

Graphs

Graphs & Traversal — Exam Notes

1. What is a Graph?

- A graph is a pair G=(V,E)G = (V, E)G=(V,E) where:
 - VVV = set of vertices (nodes)
 - EEE = set of edges (connections between vertices)
- Graphs model networks: computers, transport, social links, logic, etc.

2. Types of Graphs

- Undirected Graph:
 - Edges have no direction: $\{u,v\}=\{v,u\}\setminus\{u,v\}=\{v,u\}$
 - Example: friendships (A–B is same as B–A)
 - ![Undirected Example: {A,B}, {A,C}, {B,C}, {C,D}]lecture06_graphs
- Directed Graph (Digraph):
 - Edges are ordered pairs: (u,v)≠(v,u)(u, v) \neq (v, u)(u,v)"I=(v,u)
 - Example: Twitter follows (A → B doesn't mean B → A)
- Weighted Graph:
 - Each edge has a weight (cost, distance, time, etc.).
 - Example: Road network where edges store distances.

3. Graph Representations

A. Edge Set / Map

Store edges explicitly. With weights → use a map.

```
V = {A, B, C, D}
E = { (A,B):0, (B,C):2, (C,A):-1, (C,B):5, (C,D):4 }
```

• Complexity:

- Memory: O(V+E)O(V + E)O(V+E)
- Easy to list vertices/edges.
- Listing adjacents: O(E)O(E)O(E).

B. Adjacency Matrix

• 2D array, entry [i][j] = weight if edge exists.

```
A B C D
A[-,0,-,-]
B[-,-,2,-]
C[-1,5,-,4]
D[-,-,-,-]
```

• Complexity:

- Find weight: O(1)O(1)O(1) (direct lookup).
- Add/edit edge: O(1)O(1)O(1).
- List adjacents: O(V)O(V)O(V) (must scan row).
- Memory: O(V2)O(V^2)O(V2) (bad for sparse graphs).

C. Adjacency List

• Each vertex has a list of its neighbors.

```
A: [(B,0)]
B: [(C,2)]
C: [(A,-1), (B,5), (D,4)]
D: []
```

• Complexity:

- $\circ \quad \text{List outgoing: O(degree(v))O(\text{degree}(v))O(degree(v)).} \\$
- Find edge: O(degree(v))O(\text{degree}(v))O(degree(v)).
- Add edge: O(1)O(1)O(1).
- Memory: O(V+E)O(V+E)O(V+E).
- Very good for sparse graphs.

D. Adjacency Map

• Like adjacency list, but neighbors stored in a map.

```
A: {B:0}
B: {C:2}
C: {A:-1, B:5, D:4}
D: {}
```

• Complexity:

- Find edge: O(1)O(1)O(1) (map lookup).
- $\quad \text{o Outgoing neighbors: O(degree(v))O(\text{degree}(v))O(degree(v)).} \\$
- Memory: O(V+E)O(V+E)O(V+E).
- Incoming neighbors: costly (O(V)O(V)O(V)) unless transpose stored.

4. Graph Structures

Graphs 3

- Path Graph: sequence of vertices where edges connect consecutively.
 - Exactly 2 vertices have degree 1, rest degree 2.
- **Directed Path Graph**: same, but edges have direction.
- Path Length:
 - Unweighted: number of edges.
 - Weighted: sum of weights.
- Spanning Tree:
 - Subgraph that is a tree and contains all vertices.
 - Used in traversal (BFS/DFS build spanning trees).

5. Graph Traversals

A. Breadth-First Search (BFS)

- General Idea:
 - Explore level by level.
 - Finds shortest path (unweighted).
- Process (lower-level):
 - 1. Start at root, mark it seen.
 - 2. Put root into a queue.
 - 3. Pop from queue \rightarrow visit.
 - 4. For each unvisited neighbor: mark seen, push to queue.
 - 5. Repeat until queue empty.
- Complexity: O(V+E)O(V + E)O(V+E).
- When to use: shortest path, level-order traversal, connectivity check.

B. Depth-First Search (DFS)

General Idea:

- Explore as deep as possible before backtracking.
- Useful for cycle detection, topological sort, backtracking problems.

Process (lower-level):

- 1. Start at root, push it onto **stack**.
- 2. Pop top of stack.
- 3. If not visited \rightarrow mark visited.
- 4. Push all neighbors (even duplicates).
- 5. Continue until stack empty.
- Complexity: O(V+E)O(V + E)O(V+E).
- When to use: explore paths, detect cycles, topo sort, puzzles.

C. Preorder vs Postorder (DFS Variants)

- **Preorder**: Visit node **before** children (root → children → ...).
- **Postorder**: Visit node **after** children (children → root).
- Example in DFS:
 - Preorder: push node, process immediately.
 - Postorder: push node, process only after exploring its neighbors.

Summary of Purpose:

- BFS → shortest paths, level exploration.
- DFS → explore fully, analyze structure, cycle detection, backtracking.

BFS vs DFS in Reachability

- If you only need to know which vertices are reachable, BFS and DFS are interchangeable.
- If you care about how far away a vertex is (fewest edges) → only BFS works.
- If you care about path existence or structure → **DFS** is usually better.

Graphs 5

Tree vs DAG (Directed Acyclic Graph)

Feature	Tree (rooted, directed downward)	DAG (general)
Definition	Connected, acyclic graph	Directed graph with no directed cycles
Connectivity	Always connected	May be disconnected
Roots / Sources	Exactly 1 root	Can have multiple sources
Parents per node	Every node (except root) has 1 parent	Nodes may have multiple parents
Edges	Exactly V-1V-1V-1	Between 0 and V(V-1)2\frac{V(V-1)}{2}2V(V-1)
Paths	Exactly 1 unique path between any two nodes	May have multiple paths between nodes
Special case?	A tree is a special case of a DAG	Not every DAG is a tree

Key takeaway

- Every tree is a DAG (if you direct edges from parent → child).
- **Not every DAG is a tree** (because DAGs allow multiple parents, multiple roots, may be disconnected, and can have many more edges).

Graphs 6