

Dr. N MEHALA

Department of Computer Science and Engineering

Module 4 [Unsupervised Learning]

Dr. N MEHALA

Department of Computer Science and Engineering

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Implication means co-occurrence, not causality!

Association Rule Mining: Definition

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- *k-itemset :* An itemset that contains k items

• Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Frequent Itemset

An itemset whose support is greater than or equal to a minsup threshold

Association Rule Mining: Definition

Association Rule

- An implication expression of the form X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s): Fraction of transactions that contain both
 X and Y
- Confidence (c): Measures
 how often items in Y appear
 in transactions that contain X

Example:

$$\{\text{Milk , Diaper }\} \Rightarrow \text{Beer}$$

$$\sigma = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ *minsup* threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ \text{Milk,Diaper} \} \rightarrow \{ \text{Beer} \} \text{ (s=0.4, c=0.67)}$ $\{ \text{Milk,Beer} \} \rightarrow \{ \text{Diaper} \} \text{ (s=0.4, c=1.0)}$ $\{ \text{Diaper,Beer} \} \rightarrow \{ \text{Milk} \} \text{ (s=0.4, c=0.67)}$ $\{ \text{Beer} \} \rightarrow \{ \text{Milk,Diaper} \} \text{ (s=0.4, c=0.67)}$ $\{ \text{Diaper} \} \rightarrow \{ \text{Milk,Beer} \} \text{ (s=0.4, c=0.5)}$ $\{ \text{Milk} \} \rightarrow \{ \text{Diaper,Beer} \} \text{ (s=0.4, c=0.5)}$

Observations:

- All the above rules are binary partitions of the same itemset:
 {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

Two-step approach:

- 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- Example: if {b,c,d} is frequent, then all subsets of {b,c,d} are also frequent

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

Applying the Apriori Principle to Eliminate Candidate Sets

Converse of the Apriori Principle:

- If an itemset x is not frequent then:
- all super sets of x are also not frequent
- Example:
- if {a,b} is infrequent, then all its super sets are also infrequent:

THANK YOU

Dr. N MEHALA

Department of Computer Science and Engineering mehala@pes.edu

Dr. N MEHALA

Department of Computer Science and Engineering

Module 4 [Unsupervised Learning]

Dr. N MEHALA

Department of Computer Science and Engineering

Mining Association Rules

Two-step approach:

- 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

 Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Mining Association Rules

Frequent Itemset Generation

- Generate all itemsets whose support ≥ minsup
- 1. Apriori Algorithm
- 2. FP-Growth Algorithm
- 3. H-Mine
- 4. CLOSET
- 5. CHARM

Applying the Apriori Principle to Eliminate Candidate Sets

Converse of the Apriori Principle:

- If an itemset x is not frequent then:
- all super sets of x are also not frequent
- Example:
- if {a,b} is infrequent, then all its super sets are also infrequent:

{2 3 5}

The Apriori Algorithm - Example

Min support =50%

Da	tabase D			itemset	sup.	7	items	ot	SUD	1
TID	Items		C_1	{1}	2	L_1	{1}		sup. 2	
100	134		_	{2}	3		{2}		3	
200		_	can D	{3}	3	Í	{3}		3	
	1235	5		{4}	1		{ 5 }		3	
400) 2 5			{5}	3					
Г			C_2	itemset	sup		C_2		mset	\
L_2	itemset	sup		{1 2}	1	Scan	ı D		1 2}	
2 3 5}	{1 3}	2		{1 3}	2	•		-	1 3}	
2 3}	{2 3}	2	←	{1 5}	1			-	1 5}	
3 5} 3 5}	{2 5}	3		{2 3}	2			_	2 3}	
	{3 5}	2		{2 5}	3]	2 5}	
\Rightarrow	(00)		I	{3 5}	2			{	3 5}	
C_3 itemset $S_{can D}$ L_3 itemset sup										

Illustrating Apriori Principle

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to

generate

candidates

involving Coke

or Eggs)

Minimum Support = 3

If every subset is considered,

With support-based pruning,

6 + 6 + 1 = 13

 ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$

Triplets (3-itemsets)

Itemset		Count
{Bread,Milk,Dia	oer}	3

Apriori Algorithm

• Method:

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

THANK YOU

Dr. N MEHALA

Department of Computer Science and Engineering mehala@pes.edu

Dr. N MEHALA

Department of Computer Science and Engineering

Module 4 [Unsupervised Learning]

Dr. N MEHALA

Department of Computer Science and Engineering

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of comparisons

- Candidate counting:
 - Scan the database of transactions to determine the support of each candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets
 Transactions

 Hash Structure

Buckets

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

N 3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Reducing Number of comparisons

PES UNIVERSITY ONLINE

 In the Apriori algorithm, the counters for the candidate itemsets are partitioned into different buckets and stored in a hash tree - this speeds up the search for an item set

Reducing Number of comparisons

3-item set hash tree using $h(x) = x \mod 3$

- •The **leaves** of the tree contains the **counters** for the different **3-item item sets**
- •The **items** in a transaction is first **sorted**
- •We then form *all* 3 item itemsets from the items in [34][37] [35][38] [36][39] the transaction.
 - The 3-item itemset is hashed using hash(x) = x mod 3 to locate the counter for the itemset

Reducing Number of comparisons

• Concrete example:

finding the counter for itemset 159

3-item set hash tree using $h(x) = x \mod 3$

Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent IS
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate

Closed ItemSet

• An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items	
1	{A,B}	
2	$\{B,C,D\}$	
3	$\{A,B,C,D\}$	
4	$\{A,B,D\}$	
5	$\{A,B,C,D\}$	

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
{B,C,D}	3
$\{A,B,C,D\}$	2

Maximal Vs Closed ItemSets

Maximal Vs Closed Frequent ItemSets

Maximal Vs Closed ItemSets

Mining Association Rules

Two-step approach:

- 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

 Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Mining Association Rules: Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property

$$c(ABC \rightarrow D)$$
 can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
- e.g., $L = \{A,B,C,D\}$:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Summary

- Association Rule Mining Task
- Frequent Item Set Generation : Apriori Algorithm
- Factors Affecting Complexity

Resources

- http://www2.ift.ulaval.ca/~chaib/IFT-4102 7025/public html/Fichiers/Machine Learning in Action.pdf
- http://wwwusers.cs.umn.edu/~kumar/dmbook/.
- ftp://ftp.aw.com/cseng/authors/tan
- http://web.ccsu.edu/datamining/resources.html

THANK YOU

Dr. N MEHALA

Department of Computer Science and Engineering mehala@pes.edu