Review on Boosting Algorithm

Quoc Khanh DO
Tuan Hung VU
- Advisor: Dr. Stphan CLMENON

May 11, 2012

Outline

- Experiment
 - Binary Classification Boosting Algorithm
 - Multi-class Classification Boosting Algorithm

Outline

- Experiment
 - Binary Classification Boosting Algorithm
 - Multi-class Classification Boosting Algorithm

Experiment 1

- Goal: Compare binary classification boosting algorithms:
 - Least-Square TreeBoost
 - LAD TreeBoost
 - M-TreeBoost
 - Gentle AdaBoost
 - Logit Boost
 - L2-TreeBoost
- Simulated dataset:
 - 500 samples: 2-dimensional explanatory vectors
 - Label = $\{-1, 1\}$
 - Number of iteration for learning each algorithm: 100
 - Number of Monte Carlo iterations: 100

Figure: Comparison of Boosting Algorithms with Binary Classification

Figure: Comparison of Boosting Algorithms with Binary Classification with 5% Noise

Figure: Comparison of Boosting Algorithms with Binary Classification with 10% Noise

Experiment 2

- Goal: Compare binary classification boosting algorithms:
 - Least-Square TreeBoost
 - LAD TreeBoost
 - M-TreeBoost
 - Gentle AdaBoost
 - Logit Boost
 - L2-TreeBoost
- Real dataset: UCI Wisconsin Breast Cancer Dataset
 - 683 samples: 9-dimensional explanatory vectors
 - Label = $\{2,4\}$
 - 5 fold cross validation

Figure: Comparison of Boosting Algorithms with UCI Wisconsin Breast Cancer Dataset

Experiment

- Goal: Compare multi-class classification boosting algorithms:
 - AdaBoost MH
 - Logit Boost for J class
 - Multiclass TreeBoost
- Real dataset: UCI Wine quality
 - 1599 samples: 11-dimensional explanatory vectors
 - Label = 0:10
 - 5 fold cross validation

Figure: Comparison of Multi-class Boosting Algorithms with UCI Wine Quality Dataset

References I