

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

The Nuclear Model of the Atom

Question Paper

Course	CIE IGCSE Physics	
Section	5. Nuclear Physics	
Topic	The Nuclear Model of the Atom	
Difficulty	Hard	

Time Allowed 10

Score /5

Percentage /100

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Question 1

Extended tier only

Nuclear reactions can release huge amounts of energy.

Which nuclear reaction takes place in the Sun and which nuclear reaction takes place in a nuclear power station?

	The Sun	A nuclear power station
Α	fusion	fusion
В	fusion	fission
С	fission	fission
D	fission	fusion

Question 2

Extended tier only

In 1911 Rutherford performed an experiment that provided evidence for the nuclear atom.

Which of the diagrams below best represents this experiment?

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Question 3

Extended tier only

Fusion is a type of nuclear reaction.

Which term below is a **correct** statement about nuclear fusion?

- **A.** It occurs in nuclear power stations.
- **B.** It involves a larger nucleus decaying into two (or more) smaller nuclides.
- **C.** Uranium is a type of fuel for nuclear fusion.
- **D.** Light nuclei (such as hydrogen and helium) fuse together, releasing energy in the process.

Head to www.savemyexams.com for more awesome resources

Question 4

Extended tier only

A neutron and a proton are near to a positive nucleus.

If anything, what would happen to the proton and the neutron due to the charge on the nucleus?

- **A.** The neutron is repelled; the proton is attracted.
- **B.** The proton is not affected; the neutron is attracted.
- **C.** The proton is repelled; the neutron is attracted.
- **D.** The proton is repelled; the neutron is not affected.

Question 5

Extended tier only

In Rutherford's experiment, α -particles were fired at a thin metal foil. This is shown in the image below.

Why are α -particles used rather than neutrons?

- **A.** They are positively charged, which causes them to repel when they pass close to a nucleus.
- **B.** They are very small in diameter, and so are less likely to interact with a nucleus.
- **C.** They travel more slowly.
- **D.** They are heavier.