第51-52讲 文件目录管理、 文件共享和记录组块方式

§5.3 File Directories

File Directories

Directory itself is a file owned by the operating system.

Provides mapping between file names and the files themselves.

File Directories

Contains information about files.

- 1. Basic Information
 - File Name, File Type, File Organization
- 2. Addr. Information
 - Volume, Starting Addr., Size Used, Size Alloc.
- 3. Access Contr. Information
 - Owner, Access Info., Permitted Actions
- 4. Usage information
 - Date Created, ID. of Creator, Date Last Read Access, ID of Last Reader, Date of Last Modified, ID of Last Modifier, Date of Last Backup, Current Usage

Structure for a Directory

❖可见,不同系统保存文件目录的方式不同。有的系统 将其中部分信息保存在文件头部,只将一些必要信息 如文件名、文件大小、外存中的存储位置等保存在文件目录中

❖ 对目录文件的典型操作:

- Search:按文件名检索文件目录
- Create file: 建立文件时,必须为之建立一个新目录
- Delete file: 删除文件时,必须同时删除其文件目录

I list Directory . 田白堂軍車列文件目录及文件的

Simple Structure for a Directory

- List of entries, one for each file.
- Sequential file with the name of the file serving as the key.
- Provides no help in organizing the files.
- ❖ Forces user to be careful not to use the same name for two different files.

Two-level Scheme for a Directory

- ❖One directory for each user and a master directory.(用户目录和主目录)
- Master directory contains entry for each user.
 - Provides address and access control information.
- Each user directory is a simple list of files for that user.
- Still provides no help in structuring collections of files.

Hierarchical, or Tree-Structured Directory

❖ Master directory with user directories underneath it. (主目录下建立若干用户目 录)

❖ Each user directory may have subdirectories and files as entries. (每个用户目录下允许再创建子目录及文件目录)

Figure 12.4 Tree-Structured Directory

Figure 12.5 Example of Tree-Structured Directory

Directory Districtly of Bestroic Science and Technology of China

Hierarchical, or Tree-Structured Directory

- Files can be located by following a path from the root, or master, directory down various branches.
 - This is the pathname for the file.

Can have several files with the same file name as long as they have unique path names.

Hierarchical, or Tree-Structured Directory

❖ Current directory is the working directory.
(当前目录即工作目录)

❖ Files are referenced relative to the working directory. (相对工作目录的文件路径为相对路径)

§5.4 File Sharing

File Sharing

In multiuser system, allow files to be shared among users.

Two issues

- Access rights
- Management of simultaneous access. (并行存取)

None

- User may not know of the existence of the file.
- User is not allowed to read the user directory that includes the file.

❖Knowledge (探知)

 User can only determine that the file exists and who its owner is.

Execution

The user can load and execute a program but cannot copy it.

Reading

The user can read the file for any purpose, including copying and execution.

Appending

The user can add data to the file but cannot modify or delete any of the file's contents.

Updating

 The user can modify, deleted, and add to the file's data. This includes creating the file, rewriting it, and removing all or part of the data.

Changing protection

User can change access rights granted to other users.

Deletion

User can delete the file.

Owners

- Has all rights previously listed.
- May grant rights to others using the following classes of users.
 - Specific user
 - User groups
 - All for public files

Simultaneous Access

User may lock entire file when it is to be updated.

User may lock the individual records during the update.

Mutual exclusion and deadlock are issues for shared access.

§5.5 Record Blocking

Record Blocking

❖记录是存取文件的逻辑单位,而数据块是 I/O 的基本单位,记录必须组织成数据块以便于 I/O

❖问题:

- ▶ 数据块的长度固定还是可变?
- 根据记录的平均长度如何设置数据块的长度?

数据块的长度固定还是可变?

大多数系统采用固定长度的数据块,以简化 I/O 操作、 Buffer 的分配及辅存中数据块的组织管理

如何设置数据块的长度?

- ❖数据块越大,一次 I/O 传输的记录就越多
- ❖大数据块适合文件顺序访问,因为这样可以减少 I/O 次数,加快处理速度
- ❖当随机访问文件,或访问局部性很差时, 传输的部分记录不会使用,效率低。
- ❖另外,大数据块需要更大的 I/O buffer,增加其管理复杂度

Fixed blocking (固定组块法)

- ❖数据块由固定长度的若干条记录组成
- ❖块内可能会存在一些被浪费空间

Fixed Blocking

Figure 12.6 Record Blocking Methods [WIED87]

Variable Blocking: Spanned (可变长跨块组块法)

❖数据块由变长记录组成,一条记录可以跨越两个数据块,可用指针记载一条跨块存储记录所 在的下一数据块

❖块内无浪费空间

Variable Blocking: Spanned

Figure 12.6 Record Blocking Methods [WIED87]

Variable Blocking Unspanned(可变长非跨块组块法)

❖数据块由变长记录组成

❖不允许一条记录跨越两个数据块

❖块内可能存在被浪费空间

Variable Blocking Unspanned

Figure 12.6 Record Blocking Methods [WIED87]

