Probabilidad y Estadística (93.24) Trabajo Práctico N° 5: Respuestas

Mezcla de variables aleatorias, funciones de variable aleatoria y distribuciones conjuntas

- 1. a) 0.0513 b) $F_V(v) = \frac{1}{2} (\Phi(v/0.3) + \Phi((v-0.9)/0.25))$, donde Φ es la función de distribución de la variable aleatoria con distribución normal estándar. El valor esperado de V es E(V) = 0.45.
- **2.** La función densidad de probabilidad de X es $f_X(x)=\frac{1}{245}\left(2\,x+26\right)I_{(1,8)}(x)$, donde $I_{(a,b)}(x)$ toma valor 1 si $x\in(a,b)$ y 0 en caso contrario. El valor esperado de X es $\frac{71}{15}\approx4.73$, la varianza $\frac{1813}{450}\approx4.029$ y el desvío estandar es $\sigma(X)\approx2.007$.
- **3.** a) E(Y) = 1.5 , V(Y) = 20.25. b) E(Y) = 2.5 , V(Y) = 2.25 c) E(Y) = 4.6 , V(Y) = 108.84.
- **4.** a) La variable aleatoria X tiene distribución normal de media m y dispersión s. b) $f_X(x)=\frac{1}{\sqrt{2\,\pi\,x}}\;e^{-x/2}\,I_{(0,\infty)}(x).$
- **5.** a) $f_W(w) = \frac{1}{2\sqrt{w}} I_{(0,1)}(x)$.
- **6.** $g(y) = \frac{1}{6} I_{(7,13)}$, E(Y) = 10, $h(z) = \frac{1}{2z}$, $z \in (e, e^3)$, $E(Z) = (e^3 e)/2$.
- 7. $h(v) = \frac{3}{2\pi} \left(\left(\frac{3v}{4\pi} \right)^{\frac{-1}{3}} 1 \right) 0 < v < \frac{4\pi}{3}$.
- **8.** a) 0.865 b) $\frac{25}{6}$ c) $P(B < b) = (1 (1 0.2b)^{0.5})^2$.
- **9.** a) 0.13397 b) 7.33 c) $F_C(c) = 0.5\sqrt{c-6}\ I_{[6,10)}(c) + 1I_{[10,\infty)}(c)$.
- **10.** a) $f(w) = \frac{1}{4\sqrt{2w}}$ 162 < w < 242 b) $E(W) = \frac{602}{3}$ y $V(W) = \frac{24016}{45}$ c) $P(W > \frac{602}{3}) \approx 0.492$.
- 11. a) La función densidad de probabilidad de Y es

$$f_Y(y) = (\frac{1}{\sqrt{y}} - 1) I_{(0,1)}(y).$$

- b) $E(Y) = \frac{1}{6} \text{ y } V(Y) = \frac{7}{180}$.
- 12. Los pares (x_k, p_k) de la distribución marginal de X son: (1,0.2), (2,0.2), (3,0.1), (4,0.4) y (5,0.1). Los pares (y_k, p_k) de la distribución marginal de Y son: (1,0.5), (2,0.3) y (3,0.2). Las ternas $(x_i, y_j, p_{i/j})$ de la distribución condicional de X dado $Y = y_j$ son: (1,1,0.2), (2,1,0.2), (3,1,0.1), (4,1,1)

- 0.3), (5, 1, 0.2); (1, 2, 1/6), (2, 2, 1/6), (3, 2, 1/6), (4, 2, 0.5); (1, 3, 0.25), (2, 3, 0.25), (4, 3, 0.5). Las ternas $(y_i, x_j, p_{i/j})$ de la distribución condicional de Y dado $X = x_j$ son: (1, 1, 0.5), (2, 1, 0.25), (3,1, 0.25); (1, 2, 0.5), (2, 2, 0.25), (3, 2, 0.25); (1, 3, 0.5); (2, 3, 0.5); (1, 4, 0.375), (2, 4, 0.375), (3, 4, 0.25); (1, 1, 1).
- 13. a) Los pares (x_k, p_k) de la distribución marginal de X son: (0, 0.03), (1,0.08), (2, 0.16), (3, 0.21), (4, 0.24) y (5, 0.28). Los pares (y_k, p_k) de la distribución marginal de Y son: (0, 0.25), (1,0.26), (2, 0.25) y (3, 0.24). b) Los pares (z_k, p_k) de la distribución de Z = X + Y son: (1, 0.02), (2,0.06), (3, 0.13), (4, 0.19), (5, 0.24), (6, 0.19), (7, 0.12) y (8, 0.05). Los pares (w_k, p_k) de la distribución de W = XY son: (0, 0.28), (1,0.02), (2, 0.07), (3, 0.07), (4, 0.11), (5, 0.08), (6, 0.09), (8, 0.05), (9, 0.06), (10, 0.06), (12, 0.06) y (15, 0.05). c) E(X + Y) = 4.87; V(X + Y) = 2.6731; E(XY) = 4.76; V(XY) = 19.2224 d) -0.2572.
- **14.** a) Los pares (x_k, p_k) de la distribución marginal de X son: (-2, 0.25), (-1,0.25), (1, 0.25) y (2, 0.25). Los pares (y_k, p_k) de la distribución marginal de Y son: (1, 0.50) y (4, 0.50). b) E(X) = 0; E(Y) = 2.5 y E(XY) = 0 c) Se cumple $Y = X^2$.
- **15.** a) a) Las ternas $(r, k, p_{Y/X}(r/k))$ de la función de probabilidad condicional $p_{Y/X}$ son: (0, 0, 0.1), (1, 0, 0.3), (0, 1, 0.4), y, (1, 1, 0.2). c) Los pares $(k, p_X(k))$ de la función de probabilidad p_X son: (0, 0.5) y (1, 0.5) mientras que los pares $(r, p_Y(r))$ de la función de probabilidad p_Y son: (0, 0.4) y (1, 0.6). d) -0.1.
- **16.** a) La función de probabilidad condicional $p_{Y/X}$ viene dada por: $p_{Y/X}(r/k) = \binom{k}{r} \frac{1}{2^k}$ para $0 \le r \le k \in \{1, 2, 3, 4, 5, 6\}$. b) La función de probabilidad conjunta es $p_{XY}(k,r) = \binom{k}{r} \frac{1}{62^k}$ $0 \le r \le k \in \{1, 2, 3, 4, 5, 6\}$.
- **17.** a) 0.2 b) $\frac{7}{30}$ c) 0.6 d) $\frac{4}{15}$ e) $\frac{1}{3}$ f) Las ternas $(r, k, p_{Y/X}(r/k))$ de la función de probabilidad condicional $p_{Y/X}$ son: (0, 0, 0), $(0, 1, \frac{1}{6})$, $(0, 2, \frac{2}{9})$, $(0, 3, \frac{1}{4})$, $(1, 0, \frac{1}{3})$, $(1, 1, \frac{1}{3})$, $(1, 2, \frac{1}{3})$, $(1, 3, \frac{1}{3})$, $(2, 0, \frac{2}{3})$, $(2, 1, \frac{1}{2})$, $(2, 2, \frac{4}{9})$, y $(2, 3, \frac{5}{12})$. g) Los pares $(k, p_X(k))$ de la función de probabilidad p_X son: $(0, \frac{1}{10})$ y $(1, \frac{1}{5})$, $(2, \frac{3}{10})$ y $(3, \frac{2}{5})$, mientras que los pares $(r, p_Y(r))$ de la función de probabilidad p_Y son: $(0, \frac{1}{5})$ y $(1, \frac{1}{3})$ y $(2, \frac{7}{15})$. h) E(X) = 2 $E(Y) = \frac{19}{15}$ i) $E(X + Y) = \frac{49}{15}$; $V(X + Y) = \frac{299}{225} \approx 1.3289$.
- **18.** a) 0.15 b) 0.4 c) 0.22 d) 0.17 e) E(X) = 1.7, E(Y) = 1.55 f) $X \in Y$ no son independientes.
- **20.** a) 0.1255 b) 0.34 c) 0.417 d) 0.08 (no tenga en cuenta el par

$$(0, 0)$$
 e) $\frac{1}{6}$ f) 0.12.

21. a) Sea Z = X + Y. Los pares $(z_k, p_Z(z_k))$ de de la función de probabilidad p_Z son: (0, 0.02), (5, 0.1), (10, 0.18), (15, 0.45), (20, 0.24) y (25, 0.01). El valor esperado de Z es 14.1. b) Las variables X e Y no son independientes.

22. a) $\frac{45}{64}$ y $\frac{5}{16}$ b) La variable Z tiene distribución binomial de parámetros n=6 y p=0.5.

23.

	Tabla 1	Tabla 2	Tabla 3
E(X)	0	0	0
E(Y)	0	0	0
E(XY)	0	0.4	-0.4
V(X)	0.2	0.4	0.4
V(Y)	0.2	0.4	0.4
Cov(X,Y)	0	0.4	-0.4
$\rho(X,Y)$	0	1	-1
Independencia	NO	NO	NO

24. a)
$$\frac{1}{9}$$
 b) $E(X) = E(Y) = \frac{7}{4}V(X) = V(Y) = \frac{11}{16}$.

- **25.** a) No son independientes b) 0.412.
- **26.** a) e^{-3} b) La variable X tiene distribución exponencial de parámetro 1, y la variable Y tiene a $\frac{1}{(1+y)^2}$ $\forall y \in \mathbb{R}$ como función densidad de probabilidad. Las variables aleatorias X e Y no son independientes. c) El valor esperado de Y no es finito.
- **27.** a) $\frac{15}{29}$ b) Las probabilidades solicitadas son 0.4909, 0.5194 y 0.7566. c) $\frac{405}{232}$ y $\frac{245}{174}$. d) No son independientes.
- ${\bf 28.}\;\;$ La función densidad de probabilidad de D viene dada por

$$f_D(d) = ((1 - e^{(10-d)})/2) I_{(10,12)}(x) + ((e^{(12-d)} - e^{(10-d)})/2) I_{(12,\infty)}(x).$$

b)
$$P(D > 13) = (e^{-1} - e^{-3})/2 \approx 0.1590.$$

29. a)
$$f(x,y) = \lambda^2 \exp(-\lambda (x+y))$$
 si $x > 0$ e $y > 0$. b) $(1 - \exp(-1))^2$ c) $1 - \exp(-\lambda t) - \lambda t \exp(-\lambda t)$.

30. a) $F_T(t) = \frac{1}{900} (60 \, t - t^2) \, I_{[0,30]}(t) + I_{(30,\infty)}(t)$ y la función densidad de probabilidad de T es $f_T(t) = \frac{1}{900} (60 - 2 \, t) \, I_{(0,30)}(t)$. b) El valor esperado

de Tes 10 y la varianza es 50.

31. a) 0.5 b)
$$\frac{\pi}{4}$$
 b) $\frac{2}{9}(1 + \ln \frac{9}{2})$.