### La empírica

Sean  $X_1, X_2, \dots, X_n$  i.i.d.,  $X_i \sim F$ .

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le t\}}$$

#### Empírica: una realización



# Datos simulados: $X_1, ..., X_{25}$ i.i.d., $X_i \sim \mathcal{U}(0, 1)$



## La empírica

Sean  $X_1, X_2, \ldots, X_n$  i.i.d.,  $X_i \sim F$ . Definimos la función de distribución empírica como

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le t\}}$$

- $\widehat{F}_n(t)$  es una función aleatoria.
- $\bullet$   $\widehat{F}_n(t)$  representa a una acumulada que da peso 1/n a  $X_1,X_2,\dots,X_n.$

### Estimando funcionales

- X variable aleatoria
- ullet Función de Distribución Acumulada (FDA)  $F(t) = \mathbb{P}(X \leq t)$





- $X \sim F$ . Modelo:  $F \in \mathcal{F}$
- *Objeto* de interés:  $\theta = T(F)$

$$T_{\rm mean}(F) = \int x dF(x) \quad T_{\rm Var}(F) = \int \left(x - T_{\rm mean}(F)\right)^2 dF(x) \; ,$$
 
$$T_{\rm median}(F) = F^{-1}(0.5)$$

## Estimadores Plug-in

Si estamos interesados en  $\mathbf{algo}(F)$ , consideramos  $\mathbf{algo}(\widehat{F}_n)$ 

# Estimadores Plug-in

Si estamos interesados en  $\mathbf{algo}(F)$ , consideramos  $\mathbf{algo}(\widehat{F}_n)$ 

Estimar 
$$\theta = T(F)$$
 con  $\widehat{\theta}_n := T(\widehat{F}_n)$ 

- Estimando la media:  $T_{\mathsf{mean}}(\widehat{F}_n) = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}_n$ .
- Estimando la varianza:  $T_{\text{Var}}(\widehat{F}_n) = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$ .
- Estimando la mediana :  $T_{\mathrm{median}}(\widehat{F}_n) = \widehat{F}_n^{-1}(0.5)$

# Estimadores Plug-in

Si estamos interesados en  $\mathbf{algo}(F)$ , consideramos  $\mathbf{algo}(\widehat{F}_n)$ 

Estimar 
$$\theta = T(F)$$
 con  $\widehat{\theta}_n := T(\widehat{F}_n)$ 

- Estimando la media:  $T_{\mathsf{mean}}(\widehat{F}_n) = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}_n$ .
- Estimando la varianza:  $T_{\text{Var}}(\widehat{F}_n) = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$ .
- Estimando la mediana :  $T_{\mathrm{median}}(\widehat{F}_n) = \widehat{F}_n^{-1}(0.5)$
- Propiedades? Propiedades Asintóticas?