Song suggestion: Aufé (quiz winner)

Agenda

Introduction to Carry forward Introduction to Subarray

Problem 1

Given a string S of lowercase characters, return the count of pain (P, j) such that P < j and SCj3 = 'g'

example

explanation

aus 1

What is the count of a, g pain in the array. S = a c g d g a g

explanation

$$(0,2)$$
 $(0,4)$ $(0,6)$ $(5,6)$ — 4 pairs

Aus 2

What is the count of a, g pain in the array. S= "beaggaag"

explanation

$$(2,3)$$
 $(2,4)$ $(2,7)$ $(5,7)$ $(6,7)$ - 5 parts

Ent count pair (string s) &

ent count pair (string s) &

ent result = 0;

for (i=0; i < s. length; l++) &

for (j=l+1; j < s. length; l++) &

ef (seij=='a' && sejj=='g') &

result ++;

g

return result;

 $T \cdot C = O(n^2)$ $S \cdot C = O(1)$

Observation

count the 'a' to left of 'g', add the count to answer

Dry Run

String	a	c	ط	а	9	k	a	9	g
count-a	1	1	١	2	2	2	3	3	3
ams	D	0	0	O	2	2	2	5	8

psendo code

h

T.C = 0(N)

Introduction to Subarray

A subarray can have one or more element and must be a contiguous part of array en Same order

Example

arr: 4 1 2 3 -1 6 9 8 12

arrang	suborray?	Reason	
2 3 -1 6	V	len 4	
9	V	len 1	
4 1 2 3 -1 6 9 8 12	V	len 9	
4 12	×	non contiguous	
126	×	Non	
3 2 1 4	*	contignous encorrect order	

Representation of Subarray

- 1) Mention the start & end Enders
- 2 Mention Start index & length

- 1 81=2 E1=5 (215)
- 2 8==2 length = 4

Diviz 4

How many suborrays of following array start from Index 0

arr: 4 2 10 3 12 -2 15

b 1 2 3 4 5 b

Valid subarrays

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)

Aus 5

How many subarrays of following array start from Endex 1

0 1 2 3 4 5 6

Possible subarrays:

Formula to count # subarrays

Array of 8t2e n Total

lef subarray starts at oth index = nlef subarray starts at 1st lindex = n-1lef subarray starts at 2^{nd} lindex = n-2if subarray starts at (n-1) lindex = 1 $1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}$

10:09 - 10:16

Question

Print the subarray of the array that starts from 8: and ends at E:

$$T \cdot C = O(n)$$

 $S \cdot C = O(1)$

Question

Given an array of integers, we need to print all possible subarray of the array.

example

$$arr = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$
 $(0,0) (0,1) (0,2)$
 $(1,1) (1,2) (2,2)$

possible subarray
$$\frac{n \times (n+1)}{2} = 6$$

1 loop for si, 1 loop for fi

pseudo code

autz 6

what is the length of the smallest subarrang which has both max and nuin element of array?

max = 6

an: 22645152641

m"n = 1

Question

Given an array of N integers, return the length of small est subarray which contains both maximum and minimum element of the array.

max-element: 6 mm-element: 1 enbarray length: 4

Brute Force Solution

Check all possible subarray with given constraints

Optimized Solution

Observation 1: The answer will exactly have

1 max and 1 men element

Observation 2: Min & max will be corner element en sub array

Conclusion:

keep track of last max & last men to calculate ans 8teps:

- 1 Get max & men value
- 2 keep track of last_max and last_men to calculate lenot destance

Dry Run

last_min_index = -1 last_max_Pndex = -1

max = bmen = 1

ans = INT_MAX

5 2 6 4 1 4 5 1 7 8 456

®	A Cij	lout_min_idx	last_max_idx	oms
0	2	-1	-1	Мдх
1	2	-1	-1	МАХ
2	6	-1	2	KAM
3	4	-1	2	MAX

4	5	-1	2	MAX
5	1	5	2	5-2+1 = 4
Ь	5	5	2	4
7	2	5	2	4
8	6	5	8	4
9	4	5	8	4
10	1	10	8	10-8+1 = 3

psendo code

ent men max subarray (arr) è

ent n= arr. length:

// find min & max ele.

ent min = min (arr);

ent max = max (arr);

// entralize last min & last max elx

ent last min = -1, last max = -1;

for ce= 0; e < n; e++) à

ent last min = i

last max = -1;

ef (last-max (=-1) €

ans = min (ans, l- (ast_max +1);

Pf (arr Ci) = = max) &

| last = max = i;

| lf (last = min | = -1) &

| ans = min (ans, l- last = min +1);

| 3

| return ans;

Dissuss

Slidting Window Contribution Technique