

第七章 无穷级数

本章讨论无限个实数相加和无限个函数相加.

§1 数项级数

对此数列 $u_1,u_2,\cdots,u_n,\cdots$, 的各项依次用加号连接起来的表达式 $u_1+u_2+\cdots+u_n+\cdots$

称为常数项无穷级数, 简称为数项级数或级数.

其中 U_n 称为此级数的通项或一般项.

级数可简记为
$$\sum_{n=1}^{\infty} u_n$$
. 即 $\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$.

注意: 这里的"相加"是一个形式上的相加.

我们需要给出一个合理的解释.

NORMAL DE PLANT OF THE PROPERTY OF THE PROPERT

部分和数列

我们讨论级数 $\sum_{n=1}^{\infty} u_n$ 的前有限项的和:

$$S_1 = u_1,$$

 $S_2 = u_1 + u_2,$

$$S_n = u_1 + u_2 + \dots + u_n,$$

称数列 $\{S_n\}$ 为级数 $\sum_{n=1}^{\infty}u_n$ 的部分和数列,其通项 $S_n=u_1+u_2+\cdots+u_n$

称为级数 $\sum_{n=1}^{\infty} u_n$ 的第 n 个部分和,简称为部分和.

NORMAL CURRENT VICTORIAN CONTROL OF THE PERSON OF THE PERS

收敛数列定义

定义1 若级数 $\sum_{n=1}^{n} u_n$ 的部分和数列 $\{S_n\}$ 有极限

$$\lim_{n\to\infty} S_n = S,$$

则称级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 并称极限值 S 为级数 $\sum_{n=1}^{\infty} u_n$ 的和,

记作
$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots = S.$$

若部分和数列没有极限,则称级数 $\sum_{n=1}^{n} u_n$ 发散.

实际上是指:
$$\sum_{n=1}^{\infty} u_n$$
 收敛 \iff $\{S_n\}$ 收敛.

几何级数

例1证明:几何级数

$$a + aq + aq^{2} + \dots + aq^{n-1} + \dots \quad (a \neq 0),$$

当 |q|<1 时是收敛的,当 $|q|\ge 1$ 时是发散的.

证明: 当 $|q| \neq 1$ 时,级数的部分和

$$S_n = a + aq + aq^2 + \dots + aq^{n-1} = \frac{a(1-q^n)}{1-q}.$$

当
$$|q| < 1$$
 时,
$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a(1 - q^n)}{1 - q} = \frac{a}{1 - q},$$

因此级数收敛,其和为
$$S = \frac{a}{1-q}$$

几何级数

当 |q| > 1 时,

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{a(1-q^n)}{1-q} = \infty,$$

所以级数发散.

当
$$q=1$$
 时, $S_n=na \to \infty$,

所以级数发散.

当
$$q=-1$$
 时, $S_{2n-1}=a$, $S_{2n}=0$,

故 $\{S_n\}$ 无极限,所以级数发散.

级数举例

例2 证明: 级数
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} + \dots$$

收敛,并求其和.

证明:
$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)}$$

$$= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n-1} - \frac{1}{n}) + (\frac{1}{n} - \frac{1}{n+1})$$

$$= 1 - \frac{1}{n+1},$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} (1 - \frac{1}{n+1}) = 1,$$
所以级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ 收敛,其和为 $S = 1$.

级数举例

实际上,由于
$$u_n = S_n - S_{n-1}$$
, 则

$$\sum_{n=1}^{\infty} u_n = S_1 + (S_2 - S_1) + (S_3 - S_2) + \dots + (S_n - S_{n-1}) + \dots$$

例3 证明:级数 $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$ 收敛,并求其和.

证明:
$$\frac{n}{(n+1)!} = \frac{n+1-1}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!},$$

$$S_{n} = (1 - \frac{1}{2!}) + (\frac{1}{2!} - \frac{1}{3!}) + \dots + (\frac{1}{(n-1)!} - \frac{1}{n!}) + (\frac{1}{n!} - \frac{1}{(n+1)!})$$

$$= 1 - \frac{1}{(n+1)!}, \qquad \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} (1 - \frac{1}{n+1}) = 1,$$

所以级数
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$$
 收敛,其和为 $S=1$.

调和级数

例4 证明: 调和级数
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$
 发散.

证明: 因为当
$$n \le x \le n+1$$
 时,有 $\frac{1}{n} \ge \frac{1}{x}$,所以

$$u_n = \frac{1}{n} = \int_n^{n+1} \frac{1}{n} dx \ge \int_n^{n+1} \frac{1}{x} dx = \ln x \Big|_n^{n+1} = \ln(n+1) - \ln n,$$

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$\geq (\ln 2 - \ln 1) + (\ln 3 - \ln 2) + \dots + (\ln n - \ln(n-1)) + (\ln(n+1) - \ln n)$$

$$=\ln(n+1).$$

所以
$$\lim_{n\to\infty} S_n = +\infty$$
, 因此调和级数发散.

NORMAL CHILD IN STATE OF THE LAW OF THE LAW

2 收敛级数的性质

定理1 若级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则 $\lim_{n\to\infty} u_n = 0$.

证明: 设
$$\sum_{n=1}^{\infty} u_n = S$$
, 即 $\lim_{n \to \infty} S_n = S$. 而 $u_n = S_n - S_{n-1}$,

$$\lim_{n\to\infty}u_n=\lim_{n\to\infty}S_n-\lim_{n\to\infty}S_{n-1}=S-S=0.$$

注意: 该定理不是充分条件,即反过来不成立。反例
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
.

例5 讨论级数
$$\sum_{n=1}^{\infty} \frac{n}{2n+1}$$
 的敛散性.

解: 因为
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2} \neq 0$$
,

所以级数
$$\sum_{n=1}^{\infty} \frac{n}{2n+1}$$
 发散.

NORMAL CHILD RSUITA

线性性

定理2 若级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都收敛,且其和分别为 S 和 T,

则级数 $\sum_{i}^{\infty} (u_n \pm v_n)$ 也收敛, 且其和为 $S \pm T$,

 $\sum_{n=1}^{\infty} (u_n \pm v_n) = \sum_{n=1}^{\infty} u_n \pm \sum_{n=1}^{\infty} v_n.$

证明: 设级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 的部分和分别为 S_n 和 T_n ,

则级数 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 的部分和

$$W_n = (u_1 \pm v_1) + (u_2 \pm v_2) + \dots + (u_n \pm v_n) = S_n \pm T_n$$

因此 $\lim_{n\to\infty} W_n = \lim_{n\to\infty} S_n \pm \lim_{n\to\infty} T_n = S \pm T$,

即级数
$$\sum_{n=1}^{\infty} (u_n \pm v_n)$$
 收敛,且 $\sum_{n=1}^{\infty} (u_n \pm v_n) = S \pm T = \sum_{n=1}^{\infty} u_n \pm \sum_{n=1}^{\infty} v_n$.

线性性

同理可证

定理3 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,且其和为 S, k 为一常数,

则级数 $\sum_{n=1}^{\infty} ku_n$ 也收敛,且其和为 kS,

即

$$\sum_{n=1}^{\infty} k u_n = k \sum_{n=1}^{\infty} u_n.$$

当 $k \neq 0$ 时, $\sum_{n=1}^{\infty} u_n = \frac{1}{k} \sum_{n=1}^{\infty} k u_n$, 所以有

推论 若常数 $k \neq 0$, 则 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} ku_n$ 有相同的敛散性.

级数举例

例4 讨论级数
$$\sum_{n=1}^{\infty} \left[(-1)^n \left(\frac{7}{10} \right)^n + \frac{1}{2n} \right]$$
 敛散性.

解: 因为
$$|-\frac{7}{10}|<1$$
,几何级数 $\sum_{n=1}^{\infty} (-1)^n (\frac{7}{10})^n$ 收敛,

而
$$\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$$
 发散.

假设级数
$$\sum_{n=1}^{\infty} \left[(-1)^n \left(\frac{7}{10} \right)^n + \frac{1}{2n} \right]$$
 收敛,

则由定理**2**知
$$\sum_{n=1}^{\infty} \frac{1}{2n} = \sum_{n=1}^{\infty} \left[(-1)^n \left(\frac{7}{10} \right)^n + \frac{1}{2n} \right] - \sum_{n=1}^{\infty} (-1)^n \left(\frac{7}{10} \right)^n$$
 收敛.

这是一个矛盾, 所以
$$\sum_{n=1}^{\infty} \left[(-1)^n \left(\frac{7}{10} \right)^n + \frac{1}{2n} \right]$$
 发散.

有限扰动不变性

定理4 去掉、增加或改变级数的有限项不影响级数的敛散性.

证明: 设原级数为 $\sum_{n=1}^{\infty} u_n$, 其部分和为 S_n ,

改变有限项后所得级数为 $\sum_{n=1}^{N} v_n$, 其部分和为 T_n .

若所改变的项中,下标最大的项为 u_p ,

则当 n > p 时有 $u_n = v_n$. 令 $M = T_p - S_p$, 则 M 是一个常数.

当
$$n > p$$
 时, $T_n - S_n = (T_p + v_{p+1} + \dots + v_n) - (S_p + u_{p+1} + \dots + u_n)$
= $T_p - S_p = M$.

所以 $\{S_n\}$ 和 $\{T_n\}$ 有相同的敛散性,

即改变级数的有限项不影响级数的敛散性.

同理可证去掉、增加有限项的情形.

NORMAL CHILD RSITY

加括号后敛散性不变

定理5 如果级数 $\sum_{n=1}^{u} u_n$ 收敛,则对该级数的项任意加括号后得到的级数

$$(u_1 + u_2 + \dots + u_{n_1}) + (u_{n_1+1} + u_{n_1+2} + \dots + u_{n_2}) + \dots + (u_{n_{k-1}+1} + u_{n_{k-1}+2} + \dots + u_{n_k}) + \dots$$

仍然收敛,且和不变.

证明: 设级数为 $\sum_{n=1}^{\infty} u_n$ 的部分和为 S_n , 新级数的第 k 个部分和为 A_k ,

则 $A_k = S_{n_k}$.

即 $\{A_k\}$ 是 $\{S_n\}$ 的一个子列,由 $\{S_n\}$ 的收敛性知 $\{A_k\}$ 也收敛,且 $\lim_{k\to\infty}A_k=\lim_{n\to\infty}S_n$.

注意: 加括号后的级数收敛,不能得出原级数收敛. 反例: $\sum_{n=1}^{\infty} (-1)^n$.

例7 判别下列级数的敛散性:

$$\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}-1} - \frac{1}{\sqrt{3}+1} + \frac{1}{\sqrt{4}-1} - \frac{1}{\sqrt{4}+1} + \cdots$$

解 考虑加括号的级数

$$\left(\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1}\right) + \left(\frac{1}{\sqrt{3}-1} - \frac{1}{\sqrt{3}+1}\right) + \left(\frac{1}{\sqrt{4}-1} - \frac{1}{\sqrt{4}+1}\right) + \cdots$$

其一般项
$$u_n = \frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n+1}} = \frac{2}{n-1}$$

由定理9.1.4知,级数

$$\sum_{n=2}^{\infty} u_n = 2\sum_{n=2}^{\infty} \frac{1}{n-1} = 2\sum_{n=1}^{\infty} \frac{1}{n}$$

发散,从而原级数发散.

收敛级数的余项

若级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,且其和为 S ,

则级数
$$u_{n+1} + u_{n+2} + \cdots = \sum_{k=n+1}^{\infty} u_k$$
 也收敛,其和为 $R_n = S - S_n$.

级数
$$\sum_{k=n+1}^{\infty} u_k$$
 称为收敛级数 $\sum_{n=1}^{\infty} u_n$ 的第 n 项后的余项.

例8 证明级数

$$\sum_{n=1}^{\infty} \frac{2n-1}{3^n}$$

收敛,并求其和.

证令
$$S_n = \sum_{k=1}^n \frac{2k-1}{3^k}$$
,若能求出 $\lim_{n \to \infty} S_n$,就能得到所

要的结论.

$$S_{n} - \frac{1}{3}S_{n} = \sum_{k=1}^{n} \frac{2k-1}{3^{k}} - \sum_{k=1}^{n} \frac{2k-1}{3^{k+1}}$$

$$= \frac{1}{3} + \sum_{k=1}^{n-1} \frac{2k+1}{3^{k+1}} - \sum_{k=1}^{n} \frac{2k-1}{3^{k+1}}$$

$$= \frac{1}{3} + \sum_{k=1}^{n-1} \left(\frac{2k+1}{3^{k+1}} - \frac{2k-1}{3^{k+1}}\right) - \frac{2n-1}{3^{n+1}}$$

$$= \frac{1}{3} + \sum_{k=1}^{n-1} \frac{2}{3^{k+1}} - \frac{2n-1}{3^{n+1}} = \frac{1}{3} + \frac{\frac{2}{3^2} (1 - (\frac{1}{3})^{n-1})}{1 - \frac{1}{3}} - \frac{2n-1}{3^{n+1}}$$

$$= \frac{2}{3} - \frac{1}{3^n} - \frac{2n-1}{3^{n+1}}, \qquad (= S_n - \frac{1}{3}S_n)$$

所以

$$S_n = \frac{3}{2} \left(\frac{2}{3} - \frac{1}{3^n} - \frac{2n-1}{3^{n+1}} \right)$$

于是 $\lim_{n\to\infty} S_n = \frac{3}{2} \left(\frac{2}{3} - \frac{1}{3^n} - \frac{2n-1}{3^{n+1}} \right) = 1$

这样就证明了级数

$$\sum_{n=1}^{\infty} \frac{2n-1}{3^n}$$
 收敛, 并且其和为 1.

NORMAL CHANGE OF THE PARTY OF T

例9 求二进制无限循环小数 $(110.110110\cdots)_2$ 的十进制值.

解
$$(110.110110\cdots)_2 = 2^2 + 2^1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^7} + \frac{1}{2^8} + \cdots,$$

$$S_{2n} = \sum_{k=1}^{n} \left(\frac{1}{2^{3k-5}} + \frac{1}{2^{3k-4}} \right) = 2^{2} \frac{1 - \left(\frac{1}{2^{3}}\right)^{n}}{1 - \frac{1}{2^{3}}} + 2 \frac{1 - \left(\frac{1}{2^{3}}\right)^{n}}{1 - \frac{1}{2^{3}}}$$

$$= 6 \times \frac{8}{7} \left(1 - \left(\frac{1}{2^{3}}\right)^{n} \right),$$

$$=6 \times \frac{7}{7}(1-(\frac{1}{2^3})^3),$$

$$S_{2n+1} = S_{2n} + \frac{1}{2^{3n-2}},$$

$$\lim_{n\to\infty}S_n=\frac{48}{7}.$$

所以
$$(110.110110\cdots)_2 = \frac{48}{7} = 6.857142$$

例9 将无限循环小数 = 0.857 化成分数.

$$\begin{array}{ll}
\Re & 0.\overline{857} = \frac{8}{10} + \frac{5}{10^2} + \frac{7}{10^3} + \frac{8}{10^4} + \frac{5}{10^5} + \frac{7}{10^6} + \cdots, \\
&= \frac{8}{10} \sum_{n=0}^{\infty} \frac{1}{10^{3n}} + \frac{5}{10^2} \sum_{n=0}^{\infty} \frac{1}{10^{3n}} + \frac{7}{10^3} \sum_{n=0}^{\infty} \frac{1}{10^{3n}} \\
&= (\frac{8}{10} + \frac{5}{10^2} + \frac{7}{10^3}) \sum_{n=0}^{\infty} (\frac{1}{10^3})^n \\
&= \frac{857}{10^3} \frac{1}{1 - (\frac{1}{10})^3} = \frac{857}{999}.
\end{array}$$