АЛГОРИТМЫ ИНДУКТИВНОГО ПОРОЖДЕНИЯ СУПЕРПОЗИЦИЙ ДЛЯ АППРОКСИМАЦИИ ИЗМЕРЯЕМЫХ ДАННЫХ 1

 Γ . И. Рудой 2 , В. В. Стрижов 3

Аннотация

В работе исследуется алгоритм индуктивного порождения допустимых существенно нелинейных моделей. Предлагается алгоритм, порождающий все возможные суперпозиции заданной сложности за конечное число шагов, и приводится его теоретическое обоснование. Приводятся результаты вычислительного эксперимента по выбору оптимальной модели, аппроксимирующей синтетический набор данных.

Ключевые слова: символьная регрессия, нелинейные модели, индуктивное порождение, сложность моделей.

1 Введение

В ряде приложений [1, 2] возникает задача восстановления некоторой функциональной зависимости по набору известных данных. При этом предполагается, что эксперт должен иметь возможность проинтерпретировать полученную модель в контексте предметной области.

Одним из методов, позволяющих получать интерпретируемые модели, является символьная регрессия [3–7], согласно которой известные данные приближаются некоторой математической формулой, например, $\sin x^2 + 2x$ или $\log x - \frac{e^x}{x}$. Эти формулы являются произвольными суперпозициями функций из некоторого заданного набора. Одна из возможных реализаций этого метода предложена Джоном Коза [8, 9], использовавшим эволюционные алгоритмы для реализации символьной регрессии. Иван Зелинка предложил дальнейшее развитие этой идеи [10], получившее название аналитического программирования.

Алгоритм построения требуемой математической модели в аналитическом программировании выглядит следующим образом: дан набор примитивных функций, из которых можно строить различные формулы (например, степенная функция, +, sin, tan). Начальный набор формул строится либо произвольным образом, либо на базе некоторых предположений эксперта. Затем на каждом шаге производится оценка каждой из формул согласно функции ошибки либо другого функционала качества [11]. На базе этой оценки у некоторой части формул случайным образом заменяется одна элементарная функция на другую (например, sin на соз или + на ×), а у некоторой другой части происходит взаимный попарный обмен подвыражениями.

Получаемая формула является математической моделью исследуемого процесса или явления — то есть, это математическое отношение, описывающее основные закономерности, присущие этому явлению [12].

¹Работа выполнена при поддержке РФФИ, грант №10-07-00422.

 $^{^2}$ Московский физико-технический институт, rudoy@forecsys.ru.

³ВЦ РАН им. А.А. Дородницына, strijov@gmail.com.

Целью настоящей работы является теоретическое обоснование алгоритмов индуктивного порождения моделей и анализ этих алгоритмов. Одним из основных результатов является доказательство их корректности, то есть, способности породить искомую формулу.

Алгоритм индуктивного порождения моделей, сформулированный в настоящей работе, свободен от некоторых типичных проблем предложенных ранее методов, упомянутых, например, в [10], в том числе:

- Порождение рекурсивных суперпозиций, суперпозиций, содержащих несоответствующее используемым функциям число аргументов, и т. д. (в предложенном алгоритме эти проблемы не возникают по построению).
- Несовпадение области определения некоторой примитивной функции и области значений ее аргументов (возможно, тоже некоторых суперпозиций).
- Порождение слишком сложных суперпозиций.

Для любой выборки можно построить такой многочлен, который пройдет через все точки выборки, но при этом число параметров такого многочлена линейно растет с объемом выборки. Кроме того, такой многочлен неинтерпретируем экспертами. Предложенный в настоящей работе алгоритм решает проблему порождения слишком сложных суперпозиций введением дополнительного штрафа за сложность. Кроме того, так как используемые признаки объектов выборки учитываются при расчете сложности, использование подобного штрафа обеспечивает выбор суперпозиций, использующих меньшее число признаков, то есть, проводит отбор признаков.

Во второй части работы формально поставлена задача построения алгоритма индуктивного порождения моделей. Затем, в третьей части, строится искомый алгоритм для частного случая беспараметрических моделей и доказывается его корректность, а затем алгоритм обобщается на случай моделей, имеющих параметры. В четвертой части оценивается количество порожденных предложенным алгоритмом моделей на каждой итерации. В пятой части предлагается метод выбора допустимых моделей из множества всех порожденных моделей. В седьмой части описывается адаптированный стохастический алгоритм порождения моделей, результаты работы которого на синтетических данных приведены в восьмой части настоящей работы.

2 Постановка задачи

Пусть дана выборка:

$$D = \{ (\mathbf{x}_i, y_i) \mid i \in \{1, \dots, N\}, \mathbf{x}_i \in \mathbb{X} \subset \mathbb{R}^n, y_i \in \mathbb{Y} \subset \mathbb{R} \},$$

где N — число элементов выборки, \mathbf{x}_i — вектор значений свободных переменных для i-го элемента выборки, y_i — значение зависимой переменной для i-го элемента выборки, \mathbb{X} — множество значений независимых переменных, лежащее в \mathbb{R}^n , \mathbb{Y} — множество значений зависимой переменной.

Требуется выбрать параметрическую функцию $f: \Omega \times \mathbb{X} \to \mathbb{R}$ из порождаемого множества $\mathcal{F} = \{f_r\}$, где Ω — пространство параметров, доставляющую минимум некоторому заданному функционалу качества Q, зависящему от функционала ошибки S на данной выборке D и сложности суперпозиции C(f).

То есть, для множества всех суперпозиций

$$\mathcal{F} = \{ f_r \mid f_r : (\boldsymbol{\omega}, \mathbf{x}) \mapsto y \in \mathbb{Y}, r \in \mathbb{N} \},$$

требуется найти такой индекс \hat{r} , что функция f_r среди всех $f \in \mathcal{F}$ доставляет минимум функционалу качества Q при данной выборке D:

$$\hat{r} = \arg\min_{r \in \mathbb{N}} Q(f_r \mid \hat{\boldsymbol{\omega}}_r, D), \tag{1}$$

где $\hat{\boldsymbol{\omega}}_r$ — оптимальный вектор параметров функции f_r для каждой $f \in \mathcal{F}$ при данной выборке D:

$$\hat{\boldsymbol{\omega}}_r = \arg\min_{\boldsymbol{\omega} \in \Omega} S(\boldsymbol{\omega} \mid f_r, D). \tag{2}$$

Сформулируем также постановку теоретической задачи. Для этого сначала введем понятие суперпозиции функций.

Если множество значений \mathbb{Y}_i функции f_i содержится в области определения \mathbb{X}_{i+1} функции f_{i+1} , то есть

$$f_i: \mathbb{X}_i \to \mathbb{Y}_i \subset \mathbb{X}_{i+1}, \quad i = 1, 2, \dots, \theta - 1,$$

то функция

$$f_{\theta} \circ f_{\theta-1} \circ \cdots \circ f_1, \quad \theta \geq 2,$$

определяемая равенством

$$(f_{\theta} \circ f_{\theta-1} \circ \cdots \circ f_1)(\mathbf{x}) = f_{\theta}(f_{\theta-1}(\dots(f_1(\mathbf{x})))), \quad x \in \mathbb{X}_1,$$

называется сложной функцией [13] или суперпозицией функций $f_1, f_2, \dots, f_{\theta}$. Таким образом, получаем

Определение 1. Суперпозиция функций — функция, представленная как композиция нескольких функций.

Пусть $G = \{g_1, \dots, g_l\}$ — множество данных порождающих функций, а именно, для каждой $g_i \in G$ заданы:

- сама функция g_i (например, sin, cos, \times),
- арность функции и порядок следования аргументов,
- \bullet домен (dom g_i) и кодомен (cod g_i) функции,
- область определения $\mathcal{D}g_i \subset \mathrm{dom}g_i$ и область значений $\mathcal{E}g_i \subset \mathrm{cod}g_i$.

Требуется построить упомянутую функцию f как суперпозицию порождающих функций из заданного множества G.

Поясним различие между последними двумя пунктами. Например, $\operatorname{dom} f$ показывает, значения из какого множества принимает функция f (целые числа, действительные числа, декартово произведение целых чисел и $\{0,1\}$, и т. п.). Область определения же показывает, на каких значениях из $\operatorname{dom} f$ функция f определена и имеет смысл. Так, для функции $f(x_1, x_2) = \log_{x_1} x_2$:

$$\operatorname{dom} f = \mathbb{R} \times \mathbb{R},$$

$$\operatorname{cod} f = \mathbb{R},$$

$$\mathcal{D} f = \{(x_1, x_2) \mid x_1 \in (0; 1) \cup (1; +\infty), x_2 \in (0; +\infty)\},$$

$$\mathcal{E} f = (-\infty; +\infty).$$

Требуется также:

- построить алгоритм \mathfrak{A} , за конечное число итераций порождающий любую конечную суперпозицию данных примитивных функций,
- указать способ проверки изоморфности двух суперпозиций.

Заметим, что мы не требуем для примитивных функций свойства их непорождаемости в наиболее общей формулировке типа принципиальной невозможности породить в ходе работы искомого алгоритма суперпозицию, изоморфную некоторой функции из G. Такое требование является слишком ограничивающим. В частности, невозможно было бы иметь в G одновременно, например, функции id, exp и log, так как id $\equiv \log \circ \exp$.

В дальнейшем будем также считать, что суперпозиция, соответствующая единственной свободной переменной ($f(\mathbf{x}) = x_i$), эквивалентна функции вида $\mathrm{id} x_i$.

3 Алгоритм индуктивного порождения допустимых суперпозиций

Условимся считать, что каждой суперпозиции f сопоставлено дерево Γ_f , эквивалентное этой суперпозиции и строящееся следующим образом:

- В вершинах V_i дерева Γ_f находятся соответствующие порождающие функции $g_s, s = s(i).$
- \bullet Число дочерних вершин у некоторой вершины V_i равно арности соответствующей функции g_s .
- Порядок смежных некоторой вершине V_i вершин соотвествует порядку аргументов соответствующей функции $g_{s(i)}$.
- В листьях дерева Γ_f находятся свободные переменные x_i либо числовые параметры ω_i .

• Порядок вершин V_i в смысле уровня вершин определяет порядок вычисления примитивных функций: дерево вычисляется снизу вверх. То есть, сначала подставляются конкретные значения свободных переменных, затем вычисляются значения в вершинах, все дочерние вершины которых — свободные переменные, и так далее до тех пор, пока не останется единственная вершина, бывшая корнем дерева. Она и содержит результат соответствующего выражения.

Таким образом, вычисление значения выражения f в некоторой точке с данным вектором параметров $\boldsymbol{\omega} = \{\omega_1, \omega_2, \dots, \omega_\eta\}$ эквивалентно подстановке соответствующих значений свободных переменных x_i и параметров ω_i в дерево Γ_f , где x_i — компоненты вектора признакового описания объекта \mathbf{x} .

Заметим важное свойство таких деревьев: каждое поддерево Γ_f^i дерева Γ_f , соответствующее вершине V_i , также соответствует некоторой суперпозиции, являющейся составляющей исходной суперпозиции f.

Для примера рассмотрим дерево, соответствующиее суперпозиции $f=\sin(\ln x_1)+\frac{x_2^3}{2}$ (см. рис 1).

Рис. 1: Дерево выражения $\sin(\ln x_1) + \frac{x_2^3}{2}$

Здесь точками обозначены аргументы функций. Как видно, корнем дерева является вершина, соответствующая операции сложения, которая должна быть выполнена в последнюю очередь. Операция сложения имеет два различных поддерева, соответствующих двум аргументам этой операции. Заметим также, что здесь не использованы операции типа «разделить на два» или «возвести в куб». Вместо этого используются операции деления и возведения в степень в общем виде, а в данном конкретном дереве соответствующие аргументы зафиксированы соответствующими константами.

Алгоритм порождения суперпозиций. Сначала определим понятие *глубины су- перпозиции*:

Определение 2. Глубина суперпозиции f — максимальная глубина дерева Γ_f .

Теперь опишем итеративный алгоритм \mathfrak{A}^* , порождающий суперпозиции, не содержащие параметров. Описанный алгоритм породит любую суперпозицию конечной глубины за конечное число шагов.

Пусть дано множество примитивных функций $G = \{g_1, \ldots, g_l\}$ и множество свободных переменных $X = \{x_1, \ldots, x_n\}$. Для удобства будем исходить из предположения, что множество G состоит только из унарных и бинарных функций, и разделим его соответствующим образом на два подмножества: $G = G_b \cup G_u \mid G_b = \{g_{b_1}, \ldots, g_{b_k}\}, G_u = \{g_{u_1}, \ldots, g_{u_l}\}$, где G_b — множество всех бинарных функций, а G_u — множество всех унарных функций из G. Потребуем также наличия id в G_b .

Алгоритм 1. Алгоритм \mathfrak{A}^* итеративного порождения суперпозиций.

1. Перед первым шагом зададим начальные значения множества \mathcal{F}_0 и вспомогательного индексного множества \mathcal{I} , служащего для запоминания, на какой итерации впервые встречена каждая суперпозиция:

$$\mathcal{F}_0 = X,$$

$$\mathcal{I} = \{(x,0) \mid x \in X\}.$$

2. Для множества \mathcal{F}_i построим вспомогательное множество U_i , состоящее из суперпозиций, полученных в результате применения функций $g_u \in G_u$ к элементам \mathcal{F}_i :

$$U_i = \{ g_u \circ f \mid g_u \in G_u, f \in \mathcal{F}_i \}.$$

3. Аналогичным образом построим вспомогательное множество B_i для бинарных функций $g_b \in G_b$:

$$B_i = \{ g_b \circ (f, h) \mid g_b \in G_b, f, h \in \mathcal{F}_i \}.$$

- 4. Обозначим $\mathcal{F}_{i+1} = \mathcal{F}_i \cup U_i \cup B_i$.
- 5. Для каждой суперпозиции f из \mathcal{F}_{i+1} добавим пару (f, i+1) в множество \mathcal{I}_f , если суперпозиция f еще там не присутствует.
- 6. Перейдем к следующей итерации, п. 2.

Тогда $\mathcal{F} = \bigcup_{i=0}^{\infty} \mathcal{F}_i$ — множество всех возможных суперпозиций конечной длины, которые можно построить из данного множества примитивных функций.

Вспомогательное множество \mathcal{I} позволяет запоминать, на какой итерации была впервые встречена каждая суперпозиция. Это необходимо, так как каждая суперпозиция, впервые порожденная на i-ой итерации, будет порождена также и на любой итерации после i. Одной из возможностей избежать необходимости в этом множестве

является построение \mathcal{F}_{i+1} как $\mathcal{F}_{i+1} = U_i \cup B_i$ (без \mathcal{F}_i), а множества U_i и B_i строить следующим образом:

$$U_{i} = \{g_{u} \circ f \mid g_{u} \in G_{u}, f \in \cup_{j=0}^{i} \mathcal{F}_{j}\},$$

$$B_{i} = \{g_{b} \circ (f, h) \mid g_{b} \in G_{b}, f, h \in \cup_{i=0}^{i} \mathcal{F}_{i}\}.$$

Алгоритм \mathfrak{A}^* очевидным образом обобщается на случай, когда множество G содержит функции произвольной (но конечной) арности. Действительно, для такого обобщения достаточно строить аналогичным образом вспомогательные множества для этих функций, а именно: для множества функций G_n арности n построим вспомогательное множество H_i^n вида:

$$H_i^n = \{g \circ (f_1, f_2, \dots, f_n) \mid g \in G_n, f_j \in \mathcal{F}_i\}.$$

В этих обозначениях $U_i \equiv H_i^1$, а $B_i \equiv H_i^2$.

Тогда множество $\mathcal{F}_{i+1} = \mathcal{F}_i \cup_{n=0}^{n_{max}} H_i^n$, где n_{max} — максимальное значение арности функций из G.

Теорема 1. Алгоритм \mathfrak{A}^* действительно породит любую конечную суперпозицию за конечное число шагов.

Доказательство. Чтобы убедиться в этом, найдем номер итерации, на котором будет порождена некоторая произвольная конечная суперпозиция f. Чтобы найти этот номер, пронумеруем вершины графа Γ_f по следующим правилам:

- Если это вершина со свободной переменной, то она имеет номер 0.
- Если вершина V соответствует унарной функции, то она имеет номер i+1, где i номер дочерней для этой функции вершины.
- Если вершина V соответствует бинарной функции, то она имеет номер i+1, где $i=\max(l,r)$, а l и r номера, соответственно, первой и второй дочерней вершины.

Нумеруя вершины графа Γ_f таким образом, мы получим номер вершины, соответствующей корню графа. Это и будет номером итерации, на которой получена суперпозиция f.

Иными словами, для любой суперпозиции мы можем указать конкретный номер итерации, на котором она будет получена, что и требовалось.

В предложенных ранее методах построения суперпозиций [10] необходимо было самостоятельно следить за тем, чтобы в ходе работы алгоритма не возникало «зацикленных» суперпозиций типа f(x,y) = g(f(x,y),x,y). Заметим, что в предложенном алгоритме \mathfrak{A}^* такие суперпозиции не могут возникнуть по построению.

Порождение моделей с параметрами. Алгоритм \mathfrak{A}^* в таком виде не позволяет получать выражения, содержащие численные параметры ω суперпозиции $f(\omega, \mathbf{x})$. Покажем, однако, на примере конструирования множеств U_i и B_i , как исходный алгоритм \mathfrak{A}^* может быть расширен путем введения параметров:

$$U_i = g_u \circ (\alpha f + \beta),$$

$$B_i = q_b \circ (\alpha f + \beta, \psi h + \phi).$$

Будем обозначать этот расширенный алгоритм как \mathfrak{A} . Здесь параметры α , β зависят только от комбинации g_u , f (или g_b , f, h для α , β , ψ , ϕ). Соответственно, для упрощения их индексы опущены. Иными словами, мы предполагаем, что каждая суперпозиция из предыдущих итераций входит в следующую, будучи умноженной на некоторой коэффициент и с константной поправкой.

Очевидно, при таком добавлении параметров $\alpha, \beta, \psi, \phi$ мы не изменяем мощности получившегося множества суперпозиций, поэтому алгоритм и выводы из него остаются корректными. В частности, исходный алгоритм является частным случаем данного при $\alpha \equiv \psi \equiv 1, \beta \equiv \phi \equiv 0$.

Переменные $\alpha, \beta, \psi, \phi$ являются параметрами модели. В практических приложениях можно оптимизировать значения этих параметров у получившихся суперпозиций, например, алгоритмом Левенберга-Марквардта [14,15].

Заметим также, что такая модификация алгоритма позволяет нам получить единицу, например, для построения суперпозиций типа $\frac{1}{r}$: $1 = \alpha \ id \ x + \beta \mid \alpha = 0, \beta = 1$.

Отдельно подчеркнем, что параметры ω у различных суперпозиций различны. Однако, так как каждый из параметров зависит только от соответствующей комбинации функций, к которым он относится, конкретные значения параметров не учитываются при поиске одинаковых суперпозиций. Иными словами, при тестировании суперпозиций на равенство сравниваются лишь структуры соответствующих им деревьев и значения в узлах, соответствующих функциям и свободным переменным.

Заметим, что и этот алгоритм очевидным образом обобщается на случай множества G, содержащего функции произвольной арности.

4 Количество возможных суперпозиций

Оценим количество суперпозиций, получаемых после каждой итерации алгоритма $\mathfrak A$. Очевидно, с учетом вышеупомянутых оговорок касательно сравнения параметризованных суперпозиций, это количество равно количеству для алгоритма $\mathfrak A^*$.

Итак, пусть дано n независимых переменных: |X| = n, а мощность множества G распишем через мощности его подмножеств функций соответствующей арности: $|G_1| = l_1, |G_2| = l_2, \ldots, |G_p| = l_p$. На нулевой итерации имеем $P_0 = n$ суперпозиций.

На первой итерации дополнительно порождается:

$$P_1 = l_1 n + l_2 n^2 + \dots + l_n n^p = \sum_{i=1}^p l_i P_0^i,$$

и суммарное число суперпозиций после первой итерации:

$$\hat{P}_1 = P_1 + P_0 = \sum_{i=1}^p l_i P_0^i + P_0.$$

Как было замечено ранее, суперпозиции, порожденные на k-ой итерации, будут также порождены и на любой следующей после k итерации, поэтому суммарное число суперпозиций после второй итерации будет равно:

$$\hat{P}_2 = \sum_{i=1}^p l_i \hat{P}_1^i.$$

И вообще, после k-ой итерации будет порождено:

$$\hat{P}_k = \sum_{i=1}^p l_i \hat{P}_{k-1}^i.$$

Оценим порядок роста количества функций, порожденных после k-ой итерации.

Теорема 2. Пусть в множестве примитивных функций G содержится l_p функций арности p>1 и ни одной функции арности $p+k\mid k>0$, и имеется n>1 независимых переменных. Тогда справедлива следующая оценка количества суперпозиций, порожденных алгоритмом $\mathfrak A$ после k-ой итерации:

$$|\mathcal{F}_k| = \mathcal{O}(l_p^{\sum_{i=0}^{k-1} p^i} n^{p^k}).$$

Доказательство. Оценим сначала порядок роста для случая, когда есть лишь одна m-арная функция и n свободных переменных.

После первой итерации алгоритма будет порождено $n^m + n$ суперпозиций. После второй — $(n^m + n)^m + n^m + n$, что можно оценить как $(n^m)^m = n^{m^2}$. И вообще, после k-ой итерации количество суперпозиций можно оценить как n^{m^k} .

Видно, что для оценки скорости роста количества порожденных суперпозиций можно учитывать только функции с наибольшей арностью.

Рассмотрим теперь случай, когда имеется не одна функция арности m, а l_m таких функций. Тогда на первой итерации порождается $l_m n^m + n$ суперпозиций, на второй:

$$l_m(l_m n^m + n)^m + l_m n^m + n \approx l_m^{m+1} n^{m^2},$$

на третьей, с учетом этого приближения:

$$l_m(l_m^{m+1}n^{m^2})^m = l_m l_m^{m(m+1)} n^{m^3} = l_m^{m^2+m+1} n^{m^3}.$$

И вообще, скорость роста количества порожденных суперпозиций можно оценить как:

$$|\mathcal{F}_k| = \mathcal{O}(l_m^{\sum_{i=0}^{k-1} m^i} n^{m^k}).$$

Таким образом, получаем оценку в общем случае, когда в множестве G содержится l_p функций арности p и ни одной функции арности $p+k\mid k>0$:

$$|\mathcal{F}_k| = \mathcal{O}(l_p^{\sum_{i=0}^{k-1} p^i} n^{p^k}).$$

5 Множество допустимых суперпозиций

Предложенный выше алгоритм позволяет получить действительно все возможные суперпозиции, однако, не все они будут пригодны в практических приложениях: например, $\ln x$ имеет смысл только при x>0, а $\frac{x}{0}$ не имеет смысла вообще никогда. Выражения типа $\frac{x}{\sin x}$ имеют смысл только при $x\neq \pi k$.

Таким образом, необходимо введение понятия множества donycmumux суперпозиций — то есть, таких суперпозиций, которые в условиях данной задачи корректны.

Определение 3. Допустимая суперпозиция f — такая суперпозиция, значение которой определено для любой комбинации значений свободных переменных, область значений \mathbb{X} которых определяется конкретной задачей, $\mathbb{X} \subset \mathbb{R}^n$ где n — число свободных переменных.

Одним из способов построения только допустимых суперпозиций является модификация предложенного алгоритма таким образом, чтобы отслеживать совместность областей определения и областей значения соответствующих функций в ходе построения суперпозиций. Для свободных переменных это, в свою очередь, означает необходимость задания областей значений X пользователем при решении конкретных задач.

Таким образом, можно сформулировать очевидное *достаточное условие недопустимости* суперпозиции:

Определение 4. Достаточное условие недопустимости суперпозиции f: в соответствующем дереве Γ_f хотя бы одна вершина V_i имеет хотя бы одну дочернюю вершину V_j такую, что область значений функции $g_{s(j)}$ шире, чем область определения функции $g_{s(i)}$:

$$\exists i, j : V_i \in \Gamma_f, V_j \in \Gamma_f \land \exists \kappa : \kappa \in \mathcal{E}g_{s(j)} \land \kappa \notin \mathcal{D}g_{s(i)}.$$

Говоря, что область значений функции f шире области определения функции g, мы имеем ввиду, что существует по крайней мере одно значение функции f, не входящее в область определения функции g.

Подчеркнем, что, хотя свободные переменные могут принимать, например, все значения из \mathbb{R} , выбором множества \mathbb{X} можно обеспечить возможность использования их в качестве аргументов функций с более узкой, чем \mathbb{R} , но не менее узкой, чем \mathbb{X} , областью определения, если это не противоречит данной выборке.

Для построения множества допустимых суперпозиций достаточно построить множество всех возможных суперпозиций при помощи алгоритма \mathfrak{A} , а затем удалить из этого множества все суперпозиции, не удовлетворяющие сформулированному признаку.

6 Алгоритм итеративного стохастического порождения суперпозиций

Несмотря на то, что построенный ранее итеративный алгоритм $\mathfrak A$ порождения суперпозиций позволяет получить за конечное число шагов произвольную суперпозицию, для практических применений он непригоден в связи с чрезмерной вычислительной сложностью, как и любой алгоритм, реализующий полный перебор. Вместо него

предлагается использовать стохастические алгоритмы и ряд эвристик, позволяющих на практике получать за приемлемое время результаты, удовлетворяющие заранее заданным условиям. В данном разделе описывается практически реализуемый вариант алгоритма \mathfrak{A} , который и был использован в вычислительном эксперименте.

Сначала опишем вспомогательный алгоритм случайного порождения суперпозиции:

Алгоритм 2. Алгоритм случайного порождения суперпозиции \mathcal{RF} . Bxod:

- Набор пороговых значений $0 < \xi_1 < \xi_2 < \xi_3 < 1$.
- Максимальная глубина порождаемой суперпозиции Td.

Алгоритм работает следующим образом. Генерируется случайное число ξ на интервале (0;1), и рассматриваются следующие случаи:

- $\xi \leq \xi_1$: результатом алгоритма является некоторая случайно выбранная свободная переменная.
- $\xi_1 < \xi \le \xi_2$: результатом алгоритма является числовой параметр.
- $\xi_2 < \xi \le \xi_3$: результатом алгоритма является некоторая случайно выбранная унарная функция, для определения аргумента которой данный алгоритм рекурсивно запускается еще раз.
- $\xi_3 < \xi$: результатом алгоритма является некоторая случайно выбранная бинарная функция, аргументы которой порождаются аналогичным образом.

При этом порождение тривиальных суперпозиций (свободных переменных и параметров) запрещено: на самом первом шаге пороговые значения масштабируются таким образом, чтобы всегда порождалась унарная или бинарная функция. Аналогично при превышении значения Td пороговые значения масштабируются таким образом, чтобы был порожден узел, соответствующий свободной переменной или параметру, и алгоритм завершился.

Каждой порожденной суперпозиции f ставится в соответствие ее качество Q_f (будем также говорить, что суперпозиция оценивается), рассчитываемое исходя из функционала качества S_f этой суперпозиции на выборке D и ее сложности C_f числа узлов в соответствующем графе Γ_f , по следующей формуле:

$$Q_f = \frac{1}{1 + S_f} \left(\alpha + \frac{1 - \alpha}{1 + \exp(\frac{C_f}{\beta} - \tau)} \right), \tag{3}$$

где \hat{Q} — минимальная приспособленность суперпозиции из критерия останова, α — некоторый влияния штрафа за сложность, $0 \ll \alpha < 1, \beta$ — коэффициент строгости штрафа за сложность, $\beta > 0,$ а τ — коэффициент, характеризующий желаемую сложность модели.

Второй множитель в (3) выполняет роль штрафа за слишком большую сложность суперпозиции, что позволяет выбирать более простые модели, избегая эффекта переобучения и экстремальных случаев вроде порождения интерполяционных полиномов Лагранжа. На рис. 2 приведены поверхности Q_f для различных значений β при фиксированном $\tau=5$.

Рис. 2: Поверхности функции Q_f для некоторых β и фиксированного $\tau=5$.

Таким образом, чем лучше результаты суперпозиции и чем она проще, тем ближе значение ее приспособленности к 1.

Алгоритм 3. Итеративный алгоритм стохастического порождения суперпозиций. Bxod:

- Множество порождающих функций G, состоящее только из унарных и бинарных функций.
- Регрессионная выборка D.
- ullet N_{max} максимальное число одновременно рассматриваемых суперпозиций.
- I_{max} максимальное число итераций алгоритма.

- ullet $\gamma_{mut}-\partial$ оля суперпозиций, подверженных случайной замене узлов их деревьев.
- γ_{cross} доля суперпозиций, для которых выполняется случайный обмен поддеревьями.
- Прочие параметры, используемые в (3) и алгоритме 2.
- 1. Инициализируется упорядоченный набор \mathcal{X}_f суперпозиций. А именно, порождается N_{max} суперпозиций алгоритмом 2.
- 2. Оптимизируются параметры $\boldsymbol{\omega}$ суперпозиций из \mathcal{X}_f алгоритмом Левенберга-Марквардта.
- 3. Выполняются простейшие преобразования, упрощающие суперпозицию: например, выражения вида $0 \cdot x$ заменяются на 0.
- 4. Вычисляется значение Q_f для каждой еще не оцененной суперпозиции f из \mathcal{X}_f : для нее рассчитывается значение функционала качества S_f на выборке D, и ставится в соответствие значение Q_f в соответствии с (3). Для суперпозиций, при вычислении Q_f которых была хотя бы раз получена ошибка вычислений из-за несовпадения областей определений и значений, принимается $Q_f = -\infty$.
- 5. Набор суперпозиций \mathcal{X}_f сортируется согласно их приспособленности.
- 6. Наименее приспособленные суперпозиции удаляются из массива \mathcal{X}_f до тех пор, пока его размер не станет равен N_{max} .
- 7. Отбирается некоторая часть γ_{mut} наименее приспособленных суперпозиций из \mathcal{X}_f . У этой части происходит случайная замена одной функции или свободной переменной на другую: генерируются две случайные величины, одна из которых служит для выбора вершины дерева Γ_f , которую предстоит изменить, а другая для выбора нового элемента для этой вершины. Замена такова, чтобы сохранилась структура суперпозиции, а именно: в случае замены функции сохраняется арность, а свободная переменная заменяется только на другую свободную переменную. Исходные суперпозиции сохраняются в массиве \mathcal{X}_f .
- 8. Повторяются шаги 4 5.
- 9. Производится случайный обмен поддеревьями у γ_{cross} наиболее приспособленных суперпозиций. Вершины, соответствующие этим поддеревьям, выбираются случайным образом. При этом исходные суперпозиции сохраняются в \mathcal{X}_f .
- 10. Повторяются шаги 2-5.
- 11. Проверяются условия останова: если либо число итераций больше I_{max} , либо в массиве \mathcal{X}_f есть хотя бы одна суперпозиция с приспособленностью больше, чем \hat{Q} , то алгоритм останавливается, и результатом является наиболее приспособленная суперпозиция, иначе осуществляется переход к шагу 2.

7 Вычислительный эксперимент

В вычислительном эксперименте восстанавливается функциональная зависимость $y=2\cosh\frac{\sqrt{x_1^2+x_2^2}}{2}$, соответствующая фигуре вращения цепной линии. При этом значения зависимой переменной y были искусственно зашумлены аддитивной добавкой из распределения $\mathcal{N}(0,0.1)$, и соответствующая ей переменная присутствовала во множестве используемых свободных переменных. Также был искусственно добавлен один выброс — точка с координатами (0,0,-1).

В качестве функционала качества S используется сумма квадратов регрессионных остатков для данной суперпозиции f с вектором параметров ω при регрессионной выборке D:

$$S(\boldsymbol{\omega}, f, D) = \sum_{i=1}^{N} (y_i - f(\boldsymbol{\omega}, \mathbf{x}_i))^2.$$
 (4)

Значение функционала качества S при подстановке исходной незашумленной функциональной зависимости составляет ≈ 13.28 , сложность исходной суперпозиции — 16.

Таблица 1: Результаты вычислительного эксперимента для предложенного алгоритма.

N	i	Суперпозиция	S_f	C_f
1	16	$0.9998 \left(2.71^{\frac{\sqrt{x \cdot x + y^2}}{2.02}} + 2.57^{\frac{\sqrt{x \cdot x + y^2}}{-1.94}} \right) - 0.0059$	≈ 13.25	31
2	7	$1.999 \cosh \frac{\sqrt{x \cdot x + y \cdot y \cdot 1.0002}}{2.002}$	≈ 13.89	16

Таблица 2: Результаты вычислительного эксперимента для алгоритма [10].

i	Суперпозиция	S_f	C_f
29	$2.69^{\frac{\sqrt{x \cdot x + y \cdot y}}{2.1}} + \frac{x \cdot x}{6988} + \frac{y}{1896} - \frac{x \cdot y \cdot y}{504} + 0.69 + 0.00079 \cdot x \cdot x \cdot y \cdot y$	≈ 25.44	43

Использованные параметры алгоритма 3: $N_{max}=200, I_{max}=50, \hat{Q}=0.95, \tau=20, \alpha=0.05, \beta=1, \gamma_{mut}=\frac{1}{3}, \gamma_{cross}=\frac{1}{3}.$ При отсутствии улучшения результатов в течение нескольких итераций подряд алгоритм 3 также завершался.

Результаты вычислительного эксперимента приведены в таблице 1. Указан номер итерации i, на которой суперпозиция была впервые получена, сама суперпозиция, среднеквадратичная ошибка (4) и сложность в смысле количества узлов в соответствующем графе выражения. Числовые коэффициенты в приведенных формулах и значения функционала S_f искусственно округлены до нескольких значащих цифр.

Кроме того, алгоритм запускался для двух разных наборов элементарных функций. В обоих случаях элементарные функции включали в себя стандартные арифметические операции и из операцию возведения в степень. Для удобства восприятия возведение в степень $\frac{1}{2}$ (и близкие ей) заменено в таблице на операцию извлечения корня.

В первом случае в наборе отсутствовала функция cosh. При этом по результатам 10 запусков наилучшей суперпозицией, полученной предложенным алгоритмом, являлась функция за номером 1 из таблицы 1. Видно, что выражение в скобках близко определению $\cosh x = \frac{e^x + e^{-x}}{2}$, однако, разные значения оснований степенных функций могут затруднить экспертный анализ полученного выражения, которое само по себе является достаточно громоздким.

Во втором случае набор элементарных функций также включал в себя функцию \cosh , результату этого выражения соответствует суперпозиция за номером 2. Включение \cosh в G позволило существенно быстрее подобрать искомую функцию, и сложность получившейся суперпозиции также существенно меньше.

Кроме того, предложенный алгоритм сравнивался с алгоритмом [10], где предложено кодировать суперпозицию бинарной строкой и применять стандартные генетические алгоритмы на бинарных строках. При этом, в множестве используемых функций также отсутствовала функция cosh.

Наилучшая суперпозиция, полученная алгоритмом [10] по результатам 10 запусков, приведена в таблице 2. Полученная суперпозиция имеет существенно более высокую сложность, чем суперпозиции, перечисленные в таблице 1, что может быть связано с отсутствием этапов упрощения суперпозиции и отсутствием множителя, соответствующего сложности суперпозиции, при оценке приспособленности суперпозиции в алгоритме [10].

Рис. 3: Первая порожденная суперпозиция и зашумленные точки выборки (a) и исходная зависимость (б).

На рис. З отображены изометрические проекции первой из приведенных в таблице 1 суперпозиций. На графике слева данная суперпозиция сравнена с точками синтезированной зашумленной выборки, на графике справа она же приведена вместе с исходной незашумленной зависимостью. Аналогичные проекции приведены для второй суперпозиции на рис. 4.

Рис. 4: Вторая порожденная суперпозиция и зашумленные точки выборки (a) и исходная зависимость (б).

8 Заключение

В работе исследованы индуктивные алгоритмы порождения допустимых существенно нелинейных суперпозиций. Предложен переборный алгоритм, порождающий все возможные суперпозиции заданной сложности за конечное число шагов, и приведено его теоретическое обоснование. Сформулированный алгоритм решает некоторые типичные проблемы предложенных ранее методов. Описан стохастический алгоритм индуктивного порождения существенно нелинейных суперпозиций и приведены результаты вычислительного эксперимента на синтетических данных. Описанный алгоритм выбирает менее точные, но более простые модели, что позволяет избежать переобучения и выполнить простейший отбор признаков.

Список литературы

- [1] Duffy, J. and Engle-Warnick, J.: Using symbolic regression to infer strategies from experimental data. In Chen, Shu Heng (editor): Evolutionary Computation in Economics and Finance, volume 100 of Studies in Fuzziness and Soft Computing, chapter 4, pages 61–84. Physica Verlag, 2002, ISBN 3-7908-1476-8.
- [2] Barmpalexis, P., Kachrimanis, K., Tsakonas, A., and Georgarakis, E.: Symbolic regression via genetic programming in the optimization of a controlled release pharmaceutical formulation. Chemometrics and Intelligent Laboratory Systems, 107(1):75–82, 2011, ISSN 0169-7439.
- [3] Davidson, J. W., Savic, D. A., and Walters, G. A.: Symbolic and numerical regression: experiments and applications. In John, Robert and Birkenhead, Ralph (editors): Developments in Soft Computing, pages 175–182, De Montfort University, Leicester, UK, 29-30 6 2000. 2001. Physica Verlag, ISBN 3-7908-1361-3.

- [4] Sammut, C. and Webb, G. I.: Symbolic regression. In Sammut, Claude and Webb, Geoffrey I. (editors): Encyclopedia of Machine Learning, page 954. Springer, 2010, ISBN 978-0-387-30768-8.
- [5] Стрижов, В. В.: Поиск параметрической регрессионной модели в индуктивно заданном множестве. Вычислительные технологии, 1:93–102, 2007.
- [6] Strijov, V. and Weber, G. W.: Nonlinear regression model generation using hyperparameter optimization. Computers & Mathematics with Applications, 60(4):981–988, 2010.
- [7] Стрижов, В. В.: Методы индуктивного порождения регрессионных моделей. Препринт ВЦ РАН им. А. А. Дородницына. М., 2008.
- [8] Koza, J. R.: Genetic programming. In Williams, J. G. and Kent, A. (editors): Encyclopedia of Computer Science and Technology, volume 39, pages 29–43. Marcel-Dekker, 1998. Supplement 24.
- [9] Koza, J. R.: Introduction to genetic algorithms, 1998.
- [10] Zelinka, I., Oplatkova, Z., and Nolle, L.: Analytic programming symbolic regression by means of arbitrary evolutionary algorithms, 2008.
- [11] Тырсин, А.Н.: Об эквивалентности знакового и наименьших модулей методов построения линейных моделей. Обозрение прикладной и промышленной математики, 12(4):879–880, 2005.
- [12] Павловский, Ю. Н.: Имитационные модели и системы. М.: Фазис, 2000.
- [13] Битюцков, В. И., Войцеховский, М. И., и Иванов, А. Б.: *Математическая энцик*лопедия, том 4. М.: Советская Энциклопедия, 1984.
- [14] Marquardt, D. W.: An algorithm for least-squares estimation of non-linear parameters. Journal of the Society of Industrial and Applied Mathematics, 11(2):431–441, 1963.
- [15] More, J. J.: The Levenberg-Marquardt algorithm: Implementation and theory. In G.A. Watson, Lecture Notes in Mathematics 630, pages 105–116. Springer-Verlag, Berlin, 1978. Cited in Åke Björck's bibliography on least squares, which is available by anonymous ftp from math.liu.se in pub/references.