

HOW TO PARTICIPATE

- One discussion leader, and everyone welcome to participate
- Majority of material comes from Reinforcement Learning by Sutton and Barto
- Options to approach the content:
 - Treat this as a standalone webinar
 - Read the book first, and come with questions and discussion items
 - Use this meetup as a primer and read the chapters afterward
- Ask questions
- Give feedback. Too fast or too slow? Want to see more of something or less of something else?
- Have fun!

AGENDA

- Recap what reinforcement learning (RL) is
 - Elements and formulation as Markov decision processes (MDP)
 - Terminology and notation used in RL
 - The Bellman equations
- Discuss Monte Carlo Methods
 - Monte Carlo prediction
 - Monte Carlo control
 - On-policy vs. Off-policy
 - Importance Sampling
 - Blackjack code example

REINFORCEMENT LEARNING

- Reinforcement learning (RL) is about an agent learning from interacting with its uncertain environment
 - The agent interacts by choosing from a set of allowed actions
 - It gets feedback from a numeric reward signal
 - Goal is to maximize the return, which is the total rewards received
- Reinforcement learning is about exploring the environment and recording useful information for the future
- RL is sequential decision making; time is intrinsic

MARKOV DECISION PROCESSES

- Elements of the fully observable Markov Decision Process (MDP):
 - State at each time step t, the environment is in some state S_t
 - Action at each time step t, the agent chooses an action A_t
 - Reward after taking the action, the agent is given a reward signal R_{t+1} and subsequently finds itself in a new state S_{t+1}

In a Markov Decision Process, the transition at any given time t only depends on the state S_t and action chosen A_t

MDPS AS A GRAPH

- Sometimes it is easier to visualize a MDP as a directed graph
 - The states are nodes (big white circles)
 - The actions are edges leading from nodes (here with small black circles)
 - The rewards are values along directed edges that take you to a new state
- Here is the recycling robot from the book:

REINFORCEMENT LEARNING NOTATION

Letter	Used for
S	<u>S</u> tate
a	<u>A</u> ction
r	<u>R</u> eward
γ	Discount rate
G	Return – sum of all future rewards
p	Transition p robability
V	<u>V</u> alue function for states
q	Value function for state-action pairs
π	Policy (<u>π</u> ολιτική)
*	Optimal choices, e.g. π_*

BELLMAN EQUATION

- The value function for state s under policy π is a sum of the rewards received and the value functions for each future state s' times the probability of winding up there
- Formally:

$$v_{\pi}(s) = \sum_{a} \pi(a, s) \sum_{s', r} p(s', r|s, a) [r + \gamma v_{\pi}(s')]$$

Probability you take action a

Probability you and end in state s' of new state s'

Reward plus get reward r discounted value

BELLMAN EQUATION VISUALIZED

This is a *backup diagram* for $v_{\pi}(s)$. To compute it:

- We need to sum over each branch of π(), based on the probability of each action a
- And sum over of each branch of p(), based on probability we wind up in state s'
- The quantity we sum is the reward and the discounted value of possible state s'

$$v_{\pi}(s) = \sum_{a} \pi(a, s) \sum_{s', r} p(s', r|s, a) [r + \gamma v_{\pi}(s')]$$

BELLMAN OPTIMALITY EQUATIONS

 The Bellman optimality equation says the optimal value for a state must be the same as the return from the best action

 $= \max_{a} \sum_{s} p(s', r | s, a) [r + \gamma v_*(s')].$

We can rewrite it recursively

 (v_*)

(3.19)

BELLMAN OPTIMALITY EQUATIONS

- The Bellman optimality equation for state-action pairs is very similar.
- The optimal value for a state-action pair must be the same as the return from the reward and best next action

$$q_*(s,a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$

$$= \sum_{s',r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_*(s', a')\right]. \tag{3.20}$$

s, a

 (q_*)

max

REINFORCEMENT LEARNING CONTROL

- With this foundation, there's a lot we can tackle
 - Algorithms for learning
 - Dealing with memory and compute limitations
 - Getting models to converge quickly
- We also still have many challenges
 - Reward design effectively communicating the real goal
 - Sparse rewards
 - Credit assignment which actions in trajectory contributed
 - Exploration vs. exploitation

Monte Carlo

Methods

MONTE CARLO METHODS

- Monte Carlo methods use experience of the environment to estimate value functions
- They do not require knowledge of the environment's dynamics
- Monte Carlo methods average sampled returns
 - Because we're using returns, works for episodic tasks
 - There are many situations where it's easier to obtain samples transitions than to compute exact transition probability distributions

MONTE CARLO PREDICTION

- The simple case is estimating state values, $v_{\pi}(s)$. We can follow policy π and average the returns obtained after passing through s
 - Two options are to only track the first time we visit each state in an episode, or to track for every visit to each state

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Input: a policy \pi to be evaluated
Initialize:

V(s) \in \mathbb{R}, arbitrarily, for all s \in \mathbb{S}
Returns(s) \leftarrow an empty list, for all s \in \mathbb{S}

Loop forever (for each episode):

Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
G \leftarrow 0

Loop for each step of episode, t = T - 1, T - 2, \ldots, 0:

G \leftarrow \gamma G + R_{t+1}

Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:

Append G to Returns(S_t)

V(S_t) \leftarrow average(Returns(S_t))
```

MONTE CARLO PREDICTION

- We can extend this process to the value function for state-action pairs, namely $q_{\pi}(s,a)$
- Sampling and estimating action values doesn't require a model
- The difficulty is that many state-action pairs may never be visited
- Exploring starts specifies that each episode start in particular state-action pairs, and that all pairs must have nonzero probability
 - This is easy for blackjack, but how would you do this for a self-driving car

MONTE CARLO CONTROL

Policy iteration looks like this:

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_1 \xrightarrow{E} \dots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

and we can do the same thing with Monte Carlo evaluation

- When we have estimated $q_{\pi}(s, a)$ for state-action pairs, then policy improvement is simpler just choose the max action
- How long do we run each evaluation step?
 - Theory requires infinite samples to ensure convergence
 - A simple approach is just a single episode

MONTE CARLO EXPLORING STARTS

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize:
     \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in \mathcal{S}
     Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in \mathcal{S}, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)
Loop forever (for each episode):
     Choose S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
     Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
               Append G to Returns(S_t, A_t)
               Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
               \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
```

ON-POLICY VS. OFF-POLICY

- Exploring starts is an *on-policy* method for ensuring all actions are selected often.
 - In on-policy, our agent is following the same policy it is trying to learn
- Alternative, could use an ε -greedy (or more general ε -soft) policy
 - These guarantee every action will be taken at least ε amount of the time
 - They learn a near-optimal policy that still explores
- Another approach is to use an off-policy method
 - In off-policy, you keep a separate policy to track what to do (the behavior policy), from the policy you are learning (the target policy)
 - Off-policy methods are more powerful and general, but more complex

IMPORTANCE SAMPLING

- For off-policy, we will continue to call our target policy π , and now we will also have a behavior policy b
- Since Monte Carlo is about averaging the returns received from sample episodes, if we follow \emph{b} , then we will get average returns under \emph{b} , not under π
- Importance sampling uses the ratio between how often each action is taken under π and under b to scale the returns
 - Ordinary importance sampling uses average of scaled returns
 - Weighted importance sampling divides by the sum of the ratios instead of the number of episodes
 - This helps reduce variance, even though it is introducing unwanted bias

OFF-POLICY MC CONTROL

- For on-policy Monte Carlo, we used general policy iteration, doing one episode of evaluation before policy improvement
- Here is the same thing for off-policy Monte Carlo, except instead storing all of our returns, we incrementally update

```
Off-policy MC control, for estimating \pi \approx \pi_*
Initialize, for all s \in S, a \in A(s):
     Q(s,a) \in \mathbb{R} (arbitrarily)
    C(s,a) \leftarrow 0
     \pi(s) \leftarrow \operatorname{arg\,max}_a Q(s, a) (with ties broken consistently)
Loop forever (for each episode):
     b \leftarrow \text{any soft policy}
     Generate an episode using b: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     W \leftarrow 1
     Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a) (with ties broken consistently)
          If A_t \neq \pi(S_t) then exit inner Loop (proceed to next episode)
          W \leftarrow W \frac{1}{b(A_t|S_t)}
```

MONTE CARLO SUMMARY

- Three big benefits of Monte Carlo methods
 - Can learn directly from interaction, without a model
 - Can work with simulated episodes even where transition probabilities are difficult to precisely calculate
 - Learning can be focused on certain states more than others
 - Also, it turns out MC methods may work better when Markov property violated because they don't bootstrap
- MC methods require sufficient exploration (or else value of certain states/actions won't be accurate)
- MC methods are the first time we have seen off-policy prediction using a behavior policy

CODE EXAMPLE

- On GitHub, Python code for examples in the Sutton & Barto book are in this repository:
 - https://github.com/ShangtongZhang/reinforcement-learningan-introduction
- We will look at some of the code in the Chapter05 folder, in the file blackjack.py

RECAP

- Review what reinforcement learning (RL) is
 - Elements and formulation as Markov decision processes (MDP)
 - Terminology and notation used in RL
 - The Bellman equations
- Discuss Monte Carlo Methods
 - Monte Carlo prediction
 - Monte Carlo control
 - On-policy vs. Off-policy
 - Importance Sampling
 - Blackjack code example

QUESTIONS

8

DISCUSSION

NEXT SESSION

- The next session will be about Temporal-Difference Learning, on Sat. June 19
- This TD material is in chapter 6 of Sutton & Barto