Slackforce: Documentation on the Theoretical Background

Tilman Sinning

August 11, 2015

Contents

1	Introduction	3
2	Measure Force 2.1 Physical Background	
3	Calculate Force	6
	3.1 Basics	6
	3.2 Calculating the Pretension	7
	3.3 Rodeo Lines	8
	3.4 Calculating Slackline Forces from the Pretension	9
	3.5 Slackliner who is not in the middle of the Line (not implemented)	9
4	Dynamic Force Simulation	11
	4.1 Basic Idea of the Simulation	11
	4.2 Improved Dynamic Model (not implemented)	12

1 Introduction

This document describes the physical background, derivation of the formulas and the calculations of the app Slackforce. The app includes the following three main functionalities:

Measure Force: Measures the pretension of the slackline from the sound you hear when slapping the line with your finger.

Static Calculations: Calculates the forces on the Line at static conditions resulting from the geometric setup of the line.

Dynamic Simulation: Simulates the movement of the line and the forces involved in bouncing or jumping.

This document contains three chapters corresponding to the named app functionalities. Note that there might be errors in the presented formulas. Use the formulas careful and do not fully trust the calculated values. The creator of this document is not responsible for any harm resulting from the use of the presented calculations and formulas.

2 Measure Force

When slapping a tensioned Slackline with your finger you will hear a sound from the line multiple times. The idea is to calculate the pretension of the line from the frequency of that sound. The slapping of line results in a mechanical wave propagating along the line and reflected at its ends. The propagation speed is depending on the tension of the line.

2.1 Physical Background

The propagation speed of a wave on a tensioned rope or slackline can be described with the following formula:

$$v = \sqrt{\frac{F}{\mu_0}} \tag{2.1}$$

v is the propagation speed, F the force and μ_0 the weight per unit length of the line. In between two sounds the mechanical wave travels from one anchor to the other and back, so it covers a distance two times the length l of the line. If you measure the time of oscillation t_{osc} the propagation speed can be calculated:

$$v = \frac{2 \cdot l}{t_{osc}} \tag{2.2}$$

If you combine equation 2.1 and 2.2 and solve for the force you will get the following equation:

$$F_0 = \frac{4 \cdot l^2 \cdot \mu_0}{t_{asc}^2} \tag{2.3}$$

 F_0 is the pretension of the line. As you can see the weight and the length of the line have to be known. In the app the time of oscillation can be measured automatically with the microphone and some simple audio processing or manually by typing the heard sound pattern on a button.

2.2 The Influence of the Stretch Characteristic

During the tensioning of the line, the line also stretches. As the total weight of the line does not change this leads to a decrease of weight per unit length. Therefore equation 2.3 contains a systematic error on stretchy webbings. To take this into account a linear stretch behavior corresponding to the following formula is assumed.

$$\frac{\Delta l}{l} = \alpha \cdot F \tag{2.4}$$

 α is the stretch coefficient and F is the force on the line. The corrected weight per unit length is calculated to

$$\mu = \mu_0 \cdot \frac{1}{1 + \alpha \cdot F} \tag{2.5}$$

If you replace μ_0 in formula 2.3 with the corrected value μ and solve the equation for F you get the following formula:

$$F = \sqrt{\frac{1}{4\alpha^2} + \frac{\mu_0 \cdot 4l^2}{\alpha \cdot t_{osc}^2}} - \frac{1}{2\alpha}$$
 (2.6)

In the App this more exact formula is used whenever a stretch coefficient greater than zero is entered. It can be shown that formula 2.6 equals formula 2.3 for $\alpha \to 0$.

3 Calculate Force

The forces of the line are obtained by using the geometric setup of the line at a given load. If the tension of the line at a given sag is known the tension at a different sag can easily be calculated with the aid of the stretch behavior.

3.1 Basics

Figure 3.1: Schematical slackline with horizontal and vertical components of an applied force

Figure 3.1 shows a scheme of a slackline with a given length and sag. The load that is applied in the middle of the line results in a specific sag. The force on the anchor is determined by the vertical and horizontal force. The forces of the left part of the line look the same. The total force will be the sum of forces on the left and the right side. So the horizontal components will eliminate each other and the vertical ones are added. If a slackliner is standing on the line the total vertical force corresponds to the slackliner's weight. From the geometric properties shown in figure 3.1 the following equation can easily be derived:

$$\frac{F_a}{0.5 \cdot F_v} = \frac{l_1}{s} = \frac{\sqrt{\frac{l^2}{4} + s^2}}{s} \tag{3.1}$$

Together with the gravity acceleration $g = 9.81 \frac{m}{s^2}$ and the weight of the slackliner m this leads to the following four equations:

$$F = \frac{\sqrt{s^2 + \frac{l^2}{4}}}{2 \cdot s} \cdot m \cdot g \tag{3.2}$$

$$m = \frac{2 \cdot s \cdot F}{g \cdot \sqrt{s^2 + \frac{l^2}{4}}} \tag{3.3}$$

$$s = \sqrt{\frac{m^2 \cdot l^2 \cdot g^2}{4 \cdot (4F^2 - m^2 g^2)}} \tag{3.4}$$

$$l = \sqrt{\frac{4 \cdot s \cdot (4F^2 - m^2 g^2)}{m^2 g^2}}$$
 (3.5)

With Equation 3.2 - 3.5 it is possible to calculate any of the parameters force, weight of slackliner, sag and length if the other parameters are known.

3.2 Calculating the Pretension

Figure 3.2: Force-Stretch-Diagramm of a 100 m Type 18 Line with 4,5 kN Pretension

If you know the tension of the line when a person stands on it and the stretch behavior it is possible to calculate the pretension. Figure 3.2 shows the stretch behavior of a Type 18 MKII line as an example. It can be seen that the stretch is not linear. To get the pretension of the line you need to know the increase of length Δl due to the sag of the line. This can be calculated with the following formula:

$$\Delta l = 2 \cdot l_1 - l = 2 \cdot \sqrt{s^2 + \frac{l^2}{4}} - l \tag{3.6}$$

To get the pretension you have to do the following steps:

- 1. Calculate the anchor force with a slackliner on the line
- 2. Read the corresponding stretch from the force-stretch-diagram
- 3. Calculate the new stretch with formula 3.6
- 4. Read the pretension from the force-stretch-diagram

If a linear stretch behavior $\frac{\Delta l}{l} = \alpha \cdot F$ is assumed it is possible to put that relation into an analytic formula:

$$F = F_0 + \frac{2 \cdot \sqrt{s^2 + \frac{l^2}{4}} - l}{\alpha \cdot l} \tag{3.7}$$

However, the App always uses the force-stretch-diagram as the results are better with that method. Unfortunately some slackline manufacturers provide very little information on the stretch behavior of their lines and only a few data points are available. The app interpolates those data points linear to get the force-stretch-diagram.

3.3 Rodeo Lines

Rodeo Lines are slacklines with a lot of sag and no pretension. So the pretension F_0 is always zero and the line has an initial sag s_0 without any slackliner on the line. When a slackliner steps on the line, it might stretch further and lead to a sag greater than the initial sag. Figure 3.3 shows the forces on an rodeo line.

As it can be seen there is no change to the static forces with a slackliner on the line from figure 3.1. So all the calculations of the section "Basics" are still valid. If you want to do calculations based on the force-stretch-diagram you have to be aware that equation 3.6 now changes to

$$\Delta l = 2 \cdot (l_2 - l_1) = 2 \cdot \left(\sqrt{s^2 + \frac{l^2}{4}} - \sqrt{s_0^2 + \frac{l^2}{4}} \right)$$
 (3.8)

In addition there is no pretension to calculate, but you can calculate the initial sag of the line using the force-stretch-diagram. Therefore you have to read the stretch Δl from the diagram and use the following formula:

Figure 3.3: Schematical rodeo line with horizontal and vertical components of force

$$s_0 = \sqrt{l_1^2 - \frac{l^2}{4}} = \sqrt{(l_2 - \Delta l)^2 - \frac{l^2}{4}}$$
(3.9)

$$s_0 = \sqrt{l_1^2 - \frac{l^2}{4}} = \sqrt{(l_2 - \Delta l)^2 - \frac{l^2}{4}}$$

$$= \sqrt{\left(\sqrt{s^2 + \frac{l^2}{4}} - \Delta l\right)^2 - \frac{l^2}{4}}$$
(3.9)

3.4 Calculating Slackline Forces from the Pretension

Unfortunately it is very difficult for linear stretch behavior and impossible for a custom stretch behavior to get an analytic expression of the slackline force that is a function of the pretension. Therefore some kind of approximation algorithm has to be used. The App is currently using the Illinois algorithm, because that seems to work quite well.

3.5 Slackliner who is not in the middle of the Line (not implemented)

It is assumed that the slackliner is standing at a position $p \in [0,1]$ on the line. The forces are always calculated for the left anchor point. The forces at the right anchor point equal the forces at the left anchor point at position 1-p. Figure 3.4 shows the forces in this new setup. If the slackliner stands still the horizontal forces have to be the same on both sides. That leads to different vertical forces and anchor forces on both sides.

According to fig. 3.4 the equation below can be derived.

$$\frac{p \cdot l}{s} = \frac{F_{h,l}}{F_{v,l}} = \frac{\sqrt{F_{a,l}^2 - F_{v,l}^2}}{F_{v,l}}$$
(3.11)

The total vertical force is still the sum of both sides:

Figure 3.4: Force Components on Unsymmetric Conditions

$$F_v = F_{v,l} + F_{v,r} (3.12)$$

The absolute values of both horizontal forces are the same which leads to:

$$\frac{p \cdot l}{s} \cdot F_{v,l} = \frac{(1-p) \cdot l}{s} \cdot F_{v,r} \tag{3.13}$$

Combining equation 3.13 and 3.12 results in:

$$F_{v,l} = (1 - p) \cdot F_v \tag{3.14}$$

Inserting equation 3.14 in 3.11 leads to the final equation

$$F_{a,l} = \frac{(1-p) \cdot F_v}{s} \cdot \sqrt{(p \cdot l)^2 + s^2}$$
 (3.15)

For p=0.5 this equation is identical to equation 3.2 from the previous section. Note that equation 3.6 now changes to

$$\Delta l = \sqrt{(p \cdot l)^2 + s^2} + \sqrt{(1-p)^2 l^2 + s^2} - l \tag{3.16}$$

4 Dynamic Force Simulation

In the previous section the calculations at static conditions were described. However, often it is interesting what the maximum forces are during bouncing or jumping. On highlines the forces involved in a leashfall are also very important. As the calculation of dynamic behavior is much more complicated than on static conditions finding analytic expressions is not constructive. Therefore an simulation approach is used.

4.1 Basic Idea of the Simulation

To get the forces on dynamic movements the movement of the slackliner gets separated in very small time steps and for a hole period of bouncing or jumping the current speed and position get calculated for every time step. If the time steps are small enough the acceleration of the slackliner can be assumed to be constant. That leads to the following formulas:

$$v(t) = at + v_0 \tag{4.1}$$

$$s(t) = \frac{a}{2}t^2 + v_0t + s_0 \tag{4.2}$$

In addition the following relations exists:

$$F = a \cdot m \tag{4.3}$$

a is the acceleration, m the mass, v the speed and s the path. Then for every time step the following pattern is done:

- 1. Set the sag of the slackline to the current position of the slackliner
- 2. Calculate the force affecting the slackliner $F = m \cdot g F_{v,slackline}$
- 3. Calculate the acceleration of the slackliner a = F/m
- 4. Calculate change in speed $\Delta v = a \cdot \Delta t$
- 5. Calculate change in position $\Delta s = \frac{1}{2} \cdot a \cdot \Delta t^2 + v \cdot \Delta t$
- 6. Add those values to the current position and speed

When the sign of the speed changes the slackliner is at the lowest point of the line. At this point the maximum forces on the line and the slackliner appear. Therefore the simulation can be stopped here.

4.2 Improved Dynamic Model (not implemented)

In the section above it is assumed, that the stretch behavior of the line is always the same as in the static case. In reality this is not the case and the line behaves more like a viscoelastic material. Therefore it might lead to better results assuming a model based on viscoelastic behavior for the dynamic simulations.

Figure 4.1: Standard linear solid model

Figure 4.1 shows the standard linear solid model often used to describe viscoelastic behavior. This leads to the following differential equation:

$$\sigma + \frac{\eta}{E_1 + E_2} \dot{\sigma} = \frac{E_1 E_2}{E_1 + E_2} \epsilon + \frac{E_2 \eta}{E_1 + E_2} \dot{\epsilon}$$
(4.4)

 E_1 , E_2 are the elastic modulus of the two springs, σ is the applied stress, ϵ is the stretch $\frac{\Delta l}{l}$ and η is the dynamic viscosity.

For the calculation of slacklines I like to use the stretch coefficient $\alpha = \frac{\epsilon}{F}$ instead of the elastic modulus. The relation between those parameters is:

$$E = \frac{1}{\alpha \cdot A} \tag{4.5}$$

The sum of the stretch coefficients $\alpha_1 + \alpha_2$ then is the static stretch coefficient α of the line from the previous chapters. As for slacklines the cross section A is not very

important it makes sense to multiply equation 4.4 with A:

$$F(t) + \frac{\alpha_1 \alpha_2}{\alpha} \cdot (\eta A) \cdot \dot{F}(t) = \frac{\epsilon(t)}{\alpha} + \frac{\alpha_1}{\alpha} \cdot (\eta A) \cdot \dot{\epsilon(t)}$$
(4.6)

Rearranging this equation leads to

$$\dot{F}(t) = \frac{-\alpha}{\alpha_1 \alpha_2 \cdot (\eta A)} \cdot F(t) + \frac{\epsilon(t)}{\alpha_1 \alpha_2 \cdot (\eta A)} + \frac{\dot{\epsilon}(t)}{\alpha_2}$$
(4.7)

Now we have a linear inhomogeneous differential equation. Solving this equation for the force F gives:

$$F(t) = e^{\frac{-\alpha t}{\alpha_1 \alpha_2 \cdot (\eta A)} dt} \cdot \left[\int_0^t \left(\frac{\epsilon(t')}{\alpha_1 \alpha_2 \cdot (\eta A)} + \frac{\dot{\epsilon}(t')}{\alpha_2} \right) \cdot e^{\frac{\alpha t'}{\alpha_1 \alpha_2 \cdot (\eta A)}} dt' + C \right]$$
(4.8)

For the simulation the change of force ΔF between to time steps Δt is of interest. Therefore $\Delta F = F(t + \Delta t) - F(t)$ has to be calculated:

$$\Delta F = F(t) \cdot \left(e^{\frac{-\alpha \cdot \Delta t}{\alpha_1 \alpha_2 \cdot (\eta A)}} - 1 \right) + e^{\frac{-\alpha (t + \Delta t)}{\alpha_1 \alpha_2 \cdot (\eta A)}} \cdot \int_t^{t + \Delta t} \left(\frac{\epsilon(t')}{\alpha_1 \alpha_2 \cdot (\eta A)} + \frac{\dot{\epsilon}(t')}{\alpha_1} \right) \cdot e^{\frac{\alpha \cdot t'}{\alpha_1 \alpha_2 \cdot (\eta A)}} dt'$$

$$\tag{4.9}$$

If the time steps are small enough a constant stretch $\epsilon(t) = \epsilon = const$ can be assumed for the integration. The derivation of the stretch changes to $\dot{\epsilon}(t) = \frac{\Delta \epsilon}{\Delta t}$. With this simplification the remaining integral can be solved. The result is:

$$\Delta F = \left(1 - e^{\frac{-\alpha \cdot \Delta t}{\alpha_1 \alpha_2 \cdot (\eta A)}}\right) \cdot \left(\frac{\epsilon}{\alpha} - F(t) + \frac{\alpha_1 \cdot (\eta A)}{\alpha} \cdot \frac{\Delta \epsilon}{\Delta t}\right) \tag{4.10}$$

Equation 4.10 can now easily be used for the simulation. The calculation of the current forces works with the following procedure.

- 1. Initialize the force with the pretension and the stretch with the force-stretch-diagram
- 2. Calculate the new position of the slackliner and sag of the line according to the previous section
- 3. Calculate the new stretch and $\Delta \epsilon$ with the geometric properties of the line
- 4. Calculate the new force $F(t + \Delta t) = F(t) + \Delta F$ with equation 4.10
- 5. Repeat steps 2 4

To get good simulation results dynamic characterizations of some real lines are necessary. However, as a starting point I could find some dynamic parameters of climbing ropes at the following webpage (unfortunately in german): http://www.sigmadewe.com/fileadmin/

user_upload/pdf-Dateien/SEILPHYSIK.pdf. For the ropes tested there the ratio $\frac{\alpha_1}{\alpha_2}$ was always about 3. The viscosity was varying between $\eta A = 4.8 \dots 9 \, kN \cdot s$. I can imagine that slacklines might have a lower damping than climbing ropes, but that is only speculation. When I have time I will implement this model and play around with the parameters to see if I can get a good match to existing dynamic force measurements.