ANALYSIS OF PANEL DATA

Fixed-Effect and Random-Effect Models

datascience@berkeley

Fixed-Effect Model

Remarks on Fixed-Effect Models

Deterministic Time-Varying and Time-Invariant Variables

- The fixed effect estimator allows for correlation between a_i and the explanatory variables in any time period, as in the case in first-differencing.
- A side-effect is that all of the time-invariant variables are eliminated alongisde with the unobserved fixed effect. As such, variables such as gender, credit score at loan origination, a biometric measure at the beginning of using a wearable, the distance between the center of a city to the nearest port, etc., will all be swept away by the fixed effect transformation. As such, the effect of time-invariant variables cannot be estimated
- That said, the effect of interactions with time-invariant variables can be estimated (e.g. the interaction of education with time dummies)
- If a full set of time dummies are included, the effect of deterministic timevarying variables (e.g. experience) cannot be estimated because they cannot be distinguished from the aggregate time effect.

Assumptions Required for valid OLS Estimation

■ Under a \$ assumption on the explanatory variables, the fixed effect estimator is unbiased: the error term ϵ_{it} is uncorrelated with all of the explanatory variables across all time period:

$$E(\epsilon_{it}|X_i,a_i) = 0 \forall t$$

 Other assumptions require that the error term be homoskedastic and serially uncorrelated across t.

Berkeley school of information