Data Communications

A Communications Model

- Source
 - generates data to be transmitted
- Transmitter
 - Converts data into transmittable signals
- Transmission System
 - Carries data
- Receiver
 - Converts received signal into data
- Destination
 - Takes incoming data

Simplified Communications Model - Diagram

Simplified Data Communications Model

• segments between entities on each connection

Key points

- All forms of information can be represented by electromagnetic signals. Based on transmission medium and the comm. environment, either analog or digital signals can be used
- Any EM signal is made up of a # of constituent frequencies -> bandwidth of the signal
- Transmission impairment: attenuation, delay distortion, noise, etc.
- Design factors: signal bw, data rate of digital information, noise level, error rate.

Terminology (1)

- Transmitter
- Receiver
- Medium
 - Guided medium
 - e.g. twisted pair, optical fiber, coaxial cable
 - Unguided medium
 - e.g. air, water, vacuum

Terminology (2)

- Direct link
 - No intermediate devices
- Point-to-point
 - Direct link
 - Only 2 devices share link
- Multi-point
 - More than two devices share the link

Terminology (3)

- Simplex
 - One direction
 - e.g. Television
- Half duplex
 - Either direction, but only one way at a time
 - e.g. police radio
- Full duplex
 - Both directions at the same time
 - e.g. telephone

Frequency, Spectrum and Bandwidth

- Time domain concepts
 - Analog signal
 - Various in a smooth way over time, e.g, speech
 - Digital signal
 - Maintains a constant level then changes to another constant level, e.g., binary 1s and 0s
 - Periodic signal
 - Pattern repeated over time
 - Aperiodic signal
 - Pattern not repeated over time

Analogue & Digital Signals

Periodic Signals

Sine Wave

- Peak Amplitude (A)
 - maximum strength of signal
 - volts
- Frequency (f)
 - Rate of change of signal
 - Hertz (Hz) or cycles per second
 - Period = time for one repetition (T)
 - T = 1/f
- Phase (φ)
 - Relative position in time
- Sine waves are important building blocks for other signals.

Varying Sine Wayres

Wavelength

- Distance occupied by one cycle
- Distance between two points of corresponding phase in two consecutive cycles
- λ
- Assuming signal velocity v
 - $\lambda = vT$
 - $\lambda f = v = c$ in free space
 - $c = 3*10^8 \text{ms}^{-1}$ (speed of light in free space)

Frequency Domain Concepts

- Signal usually made up of many frequencies
- Components are sine waves
- Can be shown (Fourier analysis) that any signal is made up of component sine waves
- Can plot frequency domain functions

Addition of Frequency Components

(T=1/f)

This is a time-domain illustration.

Frequency Domain Representations

Spectrum & Bandwidth

- Spectrum
 - range of frequencies contained in signal
- Absolute bandwidth
 - width of spectrum
- Effective bandwidth
 - Often just bandwidth
 - Narrow band of frequencies containing most of the energy
- DC Component
 - Component of zero frequency

Signal with DC Component

Data Rate and Bandwidth

- Any transmission system has a limited band of frequencies
- This limits the data rate that can be carried
- We will see two limits later

Analog and Digital Data Transmission

- Data
 - Entities that convey meaning
- Signals
 - Electric or electromagnetic representations of data
- Transmission
 - Communication of data by propagation and processing of signals

Analog and Digital Data

- Analog
 - Continuous values within some interval
 - e.g. sound, video
- Digital
 - Discrete values
 - e.g. text, integers

Analog and Digital Signals

- Means by which data are propagated
- Analog
 - Continuously variable
 - Various media
 - wire, fiber optic, space
 - Speech bandwidth 100Hz to 7kHz
 - Telephone bandwidth 300Hz to 3400Hz
 - Video bandwidth 4MHz
- Digital
 - Use two DC components

Advantages & Disadvantages of Digital

- Cheaper
- Less susceptible to noise
- Greater attenuation
 - Pulses become rounded and smaller
 - Leads to loss of information

Attenuation of Digital Signals

Voltage at transmitting end

Voltage at receiving end

Binary Digital Data

- From computer terminals etc.
- Two dc components
- Bandwidth depends on data rate

Data and Signals

- Usually use digital signals for digital data and analog signals for analog data
- Can use analog signal to carry digital data
 - Modem
- Can use digital signal to carry analog data
 - Compact Disc audio

Analog Signals Carrying Analog and Digital Data

Digital Signals Carrying Analog and Digital Data

Analog Transmission

- Analog signal transmitted without regard to content
- May be analog or digital data
- Attenuated over distance
- Use amplifiers to boost signal
- Also amplifies noise

Digital Transmission

- Concerned with content
- Integrity endangered by noise, attenuation etc.
- Repeaters used
- Repeater receives signal
- Extracts bit pattern
- Retransmits
- Attenuation is overcome
- Noise is not amplified

Advantages of Digital Transmission

- Digital technology
 - Low cost LSI/VLSI technology
- Data integrity
 - Longer distances over lower quality lines
- Capacity utilization
 - High bandwidth links economical
 - High degree of multiplexing easier with digital techniques
- Security & Privacy
 - Encryption
- Integration
 - Can treat analog and digital data similarly

Transmission Impairments

- Signal received may differ from signal transmitted
- Analog degradation of signal quality
- Digital bit errors
- Caused by
 - Attenuation and attenuation distortion
 - Delay distortion
 - Noise

Attenuation

- Signal strength falls off with distance
- Depends on medium
- Received signal strength:
 - must be enough to be detected
 - must be sufficiently higher than noise to be received without error
- Attenuation is an increasing function of frequency

Delay Distortion

- Only in guided media
- Propagation velocity varies with frequency

Noise (1)

- Additional signals inserted between transmitter and receiver
- Thermal
 - Due to thermal agitation of electrons
 - Uniformly distributed
 - White noise
- Intermodulation
 - Signals that are the sum and difference of original frequencies sharing a medium

Noise (2)

- Crosstalk
 - A signal from one line is picked up by another
- Impulse
 - Irregular pulses or spikes
 - e.g. External electromagnetic interference
 - Short duration
 - High amplitude

Decibels

Decibel is a measure of the ratio between two signal levels

$$G_{dB} = 10\log_{10} \frac{P_{out}}{P_{in}}$$

Reason to use decibels

- Signal strength often falls off exponentially, so loss is easily expressed in terms of the decibel
- Net gain/loss in a cascaded transmission path can be calculated with simple addition and subtraction.

Channel Capacity

- Data rate
 - In bits per second
 - Rate at which data can be communicated
- Bandwidth
 - In cycles per second of Hertz
 - Constrained by transmitter and medium

Nyquist Bandwidth

- If rate of signal transmission is 2B then signal with frequencies no greater than B is sufficient to carry signal rate
- Given bandwidth B, highest signal rate is 2B
- Given binary signal, data rate supported by B Hz is 2B bps
- Can be increased by using M signal levels
- $C = 2B \log_2 M$
- Noise-free channel

Shannon Capacity Formula

- Consider data rate, noise and error rate
- Faster data rate shortens each bit so burst of noise affects more bits
 - At given noise level, high data rate means higher error rate
- Signal to noise ratio (SNR) (in decibels)
- SNR_{db} = 10 log₁₀ (signal/noise)
- Capacity C=B log₂(1+SNR)
- This is error free capacity

Transmission Media: Overview

- Guided wire
- Unguided wireless
- Characteristics and quality determined by medium and signal
- For guided, the medium is more important
- For unguided, the bandwidth produced by the antenna is more important
- Key concerns are data rate and distance

Design Factors

- Bandwidth
 - Higher bandwidth gives higher data rate
- Transmission impairments
 - Attenuation
- Interference
- Number of receivers
 - In guided media
 - More receivers (multi-point) introduce more attenuation

Guided Transmission Media

- Twisted Pair
- Coaxial cable
- Optical fiber

Transmission Characteristics of Guided Media

Twisted pair (with	Frequenc y Range 0 to 3.5 kHz	Typical Attenuati 0.2 dB√km @ 1 kHz	Typical Delay 50 µs/km	Repeater Spacing 2 km
hading) pairs	0 to 1 MHz	0.7 dB/km @ 1 kHz	5 µs/km	2 km
(taultianair eables)	0 to 500 MHz	7 dB/km @ 10 MHz	4 µs/km	1 to 9 km
Optical fiber	186 to 370 THz	0.2 to 0.5 dB/km	5 µs/km	40 km

Twisted Pair

—Separately insulated

-Twisted together

-Often "bundled" into cables

 Usually installed in building during construction

(a) Twisted pair

Twisted Pair - Applications

- Most common medium
- Telephone network
 - Between house and local exchange (subscriber loop)
- Within buildings
 - To private branch exchange (PBX)
- For local area networks (LAN)
 - 10Mbps or 100Mbps

Twisted Pair - Pros and Cons

- Cheap
- Easy to work with
- Low data rate
- Short range

Twisted Pair - Transmission Characteristics

- Analog
 - Amplifiers every 5km to 6km
- Digital
 - Use either analog or digital signals
 - repeater every 2km or 3km
- Limited distance
- Limited bandwidth (1MHz)
- Limited data rate (100MHz)
- Susceptible to interference and noise

Unshielded and Shielded TP

- Unshielded Twisted Pair (UTP)
 - Ordinary telephone wire
 - Cheapest
 - Easiest to install
 - Suffers from external EM interference
- Shielded Twisted Pair (STP)
 - Metal braid or sheathing that reduces interference
 - More expensive
 - Harder to handle (thick, heavy)

UTP Categories

- Cat 3
 - up to 16MHz
 - Voice grade found in most offices
 - Twist length of 7.5 cm to 10 cm
- Cat 4
 - up to 20 MHz
- Cat 5
 - up to 100MHz
 - Commonly pre-installed in new office buildings
 - Twist length 0.6 cm to 0.85 cm

Coaxial Cable

- -Outer conductor is braided shield
- -Inner conductor is solid metal
- -Separated by insulating material
- -Covered by padding

Coaxial Cable Applications

- Most versatile medium
- Television distribution
 - Ariel to TV
 - Cable TV
- Long distance telephone transmission
 - Can carry 10,000 voice calls simultaneously
 - Being replaced by fiber optic
- Short distance computer systems links
- Local area networks

Coaxial Cable - Transmission Characteristics

- Analog
 - Amplifiers every few km
 - Closer if higher frequency
 - Up to 500MHz
- Digital
 - Repeater every 1km
 - Closer for higher data rates

Optical Fiber

Optical Fiber - Benefits

- Greater capacity
 - Data rates of hundreds of Gbps
- Smaller size & weight
- Lower attenuation
- Electromagnetic isolation
- Greater repeater spacing
 - 10s of km at least

Optical Fiber - Applications

- Long-haul trunks
- Metropolitan trunks
- Rural exchange trunks
- Subscriber loops
- LANs

Optical Fiber - Transmission Characteristics

- Act as wave guide for 10¹⁴ to 10¹⁵ Hz
 - Portions of infrared and visible spectrum
- Light Emitting Diode (LED)
 - Cheaper
 - Wider operating temp range
 - Last longer
- Injection Laser Diode (ILD)
 - More efficient
 - Greater data rate
- Wavelength Division Multiplexing

Wireless Transmission Frequencies

- 2GHz to 40GHz
 - Microwave
 - Highly directional
 - Point to point
 - Satellite
- 30MHz to 1GHz
 - Omnidirectional
 - Broadcast radio
- $3 \times 10^{11} \text{ Hz to } 2 \times 10^{14} \text{Hz}$
 - Infrared
 - Local

Antennas

- Electrical conductor (or system of..) used to radiate electromagnetic energy or collect electromagnetic energy
- Transmission
 - Radio frequency energy from transmitter
 - Converted to electromagnetic energy
 - By antenna
 - Radiated into surrounding environment
- Reception
 - Electromagnetic energy impinging on antenna
 - Converted to radio frequency electrical energy
 - Fed to receiver
- Same antenna often used for both

Radiation Pattern

- Power radiated in all directions
- Not same performance in all directions
- Isotropic antenna is (theoretical) point in space
 - Radiates in all directions equally
 - Gives spherical radiation pattern

Terrestrial Microwave

- Parabolic dish
- Focused beam
- Line of sight
- Long haul telecommunications
- Higher frequencies give higher data rates

Satellite Microwave

- Satellite is relay station
- Satellite receives on one frequency, amplifies or repeats signal and transmits on another frequency
- Requires geo-stationary orbit
 - Height of 35,784km
- Television
- Long distance telephone
- Private business networks

Satellite Point to Point Link

Satellite Broadcast Link

Broadcast Radio

- Omnidirectional
- FM radio
- UHF and VHF television
- Line of sight
- Suffers from multipath interference
 - Reflections

Infrared

- Modulate noncoherent infrared light
- Line of sight (or reflection)
- Blocked by walls
- e.g. TV remote control, IRD port