Lesson 11: Inference for One Mean; Sigma unknown (Hypothesis Test)

Preparation

Solutions

Problem	Part	Solution
1	-	- Symmetrical
		- Mean of 0
		- Exact shape depends on the degrees of freedom
		- Bell Shaped
		- More area in the tails than the standard normal distribution
2	-	df = n - 1(that is sample size -1)
3	-	$\bar{x} - t^* \times \frac{s}{\sqrt{n}}, \bar{x} + t^* \times \frac{s}{\sqrt{n}}$
4	_	- Sigma is not known
		- We compute a t-score from the Student t-distribution rather than a z-score from
		the normal distribution. (We cannot use the Normal Applet to compute t-scores.)
		- We must now consider degrees of freedom for the t-distribution where the
_		normal distribution did not have degrees of freedom.
5	-	$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$
6	-	- A simple random sample was drawn from a population. - \bar{x} is normally distributed.
7		The mean is 46.733. The standard devation is 8.827
8	_	It is a random sample from a population. The \bar{x} 's are normally distributed
9	_	(41.845, 51.622)
10	_	(39.948, 53.518)
11	A	(41.845, 51.622)
11	В	(39.948, 53.518)
12	-	The margin of error for the confidence interval is smaller for a 95% confidence level than a 99% confidence level.
13	A	$H_o: \mu = 47$ $H_a: \mu \neq 47$
13	В	t = -0.117
13	\mathbf{C}	df = 14

