UNESP/IQ/AQA – Programa de Pós-Graduação em Biotecnologia

Simulação de Biomoléculas: dinâmica molecular básica

Doutorando: Patrick Allan dos Santos Faustino

Orientadores: Prof. Dr. Fernando Masarin e Prof. Dr.

Elias de Souza Monteiro Filho

Dinâmica molecular (MD)

- A dinâmica molecular é uma ferramenta extremamente poderosa por diversas razões: versátil, é possível ajustar parâmetros e meios de simulação (1).
- Método **PREDITIVO**; 'Caixa de ferramenta'; in sílico.
 - Mudança conformacional, ligação de ligantes, dobramento de proteínas, protonação, fosforilação etc.
- Método baseado na aplicação da 2º Lei de Newton, Lei de Coulomb e Lei de Hooke.
- Softwares: GROMACS, NAMD, LAMMPS, OPENMM etc.

Dinâmica molecular (MD)

- 1957: gases simples com Alder and Wainwright.
- 1977: primeira simulação com proteína por McCammon et. al.
- 2013: Prêmio Nobel de Química, baseado nos trabalhos de Lifson de 1968.
- 2013: medicamentos para distúrbios neurodegenerativos com Wu e Shea.
- 2015: design de ferramentas oticogeneticas por Kato et al.
- 2016: sinalização neural com Dawe et al.
- 2018: desenvolvimento de medicamentos por McCorvy.
- 2020: Covid-19, proteína Spike e receptores ACE2. Vacina.
- 2022... Avanços em ML, IA, NNPOT e GPUs.

Mecânica molecular (MM)

- A trajetória de uma molécula é obtida através da integração das equações de movimento de Newton e expansões de Taylor.
- Para cada molécula, os átomos possuem coordenadas de posição $r_1(x_1, y_1, z_1)$.
- É determinada a posição futura (t + Δt), a velocidade e aceleração para cada átomo através de algoritmos (2).

$$v_i(t) = \frac{dr}{dt}$$

$$v_i(t) = \frac{dr}{dt} \qquad a_i(t) = \frac{d^2r}{dt^2}$$

$$F_i(t) = m. a_i = m. \frac{d^2r}{dt^2} = -\frac{dU(r)}{dr}$$

$$a_i(t) = \frac{F_i}{m} = \frac{-\frac{dU(r)}{dr}}{m} = -\frac{dV}{dr} \cdot \frac{1}{m}$$

$$r(t + \Delta t) = 2r(t) - r(t - \Delta t) + a_i(t)\Delta t^2$$

$$v_i(t) = \frac{dr}{dt}$$

$$a_i(t) = \frac{d^2r}{dt^2}$$

$$F_i(t) = m. a_i = m. \frac{d^2r}{dt^2} = -\frac{dU(r)}{dr}$$

$$a_i(t) = \frac{F_i}{m} = \frac{-\frac{dU(r)}{dr}}{m} = -\frac{dV}{dr} \cdot \frac{1}{m}$$

Condições iniciais de posição, massas, velocidade e potenciais

$$F_i = -\frac{dV}{dr}$$

$$a_i = \frac{F_i}{m}$$

Nova posição e velocidade. Recomeça o ciclo.

Preparo da topologia da biomolécula

- Obtenção das coordenadas iniciais das moléculas de interesse (exemplo: PDB, PUBChem).
- Dê preferência a estruturas com resolução cristalográfica inferior a 2,5 Å.
- Campos de forças (4): CHARMM, AMBER, GROMOS e OPLS.
- Modelos de água (4): SPC, TIP3P, TIP4P e TIP5P.

Insulina humana, PDB ID 3i40 (5)

$$E_{tor,\tilde{a}o} = \sum_{i} \frac{V_i}{2} (1 + \cos(i\omega - \gamma))$$

$$E_{eletrost\'aticas} = \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}}$$

$$E_{vdW} = \sum_{i=1}^{6} \sum_{j=i+1}^{6} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$$

$$E = \sum_{liga \in \tilde{o}es} E_{estiramento} + \sum_{\hat{a}ngulos} E_{angulo} + \sum_{diedros} E_{tor \in \tilde{a}o} + \sum_{pares} E_{n\tilde{a}o-liga \in \tilde{a}o}$$

Campo de Força	Informações	Modelo de água	cut-off
OPLS	O campo de força OPLS-AA (Optimized Potentials for Liquid Simulations – All Atom) é amplamente usado para simulações de proteínas, pequenas moléculas, solventes, lipídios, dentre outros.	TIP4P recomendado, mas pode usar TIP3P. Não recomendado SPC.	1.0~1.2 nm
AMBER	A família de campos de força AMBER (como amber99sb, amber99sb-ildn, amber14, etc.) é amplamente usada para proteínas, DNA/RNA e simulações biomoleculares.	TIP3P, não recomendado TIP4P e SPC.	1.0~1.2 nm
CHARMM	O campo de força CHARMM (como charmm36-jul2022.ff) é extremamente detalhado, especialmente para lipídios, proteínas e açúcares, e foi parametrizado com switching functions, o que o diferencia das abordagens anteriores.	TIP3P modificado, não substituir por TIP3P comum.	1.2 nm
GROMOS	O campo de força GROMOS96 (como gromos54a7.ff) é uma escolha clássica para simulações de proteínas, sistemas aquosos e alguns tipos de estudos de bioenergia. Ele é o único desta lista a usar potencial truncado sem PME.	SPC	1.4 nm

Modelo	Tipo	Descrição
SPC	3 pontos	Modelo rígido, ângulo fixo de 109.47°, parametrizado para propriedades macroscópicas.
SPC/E	3 pontos	Versão estendida do SPC, com correção de energia de polarização. Melhor densidade e constante dielétrica.
TIP3P	3 pontos	Muito usado com AMBER e CHARMM. Simples e compatível com muitos campos de força.
TIP4P	4 pontos	Inclui ponto virtual (M-site) para carga negativa fora do oxigênio, melhorando propriedades de fase.
TIP5P	5 pontos	Dois pontos extra para os pares de elétrons do oxigênio. Mais preciso para estrutura tetraédrica, porém mais custoso.

Preparo da topologia da biomolécula

```
gmx pdb2gmx -v -f 3i40_clean.pdb -o insulina.gro
# -v = verbose, para visualizar o processo.
# -f = file input, arquivo de entrada das coordenadas.
# -o = file output, arquivo de saída das coordenadas.
```

Definindo a caixa de simulação (PBC)

- Modelo da caixa de simulação: cubic, triclinic, octahedron ou dodecahedron.
- Distância borda da caixa: 1,0 a 2,5 nm.
- Adicionamos o modelo de água selecionado anteriormente.
- Neutralizamos o sistema: condições fisiológicas.

Definindo a caixa de simulação (PBC)

```
gmx editconf -f insulina.gro -o box.gro -c -d 2.5 -bt cubic
# -c = center, para centralizar a biomolécula na caixa.
# -d = distance, distância em nm entre todas moléculas e a borda.
# -bt = box type, formato da caixa.
```

```
gmx solvate -cp box.gro -cs spc216.gro -o solv.gro -p topol.top

# -cp = coordenates protein, coordenadas do nosso soluto
(geralmente, proteina).

# -cs = coordenates solvent, coordenadas da molecula que será usada como solvente.

# -p = processing, para processar o arquivo de topologia do sistema.
```

Definindo a caixa de simulação (PBC)

```
gmx grompp -v -f inputs/ions.mdp -o ions.tpr -c solv.gro -p topol.top
# -c = coordenates, arquivo com as coordenadas do sistema.
```

```
gmx genion -s ions.tpr -o solv_ions.gro -p topol.top -pname NA -nname CL -
neutral -conc 0.15

# -s = submit binary, arquivo binário criado anteriormente com todas
informações do sistema.

# -pname = nome do cátion(+), nesse caso NA Sódio.

# -nname = nome do ânion(-), nesse caso CL Cloro.

# -neutral = para neutralizar completamente o sistema, às vezes
desnecessário.

# -conc 0.15 = concentration, define a concentração em mol/L.
```

Minimização do sistema

• O objetivo da minimização é reduzir a energia potencial do sistema ajustando as coordenadas dos átomos para eliminar as colisões atômicas e sobreposições.

GROMACS Energies

Minimização do sistema

```
gmx grompp -v -f inputs/minim.mdp -c solv_ions.gro -o em.tpr -p topol.top
```

```
gmx mdrun -v -deffnm em
# -deffnm = define o nome padrão de todos arquivos de entrada e saida.
```

minim.mdp

Equilíbrio canônico: NVT e NPT

- Equilíbrio canônico NVT (6): numero de partículas, volume e temperatura são mantidos constantes.
 - Berendsen, Nosé-Hoover, Andersen e V-rescale*.
- Equilíbrio canônico NPT (6): numero de partículas, pressão e temperatura são mantidos constantes.
 - Berendsen, Parrinello-Rahman e C-rescale*.
- Restrição de posições para átomos da biomolécula.

GROMACS Energies

GROMACS Energies

Equilíbrio canônico: NVT

```
gmx grompp -v -f inputs/nvt.mdp -c em.gro -r em.gro -o nvt.tpr -p topol.top
# -r = restrain file, arquivo de coordenadas com as restrinções iniciais
(geralmente mesmo arquivo).
```

```
gmx mdrun -v -deffnm nvt
```

Equilíbrio canônico: NPT

```
gmx grompp -v -f inputs/npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -o npt.tpr
-p topol.top

# -t = time file, arquivo com checkpoint anterior (geralmente utilizado
para indicar o ponto de partida com relação a dinâmica anterior)
```

gmx mdrun -v -deffnm npt

Termostato	Características	Vantagens	Limitações
Berendsen	Rápido para equilibrar temperatura	Simples e eficiente para equilíbrios	Não reproduz corretamente as flutuações canônicas
V-rescale*	Mantém temperatura média correta e flutuações realistas	Estável e mais preciso que Berendsen	Ligeiramente mais complexo
Nose-Hoover	Mantém distribuição canônica (NVT)	Correto estatisticamente	Pode ter acoplamento mais lento

Barostato	Características	Vantagens	Limitações
Berendsen	Ajusta pressão rapidamente durante o equilíbrio	Simples, ideal para pré-produção	Não reproduz corretamente as flutuações canônicas
Parrinello- Rahman	Permite flutuações de volume e forma da caixa (NPT)	Correto para simulações de produção	Pode ser instável sem bom equilíbrio inicial
C-rescale*	Versão estocástica rigorosa de controle de pressão. Mantém flutuações canônicas corretas no ensemble NPT	Produz NPT canônico exato, mais robusto e estável que Parrinello-Rahman em algumas situações	Disponível a partir do GROMACS 2023, pouco testado em comparação com Parrinello-Rahman

Produção da DM

- Etapa longa, com custo computacional.
- GPU vs. CPU.
- Monitorar o processo: temperatura e carga de uso dos hardwares.
- Escolha do integrador.
 - Verlet, leap-frog, velocity-veret, estocástico etc.
- Sem restrições.

Integrador	Características	Vantagens	Limitações / Quando evitar	Uso típico
md	Leap-frog Verlet. Passo de tempo curto (1–2 fs). Conserva bem energia e momento.	Robusto, padrão, eficiente.	Velocidades não coincidem com posições.	Produção em proteínas, membranas, solventes.
md-vv	Velocity-Verlet. Calcula velocidades no mesmo ponto que posições.	Melhora cálculo de velocidades.	Pouco ganho em muitos casos.	Transporte, difusão, análise energética.
md-vv-avek	Velocity-Verlet com controle de energia cinética média (AVEK).	Temperatura estável sem termostato.	Mais pesado; pouco usado.	Equilíbrios longos sensíveis a flutuações.
sd	Dinâmica de Langevin (stochastic). Força de fricção + ruído gaussiano	Excelente controle térmico.	Distorce dinâmica real em excesso.	Sistemas viscosos, líquidos iônicos, membranas.
bd	Dinâmica Browniana (Langevin overdamped). Ignora momento, apenas difusão.	Simples e estável.	Perde informação de movimento rápido.	Difusão lenta, modelos grosseiros (CG).
steep	Minimização por gradiente descendente. Desce na direção de maior inclinação.	Rápido para remover contatos ruins.	Convergência lenta perto do mínimo.	Pré-MD, relaxamento inicial.
cg	Minimização gradiente conjugado.	Mais eficiente que steep.	Menos robusto no início.	Refinar após steep.
l-bfgs	Minimização quasi-Newton.	Muito rápido em sistemas pequenos.	Ineficiente em sistemas grandes.	Clusters ou moléculas pequenas.

Produção da DM

```
gmx grompp -v -f inputs/md.mdp -c npt.gro -t npt.cpt -o md.tpr -p topol.top
```

gmx mdrun -v -deffnm md

Análise de resultados

- Analises de propriedades físico-químicas e termodinâmicas: capacidades calorificas, viscosidades etc.
- SASA Área superficial acessível ao solvente.
- Rg Raio de giro.
- RMSD Estabilidade estrutural.
- RDF Função de distribuição radial e camadas de solvatação.
- Energia livre de ligação e solvatação/hidratação.
- Termodinâmica de solvatação: teoria de Kirkwood-Buff (7, 8).

Análise de resultados

gmx energy -f md.edr -s md.tpr -o analysis.xvg

```
patrickfaustino@pck-TUFX570:~/Documentos/3i40/easy$ gmx energy -f md.edr -s md.tpr -o analysis.xvg
                    :-) GROMACS - gmx energy, 2025.2 (-:
            /home/patrickfaustino/gromacs-hip-torch cpu/bin/gmx
Data prefix: /home/patrickfaustino/gromacs-hip-torch cpu
Working dir: /home/patrickfaustino/Documentos/3i40/easy
Command line:
 gmx energy -f md.edr -s md.tpr -o analysis.xvg
Opened md.edr as single precision energy file
Select the terms you want from the following list by
selecting either (part of) the name or the number or a combination.
End your selection with an empty line or a zero.
 1 Bond
                    2 Angle
                                      3 Proper-Dih.
                                                        4 Per.-Imp.-Dih.
 5 LJ-14
                   6 Coulomb-14
                                    7 LJ-(SR)
                                                        8 Disper.-corr.
 9 Coulomb-(SR)
                 10 Coul.-recip.
                                     11 Potential
                                                        12 Kinetic-En.
 13 Total-Energy
                  14 Conserved-En.
                                                        16 Pres.-DC
                                     15 Temperature
17 Pressure
                   18 Constr.-rmsd
                                     19 Box-X
                                                       20 Box-Y
21 Box-Z
                  22 Volume
                                     23 Density
                                                       24 pV
25 Enthalpy
                  26 Vir-XX
                                     27 Vir-XY
                                                       28 Vir-XZ
29 Vir-YX
                  30 Vir-YY
                                     31 Vir-YZ
                                                       32 Vir-ZX
33 Vir-ZY
                34 Vir-ZZ
                                     35 Pres-XX
                                                       36 Pres-XY
37 Pres-XZ
            38 Pres-YX
                                     39 Pres-YY
                                                       40 Pres-YZ
41 Pres-ZX
                   42 Pres-ZY
                                     43 Pres-ZZ
                                                        44 #Surf*SurfTen
 45 T-Protein
                                     46 T-non-Protein
 47 Lamb-Protein
                                     48 Lamb-non-Protein
```

Análise de resultados

gmx energy -f md.edr -s md.tpr -o analysis.xvg -fluct_props -nmol 15462 -driftcorr

```
Statistics over 5000001 steps [ 0.0000 through 10000.0000 ps ], 2 data sets
All statistics are over 50001 points
                          Average Err.Est. RMSD Tot-Drift
Energy
Temperature
                       298.167 0.017 1.40651 0.0236595 (K)
                -34.8706
Enthalpy
                                     0.0021 0.0650467 -0.0118601 (kJ/mol)
Temperature dependent fluctuation properties at T = 298.164.
Heat capacities obtained from fluctuations do *not* include
quantum corrections. If you want to get a more accurate estimate
please use the gmx dos program.
WARNING: Please verify that your simulations are converged and perform
a block-averaging error analysis (not implemented in gmx energy yet)
Enthalpy
                                      = -34.8693 kJ/mol
Heat capacity at constant pressure Cp = 87.6355 \text{ J/(mol K)}
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
M. P. Allen, D. J. Tildesley
Computer simulation of liquids
Oxford Science Publications (2017)
DOI: 10.1093/oso/9780198803195.001.0001
------ ----- --- Thank You --- ------
```

Propriedade	Termos de Energia Necessários	Ensemble	Descrição
Capacidade Térmica a Volume Constante (Cv)	Total-Energy, Temperature	NVT	Mede como a energia do sistema muda com a temperatura a volume constante.
Capacidade Térmica a Pressão Constante (Cp)	Enthalpy, Temperature	NPT	Mede como a entalpia do sistema muda com a temperatura a pressão constante.
Coeficiente de Expansão Térmica (α)	Enthalpy, Volume, Temperature	NPT	Mede a variação fracionária no volume por unidade de aumento na temperatura.
Compressibilidade Isotérmica (βT)	Volume, Temperature	NPT	Mede a variação fracionária no volume em resposta a uma mudança na pressão, a temperatura constante.
Módulo de Bulk Adiabático	Volume, Temperature	NPT	Mede a resistência de uma substância à compressão uniforme.

SASA da proteina 1UKC/Acetato em fase aquosa

Raio de Giro da proteina 1UKC/Acetato em fase aquosa

RMSD da proteína 1UKC/Acetato em fase aquosa (ref. backbone)

RMSF da proteína 1UKC/Acetato em fase aquosa (ref. Ca)

DSSP da proteína 1UKC/Acetato em fase aquosa

Interações de Hidrogênios da proteína 1UKC/Acetato em fase aquosa

1UKC/Água na Fase Aquosa com Ch+/Acetato/Triton X-114

Conclusões

- Permite investigar fenômenos em escala atômica e molecular com alto grau de detalhamento.
- Facilita o estudo de processos físicos, químicos e biológicos de forma virtual, mesmo antes de experimentos laboratoriais.
- Proporciona economias significativas de tempo e recursos em pesquisa e desenvolvimento.
- Oferece insights e informações muitas vezes inacessíveis por métodos experimentais tradicionais.
- Favorece a análise de sistemas complexos, como proteínas, membranas e materiais avançados.

Praticando...

github.com/patrickallanfaustino patrick.faustino@unesp.br

https://orcid.org/0000-0002-9323-2489

Patrick Allan dos Santos Faustino

patrickallanfaustino · he/him

My name is Patrick Faustino, a PhD student researching molecular dynamics simulations and applying machine learning.

Edit profile

As, 3 followers - 15 following

- São Paulo State University (UNESP), Institute of Chemistry, Campus Araraguara
- Brazil
- 3 21:45 (UTC -03:00)
- ☐ patrickfaustino@hotmail.com
- @ http://lattes.cnpq.br/0920550077635421
- @ https://orcid.org/0000-0002-9323-2489
- X @pktaustino
- https://www.webofscience.com/wos/author/record/LTD-8752-2024
- https://scholar.google.com/br/citations?user =Eb_n1ziAAAAi&hi=pt-BR

BSC student in Computer Engineering at the Virtual University of the State of São Paulo, Brazil.

 <u>ś</u> Working on Computational Chemistry, specifically Molecular Dynamics Simulations with Machine Learning.