Rješenja zimskog ispitnog roka iz Fizike 2 ponedjeljak, 13. 2. 2017.

Teorijska pitanja

1.2 Tijelo se nalazi obješeno na opruzi u ravnotežnom položaju. Ako ga se otkloni za X_0 i gurne ga se brzinom v_0 prema ravnotežnom položaju, tada je (zaokružite dvije točne tvrdnje):

(2 boda)

- a) amplituda titranja jednaka X_0 ;
- b) amplituda titranja manja od X_0 ;
- c) amplituda titranja neovisna o brzini i o X_0 , već ovisi samo o kružnoj frekvenciji ω ;
- d) amplituda titranja veća od X_0 ;
- e) amplituda tiranja ovisi o ω .
- (d) i (e) je točno
- **1.4** Tijelo na opruzi prigušeno titra. Ono gubi energiju tako da (zaokružite dvije točne tvrdnje):

(2 boda)

- a) u svakoj sekundi energija padne na polovinu prethodne vrijednosti (za malo prigušenje);
- b) energija usrednjena po periodu linearno opada s vremenom, bez obzira na veličinu prigušenja;
- c) energija usrednjena po periodu eksponencijalno opada s vremenom (za malo prigušenje);
- d) energija usrednjena po periodu opada proporcionalno frekvenciji slobodnog titranja;
- e) energija opada proporcionalno konstanti trenja b.
- (c) i (e) je točno
- **1.1** Dva naboja za koje vrijedi Q_1 =+Q i Q_2 =-2Q nalaze se blizu jedan drugoga. Gaussova površina ih obuhvaća u potpunosti. Tada je(zaokružite točnu tvrdnju):

(1 bod)

- a) električni tok negativan i po iznosu jednak $2Q/\epsilon_0$;
- b) ukupan električni tok kroz provršinu jednak nuli;
- c) električni tok je negativan i po iznosu jednak Q/ϵ_0 ;
- d) električni tok je (uvijek) pozitivan i jednak Q/ϵ_0 ;
- (c) je točno
- **1.3** Kroz dva paralelna vodiča V_1 i V_2 razmaknutih za D protječu u istom smjeru struje tako da vrijedi I_1 =2 I_2 . Tada vrijedi (zaokružite dvije točne tvrdnje):

(2 boda)

- a) ukupno magnetsko polje je u svim točkama prostora različito od nule;
- b) ukupno magnetsko polje jednako je nuli na udaljenosti D/3 od V_2 ;
- c) ukupno magnetsko polje jednako je nuli na udaljenosti D/3 od V_1 ;
- d) ukupno magnetsko polje jednako je nuli na udaljenosti 2D/3 od V_2 ;
- e) ukupno magnetsko polje jednako je nuli na udaljenosti 2D/3 od V_1 ;
- f) nema točke u prostoru u kojoj se magnetska polja poništavaju.
- (b) i (e) je točno

 1.5 Valna priroda svjetlosti nije mogla opisati (zaokružite dvije točne tvrdnje): (2 boda) a) ovisnost broja izbačenih elektrona o intenzitetu svjetlosti; b) neovisnost (maksimalne) kinetičke energije o intenzitetu svjetlosti; c) ovisnost jakosti struje o intenzitetu svjetlosti; d) granični intenzitet za pojavu fotoelektrona; e) graničnu frekvenciju svjetlosti za pojavu fotoelektrona.
(b) i (e) je točno
 1.6 Pri konstrukciji Bohrovog modela atoma vodika potrebna je (zaokružite dvije točne tvrdnje): (2 boda) a) pretpostavka o kvantizaciji energije elektromagnetskog zračenja; b) De Brogliejeva relacija između količine gibanja i valne duljine; c) pretpostavka o kvantizaciji kutne količine gibanja elektrona; d) predodžba interferencije valova elektrona (Youngov pokus); e) Heisenbergove relacije neodređenosti.
(a) i (c) je točno.
 1.7 Rješenja Maxwellovih jednadžbi za električno i magnetsko polje i i i i i i i
točno je b), d) i e)
 1.8 U Youngovu pokusu, pukotine u uređaju daju (zaokružite dvije točne tvrdnje): (2 boda) a) Snopove međusobno različitih valnih duljina. b) Monokromatske snopove istih valnih duljina. c) Lokalizirane pruge interferencije na dalekom zastoru.

d) Nelokalizirane pruge interferencije na dalekom zastoru.

točno je b) i d)

1.9 Relacija za pomak u valnoj duljini fotona u Comptonovom raspršenju na elektronu ovisi (zaokružite točnu tvrdnju):

(1 bod)

- a) o energiji fotona,
- b) o masi mirovanja fotona,
- c) o masi elektrona,
- d) o razlici masa elektrona i fotona,
- e) niti jedno od ponuđenih rješenja nije točno.

točno je c)

1.10 U pojavi fotoefekta na metalnoj pločici, izlazni rad elektrona (zaokružite dvije točne tvrdnje):

(2 boda)

- a) ne ovisi o frekvenciji upadne svjetlosti,
- b) ovisi o frekvenciji upadne svjetlosti,
- c) ovisi o Planckovoj konstanti,
- d) ovisi o vrsti metala,
- e) ovisi o zaustavnom naponu.

točno je a) i d)

1.11 Bohrov glavni kvantni broj *n* kvantizira (zaokružite **neistinitu** tvrdnju):

(1 bod)

- a) energiju elektrona,
- b) polumjer staze elektrona,
- c) brzinu elektrona u stazi,
- d) kutnu količinu gibanja elektrona,
- e) masu elektrona u atomu.

točno je e)

- **2.1** Napišite jednadžbu gibanja za masu na opruzi i izvedite njezino opće rješenje. Napišite izraze za brzinu i akceleraciju mase. **(6 bodova)**
- **2.2** Izvedite izraz za elektromotornu silu (napon) pri gibanju vodiča u magnetskom polju. **(6 bodova)**
- 2.3 Comptonov efekt. Izvedite izraz za promjenu valne duljine fotona. (6 bodova)

Sve izvode napišite na posebnom papiru i popratite detaljnim opisima i skicama.

Zadaci

1. Uteg mase 200 g ovješen je na vertikalnu oprugu konstante elastičnosti 30 Nm⁻¹. Faktor prigušenja titranja je 0.7 s⁻¹. Na uteg djeluje periodička sila maksimalnog iznosa 3 N. Kolika treba biti frekvencija sile da bi amplituda titranja utega ovješenog na oprugu bila 10 cm? **(7 bodova)**

Rješenje:

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$\omega_0 = \sqrt{\frac{30}{0.2}} \text{ s}^{-1} = 12.247 \text{ s}^{-1}$$

$$A(\omega) = \frac{F_0/m}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4 \delta^2 \omega^2}}$$

$$0.1 = \frac{\frac{3}{0.2}}{\sqrt{\left(\frac{30}{0.2} - \omega^2\right)^2 + 4 \ 0.7^2 \ \omega^2}}$$

$$\omega = \sqrt{300 - 4 \ 0.7^2} \ \mathrm{s^{-1}}$$

$$\omega = 17.264 \text{ s}^{-1}$$

2. Žica duljine 5 m i mase 0.732 kg je razapeta između dva jednaka štapa svaki težine 235 N koja su nagnuta pod kutem 57° prema površini Zemlje prema van. Vjetar uzrokuje da žica titra u četvrtom harmoniku (*n*=4) stojnog vala. Kolika je frekvencija stojnog vala na žici? **(7 bodova)**

Rješenje:

$$G\frac{l}{2}\sin(90^{\circ} + \theta) - Fl\sin(180^{\circ} - \theta) = 0$$

$$F = \frac{G}{2}\cot\theta$$

$$F = \frac{1}{2} \cdot 235 \cot 57.0^{\circ} N = 76.305 N$$

$$v = \sqrt{\frac{F}{m/L}}$$

$$L = 4 \frac{\lambda}{2} = 2 \lambda$$

$$\lambda = \frac{L}{2}$$

$$f = \frac{v}{\lambda}$$

$$f = \sqrt{\frac{FL}{m}} \frac{1}{\lambda}$$

$$f = \sqrt{\frac{76.305 \cdot 5}{0.732}} \cdot \frac{2}{5} \text{ Hz} = 9.132 \text{ Hz}$$

- **3.** Dugački koaksialni kabel sastoji se od dva koncentrična vodiča. Unutarnji vodič je puni cilindar polumjera *a*, dok je vanjski vodič šuplji cilindar unutarnjeg polumjera *b* i vanjskog polumjera *c*. Kroz ta dva vodiča teče po iznosu jednaka struja *I* ali suprotnog smjera. U svakom vodiču je gustoća struje homogena po presjeku. Izračunajte iznos magnetskog polja *B*
 - a) u prostoru između dva vodiča (a < r < b) te
 - b) izvan koaksijalnog kabla (r > c).

(7 bodova)

Rješenje:

Koristi se Ampereov zakon : $\oint B dl = B(2\pi r)$.

- a) Za $a < r < b : B = \mu_0 I / 2\pi r$.
- b) Za r > c Obuhvaćena struja je 0, tako da je magn. indukcija 0. (Doprinosi od +I i -I se poništavaju.)

4. U Youngovom pokusu udaljenost zastora od pukotina je 60 cm, valna duljina je 500 nm, udaljenost između pukotina je 0.12 mm, a širina pukotine je 0.025 mm. Koliko ima tamnih pruga unutar centralnog maksimuma envelope? Vrijedi aproksimacija malih kuteva $\sin \theta \approx \tan \theta \approx \theta$.

Rješenje:

Udaljenost između tamnih interferentnih pruga:

$$\Delta y = \frac{\lambda}{d} D$$

$$\Delta y = \frac{500 \ 10^{-9} \ 0.6}{0.12 \ 10^{-3}} \ \text{m} = 2.5 \ \text{mm}$$

Prvi minimum za difrakciju na pukotini je pod kutem:

$$\sin \theta = \frac{\lambda}{a}$$

$$\sin \theta = \frac{500 \ 10^{-9}}{0.025 \ 10^{-3}} = 0.02$$

Udaljenost prvog minimuma difrakcije na pukotini od centralnog maksimuma:

$$y = D \tan \theta$$

 $y = 0.6 \cdot 0.02 \text{ m} = 0.012 \text{ m}$

$$\frac{2 y}{\Delta y} = \frac{2 \ 0.012}{2.5 \ 10^{-3}} = 9.6$$

Ima 9 tamnih pruga.

- **5.** Zraka nepolarizirane svjetlosti intenziteta I_0 prolazi kroz niz od 3 idealna polarizatora, postavljena tako da su ravnine polarizacije drugog i trećeg polarizatora zakrenute pod kutom 60°, odnosno 90° u odnosu na prvi polarizator.
 - a) Izračunaj intenzitet svjetlosti (u odnosu na I_0) na kraju trećeg polarizatora.
 - b) Koliki će biti intenzitet ako maknemo srednji polarizator?

(7 bodova)

Rješenje:

Kada nepolarizirano svjetlo prođe kroz polarizator intenzitet mu se smanji za ½ i polarizira se. Kada polarizirana svjetlost prođe kroz polarizator $I = I_0 \cos^2 \! \varphi$.

Za drugi polarizator ϕ = 60°. dok je za treći ϕ = 90° - 60° = 30°.

Nakon prolaska kroz prvi polarizator intenzitet je $I_0/2$, a nakon prolaska kroz drugi intenzitet je $(I_0/2)$ (cos 60°)² = 0,125 I_0 . Na kraju trećeg polarizatora intenzitet je $(0,125\ I_0)$ (cos 30°)² = 0,0938 I_0 . Sada će za zadnji polarizator biti $\phi = 90^\circ$ i I = 0.

6. Mjerenja pokazuju da se 27,83% svih rubidijevih atoma trenutno na Zemlji sastoji od radioaktivnog izotopa ⁸⁷Rb (*β*-raspad). Ostatak su stabilni ⁸⁵Rb izotopi. Vrijeme polu-života ⁸⁷Rb je 4,75·10¹⁰ godina. Uz pretpostavku da se od tada nisu formirali rubidijevi atomi, koliki je bio postotak izotopa ⁸⁷Rb kada se formirala Zemlja prije 4,6·10⁹ godina?

(7 bodova)

Rješenje:

Koristi se jedn. $N(t) = N_0 e^{-\lambda t}$

Neka je N_{85} broj 85 Rb atoma. N_0 = broj 87 Rb atoma na zemlji kada se sunčev sustav formirao.

N = trenutni broj ⁸⁷Rb atoma.

Iz $0.2783 = N/(N+N_{85})$ slijedi $N = 0.3856 N_{85}$.

Traži se $N_0/(N_0 + N_{85})$. N i N_0 su povezani jedn. $N(t) = N_0 e^{-\lambda t}$ tako da je $N_0 = e^{+\lambda t} N$.

Iz $\lambda = 0.693/T_{1/2} = 1.459 \times 10^{-11} \text{ godina}^{-1}$.

Dakle $N_0/(N_0 + N_{85}) = e^{+\lambda t} N / (e^{+\lambda t} N + N_{85}) = 29,2 \%$.