Advanced Calculus I - Midterm Exam

April 25, 2019

1. Let $A \subset \mathbb{R}$ be a bounded set. Show the following equality:

$$\sup A - \inf A = \sup \{x - y : x, y \in A\}.$$

- 2. Determine whether the following sequences converge or diverge. It if converges, attain the limit.
 - (a) $a_n = \sqrt{n+1} \sqrt{n}$
 - (b) $a_n = \sum_{k=1}^n \frac{k}{k^2 + 1}$
 - (c) $a_n = \sum_{k=1}^n \frac{k!}{3^k}$
- 3. Show that every bounded sequence in $\mathbb R$ has a convergent subsequence.
- 4. Let $\{a_n\}$ be a sequence such that $a_n > 0$ for all $n \in \mathbb{N}$. Show the following inequality.

$$\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} \le \liminf_{n \to \infty} (a_n)^{\frac{1}{n}}.$$

- 5. Prove or disprove the following statements:
 - (a) Every inner product space is a normed space.
 - (b) Every normed space is an inner product space.
- 6. Let $\{a_n\}$ be a bounded sequence in \mathbb{R} satisfying $2a_n \leq a_{n-1} + a_{n+1}$. Show that

$$\lim_{n \to \infty} (a_{n+1} - a_n) = 0.$$

- 7. Let M be a metric space. Suppose A is a closed set in M and B is a compact set in M. Show that $A \cap B$ is compact.
- 8. Let $A \subset \mathbb{R}^n$ be a compact set. Show A is closed and bounded without the Heine–Borel theorem
- 9. Show that a closed interval $[a,b] \in \mathbb{R}$ is connected by using the definition of connectedness.