Übungsblatt 3

Topologie

Viktor Kleen* Sabrina Pauli[†]

Aufgabe 3.1. Wir definieren auf der Menge Spec $\mathbb{Z} := \{p \in \mathbb{Z} : p \text{ prim}\} \cup \{0\}$ eine Basis für eine Topologie: Für $0 \neq n \in \mathbb{Z}$ sei $D(n) = \{p \in \text{Spec } \mathbb{Z} : p \nmid n\}$ und

$$\mathfrak{B} = \{ D(n) : n \in \mathbb{Z} \text{ und } n \neq 0 \}.$$

Zeigen Sie, dass $\mathcal B$ tatsächlich eine Basis für eine Topologie auf Spec $\mathbb Z$ ist. Die erzeugte Topologie heißt Zariskitopologie auf Spec $\mathbb Z$.

- (i) Beschreiben Sie die abgeschlossenen Teilmengen von Spec Z.
- (ii) Zeigen Sie, dass $\{0\}$ dicht in Spec Z ist.

^{*}viktor.kleen@uni-due.de

[†]sabrinp@math.uio.no