Using Al to Validate Carbon Containment in Illinois Basin

**Machine Learning Challenge** 

Insights Inc





#### **Background & Objective**

- Carbon Dioxide (CO<sub>2</sub>) released from ethanol production at the ADM (Archer Daniels Midland) plant was compressed, dehydrated and injected into the Mt. Simon Sandstone
- Mt Simon Sandstone is a saline aquifer located in the Illinois Basin and is approximately ~7,000 ft deep
- Over three years (Nov-2011 to Nov-2014), ~1000 tonnes/d of CO<sub>2</sub> was injected into the reservoir
- Cumulatively, 999,215 tonnes of supercritical CO<sub>2</sub> was injected and has been geologically stored in Mt Simon Sandstone
- The injection and verification wells that are ~700ft apart were drilled downdip into the Mt Simon Sandstone
- The wells are equipped with downhole sensors to monitor pressure and temperature at various depths of interest
- The aim of this challenge is to use time series injection information and monitoring data from these wells to predict carbon capture well injection rate deltas



Source: modified from Locke, 2012



Source: Bauer et al, 2019



Source: Bauer et al, 2019



## Methodology - Machine Learning



**Data Collection** 

As new data is collected, it will appended to the entire dataset and the model will retrained stochastically (unseeded) for future prediction

Model Deployment



Data
Preparation/Cleaning



Retrain model on full dataset, deploy on blind data set using unseeded model



Model Selection - LSTM



Sensitivity runs on inputs and testing randomness



**Model Training** 







#### **Data Preparation**





- Most variables are highly correlatable, with values of > 0.5
- Retained only one variable from groups of highly correleatable variables.
- Exceptions are made if variables are found from different sources e.g. tubing and reservoir pressure at the observation well
- Excluding the target injection delta variable, six variables retained for the machine learning application.

- A modified Z-score is used to remove the outliers.
- A more lenient score is used for injection delta and CO2 vent rate due to the difference in the magnitude's range
- The zero values at the observation well sensors have been kept – this will be tested for removal during the sensitization stage



#### Long Short-Term Memory (LSTM) & Randomness



Note. By Rainardi, V., 2021, RNN and LSTM. Accessed at https://dwbi1.wordpress.com/2021/08/07/recurrent-neural-network-rnn-and-lstm/

- LSTM is a type of recurrent neural network (RNN)
- Learns from previous outputs to provide better results the following time
- Typical LSTM has 3 layers
  - Input gate which assigns weights based on the significance of different variables.
  - O Forget gate to retain only useful information, and
  - Output gate which manages the information flow
- Randomness
  - Machine learning models are stochastic in nature
  - O Randomness is present in the LSTM network employed
- Sensitivity runs on input parameters
  - Randomness controlled using a seed value so that we reproduce the result if necessary
  - To see effect of input parameter
- Model Deployment and Prediction
  - Deployed without a seed to make use of the randomness –
  - o if the model is run again, it will not be able to re-produce the exact same result
  - Multiple runs may be different, but the results will be in range
  - the anomalies will be predicted
  - objective of the model met.



## **Model Validation**





Able to mimic the small variations in the injection delta



# **Sensitivity Runs**

- Sensitivity runs on input parameters were performed using a single seed value of 2250.
   Several sensitivities were run but only selected are displayed here
- Best results (based on RMSE)
  - O Scaling between -1 and 1
  - Use of DH sensor Z05 data with corrected values of 0
  - Use of temperature and whp sensors data
  - Z-score outlier replacement of 25, resulting inj\_diff range between 30 and -30.

| Vintage              | Select  | Base (0) | 4      | 12      | 9       |
|----------------------|---------|----------|--------|---------|---------|
| Scaling              | Y(-1,1) | Y(0,1)   | Y(0,1) | Y(-1,1) | Y(-1,1) |
| VW DH Sensor         | Z05     | Z09      | Z01    | Z05     | Z05     |
| Injection WHP Sensor | Υ       | Υ        | Υ      | Υ       | N       |
| Temp Sensor          | Υ       | N        | N      | N       | Υ       |
| Z-Score Inj_Diff     | 25      | 20       | 25     | 25      | 25      |
| VW Zero Values       | No      | Yes      | No     | No      | No      |
| Val RMSE             | 1.55    | 1.75     | 2.20   | 1.90    | 2.01    |
| Val R2               | 0.82    | 0.73     | 0.63   | 0.72    | 0.69    |





#### Randomness

- Running with different seed values result in different results due to the stochastic nature of the model.
- 10 runs with various seed values were run and a selected six are displayed here to show the range in comparison to the first unseeded run
- All runs can predict the anomalies however the signature of the minor differences varies
- The RMSE and R2 values on the validation set is within a small range
- Thus, to include randomness and to be unbiased, an unseeded model is selected for deployment



| Seed Value | Unseeded | 2250 | 42   | 2023 | 1    | 111  | 88   |
|------------|----------|------|------|------|------|------|------|
| Val RMSE   | 1.73     | 1.55 | 1.69 | 1.69 | 1.64 | 1.87 | 1.70 |
| Val R2     | 0.77     | 0.82 | 0.78 | 0.78 | 0.79 | 0.73 | 0.78 |





**Predicted Injection Difference** 

- Predicted models does well based on good RMSE and R2 scores on test and train data
- Able to pick out large anomalies thus meeting the objective of the challenge
- Also able to predict small variation in rate though might have a slightly different signature
- Future recommendations for improvement:
  - Explore alternative models
  - Improved outlier removal / nan/zero replacements
  - Improve workflow to decrease runtime which will allow multiple set of runs creating an ensemble of models and taking the mean of the output



# Thank you all!

Happy to share more about our algo and journey, feel free to reach out to us

CREDITS: This presentation template was created by Slidesgo, and includes icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution

