MILITARY DATA: CLASSIFICATION

!pip install pyclustertend
!pip install termcolor

Library req.

```
!pip install colorama
!pip install pyforest
!pip install ipython
    Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
     Requirement already satisfied: pyclustertend in /usr/local/lib/python3.7/dist-packages (1.4.9)
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
     Requirement already satisfied: termcolor in /usr/local/lib/python3.7/dist-packages (1.1.0)
     Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
     Requirement already satisfied: colorama in /usr/local/lib/python3.7/dist-packages (0.4.5)
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
     Requirement already satisfied: pyforest in /usr/local/lib/python3.7/dist-packages (1.1.0)
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
     Requirement already satisfied: ipython in /usr/local/lib/python3.7/dist-packages (5.5.0)
     Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython) (4.4.2)
     Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython) (0.7.5)
     Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/dist-packages (from ipython) (57.4.0)
     Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (from ipython) (4.8.0)
     Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython) (5.1.1)
     Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython) (2.6.1)
     Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython) (0.8.1)
     Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython) (1.0.18)
```

Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython) (

Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect->ipython) (0.7.0)

```
import numpy as np
import pandas as pd
import seaborn as sns
import plotly.express as px
import matplotlib.pyplot as plt
import scipy.stats as stats
%matplotlib inline
import statsmodels.api as sm
import statsmodels.formula.api as smf
from sklearn.compose import make column transformer
from sklearn.cluster import KMeans
from pyclustertend import hopkins
from sklearn.metrics import silhouette score
from yellowbrick.cluster import SilhouetteVisualizer
from scipy.cluster.hierarchy import dendrogram, linkage
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import scale
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import PowerTransformer
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import RobustScaler
import cufflinks as cf
import plotly.offline
cf.go offline()
cf.set config file(offline=False, world readable=True)
import warnings
warnings.filterwarnings('ignore')
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.warn("this will not show")
```

```
plt.rcParams["figure.figsize"] = (10, 6)
pd.set option('max colwidth',200)
pd.set option('display.max rows', 1000)
pd.set option('display.max columns', 200)
pd.set option('display.float format', lambda x: '%.3f' % x)
from termcolor import colored
import missingno as msno
import colorama
from colorama import Fore, Style # maakes strings colored
from termcolor import colored
def missing(df):
    missing number = df.isnull().sum().sort values(ascending=False)
    missing percent = (df.isnull().sum()/df.isnull().count()).sort values(ascending=False)
    missing values = pd.concat([missing number, missing percent], axis=1, keys=['Missing Number', 'Missing Percent'])
    return missing values
def missing values(df):
    return missing(df)[missing(df)['Missing Number']>0]
def first looking(df):
    print(colored("Shape:", attrs=['bold']), df.shape,'\n',
          f"There is ", df.shape[0], " observation and ", df.shape[1], " columns in the dataset.", '\n',
          colored('-'*79, 'red', attrs=['bold']),
          colored("\nInfo:\n", attrs=['bold']), sep='')
    print(df.info(), '\n',
          colored('-'*79, 'red', attrs=['bold']), sep='')
    print(colored("Number of Uniques:\n", attrs=['bold']), df.nunique(),'\n',
          colored('-'*79, 'red', attrs=['bold']), sep='')
    print(colored("Missing Values:\n", attrs=['bold']), missing values(df),'\n',
          colored('-'*79, 'red', attrs=['bold']), sep='')
```

```
print(colored("All Columns:", attrs=['bold']), list(df.columns),'\n',
          colored('-'*79, 'red', attrs=['bold']), sep='')
    df.columns= df.columns.str.lower().str.replace('&', ' ').str.replace(' ', ' ')
    print(colored("Columns after rename:", attrs=['bold']), list(df.columns),'\n',
              colored('-'*79, 'red', attrs=['bold']), sep='')
def duplicate values(df):
    duplicate values = df.duplicated(subset=None, keep='first').sum()
    if duplicate values > 0:
        df.drop duplicates(keep='first', inplace=True)
        print(duplicate values, colored("duplicates were dropped", attrs=['bold']),'\n',
              colored('-'*79, 'red', attrs=['bold']), sep='')
    else:
        print(colored("No duplicates", attrs=['bold']),'\n',
              colored('-'*79, 'red', attrs=['bold']), sep='')
def drop columns(df, drop columns):
    if drop columns !=[]:
        df.drop(drop columns, axis=1, inplace=True)
        print(drop columns, 'were dropped')
    else:
        print(colored('We will now check the missing values and if necessary drop some columns!!!', attrs=['bold']),'\n',
              colored('-'*79, 'red', attrs=['bold']), sep='')
def drop null(df, limit):
    print('Shape:', df.shape)
    for i in df.isnull().sum().index:
        if (df.isnull().sum()[i]/df.shape[0]*100)>limit:
            print(df.isnull().sum()[i], 'percent of', i ,'null and were dropped')
            df.drop(i, axis=1, inplace=True)
            print('new shape:', df.shape)
        else:
            print(df.isnull().sum()[i], '%, percentage of missing values of', i ,'less than limit', limit, '%, so we will keep it.')
    print('New shape after missing value control:', df.shape)
```

```
def missing (df):
    missing_number = df.isnull().sum().sort_values(ascending=False)
    missing_percent = (df.isnull().sum()/df.isnull().count()).sort_values(ascending=False)
    missing_values = pd.concat([missing_number, missing_percent], axis=1, keys=['Missing_Number', 'Missing_Percent'])
    return missing_values

def first_look(col):
    print("column name : ", col)
    print("-------")
    print("per_of_nulls : ", "%", round(df[col].isnull().sum()/df.shape[0]*100, 2))
    print("num_of_nulls : ", df[col].isnull().sum())
    print("num_of_uniques : ", df[col].nunique())
    print(df[col].value_counts(dropna = False))
```

Load Dataset

	Military Strength	Military Strength Power Index	Aircraft Strength	Aircraft Strength value	Fighter/Interceptor Strength	Fighter/Interceptor Strength value	Attack Aircraft Strength	A Air Str
0	Afghanistan	1.344	Afghanistan	260	Afghanistan	0	Afghanistan	
1	Albania	2.314	Albania	19	Albania	0	Albania	
2	Algeria	0.466	Algeria	551	Algeria	103	Algeria	1
3	Angola	0.838	Angola	295	Angola	72	Angola	
4	Argentina	0.652	Argentina	227	Argentina	24	Argentina	

Dataset Details

df.columns

```
Index(['military strength', 'military strength power index',
       'aircraft strength', 'aircraft strength value',
       'fighter/interceptor_strength', 'fighter/interceptor_strength_value',
       'attack aircraft strength', 'attack aircraft strength value',
       'transport aircraft fleet strength',
       'transport aircraft fleet strength value', 'trainer aircraft fleet',
       'trainer aircraft fleet value', 'helicopter fleet strength',
       'helicopter fleet strength value', 'attack helicopter fleet strength',
       'attack helicopter fleet strength value', 'tank strength',
       'tank strength value', 'afv/apc strength', 'afv/apc strength value',
       'self-propelled artillery strength',
       'self-propelled artillery strength value', 'towed artillery strength',
       'towed_artillery_strength_value', 'rocket_projector_strength',
       'rocket_projector_strength_value', 'navy_fleet_strengths',
       'navy fleet_strengths_value', 'aircraft_carrier_fleet_strength',
       'aircraft carrier fleet strength value', 'submarine fleet strength',
       'submarine fleet_strength_value', 'destroyer_fleet_strength',
```

```
'destroyer_fleet_strength_value', 'frigate_fleet_strength',
'frigate_fleet_strength_value', 'defense_spending_budget',
'defense_spending_budget_value', 'external_debt', 'external_debt_value',
'airport_totals', 'airport_totals_value', 'oil_production',
'oil_production_value', 'oil_consumption', 'oil_consumption_value',
'proven_oil_reserves', 'proven_oil_reserves_value',
'available_manpower', 'available_manpower_value', 'total_population',
'total_population_value', 'total_square_land_area',
'total_square_land_area_value', 'total_coastline_coverage',
'total_coastline_coverage_value', 'total_waterway_coverage',
'total_waterway_coverage_value', 'total_border_coverage',
'total_border_coverage_value'],
dtype='object')
```

DATASET SUMMARY

df.describe().T

	count	mean	std	min	25%	50%	75%	max
military_strength_power_index	138.000	1.461	1.324	0.061	0.575	1.034	2.022	10.168
attack_aircraft_strength_value	138.000	25.761	94.528	0.000	0.000	0.000	15.750	742.000
transport_aircraft_fleet_strength_value	138.000	30.232	92.330	0.000	3.000	9.000	26.000	945.000
attack_helicopter_fleet_strength_value	138.000	25.623	97.326	0.000	0.000	2.000	17.750	967.000
navy_fleet_strengths_value	124.000	84.984	146.114	0.000	10.000	38.000	77.750	984.000
aircraft_carrier_fleet_strength_value	115.000	0.383	1.972	0.000	0.000	0.000	0.000	20.000
submarine_fleet_strength_value	115.000	4.800	13.707	0.000	0.000	0.000	4.000	83.000
destroyer_fleet_strength_value	115.000	2.052	10.001	0.000	0.000	0.000	0.000	91.000
frigate_fleet_strength_value	115.000	3.522	6.481	0.000	0.000	0.000	5.500	52.000

Handling Duplicate value

```
df.duplicated().value_counts()
```

False 139 True 26 dtype: int64

duplicate

df.head(1)

	military_strength	military_strength_power_index	aircraft_strength	aircraft_strength_value	fig
139	NaN	NaN	NaN	NaN	
140	NaN	NaN	NaN	NaN	
141	NaN	NaN	NaN	NaN	
142	NaN	NaN	NaN	NaN	
143	NaN	NaN	NaN	NaN	
144	NaN	NaN	NaN	NaN	
145	NaN	NaN	NaN	NaN	
146	NaN	NaN	NaN	NaN	
147	NaN	NaN	NaN	NaN	
148	NaN	NaN	NaN	NaN	
149	NaN	NaN	NaN	NaN	
150	NaN	NaN	NaN	NaN	
151	MelA	MeM	MelA	MaN	
Remo	ve Multiple Countar	y Name			
153	NaN	NaN	NaN	NaN	

country military_strength_power_index aircraft_strength aircraft_strength_value fighter/inter

df.head()

	country	military_strength_power_index	aircraft_strength	aircraft_strength_value	fighter/inter
0	Afghanistan	1.344	Afghanistan	260	
1	Albania	2.314	Albania	19	
2	Algeria	0.466	Algeria	551	
3	Angola	0.838	Angola	295	
4	Argentina	0.652	Argentina	227	

Handling Missing Data

missing(df)

	Missing_Number	Missing_Percent
total_coastline_coverage_value	29	0.210
total_coastline_coverage	29	0.210
submarine_fleet_strength	23	0.167
frigate_fleet_strength_value	23	0.167
frigate_fleet_strength	23	0.167
destroyer_fleet_strength_value	23	0.167
destroyer_fleet_strength	23	0.167
submarine_fleet_strength_value	23	0.167
aircraft_carrier_fleet_strength_value	23	0.167
aircraft_carrier_fleet_strength	23	0.167
navy_fleet_strengths	14	0.101
navy_fleet_strengths_value	14	0.101
total_border_coverage	9	0.065
total_border_coverage_value	9	0.065
attack_helicopter_fleet_strength	0	0.000
available_manpower	0	0.000
external_debt_value	0	0.000
airport_totals	0	0.000
airport_totals_value	0	0.000
oil_production	0	0.000
oil_production_value	0	0.000
oil_consumption	0	0.000

0.000

0.000

 \cap

<Figure size 288x432 with 0 Axes>

```
country
military_strength_power_index
aircraft_strength
aircraft_strength value
fighter/interceptor_strength
fighter/interceptor_strength
fighter/interceptor_strength
attack aircraft strength
attack aircraft strength
attack aircraft strength value
transport_aircraft_fleet_strength
transport_aircraft_fleet_strength
transport_aircraft_fleet value
trainer_aircraft_fleet
trainer_aircraft_fle
```

```
plt.figure(figsize=(4,6))
sns.displot(
    data=value_df.isnull().melt(value_name="missing"),
    y="variable",
    hue="missing",
    multiple="fill",
    height=9.25
)
plt.axvline(0.3,color="r");
```

<Figure size 288x432 with 0 Axes>

	Military Strength Power Index	aircraft_strength_value	fighter/interceptor_strength_value	attack_aircraft_str
country				
Afghanistan	1.344	260.000	0.000	
Albania	2.314	19.000	0.000	
Algeria	0.466	551.000	103.000	
Angola	0.838	295.000	72.000	
Argentina	0.652	227.000	24.000	

All Missing value corrected

missing(value_df)

	Missing_Number	Missing_Percent
Military Strength Power Index	0	0.000
aircraft_strength_value	0	0.000
total_waterway_coverage_value	0	0.000
total_coastline_coverage_value	0	0.000
total_square_land_area_value	0	0.000
total_population_value	0	0.000
available_manpower_value	0	0.000
proven_oil_reserves_value	0	0.000
oil_consumption_value	0	0.000
oil_production_value	0	0.000
airport_totals_value	0	0.000
external_debt_value	0	0.000
defense_spending_budget_value	0	0.000
frigate_fleet_strength_value	0	0.000
destroyer_fleet_strength_value	0	0.000
submarine_fleet_strength_value	0	0.000
aircraft_carrier_fleet_strength_value	0	0.000
navy_fleet_strengths_value	0	0.000
rocket_projector_strength_value	0	0.000
towed_artillery_strength_value	0	0.000
self-propelled_artillery_strength_value	0	0.000
afv/apc_strength_value	0	0.000

tank_strength_value

0

0.000

```
for col in value_df.columns:
    plt.figure(figsize = (22,6))
    sns.barplot(y = value_df[col], x = value_df.index, data = value_df)
    plt.xticks(rotation = 45);
```


value_df.describe().T.style.background_gradient(subset=['mean','std','50%','count'], cmap='RdPu')

	count	mean	std	
Military Strength Power Index	138.000000	1.460716	1.324018	0.060
aircraft_strength_value	138.000000	388.471014	1231.981859	0.000
fighter/interceptor_strength_value	138.000000	81.565217	230.324777	0.000
attack_aircraft_strength_value	138.000000	25.760870	94.528222	0.000
transport_aircraft_fleet_strength_value	138.000000	30.231884	92.330436	0.000
trainer_aircraft_fleet_value	138.000000	82.833333	240.803721	0.000
helicopter_fleet_strength_value	138.000000	154.065217	520.183631	0.000
attack_helicopter_fleet_strength_value	138.000000	25.623188	97.326091	0.000
tank_strength_value	138.000000	646.565217	1515.463683	0.000
afv/apc_strength_value	138.000000	2485.695652	5410.546392	0.000
self-propelled_artillery_strength_value	138.000000	212.159420	688.028987	0.000
towed_artillery_strength_value	138.000000	393.978261	805.781703	0.000
rocket_projector_strength_value	138.000000	156.934783	484.380984	0.000
navy_fleet_strengths_value	138.000000	74.362319	141.038222	0.000
aircraft_carrier_fleet_strength_value	138.000000	0.318841	1.804235	0.000
submarine_fleet_strength_value	138.000000	3.978261	12.603132	0.000
destroyer_fleet_strength_value	138.000000	1.710145	9.154954	0.000
frigate_fleet_strength_value	138.000000	2.891304	5.969123	0.000
defense_spending_budget_value	138.000000	13993631641.210144	67311892724.125046	13000000.000
external debt value	138.000000	519498263043.478271	1847251527661.875244	539400000.000
Drenrocessing				

Data Preprocessing

oil_production_value 138.000000 585552.355072 1667138.897000 0.000

value_df.head()

	Military Strength Power Index	aircraft_strength_value	fighter/interceptor_strength_value	attack_aircraft_str
country				
Afghanistan	1.344	260.000	0.000	
Albania	2.314	19.000	0.000	
Algeria	0.466	551.000	103.000	
Angola	0.838	295.000	72.000	
Argentina	0.652	227.000	24.000	

		country	Military Strength Power Index	aircraft_strength_value	fighter/interceptor_strength_value	attack_aircraft_s
	0	Afghanistan	1.344	260.000	0.000	
Scali	ing l	Model				
	2	Aigeria	U.400	000.1°CC	TU3.UUU	
X = \	/alu	e_df.drop(["country"]	, axis=1)		
	4	۸ د ۱	0.050	007 000	04.000	
X_sca	led	scale = pd.DataFi .head()	rame(scale	r(X))		

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
0	-0.088	-0.105	-0.355	-0.008	-0.003	-0.345	0.064	-0.264	-0.428	-0.264	-0.309	-0.272	-0.222	-0.529	-
1	0.647	-0.301	-0.355	-0.274	-0.329	-0.345	-0.261	-0.264	-0.428	-0.374	-0.309	-0.491	-0.325	-0.259	-
2	-0.754	0.132	0.093	-0.040	0.313	0.017	0.199	0.200	0.155	0.904	0.157	-0.192	0.330	0.901	-
3	-0.472	-0.076	-0.042	-0.082	-0.003	-0.149	-0.054	-0.110	-0.177	-0.351	-0.269	-0.046	-0.087	-0.124	-
4	-0.613	-0.132	-0.251	-0.199	-0.231	-0.078	-0.104	-0.264	-0.183	-0.324	-0.188	-0.276	-0.271	-0.180	_

X_scaled.shape

(138, 26)

6000

MODELLING WITH K-MEAN

Silhouette Plot of KMeans Clustering for 138 Samples in 8 Centers 7 Average Silhouette Score

With optimal K value

K means model2 = KMeans(n clusters = 3, random state = 101)

K means model2.fit predict(X scaled)

```
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0], dtype=int32)
-0.4
  -0.3 -0.2 -0.1
          0.1
            0.2
              0.3
                0.4
                 0.5
                   0.6
                     0.7
                       0.8
```

K_means_model2.labels_

K_means_model2.inertia_

1306.8560688687046

value_df["K-Means_cluster"] = K_means_model2.labels_

value_df.head()

	country	Military Strength Power Index	aircraft_strength_value	fighter/interceptor_strength_value	attack_aircraft_s
0	Afghanistan	1.344	260.000	0.000	
1	Albania	2.314	19.000	0.000	
2	Algeria	0.466	551.000	103.000	
3	Angola	0.838	295.000	72.000	
4	Argentina	0.652	227.000	24.000	

₩ |

K_means_model2 = KMeans(n_clusters=4, random_state=101)
visualizer = SilhouetteVisualizer(K_means_model2)

visualizer.fit(X_scaled) # Fit the data to the visualizer
visualizer.poof();

value_df["K-Means_cluster"].value_counts()

0 133

1 1

Name: K-Means_cluster, dtype: int64

Country Ranking

silhouette coefficient values

value_df[value_df["K-Means_cluster"] == 0][["country", "Military Strength Power Index"]].sort_values(by="Military Strength Power Index"]

	country	Military Strength Power Index
57	Japan	0.150
110	South Korea	0.151
40	France	0.170
129	United Kingdom	0.172
35	Egypt	0.187
17	Brazil	0.199
124	Turkey	0.210
55	Italy	0.211
43	Germany	0.219
51	Iran	0.219
91	Pakistan	0.236
50	Indonesia	0.254
102	Saudi Arabia	0.303
54	Israel	0.311
6	Australia	0.323
112	Spain	0.339
96	Poland	0.340
134	Vietnam	0.356
122	Thailand	0.357
22	Canada	0.371
119	Taiwan	0.401
127	Ukraine	0.446

value_df[value_df["K-Means_cluster"] == 1][["country", "Military Strength Power Index"]].sort_values(by="Military Strength Power Index"]

country Military Strength Power Index

400	Lieite d Otete e	0.001
130	United States	0.061

116 Sweden 0.530

value_df[value_df["K-Means_cluster"] == 2][["country", "Military Strength Power Index"]].sort_values(by="Military Strength Power Index"]

ilitary Strength Power Index
0.068
0.069
0.095
0.372

value_df["K-Means_cluster"].value_counts()

sns.countplot(x=value_df["K-Means_cluster"], data=value_df)

for index, value in enumerate(value_df["K-Means_cluster"].value_counts().sort_index()):
 plt.text(index, value, f"{value}", ha="center", va="bottom", fontsize = 13)

