Lecture 24

Part 5 Linear Regression

ECON2843 1/24

Multiple Linear Regression

ECON2843 2 / 24

Multiple Linear Regression

- Multiple linear regression uses a single model to investigate how two or more independent variables, denoted X_1, X_2, \ldots, X_k , are related to the dependent variable, denoted Y.
- ▶ Ideally, we should include as many independent variables into the regression model as are believed to be related to the dependent variable.

ECON2843 3 / 24

Advantages

- Can use a single model to determine:
 - Which independent variables might be truly related to the dependent variable.
 - The nature of these relationships.
- Compared to a simple linear regression model, a multiple linear regression model will generally:
 - Fit the data better.
 - Produce better *predictions*, provided all the independent variables are truly related to the dependent variable.

←□▶ ←□▶ ← □ ▶

ECON2843 4 / 24

Caveats

- We should not include as many independent variables as we can into the regression model.
- ► Why?
 - Model selection is a very important aspect of multiple linear regression.
 - Danger of over-fitting our sample data (can degrade predictive performance of model).
 - Problem of multicollinearity (parameter estimates become unreliable).
 - ➤ We can't fit a multiple linear regression model with more independent variables than observations in our sample.

ECON2843 5 / 24

Multiple Linear Regression Model

► The multiple linear regression model assumes that the relationship between the dependent and independent variables is given by:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \epsilon$$

- \triangleright β_0 is the intercept parameter.
- $\triangleright \beta_1, \dots, \beta_k$ are the **coefficient parameters** for the independent variables.
- \triangleright ϵ is the error variable.

ECON2843 6 / 24

Multiple Linear Regression Model

➤ The multiple linear regression model assumes that the relationship between the dependent and independent variables is given by:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \epsilon$$

- $ightharpoonup eta_0$ is the intercept parameter.
- $\triangleright \beta_1, \dots, \beta_k$ are the **coefficient parameters** for the independent variables.
- \triangleright ϵ is the error variable.

ECON2843 7 / 24

Linearity

- ▶ The "linear" in linear regression refers to linearity in the coefficient parameters.
- ▶ For example, the following is a multiple linear regression model:

$$Y = \beta_0 + \beta_1 X_1^2 + \beta_2 \log X_2 + \beta_3 \frac{1}{X_3} + \epsilon$$

Because we can rewrite the model as:

$$Y=\beta_0+\beta_1W_1+\beta_2W_2+\beta_3W_3+\epsilon$$
 where $W_1=X_1^2$, $W_2=\log X_2$ and $W_3=\frac{1}{X_3}$.

8 / 24

Linearity

However, the following is not a multiple linear regression model:

$$Y = \beta_0 + \beta_1 \cos(X_1 + \beta_2) + X_2^{\beta_3} + \epsilon$$

Scatter plots of Y against each independent variable can help to determine in what form they should appear in the model.

ECON2843 9 / 24

Sample Data

 \triangleright Our sample data now consists of a set of k+1values for each observation:

$$\{(Y_1, X_{11}, X_{21}, \dots, X_{k1}), \dots, (Y_n, X_{1n}, X_{2n}, \dots, X_{kn})\}$$

The multiple linear regression model states that the Y_i value for the ith observation can be expressed as:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \epsilon_i$$

Response Surface

Rather than a straight line, the multiple linear regression model is a response surface described by the following equation:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

- Due to inherent variability in the population, observations will not lie exactly on the response surface.
- ▶ The error variable ϵ_i signifies how far the Y_i value for each observation is from the response surface.

ECON2042

ECON2843 11 / 24

Model Assumptions

- We have the same assumptions as we did with simple linear regression, which are again stated in terms of ϵ
- Namely, that the errors:
 - Are normally distributed.
 - ▶ Have mean equal to 0.
 - ▶ Have constant variance denoted by σ_c^2 .
 - Are independent.
- ▶ That is, $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$.

Multiple Linear Regression Model

▶ Based on the model assumptions, another way to state the multiple linear regression model is that Y is normally distributed with mean equal to:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

and variance equal to:

$$V(Y) = \sigma_{\epsilon}^2$$

4 D P 4 D P 4 E P 4 E P E *) 4 C

ECON2843 13 / 24

Interpreting the Coefficient Parameters

Suppose we have the following multiple linear regression model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

- ▶ How does the response surface change when we increase the value of X_1 by one unit?
- ▶ Consider two observations with X values given by (x_1, x_2) and $(x_1 + 1, x_2)$.

ECON2843 14 / 24

Interpreting the Coefficient Parameters

▶ Original observation (x_1, x_2) :

$$E(Y_{\text{orig}}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

New observation $(x_1 + 1, x_2)$:

$$E(Y_{\text{new}}) = \beta_0 + \beta_1(x_1 + 1) + \beta_2 x_2$$

= $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_1$
= $E(Y_{\text{orig}}) + \beta_1$

ECON2843 15 / 24

Interpreting the Coefficient Parameters

- ▶ An increase in X_1 by one unit leads to a change in the response surface by the amount β_1 .
- The response surface can equivalently be thought of as the expected value of Y, so β_1 is also the expected change in Y when X_1 increases by one unit.
- In general, a coefficient parameter β_j represents the expected change in Y when X_j is increased by one unit, with all other independent variables held fixed.

4□ > 4□ > 4 = > 4 = > = 90

ECON2843 16 / 24

Parameter Estimation

- ▶ Suppose we have obtained estimates $\hat{\beta}_0$, $\hat{\beta}_1$, ..., $\hat{\beta}_k$. for the parameters $\beta_0, \beta_1, \ldots, \beta_k$.
- ▶ The estimated or **fitted regression model** is:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \dots + \hat{\beta}_k X_k$$

For each observation in our sample, the **fitted value** is given by:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \dots + \hat{\beta}_k X_{ki}$$

and the **residual** is given by:

$$e_i = Y_i - \hat{Y}_i$$

17/24

Method of Least Squares

- Parameter estimates are again chosen as the values that make the residuals as small as possible.
- \triangleright That is, the parameters $\beta_0, \beta_1, \ldots, \beta_k$ are estimated by minimizing the sum of squared residuals:

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2$$

$$= \sum_{i=1}^{n} \left(Y_i - \left(\hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \dots + \hat{\beta}_k X_{ki} \right) \right)^2$$

18 / 24

Parameter Estimation

- Unlike simple linear regression, we will not be calculating parameter estimates for multiple linear regression by hand.
- ► Instead, we will rely on software to fit the model, and the focus will be on understanding and interpreting the computer output.

ECON2843 19 / 24

Attitude Towards the City Example

- Suppose we want to see whether people's attitudes towards the city they live in are linearly related to two variables.
 - ▶ Their duration of residence.
 - ▶ The importance they attach to weather.
- Last topic, the first step in the analysis was to construct a scatter plot to "eyeball" the data.
- Now that we have two independent variables, we should construct two scatter plots:
 - Attitude against duration of residence.
 - ▶ Attitude against importance attached to weather.

20 / 24

Attitude against Duration of Residence

CON2843 21 / 24

Attitude against Importance of Weather

ECON2843 22 / 24

Model Specification

- ▶ Next, we need to specify our model.
- Let Y denote attitude towards the city, X_1 denote the duration of residence and X_2 denote the importance attached to weather.
- Since both X_1 and X_2 appear to be linearly related to Y, a reasonable model might be:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

ECON2843 23 / 24

R Output

```
Call:
lm(formula = attitude ~ duration + weather, data = city.dat)
Residuals:
Min 1Q Median 3Q Max
-1.56859 -0.79732 0.03449 0.47779 1.82480
```

Coefficients:

```
Estimate Std. Error t stat. Pr(>|t|) (Intercept) 0.45755 0.94094 0.486 0.639817 duration 0.46751 0.08907 5.249 0.000775 weather 0.26344 0.11784 2.236 0.055810
```

Residual standard error: 1.243 on 8 degrees of freedom Multiple R-squared: 0.8724, Adjusted R-squared: 0.8405 F-statistic: 27.35 on 2 and 8 DF, p-value: 0.0002649

ECON2843 24 / 24