4CCS1DST, 2016/17 – Lecture 3 – Analysis of Algorithms

4CCS1DST - Data Structures

Lecture 3:

Analysis of Algorithms (Ch. 4)

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Analysis of algorithms:
 - to understand how the running time grows with the input size.
- Average case running time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial for applications such as games, finance and robotics

Experimental Studies

- Write a program implementing a given algorithm
- Run the program with inputs of varying sizes and composition
- Use a method like

System.currentTimeMillis()

to measure the actual running time

(see Lecture 1, class FibonacciTest)

- Plot the results
- Do the same for other algorithm(s) and compare

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult (costly).
- We may have a number of potential algorithms for a given task, but we would like to implement only one – the best one.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used.

Theoretical Analysis

- Uses a high-level description of the algorithm (pseudocode) instead of an implementation.
- Takes into account all possible inputs.
- Allows us to evaluate the speed of an algorithm independent of a hardware/software environment.
- Characterizes running time of an algorithm as a function of the input size, n:

For a given algorithm, determine a function f(n) that characterizes the (worst-case) running time of this algorithm as a function of the input size n.

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm *arrayMax*(*A*, *n*)
Input array *A* of *n* integers
Output maximum element of *A*

 $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n-1 do
 if A[i] > currentMax then
 $currentMax \leftarrow A[i]$ return currentMax

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

Algorithm methodName (arg [, arg...])

Input ...(explain the arguments)

Output ...(explained the return values)

- Method call
 methodN (arg [, arg...])
 var.methodN (arg [, arg...])
- Return value return expression
- Expressions
 - ← Assignment (like = in Java)
 - Equality testing (like == in Java)
 - n² Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

□ A CPU

A memory: a potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character.

Memory cells are numbered.

Unit time

- Each CPU operation takes unit time.
- Accessing any cell in memory takes unit time.
- Approximation of real computers but mostly sufficient for predicting real running times.

.....

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a <u>constant</u>
 <u>amount of time</u> in the RAM model (constant number of time units)

- Assigning a value to a variable
- Comparing two numbers
- Evaluating an expression
- Indexing into an array
- Following an object reference
- Calling a method
- Returning from a method

Counting Primitive Operations

- The function f(n), which characterizes the running time of a given algorithm: the maximum number of primitive operations executed by this algorithm, as a function of the input size.
- \Box For a given n, f(n) is the maximum number of primitive operations executed by this algorithm for any input od size n.
- We can determine this maximum number of primitive operations by inspecting the pseudocode of the algorithm.

```
Algorithm arrayMax(A, n)
                                                # operations
                                                                     array
                                                                     indexing +
   currentMax \leftarrow A[0]
                                                                     assignment
   for i \leftarrow 1 to n-1 do
                                                   2n+1
         if A[i] > currentMax then
                                                  2(n-1)
                                                                     initialize i
                                                  2(n-1)
                  currentMax \leftarrow A[i]
                                                                     plus n x
                                                                     (subtract
                                                  2(n-1)
         \{ \text{ increment counter } i \}
                                                                      +compare)
   return currentMax
                                           Total 8n-2
```

Estimating Running Time

- □ Algorithm arrayMax executes 8n 2 primitive operations in the worst case.
- Define:
 - a =time taken by the fastest primitive operation
 - b =time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then $(8a) n 2a = a (8n 2) \le T(n) \le b (8n 2) = (8b) n 2b$
- □ Hence, the running time T(n) is bounded by two linear functions of the argument n.
- □ Input size $n \rightarrow 10 n$: running time $T(10 n) \approx 10 \cdot T(n)$

Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- □ The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax,
 - and is independent of hardware, implementation and computing environment.

Why Growth Rate Matters

if runtime (time for n) is	time for n + 1	time for 2 n	time for 4 n
c log ₂ n	c log ₂ (n + 1)	(c log ₂ n) + c	(c log ₂ n) +2c
<u>c n</u>	c(n+1) = c n + c	2 * <u>c n</u>	4 c n
c n log n	~ c n log n + c log n	2c n log n + 2cn	4c n log n + 8cn
<u>c n²</u>	~ c n ² + 2c n	4 * <u>c n²</u>	16 c n ²
c n ³	$\sim c n^3 + 3c n^2$	8 c n ³	64 c n ³
c 2 ⁿ	$c 2^{n+1} = 2(c 2^n)$	$c2^{2n} = 2^n(c2^n)$	$c2^{4n} = 2^{3n}(c2^n)$

Linear runtime: doubles when problem size doubles

Quadratic runtime: quadruples when problem size doubles

Seven Important Functions

- Seven functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic: ≈ log n
 - Linear: $\approx n$
 - N-Log-N: $\approx n \log n$
 - Quadratic: $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- Not easy to compare these functions using plots with "normal" (linear) scale.

n	linear	quadratic	cubic
1,000	1,000	1,000,000	1,000,000,000
	μs's	ms's	sec's

Slide by Matt Stallmann included with permission.

Comparison of Two Algorithms

insertion sort is n² / 4

selection sort is similar

merge sort is $f(2000) = 4 \times f(1000)$ 5 n log n $f(2000) = 2.2 \times f(1000)$

sort one million items:

insertion sort takes roughly 70 hours

while

merge sort takes roughly 100 seconds

On a slow machine, but if 100 x faster machine, then it's 40 minutes versus 1 sec.

Constant Factors

- The growth rate is not affected by
 - constant factors and
 - lower-order terms
- Examples

 - $= 10^5 n^2 + 10^8 n$ is a quadratic function

Big-Oh Notation

□ Given functions f(n) and g(n), we say that

$$f(n)$$
 is $O(g(n))$

if there are positive constants c and n_0 such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

- □ Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$, for all $n \ge n_0$?
 - $(c-2) n \ge 10$ (need c > 2)
 - $n \ge 10/(c-2)$ for all $n \ge n_0$?
 - Yes, pick c = 3 and $n_0 = 10$:

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Big-Oh Example

- □ Example: the function n^2 is not O(n)
 - $n^2 \le cn$? for some c and all $n \ge n_0$
 - $n \leq c$? for some c and all $n \geq n_0$
 - This cannot be satisfied since c must be a constant.

More Big-Oh Examples

- 7n-2 7n-2 is O(n) $need\ c>0\ and\ n_0\geq 1$ such that $7n-2\leq c\ n$, for $n\geq n_0$ this is true for c=7 and $n_0=1$
- $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is $O(n^3)$ need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c n^3$, for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$
- 3 log n + 5 3 log n + 5 is O(log n) $need c > 0 and n₀ ≥ 1 such that <math>3 log n + 5 ≤ c \cdot log n$, for $n ≥ n_0$ this is true for c = 8 and $n_0 = 2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.
- The statement f(n) is O(g(n)) means that the growth rate of f(n) is not greater than the growth rate of g(n).
- We can use the big-Oh notation to rank functions according to their growth rate.

	f(n) is $O(g(n))$	g(n) is $O(f(n))$		
g(n) grows more	Yes	No		
f(n) grows more	No	Yes		
Same growth	Yes	Yes		

Big-Oh Rules

- □ If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - Drop the constant factor (change to 1) in the highest order term
 - Example: $5n^4 + 20n^3 7n + 13$ is $O(n^4)$
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"
- \square We also write, e.g., " 3n + 5 = O(n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation (or its "relatives").
- To perform the asymptotic analysis:
 - We find the worst-case number of primitive operations executed as a function of the input size.
 - We don't need this function exactly, we only want to express it using big-Oh notation.

Example:

- We determine that algorithm arrayMax executes at most 8n-2 primitive operations.
- We say that algorithm arrayMax "runs in O(n) time."
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages.
- The i-th prefix average of an array X is average of the first (i + 1) elements of X:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

floor Computing the array A of prefix averages of another array X has applications in financial analysis.

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by directly applying the definition

```
Algorithm prefixAverages1(X, n)
   Input array X of n integers
   Output array A of prefix averages of X #operations
   A \leftarrow new array of n integers
                                                          n
   for i \leftarrow 0 to n-1 do
                                                          n+1
        s \leftarrow X[0]
                                            1 + 2 + \ldots + (i+1) + \ldots + n
        for j \leftarrow 1 to i do
                                            0+1+...+i+...+(n-1)
                s \leftarrow s + X[i]
        A[i] \leftarrow s / (i+1)
                                                          n
   return A
```

Arithmetic Progression

The running time of prefixAverages1 is

$$2 \cdot (1 + 2 + ... + n) + 3n + 2$$

= $0(1 + 2 + ... + n)$

- The sum of the first n integers is n(n+1)/2
 - There is a simple visual proof of this fact
- Thus algorithmprefixAverages1 runs in

$$O(n(n+1)/2) = O(n^2)$$
 time

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a <u>running sum</u>

Algorithm prefixAverages2(X, n)	
Input array X of n integers	
Output array A of prefix averages of X	#operations
$A \leftarrow$ new array of n integers	n
$s \leftarrow 0$	1
for $i \leftarrow 0$ to $n-1$ do	n + 1
$s \leftarrow s + X[i]$	n
$A[i] \leftarrow s / (i+1)$	n
return A	1

 \blacksquare Algorithm *prefixAverages2* runs in O(n) time.

Big-Oh and Relatives

Big-Oh

f(n) is O(g(n)) if, asymptotically, f(n) is less than or equal to g(n)

Big-Omega

f(n) is $\Omega(g(n))$ if, asymptotically, f(n) is greater than or equal to g(n)

Big-Theta

f(n) is $\Theta(g(n))$ if, asymptotically, f(n) is equal to g(n)

f(n) is O(g(n)) and f(n) is $\Omega(g(n))$

Relatives of Big-Oh

Big-Omega

$$f(n)$$
 is $\Omega(g(n))$

if there is a constant c>0 and an integer constant $n_0\geq 1$ such that

$$f(n) \ge c \cdot g(n)$$
 for $n \ge n_0$

Big-Theta

$$f(n)$$
 is $\Theta(g(n))$

if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that

$$c' \cdot g(n) \le f(n) \le c'' \cdot g(n)$$
 for $n \ge n_0$

f(n) is O(g(n))and f(n) is $\Omega(g(n))$

Example Uses of the Relatives of Big-Oh

■ $5n^2 + 10$ is $\Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$.

Let c = 1 and $n_0 = 1$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$.

Let c = 1 and $n_0 = 1$

■ $5n^2 + 10$ is $\Theta(n^2)$

f(n) is $\Theta(g(n))$, if it is $\Omega(g(n))$ and O(g(n)).

We already know that $5n^2 + 10$ is $\Omega(n^2)$. Show that $5n^2 + 10$ is $O(n^2)$.

f(n) is O(g(n)), if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Let c = 6 and $n_0 = 4$

Exercise 1: asymptotic notation

10 n is: O(n) O(n²) O(log n)
$$\Theta(n^2)$$
 $\Theta(n)$ $n/2 + 5 \log n$ is: O(n) O(n²) $\Theta(n \log n)$ $\Theta(n^2)$ $\Theta(n)$ $O(n^2)$ $O(n^2)$ $O(n^2)$ $O(\log n)$ $O(n^2)$ $O(n^2)$ $O(\log n)$ $O(n^2)$ $O(n^2)$ $O(n^2)$ $O(\log n)$ $O(n^2)$ $O(n^$

Circle all correct answers.

Exercise 2

The following Java method determines whether the elements in a given range of array arr are all unique.

```
public static boolean isUniqueLoop(int[] arr, int start, int end) {
    for ( int i = start; i < end; i++ )
        for ( int j = i+1; j <= end; j++ )
        if ( arr[i] == arr[j] )
        return false;  // the same element at locations i and j
    // all elements are unique
    return true;
}</pre>
```

What is the worst-case running time of this method, in terms of the number n of elements under consideration (n = end - start + 1)?

Is there a better (faster) way to find out if all elements are unique?

Exercise 3

The following Java method determines whether three sets of integers, given in arrays a, b and c, have a common element.

```
public static boolean haveSameElement(int[] a, int[] b, int[] c) {
    for ( int i=0; i < a.length; i++ )
        for ( int j=0; j < b.length; j++ )
        for ( int k=0; k < c.length; k++ )
        if ( (a[i] == b[j]) && (b[j] == c[k]) )
        return true;  // a common element found
    // no common element
    return false;
}</pre>
```

What is the worst-case running time of this method, if each array is of size *n* ?

Is there a better (faster) way to find out if the arrays have a common element?

Exercise 4

Design the following algorithm and implement it as a Java method

Algorithm countOnes(A, n)

Input two-dimensional $n \times n$ binary array A (each entry is either 0 or 1) **Output** two-dimensional $n \times n$ array S, where S[i][j] is the number of 1's in the "subarray" with the top-left corner at (0,0) and the bottom-right corner at (i,j).

Example.	Input:	0	1	0	1	1	0	Output:	1	1	2	3	3
			0	1	1	1	0		1	2	4	6	6
		i	1	0	1	0	1	i	2	3	6	8	9
			1	1	0	0	1		3	5	8	10	12
			0	0	1	1	0		3	5	9	12	14

What is the running time of your algorithm in terms of n? Try to obtain the running time as low as you can. The target running time is $\Theta(n^2)$.