

COMP1819 Algorithms and Data Structures	2024/25	Coursework ID:	Contribution: 100% of course
Coordinator: Dr Tuan Vuong			Return Date: 09/04/2025

This coursework should take an average student who is up-to-date with tutorial work for approximately 40 hours.

Feedback and grades are normally available within 15 working days of the coursework deadline.

Learning Outcomes:

- 1. Select and employ data structures appropriate to various problems.
- 2. Understand the relationship between algorithms and data structures.
- 3. Formulate and solve programming problems using learned concepts.
- 4. Understand the complexity of algorithms in terms of time and memory.

Plagiarism is presenting somebody else's work as your own. It includes: copying information directly from the Web or books without referencing the material; submitting joint coursework as an individual effort; copying another student's coursework; stealing coursework from another student and submitting it as your own work. Suspected plagiarism will be investigated and if found to have occurred will be dealt with according to the procedures set down by the University. Please see your student handbook for further details of what is / isn't plagiarism.

All material copied or amended from any source (e.g. internet, books) must be referenced correctly according to the reference style you are using. Code snippets from open-source resources or YouTube must be acknowledged appropriately.

Your work will be submitted for plagiarism checking. Any attempt to bypass our plagiarism detection systems will be treated as a severe Assessment Offence.

Coursework Submission Requirements

- An electronic copy of your work for this coursework must be fully uploaded on the Deadline of Tuesday 18/03/2025 using the link on the coursework Moodle page for COMP1819.
- For this coursework you must submit a single PDF document. In general, any text in the document must not be an image (i.e. must not be scanned) and would normally be generated from other documents (e.g. MS Office using "Save As .. PDF"). An exception to this is handwritten mathematical notation, but when scanning do ensure the file size is not excessive.
- For this coursework you must also upload a single **ZIP** file containing supporting evidence.
- There are limits on the file size (see the relevant course Moodle page).
- Make sure that any files you upload are virus-free and not protected by a password or corrupted otherwise they will be treated as null submissions.
- Your work will not be printed in colour. Please ensure that any pages with colour are acceptable when printed in Black and White.
- You must NOT submit a paper copy of this coursework.
- All courseworks must be submitted as above. Under no circumstances can they be accepted by academic staff

The University website has details of the current Coursework Regulations, including details of penalties for late submission, procedures for Extenuating Circumstances, and penalties for Assessment Offences. See http://www2.gre.ac.uk/current-students/regs

Algorithms and Data Structures (ADS) - COMP1819

Develop and optimise solutions in Python with ADS and provide complexity analysis.

This is a GROUP coursework.

Detailed Specification

Problem Title: Unique Prime Numbers "Hidden" in Binary Strings

Your group has been tasked with solving a coding interview question in Python designed to assess a candidate's understanding of **fundamental data structures and algorithms** at various levels of optimisation. This challenge will help you develop key skills, including selecting and implementing appropriate **data structures**, designing **efficient algorithms**, analysing **computational complexity**, and optimising solutions to handle **large inputs** effectively.

Your task is to write a Python program that finds all unique prime numbers hidden within a given binary string, and less than a given integer number N.

For example, given the binary string "0110" and the number 5, we can extract multiple substrings, such as "0", "1", "11", "10", "110"... Converting these binary substrings into their decimal equivalents gives the numbers 0, 1, 2, 3, 6, and so on. Among these, we identify the prime numbers that are less than a given value 5. In this case, the prime numbers are 2 (decimal equivalent of binary string "10") and 3 (decimal equivalent of binary string "11") after removing duplicates. So the output is "2: 2, 3"

We need to print all the prime numbers, if **fewer than 6 prime numbers** are found. However, if **6 or more** prime numbers are found, it should display **only the first three smallest primes and the last three largest ones**.

Examples:

Input	Output (Total: Primes Numbers)	Explaining
101011,99	5: 2, 3, 5, 11, 43	Total prime numbers = 5 List of prime numbers = 2, 3, 5, 11, 43
0110,5	2: 2, 3	Total prime numbers = 2 List of prime numbers = 2,3
COMP,4	0: Invalid binary strings	Not binary strings

The 10 Given Test cases:

#	Input (extra space for readability)	Output	Comment (Extra Information for your knowledge)	
1	0100001101001111,999999	Your answers?	The binary representation of 'CO'	
2	01000011010011110100110101010000,999999	Your answers?	The binary representation of 'COMP'	
3	11111111111111111111111111111111111111	Your answers?	40 1's	
4	01000011010011110100110101010000001100010 0111000,99999999	Your answers?	The binary representation of 'COMP18'	
5	01000011010011110100110101010000001100010 011100000110001,123456789012	Your answers?	The binary representation of 'COMP181'	
6	01000011010011110100110101010000001100010 011100000110001001	Your answers?	The binary representation of 'COMP1819'	
7	010000110100111101001101010000001100010 011100000110001001	Your answers?	The binary representation of 'COMP1819!'	
8	0100001101001111010011010101000001100010 011100000110001001	Your answers?	The binary representation of 'COMP1819!A'	
9	01000011010011110100110101010000001100010 011100000110001001	Your answers?	The binary representation of 'COMP1819!AD'	
10	010000110100111101001101010000001100010 011100000110001001	Your answers?	The binary representation of 'COMP1819!ADS'	

Your group must develop multiple solutions for the given problem, providing complexity analysis, test cases, results, and the corresponding Python code. The program must not rely on a hard-coded list of values, except for up to five predefined values, and external data files are not allowed. It should aim to complete execution within 60 seconds for any test case. Solutions must be your code, though you may use Python's built-in libraries. Additionally, the program should be concise, ideally not exceeding 100 lines of code.

Deliverables – Submission requirements

Deliverable 1 – the report in PDF format

A template will be provided. Your report must be created using Online Document Sharing such as Microsoft 365 for ongoing collaboration with the tracker on. You must provide a link to this document (make it viewable to everyone with the link) in the final report you submit. Each team member must select different colours for their respective text and provide a legend of which colour text belongs to which team member at the begin of the report.

1. Creating two basic working solutions (30%) – Maximum 2 pages

- Each team member must explain their understanding of the problem with clearly handwritten examples (at least 5 in total) with different input string lengths and their expected outputs. This must be later used to validate the correctness of your solutions.
- Implement two distinct solutions, each using a different data structure.
- Include your full code in the Appendix of the report (as clear text, not a screenshot).

2. Testing and Compare Your Solution (20%) - Maximum 2 pages

- Test your solutions against the test cases (examples) you used in in Task 1 in a **clear table** with evidence (snapshot of output generated from your implementation.)
- Run your solutions on the **10 given test cases.** Record **the output and the running time** for each (you can stop after 60 seconds) in the report. Also put these details as comment in your code.
- Compare your two solutions, highlighting the differences in **data structures** and their impact on performance.
- Provide a theoretical analysis of the complexity of your approaches and generate a **graph** showing how the runtime of both solutions changes across the **10** given test inputs.

3. Optimising Solutions (20%) – Maximum 2 pages

- Choose one basic solution to optimise and improve its efficiency to solve as many given test cases as possible within a 60-second runtime limit.
- Explain each **optimisation step**, detailing how it enhances performance (**Miller-Rabin method and external libraries are not allowed**). Your optimisation should be an improvement of the basic solution (one of the distinct solutions you obtained in Task-1 and not completely new and different).
- Include the final optimised code in the Appendix of the report (as clear text, not a screenshot).

4. Comparing Performance (15%) – Maximum 2 pages

- Compare the optimised solution with the basic solution focusing on differences in **data structure**, **algorithm**, **or implementation approach**.
- Run your **optimised solution** on the **10 given test cases.** Record **the output and the running time** for each (you can stop after 60 seconds) in the report. Also put these details as comment in your code.
- Create a **graph** to visually compare **runtime performance** across different test cases between the optimised solution **and** the basic solution.
- Analyse and explain the time complexity and Big-O notation for the optimised solution.

5. Reflecting on Teamwork (15%) – Maximum 2 pages

- Assign contribution marks to each team member based on mutual agreement.
- Maintain a weekly journal tracking communication logs and individual contributions.
- Provide a **clear summary** of each member's role and specific contributions to the project.
- Ensure the **final report** is **well-organised**, **clearly written**, **properly referenced**, and follows the given specifications.

Deliverable 2 – Source code & test case input files (marks included within Deliverable 1.1, 1.3)

The Python source codes (one for each solution), inputs/test cases used for analysis, and others. They should be placed in a zip file which must be uploaded separately from the report.

You must implement your solution in **Python** programming language. You may use any sample code provided in the course lectures and laboratories/tutorials as an aid, but make sure you reference any source code or tools (including AI tools) used.

Unreferenced codes/contents may involve an investigation into an academic misconduct offence.

You are strongly advised to commence working on this coursework **as it becomes available** and contact the **Module leader** with your query as early as possible.

Additional coursework guidelines and advice will be provided separately.

Grading Criteria

Criteria for	80-100	70-79	60-69	50-59	40-49	30-39	0-29
Assessment							
Content, knowledge	Demonstrates exceptional	Demonstrates an excellent	There is a very good	Has demonstrated a good	Has demonstrated a	A poor understanding of	Little or no
and understanding	systematic understanding	systematic understanding	systematic understanding	understanding problem	satisfactory level of	one or more of the	understanding of one or
	of problem solving,	of problem solving,	of problem solving,	solving, computer	understanding of	following - problem	more of the following -
	computer programming	computer programming	computer programming	programming and	problem solving,	solving, computer	problem solving,
	and algorithmic	and algorithmic	and algorithmic	algorithmic performance.	computer programming	programming and	computer programming
	performance. There is	performance. There is also	performance. There is also	There is also some good	and algorithmic	algorithmic	and algorithmic
	exceptional evidence of	excellent evidence of	some very good evidence	evidence of engagement	performance. There are	performance.	performance.
	engagement with all key	engagement with all key	of engagement with all key	with most key elements	a few notable omissions	There is insufficient	There is very little
	elements.	elements.	elements.	with some omission of	and there is limited	evidence of engagement	evidence of engagement
				detail.	evidence of engagement	with the key elements.	with the key elements.
					with all key elements.	Overall an unsatisfactory	Overall a very
					Overall a satisfactory	attempt.	unsatisfactory attempt.
					attempt at these criteria		
Cognitive/Intellectual	Demonstrates exceptional	Demonstrates an excellent	Demonstrates a very good	Demonstrates some good	Has shown some	Has shown little use of	Has shown little or no
Skills	use of a critical analysis of	use of a critical analysis of	use of a critical analysis of	critical analysis of	satisfactory level of	techniques to undertake	use of techniques to
	information leading to the	information leading to the	information leading to the	information leading to the	critical analysis of	a critical analysis of	undertake a critical
	proposal of a robust and	proposal of a robust and	proposal of a detailed	proposal of a detailed	information. There is	information. The	analysis of information.
	detailed solution. There is	detailed solution. There is	solution. There is also	solution. There are some	evidence of reflection	reflection and	The reflection and
	exceptional evidence of	also excellent evidence of	some very good evidence	exposed weaknesses of	and judgement based on	judgement based on the	judgement based on the
	reflection that identifies	reflection and judgement	of reflection and	cognitive skills. There is	the interpretation of the	interpretation of results	interpretation of results
	the strengths and	based on the	judgement based on the	also some good evidence	results obtained at a	is weak and lacks detail.	is very weak and lacks
	weakness of the	interpretation of the	interpretation of the	of reflection and	threshold pass level.		detail.
	approaches undertaken.	results obtained.	results obtained.	judgement based on the			
				interpretation of the			
				results obtained.			

Communication.	Demonstrates exceptional	Demonstrates excellent	Demonstrates a very good	There is good use of	The use of argument	The use of argument	The use of argument
Organisation and	use of argument and	use of argument and	use of argument and	argument and language	and language which	and language which	and language which
Presentation	language which effectively	language which effectively	language which effectively	which communicates	communicates	communicates	communicates
	communicates information	communicates information	communicates information	information to the target	information to the	information to the	information to the
Graduate	to the target audience.	to the target audience. The	to the target audience.	audience. The structure	target audience is	target audience is	target audience is at a
Employability and	The structure and flow of	structure and flow of the	The structure and flow of	and flow of the report is	mostly acceptable with	mostly at a substandard	substandard level. The
Application of Skills	the report is clear and of	report is clear and of an	the report is clear and	mostly coherent and	some shortcomings in	level. The structure and	structure and flow of
	an exceptional quality.	excellent quality. There is	overall is very good. There	overall is good. There is	the grammar. The	flow of the report is	the report is
	There is exceptional	excellent evidence of the	is also very good evidence	also some good evidence	structure and flow of the	unacceptable with some	unacceptable with
	evidence of the qualities of	qualities of transferrable	of the qualities of	of the qualities of	report is barely	presentation issues.	significant presentation
	transferrable skills	skills necessary for	transferrable skills	transferrable skills	acceptable with some	There may also be little	issues. There may also
	necessary for employment	employment that required	necessary for employment	necessary for	presentation issues.	evidence of the qualities	be little/no evidence of
	that required personal	personal judgement and	that required personal	employment.	There is also some	of transferrable skills	the qualities of
	judgement and successful	successful	judgement and mostly		evidence of the qualities	necessary for	transferrable skills
	experimentation.	experimentation.	successful		of transferrable skills	employment.	necessary for
			experimentation.		necessary for		employment.
			•		employment.		
Referencing, sourcing,	The exceptional use of	The excellent use of	The use of references	The use of references	The use of references	The use of references	Little or no cited work.
acknowledging and	appropriate references	appropriate references	reflects a very good	reflects a good	reflects a satisfactory	reflects a poor	The references may not
coverage	reflects clear and detailed	reflects clear and detailed	understanding of the cited	understanding of the cited	understanding of the	understanding of the	be appropriate or the
	understanding of the	understanding of the	work and its contents.	work and its contents.	cited work and its	cited work and its	most recent.
	referenced works and its	referenced works and its	Some references may not	Some references may not	contents. Some	contents. The references	
	contents from a variety of	contents referenced	be the most recent.	be the most recent or are	references may not be	may not be sufficient or	
	sources.	works.		taken from a narrow range	appropriate or the most	appropriate or the most	
				of sources.	recent or are taken from	recent or are taken from	
					a narrow range of	a narrow range of	
					sources.	sources.	