

PATENT

Docket No.: 8733.479.00

14

What is claimed is:

1. A method of forming a liquid crystal display device comprising:

forming a thin film transistor and a pixel electrode on a first substrate;

forming a dielectric frame having a first height and a sealant having a second height on a second substrate, the first height of the dielectric frame being different from the second height of the sealant;

dispensing liquid crystal on the first substrate; and attaching the first and second substrates to each other.

- 2. The method of claim 1, wherein the sealant includes a material hardened by ultraviolet ray.
 - 3. The method of claim 1, wherein the sealant includes a double sealant structure.
- 4. The method of claim 1, further comprising forming an electric field inducing window in the pixel electrode.
- 5. The method of claim 4, wherein the electric field inducing window has a slit shape or a hole shape.
 - 6. The method of claim 1, wherein forming the thin film transistor includes:

Docket No.: 8733.479.00

15

forming a gate electrode on the first substrate;

Late the course over seen over

14

IJ

forming a gate insulating film on the first substrate;

forming a semiconductor layer on the gate insulating film; and

forming source and drain electrodes on the semiconductor layer.

- 7. The method of claim 1, wherein the thin film transistor is formed to have an L-shape.
- 8. The method of claim 1, wherein the thin film transistor is formed to have a U-shape.
- 9. The method of claim 1, wherein the dielectric frame drives the liquid crystal in various directions.
- 10. The method of claim 1, wherein the second height of the sealant is higher than the first height of the dielectric frame.
- 11. The method of claim 10, wherein a height difference between the sealant and the dielectric frame is more than 1 µm.
- 12. The method of claim 1, further comprising forming a common electrode on the second substrate.

13. The method of claim 12, wherein the dielectric frame is formed on the

common electrode.

14. The method of claim 1, further comprising forming an alignment layer on at

least one of the first and second substrates.

15. The method of claim 14, wherein the alignment layer is selected from the

group consisting of polyimide, polyamide, polyvinyl alcohol, polyamic acid, and silicon

oxide.

14

and the real terms are seen to

ļ 4

w w

16. The method of claim 14, wherein the alignment layer is selected from the

group consisting of polyvinylcinnamate, polysiloxanecinnamate, and cellulosecinnamate.

17. The method of claim 1, further comprising forming a phase difference film on

at least one of the first and second substrates.

18. The method of claim 17, wherein the phase difference film includes a negative

uniaxial film.

19. The method of claim 1, wherein the phase difference film includes a negative

biaxial film.

DC:90532.1

Docket No.: 8733.479.00

20. The method of claim 1, wherein the first height is a range of 1-2 μm and the second height is in a range of 5-8 μm .

- 21. The method of claim 1, wherein the first height is a range of 1-2 μm and the second height is about 4 μm .
- 22. The method of claim 1, wherein the first height is a range of 1-1.5 μm and the second height is about 3 μm .
- 23. The method of claim 1, wherein the first height is about 1 μm and the second height is about 2 μm .
 - 24. A method of forming a liquid crystal display device comprising:

 forming a gate electrode on a first substrate;

 forming a gate insulating film on the gate electrode and the first substrate;

 forming a semiconductor layer on the gate insulating film;

 forming source and drain electrodes on the semiconductor layer;

forming a pixel electrode contacting the drain electrode, the pixel electrode including an electric field inducing window;

forming a dielectric frame having a first height and a sealant having a second height on a second substrate, the first height of the dielectric frame being different from the

PATENT

Docket No.: 8733.479.00

second height of the sealant, the dielectric frame capable of causing an electric field distortion;

> dispensing liquid crystal on the first substrate; and attaching the first and second substrates to each other.

- 25. The method of claim 24, wherein the first height is a range of 1-2 µm and the second height is in a range of 5-8 µm.
- The method of claim 24, wherein the first height is a range of 1-2 μm and the 26. second height is about 4 µm.
- 27. The method of claim 24, wherein the first height is a range of 1-1.5 µm and the second height is about 3 µm.
- 28. The method of claim 24, wherein the first height is about 1 µm and the second height is about 2 µm.