Exercise 1

- The following relations are given (primary keys are underlined):
 - o STUDENT(StudentCode, Name, Surname, Birthdate)
 - o EXAM(StudentCode, CourseExam, Date, Score)
- Assume the following cardinalities:
 - o card(STUDENT) ≈ 10⁴ tuple
 - o card(EXAM) ≈ $3 * 10^5$ tuple
 - O MIN(EXAM.Score) = 1
 - MAX(EXAM.Score) = 30
 - Reduction factor HAVING AVG(Score) \geq 26 $\approx \frac{1}{50}$

Query 1

SELECT E.StudentCode, Name, AVG(Score)
FROM EXAM E, STUDENT S
WHERE E.StudentCode = S.StudentCode
and Score ≥ 18
GROUP BY E.StudentCode, Name
HAVING AVG(Score) ≥ 26
ORDER BY E.StudentCode;

2

Exercise 2

- The following relations are given (primary keys are underlined):
 - o EMPLOYEE (Empld, EmpName, BirthDate)
 - PROJECT(<u>ProjCode</u>, ProjName, StartDate, EndDate, Centre, Budget)
 - o WORK_ON(EmpId, ProjCode, StartDate, EndDate, Status)
- Assume the following cardinalities:
 - o card(EMPLOYEE) ≈ 10⁴ tuples
 - o MIN(EMPLOYEE.BirthDate) = 1/1/1950
 - o MAX(EMPLOYEE.BirthDate) = 31/12/1990
 - o card(PROJECT) ≈ 10³ tuples
 - o PROJECT.Centre has 10 distinct values
 - o card(WORK ON) ≈ 5 *10⁴ tuples
 - Reduction factor HAVING COUNT(*) > 10 $\approx \frac{1}{10}$

-

Query 1

SELECT ProjName, COUNT(*)

FROM EMPLOYEE E, PROJECT P, WORK_ON W

WHERE W.EmpId = E.EmpId

and W.ProjCode = P.ProjCode

and Centre = 'Torino'

and BirthDate ≥ 1970

GROUP BY P.ProjCode, ProjName

HAVING COUNT(*) > 10;

4