Równanie falowe dla struny.

Zbigniew Kordyl 26.04.2021r.

1. Równanie falowe dla struny przy sztywnych warunkach brzegowych.

1.1 W pierwszym punkcje zadania rozwiązano równanie falowe dla $t \in (0, 5)$.

2. Równanie falowe dla struny przy luźnych warunkach brzegowych.

2.1 W kolejnym punkcie zadania rozwiązano równanie falowe dla $t \in (0, 5)$.

3. Drgania tłumione.

3.1 W następnym punkcie wprowadzono tłumienie drgań proporcjonalne do prędkości struny dla sztywnych warunków brzegowych. Przeprowadzono obliczenia dla współczynnika tłumienia $\beta = \{0.5, 2, 4\}$.

4. Drgania wymuszone.

4.1 W kolejnym punkcie dodano siłę wymuszającą, przykładaną punktowo, nadającą dodatkowe przyspieszenie strunie.

Przeprowadzono obliczenia w czasie t $\in (0, 10)$ dla sztywnych warunków brzegowych, wartości współczynnika tłumienia

 $\beta = 1$, częstości wymuszenia $\omega = pi/2$ oraz $x_0 = 0.5$.

5. Rezonanse.

5.1 W ostatnim punkcie wyznaczono zależność średniej energii stanu ustalonego od częstości wymuszenia. Obliczenia przeprowadzono dla przedziału czasu t \in [16, 20] i częstości $\omega \in (0, 10\pi)$.

