«)	10	P1	771	POAPI	Po > 7/21	2 (POAPA)	(Po > 7/21) (> > (po / p1)
	1	1	0	1	0	0	4
	ĝ	0	1	0	1	1	1
	0	- 1	0	0	1	1	4
	0	0	1	0	1	1	1

Alendendo a que (po > 7p1) (> 7 (po 1 p1) i vorse tautológic (como podemos comporar na tabela), as formulas (po > 7/2) 1 7 (po 1/2) 500 logicamente equivalentes. A afin magos i V.

A afir maças i foloa. É peciso, também, porce que se p i false, entar q i falsa.

Considerentes p= po & q= porpa Tenus que se p é varde deixe entais q à verdodire. Mas mão i vadode que poq.

2.

2m(5 0) M < 5 0) M < 2,5 $B = \{ m^2 \mid m=1 \ \ | \ m=2 \} = \{ 1^2, 2^2 \} = \{ 1, 4 \}$

$$A \times B = \{ (a,b) : a \in A \land b \in B \}$$

$$= \{ (1,1), (1,4), (243,1), (243,1) \}$$

P(A(B) = {Ø, { {41}}}.

a) Cousideremon $A = \{1,2\}$, $B = \{1,3\}$ e $C = \{1,4\}$. Tenus que ANB = {1} E C

No entante, AQC e B & C.

```
b)
```

Admitantes que ASCVBSC.

rág 2/5

Canol: ASC

Sya XEANB. Então, XEA L NEB.

Como REA e ASC, podemos afinmas que

Cano 2: B = C

Sija x E AOB. Temos que x EA 2 que x EB.

Dado que BEC, podernos concluir que ZEC.

Em ambos os casos mostránios que

the (reads > rec).

ANB E C.

Sya P(m) o predicedo m! > 2^m. 4.

1 M=4

 $4! = 4 \times 3 \times 2 = 24$

24 = 16 logo, P(4) i válids.

Sya KEIN tal que KZY « P(K). Entas, 2

k!≥2k. (HI)

Pretendencos mostrar que (K+1)! = 2 K+1

Tenus que

 $(k+1)! = (k+1) \times k!$ $\geq (k+1) \cdot 2^{k} \geq 2 \times 2^{k} = 2^{k+1}.$

K > 4 > K+1 > 2

Logo, P(K+1) i vudadisa.

Por O(O), plo Primuisis de Indugés Natural, $m! \ge 2^m$, paratodo $n \ge 4$ y = x + 25.

a) O(O) = O(O) O(O) = O(O)

$$f(J-3,0J) = \{f(x) : x \in J-3,0J\}$$

$$= \{f(x) : 3 < x \leq 0\}$$

$$= J0,2J \cup [4,9[$$

100 3/1

$$\chi^2 = -4$$
 & important

 $\chi + 2 = -4$ & important

 $\chi + 2 = -4$ & $\chi = -6$ mas $-6 \not> -2$

$$\chi^2 = 0$$
 @, $\chi = 0$ mis $0 \neq -2$
 $\chi + 2 = 0$ @, $\chi = -2$ mas $-2 \neq -2$

$$[3]_{R} = \{-3,3\} = [-3]_{R}$$

$$[1]_{R} = \{1\}$$

$$[2]_{R} : \{2,5,11\} = [5]_{R} = [11]_{R}$$

4) Syam
$$x,y \in A + 1, g$$
, $x R y$.

Entro, with $g \in \mathbb{Z} + 1, g$, $x - y = 3 g$.

Logo, $y - x = 3 (-g)$.

Gono $-g \in \mathbb{Z}$, $y - x \in \text{multiple of } 3 \leftarrow 3$

portants, y Rx. Assim, R e' simética.

7.

- f) {a,c}.
- c) $Y = \{a, c, e\}$. Como os elementos de Y suso todos comparereis entre si, Y e um reliculada.

4)
$$grav(N_1) = 2$$

 $grav(N_2) = 2$
 $grav(N_3) = 2$
 $grav(N_4) = 0$

c) G contin um cicle e mos à coneco Logo, G mes à uma avore