DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2022

MAT1107 - Introducción al Cálculo

Solución Tarea

1. Sean a, b y c la medida de los lados de un triángulo y A su área. Demuestre que

$$a^2 + b^2 + c^2 \geqslant 4\sqrt{3}A$$
.

Solución. Si el triángulo es equilátero entonces su altura sería $a\sqrt{3}/2$ y su área $a^2\sqrt{3}/4$, por lo tanto se cumpliría la igualdad. Sean a el lado de medida mayor y h la altura trazada desde el vértice A como se muestra en la Figura 1:

Figura 1

Figura 2

Considere un triángulo equilátero BCD y las medidas x e y como lo muestra la Figura 2.

Aplicando el teorema de Pitágoras al triángulo PAC se obtiene que

$$b^2 = \left(\frac{a}{2} + x\right)^2 + h^2 \,.$$

De manera similar, aplicando el teorema de Pitágoras al triángulo PAB obtenemos

$$c^2 = \left(\frac{a}{2} - x\right)^2 + h^2.$$

Además el triángulo equilátero BCD (Figura 2) tiene altura $H = \frac{\sqrt{3}}{2}a$, entonces se cumple que

$$\frac{\sqrt{3}}{2}a = y + h \Longrightarrow h = \frac{\sqrt{3}}{2}a - y.$$

Entonces sustituyendo los valores de b^2 y c^2 se ve que

$$a^{2} + b^{2} + c^{2} - 4A\sqrt{3} = a^{2} + \left(\frac{a}{2} + x\right)^{2} + h^{2} + \left(\frac{a}{2} - x\right)^{2} + h^{2} - 2ah\sqrt{3}$$

$$= a^{2} + \frac{a^{2}}{4} + ax + x^{2} + \frac{a^{2}}{4} - ax + x^{2} + 2h^{2} - 2ah\sqrt{3}$$

$$= \frac{3}{2}a^{2} + 2x^{2} + 2h^{2} - 2ah\sqrt{3}$$

$$= \frac{3}{2}a^{2} + 2x^{2} + 2h(h - a\sqrt{3})$$

$$= \frac{3}{2}a^{2} + 2x^{2} + 2\left(\frac{\sqrt{3}}{2}a - y\right)\left(\frac{\sqrt{3}}{2}a - y - a\sqrt{3}\right)$$

$$= \frac{3}{2}a^{2} + 2x^{2} + 2\left(\frac{\sqrt{3}}{2}a - y\right)\left(-\frac{\sqrt{3}}{2}a - y\right)$$

$$= \frac{3}{2}a^{2} + 2x^{2} - 2\left(\frac{\sqrt{3}}{2}a - y\right)\left(\frac{\sqrt{3}}{2}a + y\right)$$

$$= \frac{3}{2}a^{2} + 2x^{2} - 2\left(\frac{3}{4}a^{2} - y^{2}\right)$$

$$= 2(x^{2} + y^{2}) \geqslant 0$$

como queríamos probar.

Puntaje Pregunta 1.

- lacktriangle 1 punto por considerar las variables x e y que miden cuanto le falta al triángulo ABC para ser equilátero.
- \blacksquare 1 punto por usar el teorema de Pitágoras y obtener expresiones para b^2 y c^2 que dependen de a, x y h.
- lacksquare 1 punto por expresar la altura h en términos de a e y.
- 2 puntos por obtener que la expresión $a^2 + b^2 + c^2 4A\sqrt{3} = 2(x^2 + y^2)$
- 1 punto por concluir que la expresión $2(x^2 + y^2)$ no es negativa.

Nota. En caso de que los alumnos se encuentre lejos de la solución, sugerir la figura 2 para intentar llegar a una solución.

2. Resuelva la siguiente inecuación

$$\left| \frac{|x-2|-3}{|x|-1} \right| \geqslant 4.$$

Solución. Las restricciones de la inecuación son $x \neq 1$ y $x \neq -1$. Observe que la inecuación es equivalente con resolver

$$||x-2|-3| \ge 4||x|-1|$$
.

Aquí los puntos críticos se obtiene de resolver las ecuaciones x = 0, |x| - 1 = 0, x - 2 = 0 y |x - 2| - 3 = 0, resolviendo se obtienen los siguientes puntos críticos:

$$x = 1$$
, $x = -1$, $x = 0$, $x = 2$ y $x = 5$.

Notemos que

$$\begin{aligned} |x| - 1 < 0 &\iff |x| < 1 \Longleftrightarrow -1 < x < 1 \\ |x| - 1 \geqslant 0 &\iff |x| \geqslant 1 \Longleftrightarrow x \leqslant -1 \quad \text{o} \quad x \geqslant 1 \end{aligned}$$

Por lo que se tiene que

$$||x| - 1| = \begin{cases} |x| - 1 & \text{si } x \in (-\infty, -1] \cup [1, \infty) \\ -(|x| - 1) & \text{si } x \in (-1, 1) \end{cases}$$
 (1)

De manera similar, se puede ver que

$$||x-2|-3| = \begin{cases} |x-2|-3 & \text{si } x \in (-\infty, -1] \cup [5, \infty) \\ -(|x-2|-3) & \text{si } x \in (-1, 5) \end{cases}$$
 (2)

Usando la información proporcionada en (1) y (2) y separando el análisis en casos obtenemos

■ Caso 1: Para $x \in (-\infty, -1)$ tenemos que resolver

$$|x-2|-3 \ge 4(|x|-1)$$

que en este caso es equivalente a resolver

$$-(x-2) - 3 \ge 4(-x-1) .$$

Lo que equivalente a $x \ge -3/4 \Rightarrow x \in \left(-\frac{3}{4}, \infty\right)$. Luego la solución es

$$S_1 = (-\infty, -1) \cap (-3/4, \infty) = \varnothing$$
.

■ Caso 2: Para $x \in (-1,0)$ tenemos que resolver

$$-|x-2| + 3 \ge 4(-|x|+1)$$

que en este caso es equivalente a resolver

$$(x-2) + 3 \ge 4(x+1) .$$

Se sigue que $x \le -1 \Rightarrow x \in (-\infty, -1)$. Luego la solución es

$$S_2 = (-1,0) \cap (-\infty, -1) = \emptyset$$
.

■ Caso 3: Para $x \in [0,1)$ tenemos que resolver

$$-|x-2|+3 \ge 4(-|x|+1)$$

que en este caso es equivalente a resolver

$$(x-2)+3 \ge 4(-x+1)$$
.

Se sigue que $x \ge 3/5 \Rightarrow x \in [3/5, \infty)$. Luego la solución es

$$S_3 = [0,1) \cap [3/5,\infty) = [3/5,1)$$
.

■ Caso 4: Para $x \in (1,2)$ tenemos que resolver

$$-|x-2|+3 \ge 4(-|x|+1)$$

que en este caso es equivalente a resolver

$$(x-2)+3 > 4(x-1)$$
.

Se sigue que $x \le 5/3$. Luego la solución es

$$S_4 = (1,2) \cap (-\infty, 5/3] = (1,5/3]$$
.

■ Caso 5: Para $x \in [2, 5)$ tenemos que resolver

$$-|x-2| + 3 \ge 4(|x|-1)$$

que en este caso es equivalente a resolver

$$-(x-2)+3 > 4(x-1)$$
.

Se sigue que $x \leq 9/5 \Rightarrow x \in (-\infty, 9/5]$. Luego la solución es

$$S_5 = [2,5) \cap (-\infty, 9/5] = \emptyset$$
.

■ Caso 6: Para $x \in [5, \infty)$ tenemos que resolver

$$|x-2|-3 \ge 4(|x|-1)$$

que en este caso es equivalente a resolver

$$(x-2)-3 > 4(x-1)$$
.

Se sigue que $x \leq -1/3 \Rightarrow x \in (-\infty, -1/3].$ Luego la solución es

$$S_5 = (5, \infty) \cap (-\infty, -1/3] = \varnothing$$
.

Por lo tanto la solución final es

$$S_F = S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \cup S_6 = \left[\frac{3}{5}, 1\right) \cup \left(1, \frac{5}{3}\right].$$

Puntaje Pregunta 2.

- 1 punto por mostrar los puntos críticos y las restricciones. En caso de no obtener todos los puntos críticos señalarlo en la revisión (Faltan puntos críticos).
- 1 punto por establecer los intervalos en donde la expresión |x| 1 es positiva y negativa. En caso de no establecer este hecho indicarlo en la corrección.
- 1 punto por establecer los intervalos en donde la expresión |x-2|-3 es positiva y negativa. En caso de no establecer este hecho indicarlo en la corrección.
- 0,5 puntos por establecer las soluciones en el caso 1.
- \bullet 0,5 puntos por establecer las soluciones en el caso 2.
- 0,5 puntos por establecer las soluciones en el caso 3.
- 0,5 puntos por establecer las soluciones en el caso 4.
- 0,5 puntos por establecer las soluciones en el caso 5.
- 0,5 puntos por establecer las soluciones en el caso 6.

3. Sea $f:(-1,\infty)\to\mathbb{R}$ dada por

$$f(x) = \frac{x}{1+x} \, .$$

- a) Pruebe que f es estrictamente creciente.
- b) Demuestre que f es acotada superiormente

Solución.

(a) Sean $x, y \in (-1, \infty)$ con x < y entonces

$$f(y) - f(x) = \frac{y}{y+1} - \frac{x}{x+1}$$

$$= \frac{y(x+1) - x(y+1)}{(y+1)(x+1)}$$

$$= \frac{xy + y - xy - x}{(y+1)(x+1)}$$

$$= \frac{y - x}{(y+1)(x+1)} > 0.$$

La última desigualdad se debe a lo siguiente que si $x < y \Rightarrow y - x > 0$, si $x > -1 \Rightarrow x + 1 > 0$ y si $y > -1 \Rightarrow y + 1 > 0$, es decir, tanto numerador como denominador son positivos. Luego, $f(y) - f(x) > 0 \Rightarrow f(x) < f(y)$. Por lo tanto, f es estrictamente creciente.

(b) Sabemos que 0 < 1 sumando ambos lados en la última expresión por x, obtenemos x < x+1. Como $x > -1 \Rightarrow x+1 > 0$ entonces al multiplicar a ambos lados de la desigualdad anterior por 1/(x+1) no se invierte la desigualdad, luego

$$\frac{x}{x+1} < 1 \Rightarrow f(x) < 1 \ \forall x > -1.$$

Por lo tanto, f es acotada superiormente.

Puntaje Pregunta 3.

- 3 puntos por mostrar que f es estrictamente creciente.
- 3 puntos por mostrar que f está acotada superiormente.

4. Dadas las funciones

$$f(x) = \begin{cases} 2 - x^2 & \text{si } \sqrt{3} \leqslant x \leqslant 2, \\ 1 - \sqrt{x^2 - 4} & \text{si } x \leqslant -4 \end{cases} \quad \text{y} \quad g(x) = \sqrt{|x^2 - 4| - 3},$$

con $Dom(g) = (-\infty, -2\sqrt{2}) \cup [0, 1]$ tal que $f = h^{-1} \circ g$.

- a) Demostrar que f y g son funciones inyectivas.
- b) Hallar la función h.

Solución.

- a) Mostraremos que f es inyectiva.
 - Caso 1. $x_1, x_2 \in [\sqrt{3}, 2]$.

$$f(x_1) = f(x_2) \implies 2 - x_1^2 = 2 - x_2^2 \Longrightarrow x_1^2 = x_2^2 \Longrightarrow |x_1| = |x_2|$$

Como x_1 y x_2 son positivos se sigue que $x_1 = x_2$.

• Caso 2. $x_1, x_2 \in (-\infty, -4]$

$$f(x_1) = f(x_2) \implies 1 - \sqrt{x_1^2 - 4} = 1 - \sqrt{x_2^2 - 4} \Longrightarrow x_1^2 - 4 = x_2^2 - 4 \Longrightarrow |x_1| = |x_2|$$

Como x_1 y x_2 son negativos obtenemos que $|x_1| = |x_2| \Longrightarrow -x_1 = -x_2 \Longrightarrow x_1 = x_2$.

• Caso 3. $x_1 \in [\sqrt{3}, 2] \text{ y } x_2 \in (-\infty, -4]$

$$f(x_1) = f(x_2) \implies 2 - x_1^2 = 1 - \sqrt{x_2^2 - 4} \Longrightarrow x_1^2 = \sqrt{x_2^2 - 4} + 1 \Longrightarrow |x_1| = \sqrt{\sqrt{x_2^2 - 4} + 1}$$

$$\Longrightarrow x_1 = \sqrt{\sqrt{x_2^2 - 4} + 1}$$

Como $x_1 \in [\sqrt{3}, 2]$ entonces

$$\sqrt{3} \leqslant \sqrt{\sqrt{x_2^2 - 4} + 1} \leqslant 2 \quad \Longleftrightarrow \quad 3 \leqslant \sqrt{x_2^2 - 4} + 1 \leqslant 4$$

$$\iff \quad 2 \leqslant \sqrt{x_2^2 - 4} \leqslant 3$$

$$\iff \quad 4 \leqslant x_2^2 - 4 \leqslant 9$$

$$\iff \quad 8 \leqslant x_2^2 \leqslant 13$$

$$\iff \quad \sqrt{8} \leqslant |x_2| \leqslant \sqrt{13}$$

Como x_2 es negativo se sigue que $\sqrt{8} \leqslant -x_2 \leqslant \sqrt{13} \iff -\sqrt{13} \leqslant x_2 \leqslant -\sqrt{8}$ lo cual es una contradicción con el hecho de que la $x_2 \leqslant -4$.

Por lo tanto, f es inyectiva.

Ahora mostraremos que q es inyectiva. Notemos que la función q se puede escribir en la forma

$$g(x) = \sqrt{|x^2 - 4| - 3} = \begin{cases} \sqrt{-(x^2 - 4) - 3} & \text{si } 0 \leqslant x \leqslant 1 \\ \sqrt{x^2 - 4 - 3} & \text{si } x < -2\sqrt{2} \end{cases} = \begin{cases} \sqrt{1 - x^2} & \text{si } 0 \leqslant x \leqslant 1 \\ \sqrt{x^2 - 7} & \text{si } x < -2\sqrt{2} \end{cases}$$

• Caso 1. $x_1, x_2 \in [0, 1]$

$$g(x_1) = g(x_2) \implies \sqrt{1 - x_1^2} = \sqrt{1 - x_2^2} \Longrightarrow 1 - x_1^2 = 1 - x_2^2 \Longrightarrow |x_1| = |x_2|$$

Como x_1 y x_2 son positivos se sigue que $x_1 = x_2$.

• Caso 2. $x_1, x_2 \in (-\infty, -2\sqrt{2})$

$$g(x_1) = g(x_2) \implies \sqrt{x_1^2 - 7} = \sqrt{x_2^2 - 7} \Longrightarrow x_1^2 - 7 = x_2^2 - 7 \Longrightarrow |x_1| = |x_2|$$

Como x_1 y x_2 son negativos obtenemos que $|x_1| = |x_2| \Longrightarrow -x_1 = -x_2 \Longrightarrow x_1 = x_2$.

• Caso 3. $x_1 \in [0,1]$ y $x_2 \in (-\infty, -2\sqrt{2})$

$$g(x_1) = g(x_2) \implies \sqrt{1 - x_1^2} = \sqrt{x_2^2 - 7} \Longrightarrow 1 - x_1^2 = x_2^2 - 7 \Longrightarrow x_1^2 = 8 - x_2^2$$

 $\Longrightarrow |x_1| = \sqrt{8 - x_2^2}$

Como x_1 es positivo entonces $x_1 = \sqrt{8 - x_2^2}$. Además, $x_1 \in [0, 1]$ por lo que

$$0 \leqslant \sqrt{8 - x_2^2} \leqslant 1 \quad \Longrightarrow \quad 0 \leqslant 8 - x_2^2 \leqslant 1 \Longrightarrow -8 \leqslant -x_2^2 \leqslant -7$$
$$\implies \quad 8 \geqslant x_2^1 \geqslant 7 \Longrightarrow \sqrt{7} \leqslant |x_2| \leqslant \sqrt{8}$$

Como x_2 es negativo entonces $\sqrt{7} \leqslant -x_2 \leqslant \sqrt{8} \iff -2\sqrt{2} \leqslant x_2 \leqslant -\sqrt{7}$ lo cual es una contradicción con el hecho de que $x_2 < -2\sqrt{2}$.

Por lo tanto, g es inyectiva.

b) Sabemos que $f = h^{-1} \circ g$. Como f y g son inyectivas existen las funciones f^{-1} y g^{-1} , entonces

$$f = h^{-1} \circ g \Longleftrightarrow f \circ g^{-1} = h^{-1} \circ g \circ g^{-1} \Longleftrightarrow f \circ g^{-1} = h^{-1}$$

Se sigue que $h=(f\circ g^{-1})^{-1}=g\circ f^{-1}.$ La inversa de la función f es

$$f^{-1}(x) = \begin{cases} \sqrt{2-x} & \text{si } -2 \leqslant x \leqslant -1\\ -\sqrt{(1-x)^2 + 4} & \text{si } x \leqslant 1 - \sqrt{12} \end{cases}$$

Para determinar la composición $g \circ f^{-1}$, primero determinaremos el dominio

$$x \in \text{Dom}(g \circ f^{-1}) \iff (x \in \text{Dom}(f^{-1})) \land (f^{-1}(x) \in \text{Dom}(g))$$
$$\iff (x \in (-\infty, 1 - \sqrt{12}) \cup [-2, -1]) \land (f^{-1}(x) \in (-\infty, -2\sqrt{2}) \cup [0, 1])$$

separando el análisis en casos

• Caso 1. $x \in [-2, -1]$

$$f^{-1}(x) \in (-\infty, -2\sqrt{2}) \cup [0, 1] \iff \sqrt{2 - x} \in (-\infty, -2\sqrt{2}) \cup [0, 1]$$
$$\iff 0 \leqslant \sqrt{2 - x} \leqslant 1 \iff 0 \leqslant 2 - x \leqslant 1 \iff 1 \leqslant x \leqslant 2$$

Como $x \in [-2, -1]$ obtenemos en este caso el conjunto $S_1 = [-2, -1] \cap [1, 2] = \emptyset$.

• Caso 2. $x \in (-\infty, 1 - \sqrt{12}]$

$$f^{-1}(x) \in (-\infty, -2\sqrt{2}) \cup [0, 1] \iff -\sqrt{(1-x)^2 + 4} \in (-\infty, -2\sqrt{2}) \cup [0, 1]$$

$$\iff -\sqrt{(1-x)^2 + 4} < -2\sqrt{2} \iff 2\sqrt{2} < \sqrt{(1-x)^2 + 4}$$

$$\iff 8 < (1-x)^2 + 4 \iff 4 < (1-x)^2$$

$$\iff 2 < |1-x| \iff 1-x < -2 \quad \text{\'o} \quad 1-x > 2$$

$$\iff 3 < x \quad \text{\'o} \quad x < -1$$

$$\iff x \in (3, \infty) \cup (-\infty, -1)$$

En este caso el conjunto $S_2=(-\infty,1-\sqrt{12})\cap[(-\infty,-1)\cup(3,\infty)]=(-\infty,1-\sqrt{12}).$ Por lo tanto, $\mathrm{Dom}(g\circ f^{-1})=(-\infty,1-\sqrt{12})$ y está dada por

$$h(x) = (g \circ f^{-1})(x) = g(f^{-1}(x)) = g(-\sqrt{(1-x)^2 + 4})$$
$$= \sqrt{|(-\sqrt{(1-x)^2 + 4} - 4| - 3}) = \sqrt{|(1-x)^2 - 3|} = \sqrt{(1-x)^2 - 3}.$$

Puntaje Pregunta 4.

- 1,5 puntos por mostrar que f es inyectiva.
- 1,5 puntos por mostrar que q es inyectiva.
- 1,5 puntos por obtener que $h = g \circ f^{-1}$.
- \blacksquare 1,5 puntos por obtener explícitamente la función h y su dominio.

5. Demuestre que si $x_n > 0$ para todo $n \in \mathbb{N}$ y $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = a < 1$ entonces $\lim_{n \to \infty} x_n = 0$.

Solución. En efecto, tomemos $c \in \mathbb{R}$ con a < c < 1. Entonces $0 < x_{n+1}/x_n < c$ para todo n suficientemente grande. Se sigue que

$$0 < x_{n+1} = \left(\frac{x_{n+1}}{x_n}\right) \cdot x_n < cx_n < x_n ,$$

luego, para n suficientemente grande, la sucesión (x_n) es monótona decreciente y acotada por 0 por abajo. Entonces $\{x_n\}$ es convergente. Sea $b = \lim_{n \to \infty} x_n$. De $x_{n+1} < c \cdot x_n$ para todo n suficientemente grande resulta, haciendo $n \to \infty$, que $b \le c \cdot b$, esto es $(1-c)b \le 0$. Como $b \ge 0$ y 0 < c < 1 concluimos que b = 0.

Otra Forma. Tomemos $c \in \mathbb{R}$ tal que a < c < 1. Dado que $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = a$ y $x_n > 0$ entonces existe N tal que

$$\frac{x_{n+1}}{x_n} \le c \qquad \forall \, n \ge N \,.$$

Luego,

$$0 < x_{n+1} = \frac{x_{n+1}}{x_n} \cdot x_n$$

$$\leq c \cdot x_n = c \frac{x_n}{x_{n-1}} \cdot x_{n-1}$$

$$\leq c^2 \cdot x_{n-1}$$

$$\vdots$$

$$\leq c^{n-N+1} x_N = b_n$$

es decir, $0 < x_{n+1} \le b_n$ y como

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} c^{n-N+1} x_N = x_N \underbrace{\lim_{n \to \infty} c^{n-N+1}}_{0} = 0$$

luego por el Teorema del Sandwich

$$\lim_{n\to\infty} x_n = 0 .$$

Puntaje Pregunta 5.

- lacksquare 2 puntos por mostrar que x_n es monótona.
- lacksquare 2 puntos por mostrar que x_n está acotada inferiormente.
- 2 puntos por encontrar el límite.

Puntaje Pregunta 5. Otra forma

- 4 puntos por mostrar que $0 < x_{n+1} \leqslant c^{n-N+1}x_N$
- 1 punto por usar que $\lim_{n\to\infty} c^n = 0$.
- $\blacksquare \ 1$ punto por encontrar el límite.

6. El siguiente método iterativo para obtener, con error tan pequeño cuanto se desee, raíces cuadradas de un número real a > 0 ya era conocido por los babilonios 17 siglos antes de la era cristiana. Se toma de forma arbitraria un valor $x_1 > 0$ y se define inductivamente

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) .$$

- a) Use la sucesión iterativa para calcular $\sqrt{11}$ con 6 decimales exactos tomando $x_1 = 1$.
- b) Demuestre que la sucesión (x_n) converge a \sqrt{a} .

Solución.

a) Tenemos que

$$x_{2} = \frac{1}{2}(1+11) = 6$$

$$x_{3} = \frac{1}{2}\left(6 + \frac{11}{6}\right) = \frac{47}{12} = 3,91\overline{6}$$

$$x_{4} = \frac{1}{2}\left(\frac{47}{12} + \frac{11}{47} \cdot 12\right) = \frac{3793}{1128} = 3,362588652$$

$$x_{5} = \frac{1}{2}\left(\frac{3793}{1128} + \frac{11 \cdot 1128}{2793}\right) = 3,316938935$$

$$x_{6} = \frac{1}{2}\left(x_{5} + \frac{11}{x_{5}}\right) = 3,316624805$$

donde en 5 iteraciones hemos obtenido 6 cifras decimales exactas. Después del punto, la séptima cifra es incorrecta.

b) Notemos que para todo $x \neq 0$ se tiene $[x + a/x]^2 \geqslant 4a$. En efecto, desarrollando el cuadrado y pasando 4a al primer término, vemos que esta desigualdad es equivalente a afirmar que $(x-a/x)^2 \geqslant 0$, lo que es obvio. De aquí resulta

$$x_{n+1}^2 = \frac{1}{4} \left(x_n + \frac{a}{x_n} \right)^2 \geqslant a$$

para todo $n \in \mathbb{N}$. Además, si $x^2 \geqslant a$ entonces $[x + a/x]^2 \leqslant x^2$. En efecto,

$$a\leqslant x^2 \Longrightarrow [x+a/x]^2/4 \leqslant [x+x^2/x]^2/4 = x^2 \ .$$

Como $x_{n+1}^2 \geqslant a$ para todo n, se sigue que $x_{n+2}^2 \leqslant x_{n+1}^2$, luego $x_{n+2} \leqslant x_{n+1}$, pues son números positivos. Por lo tanto, inclusive si $x_1 < \sqrt{a}$, siempre se cumple $x_2 \geqslant x_3 \geqslant x_4 \geqslant \cdots$, con $x_{n+1}^2 \geqslant a$ para todo n. Por lo tanto, existe $c = \lim_{n \to \infty} x_n$. Haciendo $n \to \infty$ en la igualdad $x_{n+1} = [x_n + a/x_n]/2$ obtenemos c = [c + a/c]/2, de donde $c^2 = a$, esto es $\lim_{n \to \infty} x_n = \sqrt{a}$.

Puntaje Pregunta 6.

- 1,5 puntos por iterar 5 veces la sucesión para obtener 6 cifras decimales exactas.
- $\blacksquare \ 1,\!5$ puntos por mostrar que x_n es monótona.
- $\blacksquare \ 1,\!5$ puntos por mostrar que x_n es acotada.
- 1,5 puntos por calcular el límite.