FORMULARIO DI PROBABILITÀ E STATISTICA PER L'INFORMATICA

Prima parte

STATISTICA DESCRITTIVA

Insieme di dati x_1, \ldots, x_N , riordinamento $x_{(1)} \leq \ldots \leq x_{(N)}$.

• Media campionaria: $\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$

Arr $Arr x = rac{\sum_{j=1}^{M} z_j f_j}{\sum_{j=1}^{M} f_j}$ (valori assunti z_1, \dots, z_M con frequenze f_1, \dots, f_M)

• Mediana campionaria: $m = \begin{cases} x_{(\frac{N+1}{2})} & \text{se } N \text{ è dispari} \\ \frac{x_{(\frac{N}{2})} + x_{(\frac{N}{2}+1)}}{2} & \text{se } N \text{ è pari} \end{cases}$

• 100p-esimo percentile campionario: $\begin{cases} x_{(i)} \ (i \text{ intero succ. a } Np) & \text{se } Np \text{ non è intero} \\ \frac{x_{(Np)} + x_{(Np+1)}}{2} & \text{se } Np \text{ è intero} \end{cases}$

 \rightarrow Quartili: $q_1 \ (p = \frac{1}{4}), \quad q_2 = m \ (p = \frac{1}{2}), \quad q_3 \ (p = \frac{3}{4})$

• Varianza campionaria: $s^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2 = \frac{1}{N-1} \left\{ \sum_{i=1}^N x_i^2 - N \overline{x}^2 \right\}$

• Deviazione standard campionaria: $s = \sqrt{s^2} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}$

• Scarto interquartile: $\Delta = IQR = q_3 - q_1$

• Coeff. di correlazione lineare campionario: $r = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{(N-1)s_x s_y} = \frac{\sum_{i=1}^{N} x_i y_i - N \overline{x} \overline{y}}{(N-1)s_x s_y}$

Spazi di probabilità

Assiomi della probabilità:

- $P(\Omega) = 1$
- se $A \in B$ sono disgiunti $(A \cap B = \emptyset)$: $P(A \cup B) = P(A) + P(B)$
- se $(A_i)_{i=1}^{\infty}$ sono disgiunti $(A_i \cap A_j = \emptyset \text{ per } i \neq j)$: $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Proprietà della probabilità:

$$P(\emptyset) = 0$$

$$P(A^c) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) \le P(A) + P(B)$$
se $A \subseteq B$: $P(A) \le P(B)$

CALCOLO COMBINATORIO

Dato un insieme di n elementi:

- le disposizioni con ripetizione di k elementi sono n^k
- le disposizioni semplici di k elementi sono n!/(n-k)!
- \bullet le combinazioni di k elementi sono $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Probabilità condizionale e indipendenza di eventi

Siano $A, B, (B_i)$ eventi in uno spazio di probabilità.

• Regola del prodotto:
$$P(A \cap B) = P(A) P(B|A)$$

$$P(B_1 \cap \cdots \cap B_n) = P(B_1) P(B_2|B_1) \cdots P(B_n|B_1 \cap \cdots \cap B_{n-1})$$

• Formula di disintegrazione:
$$P(A) = P(A \cap B) + P(A \cap B^c)$$
$$\{B_1, \dots, B_n\} \text{ partizione di } \Omega: \quad P(A) = P(A \cap B_1) + \dots + P(A \cap B_n)$$

• Formula delle probabilità totali:
$$P(A) = P(A|B) P(B) + P(A|B^c) P(B^c)$$
$$\{B_1, \dots, B_n\} \text{ partizione di } \Omega: \quad P(A) = P(A|B_1) P(B_1) + \dots + P(A|B_n) P(B_n)$$

• Formula di Bayes:
$$\mathrm{P}(A|B) = \frac{\mathrm{P}(B|A)\,\mathrm{P}(A)}{\mathrm{P}(B)}$$

Variabili aleatorie discrete

Variabile aleatoria $X:\Omega\to\mathbb{R}$ discreta: quantità finita o numerabile di valori assunti

$$X(\Omega) = \{x_i\} = \{x_1, x_2, x_3, \ldots\}$$

• Densità discreta: $p_X(x_i) = P(X = x_i)$

$$(p_X(x) = 0 \text{ se } x \notin \{x_i\})$$

 $P(X \in A) = \sum_{x \in A} p_X(x_i)$ • Distribuzione:

• Valore medio: $E[X] = \sum_{x_i} x_i \cdot p_X(x_i)$

$$E[X + c] = E[X] + c$$
 $E[cX] = c E[X]$ $E[X + Y] = E[X] + E[Y]$

se X=c (costante) allora $\mathrm{E}[X]=c$ se $X\geq 0$ allora $\mathrm{E}[X]\geq 0$

• Varianza:
$$\operatorname{Var}[X] = \operatorname{E}[X^2] - \operatorname{E}[X]^2$$
 con $\operatorname{E}[X^2] = \sum_{x_i} x_i^2 \cdot \operatorname{p}_X(x_i)$

$$Var[X + c] = Var[X]$$
 $Var[cX] = c^2 Var[X]$

se
$$X$$
 e Y sono indipendenti: $Var[X + Y] = Var[X] + Var[Y]$

$$X = c \text{ (costante)} \iff \operatorname{Var}[X] = 0$$

• Deviazione standard: $SD[X] = \sqrt{Var[X]}$

Distribuzioni notevoli discrete

Distribuzione	$X(\Omega)$	$p_X(k)$	$\mathrm{E}[X]$	Var[X]
		per $k \in X(\Omega)$		

Bernoulli

Bernoulli Be(p)
$$\{0,1\} \qquad \left\{ \begin{array}{ll} p & \text{se } k=1 \\ 1-p & \text{se } k=0 \end{array} \right. \quad p \qquad p(1-p)$$

Binomiale

Bin
$$(n, p)$$
 $\{0, 1, ..., n\}$ $\binom{n}{k} p^k (1-p)^{n-k}$ $np \quad np(1-p)$ $n \in \{1, 2, ...\}$ $p \in [0, 1]$

Poisson

Pois(
$$\lambda$$
)
$$\lambda \in (0, \infty)$$
 $\mathbb{N}_0 = \{0, 1, \dots\}$
 $e^{-\lambda} \frac{\lambda^k}{k!}$
 $\lambda \qquad \lambda$

Geo(p)
$$\mathbb{N} = \{1, 2, \dots\}$$
 $p(1-p)^{k-1}$ $\frac{1}{p}$ $\frac{1-p}{p^2}$

VARIABILI ALEATORIE ASSOLUTAMENTE CONTINUE

Variabile aleatoria $X: \Omega \to \mathbb{R}$ assolutamente continua con densità $f_X(x)$:

- Distribuzione: $P(X \in A) = \int_A f_X(x) dx$
- Valori assunti: $X(\Omega) = \{x \in \mathbb{R} : f_X(x) > 0\}$
- Valore medio: $E[X] = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx$

$$\begin{aligned} \mathbf{E}[X+c] &= \mathbf{E}[X] + c \qquad \mathbf{E}[cX] = c\,\mathbf{E}[X] \qquad \mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y] \\ \text{se } X &= c \text{ (costante) allora } \mathbf{E}[X] = c \qquad \text{se } X \geq 0 \text{ allora } \mathbf{E}[X] \geq 0 \end{aligned}$$

• Varianza: $\operatorname{Var}[X] = \operatorname{E}[X^2] - \operatorname{E}[X]^2$ con $\operatorname{E}[X^2] = \int_{-\infty}^{+\infty} x^2 \cdot f_X(x) \, \mathrm{d}x$

$$Var[X + c] = Var[X]$$
 $Var[cX] = c^2 Var[X]$

se
$$X$$
 e Y sono indipendenti: $Var[X + Y] = Var[X] + Var[Y]$

$$X = c \text{ (costante)} \iff \operatorname{Var}[X] = 0$$

• Deviazione standard: $SD[X] = \sqrt{Var[X]}$

Distribuzioni notevoli assolutamente continue

Distribuzione $X(\Omega)$ $f_X(x)$ $F_X(x)$ E[X] Var[X] $per x \in X(\Omega)$

Esponenziale

Normale
$$\begin{aligned} & \mathrm{N}(\mu,\sigma^2) & & (-\infty,+\infty) & & \frac{\mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}} & & \Phi(x) & \mu & & \sigma^2 \end{aligned}$$

FUNZIONE DI RIPARTIZIONE

Sia $X: \Omega \to \mathbb{R}$ una variabile aleatoria.

- Funzione di ripartizione: $F_X(x) = P(X \le x)$
- Probabilità di intervalli: $P(X \in (a, b]) = F_X(b) F_X(a)$
- F_X continua dappertutto e derivabile a tratti \leadsto $\begin{cases} X \text{ v.a. assolutamente continua} \\ f_X(x) = (F_X)'(x) \end{cases}$
- F_X costante a tratti \leadsto $\begin{cases} X \text{ v.a. discreta} \\ \text{valori assunti } \{x_i\} = \text{punti di discontinuità di } F_X \\ p_X(x_i) = F_X(x_i) F_X(x_i^-) & \left(\text{con } F_X(x^-) := \lim_{t \to x^-} F_X(t)\right) \end{cases}$

VETTORI ALEATORI

$$\mathbf{E}[XY] = \begin{cases} \sum_{x_i} \sum_{y_j} x_i \cdot y_j \cdot \mathbf{p}_{(X,Y)}(x_i, y_j) & \text{se } (X,Y) \text{ è un vettore discreto con} \\ \text{densità discreta congiunta } \mathbf{p}_{(X,Y)}(x,y) \end{cases}$$

$$\mathbf{E}[XY] = \begin{cases} \sum_{x_i} \sum_{y_j} x_i \cdot y_j \cdot \mathbf{p}_{(X,Y)}(x_i, y_j) & \text{se } (X,Y) \text{ è un vettore assolut. cont.} \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot y \cdot f_{(X,Y)}(x,y) \, \mathrm{d}x \, \mathrm{d}y & \text{se } (X,Y) \text{ è un vettore assolut. cont.} \\ \text{con densità congiunta } f_{(X,Y)}(x,y) \end{cases}$$

- Varianza della somma: $\operatorname{Var}[X+Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Cov}[X,Y]$
- Indipendenza di v.a. X e Y: $P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B) \quad \forall A, B \subseteq \mathbb{R}$ Se (X, Y) è discreto: $p_{(X,Y)}(x_i, y_j) = p_X(x_i) \cdot p_Y(y_j) \quad \forall x_i, y_j$ Se (X, Y) è assolutamente continuo: $f_{(X,Y)}(x, y) = f_X(x) \cdot f_Y(y) \quad \forall x, y$
- X e Y indipendenti \rightsquigarrow $Cov[X,Y] = 0 <math>\rightsquigarrow$ Var[X+Y] = Var[X] + Var[Y]
- Indice di correlazione lineare: $\rho[X,Y] = \frac{\text{Cov}[X,Y]}{\text{SD}[X] \text{SD}[Y]}$

SECONDA PARTE

TEOREMA DEL LIMITE CENTRALE

 $X_1,....,X_n,...$ v.a. i.i.d. con media μ e varianza σ^2 e sia $\bar{X}_n=\frac{X_1+...+X_n}{n}$

$$P\left(\sqrt{n} \cdot \frac{\bar{X}_n - \mu}{\sigma} \le t\right) \to \Phi(t) \text{ se } n \to \infty$$

dove $\Phi(t) = P(Z \le t), Z \sim \mathcal{N}(0, 1)$

STIMA PUNTUALE

 \bullet $X_1, ..., X_n$ campione casuale estratto da una popolazione con media incognita. Stimatore non distorto della media

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n}$$

 \bullet $X_1,...,X_n$ campione casuale estratto da una popolazione con media e varianza incognite . Stimatore non distorto della varianza

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X}_n \right)^2$$

 \bullet $X_1,...,X_n$ campione casuale estratto da una popolazione con media nota pari a μ e varianza incognita .

Stimatore non distorto della varianza

$$\bar{S}_n^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \mu \right)^2$$

DISTRIBUZIONI UTILI PER LE STATISTICHE CAMPIONARIE

- $Z \sim \mathcal{N}(0,1)$ e $\alpha \in (0,1)$, si pone $z_{\alpha} \in \mathbb{R}$ quel valore tale che $\mathbb{P}(Z > z_{\alpha}) = \alpha$. N.B: $z_{\alpha} = -z_{1-\alpha}$.
- $\bullet \ Z_1,....,Z_n$ i.i.d. normali standard

$$Y=Z_1^2+\ldots+Z_n^2, \qquad Y\sim \chi^2(n)$$

Y ha una distribuzione chi quadrato con n gradi di libertà: $Y \ge 0$ Per $\alpha \in (0,1)$ si pone $\chi^2_{n,\alpha} \in \mathbb{R}$ quel valore tale che $\mathbb{P}(Y > \chi^2_{n,\alpha}) = \alpha$.

$$\mathbb{E}[Y] = n, \ \text{var}[Y] = 2n$$

• Siano $Z \sim \mathcal{N}(0,1), Y \sim \chi^2(n)$ indipendenti

$$T = \frac{Z}{\sqrt{Y/n}}, \qquad T \sim t(n)$$

T ha una distribuzione t di Student con n gradi di libertà. T simmetrica rispetto a 0. Per $\alpha \in (0,1)$ si pone $t_{n,\alpha} \in \mathbb{R}$ quel valore tale che $\mathbb{P}(T > t_{n,\alpha}) = \alpha$. N.B: $t_{n,\alpha} = -t_{n,1-\alpha}$

STIMA PER INTERVALLI

Daremo formule per intervalli di confidenza, (estremi inferiori o superiori) al livello di $100(1-\alpha)\%$, e daremo la realizzazione dell'intervallo sui dati campionari $x_1, ..., x_n$.

campione numeroso $\rightsquigarrow n \ge 30$

• campione estratto da una popolazione normale con media incognita e varianza nota pari a σ^2 (vale anche per campioni numerosi non necessariamente normali): stima intervallare della media

Intervallo di confidenza
$$\left(\bar{x}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

Estremo inferiore $\bar{x}_n - z_\alpha \frac{\sigma}{\sqrt{n}}$, intervallo destro $\left(\bar{x}_n - z_\alpha \frac{\sigma}{\sqrt{n}}, +\infty\right)$
Estremo superiore $\bar{x}_n + z_\alpha \frac{\sigma}{\sqrt{n}}$, intervallo sinistro $\left(-\infty, \bar{x}_n + z_\alpha \frac{\sigma}{\sqrt{n}}\right)$

• campione estratto da una popolazione normale con media e varianza incognite (vale anche per campioni numerosi non necessariamente normali): stima intervallare della media

Intervallo di confidenza
$$\left(\bar{x}_n - t_{n-1\alpha/2} \frac{s_n}{\sqrt{n}}, \bar{x}_n + t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}\right)$$

Estremo inferiore $\bar{x}_n - t_{n-1,\alpha} \frac{s_n}{\sqrt{n}}$, intervallo destro $\left(\bar{x}_n - t_{n-1,\alpha} \frac{s_n}{\sqrt{n}}, +\infty\right)$
Estremo superiore $\bar{x}_n + t_{n-1,\alpha} \frac{s_n}{\sqrt{n}}$, intervallo sinistro $\left(-\infty, \bar{x}_n + t_{n-1,\alpha} \frac{s_n}{\sqrt{n}}\right)$

• campione numeroso estratto da una popolazione Bernoulliana con media e varianza incognite (vale anche per campioni numerosi non necessariamente normali): stima intervallare della proporzione-frequenza: ok se $n\bar{x}_n > 5$, $n(1 - \bar{x}_n) > 5$.

Intervallo di confidenza
$$\left(\bar{x}_n - z_{\alpha/2}\sqrt{\frac{\bar{x}_n(1-\bar{x}_n)}{n}}, \bar{x}_n + z_{\alpha/2}\sqrt{\frac{\bar{x}_n(1-\bar{x}_n)}{n}}\right)$$
 N.B.: $\bar{x}_n(1-\bar{x}_n) \leq \frac{1}{4}$.
Estremo inferiore $\bar{x}_n - z_\alpha\sqrt{\frac{\bar{x}_n(1-\bar{x}_n)}{n}}$, intervallo destro $\left(\bar{x}_n - z_\alpha\sqrt{\frac{\bar{x}_n(1-\bar{x}_n)}{n}}, +\infty\right)$
Estremo superiore $\bar{x}_n + z_\alpha\sqrt{\frac{\bar{x}_n(1-\bar{x}_n)}{n}}$, intervallo sinistro $\left(-\infty, \bar{x}_n + z_\alpha\sqrt{\frac{\bar{x}_n(1-\bar{x}_n)}{n}}\right)$

• campione estratto da una popolazione normale con media e varianza incognite: stima intervallare della varianza

$$\begin{array}{c} \text{Intervallo di confidenza} \; \left(\frac{(n-1)s_n^2}{\chi_{n-1,\alpha/2}^2}, \frac{(n-1)s_n^2}{\chi_{n-1,1-\alpha/2}^2} \right) \\ \\ \text{Estremo inferiore} \; \frac{(n-1)s_n^2}{\chi_{n-1,\alpha}^2}, \quad \text{intervallo destro} \; \left(\frac{(n-1)s_n^2}{\chi_{n-1,\alpha}^2}, +\infty \right) \\ \\ \text{Estremo superiore} \; \frac{(n-1)s_n^2}{\chi_{n-1,1-\alpha}^2}, \quad \text{intervallo sinistro} \; \left[0, \frac{(n-1)s_n^2}{\chi_{n-1,1-\alpha}^2} \right) \end{array}$$

• campione estratto da una popolazione normale con media nota e varianza incognite: stima intervallare della varianza

Intervallo di confidenza
$$\left(\frac{n\bar{s}_n^2}{\chi_{n,\alpha/2}^2}, \frac{n\bar{s}_n^2}{\chi_{n,1-\alpha/2}^2}\right)$$

Estremo inferiore $\frac{n\bar{s}_n^2}{\chi_{n,\alpha}^2}$, intervallo destro $\left(\frac{n\bar{s}_n^2}{\chi_{n,\alpha}^2}, +\infty\right)$
Estremo superiore $\frac{n\bar{s}_n^2}{\chi_{n,1-\alpha}^2}$, intervallo sinistro $\left[0, \frac{n\bar{s}_n^2}{\chi_{n,1-\alpha}^2}\right)$

Test di Ipotesi

 $\alpha =$ livello di significatività

• Test z sulla media di una popolazione normale con varianza nota pari a σ^2 (vale anche per campioni numerosi estratti da popolazioni non necessariamente normali)

H_0	H_1	Statistica	Regione critica
$\mu = \mu_0$	$\mu \neq \mu_0$	$Z = \frac{\bar{X}_n - \mu_0}{\sigma} \sqrt{n}$	$\left \frac{\bar{x}_n - \mu_0}{\sigma} \sqrt{n} \right > z_{\alpha/2}$
$\mu \leq \mu_0$	$\mu > \mu_0$	$Z = \frac{X_n - \mu_0}{\sigma} \sqrt{n}$	$\frac{\bar{x}_n - \mu_0}{\sigma} \sqrt{n} > z_\alpha$
$\mu \ge \mu_0$	$\mu < \mu_0$	$Z = \frac{X_n - \mu_0}{\sigma} \sqrt{n}$	$\frac{\bar{x}_n - \mu_0}{\sigma} \sqrt{n} < -z_\alpha$

ullet Test t sulla media di una popolazione normale con varianza incognita (vale anche per campioni numerosi estratti da popolazioni non necessariamente normali)

H_0	H_1	Statistica	Regione critica
$\mu = \mu_0$	$\mu \neq \mu_0$	$T = \frac{\bar{X}_n - \mu_0}{S_n} \sqrt{n}$	$\left \left \frac{\bar{x}_n - \mu_0}{s_n} \sqrt{n} \right > t_{n-1,\alpha/2} \right $
$\mu \leq \mu_0$	$\mu > \mu_0$	$T = \frac{X_n - \mu_0}{S_n} \sqrt{n}$	$\frac{\bar{x}_n - \mu_0}{s_n} \sqrt{n} > t_{n-1,\alpha}$
$\mu \ge \mu_0$	$\mu < \mu_0$	$T = \frac{\bar{X}_n - \mu_0}{S_n} \sqrt{n}$	$\frac{\bar{x}_n - \mu_0}{s_n} \sqrt{n} < -t_{n-1,\alpha}$

• Test z approssimato sulla proporzione con $n \ge 30$, $np_0 \ge 5$, $n(1-p_0) \ge 5$.

H_0	H_1	Statistica	Regione critica
$p=p_0$	$p \neq p_0$	$Z = \frac{\bar{X}_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n}$	$\left \left \frac{\bar{x}_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} \right > z_{\alpha/2} \right $
$p \le p_0$	$p > p_0$	$Z = \frac{X_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n}$	$\frac{\bar{x}_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} > z_\alpha$
$p \ge p_0$	$p < p_0$	$Z = \frac{X_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n}$	$\frac{\bar{x}_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} < -z_\alpha$

• Test t sulla differenza delle media di due campioni normali **accoppiati** $X_1,...,X_n$ di media μ_X e $Y_1,...,Y_n$ di media μ_Y

Test t sul campione delle differenze $D_1 = X_1 - Y_1, ..., D_n = X_n - Y_n$, denotiamo con $\bar{D}_n = \frac{1}{n}(D_1 + \cdots + D_n)$ la media campionaria e con S_d^2 la varianza campionaria del campione D_1, \ldots, D_n .

H_0	H_1	Statistica	Regione critica
$\mu_X = \mu_Y + \mu_0 \iff \mu_d = \mu_0$	$\mu_X \neq \mu_Y + \mu_0 \rightsquigarrow \mu_d \neq \mu_0$	$T = \frac{\bar{D}_n - \mu_0}{S_d} \sqrt{n}$	$\left \left \frac{\bar{d}_n - \mu_0}{s_d} \sqrt{n} \right > t_{n-1,\alpha/2} \right $
$\mu_X \le \mu_Y + \mu_0 \rightsquigarrow \mu_d \le \mu_0$	$\mu_X > \mu_Y + \mu_0 \rightsquigarrow \mu_d > \mu_0$	$T = \frac{\bar{D}_n - \mu_0}{S_d} \sqrt{n}$	$\frac{d_{n}-\mu_{0}}{s_{d}}\sqrt{n} > t_{n-1,\alpha}$
$\mu_X \ge \mu_Y + \mu_0 \rightsquigarrow \mu_d \ge \mu_0$	$\mu_X < \mu_Y + \mu_0 \rightsquigarrow \mu_d < \mu_0$	$T = \frac{\bar{D}_n - \mu_0}{S_d} \sqrt{n}$	$\frac{d_n - \mu_0}{s_d} \sqrt{n} < -t_{n-1,\alpha}$

• Test t sulla differenza delle media di due campioni normali indipendenti $X_1, ..., X_{n_x}$ di media μ_x e $Y_1, ..., Y_{n_y}$ di media μ_y , con varianza incognita che si suppone uguale, test applicabile se : $1/2 < \frac{S_x^2}{S_y^2} < 2$.

 \bar{X} e S_x^2 media e varianza campionarie di $X_1,...,X_{n_x}$.

 \bar{Y} e S_y^2 media e varianza campionarie di $Y_1,...,Y_{n_y}.$

varianza campionaria combinata: $S_p^2 = \frac{(n_x-1)S_x^2 + (n_y-1)S_y^2}{n_x + n_y - 2}$

H_0	H_1	Statistica	Regione critica
$\mu_x = \mu_y$	$\mu_x \neq \mu_y$	$T = \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}}$	$\left \left \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} \right > t_{n_x + n_y - 2, \alpha/2}$
$\mu_x \le \mu_y$	$\mu_x > \mu_y$	$T = \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}}$	$\frac{\bar{x}-\bar{y}}{s_p\sqrt{\frac{1}{n_x}+\frac{1}{n_y}}} > t_{n_x+n_y-2,\alpha}$
$\mu_x \ge \mu_y$	$\mu_x < \mu_y$	$T = \frac{X - Y}{S_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}}$	$\frac{\bar{x}-\bar{y}}{s_p\sqrt{\frac{1}{n_x}+\frac{1}{n_y}}} < -t_{n_x+n_y-2,\alpha}$

 \bullet Test χ^2 di buon adattamento

 H_0 : la popolazione ha una certa distribuzione assegnata.

si vuole decidere se accettare o rifiutare H_0

 C_1, \ldots, C_k classi

 $N_1,, N_k$ frequenze assolute delle classi; $n_1,, n_k$ frequenze assolute **osservate**; $f_1, ..., f_k$ frequenze assolute **attese**. Come le calcolo?

i) se si vuole testare il buon adattamento a una distribuzione discreta, le classi coincidono con uno o più valori assunti dalla distribuzione incognita; sia $C_1 = \{1\}, ..., C_k = \{k\}$, si assegna $\pi = (\pi(1), ..., \pi(k))$, densità discreta, e

$$f_1 = n\pi(1), ..., f_k = n\pi(k)$$

ii) se si vuole testare il buon adattamento a una distribuzione continua, si avrà $C_1 = [a_0, a_1), C_2 = [a_1, a_2), ..., C_k = [a_{k-1}, a_k)$ si assegna F, funzione di ripartizione, e

$$f_1 = n(F(a_1) - F(a_0)), ..., f_k = n(F(a_k) - F(a_{k-1}))$$

Statistica:

$$Q = \sum_{j=1}^{k} \frac{(N_j - f_j)^2}{f_j}$$

Regione critica:

se non ci sono parametri da stimare:
$$q = \sum_{j=1}^k \frac{(n_j - f_j)^2}{f_j} > \chi^2_{k-1,\alpha}$$

se nella distribuzione verso cui si cerca buon adattamento ci sono r parametri da

stimare si ha
$$q = \sum_{j=1}^k \frac{(n_j - f_j)^2}{f_j} > \chi^2_{k-1-r,\alpha}$$

Regola empirica di applicabilità: f_1, \ldots, f_k tutte ≥ 1 e almeno l'80% di esse ≥ 5 .

 \bullet Test χ^2 di indipendenza per Xe Y (Xe Ysono due caratteristiche che vengono osservate su uno stesso membro della popolazione)

 H_0 : X e Y sono indipendenti

X assume i valori $\{1, ..., r\}$

Y assume i valori $\{1,...,s\}$

 $N_{i,j} = |\{k: (X_k, Y_k) = (i,j)\}|, \ i=1,...,r, \ j=1,...,s$ frequenza assoluta della coppia (i,j)

 $N_i^x = |\{k: X_k = i\}| i = 1, ..., r$ frequenza assoluta di i (nella popolazione X)

 $N_{j}^{y} = |\{k: Y_{k} = j\}| \, j = 1, ..., s$ frequenza assoluta di j (nella popolazione Y)

 $n_{i,j},\,n_i^x,n_y^y$ siano i valori sulle osservazioni rispettivamente assunti da $N_{i,j},\,N_i^x,N_j^y$

Statisticas

$$Q = \sum_{1 \le i \le r, 1 \le j \le s} \frac{\left(N_{i,j} - \frac{N_i^x N_j^y}{n}\right)^2}{\frac{N_i^x N_j^y}{n}}$$

Regione critica a livello di significatività α :

$$q = \sum_{1 \le i \le r, \ 1 \le j \le s} \frac{\left(n_{i,j} - \frac{n_i^x n_j^y}{n}\right)^2}{\frac{n_i^x n_j^y}{n}} > \chi_{(r-1)(s-1),\alpha}^2$$

REGRESSIONE LINEARE

Modello di regressione lineare semplice: $Y = \alpha + \beta x + e$ ossia per i = 1, ..., n

$$Y_i = \alpha + \beta x_i + e_i, \quad e_i \sim \mathcal{N}(0, \sigma^2) \text{ i.i.d.}$$

Notazioni

$$S_{xx} = \sum_{i=1^n} (x_i - \bar{x})^2 = \sum_{i=1^n} x_i^2 - n\bar{x}^2$$

$$S_{YY} = \sum_{i=1^n} (Y_i - \bar{Y})^2 = \sum_{i=1^n} Y_i^2 - n\bar{Y}^2, \qquad S_{yy} = \sum_{i=1^n} (y_i - \bar{y})^2 = \sum_{i=1^n} y_i^2 - n\bar{y}^2$$

$$S_{xY} = \sum_{i=1^n} (x_i - \bar{x})(Y_i - \bar{Y}) = \sum_{i=1^n} x_i Y_i - n\bar{x}\bar{Y}, \qquad S_{xy} = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}$$

 \bullet stima di α e β

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}, \qquad \hat{\beta} = \frac{S_{xy}}{S_{xx}}$$

- retta di regressione di y su x : $y = \hat{\alpha} + \hat{\beta}x$
- \bullet Somma dei quadrati residui, con Ae Bstimatori di α e β :

$$SS_R = \sum_{i=1^n} (Y_i - A - Bx_i)^2 = \frac{S_{xx}S_{YY} - S_{xY}^2}{S_{xx}}, \qquad \frac{SS_R}{\sigma^2} \sim \chi^2(n-2)$$

• Stima di σ^2 : $\hat{\sigma}^2 = \frac{SS_R}{n-2}$,

con SS_R calcolato sulle osservazioni $y_1,, y_n$, ossia $\hat{\sigma}^2 = \frac{\frac{S_{xx}S_{yy} - S_{xy}^2}{S_{xx}}}{n-2}$

- Coefficiente di determinazione: $R^2 = 1 \frac{SS_R}{S_{yy}}$, con SS_R calcolato sulle osservazioni $y_1,, y_n$. N.B.: $R^2 = r_{x,y}^2$, $r_{x,y}$ coefficiente di correlazione campionaria.
- Intervallo di confidenza per β di livello $100(1-\gamma)\%$:

$$\left(\hat{\beta} - \sqrt{\frac{SS_R}{S_{xx}(n-2)}} t_{n-2,\gamma/2}, \hat{\beta} + \sqrt{\frac{SS_R}{S_{xx}(n-2)}} t_{n-2,\gamma/2}\right)$$

 \bullet Verifica dell'ipotesi $H_0:\beta=0$ v
s $H_1:\beta\neq 0:$ si rifiuta H_0 a livello
 γ se

$$\left| \sqrt{\frac{S_{xx}(n-2)}{SS_R}} \hat{\beta} \right| > t_{n-2,\gamma/2}$$

• Verifica dell'ipotesi $H_0: \beta \geq 1$ vs $H_1: \beta < 1$ (regressione verso la media): si rifiuta H_0 a livello γ se

$$\sqrt{\frac{S_{xx}(n-2)}{SS_R}}(\hat{\beta}-1) < -t_{n-2,\gamma}$$