Data Science for Actuaries (ACT6100)

Arthur Charpentier

Supervisé # 3 (simulations)

automne 2Q20

https://github.com/freakonometrics/ACT6100/

			~.	D1 5 05	0.4410.044	D				1	
			I A	BLE OF	RANDOM	DIGITS				1	
00000		32533		13586	34673			09117		74945	
00001		04805		74296	24805			10402	00822	91665	
00002		68953		09303		02560		34764	35080	33606	
00003		02529		70715		31165		74397		27659	
00004	12807	99970	80157	36147	64032	36653	98951	16877	12171	76833	
00005	66065	74717	34072	76850	36697	36170	65813	39885	11199	29170	
00006	31060			82406		42614		07439		09732	
00007	85269			65692		74818		85247		88579	
00008	63573			47048		57548		28709		25624	
00009	73796	45753	03529	64778	35808	34282		20344		88435	
										00.00	
00010	98520	17767	14905	68607	22109	40558	60970	93433	50500	73998	
00011	11805	05431	39808	27732	50725	68248	29405	24201	52775	67851	
00012	83452	99634	06288	98083	13746	70078	18475	40610	68711	77817	
00013	88685	40200	86507	58401	36766	67951	90364	76493	29609	11062	
00014	99594	67348	87517	64969	91826	08928	93785	61368	23478	34113	
00015	65481			50950	58047			57186		16544	
00016	80124			08015	45318			78253		53763	
00017	74350			77214	43236			64237		02655	
00018	69916		66252		36936			13990		56418	
00019	09893	20505	14225	68514	46427	56788	96297	78822	54382	14598	
00020	91499	14523	68479	27686	46162	83554	94750	89923	37089	20048	
00021	80336	94598	26940		70297			33340	42050		
00022	44104	81949	85157		32979			40881	22222		
00023	12550	73742	11100	02040	12860		96644		28707		
00024	63606	49329	16505	34484	40219	52563		77082	07207		
00025	61196	00446	26457	40004	51924	22200	c=004	50502	40500	60527	

Source A Million Random Digits with 100,000 Normal Deviates, RAND, 1955.

Here random means a sequence of numbers do not exhibit any discernible pattern, i.e. successively generated numbers can not be predicted.

A random sequence is a vague notion... in which each term is unpredictable to the uninitiated and whose digits pass a certain number of tests traditional with statisticians... Derrick Lehmer, quoted in Knuth (1997)

The goal of Pseudo-Random Numbers Generators is to produce a sequence of numbers in [0,1] that imitates ideal properties of random number.

```
1 > runif(50)
2  [1] 0.27 0.37 0.57 0.91 0.20 0.90 0.94 0.66 0.63 0.06
3  [11] 0.21 0.18 0.69 0.38 0.77 0.50 0.72 0.99 0.38 0.78
4  [21] 0.93 0.21 0.65 0.13 0.27 0.39 0.01 0.38 0.87 0.34
5  [31] 0.48 0.60 0.49 0.19 0.83 0.67 0.79 0.11 0.72 0.41
6  [41] 0.82 0.65 0.78 0.55 0.53 0.79 0.02 0.48 0.73 0.69
```

```
> v <- runif(1)
                                 1 > x % < a - % runif(1)
3 [1] 0.6578972
                                 3 [1] 0.3973465
5 [1] 0.6578972
                                 5 [1] 0.2266485
```


Source Dibert, 2001.

Randomness

Heuristically,

1. calls should provide a uniform sample:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\mathbf{1}_{u_i\in(a,b)}=b-a \text{ with }b>a,$$

2. calls should be independent: for b > a and d > c.

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\mathbf{1}_{u_i\in(a,b),u_{i+k}\in(c,d)}=(b-a)(d-c)\;\forall k\in\mathbb{N},$$

How to create randomness?

Linear Congruential Method

Given $a, b, m \in \mathbb{N}$ and $x_0 \in \{0, 1, \dots, m\}$, define

$$x_{i+1} = (ax_i + b) \text{ modulo } m,$$

and set $u_i = x_i/m$.

```
a = 13; b = 43; m = 100; x = 77; u = rep(NA, 40)
2 > for (i in 1:40) {x = (a * x + b) \% m}
u[i] = x / m 
4 > u
5 [1] 0.44 0.15 0.38 0.37 0.24 0.55 0.58 0.97 0.04 0.95
6 [11] 0.78 0.57 0.84 0.35 0.98 0.17 0.64 0.75 0.18 0.77
7 [21] 0.44 0.15 0.38 0.37 0.24 0.55 0.58 0.97 0.04 0.95
```

Problem: not all values in $\{0, \dots, m-1\}$ are obtained, and there is a cycle here.

Solution: (very) large values for *m* and choose properly *a* and *b*.

How to create randomness?

E.g.
$$m = 2^{32} - 1$$
, $a = 16807$ (= 7^5) and $b = 0$ (used in Matlab).

See L'Ecuyer (2017) for an historical perspective,

Note See McCullough & Heiser (2008) or Mélard (2014) about MS Excel and randomness


```
1 > runif(1)
                 1 > set.seed(123)
                                  1 > set.seed(123)
2 [1] 0.6696012
                 2 > runif(1)
                                  2 > runif(1)
3 > runif(1)
                 3 [1] 0.2875775
                                  3 [1] 0.2875775
4 [1] 0.6721922
                 4 > runif(1) 4 > runif(1)
5 > runif(1)
                 5 [1] 0.7883051
                                  5 [1] 0.7883051
6 [1] 0.2026715
                 6 > runif(1) 6 > runif(1)
7 > runif(1)
                 7 [1] 0.4089769
                                  7 [1] 0.4089769
8 [1] 0.7540288
                 8
```

For parallel computations, it can be tricky,

```
1 > library(parallel)
                             1 > set.seed(123)
2 > set.seed(123)
                             _2 > mclapply(X = 1:10,
3 > mclapply(X = 1:10,
                             3 FUN = function(x) runif
4 FUN = function(x) runif
                               (1), mc.cores = 2, mc
     (1), mc.cores = 2, mc
                                  .set.seed = TRUE)
     .set.seed = TRUE)
                             4 [[1]]
5 [[1]]
                             5 [1] 0.216951
6 [1] 0.5607899
                             7 [[2]]
 [[2]]
                             8 [1] 0.1005274
 [1] 0.4849712
```

How to replicate randomness?

There are (at least) two generators of random numbers in SAS see sas.com

- ► Fishman and Moore (1982) used for function RANUNI
- Mersenne-Twister used for the RAND function, based on Matsumoto and Nishimura (1997)

For instance, with SAS, to generate a random sequence, use

```
Obs
                                                           REP
                                                                     Х
                                                                 0.75040
 DATA FRANUNI (KEEP = x):
                                                                 0.32091
2 seed = 123 :
                                                                 0.17839
 DO REP = 1 TO 10;
    CALL RANUNI (seed, x);
                                                                 0.90603
    OUTPUT;
                                                                 0.35712
 END;
                                                                 0.22111
7 RUN;
                                                                 0.78644
8 PROC PRINT DATA = FRANUNI :
                                                                 0.39808
9 RUN;
                                                                 0.12467
                                                        10
                                                            10
                                                                 0.18769
```

How to replicate randomness?

```
1 > library(randtoolbox)
2 > setSeed(123)
3 > (U = congruRand(n=10, dim = 1, mod = 2^31-1, mult = 1)
     397204094))
4 [1] 0.7503961 0.3209120 0.1783896 0.9060334 0.3571171
5 [6] 0.2211140 0.7864383 0.3980819 0.1246652 0.1876858
```

To replicate Tufféry (2013), use

```
> url="http://freakonometrics.free.fr/german_credit.
     csv"
2 > credit = read.csv(url, header = TRUE, sep = ",")
3 > index = sort(which(rank(U) <=644))</pre>
4 > table(credit$class[index])
5 0 1
6 451 193
```

The training sample will be based on the 644 observations, and the remaining 356 will be used as validation sample

```
1 > train.db = credit[index,]
2 > valid.db = credit[-index,]
```

Monte Carlo

From the law of large numbers, if U_1, U_2, \cdots is a sequence of i.i.d random variables, uniformly distributed on [0, 1], and some mapping $h:[0,1]\to\mathbb{R}$,

$$\frac{1}{n}\sum_{i=1}^{n}h(U_{i})\xrightarrow{\text{a.s.}}\mu=\int_{[0,1]}h(u)\;\mathrm{d}u=\mathbb{E}[h(U)],\;\;\text{as}\;\;n\to\infty$$

and from the central limit theorem

$$\sqrt{n}\left(\left(\frac{1}{n}\sum_{i=1}^{n}h(U_{i})\right)-\mu\right)\xrightarrow{\mathcal{L}}\mathcal{N}\left(0,\sigma^{2}\right)$$

where $\sigma^2 = \text{Var}[h(U)]$, and $U \sim \mathcal{U}_{[0,1]}$.

Monte Carlo

Consider $h(u) = \cos(\pi u/2)$,

We can actually repeat that a thousand time

Which sum? (on importance sampling)

If
$$X \sim f$$
, $\mathbb{E}[h(X)] = \int h(x)f(x)dx$
If $\{x_1, \dots, x_n\}$, $\widehat{s}_n = \frac{1}{n} \sum_{i=1}^n h(x_i)$, from the law of large numbers

$$\widehat{s}_n = \frac{1}{n} \sum_{i=1}^n h(x_i) \to \mathbb{E}[\widehat{s}_n] = \int h(x) f(x) dx$$
, with $x_i \sim f$

and the precision is given by the variance

$$Var[\widehat{s}_n] = \frac{1}{n} Var[h(X)]$$

 \rightarrow proxy of the numerical error approximation

Which sum? (on importance sampling)

Importance sampling is based on the property

$$h(x)f(x) = \frac{h(x)f(x)}{g(x)}g(x) = \widetilde{h}(x)g(x)$$

and consider

$$\widetilde{s}_n = \frac{1}{n} \sum_{i=1}^n \widetilde{h}(y_i) \to \int h(x) f(x) dx = \int \widetilde{h}(y) g(y) dy$$
, with $y_i \sim g$

which could have a lower variance

see https://ewfrees.github.io/Loss-Data-Analytics/ to go further

A probabilistic result

If F is a cdf, and if $U \sim \mathcal{U}([0,1])$, $X = F^{-1}(U)$ has cdf F (see inverse method sampling)

Proof: Let $x \in \mathbb{R}$, $\mathbb{P}[X \le x]$ is equal to

$$\mathbb{P}[F^{-1}(U) \le x] = \mathbb{P}[F(F^{-1}(U)) \le F(x)] = \mathbb{P}[U \le F(x)] = F(x)$$

where $F^{-1}(u) = \inf \{x \mid F(x) \ge u\}$ for $u \in (0,1)$.

A probabilistic result

```
> U = runif(100)
     0.27 \ 0.37 \ 0.57 \ 0.91 \ 0.20 \ 0.90 \ 0.94 \ 0.66 \ 0.63 \ 0.06
     0.21 0.18 0.69
                      0.38 0.77 0.50
                                       0.72 0.99 0.38
     0.93 0.21 0.65 0.13 0.27 0.39
[21]
                                       0.01 0.38 0.87
[31]
     0.48 0.60 0.49
                      0.19 0.83 0.67
                                       0.79 0.11 0.72
[41]
     0.82 0.65 0.78 0.55 0.53 0.79
                                       0.02 0.48 0.73
[51]
     0.48 0.86 0.44 0.24 0.07 0.10 0.32 0.52 0.66
[61]
     0.91 0.29 0.46 0.33 0.65 0.26 0.48 0.77 0.08 0.88
[71]
     0.34 \ 0.84 \ 0.35 \ 0.33 \ 0.48 \ 0.89 \ 0.86 \ 0.39 \ 0.78 \ 0.96
```

```
> Q(U)
       -0.63 - 0.33
                    0.18
                          1.33
                                 -0.84 1.27
                                               1.60
                                                     0.41
2
   [9]
       0.33 - 1.54
                    -0.82 - 0.93
                                 0.49 - 0.29
                                             0.74 - 0.01
3
  [17]
       0.58
             2.40
                    -0.31
                           0.76
                                 1.51
                                       -0.80
                                             0.39 - 1.15
  [25]
       -0.62
              -0.29 - 2.21
                          -0.30
                                 1.12
                                       -0.41
                                              -0.04
                                                     0.25
  [33]
              -0.89
                           0.44
                                 0.82
                                       -1.24
       -0.02
                    0.94
                                              0.59
                                                    -0.22
  [41]
       0.92
             0.38
                    0.78
                           0.13
                                  0.07
                                      0.80
                                              -1.99
                                                    -0.06
  [49]
       0.62 0.50
                    -0.06 1.09
                                 -0.16 - 0.69
                                              -1.47
                                                    -1.28
  [57]
       -0.48
              0.05
                    0.42
                          -0.24
                                 1.36 -0.54 -0.10 -0.43
  [65]
        0.39
             -0.65 - 0.05
                           0.73 - 1.38
                                       1.15 -0.41
                                                     0.99
10
```

Notations & Results

Given a sample $\{x_1, \dots, x_n\}$ i.i.d. from F,

$$F(x) = \mathbb{P}[X \le x],$$

the empirical cumulative distribution function is

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(x_i \le x), \ x \in \mathbb{R}$$

Glivenko-Cantelli: $\widehat{F}_n \to F$ as $n \to \infty$, or more precisely, almost surely

$$\|\widehat{F}_n - F\|_{\infty} = \sup_{x \in \mathbb{R}} |\widehat{F}_n(x) - F(x)| \longrightarrow 0$$

A probabilistic result

The inverse method with \widehat{F}_n simply means resampling within $\{x_1, \dots, x_n\}$ with equal probabilities 1/n (or with replacement)

```
1 > x
2 [1] 4.164 4.374 5.184 5.330 6.595
3 > Qemp(U)
4 [1] 6.60 6.60 6.60 5.33 4.37 5.33 5.33 4.16 6.60 5.33
5 [11] 4.37 4.37 4.37 6.60 5.33 5.18 5.33 5.18 6.60 5.18
6 [21] 5.18 4.37 6.60 4.37 4.16 6.60 4.16 6.60 5.33 4.16
7 [31] 4.16 6.60 4.37 4.37 5.33 5.18 5.18 5.18 5.33 5.33
8 [41] 4.37 5.18 5.33 5.18 4.37 5.18 5.18 5.18 5.33 5.18
9 [51] 5.33 4.37 4.37 4.16 5.18 5.18 5.18 5.18 5.18
10 [61] 4.37 4.16 4.16 4.16 6.60 4.37 4.37 5.33 5.18 4.16
11 [71] 5.33 4.16 6.60 5.18 4.16 4.16 5.18 4.16 5.18 4.16
```

called bootstrapping

Bootstrap

Real World:

- distribution F
- ightharpoonup data $\{x_1, \dots, x_n\}$, i.i.d.,
- ightharpoonup empirical distribution \widehat{F}_n
- ightharpoonup parameter $\theta = t(F)$
- ightharpoonup estimate $\widehat{\theta}_n = t(\widehat{F}_n)$
- ightharpoonup error $\widehat{\theta}_n \theta$
- ▶ standardized error $\frac{\widehat{\theta}_n \theta}{s(\widehat{F}_n)}$

Bootstrap World (*):

- ightharpoonup distribution \widehat{F}_n
- \blacktriangleright data $\{x_1^{\star}, \dots, x_n^{\star}\}$, i.i.d., \widehat{F}_n
- \triangleright empirical distribution \widehat{F}_n^*
- ightharpoonup parameter $\widehat{\theta}_n = t(\widehat{F}_n)$
- ightharpoonup estimate $\widehat{\theta}_n^{\star} = t(\widehat{F}_n^{\star})$
- ightharpoonup error $\widehat{\theta}_n^{\star} \widehat{\theta}_n$
- ▶ standardized error $\frac{\widehat{\theta}_n^{\star} \widehat{\theta}_n}{s(\widehat{F}_n^{\star})}$

The sampling distribution of $\widehat{\theta}_n$ depends on (unknown) F Use \widehat{F}_n as a proxy for F: we cannot resample from F, but we can from F_n

Bootstrap

Example: mean,
$$\theta = t(F) = \int x dF(x)$$

$$\widehat{\theta}_n = t(\widehat{F}_n) = \int x d\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n x_i$$
Example: variance, $\theta = t(F) = \int x^2 dF(x) - \left(\int x dF(x)\right)^2$

$$\widehat{\theta}_n = t(\widehat{F}_n) = \int x^2 d\widehat{F}_n(x) - \left(\int x d\widehat{F}_n(x)\right) = \frac{1}{n} \sum_{i=1}^n x_i^2 - \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^2$$

Consider some statistic $\widehat{\theta}(\mathbf{y})$ (define on a sample \mathbf{y}).

$$\hat{ heta}_B = rac{1}{B} \sum_{b=1}^B \hat{ heta}_{(b)}$$
 where $\hat{ heta}_{(b)} = \hat{ heta}(oldsymbol{y}^{(b)})$

Recall that Bias[$\hat{\boldsymbol{\theta}}$] = $\mathbb{E}[\hat{\boldsymbol{\theta}}] - \theta$

the bootstrap estimate of the bias of the estimator $\hat{\theta}$ is obtained by replacing $\mathbb{E}[\hat{\theta}]$ with $\hat{\theta}_B$ and θ with $\hat{\theta}$:

$$\mathsf{Bias}_\mathsf{bs}[\hat{m{ heta}}] = \hat{ heta}_B - \hat{ heta}$$

Then, since $\theta = E[\hat{\theta}] - \text{Bias}[\hat{\theta}]$, the bootstrap bias corrected estimate is

$$\hat{\theta}_{\mathsf{bs}} = \hat{\theta} - \mathsf{Bias}_{\mathsf{bs}}[\hat{\theta}] = \hat{\theta} - (\hat{\theta}_B - \hat{\theta}) = 2\hat{\theta} - \hat{\theta}_B$$

Example: $\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2$ is a biased estimate of $\sigma^2=\operatorname{Var}[X]$

```
1 > n = 20
2 > data = rnorm(n, 0, 1)
3 > set.seed(123)
4 > variance = sum((data - mean(data))^2)/n
5 > boot_vars = rapply(as.list(1:999), function(x) {
6 + data_b = sample(data, n, replace=T)
7 + sum((data_b - mean(data_b))^2)/n
8 + })
9 > mean(boot vars) - variance
10 [1] -0.05576993
```

where the true value is $-n^{-1}\sigma^2$ (here -0.05).

Consider X with mean $\mu = \mathbb{E}(X)$. Let $\theta = \exp[\mu]$, then $\widehat{\theta} = \exp[\overline{X}]$ is a biased estimator of θ , see Horowitz (1998)

Idea 1: Asymptotic Approximation, i.e. if $\sqrt{n}[\hat{\tau}_n - \tau] \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2)$. then, if $g'(\tau)$ exists and is non-null,

$$\sqrt{n}[g(\widehat{\tau}_n) - g(\tau)] \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2[g'(\tau)]^2)$$

so $\hat{\theta}_1 = \exp[\overline{x}]$ is asymptotically unbiased.

Idea 2: Delta Method correction.

based on
$$\widehat{\theta}_2 = \exp\left[\overline{x} - \frac{s^2}{2n}\right]$$
 where $s^2 = \frac{1}{n} \sum_{i=1}^n [x_i - \overline{x}]^2$.

Idea 3: Use Bootstrap,
$$\widehat{\theta}_3 = \frac{1}{B} \sum_{b=1}^{B} \exp[\overline{x}^{(b)}]$$


```
simu=function(n = 10){
      get_i = function(i){
2
      x = rnlorm(n, sd=1) - exp(1/2);
3
      S = matrix(sample(x, size=n
4
      *500, replace=TRUE),ncol=500)
      ThetaBoot = exp(colMeans(S))
5
      Bias = mean(ThetaBoot)-exp(mean
6
      (x)
      theta=exp(mean(x))/exp(.5*var(x
7
      )/n)
      c(exp(mean(x)),exp(mean(x))-
8
      Bias. theta)
9
      res = lapply(1:500, get_i)
      res = do.call(rbind, res)
      bias = colMeans(res-1)
      return (bias)
    }
14
```


Régression Linéaire & Bootstrap (1)

Dataset $\{z_i = (y_i, x_i)\}, i = 1, \dots, n.$ Use paired sampling by (repeatedly) resampling $\{z_1^{\star}, \cdots, z_n^{\star}\}$.

Idea:

 $\{(y_i, \mathbf{x}_i)\}$ is obtained from (unknown) \mathbb{P} Based on *n* observations, we observe \mathbb{P}_n We generate other samples by resampling from \mathbb{P}_n

- 1. sample $\{i_1^{(b)}, \dots, i_n^{(b)}\}$ randomly with replacement in $\{1, 2, \cdots, n\}$
- 2. consider dataset $(\boldsymbol{x}_i^{(b)}, y_i^{(b)}) = (\boldsymbol{x}_{i^{(b)}}, y_{i^{(b)}})$'s, and fit a model
- 3. let $\widehat{\beta}^{(b)}$ denote the estimated values, or $\widehat{y}_{n+1}^{(b)}$ some prediction

Régression Linéaire & Bootstrap (1)

```
> BETA = matrix(NA,1000,2)
 > for(s in 1:1000){
   idx = sample(1:nrow(Davis),nrow(
3
     Davis),replace=TRUE)
   reg_sim = lm(weight~height, data=
     Davis[idx,])
   BETA[s,] = reg_sim$coefficients
5
6
   hist(BETA[,1])
  hist(BETA[,2])
```


Régression Linéaire & Bootstrap (1)

Alternative code

```
> library(boot)
2 > coef = function(formula, data,
     indices) {
   d = data[indices,]
3
   fit = lm(formula, data=d)
   return(coef(fit))
5
6
  results = boot(data=Davis, statistic
     =coef, R=1000, formula=weight~
     height)
8 > plot(results, index=1)
9 > plot(results, index=2)
```


27 / 35

Régression Linéaire & Bootstrap (2)

As an alternative model-based resampling

- 1. sample $\hat{\varepsilon}_1^{(b)}, \dots, \hat{\varepsilon}_n^{(b)}$ resample from $\{\hat{\varepsilon}_1, \hat{\varepsilon}_2, \dots, \hat{\varepsilon}_n\}$
- 2. set $y_i^{(b)} = \widehat{\beta}_0 + \widehat{\beta}_1 x_i + \widehat{\varepsilon}_i^{(b)} = \widehat{\mathbf{v}}_i + \widehat{\varepsilon}_i^{(b)}$
- 3. consider dataset $(\mathbf{x}, \mathbf{y}^{(b)}) = (\mathbf{x}_i, \mathbf{y}_i^{(b)})$'s and fit a model
- 4. let $\widehat{\boldsymbol{\beta}}^{(b)}$ denote estimated values

Note in a simple regression

$$\widehat{\beta}_1^{(b)} = \frac{\sum [x_i - \overline{x}] \cdot y_i^{(b)}}{\sum [x_i - \overline{x}]^2} = \widehat{\beta}_1 + \frac{\sum [x_i - \overline{x}] \cdot \widehat{\varepsilon}_i^{(b)}}{\sum [x_i - \overline{x}]^2}$$

hence $\mathbb{E}[\widehat{\beta}_1^{(b)}] = \widehat{\beta}_1$, while

$$\mathsf{Var}[\widehat{\beta}_1^{(b)}] = \frac{\sum [x_i - \overline{x}]^2 \cdot \mathsf{Var}[\widehat{\varepsilon}_i^{(b)}]}{\big(\sum [x_i - \overline{x}]^2\big)^2} \sim \frac{\sigma^2}{\sum [x_i - \overline{x}]^2}$$

Régression Linéaire & Bootstrap (2)

```
BETA = matrix(NA, 1000, 2)
  reg = lm(weight~height, data=Davis)
3 > epsilon = residuals(reg)
4 > for(s in 1:1000){
   eps = sample(epsilon, nrow(Davis),
5
     replace=TRUE)
   Davis_s = data.frame(height =
6
     Davis$height, weight =predict(reg)
     +eps)
   reg_sim = lm(weight~height, data=
7
     Davis_s)
   BETA[s,] = reg_sim$coefficients
8
9
 > hist(BETA[,1])
 > hist(BETA[,2])
```


Height (cm)

Régression Linéaire & Bootstrap (2)

```
_{1} > BETA = matrix(NA,1000,2)
2 > reg = lm(weight~height, data=Davis)
3 > epsilon = residuals(reg)
4 > for(s in 1:1000){
   eps = sample(epsilon, nrow(Davis),
     replace=TRUE)
6
   Davis_s = data.frame(height =
     Davis$height, weight =predict(reg)
     +eps)
   reg_sim = lm(weight~height, data=
7
     Davis_s)
   BETA[s,] = reg_sim$coefficients
8
9
 > hist(BETA[,1])
 > hist(BETA[,2])
```


Régression Linéaire & Bootstrap (1/2)

```
1 > PRED = matrix(NA,1000,2)
2 > nwDavis = data.frame(height = 195)
3 > for(s in 1:1000){
      idx = sample(1:n,n,replace=TRUE)
4 +
5 + reg_sim = lm(weight~height, data=
     Davis[idx,])
6 + PRED[s,1] = predict(reg_sim,
     newdata=nwDavis)
     eps = sample(epsilon, nrow(Davis),
7 +
     replace=TRUE)
   Davis_s = data.frame(height =
8 +
     Davis$height, weight =predict(reg)
     +eps)
     reg_sim = lm(weight~height, data=
     Davis_s)
     PRED[s,2] = predict(reg_sim,
10 +
     newdata=nwDavis)
11 + }
```


Régression Linéaire & Bootstrap (1/2)

```
> apply(PRED,2,function(x) quantile(x
     ..025))
 [1] 89.04203 89.63030
3 > apply(PRED,2,function(x) quantile(x
     ..975))
4 [1] 97.60345 97.02423
5 > predict(lm(weight~height, data=Davis
     ), newdata=nwDavis,interval="
     confidence", se.fit = TRUE)
 $fit
         fit
                  lwr
                            upr
 1 93.35749 89.89571 96.81927
9
 $se.fit
 [1] 1.755451
```


32 / 35

Bootstrap heuristics

Here
$$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\varepsilon} = T_{\boldsymbol{\beta}}(\boldsymbol{\varepsilon}) \text{ or } \widehat{y}_{n+1} = \boldsymbol{x}_{n+1}'\widehat{\boldsymbol{\beta}} = T_{\boldsymbol{y}}(\boldsymbol{\varepsilon})$$

Use simulations, we draw *n* values $\{\epsilon_1, \dots, \epsilon_n\}$ and

$$\mathbb{E} \left| \frac{1}{n} \sum_{i=1}^{n} T(\epsilon_i) \right| = \mathbb{E}[T(\varepsilon)] \text{ (unbiased)}$$

▶
$$\frac{1}{n}\sum_{i=1}^{n} T(\epsilon_i) \stackrel{\mathcal{L}}{\to} \mathbb{E}[T(\varepsilon)]$$
 as $n \to \infty$ (consistent)

Bootstrap & Tests

Consider the test of H_0 : $\beta_i = 0$,

- 1. compute $t_n = \frac{(\widehat{\beta}_j \beta_j)^2}{\widehat{\sigma}_i^2}$
- 2. generate B boostrap samples, under the null assumption H_0
- 3. for each boostrap sample, compute $t_n^{(b)} = \frac{(\widehat{\beta}_j^{(b)} \widehat{\beta}_j)^2}{\widehat{\sigma}_i^{2(b)}}$
- 4. reject H_0 if $\frac{1}{B} \sum_{n=0}^{B} \mathbf{1}(t_n > t_n^{(b)}) < \alpha$.

Bootstrap & Tests

What does "generate B boostrap samples, under the null assumption H_0 " mean?

Example: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ with $H_0: \beta_1 = 0$.

- 2.1. Estimate the model under H_0 , i.e. $y_i = \beta_0 + \eta_i$, and save $\{\widehat{\eta}_1,\cdots,\widehat{\eta}_n\}$
- 2.2. Define $\widetilde{\eta} = \{\widetilde{\eta}_1, \cdots, \widetilde{\eta}_n\}$ with $\widetilde{\eta} = \sqrt{\frac{n}{n-1}}\widehat{\eta}$
- 2.3. Draw (with replacement) residuals $\widetilde{\eta}^{(b)} = \{\widetilde{\eta}_1^{(b)}, \cdots, \widetilde{\eta}_n^{(b)}\}\$
- 2.4. Set $v_i^{(b)} = \widehat{\beta}_0 + \widetilde{\eta}_i^{(b)}$
- 2.5. Estimate the regression model $y_i^{(b)} = \beta_0^{(b)} + \beta_1^{(b)} x_i + \varepsilon_i^{(b)}$
- 3. for each boostrap sample, compute $t_n^{(b)} = \frac{(\widehat{\beta}_j^{(b)} \widehat{\beta}_j)^2}{\widehat{z}^{2(b)}}$
- 4. reject H_0 if $\frac{1}{B} \sum_{n=0}^{B} \mathbf{1}(t_n > t_n^{(b)}) < \alpha$.