Music Mood Classification

```
1 import numpy as np
2 import pandas as pd
3 import seaborn as sns
4
5 # Input data files are available in the read-only "../input/" directory
6 # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
7
8 import os
9 for dirname, _, filenames in os.walk('/kaggle/input'):
10 for filename in filenames:
11    print(os.path.join(dirname, filename))
```

1 data = pd.read_csv('~/Downloads/EmotionBasedMusicRecommendationSystem/EmotionBasedMusicRecommendationSystem/dataset/data_moods.csv')
2 data

	name	album	artist	id	release_date	popularity	length	danceability	acousticness	energy
0	1999	1999	Prince	2H7PHVdQ3mXqEHXcvclTB0	1982-10-27	68	379266	0.866	0.13700	0.7300
1	23	23	Blonde Redhead	4HlwL9ii9CcXpTOTzMq0MP	2007-04-16	43	318800	0.381	0.01890	0.8320
2	9 Crimes	9	Damien Rice	5GZEeowhvSieFDiR8fQ2im	2006-11-06	60	217946	0.346	0.91300	0.1390
3	99 Luftballons	99 Luftballons	Nena	6HA97v4wEGQ5TUCIRM0XLc	1984-08-21	2	233000	0.466	0.08900	0.4380
4	A Boy Brushed Red Living In Black And White	They're Only Chasing Safety	Underoath	47IWLfIKOKhFnz1FUEUIkE	2004-01-01	60	268000	0.419	0.00171	0.9320
681 \	windcatcher	windcatcher	Leo Nocta	59VApBbrS2IADQk4ml5mdo	2020-06-19	36	123066	0.402	0.96100	0.2360
682	yellow is the color of her eyes	yellow is the color of her eyes	Soccer Mommy	4D3nttJPU6L0M2epr7sld6	2019-11-19	5	435080	0.452	0.75700	0.5150
683	you broke me first	you broke me first	Tate McRae	45bE4HXI0AwGZXfZtMp8JR	2020-04-17	87	169265	0.642	0.78600	0.3740
684	you were good to me	brent	Jeremy Zucker	4CxFN5zON70B3VOPBYbd6P	2019-05-03	76	219146	0.561	0.91300	0.0848
685	æfre	æfre	praam	2irbT1BSYalEF44PlyKaoM	2020-07-17	41	186331	0.377	0.99400	0.0156

1 # Check for missing values

2 missing_values = data.isnull().sum()

3 missing_values

0 → name album artist 0 id 0 release_date popularity 0 length danceability 0 acousticness 0 energy instrumentalness 0 liveness valence loudness speechiness 0 tempo 0 key time_signature 0 mood 0 dtype: int64

```
2 selected_features = ['danceability', 'acousticness', 'energy', 'instrumentalness', 'liveness', 'valence', 'loudness', 'speechiness', 'tempo']
3 X = data[selected_features]
4 y = data['mood']
1 # Normalization
2 from sklearn.preprocessing import StandardScaler
4 scaler = StandardScaler()
5 X_scaled = scaler.fit_transform(X)
1 # Categorical Encoding
2 from sklearn.preprocessing import LabelEncoder
4 label encoder = LabelEncoder()
5 y_encoded = label_encoder.fit_transform(y)
1 # Split the Data
2 from sklearn.model_selection import train_test_split
4 \ \texttt{X\_train}, \ \texttt{X\_test}, \ \texttt{y\_train}, \ \texttt{y\_test} = \texttt{train\_test\_split}(\texttt{X\_scaled}, \ \texttt{y\_encoded}, \ \texttt{test\_size=0.2}, \ \texttt{random\_state=42})
1 # Train a Mode
2 from sklearn.ensemble import RandomForestClassifier
4 model = RandomForestClassifier(random_state=42)
5 model.fit(X_train, y_train)
                 {\tt RandomForestClassifier}
     RandomForestClassifier(random_state=42)
1 # Evaluate the Model
2 from sklearn.metrics import classification_report
4 y_pred = model.predict(X_test)
5 report = classification_report(y_test, y_pred, target_names=label_encoder.classes_)
₹
                      precision
                                      recall f1-score
                            0.97
                                        0.95
                                                    0.96
                                                                   41
              Calm
         Energetic
                            0.71
                                        0.75
                                                    0.73
                                                                   32
                            0.50
                                        0.48
                                                    0.49
                                                                   25
             Нарру
                            0.88
                                        0.88
                                                    0.88
                                                                   40
                Sad
          accuracy
                                                    0.80
                                                                  138
                            0.76
                                        0.76
                                                    0.76
                                                                  138
         macro avg
                            0.80
                                        0.80
                                                    0.80
                                                                  138
     weighted avg
1 # Add the predicted moods to the dataset
2 data['encoded_mood'] = label_encoder.transform(data['mood'])
\label{lem:cond} \mbox{3 data['predicted_mood'] = label_encoder.inverse\_transform(model.predict(X\_scaled))}
1 \# Save the updated dataset to a new CSV file
2 output_file_path = 'path_to_save_the_new_file/updated_data_moods.csv'
3 data.to_csv(output_file_path, index=False)
4
5
1 # Display the first few rows of the updated dataset
2 print(data[['name', 'album', 'artist', 'mood', 'predicted_mood']].head())
\overline{\rightarrow}
                                                                                          album \
     0
                                                                                           1999
                                                        1999
     1
                                                          23
                                                                                              23
     2
                                                   9 Crimes
                                                                                               9
                                            99 Luftballons
                                                                               99 Luftballons
        A Boy Brushed Red Living In Black And White They're Only Chasing Safety
                   artist
                                  mood predicted_mood
     0
                  Prince
                                 Happy
                                                   Happy
     1
        Blonde Redhead
                                   Sad
                                                      Sad
            Damien Rice
                                   Sad
                                                      Sad
```

1 # Select relevant features

Nena Happy Happy
Underoath Energetic Energetic

1 Start coding or generate with AI.