Lipidi

Funzioni:

- ➤Riserva energetica (le lunghe catene idrocarburiche che caratterizzano i lipidi sono composte di carboni saturi ovvero in forma completamente ridotta e pertanto possono fornire una grande quantità di energia durante la loro ossidazione)
- Costituenti delle membrane cellulari (barriere che separano la cellula dall'ambiente esterno o che separano i vari comparti intracellulari)
- ➤ Isolamento e rivestimento termico
- ➤ Alcuni hanno funzioni altamente specializzate:
 Ormoni steroidei (metabolismo); Gangliosidi,
 presenti
 sulla superficie cellulare con funzioni di
 riconoscimento

Caratteristiche:

- Non hanno struttura polimerica
- Sono molecole anfipatiche che possono formare strutture laminari monostrato, strutture laminari bistrato (bilayers), micelle e vescicole. Questi aggregati sono caratterizzati da legami non covalenti.

Effetti che stabilizzano la forma aggregata:

- 1. effetto idrofobico dovuto a fattori entropici
- 2. interazioni di Van der Waals tra le catene idrofobiche
- 3. interazione favorevole tra testa polare e solvente acquoso

1. Acidi grassi

Ione stearato (acido octadecanoico)

Acido grasso saturo

Testa Coda idrocarburica polare

Ione oleato

Acido grasso insaturo

Nella maggior parte degli acidi grassi insaturi il doppio legame ha configurazione *cis*

Gli acidi grassi contengono mediamente 12-20 C in numero pari (aggiunta successiva di composti a due C). Si indicano con 2 numeri separati da due punti: il primo fornisce la lunghezza, il secondo il numero di doppi legami la cui posizione è all'apice di Δ . Es: 18:3 $\Delta^{9,12,15}$ (chiamato Ω -3 perché l'ultimo doppio legame dista tre atomi dal termine della catena - detto omega a prescindere della lunghezza).

Nome comune	Nome sistematico	Abbreviazione	Struttura	Punto di fusione (°C)
Acidi grassi saturi				
Caprico	n-Decanoico	10:0	CH ₃ (CH ₂) ₈ COOH	31.6
Laurico	n-Dodecanoico	12:0	CH ₃ (CH ₂) ₁₀ COOH	44.2
Miristico	n-Tetradecanoico	14:0	CH ₃ (CH ₃),COOH	53.9
Palmitico	n-Esadecanoico	16:0	CH ₃ (CH ₂) ₁₄ COOH	63.1
Stearico	n-Octadecanoico	18:0	CH ₃ (CH ₂) ₁₆ COOH	69.6
Arachidico	n-Eicosanoico	20:0	CH ₃ (CH ₃) ₁₈ COOH	76.5
Beenico	n-Docosanoico	22:0	CH ₃ (CH ₂) ₂₀ COOH	81.5
Lignocerico	n-Tetracosanoico	24:0	CH ₃ (CH ₃) ₂ ,COOH	86.0
Cerotico	n-Esacosanoico	26:0	CH ₃ (CH ₃) ₂₄ COOH	88.5
10.00 m		Ĺ		
Acidi grassi insaturi Palmitoleico	cis-9-Esadecenoico	16:1c∆9	$CH_3(CH_2)_5CH = CH(CH_2)_7COOH$	0
Oleico	cis-9-Octadecenoico	18:1cΔ9	$CH_3(CH_2)_5CH = CH(CH_2)_7COOH$ $CH_3(CH_3)_7CH = CH(CH_3)_7COOH$	16
Linoleico	cis,cis-9,12-	$18:2c\Delta 9,12$	$CH_3(CH_2)_7CH = CH(CH_2)_7CCOH$ $CH_3(CH_3)_4CH =$	5
Linoteteo	Octadecadienoico	10.2047,12	$CH_{3}/CH_{2}/4CH = CH(CH_{3})_{7}COOH$	J
Linolenico	tutti- <i>cis</i> -9,12,15- Octadecatrienoico	18:3c∆9,12,15	$CH_3CH_2CH = CHCH_2CH =$ $CHCH_3CH = CH(CH_2)_7COOH$	-11
Arachidonico	tutti- <i>cis</i> -5,8,11,14- Eicosatetraenoico	20:4c Δ 5,8,11,14		-50
Acidi grassi ramificati e	ciclici			
			CH ₃	
Tubercolostearico	<i>l</i> -D-10-Metiloctadecanoico	CH ₃ (CH ₂) ₇ CH(CH ₂) ₇ COOH CH ₂		13.2
Lattobacillico	ω-(2-n-Octilciclopropil)- octanoico		CH ₃ (CH ₂) ₅ CH—CH(CH ₂) ₉ COOH	29

Gli acidi grassi hanno **pKa di circa 4.5** e risultano deprotonati e dunque <u>carichi a pH fisiologico</u>. Quando si tenta di solubilizzarli in acqua all'interfaccia acqua/aria si dispongono in modo da inserire le teste polari in acqua lasciando le code idrofobiche verso l'aria.

Se gli acidi grassi vengono miscelati vigorosamente in acqua formano micelle.

2. Grassi

Esteri ottenuti da glicerolo + acidi grassi

Triacilgliceroli

La struttura della tristearina, un trigliceride. La tristearina è un triacilglicerolo (un grasso) costituito da glicerolo e da tre molecole di stearato. La porzione idrofilica della tristearina è costituita dal glicerolo e dalle teste polari degli stearati; la porzione idrofobica è costituita dalle code idrocarburiche degli stearati.

L'esterificazione con glicerolo riduce notevolmente la polarità della testa, di conseguenza i triacilgliceroli risultano insolubili in acqua e non formano facilmente micelle. I grassi nelle piante e negli animali sono presenti sotto forma di depositi (goccioline) presenti nel citoplasma delle cellule.

Composizione di alcuni grassi espressa come percentuale di acidi grassi totali

Numero di atomi di carbonio nella catena	Olio di oliva	Burroa	Grasso di bue
Saturi			
4-12	2	11	2
14	2	10	2
16	13	26	29
18	3	11	21
Insaturi			
16-18	80	40	46

I grassi ricchi in acidi grassi insaturi, come l'olio, sono liquidi a temperatura ambiente mentre i grassi ricchi di acidi grassi saturi, come il burro, a temperatura ambiente sono solidi. Ciò dipende dal fatto che le catene idrocarburiche sature si impaccano molto bene mentre le catene insature con configurazione *cis* dei doppi legami non portano ad agglomerati compatti. L'idrogenazione dei grassi vegetali serve a produrre grassi solidi (margarine).

3. Cere

➤ Completamente insolubili (idrorepellenti)

Struttura tipica di una cera. Le cere si formano per esterificazione di acidi grassi con alcoli a catena lunga. La minuscola testa polare fornisce un contributo modesto all'idrofilicità della molecola, in confronto al contributo significativo di idrofobicità dato dalle due lunghe catene idrocarburiche.

Lipidi che compongono le membrane biologiche

Tutte le membrane biologiche contengono lipidi come componenti principali. Nella maggior parte dei casi questi lipidi sono composti di <u>una testa polare e di due code idrofobiche</u>.

Le quattro classi di lipidi che possono generare membrane sono:

- ➤ Glicerofosfolipidi
- **>**Sfingolipidi
- ➤ Glicosfingolipidi
- ➤ Glicoglicerolipidi

Micella

Doppio strato

I glicerofosfolipidi o fosfogliceridi rappresentano la classe più importante dei fosfolipidi cioè dei lipidi in cui <u>la testa polare è costituita di un gruppo fosfato</u>. Tali composti sono i costituenti di membrane in ambito batterico, vegetale e animale. Possono essere considerati derivati di glicerolomonofosfato.

```
CH<sub>2</sub>OH
I
CHOH
I
CH<sub>2</sub>OPO<sub>3</sub><sup>2-</sup>
```

Composizione lipidica di alcune membrane biologiche

Percentuale della composizione totale ir	1
--	---

Lipide	Membrana plasmatica di eritrociti umani	Mielina umana	Mitocondri di cuore di bue	Membrana cellulare di E. coli
Acido fosfatidico	1.5	0.5	0	0
Fosfatidilcolina	19	10	39	0
Fosfatidiletanolamina	18	20	27	65
Fosfatidilglicerolo	0.	0	0	18
Fosfatidilinositolo	1	1	7	0
Fosfatidilserina	8.0	8.0	0.5	0
Sfingomielina	17.5	8.5	0	0
Glicolipidi	10	26	0	0
Colesterolo	25	26	3	0
Altri	0	0	23.5	17

Gli **Sfingolipidi** e i **Glicosfingolipidi** hanno come composto di base l'amminoalcol <u>sfingosina</u>. Se un acido grasso è legato al gruppo amminico della sfingosina si ottiene un <u>Ceramide</u>.

HO-C-C=C-(CH₂)₁₂-CH₃

$$H$$
H-C-NH₂

$$HO-CH2$$
Sfingosina = D-4-sfinganina

Struttura generale di un ceramide (R = catena idrocarburica)

I ceramidi rappresentano una sottoclasse di sfingolipidi I **glicosfingolipidi** sono costituenti delle membrane in cui:

- ➤ il composto centrale è la sfingosina
- ➤ la testa polare contiene molecole di zucchero.

I glicosfingolipidi comprendono i gangliosidi e i cerebrosidi che vengono utilizzati nelle membrane cerebrali e nervose.

Esempi di Glicosfingolipidi

I <u>glicoglicerolipidi</u> sono composti di uno zucchero, una molecola di glicerolo e acidi grassi. Rappresentano una classe di lipidi poco diffusa nelle cellule animali ma estremamente diffusa nelle cellule vegetali e batteriche.

Colesterolo

Il colesterolo è una molecola poco anfipatica.

Il colesterolo è una struttura compatta e rigida al confronto con gli altri elementi idrofobici della membrana. Tale molecola non si inserisce agevolmente tra i lipidi di membrana e tende a distruggere la regolarità dell'impaccamento delle catene idrofobiche, ciò <u>incide sulla rigidità e sulla permeabilità della membrana stessa</u>.

Struttura di una membrana cellulare. Modello a mosaico fluido.

membrana un mosaico fluido di lipidi e proteine. Le proteine periferiche sporgono da una sola delle due facce della membrana mentre le proteine integrali di membrana si trovano per larga parte all'interno della membrana e sporgono da entrambi i lati della stessa. Le proteine integrali di membrana sono spesso coinvolte nel trasporto di specifiche molecole o nella trasmissione segnali chimici attraverso la membrana.

