КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ШЕВЧЕНКА

Курсова Робота

Факторизація графів

Автор: Тарас Цугрій Науковий керівник: Професор Сергій Лук'янович Кривий

Зміст

1	Основні поняття теорії графів			
	1.1	Графи	3	
Лi	ітера	TVDa	5	

1 Основні поняття теорії графів

Теорія графів є однією з центральних тем дискретної математики, яка дивовижним чином поєднує практику з теорією, наочність та заплутаність методів, історію і сучасність. Її застосування особливо помітне в теоріях інформатики та комунікацій, плануванні доріг та бізнес процесів тощо. Будучи по суті звичайними множинами із визначеними бінарними відношеннями, графи дозволяють моделювати процеси будь-якої складності. Разом із простотою графи є надзвичайно зручні для візуального представлення, а тому часто дозволяють людині візуально розв'язавши задачу, формалізувати отриманий результат у зручному для подальшої обробки мові.

1.1 Графи

Граф (ненаправлений) G=(V,E) складається із скінченної множини вершин V і множини $E\subseteq \binom{V}{2}$ пар $\{u,v\},\,u\neq v,$ які носять назву ребра. Зазвичай ребро $\{u,v\}$ позначають просто як $uv\in E.$

Для графа $G = (V, E), u, v \in V$ використовують наступну термінологію:

- Якщо $uv \in E$, то кажуть, що u та v суміжні
- Ребро $uu \in E$ називається петлею
- Ребра, що з'єднують одну й ту саму пару вершин, називають кратними (паралельними) ребрами
- Ребра $k,l\in E$ називають інцидентними, якщо вони мають спільний кінець, тобто $k\cap l\neq\emptyset$
- Множину сусідів $u \in V$ позначають N(u)
- Вершина u, для якої виконується deg(u) = 0 ізольована
- Вершини та ребра графа також називають його елементами
- ullet Число вершин |V| порядок графа
- \bullet Число ребер |E| розмір графа

Додатково вирізняють такі важливі графи:

- 1. |V|=n $E=\binom{V}{2}$ (всі вершини з'єднані ребрами) повний граф $K_n=(V,E)$
- 2. Граф G=(L+R,E) називають дводольним, якщо V складається з двох множин L і R, що не перетинаються, тобто $L\cap R=\emptyset$ і кожне ребро складається з вершин, одна з яких належить L, а друга R. Якщо ж між усіма вершинами L і R існують всі ребра, то такий граф називають повним дводольним $K_{L,R}$, або $K_{m,n}$, якщо |L|=m, |R|=n.
- 3. Узагальненням повного дводольного є повний k-дольний граф $K_{n_1,...,n_k}$ у якого:
 - $V = V_1 + \ldots + V_k$ та $V_i \cap V_j = \emptyset$ для всіх $i \neq j$
 - $|E_i| = n_i (i = 1, ..., k)$
 - $E = \{uv : xu \in E_i, v \in E_j, i \neq j\}$
- 4. Гіперкубом Q_n називається граф, вершинами якого є всі послідовності 0,1 довжини n, тобто $|E|=2^n$. Між усіма вершинами u та v існують ребра, якщо послідовності 0,1 цих вершин відрізняються тільки у одному місці.

Додаткові означення:

- Шляхом P_n в графі є послідовність вершин, що не повторяються u_1, u_2, \dots, u_n , таких, що $u_i u_{i+1} \in E, i = \overline{1, \dots, n-1}$.
- Циклом C_n графу є шлях P_n у якого $u_n u_1 \in E$.
- Граф H(V',E'), у якого $V'\subseteq V$ та $E'\subseteq E$ називається підграфом графа G(V,E).
- Якщо $\exists u \exists v : |\{u,v\}| > 1, u,v \in V$, тобто між двома вершинами існує більше одного ребра, то такий граф називають мультиграфом.
- Якщо мультиграф має петлі, тобто $\exists u \in V : uu \in E$, то такий граф ще називають псевдографом.
- Граф називають r-регулярним, якщо для всіх його вершин $u \in V$ виконується deg(u) = r
- Графи G=(V,E) та G'=(V',E') називаються ізоморфними $G\cong G'$, якщо існує бієкція $\varphi:E\to E'$ така, що виконується $uv\in E\Leftrightarrow \varphi(u)\varphi(v)\in K'.$

Важливі властивості графів:

ullet Нехай G=(V,E) граф, тоді вірне твердження

$$\sum_{u \in V} deg(u) = 2|K|$$

• Число вершин, у яких непарний порядок, парне

Література

[1] George D. Greenwade. The Comprehensive Tex Archive Network (CTAN). $TUGBoat,\ 14(3):342-351,\ 1993.$