

£.25.

7

. T.

· · ·	•	2/18	* •		7
	PROTI	·			FIG.2 (cont.)
60	120	180 60	240	300	360
GCGTAGAAAATAAAGAAACACCAGAAACACCAGAAAACTGATTCAGAAGAAGAAGTA	V V V ACAATCAAATGGAAGCACACAAACTGCAGAATTCAAAGGA TTCAAAGGA TTCAAAGGA TTCAAAGGA TTCAAAGGA TTCAAAGGA TTCAAAGGA TTCAAAGGA TTCAAAGGA TTCAAAAGGA TTCAAAAGGAAATTCAAAAGGA TAAAAAAAAAA	V V ACATTTGAAAAAGCAACATCAGAAGCTTATGCGTATGCAGATACTTTGAAAAAAAA	v v v GGAGAATATAATTTGCAGATAAAGGTTATACTTTAAATATTTGCTGGAGA GGAGAATATTAAATTTGCTGGAGA GGTTATACTTTAAATATTTGCTGGAGA GGAGATATTAAATTTTGCTGGAGA GGAGATATTAAATTTTGCTGGAGA GGAGATATTAAATTTTGCTGGAGA GGAGATATAAATTTGCTGGAGATATATAAATTTTGCTGGAGATAAAATATTTGCTGGAGATAAAATATTAAAATATTTGCTGGAGATAAAATATTTGCTGGAGAAAAAATATTAAAATATTTGCTGGAAAAAATATTAAAATATTTGCTGGAAAAAAAA	V V V AAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	V V CAGATGGAAAACACAGAACAGCAGAATTCAAAGGAACATTTGAAGAAGCAACAGCAGAAAAAAAA

			3/18			780 260 FIG.2 (CONT.)
420	480	540 180	600	660	720	780
v v v v caracagargentralanganganganganganganganganganganganganga	SATAAAGGTTATAAATATTAAATTTGCTGGAAAAAAAAAA	V V AAAGAAGAAATTAAAGCAAAACTTAATCTATGCAGATGGAAAAACACAAACAGCA LysGluGluValThrileLysAlaAsnLeuIleTyrAlaAspGlyLysThrGlnThrAla	V V V CAATTCAAAGAACATTTGAAGAAGCAACAGAAAGCATATACAGATATGCTGACTTATTA CAATTTCAAAGGAACATTTGAAGAAGCAACAGAAAGCAAGAAAGCAAGAAAGCAAGAAAGCAAGAAAGCAAGAAAGCAAGAAAGCAAGAAAGCAAGAAAGCATAATAATAATAATAATAATAATAATAATAATAATAATA	V V CAAAAGAAAATGTAAATATACAGTAGACGTTGCAGATAAAGGTTATACTTTAAATATTT GCAAAAAGGTTATATATATTT A SCAAAAAGGTTATATATATATATATATATATATATATATAT	AAATTTGCTGGAAAAAAAAACACCAGAAGAACCACAAAAGAAGAAGTTACTATTAAAGCA LysphealaglyLysgluLysThrProglugluProLysglugluValThrIleLysAla	V V V AACTTAATCTAAAAAAAAAAAAAAAAAAAAAAAA

3

	. , · ·	4/18			F1G. 2
840 280	300	960 320	1020	1080	1140
V V V CAACAGCATACAGATACGCTGACTTATTAGCAAAAGAAAATGGTAAATATACAAAAAAAA	v AATATTAGATTTGCAGGT AsnileArgPheAlaGly	SAAAAACCAGAAGAACTTACAAATTAATCCTTAATGGTAAAACATTGAAAGIULysProGluGluProMetAspThrTyrLysLeuIleLeuAsnGlyLysThrLeuLys	v v v v GGCGAAACAACTGCTGTTGATGCTGCTGCAGAAAAAGTCTTCAAACAATACGTYGIUThrThrGluAlaValAspAlaAlaAlaThrAlaGluLysValPheLysGlnTyr	CTAACGACAACGGTGTTTACGACTTACGACGATGCGACTAAGACCTTTACA AlaAsnAspAsnGlyValAspGlyGluTrpThrTyrAspAspAlaThrLysThrPheThr C2	GTTACTGAAAACCAGAAGTGATCGATGCGTCTGAATTAACACCAGCCGTGACAACTTAC V V CTTACTGAAAAACCAGAAGTGATCGATGCGTCTGAATTAACACCAGCCGTGACAACTTAC ValThrGluLysProGluValIleAspAlaSerGluLeuThrProAlaValThrUhrTyr

	·	5/18
1200	1260	F16.2
v GCAGTAGACGCA AlaValAspAla	v GATGGTGTTTGG AspGlyValTrp	1308
v v v AAACTTGTTAATGGTAAACATTGAAAGGCGAAACAACTACTAAAGCAGTAGACGCA LYSLeuValileAsnGlyLysThrLeuLysGlyGluThrThrThrLysAlaValAspAla	V V CAAACTGCAGAAAAAAGCCTTCAAACAATACGCTAACGACAACGGTGTTGGTGTTTGGGGATGGTGTTTGGGGAAACAAAAAAAA	V V ACTTATGATGAGACCTTTACGGTAACTGAAATGTAATAA ThrTyrAspAspAlaThrLysThrPheThrValThrGluMet

FIG.3 SCHEMATIC OVERALL VEIW OF THE PRODUCTION OF PROTEIN L

22 422 8/18 FIG.4 SCHEMATIC OVERALL VIEW OF PRODUCTION OF PROTEIN LG PROTEIN L-GENE (IN STRAIN Pm 312) B1 B2B3 B4 B5C1 PROTEIN G-GENE IS AMPLIFIED (IN STRAIN C40) (PCR) E A 1 B 1 A 2 B 2 912bp **B1 B**2 IS AMPLIFIED CCCC **B**3 B4 CCATGG (PCR) **HpaII** NcoI 381_{bp} CLEAVE WITH HpaII/NcoI CCATGG C1D C2 TAATAAGTOGAC. Ncol Sall © CLEAVE WITH NcoI/SalI LIGATE (CONT. ON NEXT PAGE) (1)+(2)+(3) CLEAVE WITH Narl/Sall c185? 660000 SEE FIG. 1

11/18

 $\begin{array}{c} FIG.5b \\ \hbox{ SCHEMATIC OVERALL VIEW OF THE PRODUCTION} \end{array}$

	TAGAAACTAAATTAAAAGAACTACAACAAGACTATGACTTA	V CTACAACAAGACTATGAC LeuGloGloAspTyrAsp	caaaaacaaaacaaccaaaccaaaccaaaccaacaacaa	>	GCGAGA I AGAGAA I GLA Al aArgLeuGluAsnAl a
1	GAAGACCAGCGTAAAGA!!!AGAAAC!AAA!!AHR	- 1	1	H-0 1	H-D H-n 1

			15/18
600	660 220	720 240	780
GAGCAGCTAACGATCGAAAAGCAAAACTTBAGGAAGAAAAAAAATCTCAGACGCAAGT G1uG1nLeuThr I1eG1uLysA1aLysLeuG1uG1uG1uLysG1nI1eSerAspA1aSer	CGTCAAAGCCTTCGTCGTGACTTGGACGCATCACGTGAAGCTAAGAAACAGGTTGAAAAAAAA	SATTTAGCAAACTTGACTTGATAAGGTTAAAGAAGACAAACAA	GCAAGCCGTCAACGGCTTCGCCGTGACTTGGACGCATCACGTGAAGCTAAGAAACAGGTT Al aSerAryGlnAryAryAryAspLeuAspAl aSerAryGluAlaLysLvsf.

FIG.7 (CONT.)

Amino acid sequence and nucleic acid sequence for protein M1, IgG-binding somewhere between amino acid 1-190.

			_		6/18				
940 290	900 300	960 320	1020 340	1080 360	1140 380	1200	1.260 420	1320 440	
GAAAAAGATTTAGCAAACTTGACTGAÄCTTGATAAGĞTTAAAGAAGÄAAAACAAATÜ 81 ulysAspleuA1aAsnleuThrA1aG1uleuAsplysVa1lysG1uG1ulysG1nI1e	CGCAAGCCGTCAACGGCTTCGCCGTGACTTGGACGCATCACGTGAAGCTAAGAAA	AAGTTGAAAAGCTTTAGAAGAAGCAAACAAGCAAATTAĞCTGCTCTTGAAAACTTAAC 1 nValGluLysAlaLeuGluGluAlaAsnSerLysLeuAlaAlaLeuGluLysAleuAsn	, AAAGAGCTTĞAAGAAAGCAAGAAATTAACAGAAAAAGAAAAG	CTTGAAGCAGAAGCACTCAAAGAACAATTAGCGÄAACAAGCTGÄAGAACTCGCÄ LeuGluAlaGluAlaLysAlaLeuLysGluGlnLeuAlaLysGlnAlaGluGluLeuAla	AAACTAAGAGCTGGAAAAGCATCAGACTCACAAACCCCTGATACAAAACCAGGAAACAAAAAAAA		> C e	AAA Lys	ZTAA 1329 FIG.73
GAAAAAG G1 uL y sA	TCAGACG(SerAspA)	CAAGTTG/ GlnValG	AAAGAGC. Lysglule	CTTGAAG(LeuGluA)	AAACTAAG LysleuAr	GCTGTTCC AlaValFr	CCAATGAA PrometLy	ACAGCGGC ThrAlaAl	CAAGAAACTAA GluGluAsn>>>

Protein LG	Protein L Protein G	Protein LG Protein L	Protein G	Protein LG Protein L	Protein G	F1G.8	
	•		•				kDa kDa kDa
PROBE:	oft.	Ig kappa		IgG Fc			

