Slope inequality for an arbitrary divisor

Houari Benammar Ammar

February 3, 2023

Abstract

Let $f:S\longrightarrow C$ be a surjective morphism with connected fibers from a smooth complex projective surface S to a smooth complex projective curve C. Let D be an arbitrary divisor on S such that $\mathrm{rk}(f_*\mathcal{O}_S(D))>1$. We make sense to the notion of slope inequality for D case by case. As a consequence, we prove: if $f:S\to C$ is a relatively minimal fibration with $g=g(F)\geq 2$ where F is the general fiber of $f,D=K_{S/C}$ and $N_1|_F$ (the Miyaoka divisor for the maximal destabilizing sub-vector bundle restricted to F) is nonspecial, $h^0(F,N_1|_F)>1$, then:

$$K_{S/C}^2 \ge 4 \frac{(g-1)(2g-1)}{(g-1)(2g-1)+g} \deg f_* \omega_{S/C}.$$

1 Introduction

Let $f: S \to C$ be a surjective morphism from a smooth complex projective surface S to a smooth complex projective curve C with connected fibers. We call the morphism f a fibration. Let D be a divisor on S. We consider the sheaf $\mathcal{E} = f_* \mathcal{O}_S(D)$, which is torsion free because C is a curve. Since a torsion free sheaf on curve is always locally free sheaf, \mathcal{E} is locally free and its rank is $h^0(F, D|F)$ where F is a general fiber of f of genus g(F) = g.

The fibration f is called smooth if all its fibers are smooth, isotrivial if all its smooth fibers are isomorphic to each other and locally trivial if it is both smooth and isotrivial. Let ω_S (resp K_S) be the canonical sheaf (resp. the canonical divisor) of S, $\omega_{S/C} = \omega_S \otimes f^* \omega_C^{\vee}$ (resp. $K_{S/C} = K_S - f^* K_C$) the relative canonical sheaf (resp. the relative canonical divisor) where ω_C (resp. K_C) is the canonical sheaf of C (resp. the canonical divisor). In particular, if $D = K_{S/C}$, then \mathcal{E} is nef vector bundle, [8], its rank is g and its degree is:

$$\deg(\mathcal{E}) := \deg(f_*\omega_{S/C}) = \chi(\mathcal{O}_S) - \chi(\mathcal{O}_F).\chi(\mathcal{O}_C)$$
$$= \chi(\mathcal{O}_S) - (g-1)(b-1),$$

for b = g(C). By Leray spectral sequence, we remark that:

$$h^{0}(C, (f_{*}\omega_{S/C})^{\vee}) = h^{0}(C, \mathcal{R}^{1}f_{*}\mathcal{O}_{S}) = q(S) - b,$$

where $q(S) = h^1(S, \mathcal{O}_S)$ is the irregularity of the surface S.

In [7], Severi stated that if: S is a minimal smooth complex projective surface of maximal Albanese dimension, then $K_S^2 \ge 4\chi(\mathcal{O}_S)$. But the proof was not complete, the inequality was posed as a conjecture by

Reid, [22], and proved by Manetti, [16], under the assumption that the surface has ample canonical divisor. Finally, the conjecture is completely proved by Pardini, [21]. Xiao Gang, in [24], wrote a fundamental paper on fibred surfaces over curves. He discussed the geometry of the fibration where S is relatively minimal and $g(F) \geq 2$. He proved that if f is relatively minimal and not locally trivial i.e., $\deg f_*\omega_{S/C} \neq 0$ then:

$$K_{S/C}^2 \ge 4 \frac{g-1}{g} \deg f_* \omega_{S/C}.$$

Recall in this setting that $K_{S/C}$ is nef divisor [20, Theorem 1.4].

Independently, Cornalba and Harris, see [6], proved the above inequality for semistable fibrations (i.e., fibrations where all the fibers are semistable curves in the sense of Deligne and Mumford). Recently Yuan Xinyi and Zhang Tong, [25], gave a new approach to prove the slope inequality by giving a sense to the relative Noether inequality and using Frobenius iteration techniques. Motivated by these, [24], [6], in addition to Fujita's fundamental papers, [8], [9], there has been interest in giving a sharp bound using the first and the second Fujita decomposition combined with a study of linear stability of the general fiber F of f.

Let us recall the first and second Fujita decomposition.

Theorem 1.1 (First Fujita decomposition for fibred surface, [8]). Let $f: S \to C$ be a fibration from a smooth complex projective surface S to a smooth projective curve C. Then:

$$f_*\omega_{S/C} = \mathcal{O}_C^{q(S)-b} \oplus \mathcal{N},$$

where \mathbb{N} is a nef sub-vector bundle and $h^0(C, \mathbb{N}^{\vee}) = 0$.

We remark that in conclusion of Theorem 1.1, the trivial part comes from a nonzero global section of the dual of $f_*\omega_{S/C}$ i.e., from $H^0(C, \mathbb{R}^1 f_* \mathcal{O}_S)$.

Theorem 1.2 (Second Fujita decomposition for fibred surface, [9], [3], [4], [5]). Let $f: S \to C$ be a fibration as above. Then:

$$f_*\omega_{S/C}=\mathcal{A}\oplus\mathcal{U},$$

where A is ample sub-vector bundle and U is unitary flat sub-vector bundle.

In the situation of Theorem 1.2, we denote by u_f the rank of \mathcal{U} , and call it the unitary rank of the fibred surface $f: S \to C$.

A proof of the second Fujita decomposition is given by Catanese and Dettweiler, [3], [4], [5]. A more recent paper using these type of arguments is due to Riva and Stoppino [23], they proved the following inequalities:

$$K_{S/C}^2 \ge 2\frac{2g-2-m}{g-m}\deg(f_*\omega_{S/C}).$$

Here $m := \min(q_f, c_f)$, $q_f := q(s) - b$ is the relative irregularity of f, c_f is the Clifford index of f.

More precisely, we recall, [1], that the Clifford index for a curve B of genus $q(B) \geq 4$ as:

Cliff(B) :=
$$\min\{\deg(D) - 2(\dim|D|) \mid h^0(B,D) \ge 2, \ h^1(B,D) \ge 2\}.$$

In the cases g = 2, 3 the Clifford index is defined to be:

- If g = 2, Cliff(B) := 0.
- If g = 3, Cliff(B) := 0 (resp. 1) if B is hyperelleptic (resp. trigonal).

Given a fibred surface $f: S \to C$, we define c_f as the Clifford index of the general fiber F. Riva and Stoppino [23] proved also this second inequality:

$$K_{S/C}^2 \ge \begin{cases} 2\frac{2g-2-u_f}{g-u_f}, & \text{if } u_f \le c_f. \\ 2\frac{(2g-2-c_f)(g-1-u_f)}{(g-u_f)(g-1-c_f)}, & \text{else.} \end{cases}$$

Konno, in [14], described directly $K_{S/C}^2$ as a sum of two parts under some strict conditions on the fibration f. More precisely, the first part is related to deg $f_*\omega_{S/C}$ and the second one is described by the Horikawa index [12].

Now, we introduce the following notations:

• N_1 is the Miyaoka divisor [Definition 3.3] of the maximal destabilising sub-vector bundle in the Harder-Narasimhan filtration [Proposition 3.1] and:

$$\alpha = \begin{cases} \frac{g(F)}{h^0(D,D|_F)-1}, & \text{if } N_1|_F \text{ is nonspecial and } h^0(F,N_1|_F) > 1. \\ 2 & \text{else.} \end{cases}$$

- μ_f is the final slope of the filtration.
- F is the general fiber of f.
- ϵ is a suitable birational morphism.
- Z_f is the fixed part of $f_* \mathcal{O}_S(D)$.
- $N_D := \frac{2\epsilon^* D.Z_f Z_f^2}{\deg f_* \mathcal{O}_S(D)}$, describes the negativity of D and $f_* \mathcal{O}_S(D)$ when $\deg f_* \mathcal{O}_S(D) \neq 0$.
- $N_D^{\mathfrak{G}} := \frac{2\epsilon^* D. Z_f Z_f^2}{\deg \mathfrak{G}}$, for a locally free sub-sheaf $\mathfrak{G} \subseteq \mathfrak{E} := f_* \mathfrak{O}_S(D)$ and $\deg \mathfrak{G} \neq 0$.
- $d_f := N_f.F$ and $d_f^{\mathcal{G}} := N_f^{\mathcal{G}}.F$, where N_f (resp. $N_f^{\mathcal{G}}$) is the last Miyaoka divisor for \mathcal{E} (resp. \mathcal{G}) [Definition 3.3].

We state our main result:

Theorem 1.3. Let $f: S \to C$ be a fibration from a smooth complex projective surface to a smooth complex projective curve, let D be an arbitrary divisor on S such that $\operatorname{rk} \mathcal{E} = \operatorname{rk}(f_* \mathcal{O}_S(D)) > 1$ Then:

• If D is nef and $\mu_f \geq 0$ we have:

$$D^2 \ge \frac{2\alpha d_f}{d_f + \alpha} \deg f_* \mathcal{O}_S(D).$$

• If D is nef, $\mu_f < 0$ and $\exists \ \mathcal{G} \subsetneq \mathcal{E}$ nef locally free sub-sheaf, we have:

$$D^2 \ge \frac{2\alpha d_f^{\mathfrak{S}}}{d_f^{\mathfrak{S}} + \alpha} \deg \mathfrak{S}.$$

• If $(\mu_f < 0 \text{ and there is no nef locally free sub-sheaf of } \mathcal{E})$ or $(D \text{ is not nef and } (\mu_f > 0 \text{ or } (\mu_f = 0 \text{ and } \mathcal{E} \text{ is not semi-stable})))$, we have:

$$D^{2} \ge \left(\frac{2\alpha d_{f}}{d_{f} + \alpha} + N_{D}\right) \deg f_{*} \mathcal{O}_{S}(D).$$

• If D is not nef, $\mu_f < 0$ and $\exists \ \mathcal{G} \subsetneq \mathcal{E}$ nef locally free sheaf such that $\mu_f^{\mathcal{G}} > 0$ or $(\mu_f^{\mathcal{G}} = 0 \text{ and } \mathcal{G} \text{ is not sem-stable})$ then:

$$D^2 \geq \left(\frac{2\alpha d_f^{\mathfrak{G}}}{d_f^{\mathfrak{G}} + \alpha} + N_D^{\mathfrak{G}}\right) \deg \mathfrak{G}.$$

• Otherwise, if $D^2 < 0$ and $\forall \ \mathcal{G} \subseteq \mathcal{E}$ nef $\Longrightarrow \deg \mathcal{G} = 0$. There is no sense to the slope inequality.

For the particular case that f is relatively minimal and $D = K_{S/C}$, $N_1|_F$ is nonspecial and $h^0(F, N_1|_F) > 1$. The Theorem 1.3 takes the following form:

Corollary 1.4. Let $f: S \to C$ be a relatively minimal fibration with $g(F) \ge 2$ and $D = K_{S/C}$, if $N_1|_F$ is nonspecial and $h^0(F, N_1|_F) > 1$. Then:

$$K_{S/C}^2 \ge 4 \frac{(g-1)(2g-1)}{(g-1)(2g-1)+q} \deg f_* \omega_{S/C}.$$

Acknowledgements. I am very grateful to my advisors Steven Lu and Nathan Grieve for their constant help, invaluable advice and financial support. I would like to thank Ruiran Sun for his interest in the paper.

In the next sections, we let $f: S \to C$ be a fibration, from a smooth projective surface S to a smooth projective curve C, and we let D be a divisor on S.

2 Rational map to a projective bundle

Let $\mathcal{F} \subseteq f_* \mathcal{O}_S(D)$ be a locally free sub-sheaf of rank $r_{\mathcal{F}}$. There exist always the following commutative diagrams:

$$S \xrightarrow{-\overset{\psi}{-}} \mathbb{P}_{C}(f_{*}\mathbb{O}_{S}(D))$$

$$f \qquad \downarrow^{\pi}$$

$$C$$

$$S \xrightarrow{\overset{\psi_{\mathcal{F}}}{-}} \mathbb{P}_{C}(\mathcal{F})$$

$$f \qquad \downarrow^{\pi_{\mathcal{F}}}$$

$$C$$

In the above, $\mathbb{P}_C(f_*\mathcal{O}_S(D))$ (resp $\mathbb{P}_C(\mathcal{F})$) is the projective bundle of one dimensional quotients (Grothendieck's notations) of $f_*\mathcal{O}_S(D)$ (resp of \mathcal{F}), the morphism π (resp $\pi_{\mathcal{F}}$) is the projective morphism from $\mathbb{P}_C(f_*\mathcal{O}_S(D))$ to C (resp from $\mathbb{P}_C(\mathcal{F})$ to C). The maps ψ and $\psi_{\mathcal{F}}$ are rational and defined by the following evaluation maps:

$$f^*f_*\mathcal{O}_S(D) \longrightarrow \mathcal{O}_S(D),$$

resp:

$$f^*\mathfrak{F} \longrightarrow \mathfrak{O}_S(D).$$

Remark 2.1. • If D is f-globally generated. Then:

$$f^*f_*\mathcal{O}_S(D) \longrightarrow \mathcal{O}_S(D)$$

is surjective and ψ is a morphism.

• If the map

$$f^*\mathfrak{F} \longrightarrow \mathfrak{O}_S(D)$$

is surjective, then $\psi_{\mathcal{F}}$ is a morphism.

Take A, a sufficiently very ample divisor such that $f_*\mathcal{O}_S(D)\otimes\mathcal{O}(A)$ is a very ample vector bundle. Then the rank of $f_*\mathcal{O}_S(D)\otimes\mathcal{O}(A)$ is

$$r = H^0(F, D|_F).$$

And

$$\deg(f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A)) = \deg f_* \mathcal{O}_S(D) + r. \deg(A).$$

Remark 2.2. Since $f_*\mathcal{O}_S(D)\otimes\mathcal{O}(A)$ is globally generated, i.e., $\exists n>0$ such that we have a surjective map

$$\mathcal{O}_C^{\oplus n} \longrightarrow f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A),$$

or, equivalently, for any $y \in C$ we have a surjective map giving by evaluation of section:

$$H^0(C, f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A)) \longrightarrow f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A)|_{\mathcal{U}}$$

we remark that each section in $H^0(F, D|F)$ comes from some section of $H^0(C, f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A))$. In other words, the following map is surjective

$$H^0(C, f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A)) \simeq H^0(S, D + f^*A) \longrightarrow H^0(F, D|F).$$

Now, $\mathbb{P}_C(f_*\mathcal{O}_S(D)\otimes\mathcal{O}(A))$ and $\mathbb{P}_C(f_*\mathcal{O}_S(D))$ are isomorphic by an isomorphism s, see [11, Lemma 7.9]. Since

$$\mathbb{P}_C(f_*\mathcal{O}_S(D)\otimes\mathcal{O}(A))\subset \mathbb{P}(\mathcal{O}_C^{\oplus n})=\mathbb{CP}^n\times C,$$

we can identify $\mathbb{P}_C(f_*\mathcal{O}_S(D)\otimes\mathcal{O}(A))$ with $X\times C$ such that X is a projective variety in \mathbb{CP}^n .

The rational map

$$\phi: S \dashrightarrow \mathbb{P}_C(f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A)),$$

defined by:

$$f^*(f_*\mathcal{O}_S(D)\otimes\mathcal{O}(A))\longrightarrow\mathcal{O}_S(D)\otimes f^*\mathcal{O}(A)$$

is the rational map given by the linear system $|D + f^*A|$, and for a general fibre F of f, $\phi|_F$ is the map defined by $|D|_F|$.

The line bundle $\mathcal{O}_{\mathbb{P}_C(f_*\mathcal{O}_S(D)\otimes\mathcal{O}(A))}(1)$ on $\mathbb{P}_C(f_*\mathcal{O}_S(D)\otimes\mathcal{O}(A))$ is very ample. Then it gives an embedding of this last projective bundle to a projective space \mathbb{CP}^N . We have the following commutative diagram:

$$S \xrightarrow{-\phi} \mathbb{P}_C(f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A)) \subseteq \mathbb{CP}^N$$

$$\downarrow^{\pi_A}$$

$$C$$

Where π_A is the projection map, again we have $\psi = s \circ \phi$, the rational map ϕ is defined by the complete linear system $|D + f^*A|$, if it has no nontrivial fixed part then its image is contained in no hyperplane.

We assume that there is a fixed part Z of $|D + f^*A|$, so the linear system $|D - Z + f^*A|$ factorize the map defined by $|D + f^*A|$ and it defines a rational map ϕ' such that the following diagram is commutative:

$$S \xrightarrow{-\stackrel{\phi'}{---}} X' \times C \xrightarrow{i} \mathbb{P}_C(f_* \mathbb{O}_S(D) \otimes \mathbb{O}(A)) \subseteq \mathbb{CP}^N$$

$$\downarrow^{\pi_A}$$

$$C$$

Where X' is a closed sub-variety of X, i is an injection from $X' \times C$ to \mathbb{CP}^N and $i \circ \phi' = \phi$.

- The fixed part Z of $|D + f^*A|$ restricted in F is just the fixed part of the complete linear system $|D|_F$.
- The system $|D-Z+f^*A|$ has no fixed part, so it has only a finite number of base points.
- \bullet The fixed part Z is a divisor such that the homomorphism:

$$f^*(f_*\mathcal{O}_S(D)\otimes \mathcal{O}(A))\longrightarrow \mathcal{O}_S(D-Z)\otimes f^*\mathcal{O}(A),$$

is surjective in codimension 1.

• If $D = K_{S/C}$ and $g(F) \ge 2$, then the fixed part Z has no horizontal components.

Theorem 2.3. There exist a surface \tilde{S} birational to S (i.e $\exists \epsilon : \tilde{S} \to S$ which is birational) and a morphism

$$\lambda': \tilde{S} \longrightarrow X' \times C$$

such that the following diagram is commutative:

 $\phi' \circ \epsilon = \lambda'$ and:

$$(\lambda^{'})^* \mathcal{O}_{X^{'} \times C}(1) = \epsilon^* (\mathcal{O}(D-Z) \otimes f^* \mathcal{O}(A)) \otimes \mathcal{O}(-E).$$

Where E is the exceptional divisor of ϵ .

Remark 2.4. $\epsilon^*(\mathcal{O}(D-Z)\otimes f^*\mathcal{O}(A))\otimes \mathcal{O}(-E)$ is globally generated.

Proof of Theorem 2.3. If $|D-Z+f^*A|$ has no base point, then ϕ' is a morphism and there is nothing to prove. We suppose that there is a base point x in $|D-Z+f^*A|$. We take the blow-up in x defined by ϵ^1 , so $|(\epsilon^1)^*(D-Z+f^*A)|$ has a fixed part k_1E_1 with $k_1 \in \mathbb{Z}$, $k_1 \geq 1$ and $|D_1| = |(\epsilon^1)^*(D-Z+f^*A)-k_1E_1|$ has no fixed part. Hence it defines a rational map: $\lambda^1: S_1 \dashrightarrow X' \times C$ which is identical to $\phi' \circ \epsilon^1$. If λ^1 is a morphism, then we are done; if not, we repeat the process. Thus, we get by induction a sequence $\epsilon^i: S_i \longrightarrow S_{i-1}$ of blow-ups and a linear system $|D_i|$ with no fixed part, where $D_i = (\epsilon^i)^*D_{i-1} - k_iE_i$ for $i \geq 1$. But we have:

$$D_i^2 = D_{i-1}^2 - k_i^2 < D_{i-1}^2.$$

Since D_i has no fixed part, $D_i^2 \ge 0$ and so this process must terminate. In other words, we arrive at a system D_n with no base points, which defines a morphism:

$$\epsilon = \epsilon^1 \circ \dots \circ \epsilon^n : \tilde{S} \longrightarrow S.$$

We conclude that $|\epsilon^*(D-Z+f^*A)-E|$ define a morphism $\tilde{S} \xrightarrow{\lambda'} X' \times C$ such that:

$$\epsilon^*(\mathfrak{O}(D-Z)\otimes f^*\mathfrak{O}(A))\otimes \mathfrak{O}(-E)=(\lambda')^*\mathfrak{O}_{X'\times C}(1).$$

Where $E = \sum_{i=1}^{i=n} K_i E_i$ is the exceptional divisor.

The last proof is inspired by the proof of [2, Theorem 2.7].

Corollary 2.5. There exist a morphism $\lambda^A : \tilde{S} \to \mathbb{P}_C(f_* \mathbb{O}_S(D) \otimes \mathbb{O}_S(A))$ such that the following diagram is commutative:

Proof. We take $\lambda^A = i \circ \lambda'$ and it is a well-defined morphism defined from \tilde{S} to $\mathbb{P}_C(f_*\mathcal{O}_S(D) \otimes \mathcal{O}(A))$ and clearly verifies the property that:

$$(\lambda^A)^* \mathcal{O}_{\mathbb{P}_C(f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A))}(1) = \epsilon^* (\mathcal{O}(D-Z) \otimes f^* \mathcal{O}(A)) \otimes \mathcal{O}(-E),$$

also:

$$\pi_A \circ \lambda^A = f \circ \epsilon.$$

Corollary 2.6. There exist a morphism $\lambda : \tilde{S} \to \mathbb{P}_C(f_*\mathcal{O}_S(D))$ such that the following diagram is commutative.

$$\tilde{S} \xrightarrow{\lambda} \left(\begin{array}{c} \chi \\ \vdots \\ S \xrightarrow{-\psi} & \mathbb{P}_{C}(f_{*} \mathbb{O}_{S}(D)) \\ \downarrow f & \downarrow \pi \\ C & \downarrow C
\end{array} \right)$$

and we have:

$$(\lambda)^*(\mathfrak{O}_{\mathbb{P}_C(f_*\mathfrak{O}_S(D))}(1)) = \epsilon^*(\mathfrak{O}(D-Z)) \otimes \mathfrak{O}(-E).$$

Proof. By Theorem 2.3 and Corollary 2.5, there exist a morphism $\lambda^A : \tilde{S} \longrightarrow \mathbb{P}_C(f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A))$ which has the property that:

$$(\lambda^A)^* \mathcal{O}_{\mathbb{P}_C(f_* \mathcal{O}_S(D) \otimes \mathcal{O}(A))}(1) = \epsilon^* (\mathcal{O}(D-Z) \otimes f^* \mathcal{O}(A)) \otimes \mathcal{O}(-E).$$

But $\exists s : \mathbb{P}_C(f_*\mathcal{O}_S(D) \otimes \mathcal{O}(A)) \longrightarrow \mathbb{P}_C(f_*\mathcal{O}_S(D))$ which is an isomorphism such that:

$$\mathfrak{O}_{\mathbb{P}_{C}(f_{*}\mathfrak{O}_{S}(D)\otimes\mathfrak{O}(A))}(1) = s^{*}\mathfrak{O}_{\mathbb{P}_{C}(f_{*}\mathfrak{O}_{S}(D))}(1) \otimes \pi_{A}^{*}\mathfrak{O}(A)$$

$$\Longrightarrow (s \circ \lambda^{A})^{*}\mathfrak{O}_{\mathbb{P}_{C}(f_{*}\mathfrak{O}_{S}(D))}(1) \otimes (\pi_{A} \circ \lambda^{A})^{*}\mathfrak{O}(A)$$

$$= \epsilon^{*}(\mathfrak{O}(D-Z)) \otimes (f \circ \epsilon)^{*}\mathfrak{O}(A) \otimes \mathfrak{O}(-E)$$

$$\Longrightarrow (s \circ \lambda^{A})^{*}\mathfrak{O}_{\mathbb{P}_{C}(f_{*}\mathfrak{O}_{S}(D))}(1) = \epsilon^{*}(\mathfrak{O}(D-Z)) \otimes \mathfrak{O}(-E).$$

We take $\lambda = s \circ \lambda^A$.

Remark 2.7. More generally, for $\mathcal{F} \subseteq f_*\mathcal{O}_S(D)$ a a locally free sub-sheaf, we take A a sufficiently very ample divisor such that $\mathcal{F} \otimes \mathcal{O}(A)$ is very ample. Let $L_{\mathcal{F}}$ be a sub-linear system of $|D + f^*A|$ wich correspond to a sections of $H^0(\mathcal{F} \otimes \mathcal{O}(A))$. Let $Z_{\mathcal{F}}$ a fixed part of $L_{\mathcal{F}}$, so $L_{\mathcal{F}} - Z_{\mathcal{F}}$ has no fixed part and it corresponds to a rational map from S to a projective sub-variety of $\mathbb{P}_C(\mathcal{F} \otimes \mathcal{O}(A))$ By the same arguments above $\exists \tilde{S}_{\mathcal{F}} \xrightarrow{\epsilon_{\mathcal{F}}} S$ which is birational and $\exists \lambda_{\mathcal{F}} : \tilde{S}_{\mathcal{F}} \longrightarrow \mathbb{P}_C(\mathcal{F})$ such that the following diagram is commutative:

and

$$(\lambda_{\mathcal{F}})^*(\mathcal{O}_{\mathbb{P}_C(\mathcal{F})}(1)) = \epsilon_{\mathcal{F}}^*(\mathcal{O}(D - Z_{\mathcal{F}})) \otimes \mathcal{O}(-E_{\mathcal{F}}),$$

where $E_{\mathcal{F}}$ is the exceptional divisor of $\epsilon_{\mathcal{F}}$.

3 Harder-Narasimhan filtration

In this section, we study Harder-Narasimhan filtration within the context of fibred surfaces.

Proposition 3.1 ([10]). Let \mathcal{E} a vector bundle over a smooth projective curve B. There exists a unique sequence of vector sub-bundles of \mathcal{E} :

$$0 = \mathcal{F}_0 \subsetneq \mathcal{F}_1 \subsetneq \dots \subsetneq \mathcal{F}_{k-1} \subsetneq \mathcal{F}_k = \mathcal{E},$$

that satisfy the following conditions:

- for i = 1, ..., k, $\mathfrak{F}_i/\mathfrak{F}_{i-1}$ is a semi-stable vector bundles.
- for any i=1,...,k, setting $\mu_i:=\mu(\mathfrak{F}_i/\mathfrak{F}_{i-1})=\frac{\deg(\mathfrak{F}_i/\mathfrak{F}_{i-1})}{\operatorname{rk}(\mathfrak{F}_i/\mathfrak{F}_{i-1})}$, we have that:

$$\mu_1 > \mu_2 > \dots > \mu_k$$
.

In the context of Proposition 3.1 above, the filtration is called the *Harder-Narasimhan filtration* of \mathcal{E} . We set $\mu_f = \mu_k$ and call it the *final slope* of \mathcal{E} .

The following elementary lemma is important in what follows.

Lemma 3.2. Let r_i be the rank of \mathfrak{F}_i . Then:

$$\deg \mathcal{E} = \sum_{i=1}^{k-1} r_i(\mu_i - \mu_{i+1}) + r_k \mu_k.$$

Proof. Indeed, we consider the exact sequence:

$$0 \longrightarrow \mathcal{F}_{k-1} \longrightarrow \mathcal{F}_k \longrightarrow \mathcal{F}_k/\mathcal{F}_{k-1} \longrightarrow 0.$$

From the additivity of degree, we have that:

$$\deg \mathcal{F}_k = \deg \mathcal{F}_{k-1} + \deg \mathcal{F}_k / \mathcal{F}_{k-1}.$$

Similarly, we have that

$$\deg \mathcal{F}_{k-1} = \deg \mathcal{F}_{k-2} + \deg \mathcal{F}_{k-1}/\mathcal{F}_{k-2}.$$

And so, by induction, we can conclude that:

$$\deg \mathcal{F}_k = \sum_{i=1}^k \deg \mathcal{F}_i / \mathcal{F}_{i-1}.$$

From the definition of slope, for every i=1,..,k we have: $\deg \mathcal{F}_i/\mathcal{F}_{i-1}=\mu_i(r_i-r_{i-1})$ and we obtain the desired formula.

Consider now a fibred surface $f: S \to C$ and let (\mathcal{F}_i) be the Harder-Narasimhan filtration of $\mathcal{E} = f_* \mathcal{O}_S(D)$. By Corollary 2.6 and Remark 2.7, there exists a suitable smooth projective surface \tilde{S} and a birational morphism $\epsilon: \tilde{S} \to S$ such that:

$$\lambda^*(\mathcal{O}_{\mathbb{P}_G(f_*\mathcal{O}_S(D))}(1)) = \epsilon^*(\mathcal{O}(D-Z)) \otimes \mathcal{O}(-E),$$

moreover, for any \mathcal{F}_i in the filtration, we have:

$$\lambda_i^*(\mathcal{O}_{\mathbb{P}_C(\mathcal{F}_i)}(1)) = \epsilon^*(\mathcal{O}(D - Z_{\mathcal{F}_i})) \otimes \mathcal{O}(-E).$$

Where $\lambda_i := \lambda_{\mathcal{F}_i}$, Z (resp. $Z_{\mathcal{F}_i}$) is a fixed part of $|D + f^*A|$ (resp. of $L_{\mathcal{F}_i} \subseteq |D + f^*A|$ which correspond to a sections of $H^0(\mathcal{F}_i \otimes \mathcal{O}(A))$). Here E, is the exceptional divisor of ϵ .

Definition 3.3 (See [23, Definition 3.11]). In this setting, just described above, we define:

- $Z(D, \mathcal{F}_i) = \epsilon^* Z_{\mathcal{F}_i} + E$ the fixed part of the vector sub-bundle \mathcal{F}_i .
- $M(D, \mathcal{F}_i) = \lambda_i^*(\mathcal{O}_{\mathbb{P}_C(\mathcal{F}_i)}(1))$ the moving part of the vector sub-bundle \mathcal{F}_i .
- Set $N(D, \mathcal{F}_i) := M(D, \mathcal{F}_i) \mu_i F$. We call it the Miyaoka divisor.

Applying, [17], [19] and [15, Proposition 6.4.11] we prove the following result:

Lemma 3.4. $N(D, \mathcal{F}_i)$ are nef divisors on \tilde{S} .

Proof. Let's see that $\mathcal{E}\langle -\frac{c_1(\mathcal{E}/\mathcal{F}_{k-1})}{rk(\mathcal{E}/\mathcal{F}_{k-1})}\rangle$ is nef vector bundle.

Note:

$$\begin{cases} g_i = \mathcal{F}_i/\mathcal{F}_{i-1}. \\ \delta_i = \frac{c_1(G_i)}{\operatorname{rk}(G_i)}. \end{cases}$$

 $\mathcal{G}_i\langle -\delta_i \rangle$ is nef vector bundle, [15, Proposition 6.4.11], and deg $\delta_i = \mu_i$. So:

$$-\deg \delta_1 < -\deg \delta_2 < \dots < -\deg \delta_k$$
.

This implies that $\mathcal{G}_i\langle -\delta_k \rangle$ is nef vector bundle. We have:

$$0 \longrightarrow \mathcal{F}_{k-1}\langle -\delta_k \rangle \longrightarrow \mathcal{E}\langle -\delta_k \rangle \longrightarrow \mathcal{G}_k\langle -\delta_k \rangle \longrightarrow 0.$$

 $\mathcal{G}_k\langle -\delta_k \rangle$ is nef vector bundle and $\mathcal{F}_{k-1}\langle -\delta_k \rangle$ is nef by induction. $\Longrightarrow \mathcal{E}\langle -\delta_k \rangle$ is nef. $\Longrightarrow N(D,\mathcal{E})$ is nef. The proof is the same for $N(D,\mathcal{F}_i)$.

Lemma 3.5. $r_i = \operatorname{rk} \mathcal{F}_i \leq h^0(F, N(D, \mathcal{F}_i)|_F)$.

Proof. Let π_i be the projection form $\mathbb{P}_C(\mathfrak{F}_i)$ to C, we have:

$$(\pi_i \circ \lambda_i)_*(M(D, \mathcal{F}_i)) = (\pi_i)_*((\lambda_i)_*M(D, \mathcal{F}_i))$$

$$= (\pi_i)_*(\mathcal{O}_{\mathbb{P}_C(\mathcal{F}_i)}(1) \otimes \lambda_{i*}\mathcal{O}_{\tilde{S}}) \supseteq (\pi_i)_*(\mathcal{O}_{\mathbb{P}_C(\mathcal{F}_i)}(1)) = \mathcal{F}_i$$

$$\Longrightarrow r_i \le h^0(F, M(D, \mathcal{F}_i)|_F)$$

$$\Longrightarrow r_i \le h^0(F, N(D, \mathcal{F}_i)|_F).$$

For simplification, set $N_i = N(D, \mathcal{F}_i)$ and $M_i = M(D, \mathcal{F}_i)$, $Z_i = Z(D, \mathcal{F}_i)$.

Proposition 3.6. Let $d_i = \deg(N_i|_F) = N_i.F$, we have:

$$d_k \ge d_{k-1} \ge \dots \ge d_1 \ge 0.$$

Proof. Since F is a fibre, $F^2 = 0$. Thus:

$$d_i = N_i.F = (M_i - \mu_i F).F = M_i.F$$

$$= \lambda_i^* (\mathcal{O}_{\mathbb{P}_C(\mathcal{F}_i)}(1)).F = (\epsilon^* (D - Z_{\mathcal{F}_i}) - E).F$$

$$= \epsilon^* (D - Z_{\mathcal{F}_i}).F = (D - Z_{\mathcal{F}_i}).F \ge 0.$$

But : $Z_{\mathcal{F}_i} \geq Z_{\mathcal{F}_{i+1}}$. Thus, $D - Z_{\mathcal{F}_{i+1}} = D - Z_{\mathcal{F}_i} + (Z_{\mathcal{F}_i} - Z_{\mathcal{F}_{i+1}})$

$$\implies d_{i+1} \ge d_i$$
.

Proposition 3.7. If $N_1|_F$ is nonspecial divisor on F. Then $N_j|_F$ is nonspecial divisor on F for any $j \ge 1$. Or more generally: if $\exists i \ge 1$ such that $N_i|_F$ is nonspecial. Then $N_j|_F$ is nonspecial divisor on F for $j \ge i$.

Proof. Recall that

$$Z_{\mathcal{F}_1} \geq \ldots \geq Z_{\mathcal{F}_k}$$
.

Thus

$$N_1|_F = \epsilon^* (D - Z_{\mathcal{F}_1})|_F = (D - Z_{\mathcal{F}_1})|_F \le (D - Z_{\mathcal{F}_i})|_F.$$

So, if
$$h^{1}(F, D - Z_{\mathcal{F}_{1}}|_{F}) = 0$$
. Then $h^{1}(F, D - Z_{\mathcal{F}_{i}}|_{F}) = 0$.

Now, it is natural to ask about the sequence $(\frac{d_i}{h^0(F,N_i|_F)-1})_{i\in\{1,...k\}}$. For instance, is it increasing finite sequence? Is it decreasing? Is it bounded from below by strictly positive number? So we have the following results:

Lemma 3.8. If $\exists t \in \{1, ..., k\}$ such that $h^0(F, N_t|_F) = 1$. Then t = 1.

Proof. We have $h^0(F, N_t|_F) \ge \operatorname{rk}(\mathcal{F}_t)$. So, if $h^0(F, N_t|_F) = 1$ the only possibility is t = 1 and more than that the degree: $d_1 = g(F) - h^1(F, N_1|_F)$.

Theorem 3.9. Let $f: S \to C$ be a fibration as above, D be a divisor on S such that $\mathrm{rk}(\mathcal{E}) = \mathrm{rk}(f_* \mathcal{O}_S(D)) > 1$ and $h^0(F, N_1|_F) > 1$. Consider the Harder-Narasimhan filtration (\mathcal{F}_i) of \mathcal{E} . Then, we have the following result:

• If $N_1|_F$ is nonspecial divisor and if:

$$- g(F) = 0$$
. Then:

$$\begin{split} \frac{d_k}{h^0(N_k|_F)-1} &= \ldots = \frac{d_{i+1}}{h^0(N_{i+1}|_F)-1} = \frac{d_i}{h^0(N_i|_F)-1} \\ &= \ldots = \frac{d_1}{h^0(N_1|_F)-1} = 1. \end{split}$$

 $-g(F) \ge 1$. Then:

$$1 + \frac{g(F)}{h^0(D, D|_F) - 1} \le \frac{d_k}{h^0(N_k|_F) - 1} \le \dots \le \frac{d_{i+1}}{h^0(N_{i+1}|_F) - 1} \le \frac{d_i}{h^0(N_i|_F) - 1} \le \dots \le \frac{d_1}{h^0(N_1|_F) - 1}.$$

• if $\exists t \in \{1,...,k\}$ such that $N_t|_F$ is special and $N_{t+1}|_F$ is nonspecial and if:

$$- g(F) = 0$$
. Then:

$$\frac{d_k}{h^0(N_k|_F)-1}=\ldots=\frac{d_{t+1}}{h^0(N_{t+1}|_F)-1}=1.$$

 $-g(F) \geq 1$. Then:

$$1 + \frac{g(F)}{h^0(D, D|_F) - 1} \le \frac{d_k}{h^0(N_k|_F) - 1} \le \dots \le \frac{d_{t+1}}{h^0(N_{t+1}|_F) - 1}.$$

And we have: $\frac{d_i}{h^0(N_i|_F)-1} \ge 2$, $\forall i \le t$.

Proof. If $N_1|_F$ is nonspecial. Then by Riemann-Roch:

$$h^0(N_i|_F) = d_i + 1 - g(F)$$

• If g(F) = 0, then:

$$h^0(N_i|_F) = d_i + 1.$$

and so evidently:

$$\frac{d_{i+1}}{h^0(N_{i+1}|_F)-1} = \frac{d_i}{h^0(N_i|_F)-1} = 1.$$

• If $g(F) \ge 1$, since:

$$h^0(N_{i+1}|_F) = h^0(N_i|_F) + d_{i+1} - d_i, \quad \forall i \in \{1, 2, ...k\}.$$

It follows that:

$$\frac{d_{i+1}}{h^0(N_{i+1}|_F)-1} = \frac{d_i + d_{i+1} - d_i}{h^0(N_i|_F) + d_{i+1} - d_i - 1} \le \frac{d_i}{h^0(N_i|_F) - 1}.$$

Now we have $\forall i \in \{1,..,k\}$, $h^0(F,N_i|_F) \leq h^0(F,D|_F)$ because $N_i|_F = (D-Z_{\mathcal{F}_i})|_F$ and $Z_{\mathcal{F}_i}$ is a effective divisor. Using Riemann-Roch, we have:

$$\frac{d_i}{h^0(N_i|_F) - 1} \ge 1 + \frac{g(F)}{h^0(D, D|_F) - 1}.$$

Now, suppose that $\exists t \in \{1,...,k\}$ such that $N_t|_F$ is special and $N_{t+1}|_F$ is nonspecial. So $N_i|_F$ is special for $i \leq t$ and $N_i|_F$ is nonspecial for $i \geq t+1$ and as above:

• If g(F) = 0 then:

$$\frac{d_k}{h^0(N_k|_F)-1}=\ldots=\frac{d_{t+1}}{h^0(N_{t+1}|_F)-1}=1.$$

• If $g(F) \ge 1$ then:

$$1 + \frac{g(F)}{h^0(D,D|_F) - 1} \le \frac{d_k}{h^0(N_k|_F) - 1} \le \dots \le \frac{d_{t+1}}{h^0(N_{t+1}|_F) - 1}.$$

For $i \leq t$, by Clifford theorem, [1], we have:

$$d_i \ge 2(h^0(N_i|_F) - 1)$$

$$\Longrightarrow \frac{d_i}{h^0(N_i|_F)-1} \ge 2.$$

4 Slope inequality.

Now, we are ready to present the technical lemma to our method, we called it the **Modified Xiao Lemma**. Note that it is a more general form of Xiao [24, Lemma 2].

Lemma 4.1 (Modified Xiao Lemma). Let $f: S \to C$ be a fibration, D be a divisor on S and suppose that there exist a sequence of effective divisors:

$$Z_1 \geq Z_2 \geq \ldots \geq Z_k$$

and a sequence of rational numbers:

$$\mu_1 > \mu_2 > \dots > \mu_k$$

such that for every $i \in \{1, ..., k\}$ we have:

$$\mathfrak{N}_i := D - Z_i - \mu_i F$$

are nef \mathbb{Q} -divisors. Then:

$$D^{2} \ge \sum_{i=1}^{k-1} (d_{i} + d_{i+1})(\mu_{i} - \mu_{i+1}) + 2D.Z_{k} - Z_{k}^{2} + 2\mu_{k}d_{k},$$

where $d_i = \mathcal{N}_i.F$.

Proof. First observe that $\mathcal{N}_1^2 \geq 0$ by nefness. And we have:

$$\mathcal{N}_{i}^{2} = \mathcal{N}_{i}(\mathcal{N}_{i-1} + (Z_{i-1} - Z_{i}) + (\mu_{i-1} - \mu_{i})F)$$

$$\geq \mathcal{N}_{i}(\mathcal{N}_{i-1} + (\mu_{i-1} - \mu_{i})F)$$

$$\geq (\mathcal{N}_{i-1} + (Z_{i-1} - Z_{i}) + (\mu_{i-1} - \mu_{i})F)(\mathcal{N}_{i-1} + (\mu_{i-1} - \mu_{i})F)$$

$$\geq \mathcal{N}_{i-1}^2 + (\mu_{i-1} - \mu_i)(2\mathcal{N}_{i-1}F + (Z_{i-1} - Z_i)F)$$
$$= \mathcal{N}_{i-1}^2 + (\mu_{i-1} - \mu_i)(d_{i-1} + d_i).$$

So, by induction, we have:

$$\mathcal{N}_k^2 \ge \sum_{i=1}^{k-1} (d_i + d_{i+1})(\mu_i - \mu_{i+1}).$$

Hence

$$(D - Z_k - \mu_k F)^2 \ge \sum_{i=1}^{k-1} (d_i + d_{i+1})(\mu_i - \mu_{i+1}).$$

But

$$(D - Z_k - \mu_k F)^2 = (D - Z_k)^2 - 2\mu_k (D - Z_k)F$$

= $D^2 - 2D \cdot Z_k + Z_k^2 - 2\mu_k d_k$.

So we have:

$$D^{2} \ge \sum_{i=1}^{k-1} (d_{i} + d_{i+1})(\mu_{i} - \mu_{i+1}) + 2D.Z_{k} - Z_{k}^{2} + 2\mu_{k}d_{k}.$$

Remark 4.2. • When $\mu_k \geq 0$ and D is nef, we set $Z_{k+1} = 0$ and $\mu_{k+1} = 0$, $d_{k+1} = D.F$. With the techniques of the previous Lemma 4.1, we have:

$$D^2 \ge \sum_{i=1}^k (d_i + d_{i+1})(\mu_i - \mu_{i+1}).$$

This is the original result of Xiao Gang [24, Lemma 2].

• The part: $2D.Z_k - Z_k^2 + 2\mu_k d_k$ describes the negativity of $f_*(\mathcal{O}_S(D))$ and D.

Example 4.3. If $D = K_{S/C} + L$ with L is nef and f-big (resp. trivial), then we have by [18], [13] (resp.[8]) $f_*(\omega_{S/C} \otimes L)$ is nef vector bundle. if f is relatively minimal fibration then $K_{S/C}$ is nef. So $K_{S/C} + L$ is also nef. By the discussion above $K_{S/C} + L$ is big if $f_* \mathcal{O}_S(D)$ is not semi stable.

Prior to stating our main result, we recall the following notation:

• N_1 is the Miyaoka divisor of the maximal destabilising sub-vector bundle in the Harder-Narasimhan filtration and :

$$\alpha = \begin{cases} \frac{g(F)}{h^0(D,D|_F)-1} & \text{if } N_1|_F \text{is non special and } h^0(F,N_1|_F) > 1\\ 2 & \text{else.} \end{cases}$$

- F is the general fiber of f.
- ϵ is a suitable birational morphism.
- Z_f : is the fixed part of $f_* \mathcal{O}_S(D)$.

- $N_D := \frac{2\epsilon^* D. Z_f Z_f^2}{\deg f_* \mathfrak{O}_S(D)}$ describes the negativity of D and $\mathcal E$ when $\deg f_* \mathfrak{O}_S(D) \neq 0$.
- $N_D^{\mathfrak{G}} := \frac{2\epsilon^* D. Z_f Z_f^2}{\deg \mathfrak{G}}$ for $\mathfrak{G} \subseteq \mathcal{E}$ and $\deg \mathfrak{G} \neq 0$.
- $d_f = N_f.F$ and $d_f^g = N_f^g.F$ where N_f (resp. N_f^g) is the last Miyaoka divisor for \mathcal{E} (resp. \mathcal{G}).

Now, we are ready to prove our main results:

Theorem 4.4. Let $f: S \to C$ be a fibration from a smooth complex projective surface to a smooth complex projective curve, let D be an arbitrary divisor on S such that $\operatorname{rk} \mathcal{E} = \operatorname{rk}(f_* \mathcal{O}_S(D)) > 1$ Then:

1. If D is nef and $\mu_f \geq 0$. Then:

$$D^2 \ge \frac{2\alpha d_f}{d_f + \alpha} \deg f_* \mathcal{O}_S(D).$$

2. If D is nef, $\mu_f < 0$ and $\exists \ \mathcal{G} \subsetneq \mathcal{E}$ nef locally free sub-sheaf, we have:

$$D^2 \ge \frac{2\alpha d_f^{\mathfrak{G}}}{d_f^{\mathfrak{G}} + \alpha} \deg \mathfrak{G}.$$

3. If $(\mu_f < 0$ and there is no nef locally free sub-sheaf of \mathcal{E}) or (D is not nef and $(\mu_f > 0$ or $(\mu_f = 0$ and \mathcal{E} is not semi-stable))), we have:

$$D^{2} \ge \left(\frac{2\alpha d_{f}}{d_{f} + \alpha} + N_{D}\right) \deg f_{*} \mathcal{O}_{S}(D).$$

4. If D is not nef, $\mu_f < 0$ and $\exists \ \mathcal{G} \subsetneq \mathcal{E}$ nef locally free sub-sheaf such that: $\mu_f^{\mathcal{G}} > 0$ or $(\mu_f^{\mathcal{G}} = 0 \text{ and } \mathcal{G} \text{ is not semi-stable})$. Then:

$$D^2 \geq \left(\frac{2\alpha d_f^{\mathfrak{G}}}{d_f^{\mathfrak{G}} + \alpha} + N_D^{\mathfrak{G}}\right) \deg \mathfrak{G}.$$

5. Otherwise, if $D^2 < 0$ and $\forall \ \mathcal{G} \subseteq \mathcal{E}$ nef locally free sub-sheaf $\Longrightarrow \deg \mathcal{G} = 0$. There is no sense to the slope inequality.

Proof. For 1., Let D is nef and $\mu_f \geq 0$ such that:

$$0 = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq ... \subseteq \mathcal{F}_{k-1} \subseteq \mathcal{F}_k = \mathcal{E}$$

be the Harder-Narasimhan filtration of \mathcal{E} . Following the previous discussion in section 2, we consider a suitable blow up $\epsilon: \tilde{S} \to S$ and over \tilde{S} , we define the fixed part $Z_i = Z(D, \mathcal{F}_i)$ and the moving part $M_i = M(D, \mathcal{F}_i)$ of \mathcal{F}_i . By (Lemma 4.1, see Remark 4.2) we have:

$$D^{2} = (\epsilon^{*}D)^{2} \ge \sum_{i=1}^{k} (d_{i} + d_{i+1})(\mu_{i} - \mu_{i+1}).$$

By the Theorem 3.9, if $N_1|_F$ is non special and $h^0(F,N_1|_F) > 1$. Then we take:

$$\alpha = 1 + \frac{g}{h^0(D, D|_F) - 1},$$

and else $\alpha = 2$ such that:

$$D^{2} \ge \sum_{i=1}^{k-1} (\alpha(r_{i}-1) + \alpha(r_{i+1}-1))(\mu_{i} - \mu_{i+1}) + 2d_{k}\mu_{k}.$$

Because $d_i \ge \alpha(r_i - 1)$ and $d_{k+1} \ge d_k$. Since $r_{i+1} \ge r_i + 1$. Thus:

$$D^{2} \ge 2\alpha \sum_{i=1}^{k-1} r_{i}(\mu_{i} - \mu_{i+1}) - \alpha(\mu_{1} - \mu_{k}) + 2d_{k}\mu_{k}.$$

Hence

$$D^{2} \geq 2\alpha \left(\sum_{i=1}^{k-1} r_{i}(\mu_{i} - \mu_{i+1}) + r_{k}\mu_{k} \right) - 2\alpha r_{k}\mu_{k} - \alpha(\mu_{1} - \mu_{k}) + 2d_{k}\mu_{k}$$

$$= 2\alpha \deg(f_{*}(\mathcal{O}_{S}(D))) - \alpha\mu_{1} + (\alpha - 2\alpha r_{k} + 2d_{k})\mu_{k}$$

$$\implies D^{2} \geq 2\alpha \deg(f_{*}(\mathcal{O}_{S}(D))) - \alpha(\mu_{1} + \mu_{k}).$$

Now, if:

$$\frac{d_k + \alpha}{2\alpha}(\mu_1 + \mu_k) \le \deg f_* \mathcal{O}_S(D).$$

Then:

$$D^2 \ge \frac{2\alpha d_k}{d_k + \alpha} \deg f_* \mathcal{O}_S(D).$$

Else, we apply [24, Lemma 2] for:

$$Z_1 > Z_k$$

and

$$\mu_1 > \mu_k$$
.

So:

$$D^{2} \ge (\mu_{1} - \mu_{k})(d_{1} + d_{k}) + \mu_{k}(d_{k} + d_{k+1})$$

$$\Longrightarrow D^{2} \ge d_{k}(\mu_{1} + \mu_{k})$$

$$D^{2} > \frac{2\alpha d_{k}}{d_{k} + \alpha} \deg f_{*} \mathcal{O}_{S}(D).$$

For 2., if D is nef, $\mu_k < 0$ and if $\exists \ \mathcal{G} \subsetneq \mathcal{E}$ nef sub-vector bundle, using the same method for the first point with \mathcal{G} , we deduce:

$$D^2 \ge \frac{2\alpha d_k^{\mathcal{G}}}{d_k^{\mathcal{G}} + \alpha} \deg \mathcal{G}.$$

For 3., if $(\mu_f < 0$ and there is no nef locally free sub-sheaf of \mathcal{E}) or (D is not nef and $(\mu_f > 0$ or $(\mu_f = 0$ and \mathcal{E} is not semi-stable))). By the Lemma 4.1 we have:

$$D^{2} \geq \sum_{i=1}^{k-1} (d_{i} + d_{i+1})(\mu_{i} - \mu_{i+1}) + 2\epsilon^{*}D.Z_{k} - Z_{k}^{2} + 2\mu_{k}d_{k}$$

$$\Longrightarrow D^{2} \geq \sum_{i=1}^{k-1} (\alpha(r_{i} - 1) + \alpha(r_{i+1} - 1))(\mu_{i} - \mu_{i+1}) + 2d_{k}\mu_{k} + 2\epsilon^{*}D.Z_{k} - Z_{k}^{2}$$

$$\Longrightarrow D^{2} \geq 2\alpha \sum_{i=1}^{k-1} r_{i}(\mu_{i} - \mu_{i+1}) - \alpha(\mu_{1} - \mu_{k}) + 2d_{k}\mu_{k} + 2\epsilon^{*}D.Z_{k} - Z_{k}^{2}$$

$$\Longrightarrow D^{2} \geq 2\alpha \left(\sum_{i=1}^{k-1} r_{i}(\mu_{i} - \mu_{i+1}) + r_{k}\mu_{k}\right) - 2\alpha r_{k}\mu_{k} - \alpha(\mu_{1} - \mu_{k}) + 2d_{k}\mu_{k} + 2\epsilon^{*}D.Z_{k} - Z_{k}^{2}$$

$$\Longrightarrow D^{2} \geq 2\alpha \deg(f_{*}(\mathcal{O}_{S}(D))) - \alpha(\mu_{1} + \mu_{k}) + 2\epsilon^{*}D.Z_{k} - Z_{k}^{2}.$$

If

$$\frac{d_k + \alpha}{2\alpha}(\mu_1 + \mu_k) \le \deg f_* \mathcal{O}_S(D).$$

Then:

$$D^{2} \ge \frac{2\alpha d_{k}}{d_{k} + \alpha} \deg f_{*} \mathcal{O}_{S}(D) + 2\epsilon^{*} D.Z_{k} - Z_{k}^{2}.$$

Else, we apply the Lemma 4.1 for:

$$Z_1 \geq Z_K$$

and

$$\mu_1 > \mu_k$$
.

So:

$$D^{2} > \frac{2\alpha d_{k}}{d_{k} + \alpha} \operatorname{deg} f_{*} \mathfrak{O}_{S}(D) + 2\epsilon^{*} D. Z_{k} - Z_{k}^{2}.$$

Put

$$N_D := \frac{2\epsilon^* D. Z_k - Z_k^2}{\deg f_* \mathcal{O}_S(D)}$$

$$2\alpha d_k$$

$$\implies D^2 \ge (\frac{2\alpha d_k}{d_k + \alpha} + N_D) \deg f_* \mathcal{O}_S(D).$$

For 4., if D is not nef, $\mu_k < 0$ and $\exists \ \mathcal{G} \subsetneq \mathcal{E}$ nef sub-vector bundle such that $\mu_k^{\mathcal{G}} > 0$ or $(\mu_k^{\mathcal{G}} \ge 0$ and \mathcal{G} is not semi stable). Then using the same arguments above, we deduce:

$$D^2 \ge \left(\frac{2\alpha d_k^{\mathfrak{G}}}{d_k^{\mathfrak{G}} + \alpha} + N_D^{\mathfrak{G}}\right) \deg \mathfrak{G}.$$

П

Remark 4.5. The result in the first point of the Theorem 4.4 is the same in [23, Theorem 3.20].

For the special case that $D = K_{S/C}$, Theorem 4.4 yields:

Corollary 4.6. Let $f: S \to C$ be a relatively minimal fibration with $g(F) \geq 2$ and $D = K_{S/C}$. Then:

$$K_{S/C}^2 \ge 4 \frac{g-1}{g} \deg f_* \omega_{S/C}.$$

Proof. $K_{S/C}$ is a nef divisor and by [8], $f_*\omega_{S/C}$ is nef vector bundle so $\mu_k \geq 0$. Then by the first point of the Theorem 4.4 we have:

$$K_{S/C}^2 \ge \frac{2\alpha d_f}{d_f + \alpha} \deg f_* \omega_{S/C}.$$

Such that: $\alpha = \min\{2, 1 + \frac{g}{g-1}\} = 2$ and $d_f = 2g - 2 - Z.F$. But by construction Z is contained in the fiber. Thus: Z.F = 0 and we deduce the original result of Xiao [24]

$$K_{S/C}^2 \ge 4 \frac{g-1}{g} \deg f_* \omega_{S/C}.$$

As a final observation, in the setting of Corollary 4.6, when the Miyaoka divisor N_1 restricted to the general fiber F is nonspecial and $h^0(F, N_1|_F) > 1$, then Corollary 4.6 takes the following more refined form.

Corollary 4.7. Let $f: S \to C$ be a relatively minimal fibration with $g(F) \ge 2$ and $D = K_{S/C}$, if $N_1|_F$ is nonspecial and $h^0(F, N_1|_F) > 1$. Then:

$$K_{S/C}^2 \ge 4 \frac{(g-1)(2g-1)}{(g-1)(2g-1)+g} \deg f_* \omega_{S/C}.$$

Proof. In this case $\alpha = 1 + \frac{g}{g-1}$, so we deduce the result.

Remark 4.8. The inequality in the Corollary 4.7 is more sharp than from the Corollary 4.6.

Remark 4.9. If $\mathrm{rk}(\mathcal{F}_1) > 1$ where \mathcal{F}_1 is the maximal destabilizing sub-vector bundle of $f_*\mathcal{O}_S(D)$. Then the condition $h^0(F, N_1|_F) > 1$ is verified by the Lemma 3.5.

References

- [1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. Geometry of algebraic curves. Vol. I, volume 267 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1985.
- [2] Arnaud Beauville. Complex algebraic surfaces, volume 68 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1983. Translated from the French by R. Barlow, N. I. Shepherd-Barron and M. Reid.
- [3] Fabrizio Catanese and Michael Dettweiler. The direct image of the relative dualizing sheaf needs not be semiample. C. R. Math. Acad. Sci. Paris, 352(3):241–244, 2014.

- [4] Fabrizio Catanese and Michael Dettweiler. Vector bundles on curves coming from variation of Hodge structures. *Internat. J. Math.*, 27(7):1640001, 25, 2016.
- [5] Fabrizio Catanese and Michael Dettweiler. Answer to a question by Fujita on variation of Hodge structures. In *Higher dimensional algebraic geometry—in honour of Professor Yujiro Kawamata's sixtieth birthday*, volume 74 of *Adv. Stud. Pure Math.*, pages 73–102. Math. Soc. Japan, Tokyo, 2017.
- [6] Maurizio Cornalba and Joe Harris. Divisor classes associated to families of stable varieties, with applications to the moduli space of curves. Ann. Sci. École Norm. Sup. (4), 21(3):455–475, 1988.
- [7] Francesco di Severi. La serie canonica e la teoria delle serie principali di gruppi di punti sopra una superficie algebrica. Comment. Math. Helv., 4(1):268–326, 1932.
- [8] Takao Fujita. On Kähler fiber spaces over curves. J. Math. Soc. Japan, 30(4):779–794, 1978.
- [9] Takao Fujita. The sheaf of relative canonical forms of a Kähler fiber space over a curve. *Proc. Japan Acad. Ser. A Math. Sci.*, 54(7):183–184, 1978.
- [10] G. Harder and M. S. Narasimhan. On the cohomology groups of moduli spaces of vector bundles on curves. *Math. Ann.*, 212:215–248, 1974/75.
- [11] Robin Hartshorne. *Algebraic geometry*. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
- [12] E. Horikawa. On algebraic surfaces with pencils of curves of genus 2. In *Complex analysis and algebraic geometry*, pages 79–90. Iwanami Shoten, Tokyo, 1977.
- [13] Andreas Höring. Positivity of direct image sheaves—a geometric point of view. Enseign. Math. (2), 56(1-2):87–142, 2010.
- [14] Kazuhiro Konno. Clifford index and the slope of fibered surfaces. J. Algebraic Geom., 8(2):207–220, 1999.
- [15] Robert Lazarsfeld. Positivity in algebraic geometry. II, volume 49 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals.
- [16] Marco Manetti. Surfaces of Albanese general type and the Severi conjecture. *Math. Nachr.*, 261/262:105–122, 2003.
- [17] Yoichi Miyaoka. The Chern classes and Kodaira dimension of a minimal variety. In *Algebraic geometry*, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages 449–476. North-Holland, Amsterdam, 1987.
- [18] Christophe Mourougane. Théorèmes d'annulation générique pour les fibrés vectoriels semi-négatifs. Bull. Soc. Math. France, 127(1):115–133, 1999.
- [19] Noboru Nakayama. Zariski-decomposition and abundance, volume 14 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 2004.
- [20] Koji Ohno. Some inequalities for minimal fibrations of surfaces of general type over curves. *J. Math. Soc. Japan*, 44(4):643–666, 1992.

- [21] Rita Pardini. The Severi inequality $K^2 \ge 4\chi$ for surfaces of maximal Albanese dimension. *Invent.* Math., 159(3):669–672, 2005.
- [22] Miles Reid. π_1 for surfaces with small K^2 . In Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), volume 732 of Lecture Notes in Math., pages 534–544. Springer, Berlin, 1979.
- [23] Enea Riva and Lidia Stoppino. The slope of fibred surfaces: unitary rank and Clifford index. *Proc. Lond. Math. Soc.* (3), 124(1):83–105, 2022.
- [24] Gang Xiao. Fibered algebraic surfaces with low slope. Math. Ann., 276(3):449–466, 1987.
- [25] Xinyi Yuan and Tong Zhang. Relative Noether inequality on fibered surfaces. $Adv.\ Math.,\ 259:89-115,\ 2014.$

DÉPARTEMENT DE MATHÉMATIQUES, UQAM, C.P. 8888, SUCCURSALE CENTRE-VILLE, MONTRÉAL, QUÉBEC, H3C 3P8, CANADA

E-mail address: benammar_ammar.houari@courrier.uqam.ca