## Double helix director

Lucas Myers

January 10, 2024

#### 1 Selinger free energy

To investigate this system, we start with the Frank free energy as written by Selinger:

$$F = \frac{1}{2} (K_{11} - K_{24}) S^2 + \frac{1}{2} (K_{22} - K_{24}) T^2 + \frac{1}{2} K_{33} |\mathbf{B}|^2 + K_{24} \text{Tr} (\Delta^2)$$
 (1)

with the following definitions for the distortion modes:

$$S = \nabla \cdot \hat{\mathbf{n}} \tag{2}$$

$$T = \hat{\mathbf{n}} \cdot (\nabla \times \hat{\mathbf{n}}) \tag{3}$$

$$B = \hat{\mathbf{n}} \times (\nabla \times \hat{\mathbf{n}}) \tag{4}$$

$$\Delta_{ij} = \frac{1}{2} \left[ \partial_i n_j + \partial_j n_i - n_i n_k \partial_k n_j - n_j n_k \partial_k n_i - \delta_{ij} \partial_k n_k + n_i n_j \partial_k n_k \right]$$
(5)

# 2 Rotated system

We make two assumptions about the system: i) the z-dependence of the director corresponds to a rotation of a plane perpendicular to the cylindrical axis about the cylindrical axis by some angle  $\alpha z$ , and ii) the director stays in a plane perpendicular to the cylindrical axis. We note that in an infinitely long cylindrical system, i) is true by translational symmetry. In this case, we may write:

$$\hat{\mathbf{n}} = R(\alpha z) \begin{bmatrix} \cos \theta & \sin \theta & 0 \end{bmatrix}^T \tag{6}$$

for some director angle  $\theta$  as measured from the x-axis in the x-y-plane, and R(z) a rotation about the z-axis and a function of z. We note that  $\theta$  must be a function of x, y, and z, with the z-dependence corresponding to an *inverse* rotation of angle  $\alpha z$  about the z-axis. <sup>1</sup> This gives:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = R^{T}(\alpha z) \begin{bmatrix} x \\ y \end{bmatrix} 
= \begin{bmatrix} \cos(\alpha z) x + \sin(\alpha z) y \\ -\sin(\alpha z) x + \cos(\alpha z) y \end{bmatrix}$$
(7)

### 3 Rotated isotropic solution free energy

Taking  $\theta$  to be the standard isotropic solution for two +1/2 disclinations gives:

$$\theta(x',y') = \frac{1}{2} \tan^{-1} \left( \frac{y'}{x' - \frac{d}{2}} \right) + \frac{1}{2} \tan^{-1} \left( \frac{y'}{x' + \frac{d}{2}} \right)$$

$$= \frac{1}{2} \tan^{-1} \left( \frac{-\sin(\alpha z) x + \cos(\alpha z) y}{\cos(\alpha z) x + \sin(\alpha z) y - \frac{d}{2}} \right) + \frac{1}{2} \tan^{-1} \left( \frac{-\sin(\alpha z) x + \cos(\alpha z) y}{\cos(\alpha z) x + \sin(\alpha z) y + \frac{d}{2}} \right)$$
(8)

where here d is the disclination spacing. The result of plotting  $\theta + \alpha z$  for  $\alpha z = \pi/2$  gives the following rotated configuration:



One may explicitly calculate the free energy density for such a configuration. By symmetry, the free energy density at every z-value should be the same, so we evaluate at z=0 to simplify the expressions. What we find is that (expectedly) only the twist and saddle splay terms depend on  $\alpha$ . These give:

$$T^{2}(\alpha) = \alpha^{2} f(x, y) \cos^{4} \theta \tag{9}$$

$$\left|\Delta\right|^{2}(\alpha) = \alpha^{2} f(x, y) + g(x, y) \tag{10}$$

with

$$f(x,y) = \frac{d^2 (d^2 - 4x^2 + 4y^2)^2}{(d^4 - 8d^2x^2 + 8d^2y^2 + 16x^4 + 32x^2y^2 + 16y^4)^2}$$
(11)

and q(x,y) some function independent of  $\alpha$ . Then the entire free energy goes as:

$$F = (K_{22} + (B - A)K_{24})\alpha^2 + C \tag{12}$$

with

$$B = \int_{\Omega} f(x, y) dV$$

$$A = \int_{\Omega} f(x, y) \cos^4 \theta dV$$
(13)

Clearly B > A always, and so a twisted configuration will never be the minimum, at least for the configuration that we've written down.

## 4 Selinger Euler-Lagrange equation

We begin by calculating the general Euler-Lagrange equation for the Frank free energy with all terms. This will simplify when we restrict the director to only polar-planar configurations. We do this one term at a time:

$$\delta(S^{2}) = \int_{\Omega} 2S (\delta S) dV$$

$$= \int_{\Omega} 2S (\nabla \cdot \delta \hat{\mathbf{n}}) dV$$

$$= -\int_{\Omega} 2 (\nabla S) \cdot \delta \hat{\mathbf{n}} dV + \int_{\partial \Omega} 2 (S \boldsymbol{\nu}) \cdot \delta \hat{\mathbf{n}} dS$$
(14)

$$\delta(T^{2}) = \int_{\Omega} 2T (\delta T) dV$$

$$= \int_{\Omega} 2T (\delta \hat{\mathbf{n}} \cdot (\nabla \times \hat{\mathbf{n}}) + \hat{\mathbf{n}} \cdot (\nabla \times \delta \hat{\mathbf{n}})) dV$$

$$= \int_{\Omega} 4T (\nabla \times \hat{\mathbf{n}}) \cdot \delta \hat{\mathbf{n}} dV - \int_{\partial \Omega} 2T \boldsymbol{\nu} \cdot (\hat{\mathbf{n}} \times \delta \hat{\mathbf{n}}) dS$$
(15)

where we have used the following identity<sup>2</sup>:

$$A \cdot (\nabla \times B) = -\nabla \cdot (A \times B) + B \cdot (\nabla \times A) \tag{16}$$

Also:

$$\delta |\mathbf{B}|^{2} = \int_{\Omega} 2\mathbf{B} \cdot (\delta \mathbf{B}) \ dV$$

$$= \int_{\Omega} 2\mathbf{B} \cdot (\delta \hat{\mathbf{n}} \times (\nabla \times \hat{\mathbf{n}}) + \hat{\mathbf{n}} \times (\nabla \times \delta \hat{\mathbf{n}})) \ dV$$

$$= \int_{\Omega} 2 \left[ \delta \hat{\mathbf{n}} \cdot ((\nabla \times \hat{\mathbf{n}}) \times \mathbf{B}) + (\nabla \times \delta \hat{\mathbf{n}}) \cdot (\mathbf{B} \times \hat{\mathbf{n}}) \right] \ dV$$

$$= \int_{\Omega} 2 \left[ \delta \hat{\mathbf{n}} \cdot ((\nabla \times \hat{\mathbf{n}}) \times \mathbf{B}) + \nabla \cdot (\delta \hat{\mathbf{n}} \times (\mathbf{B} \times \hat{\mathbf{n}})) + \delta \hat{\mathbf{n}} \cdot (\nabla \times (\mathbf{B} \times \hat{\mathbf{n}})) \right] \ dV$$

$$= \int_{\Omega} 2 \left[ \nabla \times (\mathbf{B} \times \hat{\mathbf{n}}) + (\nabla \times \hat{\mathbf{n}}) \times \mathbf{B} \right] \cdot \delta \hat{\mathbf{n}} \ dV + \int_{\partial \Omega} 2 \left[ \boldsymbol{\nu} \cdot (\delta \hat{\mathbf{n}} \times (\mathbf{B} \times \hat{\mathbf{n}})) \right] \ dS$$

$$(17)$$

where we have used the following identities:

$$A \cdot (B \times C) = C \cdot (A \times B) = B \cdot (C \times A) \tag{18}$$

and

$$\nabla \cdot (A \times B) = (\nabla \times A) \cdot B - (\nabla \times B) \cdot A \tag{19}$$

And finally, we look at the  $\Delta$  term:

$$\delta\left(\Delta_{ij}\Delta_{ji}\right) = \int_{\Omega} 2\Delta_{ij} \left[2\partial_{i}\delta n_{j} - 2\delta n_{i} n_{k}\partial_{k} n_{j} - 2n_{i}\delta n_{k}\partial_{k} n_{j} - 2n_{i}n_{k}\partial_{k}\delta n_{j} \right.$$

$$\left. + \delta n_{i}n_{j}\partial_{k}n_{k} + n_{i}\delta n_{j}\partial_{k}n_{k} + n_{i}n_{j}\partial_{k}\delta n_{k}\right] dV$$

$$= \int_{\Omega} 2\left[-2\Delta_{ij}\delta n_{i} n_{k}\partial_{k}n_{j} - 2\Delta_{ij}n_{i}\delta n_{k}\partial_{k}n_{j} + \Delta_{ij}\delta n_{i}n_{j}\partial_{k}n_{k} + \Delta_{ij}n_{i}\delta n_{j}\partial_{k}n_{k} \right.$$

$$\left. 2\Delta_{ij}\partial_{i}\delta n_{j} - 2\Delta_{ij}n_{i}n_{k}\partial_{k}\delta n_{j} + \Delta_{ij}n_{i}n_{j}\partial_{k}\delta n_{k}\right] dV$$

$$= \int_{\Omega} 2\left[-2\Delta_{kj}n_{i}\partial_{i}n_{j} - 2\Delta_{ij}n_{i}\partial_{k}n_{j} + \Delta_{kj}n_{j}\partial_{i}n_{i} + \Delta_{ik}n_{i}\partial_{j}n_{j}\right]\delta n_{k} dV$$

$$+ \int_{\Omega} 2\left[-2\partial_{i}\Delta_{ik} + 2\partial_{j}\left(\Delta_{ik}n_{i}n_{j}\right) - \partial_{k}\left(\Delta_{ij}n_{i}n_{j}\right)\right]\delta n_{k} dV$$

$$+ \int_{\partial\Omega} 2\left[2\Delta_{ij}\nu_{i}\delta n_{j} - 2\Delta_{ij}n_{i}n_{k}\nu_{k}\delta n_{j} + \Delta_{ij}n_{i}n_{j}\nu_{k}\delta n_{k}\right] dV$$

For now, we assume that the boundaries are fixed so that the surface terms vanish. Putting all of these terms together gives the following Euler-Lagrange equation:

$$0 = -(K_{11} - K_{24}) \nabla S$$

$$+ 2(K_{22} - K_{24}) T (\nabla \times \hat{\mathbf{n}})$$

$$+ K_{33} [\nabla \times (\mathbf{B} \times \hat{\mathbf{n}}) + (\nabla \times \hat{\mathbf{n}}) \times \mathbf{B}]$$

$$+ 4K_{24} [\Delta \cdot \hat{\mathbf{n}} (\nabla \cdot \hat{\mathbf{n}}) - (\hat{\mathbf{n}} \cdot \nabla \hat{\mathbf{n}}) \cdot \Delta - (\nabla \hat{\mathbf{n}}) \cdot \Delta \cdot \hat{\mathbf{n}}$$

$$- \nabla \cdot \Delta + \nabla \cdot (\hat{\mathbf{n}} \otimes (\hat{\mathbf{n}} \cdot \Delta)) - \frac{1}{2} \nabla (\hat{\mathbf{n}} \cdot \Delta \cdot \hat{\mathbf{n}})]$$

$$(21)$$

The idea here is to look at a general expression for a twisted planar configuration:

$$\hat{\mathbf{n}}' = R(\alpha z) \begin{bmatrix} \cos(\theta(x', y')) \\ \sin(\theta(x', y')) \\ 0 \end{bmatrix}$$
(22)

with

$$x' = \cos(\alpha z)x + \sin(\alpha z)y$$
  

$$y' = -\sin(\alpha z)x + \cos(\alpha z)y$$
(23)

If we plug into eq. (21) and set z=0 we will get a PDE in x and y. Imposing homeotropic boundary conditions gives us a minimum-energy configuration for a fixed  $\alpha$ . Presumably we will have to solve this perturbatively with a regular and non-regular part. The non-regular part will have to be the two-defect configuration separated by a distance d. We may map out the free energy landscape for these two parameters, at the very least.

### 5 Simplified free energy

For sake of ease, we assume  $K_{24}=0$  (in an infinite system we assume it does not matter) and  $K_{11}=K_{33}=K$ . We take  $\zeta$  to be our twist elastic constant:

$$\zeta = \frac{K - K_{22}}{K + K_{22}} \tag{24}$$

This gives:

$$K_{22} = K \frac{1 - \zeta}{1 + \zeta} \tag{25}$$

Then the simplified Euler-Lagrange equation is:

$$0 = -(1+\zeta)\nabla S + 2(1-\zeta)T (\nabla \times \hat{\mathbf{n}}) + (1+\zeta)[\nabla \times (\mathbf{B} \times \hat{\mathbf{n}}) + (\nabla \times \hat{\mathbf{n}}) \times \mathbf{B}]$$
 (26)

### Notes

<sup>1</sup> Suppose  $\mathbf{v}(\mathbf{x})$  is a vector field. Take L to be a linear transformation. We would like to act on  $\mathbf{v}$  by L in an active way. This means that, if L rotates a plane by some angle  $\theta$ , then we are imagining taking  $\mathbf{v}$  (say on a piece of paper) and rotating the whole thing by the angle  $\theta$ . There's two pieces to this: i) is that we must act on each of the vectors outputted by  $\mathbf{v}$  by L (again, think of rotating a vector field printed on a piece of paper). ii) is that, if we want to get the correct vector field at  $\mathbf{x}$ , we must actually sample  $\mathbf{v}$  at a point  $L^{-1}\mathbf{x}$ . This is because  $L^{-1}\mathbf{x}$  is the point that will get mapped to  $\mathbf{x}$  by L.

2

$$A \cdot (\nabla \times B) = A_{i} \epsilon_{ijk} \partial_{j} B_{k}$$

$$= \epsilon_{ijk} (\partial_{j} (A_{i} B_{k}) - B_{k} \partial_{j} A_{i})$$

$$= -\partial_{j} (\epsilon_{jik} A_{i} B_{k}) + B_{k} \epsilon_{kji} \partial_{j} A_{i}$$

$$= -\nabla \cdot (A \times B) + B \cdot (\nabla \times A)$$

$$(27)$$