Лабораторная работа 6

Модель «хищник-жертва»

Гузева Ирина Николаевна

Содержание

1	Цель работы		
2	Задание	5	
3	Выполнение лабораторной работы		
	3.1 Реализация модели в xcos	6	
	3.2 Реализация модели с помощью блока Modelica в xcos	9	
	3.3 Упражнение	12	
4	Выводы	14	

Список иллюстраций

3.1	Задание переменных окружения в хсоз для модели	7		
3.2	Модель «хищник-жертва» в хсоз	7		
3.3	Задание начальных значений в блоках интегрирования	8		
3.4	4 Задание параметров моделирования			
3.5	Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при $a=2,b=1,c=0.3,d=1,x(0)=$			
	$2, y(0) = 1 \dots \dots$	9		
3.6	Фазовый портрет модели Лотки-Вольтерры при $a=2, b=1, c=$			
	0.3, d = 1, x(0) = 2, y(0) = 1	9		
3.7	Модель «хищник–жертва» в xcos с применением блока Modelica .	10		
3.8	Параметры блока Modelica для модели "хищник–жертва"	10		
3.9	Параметры блока Modelica для модели "хищник–жертва"	11		
3.10	Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при $a=2,b=1,c=0.3,d=1,x(0)=$			
	$2, y(0) = 1 \dots \dots$	11		
3.11	Фазовый портрет модели Лотки-Вольтерры при $a=2, b=1, c=$			
	0.3, d = 1, x(0) = 2, y(0) = 1	12		
3.12	Динамика изменения численности хищников и жертв модели			
	Лотки-Вольтерры при $a=2,b=1,c=0.3,d=1,x(0)=$			
	$2, y(0) = 1 \dots \dots$	13		
3.13	Фазовый портрет модели Лотки-Вольтерры при $a=2, b=1, c=$			
	0.3, d = 1, x(0) = 2, y(0) = 1	13		

1 Цель работы

Реализовать модель "хищник-жертва" в *хсоs*.

2 Задание

- 1. Реализовать модель "хищник-жертва" в хсоз;
- 2. Реализовать модель "хищник-жертва" с помощью блока Modelica в xcos;
- 3. Реализовать модель "хищник-жертва" в OpenModelica

3 Выполнение лабораторной работы

Модель «хищник–жертва» (модель Лотки — Вольтерры) представляет собой модель межвидовой конкуренции. В математической форме модель имеет вид:

$$\begin{cases} \dot{x} = ax - bxy \\ \dot{y} = cxy - dy, \end{cases}$$

где x — количество жертв; y — количество хищников; a,b,c,d — коэффициенты, отражающие взаимодействия между видами: a — коэффициент рождаемости жертв; b — коэффициент убыли жертв; c — коэффициент рождения хищников; d — коэффициент убыли хищников.

3.1 Реализация модели в хсоз

Зафиксируем начальные данные: $a=2,\,b=1,\,c=0.3,\,d=1,\,x(0)=2,\,y(0)=1.$ В меню Моделирование, Задать переменные окружения зададим значения коэффициентов $a,\,b,\,c,\,d$ (рис. 3.1).

Рис. 3.1: Задание переменных окружения в хсоз для модели

Для реализации модели "хищник-жертва" в дополнение к блокам CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f потребуется блок CSCOPXY – регистрирующее устройство для построения фазового портрета. Готовая модель «хищник-жертва» представлена на рис. 3.2.

Рис. 3.2: Модель «хищник-жертва» в хсоѕ

В параметрах блоков интегрирования необходимо задать начальные значения x(0)=2,y(0)=1 (рис. 3.3, 3.4).

*	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	2
	With re-initialization (1:yes, 0:no)	0
	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

Рис. 3.3: Задание начальных значений в блоках интегрирования

Рис. 3.4: Задание параметров моделирования

В меню Моделирование, Установка необходимо задать конечное время интегрирования, равным времени моделирования: 30.

Результат моделирования представлен на рис. 3.5. Черной линией обозначен график x(t) (динамика численности жертв), зеленая линия определяет y(t) — динамику численности хищников

Рис. 3.5: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1

На рис. 3.6 приведён фазовый портрет модели Лотки-Вольтерры.

Рис. 3.6: Фазовый портрет модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

3.2 Реализация модели с помощью блока Modelica в xcos

Для реализации модели с помощью языка Modelica потребуются следующие блоки xcos: CLOCK_c, CSCOPE, CSCOPXY, TEXT_f, MUX, CONST_m и MBLOCK (Modelica generic). Как и ранее, задаём значения коэффициентов a,b,c,d (см. рис. 3.1).

Готовая модель «хищник–жертва» представлена на рис. 3.7. Параметры блока Modelica представлены на рис. 3.8, 3.9 Переменные на входе ("a", "b", "c", "d") и выходе ("x", "y") блока заданы как внешние ("E").

Рис. 3.7: Модель «хищник-жертва» в хсоз с применением блока Modelica

Рис. 3.8: Параметры блока Modelica для модели "хищник-жертва"

Рис. 3.9: Параметры блока Modelica для модели "хищник-жертва"

В результате моделирования получаем следующие графики (рис. 3.10, 3.11). Они идентичны построенным без блока Modelica.

Рис. 3.10: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1

Рис. 3.11: Фазовый портрет модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

3.3 Упражнение

Реализуем модель «хищник – жертва» в OpenModelica. Построим графики изменения численности популяций и фазовый портрет.

```
parameter Real a = 2;
parameter Real b = 1;
parameter Real c = 0.3;
parameter Real d = 1;
parameter Real x0 = 2;
parameter Real y0 = 1;

Real x(start=x0);
Real y(start=y0);
equation
  der(x) = a*x - b*x*y;
  der(y) = c*x*y - d*y;
```

Выполним симуляцию, поставим конечное время 30с. Получим график изменения численности хищников и жертв (рис. 3.12), а также фазовый портрет (рис. 3.13).

Рис. 3.12: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

Рис. 3.13: Фазовый портрет модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

4 Выводы

В процессе выполнения данной лабораторной реализована модель "хищникжертва" в xcos.