Estruturas de Dados e Algoritmos – Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Introdução
- Árvores Binárias
- Percurso em Árvores
- Árvores Binárias de Pesquisa
- 5 Links

Introdução

Introdução

- Árvores são EDs utilizadas para resolver muitos problemas.
- Podemos ter vários tipos diferentes de árvore.
- São de natureza recursiva e hierárquica.

Árvores de Huffman

- Utilizadas em compressão de dados.
- Organizam os símbolos mais frequentes próximo da raiz.
- Códigos menores para os símbolos mais frequentes.

Árvores de Huffman

Introdução

Árvores Filogenéticas

- Utilizadas em Biologia Computacional.
- Estimam a distância evolutiva de organismos.

Árvores Filogenéticas

Introdução

Árvores de Segmentos

- Utilizadas em problemas diversos.
- \bullet Armazenam alguma propriedade sobre um dado intervalo [l,r].

Árvores de Segmentos

Introdução

Segment Tree for input array {1, 3, 5, 7, 9, 11}

Árvores B e B+

- Utilizadas em Sistemas de Arquivos.
- Convertem endereço de bloco de arquivo para endereço de disco.

Árvores B e B+

Árvores de Sufixos

Introdução

Árvores de Sufixos

- Utilizadas em processamento de palavras.
- Codificam todos os sufixos de um texto de maneira compacta.
- Resolvem vários problemas sobre strings.

Árvores de Sufixos

Introdução

- Podemos citar várias outras:
 - ► K²-Tree: representação compacta de relações binárias.
 - Árvore-Rubro-Negra: árvore ordenada.
 - Fenwick Tree: calcula eficientemente soma de prefixos.
 - ► Tries: utilizadas em casamento de múltiplos padrões.
- Já deu para entender a infinidade de problemas que podemos resolver com árvores, certo?

Introdução

- No nosso curso, estudaremos uma das famílias mais básicas de árvores.
- As árvores binárias.
- Estamos trabalhando só com a ponta do iceberg.
- No entanto, servirá de alicerce ao estudar estruturas mais complexas posteriormente.

Sumário

Sumário

- Árvores Binárias
 - Terminologia
 - Estrutura

• Antes de elaborar qualquer algoritmo sobre árvore binárias, precisamos entender a sua representação.

- Raiz: corresponde ao topo de uma árvore.
- Pai: nó que precede imediatamente um segundo em um caminho partindo da raiz.
- **Filho**: Nó que ocorre imediatamente após o outro em um caminho partindo da raiz.
- Filho da esquerda: se x é pai de y e y ocorre imediatamente após x ao seguir para esquerda, então y é o filho da esquerda de x.
- Filho da direita: se x é pai de y e y ocorre imediatamente após x ao seguir para direita, então y é o filho da direita de x.
- Folha: nó que não possui nenhum descendente.

- Altura: a altura do nó x corresponde a maior distância de x a uma folha.
- **Grau**: quantidade de descendentes de um nó.
- **Nível**: conjunto de nós que estão na mesma altura em relação a raiz.

Árvore Binária

Definição (Árvore Binária)

Uma árvore binária é composta de:

- Um potencial nó denominado de raiz.
- Caso a raiz exista:
 - Uma subárvore da esquerda.
 - Uma subárvore da direita.

Árvores Binárias

- Repare que a definição de uma árvore binária atua sobre ela própria.
- É uma definição recursiva!
- É natural que os algoritmos que atuem em árvores também sejam recursivos.

- Uma árvore binária pode ser:
 - Completa ou incompleta.
 - Uma árvore binária é completa quando todos os níveis dela estão preenchidos exceto pelo último, no qual os nós devem se encontrar mais a esquerda possível.
 - Pode ser representada através de um simples vetor.
 - Cheia ou não cheia.
 - Uma árvore binária é cheia se todo nó possui grau 0 ou 2.
 - Perfeita ou imperfeita.
 - Uma árvore binária é perfeita quando é cheia e todas as folhas possuem o mesmo nível

Sumário

- Árvores Binárias
 - Terminologia
 - Estrutura

Estrutura

- Como visto, uma árvore binária possui, uma subárvore da esquerda e da direita.
- Podemos utilizar uma definição recursiva para representar essa estrutura computacionalmente.
- Como C não suporta tipos recursivos, emulamos essa característica através de ponteiros.

Estrutura

```
typedef struct tree_node{
    void* data; /* Dado da árvore */
    struct tree_node* left; /* Ponteiro para subárvore da esquerda */
    struct tree_node* right; /* Ponteiro para subárvore da direita */
}tree_node;

typedef struct arvore{
    tree_node* root; /* Raiz da Arvore */
}arvore;
```

Figura: É uma árvore binária?

Figura: É uma árvore binária?

Figura: É uma árvore binária?

Figura: É uma árvore binária?

Árvores Binárias

- Árvores representam dados de maneira hierárquica.
- Se a árvore não tiver uma certa forma, sua utilidade pode ser questionada.

Exemplos

Figura: Árvore ou Lista?

Árvores Binárias

• Agora que conhecemos a terminologia e definições, podemos nos concentrar em aprender algo novo e útil.

Sumário

Percurso em Árvores

- Um dos problemas fundamentais sobre esta estrutura de dados é percorrê-la.
- Qual estratégia adotar?
- Busca em largura?
- Busca em profundidade?
 - ► Pré-ordem?
 - ► Em-ordem?
 - Pós ordem?

• Examinaremos agora cada uma destas abordagens.

Sumário

- Percurso em Árvores
 - Busca em Largura
 - Busca em profundidade

- Busca em largura ou amplitude.
 - Breath-first-search.
- Parte de um nó específico.
- Visita os vizinhos deste nó.
- Visita os vizinhos dos vizinhos do nó inicial.
- Visita os vizinhos dos vizinhos do nó inicial.
- . .

Exemplo

Qual a ordem dos nós a serem visitados ao partir do nó raiz?

Exemplo

2, 7, 5, 2, 6, 9, 5, 11, 4

Busca em largura

• Como implementar uma busca em largura?

Busca em largura

- Colocamos o nó inicial em uma fila.
- Enquanto a fila n\u00e3o for vazia:
 - Processo o nó que está na frente da fila.
 - Insira todos os seus vizinhos no fim da fila.
 - Retire o nó da fila.

Busca em Largura

Sumário

- 3 Percurso em Árvores
 - Busca em Largura
 - Busca em profundidade

Busca em profundidade

- A busca em profundidade (depth-first-search), difere da busca em largura pois ela busca em um ramo inteiro da árvore antes de olhar para o outro ramo.
- Basicamente um nó é visitado e a busca procede recursivamente para o vizinho imediato.

Exemplo

Qual a ordem dos nós a serem visitados ao partir do nó raiz?

Exemplo

2, 7, 2, 6, 5, 11, 5, 9, 4

Busca em profundidade

- Como implementar uma busca em profundidade?
- Substituindo a fila da busca em largura por uma pilha.

Busca em Profundidade

Busca em profundidade

- Implementação recursiva é mais simples, mais elegante e até mais rápida.
- Usamos uma pilha implícita quando chamamos a função recursivamente.

Busca em Profundidade

```
void dfs(tree_node* node){
    if(node!=NULL){
        processa(node);
        dfs(node->left);
        dfs(node->right);
    }
}
```


Busca em profundidade

- A busca em profundidade possui algumas variações.
- Pré-ordem: visitamos o nó antes de proceder recursivamente aos vizinhos.
- Em-ordem: procedemos recursivamente à esquerda, visitamos o nó, e procedemos recursivamente à direita.
- Pós-ordem: procedemos recursivamente à esquerda, procedemos recursivamente à direita, visitamos o nó.

Exemplo

Qual a ordem dos nós a serem visitados ao partir do nó raiz em busca profundidade em pré-ordem?

Exemplo

2, 7, 2, 6, 5, 11, 5, 9, 4

Exemplo

Qual a ordem dos nós a serem visitados ao partir do nó raiz em busca profundidade em-ordem?

Exemplo

2, 7, 5, 6, 11, 2, 5, 4, 9

Busca em Profundidade

```
void dfs(tree_node* node){
    if(node!=NULL){
        dfs(node->left);
        processa(node);
        dfs(node->right);
}
```


Exemplo

Qual a ordem dos nós a serem visitados ao partir do nó raiz em busca profundidade em pós-ordem?

Exemplo

2, 5, 11, 6, 7, 4, 9, 5, 2

Busca em Profundidade

Sumário

- Árvores Binárias de Pesquisa
 - Introdução
 - Árvores AVL
 - Treaps

- Uma árvore binária de pesquisa (BST ou Binary Search Tree) organiza os nós pela sua chave.
- Facilita a busca de uma determinada nó através da chave.

Definição (Árvore Binária de Pesquisa)

Uma árvore binária de pesquisa (BST) ordenada de acordo com a chave x de seus nós possui:

- Uma potencial raiz com valor de chave y.
- ullet Caso a raiz exista, uma subárvore da esquerda com nós que possuem chaves menores que y.
- Caso a raiz exista, uma subárvore da direita com nós que possuem chaves maiores ou iguais a y.

figuras/bst.png

Figura: Busca Pelo 19.

- Durante uma busca por um nó com chave x em uma BST, temos os seguintes casos:
 - A árvore é vazia: o nó não encontra-se na árvore.
 - A raiz possui a chave buscada: o nó buscado foi encontrado.
 - A chave buscada é menor que a chave da raiz: procede-se recursivamente para a subárvore da esquerda.
 - Caso contrário, procede-se recursivamente para a subárvore da direita.

figuras/bst.png

Figura: Busca Pelo 19.

figuras/bst.png

Figura: Busca Pelo 54.

figuras/bst.png

Figura: Busca Pelo 18.

• A forma como uma BST é organizada lembra alguma técnica?

- A forma como uma BST é organizada lembra alguma técnica?
- Busca binária.

- A forma como uma BST é organizada lembra alguma técnica?
- Busca binária.
- A diferença agora é que a BST permite inserir e remover elementos sem precisar ordenar todo o vetor, no caso da busca binária.

Inserção em BSTs

- BSTs são estruturas de dados dinâmicas, permitem inserções e remoções.
- Todas as inserções são feitas nas folhas.

Inserção em uma BST

Durante a inserção de um nó com chave \boldsymbol{x} em uma BST, temos os seguintes casos:

- A raiz é vazia: o novo nó passa a ser a raiz.
- A árvore é vazia: o nó é inserido.
- O nó a ser inserido possui a chave menor que a da raiz: procede-se recursivamente para a subárvore da esquerda.
- Caso contrário, procede-se recursivamente para a subárvore da direita.

▶ BST Applet

Remoção em uma BST

- Como visto, as inserções são simples, pois são sempre feitas nas folhas.
- No entanto, a remoção de um nó pode ocorrer em um nó interno.
- Como proceder?

Remoção em uma BST

Caso 1: o nó a ser removido é uma folha.

- Este é o caso mais simples.
- O nó é removido sem complicações.

▶ BST Applet

Remoção em uma BST

Caso 2: o nó a ser removido possui apenas um filho.

- Também pode ser lidado facilmente.
- O filho é transplantado no lugar do pai.
 - O avô do filho passa a apontar diretamente para o filho.

Remoção em uma BST

Caso 3: o nó a ser removido possui dois filhos.

- Este é o caso mais difícil.
- Solução: transformar em um caso fácil.
- Obrigatoriamente o nó possui subárvores não vazias.
- Trocamos o valor do nó pelo seu antecessor.
 - O antecessor encontra-se no nó mais à direita da subárvore da esquerda.
- Procede-se recursivamente para remover o valor do nó.

▶ BST Applet

Problemas com BSTs

- BSTs oferecem um meio de organizar a informação e facilitar a busca.
- Problema: dependendo da ordem de inserções/remoções, a BST subjacente pode tornar-se degenerada.
- Operações começam a levar tanto tempo quanto em listas. . .

Exemplos

Figura: Árvore ou Lista?

▶ BST Applet

Solução

- Árvores Binárias de Pesquisa Balanceadas;
- Continuam sendo BSTs, mas utilizam operações que tentam espalhar os itens da árvore de modo a deixá-la balanceada de acordo com algum critério, como altura, peso, etc...
- Em nosso curso, veremos duas delas:
 - Árvore AVL;
 - ► Treap.

Sumário

- 4 Árvores Binárias de Pesquisa
 - Introdução
 - Árvores AVL
 - Treaps

Árvores AVI

- As árvores AVL foram as primeiras BST balanceadas da literatura.
- Nomeada de acordo com os seus desenvolvedores: Georgy Adelson-Velsky e Evgenii Landis.
- Possuem tempo de consulta/inserção/remoção limitado a $\Theta(\lg n)$.
- São estruturas que são auto-balanceáveis, tentando deixar as alturas dos nós de cada nível próximas.

figuras/AVL-tree.pdf

• Antes de expor os algoritmos que atuam sobre esta estrutura de dados, é necessário formalizar alguns conceitos.

Definição (Altura)

A altura de um nó x é dada pela maior distância dele até uma folha.

Esta altura é denotada por height(x).

A altura de uma árvore vazia é 0.

Definição (Fator de Equilíbrio)

Sejam T_1 e T_2 as subárvores da esquerda e da direita de uma árvore com raiz no nó x. Sejam t_1 e t_2 as respectivas raízes de T_1 e T_2 .

O fator de equilíbrio (balance factor) de x é dado como:

$$bf(x) := height(t_1) - height(t_2)$$

figuras/AVL-tree.pdf

Fator de Equilíbrio

- Em árvores AVL, o fator de equilíbrio de cada nó está limitado a três possíveis valores: $\{-1,0,1\}$.
- Esta restrição que possibilita operações de inserção/remoção/busca serem efetuadas em tempo $\Theta(\lg n)$.

figuras/AVL-tree.pdf

Operações em Árvores AVL

- Como árvores AVL são especializações de BST, os procedimentos de inserção, remoção e busca são rigorosamente iguais.
- O problema é que, após uma inserção e remoção, a árvore pode ficar desbalanceada, isto é, o fator de equilíbrio de algum nó está fora do intervalo $\{-1,0,1\}$.
- Assim, é necessário rebalancear a árvore.

Balanceamento em Árvores AVL

- O rebalanceamento é feito através de rotações, que podem ser:
 - Rotações para a esquerda.
 - Rotações para a direita.
- Uma rotação não interfere na propriedade de BST, isto é, a subárvore da esquerda continua os elementos com chaves menores do que a raiz e a subárvore da direita continua com os elementos com chaves maiores ou iguais a da raiz.

Rotações

Rotações

▶ Tree Rotation

- Ao final de cada inserção/remoção, a árvore deve ser atualizada.
- Para cada nó ao longo do caminho percorrido, deve-se computar:
 - A nova altura.
 - O novo fator de equilíbrio.
- Rotações para a esquerda/direita são feitas de movo a preservar os fatores de balanceamento no intervalo $\{-1,0,1\}$.
 - Rotação para esquerda aumenta em 1 o fator de equilíbrio.
 - Rotação para direita diminui em 1 o fator de equilíbrio.

Balanceamento de Árvores AVL

- O balanceamento das árvores AVL concentram-se em 4 casos:
 - Rotação para esquerda (L).
 - Rotação para direita (R).
 - ▶ Rotação para esquerda seguida de rotação para direita (LR).
 - Rotação para direita seguida de rotação para esquerda (RL).

Balanceamento de Árvores AVL

Caso 1 (L)

• Se a árvore com raiz em x tem fator de equilíbrio -2 e seu filho da direita possui fator de equilíbrio ≤ 0 , uma rotação à esquerda é suficiente para balancear a árvore.

Caso 2 (R)

• Se a árvore com raiz em x tem fator de equilíbrio 2 e seu filho da esquerda possui fator de equilíbrio ≥ 0 , uma rotação à direita é suficiente para balancear a árvore.

figuras/avl-tree-case-2.jpg

Caso 3 (LR)

Caso 4 (RL)

Caso 4 (RL)

Caso 4 (RL)

Caso 4 (RL)

Caso 4 (RL)

Comparação Árvores AVL

Operação	Inserção	Remoção	Busca
Árvore	Complexidade (Pior caso)		
BST	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
AVL	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$

Árvores Binárias de Pesquisa

► AVL Applet

Árvores Binárias de Pesquisa

Sumário

- Árvores Binárias de Pesquisa
 - Introdução
 - Árvores AVL
 - Treaps

- Treap = BST + Heap.
- Uma Treap é uma estrutura de dados probabilística.
- Também é uma BST, mas agora cada nó tem duas informações:
 - Valor da chave
 - Prioridade.
- Durante a inserção de um nó, o campo de prioridade é gerado aleatoriamente.
- Para conservar a propriedade de Heap, rotações podem ser feitas, ocasionado uma árvore relativamente balanceada com alta probabilidade.

 Definiremos a estrutura formalmente para que possamos elaborar os algoritmos sobre ela com precisão.

Árvores Binárias de Pesquisa

Treap

Definição (Treap)

Uma treap possui:

- Uma potencial raiz, com chave e prioridade.
- Caso a raiz exista, uma subtreap da esquerda, de modo que todo elemento possua chave menor do que a chave da raiz e prioridade menor ou igual a prioridade da raiz.
- Caso a raiz exista, uma subtreap da direita, de modo que todo elemento possua chave maior do que a chave da raiz e prioridade menor ou igual a prioridade da raiz.

Treap: Busca

- A busca de um nó pela sua chave em uma Treap é idêntica a de uma BST.
- As prioridades são ignoradas completamente.

▶ Treap Applet

Treap: Inserção

- A inserção é feita como em uma BST.
- No fim o nó é inserido e corresponde a uma folha.
- A este nó é gerado uma prioridade.
- Rotações são feitas de modo a conservar a propriedade de heap da Treap, isto é, enquanto o nó inserido tiver prioridade maior que o seu pai, uma rotação é feita.

Treap: Inserção

► Treap Applet

Treap: Remoção

- É feita como em uma BST.
- Caso 1: se o nó a ser removido é uma folha, remova-o sem complicações.
- Caso 2: se o nó a ser removido possui apenas um filho, transplante o filho no lugar do pai.
- Caso 3: se o nó a ser removido possui dois filhos, troque-o de lugar com o filho de maior prioridade através de uma rotação.
 - Eventualmente esta operação fará com que o nó a ser removido recaia no caso 1 ou no caso 2.
 - Como a rotação troca com o filho de maior prioridade, a propriedade de heap é conservada após a remoção.

Treap: Inserção

► Treap Applet

Links

Sumário

Links

• Applet para visualização de EDs: https://people.ksp.sk/~kuko/gnarley-trees/.