Chapter 5 Diagonalization

5.1 Eigenvalues and Eigenvectors

Definition. Diagonalizable A linear operator T on a finite-dimensional vector space V is called diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is called diagonalizable if L_A is diagonalizable.

Remark. Want to determine if an linear operator T is diagonalizable and if so, ways to obtain the basis $\beta = \{v_1, v_2, \dots, v_n\}$ for V such that $[T]_{\beta}$ is a diagonal matrix. Note that if $D = [T]_{\beta}$ is a diagonal matrix, i.e. $D_{ij} = 0$ for $i \neq j$, then for each $v_j \in \beta$, we have

$$T(v_j) = \sum_{i=1}^{n} D_{ij}v_i = D_{jj}v_j = \lambda_j v_j$$

where $\lambda_j = D_{jj}$. Conversely, if $\beta = \{v_1, v_2, \dots, v_n\}$ is an ordered basis for V such that $T(v_j) = \lambda_j v_j$ for some scalars $\lambda_1, \lambda_2, \dots, \lambda_n$, then

$$[T]_{\beta} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Definition. Eigenvalue and Eigenvector (characteristic/proper value or vector) Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is called an eigenvector of T if there exists a scalar λ such that $T(v) = \lambda v$. The scalar λ is called the eigenvalue corresponding to the eigenvector v.

Let A be in $M_{n\times n}(F)$. A nonzero vector $v \in F^n$ is called an eigenvector of A if v is an eigenvector of L_A ; that is, if $Av = \lambda v$ for some scalar λ . The scalar λ is the eigenvalue of A corresponding to the eigenvector v

Theorem. 5.1 Sufficient Condition for Diagonalizability

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T (i.e. $v \in V$ is eigenvector if exists λ such that $T(v) = \lambda v$). Furthermore, if T is diagonalizable, $\beta = \{v_1, v_2, \cdots, v_n\}$ is an ordered basis of eigenvectors of T, and $D = [T]_{\beta}$, then D is diagonal matrix and D_{jj} is the eigenvalue corresponding to v_j for $1 \leq j \leq n$

Remark. To diagonalize a matrix or linear operator is to find a basis of eigenvectors and the corresponding eigenvalues

Theorem. 5.2 Computing Eigenvalues

Let $A \in M_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $det(A - \lambda I_n) = 0$

Proof. A scalar is an eigenvalue if and only if exists a nonzero vector $v \in F^n$ such that $Av = \lambda v$, that is, $(A - \lambda I_n)(v) = 0$, which is true if and only if $A - \lambda$ is not invertible (invertible and one-to-one, or $N(A - \lambda) = \{0\}$ equivalent). This is equivalent to $det(A - \lambda I_n) = 0$

Definition. Characteristic Polynomial of a Matrix Let $A \in M_{n \times n}(F)$. The polynomial $f(t) = det(A - tI_n)$ is called the characteristic polynomial of A

- 1. The eigenvalues of a matrix are the zeros of its characteristic polynomial
- 2. To determine the eigenvalues of a matrix or linear operator, we normally compute its characteristic polynomial.

Definition. Characteristic Polynomial of a Linear Operator Let T be a linear operator on an n-dimensional vector space V with ordered basis β . We define the characteristic polynomial f(t) of T to be the characteristic polynomial of $A = [T]_{\beta}$. That is,

$$f(t) = det(A - tI_n) \qquad P_T(t) = det([T]_{\beta} - tI_n) = P_{[T]_{\beta}}(t)$$

We denote characteristic polynomial of an operator T by det(T-tI). Note the definition is independent of the choice of ordered basis β , the resulting characteristic polynomial is the same regardless the choice of basis.

Proof. Let β and β' be basis of V, let Q be change of basis matrix from β' to β , then we have $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$, so then characteristic polynomial of linear operator invariant of choice of basis

$$\det([T]_{\beta'} - tI_V) = \det(Q^{-1}([T]_{\beta} - tI_V)Q) = \det(Q^{-1})\det([T]_{\beta} - tI_V)\det(Q) = \det([T]_{\beta} - tI_V)$$

Theorem. 5.3 Properties of Characteristic Polynomial Let $A \in M_{n \times n}(F)$

- 1. The characteristic polynomial of A is a polynomial of degree n with leading coefficients $(-1)^n$
- 2. A has at most n distinct eigenvalues.

Theorem. 5.4 Computing Eigenvectors

Let T be a linear operator on a vector space T, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T - \lambda I)$

Proposition. Equivalent Eigenvector for Matrix and Linear Operators

Let $T: V \to V$ be a linear operator and β be an ordered basis for V. Let $A = [T]_{\beta}$ and note $\phi_{\beta}(v) = [v]_{\beta}$, the cooredinate vector of v relative to β . We could show that for all $v \in V$ an eigenvector of T corresponding to an eigenvalue v if and only if v is an eigenvector of v corresponding to v. Now suppose v is an eigenvector of v corresponding to v, then

$$A\phi_{\beta}(v) = L_A\phi_{\beta}(v) = \phi_{\beta}T(v) = \phi_{\beta}(\lambda v) = \lambda\phi_{\beta}(v)$$

Note $\phi_{\beta}(v) \neq 0$, since ϕ_{β} is an isomorphism, we have proved that $\phi_{\beta}(v)$ is an eigenvector of A. Conversely, if $\phi_{\beta}(v)$ is an eigenvector of A corresponding to λ . Equivalently, a

vector $y \in F^n$ is an eigenvector of $A = [T]_{\beta}$ corresponding to λ if and only if $\phi_{\beta}^{-1}(y)$ is an eigenvector of T corresponding to λ . We have reduced the problem of finding the eigenvectors of a linear operator on a finite-dimensional vector space to the problem of finding the eigenvectors of a matrix.

Definition. Geometric Description of how a linear operator T acts on an eigenvector in the context of a vector space V over \mathbb{R} . Let v be eigenvector of T and λ be corresponding eigenvalue. Let $W = span(\{v\})$, the one-dimensional subspace of V spanned by v, a line passing through 0 and v. For any $w \in W$, w = cv for some $c \in \mathbb{R}$

$$T(w) = T(cv) = cT(v) = c\lambda v = \lambda w$$

T acts on the vector in W by multiplying each such vector by λ

5.2 Diagonalizability

Theorem. 5.5 Set of Eigenvectors is Linearly Independent

Let T be a linear operator on a vector space V, and let $\lambda_1, \lambda_2, \dots, \lambda_k$ be **distinct** eigenvalues of T. If v_1, v_2, \dots, v_k are eigenvectors of T such that λ_i corresponding to v_i where $1 \leq i \leq k$ (choose one eigenvector corresponding to each eigenvalue.), then $\{v_1, v_2, \dots, v_k\}$ is linearly independent.

Corollary. Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues, then T is diagonalizable.

Proof. Suppose T has n distinct eigenvalues $\lambda_1, \dots, \lambda_n$. For each i choose eigenvector v_i corresponding to λ_i . By previous theorem, $\{v_1, \dots, v_n\}$ is linearly independent, and since dim(V) = n. the set is a basis for V. Thus, by theorem 5.1, T is diagonalizable \square

1. Converse not true, if T is diagonalizable, then it need not have n distinct eigenvalues. For example, I_V is diagonalizable even though it has only 1 eigenvalue, $\lambda = 1$

Definition. Splits Over A polynomial $f(t) \in P(F)$ splits over F if there are scalars c, a_1, \dots, a_n (not necessarily distinct) in F such that

$$f(t) = c(t - a_1)(t - a_2) \cdots (t - a_n)$$

As an example $t^2 = (t+1)(t-1)$ splits over \mathbb{R} , but $(t^2+1)(t-2)$ does not split over \mathbb{R} but splits over \mathbb{C} since it factors into (t+i)(t-i)(t-2).

Theorem. 5.6 Diagonalizability implies f(t) Splits Completely

The characteristic polynomial of any diagonalizable linear operator splits. The converse is not true, i.e. that the characteristic polynomial of T may split but need not be diagonalizable.

Proof. Let T be linear operator on n-dimensional vector space V, and let β be an ordered basis for V such that $[T]_{\beta} = D$ is a diagonal matrix. Suppose

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

and let f(t) be characteristic polynomial of T, then

$$f(t) = det(D - tI) = \begin{pmatrix} \lambda_1 - t & 0 & \cdots & 0 \\ 0 & \lambda_2 - t & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n - t \end{pmatrix} = (-1)^n (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_n)$$

Definition. Multiplicity Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial f(t). Then (algebraic) multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t)

Definition. Eigenspace Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define $E_{\lambda} = \{x \in V : T(x) = \lambda x\} = N(T - \lambda I_V)$. The set E_{λ} is called the eigenspace of T corresponding to the eigenvalue λ . Analogously, we define the eigenspace of a square matrix A to be the eigenspace of L_A

Theorem. 5.7 Dimension of Eigenspace is Bounded by Multiplicity

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \dim(E_{\lambda}) \leq m$

Lemma. Let T be a linear operator, and let $\lambda_1, \lambda_2, \dots, \lambda_k$ be distinct eigenvalues of T. For each $i = 1, 2, \dots, k$, let $v_i \in E_{\lambda_i}$, the eigenspace corresponding to λ_i . If

$$v_1 + v_2 + \dots + v_k = 0$$

then $v_i = 0$ for all i.

Theorem. 5.8 Union of l.i. Subsets of Eigenspaces are l.i.

Let T be a linear operator on a vector space V, and elt $\lambda_1, \lambda_2, \dots, \lambda_k$ be distinct eigenvalues of T. for each $i = 1, 2, \dots, k$, let S_i be a finite linearly independent subset of eigenspace E_{λ_i} . Then $S = S_1 \cup S_2 \cup \dots \cup S_k$ is a linearly independent subset of V.

Theorem. 5.9 Construct Bases of Eigenvectors in Eigenspace to Form a Basis for the Entire Space

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_1, \lambda_2, \dots, \lambda_k$ be distinct eigenvalues of T. Then

- 1. T is diagonalizable if and only if the multiplicit of λ_i is equal to $\dim(E_{\lambda_i})$ for all i
- 2. If T is diagonalizable and β_i is an ordered basis for E_{λ_i} for each i, then $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ is an ordered basis for V consisting of eigenvectors of T.

Definition. Test for Diagonalization Let T be a linear operator on n-dimensional vector space V. Then T is diagonalizable if and only if both of conditions hold

- 1. characteristic polynomial of T splits
- 2. For each eigenvalue λ of T, the multiplicity of λ equals $n rank(T \lambda I) = dim(E_{\lambda})$

Same condition can be used to test a square matrix A is diagonalizable because diagonalizability of A is equivalent to diagonalizability of L_A . To test T for diagonalizability, usually pick a basis α and let $B = [T]_{\alpha}$. If characteristic polynomial of B splits, then use condition 2 to check if the multiplicity of each repeated eigenvalue of B equals $n - rank(B - \lambda I)$ (dont need to check for eigenvalues with multiplicity 1 by theorem 5.7). If so, then B, and hence T, is diagonalizable. If T is diagonalizable, we can find a basis β for V consisting of eigenvectors of T by taking the union of basis for each eigenspace of B. Furthermore, if A is $n \times n$ diagonalizable matrix, we can find an invertible $n \times n$ matrix Q, and a diagonal matrix $n \times n$ matrix D such that $Q^{-1}AQ = D$ with Q having its columns the vectors in the basis of eigenvectors of A, and D having its jth column entry the eigenvalue of A corresponding to jth column of Q.

Application: Closed Formula for Exponential of Diagonalizable Matrix

Application: System of Differential Equations

5.2 Direct Sums

Definition. Sum Let W_1, W_2, \dots, W_k be subspaces of a vector space V. The sum of these subspaces is the set

$$\{v_1 + \dots + v_k : v_i \in W_i \text{ for } 1 \le i \le k\}$$

which we denote by $W_1 + \cdots + W_k$ or $\sum_{i=1}^k W_i$

Definition. Direct Sum Let W_1, W_2, \dots, W_k be subspaces of a vector space V. We call V the direct sum of the subspaces W_1, W_2, \dots, W_k and write $V = W_1 \oplus W_2 \oplus \dots \oplus W_k$ if

$$V = \sum_{i=1}^{k} W_i$$
 and $W_j \cap \sum_{i \neq j} W_i = \{0\}$ for each $1 \leq j \leq k$

Theorem. 5.10 Equivalence Condition for Direct Sum

Let $W_1, \dots W_k$ be subspaces of finite-dimensional vector space V. The following results are equivalent

1.
$$V = W_1 \oplus \cdots \oplus W_k$$

- 2. $V = \sum_{i=1}^{k} W_i$ and, for any vector v_1, \dots, v_k such that $v_i \in W_i$ $(1 \leq i \leq k)$, if $v_1 + \dots + v_k = 0$, then $v_i = 0$ for all i.
- 3. Each vector $v \in V$ can be uniquely written as $v = v_1 + v_2 + \cdots + v_k$ where $v_i \in W_i$
- 4. If γ_i is an ordered basis for W_i $(1 \le i \le k)$, then $\gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_k$ is an ordered basis for V
- 5. For each $i=1,2,\cdots,k$, there exists an ordered basis γ_i for W_i such that $\gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_k$ is an ordered basis for V

Theorem. 5.11 A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if V is the direct sum of the eigenspaces of T

Definition. Matrix Exponential For $A \in M_{n \times n}(C)$, define $e^A = \lim_{m \to \infty} B_m$, where

$$B_m = I + A + \frac{A^2}{2!} + \dots + \frac{A^m}{m!}$$

So e^A is the sum of infinite series

$$I + A + \frac{A^2}{2!} + \cdots$$

Note

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} \qquad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

5.4 Invariant Subspaces and the Cayley-Hamilton Theorem

Definition. T-invariant Subspace Let T be a linear operator on a vector space V. A subspace W of V is called a T-invariant subspace of V if $T(W) \subseteq W$, that is, if $T(v) \in W$ for all $v \in W$

Definition. T-cyclic Subspace of V Generated by x Let T be a linear operator on a vector space V, and let x be a nonzero vector in V. The subspace

$$W = span(\{x, T(x), T^2(x), \dots\})$$

is called the T-cyclic subspace of V generated by x, denoted by $\langle v \rangle_T$.

- 1. W is a T invariant subspace
- 2. W is the smallest subspace of V containing x; any T-invariant subspace of V containing x must also contain W

Proof on how T_W is a linear operator on W

Theorem. 5.21 Characteristic Polynomial of T_W Divides That of T Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Let T_W be restriction of T to W. Then the characteristic polynomial of T_W divides the chracteristic polynomial of T.

- 1. If λ is an eigenvalue of T_W then it is also an eigenvalue of T
- 5.4:12 Proof Supplementary to theorem 5.21
- 4.3:12 Proof Supplementary to theorem 5.21

Theorem. 5.22 Basis and Characteristic Polynomial For T-Invariant Subspace are Readily Computable Let T be a linear operator on a finite-dimensional vector space V, and let W denote the T-cyclic subspace of V generated by a nonzero vector $v \in V$. Let k = dim(W). Then

- 1. $\{v, T(v), T^2(v), \dots, T^{k-1}(v)\}\$ is a basis for W
- 2. If $a_0v + a_1T(v) + \cdots + a_{k-1}T^{k-1}(v) + T^k(v) = 0$, then the characteristic polynomial of T_W is

 $f(t) = (-1)^k (a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + t^k)$

Idea is we can easily compute the characteristic polynomial by computing $T^k(v)$ and express it as a linear combination of the basis $\{v, T(v), \cdots, T^{k-1}(v)\}$, and use the 2nd claim of the theorem. Of course, we can derive chracteristic polynomial by computing determinants. By theorem 5.21, we can use characteristic polynomial of T_W to gain information about the characteristic polynomial of T itself

5.4:12 for theorem 5.22, proves the second claim by induction

Definition. Linear Operator over a Polynomial Let $f(x) = a_0 + a_1x + \cdots + a_nx^n$ be a polynomial with coefficients from a field F. If T is a linear operator on a vector space V over F, or similarly for $A \in M_{n \times n}(F)$, we define

$$f(T) = a_0 I + a_1 T + \dots + a_n T^n$$
 $f(A) = a_0 I + a_1 A + \dots + a_n A^n$

Theorem. 5.23 Cayley-Hamilton Theorem Let T be a linear operator on a finite-dimensional vector space V, and let f(t) be the characteristic polynomial of T. Then $f(T) = T_0$, the zero transformation. That is T satisfies its characteristic equation.

Proof. Prove f(T)(v) = 0 for all $v \in W$. Idea is to consider a T-invariant subspace W for v chosen. Write down kth element as a linear combination of preivous basis vectors and compute its characteristic polynomial using method in theorem 5.22 and notice $P_{T_W}(T) = T_0$, i.e. $P_{T_W}(T)(v) = 0$ for all $v \in W$. Also P_{T_W} divides P_T , from here results follows \square

Corollary. Cayley-Hamilton Theorem for Matrices Let A be $n \times n$ matrix, and let f(t) be the characteristic polynomial of A. Then f(A) = 0, the $n \times n$ zero matrix.

0.1 Invariant Subspaces and Direct Sums

Remark. Motivation is if we can decompose V into direct sums of T-invariant subspaces, then we can infer behavior of T based on behavior of direct summands.

T is diagonalizable if and only if V can be decomposed into a direct-sum of one-dimensional T-invariant subspaces

We can relate direct sum over invariant subspaces to direct sum over their corresponding matrices

Theorem. 5.24 Let T be linear operator on finite dimensional V, suppose $V = W_1 \oplus \cdots \oplus W_k$, where W_i is T-invariant subspace of V. Suppose $f_i(t)$ is characteristic polynomial of T_W , then $f_1(t) \cdot \cdots \cdot f_k(t)$ is characteristic polynomial of T

1. For diagonalizable T, $V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$. Given $f_{E_{\lambda_i}} = (\lambda_i - t)^{m_i}$, we have $f(t) = (\lambda_1 - t)^{m_1} \cdots (\lambda_k - t)^{m_k}$ as expected

Definition. Direct Sum of Matrices Let $B_1 \in M_{m \times m}(F)$ and let $B_2 \in M_{n \times n}(F)$. Define direct sum of B_1 and B_2 , as A defined as

$$A_{ij} = \begin{cases} (B_1)_{ij} & 1 \le i, j \le m \\ (B_2)_{i-m,j-m} & m+1 \le i, j \le n+m \\ 0 & otherwise \end{cases}$$

If B_1, \dots, B_k are square matrices, then we define

$$B_1 \oplus \cdots \oplus B_k = (B_1 \oplus \cdots \oplus B_{k-1}) \oplus B_k$$

If $A = B_1 \oplus \cdots \oplus B_k$, then

$$A = \begin{pmatrix} B_1 & O & \cdots & O \\ O & B_2 & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & B_k \end{pmatrix}$$

Theorem. 5.25 Relating Direct Sum Over Invariant Subspaces to Direct Sum Over Their Corresponding Matrix Representations Let T be linear operator on finite-dimensional vector space V, let W_1, \dots, W_k be T-invariant subspaces of V such that $V = W_1 \oplus \dots \oplus W_k$. For each i, let β_i be an ordered basis for W_i , and let $\beta = \beta_1 \cup \dots \cup \beta_k$. Let $A = [T]_{\beta}$ and $B_i = [T_{W_i}]_{\beta_i}$ for $i = 1, \dots, k$, then $A = B_1 \oplus \dots \oplus B_k$

$$[T]_{\beta} = \begin{pmatrix} [T_{W_1}]_{\beta_1} & O & \cdots & O \\ O & [T_{W_2}]_{\beta_2} & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & [T_{W_k}]_{\beta_k} \end{pmatrix}$$