Deep Pion Analysis update with newer data

Ivan Chernyshev

December 19, 2017

Introduction

- Used Dr. Miguel Arratia's Deep Pion Efficiency analysis software, which uses both Dr. Yue Shi Lai's neural net and λ_0 based data analysis, and compares them.
- Data: 2013 pPb (e period, processed with the clusv1 algorithm)
- MC: 17g6a3_pthat2 (I do not know which type of Monte-Carlo this is)

 $12 \text{ GeV} < pT_{cluster} < 14 \text{ GeV}$

0.4

0.6

0.8

NN output (2γ)

0.4

0.6

0.8

0.9 1 NN output (2γ)

 $24 \text{ GeV} < pT_{cluster} < 26 \text{ GeV}$

Legend

- Data
- MC

Legend

- data, pPb
- π⁰ 2 showers
- π⁰ 1 shower
- η BKG
- Other BKG

 $26 \text{ GeV} < pT_{cluster} < 28 \text{ GeV}$

Legend

- Data
- MC

Legend

- data, pPb
- π⁰ 2 showers
- π⁰ 1 shower
- η BKG
- Other BKG

Purity and Efficiency

- In general, the purities are a, though there is one cell where NN data is missing, at $pT_{cluster}$ near 8GeV and very high error bars at $pT_{cluster}$ > 22 GeV and $pT_{cluster}$ < 10 GeV
- Miguel's code failed to produce good results for the efficiency

Purity-and-efficiency corrected spectrum ratios

• Agreement at $pT_{cluster} \ge 15 \text{ GeV}$

Closure Test

Conclusions

- At pT_{cluster} > 22 GeV, there is not enough data.
- At 10 GeV < pT_{cluster} < 22 GeV, the neural-net shows a monte-carlo that is more consistent with data than the λ_0
- Neural-net closure test is within 10% of unity everywhere, whereas λ_0 closure test is only so at pT_{cluster} > 15 GeV
- Neural-net and λ_0 spectra are consistent with one another at pT_{cluster} > 15 GeV, while purities are consistent everywhere
- Miguel's code shows problems at the try and stack graphs with pT_{cluster}
 20 GeV, the efficency graph, and to a lesser extent the purity graph