机器人学——学习笔记5(顺向运动学&DH表达 法)

1. 定义

- 运动学 (Kinematics):讨论运动状态本身,未连接到产生运动的「力」
- 位置(x), 速度(v), 加速度(a)与时间(t)之间的关系:

$$v=rac{d}{dt}x \qquad a=rac{d}{dt}v \ a=rac{d^2}{dt^2}x \quad vdv=ads$$

- 移动——位置、速度、加速度;
- 转动——姿态、角速度、角加速度;
- 动力学 (Dynamics): 讨论力/力矩如何产生运动
- Newton's 2nd Law:

$$\sum F = ma$$

• Work & Energy 功、能法:

$$T_1 + V_1 + U_{1-2}^{'} = T_2 + V_2$$

能量守恒

• Impulse & Momentum 冲量、动量守恒:

$$\int \sum F dt = G_2 - G_1$$

合力对时间的积分=动量的变化量

1.1 机械手臂

- 多个杆件(link)相串联,具有复杂的几何外形;
- 杆件间可以相对移动(prismatic)或转动(revolute),由驱动器来达成:

只考虑平面运动

1.2 对应关系

• 需求: **手臂末端点状态(**位置: P, 速度...)

• 达成方式: 驱动各个致动器: $^WP=f(heta_1, heta_2,\dots, heta_n)$

• 若反过来,由期望手臂末端点状态,反推各个驱动器状态——逆向运动学

1.3 描述手臂状态方法

• 找出杆件间的相对几何状态

• 在各个杆件上**建立frame**,以**frame状态**来代表杆件状态

2. 手臂几何描述方式

2.1 Joint (关节)

- 移动——prismatic
- 转动——revolute
- 每个revolute或prismatic的joint具有1DOF——简化
- 每个joint对 **某特定的axis** 进行rotation或 translation

2.2 Link (杆件)

- 连接joints的杆件,为刚体 (rigid body)
- 编号方式:
 - o Link 0: 地杆,不动的杆件
 - Link 1: 和Link0相连,第一个可动的杆件
 - o Link 2: 第二个可动的杆件
 - ... 依序

2.3 一般情况

针对空间中2个任意方向的axes,两axes之间具有一线段和此2个axes都相互垂直。Link Length即为线段长度,再加上两个axes之间的角度差,即为Link Twist(连杆扭角)\

若要找到相邻Link Length和Link Twist的关系,还需要知道别的条件若要**多杆串联**,则另需要两个参数 $d_i, \theta i$,来描述相邻线段 a_i, a_{i-1} 之间的关系。

- d_i : Link Offset;
- θ_i : Joint Angle
- 若Axis i 是转动轴,即Revolute Joint,则 $(lpha_i,a_i,d_i, heta_i)$ 中,只有 $heta_i$ 是变化的
- 若Axis i 是移动轴,即Prismatic Joint,则 $(lpha_i,a_i,d_i, heta_i)$ 中,只有 d_i 是变化的

2.4 在杆件上建立Frame

- Z: 转动或移动axis的方向;
- X: 沿着lpha的方向($if \ lpha
 eq 0$),和 Z_i, Z_{i-1} 两者都垂直($if \ lpha
 eq 0$)
- Y: 与X和Z两者垂直, 遵循右手定则;

2.5 特殊情况1——地杆Link(0)

此时:

- Frame {0} coincides with frame {1} 即: $a_0=0$ & $lpha_0=0$
- 若 1 是 Revolute Joint: $heta_1$ 任意, $d_1=0$
- 若 1 是 Prismatic Joint: d_1 任意, $\theta_1=0$

2.6 特殊情况2——最后一个Link(n)

• X_n 与 X_{n-1} 同方向, $a_n=0$ & $lpha_n=0$

- 若 n 是 Revolute Joint: $heta_n$ 任意, $d_n=0$
- 若 n 是 Prismatic Joint: d_n 任意, $\theta_n=0$

3. DH表达法——Denavit-Hartenberg(Craig Version)

- α_{i-1} :以 X_{i-1} 方向看,是 Z_{i-1},Z_i 间的夹角;(逆时针为正)
- a_{i-1} : 沿着 X_{i-1} 方向,是 Z_{i-1} , Z_i 间的距离;
- θ_i : 以 Z_i 方向看, X_{i-1}, X_i 之间的夹角;(逆时针为正)
- d_i : 沿着 Z_i 方向, X_{i-1}, X_i 之间的距离