Дискретная математика, Коллоквиум 2

Балюк Игорь @lodthe, GitHub

2019 - 2020

Материалы взяты из учебника Александра Рубцова.

Содержание

1	Опр	еделения		
	1.1	Деление целых чисел с остатком.		
	1.2	Сравнения по модулю. Основные свойства.		
	1.3	Арифметика остатков (вычетов). Обратимые остатки (вычеты).		
	1.4	Малая теорема Ферма		
	1.5	Функция Эйлера. Теорема Эйлера.		
	1.6	Наибольший общий делитель. Алгоритм Евклида.		
	1.7	Расширенный алгоритм Евклида нахождения решения линейного диофантова уравнения.		
	1.8	Простые числа, формулировка основной теоремы арифметики.		
	1.9	Равномощные множества.		
	1.10	Счётные множества.		
	1.11	Множества мощности континуум.		
	1.12	Основные определения элементарной теории вероятностей: исходы, события, вероятность		
		события.		
	1.13	Формулировка формулы включений и исключений для вероятностей.		
	1.14	Условная вероятность		
	1.15	Независимые события. Основные свойства независимых событий.		
	1.16	Формула полной вероятности.		
	1.17	Случайная величина и математическое ожидание. Линейность математического ожидания.		
	1.18	Формулировка неравенства Маркова.		
	1.19	Определение схемы в некотором функциональном базисе. Представление схем графами.		
	1.20	Полный базис. Примеры полных и неполных базисов.		
	1.21	Полином Жегалкина (в стандартном виде).		
	1.22	Схемная сложность функции (размер схемы)		
	Воп	Вопросы на знание доказательств		
	2.1	Сравнение $ax \equiv 1 \pmod{N}$ имеет решение тогда и только тогда, когда $\mathrm{HOД}(a,N) = 1$		
	2.2	Малая теорема Ферма		
	2.3	Теорема Эйлера.		
	2.4	Корректность алгоритма Евклида и расширенного алгоритма Евклида.		
	2.5	Основная теорема арифметики.		
	2.6	Китайская теорема об остатках.		
	2.7	Мультипликативность функции Эйлера. Формула для функции Эйлера.		
	2.8	Формула Байеса. Формула полной вероятности.		
	2.9	Парадокс дней рождений (математическое ожидание числа людей с совпавшими днями		
		рождений)		
	2.10	Неравенство Маркова.		
	2.11	Нижняя оценка на максимальное количество ребер в разрезе.		
	2.12	Любое бесконечное множество содержит счётное подмножество. Любое подмножество счёт-		
		ного множества конечно или счётно.		
	2.13	Конечное или счётное объединение конечных или счётных множеств конечно или счётно		

2.14	Счётность декартова произведения счетных множеств. Счётность множества рациональ-
	ных чисел.
2.15	Равномощность отрезков, интервалов, лучей и прямых (явные биекции).
2.16	Несчетность множества бесконечных двоичных последовательностей.
2.17	Теорема Кантора-Бернштейна.
2.18	Нижняя оценка на число монотонных булевых функций: монотонных булевых функций от
	$2n$ переменных не меньше $2^{\frac{2^n}{2n+1}}$
2.19	Существование и единственность полинома Жегалкина (в стандартном виде) для любой
	булевой функции.
2.20	Разложение в ДНФ и КНФ булевой функции.
2.21	Верхняя оценка $O(n2^n)$ схемной сложности булевой функции от n переменных.
2.22	Булевы схемы для сложения и умножения п-битовых чисел. Оценка размера.
2.23	Булева схема для задачи о связности графа. Оценка размера
2.24	Задача об угадывании числа. Верхняя и нижняя оценки.
2.25	Задача о сортировке нижняя оценка.
2.26	Задача о нахождении самой тяжелой монеты. Верхние и нижние оценки.

1 Определения

Контрольный вопрос на понимание определений включает в себя формулировку одного определения из списка ниже и контрольный вопрос по этому определению. Пример: «Определение полного прообраза. Пусть $f(x) = x^2 - \phi$ ункция из \mathbb{Z} в \mathbb{Z} . Найдите полный прообраз множества $\{1,2,3,4\}$.

- 1. Деление целых чисел с остатком.
- 2. Сравнения по модулю. Основные свойства.
- 3. Арифметика остатков (вычетов). Обратимые остатки (вычеты).
- 4. Малая теорема Ферма.
- 5. Функция Эйлера. Теорема Эйлера.
- 6. Наибольший общий делитель. Алгоритм Евклида.
- 7. Расширенный алгоритм Евклида нахождения решения линейного диофантова уравнения.
- 8. Простые числа, формулировка основной теоремы арифметики.
- 9. Равномощные множества.
- 10. Счётные множества.
- 11. Множества мощности континуум.
- 12. Основные определения элементарной теории вероятностей: исходы, события, вероятность события.
- 13. Формулировка формулы включений и исключений для вероятностей.
- 14. Условная вероятность.
- 15. Независимые события. Основные свойства независимых событий.
- 16. Формула полной вероятности.
- 17. Случайная величина и математическое ожидание. Линейность математического ожидания.
- 18. Формулировка неравенства Маркова.
- 19. Определение схемы в некотором функциональном базисе. Представление схем графами.
- 20. Полный базис. Примеры полных и неполных базисов.
- 21. Полином Жегалкина (в стандартном виде).
- 22. Схемная сложность функции (размер схемы).

2 Вопросы на знание доказательств

- 1. Сравнение $ax \equiv 1 \pmod{N}$ имеет решение тогда и только тогда, когда HOД(a,N) = 1.
- 2. Малая теорема Ферма.
- 3. Теорема Эйлера.
- 4. Корректность алгоритма Евклида и расширенного алгоритма Евклида.
- 5. Основная теорема арифметики.
- 6. Китайская теорема об остатках.
- 7. Мультипликативность функции Эйлера. Формула для функции Эйлера.

- 8. Формула Байеса. Формула полной вероятности.
- 9. Парадокс дней рождений (математическое ожидание числа людей с совпавшими днями рождений)
- 10. Неравенство Маркова.
- 11. Нижняя оценка на максимальное количество ребер в разрезе.
- 12. Любое бесконечное множество содержит счётное подмножество. Любое подмножество счётного множества конечно или счётно.
- 13. Конечное или счётное объединение конечных или счётных множеств конечно или счётно
- 14. Счётность декартова произведения счетных множеств. Счётность множества рациональных чисел.
- 15. Равномощность отрезков, интервалов, лучей и прямых (явные биекции).
- 16. Несчетность множества бесконечных двоичных последовательностей.
- 17. Теорема Кантора-Бернштейна.
- 18. Нижняя оценка на число монотонных булевых функций: монотонных булевых функций от 2n переменных не меньше $2^{\frac{2^n}{2n+1}}$
- 19. Существование и единственность полинома Жегалкина (в стандартном виде) для любой булевой функции.
- 20. Разложение в ДНФ и КНФ булевой функции.
- 21. Верхняя оценка $O(n2^n)$ схемной сложности булевой функции от n переменных.
- 22. Булевы схемы для сложения и умножения п-битовых чисел. Оценка размера.
- 23. Булева схема для задачи о связности графа. Оценка размера.
- 24. Задача об угадывании числа. Верхняя и нижняя оценки.
- 25. Задача о сортировке нижняя оценка.
- 26. Задача о нахождении самой тяжелой монеты. Верхние и нижние оценки.