METODY NUMERYCZNE – LABORATORIUM

Zadanie 4 – Całkowanie numeryczne.

Opis rozwiązania

Celem zadania była implementacja metody złożonej kwadratury Newtona-Cotesa opartej na 3 węzłach oraz kwadratury Gaussa – Hermite'a na przedziale (-∞,∞) aby obliczyć przybliżoną wartość całki oznaczonej na tym przedziale.

Liczenie całek na przedziale (-∞,∞) kwadraturą Newtona-Cotesa opisuje wzór:

$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3} (y_0 + 4y_1 + y_2)$$

gdzie x_{1 to}∞, to x₂ to -∞. Liczone są również granice, które pomagają zawęzić przedział poszukiwań.

Liczenie całek na przedziale $(-\infty,\infty)$ kwadraturą Gaussa-Hermite'a opisuje wzór:

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx = \sum_{i=0}^{2} H_i f(x_i)$$

gdzie x_i węzły kwadratury Gaussa-Hermite'a (miejsca zerowe odpowiednich wielomianów Hermite'a), a H_i to wagi kwadratury Gaussa-Hermite'a (wartości pobrane z pliku).

Wyniki

Tabela 1, przedstawia wyniki mierzone przy użyciu kwadratury metodą Newtona-Cotesa oraz Gaussa-Hermitta, przy dokładności równej = 0.01.

dokładnosci rownej = 0,01.			
Liczba węzłów(dotyczy metody Gaussa-Hermitta)	Wynik całkowania metodą Gaussa-Hermitta	Wynik całkowania metodą Newtona-Cotesa	Wynik teoretyczny
	$f(x) = e^{(-x)}$	^2) * (2x - 1)	
2	-1,772453	-1,772453	-1,772453
3	-1,772453		
4	-1,772453		
5	-1,772453		
	$f(x) = e^{(-x^2)}$	$(\cos(2x^2 + 1))$	
2	0,252256	0,020412	0,020412
3	0,193036		
4	-0,278958		
5	0,237361		
	$f(x) = e^{(-x^2)}$) * (x + 2 - 3)	
2	-1,772453	-1,770802	-1,770720
3	-1,772453		
4	-1,771648		
5	-1.769277		
	$f(x) = e^{(-x^2)}$	* $(\cos(x) - x^3)$	
2	1,382033	1,380780	1,380388
3	1,380329		
4	1,380390		
5	1.380388		

Wnioski

- W zależności od wybranej funkcji jedna metoda może okazać się lepsza od drugiej.
- Metoda Gaussa-Hermite'a daje bardzo dobre rezultaty dla wielomianów, jeśli użyjemy odpowiedniej liczby węzłów.
- Wyniki otrzymane całkami są na ogół zbliżone do teoretycznych wartości.