

INTERNATIONAL A-LEVEL MATHEMATICS MA05

(9660/MA05) Unit M2 Mechanics

Mark scheme

June 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaga.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

-x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

ISW Ignore subsequent working

Q	Answer	Marks	Comments
1(a)	Reaction Resistance force Weight	M1 A1	M1: At least two arrows/forces on the diagram with at least one vertical force, with correct names A1: All four arrows/forces shown on the diagram (in the correct directions), with correct names Allow interchange of the directions of the two horizontal forces
		2	

Q	Answer	Marks	Comments
1(b)	Resultant force: $D - 0.91v^{\frac{5}{3}} = ma$ $D = ma + 0.91v^{\frac{5}{3}}$	M1	Forming an equation of motion Allow one error or omission PI
	$D = 280 \times 3.5 + 0.91 \times \left(15\right)^{\frac{5}{3}}$	m1	Correct substitution into their equation for the driving force $280 \times 3.5 = 980, \ 0.91 \times \left(15\right)^{\frac{5}{3}} = 83.02$
	D = 1100 [N]	A 1	Correct value for the driving force Note Unrounded value is 1063.022057 [N]
		3	

Q	Answer	Marks	Comments
1(c)	When in equilibrium $\frac{P}{-0.91}v^{\frac{5}{3}} = 0$		Use of $P = Fv$ with equation of
	V	M1	motion
	$v = \left(\frac{P}{0.91}\right)^{\frac{3}{8}}$ $v = \left(\frac{50 \times 10^3}{0.91}\right)^{\frac{3}{8}}$		
	$v = \left(\frac{50 \times 10^{\circ}}{0.91}\right)^{\circ}$		Note
	$v = 60 \left[\text{m s}^{-1} \right]$	A 1	Unrounded answer is 59.906[m s ⁻¹]
		2	

Q	Answer	Marks	Comments
1(d)	[The maximum speed would be] lower [than 60 m s ⁻¹]	B1	oe, such as decreases
	as a component of the motorcycle's weight now acts down the slope [so the resultant force becomes zero at a lower speed]	E1	A valid explanation
		2	

Question 1 Total	9
------------------	---

Q	Answer	Marks	Comments
2(a)(i)	$[\mathbf{F} =] 4\cos(2t)\mathbf{i} - 8e^t\mathbf{j} + 24t\mathbf{k}$	B1	ACF
		1	

Q	Answer	Marks	Comments
2(a)(ii)	Equilibrium requires the resultant force to be zero [so all three components of F would need to be simultaneously zero]	E1	States the condition for equilibrium or states the acceleration is zero
	[However] $8e^t > 0$ for $t \ge 0$	E1	Explains that the \mathbf{j} component [of the resultant force] or \mathbf{e}^t can never equal zero
		2	

Q	Answer	Marks	Comments
2(b)(i)	$\mathbf{F}_{2} = (4\cos(2t)\mathbf{i} - 8e^{t}\mathbf{j} + 24t\mathbf{k})$ $-(3\cos(2t)\mathbf{i} - 2e^{t}\mathbf{j} - 8t\mathbf{k})$	M1	their resultant force – F ₁
	$\mathbf{F}_2 = \cos(2t)\mathbf{i} - 6\mathbf{e}^t\mathbf{j} + 32t\mathbf{k}$	A 1	
		2	

Q	Answer	Marks	Comments
2(b)(ii)	$\mathbf{F}_{2} = \cos\left(2 \times \frac{\pi}{4}\right)\mathbf{i} - 6e^{\frac{\pi}{4}}\mathbf{j} + \left(32 \times \frac{\pi}{4}\right)\mathbf{k}$	M1	Substitutes $t = \frac{\pi}{4}$ into their \mathbf{F}_2
	$\mathbf{F}_2 = -6e^{\frac{\pi}{4}}\mathbf{j} + 8\pi\mathbf{k}$		
	$\left \mathbf{F}_{2}\right = \sqrt{\left(6e^{\frac{\pi}{4}}\right)^{2} + \left(8\pi\right)^{2}}$	m1	Note: $6e^{\frac{\pi}{4}} = 13.159, 8\pi = 25.132$
	$\left \mathbf{F}_{2}\right =28\left[N\right]$	A1ft	AWRT 28 ft an \mathbf{F}_2 of the form $\pm \cos(2t)\mathbf{i} \pm 6\mathbf{e}^t\mathbf{j} \pm 32t\mathbf{k}$
		3	

Question 2 Total	8	
------------------	---	--

Q	Answer	Marks	Comments
3(a)	(3, 3)	B1	
	The centre of mass of the uniform circular lamina is at its geometric centre	E1	Allow any mention of symmetry of the circle
		2	

Q	Answer	Marks	Comments
3(b)	$(2+3+7+11+5)\overline{X}$ = $[2\times 0+]3\times 3+7\times 3+11\times 6+5\times 3$	M1	Forming equation for <i>x</i> -coordinate of the centre of mass Condone one error
	$\overline{X} = \frac{111}{28}$	A 1	Any correct exact form
	$(2+3+7+11+5)\overline{Y}$ = 2×3+3×6[+7×0]+11×3+5×3	M1	Forming equation for <i>y</i> -coordinate of the centre of mass Condone one error
	$\overline{Y} = \frac{18}{7}$	A 1	Any correct exact form
	$\left(\frac{111}{28}, \frac{18}{7}\right)$		If M1 A0 M1 A0 awarded, then allow SC1 for (3.96, 2.57)
		4	

Q	Answer	Marks	Comments
3(c)	$\tan \theta = \frac{\frac{111}{28} - 3}{6 - \frac{18}{7}} \left[= \frac{\left(\frac{27}{28}\right)}{\left(\frac{24}{7}\right)} = \frac{9}{32} \right]$	M1 A1ft	M1: At least numerator or denominator correct, ft their coordinates for the COM A1ft: Both numerator and denominator correct, ft their coordinates for the COM
	$\theta = \tan^{-1} \left(\frac{\frac{111}{28} - 3}{6 - \frac{18}{7}} \right)$		
	$\theta = 16^{\circ}$	A 1	Note: unrounded answer is 15.7086°
		3	

Question 3 Tot	9	
----------------	---	--

Q	Answer	Marks	Comments
4(a)(i)	$\left[\frac{1}{2}mv^2=\right]$		
	$0.5 \times (80 \times 10^{-3}) \times 45^2 = 81 [J]$	B1	AG Must be convincingly shown
		1	

Q	Answer	Marks	Comments
4(a)(ii)	At maximum height, speed of arrow is		
	45cos(10°)	M1	
	$\left[\frac{1}{2}mv^2=\right]$		
	$0.5 \times (80 \times 10^{-3}) \times (45 \cos(10^{\circ}))^{2}$		
	= 78.6 [J]	A 1	CAO to 3 sf AWRT 78.6 [J]
		2	

Q	Answer	Marks	Comments
4(b)	Loss in KE = Gain in GPE		
	$81 - 78.6 = mg\Delta h$	M1	At least LHS correct, ft their 78.6
	$\Delta h = \frac{81 - 78.6}{\left(80 \times 10^{-3}\right) \times 9.8}$		
	$\Delta h=$ 3.06122 [m]	A 1	Allow 3.11536 [m] from unrounded value for minimum KE PI by correct final answer
	Maximum height above the ground		
	= 3.06122 +1.6		
	= 4.7 [m]	A1ft	ft their Δh value + 1.6
		3	

Q	Answer	Marks	Comments
4(c)(i)	Time to cover the horizontal displacement of 70 metres		
	$T = \frac{70}{45\cos(10^\circ)}$		
	T = 1.58 [s]	B1	AWRT 1.58 Note: unrounded answer is 1.57955 [s]
		1	

Q	Answer	Marks	Comments
4(c)(ii)	Vertical displacement when horizontal displacement is 70 metres		
	$[s =] 45\sin(10^\circ) T - 0.5 \times 9.8 \times T^2 + 1.6$ $[s =] 45\sin(10^\circ) \times 1.57955$ $-0.5 \times 9.8 \times (1.57955)^2 + 1.6$	M1 A1	M1: Use of $s = ut + \frac{1}{2}at^2$ with $u = 45\sin(10^\circ)$ and $a = \pm 9.8$ Condone +1.6 omitted (May be recovered later in solution) PI A1: AWFW [0.114, 0.117] or AWFW [1.714, 1.717] PI Note: $45\sin(10^\circ) \times 1.57955$ $-0.5 \times 9.8 \times (1.57955)^2 = 0.117$
	[s =] 1.717 [m]	A 1	Expect 1.714 if $T = 1.58$ used AWRT 1.7 from correct working
	As 0.8 < 1.717 < 1.8, the arrow does hit the target	B1	Comparison of their vertical displacement with the height(s) of the target and correct conclusion
		4	

Question 4 Total	11	
------------------	----	--

Q	Answer	Marks	Comments
5(a)	$\left \mathbf{r}\right = \sqrt{\left(e^{-3t}\cos(3t)\right)^2 + \left(e^{-3t}\sin(3t)\right)^2}$	M1	
	$\left \mathbf{r}\right = \sqrt{\mathrm{e}^{-6t}\mathrm{cos}^2\left(3t\right) + \mathrm{e}^{-6t}\mathrm{sin}^2\left(3t\right)}$		
	$\left \mathbf{r}\right = \sqrt{e^{-6t}\left(\cos^2\left(3t\right) + \sin^2\left(3t\right)\right)}$		
	$ \mathbf{r} = \sqrt{\mathrm{e}^{-6t}}$	m1	Use of $\cos^2(3t) + \sin^2(3t) = 1$
	$ \mathbf{r} = e^{-3t}$	A 1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
5(b)	$\mathbf{v} = \begin{bmatrix} -3e^{-3t} \left(\sin(3t) + \cos(3t) \right) \\ -3e^{-3t} \left(\sin(3t) - \cos(3t) \right) \end{bmatrix}$	M1 A1	M1: At least one component correct Condone written in any vector formA1: Both components correct, written as a column vector
		2	

Q	Answer	Marks	Comments
5(c)(i)	$ \mathbf{v} ^2 = 9e^{-6t} (\sin(3t) + \cos(3t))^2 + 9e^{-6t} (\sin(3t) - \cos(3t))^2$	M 1	ое
	$ \mathbf{v} ^2 = 9e^{-6t} \left(\sin^2 (3t) + \cos^2 (3t) + 2\sin(3t)\cos(3t) + \sin^2 (3t) + \cos^2 (3t) - 2\sin(3t)\cos(3t) \right)$	M 1	Both brackets expanded
	$\left \mathbf{v}\right ^2 = 18e^{-6t}$		
	$\left \mathbf{v}\right = \sqrt{18} \mathrm{e}^{-3t}$	A 1	CAO Condone $ \mathbf{v} = 3\sqrt{2} e^{-3t}$
		3	

Q	Answer	Marks	Comments
5(c)(ii)	$\left[KE = \frac{1}{2}mv^2\right] = 0.5 \times 6 \times 18$	М1	Substitution of $m = 6$ and their b into $\frac{1}{2}mv^2$ Condone appearance of exponential term
	[KE =] 54[J]	A1ft	ft their b
		2	

tion 5 Total 10

Q	Answer	Marks	Comments
6	Kinetic energy at A		
	$\left[\frac{1}{2}mv^2\right] = 0.5 \times 16 \times 35^2$		
	= 9800 [J]	B1	PI
	Friction experienced by particle		
	$\mu mg \cos(28^{\circ}) = 0.64 \times 16 \times 9.8 \cos(28^{\circ})$	B1	PI by correct friction force
	= 88.60555 [N]		
	Let $AB = d$		
	Change in height between A and B		
	$[\Delta h =] d \sin(28^\circ)$	B1	Seen or used
	Conservation of Energy		
	$9800 = 88.60555 \times d + 16 \times 9.8 \times d \sin(28^{\circ})$	М1	Initial KE = 'Work Done' term (in terms of a distance) + 'Change in GPE' term (in terms of a distance) PI by correct value distance
	$d = \frac{9800}{88.60555 + 16 \times 9.8 \sin(28^\circ)}$		
	d = 60 [m]	A 1	Unrounded answer is 60.4122 [m]

Q	Answer	Marks	Comments
6 ALT	Friction experienced by particle		
	$\mu mg \cos(28^{\circ}) = 0.64 \times 16 \times 9.8 \cos(28^{\circ})$	B1	PI by correct friction force
	= 88.60555 [N]		
	Resultant force experienced by particle		
	$-88.6055516\times9.8\times\sin(28^{\circ})$	B1	
	[=-162.218]		
	-162.218 = 16 <i>a</i>		
	a = -10.1386 [m s ⁻¹]	B1	
	Let $AB = d$		
	$v^2 = u^2 + 2ad \Rightarrow d = \frac{v^2 - u^2}{2a}$		
	$d = \frac{0^2 - 35^2}{2 \times -10.1386}$	M1	ft their acceleration
	d = 60 [m]	A 1	Unrounded answer is 60.4122 [m]

Question 6 Total

5

Q	Answer	Marks	Comments
7(a)(i)	$x = (v\cos\theta)t$	B1	oe
	$y = (v\sin\theta)t - \frac{1}{2}gt^2$	B1	
	$t = \frac{x}{v \cos \theta}$		
	$y = (v\sin\theta) \times \frac{x}{v\cos\theta} - \frac{1}{2}g \times \left(\frac{x}{v\cos\theta}\right)^2$	M1 A1	M1 : Eliminates <i>t</i> in both terms with at least one term correct A1 : All correct
	$(v\sin\theta) \times \frac{x}{v\cos\theta} = x\tan\theta$		
	$-\frac{1}{2}g \times \left(\frac{x}{v \cos \theta}\right)^2 = -\frac{gx^2}{2v^2} \times \frac{1}{\cos^2 \theta}$		
	$-\frac{gx^2}{2v^2} \times \frac{1}{\cos^2\theta} = -\frac{gx^2}{2v^2} \sec^2\theta$		
	$y = x \tan \theta - \frac{gx^2}{2v^2} \sec^2 \theta$	A 1	AG Must be convincingly shown
		5	

Q	Answer	Marks	Comments
7(a)(ii)	The particle does not experience air resistance	E 1	Any valid assumption
		1	

Q	Answer	Marks	Comments
7(b)	$10 = 25 \tan \alpha - \frac{9.8 \times 25^2}{2 \times 30^2} \sec^2 \alpha$	M1	Substitution of values into the result given in part (a)(i)
	$10 = 25\tan\alpha - \frac{9.8 \times 25^2}{2 \times 30^2} \times \left(1 + \tan^2\alpha\right)$	M1	Use of $1 + \tan^2 \alpha = \sec^2 \alpha$
	$245 \tan^2 \alpha - 1800 \tan \alpha + 965 = 0$	M1	Forms a three-term quadratic equation in $\tan \alpha$
	$\tan \alpha = \frac{1800 \pm \sqrt{1800^2 - 4 \times 245 \times 965}}{2 \times 245}$		
	$\tan \alpha = 0.5822, 6.7646$		
	$\alpha = 30,82$	A1 A1	A1: At least one correct value A1: Both values correct and no others Note: unrounded values are 30.210 and 81.591
		5	

T 7		
Question 7 Total	11	

Q	Answer	Marks	Comments
8(a)	The length of the string does not increase	E1	Allow '[length] does not change'
		1	

Q	Answer	Marks	Comments
8(b)	$T\sin\theta = m\omega^2 r$	M1	
	$r=l{\sf sin} heta$		
	T sin $ heta=m\omega^2 l$ sin $ heta$		
	$T = m \omega^2 l$	A 1	
		2	

Q	Answer	Marks	Comments
8(c)	$T\cos\theta = mg$	B1	PI
	$\frac{mg}{\cos\theta} = m\omega^2 l$		
	$\frac{g}{l\cos\theta} = \omega^2$		
	$\sqrt{\frac{g}{l \cos \theta}} = \frac{2\pi}{t}$	М1	Use of $\omega = \frac{2\pi}{t}$, where t is the time period
	$[t =] 2\pi \sqrt{\frac{l\cos\theta}{g}}$	A 1	ACF
		3	

Q	Answer	Marks	Comments
8(d)	1.2 < <i>t</i> < 1.5	M1	oe, both time periods seen or used
	$t = 2\pi \sqrt{\frac{l \cos \theta}{g}}$		
	$\cos\theta = \frac{g}{l} \left(\frac{t}{2\pi}\right)^2$		
	When $t = 1.2$		
	$\cos\theta = \frac{9.8}{0.71} \left(\frac{1.2}{2\pi}\right)^2$		
	$\theta = 59.770$	A 1	One correct value for θ
	When $t = 1.5$		
	$\cos\theta = \frac{9.8}{0.71} \left(\frac{1.5}{2\pi}\right)^2$		
	$\theta = 38.124$		
	38 < heta < 60	A 1	38.124 < θ < 59.770 Fully correct strict inequalities for θ
		3	

Outstian 8 Tatal	0	
Question 8 Total	9	

Q	Answer	Marks	Comments
9(a)	Taking moments about B		
	$12g\cos(75^{\circ}) \times 3.5 = 15\sin(75^{\circ}) \times 7$ $+ \mu_{1} \times 15\cos(75^{\circ}) \times 7$ $106.529 = 101.422 + 27.175\mu_{1}$	M1 A1	M1: At least one side correct PI A1: Both sides fully correct PI
	$\mu_1 = 0.188$	A 1	Note Unrounded value is $\mu_1 = 0.187949$
		3	

Q	Answer	Marks	Comments
9(b)	Forces in equilibrium (vertical direction)		$R_G = ext{normal reaction on rod from}$ ground
	$12g = \mu_1 \times 15 + R_G$	M1 m1	M1: At least one side correct PI m1: Both sides fully correct PI ft their μ_1
	$R_G = 12 \times 9.8 - 0.187949 \times 15$		
	$R_G = 114.78 [N]$	A 1	AWRT 115 [N] PI
	Forces in equilibrium (horizontal direction)		
	$\mu_2 R_G = 15$	M1	
	$ \mu_2 = \frac{15}{114.78} $		
	$\mu_2 = 0.131$	A 1	CAO to 3 sf Note Unrounded value is $\mu_2 = 0.13068$
		5	

Question 9 Total
