

MM54HCT190/MM74HCT190 Synchronous Decade Up/ Down Counters with Mode Control. MM54HCT191/ MM74HCT191 Synchronous Binary Up/Down Counters with Mode Control

General Description

These high speed synchronous counters utilize advanced silicon-gate CMOS technology. They possess the high noise immunity and low power consumption of CMOS technology, along with the speeds of low power Schottky TTL. These circuits are synchronous, reversible, up/down counters. The MM54HCT191/MM74HCT191 are 4-bit binary counters and the MM54HCT190/MM74HCT190 are BCD counters.

Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change simultaneously when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four master-slave flip-flops are triggered on a low-to-high level transition of the clock input, if the enable input is low. A high at the enable input inhibits counting. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change independent of the level of the clock input. This feature allows the counters to be used as divide by N dividers by simply modifying the count length with the preset inputs.

Two outputs have been made available to perform the cascading function; ripple clock and maximum/minimum count. The latter output produces a high level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low level output pulse equal in width to the low level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high speed operation.

MM54HCT/MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices can be used to reduce power consumption in existing designs.

Features

- Level changes on Enable or Down/Up can be made regardless of the level of the clock.
- Low quiescent supply current: 80 μA maximum (74HCT Series)
- Low input current: 1 μ A maximum
- TTL compatible inputs

Connection Diagram

Truth Table

Load	Enable G	Down/ Up	Clock	Function
Н	L	L	1	Count Up
Н	L	Н	↑	Count Down
L	Х	Χ	Х	Load
Н	Н	X	Х	No Change

Order Number MM54HCT190/191 or MM74HCT190/191

Absolute Maximum Ratings (Notes 1 and 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Operating Conditions Min

Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A)			
MM74HCT	-40	+85	°C
MM54HCT	-55	+125	°C
Input Rise or Fall Times			
(t_r, t_f)		500	ns

Max

Units

DC Electrical Characteristics $V_{CC} = 5V \pm 10\%$ unless otherwise specified

Symbol	Parameter	Conditions	T _A = 25°C		74HCT T _A = -40°C to 85°C	54HCT T _A = -55°C to 125°C	Units	
				p Guaranteed Limits				
V _{IH}	Minimum High Level Input Voltage			2.0	2.0	2.0	V	
V _{IL}	Maximum Low Level Input Voltage			0.8	0.8	8.0	V	
V _{OH}	Minimum High Level Output Voltage	$\begin{split} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ & _{OUT} = 20 \ \mu\text{A} \\ & _{OUT} = 4.0 \ \text{mA}, \ V_{CC} = 4.5 \text{V} \\ & _{OUT} = 4.8 \ \text{mA}, \ V_{CC} = 5.5 \text{V} \end{split}$	4.2	V _{CC} -0.1 3.98 4.98	V _{CC} -0.1 3.84 4.84	V _{CC} -0.1 3.7 4.7	V V V	
V _{OL}	Maximum Low Level Voltage	$\begin{split} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ & I_{OUT} = 20 \ \mu\text{A} \\ & I_{OUT} = 4.0 \ \text{mA}, V_{CC} = 4.5V \\ & I_{OUT} = 4.8 \ \text{mA}, V_{CC} = 5.5V \end{split}$		0.1 0.26 0.26	0.1 0.33 0.33	0.1 0.4 0.4	V V V	
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}		±0.1	±1.0	±1.0	μΑ	
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$		8	80	160	μΑ	
		V _{IN} = 2.4V or 0.5V (Note 4)		1.0	1.2	1.3	mA	

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power dissipation temperature derating—plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: Measured per pin, all other inputs held at V_{CC} or GND.

$\textbf{AC Electrical Characteristics} \ \ T_{A} = \underline{25^{\circ}\text{C}}, V_{CC} = 5.0\text{V}, t_{r} = t_{f} = 6 \text{ ns}, C_{L} = 15 \text{ pF unless otherwise specified }$

Symbol	Parameter	From Input	To Output	Conditions	Тур	Guaranteed Limits	Units
f _{MAX}	Maximum Clock Frequency				40		MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Load	Q _A , Q _B Q _C , Q _D		30		ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Data A, B, C, D	Q _A , Q _B Q _C , Q _D		27		ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Clock	Ripple Clock		16		ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Clock	Q _A , Q _B Q _C , Q _D		24		ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Clock	Max/Min		30		ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Down/Up	Ripple Clock		29		ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Down/Up	Max/Min		22		ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Time	Enable	Ripple Clock		22		ns
t _W	Minimum Clock or Load Input Pulse Width				10		ns

AC Electrical Characteristics $V_{CC} = 5V \pm 10\%, C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns unless otherwise specified}$

Symbol	Parameter	From	To Output	Conditions	T _A =	25°C	74HCT T _A = -40°C to 85°C	54HCT T _A = -55°C to 125°C	Units
		Input	Output		Тур		Guaranteed Limits		
f _{MAX}	Maximum Clock Frequency				28	20	16	13	MHz
t _{PLH} , t _{PHL}	Maximum Propa- gation Delay Time	Load	Q _A , Q _B Q _C , Q _D		31	44	55	66	ns
t _{PLH} , t _{PHL}	Maximum Propa- gation Delay Time	Data A, B, C, D	Q_A, Q_B Q_C, Q_D		30	40	50	60	ns
t _{PLH} , t _{PHL}	Maximum Propa- gation Delay Time	Clock	Ripple Clock		24	30	38	45	ns
	Maximum Propa- gation Delay Time	Clock	Q _A , Q _B Q _C , Q _D		32	43	54	65	ns
	Maximum Propa- gation Delay Time	Clock	Max/Min		45	55	69	83	ns
	Maximum Propa- gation Delay Time	Down/Up	Ripple Clock		42	50	63	75	ns
t _{PLH} , t _{PHL}	Maximum Propa- gation Delay Time	Down/Up	Max/Min		30	45	56	68	ns
t _{PHL} , t _{PLH}	Propagation Delay Time	Enable	Ripple Clock		26	33	41	50	ns
t _W	Minimum Clock Pulse Width				15	25	31	38	ns
ts	Minimum Set-Up Time	Data	Load		10	20	25	30	ns
t _H	Minimum Hold Time	Load	Data		-3	5	6	8	ns
ts	Minimum Set-Up Time	Down/Up	Clock		23	30	38	45	ns
t _H	Minimum Hold Time	Clock	Down/Up	1	-7	0	0	0	ns
ts	Minimum Set-Up Time	Enable	Clock		13	20	25	30	ns
t _H	Minimum Hold Time	Clock	Enable		-5	0	0	0	ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time				10	15	19	22	ns
C _{IN}	Maximum Input Capacitance				5				pF
C _{PD}	Power Dissipation Capacitance (Note 5)				35				pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \, V_{CC}^2 \, f + I_{CC} \, V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \, V_{CC} \, f + I_{CC}$.

Timing Diagrams

'HCT190 Synchronous Decade Counters Typical Load, Count, and Inhibit Sequences

TL/F/5744-5

- (1) Load (preset) to BCD seven
 (2) Count up to eight, nine, zero, one and two
- (3) Inhibit
 (4) Count down to one, zero, nine, eight and seven

'HCT191 Synchronous Binary Counters Typical Load, Count, and Inhibit Sequence

TL/F/5744-6

- (1) Load (preset) to binary thirteen
- (2) Count up to fourteen, fifteen, zero, one and two
- (3) Inhibit
- (4) Count down to one, zero, fifteen, fourteen and thirteen

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-30U os os cemali: onjwage devm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

MM74HCT190 - http://www.ti.com/product/mm74hct190?HQS=TI-null-null-dscatalog-df-pf-null-wwe MM74HCT191 - http://www.ti.com/product/mm74hct191?HQS=TI-null-null-dscatalog-df-pf-null-wwe MM54HCT190 - http://www.ti.com/product/mm54hct190?HQS=TI-null-null-dscatalog-df-pf-null-wwe MM54HCT191 - http://www.ti.com/product/mm54hct191?HQS=TI-null-null-dscatalog-df-pf-null-wwe