Guanzhong Wu

191 Woodruff Ave. | Columbus, OH 43210 | wu.2314@osu.edu | (614) 264 8595

LinkedIn: www.linkedin.com/in/guanzhong-wu-93a88988

Professional Summary

- A problem solver, team player, initiative taker and supportive leader
- 6+ years of research experience, hands-on skills on material characterization, nano-scale device fabrication, and high sensitivity measurement
- Exceptional data processing, analytical modelling and numerical simulation capability

Education

The Ohio State University Columbus, Ohio

Ph. D. in Physics Expected December 2021

Beihang University

B. S. in Physics, Mathematics Minor

Beijing, China

June 2014

<u>Skills</u>

Measurement:

- Radio frequency (RF) measurement
- Scanning probe force microscope
- Electrical transport measurement
- Low temperature measurement

Fabrication and material growth

- E-beam lithography, photolithography
- Metal e-beam evaporation and sputtering
- Molecular beam epitaxy (MBE) growth
- Plasma enhanced chemical vapor deposition (CVD)

Programming:

- Python (numpy, scipy, pandas, qiskit, pycuda, pymeasure, pyvisa, pyqt, etc.)
- Matlab, mathematica, C#, labview, etc.

Graduate Research Experience

Prof. P. Chris Hammel's group

Dec. 2017 - Present

- Investigating magnetization dynamics using ferromagnetic resonance (FMR) measurement and high sensitivity scanned probe FMR force microscope
- Simulating large scale magnetic system dynamics with GPU-accelerated finite-difference discretization method (MuMax3 package)
- Training junior team members on experimental techniques and instrument operations in the lab
- Tutoring numerical simulation for Research Experiences for Undergraduates (REU) program

Prof. Roland Kawakami's group

Aug. 2016 – Dec. 2017

- Operated and maintained ultra-high vacuum (UHV) system
- Fabricated two-dimensional material device for optical and transport measurement

Work Experience

Guangzhou Mochu & Prof. Jianhao Chen's group, Peking University

June 2014 – Dec 2015

- Vertically standing graphite (VSG) for supercapacitor application
 - o Achieved plasma enhanced CVD growth of VSG and developed supercapacitor packing procedure
 - o Characterized the performance of the VSG supercapacitor final product

Publication List

- "Nanoscale imaging of Gilbert damping using signal amplitude mapping." APL 118.4 (2021): 042403.
- "Nonlocal Uniform-Mode Ferromagnetic Resonance Spin Pumping." Nano Letters 20.10 (2020): 7257-7262.
- "Local measurement of interfacial interactions using ferromagnetic resonance force microscopy." *PRB* 101.18 (2020): 184409.
- "Long lifetime of thermally excited magnons in bulk yttrium iron garnet." PRB 100.13 (2019): 134402.
- "Spin inversion in graphene spin valves by gate-tunable magnetic proximity effect at one-dimensional contacts." *Nature communications* 9.1 (2018): 1-6.
- "Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves." *Nano letters* 17.6 (2017): 3877-3883.