SS08 pemb5635

December 4, 2022

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt # read in the plotting library matplotlib and

→call it plt
import statsmodels.api as sm # import stats package
```

Can you come up with a qualitative explanation for why superconductivity might break down und

First we must understand how temperature breaks up superconductivity. Based on the fact that nature favours lower energy states. There is a band gap energy (delta) between coupled paierd electrons and normal state electrons. If temperature(kT) is comparable to delta, essentially exciting the paired electrons, super conductivity breaks. In terms of fermi surface in k space, to illustrate band gap energy delta, one can draw another surface surrounding the original fermi surface, having a gap corresponding to delta. There are no states available in between those surfaces. Increasing T will increase the surface and at a certain T, two surfaces will meet, corresponding to breaking of symmetry. To explain why superconductivity breaks at high current, we use the ferim surface logic again. When current is turned on, fermi surface, as a sphere, gains a net momentum shfiting it. For high current densities, the sphere will be shfited until it contacts the other surface at delta gap energy, i.e. breaking superconductivity.

1 4.1 Observation of the normal-superconducting transition using the resistivity of tin wire

1.1 4.1.1 Preliminary measurements

- 1. Why is the four wire method preferable to using just two wires? To avoid contact messing up resistance measurements
- 2. Why is it necessary to reverse the current through the sample? Applying current on the wire creates a Temperature gradient. By reversing current direction, one can cancel out that effect. Temperature is an important factor for this experiment
- 3. How can one check that the current used for the resistance measurement is ont heating the sample? Just leave it and see if heats up. What is important is the rate of temperature difference.

1.2 4.1.1 The normal-superconducting transition

```
[2]: #Pressure to Temperature Converter

def pressure2temp(p_mbar): ## converts pressure of helium in mbar to

temperature in K

x = np.log10(p_mbar) ##note that log10() is used as opposed to log()

T = 1.24177 + 0.23793*(x) + 0.36207*(x**2) - 0.33188*(x**3) + 0.

20738*(x**4) - 0.05294*(x**5) + 0.00552*(x**6)

return T

[3]: #Read File

ResistivityDataRemote = pd.read_csv("./../data/resistivity/

ResistivityDataRemote.txt", "\t", names=["Helium Pressure", "V+", "V-"])
```

Note that -V just indicates that current direction is flipped

```
[4]: #Calculation
helium_temp = pressure2temp(helium_pressure)
v_average = (v_plus - v_minus)/2 #Note the - in front of v_minus

resistance_plus = v_plus/current
resistance_minus = v_minus/current
resistance_average = v_average/current
```

```
[5]: #Plot

plt.plot(helium_temp, resistance_plus)

## plt.title('Pressure against V')

plt.xlabel('Helium Temperature (K)') # Plot a label on x axis of Xlabel on graph

plt.ylabel('Resistance Plus (Ohms)') # Plot a label on x axis of Xlabel on graph

plt.show()

plt.plot(helium_temp, resistance_minus)

## plt.title('Pressure against V')

plt.xlabel('Helium Temperature (K)') # Plot a label on x axis of Xlabel on graph

plt.ylabel('Resistance Minus (Ohms)') # Plot a label on x axis of Xlabel on_u

Graph

plt.show()
```

```
plt.plot(helium_temp, resistance_average)

## plt.title('Pressure against V')

plt.xlabel('Helium Temperature (K)') # Plot a label on x axis of Xlabel on graph

plt.ylabel('Resistance Average (Ohms)') # Plot a label on x axis of Xlabel on_u

-graph

plt.show()
```



```
##Selecting transition range
helium_temp_trans = []
resistance_plus_trans = []
for i in range(len(resistance_plus)):
    if resistance_plus[i] > 0.02 and resistance_plus[i] < 0.08:
        helium_temp_trans.append(helium_temp[i])
        resistance_plus_trans.append(resistance_plus[i])
helium_temp_trans = np.array(helium_temp_trans)
resistance_plus_trans = np.array(resistance_plus_trans)

## add linear fit
X = sm.add_constant(helium_temp_trans) # add a constant to fit
results = sm.OLS(resistance_plus_trans, X).fit() # save results of fit</pre>
```


OLS Regression Results

=========			=====	=====	=====			
Dep. Variable):			У	R-sqı	ıared:		0.984
Model:			(OLS	Adj.	R-squared:		0.981
Method:		Least	Squa	res	F-sta	atistic:		477.1
Date:		Wed, 20	Jan 20	021	Prob	(F-statistic):		2.04e-08
Time:			18:19	:58	Log-I	Likelihood:		46.697
No. Observati	ons:			10	AIC:			-89.39
Df Residuals:				8	BIC:			-88.79
Df Model:				1				
Covariance Ty	pe:	n	onrob	ust				
=========		======	=====	=====			======	
	coef	std	err		t	P> t	[0.025	0.975]
const	-3.4412	·	160	 -21	 .520	0.000	-3.810	-3.072
x1	0.9450			21		0.000	0.845	1.045
	======	======	=====	=====	=====		:======	4 070
Omnibus:				211		in-Watson:		1.873
Prob(Omnibus)	:		0.3	331	Jarqı	ıe-Bera (JB):		0.893
Skew:			-0.	181	Prob	(JB):		0.640
Kurtosis:			1.	581	Cond	. No.		791.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

/usr/local/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1604:
UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=10
"anyway, n=%i" % int(n))

3.693474566320118

Note that Critical(Transition) Temperature isn't really defined precisely. A bit arbitrary. We chose the middel point Why is the width of the transition finite? This phenomenon is a 2nd order Gibbs phase transition. Finite width comes from impurities of the material used.

1.3 4.1.3 The critical magnetic field

```
[9]: file=pd.read_csv("./../data/resistivity/ProbeA3mB", "\t")
file
pressure2temp(3)
```

[9]: 1.411170942905004

From script, we know that shunt giving 0.5V/A provides 0.018T/A at the center. (Conversion of Volt to Tesla)

```
[10]: #Grand scheme
      pressureList = [3 ,21, 43, 58, 74, 92, 130, 170, 210, 250, 290, 330, 370, 400, L
       △430, 450, 473, 500, 520, 540, 560, 570, 595, 610, 630, 890 ] #1010 not using
      ratio = 0.018/0.5
      Bc = []
      for num in pressureList:
          filename = "./../data/resistivity/ProbeA"+str(num)+"mB"
          df = df = pd.read_csv(filename, "\t",names=["Acquisition Time (ms)", "Shuntu
       ⇔Voltage (V)", "Sample Voltage (V)", "Integrated Sample Voltage (V)", "N/A", "N/
       →A2"])
          df = df.drop(df.index[range(0,2)])
          B = df["Shunt Voltage (V)"].values.astype(float)*ratio
          V = df["Sample Voltage (V)"].values.astype(float)
          B_{trans} = []
          V trans = []
          for i in range(len(V)):
              if V[i] > 0.00001 and V[i] < 0.00008:
                  B trans.append(B[i])
                  V_trans.append(V[i])
          B_trans = np.array(B_trans)
          \#B\_midpoint = (B\_trans[0] + B\_trans[len(B\_trans)-1])*0.5
          if len(B_trans) != 0:
              Bc.append(( B_trans[0]+ B_trans[len(B_trans)-1] )*0.5 )
```

```
[11]: #Plot Bc and T
  temp = []
  for i in range(len(pressureList)):
      temp.append(pressure2temp(pressureList[i]))
  temp_c = temp[:len(Bc)]

temp_square = [element**2 for element in temp_c]
  temp_square = np.array(temp_square)
```

```
plt.plot(temp_square,Bc)
plt.xlabel('Temperature^2 (K^2)') # Plot a label on x axis of Xlabel on graph
plt.ylabel('Magnetic Field (T)') # Plot a label on x axis of Xlabel on graph
plt.show()
```


OLS Regression Results

 Dep. Variable:
 y
 R-squared:
 0.998

 Model:
 0LS
 Adj. R-squared:
 0.998

 Method:
 Least Squares
 F-statistic:
 1.153e+04

 Date:
 Wed, 20 Jan 2021
 Prob (F-statistic):
 2.01e-31

Time: No. Observations: Df Residuals: Df Model: Covariance Type:		18:19:59 24 22 1 nonrobust		Log-Likelihood: AIC: BIC:			159.30 -314.6 -312.2
	coef	std err		t	P> t	[0.025	0.975]
const x1	0.0284 -0.0020	0.000 1.9e-05	146. -107.		0.000	0.028 -0.002	0.029 -0.002
Omnibus: Prob(Omnibu Skew: Kurtosis:	:======= us):	0	.972 .083 .766 .822		•		1.512 3.020 0.221 29.7

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[13]: ##Procedure for one pressure

df = pd.read_csv("./../data/resistivity/ProbeA58mB", "\t",names=["Acquisition

→Time (ms)", "Shunt Voltage (V)", "Sample Voltage (V)", "Integrated Sample

→Voltage (V)","N/A","N/A2"])

```
df = df.drop(df.index[range(0,2)])
df
#plot B versus time
ratio = 0.018/0.5
t = df["Acquisition Time (ms)"].values.astype(float)
B = df["Shunt Voltage (V)"].values.astype(float)*ratio
V = df["Sample Voltage (V)"].values.astype(float)
iV = df["Integrated Sample Voltage (V)"].values.astype(float)
plt.plot(B, V)
## plt.title('Pressure against V')
plt.xlabel('Magnetic Field (T)') # Plot a label on x axis of Xlabel on graph
plt.ylabel('Sample Voltage (V)') # Plot a label on x axis of Xlabel on graph
plt.show()
#Extract Bc
B_trans = []
V_trans = []
for i in range(len(V)):
    if V[i] > 0.00001 and V[i] < 0.00008:
       B_trans.append(B[i])
       V_trans.append(V[i])
B_trans = np.array(B_trans)
B_midpoint = ( B_trans[0] + B_trans[len(B_trans)-1] )*0.5
plt.plot(B,V)
plt.plot(B_trans, V_trans)
plt.xlabel('Magnetic Field (T)') # Plot a label on x axis of Xlabel on graph
plt.ylabel('Sample Voltage (V)') # Plot a label on x axis of Xlabel on graph
plt.show()
```


[14]: results.params[0]

[14]: 0.028401566892467554

```
[15]: #Calculate Tc
    Tc = np.sqrt(results.params[0]/abs(results.params[1]))
    print("Critical Temperature: "+str(Tc)+"K")
```

Critical Temperature: 3.7305713495770574K

Questions: Can you explain the sampe of the transition between superconducting and normal behaviour Until B=0.014T, for all temperature, material is superconducting. After that point, there is a small increase in resistance(sample voltage, they are similar as current is 1), and superconductivity is broken around critical magnetic field. How can we explain the small increment before critical magnetic field? Think about a sphere in uniform magnetic field. Due to boundary conditions, magnetic flux density are squeezed together at the edges of the sphere, increasing the density. So, flux density at edges are actually larger than applied field. For cylinder, it gives a factor of 2. Now, the probe for this experiment is made of a coil of wire wrapped around a rectangular material. The wires on the sides that are perpendicular to appiled field will experience the above effect. So, at B=0.014T, the two sides will experience "early" as if there is 0.028T. This tendency can be seen in graphs. Does the transition look different for upsweeps and downsweeps of the magnetic field? This is a fundamental property of superconductors. When downsweeping, around critical magnetic field, a loop of current is produced around the superconducting path of the material, as there is no resistance. Then, the decrement of magnetic field is countered by the increase of current in superconductors because induced current is the rate of flux change. So after critical magnetic field, magentic field inside the superconductor will not decrease. There will still be large flux density inside. Won't see the tenedency of the left sied of the above graph.

1.4 4.2 The Meissner Effect in Tin

[16]:	Acquisition	Time (ms)	Shunt Voltage (V)	Sample Voltage (V)	\
2		9933750	0.0113017242	5.7455022E-6	
3		9934000	0.0232247586	2.1404448E-6	
4		9934250	0.036030491	4.1537169E-6	
5		9934500	0.0477310741	3.7277462E-6	
6		9934750	0.060276027	4.0416193E-6	
		•••	•••	•••	
238		9992750	0.0516333573	-2.11892674E-5	
239		9993000	0.0393370663	-2.11533963E-5	
240		9993250	0.0268615244	-1.68712794E-5	
241		9993500	0.0145754424	-1.47638501E-5	
242		9993750	0.0024378459	-1.18358686E-5	

Integrated Sample Voltage (V) N/A

```
2
                       4.5455022E-6 NaN
3
                       5.4859469E-6
                                       NaN
4
                       8.4396638E-6
                                       {\tt NaN}
5
                         1.096741E-5
                                       {\tt NaN}
6
                      1.38090293E-5
                                       {\tt NaN}
238
                     1.299903031E-4 NaN
239
                     1.076369068E-4
                                       {\tt NaN}
240
                      8.95656274E-5
                                       NaN
241
                      7.36017773E-5
                                       NaN
242
                      6.05659088E-5 NaN
```

[241 rows x 5 columns]

```
[17]: B = ddf["Shunt Voltage (V)"].values.astype(float)*ratio
iV = ddf["Integrated Sample Voltage (V)"].values.astype(float)
V = ddf["Sample Voltage (V)"].values.astype(float)

plt.plot(B,iV)
plt.xlabel('Magnetic Field (T)') # Plot a label on x axis of Xlabel on graph
plt.ylabel('Integrated Sample Voltage (V)') # Plot a label on x axis of Xlabel
→on graph
plt.show()
```


4.221493495675776

Note that it is a stragiht line. It is because the temperature is above critical temperature, so no superconductivity can be seen.

```
[19]: #Seeing where transition part is

ddf = pd.read_csv("./../data/meissner_effect/ProbeB80mbar",

\( \times \) "\t",names=["Acquisition Time (ms)", "Shunt Voltage (V)", "Sample Voltage
\( \times \) (V)","Integrated Sample Voltage (V)","N/A"])
```

```
ddf = ddf.drop(ddf.index[range(0,2)])
B = ddf["Shunt Voltage (V)"].values.astype(float)*ratio
iV = ddf["Integrated Sample Voltage (V)"].values.astype(float)
B_trans = []
iV_trans = []
before = iV[0]
for i in range(int(len(iV)/2)):
    after = iV[i]
    if after-before >= 0.0001:
        B_trans.append(B[i])
        iV_trans.append(iV[i])
    before = after
B_trans = np.array(B_trans)
plt.plot(B,iV)
plt.plot(B_trans,iV_trans,label='transition region')
plt.xlabel('Magnetic Field (T)') # Plot a label on x axis of Xlabel on graph
plt.ylabel('Integrated Sample Voltage (V)') # Plot a label on x axis of Xlabel
 ⇔on graph
plt.legend()
plt.show()
```



```
[20]: #Grand Scheme
```

```
pressure_list_m =__
 \rightarrow [2,20,41,58,80,98,132,165,190,220,238,270,320,360,390,410,440,460,470,490,525,$40,590,690,7
Bc m = []
for num in pressure list m:
    filename = "./../data/meissner_effect/ProbeB"+str(num)+"mbar"
    ddf = pd.read_csv(filename, "\t",names=["Acquisition Time (ms)", "Shunt_
 →Voltage (V)", "Sample Voltage (V)", "Integrated Sample Voltage (V)", "N/A"])
    ddf = ddf.drop(ddf.index[range(0,2)])
    B = ddf["Shunt Voltage (V)"].values.astype(float)*ratio
    iV = ddf["Integrated Sample Voltage (V)"].values.astype(float)
    plt.plot(B,iV)
    plt.xlabel('Magnetic Field (T)') # Plot a label on x axis of Xlabel on graph
    plt.ylabel('Integrated Sample Voltage (V)') # Plot a label on x axis of
 \hookrightarrow Xlabel on graph
    B_{trans} = []
    iV_trans = []
    before = iV[0]
    for i in range(int(len(iV)/2)):
        after = iV[i]
        if after-before >= 0.0001:
            B_trans.append(B[i])
            iV_trans.append(iV[i])
        before = after
    B_trans = np.array(B_trans)
    \#B\_midpoint = (B\_trans[0] + B\_trans[len(B\_trans)-1])*0.5
    if len(B_trans) != 0:
        Bc_m.append(( B_trans[0]+ B_trans[len(B_trans)-1] )*0.5 )
Bc_m = np.array(Bc_m)
plt.show()
temp_m = temp[:len(Bc_m)]
temp_square_m = [elements**2 for elements in temp_m]
temp_square_m = np.array(temp_square_m)
plt.plot(temp_square_m,Bc_m)
plt.ylabel('Magnetic Field (T)') # Plot a label on x axis of Xlabel on graph
plt.xlabel('Temperature^2(K^2)') # Plot a label on x axis of Xlabel on graph
plt.show()
```


How to explain the shape of the transition between superconducting and normal behaviour? note that integrated sample voltage repersents flux inside the material. we can see a very small increment of flux around 0.014T as explained previously. Another interesting part of this graph is

the downsweep of magnetic field. One would expect flux to be constant despite the decrease of B because, as explained previously, as soon as the material hits critical field, a loop of current is induced and the current will cancel out the effect of decreasing magnetic field. However that is not the case in here. The reason lies in Tin. Tin has an abnormal tendency to show semiconductor characteristics at low temperature. (Tin's phase transition). The tiny dip during downsweep is due to the small portion of Tin acting metallic but soon to be dominated by semi-conducting attributes.

OLS Regression Results

=========	=======	========	=====	=====	=========		=======
Dep. Variable	e:		У	R-sqı	uared:		0.993
Model:			OLS	Adj.	R-squared:		0.993
Method:		Least Squ	ares	F-sta	atistic:		2777.
Date:	1	Wed, 20 Jan	2021	Prob	(F-statistic):	:	4.62e-22
Time:		18:2	0:00	Log-l	Likelihood:		126.36
No. Observat	ions:		21	AIC:			-248.7
Df Residuals	:		19	BIC:			-246.6
Df Model:			1				
Covariance T	ype:	nonro	bust				
=========	======	========		=====			=======
	coef				P> t	[0.025	0.975]
const	0.0307				0.000	0.030	0.032
x1	-0.0021	3.95e-05	-52	.693	0.000		
Omnibus:	======	0	 .648	===== Durb:	========= in-Watson:	=======	0.521
<pre>Prob(Omnibus):</pre>		0.723		Jarque-Bera (JB):			0.289
Skew:	Skew: 0.284			Prob			0.865
Kurtosis:		2	.910	Cond	. No.		27.4

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

B_0 percentage difference: 7.607613149575059% Critcal Temperature: 3.8440181250919583K 0.02951254958304521

```
[23]: #gamma
gamma = (2/(4*np.pi*10**(-7)))*(results_m.params[0]/T_c_m)**2
print(gamma)
T_c_m
```

101.77977944186577

[23]:	3.8440181250919583
[]:	
[]:	
[]:	