BENUTZERHANDBUCH

GLPK FRONTEND 1.0

INHALTSVERZEICHNIS

Inhaltsve	rzeichnis	. 1
1. Funkt	tionalität	. 2
	tartfenster	
1.1.1	File	. 2
1.1.2	Leiste im Startfenster	. 3
1.1.3	Matrix	. 3
1.1.4	Grenzen und Ganzzahligkeit	. 4
1.1.5	Darstellung der Lösung	. 4
116	Dateiformate	Δ

1. FUNKTIONALITÄT

Das GLPK wurde zum Lösen von großen LP-, MIP- (Mixed Integer Programming) und verwandten Problemen entwickelt. Die Entwickler legen Wert darauf, dass es sich als Programmbibliothek nutzen lässt. In der Distribution wird aber auch ein Standalone-Solverprogramm mitgeliefert.

1.1 STARTFENSTER

Dies ist das Fenster das beim Öffnen des Programmes erscheint.

1.1.1 FILE

New | Eine neue Matrix wird erstellt.

Open | Eine vorhandene Datei bzw. ein Beispiel kann über diesen Punkt ausgewählt werden.

Save Die Matrix kann hier gespeichert werden.

Save As Die Datei kann unter einem beliebigen Namen und Ort gespeichert werden.

Exit Das Programm wird geschlossen.

Diese Auswahlmöglichkeiten gibt es auch direkt als Buttons in der Leiste im Startfenster.

1.1.2 LEISTE IM STARTFENSTER

Diese Buttons sind im Punkt 1.1.1 File vermerkt.

Zeilen Die erste Auswahlmöglichkeit ist für die Anzahl der Zeilen verantwortlich.

Spalten Die erste Auswahlmöglichkeit ist für die Anzahl der Spalten verantwortlich.

Primal Simplex Lösen mit Hilfe des Primal Simplex Algorithmus.

Dual; Primal Lösen mit Hilfe des Dual; Primal Algorithmus.

Dual Simplex Lösen mit Hilfe des Dual Simplex Algorithmus.

Standard (Textbook) Konfiguration des Lösungsalgorithmus durch das Standard Prinzip.

Projected Steepest Edge Konfiguration des Lösungsalgorithmus durch das P.S.E. Prinzip.

1.1.3 MATRIX

Editierung der Restriktionen, Zielfunktionen, Operatoren und des B-Vektors.

1.1.4 GRENZEN UND GANZZAHLIGKEIT

	Lower	Upper	Integer
▶ X1	0	0	
X2	0	0	
X3	0	0	
X4	0	0	
X5	0	0	
X6	0	0	
X7	0	0	
X8	0	0	

Editierung der Ober- und Untergrenze für die jeweiligen Spalten sowie die jeweilige Ganzzahligkeit.

1.1.5 DARSTELLUNG DER LÖSUNG

Darstellung von der LP-Lösung, MIP-Lösung, Interior Point Lösung und der Sensibilitätsanalyse.

1.1.6 DATEIFORMATE

Folgende Dateiformate können geöffnet werden:

- Fixed MPS Format
- Free MPS Format
- CPLEX LP Format

Außerdem lassen sich die Karush-Kuhn-Tucker-Bedingungen (KKT) zur Optimalität einer Lösung ausgeben, sowie eine Sensibilitätsanalyse durchführen.