Homework 9

Due date: None. Extra credit if you turn it in by March 17, 2017.

Reading assignment: Chapter 5 of the text book.

Discrete-time Fourier Transform: If x[n] is an absolutely summable discrete-time signal, its DTFT $\mathcal{X}(\omega)$ is given by the formula

$$\mathcal{X}(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n},$$

and the signal can be recovered from the DTFT via the formula

$$x[n] = \frac{1}{2\pi} \int_{<2\pi>} \mathcal{X}(\omega) e^{j\omega n} d\omega.$$

Discrete-time Fourier Series. If x[n] has period N, then it can be expanded as a sum of N discrete harmonic oscillators of period N:

$$x[n] = \sum_{k=0}^{N-1} a_k e^{j\frac{2\pi}{N}kn},$$

and the Fourier coefficients a_k are given by the formula:

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}.$$

Exercise 1. Let x[n] be a discrete-time signal and N a positive finite integer such that x[n] = 0 for n < -N and $n \ge N$. Let $x_p[n]$ be a periodic signal with period 2N such that $x_p[n] = x[n]$ for $-N \le n < N$. Let a_k denote the DTFS coefficients of $x_p[n]$. Let $\mathcal{X}(w)$ denote the DTFT of x[n]. Find the relationship between a_k and $\mathcal{X}\left(\frac{2\pi}{2N}k\right)$. Explain how you can use your FFT code from homework 3 to rapidly compute $\mathcal{X}\left(\frac{2\pi}{2N}k\right)$ for k = 0, ..., 2N - 1.

Exercise 2. This is a continuation of the previous exercise. Let $x[n] = \sqrt{1 - (n/10)^2}$ for $-10 \le n \le 10$, and 0 otherwise.

- i. Let N=12 and plot x[n] and $x_p[n]$ to bring out the difference between the 2 signals.
- ii. Let N=128 and use your FFT code from homework 4 to find $\mathcal{X}\left(\frac{2\pi}{2N}k\right)$ for k=0,...,2N-1 and then plot $\left|\mathcal{X}\left(\frac{2\pi}{2N}k\right)\right|$.
- iii. Let N=1024 and use your FFT code from homework 4 to find $\mathcal{X}\left(\frac{2\pi}{2N}k\right)$ for k=0,...,2N-1 and then plot $\left|\mathcal{X}\left(\frac{2\pi}{2N}k\right)\right|$.

Approximate DTFT via DTFS. If x[n] is decaying rapidly as $|n| \to \infty$, then the DTFT of x[n] can be approximated by the finite sum:

$$\mathcal{X}(w) \sim \sum_{n=-N}^{N-1} x[n] e^{-j\omega n},$$

for some suitably large value of N.

Exercise 3. Let $x[n] = (1+\sigma)e^{-n^2\sigma^2}$.

i. Make a representative plot of x[n] for $\sigma = 10, 1$ and 0.1.

- ii. Using the idea in the previous paragraph, use your FFT code from homework 4 to compute $\mathcal{X}(\omega)$ to reasonable amount of accuracy at more than 500 points in the interval $[0, 2\pi]$ for $\sigma = 10, 1$ and 0.1.
- iii. Make an approximate plot of $|\mathcal{X}(\omega)|$ on the interval $[-\pi, \pi]$ for $\sigma = 10, 1$ and 0.1.
- iv. Compare the plots of x[n] and $|\mathcal{X}(\omega)|$. What conclusions can you draw?

Exercise 4. Find the discrete-time Fourier transforms of the following signals:

i.
$$x[n] = a^{|n|}$$
 for $0 < a < 1$.

ii.
$$x[n] = (-1)^n a^{|n|}$$
 for $0 < a < 1$.

iii.
$$x[n] = a^{|n|} + (-1)^n a^{|n|}$$
 for $0 < a < 1$.

iv.
$$x[n] = e^{j\frac{2\pi}{3}n}a^{|n|}$$
 for $0 < a < 1$.

v.
$$x[n] = e^{j\frac{2\pi}{3}2n}a^{|n|}$$
 for $0 < a < 1$.

vi.
$$x[n] = a^{|n|} + e^{j\frac{2\pi}{3}n}a^{|n|} + e^{j\frac{2\pi}{3}2n}a^{|n|}$$
 for $0 < a < 1$.

vii. For problems i, ii, iii and vi, plot x[n] for a=1/2. Also plot $|\mathcal{X}(\omega)|$ on the interval $[-\pi,\pi]$.