Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, ИПММ

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Отчет по лабораторной работе №4 по дисциплине «Математическая статистика»

Выполнил студент гр. 3630102/80201

Кирпиченко С. Р.

Руководитель

Баженов А. Н.

Санкт-Петербург 2021

Содержание

					C	' T]	рa	lΗ	ица
1	Пос	станов	ка задачи						5
2	Teo	рия							5
	2.1	Эмпи	рическая функция распределения						5
		2.1.1	Статистический ряд						5
		2.1.2	Эмпирическая функция распределения						5
		2.1.3	Нахождение э. ф. р						6
	2.2	Оцени	ки плотности вероятности						6
		2.2.1	Определение						6
		2.2.2	Ядерные оценки	•	•			•	6
3	Pea	лизац	ия						7
4	Рез	зультал	гы						7
	4.1	Эмпи	рическая функция распределения						8
	4.2	Ядерн	ные оценки плотности распределения						11
		4.2.1	Нормальное распределение						11
		4.2.2	Распределение Коши						13
		4.2.3	Распределение Лапласа						15
		4.2.4	Распределение Пуассона						17
		4.2.5	Равномерное распределение		•			•	19
5	Обо	сужде	ние						21
	5.1	Эмпи	рическая функция и ядерные оценки плотно	ст	ги	pa	ac	-	
		преде	ления						21

Список иллюстраций

		Страница
1	Нормальное распределение	8
2	Распределение Коши	8
3	Распределение Лапласа	9
4	Распределение Пуассона	9
5	Равномерное распределение	10
6	Нормальное распределение, 20 чисел	11
7	Нормальное распределение, 60 чисел	12
8	Нормальное распределение, 100 чисел	12
9	Распределение Коши, 20 чисел	13
10	Распределение Коши, 60 чисел	14
11	Распределение Коши, 100 чисел	14
12	Распределение Лапласа, 20 чисел	15
13	Распределение Лапласа, 60 чисел	16
14	Распределение Лапласа, 100 чисел	16
15	Распределение Пуассона, 20 чисел	17
16	Распределение Пуассона, 60 чисел	18
17	Распределение Пуассона, 100 чисел	18
18	Равномерное распределение, 20 чисел	19
19	Равномерное распределение, 60 чисел	20
20	Равномерное распределение, 100 чисел	20

Список таблиц

										C	$[\mathbf{T}]$	pa	ìΗ	ица
1	Таблица распределения				•									6

1 Постановка задачи

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- ullet Распределение Коши C(x,0,1)
- Распределение Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4; 4] для непрерывных распределений и на отрезке [6; 14] для распределения Пуассона.

2 Теория

2.1 Эмпирическая функция распределения

2.1.1 Статистический ряд

Статистическим рядом назовем совокупность, состоящую из последовательности $\{z_i\}_{i=1}^k$ попарно различных элементов выборки, расположенных по возрастанию, и последовательности $\{n_i\}_{i=1}^k$ частот, с которыми эти элементы содержатся в выборке.

2.1.2 Эмпирическая функция распределения

Эмпирическая функция распределения (э. ф. р.) - относительная частота события X < x, полученная по данной выборке:

$$F_n^*(x) = P^*(X < x). (1)$$

2.1.3 Нахождение э. ф. р.

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i.$$
 (2)

 $F^*(x)$ — функция распределения дискретной случайной величины X^* , заданной таблицей распределения

X^*	z_1	z_2	 z_k
P	$\frac{n_1}{n}$	$\frac{n_2}{n}$	 $\frac{n_k}{n}$

Таблица 1: Таблица распределения

Эмпирическая функция распределения является оценкой, т. е. приближённым значением, генеральной функции распределения

$$F_n^*(x) \approx F_X(x). \tag{3}$$

2.2 Оценки плотности вероятности

2.2.1 Определение

Оценкой плотности вероятности f(x) называется функция $\widehat{f}(x)$, построенная на основе выборки, приближённо равная f(x)

$$\widehat{f}(x) \approx f(x).$$
 (4)

2.2.2 Ядерные оценки

Представим оценку в виде суммы с числом слагаемых, равным объёму выборки:

$$\widehat{f}_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x - x_i}{h_n}\right). \tag{5}$$

K(u) - ядро, т. е. непрерывная функция, являющаяся плотностью вероятности, $x_1,...,x_n$ - элементы выборки, а $\{h_n\}_{n\in\mathbb{N}}$ - последовательность элементов из \mathbb{R}_+ такая, что

$$h_n \xrightarrow[n \to \infty]{} 0; \quad nh_n \xrightarrow[n \to \infty]{} \infty.$$
 (6)

Такие оценки называются непрерывными ядерными.

Гауссово ядро:

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}. (7)$$

Правило Сильвермана:

$$h_n = \left(\frac{4\hat{\sigma}^5}{3n}\right)^{1/5} \approx 1.06\hat{\sigma}n^{-1/5},$$
 (8)

где $\hat{\sigma}$ - выборочное стандартное отклонение.

3 Реализация

Лабораторная работа выполнена на языке Python 3.9 с использованием библиотек numpy, scipy, matplotlib, seaborn.

4 Результаты

Более насыщенными цветами выделены полученные результаты, более бледными - теоретические функции распределения и плотности вероятности.

4.1 Эмпирическая функция распределения

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

4.2 Ядерные оценки плотности распределения

4.2.1 Нормальное распределение

Рис. 6: Нормальное распределение, 20 чисел

Normal 60 numbers

Рис. 7: Нормальное распределение, 60 чисел

Рис. 8: Нормальное распределение, 100 чисел

4.2.2 Распределение Коши

Cauchy 20 numbers 0.3 0.2 0.1 $0 \\ 0.5 h_n$ -3 1 2 3 0.3 0.2 0.1 -3 -2 0 2 3 h_n 0.3 0.2 0.1 0 2*h*_n -3 -2 1 2 3

Рис. 9: Распределение Коши, 20 чисел

Cauchy 60 numbers

Рис. 10: Распределение Коши, 60 чисел

Cauchy 100 numbers

0.2 0.0 0 0.5*h*_n -3 -2 2 3 0.3 0.2 0.1 -3 0 1 2 3 hn 0.3 0.2 0.1 -3 -2 0 1 2 3 $2h_n$

Рис. 11: Распределение Коши, 100 чисел

4.2.3 Распределение Лапласа

Рис. 12: Распределение Лапласа, 20 чисел

Laplace 60 numbers

Рис. 13: Распределение Лапласа, 60 чисел

Laplace 100 numbers

Рис. 14: Распределение Лапласа, 100 чисел

4.2.4 Распределение Пуассона

Рис. 15: Распределение Пуассона, 20 чисел

Poisson 60 numbers

Рис. 16: Распределение Пуассона, 60 чисел

Рис. 17: Распределение Пуассона, 100 чисел

4.2.5 Равномерное распределение

Рис. 18: Равномерное распределение, 20 чисел

Uniform 60 numbers

Рис. 19: Равномерное распределение, 60 чисел

Рис. 20: Равномерное распределение, 100 чисел

5 Обсуждение

5.1 Эмпирическая функция и ядерные оценки плотности распределения

По графикам эмпирической функции распределения видно, что с увеличением мощности выборки растет точность приближения оценки к теоретической функции распределения вероятности. Хуже всего эмпирическая функция распределения приближает теоретическую на равномерном распределении.

По графикам ядерных оценок видно, что при любом выборе параметра h_n увеличение мощности выборки положительно сказывается на точности оценки.

Для различных распределений больше подходят различные параметры h_n : для нормального, пуассоновского и равномерного распределений большую эффективность показывает параметр h_n . Для распределений Коши и Лапласа - $\frac{h_n}{2}$.

Также можно сделать вывод, что увеличении коэффициента при параметре h_n ведет к сглаживанию ядерной оценки: количество перегибов у функции уменьшается, при значении параметра $2h_n$ ядерные оценки становятся сложно различимыми у разных распределений.

Примечание

С исходным кодом работы и данного отчета можно ознакомиться в репозитории https://github.com/Stasychbr/MatStat