	Utech
Name:	
Roll No.:	The Samuel of Samuel State of Samuel
Invigilator's Signature :	

CS/B.Tech(CE)/SEM-3/CE-301/2009-10 2009

MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$
 - i) When two dice are thrown, the probability of getting a sum of 10 or 11 points is
 - a) $\frac{3}{36}$

b) $\frac{7}{36}$

c) $\frac{6}{36}$

- d) $\frac{5}{36}$
- ii) The distribution for which mean and variance are equal is
 - a) Poisson
- b) Normal
- c) Binomial
- d) Exponential.

33807 [Turn over

CS/B.Tech(CE)/SEM-3/CE-301/2009-10

- iii) $y = e^x$ is an
 - a) odd function
- b) even function
- c) both of these
- d) none of these.
- iv) If X and Y are independent random variables, then

a)
$$E(XY) = E(X) + E(Y)$$

b)
$$E(XY) = E(X) \cdot E(Y)$$

c)
$$E(XY) = E(X) - E(Y)$$

d)
$$E(XY) = E(X) / E(Y)$$
.

- v) Standard deviation
 - a) varies between 0 and 1
 - b) is a positive quantity
 - c) is a negative quantity
 - d) none of these.
- vi) The probability of having at least one 'six' in 3 throws of a perfect die is
 - a) $\left(\frac{5}{6}\right)^3$

- b) $\left(\frac{1}{6}\right)^3$
- c) $1 \left(\frac{5}{6}\right)^3$
- d) none of these.
- vii) The probability that A passes a test is $\frac{2}{3}$ and that probability that B passes the same test is $\frac{3}{5}$. The probability that only one of them passes is
 - a) $\frac{4}{5}$

b) $\frac{7}{15}$

c) $\frac{3}{5}$

d) $\frac{5}{9}$.

a)
$$\frac{a+b}{2}$$

b)
$$\frac{a-b}{2}$$

c)
$$\frac{(b-a)^2}{12}$$

d)
$$\frac{(b+a)^2}{12}$$
.

Which of the following is true for random variable X, ix) where a and b are arbitrary constants?

a)
$$Var(aX + b) = b^{2} Var(X)$$

b)
$$E(aX + b) = aE(X)$$

c)
$$Var(aX + b) = a^{2} Var(X)$$

d)
$$E(aX + b) = b$$
.

For any two events $A_1 \ \ {\rm and} \ A_2 \ \ {\rm where} \ A_1 \subseteq A_2$, then X)

a)
$$P(A_1) > P(A_2)$$

a)
$$P(A_1) > P(A_2)$$
 b) $P(A_1) \ge P(A_2)$

c)
$$P(A_1) \le P(A_2)$$
 d) None of these.

The solution of the partial differential equation xi)

$$Z = px + qy + p^2 + pq + q^2$$
, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$

is

a)
$$z = ax + by + a^2 + ab + b^2$$

b)
$$z = ax + by$$

c)
$$z = a^2 + ab + b^2$$

d) none of these.

CS/B.Tech(CE)/SEM-3/CE-301/2009-10

a)
$$F(s-\omega)+F(s+\omega)$$

b)
$$\frac{1}{2} [F(s-\omega) + F(s+\omega)]$$

c)
$$F(s-\omega)-F(s+\omega)$$

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. a) Define probability density function of a random variable X.

b) Show that
$$f(x) = x$$
, $0 \le x < 1$
= $k - 1 \le x \le 2$
= 0, elsewhere

is a p.d.f. of a random variable x for a suitable value of k. Determine the value of k and then find the distribution function of the random variable X.

- 3. Find the standard deviation of the binomial distribution with parameters n, p.
- 4. If x is normally distributed with mean 3 and s.d. 2, find c such that $P(X > c) = 2 P(X \le c)$.

Given that
$$\int_{0}^{0.43} \phi(t) dt = 0.6666.$$

33807 4

Find the deflection of a vibrating string of unit length having 5. fixed ends with initial velocity zero and initial deflection $f(x) = k (\sin x - \sin 2x)$ where k is a constant.

Expand the function $f(x) = x \sin(x)$ as a Fourier series in

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- Find Fourier sine transform of e^{-x} and using the 7. inversion formula, recover the original function.
 - Find the Fourier transform of $f(x) = \frac{1}{x} e^{-ax}$. 10 + 5 b)
- 8. Derive one dimensional wave equation for vibrating string and solve it using the method of separation of variables.

10 + 5

9. Solve the following one dimensional heat conduction a) equation:

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < \infty$, $t > 0$ with

u(x, 0) = f(x), u(0, t) = 0, t > 0 using Fourier transform.

b) Solve $x^2 \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} = 0$ by the method of separation of variables.

10 + 5

 $[-\pi, \pi].$

$$F(x) = A, -\infty < x < -1$$

$$= B, -1 \le x < 0$$

$$= C, 0 \le x < 2$$

$$= D, 2 \le x < \infty$$

where A, B, C, D are constants, Determine the values of A, B, C, D, given that $P(X=0) = \frac{1}{6}$ and $P(X>1) = \frac{2}{3}$.

b) Classify the following partial differential equation :

$$y\frac{\partial^{2}u}{\partial x^{2}} + 2x\frac{\partial^{2}u}{\partial x\partial y} + y\frac{\partial^{2}u}{\partial y^{2}} = 0.$$
 10 + 5

- 11. a) If A and B are independent events then show that the following pairs are independent:
 - i) \bar{A} and \bar{B}
 - ii) \bar{A} and B.
 - b) Show by Tchebycheff's Inequality that in 2000 throws with a coin the probability that the number of heads lies between 900 and 1100 is at least $\frac{19}{20}$. 10 + 5

33807 6

CS/B.Tech(CE)/SEM-3/CE-301/2009-10

12. a) Find the Fourier transform of $f(x) = \begin{cases} 1 & \text{if } |x| < a \\ 0 & \text{if } |x| > a \end{cases}$

where a is a positive real number. Hence deduce that

$$\int_{0}^{\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2} .$$

b) What is the Fourier expansion of the periodic function

$$f(x) = \begin{cases} 0 & \text{when } -\pi < x < 0 \\ \sin(x) & \text{when } 0 \le x < \pi \end{cases}$$

Hence evaluate $\frac{1}{1.3}$ $-\frac{1}{3.5}$ $+\frac{1}{5.7}$ $+\dots \infty$.

(4+4)+(4+3)