Note del corso di Analisi matematica 1

Gabriel Antonio Videtta

27 aprile 2023

Integrali impropri

Questo avviso sta ad indicare che questo documento è ancora una bozza e non è da intendersi né completo, né revisionato.

Definizione (integrale improprio semplice). Si dice che l'integrale $\int_a^b f(x) dx$ con $a \in \mathbb{R}$ è un **integrale improprio semplice** in b se f è definita e continua su [a,b) e $b=\pm\infty$, f non è definita in b o non è continua in b. Si definisce in modo analogo un integrale improprio semplice se $b \in \mathbb{R}$.

In modo più generale, si dice che tale integrale è improprio semplice se f è integrabile in [a,b'] \forall b' < b, ma non su [a,b]

Esempio.

- ▶ L'integrale $\int_0^1 \frac{1}{\sin(x)} dx$ è un integrale improprio semplice dacché $\frac{1}{\sin(x)}$ è definito in 1, ma non in 0, ed è continuo e definito su (0,1).
- ▶ L'integrale $\int_0^{\pi} \frac{1}{\sin(x)} dx$, invece, non è improprio semplice, dal momento che $\frac{1}{\sin(x)}$ non è definito né in 0 né in π .
- ▶ L'integrale $\int_{-1}^{1} \frac{1}{x} dx$ non è improprio semplice poiché $\frac{1}{x}$ non è definito in 0.

Definizione. Il valore di $\int_a^b f(x) dx$ è definito come $\lim_{b' \to b^-} \int_a^{b'} f(x) dx$, se esiste.

Vi sono dunque quattro comportamenti possibili dell'integrale improprio semplice $\int_a^b f(x) dx$:

(a) esiste ed è finito (ossia, converge),

- (b) esiste ed è $+\infty$ (ossia, diverge $a + \infty$),
- (c) esiste ed è $-\infty$ (ossia, diverge a $-\infty$),
- (d) non esiste.

Osservazione. Sia $f:[a,b)\to\mathbb{R}$ continua con primitiva $F:[a,b)\to\mathbb{R}$. Allora $\int_{a}^{b} f(x) dx = \lim_{b' \to b^{-}} [F(b')] - F(a)$.

 $\int_{a}^{+\infty} e^{-x} dx = e^{-a}.$ $\int_{0}^{+\infty} \sin(x) dx \text{ non esiste.}$

Nota. Si impiega la notazione $\int_a^b f(x) \, dx \approx \int_c^d g(x) \, dx$ per indicare che i due integrali hanno lo stesso comportamento.

Osservazione.

- ▶ Il comportamento di $\int_a^b f(x) dx$, se $a \in \mathbb{R}$, non dipende dalla scelta di a.
- ▶ Sia $f:[a,+\infty)\to\mathbb{R}$ con limite $L\neq 0\in\overline{\mathbb{R}}$ a $+\infty$. Allora:

$$\int_{a}^{+\infty} f(x) dx = \begin{cases} +\infty & \text{se } L > 0, \\ -\infty & \text{altrimenti.} \end{cases}$$

 $\blacktriangleright \ \mbox{Se}\ f \geq 0$ in un intorno di b,allora $\int_a^b f(x)\,dx$ esiste sempre e vale o $+\infty$ o un numero finito.