BIS-39 CALCULUS PACT II OF II:
De REMEMBER DO PROBLEMS 5.1 -> 5.10 IN SCHAUMS
"MATH FOR EROW" TONTBOOKS (THEY ARE ALCOHOUT PLAN).
INTEGRATION (AKA ANTI-DERIVATIVES)
THE ROUBLE PROCES OF TAKING A DOLIVATIVE,
CURVE, (NOT THE SLOPE) BASIC RULES: (R) (R)
A CONSTABIT
NEW POWER.
FACT: SINCE A 15 A CONSTANT, IT CAN BE
PULLED OUT FRONT OF THE INTERACE SIBN. THE AXB $dx = A \cdot \int X^B dx$
$= A\left(\frac{1}{B+1}\right) \times^{B+1}$
NOW LETS TAKE THE DERIV OF & WRIT X ?

$$\frac{d}{dx} \frac{A}{B+1} \times + C = \left(\frac{A}{B+1}\right) \left(\frac{A}{B+1}\right) \times + 0$$

$$= A \times B$$

$$= A \times B$$

$$= A \times B$$

$$= A \times B$$

THEN TAKE THE DOON OF THE INTERRAL, YOU'LL GET THE OLDIG FUNCTION BACK.

THUS, THE INTEGRAL IS REFERRED TO AS

TO AUTURLY FIND THE AREA UNDER A CURVE

BETWEEN 2 X VALVES (SMY X = -1 AND X = 3,2)

YOU PROCEED AS FOLLOWS

- 1) COMPUTE THE INTERRA PER PRIVIOUS
- 2) EVALUATE THE INTEGRAL AT THE UPPER VALUE OF X (3.2 IN MY EXAMPLE) AND SIBTLACT FROM THIS THE VALVE OF THE INTEGRAL EVALVATED AT THE LOWER VALVE OF X (-1 IN MY EXAMPLE)
- 3) THE RESULT IS THE AREA UNDER THE LUNGE BETWEEN THE 2 X VALVES,

FIND THE ALLA UNDER F(X) = 3 x2 From X = -2 TO X = +5 13x2 dx = $\chi^3 + c$ THIS MEANS EVALUATE X3 + C W X=+5 AND THE SUBTRACT X3+C EVALUATED @ X= -Z. (THE CONSTANT CANCERS OUT SO THIS IS THE SAME AS = 125 - (-8)= 133 ANSWER

SOME INTEULARS ARE TOUGH TO EVALUATE

CUZ THE FUNCTION IS NOT OF THE.

KNOWN AS INTERRATION
BY PARTS.

THE PRIORET RULE, RECALL THE PRODUCT.

PULE WAS

 $\frac{d}{dx} f(x) \cdot g(x) = f(x) \cdot \frac{dx}{dx} + g(x) \cdot \frac{dx}{dx}$

NOW INTECRATE BOTH SIDES OF THE PRODUCT RULE. (ie SLAP & SLICK AROUND EACH TELM). THIS GIVES

 $\int \frac{d}{dx} f(x) \cdot g(x) dx = \int f(x) \frac{da}{dx} dx + \int g(x) \frac{df}{dx} dx$

(ic THE INTEGRAL OF)
A DELIVATIVE CANCEL
EACH OTHER OUT

Thus $f(x) \cdot g(x) = \int f(x) \frac{da}{dx} dx + \int g(x) \frac{dc}{dx} dx$

LETS REALANGE: $\int f(x) \cdot \frac{dx}{dx} dx = f(x) \cdot g(x) - \int g(x) \frac{dx}{dx} dx$ THIS IS KNOWN AS "INTEGRATION BY PARTS" (IBP) IT IS USEFUL FOR EXALUATING INTEGRALS THAT ALE EXPLESSED AS A PRODUCT AND INVOLVE ex, INX, SINX, OR COSX. Q: HOW TO DO IT? A: WHAT YOU DO, IS WHEN YOU AME SOMETHING LIKE 1 X.SIN(6x)dx YOU MUST PUT THIS IN THE FORM OF (f(x), dq. dx so, you must DETERMINE WHAT IS F(K) AND WELLT IS do ME SIGN? LETS SET f(x) = x MO da = SIN(lox) Warner INTERRETER INTERRETER THIS IMPLIES THAT dx = 1 ONCE FOR AND $g = -\frac{1}{6}\cos(6x)$

END OF "GIRGNOTE" GOTO PARE 19.10 FOL MORE ON INT-84-SUBSTITUTION

25,23	PAGES TO GO BETWENEN _=> 19.10 PS 19 & ZO FOLLOWS PAGE 19.0
	SOME MORE COMMENT ON INT-BY-SUBSTITUTION:
	W/ THE INT-BY-SUB METHOD, NEW VARIABLESARE DEFINED, AND THESE VARIABLES ARE SUBBED INTO THE INTEREAL TO BE EVALUATED (IN THE HOPE
	THAT THE NEW INTERPAL, WILL BE EAST TO
	EVALUATE) ICHTE THE TOTTOWS SOME EXAMPLES:
	$\int 3x^2 \cdot \cos(x^3) dx \text{DEFINE } f(x) = x^3$
	RENDITE AS: THUS df = 3 x2
	$= \int \frac{df}{dx} \cdot \cos(f) dx$ $= \int \frac{df}{dx} \cdot \cos(f) dx$
	The same
	$= \int \cos(4) \cdot 3x^2 \cdot dx$ $= df$
	= (Cus(f) df NOTICE WE HAD TO FIND
Compar	HEN LIM ITS OF INTREMATION (IN TERMS OF F) AND WE
· · · · · · · · · · · · · · · · · · ·	(7/2)3 HAD TO POPLACE dx m/ df
-10-111-19-10-1-	$= SIN(f) = SIN(\frac{\pi^3}{8}) - SIN(0)$
	$= s_{N}(T_{8}) - 0 = s_{N}(T_{8})$

1.0	
11-	INT BY SUBSTINTION CAN BE FORMALLY
	NAITTEN AS
	$\left(g(f), \frac{df}{dx} dx = \left(g(f), df\right)\right)$
	,
iii	OUR LAST EXAMPLE $f(x) = x^3$ $\frac{\partial f}{\partial x} = 3x^2$ $g(f) = \cos(f)$ THUS ONE INFORM PROBLEM OF PROBLE
	OUT LAST BRANCE T(N) = (N) = (
	g(+)= cos(+)
	-111 (K. ~)
	THUS CREATER THE MILE WILL
- 1	
- 11-	$\int \cos(f) \cdot 3x^2 \cdot dx = \int \cos(f) df$
	Ensy TO
	EVANUATE;
DA	NOTHOR EXAMPLE:
11	· 6
Fin	o t. e t dt SET f(t)= t2+1
	Z 145 . "
1	$\Rightarrow \frac{3f}{5t} = 2 \cdot t$
60	RENALTE AS
	2 => df = 2. t. dt
	(ef. t.dt
	I FALMOST EQUAL TO df, BUT NOT QUITE (WE'RE
	OFF BY A FACTOR OF 2)
	6 MILT BY 2. 2 GIVES
	= {ef. 2. tdt = = } of d+ NEOT PAGE?
113	2/0,000=2/0

19.12 Thus $\frac{1}{2}$ Set $df = \frac{1}{2}$ ef + const f(x)THIS CAN BE EVALUATED 2 DIFFERENT WAYS: Completely IN TORNES OF + NOTE: f(i) = 2 ~ (f(t) = t2+1 f(2) = 5 THUS \(\frac{1}{2} e^{\frac{1}{2}} = \frac{1}{2} \{e^{5} - e^{2}\} \\ \frac{1}{2} Completely IN Torus OF t (WHICH REQUIRES SUBBING FIX) BACK IN FOR F) AND USING & VALUES AS THE CIMITS THUS, OF INTEGRATION. 回 X=1

OFTEN W/ INT-BY-SUB WE'LL BE FORNNATE, IN THAT AFTER WE PICK F(x), AND THUS FIND OF IT JUST HAPPENS THAT IS INCLUDED IN THE ORIGINAL PROBLEM xe dx f(x) = x2 THIS II COM VIEW TOWN INCLUDED IN THE ORIGINAL PROBLEM THE DEALY OF F JUST "HAPPENS" TO BE PART OF THE PROBLEM, IF THIS IS NOT TRUE? BUT WHAT CAN STILL IN THIS CASE, INT-BY-5UB Harp: WLITE AS:

WE STILL HAVE X'S IN THE INTERPRED & WE WANT ONLY FS. THUS GIVEN f = 3-2x, WE HAVE X = 3-+ X = 3 - 2-4 -1. ((x+7) f 1/3. df = -= (=-=f+7)f'3.df = - = (8,5 - = f) f's df $= -\frac{1}{2} \left\{ 8.5 f^{1/3} - \frac{1}{2} f^{4/3} \right\} df$ = -1/2 8.5(3)+ 4/3 - = (3/1)+ + CONIST COULD EVALUATE USING ALL F'S (USING LIMITS OF INTEGRATION FLE) & ALE) COULD PLUG IN +(x) = 3-2x AD EVALVATE @ LIMITS OF XLOWER = 2 X = 5 $-\frac{1}{2} \left[8.5(\frac{3}{4})(3-2x) - \frac{1}{2}(\frac{3}{7})(3-2x) + \cos(x) \right]$ X=2 GO TO PAGE 20

... NOW BACK TO THE PROBLEM (SEE PAGE 18) ... WE NOW KNOW, f,g,f, & g. SO CAN ... USE INT-BY-PAUTS:

INT.-BY-PARE 15: Stigdx = f.g - Sgifdx

THAT 15: $\left(w(f=x,g=\frac{1}{6}\cos(6x),f=1,g=sw(6x)\right)$ WE CAN WRITE.

 $\int x \sin(6x) dx = x \cdot (\frac{1}{6}\cos 6x) - \int \frac{1}{6} \cos(6x) \cdot 1 dx$

BUT ITS "EAST". (GAN DO FORMALLY VIA INT-BY-SUBSTITUTION AS WELL) + 16 (COSLOX) dx

= +6 [SIN(6x)]. t = 36.5IN(6x)

THIS WIA INT-BY-PARTS WE HAVE

> d+1 6 SW (6x)=

 $\int x \cdot \sin(\omega x) dx = -\frac{x}{6} \cdot \cos(\omega x) + \frac{1}{36} \cdot \sin(\omega x) + C = \frac{1}{36} \cdot \cos(\omega x) \cdot \omega$

THE ANGWER.

C=CONSTANT (DENICET C)

FACT: OFTEN IN ORDER TO SOLVE THE "POSIONAL RAS INTEGRAL", I'C
Sfgdx = f.g - Sgfdx & GBP)
ORIGINAL "THE RESIDUAL INTEGRAL" STO FIND (SOMETIMES WE MUST
YOU MUST SOMETIMES DO INT-BY-PARTS AGAIN (AND AGAIN
FACT: THEGRAS OF THE FURM:
(i) $X^n e^{ax}$ (ii) $X^n \leq_{iN}(ax)$ (iii) $X^n \cos(ax)$
AND $a = constant$ i.e. $E \ge 1, 2, 3, $ "A MEMBER OF (E) THE SET $\{\cdot, \cdot\}$."
MUST BE SOLUED VIA APPLYING INTEG-BY-PARTS $N-TIMES$, EACH TIME $w/f = x^n$ $\dot{g} = e^{ax}$, $\sin(ax)$, or $\cos(ax)$.
LETS DO AN EXAMPLE (IBP'S TWICE) ? INT-BY-PAUTS

EVALUATE: JX2-X(30) dX

图

(THINK OF X AS A RATE OF RETURN, IRR, DISCONNT RATE ETC...), THIS TYPE OF INTERPAL IS COMMON WHEN COMPSTING VARIANCE OF RETURNS W/ CAROULUS:

LET: $f = X^2$ => $f = 2 \times (30)$ => $g = \frac{-1}{30}$. $e^{-(30)}$

PHAKE SURE THE

DERIV OF 9 15

EQUAL TO 9

TE CHECK YOUR WORK

THEN IVER INT-BY-PARTS ?

Jf.gdx = x2. (30 = x(30)) - (30 e . 2x dx

= -x2 -x(30) + 15 \ x.e dx

*

BUT, THIS IS STILL OF THE FORM

X" EAX — SO DO INTEG
-BY-PARTS AGAIN! (UNTIL THE

"RESIDUAL RAS INTEGRAL" IS NOT

OF THIS FORM.)

THIS 7

	THUS,							
	+1 (-30× (-1 -30×							
Mary 1	$\frac{1}{15} \int_{15}^{15} \left(x e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x \left(\frac{1}{30} e^{30 \cdot X} \right) - \int_{15}^{15} e^{30 \cdot X} dx = x $							
1	11111							
	f=x $f=x$ g $g= f=1$							
	de la constant de la							
NOW THE "RESIDUR RAS" INTURN" IS NOT OF THE								
	FORM X". X (W/ n A POSITIVE)							
	INTECEL /							
	ie zero = n							
/	SO NOW JUST EVALUATE THE BLOW ALLOWED.							
_ ′	LAST RESIDUAL RAS INTEDUL - 173 NOT A POSTINE [AND THE SUBSTITUTE OUR RESULTS /MTERED.							
	FROM THE TWO GRAVES OF INT-BY-PARTS)							
	THE LAST INTERPAL IS.							
	+1 (1 -30·×							
	30 De dx IT EQUAS							
	-1 -30,X 900 C + CONST							
	100							
	CHECK IT,							
	THUS OUR OVERALL ANSWER IS:							
	USING							

THE	ERIGINAL PROBLEM WAS TO FIND IX2 = 30.X dx
111	
74	(VIA (XX) PJ 22, AND (RE) PJ 23):
4	$\frac{-x^2}{30}e^{-30x} + \left\{ \frac{-x}{30}e^{-30x} - \frac{1}{900}e^{-30x} \right\} \cdot \left(\frac{1}{15} \right)$
	FROM (FROM 2 ND STAGE FROM 2 ND STAGE NOT-BY-PARTS
	PG 22 INT-BY-PARTS
1	
	NOW LETS TACK About THE LIMITS (UPPOR &
	LOWERD OF INTERPRETED:
	$\int_{3x^2 dx} = \left(\chi^3 + const \right) \Big _{3}$
	2
	$= (7^3 + const) - (2^3 + const) = 7^3 - 2^3$ $= 335$
	= 335
	IN THE ABOVE EXAMPLE, THE LOWOR LIMIT WAS Z,
	THE UPPER rimit = 7
-	THIS GIVES THE ALGOR UNDER Y=3x2 From X=2
	TO X=7. THE ALEA IS EXACTLY 335.
	SOME INTERALS CAN'T BE SOLVED WIA INT-BY-PARTS.
	SOME OF THESE INTEGRALS REDVICE A "SUBSTITUTION
	AE VALLABIES"
	OF VANLABLES" (SECTION 8.2 OF SHEWL CALC TEXT)

IN LOWER LIM IT OF INTEGRATION IS 0 = X (=0 f(0) = 9-3(0) = 9 = f = f(X =) THUS, THE NOW LOWER RIMIT OF INTERPRETION IS f=9, E I THE UPPER LIMIT OF INT WILL BE f(z) = 9-3(z) = 3 = fupper = f(Xupper) WRITE dx in Torms of of: (NE DO THIS BASED UPON THE RELATION F=9-3X,
AND THEN TAKING THE DERW). THE FIRST DORW IS: df = -3 WHICH CAN BE WRITTEN AS A DIFFERONTIAL EDUATION: df = -3.dx OR AS dx = - = . df 4 NE NEWO TO MACE THIS CHANGE IN THE (MUST NOT FOREST! $\int_{1}^{2} \int_{1}^{2} \int_{1$ = -1 S In(f)df

TRICKS
IF YOU WANT TO SWAP THE UPPOR & LOWER
MANES OF INTERPATION, YOU CAN DO SO IF YOU
MOLT THE INTELRAL BY -1.
THAT IS, SIMPLY SWAPING LIMITS OF INTERPREN
ALL MANAGES THE SIEN OF THE INTERNAL
USING THE TRICK WE HAVE PROPER -13. Inf. df = +13. Inf df
VPP owner 57.
USING THE TRICK WE HAVE WEREAPPET
3
-= - Inf.df = += .] Inf df
9 3
DOING THIS GETS THE
NOTE: WE DON'T HAVE TO LOWGE INTERPENT TO BE LESS
EMPLOY THE TRICK THAN THE UPPER INTERRAND
WE'LL GET THE SAME - WHICH "LOOKS NICE"
ANSWER EITHER WAY, BUT IT'S NOT NECESSARY.
NOW EVALUATE,
UNFORTUNATECY NE'RE NOT READY TO FIND THE
INTEGRA OF THE NATURAL LOG.
AT THIS POINT WE HAVE A DROTTY DECENT
AT THIS POINT WE HAVE A PROTTY DECENT EXPOSURE TO THE BASICS OF CALCULUS.
LETS LOOK @ WHY WE CALE IN
FINANCE 7
Thomas

> IT TURNS OUT THAT THE PV OF ANNUTTIES (ie CASH FLOW STROAMS) CAN BE COMPUTED WA INTER-RAIS, (IF THE FLOW PATE IS CONTINUOUS - AS INTEREST IS OFTON PAID). FACT! IF \$ 15 FOWING INTO AN ACCT AT ANY TIME to AT THE RATE R(t), THEN THE PRESENT VALUE OF PHIS FLOW FROM TIME to TIME to IS COMPUTED AS PROSONT = SR(t). e dt $\int_{R(t)}^{+r(\tau-t)} dt \qquad = Fe$ FROM BVS-342 PRESENT VALUE W/ CONTINUOUS EOMPONDING FOR EXAMPLE ASSUME MONEY FLOWS INTO AN ACCOUNT AT THE

FOR BRAMPLE

ASSUME MONEY FROWS INTO AN ACCOUNT AT THE

RATE R(t) = \$10/YR FOR ALL TIMES BETWEEN

t=0 \$ t=8, IF THE DISCOUNT RATE IS CONSTANT

O r=.12 THEN THE PV OF THE B YEAR

STREAM IS: 9

AND THE VALUE OF THE UNDERLYING ASSET.
(SMY THE STOCK OF IBM, OR THE PRICE
OF PORK BRUIES).
THESE DECIVATIVES, DELTA, GAMMA, THETA, RHO
KAPPA, AND VEGA ARE COLLECTIVELY
PETCHED TO AS "THE GLEEKS". IN ORDER TO
PEAULY UNDERSTAND WHAT THEY MEAN, YOU MUST
UNDERSTAND PARTIAL DERIVATIVES AT AN INTUITIVE
ING
- THERE ARE SEVERAL OTHER WAYS CALCULUS
IS APPLIED TO FINANCE.
FACT! INTEGRALS ARE JUST FANCY SUMMITION
SIGNS (ie E)
THAT IS, FOR ANY INTEGRAL THERE
IS AN ANALAGOUS APPROXIMATION USING
SUMMATION NOTATION SEE
IDEA XZ ANY CAC BOOK. FOR STORY DE SHOWK PJZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
FOR (f(x) dx eg SHONK PJZZZZ)
X,
THE AVALORY IS > f(x)(AX)
THE ANTHOCY IS $\sum_{x=x_1}^{x_2} f(x)(\Delta x)$
W AX BENCH A SMALL PART OF THE
TOTAL SPAN FROM X, TO X2 (THE
LIMITS OF INTERPRATION).
FOR EXAMPLE, WE KNOW THE INTEGRAL
GIVES THE AREA UNDER THE CURVE, BUT
WAS IE WE DON'T KIND HOW TO
DANATE THE INTERRAL (SAY SIN (9-3x) dx)
WHAT SHOULD WE DO?

WE CAN APPROXIMATE THE INTEGRAL AS
FOLLOWS.
(LETS ASSUME WE 3 DION'T KNOW HOW TO EVALUATE (\frac{1}{2} \times^2 \dix)
HOW TO EVALUATE (\frac{1}{2} \times^2 dx)
1
y= 1 x2 LOOKS LIKE
J 2 1 1 2 2 x 2
1 1 1 1 XXXXX 1 +> X
+123
AREA FROM X=1 TO X=3
NE COULD APPROXIMATE THE AREA AS A FEW RECTANCES THAT LOOK SOMETHING LIKE:
RECIPIOLES THAT LOOK SOMETHINGS LIVE
1/4= = 2 x2
4 RECTANCES W/ TOTAL
AREA, APPROX, EDUAL
TO (\frac{1}{2}X^2 dx
2 I F1 1
12345

LETS COMPUTE THE AREA OF

NEAT PALGE

	I'VE CHOSEN	TO HAVE TH	E HEIGHT OF	= EACH		
	RECTANGLE EDVAL 70 THE MIDPOINT OF THE					
	VALUE OF f(x) AT THE Z SIDES OF THE					
	RECTANGE.					
	THAT IS,	e e e e e e e e e e e e e e e e e e e	<u></u>			
	W/ 4 PERTANCES SPANNING X=1 TO X=3					
	WE HAVE THE FOLLOWING X VALVES TO WORRY					
	ABOUT: X = {	1,15,2,2,5	, 3 }			
	GIVING 4 P	ECTANGLES W	BASES OF			
	RETANGLE #	X VALUE AT LEFT SIDE	XVALUE AT RIGHT SIDE	RECTANGE WIDTH		
		X=1.0	X=1.5	0.5		
	2_	X=1.5	X=2.0	0.5		
	3	X=2.0	K=2.5	0.5		
	4	X=2.5	X=3.0	0.5		
			37			
l l	ETS LOOK @ PEZ					
	WE HAVE A					
		支(1)2====================================				
	f(1.5) =	$\frac{1}{2}(1.5)^2 = 1.12$	5			
			As			
	SO I TAKE TH					
	BE THE MIDPOINT BETWEEN 0.50 AND					
	1.125 WHICH			1/ \\		
			=(f(1.0)+f	-(1.5)		
			2			

```
FOR RECTANGLE #2 THE HEIGHT IS
f(1.5) + f(2.0) = \pm (1.5)^2 + \pm (2.0)^2
```

= 1.125 + 2.00

= 1.5625

IN A SIMILAR MANNER WE CAN GET THE HEIGHTS OF KERTANGES 3 AND 4 TO BE

Rest#3: height = $\frac{f(2.0) + f(2.5)}{2} = \frac{1}{2}(2)^{2} + \frac{1}{2}(2.5)^{2}$

= 2,5625

PTET#4! height = $f(2.5) + f(3.0) = \frac{1}{2}(2.5)^2 + \frac{1}{2}(3.0)^2$

= 3,8125

(MIDPOINT)

NOTE: BY CHOOSING THE HEIGHTS IN THIS MANNER WE ARE USING "THE MIDPOINT RULE"

THERE ARE MORE ACCURATE WAYS AS WELL

(BUT REDUIRE & BIT MORE WORK)

SEE SHOWK CALCULUS TEXT SECTION 8-9

Py 423.

THE TOTAL ALEA OF THE 4 PECTANGLES (EACH W WIDTH = 0.5) 15:

NOW THINK OF $y = \frac{1}{2} x^2$ AS BEING A GRANDARD PHISICS PROBLEM RESTATED AS: V = = t = YELOCITY (METERS) SUPPOSE WE WANTED TO KNOW THE TOTAL DISTANCE (IN METERS) TRAVELED FROM t=1 TO t=3 SERONDS. WELL, WHAT IF WE BROKE THE PROBLEM INTO 4 SEPERATE PROBLEMS, AND FOR EACH, ESTIMATE DISTANCE TRAVELED BY DISTANCE = VELOCITY . TIME (METIDAS). (SIK) -MAKE SURE (METIERS) = ANYTHING YOU WRITE HAS CORRECT UNITS. X= V. t SO WE NEED ONLY BOTTMATE THE MEAN VELOCITY IN EACH OF THE 4 PERIODS. PER PREVIOUS PRUBLEM, WE BITMATE THE MIDPOINT OF VORDCITY IN GREH PERIOD TO BE EST, OF PISTANCE ELST OF MEAN At IN WINDON PEN2100# VELOCITY TRAVELED 0.8125 0.55% , 40625 1.5625 × 0.5 ,78125 0.5 1.28125 2.5625 1.90625 3.8125 0.5

OUR ESTIMATE > 4.375 METERS