Analyse lexicale

Cyril Rabat cyril.rabat@univ-reims.fr

Licence 3 Informatique - Info0602 - Langages et compilation

2021-2022

Cours n°2

Qu'est-ce qu'un analyseur lexical? Langages, expressions régulières, automates finis

Version 10 janvier 2022

Table des matières

- 2 L'analyse lexicale
 - Un analyseur lexical
 - Les langages
 - Les expressions régulières
 - Les automates finis
 - De l'expression régulière à un AFN
 - Transformation d'un AFN en AFD
 - Partitionnement
 - De l'automate à l'expression régulière
 - Construction d'un analyseur lexical
 - Automates à pile

Un analyseur lexical

- Lecture des caractères en entrée
- Interactions entre les deux analyseurs (lexical et syntaxique) :

Tâches secondaires de l'analyseur lexical

- Éliminer
 - Les commentaires
 - Les caractères "inutiles" (espaces, tabulations, lignes vides...)
- Faciliter la gestion des erreurs :
 - Conservation/calcul du numéro de ligne
 - Associer les messages d'erreur à une ligne
- Le principal intérêt de l'analyseur lexical est de simplifier l'analyseur syntaxique

Modèle et unité lexicale

Définition : modèle

Règle qui décrit un ensemble de chaînes

Exemples

- $[0-9]^*$
- a*b

Définition : unité lexicale

Éléments produit par l'ensemble des chaînes du modèle

Exemples

• mots-clés, opérateurs, identificateurs, constantes, chaînes littérales...

Lexème et attribut

Définition : lexème

Suite de caractères du programme source qui correspond au modèle

Exemples

• Modèle : $[0 - 9]^*$

• Lexème: 100, 001, 123

Définition : attribut

Données liées aux unités lexicales

Exemple

• L'entrée dans la table des symboles pour un identificateur

Alphabet et mots

Définition : alphabet

Un **alphabet** est un ensemble fini de symboles appelés caractères. Il est noté A.

- Exemples de symboles : lettres et caractères
- Exemples d'alphabets : {0,1} (l'alphabet binaire), l'ASCII

Définition : mot (ou chaîne)

Un **mot** sur un alphabet est une séquence finie de symboles de cet alphabet. La **longueur du mot** w (notée |w|) est le nombre de symboles dans ce mot. Le **mot vide**, noté ϵ , est un mot de longueur 0.

• Exemples de mots sur l'alphabet $\{a, b, c\}$: a, baba

Partie de mots

- Préfixe de w : mot obtenu en supprimant un nombre quelconque de symboles en fin de w (voire aucun)
- **Suffixe** de *w* : mot obtenu en supprimant un nombre quelconque de symboles en début de *w* (voire aucun)
- Sous-mot de w : mot obtenu en supprimant un préfixe et un suffixe de w
- **Préfixe propre** de w : tout mot non vide x, préfixe de w tel que $x \neq w$
- Idem pour suffixe propre et sous-mot propre de w
- Sous-suite de w : tout mot obtenu en supprimant un nombre quelconque de symboles de w, éventuellement aucun, pas nécessairement consécutifs

Opérations sur les mots

- Concaténation de mots : si x et y sont des mots, la concaténation xy est la chaîne formée en joignant x et y
 - \hookrightarrow Exemple: pour $\mathcal{A} = \{a, b\}$, si x = aa et y = bb, alors xy = aabb
- Exponentiation : $s^0 = \epsilon$; $s^i = s^{i-1}s$
 - \hookrightarrow Exemple: pour $\mathcal{A} = \{a, b\}$, si x = ba alors $x^3 = bababa$

Définition : langage

Un langage est un ensemble de mots définis sur un même alphabet.

- ullet Soit $\mathcal{A}=\{1,2,3\}$, l'ensemble $\{1,11,12,21\}$ est un langage sur \mathcal{A}
- Le langage vide est noté ∅
- Le langage $\{\epsilon\}$ ne contient que le mot vide

$$\emptyset \neq \{\epsilon\}$$

- Un langage peut être défini de plusieurs manières :
 - Expression régulière, automate, grammaire, expression mathématique
 - Ensemble de mots

Opérations sur les langages (1/2)

Soit deux langages L_1 et L_2 définis respectivement sur les alphabets A_1 et A_2 .

Définition : union de deux langages

L'union de L_1 et L_2 définie sur $\mathcal{A}_1 \cup \mathcal{A}_2$ est le langage contenant tous les mots de L_1 et L_2 :

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$$

Définition : intersection de deux langages

L'intersection de L_1 et L_2 définie sur $\mathcal{A}_1 \cap \mathcal{A}_2$ est le langage contenant tous les mots qui sont à la fois dans L_1 et L_2 :

$$L_1 \cap L_2 = \{ w \mid w \in L_1 \land w \in L_2 \}$$

Définition : complément d'un langage

Le complément de L est le langage défini sur $\mathcal A$ contenant tous les mots qui ne sont pas dans L :

$$C(L) = \{ w \mid w \in \mathcal{A} \land w \notin L \}$$

Définition : différence de deux langages

La différence de L_1 et L_2 est le langage défini sur \mathcal{A} contenant tous les mots de L_1 qui ne sont pas dans L_2 :

$$L_1 - L_2 = \{ w \mid w \in L_1 \land w \notin L_2 \}$$

Produit et puissances

Définition : produit de deux langages

Le produit ou **concaténation** de L_1 et L_2 est le langage défini sur $A_1 \cup A_2$ contenant tous les mots formés d'un mot de L_1 suivi d'un mot de L₂:

$$L_1.L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$$

Définition : puissances d'un langage

Les puissances successives de L définies sur A sont définies récursivement:

- $L^0 = \{\epsilon\}$
- $L^n = L.L^{n-1}$ pour n > 1

Fermeture itérative

Définition : fermeture de Kleene de deux langages

La fermeture de Kleene de L, appelée également la fermeture **itérative**, définie sur A, est l'ensemble des mots formés par une concaténation finie des mots de L₁ :

$$L^* = \{ w \mid \exists k \geq 0 \land w_1 \ldots w_k \in L \text{ tels que } w = w_1 w_2 \ldots w_k \}$$

• On définit également L^+ : $L^+ = \{ w \mid \exists k > 0 \land w_1 \dots w_k \in L \text{ tels que } w = w_1 w_2 \dots w_k \}$

Langage fini et infini

Définition : langage fini

Un langage fini peut être décrit par l'énumération des mots qui le compose. Ce qui n'est pas le cas pour un langage infini.

- Certains langages infinis peuvent être décrits à l'aide d'opérations sur des langages simples
- Certains langages infinis peuvent être décrits à l'aide de règles (grammaires)
- Les langages qui ne peuvent être décrits ni par des opérations, ni par des grammaires sont des langages indécidables.

Expressions régulières

Définition : expression régulière

Les expressions régulières pour un alphabet ${\cal A}$ sont les expressions formées par les règles suivantes :

- \emptyset , ϵ et les symboles de $\mathcal A$ sont des expressions régulières
- Si α et β sont des expressions régulières sur \mathcal{A} , $(\alpha|\beta)$, $(\alpha.\beta)$ et $(\alpha)^*$ sont des expressions régulières
- On note indifféremment $\alpha.\beta$ et $\alpha\beta$
- On définit une priorité décroissante sur les opérateurs : *, . et |

Langage décrit par une expression régulière

Définition : langage décrit par une expression régulière

Le langage L(E) où E est une expression régulière définie sur A, est défini comme suit :

- $L(E) = \emptyset$ si $E = \emptyset$
- $L(E) = \{\epsilon\}$ si $E = \epsilon$
- $L(E) = \{a\}$ si E = a pour tout $a \in A$
- $L(E) = L(E_1) \cup L(E_2)$ si $E = E_1 | E_2$
- $L(E) = L(E_1).L(E_2)$ si $E = E_1.E_2$
- $L(E) = L(E_1)^*$ si $E = E_1^*$

Introduction

- Expression régulière : définie un ensemble de mots
- Nécessité de les compiler pour créer un programme qui la reconnait
- But du programme :
 - Entrée : le mot à reconnaître
 - Sortie : oui ou non suivant si le mot est reconnu par l'expression régulière ou non
- Utilisation d'automates

Présentation des automates

Un automate fini se compose :

- D'un ruban d'entrée :
 - Constitué d'un ensemble de cases, chacune contenant un caractère
 - Le mot à traiter est placé dans ces cases
 - Une tête de lecture permet de connaître le caractère suivant
- D'un ensemble d'états :
 - L'automate passe d'un état à l'autre en cours d'exécution
 - L'état initial : état en début d'exécution
 - Les états d'acceptation (ou états finals) : états atteints lorsque le mot est accepté
- D'une fonction de transition :
 - Indique pour chaque état et symbole lu, le prochain état

Automates finis déterministes vs non déterministes

- Dans un état donné et pour un symbole donné
- Deux possibilités lorsqu'un symbole est rencontré :
 - Une seule transition possible :
 - Plusieurs transitions possibles :

Remarque

Des définitions plus formelles sont présentées dans la suite!

Automate fini déterministe

Définition: automate fini déterministe

Un automate fini déterministe (noté AFD) est défini formellement par le quintuplet $M = \{Q, A, \delta, s, F\}$, où :

- Q est un ensemble fini d'états
- A est un alphabet
- ullet δ est la fonction de transition de $Q imes \mathcal{A}$ dans Q
- $s \in Q$ est l'état initial
- F ⊆ Q est l'ensemble des états d'acceptation

Représentation d'un automate fini par un graphe

- Chaque état de l'automate est représenté par un nœud du graphe
- Relation de transition représentée par des arcs valués : \hookrightarrow Si $\delta(q,a)=q', (q,q')\in Q^2 \land a\in \mathcal{A}$ alors il existe un arc a entre les sommets q et q'
- L'état initial est signalé par une flèche
- Les états d'acceptation sont signalés par des doubles cercles

Exemple de représentation

Soit l'automate $M = \{Q, A, \delta, s, F\}$ suivant :

Exécution d'un automate

Définition : configuration d'un AFD

Une configuration d'un AFD est une paire composée de l'état de l'automate, ainsi que la partie du mot restant à traiter :

$$(q, w) \in Q \times A^*$$

- Exécution d'un automate : déterminer les configurations successives de l'automate en fonction du mot d'entrée
- Dérivation : le passage d'une configuration à une autre

Exemple d'exécution

Soit le mot aabab à reconnaître, nous avons les configurations suivantes :

- $(q_0, aabab)$
- $(q_0, abab)$
- (q_0, bab)
- (q_1, ab)
- (q_0, b)
- $\mathbf{0}$ (q_1, ϵ)

L'exécution comporte 6 configurations et 5 dérivations.

Définition : dérivation (en une étape)

La configuration (q', w') est dérivable en une étape de (q, w) par M si :

- w = aw' ($a \in A$, a est le premier caractère de w et w' est égal à w privé de a)
- $q' = \delta(q, a)$ (q' est le prochain état déterminé par la fonction de transition δ pour q et a)

On note la dérivation de deux configurations $(q, w) \vdash (q', w')$. On peut également noter $(q, w) \vdash_M (q', w')$.

Dérivation (2/2)

Définition : dérivation (en plusieurs étapes)

La configuration (q', w') est dérivable (en plusieurs étapes) de (q, w) s'il existe $k \ge 0$ et des configurations $(q_i, w_i), 0 \le i \le k$ telles que :

- $(q_0, w_0) = (q, w), (q_k, w_k) = (q', w')$
- $\forall i \in [0, k], (q_i, w_i) \vdash (q_{i+1}, w_{i+1})$

On note $(q, w) \vdash^* (q', w')$.

- Soit les dérivations suivantes (on parle aussi d'exécution) : $(s, w) \vdash (q_1, w_1) \vdash \ldots \vdash (q_n, \epsilon)$
- s est l'état initial, ϵ le mot vide, n = |w|

Une seule exécution possible pour chaque mot

Exemple de dérivations

- **1** (q_0, abb) est dérivable en une étape de $(q_0, aabb)$ \hookrightarrow Il existe une transition $(q_0, a) \rightarrow q_0$
- ② (q_1, ϵ) est dérivable en 4 étapes de $(q_0, aabb)$ $\hookrightarrow (q_0, aabb) \vdash (q_0, abb) \vdash (q_0, bb) \vdash (q_1, b) \vdash (q_1, \epsilon)$

Acceptation

Définition : acceptation

Un mot est accepté par un automate M si le dernier état est un état d'acceptation :

w est accepté par
$$M$$
 si $(s,w) \vdash_{M}^{*} (q,\epsilon) \land q \in F$

Le langage accepté par M (noté L(M)) est défini par l'ensemble des mots acceptés par M :

$$L(M) = \{ w \in \mathcal{A}^* \mid (s, w) \vdash_M^* (q, \epsilon) \land q \in F \}$$

Exemple d'acceptation

Les mots suivants sont-ils acceptés?

- ullet aabab : oui $\hookrightarrow (q_0, aabab) dash (q_0, abab) dash (q_0, bab) dash (q_1, ab) dash (q_0, b) dash (q_1, \epsilon)$
- ② aababa: non $\hookrightarrow (q_0, aababa) \vdash (q_0, ababa) \vdash (q_0, baba) \vdash (q_1, aba) \vdash (q_0, ba) \vdash (q_1, aba) \vdash (q_0, ba) \vdash (q_0, ababa) \vdash (q_0, ababa$

Simulation du comportement d'un AFD

```
Fonction simulationAFD(Q, A, \delta, s, F, w): booléen
     etat \leftarrow s
     position \leftarrow 0
     erreur \leftarrow faux
     Tant que !erreur \wedge position < |w| Faire
        Si w[position] \notin A Alors
           erreur \leftarrow vrai
        Sinon
           Si \exists \delta(etat, w[position]) Alors
              etat \leftarrow \delta(etat, w[position])
              position \leftarrow position + 1
           Sinon
              erreur ← vrai
     retourner \leftarrow!erreur \land etat \in F
```

Les automates finis non déterministes

Automates où les constructions suivantes sont autorisées :

- Plusieurs transitions sur le même symbole partant d'un même état
- Transitions sur le mot vide acceptées
- Transitions sur des mots de longueur supérieure à 1 sont possibles \hookrightarrow Regroupement de transitions

Remarque

Les automates finis non déterministes sont généralement plus faciles à écrire que les AFD mais moins rapides à simuler.

Automate fini non déterministe

Définition : automate fini non déterministe

Un automate fini non déterministe (noté AFN) est défini formellement par le quintuplet $M = \{Q, A, \Delta, s, F\}$, où :

- Q est un ensemble fini d'états
- A est un alphabet
- ullet Δ est la fonction de transition de $Q imes \mathcal{A}^*$ dans Q
- $s \in Q$ est l'état initial
- F ⊂ Q est l'ensemble des états d'acceptation

Exemple d'AFN

Dérivation d'un AFN

Définition : dérivation (en une étape)

La configuration (q', w') est dérivable en une étape de (q, w) par Msi :

- $w = uw' \ (u \in \mathcal{A}^*)$
- $(q, u, q') \in \Delta$
- Acceptation d'un mot par un AFN : il existe au moins une dérivation qui accepte ce mot

Des dérivations possibles peuvent le refuser!

 Construction plus simple que les AFD mais sans forcément reconnaître plus de langages

Simulation d'un AFN (1/2)

Problème : plusieurs dérivations possibles pour un même mot!

- Vérifier si l'une d'elles permet d'accepter le mot
- Être en mesure de revenir en arrière (backtrack)
- → Utilisation de la récursivité

Simulation d'un AFN (2/2)

```
Fonction simulationAFN(M, e, w): booléen
    Si |w|=0 Alors
        retourner e \in M(F)
    Sinon
        accepte \leftarrow faux
       couples \leftarrow \{(e', w_1)/\exists (e, w_2, e') \in M(\Delta) \land w = w_2 w_1\}
        Tant que couples \neq \emptyset \land !accepte Faire
          choisir (e', w_1) \in \text{couples}
          couples \leftarrow couples \setminus (e', w_1)
          accepte \leftarrow simulationAFN(M, e', w_1)
        retourner accepte
```

M est l'automate, e un état et w le mot à reconnaître Fonction exécutée avec e = sIl est possible d'avoir une exécution infinie!!!

Cyril Rabat (Licence 3 Info / Info0602)

Construction de Thomson

- Objectif : construire de manière automatique un AFN à partir de toute expression régulière
- Idée :
 - Décomposition de l'expression régulière en sous-expressions
 - Construction d'un AFN pour chaque sous-expression
 - Combinaison des AFN

Il existe d'autres méthodes, mais c'est celle que nous utiliserons en INFO0602

Règles de base

• Règle $n^{\circ}1$: pour l'expression ϵ , nous construisons l'AFN suivant :

ullet **Règle n°2** : pour l'expression $a\in\mathcal{A}$, nous construisons l'AFN suivant :

Combinaisons (1/2)

Supposons que $N(E_1)$ et $N(E_2)$ sont des AFN pour les expressions régulières E_1 et E_2 .

• Combinaison n°1 : pour l'expression $E_1|E_2$

• Combinaison n°2 : pour l'expression $E_1.E_2$

Combinaisons (2/2)

• Combinaison n°3 : pour l'expression E*

• Combinaison n°4 : pour l'expression (E), c'est N(E) lui-même

Exemple (1/4)

- Supposons l'expression régulière (a|b)*abb

Exemple (2/4)

• Pour $E_1 = E_6 = a$ et $E_2 = E_8 = E_{10} = b$:

• Pour $E_3 = E_1 | E_2$:

Exemple (3/4)

- Pour $E_4 = (E_3)$, c'est E_3 lui-même

 ϵ

Exemple (4/4)

• Pour finir en combinant avec E_7 , E_9 et E_{11}

Équivalence entre un AFN et un AFD

<u>Définition</u>: équivalence entre un AFN et un AFD

Un AFD est équivalent à un AFN s'il accepte le même langage.

• Exemple 1:

• Exemple 2:

Définition d'opérations sur un AFN

Définition : ϵ -fermeture d'un état

Soit l'AFN $M = \{Q, A, \Delta, s, F\}$ et $e \in Q$, ϵ -fermeture(e) est l'ensemble des états de M accessibles depuis e par des ϵ -transitions uniquement. $e \in \epsilon$ -fermeture(e).

Définition : ϵ -fermeture d'un ensemble d'états

Soit l'AFN $M = \{Q, A, \Delta, s, F\}$ et $T \subseteq Q$, ϵ -fermeture(T) est l'ensemble des états de M accessibles depuis tout $e \in T$ par des ϵ -transitions uniquement. $T \subseteq \epsilon$ -fermeture(T).

Définition : transiter

Soit l'AFN $M = \{Q, A, \Delta, s, F\}$, $T \subseteq Q$ et $a \in A$, transiter(T,a) est l'ensemble des états de M tels qu'il existe une transition sur a à partir d'un $e \in T$. Si transiter(T,a)=T' alors on note $T \stackrel{a}{\to} T'$

Principes de la transformation

- Soit l'AFN $M = \{Q, A, \Delta, s, F\}$
- Construction de l'AFD $M' = \{Q', A, \delta, s', F'\}$
- Chaque état de l'AFD = ensemble d'états de l'AFN
- Construction d'un ensemble V (états à visiter) : \hookrightarrow Au départ, $V = \{ \epsilon \text{-fermeture}(s) \}$
- Pour chaque état q de V:
 - \hookrightarrow Ajout de a à Q' et retrait de a de V
 - \hookrightarrow Pour chaque $a \in \mathcal{A}$, calcul de $q' = \epsilon$ -fermeture(transiter(q,a))
 - \hookrightarrow Ajout de q' dans V si $q' \notin Q'$
- F est formé par tous les états de M' contenant un $g \in F$

Algorithme de transformation AFN en AFD

```
Fonction AFNversAFD(M): M'
   s' \leftarrow \epsilon-fermeture(s)
   Q' \leftarrow \{s'\}; \delta = \emptyset; V \leftarrow \{s'\}
   Tant que \exists x \in V Faire
       V \leftarrow V \backslash x
       Pour tout a \in A Faire
          v \leftarrow \epsilon-fermeture(transiter(x, a))
          Si v \notin Q' Alors
              Q' \leftarrow Q' \cup v
              V \leftarrow V \cup v
          \delta \leftarrow \delta \cup \{(x, y, a)\}
       Fin Pour
   F' \leftarrow \{x \in Q' \mid \exists f \in x \land f \in F\}
```

Exemple (1/2)

_ X	transiter	у	δ
$s' = A = \{0,1,2,4,7\}$	$A \stackrel{a}{\rightarrow} \{3,8\}$	${3,8,6,1,7,2,4} = B$	$A \stackrel{a}{\rightarrow} B$
	$A \stackrel{b}{\rightarrow} \{5\}$	$\{5,6,7,1,2,4\} = C$	$A \stackrel{b}{\rightarrow} C$
$B = \{1,2,3,4,6,7,8\}$	$B \stackrel{a}{\rightarrow} \{3,8\}$		$B \overset{\mathit{a}}{\to} B$
	$B \stackrel{b}{\to} \{5,9\}$	{5,9,6,7,1,2,4}=D	$B \stackrel{b}{\rightarrow} D$
$C = \{1,2,4,5,6,7\}$	$C \stackrel{a}{ o} \{3,8\}$		$C \stackrel{a}{\rightarrow} B$
	$C \stackrel{b}{\rightarrow} \{5\}$		$C \stackrel{b}{\rightarrow} C$
$D = \{1,2,4,5,6,7,9\}$	$D \stackrel{a}{ o} \{3,8\}$		$D \stackrel{a}{ o} B$
	$D \stackrel{b}{\rightarrow} \{5,10\}$	{5,6,1,2,4,7,10}=E	$D \stackrel{b}{\to} E$
$E = \{1,2,4,5,6,7,10\}$	$E \stackrel{a}{\to} \{3,8\}$		$E \overset{a}{ o} B$
	$E \stackrel{b}{ o} \{5\}$		$E \stackrel{b}{\to} C$

Sachant que seul E contient un état d'acceptation, $E \in Q'$. On obtient :

Partitionnement.

- Objectif : réduire le nombre d'états d'un AFD
- Idée : décomposition de Q en sous-ensembles d'état équivalents → Partitionnement
- Les états sont équivalents si $\forall a \in \mathcal{A}$, les états ont des transitions vers des états des mêmes sous-ensembles
- Algorithme :
 - Au départ, on sépare en deux sous-ensembles : les états d'acceptation et les autres
 - Puis séparation des sous-ensembles en sous-ensembles d'états équivalents
 - On recommence à l'étape 2
 - Dès qu'il n'y a plus de création de nouveaux sous-ensembles, la procédure s'arrête

Définitions

Définition : partitionnement

 $\pi = \{B_1, \dots, B_k\}$ avec B_i un ensemble d'états de Q, est une partition de Q si :

- $\forall i, B_i \subseteq Q$
- $\forall i, B_i \neq \emptyset \land \forall i, j, i \neq j, B_i \cap B_i = \emptyset$
- $\bullet \ \cup_{i=1}^k B_i = Q$

Définition : états équivalents

Avec $(s,t)\in Q^2$, s et t sont équivalents dans π , si et seulement si :

$$\forall a \in \mathcal{A}, (s', t') \in Q^2, (s, s', a) \in \delta \land (t, t', a) \in \delta$$

$$\Rightarrow \exists B \in \pi, s' \in B \land t' \in B$$

On note $s \Leftrightarrow_{\pi} t$.

Algorithme de minimisation des états

```
Procédure minimisation(M)
   \pi = \{Q \mid F, F\}; change \leftarrow vrai
   Tant que change = vrai Faire
       change \leftarrow faux; \pi' \leftarrow \emptyset
       Pour tout B \in \pi Faire
          Tant que \exists s \in B Faire
              B \leftarrow B \setminus \{s\}; B' \leftarrow \{s\}
              \pi' \leftarrow \pi' \cup B'
              Tant que \exists s' \in B | s' \Leftrightarrow_{\pi} s Faire
                  B \leftarrow B \setminus \{s'\}; B' \leftarrow B' \cup \{s'\}
              Si B \neq \emptyset Alors
                  change ← vrai
       Fin Pour
       \pi \leftarrow \pi'
```

Exemple (1/4)

- Étape $1:\pi=\{\{q_0,q_1,q_2,q_3\},\{q_4\}\}$
 - $B = \{q_0, q_1, q_2, q_3\}$
 - $q_0 \stackrel{a}{\to} q_1 \ q_1 \stackrel{a}{\to} q_1 \ q_2 \stackrel{a}{\to} q_1 \ q_3 \stackrel{a}{\to} q_1$ $q_0 \stackrel{b}{\to} q_3 \ q_1 \stackrel{b}{\to} q_2 \ q_2 \stackrel{b}{\to} q_4 \ q_3 \stackrel{b}{\to} q_3$ $\hookrightarrow \{q_0, q_1, q_3\} \ \text{et} \ \{q_2\}$
 - $B=\{q_4\}$ $\hookrightarrow \pi'=\{\{q_0,q_1,q_3\},\{q_2\},\{q_4\}\}$: changements donc on continue

Exemple (2/4)

- Étape 2 : $\pi = \{\{q_0, q_1, q_3\}, \{q_2\}, \{q_4\}\}$
 - $B = \{q_0, q_1, q_3\}$
 - $q_0 \stackrel{a}{\rightarrow} q_1 \ q_1 \stackrel{a}{\rightarrow} q_1 \ q_3 \stackrel{a}{\rightarrow} q_1$ $q_0 \stackrel{b}{\rightarrow} q_3 \ q_1 \stackrel{b}{\rightarrow} q_2 \ q_3 \stackrel{b}{\rightarrow} q_3$ $\hookrightarrow \{q_0, q_3\} \ \text{et} \ \{q_1\}$
 - $B = \{q_2\}$ puis $B = \{q_4\}$ $\hookrightarrow \pi' = \{\{q_0, q_3\}, \{q_1\}, \{q_2\}, \{q_4\}\}$: changements donc on continue

Exemple (3/4)

- Étape 3 : $\pi = \{\{q_0, q_3\}, \{q_1\}, \{q_2\}, \{q_4\}\}$
 - $B = \{q_0, q_3\}$
 - $q_0 \stackrel{a}{\rightarrow} q_1 \ q_3 \stackrel{a}{\rightarrow} q_1$ $q_0 \stackrel{b}{\rightarrow} q_3 \ q_3 \stackrel{b}{\rightarrow} q_3$ $\hookrightarrow \{q_0, q_3\}$
 - $B=\{q_1\}$ puis $B=\{q_2\}$ puis $B=\{q_4\}$ $\hookrightarrow \pi'=\{\{q_0,q_3\},\{q_1\},\{q_2\},\{q_4\}\}$: pas de changement donc on arrête

Exemple (4/4)

- $\begin{array}{l} \bullet \text{ Avec } \pi = \{\{q_0,q_3\},\{q_1\},\{q_2\},\{q_4\}\} \text{ et} \\ q_0 \overset{a}{\rightarrow} q_1 \ q_1 \overset{a}{\rightarrow} q_1 \ q_2 \overset{a}{\rightarrow} q_1 \ q_3 \overset{a}{\rightarrow} q_1 \ q_4 \overset{a}{\rightarrow} q_1 \\ q_0 \overset{b}{\rightarrow} q_3 \ q_1 \overset{b}{\rightarrow} q_2 \ q_2 \overset{b}{\rightarrow} q_4 \ q_3 \overset{b}{\rightarrow} q_3 \ q_4 \overset{b}{\rightarrow} q_3 \end{array}$
- On obtient l'automate suivant :

Représentation avec un tableau

	q_0	q_1	q ₂	q ₃	q 4
π'	Α	Α	Α	Α	В
$\begin{array}{c} \pi' \\ \stackrel{a}{\rightarrow} \\ \stackrel{b}{\rightarrow} \end{array}$	Α	Α	Α	Α	Α
1	А	Α	В	А	Α
π'	Α	Α	В	Α	С
$\stackrel{a}{ ightarrow}$	Α	Α	Α	Α	Α
$\begin{array}{c} \pi' \\ \xrightarrow{a} \\ \xrightarrow{b} \\ \xrightarrow{b} \end{array}$	Α	В	С	Α	Α
π'	Α	В	С	Α	D
$\begin{array}{c} \pi' \\ \xrightarrow{a} \\ \xrightarrow{b} \\ \xrightarrow{b} \end{array}$	В	В	В	В	В
$\stackrel{b}{ ightarrow}$	А	С	D	A	Α
π'	Α	В	С	Α	D

De l'expression régulière à l'automate

- Objectif: à partir d'un automate, retrouver l'expression régulière associée
- Plusieurs techniques existantes :
 - Technique basée sur les systèmes d'équation
 - Technique basée sur l'élimination d'états
 - nouvelles transitions équivalentes
- Nous allons utiliser la deuxième technique qui est plus intuitive

Automate normalisé

Définition : automate normalisé

Un automate $M = \{Q, A, \Delta, s, F\}$ est normalisé si :

- $\Delta \cap (Q \times A \times s) = \emptyset$
- $|F| = 1 \wedge (\Delta \cap (F \times A \times Q)) = \emptyset$

On dit également que M est généralisé.

- Un automate normalisé ne possède pas de transition entrante sur son état initial
- Un automate normalisé possède un seul état final sans transition sortante

Normalisation d'un automate (1/2)

Définition: normalisation pour l'initialisation

Soit l'automate $M = \{Q, A, \Delta, s, F\}$.

$$Si \exists q \in Q \land a \in \mathcal{A}/(q, a, s) \in \Delta$$
,

$$M' = \{Q \cup \{s'\}, \mathcal{A}, \Delta \cup \{(s', \epsilon, s)\}, s', F\}.$$

Sinon M' = M

M' est la version normalisée pour l'initialisation de M.

Définition: normalisation pour la terminaison

Soit l'automate $M = \{Q, A, \Delta, s, F\}$.

$$Si |F| > 1$$
 ou $si \exists q \in F \land q' \in Q \land a \in \mathcal{A}/(q, a, q') \in \Delta$,

$$M' = \{Q \cup \{f\}, A, \Delta \cup \{(q, \epsilon, f)/q \in F\}, s, \{f\}\}.$$

Sinon M' = M.

M' est la version normalisée pour la terminaison de M.

Normalisation d'un automate (2/2)

Définition: normalisation d'un automate

La normalisation d'un automate M consiste à lui appliquer successivement les normalisations pour l'initialisation et pour la terminaison. Le résultat M' est la version normalisée de l'automate.

Exemple

Prédécesseur et successeur

Définition : prédécesseur d'un état

Un prédécesseur d'un état q est un état $q' \in Q \setminus \{q\}$ qui possède une transition vers q. pred(q) est l'ensemble des prédécesseurs de q.

Définition : successeur d'un état

Un successeur d'un état q est un état $q' \in Q \setminus \{q\}$ tel qu'il existe une transition de q vers cet état q'. succ(q) est l'ensemble des successeurs de q.

Exemple

- $pred(2) = \{0, 1\}$
- $succ(2) = \{0, 3\}$

- Soit deux transitions (p, r, q) et (p, s, q)
- On peut les remplacer par la transition (p, r|s, q)

Méthode d'élimination des états

- Appelée la méthode de Brzozowski et McCluskey
- L'automate doit être normalisé
- Pour supprimer un état q et pour chaque couple (q_1, q_2) avec $q_1 \in pred(q) \land q_2 \in succ(p)$, on remplace les transitions (q_1, r, q) , (q, s, q) et (q, t, q_2) par :
 - (q_1, rs^*t, q_2) si $\exists (q, s, q) \in \Delta$
 - (q_1, rt, q_2) sinon
- On réduit les transitions
- On procède de même pour tous les états de $Q \setminus \{s, f\}$
 - \hookrightarrow A la fin, il n'y a plus que deux états et une seule transition
 - à l'automate

Le changement de l'ordre d'élimination des états peut donner des expressions régulières différentes, mais équivalentes

Exemples

• Suppression de l'état 1 qui ne possède pas de transition sur lui-même :

• Suppression de l'état 1 qui possède une transition sur lui-même :

Construction d'un analyseur lexical

- Soit un analyseur lexical qui accepte n unités lexicales :
 - Représenter chaque unité lexicale par une expression régulière
 - Construire un AFN pour chaque expression
 - Transformation des AFN en AFD
 - Réduction des états
- Algorithme général de l'analyseur :
 - Test sur le premier AFD
 - Si non accepté, alors on teste le second
 - etc.
- En pratique, recherche du plus grand lexème reconnu

L'ordre de définition des unités lexicales est important; si un lexème est reconnu par deux lexèmes, le lexème défini en premier est choisi.

Introduction aux automates à pile

- Tout langage ne peut être défini par une expression régulière
 - \hookrightarrow Exemple : $L = \{ w \mid w = a^n b^n, n \ge 0 \}$
- Possible d'utiliser un automate à pile qui est constitué des mêmes éléments qu'un AFN :
 - Un ruban d'entrée et une tête de lecture
 - Un ensemble d'états avec un état initial et un ensemble d'état d'acceptation
 - Une relation de transition
- Ajout d'une pile de capacité infinie, initialement vide
- À chaque étape, le sommet de la pile est consulté et remplacé par une suite de symboles

Automate fini non déterministe à pile

Définition : automate fini non déterministe à pile (AFNP)

Un automate fini non déterministe à pile est défini par :

$$M = \{Q, \mathcal{A}, \mathcal{B}, \Delta, z, s, F\}$$

Où :

- Q est un ensemble fini d'états
- A est l'alphabet
- B est l'alphabet de la pile
- \bullet Δ est la relation de transition :

$$\Delta \subset ((Q \times \mathcal{A}^* \times \mathcal{B}^*) \times (Q \times \mathcal{B}^*))$$

- $z \in \mathcal{B}$ est le symbole initial de la pile
- $s \in Q$ est l'état initial
- F ⊆ Q est l'ensemble des états d'acceptation

La fonction de transition

Soit la transition
$$((p, u, v), (q, v') \in \Delta \subset ((Q \times \mathcal{A}^* \times \mathcal{B}^*) \times (Q \times \mathcal{B}^*))$$

- L'automate passe de p à q sur le mot u si la chaîne v est au sommet de la pile
- À l'état q, le sommet de la pile v est remplacé par v'

Configuration

Définition : configuration

La configuration d'un AFNP est définie par un triplet : $(q, a, a') \in Q \times \mathcal{A}^* \times \mathcal{B}^*$

- q est l'état courant
- a est le mot en entrée
- a' est le contenu de la pile

Dérivation en une étape

Définition : dérivation (en une étape)

La configuration $(q', b, b') \in Q \times A^* \times B^*$ est dérivable en une étape $de(q, a, a') par(q, a, a') \vdash_{M} (q', b, b') si:$

- \bullet $((q, u, v), (q', v')) \in \Delta$
- a = ub : le mot a commence par le préfixe u
- \bullet a' = vw : avant la transition, le sommet de la pile contient $v \in \mathcal{B}^*$
- b' = v'w: après la transition, v est remplacé par v'

Dérivation en plusieurs étapes

Définition : dérivation (en plusieurs étapes)

La configuration (q', b, b') est dérivable en plusieurs étapes de la configuration (q, a, a') s'il existe des configurations intermédiaires C_0, \ldots, C_k avec $k \ge 0$ telles que :

- $C_0 = (q, a, a')$
- $C_k = (q', b, b')$
- $C_i \vdash_M C_{i+1} pour 0 \le i \le k$
- Une exécution d'un AFNP sur un mot w est une suite de configurations :

$$(s, w, z) \vdash (q_1, w_1, \alpha_1) \vdash \ldots \vdash (q_n, \epsilon, \alpha_n)$$

Acceptation d'un mot par un automate à pile

Soit un AFNP $M = \{Q, A, B, \Delta, z, s, F\}$

• Acceptation sur état d'acceptation. w est accepté par M si

$$(s,w,z)\vdash_{M}^{*}(q,\epsilon,lpha)$$
 avec $q\in F$

• Acceptation sur pile vide. w est accepté par M si :

$$(s, w, z) \vdash_{M}^{*} (q, \epsilon, \epsilon)$$

Remarques

- Si l'automate accepte sur pile vide, F est inutile
- Les deux définitions sont équivalentes; les deux types d'automates reconnaissent les mêmes langages.

Exemple

- Soit le langage $L = \{a^n b^n, n \ge 0\}$. Définition de M qui reconnaît L sur pile vide :
 - $Q = \{q_0, q_1\}$
 - $A = \{a, b\}, B = \{a\}$
 - $z = \epsilon$, $s = q_0$ $(q_0, a, \epsilon), (q_0, a)$ • Δ : $(q_0, a, a), (q_0, aa)$ $(q_0, b, a), (q_1, \epsilon)$ $(q_1, b, a), (q_1, \epsilon)$
- Exécution pour w = aaabbb:
 - $(q_0, aaabbb, \epsilon) \vdash (q_0, aabbb, a) \vdash (q_0, abbb, aa) \vdash (q_0, bbb, aaa) \vdash (q_1, bb, aa) \vdash (q_1, b, a) \vdash (q_1, \epsilon, \epsilon)$
 - \hookrightarrow Le mot w est accepté par M