1 Homogeneous Linear Second-Order ODE's with Constant Coefficients

We have the equation ay'' + by' + cy = 0 (1), where a, b, c are constants.

Thereom: If $y_1(x)$ and $y_2(x)$ are any two solutions of (1) and if C_1 and C_2 are arbitrary constants, then $C_1y_1(x) + C_2y_2(x)$ is the general solution of (1).

Consider: y' + ay = 0, where a is a constant, we can derive:

$$y' + ay = 0$$

$$y' = -ay$$

$$\frac{dy}{dx} = -ay$$

$$\frac{dy}{y} = -adx$$

$$\int \frac{dy}{y} = \int -adx$$

$$\ln y = -ax + C$$

$$y = Ae^{-ax}, A = e^{C}$$

Question: Whether exponentiaal solutions exist for homogeneous linear second-order ODE's.

Solution of ay'' + by' + cy = 0 (1):

If we try a solution of the form $y = e^{x}$, $m \in \mathbb{R}$ we get $y' = me^{mx}$ and $y'' = m^2e^{mx}$. Now we substitute $y' = me^{mx}$ and $y'' = m^2e^{mx}$ into (1) to get $a(m^2e^{mx}) + b(me^{mx}) + ce^{mx} = 0$ (2) or $e^{mx}(am^2 + bm + c) = 0$. We have $e^{mx} \neq 0$ for all values of x and m, so (2) is 0 when $am^2 + bm + c = 0$. This equation is called the auxillary equation of (1).

We can solve for m with the quadratic formula: $m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

We now have three cases: $b^2 - 4ac > 0$, $b^2 - 4ac = 0$, and $b^2 - 4ac < 0$

1.1 Case 1

If $b^2 - 4ac > 0$, then equation (2) has two distinct real solutions m_1 and m_2 . Corresponding, equation (1) has two basic solutions: $y_1(x) = e^{m_1 x}$ and $y_2(x) = e^{m_2 x}$. The complete solution of (1) is: $y(x) = C_1 e^{m_1 x} + C_2 e^{m_2 x}$.

1.1.1 Example 1

Given y'' + 5y' + 6 = 0, we have the equation $m^2 + 5m + 6 = 0$. We can solve for m.

$$m^{2} + 5m + 6 = 0$$

 $(m+2)(m+3) = 0$
 $m_{1} = -2, m_{2} = -3$

And now solving for y we find that, $y(x) = C_1 e^{3x} + C_2 e^{-3x}$

1.1.2 Example 2

Given 2y'' - 5y' - 3y = 0, we have $2m^2 - 5m - 3 = 0$,

$$m = \frac{-(-5) \pm \sqrt{(-5)^2 - 4ac}}{2(2)}$$
$$m_1 = 3, \ m_2 = -\frac{1}{2}$$
$$y(x) = C_1 e^{3x} + C_2 e^{-\frac{x}{2}}$$