## Conver Optimization - Homework 3

The LASSO problem is: minimise \frac{1}{2} || \text{Xw} - \text{y} ||^2 + \text{x} || \text{w} ||\_1 \text{w} || \t

minimi ge 1 | 12 - > 1/2 + 2 | w | 1, subject to Xw = 2

The Lagrangian of the problem is:

2(w, eg, v) = 1 11 2- y 1/2 + 21 will + v ( 1 - x w) with v & IRM

The Lagrangian is streactly convex with respect to z. Thus, to

min, mige it, we set its gradient to gero.

The L(w, g, v) = 0 () 1- y+v=0 (=) 2-y-v

We have seen in homework 2 that sup (yin - 1211) = {0 if -7 \le \times 1} = {1 to otherwise.

Honce, inf ( All wlly - vixw) = - Sup (-All wlly + vixw) = { oil - A xiv x A

So inf  $\mathcal{L}(w, z, v) = -\frac{1}{2}v^{i}v + v^{i}y$  if  $-\lambda \leq x^{i}v \leq \lambda$ 

The dual of the LASSO problem is:

madimige - 1 viv + viz

subject to -15xin x 1

which is equivalent to:

minimize 2 vir - >Tr

subject to Av & h with A= (xi)



This are the best values that are obtained for the same problem, with different  $\mu$ .

| μ  | 2                  | 15               | 50                 | 100                |
|----|--------------------|------------------|--------------------|--------------------|
| f* | -6909.036379252145 | -6909.0363792522 | -6909.036379251936 | -6909.036379252208 |

We can see that  $\mu$  does not really impact the value of  $f^*$ . According to 1), we have Xw = z = v - y. X and y are fixed, so if  $\mu$  has an impact on v, it has an impact on w. Since, the value of  $f^*$  does not depend on  $\mu$ , we can conclude that  $\mu$  does not impact v therefore not on w also.  $\mu$  has an impact on the number of iterations and the convergence time. If we increase  $\mu$ , the number of iterations in the centering step will decrease, but the number of iterations in the centering step will increase. So we have to choose a correct size for  $\mu$ , not too big but not too small. As there are only 2 iterations more with  $\mu$ =15 than with 50 or 100, we will choose this one. We could not have chosen 2 because the number of iteration in the barrier step is too high.