Integrantes:

Cristhian Balaguera Daniel Gordillo Paula Rios Oscar Velasquez

Actividad Clasificación RCV

Estado inicial

Capa entrada: 35 neuronas
Capa 1 oculta: 1 neurona
Capa salida: 3 neuronas

Prueba 1

Capa entrada: 35 neuronas
Capa 1 oculta: 5 neurona
Capa salida: 3 neuronas

Prueba 2

Capa entrada: 35 neuronas
Capa 1 oculta: 10 neuronas
Capa 2 oculta: 10 neuronas

• Capa salida: 3 neuronas

Prueba 3

• Capa de entrada: 35 neuronas

• Capa oculta 1: 10 neuronas

• Capa oculta 2: 10 neuronas

• Capa oculta 3: 10 neuronas

• Capa oculta 4: 10 neuronas

• Capa oculta 5: 5 neuronas

• Capa de salida: 3 neuronas

Epoch	ch 185/200			
53/53	53 [- val loss: (0.2840 - val accuracy:	0.8619
	ch 180/200			
53/53	53 [] - 0s 3ms/step - loss: 0.2291 - accuracy: 0.9854	- val_loss: (0.2878 - val_accuracy:	0.8690
	ch 187/200			
	53 [- val_loss: (0.2816 - val_accuracy:	0.8667
	ch 188/200			
	53 [] - 0s 3ms/step - loss: 0.2283 - accuracy: 0.9842	- val_loss: (0.2869 - val_accuracy:	0.8643
	ch 189/200			
	53 [] - 0s 3ms/step - loss: 0.2286 - accuracy: 0.9018	- val_loss: (0.2834 - val_accuracy:	0.8595
	ch 199/200			
	53 [] - 0s 4ms/step - loss: 0.2288 - accuracy: 0.9024	- val_loss: (0.2825 - Val_accuracy:	8.8619
	ch 191/200			
	53 [] - 0s 4ms/step - loss: 0.2288 - accuracy: 0.9048 ch 192/200	- Val_1055: 0	e.zese - val_accuracy:	0.8595
	ch 192/200 53 [
	55 [- Val_1055; i	e.2803 - Val_accuracy:	0.8090
	53 [- unl loce: I	A 1959 - ual accuracy:	0.9667
	ch 194/200	- 102_2033.	0.1000 - VB1_BCCG BCy.	0.0007
	53 [- val love: i	0 2700 - val accuracy:	0.9557
	ch 195/200	102_20331	012/30 102_00000000	010001
	53 [- val loss: i	8 2881 - val accuracy:	0.8571
	ch 196/200			
53/53	53 [- val loss: (0.2851 - val accuracy:	0.8619
	ch 197/200			
53/53	53 [- val loss: (0.2888 - val accuracy:	0.8571
	ch 198/200			
	53 [- val_loss: (0.2882 - val_accuracy:	0.8548
	ch 199/200			
	53 [val_loss: (0.2814 - val_accuracy:	0.8571
	ch 286/288			
53/53	53 [] - 0s 3ms/step - loss: 0.2288 - accuracy: 0.8970	- val_loss: (0.2854 - val_accuracy:	0.8571

	precision	, , ,	11 30010	Suppor c
0	0.846	0.846	0.846	175
1	0.771	0.740	0.755	246
2	0.902	0.921	0.911	479
accuracy			0.857	900
macro avg weighted avg	0.840 0.855	0.835 0.857	0.837 0.856	900 900

El tiempo de cómputo con RNA fue: 43.84 segundos

```
# Definir la arquitectura del modelo de la RNA
modelRNA = models.Sequential()
modelRNA.add(Dense(5, batch_input_shape=(None, 35), activation='relu')) ## neuronas en la capa de entrada (batch_input_shape) y #neuronas en la primera capa oculta
modelRNA.add(Dense(10))
modelRNA.add(Dense(10))
modelRNA.add(Dense(10))
modelRNA.add(Dense(5))
modelRNA.add(Dense(3, activation='softmax'))
```

Prueba 4

Capa entrada: 35 neuronas
Capa 1 oculta: 10 neuronas
Capa 2 oculta: 5 neuronas

• Capa salida:3 neuronas

Prueba 5

Capa entrada: 35 neuronas
Capa 1 oculta: 7 neuronas
Capa 2 oculta: 7 neuronas
Capa 3 oculta: 7 neuronas
Capa salida: 3 neuronas

Prueba 6

Capa entrada: 35 neuronas
Capa 1 oculta: 10 neuronas
Capa 2 oculta: 10 neuronas
Capa 3 oculta: 15 neuronas

• Capa salida:3 neuronas

Prueba 7

• Capa de entrada: 35 neuronas

Capa oculta 1: 10 neuronas

Capa oculta 2: 10 neuronas

• Capa oculta 3: 50 neuronas

• Capa de salida: 3 neuronas

Epoch	187/200	
53/53	[
Epoch	188/200	
53/53	[=====================================	
	189/200	
	[========] - 0s Sms/step - loss: 0.1820 - accuracy: 0.9143 - val_loss: 0.3735 - val_accuracy: 0.8190	
	198/288	
	[=====================================	
	191/200	
	[=====================================	
	192/200	
	[=====================================	
	193/200	
	[
	194/200	
	[
	195/200	
	[
	195/200	
	[
	197/200	
	[=====================================	
	198/200	
	[=====================================	
	[=====================================	
	200/200	

El tiempo de cómputo con RNA fue: 40.89 segundos

```
# Definir la arquitectura del modelo de la RNA
modelRNA = models.Sequential()
modelRNA.add(Dense(10, batch_input_shape=(None, 35), activation='relu')) ## neuronas en la capa de entrada (batch_input_shape) y #neuronas en la primera capa oculta
modelRNA.add(Dense(10))
modelRNA.add(Dense(50))
modelRNA.add(Dense(3, activation='softmax'))
```

Conclusiones

A pesar de que solo se evidencian 7 test realizados en el documento, extraoficialmente se realizaron más test con el fin de encontrar una tendencia dentro de las redes neuronales para llegar al punto más óptimo posible. De las varias pruebas que se realizaron se destacan las siguientes conclusiones:

- El número de neuronas se puede asimilar entre 5 a 10 neuronas por capa oculta.
- Si se coloca otro número de neuronas ya sean menores a 5, entre 5 y 10 o después de 10 el resultado suele empeorar.
- La anterior condición sólo exceptúa al número 50 ya que con este también suele mejorar los resultados.
- Para obtener una conclusión mas rapida en cuanto al posible resultado de la estructura neuronal configurada, se puede destacar la condición de si durante el proceso de entrenamiento del modelo, al momento de acercarse al Epoch=100, el valor de "accuracy" supera el 0.8600 el modelo puede ser óptimo y tener resultados del "AUC" entre 0.87 a 0.89.
- El último modelo creado, representa la configuración más óptima encontrada durante el proceso de pruebas.
- Posiblemente el resultado del test #10 sea una mera casualidad de optimización. Esto se concluye ya que luego de que inoportunamente se fuera la luz y apagara el equipo de pruebas, se volvió a ejecutar la misma configuración y esta no superó más del valor de AUC=0.88.
- Al realizar entrenamientos con más de 5 capas ocultas, estas empiezan a tener un rendimiento lineal no mayor a AUC=0.87.
- El aumento de la cantidad de capas no siempre implica que el valor de AUC se acerque más a 1.
- El aumento excesivo de neuronas disminuye el valor del AUC.
- El valor de AUC tiende a ser más alto manteniendo la cantidad de neuronas menor a 15.