

Теория вероятностей: случайная величина.

Домашнее задание.

|1| Случайная величина X имеет распределение, заданное таблицей выше.

- а) Дополните таблицу распределения.
- б) Найдите таблицу распределения случайной величины X^2 .

\mathbf{X}	-2	-1	0	1	2
P	0.05	0.1	0.15	0.2	?

2 Найдите вероятность того, что решка первый раз выпадет на нечетном по номеру броске монетки.

|3| Случайная величина X имеет функцию распределения, указанную на графике ниже.

Найдите вероятности событий:

- a) X = 1;
- б) X = 2;
- **B)** $X \in (1\frac{1}{2}; 2];$
- Γ) $X \in (1;2];$
- д) $X \in [1; 2]$.

4 Оказывается, что степенным законам распределения подчиняются многие творения человека. Численность населения городов, количество ссылок на сайт, количество страниц на сайте, частота употребления слов в тексте, распространённость фамилий и т.д.:

- Graph structure in the Web
- Power-Law Distribution of the World Wide Web
- Extracting knowledge from the World Wide Web

Пусть количество ссылок на случайно выбранном сайте имеет распределение Парето с параметрами $x_m = 1, k = 1.1.$

- а) Какую плотность имеет случайная величина, равная количеству ссылок на случайно выбранный сайт?
 - б) Найдите вероятность того, что на сайте будет не более пяти ссылок.

 $|\mathbf{5}|$ График функции плотности случайной величины X изображен на рисунке справа.

Какова величина $P(X \in [\frac{1}{2}; 2])$?

- 6 Считается, что длительность телефонного разговора подчиняется показательному закону. Пусть установлено, что разговор продлится более 5 минут с вероятностью $\frac{2}{5}$.
 - а) Чему равняется параметр λ ?
- б) В условиях предыдущей задачи найдите вероятность того, что разговор продлится не дольше 10 минут.

7 Случайная величина X имеет стандартное равномерное распределение (т. е. $X\sim$ U[0,1]).

- а) Какое распределение будет иметь случайная величина $Y = (X + 1) \cdot 2$?
- б) Найдите функцию распределения и функцию плотности случайной величины $Z = \ln(X+1)$.