1.5A High Brightness LED Driver IC

CN5711

General Description

The CN5711 is a current regulation integrated circuit operating from an input voltage of 2.8V to 6V, the constant output current can be set up to 1.5A with an external resistor. The CN5711 is ideal for driving LED. The on-chip power MOSFET and current sense block greatly reduce the number of external component count. The CN5711 adopts the temperature regulation instead of temperature protection function, the temperature regulation can make the LED being turned on continuously in case of high ambient temperature or high voltage drop. Other features include chip enable, etc.

CN5711 is available in thermally-enhanced 8-pin small outline package (eSOP8).

Features

- Operating Voltage Range: 2.8V to 6V
- On-chip Power MOSFET
- Low Dropout Voltage: 0.37V @ 1.5A
- LED Current up to 1.5A
- Output Current Accuracy: ± 5%
- Chip Temperature Regulation
- Over LED Current Protection
- Operating Temperature Range:

$$-40~^{\circ}\text{C}$$
 to $+85~^{\circ}\text{C}$

- Available in eSOP8 Package
- Pb-free, Rohs Compliant, Halogen Free

Applications

- Flashlight
- High-brightness LED driver
- LED headlights
- Emergency lights and lighting

Pin Assignment

Typical Application Circuit

Figure 1 Typical Application Circuit

Ordering Information

Part No.	Package	Top Marking	Shipping	Operating Temperature
CN5711	eSOP8	CN5711	Tape and Reel, 4000/reel	-40°C to 85°C

Block Diagram

Figure 2 Functional Block Diagram

Pin Description

Pin No.	Symbol	Description		
		LED Current Setting Pin. LED pin current is set by a resistor R _{ISET} which is		
		connected between ISET pin and GND, the current is calculated by:		
		$I_{LED} = 1800V / R_{ISET}$		
1	ISET	Where,		
		I _{LED} is LED pin current and is in ampere (A)		
		R _{ISET} is the resistance from ISET pin to GND in ohms.		
		R _{ISET} 's maximum value is 30K ohm.		
2	GND	The Negative Terminal of Power Supply.		
2 1	VCC	The Positive Terminal of Power Supply. The internal circuit is powered by		
3, 4		VCC.		
5, 6	LED	The Anode of LED. LED's anode is connected to this pin, and LED current		
3, 0		flows out of this pin.		
7	NC	No Connection.		
	CE	Chip Enable Input. A high input will put the device in the normal operating		
8		mode. Pulling the CE pin to low level will put the CN5711 into disable mode.		
		The CE pin can be driven by TTL or CMOS logic level.		
9	Exposed Pad	Soldered to GND.		

ABSOLUTE MAXIMUM RATINGS

Terminal Voltage (With respec	et to GND)	Thermal Resistance300°C/W		
VCC	-0.3V to +6.5V	Operating Temperature	40 to +85°C	
Other terminal voltage	0.3V to VCC	Storage Temperature	65 to +150°C	
Maximum Junction Temperatu	re 150°C	Lead Temperature (soldering, 10s)	+260°C	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(VCC=3.7V, TA= 25° C, unless otherwise noted.)

Parameters	Symbol	Test Conditions	Min	Тур	Max	Unit	
Operating Voltage Range	VCC		2.8		6	V	
Quiescent current	I _{VCC1}	$R_{ISET}=1.8k\Omega$, $I_{LED}=0A$	200	260	320	uA	
Shutdown state operating current	Ivcc2	V _{CE} =0V			1	uA	
LED pin current	I_{LED1}	$R_{ISET}=1.8k\Omega$	0.95	1	1.05	A	
LED pin current accuracy			-5		+5	%	
Over Current Protection Level	I _{OC}		1.5	1.9	2.3	A	
	V _{DROP}	$I_{LED} = 100 \text{mA} \times 95\%$		30 85			
		I_{LED} =350mA×95%					
LED min voltage duen		I_{LED} =500mA×95%		120	120		
LED pin voltage drop		I_{LED} =900mA×95%		230		mV	
		$I_{LED}=1.2A\times95\%$		310			
		$I_{LED}=1.5A\times95\%$		370			
CE input low	V_{CEL}	CE voltage falls			0.6	V	
CE input high	V_{CEH}	CE voltage rises	2.3			V	
CE input ourrant	I _{CEL}	CE=GND, VCC=6V	-1	·		4	
CE input current	I _{CEH}	EH CE=VCC=6V			1	uA	

Detailed Description

CN5711 is a current regulation integrated circuit operating from an input voltage of 2.8V to 6V, the constant output current can be set up to 1.5A with an external resistor. The CN5711 consists of high precision reference voltage, amplifier, current mirror, etc. The on-chip power transistor and current sense block greatly reduce the external component count, which makes the CN5711 ideal for LED driver.

When the CE pin is high, the input voltage is greater than 2.8V, and is larger than the LED forward voltage plus the required voltage drop, CN5711 functions normally to deliver constant current from the LED pin.

The CN5711 adopts the temperature regulation instead of temperature protection function, the temperature regulation can make the LED being turned on continuously in case of high ambient temperature or high voltage drop. When the CN5711 junction temperature reaches about 135 °C, the internal temperature regulation block reduces the LED current so that the junction temperature will not rise any more. This feature allows the users to maximize the use of the power handling capability of the chip, do not worry about the chip overheating and damage to the chip or external components.

The CN5711 also has the chip enable function, which can shutdown the whole chip to limit the current consumption within 1uA.

The CN5711 also adopts the over current protection block. When LED current approaches 1.9A(Typical), the over current protection block begins to function to prevent the LED current from increasing further.

Applications Information

Set the LED current

The CN5711 uses a resistor between ISET pin and GND to set the LED current, the current is calculated as follows:

$$I_{LED} = 1800V / R_{ISET}$$

Where: I_{LED} is the LED current in amperes (A);

 R_{ISET} is the resistance between ISET pin and GND in ohm, R_{ISET} 's maximum value is 30K ohm.

For example, if 1A LED current is required:

$$R_{ISET} = 1800V/1A = 1.8k\Omega$$

In order to ensure good stability and temperature characteristics, it is recommended to use a 1%, metal film resistor for $R_{\rm ISET}$.

Chip power consumption considerations

CN5711's maximum allowable power dissipation is:

$$P_{Dmax} = (T_J - T_A)/\theta_{JA}$$

Where, P_{Dmax} is the CN5711's maximum allowable power dissipation

 T_J is the CN5711's maximum junction temperature, which is 135 ° C

T_A is the CN5711's operating environment temperature

 θ _{JA} is the thermal resistance of the package

CN5711's actual power consumption is calculated with the following formula:

$$P_{Dact} = (VCC - V_{LED}) \times I_{LED}$$

Where, P_{Dact} is CN5711's actual power consumption

V_{LED} is the voltage at LED pin

 I_{LED} is the current flowing out of LED pin

For normal operation, P_Dact should be less than P_Dmax.

LEDs in parallel

The CN5711 can drive more than one LEDs in parallel, as shown in Figure 3.

In order to make sure the current is evenly distributed among the LEDs, a robust resistor in series with each LED is recommended.

Figure 3 CN5711 drives LEDs in Parallel

LED Dimming

There are three methods to dim the LED:

Method 1: The PWM signal is directly applied to the chip enable pin(CE), the frequency of the PWM signal should be less than 2KHz.

Method 2: A logic signal is applied to the gate of an NMOS as shown in Figure 4.

Figure 4 A logic signal to Dim LED

Method 3: A potentiometer is used to dim the LED as shown in Figure 5.

Figure 5 A Potentiometer to Dim the LED

PCB Design Considerations

- 1. RISET at ISET pin should be as close to the CN5711 as possible, also the parasitic capacitance at ISET pin should be kept as small as possible.
- 2. It is very important to use a good thermal PC board layout to maximize LED current. The thermal path for the heat generated by the IC is from the die to the copper lead frame through the package lead(especially the ground lead) to the PC board copper, the PC board copper is the heat sink. The footprint copper pads should be as wide as possible and expand out to larger copper areas to spread and dissipate the heat to the surrounding ambient. Feedthrough vias to inner or backside copper layers are also useful in improving the overall thermal performance. Other heat sources on the board, not related to the CN5711, must also be considered when designing a PC board layout because they will affect overall temperature rise and the maximum LED current.
- 3. The ability to deliver maximum LED current under all conditions require that the exposed metal pad on the back side of the CN5711 package be soldered to the PC board ground. Failure to make the thermal contact between the exposed pad on the backside of the package and the copper board will result in larger thermal resistance.

Package Information

- 577	Dimensions In Millimeters		Dimensions In Inches		
字符	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0. 069	
A1	0. 050	0. 150	0. 004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0. 006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
D1	3. 202	3. 402	0. 126	0. 134	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
E2	2. 313	2. 513	0. 091	0. 099	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	

Important Notice

Consonance Electronics reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and specifications at any time without notice.

Consonance Electronics assumes no liability for applications assistance or technique support or the use of any circuitry described in the specification during customer product designing and developing. Customers are solely responsible for their products and applications using Consonance Electronics products. Customer should provide adequate design, test and operating safeguard based on its products' operating environment and conditions.