solutions R

May 19, 2022

ASRR Messy Data Challenge

1.1 Example analysis (R version)

```
[]: # Load library
     packages <- c("tidyverse", "data.table", "haven", "skimr", "janitor")</pre>
     for (p in packages) {
         if (!require(p, character.only = TRUE)) install.packages(p)
         suppressPackageStartupMessages(library(p, character.only = TRUE))
     }
```

1.2 Data exploration

1.2.1 Read in data

```
[2]: df <- read_dta("../data/icu_data.dta")</pre>
     head(df)
```

	age	gender	iculos	hr	temp	sbp	dbp	resp	o2sat	map	sep
	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<d					
-	65.36	0	28	71.0	38.11	168.00	56.0	17	94.0	91.0	0
A tibble: 6×13	55.00	0	7	76.0	37.50	133.00	74.0	24	96.0	99.0	0
	38.00	0	15	77.0	NA	146.00	83.0	17	NA	108.0	0
	72.17	1	34	53.5	NA	157.00	60.5	15	95.5	92.5	0
	61.26	1	2	72.5	NA	93.25	68.5	18	100.0	79.0	0
	21.00	1	19	74.0	NA	118.00	104.0	20	91.0	112.0	0

1.2.2 What's in the dataset

[3]: summary(df)

age	gender	iculos	hr
Min. : 14.00	Min. :0.0000	Min. : 1.00	Min. : 20.00
1st Qu.: 51.00	1st Qu.:0.0000	1st Qu.: 10.00	1st Qu.: 72.00
Median : 63.44	Median :1.0000	Median : 21.00	Median : 83.00
Mean : 61.74	Mean :0.5485	Mean : 26.18	Mean : 84.23
3rd Qu.: 74.00	3rd Qu.:1.0000	3rd Qu.: 34.00	3rd Qu.: 95.50
Max. :100.00	Max. :1.0000	Max. :336.00	Max. :223.00
			3741 404407

NA's :131167

temp sbp dbp resp :20.9 Min. : 20.0 Min. : 20 Min. Min. : 1.00 1st Qu.:36.5 1st Qu.:107.0 1st Qu.: 55 1st Qu.: 16.00 Median:36.9 Median :122.0 Median: 63 Median : 18.00 Mean :36.9 Mean :124.7 Mean: 65 Mean : 18.73 3rd Qu.:37.4 3rd Qu.:140.0 3rd Qu.: 73 3rd Qu.: 21.00 Max. :50.0 Max. :298.0 Max. :300 Max. :100.00 NA's NA's NA's :822321 NA's :176747 :373178 :205042 o2sat map sepsislabel hospid Min. : 20.00 Min. : 20.00 Min. :0.000000 Length: 1201974 1st Qu.: 96.00 1st Qu.: 72.00 1st Qu.:0.000000 Class : character Median: 98.00 Median : 82.00 Median :0.000000 Mode :character : 83.55 : 97.15 Mean Mean Mean :0.001379 3rd Qu.: 99.00 3rd Qu.: 93.00 3rd Qu.:0.000000 Max. :100.00 Max. :300.00 Max. :1.000000 NA's :170544 NA's :163352 patid Min. : 1st Qu.:12317 Median :23294 Mean :22012 3rd Qu.:31822 Max. :40336

1.2.3 Distributions of each of the variables

```
[4]: options(width = 110)
skim(df)
```

Data Summary

Values
Name df
Number of rows 1201974
Number of columns 13

Column type frequency:

character 1 numeric 12

Croup wariables

Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace 1 hospid 0 1 1 1 0 2 0

Variable type: numeric

skim	_varia	ble n_	missing	complete_rate	mean	sd	p0	p25
p50	p75	p100 h	ist					
1 age			0	1	61.7	16.5	14	51
63.4	74	100						
2 gend	.er		0	1	0.549	0.498	0	0
1	1	1						
3 icul	.08		0	1	26.2	27.9	1	10
21	34	336						
4 hr			131167	0.891	84.2	17.6	20	72
83	95.5	223						
5 temp)		822321	0.316	36.9	0.759	20.9	36.5
36.9	37.4	50						
6 sbp			176747	0.853	125.	23.6	20	107
122	140	298						
7 dbp			373178	0.690	65.0	14.2	20	55
63	73	300						
8 resp			205042	0.829	18.7	5.02	1	16
18	21	100						
9 o2sa			170544	0.858	97.1	2.98	20	96
98	99	100						
10 map			163352	0.864	83.5	16.6	20	72
82	93	300						
11 seps			0	1	0.00138	0.0371	0	0
•	0	1						
12 pati			0	1	22012.	11502.	1	12317
23294	31822	403	36					

1.2.4 Complete case indicator

Only 28% of records have no missing vital signs

1.3 Outcome exploration

1.3.1 How many people were diagnosed with sepsis?

```
[7]: df %>%
    group_by(patid) %>%
    summarise(any_sepsis = max(sepsislabel)) %>%
    tabyl(any_sepsis)
```

1.3.2 When do people get sepsis in ICU?

```
[8]: df_sepsis <- df %>%
    filter(sepsislabel == 1) %>%
    group_by(patid) %>%
    summarise(time_to_sepsis = min(iculos))
skim(df_sepsis, time_to_sepsis)
```

Data Summary

Values
Name df_sepsis
Number of rows 1657
Number of columns 2

1

Column type frequency:

Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
1 time_to_sepsis 0 1 65.7 60.9 7 20 45 91 331

• min: 7 hours

• max: 331 hours (13.8 days)

• median: 45 hours

1.3.3 Create indicator for patient who get sepsis:

1.4 Imputing explanatory measures

1.4.1 Mean Imputation

```
[11]: impute_mean <- function(x) replace_na(x, mean(x, na.rm=T))
# Use only ICULOS <= 5
df_imp <- df %>%
    filter(iculos <= 5) %>%
    group_by(patid) %>%
    arrange(patid, iculos) %>%
    mutate(across(all_of(cols), impute_mean, .names = "{.col}_imp1"))
```

1.4.2 First observation carried backwards

```
[12]: df_imp <- df_imp %>%
    mutate(across(all_of(cols), ~.x, .names = "{.col}_imp2")) %>%
    fill(ends_with("_imp2"), .direction = "up")
head(df_imp)
```

		age	gender	iculos	nr	temp	spp	abp	resp	o2sat	$_{ m map}$
A grouped_df: 6×28	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl></dbl>	
	-	83.14	0	1	NA	NA	NA	NA	NA	NA	NA
	A grouped df. 6 x 20	83.14	0	2	97	NA	98	NA	19.0	95.0	75.33
	83.14	0	3	89	NA	122	NA	22.0	99.0	86.00	
	83.14	0	4	90	NA	NA	NA	30.0	95.0	NA	
	83.14	0	5	103	NA	122	NA	24.5	88.5	91.33	
		75.91	0	1	NA	NA	NA	NA	NA	NA	NA

1.4.3 Inspect missingness again among imputed variables

A tabyl:
$$2 \times 3 = \begin{array}{cccc} cc_fl_imp2 & n & percent \\ < lgl> & < int> & < dbl> \\ \hline FALSE & 6897 & 0.2230234 \\ TRUE & 24028 & 0.7769766 \end{array}$$

78% of rows non-missing for each imputation method

1.5 Modelling

1.5.1 Dummy indicators for hospital:

In R, dummy indicators for a binary / categorical (a.k.a factor) variable will be created automatically when creating a formula object to be used in generalised-linear model with glm().

However, a no-intercept model is needed when fitting the regression to avoid multicollinearity issue due to singular matrix. For more discussion, see: https://stats.stackexchange.com/a/94021

1.5.2 Mean imputation

```
[17]: summary(model_imp1)
```

```
Call:
```

```
glm(formula = any_sepsis ~ -1 + age + gender + o2sat_imp1 + hr_imp1 +
    temp_imp1 + sbp_imp1 + map_imp1 + resp_imp1 + factor(hospid),
    family = binomial(link = "logit"), data = filter(df_imp,
        iculos == 1))
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -1.0167 -0.3480 -0.2962 -0.2514 2.9621
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
age 0.001538 0.001873 0.821 0.41162
gender 0.182319 0.060440 3.017 0.00256 **
o2sat_imp1 0.014192 0.011535 1.230 0.21855
```

```
0.001835
hr_imp1
           0.011620
                            6.334 2.39e-10 ***
temp_imp1
           0.007815 0.040582 0.193 0.84730
sbp_imp1
            0.002920 0.002554 1.143 0.25302
map_imp1
           resp imp1
factor(hospid)A -5.496563 1.878954 -2.925 0.00344 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
  Null deviance: 33309.9 on 24028 degrees of freedom
Residual deviance: 9321.4 on 24018 degrees of freedom
 (6897 observations deleted due to missingness)
AIC: 9341.4
```

Number of Fisher Scoring iterations: 6

```
[18]: # Calculate odds ratio & 95% confidence interval
exp(coefficients(model_imp1)) %>%
    enframe(name = "variable", value = "odds ratio") %>%
    add_column(as_tibble(exp(confint(model_imp1))))
```

Waiting for profiling to be done ...

	variable	odds ratio	2.5~%	97.5~%
	<chr $>$	<dbl $>$	<dbl></dbl>	<dbl $>$
	age	1.00153917	9.978819e-01	1.0052367
	gender	1.19999753	1.066285e+00	1.3514246
A tibble: 10×4	$o2sat_imp1$	1.01429313	9.925303e- 01	1.0383737
	hr_imp1	1.01168795	1.008049e+00	1.0153248
A tibble, 10 × 4	$temp_imp1$	1.00784512	9.309287e-01	1.0914074
	${ m sbp_imp1}$	1.00292389	9.978885e-01	1.0079298
	map_imp1	0.98340323	9.760605 e-01	0.9908138
	$resp_imp1$	1.05165073	1.038685e+00	1.0646521
	factor(hospid)A	0.00410084	9.841101e-05	0.1554736
	factor(hospid)B	0.00267482	6.446135 e-05	0.1010534

First observation carried backwards

```
family = binomial(link = "logit")
     )
[20]: summary(model_imp2)
    Call:
    glm(formula = any_sepsis ~ -1 + age + gender + o2sat_imp2 + hr_imp2 +
        temp_imp2 + sbp_imp2 + map_imp2 + resp_imp2 + factor(hospid),
        family = binomial(link = "logit"), data = filter(df_imp,
            iculos == 1)
    Deviance Residuals:
        Min
                 1Q
                     Median
                                 3Q
                                        Max
    -1.1188 -0.3487 -0.2969 -0.2530
                                      2.9213
    Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
                    0.002011
                             0.001858 1.083 0.278993
    age
    gender
                    0.179775
                             0.060351
                                       2.979 0.002894 **
                   -0.003505 0.008713 -0.402 0.687495
    o2sat imp2
    hr_imp2
                    temp imp2
                   0.036431 0.038238 0.953 0.340720
                   0.001067 0.002164 0.493 0.622103
    sbp_imp2
                   map imp2
    resp_imp2
                   factor(hospid)A -4.629805
                             1.652233 -2.802 0.005076 **
    factor(hospid)B -5.080070
                              1.648675 -3.081 0.002061 **
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    (Dispersion parameter for binomial family taken to be 1)
        Null deviance: 33309.9 on 24028 degrees of freedom
    Residual deviance: 9339.9 on 24018 degrees of freedom
      (6897 observations deleted due to missingness)
    AIC: 9359.9
    Number of Fisher Scoring iterations: 6
[21]: # Calculate odds ratio & 95% confidence interval
     exp(coefficients(model_imp2)) %>%
         enframe(name = "variable", value = "odds ratio") %>%
         add_column(as_tibble(exp(confint(model_imp2))))
```

data = filter(df_imp, iculos == 1),

Waiting for profiling to be done...

	variable	odds ratio	2.5~%	97.5~%	
	<chr $>$	<dbl></dbl>	<dbl></dbl>	<dbl $>$	
•	age	1.002013075	0.9983839947	1.0056812	
	gender	1.196947746	1.0637620110	1.3477559	
	$o2sat_imp2$	0.996501380	0.9804169530	1.0145076	
A 4111 10 4	hr_imp2	1.011157302	1.0078466742	1.0144630	
A tibble: 10×4	$temp_imp2$	1.037102407	0.9623432758	1.1179221	
	sbp_imp2	1.001067178	0.9968119421	1.0053017	
	map_imp2	0.987955994	0.9818196556	0.9941161	
	$resp_imp2$	1.034665510	1.0240921583	1.0452040	
	factor(hospid)A	0.009756666	0.0003699473	0.2408788	
	factor(hospid)B	0.006219472	0.0002375450	0.1525313	
	, - ,				

1.5.3 Higher respiration rate among those with sepsis?

1

Data Summary

Name Piped data
Number of rows 30925
Number of columns 32

Column type frequency:

Group variables any_sepsis

Variable type: numeric

```
      skim_variable any_sepsis n_missing complete_rate
      mean
      sd
      p0
      p25
      p50

      p75
      p100 hist
      1
      resp_imp1
      0
      960
      0.967
      18.2
      4.42
      1
      15.4
      17.9

      20.4
      98

      2 resp_imp1
      1
      68
      0.959
      19.6
      5.54
      1
      15.9
      18.8

      22.4
      44.5
```

Data Summary

Values

Name Piped data

Number of rows 30925 Number of columns 32

Column type frequency:

numeric 1

Group variables any_sepsis

Variable type: numeric

skim_variable	any_sepsis	n_missing	complete_rate	mean	sd	p0	p25	p50
p75 p100 hist								
1 resp_imp2	0	960	0.967	18.2	5.20	1	15	18
21 98								
2 resp_imp2	1	68	0.959	19.5	6.08	1	15.5	19
22.5 50								