### Nom : Corrigé Type

## Prénom:

Groupe:

L2 Informatique – Théorie de Langages - Examen Final- Durée: 1h30mn - 31 mai 2022

| Exercice 1: Exercice 2: Exercice 3: Total: /20pts |
|---------------------------------------------------|
|---------------------------------------------------|

# Exercice 1: Le passage entre les AEF Généralisés et leurs grammaires associées (5pts)

1/Donner les règles de la grammaire associée à cet AEFG (2 pts):



$$\begin{array}{c} \textit{La réponse}: (\textit{les règles de la grammaire}) \\ S \rightarrow \textit{aa } S \mid \textit{b } A & (0.5) \\ A \rightarrow \textit{b } A \mid \textit{c } B \mid \textit{c } q_f & (0.75) \\ B \rightarrow \textit{c } B \mid \textit{c } q_f & (0.5) \\ q_f \rightarrow \epsilon & (0.25) \end{array}$$

2/ Rendre cet AEFG simple (0.25 pts):





3/Écrire le système d'équations de cet automate simple, et déduire son langage reconnu via le lemme d'Arden. (2,75 pts)

## La réponse :

\* écrire le système d'équations :

$$L(S) = a L(S_1) + b L(A)$$

$$L(S_1) = a L(S)$$

$$L(A) = b L(A) + c L(B) + c L(q_f)$$

$$L(B) = c L(B) + c L(q_f)$$

$$L(q_f) = \varepsilon$$

$$(0.25)$$

$$(0.25)$$

Fécrire les langages de L(B) et L(A) obtenus via l'application du lemme d'Arden :

$$L(B) = c^*c$$
 ......(0.50)  $L(A) = b^*cc^*c + b^*c$  ......(0.50)

\*donner l'expression du langage reconnu par cet automate :

 $(aa)^* (bb^*cc^*c + bb^*c)$ .....ou bien d'autres formules équivalentes......(0.50)

Exercice 2: L'élimination des ε-transitions, la détermination et la minimisation des AEF (9.50 pts)

Soit l'automate d'états finis «  ${f A_1}$ » donné par la table de transition suivante :

|            | а     | b | 3     |
|------------|-------|---|-------|
| <b>→</b> 1 | 2     | - | {4,5} |
| 2          | 2     | 1 | -     |
| 3          | -     | 5 | 2     |
| 4          | {3,5} | 2 | -     |
| (5)        | -     | - | 4     |

1/Tracer le graphe de l'automate d'états finis simple équivalent à «  $\mathbf{A_1}$ », en calculant l' $\epsilon$  - successeur des états concernés. (3.25pts)



La réponse : (l'e-successeur des états concernés)

- $\varepsilon$ -successeur (1) = {4,5} ......(0.25)
- $\varepsilon$ -successeur (3) = {2} ......(0.25)
- $\varepsilon$ -successeur (5) = {4} .....(0.25)

Sur le graphe :

l'état 1 devient final .....(0.25)

pour l'état 1 : l'ajout de 3 arcs ...(0.75) pour l'état 3 : l'ajout de 2 arcs ...(0.50)

pour l'état 5 : l'ajout de 3 arcs ....(0.75)

la suppression des 4 arcs vide ...(0.25)

2/ Tracer <u>la table de transition</u> de l'automate simple déterministe obtenu via l'algorithme de détermination. (3pts) Chaque case d'état correcte sur 0.20 pts.

| La réponse : ( <u>la table de transition</u> de | l'AEF si     | imple dét | erministe | ) |
|-------------------------------------------------|--------------|-----------|-----------|---|
|                                                 | _            | а         | b         |   |
|                                                 | <b>*</b> (1) | {2,3,5}   | 2         |   |
|                                                 | (2,3,5)      | {2,3,5}   | {1,2,5}   |   |
|                                                 | 2            | 2         | 1         |   |
|                                                 | (1,2,5)      | {2,3,5}   | {1,2}     |   |
|                                                 | (1,2})       | {2,3,5}   | {1,2}     |   |

3/ Tracer <u>la table de transition</u> de l'automate obtenu via l'algorithme de minimisation de cet automate déterministe. (2.25 pts)

| La réponse : ( <u>la table de transition</u> de l'AEF simple déterministe minima | La réponse : | (la table de | transition | de l'AEF | simple | déterministe | minimal) |
|----------------------------------------------------------------------------------|--------------|--------------|------------|----------|--------|--------------|----------|
|----------------------------------------------------------------------------------|--------------|--------------|------------|----------|--------|--------------|----------|

|                | Les symboles |        |  |
|----------------|--------------|--------|--|
| Classe obtenue | а            | b      |  |
| (C)            | C<br>C       | A<br>C |  |
| A              | A            | В      |  |

Chaque case d'état correcte sur 0.25 pts.

4/Déduire le langage reconnu par l'automate complémentaire de cet automate «  ${f A_1}$ ». (1 pts)

$$ba^*(bba^*)^*$$

#### Exercice 3: Les types, les grammaires et les langages (5.50 pts)

1/ Trouver le type et générer le langage pour chacune des grammaires suivantes : (4pts)

```
G_2 = (\{S, A, B\}, \{a, b, c\}, P_2, S) \text{ tel que } P_2 = \{S \rightarrow aA \mid bB ; A \rightarrow a \mid ab ; B \rightarrow b \mid cb\}
\text{$\varPsi$ le type de la grammaire est: type 3} \qquad (0.50)
\text{$\varPsi$ g\'{e}n\'{e}rer le langage de cette grammaire:}
\text{$L'\'{e}tudiant doit montrer la g\'{e}n\'{e}ration et doit trouver la formule suivante : } \qquad (1 \text{ pt})
\{aa, aab, bb, bcb \} \qquad (0.50)
```

2/ Proposer une grammaire pour chacun des langages suivants : (1.50 pts)

Son courage