1. Wie lautet das Wohlordnungsprinzip?

Answer: Any nonempty subset of the natural numbers has a unique smallest element, that is: $\forall M \subset \mathbb{N} \ (\emptyset \neq M) \exists ! m \in M : \forall n \in M : m \leq n$

2. Was ist Vollständige Induktion?

Answer: Consider a subset $A \subset \mathbb{N}$. If $1 \in A$ and $(n \in A) \Rightarrow (n+1) \in A \ (\forall n \in \mathbb{N}, n > 0)$, then $A = \mathbb{N}$. This is the same theorem as in the lecture, applied to the truth set of a prediate.

3. Zeige mittels Vollständiger Induktion, dass für alle natürlichen Zahlen n gilt:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Answer:

• n = 1: $\sum_{k=1}^{k} k = 1 = \frac{1(1+1)}{2}$

• $n \Rightarrow n+1$: $\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$

4. Was ist die Zifferndarstellung einer natürlichen Zahl n zur Basis b?

Answer: Let $n \in \mathbb{N}$ and $b \geq 2$. Then there are some unique numbers $k \in \mathbb{N}$ and $a_0, a_1, \ldots, a_k \in \{0, \ldots, b-1\}$ with $a_k \neq 0$ such that $\sum_{i=0}^k a_i b^i = n$

5. Seien A und B Mengen. Wann nennt man eine Funktion $f:A\to B$ injektiv, wann surjektiv, wann bijektiv?

Answer:

• injective: $\forall a, b \in A$: $f(a) = f(b) \Rightarrow a = b$

• surjective: $\forall b \in B : \exists a \in A : f(a) = b$

• bijective: whenever f is injective and surjective

6. Was sind die *Binomialkoeffizienten* $\binom{n}{k}$, und welche Rekursionsformel erfüllen sie? Wie lässt sich die Rekursionsformel kombinatorisch (d.h. als Abzählung von Teilmengen) interpretieren?

Answer: The binomial coefficients of n are the coefficients that occur when raising two numbers $x, y \in \mathbb{R}$ to the n^{th} $(n \in \mathbb{N})$ power:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Combinatorically $\binom{n}{k}$ is the number of different subsets of size k of a set of size n.

For $n \ge 0$, $0 \le k \le n$ holds $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$, where $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$. The binomial coefficient furthermore fulfills the following: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

7. Wie lautet der Binomische Lehrsatz? Wie folgt daraus, dass

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n ?$$

Answer: $\forall x, y \in \mathbb{R}, n \in \mathbb{N}: (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$ where $x^0 = 1, 0^0 = 1, 0! = 1$ With $x = y = 1: 2^n = \sum_{k=0}^n \binom{n}{k} 1^k 1^{n-k} = \sum_{k=0}^n \binom{n}{k}$

8. Was ist eine rekursiv definierte Folge? Gib Beispiele an.

Answer: A sequence $(x_n) \in \mathbb{R}$ is defined recursively if there is a $k \in \mathbb{N}$, a function $f : \mathbb{R}^k \to \mathbb{R}$ and initial elements x_1, x_2, \ldots, x_k such that $x_{n+1} = f(x_n, x_{n-1}, \ldots, x_{n-k+1})$ $(\forall n > k)$. A recursively defined sequence is well defined. This definition is equivalent to the one given in the lecture with k = 1.

With k = 2, $x_1 = 1$, $x_2 = 2$ and $f: \mathbb{R}^2 \to \mathbb{R}$ with f(a, b) = a + b consider the $x_{n+1} = f(x_n, x_{n-1})$ sequence, known as the Fibonacci-sequence.

9. Was sind endliche, abzählbare bzw. überabzählbare Mengen? Gib Beispiele an.

Answer: A set B has a cardinality of $n \in \mathbb{N}$ when there is a bijection between B and $\{1, 2, \dots, n\}$. We call a set B

- (a) finite, whenever $(B) = n \in \mathbb{N}$. Example: $B = \{42\}$
- (b) countable, whenever there is a bijection $\phi: B \to \mathbb{N}$. Example: $B = \mathbb{Q}$
- (c) uncountably infinite, whenever neither 9a or 9b holds. Example: B = [0, 1]
- 10. Zeige, dass $\mathbb{N} \times \mathbb{N}$ abzählbar ist.

Answer: Consider the same bijection as in Question 7. of Sequences (Lecture 5 for details).

11. Sei $A \subseteq \mathbb{R}$. Was ist eine *obere Schranke* für A? Wann heißt A nach oben beschränkt?

Answer: $a \in \mathbb{R}$ is an upper bound of A if $\forall x \in A : x \leq a$. A is bounded above if it has an upper bound. Notation: $A \leq a$

12. Sei $A \subseteq \mathbb{R}$. Wie sind *Supremum* und *Infimum* von A definiert? Wann besitzt A ein Supremum, wann ein Maximum?

Answer: Supremum is the lowest upper bound. $\alpha = \sup A$ if α is an upper bound and for any other a upper bound of $\alpha \leq a$. Every A set that is bounded above has a lowest upper bound. $\exists \max A \Leftrightarrow \sup A \in A$ and whenever $\max A$ exists $\max A = \sup A$.

13. Sei $B = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$. Bestimme inf *B* und sup *B*.

Answer: $\sup B = 1, \inf B = 0$

14. Gib ein Beispiel einer Menge reeller Zahlen an, die ein Supremum aber kein Maximum besitzt.

Answer: $[0,1) \subset \mathbb{R}$

15. Was ist ein Dedekindscher Schnitt?

Answer: Consider $\emptyset \neq L, R \subset \mathbb{R}$. (L|R) is called a Dedekind-cut in \mathbb{R} whenever the following conditions are both satisfied:

 \bullet L < R

• $L \cup R = \mathbb{R}$

A $t \in \mathbb{R}$ number is called *Trennzahl* of (L|R) if $L \leq t \leq R$ holds.

The above is also defined in \mathbb{Q} .

16. Wie lautet das Vollständigkeitsaxiom der reellen Zahlen?

Answer: Every (L|R) Dedekind-cut in R has one and only one Trennzahl (in \mathbb{R}). In comparison not every Dedekind-cut in \mathbb{Q} has a Trennzahl in \mathbb{Q} .

17. Definiere die komplexen Zahlen als Paare reeller Zahlen mit geeigneten Additions- und Multiplikationsregeln.

Answer: For $\mathbb{C} = \mathbb{R}^2$ we obtain a (commutative) field with the following addition and multiplication operations:

• $\forall (x_1, y_1), (x_2, y_2) \in \mathbb{C} : (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$

• $\forall (x_1, y_1), (x_2, y_2) \in \mathbb{C} : (x_1, y_1) \cdot (x_2, y_2) = (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + y_1 \cdot x_2)$

18. Was ist der *Betraq* einer komplexen Zahl $z \in \mathbb{C}$?

Answer: $\forall z \in \mathbb{C}, z = a + ib \ (a, b \in \mathbb{R}) \colon |z| = \sqrt{a^2 + b^2} = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$

19. Was ist die zu z komplex konjugierte Zahl \overline{z} ?

Answer: $\forall z \in \mathbb{C} : \overline{z} = \text{Re}(z) - i \text{Im}(z)$

20. Wie hängen z und \overline{z} mit |z| zusammen?

Answer: $\forall z \in \mathbb{C} : |z|^2 = z\overline{z}$

 $21. \ \ Wie \ lautet \ der \ \textit{Fundamentalsatz der Algebra?}$

Answer: Every polynomial of degree n in one variable with complex coefficients has exactly n (counted with multiplicities) complex roots. If $p(x) = \sum_{k=0}^{n} a_k x^k$ ($a_n \neq 0$) and the roots are $z_1, z_2, \ldots, z_n \in \mathbb{C}$ then we get through polynomial division $p(x) = a_n \prod_{k=0}^{n} (z - z_k)$ ($\forall z \in \mathbb{C}$)

22. Wie hängen komplexe Zahlen $z=x+iy\in\mathbb{C}$ mit Drehstreckungen in \mathbb{R} zusammen?

Answer: Consider $C = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} : x, y \in \mathbb{R} \right\}$, the set of rotation-dilation matrices, with the standard matrix operations (addition, multiplication). Then with $\phi \colon \mathbb{C} \to C$ bijection where $\phi(z) = \begin{pmatrix} \operatorname{Re}(z) & -\operatorname{Im}(z) \\ \operatorname{Im}(z) & \operatorname{Re}(x) \end{pmatrix}$ we get an isomorphism between C and \mathbb{C} .

23. Was sind Quaternionen?

Answer: Consider $Q = \left\{ \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} : a, b \in \mathbb{C} \right\}$, the set of quaterions. Through the standard matrix operations on Q we obtain a non-commutative field.

3