TECHNIQUES DE SÉRIES CHRONOLOGIQUES EXERCICES PROCESSUS STOCHASTIQUES 2

1. Discutez les conditions de convergence de la série

$$\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$$

où $\{u_t: t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$. En particulier,

- (a) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converge en moyenne d'ordre 2;
- (b) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converge en moyenne d'ordre r>0;
- (c) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converge presque sûrement;
- (d) $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ converge en probabilité.
- 2. Considérez le modèle MA(1) suivant :

$$X_t = \overline{\mu} + u_t - \theta u_{t-1}, \ t \in \mathbb{Z}$$

où
$$u_t \sim WN(0, \sigma^2)$$
 et $\sigma^2 > 0$.

- (a) Prouvez que la première autocorrélation de ce modèle ne peut être plus grande que 0.5 en valeur absolue.
- (b) Trouvez les valeurs des paramètres de ce modèle pour lesquelles la borne supérieure est atteinte.
- 3. Soit $\{x_t : t \in \mathbb{Z}\}$ un processus MA(q). Pour q = 3, 4, 5, 6, vérifiez si les inégalités suivantes sont correctes :
 - (a) $|\rho(1)| \le 0.75$;
 - (b) $|\rho(2)| \leq 0.90$;
 - (c) $|\rho(3)| < 0.90$;

- (d) $|\rho(4)| \le 0.90$;
- (e) $|\rho(5)| \leq 0.90$;
- (f) $|\rho(6)| \le 0.90$.
- 4. Considérez les processus suivants, où $\{u_t: t \in \mathbb{Z}\}$ est un bruit blanc i.i.d. N(0,1)
 - (1) $X_t = 0.5 X_{t-1} + u_t$,
 - (2) $X_t = 10 0.75 X_{t-1} + u_t$,
 - (3) $X_t = 10 + 0.7 X_{t-1} 0.2 X_{t-2} + u_t$,
 - (4) $X_t = 10 + u_t 0.75 u_{t-1} + 0.125 u_{t-2}$,
 - (5) $X_t = 0.5 X_{t-1} + u_t 0.25 u_{t-1}$,
 - (6) $X_t = 0.5 X_{t-1} + u_t 0.5 u_{t-1}$,

Pour chacun de ces processus, répondez aux questions suivantes :

- (a) Ce processus est-il stationnaire? Pourquoi?
- (b) Ce processus est-il inversible? Pourquoi?
- (c) Calculez
 - i) $E(X_t)$;
 - ii) $\gamma(k)$, k = 1, 2, ..., 8;
 - iii) $\rho(k)$, k = 1, 2, ..., 8.
- (d) Graphez $\rho(k)$.
- (e) Quels sont les coefficients de u_t , u_{t-1} , u_{t-2} , u_{t-3} et u_{t-4} dans la représentation moyenne mobile de X_t .
- (f) Trouvez la fonction génératrice des autocovariances de X_t .
- (g) Graphez la densité spectrale de X_t .
- (h) Calculez les quatre premières autocorrélations partielles de X_t .