Exercise Sheet

- 1. Compute the gradient and Hessian of the function $q(x) = \frac{1}{2}x^TAx + b^Tx$, where A is symmetric.
- 2. Compute the gradient and Hessian of

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2.$$

Show that $x^* = (1,1)^T$ is the only local minimizer of this function, and that the Hessian at this point is positive definite. Write a program on trust region method with subproblems solved by the Dogleg method. Apply it to minimize this function. Choose $B_k = \nabla^2 f(x_k)$. Experiment with the update rule of trust region. Give the first two iterates.

3. Apply Steepest Descent method with exact line search to the problem:

$$\min \quad f(x) = 5x_1^2 + \frac{1}{2}x_2^2.$$

Carry out two iterations, starting from $x^0 = (0.1, 1)^T$. Think about how $\{x^k\}$ will behave.

4. Assume that there exsits M > 0 such that $||B_k||_2 ||B_k^{-1}||_2 \le M$ where B_k is symmetric and positive definite. Show that if $d_k = -B_k^{-1} \nabla f_k$,

$$\frac{-d_k^{\nabla} f_k}{\|d_k\| \|\nabla f_k\|} \ge \frac{1}{M}.$$

5. Apply CG method with exact line search to solve

$$\min \quad \frac{1}{2}x^T A x + b^T x,$$

1

starting from $x_0 = (2,1)^T$. Here A = [4,1;1,3] and $b = -(1,2)^T$.