# Subgroups of Hyperbolic Groups A Default Beamer Presentation

#### David Buckley

Mathematics Department University of Warwick

Postgraduate Group Theory Conference, 2009



- Group G generated by set X.
- Cayley graph of G is Cay(G,X)

- Group G generated by set X.
- Cayley graph of G is Cay(G, X):
- Vertex-set G, edge set  $\{(g, gx) : g \in G, x \in X\}$ .

- Group G generated by set X.
- Cayley graph of G is Cay(G, X):
- Vertex-set G, edge set  $\{(g, gx) : g \in G, x \in X\}$ .
- Subgroup  $H \leq G$ .
- Coset Cayley graph of G relative to H

- Group G generated by set X.
- Cayley graph of G is Cay(G, X):
- Vertex-set G, edge set  $\{(g, gx) : g \in G, x \in X\}$ .
- Subgroup  $H \leq G$ .
- Coset Cayley graph of G relative to H:
- Vertex-set  $\{Hg:g\in G\}$ , edge set  $\{(Hg,Hgx):g\in G,x\in X\}$ .

- Hyperbolic spaces curve "inwards."
- This makes geodesic triangles thin.

- Hyperbolic spaces curve "inwards."
- This makes geodesic triangles thin.



- Hyperbolic spaces curve "inwards."
- This makes geodesic triangles thin.



- Hyperbolic spaces curve "inwards."
- This makes geodesic triangles thin.



Hyperbolic if all geodesic triangles are δ-thin.

#### Divergence

- Metric space X.
- A map  $e:[0,\infty]\to[0,\infty]$  is a divergence function if:
  - When  $r_1, r_2 \subset X$  two rays which start at the same point
  - and  $d(r_1(a), r_2(a)) > e(0)$  for some a > 0
  - then  $d_{a+b}(r_1(a+b), r_2(a+b)) > e(b)$  for all b > 0 ( $d_l$  means distance outside of  $B_l(1)$ ).

#### Divergence

- Metric space X.
- A map  $e:[0,\infty]\to[0,\infty]$  is a divergence function if:
  - When  $r_1, r_2 \subset X$  two rays which start at the same point
  - and  $d(r_1(a), r_2(a)) > e(0)$  for some a > 0
  - then  $d_{a+b}(r_1(a+b), r_2(a+b)) > e(b)$  for all b > 0 ( $d_l$  means distance outside of  $B_l(1)$ ).
- Hyperbolic spaces have exponential divergence functions.

#### Divergence

- Metric space X.
- A map  $e:[0,\infty]\to[0,\infty]$  is a divergence function if:
  - When  $r_1, r_2 \subset X$  two rays which start at the same point
  - and  $d(r_1(a), r_2(a)) > e(0)$  for some a > 0
  - then  $d_{a+b}(r_1(a+b), r_2(a+b)) > e(b)$  for all b > 0 ( $d_l$  means distance outside of  $B_l(1)$ ).
- Hyperbolic spaces have exponential divergence functions.
- Will assume divergence is strict:
- Then  $e(b) < d_{a+b}(r_1(a+b), r_2(a+b)) < ke(b)$  for all b > 0.

- The Cayley graph of a finitely generated group is a geodesic metric space.
- A group is hyperbolic if its Cayley graph is hyperbolic.
- Examples:

- The Cayley graph of a finitely generated group is a geodesic metric space.
- A group is hyperbolic if its Cayley graph is hyperbolic.
- Examples:
  - Finite groups.

- The Cayley graph of a finitely generated group is a geodesic metric space.
- A group is hyperbolic if its Cayley graph is hyperbolic.
- Examples:
  - Finite groups.
  - Free groups of finite rank.

- The Cayley graph of a finitely generated group is a geodesic metric space.
- A group is hyperbolic if its Cayley graph is hyperbolic.
- Examples:
  - Finite groups.
  - Free groups of finite rank.
  - Groups acting properly and cocompactly on hyperbolic spaces.

- The Cayley graph of a finitely generated group is a geodesic metric space.
- A group is hyperbolic if its Cayley graph is hyperbolic.
- Examples:
  - Finite groups.
  - Free groups of finite rank.
  - Groups acting properly and cocompactly on hyperbolic spaces.
- Non-example:  $\mathbb{Z} \times \mathbb{Z}$

- The Cayley graph of a finitely generated group is a geodesic metric space.
- A group is hyperbolic if its Cayley graph is hyperbolic.
- Examples:
  - Finite groups.
  - Free groups of finite rank.
  - Groups acting properly and cocompactly on hyperbolic spaces.
- Non-example:  $\mathbb{Z} \times \mathbb{Z}$
- Fix  $G = \langle X|R \rangle$  a finitely generated group with  $\delta$ -hyperbolic Cayley graph  $\Gamma$ .
- Let  $A = X \cup X^{-1}$ .



# Quasiconvex Subgroups

- Let w be a word in A\*.
- Let  $\alpha$  be the path starting at 1 and labelled by w.
- Let H < G any subgroup.</p>
- d(w, H) is the max distance from a point on  $\alpha$  to closest point in H.



#### Quasiconvex Subgroups

- Let w be a word in A\*.
- Let  $\alpha$  be the path starting at 1 and labelled by w.
- Let H < G any subgroup.</p>
- d(w, H) is the max distance from a point on α to closest point in H.



• H  $\epsilon$ -quasiconvex if  $d(w, H) \le \epsilon$  for any  $w \in H$  which labels a geodesic.

# Quasiconvex Subgroups

- Let w be a word in A\*.
- Let  $\alpha$  be the path starting at 1 and labelled by w.
- Let H < G any subgroup.</p>
- d(w, H) is the max distance from a point on α to closest point in H.



- H  $\varepsilon$ -quasiconvex if  $d(w, H) \le \varepsilon$  for any  $w \in H$  which labels a geodesic.
- For instance,  $\langle a^2 \rangle$  is a 1-quasiconvex subgroup of F(a,b).

# Cut points

- Connected topological space X
- Some point  $x \in X$
- x is a cut point if  $X \setminus \{x\}$  is disconnected
- ullet Example: Every point in  $\mathbb R$  is a cut point

#### Cut points

- Connected topological space X
- Some point  $x \in X$
- x is a cut point if X\{x\} is disconnected
- Example: Every point in ℝ is a cut point
- Subset *Y* ⊂ *X*
- Y is a cut set if X\Y is disconnected
- Example: Every closed 1-ball in  $\mathbb{R} \times [0,1]$  is a cut set.

#### **Cut points**

- Connected topological space X
- Some point  $x \in X$
- x is a cut point if X\{x\} is disconnected
- Example: Every point in R is a cut point
- Subset *Y* ⊂ *X*
- Y is a cut set if X\Y is disconnected
- Example: Every closed 1-ball in  $\mathbb{R} \times [0,1]$  is a cut set.
- Y cuts set A from set B if A\Y and B\Y lie in different components of X\Y.



#### Ends

- Metric space X
- Geodesic rays r<sub>1</sub>, r<sub>2</sub> (path isometric to [0,∞])
- Say  $r_1 \equiv r_2$  if there is no bounded set Y which cuts  $r_1$  from  $r_2$ .
- Space of ends is space of equivalence classes of rays r.

#### Ends

- Metric space X
- Geodesic rays r<sub>1</sub>, r<sub>2</sub> (path isometric to [0,∞])
- Say  $r_1 \equiv r_2$  if there is no bounded set Y which cuts  $r_1$  from  $r_2$ .
- Space of ends is space of equivalence classes of rays r.
- Compare to boundary equivalence classes of geodesic rays under  $r \equiv s$  if there exists M such that  $d(x,s) \leq M$  for all  $x \in r$  and vice versa.

- Interested in number of ends n(X).
- For a Cayley graph there are 0, 1, 2 or ∞ ends.

- Interested in number of ends n(X).
- For a Cayley graph there are 0, 1, 2 or ∞ ends.
- Example: Finite groups have 0-ended Cayley graphs (there are no geodesic rays).

- Interested in number of ends n(X).
- For a Cayley graph there are 0, 1, 2 or ∞ ends.
- Example: Finite groups have 0-ended Cayley graphs (there are no geodesic rays).
- Example: Hyperbolic triangle groups have 1-ended Cayley graphs (since they represent tilings of hyperbolic 2-space).

- Interested in number of ends n(X).
- For a Cayley graph there are 0, 1, 2 or ∞ ends.
- Example: Finite groups have 0-ended Cayley graphs (there are no geodesic rays).
- Example: Hyperbolic triangle groups have 1-ended Cayley graphs (since they represent tilings of hyperbolic 2-space).
- Example: Z has a 2-ended Cayley graph (there's precisely 2 directions).

- Interested in number of ends n(X).
- For a Cayley graph there are 0, 1, 2 or ∞ ends.
- Example: Finite groups have 0-ended Cayley graphs (there are no geodesic rays).
- Example: Hyperbolic triangle groups have 1-ended Cayley graphs (since they represent tilings of hyperbolic 2-space).
- Example:  $\mathbb{Z}$  has a 2-ended Cayley graph (there's precisely 2 directions).
- Example: Non-cyclic free groups have ∞-ended Cayley graphs (any string of positive powers like abb can be repeated indefinitely to give a unique end).



#### Problem

- G is a hyperbolic group with Cayley graph Γ.
- G has 1 end.
- H is a quasiconvex subgroup.
- Γ has a strict divergence function e.
- What can we say about ends of coset Cayley graph?

#### Example

- Let *G* be the hyperbolic triangle group  $\langle x, y | x^2, y^3, (xy)^7 \rangle$ .
- Let  $H = \langle xyxy^{-1} \rangle$  (infinite, infinite index).

#### Example

- Let *G* be the hyperbolic triangle group  $\langle x, y | x^2, y^3, (xy)^7 \rangle$ .
- Let  $H = \langle xyxy^{-1} \rangle$  (infinite, infinite index).



#### A Neat Trick

- Suppose w, a and b are words.
- Also, that w is long enough (about  $\varepsilon + 2\delta$ ).

#### A Neat Trick

- Suppose w, a and b are words.
- Also, that w is long enough (about  $\varepsilon + 2\delta$ ).
- Suppose wa does not have much cancellation
- (Roughly, |wa| > |w| + |a| k).

## A Neat Trick

- Suppose w, a and b are words.
- Also, that *w* is long enough (about  $\varepsilon + 2\delta$ ).
- Suppose wa does not have much cancellation
- (Roughly, |wa| > |w| + |a| k).
- Then Hwa does not have much cancellation.
- (Roughly,  $d(H, Hwa) > d(H, Hw) + |a| k \varepsilon 2\delta$ ).

# Divergence Made Useful

- Divergence is a bit of a pain to use, but strict divergence is (obviously) easier!
- Suppose  $d(r_1(a), r_2(a)) > e(0)$  with a minimal.
- If  $\alpha$  is a path connecting  $r_1(a+b)$  to  $r_2(a+b)$ , then there exists a word w of length nearly a and near-suffixes  $r_1' =_G w^{-1} r_1$  and  $r_2' =_G w^{-1} r_2$  such that:

## Divergence Made Useful

- Divergence is a bit of a pain to use, but strict divergence is (obviously) easier!
- Suppose  $d(r_1(a), r_2(a)) > e(0)$  with a minimal.
- If  $\alpha$  is a path connecting  $r_1(a+b)$  to  $r_2(a+b)$ , then there exists a word w of length nearly a and near-suffixes  $r_1' = G w^{-1} r_1$  and  $r_2' = G w^{-1} r_2$  such that:
- $wr'_1$  and  $wr'_2$  don't have much cancellation
- (Roughly  $e^{-1}(k)$  where k is the k you got along with e).



## **Divergence Made Useful**

- Divergence is a bit of a pain to use, but strict divergence is (obviously) easier!
- Suppose  $d(r_1(a), r_2(a)) > e(0)$  with a minimal.
- If  $\alpha$  is a path connecting  $r_1(a+b)$  to  $r_2(a+b)$ , then there exists a word w of length nearly a and near-suffixes  $r_1' =_G w^{-1} r_1$  and  $r_2' =_G w^{-1} r_2$  such that:
- wr<sub>1</sub> and wr<sub>2</sub> don't have much cancellation
- (Roughly  $e^{-1}(k)$  where k is the k you got along with e).
- for all paths x to points in  $\alpha$ , there is  $x' =_G w^{-1}x$  such that wx' don't have much cancellation.



• So there's only a finite number of ends of *G* relative to *H*.



- So there's only a finite number of ends of G relative to H.
- Proof? You want proof?

- So there's only a finite number of ends of G relative to H.
- Proof? You want proof?
- Take a huge ball  $B_K(H)$ .

Н





- So there's only a finite number of ends of G relative to H.
- Proof? You want proof?
- Let Hx, Hy be points in not in the ball, and in infinite components.



- So there's only a finite number of ends of *G* relative to *H*.
- Proof? You want proof?
- Since they're in infinite components, may as well assume d(Hx, H) ≥ 2K and d(Hy, H) ≥ 2K.



- So there's only a finite number of ends of *G* relative to *H*.
- Proof? You want proof?
- There's a path α connecting x to y in the group Cayley graph



- So there's only a finite number of ends of G relative to H.
- Proof? You want proof?
- There's a magical path w which doesn't cancel too much with x, y, or paths from 1 to points on α.



- So there's only a finite number of ends of G relative to H.
- Proof? You want proof?
- If w is big enough, all points Hx on Hα have d(H, Hx) a bit lower than K. Thus Hα connects Hx and Hy and lies outside the ball.
- Basically, this means the component a point Hx lies in is determined completely by its behaviour inside a small ball around H.
- There's only a finite number of short prefix words, so only a finite number of ends.

