

BGP基础

前言

- 为方便管理规模不断扩大的网络,网络被分成了不同的AS (Autonomous System,自治系统)。早期,EGP (Exterior Gateway Protocol,外部网关协议)被用于实现在AS之间动态交换路由信息。但是EGP设计得比较简单,只发布网络可达的路由信息,而不对路由信息进行优选,同时也没有考虑环路避免等问题,很快就无法满足网络管理的要求。
- BGP是为取代最初的EGP而设计的另一种外部网关协议。不同于最初的EGP, BGP能够进行路由优选、避免路由环路、更高效率的传递路由和维护大量的路由信息。
- 本章节将介绍BGP的基本概念。

- 学完本课程后, 您将能够:
 - · 描述BGP基本概念
 - · 描述BGP的对等体类型
 - 阐明BGP对等体建立过程
 - · 阐明BGP状态机
 - 。实现BGP基本配置

目录

- 1. BGP概述
- BGP的基本概念
- 3. BGP的基本配置

- OSPF、IS-IS等IGP路由协议在组织机构网络内部广泛应用,随着网络规模扩大,网络中路由数量不断增长,IGP已无法管理大规模网络,AS的概念由此诞生。
- AS指的是在同一个组织管理下,使用统一选路策略的设备 集合。
- · 不同AS通过AS号区分,AS号存在16bit、32bit两种表示方式。 IANA负责AS号的分发。
- 当不同AS之间需要进行通信时,在AS之间应使用何种路由协议进行路由的传递?

使用IGP传递路由

- AS之间需要直连链路,或通过VPN协议构造逻辑直连(例如GRE Tunnel)进行邻居建立。
- AS之间可能是不同的机构、公司,相互之间无法完全信任, 使用IGP可能存在暴露AS内部的网络信息的风险。
- 整个网络规模扩大,路由数量进一步增加,路由表规模变大,路由收敛变慢,设备性能消耗加大。

使用BGP传递路由

- 为此在AS之间专门使用BGP (Border Gateway Protocol, 边界网关协议)协议进行路由传递,相较 于传统的IGP协议:
 - □ BGP基于TCP,只要能够建立TCP连接即可建立BGP。
 - · 只传递路由信息,不会暴露AS内的拓扑信息。
 - 触发式更新,而不是进行周期性更新。

BGP发展历史

1980年左右,随着网络规模变大,路由数量不断增加,为了解决该问题提出了AS概念,AS间使用EGP(External Gateway Protocol,外部网关协议)。

EGP只发布路由,不控制路由优选、 无环路避免机制。1989年发布了第一 个BGP RFC – RFC1105,即BGP-1。1990 年发布的RFC1163提出了路径属性概念, 自此BGP可以基于路径属性进行路由 优选、路径控制。 多年的发展历程,关于BGP的多个RFC发布,BGP-4(RFC 1771)开始BGP成为无类路由协议,BGP4+支持多种地址族。

BGP在企业中的应用

企业内部互通

大型企业分支间采用BGP进行路由传递,不同的分支属于不同的BGP AS,它们通过BGP进行路由交互。

企业与运营商互通

企业与运营商之间可使用BGP进行路由交互,使得企业网络获得到达运营商网络的具体路由,运营商也可获得到达企业内部的路由。

目录

- BGP概述
- 2. BGP的基本概念
- 3. BGP的基本配置

BGP是一种实现自治系统AS之间的路由可达,并选择最佳路由的矢量性协议。早期发布的三个版本分别是BGP-1(RFC1105)、BGP-2(RFC1163)和BGP-3(RFC1267),1994年开始使用BGP-4(RFC1771),2006年之后单播IPv4网络使用的版本是BGP-4(RFC4271),其他网络(如IPv6等)使用的版本是MP-BGP(RFC4760)。

• BGP的特点:

- □ BGP使用TCP作为其传输层协议(端口号为179),使用触发式路由更新,而不是周期性路由更新。
- □ BGP能够承载大批量的路由信息,能够支撑大规模网络。
- BGP提供了丰富的路由策略,能够灵活的进行路由选路,并能指导对等体按策略发布路由。
- □ BGP能够支撑MPLS/VPN的应用,传递客户VPN路由。
- · BGP提供了路由聚合和路由衰减功能用于防止路由振荡,通过这两项功能有效地提高了网络稳定性。

- BGP使用TCP为传输层协议,TCP端口号179。路由器之间的BGP会话基于TCP连接而建立。
- 运行BGP的路由器被称为BGP发言者(BGP Speaker),或BGP路由器。
- 两个建立BGP会话的路由器互为对等体 (Peer) , BGP对等体之间交换BGP路由表。
- BGP路由器只发送增量的BGP路由更新,或进行触发式更新(不会周期性更新)。
- BGP能够承载大批量的路由前缀,可在大规模网络中应用。

BGP特征 (2)

- BGP通常被称为路径矢量路由协议(Path-Vector Routing Protocol)。
- 每条BGP路由都携带多种路径属性(Path attribute),BGP可以通过这些路径属性控制路径选择,而不像IS-IS、OSPF只能通过Cost控制路径选择,因此在路径选择上,BGP具有丰富的可操作性,可以在不同场景下选择最合适的路径控制方式。

BGP对等体关系

- 与OSPF、IS-IS等协议不同,BGP的会话是基于TCP建立的。 建立BGP对等体关系的两台路由器并不要求必须直连。
- BGP存在两种对等体关系类型: EBGP及IBGP:
 - EBGP (External BGP): 位于不同自治系统的BGP路由器之间的BGP对等体关系。两台路由器之间要建立EBGP对等体关系,必须满足两个条件:
 - 两个路由器所属AS不同(即AS号不同)。
 - 在配置EBGP时, Peer命令所指定的对等体IP地址要求路由可达, 并且TCP连接能够正确建立。
 - IBGP (Internal BGP): 位于相同自治系统的BGP路由器之间的BGP邻接关系。

BGP对等体关系建立 (1)

- 先启动BGP的一端先发起TCP连接,如左图所示,R1先启动BGP,R1使用随机端口号向R2的179端口发起TCP连接,完成TCP连接的建立。
- 三次握手建立完成之后,R1、R2之间相互发送Open报文,携带参数用于对等体建立,参数协商正常之后双方相互发送Keepalive报文,收到对端发送的Keepalive报文之后对等体建立成功,同时双方定期发送Keepalive报文用于保持连接。
- 其中Open报文中携带:
 - My Autonomous System: 自身AS号
 - Hold Time: 用于协商后续Keepalive报文发送时间
 - □ BGP Identifier: 自身Router ID

BGP对等体关系建立 (2)

BGP对等体关系建立之后, BGP路由器发送BGP Update (更新)报文通告路由到对等体。

TCP连接源地址

一般而言在AS内部,网络具备一定的冗余性。在R1与R3之间,如果采用直连接口建IBGP邻居关系,那么一旦接口或者直连链路发生故障,BGP会话也就断了,但是事实上,由于冗余链路的存在,R1与R3之间的IP连通性其实并没有DOWN(仍然可以通过R4到达彼此)。

- 缺省情况下,BGP使用报文出接口作为TCP连接的本地接口。
- 在部署IBGP对等体关系时,建议使用Loopback地址作为更新源地址。Loopback接口非常稳定,而且可以借助AS内的IGP和冗余拓扑来保证可靠性。
- 在部署EBGP对等体关系时,通常使用直连接口的IP地址作 为源地址,如若使用Loopback接口建立EBGP对等体关系, 则应注意EBGP多跳问题。

BGP报文类型 (1)

概览

BGP存在5种类型的报文,不同类型的报文拥有相同的头部(header)。

BGP报文类型 (2)

报文名称	作用	发送时刻
Open	协商BGP对等体参数,建立对等体关系	BGP TCP连接建立成功之后
Update	发送BGP路由更新	BGP对等体关系建立之后有路由需要发送或路 由变化时向对等体发送Update报文
Notification	报告错误信息,中止对等体关系	当BGP在运行中发现错误时,发送Notification 报文将错误通告给BGP对等体
Keepalive	标志对等体建立,维持BGP对等体关系	BGP路由器收到对端发送的Keepalive报文,将 对等体状态置为已建立,同时后续定期发送 keepalive报文用于保持连接
Route-refresh	用于在改变路由策略后请求对等体重新发送路由信息。只有支持路由刷新能力的BGP设备会发送和响应此报文	当路由策略发生变化时,触发请求对等体重新 通告路由

BGP报文格式 - 报文头格式

Marker (16Byte)

Length (2Byte)

Type
(1Byte)

1: Open
2: Update
3: Notification
4: Keepalive
5: Route-refresh

- BGP五种报文都拥有相同的报文头,格式如左侧所示,主要字段解释如下:
 - Marker: 16Byte,用于标明BGP报文边界,所有bit均为"1"。
 - Length: 2Byte, BGP报文总长度(包括报文头在内),以Byte为单位。
 - n Type: 1Byte, BGP报文的类型。其取值从1到5,分别表示Open、Update、Notification、Keepalive和Routerefresh报文。

BGP报文格式 - Open

- Open报文是TCP连接建立之后发送的第一个报文,用于建立BGP对等体之间的连接关系,报文格式如左侧所示,主要字段解释如下:
 - □ Version: BGP的版本号。对于BGP 4来说,其值为4。
 - My AS (autonomous system): 本地AS号。通过比较 两端的AS号可以判断对端是否和本端处于相同AS。
 - □ Hold Time:保持时间。在建立对等体关系时两端要协商Hold Time,并保持一致。如果在这个时间内未收到对端发来的Keepalive报文或Update报文,则认为BGP连接中断。
 - □ BGP Identifier: BGP标识符,以IP地址的形式表示,用来识别BGP路由器。

BGP报文格式 - Update

Unfeasible routes length (2Byte)

Withdrawn routes (NByte)

Total path attribute length (2Byte)

Path attributes (NByte)

NLRI (NByte)

- Update报文用于在对等体之间传递路由信息,可以用于发布、撤销路由。
- 一个Update报文可以通告具有相同路径属性的多条路由, 这些路由保存在NLRI (Network Layer Reachable Information, 网络层可达信息)中。同时Update还可以携带多条不可达 路由,用于告知对方撤销路由,这些保存在Withdrawn Routes字段中。
- 报文格式如左侧所示,主要字段解释如下:
 - Withdrawn routes:不可达路由的列表。
 - Path attributes:与NLRI相关的所有路径属性列表,每个路径属性由一个TLV(Type-Length-Value)三元组构成。
 - · NLRI: 可达路由的前缀和前缀长度二元组。

BGP报文格式 - Notification

Error code Error subcode (8bit) (8bit)

Data (可变长度)

- 当BGP检测到错误状态时(对等体关系建立时、建立 之后都可能发生),就会向对等体发送Notification, 告知对端错误原因。之后BGP连接将会立即中断。
 - Error Code、Error subcode: 差错码、差错子码,用于告知对端具体的错误类型。
 - □ Data:用于辅助描述详细的错误内容,长度并不固定。

BGP报文格式 - Keepalive

- BGP路由器收到对端发送的Keepalive报文,将对等体状态置为已建立,同时后续定期发送keepalive报文用于保持连接。
- Keepalive报文格式中只包含报文头,没有附加其他任何字段。

BGP报文格式 - Route-refresh

AFI (16bit) Res (8bit) SAFI (8bit)

• Route-refresh报文用来要求对等体重新发送指定地址 族的路由信息,一般为本端修改了相关路由策略之 后让对方重新发送Update报文,本端执行新的路由 策略重新计算BGP路由。

• 相关字段内容如下:

🗖 AFI:Address Family Identifier,地址族标识,如IPv4。

Res.:保留,8个bit必须置0。

□ SAFI: Subsequent Address Family Identifier,子地址族标识。

BGP状态机 (1)

Peer状态名称	用途 H途	
Idle	开始准备TCP的连接并监视远程对等体,启用BGP时,要准备足够的资源	
Connect	正在进行TCP连接,等待完成中,认证都是在TCP建立期间完成的。如果TCP连接建立失 败则进入Active状态,反复尝试连接	
Active	TCP连接没建立成功,反复尝试TCP连接	
OpenSent	TCP连接已经建立成功,开始发送Open包,Open包携带参数协商对等体的建立	
OpenConfirm	参数、能力特性协商成功,自己发送Keepalive包,等待对方的Keepalive包	
Established	已经收到对方的Keepalive包,双方能力特性经协商发现一致,开始使用Update通告路由 信息	

BGP状态机 (2)

BGP状态机详解 (1)

缺乏去往BGP对等体的路由是导致BGP路由器其状态机一直处于idle状 态的常见原因。

TCP三次握手, TCP三次握手建立过程中处于Connect状态, 如果TCP连

接长期无法建立则进入Active状态。

BGP状态机详解 (2)

TCP三次握手建立完成之后,发送Open报文建立对等体关系,此时进入Open Sent 状态,当收到对端回应的Open报文,并且参数检查无误,在发送keepalive报文之 后进入Open Confirm状态。

Established

进入Open Confirm状态之后, BGP路由器如果收到了对端发送的 Keeaplive报文,则进入Established状态,对等体关系建立过程就此完成。

BGP对等体表

<R1>display bgp peer

BGP local router ID: 10.0.1.1

Local AS number: 100

Total number of peers: 1 Peers in established state: 1

Peer V AS MsgRcvd MsgSent OutQ Up/Down State PrefRcv

10.0.12.2 4 100 25719 25714 0 0428h32m Established 1

• 在设备上通过display bgp peer命令查看BGP对等体表,其中主要参数含义:

□ Peer: 对等体地址

🌼 V: version,版本号

□ AS: 对等体AS号

□ Up/Down:该对等体已经存在up或者down的时间

□ State:对等体状态,这里显示的为BGP状态机的状态

□ PrefRcv: prefix received,从该对等体收到的路由前缀数目

BGP路由表 (1)

```
<R1>display bgp routing-table
BGP Local router ID is 10.0.1.1
Status codes: * - valid, > - best, d - damped,
        h - history, i - internal, s - suppressed, S - Stale
        Origin: i - IGP, e - EGP, ? - incomplete
Total Number of Routes: 2
                                                                                        PrefVal
                                                                                                  Path/Ogn
       Network
                                  NextHop
                                                    MED
                                                                        LocPrf
*>i
       10.0.45.0/24
                                  10.0.4.4
                                                                         100
                                                      0
                                                                                          0
                                  10.0.4.4
                                                      0
                                                                         100
                                                                                          0
```

• 在设备上通过display bgp routing-table查看BGP路由表:

□ Network:路由的目的网络地址以及网络掩码

□ NextHop: 下一跳地址

• 如果想要查看某条路由更加详细的信息,可以通过**display bgp routing-table** *ipv4-address { mask | mask-length}* 查看,该命令会将匹配的BGP路由信息详细展示。

BGP路由表 (2)

<R1>display bgp routing-table 10.0.45.0 24

BGP local router ID: 10.0.1.1

Local AS number: 100

Paths: 2 available, 1 best, 1 select

BGP routing table entry information of 10.0.45.0/24:

#标明路由来源 From: 10.0.2.2 (10.0.2.2)

Route Duration: 06h19m44s

Relay IP Nexthop: 10.0.12.2

Relay IP Out-Interface: GigabitEthernet0/0/0

#路由下一跳地址 Original nexthop: 10.0.4.4

Qos information: 0x0

AS-path Nil, origin incomplete, MED 0, localpref 100, pref-val 0, valid, internal, best,

select, active, pre 255, IGP cost 2 #路径属性、是否被优选

Originator: 10.0.4.4

Cluster list: 10.0.2.2

Not advertised to any peer yet

BGP routing table entry information of 10.0.45.0/24:

From: 10.0.3.3 (10.0.3.3)

Route Duration: 05h17m56s

Relay IP Nexthop: 10.0.12.2

Relay IP Out-Interface: GigabitEthernet0/0/0

Original nexthop: 10.0.4.4

Qos information: 0x0

AS-path Nil, origin incomplete, MED 0, localpref 100, pref-val 0, valid, internal, pre

255, IGP cost 2, not preferred for peer address

Originator: 10.0.4.4

Cluster list: 10.0.3.3

Not advertised to any peer yet

BGP路由的生成

- 不同于IGP路由协议,BGP自身并不会发现并计算产生路由,BGP将IGP路由表中的路由注入到BGP路由表中,并通过Update报文传递给BGP对等体。
- BGP注入路由的方式有两种:
 - Network
 - import-route
- · 与IGP协议相同,BGP支持根据已有的路由条目进行 聚合,生成聚合路由。

Network注入路由 (1)

通过Network方式注入路由:

- 1. AS200内的BGP路由器已经通过IGP协议OSPF学习到了两条路由: 10.1.0.0/24和10.2.0.0/24, 在BGP进程内通过network命令注入这两条路由,这两条路由将会出现在本地的BGP路由表中。
- 2. AS200内的BGP路由器通过Update报文将路由传递给 AS300内的BGP路由器。
- 3. AS300内的BGP路由器收到路由后,将这两条路由加入到本地的BGP路由表中。

Network注入路由 (2)

通过Network方式注入路由:

- 1. AS200内的BGP路由器已经通过IGP协议OSPF学习到了 两条路由: 10.1.0.0/24和10.2.0.0/24, 在BGP进程内 通过network命令注入这两条路由,这两条路由将会 出现在本地的BGP路由表中。
- 2. AS200内的BGP路由器通过Update报文将路由传递给 AS300内的BGP路由器。
- 3. AS300内的BGP路由器收到路由后,将这两条路由加 入到本地的BGP路由表中。

import-route方式注入路由

- Network方式注入路由虽然是精确注入,但是只能一条条配置逐条注入IP路由表中的路由,如果注入的路由条目很多配置命令将会非常复杂,为此可以使用import-route方式,将:
 - 1. 直连路由
 - 2. 静态路由
 - 3. OSPF路由
 - 4. IS-IS路由

等协议的路由注入到BGP路由表中。

BGP聚合路由

R1聚合前路由

与众多IGP协议相同,BGP同样支持路由的手工聚合,在BGP配置视图中使用aggregate命令可以执行BGP路由手工聚合,在BGP已经学习到相应的明细路由情况下,设备会向BGP注入指定的聚合路由。

概览

- BGP通过network、import-route、aggregate聚合方式生成BGP路由后,通过Update报文将BGP路由 传递给对等体。
- BGP通告遵循以下原则:
 - 。 只发布最优路由。
 - 。 从EBGP对等体获取的路由,会发布给所有对等体。
 - IBGP水平分割:从IBGP对等体获取的路由,不会发送给IBGP对等体。
 - BGP同步规则指的是:当一台路由器从自己的IBGP对等体学习到一条BGP路由时(这类路由被称为IBGP路 由),它将不能使用该条路由或把这条路由通告给自己的EBGP对等体,除非它又从IGP协议(例如OSPF等, 此处也包含静态路由)学习到这条路由,也就是要求IBGP路由与IGP路由同步。同步规则主要用于规避 BGP路由黑洞问题。

概览

BGP路由通告原则一

- 第一条原则: 只发布最优且有效(即下一跳地址可达)路由。
- 通过display bgp routing-table命令可以查看BGP路由表。

```
Total Number of Routes: 2
                           MED LocPrf PrefVal Path/Ogn
  Network
                NextHop
*>i 10.1.0.0/24
                  11.1.0.1
                                    100
               11.1.0.2
                                  100
                            0
```

- 在BGP路由表中同时存在以下两个标志的路由为最优、有效:
 - · *:代表有效
 - · >: 代表最优

BGP路由通告原则二

概览

BGP路由通告原则三 (1)

→ BGP Update报文

- 第三条原则:从IBGP对等体获取的BGP路由,不会再发送给其他IBGP对等体。
- 该条原则也被称为"IBGP水平分割"。
- 如图所示,如果IBGP对等体学习到的路由会继续 传递给其他的IBGP对等体:
 - □ R2将一条路由传递给了IBGP对等体R3
 - · R3收到路由之后传递给IBGP对等体R1
 - □ R1继续传递给IBGP对等体R2

路由环路形成。

BGP路由通告原则三 (2)

IBGP全互联

- 第三条原则可能会带来新的问题,如左侧所示, 当BGP路由器R2将路由传递给BGP路由器R1时, 由于第三条原则限制,R1无法将BGP路由传递给 R3,R3将无法学习到路由。
- 为解决该问题可以采用AS内IBGP全互联的方式,
 即:R2、R3之间建立非直连的IBGP对等体关系,
 以此让BGP路由器R2将路由传递给BGP路由器R3。

BGP路由通告原则四 (1)

第四条原则: 当一台路由器从自己的IBGP对等体学习到 一条BGP路由时(这类路由被称为IBGP路由),它将不 能使用该条路由或把这条路由通告给自己的EBGP对等 体,除非它又从IGP协议(例如OSPF等,此处也包含静 态路由) 学习到这条路由, 该条规则也被称为BGP同步 原则。

如图所示:

- 1. BGP路由器R4上存在一条路由10.0.4.0/24, R4将其 传递给了R2。
- 2. R2将路由传递给非直连IBGP对等体R3。
- 3. R3将路由传递给R5。
- 4. 之后R5向10.0.4.4发起访问。

BGP路由通告原则四 (2)

R5访问10.0.4.4数据报文

- R5访问10.0.4.4:
 - 1. R5查找路由表,将报文发送给R3。
 - 2. R3收到报文后查找路由表,匹配到一条BGP路由,其 下一跳为R2,但是R2为非直连下一跳,需要进行路由 迭代,通过IGP学习到的路由迭代出下一跳为R1。R3将 报文发送给R1。
 - 3. R1收到报文后查找路由表,因为R1并非BGP路由器, 未与R2建立IBGP对等体关系,因此R1上并无BGP路由 10.0.4.0/24, 路由查找失败, R1将报文丢弃。

目录

- BGP概述
- 2. BGP的基本概念
- 3. BGP的基本配置

配置介绍

1. 启动BGP进程

[Huawei] **bgp** { as-number-plain | as-number-dot } [Huawei-bgp] **router-id** ipv4-address

启动BGP,指定本地AS编号,并进入BGP视图。使用router-id命令配置BGP的Router ID,建议将BGP Router ID配置为设备Loopback接口的地址。

2. 配置BGP对等体

[Huawei-bgp] **peer** { ipv4-address | ipv6-address } **as-number** { as-number-plain | as-number-dot }

创建BGP对等体,指定对等体地址以及AS号。

3. 配置建立对等体使用的源地址、EBGP对等体最大跳数

[Huawei-bgp] **peer** *ipv4-address* **connect-interface** *interface-type interface-number* [*ipv4-source-address*] [Huawei-bgp] **peer** *ipv4-address* **ebgp-max-hop** [hop-count]

指定发送BGP报文的源接口,并可指定发起连接时使用的源地址。

指定建立EBGP连接允许的最大跳数。缺省情况下,EBGP连接允许的最大跳数为1,即只能在物理直连链路上建立EBGP连接。

配置案例 (1)

- BGP对等体关系、AS号、设备互联地址如图所示。
- 所有设备的Loopback1接口地址为10.0.x.x/32,其中x为设备编号, 所有设备都使用Loopback1地址作为Router ID。
- R1、R3之间使用Loopback1地址作为更新源地址建立IBGP对等体关系,R3、R4之间使用互联接口地址作为更新源地址建立EBGP对等体关系。

R1的配置如下:

[R1] **bgp 100**

[R1-bgp] router-id 10.0.1.1

[R1-bgp] peer 10.0.3.3 as-number 100

[R1-bgp] peer 10.0.3.3 connect-interface LoopBack1

R3的配置如下:

[R3] **bgp 100**

[R3-bgp] router-id 10.0.3.3

[R3-bgp] peer 10.0.1.1 as-number 100

[R3-bgp] peer 10.0.1.1 connect-interface LoopBack1

[R3-bgp] peer 10.0.34.4 as-number 200

配置案例 (2)

- BGP对等体关系、AS号、设备互联地址如图所示。
- 所有设备的Loopback1接口地址为10.0.x.x/32,其中x为设备编号, 所有设备都使用Loopback1地址作为Router ID。
- R1、R3之间使用Loopback1地址作为更新源地址建立IBGP对等体关系,R3、R4之间使用互联接口地址作为更新源地址建立EBGP对等体关系。

R4的配置如下:

[R4] **bgp 200**

[R4-bgp] router-id 10.0.4.4

[R4-bgp] peer 10.0.34.3 as-number 100

配置案例 (3)

在R3上查看BGP对等体状态:

<R3> display bgp peer

BGP Local router ID: 10.0.3.3

local AS number: 100

Total number of peers : 2

Peers in established state: 2

Peer V AS	MsgRcvd	MsgSent	OutQ	Up/Down	State	PrefRcv
10.0.1.1 4 100	0	0	0	00:00:07	Established 0	
10.0.34.4 4 200	32	35	0	00:17:49	Established	0

思考题

- 1. (简答题) BGP使用的TCP目的端口号是多少?
- 2. (简答题) BGP对等体关系有哪几种? 划分的依据是什么?
- 3. (多选题) BGP对等体关系建立、更新路由分别使用()、()报文。
 - A. Route-refresh
 - B. Open
 - C. Notification
 - D. Update

本章总结

- 本章节介绍了BGP基础知识,涵盖了: BGP产生的背景、AS的概念、BGP的特征等。
- 本章节中我们详细地学习了BGP的对等体关系建立过程以及BGP状态机,学习时将对等体 关系建立过程与状态机的转换相结合有助于理解记忆。
- 不同于IGP路由协议,BGP不能自己发现、计算路由条目,其路由条目由IGP协议路由表中的路由发布得到。
- BGP在进行路由通告时遵循四条原则,这些原则对BGP路由传递进行了限制。

