Problem 1.

What thickness of Pb shielding is needed around a $7.4\times10^{13}\,\mathrm{Bq}$ point source of $^{60}\mathrm{Co}$ to reduce the exposure rate to $10\,\mathrm{mrem}\,\mathrm{h}^{-1}$ at a distance of $2\,\mathrm{m}$?

Problem 2.

The survival of a certain cell line exposed to x-rays is described by $\frac{S}{S_0} = 1 - (1 - \exp(-0.92D))^2$, with D in Gy.

- What is the RBE for the neutrons (relative to x-rays) for 10% survival of the cells?
- At a lower dose (higher level of survival) is the RBE larger or smaller?

Problem 3.

An air monitor located in a mine determines the Radon activity in a 100 L sample of air. A mine worker is assumed to work 40 h per week, 50 weeks per year in that environment, and is assumed to breathe at a rate of $0.2\,\mathrm{m}^3/\mathrm{min}$. If all of the Radon in the air is assumed to stay in the body once it is inhaled, and if the ARLI for mine workers is $2\times10^4\,\mathrm{Bq\,yr}^{-1}$, what is the maximum allowable Radon activity in the $100\,\mathrm{L}$ sample of air?

Problem 4.

An amount of 90 Sr equal to 1 µCi is ingested. What is the total committed dose equivalent? Assume that the 90 Sr settles into the bone marrow and stays in the body (biological half life $\rightarrow \infty$). Ignore dose from the gamma rays (you'll see that gamma rays are rarely emitted in the 90 Sr decay chain).

Problem 5.

Using the plot of NASA Q values, determine the dose equivalent from 1 Gy each of 300 MeV nucleon $^{-1}$ protons and $^{12}{\rm C}.$