An Introduction to Interpolation Methods©

Dean Corbae

November, 2020

Intro

Applied

Interpolation as an Approximation Tool

- We sometimes know the numerical value of a function f(x) at a set of points $\{x_i\}_{i=1}^N$ where $x_1 < x_2 < ... < x_N$, but we don't have an analytic expression for f(x) that lets us calculate its value at any arbitrary point.
- Discrete grid on a: Let D be the grid points. Problem is

$$V_D(a) = \max_{a'_D \in D} u(y + a - qa'_D) + \beta V_D(a'_D)$$

s.t.a \in D.

• Interpolation. Problem is

$$V_I(a) = \max_{a' \ge \underline{a}} u(y + a - qa'_I) + \beta V_I(a'_I)$$

s.t.a \in D.

• Even though $V_I(a_I')$ is piecewise linear, the objective will be concave since $u(y+a-qa_I')$ induces strict concavity.

Approximation of Functions

Some References:

- Judd, K. <u>Numerical Methods in Economics</u>, Cambridge: MIT Press. Chapter 6.
- Press, W. et. al. <u>Numerical Recipes in Fortran 77</u>, Cambridge: Cambridge University Press. Chapter 3 and 5

Theorem

Weierstrass Approximation: If $f \in C([a,b])$, then for all $\varepsilon > 0$, there exists a polynomial p(x) such that $\|f-p\|_{\infty} < \varepsilon$ where $\|g\|_{\infty} = \sup_{x \in [a,b]} |g(x)|$ is the sup norm. Hence there is a sequence of polynomials p_n such that $p_n \to f$ uniformly on [a,b].

Piecewise Linear Interpolation

- Suppose we know $\{y_i=f(x_i)\}_{i=1}^N$ at some discrete set of points $\{x_i\}_{i=1}^N$. For instance, this could be the value function $v^j(k_i)$ at iteration j at capital grid points.
- We construct a function $\ell(x)$ such that:
 - $\ell(x_i) = y_i, i = 1, ..., N$ and
 - on each interval $[x_i, x_{i+1}]$ for i = 1, ..., N-1,

the function is linear

$$\ell_{[x_i, x_{i+1}]}(x) = A_i(x)y_i + (1 - A_i(x))y_{i+1}, \tag{1}$$

where the weights A_i measure the relative distance between the point x and the grid points x_i and x_{i+1} given by $A_i(x) = \left(\frac{x_{i+1}-x}{h}\right)$ where $h = x_{i+1} - x_i$.

Piecewise Linear Interpolation Example

- Suppose $f(x)=x^2$ and $\{x_i\}_{i=1}^N=\{0,1,2\}$. Then $y_1=0,$ $y_2=1,$ and $y_3=4.$
 - $\bullet \ \ {\rm For} \ x \in [0,1],$

$$\ell_{[0,1]}(x) = \left(\frac{1-x}{1}\right) \cdot 0 + \left(\frac{x-0}{1}\right) \cdot 1 = x.$$

• For $x \in [1, 2]$,

$$\ell_{[1,2]}(x) = \left(\frac{2-x}{1}\right) \cdot 1 + \left(\frac{x-1}{1}\right) \cdot 4$$

= 2 - x + 4x - 4
= -2 + 3x

Linear Interpolation of $f(x) = \underline{x^2}$

Cubic Splines

- We construct a function s(x) such that:
 - $s(x_i) = y_i, i = 1, ..., N$ and
 - on each interval $[x_i, x_{i+1}]$ for i = 1, ..., N-1,

the function is a cubic

$$s_{[x_i, x_{i+1}]}(x) = a_i + b_i x + c_i x^2 + d_i x^3.$$
 (2)

- ullet So we have N-1 intervals and N data points.
- Since we have 4 coefficients for each of the N-1 intervals, we have 4(N-1) unknowns a_i, b_i, c_i, d_i for $i=1, \ldots, N-1$.

Cubic Splines - cont.

How do we find those coefficients?

- The interpolating conditions at the endpoints and continuity at the interior nodes will provide us with 2(N-1) equations
 - $y_1 = s_{[x_1,x_2]}(x_1)$ for i = 1,
 - $s_{[x_{i-1},x_i]}(x_i) = y_i = s_{[x_i,x_{i+1}]}(x_i)$ for i = 2,...,N-1,
 - and $y_N = s_{[x_{N-1},x_N]}(x_N)$ for i = N
- or:

$$y_i = a_{i-1} + b_{i-1}x_i + c_{i-1}x_i^2 + d_{i-1}x_i^3, \quad i = 2, \dots, N(3)$$

$$y_i = a_i + b_i x_i + c_i x_i^2 + d_i x_i^3, \quad i = 1, \dots, N - 1.$$
 (4)

Cubic Splines - cont.

• Continuity of the first derivative on the interior nodes gives (N-2) (i.e. the interior nodes is why it is -2) equations $s'_{[x_{i-1},x_{i}]}(x_{i})=s'_{[x_{i},x_{i+1}]}(x_{i})$ or:

$$b_{i-1} + 2c_{i-1}x_i + 3d_{i-1}x_i^2 = b_i + 2c_ix_i + 3d_ix_i^2, \quad i = 2, \dots, N-1$$
(5)

• Continuity of the second derivative on the interior nodes (i.e. the interior nodes is why it is -2) gives (N-2) equations $s''_{[x_{i-1},x_i]}(x_i) = s''_{[x_i,x_{i+1}]}(x_i)$ or:

$$2c_{i-1} + 6d_{i-1}x_i = 2c_i + 6d_ix_i, \quad i = 2, \dots, N-1$$
 (6)

Cubic Splines - cont.

Since we have 2(N-1)+2(N-2) equations but 4(N-1) unknowns, we still need two more conditions.

- If we knew the true function, then we could use first derivatives $s'_{[x_1,x_2]}(x_1)=f'(x_1)$ and $s'_{[x_{N-1},x_N]}(x_N)=f'(x_N)$. But in general we don't know f(x), so can't calculate f'(x).
- Hermite splines approximate that derivative. In particular, we use the slopes of the secant lines over $[x_1, x_2]$ and $[x_{N-1}, x_N]$;that is, we choose s(x) to make

$$s'_{[x_1,x_2]}(x_1) = \frac{s_{[x_1,x_2]}(x_2) - s_{[x_1,x_2]}(x_1)}{x_2 - x_1}$$

$$s'_{[x_{N-1},x_N]}(x_N) = \frac{s_{[x_{N-1},x_N]}(x_N) - s_{[x_{N-1},x_N]}(x_{N-1})}{x_N - x_{N-1}}.$$
(7)

• Now that we have 4(N-1) equations in 4(N-1) unknowns, you can just solve a system of equations in matlab.

Cubic Splines Example

Suppose $f(x) = x^2$ and $\{x_i\}_{i=1}^N = \{0,1,2\}$ (i.e. N=3). Then $y_1=0,\ y_2=1,$ and $y_3=4$ as before. For the cubic spline, we need 4(3-1)=8 coefficients $\{a_1,b_1,c_1,d_1,a_2,b_2,c_2,d_2\}$.

From (3) we have

$$y_2 = a_1 + b_1 x_2 + c_1 x_2^2 + d_1 x_2^3 \iff 1 = a_1 + b_1 + c_1 + d_1.$$

$$y_3 = a_2 + b_2 x_3 + c_2 x_3^2 + d_2 x_3^3 \iff 4 = a_2 + 2b_2 + 4c_2 + 8d_2.$$

From (4) we have

$$y_1 = a_1 + b_1 x_1 + c_1 x_1^2 + d_1 x_1^3 \iff 0 = a_1$$

$$y_2 = a_2 + b_2 x_2 + c_2 x_2^2 + d_2 x_2^3 \iff 1 = a_2 + b_2 + c_2 + d_2.$$

From (5) we have

$$b_1 + 2c_1x_2 + 3d_1x_2^2 = b_2 + 2c_2x_2 + 3d_2x_2^2 \iff b_1 + 2c_1 + 3d_1 = b_2 + 2c_2 + 3d_2.$$

From (6) we have

$$2c_1 + 6d_1x_2 = 2c_2 + 6d_2x_2 \iff 2c_1 + 6d_1 = 2c_2 + 6d_2$$

• From (7), using $s'_{[x_1,x_2]}(x) = b_1 + 2c_1x + 3d_1x^2$, we have

$$\begin{split} s'_{[0,1]}(0) &= \frac{y_2 - y_1}{1} \iff b_1 = 1 \\ \text{and } s'_{[1,2]}(2) &= \frac{y_3 - y_2}{1} \iff b_2 + 4c_2 + 12d_2 = 3 \end{split}$$

Cubic Spline Interpolation of $f(x) = x^2$

Linear vs. Cubic Spline Interpolation of $f(x) = x^2$

Since linear interpolation is a special case of the Cubic hermite spline, its mean square error must be weakly higher.

Orthogonal Polynomials

- The Weierstrass theorem is conceptually valuable, but not important from a computational point of view because it uses Bernstein polynomials which converge slowly.
- Since the space of continuous functions is spanned by the monomials $x^n,\ n=0,1,...$, it is natural to think of the monomials as a basis for the space of continuous functions.
- But these monomials are very nearly linearly dependent, so higher n aren't very efficient at helping (like multicollinearity in regression where we don't get a good fit (i.e. high standard errors)).

Spanning: Monomials

Orthogonal Polynomials

- To avoid this problem, can use an alternative basis that is orthogonal in C([a,b]). The Gram-Schmidt algorithm can construct an orthonormal basis.
- A special case of orthogonal polynomials is the Chebyshev polynomials on $x \in [-1,1]$ given by the recursive formula

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), n \ge 1$$
 (8)

where $T_0(x) = 1$ and $T_1(x) = x$. Notice

$$T_2(x) = 2x^2 - 1$$

 $T_3(x) = 2x(2x^2 - 1) - x = 4x^3 - 3x$

• The different spanning capabilities of monomials and Chebyshev polynomials on [-1,1] is evident by comparing the two figures.

Spanning: Chebeyshev Polynomials

Chebeyshev Approximation Algorithm

- Chebyshev approximation chooses grid points to get a good fit.
- Judd (p. 223) presents the following algorithm (6.2) where you choose m nodes and use them to construct a degree n < m polynomial approximation of f(x) on [a,b] via the following steps:
- 1. Compute the $m \ge n+1$ Chebyshev interpolation nodes on [-1,1]:

$$z_k = -\cos\left(\frac{2k-1}{2m} \cdot \pi\right), k = 1, ..., m.$$

2. Adjust the nodes to the [a, b] interval:

$$x_k = (z_k + 1) \left(\frac{b-a}{2}\right) + a, k = 1, ..., m.$$

Chebevshev Approximation Algorithm - cont.

3. Evaluate f at the approximation nodes:

$$y_k = f(x_k), k = 1, ..., m.$$

4. Compute Chebyshev coefficients, c_i , i = 0, ..., where T_i is given by (8):

$$c_i = \frac{\sum_{k=1}^{m} y_k T_i(z_k)}{\sum_{k=1}^{m} T_i(z_k)^2}$$

to arrive at the approximation for $f(x), x \in [a, b]$ given by

$$\widehat{f}(x) = \sum_{i=0}^{n} c_i T_i \left(2 \cdot \frac{x-a}{b-a} - 1 \right).$$

Bilinear Interpolation

- Now consider two dimensions. In this case, you can think of one of the dimensions being along the grid $\{x_i\}_{i=1}^N$ and another being along the grid $\{z_j\}_{j=1}^M$, forming an $N\times M$ matrix of grid points (x_i,z_j) in a "Cartesian Mesh"(language from the Press, et. al. Numerical Recipes book).
- For any arbitrary point (x, z), let the functional values be given by y = f(x, z) and let the associated matrix of functional values on the grid be given by the $N \times M$ matrix $y_{i,j} = f(x_i, z_j)$.
- We want to approximate, by interpolation, the function f at some untabulated point (x,z).

Bilinear Approximation

- A grid rectangle is just the 2 dimensional analogue of an interval in the 1 dimensional case we saw before.
 - the four tabulated points that surround the desired interior point starting with the lower left and moving counterclockwise numbering the points y^1 , y^2 , y^3 , y^4 .
 - If $x \in [x_i, x_{i+1}]$ and $z \in [z_j, z_{j+1}]$ implicitly defines i and j, then

$$ullet y^1 = y_{i,j}$$
, $y^2 = y_{i+1,j}$, $y^3 = y_{i+1,j+1}$, and $y^4 = y_{i,j+1}$

 Then the equation of the surface over the grid rectangle using bilinear interpolation is given by

$$b_{y^1, y^2, y^3, y^4}(x, z) = (1 - t) \cdot (1 - u) \cdot y^1 + t \cdot (1 - u) \cdot y^2 + t \cdot u \cdot y^3 + (1 - t) \cdot u \cdot y^4$$
(9)

where

$$t \equiv \frac{x - x_i}{x_{i+1} - x_i}$$
$$u \equiv \frac{z - z_j}{z_{j+1} - z_j}$$

so that t and u lie between 0 and 1.

Bilinear Mesh

Figure 3.6.1. (a) Labeling of points used in the two-dimensional interpolation routines beuint and beucof. (b) For each of the four points in (a), the user supplies one function value, two first derivatives, and one cross-derivative, a total of 16 numbers.

Bilinear Approximation

One way to think of this is that for a given $z \in \{z_j, z_{j+1}\}$, b is a linear interpolation of the type in section 2.

• Specifically, suppose $z = z_j$, then u = 0,

$$b_{y^1,y^2,y^3,y^4}(x,z_j) = \left[1 - \left(\frac{x - x_i}{x_{i+1} - x_i}\right)\right] \cdot y^1 + \left(\frac{x - x_i}{x_{i+1} - x_i}\right) \cdot y^2 \quad (10)$$

where

$$y^1 = f(x_i, z_j), y^2 = f(x_{i+1}, z_j).$$

- Notice that (10) is just like (1) where the first term is like 1-A and the second like A.
- We can always rearrange (10) to yield

$$b_{y^{1},y^{2},y^{3},y^{4}}(x,z_{j}) = \left[y^{1} - \left(\frac{x_{i}}{x_{i+1} - x_{i}}\right) \cdot \left[y^{2} - y^{1}\right]\right] + \left(\frac{y^{2} - y^{1}}{x_{i+1} - x_{i}}\right) \cdot x$$
$$= b + mx$$

$$f(x,z) = x^2 + z^2$$

Bilinear Interpolation of $f(x,z) = x^2 + z^2$

One dimensional linear interpolation algorithm

- Suppose we have a set of grid points $X = \{x_i\}_{i=1}^N$ where $x_1 < ... < x_i < ... < x_N$ and we have a piecewise linear function $v^{j}(x)$ at iteration j.
- Specifically, the function is defined by N-1 intervals for which we have an intercept and a slope:

interval	value $v^j(x)$
$x \in [x_1, x_2]$	$a_{1,2}^j + b_{1,2}^j x$
$x \in [x_n, x_{n+1}]$	$a_{n,n+1}^j + b_{n,n+1}^j x$
$x \in [x_{N-1}, x_N]$	$a_{N-1,N}^j + b_{N-1,N}^j x$

• For each x_i , we are trying to solve for v^{j+1} given by

$$v^{j+1}(x_i) = \max_{x' \in [x_1, x_N]} u(x_i - x') + \beta v^j(x').$$
 (11)

• The fact that $x' \in [x_1, x_N]$ rather than $x' \in X$ is the gain to doing interpolation.

Value Function Interpolation

An algorithm to solve this problem (not necessarily the fastest way) is:

- While $\sup_{x} |v^{j}(x) v^{j-1}(x)| > \varepsilon$, do
 - for i = 1, ..., N,
 - \bullet use fminsearch to minimize $-\,V_i^{j+1}$ where:

$$V_{i}^{j+1} = \begin{bmatrix} u(x_{i} - x') + \beta \left[a_{1,2}^{j} + b_{1,2}^{j} x \right], x' \in [x_{1}, x_{2}] \\ \dots \\ u(x_{i} - x') + \beta \left[a_{k,k+1}^{j} + b_{k,k+1}^{j} x \right], x' \in [x_{k}, x_{k+1}] \\ \dots \\ u(x_{i} - x') + \beta \left[a_{N-1,N}^{j} + b_{N-1,N}^{j} x \right], x' \in [x_{N-1}, x_{N}] \end{bmatrix}$$

call the minimized value $v^{j+1}(x_i)$. To be clear, this is just a vector of functions to be minimized by choice of $x' \in [x_1, x_N]$.

• with the new $v^{j+1}(x_i)$, recompute $\{a_{i,i+1}^{j+1},b_{i,i+1}^{j+1}\}_{i=1}^{N-1}$

Value Function Interpolation

- How do we use the matlab function fminsearch? fminsearch(W, initial x'_0 , [], parameters (i.e. $\{a^j_{i,i+1}, b^j_{i,i+1}\}_{i=1}^{N-1}\}$) where you create a matlab function in order to define the function $W = -V_{i}^{j+1}(x').$
- For each x_i , we can create the following function W f u n of the choice variable x' (in matlab) as:
 - function W = W fun(x')
 - if $x' \in [x_1, x_2]$, then $W = -\left\{u(x_i x') + \beta[a_{1,2}^j + b_{1,2}^j x']\right\}$
 - else if $...x' \in [x_k, x_{k+1}]$, then $W = -\left\{ u(x_i - x') + \beta [a_{k,k+1}^j + b_{k,k+1}^j x'] \right\}$
 - else if $x' \in [x_{N-1}, x_N]$, then $W = -\left\{u(x_i - x') + \beta[a_{N-1,N}^j + b_{N-1,N}^j x']\right\}$
 - else W = 1e + 25
- The fminsearch routine will vary $x' \in [x_1, x_N]$ among the different intervals $\{[x_1, x_2], ..., [x_{N-1}, x_N]\}$ until it finds the value of x' which minimizes Wfun(x').