Force and Acceleration

Objects with balanced forces (zero ______) are either _____ or moving at a _____ in a

The _____ of something with a _____ changes. It might _____ , ____ or . This means that it .

The **acceleration** depends on the ____ and the ___ of the object. We would expect a 100 N force to have a bigger effect on a 100 g apple than on a $20\,000$ kg bus.

- 1 The diagram above shows a 50 kg trolley in a warehouse and a 2 kg skateboard.
 - (a) Calculate the resultant force on the trolley and also on the skateboard.
 - (b) Calculate the resultant force on each kilogram for the trolley and the skateboard.
 - (c) If the trolley and the skateboard were in a race with these forces, which would pull away from the start line more rapidly?

The acceleration of an object in ____ is given by the ____ per ___ (in ___) on the object.

- 2 A 200 N force pulls a 25 kg trolley.
 - (a) Force on 1 kg = \div = newtons
 - (b) Complete the sentence: The acceleration (in m/s²) is
 - (c) A $4 \, \text{kg}$ cat uses a $20 \, \text{N}$ force to speed up. Work out the acceleration using an equation.

- (d) Work out the acceleration when $80\,\mathrm{N}$ of weight pulls a dropped $8\,\mathrm{kg}$ sandbag.
- (e) Work out the acceleration when $5\,\mathrm{N}$ of weight pulls a dropped $0.5\,\mathrm{kg}$ lump of cheese.

3	Model cars in a competition need to accelerate at 8 m/s ² .	
	(a) Complete: The force on each kilogram needs to be newtons.	
	(b) Work out the force needed on a 2 kg model using an equation.	
	$\boxed{ \text{force (N)} } = \boxed{ \text{mass (kg)} } \times \text{acceleration (m/s}^2)$	
	× 8	
	(c) Work out the force needed on a $0.4~\mathrm{kg}$ model using an equation.	
	$\boxed{ \text{force (N)} } = \boxed{ \text{mass (kg)} } \times \text{acceleration (m/s}^2)$	
	× 8	
	(d) Work out the force needed for a 100 g car. $1000 \text{ g} = 1 \text{ kg}$	
4	A wrench in a space station accelerates at 3 m/s ² when an astronaut pushes it.	_
	(a) What is the force on each kilogram of the spanner?	
	(b) The astronaut pushed the spanner with a 6 N force. How many 3 N forces is this?	
	(c) What is the mass of the spanner? Count the $3\mathrm{N}$ forces (each on $1\mathrm{kg}$).	
	(d) Work out the mass if 45 N causes a 5 m/s ² acceleration using an equation.	
	force (N) = mass (kg) \times acceleration (m/s ²)	
	× 5	
	(e) Work out the mass if 63 N causes a 7 m/s ² acceleration.	
5	Complete the word equations using acceleration, resultant force and mass.	_
	(a) acceleration = (b) resultant force = (c) mass =	
6	Rewrite your word equations using symbols.	-
	$\it a$ is the acceleration, $\it F$ is the resultant force and $\it m$ is the mass.	
	(a) $a = (b) F = (c) m =$	

7	Use your understanding of force and acceleration (including the formulae) to calculate (a) The resultant force needed to give a $200~\rm kg$ pony a $2~\rm m/s^2$ acceleration.
	(b) The acceleration when a $20000~\mathrm{kg}$ bus is driven with a $10000~\mathrm{N}$ resultant force.
	(c) The mass of a melon if a $3~N$ force gives it a $6~m/s^2$ acceleration.
8	A 1.6 kg trolley is pulled with a 4 N force on a desk where there is 1.6 N of friction.
	(a) Calculate the resultant force on the trolley.
	(b) Calculate the acceleration of the trolley.
9	Calculate the acceleration of
	(a) A $40~{\rm kg}$ trolley pushed by $100~{\rm N}$ against $80~{\rm N}$ of friction.
	(b) A $60~\mathrm{kg}$ swimmer pushing forward with $200~\mathrm{N}$ against $120~\mathrm{N}$ of drag.
10	A 0.3 kg firework needs to accelerate upwards at 80 m/s ² . As it rises there is a combined downwards force of 9 N acting on it from its weight and the drag.
	(a) Calculate the resultant force from the acceleration and mass.
	(b) Calculate the upwards propulsion force needed to achieve this resultant force.
11	A $300000\mathrm{kg}$ train takes $80\mathrm{s}$ to get to its top speed of $100\mathrm{m/s}$ on a flat track. On average, there is a combined friction and air resistance force of $50\mathrm{kN} = 50000\mathrm{N}$. Calculate
	(a) the acceleration needed. Remember: acceleration $=$ velocity change \div time taken.
	(b) the resultant force.
	(c) the force required from the engine.