Note Title

5/12/2017

Def: A Riemannian Structure (or Riemannian metho)

On a manifold Mⁿ is a smooth assignment of

inner-products (billinear, symmetric, positive definite)

∠, >p on Tpm ∀p∈m.

Here, 'smooth' means for any local parametrization

f: W->m and vi, vz & Rn

 $x \mapsto \langle D_x f(v_i), D_x f(v_i) \rangle_{f(x)}$ is smooth.

W IR

Being billinear, knowing L, >p is the same as knowing it on a basis.

The functions

 $g_{ij}(x) := \langle D_x f(e_i), D_x f(e_j) \rangle_{f(x)} \leq i, j \leq n$

Completely determines \langle , \rangle on f(W) In particular these functions are smooth on any local parametrization $\Leftrightarrow \langle , \rangle_p$ satisfies the smoothness condition.

Note

"first fundamental form"

[gij (x)] is a smooth function of nxn symmetric positive definite matrices.

Abstract setting: $m + \langle , \rangle_p \rightarrow Riemannian manifold$

Concrete setting: $m^n \in \mathbb{R}^l$ submanifold $(n \leq l)$

let

∠·, ·>p be the restriction to TpM⊆R¹
of the usual inner product on R¹.

Note: not every manifold has an orientation form BUT

every manifold can be given a (in fact many)
Riemannian metric (Not hard to prove using
the same partition of unity idea.)

The Riemannian volume form

Recall from [Math 538, Lecture 5 and HW4], assume

 $f: W \to M \subset \mathbb{R}^l$ is a local parametrization of a regular surface in \mathbb{R}^l (i.e. $M \subset \mathbb{R}^l$ is a submanifold).

Volume $f(w) = \int_{w}^{\infty} \int_{w}^{w} det \left[\langle D_{x}f(e_{i}), D_{x}f(e_{j}) \rangle_{f(x)} \right] dx_{i}...dx_{n}$

If m is now an abstract manifold with a Riemannian metric, the same formula makes sense, except

Volume $f(w) = \int ... \int det \left[\langle D_x f(e_i), D_x f(e_j) \rangle_{f(x)} \right] dx_i ... dx_n$

The two
abstractions
cancel each
other

abstract abstract
tangent inner product
vectors in Trixom

= $\int ... \int \int det [g_{ij}(x)] dx_i ... dx_n$

This formula makes sense regardless of the orientability of m.
It will be convenient to think that
- there is an n-form in (3) called the
- there is an n-form in ②, called the Volume form of m, to be defined next,
and
- (integration of forms will be defined in CH10)
(integration of forms will be defined in CH10)
Replace (einen) in the integrand of (4) by n
Replace (ei,,en) in the integrand of (b) by n arbitrary vectors in IR ⁿ , and consider
24 y
(Vi, Vo.) H, det (Def (v.))
(VI,, Vn) Ho det (Def (vi), Def (vi)) f(x) always positive, cannot be an n-form
44
$(v_i,,v_n) \mapsto sgn(det V) \cdot \sqrt{det[Dxf(v_i),Dxf(v_i)]}$
(or) help () a fin coec () A meet (bx) cell, bx + cell, bx
V=[v,-, vn] e Rnxn
V = [0 i) = in
Claim: n is an n-form pointwise
$\begin{array}{c c} & & \\ & & \\ \hline \\ & & \\ \hline \end{array}$
(the determinant is suggestive, but the square root and stuff isn't helping)
The same start to the same sta
key: $\sqrt{\det X^T X} = \det X , X \in \mathbb{R}^{n \times n}$
_
[LHS makes sense for $X \in \mathbb{R}^{n \times k}$, $k \le n$, but the RHS] makes no sense for $k < n$.
makes no sence for ben.
Limbourse do 16-10.

Proof: Pick o.n. basis by, bn on (Tex, M, <, >f(x)). Let A & IRnan be the matrix that represents Docf: Rn -> Tobom in this basis. So $D_{x}f(e_i) = \sum_{i=1,\dots,n} A_{ik}b_k$ $i=1,\dots,n$ $D_{x}f(v) = \sum_{\ell} v_{\ell} D_{x}f(e_{\ell})$ Zuele = Zue Z Ack bk = & & Je Age be (Dxf(vi), Dxf(vj)) = < = (vi) Apr br, = (vi) Apr br, = (vi) Apr br, = \(\mathbb{Z} \) \(\ $= \underbrace{5}_{k} \underbrace{(v_i)_k}_{Akk} \underbrace{A_{kk}}_{k} \underbrace{(v_i)_{k'}}_{k'}$ 02 $\left[\left\langle \mathcal{D}_{x}f(v_{i}), \mathcal{D}_{x}f(v_{j}) \right\rangle_{f(x)} \right]_{1 \leq i, j \leq n} = V^{T}A A^{T}V$ V=[v,..., vn] & Rnxn So $n(v_1,...,v_n) = sgn(det V) sgn(det A^TV) det A^TV$ = sgn(detAT) detATV, which is n-linear and alternating, i.e. an n-form.

I hope this derivation explains why "volume" would have anything to do with n-form. Notice that the derivation is done 'pointwise' and it shouldn't be surprising n is a (smooth) differential n-form on the parameter domain.

W C Rn

which can be pulled-back by $(D_x f^1)^*$ to an n-form on $f(w) \subset m$,

which we call volm, f. It has the property

volm, (b), ... bn) = +1, or -1

for any o.n. basis (by, ..., bn).

[check it, it is basically a tautology.]

If we assume M is oriented, (b.,-, bn) is positively oriented, and the parametrization is orientation preserving, then

volm, (b1, ..., bn) = +1. -

Can these "local volume forms" be 'stitched together' into a global n-form volm?

Answer: They are already stitched!

So we have a differential n-form volm on M satisfying

volm (bi, ..., bn) = 1

for every positively oriented orthonormal basis of a tangent space Tpm.

M&T say all these in an entirely opposite order: (Little is said about what volume though.)

<u>Proposition</u> (orientation form meets Riemannian metric)

If mn is an oriented Riemannian manifold then mn has a uniquely determined orientation form voly with

volm (b1, ..., bn) =1

for every positively oriented orthonormal basis of a tangent space Tpm.

volu is called the volume form on M.

In an orientation preserving local coordinate system $f: W \rightarrow m^n$,

 $f^*(val_M) = \sqrt{\det(g_{ij}(x))} dx_1 \wedge \cdots \wedge dx_n$ $\langle D_{x}f(e_i), D_{x}f(e_j) \rangle_{f(x)}$

See the proof in MBT. (It uses the same sort of algebra as in my exposition.)

Volm is called the Riemannian volume form of m.

Example 9.18, 9.19

It must be that 5^{nt} is orientable?

what is a good way to write down an orientation form? the volume form?

How about the closely related IRIPn-1?

consider the (n-1)-form $\omega_0 \in \Omega^{n-1}(\mathbb{R}^n)$

5nd C Rn

 $\omega_{ox}(w_1,...,w_{n-1}) := det(x, w_1,...,w_{n-1}).$

- · Wox EAH"(R") for every fixed XER"
- · varies smoothly with x, and
- If x∈ Sⁿ⁺, w₁, ..., w_{n+} is a basis of Tx Sⁿ⁺,
 then

 ∞ L Wi SO ∞ , wi, --, wind is a basis for \mathbb{R}^n and

wox(w1, -, wn+) ≠0.

i: Sn-1 -> 1Rn inclusion

i* ωo is a non-vanishing (n-1)-form on Sn-1

For the orientation of S^{ml} given by wo, the basis w,..., wn-1 of Txsⁿ⁻¹ is positively oriented iff

the basis x, w, ..., what for IRn is positively oriented.

We give S^{n-1} the Riemannian Structure induced by \mathbb{R}^n . Then $\operatorname{Val}_{S^{n-1}} = i^*\omega_0$
IRn. Then
$vol_{on} = i^*\omega_0$
3
I since if when is a positively oriented on.
Esince if $w_1,,w_{n-1}$ is a positively oriented o.n. basis of $T_{\infty}S^{n-1}$, then
$(i \star \omega_0)(w_1, \dots, w_{n-1}) = det(x, w_1, \dots, w_{n-1}) = 1$
, , , , , , , , , , , , , , , , , , ,
This property is satisfied only by the volume form.]
claum: RPn+ is orientable (=> n is even
I'll put the details in the next HW.
I'm put the details in the view in.

For a smooth submanifold mnc Rntk, we have Tpm = {veRn+k: vl Tpm } for each pem. A smooth normal vector field Y on an open set ucm is a smooth map Y: U -> Rn+k with Y(p) & Tpm1, Yp&U. When the co-dimension k=1, and $||Y(p)||=1 \forall p$, Y is called a Gauss map on U. is called the tangent bundle of m U Tom (well-defined without any Riemannian metric or embedding) U Tpmt is called the normal bundle of m - definition depends on both an embedding and a Riemannian metric

Lemma For every $P_0 \in \mathbb{R}^{n+k}$, \exists an open neighborhood W of P_0 and Smooth vector fields Y_j ($1 \le j \le k$) on W s.t.

Y, (p), ..., Ye (p) form an o.n. basis of Tom for every pem.

Issue at hand:

use a coordinate patch W around P_0 to induce a smooth tangent vector fields $X_1(p), \dots, X_n(p)$, $P \in W$.

For each PEW, of course we can find vectors Yi(p),..., Ye(p) that form an

o.n. basis for Tom.

But how would you pick them so that they vary smoothly with p?

Trick:

Pick an arbitrary o.n. basis Yi,..., Ye of Tom!

and just at po.

Use the same Y. . - , Ye at the nearby points p.

They won't be orthogonal to Tpm for $p \pm p_0$, but should be linear independent to $X_1(p)$, ..., $X_n(p)$ by continuity.

Orthogonalize XI(p),...,XI(p), YI,...,Yk

| Bram - Schmidt

X1(p),..., Xn(p), Y1(p),..., Y1(p) } argue that these vary smoothly with p.

Proposition 9.22

Let $m^n \in \mathbb{R}^{n+1}$ be a smooth submanifold of Co-dimension 1.

(i) The map

{ Smooth normal vector fields on m} -> \nn(m)

defined by $Y \mapsto \omega = \omega_Y$,

 $\omega_{P}(W_{V}, W_{n}) = det(Y_{IP}), W_{I}, ..., W_{n})$

is a 1-1 correspondence

- (ii) This induces a 1-1 correspondence between Banss maps $Y: M \rightarrow S^n$ and orientations on M.
 - [The generic case is when m is connected and orientable, then m has exactly two Gauss maps that correspond to two orientations.]

In part (i), m need not be orientable, Y is allowed to vanish at some (or all) points of m, w is allowed to vanish. In fact the first fact you need for the proof is:

$$Y(p) = 0 \iff \omega_p = 0$$

[See MBT for the complete proof. It's quite easy.]

The last result we need is pretty obvious intuitively,
but it is arduous to prove.
curved
nonlinear a tubular neighborhood
of m.
- Line in the second of the se
flat/
localization
Totali tation 3
Theorem.
Let mn $\subseteq \mathbb{R}^{n+k}$ be a smooth submanifold. There
exists an open set $V \subseteq \mathbb{R}^{ntk}$ with $m \subseteq V$ and
an extension of idm to a smooth map
•
$\Upsilon: V \rightarrow m$ "retraction map"
s.t.
(i) For xEV and yEM
· ·
$ x-r(x) \leq x-y $ equality $\Leftrightarrow y=r(x)$.
(11) For PEM, r (p) is an open ball in the
affine subspace p+ TpM with center at
p and radius p(p),
•
p:m-1Rt is a smooth positive fcn.
`
If m is compact then p can be chosen to be
constant.
(iii) If E:M→IR is smooth and
0<8(p) <p(p), 4pem,<="" th=""></p(p),>
I the state of the

then the "offset surface"

 $S_{\varepsilon} := \{x \in V : \|x - r(x)\| = \varepsilon(r(x))\}$

is a smooth submanifold of codimension 1 in \mathbb{R}^{n+k}

E.g.

In (ii), $\rho(p)$ cannot be made constant when m is not compact, e.g.

In general, unless M is a linear subspace, P(p) cannot be chosen to be infinity:

Applications of tubular neighborhoods for calculating de Rham cohomology of manifolds

m'a Rntk

V tubular neighborhood of m

r: V → m retraction map

i: m-> V inclusion

roi = idm

So

 $H^{d}(i) \circ H^{d}(r) = id_{H^{d}(m)}$

 $H^{d}(m) \leftarrow H^{d}(V) \leftarrow H^{d}(m)$

so it must be that $H^{d}(r)$ is surjective and $H^{d}(i)$ is injective.

Assume that UER is covered by a finite Theorem (5.5) collection of Convex open sets U1, ..., Ur. Then dim HP(U) <00 YP. I The proof is an elegant (and quite easy) application of Mayer - Vietoris. <u>Proposition</u>. For any compact manifold mⁿ all cohomology spaces H^P(m) are finite dimensional. Proof We may assume that Mr $\subseteq \mathbb{R}^{n+k}$.

Smooth Submanifold Let V be a tubular neighborhood of m with retraction $r: V \rightarrow m$ inclusion $i: m \rightarrow V$. For any pem, I open ball in Rmt, Bip, 2p), s.t. PEB(p, Np) CV. So we have an open covering YB(p, rp) of m. By Compactness there is a finite sub-covering M C B(p,,np,) U ··· U B (p,,np,) C V We have a smooth inclusion i: m > u and smooth retraction rlu: u > m The argument above shows that $H^d(i): H^d(u) \rightarrow H^d(m)$ is surjective. But

din Hd(U) < 00 by Theorem 5.5, and so is Hd(m)

<u>Proposition</u> Let M1 and M2 be smooth submanifolds of 9.25 Euclidean spaces.	_
1.23 Euclinean spaces.	_
(i) If fo, f,: M, → m2 are two hondopic smooth maps,	_
then $H^{a}(f_{0}) = H'(f_{1}) : H^{a}(m_{2}) \rightarrow H^{a}(m_{1})$	_
$H^{*}(f_{0}) = H(f_{1}) \cdot H(f_{0}) \rightarrow H(f_{0})$	_
(ii) Every continuous map M ₁ → M ₂ is homotopic to a	
smooth map.	
· ·	
Proof: We established in CH6 this proposition in the	
Proof: We established in CH6 this proposition in the special case when m, and mz are open sets	
in Euclidean spaces.	
· ·	
Use the tubular neighborhood theorem to	
"bulk up" the manifolds m_1, m_2 to V_1, V_2 .	
$m_1 \stackrel{70}{\rightleftharpoons} m_2 \qquad f_0 \sim f_1$	
611 Fr. 31 12 11	
$m_1 \xrightarrow{f_0} m_2 \qquad f_0 \simeq f_1$ $i_1 \nmid f_1 \qquad i_2 \nmid f_2 \qquad \downarrow \downarrow$ $V_1 \qquad V_2 \qquad i_{20} f_0 r_1 \simeq i_{20} f_1 \circ r_1 : V_1 \rightarrow V_2$	_
(i) Hence $H^{d}(i_{2}\circ f_{0}\circ r_{1}) = H^{d}(i_{2}\circ f_{1}\circ r_{1}) : H^{d}(v_{2}) \rightarrow H^{d}(v_{2})$)
Hd(r,) o Hd(fo) o Hd(i2) = Hd(r,) o Hd(f,) o Hd(i2)	
1	
injective Surjective	
·	
$\Rightarrow \qquad H^{d}(f_{b}) = H^{d}(f_{i}).$	_
	_
(ii) If $\phi: m_1 \rightarrow m_2$ is continuous,	_
$i_2 \circ \phi \circ r$, $: V_1 \rightarrow V_2$ is continuous.	
21	
some g: V1→V2 smooth (CH6).	_

Since izodor, ~ g
1/2 0 (izodori) 0 i, ~ 1/2 0 g 0 i, : M, → M2
Y ₂ 0 (i ₂₀ dor ₁) 0 i ₁ ~ r ₂ 0 g 0 i ₁ : M.→m ₂
\$mooth \
As in CH6, we can now speak of
HP(φ) def HP(f) for any choice of
smooth $f \simeq \phi$, the
choice doesn't matter.
The following result from CH6 now generalizes to manifolds:
smooth manifolds
hm For PEZ, open sets U, V, W in Euclidean spaces,
we have
(i) If $\phi_0, \phi_1: U \rightarrow V$ are homotopic continuous maps,
then
$\phi_0^* = \phi_1^* : H^p(V) \rightarrow H^p(V)$
(ii) If $\phi: U \rightarrow V$, $H: V \rightarrow W$ both continuous
+\nom.
$(\mathcal{H} \circ \phi)^* = \phi^* \circ \mathcal{H}^* : H^p(\mathcal{W}) \to H^p(\mathcal{U})$

(iii) If the continuous map ¢: U→V is a homotopy equivalence, then

Φ*: HP(V) → HP(U) is an isomorphism.

Corollary: A homoemorphism h: U=> V between

open sets in Euclidean spaces manifolds

includes isomorphisms

h*: HP(W -> HP(V) for all p.

i: m > V inclusion	
The state of the s	
114 ()	
HUCH IS Surjective (X)	
••	
V	
Proposition 9.26	
Properties Q of the land the l	- ·
roposition 9.26, in turn, implies a stronger version of	j (4
orollary: $H^{d}(i): H^{d}(V) \rightarrow H^{d}(m)$ is an isomorp!	hish
with $H^{d}(r)$ as its inverse.	
0 : .1 . 1.de 1.de1	•
$\frac{100f}{100f}: \text{Pol} = (d_m) \Rightarrow H^{\alpha}(1) \circ H^{\alpha}(1) = (d_1)$	 d(1
Also, ior = id, because V contains the	lin.
segment between a and	۲۱۶
13y Proposition 9,26 (i),	
$Hd(r) \circ Hd(i) = id_{Hd(i)}$	
, , , , , , , , , , , , , , , , , , ,	
So Hd(r) and Hd(i) are inverse of each other	•.
and of Mitted to the standard of the	
tubular neighborhood of an anith	ry
tracted heighborrades of 5, across	
$\Upsilon: \mathbb{R}^{nH} - \{o\} \rightarrow S^n$, $\Upsilon(\infty) = \infty/ \infty $.	
SO H~(S~) = H~(1R~~- (0)) = { 1), n
	Proposition 9.26, in turn, implies a stronger version of orollary: $H^{d}(i): H^{d}(V) \rightarrow H^{d}(m)$ is an isomorph with $H^{d}(r)$ as its inverse. TOOF: $roi = id_{m} \Rightarrow H^{d}(i) \circ H^{d}(r) = id_{l}$ Also, $ior = id_{v}$, because V contains the segment between x and Y . By Proposition 9.26(i), $H^{d}(r) \circ H^{d}(i) = id_{H^{d}(V)}$. So $H^{d}(r)$ and $H^{d}(i)$ are inverse of each other cample: $IR^{nH} - So$ can be thought of as a (vertubular neighborhood of S^{m} , with

				• •
The Mayer-1 extension to HW#6.	> manifolds	. I let	you expl	ore it in
		•		