U.S.N.						
						l

06

BMS College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2018 Semester End Make Up Examinations

		January 2016 Semester End Wake Op Examinations	
		a Structures with C 2: 15IS3DCDSC Max Marks Date:13.01.2	: 100
Instruc	ction:	Answer any FIVE full questions, choosing one from each Unit.	
		UNIT 1	
1.	a)	Describe the four built-in dynamic memory allocation functions with an example for each.	06
	b)	Design an efficient way to implement a sparse matrix using arrays.	04
	c)	Implement a C routine to add two polynomials implemented using arrays.	10
		UNIT 2	
2.	a)	Convert the following infix expressions to prefix and postfix equivalents:	06
		i) A/B *C*D+E ii) (X-Y)*Z+(L+(M+N) /O*P)	
	b)	Write a C program for converting a fully parenthesized valid infix expression to its equivalent postfix expression.	10
	c)	Write a C Program to Print the Alternate Nodes in a Linked List using Recursion	04
		UNIT 3	
3.	a)	Develop a C program for the implementation of a circular queue using arrays.	10
	b)	Implement the following operations on a singly linked list	10
		i) Reverse the list	
		ii) Identify the node with the minimum value	
		iii) Delete the first node	
		OR	

a) What are the advantages and disadvantages of representing a group of items as

an array versus a linked list?

4.

		the following operations on the queue: i) Insert ii)Delete iii)Display	
	c)	Two Queue data structures namely Q1 and Q2 that support standard operations like insert() and delete() are given. Implement a Stack data structure using these Queues.	05
		UNIT 4	
5.	a)	An ordered Doubly Linked List (DLL) whose first node is denoted by 'start' and node is represented by 'key' as information is to be constructed. Write a C program to construct the DLL and to also implement deleting number of nodes whose 'key' values are greater than or equal to 'kmin' and less than 'kmax'.	10
	b)	Convert the following tree into Left Child- Right Sibling representation.	06
		B C D E F H G O P	
	c)	Prove that the maximum number of nodes in a binary tree of depth k is 2^{k+1} -1.	04
		¥ 75 YY77 =	
		UNIT 5	
6.	a)	Implement a C routine to delete the element with key <i>K</i> from a Binary Search Tree.	08
6.	a) b)	Implement a C routine to delete the element with key K from a Binary Search	08 07
6.	ŕ	Implement a C routine to delete the element with key <i>K</i> from a Binary Search Tree. How are trees used to represent disjoint sets? Comment on the Union and Find	
6.	b)	Implement a C routine to delete the element with key <i>K</i> from a Binary Search Tree. How are trees used to represent disjoint sets? Comment on the Union and Find operations. Build the binary tree from the following tree traversals: Postorder: DEBFGHCA	07
6.	b)	Implement a C routine to delete the element with key <i>K</i> from a Binary Search Tree. How are trees used to represent disjoint sets? Comment on the Union and Find operations. Build the binary tree from the following tree traversals:	07
6.	b)	Implement a C routine to delete the element with key <i>K</i> from a Binary Search Tree. How are trees used to represent disjoint sets? Comment on the Union and Find operations. Build the binary tree from the following tree traversals: Postorder: DEBFGHCA	07
 7. 	b)	Implement a C routine to delete the element with key <i>K</i> from a Binary Search Tree. How are trees used to represent disjoint sets? Comment on the Union and Find operations. Build the binary tree from the following tree traversals: Postorder: DEBFGHCA Inorder: DBEAFGCH	07
	b) c)	Implement a C routine to delete the element with key <i>K</i> from a Binary Search Tree. How are trees used to represent disjoint sets? Comment on the Union and Find operations. Build the binary tree from the following tree traversals: Postorder: DEBFGHCA Inorder: DBEAFGCH OR	07 05
	b) c)	Implement a C routine to delete the element with key <i>K</i> from a Binary Search Tree. How are trees used to represent disjoint sets? Comment on the Union and Find operations. Build the binary tree from the following tree traversals: Postorder: DEBFGHCA Inorder: DBEAFGCH OR Develop a C routine to determine the equivalence of two given binary trees. Construct a binary search tree for the following list of elements and traverse	07 05

Write a C program to implement a queue using linked list. Ensure to perform

09
