GATE 2010 MA(1-13)

EE24BTECH11030 - J.KEDARANANDA

1) Let E and F be any two events with $P(E \cup F') = 0.8$, P(E) = 0.4 and P(E|F') = 0.3.

2) Let X have a binomial distribution with parameters n and p, where n is an integer greater than 1 and 0 . If <math>P(X = 0) = P(X = 1), then the value of p is

c) $\frac{3}{5}$

d) $\frac{2}{5}$

b) $\frac{4}{7}$

Then P(F') is

a) $\frac{3}{7}$

a) $\frac{1}{n-1}$	b) $\frac{n}{n+1}$	c) $\frac{1}{n+1}$	d) $\frac{1}{1+n^{n-1}}$		
3) Let $u(x, y) = 2x(1 - u(x, y) + i\varphi(x, y)$ is a		y. Then a function φ	p(x, y), so that $f(z) =$		
a) $(x-1)^2 - y^2$	b) $(x-1)^2 + y^2$	c) $(x-1)^2 + y^2$	d) $(x+1)^2$		
4) Let $f(z)$ be analytic on $D = \{z \in \mathbb{C} : z - 1 < 1\}$ such that $f(0) = 1$. If $f(z) = f(z')$ for all $z \in D$, then which one of the following statements is NOT correct?					
a) $f(z) = [f(z)]^2$ for all $z \in D$	b) $f\left(\frac{z}{2}\right) = \frac{1}{2}f(z)$ for all $z \in$	D c) $f(z) = [f(z)]^2$ for all $z \in$	$ \begin{array}{c} D\\ d) f'(1) = 0 \end{array} $		
5) The maximum number of linearly independent solutions of the differential equation $\frac{d^n y}{dx^n} = 0$ with the condition $y(0) = 1$ is					
a) 4	b) 6	c) 2	d) 1		
6) Which one of the following sets of functions is NOT orthogonal (with respect to the L^2 -inner product) over the given interval?					
	b) $\{\cos n\pi x : n \in \mathbb{N}\}, -\pi < x < \pi$				
7) If $f:[1,2] \to \mathbb{R}$ is a non-negative Riemann-integrable function such that					
	$\int_{1}^{2} \frac{f(x)}{x} dx =$	$\int_{1}^{1} f(x)dx = 0,$			
then a belongs to the interval					

a) $[0, \frac{1}{3})$	b) $\left[\frac{1}{2}, \frac{2}{3}\right)$	c) $\left[\frac{2}{3},1\right)$	d) $\left[1, \frac{4}{3}\right)$	2	
8) The set $X = \mathbb{R}$	with the metric $d(x, y)$	$= \frac{ x-y }{1+ x-y } \text{ is}$			
a) bounded but not compactb) bounded but not complete		_	c) complete but not boundedd) compact but not complete		
9) Let $f(x, y) = \begin{cases} \\ \\ \end{cases}$ Then the value	$\frac{xy}{(x^2+y^2)^{3/2}} \left[1 - \cos(x^2 + \frac{xy}{x^2+y^2}) \right]$ k , of k for which $f(x, y)$	y^{2}), $(x, y) \neq (0, 0)$ (x, y) = (0, 0) is continuous at (0))),(0) is		
a) 0	b) $\frac{1}{2}$	c) 1	d) $\frac{3}{2}$		
on \mathbb{R} . Consider the st $P: m^*(A \cup B) =$ Q: Both A and A R: One of A and A		ırable urable	he Lebesgue outer me	asure	
a) If <i>P</i> is true,b) If <i>P</i> is NOT	then Q is true true, then R is true		t, then <i>P</i> is NOT true t, then <i>P</i> is true		
11) Let $f: \mathbb{R} \to [0, \infty)$ be a Lebesgue measurable function and E be a Lebesgue measurable subset of \mathbb{R} such that $\int_E f dm = 0$, where m is the Lebesgue measure on \mathbb{R} . Then					
a) $m(E) = 0$		c) $m(\{x \in E :$	$f(x) \neq 0\}) = 0$		

12) If the nullity of the matrix $\begin{bmatrix} k & 1 & 2 \\ 1 & -1 & -2 \\ 1 & 1 & 4 \end{bmatrix}$ is 1, then the value of k is

c) 1

c) 0

13) If a 3×3 real skew-symmetric matrix has an eigenvalue 2i, then one of the remaining

b) 0

b) $-\frac{1}{2i}$

d) $m(\{x \in E : f(x) = 0\}) = 0$

d) 2

d) 1

b) $\{x \in \mathbb{R} : f(x) = 0\} = E$

a) -1

a) $\frac{1}{2i}$

eigenvalues is