Handouts: - Course Outline Overheads: - Today's Outline

- Best & Worst - Lab Schedule

- Who are you - What do you need to know

- Find someone who

- Review Sheets (on moodle)

1) Icebreaker: Find Someone Who

2) Course Outline

Go over outline Test Schedule Group Project Lab Schedule & Info

3) What Do You Need to Know?

- Everything from Chem 241 & 242!!!
- ➤ General Reactivity trends / Mechanisms
- Acids/Bases
- Resonance
- "Specific" Reactions (review sheets on moodle)
- 4) <u>Group Exercise:</u> Best & Worst?

Discussion: Each group has 1 minute to present best and worst, then vote!

5) <u>Mechanisms of Reactions</u>

- Key to understanding reactions
- Help us predict reaction products!
- Challenge: proposing mechanisms for "new" reactions
- If we discover a new reaction, we must be able to <u>propose</u> a reasonable mechanism in order to publish.

and provide experimental support/proof

Key point: "There is nothing new under the sun" (almost never!)

If you are proposing a <u>step</u> in a mechanism that you have never seen before, it is most likely wrong! (look instead for new combinations of steps)

How to propose a mechanism:

**keep in back of your mind where you are going (products) but focus on the reactants:

- ⇒ What are they most likely to do?
- **Only use reactants provided (don't add what you think you need to get there!)
- **always consider if you are working in <u>acidic</u> or <u>basic</u> solution

e.g.
$$R \longrightarrow NH_2$$
 \longrightarrow $R \longrightarrow NH_3$ base solution $= Nu^{-}$ $= not Nu^{-}$

Remember: most organic reactions are acid/base

3 Questions to Ask:

- 1) What is the strongest acid?
- 2) What is the strongest acid? Will generally react together
- 3) Is there a good leaving group?

$$\Gamma > Br^- > C\Gamma >> F^-$$

OSO₂R (eg tosyl)

 OH^- , OR^- ? \Rightarrow for S_N1 , S_N2 etc, only if protonated first:

$$ROH \rightarrow ROH_2^+ :: H_2O = LG$$

Why can CH_3O^- leave in acyl substitution but not in S_N2 ?

 \rightarrow because there is a – charge in the molecule to help kick it out!

$$Nu^{-} C - LG \qquad vs \qquad -C - LG \qquad \longrightarrow \qquad -C - LG$$

If there is a negatively charged atom attached to the same C as the LG,
 almost anything can leave

* Only H and R₃C cannot leave \rightarrow horrible LG's!

Example:

OH
$$H_{3}C \xrightarrow{\hspace{1cm}} C \xrightarrow{\hspace{1cm}} C \xrightarrow{\hspace{1cm}} CH_{2}CH_{3} + H-CN \xrightarrow{\hspace{1cm}} NaOH \xrightarrow{\hspace{1cm}} H_{3}C \xrightarrow{\hspace{1cm}} C \xrightarrow{\hspace{1cm}} C \xrightarrow{\hspace{1cm}} CN + CH_{3}CH_{2}OH$$

$$[* Basic solution :: HCN + NaOH \rightarrow H_{2}O + Na^{+}CN^{-}]$$

- This is a new reaction to us – but each step should be "normal"

Proposal $#1 - S_N 2$ (or $S_N 1$)

Is it reasonable?

What is wrong?

 CH_3CH_2O is NOT a good enough LG for S_N2 or S_N1 !

Proposal #2

- Instead of focusing on product, focus on reactants:

Q1: What is the strongest acid? HCN Q2: What is the strongest base? OH $HCN + OH \rightarrow H_2O + CN^-$

Q1: What is the strongest acid? R-OH

Q2: What is the strongest base? CN or OH (depends if excess NaOH)

$$H_3C$$
 — OEt $+$ OH $+$ OH $+$ OEt $+$ H $_2O$ $+$ OEt $+$ H $_2O$ $+$ OEt $+$ H $_2O$ $+$ OEt $+$ OET

.... Try to finish mechanism for next class!

So far:

- (1) Acid/Base
- ① Acid/Base
 ② LG leaves from tetrahedral intermediate
 ③ Nu adds to C=O