Data Base Management Systems

Sanjay Moulik

IIIT Guwahati

2 1/22/2021

What is a Database System?

- A Database System is essentially a computerized record-keeping system.
- A database management system (DBMS) consists of a collection of interrelated data and a set of programs to access those data.
- Database systems are designed to manage large volume of information efficiently and correctly.
- The primary goal of DBMS is to provide an environment that is both convenient and efficient to use in retrieving and storing database information.

Types of Databases

- Numeric and Textual Databases
- Multimedia Databases
- Geographic Information Systems (GIS)
- Data Warehouses
- Real-time and Active Databases

Database applications

- Banking: all transactions
- Airlines: reservations, schedules
- Universities: registration, grades
- Sales: customers, products, purchases
- Online retailers: order tracking, customized recommendations
- Manufacturing: production, inventory, orders, supply chain
- Human resources: employee records, salaries, tax deductions
- Databases touch all aspects of our lives

Traditional Data Management using file systems

- A time when there were no database systems...
- Scenario "university administration"

1/22/2021

6

Problems in File environment

- Data redundancy & inconsistency
 - Various files, likely to have different format and program written in different languages
 - Some information may be duplicated in several files
 - Data redundancy
 - Data inconsistency
- Program & data dependency
 - If new request (not anticipated, when designed)
 - Have to write a new program
 - Very difficult, as data are scattered in various files in various formats

Problems in File environment

- Lack of flexibility
 - Analysis of data as well as the realization of the new application is problematic
 - Data from several files can only be combined with very high costs
- Poor security
- Lack of data-sharing and availability
- No concurrency control

Requirements & advantages of DBMS

- Data independence
 - Independence of the application programs from the detail of the data representations and data storage.
 - DBMS can provide an abstract view of the data.
- Efficient data access: utilizes a variety of sophisticated techniques to store and retrieve data efficiently.
- Common databases for all current and future application programs.
- Concurrent data access
 - Simultaneous access to the same data by different users
- Controlling Redundancy
 - Avoiding copies of same data by an integrated view on data
 - Control redundancy for improving performance

Requirements & advantages of DBMS

- Consistency of data
 - Must ensure consistency for controlled redundancy
- Integrity of data
 - Correctness and completeness of data
 - Formulation of integrity constraints
- Data security
 - Protection of databases against unauthorized access
 - Access control with authentication
- Back up & Recovery
 - Protections against the consequences of system errors
 - Providing persistent storage for program objects and data structures
 - Providing multiple user interface
 - Representing complex relationships among data
 - Enforcing integrity constraints and providing backup and recovery

Functions of DBMS

- Data definition: Specifies content and structure of database and defines each data element
- Data manipulation: Manipulates data in a database
- Data security and integrity: Monitors user requests and rejects any unauthorized attempts
- Data recovery and concurrency: Enforces certain controls for recovery and concurrency
- Data dictionary: Stores definitions of data elements, and data characteristics
- Performance: Functions should be performed efficiently

DBMS Architecture

- To handle the data efficiently and to hides the internal complexity of a system, several level of abstractions are defined.
 - Physical / Internal level
 - Logical / Conceptual level
 - View / External level
- The description of a database is called the database schema.
 - Internal Schema
 - Conceptual Schema
 - External Schema

DBMS Architecture

- Internal Schema : Describes physical storage structure of database
- Conceptual Schema: Describes structure of whole database for a community of users. [i.e., what data are stored, and what relationship exist among those data]
- External Schema: Each view describes that part of database that a particular user requires, and hides the rest.

Three level model

1/22/2021

DBMS Architecture

- Data Independence: denotes the property that higher levels of the model are not influenced by changes of lower levels
- Logical data independence: capacity to change conceptual schema without having to change external schema.
- Physical data independence: capacity to change internal schema without changing conceptual schema.

Database system

1/22/2021 17

Data Models

- Data Model is to a Database what a Building plan or a blueprint is to a Building
- A Data Model is the conceptual design of a database
- Mathematical formalism consisting of a notation for describing the data of interest and of a set of operations for manipulating these data.
- A set of concepts to describe the *structure* of a database, and certain *constraints* that the database should obey.

1/22/2021

Data Models

- Description of structure of a database
 - Data
 - Data relationships
 - Data constraints
- Relational model
- Entity-Relationship data model (mainly for database design)
- Object-based data models (Object-oriented and Object-relational)
- Semistructured data model (XML)
- Other older models:
 - Network model
 - Hierarchical model
- Why Data Modeling is important?

Cannot build a good system without knowing what data needs to be captured and how it needs to be organized

Relational Model

• Example of tabular data in the relational model

customer_id	customer_name	customer_street	customer_city	account_number
192-83-7465	Johnson	12 Alma St.	Palo Alto	A-101
192-83-7465	Johnson	12 Alma St.	Palo Alto	A-201
677-89-9011	Hayes	3 Main St.	Harrison	A-102
182-73-6091	Turner	123 Putnam St.	Stamford	A-305
321-12-3123	Jones	100 Main St.	Harrison	A-217
336-66-9999	Lindsay	175 Park Ave.	Pittsfield	A-222
019-28-3746	Smith	72 North St.	Rye	A-201

Attributes

A Sample Relational Database

customer_id	customer_name	customer_street	customer_city
192-83-7465	Johnson	12 Alma St.	Palo Alto
677-89-9011	Hayes	3 Main St.	Harrison
182-73-6091	Turner	123 Putnam Ave.	Stamford
321-12-3123	Jones	100 Main St.	Harrison
336-66-9999	Lindsay	175 Park Ave.	Pittsfield
019-28-3746	Smith	72 North St.	Rye

(a) The customer table

account_number	balance
A-101	500
A-215	700
A-102	400
A-305	350
A-201	900
A-217	750
A-222	700

(b) The account table

си	stomer_id	account_number
19.	2-83-7465	A-101
19	2-83-7465	A-201
01	9-28-3746	A-215
67	7-89-9011	A-102
18	2-73-6091	A-305
32	1-12-3123	A-217
33	6-66-9999	A-222
01	9-28-3746	A-201

(c) The depositor table

The Entity-Relationship Model

- Models an enterprise as a collection of entities and relationships
 - Entity: a "thing" or "object" in the enterprise that is distinguishable from other objects
 - Described by a set of attributes
 - Relationship: an association among several entities
- Represented diagrammatically by an entity-relationship diagram:

Hierarchical Database Model

- It is a pointer based model
- Organizes data in a tree-like structure
- Stores data in tables and views relationships as links
- Supports one-to-many parent-child relationships, and inflexible due to this

Network DBMS

- Depicts data logically as many-to-many relationships
- Organizes data in tables and views relationships as links
- It is also a pointer based model
- Organizes data in arbitrary graphs

Hierarchical and Network DBMS

Some of the Disadvantages

- Outdated
- Complex pointer based organization
- Less flexible compared to RDBMS
- Lack support for ad-hoc and English language-like queries

Object-Oriented Databases

- Object-oriented DBMS: Stores data and procedures as objects that can be retrieved and shared automatically
- Object-relational DBMS: Provides capabilities of both objectoriented and relational DBMS

Query Processing

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation

1/22/2021

Transaction Management

- A **transaction** is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.

Database Languages

- Data definition language (DDL)
 - Language to manipulate a database schema
 - Permits the specification of implementation details
 - DDL SQL command includes
 - Create To create a new database, table, etc.
 - Drop To destroy an existing database, table, view, etc.
 - Alter modify an existing database object
 - Truncate irreversibly clear a table.

Database Languages

- Data Dictionary
 - Results of compilation of DDL statements affects some set of tables which are stored in a file called data dictionary.
- Data manipulation language (DML)
 - DML is a language that enables users to access or manipulate data
 - Insertion, deletion, updation, etc.
- DML
 - Procedural [user specifies: what data are needed and how to get them]
 - Non-procedural [user specifies: what data are needed without specifying how to get them]

1/22/2021

Database Users

Users are differentiated by the way they expect to interact with the system

- Application programmers interact with system through DML calls
- **Specialized users** write specialized database applications that do not fit into the traditional data processing framework
- **Naïve users** invoke one of the permanent application programs that have been written previously
 - Examples, people accessing database over the web, bank tellers, clerical staff

Database Administrator

- The person having central control of both data and program accessing that data over the system
 - Coordinates all the activities of the database system
- Database administrator's duties include:
 - Schema definition
 - Storage structure and access method definition
 - Schema and physical organization modification
 - Granting user authority to access the database
 - Specifying integrity constraints
 - Monitoring performance and responding to changes in requirements

When not to use a DBMS

• When a DBMS may be unnecessary:

- If the database and applications are simple, well defined, and not expected to change.
- If there are real-time requirements that may not be met because of DBMS overhead.
- If access to data by multiple users is not required.

• When no DBMS may suffice:

- If the database system is not able to handle the complexity of data because of modeling limitations
- If the database users need special operations not supported by the DBMS.