Projekt- und Qualitätsmanagement

Definition

Projekte sind einmalige, komplexe und zeitlich begrenzte Vorhaben, zu dessen Realisierung unterschiedliche Ressourcen herangezogen werden müssen.

⇒ Ressourcen sind z.B. Personen, Arbeitsgruppen, etc.

Projektgrösse

Die Projektgrösse wird im Normalfall anhand der Kosten, der Zeitspanne und den Arbeitsstunden gemessen.

Akademisch auch in Form von Function Points

Projekterfolg

Der Projekterfolg hängt dabei direkt mit der Grösse des Projekts zusammen.

⇒ Grosse Projekte sind i.d.R. nicht Erfolgreich!

Make or Buy

Es ist nicht immer sinnvoll, ein Projekt selbst durchzuführen. Je nach Kosten und Aufwand kann sich auch eine «schlechtere» Standardlösung lohnen.

⇒ Wir nennen das den «Make or Buy» Entscheid.
⇒ z.B. CMR oder eigene Webseite?

OTOBOS

Wir können den Stand eines Projekts mittels OTOBOS beurteilen. Wir stellen uns also die Frage: Ist das Projekt...

- on Time (OT)
- on Budget (ÓB)
- on Specification / Scope (OS)

Konflikte

Die 3 Aspekte von OTOBOS stehen immer miteinander im Konflikt. Ändern wir einen Aspekt, so beeinflussen wir auch die anderen.

⇒ Ein neues Feature (Scope) braucht mehr Zeit (Time).
⇒ Ein besserer Mitarbeiter (Budget) arbeitet schneller (Time).

Projektkontrolle

Definition

Unter «Controlling» in einem Projekt verstehen wir mehrere Tätigkeiten:

- Planung
- 2. Kontrolle & Abweichungsanalyse
- 3. Informierung & Berichtswesen
- 4. Steuerung & Koordination

Grundsätzlich geht es darum, den Projektstand zu ermitteln, diesen zu kommunizieren und allfällige Änderungen am Projekt vorzunehmen.

⇒ «Controlling» ist also mehr als nur «kontrollieren».

Wer kontrolliert die Projekte?

Schlussendlich dient das «Controlling» besonders den Entscheidungsträgern in einem Projekt. Diese sind:

- Der Lenkungsausschuss, also die Auftraggeber und Kunden (Soll).
- Die internen Mitarbeiter wie Projekt-Controller, Audit und Portfolio- und Programm-Manager (Kann).

Einschub: Portfolio & Programm

In den meisten Unternehmen gehören Projekte immer einem Programm und darüber einem Portfolio an.

⇒ Portfolio: Alle Projekte, die ein Unternehmen ausmachen.
 ⇒ Programm: Zusammenhängende Projekte, die eine Teilmenge des Portfolios bilden.

Kontrolle & Abweichungsanalyse

Ausgangslage

In einem ersten Schritt müssen wir den aktuellen Projektstand ermitteln. Das bedeutet, wir müssen den Projektfortschritt irgendwie messen.

Methoden

Leider ist es faktisch kaum möglich, den exakten Projektfortschritt zu ermitteln. Wir können aber:

- Das Produkt betrachten und den Fertigungsgrad bestimmen.
- Die Entwickler fragen, wie viel Zeit sie noch benötigen.

⇒ Unschärfe ist dabei vorprogrammiert

Messwerte

Um nun den Projektfortschritt bestimmen zu können, messen wir in bestimmten Abständen verschiedene Werte.

⇒ Wir können so den Projektstand als Trend abbilden.

1. Zeit, Kosten, Leistung

Gemäss OTOBOS messen wir mindestens die verbrauchte Zeit, die aktuellen Kosten sowie die erbrachte Leistung.

2. Earned-Value-Analyse (EVA)

Die EVA ist die bekannteste Messgrösse für den Projektfortschritt. Sie bestimmt den Fertigstellungswert eines Projekts, woraus dann die Kosteneffizienz abgeleitet werden kann.

⇒ Das Verhältnis der Kosten zur erbrachten Leistung
⇒ Wir streben immer eine Kosteneffizienz` > 1` an.

Die Earned-Value-Analyse beinhaltet:

- Planned Cost (PC)
- Actual Cost (AC)
- Earned Value (EV)
- Cost Variance (CV)
- Cost Performancé Index (CPI)

$$CV = EV - AC$$
 $CPI = \frac{E'}{AC}$

 \Rightarrow Wobei EV = Fertigstellungswert, CPI = Kosteneffizienz

Es gibt 3 Berechnungsmethoden:

Strikt: Alle vollständig abgeschlossenen Komponenten werden beachtet.

$$EV = K_1 + K_2 + K_3 + \dots$$

2. Zwischenresultate: Alle brauchbaren Komponenten werden beachtet.

$$EV = K_{1.1} + K_{1.3} + K_{2.2} + \dots$$

3. Restaufwand: Die Berechnung erfolgt über die Schätzung des Restaufwands.

$$EV = rac{PC}{AC + Rest} \cdot AC$$

⇒ «Zwischenresultate» sind z.B. Module einer Software ⇒ Bei «Strikt» muss die gesamte Software fertig sein.

3. Meilenstein-Trend-Analyse (MTA)

Bei der MTA werden die Deadlines der Projektmeilensteine rückwirkend analysiert. Somit zeigt diese Analyse die Verschiebungen der Meilensteine über das Projekt hinweg auf.

⇒ Optimal sind keine Verschiebungen (horizontale Linien).
 ⇒ Diese Analyse zeigt eindrucksvoll den Projektverlauf.

⇒ Links: Gutes Projekt, Rechts: Schlechtes Projekt.

Weiteres

Im zusammenhang mit dem Projektstand beachtet man auch oft:

- Risiken und Chancen
- Aktuelle Issues
- Restaufwandschätzung

Kommentare

⇒ Meistens bestimmt das Unternehmen den Inhalt.

Informierung & Berichtswesen

Ausgangslage

Die meisten Projekte scheitern aufgrund ungenügender Kommunikation. Um das zu verhindern, benötigen wir im «Controlling» ein robustes Berichtswesen.

Darstellung

Nach der Auswertung des aktuellen Projektstands müssen die ermittelten Werte in «einfache» Metriken umgewandelt werden.

⇒ Dies vereinfacht die Kommunikation mit dem Kunden.

1. Definition of Done

Die einfachste Variante ist die Einteilung des Arbeitsfortschritts in einfache Kategorien. Wann etwas «fertig» ist, bestimmen wir dabei selbst.

⇒ z.B. 0% nicht begonnen, 30% in Arbeit, 80% fertig.

2. Ampel-Prinzip

Beim Ampel-Prinzip drücken wir den Projektstand in Form einer Ampel aus. Dies hilft, die aktuelle Situation transparent und klar zu kommunizieren.

Rot: Abweichung grösser 5% -> Eskalation

Gelb: Abweichung 0-5% -> Beobachtung

Grün: Alles läuft nach Plan

⇒ Jedes Unternehmen hat eine eigene Farbdefinition.
 ⇒ Der Projektleiter muss somit klare Stellung nehmen

3. Aggregiertes Ampel-Prinzip

In Bezug auf OTOBOS können wir auch mehrere Ampeln anhand des maximum Prinzips aggregieren.

Cockpit

Ein Projekt Cockpit erlaubt es uns, schnell den aktuellen Projektstand zu sehen.

Steuerung & Koordination

Change Management

Kein Projekt wird so durchgeführt, wie es ursprünglich geplant wurde. Um mit Änderungen umzugehen, brauchen wir ein klares «Change Management».

⇒ Projektplanung bedeutet nicht, die Zukunft vorherzusagen.
⇒ Rei anilen Projekten ist dieses Thema nicht relevant

Vorgehen bei Abweichungen

Bei klassischen Projektmethoden müssen wir bei Abweichungen vom Plan irgendwie handeln. Wir können z.B.:

- Die Vorgehensweise ändern
- Überzeiten anordnen
- Coaching & Unterstützung anfordern

Wenn diese Massnahmen keine Verbesserungen bringen, müssen wir einen «Change Request» anfragen.

⇒ Vorgehensweise heisst z.B. serielle Tätigkeiten in parallele umwandeln.

Change Requests

Ein «Change Request» ist eine Anfrage beim Kunden, gewisse Aspekte des Projekts abzuändern. Change Requests müssen immer begründet sein.

Projektmanagement (Klassisch)