Annexe A

Structure division euclidienne

Division euclidienne

Théorème 1 (divison euclidienne dans №): Soient deux entiers $a, b \in \mathbb{N}$. Si b est non-nul, alors

$$\exists ! (q,r) \in \mathbb{N}^2, \qquad a = bq + r \quad \text{et} \quad 0 \leqslant r < b.$$

$$\begin{array}{c|c} \mathbb{N} & \mathbb{N}^* \\ & \cap \\ a & b \\ \hline r \\ & \uparrow \\ \text{reste} & \text{quotient} \end{array}$$

Exercice 2: 1. On a

2. On veut montrer que le réel x possède un développement limité implique qu'il est rationnel. On prend pour exemple $0,\overline{147} = 0,147147147...$ On a

$$0,\overline{147} = 147 \times (10^{-3} + 10^{-6} + 10^{-9} + \cdots)$$

$$= 147 \times 10^{-3} (1 + 10^{-3} + 10^{-6} + \cdots)$$

$$= \frac{147}{100} \times \sum_{k=0}^{\infty} (10^{-3})^k = \frac{147}{100} \times \frac{1}{1 - 10^{-3}}$$

D'où $0,\overline{147}=\frac{147}{999}=\frac{49}{333}\in\mathbb{Q}.$ On démontre maintenant montrer le "sens inverse." On prend pour exemple $49\div333$:

Il n'y a pas, par contre, unicité du développement décimal : $1 = 1, \overline{0} = 0, \overline{9}$.

Théorème 3:

Soient deux polynômes A et $B \in \mathbb{K}[X]$. Si B est non-nul,

$$\exists ! (Q,R) \in \mathbb{K}[X]^2, \qquad A = BQ + R \quad \text{et} \quad \deg R < \deg B.$$

$$\mathbb{K}[X] \ni_R \frac{|B|}{Q} \mathbb{K}[X] \setminus \{0\}$$

Exercice 4:

Soit $n \in \mathbb{N}$. On va calculer $R_n(X)$ sans calculer $Q_n(X)$.

$$X^n \atop R_n = ?$$
 $X^2 - (n-2)X - (n-1)$ Q_n

On sait, d'après le théorème de la division euclidienne, que deg $R_n < 2$ d'où $R_n = \alpha_n X + \beta_n$. De plus, $X^n = (X^2 - (n-2)X - (n-1))Q_n(X) + R_n(X)$. On sait que, pour un polynôme de la forme $X^2 - sX + p$, s est la somme des racines de ce polynôme et p est le produit des racines. On en déduit que les racines de $X^2 - (n-2)X - (n-1)$ sont n-1 et -1. D'où, $X^n = (X - (n-1))(X+1)Q_n(X) + \alpha_n X + \beta_n$. On choisit des valeurs de X qui permettent

de calculer α_n et β_n . Par exemple, avec X=n-1, on a $(n-1)^n=\alpha_n(n-1)+\beta_n$; et, avec X=-1, on a $(-1)^n=-\alpha_n+\beta_n$. On résout ce système d'équations :

$$(n-1)^n = \alpha_n(n-1) + \beta_n$$

$$(-1)^n = \beta_n - \alpha_n$$

$$\iff \begin{cases} \alpha_n = \dots \\ \beta_n = \dots \end{cases}$$

$$\iff \begin{cases} \alpha_n = \dots \\ \beta_n = \dots \end{cases}$$

2 Structures algébriques

Remarque: — Exemples de groupes : $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, (\mathbb{Q}^*,\times) , (S_n,\circ) , $(\mathcal{M}_{n,m}(\mathbb{K}),+)$, $(\mathrm{GL}_n(\mathbb{K}),\times)$.

- $-(A, +, \times)$ est un anneau si
 - (A, +) est un groupe commutatif
 - -- × est associative
 - le neutre de \times est 1_A
 - x est distributive par rapport à + (dans les deux sens) :

$$(a+b) \times c = a \times c + b \times c$$
 et $c \times (a+b) = c \times a + c \times b$.

Exemple d'anneau : $(\mathbb{K}[X], +, \times)$ est un anneau *commutatif* (car \times est commutative); $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est un anneau non-commutatif.

- $(K,+,\times)$ est un corps si $(A,+,\times)$ est un anneau commutatif et tout élément différent de 0_K est inversible.
 - Exemple de corps : $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$ mais $(\mathrm{GL}_n(\mathbb{K}), +, \times)$ n'est pas un corps (et ce n'est pas un anneau non plus).
- La définition d'un espace vectoriel n'est pas vraiment à connaître... On utilisera, en général, plus la définition d'un sous-espace vectoriel.
- $(M, +, \times, \cdot)$ est une K-algèbre si
 - $(M, +, \times)$ est un anneau;
 - $(M, +, \cdot)$ est un K-espace vectoriel;
 - prop3

Par exemple, $(\mathbb{R}^2, +, \cdot)$ est un espace vectoriel. + est une opération interne (vecteur + vecteur = vecteur) mais \cdot est une opération externe $(\mathcal{M}_n(\mathbb{K}, +, \cdot))$ est un espace vectoriel. + est interne (matrice + matrice = matrice), \cdot est externe (rel \cdot matrice = matrice), et \times est interne (matrice \times matrice = matrice). On dit alors que $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot)$ est une K-algèbre.

Figure 1 – Structure d'un sous-groupe $H \subset G$

Définition (Sous-groupe):

Soit H une partie de G ($H \subset G$) et H est <u>stable</u> par + ($\forall x, y \in H, x + y \in H$) et avec la loi + <u>induite</u> sur H, (H, +) est un groupe. Dans ce cas, H est un sous-groupe de (G, +).

Dans la pratique, on montre

$$(H,+) \text{ est un sous-groupe } \Longleftrightarrow \begin{cases} H \subset G \\ H \text{ stable par } + \\ 0_G \in H \\ \forall x \in H, \ -x \in H \end{cases} \iff \begin{cases} \varnothing \neq H \subset G \\ \forall x,y \in H, \ x-y \in H. \end{cases}$$

Exercice 5:

On va montrer que H est un sous-groupe de $(\mathbb{Z},+)$ si et seulement s'il existe un entier $n\in\mathbb{Z}$, tel que $H=n\mathbb{Z}=\{n\times k\mid k\in\mathbb{Z}\}.$

1. Soit $H = n\mathbb{Z}$. On veut montrer que H est un sous-groupe de $(\mathbb{Z}, +)$. On a bien $H \subset G$ et, pour tout $x, y \in \mathbb{Z}$, on a

$$\underbrace{nx}_{\in H} + \underbrace{ny}_{\in H} = \underbrace{n(x+y)}_{\in H}.$$

On a aussi $0 \in H$ car $0 = 0 \times n$. Enfin, pour tout entier $x \in \mathbb{Z}$, on a $-(nx) = n \times (-x) \in H$.

On en conclut que (H, +) est un sous groupe de $(\mathbb{Z}, +)$.

2. Soit H un sous-groupe de $(\mathbb{Z},+)$. Si $H=\{0\}$ alors $H=0\mathbb{Z}$. Si $H\neq\{0\}$, alors il existe $n\in\mathbb{Z},\,n\in H$. D'où $-n\in H$, et d'où, il existe un élément positif dans H. On considère sans perte de généralité qu'il s'agit de n. On en déduit que $n\mathbb{Z}\subset H$.

On choisit, à présent, le plus petit n. On procède par l'absurde : on suppose qu'il existe $x \in H$ tel que $x \notin n\mathbb{Z}$. On fait la division euclidienne de x par n: x = nq + r et r < n. D'où, x - nq = r < n. Or, x et nq sont deux éléments de H. On en conclut que $r \in H$. C'est absurde car r < n et n est le plus petit.

3 Idéaux

Figure 2 – Sous-groupe de $(\mathbb{Z}, +)$

Définition 6:

Soit $(A, +, \times)$ un anneau commutatif. On appelle $id\acute{e}al$ de A tout sous-groupe I de (A, +) tel que $\forall (i, a) \in I \times A, \ i \times a \in I$.

Figure 3 – Structure d'un idéal $I\subset A$

Remarque (A):

Un idéal n'est pas forcément un sous-anneau car on n'a pas forcément $1_A \in I$.

EXEMPLE 7: 1. Soit $a \in \mathbb{K}$. On pose $I = \{P \in \mathbb{K}[X] \mid P(a) = 0\}$. On vérifie aisément que (I, +) est bien un sous-groupe de $(\mathbb{K}[X], +)$:

 $0_{\mathbb{K}[X]}$ s'annule en a et si P(a) = 0 et Q(a) = 0 alors, (P+Q)(a) = 0 et (P-Q)(a) = 0.

Pour tout polynôme $Q \in \mathbb{K}[X]$, on a, si P(a) = 0, alors $(P \times Q)(a) = 0$. On en conclut que I est un idéal de $(A, +, \times)$.

2. On considère l'ensemble des suites qui tendent vers 0, I. Ce n'est pas un idéal de l'ensemble des suites, $\mathbb{R}^{\mathbb{N}}$: on a bien que I est un sous-groupe de $(\mathbb{R}^{\mathbb{N}},+)$ mais, par exemple la suite $(\frac{1}{n}) \in I$ multipliée par la suite $(n) \in \mathbb{R}^{\mathbb{N}}$ ne donne pas une suite tendant vers 0. En effet, $\frac{1}{n} \times n = 1 \longrightarrow 0$. Mais, c'est bien un idéal de l'ensemble des suites bornées.

Proposition 8 (les idéaux de \mathbb{Z} et $\mathbb{K}[X]$): 1. Dans l'anneau commutatif $(A,+,\times)$, pour tout $k\in A$, l'ensemble $k\times A$ des multiples de k est un idéal de A, appelé $idéal\ engendré$ de A par k.

- 2. I est un idéal de \mathbb{Z} si et seulement s'il existe $n \in \mathbb{Z}$ tel que $I = n\mathbb{Z}$.
- 3. I est un idéal de $\mathbb{K}[X]$ si et seulement s'il existe un polynôme $P(X) \in \mathbb{K}[X]$ tel que $I = P(X) \cdot \mathbb{K}[X]$.

DÉMONSTRATION (2.): \Longrightarrow "Soit I un idéal de \mathbb{Z} . En particulier, (I, +) est un sous-groupe de $(\mathbb{Z}, +)$ et donc, d'après l'exercice 5, il existe un entier n tel que $I = n\mathbb{Z}$.

" <== " Réciproquement, si $I=n\mathbb{Z}$, alors c'est un idéal car :

 $-(n\mathbb{Z},+)$ est un sous-groupe de $(\mathbb{Z},+)$ d'après l'exercice 5.

$$-\underbrace{(nx)}_{\in I} \times \underbrace{y}_{\subseteq I} = \underbrace{n(x \times y)}_{\in I}$$

Exercice 9:

Montrer que le noyau d'un morphisme d'anneaux commutatif est idéal.

Soient $(A, +, \times)$ et $(B, +, \times)$ deux anneaux. Soit $\varphi : A \to B$ un morphisme d'anneaux :

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$
 $\varphi(a \times b) = \varphi(a) \times \varphi(b)$ $\varphi(1_A) = 1_B$.

Montrons que (Ker φ , +) est un sous-groupe de (A, +). On sait que $\varphi(0_A) = 0_B$ donc $0_A \in \operatorname{Ker} \varphi$ et donc Ker $\varphi \neq \emptyset$. Soient $a, b \in \operatorname{Ker} \varphi$. On a $\varphi(a - b) = \varphi(a) - \varphi(b) = 0 - 0 = 0$ donc $(a - b) \in \operatorname{Ker} \varphi$.

Soient $\varepsilon \in \operatorname{Ker} \varphi$ et $b \in A$. On a $\varphi(\varepsilon \times b) = \varphi(\varepsilon) \times \varphi(b) = 0$.

Proposition 10

Dans l'anneau commutatif $(A, +, \times)$, la somme de deux idéaux et l'intersection de deux sont encore un idéal. En particulier, dans l'anneau $(\mathbb{Z}, +, \times)$ des entiers relatifs,

$$\forall (p,q) \in \mathbb{Z}^2, \quad p\mathbb{Z} + q\mathbb{Z} = \operatorname{pgcd}(p,q) \mathbb{Z} \quad \text{et} \quad p\mathbb{Z} \cap q\mathbb{N} = \operatorname{ppcm}(p,q) \mathbb{Z}$$

car $d \mid p \iff p\mathbb{Z} \subset d\mathbb{Z}$ (i.e. tout multiple de p est un multiple de d). ¹

DÉMONSTRATION:

Soient I et J deux idéaux. L'intersection de deux sous-groupes est un sous-groupe. De plus, pour tout élément i de $I\cap J$, pour tout élément a de A, on a $a\times i\in I$ car I est un idéal, et $a\times i\in J$ car J est un idéal. D'où, $I\cap J$ est un idéal. De plus, pour tout élément i+j de I+J, on a $(i+j)\times a=ia+ja\in I+J$.

Montrons $p\mathbb{Z}+q\mathbb{Z}=\operatorname{pgcd}(p,q)$ $\mathbb{Z}.$ On pourra montrer, d'une manière similaire, $p\mathbb{Z}\cap q\mathbb{Z}=\operatorname{ppcm}(p,q)$ $\mathbb{Z}.$ On sait que $p\mathbb{Z}+q\mathbb{Z}$ est un idéal de \mathbb{Z} , il existe $d\in\mathbb{Z}$ tel que $p\mathbb{Z}+q\mathbb{Z}=d\mathbb{Z}$ (\heartsuit). Montrons que $d=\operatorname{pgcd}(p,q)=p\wedge q$. D'après (\heartsuit), il en résulte que $p\mathbb{Z}\subset d\mathbb{Z}$, d'où $p\mid d$; et,

^{1.} Rappel: $d \mid p$ si, et seulement si, d divise p si, et seulement si, p est un multiple de d si, et seulement si, il existe $k \in \mathbb{Z}$ tel que $p = k \times d$.

 $q\mathbb{Z}\subset d\mathbb{Z}$, d'où $d\mid q$. Ainsi, d est un diviseur commun à p et q. Montrons que c'est le plus grand. On suppose que δ est un diviseur commun à p et q. On veut montrer que $\delta\mid d$. Ainsi, $\delta\mid p$ et $\delta\mid q$, alors δ est un diviseur de tout élément de $p\mathbb{Z}+q\mathbb{Z}$ et en particulier de d. D'où, $\delta\mid d$.

Corollaire 11:

Lemme de Bézout. Deux entiers relatifs a et b sont premiers entre eux si, et seulement si, il existe $(u,v) \in \mathbb{Z}^2$ tels que $a \times u + b \times v = 1$.

Lemme de Gauß. Si $a \mid bc$ et a est premier avec b, alors $a \mid c$.

DÉMONSTRATION:

Lemme de Bézout. D'une part, si $a \wedge b = 1$, alors $a\mathbb{Z} + b\mathbb{Z} = 1\mathbb{Z}$ et en particulier $1 \in 1\mathbb{Z}$. D'autre part, si au + bv = 1, alors $a\mathbb{Z} + b\mathbb{Z} = \mathbb{Z}$ d'où $a \wedge b = 1$.

Lemme de Gauß. On a $a \wedge b$ d'où, d'après le théorème de Bézout, il existe $(u,v) \in \mathbb{Z}^2$, tels que au + bv = 1. Ainsi, acu + bcv = c. Or, $a \mid bc$, et $a \mid ac$ d'où $a \mid c$.

Exercice 12:

Montrer que, si b et c sont premiers entre eux et divisent a, alors bc divise a.

Comme $b \mid a$, il existe $k \in \mathbb{Z}$ tel que a = kb. De plus, $b \wedge c = 1$, et $c \mid a = kb$, d'où $c \mid k$. Il existe donc $k' \in \mathbb{Z}$ tel que k = k' c. Ainsi, a = kk'bc, d'où $bc \mid a$.

4 L'anneau $\mathbb{Z}/n\mathbb{Z}$

Définition 13:

Soit $n \in \mathbb{N}^{\star}$. La relation $x \equiv a \ [n]$ (« x est congru à a modulo n ») définie par $n \mid (x-a)$ est une relation d'équivalence sur \mathbb{Z} . L'ensemble $\bar{a} = \{x \in \mathbb{Z} \mid x \equiv a \ [n]\}$ est la classe d'équivalence de a. L'ensemble $\{\bar{1}, \bar{2}, \ldots, \bar{n}\}$ des classes d'équivalences est noté $\mathbb{Z}/n\mathbb{Z}$.

Ainsi, $\bar{x} = \bar{y} \iff x \equiv y$ [n]. De plus, si $x \equiv a$ [n] et $y \equiv b$ [n], on a $(x + y) \equiv (a + b)$ [n], on note donc $\bar{x} + \bar{y} = \overline{x + y}$. De même pour le produit.

Proposition 14:

Un entier $x \in \mathbb{Z}$ est premier avec $n \in \mathbb{N}^*$ si, et seulement si, $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$ est inversible. Par suite, l'ensemble $\mathbb{Z}/n\mathbb{Z}$ est un corps (aussi noté \mathbb{F}_n) si, et seulement si, $n \in \mathbb{N}^*$ est un nombre premier.

Contre-exemple : avec le corps nul $0 = \{\bar{0}\}$, ce théorème est faux.

Démonstration:

```
\begin{split} \bar{x} \in \mathbb{Z}/n\mathbb{Z} \text{ est inversible} &\iff \exists u \in \mathbb{Z}, \ \bar{u} \times \bar{x} = \bar{1} \\ &\iff \exists u \in \mathbb{Z}, \ \overline{u \times x} = \bar{1} \\ &\iff \exists u \in \mathbb{Z}, \ u \times x \equiv 1 \ [n] \\ &\iff \exists u \in \mathbb{Z}, \ \exists k \in \mathbb{Z}, \ u \times x = 1 + k \times n \\ &\iff \exists (u,k) \in \mathbb{Z}^2, \ u \times x - k \times n = 1 \\ &\iff x \wedge n = 1 \end{split}
```

En particulier, tous les éléments non nuls de $\mathbb{Z}/n\mathbb{Z}$ sont inversibles.

Théorème 15 (Théorème chinois):

Si a et b sont premiers entre eux, alors deux congruences modulo a et modulo b équivalent à une congruence modulo ab car les anneaux $\mathbb{Z}/ab\mathbb{Z}$ et $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ sont isomorphes.

DÉMONSTRATION:

Pour tout $x\in\mathbb{Z}$, on note $\pi_a(x)\in\mathbb{Z}/a\mathbb{Z}$ la classe d'équivalence de x dans $\mathbb{Z}/a\mathbb{Z}$; de même, on note $\pi_b(x)\in\mathbb{Z}/b\mathbb{Z}$ et $\pi_{ab}(x)\in\mathbb{Z}/(ab)\mathbb{Z}$. On construit la fonction

$$f: \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z} \longrightarrow \mathbb{Z}/(ab)\mathbb{Z}$$

 $(\pi_a(x), \pi_b(x)) \longmapsto \pi_{ab}(x).$

Elle est bien définie car : si $\pi_a(y) = \pi_a(x)$ et $\pi_b(y) = \pi_b(x)$, alors $y \equiv x \ [a]$ et $y \equiv x \ [b]$, d'où il existe $k \in \mathbb{Z}$ tel que y = x + ka et il existe $\ell \in \mathbb{Z}$ tel que $y = x + \ell b$, donc $ka = \ell a$ et donc $b \mid ka$; et, $a \wedge b$, par le théorème de Gauss, on a $b \mid k$, il existe donc $m \in \mathbb{Z}$ tel que k = mb donc $y = x + m \cdot ab$, d'où $\pi_{ab}(y) = \pi_{ab}(x)$. L'application f est un morphisme d'anneaux par les propriétés des classes d'équivalences vues précédemment $(\bar{x} + \bar{y} = x + \bar{y} \text{ et } \bar{x} \times \bar{y} = x \times \bar{y})$, et par construction. De plus, f est injective car Ker $f = \{(0,0)\}$ $(x \equiv 0 \ [ab] \text{ implique } x \equiv 0 \ [a] \text{ et } x \equiv 0 \ [b])$. De plus, $\operatorname{Card}(\mathbb{Z}/az \times \mathbb{Z}/bz) = a \times b = \operatorname{Card}(\mathbb{Z}/(ab)z)$. D'où, f est bijective.

Exercice 16

Déterminer tous les entiers relatifs tels que $x \equiv 2$ [4] et $x \equiv 3$ [5].

On note (S) le système $x \equiv 2$ [4] et $x \equiv 3$ [5], (S_1) et (S_2) les deux équations. Comme $4 \land 5 = 1$, d'après le théorème chinois, le système (S) est équivalent à $x \equiv ?$ [4 \times 5].

1ère méthode. (On devine «? ».) Avec 18 est une solution car $18 \equiv 2$ [4] (car 4 | (18-2)) et $18 \equiv 3$ [5] (car 5 | (18-3)).

2nde méthode. Analyse. L'équation (S_1) est équivalente à $\exists t \in \mathbb{Z}, x = 2+4t$. On choisit ce t. D'où, d'après l'équation (S_2) , on a $2+4t \equiv 3$ [5], d'où $4t \equiv 1$ [5]. Or, $\bar{4}$ est inversible dans $\mathbb{Z}/5\mathbb{Z}$, car $4 \wedge 5 = 1$. On trouve cet inverse : 4. Ainsi, $t \equiv 4$ [5]. Synthèse : c.f. 1ère méthode.

Définition 17:

Le nombre d'éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$ (i.e. le nombre d'entiers de $[\![1,n]\!]$ premiers avec n) est noté $\varphi(n)$. L'application $\varphi: n \mapsto \varphi(n)$ est appelée l'indicatrice d'Euler.

Exemple:

On a $\varphi(8)$ car les entiers de [1,7] premiers avec 8 sont 1, 3, 5, 7.

MÉTHODE 18 (Comment calculer l'indicatrice d'Euler):

- (i) Si p est premier, alors $\varphi(p) = p 1$ car tous les éléments de [1, p 1] sont premiers avec p. Et, $\forall k \in \mathbb{N}^*$, on a $\varphi(p^k) = p^k \cdot (1 1/p)$.
- (ii) Si a et b sont premiers entre eux, alors $\varphi(ab) = \varphi(a) \cdot \varphi(b)$. En effet, d'après le théorème chinois, il y a autant d'éléments inversibles dans $\mathbb{Z}/(ab)\mathbb{Z}$ et dans $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ par isomorphisme.
- (iii) Si p_1,\dots,p_k sont les diviseurs premiers de n, alors

$$\varphi(n) = n \times \left(1 - \frac{1}{p_1}\right) \times \cdots \times \left(1 - \frac{1}{p_k}\right).$$

En effet, on a $n=p_1^{\alpha_1}\times\cdots\times p_k^{\alpha_k}$, d'où $\varphi(n)=\varphi(p_1^{\alpha_1})\cdot\ldots\cdot\varphi(p_k^{\alpha_k})$. Calculons $\varphi(p_1^{\alpha_1}):$ on cherche tous les entiers de $[\![1,p_1^{\alpha_1}]\!]$ premiers avec $p_1^{\alpha_1}$. On cherche donc tous les entiers $[\![1,p_1^{\alpha_1}]\!]$. Les multiples de p_1 dans $[\![1,p_1^{\alpha_1}]\!]$ sont $p_1,2p_1,\ldots,p_1^{\alpha_1-1}\times p_1:$ il y en a $p_1^{\alpha_1-1}$. Il y a donc $p_1^{\alpha_1}-p_1^{\alpha_1-1}$ non multiples de p_1 . D'où, $\varphi(p_1^{\alpha_1})=p_1^{\alpha_1}\cdot(1-1/p_1)$. Ainsi, on en déduit la formule de $\varphi(n)$ précédente.

5 L'ordre d'un élément

Si a est un élément d'un groupe (G,\cdot) d'élément neutre 1, alors l'ensemble $\{\ldots,a^{-2},a^{-1},1,a^1,a^2,\ldots\}=\{a^k\mid k\in\mathbb{Z}\}$ est un sous-groupe de G, appelé le sous-groupe engendré par a, et il est noté $\langle a\rangle$. C'est le plus petit sous-groupe de G contenant a.

Si ce sous-groupe est un ensemble fini, alors son cardinal est appelé l'ordre de a. L'ordre de a est le plus petit entier k strictement positif tel que $a^k=1$. Et, les entiers k tels que $a^k=1$ sont les multiples de l'ordre de a. On dit que le groupe G est monogène s'il est, lui-même, engendré par un élément et qu'il est cyclique s'il est monogène et fini.

Exercice 19:

Décomposer en cycle disjoints la permutation σ du groupe symétrique \mathfrak{S}_7 et en déduire l'ordre de σ , où

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 7 & 2 & 6 & 1 & 3 \end{pmatrix}.$$

Les images successives de 1 sont 1, 5 et 6; celles de 2 sont 2 et 4; celles de 3 sont 3 et 7. D'où, $\sigma = \begin{pmatrix} 1 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 & 7 \end{pmatrix}$. L'ordre de σ est 6, ce qui correspond au plus petit commun multiple des ordres des cycles (donc ppcm(2, 2, 3)).

Figure 4 – Décomposition en cycles de la permutation σ

Exemple:

Le groupe $(\mathbb{Z},+)$ est monogène car $\mathbb{Z}=\langle 1\rangle$. Mais, (\mathfrak{S}_n,\cdot) n'est pas monogène.

Proposition 20:

Si G est un groupe fini, alors $\forall a \in G$, $o(a) \mid \operatorname{Card} G$, où o(a) est l'ordre de a.

COROLLAIRE 21:**Théorème d'Euler.** Si $a \in \mathbb{Z}$ est premier avec $n \in \mathbb{N}^{\star}$, alors $a^{\varphi(n)} \equiv 1$ [n].

Petit théorème de Fermat. Si p est un nombre premier, alors $\forall a \in \mathbb{Z}$, on a $a^p \equiv a$ [p].

Exercice 22:

Calculer $\varphi(10)$ et en déduire que le dernier chiffre de l'écriture décimale de 3^{345} est 3. Calculer $\varphi(100)$ et en déduire que les deux derniers chiffres de l'écriture décimale de 3^{345} sont 4 et 3.

On trouve $\varphi(10)=4$ car les entiers de $[\![1,10]\!]$ premiers avec 10 sont 1, 3, 7 et 9. On trouve aussi $\varphi(100)=40$ car $100=4\times25=2^2\times5^2$, d'où les diviseurs premiers de 100 sont 2 et 5, et donc $\varphi(100)=100\times\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{5}\right)=50\times4/5=40$.

On cherche $r\in \llbracket 0,9 \rrbracket$ tel que $3^{385}\equiv 1$ [10]. On a $3\wedge 10=1$, d'où, d'après le théorème d'Euler, $3^{\varphi(10)}\equiv 1$ [1] 0 et donc $3^4\equiv 1$ [1] 0. Or,

$$3^{345} = 3^{344} \times 3 = (3^4)^{86} \times 3 \equiv 1^{86} \times 3 \equiv 3$$
 [10].

Donc r = 3.

On cherche $r \in [0,99]$ tel que $3^{345} \equiv r$ [100]. De même, d'après le théorème d'Euler, $3^{\varphi(100)} \equiv 1$ [100], d'où $3^{40} \equiv 1$ [100]. Or, $3^{345} = (3^{40})^8 \times 3^{25} \equiv 3^{25}$ [100]. Et, $3^{25} = 3^5 \times (3^5)^4 = 3 \cdot 81 \cdot (3^5)^4 \equiv 43 \times (3^4)^5 \equiv 43$ [100]. D'où, $3^{345} \equiv 43$ [100].