220A Homework 3

James Harbour

October 16, 2025

Problem 1

Let G be an open subset of \mathbb{C} and P a polygon in G from a to b. Use Theorems 5.15 and 5.17 to show that there is a polygon $Q \subseteq G$ from a to b which is composed of line segments which are parallel to either the real or imaginary axes.

Proof. Without loss of generality, assume that P is non self-intersecting (removing violating portions still results in a polygon from a to b). Write $P = \bigcup_{k=0}^{n-1} [a_k, a_{k+1}]$ where $a_0 = a$ and $a_n = 0$. Let $p_k : [0, 1] \to \mathbb{C}$ be given by $p_k(t) := (1-t)a_k + ta_{k+1}$, so $p_k([0,1]) = [a_k, a_{k+1}] \subseteq G$. By theorem 5.15, as [0,1] is compact, p_k is uniformly continuous.

As [0,1] is compact, each $p_k([0,1]) = [a_k, a_{k+1}]$ is compact whence P is compact. As G is open, G^c is closed and $G^c \cap P = \emptyset$ by assumption, so theorem 5.17 implies

$$\varepsilon := d(G^c, P) > 0.$$

Fix $k \in \{0, ..., n-1\}$, and for brevity write $p = p_k$. As p is uniformly continuous, there is some $\delta > 0$ such that $|t-s| < \delta$ implies $|p(t) - p(s)| < \varepsilon$. Now choose $m \in \mathbb{N}$ and $0 = t_0 < t_1 < \cdots < t_m = 1$ such that $|t_{l+1} - t_l| < \delta$ for all $l \in \{0, ..., m-1\}$, whence

$$[0,1] = \bigcup_{l=0}^{m-1} [t_l, t_{l+1}].$$

Fix $l \in \{0, \ldots, m-1\}$, and set $z_l := \text{Re}(p(t_{l+1}) + i \operatorname{Im}(p(t_l)))$. Let $t \in [0, 1]$ and observe that both

$$|(1-t)p(t_l) + tz_l - p(t_l)| = |t \cdot (z_l - p(t_l))|$$

$$= t \cdot |\operatorname{Re}(p(t_{l+1}) - p(t_l))|$$

$$\leq t \cdot |p(t_{l+1}) - p(t_l)| < t\varepsilon \leq \varepsilon,$$

and

$$|(1-t)p(t_{l+1}) + tz_{l} - p(t_{l+1})| = |t \cdot (z_{l} - p(t_{l+1}))|$$

$$= t \cdot |i\operatorname{Im}(p(t_{l} - p(t_{l+1}))|$$

$$\leq t \cdot |p(t_{l}) - p(t_{l+1})| < t\varepsilon \leq \varepsilon.$$

As $\varepsilon = d(G^c, P)$ and $p(t_l), p(t_{l+1}) \in P$, it follows for $t \in [0, 1]$ that $(1-t)p(t_l) + tz_l \in G$ and $(1-t)p(t_{l+1}) + tz_l \in G$, or equivalently that

$$[p(t_l), z_l], [z_l, p(t_{l+1})] \subseteq G.$$

Noting that these paths are parallel to the real and imaginary axes respectively, and their union is a polygon from $p(t_l)$ to $p(t_{l+1})$, it follows that we may replace each segment $[a_k, a_{k+1}]$ with a finite sequence of horizontal and vertical paths inside G, whence we may do the same for the whole path P.

Let (f_n) be a sequence of uniformly continuous functions from (X,d) into (Ω,ρ) and suppose that f= unif-lim f_n exists. Prove that f is uniformly continuous. If each f_n is Lipschitz with constant M_n and $\sup_{n\in\mathbb{N}} M_n < +\infty$, show that f is a Lipschitz function. If $\sup_{n\in\mathbb{N}} M_n = +\infty$, show that f may fail to be Lipschitz.

Proof. Let $\varepsilon > 0$. As $f_n \to f$ uniformly, there is some $N \in \mathbb{N}$ such that for all $n \geq N$,

$$\sup_{x \in X} \rho(f(x), f_n(x)) < \frac{\varepsilon}{3}.$$

Fix $n \ge N$, and note that as f_n is uniformly continuous, there is some $\delta > 0$ such that for all $x, y \in X$ with $d(x, y) < \delta$, we have $\rho(f_n(x), f_n(y)) < \frac{\varepsilon}{3}$. Then for any $x, y \in X$ with $d(x, y) < \delta$, we have

$$\rho(f(x), f(y)) \le \rho(f(x), f_n(x)) + \rho(f_n(x), f_n(y)) + \rho(f_n(y), f(y)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Thus f is uniformly continuous.

Now suppose that each f_n is also Lipschitz with constant M_n and $M := \sup_{n \in \mathbb{N}} M_n < +\infty$. Fix $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that for all $n \geq N$ we have

$$\sup_{x \in X} \rho(f(x), f_n(x)) < \frac{\varepsilon}{2}.$$

Fixing $x, y \in X$ and $n \ge N$, then we have

$$\rho(f(x), f(y)) \le \rho(f(x), f_n(x)) + \rho(f_n(x), f_n(y)) + \rho(f_n(y), f(y))$$

$$\le \frac{\varepsilon}{2} + M_n d(x, y) + \frac{\varepsilon}{2} < \varepsilon + M d(x, y).$$

As $\varepsilon > 0$ was arbitrary, it follows that

$$\rho(f(x), f(y)) \le Md(x, y),$$

so f is Lipschitz.

Unbounded Lipschitz constant counterexample: Write L(f) for the Lipschitz constant of f, namely

$$L(f) = \sup_{x \neq y} \frac{\rho(f(x), f(y))}{d(x, y)}.$$

Let $(X,d)=([0,1],|\cdot|)$ and $(\Omega,\rho)=(\mathbb{R},|\cdot|)$. So we are considering the Banach space B:=C([0,1]) with the supremum norm. Note that as [0,1] is compact, all elements of B are uniformly continuous. Let $f\in B$ be given by $f(x)=\sqrt{x}$.

Suppose, for the sake of contradiction, that $L(f) < +\infty$. Then, for all $x \in (0,1]$, we have

$$\frac{1}{\sqrt{x}} = \frac{|\sqrt{x} - 0|}{|x - 0|} \le L(f),$$

which is absurd as $\frac{1}{\sqrt{x}} \to +\infty$ as $x \to 0$. Thus f is not Lipschitz continuous, but is uniformly continuous as [0,1] is compact.

Let $P \subseteq B$ be the set of polynomial functions on [0,1]. By the Weierstrass approximation theorem, $\overline{P}^{\|\cdot\|_{\sup}} = B$, so there is a sequence of polynomial functions $f_n \in B$ such that $\|f_n - f\|_{\sup} \xrightarrow{n \to \infty} 0$, i.e. $f_n \to f$ uniformly.

As polynomial functions are Lipschitz on bounded subsets of \mathbb{R} , each f_n is Lipschitz. Suppose, for the sake of contradiction, that $\sup_{n\in\mathbb{N}} L(f_n) < +\infty$. Then by the statement we have proven above, noting that each f_n is uniformly continuous, we have $L(f) < +\infty$, which contradicts what we have shown. Thus $\sup_{n\in\mathbb{N}} L(f_n) = +\infty$

Problem 3

If (a_n) is a convergent sequence in \mathbb{R} and $a = \lim_{n \to \infty} a_n$, show that $\liminf a_n = \limsup a_n$.

Proof. We will show that $\limsup a_n = a$ and $\liminf a_n = a$. We are operating under the definitions

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} \left(\sup_{k \ge n} a_k \right)$$
$$\liminf_{n \to \infty} a_n := \lim_{n \to \infty} \left(\inf_{k \ge n} a_k \right).$$

Fix $\varepsilon > 0$. As $a = \lim_{n \to \infty} a_n$, there is some $N \in \mathbb{N}$ such that for $n \geq N$ we have

$$|a_n - a| < \varepsilon$$
.

Equivalently, we may write this for $n \geq N$ as

$$a - \varepsilon < a_n < a + \varepsilon$$
.

Fixing $n \geq N$ for the moment, $k \geq n$ implies $k \geq N$, whence by definitions of sup and inf we have that

$$a - \varepsilon < \sup_{k \ge n} a_k \le a + \varepsilon$$
$$a - \varepsilon \le \inf_{k \ge n} a_k < a + \varepsilon.$$

Equivalently, we may write these inequalities as

$$\begin{vmatrix} a - \sup_{k \ge n} a_k \end{vmatrix} \le \varepsilon$$
$$\begin{vmatrix} a - \inf_{k \ge n} a_k \end{vmatrix} \le \varepsilon$$

whence, as $\varepsilon > 0$ was arbitrary,

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sup_{k > n} a_k \right) = a = \lim_{n \to \infty} \left(\inf_{k \ge n} a_k \right) = \liminf_{n \to \infty} a_n.$$

Show that the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$$

is 1, and discuss convergence for z = 1, -1, and i.

Solution.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n^2+n}$$

$$a_n = \{$$

Symbolically (i.e. inside $\mathbb{C}[\![x]\!]$), there is some $(a_n)_{n=0}^{\infty}$ such that

$$\sum_{k=0}^{\infty} a_k z^k = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n^2 + n}.$$

As no z^0 term appears in the latter series, $a_0 = 0$. Fix $k \in \mathbb{N}$. If there exists some $n \in \mathbb{N}$ such that $k = n^2 + n$, then such an n is unique as the function $x \mapsto x^2 + x$ is monotone increasing on x > 0, whence $a_k = \frac{(-1)^n}{n}$. If there is no such $n \in \mathbb{N}$, then $a_k = 0$. Concisely, we have

$$a_k = \begin{cases} \frac{(-1)^n}{n} & \text{if } k = n^2 + n \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Let $0 \le R \le \infty$ be the radius of convergence of the given power series. Then by definition,

$$\frac{1}{R} = \limsup_{k \to \infty} |a_k|^{\frac{1}{k}}.$$

To show that R = 1, it suffices to show $\frac{1}{R} = 1$, so we shall show the corresponding quantity is 1. Consider the subsequence $(k_n)_{n=1}^{\infty}$ given by $k_n := n^2 + n$. Then observe that

$$\lim_{n \to \infty} |a_{k_n}|^{\frac{1}{k_n}} = \lim_{n \to \infty} \left(\frac{1}{n}\right)^{\frac{1}{k_n}}.$$

We have shown in problem 6 that $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$. By continuity of $x\mapsto \log(x)$ on $(0,\infty)$, it follows that

$$0 = \log(1) = \lim_{n \to \infty} \log\left(n^{\frac{1}{n}}\right) = \lim_{n \to \infty} \frac{1}{n} \log(n).$$

Noting that $\lim_{n\to\infty}\frac{1}{n+1}=0$ and the sequence $\left(\frac{1}{n+1}\right)_{n=1}^{\infty}$ is bounded, it follows that

$$0 = \lim_{n \to \infty} \left(\frac{1}{n+1} \right) \cdot \left(\frac{1}{n} \log(n) \right) = \lim_{n \to \infty} \frac{1}{n^2 + n} \log(n) = \lim_{n \to \infty} \log\left(n^{\frac{1}{n^2 + n}}\right).$$

Now appealing to the continuity of $x \mapsto e^x$, it follows that

$$1 = e^{0} = \lim_{n \to \infty} e^{\log\left(n^{\frac{1}{n^{2} + n}}\right)} = \lim_{n \to \infty} n^{\frac{1}{n^{2} + n}}.$$

Thus, as $k_n = n^2 + n > n$ for all $n \in \mathbb{N}$, it follows that

$$\limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\sup_{k \ge n} |a_k|^{\frac{1}{k}} \right) \ge \lim_{n \to \infty} |a_{k_n}|^{\frac{1}{k_n}} = 1.$$

Suppose, for the sake of contradiction, that there is some $\varepsilon > 0$ such that $\limsup_{n \to \infty} |a_n|^{\frac{1}{n}} > 1 + \varepsilon$. Then, there is some $N \in \mathbb{N}$ such that for all $n \geq N$, we have

$$\sup_{k \ge n} |a_k|^{\frac{1}{k}} > 1 + \varepsilon.$$

Hence, for $n \geq N$, there is some $k_n \geq n$ such that $|a_{k_n}|^{\frac{1}{k_n}} > 1 + \varepsilon$. This implies that $a_{k_n} \neq 0$, whence by definition there is some $m_n \in \mathbb{N}$ such that $k_n = m_n^2 + m_n$ and

$$\left(\frac{1}{m_n}\right)^{\frac{1}{m_n^2+m_n}} = |a_{k_n}|^{\frac{1}{k_n}} > 1 + \varepsilon.$$

Applying the quadratic formula and recalling that $k_n \geq n$, we see

$$m_n = \frac{-1 + \sqrt{1 + 4k_n}}{2} \ge \frac{-1 + \sqrt{1 + 4n}}{2} \xrightarrow{n \to \infty} \infty.$$

Thus $(m_n)_{n=1}^{\infty}$ is a monotone increasing subsequence of $(n)_{n=1}^{\infty}$, whence

$$\lim_{n\to\infty}\left(\frac{1}{m_n}\right)^{\frac{1}{m_n^2+m_n}}=\lim_{n\to\infty}\left(\frac{1}{n}\right)^{\frac{1}{n^2+n}}=1,$$

which contradicts that $\left(\frac{1}{m_n}\right)^{\frac{1}{m_n^2+m_n}} > 1 + \varepsilon$ for all $n \geq N$.

Thus we have shown that $\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = 1$, so the radius of convergence of the series is 1.

(z = 1 Case): If z = 1, then we have the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

which converges by the alternating series test as $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ is a monotone decreasing sequence. Note however that this convergence is only conditional as the harmonic series diverges.

(z = -1 Case): If z = -1, then we have the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (-1)^{n^2+n} = \sum_{n=1}^{\infty} \frac{(-1)^{2n+n^2}}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n^2}}{n}.$$

As $n^2 \equiv n \pmod{2}$, $(-1)^{n^2} = (-1)^n$ for all $n \in \mathbb{N}$, whence we have the same series as in the z = 1 case.

(z = i Case): If z = i, then we have the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (i)^{n^2+n} = \sum_{n=1}^{\infty} \frac{1}{n} (i)^{n^2+3n}.$$

We have the following congruences:

$$n \equiv 0 \pmod{4}$$
 \Longrightarrow $n(n+3) \equiv 0 \pmod{4}$ \Longrightarrow $i^{n(n+3)} = 1$
 $n \equiv 1 \pmod{4}$ \Longrightarrow $n(n+3) \equiv 0 \pmod{4}$ \Longrightarrow $i^{n(n+3)} = 1$
 $n \equiv 2 \pmod{4}$ \Longrightarrow $n(n+3) \equiv 2 \pmod{4}$ \Longrightarrow $i^{n(n+3)} = -1$
 $n \equiv 3 \pmod{4}$ \Longrightarrow $n(n+3) \equiv 2 \pmod{4}$ \Longrightarrow $i^{n(n+3)} = -1$.

So we may reindex our series (without reordering) to observe

$$\sum_{n=1}^{\infty} \frac{1}{n} (i)^{n^2 + 3n} = 1 + \sum_{k=1}^{\infty} \left(\frac{1}{2k} + \frac{1}{2k+1} \right) \cdot (-1)^k.$$

Noting that the sequence $\left(\frac{1}{2k} + \frac{1}{2k+1}\right)_{k=1}^{\infty}$ is monotone decreasing, it follows by the alternating series test that the above series converges.

Problem 5

Show that $f(z) = |z|^2 = x^2 + y^2$ has a derivative only at the origin.

Proof. First we show that the derivative at the origin exists. Fix $\varepsilon > 0$. Using $\delta := \varepsilon$, for $z \in \mathbb{C}$ with $|z| < \delta$, we have

$$\left| \frac{f(z) - f(0)}{z - 0} - 0 \right| = \left| \frac{|z|^2}{z} \right| = |z| < \delta = \varepsilon.$$

As $\varepsilon > 0$, it follows that f'(0) exists and is equal to 0.

Now we show that the derivative away from the origin does not exist. Fix $z \in \mathbb{C} \setminus \{0\}$, and considering $h \in \mathbb{C} \setminus \{0\}$ we compute

$$\frac{f(z+h)-f(z)}{h} = \frac{\overline{(z+h)}(z+h)-\overline{z}z}{h} = \frac{\overline{z}z+\overline{h}z+h\overline{z}+\overline{h}h-\overline{z}z}{h}$$
$$=\frac{\overline{h}z+h\overline{z}+\overline{h}h}{h} = \frac{\overline{h}}{h}z+\overline{z}+\overline{h}.$$

Noting that $\lim_{h\to 0} \overline{h} = 0$ and $z \neq 0$ is a fixed constant, the above computation shows that the limit as $h\to 0$ of $\frac{f(z+h)-f(z)}{h}$ exists if and only the limit as $h\to 0$ of $\frac{\overline{h}}{h}$ exists. Suppose, for the sake of contradiction, that there is some $w\in \mathbb{C}$ such that $\lim_{h\to 0} \frac{\overline{h}}{h} = w$.

Fix $\varepsilon > 0$. Then there is some $\delta_0 > 0$ such that $0 < |h| < \delta_0$ implies $\left| \frac{\overline{h}}{h} - w \right| < \varepsilon$. Fix $\delta > 0$ such that $\delta < \delta_0$. Then $|i\delta| < \delta_0$ and $|\delta| < \delta_0$, whence

$$\varepsilon > \left| \frac{\overline{\delta}}{\delta} - w \right| = |1 - w|$$

$$\varepsilon > \left| \frac{i\overline{\delta}}{i\delta} - w \right| = |-1 - w| = |1 + w|.$$

As $\varepsilon > 0$ was arbitrary, it follows that |1 - w| = 0 = |1 + w|, whence 1 = w = -1, which is absurd. Thus, the proposed limit does not exist, whence the proposed derivative does not exist.

Show that $\lim_{n\to\infty} n^{1/n} = 1$.

Proof. Note first that for all $n \in \mathbb{N}$, $\log(n) \geq 0$, whence

$$\log\left(n^{\frac{1}{n}}\right) = \frac{1}{n}\log(n) \ge 0 \quad \Longrightarrow \quad n^{\frac{1}{n}} \ge 1.$$

Fix $\varepsilon > 0$. We will show that there is some $N \in \mathbb{N}$ such that for all $n \geq N$, $n^{\frac{1}{n}} < 1 + \varepsilon$.

$$n^{\frac{1}{n}} < 1 + \varepsilon$$
 \iff $n < (1 + \varepsilon)^n = \sum_{k=0}^n \binom{n}{k} \varepsilon^k$ \iff $1 < \frac{1}{n} (1 + \varepsilon)^n = \frac{1}{n} \sum_{k=0}^n \binom{n}{k} \varepsilon^k$

As all terms present are positive, it suffices to show that a single term is greater than 1, so consider the third term. Then we must show that

$$1 < \frac{1}{n} \cdot \binom{n}{2} \varepsilon^2 = \frac{n-1}{2} \varepsilon^2.$$

Now we begin the proof itself. By the Archimedean principle, there is some $N \in \mathbb{N}$ such that $0 < \sqrt{\frac{2}{N-1}} < \varepsilon$. As the function $x \mapsto \sqrt{\frac{2}{x-1}}$ is monotone decreasing for x > 1, it follows that for all $n \ge N$,

$$0 < \sqrt{\frac{2}{n-1}} < \varepsilon.$$

Then for $n \geq N$,

$$\varepsilon > \sqrt{\frac{2}{n-1}} \implies 1 < \frac{n-1}{2}\varepsilon^2 = \frac{1}{n} \cdot \binom{n}{2}\varepsilon^2,$$

whence we note that

$$\frac{1}{n}(1+\varepsilon)^n = \frac{1}{n}\sum_{k=0}^n \binom{n}{k}\varepsilon^k \ge \frac{1}{n}\binom{n}{2}\varepsilon^2 > 1.$$

Upon rearranging the above inequality, we see

$$(1+\varepsilon)^n > n \implies 1+\varepsilon > n^{\frac{1}{n}}.$$

Thus for $n \geq N$, as $n^{\frac{1}{n}} \geq 1$, we have

$$|n^{\frac{1}{n}} - 1| = n^{\frac{1}{n}} - 1 < \varepsilon.$$

Hence $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$ as desired.

Let G be a region and define $G^* := \{z : \overline{z} \in G\}$. If $f : G \to \mathbb{C}$ is analytic, show that $f^* : G^* \to \mathbb{C}$, defined by $f^*(z) = \overline{f(\overline{z})}$, is also analytic.

Proof. The definition of analytic we are assuming in this course is continuously differentiable, i.e. f' exists for all points in the region and is continuous.

Fix $z \in G^*$ and $\varepsilon > 0$. Fix $\gamma > 0$ small enough such that $B_{\gamma}(z) \subseteq G^*$. By definition, $\overline{z} \in G$, whence $f'(\overline{z})$ exists. Thus, there is some $\delta > 0$ such that $0 < |k| < \delta$ implies that $\overline{z} + k \in G$ and

$$\left| \frac{f(\overline{z} + k) - f(\overline{z})}{k} - f'(\overline{z}) \right| < \varepsilon.$$

Suppose that $0 < |h| < \min\{\delta, \gamma\}$, so $z + h \in G^*$. Then $\overline{z} + \overline{h} = \overline{z + h} \in G$, $|\overline{h}| < \delta$, and $\overline{z} + \overline{h} \in G$, so

$$\varepsilon > \left| \frac{f(\overline{z} + \overline{h}) - f(\overline{z})}{\overline{h}} - f'(\overline{z}) \right|$$

$$= \left| \frac{f(\overline{z} + h) - f(\overline{z})}{\overline{h}} - f'(\overline{z}) \right|$$

$$= \left| \frac{\overline{f(\overline{z} + h)} - \overline{f(\overline{z})}}{h} - \overline{f'(\overline{z})} \right| = \left| \frac{f^*(z + h) - f^*(z)}{h} - \overline{f'(\overline{z})} \right|.$$

As $\varepsilon > 0$ was arbitrary, it follows that f^* is differentiable at z and $(f^*)'(z) = \overline{f'(\overline{z})}$.

Now for analyticity, it remains to show continuity of $\frac{df'}{dz}$. Suppose that $z \in G^*$ and $(z_n)_{n=1}^{\infty}$ is a sequence (suffices to show for sequences and not nets as \mathbb{C} is a metric space) in G' such that $|z_n - z| \xrightarrow{n \to \infty} 0$. Noting that $\overline{z} \in G$ and $\overline{z_n} \in G$ for all $n \in \mathbb{N}$ and

$$|\overline{z_n} - \overline{z}| = |z_n - z| \xrightarrow{n \to \infty} 0,$$

it follows by analyticity of f' that $|f'(\overline{z_n}) - f'(\overline{z})| \to 0$. Then, observe that

$$|(f^*)'(z_n) - (f^*)'(z)| = |\overline{f'(\overline{z_n})} - \overline{f'(\overline{z})}| = |f'(\overline{z_n}) - f'(\overline{z})| \xrightarrow{n \to \infty} 0,$$

whence $(f^*)'$ is continuous and thus f^* is analytic.