DD2476: Search Engines and Information Retrieval Systems

Johan Boye*
KTH
Lecture 6

^{*} Many slides inspired by Manning, Raghavan and Schütze

Improving recall in search

- Relevance feedback (assignment 3.1)
 - "Give me more of this (and less of that)"
- Wildcard queries (3.3, 3.4)
 - "colo*rful" \rightarrow "colorful", "colourful"
- Spelling correction (3.5, 3.6)
 - "see you on the wki" \rightarrow "see you on the wiki"
- Query expansion
 - adding synonyms, etc. to the query
 - word vectors, multi-lingual retrieval

Relevance feedback

Relevance feedback: Basic idea

- The user issues a (short, simple) query.
- The search engine returns a set of documents.
- User marks some docs as relevant, some as nonrelevant.
- Search engine computes a new query that better (hopefully) represents the information need.
- Search engine runs new query and returns new results.
- New results have (hopefully) better recall.

Key concept for relevance feedback: Centroid

- The centroid is the center of mass of a set of points.
- Recall that we represent documents as points in a high-dimensional space.
- Thus: we can compute centroids of documents.
- Definition:

$$\vec{\mu}(D) = \frac{1}{|D|} \sum_{d \in D} \vec{v}(d)$$

• where D is a set of documents, and $\vec{v}(d) = \vec{d}$ is the vector we use to represent document d.

Key concept for relevance feedback: Centroid

Rocchio algorithm

- The Rocchio algorithm implements relevance feedback in the vector space model.
- Rocchio chooses the query \vec{q}_{opt} that maximizes

$$\vec{q}_{opt} = \arg\max_{\vec{q}} [\sin(\vec{q}, \mu(D_r)) - \sin(\vec{q}, \mu(D_{nr}))]$$

- Dr : set of relevant docs; Dnr : set of nonrelevant docs
- Intent: \vec{q}_{opt} is the vector that separates relevant and nonrelevant docs maximally.
- We can rewrite this as:

$$\vec{q}_{opt} = \mu(D_r) + [\mu(D_r) - \mu(D_{nr})]$$

Rocchio algorithm

The optimal query vector is:

$$\vec{q}_{opt} = \mu(D_r) + [\mu(D_r) - \mu(D_{nr})]$$

$$= \frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j + [\frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j]$$

 We move the centroid of the relevant documents by the difference between the two centroids.

Example: Rocchio algorithm

circles: relevant documents, Xs: nonrelevant documents

 $\vec{\mu}_R$: centroid of relevant documents

 $\vec{\mu}_R$ does not separate relevant / nonrelevant.

 $\vec{\mu}_R$ centroid of nonrelevant documents.

 $\vec{\mu}_R - \vec{\mu}_{NR}$: difference vector

Add difference vector to $\vec{\mu}_R$...

... to get \vec{q}_{opt}

 \vec{q}_{opt} separates relevant / nonrelevant perfectly.

Four documents:

- 1. cat **√**
- 2. cat dog ✓
- 3. cat horse horse
- 4. horse X

I find **1,2 relevant**, and **3,4 non-relevant**. What is the optimal query according to Rocchio?

1	√	cat	(1,0,0)
2	√	cat dog	(1,1,0)
3	×	cat horse horse	(1,0,2)
4	*	horse	(0,0,1)

Relevant centroid R = (1, 0.5, 0)

Non-relevant centroid NR = (0.5, 0, 1.5)

1	√	cat	(1,0,0)
2	√	cat dog	(1,1,0)
3	×	cat horse horse	(1,0,2)
4	×	horse	(0,0,1)

Relevant centroid R = (1, 0.5, 0)

Non-relevant centroid NR = (0.5, 0, 1.5)

Q = R + R - NR = (1.5, 1, -1.5)

1	✓	cat	(1,0,0)
2	√	cat dog	(1,1,0)
3	×	cat horse horse	(1,0,2)
4	×	horse	(0,0,1)

Q = R + R - NR = (1.5, 1, -1.5)

$$\cos(Q, 1) = \frac{1.5 \cdot 1 + 1 \cdot 0 - 1.5 \cdot 0}{\sqrt{5.5} \cdot \sqrt{1}} = 0.64$$

$$\cos(Q, 3) = \frac{1.5 \cdot 1 + 1 \cdot 0 - 1.5 \cdot 2}{\sqrt{5.5} \cdot \sqrt{5}} = -0.29$$

Rocchio 1971 algorithm (SMART)

Used in practice:

$$\vec{q}_{m} = \alpha \vec{q}_{0} + \beta \mu(D_{r}) - \gamma \mu(D_{nr})$$

$$= \alpha \vec{q}_{0} + \beta \frac{1}{|D_{r}|} \sum_{\vec{d}_{j} \in D_{r}} \vec{d}_{j} - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_{j} \in D_{nr}} \vec{d}_{j}$$

- q_m : modified query vector; q_0 : original query vector; D_r and D_{nr} : sets of **known** relevant and nonrelevant documents respectively; α , β , and γ : weights
- New query moves towards relevant documents and away from nonrelevant documents.

Positive vs negative feedback

- Positive feedback is more valuable than negative feedback.
 - For example, set β = 0.75, γ = 0.25 to give higher weight to positive feedback.
- Many systems only allow positive feedback.
 - Why?
 - This is what we will do in assignment 3.

Relevance feedback - Assumption

- Relevance documents are similar
 - Term distribution in relevant documents will be similar
 - Term distribution in non-relevant documents will be different from those in relevant documents
 - Similarities between relevant and irrelevant documents are small

Violation of the assumption

- There are several clusters of relevant documents
- Examples:
 - Alternative terminology (Burma / Myanmar)
 - Disjunctive queries ("Celebrities that use to work for Burger King")
 - Instances of general concepts (Feline \rightarrow cat, tiger, lion, etc)

Relevance feedback: Problems

- Long queries are inefficient for typical IR engine.
 - Possible solution: Only reweight certain prominent terms
 - Perhaps top 20 by term frequency
- Users are often reluctant to provide explicit feedback
- It's often harder to understand why a particular document was retrieved after applying relevance feedback

Pseudo-relevance feedback

- Users are often reluctant to provide explicit feedback
- Pseudo-relevance feedback automates the "manual" part of true relevance feedback.
- Pseudo-relevance algorithm:
 - Retrieve a ranked list of hits for the user's query
 - Assume that the top k documents are relevant.
 - Do relevance feedback (e.g., Rocchio)
- Works very well on average
 - But can go horribly wrong for some queries.
 - Several iterations can cause query drift.

Wildcard queries

Tolerant retrieval

- Spelling correction
 - "see you on the wki" \rightarrow "see you on the wiki"
- Wildcard queries
 - "colo*rful" \rightarrow "colorful", "colourful"
- In both cases, the search engine needs to
 - construct the intended query (or queries)
 - compute the results for those queries (intersection, phrase, ranked retrieval)
 - list the results

Wildcard queries: one word

- care*: find all docs containing any word beginning "care".
- *less: find words ending in "less"
- colo*r: find all words beginning "colo" and ending in "r"
- general case: any numbers of '*' placed anywhere in the word (we will not consider this case)
- special case: '*' matches all words (you don't need to consider this case)

Wildcard queries: several words

 b* colo*r: find all docs containing any word beginning "b", and any word beginning with "colo" ending in "r"

Wildcard queries

- How do we find all words matching care* ?
- Idea: Go through all words in the vocabulary, and check which words match the regular expression
 ^care.*
 - e.g. using Java's regex library
- Would this work?

K-gram index

- For both wildcard queries and spelling correction we must quickly find words that
 - the user intended (for wildcard queries), or
 - the user probably intended (for spelling correction)
- A **k-gram index** is an index from k-grams (parts of words) to words.
 - bigram index when k=2
 - trigram index when k=3
 - etc.

K-grams

- The bigrams of **december**:
 - First add start and end symbol: ^december\$
 - Bigrams are all two-letter sequences:^d, de, ec, ce, em, mb, be, er, r\$

- The trigrams of december:
 - ^de, dec, ece, cem, emb, mbe, ber, er\$

• A word of length *n* has *n+3–k k*-grams

K-gram index

- For k-gram indexes, we can reuse a lot of ideas from our usual inverted indexes:
 - keys in a hashtable
 - values as arraylists

K-gram index and wildcards

- Suppose we want to find matches for mon*
- How would you search?

K-gram index and wildcards

- Suppose we want to find matches for mon*
- How would you search?
 - do an intersection search for ^m mo on in k-gram index
 - post-process the results using the regex library
 - do a union search on the resulting words in the ordinary index

K-gram index and wildcards

- Suppose we want to find matches for mon* tra*
- Which documents in this Venn diagram are you looking for?

Spelling correction

Spelling correction

- Two principal uses
 - Correcting document(s) being indexed
 - Correcting user queries to retrieve "right" answers
 - Usually documents are left intact, but queries spell-checked
- Two main flavors:
 - Isolated word
 - Will not catch typos resulting in correctly spelled words,
 e.g., from → form
 - Context-sensitive, e.g. I flew form Heathrow to Narita.

Spelling correction

- Fundamental premise there is a lexicon from which the correct spellings come
- Two basic choices for this
 - (Grammatical approach) A standard lexicon such as
 - Webster's English Dictionary
 - An "industry-specific" lexicon hand-maintained
 - (Data-driven approach) The lexicon of the indexed corpus
 - E.g., all words on the web
 - All names, acronyms etc.
 - (Including the mis-spellings)

Spelling correction of a single word

- What we will do in assignment 3:
 - Data-driven approach (no lexicon)
 - Assumption: A word is **not** misspelt if it appears in at least 1 document.
 - If a word has 0 occurrences it might be misspelt, and the search engine should suggest corrections

Spelling correction of a single word

- Methods:
 - Edit distance
 - Weighted edit distance
 - *n*-gram overlap
- These can (should?) be combined

Levenshtein (edit) distance

What is dist(intention, execution)?

```
intention 

tention 

tention 

tention 

tention 

tention 

tesubstitute n by e 

tention 

text 

tention 

tenti
```

- Cost 1+2+2+1+2 = 8
- Can be efficiently computed with dynamic programming

	#	a	b	0	V	e
#						
b						
r						
0						
k						
e						

	#	a	b	0	V	e
#	0	1	2	3	4	5
b	1					
r	2					
0	3					
k	4					
e	5					

	#	a	b	0	V	e
#	0	1	2	3	4	5
b	1	2				
r	2					
0	3					
k	4					
e	5					

	#	a	b	0	V	e
#	0	1	2	3	4	5
b	1	2	1	2	3	4
r	2	3	2	3	4	5
0	3	4	3	2	3	4
k	4	5	4	3	4	5
e	5	6	5	4	5	4

Weighted edit distances

- As above, but the weight of an operation depends on the character(s) involved
 - Meant to capture OCR or keyboard errors, e.g. m more likely to be mis-typed as n than as q
 - Therefore, replacing m by n is a smaller edit distance than by q
 - This may be formulated as a probability model
- Requires weight matrix as input
- Modify dynamic programming to handle weights

Using edit distances

- Given a misspelt word in the query, find all words in the index within a preset edit distance (e.g. 2)
 - 1. Show terms you found to user as suggestions, or
 - 2. Look up all possible corrections in our inverted index and return all docs ... slow, *or*
 - 3. Run with a single most likely correction
- In assignment 3, we will opt for alternative 1.

Using edit distances

- Given a query, do we compute its edit distance to every dictionary term?
 - Expensive and slow
- How do we find the candidate dictionary terms?
 - One alternative: k-gram overlap
 - Use the k-gram index again!
 - Can also be used by itself for spelling correction

k-gram overlap

- Enumerate all the k-grams in the query string as well as in the lexicon
 - november: ^no, nov, ove, vem, emb, mbe, ber, er\$
 - december: ^de, dec, ece, cem, emb, mbe, ber, er\$
 - overlap 4/12 unique trigrams
 - the Jacquard coefficient = 4/12 = 0.33
 - generally, $\frac{\mid X \cap Y \mid}{\mid X \cup Y \mid}$ where X,Y are sets

Spelling correction of a single word

• E.g. wki

- Do a union search in the k-gram index for^w wk ki i\$
- Calculate the Jacqard coefficient between wki and each of the resulting words
- If the JC > some threshold for word w, calculate the
 Levenshtein distance between w and wki
- If Levenstein distance < some other threshold, then w is a potential correction
- Add w to the list of corrections

Spelling correction, multi-word queries

- E.g. "See yuoq on the wki"
- Includes two (possibly) misspellt words: yuoq and wki with 0 postings
- Construct the lists of spelling suggestions for each word
 - Lists for words with > 0 postings will only contain themselves
 - Then merge the lists

Spelling correction, multi-word queries

See youq on the wki

see	you	on	the	wiki
	your			ki
	youd			wi
	yous			wk
	youn			waki

Now the lists have to merged to produce final suggestions

Spelling correction, multi-word queries

- Final list of suggestions (for instance):
 - -See you on the wiki
 - -See you on the ki
 - -See you on the wi
 - -See you on the wk
 - -See you on the waki

General issues in spell correction

- We enumerate several possible alternatives to misspelled queries – which ones should we present to the user?
- Use heuristics:
 - The alternative matching most documents (expensive)
 - The alternative likely to match most documents (using heuristics, cheaper)
 - Query log analysis what have others been searching for?
 What has this user been searching for?

Query expansion

Query expansion

- improve retrieval results by adding synonyms / related terms to the query
- query-independent, "global" method

Why are synonyms important?

- As an example consider query q: [aircraft] . . .
 - . . . and document d containing "plane", but not containing "aircraft"
 - A simple IR system will not return d for q.
 - Even if d is the most relevant document for q!
- We want to change this:
 - Return relevant documents even if there is no term match with the (original) query

Query expansion

- In global query expansion, the query is modified based on some global resource, i.e. a resource that is not query-dependent.
- Main information we use: (near-)synonymy
- A publication or database that collects (near)-S synonyms is called a thesaurus.
- We will look at two types of thesauri: manually created and automatically created.

Thesaurus-based query expansion

- For each term t in the query, expand the query with words the thesaurus lists as semantically related with t.
 - E.g. CARDIAC \rightarrow HEART
 - Generally increases recall
- May significantly decrease precision, particularly with ambiguous terms
 - INTEREST RATE → INTEREST RATE HOBBY
- Widely used in specialized search engines for science and engineering
- It's very expensive to create a manual thesaurus and to maintain it over time.

PubMed: Manually curated thesaurus

Automatic thesaurus construction

- Attempt to generate a thesaurus automatically by analyzing the distribution of words in documents
- <u>Definition 1:</u> Two words are similar if they co-occur with similar words.
 - "car" ≈ "motorcycle" because both occur with "road", "gas" and "license", so they must be similar.
- <u>Definition 2:</u> Two words are similar if **they occur in a given grammatical relation** with the same words.
 - You can harvest, peel, eat, prepare, etc. apples and pears, so apples and pears must be similar.
- Co-occurrence is more robust, grammatical relations are more accurate.

Word embedding approaches

- Mapping words to vectors of real numbers
- If w_1 and w_2 have similar meaning, then $vec(w_1)$ and $vec(w_2)$ are similar
- Many approaches exist:
 - Latent Semantic Analysis (LSA), Random Indexing,
 Word2Vec (2013), Glove (2014), Fasttext (2017),
 Elmo (2018)...
 - Vectors have typically 50-300 dimensions
 - Words with similar semantics can be retrieved with a Nearest Neighbor software package

Word embedding approaches

Sentence embeddings

- Mapping sentences to vectors of real numbers
- If s₁ and s₂ have similar meaning, then vec(s₁) and vec(s₂) are similar
- Universal Sentence Encoder (2018), BERT (2018)
- LASER (2019) Multi-lingual sentence embeddings

LASER

Query expansion using query logs

- Example 1: After issuing the query [herbs], users frequently search for [herbal remedies].
 - \rightarrow "herbal remedies" is potential expansion of "herb".
- Example 2: Users searching for [flower pix]
 frequently click on the URL photobucket.com/flower.
 Users searching for [flower clipart] frequently click
 on the same URL.
 - — → "flower clipart" and "flower pix" are potential expansions of each other.

Summary

- Ways of improving recall in search:
 - Relevance feedback (assignment 3.1)
 - Wildcard queries (3.3, 3.4)
 - Spelling correction (3.5, 3.6)
 - Query expansion