ENTER THE TITLE

ENTER THE NAME

July 14, 2025

1 Exercise 1.

Suppose that the temperature field T is given by the function $F(x,y) = x^2 e^y$ in coordinates x,y. Determine the function F(x',y'), which gives the temperature field T in coordinates x',y'. sol.

$$F'(x',y') = F(2x',2y') = F(x,y) = (2x')^2 e^{2y'}$$

2 Exercise 2.

This is a table.

3 Exercise 3.

The derivation of the Black-Scholes equation involves the use of Ito's Lemma and the concept of a risk-neutral portfolio. Consider a stock whose price S(t) follows the stochastic differential equation:

$$dS = \mu S dt + \sigma S dW \tag{1}$$

where:

- μ is the drift rate of the stock.
- σ is the volatility of the stock.
- \bullet W is a Wiener process or Brownian motion.

Definition 3.1: The Formula

$$dS = \mu S dt + \sigma S dW \tag{2}$$

Table 1: Enter table caption here.

Tap number	Relative power (dB)	Relative delay (ns)	Relative mean power (dB)
3	0-9.0	$68,900^1$	-12.8
4	-10.0	$12,900^2$	-10.0
5	-15.0	17,100	-25.2

References

- [1] Pavel Grinfeld. Introduction to Tensor Analysis and the Calculus of Moving Surfaces. Springer, 2013.
- [2] B. B. Bartelle, A. Barandov, and A Jasanoff. "Molecular fMRI". In: *Journal of Neuroscience* 36 (2016), pp. 4139–4148.