

NOSITEL VYZNAMENÁNÍ ZA BRANNOU VÝCHOVÚ I. a II. STUPNĚ

CASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXXV (LXIV) 1986 ● ČÍSLO 12

V TOMTO SEŠITĚ

	.441
35 let Svazarmu v okresu Opava	.442
AB svazarmovským ZO	.443
AR mládeži ·	.445
R15	446
Z MVS Brno po osmadvacáté	
AR seznamuje (zesilovač TESLA	
	450
Klávesový syntezátor s číslicově řízen	
Kiavesovy syntezator s cisiicove rizeri	451
oscilátorem	
Digitalne zobrazenie zvoleneho kanalu	
na televíznom prijímači	454
Bezšňůrové telefonní přístroje	455
Mikroelektronika	:.457
Elektronická ladička	465
Úprava televizoru SECAM pro příjem	
SECAM/PAL	467
FM transceiver 02 (dokončení)	
7 amoudialdha asilu	473
AR branné výchově	474
Zradioamatérského světa	476
Inzerce	Δ77
HITCHAC ***********************************	

AMATÉRSKÉ RADIO ŘADA A

AMATÉRSKÉ RADIO ŘADA A

Vydává ÚV Svazarmu, Opletalova 29, 116 31

Praha 1, tel. 22 25 49, ve Vydavatelství NASE

VOJSKO, Vladislavova 26, 113 66 Praha 1. tel.
26 08 51-7. Sélfredaktor ing. Jan Klabál, OK1 IMA,
zástupce Luboš Kalousek, OK1FAC, Redakční rada: Předseda ing. J. T. Hyan/ členové: RNDr.
V. Brunnhofer, ÖK1HAQ, V. Brzák, OK1DDK,
K. Donát, OK1DV, ing. O. Filippi, V. Gazda,
A. Glanc, OK1DV, ing. O. Filippi, V. Gazda,
A. Glanc, OK1DV, ing. D. Filippi, V. Gazda,
Sing. J. Kolmer, ing. F. Králík, RNDr. L. Kryška,
CŠc., J. Kroupa, V. Němec, ing. J. Hodík, P. Horák, Z. Hradiský, J. Hudec, OK1RE, ing. J. Jaroš,
ing. J. Kroupa, V. Němec, ing. O. Petráček,
OK1NB, ing. Z. Prošek, ing. F. Smolík, OK1ASF,
ing. E. Smutný, pplk. ing. F. Smolík, OK1ASF,
ing. E. Smutný, pplk. ing. F. Smolík, OK1ASF,
ing. E. Smutný, pplk. ing. F. Smolík, OK1ASF,
ing. E. Smutný, pylk. ing. F. Smolík, oK1ASF,
ing. E. Smolík, pylk. ing. J. Hodiná,
ing. F. Smolík, oK1ASF,
ing. J. Hodiná,
ing. J. Trank, pylk. ing. J. Hodiná,
ing. T. Smolík, pylk

Rukopisy čísla odevzdány tiskárně 27, 10, 1986 Císlo má vyjít podle plánu 16. 12. 1986 © Vydavatelství NAŠE VOJSKO, Praha

NÁŠ INTERVIEW

plukovníkem inženýrem Františkem Šimkem, vedoucím oddělení elektroniky ÚV Svazarmu.

3.3

V současné době jsme uprostřed období po VII. sjezdu Svazarmu. Jak hodnotí stav plnění jeho závěrů odbornosti radioamatérství a elektro-

Posouzením celé problematiky plnění závěrů sjezdových dokumentů a to jak VII. sjezdu Svazarmu, tak především XVII. sjezdu KSČ se zabývalo 6. společné zase dání ÚV, ČÚV s SŰV Svazarmu v Hradci Králové 5. června 1986.

Toto zasedání velmi pečlivě a do hloubky analyzovalo dosažené výsledky, ale co je nejdůležitější, vytyčilo i významné à náročné úkoly do budoucna. Mám-li hovořit za naše dvě odbornosti jejichž činnost se navzájem velmi dobře doplňuje a často již i splývá, mohu konstatovat, že jsme udělali užitečné kroky především v podchycení zájmu mladých lidí. To dokumentuje i nejvyšší procento přírůstku mládeže ze všech odborností a obráží se to v rozvoji i výsledcích technické tvořivosti, radioamatérských sportech, poradenské službě, ovládání výpočetní techniky i tvorbě AV programů. Velmi pozitivně hodnotíme podíl radioamatérů na přípravě branců spojovacích odborností. Trvalý nárůst členské základny radioamatérství ve všech dnes již více než deseti základních odvětvích ...

Promin, hovoříš o více než deseti, můžeš je vyjmenovat?

Vím, mnoho lidí si představuje radioamatéra s klíčem či mikrofonem připojeným do více či méně úhledné krabice. která tím, že je připojena k monstru na střeše znemožňuje příjem vysílání rozhla-su či televize, ale dnes není jednoduché radioamatérem být v plném rozsahů a snad to ani není možné. Vždyť posuď sám – konstrukční činnost je základem všeho ostatního (i když někteří z našich členů ji přeskočí či pominou), ale KV provoz má jiná specifika než VKV, at v konstrukci či provozu, zcela jiné nároky přináší spojení přes družice, jiné spojení odrazem od Měsíce, meteorických rojů, využívání řady atmosferických jevů, radiodálnopisné spojení, amatérská televize s pomalým či rychlým rozkladem (SSTV či FSTV) a to nemluvím o konstrukci převaděčů a jejich využívání. A když připočítáme telegrafii, telegrafní víceboj a ROB už jsme nad desitkou.

> V současné době je v radioamatérství registrováno na 40 tisíc a v odbornosti elektronika 38 tisíc členů. Radioamatéří mají velmi dobré výsledky ve státní reprezentaci, odbornosti elektroniky zaznamenávají také rychlý rozvoj. Čím to je?

Řada vynikajících výsledků v provozní činnosti radioamatérů dokumentuje dobré naplňování koncepce radioamatérství. V elektronice máme celou řadu okresů -Bardějov, Bratislava, Č. Budějovice, Domažlice, Hodonín, Chrudim, Galanta, Jablonec n/N, Jihlava, Karviná, Kolín, L. Mi-

plk. inž. František Šimek

kuláš, Nitra, Plzeň, Pov. Bystrica, Praha, Prešov, Prievidza, Příbram, Svidnik, Šumperk, Topolčany, Vyškov, Žďár n/S, Žilina, kde je vytvořén schopný aktiv i materiálové zázemí pro rozvoj této odbornosti. Ve většině okresů pracují na dobré úrovni kolektivní stanice a radiokluby a velmi dobře se rozvíjí i činnost specializovaných základen u ZO pro přípravu talentované mládeže. Zatím však jen v ČSR.

Máme vytvořenou základnu snad nejobětavějších funkcionářů, vyškolili jsme na tisíce odborníků. A zde se dostáváme snad k nejdůležitější otázce, k nejdůležitějšímu úkolu. Tím je více než stoprocent-, ní využití vložených investic. Říci - musíme pracovat s mládeží, s branci, popularizovat činnost organizace a brannou výchovu - to je to nejjednodušši, co lze udělat. Daleko složitější je však nalézt vhodný. typ branně výchovných pracovníků, konkretizovat úkol, pomoci vytvořit podmínky pro potřebný druh činnosti na současné odpovídající úrovni a v neposlední řadě umět jej v pravý čas na správném místě ocenit. Mnohé již bylo řečeno, uděláno. Mnoho však také zůstalo v půli cesty. Někdy nedůsledností, často neznalostí. Informatika je předmětem, který se na školách teprve zavádí. Ale její význam poznalo lidstvo již od svého vzniku, vždyť proč nás rodiče vlastně naučili mluvit a rozumět lidské řečí? Abychom uměli přijímat a předávat informace, ne proto abychom mluvili a nic neříkali. A já si myslím, že v tom je jádro všech dalších problémů. Znám člověka, který dokázal vést kroužek mládeže v oboru výpočetní techniky. Svazarmovský kroužek v domě pionýrů a mládeže. Ani Svazarm, ani SSM mu počítač nepřidělil. Jím vedené děti se k počítači dostaly a naučily se ním pracovat. Nestálo by za to, aby řada těch, kteří chtějí s mládeží pracovat a nemají prostor ani materiál se od něj dozvěděla, jak to udělal? Neumíme vždy dostatečně dobře ukázat možná východiska, předat pozitivní zkušenosti; požádat o radu a radu předat dál. Prostě informovat se na patřičných místech a informovat patřičná místa. Jakoukoliv formou ústní či písemnou, telefonicky, radiem či AV pořadem. Popularizaci skloňujeme ve více než sedmi pádech a často si myslíme, že to za nás udělá tiskový odbor či televize. A umíme to sami, jen o tom mnohdy nevíme.

A co kabinety elektroniky a jejich činnost?

Zde se zvláště potvrdilo, že optimálním řešením metodických center je využít schopného aktivu, prostorové a materiá-

lové zázemí se pak vytvoří snadněji a takovéto zařízení je plnohodnotnější a včasnější než jak tomu bylo při opětovném zrodu krajských kabinetů. Tam nám rozhýbání činnosti trvalo přes značné dotace materiálem i financemi mnohem déle a museli jsme dlouho čelit i takovým názorům, že kabinet je více či méně přehledně uspořádaný sklad drahého materiálu ke kterému má přístup jen několik vybraných jednotlivců. Ale to je za námi a myslím se, že nás čeká období, kdy kabinety budou plnit v plně šíři to, k čemu byly zřízeny. Že v nich budeme školit hlavně instruktory, operátory a další branně výchovné pracovníky, ať z vlastních odborností, jiných odborností či zcela nesvazarmovské funkcionáře, že budou poskytovat metodickou pomoc ZO, klubům a kroužkům, kolektivním stanicím i jednotlivcům.

V kabinetech elektroniky sé více objevuje i výpočetní technika. V současné době je jistým hitem v zájmové oblasti mládeže. Je Svazarm schopen podchytit tento zájem?

Zde je třeba vyjasnit si pojem podchytit. Za podchycení zájmu můžeme považovat i upravené autobusy s instalovanými tzv. televiznimi hrami. My jsme v roce 1983 začali pracovat nejprve s lidmi, kteří znají problematiku výpočetní techniky po technické, programátorské i uživatelské stránce a jejich názorů a zkušeností jsme využili při zpracování nové koncepce rozvoje svazarmovské elektroniky. Vyčlenili jsme na to i prostředky, které naše organizace je schopna poskytnout. Víme, že je to málo, ale musíme hospodařit s tím, co máme, je to obdobné jako v každé domácnosti. V současné době je v naších ZO používáno na 500 počítačů PMD-85 a 200 počítačů jiných typů. Z nich jsme zabezpečovali z našich centrálních dodávek

převázně SAPI-1. Nesmíme opomenout ani mikroprocesorový systém PMI-81. V brzké době bychom rádi dosáhli hranice 1000 ks počítačů ve Svazarmu. Ale snad nejvíce si ceníme faktu, že v současné době se mění i přístup ostatních institucí k problému mládež a elektronika. Za příklad mohu uvést dobře se rozvíjející spolupráci s resortem školství, kde např. Západoslovenský kraj ve spolupráci s námi zajistil techniku a samozřejmě prostory ve školách a Svazarmu nabídl možnost tuto techniku i prostory využívat. Obdobně např. Severočeský nebo Středočeský kraj. To jsou neokázalé přístupy ke konkrétnímu naplňování usnesení vlády ČSSR č. 233 o programu zapojování dětí a mládeže do vědeckotechnického rozvoje. A dnes jsme pověření pomoci pří realizaci programu elektronizace školstvi. Často se ozývají i hlasy zpochbňující náš podíl a vůbec právo na takovou spolupráci a aktivitu. Na to je jediná odpověď. Každý musí odvést ten největší podíl při výchově mládeže. Mládež není jen věcí svazáků, není jen školství či ROH. Je naše společná, takže to není právo, ale povinnost.

V současné době proběhl, již čtvrtý ročník celostátního finále v soutěží programátorů, množství soutěžících i kritika nedostatků na průběh krajských kol neodpovídá tomu, že by o tuto soutěž nebyl zájem. My jsme vděční i za tu kritiku, vždyť je to něco, co je nové; krajská kola proběhla v plném rozsahu teprve letos a učit se musíme stále a všichni.

V říjnu se v Prievidzi konala již osmnáctá přehlídka technické tvořivosti ve Svazarmu. Jak se zde projevilo užití výpočetní techniky, ale zejména mikroprocesorové techniky?

Výsledky a celkové hodnocení ještě nemám k dispozici. Na 400 exponátů však ukázalo rostoucí zájem našich konstruktérű i jejich schopnosti vnikat do problematiky konstrukcí i aplikací mikroprocesorové techniky v řadě oblastí. Jejich zapojení do zlepšovatelského hnutí ocenil i zástupce FMEP. Objevily se i novinky v klasické hifitechnice v oblasti zpracování digitálního signálu, přibyla vysílací, přijímací i měřicí technika. Myslim, že to byl hezký dárek k 35. výročí Svazarmu i důkaz toho, že rozsah naší činnosti je tak široký, že každý, kdo má o elektroniku zájem, o její nejspecítičtější oblasti, nalezne u nás své pole působnosti.

V době, kdy spolu hovoříme, vrcholi připravy 7. plenárního zasedání ÚV Svazarmu, které bude věnováno masovému rozvoji zájmové branné činnosti. Můžeš řici, jaké úkoly v této oblasti čekají obě naše odbornosti?

Predikční činnost jako taková není součástí mé pracovní náplně, ale myslím, že se bez ni neobejde nikdo, kdo má něco ovlivňovat natož řídit. 7. zasedání se bude zabývat zájmovou brannou činností jako celkem. Myslím si, že je třeba zajistit to podstatné, vytvořit podmínky pro zájmovou činnost ve Svazarmu tak atraktivně, aby přilákala další zájemce, zejména mládež. Pokud totiž budeme mít širokou členskou základnu, můžeme na ni v masovém měřítku působit i v oblasti odeově politické a branné. Lze tak i snáze zabezpečit všestranný rozvoj mladých lidí naší socialistické vlasti. Osobně si myslím, že ideově politické a branně výchovné působení, společně se sportovní a dnes zejména moderní technickou zájmovou činností, je to nejdůležitější, co od naší organizace společnost v současné očekává.

Děkuji za rozhovor

rozmlouval ing. Jan Klabal

35 let Svazarmu v okrese Opava

Radioamatérská činnost začala v okrese Opava již před založením Svazu pro spolupráci s armádou jako samostatná odbornost vzniklá na základě činnosti koncesionářů OK, Jejich počet byl však velmi malý a teprve se vznikem Svazu pro spolupráci s armádou, který vnesl do činnosti radioamatérů nové prvky a opřel se o jednotnou koncepci, začala činnost radioamatérů nabývat stále většího významu. Z radioamatérů se v souladu s požadavky/ministerstva národní obrany vytvořily výcvikové skupiny telefonistů-spojařů. Současně se začaly vytvářet kolektivní stanice, aby umožnily podstatně širšímu kolektivu a okruhu členů aktivní vyžití v zájmové radioamatérské činnosti. Jednou z prvních kolektivních stanic v okrese Opava byla kolektivní stanice při základní organizaci Svazarmu Opava, jejímž vedoucím operátorem byl Zdeněk Schneider.

V dalších letech Svazarm obohacoval radioamatérství o nové prvky, zejména-

v oblasti měřící techniky, rozšiřoval se provoz na dosud nevyužívaná pásma. Vedle toho se radioamatéři okresu Opava zapojili i do tehdy nově vzniklé soutěže "Polní den" a do dalších branných soutěží a disciplín. Z původních výcvikových skupin vznikaly postupně kroužky radistů s pevně stanoveným obsahem a programem své výcvikové, technické a branné činnosti. Postupně se rozrostl počet kolektivních stanic, radioklubů a radioamatérských kroužků. Vznikly kolektivní stanice ve Vítkově, Budišově nad Budišovskou, Opavě, Hlučíně.

Po II. sjezdu Svazarmu dochází ke komplexnímu přehodnocení radioamatérské činnosti. Dochází postupně k vytváření okresních a krajských radiokabinetů. V té době byly oblíbenou formou šíření technických znalostí kursy základů radiotechniky. Počet členů zapojených do radioamatérské činnosti neustále rosti. Největší rozmach nastává v radioamatérství po V. sjezdu Svazarmu, kdy dochází k upřesnění místa a úlohy radioamatérské činnosti v celkové činnosti Svazarmu a ke znovuzformování jejího obsahu. Velkou pomoc v té době prokázali radioamatéři při zabezpečení spojových služeb národnímu hospodářství například při žních, živelných pohromách apod.

V současné době pracuje v okrese Opava 6 kolektivních stanic, k těm nejmladším patří kolektivní stanice ZO Svazarmu ve Velké Polomi. Dále je v činnosti 5 radioklubů a 12 radioamatérských kroužků. Celkem je do radioamatérské činnosti v okrese Opava zapojeno 470

radioamatérů, z toho je 20 žen a 100 dětí ve věku do 14 let. K nejaktivnějším klubům radioamatérů patří klub při ZO Svazarmu Opava, při OSP Opava, základní organizace Svazarmu Hlučín, Vítkov a Budišov nad Budišovkou. Vedle provozní činnosti jsou radioamatéři v okrese Opava zaměření na konstrukční činnost, rádiový orientační běh a telegrafii a mezi nové zájmy radioamatérů patři i výpočetní technika. Bohaté zkušenosti mají s výpočetní technikou v radioklubu základní organizace Svazarmu Hlučín, v začátcích jsou v radioklubu základní organizace Svazarmu OSP Opava.

V soutěžích radiotechnické tvořivosti mládeže dosahují radioamatéři okresu Opava již řadu let velmi dobrých výsledků, mohou se pochlubit tituly přeborníků ČSR i ČSSR. Největších úspěchů v této činnosti dosahují radioamatéři z radioklubu a kolektivní stanice OK2RGA základní organizace Svazarmu při OSP Opava podvedením Františka Lupače, OK2BFL.

Radioamatéři okresu Opava navázali velmi úzkou a dobrou spolupráci s Okresním domem pionýrů a mládeže v Opavě i s domy pionýrů a mládeže ve Vitkově, Hlučině a Budišově nad Budišovkou. Domy pionýrů poskytují svazarmovským radioamatérům potřebné prostory a některé vybavení, svazarmovští na oplátku vedou jejich kroužky a zájmové útvary. Společně pak všichni pořádají letní soustředění mladých radioamatérů, kterého se účastní každoročně okolo 30 členů PO SSM a Svazarmu.

- Josef Vilášek

AMATÉRSKÉ RADIO SVAZARMOVSKÝM ZO

Přijetí u předsedy ÚV Svazarmu

Dne 17. září 1986 přijal předseda ÚV Svazarmu genpor. PhDr. Václav Horáček v Praze nejúspěšnější svazarmovské sportovce za rok 1986: Mezi nimi byli také naší medailistě z nedávného III. mistrovství světa v rádiovém orientačním běhu v Jugoslávii. Na snímku vlevo je radioamatérská delegace, která se přijetí u předsedy ÚV Svazarmu zúčastnila (zleva): trenér ZMS K. Souček, OK2VH. ZMS M. Šimáček, OK1KBN, MS R. Teringl, OK1DRT, MS L. Kronesová, OK1KBN, vedoucí oddělení elektroniky ÚV Svazarmu plk. ing. F. Šimek, OK1FSI, místopředseda ÚV Svazarmu plk. ing. J. Kováč, ZMS ing. B. Magnusek, OK2BFQ, ZMS Z. Vondráková, OK2KFK, předsedkyně rady radioamatérství ÚV Svazarmu J. Zahoutová, OK1FBL, ZMS I. Harminc, OK3UQ, a vedoucí trenérského realizačního týmu M. Popelík, OK1DTW. Na snímku vpravo je genpor. PhDr. V. Horáček, předávající odměnu a čestné uznání Lence Kronesové, OK1KBN. -dva

Seminář KV techniky v Roudnici nad Labem

(ke 2. straně obálky)

Nejvýznamnějším a největším seminářem a setkáním radioamatérů v rámci ČSR v letošním roce měl být zářijový seminář KV techniky v Roudnici nad Labem, který uspořádala ZO Svazarmu radioklub OKIKNI z pověření odboru elektroniky ČÚV Svazarmu ve dnech 5. až 7. 9.

Bohužel kvůli organizačním komplikacím nebylo možno semináři zajistit včas patřičnou reklamu v radioamatérském tisku, a tak byl nakonec pouze ohlášen teprve v polovině srpna prostřednictvím ústředního vysilače OK5CRC a vysílačů OK1CRA a OK3KAB. Díky této okolnosti dostal roudnický seminář mezi radioamatéry přezdívku "utajený" a tomu také odpovídala poměrná malá účast: prezentovalo se celkem 150 účastníků včetně rodinných příslušníků, pro něž pořadatelé při-

pravili výlet po roudnických kulturních a přírodních památkách.

Úvodní akcí semináře byl v pátek 5. 9. od 16 do 18 hodin UTC mobil contest, jehož vítězem se stal Vláďa, OKTJIK, před OK1GK a OK1ALQ. Slavnostní zahájení semináře bylo na programu v sobotu ráno a při té příležitosti byly předány ceny a diplomy vítězům mistrovství ČSSR v práci na KV za rok 1985, přeborů ČSR v práci na KV za rok 1985 a OK-DX contestu 1985. Pořadatelé zajistilí pro účastníky semináře řadu zajímavých přednášek s fundovanými lektory, např. "Využití obvodů VMOS v radioamatérské technice" (J. Borovička, OK1BI), "Radioamatérský provoz s využitím mikropočítačů" (L. Fikais, OK1VAT, a kolektiv), "Konstrukce superhetu s keramickými filtry pro začátečníky" (ing. P. Lebduška,

OK1DAE, a V. Lipert, OK1DNQ), "Provoz přes gray line" (RNDr. V. Všetečka, ČŠc., OK1ADM) aj. Přednášky jsou obsažený ve sborníku ze semináře, který byl vydán nákladem 650 výtisků a ješté máte možnost si jej objednat na adrese: Jana Lipertová, OK1UNQ, Záluží 21, 413 01 Roudnice nad Labem. Nezbytnou součástí semináře byla beseda s mládeží, kterou vedl. neúnavný Josef. Čech, OK2-4857, jehož znáte z naší rubriky "AR mládeží".

V radioamatérských pásmech KV i VKV zajišťovala propagaci semináře stánice OK1KNI/p a speciální stanice OK5YLS s vedoucí operátorkou Zdenkou Vondrákovou, OK2BBI. Při příležitosti semináře se sešly k jednání komise KV rady radioamatérství ÚV i ČÚV Svazarmu. Novým vedoucím komise KV při RR ČÚV Svazarmu byl zvolen Jan Sláma, OK2JS.

Roudnický seminář byl tak trochu poznamenán "únavou ze seminářů", kterých bylo v ČSR v letošním podzimu vskutku požehnaně. Týden před "Roudnicí" probíhal populární "Klínovec", v říjnu pak následovaly semináře v Jihočeském, Jihomoravském, Severomoravském a Východočeském kraji. Nicméně aktivitu krajských výborů Svazarmu v tomto směru je nutno chválit, neboť příležitostí, přinichž mají radioamatéři možnost si osobně vyměňovat názory, náměty a zkušenosti, těch není nikdy dost.

V příštím roce plánuje odbor elektroniky ČÚV Svazarmu seminář a setkání pro příznivce techniky VKV. / -dva

SVAZARM

Vedoucí ústřední komise KV RNDr. V. Všetečka, CSc., OK1ADM, dekoruje ing. M. Dlabače, OK1AWZ, zástupce vítězné kolektivky OK1KRG v mistrovství ČSSR na KV 1985

(foto TNX OK2WE)

Obr. 1. QSL stanice HW5QF vysílající při příležitosti 50letého výročí spojení stanic 8AB a 1MO

Obr. 2. QSL stanice SKOCT při SRA – Svenska Radio AB. Tato organizace byla založena ve Švédsku v roce 1919. Obrázek ukažuje první vysílač z let 1921 až 1922

Rádio z dřevěné kolébky

V těchto dnech si radioamatéři celého světa připomínají historické období pokusů o transatlantické spojení na vlnách kratších než 200 m. Významné datum 27. listopadu 1923 připomíná obr. 1. Období pokusů vyvrcholilo spojením Léon Deloy 8 AB a Frederic Schnell – 1MO!

Pokusy probíhaly neúspěšně od února r. 1921. Na jedné straně se snažili Američané, vedení American Radio Relay Legue. Evropu zastupovalo sdružení amatérů pro bezdrátovou telegrafii a telefonii z Francie a Velké Británie. V roce 1922 započaly přípravy v USA již od 26. října. Podél pobřeží bylo instalováno 450 stanic po délce 1920 km. Jejich signály byly zachyceny mimo Francii a Anglii také ve Švýcarsku i Holandsku. Hlavní část pokusù byla dohodnuta na prosinec 1922. V období 12. až 21. prosince bylo vysíláno z USA. Z Evropy opačným směrem pak v době mezi 22. až 31. prosincem. Vlnová délka byla stanovena kolem 200 m. Časový úsek v nočním období byl dohodnut na 00.00 až 6.00 GMT! Výkon stanic měl být maximálně 1 kW.

Evropa poslouchala první. Americké stanice s obrovskými anténními soustava--mi byly slyšet dobře. Například 8AQO

poslouchali v Evropě i na jednolampový přijímač. Při poslechu na superheterodyn bylo možno použít i krátkých antén kolem 20 m. Výbava vysílače stanice 8AQO byla téměř shodná s obr. 2. Mnoho slabších stanic bylo posloucháno na přijímače typu "Reinartz" případně s anténami typu beverage. Fotografie vybavení amerických stanic přinášel časopis QST i časopi-

sy evropské.

Vysílání z Evropy vlastně zajišťovala jen Francie. Připraveno bylo 25 stanic. V této době se ve vysílačích používaly běžné Swattové lampy. Měly žhavení 2,35 A při napětí 7,5 V. Anodový proud byl 45 mA při 350 V. Bylo jich několík zapojováno paraleině pro dosažení výkonu a anodové napětí se zvedalo až na 750 V. Francouzské stanice měly většinou výkon 100 W. Poštovní úřady povolily amatérům v době transatlantických pokusů výkon 1 kW. Mnoho stanic však nepříkládalo úpravám patřičnou důležitost, nebo spíše jejich operátoři neměli vhodné podmínky a též dostatek prostředků. Léon Deloy byl přímo posedlý touhou po spojení s Amerikou. Měl již vysílač o výkonu 400 až 1000 W. Používal čtyři lampy, které snesly 250 W, zapojené vedle sebe. Anodové

napětí mohl používat 2000 až 5000 voltů, ale střídavé o 25 periodách. Zapojení vysílače bylo klasické – mřížkový obvod navázaný induktivně na obvod v anodách s odbočkami pro anténu a protiváhu. Výstupní proud byl až 4,8 A při vlňové délce 195 m. Anténu tvořily tři vějířovité svazky s osmi dosti silnými vodiči a roztaženy byly do pyramidy. Podpěry tvořily body ve výšce 35 m - budova vysoká 25 m a na ní desetimetrové stožáry. Všech 24 vodičů bylo pak vedeno 20 m ve svazku průměru 20 cm k vysílači. Tam byl přiletován ohebný vývod, spletený z osmiměděných smaltovaných vodičů o průměru 0,6 mm. Anténa měla pro vyladění sériový kondenzátor. Podobně komplikovaná byla i protiváha z vodičů na zemí a využita byla i kanalizační síť i rozvod plynu. (Pozor na současné předpisy!)

Veliké problémy příjmu v ÚSA působily úniky, parazitní zázněje, ale též vrčivý signál. V době mezi 26. a 28. prosincem naopak radiotelegrafista na francouzském parníku Janus přijímal signál z Evropy dobře. Nacházel se v ústí řeky Delaware. Používal přijímač s detekční lampou a reakci (zpět. vazbou) a dvěma stupní zesílení nf. Výsledky a pozorování při pokusech dávaly přece jen obrázek o šíření a útlumu krátkých vln. Z atlantické části pobřeží USA byla zachycována větší část zpráv než z pobřeží pacifického asi

v poměru 6:1.

Delka vln, které používal Marconi kolem roku 1903, byla přece jen delší. V roce 1923 pracoval vysílač na Petříně - PRG na vlně 4100 m. Ovšem to je již otázka profesionálních vysílačů s obrovskými

Cesty prvních radioamatérů za úspěchy nebyly vůbec snadné a nelze je porovnávat dnešními měřítky. Velice mnoho by bylo možno napsat o počátcích vysílačů profesionálních, zpočátku vojenských, například o Tour Eiffel. Zajímavý je i pohled do sortimentu, konstrukce a cen radiosoučástek z těch dob. Obvodové řešení přijímačů i vysílačů je úchvatně jednoduché. Pohled na dochované součástky a první přijímače potěší každého radioamatéra i v současné době

Specifické podmínky průkopníků rádia v Československu jsou také velmi zajímavé. Část dějin profesionálního rozhlasu je pěkně podchycena v účelové publikaci čs. rozhlasu "Na vlnách času"

Zpracováno především podle "La T.S.F. Moderne". Lektoroval OK1YG. Moderne".

"Rádio z dřevěné kolébky" je Václav Hlavatý, OK1AYW, z Kralup nad Vitavou. Na snímku je s krystalovým příjímačem z róku 1927 s jednoelektronkovým nf zesilovačem RE144) (lampa s žhavicím napětím 4 V a anodovým napětím 60 V (napájeno z baterii). Vašek je sběratelem historických rádiových zařízení a je členem sekce radiotechniky technickém muzeu v Brně. Ve své sbír-

článku

Autorem

má vedle historické literatury přes 20 továrních výrobků a několik amatérských zařízení z let 1926 až 1930

Amatérske AD (1) A/12

OK1AYW

AMATÉRSKÉ RADIO MLÁDEŽI

Červnové zasedání rady radioamatérství ÚV Svazarmu se konalo v pražském hotelu Axa a mělo slavnostní úvod. Byly předány ceny vítězům soutěže OK-maratón za rok 1985. Na snímku vlevo blahopřeje předseda rady radioamatérství SÚV Svazarmu ing. E. Môcik, OK3UE, Pavlu Kupilíkovi, OK1IMP, zástupci kolektivní

stanice OK1KQJ; na snímku vpravo vitězové všech kategorií OK-maratónu (zleva): P. Kupilík za OK1KQJ; F. Bukovinský, OK3-28011 (kat. RP nad 18 let), R. Brožovská, OK1-30571 (kat. YL), L. Végh, OK3-27707 (kat. RP do 18 let) a R. Thomas, OL1BKO (kat. OL).

Výzva ke spolupráci

Aleš, OK2,18728, který se zabývá předpovědí šíření elektromagnetických vln, mne požádal o zveřejnění následující výzvy

"Na základě vznikající podkomise pro studium ionosférického šíření rádiových vln při komisi KV rady radioamatérství Svazarmu ČSSR žádám o spolupráci všechny RP, OK a OL při pozorování krátkého skoku (short skip), jinak výskytů mimořádné vrstvy Es. Tato pozorování denních situací jsou velmi zajímavá a v tomto smyslu také hledáme schopné aktivisty z řad posluchačů, OK a OL.

Poslechy slouží ke studiu výskytu sporadické vrstvy E a k rozborům ve specializaci fokusačních efektů. Jedná se o úplně běžná pozorování signálů, přicházejících z okrajové a střední Evropy, v pásmech krátkých vln na kmitočtech 14, 18, 21, 24 a 28 MHz. V pásmech velmi krátkých vln na kmitočtech 50 a 144 MHz.

U vrstvy Es bylo několikaletým pozorováním zjištěno, že její chod je funkčně vázán na takzvanou geomagnetickou poruchu (geomagnetickou bouři) – SSC a zejména na její počátek. Silnější bouře trvají déle, i několik po sobě jdoucích dnů tři i více dnů.

(tři í více dnů).
Předpovědi geomagnetických poruch můžete sledovat vždy v neděli v OK-DX kroužku na 3710 kHz. Tyto předpovědí řídí OK1HH, ing. František Janda z Ondřejova

Prakticky to znamená sledovat pásma 14, 18, 21, 24, 28, 50 a 144 MHz a zapisovat všechna spojení běžných evropských stanic ve dnech geomagnetické poruchy. Odposlechy a spojení budou vyhodnocovány rozborem za účelem sledování takzvaných fokusačních efektů na delší časové základně ze všech pozorovaných materiálů.

Příklad běžného zápisu:

			o Lupise.	
Date	MHz	UTC	stn Evropy	WKD -
14. 1.	. 14	1305	DL6TB	F6AFI
	14	1315	DL4SAH -	CLG
	14	1806.	UB5UKH	OK1AMD .
	21	1815	G4UXN ·	HB9MX
	28	1824	SM7GN -	I2NXB
	- <i>28</i>	1850	UC2ODN	HA6KHS
	50	1856	G4MAD.	CLG/RST 239
	144	1859	F6KMN	JUA3MU

Protože celá problematika je velice složitá pro obyčejný popis, vaše odposlechy a spojení soustřeďte na stanice Evropy "krátkého skoku". Evropské stanice nelze přehlédnout, jsou zpravidla velice silné.

Deníky zasílejte jednou za měsíc nebo i častěji, to v případě, že budete mít pozorování více, na adresu: OK2-18728, Aleš Vacek, Husova 121, 664 01 Bílovice nad Svitavou.

Děkuji všem, kteří nám svým pozorováním a záznamy pomohou při studiu ionostérického šíření rádiových vln.

Z činnosti radioklubů

Před časem jsem v naší rubrice psal o obětavé a úspěšné činnosti s mládeží členů radioklubu v Jablonném nad Orlicí pod vedením vedoucího operátora kolektivní stanice OK1KOK a převáděče OK0F, Josefa Soukupa, OK1VIU. Josef Soukuposlavil 16. listopadu 1986 50. narozeniny

Kolektiv OK1KOK děkuje Josefu Soukupovi za dosavadní úspěšnou činnosta vedení. Do dalších roků mu přejí společně se mnou a s redakcí AR hodné zdraví a elánu k další obětavé činnosti ve prospěch mládeže a celého kolektivu.

Josef Soukup, OK1VIU, vedoucí operátor OK1KOK

Nezapomeňte, že . . .

... Československý telegrafní závod bude probíhat v pátek dne 9. ledna 1987 ve třech hodinových etapách v době od 17.00 UTC do 20.00 UTC v pásmech 1860 až 1950 kHz a 3540 až 3600 kHz telegrafním provozem. Závod je ve všech kategoriích započítáván do mistrovství ČSR a SSR v práci v pásmech KV a v kategoriích posluchačů a OL také do mistrovství. ČSSR v práci na pásmech KV. Deníky ze závodu je nutno poslat nejpozději do 14 dnů po závodě na adresu: Radioklub OMEGA, pošt. schr. 81412, 814 12 Bratislava.

další kolo závodu TEST 160 m búde probíhat v pátek dne 30. ledna 1987 v době od 20.00 do 21.00 UTC

Těším se na vaše další dopisy. Pište mi na adresu: Josef Čech, Tyršova 735, 675 51 Jaroměřice nad Rokytnou.

73! Josef OK2-4857

Snímkem se vracíme k loňské Soutěží mládeže na počest 40. výročí osvobození naší vlasti. Dlouholetý předseda zkušební komise rady radioamatérství ČÚV Svazarmu L. Hlinský, OK1GL, blahopřeje mladým radioamatérům k dosaženým úspěchům v soutěži

PRO NEJMLADŠÍ ČTENÁŘE

5 NÁPADŮ K NOVÉMU ROKU

Už několikrát nás čtenáři rubriky R 15 žádali, abychom se vrátili k "tradici" drobných nápadů, které se mohou stát podněty ke zhotovení malého dárku k novému roku. Je pravda, že se tyto jednoduché nápady obtížně získávají. Mnohé z těch konstrukcí, které během roku dostaneme, jejich "autoři" doslova opsali z jiných časopisů, často i z nedávného čísla. Amatérského radia! Jen občas je návod zajímavý – třeba tím, že je známé a zveřejněné zapojení sice doslova opsáno, ale jeho využítí má v sobě něco nového, dosud nepopsaného

Mezi podobné můžeme zařadit i následujících pět konstrukcí. Budeme rádi, když se vám alespoň jedna z nich zálíbí. Snad potěší vaše mladší sourozence či rodiče, když jim výrobek sestavíte a předáte, až budete vítat nový rok.

Proto jsme v tomto čísle Amatérského radia přerušili seriál námětů "To už tu přece jednou bylo ..." – ale upřímně řečeno, pět následujících nápadů (poplachové zařízení, automatické zalévání květin, výroba univerzálních desek s plošnými spoji, blikající stromeček, rozsvícení žárovky pohybem ruky) jste asi v trochu jiné upravě někde viděli – snad je v nich však přece jen o nějaký ten malý nápad

Poplachové zařízení

Konstrukce byla zpracována na táboře AR jako jeden z možných modulů ke stavebnicí Logitronik 01. Součástky, které nejsou v uvedené stavebnicí, umístíte na univerzální desku s plošnými spoji a propojíte se stavebnicí podobným způ-

sobem, jako bylo popsáno v článcích Logitronik umí víc (AR 5 až 8/85).

Poplachové zařízení může sloužit k zajištění objektu tábora proti "vpádu" nevítaných návštěvníků. Stačí přerušit kontakt K (natažený drát, dveřní kontakt)
nebo zastinit fotorezistor Ri (obr. 1). Tím
se uzavře tranzistor T1, ten sepne tranzistor T2, pracujíci ve spínacím režimu. Na
vstupu klopného obvodu R-S je v tomto
případě log. 0. Klopný obvod se překlopí
a sepne multivibrátor, který generuje tón
asi 1 kHz. Signál je zesílen zesilovačem
v Darlingtonově zapojení na úroveň, dostatečnou pro vybuzení reproduktoru.

Poplach je možno zrušit teprve po odstranění příčiny (např. zavřením dveří) a to tlačítkem STOP. Tím se překlopí obvod R-S zpět do klidové polohy.

Zdeněk Bolard

Automatické zalévání květin

Také tento nápad byl zamýšlen jako modul k Logitroniku 01. Na vstupu přístroje (obr. 2) jsou hroty A, B, které jsou zastrčeny do půdy zavlažované rostliny ve vzdálenosti asi 5 mm od sebe. Je-li půda vlhká, protéká jí dostatečný proud pro otevření tranzistoru T1, který udržuje klopný obvod R-S v klidovém stavu. Zmenší-li se vlhkost půdy pod určitou mez, tranzistor T1 se uzavře a zaktivizuje klopný obvod; výstupní úroveň log. 1 umožní sepnutí tranzistoru T3. V jeho kolektorovém obvodu může být připojeno relé nebo miniaturní čerpadlo (relé může spínat větší proudy).

Přívod vody zavlážuje půdu, jejíž odpor se začne opět zmenšovat. Nejprve sepne tranzistor. T1; při podstatném zavlážení půdy v květináči pak sepne i tranzistor T2; který opět uvede klopný obvod R-S do klidového stavu. Tím se uzavře tranzistor T3 a zavlažování je skončeno.

Deska s plošnými spoji je na obr. 2a. **Zdeněk Bolard**

Výroba univerzálních desek s plošnými spoji

Univerzální desku s plošnými spoji pro předchozí konstrukce lze velmi jednoduše a rychle zhotovíť následujícím postupem. Po obvodu pevného dřevěného rámu zatlučte v pravidelných vzdálenostech podle obr. 3 hřebičky a pak rám vyplette měděným drátem či silonovým

Obr. 1. Poplachové zařížení

- Obr. 2. Autómatické zalévání květin

Obr. 2a. Deska s plošnými spoji U54 modulu

Obr. 3. Zhotovení univerzálních desek s plošnými spoji

Obr. 4. Uspořádání pro stříkání laku

vlascem podobně, jako tenisovou raketu. Pod tuto mřížku položte vyčistěnou desku kuprextitu tak, aby se nedotykala mřížky (vzdálenost volte 1 až 2 mm). Dbejte na to, aby byla deska ve vodorovné poloze. Ze vzdálenosti asi 80 cm nastříkejte desku přes mřížku lakem z rozprašovače. Při stříkání stačí malá vrstva laku – rozstříkovací nádobkou nepohybujte, stříkejte z jednoho místa! Mezi nástříky počkejté, až předchozí vrstva zaschne. Nesmíte samozřejmě mřížkou ani deskou pohnout (obr. 4).

Potřebujete-li po stranách nepřerušované pásy měděné fólie, zakryjte střed desky a přestříkejte ještě okraje. Po důkladném zaschnutí vyleptejte desku a natřete ochranným lakem.

Rám pro tuto práci lze také svařit z očelových profilů a pro vlasec vyvrtat po obvodu díry. Ing. Jaroslav Kavalír

Blikající stromeček

K tomu, aby žárovky na vánočním stromku nepravidelně blikaly, není nutné použít složité obvody s integrovanými součástkami. Pro zapojení podle obr 5 potřebujete napopak součástku, kterou najdete spiše zapomenutou na dně šuplíku – bimetal, dvojkov:

Bimetalové dvojkové pásky bývaly umístěny vé svazcích kontaktů telefonních relé (poznáte je snadno – kolem kontaktu je na izolační podložce navinuta vrstva izolovaného odporového vodiče) a sloužily k ochraně telefonního sytému – když byl jimi procházející proud příliš velký pásek se teplem odporového vinutí prohňul a rozpojil kontakt a tím celý proudový okruh.

Obr. 5. Schéma zapojení (dvou) bimetalových přerušovačů

Obr. 6. Umístění bimetalového pásku nad mikrospínačem (tlačítkem)

Obr. 7. Deska s plošnými spoji U55 pro pět obvodů žárovek. Bimetalové pásky jsou přišroubovány k izolačnímu můstku, připevněnémů k základní desce dvěma distančními sloupky

Aby se prodloužila doba opětného seobvodu žárovek na stromečku, umístěte bimetalový pásek tak, aby tlačil na tlačitko libovolného mikrospínače (zapojte rozpinaci kontakt!) - obr. 6. Neni to sice nútné, avšak bimetalový pásek se po přerušení proudu opět rychle ochladí a světlo žárovek by se jen "mihotalo" Vinutí všech bimetalových pásků můžete připojit přes spínač S - je-li tento spínač rozpojen, svítí žárovky trvale.

Počet žárovek, napájecí napětí a způsob provozu si zvolite sami podle ziskaných bimetalových pásků. Bývá na nich obvykle vytištěn údaj (např. 600, 300 apod. - odpor vinutí v ohmech). V našem

prototypu jsme použili střídavé napětí 24 V a vždy dvě série propojené žárovky pro 12 V. Mikrospinače jsme získali z klávesnice staršího stolního kalkulátoru.

Bimetalové pásky, mikrospínače (nebo rozpínací tlačítka) a svorky pro připojení žárovek jsou na desce s plošnými spoji, jejíž část (pro pět obvodů žárovek) je na obr. 7 - rozšířením desky nebo propojením několika desek získáte přerušované napětí pro libovolné množství žárovek.

Protože rozdílný odpor vinutí bimetalů vlákem žárovek a různá "tuhost" tlačítek se jen náhodou "sejdou" tak, aby byly časové konstanty dvou obvodů stejné, budou žárovky blikat nepravidelně. -zh-

žárovky pohybem Rozsvícení ruky

K tomuto výrobku je připojena anténa dlouhá 30 cm (obr. 8). Výstup tranzistoru MOSFET je veden na jednoduchý zesilovač. Žárovka reaguje na elektrické pole již při pouhém pohybu nějakého předmětu ve vzduchu – nejlépe jde-li o předmět z hmoty snadno se elektrizující. Potenciometr 10 kΩ nastavime tak, aby svítila, ale ne na maximum (středně slabé).

Obr. 8. Rozsvícení žárovky pohybem ruký

Zhasnutím či větším rozsvícením žárovka indikuje intenzitu elektrického pole.

Při pájení omotejte nožky tranzistoru MOSFET tenkým nelakovaným drátkem. Po připájení tranzistoru připojte anténů, odmotejte drátek a připojte napětí. Antény se pokud možno nedotýkejte, aby se nezničil tranzistor KF520 statickým nábojem, který může vzniknout, máme-li na sobě oděv z plastických hmot.

Jiří Družil

Výsledky soutěže Tranzistorová štafeta

Tak už je ten maratón za námi. Jak pro vás, účastníky soutěže, tak pro autora, který vyhodnocoval vaše odpovědi, tak pro organizátora, který registroval vaše odpovědi a zasílal vám součástky podle toho, kolik správných "bodů" jste získali.

Když RNDr. V. Brunnhofer připravoval lekce a otázky Tranzistorové štafety, měl obavu, že snad nikdo neodpoví. A skutečnost? 506 soutěžících, kteří v průběhu soutěže (od října 1985 do června 1986) zaslali celkem 1331 dopis! Pravda, ne každý dopis, ne každá odpověď "bodovala" – např. 7 odpovědí zaslali starší čtenáři, kteří podle propozic nemohli soutěžit. 48 přihlášených neuvedlo datum narození a 72 odpovědí jsme dostali po termínu (mnohdy proto, že soutěžící zaslal svůj lístek na nesprávnou adresu).

Za otázky jednotlivých lekcí bylo možné získat celkem 28 bodů, žáci základních škol mohli dostat ještě pět mimořádných bodů za včasné odevzdání soutěžního výrobku soutěže o zadaný radiotechnický výrobek (hodnocení této soutěže bylo v minulé rubrice R 15) - tedy celkem 33 body. Tento nejvyšší počet nezískal nikdo, protože i ti, kteří mimořádné body za výrobek získali, ztratili nějaký ten "bodík" nesprávnými odpověďmi.

Jak ukazuje přehled nejúspěšnějších, byli však mnozí soutěžící velmi blízko k nejvyšší metě – zde je pět prvních:

Burian Rostislav, Vítkov 30 bodů, Marček Milan, Žilina 30 bodů. Tamajka Marek, Trnava 30 bodů, Urban Pavol, Dolný Kubín 30 bodů, 27 bodů. Vadila Pavol, Vydraň

Ani pro ostatní, kteří se umístili na dalších místech, nebyla soutěž bez zajímavosti. Vždyť na adresy soutěžících odeslali organizátoři 144 zásilek destiček cuprextitu, 99 kompletů rezistorů, 60 kompletů kondenzátorů, 32 sáčků s proměnnými rezistory, 5 kompletů s tranzistory a diodou, 5 integrovaných obvodů MH7410 – to vše pro zhotovení metronomu, k němuž všichni dostali hned s první zásilkou tištěný návod.

Ne vždy byly ovšem součástky rozmě-rově nejmenší, některé dokonce chyběly. Na tuto možnost jsme v propozicích upózorňovali. Jenže: propozice si někteří soutěžící přečetli jen letmo. Dokazují to nejrůznější dotazy a připomínky

V této době přípravujeme další, tentokráte Integrovanou štafetu. Už teď vám proto doporučujeme, abyste si dobře promysleli podmínky této soutěže - pokud vám některá podmínka nebude vyhovovat, zkuste svoje znalosti a štěstí v soutěžijiné. V průběhu soutěže přece nemůžeme propozice měnit!

Před poslední lekcí Tranzistorové štafety zveřejnil autor soutěže správné odpovědi – kromě těch posledních. Protože soutěžící nedostávali informace o správnosti svých odpovědí, porovnejte si je měly by znít asi takto:

Odpověd č. 26: Tranzistory KC509 a KC149 mají stejný čip, rozdíl je v zapouzdření (KC509 kovové pouzdro, KC149 plastové pouzdro). Odpověd č. 27. c) – lepší chlazení. Odpověd č. 28. b) – kolektor je spojen s pou-

Blahopřejeme vítězům a všem, kteří vytrvali. S těmi mladšími se jistě setkáme u lekci Integrované štafety a zatím nezapomeňte na termín letošního ročníku soutěže o zadaný radiotechnický výrobek, tj. 15. květen 1987. Propozice a náměty byly v R 15 Amatérského radia č. 9/86.

A/12 Amatershe! 1 1

Z MSV Brno po osmadvacáté

Účast více než 2500 vystavovatelů z 30 zemí na letošním mezinárodním strojírenském veletrhu v Brně svědčí o mímořádném zájmu o tuto tradiční akci. Téma zvýrazněného oboru – elektronizace ve strojírenství – je v současné době zvlášť aktuální. Vystavené exponáty ukázaly, jakých výsledků jsme v elektronice dosáhli, a umožnily vzájemně porovnat stav této techniky u nás a v zahraničí. O tom, že i náš průmysl se může pochlubit úspěšnými výsledky, svědčí nejen počet získaných zlatých medailí (25 z celkového počtu 45), ale i výše obchodních kontraktů, uzavřených v Brně (za prvních pět dnů veletrhu to bylo 37,4 miliardy

Obr. 1.

Obr. 2.

Obr: 3.

Obr. 4.

Ze socialistických států měla letos největší účast NDR, po ní PLR a SSSR; z ostatních zemí NSR, Rakousko a Švýcarsko. O zvyšujícím se zájmu zahraničních vystavovatelů svědčí podstatné rozšíření výstavní plochy expozic např. SSSR, NSR a dalších statů, zvýšení počtu vystavovatelů z Velké Británie z loňských 120 na letošních 180 firem, stejně jako např. fakt, že řada rakouských zájemců o veletržni účast v Brně již výstavní plochu nezískala. Také účast návštěvníků byla v letošním ročníku jednou z největších.

Typickým příkladům úspěšného podílu elektronive strojírenství je věnována barevná strana obálky AR, v minulém čísle jsme přinesli několik ukázek výrobků, oceněných zlatou medailí. V tomto článku býchom vás chtělí seznámit blíže s některými zajímavými výrobky elektronického průmyslu, vystavovaných na veletrhu.

Nejširší uplatnění má elektronika v měřicí technice. Ze základních měřicích přístrojů vystavoval koncern TESLA Brno přistroje řady 500; na multimetr PU 510, s jehož obrázky se již naší čtenáři v AR setkali, se již těší celá řada zájemců i z řad amatérů. Počítáme-li mezi základní měřicí přístroje i oscilo-skopy, můžeme zde uvést i další výrobky téhož koncernu - typy BM 621 a BM 550 (obr. 1), které svým novým vzhledem - designěři zvolili pro tutořadu přístrojů velmi elegantní kombinaci hnědé a béžové barvy - upoutávaly velkou pozornost.

V expozici NDR bylo možno získat informace o novince, zajímavé pro amatéry. Je to třiapůlmistný číslicový multimetr (LCD) typu G-1004.500 (obr. 4). Má vstupní odpor 100 MΩ, měří ss a st napětí od 100 µV do 1000 V a proud 100 nA až 10 A, odpor 0,1 Ω až 20 MΩ; s jednou sadou napájecích článků (6× R6) je doba provozu 250 hodin. V NDR by se měl objevit na trhu v příštím roce.

Velký sortiment multimetrů předvedla na MSV kromě jiných přístrojů - známá firma BBC (Brown Boveri) Goerz Metrawatt. Kromě analogových multimetrů nabízela ve své nové řadě i různé typy digitálních (LCD) přístrojů v klasickém tvaru (obr. 2) nebo v "otvíracím" provedení, u něhož je displej vestavěn v odklápěcím víku (obr. 3). Pro naše zájemce je zajímavá skutečnost, že přístroje jsou dostupné v prodejní sití PZO Túzex. Pestrá byla i nabídka zapisovačů a registračních přístrojů uvedeného výrobce.

Když jsme se již zmínili o osciloskopech, uvedme aspoň jednu ukázku ze sortimentu špičkového světového výrobce Tektronix. Na obr. 5 je typ 2455, přenosný mikroprocesorem řížený čtyřkanálový os-ciloskop do 250 MHz, doplněný čítačem (měřičem kmitočtu) a digitálním multimetrem, schopný zapojení do komplexních měřicích systémů. Výrobce na něj poskytuje záruku tři roky.

Přístroje nejen k měření, ale i řízení a regulaci teploty, patřící k nejlepším na světě (o čemž svědčí

Obr.

Obr. 8

Obr. 9.

Obr. 10.

Obr. 11.

Několik přístrojů, představujících nejen zajímavé; ale také nepostradatelné aplikace elektroniky jak pro výrobu, tak pro laboratorní práci, si mohli návštěvníci prohlédnout ve stánku sdružení brit-ských výrobců UNIEXPORT. Na obr. 8 je přenosný ultrazvukový přístroj na zjišťování trhlin materiálů od kovových až po plasty. Využívá se nejvíce v automobilovém, petrochemickém, leteckém a strojírenském průmyslu. Vyrabí jej firma Baugh and Weedon pod typovým označením Ten-eleven SG. V téže expozici byla předváděna i nejnovější verze zapisovače přechodových jevů THORN EMI Datatech SE 2570. Umožňuje nejen záznam rychlých jevů do paměti a později na diskovou jednotku, ale i jeho další zpracování (integraci, vyhlazování signálu nebo selekci jeho části apod.). Systém je stavebnícový do 32 kanálů. Na obrazovce v obr. 9 je nabídka menu, z nějž volí obsluha pomocí "myší" ovládané-

Z oblasti sdělovací techniky byly zajímavé mj. ukázky dvou měřicích přistrojů. Na obr. 10 je přistroj pro měření úrovně signálu v pásmech TV a rozhlasu VKV z podniku VEB Radio und Fernsehen Karl--Marx-Stadt v NDR. Pracuje s normami OIRT a CCIR. může být napájen i ze zdroje napětí 12 V a je cenným pomocníkem pracovníkům TV servisu. Měřič síly pole pro kmitočtový rozsah 9 kHz až 30 MHz (obr. 11) byl vystavován ve stánku rakouské firmy ELSINCO. Vyrábí jej japonský výrobce Anritsu pod typovým označením ML428B. Velkou pozornost návštěvníků budila souprava pro družicový příjem v expozici MLR. Na obr. 12 je jedno provedení anténní části této

Videotechnika byla dominující nabídkou ve stánku SONY. Z exponátů jsme pro vás vybrali ukázku dvou TV kamer: na obr. 13 je miniaturní "jednočipová" kamera DXC-102/102P se snímacím-prvkem CCD pro barevný obraz. Rozměry jsou patrné ze srovnání s kuličkovou tužkou, hmotnost je (bez objektivu) asi 80 dkg. Jednodušší standardní provedení s označením DXC101/101P je kratší asi o 5 cm a váží 55 dkg. Kamera pracuje od minimálního osvětlení 30 luxů. Na obr. 14 je "tříčipová" kamera BTV. Optický obraz se rozkládá na tři složky, každá z těchto složek je snímána samostatným obrazovým snímacím prvkem CCD s rastrem 500 × 582 bodů na ploše čipu 6,6 × 8 mm. Kamera splňuje nejvyšší nároky pro profesionální činnost a je vhodná zejména pro natáčení v terénu.

Elektronika má důležitou úlohu v péči o životní prostředí. Na obr. 15 je ukázka jedné aplikace z této oblasti. Přístroj na snímku je mikroprocesorem řízený systém pro analýzu plynů MSI 2000P, umožňující měřit obsah kyslíku kysličníku uhličitého uehlnatého, siřičitého a kysličníky dusíku, i některé důležité fyzikální konstanty vzduchu. Použití moderních součástek umožnilo zkonstruovat tento přístroj, sdružující nejen měřicí obvody, ale i výpočetní vyhodnocovací systém a tiskárnu do kompaktního celku, umístěného i s příslušenstvím a napájecím zdrojem v kufríku o rozměrech asi 30 × 50 × 16 cm a hmotnosti 9,5 kg.

Öbr.

Obr. 13

Na závěr ještě snímek z expozice stálého každoročního účastníka MSVB, největšího výrobce elektrochemických zdrojů VARTA (obr. 16), který uvedl na trh opět některé nové typy článků a s jehož vyrobky se většina našich čtenářů setkává v každodenním

Úspěšný 28. Mezinárodní strojírenský veletrh v Brně skončil 24. září, zlaté medaile byly rozdány: a můžeme si jen přát, aby stejně úspěšně, ale radějí ještě lépe proběhl i jeho ročník 1987, který se budě konat ve dnech 16. až 23. září příštího roku.

Obr. 16.

AMATÉRSKÉ RADIO SEZNAMUJE..

ZESILOVAC TESL **AZS 218**

Celkový popis

Zesilovač typu AZS 218 je (podle výrobce) rekonstruovaným typem zesilovače Hi-Fi s výkonem 2× 25 W a je prodáván za 3770 Kčs. Vzhledově se příliš neliší od předešlých typů. Na čelní stěně jsou umístěny všechny ovládací prvky. Uprostřed jsou čtyři základní regulátory: hlasitosti, vyvážení, hloubek a výšek. Vlevo pak je tlačítko vypínače reproduktorů, tlačítko šumového a tlačítko hlukového filtru. Nad tlačítky jsou dvě svítivé diody jako kontrolky přebuzení zesilovače. Zcela vlevo je konéktor pro připojení sluchátek, síťový spínač a indikace zapnutí. V pravé části čelní stěny je celkem sedm tlačítkových označených: MUTE, přepínačů, MONO, MONITOR a ďalší tři slouží k volbě vstupů. Funkce bude vysvětlena později. Na zadní stěně jsou tři vstupní konektory pro připojení magnetodynamické přenosky (MG), magnetofonu (TAPE) a jiného zdroje signálu (UNIV). Dále tu jsou dvě zásuvky pro připojení reproduktorů a sítová šňůra.

Technické údaje podle výrobce

MG $2 \times 7 \text{ mV}/47 \text{ k}\Omega$, Vstupy:

TAPE $2 \times 200 \text{ mV/0,5 M}\Omega$,

UNIV 2× 200 mV/0,5 M Ω . REPRO 2× 7,75 V/4 Ω , Výstupy:

(2× 15 W). SLUCH 2× 2,3 V/120 Ω,

MAGN $2 \times 0.4 \text{ mV/1 k}\Omega$

40 až 16 000 Hz ±1 dB\ Kmit. char.:

(lineární vstupy). 40 až 16 000 Hz ±2 dB

(magnetodyn. přenoska). 100 Hz min. ±10 dB,

10 kHz min. ±10 dB

40 Hz (-10 dB). 16 kHz (-10 dB). Filtr šumu: Filtr hluku:

Odstup ruš.

Korekce:

napětí: 70.dB zeslabení o 20 dB. Mute.

Napájení: 220 V/50 Hz. max. 80 W. Příkon: Rozměry: 46 × 39 × 9 cm.

7,6 kg. Hmotnost: --

Funkce přístroje

I když základní funkce plní tento zesilovač bez závad, je jeho konstrukce i provedení zklamáním. První překvapění zažije majitel, když zesilovač s označením 2× 25 W vybalí z krabice. Na dně zesilovače je totiž nalepen štítek velkých rozměrů, který mu sdělí, že "menovitý výkon zesilovače je 2× 15 W a trvalý výkon 2× 3 W, jak vyplývá z přiloženého snímku. Ze v otázce výstupních výkonů panuje celosvětově značný zmatek, to je již známo. Zde jsou však všechny dosavadní způsoby překonány, protože udávat maximální výstupní výkon v rozmezí 3 až 25 W - to tu snad ještě nebylo. Takový rozpor by měl patrně výrobce zákazníkům řádně vysvětlit, aby věděli, co si vlastně kupují,

Změřil jsem proto výstupní výkon způsobem, který považují za rozumný a poctivý – tedy současným vybuzením obou koncových stupňů do jmenovité zátěže pro zkreslení výstupního signálu 1 % a naměřil 2× 18 W. Přečtu-li si však štítek na rubu přístroje, nemohu se zbavit obavy, že kdybych takto naplno hrál na zesilovač delší dobu, patrně ho poškodím a vzhledem k upozornění budu mít pro-

blémy se záruční opravou. To ovšem není jediné překvapení, které

tento přístroj skýtá. Každý, kdo má nějaké zkušenosti s nízkofrekvenčními zesilovači, by předpokládal, že přepínač LIN ruší fyziologický průběh regulace hlasitosti tak, jak to bývá běžné. Omyl! Tento zesilovač totiž fyziologický regulátor hlasitosti vůbec nemá (ačkoli použitý dvojitý potenciometr má dokonce tři odbočky) takže není co zrušit. Aby byl tento přepínač využit, tak jsou jím jednoduše odpojovány

korekce hloubek a výšek. Na zesilovači je tlačítko s označením MUTE. I když toto označení nevystihuje plně jeho funkci (snad by mělo být spíše označeno INTIM nebo podobně), jeho funkce je rovněž podivná. Toto tlačítko má sloužit k okamžitému přepojení zesilovače na tichý poslech a dosud byla vždy u zesilovačů s tímto či podobným tlačítkem upravována kmitočtová charakteristika tak, že byly zdůrazněny hloubky (pří-padně i výšky), jak to fyziologicky tichý poslech vyžadoval. Nikoli však u tohoto přístroje. Žde se reprodukce prostě zeslabí o 20 dB bez jakéhokoli zásahu do kmitočtového průběhu. Zdá se mi, že výrobci tohoto zesilovače se rozhodli nebrat fyziologii slyšení vůbec v úvahu, což je, podle mého názoru, zcela zcestné.

Zesilovač obsahuje dva filtry, jimiž lze, v případě potřeby, upravit vlastnosti zesilovače. Je to jednak filtr potlačující šum, jednak filtr potlačující hluk. Zatímco kmitočtový průběh hlukového filtru by bylo možno přijmout, neplatí to rozhodně o šumovém filtru, jak vyplývá z měření.

Filtr hluku Filtr šumu -1 dB1 kHz 0 dB 1 kHz 500 Hz -0,5 dB 250 Hz -1,5 dB 125 Hz -3,5 dB 2 kHz -2 dB 4 kHz -5 dB 8 kHz -9 dB 16 kHz -15 dB 62,5 Hz -8 dB 31 Hz -16 dB

Průběh šumového filtru, jak vidíme, stěží dosahuje ve slyšitelném pásmu směrnice -6 dB/oktávu, takže spíše připomíná tónovou clonu.

Velice nejasná je funkce, označená na zesilovači jako monitorování. V základním tištěném návodu není o využití této funkce ani slovo, zato je do návodu vložen čtyřiazyčný strojopis, který monitorování sice popisuje, ale dosti záhadně. Citují například "v pripade nezatlačenia tlačidla je odpočúvaný len signál privádzaný na záznamovú hlavu". Abych to pochopil, zkusil jsem sousední německý text, kde si však překladatel zase plete záznamovou a reprodukční hlavu, přičemž jednu nazý-vá "Sprechkopf" a druhou "Aufnahme-kopf" – což je totéž (pojem Wiedergabekopf je mu zřejmě neznámý), takže zmoudřet nelze ani zde. Anglická verze se zdá být správná a podle ní se můžeme poněkud orientovat. Dočteme se, že magnetofon musí být se zesilovačem propojen pětižilovou šňůrou zapojenou na zesilovači do vstupu TAPE. A dále, že monitorování funguje při zvoleném vstupu MG (tedy magnetodynamická přenoska) nebo UNIVERZÁL. Nikde však nenajdeme nic o tom, kam připojit druhý konec této šňůry na magnetofonu.

Abychom mohli záznam vůbec uskutečnit, je naprosto nezbytné zasunout ho do magnetofonového konektoru RADIO. Uvažují pochopitelně tuzemský tříhlavový magnetofon B 115 či B 116. Odtud ovšem monitorovat v žádném případě nelze, protože na žádné z jeho dutinek není v okamžiku záznamu výstupní signál. Můžeme na magnetofonu sice použít konektor s označením MONITOR, pak ovšem zdroj nf signálu musíme připojit přímo do mag-

KLÁVESOVÝ SYNTEZÁTOR S ČÍSLICOVĚ ŘÍZENÝM OSCILÁTOREM

Ing. Vlastimil Stejskal

Současnou hudbu si bez syntezátorů, vocodérů, harmonizérů, syntetických bicích a ostatních elektronických nástrojů nelze vůbec představit. Staly se novou kvalitou v hudební tvorbě a zdaleka již nejsou pouhými samoúčelnými efekty jak se zpočátku zdálo. Následující příspěvek popisuje klávesový jednohlasý syntezátor, který, přesto že byl navrhován s ohledem na omezené amatérské možnosti, je zvukově srovnatelný například se známým syntezátorem Micromoog. Vzhledem k tomu, že neexistuje žádná normalizovaná česká terminologie, jsou pro všechny funkce a názvy zcela záměrně použity běžné a v praxi zcela vžité zkratky z anglické syntezátorové terminologie. Vymýšlet české novotvary namísto vžitých označení by bylo nejen samoúčelné, ale především matoucí.

Blokové zapojení

Na obr. 1 je základní blokové zapojení syntezátoru, který byl koncipován-jako jednohlasý s jedním číslicově řízeným oscilátorem DCO (digital controlled oscillator). Ten byl vybrán proto, že na rozdíl od napěťově řízeného oscillátoru je v amatérských pod-mínkách snáze vyrobitelný.

Z klaviatury nástroje, která pracuje dynamickém režimu, se odebírá informace o stisknutí klávesy, kterou se nastavuje DCO na příslušný tón a současně se z ní odvozuje spouštěcí impuls pro obvody LFO a AR. Signal, který DCO produkuje, je dále veden do bloku s názvem DOUBLER, kde se k němu vytváří tón o oktávu nižší a může se s ním v libovolném poměru směšovat. Z doubleru postupuje signál do napětově řízeného filtru VCF (voltage controlled filter), kde se v největší míře vytváří zabarvení tónu. Signál postupuje dále do napěťově řízeného zesilovače VCA (voltage controlled amplifier), kde se vytváří amplitudová obálka. Odtud signál pokračuje na výstupní konektor.

Ke kmitočtové, spektrální a amplitudové modulaci slouží pomaloběžný oscilátor LFO (low frequency oscillator) a dvojice generátorů obálky AR (attack-release). Pomocí LFO můžeme rozmítat jednak v DCO kmitočet tónu, jednak v VCF jeho spektrální charakter a konečně jím můžeme (v režimu AUTOREPEAT) spouštět ob-

vody AR 1 a AR 2. Dvojice obvodů AR vytváří příslušné napětové obálky pro obvody VCF a VCA, ve kterých se, jak již bylo řečeno, vytváří spektrální a amplitudové obálky.

DCO

Na obr. 2 je úplné zapojení číslicově řízeného oscilátoru DCO. Jako zdroj taktovacího kmitočtu byl použit obvod MHB4046, z něhož je využíván pouze napěťově řízený oscilátor. Kondenzátorem C101 a rezistory R113 a R114 je nastaven střední kmitočet $f_0 = 561.3$ kHz na němž obvod kmitá.

Na vývod 9 obvodu je přiváděno řídicí napětí. Kmitočet je řízen trimry R101 a R104 (hrúbě a jemně), dále-potenciometrem P1 (TUNE), který umožňuje přeladovat celý nástroj, pak potenciometrem P3 (LFO MOD), kterým přes C1 přivádíme modulační napětí z LFO a konečně potenciometrem P2, zapojeným ve funkci PITCH BEND, což je ono kmitočtové "ohýbání" tónu během hry. Diody D101 až D104 vytvářejí střední neaktivní zónu u potenciometru P2, kdy je kolem střední polohy potenciometru v malém rozsahu nulové rozlaďovací napětí. Trimr R109 slouží k nastavení rozsahu rozladění.

Taktovací kmitočet je z vývodu 4 101 veden přes hradla 1010d a 1010a na čítač 104, který vytváří čtyři adresové bity pro adresování multiplexerů 102 a 103 (obr. 3). Jak již bylo řečeno-

Obr. 1. Základní blokové schéma syntezátoru

netofonu (magnetodynamická přenoska je pak bohužel nepoužitelná) a monitorujeme přepínáním knoflíku SOURCE-TAPE na magnetofonu. Tlačítko monitoru na zesilovači je pak ovšem zcela k ničemu a pro propojení s magnetofonem musíme použít jeho vstup UNIVERZÁL. Jak to výrobce vlastně myslel, zůstává další záhadou.

Vnější uspořádání přístroje

Jak již bylo řečeno, ani ve vnějším provedení nedoznal tento zesilovač oproti přístrojům vyráběným řadu let žádnou zásadní změnu. Uvedeme-li zesilovač do provozu, pak světlo kontrolní žárovky proniká do stran a osvětluje nepříjemně

vnitřek přístroje, což je zřetelně vidět kolem konektoru pro sluchátka, síťového spínače i kontrolek přebuzení. Snad by bylo bývalo stačilo navléknout na indikační žárovku kousek neprůsvitné bužírky.

Pro připojení sluchátek je na zesilovačí použit zcela zastaralý běžný ní pětidutinkový konektor, který se pro tento účel u nás již řadu let a v zahraničí již téměř dvacet let nepoužívá.

Vnitřní uspořádání a opravitelnost

Inovaci nedoznalo bohužel ani vnitřní uspořádání, které převzalo všechny záporné pryky ze starých provedení. Desky jsou opět umístěny tak, že je při výměně součástek nutná jejich demontáž, což samozřejmě při kontrole a zkoušení (protože bohužel samy ve vzduchu nedrží) zvětšuje možnost náhodné nechtěné závady.

Závěr

Co tedy říci závěrem? Abych se výrobce vlastním názorem nedotkl, ponechám raději úsudek na čtenářích, protože s tolika funkčními nedostatky jsem se dosud snad na žádném výrobku nesetkal.

-Hs-

A/12 Amatérske: A D (1)

na výstup klopného obvodu IO8b, kde

3/10 40/2

adresa	pamět IO13	pamět IO14
E D C B A 0 0 0 0 0 0 1 2 0 0 0 0 1 0 3 0 0 0 1 1 4 0 0 1 0 0 0 5 0 0 1 0 1 6 0 0 1 1 0 7 0 0 1 1 1 8 0 1 0 0 0 9 0 1 0 0 1 10 0 1 0 1 10 0 1 0 1 0 11 0 1 0	Y1Y2Y3Y4Y5Y6Y7Y8 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1	Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

$f_0 = 56$	1,3 kHz		
tón	kmitočet tónu [Hz]	dělicí poměr	dělicí poměr kmitočet v binárním tvaru po vydělení [Hz]
c4	2093 /	268	1 0 0 0 0 1 1 0 0 2094,4
h3	1975,53	284	1 0 0 0 1 1 1 0 0 1976,41
ais3	1864,65	301	1 0 0 1 1 1 1 0 1 1864,78
a3	1760 /	319	1 0 0 1 1 1 1 1 1 1759,56
gis3	1661,22 /	338	1 0 1 0 1 0 0 1 0 1660,65
g3	1567,98	358	1 0 1 1 0 0 1 1 0 1567,88
fis3	1479,98	379	1 0 1 1 1 1 0 1 1 1481
f3	1396,91 /	402	1 1 0 0 1 0 1 0 1 0 1396,27
e3	1318,51 /	426	1 1 0 1 0 1 0 1 0 1 0 1317,61
dis3	1244,51	451	1 1 1 0 0 0 0 0 1 1 1244,57
d3	1174,66	478	1 1 1 0 1 1 1 1 0 1174,27
cis3	1108,73	506	1 1 1 1 1 1 0 1 0 1109,29

se "rozmázne" až do konce vzorkovací periody. Tento obvod zabezpečuje, aby byla vždy ovzorkována pouze jedna klávesa i když jich stiskneme více současně (na obr. 3 je stisknuta ještě klávesa 20, která se nevzorkuje). Prioritu má klávesa s nižším pořadovým číslem, tedy při současném stisku více kláves bude znít vždy nejvyšší tón.

Průběh, který obdržíme na výstupu IO8b, má kladnou taktovou hranu právě v místě stisknuté klávesy. Touto kladnou hranou taktujeme šestinásobný klopný obvod D IO12. Na vstupy tohoto obvodu je přivedeno pět adresových bitů, které představují pětibitové slovo určující číslo klávesy (0 až 31). Kladná taktová hrana zapíše do obvodu IO12 binární číslo stisknuté klávesy, které zde zůstane v paměti až do doby než stiskneme jinou klávesu.

Zapamatované binární číslo klávesy je z výstupu obvodu IO12 přivedeno paralelně na adresové vstupy dvou pamětí PROM IO13 a IO14. Paměť IO13 obsahuje dělicí poměry pro 12 tónů nejvyšší znělé oktávy a paměť 1014 určuje oktávový posun. Programovaci tabulka obou pamětí je v tab. 1.

Osmibitové binární slovo určující dělicí poměr je vedeno z výstupů paměti IO13 na vstupy programovatelné děličky, vytvořené z čítačů IO5, IO6 a IO7. Dělicí poměry s příslušnými tóny jsou v následující tab. 2.

Vstup děleného kmitočtu do programovatelné děličky je vyveden z přepínače Př8 (OCTAVE), kterým lze transponovat celý nástroj v rozsahu čtyř oktáv. Celkový rozsah syntezátoru je tedy F2 až c3.

Výstup z programovatelné děličky (vývod 13 obvodu IO7) je dále příveden na čítač IO15, na jehož výstupu dostaneme tři tóny vzájemně posunuté o oktávu. Tyto tři tóny jsou vedeny. na vstupy multiplexeru IO16, který je adresován z druhé paměti 1014. Tato paměť naadresuje multiplexer 1016 podle toho, na jakém místě klaviatury tón hrajeme (např. g, g1 nebo g2) a přířadí mu správný oktávový posun. Z výstupu multiplexeru je úplný signál veden do doubleru, který je tvořen oktávovou děličkou IO9b a hradlem 1011d. Potenciometrem P4 (DOUB-LER) můžeme plynule směšovat základní tón s tónem o oktávu nižším. Přepínač Př1 (WAVE) umožňuje přivést na P4 tón o oktávu nižší, ale s ostřejším zabarvením. Přepínače Př2 a Př3 spolu s potenciometrem P5 jsou ovládací prvky funkce MOD BY OSC, která umožňuje tónově modulovat filtr VCF.

LFO, AR 1, AR 2

Pomaloběžný oscilátor LFO, stejně jako generátory obálky AR 1 a AR 2 (obr. 5), jsou tvořeny z časovačů 555 (obvody IO18, IO19 a IO20). Obvod IO18 je zapojen jako astabilní multivibrátor, kde potenciometrem P6 (RATE) můžeme řídit jeho kmitočet. LFO může kmitat buď samovolně, nebo může být spouštěn z klaviatury podle polohy přepínače Př4 (TRIG MODE). (Pokračování)

DIGITÁLNE ZOBRAZENIE ZVOLENÉHO KANALU NA TELEVÍZNOM PRIJÍMAČI

Ladislav Horváth

Na televíznom prijímači TESLA COLOR 110 ST nie je žiadnym spôsobom indikovaný zvolený kanál okrem krátkodobého zobrazenia čísla v ľavom hornom rohu obrazovky. Dosť často sa vyskytol problém určíť, ktorý z programov je zvolený a preto som sa rozhodol pre optickú indikáciu.

Pri návrhu zapojenia som vychádzal z týchto podmienok:

a) nič nemeniť v zapojení TVP

b) obmedziť počet súčiastok a spotrebu na minimum,

c) dosiahnuť čo najväčší vstupný odpor aby nebola ovplyvnená jednotka předvolby.

Najväčším problémom bolo vyriešenie prevodu signálu 1 z 8 na kód BCD a ten si pamatať, aby zvolený kanál zostal trvale zobrazený na displeji. Nakoniec som sa dostal k integrovanému obvodu MH1KK1 a problém bol vyriešený (obr. 1): Tento integrovaný obvod má 16 vstupov a 4 výstupy v binárnom kóde a 2 výstupy potvrdzujúce prítomný impulz na vstupe. Navyše si drží na výstupe kód zodpovedajúci vstupu, na ktoróm sa objavil impulz úrovni log. 1, až kým nedojde k zmene na inom vstupe. Aby obvod pracoval, musia byť na vstupoch log. 0. Log. 1 musí mať formu impulzu, ináč obvod pracuje nespolahlivo.

Integrovaný obvod MH1KK1 je určený na spolupráci s bezkontaktnými tlačítkami a rezistormi zapojenými vôči zemi na vstupe a tým sa vytvorí log. 0. Pre' toto nezvyčajné zapojenie je nutné aj nevyužité vstupy uzemniť cez dané rezistory a nie uzemňovať ako sa to bežne robí u integro-

vaných obvodov rady TTL. Aj napájanie integrovaného obvodu je cez rezistor a nie priamo. Výstupy sú pripojené cez

rezistory na kladný pól.

Keďže na zopnutom výstupe na integrovanom obvode MAS560 je asi 30 V. nie je možné pripojiť výstup priamo na vstup integrovaného obvodu MH1KK1. Okrem toho je napätie trvalé, takže nie je možné použiť odporový delič, preto som zvolil tranzistorové spínače. Dôležité je aby zbytkový prúd bol čo najmenší. Prakticky vyhovujú všetky kremíkové tranzistory rady KC, KSY. V bázách tranzistorov sú zapojené ochranné rezistory, ktoré zároveň určujú aj vstupné odpory pre impulzy a kondenzátory, na ktorých sa impulzy vytvárajú. Keď sa napätie na výstupe integrovaného obvodu MAS560 ustáli, kondenzátor predstavuje prakticky nekonečný odpor, takže jednotka predvoľby nie je zatažená.

Dekodér s displejom je zapojený bežným spôsobom a preto sa o ňom nebudem bližšie rozpisovať.

Posledný článok zapojenia je zdroj (obr. 2). Vzhľadom na minimálny zásah do televízora som zvolil samostatný zdroj. Transformátor je zvončekový s výstup-ným napátím 8 V. Usmernené a vyfiltrované napatie je stabilizované integrovaným obvodom MA7805. Držiak integrovaného obvodu je na obr. 3.

Montáž zariadenia do televízneho prijímača je jednoduchá. Displej prepojíme s doskou s plošnými spojmi (obr. 4) ohybnými káblikmi dĺžky así 15 cm. Potom si narysujeme na predný panel otvor

podľa použitého typu displeja. Vhodné i miesto je vľavo od konektoru pre slúchadlá. Otvor odvrtame a dopilujeme tak, aby segmentovka sa zasunula na tesno, prípadne ju zaistíme vhodným lepidlom na umelé hmoty. Pracujeme zodpovedne aby sa nenarušil vzhľad televízoru.

Pred montážou displeja ho prepojíme doskou s plošnými spojmi. Pri vrtaní a pilování dáváme pozor, aby sa nepoškodili káble v prijímači. Potom upevníme dosku s plošnými spojmi a transformátor na dno televízoru a prívod k primáru transformátoru prispájkujeme na sieťový spínač. Ako posledné prepojíme výstupy predvoľby s doskou zobrazenia.

Z jednotky predvoľby odpojíme konektor abysme náhodne nezničili integrovaný obvod MAS560. Vstupy zapájame na konektor a potom ešte prepojíme zem. Po prepojení zasunieme konektor na pôvodné miesto. Zapneme televízor a skontrolujeme, či sa zobrazené číslo na displeji zhoduje s číslom, ktoré sa zobrazí na obrazovke. Pokiaľ sme použili dobré súčiastky a neprehodili vstupy alebo prepoje na displeji, pracuje obvod okamžite.

Verím, že touto úpravou sa zlepší prehľad zvoleného kanálu.

Zoznam súčiastok

Rezistory (TR 212) R1 až R8 100 kΩ R9 až R24 390 Ω-R25 270 Ω

R26 až R29 1 kΩ

270 až 470 Ω (podľa displeja) R30 až R36

Kondenzátory

200 μF, TE 984 100 nF, TK 783 10 nF, TK 783 C1 až C3 C4 a C5 C6 až C13 47 uF/6,3 V (tantal)

Polovodičové súčiastky

KC509 (507, 508) T1 až T8 D1 až D4 D5 KY130/80 LQ410 10 1 MA7805 102 MH1KK1 103 D146 (D147)

Obr. 3. Držiak MA7805

Obr. 1. Schéma zapojenia

4×KY130/80 MA7805 D3 3×200µ /2×100n

BEZSNUROVE TELEFONNI PRISTROJE

Ing. Miloslav Štefan

V článku o kompaktních tělefonních přístrojích (uveřejněném v AR A2/86) jsem uvedl důvody, které vedou k individuálnímu dovozu atraktivních telefonních přístrojů. Mezi těmito přístroji tvoří nyní zvláštní skupinu tzv. bezšňůrové telefonní přístroje, které jsou charakterizovány mikrotelefonem bez obvyklé kroucené šňůry. Tato šňůra je nahražena duplexním rádiovým spojením s omezeným dosa-hem. U levnějších výrobků je tento dosah udáván asi na 200 až 300 m. Majitel takového přístroje může přenést mikrotelefon až do uvedené, dosahové vzdálenosti a tam buď očekávat hovor nebo si zavolat libovolného účastníka veřejné telefonní sítě. Reklamy v zahraničních čásopisech občas předvádějí telefonujícího účastníka v plovoucím křesle v zahradním bazénu.

Samozřejmě existuje mnoho závažnějších důvodů k přenesení telefonního přístroje v objektu například do zahrady, do garáže apod. Vlastnit podobný telefonní přístroj je tedy nesporně lákavé a jeho používání se pro účastníka může stát velmi atraktivním. Proto se takové přístroje v zahraničí často kupují a jejich nabídka je velmi pestrá.

Naprostá většina podobných přístrojů je opatřena údajem "pouze pro export", což však nikterák nevysvětluje, proč je

Obr. 1. Bezšňůrový telefonní přístroj TF 820 z Koreje

přístroj v zemi prodeje nepoužitelný. Skutečnost, že není schváleno jeho připojování ani jeho používání (například z důvodu rušení), není v těchto zemích právním podkladem pro zákaz prodeje. Je však třeba uvědomit si, že používá-

Je však třeba uvědomit sí, že používáním podobného zařízení se uživatel stává v podstatě "černým vysílačem" a vzhledem k tomu, že již dnes existuje v ČSSR řada obdobných přístrojů (jak konečně vyplývá i z inzerce), domnívám se, že bližší vysvětlení bude více než žádoucí.

Bezdrátové telefony a radiokomunikační řád

Radiokomunikačni řád rozdělil svět do tří oblastí:

- 1. oblast (Evropa a Afrika),
- 2. oblast (Amerika),
- 3. oblast (Jižní Asie a Australie).

V každé z uvedených oblastí jsou určitá přidělená pásma určena pro jiné využití. Tak zatímco v 1. oblasti je kmitočtové pásmo 47 až 68 MHz přiděleno rozhlasu a televizi, je ve 2. oblasti část tohoto pásma (47 až 50 MHz) přidělena pevné a pohyblivé službě. Pásmo kmitočtů těsně nad rozhlasovým pásmem středních vln (1,6 až 1,8 MHz) je v každé z jmenovaných oblastí jinak využíváno (například pro námořní službu, radiolokaci, amaterský provoz, ale i pro pohyblivou a pevnou službu).

Bezdrátové a telefonní přístroje, původně vyráběné pro americký trh a v počátcích též schválené americkou správou spojů (FCC), používaly kmitočty z uvedených dvou pásem a to 1,6 až 1,8 MHz pro vysílání základnové stanice a 49,8 až 49,9 MHz pro vysílání z přenosné stanice (mikrotelefonu). Dodatečný zákaz používání dolního kmitočtového pásma pro

tuto službu údajně způsobil, že 10 miliónů přistrojů vyrobených v Koreji a na Tajvanu a určených pro americký trh., se rázem stalo neprodejným v USA. Proto byly nabídnuty za výhodné ceny obchodníkům z celého světa.

Západoevropské správy spojů sdružené v CEPT zareagovaly dostatečně rychle na tento příliv sice laciného, ale nepoužitelného zboží. V říjnu 1982 přijaly doporučení CEPT-R 22, v němž jsou pro bezdrátové telefonní přístroje určena pásma 914 až 915 MHz (pro vysílání z přenosné stanice) a 959 až 960 MHz (pro vysílání ze základnové stanice). V ČSSR se předběžně počítá se zavedením shodných kmitočtových pásem.

Bezdrátové telefonní přístroje, vyrobené původně pro americký trh a pracující na kmitočtech 49,8 až 48,9 MHz, proto ruší a jsou rušeny prvním kanálem televize OIRT a druhým kanálem televize CCIR. Ž toho důvodu nemohou být schváleny ani k připojování ani k provozování. Jejich provoz Ize právem označit za nezákonné vysílání. Na tyto skutečnosti je třeba pamatovat při nákupu neznámého zařízení v zahraničí, protože majitel a provozovatel by se mohl dostať do nepříjemného konfliktu se zákonem.

Je však třeba upozornit, že existují samozřejmě přístroje, jejichž použití je, alespoň v západních zemích, schváleno. Tak například telefonní bezšňůrovy přístroj Hagenuk respektuje doporučení. CEPT-R 22 a západoněmecká pošta ho nabízí svým uživatelům pod označením Sinus.

Popis bezdrátového telefonního přístroje

Celé zařízení se skládá ze základnové a přenosné stanice. Konstrukčně je upraveno tak, aby se jeho provoz co nejvíce přiblížil provozu běžného telefonního přistroje. Přenosná stanice má tvar plochého mikrotelefonu.se zabudovanou tlačítkovou číselnicí a v klidové poloze je umístěna v odkladovém prostoru základnové stanice. Základnová stanice je napájena ze sítě a připojuje se obvykle jako paralelní přístroj k běžnému telefonnímu přístroji.

V klidové poloze je zajištěno automatické dobíjení zdrojů přenosné stanice kontakty na spodní straně mikrotelefonu. Obě stanice jsou vybaveny anténami, přičemž souprava Sinus používá čtvrtvlnný 8 cm dlouhý přut. Na obr. 1 a 2 jsou různá provedení bezšňůrových telefonních přístroiů.

Některé stanice jsou řešeny odlišně; například souprava Korea používá pro pásmo 49 MHz teleskopickou anténu, pro pásmo 1,7 MHz se pro vysílání využívá sítového přívodu a pro příjem feritové Vnitřní uspořádání soupravy TF 820 je patrné z obr. 3. Pokud je využíváno síťového rozvodu, může nastat nežádoucí útlum vlivem oplášťovaných trubek. V takovém případě výrobce doporučuje prodloužit síťový přívod k základnové stanici. K šíření signálu u vzdušných elektrických vedení se nevyjadřuje. Zkušený amatér si jistě dokáže představit dosah vysílače s výkonem 0,25 W a anténou v podobě dlouhého drátu. Zachycené telefonní hovory v uvedeném pásmu 1,7 MHz potvrzují rozsáhlou oblast šíření tj. rušení služeb a též možnost nežádoucího odposlechu. Zařízení, která využívají k šíření ví energie síťového rozvodu, jsou z hlediska rušení i odposlechu nepřija-

Přenosná stanice s tlačítkovou číselnicí bývá obvykle vybavena běžnými doplňky, ti, možností opakování posledně volené ho čísla pouhým stisknutím tlačítka RE-DIAL a tlačítkem pro krátkodobé vypnutí mikrofonu MUTE. Automatická funkce vidlicového přepínače u telefonních přístrojů je u bezšňůrového provedení nahražena zvláštním přepínačem s optickou kontrolou stavu přihlášení. V klidové poloze je zapnútá přenosná stanice připravena k příjmu návěsti. Informace o funkčních stavech přenosné stanice a přenos volby se do základové stanice předává typově různými systémy. U typu Sinus probíhá komunikace mezi mikroprocesory obou stanic zjednodušeným systémem přenosu dat použitím modulace s posunem kmitočtu (modulace FSK).

Možnost zneužití bezdrátového telefonního přístroje

Po připojení prvních bezdrátových přístrojů se velmi brzy objevily možnosti jak nedokonalý systém zneužít. Hovořilo se o "krádeži oznamovacího tónu" Majitel přenosné stanice, který buď neúmyslně (vzhledem k malému počtu kanálů v pásmu) nebo úmyslně (přeladěním) dosáhl shody kanálů se základnovou stanicí svého souseda, mohl pochopitelně na jeho

učet telefonovat po celém světě. Nalezt takového "souseda" nebylo ani příliš komplikované. Postačilo například jet autem se zapnutou přenosnou stanicí do polohy vysílání a s anténou v okně vozu. V okamžiku, kdy se přenosná stanice dostala do dosahu základnové stanice pracující na shodném kanálu, se ve sluchátku ozval oznamovací signál státní sítě. Tak se otevřela cesta k telefonování na cizí účet anebo možnost odposlechu cizích hovorů.

Zamezit možnost odposlechu telefonních hovorů je jedním ze základních práv uživatelů telefonní sítě na celém světě. U korejských telefonních přístrojů, o nichž bylo hovořeno, má uživatel možnost omezit "krádež tónu" alespoň na dobu kdy je přenosná stanice odložena na základnové stanici. Používáme-li však větší počet přenosných stanic (tzv. bezšňůrových paralelek), pak již nelze uvedenému jevu zabránit.

Bezšňůrový telefonní přístroj Sinus proto používá speciální kód pro spolupráci přenosné stanice se základnovou. Tento kód umožňuje více než milion kombinací, což prakticky zcela znemožňuje zneužití linky jinou osobou. Protože přidělené pásmo má omezený počet 40 kanálů, nemá telefonní přístroj Sinus pevně nastavený kanál, ale základnová stanice cyklicky sleduje provoz v kanálech a účastníkovi přidělí libovolný neobsazený kanál. Tím je též znesnadněno monitorování kanálu účastníka. Pro modulaci hovorového kanálu se používá kmitočtová modulace, u systému Sinus pak fázová modulace, ty samy ovšem nezaručují utaienosť. Uživatele chrání proti odposlechu především malý výkon vysílače přenosné stanice, který je kolem 10 mW. Citlivost přijímačů pro odstup signál/šum 20 dB je asi 1 μV u základnové stanice a 100 μV u přenosné stanice.

Závěr

V článku jsem se snažil podat čtenářům základní informace o bezšňůrových telefonních přístrojích a vysvětlit i důvody, které vedou k zákazu jejich provozování. Hlavním důvodem je v našich podmínkách vysílání v nepovolených pásmech. Chtěl jsem rozšířit znalosti čtenářů v této publikačně málo zastoupené oblasti telekomunikací a také varovat před nákupem relativně levných avšak nepoužitelných výrobků spotřební elektroniky.

Obr. 2. Různé typy bezšňůrových telefonních přístrojů (v "zavěšeném" stavu)

Obr. 3. Vnitřní uspořádání TF 820

mikroelektronika

OSOBNÝ PP-01 MIKROPOČÍTAČ

Ing. Karol Horváth ml.

Osobný mikropočítač PP-01, patriaci do rodiny osobných mikropočítačov SMEP, bol vyvinutý vo Výskumnom ústave výpočtovej techniky v Žiline. Ide o ľahko prenositeľný, kompaktný, 8-biťový mikropočítač so zabudovaným zdrojom, klávesnicou a doskami elektroniky v jednom konštrukčnom celku. Je charakteristický tým, že využíva súčasnú mikroelektronickú súčiastkovú základnu ČSSR, resp. ostatných štátov RVHP. Je určený pre širokú oblasť použítia, hlavne pre vedeckotechnické výpočty, riadenie vedeckých experimentov a výuku na školách. Bloková schéma PP-01 je na obr. 1.

Ako vidno, PP-01 má jednomagistrálnu modulovú štruktúru. Táto umožňuje rozširovať mikropočítačový systém použitím rozširujúcich modulov a vytvárať tak rozličné užívateľsky orientované konfigurácie. Mikropočítač má zabudovaný organizátor pamäti ako aj veľký počet štandardizovaných medzistykov. Týmito výraznými charakteristickými znakmi sa PP-01 odlišuje od ostatných personálnych počítačov rovnakej kategórie.

Programové vybavenie

Základné programové vybavenie mikropočítača umožňuje vytvárať programy v jazyku G BASIC a v strojovom kóde 8080. Jazyk G BASIC je implementáciou štandardného BASICu, rozšíreného o grafické príkazy. Interprét dovoľuje zapísať do jedného príkazového riadku viac príkazov navzájom oddelených dvojbodkou, pričom jeden príkazový riadok môže obsahovať max. 97 znakov. Pre vstup údajov z klávesnice slúži príkaz INPUT a funkcia KEY. V prípade, že je príkazom INPUT očakávaný vstup do číselnej premennej, je možné zadať ľubovoľný aritmetický výraz. Ak v programe použijeme funkciu KEY, potom táto pri svojom volaní otestuje klávesnicu a v prípade, že je stlačená niektorá z kláves, vráti hodnotu ASCII

kódu stlačenej klávesy. Okrem toho pre vstup dát možno použit príkazy READ, DATA a RESTORE. Pre zobrazovanie alfanumerických informácií slúži príkaz PRINT. Všetky informácie sa zobrazujú na obrazovke monitoru v rastri 32 znakov v riadku x 32 riadkov. Ako oddeľovače jednotlivých výrazov v príkaze PRINT možno s výhodou použit funkcie TAB alebo AT. Funkcia TAB (výraz) premiestní kurzor v danom riadku na pozíciu určenú výrazom funkcie: Pomocou funkcie AT možno umiestnít výstupnú položku na ľubovoľné miesto na obrazovke určené číslom riadku a čislom stlpca. Príkaz PRINT dalej umožňuje zobraziť ľubovoľné celé číslo z intervalu 0 až 65535 v niektorej číselnej sústave z intervalu 2 až 16. Požadovaná číselná sústava sa nastaví príkazom BASE.

Pre akustický výstup má PP-01 zabudovaný reproduktor. Možno ho programovo ovládať príkazom BEEP, ktorý má niekoľko variant. Príkaz BEEP NO zakáže akustickú signálizáciu stlačenia klávesy a príkazom BEEP výraz 1, výraz 2 môžeme generovať ľubovoľné tóny. Výrazom 1 je určená frekvencia tónu a výrazom 2 počet periód.

G BASIC ďalej umožňuje užívateľovi príkazom DEF FN zadefinovať 26 uživateľských funkcií. Pre vedeckotechnické výpočty sú k dispozícii tieto matematické funkcie: ABS, TRUNC, FRC, SQR, SGN, SIN, COS, TAN, ATAN, LN, EXP. Argument trigonometrických funkcií môže byť vyjadrený v stupňoch alebo radiánoch. Pre binárne operácie s celými číslami sú určené binárne funkcie BINAND, BINOR a BINNOT. BINAND a BINOR prevedú svoje argumenty do 16-bitového binárneho tvaru a vykonajú logický súčin, resp. logický súčet medzi odpovedajúcimi bitmi. Binárna funkcia BINNOT po prevedení argumentu do binárneho tvaru uskutoční negáciu všetkých jeho bitov. Pre prácu s reťazcami sú určené funkcie LEN, LEFT, RIGHT, MID, CHR\$, ASC,

Príkazy OUT a INP umožňujú prácu s portami PP-01. Výstup dát z mikropočítača zabezpečuje príkaz OUT, ktorého dva parametre určujú adresu výstupného portu a číselnú hodnotu, ktorá má byt na tento port vyvedená: Naproti tomu príkaz INP vráti hodnotu vstupného portu, ktorého adresa je určená jedným z parametrov príkazu. Druhým parametrom môže byť maska. V takomto prípade sa navyše vykoná logický súčin hodnoty vyčítanej z portu a hodnoty masky.

a hodnoty masky.

Klávesnica PP-01 okrem alfanumerických a príkazových kláves obsahuje ešte 14 funkčných kláves. Tieto majú rozdielny účinok podľa toho, či ich stlačíme s klávesou SHIFT alebo bez nej. Bez stlačenia SHIFT generujú funkčné klávesy vyhradené slová G BASICu. Ak sú stlačené spolu so SHIFT, potom generujú text, ktorý si uživateľ nadefinoval príkazom SETKEY.

V prípade, že bol mikropočítaču zadaný chybný príkaz, zaznie zvukový signál a na obrazovke monitoru sa zobrazí chybové hlásenie. Uvedené hlásenie o chybe sa vypíše tak v priamom ako i v príkazovom režime. V príkazovom režime sa okrem toho vypíše aj riadok, v ktorom chyba nastala a miesto výskytu chyby sa označí znakom "?".

Veľkou prednosťou PP-01 je, že po zapnutí mikropočítača prebehne autodiagnostický test pamätí RAM a ROM. V prípade, že bola zistena chyba niektorej z pamätí, vypíše sa správa RAM ERROR, resp. ROM ERROR. Dôležité je, že test pamäti ROM prebieha pred každým výpisom *Ready*, ktorým mikropočítač hlási svoju pripravenosť. Užívateľ má takto stále informáciu o správnosti vykonávania jeho príkazov.

Okrem programov písaných v G BASICu možno PP-01 programovať v strojovom kóde mikroprocesora MHB8080A. Užívateľ môže v tomto jazyku programovať dvoma spôsobmi. Prvý spôsob využíva známe príkazy PEEK a POKE. Druhou možnosťou je použítie MO-NIT. Jeho vykonaním užívateľ vstúpi do moni-

toru PP-01 a môže využívať jeho 6 monitorových príkazov. Tieto umožňujú prezeranie a modifikovanie obsahu pamäťových buniek, spustenie programu od zadanej adresy, uchovanie programu alebo dát na magnetofón ako aj ich spätné zosnímanie, a ak je k PP-01 pripojený diskový mechanizmus s diskovým radičom, tiež aj zatiahnutie operačného systému do pamäti. Všetky programy písané v stro-jovom kóde možno volať z G BASICu príkazom CALL. Tento príkaz súčasne umožňuje výmenu dát medzi programom v G BASICu a v strojov kóde. Výmena sa uskutočňuje cez registrové páry BC a HL mikroprocesora MHB8080A.

MIN

PRUŽNÝ DISK 2×

Pamäti

G BASIC spolu s monitorom a autodiagnostikou pre testovanie pamätí je uložený v 16 kB EPROM. Okrem tejto pamäti obsahuje PP-01 ďalších 64 kB operačnej pamäti RAM vytvorenej zo 16kilobitových dynamických pamäťových prvkov. Celková kapacita rezidentnej pamäti v PP-01 teda je 80 kB. Adresovanie takejto veľkej pamäti úmožňuje zabudovaný organizátor pamäti, ktorý transformuje 16bitovú logickú adresu mikroprocesora na 20bitovů fyzickú adresu. Mikropočítačom teda možno adresovať pamäťový priestor o kapacite až 1

ZAPISOVAČ

Obr. 1. Bloková

schéma osobného

počítača PP-01

Operačná pamäť PP-01 je rozdelená následovným spôsobom:

- 24 kB obrazovej pamäti pre zobrazenie grafických a alfanumerických informácií,
- pamäťový priestor vyhradený pre programy písané v strojovom kóde, pre programy písané v BASICu a pre
- data deklarované programom, vyhradená pamäťová oblasť, v ktorej
- sú uložené pracovné bunky využívané G BASICom.

Treba podotknúť, že takéto rozdelenie pamäti je po zapnutí mikropočítača. Pri práci s PP-01 možno, ak je to nutné, programovo zväčšiť oblasť pamäti vyhradenú pre programy v strojovom kóde na úkor pamati pre uloženie programov v G BASICu.

Moduly ROM

Pamäť ROM mikropočítača PP-01 možno rozšíriť pomocou tzv. modulov ROM o ďalších 16 kB. Tieto môžu obsahovať uživateľské programy rôzneho zamerania. V súčasnosti sú vytvorené ROM moduly s týmito uživateľskými programy:

- program MEDA umožňujúci programovanie v assembleri, výpis programu, preklad do strojového kódu, volanie disassemblera, štart programu a nastavovanie zarážok, krokovanie programu, nahrávanie programu alebo jeho cieľového tvaru na magnetofón a z magnetofónu, presúvanie oblasti pamäti, programovanie v jazyku PASCAL
- rozšírenie základného generátora znakov G BASICu o malé písmená;
- rozšírenie G BASICu o príkazy pre riadenie zbernice IMS-2
- rozšírenie G BASICu o príkazy pre prácu s disketami
- rozšírenie G BASICu o príkazy pre prácu s kazetovou jednotkou DIGI-100, rozšírenie G BASICu o príkazy pre hardcopy
- na tlačiarne K 6313, PRT 80, D 100,
- rozšírenie G BASICu o príkazy pre ovládanie minigrafu ARITMA 0507
- rozšírenie G BASICu o príkazy pre ovládanie medzistykov IRPR, IRPS, Centronics, DZM 180.
- rozšírenie G BASICu o hodiny reálneho času.

Okrem toho sa pripravuje široký sortiment ROM modulov ako je napr. modul na rozšírenie súboru príkazov G BASICu a pre programovanie v jazyku LOGO.

Grafika

Dôležitou viastnosťou interpretu G BASICu je jeho schopnost vykonávať grafické príkazy. Užívateľ má k dispozícii paletu 8 farieb – čiernu, modrú, červenú, purpúrovú, zelenú, bledomodrú, žltú a bielu. Z nej si môže pre grafické zobrazenie vybrať farbu pozadia aj farbu popredia.

Tab. 1. Základné technické parametre čsl. osobných počítačov.

Technický parameter	ļ			p mikropočíta				poznámka
	PP-01	PP-02	PMD 85	IQ 151	DIDAKTIK ALFA	SAPI 1	ONDRA	
Šírka slova (bitů)	8	8	8	8	8	8	8	
Typ mikroprocesora	8080 A	8080 A	8080 A	8080 A	8080 A	8080 A	U880D	
Kapacita operačnej pamäti (kB)	64 (96*)	96	48	32	48	40	64	*v rozširujúcom prístavku
Kapacita ROM pamati (kB)	16; 32	16; 32	4	6	8	, 16	4; 16	
Maximálna adreso- vateľnosť pamäti	1 MB	1 MB	64 kB	64 kB	64 kB	64 kB	80 kB	
Prerušovací systém (počet úrovní)	8	8	_	_	-	8	-	
Typ systémovej zbernice	zber. 8080 I 41	141	zber. 8080	zber. 8080	zber. 8080	zber. 8080	zber. U880D	
Čas vykonávania inštrukcií (μs)	2 až 10.5	2 až 10,5	2 až 10,5	2 až 10,5	2 až 10.5	2 až 10,5	TV prijimača procesor iba	as každého snímku a pracuje mikro- a 5 ms a 15 ms brazovanie v DMA
Medzistyky: sériový	IRPS, V24	IRPS, V24	V24	V24	V24	V24	-	
paralelný	IRPR Centronics	IRPR Centronics	áno	áno	áno	áno	Centronics	
IMS-2	áno	áno	áno	áno	áno	áno	-	
lokálna sieť	_	áno	-	-	-	-		
Spôsob zobrazenia informácie abecedno-číslicové	32zn × 32r plná farebná grafika	32zn × 32r plná farebná grafika	48zn × 25r po 6 bodov	32zn × 32r semigrafika	48zn × 25r po 6 bodov	40zn × 20r	40zn × 20r	
grafické	8 farieb 256 × 256 bodov	8 farieb 256 × 256 bodov	4 farby 288 × 256 bodov	ČВ	4 farby 288 × 256 bodov	ČВ	ČB	
Vonkajšie pamati: – magnetofón s rychlosfou záznamu (bit/s)	1200	1200	1200	300	1200	2400	2400	komerčný magnetofón
 pružný disk 130 mm s kapacitou (kB) 	160, 320*	160, 320	80	-	_	_	-	*v rozširujúcom prístavku
Zobrazovací modul	ČB TVP FTVB s RGB vstup. Fareb. mo- nitor RGB	ČB TVP FTVP s RGB vstupom Fareb. mo- nitor RGB	ČB TVP Fareb. monitor RGB	ČB TVP	ČB TVP Fareb. monitor RGB	ČB TVP	ČB TVP cez externý vf modu- látor	TVP-komerčný televízny pri- jímač
Napájecí zdroj	zabudovaný	zabudovaný	externý	zabudovaný	externý	zabudovaný	externý	

Farba popredia je tá, ktorou sa výpisujú alfanumerické znaky príkazom PRINT a INPUT, alebo vykresľujú čiary obrazca príslušnými grafickými príkazmi. Farba pozadia sa nastaví príkazom PAPER; farba popredia príkazom INK. Rozlišovacia schopnosť pri použítí grafických príkazov je 256 × 256 bodov a každý bod tejto matice môže byť samo-statne programovo ovládaný. Pred použitím grafických príkazov je potrebné príkazom SCALE nastavit mierku na obrazovke v smere osi x a osi y. Pre kreslenie horizontálnych čiar slúži prikaz XAXIS, pre vertikálne čiary príkaz YAXIS. Príkazmi PLOT alebo DRAW možno čiarou spojiť ľubovoľné body. Súradnice počiatočného bodu, z ktorého sa pri kreslení vychádza, sú určené polohou tzv. grafického kríža. Poloha grafického kríža sa ovláda príkazom MOVE. Príkazom PLOT okrem toho možno zobraziť, resp. vymazať ľubovoľný bod na obrazovke. Prikazy IMOVE a IDRÁW majú rovnaký význam ako MOVE a DRAV len s tým rozdielom, že sa vykonávajú relatívne k pozícii,

v ktorej sa nachádzal grafický kríž po posledne vykonanom grafickom príkaze. Príkazom BPLOT užívateľ môže na obrazovke vykresliť lubovoľný plošný motív, pričom počiatočná poloha motívu je určená príkazom BMOVE. Posledné dva príkazy majú veľký význam pri zobrazovaní rôznych dynamických dejov, pretože umožňujú vytvárať plynulý pohyb obrazcov po obrazovke. Posledným grafickým príkazom SETCHAR možno zadefinovať 6 ľubovoľných znakov v rastri 8×8 bodov.

Medzistyky a możnosti rozširovania

Paralelný styk zabezpečujú tri porty obvodu MHB8255. Obvod môže pracovať len v móde 0. Port A, zabezpečujúci vstup aj výstup dát, je vyvedený na konektor cez obojsmerný invertujúci budič MH3226. Port B je nastavený na vstup a s konektorom je prepojený cez Schmittov obvod 7414. Výnimku tvoria bity B0 a B1,

ktoré sú prepojené priamo. Port C, nastavený na výstup, je vedený na konektor cez výkonové hradlá s otvoreným kolektorom. Jednotlivé komunikačné protokoly IRPR, IMS-2 a pod. sú realizované programovo.

Sériové medzistyky sú zabezpečované programovateľným obvodom USART 8251. Mikropočítač môže pracovať s jedným zo štyroch medzistykov:

- medzistyk pre magnetofón,
- medzistýk v úrovní TTL,
- medzistyk IRPS,
- medzistyk V24 (modem).

Pre záznam programov alebo dát na magnetofón sa využíva fázová modulácia a rýchlosť záznamu je 1200 bit/s. Každý zaznamenávaný program je rozdelený na bloky o dĺžke 133 bajtov. Blok obsahuje 128 dátových bajtov, kontrolnú sumu, poradové číslo bloku v rámci

Tab. 2. Základné technické parametre osobných a osobných profesionálnych počítačov SMEP.

To all miletais and a market		Typ počítača							
Technický parameter	PP-01	PP-02	PP-03	PP-04	PP-05	PP-06	Poznámka		
šírka slova (bit)	8	8	8	16	16	16			
použitý mikroprocesor	8080 A	8080 A	8080 A	4 bitové řezy	8086	8088	K 1801		
kapacita operačnej pamäti (kB)	64	96	48	256	32 až 128	256 až 640			
max. adresovateľnosť pamäti (MB)	1	†	0,064	0,256	1	1			
kapacita ROM pamäti (kB)	16; 32	16; 32	16	1	8–64	40-64			
prerušovací systém (počet úrovní)	8	8	8 progra- movateľných	4 viac- násobné	9 masko- vateľných	8 masko- vateľných			
doba vykonania inštrukcii (μs)	2 až 10,5	2 až 10,5	2 až 9	2,5	0,4 až 1,2	0,8 až 2			
typ systémovej zbernice	zber. 8080 i 41	l 41	I 41	S2	I 41	V/V zbernica			
Medzistyky: sériový paralelný IMS-2 lokálna sieť	áno áno áno –	áno áno áno áno	áno áno áno áno	áno áno – áno	áno áno áno áno	áno áno áno			
kapacita vonkajšej pamäti (kB)	min 2 × 100				1	<u> </u>	komerčný magnetofo		

záznamu, číslo zaznamenávaného programu a informačný bajt. Pri nahrávaní je každý blok uložený na magnetofónovú pásku dvakrát za sebou. Skúsenosti z dlhodobej práce s mikropočítačom ukázali, že popísaný spôsob uchovávania informácií je veľmi spoľahlivý. Pre nahrávanie na pásku alebo do pamäti mikropočítača slúžia príkazy KSAVE a KLOAD. Pre záznam a snímanie obsahu poľa sú určené príkazy DSAVE a DLOAD.

Ak nemáme k dispozícii magnetofón s počítadlom, potom pri nahrávaní programov do rôznych typov mikropočítačov sú často problémy s nájdením začiatku požadovaného programu. Tento problém PP-01 odstraňuje

tým, že po zosnímaní každého bloku sa okamžite na obrazovke monitoru zobrazí číslo, pod ktorym je program na páske uložený. Táto informácia umožňuje užívateľovi jednoduchú orientáciu na nájdenie požadovaného programu alebo dát.

Medzistyk v úrovni TTL je určený pre prepojenie na krátku vzdialenosť a medzistyk IRPS umožňuje galvanicky oddeliť systém PP-01 od prenosovej cesty.

Riadiaca jednotka zbernice I-41 umožňuje k PP-01 pripojiť rozširujúci blok a vytvoriť tak osobný profesionálny počítač PP-02. Jeho bloková schéma je na obr. 2. Vývoj PP-02 je vo VÚVT v Žiline ukončený a je pripravená jeho

sériová výroba. Rozširujúci blok obsahuje riadiacu jednotku pružných diskov s dvomi mechanizmami kapacity 2× 160 kB, napájací zdroj a 7 voľných pozícií. Do nich možno zasunút všetky moduly z už vyrábaného systému SM 50/40-1 vrátane rozširujúcich modulov pamäti RAM a ROM, rýchleho matematického procesora, modulov jednotiek styku s procesorom – JSP a komunikačného modulu pre zapojenie do lokálnej počítačovej siete. Taktiež možno do nich zasunúť špeciálne moduly s výstupom na zbernicu I-41, vyvinuté podľa požiadaviek užívateľa. Riadiaca jednotka zbernice I-41 dalej umožňuje pripojit k PP-01 voliteľný prístavok obsahujúci vonkajšiu pa-

Tab. 3. Prehľad programovacieho vybavenia čsl. osobných a osobných profesionálnych počítačov.

Počítač	Základné	JAZYKY								
programové vybavenie	Stroj. kód	ASSEMBLER	BASIC	FORTRAN	PASCAL	PL/1	COBOL	C jazyk	LOGO	
PP 01	ROM rezid. BASIC	х	x.	Х		x.				X.
PP 02	MIKROS	×	×	Х	X	×		×		X*
PP 03	ROM rezid. MIKROS	x	x	Х	х	х		х		
PP 04	FOBOS 2	×	х	Х	х					
PP 05	PP DOS MIKROS 86	x	x	х	x	х	х	х	x	
PP 06	PP DOS MIKROS 86	х	x	х	х	х	x	x	х	х
PMD 85	ROM rezid. BASIC	x	x	х						
IQ 151	ROM rezid. BASIC	x		х					,	
DIDAKTIK ALFA	ROM rezid. BASIC	x		х						
SAPI 1	ROM rezid. BASIC	x		x						
ONDRA	BASIC	X		Х						

^{*}vo voliteľných ROM moduloch

mäť na pružnom minidisku a rozširujúcu operačnú pamäť. Tento prístavok bude uživateľom PP-01 k dispozícii v r. 1986.

Okrem popísaných medzistykov má PP-01 pre všobecné použitie vyvedené na užívateľské konektory signály z programovateľného časovača KP580B53 (I8253) a obvodu pre spracovanie prerušení MH 3214.

Monitor

Ako monitor možno k PP-01 pripojiť farebný rastrový monitor alebo farebný TV prijímač a vyvedeným štandardizovaným vstupom RGB. Okrem toho možno vo funkcii monitora použiť ľubovoľný TV prijímač ak ho pripojíme k VHF výstupu mikropočítača. V takomto prípade sa ale všetky informácie zobrazujú len v ôsmich odtieňoch šedej farby.

Oblasť použitia

Mikropočítač PP-01 je určený pre najširšiu užívateľskú verejnosť a pre aplikácie, ktoré z cenových dôvodov nemôžu byť pokryté minipočítačmi, resp. inými typmi mikropočítačov. Je potešiteľné, že v súčasnosti majú možnosť s týmto mikropočítačom pracovať študenti vysokých a stredných škôl v Prahe,

Bratislave, Brne, Košiciach, Žiline, Plzni a ďalších mestách, kde sú z nich vytvárané učebne pre samostatnú a týmovú prácu študentov i pedagógov. Mikropočítače tu neslúžia len pre výuku programovania a získavania informácií z oblasti počítačovej grafiky, ale tvoria súčasne základ pre budovanie lokálnych počítačových sieti, distribuovaných systémov a terminálových učební. Pre svoju univerzálnosť a možnosť používania všetkých modulov systému SM 50/40-1 sa výhodne uplatnia i pri riadení laboratórnych experimentov. Svoje miesto si rozhodné nájdu aj v nevýrobných oblastiach vo vedení rôznych agend, ako sú evidencia zákaziek, MTZ a pod. Súčasne zohrajú významnú úlohu ako inteligentné terminály pri budovaní počítačových sietí a informačných systémov.

Záver

V ČSSR sa vyrába niekoľko typov osobných mikropočítačov rôznych parametrov. Porovnanie základných vlastností týchto mikropočitačov a PP-01 poskytujú prehľadové tabuľky 1, 2 a 3

Z porovnania v tabuľkách vidieť, že PP-01 z hľadiska technických parametrov, užívateľských vlastností a náväznosti na rad 8-bitových mikropočítačov SMEP, možno hodnotiť ako veľmi dobrý osobný počítač.

Výskumný ústav výpočtovej techniky v Žiline vyrobil doteraz v rámci realizácie opakovaných prototypov 700 ks počítačov PP-01. Sériová výroba PP-01 je zahájená v ZVT Banská Bystrica od tohto roku.

Literatura:

- [1] Hora, P., Smatník, A.: Personálny počítač PP-01 príručka užívateľa, 1985.
- [2] Náter, M., Smatník, A.: Personálny počítač PP-01 – popis systému.
- [3] Horváth, K.: Mini a mikropočítačové systémy SMEP v ČSSR, 1985.

TRILION nebo BILION?

Anglosaské názvy velkých čísel se liší od názvů užívaných u nás (v tom se velmi často chybuje v překladech, hlavně v denním tisku). Vztahy jsou následující:

Cislo	název u nás	název anglicky
10 ⁹ 10 ¹² 10 ¹⁵ 10 ¹⁸ atd.	miliarda bilion tisíc bilionů trilion	bilion trilion kvadrilion kvintilion

RNDr. Jiří Bok, CSc.

Světelné pero pro ZX-81 a ZX Spectrum

Ivo Podešť

Světelné pero je jistě zajímavým doplňkem každého osobního počítače. Chtěl jsem si jej také postavit, ale zapojení se kterými jsem se setkal, byla buď značně složitá nebo využívala zahraničních součástek. Pokusil jsem se tedy o vlastní návrh. Po několika nezdařených pokusech jsem "stvořil" jednoduché zapojení, které je v podstatě Schmittův klopný obvod.

Signál z fototranzistoru T1 je zesílen tranzistorem T2 a ovládá klopný obvod tvořený tranzistorem T3 a hradlem H1 (obr. 1). Odpor R1 slouží k nastavení pracovního bodu. Následující hradlo H2 je použito jako tvarovač. Z něho se signál vede na vstup počítače, do zdířky EAR. Zbývající dvě hradla H3 a H4 jsou použíta k vytvoření signálu tlačítka, kterým se potvrzuje platnost polohy pera na stinitku TV. Hradla jsou zapojena jako multivibrátor, který se rozkmitá po stisku tlačítka s periodou asi 50 ns. Současně stisknuté tlačítko blokuje klopný obvod snímacího tranzistoru. Snímání obrazovky TV probíhá při uvolněném tlačítku a do počítače přichází signál v podobě impulsů s periodou snímkového kmitočtu TV (20 ms). Rozpoznání těchto signálů je již úkolem programu.

Mechanická konstrukce

Fototranzistor včetně elektroniky jsem vložil do obalu popisovače Centrofix 1886. Získal jsem tak kompaktní a úhledně vypadající doplněk k počítači

Popisovač rozebereme a vyčistíme, do dna vyvrtáme otvor o Ø 5 mm pro přívodní kablík. Fototranzistor umístíme nejlépe do kovové trubičky o Ø 2 mm (např. kovová náplň propisovací tužky). Vývody fototranzistoru izolujeme omotáním bavlněnou nití a zalepíme do trubičky tak, aby čočka fototranzistoru byla asi 5 až 8 mm pod úrovní otvoru. Trubičku připájíme k zemnící fólii plošného spoje (obr. 2). Jako tlačítko můžeme použít mikrospínač. Kontakt však lze vytvořit i natvarováním ocelového drátu, např. kytarové struny.

Uživatelé, kteří vlastní RS 232 nebo jiný vstupní port, mohou použít úpravu, která zrychlí průběh obslužného programu (obr. 3):

Obr. 2. Příklad mechanického uspořádání

Při původním zapojení musí program čekat na uvolnění tlačítka. V upraveném zapojení je průchod signálu z pera nezávislý na stisku tlačítka. V okamžiku stisku začíná ihned probíhat obslužný program. Pro toto zapojení je vhodné vyvést tlačítko tak, aby sepnulo v okamžiku přiložení pera na obrazovku.

Vzhledem k tomu, že jsem použil metodu "vrabčího hnízda", neuvádím návrh plošného spoje.

Nastavení

Při použití zkontrolovaných součástek nedělá uvedení do provozu potíže. Zkontrolujeme klidový odběr ze zdroje (do 15 mA) a k výstupu připojíme voltmetr. Místo odporů R1' a R1" zapojíme trimr a nastavíme pracovní bod tranzistoru T2 tak, aby KO překlápěl při osvětlování a zatmívání fototranzistoru. Nepřechází-li KO do opačného stavu skokem, je nutné zmenšit R4. Naopak, je-li hystereze obvodu příliš velká, (kontrast obrazovky TV nestačí pro překlopení) musíme R4 zvětšit. Po nastavení nahradíme trimr pevnými odpory.

SPECTRUM 128+2

Anglická firma Amstrad jakožto nový správce počítačů Sinclair představila počátkem září 1986 na výstavě osobních počítačů v Londýně vlastní verzi počítače Spectrum 128K s označením 128+2 (Plus 2). Jde o vylepšený původní Sinclairův model 128K se zabudovaným kazetovým magnetofonem v robustní zelenošedé skříňce připomínající počítače Amstrad řady CPC.

Písařky a spisovatelé ocení profesionální klávesnici typu QWERTY, která má 58 kláves s plným zdvíhem a sériový výstup pro připojení tiskárny. Hráče her zase potěší samostatný zvukový výstup a dva porty pro nové ovládací páky typu Sinclair SJS1. Majitelé ostatních joysticků však budou potřebovat patřičné adaptory neboť porty nejsou standardní. Ti co hodně počítají mohou používat samostatnou numerickou klávesnici a muzikanti jistě ocení rozhraní MIDI pro ovládání elektronických hudebních nástrojů. K dispozici jsou dále dva konektory pro připojení televizoru s normou PAL a barevného monitoru se vstupy RGB a konektor s vyvedenou úplnou sběrnicí mi-kroprocesoru. Údajně je Plus 2 plně slučitelný se Sinclairovým rozhraním Interface 1, vnějšími pamětmi Microdrive a dalšími periferiemi.

Zachováno zůstalo původní rozdělení a kapacita pamětí – RAM 128 kB, ROM 32 kB i procesor Z80 s kmitočtem hodin 3,5469 MHz.

" VIORDYY PROGRAM
" (J20 SLUSGYICE, LEXA, RIJEN 1985)

K jedné malé změně však v paměti ROM přece jenom došlo – úvodní obrazovka už neohlašuje jako držitele autorských práv Sinclair Research Ltd., ale firmu Amstrad. Sinclairovu tradici si Amstrad udržel alespoň při stanovení prodejní ceny. Za počítač se zabudovaným magnetofonem, napájecí zdroj, anténní šňůru a manuál požaduje v Anglii 149£, což je o 30£ méně než byla cena se kterou byl původni Sinclairův model v únoru 1986 uveden na anglický trh.

Aby se neopakovaly nářky uživatelů původního Sinclairova Spectra 128K nad tím, že i přes halasné vyhlašování slučitelnosti, některé programy napsané pro Spectrum 48K na jejich počítači nefungují, řeší Amstrad situaci tak, že vybrané programy důkladně prověřuje a opatřuje označením Sinclairova kontrola kvality (Sinclair Quality Control). Toto opatření má zaručit, že všechny označené programy budou plně slučitelné i s novým Spectrem 128+2.

Dle autora [1] by tak nové Spectrum 128+2 se zabudovaným magnetofonem, elegantní plnohodnotnou klávesnicí a příznivou cenou mohlo založít další výrazný komerční úspěch podnikavé firmy Amstrad.

Spectrum 128+2 Launched at PCW Show;
 ZX Computing Monthly, říjen 1986, s. 4.

PROGRAMY ZE SOUTĚŽE MIKROPROG 85

Vzorové řešení finálové soutěžní úlohy "Textový editor" (RNDr. ing. Ivan Lexa, CSc.)

```
7 7
10 PRINT CHRS(12): SET "CRT" TO 6.1
20 DZ$=" ...">CHRS(12): SET "CRT" TO 6.1
20 DZ$=" ...">CHRS(1)+CHRS(4): S=1: N=5
30 FETCH #CONIN,Z$: ONERROR 30
40 IF Z$>="4" AMD Z$<=="Z" THEN X=0: GOTO 60
50 K=INSTRG(25,Z$): IF X=0 THEN 30
60 ON 3***5 GOSUB 1010,1020,1070,1777,1777,1777,1220,1777,
1777,1320,1777,1777,1777,1430,1777,1777,1530: GOTO 30
4000 'ZOBRAZENI JEONOHO ZNAKU
4010 PRINT Z$; : N=N+1 : IF N>63 THEN N=0
4020 RETURN
4020 R
4021 *
4022 *
4023 *
4024 *
5000 *
5005 *
                                 DZ$ .... DOVOLENE ZNAKY VSTUPU (KROME PISMEN)

K ..... KLASIFIKACE ZNAKU Z KLAVESNICE

O ... PISMENO 3 ... TECKA
1 ... MEZERA 4 ... START
2 ... CARKA 5 ... STOP

N .... POCET ZNAKU V RADKU
P .... POCET PISMEN VE SLOVE
S .... SYNTAKTICKY STAV VSTUPU TEXTU
SL$ .... 1 ZNAK Z KLAVESNICE
 5015
5020
5025
5030
5035
5040
5045
5050
5055
                                                                              MEZERA
IC----I
I
                                                                                         CARKA NESO
 5060
 5065
                         SPUSTENI
PROGRAMU
 5070
  5075
5080
5085
5090
5095
5100
5105
5115
                                                                                                                                   PISMENO
                                                                                                                                       START
```

```
61 '
62 '
1010 'PRYNI PISMENO SLOVA
1011 P=1: SLS=:S: GOSUE 4000
1017 S=2: RETUPN
1015 '
1014 '
1027 'POKRACOVANI SLOVA
1021 IF P=30 THEN RETURN
1022 GOSUB 2000
1023 P=PH1: SLS=SLS+2S: GOSUB 4000
1024 RETURN
1025 '
1026 '
1127 'MEZERA ZA SLOVEH
1121 GOSUB 3000
1122 S=1: RETURN
1123 '
1124 '
1229 'CARKA ZA SLOVEH
1221 GOSUB 2000: GOSUB 4000: GOSUB 3000
1122 S=1: RETURN
1123 '
1124 '
1229 'TECKA ZA SLOVEM
1221 GOSUB 2000: GOSUB 4000: GOSUB 3000
1222 S=1: RETURN
1321 GOSUB 2000: GOSUB 4000: GOSUB 3000
1322 S=5: RETURN
1323 'TECKA ZA SLOVEM
1321 GOSUB 2000: GOSUB 4000: GOSUB 3000
1322 S=5: RETURN
1323 'START PO TECCE
1431 N=5: PRINT CHRS(10); SPACES(N);
1432 S=1: RETURN
1433 '
1434 '
1435 '
1436 '
1437 'START PO TECCE
1431 GOSUB 3000 RUJICI SYNTAXI
1778 RETURN
1437 '
1780 '
1780 '
1780 '
1780 '
1780 '
1781 '
1781 '
1780 '
1780 '
1781 '
1782 '
1780 '
1780 '
1781 '
1781 '
1782 '
1780 '
1781 '
1783 '
1784 '
1785 '
1786 '
1787 '
1780 '
1780 '
1781 '
1781 '
1781 '
1782 '
1783 '
1784 '
1785 '
1786 '
1787 '
1780 '
1780 '
1781 '
1782 '
1783 '
1784 '
1785 '
1785 '
1786 '
1787 '
1780 '
1788 '
1789 '
1780 '
1780 '
1780 '
1781 '
1781 '
1781 '
1781 '
1782 '
1783 '
1784 '
1785 '
1785 '
1786 '
1787 '
1788 '
1788 '
1788 '
1789 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780 '
1780
```

MIKROS (CP/M 2.2)

Ing. Josef Bendíček

(Pokračování)

Služba 20 – Sekvenční čtení souboru

Vstupem pro tuto operaci je adresa FCB otevřeného souboru, ze kterého chceme číst. Jako výstup služby získáme informaci o její úspěšnosti. FCB, které prostřednictvím adresy službě poskytujeme, již musí být inicializováno operačním systémem, a to obvykle službou 15 (otevři soubor). Po svém vyvolání služba přečte jeden záznam (128 bajtů) ze souboru a uloží jej do paměti, která je určena právě platnou hodnotou DMA. Který záznam souboru se čte, určuje okamžitá hodnota CR (33. bajt FCB). Hodnoty bajtů R0, R1, R2 nejsou pro tuto službu významné. Po přečtení záznamu se hodnota CR automaticky zvětší o jednotku. Jestliže přečteme poslední záznam dané části souboru (EX) a soubor má ještě pokračování, pak operační systém zabezpečí přechod do další části automaticky. Úspěšné přečtení zá-znamu je při návratu indikováno hodnotou 0. Při neúspěšném čtení (např. chceme přečíst záznam, jehož číslo překračuje délku souboru) je návratová hodnota nenulová.

Služba 21 – Sekvenční zápis do souboru

Vstupní hodnotou pro službu je adresa FCB otevřeného souboru, do kterého máme v úmyslu zapisovat. Návratová hodnota nám pak poskytuje informací o úspěšnosti zápisu. Tato služba rovněž předpokládá, že FCB je již inicializováno operačním systémem, a to bud službou 15 (otevři soubor) nebo službou 22 (vytvoř soubor). Použití služby 21 zabezpečí zápis jednoho záznamu o délce 128 bajtů uloženého v paměti na aktuální adrese DMA do souboru. Pozice, na kterou bude záznam zapsán, je určena hodnotou CR (33. bajt FCB) Po zapsání záznamu se tato hodnota o jednotku zvětší a v případě, že je to nutné, se vytvoří další část souboru a přejde se do ní. Pomocí sekvenčního zápisu je možné soubory rozšiřovat i modifikovat. Úspěšné provedení zápisu indikuje nulová hodnota návratového parametru. Nenulová hodnota indikuje chybu.

Služba 22 - Vytvoř soubor

Vstupem pro tuto službu je adresa FCB, které obsahuje jméno a typ souboru, který chceme vytvářet. Služba se používá k vytvoření nového souboru na disku. Takto vytvořený soubor má nulovou délku a jeho FCB je připraveno pro sekvenční zápis, tzn. soubor je otevřen. Po úspěšném provedení vrací služba hodnotu v rozsahu 0 až 3. Jestliže v adresáři disku již pro soubor není místo, je návratová hodnota FFh.

Služba 23 – Přejmenuj soubor

Vstupem pro tuto službu je adresa FCB. Pomocí této služby můžeme změnit jméno existujícího souboru na jiné. V FCB je na prvních 12 bajtech uloženo jméno dísku, jméno souboru a jeho typ. Nové jméno souboru je uloženo v FCB od pozice 16 (tj. A0), rovněž formou FCB. Jestliže přejmenování proběhne úspěšně, služba vrací hodnotu z intervalu 0 až 3. Při neúspěšném pokusu je

návratová hodnota FFh. To se obvykle stane tehdy, když přejmenovaný soubor není nalezen.

Služba 24 – Vrať vektor aktivních disků

Výstupem služby je ve dvojici registrů HL uložená hodnota vektoru aktivních disků. Nejméně významný bit registru L odpovídá disku A:, nejvýznamnější bit registru H odpovídá disku P:. Každý disk, který je aktivní, má v odpovídajícím bitu hodnotu 1. Neaktivnímu disku odpovídá nulový bit.

Služba 25 – Vrať číslo vybraného disku

Ani tato služba pro svou činnost nevyžaduje vstupní parametry. Výstupem služby je hodnota odpovídajícího disku, který je právě vybraný. Pro disk A: je to nula, pro disk P: je to 15.

Služba 26 – Nastav adresu DMA

Vstupním parametrem je adresa DMA. DMA adresa určuje začátek oblasti paměti v mikropočítači, která slouží jako buffer pro diskové operace. Zkratka DMA pochází z anglického Direct Memory Access (tj. pamět s přímým přístupem). Tento název vznikl proto, že přenosy údajů mezi diskem a pamětí obvykle probíhají bez spolupráce procesoru, který by tento přenos zpomaloval. Diskový řadič se sám ujme řízení sběrnice a údaje přenáší přímo z/do paměti.

V MIKROSu je adresa DMA chápána jako začátek 128 bajtů dlouhé oblasti, do nebo z které se přenáší jeden diskový záznam. Jednou nastavená DMA adresa zůstává v platnosti, dokud ji nenastavíme znovu. Z tohoto pravidla se vymykají pouze služby 0 (reset systému) a 13 (reset diskového systému), které tuto adresu nastavují na implicitní hodnotu 80h. Na tuto hodnotu je DMA adresa nastavena po WBOOT i CBOOT.

Služba 27 – Vrať adresu alokačního vektoru

Služba jako výstup vrací adresu alokačního vektoru vybraného disku. Jak jsme si již dříve říkali, alokační vektor je bitově orientovaná mapa disku, která udává stav jednotlivých alokačních bloků na disku. Bit odpovídající obsazenému bloku má hodnotu 1, pro volný alokační blok má hodnotu 0. Nejvýznamnější bit prvního bajtu alokačního vektoru odpovídá alokačnímu bloku 0, nejméně významný bit pak alokačnímu bloku 7, atd.

Služba 28 – Nastav disk jako R/O

Použití služby způsobí to, že vybraný disk je označen jako R/O (read only, tzn. chráněný proti zápisu). Toto označení je dočasné a platí až do nejbližšího použití služeb 0, 13 nebo 37. Platnost tohoto nastavení ruší rovněž WBOOT a CBOOT. Na disk, který je označen jako chráněný proti zápisu, není dovoleno zapisovat, rušít na něm soubory, vytvářet soubory ani je přejmenovávat.

Služba 29 – Vrať vektor R/O disků

Výstupem služby je 16-ti bitový vektor disků, které jsou chráněné proti zápisu. Nejméně významný bit vektoru odpovídá disku A:, nejvýznamnější bit pak disku P:. Disky chráněné proti zápisu mají v tomto vektoru nastaven bit na hodnotu 1. Bit s hodnotou 0 indikuje disk R/W (read/write).

Služba 30 – Nastav atributy souboru

Vstupem pro službu je FCB souboru, kterému chceme měnit atributy. Jak jsme se již zmínili při popisu FCB, paritní bit u prvních dvou znaků typu souboru má speciální význam. Jestliže je nastaven u prvního znaku typu, je soubor chápán jako chráněný proti zápisu. Když je nastaven u druhého znaku, je soubor chápán jako systémový. Takto označený soubor se při výpisu adresáře pomocí rezidentního příkazu DIR nezobrazí. Uživatel má možnost si v FCB souboru zmíněné příznaky nastavit a pomocí služby přenést z FCB do odpovídající položky adresáře disku. Při úspěšném provedení vrací služba hodnotu z intervalu 0 až 3. Při neúspěšném hodnotu FFh.

Služba 31 – Vrať adresu záhlaví bloku diskových parametrů

Vstupní parametr služba nevyžaduje a jako výstup vrací adresu začátku bloku diskových parametrů vybraného disku. Diskové parametry pro všechny implementované disky jsou umístěny v modulu BIOS a udávají jejich charakteristické vlastnosti. Tuto službu obvyklé programy nevyužijí.

Služba 32 – Vrať nebo změň kód uživatele

Jestlíže při volání služby má vstupní parametr hodnotu FFh, služba vrátí momentálně platný kód uživatele. Když má vstupní parametr při volání služby hodnotu jinou než FFh, je jeho hodnota modulo 32 chápána jako kód uživatele, který má být nastaven. Služba dovoluje nastavit kód uživatele v rozmezí 0 až 31. Je ovšem rozumné se omezit na využívání rozsahu 0 až 15 s ohledem na interpret příkazů, jehož příkaz USER dovoluje pracovat pouze v tomto rozmezí.

Služba 33 – Přímé čtení ze souboru

Jako vstup potřebuje služba adresu FCB otevřeného souboru, ze kterého chceme číst. Jejím výstupem je informace o úspěšnosti operace. Služba dovoluje přímý přístup k jednotlivým záznamům souboru bez ohledu na jednotlivé části souboru (označované EX). Číslo záznamu, který chceme přečíst, je určeno 24-bitovou hodnotou uloženou v bajtech RO, R1 a R2 v FCB. Tuto hodnotu nastavuje uživatel. Hodnota čísla záznamu se může pohybovat v rozmezí 0 až 65 535, což stačí pro soubor o délce 8 MB. Z uvedeného rozsahu hodnot je zřejmé, že bajt R2 není touto službou využíván. Využívá jej pouze služba 35, ale při použití služeb 33-a 34 musí být jeho hodnota vždy nulová.

Soubor, ze kterého chceme číst pomocí přímého přístupu musí být nejprve otevřen.

Čtení se pak provádí na adresu DMA. Bezchybné provedení služby se po návratu indikuje hodnotou 0. Hodnoty 1, 3, 4, 6 představují jednotlivé typy chyb, které při přímém čtení mohou vzniknout.

Služba 34 – Přímý zápis do souboru

Vstupní a výstupní parametry jsou shodné jako u služby 33 pro přímé čtení. Liší se pouze chybové kódy, které mohou nabývat hodnot 1, 2, 3, 4, 5, 6. Ostatní vlastnosti popsané služby u 33 platí i pro tuto. Popisovat různé situace, které mohou vzniknout při vytváření souborů přímým zápisem, nemá v této chvíli význam. Byloby k tomu zapotřebí podstatně více prostoru i detailnější popis diskových operací a struktury diskových souborů.

Služba 35 – Vypočítej velikost souboru

Jako vstupní parametr službě zadáváme adresu FCB souboru. Po návratu ze služby je v bajtech R0, R1 a R2 FCB uložena virtuální délka souboru. Tato virtuální délka je vlastně číslo záznamu, který následuje za posledním zapsaným. Maximální velikost souboru tedy může být 65 536 záznamů. Virtuální délka bude totožná s fyzickou tehdy, jestliže byl soubor zapisován sekvenčně. Jestliže byl zapisován pomocí přímých přístupů a obsahuje nějaké "díry", pak virtuální délka bude větší, než počet záznamů, které soubor skutečně obsahuje.

Služba 36 – Nastav číslo záznamu pro přímý zápis

Vstupem pro tuto službu je adresa FCB otevřeného souboru. Na základě informací z FCB uložených v bajtech EX a CR služba vypočítá R0, R1 a R2. Hodnoty těchto bajtů jsou zároveň výstupem služby. Možností, které poskytuje tato služba, obvykle využíváme tehdy, když část souboru potřebujeme zpracovat sekvenčně a pak pokračovat pomocí přímých přístupů.

Služba 37 – Reset diskové jednotky

Vstupem pro tuto službu je 16-ti bitový vektor disků, ve kterém jsou vyznačeny ty disky, které chceme resetovat. Tak, jak je obvyklé, nejméně významný bit vektoru odpovídá disku A:. Bity odpovídající diskovým jednotkám, které chceme resetovat, mají ve vektoru hodnotu 1. Po provedení služby budou požadované disky označeny jako neaktivní a R/W. Tyto změny ve stavu diskových jednotek se promítnou také do vektoru aktivních disků a do vektoru disků R/O.

Služba 38 – Není implementována Služba 39 – Není implementována

Služba 40 – Inicializuj alokační blok a zapiš záznam

Vstupem pro službu je adresa FCB otevřeného souboru. Jako výstup služba vrací informaci o průběhu služby. Služba je prakticky shodná se službou 34 – přímý zápis do souboru. Odlišnost je pouze v tom, že nově přidělený alokační blok je nejprve celý inicializován hodnotou 0 a teprve pak je do něj zapsán požadovaný záznam.

Tím jsme vyčerpali všechny služby, které nám poskytuje jádro operačního systému MIKROS. Jen málo uvedených služeb je popsáno natolik podrobně, aby bylo možno okamžitě začít psát programy. Máme ovšem dost informací k tomu, abychom věděli, co je možno od MIKROSu očekávat a o co se musíme postarat sami. Praxe ukazuje, že sortiment služeb, které MIKROS poskytuje, je dostatečně široký k tomu, aby pokryl všechny požadavky, které na něj kladou programové systémy určené pro vývoj programů, kancelářské aplikace, hry a podobně.

6. Vstupně-výstupní modul BIOS

Už několikrát jsme zdůraznili, že modul BIOS v sobě soustřeďuje veškerou závislost na technických prostředcích mikropočítače. Obsahuje podprogramy, které obstarávají vstup a výstup údajů na přídavná zařízení. Vstup do těchto podprogramů je řešen tak, aby byly přístupné i uživatelským programům. Na začátku modulu BIOS je tzv. vektor skoků, který obsahuje skoky do jednotlivých podprogramů BIOSu, a to v pevně definovaném pořadí. Vektor vypadá následovně:

JMP	CBOOT
JMP	WBOOT
JMP	CONST
JMP	CONIN
JMP	CONOUT
JMP	LIST
JMP	PUNCH
JMP	READER
JMP	HOME
JMP	SELDSK
JMP	SETTRK
JMP	SETSEC
JMP	SETDMA
JMP	READ
JMP	WRITE
JMP	LISTST
JMP	SECTRN

Vidíme, že přístupné podprogramy realizují výstup nebo vstup údajů na logických zařízeních MIKROSu. To je v souladu s koncepcí BDOSu. Vnitřně pak mohou provádět přířazení zařízení fyzických, a to v závislosti na obsahu bajtu I/O. To je už záležitost realizovaná výhradně BIOSem. Podprogramy uvedené ve vstupním vektoru můžeme rozdělit na znakově orientované (CONST, CONIN, CONOUT, LIST, PUNCH, READER, LISTST) a diskově orientované (HOME, SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE, SECTRN). Nyní si jednotlivé podprogramy ze vstupního vektoru stručně popíšeme. Pro přenos parametrů mezi volajícími programy a těmito podprogramy obecně platí: údaje vstupující do podprogramu se předávají v registru C (osmibitové) nebo ve dvojici registrů BC (šestnáctibitové). Vystupující osmibitové údaje se předávají v registru A, šestnáctibitové ve dvojici registrů HL.

CBOOT – zabezpečuje inicializaci mikropočítače při úvodním zavádění operačního systému. Programuje vstupně-výstupní obvody a inicializuje některé proměnné a oblasti paměti. Pak odevzdává řízení CCP.

WBOOT – je funkce volaná při službě 0 (reset systému). Zavádí do paměti znovu CCP a BDOS. Po ukončení svojí činnosti odevzdává řízení interpretu příkazů CCP. Skok na tuto funkci BIOSu je umístěn na adrese 0 a většina uživatelských programů proto končí instrukcí JMP 0.

CONST – Podprogram vrací status logického zařízení CON: Jestliže má toto zařízení připraveno znak, podprogram vrací hodnotu OFFh. Jinak je vracená hodnota rovna 0.

CONIN – je podprogram, který čeká dokud není na zařízení CON: připraven znak. Až znak připraven je, přečte jej a odevzdá volajícímu programu. Obvykle u přečteného znaku nuluje paritní bit.

CONOUT – Vypisuje na zařízení CON: znak.

Vypisuje znak na zařízení LST:
Vyšle znak na zařízení PUN:
Čeká na připravenost znaku na zařízení RDR: Až je znak připraven, přečte jej a odevzdá volají-

HOME – címu programu.
Provede nastavení diskové hlavičky vybraného disku na
stopu 0.

SELDSK – Provádí nastavení vybraného dísku. Jednotlivým dískům odpovídají čísla 0 = A:, 1 = B:,..., 15 = P:. Při návratu do volajícího programu vrací adresu záhlaví bloku dískových parametrů pro dísk, který byl právě vybrán. Jestliže je vrácená hodnota adresy rovna 0, znamená to, že dísk, který měl být vybrán, není v systému implementován.

SETTRK - Podprogram na vybraném disku nastaví hlavičku disku na požadovanou stopu. Na této stopě pak bude prováděna následující disková operace.

SETSEC – Určuje, kterého sektoru na vybraném disku se bude týkat následující disková operace.

SETDMA – Podprogram provádí nastavení adresy DMA pro diskové operace (viz služba 26).

READ – Přečte jeden zázňam o délce 128 bajtů z vybraného disku (SELDSK), určené stopy (SETTRK) a sektoru (SETSEC). Přečtená data uloží do paměti určené platnou adresou DMA (SETDMA). Jako výstup vrací buď 0 jako indikaci bezchybného čtení, nebo nenulovou hodnotu při chybě.

WRITE – Zapíše jeden záznam o délce 128 bajtů od adresy DMA na vybraný disk, určenou stopu a sektor. Při úspěšném zápisu vrátí volajícímu programu hodnotu 0. Při ne-úspěšném pokusu vrátí hodnotu, ve které má nejméně významný bit hodnotu 1.

LISTST – Podprogram vrací status zařízení LST:, a to stejným způsobem, jako CONST.

SECTRN – Přepočítává logické číslo sektoru na číslo fyzické. Jako vstupní parametry dostává logické číslo sektoru a adresu konverzní tabulky. Jako výstup vrací vypočítané fyzické číslo sektoru.

Veškeré uvedené podprogramy s výjimkou CBOOT a WBOOT jsou ukončeny instrukcí RET, a je možné je volat z uživatelského programu. Obecně pak přímé využívání BlOSu, zvlášť u diskových služeb, není vhodné.

Při popisu podprogramů BIOSu jsme narazili na dva pojmy, které dosud nebyly vysvětleny. Jde o záhlaví bloku diskových parametrů a vztah mezi logickým a fyzickým číslováním sektorů na disku.

Nejprve tedy o důvodech pro zavedení dvojího číslování sektorů. Fyzické číslování sektorů používá diskový řadič. V nejjednodušším případě, který využívá i MIKROS, jsou sektory na disku uloženy fyzicky sekvenčně.

(Pokračování)

KONSTRUKTÉŘI SVAZARMU

ELEKTRONICKÁ LADIČKA

O. Burger, O. Mužný

Konstrukce elektronické ladičky byla, pokud se pamatujeme, uveřejněna naposled v AR 6/73, tedy více než před deseti lety. Od té doby však elektronika zaznamenala takový pokrok, že podobné zařízení lze vyrobit nepoměrně snadněji i levněji. Stabilita kmitočtu ladičky, která je v tomto článku popisována, je asi 0,00001 % – to je ovšem ve značné míře závislé na kvalitě i kmitočtu použitého krystalu. V každém případě však lze zaručit stabilitu kmitočtu nejméně tisíckrát lepší než bylo možno dosáhnout předešlou ladičkou.

Princip funkce ladičky lze nejlépe pochopit z obr. 1. Signál z krystalového
oscilátoru je nejprve tvarován a pak dělen
kaskádou čítačů s předvolitelným dělicím
poměrem. Protože u tohoto systému čítačů je charakteristický nesymetrický průběh výstupního signálu, je posledním
článkem dělicí kaskády dekadický nebo
binární čítač, který je zapojen méně obvyklým způsobem. Výstupní signál dělicí
kaskády má pak obdělníkovitý symetrický
průběh s velkým obsahem vyšších harmonických. To usnadňuje ladění ve vyšších
oktávách. Odvozený signál je zesílen ve
dvojicí spínacích tranzistorů, na jejichž
výstup je připojen elektroakustický
měnič.

Základním prvkem ladičky je krystal z radiostanice RM 31. My jsme použili krystal s označením A 4000, k němuž se také bude vztahovat výklad ve stati o oživování a naladění. Lze však použít jakýkoli krystal z radiostanic RM 31, RQ 21-a podobných vojenských inkurantů.

Zapojení krystalového oscilátoru je zjednodušeno aplikací dvou hradel integrovaného obvodu IO1. Krystaly vyšších kmitočtů (asi nad 2 MHz) nelze zpravidla vůbec rozkmitat při použití základní řady obvodů TTL MH7400. Tato mez je ovšem značně proměnná a proto raději upozornujeme na možné problémy při použití běžných hradel TTL. Signál krystalového oscilátoru je tvarován ve Schmittově klopném obvodu, který tvoří zbývající polovina IO1. Kaskáda děličů začíná dekadickým nebo binárním vratným čítačem s předvolbou (MH74192 nebo MH74193) označeným jako IO2. Čítače pracují v módu čítání směrem dolů. Oba typy IO jsou z hlediska zapojení vývodů plně kompatibilní, binární děliče MH74193 však mají větší dělicí poměr a pro některé druhy krystalů (vzhledem k jejich kmitočtu) bude jejich použití nezbytně nutné.

Výstupní signál z IO4 je přiveden na vstup B dekadického (binárního) čítače IO5, který je zapojen jako symetrický dělič deseti (šestnácti). Osazení integrovaným obvodem MH7490, případně MH7493 není z hlediska propojení na desce s plošnými spoji rozhodující. Omezení je totožné s poznámkou v předešlé větě.

Výstupní signál požadovaného kmitočtu je veden do prvního tranzistoru ní zesilovače (T1), který má v kolektoru indikační svítivou diodu. Z neblokovaného emitorového rezistoru R3 je přes regulátor hlasitosti buzen spínací tranzistor T2, který je proti záporným přepěťovým špičkám chráněn účinnostní diodou D2. Impulsním průběhem je buzena telefonní vložka TESĽA s odporem 50 Ω. Polarita zapojení této vložky, najustování její membrány a doladění rezonančním kondenzátorem Cr vhodné kapacity podstatně ovlivňuje akustický výkon ladičky. Jednoduchý integrovaný stabilizátor napětí. IO6 (MA7805) zaručuje spolehlivou funkci přístroje i při částečně vybitém zdroji. Vstupy předvolby IO2 až IO4 jsou přivedeny do objímky TX 782, která nahrazuje tři icenční binární přepínače DIL (TS 501) o jejichž maloobchodním prodeji budeme zřejmě muset ještě dlouho jen snít.

Celé zapojení je na desce s plošnými spoji (obr. 2), příklad mechanického u-

spořádání do dyoudílné plastikové krabičky pak ukazují obr. 3 a 4. To vše je pouhým obecným vodítkem, protože každý si jistě sestavu uspořádá podle vlastních možností. Proto v popisu chybí i podrobné výkresy a konstrukční detaily.

Obr. 1. Schéma zapojení elektronické ladičky (C* vyzkoušet)

KY130

KF504

KC508

D1.

R3 1k5

Rádi bychom však objasnili funkci improvizovaného přepínače DIL, o němž byla zmínka v předešlém odstavci. Vstupy předvolby 102 až 104 jsou přivedeny na špičky objímky DIL. Přepínání (volba jednotlivých tónů zvolené oktávy) se děje výměnou přepínacího klíče. Pro tento účel Ize výhodně použít vadný integrovaný obvod v provedení DIL 14, kterému zkratujeme, případně odstříhneme vývody. Není ovšem pochyb, že by byl pro daný učel miniaturní přepínač TS 501 mnohem výhodnější.

Z hlediska reprodukovatelnosti je toto zapojení vhodné i pro méně zkušené pracovníky, kteří však ovládají technologii pájení mikroelektronických součástek. Oživení ladičky se tedy bude spíše soustřeďovat do teoretické oblasti, kterou je výpočet a návrh přepínacího klíče.

Neni-li v patici zasunut přepinací klíč, dělí celá kaskáda v největším dosažitelném poměru (ladička generuje nejhlubši tón). Uzemněním – jinak řečeno: přivedením log. 0 na významově nejvyšší bity přepinače se nejvíce ovlivní kmitočet, podstatněji se tedy zmenší dělicí poměr kaskády a zvýší se proto i generovaný tón. Při troše trpělivosti lze ladičku naladit i tímto způsobem, vyžaduje to však přesný kmitočtový standard, případně čítač anebo jiný měřič kmitočtu.

Při teoretickém řešení návrhu přepínacího klíče si musíme předem uvědomit následující skutečnosti. Variabilní dělič má při osazení integrovanými obvody MH74192 největší dosažitelný dělicí poměr 999:1. Binárními čítači lze MH74193 lze dělit až do poměru 4096:1. Celkový poměr dělicí kaskády záleží kromě toho i na typu použitého čítače na místě symetrického děliče, který zvětší uvedený dělicí poměr ještě desetkrát (MH7490) anebo šestnáctkrát (MH7493). V této sestavě lze proto dosáhnout největšího dělicího poměru až 65 535:1. Při použití krystalu A 5000, jehož kmitočet je 10,51 MHz (měřením bylo zjištěno, že skutečný kmitočet je o něco nižší), lze generovat nejnižší kmitočet asi 160 Hz. Pro jemnější interpolaci generovaných kmitočtů je výhodnější použít dekadický dělič. Tím se však samo-

A/12 Amaterske All (1)

zřejmě největší dělicí poměr zmenší na

Ze známého kmitočtu použitého krys-Ze znameno kmitoctu pouziteno krystalu lze tedy navrhnout uspořádání přepínacího klíče podle následujícího příkladu. Budeme uvažovat o přepínacím klíči protón ais v oktávě C₁ při použití MH7493.

1) tón ais v oktávě C₁ je podle tabulky definován kmitočtem f = 466,16 Hz,

2) transpozice 10 502,638 : 16 = 656,41; 3) výpočet dělicího poměru 655,41 : 0,46616 = 1408,132,

655,41: 0,46616 = 1408,132,
4) korekce pro zaokrouhlení
656,41: 1,408 = 466,20
5) výpočet absolutní chyby
466,20 - 466,16 = 0,04 Hz,
6) výpočet poměrné odchylky
0,04: 4,662 = 0,008 %,
7) převod dekadického čísla na hexade-

cimální

1408₀ = 580_H (pomocí tabulky), 8) převod hexadecimálního čísla na binární

580_H = 0101 1000 0000_B,

(body 7 a 8 lze realizovat jednou operaci).

9) přiřadit binární číslo pozicím vstupů

předvolby kaskády,

10) zhotovit přepínací klíč tak, že
log. 1 odpovídá ustřížený vývod,
log. 0 odpovídá zachovaný vývod.

Vývody 1 a 14 jsou na přepínácím klíči zachovány vždy, ostatní zachované vývody je třeba spojit s vývody 1 a 14. Krystalem řízená ladička popisované

konstrukce představuje ve srovnání s dří-

Obr. 3. Vnitřní uspořádání ladičky

Obr. 4. Vnější provedení ladičky .

nativní řešení při aplikaci "teoretických" součástek a nikoli naopak. Chtěli bychom také zdůraznit, že popisovaná ladička je pouze nastinem modernizace oblasti spotřební elektroniky, kterou lze řešit v sou-časné době pomocí dostupné součástkové základny:

ÚPRAVA TELEVIZORU SECAM PRO PŘÍJEM SECAM/PAL

Petr Vávra

V současné době jsou velmi rozšířené počítače ZX Spectrum, Sord, Atari a další, které vesměs produkují barevný výstupní signál v soustavě PAL. Mnozí majitelé však mají k dispozici pouze televizory umožňující příjem barevného obrazu v soustavě SECAM, například televizory sovětské výroby. Tento příspěvek popisuje úpravu televizního přijímače Elektronika C 401, který je osazen integrovanými obvody MCA640, MCA650 a MCA660 v obvodech dekodéru barev. Po úpravě je pak televizor schopen barevně reprodukovat jak signály v soustavě SECAM, tak i signály v soustavě PAL. Obdobným způsobem lze upravit každý televizní přijímač s výše uvedenými obvody; ktérý pracuje pouze v soustavě SECAM.

Soustava SECAM

Název pochází z francouzského "Sequences de Couleurs avec Memoire" (postupný přenos barev s pamětí). Úplný barevný signál obsahuje jasovou složku Y synchronizační impulsy SI a barevně rozdílové složky R-Y a B-Y. Tato soustava vychází z poznatku, že dva po sobě následující řádky se od sebe příliš barevně neliší. Barvy jsou proto přenášeny postupně po sobě. V jednom řádku se přenáší složka R-Y a v následujícím řádku složka B-Y. Chybějící barevné informace se získávají zpožděním signálu předchozího řádku ve zpožďovací lince o dobu trvání jednoho řádku, tedy o 64 µs.

Složka R-Y se moduluje na nosnou vlnu o kmitočtu 4,406250 MHz (tj. 282násobek řádkového kmitočtu) a složka B-Y na nosnou vlnu o kmitočtu 4,250 MHz (tj. 272násobek řádkového kmitočtu). Aby v televizním přijímači nemohly být zaměněny barevné signály R-Y a B-Y, isou po dobu 9 řádků v půlsnímkovém zatemňovacím impulsu vysílány zvláštní identifi-kační impulsy (obr. 1). Ty slouží ke správnému nastavení přepínače barev. Při opačném přepínání by byla v obraze zaměněna modrá a červená barva a zmizela by barva zelená. Obraz pak má fialový nádech a často viditelné i řádkování. Za řádkovým synchronizačním impulsem je ještě synchronizační impuls barvy SIB. Představuje vzorek barvonosného signálu v době trvání asi 10 až 12 kmitů. Na . obr. 2 je úplný TV signál barevných pruhů (SECAM).

Obr. 1. Identifikační impulsy SECAM

Obr. 2. Řádkový průběh osmi barevných svislých pruhů v soustavě SECAM (a – bílý, b – žlutý, c – kyanový, d – zelený, e – purpurový, f – červený, g – modry, h – černý)

Soustava PAL

Název pochází z anglického "Phase Alternating Line" (řádkové střídání fáze). Úplný barevný signál opět obsahuje stejné složky jako signál SECAM a rovněž využívá barevné podobnosti dvou následujících řádků. Přenos barevné informace je však odlišný. Nosný kmitočet je zde jen jediný 4,43361875 MHz. K rozlišení přenášené barvy a zároveň k odstranění chyb v přenášeném tónu barvy je fáze barvonosné vlny přepínána u složky R-Y každém druhém řádku o 180° B-Y se vysílá se stále stejnou fází bez ohledu na paritu řádku. V úplném barevném signálu je v řádkovém zatemňovacím impulsu (obdobně jako v soustavě SECAM) vysílán synchronizační impuls barvy (burst). Je to opět vzorek barvonosného signálu. Jeho fáze je rovněž přepí-nána a to o +45° a o -45° vzhledem k zápornému směru osy B-Y (obr. 3). Úhel α nese informaci o tónu barvy a velikost vektoru informaci o sytosti barvy.

Obr. 3. Přepínání fáze složky R-Y v soustavě PAL

Dekodér PAL nepotřebuje k identifikaci a nastavení přepínače barevných složek impulsy v půlsnímkovém zatemňovacím impulsu a proto tyto impulsy nejsou v úplném barevném signálu PAL obsaženy. Toho se využívá k identifikaci, zda je přijímaný signál v soustavě SECAM či v soustavě PAL. Jsou-li identifikační impulsy přítomny, jde o signál SECAM, nejsou-li, jde o signál PAL. Po vyklíčování jsou impulsy vyfiltrovány a získaným stejnosměrným napětím se soustavy automaticky přepínají. Řádkový průběh barevných pruhů je na obr. 4.

Obr. 4. Řádkový průběh osmi barevných pruhů v soustavě PAL (označení barev shodné jako v obr. 2)

Cinnost demodulatoru

Vnitřní zapojení demodulátoru přijímačů moderní konstrukce jsou k dispozici v katalozích integrovaných obvodů: Jde především o obvod MCA640, což je zesilovač barvového signálu, klíčovací obvod a klopný obvod 7,8 kHz (1/2 f_i). Jeho základní funkcí je zesílení barvového signálu a vyklíčování burstu: V době, kdy je burst vysílán, musí být na vývod 6 přiváděny kladné impulsy (signál prochází ze vstupu 3 na výstupy 13 a 11). Řádkové zatemňovací impulsy slouží rovněž jako hodinové impulsy pro klopný obvod 7.8 kHz.

V soustavě PAL se nesmějí přivádět další klíčovací impulsy. Pro soustavu SECAM, kde jsou identifikační impulsy vysílány, se musí přivádět ještě na vývod 7 půlsnímkové zátemňovací impulsy. Oba klíčovací signály musí mít na vývodech 6 a 7 mezivrcholovou úroveň 6 V. Vývod 7 v soustavě PAL blokuje tranzistor T1.

Jestliže je na vstupech 6 a 7 úroveň 6 V, jsou výstupy 1 a 15 zablokovány. Mají-li úroveň 0 V, signál prochází. Signál pak z vývodu 15 pokračuje na vstup zpožďovací linky a z vývodu 1 na vstup 1 MCA650. Zpožďeňý signál je amplitudové ovlivňován trimrem R29 a přiveden na vývod 3 MCA650. Tento obvod sdružuje demodulátory barvových signálů SECAM i PAL. Přepínání soustav je řízeno stejnosměrným napětím na vývodech 4 u obou obvodů. Soustavě PAL odpovídá napěťová úroveň 12 V, soustavě SECAM 0 V.

Signál SECAM postupuje přes omezovací obvod a elektronický přepínač (rozděluje složku R-Y do červeného kanálu a složku B-Y do modrého kanálu). Činnost přepínače je řízena impulsy 7,8 kHz.

Signál PAL postupuje na součtovou a rozdílovou matici, kde se dělí na červenou a modrou složku. Signály z vývodů 13 a 15 jsou přiváděny na vstupy synchronních detektorů (vývodý 11 a 9). Obvody u vývodů 5 a 8 slouží k nastavení úrovně černé. Pracuje-li obvod MCA650 v soustavě PAL, jsou výstupy 5 a 8 blokovány a referenční nosné vlny se přivádějí vzájemně posunuté o 90° (na obr. 5 C10, R7, R8, L1 a L2) na vstupy 6 a 7. Na výstupech 10 a 12 jsou k dispozici demodulované rozdílové složky B-Y a R-Y:

Obvod MBA540 pracuje jen při příjmu v soustavě PAL. Výtváří referenční barvonosný signál R-Y, od něhož se odvozuje barvonosný signál B-Y. K synchronizaci oscilátoru nosné 4,433 MHz slouží synchronizační impulsy barvy z vývodu 13 obvodu MCA640. Fáze synchronizačních impulsů barev se porovnává s fází referenčního barvonosného signálu R-Y a - (R-Y). Výsledkem je napětí pilovitého průběhu na vývodech 13 a 14, vzájemně posunuté o jeden řádek. Napětí barvového AVC (vývody 7 a 9) je při správné fázi sesignálem 7,8 kHz úměrné amplitudě burstů a řídí zisk barvového zesilovače v obvodu MCA640. Rezistorem R18 ize nastavit úroveň AVC.

Sestavení modulu

Na obr. 5 je zapojení obvodu pro generování referenčních signálů PAL potřebných pro demodulaci signálu v obvodu MCA650. Obvod jsem doplnil k barvovému demodulátoru, který je v televizoru Elektronika C 401. Původní demodulátor, který pracuje jen v soustavě SECAM, je na obr. 7.

Bod. K (obr. 5) je trvale zapojen na +12 V. Přepínačem volíme ve které soustavě má demodulátor pracovat. Pokud bychom požadovali přepínání automatické podle přijímaného signálu, lze přepínač nahradit například obvodem podle schématu televizního přijímače TESLA Color 110 ST, modul A, v němž je použit IO A220D.

Stavba obvodu podle obr. 5 není příliš obtížná. Součástky osazujeme ze strany spojů (z důvodu ochrany před náhodným dotykem po umístění v televizoru). Cívky L1 a L2 tvoří vlastně transformátor s převodem 1:1, který obrací fázi o 180°. Cívka je vinuta bifilárně drátem o průměru 0,1 mm na vf kostřičce a má 2× 40 závitů.

Cívka je stíněna plechovým krytem a vinutí jsou zapojena proti sobě.

Oživení modulu

Na střední vývod modulu přivedeme napětí 12 V a na vývod L připojíme kostru:

Přepinač je vyřazen z provozu. Dioda D2 musí svítit. Osciloskopem zkontrolejeme zda oscilátor kmitá (obvod C12 a C13). Nekmitá-li, zkusíme otáčet kondenzátorem C12 až se oscilátor "chytne". Pak týmž kondenzátorem nastavíme kmitočet 4,433 MHz a největší amplitudu. Přesvědčíme se, zda oscilátor při každém zapnutí

spolehlívě "naskočí". Pak opět osciloskopem (nejlépe dvoukanálovým) zkontrolujeme zapojení transformátoru L1,L2. Na vývodu 6 IO1 by měl být signál posúnutý o 180° oproti vývodu 4. Laděním se nyní snažíme zajistit největší amplitudu signálu na vývodu 6 a současně posunutí o 180°. Kontrolujeme také přitomnost signálu na vývodech C a E. Na vývodu C by měl mít signál mezivrcholovou úroveň 1 V a na vývodu E 0,6 V. Signály by měly být vzájemně posunutí o 90°, tedy o 1/4 periody. Trimrem R8 můžeme nastavit optimální posunutí signálů. Tím je obvod předběžně nastaven.

Seznam součástek

3	eznam souc	aster	
Rezistory (TR 2	212)	1	
R1	1,2 kΩ	R4	. 3,9 kΩ
R2	180 Ω	R6	2,7 kΩ
R3	1,5 kΩ	' R7	820 Ω
R8	2,2 kΩ (trimr)	-	-
R9 .	10 kΩ		
R10, R11	'1 kΩ		
R12	270 Ω		
R13, R14	10 kΩ, 2 %	-	
R15	220 Ω		
R16	· 4,7 kΩ, trimr	· ·	
R17, R19			,
R21, R22	27 kΩ	, -	
R18	47 kΩ, trimr		
R20, R23	1,5 kΩ, trimr		-
R24	4,7 kΩ		4.5
R25	56 kΩ		•
Kondenzátory			
CÍ	20 μF, 12 V		•
C2, C3, C4,		•	
C5, C20, C24	0.1 μF, ker.		
C6 ~	1 nF, ker.	• •	*
C7	22 nF, ker.		
C8, C9	10 nF, ker.		
C10	48 pF	•	
C11	18 pF		
C12	60 pF, trimr		
C13	82 pF		
C14	56 pF	•	
C15	50 μF, 12 V		•
C16, C17			
C18, C19	0,15 μF, ker.		
C21 ,	5 μF, 12 V		
C22, C23	470 pF		•
Polovodičové s		•	٠.
iO1 ·	MBA540	D2	LQ100
D1, D3, D4	KA262	T1-	KC147
Ostatní součás	tky		٠.
krystal 4,43361			• •

(Dokončení příště)

ČTENÁŘI NÁM PÍŠÍ

K přijímači FW-MINI

Čtenář O. Bella z Bratislavy nás upozornil na chybu v označení použitelnýchzobrazovacích jednotek, uvedeném ve schématech na obr. 7 a 8 (AR-A 9/1986, s. 333). Správně má být v obr. 7:

2× VQE24 (VQE24 + VQE22) a v obr. 8:

2× VQE23 (VQE23 + VQE21).

Redakce i autoři se za chybu omlouvají, čtenáři Bellovi děkujeme za pohotové upozornění. Redakce AR

Císlicový multimeter DMM 520

FM TRANSCEIVER M 02

MS ing. Jiří Hruška, OK2MMW

(Dokončení)

Napětí na varikap je přivedéno z potenciometrů rozladění. Přídavné prvky v obvodu normálového oscilátoru mají za následek pokles stability zhruba o jeden řád. Ovšem v současné době je rozladování v kanále nutností, neboť zdaleka ne všechna v provozu používaná zařízení dodržují kmitočet kanálu s dostatečnou přesností. Dosažené rozladění je zhruba i ±3 až 5 kHz. Teplotní chod od zapnutí TCVR po vyhřátí je max. 2 kHz, což se projeví posunem střední polohy potenciometru rozladění. V této souvislosti bylo konstrukčním nedostatkem původní umístění normálového oscilátoru na desku logiky. Obvody TTL přece jen dost "topí". Proto byl normálový oscilátor přemístěn na samostatnou desku. Lepším řešením tohoto problému by bylo osazení logiky obvody LS. Posledním a snad nejdůležitějším obvodem na desce logiky je fázový detektor. Je tvořen IO10 (7474), IO13 (MAA741) a jedním hradlem (součást IO11).

Principiální zapojení detektoru publikoval ing. J. Fadrhons v časopisu ST. Jeho velkou výhodou je, že pracuje jako kmitočtově fázový detektor. V případě, že se porovnáváné signály liší kmitočtově, je výstupní napětí na doraz na správné straně a snaží se doladit VCO: Funkce detektoru je následující: porovnávané signály vedou na hodinové vstupy obvodů D. Na vstupech D je úroveň H (jsou nezapojeny). Příchodem hodinového pulsu se tedy nastaví příslušný obvod do stavu H. V okamžiku, kdy dosáhne tohoto stavu druhý obvod, jsou oba vynulovány přes hradlo. Výsledkem je, že výstup obvodu, jehož hodiny se předbíhají, klape se střídou odpovídající fázovému rozdílu, zatímco výstup druhého je trvale na úrovni L. Integrací a přivedením na vstupy OZ získáme na výstupu řídicí napětí pro VCO. Rozborem stanovení hodnot RC v integračních členech se zde zabývat nebudu; byl by to námět na samostatný článek. Hodnoty nejsou kritické z hlediska tolerancí jednotlivých prvků. Bez znalosti vlivu jejich změn na vlastnosti smyčky je však bezpředmětné pokoušet se smyčku vylepšit. Na desce M 02 L je vytvářen tón 1750 Hz pro zapínání převáděčů. Získává se vydělením referenčního kmitočtu 33,333 kHz devatenácti (v IO5 a IO4). Po částečném "ohlazení" obdélníkového tvaru členem R29, C42 je veden na vstup automatikou řízeného zesilovače v IO14.

Oživení a naladění

Po osazení a prvním zapnuti TCVR nepracuje. Kdyby tomu bylo jinak,

měli jste raději vsadit Sportku či Matesa

První je tedy na řadě kontrola zdrojů, stabilizovaných napětí a napětí U_{RX}. Nezapomeňte před zapnutím pečlivě zkontrolovat připájení všech spojů, hlavně na horní straně desek, vyplatí se to.

Kromě Avometu potřebujeme nutně osciloskop a čítač (oba alespoň do 50 MHz). Dále umělou zátěž pro vysílač a generátor pro oživení RX a něco jako měřicí přijímač (Boubín s Smetrem).

Nejdříve zkontrolujeme odběr při příjmu, je-li do 400 mA (s TTL logikou). Pak osciloskopem na lO11/3 a lO9/11 funkci normálového oscilátoru a děličky. Pak by mělo kmitat VCO. Amplituda na emitoru T5 je asi 250 mV š-š.

Vstup čítače zapojíme přes kondenzátor asi 1 nF na emitor T3 a snažíme se jádrem L2 naladit kmitočet okolo 45 MHz. Odpojením a připojením U_{RX} kontrolujeme činnost T7, případně změnou C20 upravíme "odskok" VCO na zhruba 3 MHz. Teprve pracuje-li VCO uspokojivě, zkusíme závěs. Spolehlivou indikací je měření napětí na výstupu 1013. Je-li VCO "zavěšeno", je napětí v pracovní oblasti. Je-li kmitočet mimo rozsah zachycení nebo nepracuje-li některá část děličky, je napětí "na doraz". U logických obvodů je reálná šance, že budou pracovat hned po zapnutí. Pokud ne, to znamená, že VCO je v žádaném rozsahu a přesto se "nezavěsí", je to horší. Zkušený amatér si poradí, nezkušený vyhledá zkušené-ho. Popis diagnostiky chyb v logice by byl příliš obsáhlý. Jedna z možných chyb i při správném zapojení je špatná funkce IO2 nebo IO3. Výrobce sice zaručuje funkci 74193 do 25 MHz, ovšem impuls na CA prvního obvodu je někdy tak zúžen, že druhý obvod nepracuje, ačkoliv opakovací kmito-čet je menší než 2 MHz. Částečnou pomocí je R8, někdy bude nutno vyměnit první 74193.

Pracuje-li závěs, naladíme VCO tak, aby ladicí napětí bylo ve všech rozsazích a režimech dostatečně daleko od dorazu OZ (větší rezervu je třeba mít na horním konci). Čítačem kontrolujeme, jestli pracuje přepínání kanálů. Nesedí-li přesně kmitočet, bude rozladěn normálový oscilátor. S použitím měřicího přijímače naladíme L3 max.

177,5

Obr. 9. Rozložení součástek na desce M 02 L (U59)

signál na kmitočet 145 MHz nebo těsně pod něj. Tím je hrubě oživena deska M 02 L.

Na desce M 02 A musíme nejdříve "rozchodit" a kondenzátorem C16 naladit krystalový oscilátor na 8745 až 8746 kHz. Pracuje-li, tak přes kapacitu jeden pikofarad přivedeme signál

9,2 MHz z generátoru na kolektor T2 a vyhledáním C11 a C13 vyladíme propust I. mf na maximální citlivost. Nemůžeme-li se trefit přesně do rezonance, tak raději směrem k vyšším kmitočtům. Další operací je naladění L6/C32 na 455 kHz. Lze to dokázat generátorem a měřením napětí na

Obr. 10. Deska plošných spojů M 02 N (U60)

Obr. 11. Rozložení součástek

102/7. Mělo by být zhruba 4 V. Přesně obvod doladíme-na správnou funkci umlčovače šumu při rozladění.

Po těchto akcích by měl přijímač pracovat a naladěním L7, L3, L2 mít i dostatečnou citlivost. Vyplatí se ještě zkontrolovat útlum propusti z filtrů SPF455. Nejsou vždy v pořádku, zvláště po zapájení. Útlum by neměl podstatně překročit 6 dB.

Oživení TX je na první pohled ještě jednodušší. Stačí nastavit L8 na nej-

větší proud T5, C54 na největší proud PA, C62 na největší výkon do umělé zátěže a je to hotovo. Ještě doladíme L7, a obvod L3 na desce M 02 L mezi maximum při vysílání a při příjmu (140 MHz). Pokud ovšem vysílač zlobí, může být jeho umravnění velmi zdlouhavá práce.

Problémem může být i dolní propust zapojená na anténním konektoru. Doporučuji nastavit vysílač bez ní a pak propust tak, aby nezměnila výkon PA.

S tranzistorem KT920B dává PA okolo 3 W vf výkonu při odběru PA 0,5 A. Je možnó použíť prakticky kterýkoliv koncový tranzistor pro tyto kmitočty, ve třídě C na jeho linearitě nesejde. Raději však typ na větší výkon, nedá se pak zničit odpojením zátěže. Pokud se vyskytnou problémy s nežádoucími produkty ve smyčce, je slyšet šestnáctý podíl referenčního kmitočtu (něco přes 2 kHz). Ve schématu i na deskách je podniknuta řada opatření, v jiné konstrukci se mohou tyto problémy znovu častěji objevit. Nepokoušejté se hledat vinu ve smyčce, ta potláčuje více než 60 dB vše nežádoucí. Na 99 % je problém v nedokonalém či nevhodném zemnění nezbývá než zkoušet a hledat.

Celková konstrukce je zřejmá z fotografií. Snaha byla o maximální jednoduchost mechanické konstrukce.

A/12
86 Amaterske AD 40

Obr. 13. Vnější vzhled transceiveru M 02

Obr. 14. Vnitřní uspořádání transceiveru M 02 – pohled shora

Obr. 15. Vnitřní uspořádání M 02 – pohled zleva

Obr. 16. Vnitřní uspořádání M 02 – pohled zprava

Pozn.: Na obr. 14, 15 a 16 je transceiver M 02 uspořádán jen na dvou deskách plošných spojů (M 02 L a M 02 N jako jedna deska)

Seznam součástek pro desky M 02 L a M 02 N (označeno +)

Rezistory

R11 R12 R13 R14 R15 R16 R17 R18 R17 R18 R19	220 kΩ 330 Ω 120 kΩ 688 Ω 68 kΩ 3,3 kΩ 100 Ω 1 kΩ 680 Ω 560 Ω 820 Ω 320 Ω 15 kΩ	R24 R25 R26, R30 R31, R33 R34 R35 R36	27 29 32 39, 40)	12 680 6,8 15 120 220 270 220 270 33 470 82 82 81 150 3,9
Kondenzá					
C1 až 6		47'nF		K,78	33 .
C7		2,2 nF	<u> </u>		
C8 C9, 10	* 16 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 pF		K 75 K 78	
C9, 10	· •	47 nF 1 nF	i ii	K / C	
C12		47\pF	T	K 75	Σ 4 .
C13	5	47 nF	Ť	Κ 78	33
-C14		10 pF		K-75	
C15, 16	34.5	.47 nF	T	K:78	33
C17 C18		82 pF		K 75	
C18	.,	47 nF_		K 78	
C19 C20		470 μF	T	F OU	18
C20 C21	· ·	6,8 pF		K 75 K 75	
C21		33 pF 22 pF		N./S K.75	
C23, 24		6,8 nF	ii'		,
C25	. • • •	0,5 µF		F 01	1 .
C26, 27, 28		100 nF		K 78	
C29, 30		220 pF	· · TI	K 75	64 .
C29, 30, C31, 32, 33	7	47 nF	TI TI	K 78	33
+C34		820 pF		< 79	
+C35		10 pF	- I	< 75	4
+C36, 37:	,	1 nF		< 79	
+C38, 39, 40	,	47 nF 120 pF		< 78 < 75	
C42		47 nF		\ 78	
U-72 4	. 1	7/ (1)	- ' '		,,,

C44	470 uF	TF 008
C45	47 nF	TK 783
C46	680 pF	- II. * *
C47	. 47 nF	· TK 7831
C48-	22 μF	TF 010
C49	47 nF	TK 783
C50	10 nF	TF 010
C51	47 nF	TK 783
C52	-1 μF	TF 011
C53	. 22 nF	TK 783
C54	47 uF	TF 009
C55, 56	47 nF	TK 783
C57	4,7·uF	TF 009
C58	15 pF	TK 754
C59	100 nF	TK 782
+C101-	\ 5 μF -	tantal
· · · · · · · · · · · · · · · · · · ·		•

Polovodičové	101.	
součástky	4, 10	MH7474
D1 až 10 Gé hrotová	1Ó2, 3	MH74193
D11 KZ260/7V5	105	7490A
+D12, 13,	106, 7	MH74S74"
14 KB109G	· 108	MH74S20
+T1 KC239	+109, 12	MH7493A
T2, 6,	⊴011 [©]	MH7400
3.5 KF524	1013	MAA741CN
T4 - SF245	1014	A202D
+T7, 101 KC237	1015	MH74188.

Ostatní součástky +X1 krystal 500 kHz TI1; 2 jako TI1 na M 02 A +LT toroid Ø 10 mm H6, 80z Ø,0,1 L2 8z, jádro M4, N01, kostřička viz L1 na M 02 A L3 jako L1 na M 02 A

Rozpiska součástek M 02 propojení

R1	3,3 Ω/2 W	D2 .	LED červe	ná · -
			- LED celve	
	47 pF, TK 755			
	470 µF, TF 008			(TP,160)
C4	100 nF, TK 783			
D1	KY711		10 kΩ/N	
_ `	•			

Po1 asi 25 mm drátu Ø 0,1 mezi kontakty P2 Př1, Př2 přepínače BCD

Př3, Př4	tlàčítka isostat nezávislá
Pon	- jedno segmentové reproduktor ARZ 082
Rep L1	vzduchový samostatný závit
	Ø 10 mm, drát Ø 1,2 mm
Konektory: .	antenní konektor typu
	Amphenol
	NF 5kolíkový 2 ks
. •	reprozásuvka
	zdrojový (malý
	akumulátorový)

Technické parametry transceiveru M 02

Určení: pro stacionární i mobilní provoz v amatérském pásmu 2 m, pro spojovací služby zajišťované amatéry.

Druh provozu: úzkopásmová FM.
Kmitočtové rozsahy: 144, 400 až 144, 9875 MHz a 145, 200 až 145, 7875 MHz (rozsahy 0 až 5) pro direktní spojení, 145,400 až 145,7875 MHz (přijímač) pro spojení přes převáděče (rozsahy 6 a 8) a inverzní převáděčové rozsahy (7 a 9). V každém rozsahu je možno zvolit libovolný z 16 kanálů s roztečí 12,5 kHz. Možnost rozladění v kanále ±4 kHz.

Citlivost přijímače: lepší než 0,4 μV pro 10 dB S/Š.

Selektivita:, potlačení sousedního kanálu větší než 50 dB (-25 kHz). Parazitní příjmy: -18,4 MHz min. 30 dB, ostatní min. 50 dB.

Stabilita: dána normálovým krys-

talem.

Výkon vysílače: 3 W do 50 Ω.

Nežádoucí produkty: vyhovují povolovacím podmínkám, neharmonické kmitočty potlačeny min. 60 dB.

Z opravářského sejfu

NÁHRADA TRANZISTORU GT905A

U sovětského televizoru Elektronika VL 100 je běžnou závadou proražený tranzistor GT905A (p-n-p) v obvodu vn. Jako náhrada se mi osvědčil tuzemský typ 7NU74, přičemž je pravděpodobné, že by mohl být použit i 7NU73. Tento tranzistor lze po úpravě otvorů v šasí televizoru připevnit na misto původního GT905A. Pouzdro není třeba izolovat, protože jeho kolektor je spojen s kostrou televizního přijímače.

Lubomír Durec

ÚPRAVA VN OBVODU V TELEVIZORECH TESLA

Na obr. 1 je nakresleno zjednodušené zapojení zdroje vysokého napětí používaného ve starších barevných televizorech TESLA Color, Spektrum a Fatra. Mřížkové předpětí pro elektronku E405 (PL509) se zde získává nabíjením kondenzátoru C521 impulsy zpětných běhů z odbočky vn transformátoru přes řízený usměrňovač, který tvoří triodová čásť elektronky E503 (PCF200). Napětí na její mřížku se přívádí z první diody výsokonapěťového násobiče TVK 30 přes odporový dělič R529 a P504. Vysoké napětí je přímoú-měrné mřížkovému předpětí. Jestliže se zvětšeným odběrem vn zmenší, zmenší se i předpětí mřížky triody E503, tím se její vnitřní odpor zvětší a C521 se bude nabíjet na menší záporné napětí. Elektronka E405 se přes rezistor R522 více otevře a pokles vn se vyrovná.

Napětí na urychlovací anodě obrazovky (25 kV) se nastavuje odporovým trimrem P504 při minimálním jasu. Velmi často se stává, že vlivem částečně vyčerpaných elektronek PL509 a PY500 je běžec P504 v horní krajni poloze. V tomto připadě je dolní konec napěťově závislého rezistoru R529 zkratován na kostru. Je značně zahříván protékajícím proudem a po určité době se poškodí. Protože tento NZC se jako samostatný náhradní díl nesežene, je nutno zakoupit čelý vn transformátor 6 PB 35017, v němž je R529 vestavěn.

Poškození varistoru R529 vyloučíme přepojením odporového trimru P504 podle obr. 2. To znamená, že z původního

zapojení proměnného odporú ho nyní zapojíme jako potenciometr. Po této úpravě již nemůže být napětově závislý rezistor v žádné poloze běžce přetížen.

Ing. Miroslav Horáček

NÁHRADA PCH200

V televizních přijímačích TESLA byla velmi částo pro oddělovač synchronizačních impulsů používána elektronku PCH200. Protože však tuto elektronku Ize většinou jen velmi obtížně sehnat, vyzkoušel jsem její náhradu elektronkou ECH84, která má shodný žhavicí proud. Změna ve žhavicím napětí je malá a v praxi se nikterak negativně neprojeví.

Devítikolíkovou objímku pro ECH84 lze přišroubovat na distanční sloupky nad původní objímku desetikolíkovou. V zapojení televizoru není třeba nic měnit.

Kontakty původní objímky s objímkou novou propojíme podle následujícího přehledu:

. Bohuslav Fiala

ZÁVADY TELEVIZORU RUBÍN 401

U tohoto televizního přijímače se vyskytla nutnost nahradit vysokonapěťovou usměrňovací diodu 3C22S. Obraz byl poněkud zvětšený a tmavý ačkoli impulsy na vývodu 11 vysokonapěťového transformátoru byly v pořádku. Bylo tedy zřejmé, že je vadná usměrňovací dioda.

Jako náhradu jsem zvolil dva křemikové usměrňovače typu KYX28/15. Při náhradě je třeba věnovat velkou pozornost izolaci usměrňovače. Nejprve je nutno zkrátit vývody a zapojit usměrňovače do série. Vývody zkrátíme asi na 5 mm. Na katodu připájíme můstek z měděného dratu o průměru 1,2 mm a ten vytvarujeme tak, aby ho bylo možno zasunout do objimky původní elektronky. Po zasunutí musí propojovat dutinky 4 a 8 (pohled zespodu, ve směru hodinových ruček). Na anodu připájíme asi 10 cm kablíku, který pak spojíme se "živým" vývodem sekundárního vinutí vysokonapěťového transformátoru.

Pro izolaci obou usměrňovačů se mi osvědčila trubička z polyetylénového dielektrika o Ø 7,5 mm, kterou jsem získal ze souosého kabelu. Vnitřní část jsem převrtal na průměr 3,5 mm. Hlavní zásadou je, že ani kousek vodiče nesmí zůstat holý. Spoj obou usměrňovačů izolujeme tenkou bužírkou, kterou asi půl hodiny máčíme v acetonu (případně nitroředidle). Bužírku pak lze pohodlně navléci a po vyschnutí se stáhne na původní míry. Pak teprve na usměrňovače nasuneme polyetylénovou trubičku. Kablík vycházející z anody izolujeme ještě navíc další bužírkou. Při zkouškách mějme na pamětí, že pracujeme se životu nebezpečným vysokým napětím barevného televizoru!

V této souvislosti bych ještě rád upozornil na typickou závadu tohoto televizoru, která se projevuje zmenšením obrazu ve vodorovném směru a jeho "zabalením" na krajích. Příčinou je v naprosté většině případů proražený kondenzátor 7C49, zapojený meži vývody 8 a 9 vysokonapětového transformátoru. Upozorňuji na to, že po jeho vypájení nemusíme vždy naměřit ohmmetrem zkrat, protože ten se často objeví až pod napětím. Kondenzátor nahradíme tuzemským typem 0,22 µF, TC 182.

A zcela na závěr bych rád upozornil, že do článku o úpravě tohoto televizoru v AR A5/86, který se týkal přepojení objímek, se vloudily chyby, takže je při úpravě vhodné postupovat podle schématu a katalogu elektronek.

Lubomír Durec

ZÁVADA NA PŘIJÍMAČI SOPRÁN

Se závadou, kterou popisují, jsem se setkal již na dvou přijímačích TESLA Soprán 635. U obou byl příjem na rozsahu VKV doprovázen hučením a stereofonní pořad nebylo možno nahrávat na magnetofon.

Hledal jsem příčinu závady a proměřoval jsem obvody v okolí IO UL 1611N, což je stereofonní dekodér. Přitom jsem zjistil, že je na vývodu 9 tohoto obvodu napětí přes 20 V. Podle údajů v katalogu je pro UL 1611N povoleno přípustné napájecí napětí v rozmezí 7,5 až 12 V.

Vyměnil jsem proto rezistor R140 (220 Ω) za rezistor s odporem 820 Ω. Napájecí napětí integrovaného obvodu se zmenšilo na 8,5 V a závada byla odstra-

Lumír Merta

AMATÉRSKÉ RADIO BRANNÉ VÝCHOVĚ

Přátelství – bratrství 1986 ve víceboji radiotelegrafistů

(ke 3. straně obálky)

V Kalininu u Moskvy se ve dnech 5. až 11. 8. 1986 uskutečnila velká mezinárodní soutěž vícebojařů, které se zúčastnilo 81 závodníků z osmi států. Sestavy našich čtyř družstev jsou patrny z výsledků. Československou delegaći vedi plk. František Simek, OK1FSI, trenérem byl ZMS Karel Pažourek, OK2BEW a mezinárodním rozhodčím Ing. Peter, Mihálik, OK3RRC. Póprvé se soutěžilo podle upravených pravidel platných do r. 1990. Z výsledků kategorie dorostenců je zřejmé, že telegrafní provoz se již nezapočítává do pořadí jednotlivců: reprezentanti SSSR obsadili celkově první tři místa, ale ztráta jednoho telegramu v telegrafnim provozu je v pořadí družstev odsunula na 2. místo. Při provozu byly použity sovětské radioamatérské transceivery Lavina, které se zcela osvědčily. Nejlepší čas s nimi dosáhla korejská děvčata, která na předání šesti telegramů potřebovala jen 17'33". Z našich byli nejrychlejší muži, 21'15". Přestože byly zvýšeny ve třech kategoriích rychlosti v příjmu (mužům zůstalo tempo 140, junioři přijímají do 130, ženy do 120 a dorostenci do 110 zn/min), získalo celkem 26 závodníků plných 200 bodů. Z našich byli mezi nimi jen Kopecký, Hrnko a Kováč. Za vysílání získalo plných 200 bodů šest reprezentantů KLDR, pět ze SSSR a náš Kováč. Ten také získal malou stříbrnou medaili za součet bodů z příjmu a vysílání. (Rozhodoval počet vyslaných znaků přes limit 110 písmen a 70 číslic/ min.). V témže dílčím hodnocení získal Hrnko malou bronzovou medaili. Orientační běh vyhráli ve všech kategoriích sovětští závodníci: Šutkovskij 67'08", Asaulenková 46'40", Ovčinkov 49'19", Golosejev 41'37". Zdá se, že kdo chce dnes vyhrát celý víceboj, musí vyhrát OB? Něco na tom bude. Dokonalé zvládnutí telegrafie je však základní podmínkou. Z naších v OB vyniki Prokóp (třetí nejlepší čas na trati mužů) a Kunčar (druhý nejrychlejší junior). Za součet bodů v OB, střelbě a HG získal Prokop malou bronzovou medaili a Kunčar malou stříbrnou medaili. Ve střelbě byli nejlepší Šutkovskij a Savkin, oba 97 b. Z naších měli nejlepší nástřel Jalový a Kopecký, oba 91 b. V hodu granátem excelovalo 11 závodníků, kteří zasáhli cíl desetkrát. Z nich bylo pět Korejců, z našich jen Kunčarová.

Je radostné, že si každý náš reprezentant přivezl domů medaili. Vysoce oceňujeme jednotlivce, kteří získali malé medaile. Na víc však naši vícebojaři nyní nemají. Chybí jim větší počet domácích soutěží v tomto branném sportu.

Výsledky jednotlivců

Muži: 1. Šutkovskij, SSSR, 724 b., 2. Permjakov, SSSR, 704, 3. Coj Mjon Nam, KLDR, 695, 5. Prokop Petr, CSSR, 667, 7. Jalový, CSSR, 637, 12. Kopecký, CSSR, 605.

474

Ženy: 1. Asaulenková, SSSR, 732 b., 2. Polaková, SSSR, 71, 3, Reichelová, NDR, 695, 7. Hauerlandová, ČSSR, 655, 10, Palatická R., CSSR, 647, 13. Kunčarová, CSSR, 575.

Junioři:

1. Ovčinikov, SSSR, 728 b., 2. Čikajev, SSSR, 694, 3. Lim Zun Gun, KLDR, 687, 6. Kunčar, ČSSR, 671, 8. Leško, ČSSR, 647, 12. Sláma, ČSSR, 604.

Dorostenci:

1. Golosejev, SSSR, 735 b., 2. Šestoperov, SSSR, 717, 3. Obydennov, SSSR, 712, 7. Hrnko, CSSR, 668, 8. Kováč Milan, ČSSR, 662, 15. Martinek, CSSR, 618.

Výsledky družstev

! SSSR - 2703 h., 2. KLDR - 2545, 3. CSSR - 2479, 4. BLR - 2376, 5. NDR - 2290, 6. MLR - 2138.

1. SSSR - 2680 b., 2. KLDR - 2460, 3. CSSR - 2381, 4. NDR - 2206, 5. MLR -2202, 6. BLR - 1958, 7. PLR - 1808.

1. SSSR - 2674 b., 2. KLDR - 2628, 3. CSSR - 2456, 4. NDR - 2232, 5. BLR -2117, 6. MLR - 2066, 7. Mongolsko - 1903.

Dorostenci:

1. KLDR - 2654 b., 2. SSSR - 2616, 3. CSSR - 2496, 4. MLR - 2361, 5. BLR - 2087, 6. NDR - 2069, 7. PLR - 1959.

-BEW

Mistrovství ČSSR v moderním víceboji telegrafistů 12. až 14. 9. 1986 Donovaly

Federální mistrovství ČSSR je každoročně vyvrcholením domácí vícebojařské sezóny. Letos bylo očekáváno zvláště s napětím, šlo o první sezónu MVT podle nových pravídel.

V pátek večer se sešlo 56 nejlepších závodníků z celé ČSSR, z naší špičky nechyběl prakticky nikdo kromě "překvapení z Fulneku" - novopečeného přeborníka ČSR Jiřího Mičky.

Pořadatelé z Banské Bystrice využili krásného prostředí v okolí i samotného zařízení (noční sanatorium ČSAD) k uspořádání opravdu zdařilé akce. Správně pochopili i změny v pravidlech – v pod-mínkách mistrovství ČSSR to znamenalo využít snížení počtu disciplín k zlepšení sportovně-technické úrovně telegrafního provozu a orientačního běhu jako hlavních disciplín MVT.

Po sportovní stránce přineslo mistrovství tuhé boje hlavně v nejvyrovnanější kategorii mužů, kde až do 10. místa často. rozhodovaly desetiny bodu. Svoji suverenitu potvrdíli závodníci Jihomoravského kraje, kde se již léta vícebojí daří. Sekunduje jim kraj Západoslovenský a Praha město. Z dalších oblastí se mezi špičku vicebojařů prosazují spíše jednotlivci. Ústřední komise se touto situací zabývá a snaží se zavádět opatření k širšímu rozvoji tohoto náročného, ale krásného radioámatérského sportu.

Vratme se však k výsledkům. V hlavních kategoriích získali tituly mistrů ČSSR zá-

vodníci, kteří již více než 10 let těžko hledají přemožitele - mistři sportu Jitka Hauerlandová, OK2DGG, a ing. Jiří Hruška, OK2MMW. Oba zvítězili ve všech disciplínách a získali plný počet bodů. Přebornický titul v kategorii dorostu vybojoval Rasťo Hrnko, OL9CPG, což mohlo být pro nezasvěceného překvapením. Rasťo však každým rokem přidává ke svým telegrafním kvalitám více všestrannosti, což se ve vícebojí zákonitě musí projevit. V nejmladší kategorii mládeže do 15 let kraloval Radek Švenda z RK OK2KRK. Radek je velkou nadějí našeho víceboje a jeho vítězství se očekávalo. Uvidíme, jak se mu bude dařit mezi dorostenci v dalších letech.

Prvních 5 závodníků v každé kategorii:

Kat. A: 1. ing. J. Hruška, OK2MMW, 300 b.; ing. M. Lácha, OK2DFW, 282,1; 3. ing.
 Sládek, OK1FCW, 273,2; 4. V. Kunčar, OK2KRK, 269,0; 5. ing. P. Vanko, OK3TPV, 258,3.

Kat. D. 1. J. Hauerlandová, OK2DGG, 300 b.; 2. R. Palatická, OK2KQO, 236,3; 3. Z. Jírová, OL6BKG, 208,8; 4. ing. E. Sládková, OK5MVT, 199,0, 5. L. Mikesková, OK2POA, 197,8.

Kat. B: 1. R. Hrnko, OL9CPG, 285,6 b.; 2. < J. Beran, OL6BMH; 3. M. Kováč, OL8CQP, 269,3; 4. J. Martínek, OL5BKB, 246,3; 5. J. Kováč, OL8CQF, 216,4.

Kat. C: 1. R. Švenda, OK2KRK, 286,2 b.; 2. R. Pazúrik, OK3RRC, 253,4; 3. S. VIk, OK2OSN, 211,0; 4. A. Beňovská, OK2KRK, 196,9; 5. T. Andrejsek, OK5MVT; 191,3.

Hlavním rozhodčím mistrovství byl Robert Hnátek, OK3YX. Kvalitní práci celého sboru rozhodčích opět pomáhala malá výpočetní technika. Kromě výsledků byla realizována přímo z počítače i kompletní disciplina příjem.

Výsledky mistrovství ČSSR v kategorii mužů jsou malou ukázkou toho, že dobrý vícebojař musí být skutečně všestranným radioamatérem. Podíváme-li se blíž na první trojici Hruška-Lácha-Sládek v kategorii mužů, zjistime, že všichni zaznamenali již řadu úspěchů ve velkých mezinárodních závodech na KV i v soutěžích vesportovní telegrafii. Svoji fyzickou zdatnost dokazují i výstupy na těžko přistupné kóty při závodech VKV. V neposlední řadě mají všichni tři diplom z elektrotechnické fakulty CVUT v Praze.

Pokud ještě někdo nesouhlasí s tím, že radioamatérský víceboj je královnou ra-dioamatérských sportů, doporučujeme prohlédnout si např. seznam operátorů stanice OK1KPU v závodě CQ WW DX 1983 - CW část, která obsadila 5. místo na světě a 1. v Evropě. Značky OK2MMW, OK2BFN, OK2BHV, OK3TPV, OK2DFW, OK2PGG se vyskytovaly nebo ještě stále vyskytují na čelných pozicích výsledkových listín závodů v MVT.

Uvedené konstatování nemá být samochválou víceboje; spíše upozorněním, že tento sport by si svým významem pro celé radioamatérské hnutí zasloužil větší pozornosti, než jaká mu je věnována ve většině základních organizací i většině krajských a okresních rad radioamatér-

.... XVII. vánoční závod 1986

Z pověření rady radioamatérství ČÚV Svazarmu pořádá okresní rada radioamatérství v Hradci Králové letošní ročník Vánočního závodu.

Závod se koná dne 26. prosince 1986 ve dvou etapách:

I. etapa od 7.00 do 11.00 UTC, II. etapa od 12.00 do 16.00 UTC.

Soutěží se pouze v pásmu 145 MHz všemi povolenými druhy provozu podle povolovacích podmínek z libovolného QTH. Předává se kód složený z RS nebo RST, pořadového čísla spojení počínaje 001 a lokátoru. Spojení se čísluje průběžně bez ohledu na etapy. V každé etapě lze s každou stanicí navázat jedno platné spojení. Do závodu platí i spojení se stanicemi, které nezávodí a nepředávají pořadové číslo spojení.

Kategorie: I. - jeden operátor,

II. - více operátorů - kolektivní stanice: Bodování: Za spojení se stanicí ve vlastním velkém čtverci se počítají 2 body. Se stanicemi v sousedním pásu velkých čtverců jsou 3 body, v dalším pásu 4 body a v dalších pásech velkých čtverců vždy o jeden bod více, než v páse předchozím. Za velký čtverec se považují první čtyři znaky lokátoru, to jest prvá dvě písmena a následné dvě číslice. Jako násobiče se počítají různé velké čtverce lokátoru, se kterými bylo navázáno spojení během celého závodu. Výsledek závodu vypočteme vynásobením součtu bodů za spojení počtém násobičů. Příkon koncového stupně vysílače podle povolovacích pod-

Odměny: první 3 stanice v obou kategoriích obdrží upomínkové ceny a prvních 5 stanic v obou kategoriích obdrží diplomy. Soutěžní deník músí být odeslán do deseti dnů po závodě na adresu: Jiří Sklenář, poštovní schránka 12, 500 09 Hradec Králové. Deník musí obsahovat všechny náležitosti formuláře "VKV soutěžní deník". podle návrhu OK1WBK zpracoval OK1MG

KV.

Kalendář závodů na KV na prosinec 1986 a leden 1987

19. 12. 1986 Canada Day	00.00-24.00
26. 12. 1986 Weihnachtswettbewerb	08.30-11.00
26, 12, 1986 TEST 160 m	-20.00-21:00
1.1.1987 Happy New Year contest	09.00-12.00
9.1. 1987 Cs. telegrafni závod	17.00-20.00
10. 1. 40 m World SSB contest .	00.00-24.00
11.1. 80 m World SSB contest	00.00-24.00
10. 1. YL – OM Midwinter contest, CW 11. 1. YL-OM Midwinter contest, fone	`07.00-19.00
11.1: YL-OM Midwinter contest, fone	07.00-19.00
17:-18. 1: HA DX contest	22.00-22.00
1718. 1. 160 m World SSB contest	00.00-24,00
17:-18. 1. AGCW DL QRP contest	15.00-15.00
23. 1. TEST 160 m /	20.00-21.00
2325, 1. CQ WW 160 m, CW	16.00-22.00
2425.1. REF contest, CW	06.00-18.00
24. 1. 15 m World SSB contest	00.00-24.00
25. 1. 20 m World SSB contest .	00.00-24.00
Podmínky závodů Canada Da	viz AR
	,

Podmínky závodů Canada Day viz AR 7/84, Cs. telegrafní závod AR 11/84, závody World SSB AR 1/86, REF contest AR 1/83.

Stručné podmínky HA-DX contestu

Závod se pořádá každoročně třetí víkend v lednu, v kategoriích: jeden operátor – jedno pásmo, jeden op. – všechnapásma, stanice kolektivní a s více operátory – všechna pásma. Závodí se jen telegraficky v rozmezích pásem 3500 až 3590, 7000 až 7035, 14 000 až 14 090, 21 000 až 21 100 a 28 000 až 28 900 kHz. Vyměňuje se kód složený z RST a poř. čísla od 001, maďarské stanice navíc předávají dvoupísmennou značku (BA, BE, BP, BN, BO, CS, FE, GY, HA, HE, KO, NO, PE, SA, SC, SZ, TO, VA, VB, ZA). Navazují se spojení pouze s maďarskými stanicemi (každé spojení se hodnotí šesti body) a se stanicemi jiných kontinentů (každé spojení hodnoceno třemi body). Násobiči jsou okresy HA v každém pásmu zvlášť. Deníky se zasílají do 14 dnů na ÚRK nebo do měsíce na adresu: Radio Amateur League of Budapest, P. O. Box 2, H-1553 Budapest, Hungary.

Přehled československých závodů na KV pořádaných v roce 1987

(V závorce uvedeno vždy číslo "červené" řady AR a ročník, kde byly podrobné podmínky závodu naposled zveřejněny.)

Cs. závod CW – 9. 1. 1987 od 17.00 do 20.00 UTC (11/84), deníky na: Radioklub Omega, pošt. schr. 814 12, 814 12 Bratislava.

Čs. závod SSB – 13. 2. 1987 od 17.00 do 20.00 UTC (1/85), deníky na: Václav Vomočil, Dukelská 977, 570 01 Litomyšl.

Cs. závod YL-OM – 1, 3, 1987 od 06,00 do 08:00 UTC (1/85), deníky na: Kurt Kawasch, Okružná 768/61, 058 01 Poprad.

Košice 160 m - 11. 4. 1987. od 21.00 do 24.00 UTC (3/86), deniky na: RR OV Zväzarmu, Alejová 5, 040 11 Košice.

Závod míru – 15:-16. 5: 1987 od 22.00 do 01.00 UTC (4/85), deníky na: Radioklub OK2KMB, Pošt. schr. 3, 676 16 Moravské Budějovice.

Polní den mládeže 160 m – 5. 7. 1987 od 19.00 do 21.00 UTC (6/85), deníky na: Radioklub OK1OPT, 330,32 Kozolupy 33.

Závod k výročí SNP – 29. 8. 1987 od 19.00 do 21.00 UTC (8/86); deníky na: Robert Hnátek; Podháj 49, 974 05 Banská Bystrica.

Hanácký pohár – 4. 10. 1987 od 05.00 do 06.30. UTC. (9/84), deníky na: -RR-OV-Svazarmu, Na Šibeníku 1, 771 93 Olomouc.

OK-DX contest = 14.=15. 11. 1987 od 12.00 do 12.00 UTC (9/85), deniky na: ÚRK, pošt. schr. 69. 113 27 Prahá 1.

Soutěž MČSP – 1.–15. 11. 1987 od 00.00 do 24.00 UTC (10/84), hlášení se předává na okresní radu příslušnou OTH každé stanice

Závod "O hornický kahan" – 21. 11. 1987 od 06.00 do 07.00 UTC (11/85), deníky na: OV Svazarmu Brno-venkov, tř. kpt. Jaroše 35, 602 00 Brno

Závodý TEST 160 m – vždy od 20.00 do 21.00 UTC (11/84), ve dnech: 30. 1., 27. 2., 27. 3., 24. 4., 29. 5., 26. 6., 31. 7., 28. 8., 25. 9., 30. 10., 27. 11., 25. 12., deníky na: Milan Prokop, Nová 781, 685 01 Bučovice.

V průběhu roku 1987 budou podrobné podmínky každého z uvedených závodů znovu žveřejněny v časopise "Radioamatérský zpravodaj".

POZOR! V souladu s ustanovením podmínek závodů a soutěží ruší se od přištího roku KV polní den, neboť je pořádán mezinárodní KV polní den jako závod IARU. Jeho podmínky zavčas zveřejníme.

Upozorňujeme též na přebor ČSR a SSR v práci na KV pásmech, který se

vyhodnocuje v kategoriích: jednotlivci, kolektivní stanice, posluchači, stanice OL. Pro přebor se hodnotí umístění v závodech: Čs. závod CW, Čs. závod SSB, Závod míru a OK-DX contest. **OK2QX**

Předpověď podmínek šíření KV na leden 1987

Přésvědčivou indicií přípravy nástupu dvaadvacátého jedenáctiletého slunečního cyklu byla stabilizace aktivity skupiny skvrn 28 stupňů severně od slúnečního rovníku 6.–9. 9. 1986. Její vytvoření na úrovní fotosféry provázely slabší ojediněle erupce 6.–7. 9., podobně jako u její předchůdkyně 5. 7. a 7. 7. Že ale o nástupu nového cyklu zatím nemůže být řeč. dokazovala současně měření slunečního sumu mezi 68–69 jednotkami.

Podobně nízká byla aktivita Slunce v srpnu s denními měřeními: 71, 70, 71, 70, 70, 70, 70, 69, 69, 69, 67, 67, 66, 67, 68, 68, 67, 67, 68, 69, 69, 69, 68, 68, 68, 68 a 68 s průměřem pouhých 68, 5. Několik slabých erupci: bylo pozorováno 1. 8. a 3.–4. 8., 10.–15. 8: a 17.–19. 8. bylo Slunce beze skvrn, s čímž kořesponduje průměrné relativní čislo R = 7.4. S jeho použitím výchází R_{12} za březen na 13,2.

Aktivita magnetického pöle Země byla nastestí pro nás většinou nízká kromě mírného zvýšení 3.-4. 8. a 27.-31. 8. a hlavně poruchy 20.-25. 8. jak ukazují denní indexy Ak. 18, 7, 23, 20, 12, 8, 6, 12, 12, 8, 8, 10, 13, 12, 10, 8, 6, 4, 6, 17, 25, 25, 26, 26. 17, 14, 14, 18, 26, 23 a 21. Po kladné fázi poruchy šíření 3. 8. a záporné fázi 4. 8. následoválo pomalé postupné zlepšování, od 9. 8. byly již podmínky vcelku slušné a mezi 11.-19. 8. většinou stabilní a nadprůměrné. Následující porucha díky svému pomalému nástupu a úplně nevhodnému načasování-již kladnou fázi pochopitelně postrádala a její záporná fáze proběhla 21.-26. 8. s maximem 24.-25. 8:

Do určité míry protipolem popsané situace bude ovšem leden, alespoň co do délky dne a tudíž i množství slunečního ultrátialového a rentgenova záření, jimž je budováná a udržována ionosféra. Zejména v ziemním období a ještě více v letech struktury ionosféry severní polokoule Země podíli energie částic ze slunečního větru. Chod podmínek šíření je proto méně triviální a do náročnějších směrů můžeme úspěšně komunikovat i v době kdy býchom to na základě klasičtějších předstáv ani nečekali. Zjednodušeně lze konstatovat, že zatímco ve výšších šířkách severní polokoule je průchozí útlum nízký, v subtropických je již až nečekaně vysoký, čímž se pásmo optimálních podmínek pro vznik ionosféřických vlnovodů zužuje.

K jednotlivým pásmům KV lze stručně poznamenat

TOP band se postupně otevírá téměř do všech směrů včetně VK, W6 a KL7 až KH6. délka oken je ale nezřídka několikaminutová. Některé tipy: UAO okolo 24.00, JA 18.00–24.00, UI 22.00–24.00, VU 17.00–21.00, ZS 20.00–04.00, zejm. 21.00 až 23.00, PY 23.00–07.00, KP4 23.00–08.00, zejm. 00.00–02.00, VE3 20.00–09.00, zejm. okolo 05.00.

V osmdesátimetrovém pásmu je o poznání pouzitelnější cesta podél pásma soumraku (podobně jako na čtyřicítce), podpořená pásmy ticha okolo západu a východu Slunce až 800 a 1200 km. Tipy: A35 15.00–17.00, YJ 13.00–19.00, 4K 19.00–23.00, ZL dlouhou cestou 07.00–08.00, VE stále mimo poledne

Čtyřicítka bude v denní době optimálním pásmem pro spojení do vzdálenosti od 500 km výše, v noci bude pásmo ticha dva až tří tisíce km. Otevřené bude téměř nepřetržitě postupně do všech směrů DX v dlouhých intervalech.

V noci zavřená dvacítka se bude v denní době postupně krátce otevírat do většiny vzácnějších oblastí včetně tichomořských a na své si v lepších dnech přijdou i ctitelé patnáctky a několikrát i desítky, zejména ve směrech na jihovýchod a jihozápad, poněkud hůře na jih.

OK1HH

Z RADIOAMATÉRSKÉHO SVĚTA

Poslední amatérské vysílání z lodi Košice

Československá námořní loď Košice, spuštěná na vodu v roce 1963, konala během května a června 1986 svoji poslední plavbu z Polska na Kanárské ostrovy, jihovýchodním Atlantikem, kolem břehů Jihoafrické republiky, jižní částí Indického oceánu do Indonésie, Singapuru a Jihočínským mořem na Taiwan, kde přistála 7. července v přístavu Kao-hsiung na jihozápadě ostrova. Zde byla prodána na zlom a posádka odcestovala letecky přes Taipei, Hong a Londýn do vlasti.

Během poslední cesty jsem pravidelně amatérsky vysílal převážně na kmitočtu 14 306 kHz. Využíval jsem lodní, 17 metrů vysoké širokopásmové vertikální antény a vysílače o 400 W PEP. U břehů Evropy, kdy jsem byl na pásmu denně ve 13.00 UTC, bylo spojení s evropskými stanicemi a s domovem bezproblémové. Situace se začala měnit u břehů severozápadní Afriky. Pásmo bylo o poznání mrtyější, přibylo atmosférického rušení. Na mém druhém kmitočtu 21 180 kHz jsem v tuto dobu občas navázal spojení s Indonésií. Jinak bylo patnáctimetrové pásmo takřka mrtvé po celý den. Po našem odplutí z Las Palmas, kde jsme brali palivo, pitnou vodu, ovoce a některé potraviny, se relativně dobré podmínky pro kontakty s domovem měnily doslova k nepoznání. Kolem rovníku, který jsme v Atlantiku překročili 1. června, se spojení začínala dařit až v 15.00 UTC. Proto bylo milým překvapením spojení mezi mnou a čs. letadlem. Pracoval jsem s OK3WM/am a s OK2STV am, kteří letěli letadlem IL-62 z Havany do Prahy. Při stejném výkonu na lodi i na letadle byl můj report ve 13.30 UTC 55, při opakovaném spojení v 15.10 již 56. Obdržel jsem 55 a 59, což zřejmě záviselo na QTH letadla, které mezitím stačilo přeletět asi 15 poledníků. Na úrovní Angoly jsem byl nucen znovu přesunout čas pro spojení na 17.00 UTC, který jsem udržoval až k břehům JAR. Ve 14.00 UTC jsem v té době udělal několik hezkých telegrafických spojení s kalifornskými stanicemi na kmitočtu 7006 kHz. U Kapského Města byly v tu dobu slyšet i japonské stanice, ale spojení s nimi jsem navázal jen zřídka a ještě pouze v patnáctimetrovém pásmu. tomto pásmu jsem však s Evropou navázal pouze jedno spojení, a to 11. června s DL3GCP. U břehů JAR, ale již v Indickém oceánu, se spojení s čs. stanicemi dařila pouze na kmitočtu 14 306 kHz v 16.00 UTC a navíc se slabými signály většinou kolem RS 45. Pravidelně jsem měl v té době spojení s OK1VO, OK1VDU, OKIJMS, OK2BEH, OKIAVE. a s německou stanicí DF7JD. Domnívám se, že špatné podmínky, které se den ode dne zhoršovaly, ovlivňovalo i zimní období, které na jižní polokouli během naší plavby, panovalo. V bouřlivé jihozápadní části Indického oceánu jsem jen těžko udržoval ranní spojení s OK1VO kolem 06.30 UTC, abych získal čerstvé výsledky z mistrovství světa ve fotbalu, což posádka lodi vřele kvitovala. Při vybavení vertikálními anténami to byl slušný sportovní výkon. Ve střední části Indického oceánu se spojení se stanicemi OK dařila nejlépe 10.00 UTC na obvyklém kmitočtu 14 306 kHz, kde jsem občas vysílal i telegraficky, neboť jsem tak mohl na sebe lépe upozornit. U Kokosových neboli Keelingových ostrovů, kterými jsme projížděli; jsem navázal poslední spojení se stanicemi OK1VO a OK1VF. Po proplutí průli-: vem Sunda do Jávského moře bylo spojení s Československem zcela ztraceno. Přibylo sice exotických spojení, jako

např. s V85WS, BY4SZ, DU3MF, BV2FA, 8Q7AC, VS6PG, BY4RB, XX9AN, 4S7VK, KX6JC, 9V1VD, 9M2GV a dalšími, ale moje směrové volání do OK v 09.00 UTC bylo bezúspěšné. Do připlutí k-vietnamskému Hočiminu jsém neslyšel jedinou evropskou stanici, i když jsem to zkoušel v různou denní i noční dobu. Evropana DF7JD jsem "udělal" v 09.00 UTC až v pozici 10°N, 110°E 4. července, když jsme byli v Jihočínském moři na cestě ze Singapúru na Taiwan. Tentýž den jsem navázal i poslední spojení s čs. stanicí OK1JPH ve 13.45 UTC, avšák se špatným reportem vlivem širokopásmového rušení, které se mezi 14 280 až 14 315 kHz vyskytovalo vevečerních hodinách a takřka znemožňovalo spojení se slabými stanicemi. Zajímavé bylo poměrně velké množství indických, indonéských, australských a samozřejmě japonských stanic, jejichž volání a rušení trochu připomínalo naši domácí situaci, když voláme výzvů DX a volají nás neukázněné evropské stanice. Že se mi nepodařilo udržet spojení s domovem z Dálného východu, to přisuzují rovněž časovému rozdílu, neboť v Jihočínském moři je místní čas a tím i lodní čas roven UTC plus 8 hodin a je třeba také někdy odpočívat. I tak jsem byl aktivní, neboť jsem udělal přes 600 spojení a přidělal tak QSL-manažerovi OK1FR (ex OK1IBF) mnoho práce, za kterou mu patří předem srdečné dky. Co se týče provozu /mm (maritime mobile), je zajímavé, že kmitočty kolem 14 310 kHz jsou velmi často obsazovány amatéry, kteří pracují z lodí. Sám jsem s mnoha z nich v této části dvacetimetrového pásma hovořil: s 4X4MP, OZ1KKR, HP1EU, WA4CWG, ZL1BOU, ON7EQ, KX7G a TI8NAM.

Na okraj malá informace od BV2FA z Taipeie. V současnosti je na Taiwanu 12 koncesovaných stanic; z toho v hlavním městě Taipei a v Kao-hsiungu po třech a zbytek je roztroušen na ostrově.

J. Presi, OK4NH/mm

Zajímavosti ze světa

V Bruneji, jejíž radioamatérská organizace je novým členem IARU, je organizováno celkem 23 členů, z toho má 16 licenci.

Na podvody v denících z radioamatérských závodů se nepřichází jen u nás, ale i-u protinožců – hlavní výhra v loňském VK-ZL contestu (tříprvková anténa pro KV pásma) nemohla být udělena pro podezření z falešných údajů v denících stanic, které se umístily na prvních místech

l mezi radioamatéry se vyskytla zlatá svatba! V říjnu loňského roku ji oslavili ZL2QY, kterého dobře známe i u nás z DX pásem, a ZL2ANA. Oslav se zúčastnilo přes 50 novozélandských radioamatérů.

V Hongkongu je nyní přes 3000 koncesovaných radioamatérů, z toho má přes 100 oprávnění pracovat na KV pásmech, ostatní se zajímají o VKV provoz. Prezidentem HARTS je VS6TV, povoláním učitel, radioklub má celkem 350 členů s klubovou stanicí VS6TS. V září 1987 bude "zlaté" výročí DXCC. K této příležitosti se připravuje vydání zvláštního diplomu DXCC za spojení navázaná v průběhu příštího roku.

Les, VK2WU, oznámil, že všechny QSL došlé pro expedici VK9MR na Mellish Reef byly zodpovězeny. Pokud jste nedostali odpověd, musela se zásilka ztratit během přepravy.

Na četné dotazy sdělují, že diplom WAC se zasílá žadatelům zdarma, k jeho získání nelze zatím použít pásem 10, 18 a 24 MHz. Zvláštní diplomy se vydávají za provoz SSB, za všechny kontinenty na pěti a s nálepkou na šesti pásmech (spojení až do 1. 1. 1974), dále se vydává WAC 1,8 MHz a WAC 3,5 MHz. Za spojení od 1. 1. 1985 se vydává i při QRP zařízení žadatele – 5 W výkon, nebo 10 W příkon koncového stupně jsou limitující předpoklady pro získání WAC QRP.

Zájemci o diplomy pozor! Máte poslední možnost získat diplomy CDXC, BCRTA, BCRRA a WBCC, které vydává RSGB. Budou se vydávat pouze do roku 1987, v současné době se připravují podmínky nových diplomů RSGB, které by lépe vystihovaly změny v politické orientaci jednotlivých států. Žkontrolujté si své zásoby QSL, neboť uvedené diplomy jsou velmi atraktivní.

G4CHP má k dispozici starší deníky, kdy pracoval jako MP4TEE, A6XF, P29LS, P29MF a 4W1ED; slíbil, že chybějící potvrzení o spojeních na požádání vyhledá a chybějící QSL zašle.

Na Taiwanu byly rozděleny prefixy podle oblastí: BV1- Yilan Kuelung, BV2- Taipei, BV3- Taoyuan, BV4- Taichung, BV5-Chanhua, Chiyi, Yunlin a Nantou, BV6-Tainan, BV7- Kaoshiun a Pingtung, BV8-Taitung a Hualein, BV9- ostrůvky kolem Taiwanu, BV0- zvláštní stanice.

V letošním roce byla výstava Interradio Hannover jubilejní a byla zaměřena obdobně, jako světová výstava v Kanadě, na vzájemné sblížení a porozumění jednotlivých národů – v tomto případě prostřednictvím různých druhů spojení, přičemž radioamatérství byla věnována velká výstavní plocha,

V závěru loňského roku se ozval další pro radioamatéry nežádoucí vysílač v pásmu 7 MHz – tentokráte Radio Sofia, s vysílacím kmitočtem rovných 7100 kHz a s postranním pásmem zasahujícím hluboko do radioamatérského pásma.

_ INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Naševojsko, inzertní oddělení (inzerce AR), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9, linka 294. Uzávěrka tohoto čísla byla dne 16. 9. 1986 do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti přílohy.

PRODEJ

Multimetr číslicový U-I-R, displej LCD (2500), TV dekodér PAL-SECAM (600), AY-3-8610 (600), různá. DHR 8, MP 80 (80–160), elektr. stopky (300). Havelka Z. Blažkova 8, 638 00 Brno.

ZX-81 + 16 kB + manuál + hry (3850), programovatelný kalkulátor TI-58C (2850). Jen písemně. Petr Šobora, J. Stolaře 953/27, 757 00 Valašské Meziříčí. Osciloskop H 313 – nový (1500), výbojky IFK 120 (90). Jára Pavel, 345 01 Mrákov.

Zesilovač SONY TA 4650 V-FET, tuner SONY ST 3950 (12 000). Vladimír Roubal, Budovatelů 2, 750 00 Přerov

Gramo TG 120 HiFi, vestavěný předzes. a vložka Audio Technica (2270), Hifi zesil. 2× 25 W a reproboxy 35 W (3500), i jednotl. (1730, 1880), sít. přij. Ultrason, DV, SV 3× KV, 2× VKV (1180). Nabidněte větší množ. LED, A277. R. Potměšil, Budovcova 387, 290 01 Poděbrady.

Texas Instruments TI 99/4A 16-bitový mikropočítač + modul Extended Basic, angl. manuál (6000), osc. obrazovku B13S8 (600), stereo mgf. M2405S (3500). Ing. M. Pek, Foltýnova 22, 635 00 Brno.

AY-3-8500, EPRÓM 2732. MHB 2501 (395, 260, 55), BF245C, BF960 (35, 65). Nepoužité. S. Pálka, Exnárova 17, 821 03 Bratislava.

Farebný televizor TESLA Color v chode i na náhradné diely (3700), časové relé RTs-61 od 0,6 s do 60 hod., polskej výroby (600). J. Lang, Trávníky 5, 909 01 Skalica

Programy na ZX Spectrum – najnovšie, jedna zostava (10–13 progr.) (a 200), jednotlivo (a 40), zoznam proti známke. G. Vámos PS 59, 990 01 Veľký Krtiš. Stereozesil. TOSHIBA SB-M33, $2\times$ 60 W/8 Ω, k=0,008 % (1 kHz), s/š 104 dB (tuner, AUX. CD) (7000), FM, AM-stereo synthesizer tuner AKAI AT-S3/L vč. konvertoru-OIRT/CCIR SENCOR S-801 (7000), 3pásm. reprobedny AKAI SW-TM5, max. 50 W/8 Ω, rozměry: 18,5 × 32,5 × 20 cm (7200). Vše jakostní, málo používané. Dále IO. T. X. C a jine radiosouč. Seznam za známku. Koupím tiskárnu SEIKOSHA + Interface ke Spectru, nabídněte. L. Palík, Smetanovo nábř. 1190, 500 02 Hradec Králově II

SFE 10,7 MHz (50), BF981 (60). P. Švajda, Kovrovská 483/21, 460 03 Liberec III. Prog. kalk. Casio fx-180P, 38 sdruž. kroků, 55 fci, 7

Prog. kałk, Casio fx-180P, 38 sdruž, kroků, 55 fcí, 7 pamětí, statistika, integrály, zlomky, závorky (1300), Calcul PSR-98E 45 kroků, 64 fcí, 7 pamětí, statistika, počítání v hex. a oct. závorky (1200).

Receiver Grundig RTV 1040 HiFi Quadro (17 000), sluch. AKG K 60 (1500), gramo Nordmende RP 1260 HiFi Direct Drive (5500), stereoradmgf. Telefunken CR 30 (5600), přij. Saba Transeuropa (2600), Ziphona Tuner 922 HiFi + konv. Sencor (3100), BF245C (25), sov. polovodiče, antény a ant. zesilovače, HiFi katalogy a prospekty, gramodesky, radiomateriál. Seznamy zašlu. Jan Krejsa, 561 81 Kunvald 356.

HiFi vežu STUDIO 1136 A (trojkombinácia) s reproduktormi (12 500), videorekorder PANASONIC VHS (25 000). M. Hausner, Priehradka 395, 966 01 Hliník n. Hronom.

Kompl. šasi př. SYNKOPA (1500), kor. zesil. pro gramo (250), 2 ks BOX – 2 pásma, 4 Ω , 10 W (1 ks 350), osaz. tuner dle AR 10, 11/84 (400). J. Smejkal, Revoluční 27/2, 591 01 Žďar n. Sáz. III.

HiFi gramo Dual 1229 (3500), 200 ks LP desek (2500), obrazovku, trafo a desky na osciloskop dle AR 11/76 (300) nebo vyměním za cassette deck AIWA F 220. P. Klička, Nad Týncem 18, 312 18 Plzeň, tel. 607 59. BTV ŠILELIS 410. 1,5 roku starý (4000). J. Košecký,

Foltýnova 10, 635 00 Brno.

Stereomagnetofon M 531 S (1600), Tuner 3603 A HiFi (2300), Kúpim VKV diel, vstupný do SP 201, P. Baculák, Lud. milicii 20, 040 010 Košice.

Program. kalk. Tl 58 C, český návod (2500). Vojtěch Švanda, 382 03 Křemže 229.

Mgf. B 90 + náhr. motor, převody aj. (700), nový sov. měř. př. C 4315 – *U. I., R. C* dB (1000), lab. ocejch. RLC 10 (1100), mgf. pásky prof. ∅ 18 cm nové na kov. cívk. BASF (390), SONY (240). Fr. Chytrý, Synkova 20, 628 00 Brno.

ZX Spectrum Plus + čes. manuál + 450 programů (7000). Koupím tiskárnu pro Spectrum. Petr Košíček, J. Malého 2274, 397 01 Písek.

Osazenou desku světelného hada (450), napůl osazenou desku přijímače podle příl. AR/1983 (150). Lad. Fiala, Topolčanská 400/4, 412 01 Litoměřice. Český překlad manuálu na Sinclair Spectrum 48 kB (100). VI. Roganský, Košická 43/E, 821 08 Bratislava. Osciloskop – nový nepoužívaný, typ OML-2M, citl. 10 mV až 300 V, f. 5 MHz (1300). Ing. Ján Prusák, Exnárová 17, 080 01 Prešov.

Nepouž. elektron. souč. za 70 % MC. Seznam za známku. Končím. Lubomír Fišer, Lhotka 190, 560 03 Čes. Třebová.

GRUNDIG – Satelit 300, nový v záruce (6000). Dr. Vlad. Vodička, Masná 21, 110 00 Praha 1.

BTV C436 (1500), IO MH 74192, 141 (à 20), MAS560A, 601-3 (15, 80), ICL7107 (500), palc. přep. TS 211, 212 (a 15), 7QR20 (100). Koupím LED. J. Tuma, 252 18 Uhonice 218.

UV EPROM 27128, organizácia 16384 × 8 bit, nové (500). Ing. Milan Gajdoš, Kováčska 1, 831 04 Bratislava

TOSHIBA reproboxy SS-M 40/60, 3pás., 400 W sin. 8 Ω , nové 2 ks (3000), gramo NC 440 elektronic (1000), FM přijímač TESLA 632A (1000), amatér reproboxy 3pás, 20/40 W, 4 Ω , 2 ks (1000). P. Bartoš, č. p. 167, 463 32 Bilý Kostel n. Nisou. Přenosku PHILIPS GP-412 MK3, nová špičková

Přenosku PHILIPS GP-412 MK3, nová špičková (2600) + náhr. hrot (1000) a 2 ks nových hrotů pro přenosku PHILIPS GP-412 MK2 (a 650). M. Černohorský, Janáčkovo nábř. 53, 150 00 Praha 5.

Klaviaturu 6 oktáv E – e (1000). Milan Valenta, 698 01 Veseli n. Mor. 1474.

Cassette Deck JVC KD-V 11, Dolby B, s/š = 68 dB, metal 30–16 000 Hz, vyhľadávanie skladieb, 100% stav (3950), vstup VKV AR 2/77 naladený (550), anténny zosil. VKV OIRT, CCIR, zisk 20 dB, šum 2 dB-(300), BF961, BFR90, 91 (a 90). Pavol Rindoš, Slobody 25, 040 11 Košice.

Výbbíky pro blesk a jiné stroboskopické efekty IFK 120 (a 100), IFK 50 (a 80), osciloskop tov. výr. do 10 MHz – hrantá obrazovka, dokumentace (3300) vše nové. Koupím RX Globephone 8008 DX. Grundig 2500 Professional nebo jiňý podobný, nabídněte. Jen nový nebo zánovní. Antonie Chládková, Belojanisova 2, 787 01 Šumperk.

ZX Spectrum 48 kB – nový (8500), slovenský alebo český preklad príručky Basic (100), český hardware s návodmi na úpravy ZX (100). Aj jednotlivo. Len písomne. P. Chovanec, Vansovej 16, 965 01 Žiar n. Hronom.

Civkový magn. UNITRA M2405 S (2500), 30 pásků Ø 18 (a 200), radio 814 A (5000), gramochassis + různé dopl. jako barev. hudba, pseudoquadro apod. (1200). Možno ve věži nebo i zvlášť. Dále desky s T, C, R, D, IO (a 40). Miloslav Říha, Sídliště 631, 407 22 Benešov n. Plouč.

SFE 10,7 (80), BFR90, 91 (80, 80), BF900, 907, 910 (60, 60, 60), NE 555 (30), A277D (50), novú obrazovku 25LK2C (1200), moduly z BTV Elektronika C-430, BF272 (45), AY-3-8500, 8610, 8710 (350, 600, 600), Kúpim kryštál 27, 12 a 46,8 MHz, patice na IO, MA1458, rozne LED, T, IO – prosim zoznam. I. Jakubek, V. I. L. 557/III, 377 04 J. Hradec.

Súčiastky: LM339 štvoritė komparátory (à 40), 74C154 (à 80), 82S123 PROM (à 70), PC702, optokopler (a 50), SFH 600-2 optokopler (a 50), 6502 8 bit SPU (200), 6532 128×8 stat. RAM (250), MHB 4116 (a 90 a dále Videoterminál – osadená firemná doska s EF9364 (1400) + servis. dok. pamarová doska 8 kB RAM – osadená firemná doska + 4 miesta pre 2716 alebo 2732 (700) + servis. dok. Skopiruji stránky z časopisu "Elektor" od r. 1979 až po nejčerstv. súčastnost. Pavol Hlubina, Palkovičova 13, 821 08 Bratislava, tel. 678 33.

Zesilovač HiFi, stereofonní - nový 2 × 20 W/4 Ω,

15 Hz – 30 kHz, k = 0,1 %, vstupy R, M, G (mg), bílý tisk na černých panelech (1450). L. Novák, Kostěnice 106, 533 03 Dašice.

Aparaturu pro disco: výk, zesilovač 2 × 200 W/4 Ω (3900), 2 ks třípásm. reprobox. 180 W (a 2600), barev. hudba – růz. prac. režimy + 4 ks 600 W osvětlovacích barev. boxů (2900), světel. had barev. 10 m s řízením rychlostí, směru + stop (1800) 2 ks halogen reflektorů 1000 W + barev. filtry (a 1900) stereofon.9-ti pásmový ekvälizér (2200), UV lámpa (bílý efekt) + skříňka s třumívkou (950). Končím ze zdrav. důvodů. L. Novák, Kostěnice 106, 533 03 Dašice.

ZX Spectrum – 100% stav. 48 kB se zákl. vybavením (6500), ant. zesilovač IV.–V. pás. 2× BFR, G=22 dB, F=2 dB-vhodný pro dál. př. (300), TV hry s AY-3-8500 "TELSPORT 302" + dokumentace (700). Koupím 74LS02, 74LS05. P. Svoboda, Vít. února 1232, 535 01 Přelouč.

Sov. stavebnici – Mladý elektronik (300), a fotoaparát Smena (200). Z. Slavík, Na zamečku 1, 789 85 Mohelnice

Transceiver KV celotranzistorový pro všechna pásma. Citlivosť 0,8 μV – RX, digitální stupnice, provoz CW – SSB. (11 500). F. Olejník, Zahradnická 1722/A. 250 01 Brandýs n. Labem.

BTV Raduga 716, vadný, na součástky (1200). Vadný VN. Čestmír Noheji, J. Jaburkové 261, 530 09 Pardubice, tel. 407 37.

AIWA MINI COMPO, tape deck, digital tuner, předzesilovač, koncový stupeň v tmavé skříni (20 000). Karel Janda, Štěchovická 14/1858, 100 00 Praha 10, tel. 78 13 724.

VKV Konvertor Sencor CCIR/OIRT (600), zosilovač CCIR Z≥17 dB, S≤2,5 (320), dosku VKU tuneru z AR 10, 11/84 s filtrom Murata (430), pl. spoj T 92 (29). V. Česal, Denešova 21, 040 11 Košice.

Osciloskop N 313 s 2stop. prepinačom, upravená čas. zak. do 0,1 µs (1500). Zhot. vyh. teliesko typ.,A". "B" k mikro: pájke z AR 1/82 (50), Cu hrot (5). P. Sedo, 28. Oktobra 13, 010 88 Žilina, tel. 233 24.

Gramochassis NAD 4120 s. magnetodýn. vložkou JVC Z-4S (2000), třípásmové reprobedny 8 Ω35 W (2 ks 2500), měřicí přístroj C 4328*U. I. R.* ot./min. a úhel alfa (500). Nový Jaroslav, Bílinská 21, 419 01 Duchcov.

BFR91 (75). Jan Dobiš, 561 55 Orličky 24.

Stereomagn. B 73 HiFi + nový pásek BASF Ø 18 + 2 ks 3 pásm. repro, vše za (2700), možno i jednotl. dle dohody. A. Brabenec, Radyňská 420, 332 02 Starý Plzenec.

Keram filtry MURATA SFE 65MBF a CDA65MC10 (à 100). Ing. P-Kučera, Topolová 580, 431 51 Klášterec

Zes. TEXAN 2 × 40 W, celokov. mini černý (2000), osc. obr. VALVO DR 10-5 PHILIPS DG 10-5 (a 150), vn trafo BAJKAL nové (90), zahr. LP desky (a 250), seznam proti známce. Vše bezv. stav. Karel Malec, 398 55 Kovářov 109.

NE 555 (35), KF907, 910 (25, 25), BFR90, 91 (80, 80), A277D (50), MHB8035 (100), MHB8080A (70), MHB8255A (80), MUDr. Ján Antolík, A. Kmeta 31, 968 01 Nová Baňa.

ZX 81 + zdroj + 16 kB RAM 100% stav (4300). lng. J. Jiřík, 544 72 Bilá Třeměšná 57.

Jap. stavebn. tuneru lad. synt. s digi stup. a hod. (2200), mgf. ZK 246 nová hlava (2800), kalkul. Tl 57 (1000). P. Rosol, Moravanů 38, 169 00 Praha 6.

BFR91 (130), BFT 66 (150), ICL 7106 (700), ICL 7107 (600), AY-3-8500 (350)-AY-3-8610 (700), digital. LCD multimetr (200). J. Kaděra, Novosuchdolská 31; 165 00 Praha 6.

Čítač 100 MHz AR 9/82 (2300), širokopásmový ant. zesil. 2× BFR90, 91 (350), slučovač na 6 antén 75 (200), Koupím fotoodpor RPY 58, CL 505 L, WK 65037, LQ410, MH, MHB, přepínač WK 533 39, 41, 2× Spectrum M. Hladký, Soukenická 2154/4, 688 01 lth Broot

Personal electronic printer BROTHER EP-20, formát A4, normál + thermopapir (6000), programy pro Spectrum 48 (a 10), sežnam zašlu. M. Kraus, Poste restante, pošta 128 00 Praha 2.

Tuner ST-100 (3000), S. Štastný, Odborů 8, 120 00 Praha 2, tel. 29 94 82.

TESLA Holešovice k. p., závod Ústí nad Labem

Jateční 241, 400 21 Ústí nad Labem

přijme:

absolventy středních průmyslových škol strojního a chemického zaměření a absolventy vysokých škol

oborů: technická kybernetika, mikroelektronika, strojírenství a chemie pro vývojové oddělení.

Možnost získání stabilizačního bytu při nástupu.

Informace podá KPÚ.

TESLA Holešovice k. p., závod Ústí n. Labem

Jateční 241, 400 21 Ústí nad Labem

nabízí

podnikové stipendium pro studenty strojního, elektrotechnického a chemického směru od září 1986.

Po ukončení úspěšného studia a po nástupu možnost získání stabilizačního bytu.

Bližší informace podá KPÚ.

Osciloskop Křižík 565 dokumentace, náhradní elektronky, nová obrazovká (1000). Fr. Blecha, Milevská 36, 140 00 Praha 4.

VF tranz. BFR90, BF961 (80). Jen písemně. J. Cvrček, Žitomírská 7, 101 00 Praha 10.

TI-59, moduly MATH, RPG, mag. štítky, tiskárna PC-100C, papír, manuály (9850). K. Klímek, Bubenečská 29, 160 00 Praha 6.

Měřicí přístroj UNI 11e (1200), různé polovodiče D. T. IO, různé R. C a další elektromateriál. Seznam proti známce. F. Zavadil, 1. máje 41, 460 03 Liberec 3.

známce. F. Zavadil, 1, máje 41, 460 03 Liberec 3. Motor SMR 300-300/220 V (100). M. Beneš, Simonova 1102, 163 00 Praha 6.

Sinclair Spectrum 48 kB (8000). Odpovědí pouze písemně. K. Kohlíček, Zeyerova alej 22/1853, 162 00 Praha 6.

Překlad manuálu pro ZX Spectrum (150), obrazovka 7QR20 (200), BFT66 (130), BFR90 (90), BF961 (90); zahr. elektronická autoanténa (300). Jan Kunschke, Oblouková 8. 736 01 Havířov-Bludovice.

Kaz. mgf MK 232 P (1150), mgf. B 113 (2000) + pásky Ø 15 (500), fotoaparát ZORKIJ 4 − nový (700), čas. spínač TAA 100 (250), repro 2 ks dvoupásm. 20 W/ 8 Ω (à 350). V. Klatovský, Obránců míru 42, 170 00 Praha 7, tel. 37 46 33.

Prana 7, tel. 37 46 33. **BFT6**5 (90), C106D, IC 78L05, IC 78L15, FLJ241, FLK121 (20), ICM 7045 (760), AD130, TXC18E (40), BC141, P600J, FZH161, FLH101, 2N5400 (10), 2N3055 (30), BRX45, FLH481, FLH521, FZH131, SN7420, SN74452, BD136 (15), 2N2222, 2N2219, 1N5408 (8), Miniblocs A1, A4, A7, C1, Z3, AH, BH (6), NE555 (25) aj. Seznam a parametry proti známce. A. Mach, Slovanská 446, 330 11 Třemošná.

Anténa 35.–40. k. nepouž. (200), rotátor Hirchmann (2500), B BF961 (90), zesilovač TESA-S 9k 50 dB (600), K. Kulhavý, Chvatěrubská 366, 181 00 Praha 8, tel. 855 46 19.

LAMBDU 5 (1800). P. Listopad, Zelenohorská 503, 181 00 Praha 8, tel. 855 95 63.

RK 1965–1975, ARB 1976–1981, ARA 1960–1984, nejraději vcelku (1500), anténní zesilovač IV. + V pásmo s BFT66 + BFR90 (500), širokopásmový zesilovač se třemí vstupy I. + II., III., IV. + V. s BFR90 + BFR91 (450), širokopásmový zesilovač se třemí vstupy s BFT66 + BFR90 + BFR96 (600), S. Šablatura, Bezručova 2903, 276 01 Mělník.

HC 16 (450), VM 2102 (400) + předzes. (120), MDA2020, A290D, MH7437, LA3301, MAA748, A277D + zel. LED (à 40, 13, 15, 30, à 15, a 30, à 4). Koupím 2 ks SFE 10,7 MD, programy k IQ151. L. Svatoš, 507 12

Digit. stup. z AR 77 (1260), BF900 (60), BF979S (50), X-taly 80 kHz, 4,025 MHz, 4,43 MHz, 353 kHz (100, 90), MF 10,7 MHz (190), zdroj z ARB 4/78 (450), stereozes. s 2× TDA 2020 (200), korekční stereozes. s TCA730, TCA740 (350), stupnice 16× LED (350), ant. zes. 2× BFR91 (450), 2× BFY90 (250), TAPT 03 22. k., 26. k. (400), ZKD 41 28. k. (450), vst. díl VKV HiFi (530), Reprobox 10 W (a 350), indikátory, jádra NO toroidy, ploš. spoje atd. Seznam za známku. A. Kronus, Dolnokralovická 1291, 258 01 Vlašim.

Pár obč. radiostanic po GO. VKP 050 (1500). R. Čelechovský, Irkutská 4, 625 00 Brno.

Sběrnící klávesové spínače pro el. varhany 2×5 oktáv, vstup 96 tónů, výstup 2×9 stop. Osazeno 305 ks CD4016. Napájení sym. 6 V (3000). Dále větší počet pájených 4016 (9). Spěchá. Ing. J. Kocův

rek, Plzeňská 879, 783 91 Uničov.

MDA2020 väčšie množstvo (32). Lad. Szilágyi, Bernolákovo nám. 30, 940 01 Nové Zámky.

BFT66 (140), BFR90 (80), BFR91 (90), BF981 (65), BF960 (60), BFY90 (60), SFE 10,7 (65), J. Sima, Miškovecká 5, 040 01 Košice.

KOUPĚ

IO AY-3-8610, AY-3-8710, zvukovou část do televizoru Oliver, (popř. jen pásmové propusti). Uvedte cenu, M. Andrle, Na drážce 418, 530 03 Pardubice. IO MM 5316, kryštál 100 kHz, relé LUN 12 V. Vojtěch Nógrádi, Hrušková 513/IV-16, 031 04 Liptovský Mikuláš

Motor a servisní návod na mgf. B5, stupnici a servisní návod na přijímač Maestro 1002A, 2 sady jap. mf. trafa ž., b., č. Šchindler V., Pod Hanuší 426, 747 41 Hradec n./Moravicí.

Občanská radiostanice do 1000 Kčs, fungující – požaduji stručný popis. Roman Šmída, 592 22 Vojnuv Městec 277.

ULU 6 C001 E-7 pro ZX Spectrum 48 k do 1000 Kčs. Květoslav Sedlář, Zemědělská 1077, 756 61 Rožnov n. R

p. R. Nový ZX Spectrum Plus 48 kB nejraději zakoupený v tuzemsku. (možnost opravy). Dále příslušenství, hry – nabídněte. Jana Šrámová, 503 22 Libčany 177. Mechaniku alebo vrak kazetového mgf. prehrávača, autorádia. Zahradník, Juh 2743, 911 00 Trenčín.

CD4098 nebo CD4528 popř. ekv. SN74LS 112, DL123D, AY-3-8610, AY-3-8710, CD 4011, ARA 2/80, ARB 5/83, ARB 6/84, ARB 1, 2, 5, 6/85, AR A roč. 85. VI. Schnitta, Na fojtství 5, 705 00 Ostrava-Hrabůvka. Joystick + interface pre ZX Spectrum 48 kB, kerem. kap. trimre (NDR) 4÷20pF, 10÷40 pF, sklenené kap. trimre do 10 pF, elektretové mikrofony, repro ARZ 082, AU213, MAA661. O. Rajtar, 951 71 Velčice 133. Svod k TV pro ZX Spectrum, IO UCY7402N. P. Esterka, Prostřední 768, 763 12 Vizovice.

AY-3-8610, ARZ 389. T. Šlosár, Golianovo 413, 951 08 Nitra.

KY 708 - 4 ks, tráfo na Zetawatt 1420, 2 ks kondenz. 5 mF TC 936a, tranz. KC510. Ivan Petrek, Leninova 527/19, 033 01 L. Hrádok.

5277, 19,000 a BPW21, alebo TIE 77, int. obvody ICL7135, LF 355, SP 8680, Ing. P. Andris, Fučíkova 69, 971 01 Prievidza.

DRAM 64 K, 128 K, 256 K, EPROM a iné súč. pre mikropoč. M. Torda, Lidické nám. 12, 040 14 Košice. MMS312 + DIL 24, X-tal 100 kH, TP 283 50 k/N, TP 640 22k/N, ARA 1/75, 4, 12/76, 11, 12/79, 9, 11/85, ARB 4, 6/76, 5/79, 5/81, 1/82. L. Čermák, Tovární 19, 571 01 M. Třebová.

Citac od 40 MHz výše. J. Hrubý; Knoblochova 416, 514 01 Jilemnice

TV hry s IO AY-3-8 . . ., popis + 100% stav + přijatelná cena. Miroslav Rada, 735 11 Orlová – Město č.

Sinclair ZX Spectrum 48 kB, popis, cena. Karel Jílek, Michajlovská 3, 751 24 Přerov 4.

RX do 500 MHz. V. Janský, Snopkova 481, 140 18 Praha 4.

IO – K176/IE5 nebo vadné hodiny 3/ΓΕΚΤΡΟΗΙΚΑ Γ 9.02. Antonín Buroň, Leninova 1047, 708 00 Ostrava-Poruha

Ostrava-Poruba.

IO LS, CMOS, různé RAM, EPROM, Z80-..., 82...
a další. Miloš Pavelec, Hrůdkov 33, 382 73 Vyšší.

Poškodené reproduktory TESLA i zahraničné, kompl. ročníky čas. Automatizace. T. Link, Juh D1/d, 071 01 Michalovce

Videohry (jen kazety) pro ATARI 2600. Petr Stranka, Wolkerova 1220, 436 01 Litvinov 6.

Stereo receiver SA 515, SA 350; SA 424 nebo podobný, NE544 – IO. J. Barton, Rooseveltova 84, 772 00 Olomouc.

IO SO42P, A225D, C520D, VF tr. BF900, BF245, ker. filtry Tesla - MLF 10,7/250 - 2 ks, AR - 1,5/70, 2, 9, 12/71, 9/73, 1/77, 12/78, 4/79, 2/80, 1/81, 8/82. Mir. Benko, Sverdlovská 39, 323 18 Plzeň.

AY-3-8610, SPF 10 700. Peter Drozd, Bernolákova 407, 027 43 Nižná n./Oravou.

74LS244, 74LS245, LS08, 8282, 8286, 4116, 4164, 2114, 2716, 32, 64, 128, Z 80 (4880) – CPU, PIO, SIO, DMA, 8748, a různé jiné IO pro mikropočítače, dále BF245, Ing. Jaroslav Zamazal, ČSA 1403, 539 01 Hlinsky V

ARA 1, 3, 11/1984, 11, 12/81, 3/85, 3/86, ARB 6/84, 1/85. Len pisomne. J. Čurilla, Sládkovičová 7, 053 61 Spišské Vlachy:

Pot: 100k/N TP 640 (600) – 10×, TBA S, SO42P, BFR90, 91, 14, IO na TV hry a hodiny. Prodám FTVP Color Universal (7000) – výborný. Ing. P. Gašpar, Zelená 10, 915 01 Nové M, nad Váhom.

IO - D174D. M. Valchář, Radotice 45, 675 34 Police u Jemnice.

Antenni zesilovače CCIR a TV 31.–35. kanál. Jen kvalitni. Aleš Lain, Kutnohorská 625, 280 02 Kolín IV. MM 5316, X-tal 100 kHz, 4 ks 7segm. LED čísl. výš. 13–20 mm. spol. anoda, červ., jen nové. Karel Malec, 398 55 Kovářov 109.

ZX Spectrum Plus, ZX Mikrodrive, Z80A – CPU, 8253, 8255, Z716 – 5V. Václav Ekhard, Vlasákova 2685, 276 01 Mělník,

Měř. přístroj DU 20. lng. M. Kopal, Nad Závěrkou 12, 169 00 Praha 6.

Oscil. obraz., BFT66. Jaroslav Kořínek, Rudé Armády 354, 182 00 Praha 8, tel. 84 09 13.

Obrazovku 7QR20; IO A2030 (4 ks), A277 (4 ks). Jan Novák; Hostýnská 3, 100 00 Praha 10.

Mono radio – jen zahr. perfektni např. Grundig

TESLA Strašnice k. p.

Praha 3-Žižkov, U nákladového nádraží 6

přijme

tiskaře (tiskařku) na maloofsetových strojích pro podnikovou tiskarnu – jednosměnný provoz – nástup co nejdříve Ubytování pro svobodné zajištujeme v podn. ubytovně.

Zájemci hlaste se na osobním oddělení závodu nebo telet. na č. 77 63 40.

Nábor povolen na celém území ČSSR s výjimkou vymezeného území.

VYUŽIJTE PŘÍLEŽITOSTI A INFORMUJTE SE VČAS

Pro podniky Stavebních závodů Praha

Inženýrské a průmýslové stavby Praha Konstruktiva Praha Montované stavby Praha Pozemní stavby Praha Prefa Praha Stavoservis Praha

připravuje chlapce na dělnická povolání Učební závod SZP, Zelený pruh 1294/52. 147 08 Praha 4, tel. 46 28 38, 25 68 59

Studium ve čtyřech SOU a ZvOU, ve 20 učebních oborech, umožňuje každému zájemci výběr oboru, ke kterému má vztah a schopnosti.

AŠLETE MI INFORMAČNÍ BROŽURI

Odeslání je pro vás

 Satellit 2 100. Bezvadné, Dr. K. Vitouš, Tunelářů 326, 255 01 Praha 5 Zbraslav

MM 5316, krystal s děličkou na 50 Hz. Z. Lukavský, Kačická 890, 272 04 Kladno 4.

Pro SHARP MZ 800 programy, seznam a cena. J. Novotný, Vysočanská 233, 190 00 Praha 9. Sieťové trafo 2× 300 V/100 mA, 6,3 V, 4 V viac ku-sov, vn trafo alebo vn diel na farebný TV Elektronika

C-432, Ing. Nemec, Magurská 6, 040 01 Košice. Na ATARI-800XL profi-programy na pevných kazet. pamětech ROM (cartridge). Hry i ostatní. B. Musil, A. Zápotockého 1, 586 01 Jihlava.

Basic G (max. 1200), EM-32 kB pamět - cenu respektuji) na SORD M5: Ing. Pavel Žák, Kuldova 13, 615 00 Brno.

VÝMĚNA

Osciloskop BM 430 se všemi zásuvnými jednotkamí za ZX Spectrum nebo Spectrum +, případně prodám. Prodám troikombinaci Melodia 106 Stereo s reprobednami, schéma k dispozici (5000). Osobní odběr, I. Wurm, Švédská 35, 150 00 Praha 5.

Na SORD M5 vymením alebo predám aplikačné programy a hry. M. Hausner, Priehradka 395, 966 01

MA1458 za LED (obd. č. z). Z. Filip, Štefáčkova 1, 628 00 Brno.

Pl. spoje S 71 (40), T 30 (130), P 315-318 (100), EPROM 2716 (350), 2732 (600), ARN 6604 (120), ARV 3604 (120), ARV 161 (50) za krystal 10 MHz, AY-3-8710, přepinač TS 12 11122/06, BF981, LQ1802 (32 ks) nebo prodám a koupím. V. Wasserburger, Svazácká 13, 704 00 Ostrava-Zábřeh.

RX-R3 úprava sit za autorádio. Josef Ledvina. Husova 130, 344 01 Domažlice.

Cassette deck TECHNICS RS-M24 za Sinclair ZX Spectrum nébo prodám. Jaroslav Nový, Bílinská 21, 419 01 Duchcov.

Navijačku s počítačem amat, a měřák tranzist, amat, vym. za miniservo, příp. prodám. F. Šubrt, Fučíkova 260/5, 251 64 Mnichovice.

RŮZNE

Hledám majitele mikropočítače CANON V-20 systém MSX. Výměna programů a zkušeností. Ondřej Dědek, Místecká 719, 739 21 Paskov 1.

Kto zapožičia na prefotenie elektrickú schému od kazetového magnetofonu firmy "NEC" typ K311E za odmenu. Ing. Vladimír Helík; Rozkvet 2008/19-24, 017 01 Pov. Bystrica.

Pro ATARI 800 XL programy, hry, informace kdo zapůjčí nebo prodá. P. Valek, Kunešova 4, 130 00

Kdo opraví sovětský televizor ELEKTRONIKA 407 -Odměna. Vlastimil Gajdoš, M. Málkovice 85, 683 25 Orlovice

Kdo zapůjčí návod či schéma na elektronické zapalování na JAWA 50 (např. z příl. AR 74) J. Caha, A. Dvořáka 14, 674 01 Třebíč.

Kdo nabídne český překlad manuálu her pro ZX Spectrum, přip. něm. P. Svoboda, Vitěz, února 1232, 535 01 Přelouč.

SAM. OPERÁTORY - ved. směn (tř. 8-10) kvalif. ÚSO, ÚSV TECHNIKY a INŽENÝRY VPS (tř. 10–12)

kvalif. SPSE, CVUT-FEL PROGRAMATORY VPS (tř. 9–12) kvalif. UK-MFF, ČVUT, VŠE

výpočetní středisko v Praze-Libuši.

Platové zařazení odpovídá vzdělání a délce odborné praxe. Nástup je možný ihned. Ubytování je zajištěno. O pracovních podmínkách se informujte na adrese:

VODNÍ STAVBY

výpočetní středisko .

Dobronická 635 144 00 Praha 4-Libuš

Telefon: 47 13 311

Radio (SSSR), č. 8/1986

Digitální náramkové hodinky v SSSR – Mikrofonní zesilovač pro vysílač SSB – Práce s počítačem – Amatérský osobní Radio-86RK – Elektronické obvody termostatu – Elektronický blikač pro automobily – Analyzátor spektra – Přenos zvuku z TVP do sluchátek pomoci infračerveného záření – Akustický spinač – Indikátor vysychání vláhy – Grafické symboly elektronických funkčních bloků – Operační zesilovač ve výkonových zesilovačích – Fyziologické regulátory hlasitosti – Reproduktorové soustavy s ťazovou inverzí – Generátor mříží s IO K155LA3 – Obnovování činnosti TV obrazovek – Digitální tyristorový regulátor – Údaje polovodičových součástek série 2U106 a KU106 – Nové výrobky sovětské spotřební elektroniky.

Funkamateur (NDR), č. 9/1986

Doplněk multimetru k měření kapacity – Skříňky pro elektronické přístroje – Mikroelektronické díly pro stavebníci POLYTRONIC A-B-C (3) – Od slunečního větru k polární září – Syntezátor s PLL pro přístroje FM na 144 MHz – Příručka "Amateurfunk" – Dorozumívací zařízení jako pomůcka k výcviku komunikačního provozu – Potlačení rázů při spínání v přístroji SR2410 – Senzorová předvolba čtrnácti stanic a jejich inkaci s jedním IO U700 – Obvod prodlouhodobé periodické řízení – Čítač 150 MHz (2) – Zdroje stálého napětí s výkonovými operačními zesilovačí A2030 – Zdroj napájecího napětí pro amatérský počítač AC 1 (2) – Generátor značek pro F 1200 – Rozšíření paměti 16 kB pro amatérský počítač AC 1 – VHF transceiver Snežka – Radioamatérský diplom Ziemia Tarnovska

Radio-amater (Jug.), č. 7-8/1986

Transceiver QRP – Elektronický klíčovač s klávešnicí – Elektronická siréna – Výkonový zesilovač pro 144 MHz (2) – Geiger-Müllerův čítač – Spirálová anténa pro 432 MHz – Univerzální IO CMOS 4007UB – Přehled IO HC MOS – Konvertor 28/144 MHz – Šíření vln typu FAI – Zesilovač biosignálu – Rozhraní pro přepisování programů – Ochrana programů pro ZX Spectrum – Přístroj pro signalizaci přítomnosti osob s kapacitním snímačem – Napájeci zdroj pro minivrtačků s regulací otáček – Neutralizace statického náboje gramotonových desek – Náhrada tranzistoru UJT – Infračervený vysílač – Kompresordynamiky – Simulátor indukčnosti.

Radio (SSSR), č. 9/1986

Využití počítačú ve školách – Funkční celky moderního transceiveru pro KV – Počítačové jazyky vysoké úrovně – Amatérský osobní počítač Radio-86RK – Zkoušečka pro elektromontéra – Siťový elektronický blesk – Reproduktorové soustavy dnes a zítra – Použití integrovaného časovače KR1006V11 – Výkonové tranzistory řízené polem v můstkovém zapojení – Zlepšení vlastností zesilovače s K174UN7 – Kompresní potlačovač šumů z dynamického filtru – RC generátor s číslicovým řízením a indikací kmitočtu – Digitální měřič nf kmitočtu – Několik jednoduchých konstrukcí pro začínající amatéry – Barevné značení rezistorů – Krátce o nových výrobcích.

Rádiótechnika (MLR), č. 10/1986

90 let firmy Tungsram – Speciální IO (46): IO pro video v TVP – Mikroperiférie (13) – Technika spojení odrazem od povrchu Měsice (2) – Amatérská zapojení: Absorpční vlnoměr pro VKV; Zdroj signálu pro výcvík Morseových značek se šumem; Transceiver QRP CW pro 2 m – Schéma zapojení ZX Spectrum+ – Videotechnika (35) – Anténa pro místní příjem ve II. TV pásmu – Generátor synchronizačních a zhášecích impulsů – Měření úrovně TV signálu z antény (2) – Učme se BASIC s C-16 (10) – Radiotechnika pro pionýry.

Radioelektronik (PLR), č. 9/1986

Z domova a ze zahraničí – A. M. Ampere, velký pionýr elektrotechniky – Kytarový syntezátor MG2-213-AD (2) – Barevná hudba "Fonoblysk" – Rozhraní k ovládačům pro Sinclair ZX. Spectrum – Zapojení rozhraní pro ovládač k ZX Spectrum – "Sluneční" svitilna – TV monitor Neptun 156 – Převodníty D/A (2) – Povrchová montáž součástek – Obvod automatické regulace předmagnetizačního proudu v magnetofonu Etuida 411D – Mezinárodní jarní veletrh v Lipsku 1986 – Zlepšení číslicového měřiče kmitočtu.

ČETLI

Otava, Z.: ELEKTŘÍNA KOLEM NÁS. Albatros: Praha 1985. Vydání druhé, opravené a dopiněné. 336 stran, barevné ilustrace. Cena váz. 70 Kčs.

Není tomu tak dlouho, kdy byla v AR otištěna recenze prvního vydání této publikace, určené především nejmladším zájemcům o elektřinu. Skutečnost, že po patnácti tisících výtiscích prvního vydání vychází tato kniha podruhé v nákladu 35 000, svědčí o jejím mimořádném úspěchu u čtenářů.

O Zopakujme, si pouze, že kniha má poskytnout dětem vysvětlení o základních fyzikálnich jevech, o funkci nejduležitějších elektrických zařízeních, seznámit je s významem elektřiny pro život člověka moderní generace a v neposlední řadě i vzbudit v dětech zájem o získání hlubších poznatků, popř, o možnost volby tohoto technického oboru za budoucí povolání. Jak forma výkladu, tak zpracování – grafická úprava atd. – jsou velmi zdařilé, což je ostatně podrobněji uvedeno v recenzi prvního vydání (v AR A8/1983).

V úvodu druhého vydaní je zdůvodněna jeho koncepce – bylo rozšířeno o třicetistránkový dopl-

něk s tématy z oblasti silnoproudé elektroniký, energetiky, televize, fyziky polovodičových součástek, výpočetní techniky i sdělovací techniky. Doplněny byly i kapitola o historii elektřiny, odkazy na literaturu a rejstřík. Přes to, co se vě zdůvodnění udává, zasloužil by si bezpochyby obsah knihy větší upravy, než jen doplnění o nejnovější poznatky. Je sice pravda, že technika se vyviji stále rychleji, a že tedy knižní publikace, vyžadující dlouhou vyrobní dobu, nemohou zachytit poslední vývoj v oboru.

Proč by se však neměl rozvoj techniky promitat i do vydavatelské a tiskárenské oblasti? I když některé etapy přípravy knih nelze podstatně zkrátit, dokonalým využitím moderní techniky a organizace práce by jistě umožnilo zmenšil dobu, potřebnou na vydání knihy, alespoň na polovinu. To ovšem není věc, týkající se pouze jednoho, ale všech naších vydavatelství a realizace není jednoduchá. Ale vratme se ke knížce samotné. Publikace se jistě dočká i dalších vydání. Pak již by bylo třeba provést úpravy i v dalších kapitolách – při aktualizaci doplněním naopak některé zastaralejší nebo zbytečně obsáhlé částí omezit. Např. část textu o vakuových elektronkách mohla již být v druhém vydání zkrácena.

Seznam hlavních schématických značek pro součástky obsahuje symbol diody, ale vakuového typu. Je-jistě zajímavé uvést poměrně podrobný výklad o několika typech zařízení TÖKAMAK, ale v tomto případě jde o zařízení s předpokládanou perspektivou, o němž by stačila zmínka stručnější, obecnější. Naopak např. ve výpočetní technice se běžně využívají různá paměťová média, o kterých by bylo možno napsat více apod.

Byl bych nerad, kdyby předchozí odstavec byl chápán jako odsuzující kritika – v té podobě, v níž druhé vydání vyšlo, splní kniha jistě dobře své poslání. Šlo spíše o připomínku, týkající se budoucí ediční činnosti v této oblasti.

Nepochybují, že Elektřina kolem nás přinese jistě radost všem dětem – a k tomu i rodičům, kteří ještě nemají všechny vánoční dárky nakoupeny. Také pro vydavatele bude bezpochyby druhé vydání úspěšnou akcí... Ba

Malinovský, O.; Ženíšek, L.: ELEKTRO-TECHNIKA II. SNTL: Praha 1986, 212stran, 100 obr. Cena brož. 10 Kčs.

Druhý díl-učebnice pro dvouleté učební obory středních odborných učilišť probírá elektrické přístroje, rozvod a užití elektrické energie a jednoduché aplikace z průmyslové elektroniky. Přestože vyšel v malém nákladu – 800 prodejných výtisků, je vhodné se o něm zmínit, protože zejména mladí, začínající zájemci o amatérskou technickou činnost z ní mohou načerpat přehledně shrnuté nejzákladnější poznatky o elektrických měřicích přístrojích a měření, kterým je věnována třetí kapitola (asi čtyřicet stran), a o elektronice a sdělovací technice v kapitole čtvrté, která ma padesát stran (tormát je A4). Tituly prvních dvou kapitol jsou Elektrická zařízení, stroje a přístroje a Výroba, rozvod a použítí elektrické energie.

Výklad je stručný, ale dobře srozumitelný a přístupný okruhu čtenářů, pro který je určen. Je vhodně doplněn názornými obrázky, schématy a diagramy, obsahuje i kontrolní otázky a úlohy k procvičení probrané látky.

Kniha je brožovaná, vzhledem připomíná skripta. Uvidíte-li ji v některém knihkupectví (nejspíše v prodejně specializované na učebnice), nenechte se zmýlit stručným titulem; elektronika je v ní probrána v rozsahu, umožňujícím začínajícímu amatérovi získat pro svoji činnost dobrý všeobecný základ. Ba