Esame Di Progettazione di Sistemi Digitali -Canale AL 16/02/2021 (B)

Esercizio 1 (3 punti)

La funzione di 4 variabili, $f(x_4, x_3, x_2, x_1)$, vale 1 se $x_3(x_2 + x_1) = 1$ mentre risulta non specificata (termini don't care) se si verifica la condizione $x_4 + x_3 + x_1 = 0$, mentre la funzione $g(x_4, x_3, x_2, x_1)$, vale 1 sia se $x_4 + \overline{x_2} + \overline{x_1} = 0$ che se $x_3x_1 = 1$, mentre risulta non specificata se $\overline{x_4} + x_3 = 0$. Progettare la rete che realizza le funzioni f e g utilizzando una PLA con il numero minimo di righe.

Tabella della verità:

x4	х3	x2	x1	f	g
0	0	0	0	-	0
0	0	0	1	0	0
0	0	1	0	-	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	1	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	0	0	0	-
1	0	0	1	0	-
1	0	1	0	0	-
1	0	1	1	0	-
1	1	0	0	0	0
1	1	0	1	1	1
1	1	1	0	1	0
1	1	1	1	1	1

PLA:

Esercizio 2 (8 punti)

Progetta<u>re</u> un circuito sequenziale con due ingressi x1, x0, che codificano i caratteri B, O, S nel seguente

modo:

x1, x0	carattere		
00	В		
10	O		
11	S		

Il circuito ha 2 uscite z1 e z0. L'automa fornisce z1=1 quando riceve in ingresso la sequenza SOS e z0=1 quando riceve in ingresso la sequenza SOB o la sequenza SSO. Sono ammesse sovrapposizioni. Realizzare la parte combinatoria con ROM e usare almeno un flip-flop di tipo SR.

a) Automa:

b) tabella degli stati, utilizzando un flip-flop SR per Q_1 e un flip-flop D per Q_0

PS	\mathbf{Q}_1	Q_0	x 1	x 0	NS	Q ₁ '	Q_0	S_1	\mathbf{R}_1	z1	z 0
R	0	0	0	0	R	0	0	0	-	0	0
R	0	0	0	1	-	-	-	-	-	_	-
R	0	0	1	0	R	0	0	0	-	0	0
R	0	0	1	1	S	0	1	0	-	0	0
S	0	1	0	0	R	0	0	0	-	0	0
S	0	1	0	1	-	-	-	-	-	_	-
S	0	1	1	0	SO	1	0	1	0	0	0
S	0	1	1	1	SS	1	1	1	0	0	0
SO	1	0	0	0	R	0	0	0	1	0	0
SO	1	0	0	1	-	-	-	-	-	_	-
SO	1	0	1	0	R	0	0	0	1	0	1
SO	1	0	1	1	S	0	1	0	1	1	0
SS	1	1	0	0	R	0	0	0	1	0	0
SS	1	1	0	1	_	-	-	-	-	_	-
SS	1	1	1	0	SO	1	0	-	0	0	1
SS	1	1	1	1	SS	1	1	-	0	0	0

c) realizzazione di $R_1, S_1, Q_0, z1, z0$ tramite ROM

Esercizio 3 (5 punti)

Analizzare la macchina a stati mostrata in figura. Scrivere le tabelle degli stati futuri e di uscita e disegnare l'automa (diagramma di transizione degli stati).

Tabella degli stati

Q ₁	\mathbf{Q}_{0}	X 1	X 0	S	R	T	Q ₁ '	Q ₀ '	Z
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	1
0	0	1	0	0	1	0	0	0	0
0	0	1	1	0	1	0	0	0	1
0	1	0	0	0	0	0	0	1	1
0	1	0	1	0	0	1	1	1	1
0	1	1	0	0	1	0	0	0	1
0	1	1	1	0	1	1	1	0	1
1	0	0	0	1	0	0	1	1	0
1	0	0	1	1	0	0	1	1	1
1	0	1	0	1	0	0	1	1	0
1	0	1	1	1	0	0	1	1	1
1	1	0	0	1	0	0	1	1	1
1	1	0	1	1	0	1	0	1	1
1	1	1	0	1	0	0	1	1	1
1	1	1	1	1	0	1	0	1	1

PS	X 1	X 0	PS	Z
S 0	0	0	S0	0
S 0	0	1	S0	1
S 0	1	0	S0	0
S 0	1	1	S0	1
S1	0	0	S 1	1
S 1	0	1	S3	1
S 1	1	0	S0	1
S 1	1	1	S2	1
S2	0	0	S3	0
S2	0	1	S 3	1
S2	1	0	S3	0
S2	1	1	S3	1
S3	0	0	S3	1
S3	0	1	S 1	1
S3	1	0	S3	1
S3	1	1	S 1	1

Automa

Esercizio 4 (1+1+1+2 punti)

- Si consideri il circuito in figura e si scriva l'espressione della funzione f
- Trasformare tale espressione, usando assiomi e regole dell'algebra di Boole, in forma normale SOP
- Stendere la tavola di verità di f
- Scrivere le espressioni minimali SOP e POS di f

$$f = (\overline{(a \oplus c)}b + (a \oplus c)d)\overline{(b \oplus c)} + (b \oplus c)d =$$

$$= (abc + \overline{a}b\overline{c} + a\overline{c}d + \overline{a}cd)(bc + \overline{b}\overline{c}) + b\overline{c}d + \overline{b}cd =$$

$$= abc + a\overline{b}\overline{c}d + \overline{a}bcd + b\overline{c}d + \overline{b}cd$$

Tabella della verità:

a	b	c	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Esercizio 5 (2+2+1 punti)

Dati i numeri X=16,25 e Y=-16,75 (a) portarli nella rappresentazione in virgola mobile secondo lo standard IEEE 754, (b) eseguire l'operazione X+Y, e (c) rappresentare il risultato sia in notazione decimale che in esadecimale.

(a) conversione

In esadecimale: 41820000

(b) somma X+Y

- 1. gli esponenti sono già uguali, quindi basta sommare le mantisse
- 2. eseguo il complemento a 2 della mantissa $m_Y=-(01,000011)=10,111100$
- 3. eseguo la somma, <u>estendendo</u> il segno

4. eseguo il complemento a 2 della mantissa del risultato $m_Y=-(11,\,111101)=00,000011$

5. normalizzo Z

(c) conversione di Z

Esercizio 6 (4 punti)

Descrivere in SystemVerilog uno shift register a 8 bits con reset sincrono.