10 The circle $x^2 + y^2 = r^2$ has radius r and centre O. The circle meets the positive x-axis at B. The point A is on the interval OB. A vertical line through A meets the circle at P.

Let $\theta = \angle OPA$.

- (i) The shaded region bounded by the arc *PB* and the intervals *AB* and *AP* is rotated about the *x*-axis. Show that the volume, *V*, formed is given by $V = \frac{\pi r^3}{3} (2 3\sin\theta + \sin^3\theta)$.
- (ii) A container is in the shape of a hemisphere of radius r metres. The container is initially horizontal and full of water. The container is then tilted at an angle of θ to the horizontal so that some water spills out.

- (1) Find θ so that the depth of water remaining is one half of the original depth.
- (2) What fraction of the original volume is left in the container?

(i)

Using
$$\triangle PAO$$
, $\frac{OA}{r} = \sin \theta$

$$OA = r \sin \theta$$

Also, as
$$x^{2} + y^{2} = r^{2}$$

 $\therefore y^{2} = r^{2} - x^{2}$
Now, $V = \pi \int_{0}^{r} r^{2} - x^{2} dx$

(ii)

(1)

0.48/3 0.03/1

0.03/1 0.04/2

State Mean:

1

2

As OB = r, then $OA = \frac{r}{2}$ (half-depth)

$$\therefore \sin \theta = \frac{\frac{r}{2}}{r}$$

$$= \frac{r}{2} \div r$$

$$= \frac{1}{2}$$

$$\therefore \theta = 30^{\circ}$$

(2) Vol. of hemisphere = $\frac{1}{2} \times \frac{4}{3} \pi r^3$ = $\frac{2}{3} \pi r^3$

 \therefore volume of original hemisphere is $\frac{2}{3}\pi r^3$ units³

When water is original depth: subs $\theta = 30^{\circ}$ in V:

HSC Worked Solutions projectmaths.com.au

$$= \pi \left[r^2 x - \frac{x^3}{3} \right]_{r \sin \theta}^{r}$$

$$= \pi \left[r^3 - \frac{r^3}{3} - (r^3 \sin \theta - \frac{r^3 \sin^3 \theta}{3}) \right]$$

$$= \pi \left[\frac{2r^3}{3} - r^3 \sin \theta + \frac{r^3 \sin^3 \theta}{3} \right]$$

$$= \frac{\pi r^3}{3} [2 - 3 \sin \theta + \sin^3 \theta]$$

$$V = \frac{\pi r^3}{3} [2 - 3 \sin 30^\circ + \sin^3 30^\circ]$$

$$= \frac{\pi r^3}{3} [2 - \frac{3}{2} + \frac{1}{8}]$$

$$= \frac{5\pi r^3}{24}$$

$$\therefore \text{ new volume is } \frac{5\pi r^3}{24} \text{ units}^3.$$

$$\therefore \text{ Fraction} = \frac{5\pi r^3}{24} \div \frac{2}{3}\pi r^3$$

$$= \frac{5\pi r^3}{24} \times \frac{3}{2\pi r^3}$$

$$= \frac{5}{16}$$

Board of Studies: Notes from the Marking Centre

candidates.

Although most candidates realised the relevance of the formula $V = \pi \int y^2 dx$ in part (i), many could not find the correct limits of integration or an appropriate primitive. Common errors were to integrate r^2 to $\frac{1}{3}r^3$ rather than r^2x or to claim that the lower limit of integration was $r - r\sin(\theta)$. Once again the crucial connection between parts (i) and (ii) was used by many

A common error in part (ii)(1) was to confuse depth with volume with the resulting equations quickly spiralling out of control. Responses which simply stated a value for θ or measured this angle off the diagram could not be rewarded.

Candidates could still gain full marks in part (ii)(2) by correctly implementing an incorrect angle from part (ii)(1); however, full marks at this stage of the paper were rare, with many candidates clearly running out of time.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies