CS 577- Intro to Algorithms

Dynamic Programming

Dieter van Melkebeek

September 22, 2020

Divide and Conquer

Recursive approach such that subproblems decrease significantly in size.

Divide and Conquer

Recursive approach such that subproblems decrease significantly in size.

Dynamic Programming

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Divide and Conquer

Recursive approach such that subproblems decrease significantly in size.

Dynamic Programming

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Realizing property 2

Divide and Conquer

Recursive approach such that subproblems decrease significantly in size.

Dynamic Programming

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Realizing property 2

Memoization: remember all computed solutions

Divide and Conquer

Recursive approach such that subproblems decrease significantly in size.

Dynamic Programming

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Realizing property 2

 Memoization: remember all computed solutions top-down, generic

Divide and Conquer

Recursive approach such that subproblems decrease significantly in size.

Dynamic Programming

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Realizing property 2

- Memoization: remember all computed solutions top-down, generic
- ► Iteration: build up table of solved instances from easier to harder

Divide and Conquer

Recursive approach such that subproblems decrease significantly in size.

Dynamic Programming

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Realizing property 2

- Memoization: remember all computed solutions top-down, generic
- Iteration: build up table of solved instances from easier to harder bottom-up, ad hoc

Definition

- $F_0 = 0$
- $F_1 = 1$

Definition

- $F_0 = 0$
- $F_1 = 1$
- ▶ $F_n = F_{n-1} + F_{n-2}$ for $n \in \mathbb{N}$ with $n \ge 2$

Definition

- $F_0 = 0$
- $F_1 = 1$
- ▶ $F_n = F_{n-1} + F_{n-2}$ for $n \in \mathbb{N}$ with $n \ge 2$

Recursive algorithm

```
Input: n \in \mathbb{N}

Output: F_n

1: procedure FIB-REC(n)

2: if n \le 1 then

3: return n

4: else

5: return FIB-REC(n-1) + FIB-REC(n-2)
```

Recursion Tree

Memoization

Memoization

▶ time: O(n), space: O(n)

Memoization

▶ time: O(n), space: O(n)

Iteration

Memoization

▶ time: O(n), space: O(n)

Iteration

```
1: procedure FIB-IT(n)

2: Fib[0 \cdots n] \leftarrow a new array of size n+1

3: for i=0 to n do

4: if i \leq 1 then

5: Fib[i] \leftarrow i

6: else

7: Fib[i] \leftarrow Fib[i-1] + Fib[i-2]

8: return Fib[n]
```

▶ time: O(n), space: $O(n) \rightarrow O(1)$

Setting

Setting

► System consisting of *n* components.

Setting

- System consisting of *n* components.
- Each component can be in any of a finite number of states.

Setting

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- ► Want to set the states of the components so as to optimize an certain objective under certain constraints.

Setting

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- ► Want to set the states of the components so as to optimize an certain objective under certain constraints.

Weighted interval scheduling

Setting

- System consisting of n components.
- Each component can be in any of a finite number of states.
- ► Want to set the states of the components so as to optimize an certain objective under certain constraints.

Weighted interval scheduling

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$, end time $e_i \in \mathbb{R}$, and importance $w_i \in \mathbb{R}$.

Setting

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- ► Want to set the states of the components so as to optimize an certain objective under certain constraints.

Weighted interval scheduling

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$, end time $e_i \in \mathbb{R}$, and importance $w_i \in \mathbb{R}$.

Ouput: $S \subseteq [n]$ such that no distinct intervals $[s_i, e_i)$ for $i \in S$ overlap and $\sum_{i \in S} w_i$ is maximized.

Principle of Optimality

Subproblem specification

For $J \subseteq [n]$, let $\mathsf{OPT}(J)$ denote the maximum total importance achievable for the subproblem defined by the meetings in J

Subproblem specification

For $J \subseteq [n]$, let $\mathsf{OPT}(J)$ denote the maximum total importance achievable for the subproblem defined by the meetings in J

Recurrence

▶ For $J \neq \emptyset$, let j^* denote the first meeting in J and $C(j^*)$ the meetings that overlap with j^* .

Subproblem specification

For $J \subseteq [n]$, let $\mathsf{OPT}(J)$ denote the maximum total importance achievable for the subproblem defined by the meetings in J

Recurrence

- ▶ For $J \neq \emptyset$, let j^* denote the first meeting in J and $C(j^*)$ the meetings that overlap with j^* .
- **▶** OPT(*J*) =

Bounding the Number of Distinct Subproblems

Bounding the Number of Distinct Subproblems

► State reduction: compression of decision history

Bounding the Number of Distinct Subproblems

- State reduction: compression of decision history
- Explicit description of subproblems: few parameters with small ranges

Improved Algorithm

Idea

Sort the meetings earliest start time first, then run prior algorithm.

Idea

Sort the meetings earliest start time first, then run prior algorithm.

Subproblem specification

For $k \in [n+1]$, let $\mathsf{OPT}(k)$ denote the maximum total importance achievable for the subproblem defined by the meetings in $\{k,k+1,\ldots,n\}$

Idea

Sort the meetings earliest start time first, then run prior algorithm.

Subproblem specification

For $k \in [n+1]$, let $\mathsf{OPT}(k)$ denote the maximum total importance achievable for the subproblem defined by the meetings in $\{k, k+1, \ldots, n\}$

Recurrence

▶ For $k \in [n]$, let next(k) denote the smallest $i \geq k$ such that $s_i \geq e_k$ (where $s_{n+1} \doteq \infty$).

Idea

Sort the meetings earliest start time first, then run prior algorithm.

Subproblem specification

For $k \in [n+1]$, let $\mathsf{OPT}(k)$ denote the maximum total importance achievable for the subproblem defined by the meetings in $\{k, k+1, \ldots, n\}$

Recurrence

- ▶ For $k \in [n]$, let next(k) denote the smallest $i \geq k$ such that $s_i \geq e_k$ (where $s_{n+1} \doteq \infty$).
- $ightharpoonup OPT(k) = \max(OPT(k+1), w_k + OPT(next(k)))$

Running time

▶ Sorting: $O(n \log n)$

- ▶ Sorting: $O(n \log n)$
- Number of subproblems: n+1

- ▶ Sorting: $O(n \log n)$
- Number of subproblems: n+1
- Amount of work per subproblem: $O(\log n)$ for finding next(k) using binary search.

- ▶ Sorting: $O(n \log n)$
- Number of subproblems: n+1
- Amount of work per subproblem: $O(\log n)$ for finding next(k) using binary search.
- ▶ Total: $O(n \log n)$

Running time

- ▶ Sorting: $O(n \log n)$
- Number of subproblems: n+1
- Amount of work per subproblem: $O(\log n)$ for finding next(k) using binary search.
- ▶ Total: $O(n \log n)$

Memory space

▶ *O*(*n*)

Retrieving the Solution

Retrieving the Solution

Recursively

Return both the value and a solution achieving it.

Retrieving the Solution

Recursively

Return both the value and a solution achieving it.

Iteratively

```
1: procedure Retrieve-Solution
2: S \leftarrow \emptyset
i \leftarrow 1
4: while i \leq n do
            if OPT(i) = OPT(i+1) then
5:
                 i \leftarrow i + 1
6:
7:
            else
                 S \leftarrow S \cup \{i\}
8:
                 i \leftarrow \text{next}(i)
9:
        return S
10:
```