DESCRIPTION

SULFONATED AMINO ACID DERIVATIVES AND METALLOPROTEINASE INHIBITORS CONTAINING THE SAME

Ins off)

10

15

20

25

Technical Field

This application relates to sulfonated amino acid derivatives and metalloproteinase inhibitors containing the same.

Background Art

An extracellular matrix consists of collagen, proteoglycan, etc., has a function to support tissues, and plays a role in a maintaining of a cell functions, for example propagation, differentiation, adhesion, or the like. Matrix metalloproteinases (MMP) such as gelatinase, stromelysin, collagenase, and the like have an important role in degradation of an extracellular matrix, and these enzymes work for growth, tissue remodeling, etc. under physiological conditions. Therefore, it is considered that these enzymes participate in progression of various kind of diseases involving breakdown and fibrosis of tissues, such as osteoarthritis, rheumatoid arthritis, corneal ulceration, periodontitis, metastasis and invasion of tumor, and virus infection (for example, HIV infection). At the present time, it is not clear which enzyme participates in the above diseases seriously, but it is considered that these enzymes at least participate in tissue breakdown. As metalloproteinase inhibitors of amino acid derivatives, for example hydroxamic acid derivatives of amino acids (JP-A-6-2562939), carboxylic acid derivatives of amino acid and/or their hydroxamic acid derivatives (WO95/35276), etc. are disclosed.

Disclosure of Invention

If it is able to inhibit the activity of MMP, it is considered that MMP inhibitors contribute to an improvement and prevention of the above diseases caused by or

related to its activity. Therefore, development of MMP inhibitors has long been desired.

In the above situation, the inventors of the present invention found that a kind of sulfonamide derivatives have strong activity to inhibit MMP.

The present invention relates \overline{to} a composition for inhibiting metalloproteinase which contains a compound of the formula \underline{I} :

T10030

5

10

15

20

$$R^{5}-R^{4}-R^{3}-SO_{2}-N$$
 R^{1}
 $R^{5}-R^{4}-R^{3}-SO_{2}-N$
 R^{2}

wherein R^1 is optionally substituted lower alkyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R^2 is hydrogen atom, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted aryl, or optionally substituted heteroarylalkyl; R^3 is a bond, optionally substituted arylene, or optionally substituted heteroarylene; R^4 is a bond, $\cdot(CH_2)m_{\cdot}$, $\cdot CH=CH_{\cdot}$, $\cdot C\equiv C_{\cdot}$, $\cdot CO_{\cdot}$, $\cdot CO_{\cdot}NH_{\cdot}$, $\cdot N=N_{\cdot}$, $\cdot N(R^A)_{\cdot}$, $\cdot NH_{\cdot}CO_{\cdot}NH_{\cdot}$, $\cdot NH_{\cdot}CO_{\cdot}$, $\cdot O_{\cdot}$, $\cdot S_{\cdot}$, $\cdot SO_{2}NH_{\cdot}$, $\cdot SO_{2}NH_{\cdot}N=CH_{\cdot}$, or tetrazol-diyl; R^5 is optionally substituted lower alkyl, optionally substituted $C_3 \cdot C_8$ cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, or an optionally substituted non-aromatic heterocyclic group; R^A is hydrogen atom or lower alkyl; Y is $\cdot NHOH$ or $\cdot OH$; and m is 1 or 2; provided $\cdot R^2$ is hydrogen atom when Y is $\cdot NHOH$, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

Mentioned in more detail, the invention relates to the following a)-b), 1)-16), and A)-C).

a) A composition for inhibiting metalloproteinase which contains a compound of the formula \underline{I} :

$$R^5-R^4-R^3-SO_2-N$$
 COY I

10

15

20

wherein R1 is optionally substituted lower alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R2 is hydrogen atom, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R3 is a bond, optionally substituted arylene, or optionally substituted heteroarylene; R^4 is a bond, $-(CH_2)m_{-}$, $-CH=CH_{-}$, $-C \equiv C_{-}$, $-CO_{-}$, -CO-NH-, -N=N-, -N(RA)-, -NH-CO-NH-, -NH-CO-, -O-, -S-, -SO₂NH-, -SO₂-NH-N=CH-, or tetrazol-diyl; R5 is optionally substituted lower alkyl, optionally substituted C3-C8 cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, or an optionally substituted non-aromatic heterocyclic group; RA is hydrogen atom or lower alkyl; Y is -NHOH or -OH; and m is 1 or 2; provided R2 is hydrogen atom when Y is -NHOH, R5 is optionally substituted aryl or optionally substituted heteroaryl when R3 is optionally substituted arylene or optionally substituted heteroarylene and R4 is -CO-NH- or -NH-CO-, R5 is optionally substituted aryl or optionally substituted heteroaryl when R³ is optionally substituted arylene or optionally substituted heteroarylene and R4 is tetrazol-diyl, R5 is lower alkyl, aryl substituted by lower alkyl or optionally substituted aryl, or heteroaryl substituted by lower alkyl or optionally substituted aryl when R³ is optionally substituted arylene and R⁴ is a bond, both of R³ and R4 are not a bond at the same time, and R4 is not -O- when R3 is optionally substituted arylene or optionally substituted heteroarylene, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof. b) A composition for inhibiting metalloproteinase as mentioned above, which is a composition for inhibiting type-IV collagenase.

Preferred embodiment of the present invention are as follows.

1) A compound of the formula <u>I</u>:

$$R^{5}-R^{4}-R^{3}-SO_{2}-N$$
 COY I

wherein R1 is optionally substituted lower alkyl, optionally substituted aryl, optionally

15

20

substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R2 is hydrogen atom, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R3 is a bond, optionally substituted arylene, or optionally substituted heteroarylene; R⁴ is a bond, \cdot (CH₂)m-, \cdot CH=CH-, \cdot C \equiv C-, \cdot CO-, -CO-NH-, -N=N-, -N(RA)-, -NH-CO-NH-, -NH-CO-, -O-, -S-, -SO₂NH-, -SO₂-NH-N=CH-, or tetrazol-diyl; R⁵ is optionally substituted lower alkyl, optionally substituted C₃-C₈ cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, or an optionally substituted non-aromatic heterocyclic group; RA is hydrogen atom or lower alkyl; Y is -NHOH or -OH; and m is 1 or 2; provided R2 is hydrogen atom when Y is -NHOH, R5 is optionally substituted aryl or optionally substituted heteroaryl when R3 is optionally substituted arylene or optionally substituted heteroarylene and R4 is -CO-NH- or -NH-CO- (when R³ is phenylene and R⁴ is -CO-NH-, R¹ is not methyl or phenyl and R⁵ is not 2-chlorophenyl, 4-chlorophenyl, or 2,4-dichlorophenyl), R⁵ is lower alkyl, optionally substituted aryl, or optionally substituted heteroaryl when R3 is optionally substituted arylene or optionally substituted heteroarylene and R4 is tetrazol-diyl, R5 is lower alkyl, aryl substituted with lower alkyl or optionally substituted aryl, or heteroaryl substituted with lower alkyl or optionally substituted aryl when R³ is optionally substituted arylene and R⁴ is a bond, both of R³ and R⁴ are not a bond at the same time, and R4 is not -O- when R3 is optionally substituted arylene or optionally substituted heteroarylene, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

2) A compound of the formula II:

25

$$R^{7}-R^{6} \xrightarrow{R^{8}} SO_{2}-N \xrightarrow{R^{1}} COY \qquad \coprod$$

wherein R⁶ is -CH=CH-, -C \equiv C-, -N=N-, -NH-CO-NH-, -S-, -SO₂NH-, or -SO₂-NH-N=CH-; R⁷ is optionally substituted aryl or optionally substituted heteroaryl; R⁸ and R⁹

are each independently hydrogen atom, lower alkoxy, or nitro; R¹, R², and Y are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

3) A compound of the formula III:

7,000

$$R^7 - R^{10} - SO_2 - N - COY$$

5

wherein R¹⁰ is -(CH₂)m-, -CO-, -CO-NH-, -N(R^A)-, -NHCO-, or tetrazol-diyl; m is 1 or 2; R¹, R², R⁷, R⁸, R⁹, R^A, and Y are as defined above, provided R¹ is not methyl or phenyl and R⁷ is not 2-chlorophenyl, 4-chlorophenyl, or 2,4-dichlorophenyl when R¹⁰ is -NH-CO-, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

10

4) A compound of the formula IV:

1,000/

15

wherein R^{11} is a bond, -CH=CH-, or -C \equiv C-; X is oxygen atom or sulfur atom, R^1 , R^2 , R^7 , and Y are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

5) A compound of the formula \underline{I} :

T,0002

3-20 al

wherein R¹' is benzyl, (indol-3-yl)methyl, (1-methylindol-3-yl)methyl, (5-methylindol-3-yl)methyl, (1-acetylindol-3-yl)methyl, (1-methylsulfonylindol-3-yl)methyl, (1-alkoxycarbonyl-3-yl)methyl (for example ethoxycarbonylmethyl), or i-propyl; R²' is hydrogen atom, methyl, 4-aminobutyl, or benzyl; R³' is 1,4-phenylene; R⁴' is -O-; R⁵' is phenyl or 4-hydroxy-phenyl; and Y is as defined above, its optically active substance,

their pharmaceutically acceptable salt, or hydrate thereof.

6) A compound of the formula I":

5

10

15

wherein R¹" is 4-thiazolylmethyl, (indol-3-yl)methyl, (5-methoxyindol-3-yl)methyl, 1-naphthylmethyl, 2-naphthylmethyl, 4-biphenylylmethyl, 2,2,2-trifluoroethyl, 2-phenylethyl, benzyl, i-propyl, 4-nitrobenzyl, 4-fluorobenzyl, cyclohexylmethyl, (1-methylindol-3-yl)methyl, (5-methylindol-3-yl)methyl, (5-fluoroindol-3-yl)methyl, (pyridin-4-yl)methyl, (benzothiazol-2-yl)methyl, (phenyl)(hydroxy)methyl, phenyl, carboxymethyl, 2-carboxyethyl, hydroxymethyl, phenylmethoxymethyl, 4-carboxybenzyl, (benzimidazol-2-yl)methyl, (1-methylsulfonylindol-3-yl)methyl, or (1-ethoxycarbonylindol-3-yl)methyl; R²" is hydrogen atom; R³" is 1,4-phenylene; R⁴" is a bond; R⁵" is phenyl, 3- methoxyphenyl, 4-methoxyphenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-fluorophenyl, 4-methylthiophenyl, 4-biphenylyl, 2-thienyl, benzoxazol-2-yl, benzothiazol-2-yl, or tetrazol-2-yl; and Y is as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

7) A compound of the formula $\underline{\mathbf{V}}$:

20

$$R^7 - R^{12} - SO_2 - N + COOH$$
 V

wherein R^{12} is -CH=CH- or -C \equiv C-; R^1 , R^2 , R^7 , R^8 , and R^9 are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof. 8) A compound of the formula \underline{VI} :

$$R^{14}-C-N$$
 R^{8}
 R^{13}
 $R^{14}-COOH$
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{14}

wherein R², R⁸, and R⁹ are as defined above, R¹³ is optionally substituted lower alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; and R¹⁴ is optionally substituted aryl, or optionally substituted heteroaryl; provided R¹³ is not methyl or phenyl and R¹⁴ is not 2-chlorophenyl, 4-chlorophenyl, or 2,4-dichlorophenyl, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

9) A compound of the formula VII:

$$\begin{array}{c|c}
 & R^8 & R^1 \\
 & R^7 - N & R^9 & SO_2 - N & COOH & VII \\
 & R^9 & R^2 & R^2 & R^2
\end{array}$$

wherein R¹, R², R⁷, R⁸, and R⁹ are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

10) A compound of the formula VIII:

15

10

wherein R¹, R², R⁷, and R¹¹ are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

11) A compound of the formula $\overline{\text{VIII}}$:

$$R^7-O$$

$$SO_2-N$$

$$R^8$$

$$R^1$$

$$COOH$$

$$IX$$

wherein R^1 , R^2 , R^7 , R^8 , and R^9 are as defined above, its optically active substance, their

12) A compound of the formula \underline{X} :

$$R^7 - R^{12} - SO_2 - N - COOH X$$

wherein R^{12} is -CH=CH- or -C \equiv C-; R^1 , R^7 , R^8 , and R^9 are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

13) A compound of the formula XI:

5

$$R^{14}-C-N \xrightarrow{R^8} SO_2-N \xrightarrow{R^{13}} COOH XI$$

wherein R⁸, R⁹, R¹³, and R¹⁴ are as defined above, provided R¹³ is not methyl or phenyl and R¹⁴ is not 2-chlorophenyl, 4-chlorophenyl, or 2,4-dichlorophenyl, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

14) A compound of the formula XII:

T,0092

$$R^7 - N N = N SO_2 - N COOH XIII$$

wherein R¹, R⁷, R⁸, and R⁹ are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

15 15) A compound of the formula XIII:

T,0093

wherein R¹, R⁷, and R¹¹ are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

10

15

20

16) A compound of the formula XIV:

wherein R¹, R⁷, R⁸, and R⁹ are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

A compound of the invention is more specifically illustrated below:

A) The compound of any one of above 1) to 16), wherein R¹, R¹, R¹, and R¹³ are i-propyl,

benzyl, or (indol-3-yl) methyl.

B) The compound of any one of above 1) to 4) and 7) to 16), wherein R⁵, R⁷, and R¹⁴ are phenyl optionally substituted with one or more substituents selected from the group consisting of alkoxy, alkylthio, and alkyl.

C) The compound of any one of above 1) to 16), wherein a configuration of asymmetric carbon atoms bonding with R¹, R¹, R¹, and R¹³ is R configuration.

Further, this invention relates to a pharmaceutical composition, a composition for inhibiting metalloproteinase, and a composition for inhibiting type IV collagenase which contain the compound above 1) to 16) and A) to C)

All of compounds of above 1) to 16) and A) to C) have strong metalloproteinase inhibitory activity, and the following compound is more preferable:

substituted phenyl.

- A compound wherein R¹ is i-propyl, benzyl, or (indol-3-yl) methyl, R² is hydrogen atom, R³ is 1,4-phenylene, R⁴ is -C ≡ C-, and R⁵ is optionally substituted phenyl.
 A compound wherein R¹ is i-propyl, benzyl, or (indol-3-yl) methyl, R² is hydrogen atom, R³ is optionally substituted 2,5-thiophen-diyl, R⁴ is -C ≡ C-, and R⁵ is optionally
- 3) A compound wherein R¹ is i-propyl, benzyl, or (indol-3-yl)methyl, R² is hydrogen

10

15

20

25

atom, R3 is 1,4-phenylene, R4 is tetrazol-diyl, and R5 is optionally substituted phenyl.

The term "alkyl" herein used means C₁-C₁₀ straight or branched chain alkyl, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl, n-pentyl, i-pentyl, neo-pentyl, tert-pentyl, and the like.

The term "lower alkyl" herein used means C₁-C₆ straight or branched chain alkyl, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tertbutyl, and the like.

The term "C₃-C₈ cycloalkyl" herein used is exemplified by cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like.

The term "aryl" herein used means monocyclic or condensed ring aromatic hydrocarbons. Examples of the aryl are phenyl, naphthyl, and the like.

The term "aralkyl" herein used means the above mentioned alkyl substituted by the above mentioned aryl at any possible position. Examples of the aralkyl are benzyl, phenethyl, phenylpropyl (e.g., 3-phenylpropyl), naphthylmethyl (anaphthylmethyl), anthrylmethyl (9-anthrylmethyl), and the like. Benzyl is preferred. The aryl part may optionally be substituted.

The term "heteroaryl" herein used means a 5 to 6 membered aromatic heterocyclic group which contains one or more hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in the ring and may be fused with a carbocyclic ring or other heterocyclic ring at any possible position. Examples of the heteroaryl are pyrrolyl (e.g., 1-pyrrolyl), indolyl (e.g., 2-indolyl), carbazolyl (e.g., 3-carbazolyl), imidazolyl (e.g., 4- imidazolyl), pyrazolyl (e.g., 1-pyrazolyl), benzimidazolyl (e.g., 2-benzimidazolyl), indazolyl (e.g., 3-indazolyl), indolizinyl (e.g., 6-indolizinyl), pyridyl (e.g., 4-pyridyl), quinolyl (e.g., 5-quinolyl), isoquinolyl (e.g., 3-isoquinolyl), acridinyl (e.g., 1-acridinyl), phenanthridinyl (e.g., 2-phenanthridinyl), pyridazinyl (e.g., 3-pyridazinyl), pyrimidinyl (e.g., 4-pyrimidinyl), pyrazinyl (e.g., 2-pyrazinyl), cinnolinyl (e.g., 3-cinnolinyl), phthalazinyl (e.g., 2-phthalazinyl), quinazolinyl (e.g., 2-quinazolinyl), isoxazolyl (e.g., 3-isoxazolyl), benzisoxazolyl (e.g., 3-benzisoxazolyl), oxazolyl (e.g., 2-oxazolyl), benzoxazolyl (e.g., 2-benzoxazolyl), benzoxadiazolyl (e.g., 4-

10

15

20

25

benzoxadiazolyl), isothiazolyl (e.g., 3-isothiazolyl), benzisothiazolyl (e.g., 2-benzisothiazolyl), thiazolyl (e.g., 2-thiazolyl), benzothiazolyl (e.g., 2-benzothiazolyl), furyl (e.g., 3-furyl), benzofuryl (e.g., 3-benzofuryl), thienyl (e.g., 2-thienyl), benzothienyl (e.g., 2-benzothienyl), tetrazolyl, and the like. The aryl part of the above heteroaryl is optionally substituted.

The term "heteroarylalkyl" herein used means the above mentioned alkyl substituted with the above mentioned heteroaryl at any possible position. Examples of the heteroarylalkyl are thiazolylmethyl (e.g., 4-thiazolylmethyl), thiazolylethyl (e.g., 5-thiazolyl-2-ethyl), indolylmethyl (e.g., 2-indolylmethyl), imidazolylmethyl (e.g., 4-imidazolylmethyl), benzothiazolylmethyl (e.g., 2-benzothiazolylmethyl), benzopyrazolylmethyl (e.g., 4-benzotriazolylmethyl), benzotriazolylmethyl (e.g., 4-benzotriazolylmethyl), benzoquinolylmethyl (e.g., 2-benzoquinolylmethyl), benzimidazolylmethyl (e.g., 2-benzimidazolylmethyl), pyridylmethyl (e.g., 2-pyridylmethyl), and the like. The aryl part of the above heteroaryl is optionally substituted.

The term "arylene" herein used is exemplified by phenylene, naphthylene, and the like. Mentioned in more detail, it is exemplified by 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, and the like.

The term "heteroarylene" herein used is exemplified by thiophen-diyl, furandiyl, pyridin-diyl, and the like, in more detail, by 2,5-thiophen-diyl, 2,5-furan-diyl, and the like.

The term "non-aromatic heterocyclic group" herein used means 5 to 6 membered non-aromatic heterocyclic group which contains one or more hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in the ring, and may bind at any possible positin. Examples of the non-aromatic heterocyclic group are morpholino, piperidino, pyrrolidino, and the like.

The term "alkoxy" herein used means alkoxy of which alkyl part is the above mentioned alkyl. Examples of the alkoxy are methoxy, ethoxy, propoxy, butoxy, pentyloxy, and the like.

10

15

20

25

The term "lower alkoxy" herein used means alkoxy of which alkyl part is the above mentioned lower alkyl. Examples of the lower alkoxy are methoxy, ethoxy, n-propoxy, i-propoxy, i-butoxy, i-butoxy, sec-butoxy, tert-butoxy, and the like.

The term "halogen" herein used means fluoro, chloro, bromo, and iodo.

The term "alkylthio" herein used means alkylthio whose alkyl part is the above mentioned lower alkyl. Examples of the alkylthio are methylthio, ethylthio, and the like.

Substituents for "optionally substituted alkyl", "optionally substituted C₃-C₈ cycloalkyl", and "optionally substituted non-aromatic heterocyclic group" are hydroxy, alkoxy (e.g., methoxy and ethoxy), mercapto, alkylthio (e.g., methylthio), cycloalkyl (e.g., cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl), halogen (e.g., fluoro, chloro, bromo, and iodo), carboxy, alkoxycarbonyl (e.g., methoxycarbonyl and ethoxycarbonyl), nitro, cyano, haloalkyl (e.g., trifluoromethyl), substituted or unsubstituted amino (e.g., methylamino, dimethylamino, and carbamoylamino), guanidino, phenyl, benzyloxy, and the like. These substituents are able to bind them at one or more of any possible positions.

Substituents for the aromatic ring of "optionally substituted aryl", "optionally substituted aralkyl", "optionally substituted heteroaryl", "optionally substituted heteroarylalkyl", "optionally substituted arylene", and "optionally substituted heteroarylene" are, for example, hydroxy, alkoxy (e.g., methoxy and ethoxy), mercapto, alkylthio (e.g., methylthio), cycloalkyl (e.g., cyclopropyl, cyclobutyl, cyclopentyl), halogen (e.g., fluoro, chloro, bromo, and iodo), carboxy, alkoxycarbonyl (e.g., methoxycarbonyl and ethoxycarbonyl), nitro, cyano, haloalkyl (e.g., trifluoromethyl), aryloxy (e.g., phenyloxy) substituted or unsubstituted amino (e.g., methylamino, dimethylamino, diethylamino, and benzylidenamino), guanidino, alkyl (e.g., methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl, n-pentyl, i-pentyl, neopentyl, and tert-pentyl), alkenyl (e.g., vinyl and propenyl), alkynyl (e.g., ethynyl and phenylethynyl), alkanoyl (e.g., formyl, acetyl, and propionyl), acyloxy (e.g., acetyloxy), acylamino, alkylsulfonyl (e.g., methylsulfonyl), phenyl, benzyl, an azo group (e.g.,

10

15

20

25

phenylazo), optionally substituted heteroaryl (e.g., 3-pyridyl), optionally substituted ureido (e.g., ureido and phenylureido), and the like. These substituents are able to bind to it at one or more of any possible position.

Best Mode for Carrying Out the Invention

Compounds (Ia) and (Ib) of the invention are able to be synthesized from the corresponding α -amino acids represented by the formula (XV) by means of the following 6 synthetic methods. Generally, it is possible to produce the compounds of the invention by means of the method A. Each classified type of the compounds is possible to be produced by means of methods the B to F. However, these methods are only examples to produce the compounds represented by the formula I. A compound represented by the formula I produced by any other method is included in this invention.

Method A: A general synthetic method of the compound represented by the formula I.

Method B: A synthetic method of the compound wherein and R^3 is optionally substituted arylene or optionally substituted heteroarylene, R^4 is $-C \equiv C$ -, and R^5 is optionally substituted aryl or optionally substituted heteroaryl.

Method C: A synthetic method of the compound wherein R³ is optionally substituted arylene or optionally substituted heteroarylene, R⁴ is a bond, and R⁵ is optionally substituted aryl or optionally substituted heteroaryl.

Method D: A synthetic method of the compound wherein R³ is optionally substituted arylene or optionally substituted heteroarylene, R⁴ is -CO-NH-, and R⁵ is optionally substituted aryl or optionally substituted heteroaryl.

Method E: A synthetic method of the compound wherein R³ is optionally substituted arylene or optionally substituted heteroarylene, R⁴ is tetrazol-diyl, and R⁵ is optionally substituted aryl or optionally substituted heteroaryl.

Method F: A synthetic method of the compound wherein R³ is optionally substituted arylene or optionally substituted heteroarylene, R⁴ is -CH=CH-, and R⁵ is

optionally substituted aryl or optionally substituted heteroaryl.

Details of these methods are explained as follows.

(Method A)

Process 2

$$R^5 - R^4 - R^3 - SO_2 - N$$

CONHOH

Process 3

 $R^5 - R^4 - R^3 - SO_2 - N$

CONHOR 16

Process 4

XVI

wherein R^1 , R^2 , R^3 , R^4 , and R^5 are as defined above, R^{15} is hydrogen atom or a carboxy protective group, R^{16} is a hydroxy protective group, and Hal is halogen.

Conversion of compound (XV) to compound (Ia-1) is sulfonation of an amino group of the compound (XV) (process 1). If necessary, after this reaction, N-alkylation, deprotection of a carboxyl protective group, etc. are carried out. Conversion of compound (Ia-1) to compound (Ib-1) is to obtain hydroxamic acid derivatives from carboxylic acid derivatives (process 2). To obtain compound (Ib-1) from compound (Ia-1), compound (Ia-1) may also be reacted with hydroxylamine having a hydroxyl protective group or its acidic salts to give compound (XVI) (process 3), followed by and deprotection (process 4). Conversion to sulfonyl derivatives and hydroxamic acid derivatives are able to be carried out according to an usual method. For example, an amino acid represented by the formula (XV) is reacted with a sulfonating agent such as sulfonyl halide represented by R⁵-R⁴-R³-SO₂Hal (R³, R⁴, and R⁵ are as defined above; and Hal is halogen) and then hydroxylamine. Each process will hereinafter be described in more detail.

T,0150

D9120333305

10

15

(Process 1)

5

10

15

20

25

Some of amino acids represented by the formula (XV) or its acidic salts (e.g., hydrochloride, p-toluenesulfonate, and trifluoroacetate) which are starting materials are commercially available. The other are able to be synthesized in accordance with a method described in Zikkenkagakukoza, vol. 22, IV (nihonkagakukai), J. Med. Chem. 38, 1689-1700, 1995, Gary M. Ksander et. al., etc. some of sulfonating agents are commercially available and the other are synthesized in accordance with a method described Shin-zikkenkagakukoza, vol. 14, 1787, 1978, Synthesis 852-854, 1986, etc. A carboxyl protective group is exemplified by esters (e.g., methyl ester, tert-butyl ester and benzyl ester). Deprotection of this protective group may be carried out by hydrolysis with acid (e.g., hydrochloride and trifluoroacetic acid) or base (e.g., sodium hydroxide) depending on the type of the group, or by catalytic reduction, e.g., under 10% palladium-carbon catalyst condition. To obtain a compound (Ib-1), the esters may directly be converted to hydroxamic acid by the method of process 2. When a compound (XV) is an amino acid wherein R15 is hydrogen atom, preferable solvents for this sulfonylation are dimethylformamide, tetrahydrofuran, dioxane, dimethylsulfoxide, acetonitrile, water, or mixed solvents thereof. When a compound (XV) is an amino acid wherein R¹⁵ is a protective group such as an ester, a solvent for this sulfonylation is exemplified by the above solvents and mixed solvents of waterinsoluble solvents (e.g., benzene and dichloromethane) and the above solvents. A base to be used in this sulfonylation is exemplified by organic bases such as triethylamine, N-methylmorpholine, etc. and inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, and the like. Usually this reaction can be carried out at ice-cooling to room temperature. When R1, R3, R4, R5, or R15 of compound (Ia-1) contains a functional group(s) possibly interfering this sulfonylation (e.g., hydroxy, mercapto, amino, and guanidino), it can previously be protected in accordance with a method described in "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)) and then deprotected at an appropriate process. When \mathbb{R}^2 is not hydrogen atom, compound (Ia-1) wherein R² is hydrogen atom is further reacted with

10

15

20

25

(Process 2)

haloalkyl (e.g., methyl iodide, and ethyl iodide) or haloaralkyl (e.g., benzyl chloride, and benzyl bromide) in dimethylformamide, tetrahydrofuran, dioxane, and the like at a temperature range of ice-cooling to 80 °C, preferably ice-cooling to room temperature, for 3-10 hours, preferably 10-20 hours to give the desired N-R² derivative.

A hydroxylamine is reacted with compound (Ia-1) or its reactive derivatives to give hydroxamic acid derivatives (Ib-1). A hydroxylamine is usually used as its acidic salts (e.g., hydrochloride, and phosphate, sulfate: commercially available) in the presence of a base. A base to be used in this reaction is exemplified by organic bases such as triethylamine, N, N-dimethylaniline, N-methylmorpholine, etc. and inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, etc.

When compound (Ia-1) is used as a starting material of conversion to hydroxamic acid, this reaction is carried out in the presence of a peptide condensing agent (e.g., dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, N,N-carbonyldiimidazole, or a mixture of one of the above agents with 1-hydroxybenzotriazole, N-hydroxy sucinicimide, etc.). A solvent for this reaction may be dimethylformamide, tetrahydrofuran, dioxane, dimethylsulfoxide, acetonitrile, water, and mixed solvent thereof. This reaction is carried out at -20 °C to 40 °C, preferably ice-cooling to room temperature, for 1 to 16 hours.

Acid anhydrides (especially, mixed acid anhydrides), acid halides, acid azides, and esters can be utilized in this reaction as a reactive derivative of compound (Ia·1). These reactive derivatives are produced by usual methods. For example, the acid anhydride derivatives can be produced by a reaction of compound (Ia·1) with acid halide derivatives (e.g., ethyl chlorocarbonate) in the presence of a base (e.g., triethylamine), and acid halide derivatives can be produced by a reaction of compound (Ia·1) with a halogenation agent (e.g., oxalylchloride, and thionylchloride). Ester derivatives may be inactive or active. Sulfonyl derivatives converted from a compound (XV) wherein R¹⁵ is a carboxyl protective groups (e.g., methyl, tert-butyl, and benzyl) at process 1 can be used as inactive esters without deprotection. Active

esters can be produced by a reaction of compound (Ia-1), carbodiimide reagents (e.g., dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), and hydroxy derivatives corresponding to the active ester residue such as 1-hydroxybenzotriazole, N-hydroxysuccinimide, or the like. A reaction condition of conversion of the reactive derivatives of compound (Ia-1) to hydroxamic acid may be the same as that of conversion of compound (Ia-1) itself to hydroxamic acid. The reactions of processes 1 and 2 are able to continuously be carried out in one-pot reaction.

(Process 3)

10

5

A protected hydroxylamine to be used in this reaction includes Obenzylhydroxylamine, O-(p-methoxybenzyl)hydroxylamine, O-(tertbutyl)hydroxylamine, or the like. This reaction condition may be in the same manner as that of process 2.

(Process 4)

15

This process for deprotection is carried out by catalytic reduction, treatment with conc. hydrochloric acid, or treatment with trifluoroacetic acid to give the desired compound (Ib-1). The compounds of this invention (Ia-1) and (Ib-1) can be isolated and purified by usual separation methods and purification methods (e.g., chromatography, crystallization, etc.).

20 (Method B)

1,0180

10

15

$$\begin{array}{c|c}
R^{1} & R^{1} \\
 & R^{1$$

$$R^{7}-C \equiv C-R^{17}-SO_{2}-N + COOR^{15} + Process 3 + R^{7}-C \equiv C-R^{17}-SO_{2}-N + COOH$$

$$XVIII$$

$$Ia-2$$

Process 4
$$R^{7}-C = C-R^{17}-SO_{2}-N$$

$$R^{2}$$

$$\underline{Ib-2}$$
CONHOH

wherein R^1 , R^2 , R^7 , R^{15} , and Hal are as defined above, R^{17} is optionally substituted aryl or optionally substituted heteroaryl.

Conversion of compound (XV) to compound (XVII) is performed by sulfonation of an amino group of compound (XV) (process 1) in the same manner as that described in process 1 of method A. Conversion of compound (XVII) to compound (XVIII) is performed by Heck reaction (K. Sonogashira, Y. Tohda, and N. Hagihara, Tetrahedron Lett., 4467(1975) etc.) wherein halogen of R¹⁷ is utilized to insert a triple bond (process 2). Conversion of compound (XVIII) to compound (Ia-2) is N-alkylation, deprotection of a carboxyl protective group, etc. (process 3), which can be carried out in the same manner as that described in process 1 of method A. Conversion of compound (Ia-2) to compound (Ib-2) is that of carboxylic acid derivatives to hydroxamic acid derivatives (process 4), which can be carried out in the same manner as those described in processes 2 to 4 of method A. Each process will hereinafter be described in more detail.

(Process 1)

This process may be carried out in the same manner as that described in process 1 of method A.

(Process 2)

10

15

Compound (XVII) is reacted with optionally substituted aryl or optionally substituted heteroaryl having an ethynyl group such as ethynylbenzene in a solvent such as dimethylformamide, toluene, xylene, benzene, tetrahydrofuran etc. in the presence of a palladium catalyst (e.g., Pd(Ph₃P)₂Cl₂), a divalent copper reagent (e.g., CuI), and an organic base (e.g., triethylamine, and diisopropylethylamine) to give a desired compound (XVIII) (Heck reaction). This reaction is carried out at room temperature to 100 °C, preferably room temperature to 80 °C. This reaction is completed for 3 to 30 hours, preferably 10 to 20 hours. When optionally substituted aryl or optionally substituted heteroaryl has a substituent(s) interfering this reaction, the substituent(s) can previously be protected in accordance with a method of "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)), and then deprotected at an appropriate step. (Process 3)

This process may be carried out in the same manner as that described in process 1 of method A.

(Process 4)

This process may be carried out in the same manner as those described in processes 2 to 4 of method A.

(Method C)

20

$$(Hal-)R^{17}-SO_{2}-N \xrightarrow{R^{1}}COOR^{15} \xrightarrow{Process 1} R^{7}-R^{17}-SO_{2}-N \xrightarrow{R^{1}}COOR^{15}$$

$$XVII \qquad XIX$$

$$Process 2 \qquad R^{7}-R^{17}-SO_{2}-N \xrightarrow{R^{1}}COOH \xrightarrow{Process 3} R^{7}-R^{17}-SO_{2}-N \xrightarrow{R^{2}}CONHON_{R^{2}}$$

$$Ia-3 \qquad Ib-3$$

wherein R1, R2, R7, R15, R17, and Hal are as defined above.

Conversion of compound (XVII) to compound (XIX) is performed by Suzuki reaction (M. J. Sharp and V. Shieckus, Tetrahedron Lett., 26, 5997 (1985) etc.) wherein

halogen of R¹⁷ is utilized to introduce aryl or heteroaryl (process 1). Conversion of compound (XIX) to compound (Ia-3) is N-alkylation, deprotection of a carboxyl protective group, etc. (process 2) and this process can be carried out in the same manner as that described in process 1 of method A. Conversion of compound (Ia-3) to compound (Ib-3) is that of carboxylic acid derivatives to hydroxamic acid derivatives (process 3), and this process can be carried out in the same manner as those described in processes 2 to 4 of method A. Each process will hereinafter be described in more detail.

(process 1)

5

10

15

20

Compound (XVII) is reacted with optionally substituted aryl or optionally substituted heteroaryl having a B(OH)2 (otherwise B(Et)2) group such as phenylboronic acid in a solvent such as dimethylformamide, toluene, xylene, benzene, tetrahydrofuran etc. in the presence of a palladium catalyst (e.g., Pd(Ph3P)4) and a base (e.g., potassium carbonate, calcium carbonate, triethylamine, sodium methoxide etc.) to give the desired compound (XIX) (Suzuki reaction). This reaction is carried out at room temperature to 100 °C, preferably room temperature to 80 °C. This reaction is completed for 5 to 50 hours, preferably 15 to 30 hours. When optionally substituted aryl or optionally substituted heteroaryl has a substituent(s) interfering this reaction, the substituent(s) can previously be protected in accordance with a method of "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)) and then deprotected at an appropriate step.

(Process 2)

This process may be carried out in the same manner as that described in process 1 of method A.

25 (Process 3)

This process may be carried out in the same manner as those described in processes 2 to 4 of method A.

(Method D)

T,0210

21

10

15

$$\begin{array}{c|c}
R^1 & & \\
 & \downarrow \\
 &$$

$$(H_2N_-)R^{17} - SO_2 - N + COOR^{15} + Process 3 + R^7 - C - N - R^{17} - SO_2 - N + COOR^{15}$$

$$XXI$$

$$XXII$$

$$XXII$$

Process 4
$$R^{7}-\ddot{C}-N-R^{17}-SO_{2}-N$$

$$Ia-4$$

$$R^{1}$$
Process 5
$$R^{2}$$

wherein R^1 , R^2 , R^7 , R^{15} , R^{17} , and Hal are as defined above.

Conversion of compound (XV) to compound (XX) is sulfonation of an amino group of the compound (XV) (process 1) and this process may be carried out in the same manner as that described in process 1 of method A. Conversion of compound (XX) to compound (XXI) is reduction of a nitro group of R¹⁷ to an amino group (process 2) and this process can be carried out by catalytic reduction or other reduction using hydrochloric chloride - Fe, hydrochloric chloride - Sn, etc. Conversion of compound (XXI) to compound (XXII) is performed by usual amide bond formation reaction wherein an amino group of R¹⁷ is utilized (process 3). Conversion of compound (XXII) to compound (Ia-4) is N-alkylation, deprotection of a carboxyl protective group, etc. (process 4) of compound (XXII) and this process can be carried out in the same manner as that described in process 1 of method A. Conversion of compound (Ia-4) to compound (Ib-4) is that of carboxylic acid derivatives to hydroxamic acid derivatives (process 5) and this process can be carried out in the same manner as those described

in processes 2 to 4 of method A. Each process will hereinafter be described in more detail.

(process 1)

This process may be carried out in the same manner as that described in process 1 of method A.

(Process 2)

5

10

15

20

Compound (XX) is treated with hydrogen in a solvent such as methanol, ethanol, ethyl acetate, acetic acid, etc. in the presence of a catalyst (e.g., Pd-C, PtO₂, Raney Ni etc.), under a no-pressure or pressured condition to give the desired compound (XXI). This reaction is carried out at a temperature under ice-cooling to 80 °C, preferably room temperature to 50 °C, and is completed for 1 to 10 hours, preferably 2 to 5 hours.

(Process 3)

Compound (XXI) is reacted with optionally substituted aryl or optionally substituted heteroaryl having an acid halide (otherwise an active ester) group such as benzoyl chloride in a solvent such as dimethylformamide, tetrahydrofuran, dioxane, dimethylsulfoxide, acetonitrile, xylene, toluene, benzene, dichloromethane, etc. in the presence of a base (e.g., triethylamine, N-methylmorpholine, potassium carbonate etc.) to give the desired compound (XXII). This reaction is carried out at a temperature under ice-cooling to 100 °C, preferably room temperature to 60 °C, and is completed for 3 to 30 hours, preferably 10 to 25 hours.

(Process 4)

This process may be carried out in the same manner as that described in process 1 of method A.

25 (Process 5)

This process may be carried out in the same manner as those described in processes 2 to 4 of method A.

(Method E)

T,0230

10

15

wherein R1, R2, R7, R15, R17, and Hal are as defined above.

Conversion of compound (XV) to compound (XXIII) is performed by sulfonating an amino group of the compound (XV) (process 1) in the same manner as that described in process 1 of method A. Conversion of compound (XXIII) to compound (XXIV) is done by the reduction wherein an ethenyl group of R¹⁷ is converted into an aldehyde group (process 2). Conversion of compound (XXIV) to compound (XXVI) is performed by a tetrazole ring formation reaction (processes 3 and 4). Conversion of compound (XXVI) to compound (Ia-5) is N-alkylation, deprotection of a carboxyl protective group, etc. of compound (XXVI) (process 5), and this process can be carried out in the same manner as that described in process 1 of method A. Conversion of compound (Ia-5) to compound (Ib-5) is that of carboxylic acid derivatives to hydroxamic acid derivatives (process 6), which can be carried out in the same manner as those described in processes 2 to 4 of method A. Each process will hereinafter be described in more detail.

(process 1)

This process may be carried out in the same manner as that described in process 1 of method A.

(Process 2)

5

10

15

20

25

A compound (XXIII) is treated with ozone in a solvent such as dichloromethane, ethyl acetate, methanol, etc. to form an ozonide, and then a reagent such as zinc-acetic acid, triethylphosphate, dimethylsulfide, etc. is added to this reaction mixture for reduction to give the desired aldehyde derivatives (XXIV). The reduction can also be carried out by catalytic hydrogenation. This reaction is carried out at -100 °C to room temperature, preferably -78 °C to a temperature under ice-cooling, and is completed for 0.5 to 10 hours, preferably 1 to 3 hours. (Process 3)

A compound (XXIV) is reacted with benzensulfonylhydrazide in a solvent such as tetrahydrofuran, ether, etc. mixed with a solvent such as methanol, ethanol, etc. to give the desired compound (XXV). This reaction is carried out at a temperature under ice-cooling to 80 °C, preferably room temperature to 50 °C, and is completed for 3 to 30 hours, preferably 10 to 20 hours.

(Process 4)

Optionally substituted aryl or optionally substituted heteroaryl having amino group such as aniline is dissolved in a mixed solvent such as alcohol (e.g., ethanol) and water. To this mixture conc. hydrochloric acid and a diazotizing agent such as a sodium nitrite aqueous solution are added at -20 °C to 10 °C, preferably 0 °C to 5 °C, to give a diazonium salt. The reaction time is 5 min to 1 hr, preferably 10 to 30 min. This reaction mixture is added to a pyridine solution of compound (XXV) and allowed react for 1 to 10 hr, preferably 2 to 5 hr, at -30 °C to 50 °C, preferably -15 °C to room temperature to give the desired compound (XXVI). When optionally substituted aryl or optionally substituted heteroaryl has a substituent(s) interfering this reaction, the substituent(s) can previously be protected in accordance with a method of "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)), and then deprotected at an appropriate step.

(Process 5)

This process may be carried out in the same manner as that described in

process 1 of method A.

(Process 6)

This process may be carried out in the same manner as those described in processes 2 to 4 of method A.

5 (Method F)

10

15

Process 2 $R^7 - C = C - R^{17} - SO_2 - N$ Ia-6 R^1 Process 3 R^2

$$R^{7}-C=C-R^{17}-SO_{2}-N$$
CONHOH
$$\frac{10-6}{R^{2}}$$

wherein R^1 , R^2 , R^7 , R^{15} , R^{17} , and Hal are as defined above.

Conversion of compound (XXIV) to compound (XXVII) is performed by Wittig reaction (G. Wittig et al., Chem. Berr. 87, 1318 (1954)) wherein an aldehyde group of R¹⁷ is utilized to introduce aryl or heteroaryl through a double bond (process 1). Conversion of compound (XXVII) to compound (Ia-6) is N-alkylation, deprotection, etc. of compound (XXVII) (process 2), and this process can be carried out the same similar as described in process 1 of method A. Conversion of compound (Ia-6) to compound (Ib-6) is that of carboxylic acid derivatives to hydroxamic acid derivatives (process 3), and this process can be carried out in the same manner as those described in processes 2 to 4 of method A. Each process will hereinafter be described in more detail. (process 1)

Compound (XXIV) is reacted with ylide derivatives of optionally substituted aryl or optionally substituted heteroaryl such as Ph₃P=CHPh, etc., which is produced

by an usual method, in a solvent such as toluene, xylene, tetrahydrofuran, ether, dimethylformamide, etc. at -100 °C to room temperature, preferably -78 °C to ice-cooling for 1 to 20 hours, preferably 1 to 5 hours, to give the desired compound (XXVII). When optionally substituted aryl or optionally substituted heteroaryl has a substituent(s) interfering this reaction, the substituent(s) can previously be protected in accordance with a method of "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)), and deprotected at an appropriate step.

This process may be carried out in the same manner as that described in process 1 of method A.

(Process 3)

5

10

15

20

25

This process may be carried out in the same manner as those described in processes 2 to 4 of method A.

The term "compound of the present invention" herein used includes pharmaceutically acceptable salt or hydrate of the compound. The salt is exemplified by a salt with alkali metals (e.g., lithium, sodium, and potassium), alkaline earth metals (e.g., magnesium and calcium), ammonium, organic bases, amino acids, mineral acids (e.g., hydrochloric acid, hydrobromic acid, phosphoric acid, and sulfuric acid), or organic acids (e.g., acetic acid, citric acid, mallein acid, fumaric acid, benzenesulfonic acid, and p-toluenesulfonic acid). These salts can be formed by the usual method.

The compound of the present invention is not restricted to any particular isomers but includes all possible isomers and racemic modifications.

The compound of the present invention has an excellent activity for inhibiting metalloproteinase, especially activity for inhibiting MMP, and inhibits matrix dissolution, as described in the following test example. Therefore, the compound of the present invention is useful to treat or prevent diseases which are caused by MMP and relative enzymes such as TNF- α converting enzyme, etc.

Definitely, the compounds of the present invention are useful in the prevention or treatment of diseases such as osteoarthritis, rheumatoid arthritis,

10

15

20

25

corneal ulceration, periodontal disease, metastasis and invasion of tumor, advanced virus infection (e.g., HIV), arteriosclerosis obliterans, arteriosclerotic aneurysm, atherosclerosis, restenosis, sepsis, septic shock, coronary thrombosis, aberrant angiogenesis, scleritis, multiple sclerosis, open angle glaucoma, retinopathies, proliferative retinopathy, neovascular glaucoma, pterygium, keratitis, epidermolysis bullosa, psoriasis, diabetes, nephritis, neurodegengerative disease, gingivitis, tumor growth, tumor angiogenesis, ocular tumor, angiofibroma, hemangioma, fever, hemorrhage, coagulation, cachexia, anorexia, acute infection, shock, autoimmune disease, malaria, Crohn disease, meningitis, and gastric ulcer.

When the compound of the present invention is administered to a person for treatment or prevention of the above diseases, they can be administered by oral administration such as powder, granules, tablets, capsules, pilulae, and liquid medicine, or by parenteral administration such as injections, suppository, percutaneous formulations, insufflation, or the like. An effective dose of the compound of the invention is formulated by being mixed with medicinal admixture such as excipient, penetrant, disintegrators, lubricant, and the like if necessary. When parenteral injection is prepared, the compound of the invention and an appropriate carrier are sterilized to prepare it.

An appropriate dosage varies with the conditions of the patients, an administration route, their age, their body weight and the like and should be determined by a physician in the end. In the case of oral administration, a daily dosage can generally be between 0.1 - 100 mg/kg/day, preferably 1 - 20 mg/kg/day. In the case of parenteral administration, the daily dosage can generally be between 0.01 - 10 mg/kg/day, preferably 0.1 - 1 mg/kg/day. The daily dosage can be administrated in one to several divisions.

The following examples are provided to further illustrate the present invention and are not to be constructed as limiting the scope thereof.

Abbreviations described below are used in the following examples.
p-TsOH: p-toluenesulfonic acid

DMSO: dimethylsulfoxide

Me: methyl

10

15

^tBu: tert-butyl

Example 1 (Method A)

To a suspension of (R)-(+)-phenylalanine (compound XV-1, 1.65g (10 mmol)) in 50 ml of dimethylformamide and 35 ml of water was stirred and treated with 2.78 ml (20 mmol) of triethylamine under ice-cooling. Then, 2.52g(10 mmol) of 4-biphenylsulfonyl chloride in 10 ml of dimethylformamide was added dropwise to the mixture over 5 min. After the reaction mixture was stirred for 2 h at the same temperature, 1.35 g (10 mmol) of 1-hydroxybenzotriazole hydrate, 2.1 g (11 mmol) of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, 3.47 g (50 mmol) of hydroxylamine hydrochloride, and 7 ml (50 mmol) of triethylamine were added to the mixture. After being stirred for 16 h at room temperature, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with 2N HCl, 5% NaHCO₃, and water, and concentrated in vacuo. The residue was subjected to silica gel column chromatography and the fractions eluting with CHCl₃ / MeOH = 40/1 to 20/1 were collected to yield 1.70 g of compound (Ib-1-1) as a foam. Yield 43%. mp. 169-170°C.

20 Elemental analysis (%) C21H20N2O4S

Calcd. : C; 63.62, H; 5.08, N; 7.07, S; 8.09

Found: C;63.61, H; 5.12, N; 6.98, S; 8.06

IR ν max (cm⁻¹) (Nujol): 3365, 3295, 3266, 1674, 1320, 1159.

NMR (δ ppm) d₆-DMSO : 2.61 (dd, J=8.6, 13.4Hz, 1H), 2.80 (dd, J=6.0, 13.6Hz, 1H), 3.80

5 (m, 1H).

 $[\alpha]_D$: +18.5 ± 1.2 (c=0.503 %, 25°C, DMSO)

Example 1'

Another synthetic method of compound (Ib-1-1)

10 Process 1

15

To a solution of (R)-phenylalanine benzyl ester tosylate (compound XV-1', 2.5 g (5.85 mmol)) in 60 ml of dichloromethane was added triethylamine (1.8 ml, 12.87 mmol) and 4-biphenylsulfonyl chloride(1.63 g, 6.44 mmol) under ice-cooling. After being stirred for 2 h at room temperature, the reaction mixture was washed with 2N HCl, 5% NaHCO₃ and water, and concentrated in vacuo. The residue was subjected to silica gel column chromatography and the fractions eluting with CHCl₃ / MeOH = 40/1 to 20/1 were collected and crystallized from dichloromethane / hexane to give 2.32 g of

15

20

25

compound (Ia-1-1'). Yield 84.1%. mp. 130-131℃.

Elemental analysis (%) C28H25NO4S

Calcd. : C; 71.32, H; 5.34, N; 2.97, S; 6.80

Found: C; 71.05, H; 5.41, N; 3.00, S; 6.81

5 IR ν max (cm⁻¹) (Nujol): 3352, 1732, 1341, 1190, 1163.

NMR (δ ppm) (CDCl₃): 3.06 (d, J=5.8Hz, 2H), 4.30 (dt, J=6.0, 9.0Hz, 1H), 4.89 (s, 2H),

5.12 (d, J=9.0Hz, 1H), 6.98-7.81 (m, 14H).

 $[\alpha]_D$: -16.4 ± 1.1(c=0.506 %, 25°C, MeOH)

Process 2

A solution of compound (Ia-1-1') (2.28 g) which was obtained process 1 in 50 ml of mixed solvents of methanol / ethyl acetate =1/1, was hydrogenated using 10 % Pd/C (200 mg) for 25 min. The reaction mixture was filtered off, and the filtrate was concentrated in vacuo. The residue was recrystallized from dichloromethane / hexane to give 1.83 g of compound (Ia-1-1"). Yield 99.1 %. mp. 146-147°C.

Elemental analysis (%) C21H19NO4S

Calcd.: C; 66.12, H; 5.02, N; 3.67, S; 8.41

Found: C;65.97, H; 5.06, N; 3.61, S; 8.48

IR ν max (cm⁻¹) (Nujol): 3408, 3305, 1751, 1325, 1161, 1134.

NMR (δ ppm) (CDCl₃): 2.97 (dd, J=7.0, 13.8Hz, 1H), 3.14 (dd, J=5.2, 14.0Hz,1H), 4.13

(m, 1H), 7.03-7.78 (m, 14H).

 $[\alpha]_D$: -4.0 ± 0.4(c=1.000 %, 25°C, MeOH)

Process 3

To a solution of compound (Ia-1-1", 1.0 g (2.62 mmol)) which was obtained process 2 in dichloromethane (20 ml) was added 0.33 ml (3.93 mmol) of oxalyl chloride and one drop of dimethylformamide. After being stirred for stirred for 1 h at room temperature, the reaction mixture was concentrated in vacuo. The residue was dissolved in 10 ml of tetrahydrofuran. A solution of hydroxylamine hydrochloride (911 mg (13.1 mmol)) and NaHCO₃ 1.54 g (18.34 mmol) in 10ml of tetrahydrofuran and 10ml of water was stirred for 5 min under ice-cooling. To the mixture was added the

15

25

above solution of acid chloride in tetrahydrofuran and the resulting mixture was stirred for 30 min. The reaction mixture was poured into water, and extracted with ethyl acetate. The organic layer was washed with 5% NaHCO₃, and water, and concentrated in vacuo to give compound (Ia-1) (969 mg). Yield 93.3 %.

5 Process 4

To a solution of compound (Ia-1-1", 2.0 g, 5.24 mmol) which was obtained process 2 in dimethylformamide (20 ml) was added 1-hydroxybenzotriazole hydrate (0.7 g, 5.24 mmol), N-methylmorpholine (2.9 ml, 26.2 mmol), 1-ethyl-3-(3-diisopropylamino) carbodiimide hydrochloride (8 mmol), and O-benzylhydroxylamine hydrochloride (1.67 g, 10.48 mmol), and the resulting mixture was stirred for 6 h at room temperature. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with 2N HCl, 5% NaHCO₃, and water, and concentrated in vacuo. The residue was subjected to silica gel column chromatography and the fractions eluting with CH₂Cl₂ / hexane = 1/1 were collected and recrystallized from dichloromethane / hexane to give 2.04 g of compound (XVI-1). Yield 80 %. mp. 171-173°C.

Elemental analysis (%) C28H26N2O4S

Calcd.: C; 69.12, H; 5.39, N; 5.76, S; 6.59

Found: C; 68.85, H; 5.46, N; 5.76, S; 6.78

20 IR v max (cm⁻¹) (Nujol): 3248, 1661, 1594, 1333, 1163.

NMR (δ ppm) (CDCl₃): 2.85-3.60 (m, 2H), 3.86 (m, 1H), 4.77 (ABq-Apart, J=11.4Hz, 1H), 4.82 (ABq-Bpart, J=11.4Hz, 1H), 5.00 (m, 1H), 6.95-7.70 (m, 19H).

 $[\alpha]_D$: -40.2 ± 1.6 (c=0.505 %, 25°C, DMSO)

Process 5

A solution of compound (XVI-1) (1.97 g) which was obtained process 4 in a 60 ml of mixed solvents of methanol / ethyl acetate =1/1 was hydrogenated using 10 % Pd-C (200 mg) for 3.5 h. The reaction mixture was filtered off, and the filtrate was concentrated in vacuo. The residue was recrystallized from dichloromethane / hexane to give 1.35 g of compound (Ib-1-1). Yield 84.4-%.

Example 2 - 91

The compounds which were shown in Tables 1 to 22 were synthesized in a manner similar to those described in Example 1'

9 R18-SO2NH CONHOH

3.12(dd,J=10.3,14.3Hz,1H), 3.89(dd, J=3.3,13.5Hz,1H),4.20(m,1H), 5.90 2.61(dd,J=9.4,13.8Hz,1H),2.78(dd, J=6.0,13.8Hz,1H),3.78(m,1H),7.43 (d,J=8.2Hz,2H),7.60(d,J=8.2Hz,2H), 2.67(dd,J=9.2,13.1Hz,1H), 2.84(dd, J=5.3,13.5Hz,1H),3.82(m,1H) 2.72(dd,J=7.2,13.8Hz,1H), 2.97(dd, 7.0,14.8Hz,1H),3.81(m,1H), 2.87(dd,J=5.6,14.2Hz,1H), 2.98(dd, J=8.4,14.2Hz,1H),4.02(dd,J=2.2, 2.2-2.7(m,2H),3.99(t,J=7.0Hz,1H) 1.68(m,2H), 2.37(m,2H), 3.64(t, J=6.9Hz,1H) 8.6Hz,1H), 7.24(d,J=2.0Hz,1H), 8.83(d,J=2.2Hz,1H) 'H-NMR(ô ppm) de-DMSO ŧ (brs, 1H) 3403,3386,3265,1673 ,1320,1162 (Nujol) 3265,1676,1642, 1337,1161 (Nujol) 3700-2200br,3264, 1635,1342,1164, 3258,1650,1377, 1348,1163 (Nujol) 3277,1669,1397, 1322,1159, 3262,1663,1322, 1157, 3403,3261,1669, 1321,1160 IR (v cm⁻¹) (KBr) I mp (decomp.)
(C) 172-173 203-206 167-169 139-141 144-146 124-126 173 > i BS SS SS 83 2 2 2 2 * R 18 -CH2-^CH2--CH2-√_}сн₂сн₂-SN = CH₂-∕CH2-CF₃CH₂-2 E E Example ŝ 6 ∞ 2 9 က 4 S 2

T,0350

a R18-SO2NH CONHOH

0.71(d,J=6.8Hz,3H),0.74(d,J=5.4Hz,3H),1. 73(m,1H),1.73(m,1H),3.22(m,1H),3.82(s,3 H),7.05(d,J=9.0Hz,2H),7.69(d,J=9.0Hz,2H) 2.80(dd,J=10.0,13.8Hz,1H),2.92(dd, J=5.0,12.8Hz,1H),3.90(dd,J=5.4, 2.62(dd,J=9.9,13.5Hz,1H),2.78(dd, J=5.8,13.0Hz,1H),3.77(t,J=6.2Hz, 1H), 2.71(dd,J=7.9,14.2Hz,1H),2.94(dd, J=6.9,14.2Hz,1H),3.57(s,3H),3.83 2.60-2.82(m,2H),3.84(m,1H),7.00-7.18(m,5H),7.62-7.80(m,4H), 2.25(s,3H),2.67(dd,J=7.5,14.2Hz,1H),2.95(dd,J=7.7,14.6Hz,1H),3.81(dd,J=6.2,14.2Hz,1H) 0.50-1.62(m,13H), 3.56(t,J= 7.4Hz,1H) 2.70-2.93(m,2H),2.82(s,6H), 3.75(m,1H), 'H-NMR(δ ppm) de-DMSO (dd,J=7.0,7.4Hz,1H) 9.6Hz,1H), 3600-2400br,3257, 1743,1721,1323,1132, 3700-2100br,3176, 1664,1320,1143, 3268,1632,1598, 1336,1162 3257,1662,1516, 1344,1322,1160, 3278,2920,1632, 1337,1161 3272,1631,1332, 1161 3404,1670,1320, 1159 3258,1669,1509, 1322,1157 [R (v cm⁻¹) (KBr) mp (decomp.) 172-173 144-146 116-118 178-179 184-185 128-130 165-166 91-92 ව RS. SS SS SE æ 2 മ 2 R 18 (CH₃)2N-{ ¥oo₅H ĊĦ2 ∕CH2-LCH₂. **}**CH2-**FCF**2-}CH₂-∕CH2-(CH₃)₂CH-ਝੁ 2 Example 15 16 17 10 14 2 က ģ

9 R¹⁸SO₂NH CONHOH

4.88(d,J=9.4Hz,1H),8.74(d,J=9.4Hz,1H), 8.98(s,1H),10.92(s,1H) 2.68(dd,J=9.8,13.7Hz,1H),2.79(dd, J=5.6,12.8Hz,1H),3.85(t,J=7.0Hz,1H), 2.72(dd,J=8.0,14.0Hz,1H),2.90(dd, J=6.2,14.2Hz,1H),3.82(m,1H) 2.69(dd,J=7.6,13.5Hz,1H),2.93(dd, J=7.6,13.5Hz,1H),3.77(t,J=7.6Hz, 2.74(dd,J=8.3,13.5Hz,1H),2.95(dd, J=6.5,13.5Hz,1H),3.87(dd,J=6.5, 8.3Hz,1H),(CD₃OD) 3.22-3.38(m,2H),4.17-4.24(m,2H), 7.80(d,J=8.0Hz,2H),7.96(d,J=6.4 Hz,2H) 3.86(d,J=3.6Hz,1H),4.91 (d,J=3.6Hz,1H) ¹H·NMR(ô ppm) d₆·DMSO ı (CD3OD) 3700-2200(br),3278, 1706,1645,1322,1162 3700-2400(br),3473, 1675,1310,1152 3455,3362,1672, 1398,1162 3700-2400br,3252, 1668,1326,1160 3404,3315,1669, 1594,1316,1162 3186,1593,1480, 1379 3420,1670,1592, 1321,1159 IR (v cm⁻¹) (KBr) 1 mp (decomp.) 197-199 196-197 111-115 201-202 154-158 5 ١ ı SS BS RS 83 SS × 2 2 × /__У>> R 18 CH₂. -ÇHŞ--CH2--²HS-CH2-CH₂-±0-₽ $\bar{\mathbf{z}}$ Example 24 1 8 1 9 2 0 2 1 വ 2 က ŝ ..~ 2 2

COITOIBE . CYEEDS

T,0360

R¹⁸SO₂NH → CONHOH (lb)

,						, <u>-</u>	, <u>-</u> 1		
	'H-NMR(ô ppm) d ₆ -DMSO	2.60(dd,J=9.0,13.8Hz,1H),2.79(dd, J=9.3,13.8Hz,IH),3.76(m,1H)	2.66(dd,J=9.5,13.6Hz,1H),2.79(dd,J=5. 4,13.6Hz,1H),3.84(m,1H),7.73(A ₂ B ₂ qJ= 8.9Hz,2H),8.20(A ₂ B ₂ q,J=8.9Hz,2H),8.7 2(d,J=9.0Hz,1H),8.86(s,1H),10.7(s,1H)		I	3.29(dd,J=5.7,10.7Hz,1H),3.43(dd,J= 8.4,10.7Hz,1H),3.62(m,1H),7.85(A ₂ B 2q,J=8.7Hz,2H),7.88(A ₂ B ₂ q,J=8.7Hz, 2H),7.98(d,J=7.8Hz,1H),10.61(s,1H)	2.69(dd,J=7.6,13.5Hz,1H),2.93(dd, J=7.6,13.5Hz,1H),3.77(t,J=7.6Hz, 1H),(CD ₃ OD)	1	2.66(dd,J=7.5,13.4Hz,1H),2.96(dd, J=7.6,14.2Hz,1H),3.81(m,1H)
(2.)	IR (v cm·¹) (KBr)	3700-2200(br),3362,1670, 1590,1336,1152	3700-2200br,3372,1674, 1531,1348,1310,1161	ţ	1	3700-2400(br),3392, 1667,1320,1161	3700-2200(br),1671, 1329,1163	_	3401,3260,1673, 1316,1165
	mp (decomp.) (C)	63-65	70-71	_	ı	192-193	02-69	-	160-162
ĺ	*	Ж	R	Ж	æ	R	R	R	R
	R 18		O ₂ N-{}						
	R.	СН2-СН2-	CH2-CH2-	HOOC-CH ₂ -	HOOC-CH ₂ -CH ₂ -	HOCH ₂ -	CH₂OCH₂-	-₹но-С—}-сон	M CH2.
	Example No.	26	2.7	28	2 9	3.0	3.1	3.2	33

	2.84-3.21 (m,2H),4.29 (m,1H)
1	3700-2400(br),1672, 1443,1327,1094
l	141-145
2	RS.
Br—(s)—	
IZ B	LE CH
3.4	3.5
	H Br—S

D91E0383 O7EE98

1H-NMR(8 ppm) de-DMSO
2.95(dd,J=9.0,14.0Hz,1H),3.12(dd, J=5.4,14.0Hz,1H),4.13(m,1H),7.29 (d,J=2.0Hz,1H),8.34(d,J=8.6Hz,1H),8.88(d,J=2.0Hz,1H),12.79(br,1H)
2.95(dd,J=9.0,14.0Hz,1H),3.12(dd, J=5.4,14.0Hz,1H),4.13(m,1H),7.29 (d,J=2.0Hz,1H),8.34(d,J=8.6Hz,1H),8.88(dd,J=2.0Hz,1H),12.79(br,1H) 2.88(dd,J=8.0,14.0Hz,1H),3.09(dd, J=6.0,14.0Hz,1H),3.91(m,1H),8.23 (m,1H),10.79(s,1H),12.70(br,1H)
2.95(dd,J=9.0,14.0Hz,1H),3.12(dd, J=5.4,14.0Hz,1H),4.13(m,1H),7.29 (d,J=2.0Hz,1H),8.34(d,J=8.6Hz,1H),8.34(d,J=8.6Hz,1H),8.38(d,J=8.6Hz,1H),12.79(br,1H),8.88(dd,J=8.0,14.0Hz,1H),3.09(dd=6.0,14.0Hz,1H),3.91(m,1H),8.2; m,1H),10.79(s,1H),12.70(br,1H) 2.75-3.06(m,2H),3.69(s,3H),3.90 (m,1H)
2.95(dd,J=90,14.0Hz,1H),3.12(dd,J=5.4,14.0Hz,1H),4.13(m,1H),7.29 (d,J=2.0Hz,1H),8.34(d,J=8.6Hz,1H),8.34(d,J=8.6Hz,1H),12.79(br,1H),2.88(dd,J=2.0Hz,1H),12.79(br,1H),2.88(dd,J=8.0,14.0Hz,1H),3.91(m,1H),8.23(m,1H),10.79(s,1H),12.70(br,1H),2.75-3.06(m,2H),3.69(s,3H),3.90 (m,1H),10.79(s,1H),13.91(m,1H),3.57(dd,J=5.5,13.9Hz,1H),3.87(dd,J=5.5,13.9Hz,1H),3.80(t,J=5.6Hz,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.6Hz,J=5.5,13.9Hz,1H),3.80(t,J=5.6Hz,J=5.5,13.9Hz,1H),3.80(t,J=5.6Hz,J=5.5,13.9Hz,1H),3.80(t,J=5.6Hz,J=5.5,13.9Hz,1H),3.80(t,J=5.6Hz,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=5.5,13.9Hz,1H),3.80(t,J=
2.95(dd,J=9.0,14.0Hz,1H),3.12(dd, J=5.4,14.0Hz,1H),4.13(m,1H),7.29 (d,J=2.0Hz,1H),8.34(d,J=8.6Hz,1H) 1,8.88(d,J=2.0Hz,1H),12.79(br,1H) 2.88(dd,J=8.0,14.0Hz,1H),3.09(dd J=6.0,14.0Hz,1H),3.91(m,1H),8.23 (m,1H),10.79(s,1H),12.70(br,1H) 2.75-3.06(m,2H),3.69(s,3H),3.90 (m,1H) 3.17(dd,J=7.4,13.8Hz,1H),3.57(dd, J=5.5,13.9Hz,1H),3.80(t,J=5.6Hz, 1H),8.11(d,J=7.4Hz,1H)
3276,2503br,1897br, 1724,1344,1170(Nujol) 3386,3305,1747,1363, 1323,1161,1135(Nujol) 2400-3700(br),1734, 1484,1327,1160 3446,3065,1594,1397, 1303,1154,1094
3br,1897 4,1170(N
3276,2503br,1897br, 1724,1344,1170(Nujol)
3
Ī

-									
	¹ H-NMR(& ppm) de-DMSO	2.86(dd,J=10.2,13.2Hz,1H), 3.14(dd,J=4.5,13.7Hz,1H), 4.02(m,1H),8.42(d,J=8.4Hz,1H)	2.71(dd,J=9.9,13.7Hz,1H),2.96(dd, J=5.3,13.5Hz,1H),3.89(m,1H), 8.34(d,J=9.0Hz,1H)	0.52-1.72(m,13H),3.68(m,1H), 8.20(br.s,1H)	2.80-3.12(m,2H),3.61(s,3H), 3.94(m,1H),8.30(d,J=8.6Hz,1H)	2.28(s,3H),2.78-3.10(m,2H),3.91 (m,1H),8.29(d,J=8.3Hz,1H)	2.80-3.10(m,2H),3.92(m,1H), 8.29(d,J=8.2Hz,1H)	2.60-3.04(m,2H),3.98(m,1H)	3.24-3.56(m,2H),4,34(m,1H)
	IR (v cm·1) (KBr)	3113,1724,1520, 1345,1158	3426,3114,1715, 1509,1224,1159	2919,1688,1448, 1335,1326,1169	3432,3294.1713, 1482,1341,1159	3419,3397,3291,1736, 1482,1336,1321,1165	3407,3285,1751,1735, 1703,1486,1321,1162	2600-3700br,1635,1594, 1335,1163,1095	2200-3700br,1713br, 1345,1125
	mp (decomp.) (C)	212-213	164-165	85-87	179-183	115-120	208-211	197-205	196-199
	*	SS.	RS	R	RS	RS	RS	RS	RS
	R -8								
	R.	O ₂ N CH ₂ -	F CH2-	CH2-	£ ~ £	H ₃ C	F CH ₂ .	N CH2-	CH ₂ .
	Example No.	1 3	14	1.5	16	17	18	2 0	2.1

7,040

7,0410

R¹ → R¹®·SO₂NH → COOH (la)

1.68(dd,J=7.9,14.1Hz,1H),1.87(dd, J=6.0,13.4Hz,1H),2.22(t,J=7.2Hz, 2H),3.80(m,1H), 2.81(dd,J=9.7,13.7Hz,1H),3.05(dd, J=4.8,13.4Hz,1H),3.96(m,1H), 8.40(d,J=9.0Hz,1H),12.88(br.s,1H) 3.51(dd,J=6.0,12.9Hz,1H),3.55(dd, J=5.4,12.9Hz,1H),3.80(m,1H), 2.45(dd,J=6.2,16.4Hz,1H)2.63(dd, J=6.6,16.4Hz,1H), 3.54(dd,J=4.8,9.9Hz,1H),3.60(dd, 4.10(d.J=3.2Hz,1H),5.13(d,J= 3.2Hz,1H) 4.94(d,J=9.4Hz,1H),8.80(d,J= 9.4Hz,1H),13.0(br.s,1H) J=5.7,9.9Hz,1H),4.04(m,1H), 4.39(s,2H),8.34(d,J=8.1Hz,1H) 'H-NMR(& ppm) de-DMSO 8.06(d, J=8.7Hz, 1H) 3319,3052,1701,1317, 1284,1162 2200-3700br,3430, 3292,1728,1324,1162 2200-3700br,3432, 3289,1733,1330,1165 3316,1734,1325, 1159(Nujol) 3353,1752,1326, 1155,1096 3270.1709,1336, 1159,1093 3335,3246,1732, 1315,1152 IR (v cm⁻¹) (KBr) mp (decomp.) (C) 277-279 141-143 211-214 171-173 185-187 89-91 >270 S 2 ĸ ĸ × 2 2 R 18 _ç. ✓ CF₂-_____CH₂OCH₂-HOOC-CH2-CH2-프슈-异 HOOC-CH2-HOCH₂-2 **₩** Example 30 2 3 1 2 2 6 က ∞ ŝ က 2 ~ 2

^{R¹} R¹®-SO₂NH <mark>, СООН (Ia)</mark>

Example No.	Z	<u>=</u> &	*	mp (decomp.)	IR (v cm·¹) (KBr)	'H-NMR(δ ppm) d ₆ -DMSO
3.4	CH ₂	Br	æ	243-246	3420,1588,1402, 1324,1151	3.06(dd,J=5.4,14.4Hz,1H),3.14(dd, J=5.1,14.4Hz,1H),3.65(t,J=5.4Hz, 1H),6.92(m,1H),10.72(s,1H)
3 5	LA CH		RS	151-156	2200-3700br,1734, 1334,1161	3.17-3.50(m,2H),4.51(m,1H)

T,0425

R¹8-SO₂NH ★COOH (Ia)

LU									
	Elemental analysis	-	-	C ₂₄ H ₂₂ N ₂ O ₅ S·0.5H ₂ O Calc. C:62.73 H:5.04 N:6.10 S:6.98 Foun.C:62.75 H:5.08 N:6.31 S:7.05	C ₂₄ H ₂₂ N ₂ O ₅ S•0.8H ₂ O Calc. C:62.00 H:5.12 N:6.03 S:6.90 Foun.C:62.03 H:5.06 N:6.08 S:6.82	-	-		C ₁₇ H ₁₉ NO ₄ S-0.1CF ₃ COOH Calc. C:59.99 H:5.58 N:4.06 S:9.30 Foun.C:60.37 H:5.74 N:4.13 S:9.76
()	IR (v cm ⁻¹) (KBr)	1726,1354 1326,1161	1732,1594 1404,1155	1607,1594 1294,1153	1724,1594 1326,1159	1685,1349 1166	1725,1599 1372,1173	1745,1653 1391,1147	1714,1594 1334.1168
	mp (decomp.) (C)	>145	1	188-190	90-93	149-152	104-107	167-169	155-157
72.4.1	*	RS	RS	R	84	æ	ห	R	R
C	R 18			-{_}-(}-00°H	H ₃ CO \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	-{_}-{_}-2 ⁶ н	⟨	-{_}\\S5 ⁶ H	
	R 1	SO ₂ CH ₃	COOC2Hs N N CH2-CH2-	CH2.	H CH2.	CH2-CH2-	CH ₂ .	CH ₂ .	(СН₃)2СН-
	Example No.	36	3.7	3.8	3 9	4 0	41	4 2	43

T/0440

^{R¹} ⊢ R¹®SO₂NH <mark>, СООН (la)</mark>

Elemental analysis	C ₂₁ H ₂₇ NO ₄ S-0.3H ₂ O Calc. C:63.87 H:7.04 N:3.55 S:8.12 Foun.C:63.84 H:6.86 N:3.42 S:8.01	C ₂₃ H ₂₃ NO ₄ S•0.3H ₂ O Calc. C:66.58 H:5.73 N:3.38 S:7.73 Foun.C:66.45 H:5.52 N:3.24 S:7.56	ŀ	I	C ₁₇ H ₁₈ FNO ₄ S Calc. C:58.11 H:5.16 F:5.41 N:3.99 S:9.12 Foun.C:58.11 H:5.17 F:5.86 N:3.92 S:9.69	I	-	C ₂₇ H ₂₃ NO ₄ S-0.7H ₂ O Calc. C:68.98 H:5.23 N:2.98 S:6.82 Foun.C:69.08 H:5.09 N:2.91 S:6.73
IR (v cm ⁻¹) (KBr)	1724,1340 1328,1167	1734,1719 1324,1160	1670,1375 1148	1717,1694 1349,1165	1634,1334 1158	1681,1319 1162	1725,1340 1159	1750,1324 1159
mp (decomp.) (C)	196-197	241-243	157-159	175-176	145-147	183-186	183-184	224-226
*	R	В	R.	R	84	R	8	В
R 18	-{}\-_\ng,		F ₃ C	H3CO-()-		H ₃ C	H3CO-{}	
<u>~</u>	-нɔ²(снэ)	-но ² (сн ³)	(CH ₃) ₂ CH-	(СН₃)₂СН-	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	-CH2-	CH ₂ -
Example No.	4 4	4 5	4 6	4.7	8 4	4 9	5 0	5 1

R¹ H¹8-SO₂NH → COOH (Ia)

Elemental analysis	-	1		C ₁₈ H ₂₁ NO ₄ S ₂ -0.2H ₂ O Calc. C:56.43 H:5.63 N:3.66 S:16.74 Foun.C:56.74 H:5.67 N:3.86 S:16.35	ľ	l	C ₂₁ H ₁₈ N ₂ O ₄ S ₂ -0.3H ₂ O Calc. C:58.40 H:4.34 N:6.45 S:14.85 Foun.C:58.40 H:4.44 N:6.58 S:14.57	C ₁₇ H ₁₄ CIN ₃ O ₆ S-0.3H ₂ O Calc. C:47.48 H:3.44 Cl:8.39 N:9.65 S:7.52 Foun.C:47.57 H:3.43 Cl:8.26 N:9.79 S:7.47
IR (v cm·¹) (KBr)	1685,1349 1166	1691,1567 1390,1159	1749,1592 1323,1164	1746,1337 1164	1649,1337 1165	1588,1308 1141	1744,1592 1323,1160	1751,1734 1537,1347 1172
mp (decomp.) (C)	157-160	111-112	194-195	197-199	108-110	187-190	239-243	222-224
*	R	R	R	R	ห	R	æ	R
R 18	-{_}_>-2 ⁶ H	{ <u>}</u>	-{_}\\Sɔ ^ɛ H	H3CS-{	Ноос	(H3C) ₂ N-(C)		CI_NZO
R¹	CH₂-	СН₂-	CH2-CH2-	(CH ₃) ₂ CH-	CH ₂ -	HN H	COOC2Hs	CH ₂ .
Example No.	5.2	53	5.4	5 5	9 9	2.5	5.8	5 9

T,0460

9 R18 SO2NH CONHOH

2.71(dd,J=8.9,14.4Hz,1H),2.89(dd, J=6.6,14.4Hz,1H),3.75(dd,J=6.5, 2.60(dd,J=8.7,13.7Hz,1H), 2.79(dd, J=6.0,13.7Hz,1H),3.75(ddd,J=6.0, 8.7,9.0,1H),6.94(d,J=8.9Hz.2H) 2.71(dd,J=7.9,14.4Hz,1H),2.96(dd, J=7.6,14.4Hz,1H),3.78(dd,J=7.2, 2.71(dd,J=7.9,14.2Hz,1H),2.93(dd, 2.34(s,3H),2.65(dd,J=7.8,14.1Hz,1H),2.93(dd,J=7.6,14.4Hz,1H),3.75(dd,J=6.8,7.7Hz,1H) 2.71(dd,J=7.0,14.4Hz,1H), 2.96(dd, J=6.5,14.3Hz,1H),3.65(s,3H),3.78 (dd,J=7.1,7.2Hz,1H) 2.54(s,3H),2.69-2.89(m,2H),3.87 (m,1H) 0.76(d,J=6.6Hz,6H), 1.77(m,1H), 3.26(m,1H) J=7.0,14.2Hz,1H),3.78(t,J=7.6Hz, 1H) H-NMR(& ppm) do-DMSO 6.8Hz,1H) 7.3Hz,1H) 3421,1702,1676,1582, 1354,1328,1153 3314,1669,1582, 1420,1328,1154 3700-2400br,3277, 1669,1325,1152 3302,1667,1324, 1153(Nujol) 3405,1671,1582, 1487,1324,1154 3317,1670,1582, 1488,1323,1153 3406,1670,1582, 1325,1153 3268,1634,1584, 1336,1157 IR (v cm⁻¹) (KBr) mp (decomp.) 115-118 149-151 foam Ī ١ ł ł ı BS 83 ES 83 ß 2 2 ĸ * No. 9 R 18 충 -CH2--CH2--CH2--CH2-CH2-COCH3 (CH₃)₂CH-<u>~</u> Example 99 29 6 5 0 9 64 2 က 6 1 ŝ 9 9

B-SO-NH COOH (Ia)

Example No.	R¹	R 18	*	mp (decomp.) (C)	IR (v cm·1) (KBr)	'H-NMR(& ppm) de-DMSO
0 9	.ф. сн ₂ .	₩	R.	108-109	2400-3600br,3345,3213, 1735,1700,1346,1163	2.72(dd,J=8.7,13.6Hz,1H),2.94(dd, J=5.6,13.6Hz,1H),3.84(ddd,J=5.6, 8.7,8.7Hz,1H),8.23(d,J=8.7Hz,1H)
6 1	CH ₂ .	-{\rightarrow} \cdot\rightarrow}	R	82-87	3410,3276,1724,1582, 1488,1331,1152(Nujol)	2.88(dd,J=7.4,15.2Hz,1H),3.07(dd, J=6.2,14.4Hz,1H),3.83(m,1H),8.08 (m,1H),10.80(s,1H),12.70(br,1H)
6.2	CH ₂ .		ß	foam	3412,1724,1582,1488, 1332,1152	2.81-3.12(m,2H),3.88(m,1H),8.19 (d,J=8.4Hz,1H)
6 3	(CH ₃) ₂ CH-	$-\bigcirc$	~	137-138	3154,1720,1688,1583, 1488,1251	0.89(d,J=7.0Hz,3H),0.98(d.J=6.8 Hz,3H),2.12(m,2H),3.80(dd,J=4.7 ,9.7Hz,1H),5.17(d,J=9.6Hz,1H)
6 4	CH ₃	√ >∘ √	RS	1	3273,1724,1582,1487. 1331,1198,1153	2.78-3.10(m,2H),3.67(s,3H), 3.86(m,1H)
6 5	H ₃ C	\bigcirc	RS	1	3409,3281,1725,1582, 1331,1197,1153	2.34(s,3H),2.75-3.08(m,2H),3.86(m,1H), 8.19(d,J=8.4Hz,1H)
99	F CH ₂ .	\bigcirc \bigcirc	RS	ı	3415,1725,1582,1488, 1329,1196,1174,1152	2.78-3.08(m,2H),3.85(m,1H),8.18 (d,J=8.6Hz,1H)
29	-ZH2- COCH3	\bigcirc \bigcirc	RS	236-237	3296,1742,1647,1604, 1581,1342,1334,1152	2.55(s,3H),2.79-3.11(m,2H),3.98 (m,1H)

46

Table 15

		_				
T/0480			Elemental analysis	1	C ₂₄ H ₂₂ N ₂ O ₇ S ₂ Calc. C:56.02 H:4.31 N:5.44 S:12.46 Foun.C:55.75 H:4.40 N:5.41 S:12.21	į
9.5.5.6.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.		a)	IR (v cm·¹) (KBr)	1608,1590 1507,1232 1157	1735,1583 1362,1171	1733,1583 1150
	<u>.</u> c	R ¹⁸ -SO ₂ NH , COOH (la)	mp (decomp.) (C)	>240	ı	-
		NHZ	*	24	RS	RS
		R ¹⁸ -SC	R 18	-{}-0-{}-ОН	⟨} •• ⟨ ⟩	₹ }• ₹
			R¹	TX B	SO ₂ CH ₃	COOC ₂ H ₅
			Example No.	8 9	. 69	7.0

R¹⁸SO₂NH → CONHOH (lb)

Example No.	. R	R 18	*	mp (decomp.) (C)	IR (v cm·1) (KBr)	'H-NMR(ô ppm) de-DMSO
7 1	CH ₂ .	CH3(CH2)4	R	129-131	3700-2400br,3247, 1636,1337,1160	0.90(i,J=6.8Hz,3H),1.22-1.40(m,4H),1.52-1.6 7(m,2H),2.62(i,J=7.7Hz,2H),2.86(dd,J=8.4.13 .7Hz,1H),3.02(dd,J=5.7,13.7Hz,1H) (CDCl ₃)
7.2	-2H2-	CH ₃ (CH ₂),—	R	oil	3700-2400br,1663, 1320,1145 (film)	0.87(t,J=6.3Hz,3H),2.50(t,J=7.4Hz,2H), 2.76(dd,J=9.6,14.0Hz,1H),2.87(dd,J=5. 8,14.0Hz,1H),3.84(dd,J=5.8,9.6Hz,1H),
7.3	.z⊬O-{}	СН3(СН2)3—	В	lio	3600-2400br,3262,1673, 1321,1142 (CHC _B)	0.79(t,J=7.0Hz,3H),2.32-2.56(m,2H), 2.92(m,1H),3.26(m,1H),
7.4	CH ₂ .	CI CH3	æ	ı	1.	I
7.5	-ZH2-€		R	85-86	3700-2200(br),3262, 1639,1332,1156	2.80(m,1H),2.96(m,1H),3.94(s,2H),3.86(m,1H),6.80-7.52(m,10H),7.08(A ₂ B ₂ qJ=7. 5Hz,2H),7.42(A ₂ B ₂ q,J=7.5Hz,2H)(CDC _{I3})
9 2	CH ₂	0	R	1	1	

R¹⁸SO₂NH → CONHOH (Ib)

Example No.	-	R 18	*	mp (decomp.) (C)	IR (v cm·1) (KBr)	1H-NMR(δ ppm) ds-DMSO
7.7	CH ₂ -		~	138-139	3700-2400(br),3312, 1629,1329,1144	2.79(dd,J=8.5,13.4Hz,1H),2.89(dd, J=6.0,13.4Hz,1H),3.81(dd,J=6.0, 8.5Hz,1H),6.55(d,J=15.5Hz,1H)
7 8	CH ₂ -	-cH2CH2-	24	69-70	3700-2200(br),1670, 1318,1152	2.78(dd,J=8.6,13.4Hz,1H),2.91(dd,J=6 .0,13.4Hz,1H),3.92(ABq,J=13.5Hz,1H) ,3.90(m,1H),9.01(s,1H),10.78(s,1H)
6 2	EX OF	- NE	æ	l.	-	1

R¹ ⊢ R¹®-SO₂NH → COOH (Ia)

	R.	R '#	*	mp (decomp.) (C)	IR (v cm·¹) (KBr)	1H-NMR(& ppm) ds-DMSO
	CH2-CH2-	CH3(CH2)4	æ	121-122	2300-3700br,3426,3318, 1713,1330,1159	0.89(t,J=6.7Hz,3H),2.62(t,J=7.6Hz,2H),2.96(d d,J=7.0,13.9Hz,1H),3.10(dd,J=5.4,13.9Hz,1H) ,4.19(dt,J=6.9,8.2Hz,1H),5.30(d,J=8.2Hz,1H),
	CH2-CH2-	CH ₃ (CH ₂) ₇ —	~	ē	2400-3600br,3340,1736, 1334,1142(CHCl ₃)	0.88(t,J=6.9Hz,3H),2.55-2.73(m,2H),2.9 7(dd,J=8.4,13.8Hz,1H),3.24(dd,J=4.8,13. 8Hz,1H),4.35(m,1H),4.98(m,1H) (CDCb)
	-2H2-CH2-	CH ₃ (CH ₂) ₃ —	~	89-90	2300-3700br,3240, 1725,1341,1144	0.84(t,J=7.1Hz,3H),2.57-2.70(m,2H),2.97(d d,J=8.4,13.9Hz,1H),3.25(dd,J=4.8,13.9Hz,1 H),4.35(m,1H),4.96(d,J=9.6Hz,1H) (CDCb ₃)
	TX Ö	C C C S	22	>250	3421,1580,1333, 1421,1153	2.41(s,3H),3.01(dd,J=6.0,14.4Hz,1H),3. 12(dd,J=4.5,14.4Hz,1H),3.67(t,J=5.4Hz, 1H),6.79(m,1H),6.89(m,1H),10.59(s,1H)
	CH ₂ .	O O	ж	foam	3413,1594,1456, 1416,1157	3.03(dd,J=6.5,15.1Hz,1H),3.15 (dd,J=4.7,14.1Hz,1H),3.64(t, J=5.1Hz,1H),10.68(s,1H)
	СН ₂ -сн ₂ -		R	ı	2400-3700br,3252,1765, 1725,1301,1140	2.81(dd,J=9.2,13.7Hz,1H),3.03(dd,J=5.4,13.7H z,1H),3.94(dt,J=5.4,9.2Hz,1H),6.66(d,J=15.2H z,1H),7.16(d,J=15.2Hz,1H),8.01(d,J=9.2Hz,1H)
	-2но-⟨⟩	СР-СН2-	В	t	2200-3700br,3268,1726, 1321,1152(film)	2.81(dd,J=9.2,13.7Hz,1H),3.00(dd,J =5.6,13.7Hz,1H),4.01(ABq,J=13.7Hz ,2H),4.01(m,1H),7.65(d,J=8.3Hz,1H)
)	H CH2.	NH-	В	I	3413,2931,1720,1585, 1455,1421,1313,1144	0.90-1.68(m,9H), 1.78(m,1H),2.74 (m,1H),3.00-3.20(m,2H),3.77(m, 1H)6.45(br.s,1H),6.77(br.s,1H)

u W			(la)
	-	α-	R ¹⁸ -SO ₂ NH COOH

T,0520

9						
	Elemental analysis		•	C ₂₄ H ₁₉ N ₃ O ₅ S•1.3H ₂ O Calc. C:59.45 H:4.49 N:8.67 S:6.61 Foun.C:59.43 H:4.45 N:8.59 S:6.58	-	_
	IR (\(\nu\) cm ⁻¹) (KBr)	1704,1596 1349,1164	1576,1356 1139	1732,1342 1167	1745,1590 1316,1157	1594,1456 1200,1188
	mp (decomp.) (C)	153-155	>130	128-130	210-214	198-200
	*	R	24	22	R	R
	R 18		n-C ₈ H ₁₇ -		$\left\langle \right\rangle \left\langle \right$	
	R.	CH ₂ -	TZ TS	TX B	IZ T	LX IN
	Example No.	0 8	8 1	8 2	8 3	8 4

T0530		¹ H-NMR(§ ppm) d ₆ -DMSO	2.65(dd,J=8.9,13.6Hz,1H), 2.82(dd, J=6.6,13.6Hz,1H),3.86(m,1H),7.75 (d,J=7.8Hz,2H),7.87(d,J=8.7Hz,2H)	2.62(dd,J=8.6,13.5Hz,1H),2.81(dd,J=6. 5,13.6Hz,1H),3.09(s,6H),3.83(m,1H),6 .86(d,J=9.0Hz,2H),7.83(d,J=8.8Hz,2H)	3700-2400(br),3357,1686, H),3.76(m,1H),8.02(d,J=8.7Hz,1H),8.80(s,1H),8.8 (1641,1314,1155) 5(d,J=1.7Hz,1H),9.06(s,1H),10.59(d,J=1.7Hz,1H)
O912028.czeg	(a) HOHN	IR (\(\nu\) cm·1) (KBr)	3700-2400br,3273, 1633,1338,1166	3700-2400br,2921, 1672,1314,1165,	3700-2400(br),3357,1686, 1641,1314,1155
(f.) cm cm (f.) (f.)	R¹ R¹®SO₂NH CONHOH	mp (decomp.)	157-160	138-142	206-207
Ø	H 6.	*	~	~	ω
		8. 8.	N:N R	MezN -N:N - R	Charles Control
		- R	CH2-CH2-	CH ₂ -	CH2-CH2-

Example No.

8 5

8 6

R¹⁶-SO₂NH → COOH (la)

Example No.	R¹	R -8	*	mp (decomp.) (°C)	IR (v cm·l) (KBr)	'H-NMR(& ppm) d ₆ -DMSO
8 5	CH2-CH2-	⟨	a	172-174	2400-3600br,3426,3296, 1698,1350,1167	2.75(dd,J=9.1,13.7Hz,1H),2.98(dd, J=5.5,13.7Hz,1H),3.96(ddd,J=5.5, 9.1,9.1Hz,1H),8.51(d,J+9.1Hz,1H)
8 6	-2H2-	Mo ₂ N \\ _\rightarrow N:N \\ _\rightarrow R	24	93-94	2200-3700br,3431, 1735,1391,1154	2.74(dd,J=9.1,13.6Hz,1H),2.96(dd,J=5.7,13.6Hz,1H),3.09(s,6H),3.93(dt,J=5.7,9.1Hz,1H),8.39(d,J=9.1Hz,1H)
8.7	-ZH2-	S CHAN	ω	203-204	2300-3700br,3358, 3262,1718,1686, 1660,1313,1159	2.71(dd,J=9.1,13.7Hz,1H),2.93(dd,J=5.6 ,13.7Hz,1H),3.84(dt,J=5.6,9.1Hz,1H),8. 11(d,J=9.1Hz,1H),8.78(s,1H),9.06(s,1H)

Table 22				-	
	Elemental analysis	-	C ₁₇ H ₂₀ N ₂ O ₆ S ₂ •0.9Efhylether Calc. C:51.63 H:6.10 N:5.85 S:13.38 Foun.C:51.23 H:6.17 N:5.87 S:13.11	C ₁₈ H ₂₁ N ₃ O ₆ S ₂ •0.8Ethylether Calc. C:51.05 H:5.86 N:8.42 S:12.86 Foun.C:50.75 H:5.89 N:8.15 S:12.47	C ₂₁ H ₁₉ BrN ₂ O ₆ S ₂ •0.5CF ₃ COOH Calc. C:44.30 H:3.30 Br.13.40 N:4.70 S:10.75 Foun.C:44.62 H:3.52 Br.13.07 N:4.64 S:10.85
(la)	IR (v cm ⁻¹) (KBr)	1719,1390 1229	1734,1461 1327,1158	1724,1325 1168	1735,1598 1327,1185
R¹ ⁸ ·SO₂NH → COOH (Ia)	mp (decomp.) (C)	103-106	66-96	110-112	98-101
SO ₂ NF	*	R	R	R	R
R ¹⁸ S		-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	S-N-N=C	Br-{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	R.	TZ H	(СН ₃)2СН-	(CH ₃) ₂ CH-	-cH2-
	Example No.	8 8	6 8	0 6	9.1

5

10

15

Process 1

To a solution of D-valine methylester hydrochloride (XV-2) (755 mg, 4.5 mmol) in dichloromethane(12 ml) was added N-methylmorpholine (1.49 ml, 3×4.5 mmol) and 5-bromo-2-thiophensulfonyl chloride (1.24 g, 1.05×4.5 mmol) was added under icecooling. After being stirred for 15 h at room temperature, the reaction mixture was washed with 2N HCl, 5% NaHCO₃, and water. The organic layer was concentrated in vacuo, and dried over Na₂SO₄. The residue was subjected to silica gel column chromatography and the fractions eluting with ethyl acetate / hexane = 1/3 were collected and washed with n-hexane to give 1.32 g of the desired compound (XVII-1). Yield 82 %. mp. 109-110℃.

Elemental analysis C10H14BrNO4S2

Calcd. : C; 33.71 H; 3.96 Br; 22.43 N; 3.93 S;1 8.00

Found: C; 33.75 H; 3.89 Br; 22.43 N; 3.96 S; 17.86

 $[\alpha]_D: -34.5 \pm 0.7 (c=1.012 \text{ CHCl}_3 25^{\circ})$

 $IR(CHCl_3, \nu \text{ max cm}^{-1})1737,1356,1164,1138$

NMR (CDCl₃, δ ppm): 0.89(d, J=6.8 Hz, 3H), 1.00(d, J=6.8 Hz, 3H), 2.00 (m, 1H), 3.60(s, 3H), 3.83(dd, J=5.2, 10.0 Hz, 1H), 5.20(d, J=10.0 Hz, 1H), 7.04(d, J=4.1 Hz, 1H), 7.32(d, J=4.1 Hz, 1H

Process 2

5

10

15

20

25

To a degassed solution of 400 mg (1.12 mmol) of compound (XVII-1) in 5 ml of dimethylformamide was added 222 mg (1.5 x 1.12 mmol) of 4-methoxyphenylacetylene and 21 mg(0.1 x 1.12 mmol) of copper iodide (I) under an argon atmosphere. Then 39 mg (0.05 x 1.12 mmol) of bis(triphenylphosphine)palladium dichloride (II) and 0.47 ml (3 x 1.12 mmol) of triethylamine were added to the reaction mixture. The resulting mixture was degassed and stirred overnight under an argon atmosphere at 50 °C. The reaction mixture was diluted with ethyl acetate. The organic later was washed with 1N HCl, 5 % NaHCO₃, and water, dried over Na₂SO₄, and concentrated in vacuo. The resulting residue was column chromatographed on silica gel. The fractions eluting with n-hexane / ethyl acetate = 2/1 were collected and recrystallized from ethyl acetate / n-hexane to give 392 mg of the desired compound (XVIII-1). Yield 86 %. mp. 131-132°C.

Elemental analysis C₁₉H₂₁NO₅S₂·0.2 H₂O

Calcd. : C; 55.51 H; 5.25 N; 3.41 S; 15.60

Found: C; 55.80 H; 5.19 N; 3.38 S; 15.36

 $IR(KBr, \nu \text{ max cm}^{-1}): 3268,2203,1736,1604,1524,1348,1164.$

NMR(CDCl₃, δ ppm): 0.90(d, J=6.6 Hz, 3H), 1.00(d, J=7.0 Hz, 3H), 2.00(m, 1H), 3.60(s, 3H), 3.84(s, 3H), 3.86(dd, J=5.0, 10.2 Hz, 1H), 5.21(d, J=10.2 Hz, 1H), 6.90(d, J=9.0 Hz, 2H), 7.44(d, J=9.0 Hz, 2H), 7.12(d, J=4.0 Hz, 1H), 7.44(d, J=4.0 Hz, 1H).

Process 3

To a solution of 407 mg (1 mmol) of compound (XVII-1) in 8 ml of tetrahydrofuran and 8 ml of methanol was added 5.1 ml of 1N NaOH. The resulting mixture was stirred for 6 h at 60 ℃. The reaction mixture was concentrated in vacuo to remove an organic solvent, and the residue was diluted with ethyl acetate. The mixture was acidified with aqueous solution of citric acid and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo to give 373 mg of compound (Ia-2-1). Yield 100%. mp. 147-

148℃.

5

IR (KBr, ν max cm⁻¹): 1710,1604,1351,1216.

Elemental analysis $C_{18}H_{19}NO_5S_2 \cdot 0.2H_2O$

Calcd. : C; 54.45 H; 4.92 N; 3.53 S; 16.15

Found: C; 54.39 H; 4.93 N; 3.79 S; 15.96

Example 93 - 156

The compounds which were shown in Tables 23 to 30 were synthesized in a manner similar to those described in Example 92.

Table 23									
•	Elemental analysis	1	C ₂₆ H ₂₂ N ₂ O ₅ S Calc. C:65.81 H:4.67 N:5.90 S:6.76 Foun.C:65.34 H:4.90 N:5.56 S:6.40	_	_	_	-	C ₂₆ H ₂₀ N ₂ O ₆ S•0.4H ₂ O Calc. C:63.00 H:4.23 N:5.65 S:6.47 Foun.C:62.99 H:4.32 N:5.82 S:6.76	C ₂₅ H ₂₁ N ₃ O ₄ S•0.8H ₂ O Calc. C:63.36 H:4.81 N:8.87 S:6.77 Foun.C:63.45 H:4.92 N:8.77 S:6.57
(la)	IR (v cm·¹) (KBr)	1590,1316 1137	1747,1323 1134	1724,1325 1135	1739,1336 1163	1710,1511 1329,1161	1725,1618 1373,1163	1706,1606 1350,1164	1735,1633 1321,1173
р¹ В¹®-SO₂NH → СООН (I	mp (decomp.) (C)	165-170	. 523-526	216-218	111-114	178-180	105-108	>250	176-177
O ₂ NH	*	R	R	R	R	R	R	R	24
R ¹⁸ -S	R 18	-{_}o≡o-{_}	H3CO-{}-C≡C-{_}}	-С≣С-С≡С	H₃coco-{_}-C≣C-{_}-	F-C=c-C	O ₂ N-{}-C≡C-{}-	-{_}с≘с-{_}>оон	H ₂ N-CEC-
	R.¹	CH ₂ .	H CH ₂ .	H CH ₂ .	CH ₂ -	CH ₂ .	H CH ₂ .	H CH2.	CH ₂ -
	Example No.	8 6	9.4	9 6	96	2 6	8 6	6 6	100

Table 24

Example No.	R 1	R 18	*	mp (decomp.) (C)	IR (\(\nu\) cm ⁻¹) (KBr)	Elemental analysis
101	CH ₂ -	H₃C ⟨	R	227-229	1736,1618 1398,1168	C26H22N2O4S*0.2H2O Calc. C:67.57 H:4.89 N:6.06 S:6.94 Foun.C:67.66 H:4.77 N:6.09 S:6.71
102	CH ₂ -	НС≣С-{_}С≣С-{_}	R	230-233	1735,1654 1399,1164	ļ
103	$\left(\begin{array}{c c} H \\ \hline \end{array} \right)_{CH_2}$	Me ₂ N-CEC-C	R	234-236	1732,1631 1372,1148	l
104	CIT CH2.	O ₂ N H₃CO-{}C≡C-{}}	R	>200 decomp.	1600,1558 1336,1171	ſ
105	(СН ₃) ₂ СН-	н₃со-{}-С≣С-{}}-	R	146-149	1795,1718 1331,1166	
106	(CH ₃) ₂ CH-	O ₂ N-{}C≡C-{}}	R	231-232	1719,1595 1344,1167	C ₁₉ H ₁₈ N ₂ O ₆ S•0.1H ₂ O Calc. C:56.46 H:4.54 N:6.93 S:7.93 Foun.C:56.30 H:4.37 N:7.14 S:7.85
107	(СН₃)₂СН-	H_2N $C \equiv C$	R	166-169	1728,1631 1372,1148	-
108	(СН ₃) ₂ СН-	но-⟨_>-с≡с-⟨_}-	Ж	163-165	1728,1332 1172	1

ഥ

T10610

PIESO-NH (Ia)

Elemental analysis	ſ	-	C ₂₁ H ₂₃ NO ₅ S•1.3H ₂ O Calc. C:59.36 H:6.07 N:3.30 S:7.55 Foun.C:59.36 H:6.06 N:3.50 S:7.44	-	ı	1	C ₂₃ H ₁₈ FNO ₄ S•0.3H ₂ O Calc. C:64.41 H:4.37 F:4.43 N:3.27 S:7.48 Foun.C:64.37 H:4.38 F:4.96 N:3.31 S:7.24	1
IR (v cm ⁻¹) (KBr)	1720,1656 1319,1165	1724,1635 1366,1158	1711,1683 1600,1328 1159	1732,1680 1329,1167	1735,1651 1348,1165	1727,1604 1335,1182	1725,1663 1399,1197	1728,1332 1172
mp (decomp.) (C)	187-189	111-114	161-162	157-159	133-136	183-185	166-168	163-165
*	R	R	R	R	R	24	R	æ
R - 8	H ₃ C-{}C≣C-{}}	F-CEC-C	H₃CO-{}-C≘C-{}	H₃CO-{}-C≡C-{}	H₃CO-{}-C≣C-{}	H ₃ C-{}C≡C-{}}	F-{\rightarrow}-c=c-{\rightarrow}-	но-{_}с≡с-{_}
- Z	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	.сн ₃) ₃ с-	СН3СН2(СН3)СН-	CH2-	CH₂-	CH₂-	(CH ₃) ₂ CH-
Example No.	1 0 9	1 1 0	111	112	113	114	115	116

	Elemental analysis	-	I	l	I	1	•	[C ₁₈ H ₁₉ NO ₅ S ₂ •0.2H ₂ O Calc. C:54.45 H:4.92 N:3.53 S:16.15 Foun.C:54.39 H:4.93 N:3.79 S:15.96
(la)	.ΙR (ν cm·¹) (KBr)	1720,1656 1319,1165	1724,1635 1366,1158	1585,1318 1153	1605,1523 1340,1151	1604,1524 1336,1173	1721,1620 1339,1163	1729,1675 1340,1168	1710,1604 1351,1216
R ¹⁸ -SO ₂ NH´ + COOH (I	mp (decomp.) (C)	187-189	111-114	167-169	ı	1	103-106	180-182	147-148
) ₂ NH	*	Я	R	R	В	R	R	R	R
R ¹⁸⁻ S(R 18	-{_}⊃=o=o-{_}>°H	-{_}c≘c-{_}-	-<\$}-0≡0-{}	S C≡C S Nov	H3CO-{}C≣C-{_}	F-CEC-CS	H3C-{}C≡C-{_S	H3CO-{\rightarrow}-CEC-{\rightarrow}-OOSH
	R.	(СН ₃)₂СН-	CH ₂ .	CH ₂	N CH2	CH ₂ .	CH ₂ .	TX HS	(CH ₃) ₂ CH-
	Sxample No.	117	118	1 1 9	120	121	122	123	124

R¹ ⊢ R¹®SO₂NH → COOH (la)

27 			ı		· · · · · · · · · · · · · · · · · · ·		 -1	 1	
	Elemental analysis	C ₁₈ H ₁₉ NO ₄ S _{2*} 0.2H ₂ O Calc. C:56.73 H:5.13 N:3.68 S:16.83 Foun.C:57.03 H:5.30 N:3.89 S:16.56	_	C ₂₂ H ₁₈ NO ₅ S _{2*} 0.2H ₂ O Calc. C:59.36 H:4.39 N:3.15 S:14.41 Foun.C:59.43 H:4.61 N:3.25 S:14.02	-	C ₂₁ H ₁₆ FNO ₄ S ₂ Calc. C:58.73 H:3.75 F:4.42 N:3.26 S:14.93 Foun.C:58.66 H:3.93 F:4.52 N:3.33 S:14.41	l	l	l
	IR (v cm·1) (KBr)	1712,1350 <u>.</u> 1163	1710,1499 1356,1165	1695,1334 1184	1710,1329 1180	1734,1699 1324,1105		I	I
1 1000 # 111/200	mp (decomp.) (C)	157-158	154-156	149-150	161-164	155-158	1	1	1
	*	R	R	æ	R	R	R	R	æ
	R 18	-√S)-C≣C-√S)-0 ⁶ H	-{S}-c≡c-{S}-	-{\$}-0≡0-{-}-00°H	-{\$}>0≡0-{\$}	F-(000 000 000	—{	CEC C
	R.	-н⊃²(сн₃)	.но ² (сн ₃)	CH ₂ -	-ZHD-CH2-	CH ₂ -	CH ₂ -	-cH ₂ -	CH ₂ -CH ₂ -
	Example No.	125	126	127	128	129	130	1 3 1	1 3 2

Ę	=
Ą.	
The Fr. 18"	4
ñ	
Ĺ,	
Ü	
Ļ.	1
æ	
100	
Ĩ.	
ű	

T/0640

ſ	1	1	1			· · · · · · · · · · · · · · · · · · ·	- 1	· · · · · · · · · · · · · · · · · · ·	
	Elemental analysis	1	į	I		I	ı	I	!
a)	IR (v cm·1) (KBr)	ı	1	-	-	-	١,	1	ı
H" 502NH + 000H (18)	mp (decomp.) (C)	-	l	ı	ı	I	. 1		ı
Jakh	*	R	R	R	R	R	ห	R	R
R'S S	R 18	~coN —<->-⊃=⊃-()	-√}⊃≣⊃- ⁹⁽⁷ H⊃	-{_}5=5-{_>oo⁵н	~{\$\dagger_2=2-{\dagger_000ch}	F-CEC-CS	Br-{S-CEC-{S-M	~{\$\rightarrow_0=0.5c.}_0	—{\$\rightarrow C = C - (\$\rightarrow C = C
	R I	⟨}-сн₂-	-4но-√	-сн₂-	-CH ₂ -	СН2-СН2-	CH₂-	CH ₂ -	CH ₂ -
	Example No.	133	134	135	136	137	138	139	140

	Elemental analysis	-	_	-	ı	I	!	•	ī
a)	IR (v cm ⁻¹) (KBr)	ŧ	-	_	_	1	ı		l
R¹8-SO₂NH - COOH (Ia)	mp (decomp.) (C)	1	l	1	ſ	ı		-	t
O ₂ NH´	*	R	R	R	R	R	R	R	R
R ¹⁸ -S	R 1 8	$-\sqrt{s} > c = c - \sqrt{s}$	~{\$\rangle c=c-{\$\rangle}}	F_3C	$- \left\langle \right\rangle \rightarrow 0 = 0 - \left\langle \right\rangle \rightarrow \left\langle \right\rangle$	MBOC - CEC- S	~\\$\rangle \sigma \sigm	HOOCE SECULAR	~{\$\rightarrows\circ}\-\ooo\w\
	R¹	СН2-СН2-	СН2-СН2-	СН2-СН2-	CH2-CH2-	СН2-СН2-	-2н2-√	-ZH2-CH2-	-ZH2−CH2-

Example No.

	Elemental analysis	_	_		_	1	_	-	l
a)	IR (\(\nu\) cm ⁻¹) (KBr)	-	1	-	1	1	-	-	1
R' SU2NH + COUH (18)	mp (decomp.) (C)	ı	l	l		1	ı	ı	ı
U2NH	*	24	R	ห	ห	В	Я	R	R
Res	R 18	-{\$\rightarrow \text{D=0-5-0-7-4}} -0.5-0.4-4	~{°}>э≡э-{¯>>но	-C = C - C = C	H_2N $C=C$	MB2N CEC S	M802S - CEC - S	HS-CEC-SH	NC-CEC-S
	R¹	⟨}-сн₂-	-2но-	CH2-CH2-	CH2-	CH2-CH2-	⟨у-сн₂-	СН₂-	CH₂-
	Example No.	1 4 9	150	151	152	153	154	155	156

10

15

20

<u>Ia-2-66, Ia-2-67</u>

Process 1 ($R^2 = CH_3$)

To a solution of 150 mg (0.33 mmol) of compound (XVIII-2) in 2 ml of dimethylformamide which was synthesized the same manner as those described in Example 96 was added 227 mg (5 x 0.33 mmol) of potassium carbonate and 0.1 ml (5 x 0.33 mmol) of methyl iodide, and the resulting mixture was stirred overnight at room temperature. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with water, dried over Na₂SO₄, and concentrated in vacuo to give 373 mg of N-methyl derivative as an oil. Yield 91%.

Elemental analysis C24H23NO5S2

Calcd. : C; 61.39 H; 4.94 N; 2.98 S; 13.66

Found: C; 61.22 H; 5.18 N; 2.93 S; 13.27

Further, a solution of 140 mg of the above oily compound which was obtained the above process in 2 ml of methanol was added 0.6 ml of 1N NaOH, and the resulting mixture was stirred overnight at room temperature. The reaction mixture was acidified with 2N HCl and extracted with ethyl acetate. The organic layer was washed with water, dried over Na₂SO₄, and concentrated in vacuo to give 105 mg of compound (Ia-2-66) (R= Me). Yield 77 %. mp. 185 - 186°C.

Elemental analysis C₂₃H₂₁NO₅S

WELD TENTOPIE

Calcd. : C; 60.64 H; 4.65 N; 3.07 S; 14.08

Found: C; 60.56 H; 4.84 N; 3.01 S; 13.94.

IR (KBr, v max cm⁻¹): 3600-2300br, 3426, 2203, 1710, 1604, 1503, 1344, 1151.

NMR (d₆-DMSO, δ ppm): 2.88(s, 3H), 2.93(dd, J=12.0, 10.2 Hz, 1H), 3.19 (dd, J=14.2, 5.6 Hz, 1H), 3.81(s, 3H), 4.74(dd, J=5.4, 10.2 Hz, 1H), 6.99-7.04(m, 2H), 7.20-7.35(m, 7H), 7.52-7.56(m, 2H), 6.90(d, J=9.0 Hz, 2H), 7.44(d, J=9.0 Hz, 2H), 7.12(d, J=4.0 Hz, 1H), 7.44(d, J=4.0 Hz, 1H).

The compound (Ia-2-67) ($R^2 = CH_2Ph$) was synthesized in the same manner as those described in Example 157,.

 $IR(KBr, v max cm^{-1}): 2200,1722,1340,1151.$ 10

> NMR (d_6 -DMSO, δ ppm): 2.94(d_6 , J=7.6, 13.8 Hz, 1H), 3.19(d_6 , J=7.2, 14.4 Hz, 1H), 3.83(s, 3H), 4.29(d, J=16.2 Hz, 1H), 4.62(d, J=16.2 Hz, 1H) (Only characteristic peaks are shown.)

Example 159 (Method C)

Process 1

15

20

To a solution of 500 mg (1.4 mmol) of compound(XVII-2) which was obtained Example 96 in 12 ml of dry tetrahydrofuran was added 387 mg (2 x 1.4 mmol) of powdery potassium carbonate, 319 mg (1.5x1.4 mmol) of 4-methoxyphenylboronic acid and 81 mg (0.05 x 1.4 mmol) of tetrakis(triphenylphosphine)palladium. The resulting mixture was stirred under argon atmosphere for 48 h at 75°C. The reaction mixture was diluted with ethyl acetate. The organic layer was washed with 1N HCl, 5% NaHCO₃ aq., and water, dried over Na₂SO₄, and concentrated in vacuo. The residue

was column chromatographed on silica gel. The fractions eluting with n-hexane / ethyl acetate = 3/1 were collected and recrystallized from n-hexane to give 447 mg of the desired compound (XIX-1). Yield 83 %. mp. 122-123℃.

Elemental analysis C17H21NO5S2

Calcd. : C; 53.25 H; 5.52 N; 3.65 S; 16.72

Found: C; 53.26 H; 5.50 N; 3.69 S; 16.63

 $[\alpha]_D$ -21.7±0.6 (c=1.000 DMSO 25°C)

IR (KBr, $v \max cm^{-1}$): 1735,1605,1505,1350,1167,1136

NMR (CDCl₃, δ ppm): 0.90(d, J=7.0 Hz, 3H), 1.00(d, J=6.6 Hz, 3H), 2.10(m, 1H), 3.54(s, 3H), 3.85(s, 3H), 3.87(dd, J=5.0, 10.2 Hz, 1H), 5.20(d, J=10.2 Hz, 1H), 6.94(d, J=9.0 Hz, 2H), 7.52(d, J=9.0 Hz, 2H), 7.11(d, J=4.0 Hz, 1H), 7.49(d, J=4.0 Hz, 1H).

Process 2

5

10

15

To a solution of 390 mg (1.01 mmol) of compound (XIX-1) in 8ml of tetrahydrofuran and 8ml of methanol was added 5.1 ml of 1N NaOH, and resulting mixture was stirred at 60℃ for 6 h. The reaction mixture was concentrated in vacuo to remove an organic solvent. The resulting residue was diluted with ethyl acetate. The mixture was acidified with aqueous solution of citric acid and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo to give 373 mg of compound (Ia-3-1). Yield 100%. mp. : 174 -

20 176℃

 $IR(KBr, v \max cm^{-1}): 1735, 1503, 1343, 1163.$

Example 160 - 175

The compounds which were shown in Tables 31 to 32 were synthesized in a manner similar to those described in Example 159,.

R¹¹⁸·SO₂NH <mark>→</mark> COOH (la)

Elemental analysis	-	-	-	C ₂₂ H ₂₀ N ₂ O ₄ S ₃ •0.4H ₂ O Calc. C:55.07 H:4.37 N:5.84 S:20.05 Foun.C:55.35 H:4.43 N:6.04 S:19.65	-	I	C ₁₅ H ₁₆ FNO ₄ S ₂ •0.1H ₂ O Calc. C:50.15 H:4.55 F:5.29 N:3.90 S:17.85 Foun.C:49.99 H:4.58 F:5.22 N:4.05 S:17.77	C ₁₆ H ₁₉ NO ₄ S ₃ Calc. C:49.85 H:4.97 N:3.63 S:24.95 Foun.C:49.70 H:5.00 N:3.93 S:24.96
IR (v cm·¹) (KBr)	1667,1337 1180	1670,1339 1194	1725,1598 1371,1185	1735,1341 1159	1735,1503 1343,1163	1713,1353 1163	1702,1504 1352,1168	1747,1324 1159
mp (decomp.) (C)	96-66	157-159	168-171	226-230	174-176	165-167	146-147	157-159
*	R	R	R	R	R	R	R	æ
R 18	-{S}-{_}-005€H	H3C	~\$_\	H ₃ CS	~{\$}~{_}}~00°H	√S> ⊃ ^ε H		H ₃ CS-{}
	TX B	CH.	N N N N N N N N N N N N N N N N N N N	PAT	.но²(сна)	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	-HO ² (6H3)
Example No.	160	161	162	163	164	165	166	167

R¹ ⊢ R¹8·SO₂NH ★ COOH (la)

16.8 C				ı			
CH₂- H₃CO- S R 161-165 1735,1698 CH₂- H₃CO- S R 161-165 1731,1634 CH₂- H₃CO- S R 166-167 1731,1634 CH₂- H₃CO- S R 174-175 1721,1654 CH₂- H₃CO- S R 174-175 1721,1654 CH₂- H₃CO- S R 174-175 1721,1654 CH₂- H₃CO- S R 174-175 1750,1730 CH₂- H₂N- S R - - CH₂- CH₂- R R - - CH₂- CH₂- R R - - CH₂- CH₂- R R - - CH₂- R R - - CH₂- R R - - CH₂- R - - - CH₂- R	Example No.		8. 8.		mp (decomp.) (C)	IR (v cm·1) (KBr)	Elemental analysis
Ch2-Ch2- H3C-Ch2- R 166-167 1713,1609 C→Ch2- F-C→Ch2- R 174-175 1721,1654 C→Ch2- H3CS-C→C, C, C	168	-CH2-	H ₃ CO-()	82	161-165	1735,1698 1374,1163	C ₂₀ H ₁₉ NO ₅ S ₂ Calc. C:57.54 H:4.59 N:3.35 S:15.36 Foun.C:57.62 H:4.72 N:3.52 S:15.27
Ch2-CH2- F-CH2- R 174-175 1721,1654 Ch2-CH2- H₃CS-CH2- R 203-205 1750,1730 Ch2-CH2- H₂N-CH2- R - - Ch2-CH2- Me₂N-CH2- R - - Ch2-CH2- Me₂N-CH2- R - - Ch2-CH2- F₃C-CP-CA-CA-CA-CA-CA-CA-CA-CA-CA-CA-CA-CA-CA-	169	CH ₂ -	H ₃ C	24	166-167	1713,1609 1378,1194	C ₂₀ H ₁₉ NO ₄ S ₂ Calc. C:59.83 H:4.77 N:3.49 S:15.97 Foun.C:59.77 H:4.86 N:3.61 S:15.86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170	-CH ₂ -		æ	174-175	1721,1654 1365,1148	C ₁₉ H ₁₆ FNO ₄ S ₂ Calc. C:56.28 H:3.98 F:4.09 N:3.45 S:15.82 Foun.C:56.33 H:4.09 F:4.65 N:3.65 S:15.84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171	CH2-		R	203-205	1750,1730 1428,1325 1155	C ₂₀ H ₁₉ NO ₄ S ₃ -0.2H ₂ O Calc. C:54.95 H:4.47 N:3.20 S:22.00 Foun.C:55.05 H:4.52 N:3.34 S:22.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	172	CH2-	H ₂ N ₂ H	ĸ	1	1	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	173	-2H2CH2-	Y N	æ	-: -	1	I
5 CH ₂ - NC-{}-{S} R	174	-4H2	F ₃ C	æ	l	ţ	1
	175	-cH2-	NC CS	&	1	ţ	I

Example 176 (Method D)

HCl H₂N COO^tBu **XV-3** XX-1 COO^tBu XXI-1 DOLECER CZEC XXII-1 <u>Ia-4-1</u>

Process 1

5

10

To a solution of 10 g (47.68 mmol) of D-valine tert-butyl ester hydrochloride (XV-3) in 100 ml of dichloromethane was added 15.7 ml (3 x 47.68 mmol) of Nmethylmorpholine and 14.1 g(1.2 x 47.68 mmol) of 4-nitrobenzenesulfonyl chloride under ice-cooling. After being stirred for 5 h at room temperature the reaction mixture was washed with 2N HCl, 5% NaHCO₃, water. The organic layer was dried over Na₂SO₄ and concentrated in vacuo, and the resulting residue was recrystallized from dichloromethane / n-hexane to give 13.3g of the desired compound (XX-1). Yield 77.8%. mp. 89-90℃.

Elemental analysis C₁₅H₂₂N₂O₆S

Calcd. : C; 50.27 H; 6.19 N; 7.82 S; 8.95

Found: C; 50.04 H; 6.10 N; 7.89 S; 8.84

15 $[\alpha]_D$ -2.9±0.8(c=0.512 DMSO 23°C)

IR(KBr, v max cm⁻¹): 3430br, 3301, 1722, 1698, 1525, 1362, 1348, 1181, 1174, 1159.

Process 2

A solution of 13.29 g (37.08 mmol) of compound (XX-1) in 200 ml of methanol was hydrogenated using 10% Pd/C (1g) for 2h at room temperature. The reaction mixture was filtered off and the filtrate was concentrated in vacuo. The residue was recrystallized from acetone / n-hexane to give 11.5g of amine derivative (XXI-1). Yield 94.4%. mp. 164-166℃

Elemental analysisC₁₅H₂₄N₂O₄S

Calcd. : C; 54.86 H; 7.37 N; 8.53 S; 9.76

Found: C; 54.84 H; 7.33 N; 8 63 S; 9.50

10 $[\alpha]_D + 10.3 \pm 1.0 (c=0.515 DMSO 23^{\circ})$

 $IR(KBr, v max cm^{-1}): 3461, 3375, 1716, 1638, 1598, 1344, 1313.$

NMR(d-DMSO, δ ppm) : 0.80(d, J=6.8 Hz, 3H), 0.82(d, J=6.6 Hz, 3H), 1.23(s, 9H), 1.83(m, 1H), 3.30(m, 1H), 5.86(s, 2H), 6.56(d, J=8.8 Hz, 2H), 7.36(d, J=8.6 Hz, 2H), 7.47(d, J=9.6 Hz, 1H)

15 Process 3

20

25

To a solution of 328 mg (1mmol) of compound (XXI-1) in 10 ml of dichloromethane was added 0.33 ml (3 x 1 mmol) of N-methylmorpholine and 280 mg (1.5 x 1 mmol) of 4-(methylthio)benzoyl chloride under ice-cooling. The reaction mixture was stirred overnight at room temperature. To the reaction mixture was added ethyl ether and precipitation were collected and washed with ice-water and ethyl ether, The solid were recrystallized from acetone / ethyl ether to give 433 mg of the desired compound (XXII-1). Yield 90.5%. mp. 235-238℃.

Elemental analysisC23H30N2O5S2

Calcd. : C; 57.72 H; 6.32 N; 5.85 S; 13.40

Found: C; 57.63 H; 6.28 N; 5.86 S; 13.20

 $[\alpha]_D +5.7 \pm 0.9 (c=0.512 DMSO 25^{\circ})$

 $IR(KBr, v \max cm^{-1}): 3366, 3284, 1713, 1667, 1592, 1514, 1498, 1341, 1317.$

NMR(d₆-DMSO, δ ppm) : 0.82(d, J=6.6 Hz, 3H), 0.84(d, J=6.8 Hz, 3H), 1.22(s, 9H), 1.91(m, 1H), 2.55(s, 3H), 3.32(s, 3H), 3.44(dd, J=6.2, 8.6 Hz, 1H), 7.40(d, J=8.6 Hz, 2H),

7.73(d, J=8.6 Hz, 2H), 7.90-8.01(m, 5H), 10.48 (s, 1H).

Process 4

5

10

To a solution of 405 mg (0.85 mmol) of compound (XXII-1) in 3 ml of dichloromethane was added 3.3 ml (50 x 0.85 mmol) of trifluoroacetic acid and resulting mixture was stirred for 2 h at room temperature. The reaction mixture was concentrated in vacuo and the resulting residue was washed with ethyl ether to give 340 mg of the desired compound (Ia-4-1). Yield 94.7 %. mp. 231-234℃

 $IR(KBr, v max cm^{-1}): 1748, 1655, 1592, 1323, 1161.$

Elemental analysis C₁₉H₂₂N₂O₅S₂ · 0.1CF₃COOH

Calcd. : C; 53.14 H; 5.13 N; 6.46 S; 14.78

Found: C; 53.48 H; 5.31 N; 6.57 S; 15.06

Example 177 - 208

The compounds which were shown in Tables 33 to 36 were synthesized in a manner similar to those described in Example 176.

T10750

	(la)
<u>.</u>	P.SO.NH COOH

Elemental analysis	1	C ₂₅ H ₂₃ N ₃ O ₆ S·0.9H ₂ O Calc. C:58.91 H:4.90 N:8.24 S:6.29 Foun.C:58.97 H:5.07 N:7.95 S:6.10	ı	C ₂₄ H ₂₀ N ₄ O ₇ S•1.1H ₂ O Calc. C:54.56 H:4.24 N:10.60 S:6.07 Foun.C:54.51 H:4.32 N:10.83 S:6.15	C ₂₈ H ₂₈ N ₄ O ₅ S•0.9H ₂ O Calc. C:59.73 H:5.36 N:10.72 S:6.13 Foun.C:59.58 H:5.23 N:10.85 S:6.47	C ₂₅ H ₂₃ N ₃ O ₅ S•0.9H ₂ O Calc. C:60.82 H:5.06 N:8.51 S:6.49 Foun.C:60.83 H:5.19 N:8.66 S:6.66	C ₂₄ H ₂₀ BrN ₃ O ₅ S-0.6H ₂ O Calc. C:52.11 H:3.86 Br:14.44 N:7.60 S:5.80 Foun.C:52.13 H:4.04 Br:14.57 N:7.43 S:5.70	C ₂₅ H ₂₃ N ₃ O ₅ S ₂ -0.7H ₂ O Calc. C:57.50 H:4.71 N:8.05 S:12.28 Foun.C:57.63 H:4.79 N:8.00 S:12.08
IR (v cm ⁻¹) (KBr)	1732,1641 1341,1163	1726,1655 1323,1177	1723,1633 1361,1149	1719,1629 1340,1156	1732,1653 1399,1199	1731,1656 1591,1327 1160	1727,1668 1590,1316 1154	1728,1653 1593,1323 1159
mp (decomp.) (C)	215-217	233-234	216-218	211-213	236-238	240-244	215-218	244-249
*	æ	R	R	R	æ	R	R	R
.R.18	-{	H3CO-C-N-C-N-C-	-{	-\\-\\-\\-\\-\\-\\-\\\-\\\\-\\\\\\\\\\	- N-S-N-S-N-(196H)	H3C-{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-\\\-\\\-\\\-\\\\-\\\\\-\\\\\\\\\\\\\\	-{_N-0-{_}-80-8-4
R.	NT OH.	A P	CH ₂ .	ŦN Ŗ	N CH	H N H	CH ₂ .	H CH2-
Example No.	177	178	179	180	181	182	183	184

7,0760

	(la)
<u></u> æ-	R¹8-SO ₂ NH → COOH

Elemental analysis	C ₂₄ H ₂₀ FN ₃ O ₅ S•0.6H ₂ O Calc. C:58.55 H:4.34 F:3.86 N:8.54 S:6.51 Foun.C:58.67 H:4.51 F:3.77 N:8.42 S:6.47	C ₂₃ H ₂₂ N ₂ O ₆ S Calc. C:60.78 H:4.88 N:6.16 S:7.05 Foun.C:60.50 H:4.99 N:6.14 S:7.31	C ₂₂ H ₁₉ N ₃ O ₇ S Calc. C:56.29 H:4.08 N:8.95 S:6.83 Foun.C:56.01 H:4.09 N:8.93 S:6.75	C ₂₂ H ₂₀ N ₂ O ₅ S-0.5CF ₃ COOH Calc. C:57.37 H:4.29 N:5.82 S:6.66 Foun.C:57.53 H:4.45 N:5.75 S:7.11	C ₂₂ H ₁₉ BrN ₂ O ₅ S•CF ₃ COOH Calc. C:46.69 H:3.27 Br:12.94 N:4.54 S:5.19 Foun.C:46.79 H:3.41 Br:12.86 N:4.57 S:5.37	C ₂₃ H ₂₂ N ₂ O ₅ S Calc. C:63.00 H:5.06 N:6.39 S:7.31 Foun.C:62.70 H:5.13 N:6.36 S:7.36	C ₂₃ H ₂₂ N ₂ O ₅ S _{2*} 0.8CF ₃ COOH Calc. C:52.59 H:4.09 N:4.99 S:11.42 Foun.C:52.77 H:4.24 N:5.12 S:11.58	C ₂₂ H ₁₉ FN ₂ O ₅ S Calc. C:59.72 H:4.33 F:4.29 N:6.33 S:7.25 Foun.C:59.59 H:4.42 F:4.30 N:6.37 S:7.24
IR (\(\nu\) cm ⁻¹) (KBr)	1730,1651 1603,1333 1161	1723,1651 1591,1322 1161	1719,1672 1593,1327 1159	1748,1658 1592,1325 1159	1743,1670 1591,1335 1167	1752,1726 1656,1591 1324,1160	1742,1667 1591,1334 1161	1737,1651 1598,1324 1160
mp (decomp.)	170-175	237-239	235-239	114-115	242-243	242-244	232-235	218-220
*	M.	R	22	24	æ	~	æ	ಜ
R 18	-N-3-(-)-1	H ³ CO - S-N-S-	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	- H-S-	-N-S-(-)-18	-N-S-()-0°H	H ₃ Cs—N—O—N-O—N-O—N-O—N-O—N-O—N-O—N-O—N-O—N-O	F-8-N-8
. a	TN F	-cho-	CH ₂ .	CH ₂ -	CH ₂ .	CH ₂ -CH ₂ -	CH ₂ -	СН₂-
Example No.	185	186	187	188	189	190	191	192

^{R¹} Р¹⁸·SO₂NH <mark>→</mark> СООН (Ia)

		ļ			
R1 . R18	R 18	 *	mp (decomp.) (C)	IR (v cm·¹) (KBr)	Elemental analysis
CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-		 æ	201-203	1724,1673 1592,1326 1156	C ₂₁ H ₁₈ CiN ₃ O ₅ S Calc. C:54.84 H:3.94 Ci:7.71 N:9.14 S:6.97 Foun.C:54.39 H:4.06 Ci:7.42 N:8.98 S:6.99
H ₃ C - CH ₂ - CH ₂ - CH ₂ - CH ₂ - CH ₃ C - CH ₂ - CH ₂ - CH ₃ C - CH ₂ - CH ₃ C - CH ₂ - CH ₃ C - CH ₃ C - CH ₂ - CH ₃ C - CH ₃		æ	206-208	1725,1682 1592,1332 1160	G ₂₂ H ₂₀ ClN ₃ O ₅ S•0.1CF ₃ COOH Calc. C:55.15 H:4.19 Cl:7.33 N:8.69 S:6.63 Foun.C:55.25 H:4.28 Cl:7.10 N:8.80 S:6.80
-H-9-CH-0	N-3-	24	254-256	1748,1659 1590,1324 1161	C ₂₄ H ₂₄ N ₂ O ₅ S-0.5H ₂ O Calc. C:62.46 H:5.46 N:6.07 S:6.95 Foun.C:62.42 H:5.54 N:6.26 S:6.97
}-N-9-(CH-9)5CH- H-9C(6H-9)		84	227-229	1749,1658 1592,1323 1161	C ₁₉ H ₂₂ N ₂ O ₅ S-0.2H ₂ O Calc. C:57.91 H:5.73 N:7.11 S:8.14 Foun.C:57.94 H:5.69 N:7.03 S:8.14
. (CH ₃) ₂ CH- H ₃ CS-(CH ₃) ₂ CH- (CH ₃		84	231-234	1748,1655 1592,1323 1161	C ₁₉ H ₂₂ N ₂ O ₅ S ₂ •0.1CF ₃ COOH Calc. C:53.14 H:5.13 N:6.46 S:14.78 Foun.C:53.48 H:5.31 N:6.57 S:15.06
_N-9-{ Сн9}2сн-	NI -00	æ	235-236	1749,1726 1668,1597 1322,1160	C ₁₈ H ₁₉ FN ₂ O ₅ S•0.1CF ₃ COOH Calc. C:53.86 H:4.74 F:6.09 N:6.90 S:7.90 Foun.C:53.82 H:4.85 F:5.60 N:6.93 S:7.78
(CH ₃) ₂ CH-	N-0-(~	226-227	1728,1661 1591,1317 1159	C ₁₈ H ₂₀ N ₂ O ₅ S•0.1H ₂ O Calc. C:57.16 H:5.38 N:7.41 S:8.48 Foun.C:57.01 H:5.46 N:7.57 S:8.57
)-H-0-{-N-0-(снз) ² сн-	ツ "	æ	220-221	1696,1654 1591,1317 1255	C ₁₉ H ₂₂ N ₂ O ₆ S-0.2H ₂ O Calc. C:55.65 H:5.51 N:6.83 S:7.82 Foun.C:55.63 H:5.48 N:7.03 S:7.75

Example No.	. A	۳. ق	*	mp (decomp.)	IR (v cm·¹) (KBr)	Elemental analysis
201	(CH ₃) ₂ CH-	-\\\-\\\-\\\-\\\\-\\\\\\\\\\\\\\\\\\\\	22	240-242	1726,1688 1591,1347 1166	C ₁₈ H ₁₉ N ₃ O ₇ S•0.4H ₂ O Calc. C:50.44 H:4.66 N:9.80 S:7.48 Foun.C:50.40 H:4.55 N:9.90 S:7.44
202	(CH ₃) ₂ CH-	-N-0-√-N-0-19	24	229-230	1726,1663 1592,1318 1159	C ₁₈ H ₁₉ BrN ₂ O ₅ S•0.2Ethylether Calc. C:48.03 H:4.50 Br:17.00 N:5.96 S:6.82 Foun.C:48.04 H:4.61 Br:16.83 N:5.96 S:6.86
203	-2 ^{E(E} H2)	H ² CO-K-S-W-S-W	R	214-216	1659,1591 1316,1159	C ₂₀ H ₂₄ N ₂ O ₆ S-0.4H ₂ O Calc. C:56.17 H:5.84 N:6.55 S:7.50 Foun.C:56.21 H:6.02 N:6.50 S:7.33
204	-CH ₂ -	H ₃ C-N-S-N-SeH	~	236-237	1723,1679 1590,1337 1162	C ₂₁ H ₂₀ N ₄ O ₅ S•0.25CF ₃ COOH Calc. C:55.06 H:4.35 N:11.95 S:6.84 Foun.C:54.80 H:4.90 N:12.16 S:7.10
205	-ZH2	H-0-1	22	272-275	1719,1672 1594,1339 1165	C ₂₁ H ₁₉ N ₃ O ₅ S Calc. C:59.28 H:4.50 N:9.88 S:7.54 Foun.C:58.84 H:4.56 N:9.71 S:7.36
206	CH ₂ .	H ₃ C/N/O-N/O-N/O-N/O-N/O-N/O-N/O-N/O-N/O-N/O	æ	214-215	1733,1685 1594,1319 1154	C ₂₀ H ₁₉ N ₃ O ₆ S Calc. C:55.94 H:4.46 N:9.78 S:7.47 Foun.C:55.50 H:4.47 N:9.74 S:7.31
207	-ZHD-CH2-	Br H-G-N-G-N-	R	217-220	1732,1679 1592,1312 1155	-
208	-2H2CH2-	-_________\\\\\\\\\	8	1	ļ	-

Example 209 (Method E)

Process 1

5

10

DOLECTE COLECTION

To a solution of 20.94 g (99.8 mmol) of D-valine tert-butyl ester hydrochloride (XV-3) in 200 ml of dichloromethane was added 22 ml (2 x 99.8 mmol) of N-methylmorpholine and 20.27 g (99.8 mmol) of p-styrenesulfonyl chloride under ice-cooling. After being stirred for 15 h at room temperature, the reaction mixture was washed with 2N HCl, 5% NaHCO₃, water. The organic layer was dried over Na₂SO₄ and concentrated in vacuo, and the resulting residue was column chromatographed on silica gel. The fractions eluting with ethyl acetate / n-hexane / chloroform = 1/3/1 were collected and washed with n-hexane to give 28.93 g of the desired compound (XXIII-1). Yield 85 %. mp. 118-120°C.

IR(KBr, v max cm⁻¹): 3419, 3283, 1716, 1348, 1168.

NMR(CDCl₃, δ ppm): 0.85(d, J=6.9 Hz, 3H), 1.00(d, J=6.6 Hz, 3H), 1.21(s, 9H), 2.04(m, 1H), 3.62(dd, J=9.8, 4.5 Hz, 1H), 5.09(d, J=9.8 Hz, 1H), 5.41(dd, J=0.5, 10.9 Hz, 1H), 5.84(dd, J=0.5, 17.6 Hz, 1H), 6.72(dd, J=10.9, 17.6 Hz, 1H), 7.49(d, J=8.4 Hz, 2H), 7.79(d, J=8.4 Hz, 2H).

Process 2

5

10

20

25

Ozone gas was bubbled through a solution of 5.09 g (15 mmol) of compound (XXIII-1) in 300 ml of dichloromethane for 15 h at -78°C. To this solution was added 22 ml (20 x 15 mmol) of methylsulfide, and the reaction mixture was allowed to warm to room temperature gradually over 80 min and concentrated in vacuo to give 6.03g aldehyde derivative (XXIV-1).

 $IR(CHCl_3, v \max cm^{-1}): 3322, 1710, 1351, 1170.$

NMR(CDCl₃, δ ppm): 0.85(d, J=6.9 Hz, 3H), 1.00(d, J=6.9 Hz, 3H), 1.22(s, 9H), 2.07(m, 1H), 3.69(dd, J=4.5, 9.9 Hz, 1H), 8.01(s, 4H), 10.08(s, 1H).

15 Process 3

To a solution of 6.02 g(15 mmol) of compound (XXIV-1) in 60 ml of ethanol and 15 ml of tetrahydrofuran was added 2.72 g (1.05 x 15 mmol) of benzenesulfonyl hydrazide at room temperature. After being stirred for 2 h, the resulting mixture was concentrated in vacuo. The residue which was obtained by concentration in vacuo was column chromatographed on silica gel and the fractions eluting with chloroform / ethyl acetate = 1/4 were collected and recrystallized from ethyl acetate to give 4.44 g of the desired compound (XXV-1). Yield from process 2.60%. mp. 163-164%.

Elemental analysis C22H29N3O6S2

Calcd. : C; 53.32 H; 5.90 N; 8.48 S; 12.94

Found: C; 53.15 H; 5.87 N; 8.32 S; 12.82

 $[\alpha]_D$ -11.6 ± 1.0(c=0.509 DMSO 23.5°C)

 $IR(KBr, v max cm^{-1}): 3430, 3274, 1711, 1364, 1343, 1172.$

NMR(CDCl₃ δ ppm): 0.84(d, J=6.9 Hz, 3H), 0.99(d, J=6.6 Hz, 3H), 1.19(s, 9H), 2.00(m, 1H), 3.63(dd, J=4.5, 9.9 Hz, 1H), 5.16(d, J=9.9 Hz, 1H), 7.50-7.68(m, 5H), 7.73(s, 1H),

7.78-7.84(m, 2H), 7.96-8.02(m, 2H), 8.16(brs, 1H).

Process 4

5

10

15

20

25

To a solution of 0.14 ml (1.11 x 1 mmol) of 4-(methylmercapto)aniline and 0.3 ml of conc. hydrochloric acid in 3 ml of aqueous 50% ethanol solution was added a solution of 78.4 mg (1.14 x 1 mmol) of sodium nitrite in 1 ml of water at 0 to 5 °C of the internal temperature and the reaction mixture was stirred for 15 min at the same temperature. To a solution of 496 mg (1 mmol) of compound (XXV-1) in 5 ml of dry pyridine was added the above reaction mixture over 8 min at -25°C. This reaction mixture was stirred for additional 4 h at -15°C to rt, poured into water, and extracted with ethyl acetate. The organic layer was washed with 2N HCl, 5% NaHCO₃, and water, dried over Na₂SO₄, and concentrated in vacuo. The residue was column chromatographed on silica gel and the fractions eluting with chloroform / ethyl acetate = 1/9 were collected to give 374 mg of the desired compound (XXVI-1). Yield 74%.

Elemental analysis C23H29N5O4S2.0.3H2O

Calcd. : C; 54.27 H; 5.86 N; 13.76 S; 12.60

Found: C; 54.25 H; 5.77 N; 13.87 S; 12.52

 $IR(KBr, v \max cm^{-1}): 3422, 3310, 1705, 1345, 1171.$

NMR(d₆-DMSO, δ ppm): 0.83(d, J=6.9 Hz, 3H), 0.86(d, J=7.2 Hz, 3H), 1.19(s, 9H), 2.00(m, 1H), 2.59(s, 3H), 3.54(dd, J=6.3, 9.6 Hz, 1H), 7.56(d, J=8.7 Hz, 2H), 8.00(d, J=8.6 Hz, 2H), 8.10(d, J=8.7 Hz, 2H), 8.33(d, J=9.6 Hz, 2H), 8.34(d, J=8.7 Hz, 2H).

Process 5

A solution of 353 mg of compound (XXVI-1) in 2.5 ml of dichloromethane and 2.5 ml of trifluoroacetic acid was stirred for 3 h at room temperature. The reaction mixture was concentrated in vacuo and the resulting residue was washed with ethyl ether to give 308 mg of compound (Ia-5-1). Yield 98%. mp. 194 - 195℃.

 $IR(KBr, v \max cm^{-1}): 1720, 1343, 1166.$

Elemental analysis C₁₉H₂₁N₅O₄S₂ · 1.1H₂O

Calcd. : C; 48.83 H; 5.00 N; 14.99 S; 13.72

Found: C; 49.13 H; 5.25 N; 14.55 S; 13.34

Example 210 - 251

The compounds which were shown in Tables 37 to 43 were synthesized in a manner similar to those described in Example 209.

R¹⁸-SO₂NH CONHOH (Ib)

Example No.	R¹	R '8	*	mp (decomp.) (C)	IR (v cm·l) (KBr)	1H-NMR(& ppm) de-DMSO
210	IN P	N=N N-N-N	æ	l	i	ì
211	-%5-{	N=N-N-	ж 	194-195	3700-2200(br),3278, 1634,1337,1160	2.65(dd,J=9.3,13.1Hz,1H),2.82(dd, J=5.8,13.1Hz,1H),3.86(dt,J=5.8,9.3 Hz,1H),7.72(A ₂ B2q,J=8.1Hz,2H), 8.19(A ₂ B2q,J=8.1Hz,2H),8.49(d,J= 9.3Hz,1H),8.88(s,1H),10.69(s,1H)

		<u>.</u>	R¹ ¹ COOH , COOH (Ia)	l (la)	
R.	R :	*	mp (decomp.)	IR (\(\nu\) cm ⁻¹) (KBr)	.ab
TZ G	Z . Z . Z . Z . Z . Z . Z . Z . Z . Z .	~	l	1	

2.75(dd,J=9.3,13.7Hz,1H),2.99(dd,J=5.3,13.7Hz,1H),3.96(dt,J= 5.3,9.3Hz,1H),8.53(d,J=9.3Hz, 1H) VMR(& ppm) do-DMSO I 2400-3700br,3422,3337, 1733,1698,1347,1170 215-216 2 Example No. 2 1 1 2 1 0

R¹ ⊢ R¹®SO₂NH * COOH (la)

nalysis	/lether 4:15.57 S:5.94 4:15.52 S:5.57
Elemental analysis	C ₂₅ H ₂₂ N ₆ O ₄ S•0.5Ethylether Calc. C:60.10 H:5.04 N:15.57 S:5.94 Foun.C:60.41 H:4.69 N:15.52 S:5.57
IR (v cm ⁻¹) (KBr)	1734,1337
mp (decomp.)	199-202
*	83
R	
	N=N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
R.	CH ₃

R¹ H¹8-SO₂NH → COOH (Ia)

]
Elemental analysis	C ₂₅ H ₂₂ N ₆ O ₅ S Calc. C:57.91 H:4.28 N:16.21 S:6.18 Foun.C:57.77 H:4.29 N:16.01 S:6.37	C ₁₉ H ₂₁ N ₅ O ₄ S Calc. C:54.93 H:5.09 N:16.86 S:7.72 Foun.C:54.71 H:5.09 N:16.70 S:7.56	C ₂₀ H ₂₃ N ₅ O ₅ S-0.4H ₂ O Calc. C:53.06 H:5.30 N:15.47 S:7.08 Foun.C:53.13 H:5.13 N:15.12 S:7.14	1	C ₂₀ H ₂₃ N ₅ O ₅ S-0.4H ₂ O Calc. C:53.06 H:5.30 N:15.47 S:7.08 Foun.C:53.13 H:5.13 N:15.12 S:7.14	C ₁₈ H ₁₈ BrN ₅ O ₄ S•0.8H ₂ O Calc. C:43.70 H:3.99 Br:16.15 N:14.16 S:6.48 Foun.C:43.93 H:3.85 Br:15.92 N:13.87 S:6.47	1	
IR (v cm·¹) (KBr)	1749,1719 1331,1165	1730,1693 1349,1173	1729,1693 1337,1170	1718,1601 1385,1162	1719,1304 1162	1696,1348 1171	1698,1344 1168	1757,1738 1331,1163
mp (decomp.) (C)	195-196	205-207	204-207	190 decomp.	195-197	227-228	204-207	203-205
*	R	R	R	¥	R	R	R	R
R 18	H_3 co $\left\{ \begin{array}{c} N^{-N} \\ N^{-N} \end{array} \right\}$	N=N-N-	H_3CO \longrightarrow $N=N$ $N=N$ $N=N$ $N=N$	\longrightarrow $N=N$	$H_3CO - \bigvee_{N=N}^{N=N} \bigvee_{N=N}$		H ₃ CO - N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	F-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
R.1	Chr. Chr.	CH3CH2(CH3)CH-	CH3CH2(CH3)CH-	(СН ₃)2СН-	(CH ₃) ₂ CH-	(СН ₃)2СН-	.Э ^ε (сн ₃)зс	CH ₂ -
Example No.	220	2 2 1	2.2.2	223	224	2 2 5	226	227

		6.20	0.10	5.81 7.08	6.48 6.68	- 0	0.5	
Elemental analysis	l	C ₂₃ H ₁₈ F ₃ N ₅ O ₄ S Calc. C:53.38 H:3.51 F:11.01 N:13.53 S:6.20 Foun.C:53.11 H:3.55 F:10.89 N:13.66 S:6.31	C ₂₂ H ₁₈ N ₆ O ₆ S-0.4H ₂ O Calc. C:52.67 H:3.78 N:16.73 S:6.39 Foun.C:52.73 H:3.92 N:16.53 S:6.55	C ₂₂ H ₁₈ FN ₅ O ₄ S•0.2H ₂ O Calc. C:56.09 H:3.94 F:4.03 N:14.87 S:6.81 Foun.C:56.10 H:4.09 F:4.12 N:14.84 S:7.08	C ₂₂ H ₁₈ CIN ₅ O ₄ S•0.6H ₂ O Calc. C:53.41 H:3.91 Ci:7.17 N:14.16 S:6.48 Foun.C:53.33 H:3.90 Ci:7.22 N:14.19 S:6.68	C ₂₃ H ₂₁ N ₅ O ₄ S-1.2H ₂ O Calc. C:56.94 H:4.86 N:14.44 S:6.61 Foun.C:56.88 H:4.49 N:14.31 S:6.72	C ₂₃ H ₂₁ N ₅ O ₅ S•1.7H ₂ O Calc. C:54.15 H:4.82 N:13.73 S:6.29 Foun.C:54.05 H:4.35 N:13.60 S:6.77	C23H18N6O4S-0.8H2O
IR (\(\nu\) cm ⁻¹) (KBr)	1744,1325 1154	1738,1707 1328,1169	1730,1597 1345,1161	1730,1509 1236,1165	1730,1493 1346,1164	1732,1697 1509,1373 1345,1170	1732,1697 1345,1168	1731 1605
mp (decomp.) (C)	197-199	197-198	190-191	205-207	204-206	226-227	214-216	
*	Ж	24	24	æ	24	æ	æ	f
R 18	Br N=N,N	F ₃ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	O ₂ N-N-N-SO	F-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N		H ₃ C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	H ₃ CO N=N N=N ODEH	N=N
R.	CH ₂ -	CH ₂ -	CH ₂ -	CH ₂ -	CH ₂ -	CH ₂ -	-CH2	···
Example No.	228	229	230	231	232	233	234	

R¹ HSO₅NH COOH (Ia)

Elemental analysis	C ₂₆ H ₂₇ N ₅ O ₄ S Calc. C:61.77 H:5.38 N:13.85 S:6.34 Foun.C:61.59 H:5.45 N:13.89 S:6.27	C ₂₈ H ₂₉ N ₅ O ₄ S•0.3H ₂ O Calc. C:62.62 H:5.56 N:13.04 S:5.97 Foun.C:62.46 H:5.52 N:13.43 S:6.28	_	I	C ₂₄ H ₁₉ BrN ₆ O ₄ S•1.7H ₂ O Calc. C:48.20 H:3.78 Br:13.36 N:14.05 S:5.36 Foun.C:48.27 H:3.75 Br:13.16 N:14.11 S:5.38	C ₂₅ H ₂₂ N ₆ O ₄ S·0.6H ₂ O Calc. C:58.49 H:4.56 N:16.37 S:6.25 Foun.C:58.52 H:4.69 N:16.71 S:5.90	С ₁₉ Н ₂₁ N ₅ О ₄ S·0.8Н ₂ O Calc. C:53.09 H:5.30 N:16.29 S:7.46 Foun.C:53.20 H:5.14 N:16.06 S:7.70	C ₁₈ H ₁₈ FN ₅ O ₄ S-0.2H ₂ O Calc. C:51.11 H:4.38 F:4.49 N:16.55 S:7.58 Foun.C:50.90 H:4.37 F:4.89 N:16.28 S:7.46
IR (v cm·1) (KBr)	1738,1328 1314,1149	1739,1512 1329,1178	1587,1506 1242,1159	1713,1514 1341,1159	1744,1716 1490,1327 1159	1718,1685 1334,1170	1716,1346 1165	1746,1726 1715,1334 1159
mp (decomp.) (C)	224-226	225-227	182-184	226-228	205-207	199-201	206-207	208-209
*	Я	R	R	R	æ	В	R	R
R 18	-	$- \left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$- \bigvee_{N=N}^{N} N - \bigvee_{N=N}^{N} OH$	Br-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	H ₃ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H ₃ C — N=N, N=N — DEH	E-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
R 1	.2но-{	CH ₂ -	CH ₂ -CH ₂ -	-cH₂-	CH ₂ -	H CH _P .	(СН ₃)2СН-	(CH ₃) ₂ CH-
Example No.	236	237	238	239	240	241	242	243

	(a)
<u>~</u> —	418-SO ₂ NH COOH

Table 43									
	Elemental analysis	I	C ₁₉ H ₂₁ N ₅ O ₄ S ₂ *1.1H ₂ O Calc. C:48.83 H:5.00 N:14.99 S:13.72 Foun.C:49.13 H:5.25 N:14.55 S:13.34	C ₂₃ H ₂₁ N ₅ O ₄ S ₂ *0.2H ₂ O Calc. C:55.34 H:4.32 N:14.03 S:12.85 Foun.C:55.37 H:4.35 N:14.00 S:12.86	C ₂₅ H ₂₂ N ₆ O ₄ S ₂ *1.1H ₂ O Calc. C:54.16 H:4.40 N:15.16 S:11.57 Foun.C:54.20 H:4.66 N:15.09 S:11.62	C ₁₈ H ₁₆ N ₆ O ₄ S-0.4H ₂ O Calc. C:51.52 H:4.04 N:20.03 S:7.64 Foun.C:51.34 H:3.96 N:19.76 S:8.02	ı	ı	ı
(la)	IR (v cm·¹) (KBr)	1696,1348 1171	1720,1343 1166	1753,1497 1325,1165	1718,1677 1495,1333 1170	1698,1430 1327,1163	_	1	_
^{R¹} R¹ ⁸ ·SO₂NH <mark>→</mark> СООН ((mp (decomp.) (C)	223-225	194-195	222-224	213-216	>220	 	1	ı
O ₂ NH.	*	æ	~	24	R	æ	В	В	æ
R ¹⁸ ·S	R 18		H ₃ CS \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H ₃ CS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$H_3CS - \bigvee_{N=N}^{N-N} - \bigvee_{N=N}^{N-N} + \bigvee_{N=N}^{N-N} - \bigvee_{N=N}^{N-N} + \bigvee_{N=N}^{N-N} - \bigvee_{N$	N=N,NH	$- \bigvee_{N=N}^{N=N} - \bigvee_{N^2 \in \mathbb{N}} - N^2 H$	HS-N-N-N-SH	OHC N=N N=N
	R¹	(СН ₃) ₂ СН-	(CH ₃) ₂ CH-	CH₂-	CH ₂ .	CA2-CH2-	CH ₂ -CH ₂ -	⟨∕_CH ₂ -	CH ₂ -
	Example No.	244	245	246	247	248	249	250	251

Example 252 - 266

The compounds which were shown in Tables 44 to 45 were synthesized in a manner similar to those described in Example 157.

D912038.078298

R¹ SO₂N ★ R²⁰ (I)

Sxample No.	R 1	R 18	R 19	R 20	*	mp (decomp.) (C)	IR (v cm·¹) (KBr)	¹ H-NMR(δ ppm) ds-DMSO
252	.(СН₃)2СН-	√ 0-√	-ÇH3	Н000-	æ	ı	1715,1583 1340,1151	0.96(d,J=6.6Hz,3H) 1.01(d,6.8Hz,3H) 2.87(s,3H) 4.17(d,J=10.4Hz,1H)
253	(CH ₃) ₂ CH.	⟨ }••⟨⟩	-CH ₃	-соинон	R	110-111	3323,1678 1328,1150	0.71(d,J=6.6Hz,3H) 0.88(d,6.4Hz,3H) 2.88(s,3H) 3.48(d,J=10.8Hz,1H)
254	(СН ₃) ₂ СН-		CH ₂ -	-соинон	R	148-150	3344,1684 1323,1149	0.55(d,J=6.8Hz,3H) 0.82(d,6.6Hz,3H) 3.74(s,3H)
255	(CH ₃) ₂ CH-		-(CH ₂)4NH ₂	нооэ-	æ	ı	3700-2200br 1681,1319 1212	0.91(d,J=5.6Hz,6H) 1.52-1.69(m,4H) 3.84(d,J=10.4Hz,1H)
256	СН3)2СН-	N=N N-N-N	-CH ₃	нооэ-	R	208-207	3300-2400br 1711,1336 1185	0.95(d,J=6.6Hz,3H) 0.97(d,6.8Hz,3H) 2.89(s,3H) 4.20(d,J=10.6Hz,1H)
257	(CH ₃) ₂ CHCH ₂ -	N=N N-N-\	cH3-	нооэ-	R	132-132.5	3300-2400br 1719,1340 1153	0.92(d,J=6.6Hz,3H) 0.97(d,6.6Hz,3H) 2.84(s,3H) 4.73(t,J=7.4Hz,1H)
258	-ZH2-CH2-		-ZHD-()	-соон	R	ı	3640-2400br 1736,1717 1694,1346 1162	2.78(d.d,J=13.8,7.2Hz,1H) 3.14(d.d,J=14.8,7.4Hz,1H) 4.43(d,J=16.4Hz,1H) 4.68(d,J=16.4Hz,1H)
2 5 9	-H)2(CH3)	H ₃ CS-{\rightarrow} Soft	-сн	нооэ-	R	141-144	3284br,1745 1714,1323 1131	0.96(d,J=6.4Hz,3H) 0.97(d,J=6.4Hz,3H) 2.52(s,3H),2.93(s,3H)

T10920

2:	
ru	
[]	
Ø	
14	8
#	_
	- 82H
بصمأ	`Œ— (∗
n.	- \ <u>a</u>

	Τ		<u> </u>	т	Г	1	1
iH-NMR(δ ppm) d ₆ -DMSO	0.72(d,J=6.4Hz,3H)0.85(d,J=6.4Hz,3H)2.47(s,3),4.15(d,J=10.2Hz,1H)4.51(d,J=15.5Hz,1H)4.73(d,J=15.5Hz,1H)	2.54(s,3H),2.78(s,3H) 2.85(d,d,J=14.0,9.4Hz,1H) 3.16(d,d,J=14.0,6.0Hz,1H) 4.76(d,d,J=10.0,5.8Hz,1H)	l	I	I	1	I
IR (\(\nu\) cm ⁻¹) (KBr)	3600-2400br 1718,1344 1151	3600-2400br 1719,1655 1592,1320 1154	l	ł	1	ı	ţ
mp (decomp.) (C)	I	1	1	1	- 1	l	ļ.
*	æ	R	В	24	æ	æ	æ
R 20	нооэ-	нооо-	H000-	Н000-	Н000-	Н000-	H000-
R19	(_)-CH₂-	-CH3	CH ₂ -	-(CH ₂)4NH ₂	.CH3	СН₂-	-(CH ₂) ₄ NH ₂
R 18	H ₃ CS-{}-SD _E H	-сн ₂ - h ₃ cs-{}-g-N-{}-	-CH ₂ - H ₂ CS-\S-N-C-	-CH2- H3CO-{_}-C≡C-{_S}-	-CH₂- H₃CO-{>-C≡C-{>-	-CH₂- H₃CO-⟨>-C≡C-⟨_]>-	H3CO-{}-C≡C-{_}- (CH ₂)4NH ₂
R¹	(СН ₃₎₂ СН-	CH2-CH2-	CH2-CH2-	CH ₂ .	CH2-	CH2-	CH₂- H₃CO→
Example No.	260	261	262	263	264	265	266

Example 267

The compounds which were shown in Tables 46 were synthesized in a manner similar to those described in Example 92.

	€
<u>-</u> œ-	1 ¹⁸ -SO ₂ HN ♣R ²⁰
	R ¹⁸ -S

Sxample No.	<u>~</u>	R 18	R 20	*	mp (decomp.)	IR (v cm·¹) (KBr)	'H-NMR(& ppm) d ₆ -DMSO
267	-ZH2-CH2-	-{\rightarrow}c≡c-{\rightarrow}	-соинон в	æ	156-158	3700-2400br,3267, 2217,1671,1321,1161	2.62(dd,J=8.4,13.5Hz,1H), 2.80(dd, J=6.0,13.5Hz,1H),3.82(ddd,J=6.0, 8.4,8.7Hz,1H),8.38(d,J=8.7Hz,1H)
267	CH ₂ -	-{\rightarrow}c≡c-{\rightarrow}	нооэ-	æ	176-178	2200-3700br,3430, 3292,1728,1324,1162	2.73(dd,J=9.3,13.6Hz,1H),2.96(dd, J=5.4,13.5Hz,1H),3.92(dt,J=5.4, 9.3Hz,1H),8.42(d,J=9.3Hz,1H)

5

10

15

20

Test examples on the compounds of the present invention are described below.

The test compounds are the ones described in the Examples and Tables.

Test example

(1) Isolation and purification of MMP-9 (92 kDa, gelatinase B)

Type IV collagenase (MMP-9) was purified according to the methods descrived in the following literature. Scott M. Wilhelm et al., J. Biol. Chem., 264, 17213-17221, (1989), SV40-transformed Human Lung Fibroblasts Secrete a 92-kDa Type IV Collagenase Which Is Identical to That Secreted by Normal Human Macrophages; Yasunori Okada et al., J. Biol. Chem., 267, 21712-21719, (1992), Matrix Metalloproteinase 9 (92-kDa Gelatinase / Type IV Collagenase) from HT 1080 Human Fibrosarcoma Cells; Robin V. Ward et al., Biochem. J., (1991) 278, 179-187, The purification of tissue inhibitor of metalloproteinase-2 from its 72 kDa progelatinase complex.

MMP-9 is secreted from human fibrosarcoma cell line ATCC HT 1080, into its culture medium when it is stimulated with 12-tetradecanoylphorbol-13-acetate (TPA). The production of MMP-9 in this culture was verified by the gelatin zymography as described in the following literature (Hidekazu Tanaka et al., (1993) Biochem. Biophys. Res. Commun., 190, 732-740, Molecular cloning and manifestation of mouse 105-kDa gelatinase cDNA). The condition medium of the stimulated HT 1080 was concentrated and was purified with gelatin-Sepharose 4B, concanavalin A-sepharose, and Sephacryl S-200. The purified pro-MMP-9 (92 kDa, gelatinase B) thus obtained gave a single positive band in the gelatin zymography. Subsequently, activated MMP-9 was obtained by treating the pro-MMP-9 with trypsin.

25 (2) Assay methods of type IV collagenase inhibitors

Collagenase assay was performed using the activated MMP-9 described above and the substrate supplied in the type IV collagenase activity kit (YAGAI, inc.), according to the manufacturer's protocol. The following 4 assays are performed per compound (inhibitor).

- (A) substrate (type IV collagenase), enzyme (MMP-9), inhibitor
- (B) substrate (type IV collagenase), inhibitor
- (C) substrate (type IV collagenase), enzyme (MMP-9)
- (D) substrate (type IV collagenase)
- According to the manufacturer's protocol, fluorescent intensity was measured and percent inhibition was determined by the following equation.

Inhibition (%) = $\{1 - (A - B) / (C - D)\} \times 100$

 IC_{50} is a concentration at which the percent inhibition reaches 50 %. The results are shown in Tables 47 to 54.

Table 47

T,0970

Example No.	Compound No.	IC ₅₀ (μM)	Compound No.	IC ₅₀ (μM)
1	1a-1-1	0.24	1b-1-1	0.030
2	1a-1-2	2. 6	1b-1-2	0.04
3	1a-1-3	0.18	1b-1-3	0.005
4	1a-1-4	2. 25		
5	1a-1-5	0.81	1b-1-5	0.041
6	1a-1-6	0.68	1b-1-6	0.034
7			1b-1-7	0.028
8	1a-1-8	2. 0	1b-1-8	2. 0
9			1b-1-9	0.41
1 0			1b-1-10	2. 1
1 1			1b-1-11	1. 7
1 2			1b-1-12	0.085
1 3			1b-1-13	0.38
1 4	1a-1-14	3. 7	1b-1-14	0.11
1 5			1b-1-15	0.027
1 6	1a-1-16	0.520	1b-1-16	0.0108
1 7	1a-1-17	0.205	1b-1-17	0.0203
1 8	1a-1-18	0.500	1b-1-18	0.0282
2 0			1b-1-20	0.134
2 1	1a-1-21	4.65	1b-1-21	0.0041
2 3			1b-1-23	0.073
2 4			1b-1-24	0.2
2 6			1b-1-26	1. 3
2 7			1b-1-27	3. 0
3 0	1a-1-30	1. 16	1b-1-30	0.213
3 1			1b-1-31	0.0129

Table 48

T/0980

		· · · · · · · · · · · · · · · · · · ·	_	,
Example No.	Compound No.	IC ₅₀ (μM)	Compound No.	IC ₅₀ (μM)
3 3	la-1-33	0.24	1b-1-33	0.005
3 5	la-1-35	2. 6	1b-1-35	0.0216
3 8	1a-1-38	0.018		
4 0	1a-1-40	0.076		
4 1	la-1-41	0.312		
4 2	la-1-42	0.0123		
4 3	1a-1-43	0.625		
4 4	la-1-44	1. 910		
4 5	la-1-45	0.040		
4 6	la-1-46	1. 12		
4 7	la-1-47	0.389		
4 8	la-1-48	1. 15		
4 9	1a-1-49	0.249		
5 0	la-1-50	0.553		· · ·
5 1	la-1-51	0.110		
5 2	1a-1-52	0.329		
5 3	1a-1-53	1 8		
5 4	la-1-54	0.075		
5 5	la-1-55	0.0398		
6 0	1a-1-60	1. 31	1b-1-60	0.0012
6 1	1a-1-61	0.247	1b-1-61	0. 247
6 2			1b-1-62	3. 50
6 3	la-1-63	1.05	1b-1-63	0.00039
6 4	la-1-64	1. 90	1b-1-64	0.0037
6 5	1a-1-65	0. 291	1b-1-65	0.0035

Table 49

T ₁ (99	90
-11,	י ע	l

Example No.	Compound No.	IC ₅₀ (μΜ)	Compound No.	IC ₅₀ (μM)
6 7	la-1-67		1b-1-67	0.0061
6 8	1a-1-68	0.231		
8 0	1a-1-80	1. 91		
8 3	la-1-83	1. 77		
8 5	1a-1-85	1. 2	1b-1-85	0.013
8 6	1a-1-86	0.35	1b-1-86	0.0053
8 7			1b-1-87	0.940
9 3	1a-2-2	0.237		
9 4	1a-2-3	0.0109		
9 5	1a-2-4	0.0759		
9 6	1a-2-5	0.123		
9 7	1a-2-6	0.088		
9 8	1a-2-7	0.0699		
100	1a-2-9	0.0577		
101	1a-2-10	0.023		
102	1a-2-11	0.0475		
103	la-2-12	0.0981		
104	1a-2-13	3.28		
105	1a-2-14	2. 98		
106	1a-2-15	0.133		
107	1a-2-16	0.325		
109	1a-2-18	1. 19		
110	1a-2-19	0.203		
111	1a-2-20	3. 41		
112	1a-2-21	3.74		
114	1a-2-23	0.929		

Table 50

T	M	0
•	(

Example No.	Compound No.	IC ₅₀ (μM)
1 1 5	1a-2-24	0.161
117	1a-2-26	1. 19
118	1a-2-27	0.088
119	1a-2-28	1.11
1 2 0	1a-2-29	1.53
1 2 1	1a-2-30	0.0736
1 2 2	1a-2-31	0.224
1 2 3	1a-2-32	0.0234
1 2 4	1a-2-33	0.0218
1 2 5	1a-2-34	0.0144
1 2 6	1a-2-35	0.156
1 2 7	1a-2-36	0.0243
1 2 8	1a-2-37	0.0922
1 2 9	1a-2-38	0.222
160	1a-3-2	0.040
161	1a-3-3	0.0108
162	1a-3-4	0.873
1 6 3	1a-3-5	0.0126
164	1a-3-6	0.0965
165	1a-3-7	0.230
166	1a-3-8	1. 28
167	1a-3-9	0.014
168	1a-3-10	0.0083
169	1a-3-11	0.244
170	la-3-12	2. 03
171	1a-3-13	0.0395

Table 51

7,1010

Example No.	Compound No.	IC ₅₀ (μM)
1 7 7	1a-4-2	0.684
1 7 8	1a-4-3	0.0252
1 7 9	la-4-4	2.36
180	la-4-5	0.045
181	1a-4-6	0.0539
1 8 2	la-4-7	0.0059
183	1a-4-8	0.0027
184	1a-4-9	0.00325
185	1a-4-10	0.0422
186	la-4-11	0.0982
187	1a-4-12	0.177
188	1a-4-13	0.843
189	la-4-14	0.0375
190	1a-4-15	0.0597
191	1a-4-16	0.0095
192	la-4-17	0.324
193	1a-4-18	0.722
195	1a-4-20	1. 1
196	1a-4-21	0.0573
197	1a-4-22	0.0161
198	1a-4-23	0.493
199	1a-4-24	2.06
200	1a-4-25	0.173
201	1a-4-26	0.252
202	1a-4-27	0.0114
203	1a-4-28	0.173

Table 52

T	102	0
---	-----	---

Example No.	Compound No.	IC50 (μM)	Compound No.	IC ₅₀ (μM)
204	1a-4-29	3.95		
207	1a-4-30	4.44		
2 1 0	1a-5-2	0.024		
2 1 1	1a-5-3	0.210	1 b - 2 1 1	0.00565
2 1 2	la-5-4	0.393		
2 1 3	la-5-5	0.128		
2 1 4	1a-5-6	0.832		
2 1 5	1a-5-7	0.110		
2 1 6	1a-5-8	0.107		
2 1 8	1a-5-10	0.744		
2 1 9	la-5-11	0.574		
2 2 0	1a-5-12	0.0167		
2 2 1	1a-5-13	0.316		
2 2 2	1a-5-14	0.078		
2 2 3	1a-5-15	0.349		
2 2 4	1a-1-16	0.0101		
2 2 5	la-5-17	0.0122		
2 2 6	1a-5-18	0.166		
2 2 7	1a-5-19	0.0198		
2 2 8	1a-5-20	0.106		
2 2 9	1a-5-21	0.215		
2 3 0	1a-5-22	0.281		
2 3 1	1a-5-23	0.197		
2 3 2	la-5-24	0.144		
2 3 3	1a-5-25	0.0864		
2 3 4	1a-5-26	0.153		

Example No.	Compound No.	IC ₅₀ (μM)	Compound No.	IC50 (μM)
2 3 5	1a-5-27	0.265		•
2 3 6	1a-5-28	0.304		
2 3 7	1a-5-29	1. 32		
2 3 8	1a-5-30	2.85		
2 3 9	1a-5-31	0.243		
2 4 0	1a-5-32	0.0041		
2 4 1	1a-5-33	0.0131		
2 4 2	1a-5-34	0.0239		
2 4 3	1a-5-35	0.0529		
2 4 4	1a-5-36	0.0165		
2 4 5	1a-5-37	0.0059		
2 4 6	la-5-38	0.0108		
2 4 7	1a-5-39	0.0035		
267	1a-2-66	1. 5	1b-2-66	0.011

acasa, as as as

Example No.	Compound No.	IC50 (μM)
2 5 2	1-252	0.24
2 5 3	1-253	0.000039
2 5 4	1-254	0.00063
2 5 5	1-255	0.529
2 5 6	1-256	0.601
257	1-257	0.776
2 5 8	1-258	0.908
259	1-259	0.130
260	1-260	0.159
2.6.1	1-260	0.182

5

10

15

The compound of the present invention showed strong activity for inhibiting type IV collagenase.

Industrial Applicability

It is considered that the compound of the present invention is useful to prevent or treat osteoarthritis, rheumatoid arthritis, corneal ulceration, periodontal disease, metastasis and invasion of tumor, advanced virus infection (e.g., HIV), arteriosclerosis obliterans, arteriosclerotic aneurysm, atherosclerosis, restenosis, sepsis, septic shock, coronary thrombosis, aberrant angiogenesis, scleritis, multiple sclerosis, open angle glaucoma, retinopathies, proliferative retinopathy, neovascular glaucoma, pterygium, keratitis, epidermolysis bullosa, psoriasis, diabetes, nephritis, neurodegengerative disease, gingivitis, tumor growth, tumor angiogenesis, ocular tumor, angiofibroma, hemangioma, fever, hemorrhage, coagulation, cachexia, anorexia, acute infection, shock, autoimmune disease, malaria, Crohn disease, meningitis, and gastric ulcer, because the compound of the present invention has strong inhibitory activity against metalloproteinase, especially MMP.