University of Oxford

PARABOLIC PDES -PROBLEM SHEET FOUR

Aili Shao

Exercise 1. Assume that Ω is a bounded domain with smooth boundary in \mathbb{R}^n with n > 2. Let $a = (a_{ij})$ be a symmetric tensor valued field satisfying the strong ellipticity condition

$$\nu I \le a(z) \le \nu^{-1} I \ (\Leftrightarrow \nu |\xi|^2 \le \xi \cdot a(z)\xi \le \nu^{-1} |\xi|^2 \ \xi \in \mathbb{R}^n)$$

for a.a. space time points $z = (x,t) \in Q_T$ with a positive constant ν .

Suppose that $b = (b_i) \in L_{n,\infty}(Q_T)$. Here $Q = \Omega \times (0,T)$ and T > 0 is given. Let $u_0 \in H := L_2(\Omega)$.

Show that there exists a number $\varepsilon > 0$ with the following property: if

$$||b||_{n,\infty,Q_T} < \varepsilon,$$

there exists a unique function $u: Q_T \to \mathbb{R}$ that is a weak solution to the following initial boundary value problem:

$$\partial_t u + Lu = 0, (0.1)$$

where

$$Lu = -\operatorname{div}(a\nabla u) + b \cdot \nabla u,$$

$$u = 0 \tag{0.2}$$

on $\partial\Omega\times[0,T]$

$$u(\cdot,0) = u_0(\cdot) \tag{0.3}$$

in Ω .

Proof. We first show the existence of the solution. Let $\{e_k\}_{k=1}^{\infty}$ be an orthonormal basis consisting of eigenfunctions of the Laplace operator in Ω under Dirichlet boundary conditions. We are looking for a function

$$u^{N}(x,t) = \sum_{k=1}^{N} c_{k}(t)e_{k}(x),$$

where unknown coefficients c_k are determined as a solution of the following linear system of ODE's

$$\int_{\Omega} \partial_t u^N(x,t) e_k(x) + (a\nabla u^N(x,t)) \cdot \nabla e_k(x) + b(x,t) \cdot \nabla u^N(x,t) e_k(x) \, \mathrm{d}x = 0 \qquad (0.4)$$

for all k = 1, 2, ..., N and for a.a. $t \in [0, T]$ with initial data $c_k(0) = a_k := (u_0, e_k)$. A solution of such ODE system always exists.

Now let us consider the energy estimates. First note that

$$\int_{\Omega} \partial_t u^N(x,t) u^N(x,t) + (a\nabla u^N(x,t)) \cdot \nabla u^N(x,t) + b(x,t) \cdot \nabla u^N(x,t) u^N(x,t) \, \mathrm{d}x = 0. \quad (0.5)$$

Applying the ellipticity condition of a and Hölder's inequality to the term involving b(x,t), we have

$$\frac{d}{dt}\|u^{N}(\cdot,t)\|_{L^{2}(\Omega)}^{2} + 2\nu\|\nabla u^{N}(\cdot,t)\|_{L^{2}(\Omega)}^{2} \leq 2\|b(\cdot,t)\|_{L^{n}(\Omega)}\|\nabla u^{N}(\cdot,t)\|_{L^{2}(\Omega)}\|u^{N}(\cdot,t)\|_{L^{\frac{2n}{n-2}}(\Omega)}$$
$$\leq 2C(n,\Omega)\|b(\cdot,t)\|_{L^{n}(\Omega)}\|\nabla u^{N}(\cdot,t)\|_{L^{2}(\Omega)}^{2}$$

where $C(n,\Omega)$ is the Sobelev's constant depending on n and Ω . Integrating the above inequality from 0 to T, we have for a.a $t \in (0,T)$,

$$||u^{N}(\cdot,t)||_{L^{2}(\Omega))}^{2} + 2\left(\nu - C(n,\Omega)||b||_{L^{\infty}(0,T;L^{n}(\Omega))}\right) ||\nabla u^{N}||_{L^{2}(0,T;L^{2}(\Omega))}^{2} \le ||u_{0}||_{L^{2}(\Omega)}^{2}.$$

If $||b||_{L^{\infty}(0,T;L^{n}(\Omega))} < \varepsilon := \frac{\nu}{2C(n,\Omega)}$, then we have

$$||u^N||_{L^{\infty}(0,T;L^2(\Omega))} + \nu ||\nabla u^N||_{L^2(0,T;L^2(\Omega))} \le ||u_0||_{L^2(\Omega)}.$$

To establish the second estimate, we take an arbitrary function $w \in H_0^1(\Omega)$ and let $w^N(x) = \sum_{k=1}^N w_k e_k(x)$, where $w_k = (w_k, e_k)$. Then by (0.4) and by the orthogonality, we have

$$\begin{split} \int_{\Omega} \partial_t u^N(x,t) w(x) \, \mathrm{d}x &= \int_{\Omega} \partial_t u^N(x,t) w^N(x) \, \mathrm{d}x \\ &= \int_{\Omega} -a \nabla u^N(x,t) \cdot \nabla w^N(x,t) - b(x,t) \nabla u^N(x,t) w^N(x) \, \mathrm{d}x. \end{split}$$

Using the Poincare's inequality $||w^N||_{L^2(\Omega)} \leq C(\Omega) ||\nabla w^N||_{L^2(\Omega)}$ and the fact that $||\nabla w^N||_{L^2(\Omega)} \leq ||\nabla w||_{L^2(\Omega)}$, we derive the following estimate

$$\int_{\Omega} \partial_t u^N(x,t) w(x) \, \mathrm{d}x \le ||a||_{L^{\infty}(\Omega)} ||\nabla u^N(\cdot,t)||_{L^2(\Omega)} ||\nabla w^N||_{L^2(\Omega)}
+ C(\Omega) ||b(\cdot,t)||_{L^n(\Omega)} ||\nabla u^N(\cdot,t)||_{L^2(\Omega)} ||\nabla w^N||_{L^2(\Omega)}.$$

This implies that

$$\|\partial_t u^N\|_{L^2(0,T;H^{-1})} \le \tilde{C} \|u_0\|_{L^2(\Omega)}.$$

Since both $\|\partial_t u^N\|_{L^2(0,T;H^{-1}(\Omega))}$ and $\|u^N\|_{L^\infty(0,T;L^2(\Omega))}$ are bounded, we may assume without loss of generality that

$$u^N \rightharpoonup u$$

in $L^2(0,T;H^1_0(\Omega))$ and

$$\partial_t u^N \rightharpoonup \partial_t u$$

in $L^2(0,T;H^{-1}(\Omega))$ (or otherwise pass to a subsequence), thus the limit function u satisfies $u \in C(0,T;L^2(\Omega)) \cap L^2(0,T;H^1_0(\Omega))$ and $\partial_t u \in L^2(0,T;H^{-1}(\Omega))$. Passing to the limit in (0.4), we have

$$\int_{O_T} \left(\partial_t u(x,t) e_k(x) + (a \nabla u(x,t)) \cdot \nabla e_k(x) + b(x,t) \cdot \nabla u(x,t) e_k(x) \right) \chi(t) \, \mathrm{d}x \, \mathrm{d}t = 0 \quad (0.6)$$

for all k = 1, 2, ... and for all $\chi \in L^2(0, T)$. Clearly, (0.6) can be extended from an arbitrary eigenfunction e_k to arbitrary function $w \in H_0^1(\Omega)$. This shows that u is the weak solution. Now we show that the initial data holds. We notice that

$$\left(u^N(\cdot,t) - u_0^N(\cdot), w(\cdot)\right) = \int_0^t \left(\partial_t u^N(\cdot,s), w(\cdot)\right) ds$$

for any $w \in H_0^1(\Omega)$. By Lemma 2.2 from lecture notes, we know that

$$\left(u^N(\cdot,t)-u_0^N(\cdot),w(\cdot)\right)\to \left(u(\cdot,t)-u_0(\cdot),w(\cdot)\right).$$

On the other hand, by the weak convergence of the derivative in time,

$$\int_0^t (\partial_t u^N(\cdot, s), w(\cdot)) \, \mathrm{d}s \to \int_0^t (\partial_t u(\cdot, s), w(\cdot)) \, \mathrm{d}s.$$

Hence,

$$(u(\cdot,t)-u_0(\cdot),w(\cdot))=\int_0^t (\partial_t u(\cdot,s),w(\cdot))\,\mathrm{d}s\to 0 \text{ as }t\to 0$$

for any $w \in H_0^1(\Omega)$. But we also know that $||u(\cdot,t)-u(\cdot,0)||_{L^2(\Omega)} \to 0$ as $t \to 0^+$. Thus $u(\cdot,0)=u_0(\cdot)$ a.a in Ω .

To show the uniqueness of the solution, it is sufficient to show that if $u_0 = 0$, then the only weak solution is u = 0. By passing to the limit of the energy estimates, we get

$$\frac{d}{dt} \|u(\cdot, t)\|_{L^2(\Omega))}^2 + \nu \|\nabla u(\cdot, t)\|_{L^2(\Omega))}^2 \le 0.$$

Thus $\frac{d}{dt} \|u(\cdot,t)\|_{L^2(\Omega)}^2 \leq 0$ which in turn implies that $\|u(\cdot,t)\|_{L^2(\Omega)}^2 \leq \|u(\cdot,0)\|_{L^2(\Omega)}^2 = 0$. Thus $\|u(\cdot,t)\|_{L^2(\Omega)} = 0$ for all $t \in [0,T]$. This immediately implies that $u \equiv 0$.

We can use 'stampacchia's truncation' to avoid using Galerkin approximation. Define $b_k := \max(\min(b, k), -k)$ so that $|b_k| \leq |b|$ and $|b_k| \leq k$ a.e. in Q_T . By Theorem 2.1, Chapter 3, existence and uniqueness of $u_k \in C([0, T], L_2(\Omega)) \cap L_2(0, T; H_0^1(\Omega))$ to

$$\begin{cases} \partial_t u_k - \operatorname{div}(a\nabla u_k) + b_k \cdot \nabla u_k = 0 \text{ in } Q_T \\ b_k \mid \partial\Omega \times [0, T] = 0, u_k \mid_{t=0} = u_0. \end{cases}$$

Then

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \|u_k(\cdot,t)\|_{L_2(\Omega)}^2 &= 2 \left\langle \partial_t u_k.\partial u_k \right\rangle_{H^{-1} \times H_0^1} \\ &= -2 \int_{\Omega} (a \nabla u_k) \cdot \nabla u_k - 2 \int (b_k \cdot \nabla u_k) u_k \\ &\leq -2 \nu \int_{\Omega} |\nabla u_k(\cdot,t)|^2 + 2 \|b\|_{n,\infty} \|\nabla u_k(\cdot,t)\|_{2,\Omega} \|u_k(\cdot,t)\|_{\frac{2n}{n-2},\Omega} \\ &\leq (-2\nu + 2C(\Omega) \|b\|_{n,\infty}) \|\nabla u_k(\cdot,t)\|_{2,\Omega}^2 \\ &= -M \|\nabla u_k(\cdot,t)\|_{2,\Omega}^2 \end{split}$$

where M>0 if and only if $||b||_{n,\infty}<\frac{\nu}{C(\Omega)}$. This implies that

$$\sup_{0 \le t \le T} \|u_k(\cdot, t)\|_{L_2(\Omega)} + \|\nabla u_k\|_{2, Q_T} \le C(M) \|u_0\|_{2, \Omega} \text{ for all } k \ge 1.$$

We also have

$$\|\partial_t u_k\|_{L_2(0,T;H^{-1})} \le C(M)\|u_0\|_{2,\Omega}$$
 for all $k \ge 1$.

By a different version of Aubin-Lion Lemma, we know that $u_k \to u$ in $C([0,T]; L_2(\Omega))$, $u_k \to u$ weakly in $L_2(0,T; H_0^1(\Omega))$, $\partial_t u_k \to \partial_t u$ weakly in $L_2(0,T; H^{-1})$, and $u(t) \to u_0$ as $t \to 0$. We can also deduce that $b_k \to b$ in $L_2(Q_T)$ by DCT since $b_k \to b$ a.e. and $|b_k| \le g \in L_2$.

Exercise 2. Let Ω be a bounded domain with sufficiently smooth boundary and let $p \geq 1$. Then the space $W_p^{2,1}(Q_T)$ is compactly embedded into $W_p^{1,0}(Q_T)$.

Proof. Recall that

$$W_p^{2,1}(Q_T) \equiv \left\{ \|u\|_{W_p^{2,1}(Q_T)} = \|u\|_{L_p(0,T;W^{2,p}(\Omega))} + \|\partial_t u\|_{L_p(0,T;L_p(\Omega))} < \infty \right\}$$

and

$$W_p^{1,0}(Q_T) \equiv \left\{ \|u\|_{W_p^{1,0}(Q_T)} = \|u\|_{L_p(0,T;W^{1,p}(\Omega))} < \infty \right\}$$

where $W^{2,p}$ is the standard Sobolev's space with functions having weak derivatives up to order 2 in L^p space.

If $1 , we can apply Aubin-Lions Lemma from lecture notes directly by taking <math>V_0 = W^{2,p}(\Omega)$, $V = W^{1,p}(\Omega)$, $V_1 = L^p(\Omega)$ to show that $W_p^{2,1}(Q_T)$ is compactly embedded into $L_p(0,T;W^{1,p}(\Omega)) = W_p^{1,0}(\Omega)$.

Now consider the case p=1. $L^1(\Omega)$ is not reflexive, so we cannot apply the Aubin-Lions Lemma from lecture notes directly. We proceed our proof as follows. Let $\{u_m\}_{m=1}^{\infty}$ be a bounded sequence in $W_1^{2,1}(Q_T)$, then aim to show that there exists a subsequence $\{u_{m_k}\}_{k=1}^{\infty}$ converging in $W_1^{1,0}(Q_T)$. Since $\{u_m\}_{m=1}^{\infty}$ is a bounded sequence in $W_p^{2,1}(Q_T)$, there exists a constant K>0 such that

$$||u_m||_{L_1(0,T;W^{2,1}(\Omega))} = \int_0^T ||u_m||_{W^{2,1}(\Omega)} dt \le K$$

and

$$\|\partial_t u_m\|_{L_1(0,T;L^1(\Omega))} = \int_0^T \|\partial_t u_m\|_{L^1(\Omega)} dt \le K.$$

Note that Lemma 1.1 still holds for $V_0 = W^{2,1}(\Omega)$, $V = W^{1,1}(\Omega)$ and $V_1 = L^1(\Omega)$. That is, given $\eta > 0$, there exists $C(\eta) > 0$ such that for any $v \in W^{1,1}(\Omega)$,

$$||v||_{W^{1,1}(\Omega)} \le \eta ||v||_{W^{2,1}(\Omega)} + C(\eta) ||v||_{L^1(\Omega)}.$$

To prove this result, we assume for contradiction that for any $n \in \mathbb{N}$, there exists $v_n \in W^{2,1}(\Omega)$ such that

$$||v_n||_{W^{1,1}(\Omega)} > \eta ||v_n||_{W^{2,1}(\Omega)} + n||v_n||_{L^1(\Omega)}.$$

After normalization, we have

$$\|v_n^{'}\|_{W^{1,1}(\Omega)} = 1 > \eta \|v_n^{'}\|_{W^{2,1}(\Omega)} + n\|v_n^{'}\|_{L^1(\Omega)}$$

where $v_n^{'} = \frac{v_n}{\|v_n\|_{W^{1,1}(\Omega)}}$. The sequence $v_n^{'}$ is bounded in $W^{2,1}(\Omega)$, thus there exists a subsequence $v_{n_j} \to v$ in $W^{1,1}(\Omega)$ and $L^1(\Omega)$ by compact embeddings. Since $n\|v_{n_j}^{'}\|_{L^1(\Omega)}$ is bounded and therefore $v_{n_j}^{'} \to 0$ in $L^1(\Omega)$. By uniqueness of limit, v = 0 in $W^{1,1}(\Omega)$, so $\|v\|_{W^{1,1}(\Omega)} = 0$. But $1 = \|v_{n_j}^{'}\|_{W^{1,1}(\Omega)} \to \|v\|_{W^{1,1}(\Omega)}$. This leads to contradiction. Thanks to Lemma 1.1, for each $\eta > 0$, there exists $C(\eta) > 0$ such that for a.e $t \in [0,T]$,

$$||u_m(\cdot,t)||_{W^{1,1}(\Omega)} \le \eta ||u_m(\cdot,t)||_{W^{2,1}(\Omega)} + C(\eta) ||u_m(\cdot,t)||_{L^1(\Omega)}.$$

Integrating over [0, T], we deduce that

$$||u_m||_{L_1(0,T;W^{1,1}(\Omega))} \le \eta K + C(\eta)||u_m||_{L_1(0,T;L^1(\Omega))}.$$
(0.7)

So it is sufficient to show that there exists a subsequence u_{m_k} which is Cauchy in $L_1(0,T;L^1(\Omega))$. We adapt a proof from Süli and Barrett [1]. First note that for $u \in W_1^{2,1}(Q_T)$, we have $\int_0^T \|u(\cdot,t)\|_{W^{2,1}(\Omega)} dt < \infty$ and $\int_0^T \|\partial_t u(\cdot,t)\|_{L^1(\Omega)} dt < \infty$. Note that $\int_0^T \|u(\cdot,t)\|_{W^{2,1}(\Omega)} dt < \infty$ implies that $\int_0^T \|u(\cdot,t)\|_{L^1(\Omega)} dt < \infty$ since $W^{2,1}(\Omega)$ is compactly embedded into $L^1(\Omega)$. This implies that $W_1^{2,1}(Q_T) \subset W^{1,1}(0,T;L^1(\Omega)) \hookrightarrow C(0,T;L^1(\Omega))$. Since $\{u_m\}_{m=1}^\infty$ is a bounded sequence in $C([0,T];L^1(\Omega))$ that is,

$$\max_{t \in [0,T]} \|u_m(\cdot,t)\|_{L^1(\Omega)} \le K$$

for the same K as we defined before.

Note there exists a countable dense subset G of the interval (0,T) and an infinite subsequence $\{u_m\}_{m\in F}$ of the sequence $\{u_m\}_{m\in \mathbb{N}}$ where F is an infinite subset of \mathbb{N} such that $\{u_m(s)\}_{m\in F}$ converges in $L^1(\Omega)$ for each $s\in G$. Details of the proof can be found in [1]. We now aim to show that $\{u_m\}_{m\in F}$ is a Cauchy sequence in $L^1(0,T;L^1(\Omega))$. By the definition of derivative in time, we have

$$||u_m(\cdot,t) - u_m(\cdot,s)||_{L^1(\Omega)} \le \int_s^t |\partial_\tau u_m(\cdot,\tau)| d\tau$$
(0.8)

for any $0 \le s \le t \le T$ and for all $m \in \mathbb{N}$. For $\varepsilon > 0$ and K > 0 as defined before, take $N(\varepsilon) = \left[\frac{3K}{\varepsilon}T\right] + 1$ where [x] means the integer part of x. Let us subdivide the interval [0,T] into N sub-intervals

$$[0, t_1], [t_1, t_2], \dots, [t_{N-1}, t_N]$$

each of length $h = \frac{T}{N}$ where $t_k = kh$, k = 0, 1, ..., N. Now choose in each of the open sub-intervals (t_{k-1}, t_k) , a single element $s_k \in G$, k = 1, 2, ..., N and define $G_{\varepsilon} := \{s_1, s_2, ..., s_N\}$. It follows from (0.8) that

$$\int_{t_{k-1}}^{t_k} \|u_m(\cdot,t) - u_m(\cdot,s_k)\|_{L^1(\Omega)} dt \le \int_{t_{k-1}}^{t_k} \left| \int_{s_k}^t \|\partial_\tau u_m(\cdot,\tau)\|_{L^1(\Omega)} d\tau \right| dt$$
$$\le h \int_{s_k}^t \|\partial_\tau u_m(\cdot,\tau)\|_{L^1(\Omega)} d\tau$$

for k = 1, 2, ..., N. Summing over k = 1, 2, ..., N yields that

$$\sum_{k=1}^{N} \|u_m - u_m(\cdot, s_k)\|_{L_1(t_{k-1}, t_k, L^1(\Omega))} = \sum_{k=1}^{N} \int_{t_{k-1}}^{t_k} \|u_m(\cdot, t) - u_m(\cdot, s_k)\|_{L^1(\Omega)} dt$$

$$\leq h \int_0^T \|\partial_t u_m\|_{L^1(\Omega)} dt$$

$$\leq Kh$$

for all $m \in \mathbb{N}$. It follows from our definition $N = N(\varepsilon)$ that $Kh < \frac{\varepsilon}{3}$. For each $u_m \in W_1^{2,1}(Q_T) \subset C([0,T];L^1(\Omega))$, we define the piecewise constant interpolant

$$\hat{u} := \sum_{k=1}^{N} u(s_k) \chi_{(t_{k-1}, t_k)}$$

where $\chi_{(t_{k-1},t_k)}$ is the indicator function on the interval (t_{k-1},t_k) . Thus, by triangle

inequality, we have

$$\begin{split} \|u_m - u_n\|_{L_1(0,T;L^1(\Omega))} &\leq \|u_m - \hat{u}_m\|_{L_1(0,T;L^1(\Omega))} + \|\hat{u}_m - \hat{u}_n\|_{L_1(0,T;L^1(\Omega))} + \|\hat{u}_n - \hat{u}_n\|_{L_1(0,T;L^1(\Omega))} \\ &\leq \sum_{k=1}^N \|u_m - u_m(s_k)\|_{L_1(t_{k-1},t_k;L^1(\Omega))} + \sum_{k=1}^N \|u_m(s_k) - u_n(s_k)\|_{L_1(t_{k-1},t_k;L^1(\Omega))} \\ &\quad + \sum_{k=1}^N \|u_n - u_n(s_k)\|_{L_1(t_{k-1},t_k;L^1(\Omega))} \\ &\leq \frac{2}{3}\varepsilon + \sum_{k=1}^N \|u_m(s_k) - u_n(s_k)\|_{L_1(t_{k-1},t_k;L^1(\Omega))} \\ &= \frac{2}{3}\varepsilon + \sum_{k=1}^N h\|u_m(s_k) - u_n(s_k)\|_{L^1(\Omega)} \\ &\leq \frac{2}{3}\varepsilon + T \max_{1 \leq k \leq N} \|u_m(s_k) - u_n(s_k)\|_{L^1(\Omega)} \\ &= \frac{2}{3}\varepsilon + T \max_{s \in G_\varepsilon} \|u_m(s) - u_n(s)\|_{L^1(\Omega)} \end{split}$$

for all $m, n \in \mathbb{N}$. As $\{u_m(s)\}_{m \in F}$ is a Cauchy sequence in $L^1(\Omega)$ for each $s \in G_{\varepsilon}$ and G_{ε} is a finite set (of cardinality $N = N(\varepsilon)$), it follows that $\{u_m(s)\}_{m \in F}$ is a Cauchy sequence in $L^1(\Omega)$ uniformly in $s \in G_{\varepsilon}$. i.e. for each $\varepsilon > 0$, there exists a positive integer $n_0 = n_0(\varepsilon) \in F$ such that

$$\max_{s \in G_{\varepsilon}} \|u_m(s) - u_n(s)\|_{L^1(\Omega)} < \frac{\varepsilon}{3T}$$

for all $m, n \in F$ such that $m, n \geq n_0$. This implies that

$$||u_m - u_n||_{L^1(0,T;L^1(\Omega))} < \varepsilon$$

for all $m, n \in F, m, n \geq n_0$. Then $\{u_m\}_{m \in F}$ is a Cauchy sequence in $L_1(0, T; L^1(\Omega))$, and thus a Cauchy sequence in $L_1(0, T; W^{1,1}(\Omega))$ by the inequality (0.7). Since $L_1(0, T; W^{1,1}(\Omega))$ is a Banach space, $\{u_m\}_{m \in F}$ converges. This completes the proof for the case p = 1. An alternative approach to deal with p = 1. First we know that for all $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $\|v\|_{W^{1,1}(\Omega)} \leq \varepsilon \|v\|_{W^{2,1}(\Omega)} + C_{\varepsilon} \|v\|_{L^1(\Omega)}$. Let v_k be a sequence such that $\|v\|_{W^{1,1}(\Omega_T)} < \infty$.

$$||v_{k} - v_{l}||_{W_{1}^{1,0}(Q_{T})} \leq \varepsilon \int_{0}^{T} ||v_{k} - v_{l}||_{W^{2,1}(\Omega)} dt + C_{\varepsilon} \int_{0}^{T} ||v_{k} - v_{l}||_{L^{1}(\Omega)} dt$$
$$\leq 2\varepsilon A + C_{\varepsilon} \int_{0}^{T} ||v_{k} - v_{l}||_{L^{1}(\Omega)} dt$$

Notice that

$$||v||_{W^{1,1}(\Omega\times(0,T))} \le ||v||_{W_1^{2,1}(Q_T)}.$$

Then we have $\sup_{k} \|v_{k}\|_{W^{1,1}(\Omega\times(0,T))} \leq A < \infty$, by compact embedding of $W^{1,1}(\Omega\times(0,T))$ in to $L_{1}(\Omega\times(0,T))$, we know that $v_{k}\to v$ in $L_{1}(\Omega\times(0,T))$ for some $v\in W^{1,1}(\Omega\times(0,T))$. There exists $N_{\varepsilon'}$ such that for all $k,l\geq N_{\varepsilon'}$, $\|v_{k}-v_{l}\|_{L_{1}(Q_{T})}<\varepsilon'$ where $\varepsilon'=\frac{\varepsilon}{C_{\varepsilon}}$. Then for all $k,l\geq N_{\varepsilon'}$, $\|v_{k}-v_{l}\|_{W^{1,0}_{1}(Q_{T})}\leq 2\varepsilon A+\varepsilon$ for all $l,k\geq N_{\varepsilon'}$. Thus v_{k} is a Cauchy sequence in $W^{1,0}_{1}(Q_{T})$ which implies that $v_{k}\to v$ in $W^{1,0}_{1}(Q_{T})$.

Exercise 3. Let a function $u \in L_{2,\infty}(Q) \cap W_2^{1,0}(Q)$ satisfies the equation

$$\partial_t u - \operatorname{div} a \nabla u = \operatorname{div} g$$

in Q in the sense of distributions with

$$g \in C^{\alpha, \frac{\alpha}{2}}(\bar{Q})$$

for some $0 < \alpha < 1$. Here, $a = (a_{ij})$ is a symmetric positive matrix with constant entries. Show that

$$\nabla u \in C^{\alpha,\frac{\alpha}{2}}(\bar{Q}(r_1))$$

for any $0 < r_1 < 1$.

Proof. We decompose $u \in L_{2,\infty}(Q) \cap W_2^{1,0}(Q)$ as u = w + v such that v solves the following initial boundary value problem

$$\partial_t v - \operatorname{div} a \nabla v = \operatorname{div} g \text{ in } Q(z_0, r)$$

with

$$v = 0$$
 on $\partial' Q(z_0, r)$

for 0 < r < 1 and w is the distributional solution to the parabolic equation

$$\partial_t w - \operatorname{div}(a\nabla w) = 0.$$

Note that the estimates for linear problem is

$$\int_{Q(z_0,\rho)} |\nabla w - (\nabla w)_{z_0,\rho}|^2 dz \le c(n,\nu) \left(\frac{\rho}{r}\right)^{n+2+2} \int_{Q(z_0,r)} |\nabla w - (\nabla w)_{z_0,r}|^2 dz$$

for any $0 < \rho \le r < 1$. Therefore, we have

$$\int_{Q(z_{0},\rho)} |\nabla u - (\nabla u)_{z_{0},r}|^{2} dz \leq 2c(n,\nu) \left(\frac{\rho}{r}\right)^{n+4} \int_{Q(z_{0},r)} |\nabla w - (\nabla w)_{z_{0},r}|^{2} dz
+ 2 \int_{Q(z_{0},\rho)} |\nabla v - (\nabla v)_{z_{0},r}|^{2} dz
\leq c(n,\nu) \left[\left(\frac{\rho}{r}\right)^{n+4} \int_{Q(z_{0},r)} |\nabla u - (\nabla u)_{z_{0},r}|^{2} dz + \int_{Q(z_{0},r)} |\nabla v|^{2} dz \right].$$

Now we try to find the estimate of $\int_{Q(z_0,r)} |\nabla v|^2 dz$. Note that v satisfies the energy identity,

$$\frac{1}{2} \int_{B(x_0,r)} |v(x,t)|^2 \, \mathrm{d}x + \int_{-r^2}^0 \int_{B(x_0,r)} (a \nabla v(x,s)) \cdot \nabla v(x,s) \, \mathrm{d}x \mathrm{d}s = \int_{-r^2}^0 \int_{B(x_0,r)} \mathrm{div} g(x,s) v(x,s) \, \mathrm{d}x \mathrm{d}s,$$

so we have

$$\int_{Q(z_0,r)} |\nabla v|^2 dz \le c \int_{-r^2}^0 \int_{B(x_0,r)} \operatorname{div} g(x,s) v(x,s) dx ds
= c \int_{Q(z_0,r)} \operatorname{div} (g(z) - g(z_0)) v(z) dz
\le c \int_{Q(z_0,r)} |g(z) - g(z_0)| \cdot \nabla v(z) dz
\le c r^{\alpha} |Q(z_0,r)|^{\frac{1}{2}} \left(\int_{Q(z_0,r)} |\nabla v|^2 dz \right)^{\frac{1}{2}}$$

where in the last line we have used Hölder continuity of g and Hölder's inequality for the integral. This implies that

$$\int_{Q(z_0,r)} |\nabla v|^2 \, \mathrm{d}z \le cr^{2\alpha + n + 2}$$

since $|Q(z_0,r)| \leq cr^{n+2}$. Then we have

$$\int_{Q(z_0,\rho)} |\nabla u - (\nabla u)_{z_0,r}|^2 dz \le c(n,\nu) \left[\left(\frac{\rho}{r} \right)^{n+4} \int_{Q(z_0,r)} |\nabla u - (\nabla u)_{z_0,r}|^2 dz + cr^{2\alpha+n+2} \right].$$

We define

$$\Psi(z_0, \rho) = \int_{Q(z_0, \rho)} |\nabla u - (\nabla u)_{z_0, r}|^2 dz,$$

then we can rewrite the last inequality in the following form:

$$\Psi(z_0, \rho) \le c(n, \nu) \left(\frac{\rho}{r}\right)^{n+4} \Psi(z_0, r) + cr^{2\alpha + n + 2}$$

for any $z_0 \in Q$ such that $Q(z_0, r) \subset Q$ and for any $0 < \rho \le r < 1$. By using a generalization of Lemma 5.1 from the lecture notes, we have that

$$\Psi(z_0, r) \le \tilde{c}r^{n+4-\gamma} \int_Q |\nabla u|^2 \, \mathrm{d}z$$

for $0 < \gamma < n+2$, $z_0 \in Q(\rho)$ and any 0 < r < 1. Taking $\gamma = 2(1-\alpha)$, we have

$$\Psi(z_0, r) \le \tilde{c}r^{2\alpha + n + 2} \int_Q |\nabla u|^2 dz.$$

Then we have

$$\psi(z_0, r) = \frac{1}{|Q(r)|} \int_{Q(z_0, r)} |\nabla u - (\nabla u)_{z_0, r}| \, dz$$

$$\leq |Q(r)|^{-\frac{1}{2}} \Psi(z_0, r)^{\frac{1}{2}}$$

$$\leq \tilde{c}r^{\alpha} \left(\int_{Q} |\nabla u|^2 \, dz^2 \right)^{\frac{1}{2}}$$

$$\leq Ar^{\alpha}$$

for any 0 < r < 1 such that $Q(z_0, r) \subset Q$. Then using Proposition 4.1 from the lecture notes, we can conclude that

$$\nabla u \in C^{\alpha,\frac{\alpha}{2}}(\bar{Q}(r_1))$$

for $r_1 < 1$.

$$\begin{split} \int_{Q(z_{0},\rho)} |\nabla u - (\nabla u)_{z_{0},\rho}|^{2} \, \mathrm{d}z &\leq \int_{Q(z_{0},\rho)} |\nabla u - (\nabla u - (\nabla u)_{z_{0},r})_{z_{0},\rho}|^{2} \, \mathrm{d}z \\ &\leq C(n,\nu,\varphi)\rho^{2} \int_{Q(z_{0},2\rho)} |\nabla^{2}u|^{2} \, \mathrm{d}z \\ &\leq C(n,\nu,\varphi)\rho^{2} \left(\frac{2\rho}{r}\right)^{n+2} \frac{1}{r^{2}} \int_{Q(z_{0},r)} |\nabla u - (\nabla u)_{z_{0},r}|^{2} \, \mathrm{d}z \\ &\leq C(n,\nu,\varphi) \left(\frac{2\rho}{r}\right)^{n+4} \int_{Q(z_{0},r)} |\nabla u - (\nabla u)_{z_{0},r}|^{2} \, \mathrm{d}z \end{split}$$

for $\rho < \frac{r}{2}$.

REFERENCES

[1] J.W.Barrett, E. Süli Reflections on Dubinskii's nonlinear compact embedding theorem, Publications de l'Institut Mathématique (Belgrade), 91(105) (2012), 95–110