Exercise 11.4

Wang Yue from CS Elite Class

March 7, 2021

20.
$$\sum_{n=1}^{\infty} \frac{n+4^n}{n+6^n}$$

Let $a_n = \frac{n+4^n}{n+6^n}$, $b_n = \frac{4^n}{6^n}$, and we can get

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{n+4^n}{n+6^n}}{\frac{4^n}{6^n}} = \lim_{n \to \infty} \frac{\frac{n}{4^n} + 1}{\frac{6^n}{6^n} + 1} = 1$$

- $\therefore \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (\frac{2}{3})^n, \text{ which is convergent}$ $\therefore \sum_{n=1}^{\infty} \frac{n+4^n}{n+6^n} \text{ is also convergent}$

21.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{2n^2+n+1}$$

Let $a_n = \frac{\sqrt{n+2}}{2n^2+n+1}, b_n = \frac{\sqrt{n}}{n^2}$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt{n+2}}{\sqrt{n}} \frac{2n^2 + n + 1}{n^2} = \lim_{n \to \infty} \sqrt{1 + \frac{2}{n}} (2 + \frac{1}{n} + \frac{1}{n^2}) = 2 \in (0, \infty)$$

27.
$$\sum_{n=1}^{\infty} (1 + \frac{1}{n})^2 e^{-n}$$

If we restrict $n \geq 2$, then

$$\sum_{n=2}^{\infty} (1 + \frac{1}{n})^2 e^{-n} \le \sum_{n=2}^{\infty} \frac{(1 + \frac{1}{n})^n}{e^n}$$

Let $a_n = \frac{(1+\frac{1}{n})^n}{e^n}$, then

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{e} < 1$$

- $\therefore \sum_{n=2}^{\infty} \frac{(1+\frac{1}{n})^n}{e^n} \text{ is convergent}$ $\therefore \sum_{n=2}^{\infty} (1+\frac{1}{n})^2 e^{-n} \text{ is convergent}$ $\therefore \sum_{n=1}^{\infty} (1+\frac{1}{n})^2 e^{-n} \text{ is convergent}$

30.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Let $a_n = \frac{n!}{n^n} > 0$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \lim_{n \to \infty} (\frac{n}{n+1})^n = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e} < 1$$

 $\therefore \sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges

31.
$$\sum_{n=1}^{\infty} \sin(\frac{1}{n})$$

Let $a_n = \sin(\frac{1}{n}), b_n = \frac{1}{n}$, so

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{\sin(\frac{1}{n})}{\frac{1}{n}}=1\in(0,\infty)$$

- $\therefore \sum_{n=1}^{\infty} b_n \text{ is divergent} \\ \therefore \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \sin(\frac{1}{n}) \text{ is also divergent}$

32.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$

Let $a_n = \frac{1}{n^{1+\frac{1}{n}}}, b_n = \frac{1}{n}$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{n^{\frac{1}{n}}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n}}$$

Let $t = \sqrt[n]{n} - 1$, then $(t+1)^n = n$, which is equivalent to

$$1 + nt + \frac{n(n-1)}{2}t^2 + \dots = n$$

- $\therefore \frac{n(n-1)}{2}t^2 < n$ $\therefore 0 \le t^2 < \frac{2}{n-1}$

$$\because \lim_{n \to \infty} \frac{2}{n-1} = \lim_{n \to \infty} 0 = 0$$

 \therefore by the squeeze theorem, $\lim_{n\to\infty}t^2=0$, which means

$$\lim_{n \to \infty} \sqrt[n]{n} = 1 \neq 0$$

- $\begin{array}{l} \therefore \lim_{n \to \infty} \frac{1}{\sqrt[n]{n}} = \lim_{n \to \infty} \frac{a_n}{b_n} = 1 \in (0, \infty) \\ \because \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges} \\ \therefore \sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}} \text{ also diverges} \end{array}$

37.

Proof. Let $a_n = \frac{d_n}{10^n}$, where d_n is one of the numbers $0, 1, \dots, 9$ And let $b_n = \frac{1}{10^n}$, obviously we know $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{10^n}$ converges.

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} d_n \in \{0, 1, 2, \cdots, 9\}$$

If $\lim_{n\to\infty} d_n = 0$, $\therefore \sum_{n=1}^{\infty} b_n$ converges, $\therefore \sum_{n=1}^{\infty} \frac{d_n}{10^n}$ converges. If $\lim_{n\to\infty} d_n \neq 0$, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{d_n}{10^n}$ converges as $\sum_{n=1}^{\infty} \frac{1}{10^n}$ converges.

39. Prove that if $a_n \geq 0$ and $\sum a_n$ converges, then $\sum a_n^2$ also converges.

Proof.

$$\lim_{n \to \infty} \frac{a_n^2}{a_n} = \lim_{n \to \infty} a_n$$

If $\lim_{n\to\infty} a_n > 0$, either both $\sum a_n^2$ and $\sum a_n$ are convergent or both divergent. Therefore, $\sum a_n^2$ is convergent.

In conclusion, $\sum a_n^2$ is convergent.

40.

(a) Proof. $\because \lim_{n\to\infty} \frac{a_n}{b_n} = 0$ $\therefore \forall \epsilon > 0, \exists N > 0, \text{ if } n > N, \frac{a_n}{b_n} < \epsilon, \text{ which is equivalent to}$

$$a_n < \epsilon b_n$$

 $\therefore \sum b_n$ is convergent when n > N

 $\therefore \sum \epsilon b_n$ is convergent when n > N

 $\therefore \sum a_n$ is also convergent when n > N

 $\therefore \sum a_n$ is also convergent

(b) (i)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$

Proof. Let $a_n = \frac{\ln n}{n^3}$, $b_n = \frac{1}{n^2}$, then

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{\ln n}{n}=0$$

 $\therefore \sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent *p*-series

: by the conclusion of (a), $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\ln n}{n^3}$ is also convergent \Box

(ii)
$$\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}e^n}$$

Proof. Let
$$a_n = \frac{\ln n}{\sqrt{n}e^n}, b_n = \frac{1}{e^n}$$

 $\therefore \frac{1}{e} < 1 : \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{e^n}$ is convergent

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{2}{\sqrt{n}} = 0$$

$$\therefore \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}e^n} \text{ is convergent}$$

41.

(a)
$$Proof.$$
 : $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$
 : $\forall M > 0, \exists N > 0$, if $n > N$, $\frac{a_n}{b_n} > M$, which is equivalent to

$$a_n > Mb_n$$

$$\therefore \sum b_n$$
 is divergent when $n > N$

$$\therefore \sum Mb_n$$
 is divergent when $n > N$

$$\therefore \sum a_n$$
 is divergent when $n > N$

$$\therefore \sum a_n$$
 is divergent

(b) (i)
$$\sum_{n=2}^{\infty} \frac{1}{\ln n}$$
 Let $a_n = \frac{1}{\ln n}, b_n = \frac{1}{n}$, and

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{n}{\ln n}=\lim_{n\to\infty}\frac{1}{\frac{1}{n}}=\infty$$

$$\therefore \sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n}$$
 is divergent

$$\therefore \sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n} \text{ is divergent}$$

$$\therefore \sum_{n=2}^{\infty} a_n = \sum_{n=2}^{\infty} \frac{1}{\ln n} \text{ is also divergent}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$
 Let $a_n = \frac{\ln n}{n}, b_n = \frac{1}{n}$, and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \ln n = \infty$$

$$\therefore \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$$
 is divergent

$$\therefore \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n} \text{ is divergent}$$

$$\therefore \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\ln n}{n} \text{ is also divergent}$$

43. Show that if $a_n > 0$ and $\lim_{n \to \infty} na_n \neq 0$, then $\sum a_n$ is divergent.

Proof.

$$\lim_{n\to\infty}na_n=\lim_{n\to\infty}\frac{a_n}{\frac{1}{n}}\neq 0$$

If $\lim_{n\to\infty} \frac{a_n}{\frac{1}{n}} = \infty$ $\therefore \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent \therefore by the conclusion of 41(a), $\sum_{n=1}^{\infty} a_n$ is also divergent If $\lim_{n\to\infty} \frac{a_n}{\frac{1}{n}} \in (0,\infty)$, they are either both convergent or both divergent

- $\therefore \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent $\therefore \sum_{n=1}^{\infty} a_n$ is also divergent

44.Show that if $a_n > 0$ and $\sum a_n$ is convergent, then $\sum \ln(1 +$ a_n) is convergent.

Proof. $\therefore x > \ln(x+1)$ when x > 0 $\therefore a_n \ge \ln(1+a_n)$

$$\therefore \sum a_n \ge \sum \ln(1+a_n)$$

- $\therefore \sum a_n$ is convergent $\therefore \sum \ln(1+a_n)$ is also convergent

45. If $\sum a_n$ is a convergent series with positive terms, is it true that $\sum \sin(a_n)$ is also convergent?

It is true. And the reason is as follows.

 $\therefore x > \sin x \text{ when } x > 0 \quad \therefore a_n > \sin(a_n)$

$$\therefore \sum a_n > \sum \sin(a_n)$$

- $\therefore \sum a_n$ is convergent $\therefore \sum \sin(a_n)$ is also convergent