ΠΛΗ30 ΕΝΟΤΗΤΑ 6: ΝΡ-πληρότητα

Μάθημα 6.5: Αναγωγές Θεωρίας Συνόλων και Θεωρίας Αριθμών

Δημήτρης Ψούνης

ΠΕΡΙΕΧΟΜΕΝΑ

Α. Σκοπός του Μαθήματος

Β. Θεωρία

- 1. Εισαγώγή
 - 1. Σχήμα Απόδειξης Αναγωγής
 - 2. Αναγωγές της Προτασιακής Λογικής
- 2. Το πρόβλημα PARTITION είναι ΝΡ-πλήρες
- 3. Το πρόβλημα ΚΝΑΡSACK είναι ΝΡ-πλήρες
 - 1. KNAPSACK ανήκει στο NP
 - 2. PARTITION ανάγεται στο KNAPSACK
- 4. Το πρόβλημα 3ΡΜ είναι ΝΡ-πλήρες
- 5. Το πρόβλημα x3C είναι NP-πλήρες
 - X3C ανήκει στο NP
 - 2. 3ΡΜ ανάγεται στο Χ3C
- 6. Το πρόβλημα ΕΧΑCT-COVER είναι ΝΡ-πλήρες
- 7. Το πρόβλημα SET-COVER είναι ΝΡ-πλήρες
 - 1. SET-COVER ανήκει στο NP
 - 2. EXACT-COVER ανάγεται στο SET-COVER

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

> (-)

Επίπεδο Β

> (-)

Επίπεδο Γ

- > To KNAPSACK είναι NP-πλήρες
- Το X3C είναι NP-πλήρες
- > To SET-COVER είναι NP-πλήρες

- 1. Εισαγωγή
- 1. Σχήμα Απόδειξης Αναγωγής

Για να αποδείξουμε ότι ένα πρόβλημα Π είναι ΝΡ-πλήρες, ακολουθούμε την εξής διαδικασία:

- 1. Aποδεικνύουμε ότι Π ∈ NP
 - Είτε δίνοντας μη ντετερμινιστική μηχανή Turing-μάντη που «μαντεύει» την λύση και έπειτα επαληθεύει ότι είναι όντως λύση του προβλήματος.
 - Είτε δίνοντας ντετερμινιστική μηχανή Turing-επαληθευτή που δεδομένης μιας λύσης (πιστοποιητικό) επαληθεύει σε πολυωνυμικό ντετερμινιστικό χρόνο ότι είναι λύση του προβλήματος.
- Δίνουμε μια πολυωνυμική αναγωγή από ένα γνωστό NP-πλήρες πρόβλημα Π' στο πρόβλημα Π (Η αναγωγή συμβολίζεται με Π'≤Π)
 - Όπου δίνουμε έναν κανόνα μετασχηματισμού της εισόδου Ε' του γνωστού προβλήματος
 Π' σε είσοδο Ε του αγνώστου προβλήματος Π έτσι ώστε για κάθε στιγμιότυπο:

Αποτέλεσμα του Π(Ε) ισοδύναμο με αποτέλεσμα του Π'(Ε΄)

Και δείχνουμε ότι η κατασκευή θέλει πολυωνυμικό χρόνο

- > Θα χρησιμοποιούμε τον «μάντη» για να αποδεικνύουμε ότι ανήκει στο NP.
- Αν αποδείξουμε μόνο το 2° σκέλος, τότε το πρόβλημα είναι NP-δύσκολο (NP-Hard)

- 1. Εισαγωγή
- 2. Αναγωγές Θεωρίας Συνόλων και της Θεωρίας Αριθμών
 - Στο σημερινό μάθημα βλέπουμε προβλήματα που προέρχονται από την θεωρία συνόλων και την θεωρία αριθμών
 - > Οι αναγωγές που θα δούμε παρουσιάζονται στο παρακάτω δένδρο αναγωγών:

1. Το PARTITION είναι NP-πλήρες

Η διατύπωση του προβλήματος PARTITION έχει ως ακολούθως:

Το πρόβλημα PARTITION:

- **Είσοδος:** Σύνολο η αριθμών Α={α₁,α₂,...,α_n}
- Ερώτημα: Μπορούμε να χωρίσουμε σε δύο σύνολα τους αριθμούς, ώστε τα δύο επιμέρους αθροίσματα να είναι ίσα;

Στιγμιότυπα:

<u>Στιγμιότυπο 1:</u> A={1,2,2,3,7,8,9}.

Απάντηση: NAI με τον διαχωρισμό A1={2,2,3,9} και A2={1,7,8}

<u>Στιγμιότυπο 2:</u> A={1,3,5,8}.

- Απάντηση: ΟΧΙ
- (Η απόδειξη παραλείπεται αναγωγή από το 1in3SAT βλέπε βιβλιο ΕΑΠ)

2. Το KNAPSACK είναι NP-πλήρες

Η διατύπωση του προβλήματος KNAPSACK έχει ως ακολούθως:

Το πρόβλημα KNAPSACK:

- **Είσοδος:** Σύνολο από η αντικείμενα $A = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ όπου το αντικείμενο α_i έχει βάρος w_i και αξία v_i . Σακίδιο με βάρος W, επιθυμητή αξία V.
- Ερώτημα: Υπάρχει υποσύνολο Α' των αντικειμένων έτσι ώστε το άθροισμα των βαρών των αντικειμένων να έχει βάρος το πολύ W και αξία τουλάχιστον V.
 - Πιο τυπικά αναζητούμε Α΄ ⊆ Α έτσι ώστε
 - $\sum_{a_i \in A'} w_i \leq W$
 - $\sum_{a_i \in A} v_i \ge V$

- Για να το αποδείξουμε:
 - 1. Δείχνουμε ότι ανήκει στο ΝΡ
 - Ανάγουμε το πρόβλημα PARTITION ανάγεται στο πρόβλημα ΚΝΑΡSACK σε πολ/κο χρόνο

2. Το KNAPSACK είναι NP-πλήρες

1. Το KNAPSACK ανήκει στο NP

1. Δείχνουμε ότι το KNAPSACK ανήκει στο NP

Δεδομένου ενός συνόλου η αντικειμένων Α, και των ακεραίων W,V:

- Σε μη ντετερμινιστικό χρόνο O(n) μαντεύουμε το υποσύνολο Α' των αντικειμένων και έπειτα
- Επαληθεύουμε ότι το άθροισμα των βαρών των αντικειμένων είναι το πολύ W σε χρόνο O(n), το άθροισμα των αξιών είναι τουλάχιστον V σε χρόνο O(n).

Ο συνολικός χρόνος είναι πολυωνυμικός. Συνεπώς το πρόβλημα ΚΝΑΡSACK ανήκει στο ΝΡ

- 2. Το KNAPSACK είναι NP-πλήρες
- 2. Το PARTITION ανάγεται στο KNAPSACK σε πολ/κό χρόνο

2.A) Το PARTITION ανάγεται στο KNAPSACK

Δίνουμε αναγωγή από το PARTITION στο KNAPSACK δηλαδή δεδομένου ενός συνόλου αριθμών $A=\{\alpha_1,\alpha_2,...,\alpha_n\}$ του PARTITION κατασκευάζουμε σύνολο Α', και επιλέγουμε ακεραίους W,V έτσι ώστε:

Υπάρχει διαχωρισμός του A σε δύο υποσύνολα με ίσο άθροισμα ⇔ Υπάρχει υποσύνολο του A' που το άθροισμα των βαρών είναι ≤ W και το άθροισμα των αξιών είναι ≥ V.

Η αναγωγή είναι η εξής:

- Θέτουμε Α'=Α και επιλέγουμε την αξία και το βάρος να είναι ίση με την τιμή του αριθμού στο αρχικό σύνολο.
- Επιλέγουμε τα W,V να είναι ίσα με το μισό του αθροίσματος των αριθμών.

2. Το KNAPSACK είναι NP-πλήρες

2. Το PARTITION ανάγεται στο KNAPSACK σε πολυωνυμικό χρόνο

Ευθύ:

 Έστω ότι το Α διαμοιράζεται σε δύο σύνολα Α1, Α2 έτσι ώστε τα αθροίσματα να είναι ίσα με το μισό του αθροίσματος όλων των αριθμών του Α:

$$\sum_{i \in A_1} a_i = \sum_{i \in A_2} a_i = \frac{1}{2} \sum_{i \in A} a_i$$

- Τότε επιλέγουμε οποιοδήποτε από τα σύνολα Α1, Α2 (π.χ. το Α1)
- Ισχύει ότι $\sum_{i \in A_1} w_i = \sum_{i \in A_1} a_i = W$ (άρα είναι το πολύ W)
- Ισχύει ότι $\sum_{i \in A_1} v_i = \sum_{i \in A_1} a_i = V$ (άρα είναι τουλάχιστον V)

• Αντίστροφο:

- Έστω ότι υπάρχει υποσύνολο Β του Α έτσι ώστε:
 - $\sum_{i \in \mathcal{B}} w_i \le W = \frac{1}{2} \sum_{i \in A} a_i$
 - $\sum_{i \in \mathcal{B}} v_i \ge V = \frac{1}{2} \sum_{i \in A} a_i$
- Αφού όμως $w_i = v_i = a_i$ έχω:
 - $\sum_{i \in \mathbf{B}} \alpha_i \leq \frac{1}{2} \sum_{i \in A} a_i$
 - $\sum_{i \in \mathbf{B}} \alpha_i \ge \frac{1}{2} \sum_{i \in A} a_i$
- Συνεπώς $\sum_{i \in B} \alpha_i = \frac{1}{2} \sum_{i \in A} \alpha_i$, άρα υπάρχει διαμέριση με το ένα σύνολο να είναι το B και το άλλο θα έχει τα στοιχεία του A-B.

- 2. Το KNAPSACK είναι NP-πλήρες
- 2. Το PARTITION ανάγεται στο KNAPSACK σε πολυωνυμικό χρόνο

2.Β) Δείχνουμε ότι η αναγωγή είναι πολυωνυμικού χρόνου

Προφανώς ο χρόνος της αναγωγής είναι πολυωνυμικός.

(Τυπικά υπολογίζουμε το άθροισμα των στοιχείων του Α σε χρόνο Ο(n) και θέτουμε W και V ίσο με το ημιάθροισμα των στοιχείων σε Ο(1))

3. Το 3ΡΜ είναι ΝΡ-πλήρες

Η διατύπωση του προβλήματος TRIPARTITE-MATCHING(3PM) είναι:

Το πρόβλημα 3ΡΜ:

- **Είσοδος:** Τρία Σύνολα A, B, C με η αντικείμενα το καθένα. Μια τριμελής σχέση $R \subseteq A \times B \times C$
- Ερώτημα: Μπορούν να επιλεχθούν ακριβώς η τριάδες ώστε να καλύπτονται όλα τα στοιχεία των συνόλων;

Στιγμιότυπα:

Στιγμιότυπο 1: $A=(a_1,a_2)$, $B=(b_1,b_2)$, $C=(c_1,c_2)$ και $R=\{(a_1,b_2,c_1),(a_2,b_2,c_1),(a_1,b_1,c_2),(a_2,b_2,c_2)\}$

Απάντηση: ΝΑΙ με την επιλογή των 2 τριάδων: (a₂,b₂,c₁) κ' (a₁,b₁,c₂)

Στιγμιότυπο 2: A=(a₁,a₂), B=(b₁,b₂), C=(c₁,c₂) και R={(a₁,b₁,c₂),(a₂,b₂,c₂),(a₁,b₂,c₁),(a₁,b₂,c₂)}

- Απάντηση: ΟΧΙ
 - (Η απόδειξη παραλείπεται αναγωγή από το 3SAT βλέπε βιβλιο ΕΑΠ)

4. Το Χ3C είναι ΝΡ-πλήρες

Η διατύπωση του προβλήματος EXACT-COVER-BY-3SETS (X3C) είναι:

Το πρόβλημα EXACT-COVER-BY-3SETS (X3C):

- **Είσοδος:** Σύμπαν $U = \{a_1, a_2, ..., a_{3n}\}$, οικογένεια m υποσυνόλων του U: $F = \{S_1, S_2, ..., S_m\}$, κάθε υποσύνολο με πληθικό αριθμό $|S_i| = 3$ και $S_i \subseteq U$
- Ερώτημα: Υπάρχει $F' \subseteq F$ με |F'| = n έτσι ώστε: $\bigcup_{S_i \in F'} S_i = U$

Στιγμιότυπα:

Στιγμιότυπο 1: U= $\{1,2,3,4,5,6\}$, F= $\{\{2,3,5\},\{1,2,4\},\{3,5,6\},\{1,5,6\}\}$.

Απάντηση: NAI με την επιλογή F'={{1,2,4},{3,5,6}}

Στιγμιότυπο 2: U={1,2,3,4,5,6}, F={{1,3,5},{1,2,4},{1,2,6},{1,5,6}}.

- Απάντηση: ΟΧΙ
 - Για να το αποδείξουμε:
 - 1. Δείχνουμε ότι ανήκει στο ΝΡ
 - Ανάγουμε το πρόβλημα 3PM ανάγεται στο πρόβλημα X3C σε πολυωνυμικό χρόνο

4. Το Χ3C είναι ΝΡ-πλήρες

1. Το Χ3C ανήκει στο ΝΡ

1. Δείχνουμε ότι το Χ3C ανήκει στο NP

Δεδομένου ενός συνόλου η αντικειμένων U, και μιας οικογένειας m υποσυνόλων F:

- Σε μη ντετερμινιστικό χρόνο O(n) μαντεύουμε το υποσύνολο F' της οικογένειας F και έπειτα
- Επαληθεύουμε ότι τα σύνολα καλύπτουν όλα τα στοιχεία του U (π.χ. σαρώνοντας τα στοιχεία του F' και μαρκάροντας σε έναν πίνακα 3n θέσεων) σε χρόνο O(n)

Ο συνολικός χρόνος είναι πολυωνυμικός. Συνεπώς το πρόβλημα Χ3C ανήκει στο NP

- 4. Το Χ3C είναι ΝΡ-πλήρες
- 2. Το 3ΡΜ ανάγεται στο Χ3C σε πολ/κό χρόνο

2.Α) Το 3ΡΜ ανάγεται στο Χ3C

Δίνουμε αναγωγή από το 3PM στο X3C δηλαδή δεδομένων τριών συνόλων $A=\{\alpha_1,\alpha_2,...,\alpha_n\}$, $B=\{b_1,b_2,...,b_n\}$, $C=\{c_1,c_2,...,c_n\}$ και μίας σχέσης $R\subseteq A\times B\times C$ του 3PM κατασκευάζουμε συμπαν U και οικογένεια υποσυνόλων $F=\{S_1,S_2,...,S_m\}$, (με κάθε υποσύνολο $|S_i|=3$ και $S_i\subseteq U$)

Υπάρχει $R' \subseteq R$ με |R'| = n που καλύπτει όλα τα στοιχεία των A,B,C \Leftrightarrow Υπάρχει $F' \subseteq F$ με |F'| = n που να καλύπτει όλα τα στοιχεία του U

Η αναγωγή είναι η εξής:

- Θέτουμε $U = A \cup B \cup C$ άρα |U| = 3n
- Θέτουμε F = R

4. Το Χ3C είναι ΝΡ-πλήρες

2. Το 3ΡΜ ανάγεται στο Χ3C σε πολυωνυμικό χρόνο

Ευθύ:

- Έστω ότι υπάρχει $R' \subseteq R$ με |R'| = n που καλύπτει όλα τα στοιχεία των A,B,C
- Τότε αφού F=R επιλέγω F'=R' το οποίο καλύπτει όλα τα στοιχεία του $U=A\cup B\cup C$
- Άρα το F' καλύπτει όλα τα στοιχεία του U

• Αντίστροφο:

- Έστω ότι υπάρχει F' ⊆ F με |F'| = |U|/3 που καλύπτει όλα τα στοιχεία του U
- Αφού $U = A \cup B \cup C$ και κάθε σύνολο F_i περιέχει ακριβώς ένα στοιχείο από κάθε ένα από τα σύνολα A,B,C επιλέγω R'=F' που καλύπτει όλα τα στοιχεία των A,B,C
- Άρα το R' καλύπτει είναι ένα τριμερές ταίριασμα των στοιχείων των A,B,C.

- 4. Το Χ3C είναι ΝΡ-πλήρες
- 2. Το 3ΡΜ ανάγεται στο Χ3C σε πολυωνυμικό χρόνο

2.Β) Δείχνουμε ότι η αναγωγή είναι πολυωνυμικού χρόνου

Προφανώς ο χρόνος της αναγωγής είναι πολυωνυμικός.

(Τυπικά κατασκευάζουμε το σύμπαν U σε χρόνο O(n) και έπειτα κατασκευάζουμε τις τριάδες απλά μεταμορφώνοντας τις τριάδες σε σύνολα σε χρόνο O(m))

5. Το EXACT-COVER είναι NP-πλήρες

Η διατύπωση του προβλήματος EXACT-COVER είναι:

Το πρόβλημα EXACT-COVER:

- **Είσοδος:** Σύμπαν $U = \{a_1, a_2, ..., a_n\}$, οικογένεια m υποσυνόλων του U: $F = \{S_1, S_2, ..., S_m\}$, όπου $S_i \subseteq U$
- **Ερώτημα:** Υπάρχει $F' \subseteq F$ με ξένα μεταξύ τους υποσύνολα έτσι ώστε: $\bigcup_{S_i \in F}, S_i = U$

Στιγμιότυπα:

Στιγμιότυπο 1: U= $\{1,2,3,4,5,6\}$, F= $\{\{1,2,3,4\},\{4,6\},\{2,5\},\{1,3,5\},\{1,2,4\},\{1,3\}\}$.

Απάντηση: NAI με την επιλογή F'={{4,6},{2,5},{1,3}}

Στιγμιότυπο 2: U= $\{1,2,3,4,5,6\}$, F= $\{\{1,3,5,6\},\{1,2,3,4\},\{1,6\},\{1,5,6\}\}$.

- Απάντηση: ΟΧΙ
- Η απόδειξη αυτή είναι τετριμμένη, αφού μπορούμε να ανάγουμε το Χ3C σε αυτό (αφού είναι μια ειδική περίπτωση του EXACT COVER όπου τα υποσύνολα έχουν αυστηρά πληθικό αριθμό 3)

6. Το SET-COVER είναι NP-πλήρες

Η διατύπωση του προβλήματος SET-COVER είναι:

Το πρόβλημα SET-COVER:

- **Είσοδος:** Σύμπαν $U = \{a_1, a_2, ..., a_n\}$, Οικογένεια m υποσυνόλων του U: $F = \{S_1, S_2, ..., S_m\}$, $S_i \subseteq U$ και ακέραιος k.
- Ερώτημα: Υπάρχει $F' \subseteq F$ με $|F'| \le k$ έτσι ώστε: $\bigcup_{S_i \in F}, S_i = U$

Στιγμιότυπα:

Στιγμιότυπο 1: U= $\{1,2,3,4,5,6\}$, F= $\{\{2,3,5\},\{1,2,4\},\{3,5,6\},\{1,5,6\}\}$, k= $\{3,5,6\}$, k= $\{4,2,3,4\}$, k= $\{4,2,3,4\}$, k= $\{4,2,3\}$, k= $\{4,2\}$

Απάντηση: NAI με την επιλογή F'={{2,3,5},{1,2,4},{3,5,6}}

- Για να το αποδείξουμε:
 - 1. Δείχνουμε ότι ανήκει στο ΝΡ
 - Ανάγουμε το πρόβλημα Χ3C ανάγεται στο πρόβλημα SET-COVER σε πολυωνυμικό χρόνο

6. Το SET-COVER είναι NP-πλήρες

1. Το SET-COVER ανήκει στο NP

1. Δείχνουμε ότι το SET-COVER ανήκει στο NP

Δεδομένου ενός συνόλου η αντικειμένων U, και μιας οικογένειας m υποσυνόλων F και ενός ακεραίου k:

- Σε μη ντετερμινιστικό χρόνο O(k) μαντεύουμε τα k υποσύνολα της οικογένειας F και έπειτα
- Επαληθεύουμε ότι τα σύνολα καλύπτουν όλα τα στοιχεία του U (π.χ. σαρώνοντας τα στοιχεία του F' και μαρκάροντας σε έναν πίνακα n θέσεων) σε χρόνο O(n)

Ο συνολικός χρόνος είναι πολυωνυμικός. Συνεπώς το πρόβλημα SET-COVER ανήκει στο NP

6. Το SET-COVER είναι NP-πλήρες

2. Το X3C ανάγεται στο SET-COVER σε πολ/κό χρόνο

2.A) Το X3C ανάγεται στο SET-COVER

Δίνουμε αναγωγή από το X3C στο SET-COVER δηλαδή δεδομένου ενός σύμπαντος U και οικογένεια υποσυνόλων $F = \{S_1, S_2, ..., S_m\}$, (με κάθε υποσύνολο $|S_i| = 3$ και $S_i \subseteq U$) κατασκευάζουμε σύμπαν U_2 , οικογένεια υποσυνόλων V_2 και επιλέγουμε ακέραιο k έτσι ώστε

Υπάρχει $F' \subseteq F$ με |F'| = |U|/3 που να καλύπτει όλα τα στοιχεία του $U \Leftrightarrow Y$ πάρχει $F'_2 \subseteq F_2$ με $|F_2| \le k$ που καλύπτει όλα τα στοιχεία του U_2

Η αναγωγή είναι η εξής:

• Θέτουμε $U_2 = U$, $F_2 = F$ και θέτουμε k=|U|/3. Προφανς με την παραπάνω επιλογή η διατύπωση των δύο προβλημάτω είναι όμοια.

2.Β) Δείχνουμε ότι η αναγωγή είναι πολυωνυμικού χρόνου

Προφανώς ο χρόνος της αναγωγής είναι πολυωνυμικός (αφού απλά υπολογίζουμε την τιμή του k και ενσωματώνουμε την πληροφορία στην είσοδο).