UNIT- III ANALYTIC FUNCTIONS

3.1 INTRODUCTION

The theory of functions of a complex variable is the most important in solving a large number of Engineering and Science problems. Many complicated intergrals of real function are solved with the help of a complex variable.

3.1 (a) Complex Variable

x + iy is a complex variable and it is denoted by z.

$$(i.e.)z = x + iy where i = \sqrt{-1}$$

3.1 (b) Function of a complex Variable

If z = x + iy and w = u + iv are two complex variables, and if for each value of z in a given region R of complex plane there corresponds one or more values of w is said to be a function z and is denoted by w = f(z) = f(x + iy) = u(x, y) + iv(x, y) where u(x, y) and v(x, y) are real functions of the real variables x and y.

Note:

(i) single-valued function

If for each value of z in R there is correspondingly only one value of w, then w is called a single valued function of z.

Example: $w = z^2, w = \frac{1}{z}$

$w = z^2$						$w = \frac{1}{z}$			
Z	1	2	-2	3	Z	1	2	-2	3
W	1	4	4	9	W	1	$\frac{1}{2}$	$\frac{1}{-2}$	$\frac{1}{3}$

(ii) Multiple – valued function

If there is more than one value of w corresponding to a given value of z then w is called multiple – valued function.

Example: $w = z^{1/2}$

$w = z^{1/2}$				
Z	4	9	1	
W	-2,2	3, -3	1, -1	

- (iii) The distance between two points z and z_0 is $|z z_0|$
- (iv) The circle C of radius δ with centre at the point z_o can be represented by $|z z_o| = \delta$.
- (v) $|z z_o| < \delta$ represents the interior of the circle excluding its circumference.
- (vi) $|z z_o| \le \delta$ represents the interior of the circle including its circumference.

(vii) $|z - z_o| > \delta$ represents the exterior of the circle.

(viii) A circle of radius 1 with centre at origin can be represented by |z| = 1

3.1 (c) Neighbourhood of a point z_0

Neighbourhood of a point z_o , we mean a sufficiently small circular region [excluding the points on the boundary] with centre at z_o .

$$(i.e.) |z - z_o| < \delta$$

Here, δ is an arbitrary small positive number.

3.1 (d) Limit of a Function

Let f(z) be a single valued function defined at all points in some neighbourhood of point z_0 .

Then the limit of f(z) as z approaches z_0 is w_0 .

$$(i.e.) \lim_{z \to z_0} f(z) = w_0$$

3.1 (e) Continuity

If f(z) is said to continuous at $z = z_o$ then

$$\lim_{z \to z_0} f(z) = f(z_0)$$

If two functions are continuous at a point their sum, difference and product are also continuous at that point, their quotient is also continuous at any such point $[dr \neq 0]$

Example: 3.1 State the basic difference between the limit of a function of a real variable and that of a complex variable. [A.U M/J 2012]

Solution:

In real variable, $x \to x_0$ implies that x approaches x_0 along the X-axis (or) a line parallel to the X-axis.

In complex variables, $z \to z_0$ implies that z approaches z_0 along any path joining the points z and z_0 that lie in the z-plane.

3.1 (f) Differentiability at a point

A function f(z) is said to be differentiable at a point, $z = z_0$ if the limit

$$f(z_0) = \mathop{\rm Lt}_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \text{ exists.}$$

This limit is called the derivative of f(z) at the point $z = z_0$

If f(z) is differentiable at z_0 , then f(z) is continuous at z_0 . This is the necessary condition for differentiability.

Example: 3.2 If f(z) is differentiable at z_0 , then show that it is continuous at that point.

Solution:

As f(z) is differentiable at z_0 , both $f(z_0)$ and $f'(z_0)$ exist finitely.

Now,
$$\lim_{z \to z_0} |f(z) - f(z_0)| = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (z - z_0)$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \lim_{z \to z_0} (z - z_0)$$
$$= f'(z_0). 0 = 0$$

Hence,
$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} f(z_0) = f(z_0)$$

As $f(z_0)$ is a constant.

This is exactly the statement of continuity of f(z) at z_0 .

Example: 3.3 Give an example to show that continuity of a function at a point does not imply the existence of derivative at that point.

Solution:

Consider the function $w = |z|^2 = x^2 + y^2$

This function is continuous at every point in the plane, being a continuous function of two real variables. However, this is not differentiable at any point other than origin.

Example: 3.4 Show that the function f(z) is discontinuous at z = 0, given that $f(z) = \frac{2xy^2}{x^2 + 3y^4}$, when $z \neq 0$ and f(0) = 0.

Solution:

Given
$$f(z) = \frac{2xy^2}{x^2 + 3y^4}$$

Consider
$$\lim_{z \to z_0} [f(z)] = \lim_{\substack{y = mx \\ x \to 0}} [f(z)] = \lim_{x \to 0} \frac{2x(mx)^2}{x^2 + 3(mx)^4} = \lim_{x \to 0} \left[\frac{2m^2x}{1 + 3m^4x^2} \right] = 0$$

$$\lim_{y^2 = x \atop x \to 0} [f(z)] = \lim_{x \to 0} \frac{2x^2}{x^2 + 3x^2} = \lim_{x \to 0} \frac{2x^2}{4x^2} = \frac{2}{4} = \frac{1}{2} \neq 0$$

f(z) is discontinuous

Example: 3.5 Show that the function f(z) is discontinuous at the origin (z = 0), given that

$$f(z) = \frac{xy(x-2y)}{x^3+y^3}, \text{ when } z \neq 0$$
$$= 0 \quad \text{, when } z = 0$$

Solution:

Consider
$$\lim_{z \to z_0} [f(z)] = \lim_{\substack{y = mx \\ x \to 0}} [f(z)] = \lim_{x \to 0} \frac{x(mx)(x - 2(mx))}{x^3 + (mx)^3}$$
$$= \lim_{x \to 0} \frac{m(1 - 2m)x^3}{(1 + m^3)x^3} = \frac{m(1 - 2m)}{1 + m^3}$$

Thus $\lim_{z\to 0} f(z)$ depends on the value of m and hence does not take a unique value.

- $\lim_{z \to 0} f(z)$ does not exist.
- f(z) is discontinuous at the origin.

3.2 ANALYTIC FUNCTIONS – NECESSARY AND SUFFICIENT CONDITIONS FOR ANALYTICITY IN CARTESIAN AND POLAR CO-ORDINATES

Analytic [or] Holomorphic [or] Regular function

A function is said to be analytic at a point if its derivative exists not only at that point but also in some neighbourhood of that point.

Entire Function: [Integral function]

A function which is analytic everywhere in the finite plane is called an entire function.

An entire function is analytic everywhere except at $z = \infty$.

Example: e^z , $\sin z$, $\cos z$, $\sinh z$, $\cosh z$

3.2 (i) The necessary condition for f = (z) to be analytic. [Cauchy – Riemann Equations]

The necessary conditions for a complex function f=(z)=u(x,y)+iv(x,y) to be analytic in a region R are $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$ i. e., $u_x=v_y$ and $v_x=-u_y$

Derive C - R equations as necessary conditions for a function w = f(z) to be analytic.

[Anna, Oct. 1997] [Anna, May 1996]

Proof:

Let f(z) = u(x, y) + iv(x, y) be an analytic function at the point z in a region R. Since f(z) is analytic, its derivative f'(z) exists in R

$$f'(z) = \operatorname{Lt} \frac{f(z+\Delta z) - f(z)}{\Delta_z}$$

$$\operatorname{Let} z = x + iy$$

$$\Rightarrow \Delta z = \Delta_x + i\Delta_y$$

$$z + \Delta_z = (x + \Delta_x) + i(y + \Delta_y)$$

$$f(z) = u(x,y) + iv(x,y)$$

$$f(z + \Delta z) = u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y)$$

$$f(z + \Delta z) - f(z) = u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) - [u(x,y) + iv(x,y)]$$

$$= [u(x + \Delta x, y + \Delta y) - u(x,y)] + i[v(x + \Delta x, y + \Delta y) - v(x,y)]$$

$$f'(z) = \operatorname{Lt}_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \operatorname{Lt}_{\Delta z \to 0} \frac{u(x + \Delta x, y + \Delta y) - u(x,y)] + i[v(x + \Delta x, y + \Delta y) - v(x,y)]}{\Delta x + i\Delta y}$$

Case (i)

If $\Delta z \to 0$, firsts we assume that $\Delta y = 0$ and $\Delta x \to 0$.

$$f'(z) = \underset{\Delta x \to 0}{\text{Lt}} \frac{[u(x + \Delta x, y) - u(x, y)] + i[v(x + \Delta x, y) - v(x, y)]}{\Delta x}$$

$$= \underset{\Delta x \to 0}{\text{Lt}} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + \underset{\Delta x \to 0}{\text{Lt}} \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x}$$

$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \qquad \dots (1)$$

Case (ii)

If $\Delta z \to 0$ Now, we assume that $\Delta x = 0$ and $\Delta y \to 0$

$$\dot{f}'(z) = \underset{\Delta y \to 0}{\text{Lt}} \frac{[u(x,y+\Delta y) - u(x,y)] + i[v(x,y+\Delta y) - v(x,y)]}{i\Delta y}
= \frac{1}{i} \underset{\Delta y \to 0}{\text{Lt}} \frac{u(x,y+\Delta y) - u(x,y)}{\Delta y} + \underset{\Delta y \to 0}{\text{Lt}} \frac{v(x,y+\Delta y) - v(x,y)}{\Delta y}
= \frac{1}{i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}
= -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \qquad ... (2)$$

From (1) and (2), we get

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

Equating the real and imaginary parts we get

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial v}{\partial y}$$

$$(i.e.) u_x = v_y, \quad v_x = -u_y$$

The above equations are known as Cauchy – Riemann equations or C-R equations.

Note: (i) The above conditions are not sufficient for f(z) to be analytic. The sufficient conditions are given in the next theorem.

(ii) Sufficient conditions for f(z) to be analytic.

If the partial derivatives $u_{x_y}u_{y_y}v_x$ and v_y are all continuous in D and $u_{x_y}=v_y$ and $u_y=-v_{x_y}$ then the function f(z) is analytic in a domain D.

(ii) Polar form of C-R equations

In Cartesian co-ordinates any point z is z = x + iy.

In polar co-ordinates, $z = re^{i\theta}$ where r is the modulus and θ is the argument.

Theorem: If $f(z) = u(r, \theta) + iv(r, \theta)$ is differentiable at $z = re^{i\theta}$, then $u_r = \frac{1}{r}v_{\theta}$, $v_r = -\frac{1}{r}u_{\theta}$

(OR)
$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = \frac{-1}{r} \frac{\partial u}{\partial \theta}$$

Proof:

Let
$$z = re^{i\theta}$$
 and $w = f(z) = u + iv$
 $(i.e.) u + iv = f(z) = f(re^{i\theta})$
Diff. p.w. r. to r, we get
$$\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} = f'(re^{i\theta}) e^{i\theta} \qquad \dots (1)$$
Diff. p.w. r. to θ , we get
$$\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} = f'(re^{i\theta}) e^{i\theta} \qquad \dots (2)$$

$$= ri \left[f'(re^{i\theta}) e^{i\theta} \right]$$

$$= ri \left[\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right] \text{ by } (1)$$

$$= ri \frac{\partial u}{\partial r} - r \frac{\partial v}{\partial r}$$

Equating the real and imaginary parts, we get

$$\frac{\partial u}{\partial \theta} = -i \frac{\partial v}{\partial r}, \quad \frac{\partial v}{\partial \theta} = r \frac{\partial u}{\partial r}$$

$$(i.e.)\frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}, \ \frac{\partial v}{\partial r} = \frac{-1}{r}\frac{\partial v}{\partial \theta}$$

Problems based on Analytic functions – necessary conditions Cauchy – Riemann equations

Example: 3.6 Show that the function f(z) = xy + iy is continuous everywhere but not differentiable anywhere.

Solution:

Given
$$f(z) = xy + iy$$

 $(i.e.) \quad u = xy, v = y$

x and y are continuous everywhere and consequently u(x,y)=xy and v(x,y)=y are continuous everywhere.

Thus f(z) is continuous everywhere.

But

u = xy	v = y
$u_x = y$	$v_x = 0$
$u_y = x$	$v_y = 1$
$u_x \neq v_y$	$u_y \neq -v_x$

C-R equations are not satisfied.

Hence, f(z) is not differentiable anywhere though it is continuous everywhere.

Example: 3.7 Show that the function $f(z) = \overline{z}$ is nowhere differentiable. [A.U N/D 2012] Solution:

Given
$$f(z) = \overline{z} = x - iy$$

u = x	v = -y
$\frac{\partial u}{\partial x} = 1$ $\frac{\partial u}{\partial y} = 0$	$\frac{\partial v}{\partial x} = 0$ $\frac{\partial v}{\partial y} = -1$
	/

$$u_x \neq v_y$$

C-R equations are not satisfied anywhere.

Hence, $f(z) = \overline{z}$ is not differentiable anywhere (or) nowhere differentiable.

Example: 3.8 Show that $f(z) = |z|^2$ is differentiable at z = 0 but not analytic at z = 0.

Solution:

Let
$$z = x + iy$$

 $\overline{z} = x - iy$
 $|z|^2 = z \overline{z} = x^2 + y^2$

$$(i.e.) f(z) = |z|^2 = (x^2 + y^2) + i0$$

$u = x^2 + y^2$	v= 0
$u_x = 2x$	$v_x = 0$
$u_y = 2y$	$v_y = 0$

So, the C-R equations $u_x = v_y$ and $u_y = -v_x$ are not satisfied everywhere except at z = 0.

So, f(z) may be differentiable only at z = 0.

Now, $u_x = 2x$, $u_y = 2y$, $v_x = 0$ and $v_y = 0$ are continuous everywhere and in particular at (0,0).

Hence, the sufficient conditions for differentiability are satisfied by f(z) at z = 0.

So, f(z) is differentiable at z = 0 only and is not analytic there.

Inverse function

Let w = f(z) be a function of z and z = F(w) be its inverse function.

Then the function w = f(z) will cease to be analytic at $\frac{dz}{dw} = 0$ and z = F(w) will be so, at point where $\frac{dw}{dz} = 0$.

Example: 3.9 Show that f(z) = log z analytic everywhere except at the origin and find its derivatives. Solution:

Let
$$z = re^{i\theta}$$

$$f(z) = \log z$$

$$= \log(re^{i\theta}) = \log r + \log(e^{i\theta}) = \log r + i\theta$$

But, at the origin, r = 0. Thus, at the origin,

$$f(z) = \log 0 + i\theta = -\infty + i\theta$$

Note:
$$e^{-\infty} = 0$$

 $\log e^{-\infty} = \log 0; -\infty = \log 0$

So, f(z) is not defined at the origin and hence is not differentiable there.

At points other than the origin, we have

$u(r,\theta) = \log r$	$v(r,\theta) = \theta$
$u_r = \frac{1}{r}$	$v_r = 0$
$u_{\theta} = 0$	$v_{\theta} = 1$

So, *logz* satisfies the C–R equations.

Further $\frac{1}{r}$ is not continuous at z = 0.

So, u_r , u_θ , v_r , v_θ are continuous everywhere except at z=0. Thus log z satisfies all the sufficient conditions for the existence of the derivative except at the origin. The derivative is

$$f'(z) = \frac{u_r + iv_r}{e^{i\theta}} = \frac{\left(\frac{1}{r}\right) + i(0)}{e^{i\theta}} = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

Note: $f(z) = u + iv \Rightarrow f(re^{i\theta}) = u + iv$

Differentiate w.r.to 'r', we get

$$(i.e.) e^{i\theta} f'(re^{i\theta}) = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r}$$

Example: 3.10 Check whether $w = \overline{z}$ is analytics everywhere. [Anna, Nov 2001] [A.U M/J 2014] Solution:

Let
$$w = f(z) = \overline{z}$$

 $u+iv = x - iy$

u = x	v = -y
$u_x = 1$	$v_x = 0$
$u_y = 0$	$v_y = -1$

 $u_x \neq v_y$ at any point p(x,y)

Hence, C-R equations are not satisfied.

 \therefore The function f(z) is nowhere analytic.

Example: 3.11 Test the analyticity of the function $w = \sin z$.

Solution:

Let
$$w = f(z) = sinz$$

 $u + iv = sin(x + iy)$
 $u + iv = sin x cos iy + cos x sin iy$
 $u + iv = sin x cosh y + i cos x sin hy$

Equating real and imaginary parts, we get

$u = \sin x \cosh y$	$v = \cos x \sinh y$
$u_x = \cos x \cosh y$	$v_x = -\sin x \sinh y$
$u_y = \sin x \sinh y$	$v_y = \cos x \cosh y$

$$u_x = v_y$$
 and $u_y = -v_x$

C –R equations are satisfied.

Also the four partial derivatives are continuous.

Hence, the function is analytic.

Example: 3.12 Determine whether the function $2xy + i(x^2 - y^2)$ is analytic or not. [Anna, May 2001] Solution:

Let
$$f(z) = 2xy + i(x^2 - y^2)$$

(i.e.)
$$u = 2xy v = x^2 - y^2$$

$$\frac{\partial u}{\partial x} = 2y \frac{\partial v}{\partial x} = 2x$$

$$\frac{\partial u}{\partial y} = 2x \frac{\partial v}{\partial y} = -2y$$

 $u_x \neq v_y$ and $u_y \neq -v_x$

C-R equations are not satisfied.

Hence, f(z) is not an analytic function.

Example: 3.13 Prove that $f(z) = \cosh z$ is an analytic function and find its derivative.

Solution:

Given
$$f(z) = \cosh z = \cos(iz) = \cos[i(x + iy)]$$

 $= \cos(ix - y) = \cos ix \cos y + \sin(ix) \sin y$
 $u + iv = \cosh x \cos y + i \sinh x \sin y$

$u = \cosh x \cos y$	$v = \sinh x \sin y$
$u_x = \sinh x \cos y$	$v_x = \cosh x \sin y$
$u_y = -\cosh x \sin y$	$v_y = \sinh x \cos y$

 u_x , u_y , v_x and v_y exist and are continuous.

$$u_x = v_y$$
 and $u_y = -v_x$

C-R equations are satisfied.

f(z) is analytic everywhere.

Now,
$$f'(z) = u_x + iv_x$$

= $\sinh x \cos y + i \cosh x \sin y$
= $\sinh(x + iy) = \sinh z$

Example: 3.14 If w = f(z) is analytic, prove that $\frac{dw}{dz} = \frac{\partial w}{\partial x} = -i\frac{\partial w}{\partial y}$ where z = x + iy, and prove that

$$\frac{\partial^2 w}{\partial z \partial \overline{z}} = 0.$$
 [Anna, Nov 2001]

Solution:

Let
$$w = u(x, y) + iv(x, y)$$

As f(z) is analytic, we have $u_x = v_y$, $u_y = -v_x$

Now,
$$\frac{dw}{dz} = f'(z) = u_x + iv_x = v_y - iu_y = i(u_y + iv_y)$$

$$= \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = -i\left[\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right]$$

$$= \frac{\partial}{\partial x}(u + iv) = -i\frac{\partial}{\partial y}(u + iv)$$

$$= \frac{\partial w}{\partial x} = -i\frac{\partial w}{\partial y}$$

We know that,
$$\frac{\partial w}{\partial z} = 0$$

$$\therefore \frac{\partial^2 w}{\partial z \partial \overline{z}} = 0$$

Also
$$\frac{\partial^2 w}{\partial \overline{z} \partial z} = 0$$

Example: 3.15 Prove that every analytic function w = u(x, y) + iv(x, y) can be expressed as a function of z alone. [A.U. M/J 2010, M/J 2012]

Proof:

Let
$$z = x + iy$$
 and $\overline{z} = x - iy$
 $x = \frac{z + \overline{z}}{2}$ and $y = \frac{z + \overline{z}}{2i}$

Hence, u and v and also w may be considered as a function of z and \overline{z}

Consider
$$\frac{\partial w}{\partial \overline{z}} = \frac{\partial u}{\partial \overline{z}} + i \frac{\partial v}{\partial \overline{z}}$$

$$= \left(\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial \overline{z}} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial \overline{z}}\right) + \left(\frac{\partial v}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \overline{z}}\right)$$

$$= \left(\frac{1}{2}u_x - \frac{1}{2i}u_y\right) + i\left(\frac{1}{2}v_x - \frac{1}{2i}v_y\right)$$

$$= \frac{1}{2}(u_x - v_y) + \frac{i}{2}(u_y + v_x)$$

$$= 0 \text{ by C--R equations as } w \text{ is analytic.}$$

This means that w is independent of \overline{z}

(i.e.) w is a function of z alone.

This means that if w = u(x, y) + iv(x, y) is analytic, it can be rewritten as a function of (x + iy).

Equivalently a function of \overline{z} cannot be an analytic function of z.

Example: 3.16 Find the constants a, b, c if f(z) = (x + ay) + i(bx + cy) is analytic.

Solution:

$$f(z) = u(x, y) + iv(x, y)$$
$$= (x + ay) + i(bx + cy)$$

u = x + ay	v = bx + cy
$u_x = 1$	$v_x = b$
$u_y = a$	$v_y = c$

Given f(z) is analytic

$$\Rightarrow u_x = v_y$$
 and $u_y = -v_x$
 $1 = c$ and $a = -b$

Example: 3.17 Examine whether the following function is analytic or not $f(z) = e^{-x}(\cos y - i \sin y)$. Solution:

Given
$$f(z) = e^{-x}(\cos y - i \sin y)$$

$$\Rightarrow u + iv = e^{-x} \cos y - ie^{-x} \sin y$$

$u = e^{-x} \cos y$	$v = -e^{-x} \sin y$
$u_x = -e^{-x} \cos y$	$v_x = e^{-x} \sin y$
$u_y = -e^{-x} \sin y$	$v_y = -e^{-x}\cos y$

Here, $u_x = v_y$ and $u_y = -v_x$

 \Rightarrow C-R equations are satisfied

 $\Rightarrow f(z)$ is analytic.

Example: 3.18 Test whether the function $f(z) = \frac{1}{2} \log(x^2 + y^2 + \tan^{-1}(\frac{y}{x}))$ is analytic or not.

Solution:

Given
$$f(z) = \frac{1}{2} \log(x^2 + y^2 + i \tan^{-1} \left(\frac{y}{x}\right)$$

 $(i.e.)u + iv = \frac{1}{2} \log(x^2 + y^2 + i \tan^{-1} \left(\frac{y}{x}\right)$

	,
$u = \frac{1}{2}\log(x^2 + y^2)$	$v = \tan^{-1}\left(\frac{y}{x}\right)$
$u_{x} = \frac{1}{2} \frac{1}{x^{2} + y^{2}} (2x)$ $= \frac{x}{x^{2} + y^{2}}$ $1 1$	$v_x = \frac{1}{1 + \frac{y^2}{x^2}} \left[-\frac{y}{x^2} \right]$ $= \frac{-y}{x^2 + y^2}$
$u_{y} = \frac{1}{2} \frac{1}{x^{2} + y^{2}} (2y)$ $= \frac{y}{x^{2} + y^{2}}$	$v_y = \frac{1}{1 + \frac{y^2}{x^2}} \left[\frac{1}{x} \right]$ $= \frac{x}{x^2 + y^2}$

Here,
$$u_x = v_y$$
 and $u_y = -v_x$

 \Rightarrow C-R equations are satisfied

 $\Rightarrow f(z)$ is analytic.

Example: 3.19 Find where each of the following functions ceases to be analytic.

$$(i)\frac{z}{(z^2-1)}$$
 $(ii)\frac{z+i}{(z-i)^2}$

Solution:

(i) Let
$$f(z) = \frac{z}{(z^2 - 1)}$$

$$f'(z) = \frac{(z^2 - 1)(1) - z(2z)}{(z^2 - 1)^2} = \frac{-(z^2 + 1)}{(z^2 - 1)^2}$$

f(z) is not analytic, where f'(z) does not exist.

$$(i.e.) f'(z) \to \infty$$

 $(i.e.)(z^2 - 1)^2 = 0$
 $(i.e.) z^2 - 1 = 0$

$$(i.e.) z^{2} - 1 = 0$$
$$z = 1$$

$$z = \pm 1$$

f(z) is not analytic at the points $z = \pm 1$

(ii) Let
$$f(z) = \frac{z+i}{(z-i)^2}$$

$$f'(z) = \frac{(z-i)^2(1)(z+i)[2(z-i)]}{(z-i)^4} = \frac{(z+3i)}{(z-i)^3}$$

$$f'(z) \to \infty$$
, at $z = i$

f(z) is not analytic at z = i.

Exercise: 3.1

1. Examine the following function are analytic or not

1.
$$f(z) = e^{x}(\cos y + i \sin y)$$
 [Ans: analytic]

2.
$$f(z) = e^x(\cos y - i \sin y)$$
 [Ans: not analytic]

3.
$$f(z) = z^3 + z$$
 [Ans: analytic]

4.
$$f(z) = \sin x \cos y + i \cos x \sinh y$$
 [Ans: analytic]

5.
$$f(z) = (x^2 - y^2 + 2xy) + i(x^2 - y^2 - 2xy)$$
 [Ans: not analytic]

6.
$$f(z) = 2xy + i(x^2 - y^2)$$
 [Ans: not analytic]

7.
$$f(z) = \cosh z$$
 [Ans: analytic]

8.
$$f(z) = y$$
 [Ans: not analytic]

9.
$$f(z) = (x^2 - y^2 - 2xy) + i(x^2 - y^2 + 2xy)$$
 [Ans: analytic]

$$10. f(z) = \frac{x - iy}{x^2 + y^2}$$
 [Ans: analytic]

2. For what values of z, the function ceases to be analytic.

1.
$$\frac{1}{z^2-4}$$
 [Ans: $z = \pm 1$]

2.
$$\frac{z^2-4}{z^2+1}$$
 [Ans: $z=\pm 1$]

3. Verify C-R equations for the following functions.

1.
$$f(z) = ze^z$$

$$2. f(z) = lz + m$$

$$3. f(z) = \cos z$$

4. Prove that the following functions are nowhere differentiable.

1.
$$f(z) = e^x(\cos y - i \sin y)$$

2.
$$f(z) = |z|$$

3.
$$f(z) = z - \bar{z}$$

5. Find the constants a, b, c so that the following are differentiable at every point.

1.
$$f(z) = x + ay - i(bx + cy)$$
 [Ans. $a = b, c = -1$]

2.
$$f(z) = ax^2 - by^2 + i cxy$$
 [Ans. $a = b = \frac{c}{2}$]

3.3 PROPERTIES – HARMONIC CONJUGATES

3.3 (a) Laplace equation

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0$$
 is known as Laplace equation in two dimensions.

3.3 (b) Laplacian Operator

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
 is called the Laplacian operator and is denoted by ∇^2 .

Note: (i) $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$ is known as Laplace equation in three dimensions.

Note: (ii) The Laplace equation in polar coordinates is defined as

$$\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2} = 0$$

Properties of Analytic Functions

Property: 1 Prove that the real and imaginary parts of an analytic function are harmonic functions.

Proof:

Let f(z) = u + iv be an analytic function

$$u_x = v_y \dots (1)$$
 and $u_y = -v_x \dots (2)$ by C-R

Differentiate (1) & (2) p.w.r. to x, we get

$$u_{xx} = v_{xy} \dots (3)$$
 and $u_{xy} = -v_{xx} \dots (4)$

Differentiate (1) & (2) p.w.r. to x, we get

$$u_{yx} = v_{yy} \dots (5)$$
 and $u_{yy} = -v_{yx} \dots (6)$

$$(3) + (6) \Rightarrow u_{xx} + u_{yy} = 0 [\because v_{xy} = v_{yx}]$$

$$(5) - (4) \Rightarrow v_{xx} + v_{yy} = 0 [\because u_{xy} = u_{yx}]$$

 $\therefore u$ and v satisfy the Laplace equation.

3.3 (c) Harmonic function (or) [Potential function]

A real function of two real variables *x* and *y* that possesses continuous second order partial derivatives and that satisfies Laplace equation is called a harmonic function.

Note: A harmonic function is also known as a potential function.

3.3 (d) Conjugate harmonic function

If u and v are harmonic functions such that u + iv is analytic, then each is called the conjugate harmonic function of the other.

Property: 2 If w = u(x, y) + iv(x, y) is an analytic function the curves of the family $u(x, y) = c_1$ and the curves of the family $v(x, y) = c_2$ cut orthogonally, where c_1 and c_2 are varying constants.

Proof:

[A.U D15/J16 R-13] [A.U N/D 2016 R-13] [A.U A/M 2017 R-08]

Let f(z) = u + iv be an analytic function

$$\Rightarrow u_x = v_y \dots (1)$$
 and $u_y = -v_x \dots (2)$ by C-R

Given $u = c_1$ and $v = c_2$

Differentiate p.w.r. to x, we get

$$u_x + u_y \frac{dy}{dx} = 0$$
 and $v_x + v_y \frac{dy}{dx} = 0$
 $\Rightarrow \frac{dy}{dx} = \frac{-u_x}{u_y}$ and $\frac{dy}{dx} = \frac{-v_x}{v_y}$
 $\Rightarrow m_1 = \frac{-u_x}{u_y}$ $\Rightarrow m_2 = \frac{-v_x}{v_y}$

$$m_1 \cdot m_2 = \left(\frac{-u_x}{u_y}\right) \left(\frac{-v_x}{v_y}\right) = \left(\frac{u_x}{u_y}\right) \left(\frac{u_y}{u_x}\right) = -1 \text{ by (1) and (2)}$$

Hence, the family of curves form an orthogonal system.

Property: 3 An analytic function with constant modulus is constant. [AU. A/M 2007] [A.U N/D 2010] Proof:

Let f(z) = u + iv be an analytic function.

$$\Rightarrow u_x = v_y \dots (1)$$
 and $u_y = -v_x \dots (2)$ by C-R

Given
$$|f(z)| = \sqrt{u^2 + v^2} = c \neq 0$$

$$\Rightarrow |f(z)| = u^2 + v^2 = c^2 \text{ (say)}$$

$$(i.e) u^2 + v^2 = c^2 \dots (3)$$

Differentiate (3) p.w.r. to x and y; we get

$$2uu_x + 2vv_x = 0 \Rightarrow uu_x + vv_x = 0 \qquad \dots (4)$$

$$2uu_y + 2vv_y = 0 \Rightarrow uu_y + vv_y = 0 \qquad \dots (5)$$

$$(4) \times u \quad \Rightarrow u^2 u_x + uv v_x = 0 \qquad \dots (6)$$

$$(5) \times v \quad \Rightarrow uv \, u_v + v^2 v_v = 0 \qquad \dots (7)$$

(6)+(7)
$$\Rightarrow u^2 u_x + v^2 v_y + uv [v_x + u_y] = 0$$

 $\Rightarrow u^2 u_x + v^2 u_x + uv [-u_y + u_y] = 0 \text{ by (1) & (2)}$
 $\Rightarrow (u^2 + v^2) u_x = 0$
 $\Rightarrow u_x = 0$

Similarly, we get $v_x = 0$

We know that $f'(z) = u_x + v_x = 0 + i0 = 0$

Integrating w.r.to z, we get, f(z) = c [Constant]

Property: 4 An analytic function whose real part is constant must itself be a constant. [A.U M/J 2016] Proof:

Let f(z) = u + iv be an analytic function.

$$\Rightarrow u_x = v_y \dots (1)$$
 and $u_y = -v_x \dots (2)$ by C-R

Given u = c [Constant]

$$\Rightarrow u_x = 0, \qquad u_y = 0$$

$$\Rightarrow u_x = 0, \quad v_x = 0 \quad \text{by (2)}$$

We know that $f'(z) = u_x + iv_x = 0 + i0 = 0$

Integrating w.r.to z, we get f(z) = c [Constant]

Property: 5 Prove that an analytic function with constant imaginary part is constant. [A.U M/J 2005] Proof:

Let f(z) = u + iv be an analytic function.

$$\Rightarrow u_x = v_y \dots (1)$$
 and $u_y = -v_x \dots (2)$ by C-R

Given
$$v = c$$
 [Constant]

$$\Rightarrow v_x = 0, \qquad v_v = 0$$

We know that $f'(z) = u_x + iv_x$

$$= v_y + iv_x$$
 by (1) $= 0 + i0$

$$\Rightarrow f'(z) = 0$$

Integrating w.r.to z, we get f(z) = c [Constant]

Property: 6 If f(z) and $\overline{f(z)}$ are analytic in a region D, then show that f(z) is constant in that region D. Proof:

Let f(z) = u(x, y) + iv(x, y) be an analytic function.

$$\overline{f(z)} = u(x,y) - iv(x,y) = u(x,y) + i[-v(x,y)]$$

Since, f(z) is analytic in D, we get $u_x = v_y$ and $u_y = -v_x$

Since, $\overline{f(z)}$ is analytic in D, we have $u_x = -v_y$ and $u_y = v_x$

Adding, we get $u_x = 0$ and $u_y = 0$ and hence, $v_x = v_y = 0$

$$f(z) = u_x + iv_x = 0 + i0 = 0$$

f(z) is constant in D.

Problems based on properties

Theorem: 1 If f(z) = u + iv is a regular function of z in a domain D, then $\nabla^2 |f(z)|^2 = 4|f'(z)|^2$ Solution:

Given
$$f(z) = u + iv$$

$$\Rightarrow |f(z)| = \sqrt{u^2 + v^2}$$

$$\Rightarrow |f(z)|^2 = u^2 + v^2$$

$$\Rightarrow \nabla^2 |f(z)|^2 = \nabla^2 (u^2 + v^2)$$

$$= \nabla^2 (u^2) + \nabla^2 (v^2) \qquad \dots (1)$$

$$\nabla^2 (u^2) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u^2 + \frac{\partial^2 (u^2)}{\partial x^2} + \frac{\partial^2 (u^2)}{\partial y^2} \qquad \dots (2)$$

$$\frac{\partial^2}{\partial x^2} (u^2) = \frac{\partial}{\partial x} \left[2u \frac{\partial u}{\partial x} \right] = 2 \left[u \frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} \right] = 2u \frac{\partial^2 u}{\partial x^2} + 2 \left(\frac{\partial u}{\partial x}\right)^2$$
Similarly, $\frac{\partial^2}{\partial y^2} (u^2) = 2u \frac{\partial^2 u}{\partial y^2} + 2 \left(\frac{\partial u}{\partial y}\right)^2$

$$(2) \Rightarrow \nabla^2 (u^2) = 2u \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + 2 \left[\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 \right]$$

$$= 0 + 2 \left[\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 \right] \qquad [\because u \text{ is harmonic}]$$

$$\nabla^2 (u^2) = 2u_x^2 + 2u_y^2$$
Similarly, $\nabla^2 (v^2) = 2v_x^2 + 2v_y^2$

$$(1) \Rightarrow \nabla^2 |f(z)|^2 = 2 \left[u_x^2 + u_y^2 + v_x^2 + v_y^2 \right]$$

$$= 2 \left[u_x^2 + (-v_x)^2 + v_x^2 + u_x^2 \right] \qquad [\because u_x = v_y; u_y = -v_x]$$

$$= 4[u_x^2 + v_x^2]$$

$$(i.e.)\nabla^2 |f(z)|^2 = 4|f'(z)|^2$$

Note:
$$f(z) = u + iv$$
; $f'(z) = u_x + iv_x$;
(or) $f'(z) = v_y + iu_y$; $|f'(z)| = \sqrt{u_x^2 + v_x^2}$; $|f'(z)|^2 = u_x^2 + v_x^2$

Theorem: 2 If f(z) = u + iv is a regular function of z in a domain D, then $\nabla^2 \log |f(z)| = 0$ if $f(z) |f'(z)| \neq 0$ in D. i.e., $\log |f(z)|$ is harmonic in D. [A.U A/M 2017 R-13] Solution:

Given
$$f(z) = u + iv$$

$$|f(z)| = \sqrt{u^2 + v^2}$$

$$\log |f(z)| = \frac{1}{2} \log (u^2 + v^2)$$

$$\nabla^2 \log |f(z)| = \frac{1}{2} \nabla^2 \log (u^2 + v^2) = \frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \log(u^2 + v^2)$$

$$= \frac{1}{2} \frac{\partial^2}{\partial x^2} [\log(u^2 + v^2)] + \frac{1}{2} \frac{\partial^2}{\partial y^2} [\log(u^2 + v^2)] \qquad \dots (1)$$

$$\frac{1}{2} \frac{\partial^2}{\partial x^2} [\log(u^2 + v^2)] = \frac{1}{2} \frac{\partial^2}{\partial x} \left[\frac{1}{u^2 + v^2} \left(2u \frac{\partial u}{\partial x} + 2v \frac{\partial v}{\partial x} \right) \right] = \frac{\partial}{\partial x} \left[\frac{uu_x + vv_x}{u^2 + v^2} \right]$$

$$= \frac{(u^2 + v^2)[uu_{xx} + u_x + vv_{xx} + v_x + v_x + v_x + vv_x]}{(u^2 + v^2)^2}$$

$$= \frac{(u^2 + v^2)[uu_{xx} + vv_x + u_x^2 + v_x^2 + v_x^2]}{(u^2 + v^2)^2}$$
Similarly, $\frac{1}{2} \frac{\partial^2}{\partial y^2} [\log(u^2 + v^2)] = \frac{(u^2 + v^2)[uu_{yy} + vv_{yy} + u_y^2 + v_y^2] - 2(uu_y + vv_y)^2}{(u^2 + v^2)^2}$

$$(1) \Rightarrow \nabla^2 \log |f(z)| = \frac{(u^2 + v^2)[u(0) + (u_x^2 + v_x^2) + u_y^2 + v_y^2] + (v_x^2 + v_y^2) - 2[uu_x + vv_x]^2 - 2[uu_y + vv_y]^2}{(u^2 + v^2)^2}$$

$$= \frac{(u^2 + v^2)[u(0) + (u_x^2 + v_x^2) + u_y^2 + v_y^2] + v_y^2 + v_y^2 + v_y^2 + v_y^2 + v_y^2}{(u^2 + v^2)^2}$$

$$[\because f'(z) = u + iv, |f'(z)| = u_x + iv_x \text{ (or) } f'(z) = v_y - iu_y, |f'(z)|^2 = u_x^2 + v_x^2$$

$$(or) |f'(z)|^2 = u_y^2 + v_y^2$$

$$= \frac{2(u^2 + v^2)[|f'(z)|^2 - 2[u^2|f'(z)|^2 + v^2|f'(z)|^2 + 2uv(0)]}{(u^2 + v^2)^2}$$

$$[\because u_x = v_y, u_y = -v_x]$$

$$\Rightarrow u_x v_x + u_y v_y = 0$$

$$\Rightarrow u_x^2 + u_y^2 = u_x^2 + v_x^2 = |f'(z)|^2$$

$$\Rightarrow v_x^2 + v_y^2 = u_y^2 + v_y^2 = |f'(z)|^2$$

$$= \frac{2(u^2 + v^2)[f'(z)|^2 - 2[u^2 + v^2][f'(z)|^2 - 2[u^2 + v^2][f'(z)|^2]}{(u^2 + v^2)^2}}$$

$$(i.e.) \nabla^2 \log |f(z)| = 0$$

Theorem: 3 If f(z) = u + iv is a regular function of z in a domain D, then

$$\nabla^2(u^p) = p(p-1) u^{p-2} |f'(z)|^2$$

Solution:

$$\nabla^{2}(u^{p}) = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)(u^{p})$$

$$= \frac{\partial^{2}}{\partial x^{2}}(u^{p}) + \frac{\partial^{2}}{\partial y^{2}}(u^{p})$$

$$\frac{\partial^{2}}{\partial x^{2}}(u^{p}) = \frac{\partial}{\partial x}\left[pu^{p-1}\frac{\partial u}{\partial x}\right] = pu^{p-1}u_{xx} + p(p-1)u^{p-2}(u_{x})^{2}$$
Similarly,
$$\frac{\partial^{2}}{\partial y^{2}}(u^{p}) = pu^{p-1}u_{yy} + p(p-1)u^{p-2}(u_{y})^{2}$$

$$(1) \Rightarrow \nabla^{2}(u^{p}) = pu^{p-1}(u_{xx} + u_{yy}) + p(p-1)u^{p-2}[u_{x}^{2} + u_{y}^{2}]$$

$$= pu^{p-1}(0) + p(p-1)u^{p-2}|f'(z)|^{2}$$

$$[\because u_{xx} + u_{yy} = 0, f(z) = u + iv, f'(z) = u_{x} + iv_{x}, |f'(z)|^{2} = u_{x}^{2} + u_{y}^{2}$$

$$\therefore \nabla^{2}(u^{p}) = p(p-1)u^{p-2}|f'(z)|^{2}$$

Theorem: 4 If f(z) = u + iv is a regular function of z, then $\nabla^2 |f(z)|^p = p^2 |f(z)|^{p-2} |f'(z)|^2$. [A.U N/D 2015 R-13]

Solution:

Let
$$f(z) = u + iv$$

$$|f(z)| = \sqrt{u^2 + v^2} \qquad \dots (a)$$

$$|f(z)|^p = (u^2 + v^2)^{p/2} \qquad \dots (b)$$

$$\nabla^2 |f(z)|^p = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) (u^2 + v^2)^{p/2}$$

$$= \frac{\partial^2}{\partial x^2} (u^2 + v^2)^{p/2} + \frac{\partial^2}{\partial y^2} (u^2 + v^2)^{p/2}$$

$$\frac{\partial^2}{\partial x^2} (u^2 + v^2)^{p/2} = \frac{\partial}{\partial x} \left[\frac{p}{2} (u^2 + v^2)^{\frac{p}{2} - 1} \left[2u \frac{\partial u}{\partial x} + 2v \frac{\partial v}{\partial x} \right] \right]$$

$$= p(u^2 + v^2)^{\frac{p}{2} - 1} [uu_{xx} + u_x u_x + vv_{xx} + v_x v_x]$$

$$+ p\left(\frac{p}{2} - 1\right) (u^2 + v^2)^{\frac{p}{2} - 2} (uu_x + vv_x) (2uu_x + 2vv_x)$$

$$= p(u^2 + v^2)^{\frac{p}{2} - 1} [uu_{xx} + u_x^2 + vv_{xx} + v_x^2]$$

$$+ 2p\left(\frac{p}{2} - 1\right) (u^2 + v^2)^{\frac{p}{2} - 2} (uu_x + vv_x)^2$$
Similarly,
$$\frac{\partial^2}{\partial y^2} (u^2 + v^2)^{p/2} = p(u^2 + v^2)^{\frac{p}{2} - 1} [uu_{yy} + u_y^2 + vv_{yy} + v_y^2]$$

$$+ 2p\left(\frac{p}{2} - 1\right) (u^2 + v^2)^{\frac{p}{2} - 2} (uu_y + vv_y)^2$$

$$\Rightarrow \nabla^2 |f(z)|^p = p(u^2 + v^2)^{\frac{p}{2} - 1} [u(u_{xx} + u_{yy}) + v(v_{xx} + v_{yy}) + u_x^2 + u_y^2 + v_x^2 + v_y^2] + 2p\left(\frac{p}{2} - 1\right) (u^2 + v^2)^{\frac{p}{2} - 2} [u^2u_x^2 + v^2v_x^2 + 2uv u_x v_x + u^2u_y^2 + v^2v_y^2 + 2uv u_y v_y]$$

$$= p(u^2 + v^2)^{\frac{p}{2} - 1} [u(0) + v(0) + 2(u_x^2 + u_y^2)]$$

$$+2p\left(\frac{p}{2}-1\right)(u^{2}+v^{2})^{\frac{p}{2}-2}\left[u^{2}(u_{x}^{2}+u_{y}^{2})+v^{2}(v_{x}^{2}+v_{y}^{2})+2uv(u_{x}v_{x}+u_{y}v_{y})\right]$$

$$=2p(u^{2}+v^{2})^{\frac{p}{2}-1}|f'(z)|^{2}+2p\left(\frac{p}{2}-1\right)(u^{2}+v^{2})^{\frac{p}{2}-2}\left[u^{2}|f'(z)|^{2}+v^{2}|f'(z)|^{2}+2uv(0)\right]$$

$$=2p(u^{2}+v^{2})^{\frac{p}{2}-1}|f'(z)|^{2}+2p\left(\frac{p}{2}-1\right)(u^{2}+v^{2})^{\frac{p}{2}-2}(u^{2}+v^{2})|f'(z)|^{2}$$

$$=2p(u^{2}+v^{2})^{\frac{p}{2}-1}|f'(z)|^{2}+2p\left(\frac{p}{2}-1\right)(u^{2}+v^{2})^{\frac{p}{2}-1}|f'(z)|^{2}$$

$$=2p(u^{2}+v^{2})^{\frac{p}{2}-1}|f'(z)|^{2}\left[1+\frac{p}{2}-1\right]$$

$$=2p(u^{2}+v^{2})^{\frac{p}{2}-1}|f'(z)|^{2}=p^{2}(u^{2}+v^{2})^{\frac{p-2}{2}}|f'(z)|^{2}$$

$$=p^{2}(\sqrt{u^{2}+v^{2}})^{p-2}|f'(z)|^{2}$$

$$=p^{2}(\sqrt{u^{2}+v^{2}})^{p-2}|f'(z)|^{2}$$

$$=p^{2}|f(z)|^{p-2}|f'(z)|^{2}$$
 by (a) & (b)

Theorem: 5 If f(z) = u + iv is a regular function of z, in a domain D, then

$$\left[\frac{\partial}{\partial x}|f(z)|\right]^2 + \left[\frac{\partial}{\partial y}|f(z)|\right]^2 = |f'(z)|^2$$
 [A.U A/M 2015 R8]

Solution:

Given
$$f(z) = u + iv$$

$$|f(z)| = \sqrt{u^2 + v^2}$$

$$\frac{\partial}{\partial x} |f(z)| = \frac{\partial}{\partial x} \left[\sqrt{u^2 + v^2} \right]$$

$$= \frac{1}{2\sqrt{u^2 + v^2}} \left[2uu_x + 2vv_x \right] = \frac{uu_x + vv_x}{\sqrt{u^2 + v^2}}$$

$$\left[\frac{\partial}{\partial x} |f(z)| \right]^2 = \frac{(uu_x + vv_x)^2}{u^2 + v^2} = \frac{u^2u_x^2 + v^2v_x^2 + 2uv u_x v_x}{u^2 + v^2}$$
Similarly, $\left[\frac{\partial}{\partial y} |f(z)| \right]^2 = \frac{u^2u_y^2 + v^2v_y^2 + 2uv u_y v_y}{u^2 + v^2}$

$$\left[\frac{\partial}{\partial x} |f(z)| \right]^2 + \left[\frac{\partial}{\partial y} |f(z)| \right]^2 = \frac{u^2[u_x^2 + u_y^2] + v^2[v_x^2 + v_y^2] + 2uv [u_x v_x + u_y v_y]}{u^2 + v^2}$$

$$= \frac{u^2|f'(z)|^2 + v^2|f'(z)|^2 + 2uv (0)}{u^2 + v^2} \left[\because u_x = v_y; \ u_y = -v_x \right]$$

$$= \frac{(u^2 + v^2)|f(z)|^2}{u^2 + v^2} = |f'(z)|^2 \left[\because u_x v_x + u_y v_y = 0 \right]$$

Theorem: 6 If f(z) = u + iv is a regular function of z, then $\nabla^2 |\text{Re } f(z)|^2 = 2|f'(z)|^2$ Solution:

Let
$$f(z) = u + iv$$

$$\operatorname{Re} f(z) = u$$

$$|\operatorname{Re} f'(z)|^2 = u^2$$

$$\nabla^2 |\operatorname{Re} f'(z)|^2 = \nabla^2 u^2$$

$$= \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) (u^2)$$

$$= \left(\frac{\partial^2}{\partial x^2}\right) (u^2) + \left(\frac{\partial^2}{\partial y^2}\right) (u^2)$$

$$= 2[u_x^2 + u_y^2]$$

$$= 2 |f'(z)|^2$$

Theorem: 7 If f(z) = u + iv is a regular function of z, then prove that $\nabla^2 |\text{Im } f(z)|^2 = 2|f'(z)|^2$ Proof:

Let
$$f(z) = u + iv$$

$$|\operatorname{Im} f(z)|^{2} = v^{2}$$

$$\frac{\partial}{\partial x}(v^{2}) = 2vv_{x}$$

$$\frac{\partial^{2}}{\partial x^{2}}(v^{2}) = 2[vv_{xx} + v_{x}v_{x}] = 2[vv_{xx} + v_{x}^{2}]$$
Similarly, $\frac{\partial^{2}}{\partial y^{2}}(v^{2}) = 2[vv_{yy} + v_{y}^{2}]$

$$\therefore \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right) |\operatorname{Im} f(z)|^{2} = 2[v(v_{xx} + v_{yy}) + v_{x}^{2} + v_{y}^{2}]$$

$$= 2[v(0) + u_{x}^{2} + v_{x}^{2}] \quad \text{by C--R equation}$$

$$= 2|f'(z)|^{2}$$

Theorem: 8 Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$ (or) S T $\nabla^2 = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$

Proof:

Let x & y are functions of z and \bar{z}

that is
$$x = \frac{z + \overline{z}}{2}$$
, $y = \frac{z - \overline{z}}{2i}$

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial}{\partial y} \frac{\partial y}{\partial z}$$

$$= \frac{\partial}{\partial x} \left(\frac{1}{2}\right) + \frac{\partial}{\partial y} \left[\frac{1}{2i}\right] = \frac{1}{2} \left[\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y}\right]$$

$$2 \frac{\partial}{\partial z} = \frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \qquad ...(1)$$

$$\frac{\partial}{\partial \overline{z}} = \frac{\partial}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \overline{z}}$$

$$= \frac{\partial}{\partial x} \left(\frac{1}{2}\right) + \frac{\partial}{\partial y} \left[\frac{-1}{2i}\right] = \frac{1}{2} \left[\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y}\right]$$

$$2 \frac{\partial}{\partial \overline{z}} = \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y}\right) \qquad ...(2)$$

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y}\right) \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y}\right) \left[\because (a + b)(a - b) = a^2 - b^2\right]$$

$$= \left(2 \frac{\partial}{\partial z}\right) \left(2 \frac{\partial}{\partial \overline{z}}\right) \text{ by (1) & & (2)}$$

$$= 4 \frac{\partial^2}{\partial z \partial \overline{z}}$$

Theorem: 9 If f(z) is analytic, show that $\nabla^2 |f(z)|^2 = 4|f'(z)|^2$

Solution:

We know that,
$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$$
$$|f(z)|^2 = f(z)\overline{f(z)}$$

$$\nabla^{2} |f(z)|^{2} = 4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} [f(z) \overline{f(z)}]$$
$$= 4 \left[\frac{\partial}{\partial z} f(z) \right] \left[\frac{\partial}{\partial \bar{z}} \overline{f(z)} \right]$$

[:f(z) is independent of \bar{z} and $\overline{f(z)}$ is independent of z]

Example: 3.20 Give an example such that u and v are harmonic but u + iv is not analytic.

[A.U. N/D 2005]

Solution:

$$u = x^2 - y^2$$
, $v = \frac{-y}{x^2 + y^2}$

Example: 3.21 Find the value of m if $u = 2x^2 - my^2 + 3x$ is harmonic. [A.U N/D 2016 R-13]

Solution:

Given
$$u = 2x^2 - my^2 + 3x$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \ [\because u \text{ is harmonic}] \qquad \dots (1)$$

$$\frac{\partial u}{\partial x} = 4x + 3 \qquad \frac{\partial u}{\partial y} = -2my$$

$$\frac{\partial^2 u}{\partial x^2} = 4 \qquad \frac{\partial^2 u}{\partial y^2} = -2m$$

$$\therefore (1) \Rightarrow (4) + (-2m) = 0$$

$$\Rightarrow m = 2$$

3.4 CONSTRUCTION OF ANALYTIC FUNCTION

There are three methods to find f(z).

Method: 1 Exact differential method.

(i) Suppose the harmonic function u(x, y) is given.

Now, $dv = v_x dx + v_y dy$ is an exact differential

Where, v_x and v_y are known from u by using C-R equations.

$$\therefore v = \int v_x \, dx + \int v_y \, dy = -\int u_y \, dx + \int u_x \, dy$$

(ii) Suppose the harmonic function v(x, y) is given.

Now, $du = u_x dx + u_y dy$ is an exact differential

Where, u_x and u_y are known from v by using C-R equations.

$$u = \int u_x dx + \int u dy$$
$$= \int v_y dx + \int -v_x dy$$
$$= \int v_y dx - \int v_x dy$$

Method: 2 Substitution method

$$f(z) = 2u\left[\frac{1}{2}(z+a), \frac{-i}{2}(z-a)\right] - [u(a,0), -iv(a,0)]$$

Here, u(a, 0), -iv(a, 0) is a constant

Thus
$$f(z) = 2u \left[\frac{1}{2} (z+a), \frac{-i}{2} (z-a) \right] + C$$

By taking a = 0, that is, if f(z) is analytic z = 0 + i0,

We have the simpler formula for f(z)

$$f(z) = 2\left[u^{\frac{z}{2}}, \frac{-iz}{2}\right] + C$$

Method: 3 [Milne – Thomson method]

(i) To find
$$f(z)$$
 when u is given

Let
$$f(z) = u + iv$$

$$f'(z) = u_x + iv_x$$

=
$$u_x - iv_y$$
 [by C-R condition]

$$\therefore f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C \text{ [by Milne-Thomson rule]},$$

Where, C is a complex constant.

(ii) To find
$$f(z)$$
 when v is given

Let
$$f(z) = u + iv$$

$$f'(z) = u_x + iv_x$$

$$= v_y + iv_x$$
 [by C-R condition]

$$\therefore f(z) = \int v_y(z,0)dz + i \int v_x(z,0)dz + C \text{ [by Milne-Thomson rule]},$$

Where, C is a complex constant.

Example: 3.22 Construct the analytic function f(z) for which the real part is $e^x \cos y$.

Solution:

Given
$$u = e^x \cos y$$

$$\Rightarrow u_x = e^x \cos y$$

$$[: \cos 0 = 1]$$

$$\Rightarrow u_x(z,0) = e^x$$

$$\Rightarrow u_y = e^x \cos y$$

$$[: \sin 0 = 0]$$

$$\Rightarrow u_{\nu}(z,0) = 0$$

$$\therefore f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne-Thomson rule],

Where, C is a complex constant.

$$\therefore f(z) = \int e^z dz - i \int 0 dz + C$$
$$= e^z + C$$

Example: 3.23 Determine the analytic function w = u + iv if $u = e^{2x}(x \cos 2y - y \sin 2y)$

Solution:

Given
$$u = e^{2x} (x \cos 2y - y \sin 2y)$$

 $u_x = e^{2x} [\cos 2y] + (x \cos 2y - y \sin 2y)[2 e^{2x}]$

$$u_x(z,0) = e^{2z}[1] + [z(1) - 0][2e^{2z}]$$

$$= e^{2z} + 2ze^{2z}$$

$$= (1 + 2z)e^{2x}$$

$$u_y = e^{2x}[-2x\sin 2y - (y2\cos 2y + \sin 2y)]$$

$$u_y(z,0) = e^{2z}[-0 - (0+0)] = 0$$

 $\therefore f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$ [by Milne–Thomson rule],

Where, C is a complex constant.

$$f(z) = \int (1+2z)e^{2z}dz - i \int 0 + dz + C$$

$$= \int (1+2z)e^{2z}dz + C$$

$$= (1+2z)\frac{e^{2z}}{2} - 2\frac{e^{2z}}{4} + C \quad [\because \int uv \, dz = uv_1 - u'v_2 + u''v_3 - \cdots]$$

$$= \frac{e^{2z}}{2} + ze^{2z} - \frac{e^{2z}}{2} + C$$

$$= ze^{2z} + C$$

Example: 3.24 Determine the analytic function where real part is

$$u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1.$$

[Anna, May 2001]

Solution:

Given
$$u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$$

 $u_x = 3x^2 - 3y^2 + 6x$
 $\Rightarrow u_x(z,0) = 3z^2 - 0 + 6z$
 $u_y = 0 - 6xy + 0 - 6y$
 $\Rightarrow u_y(z,0) = 0$
 $f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$ [by Milne-Thomson rule],
Where, C is a complex constant.
 $f(z) = \int (3z^2 + 6z)dz - i \int 0 + dz + C$
 $= 3\frac{z^2}{3} + 6\frac{z^2}{2} + C$
 $= z^3 + 3z^2 + C$

Example: 3.25 Determine the analytic function whose real part in $\frac{\sin 2x}{\cosh 2y - \cos 2x}$

[Anna, May 1996][A.U Tvli. A/M 2009][A.U N/D 2012]

Solution:

Given
$$u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$$

 $u_x = \frac{(\cosh 2y - \cos 2x)[2\cos 2x] - \sin 2x[2\sin 2x]}{[\cosh 2y - \cos 2x]^2}$
 $u_x(z, 0) = \frac{(1 - \cos 2z)(2\cos 2z) - 2\sin^2 2z}{[\cosh 0 - \cos 2z]^2}$
 $= \frac{2\cos 2z - 2\cos^2 2z - 2\sin^2 2z}{(1 - \cos 2z)^2}$

$$= \frac{2\cos 2z - 2[\cos^2 2z + \sin^2 2z]}{(1 - \cos 2z)^2}$$

$$= \frac{2\cos 2z - 2}{(1 - \cos 2z)^2}$$

$$= \frac{-2(1 - \cos 2z)}{(1 - \cos 2z)^2}$$

$$= \frac{2\cos 2z - 2}{(1 - \cos 2z)}$$

$$= \frac{2\cos 2z - 2}{(1 - \cos 2z)}$$

$$= \frac{-2}{2\sin^2 2}$$

$$= -\cos e^2 z$$

$$u_y = \frac{(\cosh 2y - \cos 2x)(0) - \sin 2x[2\sin 2y]}{[\cosh 2y - \cos 2x]^2}$$

$$\Rightarrow u_y(z, 0) = 0$$

$$f(z) = \int u_x(z, 0) dz - i \int u_y(z, 0) dz + C \text{ [by Milne-Thomson rule],}$$

where C is a complex constant.

$$f(z) = \int (-\cos e c^2 z) dz - i \int 0 dz + C$$
$$= \cot z + C$$

Example: 3.26 Show that the function $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic and determine its conjugate.

Also find f(z)

[A.U A/M 2008, A.U A/M 2017 R8]

Solution:

Given
$$u = \frac{1}{2}\log(x^2 + y^2)$$

 $u_x = \frac{1}{2}\frac{1}{(x^2+y^2)}(2x) = \frac{x}{x^2+y^2},$
 $\Rightarrow u_x(z,0) = \frac{z}{z^2} = \frac{1}{z}$
 $u_{xx} = \frac{(x^2+y^2)[1]-x[2x]}{[x^2+y^2]^2} = \frac{x^2+y^2-2x^2}{[x^2+y^2]^2} = \frac{y^2-x^2}{[x^2+y^2]^2} \dots (1)$
 $u_y = \frac{1}{2}\frac{1}{x^2+y^2}(2y) = \frac{y}{x^2+y^2}$
 $\Rightarrow u_y(z,0) = 0$
 $u_{yy} = \frac{(x^2+y^2)[1]-y[2y]}{[x^2+y^2]^2} = \frac{x^2-y^2}{[x^2+y^2]^2} \dots (2)$

To prove u is harmonic:

To find f(z):

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule],

Where, C is a complex constant.

$$f(z) = \int \frac{1}{z} dz - i \int 0 dz + C$$
$$= \log z + C$$

To find v:

$$f(z) = log (re^{i\theta}) \qquad [\because z = re^{i\theta}]$$

$$u + iv = log r + log e^{i\theta} = log r + i\theta$$

$$\Rightarrow u = log r, v = \theta$$

Note: z = x + iy

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\log r = \frac{1}{2}\log(x^2 + y^2)$$

$$\tan \theta = \frac{y}{x}$$

$$\theta = tan^{-1}\left(\frac{y}{r}\right)$$
 i.e., $v = tan^{-1}\left(\frac{y}{r}\right)$

Example: 3.27 Construct an analytic function f(z) = u + iv, given that

$$u = e^{x^2 - y^2} \cos 2xy$$
. Hence find v.

[A.U D15/J16, R-08]

Solution:

Given
$$u = e^{x^2 - y^2} \cos 2xy = e^{x^2} e^{-y^2} \cos 2xy$$

 $u_x = e^{-y^2} [e^{x^2} (-2y \sin 2xy) + \cos 2xy \ e^{x^2} 2x]$
 $u_x(z,0) = 1 [e^{z^2} (0) + 2ze^{z^2}] = 2ze^{z^2}$
 $u_y = e^{x^2} [e^{-y^2} (-2x \sin 2xy) + \cos 2xye^{-y^2} (-2y)]$
 $u_y(z,0) = e^{z^2} [0+0] = 0$
 $f(z) = \int u_x (z,0) dz - i \int u_y (z,0) dz + C$ [by Milne–Thomson rule]
 $= \int 2z e^{z^2} dz + C$
 $= 2 \int z e^{z^2} dz + C$
put $t = z^2$, $dt = 2z dz$
 $= \int e^t dt + C$
 $= e^t + C$
 $f(z) = e^{z^2} + C$

To find v:

$$u + iv = e^{(x+iy)^2} = e^{x^2 - y^2 + i \cdot 2xy} = e^{x^2 - y^2} e^{i2 \cdot xy}$$
$$= e^{x^2 - y^2} \left[\cos(2xy) + i\sin(2xy) \right]$$
$$v = e^{x^2 - y^2} \sin 2xy \quad [\because \text{equating the imaginary parts}]$$

Example: 3.28 Find the regular function whose imaginary part is

$$e^{-x}(x\cos y + y\sin y)$$
.

[Anna, May 1996] [A.U M/J 2014]

Solution:

Given
$$v = e^{-x} (x \cos y + y \sin y)$$

 $v_x = e^{-x} [\cos y] + (x \cos y + y \sin y) [-e^{-x}]$

$$v_x(z,0) = e^{-z} + (z)(-e^{-z}) = (1-z)e^{-z}$$

$$v_y = e^{-x}[-x\sin y + (y\cos y + \sin y (1))]$$

$$v_x(z,0) = e^{-z}[0+0+0] = 0$$

$$\therefore f(z) = \int v_y(z,0)dz + i \int v_x(z,0)dz + C \quad \text{[by Milne-Thomson rule]}$$

Where, C is a complex constant.

$$f(z) = \int 0 dz + i \int (1 - z)e^{-z} dz + C$$

$$= i \int (1 - z)e^{-z} dz + C$$

$$= i \left[(1 - z) \left[\frac{e^{-z}}{-1} \right] - (-1) \left[\frac{e^{-z}}{(-1)^2} \right] \right] + C$$

$$= i [-(1 - z)e^{-z} + e^{-z}] + C$$

$$= i z e^{-z} + C$$

Example: 3.29 In a two dimensional flow, the stream function is $\psi = tan^{-1} \left(\frac{y}{x}\right)$. Find the velocity potential φ . [A.U M/J 2016 R13]

Solution:

Given
$$\psi = tan^{-1}(y/x)$$

We should denote, ϕ by u and ψ by v

$$v = tan^{-1}(y/x)$$

$$v_{x} = \frac{1}{1 + (y/x)^{2}} \left[\frac{-y}{x^{2}} \right] = \frac{-y}{x^{2} + y^{2}}, \qquad v_{x}(z, 0) = 0$$

$$v_{y} = \frac{1}{1 + (y/x)^{2}} \left[\frac{1}{x} \right] = \frac{x}{x^{2} + y^{2}} \qquad v_{x}(z, 0) = \frac{z}{z^{2}} = \frac{1}{z}$$

$$\therefore f(z) = \int v_{y}(z, 0) dz + i \int v_{x}(z, 0) dz + C$$

$$f(z) = \int \frac{1}{z} dz + i \int 0 dz + C = \log z + C$$

To find φ :

$$f(z) = log (re^{i\theta}) \qquad [\because z = re^{i\theta}]$$

$$u + iv = log r + log e^{i\theta}$$

$$u + iv = log r + i\theta$$

$$\Rightarrow u = log r$$

$$\Rightarrow u = log \sqrt{x^2 + y^2}$$

$$= \frac{1}{2} log(x^2 + y^2)$$

So, the velocity potential φ is

$$\varphi = \frac{1}{2}\log(x^2 + y^2)$$

Note: In two dimensional steady state flows, the complex potential

$$f(z) = \varphi(x, y) + i\psi(x, y)$$
 is analytic.

Example: 3.30 If w = u + iv is an analytic function and $v = x^2 - y^2 + \frac{x}{x^2 + v^2}$, find u.

Solution:

[Anna, May 1999]

Given
$$v = x^2 - y^2 + \frac{x}{x^2 + y^2}$$

 $v_x = 2x - 0 + \frac{(x^2 + y^2)(1) - x(2x)}{(x^2 + y^2)^2}$
 $= 2x + \frac{y^2 - x^2}{(x^2 + y^2)^2}, \quad v_x(z, 0) = 2z + \frac{(-z^2)}{(z^2)}$
 $\Rightarrow v_x(z, 0) = 2z - \frac{1}{z^2}$
 $v_y = 0 - 2y + \frac{0 - x(2y)}{(x^2 + y^2)^2}$
 $= 0 - 2y - \frac{2xy}{(x^2 + y^2)^2}$
 $\Rightarrow v_y(z, 0) = 0$
 $\therefore f(z) = \int v_y(z, 0) dz + i \int v_x(z, 0) dz + C$ [by Milne–Thomson rule]
Where, C is a complex constant.

$$f(z) = \int 0 dz + i \int \left(2z - \frac{1}{z^2}\right) dz + C$$

$$= i \left[2\frac{z^2}{2} + \frac{1}{z}\right] + C \qquad \left[\because \int \frac{-1}{z^2} dz = \frac{1}{z}\right]$$

$$= i \left[z^2 + \frac{1}{z}\right] + C$$

Example: 3.31 If f(z) = u + iv is an analytic function and $u - v = e^x(\cos y - \sin y)$, find f(z) interms of z. [A.U Dec. 1997]

Solution:

Given
$$u - v = e^x(\cos y - \sin y)$$
, ... (A)

Differentiate (A) p.w.r. to x, we get

$$u_x - v_x = e^x(\cos y - \sin y),$$

 $u_x(z, 0) - v_x(z, 0) = e^z$...(1)

Differentiate (A) p.w.r. to y, we get

$$u_{y} - v_{y} = e^{x}(-\sin y - \cos y)$$

$$u_{y}(z,0) - v_{y}(z,0) = e^{z}[-1]$$
i.e., $u_{y}(z,0) - v_{y}(z,0) = -e^{z}$

$$-v_{x}(z,0) - u_{x}(z,0) = -e^{z}$$
... (2) [by C-R conditions]
$$(1) + (2) \Rightarrow -2v_{x}(z,0) = 0$$

$$\Rightarrow v_{x}(z,0) = 0$$

$$(1) \Rightarrow u_{x}(z,0) = e^{z}$$

$$f(z) = \int u_{x}(z,0)dz + i \int v_{x}(z,0)dz + C$$
 [by Milne-Thomson rule]
$$f(z) = \int e^{z}dz + i0 + C$$

$$= e^{z} + C$$

Example: 3.32 Find the analytic functions f(z) = u + iv given that

(i)
$$2u + v = e^x(\cos y - \sin y)$$

(ii)
$$u - 2v = e^x(\cos y - \sin y)$$
 [A.U A/M 2017 R-13]

Solution:

Given (i)
$$2u + v = e^x(\cos y - \sin y)$$
 ...(A)

Differentiate (A) p.w.r. to x, we get

$$2u_x + v_x = e^x(\cos y - \sin y)$$

$$2u_x - u_y = e^x(\cos y - \sin y)$$
 [by C-R condition]

Differentiate (A) p.w.r. to y, we get

$$2u_y + v_y = e^x [-\sin y - \cos y]$$

$$2u_y + u_x = e^x [-\sin y - \cos y]$$
 [by C-R condition]

$$2u_{\nu}(z,0) + u_{x}(z,0) = e^{z}(-1) = -e^{z}$$
 ... (2)

$$(1) \times (2) \Rightarrow 4u_x(z,0) - 2u_y(z,0) = 2e^z \qquad \dots (3)$$

$$(2) + (3) \Rightarrow 5u_x(z,0) = e^z$$
$$\Rightarrow u_x(z,0) = \frac{1}{5}e^z$$

(1)
$$\Rightarrow u_y(z,0) = \frac{2}{5}e^z - e^z = -\frac{3}{5}e^z$$

 $\Rightarrow u_y(z,0) = -\frac{3}{5}e^z$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule]

Where, C is a complex constant.

$$f(z) = \int \frac{1}{5} e^z dz - i \int -\frac{3}{5} e^z dz + C$$

= $\frac{2}{5} e^z + \frac{3}{5} i e^z + C$
= $\frac{1+3i}{5} e^z + C$

(ii)
$$u - 2v = e^x(\cos y - \sin y) \qquad \dots (B)$$

Differentiate (B) p.w.r. to x, we get

$$u_x - 2v_x = e^x(\cos y - \sin y)$$

$$u_x + 2u_y = e^x(\cos y - \sin y)$$
 [by C-R condition]

$$u_x(z,0) + 2u_y(z,0) = e^z$$
 ...(1)

Differentiate (B) p.w.r. to y, we get

$$u_y - 2v_y = e^x[-\sin y - \cos y]$$

$$u_y - 2u_x = e^x \left[-\sin y - \cos y \right]$$
 [by C-R condition]

$$u_{\nu}(z,0) - 2u_{\nu}(z,0) = -e^{z}$$
 ...(2)

$$(1) \times (2) \quad \Rightarrow 2u_x(z,0) + 4u_y(z,0) = 2e^z \qquad \dots (3)$$

$$(2) + (3) \Rightarrow 5u_{\nu}(z,0) = e^{z}$$

$$\Rightarrow u_y(z,0) = \frac{1}{5}e^z$$

(1)
$$\Rightarrow u_x(z,0) = -\frac{2}{5}e^z + e^z$$
$$= \frac{3}{5}e^z$$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule]

Where, C is a complex constant.

$$f(z) = \int \frac{3}{5} e^z dz - i \int \frac{1}{5} e^z dz + C$$

= $\frac{3}{5} e^z - i \frac{1}{5} e^z + C = \frac{3-i}{5} e^z + C$

Example: 3.33 Determine the analytic function f(z) = u + iv given that

$$3u + 2v = y^2 - x^2 + 16xy$$

[A.U. N/D 2007]

Solution:

Given
$$3u + 2v = y^2 - x^2 + 16xy$$
 ...(A)

Differentiate (A) p.w.r. to x, we get

$$3u_x + 2v_x = -2x + 16y$$

 $3u_x - 2u_y = -2x + 16y$ [by C-R condition]
 $3u_x(z, 0) - 2u_y(z, 0) = -2z$...(1)

Differentiate (A) p.w.r. to y, we get

$$3u_y + 2v_y = 2y + 16x$$

 $3u_y + 2u_x = 2y + 16x$ [by C-R condition]
 $3u_y(z,0) + 2u_x(z,0) = 16z$... (2)

$$(1) \times (2) \quad \Rightarrow 6u_x(z,0) - 4u_y(z,0) = -4z \qquad \dots (3)$$

(2) × (3)
$$\Rightarrow 9u_y(z,0) + 6u_x(z,0) = 48z$$

$$(3) - (4) \quad \Rightarrow -13u_y(z, 0) = -52z$$
$$\Rightarrow u_y(z, 0) = 4z$$

(1)
$$\Rightarrow 3u_x(z,0) = 8z - 2z = 6z$$

 $\Rightarrow u_x(z,0) = 2z$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule]

where C is a complex constant.

$$f(z) = \int 2zdz - i \int 4zdz + C$$

$$= 2 \frac{z^2}{2} - i \frac{4z^2}{2} + C$$

$$= z^2 - i2z^2 + C$$

$$= (1 - i2)z^2 + C$$

Example:3.34 Find an analytic function f(z) = u + iv given that $2u + 3v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$ [A.U. A/M 2017 R-8]

Solution:

Given
$$2u + 3v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$$

Differentiate p.w.r. to x, we get

$$\begin{aligned} 2u_x + 3v_x &= \frac{(\cosh 2y - \cos 2x)(2\cos 2x) - \sin 2x (2\sin 2x)}{(\cosh 2y - \cos 2x)^2} \\ 2u_x - 3u_y &= \frac{(\cosh 2y - \cos 2x)(2\cos 2x) - \sin 2x (2\sin 2x)}{(\cosh 2y - \cos 2x)^2} \quad \text{[by C-R condition]} \\ 2u_x(z,0) - 3u_y(z,0) &= \frac{2\cos 2z(1 - \cos 2z) - 2\sin^2 2z}{(1 - \cos 2z)^2} \\ &= \frac{2\cos 2z - 2\cos^2 2z - 2\sin^2 2z}{(1 - \cos 2z)^2} \\ &= \frac{2\cos 2z - 2\cos^2 2z - 2\sin^2 2z}{(1 - \cos 2z)^2} \\ &= \frac{-2}{(1 - \cos 2z)^2} = \frac{-2}{1 - \cos 2z} \\ 2u_x(z,0) - 3u_y(z,0) &= -\cos ec^2 z \end{aligned} \qquad \dots (1)$$

Differentiate p.w.r. to y, we get

$$2u_y + 3v_y = \frac{0 - \sin 2x(\sinh 2y)}{(\cosh 2y - \cos 2x)^2} (2)$$

$$2u_y + 3u_x = \frac{0 - \sin 2x(\sinh 2y)}{(\cosh 2y - \cos 2x)^2} (2) \qquad [by C - R condition]$$

$$2u_y(z,0) + 3u_x(z,0) = 0 \qquad ...(2)$$

Solving (1) & (2) we get,

$$\Rightarrow u_x(z, 0) = -\frac{2}{13} \csc^2 z$$
$$\Rightarrow u_y(z, 0) = -\frac{2}{13} \csc^2 z$$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule]

Where, C is a complex constant

$$f(z) = \int \left(\frac{-2}{13}\right) \csc^2 z \, dz - i \int \left(\frac{3}{13}\right) \csc^2 z \, dz + C$$
$$= \left(\frac{2}{13}\right) \cot z + \left(\frac{3}{13}\right) \cot z + C$$
$$= \frac{2+3i}{i3} \cot z + C$$

Example: 3.35 Find the analytic function f(z) = u + iv given that $2u + 3v = e^x(\cos y - \sin y)$ [A.U A/M 22017 R-13]

Solution:

Given
$$2u + 3v = e^x(\cos y - \sin y)$$

Differentiate p.w.r. to x, we get

$$2u_x + 3v_x = e^x(\cos y - \sin y)$$

$$2u_x - 3u_y = e^x(\cos y - \sin y)$$
 [by C-R condition]

$$2u_x(z,0) - 3u_y(z,0) = e^z$$
 ...(1)

Differentiate p.w.r. to y, we get

$$2u_{y} + 3v_{y} = e^{x} [-\sin y - \cos y]$$

$$2u_{y} + 3u_{x} = -e^{x} [\sin y + \cos y] \quad [\text{by C-R condition}]$$

$$2u_{y}(z,0) + 3u_{x}(z,0) = -e^{z} \qquad ...(2)$$

$$(1) \times (3) \quad \Rightarrow 6u_x(z,0) - 9u_y(z,0) = 3e^z \qquad \dots (3)$$

$$(2) \times 2 \Rightarrow 6u_x(z,0) + 4u_y(z,0) = -2e^z \qquad ...(4)$$

(3) - (4) ⇒ -13
$$u_y(z, 0) = 5e^z$$

⇒ $u_y(z, 0) = -\frac{5}{13}e^z$

(1)
$$\Rightarrow 2u_{x}(z,0) + \frac{15}{13}e^{z} = e^{z}$$

 $2u_{x}(z,0) = e^{z} - \frac{15}{13}e^{z} = -\frac{2}{13}e^{z}$
 $\Rightarrow u_{x}(z,0) = -\frac{1}{13}e^{z}$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$

$$f(z) = \int \frac{-1}{13} e^z dz - i \int \left(\frac{-5}{13}\right) dz + C$$
$$= \frac{-1}{13} e^z + \frac{5}{13} e^z i + C = \frac{-1+5i}{13} e^z + C$$

Exercise: 3.4

Construction of an analytic function

1. Show that the function $u(x,y) = 3x^2y + 2x^2 - y^3 - 2y^2$ is harmonic. Find the conjugate harmonic function v and express u + iv as an analytic function of z.

[Ans:
$$v(x,y) = 3x^2y + 4xy - x^3 + C$$
, $f(z) = -iz^3 + 2z^2 + iC$ where C is a real constant.]

2. If f(z) = u + iv is an analytic function of z, and if $u = \frac{2 \sin 2x}{e^{2y} + e^{-2y} - 2 \cos 2x}$, find v.

[Ans:
$$v = \frac{-2 \sinh 2y}{e^{2y} + e^{-2y} - 2\cos 2x} + C$$
]

3. Find v such that w = u + iv is an analytic function of z, given that $u = e^{x^2 - y^2} \cos 2xy$. Hence find w.

[Ans:
$$v = e^{x^2 - y^2} \sin 2xy + C$$
 $w = e^{z^2} + C$]

4. Find the analytic function w = u + iv if $w = e^{2x}(x\cos 2y - y\sin 2y)$. Hence find u.

[Ans:
$$w = ize^{2z} + C$$
, $u = -(x \sin 2y + y \cos 2y) e^{2x} + C$]

5. If $v = \frac{x-y}{x^2+y^2}$ find u such u + iv is an analytic function. What is the harmonic conjugate of v?

[Ans:
$$u = \frac{x+y}{x^2+y^2} + C$$
 Harmonic conjugate of v is $-u = \frac{-(x+y)}{x^2+y^2}$, $f(z) = \frac{1+i}{z} + C$

6. Find the analytic function whose real part is $\frac{\sin 2x}{\cosh 2y + \cos 2x}$

[Ans:
$$f(z) = \tan z + C$$
]

7. Find the analytic function whose imaginary part is $-e^{-2xy}\cos(x^2-y^2)$

[Ans:
$$f(z) = -ie^{iz^2} + C$$
]

- 6. Prove that $u = 2^x x^3 + 3xy^2$ is harmonic and find its harmonic conjugate. Also find the corresponding analytic function. [Ans: $v = 2y 3x^2y + y^3 + C$, $f(z) = 2z z^3 + iC$]
- 7. Find the real part of the analytic function whose imaginary part is $e^{-x}[2xy\cos y + (y^2 x^2)\sin y]$. Construct the analytic function.

[Ans:
$$u = e^{-x}[(x^2 - y^2)\cos y + 2xy\sin y], f(z) = z^2e^{-z} + C$$
]

8. Find the analytic function f(z) = u + iv given that $2u + v = e^{2x}[(2x + y)\cos 2y + (x - 2y)\sin 2y]$

[Ans:
$$f(z) = ze^{2z} + C$$
]

9. Prove that $u = x^2 - y^2$ and $v = -\frac{y}{x^2 + y^2}$ are harmonic functions but not harmonic conjugates.

3.5 CONFORMAL MAPPING

Definition: Conformal Mapping

A transformation that preserves angels between every pair of curves through a point, both in magnitude and sense, is said to be conformal at that point.

Definition: Isogonal

A transformation under which angles between every pair of curves through a point are preserved in magnitude, but altered in sense is said to be an isogonal at that point.

Note: 3.4 (i) A mapping w = f(z) is said to be conformal at $z = z_0$, if $f'(z_0) \neq 0$.

Note: 3.4 (ii) The point, at which the mapping w = f(z) is not conformal,

(i.e.)f'(z) = 0 is called a **critical point** of the mapping.

If the transformation w = f(z) is conformal at a point, the inverse transformation $z = f^{-1}(w)$ is also conformal at the corresponding point.

The critical points of $z = f^{-1}(w)$ are given by $\frac{dz}{dw} = 0$. hence the critical point of the transformation w = f(z) are given by $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$,

Note: 3.4 (iii) Fixed points of mapping.

Fixed or invariant point of a mapping w = f(z) are points that are mapped onto themselves, are "Kept fixed" under the mapping. Thus they are obtained from w = f(z) = z.

The identity mapping w = z has every point as a fixed point. The mapping $w = \bar{z}$ has infinitely many fixed points.

 $w = \frac{1}{z}$ has two fixed points, a rotation has one and a translation has none in the complex plane.

Some standard transformations

Translation:

The transformation w = C + z, where C is a complex constant, represents a translation.

Let
$$z = x + iy$$

 $w = u + iv$ and $C = a + ib$
Given $w = z + C$,
 $(i.e.) u + iv = x + iy + a + ib$
 $\Rightarrow u + iv = (x + a) + i(y + b)$

Equating the real and imaginary parts, we get u = x + a, v = y + b

Hence the image of any point p(x, y) in the z-plane is mapped onto the point p'(x + a, y + b) in the w-plane. Similarly every point in the z-plane is mapped onto the w plane.

If we assume that the w-plane is super imposed on the z-plane, we observe that the point (x, y) and hence any figure is shifted by a distance $|C| = \sqrt{a^2 + b^2}$ in the direction of C i.e., translated by the vector representing C.

Hence this transformation transforms a circle into an equal circle. Also the corresponding regions in the z and w planes will have the same shape, size and orientation.

Problems based on w = z + k

Example: 3.36 What is the region of the w plane into which the rectangular region in the Z plane bounded by the lines x = 0, y = 0, x = 1 and y = 2 is mapped under the transformation w = z + (2 - i)

Solution:

Given
$$w = z + (2 - i)$$

(i. e.) $u + iv = x + iy + (2 - i) = (x + 2) + i(y - 1)$

Equating the real and imaginary parts

$$u = x + 2$$
, $v = y - 1$

Given boundary lines are

transformed boundary lines are

$$x = 0$$

 $y = 0$
 $x = 1$
 $y = 2$
 $u = 0 + 2 = 2$
 $v = 0 - 1 = -1$
 $u = 1 + 2 = 3$
 $v = 2 - 1 = 1$

Hence, the lines x = 0, y = 0, x = 1, and y = 2 are mapped into the lines u = 2, v = -1, u = 3, and v = 1 respectively which form a rectangle in the w plane.

Example: 3.37 Find the image of the circle |z| = 1 by the transformation w = z + 2 + 4i Solution:

Given
$$w = z + 2 + 4i$$

(i.e.) $u + iv = x + iy + 2 + 4i$
 $= (x + 2) + i(y + 4)$

Equating the real and imaginary parts, we get

$$u = x + 2, v = y + 4,$$

 $x = u - 2, y = v - 4,$

Given |z| = 1

$$(i.e.) x^2 + y^2 = 1$$
$$(u-2)^2 + (v-4)^2 = 1$$

Hence, the circle $x^2 + y^2 = 1$ is mapped into $(u - 2)^2 + (v - 4)^2 = 1$ in w plane which is also a circle with centre (2, 4) and radius 1.

2. Magnification and Rotation

The transformation w = cz, where c is a complex constant, represents both magnification and rotation.

This means that the magnitude of the vector representing z is magnified by a = |c| and its direction is rotated through angle $\alpha = amp(c)$. Hence the transformation consists of a magnification and a rotation.

Problems based on w = cz

Example: 3.38 Determine the region 'D' of the w-plane into which the triangular region D enclosed by the lines x = 0, y = 0, x + y = 1 is transformed under the transformation w = 2z. Solution:

Let
$$w = u + iv$$

$$z = x + iy$$
Given $w = 2z$

$$u + iv = 2(x + iy)$$

$$u + iv = 2x + i2y$$

$$u = 2x \Rightarrow x = \frac{u}{2}, v = 2y \Rightarrow y = \frac{v}{2}$$

Given region (D) whose		Transformed region D' whose
boundary lines are		boundary lines are
x = 0	\Rightarrow	u = 0
y = 0	⇒	v = 0
x + y = 1	⇒	$\frac{u}{2} + \frac{v}{2} = 1[\because x = \frac{u}{2}, y = \frac{v}{2}]$
		(i. e.) u + v = 2

In the z plane the line x = 0 is transformed into u = 0 in the w plane.

In the z plane the line y = 0 is transformed into v = 0 in the w plane.

In the z plane the line x + y =is transformed intou + v = 2 in the w plane.

Example: 3.39 Find the image of the circle $|z| = \lambda$ under the transformation w = 5z.

Solution:

Given
$$w = 5z$$

 $|w| = 5|z|$
i.e., $|w| = 5\lambda$ $[\because |z| = \lambda]$

Hence, the image of $|z| = \lambda$ in the z plane is transformed into $|w| = 5\lambda$ in the w plane under the transformation w = 5z.

Example: 3.40 Find the image of the circle |z| = 3 under the transformation w = 2z

[A.U N/D 2012] [A.U N/D 2016 R-13]

Solution:

Given
$$w = 2z$$
, $|z| = 3$
 $|w| = (2)|z|$

$$= (2)(3)$$
, Since $|z| = 3$
= 6

Hence, the image of |z| = 3 in the z plane is transformed into |w| = 6 w plane under the transformation w = 2z.

Example: 3.41 Find the image of the region y > 1 under the transformation

$$w = (1 - i)z$$
. [Anna, May – 1999]

Solution:

Given
$$w = (1 - i)z$$
.
 $u + v = (1 - i)(x + iy)$
 $= x + iy - ix + y$
 $= (x + y) + i(y - x)$
i.e., $u = x + y$, $v = y - x$
 $u + v = 2y$ $u - v = 2x$
 $y = \frac{u + v}{2}$ $x = \frac{u - v}{2}$

Hence, image region y > 1 is $\frac{u+v}{2} > 1$ i.e., u + v > 2 in the w plane.

3. Inversion and Reflection

The transformation $w = \frac{1}{z}$ represents inversion w.r.to the unit circle |z| = 1, followed by reflection in the real axis.

$$\Rightarrow w = \frac{1}{z}$$

$$\Rightarrow z = \frac{1}{w}$$

$$\Rightarrow x + iy = \frac{1}{u + iv}$$

$$\Rightarrow x + iy = \frac{1}{u^2 + v^2}$$

$$\Rightarrow x = \frac{1}{u^2 + v^2} \qquad \dots (1)$$

$$\Rightarrow y = \frac{-v}{u^2 + v^2} \qquad \dots (2)$$

We know that, the general equation of circle in z plane is

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 ... (3)

Substitute, (1) and (2) in (3)we get

$$\frac{u^2}{(u^2+v^2)^2} + \frac{v^2}{(u^2+v^2)^2} + 2g\left(\frac{u}{u^2+v^2}\right) + 2f\left(\frac{-v}{u^2+v^2}\right) + c = 0$$

$$\Rightarrow c(u^2+v^2) + 2gu - 2fv + 1 = 0 \qquad \dots (4)$$

which is the equation of the circle in w plane

Hence, under the transformation $w = \frac{1}{z}$ a circle in z plane transforms to another circle in the w plane. When the circle passes through the origin we have c = 0 in (3). When c = 0, equation (4) gives a straight line.

Problems based on
$$w = \frac{1}{z}$$

Example: 3.42 Find the image of |z - 2i| = 2 under the transformation $w = \frac{1}{z}$

Solution:

Given
$$|z - 2i| = 2$$
(1) is a circle.
Centre = (0,2)
radius = 2
Given $w = \frac{1}{z} \Rightarrow z = \frac{1}{w}$
(1) $\Rightarrow \left| \frac{1}{w} - 2i \right| = 2$
 $\Rightarrow |1 - 2wi| = 2|w|$
 $\Rightarrow |1 - 2(u + iv)i| = 2|u + iv|$
 $\Rightarrow |1 - 2ui + 2v| = 2|u + iv|$
 $\Rightarrow |1 + 2v - 2ui| = 2|u + iv|$
 $\Rightarrow \sqrt{(1 + 2v)^2 + (-2u)^2} = 2\sqrt{u^2 + v^2}$
 $\Rightarrow (1 + 2v)^2 + 4u^2 = 4(u^2 + v^2)$
 $\Rightarrow 1 + 4v^2 + 4v + 4u^2 = 4(u^2 + v^2)$
 $\Rightarrow 1 + 4v = 0$
 $\Rightarrow v = -\frac{1}{4}$

Which is a straight line in w plane.

Example: 3.43 Find the image of the circle |z - 1| = 1 in the complex plane under the mapping $w = \frac{1}{z}$ [A.U N/D 2009] [A.U M/J 2016 R-8]

Solution:

Given
$$|z - 1| = 1$$
(1) is a circle.

Centre
$$=(1,0)$$

radius = 1

Given
$$w = \frac{1}{z} \Rightarrow z = \frac{1}{w}$$

$$(1) \Rightarrow \left| \frac{1}{w} - 1 \right| = 1$$

$$\Rightarrow |1 - w| = |w|$$

$$\Rightarrow |1 - (u + iv)| = |u + iv|$$

$$\Rightarrow |1 - u + iv| = |u + iv|$$

$$\Rightarrow \sqrt{(1 - u)^2 + (-v)^2} = \sqrt{u^2 + v^2}$$

$$\Rightarrow (1 - u)^2 + v^2 = u^2 + v^2$$

$$\Rightarrow 1 + u^2 - 2v + v^2 = u^2 + v^2$$

$$\Rightarrow 2u = 1$$

$$\Rightarrow u = \frac{1}{2}$$

which is a straight line in the w- plane

Example: 3.44 Find the image of the infinite strips

(i)
$$\frac{1}{4} < y < \frac{1}{2}$$
 (ii) $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$

Solution:

Given
$$w = \frac{1}{z}$$
 (given)
i.e., $z = \frac{1}{w}$

$$z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)+(u-iv)} = \frac{u-iv}{u^2+v^2}$$

$$x + iy = \frac{u-iv}{u^2+v^2} = \left[\frac{u}{u^2+v^2}\right] + i\left[\frac{-v}{u^2+v^2}\right]$$

$$x = \frac{u}{u^2+v^2} \dots (1), y = \frac{-v}{u^2+v^2} \dots (2)$$

(i) Given strip is
$$\frac{1}{4} < y < \frac{1}{2}$$

when
$$y = \frac{1}{4}$$

 $\frac{1}{4} = \frac{-v}{u^2 + v^2}$ by (2)
 $\Rightarrow u^2 + v^2 = -4v$

$$\Rightarrow u^2 + v^2 + 4v = 0$$
$$\Rightarrow u^2 + (v+2)^2 = 4$$

which is a circle whose centre is at (0, -2) in the w plane and radius is 2k.

when
$$y = \frac{1}{2}$$

$$\frac{1}{2} = \frac{-v}{u^2 + v^2} \qquad \text{by (2)}$$

$$\Rightarrow u^2 + v^2 = -2v$$

$$\Rightarrow u^2 + v^2 + 2v = 0$$

$$\Rightarrow u^2 + (v+1)^2 = 0$$

$$\Rightarrow u^2 + (v+1)^2 = 1 \qquad \dots (3)$$

which is a circle whose centre is at (0, -1) in the w plane and unit radius

Hence the infinite strip $\frac{1}{4} < y < \frac{1}{2}$ is transformed into the region in between circles $u^2 + (v+1)^2 = 1$ and $u^2 + (v+2)^2 = 4$ in the w plane.

ii) Given strip is $0 < y < \frac{1}{2}$

when
$$y = 0$$

$$\Rightarrow v = 0$$
 by (2)

when
$$y = \frac{1}{2}$$
 we get $u^2 + (v+1)^2 = 1$ by (3)

Hence, the infinite strip $0 < y < \frac{1}{2}$ is mapped into the region outside the circle $u^2 + (v+1)^2 = 1$ in the lower half of the w plane.

Example: 3.45 Find the image of x = 2 under the transformation $w = \frac{1}{z}$. [Anna – May 1998]

Solution:

Given
$$w = \frac{1}{z}$$

i.e., $z = \frac{1}{w}$
 $z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)+(u-iv)} = \frac{u-iv}{u^2+v^2}$
 $x + iy = \left[\frac{u}{u^2+v^2}\right] + i\left[\frac{-v}{u^2+v^2}\right]$
i.e., $x = \frac{u}{u^2+v^2}$(1), $y = \frac{-v}{u^2+v^2}$ (2)

Given x = 2 in the z plane.

which is a circle whose centre is $(\frac{1}{4}, 0)$ and radius $\frac{1}{4}$

x = 2 in the z plane is transformed into a circle in the w plane.

Example: 3.46 What will be the image of a circle containing the origin(i.e., circle passing through the origin) in the XY plane under the transformation $w = \frac{1}{z}$? [Anna – May 2002] Solution:

Given
$$w = \frac{1}{z}$$

i.e., $z = \frac{1}{w}$

$$z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)+(u-iv)} = \frac{u-iv}{u^2+v^2}$$

$$x + iy = \left[\frac{u}{u^2+v^2}\right] + i\left[\frac{-v}{u^2+v^2}\right]$$
i.e., $x = \frac{u}{u^2+v^2}$... (1),

$$y = \frac{-v}{u^2+v^2}$$
 ... (2)

Given region is circle $x^2 + y^2 = a^2$ in z plane.

Substitute, (1) and (2), we get

$$\left[\frac{u^2}{(u^2+v^2)^2} + \frac{v^2}{(u^2+v^2)^2}\right] = a^2$$

$$\left[\frac{u^2+v^2}{(u^2+v^2)^2}\right] = a^2$$

$$\frac{1}{(u^2+v^2)} = a^2$$

$$u^2 + v^2 = \frac{1}{a^2}$$

Therefore the image of circle passing through the origin in the XY -plane is a circle passing through the origin in the w - plane.

Example: 3.47 Determine the image of 1 < x < 2 under the mapping $w = \frac{1}{z}$

Solution:

Given
$$w = \frac{1}{z}$$

i.e., $z = \frac{1}{w}$

$$z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)+(u-iv)} = \frac{u-iv}{u^2+v^2}$$

$$x + iy = \left[\frac{u}{u^2+v^2}\right] + i\left[\frac{-v}{u^2+v^2}\right]$$
i.e., $x = \frac{u}{u^2+v^2}$ (1), $y = \frac{-v}{u^2+v^2}$ (2)

Given 1 < x < 2

When
$$x = 1$$

$$\Rightarrow 1 = \frac{u}{u^2 + v^2} \quad \text{by } \dots (1)$$

$$\Rightarrow u^2 + v^2 = u$$

$$\Rightarrow u^2 + v^2 - u = 0$$

which is a circle whose centre is $(\frac{1}{2}, 0)$ and is $\frac{1}{2}$

When
$$x = 2$$

$$\Rightarrow 2 = \frac{u}{u^2 + v^2} \quad \text{by } \dots (1)$$

$$\Rightarrow u^2 + v^2 = \frac{u}{2}$$

$$\Rightarrow u^2 + v^2 - \frac{u}{2} = 0$$

which is a circle whose centre is $(\frac{1}{4}, 0)$ and is $\frac{1}{4}$

Hence, the infinite strip 1 < x < 2 is transformed into the region in between the circles in the w – plane.

Example: 3.48 Show the transformation $w = \frac{1}{z}$ transforms all circles and straight lines in the z – plane into circles or straight lines in the w – plane.

Solution:

Given
$$w = \frac{1}{z}$$

i.e., $z = \frac{1}{w}$
Now, $w = u + iv$
 $z = \frac{1}{w} = \frac{1}{u + iv} = \frac{u - iv}{u + iv + u - iv} = \frac{u - iv}{u^2 + v^2}$
i.e., $x + iy = \frac{u}{u^2 + v^2} + i\frac{v}{u^2 + v^2}$
 $x = \frac{u}{u^2 + v^2}$ (1), $y = \frac{-v}{u^2 + v^2}$... (2)

The general equation of circle is

$$a(x^{2} + y^{2}) + 2gx + 2fy + c = 0 \qquad \dots (3)$$

$$a\left[\frac{u^{2}}{(u^{2} + v^{2})^{2}} + \frac{v^{2}}{(u^{2} + v^{2})^{2}}\right] + 2g\left[\frac{u}{u^{2} + v^{2}}\right] + 2f\left[\frac{-v}{u^{2} + v^{2}}\right] + c = 0$$

$$a\frac{(u^{2} + v^{2})}{(u^{2} + v^{2})^{2}} + 2g\frac{u}{u^{2} + v^{2}} - 2f\frac{v}{u^{2} + v^{2}} + c = 0$$

The transformed equation is

$$c(u^2 + v^2) + 2gu - 2fv + a = 0$$
 ... (4)

- (i) $a \neq 0, c \neq 0 \Rightarrow$ circles not passing through the origin in z plane map into circles not passing through the origin in the w plane.
- (ii) $a \neq 0, c = 0 \Rightarrow$ circles through the origin in z plane map into straight lines not through the origin in the w plane.
- (iii) $a = 0, c \neq 0 \Rightarrow$ the straight lines not through the origin in z plane map onto circles through the origin in the w plane.
- (iv) $a = 0, c = 0 \Rightarrow$ straight lines through the origin in z plane map onto straight lines through the origin in the w plane.

Example: 3.49 Find the image of the hyperbola $x^2 - y^2 = 1$ under the transformation $w = \frac{1}{z}$.

[A.U M/J 2010, M/J 2012]

Solution:

Given
$$w = \frac{1}{z}$$

$$x + iy = \frac{1}{Re^{i\phi}}$$

$$x + iy = \frac{1}{R}e^{-i\phi} = \frac{1}{R}[\cos\phi - i\sin\phi]$$

$$x = \frac{1}{R}\cos\phi, \ y = -\frac{1}{R}\sin\phi$$
Given $x^2 - y^2 = 1$

$$\Rightarrow \left[\frac{1}{R}\cos\phi\right]^2 - \left[\frac{-1}{R}\sin\phi\right]^2 = 1$$

$$\frac{\cos^2\phi - \sin^2\phi}{R^2} = 1$$

$$\cos 2\phi = R^2 \qquad i.e., R^2 = \cos 2\phi$$

which is lemniscate

4. Transformation $w = z^2$

Problems based on $w = z^2$

Example: 3.50 Discuss the transformation $w = z^2$. [Anna – May 2001]

Solution:

Given
$$w = z^2$$

 $u + iv = (x + iy)^2 = x^2 + (iy)^2 + i2xy = x^2 - y^2 + i2xy$
 $i.e., u = x^2 - y^2$ (1), $v = 2xy$ (2)

Elimination:

$$(2) \Rightarrow x = \frac{v}{2y}$$

$$(1) \Rightarrow u = \left(\frac{v}{2y}\right)^2 - y^2$$

$$\Rightarrow u = \frac{v^2}{4y^2} - y^2$$

$$\Rightarrow 4uy^2 = v^2 - 4y^4$$

$$\Rightarrow 4uy^2 + 4y^4 = v^2$$

$$\Rightarrow y^2[4u + 4y^2] = v^2$$

$$\Rightarrow 4y^2[u + y^2] = v^2$$

$$\Rightarrow v^2 = 4y^2(y^2 + u)$$
when $y = c \ (\neq 0)$, we get
$$v^2 = 4c^2(u + c^2)$$

which is a parabola whose vertex at $(-c^2, 0)$ and focus at (0,0)

Hence, the lines parallel to X-axis in the z plane is mapped into family of confocal parabolas in the w plane.

when
$$y = 0$$
, we get $v^2 = 0$ i.e., $v = 0$, $u = x^2$ i.e., $u > 0$

Hence, the line y = 0, in the z plane are mapped into v = 0, in the w plane.

Elimination:

$$(2) \Rightarrow y = \frac{v}{2x}$$

$$(1) \Rightarrow u = x^2 - \left(\frac{v}{2x}\right)^2$$

$$\Rightarrow u = x^2 - \frac{v^2}{4x^2}$$

$$\Rightarrow \frac{v^2}{4x^2} = x^2 - u$$

$$\Rightarrow v^2 = (4x^2)(x^2 - u)$$

when
$$x = c \neq 0$$
, we get $v^2 = 4c^2(c^2 - u) = -4c^2(u - c^2)$

which is a parabola whose vertex at $(c^2, 0)$ and focus at (0,0) and axis lies along the u -axis and which is open to the left.

Hence, the lines parallel to y axis in the z plane are mapped into confocal parabolas in the w plane when x = 0, we get $v^2 = 0$. i.e., v = 0, $u = -y^2$ i.e., u < 0

i.e., the map of the entire y axis in the negative part or the left half of the u -axis.

Example: 3.51 Find the image of the hyperbola $x^2 - y^2 = 10$ under the transformation $w = z^2$ if w = u + iv [Anna – May 1997]

Solution:

Given
$$w = z^2$$

 $u + iv = (x + iy)^2$
 $= x^2 - y^2 + i2xy$
 $i.e., u = x^2 - y^2 \dots \dots (1)$
 $v = 2xy \dots \dots (2)$
Given $x^2 - y^2 = 10$
 $i.e., u = 10$

Hence, the image of the hyperbola $x^2 - y^2 = 10$ in the z plane is mapped into u = 10 in the w plane which is a straight line.

Example: 3.52 Determine the region of the w plane into which the circle |z-1|=1 is mapped by the transformation $w=z^2$.

Solution:

In polar form
$$z = re^{i\theta}$$
, $w = Re^{i\phi}$
Given $|z - 1| = 1$
i.e., $|re^{i\theta} - 1| = 1$
 $\Rightarrow |r\cos\theta + ir\sin\theta| = 1$
 $\Rightarrow |(r\cos\theta - 1) + ir\sin\theta| = 1$
 $\Rightarrow (r\cos\theta - 1)^2 + (r\sin\theta)^2 = 1^2$
 $\Rightarrow r^2\cos^2\theta + 1 - 2r\cos\theta + r^2\sin^2\theta = 1$
 $\Rightarrow r^2[\cos^2\theta + \sin^2\theta = 2r\cos\theta$
 $\Rightarrow r^2 = 2r\cos\theta$
 $\Rightarrow r = 2\cos\theta$... (1)
Given $w = z^2$
 $Re^{i\phi} = (re^{i\theta})^2$
 $Re^{i\phi} = r^2e^{i2\theta}$

$$\Rightarrow R = r^{2}, \qquad \phi = 2\theta$$

$$(1) \qquad \Rightarrow r^{2} = (2\cos\theta)^{2}$$

$$\Rightarrow r^{2} = 4\cos^{2}\theta$$

$$= 4\left[\frac{1+\cos 2\theta}{2}\right]$$

$$r^{2} = 2[1+\cos 2\theta]$$

$$R = 2[1+\cos\phi] \qquad by (2),$$

which is a Cardioid

Example: 3.53 Find the image under the mapping $w = z^2$ of the triangular region bounded by y = 1, x = 1, and x + y = 1 and plot the same. [Anna, Oct., - 1997]

Solution:

In Z-plane given lines are y = 1, x = 1, x + y = 1

Given
$$w = z^2$$

$$u + iv = (x + iy)^{2}$$
$$u + iv = x^{2} - y^{2} + 2xyi$$

Equating the real and imaginary parts, we get

$$u = x^2 - y^2$$
 (1)
 $v = 2xy$ (2)

When $x = 1$		When $y = 1$		
$(1) \Rightarrow u = 1 - y^2$	(3)	$(1) \Rightarrow u = x^2 - 1$	(5)	
$(2) \Rightarrow v = 2y$	(4)	$(2) \Rightarrow v = 2x$	(6)	
$(4) \Rightarrow v^2 = 4y^2$		$(6) \Rightarrow v^2 = 4x^2$		
$v^2 = 4(1-u) by (3)$		=4(u+1)by(5)		
i.e., $v^2 = -4(u-1)$)			

when
$$x + y = 1$$

$$(1) \Rightarrow u = (x+y)(x-y)$$
$$u = x-y \qquad [\because x+y=1]$$

$$u = \sqrt{(x+y)^2 - 4xy}$$
$$u = \sqrt{1 - 2v}$$
$$u^2 = 1 - 2v = -2\left(v - \frac{1}{2}\right)$$

 \therefore The image of x = 1 is $v^2 = -4(u - 1)$

The image of y = 1 is $v^2 = 4(u + 1)$

The image of x + y = 1 is $u^2 = -2\left(v - \frac{1}{2}\right)$

$v^2 = -4(u-1)$				
u	0	1		
v	<u>±</u> 2	0		

$v^2 = 4(u+1)$			
u	0	-1	
V	<u>±</u> 2	0	

$u^2 = -2\left(v - \frac{1}{2}\right)$					
u	0	1	-1		
v	1/2	0	0		

Problems based on critical points of the transformation

Example: 3.54 Find the critical points of the transformation $w^2 = (z - \alpha)(z - \beta)$.

[A.U Oct., 1997] [A.U N/D 2014] [A.U M/J 2016 R-13]

Solution:

Given
$$w^2 = (z - \alpha) (z - \beta)$$
 ...(1)

Critical points occur at $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$

Differentiation of (1) w. r. to z, we get

$$\Rightarrow 2w \frac{dw}{dz} = (z - \alpha) + (z - \beta)$$

$$= 2z - (\alpha + \beta)$$

$$\Rightarrow \frac{dw}{dz} = \frac{2z - (\alpha + \beta)}{2w} \qquad ...(2)$$
Case $(i) \frac{dw}{dz} = 0$

Case
$$(i)\frac{dw}{dz} = 0$$

$$\Rightarrow \frac{2z - (\alpha + \beta)}{2w} = 0$$

$$\Rightarrow 2z - (\alpha + \beta) = 0$$

$$\Rightarrow 2z = \alpha + \beta$$

$$\Rightarrow z = \frac{\alpha + \beta}{2}$$

Case
$$(ii)\frac{dz}{dw} = 0$$

$$\Rightarrow \frac{2w}{2z - (\alpha + \beta)} = 0$$

$$\Rightarrow \frac{w}{z - \frac{\alpha + \beta}{2}} = 0$$

$$\Rightarrow w = 0 \Rightarrow (z - \alpha)(z - \beta) = 0$$

$$\Rightarrow z = \alpha, \beta$$

 \therefore The critical points are $\frac{\alpha+\beta}{2}$, α and β .

Example: 3.55 Find the critical points of the transformation $w = z^2 + \frac{1}{z^2}$. [A.U A/M 2017 R-13] **Solution:**

Given
$$w = z^2 + \frac{1}{z^2}$$
 ... (1)

Critical points occur at $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$

Differentiation of (1) w. r. to z, we get

$$\Rightarrow \frac{dw}{dz} = 2z - \frac{2}{z^3} = \frac{2z^4 - 2}{z^3}$$

Case
$$(i)\frac{dw}{dz} = 0$$

$$\Rightarrow \frac{2z^4 - 2}{z^3} = 0 \Rightarrow 2z^4 - 2 = 0$$
$$\Rightarrow z^4 - 1 = 0$$
$$\Rightarrow z = +1, +i$$

Case
$$(ii)\frac{dz}{dw} = 0$$

$$\Rightarrow \frac{z^3}{2z^4 - 2} = 0 \Rightarrow z^3 = 0 \Rightarrow z = 0$$

 \therefore The critical points are ± 1 , $\pm i$, 0

Example: 3.56 Find the critical points of the transformation $w = z + \frac{1}{z}$

Solution:

Given
$$w = z + \frac{1}{z}$$
 ...(1)

Critical points occur at $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$

Differentiation of (1) w. r. to z, we get

$$\Rightarrow \frac{dw}{dz} = 1 - \frac{1}{z^2} = \frac{z^2 - 1}{z^2}$$

Case
$$(i)\frac{dw}{dz} = 0$$

$$\Rightarrow \frac{z^2 - 1}{z^3} = 0 \Rightarrow z^2 - 1 = 0 \Rightarrow z = \pm 1$$

Case
$$(ii)\frac{dz}{dw} = 0$$

$$\Rightarrow \frac{z^3}{z^2 - 1} = 0 \Rightarrow z^2 = 0 \Rightarrow z = 0$$

 \therefore The critical points are $0, \pm 1$.

Example: 3.57 Find the critical points of the transformation $w = 1 + \frac{2}{z}$. [A.U N/D 2013 R-08] Solution:

Given
$$w = 1 + \frac{2}{z}$$
 ... (1)

Critical points occur at $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$

Differentiation of (1) w. r. to z, we get

$$\Rightarrow \frac{dw}{dz} = \frac{-2}{z^2}$$

Case
$$(i)\frac{dw}{dz} = 0$$

$$\Rightarrow \frac{-2}{z^2} = 0$$

Case
$$(ii)\frac{dz}{dw} = 0$$

$$\Rightarrow \frac{z^2}{2} = 0 \Rightarrow z = 0$$

 \therefore The critical points is z = 0

Example: 3.58 Prove that the transformation $w = \frac{z}{1-z}$ maps the upper half of the z plane into the upper half of the w plane. What is the image of the circle |z| = 1 under this transformation.

Solution:

Given
$$|z| = 1$$
 is a circle

Centre =
$$(0,0)$$

$$Radius = 1$$

Given
$$w = \frac{z}{1-z}$$

$$\Rightarrow z = \frac{w}{w+1}$$

$$\Rightarrow |z| = \left| \frac{w}{w+1} \right| = \frac{|w|}{|w+1|}$$

Given
$$|z| = 1$$

$$\Rightarrow \frac{|w|}{|w+1|} = 1$$

$$\Rightarrow |w| = |w+1|$$

$$\Rightarrow |u+iv| = |u+iv+1|$$

$$\Rightarrow \sqrt{u^2 + v^2} = \sqrt{(u+1)^2 + v^2}$$

$$\Rightarrow u^2 + v^2 = (u+1)^2 + v^2$$

$$\Rightarrow u^2 + v^2 = u^2 + 2u + 1 + v^2$$

$$\Rightarrow 0 = 2u + 1$$

$$\Rightarrow u = \frac{-1}{2}$$

Further the region |z| < 1 transforms into $u > \frac{-1}{2}$

Exercise: 3.5

- 1. Define Critical point of a transformation.
- 2. Find the image the circle |z| = a under the following transformations.
 - (i) w = z + 2 + 3i
 - (ii) w = 2z [A.U N/D 2016 R-13]
- 3. Find the image of the circle |z+1|=1 in the complex plane under the mapping $=\frac{1}{z}$.
- 4. Find the image of |z 3i| = 3 under the mapping $w = \frac{1}{z}$
- 5. Consider the transformation w = 3z, corresponding to the region R of z plane bounded by x = 0, y = 0, x + y = 2.
- 6. Verify the transformation $w = 1 + \frac{iz}{1+z}$ maps the exterior of the circle |z| = 1 into the upper half plane v > 0.
- 7. Find the image of |z 2i| = 3 under $w = \frac{1}{z}$
 - (i) the circle |z 2i| = 2
 - (ii) the strip 1 < x < 2
- 8. Show that the transformation $w = \frac{iz+1}{z+i}$ tranforms the exterior and interior regions of the circle |z| = 1 into the upper and lower half of the w plane respectively.
- 9. Show that $w = \frac{z-i}{z+i}$ maps the real axis in the z plane onto |w| = 1 in the w plane. Show also that the upper half of the z plane, $Im(z) \ge 0$, goes onto the circular disc $|w| \le 1$.
- 10. Prove that $w = \frac{1+iz}{i+z}$ maps the line segment joining -1 and 1 onto a semi circle in the w plane.
- 11. Show that the transformation $w = \frac{z-i}{z+i}$ maps the circular disc $|z| \le 1$ onto the lower half of the w plane.

- 12. Prove that $w = \frac{z}{1-z}$ maps the upper half of the z plane onto the upper half of the w plane. What is the image of the circle |z| = 1 under this transformation.
- 13. Show that the transformation $w = \frac{i-z}{i+z}$ maps the circle |z| = 1 onto the imaginary axis of the w plane. Find also the images of the interior and exterior of the circle.
- 14. Plot the image under the mapping $w = z^2$ of the rectangular region bounded by
 - (i) x = -1, x = 2, y = 1 and y = 2.
 - (ii) x = 1, x = 3, y = 1 and y = 2.
 - (iii) u = 1, u = 3, v = 1 and v = 2.
- 15. Under the mapping $w = e^z$ discuss the transforms of the lines.
 - (i) y = 0, (ii) $y = \frac{\pi}{2}$, (iii) $y = 2\pi$.

3.6. BILINEAR TRANSFORMATION

♦ 3.5.a. Introduction

The transformation $w = \frac{az+b}{cz+d}$, $ad-bc \neq 0$ where a,b,c,d are complex numbers, is called a bilinear transformation.

This transformation was first introduced by A.F. Mobius, So it is also called Mobius transformation.

A bilinear transformation is also called a linear fractional transformation because $\frac{az+b}{cz+d}$ is a fraction formed by the linear functions az - b and cz + d.

Theorem: 1 Under a bilinear transformation no two points in z plane go to the same point in w plane. Proof:

Suppose z_1 and z_2 go to the same point in the w plane under the transformation $w = \frac{az+b}{cz+d}$.

Then
$$\frac{az_1+b}{cz_1+d} = \frac{az_2+b}{cz_2+d}$$

 $\Rightarrow (az_1+b)(cz_2+d) = (az_2+b)(cz_1+d)$
 $i.e., (az_1+b)(cz_2+d) - (az_2+b)(cz_1+d) = 0$
 $\Rightarrow acz_1 z_2 + adz_1 + bcz_2 + bd - acz_1 z_2 - adz_2 - bcz_1 - bd = 0$
 $\Rightarrow (ad-bc)(z_1-z_2) = 0$
or $z_1 = z_2$ [: $ad-bc \neq 0$]

This implies that no two distinct points in the z plane go to the same point in w plane. So, each point in the z plane go to a unique point in the w plane.

Theorem: 2 The bilinear transformation which transforms z_1, z_2, z_3 , into w_1, w_2, w_3 is

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$

Proof:

If the required transformation $w = \frac{az+b}{cz+d}$.

$$\Rightarrow w - w_1 = \frac{az+b}{cz+d} - \frac{az_1+b}{cz_1+d} = \frac{(ad-bc)(z-z_1)}{(cz+d)(cz_1+d)}$$

$$\Rightarrow (cz+d)(cz_1+d)(w-w_1) = (ad-bc)(z-z_1)$$

$$\Rightarrow (cz_2+d)(cz_3+d)(w_2-w_3) = (ad-bc)(z_2-z_3)$$

$$\Rightarrow (cz+d)(cz_3+d)(w-w_3) = (ad-bc)(z-z_3)$$

$$\Rightarrow (cz_2+d)(cz_1+d)(w_2-w_1) = (ad-bc)(z_2-z_1)$$

$$\Rightarrow \frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{\left[\frac{(ad-bc)(z-z_1)}{(cz+d)(cz_1+d)}\right]^{\left[\frac{(ad-bc)(z_2-z_3)}{(cz+d)(cz_3+d)}\right]^{\left[\frac{(ad-bc)(z_2-z_3)}{(cz+d)(cz_3+d)}\right]^{\left[\frac{(ad-bc)(z_2-z_3)}{(cz+d)(cz_3+d)}\right]^{\left[\frac{(ad-bc)(z_2-z_3)}{(cz+d)(cz_3+d)}\right]^{\left[\frac{(ad-bc)(z_2-z_3)}{(cz+d)(cz_3+d)}\right]^{\left[\frac{(ad-bc)(z_2-z_3)}{(cz+d)(cz_3+d)}\right]^{\left[\frac{(ad-bc)(z_2-z_3)}{(cz+d)(cz_3+d)}\right]^{\left[\frac{(ad-bc)(z_2-z_3)}{(cz+d)(cz_3+d)}\right]^{\left[\frac{(ad-bc)(z_2-z_3)}{(cz+d)(cz_3+d)}\right]}}$$

$$= \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} \qquad ... (1)$$

$$\text{Let : } A = \frac{w_2-w_3}{w_2-w_1}, B = \frac{z_2-z_3}{z_2-z_1}$$

$$(1) \Rightarrow \frac{w-w_1}{w-w_3} A = \frac{z-z_1}{z-z_3} B$$

$$= \frac{wA-w_1A}{w-w_3} = \frac{zB-z_1B}{z-z_3}$$

$$\Rightarrow wAz - wAz_3 - w_1Az + w_1Az_3 = wBz - wz_1B - w_3zB + w_3z_1B$$

$$\Rightarrow w[(A-B)z + (Bz_1 - Az_3)] = (Aw_1 - Bw_3)z + (Bw_3z_1 - Aw_1z_3)$$

$$\Rightarrow w = \frac{(Aw_1-Bw_3)z+(Bw_3z_1-Aw_1z_3)}{(A-B)z+(Bz_1-Az_3)}$$

$$= \frac{az+b}{cz+d}, \text{ Hence } a = Aw_1 - Bw_3, b = Bw_3z_1 - Aw_1z_3, c = A-B, d = Bz_1 - Az_3$$

Cross ratio

Definition:

Given four point z_1, z_2, z_3, z_4 in this order, the ratio $\frac{(z-z_1)(z_3-z_4)}{(z_2-z_3)(z_4-z_1)}$ is called the cross ratio of the points.

Note: (1) $w = \frac{az+b}{cz+d}$ can be expressed as cwz + dw - (az+b) = 0

It is linear both in w and z that is why, it is called bilinear.

Note: (2) This transformation is conformal only when $\frac{dw}{dz} \neq 0$

i.e.,
$$\frac{ad - bc}{(cz + d)^2} \neq 0$$

i.e., $ad - bc \neq 0$

If $ad - bc \neq 0$, every point in the z plane is a critical point.

Note: (3) Now, the inverse of the transformation $w = \frac{az+b}{cz+d}$ is $z = \frac{-dw+b}{cw-a}$ which is also a bilinear transformation except $w = \frac{a}{c}$.

Note: (4) Each point in the plane except $z = \frac{-d}{c}$ corresponds to a unique point in the w plane.

The point $z = \frac{-d}{c}$ corresponds to the point at infinity in the w plane.

Note: (5) The cross ratio of four points

$$\frac{(w_1 - w_2)(w_3 - w_4)}{(w_2 - w_3)(w_4 - w_1)} = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_2 - z_3)(z_4 - z_1)}$$
 is invariant under bilinear

transformation.

Note: (6) If one of the points is the point at infinity the quotient of those difference which involve this points is replaced by 1.

Suppose $z_1 = \infty$, then we replace $\frac{z-z_1}{z_2-z_1}$ by 1 (or)Omit the factors involving ∞

Example: 3.59 Find the fixed points of $w = \frac{2zi+5}{z-4i}$.

Solution:

The fixed points are given by replacing w by z

$$z = \frac{2zi + 5}{z - 4i}$$

$$z^2 - 4iz = 2zi + 5 ; z^2 - 6iz - 5 = 0$$

$$z = \frac{6i \pm \sqrt{-36 + 20}}{2} \qquad \therefore z = 5i, i$$

Example: 3.60 Find the invariant points of $w = \frac{1+z}{1-z}$

Solution:

The invariant points are given by replacing w by z

$$z = \frac{1+z}{1-z}$$

$$\Rightarrow z - z^2 = 1 + z$$

$$\Rightarrow z^2 = -1$$

$$\Rightarrow z = \pm i$$

Example: 3.61 Obtain the invariant points of the transformation $w = 2 - \frac{2}{z}$. [Anna, May 1996]

The invariant points are given by

$$z = 2 - \frac{2}{z}$$
; $z = \frac{2z - 2}{z}$
 $z^2 = 2z - 2$; $z^2 - 2z + 2 = 0$
 $z = \frac{2 \pm \sqrt{4 - 8}}{2} = \frac{2 \pm \sqrt{-4}}{2} = \frac{2 \pm 2i}{2} = 1 \pm i$

Example: 3.62 Find the fixed point of the transformation $w = \frac{6z-9}{z}$. [A.U N/D 2005]

Solution:

Solution:

The fixed points are given by replacing w = z

i.e.,
$$w = \frac{6z-9}{z} \Rightarrow z = \frac{6z-9}{z}$$

$$\Rightarrow z^2 = 6z - 9$$

$$\Rightarrow z^2 - 6z + 9 = 0$$
$$\Rightarrow (z - 3)^2 = 0$$
$$\Rightarrow z = 3.3$$

The fixed points are 3, 3.

Example: 3.63 Find the invariant points of the transformation $w = \frac{2z+6}{z+7}$. [A.U M/J 2009]

Solution:

The invariant (fixed) points are given by

$$w = \frac{2z+6}{z+7}$$

$$\Rightarrow z^2 + 7z = 2z + 6$$

$$\Rightarrow z^2 + 5z - 6 = 0$$

$$\Rightarrow (z+6)(z-1) = 0$$

$$\Rightarrow z = -6, z = 1$$

Example: 3.64 Find the invariant points of $f(z) = z^2$. [A.U M/J 2014 R-13]

Solution:

The invariant points are given by z = w = f(z)

$$\Rightarrow z = z^{2}$$

$$\Rightarrow z^{2} - z = 0$$

$$\Rightarrow z(z - 1) = 0$$

$$\Rightarrow z = 0, \quad z = 1$$

Example 3.65 Find the invariant points of a function $f(z) = \frac{z^3 + 7z}{7 - 6zi}$. [A.U D15/J16 R-13]

Solution:

Given
$$w = f(z) = \frac{z^3 + 7z}{7 - 6zi}$$

The invariant points are given by

$$\Rightarrow z = \frac{z^3 + 7z}{7 - 6zi}$$

$$\Rightarrow 7 - 6zi = z^2 + 7$$

$$\Rightarrow -6zi = z^2 \Rightarrow z^2 + 6zi = 0 \Rightarrow z(z + 6i) = 0$$

$$\Rightarrow z = 0, \ z = -6i$$

PROBLEMS BASED ON BILINEAR TRANSFORMATION

Example: 3.66 Find the bilinear transformation that maps the points z=0,-1,i into the points $w=i,0,\infty$ respectively. [A.U. A/M 2015 R-13, A.U N/D 2013, N/D 2014]

Solution:

Given
$$z_1 = 0$$
, $z_2 = -1$, $z_3 = i$, $w_1 = i$, $w_2 = 0$, $w_3 = \infty$,

Let the required transformation be

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$

[omit the factors involving w_3 , since $w_3 = \infty$]

$$\Rightarrow \frac{w - w_1}{w_2 - w_1} = \frac{(z - z_1)(z_2 - z_3)}{(z - z_3)(z_2 - z_1)}$$

$$\Rightarrow \frac{w - i}{0 - i} = \frac{(z - 0)(-1 - i)}{(z - i)(-1 - 0)}$$

$$\Rightarrow \frac{w - i}{-i} = \frac{z}{(z - i)} (1 + i)$$

$$\Rightarrow w - i = \frac{z}{(z - i)} (-i + 1)$$

$$\Rightarrow w = \frac{z}{(z - i)} (-i + 1) + i = \frac{-iz + z + iz + 1}{(z - i)} = \frac{z + 1}{z - i}$$

Aliter: Given $z_1 = 0$, $z_2 = -1$, $z_3 = i$,

$$w_1 = i$$
, $w_2 = 0$, $w_3 = \infty$

Let the required transformation be

$$w = \frac{az+b}{cz+d} \dots (1), \ ad - bc \neq 0$$

$$i = \frac{b}{d}$$

$$w_1 = \frac{az_1+b}{cz_1+d} \qquad w_2 = \frac{az_2+b}{cz_2+d} \qquad w_3 = \frac{az_3+b}{cz_3+d}$$

$$i = \frac{b}{d} \qquad 0 = \frac{-a+b}{-c+d} \qquad \frac{1}{0} = \frac{ai+b}{ci+d}$$

$$b = di \qquad \Rightarrow -a+b = 0 \qquad \Rightarrow ci+d = 0$$

$$\Rightarrow a = b \qquad \Rightarrow d = -ci$$

$$\therefore a = b = di = c$$

$$\therefore (1) \Rightarrow w = \frac{az+a}{az+\frac{a}{2}} = \frac{z+1}{z+\frac{1}{2}} = \frac{z+1}{z-i}$$

Example: 3.67 Find the bilinear transformation that maps the points ∞ , i, 0 onto 0, i, ∞ respectively. [Anna, May 1997] [A.U N/D 2012] [A.U A/M 2017 R-08]

Solution:

Given
$$z_1 = \infty$$
, $z_2 = i$, $z_3 = 0$, $w_1 = 0$, $w_2 = i$, $w_3 = \infty$,

Let the required transformation be

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$

[omit the factors involving z_1 , and w_3 , since $z_1 = \infty$, $w_3 = \infty$]

$$\Rightarrow \frac{w - w_1}{w_2 - w_1} = \frac{(z_2 - z_3)}{z - z_3}$$
$$\Rightarrow \frac{w - 0}{i - 0} = \frac{i - 0}{z - 0}$$
$$\Rightarrow w = \frac{-1}{z}$$

Example: 3.68 Find the bilinear transformation which maps the points 1, i, -1 onto the points $0, 1, \infty$, show that the transformation maps the interior of the unit circle of the z – plane onto the upper half of the w – plane. [A.U. May 2001] [A.U M/J 2014] [A.U D15/J16 R-13] Solution:

Given
$$z_1 = 1$$
, $z_2 = i$, $z_3 = -1$
 $w_1 = 0$, $w_2 = 1$, $w_3 = \infty$,

Let the transformation be

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$

[Omit the factors involving w_3 , since $w_3 = \infty$]

$$\Rightarrow \frac{w - w_1}{w_2 - w_1} = \frac{(z - z_1)(z_2 - z_3)}{(z - z_3)(z_2 - z_1)}$$

$$\Rightarrow \frac{w - 0}{1 - 0} = \frac{(z - 1)(i + 1)}{(z + 1)(i - 1)} \qquad \because \left[\left(\frac{i + 1}{i - 1} \right) \left(\frac{i + 1}{i + 1} \right) \right] = \left[\frac{i^2 + i + i + 1}{i^2 - i^2} \right] = \left[\frac{2i}{-2} \right] = -i$$

$$\Rightarrow w = \frac{(z - 1)(i + 1)}{(z + 1)(i - 1)}$$

$$= \frac{z - 1}{z + 1} \left[-i \right]$$

$$\Rightarrow w = \frac{(-i)z + i}{(1)z + 1} \left[\because w = \frac{az + b}{cz + d}, ad - bc \neq 0 \text{ Form} \right]$$

To find z:

$$\Rightarrow wz + w = -iz + i$$

$$\Rightarrow wz + iz = -w + i$$

$$\Rightarrow z[w + i] = -w + i$$

$$\Rightarrow z = \frac{(w - i)}{w + i}$$

To prove: |z| < 1 maps v > 0

$$\Rightarrow |z| < 1$$

$$\Rightarrow \left\lceil \frac{-(w-i)}{w+i} \right\rceil < 1$$

$$\Rightarrow \left\lceil \frac{w-i}{w+i} \right\rceil < 1$$

$$\Rightarrow |w-i| < |w+i|$$

$$\Rightarrow |u+iv-i| < |u+iv+i|$$

$$\Rightarrow |u+i(v-1)| < |u+i(v+i)|$$

$$\Rightarrow u^2 + (v-1)^2 < u^2 + (v+1)^2$$

$$\Rightarrow (v-1)^2 < (v+1)^2$$

$$\Rightarrow v^2 - 2v + 1 < v^2 + 2v + 1$$

$$\Rightarrow -4v < 0$$

$$\Rightarrow v > 0$$

Example: 3.69 Determine the bilinear transformation that maps the points -1, 0, 1, in the z plane onto the points 0, i, 3i in the w plane. [Anna, May 1999]

Solution:

Given
$$z_1 = -1$$
, $z_2 = 0$, $z_3 = 1$, $w_1 = 0$, $w_2 = i$, $w_3 = 3i$,

Let the required transformation be

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$

$$\Rightarrow \frac{(w-0)(i-3i)}{(w-3i)(i-0)} = \frac{[z-(-1)][0-1]}{(z-1)[0-(-1)]}$$

$$\Rightarrow \frac{w(-2i)}{(w-3i)(i)} = \frac{(z+1)(-1)}{(z-1)(1)}$$

$$\Rightarrow \frac{-2w}{w-3i} = \frac{z+1}{z-1}$$

$$\Rightarrow \frac{2w}{w-3i} = \frac{z+1}{z-1}$$

$$\Rightarrow 2wz - 2w = wz + w - 3zi - 3i$$

$$\Rightarrow 2wz - 2w - wz - w = -3i(z+1)$$

$$\Rightarrow w[2z - 2 - z - 1] = -3i(z+1)$$

$$\Rightarrow w[z - 3] = -3i(z+1)$$

$$\Rightarrow w = -3i\frac{(z+1)}{(z-3)}$$

Note: Either image or object or both are infinity should not apply the following Aliter method.

Aliter:

Given
$$z_1 = -1$$
, $z_2 = 0$, $z_3 = 1$, $w_1 = 0$, $w_2 = i$, $w_3 = 3i$,

Let the required transformation be

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$
Let $A = \frac{w_2-w_3}{w_2-w_1} = \frac{i-3i}{i-0} = \frac{-2i}{i} = -2$

$$B = \frac{z_2-z_3}{z_2-z_1} = \frac{0-1}{0+1} = -1$$

$$\Rightarrow a = Aw_1 - Bw_3 = 0 + 3i = 3i$$

$$\Rightarrow b = Bw_3z_1 - Aw_1z_3 = (-1)(3i)(-1) - 0 = 3i$$

$$\Rightarrow c = A - B = (-2) - (-1) = -1$$

$$\Rightarrow d = Bz_1 - Az_3 = (-1)(-1) - (-2)(1) = 3$$
We know that, $w = \frac{az+b}{cz+d}$, $ad - bc \neq 0$

 $w = \frac{(3i)+z(3i)}{(-1)z+3}$

Example: 3.70 Find the bilinear transformation which maps the points -2, 0, 2 into the points w = 0, 1, -i respectively. [Anna, May 2002]

Solution:

Given
$$z_1 = -1$$
, $z_2 = 0$, $z_3 = 2$, $w_1 = 0$, $w_2 = i$, $w_3 = -i$,

Let the required transformation be

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$
Let $A = \frac{w_2-w_3}{w_2-w_1} = \frac{i+i}{i-0} = \frac{2i}{i} = 2$

$$B = \frac{z_2-z_3}{z_2-z_1} = \frac{0-2}{0+2} = -1$$

$$\Rightarrow a = Aw_1 - Bw_3 = (2)(0) - (-1)(-1) = -i$$

$$\Rightarrow b = Bw_3z_1 - Aw_1z_3 = (-1)(-i)(-2) - (2)(0)(2) = -2i$$

$$\Rightarrow c = A - B = 2 - (-1) = 3$$

$$\Rightarrow d = Bz_1 - Az_3 = (-1)(-1) - (2)(2) = -2$$

We know that, $w = \frac{az+b}{cz+d}$, $ad - bc \neq 0$

$$\therefore w = \frac{(-i)z + (-2i)}{3z + (-2)}$$

Example: 3.71 Find the bilinear transformation which maps z=1,i,-1 respectively onto w=i,0,-i. Hence find the fixed points. [A.U, May 2001] [A.U April 2016 R-15 U.D] Solution:

Given
$$z_1 = 1$$
, $z_2 = i$, $z_3 = -1$, $w_1 = i$, $w_2 = 0$, $w_3 = -i$,

 $\therefore W = \frac{(-i+1)z + (-1-i)}{(-1+i)z + (-i-1)} = \frac{iz+1}{(-i)z+1}$

Let the required transformation be

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$
Let $A = \frac{w_2-w_3}{w_2-w_1} = \frac{0+i}{0-i} = -1$

$$B = \frac{z_2-z_3}{z_2-z_1} = \frac{i+1}{i-1} = -i$$

$$\Rightarrow a = Aw_1 - Bw_3 = (-1)(i) - (-i)(-i) = -i + 1$$

$$\Rightarrow b = Bw_3z_1 - Aw_1z_3 = (-i)(-i)(1) - (-1)(i)(-1) = -1 - i$$

$$\Rightarrow c = A - B = (-1) - (-i) = -1 + i$$

$$\Rightarrow d = Bz_1 - Az_3 = (-i)(1) - (-1)(-1) = -i - 1$$
We know that, $w = \frac{az+b}{cz+d}$, $ad - bc \neq 0$

Example: 3.72 Find the bilinear transformation which maps z = 0 onto w = -i and has -1 and 1 as the invariant points. Also show that under this transformation the upper half of the z plane maps onto the interior of the unit circle in the w plane. [A.U A/M 2017 R-13] Solution:

Given
$$z_1 = 0$$
, $z_2 = -1$, $z_3 = 1$, $w_1 = -i$, $w_2 = -1$, $w_3 = 1$,

Let the required transformation be

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$
Let $A = \frac{w_2-w_3}{w_2-w_1} = \frac{-1-1}{-1+i} = \frac{-2}{-1+i} = 1+i$

$$B = \frac{z_2-z_3}{z_2-z_1} = \frac{-1-1}{-1-0} = 2$$

$$\Rightarrow a = Aw_1 - Bw_3 = (1+i)(-i) - 2(1) = -i+1-2 = -i-1$$

$$\Rightarrow b = Bw_3z_1 - Aw_1z_3 = (2)(1)(0) - (1+i)(-i)(1) = i-1$$

$$\Rightarrow c = A - B = (1+i) - 2 = i-1$$

$$\Rightarrow d = Bz_1 - Az_3 = (2)(0) - (1+i)(1) = -(1+i)$$
We know that, $w = \frac{az+b}{cz+d}$, $ad - bc \neq 0$

$$\therefore w = \frac{(-i+1)z+(i-1)}{(i-1)z+(-1-i)} = \frac{z+(-i)}{(-i)z+1}$$

We know that,
$$z = \frac{-dw+b}{cw-a} = \frac{-w-i}{-iw-1} = \frac{w+i}{1+wi}$$

$$z = \frac{u+iv+i}{1(u+iv)i}$$

$$= \frac{u+iv+i}{1+iu-v} = \frac{u+iv+i}{(1-v)+iu}$$

$$= \left[\frac{u+iv+i}{(1-v)+iu}\right] \left[\frac{1-v-iu}{(1-v)-iu}\right]$$

$$= \frac{u-uv-iu^2+iv-iv^2+uv+i-iv+u}{(1-v)^2+u^2}$$

$$x + iy = \frac{2u+i[-u^2-v^2+1]}{(1-v)^2+u^2}$$

$$\Rightarrow y = \frac{1 - u^2 - v^2}{(1 - v)^2 + u^2}$$

Upper half of the z —plane

$$\Rightarrow y \ge 0$$

$$\Rightarrow \frac{1 - u^2 - v^2}{(1 - v)^2 + u^2} \ge 0$$

$$\Rightarrow 1 - u^2 - v^2 \ge 0$$

$$\Rightarrow 1 \ge u^2 + v^2$$

$$\Rightarrow u^2 + v^2 \le 1$$

Therefore the upper half of the z —plane maps onto the interior of the unit circles in the w-plane.

Example: 3.73 Find the Bilinear transformation that maps the points 1 + i, -i, 2 - i of the z -plane into the points 0, 1, i of the w-plane. [A.U M/J 2007, N/D 2007]

Solution:

Given
$$z_1 = 1 + i$$
 $w_1 = 0$ $z_2 = -i$ $w_2 = 1$ $z_3 = 2 - i$ $w_3 = i$

Let the required transformation be

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$

$$Let \quad A = \frac{w_2-w_3}{w_2-w_1} = \frac{1-i}{1-0} = 1 - i = \frac{1-i}{1+2i} (1+2i) = \frac{3+i}{1+2i}$$

$$B = \frac{z_2-z_3}{z_2-z_1} = \frac{-i-2+i}{-i-1-i} = \frac{-2}{-1-2i} = \frac{2}{1+2i}$$

$$\Rightarrow a = Aw_1 - Bw_3 = \left(\frac{3+i}{1+2i}\right)(0) - \left(\frac{2}{1+2i}\right)(i) = \frac{-2i}{1+2i}$$

$$\Rightarrow b = Bw_3z_1 - Aw_1z_3 = \left(\frac{2}{1+2i}\right)(i)(1+i) - 0 = \frac{-2+2i}{1+2i}$$

$$\Rightarrow c = A - B = \frac{3+i}{1+2i} - \frac{2}{1+2i} = \frac{1+i}{1+2i}$$

$$\Rightarrow d = Bz_1 - Az_3 = \left(\frac{2}{1+2i}\right)(1+i) - \left(\frac{3+i}{1+2i}\right)(2-i) = \frac{-5+3i}{1+2i}$$

We know that,
$$w = \frac{az+b}{cz+d}$$
, $ad - bc \neq 0$

$$\Rightarrow w = \frac{\left(\frac{-2i}{1+2i}\right)z + \left(\frac{2i-2}{1+2i}\right)}{\left(\frac{1+i}{1+2i}\right)z + \left(\frac{3i-5}{1+2i}\right)}$$

$$\Rightarrow w = \frac{(-2i)z + (2i-2)}{(1+i)z + (3i-5)}$$

Verification:

(i) If
$$z = 1 + i$$
, then
$$w = \frac{(-2i)(1+i)+(2i-2)}{(1+i)(1+i)+(3i-5)}$$

$$= \frac{-2i+2+2i-2}{(1+i)(1+i)+(3i-5)} = 0$$

(ii) If
$$z = -i$$
, then
$$w = \frac{(-2i)(-i) + (2i-2)}{(1+i)(-i) + (3i-5)}$$

$$= \frac{-2+2i-2}{-i+1+3i-5} = \frac{2i-4}{2i-4} = 1$$

(iii)If
$$z = -i$$
, then
$$w = \frac{(-2i)(2-i)+(2i-2)}{(1+i)(2-i)+(3i-5)} = \frac{-4i-2+2i-2}{2-i+2i+1+3i-5}$$

$$= \frac{-2i-4}{4i-2} = \frac{-i-2}{2i-1} \times \frac{2i+1}{2i+1}$$

$$= \frac{2-i-4i-2}{-4-1} = \frac{-5i}{-5} = i$$

Exercise: 3.6

1. Find the fixed points of the following mappings

(i)
$$w = \frac{2z-5}{z+4}$$
 Ans. $z = -1 \pm 2i$

(ii)
$$w = \frac{z-2}{z+3}$$
 Ans. $z = -1 \pm i$

(iii)
$$w = \frac{1}{z-2i}$$
 Ans. $z = i$

(iv)
$$w = \frac{5z+4}{z+5}$$
 Ans. $z = \pm 2$

- 2. Define bilinear transformation.
- 3. Find the most general bilinear transformation that maps the upper half of the z-plane onto the interior of the unit circle in the w-plane.
- 4. Find the bilinear transformation for the following

$$(1) - i, 0, i; -1, i, 1$$

Ans:
$$w = -i\left(\frac{z-1}{z+1}\right)$$

$$(2) 1, -1, \infty : 1 + i, 1 - i, 1$$

Ans:
$$w = \frac{z+i}{z}$$

$$(3) 0, 1, \infty ; i, 1 - i$$

Ans:
$$w = \frac{z+i}{1+zi}$$

$$(4)$$
 1, i , -1 ; 2, i , -2

Ans:
$$w = -\left(\frac{6z-2i}{iz-3}\right)$$

$$(5) 0, 1, \infty; -5, -1, 3$$

Ans:
$$w = \frac{3z-5}{z+1}$$

$$(6) \infty, i, 0 : 0, -i, \infty$$

Ans:
$$w = \frac{1}{3}$$

$$(7) - i, 0, i : \infty, -1, 0$$

Ans:
$$w = \frac{z-1}{z+1}$$

$$(8)\ 0,\ 1,\ \infty;\ i,\ -1,\ -i$$

Ans:
$$w = -i\left(\frac{z+i}{z-i}\right)$$

$$(9)\ 0, 1, -1; -1, 0, \infty$$

Ans:
$$w = \frac{z-1}{z+1}$$