

Practical – 1: Read soil health card data and find the statistics from the data

- Learn python library installation and use in python
- Read Soil health card data file
- Extract the required data from the file
- Understanding and statistics of data

```
01.
      #Reading an excel file using Python
02.
      import xlrd
03.
      import numpy as np
04.
05.
      # Give the location of the file
06.
      loc = ("Mehasana_EC_f.xlsx")
07.
08.
      # To open Workbook
09.
      wb = xlrd.open workbook(loc)
      sheet = wb.sheet_by_index(0)
10.
11.
12.
      # For row 0 and column 0
13.
      sheet.cell_value(0, 0)
      # Extracting number of rows
14.
15.
      print('No of rows in the sheet:',sheet.nrows)
16.
17.
      #Extracting number of columns
      print('No of columns in the sheet:',sheet.ncols)
18.
19.
20.
      # Extracting all columns name
21.
      for i in range(sheet.ncols):
22.
         print(sheet.cell_value(0, i))
23.
      # save particular column
24.
25.
      X = []
26.
     for i in range (sheet.nrows):
27.
          x.append(sheet.cell value(i,5))
28.
29.
         # print(x)
30.
31.
      Min_EC = np.min(x[1:21]);
32.
      print('Minimum value of EC:',Min EC)
33.
      Max_EC = np.max(x[1:21]);
      print ('Maximum value of EC:',Max_EC)
34.
35.
      Mean EC = np.mean(x[1:21]);
36.
      print('Mean value of EC:',Mean_EC)
37.
      Std_EC = np.std(x[1:21]);
38.
      print('Standard Deviation of EC:',Std_EC)
      Median_EC = np.median(x[1:21]);
39.
      print('Median of EC:',Median_EC)
40.
41.
      cov_EC = np.cov(x[1:21])
42.
      print ('Covariance of EC:',cov_EC)
43.
44.
      #convert list to matrix to find variance
45.
      y = np.matrix(x[1:21])
46.
     var_EC = y.var
     print('Variance of EC:',var_EC)
```

```
No of rows in the sheet: 21
No of columns in the sheet: 6
District
Taluka
Village
Latitude
Longitude
EC
Minimum value of EC: 0.24
Maximum value of EC: 1.37
Mean value of EC: 0.4474999999999999
Standard Deviation of EC: 0.2501374622082826
Median of EC: 0.415
Covariance of EC: 0.06586184210526316
Variance of EC: <bound method matrix.var of matrix([[0.36, 0.29, 0.44, 0.41, 0.33,
0.34, 0.46, 0.28, 0.24, 0.46,
         0.45, 0.43, 0.55, 0.24, 0.29, 0.46, 0.28, 0.42, 0.85, 1.37]])>
```

Practical – 2: Plot different types of graphs using soil health card data

- Plot histogram of any one variable from given data file
- Scatter plot of any one property with its respective geo-location
- Show property value distribution in scatter plot with respect to marker size

```
# -*- coding: utf-8 -*-
01.
02.
     Created on Thu May 30 15:01:23 2019
03.
04.
     @author: GeoSpatial-3
05.
06.
07.
     import matplotlib.pyplot as plt
09.
     import pandas as pd
10.
     import numpy as np
     from mpl_toolkits.mplot3d import Axes3D
11.
12.
13.
14.
     Mehsana_SH = pd.read_csv('Mehsana_Soil_Health_Card.csv')
     Mehsana_SH.head()
15.
16.
     Mehsana SH.info()
17.
     Mehsana_SH.describe()
18.
     Mehsana_SH.columns
19.
20.
     # Extract Latitude
21.
     Lat = Mehsana_SH['Latitude']
22.
23.
     #Convert to array
24.
     Lat = np.array(Lat)
25.
     #reshape array 1d to 2d
26.
27.
     Lat = Lat.reshape(-1,1)
28.
29.
      #Extract Longitude
30. Lon = Mehsana SH['Longitude']
31.
    #Convert to array
32.
33.
     Lon = np.array(Lon)
```

```
34.
 35.
      #reshape array 1d to 2d
 36.
      Lon = Lon.reshape(-1,1)
 37.
 38.
      EC = Mehsana_SH['EC']
 39.
 40.
      EC = np.array(EC)
41.
 42.
      EC = EC.reshape(-1,1)
 43.
 44.
      x = Mehsana_SH[['EC','pH']]
      y = np.array(x)
 45.
 46.
      z = y[0:510,0]
      plt.hist(z[0:50],bins=[0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.2,1.4,1.5])
 47.
 48.
      plt.xlabel('EC Value')
 49.
 50.
      p = Mehsana_SH['P205']
 51.
 52.
      p = np.array(p)
 53.
      p = p.reshape(-1,1)
 54.
 55.
61.
62.
       import matplotlib.pyplot as plt
63.
       import numpy as np
64.
65.
66.
       Lon1 = Lon[0:5]
67.
       Lat1 = Lat[0:5]
68.
       p1 = p[0:5]
69.
70.
       plt.scatter(Lon1, Lat1, p1, marker='o',cmap='viridis')
     plt.xlabel('Longitude')
plt.ylabel('Latitude')
71.
72.
```


Practical – 3: Estimating Soil properties using simple and multiple linear regression

- Read csv data
- Data preparation for regression
- Simple linear regression using statesmodel
- Multiple linear regression using statesmodel
- Scatter plot for regression result

```
08. import numpy as np
09.
      import pandas as pd
10.
      import statsmodels.api as sm
11.
      import seaborn as sns
12.
13.
      Mehsana = pd.read_csv('Mehasana_EC_pH_f.csv')
14.
      Mehsana.head()
15.
      Mehsana.info()
16.
      Mehsana.describe()
17.
      Mehsana.columns
18.
19.
      #correlation between the variables in the dataset
20.
     Mehsana.corr()
21.
22.
     #Training a Linear Regression Model
     X1 = Mehsana['EC']
y1 = Mehsana['NDVI']
23.
24.
25.
      x = np.array(X1[1:20])
     y = np.array(y1[1:20])
26.
27.
28.
     # fit the statsmodel
      X_{constant} = sm.add_{constant}(x)
29.
    model = sm.OLS(y, X_constant)
lin_reg = model.fit()
30.
31.
     lin_reg.summary()
32.
33.
34.
      #Scatter plot
      Mehsana.plot(kind='scatter',x='EC',y='NDVI')
35.
```

```
#Fit the regression line
       sns.lmplot(x='EC',y='NDVI',data=Mehsana)
38.
39.
40.
41.
      Multiple linear regression
42.
43.
44.
45.
       import numpy as np
46.
      import pandas as pd
      import statsmodels.api as sm
47.
48.
49.
      data = pd.read_csv('Multiple_LR.csv')
50.
51.
       data.head()
52.
53.
      data.info()
      data.describe()
54.
55.
      data.columns
      data.corr()
57.
58.
      X2 = data['EC']
y2 = data[['DEM','NDVI','Rain']]
59.
60.
61.
      x1 = np.array(X2[1:21])
62.
63.
      y1 = np.array(y2[1:21])
64.
      Y_constant_ = sm.add_constant(y1)
model = sm.OLS(x1, Y_constant_)
lin_reg = model.fit()
65.
66.
67.
      lin_reg.summary()
68.
```

OLS Regression Results

Dep. Variable:	у			R-squared:			0.249		
Model:	OLS			Adj.	R-squared:	0.205			
Method:	Least Squares			F-sta	atistic:	5.645			
Date:	Thu, 30 May 2019			Prob (F-statistic):			0.0295		
Time:	22:54:05			Log-Likelihood:			35.847		
No. Observations:			19	AIC:			-67.69		
Df Residuals:			17	BIC:			-65.80		
Df Model:	1								
Covariance Type:		nonrob	ust						
===========	======		=====	=====		=======	=======		
	coef	std err		t	P> t	[0.025	0.975]		
const 0.	4784	0.018	26	.486	0.000	0.440	0.517		
x1 -0.	0826	0.035	-2	.376	0.030	-0.156	-0.009		
Omnibus:	======		===== 554	Durbi	in-Watson:	=======	0.570		
Prob(Omnibus): 0.758		758	Jarque-Bera (JB):			0.600			
Skew:	0.121		121	Prob(JB):			0.741		
Kurtosis:		2.	164	Cond.	No.		4.75		
	======		=====	=====		=======			

OLS Regression Results

Dep. Variabl	e:	у			R-squared:			
Model:		OLS			Adj. R-squared:			
Method:		Least Squares			F-statistic:			
Date:		Thu, 30 May 2019			(F-statistic)	0.0919		
Time:		22:55:38			Log-Likelihood:			
No. Observat	ions:		19	AIC:			2.197	
Df Residuals	:		15	BIC:			5.975	
Df Model:			3					
Covariance T	ype:	nonrob	ust					
=========			=====	=====			=======	
	coef	std err		t	P> t	[0.025	0.975]	
const	1.1528	0.775	1	.488	0.157	-0.498	2.804	
x1	-0.0030	0.002	-1	.434	0.172	-0.007	0.001	
x2	-1.3881	1.697	-0	.818	0.426	-5.006	2.229	
x3	0.0015	0.006	0	.247	0.808	-0.012	0.015	
Omnibus:	=======	 9.	483	Durb	in-Watson:	=======	0.905	
Prob(Omnibus):	0.	009	Jarqu	ue-Bera (JB):		7.727	
Skew:	•	0.	925	Prob	(JB):		0.0210	
Kurtosis:		5.	518	Cond.	. No.		2.84e+03	

<u>Practical – 4: Predicting Soil property using deep learning method</u>

- Load csv data
- Data preparation for neural network model
- Define neural network model using keras
- Compile the model
- Fit the model
- Evaluate the model
- Find the rmse for predicted data
- Plot actual and predicted data using matplotlib

```
97
      import numpy as np
 08.
      from keras.models import Sequential
 09.
       from keras.layers import Dense
 10.
      from sklearn.preprocessing import MinMaxScaler
 11.
       import matplotlib.pyplot as plt
 12.
 13.
       #Input dimension
 14.
      tot1 = 13
 15.
      perce = 70*0.01
 16.
 17.
      #Load the dataset
 18.
      import csv
 19.
      ecs = []
 20.
      dems = []
 21.
      feats = []
      with open('Gandhinagar_Patan.csv') as csv_file:
 22.
 23.
          csv_reader = csv.reader(csv_file, delimiter=',')
          line_count = 0
 24.
 25.
 26.
           for row in csv_reader:
              newfeat = []
 27.
 28.
              #print(row)
 29.
              ecs.append(row[0])
 30.
              dems.append(row[1])
 31.
              newfeat.append(row[2])
              newfeat.append(row[3])
 32.
              newfeat.append(row[4])
 33.
 34.
              newfeat.append(row[5])
 35.
              newfeat.append(row[6])
              newfeat.append(row[7])
 36.
 37.
              newfeat.append(row[8])
 38.
              newfeat.append(row[9])
 39.
              newfeat.append(row[10])
 40.
              newfeat.append(row[11])
40.
               newfeat.append(row[11])
41.
               newfeat.append(row[12])
42.
               newfeat.append(row[13])
               newfeat.append(row[14])
43.
44.
               feats.append(newfeat)
45.
46.
               n = len(ecs) -1
47.
      y = np.zeros((n,1))
48.
      X = np.zeros((n,tot1))
49.
      for i in range(len(ecs)):
50.
          if(i==0):
51.
               pass
52.
53.
               y[i-1] = float(ecs[i])
54.
               X[i-1,0] = float(dems[i])
55.
               for k in range(tot1-1):
56.
                   X[i-1,k+1] = float(feats[i][k])
57.
58.
               X.shape
59.
60.
      #Scale the data
61.
      scalarX, scalarY = MinMaxScaler(), MinMaxScaler()
      scalarX.fit(X)
62.
63.
      scalarY.fit(y)
64.
      X2 = scalarX.transform(X)
      Y2 = scalarY.transform(y)
65.
66.
67.
      Y2.shape
68.
69.
      #Random seed for the model
70.
      np.random.seed(10)
```

```
72.
       #Arrange the data
  73.
       ind = np.random.permutation(X2.shape[0])
  74.
       X3 = X2[ind]
 75.
       Y3 = Y2[ind]
 76.
  77.
       # Data Splitting for training and testing
  78.
       m = X3.shape[0]
  79.
       x2train = X3[0: int(m*perce)]
 80.
       x2test = X3[int(m*0.7):]
  81.
 82.
       y2train = Y3[0: int(m*perce)]
 83.
       y2test = Y3[int(m*0.7):]
 84.
 85.
       #Define and Compile
 86.
       model = Sequential()
       model.add(Dense(30, input_dim=tot1, activation='relu'))
model.add(Dense(20, activation = 'relu'))
 87.
 88.
       model.add(Dense(15, activation='linear'))
 89.
 90.
       model.add(Dense(1))
 91.
 92.
       model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
 93.
 94.
       #Fit the model
 95.
       model.fit(x2train, y2train,validation_data= (x2test,y2test), epochs=8500, verbose=1)
 96.
       y2pred = model.predict (x2test)
 97.
       y2inverted_pred = scalarY.inverse_transform(y2pred)
       y2inverted_real = scalarY.inverse_transform(y2test)
 98.
 99.
       x2inverted = scalarX.inverse_transform(x2test)
 100.
 101.
        #Evaluate the model
102.
       mse = np.mean((y2inverted_real- y2inverted_pred)**2 )
103.
104.
        # root mean squared error
105.
        # m is the number of training examples
106.
        m = 70
107.
        rmse = np.sqrt(mse/m)
108.
        print ('RMSE Value for the model is',rmse)
109.
110.
        #Plot the actual and predicted value for the EC
111.
        plt.plot(y2inverted_pred,'r-o')
        plt.plot(y2inverted_real, 'b-*')
112.
113.
        plt.xlabel("Teting Points")
        plt.ylabel("EC Value")
114.
        plt.gca().legend(('Predicted EC','Actual EC'))
115.
```

RMSE Value for the model is 0.11447881427550338

<u>Practical – 5: Soil supervised classification using Support Vector Machine</u>

- Read shape file of soil data
- From shape file make the label data for SVM in sklearn
- Split the data for training and testing
- Apply SVM using sklearn

Code:

```
from sklearn.metrics import confusion matrix
02.
     from sklearn.model_selection import train_test_split
03.
     from sklearn.svm import SVC
04.
     import pandas as pd
05.
     import numpy as np
     from pandas import DataFrame
06.
     import matplotlib.pyplot as plt
07.
08.
     #Read data
     data = pd.read_csv('NBSS_SVM_DATA.csv')
09.
10.
     data_gt = np.array(data['PH'])
     11.
12.
13.
14.
     data_fe = df.values
15.
16.
     #Train, test splitting
     X_train, X_test, y_train, y_test = train_test_split(data_fe, data_gt, random_state = 0)
17.
18.
19.
20.
     svm_model_linear = SVC(kernel = 'linear', C = 1).fit(X_train[0:500], y_train[0:500])
21.
22.
23.
     svm_predictions = svm_model_linear.predict(X_test[0:500])
24.
25.
     #Find the accuracy
26.
     accuracy = svm_model_linear.score(X_test, y_test)
27.
28.
     #Generate confusion matrix
29.
     cm = confusion_matrix(y_test, svm_predictions)
30.
     print('Accuracy of the SVM is:', accuracy*100)
print ('Confusion Matrix:',cm)
31.
32.
33. plt.imshow(cm,cmap='hot')
```

Output:

Accuracy of the SVM is: 65.91928251121077

```
Confusion Matrix: [[149 26 22 0 0 0 0 0 0 0 0 0]

[64 32 0 0 0 0 0 0 0 0 0 0]

[32 7 46 0 0 0 0 0 0 0 0]

[0 0 0 2 0 0 0 0 0 0 0]

[0 0 0 0 16 0 0 0 0 0 0]

[1 0 0 0 0 0 0 0 0 0 0 0]

[1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0]
```


Practical – 6: Soil unsupervised classification using Gaussian Mixture Model

- Load and understand input data for unsupervised classification
- Apply GMM using sklearn

```
07.
       import pandas as pd
08.
       import matplotlib.pyplot as plt
        from pandas import DataFrame
10.
      from sklearn.mixture import GaussianMixture
11.
       data = pd.read_csv('NBSS_SVM_DATA.csv')
df = DataFrame(data,columns=['Soil_Group','Soil_depth','Parent_Material'])
12.
13.
       data_fe = df.values
14.
15.
16.
       # turn it into a dataframe
       data_fea = pd.DataFrame(data_fe)
18.
19.
       # plot the data
       plt.scatter(df['Soil_Group'], df['Soil_depth'], df['Parent_Material'])
20.
21.
22.
       gmm = GaussianMixture(n_components = 3)
23.
24.
       # Fit the GMM model for the dataset which expresses the dataset as a
25.
       # mixture of 3 Gaussian Distribution
26.
       gmm.fit(data_fea)
27.
       # Assign a label to each sample
28.
       labels = gmm.predict(data_fea)
data_fea['labels']= labels
d0 = data_fea[data_fea['labels']== 0]
d1 = data_fea[data_fea['labels']== 1]
d2 = data_fea[data_fea['labels']== 2]
29.
30.
31.
32.
33.
34.
       # plot three clusters in same plot
plt.scatter(d0[0], d0[1], c = 'r')
plt.scatter(d1[0], d1[1], c = 'yellow')
35.
36.
37.
38.
       plt.scatter(d2[0], d2[1], c = 'g')
39.
40.
       # print the converged log-likelihood value
41.
       #print(gmm.lower_bound_)
42.
       # print the number of iterations needed for the log-likelihood value to converge
43.
44.
       print('Number of iterations needed to converge:',gmm.n_iter_)
45.
       print(gmm.score)
```

Output: Number of iterations needed to converge: 19

<u>Practical – 7: Yieldoptimization using N, P, K value of soil</u>

- Load data
- Develop multiple linear regression model to estimate the yield using N,P,K values from the data
- Change the N,P,K combinations to optimize yield

```
08.
      import pandas as pd
09.
      import numpy as np
10.
      #import matplotlib.pyplot as plt
11.
      import statsmodels.api as sm
12.
13.
      # read data-set
      data = pd.read_csv('optimization.csv')
14.
15.
      data.head()
16.
      data.info()
17.
      data.describe()
18.
      data.columns
19.
20.
      #Training a Multiple Linear Regression Model
      X = data[['N','P','K']]
y = data['yield']
21.
22.
23.
      x1 = np.array(X[0:7])
24.
25.
      y1 = np.array(y[0:7])
26.
27.
      X_constant_ = sm.add_constant(x1)
28.
      model = sm.OLS(y1, X_constant_)
29.
      lin_reg = model.fit()
30.
      lin_reg.summary()
```

==========			======	-=====		=======	========
Dep. Variable:			у	R-squ	uared:		0.936
Model:		OLS			Adj. R-squared:		
Method:		Least Squares			F-statistic:		
Date:	1	Thu, 30 May 2019			(F-statistic)	:	0.0269
Time:			23:48:10	Log-l	_ikelihood:		0.84167
No. Observation	ns:		7	AIC:			6.317
Df Residuals:			3	BIC:			6.100
Df Model:			3				
Covariance Typ	e:	n	onrobust				
=========			======			=======	
	coef	std	err	t	P> t	[0.025	0.975]
const	1.2619		296	4.256	0.024	0.318	2.205
x1	0.0074		004	2.004	0.139	-0.004	0.019
x2	0.0123		006	1.944	0.147	-0.008	0.032
x3	0.0030	0.	004	0.726	0.521	-0.010	0.016
			======			=======	
Omnibus:			nan		in-Watson:		1.219
Prob(Omnibus):			nan		ue-Bera (JB):		0.660
Skew:			0.275	Prob	• /		0.719
Kurtosis:			1.600	Cond.	. No.		343.
	======		=======			=======	