class 14: RNA-Seq Mini Project

Aigerim (PID: 09919142)

Data import

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names=1)
metadata <- read.csv("GSE37704_metadata.csv")</pre>
```

Data exploration

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				

ENSG00000186092 0 ENSG00000279928 0 ENSG00000279457 46 ENSG00000278566 0 ENSG00000273547 0 ENSG00000187634 258

Check for metadata

colnames(counts)

```
[1] "length"
              "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"
[7] "SRR493371"
  metadata$id
[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"
  countData <- counts[,-1]</pre>
  all(colnames(countData) == metadata$id)
```

[1] TRUE

Filter out zero count genes

We can sum across the rows and then remove those with zero sums

```
non.zero.inds <- rowSums(countData) > 0
  non.zero.counts <- countData[non.zero.inds,]</pre>
    How many genes we have with non zero counts?
  nrow(non.zero.counts)
[1] 15975
```

```
head(non.zero.counts)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Setup for DESeq

```
library(DESeq2)
```

DESeq Analysis

```
head(non.zero.counts)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

```
res <- results(dds)
  head(res)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                baseMean log2FoldChange
                                           lfcSE
                                                                pvalue
                                                       stat
               <numeric>
                             <numeric> <numeric> <numeric>
                                                             <numeric>
ENSG00000279457
                 29.9136
                             0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000187634 183.2296
                            0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000188976 1651.1881
                           -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                            0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583 47.2551
                             0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642 11.9798
                             0.5428105 0.5215598 1.040744 2.97994e-01
                      padj
                 <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
```

Results extraction and visualization

ENSG00000187961 1.13413e-07 ENSG00000187583 9.19031e-01 ENSG00000187642 4.03379e-01

```
library(ggplot2)
df <- as.data.frame(res)

ggplot(df) +
   aes(x = log2FoldChange, y = -log(padj)) +
   geom_point()</pre>
```

Warning: Removed 1237 rows containing missing values (`geom_point()`).


```
df <- as.data.frame(res)
mycols <- rep("grey", nrow(df))
mycols[abs(res$log2FoldChange) > 2] <- "blue"
mycols[res$padj > 0.05] <- "grey"

ggplot(df) +
   aes(x = log2FoldChange, y = -log(padj)) +
   geom_point(color = mycols)</pre>
```

Warning: Removed 1237 rows containing missing values (`geom_point()`).

Pathway Analysis

Annotation the genes with symbol and entrez id

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

Let's see the databases that we can translate between:

```
columns(org.Hs.eg.db)
```

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

We can use these "columns" with the mapIds() function to translate between databases identifiers.

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01
	pac	dj symbol	entra	Z	genename

```
<character>
                  <numeric> <character> <character>
ENSG00000279457 6.86555e-01
                                      NΑ
                                                  NA
                                                                          NA
ENSG00000187634 5.15718e-03
                                  SAMD11
                                              148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                   NOC2L
                                               26155 NOC2 like nucleolar ..
ENSG00000187961 1.13413e-07
                                              339451 kelch like family me..
                                  KLHL17
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                               84069 pleckstrin homology ...
                                               84808 PPARGC1 and ESRR ind..
ENSG00000187642 4.03379e-01
                                   PERM1
```

```
head(res$entrz)
```

```
ENSG00000279457 ENSG00000187634 ENSG00000188976 ENSG00000187961 ENSG00000187583

NA "148398" "26155" "339451" "84069"

ENSG00000187642

"84808"
```

KEGG and **GO** analysis

BiocManager::install(c("pathview", "gage", "gageData"))

```
library(gage)
library(gageData)
library(pathview)
```

The gage function and wants as input a vector of, in this case, fold changes with names of genes in the format that matches the databases/geneset we are going to use.

```
library(gage)
  library(gageData)
  library(pathview)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
           "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                  "10941"
                                           "151531" "1548"
                                                               "1549"
                                                                        "1551"
 [9] "1553"
               "1576"
                        "1577"
                                           "1807"
                                  "1806"
                                                     "1890"
                                                               "221223" "2990"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                           "51733"
                                                     "54490"
                                                               "54575"
                                                                        "54576"
[25] "54577"
               "54578"
                        "54579"
                                  "54600"
                                           "54657"
                                                     "54658"
                                                               "54659"
                                                                        "54963"
                                           "7172"
                                                               "7364"
[33] "574537" "64816"
                        "7083"
                                  "7084"
                                                     "7363"
                                                                        "7365"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                           "7378"
                                                     "7498"
                                                               "79799"
                                                                        "83549"
[49] "8824"
               "8833"
                        "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                             "10622"
                                                      "10623"
                                                                "107"
                                                                         "10714"
                                   "10621"
  [9] "108"
                "10846"
                         "109"
                                   "111"
                                             "11128"
                                                      "11164"
                                                                "112"
                                                                          "113"
                                            "124583" "132"
 [17] "114"
                "115"
                         "122481" "122622"
                                                                "158"
                                                                          "159"
                                                                "205"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                      "204"
                                                                          "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721"
                                             "25885"
                                                      "2618"
                                                                "26289"
                                                                          "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                             "2977"
                                                      "2982"
                                                                "2983"
                                                                          "2984"
                                                                "318"
                                                                          "3251"
 [49] "2986"
                "2987"
                         "29922"
                                   "3000"
                                             "30833"
                                                      "30834"
 [57] "353"
                "3614"
                         "3615"
                                   "3704"
                                             "377841" "471"
                                                                "4830"
                                                                         "4831"
 [65] "4832"
                         "4860"
                                             "4882"
                                                      "4907"
                                                                          "50940"
                "4833"
                                   "4881"
                                                                "50484"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                             "5137"
                                                      "5138"
                                                                "5139"
                                                                          "5140"
                                             "5145"
                                                      "5146"
                                                                "5147"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                                                          "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                      "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                      "53343"
                                                                "54107"
                                                                          "5422"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                             "5430"
                                                      "5431"
                                                                "5432"
                                                                          "5433"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                             "5438"
                                                      "5439"
                                                                "5440"
                                                                          "5441"
```

```
[121] "5471"
               "548644" "55276" "5557"
                                          "5558"
                                                   "55703"
                                                            "55811"
                                                                     "55821"
[129] "5631"
               "5634"
                        "56655" "56953"
                                          "56985"
                                                   "57804"
                                                            "58497"
                                                                     "6240"
[137] "6241"
               "64425" "646625" "654364" "661"
                                                   "7498"
                                                            "8382"
                                                                     "84172"
[145] "84265"
               "84284"
                        "84618"
                                 "8622"
                                          "8654"
                                                   "87178"
                                                            "8833"
                                                                     "9060"
[153] "9061"
                       "953"
                                 "9533"
                                          "954"
                                                   "955"
                                                            "956"
                                                                     "957"
               "93034"
[161] "9583"
               "9615"
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  head(keggres$less)
                                        p.geomean stat.mean
                                                                   p.val
hsa04110 Cell cycle
                                     8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                     9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.246882e-03 -3.059466 1.246882e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                           q.val set.size
                                                                   exp1
hsa04110 Cell cycle
                                      0.001448312
                                                     121 8.995727e-06
hsa03030 DNA replication
                                      0.007586381
                                                      36 9.424076e-05
hsa03013 RNA transport
                                      0.066915974
                                                     144 1.246882e-03
hsa03440 Homologous recombination
                                                      28 3.066756e-03
                                     0.121861535
hsa04114 Oocyte meiosis
                                                      102 3.784520e-03
                                      0.121861535
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                      53 8.961413e-03
  pathview(foldchanges, pathway.id="hsa04110")
```

Info: Working in directory C:/Users/ /Desktop/UCSD Ext stu/Bioinformatics/BGGN213/class14

^{&#}x27;select()' returned 1:1 mapping between keys and columns

Info: Writing image file hsa04110.pathview.png

Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean
GO:0007156 homophilic cell adhesion
                                         8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                         1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                         1.925222e-04 3.565432 1.925222e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                         5.953254e-04 3.253665 5.953254e-04
                                             q.val set.size
                                                                    exp1
GO:0007156 homophilic cell adhesion
                                         0.1952430
                                                        113 8.519724e-05
```

```
GO:0002009 morphogenesis of an epithelium 0.1952430 339 1.396681e-04 GO:0048729 tissue morphogenesis 0.1952430 424 1.432451e-04 GO:0007610 behavior 0.1968058 426 1.925222e-04 GO:0060562 epithelial tube morphogenesis 0.3566193 257 5.932837e-04 GO:0035295 tube development 0.3566193 391 5.953254e-04
```

\$less

	p.geomean	stat.mean p.val
GO:0048285 organelle fission	1.536227e-15	-8.063910 1.536227e-15
GO:0000280 nuclear division	4.286961e-15	-7.939217 4.286961e-15
GO:0007067 mitosis	4.286961e-15	-7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.169934e-14	-7.797496 1.169934e-14
GO:0007059 chromosome segregation	2.028624e-11	-6.878340 2.028624e-11
GO:0000236 mitotic prometaphase	1.729553e-10	-6.695966 1.729553e-10
	q.val	set.size exp1
GO:0048285 organelle fission	•	set.size exp1 376 1.536227e-15
GO:0048285 organelle fission GO:0000280 nuclear division	•	376 1.536227e-15
9	5.843127e-12	376 1.536227e-15 352 4.286961e-15
GO:0000280 nuclear division	5.843127e-12 5.843127e-12 5.843127e-12	376 1.536227e-15 352 4.286961e-15 352 4.286961e-15
GO:0000280 nuclear division GO:0007067 mitosis	5.843127e-12 5.843127e-12 5.843127e-12	376 1.536227e-15 352 4.286961e-15 352 4.286961e-15 362 1.169934e-14

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GD:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.565432	3.565432
GO:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

head(gobpres\$less)

	p.geomean	stat.mean	p.val
GO:0048285 organelle fission	1.536227e-15	-8.063910	1.536227e-15
GO:0000280 nuclear division	4.286961e-15	-7.939217	4.286961e-15
GO:0007067 mitosis	4.286961e-15	-7.939217	4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.169934e-14	-7.797496	1.169934e-14
GO:0007059 chromosome segregation	2.028624e-11	-6.878340	2.028624e-11
GO:0000236 mitotic prometaphase	1.729553e-10	-6.695966	1.729553e-10
	g.val	set.size	exp1

GO:0048285 organelle fission	5.843127e-12	376	1.536227e-15
GO:0000280 nuclear division	5.843127e-12	352	4.286961e-15
GO:0007067 mitosis	5.843127e-12	352	4.286961e-15
${\tt GO:0000087~M~phase~of~mitotic~cell~cycle}$	1.195965e-11	362	1.169934e-14
GO:0007059 chromosome segregation	1.659009e-08	142	2.028624e-11
GO:0000236 mitotic prometaphase	1.178690e-07	84	1.729553e-10

Reactome Analysis

We need a list of genes as a text file for using the reactome online site. Let's start with our genes that have a abs(log2FC) > 2 and an adjusted P-value < 0.05

```
c(T, T, T, F) & c(T, F, T, T)
```

[1] TRUE FALSE TRUE FALSE

```
inds <- (abs(res$log2FoldChange) > 2) & (res$padj < 0.05)</pre>
mygenes <- res$symbol[inds]</pre>
cat(head(mygenes), sep="\n")
```

HES4

HES2 DRAXIN

CDA

RUNX3

AUNIP

```
write.table(mygenes, file="mygenes.txt",
            quote=FALSE, row.names=FALSE)
```


Save my results

write.csv(res, file="myresults.csv")