Indhold

1	Uge	e 6	1
	1.1	Basis opgaver	1
		1.1.1 i	1
		1.1.2 ii	1
	1.2	Standard opgaver	1
		1.2.1 6.1	1
		1.2.2 6.2	1
		1.2.3 6.3	2
		1.2.4 6.4	2
		1.2.5 6.5	2
		1.2.6 6.6	2
		1.2.7 6.7	3
	1.3	Opgaver til fordybelses	4
		1.3.1 Opgave 1	4
Lit	Litteratur		

1 LinAlg 19/20 Anton Suhr

Alle tal, f.eks. 2.4, refererer til opgaver i [Hesselholt and Wahl, 2017]. Opgaver med bogstaver refererer til ugesedler på Canvas. Det er yderligere indforstået hvorvidt en given variabel er en vektor eller skalar.

1. Uge 6

1.1 Basis opgaver

1.1.1 i

De er ortogonale da det indre produkt, men ej ortonormale da vektorerne ikke er enhedsvektorer.

1.1.2 ii

Det er $\sqrt{4^2 + 0^2 + 3^2} = \sqrt{25} = 5$.

1.2 Standard opgaver

1.2.1 6.1

 \mathbf{a}

Vi tjekker [Hesselholt and Wahl, 2017, Definition 6.1.1], oplagt

b

$$|x| = \sqrt{3+4} = \sqrt{7}$$
. $|y| = \sqrt{3 \cdot 16 + 4 \cdot 9} = \sqrt{84} = 2\sqrt{21}$. $|z| = \sqrt{3 \cdot 3 - 4 \cdot 4} = \sqrt{-7} = \sqrt{7}i$.

 \mathbf{c}

Indre produktet er 0, x og y er da ortogonale.

 \mathbf{d}

De er de ikke.

1.2.2 - 6.2

 \mathbf{a}

Følger af linearitet af integralet.

2 LinAlg 19/20 Anton Suhr

b

Det integrerer til 0 og er derfor ortogonale. 1 er oplagt en enhedsvektor med hensyn til indre produktet. At $\sqrt{3}(2x-1)$ er følger af en let udregning.

 \mathbf{c}

Normen er $\sqrt{\frac{1}{2n}}$.

1.2.3 6.3

Vi har at

$$(x_1 + \ldots + x_n)^2 = \langle v, 1 \rangle^2 \le ||1||^2 ||v||^2 = n(x_1^2 + \ldots + x_n^2),$$

hvor vi brugte Cauchy-Schwarz i uligheden.

1.2.4 6.4

Vi følger [Hesselholt and Wahl, 2017, Eksempel 6.1.6]. Indreprodukt af $\langle x, y \rangle = 4$. Vi får da vinklen til $\cos \theta = 1$, $\theta = 0$.

1.2.5 6.5

Vi bruger [Hesselholt and Wahl, 2017, Eksempel 6.2.12]. Vi får (1, -9/5, 103/30, -18/30) og så normerer vi den.

1.2.6 6.6

 \mathbf{a}

Det ses at de er ortogonale og fra definition af lineært uafhængighed [Hesselholt and Wahl, 2017, Definition 4.3.4] er de også det.

b

Tag f.eks. $w_3 = (0, 0, 1)$. Da er det en basis for \mathbb{R}^3 per [Hesselholt and Wahl, 2017, Lemma 4.3.9].

 \mathbf{c}

Du ender med standardbasen for \mathbb{R}^3 .

 \mathbf{d}

Oplagt da det er enhedsmatricen.

 \mathbf{e}

Oplagt igen.

$1.2.7 \quad 6.7$

 \mathbf{a}

Det en basis for \mathbb{R}^3 per [Hesselholt and Wahl, 2017, Lemma 4.3.9], at de er ortogonale eftervises let.

b

Linearitet følger af at standard indreproduktet er en indreprodukt.

 \mathbf{c}

Der regnes og man får da matricen for A til

$$\left(\begin{array}{cccc} 1 & -1 & 1 & 1 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ -1 & 1 & -1 & 1 \end{array}\right).$$

Og ved brug af [Hesselholt and Wahl, 2017, Eksempel 4.4.16] bliver B

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
2 & 1/4 & -1/4 & 1/4 \\
0 & 7/2 & 1/2 & -1/2 \\
0 & 1/2 & 7/2 & 1/2
\end{pmatrix}.$$

 \mathbf{d}

Gøres i Maple...

 \mathbf{e}

fhar rang 3, $f^{\circ 2}$ har rang 2, $f^{\circ 3}$ har rang 1, $f^{\circ 4}$ har rang 0.

1.3 Opgaver til fordybelses

1.3.1 Opgave 1

 \mathbf{a}

Første del indses let, evt. ved Maple. Dette giver ortogonalitet. At det basis følger af den per definition udspænder Sig₃ og den er lineært uafhængig per [Hesselholt and Wahl, 2017, Definition 4.3.4].

 \mathbf{b}

Divider med π og vektorerne er ortonormale per a.

 \mathbf{c}

Følger af [Hesselholt and Wahl, 2017, Sætning 6.2.6] og at basen er ortonormal divideret med π .

 \mathbf{d}

Litteratur

[Hesselholt and Wahl, 2017] Hesselholt, L. and Wahl, N. (2017). *Lineær Algebra*. Institut for Matematiske Fag, Københavns Universitet, København, 2 edition.