Introduction to exceptional points

- Proposed by Wiersig in 2014
- Degeneracy in non-hermitian Hamiltonian is called an exceptional point (EP)
- Typical systems like 2 coupled non-linear oscillators show EP's
- Hamiltonian (assume $\hbar = 1$)

$$egin{pmatrix} \omega_1 & g \ g & \omega_2 \end{pmatrix}$$

- Eigenvalues: $\omega_\pm= ilde{\omega}_{av}\pm ilde{\Delta}/2\sqrt{1+(rac{2g}{ ilde{\Delta}})^2}$ where $w_{av}=(ilde{\omega}_1+ ilde{\omega}_2)/2$ and $ilde{\Delta}= ilde{\omega}_1- ilde{\omega}_2$
- Here, exceptional point occurs at $rac{2g}{\Delta}=i$ (square root singularity)
- Around exceptional point perturbation of the form $\text{Re}(\tilde{\omega}_i) + \epsilon$ results in a splitting $\text{Re}(\omega_+ \omega_-) \propto \sqrt{\epsilon}$ for small ϵ S
- Tradeoff: Highly sensitive to noise due to enhanced sensitivity

Alternative: Non-linear optical sensor

- Single mode coherently driven non-linear Kerr oscillator
- Measured signal: Splitting in transmitted intensities at 2 endpoints of hystersis cycle

• N (y axis) vs $F/\sqrt{\Gamma}$ (x axis)

Non-Linear Optical sensor cont...

- Realised using a Fabry-Perot setup or any other architecture (whispering gallery, ring, photonic crystal etc.) having one mode spectrally distant from other modes and probes an intensity dependent refractive index
- In a frame rotating at driving frequency ω intracavity field α obeys following equation $i\dot{\alpha}(t)=-\Delta-\frac{i\Gamma}{2}+U(|\alpha(t)|^2-1)\alpha(t)+i\sqrt{\kappa_L}F+D\xi(t)$
 - α : Intracavity Field
 - Δ : Detuning ($\omega \omega_0$) where ω_0 is the resonance frequency
 - Γ : Total Loss= $\gamma + \kappa_L + \kappa_R$ where γ is intrinsic loss, κ_L, κ_R is loss through left and right ports respectively
 - U: Kerr non-linearity strength
 - F: Amplitude of input laser
 - D $\xi(t)$: Gaussian white noise with variance D^2
 - Assume D=0 for now

Solving for α

Setting α as a+ib where a and b are real, we transform the equation for $\dot{\alpha}$ to the following coupled non-linear differential equations.

$$egin{aligned} \dot{a}&=(-\Delta+U(a^2+b^2-1))b-rac{a\Gamma}{2}+\sqrt{\kappa_L}F\ \dot{b}&=rac{-b\Gamma}{2}-a(-\Delta+U(a^2+b^2-1)) \end{aligned}$$

Hence we can see U represents the strength of non-linearity in this equation (blue-variation of a (y axis) with time (x axis)) (orange-variation of b (y axis) with time (x axis))

Steady state solutions

- Set $\dot{\alpha} = 0$ (steady state approximation)
- Also set $\frac{d|F|^2}{dN} = 0$ (turning points)
- Solutions are $ilde{N}_{\pm}=rac{2\Delta}{3U}\pmrac{2\Delta}{6U}\sqrt{1-(rac{\sqrt{3}\Gamma}{2\Delta})^2}$ (notice similarity with EP sensors)
- https://www.desmos.com/calculator/zhxszbbxrs

Properties

- Notice that the transmitted signal ($\delta N=N_+-N_-$) depends on Δ and measurement time.
- The dependence (as plotted by the authors) has been shown below

- Observe: For faster measurement time, less detuning needed for signal ⇒ better sensitivity for faster measurement times.
- Dashed Lines: Square root fit near each singularity

Effects of Noise

TIII now analysis was based on assumption D=0

• With noise, solve numerically with different random seeds

(plot from reference)

Parameters: $\Delta=0.7\Gamma$

Advantages cont...

(plots from reference)

SNR: Signal to noise ratio defined as $\frac{\delta N}{\sigma_{\delta N}}$ χ : Precision figure of merit: $\frac{\delta \bar{N}_{\epsilon} - \delta \bar{N}_{0}}{\sigma_{0} + \sigma_{\epsilon}}$; Quantifies the mean change in signal relative to measurement uncertainty

Alternative viewpoint: Information theory

- Mutual information between 2 random variables: Measure of certainty of a random variable given knowledge of the other variable
- $I(\epsilon;S) = \sum_{s \in S} \sum_{\epsilon \in E} p_{\epsilon,S}(\epsilon,s) log \frac{p_{(\epsilon,S)}(\epsilon,s)}{p_{\epsilon}(\epsilon)p_{S}(s)}$ (from KL divergence between $p_{(\epsilon,S)}(\epsilon,s)$ and $p_{\epsilon}p_{S}(s)$)
- KL divergence: Measure of similarity between to probability distributions P and Q
- Set $p_{\epsilon}(\epsilon)$ gaussian with mean $\Gamma/100$ and $\sigma=\Gamma/1000$ and calculate $p_s(s)$ numerically using detuning $\Delta_0=0.7\Gamma$. Then based on value of s we get the joint probability distribution
- Observe the enhancement of information content near T_{ss}
- Correlation between square root singularity, mutual information and precision.
- Results are general for $\epsilon << \Gamma$

Effects of averaging

- Smoothens effects of noise thus improving precision
- For same protocol F, it enhances sensitivity
- Tradeoff: Measurement time vs precision: averaging detrimental to fast sensing
- Non-trivial dependence of χ on number of cycles n.
- Peak followed by fall (unexpected) followed by gradual rise (expected)
 Possibility of model parameters having best of both worlds (speed and precision)