Durée : 1 heure. Aucun document autorisé. Ce contrôle sera noté sur 10 points.

- 1. (2 pts) Questions de cours :
 - a) Rappelez la comparaison séries-intégrales, puis montrez la divergence de la série de Bertrand $\sum_{n\geq 2} \frac{1}{n\ln(n)}$.
 - b) Rappelez pourquoi si $(f_n)_n$ est une suite de fonctions bornées sur un intervalle I qui converge uniformément vers f, alors f est bornée sur I.
- 2. (3 pts) Déterminer la nature des suites de nombres suivantes :
 - a) $\sum_{n\geq 1} \frac{1}{n+\ln(n)^2}.$
 - b) $\sum_{n\geq 2} \left(\frac{\ln(n)}{n}\right)^2$. (Indication : comparaison avec une série de Riemann.)
 - c) $\sum_{n\geq 2} ne^{-n^2+n}$.
- 3. (2 pt) Déterminez si la suite de fonctions $f_n(x) = nxe^{-nx}$ converge uniformément sur $I = [1/10, +\infty[$, respectivement sur $I = [0, +\infty[$.
- **4.** (3 pts) Vrai ou faux : jusitifiez si l'énoncé est vrai, donnez-en un contre-exemple s'il est faux. Soit $\sum_{n>0} a_n$ une série de nombres.
 - a) Si elle converge, alors $\lim_{n} \sqrt[n]{|a_n|} \le 1$ dès que la limite existe.
 - b) Si elle converge, alors $\sum_{n>0} a_n^2$ converge. (Indicaiton : séries altérnées.)
 - c) Si elle diverge et si $a_n \geq 0$, alors $a_n \not\to 0$, $n \to +\infty$.

Soit $(f_n)_n \in \mathcal{C}^0([0,1],\mathbb{C})^{\mathbb{N}}$ une **suite** de fonctions.

- d) Si f_n converge simplement vers une fonction $f \in \mathcal{C}^0([0,1],\mathbb{C})$ et si $\int_0^1 f_n \to \int_0^1 f$, alors la convergence $f_n \to f$ est uniforme sur [0,1]. (Indication: on peut supposer f=0.)
- e) Si $0 \le f_n \le 1$ et $f_{n+1} \le f_n$, alors f_n converge simplement.
- f) Si $0 \le f_n \le 1$ et $f_{n+1} \le f_n$, alors f_n converge uniformément.
- **5.** (3 pts) Considérons la série de fonctions $\sum_{n\geq 1} (-1)^{n-1} \frac{x^n}{\sqrt{n}}$.
 - a) Montrez que si $x \in]-1,1]$, la série converge.
 - b) Montrez que la série converge uniformément sur [-a, a] si 0 < a < 1.

Les trois questions suivantes sont étroitement reliées :

- c) Écrivez le critère de Cauchy pour la convergence uniforme de la série (i.e. pour la convergence uniforme de la suite des sommes partielles de la série) sur [-1,0].
- d) Qu'obtenez vous lorsque $x \to (-1)^+$? (Ceci devrait correspondre au critère de Cauchy pour une série de nombres que vous préciserez.)
- e) En déduisez que la convergence de la série n'est pas uniforme sur]-1,0]. ²

Fin du sujet.

^{1.} Si on suppose de plus que $f_{n+1} \leq f_n$, alors la convergence $\int_0^1 f_n \to \int_0^1 f$ est automatique par le théorème de convergence dominée, et f_n converge uniformément par le théorème de Dini.

^{2.} La convergence sur [0, 1] est pourtant uniforme (Théorème d'Abel radial).