PLSC 503 – Spring 2023 Models For Event Counts

April 17, 2023

Event Counts

Things that are not counts:

- Ordinal scales/variables
- Grouped Binary Data
 - N of "successes"
 - Binomial data
 - = counts only if Pr("success") is small

Count properties:

- Discrete / integer-valued
- Non-negative
- "Cumulative"

Count Data: Motivation

Events:

Arrival Rate =
$$\lambda$$

$$Pr(Event)_{t,t+h} = \lambda h$$

$$Pr(No Event)_{t,t+h} = 1 - \lambda h$$

Count of events:

$$Pr(Y_t = y) = \frac{\exp(-\lambda h)\lambda h^y}{y!}$$
$$= \frac{\exp(-\lambda)\lambda^y}{y!}$$

Poisson Assumptions

Three assumptions:

- No Simultaneous Events
- Constant Arrival Rate
- Independent Event Arrivals

Poisson: Other Motivations

For M independent Bernoulli trials with (sufficiently small) probability of success π and where $M\pi \equiv \lambda > 0$,

$$\Pr(Y_i = y) = \lim_{M \to \infty} \left[\binom{M}{y} \left(\frac{\lambda}{M} \right)^y \left(1 - \frac{\lambda}{M} \right)^{M-y} \right]$$
$$= \frac{\lambda^y \exp(-\lambda)}{y!}$$

Poisson: Characteristics

- Discrete
- $E(Y) = Var(Y) = \lambda$
- Is not preserved under affine transformations...
- For $X \sim \text{Poisson}(\lambda_X)$ and $Y \sim \text{Poisson}(\lambda_Y)$, $Z = X + Y \sim \text{Poisson}(\lambda_{X+Y})$ iff X and Y are independent but
- ...same is not true for differences.
- $\lambda \to \infty \iff Y \sim N$

Poissons: Examples

Poisson Regression

Suppose

$$\mathsf{E}(Y_i) \equiv \lambda_i = \exp(\mathbf{X}_i \boldsymbol{\beta})$$

then

$$\Pr(Y_i = y | \mathbf{X}_i, \boldsymbol{\beta}) = \frac{\exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})][\exp(\mathbf{X}_i \boldsymbol{\beta})]^y}{y!}$$

Poisson Likelihood

$$L = \prod_{i=1}^{N} rac{\exp[-\exp(\mathbf{X}_{i}oldsymbol{eta})][\exp(\mathbf{X}_{i}oldsymbol{eta})]^{Y_{i}}}{Y_{i}!}$$

$$\ln L = \sum_{i=1}^{N} [-\exp(\mathbf{X}_{i}oldsymbol{eta}) + Y_{i}\mathbf{X}_{i}oldsymbol{eta} - \ln(Y_{i}!)]$$

Example: Judicial Review

Dahl (1957): SCOTUS overturning Acts of Congress:

- Y_i = number of Acts of Congress overturned by the Supreme Court in each Congress,
- The mean tenure (tenure) of the Supreme Court's justices $(\bar{X} = 10.4, \sigma = 3.4, \mathsf{E}(\hat{\beta}) > 0).$
- Whether (1) or not (0) there was unified government (unified) ($\bar{X}=0.83, E(\hat{\beta})<0$).

Example Redux: Federal Judicial Review, 1789-2018

Dahl (1957):

- ullet SCOTUS gets "out of step" with the other branches o judicial review
- Older / longer-serving justices will more likely to invalidate legislation

Data:

Max. :2018

Max. :7.000

> summary(NewDahl) Year NNulls Age Tenure Unified Min. :1789 :0.000 :45.5 Min. : 1.0 :0.000 Min. Min. Min. 1st Qu.:1846 1st Qu.:0.000 1st Qu.:60.7 1st Qu.:10.0 1st Qu.:1.000 Median :1904 Median :0.000 Median :63.5 Median :11.8 Median :1.000 Mean :1904 Mean :0.674 :62.6 Mean :12.0 Mean :0.783 Mean 3rd Qu.:1961 3rd Qu.:1.000 3rd Qu.:66.0 3rd Qu.:14.1 3rd Qu.:1.000

Max. :71.1

Max. :21.8

Max. :1.000

Federal Judicial Review, 1789-2018

Estimation

```
> nulls.poisson<-glm(NNulls~Age+Tenure+Unified,family="poisson",
                   data=NewDahl)
> summary(nulls.poisson)
Call:
glm(formula = NNulls ~ Age + Tenure + Unified, family = "poisson",
   data = NewDahl)
Deviance Residuals:
          10 Median 30
  Min
                                Max
-1.933 -1.033 -0.544 0.393 2.954
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.0321 1.7258 -6.97 3.1e-12 ***
           0.1897 0.0296 6.42 1.4e-10 ***
Age
Tenure
          -0.0421 0.0350 -1.20 0.23
Unified
         -0.0336 0.1808 -0.19 0.85
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 331.95 on 229 degrees of freedom
Residual deviance: 261.39 on 226 degrees of freedom
ATC: 484.1
Number of Fisher Scoring iterations: 6
```

Interpretation: Incidence Rate Ratios

$$\begin{split} \frac{\hat{\lambda}|X_D = 1}{\hat{\lambda}|X_D = 0} &= \frac{\exp(\hat{\beta}_0 + \bar{\mathbf{X}}\hat{\boldsymbol{\beta}} + (X_D = 1)\hat{\beta}_{X_D})}{\exp(\hat{\beta}_0 + \bar{\mathbf{X}}\hat{\boldsymbol{\beta}} + (X_D = 0)\hat{\beta}_{X_D})} \\ &= \exp(\hat{\beta}_{X_D}) \end{split}$$

- Like ORs
- Age: IRR = exp(0.19) = 1.21

Incidence Rate Ratios, continued

$$\mathsf{IRR}_{X_k,X_k+\delta} = \exp(\delta \hat{\beta}_k)$$

So, a ten-year difference in Age:

IRR =
$$exp(10 \times 0.190)$$

= $exp(1.90)$
= 6.69

Incidence Rate Ratios

Predicted Values (\hat{Y} s)

Mean predicted Y:

$$\mathsf{E}(Y|ar{\mathbf{X}}_i) = \mathsf{exp}[ar{\mathbf{X}}_i\hat{eta}]$$

In-Sample:

• R: in \$fitted.values

• Stata : use predict

Out-of-Sample: use predict

Example: Out-Of-Sample Predicted Values

```
> simdata<-data.frame(Age=seq(from=45,to=71,by=1),
                      Tenure=mean(NewDahl$Tenure.na.rm=TRUE).
                      Unified=1)
> nullhats<-predict(nulls.poisson,newdata=simdata,se.fit=TRUE)
> # NOTE: These are XBs, not predicted counts.
> # Transforming:
> nullhats$Yhat<-exp(nullhats$fit)
> nullhats$UB<-exp(nullhats$fit + 1.96*(nullhats$se.fit))
> nullhats$LB<-exp(nullhats$fit - 1.96*(nullhats$se.fit))
>
> plot(simdata$Age,nullhats$Yhat,t="1",lwd=3,ylim=c(0,5),ylab=
         "Predicted Count", xlab="Mean Court Age")
> lines(simdata$Age,nullhats$UB,lwd=2,lty=2)
> lines(simdata$Age,nullhats$LB,lwd=2,lty=2)
```

Plotting Out-Of-Sample Predicted Values

Predicted Probabilities

$$\widehat{\Pr(Y_i = y | \mathbf{X}_i, \hat{\boldsymbol{\beta}})} = \frac{\exp[-\exp(\mathbf{X}_i \hat{\boldsymbol{\beta}})][\exp(\mathbf{X}_i \hat{\boldsymbol{\beta}})]^y}{y!}$$

Changes in Predicted Probabilities

Changes: Mean Age = 57 to Mean Age = 67

"Exposure" and "Offsets"

If we relax the assumption of equal "exposure," we get:

$$\mathsf{E}(Y_i|\mathbf{X}_i,M_i)=\lambda_iM_i$$

i.e., the expected number of events is proportional to exposure M_i .

Note that now, instead of:

$$ln[E(Y_i)] = \mathbf{X}_i \boldsymbol{\beta}$$

we have:

$$\ln\left[E\left(\frac{Y_i}{M_i}\right)\right] = \mathbf{X}_i\boldsymbol{\beta}$$

which is the same as:

$$ln[E(Y_i)] = ln(M_i) + \mathbf{X}_i \boldsymbol{\beta}$$

that is, including $ln(M_i)$ in **X** with $\beta_{ln(M)} = 1$.

Exposure Example

Example: Data on numbers of interstate disputes by country, 1950-1985...

- N = 102, but
- Ndyads = number of dyad-years which were aggregated to create each observation, ranging from five to 3249
- disputes = number of (interstate) dispute-years that country experienced during 1950-1985
- allies = number of (dyadic) ally-years each country had during 1950-1985
- openness = $\frac{1}{36} \left(\frac{\text{Imports}_t + \text{Exports}_t}{\text{GDP}_t} \right)$ across all 36 years in the data.

"Exposure" and "Offsets": Data

Data are aggregated dyadic data, 1950-1985...

> summary(IR) ccode	Ndyads	disputes	allies	openness	exposure
Min. : 2	Min. : 5	Min. : 0.00	Min. : 0.0	Min. :0.032	Min. :1.61
1st Qu.:214	1st Qu.: 44	1st Qu.: 0.00	1st Qu.: 0.0	1st Qu.:0.185	1st Qu.:3.79
Median:436	Median: 92	Median: 1.00	Median: 26.0	Median :0.296	Median:4.52
Mean :418	Mean : 179	Mean : 3.55	Mean : 63.9	Mean :0.392	Mean :4.42
3rd Qu.:598	3rd Qu.: 146	3rd Qu.: 4.00	3rd Qu.: 81.0	3rd Qu.:0.535	3rd Qu.:4.98
Max. :900	Max. :3249	Max. :52.00	Max. :1283.0	Max. :1.659	Max. :8.09

> cor(IR,use="complete.obs")

	ccode	Ndyads	disputes	allies	openness	exposure
ccode	1.0000	-0.2962	-0.140	-0.398	0.0274	-0.654
Ndyads	-0.2962	1.0000	0.863	0.920	-0.0751	0.699
disputes	-0.1399	0.8626	1.000	0.825	-0.1682	0.634
allies	-0.3983	0.9200	0.825	1.000	-0.1255	0.700
openness	0.0274	-0.0751	-0.168	-0.125	1.0000	-0.143
avnosura	-0 6544	0.6988	0 634	0.700	-0 1433	1 000

Ignoring Exposure

```
> IR.fit1<-glm(disputes~allies+openness,data=IR,family="poisson")
> summarv(IR.fit1)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1559498 0.1117581 10.343 < 2e-16 ***
allies 0.0025184 0.0001159 21.734 < 2e-16 ***
openness -1.1144132 0.2773631 -4.018 5.87e-05 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 732.68 on 101 degrees of freedom
Residual deviance: 392.97 on 99 degrees of freedom
  (12 observations deleted due to missingness)
ATC: 588.29
Number of Fisher Scoring iterations: 6
```

Correcting for Exposure

```
> IR.fit2<-glm(disputes~allies+openness,data=IR,family="poisson",
 offset=log(Ndyads))
> summary(IR.fit2)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.2906055 0.1194616 -27.545 < 2e-16 ***
allies
       -0.0006058 0.0001333 -4.544 5.52e-06 ***
openness -1.6040587 0.3167415 -5.064 4.10e-07 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
   Null deviance: 320.19 on 101 degrees of freedom
Residual deviance: 277.79 on 99 degrees of freedom
  (12 observations deleted due to missingness)
AIC: 473.11
Number of Fisher Scoring iterations: 5
```

Correcting for Exposure (continued)

```
> IR.fit3<-glm(disputes~allies+openness+log(Ndyads),data=IR,
              family="poisson")
> summary(IR.fit3)
Call:
glm(formula = disputes ~ allies + openness + log(Ndyads), family = "poisson",
   data = TR)
Deviance Residuals:
  Min
           10 Median
                           30
                                  Max
-2.838 -1.390 -0.758 0.605 4.731
Coefficients:
                                                      Pr(>|z|)
              Estimate Std. Error z value
(Intercept) -2.42656676 0.34345252 -7.07
                                               0.000000000016 ***
         -0.00000948 0.00025687 -0.04
allies
                                                          0.97
openness -1.44462460 0.31193821 -4.63
                                               0.0000036368547 ***
log(Ndyads) 0.81097748 0.07095243 11.43 < 0.0000000000000000 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 732.68 on 101 degrees of freedom
Residual deviance: 270.59 on 98 degrees of freedom
  (12 observations deleted due to missingness)
ATC: 467 9
Number of Fisher Scoring iterations: 5
```

Test $\beta_{\text{exposure}} = 1.0$

```
> # z-test:
> 2*pnorm((0.811-1)/.071)
[1] 0.007768438
> # Wald test:
> wald.test(b=coef(IR.fit3),Sigma=vcov(IR.fit3),Terms=4,H0=1)
Wald test:
Chi-squared test:
X2 = 7.1, df = 1, P(> X2) = 0.0077
```

Contagion, Heterogeneity, and Dispersion

Heterogeneity, Contagion, and Dispersion

Cats (daily values):

```
\begin{array}{lcl} Y_{cats} & = & \{0,1,1,0,2,0,1,0,3,1,2,1,0,2\} \\ \bar{Y}_{cats} & = & 1.0, \\ \sigma_{cats} & = & 0.92. \end{array}
```

Heterogeneity, Contagion, and Dispersion

$$\mathsf{E}(Y_{cats}) = \lambda_{cats}$$

Assumes:

- Y = 0 at t = 0.
- Exclusive events
- $t_i = t_k \, \forall \, j \neq k$
- Constant, independent Pr(Event) over t

Antelope

Daily values:

$$Y_{antelope} = \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7\}$$

 $\bar{Y}_{antelope} = 1.0,$
 $\sigma_{antelope} = 6.46.$

Positive contagion \rightarrow overdispersion.

Foxes

Daily values:

$$\begin{array}{lcl} Y_{\rm foxes} & = & \{1,0,1,1,1,1,1,2,1,1,1,1,1,1\} \\ \bar{Y}_{\rm foxes} & = & 1.0, \\ \sigma_{\rm foxes} & = & 0.15. \end{array}$$

 $\textit{Negative contagion} \rightarrow \textit{underdispersion}.$

Aggregation & Cross-Period Effects

Aggregated two-day measures:

$$Y_{cats} = \{1, 1, 2, 1, 4, 3, 2\}$$

 $Y_{antelope} = \{0, 0, 0, 0, 0, 0, 14\}$
 $Y_{foxes} = \{1, 2, 2, 3, 2, 2, 2\}$

Heterogeneity

- Correct specification
- ullet Correct distribution for ϵ
- Constant $E(Y|X,\beta)$

$$\lambda_i \equiv \mathsf{E}(Y_i) = f[\mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \boldsymbol{\theta}]$$

Overdispersion: A Test

Examine:

$$\hat{u}_i = \delta \hat{\lambda}_i + \epsilon_i$$

where

$$\hat{u}_i = \frac{(Y_i - \hat{\lambda}_i)^2 - Y_i}{\hat{\lambda}_i \sqrt{2}}$$

- Estimate a Poisson regression of Y_i on \mathbf{X}_i , and generate predicted counts $\hat{\lambda}_i$.
- Calculate \hat{u}_i according to the equation above.
- Estimate δ using OLS, and test $H_0: \hat{\delta} = 0$.

Overdispersion: Models

$$E(Y_i) \equiv \lambda_i = \exp(\mathbf{X}_i \boldsymbol{\beta} + u_i)$$

$$= \exp(\mathbf{X}_i \boldsymbol{\beta}) \exp(u_i)$$

$$= \lambda_i \nu_i$$

$$u_i \sim \mathsf{gamma}\left(1, \frac{1}{lpha}\right)$$

$$\Pr(Y_i = y | \lambda_i, \alpha) = \left(\frac{\Gamma(\alpha^{-1} + Y_i)}{\Gamma(\alpha^{-1})\Gamma(Y_i + 1)}\right) \left(\frac{\alpha^{-1}}{\alpha^{-1} + \lambda_i}\right)^{\alpha^{-1}} \left(\frac{\lambda_i}{\lambda_i + \alpha^{-1}}\right)^{Y_i}$$

where

$$\Gamma(a) = \int_0^\infty \exp(-t)t^{a-1}dt$$

Negative Binomial

Basis:

$$\lambda_i = \exp(\mathbf{X}_i \boldsymbol{\beta})$$

Model has

$$E(Y) = \lambda$$

$$Var(Y) = \lambda(1 + \alpha\lambda), \ \alpha > 0$$

Negative Binomial (log-)Likelihood

$$\ln L_{NB} = \sum_{i=1}^{N} \left\{ \left(\sum_{j=0}^{Y_i - 1} \ln(j + \alpha^{-1}) \right) - \ln Y_i! - (Y_i - \alpha^{-1}) \ln[1 + \alpha \exp(\mathbf{X}_i \boldsymbol{\beta})] + Y_i \ln \alpha + Y_i \mathbf{X}_i \boldsymbol{\beta} \right\}$$

So:

•
$$\alpha = 0 \iff \mathsf{E}(Y) = \mathsf{Var}(Y)$$

LR test for overdispersion:

$$-2 imes (\widehat{\ln L_{Poisson}} - \widehat{\ln L_{NB}}) \sim \chi_1^2$$

•
$$\widehat{E(Y_i)} \equiv \hat{\lambda}_i = \exp(\mathbf{X}_i \hat{\boldsymbol{\beta}})$$

What Difference Does It Make?

```
> N<-400
> set.seed(7222009)
> X <- runif(N,min=0,max=1)</pre>
> YPois <- rpois(N,exp(0+1*X))</pre>
                                        # Poisson
> YNB <- rnbinom(N,size=1,mu=exp(0+1*X)) # NB with theta=1.0
>
> describe(cbind(YPois,YNB))
                     sd median trimmed mad min max range skew kurtosis
      vars
            n mean
         1 400 1.72 1.41
                             1 1.56 1.48
                                                        7 0.92
                                                                   0.84 0.07
YPois
        2 400 1.71 2.44
                                  1.22 1.48
YNB
                             1
                                              0 19
                                                       19 2.76
                                                                  11.15 0.12
```


What Difference Does It Make (cont'd)?

```
> # Regressions:
> summary(glm(YPois~X,family="poisson")) # Poisson
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.009637 0.085337 -0.113
X
            1.030573 0.131992 7.808 5.82e-15 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 516.06 on 399 degrees of freedom
Residual deviance: 453.55 on 398 degrees of freedom
ATC: 1274.4
> summary(glm.nb(YPois~X))
                                       # NB
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.009629 0.085345 -0.113
            1.030557 0.132007 7.807 5.86e-15 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for Negative Binomial (7837.699) family taken to be 1)
   Null deviance: 515.96 on 399 degrees of freedom
Residual deviance: 453.46 on 398 degrees of freedom
ATC: 1276.5
             Theta: 7838
         Std. Err.: 135342
Warning while fitting theta: iteration limit reached
2 x log-likelihood: -1270.451
```

What Difference Does It Make (cont'd)?

```
> # More regressions:
> summary(glm(YNB~X.family="poisson")) # Poisson
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.03170 0.08593 -0.369
            1.06109 0.13248 8.009 1.15e-15 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 1118.0 on 399 degrees of freedom
Residual deviance: 1052.1 on 398 degrees of freedom
AIC: 1698.6
> summary(glm.nb(YNB~X))
                                      # NR
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.03525
                    0.13650 -0.258
            1.06773
                     0.22809 4.681 2.85e-06 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for Negative Binomial(0.8499) family taken to be 1)
   Null deviance: 436.92 on 399 degrees of freedom
Residual deviance: 414.81 on 398 degrees of freedom
ATC: 1407 4
             Theta: 0.850
         Std. Err.: 0.109
2 x log-likelihood: -1401.354
```

Poisson Regression Underestimates N.B. Variances

```
Sims <- 250 # (250 sims each)
theta \leftarrow seq(0.1,4,by=0.1) # values of theta
diffs<-matrix(nrow=Sims,ncol=length(theta))
set.seed(7222009)
for(j in 1:length(theta)) {
  for(i in 1:Sims) {
    X<-runif(N,min=0,max=1)</pre>
    Y<-rnbinom(N,size=theta[j],mu=exp(0+1*X))
    p<-glm(Y~X,family="poisson")</pre>
    nb<-glm.nb(Y~X)
    diffs[i,j] \leftarrow ((sqrt(vcov(p))[2,2]) / sqrt(vcov(nb))[2,2])*100
```

Percentage of True (Negative Binomial) S.E. From Fitted Poisson Model, by $\theta = \frac{1}{\alpha}$

Negative Binomial In Practice

Model fitting (in R):

- glm.nb (in MASS)
- negbinomial (in VGAM)
- negbin (in aod)
- glmnb.fit (in statmod)
- Probably others...

Model interpretation + diagnostics:

- fitNBP (in statmod) (dispersion parameter estimation)
- negbinirr (in mfx) (IRRs)
- negbinmfx (in mfx) (marginal effects)

Underdispersion / CPB

"Continuous parameter binomial":

$$\Pr(Y_i = y | \lambda_i, \alpha) = \frac{\frac{\Gamma(\frac{-\lambda_i}{\alpha - 1} + 1)}{Y_i!\Gamma(\frac{-\lambda_i}{\alpha - 1} - Y_i + 1)} (1 - \alpha)^{Y_i} (\alpha)^{\frac{-\lambda_i}{\alpha - 1} - Y_i}}{D_i}$$

where $D_i = \sum_0^{rac{-\lambda_i}{lpha-1}+1}$ of the binomial distribution...

Are You Down With The CPB?

CPB:

- ...also has $E(Y_i) = \lambda_i$ [with $\mu_i = \exp(\mathbf{X}_i \boldsymbol{\beta})$]
- ...has $Var(Y) = \lambda_i \alpha$ with $0 < \alpha < 1$
- ... reduces to the standard Poisson when $\alpha = 1$
- ...imposes a theoretical "upper limit" on the count variable. In particular,

$$\max(Y_i) = \frac{-\lambda_i}{\alpha - 1}.$$

CPB (log-)Likelihood

$$\ln L_{CPB} = \sum_{i=1}^{N} \left\{ \ln \Gamma \left(\frac{-\lambda_i}{\alpha - 1} + 1 \right) - \ln \Gamma \left(\frac{-\lambda_i}{\alpha - 1} - Y_i + 1 \right) + Y_i \ln(1 - \alpha) + \left(\frac{-\lambda_i}{\alpha - 1} - Y_i \right) \ln(\alpha) - \ln(D_i) \right\}$$

Example Redux: Judicial Review

Recall:

```
> summarv(nulls.poisson)
Call:
glm(formula = NNulls ~ Age + Tenure + Unified, family = "poisson",
   data = NewDahl)
Deviance Residuals:
  Min
          1Q Median
                        30
                              Max
-1.933 -1.033 -0.544 0.393 2.954
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.0321 1.7258 -6.97 3.1e-12 ***
          Age
Tenure -0.0421 0.0350 -1.20 0.23
Unified -0.0336 0.1808 -0.19 0.85
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 331.95 on 229 degrees of freedom
Residual deviance: 261.39 on 226 degrees of freedom
ATC: 484 1
Number of Fisher Scoring iterations: 6
```

Overdispersion Test: "By Hand"

```
> Phats<-fitted.values(nulls.poisson)
> Uhats<-((NewDahl$NNulls-Phats)^2 - NewDahl$NNulls) / (Phats * sqrt(2))
> summary(lm(Uhats~Phats))
Call:
lm(formula = Uhats ~ Phats)
Residuals:
  Min 10 Median 30 Max
-1.431 -0.796 0.068 0.257 9.458
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.061
                       0.139 0.44 0.66
Phats
             0.190
                       0.170 1.12 0.27
Residual standard error: 1.18 on 228 degrees of freedom
Multiple R-squared: 0.00543, Adjusted R-squared: 0.00107
F-statistic: 1.24 on 1 and 228 DF, p-value: 0.266
```

 $[\]rightarrow$ no particular evidence of overdispersion here. However...

Negative Binomial Regression

```
> library(MASS)
> nulls.NB<-glm.nb(NNulls~Age+Tenure+Unified.data=NewDahl)
> summary(nulls.NB)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.4061 1.9829 -6.26 0.00000000039 ***
Age
           0.1970 0.0342 5.75 0.00000000876 ***
Tenure -0.0486 0.0408 -1.19
                                             0.23
Unified -0.0467 0.2145 -0.22
                                           0.83
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for Negative Binomial (2.41) family taken to be 1)
   Null deviance: 261.45 on 229 degrees of freedom
Residual deviance: 204.57 on 226 degrees of freedom
ATC: 478.2
Number of Fisher Scoring iterations: 1
            Theta: 2.41
         Std. Err.: 1.14
2 x log-likelihood: -468.21
> # alpha:
> 1 / nulls.NB$theta
[1] 0.416
```

Alternative NB Regression

```
> library(msme)
> nulls.nb2<-nbinomial(NNulls~Age+Tenure+Unified,data=NewDahl)
> summary(nulls.nb2)
Call:
ml_glm2(formula1 = formula1, formula2 = formula2, data = data,
   family = family, mean.link = mean.link, scale.link = scale.link,
   offset = offset, start = start, verbose = verbose)
Deviance Residuals:
  Min. 1st Qu. Median Mean 3rd Qu.
                                         Max
 -1.674 -0.986 -0.508 -0.289 0.336
                                        2.390
Pearson Residuals:
  Min. 1st Qu. Median
                       Mean 3rd Qu.
 -1.03 -0.66 -0.37
                       -0.01 0.37
                                         4 06
Coefficients (all in linear predictor):
             Estimate
                                          р
                                                 LCL
                                                        UCI.
(Intercept) -12,2623 2,0203 -6,070 1,28e-09 -16,2221 -8,3026
Age
             0.1944 0.0352 5.517 3.45e-08 0.1253 0.2634
Tenure
             -0.0465 0.0428 -1.088 0.277 -0.1304 0.0373
Unified
             -0.0490 0.2160 -0.227 0.82 -0.4725 0.3744
(Intercept)_s 0.4161 0.1987 2.094 0.0363 0.0266 0.8057
Null deviance: 261 on 228 d.f.
Residual deviance: 205 on 225 d.f.
Null Pearson: 293 on 228 d.f.
Residual Pearson: 219 on 225 d.f.
Dispersion: 0.975
AIC: 478
Number of optimizer iterations: 78
```

See here for details...

Comparing Estimates

```
> # Coefficient estimates:
>
> cbind(nulls.poisson$coefficients,coef(nulls.NB))
               [,1] \qquad [,2]
(Intercept) -12.0321 -12.4061
          0.1897 0.1970
Age
Tenure
           -0.0421 -0.0486
Unified
            -0.0336 -0.0467
> # Estimated standard errors:
>
> cbind(diag(sqrt(vcov(nulls.poisson))),diag(sqrt(vcov(nulls.NB))))
             [,1] [,2]
(Intercept) 1.7258 1.9829
          0.0296 0.0342
Age
Tenure
        0.0350 0.0408
Unified 0.1808 0.2145
```

Predicted Values: Poisson and NB

More Things

- Models where Over- / Underdispersion = $f(\mathbf{Z}_i \gamma)$
- Models for Censored / Truncated Counts
- "Zero-Inflated" and "Hurdle" Count Models
- Time Series of Counts
- Panel Data Models for Event Counts
- Spatial Count Models
- etc...