Discussion

Karnaugh Maps, Minimization, & FSMs

Karnaugh Maps

- Visual method for boolean simplification
- Makes use of 2 important boolean identities:

$$(1 + A) = 1 \qquad (A + \overline{A}) = 1$$

- Leverages gray coding to organize neighboring minterms
 - Adjacent minterms only differ by a single bit!

2 variable Karnaugh map

$$F(A,B) = \overline{A}B + \overline{A}$$

4 variable Karnaugh map

$$F(A,B,C,D) = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}\bar{D}$$

5 Variable Karnaugh Map!! (The Bad Way)

5 Variable Karnaugh Map!! (The Good Way)

Finite State Machines

- What are they used for?
- Mealy vs. Moore?
- States are the memory!
- Can be represented in many ways
 - o Bubble diagrams
 - Tables
 - Case statements in verilog

Building transition table

la a d	04-4-	Nlaud	Outrot
Input	State	Next State	Output

Building the circuit

Input	State	Next State	Output
0	S0	S2	0
1	S0	S1	0
0	S1	S2	1
1	S1	S1	1
0	S2	S2	0
1	S2	S1	0

Equations:

S1 =

S2 =

Output =

Building a Bubble Diagram

Input	State	Next State	Output
Timer	Green	Green	N/A
Button	Green	Yellow	N/A
Timer	Yellow	Red	N/A
Timer	Red	Green	N/A