Лабораторная работа №6

Математическое моделирование

Волгин Иван Алексеевич

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	10

Список иллюстраций

3.1	Код реализации задачи $I(0) <= I^*$
3.2	График эпидемии I(0) <= I*
3.3	Код реализации задачи I(0) > I*
3.4	График эпидемии I(0) > I*
3.5	Код реализации задачи $I(0) <= I^*$
3.6	График эпидемии I(0) <= I*
3.7	Код реализации задачи $I(0) > I^*$
3.8	График эпидемии I(0) > I*

1 Цель работы

Изуяить и смоделировать математическую модель о эпидемии.

2 Задание

- 1. Изучить задачу о эпидемии.
- 2. Построить модель о эпидемии с использованием Julia.
- 3. Построить модель о эпидемии OpenModelica.

3 Выполнение лабораторной работы

- 1. Для начала я прочитал теоретическое введение в задачу о эпидемии и в ник в ее суть.
- 2. Далее я перешел к построению модели с использованием Julia. Сначала я решил вариант задачи, когда кол-ов заболевших меньше или равно порогового значения ($I(0) \leftarrow I^*$). Я написал код решения на Julia (рис. 3.1) и получил график (рис. 3.2).

```
function sir(u,p,t)
    (S,I,R) = u
     (b, c) = p
    N = S+I+R
    dS = 0
    dI = -c*I
    dR = c*I
    return [dS, dI, dR]
N = 4289
I_0 = 82
R_0 = 15
S_0 = N - I_0 - R_0
u0 = [S_0, I_0, R_0]
p = [0.1, 0.05]
tspan = (0.0, 200.0)
(0.0, 200.0)
prob = ODEProblem(sir, u0, tspan, p)
sol = solve(prob, Tsit5(), saveat = 0.1)
plot(sol, label = ["S" "I" "R"])
```

Рис. 3.1: Код реализации задачи I(0) <= I*

Рис. 3.2: График эпидемии I(0) <= I*

Затем я все еще на Julia построил я написал реализацию задачи о эпидемии, при условии что кол-ов заболевших больше порогового значения ($I(0) > I^*$) (рис. 3.3) и получил следующий график (рис. 3.4).

```
function sir2(u,p,t)
    (S,I,R) = u
    (b, c) = p
    N = S+I+R
    dS = -(b*S*I)/N
    dI = (b*I*S)/N - c*I
    dR = c*I
    return [dS, dI, dR]
end
N = 4289
I_0 = 82
R_0 = 15
S_0 = N - I_0 - R_0
u0 = [S_0, I_0, R_0]
p = [0.1, 0.05]
tspan = (0.0, 200.0)
(0.0, 200.0)
prob2 = ODEProblem(sir2, u0, tspan, p)
sol2 = solve(prob2, Tsit5(), saveat = 0.1)
plot(sol2, label = ["S" "I" "R"])
```

Рис. 3.3: Код реализации задачи I(0) > I*

Рис. 3.4: График эпидемии I(0) > I*

3. Затем я перешел в OpenModelica и сделал тоже самое, чтобы потом сравнить результаты. Сначала я написал код для I(0) <= I* (рис. 3.5) и получил идентичный график (рис. 3.6).

```
model lab6

parameter Real I_0 = 82;
parameter Real R_0 = 15;
parameter Real S_0 = 4192;
parameter Real N = 4289;
parameter Real b = 0.1;
parameter Real c = 0.05;

Real S(start = S_0);
Real I(start = I_0);
Real R(start = R_0);

equation

der(S) = 0;
der(I) = -c*I;
der(R) = c*I;
end lab6;
```

Рис. 3.5: Код реализации задачи $I(0) <= I^*$

Рис. 3.6: График эпидемии I(0) <= I*

После этого реализовал модель задачи для $I(0) > I^*$ (рис. 3.7) и снова получил полностью идентичный графак (рис. 3.8), что свидетельствует о правильности выполнения задачи.

```
model lab6

parameter Real I_0 = 82;
parameter Real R_0 = 15;
parameter Real S_0 = 4192;
parameter Real N = 4289;
parameter Real b = 0.1;
parameter Real c = 0.05;

Real S(start = S_0);
Real I(start = I_0);
Real R(start = R_0);

equation

der(S) = -(b*S*I)/N;
der(I) = (b*S*I)/N - |c*I;
der(R) = c*I;
end lab6;
```

Рис. 3.7: Код реализации задачи I(0) > I*

Рис. 3.8: График эпидемии I(0) > I*

4 Выводы

В ходе выполнения данной лабораторной работы я изучил и реализовал задачу о эпидемии с помощью Julia и в OpenModelica.