RUNNING TIME ANALYSIS

Problem Solving with Computers-II

How is PA02 going?

- A. Done
- B. On track to finish
- C. Having trouble designing my classes
- D. Stuck and struggling
- E. Haven't started

Announcements

 PA02 check point deadline (submit on github) by this Friday: 02/16 at midnight

Performance questions

- How efficient is a particular algorithm?
 - CPU time usage (Running time complexity)
 - Memory usage
 - Disk usage
 - Network usage
- Why does this matter?
 - Computers are getting faster, so is this really important?
 - Data sets are getting larger does this impact running times?

How can we measure time efficiency of algorithms?

One way is to measure the absolute function F(n) {
 running time
 Create an arr

Pros? Cons?

```
function F(n) {
  Create an array fib[1..n]
  fib[1] = 1
  fib[2] = 1
  for i = 3 to n:
     fib[i] = fib[i-1] + fib[i-2]
  return fib[n]
}
```

Which implementation is significantly faster?

```
function F(n) {
    if (n == 1) return 1
    if (n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
   Create an array fib[1..n]
   fib[1] = 1
   fib[2] = 1
   for i = 3 to n:
      fib[i] = fib[i-1] + fib[i-2]
   return fib[n]
}
```

A. Recursive algorithm

B. *Iterative* algorithm

C. Both are almost equally fast

A better question: How does the running time scale as a function of input size

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
   Create an array fib[1..n]
   fib[1] = 1
   fib[2] = 1
   for i = 3 to n:
      fib[i] = fib[i-1] + fib[i-2]
   return fib[n]
}
```

The "right" question is: How does the running time scale? E.g. How long does it take to compute F(200)?let's say on....

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

The running time of the recursive implementation

The Earth simulator needs 2^{95} seconds for F_{200} .

Time in seconds

210

220

2³⁰

240

2⁷⁰

Interpretation

17 minutes

12 days

32 years

cave paintings

The big bang!

```
function F(n) {
    if (n == 1) return 1
    if (n == 2) return 1
return F(n-1) + F(n-2)
}
```

Let's try calculating F₂₀₀ using the iterative algorithm on my laptop.....

Which of the following do you agree with based on the previous example?

- A. Two algorithms may have similar running times for small inputs but may show SIGNIFICANT differences for larger inputs
- B. There are fundamental differences between algorithms that have SIGNIFICANT impact on performance, independent of many other factors like hardware, compiler, implementation details, choice of language and so on.....
- C. Measuring EXACT running time is not a good measure of understanding fundamental differences between algorithms
- D. All the above
- E. Only A & B

Goals for measuring time efficiency

- Focus on the impact of the algorithm: Simplify the analysis of running time by ignoring "details" which may be an artifact of the underlying implementation:
 - E.g., 1000001 ≈ 1000000
 - Similarly, 3n² ≈ n²
- Focus on asymptotic behavior: How does the running time of an algorithm increases with the size of the input in the limit (for large input sizes)

Counting steps (instead of absolute time)

- Every computer can do some primitive operations in constant time:
 - Data movement (assignment)
 - Control statements (branch, function call, return)
 - Arithmetic and logical operations

 By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm

```
int sumArray(int arr[], int N)
{
    int result=0;
    for(int i=0; i < N; i++)
        result+=arr[i];
    return result;
}</pre>
```

Which of the following is the step count for this algorithm as a function of input size (pick the closest)

```
A. 3+ 4*N
B. 1+ 2*N
C. 1+ 2* N<sup>2</sup>
D. 2* log(N)
E. Depends on the
```

values in the array

```
/* N is the length of the array*/
int sumArray(int arr[], int N)
{
    int result=0;
    for(int i=0; i < N; i++)
        result+=arr[i];
    return result;
}</pre>
```

Let's look at what happens as we increase N

N	Steps = 3+ 5*N
1	8
10	53
1000	5003
100000	500003
10000000	50000003

```
/* N is the length of the array*/
int sumArray(int arr[], int N)
{
    int result=0;
    for(int i=0; i < N; i++)
        result+=arr[i];
    return result;
}</pre>
```

- Does the constant 3 matter as N gets large? NO
- Does the constant 5 matter as N gets large?

 Maybe, but its something that is easily affected by the implementation, so we will ignore it
- Which of these may be affected by implementation details? Both

Asymptotic analysis

Recall our goals:

- Focus on the impact of the algorithm
- Focus on asymptotic behavior

Here is how for the sumArray function:

Exact step count : 3+ 4*N

Drop the constant additive term : 4*N

Drop the constant multiplicative term: N

Running time grows linearly with the input size

Express the count using **O-notation**

Time complexity = O(N)

(make sure you know what = means in this case)

Orders of growth

- We are interested in how algorithms scale with input size
- Big-Oh notation allows us to express that by ignoring the details
- 20N hours v. N² microseconds:
 - which has a higher order of growth?
 - Which one is better?

Comparing asymptotic running times

N	O(log N)	O(N)	O(N log N)	$O(N^2)$
10	0.000003	0.00001	0.000033	0.0001
100	0.00007	0.00010	0.000664	0.1000
1,000	0.000010	0.00100	0.010000	1.0
10,000	0.000013	0.01000	0.132900	1.7 min
100,000	0.000017	0.10000	1.661000	2.78 hr
1,000,000	0.000020	1.0	19.9	11.6 day
1,000,000,000	0.000030	16.7 min	18.3 hr	318 centuries

An algorithm that runs in O(n) is better than one that runs in $O(n^2)$ time Similarly, $O(\log n)$ is better than O(n) Hierarchy of functions: $\log n < n < n^2 < n^3 < 2^n$

Writing Big O

- Simple Rule: Ignore lower order terms and constant factors:
 - 50n log n is O(n log n)
 - 7n 3 is O(n)
 - $-8n^2 \log n + 5 n^2 + n + 1000 \text{ is } O(n^2 \log n)$

• Note: even though 50 n log n is O(n⁵), it is expected that such approximation be as tight as possible (*tight upper bound*).

Given the step counts for different algorithms, express the running time complexity using Big Oh

- 1. 10000000
- 2.3*N
- 3.6*N-2
- 4.15*N + 44
- $5. N^2$
- $6. N^2 6N + 9$
- 7. $3N^2+4*log(N)+1000*N$

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Definition of Big O

- **Definition:** A theoretical measure of the execution of an <u>algorithm</u>, usually the time or memory needed, given the problem size n. Informally, saying some equation f(n) = O(g(n)) means it is less than some constant multiple of g(n). The notation is read, "f of n is big oh of g of n".
- Formal Definition: f(n) = O(g(n)) means there are positive constants c and k, such that $0 \le f(n) \le cg(n)$ for all $n \ge k$. The values of c and k must be fixed for the function f and must not depend on n.

Big-O is an asymptotic upper bound on the rate of growth

Big Omega, Big Theta

- Formal Definition: $f(n) = \Omega(g(n))$ means there are positive constants c and k, such that $0 \le cg(n) \le f(n)$ for all $n \ge k$. The values of c and k must be fixed for the function f and must not depend on n.
- Formal Definition: $f(n) = \Theta(g(n))$ means there are positive constants c_1 , c_2 , and k, such that $0 \le c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge k$. The values of c_1 , c_2 , and k must be fixed for the function f and must not depend on f.

Big-Omega is a lower bound on the rate of growth

Problem Size (n)

What is the Big O of the iterative implementation?

```
A. O(1)
B. O(N)
C. O(N^2)
D. O(2^N)
E. None of the above
```

```
function F(n) {
  Create an array fib[1..n]
  fib[1] = 1
  fib[2] = 1
  for i = 3 to n:
     fib[i] = fib[i-1] + fib[i-2]
  return fib[n]
}
```

What is the Big O of the iterative implementation?

```
A. O(1)
B. O(N)
C. O(N^2)
D. O(2^N)
E. None of the above
```

```
function F(n) {
  Create an array fib[1..n]
  fib[1] = 1
  fib[2] = 1
  for i = 3 to n:
     fib[i] = fib[i-1] + fib[i-2]
  return fib[n]
}
```

What is the Big O of the recursive implementation?

```
T(n): Time taken to calculate F(n)
```

Assume unit time

T(n) is the step count for input n

```
T(1) = 2
```

$$T(2) = 2$$

```
function F(n) {
    if (n == 1) return 1
    if (n == 2) return 1
return F(n-1) + F(n-2)
}
```

For n > 2:

```
T(n) = 2 + 2 (1 \text{ for each subtraction}) + 1(addition) + T(n-1) + T(n-2)
= T(n-1) + T(n-2) + 5
```

What is the Big O of the recursive implementation?

```
For n > 2:
T(n) = T(n-1) + T(n-2) + 5
Approximation: T(n-1) = T(n-2), actually T(n-1) > T(n-2).
So the following is an upper bound for T(n)
Upper bound for T(n) =
= 2*T(n-1) + C
= 2* (2* T(n-2) + C) + C
= 4* T(n-2) + 3C
= 8* T(n-3) + 7C
= 2^{k*}T(n-k) + (2^{k}-1)*C
For what value of k is n-k = 1, k = n+1. Substitute above
= 2^{n+1}T(1) + (2^{n+1}-1)C, T(1) = 2
```

What is the Big O of the recursive implementation

 We calculated the upper bound on the number of steps as a function of input size as:

$$2^{n+1}T(1) + (2^{n+1}-1)C$$
, where: $T(1) = 2$

$$= O(2^N)$$

Next time

Binary Search Trees

Ack: Prof. Sanjoy Das Gupta for his excellent motivation on why this lecture matters, taking the Fibonacci examples