數位系統第5章練習

練習 1: Sequential Circiut 分析

(1)It is a Moore or Mealy FSM? (2)To derive the next-state equations; (3)To derive the next-state table; (4)To derive the output equations; (5)To derive the output table; Ans:

(1) Mealy Machine

(2)

$$\begin{split} Q_{1next} &= D_1 = C'Q_1 + Q_1Q_0' + CQ_1'Q_0 \\ Q_{0next} &= D_0 = C'Q_0 + CQ_0' \end{split}$$

(3)

Current State Q_1Q_0	Next State $Q_{1next} Q_{0next}$ $C = 0 \qquad C = 1$	
00	00	01
01	01	10
10	10	11
11	11	00

(4)

$$Y = CQ_1Q_0$$

Current State Q_1Q_0	Output Y	
	C = 0	C = 1
00	0	0
01	0	0
10	0	0
11	0	1

練習 2:Sequence Detector 設計

Design of the 11011 Sequence Detector A sequence detector accepts as input a string of bits: either 0 or 1. Its output goes to 1 when a target sequence has been detected. There are two basic types: overlap and non-overlap. In an sequence detector that allows overlap, the final bits of one sequence can be the start of another sequence.

11011 detector with overlap X = 11011011011
Z = 00001001001

11011 detector with no overlap X = 11011011011
Z = 00001000001

Step 1 – Derive the State Diagram and State Table for the Problem

Step 1a – Determine the Number of States We are designing a sequence detector for a 5-bit sequence, so we need 5 states. We label these states A, B, C, D, and E. State A is the initial state.

Step 1b - Characterize Each State by What has been Input and What is Expected

State	Has	Awaiting
A		11011
В	1	1011
C	11	011
D	110	11
E	1101	1

Step 1c – Do the Transitions for the Expected Sequence Here is a partial drawing of the state diagram. It has only the sequence expected. Note that the diagram returns to state C after a successful detection; the final 11 are used again.

Step 1d – Insert the Inputs That Break the Sequence, we obtain the state diagram in Mealy machine.

Each state has two lines out of it – one line for a 1 and another line for a 0. The notes below explain how to handle the bits that break the sequence.

Step 1e – Generate the State Table with Output

Present State	Next State / Output	
	X = 0	X = 1
A	A / 0	B / 0
В	A / 0	C / 0
С	D / 0	C / 0
D	A / 0	E / 0
Е	A / 0	C / 1

Step 2 – Determine the number of Flip-Flops required

We have 5 states, so N = 5. We solve the equation $2^{P-1} < 5 < 2^{P}$ by P = 3. So we need three flip-flops.

Step 3 – State assignment: assign a unique binary code to each state

The simplest way is to make the following assignments

A = 000

B = 001

C = 010

D = 011

E = 100

We can also use gray code, or others...

Step 4 – Derive state equations from next state table

Step 5 – Derive output equations

Step 6 – K-map Optimization

Step 7 – Draw the circuit