Edge Detection

Edges are significant local changes of intensity in an image

```
†
†
†
†
†
†
†
†
```

- Edge direction:
 - ▶ Perpendicular to the direction of maximum intensity change (i.e., edge normal)

- Edge direction:
 - Perpendicular to the direction of maximum intensity change (i.e., edge normal)
- Edge strength:
 - ▶ Related to the local image contrast along the edge normal

- Edge direction:
 - Perpendicular to the direction of maximum intensity change (i.e., edge normal)
- Edge strength:
 - ▶ Related to the local image contrast along the edge normal
- Edge position:
 - The image position at which an edge is located

Detecting the Edge

Detecting the Edge

Gradient Approximation

 \triangleright Consider the arrangement of pixels about the pixel (i, j):

3 x 3 neighborhood:
$$a_0$$
 a_1 a_2 a_7 $[i,j]$ a_3 a_6 a_5 a_4

The partial derivatives $\frac{\partial f}{\partial f}$ can be computed by:

$$\frac{\partial f}{\partial x}$$
 $\frac{\partial f}{\partial y}$

$$M_x = (a_2 + ca_3 + a_4) - (a_0 + ca_7 + a_6)$$

 $M_y = (a_6 + ca_5 + a_4) - (a_0 + ca_1 + a_2)$

► The <u>constant c</u> implies the emphasis given to pixels closer to the center of the mask

Prewitt Operator

1

Prewitt Operator

Setting c = 1, we get the Prewitt operator:

Prewitt Operator

 \triangleright Setting c = 1, we get the Prewitt operator:

$$M_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad M_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

 M_x and M_y are approximations at (i, j)

Sobel Operator

-1

Sobel Operator

Setting c = 2, we get the Sobel operator:

Sobel Operator

 \triangleright Setting c = 2, we get the Sobel operator:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad M_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

 M_x and M_y are approximations at (i, j)

original image

vertical edges

horizontal edges

norm of the gradient

after thresholding

original image

vertical edges

horizontal edges

norm of the gradient

after thresholding

original image

vertical edges

horizontal edges

original image

vertical edges

horizontal edges

norm of the gradient

original image

norm of the gradient

vertical edges

after thresholding

horizontal edges

original image

norm of the gradient

vertical edges

after thresholding

horizontal edges

after thinning