Module 3: Correlation and Regression

Topics

Correlation and Regression – Rank Correlation-Partial and Multiple correlation-Multiple regression.

Correlation

Correlation is a statistical technique used to determine the degree to which two variables are related.

Scatter diagram

- Two quantitative variables
- One variable is called independent (X) and the second is called dependent (Y)
- Points are not joined
- No frequency table

Example

```
Wt. 67 69 85 83 74 81 97 92 114 85 (kg)
SBP 120 125 140 160 130 180 150 140 200 130 mHg)
```


Scatter diagram of weight and systolic blood

Scatter diagram of weight and systolic blood

pressureDr. R. Jayagopal_Module 3

Scatter plots

The pattern of data is indicative of the type of relationship between your two variables:

- > Positive relationship
- > Negative relationship
- **►** No relationship

Positive Relationship

Negative Relationship

Age of Car

No Relationship

Simple Correlation coefficient (r)

- It is also called Karl Pearson's correlation coefficient.
- It measures the **nature** and **strength** between two variables of the quantitative type.

The sign of r denotes the nature of association between X and Y.

The value of r denotes the strength of association between X and Y.

If the sign is +ve this means the relation is direct relationship (an increase in one variable is associated with an increase in the other variable and a decrease in one variable is associated with a decrease in the other variable).

➤ While if the sign is -ve this means an inverse or indirect relationship (which means an increase in one variable is associated with a decrease in the other).

- \triangleright The value of r ranges between -1 and +1
- \triangleright The value of r denotes the strength of the association as illustrated by the following diagram.

- **❖** If **r** = **Zero** this means no association or correlation between the two variables.
- 4 If 0 < r < 0.25, weak correlation.
- ❖ If $0.25 \le r < 0.75$, intermediate correlation.
- **❖** If $0.75 \le r < 1$, strong correlation.
- 4 If r = 1, perfect correlation (Direct).
- \Leftrightarrow If r = -1, perfect correlation (Indirect).

Covariance

- $Var(X) = E[X E(X)]^2$, it measures the variations of the random variable X from its mean value E(X).
- Likewise, *Covariace* of *X* and *Y* measures the simultaneous variations of the two random variables *X* and *Y* from their respective means.
- Its is denoted by Cov(X, Y).
- Cov(X,Y) = E[(X E(X))(Y E(Y))]= E(XY) - E(X)E(Y)
- Cov(X,Y) = 0, if X and Y are independent random variables.

Computation of correlation coefficient (r)

$$7 := \frac{E(XY) - E(X) \cdot E(Y)}{\sigma_X \cdot \sigma_Y}$$

$$\frac{2x^2 - (2x/n)(2y/n)}{(2x/n)(2y/n)}$$

Problem No 1: find the coefficient of correlation between X and Y using the following data: 25 26 30 23 orre whon 25 Coeff. of Cornelation

Rank Correlation Coefficient (r_s)

Spearman Rank Correlation Coefficient (r_s)

- > It is a non-parametric measure of correlation.
- \triangleright This procedure makes use of the two sets of ranks that may be assigned to the sample values of X and Y.
- Spearman rank correlation coefficient could be computed when both variables are qualitative or quantitative.

Procedure:

- 1. Rank the values of X from 1 to n.
- 2. Rank the values of Y from 1 to n.

Note: where *n* is the numbers of pairs of values of *X* and *Y* in the sample.

- 3. Compute the value of *d* for each pair of observation by subtracting the rank of *Y* from the rank of *X*.
- 4. Square each d and compute $\sum d^2$ which is the sum of the squared values.

5. Apply the following formula

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$
 For non repeated ranking

$$r_s = 1 - \frac{6\left[\sum d^2 + \sum (m^3 - m)/12\right]}{n(n^2 - 1)}$$
 For repeated ranking

 \bullet The value of r_s denotes the magnitude and nature of association giving the same interpretation as simple r.

Problems

11.	len	11 1			100	323		1000	10.00000	1 -	- 1
			en ti								us.
Juden	118	arks	1	1	1		1	9","		1	
Math		2	3	11 265	5		7	8	9	10	
ream	178	36	98	25				62	65	39	
Physi	0 84	51	91	60	68	62	86	58	63	47	
	late	The .	rank	Cor	rela	· Han	60.8	8			
Sol! Maths	•	Bre .	98	(or	1	tion.	82	90	62	65	39
5014		- i.	<i>,</i> 1	12	5		- 17	12.	1	1.1	39
Maths (x)	78	36	98	10	5	75	82	90	7.	86	8
Maths (x) Rx	78	36	98	10	0	75 5	82	90	7.	6	8 47

Now,
$$2d^{2} = 1+0+0+9+1+9+0+1+4$$
 $2d^{2} = 26$

Spearmants Yank Correl. (sett. is,

 $3d = 1 - \frac{62d}{N^{3}-N}$

From $n = 10$
 $10 - \frac{62d}{N^{3}-N}$
 $10 - \frac{62d}{N^{3}-N}$
 $10 - \frac{62d}{N^{3}-N}$

Now, $\frac{6}{N}$

Rep. Routh $\frac{6}{N}$

Rep. Rep. Rep. $\frac{6}{N}$

Dr. R. Lavagopal Module 3

2).	Calcul	ate h	ran	k los	relatio	n for	he	
		g 70						
. 🛪	73.2	85.8	178.	9 /75	-8 17	7-2 8	1.2 83.	8
7	97-8	99.2	98.	8 98.	3 98	2.3 9	6.7 97.	8
Soli				,			,	= 1
X	73-2	85.8	78.9	75.8	77.2	81.2	83.8	
Px.	7	• \	4	6	5	3	2	
7	97-8	99.2	98-8	98.3	98.3	96.7	97.B	
وكم	5.5	1	2	3-5	3-5	7	5.5	
	2.25		1	6.25			12.25	_ \
12d = 2.25 +0 +4 +6.25 +2.25 +16 +12.75								
12d = 43 Not: For 98.3, we tak the average name blun them.								

Spearmon's vouk correlation (e.e. H is,

$$91_3 = 1 - \frac{6}{2}\frac{2}{4} + \frac{2}{2}(m^3 - m)/12$$
 $1 - \frac{1}{2}\frac{1}{2}$

Here, in $1 - \frac{1}{2}\frac{1}{2}$
 $1 - \frac{1}{2}\frac{1}{2}\frac{1}{2}$

Here, in $1 - \frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$
 $1 - \frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$
 $1 - \frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$
 $1 - \frac{1}{2}\frac{1}{$

Problem 3:

In a study of the relationship between level education and income the following data was obtained. Find the relationship between them and comment.

Sample number	level education (X)	Income (Y)
A	Preparatory	25
В	Primary	10
C	University	8
D	Secondary	10
Е	Secondary	15
F	Illiterate	50
G	University	60

Answer:

	(X)	(Y)	Rank X	Rank Y	d	\mathbf{d}^2
A	Preparatory	25	5	3	2	4
В	Primary	10	6	5.5	0.5	0.25
C	University	8	1.5	7	-5.5	30.25
D	Secondary	10	3.5	5.5	-2	4
E	Secondary	15	3.5	4	-0.5	0.25
F	Illiterate	50	7	2	5	25
G	University	60	1.5	1	0.5	0.25

$$r_s = 1 - \frac{6\left[\sum d^2 + \sum (m^3 - m)/12\right]}{n(n^2 - 1)} = -0.1$$

Comment: There is an indirect weak correlation between the level of education and income.

Regression Analysis

- Regression: Technique concerned with predicting some variables by knowing others.
- > The process of predicting variable Y using variable X or vice versa.

Regression

- > Uses a variable (x) to predict some outcome variable (y)
- > Tells you how values in y change as a function of changes in values of x

Correlation and Regression

Correlation describes the strength of a linear relationship between two variables.

> Linear means "straight line".

Regression tells us how to draw the straight line described by the correlation.

Regression

- Calculates the "best-fit" line for a certain set of data
- The regression line makes the sum of the squares of the residuals smaller than for any other line.

Regression minimizes residuals

Regression Equation

➤ Regression equation describes the regression line mathematically — Intercept and Slope

Linear Equations

Regression Lines $-(\bar{x}, \bar{y})$ and Slope

1. Equation of straight line y on x:

$$y - \bar{y} = b_{yx}(x - \bar{x})$$

where, $b_{yx} = r \frac{\sigma_y}{\sigma_x}$

2. Equation of straight line x on y:

$$x - \bar{x} = b_{xy}(y - \bar{y})$$

where, $b_{xy} = r \frac{\sigma_x}{\sigma_y}$

Note: $b_{xy} \neq b_{yx}$

Regression Lines – Least square method

Consider the equation of a straight line y on x:

$$y = bx + a$$

Normal equations are

$$\sum y = \mathbf{b} \sum x + \mathbf{a}n$$

$$\sum yx = \mathbf{b} \sum x^2 + \mathbf{a} \sum x$$

Solving the above two equations we get the values of α and b

$$y = bx + a$$

Regression Lines – Least square method

Consider the equation of a straight line x on y:

$$x = dy + c$$

Normal equations are

$$\sum x = d \sum y + cn$$

$$\sum xy = d \sum y^2 + c \sum y$$

Solving the above two equations we get the values of c and d

$$x = dy + c$$

8) Two lines are at right angle (=90): Yonx 7) They are mose a comment 7 - (him x) ato pro dig = State (3 you don't exer & estimate: Here, 91 =0 =) land = 0 (x plant or rows) (= dan (cos) [0=90]If O aproches from go to o Then it means two segritimes ave getting clover and clover.

Note:-1) m- slope of str. line. (i-e) It gives the ratio blun the Change in y and Change in x. 2) Here, byx is the Mope and hence it gives the ratio (or) relationship botun The thange is y and change in X. . We call, byx to be the regr. lo.e.g.

6) Angle bown two regression line depends on the Correlation Co-efficient 91. -) If or=0, then the two lines are I". -> If 91=1 (01) 91=-1, the two lines coincide. -) If '91' increases from 0 to I, then the gingle blun the regression lines diminishes from 90 60. -> when 91= ±1, two lines becomes identical. Thus there is an exact linear relationship bhun the variables. - when 900, regrieger reduces to 4 24 and x = x, which are I'm to each other. 7). They are independent of origin, but not of scale.