2018/2019 SEMESTER TWO MID-SEMESTER TEST

SAS Code: MST

Diploma in Aerospace Electronics (DASE) 2nd Year FT Diploma in Engineering with Business (DEB) 3rd Year FT Diploma in Electrical & Electronic Engineering (DEEE) 2nd Year FT Diploma in Engineering Systems (DES) 2nd Year FT Diploma in Energy Systems and Management (DESM) 2nd Year FT

CIRCUIT THEORY & ANALYSIS

Time Allowed: 1.5 Hours

Instructions to Candidates

- 1. The Singapore Polytechnic examination rules are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 10 Multiple Choice Questions, 3 marks each.

Section B - 4 Short Questions

- 3. ALL questions are COMPULSORY.
- 4. All questions are to be answered in the answer booklet. Start each question in Section B on a new page.
- 5. This paper consists of 8 pages, inclusive of the formulae sheet.

SECTION A: MULTIPLE CHOICE QUESTIONS (3 marks each)

- 1. Please **tick** your answers in the **MCQ box** behind the front cover of the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- 1. By applying Mesh Analysis on the circuit shown in Figure A1, the following mesh matrix equation was obtained.

$$\begin{bmatrix} R_X+5 & -9 \\ -9 & R_X+8 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} -10 \\ 14 \end{bmatrix}$$

Determine the value of the supply voltage V_1 .

Figure A1

- 2. For the same circuit in Figure A1, determine the unknown resistor R_X.
 - (a) 3Ω
 - (b) 4Ω
 - (c) 9Ω
 - (d) 14Ω
- 3. For the circuit shown in Figure A1, determine the expression for the power in the 5 Ω resistor.
 - (a) $5(I_1)^2$
 - (b) $5(I_2)^2$
 - (c) $5(I_1 I_2)^2$
 - (d) $5(I_1 + I_2)^2$

4. Calculate the Norton's equivalent current source I_N across terminals A and B for the circuit shown in Figure A4.

- (c) 12 A
- (d) 14.4 A

Figure A4

- 5. The value of the Norton's equivalent resistance across terminals A and B for the circuit given in Figure A4 is
 - (a) 1.2Ω
 - (b) 1.5Ω
 - (c) 2Ω
 - (d) 5Ω
- 6. If the 24 A ideal current source as shown in Figure A4 is replaced with a 24 V ideal voltage source, calculate the new value of the Norton's equivalent resistance, R_N .
 - (a) 2Ω
 - (b) 3Ω
 - (c) 5Ω
 - (d) 8Ω

7. The frequency response curve of the RLC series circuit is as shown in Figure A7. Determine the cut-off frequencies of the circuit.

8. From the frequency response curve in Figure A7, determine the circuit impedance at resonance when the RLC series circuit is connected to a 5 V supply.

(a)
$$1 \text{ k}\Omega$$

(b)
$$2.5 \text{ k}\Omega$$

(c)
$$3.55 \text{ k}\Omega$$

(d)
$$5 k\Omega$$

- 9. Which one of the following statements is correct in a parallel RLC resonant circuit?
 - (a) Circuit current is at maximum.
 - (b) Circuit behaves like a resistive circuit.
 - (c) Circuit impedance, $Z = R + jX_L jX_C$.
 - (d) Circuit current is 90° out of phase with supply voltage.
- 10. A pure parallel RLC resonant circuit has a quality factor of 3 is connected to a 5 V source. If the circuit impedance at resonance is 3.5 k Ω , determine the current in the capacitor.
 - (a) 0.48 mA
 - (b) 1.43 mA
 - (c) 1.67 mA
 - (d) 4.29 mA

SECTION B: 4 QUESTIONS

B1. Using the source conversion method, simplify the circuit shown in Figure B1 to its equivalent current source across terminals A and B. (15 marks)

- B2. For the circuit shown in Figure B2,
 - (a) convert the delta-connected resistors as shown in the dotted box into an equivalent star-connection, and hence (9 marks)
 - (b) determine the total supply current. (6 marks)

2018/2019_S2 (MST)

- B3. (a) By inspection, **write** the nodal voltage equations for V_1 , V_2 and V_3 in matrix form for the network shown in Figure B3. (15 marks)
 - (b) Write an expression in terms of the nodal voltages for :
 - (i) the voltage across the 2 Ω resistor, and (2 marks)
 - (ii) the current in the 10Ω resistor. (3 marks)

- B4. (a) Apply Thevenin's Theorem to find the Thevenin equivalent circuit parameters V_{TH} and Z_{TH} between terminals A and B for the circuit shown in Figure B4. (Include circuit diagrams for finding V_{TH} and Z_{TH}) (14 marks)
 - (b) Draw the Thevenin's equivalent circuit obtained above and hence calculate the current in the load R_L . (6 marks)

End of Paper

<u>Formulae</u>

Resistors in series	$R_{T} = R_{1} + R_{2} + R_{3} + \dots$				
Resistors in parallel	$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots$				
Resistors in parallel (for 2 resistors)	$R_{T} = \frac{R_{1} R_{2}}{R_{1} + R_{2}}$				
Voltage Divider Rule	$V_{X} = \frac{R_{X}}{R_{T}} V_{S}$				
Current Divider Rule (for 2 resistors)	$I_1 = \frac{R_2}{R_1 + R_2} I_T$				
Source Conversion	$E = I_S R_S I_S = \frac{E}{R_S}$				
Mesh Current Analysis	[Z] [I] = [V]				
Nodal Voltage Analysis	[Y] [V] = [I]				
Delta to Star Conversion	$Z_1 = \frac{Z_A Z_C}{Z_A + Z_B + Z_C}$				
	$Z_2 = \frac{Z_A Z_B}{Z_A + Z_B + Z_C}$				
	$Z_3 = \frac{Z_B Z_C}{Z_A + Z_B + Z_C}$				
Star to Delta Conversion	$Z_{A} = Z_{1} + Z_{2} + \frac{Z_{1}Z_{2}}{Z_{3}}$				
	$Z_{\rm B} = Z_2 + Z_3 + \frac{Z_2 Z_3}{Z_1}$				
	$Z_{\rm C} = Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2}$				
Inductive Reactance	$X_L = 2\pi f L$				
Capacitive Reactance	$X_{C} = \frac{1}{2 \pi f C}$				

Series RLC Resonant Circuit	
	Z = R $I = V/R$
	$f_o = \frac{1}{2\pi\sqrt{LC}}$
	$Q_0 = \frac{X_L}{R} = \frac{X_C}{R}$
	$=\frac{V_L}{V}=\frac{V_C}{V}$
	Bandwidth (BW) = $\frac{f_o}{Q_o} = f_2 - f_1$
	$f_1 = f_o - \frac{BW}{2} \qquad f_2 = f_o + \frac{BW}{2}$
Parallel RLC Resonant Circuit	Z = R $I = V/R$
	$f_o = \frac{1}{2\pi\sqrt{LC}}$
	$Q_0 = \frac{R}{X_L} = \frac{R}{X_C}$
	$=\frac{I_{L}}{I}=\frac{I_{C}}{I}$
	Bandwidth (BW) = $\frac{f_o}{Q_o} = f_2 - f_1$
	$f_1 = f_o - \frac{BW}{2} \qquad f_2 = f_o + \frac{BW}{2}$

A

1	2	3	4	5	6	7	8	9	10
С	В	С	D	D	A	С	В	В	D

B1

B2 (a)
$$R_1 = 20 Ω$$
; $R_2 = 30 Ω$; $R_3 = 12 Ω$

B2 (b)
$$I_T = \frac{24}{17.67} = 1.36 \text{ A}$$

B3 (a)
$$\begin{bmatrix} \frac{1}{2} + \frac{1}{10} & 0 & -\frac{1}{2} \\ 0 & \frac{1}{4} + \frac{1}{5} & -\frac{1}{4} \\ -\frac{1}{2} & -\frac{1}{4} & \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} \frac{30}{10} - 2 \\ 2 - \frac{25}{5} \\ 0 \end{bmatrix}$$

B3 (b) (i)
$$V_{2\Omega} = V_1 - V_3$$
 or

B3 (b) (ii)
$$I_{10\Omega} = \frac{V_1 - 30}{10}$$
 or $I_{10\Omega} = \frac{30 - V_1}{10}$

B4 (a)
$$V_{TH} =$$
 - 25 V or $25 \angle 180^{0}$; $Z_{TH} = 17.5 + j8 = 19.24 \angle 24.57^{0} \Omega$

B4 (b) Thevenin's Equivalent Circuit

$$I_L = -1.14 \angle -21.32^0 A$$
 or $1.14 \angle 158.68^0 A$