Contrôle d'algèbre linéaire N°3

Durée: 1 heure 45 minutes Barème sur 15 points

NOM:	
	Groupe
PRENOM:	

- 1. Dans le plan, muni d'une origine O et de la base canonique orthonormée $B = (\vec{e}_1, \vec{e}_2)$, on considère les trois endomorphismes suivants :
 - h: une homothétie de centre O et de rapport $\lambda = -\sqrt{2}$,
 - f: une affinité d'axe (d) 3x-2y=0, de direction $\vec{u}=\begin{pmatrix} 1\\3 \end{pmatrix}$ et de rapport k=-2,
 - r: une rotation de centre O et d'angle $\alpha = \frac{\pi}{8}$.

Dans la base B, déterminer la matrice de l'application linéaire g où $g = h^{-1} \circ f \circ r^6$.

3 pts

2. L'espace \mathbb{R}^3 , d'origine O, est muni de la base canonique $B = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$. Soit f un endomorphisme sur \mathbb{R}^3 .

On note : $\vec{e_i}' = f(\vec{e_i}), \quad i = 1, 2, 3.$ f est définie par :

$$\begin{cases} \vec{e_1}' - \vec{e_3}' = \vec{0} \\ \vec{e_3}' + 2\vec{e_2}' = \vec{0} \\ \vec{e_2}' = -2\vec{e_1} + \vec{e_2} - 2\vec{e_3} \end{cases}$$

- a) Déterminer la matrice M de f relativement à la base B.
- b) Chercher l'équation cartésienne de Ker f et l'équation paramétrique de Im f. Calculer $f(\vec{x})$ si $\vec{x} \in \text{Im } f$ et en déduire la nature géométrique de f.
- c) Donner une base de \mathbb{R}^3 par rapport à laquelle la matrice de f est diagonale. Dans cette base, donner la matrice M' de f.

3.5 pts

3. Le plan \mathbb{R}^2 , d'origine O, est muni de la base orthonormée $B = (\vec{e_1}; \vec{e_2})$. Relativement à B, on donne la matrice A d'une application linéaire f:

$$A = \begin{pmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5} \end{pmatrix}.$$

- a) f est-elle bijective? Justifier la réponse.
- b) Déterminer l'équation cartésienne de l'ensemble des points fixes de f. Soit \vec{v} un vecteur perpendiculaire au vecteur directeur de l'ensemble des points fixes. Calculer $f(\vec{v})$ et en déduire la nature géométrique de f.

Soit l'application linéaire g déterminée par :

- Ker g, une droite d'équation x 3y = 0,
- Im g, une droite d'équation 3x + y = 0,
- $g(\overrightarrow{OP}) = \overrightarrow{OP}$ où $\overrightarrow{OP} = 3\vec{e_1} 9\vec{e_2}$.
- c) Déterminer une base $B'=(\vec{u}\,;\,\vec{w})$ de \mathbb{R}^2 , formée des vecteurs $\vec{u}\in \mathrm{Ker}\ g$ et $\vec{w}\in \mathrm{Im}\ g$. Puis exprimer, relativement à cette base B', la matrice M'_g de g.
- d) Relativement à la base B', exprimer la matrice de l'application $l = f \circ g$ et en déduire directement son interprétation géométrique.

5.5 pts

4. On munit \mathbb{R}^2 de la base canonique $B=(\vec{u}_1\,,\,\vec{u}_2)$ et de la base $B'=(\vec{v}_1\,,\,\vec{v}_2)$ définie par :

$$\begin{cases} \vec{v}_1 = 2\vec{u}_1 - \vec{u}_2 \\ \vec{v}_2 = -\vec{u}_1 + \vec{u}_2 \end{cases}$$

On munit \mathbb{R}^3 de la base canonique $E=(\vec{e}_1\,,\,\vec{e}_2\,,\,\vec{e}_3)$ et de la base $E'=(\vec{a}\,,\,\vec{b}\,,\,\vec{c})$ définie par :

$$\begin{cases} \vec{a} = \vec{e}_1 \\ \vec{b} = \vec{e}_1 + \vec{e}_2 \\ \vec{c} = \vec{e}_1 + \vec{e}_2 + \vec{e}_3 \end{cases}$$

Soit f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 telle que :

$$\begin{cases} f(\vec{u}_1) = 3\vec{a} - \vec{b} + 2\vec{c} \\ f(\vec{u}_2) = -\vec{a} + 2\vec{b} + \vec{c} \end{cases}$$

- a) Déterminer la matrice A de f par rapport aux bases B et E', ainsi que la matrice de passage de B à B'.
- b) Soit $E = \{ \vec{x} \in \mathbb{R}^3 \mid \vec{x} = (1+k)\vec{a} + (1-k)\vec{b} + 2\vec{c}, \forall k \in \mathbb{R} \}$. Déterminer l'équation cartésienne de $f^{-1}(E)$ dans la base B'.
- c) Donner une relation matricielle permettant de déterminer $\,C\,$, matrice de $\,f\,$ par rapport à $\,B'\,$ et $\,E\,$. Puis calculer $\,C.$