Department of Computer Science and Engineering

FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

PRIORITY SCHEDULING

Priority Scheduling

- A *priority* number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer => highest priority)
 - Preemptive
 - Non-preemptive
- SJF is a priority scheduling where priority is the predicted next CPU burst time
- Problem: Starvation low priority processes may never execute
- Solution: Aging as time progresses increase the priority of the process

Priority Scheduling Question

Process	Arrival Time	Burst Time	Priority
P_1	0	10	3
P_2	0	1	1
P_3	0	2	4
P_4	0	1	5
P_5	0	5	2

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 , P_4 , and $P_{5.}$

Find:

- 1. Waiting Time
- 2. Average Waiting Time
- 3. Turnaround Time
- 4. Average Turnaround Time

Priority Scheduling Question: Solution_{1/2}

Waiting Time

- > P1wt=(6-0)=6 unit time
- > P2wt=0 unit time
- > P3wt=(16-0)=16 unit time
- > P4wt=(18-0)=18 unit time
- ➤ P5wt=(1-0)=1 unit time

Process	Arrival Time	Burst Time	Priority
P_1	0	10	3
P_2	0	1	1
P_3	0	2	4
P_4	0	1	5
P_5	0	5	2

Average Waiting Time

- \rightarrow AWT=(P1wt+P2wt+P3wt+P4wt+P5wt)/5
- > AWT=(6+0+16+18+1)/5=41/5=8.2 unit time

Priority Scheduling Question: Solution_{2/2}

Turnaround Time

Process	Arrival Time	Burst Time	Priority
P_1	0	10	3
P_2	0	1	1
P_3	0	2	4
P_4	0	1	5
P_5	0	5	2

Average Turnaround Time

$$\rightarrow$$
 ATT=(16+1+18+19+6)/5=60/5=12 unit time

Priority Scheduling Homework Question

Process	Arrival Time	Burst Time	Priority
P_{1}	0	6	2
P_2	0	3	4
P_3	0	8	3
P_4	0	2	1

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 , and P_4

Find:

- 1. Waiting Time
- 2. Average Waiting Time
- 3. Turnaround Time
- 4. Average Turnaround Time

References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- 3. D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition, TMH.

