Cavallaro, Jeffery Math 221a Homework #2

1.2.1

Let $\phi: G \to H$ be a homomorphism of groups.

a) Prove: $\phi(e_G) = e_H$

Assume $a \in G$

$$\phi(ae_G) = \phi(a) \qquad \phi(e_G a) = \phi(a)
\phi(ae_G) = \phi(a)\phi(e_G) \qquad \phi(e_G a) = \phi(e_G)\phi(a)
\phi(a)\phi(e_G) = \phi(a) \qquad \phi(e_G)\phi(a) = \phi(a)$$

Thus $\phi(e_G)$ is a two-sided identity for H; however, the identity is unique, $\therefore \phi(e_G) = e_H$.

b) Prove: $\phi(a^{-1}) = \phi(a)^{-1}$

Assume $a \in G$

$$\phi(aa^{-1}) = \phi(e_G) = e_H
\phi(aa^{-1}) = \phi(a)\phi(a^{-1})
\phi(a)\phi(a^{-1}) = e_H
\phi(a^{-1}a) = \phi(e_G) = e_H
\phi(a^{-1}a) = \phi(a^{-1})\phi(a)
\phi(a^{-1})\phi(a) = e_H$$

Thus $\phi(a^{-1})$ is a two-sided identity for $\phi(a)$ in H; however, inverses are unique, $\therefore \phi(a^{-1}) = \phi(a)^{-1}$.

c) Let $G = H = \langle \mathbb{Z}_2, \cdot \rangle$ and define $\phi : G \to H$ by $\phi(x) = 0$. G and H are monoids with identity 1 (0 has no inverse). Also:

$$\phi(0x) = \phi(0) = 0 = 00 = \phi(0)\phi(x)$$

$$\phi(x0) = \phi(0) = 0 = 00 = \phi(x)\phi(0)$$

$$\phi(11) = \phi(1) = 0 = 00 = \phi(1)\phi(1)$$

and so ϕ is a homomorphism. However, $\phi(1) = 0 \neq 1$.

1.2.2

Let G be a group and define $\phi:G\to G$ by $\phi(x)=x^{-1}.$

Prove: G is abelian iff ϕ is an automorphism.

 \implies Assume G is abelian

Assume
$$\phi(x) = \phi(y)$$

$$x^{-1} = y^{-1}$$

$$x = y$$

 $\therefore \phi$ is an injection

Assume $y \in G$ $y^{-1} \in G$ Let $x = y^{-1}$ $\phi(x) = \phi(y^{-1}) = (y^{-1})^{-1} = y$ $\therefore \phi \text{ is a surjection and thus a bijection}$

Assume
$$x,y\in G$$

$$\phi(xy)=(xy)^{-1}=x^{-1}y^{-1}=\phi(x)\phi(y)$$

 $\therefore \phi$ is a homomorphism and thus an isomorphism

 $\therefore \phi$ is an automorphism

 \longleftarrow Assume ϕ is an automorphism

Assume $x,y\in G$ ϕ is a homomorphism $\phi(xy)=\phi(x)\phi(y)=x^{-1}y^{-1}=(yx)^{-1}=\phi(yx)$ But ϕ is a bijection and thus one-to-one, so xy=yx $\therefore G$ is abelian

1.2.5

Let G be a group and $S\subseteq G$ such that $S\neq\emptyset$. Define a relation \sim on G by:

$$a \sim b \iff ab^{-1} \in S$$

Prove: \sim is an equivalence relation $\iff S \leq G$.

 \implies Assume \sim is an equivalence relation

 ${\cal S}$ is non-empty by assumption

$$\text{Assume } a \in S$$

$$ae^{-1} = ae = a \in S$$

So
$$S=\bar{e}$$

Assume $a,b \in S$

$$a \sim e$$
 and $b \sim e$

$$e \sim b$$
 (symmetry)

$$a \sim b$$
 (transitivity)

$$ab^{-1} \in S$$

... by the yucky subgroup test, $S \leq G$.

 \iff Assume $S \leq G$

R: Assume $a \in G$

$$a^{-1} \in G$$

$$e \in S$$

$$aa^{-1} = e \in S$$

$$\therefore a \sim a$$

S: Assume $a \sim b$

$$\begin{array}{l} ab^{-1} \in S \\ (ba^{-1})^{-1} \in S \\ \text{But } S \text{ is a group, so } ba^{-1} \in S \\ \therefore b \sim a \end{array}$$

T: Assume $a \sim b$ and $b \sim c$

$$\begin{array}{l} ab^{-1} \in S \text{ and } bc^{-1} \in S \\ \text{But } S \text{ is a group, so by closure, } (ab^{-1})(bc^{-1}) \in S \\ (ab^{-1})(bc^{-1}) = a(b^{-1}b)c^{-1} = aec^{-1} = ac^{-1} \in S \\ \therefore a \sim c \end{array}$$

 \therefore \sim is an equivalence relation.

1.2.6

Let G be a group and let S be a non-empty, finite, subset of G. Prove: $S \leq G \iff S$ is closed under the induced operation of G.

 \implies Assume $S \leq G$

S is a group under the induced operation of G $\therefore S$ is closed under that operation.

 $\begin{tabular}{ll} \longleftarrow & Assume S is closed under the induced operation of G \\ \end{tabular}$

 ${\cal S}$ is a finite, non-empty subset of ${\cal G}$ and closed by assumption ${\cal G}$ is associative, and so ${\cal S}$ is associative

Thus, ${\cal S}$ is a semigroup

 $\text{Assume } a,b,c \in S$

Assume ac = bc $a, b, c \in G$

$$c^{-1} \in G$$

Thus, a = b, so right cancellation works

Likewise, assume ca = cb

Thus, a=b, so left cancellation works

So by HW 1.1.15, \boldsymbol{S} is a group

$$\therefore S \leq G$$

1.2.9

Let $\phi: G \to H$ be a homomorphism of groups and let $A \leq G$ and $B \leq H$.

- a) Prove:
 - 1) $\ker \phi \leq G$

$$\ker \phi = \{ a \in G \mid \phi(a) = e_H \}$$

Assume $a, b \in \ker \phi$

$$a, b \in G$$

$$ab \in G$$

$$\phi(ab) = \phi(a)\phi(b) = e_H e_H = e_H$$

So $ab \in \ker \phi$

 $\therefore \ker \phi$ is closed

$$\ker \phi \subseteq G$$

G is associative

 $\therefore \ker \phi$ is associative

$$\phi(e_G) = e_H$$

$$\therefore e_G \in \ker \phi$$

Assume $a \in \ker \phi$

$$a\in G \text{ and } a^{-1}\in G$$

$$\phi(a^{-1}) = \phi(a)^{-1} = e_H^{-1} = e_H$$

$$\therefore a^{-1} \in \ker \phi$$

$$\therefore \ker \phi \leq G$$

$$\text{2)} \ \phi^{-1}[B] \leq G$$

$$\phi^{-1}[B] = \{a \in G \mid \phi(a) \in B\}$$

$$B \leq H$$
, so $e_H \in B$

$$\phi(e_G) = e_H \in B$$

$$\therefore e_G \in \phi^{-1}[B] \text{ and } \phi^{-1}[B] \neq \emptyset$$

Assume $a,b\in\phi^{-1}[B]$

$$\phi(a) \in B$$
 and $\phi(b) \in B$ and thus $\phi(a)\phi(b) \in B$

$$a,b \in G$$
 and thus $ab \in G$

$$\phi(ab) = \phi(a)\phi(b) \in B$$

So
$$ab \in \phi^{-1}[B]$$

$$\therefore \phi^{-1}[B]$$
 is closed

$$\phi^{-1}[B] \subseteq G$$

G is associative

$$\therefore \phi^{-1}[B]$$
 is associative

Assume
$$a \in \phi^{-1}[B]$$

 $\phi(a) \in B$
But B is a group, so $\phi(a)^{-1} \in B$
 $\phi(a)^{-1} = \phi(a^{-1}) \in B$
 $\therefore a^{-1} \in \phi^{-1}[B]$
 $\therefore \phi^{-1}[B] \leq G$
as $\phi[A] \leq H$

b) Prove: $\phi[A] \leq H$

$$\phi[A] = \{\phi(a) \mid a \in A\}$$

$$A \le G, \text{ so } e_G \in A$$

$$\phi(e_G) = e_H$$

 $\therefore e_H \in \phi[A] \text{ and } \phi[A] \neq \emptyset$ Assume $a, b \in \phi[A]$

$$\exists \, x,y \in A, \phi(x) = a \text{ and } \phi(y) = b$$

$$xy \in A$$

$$\phi(xy) \in \phi[A]$$

$$\phi(xy) = \phi(x)\phi(y) = ab \in \phi[A]$$

$$\therefore \phi[A] \text{ is closed}$$

$$\phi[A] \subseteq H$$

H is associative $\therefore \phi[A]$ is associative

Assume $a \in \phi[A]$ $\exists x \in A, \phi(x) = a$ $x^{-1} \in A$ $\phi(x^{-1}) \in \phi[A]$ $\phi(x^{-1}) = \phi(x)^{-1} = a^{-1}$ $\therefore a^{-1} \in \phi[A]$

$$\therefore \phi[A] \leq H$$

1.2.10

Recall:

$$\mathbb{Z}_2 = \{0,1\}$$

So, the possible subgroups are:

```
\{e\}
\{e, a\}
\{e, b\}
\{e, c\}
\{e, a, b, c\}
```

In order to be isomorphic to \mathbb{Z}_4 , K_4 must be cyclic. However, K_4 has only trivial (order 1) and proper (order 2) cyclic subgroups, and so $K_4 \not\simeq \mathbb{Z}_4$.

1.2.11

Let G be group. Prove: Z(G) is an abelian subgroup of G.

$$Z(G) = \{a \in G \mid \forall x \in G, ax = xa\}$$

$$e \in G$$

$$\forall x \in G, ex = xe$$

$$\therefore e \in Z(G) \text{ and } Z(G) \neq \emptyset$$
Assume $a, b \in Z(G)$

$$a, b \in G \text{ and so } ab \in G$$
Assume $x \in G$

$$(ab)x = axb = x(ab)$$

$$ab \in Z(G)$$

$$\therefore Z(G) \text{ is closed}$$

$$Z(G) \subseteq G$$

$$G \text{ is associative}$$

$$\therefore Z(G) \text{ is associative}$$
Assume $a \in Z(G)$

$$a \in G \text{ and } a^{-1} \in G$$
Assume $x \in G$

$$a^{-1}x = (x^{-1}a)^{-1} = (ax^{-1})^{-1} = xa^{-1}$$

$$\therefore a^{-1} \in Z(G)$$

$$\therefore Z(G) \leq G$$
Assume $a, b \in Z(G)$

$$a, b \in G$$
By definition, $ab = ba$

 $\therefore Z(G)$ is abelian.

1.2.13

Let $\phi: G \to H$ be a homomorphism of groups and $G = \langle a \rangle$. Prove: ϕ is completely determined by $\phi(a)$

Lemma

Let $\phi:G\to H$ be a homomorphism of groups:

$$\forall a \in G, \forall n \in \mathbb{Z}, \phi(a^n) = \phi(a)^n$$

Proof

Assume $a \in G$

Assume $n \in \mathbb{Z}$

Case 1: n > 0

Proof by induction on n

Base: n=1

$$\phi(a^1) = \phi(a) = \phi(a)^1$$

Assume $\phi(a^n) = \phi(a)^n$

Consider $\phi(a^{n+1})$

$$\phi(a^{n+1}) = \phi(a^n a) = \phi(a^n)\phi(a) = \phi(a)^n \phi(a) = \phi(a)^{n+1}$$

Case 2: n = 0

$$\phi(a^0) = \phi(e_G) = e_H = \phi(a)^0$$

Case 3: n < 0

Let
$$m = -n > 0$$

 $\phi(a^n) = \phi(a^{-m}) = \phi((a^{-1})^m) = \phi(a^{-1})^m = (\phi(a)^{-1})^m = \phi(a)^{-m} = \phi(a)^n$

Now, assume $b \in H$

$$\exists a^n \in G, \phi(a^n) = \phi(a)^n = b$$

 $\therefore \phi$ is completely determined by $\phi(a)$

1.2.15

Let G be a group and $\operatorname{Aut} G$ be the set of all automorphisms of G.

a) Prove: $\operatorname{Aut} G$ is a group under composition.

Note that the identify function $i_G \in \operatorname{Aut} G$ so $\operatorname{Aut} G \neq \emptyset$.

Assume $\sigma, \tau \in Aut(G)$

 σ and τ are bijections, so $\sigma\tau$ is also a bijection

 σ and τ are homomorphisms

Assume $x, y \in G$

 $xy \in G$

$$(\sigma\tau)(xy) = \sigma[\tau(xy)] = \sigma[\tau(x)\tau(y)] = \sigma[\tau(x)]\sigma[\tau(y)] = [(\sigma\tau)(x)][(\sigma\tau)(y)]$$

So $\sigma\tau$ is also a homomorphism, and thus an isomorphism, and thus an automorphism

 \therefore Aut G is closed

Composition is associative

Assume $\sigma \in \operatorname{Aut} G$

 σ is a bijection, and so σ^{-1} exists such that $\sigma\sigma^{-1}=\sigma^{-1}\sigma=i_G$

 \therefore Aut G has inverses

 \therefore Aut G is a group

- b) Prove:
 - 1) Aut $\mathbb{Z} \simeq \mathbb{Z}_2$

Since \mathbb{Z} has two generators: ± 1 , the possible automorphisms are defined by: $\phi_1(1) = 1$ (identity) and $\phi_{-1}(1) = -1$:

$$\phi_{1}(n) = n$$

$$\phi_{-1}(n) = -n$$

$$(\phi_{-1}\phi_{-1})(n) = -(-n) = n = \phi_{1}(n)$$

$$\frac{\circ}{\phi_{1}} \begin{vmatrix} \phi_{1} & \phi_{-1} \\ \phi_{-1} & \phi_{-1} \end{vmatrix} \phi_{1} \qquad \frac{+ \begin{vmatrix} 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}}{0 + 1} = \mathbb{Z}_{2}$$

2) Aut $\mathbb{Z}_6 \simeq \mathbb{Z}_2$

Since \mathbb{Z}_6 has two generators: 1, 5, the possible automorphisms are defined by: $\phi_1(1) = 1$ (identity) and $\phi_5(1) = 5$:

$$\begin{aligned}
\phi_1(n) &= n \\
\phi_5(n) &= 5n \\
(\phi_5\phi_5)(n) &= 5(5n) = n = \phi_1(n) \\
&\frac{\circ | \phi_1 | \phi_5}{\phi_1 | \phi_1 | \phi_5} &\simeq \frac{+ | 0 | 1}{0 | 0 | 1} \\
&\frac{+ | 0 | 1}{0 | 0 | 1} &= \mathbb{Z}_2
\end{aligned}$$

3) Aut $Z_8 \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2$

Since $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \simeq K_4$, it is sufficient to show that $\operatorname{Aut} Z_8 \simeq K_4$.

Since \mathbb{Z}_8 has four generators: 1,3,5,7, the possible automorphisms are defined by: $\phi_1(1)=1$ (identity), $\phi_3(1)=3$, $\phi_5(1)=5$, and $\phi_7(1)=7$:

$$\phi_1(n) = n$$

$$\phi_3(n) = 3n$$

$$\phi_5(n) = 5n$$

$$\phi_7(n) = 7n$$

So $\operatorname{Aut} \mathbb{Z}_8$ is a group of order 4, and thus must be isomorphic to either \mathbb{Z}_4 or K_4 . But:

$$(\phi_1\phi_1)(n) = n = \phi_1(n) (\phi_3\phi_3)(n) = 3(3n) = n = \phi_1(n) (\phi_5\phi_5)(n) = 5(5n) = n = \phi_1(n) (\phi_7\phi_7)(n) = 7(7n) = n = \phi_1(n)$$

So each element in the group is its own inverse, indicating that $\operatorname{Aut} \mathbb{Z}_8 \simeq K_4$.

4) Aut $Z_p \simeq \mathbb{Z}_{p-1}$, where p is prime

Since p is prime, all non-zero elements of \mathbb{Z}_p are relatively prime with p, and so \mathbb{Z}_p has p-1 generators. Each generator corresponds to an automorphism determined by $\sigma_k(1)=k$ where $1\leq k\leq p-1$:

$$\sigma_k(n) = kn$$

So $\operatorname{Aut} Z_p$ is a group under composition of order p-1.

Let
$$\sigma_h, \sigma_k \in \operatorname{Aut} Z_p$$

 $(o_h o_k)(n) = h(kn) = (hk)n = \sigma_{hk}(n)$

Define ϕ : Aut $Z_p \to \left\langle \mathbb{Z}_p^*, \cdot \right\rangle$ by $\phi(\sigma_k) = k$

 ϕ is clearly bijective

Assume $\sigma_h, \sigma_k \in \operatorname{Aut} Z_p$

$$\phi(\sigma_h \sigma_k) = \phi(\sigma_{hk}) = hk = \phi(\sigma_h)\phi(\sigma_k)$$

So \boldsymbol{p} is a homomorphism and thus an isomorphism

So $\operatorname{Aut} Z_p \simeq \left\langle \mathbb{Z}_p^*, \cdot \right\rangle$; however, $\left\langle \mathbb{Z}_p^*, \cdot \right\rangle$ is cyclic of order p-1 and is thus isomorphic to \mathbb{Z}_{p-1} .

$$\therefore$$
 Aut $Z_p \simeq \mathbb{Z}_{p-1}$

c) Describe Aut Z_n

Let
$$\mathbb{Z}_n^{\times} = \{k \in \mathbb{N} \mid 1 \leq k < n \text{ and } (k,n) = 1\}.$$

Claim: $\langle \mathbb{Z}_n^{\times}, \cdot \rangle$ is a group:

$$(1,n)=1$$
 and thus $1\in\mathbb{Z}_n^{ imes}$ and $\mathbb{Z}_n^{ imes}
eq\emptyset$

Assume
$$h, k \in \mathbb{Z}_n^{\times}$$

$$(h,n) = 1$$
 and $(k,n) = 1$

ABC:
$$hk \notin \mathbb{Z}_n^{\times}$$

$$n \mid hk$$

But $n \nmid h$, so $n \mid k$

Contradiction!

 $\therefore hk \in \mathbb{Z}_n^{\times} \text{ and } \mathbb{Z}_n^{\times} \text{ is closed}$

Multiplication \pmod{n} is associative

Assume
$$m \in \mathbb{Z}_n^{\times}$$
 $(m,n)=1$

$$\exists h, k \in \mathbb{Z}_n^{\times}, hm + kn = 1$$

But
$$kn=0$$
, so $hm=1$

$$h = m^{-1} \in \mathbb{Z}_n^{\times}$$

(Hmm: we did this in class, but how do we know that $h, k \in \mathbb{Z}_n^{\times}$?)

$$\therefore \langle \mathbb{Z}_n^{\times}, \cdot \rangle$$
 is a group

Now, consider $\operatorname{Aut} Z_n$. It will have $\phi(n)$ generators, where $\phi(n)$ is the Euler totient function. Each generator is defined by $o_k(1) = k$, where $1 \le k < n$ and (k, n) = 1, and so the k are indeed the set \mathbb{Z}_n^{\times} , which is closed under multiplication.

$$\sigma_k(n) = kn$$

Assume $\sigma_h, \sigma_k \in \operatorname{Aut} Z_n$

$$h, k \in \mathbb{Z}_n^{\times}$$

$$hk \in \mathbb{Z}_n^{\times}$$

$$(\sigma_h \sigma_k)(n) = h(kn) = (hk)n = \sigma_{hk}(n)$$

Define ϕ : Aut $Z_n \to \mathbb{Z}_n^{\times}$ by $\phi(\sigma_k) = k$

 ϕ is clearly bijective

$$\phi(\sigma_h \sigma_k) = \phi(\sigma_{hk}) = hk = \phi(\sigma_h)\phi(\sigma_k)$$

Thus ϕ is a homomorphism, and thus an isomorphism

$$\therefore$$
 Aut $Z_n \simeq \langle \mathbb{Z}_n^{\times}, \cdot \rangle$