Geometrijska interpolacija štirih točk s parabolično krivuljo

Tjaša Bajc

mentorica izr. prof. dr. Marjetka Knez

3. april 2017

Geometrijska interpolacija

Opazujemo štirikotnik, ki ga tvorijo dane štiri točke. Od lastnosti tega štirikotnika je odvisno, ali točke lahko interpoliramo s parabolično krivuljo.

Izrek

Naj bo $T = \{T_0, T_1, T_2, T_3\}$ nabor štirih točk, od katerih nobene tri niso kolinearne.

- i) Če so točke iz T oglišča konkavnega štirikotnika, danih točk ne moremo interpolirati s parabolično krivuljo.
- ii) Če so točke iz T oglišča paralelograma, danih točk ne moremo interpolirati s parabolično krivuljo.
- iii) Če so točke iz T oglišča trapeza, ki ni paralelogram, lahko dane točke interpoliramo z natanko eno parabolično krivuljo.
- iv) Če so točke iz T oglišča konveksnega štirikotnika, ki ni trapez, lahko dane točke interpoliramo z natanko dvema paraboličnima krivuljama.

Definicija

Parabolična krivulja je množica točk v ravnini

$$C_B = \{(x, y); (x, y, 1)B(x, y, 1)^T = 0, B \in \mathbb{P}\}.$$

Definicija

Parabolična krivulja je množica točk v ravnini

$$C_B = \{(x, y); (x, y, 1)B(x, y, 1)^T = 0, B \in \mathbb{P}\}.$$

Definicija

Naj bodo p(t), q(t) in $r(t) \equiv 1$ linearno neodvisni polinomi stopnje največ dve. Če za nek B iz množice $\mathbb P$ velja

$$C_B = \{(x,y); (x,y,1)B(x,y,1)^T = 0\} = \{(p(t),q(t)); t \in \mathbb{R}\},\$$

pravimo, da je (p(t), q(t), 1) kvadratična parametrizacija parabolične krivulje C_B .

Definicija

Parabolična krivulja je množica točk v ravnini

$$C_B = \{(x, y); (x, y, 1)B(x, y, 1)^T = 0, B \in \mathbb{P}\}.$$

Definicija

Naj bodo p(t), q(t) in $r(t) \equiv 1$ linearno neodvisni polinomi stopnje največ dve. Če za nek B iz množice $\mathbb P$ velja

$$C_B = \{(x,y); (x,y,1)B(x,y,1)^T = 0\} = \{(p(t),q(t)); t \in \mathbb{R}\},\$$

pravimo, da je (p(t), q(t), 1) kvadratična parametrizacija parabolične krivulje C_B .

Trditev

Vsaka parabolična krivulja ima kvadratično parametrizacijo.

Izračun parametrizacije

Trditev

Naj bodo T_0, T_1, T_2 nekolinearne točke. Enolična kvadratična parametrizacija (p, q, 1), ki zadošča pogojem

- $T_0 = (p(0), q(0)),$
- $T_1 = (p(\alpha), q(\alpha)),$
- $T_2 = (p(1), q(1)),$

je podana z naslednjim predpisom:

$$\Phi_{\alpha}(t) = (t^2, t, 1)V(\alpha)^{-1}R.$$

Izračun parametrizacije - dokaz

$$\begin{split} \Phi_{\alpha}(t) &= (t^{2}, t, 1) V(\alpha)^{-1} R \\ &= (t^{2}, t, 1) \begin{bmatrix} \frac{1}{\alpha} & \frac{1}{\alpha^{2} - \alpha} & \frac{1}{1 - \alpha} \\ -\frac{\alpha + 1}{\alpha} & \frac{1}{\alpha - \alpha^{2}} & \frac{\alpha}{\alpha - 1} \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{0} & y_{0} & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \end{bmatrix} \\ &= \frac{1}{\alpha^{2} - \alpha} \begin{bmatrix} t^{2}(\alpha - 1) - t(\alpha^{2} - 1) + \alpha(\alpha - 1) \\ t^{2} - t \\ \alpha t(\alpha - t) \end{bmatrix}^{T} \begin{bmatrix} x_{0} & y_{0} & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \end{bmatrix}. \end{split}$$

Izračun parametrizacije - dokaz

Ko rezultat uredimo, dobimo naslednje:

$$\begin{split} \rho(t) &= t^2 \left(\frac{x_0}{\alpha} + \frac{x_1}{\alpha^2 - \alpha} - \frac{x_2}{\alpha - 1} \right) \\ &+ t \left(-\frac{x_0(\alpha + 1)}{\alpha} - \frac{x_1}{\alpha^2 - \alpha} + \frac{x_2\alpha}{\alpha - 1} \right) \\ &+ x_0, \\ q(t) &= t^2 \left(\frac{y_0}{\alpha} + \frac{y_1}{\alpha^2 - \alpha} - \frac{y_2}{\alpha - 1} \right) \\ &+ t \left(-\frac{y_0(\alpha + 1)}{\alpha} - \frac{y_1}{\alpha^2 - \alpha} + \frac{y_2\alpha}{\alpha - 1} \right) \\ &+ y_0. \end{split}$$

Polinom p ustreza trditvi, torej interpolira točke T_0, T_1, T_2 . Analogno velja za polinom q, torej smo res našli kvadratično parametrizacijo interpolacijske krivulje.

Poševni koordinatni sistem

Za dane nekolinearne točke T_0 , T_1 , T_2 lahko vpeljemo *poševni koordinatni sistem* tako, da za neko četrto točko T_3 obstaja vektor $p = (p_0, p_1, p_2)$, da velja

$$(x_3, y_3, 1) = \sum_{i=0}^{2} p_i(T_i, 1)$$

$$= (p_0, p_1, p_2) \begin{bmatrix} x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{bmatrix}$$

$$= (p_0x_0 + p_1x_1 + p_2x_2, p_0y_0 + p_1y_1 + p_2y_2, p_0 + p_1 + p_2).$$

Sledi
$$p = (x_3, y_3, 1)R^{-1}$$
.

Lastnosti poševnih koordinat

Trditev

Za zgoraj definiran p velja $p_0 + p_1 + p_2 = 1$ in $p_i = 0$ natanko tedaj, ko točka T_3 leži na isti premici kot točki T_j in T_k , $j,k \in \{0,1,2\}$.

Trditev

Točke iz T so oglišča konveksnega štirikotnika natanko tedaj, ko velja $p_0p_1p_2<0$, kjer so p_0,p_1,p_2 komponente zgoraj definiranega vektorja p.

Izrek

Opazujemo štirikotnik, ki ga tvorijo dane štiri točke. Od lastnosti tega štirikotnika je odvisno, ali točke lahko interpoliramo s parabolično krivuljo.

Izrek

Naj bo $T = \{T_0, T_1, T_2, T_3\}$ nabor štirih točk, od katerih nobene tri niso kolinearne.

- i) Če so točke iz T oglišča konkavnega štirikotnika, danih točk ne moremo interpolirati s parabolično krivuljo.
- ii) Če so točke iz T oglišča paralelograma, danih točk ne moremo interpolirati s parabolično krivuljo.
- iii) Če so točke iz T oglišča trapeza, ki ni paralelogram, lahko dane točke interpoliramo z natanko eno parabolično krivuljo.
- iv) Če so točke iz T oglišča konveksnega štirikotnika, ki ni trapez, lahko dane točke interpoliramo z natanko dvema paraboličnima krivuljama.

Dokaz

Če naj točka $T_3(x_3,y_3)$ leži na paraboli, ki jo porodi matrika B_{α} , mora veljati

$$0 = (x_3, y_3, 1)B_{\alpha}(x_3, y_3, 1)^T$$

$$= (x_3, y_3, 1)R^{-1} V(\alpha) D V(\alpha)^T (R^{-1})^T (x_3, y_3, 1)^T$$

$$= (p_0, p_1, p_2)V(\alpha) D V(\alpha)^T (p_0, p_1, p_2)^T$$

$$= \alpha^2 p_0 p_1 + (\alpha - 1)^2 p_1 p_2 + p_0 p_2$$

$$= \alpha^2 p_1 (p_0 + p_2) - 2\alpha p_1 p_2 + p_2 (p_0 + p_1).$$

Dokaz

Dobili smo kvadratno enačbo za α , katere diskriminanta je

$$D = 4p_1^2p_2^2 - 4p_1p_2(p_0 + p_2)(p_0 + p_1)$$

= $4p_1p_2(p_1p_2 - (1 - p_1)(1 - p_2))$
= $4p_1p_2(p_1p_2 - 1 + p_1 + p_2 - p_1p_2)$
= $-4p_0p_1p_2$.

Upoštevali smo, da velja $p_0 + p_1 + p_2 = 1$. Produkt $p_0p_1p_2$ je različen od nič, saj nobene tri točke niso kolinearne. V nadaljevanju obravnavamo rešitve enačbe v odvisnosti od parametrov p_0, p_1, p_2 .

Paralelogram

Natanko dva od parametrov p_0, p_1, p_2 sta enaka 1. Točk ne moremo interpolirati s parabolično krivuljo.

Trapez

Natanko en od parametrov p_0, p_1, p_2 je enak 1. Obstaja natanko ena interpolacijska krivulja.

Konveksen lik

Noben od parametrov p_0, p_1, p_2 ni enak 1, produkt $p_0p_1p_2$ je negativen. Točke lahko interpoliramo z dvema paraboličnima krivuljama.

Konkaven lik

Noben od parametrov p_0, p_1, p_2 ni enak 1, produkt $p_0p_1p_2$ je pozitiven. Točk ne moremo interpolirati s parabolično krivuljo.

