Course 2 Section 4.9 - YOUR TURN

Jiaying Wu

17/10/2020

```
# load library
library(tidyverse)
library(GGally)
library(rpart)

# load data
houses_raw <- read_csv("https://raw.githubusercontent.com/datascienceprogram/ids_course_data/master/Mel</pre>
```

Conduct a preliminary analysis

This data set contains 34857 observations and 21 variables. Among these variables, Landsize, Type, and Distance are of great interest because of their impact on price. A brief explanation of the variables:

- Landsize: the size of the land.
- Type: a house (h), townhouse (t), and unit (u).
- Distance: how far the property is from the Melbourne Central Business District (CBD).

Produce a generalised pair plot

```
houses_raw %>%
  select(Price, Landsize, Distance, Type) %>%
  drop_na() %>%
  ggpairs()
```


now focuses on 11 variables instead of 21.

```
houses_full <- houses_raw %>%
  mutate(Suburb = as_factor(Suburb)) %>%
  filter(!is.na(Price)) %>%
  select(
    Price, Suburb, Rooms, Type, Distance, Bedroom2, Bathroom,
    Car, Landsize, YearBuilt, Propertycount
)
```

Is there any outlier in the data?

```
houses_full %>%
 top_n(wt = Landsize, n = 10)
## # A tibble: 10 x 11
##
       Price Suburb Rooms Type Distance Bedroom2 Bathroom
                                                               Car Landsize YearBuilt
       <dbl> <fct> <dbl> <chr>
                                    <dbl>
                                             dbl>
                                                      <dbl> <dbl>
                                                                      <dbl>
                                                                                <dbl>
##
##
   1 2.00e6 Balwy~
                        3 h
                                      9.2
                                                 3
                                                          1
                                                                2
                                                                      75100
                                                                                   NA
## 2 5.72e5 Reser~
                                                 3
                                                                2
                                                                      41400
                        3 h
                                     11.2
                                                          1
                                                                                   NA
## 3 1.08e6 Silvan
                        3 h
                                    34.6
                                                 3
                                                          2
                                                                2
                                                                     76000
                                                                                   NA
## 4 2.70e6 Fitzr~
                        3 h
                                      2.1
                                                 3
                                                          3
                                                                1
                                                                     433014
                                                                                   NA
## 5 1.36e6 New G~
                        5 h
                                     48.1
                                                 5
                                                          3
                                                                5
                                                                      44500
                                                                                   NA
                                                          2
## 6 1.03e6 Wildw~
                        5 h
                                    31.7
                                                 5
                                                                2
                                                                     89030
                                                                                   NA
## 7 1.05e6 Bulle~
                                    45.9
                                                 4
                                                          2
                        4 h
                                                                1
                                                                     146699
                                                                                   NA
                                                          2
## 8 1.35e6 Gisbo~
                        4 h
                                    45.9
                                                 4
                                                                8
                                                                      40469
                                                                                 1990
## 9 1.15e6 Wandi~
                                                 4
                                                          2
                        4 h
                                    35.2
                                                                2
                                                                      40500
                                                                                   NA
## 10 8.65e5 Bulle~
                        4 h
                                     45.9
                                                 4
                                                                      42800
                                                                                 2000
## # ... with 1 more variable: Propertycount <dbl>
```

The house with land size in 433014 mostly likely to be an outlier

Model fits

```
houses_rp_fit <- rpart(Price ~ ., data = houses_full)</pre>
```

extract variable.importance, which contains information about variable importance from houses_rp_fit (the fitted model), and then plot it.

```
var_importance <- tibble(
  variable = names(houses_rp_fit$variable.importance),
  importance = houses_rp_fit$variable.importance)

var_importance %>%
  mutate(variable = fct_reorder(variable, importance)) %>%
  ggplot(aes(x = importance, y = variable)) +
  geom_segment(aes(x = 0, y = variable, xend = importance, yend = variable)) +
  geom_point(colour = "red")
```


remove the outliers and examine how the model results respond to the change.

```
houses_out <- houses_full %>%
filter(Landsize != 433014)
```

Working towards model accuracy

split the data to training (houses_train) and test sets (houses_test) in order to evaluate the model's accuracy.

```
set.seed(1234)
nobs <- nrow(houses_out)
idx <- sample(1:nobs, size = round(0.8 * nobs))
houses_train <- slice(houses_out, idx)
houses_test <- slice(houses_out, -idx)</pre>
```

train the tree model with the training set.

```
houses_rp_all <- rpart(Price ~ ., data = houses_train)</pre>
```

By removing the outlier(s), land size has moved from last place to third place in the ranking of important variables. This result is now consistent with our expectations.

```
var_importance <- tibble(
  variable = names(houses_rp_all$variable.importance),
  importance = houses_rp_all$variable.importance)

var_importance %>%
```

```
mutate(variable = fct_reorder(variable, importance)) %>%
ggplot(aes(x = importance, y = variable)) +
geom_segment(aes(x = 0, y = variable, xend = importance, yend = variable)) +
geom_point(colour = "red")
```


Model diagnostics

Diagnostics tools are used to examine the residuals compared to fitted values.

```
tibble(
  resid = residuals(houses_rp_all),
  fitted = predict(houses_rp_all, newdata = houses_train)
) %>%
  ggplot(aes(x = fitted, y = resid)) +
  geom_point() +
  theme(aspect.ratio = 1)
```


Compute the root mean squared error

compute the root mean squared error for both in-sample and out-of-sample predictions.

```
rmse <- function(actual, predicted) {
   sqrt(mean((predicted - actual)^2))
}
c("train" = rmse(houses_train$Price, predict(houses_rp_all, newdata = houses_train)),
   "test" = rmse(houses_test$Price, predict(houses_rp_all, newdata = houses_test)))</pre>
```

```
## train test
## 393844.8 395576.5
```

If the root mean squared error of test set larger than train set, it might suggest the model is overfitted.

Tune your parameters

To improve your prediction, you'll need to carry out some parameter tuning for the regression tree.

```
## train test
## 323422.6 347785.3
```

Q1. What aspect does the parameter cp control for the fit?

cp is a complexity parameter, with anova splitting, this means that the overall R-squared must increase by cp at each step.

Q2.Does cp = 0.001 complicate or simplify the default model?

Complicate the default model.

Q3.Does it give a better model fit?

Yes, it have a lower rmse in both training set and test set.

Q4.If we keep decreasing the cp value, what problem will we encounter?

The model might overfitted, we might have a higher rmse in test set.