CEFET-MG - Centro Federal de Educação Tecnológica de Minas Gerais - Prof. Alisson Marques

Inteligência Computacional Sistemas Fuzzy 02 - Conjuntos CEFET-MG - Centro Federal de Educação Tecnológica de Minas Gerais - Prof. Alisson Marques

Conjuntos Ordinários

Introdução

Conjuntos são utilizados para classificar elementos em conceitos gerais:

- números pares
- números impares
- o cidades que são capitais na América do Sul
- times de futebol
- ..

Conjuntos Ordinários

Introdução

Os elementos são divididos em dois grupos distintos:

- MEMBROS: pertencem ao conjunto
- NÃO-MEMBROS: não pertencem ao conjunto

Conjuntos Ordinários Universo de Discurso

Universo de discurso: espaço onde estão definidos os valores possíveis

Notação: X

Exemplo: define-se um universo de discurso discreto X que reúne todos os números inteiros entre -100 e 100. Algebricamente, esta definição é expressa por

$$X: \{x \in X | -100 \le x \le 100\}$$

Dentro do universo X considere o conjunto dos números positivos (denotado por A) e o conjunto dos números negativos (denotado por B), as relações de pertinência de alguns elementos em relação a estes conjuntos podem ser obtidas por

$$44 \in A$$
, ou, $\mu_A(44) = 1$
 $101 \notin B$, ou, $\mu_B(101) = 0$
 $-11 \in B$, ou, $\mu_B(-11) = 1$

onde $\mu_y(x)$ representa o grau de pertinência do elemento x em relação ao conjunto y.

Representação

- Lista dos membros: $A = \{a_1, a_2, ..., a_n\}$
- Método baseado em regra: $A = \{x | P(x)\}$
- Função característica: $\mu_A=1$ se $x\in A$ ou 0 caso contrário
- Propriedades (função característica):
 - $\mu_A(x): X \to \{0,1\}$
 - $\mu_X(x) = 1 \ e \ \mu_\emptyset(x) = 0$
 - X é o Conjunto Universo ou Universo de Discurso
 - Ø é o Conjunto Vazio

Função Característica

$$A = \{1, 2, 5\}$$

Função Característica

$$A = \{x | 1 \le x \le 5\}$$

Cardinalidade

- |A| = número de elementos de A.
- Exemplo: $A = \{1, 2, 5\} \Longrightarrow |A| = 3$

Potência

- $\wp = \text{conjunto de partes } (power set)$
- $A = \{1, 2, 5\}$
- $\wp(A) = {\emptyset, {1}, {2}, {5}, {1,2}, {1,5}, {2,5}, {1,2,5}}$
- $|\wp(A)| = 2^{|A|}$
- $A = \{1, 2, 5\} \Longrightarrow |\wp(A)| = 2^{|A|} = 2^3 = 8$

Complemento

•
$$A = \{x | 0 \le x \le 4\}$$

$$\bullet \ \bar{A} = \{x | x \notin A\}$$

Complemento Relativo

- Onjunto contendo todos os membros de B que também não são membros de A.
- $\bullet B A = \{x | x \in B \ e \ x \notin A\}$

União

$$A \cup B = \{x | x \in A \text{ ou } x \in B\}$$

Exemplo:
$$A = \{x | 0 \le x \le 4\}$$
 e $B = \{x | 3 \le x \le 5\}$

Intercessão

$$A \cap B = \{x | x \in A \ e \ x \in B\}$$

Exemplo:
$$A = \{x | 0 \le x \le 4\}$$
 e $B = \{x | 3 \le x \le 5\}$

Propriedades

$$\bullet \ \mu_{\bar{A}}(x) = 1 - \mu_A(x)$$

Operações com Conjuntos

- União: $A \cup B = \{x | x \in A \lor x \in B\}$
- Interseção: $A \cap B = \{x | x \in A \land x \in B\}$
- Complemento: $\overline{A} = \{x | x \text{ not } \in A, x \in X\}$
- Diferença: $A|B = \{x|x \in A \lor x \ not \in B\}$
- Involução: $\bar{\bar{A}} = A$
- Comutatividade: $A \cup B = B \cup A$ e $A \cap B = B \cap A$
- Associatividade: $A \cup (B \cup C) = (A \cup B) \cup C$ e $A \cap (B \cap C) = (A \cap B) \cap C$
- Distributividade: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ e $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Operações com Conjuntos

- Idempotência: $A \cup A = A$ e $A \cap A = A$
- Absorção: $A \cup (A \cap B) = A$ e $A \cap (A \cup B) = A$
- Absorção por X e \emptyset : $A \cap \emptyset = \emptyset$, e $A \cup X = X$
- Identidade: $A \cup \emptyset = A$. e $A \cap X = A$
- De Morgan: $\overline{A \cup B} = \overline{A} \cap \overline{B}$ e $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- Lei da Exclusão do Meio: $A \cup \overline{A} = X$
- Lei da Não Contradição: $A \cap \overline{A} = \emptyset$

Subconjunto

• Se todo elemento de A é também um elemento de B

$$x \in A \Longrightarrow x \in B$$

Pode ser escrito como

$$A \subseteq B$$

• Se $A \subseteq B$ e $B \subseteq A$

$$A = B$$

$$A \subseteq B$$
 if $A \cup B = B$ (or $A \cap B = A$) $\forall A, B \in \wp(x)$

Partição

O Conjuntos A e B são disjuntos se

$$A \cap B = \emptyset$$

Partição = família de subconjuntos de A

$$\pi(A) = \{A_i | i \in I, A_i \subseteq A\}$$

- U = Conjunto dos automóveis do Brasil
- Possíveis partições

4 cilindros
6 cilindros
8 cilindros
outros

Convexidade

- Qualquer conjunto definido por um único intervalo de números reais é convexo.
- Qualquer conjunto definido por mais de um intervalo, que não contenha pontos entre os intervalos não é convexo.
- Seja $A \subseteq \Re^n$; $r \in A$ e $s \in A$
- $t = (\lambda r + (1 \lambda)s) \in A; \forall \lambda \in [0, 1]$

Conjuntos Ordinários Convexidade

$$A = \{x | x \in [0,2] \cup [4,5]\}$$
 é Convexo?

Convexidade

$$A = \{x | x \in [0,2] \cup [4,5]\}$$
 é Convexo?

Seja
$$A \subseteq \Re^n$$
; $r \in A$ e $s \in A$
 $t = (\lambda r + (1 - \lambda)s) \in A$; $\forall \lambda \in [0, 1]$
 $r = 1$, $s = 4$, $\lambda = 0.4$
 $\lambda r + (1 - \lambda)s = 2.8$
 $2.8 \notin A$

Convexidade

Figure 1.1 Example of sets in \mathbb{R}^2 that are convex (A_1-A_5) or nonconvex (A_6-A_9) .

Produto Cartesiano

Conjuntos Ordinários

$$A \times B = \{(a,b)|a \in A, b \in B \}$$

•
$$A = \{1, 2\}$$

•
$$B = \{a, e, i, o, u\}$$

$$\bullet \ A \times B = \{(1,a),(1,e),(1,i),(1,o),(1,u),(2,a),(2,e),(2,i),(2,o),(2,u)\}$$

Relembrando...

Conjuntos são utilizados para classificar elementos em conceitos gerais:

- números pares
- números impares
- cidades que são capitais na América do Sul
- times de futebol
- ...

???...!!!

Um elemento x pertence ou não a um conjunto...

- ... mas na realidade existem situações como estas:
 - alta taxa de inflação
 - pessoas altas
 - pequeno erro de aproximação

Grande dificuldade em definir o limiar entre esses conjuntos utilizando os conjuntos ordinários.

Paradoxo¹ como enunciado: *Quando um monte de areia deixa de ser um monte de areia, caso retiremos um grão de areia de cada vez?*

E agora? Como ficam os CONJUNTOS?

¹Paradoxo de Sorites, atribuído a Eubulides de Mileto (adversário de Aristóteles)

Introdução

- A teoria clássica de conjuntos é governada por uma lógica que dá a uma proposição o valor falso (0) ou verdadeiro (1).
- A teoria de conjuntos fuzzy estende a teoria de conjuntos clássicos e presupõe-se valores-verdade no intervalo [0, 1], isto é, cada elemento possui um grau de pertinência² ao conjunto entre [0, 1].
- Teoria conveniente para tratamento de incerteza, termos linguísticos, redundância, imprecisão.
- Exemplos de conceitos definidos de forma imprecisa: poucos livros, uma longa história, um pouco de sal.

²Grau de pertinência é uma medida de similaridade entre o elemento e o conjunto.

Conjuntos Ordinários x Conjuntos Fuzzy

Pessoas Altas

Conjunto Ordinário

Conjunto Fuzzy

Definição

A fuzzy set (class) A in X is characterized by a membership function (characteristic function) $\mu_A(x)$ which associates with each point in X a real number in the interval [0,1], with the value of $\mu_A(x)$ at x representing the grade of membership of x in A. Lofti Zadeh (1921-2017).

- Extensão da teoria de conjuntos clássica
- Generalização da função característica
- Função de pertinência
 - Notações

$$\mu_A:X \to [0,1]$$

 $A: X \rightarrow [0,1]$ (alternativa, encontrada em alguns livros)

Definição

Um conjunto fuzzy A em X é definido por um conjunto de pares ordenados.

$$A = \{(x, \mu_A(x)) | x \in X, \mu_A(x) : X \to [0, 1]\},\$$

em que A é um conjunto fuzzy, $\mu_A(x)$ a função de pertinência (grau de ativação), x é um elemento do universo de discurso X.

Um conjunto fuzzy A é totalmente caracterizado por sua função de pertinência μ_A

Função Característica

Conjunto Discreto

• Conjunto discreto (não representa somatório!) - $A = \sum_{x \in X} \mu_A(x_i)/x_i$

Conjunto Contínuo

Conjunto contínuo (não representa integral!)

$$A = \int_{x} \mu_{A}(x)/x$$

Exemplo: idade próxima de 50

$$A = \int_{R+} \frac{1}{1+(\frac{z-50}{10})^4} / x$$

Partição Clássica vs Fuzzy

Domínio

Universo total de valores possíveis para os elementos do conjunto (x)

Conjunto α – cut

Subconjunto de todos os elementos do domínio com função de pertinência acima de um determinado valor α .

$$A_{\alpha} = \{x | \mu_A(x) \ge \alpha\} \ (\alpha - cut)$$

$$A_{\alpha+} = \{x | \mu_A(x) > \alpha\} \ (\alpha - cut \text{ forte})$$

para $\alpha \in [0,1]$

Altura

Maior valor de pertinência obtido por qualquer elemento do conjunto

Suporte

Subconjunto dos pontos que possuem valor de pertinência maior que 0. vspace $0.5 \mathrm{cm}$

Suporte

- Conjunto Aberto $Supp(A) = \{x \in X \mid \mu A(x) > 0\}$
- Conjunto Fechado $CSupp(A) = \{x \in X \mid \mu A(x) \ge 0\}$

Núcleo

•
$$Core(A) = \{x \in X \mid \mu A(x) = 1\}$$

Inclusão

$$A \subseteq B$$

$$A \not\subset B$$

Subconjunto

Dado dois conjuntos fuzzy A e B

$$A \subseteq B \iff \mu_A(x) \le \mu_B(x)$$

Exemplo

Cidades grandes: $A = \{1/BH, 0.8/Uberlandia, 0.7/JF, 0.6/MC, 0.3/Div, 0/Tapirai\}$

- Altura de A: hgt(A) = 1 A é normal
- Suporte de A: $Sup(A) = \{BH, Uberlandia, JF, MC, Div\}$
- Núcleo de A: Core(A) = {BH}
- Subconjunto de A: $B = \{0.4/BH, 0.1/Uberlandia\} B \subseteq A$

Cardinalidade

A cardinalidade |.| de um conjunto A é:

$$|A| = \sum_{x \in X} \mu_A(X)$$
 para X discreto

ou

$$|A|=\int_{x}\mu_{A}(x)dx$$
 para X contínuo

Exemplo:

$$A = \{0.25/6.5, 0.5/7, 0.75/7.5, 1/8, 0.75/8.5, 0.5/9, 0.25/9.5\}$$

$$A = \{0.25 + 0.5 + 0.75 + 1 + 0.75 + 0.5 + 0.25 = 4\}$$

Conjunto Fuzzy Singleton

Conjunto cujo suporte é um único ponto em X, com valor de pertinência igual a 1.

Convexidade

Um conjunto Fuzzy é convexo se e somente se

$$\mu_A(\lambda x_1 + (1 - \lambda)x_2) \ge \min(\mu_A(x_1), \mu_A(x_2))$$

Caso todos os conjuntos $\alpha-{\it cut}$ sejam convexos, o conjunto é convexo.

Convexidade

Figure 1.9 Subnormal fuzzy set that is convex.

Convexidade

Figure 1.10 Normal fuzzy set that is not convex.

Função Triangular

$$\mu_{A}(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ \frac{c-x}{c-b} & b \le x \le c \\ 0 & x \ge c \end{cases}$$

$$\mu_A(x) = \max\{\min[(x-a)/(b-a), (c-x)/(c-b)], 0\}$$

a, b, e c são os pontos que definem a forma do triângulo.

Função Trapezoidal

$$\mu_{A}(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & b \le x \le c \\ \frac{d-x}{d-c} & c \le x \le d \\ 0 & x \ge d \end{cases}$$

$$\mu_{A}(x) = \max\{\min[(x-a)/(b-a), 1, (d-x)/(d-c)], 0\}$$

a, b, c, e d definem a forma do trapézio.

Função Gaussiana

$$\mu_A(x) = \exp\left(\frac{-(x-c)^2}{2\sigma^2}\right)$$

c é o centro da curva e σ é o desvio padrão que controla a largura.

Função Sigmoidal

$$\mu_A(x) = \frac{1}{1 + \exp(-a(x-c))}$$

a controla a inclinação e c a posição central.

Função em Sino Generalizada

$$\mu_A(x) = \frac{1}{1 + \left|\frac{x-c}{a}\right|^{2b}}$$

a controla a largura, b controla a suavidade, e c é o ponto central.

Função Z (Z-shaped)

$$\mu_{A}(x) = \begin{cases} 1 & x \leq a \\ 1 - 2\left(\frac{x-a}{b-a}\right)^{2} & a \leq x \leq \frac{a+b}{2} \\ 2\left(\frac{b-x}{b-a}\right)^{2} & \frac{a+b}{2} \leq x \leq b \\ 0 & x \geq b \end{cases}$$

a e b são os limites da função.

Função S (S-shaped)

$$\mu_{A}(x) = \begin{cases} 0 & x \leq a \\ 2\left(\frac{x-a}{b-a}\right)^{2} & a \leq x \leq \frac{a+b}{2} \\ 1 - 2\left(\frac{b-x}{b-a}\right)^{2} & \frac{a+b}{2} \leq x \leq b \\ 1 & x \geq b \end{cases}$$

a e b são os pontos de controle da função.

Dependência de Contexto

Números próximos de 2

Nota

A escolha da função de pertinência deve refletir

- a natureza do problema
- a percepção do conceito a ser capturado
- o nível de detalhe a ser capturado
- o contexto da aplicação
- a adequação para ajuste de parâmetros (otimização)

Conjuntos Fuzzy

Implementações