Circuitos Multiplexadores e Demultiplexadores

Parte I - Multiplexadores

Aula 18

Conteúdo

- -Circuito Multiplexador
- -Aplicações -Circuito Demultiplexador
- -Aplicações

Multiplexador (Multiplex ou Mux)

Um **multiplexador** é um dispositivo que codifica as informações de duas ou mais fontes de dados num único canal de saída.

São utilizados em situações onde o custo de implementação de canais separados para cada fonte de dados é maior que o custo e a inconveniência de utilizar as funções de multiplexação/demultiplexação.

Enfim:

Usado para enviar informações contidas em vários canais (fios), a um só canal (fio).

Multiplexador analógico

4

Multiplexador digital

Entradas de Seleção (endereçamento) \Rightarrow escolhe qual canal de informação de entrada será conectada à saída.

Projeto de um multiplexador digital

Er	Entradas			Saída
Α	IO	I1		<u>S</u>
0	0	0		0
0	0	1		0
0	1	0		1
0	1	1		1
1	0	0		0
1	0	1		1
1	1	0		0
1	1	1		1

	j	0	I	0	
Ā	0	0	1	1	
Α	0	1	1	/ o	
·	Ī1		1 /	Ī1	
$S=A.I1 + \overline{A}.I0$					

Seleção (A)	Saída
0	I_0
1	I_1

07/09/2020

IFSC - Prof. Cláudio L. Ebert ebert@ifsc.edu.br

Mux 2

Seleção (A)	Saída
0	I ₀
1	${\rm I}_1$

Simulação

Mux 4

Seleção (AB)	Saída
00	I_0
01	I_1
10	I_2
11	I_3

CI – TTL 74xx153

Entradas						Saída	
Α	В	CO	C1	C2	С3	G	Y
X	Х	Х	Х	Х	Х	1	0
0	0	0	Х	Х	Х	0	0
0	0	1	Х	X	Х	0	1
0	1	Х	0	Х	Х	0	0
0	_1	Х	1	Х	Х	0	. 1
1	0	Х	Х	0	Х	0	0
1	0	Х	Х	1	Х	0	1
1	1	Х	Х	Х	0	0	0
1	1	X	Х	Х	1	0	1

07/09/2020

IFSC - Prof. Cláudio L. Ebert ebert@ifsc.edu.br

Mux 8 – TTL 74151

MUX quádruplo de duas entradas 1 bit de seleção - 74ALS157

ĒS	Za	Z_{b}	Zc	Z_{d}
H X	L	L	L	L
L L	I _{0a}	I _{0b}	I ₀₀	I _{0d}
L H	I _{1a}	I _{1b}	I ₁₀	I _{1d}

Este sistema é utilizado quando precisa-se selecionar um conjunto de dados simultaneamente.

Associação de Multiplexadores

Os multiplexadores podem ser encontrados prontos em circuitos integrados comerciais, mas o número de entradas é limitado, devido ao tamanho e número de terminais de conexão.

Quando se necessita de um mux com um número de canais de entrada maior do que os encontrados comercialmente em um circuito integrado, ou quando é necessário multiplexar mais de um canal de saída simultaneamente, temos que fazer a associação de dois um mais multiplexadores de forma a ampliar o número de canais de entrada (associação em série) ou de saída (associação em paralelo).

Associação em paralelo

Esta associação é importante quando se necessita selecionar informações digitais de vários bits simultaneamente.

Assim sendo, utiliza-se um mux com um número de canais de entrada igual ao número de informações a serem multiplexadas, e o número de mux's igual ao número de bits destas informações.

Ex: Deseja-se multiplexar informações provenientes de quatro circuitos diferentes, sendo cada informação composta de 3 bit's, e apenas uma informação de 3 bits deve estar presente na saída do circuito por vez.

Ex: Deseja-se multiplexar informações provenientes de quatro circuitos diferentes, sendo cada informação composta de 3 bit's, e apenas uma informação de 3 bits deve estar presente na saída do circuito por vez.

Ex: Deseja-se multiplexar informações provenientes de quatro circuitos diferentes, sendo cada informação composta de 3 bit's, e apenas uma informação de 3 bits deve estar presente na saída do circuito por vez.

07/09/2020

IFSC - Prof. Cláudio L. Ebert ebert@ifsc.edu.br

Solução:

07/09/2020

IFSC - Prof. Cláudio L. Ebert ebert@ifsc.edu.br

Associação em série

Ampliação da capacidade dos canais de entrada de um sistema multiplex é feita através da multiplexação das saídas de dois ou mais multiplexadores.

Multiplex de 4 canais a partir de Multiplex de 2 canais

Outra forma de ampliar da capacidade de um Sistema Multiplex

Redução da capacidade de um Mux

Um mux 4 foi transformado em um mux 2.

Seleção (A)	Saída
0	I_0
1	I_3

Endereçamento sequencial num Sistema Multiplex

O contador gera uma sequência binária, de modo a fazer a varredura de todos os dados da entrada, jogando-os na saída, um de cada vez.

Aplicações

Outras aplicações

- Roteamento de Dados
- Conversão Paralelo-Série
- Sequenciamento de Operações
- Geração de funções Lógicas

Roteamento de Dados

Em um relógio digital que mostra hora:min ou dia:mês.

Vantagens:

Compartilhamento dos circuitos dos decodificadores e os displays.

Economia de energia, conexões, componentes e área na placa.

Conversão Paralelo-Série

IFSC - Prof. Cláudio L. Ebert ebert@ifsc.edu.br

Geração de funções Lógicas

Implementa funções lógicas diretamente da tabela verdade, sem a necessidade de determinar a função minimizada.

Obs.: Esta não é uma solução boa, quando se pretende gravar o circuito final em um Dispositivo Lógico Programável.

1) Esquematize um circuito multiplex de 64 canais, utilizando apenas blocos de 8 canais.

2) A figura abaixo apresenta os sinais de seleção e de informações de entrada de um multiplex de 2 canais. Esboce o sinal multiplexado na saída.

3. Mostre como um MUX de 16 entradas de dados (1 *bit* cada) pode ser usado para gerar a função lógica

$$Z = \overline{A}.\overline{B}.\overline{C}.D + B.C.D + A.\overline{B}.\overline{D} + A.\overline{B}.C.D$$

4. Determine a função realizada pelo circuito abaixo, implementado com três multiplexadores de duas entradas de dados de 1 *bit*.

5. Dado um MUX de oito entradas de dados (1 *bit* cada), mostre como o mesmo pode ser utilizado para implementar a função lógica Z=AB+BC+AC.

6. Usando um MUX de oito entradas de dados (1 bit cada) implemente a função lógica que produz um nível alto somente quando suas quatro variáveis de entrada (A, B, C e D) estiverem no mesmo nível lógico, ou quando as variáveis B e C estiverem em níveis diferentes.

7. Obtenha a função lógica simplificada implementada pelo circuito abaixo.

