> Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution

Introduction to Probability Distribution Fitting

Jerome Dumortier

17 August 2023

Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution

Lecture Overview

Distribution fitting

• Finding the best-fitting theoretical probability distribution for the observed data

Three approaches covered in this lecture:

MASS: fitdistr()

• fitdistrplus: fitdist()

• gamlss: fitDist()

Notes:

- No need to specify distribution function for the last approach, i.e., fitDist()
- Introduction and overview to a very broad field of research

Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions
and Estimati

Goodness of

Discrete Data Distribution Fitting

Introduction

Empirical work often requires understanding of the underlying distribution of data:

- Distribution of corn yields in a particular county based on observations to calculate the probability of getting a yield below a certain threshold, e.g., for crop insurance purposes
- Wind speed distribution at a particular location for construction of a wind farm: Electricity production is not possible below and above a certain wind speed

Estimation of one or more parameters characterizing a probability distribution function

> Jerome Dumortier

Introductory Example

Approa

Candidate Distributions

Goodness of

Fit Goodness of

Discrete Data Distribution Fitting

Introductory Example

Jerome Dumortier

Introductory Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Fit
Discrete Dat

Discrete Data Distribution Fitting

Weibull: Random Data Generation

Random generation of data (N=10000) following a Weibull distribution with two parameters:

• Shape: k = 2

• Scale: $\lambda = 1.5$

weibulldata = rweibull(10000,2,1.5)

Jerome Dumortier

Introductory Example

Approac

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution Fitting

Weibull: Histogram

Histogram of Weibull Data


```
Introduction
to Probability
Distribution
   Fitting
```

lerome Dumortier

Introductory Example

##

shape

2.003303 1.498407

scale

Weibull: Distribution Fitting with fitdistr

```
= fitdistr(weibulldata,densfun="weibull",
weibullpara
                           lower=c(0.0)
                 weibullpara$estimate[1]
shape
scale
                 weibullpara$estimate[2]
c(shape, scale)
```

> Jerome Dumortier

Introductory Example

Approac

Candidate
Distributions

Goodness of

Discrete Data Distribution Fitting

Weibull: Observed Data and Estimated Distribution

Histogram of weibulldata

> Jerome Dumortier

Introductor Example

Approach

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting

Approach

Jerome Dumortier

Introductor Example

Approach

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution

Distribution Fitting Steps

General steps (see Fitting Distributions with R by Vito Ricci for more information)

- General hypothesis about candidate distributions, e.g., discrete vs. continuous, entire real number line vs. positive numbers only
 - Histogram as a valuable first approach
- 2 Parameter estimation
 - Example: Calculating shape and scale parameters of the Weibull distribution or mean and variance for a Normal distribution
- 3 Goodness of fit

Starting point for an overview of various probability distributions: List of probability distributions

> Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting

Candidate Distributions and Estimation

> Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting

Meridian Hills: Possible Distributions

Meridian Hills home values:

- Source: https://jrfdumortier.github.io/dataanalysis/
- 101 home values in the Meridian Hills neighborhood in Indianapolis
- Scaling of data to measure home values in \$1000

Candidate distributions:

- Gamma distribution: Shape and scale parameter
- Weibull distribution: Shape and scale parameter
- ullet Log-normal distribution, i.e, $Y=\ln(X)$ has a normal distribution: μ and σ

```
mhprice = mh1$price/1000
mhgamma = fitdistr(mhprice, "gamma")
mhweibull = fitdistr(mhprice, "weibull", lower=c(0,0))
mhlognormal = fitdistr(mhprice, "log-normal")
```

> Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting

Meridian Hills: Histogram I

```
hist(mhprice, freg=FALSE, ylim=c(0,0.0025),
     xlim=c(0,2000).main="Meridian Hills")
               = seq(0,2000,1)
range
lines(range,dgamma(range,mhgamma$estimate[1],
                   mhgamma$estimate[2]),col="blue")
lines(range,dweibull(range,mhweibull$estimate[1],
                     mhweibull$estimate[2]).col="red")
lines(range,dlnorm(range,mhlognormal$estimate[1].
                   mhlognormal$estimate[2]),col="green")
```

Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution Fitting

Meridian Hills: Histogram II

Meridian Hills

> Jerome Dumortier

Introductor Example

Approad

Candidate
Distributions
and Estimatio

Goodness of Fit

Discrete Data Distribution Fitting

Goodness of Fit

lerome Dumortier

Goodness of Fit

Meridian Hills: Setup for fitdist()

Use of the function fitdist() from the package fitdistrplus

```
mhprice
               = mh1$price/1000
               = fitdist(mhprice, "gamma", lower=c(0,0))
mhgamma
               = fitdist(mhprice,"weibull",lower=c(0,0))
mhweibull
               = fitdist(mhprice,"lnorm",lower=c(0,0))
mhlognormal
```

> Jerome Dumortier

Introductory Example

Approacl

Candidate
Distributions
and Estimation

Goodness of

Discrete Dat Distribution Fitting

Meridian Hills: Gamma Distribution

> Jerome Dumortier

Introductory Example

Approac

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution Fitting

Meridian Hills: Weibull Distribution

> Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of

Discrete Dat Distribution Fitting

Meridian Hills: Log-Normal Distribution

1500

> Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting

Ground Beef: Possible Distributions

Second example using the function fitdist() package:

• Use of the data groundbeef associated with the package fitdistrplus: Serving sizes collected in a French survey, for ground beef patties consumed by children under 5 years old.

> Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting

Ground Beef: Histogram

Ground Beef

> Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting

Ground Beef: Results I

Histogram and theoretical densities

Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting

Ground Beef: Results II

Empirical and theoretical CDFs

> Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Discrete Data Distribution Fitting Results: Q-Q Plot

Q-Q plot


```
Introduction
to Probability
Distribution
   Fitting
```

lerome Dumortier

Goodness of Fit

Unspecified Distribution: fitDist()

Use of the function fitDist() from package gamlss

```
output = fitDist(mhprice, type="realplus")
```

output\$family

```
## [1] "TGAMMA"
```

"Inverse Gamma"

```
output$Allpar
```

```
##
               eta.sigma
       eta.mu
##
    5.1768720 -0.4921408
```

> Jerome Dumortier

Introductory Example

Approac

Candidate
Distributions
and Estimation

Goodness of

Discrete Data Distribution Fitting

Goodness of Fit with Inverse Gamma

> Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions

Goodness of Fit

Discrete Data Distribution Fitting

Discrete Data Distribution Fitting

Jerome Dumortier

Introducto Example

Approac

Candidate
Distributions

Goodness of

Fit

Discrete Data Distribution Fitting

EV Data

```
evpoisson = fitdist(evdata$numcars,discrete=TRUE,distr="pois")
evnbinom = fitdist(evdata$numcars,discrete=TRUE,distr="nbinom")
```

Jerome Dumortier

Introductor Example

Approac

Candidate
Distributions
and Estimation

Goodness of Fit

Density

Discrete Data Distribution Fitting

EV Data: Results Poisson

CDF

8

6

Data

Emp. and theo. distr.

Emp. and theo. CDFs

Data

Jerome Dumortier

Discrete Data Distribution Fitting

EV Data: Results Negative Binomial

Emp. and theo. CDFs

Data