Chapters 8 and 9

More Number Theory and RSA Algorithm

Dr. Shin-Ming Cheng

ON ECTIFITY LAB

CS4003701

Implementation aspects

- > The RSA cryptosystem uses only one arithmetic operation (modular exponentiation) which makes it conceptually a simple asymmetric scheme
- > Even though conceptually simple, due to the use of very long numbers, RSA is orders of magnitude slower than symmetric schemes, e.g., DES, AES
- > When implementing RSA (esp. on a constrained device such as smartcards or cell phones) close attention has to be paid to the correct choice of arithmetic algorithms
- > The square-and-multiply algorithm allows fast exponentiation, even with very long numbers...

Square-and-Multiply

> Basic principle: Scan exponent bits from left to right and square/multiply operand accordingly

Algorithm: Square-and-Multiply for $x^H \mod n$ Input: Exponent H, base element x, Modulus nOutput: $y = x^H \mod n$ 1. Determine binary representation $H = (h_t, h_{t-1}, \dots, h_0)_2$ 2. FOR i = t - 1 TO 0 3. $y = y^2 \mod n$ 4. If $h_i = 1$ THEN 5. $y = y \times x \mod n$ 6. RETURN y

- Rule: Square in every iteration (Step 3) and multiply current result by x if the exponent bit $h_i=1$ (Step 5)
- Modulo reduction after each step keeps the operand y small

Example: Square-and-Multiply

- \rightarrow Computes x^{26} without modulo reduction
- > Binary representation of exponent:

$$26 = (1,1,0,1,0)_2 = (h_4, h_3, h_2, h_1, h_0)_2$$

Step		Binary exponent	Op	Comment
1	$x = x^1$	(1) ₂		Initial setting, h_4 processed
1a	$(x^1)^2 = x^2$	(10) ₂	SQ	Processing h ₃
1b	$x^2 \times x = x^3$	(11) ₂	MUL	$h_3 = 1$
2a	$(x^3)^2 = x^6$	(110) ₂	SQ	Processing h ₂
2b	-	(110) ₂	-	$h_0 = 0$
3a	$(x^6)^2 = x^{12}$	(1100) ₂	SQ	Processing h ₁
3b	$x^{12} \times x = x^{13}$	(1101) ₂	MUL	$h_1 = 1$
4a	$(x^{13})^2 = x^{26}$	(11010) ₂	SQ	Processing h ₀
4b	-	(11010) ₂	-	$h_0 = 0$

> Observe how the exponent evolves into $x^{26} = x^{11010}$

Complexity of Square-and-Multiply Alg.

- > The square-and-multiply algorithm has a logarithmic complexity, i.e., its run time is proportional to the bit length (rather than the absolute value) of the exponent
- > Given an exponent with t+1 bits $H=(h_t,h_{t-1},\ldots,h_0)_2$ with $h_t=1$, we need the following operations

```
- # Squarings = t
```

- Average # multiplications = 0.5t
- Total complexity: #SQ+#MUL = 1.5t
- > Exponents are often randomly chosen, so 1.5 t is a good estimate for the average number of operations
- > Note that each squaring and each multiplication is an operation with very long numbers, e.g., 2048 bit integers

Speed-Up Techniques

- Modular exponentiation is computationally intensive
- > Even with the square-and-multiply algorithm, RSA can be quite slow on constrained devices such as smart cards
- > Some important tricks:
 - Short public exponent e
 - Chinese Remainder Theorem (CRT)
 - Exponentiation with pre-computation (not covered here)

Fast encryption with small public exponent

- > Choosing a small public exponent *e* does not weaken the security of RSA
- A small public exponent improves the speed of the RSA encryption significantly

Public Key	e as binary string	#MUL + #SQ
$2^1 + 1 = 3$	(11) ₂	1 + 1 = 2
24 + 1 = 17	(1 0001) ₂	4 + 1 = 5
2 ¹⁶ + 1	(1 0000 0000 0000 0001)2	16 + 1 = 17

 This is a commonly used trick (e.g., SSL/TLS, etc.) and makes RSA the fastest asymmetric scheme with regard to encryption!

Fast decryption with CRT

- > Choosing a small private key d results in security weaknesses!
 - In fact, d must have at least 0.3t bits, where t is the bit length of the modulus n
- > CRT can be used to accelerate exponentiation with the private key *d*
 - Based on the CRT we can replace the computation of $x^{d \mod \phi(n)} \mod n$ by two computations $x_p^{d \mod (p-1)} \mod p$ and $x_q^{d \mod (q-1)} \mod q$
 - \rightarrow where q and p are "small" compared to n

Basic principle of CRT-based exponentiation

- > CRT involves three distinct steps
 - 1. Transformation of operand into the CRT domain
 - 2. Modular exponentiation in the CRT domain
 - 3. Inverse transformation into the problem domain
- > These steps are equivalent to one modular exponentiation in the problem domain

CRT: Step 1 - Transformation

- > Transformation into the CRT domain requires the knowledge of *p* and *q*
- > p and q are only known to the owner of the private key, hence CRT cannot be applied to speed up encryption
- > The transformation computes (x_p, x_q) which is the representation of x in the CRT domain. They can be found easily by computing $x_p \equiv x \mod p$ and $x_q \equiv x \mod q$

CRT: Step 2 - Exponentiation

- > Given d_p and d_q such that $d_p \equiv d \mod (p-1)$ and $d_q \equiv d \mod (q-1)$
- > One exponentiation in the problem domain requires two exponentiations in the CRT $y_p \equiv x_p^{d_p} \mod p$ and $y_q \equiv x_q^{d_q} \mod q$
- > In practice, p and q are chosen to have half the bit length of n,
 - $-|p| \approx |q| \approx |n|/2$

CRT: Step 3 – Inverse Transformation

- > Inverse transformation requires modular inversion twice, which is computationally expensive $c_p \equiv q^{-1} \bmod p$ and $c_q \equiv p^{-1} \bmod q$
- > Inverse transformation assembles y_p , y_q to the final result $y \mod n$ in the problem domain $y \equiv [q \times c_p] \times y_p + [p \times c_q] \times y_q \mod n$
 - The primes p and q typically change infrequently, therefore the cost of inversion can be neglected because the two expressions $[q \times c_p]$ and $[p \times c_p]$

CRT: Step 3 – Inverse Transformation

- To decrease the amount of storage and calculation
- \rightarrow To recover x from x_p and x_q , use the CRT
 - Compute $t = p^{-1} \mod q$ and store it with the private key
 - Computer $u = (x_q x_p)t \mod q$, then $x = x_p + pu$

Complexity of CRT

- > We ignore the transformation and inverse transformation steps since their costs can be neglected
- $\rightarrow n$ has t+1 bits, both p and q are about t/2 bits long
- > The complexity is determined by the two exponentiations in the CRT domain.
 - The operands are only t/2 bits long.
- > For the exponentiations we use the square-and-multiply algorithm:
 - # squarings (one exp.): #SQ = 0.5 t
 - # aver. multiplications (one exp.): #MUL = 0.25 t
 - Total complexity: $2 \times (\#MUL + \#SQ) = 1.5 t$
- > Since the operands have half the bit length compared to regular exponent., each operation (i.e., multipl. and squaring) is 4 timers faster!

Finding Large Primes

- > Generating keys for RSA requires finding two large primes p and q such that $n=p\times q$ is sufficiently large
- > The size of p and q is typically half the size of the desired size of n
- > To find primes, random integers are generated and tested for primality:

> The random number generator (RNG) should be non-predictable otherwise an attacker could guess the factorization of *n*

Prime Numbers

- > prime numbers only have divisors of 1 and self
 - they cannot be written as a product of other numbers
 - note: 1 is prime, but is generally not of interest
 - eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
- > prime numbers are central to number theory
- > list of prime number less than 200 is:

```
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97 101 103 107
109 113 127 131 137 139 149 151 157 163
167 173 179 181 191 193 197 199
```

Prime Factorisation

- > to **factor** a number n is to write it as a product of other numbers: $n = a \times b \times c$
- > note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- > the **prime factorisation** of a number *n* is when its written as a product of primes

$$-91 = 7 \times 13$$
; $3600 = 2^4 \times 3^2 \times 5^2$

$$-a = \prod_{p \in P} p^{a_p}$$

Relatively Prime Numbers & GCD

- > two numbers a, b are relatively prime if have no common divisors apart from 1
 - 8 and 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor
- conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers

$$-300 = 2^1 \times 3^1 \times 5^2$$
 $18 = 2^1 \times 3^2$ hence $GCD(18,300) = 2^1 \times 3^1 = 6$

Prime Number Theorem

- > Prime Number (Distribution) Theorem: The number of primes less than N is about N/log N
 - This means primes are quite common
 - The number of primes $< 2^{512}$ is about 2^{503}
 - The first and last bits are set as 1, other 510 bits are random
- > If *N* is a number chosen at random, then the probability of being a prime is about 1/log *N* [base *e*, natural logarithm]
 - A random number of 512 bits is a prime with probability 355^{-1}
 - So on average we need to select 177 odd numbers of size 2⁵¹² before finding a prime number
 - Hence, it is practical to generate large primes, as long as we can test primality efficiently

Primality Tests

- Factoring p and q to test for primality is typically not feasible
- > However, we are not interested in the factorization, we only want to know whether *p* and *q* are composite
- > Typical primality tests are probabilistic, i.e., they are not 100% accurate but their output is correct with very high probability
- > A probabilistic test has two outputs:
 - "p' is composite" always true
 - "p' is a prime" only true with a certain probability
- > Among the well-known primality tests are the following
 - Fermat Primality-Test
 - Miller-Rabin Primality-Test

Fermat's Test

> Basic idea: Fermat's Little Theorem holds for all primes, i.e., if a number p' is found for which $a^{p'-1} \neq 1 \mod p'$, it is not a prime

```
Algorithm: Fermat Primality-Test
Input: Prime candidate p', security parameter s
Output: "p' is composite" or "p' is likely a prime"

1. FOR i = 1 TO s
1.1 choose random a \in \{2, 3, ..., p' - 2\}
1.2 IF a^{p'-1} \neq 1 \mod p' THEN
1.3 RETURN "p' is composite"
2 RETURN "p' is likely a prime"
```

Fermat's Test

> To test *N* for primality:

```
For i=1 to k do

Pick a randomly from Z_N^*

Compute b\equiv a^{N-1}\pmod N

If \neq 1 output (Composite, a)

Output "Probably Prime"
```

- \rightarrow If the above outputs (Composite, a), then
 - N is definitely composite
 - -a is a witness for this compositeness

Fermat's Test

- > For certain numbers ("Carmichael numbers") this test returns "p' is likely a prime" often although these numbers are composite
- > Example: $561 = 3 \times 11 \times 17$
 - $-a^{561} \equiv a \pmod{561}$
 - If $3 \perp a$, $a^{561} \equiv a(a^2)^{280} \equiv a \pmod{3}$
- > Therefore, the Miller-Rabin Test is preferred

Miller-Rabin Test

- > Miller-Rabin Test
 - Its original version, due to Gary L. Miller, is deterministic, but the determinism relies on the unproven generalized Riemann hypothesis; Michael O. Rabin modified it to obtain an unconditional probabilistic algorithm
 - A modification of the Fermat Test
 - Avoids the problem of composites without witness
 - Has probability 1/4 of accepting a composite as prime for each random base a
 - > Prob (a composite not finding a witness) ≤ ¼
 - > Repeating the test k times ⇒Prob (error) ≤ 4^{-k}

Theorem for Miller-Rabin's test

> The more powerful Miller-Rabin Test is based on the following theorem

Theorem

Given the decomposition of an odd prime candidate p' $p'-1=2^u\times r$ where r is odd. If we can find an integer a such that $a^r\neq 1 \mod p'$ and $a^{r^{2j}}\neq p'-1 \mod p'$ For all $j=\{0,1,...,u-1\}$, then p' is composite. Otherwise it is probably a prime.

> This theorem can be turned into an algorithm

Miller-Rabin Test

- Concept:
 - If $x^2 \equiv 1 \pmod{p}$ for a prime p, then $x = \pm 1 \pmod{p}$
 - If $x \neq \pm 1 \pmod{N}$ but $x^2 \equiv 1 \pmod{N}$, then N is a composite
- > To test *N* for primality:

```
Write N-1=2^k m with m is odd
Choose a \in \{2, ..., N-2\}
Compute b = a^m \pmod{N}
If (b \neq 1 \text{ and } b \neq (N-1))
          i = 1
          While (i < k \text{ and } b \neq (N-1))
                   b = b^2 \pmod{N}
                    If (b = 1) Output (Composite, a)
                    i = i + 1
          If (b \neq (N-1)) Output (Composite, a)
```

Output "Probable Prime"

PRIMES is in P

- AKS primality test determines whether a number is prime or composite within polynomial time
 - The first primality-proving algorithm to be simultaneously general, polynomial, deterministic, and unconditional
 - > Previous algorithms have achieved any three of these properties, but not all four
 - Major result in Algorithms (AKS, 2002)
 - > Manindra Agrawal, Neeraj Kayal, Nitin Saxena, "PRIMES is in P", *Annals of Mathematics* 160 (2004), no. 2, pp. 781–793.
 - Unclear as to its practical importance
 - Based on the fact that $(x a)^N \equiv x^N a \pmod{N}$ for gcd(a, N) = 1 is true if and only if N is prime
 - > Generalization of Fermat's little theorem

Attacks and Countermeasures

- > There are two distinct types of attacks on cryptosystems
 - Analytical attacks try to break the mathematical structure of the underlying problem of RSA
 - \rightarrow Calcuate p and q of n
 - Implementation attacks try to attack a real-world implementation by exploiting inherent weaknesses in the way RSA is realized in software or hardware

Attacks and Countermeasures Analytical attacks

- > Mathematical attacks
 - The best known attack is factoring of n in order to obtain $\phi(n)$
 - Can be prevented using a sufficiently large modulus n
 - The current factoring record is 768 bits. Thus, it is recommended that n should have a bit length between 1024 and 3072 bits

Factorization of RSA-768

- > http://eprint.iacr.org/2010/006
- > RSA-768: (232 digits)
 - 12301866845301177551304949583849627207728535 69595334792197322452151726400507263657518745 2021997864693899564749427740638459251925573 26303453731548268507917026122142913461670429 21431160222124047927473779408066535141959745 9856902143413
- > Factorization: (Both factors have 384 bits and 116 digits)
 - 33478071698956898786044169848212690817704794 98371376856891243138898288379387800228761471 1652531743087737814467999489
 - 3674604366679959042824463379962795263227915 81643430876426760322838157396665112792333734 17143396810270092798736308917

RSA Challenge

> Active from 1990 and inactive since 2007

#decimals	Data or year	Algorithm	Effort (MIPS years)
39	Sep 13, 1970	CF	
50	1983	CF	
55-71	1983-1984	QS	
45-81	1986	QS	
78-90	1987-1988	QS	
87-92	1988	QS	
93-102	1989	QS	
107-116	1990	QS	275 for C116
RSA-100	Apr 1991	QS	7
RSA-110	Apr 1992	QS	75
RSA-120	Jun 1993	QS	835
RSA-129	Apr 1994	QS	5000
RSA-130	Apr 1996	NFS	1000
RSA-140	Feb 1999	NFS	2000
RSA-155	Aug 1999	NFS	8400

Attacks and Countermeasures Analytical attacks

- > Protocol attacks
 - Exploit the malleability of RSA, i.e., the property that a cipher-text can be transformed into another ciphertext which decrypts to a related plaintext – without knowing the private key
 - $-s^e y \mod N$
 - $-(s^e y)^d \equiv s^{ed} \cdot y^d \mod N \equiv s \cdot x$
- > Can be prevented by proper padding
 - Last 20 bits are 1010 or 0000

Attacks and Countermeasures Implementation attacks

- > Side-channel analysis
 - Exploit physical leakage of RSA implementation (e.g., power consumption, EM emanation, etc.)
- > Fault-injection attacks
 - Inducing faults in the device while CRT is executed can lead to a complete leakage of the private key

