Predicate Logic

Cunsheng Ding

HKUST, Hong Kong

September 10, 2015

1/19

Contents

- Predicates
- The Universal Quantifier
- The Existential Quantifier
- 4 The Implicit Quantification
- Negations of Quantified Statements
- 6 Variants of Universal Conditional Statements
- Statements with Multiple Quantifiers
- Other Mathematical Declarative Statements

Predicates

Definition 1

- A <u>predicate</u> is a **statement** $P(x_1, x_2, ..., x_n)$ that contains n variables $x_1, x_2, ..., x_n$ and becomes a proposition when specific values are substituted for the variables x_i , where $n \ge 1$ is a positive integer.
- P is called an n-ary predicate.
- The <u>domain</u> D of the **predicate variables** $(x_1, x_2, ..., x_n)$ is the set of all values that may be substituted in place of the variables.
- The <u>truth set</u> of $P(x_1, x_2, ..., x_n)$ is defined to be

$$\{(x_1, x_2, \dots, x_n) \in D \mid P(x_1, x_2, \dots, x_n) \text{ is true}\}.$$

Warning

By definition, a predicate is a family of related propositions. Understanding the difference between predicates and propositions is a must.

Examples of Predicates

Example 2 (Predicate with One Variable)

Let P(x) be the predicate " $x^2 > x$ " with domain the set \mathbb{R} of all real numbers.

- What are the truth values of the propositions P(2) and P(1)?
- 2 What is the truth set of P(x)?

Answers

- P(2) = T and P(1) = F.
- ② The truth set of P(x) is $\{a > 1 : a \in \mathbb{R}\} \cup \{b < 0 : b \in \mathbb{R}\}$.

Examples of Predicates

Example 3 (Predicate with Two Variables)

Let Q(x,y) be the predicate "x = y + 3" with the domain $\mathbb{R} \times \mathbb{R}$.

- What are the truth values of the propositions Q(1,2) and Q(3,0)?
- What is the truth set of Q(x,y)?

Answers

- ① Q(1,2) = F and Q(3,0) = T.
- ② The truth set of Q(x,y) is $\{(a,a-3): a \in \mathbb{R}\}$.

The Universal Quantifier

Definition 4

The symbol \forall denotes "for all" and is called the universal quantifier.

Example 5

Let H be the set of all human beings. Let P(x) be the predicate "x is mortal" with domain H. We have the following statement:

 $\forall x \in H, x \text{ is mortal.}$

6/19

Universal Statements

Definition 6

- Let Q(x) be a predicate and D the domain of x. A <u>universal statement</u> is a statement of the form " $\forall x \in D, Q(x)$.
- It is defined to be true if, and only if, Q(x) is true for every $x \in D$. It is defined to be false if, and only if, Q(x) is false for at least one $x \in D$.
- A value for x for which Q(x) is false is called a **counterexample** to the universal statement.

Example 7

Let $D = \{1, 2, 3, 4, 5\}$. Consider the following statement

$$\forall x \in D, x^2 \ge x.$$

Show that this statement is true.

Example 8

Consider the statement

$$\forall x \in \mathbb{R}, x^2 \geq x.$$

Find a counterexample to show that this statement is false.

The Existential Quantifier

Definition 9

The symbol \exists denotes "there exists" and is called the existential quantifier.

Example 10

Let D be the set of all people. Let P(x) be the predicate "x is a student in COMP2711H" with domain D. We have the following statement:

 $\exists x \in D$ such that x is a student in COMP2711H.

Existential Statements

Definition 11

- Let Q(x) be a predicate and D the domain of x. An <u>existential statement</u> is a statement of the form " $\exists x \in D$ such that Q(x)."
- It is defined to be true if, and only if, Q(x) is true for at least one $x \in D$. It is false if, and only if, Q(x) is false for all $x \in D$.

Example 12

Let $E = \{5,6,7,8\}$. Consider the following statement

 $\exists m \in E \text{ such that } m^2 = m.$

Show that this statement is false.

Example 13

Let $\mathbb N$ be the same as before. Consider the statement

 $\exists m \in \mathbb{N} \text{ such that } m^2 = m.$

Show that the statement is true.

Universal Conditional Statements

Definition 14

A universal conditional statement is of the form

 $\forall x$, if P(x) then Q(x).

Example 15

The Implicit Quantification

Definition 16

Let P(x) and Q(x) be predicates and suppose the common domain of x is D.

- The notation $P(x) \Rightarrow Q(x)$ means that every element in the truth set of P(x) is in the truth set of Q(x), or, equivalently, $\forall x, P(x) \rightarrow Q(x)$.
- The notation $P(x) \Leftrightarrow Q(x)$ means that P(x) and Q(x) have identical truth sets, or, equivalently, $\forall x, P(x) \leftrightarrow Q(x)$.

Example 17

Let

- P(n) be "n is a multiple of 8,"
- Q(n) be "n is a multiple of 4,"

with the common domain \mathbb{Z} . Then $P(x) \Rightarrow Q(x)$.

The Implicit Quantification

Problem 18

Let

- Q(n) be "n is a factor of 4,"
- R(n) be "n is a factor of 2,"
- S(n) be "n < 5 and $n \neq 3$,"

with the common domain \mathbb{N} , the set of positive integers. Use the \Rightarrow and \Leftrightarrow symbols to indicate true relationships among Q(n), R(n), and S(n).

Solution 19

- The truth set of Q(n) is {1,2,4}.
- The truth set of R(n) is $\{1,2\}$.
- The truth set of S(n) is $\{1,2,4\}$.

Hence,

$$R(n) \Rightarrow Q(n)$$
,

$$R(n) \Rightarrow S(n)$$
,

$$Q(n) \Leftrightarrow S(n)$$
.

Negation of a Universal Statement

Definition 20

The negation of a statement of the form

$$\forall x \in D, Q(x)$$

is a statement of the form

$$\exists x \in D \text{ such that } \sim Q(x).$$

Example 21

The negation of the following statement

$$\forall n \in \mathbb{N}, P(n) > 0$$

is the statement that

 $\exists n \in \mathbb{N} \text{ such that } P(n) \leq 0.$

Negation of an Existential Statement

Definition 22

The negation of a statement of the form

$$\exists x \in D \text{ such that } Q(x)$$

is a statement of the form

$$\forall x \in D, \sim Q(x).$$

Example 23

The negation of the following statement

$$\exists n \in \mathbb{N} \text{ such that } P(n) \leq 0$$

is the statement that

$$\forall n \in \mathbb{N}, P(n) > 0.$$

Variants of Universal Conditional Statements

Definition 24

Consider a statement of the form: $\forall x \in D$, if P(x) then Q(x).

- Its contrapositive is the statement: $\forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$.
- Its converse is the statement: $\forall x \in D$, if Q(x) then P(x).
- Its <u>inverse</u> is the statement: $\forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$.

Example 25

Consider a statement of the form: $\forall x \in \mathbb{R}$, if x > 2 then $x^2 > 4$.

Contrapositive: $\forall x \in \mathbb{R}$, if $x^4 \le 4$ then $x \le 2$.

Converse: $\forall x \in \mathbb{R}$, if $x^2 > 4$ then x > 2.

Inverse: $\forall x \in \mathbb{R}$, if $x \leq 2$ then $x^2 \leq 4$.

Statements with Multiple Quantifiers

A statement may involve multiple quantifiers.

Example 26

The following is an statement involving two quantifiers:

 $\forall x \text{ in set } D, \exists y \text{ in set } E \text{ such that } x \text{ and } y \text{ satisfy property } P(x,y).$

An instance of the example above is the following.

Example 27

 $\forall x \text{ in set } \mathbb{Z}, \ \exists y \text{ in set } \mathbb{Z} \text{ such that } x \text{ and } y \text{ satisfy property } x + y = 1.$

Question 1

What is the negation of the statement with two quantifiers in Example 26?

Axioms

Definition 28

An <u>axiom</u> or <u>postulate</u> is a statement or proposition which is regarded as being established, accepted, or self-evidently true.

Example 29

- It is possible to draw a straight line from any point to any other point.
- It is possible to describe a circle with any center and any radius.

Theorems

Definition 30

A <u>theorem</u> is a statement that can be proved to be true.

Theorem 31

There are infinitely many primes.

Remark

A **theorem** contains usually a more important result, compared with a **proposition**.

Lemmas

Definition 32

A <u>lemma</u> is a statement that can be proved to be true, and is used in proving a theorem or proposition.

Lemma 33

The only even prime is 2.