Milner's Proof System for Regular Expressions Modulo Bisimilarity is Complete

Crystallization: Near-Collapsing Process Graph Interpretations of Regular Expressions

Clemens Grabmayer

G S GRAN SASSO SCIENCE INSTITUTI

SCHOOL OF ADVANCED STUDIES
Scuola Universitaria Superiore

Department of Computer Science, GSSI, L'Aquila, Italy

LICS 2022 Technion, Haifa, Israel August 4, 2022

Process semantics of regular expressions [] (Milner, 1984)

```
0 \stackrel{\|\cdot\|_{P}}{\longmapsto} \text{deadlock } \delta, no termination
       1 \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} empty-step process \epsilon, then terminate
        a \stackrel{\llbracket \cdot \rrbracket_{\mathbb{P}}}{\longmapsto} atomic action a, then terminate
e + f \mapsto (choice) \text{ execute } [e]_{\mathbf{P}} \text{ or } [f]_{\mathbf{P}}
 e \cdot f \xrightarrow{\|\cdot\|_{\mathbf{P}}}  (sequentialization) execute \|e\|_{\mathbf{P}}, then \|f\|_{\mathbf{P}}
     e^* \stackrel{\|\cdot\|_{\mathbf{P}}}{\longleftrightarrow}  (iteration) repeat (terminate or execute \|e\|_{\mathbf{P}})
  \llbracket e \rrbracket_{\mathbf{P}} := \llbracket \mathcal{C}(e) \rrbracket_{\leftrightarrow} (bisimilarity equivalence class of chart \mathcal{C}(e))
```

chart (Milner)

$$\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$

1-chart

chart (Milner)

$$\mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$$
 $\mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$

Process semantics $[\cdot]_P$ (examples, bisimulation collapse)

1-chart chart (Milner)

$$\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$
 $\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$

1-chart chart (Milner)

$$\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$
 $\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$

1-chart

chart (Milner)

$$\mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$$
 $\mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$

$$\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$
 $\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$

Process semantics $[\cdot]_P$ (examples, bisimulation collapse)

$$\underline{\mathcal{C}}((a\cdot 1+b\cdot (c^*\cdot 1))^*)\qquad \mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$

$$\underline{\mathcal{C}}((a \cdot (1 \cdot ((a \cdot 1)^* \cdot 1)) \\ b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1 \\ + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)$$

$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot (a \cdot 1)^* \cdot 1)) \qquad b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1 \\ + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)$$

$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\underline{\mathcal{C}}((a \cdot (1 \cdot ((a \cdot 1)^* \cdot 1)) \cdot b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1 + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)$$

Process semantics $[\cdot]_P$ (examples, bisimulation collapse)

$$\underline{\underline{\mathcal{C}}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\underline{\mathcal{C}}}((a \cdot (a \cdot 1)^* \cdot 1)) \\ \qquad \qquad b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1 \\ \qquad \qquad + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)$$

Process semantics $[\cdot]_P$ (examples, bisimulation collapse)

Milner's proof system Mil

Axioms:

(A1)
$$e + (f + g) = (e + f) + g$$
 (A7) $e = 1 \cdot e$
(A2) $e + 0 = e$ (A8) $e = e \cdot 1$
(A3) $e + f = f + e$ (A9) $0 = 0 \cdot e$
(A4) $e + e = e$ (A10) $e^* = 1 + e \cdot e^*$
(A5) $e \cdot (f \cdot g) = (e \cdot f) \cdot g$ (A11) $e^* = (1 + e)^*$
(A6) $(e + f) \cdot g = e \cdot g + f \cdot g$
But: $e \cdot (f + g) \neq e \cdot f + e \cdot g$ But: $e \cdot 0 \neq 0$

Inference rules: rules of equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} RSP^* \text{ (if } f \text{ does not terminate immediately)}$$

But: $e \cdot 0 \neq 0$

Milner's question (1984)

Is Mil complete with respect to $\equiv_{\mathbf{P}}$? (Does $e \equiv_{\mathbf{P}} f \Longrightarrow e =_{\mathsf{Mil}} f \mathsf{hold?}$)

For 1-free regular expressions e_1 and e_2 :

$$e_1$$
 is solution $\mathcal{C}(e_1) \xleftarrow{\qquad \qquad } \mathcal{C}(e_2) \qquad e_2$ is solution

For 1-free regular expressions e_1 and e_2 :

For 1-free regular expressions e_1 and e_2 :

For 1-free regular expressions e_1 and e_2 :

For 1-free regular expressions e_1 and e_2 :

For 1-free regular expressions e_1 and e_2 :

For 1-free regular expressions e_1 and e_2 :

For 1-free regular expressions e_1 and e_2 :

Problem 1

chart interpretations $\qquad \qquad \bigsqcup \mathcal{C}(e_1) \stackrel{(assm)}{\longleftrightarrow} \mathcal{C}(e_2) \qquad \bigsqcup \mathcal{C}(e_3)$ bisimulation collapse

Remedy for Problem 1 (G, TERMGRAPH 2020)

chart interpretations LLEE $\mathcal{C}(e_1) \stackrel{\mathsf{(assm)}}{\longleftarrow} \mathcal{C}(e_2)$ LLEE bisimulation collapse

LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS'20) (no 1-transitions!)

Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Reduced bisimilarity redundancies in LLEE-charts (no 1-trans.!) (G/Fokkink, LICS'20)

 w_1,w_2 in different scc's (C1) (C1.1) (C1.2) w_1,w_2 not normed w_1 w_2 w_1 w_2 normed w_2

 w_1, w_2 in the same scc

Lemma

Every not collapsed LLEE-chart contains bisimilar vertices $w_1 \neq w_2$ of kind (C1), (C2), or (C3) (a reduced bisimilarity redundancy (w_1, w_2)):

Reduced bisimilarity redundancies in LLEE-charts (no 1-trans.!) (G/Fokkink, LICS'20)

(C2) \(\bigve{w_1} \\ \bigve{w_2} \\ \frac{\bigve{w_2}}{\limin{v}} \\ \frac{\bigve{w_2}}{\limin{v}

 w_1, w_2 in the same scc

Lemma

Every not collapsed LLEE-chart contains bisimilar vertices $w_1 \neq w_2$ of kind (C1), (C2), or (C3) (a reduced bisimilarity redundancy (w_1, w_2)):

Lemma

Every reduced bisimilarity redundancy in a LLEE-chart can be eliminated LLEE-preservingly.

Lemma

Every not collapsed LLEE-1-chart contains 1-bisimilar vertices $w_1 \neq w_2$ (a reduced 1-bisimilarity redundancy (w_1, w_2)) of kind (R1), (R2), (R3).

Lemma

Every not collapsed LLEE-1-chart contains 1-bisimilar vertices $w_1 \neq w_2$ (a reduced 1-bisimilarity redundancy (w_1, w_2)) of kind (R1), (R2), (R3).

Lemma

Every simple reduced 1-bisimilarity redundancies in a LLEE-1-chart can be eliminated LLEE-preservingly.

Lemma

Every not collapsed LLEE-1-chart contains 1-bisimilar vertices $w_1 \neq w_2$ (a reduced 1-bisimilarity redundancy (w_1, w_2)) of kind (R1), (R2), (R3).

Stumbling Block

How to LLEE-preservingly eliminate reduced 1-bisimilarity redundancies of kind (R3.4)?

Lemma

Every not collapsed LLEE-1-chart contains 1-bisimilar vertices $w_1 \neq w_2$ (a reduced 1-bisimilarity redundancy (w_1, w_2)) of kind (R1), (R2), (R3).

Stumbling Block

How to LLEE-preservingly eliminate precrystalline reduced 1-bisimilarity redundancies?

Counterexample LLEE-preserving collapse

 $\langle w_1, w_2 \rangle$ is a reduced 1-bisimilarity redundancy of kind (R3.4)

Counterexample LLEE-preserving collapse

Counterexample LLEE-preserving collapse

Bisimulation collapse proof strategy (general case)

Problem 2: There are regular expressions e_1 and e_2 such that:

1-chart interpretations

bisimulation collapse

Bisimulation collapse proof strategy (general case)

Problem 2: There are regular expressions e_1 and e_2 such that:

1-chart interpretations

 $\mathcal{C}(e_1)$, $\mathcal{C}(e_2)$, $\underline{\mathcal{C}}(e_1)$ and $\underline{\mathcal{C}}(e_2)$ are **not** LLEE-preservingly jointly minimizable under bisimilarity.

Provable solutions of twin-crystals are complete: they can be transferred to their bisimulation collapses

Crystallization

twin-crystal

Crystallized 1-charts = LLEE-1-charts that are collapsed apart from some scc's that are twin-crystals.

Crystallization

twin-crystal

Crystallized 1-charts = LLEE-1-charts that are collapsed apart from some scc's that are twin-crystals.

(CR) Crystallization: Every LLEE-1-chart can be reduced under bisimilarity to a bisimilar crystallized 1-chart.

Crystallization

twin-crystal

- Crystallized 1-charts = LLEE-1-charts that are collapsed apart from some scc's that are twin-crystals.
- (CR) Crystallization: Every LLEE-1-chart can be reduced under bisimilarity to a bisimilar crystallized 1-chart.
- (CC) Every provable solution of a crystallized 1-chart gives rise to provable solution on the bisimulation collapse.

chart interpretations

$$\mathcal{C}(e_1) \stackrel{\mathsf{(assm)}}{\longleftarrow} \mathcal{C}(e_2)$$

$$\stackrel{?}{\Longrightarrow} \qquad e_1 =_{\mathsf{Mil}} e_2$$

chart interpretations

$$\mathcal{C}(e_1) \stackrel{\mathsf{(assm)}}{\longleftarrow} \mathcal{C}(e_2)$$

1-chart interpretations

bisimulation collapse

LLEE

 e_2 is solution

1-chart interpretations LLEE $C(e_1)$ \leq LLEE e_1 is solution e_2 is solution (IV) chart interpretations (CR) crystallized 1-chart LLEE bisimulation collapse

$$\begin{array}{c} \mathcal{C}(e_1) \text{ LLEE} \\ e_1 \text{ is solution} \\ e_{10} \text{ is solution} \end{array} \right\} \underset{(\text{SE})}{\Longrightarrow} e_1 =_{\text{Mil}} e_{10} \qquad \underbrace{e_{10} =_{\text{Mil}}}_{e_{10} =_{\text{Mil}}} e_2 \underset{(\text{SE})}{\Longleftrightarrow} \begin{cases} \mathcal{C}(e_2) \text{ LLEE} \\ e_2 \text{ is solution} \\ e_{10} \text{ is solution} \end{cases}$$

1-chart interpretations LLEE $C(e_1) \leq$ e_1 is solution e_2 is solution (by (T)) e_{10}^{-} is solution (by (T)) e_{10} is solution (CR) chart interpretations crystallized 1-chart LIFE e₁₀ is complete solution bisimulation collapse e_{10} is solution (by (CC))

Theorem

Milner's proof system Mil is complete for process semantics equivalence ≡_P of regular expressions.

Since:
$$e_1 \equiv_{\mathbf{P}} e_2 \Longrightarrow \llbracket e_1 \rrbracket_{\mathbf{P}} = \llbracket e_2 \rrbracket_{\mathbf{P}} \Longrightarrow \mathcal{C}(e_1) \leftrightarrows \mathcal{C}(e_1) \Longrightarrow e_1 =_{\mathsf{Mil}} e_2$$
.

Outlook

poster presentation

▶ tomorrow, 10-10.30

next steps and projects

- monograph project: proof in fine-grained detail
- computation/animation tool for crystallization
- use crystallization for recognition problem

resources on Github:

- ▶ https://github.com/clegra/crystallization/blob/main
 - ▶ article (after rebuttal): /cryst-article.pdf
 - ▶ poster: /poster-lics2022.pdf
 - presentation: /presentation-lics2022.pdf

acknowledgment & thanks to:

Wan Fokkink (for long collaboration)

Thank you for your attention!