ELEMENTE DE TRANSFER TIPIZATE

Elementul de transfer (acronim)	MM – II al ET F.d.t.	Răspunsul indicial $y_{\sigma}(t)$, $t > 0$	Simbolizare prin răspuns indicial
ЕТ-Р	$y = K_P u$ $H(s) = K_P$	$y_{\sigma}(t) = K_{P}$	u y
ET-I	$y = K_{I} \cdot \int u dt$ $H(s) = \frac{K_{I}}{s}$	$y_{\sigma}(t) = K_{I} \cdot t$	u K _I
ET-D	$y = K_{D}\dot{u}$ $H(s) = K_{D} \cdot s$	$y_{\sigma}(t) = K_{D} \cdot \delta(t)$	u y
ET-T _m	$y(t) = K_{P} \cdot u(t - \tau)$ $H(t) = K_{P} \cdot e^{-\tau s}$	$y_{\sigma}(t) = K_{P} \cdot \sigma(t - \tau)$	u v v
ET-PT ₁	$\frac{T\dot{y} + y = K_{P}u}{H(s) = \frac{K_{P}}{Ts + 1}}$	$y_{\sigma}(t) = K_{P} \cdot (1 - e^{-\frac{t}{T}})$	W T Y
${ m ET-DT}_1$	$\frac{T\dot{y} + y = K_{D}\dot{u}}{H(s) = \frac{K_{D}s}{Ts + 1}}$	$y_{\sigma}(t) = \frac{K_{D}}{T} \cdot e^{-\frac{t}{T}}$	U V V V
ЕТ-РІ	$y = K_{P}u + K_{I} \int u \cdot dt$ $H(s) = K_{P} + \frac{K_{I}}{s}$	$y_{\sigma}(t) = K_{P} + K_{I} \cdot t$	W _p K _I y
ET-PD	$y = K_{P}u + K_{D}\dot{u}$ $$	$y_{\sigma}(t) = K_{P} + K_{D} \cdot \delta(t)$	u V V

ET-PDT ₁	$T\dot{y} + y = K_{P}u + K_{D}\dot{u}$ $H(s) = \frac{K_{P} + K_{D}s}{Ts + 1}$	$\begin{aligned} y_{\sigma}(t) &= K_{P} \cdot (1 - e^{-\frac{t}{T}}) + \frac{K_{D}}{T} \cdot e^{-\frac{t}{T}} \\ sau \\ y_{\sigma}(t) &= K_{P} \cdot \left[(1 - e^{-\frac{t}{T}}) + \frac{T_{D}}{T} \cdot e^{-\frac{t}{T}} \right] \\ cu &T_{D} &= \cdot \frac{K_{D}}{K_{P}} \end{aligned}$	(a) $K_{P} K_{D} T$ u (b)
ET-PID	$y = K_{P}u + K_{I}\int u \cdot dt + K_{D}\dot{u}$ $$	$y_{\sigma}(t) = K_{P} + K_{I} \cdot t + K_{D} \cdot \delta(t)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ET-PT2	$T^{2}\ddot{y} + 2\zeta T\dot{y} + y = K_{P}u$ $H(s) = \frac{K_{P}}{T^{2}s^{2} + 2\zeta Ts + 1}$	$\begin{split} \bullet & \zeta < 1 \text{ caz oscilant amortizat:} \\ y_{\sigma}(t) = K_{P} \cdot \left[1 + \frac{e^{-\frac{\zeta}{T}t}}{\sqrt{1-\zeta^{2}}} \sin \left(\frac{\sqrt{1-\zeta^{2}}}{T} + \phi \right) \right] \;, \\ & \text{cu} \phi = \operatorname{arctg} \frac{\sqrt{1-\zeta^{2}}}{\zeta} \\ \bullet & \zeta = 1 \text{ caz aperiodic limită:} \\ & y_{\sigma}(t) = K_{P} \cdot \left[1 - \left(1 + \frac{t}{T} \right) \cdot e^{-\frac{t}{T}} \right] \\ \bullet & \zeta \geq 1 \text{ cazul aperiodic} \\ & y_{\sigma}(t) = K_{P} \cdot \left(1 - \frac{T_{1}}{T_{1} - T_{2}} e^{-\frac{t}{T_{1}}} + \frac{T_{2}}{T_{1} - T_{2}} e^{-\frac{t}{T_{2}}} \right) \;, \\ & \text{cu} T_{1,2} = T(\zeta \pm \sqrt{\zeta^{2} - 1}) \end{split}$	(a) $K_{p} \zeta T$ $U (a)$ $K_{p} \zeta = 1 T$ $U (b)$ $K_{p} \zeta > 1 T$ $U (c)$