

تمرین پایتون درس اقتصاد مهندسی

استاد درس:

دکتر رضاپور نیاری گزارش کار

شماره دانشجویی	نام و نام خانوادگی
4.11.4778	صبا عبدی
4.117.4.1	پردیس رحیمی نصر
4.11.2911	بيتا باقر
4.11.4477	نيما باقرنژاد

فهرست مطالب:

قدمه:
خش اول:
خش دوم:
خش سوم:
خش چهارم:
خش پنجم:
خش ششم:
خش هفتم:
خش هشتم:
خش نهم:
خش دهم:
خش يازدهم:
فواستهها:
فواستهی اول:
غواسته دوم:
فواسته سوم:

مقدمه:

در ابتدا، برای انجام این تمرین، تقسیمبندی انجام شد و قرار شد هرکدام از اعضای گروه انجام بخشی از تمرین را بر عهده بگیرند. به این صورت که یک نفر مسئولیت نوشتن توابع اقتصاد مهندسی در پایتون را عهدهدار شود و سه نفر دیگر به انتخاب خود هرکدام روی بخشی از فایل ژوپیتر کار کنند و در نهایت یک نفر مسئولیت نوشت گزارش کار را بر عهده بگیرد. نوشنتن heading ها و یک نفر نیز مسئولیت نوشت گزارش کار را بر عهده بگیرد.

در بخش اول یک ریپازیتوری بر روی گیت ایجاد شد که همهی اعضای گروه بتوانند از طریق آن با یکدیگر در ارتباط باشند. سپس در فایل ژوپیتر تعدادی از کتابخانههای مورد نیاز و همچنین توابع اقتصاد مهندسی نوشته شده در فایل پایتون صدا زده شدند.

سپس با توجه به تمرین که نیازمند خوانش تعدادی دیتا از یک فایل اکسل بود، فایل اکسل فراخوانی شد که به سبب آن، دیتاها وارد فایل ژوپیتر شدند که در زیر قسمتی از آن قابل مشاهده است.

	Years	Salary	material 1	material 2	demand	price
	1990	39343.0	200.000000	89.600000	103	1200.0
	1991	46205.0	212.000000	92.662500	104	1375.0
2	1992	37731.0	224.720000	95.807250	101	1451.0
	1993	43525.0	238.203200	99.034819	99	1593.0
4	1994	39891.0	252.495392	102.345626	95	1718.5
	1995	56642.0	267.645116	105.739927	96	1844.0
	1996	60150.0	283.703822	109.217795	95	1969.5
	1997	54445.0	300.726052	112.779099	92	2095.0
8	1998	64445.0	318.769615	116.423489	92	2220.5
	1999	57189.0	337.895792	120.150370	87	2346.0
10	2000	63218.0	358.169539	123.958881	84	2471.5
11	2001	55794.0	379.659712	127.847867	86	2597.0
12	2002	56957.0	402.439294	131.815854	87	2722.5
13	2003	NaN	426.585652	135.861021	78	2848.0
14	2004	57081.0	452.180791	139.981164	79	2973.5
15	2005	61111.0	479.311639	144.173669	78	3099.0
16	2006	67938.0	508.070337	148.435472	78	3224.5
17	2007	66029.0	538.554557	152.763021	71	3350.0
18	2008	83088.0	570.867831	157.152236	73	3475.5
19	2009	81363.0	605.119900	161.598465	72	3601.0

عكس شماره ١

بعد از فراخوانی فایل اکسل، به بررسی و حل بخشهای مختلف تمرین میپردازیم.

بخش اول:

بخش اول از ما خواسته است تا بخشهای خالی جدول را به روش و شیوهی درست پر کنیم. برای این کار نیاز داریم تا یک دید کلی نسبت به دیتای خود داشته باشیم و برای این کار از تابع ()info استفاده می کنیم و نتیجه ی زیر را می گیریم:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 33 entries, 0 to 32
Data columns (total 6 columns):
                Non-Null Count Dtype
                 33 non-null
    Salary
                 30 non-null
                                 float64
    material 1 33 non-null
                                 float64
    material 2 33 non-null
                                 float64
                 33 non-null
                                 int64
                                 float64
dtypes: float64(4), int64(2)
```

عكس شماره ٢

طبق خروجی داده شده، این دیتا شامل ۳ قسمت خالی در ستون salary میباشد که نیازمند پر شدن است.

برای پر کردن این بخشها، ابتدا از میانگین استفاده میکنیم که بعد از محاسبه ی آن و چک کردن دوباره ی ستون salary به این موضوع میرسیم که روند این ستون به صورت صعودی است و بنابراین استفاده از میانگین برای پر کردن بخشهای خالی درست نمی باشد. پس، از متود bfill استفاده کردیم که برای هر قسمت خالی، داده و مقدار قسمت بعدی آن را می نویسد. خروجی را در زیر می توانید مشاهده کنید.

	Years	Salary	material 1	material 2	demand	price
	1990	39343.0	200.000000	89.600000		1200.0
			212.000000	92.662500		
	1992		224.720000	95.807250		
				99.034819		
4	1994	39891.0	252.495392	102.345626		
		56642.0	267.645116			1844.0
	1996	60150.0	283.703822			1969.5
		54445.0	300.726052	112.779099		2095.0
	1998	64445.0	318.769615	116.423489		
						2346.0
10	2000			123.958881		
		55794.0		127.847867		
	2002		402.439294			
		57081.0	426.585652			2848.0
14	2004	57081.0	452.180791	139.981164		
				144.173669		
16	2006	67938.0	508.070337	148.435472		3224.5
		66029.0				
18	2008	83088.0	570.867831			
19	2009		605.119900	161.598465		
20	2010	93940.0	641.427094	166.096436		

عکس شماره ۳

اگر دقت کنید، در عکس شماره ی ۱ در ردیف ۱۳ مقداری برای ستون salary وجود ندارد ولی در عکس شماره ۳ و بعد از استفاده از متود bfill همانطور که مشاهده می کنیم، این بخش، مقدار ردیف ۱۴ را برای خود گرفته است.

بخش دوم:

در این بخش از ما خواسته شده است تا با استفاده از رگرسیون خطی، حقوق چند سال آینده ی کارکنان را پیشبینی کنیم. بنابراین با استفاده از کتابخانه ی sklearn رگرسیون را فراخوانی می کنیم. سپس نیاز داریم تا مدل را بر روی دو متغیر فیت کنیم. بعد از انجام این کار، زمان نوشتن تابع مورد نیاز می باشد و با استفاده از آن، پیشبینی حقوق برای سال های ۲۰۲۳ الی ۲۰۵۰ صورت می گیرد که بخشی از آن در عکس شماره ۴ آمده است.

		Salary
	Years	
0	2023	122055.715909
	2024	124726.758021
	2025	127397.800134
	2026	130068.842246
	2027	132739.884358
	2028	135410.926471
	2029	138081.968583
	2030	140753.010695
	2031	143424.052807
	2032	146095.094920
10	2033	148766.137032
11	2034	151437.179144
12	2035	154108.221257
13	2036	156779.263369
14	2037	159450.305481
15	2038	162121.347594
16	2039	164792.389706
17	2040	167463.431818
18	2041	170134.473930
19	2042	172805.516043
20	2043	175476.558155
21	2044	178147.600267
22	2045	180818.642380
	2046	183489.684492
24	2047	186160.726604

عکس شماره ۴

حال، نیاز است تا همهی حقوقها از سال ۱۹۹۰ الی ۲۰۵۰ به ترتیب در یک جدول قرار بگیرند که نتیجه را می توان در عکس شماره ۵ مشاهده کرد.

عکس شماره ۵

بخش سوم:

در این بخش ابتدا پیشبینی مدل در بخش قبلی را فراخوانی کرده و سپس با استفاده از کتابخانهی matplotlib نمودار خطی رگرسیون و نمودار نقطهای دیتاهای موجود را رسم میکنیم که در زیر میتوان آن را مشاهده کرد.

عکس شماره ۶

سپس، میزان دقت مدل را با استفاده از متود () score بررسی می کنیم که باتوجه به خروجی، این میزان ۹۲ درصد می باشد که مقدار قابل قبولی است.

```
score = model.score(X_salary, Y_salary)
score

0.9298401700878312
```

عکس شماره ۷

بخش چهارم:

در این بخش، با توجه به راهنمایی خود تمرین، ابتدا نرخ افزایش قیمت محصول را برابر با جمع نرخ بهره و نرخ تورم قرار می دهیم که خروجی آن عدد زیر خواهد شد.

عکس شماره ۸

سپس با استفاده از تابع f/p اقتصاد مهندسی، قیمت محصول ۱ در سالهای بعدی را به دست می آوریم و در نهایت با کنار هم گذاشتن قیمت محصول ۱ در سالهای ۱۹۹۰ الی ۲۰۵۰ به روند زیر دست پیدا می کنیم.

	Years	material 1
0	1990	200.000000
1	1991	212.000000
2	1992	224.720000
3	1993	238.203200
4	1994	252.495392
56	2046	1565.647845
57	2047	1569.336533
58	2048	1572.894196
59	2049	1576.330091
60	2050	1579.652518
61 ro	ows × 2 c	columns

عکس شماره ۹

بخش پنجم:

در این بخش، ابتدا قیمت محصول ۲ در سالهای ۱۹۹۰ الی ۲۰۲۲ را در سال پایه که ۱۹۹۰ میباشد، حساب می کنیم که نتیجه به شرح زیر میباشد:

	Years	material 2
	1990	89.60
	1991	88.25
	1992	86.90
	1993	85.55
	1994	84.20
	1995	82.85
	1996	81.50
	1997	80.15
	1998	78.80
	1999	77.45
	2000	76.10
	2001	74.75
	2002	73.40
	2003	72.05
14	2004	70.70
	2005	69.35
	2006	68.00
	2007	66.65
	2008	65.30
	2009	63.95
20	2010	62.60
	2011	61.25
22	2012	59.90

عکس شماره ۱۰

سپس باتوجه به اینکه تقاضا برای محصول ۲ هر سال کاهش یافته است، با استفاده از رگرسیون و تابع نوشته شده، قیمت واقعی محصول در سالهای آینده را پیدا می کنیم اما باتوجه به اینکه در قسمت قبلی این قیمتها در سال پایه حساب شده بودند و تابع به صورتی نوشته شده است که قیمتها را در سال پایه حساب می کند، بنابراین با استفاده از تابع حال به آینده ی اقتصاد مهندسی، این قیمتها را در آینده هم محاسبه می کنیم که بخشی از نتیجه به صورت زیر می شود.

	Years	material 2
	2023	225.393644
	2024	229.571306
	2025	233.603251
	2026	237.464462
4	2027	241.127785
	2028	244.563780
	2029	247.740555
	2030	250.623598
8	2031	253.175594
	2032	255.356231
10	2033	257.121992
		•

عکس شماره ۱۱

بخش ششم:

در این بخش با استفاده از کتابخانهی matplotlib نمودار خطی رگرسیون و نمودار نقطهای دیتاهای موجود مورد نیاز را رسم می کنیم.

عکس شماره ۱۲

سپس با استفاده از متود ()score مقدار دقت مدل را به دست می آوریم که با توجه به خروجی بیش از ۹۰ درصد می باشد.

```
score = model_mterial2.score(X_material2, Y_material2)
score

1.0
```

عکس شماره ۱۳

بخش هفتم: در این بخش، ابتدا سالهای ۲۰۲۳ الی ۲۰۵۰ را به دیتافریم اصلی اضافه می کنیم که نمونهی آن را می توان در عکس شماره ۱۴ مشاهده کرد.

	Years	Salary	material 1	material 2	demand	price	
0	1990	39343.0	200.000000	89.600000	103.0	1200.0	
1	1991	46205.0	212.000000	92.662500	104.0	1375.0	
2	1992	37731.0	224.720000	95.807250	101.0	1451.0	
3	1993	43525.0	238.203200	99.034819	99.0	1593.0	
4	1994	39891.0	252.495392	102.345626	95.0	1718.5	
56	2046	NaN	NaN	NaN	NaN	NaN	
57	2047	NaN	NaN	NaN	NaN	NaN	
58	2048	NaN	NaN	NaN	NaN	NaN	
59	2049	NaN	NaN	NaN	NaN	NaN	
60	2050	NaN	NaN	NaN	NaN	NaN	
61 rows × 6 columns							

عکس شماره ۱۴

سپس فرمول داده شده در فایل تمرین را به صورت تابع نوشته و برای سالهای ۱۹۹۰ الی ۲۰۵۰ حساب کرده و ستون جدیدی به نام demand_function ایجاد کرده و این مقادیر را وارد آن می کنیم.

	Years	Salary	material 1	material 2	demand	price	demand function
0	1990	39343.0	200.000000	89.600000	103.0	1200.0	1.000000
1	1991	46205.0	212.000000	92.662500	104.0	1375.0	0.980199
2	1992	37731.0	224.720000	95.807250	101.0	1451.0	0.960789
3	1993	43525.0	238.203200	99.034819	99.0	1593.0	0.941765
4	1994	39891.0	252.495392	102.345626	95.0	1718.5	0.923116
56	2046	NaN	NaN	NaN	NaN	NaN	0.326280
57	2047	NaN	NaN	NaN	NaN	NaN	0.319819
58	2048	NaN	NaN	NaN	NaN	NaN	0.313486
59	2049	NaN	NaN	NaN	NaN	NaN	0.307279
60	2050	NaN	NaN	NaN	NaN	NaN	0.301194
61 ro	ws × 7 c	columns					

عکس شماره ۱۵

بخش هشتم:

برای پیشبینی کردن تقاضا در سالهای آینده، مدل رگرسیونی پیادهسازی میکنیم که در آن هم ضریب تقاضا و هم تقاضای اصلی موجود میباشد و سپس بر اساس این مدل، تابع پیشبینی تقاضا را مینویسیم و از آن برای پیشبینی و پر کردن مقادیر خالی ستون demand استفاده میکنیم مانند شکل زیر.

	Years	Salary	material 1	material 2	demand	price	${\bf demand_function}$
	1990	39343.0	200.000000	89.600000	103.000000	1200.0	1.000000
	1991	46205.0	212.000000	92.662500	104.000000	1375.0	0.980199
	1992	37731.0	224.720000	95.807250	101.000000	1451.0	0.960789
	1993	43525.0	238.203200	99.034819	99.000000	1593.0	0.941765
4	1994	39891.0	252.495392	102.345626	95.000000	1718.5	0.923116
56	2046	NaN	NaN	NaN	36.339007	NaN	0.326280
57	2047	NaN	NaN	NaN	35.684136	NaN	0.319819
58	2048	NaN	NaN	NaN	35.042232	NaN	0.313486
	2049	NaN	NaN	NaN	34.413039	NaN	0.307279
60	2050	NaN	NaN	NaN	33.796305	NaN	0.301194
60 2050 NaN NaN NaN 33.796305 NaN 0.301194 61 rows × 7 columns							

عکس شماره ۱۶

بخش نهم:

در این بخش نیز مانند بخشهای پیشین، با استفاده از کتابخانهی matplotlib نمودار خطی برای رگرسیون و نمودار نقطهای برای دیتاهای داده شده رسم می کنیم که خروجی در زیر آمده است:

عکس شماره ۱۷

سپس دقت مدل را به دست می آوریم که با توجه به عکس شماره ۱۸ این دقت برابر با ۹۸ درصد می باشد.

```
demand_score = model_demand.score(X_demand_factor, Y_demand)
  demand_score

0.9849573838479752
```

عکس شماره ۱۸

بخش دهم:

در این بخش، با استفاده از دیتاهای در دسترس و ایجاد مدل مناسب و استفاده از آن برای نوشتن تابع پیشبینی، دیتا فریم جدیدی ایجاد کرده و مقادیر به دست آمده برای سالهای آینده را در آن وارد می کنیم. بخشی از این جدول به شکل زیر میباشد:

	Years	price
0	2023	5358.0
	2024	5483.5
2	2025	5609.0
	2026	5734.5
4	2027	5860.0
	2028	5985.5
	2029	6111.0
	2030	6236.5
8	2031	6362.0
	2032	6487.5
10	2033	6613.0
11	2034	6738.5
12	2035	6864.0
13	2036	6989.5
14	2037	7115.0
15	2038	7240.5
16	2039	7366.0
17	2040	7491.5
18	2041	7617.0
19	2042	7742.5
20	2043	7868.0
21	2044	7993.5
22	2045	8119.0
23	2046	8244.5
24	2047	8370.0

عکس شماره ۱۹

بخش يازدهم:

در این بخش نیز باید با استفاده از کتابخانهی matplotlib، نمودار نقطهای دیتاها و نمودار خطی رگرسیون را رسم کنیم که خروجی در عکس شماره ۲۰ قابل مشاهده است.

عکس شماره ۲۰

سپس دقت مدل را به دست می آوریم که با توجه به محاسبات، دقت برابر ۹۹.۹۹ درصد می باشد که به شدت دقت خوبی است.

score_price_prediction = model_final_price.score(X_final_price, Y_final_price)
score price prediction

0.9999653378861689

عکس شماره ۲۱

خواستهها:

خواستهی اول: قبل از هرکاری دیتابیس خود را با دادههای قبلی و دادههای جدید پیشبینی شده، پر میکنیم.

	Years	Salary	material 1	material 2	demand	price	demand function
0	1990	39343.000000	200.000000	89.600000	103.000000	1200.0	1.000000
1	1991	46205.000000	212.000000	92.662500	104.000000	1375.0	0.980199
2	1992	37731.000000	224.720000	95.807250	101.000000	1451.0	0.960789
3	1993	43525.000000	238.203200	99.034819	99.000000	1593.0	0.941765
4	1994	39891.000000	252.495392	102.345626	95.000000	1718.5	0.923116
56	2046	183489.684492	1565.647845	260.978022	36.339007	8244.5	0.326280
57	2047	186160.726604	1569.336533	262.002218	35.684136	8370.0	0.319819
58	2048	188831.768717	1572.894196	263.026414	35.042232	8495.5	0.313486
59	2049	191502.810829	1576.330091	264.050610	34.413039	8621.0	0.307279
60	2050	194173.852941	1579.652518	265.074806	33.796305	8746.5	0.301194
61 rows × 7 columns							

عکس شماره ۲۲

حالا، باتوجه به خواستهی اول که در واقع محاسبهی سود میباشد، نیاز به درآمدها و هزینههای هرسال داریم که با نوشتن توابعی برای محاسبهی آنها، به آنها میرسیم.

اولین تابعی که از آن استفاده می کنیم، تابع material1_cost_prediction می باشد که در این تابع، هزینه ی محصول ۱ ما محاسبه می شود. در این تابع ابتدا بررسی می شود که آیا دیتای مورد نیاز موجود می باشد یا خیر و اگر موجود نبود، آن را پیشبینی می کند.

سپس تابع material2_cost_prediction نوشته شد که نحوه ی کارکرد آن مانند تابع قبلی بود با این فرق که در این تابع از توابع اقتصاد مهندسی استفاده نشد و صرفا از مدل رگرسیونی که فیت کرده بودیم استفاده کردیم.

سپس توابع دیگر را مانند دو تابع بالا تعریف کردیم. توابع دیگر از جمله توابع برای محاسبهی salary، سپس توابع دیگر و profit بودند.

بعد از تعریف این توابع، با استفاده از تابع ()profit، سود هر سال را حساب می کنیم تا به سالی برسیم که سود منفی شود و می فهمیم از آن سال به بعد شرکت سودده نخواهد بود.

عکس شماره ۲۳

با توجه به عکس شماره ۲۳، سال ۲۰۳۷ آخرین سالی است که در آن سود مثبت میباشد و شرکت از سال ۲۰۳۸ به بعد ضررده می شود.

خواسته دوم:

با توجه به توضیحات این خواسته، نرخ بهره را α درصد در نظر گرفته و سود را در سال پایه α ۲۰۲۱ حساب کرده و سپس سرمایه گذاری سالانه را به دست می آوریم که میزان آن ۳۷۱۲ می باشد.

```
base_year = 2022
investment_money_converted_to_base_year = [f_to_p(year - base_year, 0.05, profit(year) * 0.25) for year in manupe(2022, 2033)]
total_investment = sum(investment_money_converted_to_base_year)*0.2
annual_investment = p_to_a(11, 0.05, total_investment)
annual_investment
3712.2195727508556
```

عکس شماره ۲۴

خواسته سوم:

در این بخش ابتدا سودها را به سال پایه برگردانده و سپس قیمت خرید مناسب را به خریدار پیشنهاد میدهیم که این مقدار ۱۶۴۷۲۹.۴ می باشد.

```
base_year = 2022

profit_converted_to_base_year = [f_to_p(year - base_year, 0.05, profit(year)) for year in range (2023, 2051)]

company_value_in_base_year = sum(profit_converted_to_base_year)

company_value_in_base_year += profit(2022)

minimum_price_for_customer = company_value_in_base_year - 250000

minimum_price_for_customer

164729.3914575706
```

عکس شماره ۲۵

چالشها:

بیشترین و بزرگترین چالشی که به آن برخورد کردیم، مربوط به خواستهی سوم میشد. به دلیل اینکه سال پایه را ۱۹۹۰ در نظر گرفته بودیم و مبلغ نهایی پیشنهادی، منفی در میآمد که توجیحی هم نداشت.

در نهایت به این نتیجه رسیدیم که باید سال پایه را ۲۰۲۲ که زمان خرید فرد خریدار است در نظر بگیریم تا مبلغ نهایی منطقی به دست بیاید.

همچنین در بخش پنجم هم در ابتدا به این صورت در نظر گرفته بودیم که از همان ابتدا مبلغ را در سال آینده محاسبه و پیشبینی کنیم و رگرسیون بزنیم و سپس دقت آن مدل ۹۰ درصد به دست آمد که در برابر دقت محاسبه و پیشبینی مدل کنونی بسیار کمتر میباشد.