EC331 Presentation

Ed Jee

February 14, 2018

- Introduction
- 2 Methodology
- Operation of the control of the c
- Results I
- **Model Extensions**
- 6 Results II
- Conclusion

Introduction

Research Objectives

- Aim to estimate asset market responses to terror
 - ▶ Both short-term responses in the order of days or weeks.
 - Longer term responses to 'terror waves' e.g. Good Friday Agreement, rise of Islamic terror.
- Use a mixture of techniques to identify responses, primarily in a Bayesian setting.
 - Event study.
 - Hierarchical logistic regression.
 - Hierarchical shrinkage models.
- Short term responses are characterised by extreme heterogeneity.
 - Currently struggling to accurately pin this down.
- Long run responses TBC.

Context

- Terrorism seems to have a negative effect on economies.
 - ▶ Abadie & Dimisi (2006) look at agglomeration economies of scale.
 - ▶ Abadie & Gardeazabal (2003) synthetic controls and ETA.
 - ► Enders & Sandler (2008) Spanish tourism VAR.
- Brodeur (Forthcoming) uses same dataset to address same question with a US focus.

Context II

- There's a large amount of finance literature that explores asset market responses to large attacks.
 - ▶ Almost all the current work looks at big events such as the Barcelona bombings, 9/11 and 7/7.
- Tend to find that terror attacks act as a negative shock and banking sector is often most affected, Chesney et al. (2011).
- Not much evidence of firms adjusting terror expectations.
 - A terror shock today is pretty similar to one a decade ago and high intensity/high frequency windows aren't associated with any terror 'fatigue'.
- Zussman & Zussman (2006, 2008) find heterogenous asset market responses depending on type of attack.
 - ► Killing high ranking politicans causes the market to fall, killing generals causes a positive bump. (In the context of the Israeli-Palestinian conflict)

6 / 55

Methodology

7 / 55

Event Study

Event Study I

- Formulae for cumulative abnormal returns:
 - $AR_{i,\tau} = R_{i,\tau} E[R_{i,\tau}|\Omega_{i,\tau}]$
 - $CAR_{i(\tau_1,\tau_2)} = \sum_{t=\tau_1}^{\tau_2} AR_{i,t}$
- And then taking an average: $CAAR_{(\tau_1,\tau_2)} = \frac{1}{N} \sum_{i=1}^{N} CAR_{i(\tau_1,\tau_2)}$
- There's a range of different ways of specifying $E[R_{i,\tau}|\Omega_{i,\tau}]$
- But for index data can only use constant mean return model.

Event Study II

Conditional Probability

11 / 55

Conditional Probability Method I

- 'Pioneered' by Chesney, Reshetar and Karaman (CRK) in 2011 and never touched since.
- We have a conditional distribution:

$$\pi(z|x) \equiv P(Z_i \leq z|X_i = x)$$

- Where Z_i are index returns and X_i is a lagged vector of Z_i .
- Let $Y_i = I(Z_i \le z)$ then $E(Y_i|X_i = x) = \pi(z|x)$.
- Basically a regression of Y_i on X_i will give us the probability, conditional on the value of lagged returns, of observing $Z_i \leq z$.

Conditional Probability Method II

Applying this to terror attacks:

$$Y_{it} = I(R_{it} \leq r_{i,terror})$$

- where R_{it} are the index returns and $r_{i,terror}$ is the observed event day terror return.
- Our X_{it} variable is equal to $R_{i,t-1} r_{i,pre_terror}$, that is, lagged index values minus the return the day before the attack.

13 / 55

Conditional Probability Method III

- In words:
 - 1 Take an event and calculate the event day return.
 - ② For the 200 days preceding the event construct an indicator variable Y_{it} that takes value 1 if returns are lower than the event day return and 0 otherwise
 - **3** Our X_{it} variable is found by lagging returns by one day and subtracting the return of the day *before* the event.
 - **3** Regress Y_{it} on X_{it} and plug in our event day return to obtain a fitted out-of-sample value.
- This fitted value can be thought of as the probability of observing a return on the day of the attack more extreme than the return actually observed.

Conditional Probability Method IV

- CRK decide that an event is abnormal if there's less than a 10% probability of observing something worse than the event day return and extreme if less than 5%.
- The advantages of this method are that it's less susceptible to twiddling/p-hacking than the event study where a range of hyperparameters are set by the researcher.
- CRK use a local polynomial regression to fit the model.
 - This can be considered a bad idea.
- I instead use a logistic regression, however I immediately run into a problem.
- Some events are too extreme.
 - There is 'separation' where our binary Y variable always equals 0 for some events.

Conditional Probability: A Bayesian Approach

Bayesian Primer

- Bayesian econometrics relies on a researcher specifying his/her beliefs about likely parameter values (a prior) and a likelihood function.
- We observe data y conditional on some parameter(s) θ . Using Bayes' rule:

$$p(\theta|y) = \frac{p(y|\theta)\pi(\theta)}{p(y)}$$

- Where $p(y) = \int p(y|\theta)\pi(\theta)d\theta$.
- Specifying a prior lets us overcome the problem of separation.
 - ► CRT use divine intervention/ignore the problem/an unpublished manuscript set to rock the econometrics world.

No Pooling

 For each terror attack I estimate a separate logistic regression with 'weak' priors:

$$lpha \sim \mathit{N}(0,1)$$

 $eta \sim \mathit{t}(
u = 3, \mu = 0, \sigma = 2.5)$

$$y_i \sim N(\alpha + \beta x_i, \epsilon_i)$$

- α is the intercept prior and β the slope prior.
- These are standard logistic weak priors from the literature e.g. Gelman et al. (2008), Ghosh et al. (2015).
 - ► Ghosh et al. deal specifically with the case of separation in logistic regression.

Complete Pooling

- Combine the data from all terror attacks and estimate $\hat{\beta}$, this potentially helps increase the precision of our results and deal with separation.
- Interpretation becomes a little sketchy.
- All the variation in our fitted conditional probability estimates will only come from variation in event day returns and pre-event day returns.
- Identical priors to the no pooling case.

Hierarchical Model

- Previously I set the distribution parameters of α and β to some fixed constant that seemed reasonable.
- Instead I can give these priors their 'own' priors hyperpriors.

$$\begin{split} &\alpha_{e} \sim \textit{N}(\gamma_{e}, \sigma_{\gamma}) \\ &\beta_{e} \sim \textit{t}(\nu = 3, \mu_{e}, \sigma_{\mu}) \end{split}$$

$$&\gamma_{e} \sim \textit{N}(0.5, 0.5), \quad \sigma_{\gamma} \sim \textit{N}(1, 5) \\ &\mu_{e} \sim \textit{N}(0, 1), \quad \sigma_{\mu} \sim \textit{N}(2.5, 5) \end{split}$$

$$&y_{ie} \sim \textit{N}(\alpha_{e} + \beta_{e}x_{ie}, \sigma_{ye}^{2}) \end{split}$$

Hierarchical Model II

- This effectively means we partially pool the data.
- If the events are considered identical and there's no heterogeneity across attacks (our $\sigma_{\gamma,\mu}=0$) the model is identical to the pooled model - we 'shrink' the estimates towards an overall average effect.
- However, if there is event heterogeneity present, estimates are not shrunk but allowed to vary i.e. shrinkage is inversely proportional to $\sigma_{\gamma,\mu}$.

Hierarchical Model III

- You can think of this as there being some underlying population terror parameter Θ .
- Each terror attack is a random draw from this Θ that we observe.
- Each individual attack gives us slightly different results.
- We're not sure if this is because we're estimating different underlying population parameters or because of noise/unobserved heterogeneity.
- So we measure the variance of our attacks and decide to pool or not-pool based off this.

Hierarchical Model IV

- By specifying hyperpriors for both α and β we have a varying slope and varying intercept model.
 - Traditional fixed effects would be sort of analogous to a varying intercept model.
- Methods like this are often used when we have several separate experiments trying to estimate roughly the same effect.
 - e.g. pooling multiple minimum wage studies to improve our minimum wage estimates or testing the external validity of multiple RCTs answering the same research question.

Data

Terror Data

- Using UK terror data from the Global Terrorism Database compiled by the National Consortium for the Study of Terrorism and Responses to Terrorism (START) at the University of Maryland.
 - Includes a range of variables such as wounded, killed, property damage, target, perpetrator group, ideology and weapon used.
 - Incredibly granular data with information ranging from weapon subtype (was a shotgun, handgun or hands and fists used for instance) to target subtype (was the target a telecommunications facility or military installation)
- There have been 3041 attacks since 1980 in the UK.
- However, when screening for overlapping events this falls to ~ 100 .
- I present results using both a screened and overlapping dataset.
- This is the same dataset used by Brodeur in his forthcoming paper exploring economic costs of terror in US states.

Index Data

- Daily index return data from Thomson Reuters.
- Results reported using FTSE All-Share unless specified otherwise.
 - ▶ Robustness checks performed using a range of alternative indices.
- Financial data is known to have fat tails.
- I use Trapani (2016)'s test for (in)finite fourth moments with a few adaptations and find that I can reject the null of an infinite fourth moment with $p < 10^{-11}$.
- Price data is shown to be non-stationary but transforming to return data (i.e. log-differencing) gives a stationary, I(1), process.

Results I

Five Largest Events

Lockerbie Bombing, Cumulative Abnormal Returns

2.5

0.0

5.0 Days Since Attack 10.0

7.5

London 7/7 Bombings, Cumulative Abnormal Returns

FTSE ALL SHARE Price Index, log differenced - 7 July 2005

Omagh Bombing, Cumulative Abnormal Returns FTSE ALL SHARE Price Index, log differenced - 15 August 1998

0.0

2.5

Cumulate Abnormal Returns (%)

5.0 Days Since Attack 10.0

7.5

1996 Manchester Bombing, Cumulative Abnormal Returns

FTSE ALL SHARE Price Index, log differenced - 15 June 1996

Droppin Well Disco Bombing, Cumulative Abnormal Returns

Five Largest Events Per Decade

10 Day Cumulative Abnormal Returns in Response to Terror Event

4 Day Cumulative Abnormal Returns in Response to Terror Event Top 5 Events per Decade

10 Day Cumulative Abnormal Returns in Response to Terror Event Top 5 Events per Decade

Cumulative Average Abnormal Returns

38 / 55

Rolling mean of Cumulative Abnormal Returns UK Terror Attacks with FTSE ALLSHARE data, 1980-2016

Rolling mean of Cumulative Abnormal Returns, screened

Conditional Probability Results

Conditional Probability of observing more extreme market return on day of attack

Conditional Probability of observing more extreme return on day of attack

Conditional Probability of observing more extreme market return on day of attack

Brief Summary

- The individual event studies indicate that maybe something is going on here - but it's very tenuous.
- When I aggregate up into CAARs this disappears.
- The conditional probability method seems to come to broadly similar conclusions.
- The hierarchical model offers an improvement over the pooled and separate models but it still only points to 2 extreme events and an additional abnormal event.
- Can we do better by looking at the makeup of terror events in more detail?

Model Extensions

Event Heterogeneity - The 'No' Slide

- Can we estimate the determinants of terror responses?
 - Do bombings have greater impacts than shootings?
 - Are lone wolf attacks different to attacks organised by a terror cell?
- Can we find evidence that reconciles the differences between the 5 'largest' attacks and the rest?

Some Issues

- ullet After events have been screened to remove overlap I have ~ 100 events.
- I have somewhere between 70-100 predictors depending on exact specification used.
- OLS typically doesn't fare too well at estimation under these conditions.
- I need to either increase N or reduce K.
 - ► Two approaches: relax screening assumptions and/or perform variable selection.

Ed Jee EC331 Presentation February 14, 2018 48 / 55

Bayesian LASSO

- Two ways to do this:
 - ▶ Estimate traditional OLS with a regularisation parameter and use generic, weak priors (something like N(0,5)).
 - Use a hierarchical shrinkage model with laplace priors on the regression parameters, Park & Casella (2008).

Fig. 1 Conditional (solid lines) and marginal (dashed lines) log-priors for the ridge (left panel) and the lasso prior (right panel). Hyperparameters are chosen such that roughly 90% of the probability mass are contained in the interval [-4, 4], leading to $\lambda = 0.57$ for the lasso (if

no prior is assigned to λ) and, e.g., a = 0.08, b = 0.01 if an additional prior for λ is used. Accordingly, the hyperparameters for the ridge are $\lambda = 0.168 \text{ or } a = 0.28, b = 0.005$

49 / 55

Horseshoe and Horseshoe+ priors

- I can go a few steps further than just aping the frequentist LASSO.
- HS and HS+ priors are another attempt at handling sparsity and variable selection Carvalho et al. (2009), Bhadra et al. (2015).
- They seem to perform better than the LASSO at regularising outliers amongst other things.
- The horseshoe:

$$eta_i \sim N(0, \lambda_i^2 au^2)$$

 $\lambda_i \sim C^+(0, 1)$
 $au \sim C^+(0, au_0^2)$
 $extbf{y} \sim N(eta, \sigma_v^2)$

• Where τ_0 is a function of our expected number of relevant predictors and some other stuff, Piironen & Vehtari (2017).

The Horseshoe+

Pretty similar but I add a half-Cauchy 'mixing' variable:

$$eta_i \sim N(0, \lambda_i^2 au^2)$$

 $\lambda_i \sim C^+(0, \eta_i)$
 $\eta_i \sim C^+(0, 1)$
 $au \sim C^+(0, au_0^2)$
 $oldsymbol{y} \sim N(eta, \sigma_y^2)$

- This improves on the HS's ability to detect signals when signals are 'ultra-sparse'.
- Basically the HS+ has heavier tails and more mass near the origin so you get the best of both worlds in setting stuff to 0 and detecting outliers (i.e. relevant variables).

Results II

Quick Overview of Predictors

Conclusion

- 'Large' events pn the whole negatively impact markets but effects disappear quickly as I move from larger to smaller events.
- Pinning down these 'large' events statistically instead of heuristically isn't going too hot right now.