CSE2202: Numerical Methods Lab Online: 3 Section: B2

Time: 40 Minutes Total: 10

Note:

2 sets of problems are given for this online lab test.

Set A: All Possible Roots by Modified Bisection Method

Set B: Multiple Roots of Polynomial using Newtons Method.

- If you choose Set A you will get 20% penalty and for choosing Set B you will get no penalty.
- After completing your code you must upload you code and output in the given Google form link.
- Allocated time for Set A is 30 minutes and for Set C is 40 Minutes

Set A

Problem Statement: Determine the all possible real roots of the equation: $f(x) = x^3 - 7x^2 + 15x - 9 = 0$ using Modified Bisection Method. Employ initial guesses of $x_{lower} = 0$ and $x_{upper} = 4$ and iterate until the estimated error \in_a falls below a level of $\in_s = 0.001$

Algorithm:

- 1. Enter lower limit x_{lower} and upper limit x_{upper} of the interval covering all the roots.
- 2. Decide the size of the increment interval $\Delta x = 0.1$
- 3. set $x_1 = x_{lower}$ and $x_2 = x_{lower} + \Delta x$
- 4. Compute $f_1 = f(x_1)$ and $f_2 = f(x_2)$
- 5. If $(f_1 * f_2) > 0$,

then the interval does not bracket any root and go to step 9

- 6. Compute $x_0 = (x_1 + x_2)/2$ and $f_0 = f(x_0)$
- 7. If $(f_1 * f_2) < 0$

then set
$$x_2 = x_0$$

Else set $x_1 = x_0$ and $f_1 = f_0$

8. If
$$|(x_2-x_1)/x_2| < E$$
, then

$$root = (x_1 + x_2) / 2$$

write the value of root

go to step 9

Else

go to step 6

9. If
$$x_2 < x_{upper}$$
, then set $x_{lower} = x_2$ and go to step 3

10. Stop.

Tasks:

- 1. Write a program using Modified Bisection Method to locate the approximate roots of the function $f(x) = x^3 7x^2 + 15x 9 = 0$ with initial guesses [0, 4].
- 2. Use Horner's rule to perform all iterations of the Modified Bisection Method until the estimated error \in_a falls below a level of $\in_s = 0.0001$
- **3.** Use appropriate functions from math header file.
- **4.** Show the table with number of root, approximate value; number of iterations where the root is found and relative error found on that iteration. (You can count the step by adding 1 to a counting variable *i* in the loop of the program).

Sample Input/output:

```
Enter the highest degree of the equation: 3
Enter values of coefficients:
Coefficient x[3] = 1
Coefficient x[2] = -7
Coefficient x[1] = 15
Coefficient x[0] = -9
Enter the lower and upper limit:
4
Number of Root Approximate Root
                                        Number of Iteration
                                                                  Relative Error
                 0.999994
                                         9
                                                                  0.000006
2
                 2.999682
                                         29
                                                                  0.000008
3
                 3.000341
                                         30
                                                                  0.000008
```

Set B

Problem Statement: Determine the **multiple** real roots of the equation: $f(x) = x^3 - 4x^2 + x + 6 = 0$ using Newton's Method. Employ initial guess of $x_1 = 5$ and iterate until the estimated error ϵ_a falls below a level of $\epsilon_s = 0.001$

Algorithm:

- 1. Obtain degree and co-efficient of polynomial (n and a_i).
- 2. Decide an initial estimate for the first root (x_0) and error criterion, E.

Do while
$$n > 1$$

3. Find the root using Newton-Raphson algorithm

$$x_r = x_0 - f(x_0) / f'(x_0)$$

- 4. Root $(n) = x_r$
- 5. Deflate the polynomial using synthetic division algorithm and make the factor polynomial as the new polynomial of order n-1.
- 6. Set $x_0 = x_r$ [Initial value of the new root]

- 7. Root (1) = -a0 / a1
- 8. Stop

Tasks:

- 1. Write a program using Newton's Method to locate the approximate roots of the function $(x) = x^3 4x^2 + x + 6 = 0$ with initial guess 5.
- 2. Use Horner's rule to perform all iterations of the Newton's Method until the estimated error ϵ_a falls below a level of $\epsilon_s = 0.001$
- 3. Use synthetic division to deflate the polynomial at lower degree.

Algorithm for Synthetic Division:

$$b_{i-1} = a_i + x_r b_i$$
 ; for $i = n, n - 1, 0$
 $b_n = 0$

Where a is the coefficient at degree n and b is the coefficient at degree n-1

- **4.** Use appropriate functions from math header file.
- 5. Print the degree of the polynomial, polynomial and roots found at each degree.

Sample Input/output:

```
Enter values of coefficients:

Coefficient x[3] = 1

Coefficient x[2] = -4

Coefficient x[0] = 6

Enter the intial value:5

The 3 order polynomial is: 1.00x^3+-4.00x^2+1.00x^1+6.00x^0

At order 3 the Root is 3.000000

The 2 order polynomial is: 1.00x^2+-1.00x^1+-2.00x^0

At order 2 the Root is 2.0000000

The 1 order polynomial is: 1.00x^1+1.00x^0

At order 1 the Root is -1.0000000

There are 3 Roots for the given polynomial
```