x^n u(x) = \frac{\partial^n u}{\partial x^n}(x)$. Wir sagen ein Operator hat Ordnung m, falls $\forall n \geq m : \alpha_n(x) \equiv 0$. Mit \mathcal{D}_X bezeichnen wir die Garbe von Differentialoperatoren auf X. Die Garbe \mathcal{D}_X hat eine Ring Struktur mittels der Komposition als Multiplikation und \mathcal{O}_X ist ein Unterring von \mathcal{D}_X . Sei Θ_X die Garbe der Vektorfelder über über X. Es gilt, dass Θ_X in \mathcal{D}_X enthalten ist. Bemerke auch, dass Θ_X ein links \mathcal{O}_X -Untermodul, aber kein rechts \mathcal{O}_X -Untermodul ist.

Proposition 1.7. [Ark12, Exmp 1.1] Sei $X = \mathbb{A}^1 = \mathbb{C}$, $\mathcal{O}_X = \mathbb{C}[t]$ und $\Theta_X = \mathbb{C}[t]\partial$. Wobei ∂ als $\partial(t^n) = nt^{n-1}$ wirkt. Dann sind die Differentialoperatoren

$$\mathcal{D}_X = \mathbb{C}[t, \partial], \qquad mit \qquad \partial t - t\partial = 1.$$

Somit stimmt die Alternative Definition schon mal mit der Einfachen überein.

Definition 1.8. [Ark12, Defn 2.1] Sei $X = \mathbb{A}^1$, $\mathcal{O}_X = \mathbb{C}[t]$ und $\mathcal{D}_X = [t, \partial]$ mit der Relation $[\partial, t] = 1$. Dann definieren wir die links \mathcal{D} -Moduln über \mathbb{A}^1 als die $\mathbb{C}[t, \partial]$ -Moduln. Sie werden geschrieben als $\mathcal{D} - mod(\mathbb{A}^1)$

1.2 (Links) \mathcal{D} -Moduln

Da \mathcal{D} ein nichtkommutativer Ring ist, muss man vorsichtig sein und zwischen links unr rechts \mathcal{D} -Moduln unterschiden. Wenn ich im folgendem von \mathcal{D} -Moduln rede, werde ich mich immer, wie auch [Ara, Chapter 1.6.], auf links \mathcal{D} -Moduln beziehen.

Beispiel 1.9 (Einfachste links \mathcal{D} -Moduln). [Ark12, Exmp 2.2]

- 1. \mathcal{D} ist ein links und rechts \mathcal{D} -Modul
- 2. $\mathcal{M} = \mathbb{C}[t]$ durch
 - $\partial(f(t)) = \frac{\partial f}{\partial t}$ und $t \cdot f(t) = tf$
 - oder [Gin98, Exmp 3.1.2] $\mathbb{C}[t] = \mathcal{D} \cdot 1 = \mathcal{D}/\mathcal{D} \cdot \partial$.

- 3. $\mathcal{M} = \mathbb{C}[t, t^{-1}]$ mit $t \cdot t^m = t^{m+1}$ und $\partial(t^m) = mt^{m-1}$
- **Beispiel 1.10** (Weiter \mathcal{D} -Moduln). 1. [Ark12, Exmp 2.2] Führe formal, also ohne jeglichen analytischen Hintergurnd, ein Symbol $\exp(\lambda t)$ ein, mit $\partial(f(t)\exp(\lambda t)) = \frac{\partial f}{\partial t}\exp(\lambda t) + f\lambda\exp(\lambda t)$. So ist $\mathcal{M} = \mathscr{O}_X\exp(\lambda t)$ ein \mathcal{D} -Modul.
 - 2. [Gin98, Exmp 3.1.4] Führe formal ein Symbol $\log(x)$ mit den Eigenschaften $\partial \cdot \log(x) = \frac{1}{x}$ ein. Erhalte nun das \mathcal{D} -Modul $\mathbb{C}[x] \log(x) + \mathbb{C}[x, x^{-1}]$. Dieses Modul ist über \mathcal{D} erzeugt durch $\log(x)$ und man hat

$$\mathbb{C}[x]\log(x) + \mathbb{C}[x, x^{-1}] = \mathcal{D} \cdot \log(x) = \mathcal{D}/\mathcal{D}(\partial x \partial)$$
.

Lemma 1.11. [Sab90, Lem 2.3.3.] Sei \mathcal{M} ein links \mathcal{D} -Modul von endlichem Typ, welches auch von endlichem Typ über $\mathbb{C}\{x\}$ ist. Dann ist \mathcal{M} bereits ein freies $\mathbb{C}\{x\}$ -Modul.

Beweis. Siehe [Sab90, Lem 2.3.3.].

Korollar 1.12. [Sab90, Cor 2.3.4.] Falls \mathcal{M} ein links \mathcal{D} -Modul von endlichem typ, welches außerdem ein endich dimensionaler Vektorraum ist, so ist schon $\mathcal{M} = \{0\}$.

1.2.1 Holonome \mathcal{D} -Moduln

TODO: defn of Car als Charakteristische Varietät

Definition 1.13. [Sab90, Def 3.3.1.] Sei \mathcal{M} lineares Differentialsystem (linear differential system) . Man sagt, \mathcal{M} ist holonom, falls $\mathcal{M} = 0$ oder falls $\operatorname{Car} \mathcal{M} \subset \{x = 0\} \cup \xi = 0$.

Lemma 1.14. [Sab90, Lem 3.3.8.] Ein \mathcal{D} -Modul ist holonom genau dann, wenn $\dim_{gr^F\mathcal{D},0} gr^F\mathcal{M} = 1$.

Beweis. Siehe [Sab90, Lem 3.3.8.]

1.3 Lokalisierung von $\mathbb{C}\{x\}$ -Moduln

[Sab90, Chap 4.1.] Sei M ein $\mathbb{C}\{x\}$ -Modul. Wir schreiben $M[x^{-1}]$ für den K-Vektor Raum $M \otimes_{\mathbb{C}\{x\}} K$. Im allgemeinen gilt, falls M von andlichen Typ über $\mathbb{C}\{x\}$ ist, so ist $C[x^{-1}]$ von endlichem Typ über K. Bemerke aber, dass $M[x^{-1}]$ generell nicht von endlichem Typ über $\mathbb{C}\{x\}$ ist.

1.4 Lokalisierung eines (holonomen) \mathcal{D} -Moduls

[Sab90, Chap 4.2.] Sei \mathcal{M} ein links \mathcal{D} -Modul. Betrachte \mathcal{M} als $\mathbb{C}\{x\}$ -Modul und definiere darauf

$$\mathcal{M}[x^{-1}] := \mathcal{M} \otimes_{\mathbb{C}\{x\}} K$$

als die Lokalisierung von \mathcal{M} .

Proposition 1.15. [Sab90, Prop 4.2.1.] $\mathcal{M}[x^{-1}]$ bekommt in natürlicher weiße eine \mathcal{D} -Modul Struktur.

Beweis. [Sab90, Prop 4.2.1.] mit:

$$\partial_x(m \otimes x^{-k}) = ((\partial_x m) \otimes x^{-k}) - km \otimes x^{-k-1}$$

beweis der \mathcal{D} -linearität ist als übung gelassen

Alle MeromZsh sind \mathcal{D} -Moduln aber nicht andersherum?

2 Der Meromorphe Zusammenhang

2.1 Systeme von ODEs und Meromorphe Zusammenhänge

[HTT07, Chap 5.1.1] Für eine Matrix $A(x) = (a_{ij}(x))_{ij} \in M(n \times n, K)$ betrachten wir das System von gewöhnlichen Differentialgleichungen (kurz ODEs)

$$\frac{d}{dx}u(x) = A(x)u(x) \tag{2.1}$$

wobei $u(x) = {}^t(u_1(x), \ldots, u_n(x))$ ein Spaltenvektor von unbekannten Funktionen. Wir werden (2.1) immer in einer Umgebung um $x = 0 \in \mathbb{C}$ betrachten. Als Lösungen von (2.1) betrachten wir Keime von holomorphen (aber möglicherweise mehrdeutigen) Funktionen an x = 0 (geschrieben als $\tilde{\mathcal{O}}$). Wir sagen $v(x) = {}^t(v_1(x), \ldots, v_n(x))$ ist eine Lösung von (2.1), falls $v_i \in \tilde{\mathcal{O}}$ für alle $i \in \{1, \ldots, n\}$ und v die Gleichung (2.1), auf einer Umgebung um die 0, erfüllt.

Nun wollen wir dieses Klasische Gebilde nun in die moderne Sprache der Meromorphen Zusammenhänge übersetzen.

Definition 2.1 (Meromorpher Zusammenhang). Ein Meromorpher Zusammenhang (bei x = 0) ist ein Tuppel $(\mathcal{M}_K, \partial)$ und besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vektor Raum
- einer \mathbb{C} -linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt Derivation oder Zusammenhvolksumfrageang, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{2.2}$$

erfüllen soll.

Definition 2.2. Seien $(\mathcal{M}_K, \partial_{\mathcal{M}})$ und $(\mathcal{N}_K, \partial_{\mathcal{N}})$ zwei Meromorphe Zusammenhänge. Eine K-lineare Abbildung $\varphi : \mathcal{M} \to \mathcal{N}$ heißt Morphismus von Meromorphen Zusammenhängen, falls sie $\varphi \circ \partial_{\mathcal{M}} = \varphi \circ \partial_{\mathcal{N}}$ erfüllt. In diesem Fall schreiben wir auch $\varphi : (\mathcal{M}_K, \partial_{\mathcal{M}}) \to (\mathcal{N}_K, \partial_{\mathcal{N}})$.

- Bemerkung 2.3. 1. Später wird man auf die Angabe von ∂ verichten und einfach \mathcal{M}_K als den Meromorphen Zusammenhang bezeichnen, auch wird manchmal auf die Angabe von K verzichtet.
 - 2. [HTT07, Rem 5.1.2.] Die Bedingung (2.2) ist zur schwächeren Bedingung

$$\partial(fu) = f'u + f\partial u \,,$$

welche für alle $f \in \tilde{\mathcal{O}}$ und für alle $u \in \mathcal{M}_K$ erfüllt sein muss, äquivalent.

Definition 2.4 (Zusammenhangsmatrix). [HTT07, Seite 129] Sei $(\mathcal{M}_K, \partial)$ ein Meromorpher Zusammenhang so wähle eine K-Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ von \mathcal{M} . Dann ist die Zusammenhangsmatrix bzgl. der Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ die Matrix $A(x) = (a_{ij}(x)) \in M(n \times n, K)$ definiert durch

$$a_{ij}(x) = -^t e_i \partial e_j .$$

Also ist, bezüglich der Basis $\{e_i\}_{i\in\{1,\dots,n\}}$, die Wirkung von ∂ auf $u=: {}^t(u_1,\dots,u_n)$ beschrieben durch

$$\partial(u) = \partial\left(\sum_{i=1}^{n} u_i(x)e_i\right) \stackrel{\downarrow}{=} \sum_{i=1}^{n} \left(u'_i(x) - \sum_{j=1}^{n} a_{ij}u_j(x)\right)e_i.$$

Einfache Umformungen zeigen, dass die Bedingung $\partial u(x) = 0$, für $u(x) \in \sum_{i=1}^n u_i e_i \in \tilde{\mathcal{O}} \otimes_K \mathcal{M}$, äquivalent zu der Gleichung

$$u'(x) = A(x)u(x)$$

für $u(x) = {}^t(u_1(x), \ldots, u_n(x)) \in \tilde{\mathcal{O}}^n$. Damit haben wir gesehen, dass jeder Meromorphe Zusammanhang (\mathcal{M}, ∂) ausgestattet mit einer K-Basis $\{e_i\}_{i \in \{1, \ldots, n\}}$ von \mathcal{M} zu einem ODE zugeordnet werden kann.

Umgekehrt können wir für jede Matrix $A(x) = (a_{ij}(x))$ den assoziierten Meromorphen Zusammenhang $(\mathcal{M}_A, \partial_A)$ angeben, durch

$$\mathcal{M}_A := \bigoplus_{i=1}^n Ke_i,$$
 $\partial_A e_i := -\sum_{i=1}^n a_{ij}(x)e_i.$

2.2 Alternativer Zugang

Hier wird nun ein alternativer Zugang, wie in [Sab90, 3.1.1], präsentiert. Sei \mathcal{F} ein Funktionenraum, auf dem die Differentialoperatoren \mathcal{D} wirken.

Sei P ein linearer Differentialoperator mit Koeffizienten in $a_i(t) \in \mathbb{C}\{x\}$ geschrieben als $P = \sum_{i=0}^{d} a_i(t) \partial_t^i$. Man sagt eine Funktion $u \in \mathcal{F}$ ist Lösung von P, falls u die Gleichung Pu = 0 erfüllt. Man sagt 0 ist ein singulärer Punkt falls $a_d(0) = 0$. Falls 0 kein singulärer Punkt ist, hat P genau d über \mathbb{C} Unabhängige Lösungen in $\mathbb{C}\{t\}$.

Falls u ein Lösung von P ist, so ist u auch Lösung von $Q \cdot P$ mit $Q \in \mathcal{D}$. Also hängt die Lösung nur vom Links Ideal I von \mathcal{D} , welches von P erzeugt wird.

2.3 Eigenschaften

[Sab90, 4.2] Let \mathcal{M} be a left \mathcal{D} -module. First we consider it only as a $\mathbb{C}\{x\}$ -module and let $\mathcal{M}[x^{-1}]$ be the localized module.

Lemma 2.5 (Lemma vom zyklischen Vektor). [Sab90, Thm 4.3.3] [AV09, Satz 4.8] Sei \mathcal{M}_K ein Meromorpher Zusammenhang. Es Existiert ein Element $m \in \mathcal{M}_K$ und eine ganze Zahl d so dass $m, \partial_t m, \ldots, \partial_t^{d-1} m$ eine K-Basis von \mathcal{M}_K ist.

Beweis. [AV09, Satz 4.8]
$$\Box$$

Satz 2.6. [Sab90, Thm 4.3.2] Ein Meromorpher Zusammenhang bestimmt ein \mathcal{D}_K -Modul und andersherum.

Beweis. [Sab90, Thm 4.3.2]

Lemma 2.7. [AV09, Satz 4.12] [Sab90, Thm 4.3.2] Ist \mathcal{M}_K ein Meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$ so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$.

Beweis. [AV09, Satz 4.12] \Box

Bemerkung 2.8. [Sab90, Proof of Theorem 5.4.7]

 $\dim_{\hat{K}} \mathcal{M}_{\hat{K}} = \deg P \text{ wenn } \mathcal{M}_{\hat{K}} = \mathcal{D}/\mathcal{D} \cdot P$

Lemma 2.9. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M}_K , also in der Situation

gilt: $(K^r, \varphi^{-1} \circ \partial \circ \varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen)

Lemma 2.10. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und $\varphi : \mathcal{M} \to \mathcal{N}$ ein Isomorphismus so ist $(\mathcal{N}, \varphi^{-1} \circ \partial \circ \varphi)$ ein zu $(\mathcal{M}_K, \partial)$ isomorpher Zusammenhang.

$$\begin{array}{ccc}
\mathcal{M}_K & \stackrel{\partial}{\longrightarrow} \mathcal{M}_K \\
\uparrow & & \uparrow \\
\cong \varphi & & \varphi \cong \\
\downarrow & & \downarrow \\
\mathcal{N} & \stackrel{\varphi^{-1} \circ \partial \circ \varphi}{\longrightarrow} \mathcal{N}
\end{array}$$

Beweis. TODO, (3. Treffen)

Lemma 2.11. Sei $\mathcal{M}_K \cong K^r$ ein endlich dimensionaler K-Vektor Raum mit ∂_1 und ∂_2 zwei darauf definierte Derivationen. So gilt, die differenz zweier Derivationen ist K-linear.

Beweis. Seien ∂_1 und ∂_2 zwei Derivationen auf \mathcal{M}_K . Da ∂_1 und ∂_2 \mathbb{C} -linear, ist $\partial_1 - \partial_2$ \mathbb{C} -linear, also muss nur noch gezeigt werden, dass $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$ und $u \in \mathcal{M}_K$ gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u)$$

Korollar 2.12. Es sei (K^r, ∂) ein Meromorpher Zusammenhang. So ist $\frac{d}{dz} - \partial : K^r \to K^r$ K-linear, also es existiert eine Matrix $A \in M(r \times r, K)$ mit $\frac{d}{dz} - \partial = A$, also ist $\partial = \frac{d}{dz} - A$.

Definition 2.13 (Transformationsformel). [HTT07, Chap 5.1.1] In der Situation

mit φ, ψ und T K-Linear und $\partial, (\frac{d}{dz} + A)$ und $(\frac{d}{dz} + B)$ \mathbb{C} -Linear, gilt: Der Merom. Zush. $\frac{d}{dz} + A$ auf K^r wird durch Basiswechsel $T \in GL(r, K)$ zu

$$\frac{d}{dz} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dz} + B$$

Definition 2.14 (Differenziell Äquivalent). Man nennt A und B differenziell Äquivalent $(A \sim B)$ genau dann, wenn es ein $T \in GL(r,K)$ gibt, mit $B = T^{-1} \cdot T' + T^{-1}AT$.

$$1 = TT^{-1} \leadsto T'T^{-1} + T(T^{-1})' = 0$$

$$1 = T^{-1}T \leadsto (T^{-1})'T + T^{-1}T' = 0$$

Proposition 2.15. [Sch, Prop 4.1.1] Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ Meromorphe Zusammenhänge. Durch setzten von

$$\partial(m\otimes n) = \partial_{\mathcal{M}}(m)\otimes n + m\otimes\partial_{\mathcal{N}}(n)$$

als die Wirkung von ∂ auf das K-Modul $\mathcal{M} \otimes_K \mathcal{N}$, wird $(\mathcal{M} \otimes_K \mathcal{N}, \partial)$ zu einem Meromorphen Zusammenhang.

2.4 Newton Polygon

Quelle: sabba?

sabbah mach alles formal, barbara mach alles konvergent

Jedes $P \in \mathcal{D}$ lässt sich eindeutig als

$$P = \sum_{k=0}^{n} \sum_{l=-N}^{\infty} \alpha_{kl} t^{l} \partial_{t}^{k}$$

mit $\alpha_{kl} \in \mathbb{C}$ schreiben. Betrachte das zu P dazugehörige

$$H(P) := \bigcup_{k,l \text{ mit } \alpha_{kl} \neq 0} \left((k, l - k) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Bei Sabbah: $H \subset \mathbb{N} \times \mathbb{Z}$ und dann konvexe Hülle davon in \mathbb{R}^2

Definition 2.16. Das Randpolygon der konvexen Hülle conv(H(P)) von H(P) heißt das Newton Polygon von P und wird als N(P) geschrieben.

Definition 2.17. Die Menge slopes(P) sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

- P heißt regulär singulär : \Leftrightarrow slopes $(P) = \{0\}$, sonst irregulär singulär.
- Schreibe $\mathcal{P}(\mathcal{M}_K)$ für die Menge der zu \mathcal{M}_K gehörigen slopes
- Ein meromorpher Zusammenhang \mathcal{M}_K heißt regulär singulär, falls es ein regulär singuläres P gibt, mit $\mathcal{M}_K \cong \mathcal{D}/\mathcal{D} \cdot P$

Beispiel 2.18. 1. Ein besonders einfaches Beispiel ist $P_1 = t^1 \partial_t^2$. Es ist leicht abzulesen, dass

$$k=2$$
 $l=1$

so dass

$$H(P_1) = \left((2, 1 - 2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) = \left\{ (u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1 \right\}.$$

In Abbildung 2.2a ist $H(P_1)$ (blau) sowie das Newton Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$ und damit ist P_1 regulär singulär.

2. [AV09, Bsp 5.3. 2.] Sei $P_2 = t^4(t+1)\partial_t^4 + t\partial_t^2 + \frac{1}{t}\partial_t + 1$ so kann man daraus das entsprechende Newton Polygon konstruieren. Das Newton Polygon wurde in Abbildung 2.2b visualisiert.

 $(a) \ \text{Newton Polygon zu} \ P_1$

Abbildung 2.1: Zu Beispiel 2.18

Lemma 2.19. [Sab90, 5.1]

- 1. $\mathcal{P}(\mathcal{M}_K)$ ist nicht Leer, wenn $\mathcal{M}_K \neq \{0\}$
- 2. Wenn man eine exacte Sequenz $0 \to \mathcal{M}'_K \to \mathcal{M}_K \to \mathcal{M}''_K \to 0$ hat, so gilt $\mathcal{P}(\mathcal{M}_K) = \mathcal{P}(\mathcal{M}'_K) \cup \mathcal{P}(\mathcal{M}''_K)$.

2.5 Formale Meromorphe Zusammenhänge

bei Zula
Barbara ist
$$\hat{\mathcal{D}}_{\hat{K}} = \mathbb{C}((u)) < \partial_u > \text{hier} = \mathcal{D}_{\hat{K}}$$

Definition 2.20 (Formaler Meromorpher Zusammenhang). Ein formaler Meromorpher Zusammenhang $(\mathcal{M}_{\hat{K}}, \partial)$ besteht, analog wie in Definition 2.1, aus folgenden Daten:

- $\mathcal{M}_{\hat{K}}$, ein endlich dimensionaler \hat{K} -Vektor Raum
- einer \mathbb{C} -linearen Derivation $\partial: \mathcal{M}_{\hat{K}} \to \mathcal{M}_{\hat{K}}$, welche die *Leibnitzregel* (2.2) erfüllen soll.

Bemerkung 2.21. Alle bisher getroffene Aussagen stimmen auch für formale Meromorphe Zusammenhänge. Im besonderen existiert für jedes $\mathcal{M}_{\hat{K}}$ ein ein $P \in \mathcal{D}_{\hat{K}}$ mit $\mathcal{M}_{\hat{K}} = \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P$.

Definition 2.22. [Sab07, 1.a] Sei $\varphi \in \mathbb{C}((u))$. Wir schreiben \mathscr{E}^{φ} für den (formalen) Rang 1 Vektorraum $\mathbb{C}((u))$ ausgestattet mit dem Zusammenhang $\nabla = \partial_u + \partial_u \varphi$, im speziellen also $\nabla_{\partial_u} 1 = \partial_u 1 = \varphi'$.

Also
$$\mathcal{E}^{\varphi} = \mathbb{C}((u)) \xrightarrow{\partial_u} \mathbb{C}((u))$$

$$1 \mapsto \varphi'(u)$$

$$f(u) \mapsto f'(u) + f(u)\varphi'(u)$$

Bemerkung 2.23. [Sab07, 1.a] Es gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[\![u]\!]$.

Satz 2.24. [Sab90, Thm 5.3.1] Sei $\mathcal{M}_{\hat{K}}$ ein formaler Meromorpher Zusammenhang und sei $\mathcal{P}(\mathcal{M}_{\hat{K}}) = \{L^{(1)}, \ldots, L^{(r)}\}$ die Menge seiner slopes. Es exisitiert eine (bis auf Permutation) eindutige Aufteilung $\mathcal{M}_{\hat{K}} = \bigoplus_{i=1}^r \mathcal{M}_{\hat{K}}^{(i)}$ in formale Meromorphe Zusammenhänge mit $\mathcal{P}(\mathcal{M}_{\hat{K}}^{(i)}) = \{L^{(i)}\}.$

Beweis. [Sab90, Thm
$$5.3.1$$
]

Aussagen, die aus dem Beweis entstehen:

Wir erhalten die Exacte Sequenz

$$0 \to \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P_1 \to \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P \to \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P_2 \to 0$$

Korollar 2.25. [Sab 90, Thm 5.3.4] $\mathcal{P}(P) = \mathcal{P}(P_1) \cup \mathcal{P}(P_2)$ und $\mathcal{P}(P_1) \cap \mathcal{P}(P_2) = \emptyset$

2.6 Formale Struktur regulärer Zusammenhänge

[Sab90, Chap 5.2] Sei $\mathcal{M}_{\hat{K}}$ ein regulärer Formaler Meromorpher Zusammenhang, also slopes $(\mathcal{M}_{\hat{K}}) = 1$. Das nun folgende Kapittel wird sich mit der Struktur solcher Zusammenhänge genauer auseinandersetzen.

Lemma 2.26. [Sab90, Def 5.1.1 Remarks 3.] Ein $P = \sum a_i(x)(x\partial_x)^i$ mit $a_i \in \mathbb{C}[\![x]\!]$ ist regulär, genau dann wenn der Koeffizient a_d vor dem dominanten Term eine Einheit ist.

Beweis.
$$\Box$$

Dank diesem Satz ist es berechtigt, reguläre Zusammenhänge genauer zu betrachten.

Lemma 2.27. [Sab90, Lem 5.2.1.] Es existiert eine Basis von $\mathcal{M}_{\hat{K}}$ über \hat{K} mit der Eigenschaften, dass die Matrix, die $x\partial_x$ beschreibt, nur Einträge in $\mathbb{C}[\![x]\!]$ hat.

Beweis. Wähle einen zyklischen Vektor $m \in \mathcal{M}_{\hat{K}}$ und betrachte die Basis $m, \partial_x m, \dots, \partial_x^{d-1} m$ (siehe Lemma 2.5). Schreibe $\partial_x^d m = \sum_{i=0}^{d-1} (-b_i(x)) \partial_x^i m$ in Basisdarstellung mit Koeffizienten $b_i \in \hat{K}$. Also erfüllt m die Gleichung $\partial_x^d m + \sum_{i=0}^{d-1} b_i(x) \partial_x^i m = 0$.

bis hier schon klar

Tatsächlich werden wir $b_i(x) = x^i b_i'(x)$ mit $b_i' \in \mathbb{C}[x]$ schreiben (wegen Regularität).

Dies impliziert, dass $m, x\partial_x m, \dots, (x\partial_x)^{d-1}m$ ebenfalls eine Basis von $\mathcal{M}_{\hat{K}}$ ist.

Die Matrix von $x\partial_x$ zu dieser neuen Basis hat nur Einträge in $\mathbb{C}[x]$.

Lemma 2.28. [Sab90, Lem 5.2.2.] Es existiert sogar eine Basis von $\mathcal{M}_{\hat{K}}$ über \hat{K} so dass die Matrix zu $x\partial_x$ konstant ist.

Beweis. \Box

2.7 pull-back und push-forward

[HTT07, 1.3]

Nach [Sab07, 1.a]. Sei $(\rho : \mathbb{C} \to \mathbb{C}, u \mapsto t := \rho(u)) \in u\mathbb{C}[\![u]\!]$ mit Bewertung $p \geq 1$ und sei \mathcal{M} ein endlich dimensionaler $\mathbb{C}(\!(t)\!)$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Definition 2.29 (pull-back). [Sab07, 1.a] Der pull-back (Inverses Bild) $\rho^+\mathcal{M}$ ist der Vektorraum $\rho^*\mathcal{M} = \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{M}$ mit dem pull-back Zusammenhang $\rho^*\nabla$ definiert durch

$$\partial_u(1 \otimes m) := \rho'(u) \otimes \partial_t m. \tag{2.3}$$

Lemma 2.30. Es gilt $\rho^*\mathcal{D}_{\mathbb{C}((t))} = \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \cong \mathcal{D}_{\mathbb{C}((u))}$ mittels

$$\Phi: \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\cong} \mathcal{D}_{\mathbb{C}((u))}$$
$$f(u) \otimes m(t, \partial_t) \longmapsto f(u) m(\rho(u), \rho'(u)^{-1} \partial_u)$$

Beweis. \Box

Bemerkung 2.31. Das soeben, in Lemma 2.30, definierte Φ erfüllt für $1 \otimes m \in \mathbb{C}((u)) \otimes_{\mathbb{C}((t))}$

$$\partial_{u}(1 \otimes m) \stackrel{\text{def}}{=} \rho'(u) \otimes \partial_{t}m$$

$$\stackrel{\Phi}{\mapsto} \underbrace{\rho'(u)\rho'(u)^{-1}}_{=1} \partial_{u}m(\rho(u), \rho'(u)^{-1}\partial_{u})$$

$$= \partial_{u}m(\rho(u), \rho'(u)^{-1}\partial_{u})$$

und somit (2.3) wie gewollt.

Lemma 2.32. In der Situation

$$\mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\mathrm{id} \otimes_{-} \cdot P(t, \partial_{t})} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))}$$

$$\cong \downarrow \Phi \qquad \qquad \cong \downarrow \Phi$$

$$\mathcal{D}_{\mathbb{C}((u))} \xrightarrow{\alpha} \mathcal{D}_{\mathbb{C}((u))}$$

 $mit \ \Phi \ wie \ in \ Lemma \ 2.30 \ macht \ \alpha := \underline{} \cdot P(\rho(u), \rho'(u)^{-1} \partial_u) \ das \ Diagram \ kommutativ.$

Beweis.
$$\Box$$

Lemma 2.33. In der Situation von Lemma 2.29, mit $\mathcal{M} = \mathcal{D}_{\mathbb{C}((t))}/\mathcal{D}_{\mathbb{C}((t))} \cdot P(t, \partial_t)$ für $ein\ P(t, \partial_t) \in \mathcal{D}_{\mathbb{C}((t))}$, gilt

$$\rho^* \mathcal{M} \cong \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot P(\rho(u), \rho'(u)^{-1} \partial_u).$$

also wird der Übergang beschrieben durch

$$t \to \rho(t)$$

 $\partial_t \to \rho'(t)^{-1} \partial_u$

Beweis. Sei $P \in \mathcal{D}_{\mathbb{C}((t))}$ und $\mathcal{M} := \mathcal{D}_{\mathbb{C}((t))}/\mathcal{D}_{\mathbb{C}((t))} \cdot P$. Wir wollen zeigen, dass

$$\rho^* \mathcal{M} \stackrel{!}{\cong} \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot Q$$

für $Q = P(\rho(u), \rho'(u)^{-1}\partial_u)$ gilt. Betrachte dazu die kurze Sequenz

$$0 \longrightarrow \mathcal{D}_{\mathbb{C}((t))} \stackrel{\cdot P}{\longrightarrow} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \mathcal{M} \longrightarrow 0$$

ist

- exact, weil $\mathcal{M} \cong \mathcal{D}_{\mathbb{C}((t))} / \mathcal{D}_{\mathbb{C}((t))} \cdot P = \operatorname{coker}(_ \cdot P)$ und
- flach, da es Moduln über Körper, also Vektorräume, sind.

Deshalb ist auch, nach anwenden von $\mathbb{C}((u)) \otimes_{\mathbb{C}((t))}$, die Sequenz

$$0 \longrightarrow \mathbb{C}(\!(u)\!) \otimes_{\mathbb{C}(\!(t)\!)} \mathcal{D}_{\mathbb{C}(\!(t)\!)} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P} \mathbb{C}(\!(u)\!) \otimes_{\mathbb{C}(\!(t)\!)} \mathcal{D}_{\mathbb{C}(\!(t)\!)} \longrightarrow \mathbb{C}(\!(u)\!) \otimes_{\mathbb{C}(\!(t)\!)} \mathcal{M} \longrightarrow 0$$

$$\downarrow \mid I$$

$$\rho^* \mathcal{M}$$

exact. Deshalb ist

$$\rho^* \mathcal{M} \cong \operatorname{coker}(\operatorname{id} \otimes_{-} \cdot P)$$
 (weil exact)
$$\cong \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} / (\operatorname{id} \otimes_{-} \cdot P) \Big(\mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \Big)$$
 (nach def. von coker)

Also mit Φ wie in Lemma 2.30 und $Q(u,\partial_u):=P(\rho(u),\rho'(u)^{-1}\partial_u)$ nach Lemma 2.32 ergibt sich

$$0 \longrightarrow \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\mathrm{id} \otimes_{-} \cdot P} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \rho^{*} \mathcal{M} \longrightarrow 0$$

$$\cong \downarrow \Phi \qquad \qquad \cong \downarrow \Phi$$

$$\mathcal{D}_{\mathbb{C}((u))} \xrightarrow{-\cdot Q} \mathcal{D}_{\mathbb{C}((u))}$$

wobei das Diagram kommutiert. Nun lässt sich die untere Zeile zu einer exacten Sequenz fortsetzen (weil $_\cdot Q$ injektiv)

$$0 \longrightarrow \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\mathrm{id} \otimes_{-} \cdot P} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \rho^{*}\mathcal{M} \longrightarrow 0$$

$$\cong \downarrow_{\Phi} \qquad \qquad \cong \downarrow_{\Phi} \qquad \qquad \cong \downarrow_{\Phi} \qquad \qquad 0$$

$$0 \longrightarrow \mathcal{D}_{\mathbb{C}((u))} \xrightarrow{-\cdot Q} \mathcal{D}_{\mathbb{C}((u))} \longrightarrow \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot Q \longrightarrow 0$$

Ingo sagt:

Nun zu deiner Situation: Da geht es jeweils um die rechten Endstücke. Anders als die Mittelstücke sind diese bis auf Isomorphie eindeutig bestimmt; C ist der Kokern von (A –> B) und c der Kokern von (a –> b). Aufgrund der Kommutativität des Quadrats links müssen daher diese Kokerne zueinander isomorph sein.

Konkret kannst du einen Isomorphismus über eine Diagrammjagd konstruieren: Sei $x \in C$ beliebig. Wir wollen ein zugehöriges Element in c angeben. Da $(B \to C)$ surjektiv ist, gibt es ein $y \in B$, das unter $(B \to C)$ auf x geschickt wird. Unser gesuchtes Element in c ist dann das Bild von y unter $(B \to b)$ und $(b \to c)$. Dann ist noch Wohldefiniertheit nachzuweisen. Die Umkehrfunktion konstruiert man auf analoge Weise. Dann muss man natürlich noch nachrechnen, dass die beiden Morphismen zueinander invers sind.

(Geheimtipp: Linearität muss man, obwohl es eigentlich so scheint, tatsächlich nicht nachweisen – wenn man weiß, wie man intern in Topoi Mathematik betreiben kann. :-))

Nun wollen wir mittels Diagrammjagd einen Isomorphismus $\varphi: \rho^* \mathcal{M} \to \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot Q$ finden. Sei dazu $x \in \rho^* \mathcal{M}$

leider kann man hier NICHT das (kurzem) Fünfer-Lemma anweinden und damit gilt dann nach dem (kurzem) Fünfer-Lemma

$$\rho^* \mathcal{M} \stackrel{\varphi}{\cong} \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot Q$$

$$= \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot P(\rho(u), \rho'(u)^{-1} \partial_u),$$

falls es einen Morphismus φ überhaupt gibt.

kurzes 5er-lemma sagt nur (für den mittleren) das isomorph, falls oben und unten exact, rechts und links isomorphisman, und ein möglicher morphismus für Die mitte bereits existent. Muss auch alles Kommutieren.

• warum sind die schon zusammenhänge isomorph? eventuell noch ein Lemma bei kurzen exacten Sequenzen hinzufügen

Bemerkung 2.34 (versuch 1). Wieso sieht die Wirkung auf dem pull-back Zusammenhang so aus?

Betrachte ein Element der Form $f(t)m = f(\rho(u))m$.

$$\partial_t(f(t)m) = \partial_{\rho(u)}(f(\rho(u))m)$$

$$= f'(\rho(u)) \cdot \underbrace{\frac{\partial(f(u))}{\partial(f(u))}}_{=1} m + f(\rho(u)) \underbrace{\partial_{\rho(u)} m}_{=\partial_t} m = (\star)$$

$$\rho'(u)^{-1}\partial_u(f(t)m) = \frac{1}{pu^{p-1}}\partial_u(f(u^p)m)$$
$$= f'(u^p)m + f(u^p)\frac{1}{pu^{p-1}}\partial_u m = (\star)$$

Also gilt $\partial_t(f(t)m) = \rho'(u)^{-1}\partial_u(f(t)m)$ und somit ist die Wirkung von ∂_t gleich der Wirkung von $\rho'(u)^{-1}\partial_u$.

Lemma 2.35. Ein pull-back mit $u \mapsto u^p$ multipliziert alle slopes mit p.

Beweis.
$$\Box$$

Beispiel 2.36 (pull-back). Hier nun ein explizit berechneter pull-back.

Beginne mit

$$\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$$

und gehe von τ über zu t via $\tau \to \frac{1}{t}$:

• was passiert mit der Ableitung ∂_{τ} ? Es gilt:

$$\partial_{\tau}(f(\frac{1}{\tau})) = \partial_{t}(f) \cdot (-\frac{1}{\tau^{2}}) = -\partial_{t}(f) \cdot t^{2} = -t^{2} \cdot \partial_{t}(f)$$

also:

$$\partial_{\tau} = -t^2 \partial_t$$

• was ist $\partial_t(t^2\partial_t)$?

$$\partial_t t^2 \partial_t = (\partial_t t) t \partial_t$$

$$= (t \partial_t - 1) t \partial_t$$

$$= t (\partial_t t) \partial_t - t \partial_t$$

$$= t (t \partial_t - 1) \partial_t - t \partial_t$$

$$= t^2 \partial_t^2 - 2t \partial_t$$

• was passiert mit $\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$?

$$\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$$

$$\xrightarrow{\tau \to \frac{1}{t}} \frac{1}{t} (-t^2 \partial_t)^2 + 2(-t^2 \partial_t) - 1$$

$$= \frac{1}{t} t^2 (\partial_t (t^2 \partial_t)) - 2t^2 \partial_t - 1$$

$$= t (\partial_t (t^2 \partial_t)) - 2t^2 \partial_t - 1$$

$$= t (t^2 \partial_t^2 - 2t \partial_t) - 2t^2 \partial_t - 1$$

$$= t^3 \partial_t^2 - 4t^2 \partial_t - 1 =: P$$

Wir wollen $\mathcal{M} := \mathcal{D}/\mathcal{D} \cdot P$ bzgl. $P := t^3 \partial_t^2 - 4t^2 \partial_t - 1$ betrachten. Unser Ziel ist es hier ganzzahlige slopes erhalte Es gilt slopes $(P) = \{\frac{1}{2}\}$ (siehe Abbildung 2.3a) und es ist 2 der Hauptnenner aller Slopes. Wende den pull-back $\rho : t \to u^2$, welcher alle slopes mit 2 Multipliziert, an. Zunächst ein paar Nebenrechnungen, damit wir Lemma 2.33 anwenden können.

$$\partial_t \to \frac{1}{\rho'} \partial_u = \frac{1}{2u} \partial_u$$

$$\partial_t^2 \to (\frac{1}{2u} \partial_u)^2$$

$$= \frac{1}{2u} \partial_u (\frac{1}{2u} \partial_u)$$

$$= \frac{1}{2u} (-\frac{1}{2u^2} \partial_u + \frac{1}{2u} \partial_u^2)$$

$$= \frac{1}{4u^2} \partial_u^2 - \frac{1}{4u^3} \partial_u$$

also ergibt einsetzen

$$\rho^{+}P = u^{6} \left(\frac{1}{4u^{2}}\partial_{u}^{2} - \frac{1}{4u^{3}}\partial_{u}\right) - 4u^{4}\frac{1}{2u}\partial_{u} - 1$$

$$= \frac{1}{4}u^{4}\partial_{u}^{2} - u^{3}\frac{1}{4u^{3}}\partial_{u} - 4u^{3}\frac{1}{2}\partial_{u} - 1$$

$$= \frac{1}{4}u^{4}\partial_{u}^{2} - 2\frac{1}{4}u^{3}\partial_{u} - 1$$

Also ist $\rho^+P = \frac{1}{4}u^4\partial_u^2 - \frac{1}{2}u^3\partial_u - 1$ mit slopes $(\rho^+P) = \{1\}$ (siehe Abbildung 2.3b) und somit $\rho^*\mathcal{M} = \mathcal{D}/\mathcal{D} \cdot (\frac{1}{4}u^4\partial_u^2 - \frac{1}{2}u^3\partial_u - 1)$.

N(P) $N(\rho^+P)$ u(a) Newton Polygon zu $P = t^3 \partial_t^2 - 4t^2 \partial_t - 1$ (b) Newton Polygon zu $\rho^+ P = \frac{1}{4} u^4 \partial_u^2 - \frac{1}{2} u^3 \partial_u - 1$

Abbildung 2.2: Zu Beispiel 2.36

Sei $\mathcal N$ ein $\mathbb C((u))$ -VR mit Verknüpfung, so definiere den push-forward wie folgt.

Definition 2.37 (push-forward). [Sab07, 1.a] Der push-forward (Direktes Bild) $\rho_+\mathcal{N}$ ist

- der $\mathbb{C}(\!(t)\!)$ -VR $\rho_*\mathcal{N}$ ist der \mathbb{C} -Vektor Raum \mathcal{N} mit der $\mathbb{C}(\!(t)\!)$ -Vektor Raum Struktur durch $f(t)\cdot m:=f(\rho(t))m$
- mit der Wirkung ∂_t beschrieben durch $\rho'(u)^{-1}\partial_u$.

Abbildung 2.3: Zu Beispiel 2.38

Beispiel 2.38 (push-forward). Für $\rho:t\to u^2,\, \varphi=\frac{1}{u^2}$ betrachte

$$\mathcal{E}^{\varphi} \cong \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\partial_u + \partial_u \frac{1}{u^2})$$
$$= \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\underbrace{\partial_u + \frac{2}{u^3}}_{-\cdot P})$$

mit slopes $(P) = \{2\}$ (siehe Abbildung 2.4a). Bilde nun das Direkte Bild über ρ , betrachte dazu

$$\partial_u + \frac{2}{u^3} = 2u(\frac{1}{2u}\partial_u + \frac{1}{u^4})$$
$$= 2u(\rho'(u)^{-1}\partial_u + \frac{1}{u^4})$$
$$= 2u(\partial_t + \frac{1}{t^2})$$

Also ist $\rho_+ \mathscr{E}^{\varphi} \cong \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\partial_t + \frac{1}{t^2})$ mit $\rho_+ P = \partial_t + \frac{1}{t^2}$ und slopes $(\rho_+ P) = \{1\}$ (siehe Abbildung 2.4b)

Satz 2.39. [Sab07, 1.a] Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+} \mathcal{M}) \cong \rho_{+} \mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}. \tag{2.4}$$

Beweis.

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+}\mathcal{M}) = \rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} (\mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{M})) \qquad (\text{def von } \rho^{+}\mathcal{M})$$

$$\cong \rho_{+}((\mathcal{N} \otimes_{\mathbb{C}((u))} \mathbb{C}((u))) \otimes_{\mathbb{C}((t))} \mathcal{M}) \qquad (\text{Rechenregeln Tensorprodukt})$$

$$\cong \rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}) \qquad (\text{Rechenregeln Tensorprodukt})$$

$$= \rho_{+}\mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M} \qquad (?)$$

Sei
$$\rho(u) = u^p = t$$
 und $\varphi(t)$ gegeben.

$$\rho^{+} \mathscr{E}^{\varphi(t)} = \mathscr{E}^{\varphi(\rho(u))} = \mathscr{E}^{\varphi(u^{p})}$$
$$\rho^{+} \rho_{+} \mathscr{E}^{\varphi(u)} = \bigoplus_{\zeta \in \mu_{p}} \mathscr{E}^{\varphi(\zeta \cdot u)}$$

3 Elementare Meromorphe Zusammenhänge

Definition 3.1 (Elementarer formaler Zusammenhang). [Sab07, Def 2.1]

Alternative. ausfürlichere / komplexe definition [Sab90, Def 5.4.5.]

Zu einem gegebenen $\rho \in u\mathbb{C}[\![u]\!]$, $\varphi \in \mathbb{C}(\!(u)\!)$ und einem endlich dimensionalen $\mathbb{C}(\!(u)\!)$ -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten Elementaren endlich dimensionalen $\mathbb{C}(\!(t)\!)$ -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E}^{\varphi} \otimes R)$$

[Sab07, nach Def 2.1] Bis auf isomorphismus hängt $El(\rho, \varphi, R)$ nur von $\varphi \mod \mathbb{C}[\![u]\!]$ ab.

Lemma 3.2. |Sab07, Lem 2.2|

sabbah_Fourier-local.pdf lemma 2.4

Sei $\rho: u \mapsto u^p$ und $\mu_{\xi}: u \mapsto \xi u$.

Lemma 3.3. [Sab07, Lem 2.4] Für alle $\varphi \in \mathbb{C}((u))$ gilt

$$\rho^+\rho_+\mathscr{E}^\varphi=\bigoplus_{\xi^p=1}\mathscr{E}^{\varphi\circ\mu_\xi}\,.$$

Beweis. Wir wählen eine $\mathbb{C}((u))$ Basis $\{e\}$ von \mathscr{E}^{φ} und zur vereinfachung nehmen wir an, dass $\varphi \in u^{-1}\mathbb{C}[u^{-1}]^{[1]}$.

Dann ist die Familie $e, ue, ..., u^{p-1}e$ eine $\mathbb{C}((t))$ -Basis von $\rho_+\mathscr{E}^{\varphi}$.

Setze $e_k = u^{-k} \otimes_{\mathbb{C}(t)} u^k e$. Dann ist die Familie $\mathbf{e} = (e_0, ..., e_{p-1})$ eine $\mathbb{C}((u))$ -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$.

Zerlege nun $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p) \in u^{-2}\mathbb{C}[u^{-1}]$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[u^{-1}]$ (siehe: Anhang A).

Sei P die Permutationsmatrix, definiert durch $\mathbf{e} \cdot P = (e_1, ..., e_{p-1}, e_0)^{[2]}$. Es gilt:

$$u\partial_u e_k = \sum_{i=0}^{p-1-k} u^i \psi_i(u^p) e_{k+1} + \sum_{i=p-k}^{p-1} u^i \psi_i(u^p) e_{k+i-p}$$

denn:

$$u\partial_{u}e_{k} = u\partial_{u}\left(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e\right)$$

$$= u\left(-ku^{-k-1} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k} \otimes_{\mathbb{C}((t))} \partial_{t}\left(\underbrace{u^{k}e}_{\in \rho_{+} \mathscr{E}^{\varphi}}\right)\right)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k+1} \otimes_{\mathbb{C}((t))} (pu^{p-1})^{-1}(ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} (ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= \underbrace{-ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} ku^{k-1}e}_{=0} + u^{-k+1} \otimes_{\mathbb{C}((t))} u^{k}\varphi'(u)e$$

$$= u^{-k} \otimes_{\mathbb{C}((t))} u^{k+1}\varphi'(u)e$$

$$= \sum_{i=0}^{p-1} u^{-k} \otimes_{\mathbb{C}((t))} u^{k}u^{i}\underbrace{\psi_{i}(u^{p})e}_{\in\mathbb{C}((t))}$$

$$= \sum_{i=0}^{p-1} u^{i}\psi_{i}(u^{p})(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)$$

$$\begin{bmatrix}
1^{1} \mathscr{E}^{\varphi} = \mathscr{E}^{\psi} \Leftrightarrow \varphi \equiv \psi \mod \mathbb{C}[[1] \\
0 & 1 \\
1 & 0 \\
\vdots & \ddots & \vdots \\
& 1 & 0
\end{bmatrix}$$

$$= \sum_{i=0}^{p-1-k} u^i \psi_i(u^p) e_{k+1} + \sum_{i=p-k}^{p-1} u^i \psi_i(u^p) e_{k+i-p}$$

so dass gilt:

$$u\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^j \psi_j P^j \right]$$

denn:

$$u\partial_{u}\mathbf{e} = (u\partial_{u}e_{0}, \dots, u\partial_{u}e_{p-1})$$

$$= \left(\sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=p-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p}\right)_{k\in\{0,\dots,p-1\}}$$

$$= \mathbf{e} \begin{bmatrix} u^{p-1}\psi_{p-1}(u^{p}) & \cdots & u^{3}\psi_{3}(u^{p}) & u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) \\ u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) & & \ddots & u^{2}\psi_{2}(u^{p}) \\ u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) & \ddots & & u^{3}\psi_{3}(u^{p}) \\ u^{3}\psi_{3}(u^{p}) & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) \\ u^{p-2}\psi_{p-2}(u^{p}) & \cdots & u^{3}\psi_{3}(u^{p}) & u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) \end{bmatrix}$$

$$= \mathbf{e} \left[\sum_{i=0}^{p-1} u^{i}\psi_{j}(u^{p})P^{j}\right]$$

Die Wirkung von ∂_u auf die Basis von $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ ist also Beschrieben durch:

$$\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^{j-1} \psi_j P^j \right]$$

Diagonalisiere nun
$$TPT^{-1}=D=\begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & & \\ & & \ddots & & \\ & & & \xi^{p-1} \end{pmatrix}^{[3]},$$
 mit $\xi^p=1$ und $T\in Gl_p(\mathbb{C}).$

So dass gilt:

 $^{^{[3]}}$ Klar, da mipo X^p-1

Wie sieht denn die Wirkung auf die Basis von $\bigoplus_{\xi^p=1} \mathscr{E}^{\varphi \circ \mu_\xi} \stackrel{\Phi}{\cong} \mathbb{C}((u))^p$ aus?

$$\partial_{u} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 0 \\ \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \stackrel{\Phi}{\mapsto} \begin{pmatrix} 0 \\ \varphi'(u)\xi \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Also kommutiert das Diagram:

Und deshalb ist klar ersichtlich das auf $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ und $\sum_{j=0}^{p-1}u^{j-1}\psi_jD^j$ ein Äquivalenter Meromorpher Zusammenhang definiert ist.

Lemma 3.4. [Sab07, Lem 2.6.] Es gilt $El([u \mapsto u^p], \varphi, R) \cong El([u \mapsto u^p], \psi, S)$ genau dann, wenn

- es ein ζ gibt, mit $\zeta^p = 1$ und $\psi \circ \mu_{\zeta} \equiv \varphi \mod \mathbb{C}[\![u]\!]$
- und $S \cong R$ als $\mathbb{C}((u))$ -Vektorräume mit Zusammenhang.

Beweis. [Sab07, Lem 2.6.] \Box

Proposition 3.5. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale $\mathbb{C}((x))$ -Vektorraum \mathcal{M} mit Zusammenhang ist isomorph zu $\rho_+(\mathscr{E}^{\varphi} \otimes L)$, wobei $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$, $\rho: u \to u^p$ vom grad $p \geq 1$ und ist minimal unter φ . (siehe [Sab07, Rem 2.8]) und L ist ein Rang $\mathbb{C}((x))$ -Vektrorraum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop 3.1]

4 Levelt-Turrittin-Theorem

Quellen:

sabbah_cimpa90 seite 28 / 30

Satz 4.1 (Levelt-Turittin). Es ex. endliche Körper $\hat{L}|\hat{K}$ mit $\hat{L} = \mathbb{C}((u))$ mit $\hat{K} \hookrightarrow \hat{L}, x \mapsto u^p$ so dass:

$$\hat{M} \otimes_{\hat{K}} \hat{L} = \bigoplus_{i=1}^r \hat{M}_i$$

 $mit \text{ slopes}(\hat{M}_i) = 1 \forall i \text{ bzw. genauer } \hat{M}_i = \xi^{\varphi_i} \otimes R$

Satz 4.2 (Levelt-Turrittin-Malgrange). $\hat{L}|\hat{K}|$ mit $\hat{M}_i \otimes_{\hat{K}} \hat{L} = \bigoplus_{j=1}^s \hat{N}_j$ mit

$$\hat{N}_i = \xi^{\varphi_j} \otimes R$$

und

- $\dim_L \xi^{\varphi_j} = 1, \ \varphi_j \in \mathbb{C}[u^{-1}] \cdot u^{-1}$
- R regulär singulär, also mit slopes = $\{0\}$

Ab hier werden wir nur noch formale Meromorphe Zusammenhänge betrachten.

Sei $M_{\hat{K}} = \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P$ und nehme an, dass N(P) zumindes 2 nichttriviale Steigungen hat. Spalte $N(P) = N_1 \dot{\cup} N_2$ in 2 Teile. Dann gilt:

Lemma 4.3. Es existiert eine Aufteilung $P = P_1P_2$ mit:

• $N(P_1) \subset N_1 \ und \ N(P_2) \subset N_2$

• A ist eine kante von ...

4.1 Klassische Definition

[Sab90, Page 34] Sei $\mathcal{M}_{\hat{K}}$ ein formaler Meromorpher Zusammenhang. Man definiert $\pi^*\mathcal{M}_{\hat{K}}$ als den Vektor Raum über $\hat{L}: \pi^*\mathcal{M}_{\hat{K}} = \hat{L} \otimes_{\hat{K}} \mathcal{M}_{\hat{K}}$. Dann definiert man die Wirkung von ∂_t durch: $t\partial_t \cdot (1 \otimes m) = q(1 \otimes (x\partial_x \otimes m))$ und damit

$$t\partial_t \cdot (\varphi \otimes m) = q(\varphi \otimes (x\partial_x \cdot m)) + ((t\frac{\partial \varphi}{\partial t}) \otimes m).$$

Satz 4.4. [Sab90, Thm 5.4.7] Sie $\mathcal{M}_{\hat{K}}$ ein formaler Meromorpher Zusammenhang. So gibt es eine ganze Zahl q so dass der Zusammenhang $\pi^*\mathcal{M}_{\hat{K}} = \mathcal{M}_{\hat{L}}$ isomorph zu einer direkten Summe von elementaren Meromorphen Zusammenhänge ist.

Beispiel 4.5. Sei hier $P = \frac{1}{4}u^4\partial_u^2 - \frac{1}{2}u^3\partial_u - 1$, wie in Beispiel ??. Wir wollen $\mathcal{D}/\mathcal{D} \cdot P$ mittels des Levelt-Turrittin-Theorems Zerlegen.

4.2 Sabbah's Refined version

Proposition 4.6. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale formale Meromorphe Zusammenhang $\mathcal{M}_{\hat{K}}$ ist isomorph zu $\rho_{+}(\mathcal{E}^{\varphi} \otimes L)$, wobei $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$, $\rho: u \mapsto t = u^{p}$ mit grad $p \geq 1$ minimal bzgl. φ (siehe [Sab07, Rem 2.8]), und L ist ein Rang 1 $\mathbb{C}((u))$ -Vektor Raum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop 3.1]
$$\square$$

Satz 4.7 (Refined Turrittin-Levelt). [Sab07, Cor 3.3] Jeder endlich dimensionale Meromorphe Zusammenhang $\mathcal{M}_{\hat{K}}$ kann in eindutiger weiße geschrieben werden als direkte Summe $\bigoplus El(\rho, \varphi, R) = \rho_+(\mathcal{E}^{\varphi}) \otimes R$, so dass jedes $\rho_+\mathcal{E}^{\varphi}$ irreduzibel ist und keine zwei $\rho_+\mathcal{E}^{\varphi}$ isomorph sind.

Beweis. [Sab07, Cor 3.3]

5 Beispiel

5.1 Allgemein

sei $\varphi \in \left\{ \frac{1}{t^k}, \frac{1}{t^2} + \frac{1}{t^3}, \dots \right\}$

- 1. Starte mit: $P(t, \partial_t) := (\partial_t \frac{d}{dt}\varphi(t)) \cdot \text{Hauptnenner } \in \mathbb{C}[t] < \partial_t > 0$
- 2. Furiertrafo: $F_P(z, \partial_z) = P(\partial_z, -z) \in \mathbb{C}[z] < \partial_z >$
- 3. $x = z^{-1}$ und $\partial_x = -z^2 \partial_z$

$$Q(x, \partial_x) := F_P(x^{-1}, -x^2 \partial_x) \cdot \text{Hauptnenner } \in \mathbb{C}[x] < \partial_x > 0$$

4. Berechne für Q das NP usw...

5.2 Explizit

Betrachte nun Spezialfälle von 5.1.

Im besonderen zunächst $\mathcal{D}/\mathcal{D}(x^3\partial_x^2+1)$ also mit $P=x^3\partial_x^2+1$

A Aufteilung von ...

Sei $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$, so ist $\varphi' =: \sum_{i=2}^N a_{-i}u^{-i} \in u^{-2}\mathbb{C}[u^{-1}]$ also $u\varphi'(u) = \sum_{i=1}^N a_{-i-1}u^{-i} \in u^{-1}\mathbb{C}[u^{-1}]$, welches wir zerlegen

Zerlege also $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p)$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[t^{-1}]$:

also:

$$\psi_0(u^p) = a_{-(p+1)}u^{-p} + a_{-(2p+1)}u^{-2p} + \dots$$
$$\psi_1(u^p) = a_{-p}u^{-p} + a_{-2p}u^{2p} + \dots$$

$$\vdots \psi_{p-1}(u^p) = a_{-2}u^p + a_{-(p+2)}u^{2p} + \dots$$

-42-31. Januar 2013

Literaturverzeichnis

- [Ara] D. Arapura, Notes on d-modules and connections with hodge theory, Notizen?
- [Ark12] S. Arkhipov, *D-modules*, unpublished lecture notes available online, May 2012.
- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Ayo09] J. Ayoub, Introduction to algebraic d-modules, Vorlesungsskript, 2009.
- [BD04] A. Beilinson and V.G. Drinfeld, *Chiral algebras*, Colloquium Publications American Mathematical Society, no. Bd. 51, American Mathematical Society, 2004.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Ell10] C. Elliott, *D-modules*, unpublished notes available online, April 2010.
- [Gin98] V. Ginzburg, Lectures on d-modules, Vorlesungsskript, 1998.
- [Har77] R. Hartshorne, *Algebraic geometry*, Graduate Texts in Mathematics, Springer, 1977.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [Kas03] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, American Mathematical Society, 2003.
- [MR89] H. Matsumura and M. Reid, *Commutative ring theory*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.

Literaturverzeichnis

- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.
- [Sab07] _____, An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.
 - [Sch] J.P. Schneiders, An introduction to d-modules.
- [Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.