MaCS Calculus and Vectors Exam Study Guide

Vincent Macri

2017 - 2018 — Semester 1

Thank	you~for	everything,	Mrs.	Gugoiu.

Contents

L	Ec		ons of Lines and Planes	_
8	8.1	Vecto	r and Parametric Equations of a Line in \mathbb{R}^2	4
		A	Vector Equation of a Line in \mathbb{R}^2	4
		В	Parametric Equations of a Line in \mathbb{R}^2	4
		\mathbf{C}	Parallel Lines	•
		D	Perpendicular Lines	•
		\mathbf{E}	2D Perpendicular Vectors	•
		\mathbf{F}	Special Lines	•
8	8.2	Carte	sian Equation of a Line	4
		A	Symmetric Equation	4
		В	Normal Equation	4
		\mathbf{C}	Cartesian Equation	4
		D	Slope y -intercept Equation	ţ
		\mathbf{E}	Angle between Two Lines	ļ
8	8.3	Vecto	r, Parametric, and Symmetric Equations of a Line in \mathbb{R}^3	(
		A	Vector Equation	(
		В	Specific Lines	(
		\mathbf{C}	Parametric Equations	(
		D	Symmetric Equations	-
		${ m E}$	Intersections	-
8	8.4	Vecto	r and Parametric Equations of a Plane	8
		A	Planes	8
		В	Vector Equation of a Plane	8
		\mathbf{C}	Parametric Equations of a Plane	8
8	8.5	Carte	sian Equation of a Plane	(
		A	Normal Equation of a Plane	(
		В	Cartesian Equation of a Plane	Ć
		\mathbf{C}	Angle between Two Planes	(
_	_			
2	Re		1 , , , ,	10
(9.1		section of Two Lines	1
		A	Relative Position of Two Lines	1
		В	Intersection of Two Lines (Algebraic Method)	11
		\mathbf{C}	Unique Solution	1.

	D	Infinite Number of Solutions	11
	${ m E}$	No Solution (Parallel Lines)	12
	\mathbf{F}	No Solution (Skew Lines)	12
	G	Classifying Lines (Vector Method)	12
9.2	Interse	ection of a Line with a Plane	13
	A	Relative Position of a Line and a Plane	13
	В	Intersection of a Line and a Plane (Algebraic Method)	13
	\mathbf{C}	Unique Solution (Point Intersection)	13
	D	Infinite Number of Solutions (Line Intersection)	14
	\mathbf{E}	No Solution (No Intersection)	14
	\mathbf{F}	Classifying Lines	14
9.3	Interse	ection of Two Planes	15
	A	Relative Position of Two Planes	15
	В	Intersection of Two Planes	15
	\mathbf{C}	Nonparallel Planes (Line Intersection)	15
	D	Coincident Planes (Plane Intersection)	16
	\mathbf{E}	Parallel and Distinct Planes (No Intersection)	16
9.4	Interse	ection of Three Planes	17
	A	Intersection of Three Planes	17
	В	Unique Solution (Point Intersection — Noncoplanar Normal Vectors)	17
	С	Infinite Number of Solutions (Line Intersection — Nonparallel Planes and Coplanar Normal Vectors)	17
	D	Infinite Number of Solutions (Line Intersection — Two Coinci-	
		dent Planes and One Intersecting Plane)	18
	E	Infinite Number of Solutions (Plane Intersection — Three Coincident Planes)	18
	F	No Solution (Parallel and Distinct Planes)	18
	G	No Solution (H Configuration)	19
	Н	No Solution (Three Parallel Planes but only Two Coincident	1.
	11	Planes)	19
	T	No Solution (Delta Configuration)	19
9.5	Distar	nce from a Point to a Line	21
5.0	A	Distance from a Point to a Line in \mathbb{R}^2	21
	В	Distance from a Point to a Line in \mathbb{R}^3	21
	C	Distance between Two Parallel Lines	22
	Ď	Perpendicular Line from a Point to a Line	22
	E	Shortest Distance between Two Skew Lines	22
9.6		nce from a Point to a Plane	23
J.0	A	Distance from a Point to a Plane (I)	23
	В	Distance from a Point to a Plane (II)	23
	C	Distance between Two Parallel Planes	23

AP P	repar	ation Differentiability Review	25
		of a Function	25
	A	One-Sided Limits	25
	В	Limit	25
	С	Substitution	26
	D	Piecewise defined functions (AP only)	26
	${ m E}$	Limits: Numerical Approach (AP only)	26
	F	Limit: Informal Definitions (AP only)	27
1.6	Contir	nuity	28
	A	Continuity	28
	В	Discontinuity	28
	С	Removable Discontinuity	28
	D	Jump Discontinuity	28
	${ m E}$	Infinite Discontinuity	29
	F	Continuity over an Interval (AP only)	29
	G	Elementary Functions (AP only)	29
	Н	Composition of Functions	29
	I	Intermediate Value Theorem (AP only)	29
2.1	Deriva	ative Function	30
	A	Derivative Function	30
	В	Differentiability (AP only)	30
	$\overline{\mathrm{C}}$	Interpretations of Derivative Function	30
	D	Notations and Reading	30
	$^{-}$	First Principles	31
	F	Differentiability Point	31
	G	Non-Differentiability	31
	H	Corner Point	31
	I	Infinite Slope Point	32
	J	Cusp Point	32
2.2	-	ative of Polynomial Functions	33
2.2	A	Power Rule	33
	В	Constant Function Rule	33
	C	Constant Multiple Rule	33
	D	Sum and Difference Rules	33
	E	Tangent Line	33
	F	Normal Line (AP only)	34
	G	Differentiability for Piecewise Defined Function (AP only)	34
2.3		ct Rule	35
2.0	A	Product Rule	35
	В	Product of Three Functions	35
	С	Generalized Power Rule	35
2.4	_	ent Rule	36
2.4	A	Quotient Rule	36
2.5	Chain	•	37
2.0	A	Composition of Functions	
			91

		В	Chain Rule (Leibniz Notation)	1
		\mathbf{C}	Composition of Three Functions	7
		D	Chain Rule (Prime Notation)	7
	5.4	Deriva	tive of Trigonometric Functions	8
		A	Review of Trigonometric Functions	8
		В	Derivative of $\sin(x)$	9
		\mathbf{C}	Derivative of $\sin(f(x))$	9
		D	Derivative of $\cos x$	9
		${ m E}$	Derivative of $\cos(f(x))$	9
		\mathbf{F}	Derivative of $\tan x$	0
	5.1	Deriva	tive of Exponential Function	.1
		A	Review of Exponential Functions 4	.1
		В	Number e	.1
		\mathbf{C}	Derivative of e^x	1
		D	Derivative of $e^{f(x)}$:1
		${ m E}$	Derivative of $b^x \mid b > 0 \land b \neq 1 \ldots 4$	-1
		\mathbf{F}	Derivative of $b^{f(x)}$	2
	5.1	Deriva	tive of Logarithmic Function	3
		A	Review of Logarithmic Function	3
		В	Derivative of $\ln x$	3
		\mathbf{C}	Derivative of $\ln(f(x))$	3
		D	Derivative of $\log_b x$	4
		\mathbf{E}	Derivative of $\log_b f(x)$	4
	Log	arithmic	c Differentiation (AP) 4	5
		A	Logarithmic Differentiation	5
		В	Function Raise to a Function	
	Inve	erse Trig	gonometric Functions and Their Derivatives	6
		A	Inverse Sine Function	6
		В	Trigonometric Identities with Inverse Sine 40	6
		С	Inverse Cosine Function	6
		D	Trigonometric Identities with Inverse Cosine 40	6
		\mathbf{E}	Inverse Tangent Function	6
		F	Trigonometric Identities with Inverse Tangent 4	7
		G	Derivative of the Inverse Function	7
		Η	Derivative of Inverse Trigonometric Functions 4	7
		Ι	Reciprocal of Trigonometric Functions	7
3			tions of Differentiation 48	
	Imp	licit Dif	ferentiation (AP)	
		A	Relations Defined Implicitly	
		В	Terminology	
		С	Differentiation Revised	
		D	Implicit Differentiation	
	3.9	Relate	d Rates	1

	A	Algorithm to Solve Related Rates Applications	51
3.10	Linear	Approximation and Differentials	52
	A	Linear Approximation	52
	В	Approximate Formulas	52
	\mathbf{C}	Numerical Approximation	52
	D	Differentials	52
	\mathbf{E}	Error Propagation	53
3.2	Maxim	um and Minimum on an Interval: Extreme Values	54
	A	Global Maximum	54
	В	Global Minimum	54
	\mathbf{C}	Global (Absolute) Extrema Algorithm	54
4.1	Increas	sing and Decreasing Functions. Critical Points: Local Maxima	
	and M	inima	55
	A	Increasing or Decreasing Functions	55
	В	Local Maximum	55
	\mathbf{C}	Local Minimum	55
	D	Critical Numbers and Critical Points	55
4.2	The M	ean Value Theorem (AP)	57
	A	Rolle's Theorem	57
	В	Mean Value Theorem	57
	\mathbf{C}	Theorem	57
	D	Theorem	57
4.3	Asymp	totes	58
	A	Vertical Asymptote	58
	В	Horizontal Asymptote	58
	\mathbf{C}	Limits at Infinity	58
	D	Horizontal Asymptotes for Rational Functions	59
	\mathbf{E}	Oblique (Slant) Asymptote	59
	F	Oblique Asymptotes for Rational Functions	59
	G	Oblique Asymptotes for any Functions	60
4.4	Concav	v	61
	A	v i	61
	В	Concavity Downward	61
	\mathbf{C}	Test for Concavity	61
	D		61
	\mathbf{E}		62
4.5	An Alg	, e	63
	A	Algorithm for Curve Sketching	63
	В		64
	\mathbf{C}		64
3.3	Optimi		65
	A	· · · · · · · · · · · · · · · · · · ·	65
	В	Cost, Revenue, and Profit	65

4	In	tegra	ls	66
	4.9	_	erivatives and Indefinite Integrals	. 67
		A	Integration	. 67
		В	Antiderivative	. 67
		С	Families of Antiderivatives	. 67
		D	Initial Condition	. 67
		\mathbf{E}	Indefinite Integrals	. 67
		\mathbf{F}	List of Indefinite Integrals	
		G	Properties of Antiderivatives or Indefinite Integrals	. 68
	5.1	Riema	ann Sums	. 69
		A	Riemann Sums	. 69
		В	Finite Riemann Sums	. 69
		\mathbf{C}	Infinite Riemann Sums	
	5.2	The D	Definite Integral	
		A	Riemann Sum	
		В	Definite Integral	
		С	Theorem	
		D	Fundamental Theorem of Calculus (Part 1)	. 71
		${ m E}$	Properties of Definite Integrals	
		F	More Properties of Definite Integrals	
		G	Fundamental Theorem of Calculus (Part 2)	
	5.5	The S	ubstitution Rule	
		A	Substitution Rule for Indefinite Integrals	. 73
		В	Linear Substitution	
		\mathbf{C}	More about Linear Substitution	. 73
		D	Substitution Rule and Power Rule	
		${ m E}$	Trigonometric Identities	. 74
		F	Substitution Rule for Definite Integrals	
		G	Symmetry	
5	A	pplica	ations of Integration	7 5
_	6.1		cations of Integration	
	0	A	Area Under a Curve	
		В	Total Positive Area	
		C	Area between a Curve and the y -axis	
		D	Area between Two Curves	
		E	Net Change	
		F	Displacement	
		G	Distance Travelled	
		Н	Velocity Change	
		I	Cost	
	6.2	_	nes	
	J. <u>-</u>	A	Slices	
		В	Disks (Horizontal Axis of Revolution)	

		\mathbf{C}	Disks (Vertical Axis of Revolution)						78
		D	Washers						78
		\mathbf{E}	Shells						79
	6.3	Averag	ge Value of a Function						80
		Α	Average Value						80
		В	Mean Value Theorem						80
6	Di	fferen	atial Equations						81
			Equations						82
		A	Differential Equations						82
		В	General Solution						82
		\mathbf{C}	Particular Solution						82
		D	Direction Fields						82
		E	Separable Differential Equations						83
		F	Exponential Growth and Decay						83
\mathbf{A}	ppeı	ndix							85
\mathbf{A}	Equ	ations							85
	1	Basics							85
	2	Equati	ons of Lines and Planes						86
	3	Relatio	onships between Points, Lines, and Planes						88
	4	Applic	ations of Differentiation						89
	5	Integra	als						90
	6	Applic	ations of Integration						92
	7	Differe	ntial Equations						94

Unit 1

Equations of Lines and Planes

8.1 Vector and Parametric Equations of a Line in \mathbb{R}^2

A Vector Equation of a Line in \mathbb{R}^2

Consider the line L that passes through the point $P_0(x_0, y_0)$ and is parallel to the vector \overrightarrow{u} . The point P(x, y) is a generic point on the line.

$$\overrightarrow{OP} = t\overrightarrow{u}$$

$$\overrightarrow{OP} - \overrightarrow{OP_0} = t\overrightarrow{u}$$

$$\overrightarrow{r} - \overrightarrow{r_0} = t\overrightarrow{u}$$

The vector equation of the line is:

$$\vec{r} = \vec{r_0} + t\vec{u} \mid t \in \mathbb{R}$$

Where:

- $\overrightarrow{r} = \overrightarrow{OP}$ is the position vector of a generic point P on the line.
- $\overrightarrow{r_0} = \overrightarrow{OP_0}$ is the position vector of a specific point P_0 on the line.
- \vec{u} is a vector parallel to the line called the *direction vector* of the line.
- t is a real number corresponding to the generic point P.

Note: The vector equation of a line is *not unique*. It depends on the specific point P_0 and on the direction vector \vec{u} that are used.

B Parametric Equations of a Line in \mathbb{R}^2

We can rewrite the vector equation of a line:

$$\overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{u} \mid t \in \mathbb{R}$$

as:

$$(x,y) = (x_0, y_0) + t(u_x, u_y) \mid t \in \mathbb{R}$$

Split this vector equation into the parametric equations of a line in \mathbb{R}^2 :

$$\begin{cases} x = x_0 + tu_x \\ y = y_0 + yu_y \end{cases} \quad t \in \mathbb{R}$$

C Parallel Lines

Two lines L_1 and L_2 with direction vectors $\overrightarrow{u_1}$ and $\overrightarrow{u_2}$ are parallel $(L_1 \parallel L_2)$ if:

$$\overrightarrow{u_1} \parallel \overrightarrow{u_2}$$

or, there exists $k \in \mathbb{R}$ such that:

$$\overrightarrow{u_2} = k\overrightarrow{u_1}$$

or:

$$\vec{u_1} \times \vec{u_2} = \vec{0}$$

or scalar components are *proportional*:

$$\frac{u_{2x}}{u_{1x}} = \frac{u_{2u}}{u_{1u}} = k$$

D Perpendicular Lines

Two lines L_1 and L_2 with direction vectors $\overrightarrow{u_1}$ and $\overrightarrow{u_2}$ are perpendicular $(L_1 \perp L_2)$ if:

$$\overrightarrow{u_1} \perp \overrightarrow{u_2}$$

or:

$$\overrightarrow{u_1} \cdot \overrightarrow{u_2} = 0$$

or:

$$u_{1x}u_{2x} + u_{1y}u_{2y} = 0$$

E 2D Perpendicular Vectors

Given a 2D vector $\vec{u} = (a, b)$, two 2D vectors perpendicular to \vec{u} are $\vec{v} = (-b, a)$ and $\vec{w} = (b, -a)$.

Indeed:

$$\overrightarrow{u} \cdot \overrightarrow{v} = (a,b) \cdot (-b,a) = -ab + ab = 0 \implies \overrightarrow{u} \perp \overrightarrow{v}$$

F Special Lines

A line parallel to the x-axis has a direction vector in the form $\vec{u} = (u_x, 0) \mid u_x \neq 0$. A line parallel to the y-axis has a direction vector in the form $\vec{u} = (0, u_y) \mid u_y \neq 0$.

8.2 Cartesian Equation of a Line

A Symmetric Equation

The parametric equations of a line in \mathbb{R}^2 :

$$\begin{cases} x = x_0 + tu_x \\ y = y_0 + tu_y \end{cases} \quad t \in \mathbb{R}$$

may be written as:

$$\frac{x-x_0}{u_x} = \frac{y-y_0}{u_y} = t \mid t \in \mathbb{R}$$

The *symmetric equation* of the line is (if it exists):

$$\frac{x - x_0}{u_x} = \frac{y - y_0}{u_y}$$

Note: The symmetric equations only exists if $u_x \neq 0$ and $u_y \neq 0$.

B Normal Equation

Consider a line L that passes through the specific point $P_0(x_0, y_0)$ and has the direction vector $\overrightarrow{u} = (u_x, u_y)$.

The vectors $\vec{n} = (-u_y, u_x) = (A, B)$ or $\vec{n} = (u_y, -u_x) = (A, B)$ are perpendicular to the vector \vec{u} and so they are perpendicular to the line L. These are called *normal* vectors to the line L.

Let P(x,y) be a generic point on the line L. So:

$$\overrightarrow{P_0P} \parallel \overrightarrow{u} \implies \overrightarrow{P_0P} \perp \overrightarrow{n} \implies \overrightarrow{P_0P} \cdot \overrightarrow{n} = 0$$

$$(\overrightarrow{r} - \overrightarrow{r_0}) \cdot \overrightarrow{n} = 0$$

The *normal equation* of a line is given by:

$$(\overrightarrow{r} - \overrightarrow{r_0}) \cdot \overrightarrow{n} = 0$$

C Cartesian Equation

The normal equations can be written as:

$$\overrightarrow{r} \cdot \overrightarrow{n} - \overrightarrow{r_0} \cdot \overrightarrow{n} = 0$$

$$(x,y) \cdot (A,B) - (x_0,y_0) \cdot (A,B) = 0$$

$$Ax + By - Ax_0 - By_0 = 0$$

$$Ax + By + C = 0 \quad \text{where } C = -Ax_0 - By_0$$

The Cartesian equation of a line is given by:

$$Ax + By + C = 0$$

where $\vec{n} = (A, B)$ is a normal vector and the constant C depends on a specific point of the line.

D Slope y-intercept Equation

Solve the symmetric equation of a line:

$$\frac{x - x_0}{u_x} = \frac{y - y_0}{u_y} \mid t \in \mathbb{R}$$

for y:

$$y - y_0 = u_y \frac{x - x_0}{u_x}$$
$$y = \frac{u_y}{u_x} x + y_0 - \frac{u_y}{u_x} x_0$$

The slope y-intercept equation of a line in \mathbb{R}^2 is given by:

$$y = mx + b$$

$$m = \frac{u_y}{u_x}$$

where m is the *slope* and b is the y-intercept which depends on a specific point of the line.

E Angle between Two Lines

The angle between two lines is determined by the angle between the direction vectors:

$$\cos \theta = \frac{\overrightarrow{u_1} \cdot \overrightarrow{u_2}}{\|\overrightarrow{u_1}\| \|\overrightarrow{u_2}\|}$$

Note: There are two pairs of equal angles between the two lines. There is a pair of the angle θ_1 , and a pair of the angle θ_2 . $\theta_1 + \theta_2 = 180^{\circ}$

8.3 Vector, Parametric, and Symmetric Equations of a Line in \mathbb{R}^3

A Vector Equation

The vector equation of the line is:

$$\vec{r} = \vec{r_0} + t\vec{u} \mid t \in \mathbb{R}$$

where:

- $\overrightarrow{r} = \overrightarrow{OP}$ is the position vector of a *generic* point P on the line.
- $\overrightarrow{r_0} = \overrightarrow{OP_0}$ is the position vector of a *specific* point P_0 on the line.
- \vec{u} is a vector parallel to the line called the *direction vector* of the line.
- t is a real number corresponding to the generic point P.

B Specific Lines

A line is parallel to the x-axis if $\vec{u} = (u_x, 0, 0) \mid u_x \neq 0$. In this case, the line is also perpendicular to the yz-plane.

A line with $\vec{u} = (0, u_y, u_z) \mid u_y \neq 0 \land u_z \neq 0$ is parallel to the yz-plane.

C Parametric Equations

Rewrite the vector equation of a line:

$$\overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{u} \mid t \in \mathbb{R}$$

as:

$$(x, y, z) = (x_0, y_0, z_0) + t(u_x, u_y, u_z) \mid t \in \mathbb{R}$$

The $parametric\ equations$ of a line in \mathbb{R}^3 are:

$$\begin{cases} x = x_0 + tu_x \\ y = x_0 + tu_y \\ z = x_0 + tu_z \end{cases} \quad t \in \mathbb{R}$$

D Symmetric Equations

The parametric equations of a line may be written as:

$$\begin{cases} x = x_0 + tu_x \\ y = x_0 + tu_y \\ z = x_0 + tu_z \end{cases} \quad t \in \mathbb{R}$$

From here, the *symmetric equations* of the line are:

$$\frac{x - x_0}{u_x} = \frac{y - y_0}{u_y} = \frac{z - z_0}{u_z}$$

$$u_x \neq 0 \quad u_y \neq 0 \quad u_z \neq 0$$

E Intersections

A line intersects the x-axis when y = z = 0.

A line intersects the xy-plane when z = 0.

8.4 Vector and Parametric Equations of a Plane

A Planes

A plane may be determined by points and lines. There are four main possibilities:

- 1. Plane determined by three points.
- 2. Plane determined by two parallel lines.
- 3. Plane determined by two intersecting lines.
- 4. Plane determined by a point and a line.

B Vector Equation of a Plane

Consider a plane π .

Two vectors \vec{u} and \vec{v} , parallel to the plane π but not parallel to each other, are called *direction vectors* of the plane π .

The vector $\overrightarrow{P_0P}$ from a specific point $P_0(x_0, y_0, z_0)$ to a generic point P(x, y, z) of the plane is a *linear combination* of direction vectors \overrightarrow{u} and \overrightarrow{v} :

$$\overrightarrow{P_0P} - s\overrightarrow{u} + t\overrightarrow{v} \mid s, t \in \mathbb{R}$$

The vector equation of the plane is:

$$\pi: \overrightarrow{r} = \overrightarrow{r_0} + s\overrightarrow{u} + t\overrightarrow{v} \mid s, t \in \mathbb{R}$$

C Parametric Equations of a Plane

We write the vector equation of the plane as:

$$(x, y, z) = (x_0, y_0, z_0) + s(u_x, u_y, u_z) + t(v_x, v_y, v_z)$$

or:

$$\begin{cases} x = x_0 + su_x + tv_x \\ y = y_0 + su_y + tv_y \\ z = z_0 + su_z + tv_z \end{cases} \quad s, t \in \mathbb{R}$$

These are the *parametric equations* of a plane.

8.5 Cartesian Equation of a Plane

A Normal Equation of a Plane

A plane may be determined by a point $P_0(x_0, y_0, z_0)$ and a vector perpendicular to the plane \vec{n} called the normal vector.

If P(x, y, z) is a generic point on the plane, then:

$$\overrightarrow{P_0P} \perp \overrightarrow{n}$$

and:

$$\overrightarrow{P_0P} \cdot \overrightarrow{n} = 0$$

This is the *normal equation* of a plane.

B Cartesian Equation of a Plane

We write the normal vector of a plane in the form:

$$\vec{n} = (A, B, C)$$

Then, the normal equation may be written as:

$$(x - x_0, y - y_0, z - z_0) \cdot (A, B, C) = 0$$

$$Ax + By + Cz - Ax_0 - By_0 - Cz_0 = 0$$

or:

$$Ax + By + Cz + D = 0$$

which is called the *Cartesian equation* of a plane.

Note: A normal vector to the plane is:

$$\vec{n} = \vec{u} \times \vec{v}$$

where \vec{u} and \vec{v} are the direction vectors of the plane.

C Angle between Two Planes

The angle between two planes is defined as the angle between their normal vectors:

$$\cos \theta = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{\|\overrightarrow{n_1}\| \|\overrightarrow{n_2}\|}$$

Note: Using this formula, you may get an *acute* or an *obtuse* angle depending on the normal vectors which are used.

Unit 2

Relationships between Points, Lines, and Planes

9.1 Intersection of Two Lines

A Relative Position of Two Lines

Two lines may be:

- 1. Parallel and distinct.
- 2. Parallel and coincident.
- 3. Intersecting (not parallel).
- 4. Skew (not parallel, not intersecting).

B Intersection of Two Lines (Algebraic Method)

The point of intersection of two lines $L_1: \overrightarrow{r} = \overrightarrow{r_{01}} + t\overrightarrow{u_1} \mid t \in \mathbb{R}$ and $L_2: \overrightarrow{r} = \overrightarrow{r_{02}} + s\overrightarrow{u_2} \mid s \in \mathbb{R}$ is given by the *solution* of the following system of equations (if it exists):

$$\begin{cases} x_{01} + tu_{x1} = x_{02} + su_{x2} \\ y_{01} + tu_{y1} = y_{02} + su_{y2} \\ z_{01} + tu_{z1} = z_{02} + su_{z2} \end{cases} \quad s, t \in \mathbb{R}$$

Hint: Solve by *substitution* or *elimination* the system of two equations and *check* if the third is satisfied.

C Unique Solution

If by solving the system you end by getting a unique value for t and s satisfying this system, then the lines have a unique point of intersection. To get this point, substitute either the t value into the line L_1 equation or substitute the s value into the line L_2 equation.

D Infinite Number of Solutions

If by solving the system you end by getting two true statements (like 2=2) and one equation in s and t, then there exist an *infinite number of solutions* of the system. Therefore the lines intersect at an *infinite number of points*. In this case the lines are parallel and coincident.

E No Solution (Parallel Lines)

If by solving the system you get at least one false statement (like 0 = 1) then the system has no solution. Therefore, the lines have no point of intersection. If, in addition, the lines are parallel $(\overrightarrow{u_1} \times \overrightarrow{u_2} = \overrightarrow{0})$, then the lines are parallel and distinct.

F No Solution (Skew Lines)

If by solving the system you get at least one false statement (like 0 = 1) then the system has no solution. Therefore, the lines have no point of intersection. If, in addition, the lines are not parallel $(\overrightarrow{u_1} \times \overrightarrow{u_2} \neq \overrightarrow{0})$, then the lines are skew.

G Classifying Lines (Vector Method)

Parallel lines
$$(\overrightarrow{r_{01}} - \overrightarrow{r_{02}}) \times \overrightarrow{u_1} = \overrightarrow{0}$$
Parallel coincident lines
Parallel distinct lines

Nonparallel lines
$$(\overrightarrow{r_{01}} - \overrightarrow{r_{02}}) \cdot (\overrightarrow{u_1} \times \overrightarrow{u_2}) = 0$$
Nonparallel intersecting lines
$$(\overrightarrow{r_{01}} - \overrightarrow{r_{02}}) \cdot (\overrightarrow{u_1} \times \overrightarrow{u_2}) \neq 0$$
Nonparallel skew lines

9.2 Intersection of a Line with a Plane

A Relative Position of a Line and a Plane

There are three possible situations:

1. The line *intersects* the plane at a single point.

$$P = L \cap \pi$$

2. The line *lies* on the plane. There are an infinite number of points of intersection.

$$L = L \cap \pi$$

3. The line is parallel to the plane but distinct. There is no point of intersection.

$$L \cap \pi = \emptyset$$

B Intersection of a Line and a Plane (Algebraic Method)

To get the intersection between a line L and a plane π :

1. Substitute the parametric equations of the line

$$L: \begin{cases} x = x_0 + tu_x \\ y = y_0 + tu_y \\ z = z_0 + tu_z \end{cases} \quad t \in \mathbb{R}$$

into the Cartesian equation of the plane

$$\pi: Ax + By + Cz + D = 0$$

to get the equation:

$$A(x_0 + tu_x) + B(y_0 + tu_y) + C(z_0 + tu_z) + D = 0$$
 (i)

- 2. Solve (if possible) the equation (i) for the parameter t.
- 3. Substitute the value of the parameter t into the parametric equations of the line to get the point of intersection.

C Unique Solution (Point Intersection)

In this case, by solving the equation you get a $unique\ value$ for the parameter t. Therefore, there is a unique $point\ of\ intersection$ between the line and the plane.

$$P = L \cap \pi$$

The line *intersects* the plane at a unique point.

D Infinite Number of Solutions (Line Intersection)

In this case, by solving the equation (i) you get the equation:

$$0t = 0$$

which has an *infinite number of solutions*. Therefore, there are an *infinite number of points of intersection*.

$$L = L \cap \pi$$

The line *lies* on the plane.

E No Solution (No Intersection)

In this case, by solving the equation (i) you get a false statement like:

$$0t = 1$$

The equation does not have any solution and therefore there is no point of intersection between the line and the plane.

$$L \cap \pi = \emptyset$$

The line is *parallel* to the plane and *does not lie* on the plane.

F Classifying Lines

Consider the line $L: \vec{r} = \vec{r_0} + t\vec{u} \mid t \in \mathbb{R}$, where $P_0(x_0, y_0, z_0)$ is a specific point on the line, and the plane $\pi: Ax + By + Cz + D = 0$, where $\vec{n} = (A, B, C)$ is a normal vector to the plane.

1. If $\vec{n} \cdot \vec{u} \neq 0$ the line *intersects* the plane at a unique point.

$$P = L \cap \pi$$

2. If $\vec{n} \cdot \vec{u} = 0$ and $Ax_0 + By_0 + Cz_0 + D = 0$ then the line lies on the plane.

$$L = L \cap \pi$$

3. If $\vec{n} \cdot \vec{u} = 0$ and $Ax_0 + By_0 + Cz_0 + D \neq 0$ then the line is *parallel* to the plane but *does not lie* on the plane.

$$L \cap \pi = \emptyset$$

Note. By solving the equation (i) for t you will end by getting the same cases and conditions as above.

9.3 Intersection of Two Planes

A Relative Position of Two Planes

Two planes may be:

1. Intersecting (into a line)

$$L = \pi_1 \cap \pi_2$$

2. Coincident

$$\pi_1 = \pi_1 \cap \pi_2 = \pi_2$$

3. Distinct

$$\pi_1 \cap \pi_2 = \emptyset$$

B Intersection of Two Planes

Consider two planes given by their Cartesian equations:

$$\pi_1 = A_1 x + B_1 y + C_1 z + D_1 = 0$$

$$\pi_2 = A_2 x + B_2 y + C_2 z + D_2 = 0$$

To find the point(s) of intersection between two planes, *solve* the system of equations formed by their Cartesian equations:

$$\left\{ \pi_1 = A_1 x + B_1 y + C_1 z + D_1 = 0 \\ \pi_2 = A_2 x + B_2 y + C_2 z + D_2 = 0 \right\}$$
 (ii)

There are two equations and three unknowns. Notes:

- 1. A normal vector to the plane π_1 is $\overrightarrow{n_1} = (A_1, B_1, C_1)$ and a normal vector to the plane π_2 is $\overrightarrow{n_2} = (A_2, B_2, C_2)$.
- 2. If the planes are parallel then the coefficients A, B, and C are proportional.
- 3. If the planes are *coincident* then the coefficients A, B, C, and D are proportional.
- 4. A system of equations is called *compatible* if there is *at least* one solution. A system of equations is called *incompatible* if there is *no solution*.

C Nonparallel Planes (Line Intersection)

In this case:

$$L = \pi_1 \cap \pi_2$$

• The coefficients A, B, and C in the scalar equations are not proportional.

- The normal vectors are not parallel: $\vec{n_1} \times \vec{n_2} \neq \vec{0}$.
- By solving the system (ii) you will be able to find two variables in terms of the third variable.
- There are an *infinite number of solutions* and therefore an *infinite number of points of intersection*.
- The intersection is a line and a direction vector for this line is $\vec{u} = \vec{n_1} \times \vec{n_2}$.

D Coincident Planes (Plane Intersection)

In this case:

$$\pi_1 = \pi_1 \cap \pi_2 = \pi_2$$

- The planes are parallel and coincident.
- The coefficients A, B, C, and D in the scalar equations are proportional.
- One equation in the system (ii) is a *multiple* of the other equation and does not contain additional information (the equations are equivalent).
- By solving the system of equations (ii), you get a true statement (like 0 = 0).
- There are an *infinite number of solutions* and therefore an *infinite number of points of intersection*.
- The intersection is a *plane*.

E Parallel and Distinct Planes (No Intersection)

In this case:

$$\pi_1 \cap \pi_2 = \emptyset$$

- The planes are *parallel* and *distinct*.
- The coefficients A, B, and C in the scalar equations are proportional but the coefficients A, B, C, and D are not proportional.
- By solving the system (ii) you get a false statement (like 0 = 1).
- There is no solution and therefore no point of intersection between the two planes.

9.4 Intersection of Three Planes

A Intersection of Three Planes

Consider three planes given by their Cartesian equations:

$$\pi_1 : A_1 x + B_1 y + C_1 z + D_1 = 0$$

$$\pi_2 : A_2 x + B_2 y + C_2 z + D_2 = 0$$

$$\pi_3 : A_3 x + B_3 y + C_3 z + D_3 = 0$$

The point(s) of *intersection* of these planes is (are) related by to the solution(s) of the following system of equations:

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \\ A_3x + B_3y + C_3z + D_3 = 0 \end{cases}$$
 (iii)

There are three equations and three unknowns. You may use substitution or elimination to solve this system.

B Unique Solution (Point Intersection — Noncoplanar Normal Vectors)

In this case:

$$P = \pi_1 \cap \pi_2 \cap \pi_3$$

- The planes *intersect* into a *single* point.
- The normal vectors are not coplanar:

$$\overrightarrow{n_1} \cdot (\overrightarrow{n_2} \times \overrightarrow{n_3}) \neq 0$$

• By solving the system (iii), you get a unique solution for x, y, and z.

C Infinite Number of Solutions (Line Intersection — Nonparallel Planes and Coplanar Normal Vectors)

In this case:

$$L = \pi_1 \cap \pi_2 \cap \pi_3$$

• The planes are *not parallel* but their normal vectors are *coplanar*:

$$\overrightarrow{n_1} \cdot (\overrightarrow{n_2} \times \overrightarrow{n_3}) = 0$$

- The intersection is a *line*.
- One scalar equation is a *combination* of the other two equations.
- By solving the system (iii), you may express two variables in terms of the third one using two equations.

D Infinite Number of Solutions (Line Intersection — Two Coincident Planes and One Intersecting Plane)

In this case:

$$L = \pi_1 \cap \pi_2 \cap \pi_3$$

- Two planes are coincident and the third plane is not parallel to the coincident planes.
- The intersection is a *line*.
- Two scalar equations are equivalent. The coefficients A, B, C, and D are proportional for these two equations.
- You may express two variables in terms of the third one using two nonequivalent equations.

E Infinite Number of Solutions (Plane Intersection — Three Coincident Planes)

In this case:

$$\pi_1 \cap \pi_2 \cap \pi_3 = \pi_1 = \pi_2 = \pi_3$$

- The coefficients A, B, C, and D are proportional for all three equations.
- Any point of one plane is also a point on the other two planes.
- The intersection is a *plane*.

F No Solution (Parallel and Distinct Planes)

In this case:

$$\pi_1 \cap \pi_2 \cap \pi_3 = \emptyset$$

- There are three parallel and distinct planes.
- There is no point of intersection.
- There is no solution for the system of equations (the system of equations is incompatible).

- The coefficients A, B, and C are proportional but the coefficients of A, B, C, and D are not proportional.
- By solving the system (iii) you get false statements (like 0 = 1).

G No Solution (H Configuration)

In this case:

$$\pi_1 \cap \pi_2 \cap \pi_3 = \emptyset$$

- Two planes are parallel and distinct and the third plane is intersecting.
- There is no point of intersection.
- The coefficients A, B, and C are proportional for two planes.
- There is no solution for the system of equations (the system of equations is incompatible).
- By solving the system (iii) you get false statements (like 0 = 1).

H No Solution (Three Parallel Planes but only Two Coincident Planes)

In this case:

$$\pi_1 \cap \pi_2 \cap \pi_3 = \emptyset$$

- Three planes are *parallel* but only two are *coincident*.
- The coefficients of A, B, and C are proportional for all equations but the coefficients A, B, C, and D are proportional only for two planes.
- There is no solution for the system of equations (the system of equations is incompatible).
- By solving the system (iii) you get false statements (like 0 = 1).

I No Solution (Delta Configuration)

In this case:

$$\pi_1 \cap \pi_2 \cap \pi_3 = \emptyset$$

- The planes are not parallel (the coefficients A, B, and C are not proportional).
- The normal vectors are coplanar $(\overrightarrow{n_1} \cdot (\overrightarrow{n_2} \times \overrightarrow{n_3}) = 0)$.
- There is no point of intersection between all three planes.

- ullet There is no solution for the system of equations (the system of equations is incompatible).
- By solving the system (iii) you get false statements (like 0 = 1).

9.5 Distance from a Point to a Line

A Distance from a Point to a Line in \mathbb{R}^2

Let L: Ax + By + C = 0 be a line in \mathbb{R}^2 , $P_1(x_1, y_1)$ be a generic point on the xy-plane and $P_0(x_0, y_0)$ be a specific point on this line, so: $Ax_0 + By_0 + C = 0$.

The distance d between the point $P_1(x_1, y_1)$ to the line L is given by (scalar projection of $\overrightarrow{P_0P_1}$ onto the normal vector \overrightarrow{n}):

$$d = \frac{\left| \overrightarrow{P_0 P_1} \cdot \overrightarrow{n} \right|}{\|\overrightarrow{n}\|} \tag{iv}$$

Using $\vec{n} = (A, B), ||\vec{n}|| = \sqrt{A^2 + B^2}$ and:

$$\overrightarrow{P_0P_1} \cdot \overrightarrow{n} = (x_1 - x_0, y_1 - y_0) \cdot (A, B)$$

$$= A(x_1 - x_0) + B(y_1 - y_0)$$

$$= Ax_1 + By_1 - Ax_0 - By_0$$

$$= Ax_1 + By_1 + C$$

the formula (iv) may be written as:

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}} \tag{v}$$

B Distance from a Point to a Line in \mathbb{R}^3

Let $L: \overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{u} \mid t \in \mathbb{R}$ be a line defined by its vector equation and $P_0(x_0, y_0, z_0)$ be a specific point on this line.

The distance d from a point $P_1(x_1, y_1, z_1)$ to the line L may be found using:

$$d = \left\| \overrightarrow{P_0 P_1} \right\| \sin \alpha \tag{vi}$$

where α is the angle formed by the intersection of $\overrightarrow{P_0P_1}$ and \overrightarrow{u} .

Because $\|\overrightarrow{P_0P_1} \times \overrightarrow{u}\| = \|\overrightarrow{P_0P_1}\| \|\overrightarrow{u}\| \sin \alpha$, the formula (vi) can also be written as:

$$d = \frac{\left\| \overrightarrow{P_0 P_1} \times \overrightarrow{u} \right\|}{\left\| \overrightarrow{u} \right\|} \tag{vii}$$

Note: The formula (vii) may be applied also in \mathbb{R}^2 by considering the third component z=0.

C Distance between Two Parallel Lines

To find the *distance* between two parallel lines:

- 1. Find a *specific point* on one of these lines.
- 2. Find the distance from that specific point to the other line using one of the relations above.

D Perpendicular Line from a Point to a Line

Let $L: \overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{u} \mid t \in \mathbb{R}$ be a line defined by its vector equation and P(x, y, z) be a generic point in \mathbb{R}^3 .

The line perpendicular to the line L that passes through the point P is called the perpendicular line and intersects the line L at a point F called the foot of the perpendicular line.

The foot F of the perpendicular line may be found from the equation (because $\overrightarrow{PF} \perp \overrightarrow{u}$):

$$\overrightarrow{PF} \cdot \overrightarrow{u} = 0$$

A vector equation of the perpendicular line is:

$$\overrightarrow{r} = \overrightarrow{OP} + s\overrightarrow{PF} \mid s \in \mathbb{R}$$

E Shortest Distance between Two Skew Lines

Two skew lines lie into two parallel planes. The vector $\overrightarrow{u_1} \times \overrightarrow{u_2}$ is perpendicular to both lines and therefore perpendicular to parallel planes the lines lie on.

The shortest distance between two skew lines $L_1: \overrightarrow{r} = \overrightarrow{r_{01}} + t\overrightarrow{u_1} \mid t \in \mathbb{R}$ and $L_2: \overrightarrow{r} = \overrightarrow{r_{02}} + s\overrightarrow{u_2} \mid s \in \mathbb{R}$ is given by the scalar projection of the vector $\overrightarrow{r_{01}} - \overrightarrow{r_{02}}$ onto the vector $\overrightarrow{u_1} \times \overrightarrow{u_2}$:

$$d = \frac{\left| (\overrightarrow{r_{01}} - \overrightarrow{r_{02}}) \cdot (\overrightarrow{u_1} \times \overrightarrow{u_2}) \right|}{\left\| \overrightarrow{u_1} \times \overrightarrow{u_2} \right\|} \tag{viii}$$

9.6 Distance from a Point to a Plane

A Distance from a Point to a Plane (I)

Consider a plane π with a normal vector \overrightarrow{n} and a point $P_0(x_0, y_0, z_0)$ on this plane. The distance from a point $P_1(x_1, y_1, z_1)$ to the plane π is given by the scalar projection of the vector $\overrightarrow{P_0P_1}$ onto the normal vector \overrightarrow{n} :

$$d = \frac{\left| \overrightarrow{P_0 P_1} \cdot \overrightarrow{n} \right|}{\|\overrightarrow{n}\|} \tag{ix}$$

B Distance from a Point to a Plane (II)

If the plane π is given by the Cartesian equation $\pi: Ax + By + Cz + D = 0$, then the distance from a point $P_1(x_1, y_1, z_1)$ to the plane is given by:

$$d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}$$
 (x)

Indeed,

$$P_0 \in \pi \implies Ax_0 + By_0 + Cz_0 + D = 0$$

$$\overrightarrow{P_0P_1} \cdot \overrightarrow{n} = (x_1 - x_0, y_1 - y_0, z_1 - z_0) \cdot (A, B, C)$$

$$= Ax_1 + By_1 + Cz_1 - Ax_0 - By_0 - Cz_0$$

$$= Ax_1 + By_1 + Cz_1 + D$$

C Distance between Two Parallel Planes

To get the distance between two parallel planes:

- 1. Find a specific point into one of these planes.
- 2. Find the distance between that specific point and the other plane using one of the formulas above.

AP Preparation Differentiability Review

1.4 Limit of a Function

A One-Sided Limits

The behaviour of the function y = f(x) near x = a is described by three numbers:

1. The left hand limit:

$$L = \lim_{x \to a^{-}} f(x)$$

the limit of the function f(x) as x approaches a from the left.

2. The value of the function at x = a:

3. The right hand limit:

$$R = \lim_{x \to a^+} f(x)$$

the limit of the function f(x) as x approaches a from the right.

Notes:

- 1. In order to exist, both the left and right hand limits must be numbers.
- 2. If either the left or right hand limit is not a number, then the limit does not exist (DNE).
- 3. Infinite limits (like ∞ or $-\infty$) are not considered numbers but they are used to give information about the behaviour of a function near the number x = a.

B Limit

The limit of a function y = f(x) exists at x = a if:

L and R exist and L = R

In this case we write:

$$\lim_{x \to a} f(x)$$

the limit of the function f(x) as x approaches a.

Note: The function may or may not be defined at x = a.

C Substitution

If the function is defined by a formula (algebraic expression) then the limit of the function at a number x = a may be determined by substitution:

$$\lim_{x \to a} f(x) = f(a)$$

Notes:

- 1. In order to use substitution, the function must be defined on both sides of the number x = a.
- 2. Substitution does not work if you get one of the following 7 indeterminate cases:

$$\infty - \infty$$
 $0 \times \infty$ $\frac{0}{0}$ $\frac{\infty}{\infty}$ 1^{∞} ∞^0 0^0

D Piecewise defined functions (AP only)

If the function changes the formula at x = a then:

- 1. Use the appropriate formula to find the left-hand and right-hand limits.
- 2. Compare the left-hand and right-hand limits to conclude about the limit of the function at x = a.

Example:

$$f(x) = \begin{cases} f_1(x) \mid x < a \\ f_2(x) \mid x > a \end{cases}$$

At x = a:

$$L = f_1(a) \qquad R = f_2(a)$$

E Limits: Numerical Approach (AP only)

The limit of a function y = f(x) at a number x = a may be estimated numerically. To do that:

- 1. Use a sequence of numbers x approaching x = a from the left and from the right.
- 2. Find the value of the function at each number x.
- 3. Analyze the values and make a conclusion (guess the limit).
- 4. Be careful at the "difference catastrophe".

F Limit: Informal Definitions (AP only)

Left-Hand Limit If the values of y = f(x) can be made arbitrarily close to L by taking x sufficiently close to a with x < a, then:

$$\lim_{x \to a^{-}} f(x) = L$$

Right-Hand Limit If the values of y = f(x) can be made arbitrarily close to R by taking x sufficiently close to a with x > a, then:

$$\lim_{x \to a^+} f(x) = R$$

Limit If the values of y = f(x) can be made arbitrarily close to l by taking x sufficiently close to a from both sides, then:

$$\lim_{x \to a} f(x) = l$$

Infinite Limit If the values of y = f(x) can be made arbitrarily large by taking x sufficiently close to a from both sides, then:

$$\lim_{x \to a} f(x) = \infty$$

1.6 Continuity

A Continuity

A function y = f(x) is continuous at a number x = a if

$$L = R = f(a)$$

where:

 $L = \lim_{x \to a^{-}} f(x)$ is the left-hand limit at x = a.

 $R = \lim_{x \to a^+} f(x)$ is the right-hand limit at x = a.

f(a) is the value of the function at x = a.

Note: A function is continuous if it can be drawn without lifting your pencil from the paper.

B Discontinuity

If y = f(x) is not continuous at x = a then we say: "y = f(x) is discontinuous at x = a" or "y = f(x) has a discontinuity at x = a".

C Removable Discontinuity

A function y = f(x) has a removable discontinuity at x = a if:

- 1. $L = R = \lim_{x \to a} f(x)$ exists
- 2. f(a) DNE or $\lim_{x\to a} f(x) \neq f(a)$

Note: A removable discontinuity can be removed be redefining the function x = a as $f(a) \stackrel{def}{=} \lim_{x \to a} f(x)$.

D Jump Discontinuity

A function y = f(x) has a jump discontinuity at x = a if:

$$L = \lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x) = R$$

E Infinite Discontinuity

A function y = f(x) has an infinite discontinuity at x = a if at least one side of the limit is unbounded (approaches ∞ or $-\infty$).

F Continuity over an Interval (AP only)

A function y = f(x) is continuous over an open interval (a, b) if the function is continuous at every number in that interval.

A function is continuous from the right at x = a if R = f(a).

A function is continuous from the left at x = a if L = f(a).

G Elementary Functions (AP only)

Elementary functions (polynomial, power, rational, trigonometric, exponential, and logarithmic) are continuous over their domain.

H Composition of Functions

If g is continuous at x = a and f is continuous at g(a) then f(g(x)) is continuous at x = a.

I Intermediate Value Theorem (AP only)

If y = f(x) is a continuous function over the interval [a, b] with $f(a) \neq f(b)$, then for any number N between f(a) and f(b) there exist a number $c \in (a, b)$ such that f(c) = N.

2.1 Derivative Function

A Derivative Function

Given a function y = f(x), the derivative function of f is a new function called f'(f) prime, defined at x by:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

A function y = f(x) is differentiable at x if f'(x) exists.

B Differentiability (AP only)

A function y = f(x) is differentiable over an open interval (a, b) if the function is differentiable at every number in that interval.

The domain of derivative function f'(x) is a subset of the domain of the original function $f(D_{f'} \subseteq D_f)$. So a function is defined over D_f but is differentiable over $D_{f'}$.

C Interpretations of Derivative Function

- 1. The slope of the tangent line to the graph of y = f(x) at the point P(a, f(a)) is given by $m_T = f'(a)$.
- 2. The instantaneous rate of change in the variable y with respect to the variable x, where y = f(x), at x = a is given by IRC = f'(a).

D Notations and Reading

Lagrange or prime notation

$$y' = f'(a)$$

Reading: "y prime" or "f prime of (at) x".

Leibnitze notation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}f(x) = \mathrm{D}f(x) = \mathrm{D}_x f(x)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x}$$

Reading: "dee y by dee x".

Evaluating

$$f'(a) = \frac{\mathrm{d}y}{\mathrm{d}x} \bigg|_{x=a}$$

Reading: "dee y by dee x at x equals a".

E First Principles

Differentiation is the process to find the derivative function for a given function.

First Principles is the process of differentiation by computing any of the following limits:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$
$$f'(x) = \lim_{u \to x} \frac{f(u) - f(x)}{u - x}$$

F Differentiability Point

A function y = f(x) is differentiable at x if f'(x) exists.

If the function y = f(x) is differentiable at x = a then the tangent line at P(a, f(a)) is unique and not vertical (the slope of the tangent line is not ∞ or $-\infty$).

G Non-Differentiability

A function is not differentiable at x = a if f'(a) does not exist.

Notes:

- If a function f is not continuous at x = a then the function f is not differentiable at x = a.
- If a function is differentiable at x = a then the function is continuous at x = a.
- If a function f is continuous at x = a then the function f may or may not be differentiable at x = a.

H Corner Point

P(a, f(a)) is a *corner point* if there are *two* distinct tangent lines at P, one for the left-hand branch and one for the right-hand branch.

I Infinite Slope Point

P(a, f(a)) is an *infinite slope point* if the tangent line at P is vertical and the function is increasing or decreasing in the neighbourhood of the point P.

$$f'(a) = \infty \quad \lor \quad f'(a) = -\infty$$

J Cusp Point

P(a, f(a)) is a *cusp point* if the tangent line at P is vertical and the function is increasing on one side of the point P and decreasing on the other side.

$$f'(a) = DNE$$

2.2 Derivative of Polynomial Functions

A Power Rule

If $y = f(x) = x^n \mid x, n \in \mathbb{R}$ is the *power* function then:

$$y' = f'(x) = (x^n)' = nx^{n-1}$$

Some useful specific case:

$$(1)' = 0$$

$$(x)' = 1$$

$$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

B Constant Function Rule

If $y = f(x) = c \mid c \in \mathbb{R}$ is the *constant* function then:

$$f'(x) = (c)' = 0$$

C Constant Multiple Rule

If g(x) = cf(x) then:

$$g'(x) = (cf(x))' = cf'(x)$$
$$\frac{d}{dx}g(x) = \frac{d}{dx}(cf(x)) = c\frac{d}{dx}f(x)$$

D Sum and Difference Rules

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

E Tangent Line

The equation of the tangent line at the point P(a, f(a)) to the curve y = f(x) is:

$$y = f'(a)(x - a) + f(a)$$
 (xi)

F Normal Line (AP only)

If $m_T = f'(a)$ is the slope of the tangent line at P(a, f(a)), the slope of the normal line m_N is given by:

$$m_N = -\frac{1}{m_T}$$

G Differentiability for Piecewise Defined Function (AP only)

Consider the piecewise defined function:

$$f(x) = \begin{cases} f_1(x) & x < a \\ c & x = a \\ f_2(x) & x > a \end{cases}$$

The function f is differentiable at x = a if:

- 1. The function is continuous at x = a.
- 2. $f'_1(a) = f'_2(a)$ (the slope of the tangent line for the left branch is equal to the slope of the tangent line for the right branch).

2.3 Product Rule

A Product Rule

If f and g are differentiable at x then so is fg and:

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$
$$(fg)' = f'g + fg'$$

B Product of Three Functions

If f, g, and h are differentiable at x then so is fgh and:

$$(fqh)' = f'qh + fq'h + fqh'$$

C Generalized Power Rule

If f is differentiable at x, then so is f^n and:

$$\left(\left(f(x)\right)^{n}\right) = n\left(f(x)\right)^{n-1} f'(x) \tag{xii}$$
$$\left(f^{n}\right)' = n f^{n-1} f'$$

2.4 Quotient Rule

A Quotient Rule

If f and g are differentiable at x and $g(x) \neq 0$ then so is $\frac{f}{g}$ and:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{\left(f(x)\right)^2}$$
 (xiii)

2.5 Chain Rule

A Composition of Functions

If u = g(x) and v = f(u) then:

$$x \xrightarrow[u=g(x)]{} u \xrightarrow[v=f(u)]{} v$$

and

$$v = f(u) = f(g(x)) = (f \circ g)(x)$$

B Chain Rule (Leibniz Notation)

 $\Delta x \xrightarrow[u=g(x)]{} \Delta u \xrightarrow[v=f(u)]{} \Delta v$

and

$$\frac{\Delta v}{\Delta x} = \frac{\Delta v}{\Delta u} \frac{\Delta u}{\Delta x} \to \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x}$$

Therefore:

$$\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x}$$

C Composition of Three Functions

$$x \xrightarrow[u=h(x)]{} u \xrightarrow[v=g(u)]{} v \xrightarrow[w=f(v)]{} w$$
$$\frac{\mathrm{d}w}{\mathrm{d}x} = \frac{\mathrm{d}w}{\mathrm{d}v} \frac{\mathrm{d}v}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x}$$

D Chain Rule (Prime Notation)

$$(f(g(x)))' = f'(g(x))g'(x)$$

If g is differentiable at x and f is differentiable at g(x) then the composition $(f \circ g)(x) = f(g(x))$ is differentiable at x and:

$$(f \circ g)'(x) = (f(g(x)))' = f'(g(x))g'(x)$$

So, the derivative of f(g(x)) is the derivative of the *outside* function f evaluated at the inside function g(x) times the derivative of the inside function g at x.

Note: If the outside function is the power function, then the chain rule is equivalent to the generalized power rule (xii).

5.4 Derivative of Trigonometric Functions

A Review of Trigonometric Functions

$$\sin(x) \colon \mathbb{R} \to [-1, 1]$$

$$\cos(x) \colon \mathbb{R} \to [-1, 1]$$

$$\tan(x) \colon \left\{ \mathbb{R} \setminus \left\{ \frac{\pi}{2} + n\pi \mid n \in \mathbb{Z} \right\} \right\} \to \mathbb{R}$$

$$\sin(x + 2\pi) = \sin(x)$$

$$\cos(x + 2\pi) = \cos(x)$$

$$\sin^2(x) + \cos^2(x) = 1$$

$$\sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad (xiv)$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \qquad (xv)$$

B Derivative of sin(x)

$$(\sin x)' = \cos x$$
$$\frac{\mathrm{d}}{\mathrm{d}x} \sin x = \cos x$$

Proof.

$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x)\cos(h) - \sin(x)}{h} + \lim_{h \to 0} \frac{\cos(x)\sin(h)}{h}$$

$$(\sin x)' = \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

Now, using the limits (xiv) and (xv):

$$(\sin x)' = \sin(x) \times 0 + \cos(x) \times 1$$
$$(\sin x)' = \cos(x)$$

C Derivative of $\sin(f(x))$

By using the chain rule:

$$\left(\sin\left(f(x)\right)\right)' = \left(\cos\left(f(x)\right)\right)f'(x)$$

D Derivative of $\cos x$

$$(\cos x)' = -\sin x$$

E Derivative of $\cos(f(x))$

By using the chain rule:

$$\left(\cos\left(f(x)\right)\right)' = -\left(\sin\left(f(x)\right)\right)f'(x)$$

F Derivative of $\tan x$

$$(\tan x)' = \frac{1}{\cos^2 x} = \sec^2 x$$

5.1 Derivative of Exponential Function

A Review of Exponential Functions

The exponential function is defined as:

$$y = f(x) = b^x \mid b > 0 \land b \neq 1$$

The x-axis (y = 0) is a horizontal asymptote.

B Number e

The number e is defined by:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

which can be written also as:

$$e = \lim_{u \to 0} (1 + u)^{\frac{1}{u}}$$

C Derivative of e^x

$$(e^x)' = e^x$$

The proof of this is based on the fact that:

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

D Derivative of $e^{f(x)}$

By using the chain rule:

$$\left(e^{f(x)}\right)' = e^{f(x)}f'(x)$$

E Derivative of $b^x \mid b > 0 \land b \neq 1$

$$(b^x)' = (\ln b)b^x$$

Proof.

$$(b^x)' = (e^{x \ln b})' = e^{x \ln b}(\ln b) = (\ln b)b^x$$

F Derivative of $b^{f(x)}$

By using the chain rule:

$$\left(b^{f(x)}\right)' = (\ln b)b^{f(x)}f'(x)$$

5.1 Derivative of Logarithmic Function

A Review of Logarithmic Function

$$y = b^x \equiv x = \log_b y$$

$$y = f(x) = \log_b x \mid b > 0 \land b \neq 1 \land x > 0$$

$$\log_b(xy) = \log_b(x) + \log_b(y)$$

$$\log_b \left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$$

$$\log_b x^n = n \log_b x$$

$$\log_b x = \frac{\log_a x}{\log_a b}$$

$$\log_b 1 = 0$$

$$\log_b b = 1$$

B Derivative of $\ln x$

$$(\ln x)' = \frac{1}{x}$$

Proof.

$$y = \ln x \implies x = e^y \implies x' = (e^y)'$$

$$x' = (e^y)' \implies 1 = e^y y' \implies y' = \frac{1}{e^y} \implies y' = \frac{1}{x}$$

$$\therefore (\ln x)' = \frac{1}{x}$$

C Derivative of ln(f(x))

By using the chain rule:

$$\left(\ln f(x)\right)' = \frac{f'(x)}{f(x)}$$

D Derivative of $\log_b x$

$$(\log_b x)' = \frac{1}{(\ln b)x}$$

Proof.

$$(\log_b x)' = \left(\frac{\ln x}{\ln b}\right)' = \frac{1}{\ln b}(\ln x)' = \frac{1}{(\ln b)x}$$

E Derivative of $\log_b f(x)$

By using the chain rule:

$$\left(\log_b\left(f(x)\right)\right)' = \frac{f'(x)}{(\ln b)f(x)}$$

Logarithmic Differentiation (AP)

A Logarithmic Differentiation

If the function formula contains many factors, then logarithmic differentiation is a fast method to differentiate.

Use the following algorithm:

- 1. Take natural logarithms of both sides of y = f(x).
- 2. Differentiate with respect to x.
- 3. Isolate $y' = \frac{dy}{dx}$.

B Function Raise to a Function

To differentiate a function f(x) raised to another function g(x), use the formula:

$$\left(f(x)^{g(x)}\right)' = g(x)f(x)^{g(x)-1}f'(x) + \ln(f(x))f(x)^{g(x)}g'(x)$$

Notes:

- 1. The first part $g(x)f(x)^{g(x)-1}$ comes from using the power rule and chain rule and by considering g(x) constant.
- 2. The second part $\ln(f(x))f(x)^{g(x)}g'(x)$ comes from using the exponential rule and chain rule and by considering f(x) constant.

Inverse Trigonometric Functions and Their Derivatives

A Inverse Sine Function

The inverse of the sine function:

$$f(x) = \sin x \colon \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-1, 1]$$

is:

$$f'(x) = \arcsin x = \sin^{-1} x \colon [-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

B Trigonometric Identities with Inverse Sine

$$\arcsin x = \theta \equiv \sin \theta = x$$

C Inverse Cosine Function

The inverse of the cosine function:

$$f(x) = \cos x \colon [0, \pi] \to [-1, 1]$$

is:

$$f'(x) = \arccos x = \cos^{-1} x \colon [-1, 1] \to [0, \pi]$$

D Trigonometric Identities with Inverse Cosine

$$\arccos x = \theta \equiv \cos \theta = x$$

E Inverse Tangent Function

The inverse of the tangent function:

$$f(x) = \tan x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-\infty, \infty]$$

is:

$$f'(x) = \arctan x = \tan^{-1} x \colon [-\infty, \infty] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

F Trigonometric Identities with Inverse Tangent

$$\arctan x = \theta \equiv \tan \theta = x$$

G Derivative of the Inverse Function

If f^{-1} is the inverse function of the function f then:

$$y = f^{-1}(x) \equiv x = f(y)$$

If derivative rule of a function is known, then the derivative of the inverse of that function may be found using:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}}$$

H Derivative of Inverse Trigonometric Functions

Differentiation rules for the inverse trigonometric functions are:

$$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx} \arctan x = \frac{1}{1 + x^2}$$

I Reciprocal of Trigonometric Functions

Reciprocal of trigonometric functions are defined by:

$$\sec x = \frac{1}{\cos x}$$
$$\csc x = \frac{1}{\sin x}$$
$$\cot x = \frac{1}{\tan x}$$

Their inverses may be computed by using the following formulas:

$$\operatorname{arcsec} x = \arccos \frac{1}{x}$$
$$\operatorname{arccsc} x = \arcsin \frac{1}{x}$$
$$\operatorname{arccot} x = \arctan \frac{1}{x}$$

Implicit Differentiation (AP)

A Relations Defined Implicitly

A relation between two variables x and y is defined implicitly by an equation like:

$$f(x,y) = 0$$

Notes:

- 1. One variable may be considered dependant on the other variable or both may be considered dependant on the third one like t.
- 2. The equation may be solved with respect to the variables x or y or may not be solved.
- 3. The graph of the relation may or may not pass the vertical or horizontal line tests.

B Terminology

Let (x,y) and $(x + \Delta x, y + \Delta y)$ be two points satisfying f(x,y) = 0. Then:

$$\frac{\Delta y}{\Delta x} = \frac{1}{\frac{\Delta x}{\Delta y}}$$

And as $\Delta x \to 0$, $\Delta y \to 0$:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}}$$

Notes:

- $\frac{dy}{dx}$ means differentiation of the variable y with respect to the variable x.
- $\frac{\mathrm{d}x}{\mathrm{d}y}$ means differentiation of the variables x with respect to the variable y.
- The tangent line is horizontal when $\frac{dy}{dx} = 0$.
- The tangent line is vertical when $\frac{dx}{dy} = 0$.

C Differentiation Revised

Consider the expression $E(x,y) = 2xy^2$.

If x is considered independent:

$$\frac{\mathrm{d}}{\mathrm{d}x}E(x,y) = \frac{\mathrm{d}}{\mathrm{d}x}(2xy^2) = y^2\frac{\mathrm{d}}{\mathrm{d}x}(2x) + (2x)\frac{\mathrm{d}}{\mathrm{d}x}y^2 = 2y^2\frac{\mathrm{d}x}{\mathrm{d}x} + 4xy\frac{\mathrm{d}y}{\mathrm{d}x} = 2y^2 + 4xy\frac{\mathrm{d}y}{\mathrm{d}x}$$

If y is considered independent:

$$\frac{\mathrm{d}}{\mathrm{d}y}E(x,y) = \frac{\mathrm{d}}{\mathrm{d}y}(2xy^2) = y^2\frac{\mathrm{d}}{\mathrm{d}y}(2x) + (2x)\frac{\mathrm{d}}{\mathrm{d}y}y^2 = 2y^2\frac{\mathrm{d}x}{\mathrm{d}y} + 4xy\frac{\mathrm{d}y}{\mathrm{d}y} = 2y^2\frac{\mathrm{d}x}{\mathrm{d}y} + 4xy$$

If t is considered independent:

$$\frac{\mathrm{d}}{\mathrm{d}t}E(x,y) = \frac{\mathrm{d}}{\mathrm{d}t}(2xy^2) = y^2 \frac{\mathrm{d}}{\mathrm{d}t}(2x) + (2x)\frac{\mathrm{d}}{\mathrm{d}t}y^2 = 2y^2 \frac{\mathrm{d}x}{\mathrm{d}t} + 4xy\frac{\mathrm{d}y}{\mathrm{d}t}$$

D Implicit Differentiation

To differentiation with respect to the variable x in a relation given implicitly by f(x,y) = 0:

1. Apply the operator $\frac{d}{dx}$ to both sides:

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x,y) = \frac{\mathrm{d}}{\mathrm{d}x}0$$

2. Use the chain rule and differentiate by keeping in mind that $\frac{dx}{dx} = 1$.

3. Solve for $\frac{dy}{dx} = IRC = m_T$ or $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$.

4. Substitute x and y with given values (if necessary).

Note: The following differentiations are also possible:

$$\frac{\mathrm{d}}{\mathrm{d}y}f(x,y) = \frac{\mathrm{d}}{\mathrm{d}y}0$$

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x,y) = \frac{\mathrm{d}}{\mathrm{d}t}0$$

3.9 Related Rates

A Algorithm to Solve Related Rates Applications

- 1. Assign variables x, y, z, \ldots to quantities involved in application.
- 2. Discover relations (constraints) between these quantities and write down their restrictions. A diagram or geometry formulas may help.
- 3. Use these relations to eliminate variables which are not essential to application. At this step, related variables are part of an explicit equation:

$$x = f(y, z, \dots)$$
 (xvi)

or are part of an implicit equation:

$$f(y, z, \dots) = 0 \tag{xvii}$$

- 4. Identify the independent quantity and assign a variable to it (usually this is the time t).
- 5. Use the chain rule to differentiate with respect to the independent variable t the equation (xvi) or (xvii):

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}f(y, z, \dots)$$
 or $\frac{\mathrm{d}}{\mathrm{d}t}f(y, z, \dots) = 0$ (xviii)

- 6. Substitute all given data or other data obtained from (xvi) or (xvii) equations.
- 7. Solve for the remaining unknown rate of change.

Note. $\frac{dx}{dy}$, $\frac{dy}{dt}$, ... are instantaneous rates of change are they are related by (xviii).

3.10 Linear Approximation and Differentials

A Linear Approximation

The definition of derivative function at x = a:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

may be written:

$$f(x) \approx f(a) + f'(a)(x - a), x \to a$$

which is called the *linear or tangent line approximation* of the function y = f(x) near x = a. Note. Linear approximation is only possible if f'(a) exists.

B Approximate Formulas

The definition of derivative function at x = a:

$$f'(a) = \lim_{x \to 0} \frac{f(a+x) - f(a)}{x}$$

written in the form:

$$f(a+x) \approx f(a) + f'(a)x , x \to 0$$

permits generation of approximate formulas.

C Numerical Approximation

Numerical approximation is based on the formula:

$$f(a+x) \approx f(a) + f'(a)x , x \to 0$$

D Differentials

Derivative function may be written in the form:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$$

dx and dy are called differentials and they are related by the formula:

$$\mathrm{d}y = f'(x)\,\mathrm{d}x$$

This formula is called the differential form of the function y = f(x).

If $dx, dy \to 0$ then the previous formula is exact.

If dx and dy are finite, we replace them by Δx and Δy and the previous formula becomes approximately:

$$\Delta y \approx f'(x) \Delta x$$

E Error Propagation

If the variable x is measured with a finite error Δx , then the real value is $x + \Delta x$.

The absolute error in computing the value of the function y = f(x) is approximately given by:

$$\Delta y \approx f'(x) \Delta x$$

and its relative error $\frac{\Delta y}{y}$ may be approximated by:

$$\frac{\Delta y}{y} = \frac{\Delta y}{f(x)} \approx \frac{f'(x)\Delta x}{f(x)}$$

3.2 Maximum and Minimum on an Interval: Extreme Values

A Global Maximum

A function f has a global (absolute) maximum at x = c is $f(x) \leq f(c)$ for all $x \in D_f$. f(c) is called the global (absolute) maximum value.

(c, f(c)) is called the global (absolute) maximum point.

Note. An *extremum* is either a minimum or maximum (value, point, local, or global).

B Global Minimum

A function f has a global (absolute) minimum at x = c is $f(x) \ge f(c)$ for all $x \in D_f$. f(c) is called the global (absolute) minimum value.

(c, f(c)) is called the global (absolute) minimum point.

Notes:

Extrema The plural of extremum.

Minima The plural of minimum.

Maxima The plural of maximum.

C Global (Absolute) Extrema Algorithm

To find the global (absolute) extrema for a *continuous* function f over a close interval [a, b]:

- 1. Identify all *critical* numbers over (a, b).
- 2. Find the values of the function f(c) at each critical number c in (a, b).
- 3. Find the values f(a) and f(b).
- 4. From the values obtained at part 2 and 3:
 - \bullet The largest represents the global (absolute) maximum value.
 - The smallest represents the global (absolute) minimum value.

Note. A *critical number* c is a number such that f'(c) = 0 or f'(c) DNE.

4.1 Increasing and Decreasing Functions. Critical Points: Local Maxima and Minima

A Increasing or Decreasing Functions

Let y = f(x) be a differentiable function over (a, b). Then:

- 1. f is increasing over (a, b) if:
 - $ARC = m_S = \frac{f(x_2) f(x_1)}{x_2 x_1} > 0$ over any interval $[x_1, x_2 \subseteq (a, b)]$.
 - $IRC = m_T = f'(x) > 0 \text{ for all } x \in (a, b).$
- 2. f is decreasing over (a, b) if:
 - $ARC = m_S = \frac{f(x_2) f(x_1)}{x_2 x_1} < 0$ over any interval $[x_1, x_2 \subseteq (a, b)]$.
 - $IRC = m_T = f'(x) < 0$ for all $x \in (a, b)$.
- 3. f is constant over (a, b) if:
 - $ARC = m_S = \frac{f(x_2) f(x_1)}{x_2 x_1} = 0$ over any interval $[x_1, x_2 \subseteq (a, b)]$.
 - $IRC = m_T = f'(x) = 0$ for all $x \in (a, b)$.

B Local Maximum

A function f has a local (relative) maximum at x = c if:

- $f(x) \le f(c)$ when x is sufficiently close to c (from both sides).
- f'(x) changes sign from positive to negative at c.

C Local Minimum

A function f has a local (relative) minimum at x = c if::

- $f(x) \ge f(c)$ when x is sufficiently close to c (from both sides).
- f'(x) changes sign from negative to positive at c.

D Critical Numbers and Critical Points

The number $c \in D_f$ is a *critical number* if:

$$f'(c) = 0$$
 or $f'(c)$ DNE

The point P(c, f(c)) is called a *critical point*.

Notes:

- 1. A local extremum happens always at a critical point (Fermat's theorem).
- 2. At a critical number a function may or may not have a local extremum.

4.2 The Mean Value Theorem (AP)

A Rolle's Theorem

Let y = f(x) be a function continuous on [a, b] and differentiable on (a, b).

If f(a) = f(b) then there is a number $c \in (a, b)$ such that f'(c) = 0.

Note. Tangent line is horizontal at P(c, f(c)).

B Mean Value Theorem

Let y = f(x) be a function continuous on [a, b] and differentiable on (a, b). Then there is a number $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Note. Slope of tangent line at P(c, f(c)) is equal to slope of secant line.

C Theorem

If f'(x) = 0 for all $x \in (a, b)$, then f is constant on (a, b).

D Theorem

If f'(x) = g'(x) for all $x \in (a, b)$, then f - g is constant on (a, b) and f(x) = g(x) + c where c is a constant.

4.3 Asymptotes

A Vertical Asymptote

If the value of f(x) can be made arbitrarily large by taking x sufficiently close to a with x < a then $\lim_{x \to a^-} f(x) = \infty$. The line x = a is called a vertical asymptote to the graph of y = f(x).

Notes:

- 1. A function of the form $f(x) = \frac{p(x)}{q(x)}$ has a vertical asymptote at x = a if $p(a) \neq 0 \land q(a) = 0$.
- 2. A function of the form $f(x) = p(x) \log_b q(x)$ has a vertical asymptote x = a if $p(a) \neq 0 \land q(a) = 0$.

B Horizontal Asymptote

A horizontal line y=b is called a horizontal asymptote to the graph of y=f(x) if $\lim_{x\to\pm\infty}f(x)=b$.

Notes:

- 1. A horizontal asymptote may be crossed or touched by the graph of the function.
- 2. The graph of a function may have at most two horizontal asymptotes (one as $x \to -\infty$ and one as $x \to +\infty$).

C Limits at Infinity

If a > 0, then:

$$\lim_{x \to \pm \infty} x^a = (\pm \infty)^a$$

$$\lim_{x \to \pm \infty} \frac{1}{x^a} = \frac{1}{(\pm \infty)^a} = 0$$

$$\lim_{x \to \pm \infty} (a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0) = \lim_{x \to \pm \infty} a_n x^n$$

$$\lim_{x \to \pm \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_2 x^2 + b_1 x + b_0} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$$

D Horizontal Asymptotes for Rational Functions

A rational function of the form:

$$f(x) = \frac{P_n(x)}{Q_m(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_2 x^2 + b_1 x + b_0}$$

has:

- A horizontal asymptote y = 0 if m > n.
- A horizontal asymptote $y = \frac{a_n}{m_n}$ if m = n.
- No horizontal asymptote if m < n.

Note. A rational function may have at most one horizontal asymptote.

E Oblique (Slant) Asymptote

The line y = ax + b is an oblique (slant) asymptote for the curve y = f(x) if:

$$\lim_{x \to +\infty} \left(f(x) - (ax + b) \right) = 0$$

Notes:

- 1. An oblique asymptote may be crossed or touched by the graph of the function.
- 2. The graph of a function may have at most two oblique asymptotes (one as $x \to -\infty$ and one as $x \to +\infty$).
- 3. The graph of a function may have one horizontal asymptote and one oblique asymptote (one as $x \to -\infty$ and the other as $x \to +\infty$).

F Oblique Asymptotes for Rational Functions

A rational function of the form:

$$f(x) = \frac{P_n(x)}{Q_m(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_2 x^2 + b_1 x + b_0}$$

has an oblique (slant) asymptote if n = m + 1.

Note. To get the equation of the oblique (slant) asymptote, use the *long* division algorithm to write the rational function in the form:

$$f(x) = \frac{P_n(x)}{Q_m(x)} = ax + b + \frac{R(x)}{Q_m(x)}$$

where $0 \leq \operatorname{degree}(R) < \operatorname{degree}(Q_m)$.

G Oblique Asymptotes for any Functions

The oblique asymptote y = ax + b may be obtained by computing the following two limits at infinity:

$$a = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
$$b = \lim_{x \to \pm \infty} (f(x) - ax)$$

Note. In order for the oblique asymptote to be defined, both limits above must exist (must be finite numbers).

4.4 Concavity and Points of Inflection

A Concavity Upward

The graph of the function f has a concavity upward if:

- Graph lies above all its tangents.
- Tangents rotate counter-clockwise.
- $m_T = IRC = f'(x)$ increases
- f''(x) > 0

B Concavity Downward

The graph of the function f has a concavity downward if:

- Graph lies below all its tangents.
- Tangents rotate clockwise.
- $m_T = IRC = f'(x)$ decreases
- f''(x) < 0

C Test for Concavity

Let f be a function twice differentiable (f''(x) exits) over (a, b).

- 1. If f''(x) > 0 for all $x \in (a, b)$, then the function f (or its graph) is concave upward over (a, b).
- 2. If f''(x) < 0 for all $x \in (a, b)$, then the function f (or its graph) is concave downward over (a, b).
- 3. If f''(x) = 0 for all $x \in (a, b)$, then the function f (or its graph) has no concavity over (a, b). In this case, f'(m) = m, and f(x) = mx + b. The function is linear and its graph is a straight line.

D Point of Inflection

A point P(i, f(i)) on the graph of y = f(x) is called a point of inflection if the concavity of the graph *changes* at P from concave upward to concave downward or from concave downward to concave upward.

E Second Derivative Test

Let f be a twice differentiable function over an open interval containing the critical number c and f'(c) = 0.

- 1. If f''(c) > 0 then f has a local minimum at x = c.
- 2. If f''(c) < 0 then f has a local maximum at x = c.
- 3. If f''(c) = 0 then f may have a local minimum, maximum, or neither (inconclusive case). Use the first derivative test to conclude.

4.5 An Algorithm for Curve Sketching

A Algorithm for Curve Sketching

- 1. Domain
 - denominator $\neq 0$
 - radicand ≥ 0 (even roots)
 - logarithmic argument > 0 (logarithmic functions)
- 2. Intercepts
 - f(x) = 0 (x-intercepts are real zeros)
 - numerator = 0
 - y-int = f(0) (if exists)
- 3. Symmetry
 - f(-x) = f(x) (even functions are symmetric about the y-axis)
 - f(-x) = -f(x) (odd functions are symmetric about the origin)
 - f(x+T) = f(x) (periodic functions have cycles)
- 4. Asymptotes
 - Compute $\lim_{x\to\pm\infty} f(x)$ (horizontal asymptote)
 - Compute $\lim_{x\to a} f(x)$ (vertical asymptote where a is a zero of the denominator but not of the numerator).
 - $\log_b f(x)$ may generate vertical asymptotes when $\lim_{x \to a} f(x) = 0$
 - Compute long division (to find the oblique asymptotes for rational functions)
- 5. First Derivative
 - Compute f'(x)
 - Find critical numbers (f'(x) = 0 or f'(x) DNE)
 - Create the sign chart for f'(x) (first derivative test)
 - Find intervals of increase/decrease
 - Find all extrema
- 6. Second Derivative
 - Compute f''(x)

- Find points where f''(x) = 0 or f''(x) DNE
- Create the sign chart for f''(x)
- Find points of inflection
- Find intervals of concavity upward/downward
- Find local extrema by using the second derivative test (if necessary)

7. Curve Sketching

- Use broken lines to draw the asymptotes
- Plot x and y-intercepts, extrema, and inflection points
- Draw the curve near the asymptotes
- Sketch the curve

B Link between a Function and its Derivative

If the function y = f(x) is double differentiable then f'(x) and f''(x) exist. The following statements show the link between f, f', and f'':

- 1. y = f(x) is increasing $\iff f'(x) > 0$
- 2. y = f(x) is decreasing $\iff f'(x) < 0$
- 3. y = f(x) has a local extrema at $x = a \implies$ tangent line at P(a, f(a)) is horizontal $\implies f'(a) = 0$
- 4. y' = f'(x) is increasing $\iff f''(x) > 0 \iff y = f(x)$ is concave up
- 5. y' = f'(x) is decreasing $\iff f''(x) < 0 \iff y = f(x)$ is concave down
- 6. y' = f'(x) has a local extrema at $x = b \implies$ tangent line on the graph of y' = f'(x) is horizontal $\implies f''(b) = 0$, y = f(x) has an inflection point at P(b, f(b)).

C Symmetry and Derivatives Functions

If the function y = f(x) is even/odd then the derivative function y' = f'(x) is odd/even.

3.3 Optimization

A Algorithm for Solving Optimization Applications

- 1. Read and understand the situation.
- 2. Draw a diagram (if necessary).
- 3. Assign variables to quantities involved and state restrictions.
- 4. Find relations (constraints) between these variables.
- 5. Write the dependent variable (the one which is minimized or maximized) as a function of one single variable (the independent variable) by eliminating all unnecessary variables.
- 6. Find extrema (maximum or minimum) for the dependant variable (using global extrema algorithm, first derivative test, or the second derivative test).
- 7. Check if extrema satisfy the conditions of the application.
- 8. Find the value of other variables at extrema (if necessary).
- 9. Write the conclusion statement.

B Cost, Revenue, and Profit

Let C(x) be the *cost* of manufacturing x units.

The average cost per unit is $u(x) = \frac{C(x)}{x}$.

The marginal cost is the cost of manufacturing the unit number $x: C(x) - C(x-1) \approx C'(x)$.

Let p(x) be the demand function (price per unit when selling x units).

The revenue function is R(x) = xp(x).

The profit function is P(x) = R(x) - C(x).

Unit 4

Integrals

4.9 Antiderivatives and Indefinite Integrals

A Integration

Differentiation is the process of finding f'(x) given f(x). Integration is the inverse process of differentiation. It means finding f(x) given f'(x).

$$f(x) \xrightarrow{\text{Differentiation}} f'(x)$$

$$f(x) \xleftarrow{\text{Integration}} f'(x)$$

B Antiderivative

The antiderivative of the function f(x) is a function F(x) such that F'(x) = f(x).

C Families of Antiderivatives

If F(x) is an antiderivative of f(x), so is F(x) + C, where C is a constant called the constant of integration.

D Initial Condition

An antiderivative of a function may be uniquely identified by an initial condition:

$$F(a) = b$$

E Indefinite Integrals

The *indefinite integral* is the most commonly used notation for antiderivatives. If F(x) is an antiderivative of f(x), then we write:

$$F(x) = \int f(x) \, \mathrm{d}x$$

By definition:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int f(x) \, \mathrm{d}x = f(x)$$

F List of Indefinite Integrals

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \mid n \neq -1$$

$$\int \frac{1}{x} \, dx = \ln|x| + C$$

$$\int e^x \, dx = e^x + C$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$

$$\int dx = x + C$$

$$\int \sin(x) \, dx = -\cos(x) + C$$

$$\int \cos(x) \, dx = \sin(x) + C$$

$$\int \sec^2(x) \, dx = \tan(x) + C$$

$$\int \sec^2(x) \, dx = -\cot(x) + C$$

$$\int \sec(x) \tan(x) \, dx = \sec(x) + C$$

$$\int \csc(x) \cot(x) \, dx = -\csc(x) + C$$

$$\int \frac{1}{x^2 + 1} \, dx = \arctan(x) + C$$

$$\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin(x) + C$$

G Properties of Antiderivatives or Indefinite Integrals

$$\int cf(x) dx = c \int f(x) dx$$
$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$$

5.1 Riemann Sums

A Riemann Sums

Riemann sums are a way of approximating the area under a function.

B Finite Riemann Sums

The area under the function f(x) over the interval [a, b] can approximated using n rectangles as:

$$A \approx \sum_{i=1}^{n} f(x_i^*) \Delta x$$
 where $\Delta x = \frac{b-a}{n}$

C Infinite Riemann Sums

The area under f(x) can be found exactly by taking the limit of the Riemann sum as $n \to \infty$:

$$A = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x \quad \text{where } \Delta x = \frac{b-a}{n}$$

5.2 The Definite Integral

A Riemann Sum

Let y = f(x) be a function defined on [a, b].

The sequence:

$$x_0 = a < x_1 < x_2 < \dots < x_{n-1} M x_n = b$$

defines a partition of the interval [a, b] in n subintervals of widths:

$$\Delta x_1 = x_1 - x_0, \Delta x_2 = x_2 - x_1, \dots, \Delta x_n = x_n - x_{n-1}$$

Let $x_1^* \in [x_0, x_1], x_2^* \in [x_1, x_2], \dots, x_n^* \in [x_{n-1}, x_n]$ be a sequence of any numbers in each interval.

The *Riemann sum* is defined by:

$$f(x_1^* \Delta x_1 + f(x_2^*) \Delta x_2 + \dots + f(x_n^*) \Delta x_n = \sum_{i=1}^n f(x_i^*) \Delta x_i$$

Note. The Riemann sum approximates the *area* of the region bounded by the graph of y = f(x), the x-axis, and the vertical lines x = a and x = b.

B Definite Integral

The function y = f(x) is integrable on [a, b] if the following limit exists:

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

This limit may be written symbolically:

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

and is called the definite integral.

C Theorem

If y = f(x) is *continuous* on [a, b] (or y = f(x) has only a finite number of jump discontinuities) then y = f(x) is *integrable* on [a, b].

That means that the definite integral $\int_a^b f(x) dx$ exists.

D Fundamental Theorem of Calculus (Part 1)

If F(x) is one antiderivative of f(x) then:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

E Properties of Definite Integrals

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} dx = b - a$$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

F More Properties of Definite Integrals

If $f(x) \ge 0$ on [a, b] then $\int_a^b f(x) dx \ge 0$.

If $f(x) \ge g(x)$ on [a, b] then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

If $m \le f(x) \le M$ on [a, b] then:

$$m(a-b) \le \int_a^b f(x) dx \le M(a-b)$$

G Fundamental Theorem of Calculus (Part 2)

If y = f(x) is continuous on [a, b], then the function defined by:

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

is continuous on [a,b] and differentiable on (a,b), and:

$$F'(x) = f(x)$$

So:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

Note that:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{u(x)} f(t) \, \mathrm{d}t = \left(\frac{\mathrm{d}}{\mathrm{d}u} \int_{a}^{u} f(t) \, \mathrm{d}t\right) \frac{\mathrm{d}u}{\mathrm{d}x} = f(u) \frac{\mathrm{d}u}{\mathrm{d}x} = f(u(x))u'(x)$$

5.5 The Substitution Rule

A Substitution Rule for Indefinite Integrals

If u = g(x) is differentiable on the range of a continuous function y = f(x) then du = g'(x) dx and

$$\int f(u(x))g'(x) dx = \int f(u) du$$

B Linear Substitution

In this case:

$$u = g(x) = ax + b$$
$$du = a dx$$
$$x = \frac{u - b}{a}$$

C More about Linear Substitution

Integrals of the forms:

$$\int P_n(x) \sqrt[m]{ax+b} \, \mathrm{d}x$$
$$\int \frac{P_n(x)}{\sqrt[m]{ax+b}} \, \mathrm{d}x$$

where $P_n(x)$ is a polynomial function of degree n may be solved by the linear substitution:

$$u = ax + b$$

D Substitution Rule and Power Rule

If u = g(x) then du = g'(x) dx and:

$$\int f^{n}(g(x))g'(x) dx = \int f^{n}(u) du = \frac{f^{n+1}(u)}{n+1} + C = \frac{f^{n+1}(g(x))}{n+1} + C$$

E Trigonometric Identities

$$\sin^2 x + \cos^2 x = 1$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

$$\cos(2x) = 2\cos^2(x) - 1$$

$$\cos(2x) = 1 - 2\sin^2(x)$$

F Substitution Rule for Definite Integrals

If g'(x) is continuous on [a, b] and y = f(x) is continuous on the range of u = g(x), then:

$$du = g'(x) dx$$

and

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$

G Symmetry

Let y = f(x) be a continuous function on [a, b].

If y = f(x) is even, then f(-x) = f(x) and

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

If y = f(x) is odd, then f(-x) = -f(x) and

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0$$

Unit 5 Applications of Integration

6.1 Applications of Integration

A Area Under a Curve

The area under the curve y = f(x) and the x-axis from x = a to x = b may be evaluated by:

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Notes:

- On the intervals where $f(x) \ge 0$ the area $A \ge 0$.
- On the intervals where $f(x) \leq 0$ the area $A \leq 0$.
- If y = f(x) does not change its sign on [a, b], then the formula above represents the net (or algebraic) area under the curve.

B Total Positive Area

The total positive area between y = f(x) and the x-axis may be computed by:

$$A = \int_{a}^{b} \left| f(x) \right| \mathrm{d}x$$

C Area between a Curve and the y-axis

The area under the curve x = f(y) and the y-axis from y = a to y = b may be evaluated by:

$$A = \int_{a}^{b} f(y) \, \mathrm{d}y$$

D Area between Two Curves

Let $f(x) \geq g(x)$ on [a, b]. The area between these curves may be evaluated by:

$$A = \int_{a}^{b} (f(x) - g(x)) dx$$

If f(x) - g(x) does not change sign on [a, b], then use the following formula to evaluate the total area between these curves:

$$A = \int_{a}^{b} |f(x) - g(x)| dx$$

E Net Change

If f(x) represents the instantaneous rate of change of a function F(x), then f(x) = F'(x) and the *net change* of the function F(x) on the interval [a, b] is given by the definite integral:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

F Displacement

If v(t) represents the instantaneous velocity of a position function s(t), then $v(t) = s'(t) = \frac{ds}{dt}$ and the *net change* of the position function s(t) on the interval [a, b] is called *displacement* and is given by the definite integral:

$$\int_{a}^{b} v(t) dt = s(b) - s(a)$$

G Distance Travelled

Speed is defined by speed = |v(t)| and the total distance travelled is defined by:

$$\int_a^b |v(t)| \, \mathrm{d}t$$

H Velocity Change

If a(t) represents the acceleration function of a velocity function v(t), then $a(t) = v'(t) = \frac{dv}{dt}$ and the *net change* of the velocity function v(t) on the interval [a, b] is given by the definite integral:

$$\int_{a}^{b} a(t) dt = v(b) - v(a)$$

I Cost

If C(x) is the cost of producing x units, then the marginal cost is C'(x) and the increase in cost when production is increase from x = a units to x = b units is given by the definite integral:

$$\int_a^b C'(x) \, \mathrm{d}x = C(b) - C(a)$$

6.2 Volumes

A Slices

If the cross-sectional area is a continuous function A(x), then the volume between x = a and x = b may be computed by:

$$V = \int_{a}^{b} A(x) \, \mathrm{d}x$$

where dV = A(x) dx is the volume of a slice with the base area A(x) and height dx.

B Disks (Horizontal Axis of Revolution)

The volume of a solid of revolution obtained by rotating the curve y = R(x) about the x-axis is given by:

$$V = \pi \int_{a}^{b} R^{2}(x) \, \mathrm{d}x$$

where $dV = \pi R^2(x) dx$ is the volume of a disk with the radius R(x) and height dx.

C Disks (Vertical Axis of Revolution)

The volume of a solid of revolution obtained by rotating the curve x = R(y) about the y-axis is given by:

$$V = \pi \int_{a}^{b} R^{2}(y) \, \mathrm{d}y$$

where $dB = \pi R^2(y) dy$ is the volume of a disk with radius R(y) and height dy.

D Washers

The volume of a solid of revolution bounded by an outer radius R(x) and an inner radius r(x) is given by:

$$V = \pi \int_a^b \left(R^2(x) - r^2(x) \right) dx$$

where $dV = \pi (R^2(x) - r^2(x)) dx$ is the volume of a washer with outer radius R(x), inner radius r(x), and height dx.

E Shells

The volume of a solid of revolution obtained by rotating about the y-axis the region under the curve y = f(x) from x = a to x = b is given by:

$$V = 2\pi \int_{a}^{b} x f(x) \, \mathrm{d}x \mid 0 \le a \le b$$

where $dV = 2\pi x f(x) dx$ is the volume of a shell with the radius x, height f(x), and thickness dx.

6.3 Average Value of a Function

A Average Value

The average value of the function y = f(x) on the interval [a, b] is defined by:

$$f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x$$

B Mean Value Theorem

If y = f(x) is continuous on [a, b], then there exists a number c on [a, b], such that:

$$f(c) = f_{avg} = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x$$

or:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = f(c)(b-a)$$

Unit 6 Differential Equations

Differential Equations

A Differential Equations

A differential equation is an equation that contains an unknown function y = f(x) and one or more of its derivatives (y', y'', \dots) .

Most of the time, a differential equation is given by an *implicit form*:

$$g(x, y, y', y'', \dots) = 0$$

The *order* of a differential equation is the order of the highest derivative that occurs in the equation.

B General Solution

A function y = f(x) is called a *solution* of a differential equation if the equation is satisfied when y = f(x) and its derivatives are substituted into the equation.

A family of solutions satisfying a differential equation is called the *general solution* of the differential equation.

C Particular Solution

Finding a particular solution of the differential equation satisfies an initial condition $y_0 = f(x_0)$ is called the initial-value problem.

D Direction Fields

The first order differential equation:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = F(x,y)$$

shows that the slope of the solution curve at the point (x,y) is F(x,y).

By drawing short line segments with slope F(x, y) at several points (x, y), we get a direction (slope) field which helps us to visualize the general shape of the solution curve y = f(x) and to sketch a particular solution given an initial condition $y_0 = f(x_0)$.

E Separable Differential Equations

A separable differential equation is defined by:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{g(x)}{h(y)}$$

This can be written as:

$$h(y) \, \mathrm{d}y = g(x) \, \mathrm{d}x$$

Therefore:

$$\int h(y) \, \mathrm{d}y = \int g(x) \, \mathrm{d}x$$

which permits (in some cases) to find explicitly the unknown function y = f(x).

F Exponential Growth and Decay

If the instantaneous rate of change of the function y = f(x) is proportional with the function itself:

$$y' = ky$$

Then:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = ky \implies \int \frac{\mathrm{d}y}{y} = \int k \,\mathrm{d}x \implies \ln|y| = kx + C$$

The general solution may be written as:

$$y = \pm e^{kx+C} = Ae^{kx}$$

Where C and A are constants of integration.

Appendix

Appendix A

Equations

1 Basics

Dot product

$$\vec{a} \cdot \vec{b} = ||a|| ||b|| \cos \theta \tag{I}$$

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z \tag{II}$$

Cross product

$$\left\| \vec{a} \times \vec{b} \right\| = \|a\| \|b\| \sin \theta \tag{III}$$

$$\vec{a} \times \vec{b} = \vec{i} (a_y b_z - a_z b_y) - \vec{j} (a_x b_z - a_z b_x) + \vec{k} (a_x b_y - a_y b_x)$$
 (IV)

$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y, -a_x b_z + a_z b_x, a_x b_y - a_y b_x) \tag{V}$$

Limit

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{VI}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$
 (VII)

$$f'(x) = \lim_{u \to x} \frac{f(u) - f(x)}{u - x}$$
 (VIII)

Tangent line

$$y = f'(a)(x - a) + f(a)$$
(IX)

2 Equations of Lines and Planes

Vector equation of a line

$$\overrightarrow{r} = \overrightarrow{r_0} + t \mid t \in \mathbb{R} \tag{X}$$

Parametric equations of a line in \mathbb{R}^2

$$L: \begin{cases} x = x_0 + tu_x \\ y = y_0 + tu_y \end{cases} \quad t \in \mathbb{R}$$
 (XI)

Parallel lines

$$\overrightarrow{u_1} \parallel \overrightarrow{u_2} \iff \overrightarrow{u_1} \times \overrightarrow{u_2} = \overrightarrow{0} \tag{XII}$$

Perpendicular lines

$$\overrightarrow{u_1} \perp \overrightarrow{u_2} \iff \overrightarrow{u_1} \perp \overrightarrow{u_2} = 0 \tag{XIII}$$

Symmetric equation of a line in \mathbb{R}^2

$$\frac{x - x_0}{u_x} = \frac{y - y_0}{u_y} \tag{XIV}$$

The symmetric equation only exists if $u_x \neq 0$ and $u_y \neq 0$.

Normal equation of a line in \mathbb{R}^2

$$(\vec{r} - \vec{r_0}) \cdot \vec{n} = 0 \tag{XV}$$

Cartesian equation of a line in \mathbb{R}^2

$$Ax + By + C = 0 (XVI)$$

Where $\vec{n} = (A, B)$ is a normal vector, and C depends on a specific point on the line.

Slope y-intercept equation

$$y = mx + b (XVII)$$

where $m = \frac{u_y}{u_x}$.

Angle between two lines

$$\cos \theta = \frac{\overrightarrow{u_1} \cdot \overrightarrow{u_2}}{\|\overrightarrow{u_1}\| \|\overrightarrow{u_2}\|} \tag{XVIII}$$

Parametric equations of a line in \mathbb{R}^3

$$L: \begin{cases} x = x_0 + tu_x \\ y = y_0 + tu_y \\ z = z_0 + tu_z \end{cases} \quad t \in \mathbb{R}$$
(XIX)

Symmetric equation of a line in \mathbb{R}^3

$$\frac{x - x_0}{u_x} = \frac{y - y_0}{u_y} = \frac{z - z_0}{u_z} \tag{XX}$$

The symmetric equation only exists if $u_x \neq 0$, $u_y \neq 0$, and $u_z \neq 0$.

Vector equation of a plane

$$\pi: \overrightarrow{r} = \overrightarrow{r_0} + s\overrightarrow{u} + t\overrightarrow{v} \mid s, t \in \mathbb{R}$$
 (XXI)

Parametric equations of a plane

$$\pi: \begin{cases} x = x_0 + su_x + tv_x \\ y = y_0 + su_y + tv_y \\ z = z_0 + su_z + tv_z \end{cases} \quad s, t \in \mathbb{R}$$
(XXII)

Normal vector to a plane

$$\vec{n} = \vec{u} \times \vec{v} \tag{XXIII}$$

Normal equation of a plane

$$\overrightarrow{P_0P} \cdot \overrightarrow{n} = 0 \tag{XXIV}$$

Where P_0 and P are points on the plane, and \vec{n} is a vector perpendicular to the plane.

Cartesian equation of a plane

$$Ax + By + Cz + D = 0 (XXV)$$

Where $\vec{n} = (A, B, C)$ is a normal vector to the plane.

Angle between two planes

$$\cos \theta = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{\left\| \overrightarrow{n_1} \right\| \overrightarrow{n_2} \right\| \left\|} \tag{XXVI}$$

3 Relationships between Points, Lines, and Planes

Distance from a point to a line in \mathbb{R}^2 (vector form) Where the point is $P_1(x_1, y_1)$ and P_0 is on the line.

$$d = \frac{\left| \overrightarrow{P_0 P_1} \cdot \overrightarrow{n} \right|}{\|n\|} \tag{XXVII}$$

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$
 (XXVIII)

Distance from a point to a line in \mathbb{R}^2 (Cartesian form) Where the point is $P_1(x_1, y_1)$ and P_0 is on the line.

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$
 (XXIX)

Distance from a point to a line in \mathbb{R}^3 Where the point is $P_1(x_1, y_1)$.

$$d = \frac{\left\| \overrightarrow{P_0 P_1} \times \overrightarrow{u} \right\|}{\|u\|} \tag{XXX}$$

Perpendicular line from a point The vector equation of a line that goes through the point F and is perpendicular to $L: \overrightarrow{r} = \overrightarrow{OP} + t\overrightarrow{u} \mid t \in \mathbb{R}$ that intersects L at P is:

$$L_{\perp} : \overrightarrow{r} = \overrightarrow{OP} + s\overrightarrow{PF} \mid s \in \mathbb{R}$$
 (XXXI)

Shortest distance between two skew lines

$$d = \frac{\left| (\overrightarrow{r_{01}} - \overrightarrow{r_{02}}) \cdot (\overrightarrow{u_1} \times \overrightarrow{u_2}) \right|}{\|\overrightarrow{u_1} \times \overrightarrow{u_2}\|} \tag{XXXII}$$

Distance from a point to a plane (vector form) Where the point is $P_1(x_1, y_1)$ and P_0 is on the plane.

$$d = \frac{\left| \overrightarrow{P_0 P_1} \cdot \overrightarrow{n} \right|}{\|n\|} \tag{XXXIII}$$

Distance from a point to a plane (Cartesian form) Where the point is $P_1(x_1, y_1)$ and P_0 is on the plane.

$$d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}$$
 (XXXIV)

4 Applications of Differentiation

Linear approximation

$$f(x) \approx f(a) + f'(a)(x - a), x \to a$$
 (XXXV)

Oblique Asymptotes The oblique asymptote is of the form of:

$$y = ax + b (XXXVI)$$

where:

$$a = \lim_{x \text{ } to \pm \infty} \frac{f(x)}{x}$$
 (XXXVII)

$$b = \lim_{x \text{ to} \pm \infty} (f(x) - ax)$$
 (XXXVIII)

5 Integrals

List of known integrals

$$\int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1} + C \mid n \neq -1$$
 (XXXIX)

$$\int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C \tag{XL}$$

$$\int e^x \, \mathrm{d}x = e^x + C \tag{XLI}$$

$$\int a^x \, \mathrm{d}x = \frac{a^x}{\ln a} + C \tag{XLII}$$

$$\int \mathrm{d}x = x + C \tag{XLIII}$$

$$\int \sin(x) \, \mathrm{d}x = -\cos(x) + C \tag{XLIV}$$

$$\int \cos(x) \, \mathrm{d}x = \sin(x) + C \tag{XLV}$$

$$\int \sec^2(x) \, \mathrm{d}x = \tan(x) + C \tag{XLVI}$$

$$\int \csc^2(x) \, \mathrm{d}x = -\cot(x) + C \tag{XLVII}$$

$$\int \sec(x)\tan(x)\,\mathrm{d}x = \sec(x) + C \tag{XLVIII}$$

$$\int \csc(x)\cot(x)\,\mathrm{d}x = -\csc(x) + C \tag{XLIX}$$

$$\int \frac{1}{x^2 + 1} \, \mathrm{d}x = \arctan(x) + C \tag{L}$$

$$\int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x = \arcsin(x) + C \tag{LI}$$

Finite Riemann sums The area under f(x) over the intervals [a, b] can be approximated with n rectangles as:

$$A \approx \sum_{i=1}^{n} f(x_i^*) \Delta x$$
 where $\Delta x = \frac{b-a}{n}$ (LII)

Infinite Riemann sums The area under f(x) over the intervals [a,b] can be calculated as:

$$A = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x \quad \text{where } \Delta x = \frac{b-a}{n}$$
 (LIII)

Fundamental theorem of calculus (part 1)

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{a}^{b}$$
 (LIV)

Fundamental theorem of calculus (part 2)

$$F(x) = \int_{a}^{x} f(t) dt$$
 (LV)

6 Applications of Integration

Area under a curve

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x \tag{LVI}$$

Total positive area

$$A = \int_{a}^{b} |f(x)| \, \mathrm{d}x \tag{LVII}$$

Area between a curve and the y-axis

$$A = \int_{a}^{b} f(y) \, \mathrm{d}y \tag{LVIII}$$

Area between two curves

$$A = \int_{a}^{b} (f(x) - g(x)) dx$$
 (LIX)

Net change

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
 (LX)

Volume by slices

$$V = \int_{a}^{b} A(x) \, \mathrm{d}x \tag{LXI}$$

Disks (horizontal axis of revolution)

$$V = \pi \int_{a}^{b} R^{2}(x) \, \mathrm{d}x \tag{LXII}$$

Disks (vertical axis of revolution)

$$V = \pi \int_{a}^{b} R^{2}(y) \, \mathrm{d}y \tag{LXIII}$$

Washers

$$V = \pi \int_{a}^{b} \left(R^{2}(x) - r^{2}(x) \right) dx$$
 (LXIV)

Shells

$$V = 2\pi \int_{a}^{b} x f(x) \, \mathrm{d}x \mid 0 \le a \le b$$
 (LXV)

Average value

$$f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x \tag{LXVI}$$

Mean value theorem

$$\exists c \in [a, b] \mid f(c) = f_{avg} = \frac{1}{b - a} \int_{a}^{b} f(x) \, \mathrm{d}x \tag{LXVII}$$

equivalently:

$$\exists c \in [a, b] \mid \int_{a}^{b} f(x) \, \mathrm{d}x = f(c)(b - a)$$
 (LXVIII)

Differential Equations 7

Separable differential equations

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{g(x)}{h(y)} \tag{LXIX}$$

$$h(y) dy = g(x) dx$$
 (LXX)

$$\int h(y) \, \mathrm{d}y = \int g(x) \, \mathrm{d}x \tag{LXXI}$$

Exponential growth and decay

$$y' = ky (LXXII)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = ky \tag{LXXIII}$$

$$\int \frac{\mathrm{d}x}{y} = \int k \, \mathrm{d}x \tag{LXXIV}$$

$$\begin{aligned}
\ln|y| &= kx + C \\
y &= \pm e^{kx+C}
\end{aligned} (LXXV)$$
(LXXVI)

$$y = \pm e^{kx+C} \tag{LXXVI}$$

$$y = \pm Ae^{kx}$$
 (LXXVII)