

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny
Przedmiot:	Matematyka
Poziom:	Poziom podstawowy
Formy arkusza:	EMAP-P0-100-2106, EMAP-P0-200-2106, EMAP-P0-300-2106, EMAP-P0-400-2106, EMAP-P0-700-2106, EMAP-P0-Q00-2106
Termin egzaminu:	2 czerwca 2021 r.
Data publikacji dokumentu:	21 czerwca 2021 r.

ZADANIA ZAMKNIĘTE

Nr zadania	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.
Odp.	D	В	С	В	Α	В	Α	Α	С	В	D	С	В	В
Nr zadania	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.
Odp.	Α	Α	D	В	С	В	В	В	D	С	В	В	С	D

ZADANIA OTWARTE

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 29. (0-2)

Zasady oceniania

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap to wyznaczenie pierwiastków trójmianu kwadratowego $x^2 - 4x + 3$.

Drugi etap to zapisanie zbioru rozwiązań nierówności kwadratowej $x^2 - 4x + 3 < 0$.

- zrealizuje pierwszy etap rozwiązania i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności, np.
 - o obliczy lub poda pierwiastki trójmianu kwadratowego: $x_1=1$ oraz $x_2=3$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
 - o odczyta z wykresu funkcji $f(x) = x^2 4x + 3$ i zapisze miejsca zerowe i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,

ALBO

- realizując pierwszy etap rozwiązania zadania, popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności, np.
 - popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności,
 - o błędnie zapisze równania wynikające ze wzorów Viète'a, np. $x_1 + x_2 = 3$ i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności.

Zdający otrzymuje 2 p. gdy:

• poda zbiór rozwiązań nierówności: (1,3) lub $x \in (1,3)$

ALBO

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Uwagi:

- 1. Jeżeli zdający podzieli obustronnie nierówność przez (x-3), to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy obliczony wyróżnik Δ jest ujemny, to otrzymuje **0 punktów** za całe rozwiązanie.
- 3. Jeżeli zdający podaje pierwiastki bez związku z trójmianem kwadratowym z zadania, to oznacza, że nie podjął realizacji 1. etapu rozwiązania i w konsekwencji otrzymuje **0 punktów** za całe rozwiązanie.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci (3,1), to przyznajemy **2 punkty**.

Przykładowe pełne rozwiązanie

Pierwszy etap rozwiązania

Przekształcamy równoważnie nierówność:

$$2(x+1)(x-3) < x^2 - 9$$

$$2(x^2 - 3x + x - 3) - x^2 + 9 < 0$$

Egzamin maturalny z matematyki (poziom podstawowy) – sesja dodatkowa 2021 r.

$$x^2 - 4x + 3 < 0$$

i obliczamy pierwiastki trójmianu $x^2 - 4x + 3$:

• obliczamy wyróżnik tego trójmianu: $\Delta=4$ i stąd $x_1=1$ oraz $x_2=3$.

ALBO

• stosujemy wzory Viète'a: $x_1 \cdot x_2 = 3$ oraz $x_1 + x_2 = 4$, stąd $x_1 = 1$ oraz $x_2 = 3$.

ALBO

• podajemy je bezpośrednio, zapisując pierwiastki trójmianu: $x_1=1$ oraz $x_2=3$.

ALBO

• Sporządzamy wykres funkcji $f(x)=x^2-4x+3$, zaznaczamy miejsca zerowe na wykresie i podpisujemy $x_1=1$ oraz $x_2=3$.

Drugi etap rozwiązania

Podajemy zbiór rozwiązań nierówności: (1,3) lub $x \in (1,3)$ lub

Zadanie 30. (0-2)

Zasady oceniania

Uwaga:

Jeżeli zdający sprawdza prawdziwość nierówności jedynie dla wybranych wartości a, b, czy też c, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązanie

Ponieważ
$$\frac{a+b}{2}>c$$
 i $\frac{b+c}{2}>a$, więc
$$\frac{a+b}{2}+\frac{b+c}{2}>c+a$$

$$\frac{a}{2}+\frac{b}{2}+\frac{b}{2}+\frac{c}{2}>c+a$$

Odejmując od obu stron nierówności $\frac{a}{2} + \frac{c}{2}$, otrzymujemy

$$b > \frac{a}{2} + \frac{c}{2}$$

To należało wykazać.

Zadanie 31. (0-2)

Zasady oceniania

Zdający otrzymuje 1 p. gdy:

• wykorzysta wzór na sumę n początkowych wyrazów ciągu arytmetycznego i zapisze równanie z niewiadomymi a_1 , a_{20} , a_{21} i r, np.:

$$\frac{a_1 + a_{20}}{2} \cdot 20 = 20a_{21} + 62$$

ALBO

• wykorzysta wzór na sumę n początkowych wyrazów ciągu arytmetycznego i zapisze równanie z niewiadomymi a_1 , a_{21} i r, np.:

$$\frac{a_1 + a_1 + 19r}{2} \cdot 20 = 20a_{21} + 62$$

ALBO

• wykorzysta wzór na n-ty wyraz ciągu arytmetycznego i zapisze a_{21} za pomocą a_1 i r, np.: $a_{21}=a_1+20r$ i na tym zakończy lub dalej popełnia błędy.

Przykładowe pełne rozwiązanie

Niech $\,r\,$ oznacza różnicę ciągu $\,(a_n).$ Zgodnie z treścią zadania

$$a_1 + a_2 + \cdots + a_{20} = 20a_{21} + 62$$

Korzystamy ze wzoru na sumę n początkowych wyrazów ciągu arytmetycznego oraz ze wzoru na n-ty wyraz ciągu arytmetycznego i otrzymujemy

$$\frac{a_1 + a_{20}}{2} \cdot 20 = 20a_{21} + 62$$

$$\frac{a_1 + a_1 + 19r}{2} \cdot 20 = 20(a_1 + 20r) + 62$$

$$20a_1 + 190r = 20a_1 + 400r + 62$$

$$r = -\frac{62}{210} = -\frac{31}{105}$$

Zadanie 32. (0-2)

Zasady oceniania

$$\frac{a+b}{2} \cdot h = \frac{\frac{5}{4}a + \frac{5}{4}b}{2} \cdot x$$

i na tym zakończy lub dalej popełni błędy.

Przykładowe pełne rozwiązanie

Pole P trapezu jest równe $P=\frac{(a+b)\cdot h}{2}$. Po wydłużeniu podstaw oraz skróceniu wysokości trapezu powstał trapez o podstawach $\frac{5}{4}a$, $\frac{5}{4}b$ oraz wysokości x taki, że spełniona jest równość pól:

$$\frac{a+b}{2} \cdot h = \frac{\frac{5}{4}(a+b)}{2} \cdot x$$

Po pomnożeniu obu stron tej równości przez $\frac{2}{a+b}$ otrzymujemy $h=\frac{5}{4}x$, czyli $x=\frac{4}{5}h=0.8h$. Oznacza to, że wysokość h trapezu została skrócona o 20%.

Zadanie 33. (0-2)

Zasady oceniania

- zapisze, że trójkąty BCF i BED są podobne i na tym zakończy lub dalej popełni błędy.

Przykładowe pełne rozwiązanie

Niech F będzie spodkiem wysokości trójkąta ABC poprowadzonej z wierzchołka C na podstawę AB. Ponieważ $P_{ADEC}=17P_{BED}$ i trójkąt ABC jest równoramienny, więc $P_{FBC}=9P_{BED}$.

Prosta k jest równoległa do wysokości CF, więc trójkąty BCF i BED są podobne (na podstawie cechy kkk podobieństwa trójkątów).

Z twierdzenia o stosunku pól figur podobnych i warunków zadania otrzymujemy

$$\frac{P_{\Delta FBC}}{P_{\Delta BED}} = \left(\frac{|BC|}{|EB|}\right)^2$$

więc

$$9 = \left(\frac{|BC|}{|EB|}\right)^{2}$$

$$\frac{|BC|}{|EB|} = 3$$

$$\frac{|BE| + |EC|}{|EB|} = 3$$

$$\frac{|BE|}{|BE|} + \frac{|CE|}{|EB|} = 3$$

$$\frac{|CE|}{|EB|} = 2$$

Zadanie 34. (0-2)

Zasady oceniania

dla sposobów 1.-4.

Zdający otrzymuje 1 p gdy:

• wypisze wszystkie zdarzenia elementarne lub obliczy/poda ich liczbę: $|\Omega|=6\cdot 5$ ALBO

• zapisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu A lub poda ich liczbę: |A|=9

ALBO

- narysuje drzewo doświadczenia:
 - a) składające się ze wszystkich 30 gałęzi i zapisze na co najmniej jednym odcinku każdego z etapów odpowiednie prawdopodobieństwo lub wskaże wszystkie istotne gałęzie na tym drzewie

ALBO

b) składające się z mniej niż 30 gałęzi, ale wskaże na nim wszystkie gałęzie odpowiadające wylosowaniu liczby podzielnej przez 4

ALBO

• zapisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu A' lub poda ich liczbę: |A'|=21

i na tym zakończy lub dalej popełnia błędy.

Uwagi:

- 1. Jeżeli zdający zapisze tylko: |A|=9, $|\Omega|=30$, $P(A)=\frac{9}{30}$, lub zapisze tylko $P(A)=\frac{9}{30}$ lub tylko $\frac{9}{30}$, to otrzymuje **2 punkty**.
- 2. Jeżeli zdający sporządzi jedynie pustą tabelę o 30 pustych polach, to otrzymuje **0 punktów**.
- 3. Jeżeli zdający narysuje tylko drzewko i nie wskaże wszystkich istotnych gałęzi na tym drzewie ani nie opisze żadnej gałęzi, to otrzymuje **0 punktów**.
- 4. Jeżeli zdający zapisze tylko liczby 30 lub 9 lub 21 i z rozwiązania zadania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów**.
- 5. Jeżeli zdający popełni błąd przy wypisywaniu wszystkich par (lub wskazywaniu gałęzi istotnych drzewa) i wypisze (wskaże) o jedną za mało lub o jedną za dużo, ale nie wypisze (wskaże) żadnej niewłaściwej i konsekwentnie do popełnionego błędu obliczy prawdopodobieństwo, to otrzymuje **1 punkt** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Zdarzeniem elementarnym jest liczba dwucyfrowa o cyfrze dziesiątek x i cyfrze jedności y, gdzie $x \in \{3,4,5,6,7,8\}$ oraz $y \in \{0,1,2,3,4\}$. Zatem zbiór wszystkich zdarzeń elementarnych Ω ma postać:

$$\Omega = \{30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 70, 71, 72, 73, 74, 80, 81, 82, 83, 84\}$$

Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 6 \cdot 5 = 30$.

Niech A oznacza zdarzenie losowe polegające na tym, że wylosowana liczba jest podzielna przez 4. Wtedy $A = \{32, 40, 44, 52, 60, 64, 72, 80, 84\}$. Zdarzeniu A sprzyja więc 9 zdarzeń elementarnych, tj. |A| = 9. Stąd prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{|A|}{|\Omega|} = \frac{9}{30} = \frac{3}{10}$$

Uwaga:

Zdający może zapisać zbiór wszystkich zdarzeń elementarnych jako zbiór uporządkowanych par możliwych do utworzenia w wyniku losowania, tzn. może zastosować zapis:

$$\Omega = \{(3,0), (3,1), (3,2), (3,3), (3,4), (4,0), (4,1), (4,2), (4,3), (4,4), (5,0), (5,1), (5,2), (5,3), (5,4), (6,0), (6,1), (6,2), (6,3), (6,4), (7,0), (7,1), (7,2), (7,3), (7,4), (8,0), (8,1), (8,2), (8,3), (8,4)\}$$

Wtedy
$$A = \{(3, 2), (4, 0), (4, 4), (5, 2), (6, 0), (6, 4), (7, 2), (8, 0), (8, 4)\}.$$

Sposób 2.

Niech A oznacza zdarzenie losowe polegające na tym, że wylosowana liczba jest podzielna przez 4.

Obliczamy liczbę wszystkich zdarzeń elementarnych tego doświadczenia $|\Omega|=6\cdot 5=30$ lub opisujemy zbiór zdarzeń elementarnych np. w postaci tabeli

	0	1	2	3	4
3	30	31	32	33	34
4	40	41	42	43	44
5	50	51	52	53	54
6	60	61	62	63	64
7	70	71	72	73	74
8	80	81	82	83	84

Wskazujemy elementy zbioru A i zliczamy je: |A|=9. Ponieważ wszystkie zdarzenia jednoelementowe są jednakowo prawdopodobne, więc korzystamy z klasycznej definicji prawdopodobieństwa:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{9}{30} = \frac{3}{10}$$

Sposób 3.

Niech A oznacza zdarzenie losowe polegające na tym, że wylosowana liczba jest podzielna przez 4.

Rysujemy drzewo stochastyczne rozważanego doświadczenia.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{1}{6} \cdot \frac{1}{5} + \frac{1}{6} \cdot \frac{1}{5} = \frac{9}{30} = \frac{3}{10}$$

Uwaga:

Zdający może narysować drzewo stochastyczne, w którym na pierwszym etapie losujemy cyfrę nieparzystą lub parzystą.

Prawdopodobieństwo zdarzenia A może być obliczone w następujący sposób:

$$P(A) = \frac{1}{2} \cdot \frac{1}{5} + \frac{1}{2} \cdot \frac{1}{5} + \frac{1}{2} \cdot \frac{1}{5} = \frac{3}{10}$$

Sposób 4.

Niech A oznacza zdarzenie losowe polegające na tym, że wylosowana liczba jest podzielna przez 4.

Obliczamy liczbę wszystkich zdarzeń elementarnych tego doświadczenia $|\Omega|=6\cdot 5=30$ lub opisujemy zbiór zdarzeń elementarnych np. w postaci tabeli

	0	1	2	3	4
3	30	31	32	33	34
4	40	41	42	43	44
5	50	51	52	53	54
6	60	61	62	63	64
7	70	71	72	73	74
8	80	81	82	83	84

Wskazujemy elementy zbioru A' i zliczamy je: |A'|=21. Ponieważ wszystkie zdarzenia jednoelementowe są jednakowo prawdopodobne, więc korzystamy z klasycznej definicji prawdopodobieństwa:

$$P(A) = 1 - P(A') = 1 - \frac{21}{30} = \frac{9}{30} = \frac{3}{10}$$

Zadanie 35. (0-5)

Zasady oceniania

dla sposobów 1.-3.

Zdający otrzymuje1 p. gdy:

• wyznaczy równanie prostej zawierającej wysokość opuszczoną z wierzchołka C na bok $AB\colon y=\frac{1}{2}x+4$

ALBO

• obliczy długość ramienia BC: $|BC| = \sqrt{74}$

ALBO

• obliczy współczynnik kierunkowy prostej BC: $a_{BC} = \frac{7}{5}$

• obliczy współrzędne punktu D, będącego środkiem odcinka AB: $D = \left(\frac{24}{5}, \frac{32}{5}\right)$

ALBO

• zapisze równanie wynikające z równoramienności trójkąta ABC, umożliwiające obliczenie pierwszej współrzędnej x_A punktu A:

$$\sqrt{\left(x_A - (-2)\right)^2 + (-2x_A + 16 - 3)^2} = \sqrt{\left(3 - (-2)\right)^2 + (10 - 3)^2}$$

ALBO

• wyznaczy równanie prostej *AC*: $y = -\frac{1}{43}x + \frac{127}{43}$

Uwaga:

Jeśli zdający realizuję strategię rozwiązania i popełnia jedynie błędy rachunkowe, to może otrzymać **4 punkty**, o ile popełnione błędy nie ułatwiają rozważanego zagadnienia na żadnym etapie rozwiązania.

Przykładowe pełne rozwiązania

Sposób 1.

Trójkąt ABC jest równoramienny, więc wysokość opuszczona z wierzchołka C na podstawę AB jest jednocześnie środkową trójkąta ABC.

Niech D będzie środkiem odcinka AB.

Wyznaczamy równanie prostej CD, zawierającej wysokość trójkąta:

$$y = ax + b$$

$$a \cdot (-2) = -1 \qquad (\text{gdyż } CD \perp y = -2x + 16)$$

$$a = \frac{1}{2}$$

$$3 = \frac{1}{2} \cdot (-2) + b \qquad (\text{gdyż } C \in CD)$$

$$b = 4$$

Zatem prosta *CD* ma równanie $y = \frac{1}{2}x + 4$.

Wyznaczamy współrzędne punktu D (tj. punktu, w którym przecinają się proste AB i CD):

$$\begin{cases} y = \frac{1}{2}x + 4 \\ y = -2x + 16 \end{cases}$$

Stąd
$$x = \frac{24}{5}$$
 i $y = \frac{32}{5}$, więc $D = \left(\frac{24}{5}, \frac{32}{5}\right)$.

Korzystamy z faktu, że D jest środkiem odcinka AB i obliczamy współrzędne punktu A:

$$\left(\frac{24}{5}, \frac{32}{5}\right) = \left(\frac{x_A + 3}{2}, \frac{y_A + 10}{2}\right)$$

$$\frac{24}{5} = \frac{x_A + 3}{2} \quad \text{i} \quad \frac{32}{5} = \frac{y_A + 10}{2}$$

Stąd
$$A = (\frac{33}{5}, \frac{14}{5}).$$

Obliczamy długości podstawy AB i wysokości CD trójkąta:

$$|AB| = \sqrt{\left(3 - \frac{33}{5}\right)^2 + \left(10 - \frac{14}{5}\right)^2} = \sqrt{\left(-\frac{18}{5}\right)^2 + \left(\frac{36}{5}\right)^2} = \sqrt{\frac{324}{25} + \frac{4 \cdot 324}{25}} = \sqrt{\frac{324}{25} \cdot 5} = \frac{18\sqrt{5}}{5}$$

$$|CD| = \sqrt{\left(\frac{24}{5} - (-2)\right)^2 + \left(\frac{32}{5} - 3\right)^2} = \sqrt{\left(\frac{34}{5}\right)^2 + \left(\frac{17}{5}\right)^2} = \sqrt{\frac{4 \cdot 289}{25} + \frac{289}{25}} = \sqrt{\frac{289}{25} \cdot 5} = \frac{17\sqrt{5}}{5}$$

Obliczamy pole P_{ABC} trójkąta ABC:

$$P_{ABC} = \frac{1}{2} \cdot |AB| \cdot |CD| = \frac{1}{2} \cdot \frac{18\sqrt{5}}{5} \cdot \frac{17\sqrt{5}}{5} = \frac{153}{5}$$

Sposób 2.

Niech x_A oznacza pierwszą współrzędną punktu A. Punkt A leży na prostej y=-2x+16, więc $A=(x_A,-2x_A+16)$.

Trójkąt ABC jest równoramienny, w którym |CA| = |CB|. Stąd

$$\sqrt{(x_A - (-2))^2 + (-2x_A + 16 - 3)^2} = \sqrt{(3 - (-2))^2 + (10 - 3)^2}$$

i dalej

$$\sqrt{(x_A + 2)^2 + (-2x_A + 13)^2} = \sqrt{74}$$

$$5(x_A)^2 - 48x_A + 99 = 0$$

$$\Delta = (-48)^2 - 4 \cdot 5 \cdot 99 = 324$$

$$x_A = \frac{48 - 18}{10} = 3 \text{ lub } x_A = \frac{48 + 18}{10} = \frac{33}{5}$$

Rozwiązanie $x_A=3\,$ odrzucamy, gdyż wtedy punkty $A\,$ i $B\,$ pokrywałyby się.

Zatem $A = \left(\frac{33}{5}, \frac{14}{5}\right)$.

Obliczymy pole P_{ABC} trójkąta ABC, korzystając ze wzoru

$$P_{ABC} = \frac{1}{2} |(x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)|$$

Otrzymujemy

$$P_{ABC} = \frac{1}{2} \left| \left(3 - \frac{33}{5} \right) \left(3 - \frac{14}{5} \right) - \left(10 - \frac{14}{5} \right) \left(-2 - \frac{33}{5} \right) \right| = \frac{1}{2} \cdot \left| \left(-\frac{18}{5} \right) \cdot \frac{1}{5} - \frac{36}{5} \cdot \left(-\frac{43}{5} \right) \right| = \frac{1}{2} \cdot \left| \frac{1530}{25} \right| = \frac{153}{5}$$

Sposób 3.

Trójkąt ABC jest równoramienny o podstawie AB. Niech $\alpha = | \not \triangle CAB| = | \not \triangle CBA|$. Wyznaczamy równanie prostej BC:

$$\begin{cases} 10 = a \cdot 3 + b \\ 3 = a \cdot (-2) + b \end{cases}$$

Stąd $a = \frac{7}{5}$ i $b = \frac{29}{5}$.

Proste AB i BC tworzą kąt ostry α , więc

$$\operatorname{tg} \alpha = \left| \frac{a_{BC} - a_{AB}}{1 + a_{BC} \cdot a_{AB}} \right| = \left| \frac{\frac{7}{5} - (-2)}{1 + \frac{7}{5} \cdot (-2)} \right| = \left| -\frac{17}{9} \right| = \frac{17}{9}$$

Proste AB i AC tworzą kąt ostry α , więc

$$\operatorname{tg} \alpha = \left| \frac{a_{AC} - a_{AB}}{1 + a_{AC} \cdot a_{AB}} \right| = \left| \frac{a_{AC} - (-2)}{1 + a_{AC} \cdot (-2)} \right| = \left| \frac{a_{AC} + 2}{1 - 2a_{AC}} \right|$$

Łącząc ostatnie dwa równania, otrzymujemy kolejno

Egzamin maturalny z matematyki (poziom podstawowy) – sesja dodatkowa 2021 r.

$$\left|\frac{a_{AC}+2}{1-2a_{AC}}\right| = \frac{17}{9}$$

$$\frac{a_{AC}+2}{1-2a_{AC}} = \frac{17}{9} \text{ lub } \frac{a_{AC}+2}{1-2a_{AC}} = -\frac{17}{9}$$

$$9(a_{AC}+2) = 17(1-2a_{AC}) \text{ lub } 9(a_{AC}+2) = -17(1-2a_{AC})$$

$$43a_{AC} = -1 \text{ lub } 25a_{AC} = 35$$

$$a_{AC} = -\frac{1}{43} \text{ lub } a_{AC} = \frac{7}{5}$$

Rozwiązanie $a_{AC}=\frac{7}{5}$ odrzucamy, gdyż wtedy proste AC i BC pokrywałyby się. Zatem $a_{AC}=-\frac{1}{43}$.

Wyznaczamy równanie prostej AC: $3=-\frac{1}{43}\cdot(-2)+b$, skąd otrzymujemy $b=\frac{127}{43}$, $y=-\frac{1}{43}x+\frac{127}{43}$.

Wyznaczamy współrzędne punktu A jako punktu przecięcia prostych AB i AC:

$$\begin{cases} y = -2x + 16 \\ y = -\frac{1}{43}x + \frac{127}{43} \end{cases}$$

Stąd
$$x = \frac{33}{5}$$
 oraz $y = \frac{14}{5}$.

Obliczamy wysokość h trójkąta ABC opuszczoną z wierzchołka C na podstawę AB jako odległość wierzchołka C od prostej AB:

$$h = d(C, \text{pr. } AB) = \frac{|2 \cdot (-2) + 3 - 16|}{\sqrt{2^2 + 1^1}} = \frac{|-17|}{\sqrt{5}} = \frac{17}{\sqrt{5}}$$

Obliczamy długość boku AB:

$$|AB| = \sqrt{\left(3 - \frac{33}{5}\right)^2 + \left(10 - \frac{14}{5}\right)^2} = \sqrt{\left(-\frac{18}{5}\right)^2 + \left(\frac{36}{5}\right)^2} = \sqrt{\frac{324}{25} + \frac{4 \cdot 324}{25}} = \sqrt{\frac{324}{25} \cdot 5} = \frac{18\sqrt{5}}{5}$$

Obliczamy pole P_{ABC} trójkąta ABC:

$$P_{ABC} = \frac{1}{2} \cdot |AB| \cdot |CD| = \frac{1}{2} \cdot \frac{18\sqrt{5}}{5} \cdot \frac{17\sqrt{5}}{5} = \frac{153}{5}$$

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. ogólnych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.);
- II. dodatkowych szczegółowych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią – matura z matematyki, poziom podstawowy, termin dodatkowy 2021.

I. <u>Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią</u>

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania,
 - przestawienia cyfr,
 - zapisania innej cyfry, ale o podobnym wyglądzie,
 - przestawienia położenia przecinka.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.
- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.
- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych

- sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.
- II. <u>Dodatkowe szczegółowe zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią</u>

Zadanie 29.

Zdający otrzymuje 1 pkt, jeżeli:

• stosuje poprawną metodę obliczenia pierwiastków trójmianu kwadratowego $x^2 - 4x + 3$, tzn. stosuje wzory na pierwiastki trójmianu kwadratowego i oblicza te pierwiastki, popełniając błędy o charakterze dyskalkulicznym

ALBO

- zdający w wyniku obliczeń otrzyma wyróżnik ujemny, ale konsekwentnie narysuje parabolę ALBO
- poprawnie rozwiąże nierówność 2(x+1)(x-3) < 0.

Zdający otrzymuje 2 pkt, jeżeli:

• pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $x \in (3,1)$.

Uwaga:

Jeżeli zdający zapisze zbiór rozwiązań nierówności w postaci przedziału domkniętego, to może otrzymać co najwyżej **1 pkt**.

Zadanie 30.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 31.

Zdający otrzymuje 1 pkt, jeżeli:

• zapisze $a_1 + (a_1 + r) + \dots + (a_1 + 19r) = 20a_{21} + 62$.

Zadanie 32.

Zdający otrzymuje 1 pkt, jeżeli:

• zapisze długości podstaw trapezu po ich wydłużeniu, np.: 1,25a oraz 1,25b (albo $a+25\%\cdot a$ oraz $b+25\%\cdot b$).

Zadanie 33.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 34.

Zdający otrzymuje 1 pkt, jeżeli:

• zapisze jedynie liczbę 30 (należy traktować to jako wyznaczenie liczby wszystkich zdarzeń elementarnych).

ALBO

zapisze liczbę 9, o ile z zapisów wynika, że interpretuje tę liczbę jako liczbę zdarzeń elementarnych sprzyjających zdarzeniu A (np. jest to zilustrowane wypisaniem kilku zdarzeń elementarnych sprzyjających zdarzeniu A i zdający nie zapisze zdarzeń elementarnych, które nie sprzyjają zdarzeniu A).

Zdający otrzymuje 2 pkt, jeżeli:

• poprawnie wypisze (lub zaznaczy) wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, popełni błąd w ich zliczeniu i konsekwentnie zapisze wynik $\frac{x}{30}$, gdzie x jest liczbą zliczonych zdarzeń elementarnych sprzyjających zdarzeniu A.

Zadanie 35.

Zdający otrzymuje 1 pkt, jeżeli:

zastosuje poprawną metodę obliczenia długości boku BC trójkąta

ALBO

zastosuje poprawną metodę obliczenia współczynnika kierunkowego w równaniu prostej BC

ALBO

 zastosuje poprawną metodę wyznaczenia równania prostej zawierającej wysokość trójkąta ABC opuszczoną z wierzchołka C.

Zdający otrzymuje 2 pkt, jeżeli:

• zastosuje poprawną metodę wyznaczenia równania prostej zawierającej wysokość trójkąta ABC opuszczoną z wierzchołka C oraz zastosuje poprawną metodę wyznaczenia współrzędnych środka D odcinka AB jako punktu przecięcia prostej AB z prostą CD ALBO

zastosuje poprawną metodę wyznaczenia równania prostej AC.

