BSYS_EVAL

Ionuț Cicio

Contents

1	Bsys_eval	3
	1.1 Introduction	3
	1.2 Requirements	4
2	Data types specification	8
	2.1 Interval	8
	2.2 ReactomeDbId	8
	2.3 StableIdVersion	9
3	(Reactome) UML class diagram	10
4	Classes specification pt. 1	11
	4.1 CatalystActivity	11
	4.2 Compartment	11
	4.3 Pathway	12
	4.4 PhysicalEntity	
5	(Biological scenario definition) UML class diagram	14
6	Classes specification pt. 2	15
	6.1 BiologicalScenarioDefinition	15
	6.2 ModelInstance	16
	6.3 SimulatedModelInstance	16
	6.4 Measurement	16
	6.5 UnitDefinition	17
	Use-case diagram	17
	7.1 "Helper" use-case	18
$\mathbf{B}^{\mathbf{i}}$	ibliography	19
	O 1 V	

1 BSYS_EVAL

1.1 Introduction

BSYS_EVAL is a tool meant to help study the likelihood of a given scenario in a biological system.

Given a set of target species, a set of constraints on the target species (constraints which model a scenario that could present, for example, in a disease) and by taking into account all the reactions within a set target pathways that lead to the production, both directly and indirectly, of the target species, the goal is to find a subset of virtual patients for the described scenario.

<u>TODO</u>: find papers in literature that do similar things; what does this method add compared to other approaches? (i.e. using multiple pathways by generating the fixed point, ensemble of SAs etc...)

TODO: case studies

1.2 Requirements

The basic idea behind the software is to take the description of a scenario (with target species, target pathways, constraints on the target species, and the parameters $\varepsilon, \delta \in (0,1)$ for the evaluation of the constraints), to generate a SBML model with

- the reactions within the *target pathways* that, both directly and indirectly, generate the *target species*
- parameters for the reactions' speeds
- structural constraints on the reactions' speeds (some reactions are faster than others)

TODO: I still haven't figured out how to get that information out of Reactome, maybe I just have to search more

• constraints on the quantities of the entities (for which the model needs to be simulated)

Algorithm 1: eval

```
\begin{split} & \text{input: } S_T, \text{ set of PhysicalEntity;} \\ & \text{input: } P_T, \text{ set of target Pathway;} \\ & \text{input: } C_T, \text{ set of constraints on } S_T; \\ & \text{input: } \varepsilon, \delta \in (0,1); \\ & \text{input: seed, random seed;} \\ & \text{scenario} \leftarrow \text{biological\_scenario\_definition}(S_T, P_T, C_T) \\ & \text{(sbml\_model, vp\_definition, env)} \leftarrow \text{yield\_sbml\_model}(\text{scenario}) \\ & V = \emptyset \text{ // set of virtual patients} \\ & \text{while } \neg \text{ halt requested do} \\ & v \leftarrow \text{instantiate}(\text{vp\_definition}) \text{ // virtual patient} \\ & \text{if (} \\ & v \text{ satisfies structural constraints } \land \\ & \text{APSG}(\text{sbml\_model, } v, \text{ env, seed, } \varepsilon, \delta) \\ & \text{) then} \\ & V \leftarrow V \cup \{v\}; \\ & \text{return V} \end{split}
```

The bulk of the logic is in the yield_sbml_model() function.

Average quantities

$$\bullet \ \ S' = S \cup \left\{ S_{\text{avg}} \ | \ s \in S \right\}$$

•
$$S' = G(S')$$

•
$$K: R \to \mathbb{R}_{+}^{|R|} = \left[10^{-6}, 10^{6}\right]^{|R|}$$

- find k
- subject to
 - structural constraints
 - partial order on k due to
 - fast/non fast reactions (TODO: as given by Reactome, but how?)

$$\forall r_f, r_s \ \left(r_f \in R_{\text{fast}} \land r_s \in R_{\text{slow}}\right) \rightarrow r_f > r_s$$

- reaction modifiers (like above?)
- for all dynamics of environment
 - avg concentration of species consistent to knowledge

$$\exists t_0 \ \forall t \ \forall s$$

$$\left(t > t_0 \land s \in S_{\mathrm{avg}}\right) \to s(t) \in [\mathrm{known\ range}]$$

• $\mathbb{N}^+ = \{ n \mid n \in \mathbb{N} \land n > 0 \}$

Definition 1 (biological graph)

A biological graph G is a tuple (S, R, E, F) s.t.

- S is a set of species
- R is a set of reactions
- $E: S \times R \to \mathbb{N}^+$
 - $ightharpoonup E = E_{\text{reactant}} \cup E_{\text{product}} \cup E_{\text{modifier}}$

Definition 2 ("produces" relation)

Given a biological graph G = (S, R, E, F) let \rightsquigarrow be a relation s.t.

- $\bullet \quad \forall s, r \quad (s, r) \in \mathrm{dom}(E_{\mathrm{reactant}} \cup E_{\mathrm{modifier}}) \Rightarrow s \rightsquigarrow r$
- $\forall s, r \quad (s, r) \in \text{dom}(E_{\text{product}}) \Rightarrow r \rightsquigarrow s$
- $\forall c, c', c'' \quad (c \rightsquigarrow c' \land c' \rightsquigarrow c'') \Rightarrow c \rightsquigarrow c''$

 \rightsquigarrow is the "produces" relation

Definition 3 (model??)

Given a set of target species S_T , a set of target pathways P_T and a biological graph G = (S, E, R) s.t.

•
$$S_T \subseteq S$$

A model is a subgraph G' = (S', E', R') s.t.

- $G' \subset G$
- $S' = \{s \mid \exists s_t \ s \in S \land s_t \in S_T \land s \rightsquigarrow_G s_t\}$
- $R' = \{r \mid \exists s_t \ r \in R \land s_t \in S_T \land r \rightsquigarrow_G s_t\}$
- $E' = ((s, r, n) \mid (s, r, n) \in E \land s \in S' \land r \in R')$

Definition 4 (constraint problem on a biological model)

Given a model G with target species S_T and target pathways P_T let the following be a constraint problem

• $k: R \to \mathbb{R}^{|R|}$

find k subject to

- partial order on k from the structure of the graph
- partial order on the quantities
- constraint on enzymes such that

$$E+S \overset{k_1,k_{-1}}{\longleftrightarrow} ES \overset{k_2}{\to} E+P$$

$$k_1, k_{-1} \gg k_2$$

- for all dynamics of the environment
 - average concentration of species consistent to knowledge

$$\begin{split} \exists t_0 \;\; \forall t \;\; \forall s \\ & \left(t > t_0 \land s \in S_{\mathrm{avg}}\right) \to s(t) \in [\text{known range}] \end{split}$$

Environment: all possible cuts we can have excluded species!

$$\begin{split} \dot{x} &= k_+ \prod_{i=1}^s S_i^{k_i} - k_- \prod_{j=1}^p P_j^{k_j} \\ \dot{x} &= \sum_{i=1}^p \mathrm{KP}_i - \sum_{j=1}^n \mathrm{KN}_j \\ \left\{ \sum_{j=1}^n \mathrm{KN}_j > \mathrm{KP}_i \mid i \in \{1,...,p\} \right\} \cup \\ \left\{ \sum_{i=1}^n \mathrm{KP}_i > \mathrm{KN}_j \mid j \in \{1,...,n\} \right\} \end{split}$$

2 Data types specification

```
• d = /[0-9]/
  • \w = /[A-Za-z0-9]/
Math
Natural = Integer >= 0
Interval = (lower bound: Real [0..1], upper bound: Real [0..1])
MathML = String matching https://www.w3.org/1998/Math/MathML/
MathMLBoolean = String matching MathML returning a boolean
MathMLNumeric = String matching MathML returning a number
Stoichiometry = Natural > 0
Reactome
ReactomeDbId = Natural [1]
StableIdVersion =
  String matching regex /^R-[A-Z]{3}-\d{1,8}\.\d{1,3}$/ [2]
SBML
String1 = String matching regex //
SId = String matching regex /^[a-zA-Z]\w*$/[3, Section 3.1.7]
UnitSId = String matching regex /^[a-zA-Z ]\w*$/
```

2.1 Interval

The Interval type represents an open interval in \mathbb{R} of the type (lower bound, upper bound) s.t.

- when lower bound is not defined, it is interpreted as $-\infty$
- when upper_bound is not defined, it is interpreted as $+\infty$

2.2 ReactomeDbId

This is required because not all instances of DatabaseObject in Reactome have a StableIdVersion, which is the one usually displayed in the Reactome Pathway Browser [4]. Instances of DatabaseObject in Reactome can be identified with a ReactomeDbId, but its pattern does not match the definition of SId used to identify objects in SBML.

In order to generate a correct SBMLDocument the ReactomeDbId must be converted into a SId.

2.3 StableIdVersion

The StableIdVersion type is useful because is the one usually displayed in the Reactome Pathway Browser [4]. It is useful to accept it in the description of the models.

```
from_stable_id_version(stable_id_version: StableIdVersion):
ReactomeDbId
  postconditions:
    . . .
```


4 Classes specification pt. 1

4.1 CatalystActivity

The role of PhysicalEntity in catalyst_activity_entity has multiplicity 0..* because "If a PhysicalEntity can enable multiple molecular functions, a separate CatalystActivity instance is created for each" [5, Page 5].

An additional constraint is required for active units, because "If the PhysicalEntity is a Complex and a component of the complex mediates the molecular function, that component should be identified as the active unit of the CatalystActivity." [5, Page 5]

4.2 Compartment

The Compartment class has some quirks. In Reactome, the Compartment's role in the compartment_entity association has multiplicity 0..*. The problem is that the SBML model requires 1..1 multiplicity for this association to be simulated.

In Reactome there are currently (TODO: version??) 19 physical entities which don't have a compartment (see queries/helper.cypher), so this can be easily solved by just adding a **default compartment** to the SBML model to which these entities map to.

On the other hand there are 14046 entities which have multiple compartments (TODO: how many compartments has each exactly?), so the easiest choice right now is to just pick any of them. For this reason the

4.3 Pathway

The instances of Pathway are organized hierarchically, i.e. all the signaling pathways are collected under the Signal Transduction top level Pathway (StableIdVersion R-HSA-162582.13). This allows to easily extract a subset of reactions by specifying the *target pathways* in a model and taking into consideration only the reactions which are included, both directly or indirectly, in that pathway (see the included_reactions() operation).

There are about 34 top level pathways.

4.4 PhysicalEntity

The set of reactions which produce this is needed to determine the transitive closure of the *target entities*.

```
directly_produced_by(): ReactionLikeEvent [0..*]
  postconditions:
    result = { reaction |
        ReactionLikeEvent(reaction) \( \Lambda \) output(this, reaction)
}
```

The set of instances of DatabaseObject which are directly or indirectly involved in the production of this.

```
produced_by(): DatabaseObject [0..*]
 postconditions:
   result =
       { this } ∪
       { reaction | directly_produced_by(this, reaction) } ∪
        { object | ∃ reaction, reaction input
            directly_produced_by(this, reaction) ∧
            (
                input(reaction, reaction_input) V
                (∃ catalyst activity
                    CatalystActivity(catalyst_activity) \Lambda
                    catalyzed event(
                        catalyst_activity,
                        reaction
                    ) \
                    catalyst activity entity(
                        catalyst_activity,
                        reaction input
                    )
                )
            ) \
           produced_by(reaction_input, object)
       }
```


6 Classes specification pt. 2

6.1 BiologicalScenarioDefinition

The following operation finds the transitive closure of the *target entities* specified in the scenario, by including only reactions within the *target pathways* if necessary.

```
model_objects(): DatabaseObject [1..*]
 postconditions:
    result = { object | ∃ entity
       PhysicalEntity(entity) ∧
        DatabaseObject(object) ∧
        target_physical_entity(this, entity) A
        produced_by(entity, object) ∧
            ¬ RestrictedDefinition(this) ∨
            \exists pathway, reaction
                Pathway(pathway) ∧
                ReactionLikeEvent(reaction) ∧
                included_reactions(pathway, reaction) \Lambda
                    object = reaction \/

                    entity_reaction(object, reaction) V
                    catalyzed_reaction(object, reaction)
                )
        )
   }
```

6.2 ModelInstance

```
[C.ModelInstance.no_local_parameters_without_value]
 ∀ model instance, model, reaction, kinetic law,
 local_parameter
      (
          ModelInstance(model_instance) \( \Lambda \)
          Model(model) ∧
          ReactionDefinition(reaction) ∧
          KineticLaw(kinetic law) ∧
          LocalParameter(local parameter) ∧
          instance_model(model_instance, model) \Lambda
          model definition(model, reaction) ∧
          kinetic law reaction(kinetic law, reaction) A
          kinetic_law_local_parameter(kinetic_law,
 local_parameter) ∧
          ¬∃ value
              value(local_parameter, value)
     \rightarrow
          ∃ local_parameter_assignment
 LocalParameterAssignment(local parameter assignment) \( \Lambda \)
              model_instance_paramenter(
                  model_instance,
                  local_parameter_assignment
              ) \
              assignment_local_paramenter(
                  local_parameter_assignment,
                  local_parameter
              )
```

6.3 SimulatedModelInstance

```
is_valid()
  postconditions:
     . . .
```

6.4 Measurement

[C.Measurement.species_in_model]

6.5 UnitDefinition

[3, page 45]

TODO: better description

7 Use-case diagram

7.1 "Helper" use-case

```
yield_sbml_model(description: BiologicalScenarioDefinition):
(SBMLDocument, )
 postconditions:
   TODO:
      • create necessary units (TODO: which? how?)
      • create default CompartmentDefinition
      • create CompartmentDefinition from Compartment
         ▶ convert id to SId
      • create SpeciesDefinition from PhysicalEntity
         ▶ convert id to SId
          ▶ add one of the compartments if the entity has any
         ▶ otherwise assign to default
      • create ReactionDefinition
         ▶ convert id to SId
         ▶ connect products (inputs)
         ▶ connect reactants (outputs)
         ▶ connect modifiers (catalysts)
         ullet add kinetic law (either manually specified \lor
           automatic, like LawOfMassAction)
         ▶ add local parameters
      • create constraints
         ▶ i.e. from known_range attribute
instantiate model(model: SBMLDocument): ModelInstance
 postconditions:
   TODO:
      • add LocalParameterAssignment for undefined
       LocalParameters
      • add environment parameters to model (Parameter)
simulate model(instance: ModelInstance): SimulatedModelInstance
 postconditions:
   TODO:
```

• generate measurements

Bibliography

- [1] [Online]. Available: https://reactome.org/content/schema/ DatabaseObject
- [2] "Reactome." [Online]. Available: https://reactome.org/documentation/faq/37-general-website/201-identifiers
- [3] [Online]. Available: https://raw.githubusercontent.com/combine-org/combine-org/combine-specifications/main/specifications/files/sbml.level-3.version-2.core.release-2.pdf
- [4] [Online]. Available: https://reactome.org/PathwayBrowser/
- [5] [Online]. Available: https://download.reactome.org/documentation/Data ModelGlossary_V90.pdf