

Confusion is a word we have invented for an order which is not understood.

It is the order of an accidental series of accidents accidentally conceived.

Tropic of Capricorn Henry Miller

Information is Uncertainty and Surprise

- Shannon's discovery that "information content" can be interpreted in terms of a "progressive reduction in the level of uncertainty" has some far-reaching consequences that are still of importance today.
- Part of Shannon's research led to his investigating the notion of "entropy and redundancy in spoken language".
- Since "character coding" can lead to compression based on analysis of frequency what happens when we move from characters to words?

We Expect Characters

- We saw that parts of "character streams" can have an element of "predictability".
- For example, 'Q' is (usually) followed by 'U';
- ' ' (SPACE) is (rarely) followed by 'X'.
- Although these are features of **written English**, similar patterns are found in other *Indo-European languages*.
- In fact, although the concept is very different, even in *Chinese*, *Japanese*, *Arabic*, *Sanskrit* etc etc.

Should We Expect Words?

Consider:

```
"The cat sat on the . . . "
```

Which of the following would "most" people use to complete the sentence? That is, to replace . . .

{hat, rug, couch, sofa, mat, rat, ottoman, chaise-longue}

Typically, the choice would be "mat".

Why?

Rhyme? But then why not "hat" or "rat"?

Sense? (you *sit* on *SOMETHING*). But then why not "*rug*", "*couch*", "*sofa*", "*ottoman*", "*chaise-longue*"?

FAMILIARITY: this is a standard child's reading exercise: "ottoman" and "chaise-longue" are obscure words.

Other Examples

- a. The (rather irritating) habit of completing another person's sentence **BEFORE** they have finished speaking.
- b. Possible *continuations* of text in editors such as Word.
- c. Search term *suggestions* in Google.
- d. Speech recognition & automatic captioning.

Important Differences

- Notice that there are significant factors affecting (a) and the "reclining attitudes of grimalkins".
- "accurate" prediction often depends on sociological and cultural background: not statistical nuances.
- e.g. "The cat sat on the mat" will be recognised by most adults over a certain age, since it will be familiar from childhood.
- Ending a speaker's sentence for them presumes a similar awareness of the speaker's topic and background.

Predictive Text

The cases in (b) ("smart" text editors) and (c) (search terms) are a little bit different.

These are less driven by "shared cultural awareness" (although this does feed in) and more by statistical observation.

[The feline adopts a sedentary posture on a "mat" because a statistical analysis suggests that "most" have "been reported" as "mat sat" rather than "rat sat" (or "couch crouched").]

Speech Recognition - Automatic Captioning

- It is a *legal requirement* in the UK for (new) recorded and prerecorded lectures provided to students to have *subtitles/closed captions*.
- Although most video embedding hosts (e.g., YouTube, msstreams) offer a feature to extract written text from spoken content, the quality can be extremely variable and requires manual editing and correcting.
- This is a **VERY** tedious, tiresome, time-consuming, and labour-intensive process.

So why not just leave it?

- Some examples from recorded lectures:
- a. "Every exam has an individual waiter"
- b. "The next part will look at using Foster Rivetts"
- c. "We also consider advanced May Tricks operations"
- d. "The lecture will be in the Most Bad Lecture Theatre".

Notice that although the speaker's vocal cadences, inflections, and accent may influence transcription this is not always so.

What was actually SAID

- a. "Every exam has an invigilator"
- b. "The next part will look at using **First Derivatives**"
- c. "We also consider advanced **Matrix** operations"
- d. "The lecture will be in the **Musspratt** lecture theatre".

A Difficulty

- It is, relatively, straightforward to construct *accurate* statistical data about *frequency* of **character** use.
- This can be done from comparatively "small" text samples, e.g., book chapters, newspaper articles, short stories.
- The *experimental claim* known as **Zipf's Law** (which is supported by several research studies) asserts:
- "The k'th most commonly used character in a language occurs roughly 1/k times as often in texts as the most frequently used"

A Way with Words

- Although it is rather more demanding to analyze, a similar statistical model can be developed using words rather than characters.
- Further studies lead to the important concept of *n-gram* language models.
- We do not discuss these in depth here but simply introduce the basic elements.
- We also note that experimental studies support *Zipf's Law* when based on **words** as well as **characters**.

What's in a Word?

- In Indo-European languages (English, French, German, Italian, Spanish, Greek etc) a "word" may be interpreted as:
- "any sequence of characters from the language alphabet that is accepted by some authority"
- For example, a *standard dictionary* (OED, Webster's, Larousse, Liddell-Scott, DRAE, DWB etc)
- These provide the basic units but to analyze usage frequency we need some **text corpus**: "alphabets are to letter frequencies as **words** are to their **use in texts**"

N-grams

- The idea behind **N-grams** is to use the *relative frequencies* of *sequences* of words as a guide to *prediction*, *interpretation*, *style analysis*, and, even, *creative writing*.
- Common choices of N are N=2 (bigram) and N=3 (trigram).
- An *N-gram* is a sequence $(w_1, w_2, w_3, ..., w_{N-1}, w_N)$ of words.
- Given some **text corpus** (with additional 'start' and 'end' sentence markers: $\{\langle s \rangle, \langle /s \rangle\}$)

N-grams and Relative Frequency

$$P[w_n|w_{n-N+1}w_{n-N+2}...w_{n-1}] =$$

$$\frac{\# w_{n-N+1}w_{n-N+2}\dots w_{n-1} w_n}{\# w_{n-N+1}w_{n-N+2}\dots w_{n-1}}$$

Meaning?

"the probability of seeing the sequence $w_{n-N+1}w_{n-N+2}...w_{n-1}w_n$ is the number of times (in the text) that the sequence $w_{n-N+1}w_{n-N+2}...w_{n-1}$ is followed by w_n relative to the **total number** of times $w_{n-N+1}w_{n-N+2}...w_{n-1}$ is seen in the text."

Small Example (N=2)

- 4 sentences
- 1. <s> In the beginning was the Word, and the Word was with God, and the Word was God. </s>
- 2. <s> The same was in the beginning with God. </s>
 - <s> All things were made by him: and without him was made nothing that was made. </s>
- 4. <s> In him was life, and the life was the light of men. </s>

John 1:1-4 (Douay-Rheims Edition)

[Note 'start' (<s>) and 'end' (</s>) sentence tokens. These are used to ensure adjustments are not needed for sentence lengths.]

Small Example (N=2) (continued)

- The following are all bigrams in this example: (the, word); (<s>, in); (God, </s>); (was, made); (the, beginning)
- #(the, word) = 3; #(the, beginning)=2; #(God, </s>)=2; #(<s>,all)=1
- #(the) = 7; #(God) = 3;
- These give relative frequencies
- P[word | the] = 3/7; P[</s> | God] = 0.5; P[beginning | the] = 2/7; P[all | <s>] = 0.25

• This, of course, is a very small example.

How is it used?

- Suppose N=2 (bigrams = "all sequences of pairs in a text").
- First step: construct all bigrams and compute their *relative frequency* using the formula given.
- Prediction: "when W is typed suggest X, where (W,X) has the highest frequency of bigrams starting W". (use a threshold)
- Creative writing: "using an author's corpus of written work, perform an analysis of bigram frequency. Use this to guide random selections of words to parody writing style"

How is it used?

- Stylometry: "compute an author's 'writing profile' by forming a view of their use of specific bigram combinations"
- In plagiarism detection, often N-grams building on characters rather than words are used. If a large enough item of text (for example project dissertation) is being analysed, then inconsistencies in profiles over "text windows" may indicate multiple authors and provide evidence of collusion and/or plagiarism.

Summary

- Natural Language Analysis is one significant application study within *Data Science*.
- Although the methodology offered by N-gram use has moved on and is now quite sophisticated, its initial development offers strong techniques.
- N-gram packages and *Natural Language* tools have been developed within **Python**. One of the most important being The Natural Language Toolkit
- Stylometric Analysis has been used to uncover *fraudulent* practices and has been considered as a tool to deal with *Generative Al abuses*.