Определение 1. Говорят, что задана *последовательность* чисел $x_1; x_2; x_3; \ldots$, если каждому натуральному числу n поставлено в соответствие некоторое число x_n . Другими словами, *последовательность*— это произвольная числовая функция, определённая на множестве натуральных чисел. Обозначение: (x_n) .

Задача 1. Есть ли последовательность, содержащая все а) рациональные; б)* действительные числа?

Определение 2. Последовательность (x_n) называется *ограниченной сверху*, если найдётся такое число C, что при всех натуральных n будет выполнено неравенство $x_n < C$.

Задача 2. а) Дайте определение последовательности, ограниченной снизу.

б) Докажите, что (x_n) ограничена (т. е. ограничена и сверху и снизу) тогда и только тогда, когда найдётся такое число C > 0, что при всех натуральных n будет выполнено неравенство $|x_n| < C$.

Задача 3. Найдите ограниченную последовательность, у которой

- а) есть и наибольший, и наименьший члены;
- б) есть наибольший, но нет наименьшего;
- в) есть наименьший, но нет наибольшего;
- г) нет ни наименьшего, ни наибольшего.

Задача 4. Найти наибольший член последовательности: **a)** $\frac{n^2}{2^n}$; **б)** $\frac{n}{100+n^2}$; **в)** $\frac{1000^n}{n!}$; **г)** $-n^2+5n-1$.

Задача 5. Перепишите, не используя отрицания: (x_n) не является ограниченной».

Задача 6. Ограничена ли последовательность $(1+x)^n$, где x>0? (Указание: вспомните неравенство Бернулли.)

Задача 7. При каких q последовательность $x_n = 1 + q + q^2 + \dots + q^n$ ограничена?

Определение 3. Сумма последовательностей (x_n) и (y_n) — последовательность (z_n) , где $z_n = x_n + y_n$ при всех $n \in \mathbb{N}$. Аналогично определяют разность, произведение, отношение двух последовательностей.

Задача 8. Верно ли, что **a)** сумма; **б)** разность; **в)** произведение; **г)** отношение ограниченных последовательностей — ограниченная последовательность?

Определение 4. Последовательность (x_n) называется бесконечно малой, если для каждого числа $\varepsilon > 0$ найдётся такое число N, что при любом натуральном $n \ge N$ будет выполнено неравенство $|x_n| < \varepsilon$.

Задача 9. Для последовательности (x_n) найдите по данному $\varepsilon > 0$ какое-нибудь N, такое что при n > N выполнено неравенство $|x_n| < \varepsilon$, если **a)** $x_n = \frac{1}{n}$; **б)** $x_n = \frac{2}{n^3}$; **в)** $x_n = \frac{1}{2n^2+n}$; **г)** $x_n = (0,9)^n$; **д)** $x_n = \frac{1}{n} + (0,9)^n$.

Задача 10. Пусть (x_n) и (y_n) бесконечно малые. Будет ли бесконечно малой последовательность $x_1, y_1, x_2, y_2, \dots$?

Задача 11. Докажите, что сумма, разность и произведение бесконечно малых последовательностей бесконечно малая.

Задача 12. Последовательность $(x_n y_n)$ бесконечно малая. Верно ли, что одна из (x_n) , (y_n) бесконечно малая?

Задача 13. (*Теорема о двух милиционерах*) Последовательности (x_n) и (y_n) бесконечно малые, а последовательность (z_n) такова, что $x_n \leqslant z_n \leqslant y_n$, начиная с некоторого n. Докажите, что (z_n) бесконечно малая.

Задача 14. Является ли бесконечно малой последовательность **a)** $x_n = \frac{1-0.5^n}{n+7}$; **б)** $y_n = \frac{3^n+4^n}{2^n+5^n}$?

Задача 15. Можно ли в определении 4 заменить слова «каждого $\varepsilon > 0$ » на слова «каждого ε , где $1 > \varepsilon > 0$ »?

Задача 16. Дана последовательность (x_n) с положительными членами. Верно ли, что (x_n) бесконечно малая тогда и только тогда, когда последовательность $(\sqrt{x_n})$ бесконечно малая?

Задача 17. Даны две последовательности: (x_n) — бесконечно малая, а (y_n) — ограниченная. Докажите, что $(x_n + y_n)$ — ограниченная последовательность, а $(x_n y_n)$ — бесконечно малая последовательность.

Задача 18. В бесконечно малой последовательности (x_n) переставили члены (то есть взяли какое-то взаимно однозначное соответствие $f: \mathbb{N} \to \mathbb{N}$ и получили новую последовательность (y_n) , где $y_n = x_{f(n)}$ для всех $n \in \mathbb{N}$). Обязательно ли полученная последовательность будет бесконечно малой?

Задача 19. Последовательность состоит из положительных членов, причем сумма любого количества её членов не превосходит 1. Докажите, что эта последовательность бесконечно малая.

Задача 20. Дана бесконечная вправо и вниз таблица. В каждой строчке записана бесконечно малая последовательность. Пусть x_n — произведение верхних n чисел n-го столбца. Верно ли, что (x_n) бесконечно малая?

Задача 21*. Любая ли последовательность есть отношение двух а) ограниченных; б) бесконечно малых?

1 8	1 1 6	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	3 a	3 6	3 B	3 Г	4 a	4 б	4 B	4 г	5	6	7	8 a	8 6	8 B	8 Г	9 a	9 6	9 B	9 Г	9 д	10	11	12	13	14 a	14 б	15	16	17	18	19	20	21 a	21 б