Języki asemblerowe

WYKŁAD 2

Dr Krzysztof Balicki

Komponenty systemu komputerowego

- Trzy główne komponenty:
 - Jednostka centralna (CPU) / Procesor;
 - Pamięć;
 - Urządzenia wejścia/wyjścia.

• Komponenty połączone są za pomocą magistrali systemowych.

Komponenty systemu komputerowego

- Szerokość magistrali adresowej wyznacza maksymalną pojemność pamięci, którą może zaadresować procesor.
- Szerokość magistrali danych wyznacza rozmiar danych przesyłanych pomiędzy procesorem, pamięcią i urządzeniami wejścia/wyjścia.
- Przykładowe magistrale:
 - Procesor Pentium: 32 linie adresowe, 64 linie danych
 - Procesor Itanium: 64 linie adresowe, 64 linie danych

- Liczba operandów instrukcji procesora:
 - dwa operandy (instrukcje binarne),
 - jeden operand (instrukcje unarne).
- Liczba rezultatów operacji:
 - jeden rezultat
 - dwa rezultaty (np. operacja dzielenia: iloraz i reszta z dzielenia).
- W przypadku instrukcji binarnych produkujących jeden rezultat w instrukcji podawane są trzy adresy: dwa adresy operandów i jeden adres rezultatu.

• Maszyny trójadresowe (np. procesor MIPS):

instrukcja adresPrzezn adresZrodla1 adresZrodla2

 instrukcja wykonywana jest na wartościach określonych przez adresy adresZrodla1 i adresZrodla2, miejsce wyniku wykonania instrukcji wyznacza adresPrzezn

- Maszyny trójadresowe (np. procesor MIPS) przykład:
- Wyrażenie: A = B + C * D E + F + A

Instrukcja

mult T,C,D

add T,T,B

sub T,T,E

add T,T,F

add A,A,T

Obliczenia

$$T = C*D$$

$$T = B + C*D$$

$$T = B + C*D - E$$

$$T = B + C*D - E + F$$

$$A = B + C*D - E + F + A$$

• Maszyny dwuadresowe (np. procesor Pentium):

instrukcja adresPrzezn adresZrodla

 instrukcja wykonywana jest na wartościach określonych przez adresy adresPrzezn i adresZrodla, miejsce wyniku wykonania instrukcji wyznacza adresPrzezn

- Maszyny dwuadresowe (np. procesor Pentium) - przykład:
- Wyrażenie: A = B + C * D E + F + A

Instrukcja

load T,C

mult T,D

add T,B

sub T,E

add T,F

add A,T

Obliczenia

$$T = C$$

$$T = C*D$$

$$\mathbf{L} = \mathbf{B} + \mathbf{C} * \mathbf{D}$$

$$\mathbf{L} = \mathbf{B} + \mathbf{C} * \mathbf{D} - \mathbf{E}$$

$$T = B + C*D - E + F$$

$$A = B + C*D - E + F + A$$

Maszyny jednoadresowe

instrukcja adresZrodla

 instrukcja wykonywana jest na akumulatorze i na wartości określonej przez adres *adresZrodla*, wynik wykonania instrukcji przechowywany jest w akumulatorze

Maszyny zeroadresowe

instrukcja

instrukcja wykonywana jest na wartościach umieszczonych w domyślnej lokalizacji (na stosie), wynik wykonywania instrukcji umieszczany jest również na stosie.

Maszyny zeroadresowe

instrukcja

instrukcja wykonywana jest na wartościach umieszczonych w domyślnej lokalizacji (na stosie), wynik wykonywania instrukcji umieszczany jest również na stosie.

- Architektura *load/store*
 - instrukcje wykonywane są wyłącznie na wartościach umieszczonych w rejestrach wewnętrznych procesora,
 - tylko instrukcje *load* oraz *store* przenoszą dane pomiędzy rejestrami procesora i pamięcią:

load rejestr adresZrodla

store adresPrzezn rejestr

• Architektura *load/store* - przykład:

• Wyrażenie: A = B + C * D - E + F + A

Instrukcja Obliczenia

load R1,B ładowanie B

load R2,C ładowanie C

load R3,D ładowanie D

load R4,E ładowanie E

load R5,F ładowanie F

load R6,A ładowanie A

• Architektura *load/store* - przykład (cd.):

Instrukcja

mult R2,R2,R3

add R2,R2,R1

sub R2,R2,R4

add R2,R2,R5

add R2,R2,R6

store A,R2

Obliczenia

$$R2 = C*D$$

$$R2 = B + C*D$$

$$R2 = B + C*D - E$$

$$R2 = B + C*D - E + F$$

$$R2 = B + C*D - E + F + A$$

zapis wyniku

- Architektura load/store
 - architektura *load/store* redukuje rozmiar instrukcji, np.:
 - magistrala adresowa: 32 bity,
 - → instrukcja z trzema adresami pamięci: 104 bity (kod operacji: 8 bitów, adresy operandów: 3 * 32 bity),
 - → instrukcja operująca tylko na rejestrach: 23 bity (kod operacji: 8 bitów, kody rejestrów: 3 * 5 bitów).

Rejestry procesora

• Rejestry przechowują dane, instrukcje lub informacje o stanie procesora.

- Klasyfikacja rejestrów ze względu na strukturę i sposób użycia:
 - Rejestry ogólnego przeznaczenia,
 - Rejestry specjalnego przeznaczenia:
 - dostępne dla programisty,
 - dostępne wyłącznie dla systemu.

Rejestry procesora

- Liczba adresów w instrukcjach procesora determinuje liczbę rejestrów procesora:
 - maszyny trój- i dwuadresowe nie potrzebują wewnętrznych rejestrów, jednak dla poprawy wydajności kilka takich rejestrów one posiadają,
 - procesory w architekturze *load/store* posiadają większą liczbę rejestrów.

- Proces odczytu pamięci:
 - 1. Ustawienie adresu odczytywanej komórki pamięci na magistrali adresowej.
 - 2. Aktywacja sygnału odczytu pamięci na magistrali sterującej.
 - 3. Oczekiwanie na dane z zaadresowanej komórki pamięci na magistrali danych.
 - 4. Odczyt danych z magistrali danych.
 - 5. Dezaktywacja sygnału odczytu pamięci na magistrali sterującej.

- Przykładowo, procesor Pentium potrzebuje trzy cykle maszynowe do realizacji procesu odczytu pamięci:
 - cykl 1: kroki 1 i 2,
 - cykl 2: krok 3,
 - cykl 3: kroki 4 i 5.

- Proces zapisu pamięci:
 - ustawienie adresu zapisywanej komórki pamięci na magistrali adresowej
 - wysłanie danych zapisywanych w pamięci na magistralę danych
 - aktywacja sygnału zapisu pamięci na magistrali sterującej
 - oczekiwanie na zapisanie przez pamięć danych w zaadresowanej komórce pamięci
 - dezaktywacja sygnału zapisu pamięci na magistrali sterującej

- Przykładowo, procesor Pentium potrzebuje trzy cykle maszynowe do realizacji procesu zapisu pamięci:
 - cykl 1: kroki 1 i 3,
 - cykl 2: krok 2,
 - cykl 3: krok 4 i 5.

Przechowywanie wielobajtowych danych

- Porządek *Little-endian*: w pierwszej komórce przechowywany jest najmniej znaczący bajt (LSB), w ostatniej komórce najbardziej znaczący bajt (MSB).
- Porządek *Big-endian*: w pierwszej komórce przechowywany jest najbardziej znaczący bajt (MSB), w ostatniej komórce najmniej znaczący bajt (LSB).

Cykl rozkazowy procesora

Cykl maszynowy obejmuje kilka cykli zegarowych i może mieć różne długości zależnie od rodzajów wykonywanych operacji. **Cykl rozkazowy** obejmuje od jednego do kilku cykli maszynowych, zależnie od rodzaju rozkazu.

Zbiór instrukcji procesora

• ISA (*Instruction Set Architecture*) - zbiór instrukcji (rozkazów) procesora definiuje logikę procesora specyfikując, które instrukcje (rozkazy) mogą być wykonywane przez procesor.

Procesory

• CISC (Complex Instruction Set Computer) - procesory o złożonej liście rozkazów.

• RISC (*Reduced Instruction Set Computer*) - procesory o zredukowanej liście rozkazów.

- Złożona lista rozkazów.
- Złożone rozkazy.
- Zmienna długość instrukcji (rozkazów).
- Złożone typy danych.
- Wiele trybów adresowania.
- Mała liczba rejestrów wewnętrznych.

- Przykłady:
 - -VAX
 - Pentium
 - generalnie procesory rodziny x86 (pod względem mikroarchitektury niektóre procesory mają jednak wiele cech procesora RISC)

- Zredukowana lista rozkazów.
- Proste rozkazy wykonywane w jednym cyklu maszynowy.
- Stała długość instrukcji (rozkazów) prosty format instrukcji.
- Proste typy danych.
- Proste tryby adresowania (adresowanie rejestrów, tylko operacje *load* i *store* wykorzystują adresowanie pamięci).
- Wykorzystywana architektura *load/store*.

- Duża liczba rejestrów wewnętrznych.
- Większość procesorów RISC wykorzystuje architekturę Harvard (oddzielna pamięć danych, oddzielna pamięć programu).

- Przykłady:
 - PowerPC
 - MIPS
 - Itanium
 - Atmel AVR
 - AMD 29000
 - Motorola M88000

Porównanie procesorów CISC i RISC

- Przykład instrukcji procesora CISC: add [R2], R3
- Przykład instrukcji procesora RISC: load R4, [R2] add R4, R4, R3 store [R2], R4

Porównanie procesorów CISC i RISC

Typ procesora	CISC		RISC
Cecha	VAX 11/780	Intel 486	MIPS R4000
Liczba instrukcji	303	235	94
Liczba trybów adresowania	22	11	1
Rozmiar instrukcji [B]	2–57	1–12	4
Liczba rejestrów ogólnego	16	8	32
przeznaczenia			

Architektury mieszane

 Współczesne procesory zgodne z x86 przetwarzają rozkazy procesora x86 na proste mikropolecenia pracujące wg idei RISC.