Reacher project report

Part 1 Adapted DDPG algorithm

Since the Reacher environment has 2 different versions, one with single agent, the other with multiple agents, I referenced the Udacity benchmark implementation and the <u>gcolmen's GitHub</u> and created a one-fit all code structure for both environments. The pseudocode for the adapted DDPG algorithm is as following:

Algorithm: Adapted Deep Deterministic Policy Gradient (see openai DDPG document)

- 0: Hyperparameters: Train_every (for every Train_every steps, train the agent); N_learn_updates (update N_learn_updates times for each learning process)
- 1: Input: initial policy network (Actor) with parameters θ , Q-function network (Critic) with parameters φ , empty replay buffer
 - D, agent size AS
- 2: Set the target networks' parameters equal to main parameters $\theta_{\text{target}} \leftarrow \theta$, $\phi_{target} \leftarrow \phi$
- 3: episode count = 0
- 4: Repeat
- 5: Observe state s and select action $a = \text{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$, where ϵ is the noise generated by a noise function of some kind, which will be discussed later.

$$dim(a) = AS \times action_size$$

- 6: Execute *a* in the environment
- 7: Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 8. Calculate average reward for all agents $\mathbf{r}_{avg} = \frac{1}{4S} (\sum_i r_i)$
- 9: Store (s,a, r_{avg},s',d) in replay buffer D
- 10. episode_count += 1
- 11: If s' is terminal, reset environment state.
- 12: **If** episode_count % Train_every_steps == 0 **then**
- 13: **for** N_learn_updates **do**
- 14: Randomly sample a batch of transitions, $B = \{(s,a,r_{avg},s',d)\}$ from D
- 15: Compute targets

$$y(r_{avg}, s', d) = r + \gamma(1 - d)Q_{\phi_{targ}(s', \mu_{\theta_{target}}(s'))}$$

16: Update Q-function by one step of gradient descent using

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r_{avg},s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^{2}$$

17: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))$$

18: Update target networks with

$$\varphi_{\mathsf{target}} \leftarrow \tau \phi_{target} + (1 - \tau) \phi$$

$$\theta_{\text{target}} \leftarrow \tau \theta_{target} + (1 - \tau)\theta$$

19: **end for**

20: **end if**

21: until environment solved

Part 2 Basic Neural Network design and Hyperparameters selection

Part 2.1: Neural Network architecture

Actor network:

Layer	Layer type	Input	Output size	Activation function	Parameter Initialization
		size			
1	Fully	State	fc1_units =	Relu	Uniform distribution
	connected	size	128		$\left[-\frac{1}{\sqrt{state\ size}}, \frac{1}{\sqrt{state\ size}}\right]$
2	Batch	128	128	/	/
	normalize				
3	Fully	128	fc2_units =	Relu	Uniform distribution
	connected		256		$\left[-\frac{1}{\sqrt{128}}, \frac{1}{\sqrt{128}}\right]$
4	Fully	256	Action size	tanh	Uniformly sampled within
	connected				$[-3 \times 10^{-3}, 3 \times 10^{-3}]$

Critic network:

Layer	Layer type	Input size	Output size	Activation	Parameter Initialization
				function	
1	Fully connected	State size	fc1_units =128	Relu	Uniform distribution $\left[-\frac{1}{\sqrt{state\ size}}, \frac{1}{\sqrt{state\ size}}\right]$
2	Batch normalize	128	128	/	/

3	Fully connected	128+action size	fc2_units 256	Relu	Uniform distribution	
4	Fully connected	256	Action size	/	Uniformly sampled within $[-3 \times 10^{-3}, 3 \times 10^{-3}]$	

The hyperparameters fc1_units, fc2_units are chosen based on the <u>discussion</u> (require udacity account to have access).

The parameter initialization method is based on section 7 of the <u>DDPG Paper</u>.

Part 2.2 General Hyperparameters

The hyperparameters in the table below are general hyperparameters that are shared by both my Ounoise implementation and Gaussian noise implementation to solve the environment.

Hyperparameter	Value	Usage	Reason for choosing
Buffer size	10^{6}	Size of the replay	Value suggested by
		buffer	section 7, <u>DDPG Paper</u>
Batch size	128	Size of each sample	Default value of the
		from the replay buffer	DDPG implementation
			of Udacity drlnd
Gamma	0.95	Discount factor	Referenced gcolmen's
			<u>GitHub</u>
Tau	10^{-3}	Coefficient for soft	Value suggested by
		target updates	section 7, <u>DDPG Paper</u>
LR_ACTOR	10^{-4}	Learning rate for the	Referenced gcolmen's
		actor network	<u>GitHub</u>
LR_CRITIC	10^{-3}	Learning rate for the	Referenced gcolmen's
		critic network	<u>GitHub</u>
WEIGHT_DECAY	0	Weight decay for critic	Suggested by this
		network	discussion (require
			Udacity account to
			access)
TRAIN_EVERY	20	The agent(s) will learn	Suggested by Udacity
		every TRAIN_EVERY	benchmark
		timesteps	implementation
N_LEARN_UPDATES	10	The agent(s) will	Suggested by Udacity
		update	benchmark
		N_LEARN_UPDATES	implementation
		each learning process	

Part 2.3: Noise implementation and Hyperparameters

Ounoise implementation

The Ounoise implementation generates the noise factor ϵ for action selection (<u>line 5 of the pseudocode</u>) by the

Hyperparameter	Value	Usage	Reason for choosing
Theta	0.15	Parameter for Ounoise	Referenced gcolmen's
			<u>GitHub</u>
Sigma	0.08	Parameter for Ounoise	Referenced gcolmen's
			<u>GitHub</u>

Using this set of hyperparameters, the 20-agent environment is solved by 108 episodes for the environment. The single agent environment is solved by 592 episodes.

Figure 2.3-1: the OUNoise implementation solves the 20-agent environment in 108 episodes

Figure 2.3-2: the OUNoise implementation solves the single agent environment in 592 episodes

Gaussian noise implementation

As stated in the "Exploration and Exploitation" section of the <u>OPENAI DDPG document</u>, *uncorrelated*, *mean-zero Gaussian noise works perfectly well* for DDPG. Based on this idea, I implemented a solution in which the noise is directly generated by gaussian random number, the only parameter involved here is sigma, square root of the variance.

Hyperparameter	Value	Usage	Reason for choosing
sigma	0.95	square root of the	By my own
		variance	experiments

Using this set of hyperparameters, the single agent environment is solved by 191 episodes.

Figure 2.3-3: the Gaussian implementation solves the single agent environment in 192 episodes.

Part 3 Comparison between different implementation

All the hyperparameters I listed in part 2 are "optimal" parameters that solve the environment as fast as possible. In this section, I'd like to compare implementations with different environment, design and hyperparameters, and discuss a few points that may be essential for solving the environment using DDPG.

Index	Implementation	Environment	Hyperparameters	Episodes for	Real time for
				solving	solving
1	Ounoise	20 agents	Theta = 0.15 ;	108	Roughly 4 hours
			Sigma = 0.08 ;		
2	Ounoise	Single agents	Theta = 0.15 ;	592	Roughly 1.5
			Sigma = 0.08;		hours
3	Ounoise	Single agents	Theta = 0.5 ;	Not solved	The score is
			Sigma = 1;	within 600	steady around
				episodes	+22 after 400
					rounds

4	Ounoise	20 agents / single agents	Theta = 0.15; Sigma = 0.08; But white noise for Ounoise process generated by "random.random()"	Average score never > 1	The white noise generated is always positive, the agent never works
5	Gaussian	Single agents	Sigma = 0.9	303	Roughly 1 hour
6	Gaussian	Single agents	Sigma = 0.925	245	Roughly 45 minutes
7	Gaussian	Single agents	Sigma = 0.95	191	Roughly 35 minutes
8	Gaussian	Single agents	Sigma = 0.975	265	Roughly 50 minutes
9	Gaussian	Single agents	Sigma = 0.95 With priotized experience replay $\alpha = 0.3$	264	Roughly 50 minutes
10	Gaussian	Single agents	$Sigma = 0.95$ With priotized experience replay $\alpha = 0.1$	197	Roughly 35 minutes

Based on the experiments, I found several points that may be essential for solving the task:

- 1. The DDPG behavior is quite sensitive to the noise we add, a small change in parameters for noise generation may cause the agent to solve the task much slower or even cannot start learning. The noise must be centered at 0, with no bias. (There exists an error in line 150 of the <u>Udacity's ddpg agent</u> implementation. The white noise generated in the OUNoise class should not use random.random(), which is a value between 0 and 1)
- 2. The Gaussian noise implementation works better than the Ounoise implementation, since the agent converges much quicker.
- 3. The 20-agents environment produces a more stable result than the single agent environment.

Figure 3-1: left is the training score plot of the multi-agent environment, right is the training score plot of the single agent environment. Clearly, the multiple-agent score plot is much smoother than the single one.

Part 4 Future improvement discussion

I paid much emphasis on tuning the design and hyperparameters for the noise generation for this project, and didn't pay much attention to the design of the neural network and other hyperparameters. Maybe tuning those parameters will give better results