

FCC PART 27

MEASUREMENT AND TEST REPORT

For

Shenzhen Xinguodu Technology Co., Ltd.

17B JinSong Mansion, Terra Industrial & Trade Park Chegongmiao, Futian District, Shenzhen, China, 518040

FCC ID: XDQN5-1

Product Name: Report Type: POS TERMINAL Original Report **Report Number:** RDG190313003-00D **Report Date:** 2019-04-19 Jerry Zhang Jerry Zhang **EMC Manager Reviewed By: Test Laboratory:** Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

www.baclcorp.com.cn

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	6
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
FCC §1.1310 & §2.1093- RF EXPOSURE	9
APPLICABLE STANDARD	
TEST RESULT	9
FCC §2.1047 - MODULATION CHARACTERISTIC	10
FCC § 2.1046, § 27.50- RF OUTPUT POWER	11
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST FROCEDORE TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	
FCC \$2.1049, \$27.53- OCCUPIED BANDWIDTH	20
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	20
FCC §2.1051 §27.53- SPURIOUS EMISSIONS AT ANTENNA TERMINALS	30
APPLICABLE STANDARD	30
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	30
FCC \$2.1053, \$27.53- SPURIOUS RADIATED EMISSIONS	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §27.53- BAND EDGES	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
1EST EQUIPMENT LIST AND DETAILS	41

Test Data	41
FCC §2.1055, §27.54- FREQUENCY STABILITY	58
APPLICABLE STANDARD	58
Test Procedure	58
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

	EUT Name:	POS TERMINAL
	EUT Model:	N5
O _I	peration modes:	FDD-LTE
Operat	tion Frequency:	LTE Band 4: 1710-1755 MHz(TX); 2110-2155 MHz(RX) LTE Band 13: 777-787 MHz(TX); 746-756 MHz(RX)
Maximum Output Power: (Conducted)		LTE Band 4: 18.16 dBm LTE Band13: 18.90 dBm
Me	odulation Type:	QPSK, 16QAM
Rated	Input Voltage:	DC3.7V from Battery or DC5V from adapter
	Model:	ADS-12CG-06 05010EPCU
Adapter Information	Input:	AC 100-240V, 50/60Hz, 0.3A
into mation	Output:	DC5V, 2000mA
External Dimension:		141.5mm(L)* 66.8mm(W)*9mm(H)
	Serial Number:	190125001
EUT	Received Date:	2019.01.28

Objective

This report is prepared on behalf of *Shenzhen Xinguodu Technology Co., Ltd.* in accordance with: Part 2-Subpart J, Part 27 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: XDQN5-1 FCC Part 15B JBP submissions with FCC ID: XDQN5-1 FCC Part 15C DSS submissions with FCC ID: XDQN5-1.

FCC Part 15C DXX submissions with FCC ID: XDQN5-1.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 27 – Miscellaneous wireless communications services

Applicable Standards: TIA/EIA 603-D-2010.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp.(Dongguan).

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Unwanted Emissions, radiated	30MHz ~ 1GHz:5.85 dB 1G~26.5GHz: 5.23 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1℃
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%

Report No.: RDG190313003-00D

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D 2010.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Wideband Radio Communication Tester	CMW500	147473
Un-known	ANTENNA	/	/

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC§1.1310, §2.1093	RF Exposure	Compliance
FCC§2.1046; §27.50	RF Output Power	Compliance
FCC§ 2.1047	Modulation Characteristics	Not Applicable
FCC§ 2.1049; §27.53	Occupied Bandwidth	Compliance
FCC§ 2.1051, §27.53	Spurious Emissions at Antenna Terminal	Compliance
FCC§ 2.1053 §27.53	Field Strength of Spurious Radiation	Compliance
FCC §27.53	Out of band emission, Band Edge	Compliance
FCC§ 2.1055 §27.54	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance

FCC §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093

Test Result

Compliant, please refer to the SAR report: RDG190313003-20.

Page 9 of 60

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC $\S 2.1047(d)$, Part 22H & 24E, Part 27 there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Page 10 of 60

FCC § 2.1046, § 27.50- RF OUTPUT POWER

Applicable Standard

According to §27.50

- (b)(10) Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP.
- (c) (10) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.
- (d), (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.
- (h),(2) Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

Page 11 of 60

Test Procedure

LTE (FDD):

The following tests were conducted according to the test requirements in 3GPP TS36.101

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	MPR (dB)						
	1.4 MHz							
QPSK	>5	>4	>8	> 12	> 16	> 18	≤ 1	
16 QAM	≤ 5	≤4	≤8	≤ 12	≤ 16	≤ 18	≤ 1	
16 QAM	>5	>4	>8	> 12	> 16	> 18	≤ 2	

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RS})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
		3	>5	≤ 1	
			5	>6	≤1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤1
		33,55	15	>8	≤1
			20	>10	≤ 1
	6.6.2.2.2	41	5	>6	≤ 1
NS_04		41	10, 15, 20	See Tab	le 6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤1 ≤2
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	231	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
NS_32					
Note 1: A	pplies to the lower	block of Band 23, i.e	a carrier place	d in the 2000-201	10 MHz region.

Radiated method:

ANSI/TIA-603-D section 2.2.17

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2018-12-10	2019-12-10
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
EMCO	Adjustable Dipole Antenna	3121C	9109-753	Not Required	/
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	2018-05-06	2019-05-06
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2018-09-05	2019-09-05
ETS-Lindgren	Horn Antenna	3115	000 527 35	2018-10-12	2021-10-12
TDK RF	Horn Antenna	HRN-0118	130 084	2018-10-12	2021-10-12
R&S	Spectrum Analyzer	FSP 38	100478	2018-12-10	2019-12-10
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2018-09-05	2019-09-05
Agilent	Signal Generator	E8247C	MY43321350	2018-12-10	2019-12-10
R&S	Wideband Radio Communication Tester	CMW500	147473	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.5°C	
Relative Humidity:	62 %	
ATM Pressure:	101.6 kPa	

^{*} The testing was performed by Blake Yang on 2019-04-08.

Conducted Output Power

LTE Band 4

LTE Band 4								
Channel Bandwidth	Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)			
		RB1#0	17.6	17.82	17.53			
		RB1#3	17.79	17.98	17.79			
	OBGIT	RB1#5	17.73	17.90	17.71			
	QPSK	RB3#0	17.59	17.96	17.64			
		RB3#3	17.64	17.86	17.69			
1 43 477		RB6#0	16.53	16.86	16.73			
1.4MHz		RB1#0	16.49	17.23	16.64			
		RB1#3	16.94	17.34	16.60			
	160 AM	RB1#5	16.78	17.22	16.45			
	16QAM	RB3#0	16.62	16.96	16.66			
		RB3#3	16.63	16.88	16.77			
		RB6#0	15.41	15.92	15.37			
		RB1#0	17.35	17.84	17.43			
	ODGN	RB1#8	17.49	17.90	17.59			
		RB1#14	17.46	17.95	17.63			
	QPSK	RB6#0	16.36	16.96	16.37			
		RB6#9	16.35	16.83	16.84			
3MHz		RB15#0	16.40	16.90	16.51			
SMHZ		RB1#0	16.64	17.49	16.37			
	16011	RB1#8	16.58	17.45	16.42			
		RB1#14	16.57	17.13	16.36			
	16QAM	RB6#0	15.46	16.01	15.34			
		RB6#9	15.35	16.03	15.62			
		RB15#0	15.50	15.85	15.71			
		RB1#0	17.48	17.72	17.47			
		RB1#13	17.53	17.74	17.67			
	QPSK	RB1#24	17.55	17.73	17.72			
	Ислу	RB15#0	16.34	17.01	16.54			
		RB15#10	16.47	16.85	16.77			
5MHz		RB25#0	16.40	17.02	16.67			
JIVITIZ		RB1#0	16.15	16.45	16.82			
		RB1#13	16.29	16.14	17.16			
	16QAM	RB1#24	16.17	16.17	17.31			
	IOQAM	RB15#0	15.39	15.87	15.56			
		RB15#10	15.52	15.82	15.77			
		RB25#0	15.46	15.98	15.68			

		RB1#0	17.44	17.68	17.61
		RB1#25	17.68	17.65	17.98
		RB1#49	17.51	17.68	18.14
	QPSK	RB25#0	16.29	16.92	16.49
	ŀ	RB25#25	16.47	16.82	16.55
		RB50#0	16.31	16.94	16.44
10MHz		RB1#0	16.78	16.83	16.63
		RB1#25	17.40	17.22	16.43
		RB1#49	17.44	17.28	16.83
	16QAM	RB1#49	15.37	16.07	15.72
		RB25#25	15.55	15.76	15.72
		RB50#0	15.33	15.76	15.49
		RB30#0 RB1#0	17.47	17.63	17.79
	-	RB1#38	17.31	17.88	17.79
	-		17.57	17.78	17.78
	QPSK	RB1#74			
		RB36#0	16.28 16.56	16.76 16.73	16.66 16.58
		RB36#39			
15MHz		RB75#0	16.34	16.84	16.52
	-	RB1#0	16.45	17.17	17.23
		RB1#38	16.54	17.19	17.04
	16QAM	RB1#74	16.87	16.98	17.94
	`	RB36#0	15.19	15.72	15.52
		RB36#39	15.46	15.85	15.82
		RB75#0	15.34	15.76	15.57
		RB1#0	17.38	17.55	18.08
		RB1#50	17.63	18.04	17.89
	QPSK	RB1#99	17.88	17.56	18.02
	QISH	RB50#0	16.34	16.84	16.98
		RB50#50	16.66	16.85	16.76
20MHz		RB100#0	16.60	16.90	16.73
2011112		RB1#0	17.09	16.95	17.18
		RB1#50	17.67	17.63	16.71
	16QAM	RB1#99	18.16	17.25	16.75
	IUQAWI	RB50#0	15.28	15.81	15.92
		RB50#50	15.53	15.94	15.69
		RB100#0	15.60	15.93	15.80

LTE Band 13

LIE Dailu 15							
Channel Bandwidth	Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)		
		RB1#0	18.75	18.68	18.54		
		RB1#13	18.71	18.72	18.90		
	QPSK	RB1#24	18.53	18.67	18.84		
	Qrsk	RB15#0	17.73	17.73	17.68		
		RB15#10	17.62	17.71	17.76		
5MHz		RB25#0	17.77	17.79	17.70		
SMITZ		RB1#0	18.15	18.07	16.99		
	16QAM	RB1#13	17.57	17.40	17.15		
		RB1#24	17.37	17.50	17.60		
		RB15#0	16.67	16.72	16.75		
		RB15#10	16.47	16.78	16.92		
		RB25#0	16.71	16.87	16.81		
		RB1#0	/	18.86	/		
		RB1#25	/	18.65	/		
	QPSK	RB1#49	/	18.77	/		
	Qrsk	RB25#0	/	17.66	/		
		RB25#25	/	17.60	/		
10MHz		RB50#0	/	17.70	/		
TOMITZ		RB1#0	/	18.05	/		
		RB1#25	/	17.69	/		
	160AM	RB1#49	/	17.65	/		
	16QAM	RB25#0	/	16.75	/		
		RB25#25	/	16.77	/		
		RB50#0	/	16.86	/		

PAR, Band 4

Test Modulation Channel Bandwidth		Low Channel PAR (dB)	Middle Channel PAR (dB)	High Channel PAR (dB)	Limit (dB)	
ODCK	1 RB	20 MHz	2.53	5.06	4.52	13
QPSK	100 RB	20 MHZ	6.75	6.15	6.47	13
16QAM	1 RB	20 MHz	2.92	3.14	4.17	13
IOQAM	100 RB	ZU MITIZ	7.34	6.96	7.12	13

PAR, Band 13

Test Mod	lulation	Channel Bandwidth	Low Channel PAR (dB)	Middle Channel PAR (dB)	High Channel PAR (dB)	Limit (dB)
QPSK	1 RB	10 MHz	/	2.22	/	13
Qrsk	50 RB	10 MITZ	/	6.16	/	13
160AM	1 RB	10 MHz	/	3.33	/	13
16QAM	50 RB	10 MHz	/	6.11	/	13

Note: peak-to-average ratio (PAR) <13 dB.

ERP & EIRP:

LTE Band 4

				D:	Subst	ituted Metho	d	A la malanda	T ::4	
Frequency (MHz)	BW (MHz)	Modulation	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1732.50	1.40		Н	84.40	9.19	10.70	1.52	18.37	30.00	11.63
1732.50	1.40		V	81.41	5.90	10.70	1.52	15.08	30.00	14.92
1732.50	3.00		Н	84.38	9.17	10.70	1.52	18.35	30.00	11.65
1732.50	3.00		V	81.40	5.89	10.70	1.52	15.07	30.00	14.93
1732.50	5.00		Н	83.20	7.99	10.70	1.52	17.17	30.00	12.83
1732.50	3.00	QPSK	V	81.02	5.51	10.70	1.52	14.69	30.00	15.31
1732.50	10.00	VESK	Н	82.58	7.37	10.70	1.52	16.55	30.00	13.45
1732.50	10.00		V	79.90	4.39	10.70	1.52	13.57	30.00	16.43
1732.50	15.00		Н	82.00	6.79	10.70	1.52	15.97	30.00	14.03
1732.50	13.00		V	79.00	3.49	10.70	1.52	12.67	30.00	17.33
1732.50	20.00		Н	83.10	7.89	10.70	1.52	17.07	30.00	12.93
1732.50	20.00		V	80.15	4.64	10.70	1.52	13.82	30.00	16.18
1732.50	1.40		Н	84.59	9.38	10.70	1.52	18.56	30.00	11.44
1732.50	1.40		V	81.44	5.93	10.70	1.52	15.11	30.00	14.89
1732.50	2.00		Н	84.45	9.24	10.70	1.52	18.42	30.00	11.58
1732.50	3.00		V	81.45	5.94	10.70	1.52	15.12	30.00	14.88
1732.50	5.00		Н	83.95	8.74	10.70	1.52	17.92	30.00	12.08
1732.50	5.00	160436	V	81.10	5.59	10.70	1.52	14.77	30.00	15.23
1732.50	10.00	16QAM	Н	82.66	7.45	10.70	1.52	16.63	30.00	13.37
1732.50	15.00		V	79.94	4.43	10.70	1.52	13.61	30.00	16.39
1732.50			Н	82.33	7.12	10.70	1.52	16.30	30.00	13.70
1732.50	13.00	0.00	V	79.17	3.66	10.70	1.52	12.84	30.00	17.16
1732.50	20.00		Н	83.15	7.94	10.70	1.52	17.12	30.00	12.88
1732.50	20.00		V	80.81	5.30	10.70	1.52	14.48	30.00	15.52

				D	. Substituted Method			A b = = l==4=	Limit	
Frequency (MHz)	BW (MHz)	Modulation	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	(dBm)	Margin (dB)
782.00	5.00		Н	92.83	15.30	0.00	0.93	14.37	34.77	20.40
782.00	3.00	ODCK	V	83.82	9.21	0.00	0.93	8.28	34.77	26.49
782.00	10.00	QPSK	Н	92.37	14.84	0.00	0.93	13.91	34.77	20.86
782.00	10.00		V	83.56	8.95	0.00	0.93	8.02	34.77	26.75
782.00	5.00		Н	91.85	14.32	0.00	0.93	13.39	34.77	21.38
782.00	3.00	160 414	V	82.85	8.24	0.00	0.93	7.31	34.77	27.46
782.00	10.00	16QAM	Н	91.42	13.89	0.00	0.93	12.96	34.77	21.81
782.00	10.00		V	82.41	7.80	0.00	0.93	6.87	34.77	27.90

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = Substituted Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

FCC §2.1049, §27.53- OCCUPIED BANDWIDTH

Applicable Standard

FCC §2.1049,§27.53.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
yzjingcheng	Coaxial Cable	KTRFBU- 141-50	41005012	Each time	N/A
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
E-Microwave	Two-way Spliter	ODP-1-6-2S	OE0120142	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.4°C
Relative Humidity:	55 %
ATM Pressure:	100.8 kPa

The testing was performed by Blake Yang on 2019-04-16.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

Band	Bandwidth	Modulation	99% occupied bandwidth (MHz)	26 dB bandwidth (MHz)
	1.4 MHz	QPSK	1.106	1.305
	1.4 MHZ	16QAM	1.112	1.311
	3 MHz	QPSK	2.693	2.946
	3 MHZ	16QAM	2.693	2.946
* mr	5 MHz	QPSK	4.549	5.030
LTE Band 4	5 MHz	16QAM	4.529	5.050
Danu 4		QPSK	8.938	9.699
	10 MHz	16QAM	8.938	9.619
	15 MHz	QPSK	13.467	14.790
	13 MHZ	16QAM	13.407	14.729
	20 MHz	QPSK	17.796	19.158
	20 MHZ	16QAM	17.796	19.319
* mr	5 MHz	QPSK	4.549	5.010
LTE Band 13	JIVINZ	16QAM	4.529	5.010
Dana 13	10 MHz	QPSK	8.978	9.780
	10 MIDZ	16QAM	8.978	9.699

FCC §2.1051 §27.53- SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, §27.53.

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
yzjingcheng	Coaxial Cable	KTRFBU- 141-50	41005012	Each time	N/A
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
E-Microwave	Two-way Spliter	ODP-1-6-2S	OE0120142	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.4°C
Relative Humidity:	55 %
ATM Pressure:	100.8 kPa

The testing was performed by Elena Lei & Blake Yang on 2019-04-16.

Please refer to the following plots.

FCC §2.1053, §27.53- SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053 and § 27.53;

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2018-12-10	2019-12-10
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	2018-05-06	2019-05-06
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2018-09-05	2019-09-05
HP	Amplifier	8447D	2727A05902	2018-09-05	2019-09-05
Agilent	Signal Generator	E8247C	MY43321350	2018-12-10	2019-12-10
R&S	Spectrum Analyzer	FSP 38	100478	2018-12-10	2019-12-10
TDK RF	Horn Antenna	HRN-0118	130 084	2018-10-12	2021-10-12
ETS-Lindgren	Horn Antenna	3115	000 527 35	2018-10-12	2021-10-12
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2018-09-05	2019-09-05
MICRO-COAX	Coaxial Cable	UFA147-1-2362- 100100	64639 231029- 001	2019-02-24	2020-02-24
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2018-09-05	2019-09-05
Sinoscite	Band-stop filter	BSF1710- 1785MN-0383- 003	0383003	2018-06-16	2019-06-16

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	22.8~23.8°C
Relative Humidity:	31~61 %
ATM Pressure:	100.5~100.8 kPa

^{*} The testing was performed by Tyler Pan, Vern Shen, Neil Liao on 2019-04-10.

EUT Operation Mode: Transmitting

LTE Band 4 (30MHz-20GHz):

		Receiver	Su	bstituted Met	hod	Absolute		
Frequency (MHz)	Polar (H/V)	Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
QPSK,Frequency:1732.500 MHz								
3465.00	Н	39.56	-61.41	12.21	1.60	-50.80	-13.00	37.80
3465.00	V	40.17	-59.39	12.21	1.60	-48.78	-13.00	35.78
5197.50	Н	38.75	-57.33	12.92	1.36	-45.77	-13.00	32.77
5197.50	V	38.50	-57.55	12.92	1.36	-45.99	-13.00	32.99
332.64	Н	41.36	-66.03	0.00	0.55	-66.58	-13.00	53.58
332.64	V	42.15	-67.24	0.00	0.55	-67.79	-13.00	54.79

LTE Band 13 (30MHz-10GHz)

		Receiver	Substituted Method			Albaalasta		
Frequency (MHz)	Frequency Polar Reading	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
QPSK,Frequency:782 MHz								
1564.00	Н	40.03	-64.46	10.19	1.32	-55.59	-13.00	42.59
1564.00	V	39.44	-64.98	10.19	1.32	-56.11	-13.00	43.11
2346.00	Н	37.88	-65.30	11.98	1.21	-54.53	-13.00	41.53
2346.00	V	39.54	-64.60	11.98	1.21	-53.83	-13.00	40.83
3128.00	Н	39.97	-61.63	12.35	1.53	-50.81	-13.00	37.81
3128.00	V	40.58	-60.55	12.35	1.53	-49.73	-13.00	36.73
332.64	Н	41.36	-66.03	0.00	0.55	-66.58	-13.00	53.58
332.64	V	42.22	-67.17	0.00	0.55	-67.72	-13.00	54.72

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = Substituted Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

FCC §27.53- BAND EDGES

Applicable Standard

FCC § 2.1053, and § 27.53;

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
yzjingcheng	Coaxial Cable	KTRFBU- 141-50	41005012	Each time	N/A
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
E-Microwave	Two-way Spliter	ODP-1-6-2S	OE0120142	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.4°C
Relative Humidity:	40~55 %
ATM Pressure:	100.6~100.8 kPa

The testing was performed by Elena Lei & Blake Yang on 2019-04-16.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following plots.

FCC §2.1055, §27.54- FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §27.54

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
R&S	Wideband Radio Communication Tester	CMW500	147473	2018-08-03	2019-08-03
ESPEC	Constant temperature and humidity Tester	ESX-4CA	018 463	2019-03-26	2020-03-26
UNI-T	Multimeter	UT39A	M130199938	2018-07-24	2019-07-24
R&S	Spectrum Analyzer	FSU 26	200256	2019-01-04	2020-01-04
Pro instrument	DC Power Supply	pps3300	3300012	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.4~25.9 °C
Relative Humidity:	40~64 %
ATM Pressure:	100.5~100.6 kPa

The testing was performed by Elena Lei & Blake Yang on 2019-04-16.

LTE Band 4:

QPSK, Channel Bandwidth:10MHz							
Temperature	Voltage	Test I	Limit (MHz)				
°C	$\mathbf{V}_{\mathbf{DC}}$	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F_{H}}$	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F}_{\mathbf{H}}$		
-30		1710.535701	1754.533587	1710	1755		
-20		1710.537176	1754.532174	1710	1755		
-10		1710.579380	1754.516294	1710	1755		
0		1710.615409	1754.471265	1710	1755		
10	3.7	1710.529827	1754.524873	1710	1755		
20		1710.571140	1754.509020	1710	1755		
30		1710.551805	1754.527001	1710	1755		
40]	1710.568283	1754.526924	1710	1755		
50		1710.562791	1754.485332	1710	1755		
20	4.2	1710.606907	1754.524130	1710	1755		
20	3.5	1710.587941	1754.480446	1710	1755		

	16QAM, Channel Bandwidth:10MHz							
Temperature	Voltage	Test I	Limit (MHz)					
C	V_{DC}	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F_{H}}$	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F_{H}}$			
-30		1710.556344	1754.478818	1710	1755			
-20		1710.540230	1754.504326	1710	1755			
-10		1710.620699	1754.476341	1710	1755			
0		1710.618195	1754.476513	1710	1755			
10	3.7	1710.587261	1754.471780	1710	1755			
20	1	1710.571140	1754.509020	1710	1755			
30		1710.594295	1754.469108	1710	1755			
40	1	1710.536333	1754.473517	1710	1755			
50		1710.542055	1754.518356	1710	1755			
20	4.2	1710.606429	1754.474572	1710	1755			
20	3.5	1710.531947	1754.527406	1710	1755			

	LT	\mathbf{E}	Baı	nd	13:
--	----	--------------	-----	----	-----

	QPSK, Channel Bandwidth:10MHz							
Temperature	Voltage		Test Result (MHz)					
${\mathfrak C}$	V_{DC}	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F_{H}}$	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F}_{\mathbf{H}}$			
-30		777.570219	786.536243	777	787			
-20		777.547295	786.532652	777	787			
-10		777.503098	786.544347	777	787			
0		777.572793	786.512705	777	787			
10	3.7	777.554958	786.556831	777	787			
20		777.531062	786.509018	777	787			
30		777.524499	786.503369	777	787			
40		777.500342	786.475884	777	787			
50		777.575770	786.527638	777	787			
20	4.2	777.525069	786.518876	777	787			
20	3.5	777.501226	786.468267	777	787			

16QAM, Channel Bandwidth:10MHz					
Temperature	Voltage	Test Result (MHz)		Limit (MHz)	
°C	V_{DC}	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F_{H}}$	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{F}_{\mathbf{H}}$
-30	3.7	777.532042	786.530695	777	787
-20		777.499767	786.477564	777	787
-10		777.577957	786.461682	777	787
0		777.526770	786.542514	777	787
10		777.494432	786.556020	777	787
20		777.531062	786.509018	777	787
30		777.511201	786.527732	777	787
40		777.530782	786.494845	777	787
50		777.566701	786.506525	777	787
20	4.2	777.530537	786.485103	777	787
20	3.5	777.508743	786.512480	777	787

Note: The fundamental emissions stay within the authorized bands of operation based on the frequency deviation measured is small, the extreme voltage was declared by applicant.

***** END OF REPORT *****