Chapters 8 and 9

More Number Theory and RSA Algorithm

Dr. Shin-Ming Cheng

ON ECTIFITY LAB

CS4003701

Introduction to Public-Key Cryptography

- > Symmetric Cryptography Revisited
- > Principles of Asymmetric Cryptography
- > Practical Aspects of Public-Key Cryptography
- > Important Public-Key Algorithms
- > Essential Number Theory for Public-Key
- > Algorithms

Symmetric Cryptography revisited

Alice Bob

- > Two properties of symmetric (secret-key) cryptosystems
 - The same secret key K is used for encryption and decryption
 - Encryption and Decryption are very similar (or even identical) functions

Symmetric Cryptography: Analogy

- Safe with a strong lock, only Alice and Bob have a copy of the key
 - Alice encrypts -> locks message in the safe with her key
 - Bob decrypts -> uses his copy of the key to open the safe

Symmetric Cryptography: Shortcomings

- > Advantages: very secure, fast, widespread
- Key distribution problem: The secret key must be transported securely
- > Number of keys:
 - In a network, each pair of users requires an individual key $\rightarrow n$ user in the network require $\frac{(n\times(n-1))}{2}$ keys, each user store (n-1) keys

Example:

6 users (nodes)

$$\frac{6.5}{2}$$
 = 15 keys (edges)

Idea behind Asymmetric Cryptography

1976: first publication of such an algorithm by Whitfield Diffie and Martin Hellman, and also by Ralph Merkle.

Asymmetric (Public-Key) Cryptography

Principle: "Split up" the key

→ During the key generation, a key pair K_{pub} and K_{pr} is computed

Asymmetric Cryptography: Analogy

Safe with public lock and private lock:

- > Alice deposits (encrypts) a message with the not secret public key K_{pub}
- > Only Bob has the secret private key K_{pr} to retrieve (decrypt) the message

Basic Protocol for Public-Key Encryption

Alice Bob

$$K_{pubB}$$

Security Mechanisms of Public-Key Cryptography

- > Key Distribution without a pre-shared secret
 - Diffie-Hellman key exchange, RSA
- Nonrepudiation and Digital Signatures to provide message integrity
 - RSA, DSA or ECDSA
- Identification, using challenge-response protocols with digital signatures
- > Encryption
 - RSA / ElGamal
 - Disadvantage: Computationally very intensive
 - > (1000 times slower than symmetric Algorithms!)

Basic Key Transport Protocol (1/2)

- > In practice: Hybrid systems
 - incorporating asymmetric and symmetric algorithms
- Key exchange (for symmetric schemes) and digital signatures are performed with (slow) asymmetric algorithms
- Encryption of data is done using (fast) symmetric ciphers
 - block ciphers or stream ciphers

Basic Key Transport Protocol (2/2)

Example: Hybrid protocol with AES as the symmetric cipher

Choose random symmetric key K

$$y_1 = e_{K_{\rho ubB}}(K)$$

$$y_1$$

$$K = d_{K_{prB}}(y_1)$$

$$y_2 = AES_K(x)$$

$$y_2 \rightarrow x = AES^{-1}_K(y_2)$$

Data Encryption

Key Exchange

(asymmetric)

(symmetric)

How to build Public-Key Algorithms (1/2)

- > Asymmetric schemes are based on a "one-way function" $f(\cdot)$:
 - Computing y = f(x) is computationally easy
 - Computing $x = f^{-1}(y)$ is computationally infeasible
- One way functions are based on mathematically hard problems
 - The problems are considered mathematically hard, but no proof exists (so far)

How to build Public-Key Algorithms (2/2)

- > Factoring integers
 - RSA
 - Given a composite integer n, find its prime factors
 - > Multiply two primes: easy
- > Discrete Logarithm
 - Diffie-Hellman, Elgamal, DSA
 - Given a, y and m, find x such that $a^x = y \mod m$
 - \rightarrow Exponentiation a^x : easy
- > Elliptic Curves (EC):
 - ECDH, ECDSA
 - Generalization of discrete logarithm

Key Lengths and Security Levels

Symmetric	ECC	RSA, DL	Remark
64 Bit	128 Bit	≈ 700 Bit	Only short term security (a few hours or days)
80 Bit	160 Bit	≈ 1024 Bit	Medium security (except attacks from big governmental institutions etc.)
128 Bit	256 Bit	≈ 3072 Bit	Long term security (without quantum computers)

Leonhard Euler

- > Leonhard Euler (1707 1783)
 - Swiss mathematician and physicist
 - Made important discoveries in fields as diverse as calculus, number theory and topology, and introduced much of the modern mathematical terminology and notation
 - Also renowned for his work in mechanics, optics and astronomy
 - Considered to be the preeminent mathematician of the 18th century and one of the greatest of all time

- > **Definition** The Euler phi function (or Euler totient function) is defined by $\phi(n) = |\{x|1 \le x \le n, x \perp n\}|$
- > Remark
 - We will derive the following properties
 - $\Rightarrow \phi(p) = p 1$ for every prime p
 - $\Rightarrow \phi(p^k) = p^{k-1}(p-1)$
 - $\rightarrow \phi(mn) = \phi(m)\phi(n)$ for $m \perp n$

$$\rightarrow \{0,1,2,3,4,5\}(m=6)$$

$$-\gcd(0,6)=6$$

$$-\gcd(1,6)=1$$

$$-\gcd(2,6)=2$$

$$-\gcd(3,6)=3$$

$$-\gcd(4,6)=2$$

$$-\gcd(5,6)=1$$

> 1 and 5 relatively prime to m = 6, hence $\phi(6) = 2$

$$> \{0,1,2,3,4\}(m=5)$$

$$-\gcd(0,5)=5$$

$$-\gcd(1,5)=1$$

$$-\gcd(2,5)=1$$

$$-\gcd(3,5)=1$$

$$-\gcd(4,5)=1$$

$$\phi(5) = 4$$

- \Rightarrow **Proposition** p > 0 is prime iff $\phi(p) = p 1$
 - $(\Longrightarrow) p$ is prime $\Longrightarrow a \perp p$ for each a with $1 \le a \le p-1$, and there are p-1 of them
 - $(\Leftarrow) p$ is not a prime
 - \Rightarrow (i) p = 1, $\phi(1) = 1 \neq 1 1$
 - > (ii) p is a composite with a proper divisor d, then 1 < d < p and $\gcd(p,d) = d > 1$, hence $\phi(p) \le p 2$
- Proposition $\phi(p^k) = p^{k-1}(p-1)$
 - $S = \{p, 2p, 3p, \dots, (p^{k-1} 1) \cdot p, p^{k-1} \cdot p\}$ list all integers between 1 and p^k which are not $\perp p^k$, hence there are $p^k p^{k-1}$ integers $\perp p^k$

> Phi especially easy for $e_i = 1$, e.g.,

$$m = p \times q \rightarrow \phi(m) = (p-1)(q-1)$$

- > Finding $\phi(m)$ is computationally easy if factorization of m is known
 - otherwise the calculation of $\phi(m)$ becomes computationally infeasible for large numbers

- > If canonical factorization of m known: $m = p_1^{e_1} \cdot p_2^{e_2} \cdot \dots \cdot p_n^{e_n}$
- > Calculate Phi according to the relation $\phi(m)$ = $\prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1}) = \prod_{i=1}^{n} (p-1)p^{e_i-1}$
- > Example

$$-\phi(360) = 2^{2}(2-1) \cdot 3(3-1) \cdot (5-11) = 96$$

$$\rightarrow 360 = 2^{3} \cdot 3^{2} \cdot 5$$

Euler's Theorem

- Generalization of Fermat's little theorem to any integer modulus
- > Given two relatively prime integers a and m: $a^{\phi(m)} \equiv 1 \pmod{m}$
- > Example: m = 12, a = 5
 - Calculate Euler's Phi Function

$$\phi(12) = \phi(2^2 \cdot 2^1)(3^1 - 3^0) = (4 - 2)(3 - 1) = 4$$

- Verify Euler's Theorem

$$5^{\phi(12)} = 5^4 = 25^2 = 625 \equiv 1 \mod 12$$

Euler's Theorem

- > Fermat's little theorem = special case of Euler's Theorem
 - for a prime $p: \phi(p) = (p^1 p^0) = p 1$
 - Fermat: $a^{\phi(p)} = a^{p-1} \equiv 1 \pmod{p}$

- > Example: Compute 11²⁰⁰⁶ mod 21
 - Solution $\phi(21) = 12$, so $11^{2006} = 11^{12 \times 167 + 2} = (11^{\phi(21)})^{167} \times 11^2 \equiv 1^{167} \times 121 \equiv 16 \pmod{21}$

Fermat's Little Theorem

- > Given a prime p and an integer a: $a^p \equiv a \pmod{p}$
- \rightarrow Can be rewritten as $a^{p-1} \equiv 1 \pmod{p}$
 - Find modular inverse, if p is prime.
 - Rewrite to $a \cdot a^{p-2} \equiv 1 \pmod{p}$
 - > Comparing with definition of the modular inverse $a \cdot a^{-1} \equiv$ $1 \pmod{p}$
 - $\rightarrow a^{-1} \equiv a^{p-2} \pmod{p}$ is the modular inverse modulo a prime p
- \rightarrow Example: a = 2, p = 7 $a^{p-2} = 2^5 = 32 \equiv 4 \mod 7$
 - Verify $2 \cdot 4 \equiv 1 \mod 7$

> 孫子算經

- 「令有物,不知其數,三三數之,剩二,五五數之,剩三, 七七數之,剩二,問物幾何?」
- 答曰:「二十三」解曰:「三三數之剩二,置一百四十,五 五數之剩三,置六十三,七七數之剩二,置三十,併之, 得二百三十三,以二百一十減之,即得。凡三三數之剩一, 則置七十,五五數之剩一,則置二十一,七七數之剩一, 則置十五,即得」

> 韓信點兵

- 傳當年漢高祖巡狩雲夢大澤,欲藉機擒韓信,但不知其兵數,恐有變,故問曰:「卿部下有多少兵卒?」信曰:「敬稟陛下,兵不知其數,三三數之剩二,五五數之剩三,七 也數之剩二。」
- 高組不解,問法於張良。良曰:「兵數無法算,不可數!」
- 其後雖擒韓信,但仍不知其解。

- \rightarrow Example $N = 15 = 3 \times 5$
 - Every element $a \in Z_N$ can be represented by its coordinates $(a \mod 3, a \mod 5)$
 - This leads to the table:

	0	1	2	3	4
0	0	6	12	3	9
1	10	1	7	13	4
2	5	11	2	8	14

- All elements in Z_N have different coordinates
- Given (a_1, a_2) with $0 \le a_1 < 3$ and $0 \le a_2 < 5$, we can reconstruct a

- > Example $N = 24 = 4 \times 6$
 - Every element $a \in Z_N$ can be represented by its coordinates ($a \mod 4$, $a \mod 6$)
 - This leads to the table:

	0	1	2	3	4	5
0	0/12		8/20		4/16	
1		1/13		9/21		5/17
2	6/18		2/14		10/22	
3		7/19		3/15		11/23

- a and a + 12 (mod 24) map to the same coordinates
- Given (a_1, a_2) with $0 \le a_1 < 4$ and $0 \le a_2 < 6$, we can not uniquely reconstruct a

> Remark

- If $N=m_1m_2$ with $m_1\perp m_2$, computation modulo N can be replaced by modulo m_1 and modulo m_2
 - \rightarrow i.e., $Z_N \cong Z_{m_1} \times Z_{m_2}$ iff $gcd(m_1, m_2) = 1$
- If $N = m_1 m_2$, it is very easy to compute the coordinates of $a \in Z_N$, since they are simply $(a \mod m_1, a \mod m_2)$
- However, given the coordinates (a_1, a_2) of a with $0 \le a_1 \le m_1$ and $0 \le a_2 < m_2$, how do we compute the corresponding a?

- > Example Solve the system $x \equiv 4 \pmod{7}$ and $x \equiv 3 \pmod{5}$
- > Solution
 - We have x = 4 + 7u and $x \equiv 3 \pmod{5}$ for some $u \in Z$.
 - Substituting in the 2nd equation gives $4 + 7u \equiv 3 \pmod{5}$.
 - Therefore, u is given by $2u \equiv 7u \equiv 3-4 \equiv 4 \pmod{5}$.
 - Hence we compute u as $u \equiv \frac{4}{2} \equiv 2 \pmod{5}$.
 - But then $x \equiv 4 + 7u \equiv 4 + 7 \times 2 \equiv 18 \pmod{35}$.

- > Proposition The system $x \equiv a_1 \pmod{m_1}$ and $x \equiv a_2 \pmod{m_2}$ has a solution if $m_1 \perp m_2$.
 - Any two solutions are congruent modulo m_1m_2 .

> Proof

- If $t = m_1^{-1}(a_2 a_1) \mod m_2$, then $x = a_1 + m_1 t$ is such a solution.
- Assume x_1 and x_2 are two solutions.

$$x_1 \equiv a_1 \equiv x_2 \pmod{m_1} \text{ and } x_1 \equiv a_2 \equiv x_2 \pmod{m_2}$$

 $\Rightarrow m_1 | (x_1 - x_2) \text{ and } m_2 | (x_1 - x_2)$
 $\Rightarrow m_1 m_2 | (x_1 - x_2) \text{ since } m_1 \perp m_2$

- > Chinese Remainder Theorem If $m_1, ..., m_r$ are pairwise relatively prime, then the system $x \equiv a_i \pmod{m_i}$ $1 \le i \le r$ has a unique solution modulo $M = m_1 m_2 ... m_r$
- > **Proof 1** Induction on r (對r 做數學歸納法)
- > **Proof 2** $x = \sum_{i=1}^{r} a_i \times M_i \times y_i$ is a solution, where $M_i = \frac{M}{m_i}$ and $y_i \equiv M_i^{-1} \pmod{m_i}$
 - $-M_i \equiv 0 \pmod{m_j}$ for $j \neq i$ and $M_i \times y_i \equiv 1 \pmod{m_i}$

> **Example** Find the unique x modulo $M = 1001 = 7 \times 11 \times 13$ such that $x \equiv 5 \pmod{7}$, $x \equiv 3 \pmod{11}$, and $x \equiv 10 \pmod{13}$

> Solution

- $-M_1 = 143, y_1 = 5$; $M_2 = 91, y_2 = 4$; $M_3 = 77, y_3 = 12$.
- $-x = \sum_{i=1}^{r} a_i \times M_i \times y_i \equiv 5 \times 143 \times 5 + 3 \times 91 \times 4 + 10 \times 77 \times 12 \pmod{1001} \equiv 894 \pmod{1001}$

- > Algorithm Chinese remainder algorithm
 - Input: Vectors $a=(a_1,\ldots,a_r)$ and $m=(m_1,\ldots,m_r)$ with $m_1\perp m_2$
 - Output: Integer CRA with CRA $\equiv a_i \mod m_i$
 - Function CRA(a,m,r)

```
if r=1 Then
```

Set
$$CRA = a_1$$

Else

Set
$$t = m_{r-1}^{-1}(a_r - a_{r-1}) \mod m_r$$

Set
$$a_{r-1} = a_{r-1} + tm_{r-1}$$

Set
$$m_{r-1} = m_{r-1}m_r$$

Set
$$CRA = CRA(a, m, r - 1)$$

End If End Function

The RSA Cryptosystem

- > Martin Hellman and Whitfield Diffie published their landmark public-key paper in 1976
- Ronald Rivest, Adi Shamir and Leonard Adleman proposed the asymmetric RSA cryptosystem in 1977
- Until now, RSA is the most widely use asymmetric cryptosystem although elliptic curve cryptography (ECC) becomes increasingly popular
- > RSA is mainly used for two applications
 - Transport of (i.e., symmetric) keys
 - Digital signatures

RSA

- > RSA was the first algorithm known to be suitable for signing as well as encryption, and one of the first great advances in public key cryptography
 - Patented by MIT in 1983 as U.S. Patent 4,405,829
 - > Expired on 21 September 2000
 - Publicly described in 1977 by Ronald L. Rivest,
 Adi Shamir, and Leonard M. Adleman at MIT
 - > Rivest, Shamir, and Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems", Communications of the ACM, 21(2), pp. 120-126, 1978

Encryption and Decryption

> RSA operations are done over the integer ring Z_n (i.e., arithmetic modulo n), where $n=p\times q$, with p,q being large primes

Encryption and decryption are simply exponentiations in the ring

Definition

Given the public key $(n, e) = k_{pub}$ and the private key $d = k_{pr}$ we write

$$y = e_{k_{pub}}(x) \equiv x^e \mod n$$

 $x = d_{k_{pr}}(y) \equiv y^d \mod n$

where $x, y \in \mathbf{Z}_n$.

We call $e_{k_{DUD}}()$ the encryption and $d_{k_{DI}}()$ the decryption operation.

- > In practice x, y, n and d are very long integer numbers (\geq 1024 bits)
- > The security of the scheme relies on the fact that it is hard to derive the "private exponent" d given the public-key (n, e)

Key Generation

 Like all asymmetric schemes, RSA has set-up phase during which the private and public keys are computed

Algorithm: RSA Key Generation

Output: public key: $k_{pub} = (n, e)$ and private key $k_{pr} = d$

- 1. Choose two large primes p, q
- 2. Compute $n = p \times q$
- 3. Compute $\Phi(n) = (p-1)(q-1)$
- 4. Select the public exponent $e \in \{1, 2, ..., \Phi(n) 1\}$ such that $gcd(e, \Phi(n)) = 1$
- 5. Compute the private key d such that $d \times e \equiv 1 \mod \Phi(n)$
- **6. RETURN** $k_{pub} = (n, e), k_{pr} = d$
- > Remarks:
 - Choosing two large, distinct primes p, q is non-trivial
 - $gcd(e, \Phi(n)) = 1$ ensures that e has an inverse and, thus, that there is always a private key d

Example: RSA with small numbers

ALICE

Message x = 4

BOB

- 1. Choose p = 3 and q = 11
- 2. Compute $n = p \times q = 33$
- 3. $\Phi(n) = (3-1)(11-1) = 20$
- 4. Choose e = 3

$$K_{pub} = (33, 3)$$
 5. $d \equiv e^{-1} \equiv 7 \mod 20$

$$y = x^e \equiv 4^3 \equiv 31 \mod 33$$

$$y^d = 31^7 \equiv 4 = x \mod 33$$

Proof of Decryption

- There exists $k \in \mathbb{Z}$ such that $ed = 1 + k\phi(n)$
 - $-\operatorname{lf}\gcd(x,p)=1$
 - We have $x^{p-1} \equiv 1 \pmod{p}$ by Fermat's Little Theorem
 - > Taking k (q-1)-th power and multiplying with x yields $x^{1+k(p-1)(q-1)} \equiv x \pmod{p}$ (*)
 - if gcd(x,p) = p, then $x \equiv 0 \pmod{p}$ and (*) is valid again
- > Hence $x^{ed} \equiv x \pmod{p}$ in both cases, and by a similar argument we have $x^{ed} \equiv x \pmod{q}$
- > Since p and q are distinct primes, the CRT leads to $y^d \equiv (x^e)^d = x^{ed} = x^{1+k(p-1)(q-1)} \equiv x \pmod{N}$