

SEM0530 - Problemas de Engenharia Mecatrônica II

Tarefa 3 - Solução de Sistemas Lineares

André Zanardi Creppe - 11802972

Professor:

MARCELO AREIAS TRINDADE

Junho de 2021

Conteúdo

1	Objetivos		
2	Equ	nacionando o problema	4
	2.1	Discretização por Molas	4
	2.2	Aplicação de Forças	4
	2.3	Deslocamento da Extremidade Livre	5
3	Res	olução numérica e computacional	7
	3.1	Discretização por Molas	7
	3.2	Aplicação de Forças	8
	3.3	Deslocamento da Extremidade Livre	9
	3.4	Código Geral	11
4	Cor	nclusões	13

1 Objetivos

Nessa atividade, o nosso principal objetivo é determinar os **deslocamentos** de uma estrutura variável sujeita a um carregamento de forças por meio da discretização do problema utilizando um sistema de **molas em série** em duas situações distintas. Podemos ver um diagrama simplificado do problema na Figura 1 abaixo.

Figura 1: Representação simplificada do problema a ser estudado.

Ademais, deseja-se visualizar graficamente a evolução dos **deslocamentos de cada elemento-mola** para cada caso a fim de poder comparar e estudar o seu comportamento em diferentes situações.

2 Equacionando o problema

2.1 Discretização por Molas

Pelo motivo da nossa estrutura não ser uniforme, ao fazer a simplificação para um modelo de 10 molas discretas conectadas em série, o primeiro ponto a ser levado em conta antes do estudo dos casos é a **variação da rigidez** (k) por conta da diminuição da área da seção transversal.

Menos área significa menos interações intermoleculares na estrutura, resultando numa diminuição da sua capacidade de resistir o deslocamento provocado por uma força, o que em termos de materiais elásticos significa a diminuição da rigidez efetiva. No nosso problema, essa propriedade vai variar seguindo a lei definida pela Equação 1:

$$\mathbf{k_n} = \mathbf{k_{min}} + \Delta \mathbf{k} \, \mathbf{e^{-b \, n}} \tag{1}$$

Outro ponto importante a ser destacado é que quando uma força é aplicada a um sistema de molas conectadas em série e provoca um deslocamento do mesmo, a deformação que cada componente da série vai sofrer depende o seu k associado, porém a resultante elástica é a mesma para todas que estão sofrendo a influência dessa força.

Figura 2: Representação da ligação de duas molas em série. Note que o sistema só ficará em equilíbrio caso a força entre elas seja a mesma.

2.2 Aplicação de Forças

O primeiro dos casos a serem estudados é o da aplicação de forças externas à estrutura a fim de determinar uma deformação. Na nossa viga em estudo, serão duas forças:

uma F_1 aplicada na extremidade livre do corpo (na discretização representada pela $mola\ 10$ - u_{10}); e outra F_2 , exercida na metade do corpo (na discretização representada pela $mola\ 5$ - u_5).

Como descrito anteriormente, isso quer dizer que as molas 6 a 10 estarão sofrendo influência apenas da F_2 enquanto as outras de 1 a 5 estão sob ação tanto da F_1 quanto da F_2 . Utilizando isso para a nossa vantagem, ao aplicar a Lei de Hooke na forma vetorial (Equação 2)

$$\mathbf{K}\mathbf{u} = \mathbf{F} \tag{2}$$

podemos construir um sistema linear de equações, sendo \mathbf{K} a matriz diagonal dos coeficientes de rigidez k_n , \mathbf{u} o vetor coluna dos deslocamentos u_n e \mathbf{F} o vetor coluna da resultante F_n , todos referentes a uma mola de posição n.

Para encontrar então o conjunto de deformações provocadas pelas forças do problema, basta determinar **u** que satisfaça o sistema acima, ou seja, resolver a Equação 3:

$$\mathbf{u} = \mathbf{K}^{-1}\mathbf{F} \tag{3}$$

2.3 Deslocamento da Extremidade Livre

Num segundo momento, vamos querer analisar o comportamento das componentes da estrutura ao mover um dos elementos discretos uma distância fixa. No caso do problema, pretendemos determinar os deslocamentos individuais ao deslocar a extremidade livre (u_{10}) .

Para poder provocar esse deslocamento, será necessária a aplicação de uma força (F_t) que seja capaz de fazer com que a Mola 10 realmente se estenda u_{10} . Essa informação pode ser facilmente obtida pela Lei de Hooke novamente, como visto na

Equação 4 abaixo:

$$\mathbf{F_t} = \mathbf{k_{10}} \cdot \mathbf{u_{10}} \tag{4}$$

A partir disso, esse caso pode ser resolvido da mesma forma que o anterior, utilizando a Equação 3, com a única diferença sendo o vetor coluna \mathbf{F} , que aqui será composto de elementos iguais valendo F_t .

$$F = \begin{pmatrix} F_t \\ F_t \end{pmatrix}$$

3 Resolução numérica e computacional

Para conseguir resolver os sistemas lineares obtidos anteriormente, as equações foram implementadas em código para utilizarem operador *mldivide* (\) do *Octave* foi empregado. Essa escolha vem da série de verificações automáticas que esse operador tem, com o objetivo final de determinar a melhor técnica matemática para resolver a equação linear (como é o nosso caso), minimizando erros.

3.1 Discretização por Molas

Antes de resolver os casos, precisamos encontrar as características de rigidez das molas do problema. Da Equação 1 temos que a expressão para as Rigidezes Específicas (k_n) , ao substituir as constantes numéricas, é dada por:

$$\Delta k = 50 + (0.5 \cdot 72) = 86 \ kN/m$$

$$\mathbf{k_n} = \mathbf{10} + \mathbf{86} \cdot \mathbf{e}^{-\mathbf{0.2} \cdot \mathbf{n}} \ (\mathbf{kN/m}) \tag{5}$$

Programando a Equação 5 no Octave, obtivemos o Listing 1, cujos resultados gerados por ele, foi possível cirar um gráfico e uma tabela, respectivamente representados pela Figura 3 e Tabela 1, da Rigidez da Mola (k) pela posição dela no sistema (n).

```
# rigidez.m
function k = rigidez()
    % Dados do problema
    dk = (50 + 0.5 .* 72); % 118029(72)
    kmin = 10000.;
    b = 0.2;

% Calculo da Rigidez
    k = zeros(10, 10);
    for i = 1:10
        k(i,i) = kmin + (dk .* power(exp(1), -b .* i)) .* 1000;
end
end
```

Listing 1: Função para o cálculo da matriz dos Coeficientes de Rigidez.

Mola (n)	Rigidez Específica (k_n)	Unidade
1	80.411	kN/m
\parallel 2	67.648	kN/m
3	57.198	kN/m
\parallel 4	48.642	kN/m
5	41.638	kN/m
6	35.903	kN/m
7	31.207	kN/m
8	27.363	kN/m
9	24.216	kN/m
10	21.639	kN/m

Tabela 1: Resultado do cálculo da rigidez específica para cada N de mola.

Figura 3: Decaimento rigidez específica para cada N de mola crescente.

Pelo gráfico e tabela podemos ver que, felizmente, a equação realmente representa o problema como previmos anteriormente, pois com a diminuição de área a medida que n aumenta, é esperado que k decresça.

3.2 Aplicação de Forças

Para o primeiro Caso, devemos primeiramente preencher a Equação 3 numericamente:

Com ela em mãos, foi possível criar uma função (Listing 2) a fim de resolver esse sistema linear de forma automática utilizando o *mldivide*. Os resultados numéricos obtidos para os deslocamentos de cada mola individualmente podem ser vistos na Tabela 2.

```
1 # caso1.m
2 function u = caso1(k)
3 F = [50 50 50 50 50 100 100 100 100]';
4
5 u = (k\F);
6 end
```

Listing 2: Função para o cálculo dos deslocamentos para o Caso 1.

Mola (n)	Deslocamento (u_n)	Unidade
1	0.6218	mm
\parallel 2	0.7391	mm
3	0.8742	mm
\parallel 4	1.0279	mm
5	1.2008	mm
6	2.7853	mm
7	3.2044	$_{ m mm}$
8	3.6546	mm
9	4.1296	mm
10	4.6213	mm

Tabela 2: Resultado do cálculo do deslocamento para cada mola no Caso 1.

Os valores encontrados serão analisados no próximo tópico, em conjunto com os do Caso 2.

3.3 Deslocamento da Extremidade Livre

Já no segundo caso, primeiramente precisamos encontrar a força que move o sistema resolvendo a Equação 4 para um deslocamento de 3 cm. Dessa forma, temos que

$$F_t = k_{10} \cdot u_{10}$$

$$F_t = 21639 \cdot 0.03$$
$$F_t = 649.17 N$$

Com a força do sistema conhecida, podemos construir um esquema similar ao exercício anterior, já que também utilizaremos a Equação 3 para encontrar os deslocamentos.

Nesse caso, a função programada do Listing 3 é praticamente a mesma do Listing 2, com a diferença sendo que F_t será calculado antes do sistema ser resolvido pelo mldivide. De qualquer forma, os resultados numéricos obtidos para os deslocamentos de cada mola individualmente podem ser vistos na Tabela 3.

```
# caso2.m
function u = caso2(k)

Ft = k(10,10) .* 0.03;
F = (Ft + zeros(10, 1));

u = (k\F);
end
```

Listing 3: Função para o cálculo dos deslocamentos para o Caso 2.

Mola (n)	Deslocamento (u_n)	Unidade
1	8.0731	mm
\parallel 2	9.5963	mm
3	11.3494	mm
\parallel 4	13.3460	mm
5	15.5908	mm
6	18.0812	mm
7	20.8016	mm
8	23.7241	mm
9	26.8076	mm
10	30.0000	mm

Tabela 3: Resultado do cálculo do deslocamento para cada mola no Caso 2.

Observando a Figura 4 abaixo conseguimos ver que, pela natureza decrescente dos coeficientes de rigidez das molas, é de se esperar que o deslocamento cresça a medida

que o n aumenta. Ou seja, num gráfico de Deslocamento por Mola $(u_n \times n)$ a curva tende a ficar menos inclinada. Isso pode ser confirmado nos 2 gráficos da Figura 4.

Figura 4: Gráficos do deslocamento por mola do Caso 1 e 2, respectivamente.

Além disso, podemos ver que a forma de aplicação das forças determina completamente o comportamento dos deslocamentos do sistema. Comparando as Tabelas 2 e 3, bem como a Figura 4, fica evidente que uma força atuando apenas na extremidade livre (Caso 2) promove um crescimento dos valores seguindo uma curva, pois toda a estrutura será influenciada por apenas ela. Já quando introduzimos forças extras em outros pontos (Caso 1), criam-se trechos sob influência diferentes, o que provoca salto e não linearidade entre os deslocamentos das molas.

3.4 Código Geral

O script utilizado para organizar a obtenção das informações numéricas e elaboração de gráficos vistos anteriormente pode ser encontrado no Listing 4 abaixo.

```
1 # tarefa3.m
2 clear all;
3 close all;
4
5 % Matriz de Rigidez do Sistema
6
7 k = rigidez();
8
```

```
9 % Caso 1: Forcas Aplicadas Simultaneamentes
u1 = caso1(k)
12 u1tot = sum(u1)
14 % Caso 2: Deslocamento na Extremidade Livre
u2 = caso2(k)
u2tot = sum(u2)
19 % Graficos
n = 1:10;
23 figure
24 plot(n, diag(k), 'm');
25 xlabel('Mola');
26 xlim([1 10]);
27 ylabel('Rigidez da Mola (N/m)');
28 title('Variacao do coeficiente k');
30 figure
31 subplot(1,2,1, 'align');
32
      plot(u1, n);
      xlabel('Deslocamento (m)');
33
      ylabel('Mola');
34
      ylim([1 10]);
      title('Caso 1: Forcas Aplicadas');
36
subplot(1,2,2, 'align');
plot(u2, n, 'r');
      xlabel('Deslocamento (m)');
39
40
      ylabel('Mola');
      ylim([1 10]);
41
    title ('Caso 2: Deslocamento na Extremidade');
```

Listing 4: Script para a resolução dessa tarefa.

4 Conclusões

Após toda a análise feita nessa tarefa conseguimos discretizar uma estrutura para um modelo de molas a fim de utilizar um método de solução linear para resolver a Equação 3 e encontrar a matriz dos deslocamentos para o Caso 1 (U_1) e Caso 2 (U_2)

$$U_{1} = \begin{pmatrix} 0.6218 \\ 0.7391 \\ 0.8742 \\ 1.0279 \\ 1.2008 \\ 2.7853 \\ 3.2044 \\ 3.6546 \\ 4.1296 \\ 4.6213 \end{pmatrix} mm \quad U_{2} = \begin{pmatrix} 8.0731 \\ 9.5963 \\ 11.3494 \\ 13.3460 \\ 15.5908 \\ 18.0812 \\ 20.8016 \\ 23.7241 \\ 26.8076 \\ 30.0000 \end{pmatrix} mm$$

os quais representam deformações de casos distintos de cargas aplicadas a uma estrutura.

Do ponto de vista educacional, conseguimos resolver um problema utilizando conceitos de Cálculo Numérico e Estática em conjunto com o entendimento e manipulação de ferramentas computacionais disponíveis para resolução de sistemas lineares de equações.