

Facultad de Ingeniería de Sistemas e Informática

APLICACIONES GEOMÉTRICAS

La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes (1596 – 1650) filósofo y matemático francés

> Lic. Manuel Tuesta Moreno Mgr. Docente FISI - UNAP

Manuel Tuesta Moreno

1

APLICACIONES GEOMÉTRICAS

COORDENADAS RECTANGULARES: Sea (x,y) un punto cualquiera de una curva F(x,y)=0.

- a) $\frac{dy}{dx}$ es la pendiente de la tangente a la curva en (x,y).
- b) $-\frac{dx}{dy}$ es la pendiente de la normal a la curva en (x,y).
- c) $Y y = \frac{dy}{dx}(X x)$ es la ecuación de la tangente en (x,y), donde (X,Y) son las coordenadas de un punto cualquiera de la tangente.

anuel Tuesta Moreno

- d) $Y-y=-\frac{dx}{dy}(X-x)$ es la ecuación de la normal en (x,y), siendo (X,Y) las coordenadas de un punto cualquiera de la normal
- e) $x-y\frac{dx}{dy}$ y $y-x\frac{dy}{dx}$ son los segmentos interceptados en los ejes X e Y por la tangente.
- f) $x + y \frac{dy}{dx}$ y $y + x \frac{dx}{dy}$ son los segmentos interceptados por la normal.
- g) $y\sqrt{1+\left(\frac{dx}{dy}\right)^2}$ y $x\sqrt{1+\left(\frac{dy}{dx}\right)^2}$ son las longitudes de la tangente (x, y) y los ejes $X \in Y$.

h) $y\sqrt{1+\left(\frac{dy}{dx}\right)^2}$ y $x\sqrt{1+\left(\frac{dx}{dy}\right)^2}$ son las longitudes de la normal entre (x,y) y los ejes $X \in Y$.

- i) $y\frac{dx}{dy}$ y $y\frac{dy}{dx}$ son las longitudes de la subtangente y subnormal.
- j) $ds = \sqrt{(dx)^2 + (dy)^2} = dx \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = dy \sqrt{1 + \left(\frac{dx}{dy}\right)^2}$ es un elemento de longitud de arco.
- k) ydx o xdy es un elemento de área.

Manuel Tuesta Moreno

5

APLICACIONES GEOMÉTRICAS Propiedades de las curvas que implican la derivada. COORDENADAS POLARES: Sea (ρ, θ) un punto cualquiera de una curva $\rho = f(\theta)$.

Tuesta Moreno

1

APLICACIONES GEOMÉTRICAS

Propiedades de las curvas que implican la derivada. COORDENADAS POLARES: Sea (
ho, heta) un punto cualquiera de una curva $\rho = f(\theta)$.

- I) $tg\psi = \rho \frac{d\theta}{d\rho}$, donde ψ es el ángulo entre el radio vector y la parte de la tangente dirigida hacia el origen de la
- m) $\rho tg\psi = \rho^2 \frac{d\theta}{d\rho}$ es la longitud de la subtangente polar.
- n) $\rho \operatorname{ct} g\psi = \frac{d\rho}{d\theta}$ es la longitud de la subnormal polar.

o) $\rho \, sen\psi = \rho^2 \frac{d\theta}{ds}$ es la longitud de la perpendicular desde el polo a la tangente.

- p) $ds = \sqrt{(d\rho)^2 + \rho^2(d\theta)^2} = d\rho\sqrt{1 + \rho^2\left(\frac{d\theta}{d\rho}\right)^2} = d\theta\sqrt{\left(\frac{d\rho}{d\theta}\right)^2 + \rho^2}$ es un elemento de longitud de arco.
- q) $\frac{1}{2}\rho^2d\theta$ es un elemento de área.

TRAYECTORIAS

Cualquier curva que corte a cada uno de los miembros de una familia dada de curvas bajo un ángulo constante ω se llama una trayectoria ω de la familia. La trayectoria de 90º de una familia se denomina comúnmente una trayectoria ortogonal de la familia.

PROBLEMAS

P-01) En cada punto (x,y) de una curva el segmento que la tangente intercepta en el eje Y es igual a $2xy^2$. Hallar la curva. $\mathbf{R}: \mathbf{x} - \mathbf{x}^2 \mathbf{y} = \mathbf{C} \mathbf{y}$.

P-02) En cada punto (x,y) de una curva la subtangente es proporcional al cuadrado de la abscisa. Hallar la curva si pasa también por el punto (1, e).

$$R: k \, Lny = -\frac{1}{x} + k + 1$$

 $\label{eq:R:klny} R: k \, Lny = -\frac{1}{x} + k + 1$ P-03) Hallar la familia de curvas para las que la longitud de la parte de la tangente entre el punto de contacto (x,y) y el eje Y es igual al segmento interceptado en y por la tangente.

$$R: x^2 + y^2 = Cx$$

P-04) Por un punto cualquiera (x,y) de una curva que pasa por el origen se trazan dos rectas paralelas a los ejes coordenados. Hallar la curva de modo que divida al rectángulo formado por las dos rectas y los ejes coordenados en dos superficies, una de las cuales sea triple de la otra. $R: y = Cx^3$; $y^3 = Cx$

P-05) La superficie limitada por el eje X, una ordenada fija x = a, una ordenada variable y la parte de una curva interceptada por las ordenadas gira alrededor del eje X. Hallar la curva si el volumen engendrado es proporcional a: a) la suma de las dos ordenadas, b) la diferencia de las dos ordenadas.

$$R:a) \not\exists b) y(C-\pi x) = k$$

10

P-06) Hallar una curva tal que en cualquier punto de ella el ángulo entre el radio vector y la tangente sea igual a un tercio del ángulo de inclinación de la tangente. R: $\rho = C_1 sen^2\left(\frac{\theta}{2}\right) = C(1-cos\theta)$

P-07) La superficie del sector formado por un arco de una curva y los radios vectores de sus puntos extremos es la mitad de la longitud del arco. Hallar la curva. $\rho = 1$; $\rho == sec(C + \theta)$

P-08) Hallar la curva para la que la porción de la tangente entre el punto de contacto y el pie de la perpendicular trazada por el polo a la tangente es un tercio del radio vector del punto de contacto. $R: \rho = Ce^{\theta/2\sqrt{2}}; \ \rho = Ce^{-\theta/2\sqrt{2}}$

R:
$$\rho = Ce^{\theta/2\sqrt{2}}$$
; $\rho = Ce^{-\theta/2\sqrt{2}}$

11

P-09) Hallar las trayectorias ortogonales de las hipérbolas xy = C. R: $y^2 - x^2 = C$

P-10) Demostrar que la familia de cónicas homofocales $\frac{x^2}{c} + \frac{y^2}{c-\lambda} = 1$, donde c es una constante arbitraria, es autoortogonal.

P-11) Determinar las trayectorias ortogonales de la familia de cardioides $\rho = C(1 + sen\theta)$. $R: \rho = C(1 - sen\theta)$ P-12) Determinar las trayectorias de 45° de la familia de circunferencias concéntricas $x^2 + y^2 = C$.

R:
$$x^2 + y^2 = Ke^{-2 \arctan g(y/x)}$$
 ó en coordenadas polares $\rho^2 = Ke^{-2\theta}$ ó bien $\rho e^{\theta} = C$

12