ANDERSON MISOBUCHI

@ andersonmisobuchi@gmail.com

in linkedin.com/in/andersonmisobuchi

ngithub.com/andersonmisobuchi

EXPERIENCE

♀ Austin, TX - United States

Graduate Researcher - UT Austin

Weinberg Theory Group

August 2016 - Present

- Austin, TX
- Research on the connection between quantum information and quantum gravity via a conjectured duality
- Experience with numerical simulations on supercomputer

Teaching Assistant / Instructor - UT Austin

August 2016 - Present

♀ Austin, TX

- Lab experiments, discussion sections, grading, office hours for various undergraduate physics courses
- 1 year as instructor of record for Physical Science 304

ACHIEVEMENTS

- 6 articles published in top journals of the field
- 8+ Poster and oral presentations in respected conferences
- Graduate Continuing Fellowship Award (2020)

TECHNICAL SKILLS

- Python NumPy, Pandas, Scikit-Learn, TensorFlow, Keras
- Machine Learning Regression, Random forests, Ensembling, CNN, RNN, Clustering
- Mathematica, Matlab, SQL, LateX, git

PERSONAL SKILLS

- Initiative to solve problems
- Logical thinking
- · Verbal and written communication
- · Comfortable working independently

CERTIFICATIONS

Machine Learning (Coursera)

Deep Learning Specialization (Coursera)

EDUCATION

PhD in Physics

University of Texas at Austin

Expected 2022

MS in Physics

University of São Paulo

2016

BA in Physics

University of São Paulo

2014

Coursework:

Calculus I-IV, Linear Algebra I&II, Probability and Statistics, Stochastic Methods, Complexity theory, Foundations of Data Science

PROJECTS

Sparse SYK Model (Github)

- Simulated a sparse version of the SYK model, a many-body quantum system of great interest in quantum gravity.
- Used MPI paralellization and Krylov subspace techniques on the Texas Advanced Computing Center (TACC).
- Achieved current largest scale simulation of the system with 40 particles.

Tensor Networks (Github)

- Investigated applications of tensor networks (a framework to simulate quantum systems of many particles) to both supervised and unsupervised machine learning algoithms.
- Created tutorials about tensor networks aimed at non-physicists using the python library TensorNetwork.
- Compared performance of tensor networks to a basic neural network.

Quantum chaos (Ongoing)

- Diagnosing quantum chaotic properties in the sparse SYK model.
- Built prototypes and conducted benchmarks to scale up the simulation.
- Submitted proposal to use TACC Frontera resources as a co-Pl.