Задача 9-3

При температурах около 1000° С смесь бинарных веществ **A** и **Б** находится в жидком состоянии. В технической документации отношение числа молей **A**: **Б** в смеси именуют *КО*. Температуры плавления и начала кристаллизации смесей зависят от их состава. В системе **A** – **Б** есть два минимума температуры плавления: 900° С (*смесь 1*) и 700° С (*смесь 2*). При охлаждении этих смесей

кристаллизуются твердые вещества **X**, **Y** и **Z**. Информация о составе смесей, а также веществ **X**, **Y** и **Z** представлена в таблице:

	X	Y	Z	смесь 1	смесь 2
ω (Na), масс %	18.25	24.89	32.86	??	??
КО	1	??	3	5.5	1.4

Вещество **Y** имеет ионное строение и содержит полиядерный анион, в котором все атомы металла имеют координационное число 6.

Расплав смеси **A** и **Б** с KO = 2.5 - 2.9 используют в промышленности для растворения в нем бинарного вещества **B**. Источником **B** служат минералы на основе веществ Γ и \mathcal{I} , имеющих одинаковый элементный состав (массовая доля металла в Γ выше). Между собой эти вещества отличаются по устойчивости к действию щелочи: Γ растворяется в NaOH концентрации 7-10 моль/л, а для растворения \mathcal{I} достаточно концентрации щелочи 3-4 моль/л, при этом образуется раствор единственного продукта **E**. Нагревание вещества **E** в автоклаве сопровождается кристаллизацией твёрдого осадка \mathcal{I} , при прокаливании которого получают **B**.

В настоящее время ${\bf Z}$ синтезируют, растворяя ${\bf \Gamma}$ в избытке водного раствора кислоты ${\bf Ж}$ при нагревании до получения прозрачного раствора вещества ${\bf 3}$, после прибавления карбоната натрия к которому и охлаждения выпадает осадок ${\bf Z}$.

Вопросы:

- 1. Определите вещества **X**, **Y** и **Z**, ответ подтвердите расчётами.
- **2**. Вычислите KO(Y), а также массовые доли натрия в *смесях* 1 и 2.
- 3. Укажите, какие вещества кристаллизуются при охлаждении *смеси 1* и *смеси 2*. Рассчитайте массовые доли образующихся кристаллических веществ.
- **4**. Какой технологический процесс осуществляют с использованием раствора **B** в расплавленной смеси **A** и **Б** в угольной ванне?
- 5. Сколько атомов в формульной единице Y соединены сразу с двумя атомами металла?
 - 6. Определите формулы веществ В, Г, Д, Е, Ж и 3, ответ обоснуйте.
 - 7. Объясните почему Г устойчивее к действию щелочи по сравнению с Д.

Решение задачи 9-3 (автор: Серяков С.А.)

1. Реакции синтеза **X** и **Z** из бинарных веществ **A** и **Б** можно записать в виде схем:

$$A + B \rightarrow A \cdot B$$
 (вещество X) $3A + B \rightarrow 3A \cdot B$ (вещество Z)

Содержание натрия в \mathbf{Z} больше чем в \mathbf{X} , значит источником этого элемента является вещество \mathbf{A} . Пусть 1 моль \mathbf{A} содержит \mathbf{a} моль натрия, выразим молярные массы \mathbf{A} и \mathbf{b} :

$$\frac{\boldsymbol{a} \cdot M(\text{Na}) \cdot 100\%}{\omega(\text{Na B } \mathbf{X})} = M(\mathbf{X}) = M(\mathbf{A}) + M(\mathbf{B})$$

$$126 \cdot \boldsymbol{a} = M(\mathbf{X}) = M(\mathbf{A}) + M(\mathbf{B})$$

$$\frac{3\boldsymbol{a} \cdot M(\text{Na}) \cdot 100\%}{\omega(\text{Na B } \mathbf{Z})} = M(\mathbf{Z}) = 3M(\mathbf{A}) + M(\mathbf{B})$$

$$210 \cdot \boldsymbol{a} = M(\mathbf{Z}) = 3M(\mathbf{A}) + M(\mathbf{B})$$

Решая полученную систему уравнений, находим $M(\mathbf{A}) = 42 \cdot \mathbf{a} = 23 \cdot \mathbf{a} + \mathbf{Q}$, где \mathbf{Q} – молярная масса аниона соли \mathbf{A} . Откуда находим при $\mathbf{a} = 1$, $\mathbf{Q} = 19$ г/моль – подходит \mathbf{F} -, следовательно, $\mathbf{A} = \mathrm{NaF}$. Из первого уравнения найдем $M(\mathbf{B}) = 84$ г/моль. Если внимательно прочитать условия синтеза \mathbf{Z} , то станет ясно что сода в последней реакции служит источником натрия и не влияет на анион соли \mathbf{Z} , откуда следует вывод что в составе \mathbf{A} и \mathbf{B} содержится один и тот же анион, совпадающий с анионом кислоты ($H\mathbf{F} = \mathbf{K}$ упомянутая кислота), которой обрабатывали в предпоследней реакции. Пусть \mathbf{R}^{b+} – катион в веществе \mathbf{E} , в таком случае $M(\mathbf{E}) = M(\mathbf{R}) + 19 \cdot \mathbf{b} = 84$, откуда при $\mathbf{b} = 3$, $M(\mathbf{R}) = 27$ г/моль. \mathbf{R} - это алюминий, значит $\mathbf{E} = \mathrm{AlF}_3$. Наличие амфотерного металла подтверждается описанием процедуры извлечения его из руд.

Определим состав Y:

$$n$$
NaF + AlF₃ = n NaF · AlF₃ (вещество **Y**)
$$\frac{n \cdot M(\text{Na}) \cdot 100\%}{\omega(\text{Na B Y})} = M(\textbf{Y}) = nM(\textbf{A}) + M(\textbf{B})$$

 $92.4 \cdot n = M(Y) = 42n + 84$ откуда найдём n = 1.667 или 5/3. В условии сказано, что вещество Y имеет регулярную структуру, поскольку элементы, входящие в его состав, имеют строго определённые координационные числа, поэтому его формулу писать с дробными коэффициентами недопустимо! Уравнения реакций синтеза из расплава:

$$NaF+AlF_3=Na[AlF_4],$$
 откуда ${f X}=Na[AlF_4]$ 5 $NaF+3AlF_3=Na_5[Al_3F_{14}]$ это вещество называется $xuoлum$ ${f Y}=Na_5[Al_3F_{14}]$

$$3NaF + AlF_3 = Na_3[AlF_6]$$

 $\mathbf{Z} = \text{Na}_3[\text{AlF}_6]$

2. По приведённым выше расчётам KO(Y) = 5/3 = 1.67.

Расплав можно представить как смесь переменного состава: (KO) NaF·AlF₃. В котором массовая доля натрия составит:

$$\omega(Na) = \frac{KO \cdot M(\text{Na}) \cdot 100\%}{KO \cdot M(\mathbf{A}) + M(\mathbf{B})}$$

$$\omega(\text{Na B } \textit{cmecu 1}) = \frac{5.5 \cdot 22.99 \cdot 100\%}{5.5 \cdot 41.988 + 83.976} = 40.15\%$$

$$\omega(\text{Na B } \textit{cmecu 2}) = \frac{1.4 \cdot 22.99 \cdot 100\%}{1.4 \cdot 41.988 + 83.976} = 22.55\%$$

3. При охлаждении расплава следует ожидать образование смеси индивидуальных веществ, ближайших по составу к данному расплаву. Закон сохранения массы в таком случае подразумевает что среднее содержание элементов в смеси будет совпадать с расплавом.

Смесь 1 имеет бОльшее содержание натрия чем в чистом криолите Na₃[AlF₆], но меньшее чем в NaF, по условию других соединений в этом интервале составов нет, поэтому при её охлаждении образуется смесь Na₃[AlF₆] и NaF.

Обозначим через x мольную долю NaF, тогда мольная доля Na₃[AlF₆] равна (1-x). KO — равно мольному отношению Na : Al, оно не должно изменяться при кристаллизации, поэтому:

$$KO_1 = \frac{x + 3(1 - x)}{1 - x} = 5.5$$

значит, x = 5 / 7.

К аналогичному выводу можно прийти, используя следующие соображения. КО — это мольное отношение NaF : AlF₃, т.е. если в расплаве содержится 1 моль AlF₃, то количество NaF равно 5.5 моль. Так как из расплава кристаллизуется единственное соединение, содержащее AlF₃ — это Na₃[AlF₆], легко рассчитать, что его образуется 1 моль, тогда NaF останется 2.5 моль. Таким образом, мольная доля кристаллического NaF равна 2.5/(1+2.5) = 5/7.

Массовая доля может быть вычислена следующим образом:

$$\omega(\text{NaF}) = \frac{\frac{5}{7}M(\text{NaF}) \cdot 100\%}{\frac{5}{7}M(\text{NaF}) + \frac{2}{7}M(\text{Na}_3[\text{AlF}_6])} = 33.33\% \qquad \omega(\text{Na}_3[\text{AlF}_6]) = 66.67\%$$

Аналогично Смесь 2 при охлаждении даст $Na[AlF_4]$ и $Na_5[Al_3F_{14}]$. Обозначим через x мольную долю $Na[AlF_4]$:

$$KO_{1} = \frac{x + 5(1 - x)}{x + 3(1 - x)} = 1.4 \implies x = \frac{2}{3}$$

$$\omega(Na[AlF_{4}]) = \frac{\frac{2}{3}M(Na[AlF_{4}]) \cdot 100\%}{\frac{2}{3}M(Na[AlF_{4}]) + \frac{1}{3}M(Na_{5}[Al_{3}F_{14}])} = 35.29\%$$

$$\omega(Na_{5}[Al_{3}F_{14}]) = 64.71\%$$

4. Расплав криолита $Na_3[AlF_6]$ используют в промышленности для получения алюминия путём электролиза расплава, содержащего $Al_2O_3 = \mathbf{B}$, графитовая ванна-анод при этом расходуется, т.к. окисляется кислородом, который выделяется на аноде. Материальный баланс электролиза можно было бы представить квази-уравнением:

$$2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2\uparrow$$

В действительности угля при производстве алюминия выгорает гораздо больше — в процессе формовки ванны и при окислении O_2 воздуха в процессе эксплуатации. Это одно из самых «грязных» производств с точки зрения выбросов парниковых газов и ПАУ (полициклических ароматических углеводородов). В мире идёт активное исследование материалов «инертного анода», на которых происходит образование O_2 вместо ПАУ + CO + CO_2 . К сожалению, в настоящее время известные материалы для «инертных анодов» не удовлетворяют тем или иным требованиям и замены графиту нет, поэтому экологические риски, вызванные технологией производства алюминия, сохраняются высокими.

тогда имеют только один атом алюминия в ближайшем окружении (14 - S) атомов фтора. Поскольку любая химическая связь внутри полиядерного аниона соединяет металл с неметаллом (нет связей между одинаково заряженными ионами), то общее число связей, образованных как атомами алюминия, так и атомами фтора одинаково.

координационное число 2 (т.е. соединены сразу с двумя атомами алюминия).

5. В описываемом анионе $[Al_3F_{14}]^{5-}$ 14 атомов фтора, пусть **S** из них имеют

 $N(Al)\cdot KY(Al) = 3\cdot 6 = 2\cdot S + 1\cdot (14 - S)$, откуда получим S = 4. Значит, 4 атома фтора являются мостиками. Предполагают, что в промышленном расплаве, содержащим Al_2O_3 , кислород O^{2-} входит в состав мостиков полиядерных анионов.

6. Схему извлечения глинозёма Al_2O_3 из руд удобнее расшифровывать с продукта взаимодействия со щелочным раствором, это будет гидроксокомплекс алюминия $E = Na[Al(OH)_4]$ (вариант $Na_3[Al(OH)_6]$ также засчитывать). При нагревании раствора E в осадок выпадает соединение алюминия, разлагающееся при более высокой температуре с образованием Al_2O_3 , следовательно соединение не может содержать натрий, который остался бы при прокаливании в виде $NaAlO_2$ и уместнее всего принять что этот осадок $Al(OH)_3$. Поскольку продукт E является единственным в реакции минералов со щёлочью, можно предположить что Γ (с меньшей молярной массой) и Π имеющие одинаковый качественный состав являются гидратированными формами оксида алюминия $\Gamma = AlO(OH)$, $\Pi = Al(OH)_3$.

Уравнения реакций (не оцениваются):

AlO(OH) + H₂O + NaOH
$$\rightarrow$$
 Na[Al(OH)₄]
Al(OH)₃ + NaOH \rightarrow Na[Al(OH)₄]
Na[Al(OH)₄] \rightarrow NaOH + Al(OH)₃
2Al(OH)₃ \rightarrow Al₂O₃ + 3H₂O
AlO(OH) + 6HF \rightarrow H₃[AlF₆] + 2H₂O
2H₃[AlF₆] + 3Na₂CO₃ \rightarrow 2Na₃[AlF₆] + 3CO₂

В	Γ	Д	E	Ж	3
Al ₂ O ₃	AlO(OH)	Al(OH) ₃	Na[Al(OH) ₄] либо	HF	$H_3[AlF_6]$
			$Na_3[Al(OH)_6]$		

7. Чтобы понять почему AlO(OH) менее активен в реакции с NaOH следует учесть, что в AlO(OH) атомы алюминия соединены прочными кислородными мостиками (Al $^{3+}$ – O $^{2-}$ – Al $^{3+}$), в то время как в Al(OH) $_3$ мостиковую функцию выполняет атом кислорода гидроксид-иона:

$$(Al^{3+}-OH^--Al^{3+}).$$

Для разрушения оксо-мостиков требуется более концентрированный раствор щёлочи. Интересно отметить, что осадки гидроксидов металлов «стареют» со временем утрачивая химическую активность вследствие образования оксо-мостиков вместо гидроксо-мостиков.

Система оценивания:

1	Вещества Х, У и Z по 1 баллу	3 балла
2	Расчет $KO(\mathbf{Y}) - 1$ балл	3 балла
	Расчет доли Na в смесях 1 и 2 по 1 баллу	
3	Продукты охлаждения смесей 1 и 2 по 1 баллу	4 балла
	Оценивается только пара веществ	
	Расчет массовых долей веществ после кристаллизации для	
	<i>смесей 1</i> и <i>2</i> по 1 баллу	
4	Указание на получение алюминия	1 балл
5	Вычисление числа мостиковых атомов фтора	1 балл
6	Вещества В, Г, Д, Е, Ж, З по 1 баллу	6 баллов
7	Указание на мостиковый атом кислорода вместо	2 балла
	мостиковой гидроксо-группы как причину инертности	
	итого:	20 баллов