

Department of Computer Science

CS-217 – Object Oriented Programming Spring 2021

Instructor Name: Abeeda Akram TA Name: Haris Ali

Email address: abeeda.akram@nu.edu.pk Email address: l181247@lhr.nu.edu.pk

Office Location: Exam Hall, old admin block
Office Hours: Tue-Thu -10:00-11:30 a.m.

Course Information

Program: BS (CS)

Credit Hours: 3 + (1 for Lab)

Type: Core

Class Venue: CS-10

Pre-requisites: Programming Fundamentals (CS-118)

Class Meeting Time: Section (BCS-2A) Mon-Wed 08:00 – 9:30 AM

Course Description/Objectives/Goals:

The core objectives of this course are to introduce,

- Object oriented programming with data abstraction and encapsulation.
- The classes, objects and relationship among different objects and classes in C++?
- Generic programming using templates, and template specializations.

Course Learning Outcomes (CLOs):

At the end of the course students will be able to:	Domain	BT* Level
Understand dynamic memory management with pointers.	С	2
Understand principles of object oriented program	С	2
Identify the objects & their relationships to build object oriented solution	С	3
Model a solution for a given problem using object oriented principles	С	3
Examine an object oriented solution	С	4

^{*} BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

Course Textbooks:

- 1. C++ Programming: Program Design Including Data Structures, by D. S. Malik (8th Edition)
- 2. C++: How to Program? by Deitle & Deitle (9th Edition)

Additional references and books related to the course:

- 3. Problem Solving with C++, by Walter Savitch
- 4. https://www.learncpp.com

Course Contents Weekly and Lecture-wise Breakdown

Week	Topic	Lecture-1	Lecture-2		
1	•	Pointers Introduction, Pointer variables and	Use of Constant with Pointers.		
		Initialization, Address of Operator,	Difference between a Pointer and a		
		Dereferencing Operator. Pointer	Reference.		
		Operations (Relational, Arithmetic)	Passing pointers to functions by value and		
			by reference.		
2		Dynamic memory allocation using pointers	Dynamic 1- dimensional arrays, Create,		
	D	and accessing dynamic memory. Dynamic	Delete, Grow and Shrink.		
	Pointers 3	Variables new and delete operators.	Example of programs using 1D dynamic		
			allocation: e.g., mathematical sets union and		
			intersection.		
3		Memory Leak and Dangling Pointers,	Pointers Indirection. Dynamic 2D,		
		Dynamic 1- dimensional char arrays for	allocation, Matrices, CStrings etc.		
		cstrings, string operations like search,			
		concatenation etc.			
4		Structured Programming vs Object-	Objects vs Class, state vs behavior, access		
		oriented Programming, Principles of	specifiers (Public, Private), Member		
	Object-oriented	modularization, abstraction and	functions (accessors, utilities, mutators etc)		
	basics	encapsulation.			
5		Constructors (default, overloaded),	Dynamic memory allocation and Object		
		Function overloading.	assignment, Parameter passing,		
6	Mid Term 1				
7	Object enjected	Shellow ve Door conv. Conv. constructor	Cascaded function calls, static members,		
	Object-oriented basics	Shallow vs Deep copy, Copy constructor,	inline functions and other miscellaneous		
	Dasics	Destructors, this pointer,	issues.		
8	Operator	Unary operators using member functions	Binary operators using member functions		
9	overloading	Binary operators using non-member	Unary operators, Pre and post increment,		
		functions, concept of friendship,	subscript operator.		
10		Part-whole relationships,	Composition		
	Object and Class	Association/Aggregation	Implementation issues (constructor call		
	relationships		sequence, initializer list, etc)		
11		Inheritance basics, Type of Inheritance,	Function Overriding and sub-typing details		
12	public, protected, private.				
12	Mid Term 2				
13		Polymorphism introduction Static vs	Polymorphism vs down casting, run-time		
		dynamic binding details, virtual tables and	type identification, dynamic cast		
		virtual pointers,			
14	Object and Class	Pure-virtual functions, Abstract classes,	Multiple Inheritance and Diamond Problem		
	relationships	Interfaces (optional)	Multiplicity, Memory Management		
			Bi-directional relationships, Forward-class		
			declarations issues		
1.7	<u> </u>	m 1 c c c	m 1 . 1		
15	Generic Programming	Template functions	Template classes		
1.0	Programming &	F 4 H 11	Template Specializations,		
16	Exception	Exception Handling.	Introduction to STL, Iterators and		
	Handling.		Collections		
Annuality.					

(Tentative) Grading Criteria:

1. Assignments + Home works + Project (20 %)

Quizzes (10 %)
 Midterms (30 %)
 Final Exam (40 %)

- Grading scheme for this course is **Absolute** under application of CS department's grading policies.
- Minimum requirement to pass this course is to obtain at least 50% absolute marks

Course Policies:

- o All assignments and homework must be done individually.
- o Late Submissions of assignments will not be accepted.
- o **Plagiarism** in any work (Quiz, Assignment, Midterms, Project and Final Exam) from any source, Internet or a Student will result in **deduction of absolute marks or F** grade.
- o Minimum **80%** attendance is required for appearing in the Final exams.