

管理类联考数学 必修课

第一章 实数、比例、绝对值

- 1 实数的概念和性质
- 2 比、比例
- 3 绝对值及其性质
- 4 平均值及运算

第四节 平均值及其运算

平均值定理及其运算

1.4.1 平均值定义

(1) 算术平均值: n个实数 x_1 , x_2 ,, x_n 的算术平均值为:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

(2) 几何平均值: $n个正实数 x_1, x_2, \dots, x_n$ 的几何平均值为:

$$x = \sqrt[n]{x_1 x_2 \dots x_n}$$

注意:几何平均值只对正实数有定义,而算术平均值对任何实数都有定义。

平均值定理及其运算

1.4.2 平均值定理及其运算

基本定理 (也叫均值定理): 当实数 x_1, x_2, \ldots, x_n 为n个正实数时,

它们的算术平均值不小于它们的几何平均值,即:

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \dots x_n} \qquad (x_i > 0, i = 1, 2, \dots, n)$$

当且仅当实数 $x_1 = x_2 = = x_n$ 时, 等号成立。

积定或和定

积定值,和有最小值;

算术平均值≥几何平均值;一正、二定、三相等 和定值,积有最大值。

正实数 此时有最值,取最值时这n个正实数相等。

第四节 平均值及其运算

1.4.2 平均值定理及其运算

例: 手里有一根长为20米的绳子,要用这根绳子围一个矩形小花园,花园的面积最大为(

设长为a, 宽为b, 则 2(a+b)=20→a+b=10

$$a+b \ge 2\sqrt{ab} \rightarrow ab \le (\frac{a+b}{2})^2 = 25$$

例:想要围一个面积为36㎡的小花园,需要的绳子最短为()

设长为a, 宽为b, 则 ab=36, 需要的绳子长度为2(a+b)

$$a+b \ge 2\sqrt{ab} = 12$$
 $2(a+b) = 24$

平均值定理及其运算

1.4.2 平均值定理及其运算

常用的基本不等式

$$a^2+b^2 \ge 2ab$$
 $(a,b \in R)$
$$\frac{a+b}{2} \ge \sqrt{ab} \quad (a,b \in R^+)$$

$$(a-b)^2 \ge 0 \rightarrow a^2 - 2ab + b^2 \ge 0 \rightarrow a^2 + b^2 \ge 2ab$$

$$(\sqrt{a}-\sqrt{b})^2 \ge 0 \rightarrow a-2\sqrt{ab}+b\ge 0 \rightarrow a+b\ge 2\sqrt{ab}$$
, $\mathbb{R}^2 \xrightarrow{a+b} \ge \sqrt{ab}$

1.4.2 平均值定理及其运算

常用的基本不等式(着重注意前3个)

(1)
$$a^2+b^2 \ge 2ab$$
 (a,b \in R)

(1)
$$a^2+b^2 \ge 2ab$$
 (a,b \in R) (2) $\frac{a+b}{2} \ge \sqrt{ab}$ (a,b \in R⁺)

$$(3) \frac{a+b+c}{3} \ge \sqrt[3]{abc} \quad (a,b,c \in R^+)$$

$$(4) \frac{a}{b} + \frac{b}{a} \ge 2 \quad (ab > 0)$$

$$(4) \ \frac{a}{b} + \frac{b}{a} \ge 2 \ (ab > 0)$$

$$(\sqrt{\frac{a}{b}})^{2} + (\sqrt{\frac{b}{a}})^{2} \ge 2\sqrt{\frac{a}{b}} \cdot \sqrt{\frac{b}{a}}, \ \mathbb{P} \ \frac{a}{b} + \frac{b}{a} \ge 2$$

(5)
$$a + \frac{1}{a} \ge 2 \quad (a \in R^+)$$

$$(\sqrt{a})^2 + \left(\sqrt{\frac{1}{a}}\right)^2 \ge 2\sqrt{a}\cdot\sqrt{\frac{1}{a}}, \quad \mathbb{P}a + \frac{1}{a} \ge 2$$

(6)
$$a + \frac{1}{a} \le -2$$
 ($a \in R^-$)

a是负数,相当于等号左右两边同时除以-1

第四节 平均值及其运算

1.4.2 平均值定理及其运算 想知道证明过程的同学请自行查看以下内容。

$$\frac{a+b+c}{3} \ge \sqrt[3]{abc} (a, b, c \in R^+)$$

对x, y, z > 0

有
$$x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2)]/2\geq 0.$$

对a, b, c > 0, 取x =
$$\sqrt[3]{a}$$
, y = $\sqrt[3]{b}$, z = $\sqrt[3]{c}$

得a+b+c ≥
$$3\sqrt[3]{abc}$$
.

平均值定理及其运算

1.4.2 平均值定理及其运算

注意式子的演变

演变
$$\frac{a+b}{2}$$
 $\geq \sqrt{ab}$ $(a,b) \in \mathbb{R}^+$ \rightarrow
$$\begin{cases} (\frac{a+b}{2})^{-2} \geq ab \\ a+b \geq 2\sqrt{ab} \end{cases}$$

演变
$$\frac{a+b+c}{3}$$
 $\geq \sqrt[3]{abc}$ $(a,b,c \in R^+)$ \rightarrow
$$\begin{cases} (\frac{a+b+c}{3}) & 3 \geq abc \\ a+b+c \geq 3 \sqrt[3]{abc} \end{cases}$$

一正、二定、三相等 积定值,和有最小值; 和定值,积有最大值。

练习题 (模拟题)

【例1】已知2a+b=1,则ab的最大值是(
$$\frac{1}{8}$$
)

做题思路: 直接使用均值不等式 $a + b \ge 2\sqrt{ab}$

$$2a+b \ge 2\sqrt{2ab}$$

$$1 \ge 2\sqrt{2ab}$$

ab≤
$$\frac{1}{8}$$
 (两边同时平方)

练习题(模拟题)

拆低次,凑高次

$$a+b+c\geq 3\sqrt[3]{abc}$$

【**例**2】求函数 $y=3x+\frac{4}{x^2}(x>0)$ 的最小值为().

做题思路: 使用均值不等式求最值,必须通过乘法把x消掉,:分母有x平方,

: 需要两个x去乘,把3x对半拆分成 $\frac{3}{2}x + \frac{3}{2}x$,然后用均值不等式即可

$$\frac{3}{2}x + \frac{3}{2}x + \frac{4}{x^2} \ge 3\sqrt[3]{\frac{3}{2}x \cdot \frac{3}{2}x \cdot \frac{4}{x^2}} = 3\sqrt[3]{9}$$

练习题(错误示范)

【**例**2】求函数 $y=3x+\frac{4}{x^2}(x>0)$ 的最小值为().

A.
$$4\sqrt[3]{9}$$

A.
$$4\sqrt[3]{9}$$
 B. $3\sqrt[3]{9}$ C. $2\sqrt[3]{9}$ D. $\sqrt[3]{9}$ E. 6

C.
$$2\sqrt[3]{9}$$

D.
$$\sqrt[3]{9}$$

$$y = 3x + \frac{4}{x^2} = x + 2x + \frac{4}{x^2} \ge 3 \sqrt{x \cdot 2x \cdot \frac{4}{x^2}} = 6$$

一正、二定、三相等

练习题 (模拟题)

【练习3】求函数
$$y=x^2+\frac{16}{x}(x>0)$$
的最小值是(12)

做题思路:
$$y=x^2 + \frac{16}{x}$$

$$= x^2 + \frac{8}{x} + \frac{8}{x}$$

$$\geq 3\sqrt[3]{x^2 \cdot \frac{8}{x} \cdot \frac{8}{x}} = 12$$

练习题(2019年1月)

【练习4】函数 $F(x)=2x+\frac{a}{x^2}$ (a > 0) 在 (0, +\infty) 内的最小值为 $F(x_0)=12$, 则 $x_0=($)

$$F(x)=2x+\frac{a}{x^2}=x+x+\frac{a}{x^2}\ge 3\sqrt[3]{x\cdot x\cdot \frac{a}{x^2}}=3\sqrt[3]{a}$$

$$3\sqrt[3]{a} = 12$$

当
$$x=x=\frac{a}{X^2}$$
时,取得最小值12, $x^3=a$

$$x = \sqrt[3]{a} = 4$$

$$x+x+\frac{a}{X^2}=12$$
, $\exists x=x=\frac{a}{X^2}$, $\exists x=x=\frac{a}{X^2}=4$

练习题(真题变形) 构造条件:因为要凑高次(x-1)²,所以先减1再加1

【**练习5**】函数 $y=x+\frac{1}{2(x-1)^2}(x>1)$ 的最小值为()

$$A.\frac{5}{2}$$

B. 1 $C.\frac{3}{2}$ D. 2 E. 3

$$y=x+\frac{1}{2(x-1)^2}=x-1+\frac{1}{2(x-1)^2}+1$$

$$\mathbf{x} - \mathbf{1} + \frac{\mathbf{1}}{\mathbf{2}(\mathbf{x} - \mathbf{1})^2} = \frac{\mathbf{x} - 1}{2} + \frac{\mathbf{x} - 1}{2} + \frac{1}{2(\mathbf{x} - 1)^2} \ge 3\sqrt[3]{\frac{\mathbf{x} - 1}{2} \cdot \frac{\mathbf{x} - 1}{2} \cdot \frac{\mathbf{x} - 1}{2} \cdot \frac{1}{2(\mathbf{x} - 1)^2}} = \frac{3}{2}$$

y 最小值=
$$\frac{3}{2}$$
 + **1** = $\frac{5}{2}$

强化 练习题 (2009年10月)

【例6】a + b + c + d + e 的最大值是 133。

(1) a , b , c , d , e 是大于 1 的自然数,且 abcde = 2700

(2) a , b , c , d , e 是大于 1 的自然数,且 abcde = 2000 **条件1**: 为使a+b+c+d+e 尽可能大,则需要这5个数字尽可能分散。

条件(1) 条件(2) 选项

√ × A

× √ B

× × C

(1)+(2) √ (combine)

√ √ D
(double)

× × E

(1)+(2) × E
(error)

abcde =
$$2700 = 27 \times 100 = 3 \times 3 \times 3 \times 25 \times 4 = 3 \times 3 \times 3 \times 5 \times 5 \times 2 \times 2$$

= $2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5$ 一共是5个数字,可以是2、2、3、3、75

B

最大值=2+2+3+3+75=85 不充分

最大值=2+2+2+2+125=133 充分

练习题 (2005年10月)

$$(a+b+c)/3=\frac{14}{3}, a+b+c=14$$

【**例**7】a,b,c的算术平均值是 $\frac{14}{3}$,则几何平均值是4.

(1) a、b、c是满足a > b > c > 1的三个整数, b=4.

条件(1)	条件(2)	选项	
$\sqrt{}$	×	Α	
×	V	В	
×	×	С	
(1)+((combine)		
$\sqrt{}$	$\sqrt{}$	D (double)	
×	×	_ E	
(1)+(2	(error)		

条件(2) a + b + c = 14, a + b + c = 10, a + b = 10, b = 2.

$$a > 4 > c > 1$$
, 所以 $c=2$ 或3, 当 $c=2$ 时, $a=8$, 几何平均值= $\sqrt[3]{8 \times 4 \times 2} = \sqrt[3]{64} = 4$

当c=3时,
$$a=7$$
, 几何平均值= $\sqrt[3]{7 \times 4 \times 3} = \sqrt[3]{84}$

不充分

条件2: a + b + c = 14, 当b = 2时,则a + c = 12, a > 2 > c > 1,没有满足条件的整数c,**不充分。**

联合: b=4和b=2联合无意义,依然不充分。

平均值总结

(1) 基本定理

积定或和定

算术平均值≥几何平均值; 一正、二定、三相等

积定值,和有最小值;

和定值,积有最大值。

正实数

此时有最值, 取最值时这n个正实数相等。

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 + \dots + x_n} \qquad (x_i > 0, i = 1, 2, \dots, n)$$

$$\frac{a+b}{2}$$
 $\geq \sqrt{ab}$ $(a,b \in R^+)$ 演变
$$\begin{cases} (\frac{a+b}{2})^2 \geq ab \\ a+b \geq 2\sqrt{ab} \end{cases}$$

演变
$$\frac{a+b+c}{3}$$
 $\geq \sqrt[3]{abc}$ $(a,b,c∈R^+)$ \rightarrow
$$\begin{cases} (\frac{a+b+c}{3}) \stackrel{3}{>} abc \\ a+b+c \geq 3 \sqrt[3]{abc} \end{cases}$$

第十章 数据描述

1 算术平均数、众数、中位数

2 方差与标准差

因为这部分也涉及算术平均数,所以提前一起讲解~

第一节 算术平均数、众数、中位数

n个实数
$$x_1$$
, x_2 ,, x_n 的**算术平均数**为: $\bar{x} = \frac{x_1 + x_2 + ... + x_n}{n}$

1,2,2,3,4,5,5,5,5,7,8,8,8,9

在 n 个数 x_1 , x_2 ,, x_n 中, 出现次数最多的数称为**众数**。

1,2,3,4,5

1,2,3,4

将 n 个数 x_1 , x_2 ,, x_n 按从小到大的顺序依次排列,当 n 为**奇数**时,处在**最中间**的那个数是这组数据的**中位数**; 当 n 为**偶数**时,处在**最中间的两个数**的**平均数**是这组数据的**中位数**。

第二节 方差与标准差

设 \bar{x} 是n个数据 x_1 , x_2 ,....., x_n 的算术平均数,我们把

$$s^{2} = \frac{1}{n} [(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}]$$

叫做这组数据的方差。

方差的算术平方根即为这组数据的**标准差**,记为s。

方差、标准差是用来衡量一组数据波动的大小,体现了数据的分散程度。

第二节 方差与标准差

$$s^{2} = \frac{1}{n} [(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}]$$

计算步骤如下:

- (1) 求出所有数字的平均数,设为家
- (2) 求出每个数字与平均数的差,取其差的平方,设为 $(x_i \bar{x})^2$
- (3) 将所有的平方相加,再次求其平均值。

【例】5个数字: 1、2、3、4、5

(1) 求平均数, $\bar{x} = \frac{1+2+3+4+5}{5} = 3$

(2)
$$(1-3)^2 = 4$$
, $(2-3)^2 = 1$, $(3-3)^2 = 0$, $(4-3)^2 = 1$, $(5-3)^2 = 4$

(3)
$$s^2 = \frac{4+1+0+1+4}{5} = 2$$

5个连续整数的方差为2(可直接作为结论)。

第二节 方差与标准差

$$s^{2} = \frac{1}{n} [(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}]$$

5个连续整数的方差为2(可直接作为结论)。

设这5个连续的整数为a-2, a-1, a, a+1, a+2

第一步: 求平均数=
$$\frac{(a-2)+(a-1)+a+(a+1)+(a+2)}{5}=\frac{5a}{5}=a$$
,

第二步:
$$[(a-2)-a]^2=(-2)^2=4$$
, $[(a-1)-a]^2=(-1)^2=1$, $(a-a)^2=0$,
$$[(a+1)-a]^2=1^2=4$$
, $[(a+2)-a]^2=2^2=4$,

第三步:
$$s^2 = \frac{4+1+0+1+4}{5} = \frac{10}{5} = 2$$

练习题(2017年1月)

$$s^{2} = \frac{1}{n} \left[(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2} \right]$$

【例8】甲、乙、丙三人每轮各投篮10次,投了三轮,投中数如下表:

第一轮 第二轮 第三轮

甲

 $3\sigma_1 = (2-5)^2 + (8-5)^2 = 18$

 $3\sigma_2 = (5-4)^2 + (2-4)^2 + (5-4)^2 = 6$

9

 $3\sigma_3 = (8-7)^2 + (4-7)^2 + (9-7)^2 = 14$

 $\mathrm{i} \mathrm{i} \sigma_1$, σ_2 , σ_3 分别为甲、乙、丙投中数的方差,则(

A. $\sigma_1 > \sigma_2 > \sigma_3$

(B. $\sigma_1 > \sigma_3 > \sigma_2$) C. $\sigma_2 > \sigma_1 > \sigma_3$

D. $\sigma_2 > \sigma_3 > \sigma_1$

E. $\sigma_3 > \sigma_2 > \sigma_1$

极差=最大值-最小值

练习题 (2019年1月)

【例9】 10名同学的语文和数学的成绩如表

语文成绩	90	92	94	88	86	95	87	89	91	93
数学成绩	94	88	96	93	90	85	84	80	82	98

语文和数学成绩的均值分别为E₁和E₂,标准差分别为σ₁和σ₂,则()

A: $E_1 > E_2 , \sigma_1 > \sigma_2$

 $(B: E_1 > E_2, \sigma_1 < \sigma_2)$

C: $E_1 > E_2$, $\sigma_1 = \sigma_2$

D: $E_1 < E_2$, $\sigma_1 > \sigma_2$

E: $E_1 < E_2$, $\sigma_1 < \sigma_2$

语文极差=最大值-最小值=95 - 86=9

数学极差=最大值-最小值=98 - 80=18,所以数学的方差更大

练习题 (2019年1月)

【例9】10名同学的语文和数学的成绩如表

语文成绩	90	92	94	88	86	95	87	89	91	93
数学成绩	94	88	96	93	90	85	84	80	82	98
语-数	-4	4	-2	-5	-4	10	3	9	9	-5

语文-数学>0,说明语文的成绩更高。

或者以"90"为基准进行比较

练习题 (2016年1月)

【例10】设有两组数据 S_1 : 3,4,5,6,7和 S_2 : 4,5,6,7,a,则能确定a的值。

(1) S_1 与 S_2 的均值相等

A

(2) S_1 与 S_2 的方差相等

条件1: 由 S_1 与 S_2 的均值相等,则 $\frac{3+4+5+6+7}{5} = \frac{4+5+6+7+a}{5}$ a=3,确定a值,充分。

条件2: 由 S_1 与 S_2 的方差相等,且 S_1 是连续的5个整数,则 S_2 也应该是

连续的5个整数, a=3或a=8

不确定a值,不充分。

选项	条件(2)	条件(1)		
Α	×	$\sqrt{}$		
В	V	×		
С	×	×		
(combine)	(1)+(2) √			
D (double)	√	V		
F	×	×		
(error)	(1)+(2) ×			

练习题 (2014年1月)

【练习11】已知 $M=\{a,b,c,d,e\}$ 是一个整数集合,则能确定集合 M

- (1) a、b、c、d、e平均值为10.
- (2) *a*、*b*、*c*、*d*、*e*的方差为2.

C

条件1: a ,b ,c ,d ,e平均值为10,则a+b+c+d+e =50,但是并不确定具体每个字母的值。

如a=2,b=8,c=10,d=12,e=18或a=5,b=8,c=10,d=12,e=15等

条件2: a,b,c,d,e的方差为2,说明是5个连续的整数,但是有很多种情况

不确定,不充分。

联合: 5个连续的整数,平均值为10,即c=10

:.确定集合M= {8,9,10,11,12}, 充分

条件(1)	条件(2)	选项	
$\sqrt{}$	×	Α	
×	√	В	
X	×	С	
(1)+((1)+(2) √		
V	V	D (double)	
×	×	_ E	
(1)+((1)+(2) ×		

不确定,不充分。

练习题 (2023年1月)

【**练习12**】跳水比赛中,裁判给某选手的一个动作打分,其平均值为8.6,方差为1.1,若去掉一个最高得分9.7和去掉一个最低得分7.3,则剩余得分的()

A.平均值变小,方差变大

B.平均值变小,方差变小

C.平均值变小,方差不变

D.平均值变大,方差变大

(E.平均值变大, 方差变小)

去掉9.7和7.3,则总分下降17分,而平均分为8.6分,8.6×2=17.2分

算术平均数与方差总结

(1) 算术平均值

n个实数
$$x_1$$
, x_2 ,, x_n 的**算术平均数**为: $\bar{x} = \frac{x_1 + x_2 + ... + x_n}{n}$

(2) 方差

方差:
$$s^2 = \frac{1}{n}[(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + ... + (x_n - \overline{x})^2]$$

标准差 s: 方差的算术平方根。

方差、标准差是用来衡量一组数据波动的大小,体现了数据的分散程度。

判断方式:极差=最大值-最小值

推论:5个连续整数的方差为2

思路一: 杠杆交叉比例法(或列方程)

(1) 涉及两类对象的平均值

(2) 两种溶液混合成新浓度的溶液

平均值问题

思路二: 极限思维

思路三: 平均值含义

溶液浓度问题

溶液质量(体积)=溶质质量(体积)+溶剂质量(体积)

溶质守恒: 溶质总量不会随着溶液浓度变化而变化。

(一) 算术(应用题) 考点:溶液问题/平均值问题-杠杆交叉比例法

设甲、乙两溶液各取 m_1 、 m_2 克,两溶液混合后的溶液质量是(m_1+m_2),且甲、乙两溶液的百分比浓度分别为a%、b%(a%>b%),混合后的浓度为c%。

根据溶质守恒原理:

$$m_1a\% + m_2b\% = (m_1 + m_2) c\%$$

$$m_1a\% + m_2b\% = m_1c\% + m_2c\%$$

$$m_1a\% - m_1c\% = m_2c\% - m_2b\%$$

$$\frac{m_1}{m_2} = \frac{c - b}{a - c}$$

考点:溶液问题/平均值问题-杠杆交叉比例法

可以看作是3个值,知道2个求最后一个。

练习(2014年1月) 方程法

【例1】某部门在一次联欢活动中共设了26个奖,奖品均价为280元,其中一等奖单 价为400元,其他奖品均价为270元,一等奖的个数为()。

A.6

B.5 C.4

D.3

设一等奖个数为x个,则:

$$x \times 400 + (26 - x) \times 270 = 26 \times 280$$

即
$$400x - 270x = 26 \times 280 - 26 \times 270$$

练习(2014年1月) 杠杆交叉比例法

【**例**1】某部门在一次联欢活动中共设了26个奖,奖品均价为280元,其中一等奖单价为400元,其他奖品均价为270元,一等奖的个数为()。

A.6

B.5

C.4

D.3

E.2

练习 (2013年10月)

【**例**²】某高校高一年级男生人数占该年级学生人数的^{40%}。在一次考试中,男、 女的平均分数为⁷⁵和⁸⁰.则这次考试高一年级学生平均分数为()

A:76 B:77 C:77.5 D:78 E:79

男: 75 x

男、女的数量比为 2:3

女: 80

设特殊值,总人数为10人,男生占比40%,为4人,则女生为6人, $\frac{75\times4+80\times6}{10}=\frac{780}{10}=78$

练习 (2016年1月)

【**例**3】已知某公司男员工的平均年龄和女员工的平均年龄,则能确定该公司员工的平均年龄。

(1) 已知该公司员工的人数

B

(2) 已知该公司男、女员工的人数之比

条件(1)	条件(2)	选项
$\sqrt{}$	×	Α
×	V	В
X (1) (×	С
(1)+(2) V	(combine)
√	$\sqrt{}$	(double)
×	×	_ E
$(1)+(2)$ \times		(error)

练习 (2016年1月)

【**例**3】已知某公司男员工的平均年龄和女员工的平均年龄,则能确定该公司员工的平均年龄。

- (1) 已知该公司员工的人数
- (2) 已知该公司男、女员工的人数之比

条件(1)	条件(2)	选项
$\sqrt{}$	×	Α
×	V	В
×	×	С
(1)+((combine)	
V	V	D (double)
×	×	E
(1)+(2) ×		(error)

设男、女员工平均年龄分别为a,b。男、女员工的人数分别为x,y。题干要求 $\frac{ax+by}{x+y}$ 的值能确定.

条件 (1) x+y已知,无法推出 $\frac{ax+by}{x+y}$ 的值,条件 (1) 不充分.

条件 (2)
$$\frac{x}{y}$$
 已知,设 $\frac{x}{y}$ = k,则 $\frac{ax+by}{x+y} = \frac{aky+by}{ky+y} = \frac{ak+b}{k+1}$,可求出最后的数值,条件 (2) 充分.

练习题 (2011年1月)

【例4】在一次英语考试中,某班的及格率为80%。

(1) 男生及格率为70%, 女生及格率为90%

(2) 男生的平均分与女生的平均分相等

条件1

男及格率: 70%			10%
	80%	%	
女及格室・90%			1.00

条件(2)

选项

条件(1)

要想得出最后的及格率是

80%, 需要男: 女=1:1

10%

条件2: 仅有平均分,得不到与及格率相关的条件,故不充分。

练习题 (2022年1月)

【**例**5】两个人数不等的班数学测验的平均分不相等,则能确定人数多的班。

(1) 已知两个班的平均成绩

(2) 已知两个班的总平均值

确定人数多,就是看| b-c |与| a-c |的比值

练习题(2013年1月)——解法1 极限思维

【**例6**】甲班共有30名学生,在一次满分为100分的考试中,全班的平均成绩为90分,则成绩低于60分的学生至多有()

A:8名

C:6名

D:5名

E:4名

设成绩低于60分的人数为 x,

$$100 (30-x)+60x=30\times90$$

$$3000 - 100x+60x=2700$$

$$-40x=-300$$

$$x=7.5$$

7.5名学生是当所有低分段均为60的情况,但不能实现,所以最多7人

练习题(2013年1月)——解法2 极限思维

【**例6**】甲班共有30名学生,在一次满分为100分的考试中,全班的平均成绩为90分,则成绩低于60分的学生至多有()

A:8名

B:7名

C:6名

D:5名

E:4名

30名学生,一张卷子满分为100分,总共是3000分

现在全班平均成绩为90分,总得分为2700分

被扣掉了300分,假设班级除了低于60分的,其余同学都是100分,这样可以"拉"更多同学

那么这300分都是低于60分的同学扣掉的,要想低于60分的同学最多

那么每个人扣的分数要越少 300÷40=7.5

练习题(2015年1月)

极限思维

【例7】在某次考试中,甲、乙、丙三个班的平均成绩分别为80,81和81.5,三个 班的学生得分之和为6952,三个班共有学生()

A. 85名

B. 86名

C. 87名 D. 88名 E. 89名

三个班平均成绩一定大于80分,小于81.5分。

若为80分,则总人数为 $\frac{6952}{90}$ = 86.9;

若为81.5分,则总人数为 $\frac{6952}{915} \approx 85.3$ 。

所以学生总人数一定是85.3到86.9之间的整数。

练习题 (2019年1月)

【例8】某校理学院五个系每年的录取人数如表: 答案: C

系别	数学系	物理系	化学系	生物系	地学系
录取人数	60	120	90	60	30

条件(1)	条件(2)	选项
$\sqrt{}$	×	Α
×	√	В
× (1)+(× 2) √	C (combine)
√	1	D (double)
×	×	E
(1)+((error)	

今年与去年相比,物理系的录取平均分没变,则理学院的录取平均分升高了。

- (1) 数学系的录取平均分升高了3分,生物系的录取平均分降低了2分。
- (2) 化学系的录取平均分升高了1分, 地学系的录取平均分降低了4分。

条件1:不知道化学系和地学系的变动情况,不充分;

条件2:不知道数学系和生物系的变动情况,不充分;

联合:数学系:升3分,物理系:不变;生物系:降2分,化学系:升1分,地学系:降4分

总分数的变动60×3+120×0+90×1+60×(-2)+30×(-4)=30

总分数提高了,说明平均分也升高了,充分。

练习题 (2021年1月)

【例9】某班增加两名同学,则该班同学的平均身高增加了。

- (1) 增加的两名同学的平均身高与原来男同学的平均身高相同;
- (2) 原来男同学的平均身高大于女同学的平均身高; С

条件(1)	条件(2)	选项
V	×	Α
×	V	В
×	×	
(1)+(2) √		(combine)
V	V	D (double)
×	×	_ E
(1)+(2) ×		(error)

条件1:无法确定原本该班男生的平均身高和女生的平均身高之间的关系。

若女生的平均身高高于男生,满足条件(1)的情况下,新增加的两位同学会拉低平均值,所以不充分。

条件2:无法确定增加的两名同学的平均身高和**原本**该班男生平均身高与女生平均身高的关系。不充分。

联合: 充分。

溶液浓度问题

【**例10**】若用浓度30%和20%的甲、乙两种食盐溶液配成浓度为24%的食盐溶液500克,则甲、乙两种溶液应各取()

A. 180克和320克 D. 195克和305克 B. 185克和315克

E. 200克和300克

C. 190克和310克

设甲a克,总溶液为500克,

: 乙溶液为(500-a)克

溶质守恒

$$30\%a + 20\% \times (500-a) = 24\% \times 500$$

解得a=200, 500-a=300

练习题 (2021年1月)

【例11】现有甲、乙两种浓度的酒精,已知用10升甲酒精和12升乙酒精可以配成浓度为70%的酒精,用20升甲酒精和8升乙酒精可以配成浓度80%的酒精,

则甲酒精的浓度为(

A.72%

B.80%

C.84%

D.88%

设甲溶液的浓度为x, 乙溶液的浓度为y,

$$10x + 12y = 70\% \times (10 + 12)$$
 $5x + 6y = 7.7$ $\Rightarrow x = 0.91$ $20x + 8y = 80\% \times (20 + 8)$ $5x + 2y = 5.6$

::甲溶液浓度为91%。

强化溶液浓度问题 (2011年10月)

【**例12**】某种新鲜水果的含水量为98%,一天后的含水量降为97.5%。某商店以每斤1元的价格购进了1000斤新鲜水果,预计当天能售出60%,两天内售完。要使利润维持在20%,则每斤水果的平均售价应定为()。

A. 1.20

B. 1.25

C.1.30

D. 1.35

E. 1.40

设1斤水果水分减少后的重量为x斤,水分减少但是果肉是不变的

1×2%=2.5%x 解得x=0.8

(原来1斤重的水果水分减少后变为0.8斤)

设每斤水果的平均售价应定为a元

 $600a + 400 \times 0.8a = 1000 \times 1 \times (1 + 20\%)$

 $a\approx 1.3$

强化溶液浓度问题(2013年10月)

【例13】甲、乙、丙三个容器中装有盐水,现将甲容器中盐水的 $\frac{1}{3}$ 倒入乙容器,摇匀后将

乙容器中盐水的 $\frac{1}{4}$ 倒入丙容器,摇匀后再将丙容器中盐水的 $\frac{1}{10}$ 倒回甲容器,此时甲、乙、丙

三个容器中盐水的含盐量都是9千克,则甲容器中原来的盐水含盐量是()千克。

A. 13 B. 12.5

C.12 D. 10 E. 9.5

法1:整数特性,因为甲容器中盐水的 $\frac{1}{3}$ 倒入乙容器,只有12能被3整除,答案选C

法2: 丙中盐水的 $\frac{1}{10}$ 倒回甲后剩余9千克盐,则丙原来总的盐为9÷ $\frac{9}{10}$ =10千克 则丙倒入甲的盐为1千克

::最后三个容器中盐水的含盐量都是9千克

- ∴ 甲容器中盐水的 ¼ 倒入乙容器后含盐量为8千克
- ∴甲的盐为 $8 \div (1 \frac{1}{3}) = 12$ 干克

强化溶液浓度问题(2012年10月)

【例14】一满桶纯酒精倒出10升后,加满水搅匀,再倒出4升后,再加满水,此时, 桶中的纯酒精与水的体积之比是2:3。则该桶的容积是()升

A. 15 B. 18

(C.20) D. 22 E. 25

设该桶的容积为x升,最初是纯酒精,浓度为100%

倒出
$$10$$
升后加满水后的浓度为:
$$\frac{100\%(x-10)}{x}$$

再倒出4升后剩余
$$(x-4)$$
升,此时浓度为 $\frac{100\%(x-10)}{x}$: 溶质为 $(x-4)$ · $\frac{100\%(x-10)}{x}$

加满水后的浓度为
$$\frac{(x-4)\cdot\frac{100\%(x-10)}{x}}{x} = \frac{2}{2+3}$$
 解得x=20

$$100\% \times \frac{(x-4)\cdot (x-10)}{x\cdot x} = 40\%$$

强化溶液浓度问题(2012年10月)

【**例14**】一满桶纯酒精倒出10升后,加满水搅匀,再倒出4升后,再加满水,此时,

桶中的纯酒精与水的体积之比是2:3。则该桶的容积是()升

A. 15 B. 18

D. 22 E. 25

倒出一定量溶液,再用等量水补满,公式为:

原浓度×
$$\frac{V-a}{V}$$
× $\frac{V-b}{V}$ =后浓度

V指原溶液的体积, a指第一倒出的体积, b指第二次倒出的体积。

$$100\% \times \frac{(V-10)(V-4)}{V^2} = \frac{2}{2+3}$$

直接找特值往里面带, 先从中间开始, 20正好。

溶液浓度问题(2014年1月)

【例15】某容器中装满了浓度为90%的酒精,倒出1升后用水将容器注满,搅拌均 匀后又倒出1升,再用水将容器注满。已知此时的酒精浓度为40%,则该容器的容 积是()升

A. 2.5 B. 3

C.3.5

D. 4

E. 4.5

原浓度×
$$\frac{V-a}{V}$$
× $\frac{V-b}{V}$ =后浓度

$$90\% \times \frac{(V-1)(V-1)}{V^2} = 40\%$$

$$\frac{(V-1)^2}{V^2} = \frac{40\%}{90\%} = \frac{4}{9}$$

强化溶液浓度问题(2016年1月)

【**例**16】将2升甲酒精和1升乙酒精混合得到丙酒精,则能确定甲、乙两种酒精的浓度。

- (1) 1升甲酒精和5升乙酒精混合后的浓度是丙酒精浓度的 $\frac{1}{2}$ 倍
- (2) 1升甲酒精和2升乙酒精混合后的浓度是丙酒精浓度的 $\frac{2}{3}$ 倍 假设甲酒精浓度为x,乙酒精的浓度为y,则丙酒精的浓度为 $\frac{2x+y}{3}$

条件1:
$$\frac{x+5y}{6} = \frac{1}{2} \times \frac{2x+y}{3}$$
 化简得 $x=4y$ 不充分

条件2:
$$\frac{x+2y}{3} = \frac{2}{3} \times \frac{2x+y}{3}$$
 化简得 $x=4y$ 不充分

联合 : x=4y	不确定x、	y, 不充分
------------------	-------	--------

条件(1)	条件(2)	选项
V	×	Α
×	√	В
×	×	С
(1)+((combine)	
V V		D (double)
×	×	E
(1)+((error)	

强化分段计费问题(2012年10月)

【例17】某商场在一次活动中规定:一次购物不超过100元时没有优惠,超过100元而没有超过200元时,按该次购物全额9折优惠;超过200元时,其中200元按9折优惠,超过200元的部分按8.5折优惠。若甲乙两人在该商场购买的物品分别付费94.5元和197元,则两人购买的物品在举办活动前需要的付费总额是()元。

A.291.5

B.314.5

C.325

价格	折扣				
≤100	0%				
00~200	全额×0.9				
> 200	200×0.9+ (x-200) ×0.85				

D.291.5或314.5

4.5 E. 314.5或325

94.5分为两种情况:

无优惠:原来消费94.5

有优惠:原来消费94.5÷0.9=105

197分为两部分:

 $100 \sim 200$: $200 \times 0.9 = 180$ 200 + 20 = 220

> 200: $(197-180) \div 0.85=20$

END • Thanks for listening

练习题 (2020年1月)

【自行练习18】某人在同一观众群中调查了对五部电影的看法,得到如下数据:

电影		1	Ш	四	五
好	0.25	0.5	0.3	8.0	0.4
差	0.75	0.5	0.7	0.2	0.6

则观众意见分歧最大的前两部影片是()

 $A. - \equiv$

B. 二三

D. 四一

E. 四二

观众给出的好评率和差评率越接近,则说明观众对电影的意见越不统一,即分歧越大。

练习 (2008年10月) 方程法

【**自行练习¹⁹**】某班有学生36人,期末各科平均成绩为85分以上的为优秀生,若该班优秀生的平均成绩为90分,非优秀生的平均成绩为72分,全班平均成绩为80分,则该班优秀生的人数是()

A:12

B:14

C:16

D:18

E:20

设优秀生为 a 人,则非优秀生为 (36 - a)人

优秀生总分数+非优秀生总分数=全部总分数

$$90 a + 72 \times (36 - a) = 80 \times 36$$

$$a = 16$$

练习 (2008年10月) 杠杆交叉比例法

【**自行练习**¹⁹ 】某班有学生36人,期末各科平均成绩为85分以上的为优秀生,若该班优秀生的平均成绩为90分,非优秀生的平均成绩为72分,全班平均成绩为80分,则该班优秀生的人数是()

A:12

B:14

C:16

D:18

E:20

优秀生: 90 80

优秀生、非优秀生的数量比为 8:10=4:5

非优秀生: 72

溶液问题

【自行练习20】含盐12.5%的盐水40千克蒸发掉部分水分后变成了含盐20%的盐水,

蒸发掉的水分的重量为()干克。

A.19

B.18

C.17

D.16

蒸发前后水中盐的含量是不变的,设<mark>蒸发后</mark>的盐水重量为xkg。则:

 $40 \times 12.5\% = x \times 20\%$

解得: x=25

蒸发的水分重量: 40-25=15, 答案选E

溶质守恒: 溶质总量不会随着溶液浓度变化而变化。

分段计费问题 (2018年1月)

【**自行练习20**】某单位采取分段收费的方式收取网络流量(单位:GB)费用,每月流量20(含)以内免费,流量20到30(含)每GB收费1元,流量30到40(含)每GB收费3元,流量40以上的每GB收费5元,小王这个月用了45GB的流量,则他应该交费()

A.45元

B.65元

C.75元

D.85元

E.135元

流量GB	≤20	20<流≤30	30<流≤40	40 < 流
费用元/GB	0	1	3	5
小王	20	10	10	5
小王费用	0	10	30	25

0+10+30+25=65