## Dijkstra Algorithmus

(a) Berechnen Sie für folgenden Graphen den kürzesten Weg von Karlsruhe nach Kassel und dokumentieren Sie den Berechnungsweg:

## Verwendete Abkürzungen:

A Augsburg

**EF** Erfurt

F Frankfurt

KA Karlsruhe

KS Kassel

M München

MA Mannheim

N Nürnberg

**S** Stuttgart

WÜ Würzburg

Zahl = Zahl in Kilometern



| Nr.                          | besuch           | t A        | E        | F        | KA     | KS       | M                                                             | MA                 | N                                       | S                | W               |  |
|------------------------------|------------------|------------|----------|----------|--------|----------|---------------------------------------------------------------|--------------------|-----------------------------------------|------------------|-----------------|--|
| 0                            |                  | $\infty$   | $\infty$ | $\infty$ | 0      | $\infty$ | $\infty$                                                      | $\infty$           | $\infty$                                | $\infty$         | $\infty$        |  |
| 1                            | KA               | 250        | $\infty$ | $\infty$ | 0      | $\infty$ | $\infty$                                                      | 80                 | $\infty$                                | $\infty$         | $\infty$        |  |
| 2                            | MA               |            | $\infty$ | 165      | 1      | $\infty$ | $\infty$                                                      | 80                 | $\infty$                                | $\infty$         | $\infty$        |  |
| 3                            | F                |            | $\infty$ | 165      | 1      | 338      | $\infty$                                                      |                    | $\infty$                                | $\infty$         | 38              |  |
| 4                            | A                |            | $\infty$ |          | 1      | 338      | 334                                                           |                    | $\infty$                                | $\infty$         | 38              |  |
| 5                            | M                |            | $\infty$ |          | 1      | 338      | 334                                                           |                    | 501                                     | $\infty$         | 38              |  |
| 6                            | KS               |            | $\infty$ |          | 1      | 338      |                                                               |                    | 501                                     | $\infty$         | 38              |  |
| 7                            | W                |            | 568      |          | 1      |          |                                                               |                    | 485                                     | $\infty$         | 38              |  |
| 8                            | N                |            | 568      |          | 1      |          |                                                               |                    | 485                                     | 668              |                 |  |
| 9                            | E                |            | 568      |          | 1      |          |                                                               |                    |                                         | 668              |                 |  |
| 10                           | S                | - 1        |          |          |        |          |                                                               |                    |                                         | 668              | - [             |  |
| nach                         |                  | Entfernung |          | Reihe    | enfolg | e Pf     | Pfad                                                          |                    |                                         |                  |                 |  |
| $KA \rightarrow A$           |                  | 250        |          | 0        |        | KA       | $A \rightarrow A$                                             | 1                  |                                         |                  |                 |  |
| $\mathrm{KA} \to \mathrm{E}$ |                  | 568        |          | 9        |        |          | $KA \rightarrow MA \rightarrow F \rightarrow W \rightarrow E$ |                    |                                         |                  |                 |  |
| $KA \to F$                   |                  | 165        |          | 3 H      |        |          | $KA \rightarrow MA \rightarrow F$                             |                    |                                         |                  |                 |  |
| KA -                         | $\rightarrow$ KA | 0          |          | 1        |        |          |                                                               |                    |                                         |                  |                 |  |
| KA -                         | $\rightarrow$ KS | 338        |          | 6        |        | KA       | $A \rightarrow N$                                             | $IA \rightarrow F$ | F 	o KS                                 | 3                |                 |  |
| $KA \to M$                   |                  | 334        |          | 5 KA     |        |          | $A \to A \to M$                                               |                    |                                         |                  |                 |  |
| KA -                         | $\rightarrow$ MA | 80         |          | 2        |        | KA       | $A \rightarrow N$                                             | <b>Λ</b> Α         |                                         |                  |                 |  |
| $KA \to N$                   |                  | 485        |          | 8 I      |        |          | $KA \to MA \to F \to W \to N$                                 |                    |                                         |                  |                 |  |
| NA .                         |                  |            |          | 10       |        | V/       | 1 \ 1                                                         | $IA \rightarrow F$ | 7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \ NT             |                 |  |
| KA -                         | $\rightarrow$ S  | 668        |          | 10       |        | IX.      | $\rightarrow 1$                                               | $1A \rightarrow 1$ | → v v                                   | $\rightarrow$ 10 | $\rightarrow$ . |  |

(b) Könnte man den Dijkstra Algorithmus auch benutzen, um das Travelling-Salesman Problem zu lösen?