a)
$$Q(s,a) \leftarrow Q(s,a) + \alpha(r+y) \max_{a'} Q(s',a') - Q(s,a)$$

b) $Q(s,a) \leftarrow Q(s,a) + \alpha(r+y) Q(s,a) - Q(s,a)$

Q' is the second Q table

Q2 a)Q(1,1) =
$$\frac{R(1,1)}{1-y} = \overline{10}$$

Q(1,2) = $R(1,2) + y Q(1,1) = \overline{9}$

b) $\pi_{\lambda}(2|1) = \frac{e^{(9\lambda)}}{e^{(9\lambda)} + e^{10\lambda}} = \overline{26\%}$ of the time

C) Since a=2 is not a greedy action $\pi_{\epsilon}(2|1) = \frac{\epsilon}{|A|} = 5\% \text{ of the time}$

$$Q3/a) \propto_{OL} = [-15,5]$$

$$\propto_{OR} = [5,-15]$$

$$\alpha_{L} = [0,0]$$

$$\alpha_{J} = [-1,-1]$$

on the right half, dot, of dominate 50 we only need to consider them

f) You would never take action a=)
because it is dominated over the entire belief
space.

F and B are not d-separated by E. .. FLBIE is False

b) path	· d- separated by A
B+A+D	Yes
BEARCED	Yes
B→E←A←D	Yes
BYERACLD	Ye5

B and D are d-separated by A

: BLD | A is True

C) From the first part of the statement, we have P(B=3 | D=1, A=2) = 1From part (b) we know P(B|D, A) = P(B|A), 40 P(B=3|A=2) = 1

> From the second part of the statement we have P(B=1|D=4,A=2)=1Since P(B|D,A)=P(B|A), we have P(B=1|A=2)=1and therefore P(B=3|A=2)=0

This is a contradiction, so the statement is disproved.

(1,1)	(1,1)
(1,1)	(1,1)

6)

(1,1)	(0,0)	(0,0)
(0,0)	(1,1)	(0,0)
(0,0)	(0,6)	(1, 1)

C) There are 2 pure-strategy Nash

Equilibria corresponding to the (3,3) and

(10,10) entries

$$\frac{NE 1}{a'=b}$$

$$a^2=b$$