Daniel J. Perry

Scientific Computing and Imaging Institute
University of Utah

September 22, 2016

Joint work with Ross T. Whitaker

Problem statement

Computational expensive analysis of large datasets

- Large *n* which limits available computation per item
- Desired analysis is computationally expensive for n
- A subset of size $m \ll n$ is representative of the entire dataset

Example: kernel learning on large datasets

- Naive kernel based learning requires kernel (Gram) matrix A^TA
 - $\mathcal{O}(n^2)$ + "analysis cost"
- Nyström approximation to the kernel matrix A^TA
 - Select a subset \mathbf{C} of size $m \ll n$
 - $\bullet \ \mathbf{A}^\mathsf{T} \mathbf{A}_{i,j} \approx \mathbf{A}_i^\mathsf{T} \mathbf{C} (\mathbf{C}^\mathsf{T} \mathbf{C})^{-1} \mathbf{C}^\mathsf{T} \mathbf{A}_j$
 - $\mathcal{O}(m^2)$ + "analysis cost"
- Use on resource limited machines requires careful subset selection

Example: multifidelity simulation

- Uncertainty analysis
 - $\bullet \ \ \mathsf{Random} \ \ \mathsf{parameter}(\mathsf{s}) \ \mathsf{of} \ \mathsf{interest}, \ \eta \in \mathcal{D}$
 - n samples of $\eta \in \mathcal{D}$ to quantify uncertainty
- Multifidelity uncertainty analysis
 - High fidelity model: only $m \ll n$ simulations
 - Low fidelity model: run all n simulations
 - Representative subset of size m from n for high fidelity simulation
- Careful selection of subset important!

Problem statement

Definition

Column Subset Selection Problem. Let $\mathbf{A} \in \mathbb{R}^{d \times n}$. Find m < n columns for \mathbf{A} - denoted as $\mathbf{C} \in \mathbb{R}^{d \times m}$ that minimize

$$\|\mathbf{A} - \mathbf{C}\mathbf{C}^{\dagger}\mathbf{A}\|_{\eta},\tag{1}$$

for $\eta \in \{F, 2\}$, and where \mathbf{C}^{\dagger} denotes the Moore-Penrose pseudo-inverse.

Problem statement: visually

Related work

- Leverage sampling [Mahoney, 2011, Mahoney, 2010, Papailiopoulos et al., 2014, Boutsidis et al., 2014]
 - [Papailiopoulos et al., 2014] obtained a very similar bound for deterministic leverage sampling
- Greedy subset selection [Altschuler et al., 2016]
 - obtained a bound in a different form (relative to the optimal subset) for deterministic greedy subset selection
- CUR [Drineas et al., 2008]
 - [Drineas et al., 2008] uses leverage sampling
- Nyström approximation [Drineas and Mahoney, 2005, Gittens and Mahoney, 2013, Gittens, 2011]
 - [Drineas and Mahoney, 2005] uses uniform sampling

ullet data matrix $\mathbf{A} \in \mathbb{R}^{d \times n}$

• singular value decomposition

• best rank-k approximation

ullet norm of each row V_k

• Deterministic samples largest *l_i* values first

ullet Probabilistic version samples with probability I_i

Leverage scores

Definition

Let $\mathbf{V_k} \in \mathbb{R}^{n \times k}$ contain the top k right singular vectors of a $d \times n$ matrix A with rank $\rho = \operatorname{rank}(\mathbf{A}) \geq k$. Then the (rank-k) leverage score of the i-th column of \mathbf{A} is defined as

$$I_i^{(k)} = \|[\mathbf{V_k}]_{i,:}\|_2^2, \ i = 1, 2, \dots, n.$$
 (2)

Here, $[V_k]_{i,:}$ denotes the i-th row of V_k .

Leverage score bound

$$\|\mathbf{A} - \mathbf{C}\mathbf{C}^{\dagger}\mathbf{A}\|_{\zeta}^{2} < (1 + 2\epsilon) \cdot \|\mathbf{A} - \mathbf{A}_{\mathbf{k}}\|_{\zeta}^{2}. \tag{3}$$

for $\zeta \in \{2, F\}$, $\epsilon \in (0, .5)$, where $\mathbf{A_k}$ is the best rank-k approximation to \mathbf{A} [Papailiopoulos et al., 2014].

CSSP Objective: data scale also important

$$\begin{split} \|\mathbf{A} - \mathbf{C}\mathbf{C}^{\dagger}\mathbf{A}\|_{\eta} \\ \|\mathbf{A} - \mathbf{C}(\mathbf{C}^{\mathsf{T}}(\mathbf{C}\mathbf{C}^{\mathsf{T}})^{-1})\mathbf{A}\|_{\eta} \\ \|\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}} - \mathbf{W}_{\mathsf{d}}\mathbf{W}_{\mathsf{d}}^{\mathsf{T}}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}\|_{\eta} \\ \|(\mathbf{U} - \mathbf{W}_{\mathsf{d}}\mathbf{W}_{\mathsf{d}}^{\mathsf{T}}\mathbf{U})\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}\|_{\eta} \end{split}$$

where $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^\mathsf{T}$ and $\mathbf{C} = \mathbf{W} \boldsymbol{\Psi} \mathbf{H}^\mathsf{T}$ are the respective SVDs.

- Indictates the "unwhitened" data points ΣV^T , not V^T
- This informs the core idea of an augmented leverage score

Proposed: augmented leverage score

Definition

Let $\mathbf{Y_k} = \mathbf{V_k} \mathbf{\Sigma_k} \in \mathbb{R}^{n \times k}$ contain the top k singular values multiplied with the right singular vectors of a $d \times n$ matrix \mathbf{A} with rank $\rho = \operatorname{rank}(\mathbf{A}) \geq k$. Then the (rank-k) augmented leverage score of the i-th column of \mathbf{A} is defined as

$$\hat{l}_{i}^{(k)} = \|[\mathbf{Y}_{\mathbf{k}}]_{i,:}\|_{2}^{2}, i = 1, 2, \dots, n.$$

• data matrix $\mathbf{A} \in \mathbb{R}^{d \times n}$

ullet singular value decomposition, combine $oldsymbol{V}^Toldsymbol{\Sigma} = oldsymbol{Y}^T$

• best rank-k approximation

ullet norm of each row $oldsymbol{Y}_k$

• Augmented samples largest \hat{l}_i values first

ullet Probabilistic version samples with probability \hat{l}_i

Leverage score: visual example

• samples from Gaussian with covariance $\begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix}$

Leverage score: visual example

- $\bullet \ V_k^T = \pmb{\Sigma}_k^{-1} U_k^T \pmb{A}$
- Norm sampling based on a whitened rank-k PCA projection

Augmented leverage score: visual example

- $\bullet \; \Sigma_k V_k^T = U_k^T A$
- Norm sampling based on an (unwhitened) rank-k PCA projection

Augmented Leverage Score Sampling Algorithm

Input $\mathbf{A} \in \mathbb{R}^{d \times n}, k, \theta$ Compute $\mathbf{Y_k} = \mathbf{V_k} \hat{\mathbf{\Sigma}_k} \in \mathbb{R}^{n \times k}$ for $i = 1, 2, \dots, n$ $\hat{l}_i^{(k)} = \|[\mathbf{Y_k}]_{i,:}\|_2^2$ end for Sort $\hat{l}_i^{(k)}$ in place Find index $m \in \{1, \dots, n\}$ such that:

$$m = \arg\min_{m} \left(\sum_{i=1}^{m} \hat{l}_{i}^{(k)} > \theta \right).$$

If m < k, set m = k.

Output $S \in \mathbb{R}^{n \times m}$, s.t. AS has the top m columns of A.

Bounds of augmented leverage score sampling

Theorem

Let $\theta = k \cdot \frac{\sigma_1^2}{\sigma_k^2} - \epsilon$ for some $\epsilon \in (0, 0.5)$, and let $\mathbf{S} \in \mathbb{R}^{n \times m}$ be the sampling matrix from Augmented Leverage Score Sampling Algorithm, then, for $\mathbf{C} = \mathbf{AS}$ and $\zeta = \{2, F\}$

$$\|\mathbf{A} - \mathbf{C}\mathbf{C}^{\dagger}\mathbf{A}\|_{\zeta}^{2} < \frac{\sigma_{1}^{2}}{\sigma_{k}^{2}}(1 + 2\epsilon) \cdot \|\mathbf{A} - \mathbf{A}_{k}\|_{\zeta}^{2}. \tag{4}$$

Experiments: synthetic data attributes

name	n	d	k
Synthetic linear decay	1000	10	9
Synthetic power law decay	1000	10	6

- *n* number of columns
- d dimension of each column
- *k* number of PCA dimensions to preserve 90% of spectral energy

Experiments: synthetic data spectra

Experiments: synthetic data deterministic results

Experiments: synthetic data probabilistic results

Experiments: real data attributes

name	n	d	k
Diabetes	442	9	6
Adult	16281	123	73
Census	2273	119	8

- *n* number of columns
- d dimension of each column
- ullet k number of PCA dimensions to preserve 90% of spectral energy

Experiments: real data spectra

Experiments: real data results

Experiments: real data results

Conclusion

- Proposed the augmented leverage score motivated by the CSSP objective
- Provided an initial error bound for deterministic augmented leverage score sampling
- Shown empricial results comparing the method on a variety of data sets
 - advantages for data sets with sharp spectral decay
 - shown advantages in both deterministic and probabilistic settings

Acknowledgments

• Thanks to ExxonMobil for funding

Thank you!

 ${\sf Questions?}$

Bibliography

Altschuler, J., Bhaskara, A., Mirrokni, V., Rostamizadeh, A., Zadimoghaddam, M., et al. (2016).

Greedy column subset selection: New bounds and distributed algorithms.

arXiv preprint arXiv:1605.08795.

- Boutsidis, C., Drineas, P., and Magdon-Ismail, M. (2014). Near-optimal column-based matrix reconstruction. SIAM Journal on Computing, 10598(i):1–27.
- Drineas, P., Mahoney, M., and Muthukrishnan, S. (2008). relative-error cur matrix decompositions. SIAM Journal of Matrix Analysis and Applications2, 30(2):844–881.
- SIAM Journal of Matrix Analysis and Applications2, 30(2):844–881

 Drineas, P. and Mahoney, M. W. (2005).
 - On the Nystrom method for Approximating a gram matrix for improved kernel-based learning (Extended abstract).

 Learning Theory, Proceedings, 3559:323–337.