Chapter-4

Convex optimization problem

standard form convex optimization problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ -
$$a_i^T x = b_i, \quad i=1,\ldots,p$$
 -

- \bullet f_0 , f_1 , . . . , f_m are convex; equality constraints are affine
- ullet problem is *quasiconvex* if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

important property: feasible set of a convex optimization problem is convex

example

Maxex, 26[0,1]

minimize $f_0(x)=x_1^2+x_2^2$ subject to $f_1(x)=x_1/(1+x_2^2)\leq 0$ $h_1(x)=(x_1+x_2)^2=0$ $h_1(x)=(x_1+x_2)^2=0$ • f_0 is convex; feasible set $\{(x_1,x_2)\mid x_1=-x_2\leq 0\}$ is convex

- ullet not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine Those it
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$
 subject to $x_1 \le 0$ $x_1 + x_2 = 0$

minimize fo(x1,x2) Problem: Subject to 1224+2717 () 21+32271) 20,20,20) Make a Sketa d'Jeanisse set. Find all (x1,x1) which satisfies the construts Step1: Identify the wonshirts. 54-27 Convert the inequalities to equality 5+.3 > Find intersection of how lines 2xy+xz=1, xy+3xz=1. Intersection proint is (=, 1) 5-4: 2- y axis intruction x,=0 in 2x,+ x2=1 => x2=1. Points are (1,0) and (0,1)

Frankle region is the area that. These all hequilities. by the points (0,1), (1/-, 1/-). fo(Z1, N2)= Minimix fo (x1, XL) = max (x1, XL)

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

 \mathbf{proof} : suppose x is locally optimal, but there exists a feasible y with

x locally optimal means there is an R>0 such that

$$z$$
 feasible, $||z-x||_2 \le R$ \Rightarrow $f_0(z) \ge f_0(x)$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2\|y - x\|_2)$

- $||y x||_2 > R$, so $0 < \theta < 1/2$
- \bullet z is a convex combination of two feasible points, hence also feasible

•
$$||z - x||_2 = R/2$$
 and $||\nabla x||_2 + (-0)x - ||z - x||_2 = R/2$

$$|f_0(z)| \le \theta f_0(y) + (1 - \theta) f_0(x) < f_0(x)$$

which contradicts our assumption that \boldsymbol{x} is locally optimal

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T(y-x) \ge 0$$
 for all feasible y

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

Prove that 2*: (11/2, -1) is optimal for the optimization problem minimize (1/2) xTPX +q X + r Subject to $-1 \leq k_i \leq l$, i=1,2,3. Where $P = \begin{bmatrix} 13 & 12 & -2 \\ 12 & 17 & 6 \\ -2 & 6 & 12 \end{bmatrix}, 9 = \begin{bmatrix} -22.0 \\ -14.5 \\ -13.0 \end{bmatrix}, = 1$ Verity that x* satisfies the above optimality Condition as dissumed in the dan. Due: Gradient derivation (next class) session End =

Sessim-8 Gradient Let f be a real valued function (f: Rh) R) the dirivative of f. f(en, en)= rither, Df is a (1xn) matrix. $bf = (2L_1, 2XL)$ Gradient & f' is the transforse & Df $\nabla f(x) = D f(x)^{T}$ It is a when vector (hx)

Components A Vf(x) would be $\nabla f(x)_i = \frac{\partial f(x)}{\partial n_i}, i-1(1)n.$ Example: f(u) = (1/2) nTPK+qTx+10 compute gondint of fla), Devivative at 2° Row volv Df(x) = 1 Tpx+9 Column volv $\nabla f(x) = D f(x)^T$ = Px + 9

Unconstrained problem: m = p = 0 fo(x) is convex, optimize it If to is letternature, Hen e would be plined if $\nabla f_6(n) = 0' - (2)$ 5 hom that (2) can be derived from Est: 4.2.3, payl 140.1

• unconstrained problem: x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad \nabla f_0(x) = 0$$

equality constrained problem

minimize
$$f_0(x)$$
 subject to $Ax = b$

x is optimal if and only if there exists a ν such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

minimization over nonnegative orthant

minimize $f_0(x)$ subject to $x \succeq 0$

x is optimal if and only if

$$x \in \text{dom } f_0,$$
 $x \succeq 0,$
$$\begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

eliminating equality constraints

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$
$$\underline{Ax=b}$$

is equivalent to

minimize (over
$$z$$
) $f_0(Fz+x_0)$ subject to $f_i(Fz+x_0) \leq 0, \quad i=1,\ldots,m$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0 \text{ for some } z$$

• introducing equality constraints

minimize
$$f_0(A_0x+b_0)$$
 subject to $f_i(A_ix+b_i)\leq 0, \quad i=1,\ldots,m$

is equivalent to

minimize (over
$$x, y_i$$
) $f_0(y_0)$ subject to
$$f_i(y_i) \leq 0, \quad i=1,\dots,m$$

$$y_i = A_i x + b_i, \quad i=0,1,\dots,m$$

introducing slack variables for linear inequalities

minimize
$$f_0(x)$$
 subject to $a_i^Tx \leq b_i, \quad i=1,\dots,m$ ent to minimize (over x,s) $f_0(x)$

is equivalent to

minimize (over
$$x$$
, s) $f_0(x)$ subject to
$$a_i^T x + \underline{s_i = b_i}, \quad i = 1, \dots, m$$
 $s_i \geq 0, \quad i = 1, \dots m$

• epigraph form: standard form convex problem is equivalent to

minimize (over
$$x$$
, t) t subject to
$$f_0(x)-t \leq 0 \\ f_i(x) \leq 0, \quad i=1,\dots,m \\ Ax=b$$

minimizing over some variables

minimize
$$f_0(x_1,x_2)$$
 subject to $f_i(x_1) \leq 0, \quad i=1,\ldots,m$

is equivalent to

minimize
$$ilde{f}_0(x_1)$$
 subject to $ilde{f}_i(x_1) \leq 0, \quad i=1,\ldots,m$

where
$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Show that the tollwing are equivalent!

Problems! Suppose A (Duta set) ERMXN, ait is row. vertor to EIR m, ma construt >0 (a) Robust least square problem. Minimite I & (aita-bi) with $\chi \in \mathbb{R}^n$, and $\phi: \mathbb{R} \to \mathbb{R}$ (Huber penalty $= \{ u^2 \mid u \mid \leq m \}$ $= \{ m(2|u|-m) \mid u \mid \geq m \}$ (b) L5 with weight (aitx-bi) /wi+1)
minimix [=(aitx-bi)/wi+1)

+ M² 1 The subject to w9 >, 0. Ref: Exercise 4.5 of the textbook, Mgl 190.