http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

Intro to Probability

Instructor: Alexandre Bouchard Fall 2014

Plan for today:

- Combinatorial examples, continued.
 - Order vs. unordered.
 - With replacement vs. without replacement.

http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

Logistics

- First Webwork problems
 - will be released at 5:00 today
 - if you have issues,
 - about material: use piazza
 - technical: webwork feedback/help system
 - due exactly I week later
 - grade will be the max of:
 - this webwork set
 - clicker questions up to Sep 19

http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

Logistics

- Office hours
 - Sean: Tue, 4-5, ESB 3125
 - Alex:Wed, 3-4, ESB 3125 [first one today]
 - If you cannot make it to both (we have minimized that number), additional office hours by appointment

Disclaimer

- Workload and difficulty increases in the second half of semester (continuous probability)
- Make sure you have the time to stay on top of the material
- Good things to review from pre-requisite courses:
 - set theory notation
 - bivariate integration

Review: Partitions and probability tree diagrams

Partition of an event

F

The events E_i form a partition of the event F if:

- 1. The union of the E_i 's is equal to F: $\bigcup_i E_i = F$
- 2. The E_i 's are disjoint: if $i \neq j$, then $E_i \cap E_j = \emptyset$

Why is this useful?

Note: as consequence of I, 2 and the axioms of probability, $P(F) = P(E_1) + P(E_2) + P(E_3) + P(E_4)$

Partition of an event

The events E_i form a partition of the event F if:

- 1. The union of the E_i 's is equal to F: $\bigcup_i E_i = F$
- 2. The E_i 's are disjoint:

if
$$i \neq j$$
, the Axioms:

- a) $0 \le P(E) \le I$
- Why is this use c) P(S) = Ic) $P(E \cup F \cup ...) = P(E) + P(F) + ...$

Note: as consed if E, F, ... are all disjoint

probability, $P(F) \stackrel{r}{=} P(E_1) + P(E_2) + P(E_3) + P(E_4)$

Def. 5

Probability tree diagram

Friday, September 12, 14

Ex. 12 Probability that *n* coins are all tails

Recall:

Probability when outcomes are equally likely:

$$P(E) = |E| / |S|$$

of outcomes of interest
of outcomes

Here:
$$|E| = ?$$

Probability that *n* coins are all tails

Recall:

Probability when outcomes are equally likely:

$$P(E) = |E| / |S|$$

of outcomes of interest
of outcomes

Here:
$$|E| = 1$$
 $|S| = ?$

Fundamental rule of counting

Fundamental rule of counting

Probability of winning the lottery

- You pick your number when you buy a ticket
- The lottery company draws at random from an urn containing n numbered balls {1, 2, ..., n} [example: n=5]

 without replacement (each number is either picked 0 or 1 time, not more)

Probability of winning the lottery (without replacement)

- You win if the numbers you picked match those from the draw.
- See example on the right, do you win in this case?

Probability of winning the lottery (without replacement)

- You win if the numbers you picked match those from the draw.
- See example on the right, do you win in this case?
 - a) if order matters, NO
 - b) if order does not matter, YES

Note: most lottery use (b), but let's do (a) first---it is simpler

Ex. 13a

Probability of winning the lottery (order matters, without replacement)

Recall:

Probability when outcomes are equally likely:

$$P(E) = |E| / |S|$$

of outcomes of interest # of outcomes

Here:
$$|E| = 1$$
 $|S| = ?$

$$k = \text{number of draws} = 3$$

 $n = \text{number of ball in urn} = 5$

Ex. 13a

Find |S|:

A) 243

B) 125

C) 60

D) 15

Ex. 13b

Probability of winning the lottery (without replacement)

a) if order matters.

$$|S| = \frac{n!}{(n-k)!}$$

b) if order does not matter:

$$|S| = ?$$

Draw result:

Your picks:

12, 31, 10, 23, 8, 45

- Group the leaves that are equivalent when order is ignored

- How many in each group?

k = number of draws = 3n = number of balls in urn = 5

- Group the leaves that are equivalent when order is ignored
- How many in each group?

6 in each group

more generally, k!

$$k = \text{number of draws} = 3$$

 $n = \text{number of balls in urn} = 5$

Friday, September 12, 14

Important reading

- You have a DNA sequence
 ACAT
 - how many distinct genomes can you form with these 8 nucleotides (letters)
 - answer is not 4!, because we have 2 A's
 - it is 4!/2 = 4! / (2! 1! 1! 1!)
- Make sure you understand how to solve that problem (in first posted readings)
- Idea is similar to what we just saw (overcounting and dividing)

Ex. 13b

Probability of winning the lottery (without replacement)

a) if order matters.

$$|S| = \frac{n!}{(n-k)!}$$

b) if order does not matter:

$$|S| = \frac{n!}{k!(n-k)!}$$

Draw result:

Your picks:

12, 31, 10, 23, 8, 45

Ex. 13b

Probability of winning the lottery (without replacement)

a) if order matters.

$$|S| = \frac{n!}{(n-k)!}$$

b) if order does not matter:

$$|S| = \frac{n!}{k!(n-k)!}$$

Note:

List where

- order does not matter ←→ Set
- items appear at most once

Notation:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

'Elementary permutations and combinations'

a) if order matters.

$$|S| = \frac{n!}{(n-k)!}$$

'Number of permutations' Notation: nPk

of list of size k, where each object is taken without replacement from n possible objects'

b) if order does not matter: 'Number of combinations'

$$|S| = \frac{n!}{k!(n-k)!}$$

Notation: nCk

 $|S| = \frac{n!}{k!(n-k)!}$ # of sets of size k, where each object is taken without replacement from n possible objects'

Example: counting sets

 A group of 20 strangers are in a room. Everyone wants to introduce themselves to everyone.
 How many handshakes?

A. 400

B. 200

C. 190

D. 40

Example: counting sets

- A group of 20 strangers are in a room. Everyone wants to introduce themselves to everyone.
 How many handshakes?
- Counting unordered pairs (sets with two elements)
 (sets: structures where order does not matter, and repeats are ignored)

Example: counting sets

 A group of 20 strangers are in a room. Everyone wants to introduce themself to everyone. How many handshakes?

• Answer:

$$\binom{20}{2}$$
 = $\frac{20!}{2! \ 18!}$ = $\frac{20 \cdot 19}{2}$ = 190

Example: counting sets

 A group of 20 strangers are in a room. Everyone wants to introduce themselves to everyone.
 How many handshakes?

A. 400

B. 200

C. 190

D. 40

Classrooms

 There are 3 classrooms and 9 students in a school. The classrooms have the following

capacities:

Classroom (a): 4 students

Classroom (b): 3 students

Classroom (c): 2 students

Hint: first level of the tree: all the assignments of classroom(a); second level: all the assignments of classroom(b); ...

- i) How many assignments are possible?
 - A. 1,260
 - B. 362
 - C. 125
 - D. 24

- ii) What is the probability that you get assigned to class (a)
 - A. I/3
 - B. 4/9
 - C. 2/3
 - D. 7/9