Wensi Wu (she/her/hers)

Email: wensiwu@seas.upenn.edu

EDUCATION

Cornell University	Ithaca, New York
Ph.D., Structural Mechanics Minor: Computational Science and Engineering	May, 2021
• Dissertation: "Theoretical Formulation for Oblique Free Surface Impact Ema	nating from Fluid-
Structure Interaction Simulations"	
 Committee: Christopher J. Earls (chair), Peter Diamessis, Derek Warner 	
M.S., Structural Engineering	August, 2018
B.S., Civil Engineering Magna Cum Laude	May, 2015
ACADEMIC POSITIONS	
University of Pennsylvania Research Assistant Professor	2025–Present
Children's Hospital of Philadelphia Research Assistant Professor	2025-Present
Children's Hospital of Philadelphia Research Associate Scientist	2023-2025
Children's Hospital of Philadelphia Postdoctoral Fellow	2021–2023
Honors and Awards	
Additional Ventures SVRF: Independent Investigator Research Award	2025–2028
NIH/NHLBI K25 Mentored Quantitative Research Career Development Award	2023-2027
NIH/NHLBI NRSA T32 Institutional Research Training Fellowship	2022-2023
U.S. National Congress on Computational Mechanics Conference Travel Award	2023
Cornell University Conference Travel Grant	2017–2019
Cornell University Ve-Sing and Tseng So Koo Award	2015
NSF Research Experiences for Undergraduates Best Overall Project (Ranked 1st of	f 8 groups) 2013
Tau Beta Pi National Engineering Honor Society	2013-Present
Chi Epsilon National Civil Engineering Honor Society	2013-Present
Dependent Loving at Printing attracts	

REFEREED JOURNAL PUBLICATIONS

- 8. W. Wu, M. Daneker, C. Herz, H. Dewey, J.A. Weiss, A.M. Pouch, L. Lu, M.A. Jolley. "A Noninvasive Method for Determining Elastic Parameters of Valve Tissue Using Physics-Informed Neural Networks," *Acta Biomaterialia*, Vol. 200, 283-298, 2025.
- 7. **W. Wu**, M. Daneker, K.T. Turner, M.A. Jolley, L. Lu. "Identifying Heterogeneous Micromechanical Properties of Biological Tissues via Physics-Informed Neural Networks," *Small Methods*, Vol. 9, 2400620, 2025.
- 6. **W. Wu**, M. Daneker, M.A. Jolley, K.T. Turner, L. Lu. "Effective Data Sampling Strategies and Boundary Condition Constraints of Physics-Informed Neural Networks for Identifying Material Properties in Solid Mechanics," *Applied Mathematics and Mechanics*, Vol. 44, 1039-1068, 2023.
- 5. **W. Wu**, S. Ching, P.M. Sabin, D.W. Laurence, S.A. Maas, A. Lasso, J.A. Weiss, M.A. Jolley. "The Effects of Leaflet Material Properties on the Simulated Function of Regurgitant Mitral Valves," *Journal of the Mechanical Behavior of Biomedical Materials*, Vol. 142, 105858, 2023.
- 4. W. Wu, S. Ching, S.A. Maas, A. Lasso, P.M. Sabin, J.A. Weiss, M.A. Jolley. "A Computational Framework for Atrioventricular Valve Modeling using Open-Source Software," *Journal of Biomechanical Engineering*, Vol. 144, 101012, 2022.

Updated: June 28, 2025

- 3. **W. Wu**, C.J. Earls. "A New Engineering Theory Describing Oblique Free Surface Impact by Flexible Plates," *Ocean Engineering*, Vol. 256, 111473, 2022.
- 2. **W. Wu**, C. Bonneville, C.J. Earls. "A Principled Approach to Design using High Fidelity Fluid-Structure Interaction Simulations," *Finite Element in Analysis & Design*, Vol. 194, 103562, 2021.
- 1. **W. Wu**, J.W. Kosianka, H.M. Reed, C.J. Stull, and C.J. Earls. "CU-BENs: A Structural Finite Element Library," *SoftwareX*, Vol. 11, 100485, 2020.

PREPRINT AND ONGOING WORK

1. N.R. Mangine, D.W. Laurence, P.M. Sabin, **W. Wu**, C. Herz, C.N. Zelonis, J.S. Unger, C. Pinter, A. Lasso, S.A. Maas, J.A. Weiss, M.A. Jolley. "Effect of Parametric Variation of Chordae Tendineae Structure on Simulated Atrioventricular Valve Closure," *arxiv.org/pdf/2411.09599v1*.

REFEREED CONFERENCE PROCEEDINGS

- 2. **W. Wu**, Y. Wu, A.M. Sulentic, J.C. Gee, A.M. Pouch, M.A. Jolley. "Physics in the Loop: Integrating Biomechanics-Derived Training Data into a Neural Ordinary Differential Equation-Based Deformable Registration Framework," *Medical Imaging with Deep Learning*, 2024.
- 1. P.J. Hughes, W. Scott, W. Wu, R.J. Kuether, M.S. Allen, and P. Tiso. "Interface Reduction on Hurty/Craig-Bampton Substructures with Frictionless Contact," *Nonlinear Dynamics*, Vol. 1, Conference Proceedings of the Society for Experimental Mechanics Series, 2019.

RESEARCH GRANTS

Title: Understanding Biomechanical Mechanisms of Atrioventricular Valve Failure in Single Ventricle Patients

- Funding Mechanism: Additional Ventures Single Ventricle Research Fund
- Status of Support: Active
- **Period of Support:** July 1, 2025 to June 30, 2028
- **Level of Support:** \$659,937
- **Role:** Principal Investigator

Title: Development of Machine Learning Models for Cardiovascular Simulations

- Funding Mechanism: National Science Foundation, ACCESS
- Status of Support: Active
- **Period of Support:** June 20, 2025 to June 19, 2026
- Level of Support: \$42,636 worth of GPU hours
- **Role:** Principal Investigator

Title: Toward Patient-Specific Computational Modeling of Tricuspid Valve Repair in Hypoplastic Left Heart Syndrome

- Funding Mechanism: NIH National Heart Lung Blood Institute K25 Mentored Quantitative Research Career Development Award
- Status of Support: Active
- **Period of Support:** September 1, 2023 to August 31, 2027
- **Level of Support:** \$653,827
- **Role:** Principal Investigator

Title: A Novel, Non-invasive Computational Approach for Determining the Etiology of Tricuspid Regurgitation in Patients With Hypoplastic Left Heart Syndrome

Updated: June 28, 2025 W. Wu | 2/5

- Funding Mechanism: Ruth L. Kirschstein National Research Service Award T32 Institutional Research Training Fellowship
- Status of Support: Past
- Period of Support: July 1, 2022 to August 31, 2023
- **Level of Support:** \$76,140 to Wu
- **Role:** Principal Investigator (**PD:** Robert J. Levy)

Title: Deep Learning and Physics-Informed Neural Networks to Advance Single Ventricle Atrioventricular Valve Modeling

- Funding Mechanism: Additional Ventures Expansion Award
- Status of Support: Past
- **Period of Support:** July 1, 2022 to June 30, 2023
- Level of Support: \$50,000 for research equipment
- Role: Co-Investigator (PIs: Matthew A. Jolley, Alison M. Pouch, and Lu Lu)

Title: Partitioned Approach, Implicit Fluid-Structure Interaction for the Study of Hydroelastic Effects in High Speed Watercraft

- Funding Mechanism: National Science Foundation, XSEDE
- Status of Support: Past
- Period of Support: April 20, 2020 to April 19, 2021
- Level of Support: \$1,157 worth of CPU hours
- Role: Primary Investigator (PI: Christopher J. Earls)

CONFERENCE PRESENTATIONS

- 15. **W. Wu**, M. Daneker, K.T. Turner, M.A. Jolley, L. Lu. "Determining Heterogeneous Elastic Properties of Soft Materials using Physics-Informed Neural Networks," 2024 Materials Science & Technology, Pittsburgh, Pennsylvania, US. October 2024. [Oral].
- 14. **W. Wu**, M. Daneker, K.T. Turner, M.A. Jolley, L. Lu. "Determining Heterogeneous Elastic Properties of Soft Materials using Physics-Informed Neural Networks," 4th International Workshops on Advances in Computational Mechanics, Kitakyushu, Japan. September 2024. [Oral].
- 13. W. Wu, M. Daneker, K.T. Turner, M.A. Jolley, L. Lu. "An Accurate Physics-Informed Neural Network Architecture for Determining the Heterogeneous Micromechanical Elastic Properties of Biological Materials," 16th World Congress on Computational Mechanics, Vancouver, British Columbia, Canada. July 2024. [Oral].
- 12. **W. Wu**, Y. Wu, A.M. Sulentic, J.C. Gee, A.M. Pouch, M.A. Jolley. "Physics in the Loop: Integrating Biomechanics-Derived Training Data into a Neural Ordinary Differential Equation-Based Deformable Registration Framework", *Medical Imaging with Deep Learning*, Paris, France. July 2024. [Poster].
- 11. N. Mangine, P.M. Sabin, D.W. Laurence, W. Wu, C. Herz, C.N. Zelonis, C. Pinter, A. Lasso, S. Ching, S.A. Maas, J.A. Weiss, M.A. Jolley. "A Parametric Analysis of Chordae Tendineae Density and Branching in Finite Element Simulations of Mitral Valve Closure," 2024 Summer Biomechanics, Bioengineering and Biotransport Conference, Lake Geneva, Wisconsin, US. June 2024. [Oral].
- C.N. Zelonis, N. Mangine, K. Sunderland, S.A. Maas, S. Ching, Y. Barak-Corren, D.W. Laurence, W. Wu, P.M. Sabin, A. Lasso, M. Gillespie, J.A. Weiss, M.A. Jolley. "Simulation of Self-Expanding Transcatheter Pulmonary Valve Deployment in the Right Ventricular Outflow Tract," 2024 Summer Biomechanics, Bioengineering and Biotransport Conference, Lake Geneva, Wisconsin, US. June 2024. [Poster].

Updated: June 28, 2025

- 9. P.M. Sabin, D.W. Laurence, **W. Wu**, C. Herz, S.A. Maas, J.A. Weiss, M.A. Jolley. "Evaluation of Transcatheter Edge-to-Edge Repair Clip Selection via an Open-Source Finite Element Simulation Framework," 2024 Summer Biomechanics, Bioengineering and Biotransport Conference, Lake Geneva, Wisconsin, US. June 2024. [Poster].
- 8. **W. Wu**, M. Daneker, M.A. Jolley, K.T. Turner, L. Lu. "Effective Physics-Informed Machine Learning Strategies for Material Identification," 17th U.S. National Congress on Computational Mechanics, Albuquerque, New Mexico, US. July 2023. [Oral].
- 7. **W. Wu** and L. Lu. "Machine Learning for Material Designs," *MACH* 2023, Baltimore, Maryland, US. June 2023. [Oral].
- 6. **W. Wu** and C.J. Earls. "Towards a Generalized Engineering Theory for Hydrodynamic Slamming Emanating from Partitioned Fluid-Structure Interaction Analysis," 16th U.S. National Congress on Computational Mechanics, Virtual. July 2021. [Oral].
- 5. **W. Wu** and C.J. Earls. "Tightly Coupled, Partitioned Fluid-Structure Interaction Analysis of a Horizontal Plate Impact onto a Water Free Surface: Computational Framework and Validation," 15th U.S. National Congress on Computational Mechanics, Austin, Texas, US. July 2019. [Oral].
- 4. **W. Wu** and C.J. Earls. "Open Source, Tightly Coupled, Partitioned Fluid-Structure Interaction Modeling Framework for Naval Applications: The Impact of Slamming Loads on High Speed Watercraft," 13th World Congress on Computational Mechanics, New York City, New York, US. July 2018. [Oral].
- 3. P.J. Hughes, W. Scott, **W. Wu**, R.J. Kuether, M.S. Allen, and P. Tiso. "Interface Reduction on Hurty / Craig-Bampton Substructures with Frictionless Contact," *IMAC Annual Meeting*, Orlando, Florida, US. February 2018. [Oral].
- W. Wu, J.W. Kosianka, and C.J. Earls. "Open Source, Tightly Coupled, Partitioned Fluid-Structure Interaction Simulation Capability for High Spatiotemporal Resolution During Study of Wave Impact Loads in High Speed Watercraft," 14th U.S. National Congress on Computational Mechanics, Montreal, Canada. July 2017. [Oral].
- 1. J.W. Kosianka, **W. Wu**, and C.J. Earls. "Condition Assessment and Prognosis using Fluid-Structure Interaction within a Reduced-Order Model Tracking Inversion Framework," 14th U.S. National Congress on Computational Mechanics, Montreal, Canada. July 2017. [Oral].

WORKSHOP PRESENTATION

1. **W. Wu**. "Determining Heterogeneous Elastic Properties of Biological Tissues using Physics-Informed Neural Networks," the NSF AI Institute for Artificial Intelligence and Fundamental Interactions Summer Workshop at MIT, Boston, Massachusetts. August 2024.

LEADERSHIP EXPERIENCE

Children's Hospital of Philadelphia / University of Pennsylvania | Career and Training 2022–2023 | Committee | Cornell University | CEE Graduate Student Association | Vice President | 2020–2021 | Engineering Learning Initiatives program | TA Development Consultant | 2018–2019 | CEE Graduate Student Association | Treasurer | 2016–2017 | Chi Epsilon National Civil Engineering Honor Society | Treasurer | 2014–2015 | American Society of Civil Engineers | 2013–2014 | 2014 ASCE Upstate NY Region Student Conference Committee

Updated: June 28, 2025 W. Wu | 4/5

TEACHING EXPERIENCE

Children's Hospital of Philadelphia / University of Pennsylvania

Multi-institutional Placenta Biomechanics Workshop | Facilitator

Spring 2024

 Participating institutions included Perelman School of Medicine at the University of Pennsylvania and Vanderbilt University

Cornell University

CEE 4740: Introduction to The Behavior of Metal Structures Teaching Assistant	Spring 2019
CEE 3720: Intermediate Solid Mechanics Guest Lecturer	Summer 2018
CEE 4780/6780: Structural Dynamics and Earthquake Engineering Teaching Assistant	Spring 2018

PROFESSIONAL MEMBERSHIPS

U. S. Association for Computational Mechanics American Society of Civil Engineers

PROFESSIONAL SERVICES

Application/Abstract Reviewer

• Intersections Science Fellows Symposium • Science Slam Competition at the Children's Hospital of Philadelphia • Biomedical Postdoctoral Research Symposium at University of Pennsylvania

Manuscript Reviewer

• Journal of the Royal Society Interface • Medical Engineering and Physics • Journal of the Mechanical Behavior of Biomedical Materials • APL Machine Learning

Updated: June 28, 2025 W. Wu | 5/5