On Shelling a Family of Symmetric Spaces

Fernando Díaz Morera (joint with Aram Bingham)

AMS Special Session: Geometry, Combinatorics, and flag varieties Saint Louis University, Saint Louis, MO October 18-19, 2025

Outline

- Poset
 - Weyl group
- 2 EL-labelling
- 3 Intermezzo: Stanley-Reisner correspondence
- 4 Symmetric spaces
 - Classification
 - Type AIII
 - Sects
- **5** Coverings and labelling on $\mathcal{C}_{p,q}^{\lambda}$
- Questions

(Strong) Bruhat order: $(\mathfrak{S}_n, <_{BC})$

Permutation group

$$\mathfrak{S}_n := \{ v : [n] \to [n] \mid v \text{ is } 1\text{-}1 \}.$$

- $v = v_1 v_2 \cdots v_n \rightsquigarrow v(i) = v_i$.
 - $v = 312 \rightsquigarrow v(2) = 1 = v_2.$
- $\bullet \underbrace{|\{(i,j): i \leq i < j \leq n, v_i > v_j\}|}_{\ell(v)}.$
 - $\ell(312) = |(1,2),(1,3)| = 2.$

(Strong) Bruhat order: $(\mathfrak{S}_n, <_{\mathtt{BC}})$

Permutation group

$$\widetilde{\mathfrak{S}_n := \{ v : [n] \to [n] \mid v \text{ is } 1\text{-}1 \}}.$$

- $v = v_1 v_2 \cdots v_n \rightsquigarrow v(i) = v_i$.
 - $v = 312 \rightsquigarrow v(2) = 1 = v_2.$
- $\bullet \underbrace{|\{(i,j): i \leq i < j \leq n, v_i > v_j\}|}_{\ell(v)}.$
 - $\ell(312) = |(1,2),(1,3)| = 2.$
- $u <_{BC} v \iff v$ is attainable from u by a sequence of transposition (ij) such that i < j and $u_i < u_j$.
 - $1324 \xrightarrow{(13)} 3124 \xrightarrow{(24)} 3142 \rightsquigarrow 1324 <_{BC} 3142.$

(Strong) Bruhat order: $(\mathfrak{S}_n, <_{BC})$

Permutation group

$$\mathfrak{S}_n := \{ v : [n] \to [n] \mid v \text{ is } 1\text{-}1 \}.$$

- $\bullet \ \ v = v_1 v_2 \cdots v_n \leadsto v(i) = v_i.$
 - $v = 312 \rightsquigarrow v(2) = 1 = v_2.$
- $|\{(i,j): i \leq i < j \leq n, v_i > v_j\}|$. $\ell(v)$
 - $\ell(312) = |(1,2),(1,3)| = 2.$
- $u <_{BC} v \iff v$ is attainable from u by a sequence of transposition (i i) such that i < j and $u_i < u_i$.
 - 1324 $\xrightarrow{(13)}$ 3124 $\xrightarrow{(24)}$ 3142 \rightsquigarrow 1324 $<_{BC}$ 3142.

(Strong) Bruhat order: $(\mathfrak{S}_n, <_{\mathtt{BC}})$

Permutation group

$$\mathfrak{S}_n := \{ v : [n] \to [n] \mid v \text{ is } 1\text{-}1 \}.$$

- $v = v_1 v_2 \cdots v_n \rightsquigarrow v(i) = v_i$.
 - $v = 312 \rightsquigarrow v(2) = 1 = v_2.$
- $\bullet \underbrace{|\{(i,j): i \leq i < j \leq n, v_i > v_j\}|}_{\ell(v)}.$
 - $\ell(312) = |(1,2),(1,3)| = 2.$
- $u <_{BC} v \iff v$ is attainable from u by a sequence of transposition (ij) such that i < j and $u_i < u_j$.

 1324 $\stackrel{(13)}{=}$ 3124 $\stackrel{(24)}{=}$ 3142 \Rightarrow 1324 $<_{BC}$ 3142.

 $\begin{array}{l} \mathbf{T}_n \subset \mathbf{B}_n \subset \mathsf{GL}_n(\mathbb{C}) \leadsto \mathsf{GL}_n / \mathbf{B} = \bigsqcup \mathbf{B} \, v \, \mathbf{B} / \mathbf{B} \leadsto X_{v \, \mathbf{B}} := \overline{\mathbf{B} \, v \, \mathbf{B} / \mathbf{B}}. \\ \mathfrak{S}_n \cong \mathrm{N}_{\mathsf{GL}_n}(\mathbf{T}) / \, \mathbf{T}, \quad u <_{\mathsf{BC}} \, v \iff X_{u \, \mathbf{B}} \subseteq X_{v \, \mathbf{B}}, \quad \ell(v) = \dim X_{v \, \mathbf{B}}. \end{array}$

3 / 22

• A poset \mathcal{P} with order relation < is bounded if there are elements $\hat{\mathbf{0}}$ and $\hat{\mathbf{1}}$ such that $\hat{\mathbf{0}} < v < \hat{\mathbf{1}}$ for all v in \mathcal{P} .

- A poset \mathcal{P} with order relation < is bounded if there are elements $\hat{\mathbf{0}}$ and $\hat{\mathbf{1}}$ such that $\hat{\mathbf{0}} < v < \hat{\mathbf{1}}$ for all v in \mathcal{P} .
- If u < v and there is not u_1 such that $u < u_1 < v$, we say v covers u, denoted as u < v.
- A chain is saturated if it is of the form $u = u_0 \lessdot u_1 \lessdot \cdots \lessdot u_m = v$.

- A poset $\mathcal P$ with order relation < is bounded if there are elements $\hat{\mathbf 0}$ and $\hat{\mathbf 1}$ such that $\hat{\mathbf 0} < v < \hat{\mathbf 1}$ for all v in $\mathcal P$.
- If u < v and there is not u_1 such that $u < u_1 < v$, we say v covers u, denoted as u < v.
- A chain is saturated if it is of the form $u = u_0 \lessdot u_1 \lessdot \cdots \lessdot u_m = v$.
- ullet P is graded if all maximal chains have the same length.
- If $\mathcal P$ is graded, then the length function $\ell:\mathcal P\to\mathbb N$ assigns to v in $\mathcal P$ the value m where $u_0\lessdot u_1\lessdot\cdots\lessdot u_m=v$ for any saturated chain to v.

- A poset $\mathcal P$ with order relation < is bounded if there are elements $\hat{\mathbf 0}$ and $\hat{\mathbf 1}$ such that $\hat{\mathbf 0} < v < \hat{\mathbf 1}$ for all v in $\mathcal P$.
- If u < v and there is not u_1 such that $u < u_1 < v$, we say v covers u, denoted as $u \lessdot v$.
- A chain is saturated if it is of the form $u = u_0 \lessdot u_1 \lessdot \cdots \lessdot u_m = v$.
- ullet P is graded if all maximal chains have the same length.
- If $\mathcal P$ is graded, then the length function $\ell:\mathcal P\to\mathbb N$ assigns to v in $\mathcal P$ the value m where $u_0\lessdot u_1\lessdot\cdots\lessdot u_m=v$ for any saturated chain to v.

Finding the number of partially order sets with *n* elements is still unknown...

EL-labeling on \mathfrak{S}_n

Let $u=u_1u_2\cdots u_n$ and $v=v_1v_2\cdots v_n$ be in \mathfrak{S}_n . We say $u\lessdot_{\mathtt{BC}}v$ whether $\ell(v)=\ell(u)+1$, and

- (i) $u_k = v_k$ for k in $\{1, ..., \hat{i}, ..., \hat{j}, ..., n\}$
- (ii) $u_i = v_j, u_j = v_i$, and $u_i < u_j$.
 - ▶ $213 \lessdot_{BC} 231 \leadsto u_1 = v_1, u_2 = v_3, u_3 = v_2 \text{ and } u_2 < u_3.$

EL-labeling on \mathfrak{S}_n

Let $u=u_1u_2\cdots u_n$ and $v=v_1v_2\cdots v_n$ be in \mathfrak{S}_n . We say $u\leqslant_{\mathrm{BC}}v$ whether $\ell(v)=\ell(u)+1$, and

- (i) $u_k = v_k$ for k in $\{1, ..., \hat{i}, ..., \hat{j}, ..., n\}$
- (ii) $u_i = v_i$, $u_j = v_i$, and $u_i < u_j$.
 - ▶ 213 \leq_{BC} 231 $\leadsto u_1 = v_1, u_2 = v_3, u_3 = v_2 \text{ and } u_2 < u_3.$

Let $\Lambda = [n] \times [n]$ denote poset of pair such that $(i,j) \leq (r,s)$ if i < r, or i = r and j < s.

$$C(\mathfrak{S}_n) \xrightarrow{\eta} \Lambda$$

$$(u, v) \longrightarrow \eta(u, v) := (u_i, u_i)$$

EL-labeling on \mathfrak{S}_n

Let $u=u_1u_2\cdots u_n$ and $v=v_1v_2\cdots v_n$ be in \mathfrak{S}_n . We say $u\leqslant_{\mathrm{BC}}v$ whether $\ell(v)=\ell(u)+1$, and

- (i) $u_k = v_k$ for k in $\{1, ..., \hat{i}, ..., \hat{j}, ..., n\}$
- (ii) $u_i = v_j, u_j = v_i$, and $u_i < u_j$.
- ▶ $213 \leq_{BC} 231 \rightsquigarrow u_1 = v_1, u_2 = v_3, u_3 = v_2 \text{ and } u_2 < u_3.$

Let $\Lambda = [n] \times [n]$ denote poset of pair such that $(i,j) \leq (r,s)$ if i < r, or i = r and j < s.

$$C(\mathfrak{S}_n) \xrightarrow{\eta} \Lambda$$

$$(u,v) \longrightarrow \eta(u,v) := (u_i,u_i)$$

E.g. Let v=312 and e=123 be in \mathfrak{S}_3 . The max chain $e \lessdot_{\mathtt{BC}} 213 \lessdot_{\mathtt{BC}} v$ is the **LEX** smallest. Moreover, $\eta(e,213) \leq_{\mathtt{LEX}} \eta(213,v)$ is non-decreasing.

Let $C(\mathcal{P}) := \{(u, v) \in \mathcal{P} \times \mathcal{P} \mid u \lessdot v\}$ denote the set of covering relations in a poset \mathcal{P} . An *EL*-labelling on $(\mathcal{P}, <)$ is a map $\eta : C(\mathcal{P}) \to (\Lambda, \leq_{\mathsf{LEX}})$ holding the following:

Let $C(\mathcal{P}) := \{(u, v) \in \mathcal{P} \times \mathcal{P} \mid u \lessdot v\}$ denote the set of covering relations in a poset \mathcal{P} . An *EL*-labelling on $(\mathcal{P}, <)$ is a map $\eta : C(\mathcal{P}) \to (\Lambda, \leq_{\mathsf{LEX}})$ holding the following:

(i) For each u < v, there is a unique non-decreasing sequence from u to v. That is, there is a unique saturated chain $u \lessdot u_1 \lessdot \cdots \lessdot u_k \lessdot v$ with $\eta(u,u_1) \leq \eta(u_1,u_2) \leq \cdots \leq \eta(u_k,v)$.

Let $C(\mathcal{P}) := \{(u, v) \in \mathcal{P} \times \mathcal{P} \mid u \lessdot v\}$ denote the set of covering relations in a poset \mathcal{P} . An *EL*-labelling on $(\mathcal{P}, <)$ is a map $\eta : C(\mathcal{P}) \to (\Lambda, \leq_{\mathsf{LEX}})$ holding the following:

- (i) For each u < v, there is a unique non-decreasing sequence from u to v. That is, there is a unique saturated chain $u \lessdot u_1 \lessdot \cdots \lessdot u_k \lessdot v$ with $\eta(u,u_1) \leq \eta(u_1,u_2) \leq \cdots \leq \eta(u_k,v)$.
- (ii) The above label sequence is lexicographically *smaller* than the label sequence for every other saturated chain from u to v. That is, if $u \leqslant w \leqslant v$, with $w \neq u_1$ as defined above, then $\eta(u,u_1) \leq \eta(u,w)$.

Let $C(\mathcal{P}) := \{(u, v) \in \mathcal{P} \times \mathcal{P} \mid u \lessdot v\}$ denote the set of covering relations in a poset \mathcal{P} . An *EL*-labelling on $(\mathcal{P}, <)$ is a map $\eta : C(\mathcal{P}) \to (\Lambda, \leq_{\mathsf{LEX}})$ holding the following:

- (i) For each u < v, there is a unique non-decreasing sequence from u to v. That is, there is a unique saturated chain $u \lessdot u_1 \lessdot \cdots \lessdot u_k \lessdot v$ with $\eta(u,u_1) \leq \eta(u_1,u_2) \leq \cdots \leq \eta(u_k,v)$.
- (ii) The above label sequence is lexicographically *smaller* than the label sequence for every other saturated chain from u to v. That is, if $u \lessdot w \lessdot v$, with $w \neq u_1$ as defined above, then $\eta(u,u_1) \leq \eta(u,w)$.

A poset $\mathcal P$ is **EL-shellable or lexicographically shellable** if it admits an EL -labeling.

EL-labeling of \mathfrak{S}_3

EL-labeling of \mathfrak{S}_3

The **order complex** of a poset \mathcal{P} is the abstract *simplicial complex*, denoted $\Delta(\mathcal{P})$, whose k-dimensional faces are the chains $u_0 < u_1 < \cdots < u_k$ of k+1 comparable poset elements.

Intermezzo: commutative algebra

A simplicial complex Δ is **shellable** if there is an ordering of the maximal faces $F_1, F_2, ..., F_m$ so that for all i, j with i < j, there exits k < j such that $F_i \cap F_i \subseteq F_k \cap F_i = F_i \setminus \{p\}$ for some p in F_i .

Intermezzo: commutative algebra

A simplicial complex Δ is **shellable** if there is an ordering of the maximal faces $F_1, F_2, ..., F_m$ so that for all i, j with i < j, there exits k < j such that $F_i \cap F_j \subseteq F_k \cap F_j = F_j \setminus \{p\}$ for some p in F_j .

Intermezzo: commutative algebra

A simplicial complex Δ is **shellable** if there is an ordering of the maximal faces $F_1, F_2, ..., F_m$ so that for all i, j with i < j, there exits k < j such that $F_i \cap F_j \subseteq F_k \cap F_j = F_j \setminus \{p\}$ for some p in F_j .

Theorem (Björner '80)

If $\mathcal P$ is a graded poset with an *EL*-labeling, then $\Delta(\mathcal P)$ is shellable.

Theorem (Kind-Kleinschmidt '79)

The Stanley-Reisner ring of a shellable Δ is *Cohen–Macaulay*.

• \mathfrak{S}_n Bruhat order is EL-shellable (Edelman, '81).

- \mathfrak{S}_n Bruhat order is EL-shellable (Edelman, '81).
- Classical Coxeter groups are EL-shellable (Proctor, '82)
 - ▶ S/I_{λ} Cohen-Macaulay $\rightsquigarrow X_{\lambda} \subset \mathbf{G}/\mathbf{P}$ normal.
- Bruhat order on \mathbf{W}/\mathbf{W}_J is CL-shellable for any Coxeter group \mathbf{W} and any parabolic subgroup $\mathbf{W}_J \subset \mathbf{W}$ (Björner-Wachs, '82).

- \mathfrak{S}_n Bruhat order is EL-shellable (Edelman, '81).
- Classical Coxeter groups are EL-shellable (Proctor, '82)
 - ▶ S/I_{λ} Cohen-Macaulay $\rightsquigarrow X_{\lambda} \subset \mathbf{G}/\mathbf{P}$ normal.
- Bruhat order on \mathbf{W}/\mathbf{W}_J is CL-shellable for any Coxeter group \mathbf{W} and any parabolic subgroup $\mathbf{W}_J \subset \mathbf{W}$ (Björner-Wachs, '82).
- Bruhat order on any \mathbf{W}/\mathbf{W}_J is EL-shellable (Dyer, '93).

- \mathfrak{S}_n Bruhat order is EL-shellable (Edelman, '81).
- Classical Coxeter groups are EL-shellable (Proctor, '82)
 - ▶ S/I_{λ} Cohen-Macaulay $\rightsquigarrow X_{\lambda} \subset \mathbf{G}/\mathbf{P}$ normal.
- Bruhat order on \mathbf{W}/\mathbf{W}_J is CL-shellable for any Coxeter group \mathbf{W} and any parabolic subgroup $\mathbf{W}_J \subset \mathbf{W}$ (Björner-Wachs, '82).
- Bruhat order on any \mathbf{W}/\mathbf{W}_J is EL-shellable (Dyer, '93).
- Bruhat order on Invol(W) is EL-shellable where W is classical (Incitti, '04/'06).

- \mathfrak{S}_n Bruhat order is EL-shellable (Edelman, '81).
- Classical Coxeter groups are EL-shellable (Proctor, '82)
 - ▶ S/I_{λ} Cohen-Macaulay $\rightsquigarrow X_{\lambda} \subset \mathbf{G}/\mathbf{P}$ normal.
- Bruhat order on \mathbf{W}/\mathbf{W}_J is CL-shellable for any Coxeter group \mathbf{W} and any parabolic subgroup $\mathbf{W}_J \subset \mathbf{W}$ (Björner-Wachs, '82).
- Bruhat order on any \mathbf{W}/\mathbf{W}_J is EL-shellable (Dyer, '93).
- Bruhat order on Invol(W) is EL-shellable where W is classical (Incitti, '04/'06).
- Fixed-point free involutions in \mathfrak{S}_n are EL-shellable (Can-Cherniavsky-Twelbeck, '15).
- The rook monoid is EL-shellable (Can, '19).

Symmetric spaces

Symmetric spaces

Theorem (Matsuki '79)

 \mathbf{G}/\mathbf{K} is a spherical variety , i.e. \mathbf{B} acts on \mathbf{G}/\mathbf{K} with finitely many orbits.

Symmetric spaces

Theorem (Matsuki '79)

 \mathbf{G}/\mathbf{K} is a spherical variety , i.e. \mathbf{B} acts on \mathbf{G}/\mathbf{K} with finitely many orbits.

$$\mathbf{G} = \mathrm{GL}_n \times \mathrm{GL}_n$$
, $\theta(g,h) = (h,g)$, $\mathbf{K} = \{(g,g) : g \in \mathrm{GL}_n\}$. So $\mathbf{G}/\mathbf{K} \cong \mathrm{GL}_n$ acted on by $\mathbf{B} = \mathbf{B}_n \times \mathbf{B}_n \subset \mathbf{G}$. In particular, \mathbf{B} -orbits are the same as $\mathbf{B}_n \vee \mathbf{B}_n$ double cosets, ν in \mathfrak{S}_n ...

Classification (à la Cartan)

Туре	G	K	$B \setminus G / K$	Shellable
Al	$GL_n(\text{or }SL_n)$	$O_n(\text{or }SO_n)$	Invol(n)	☑(Incitti, '04)
All	SL_{2n}	Sp _{2n}	$\text{Invol}^{FPF}(2n)$	☑(Can-C-T, '15)
AIII	GL_{p+q}	$GL_p imes GL_q$	(p,q)-clans	₩⁄2
CI	Sp _{2n}	GL_n	(n, n)-clans	*
CII	Sp_{p+q}	$Sp_{2p} \times Sp_{2q}$	CII-clans	*
BDI	SO _n	$SO_k \times SO_{n-k}$	(k, n - k)-clans	*
DIII	SO _{2n}	GL_n	DIII-clans	**

Clans

Definition (Yamamoto '97 - Wyser '06)

Let p and q be two positive integers such that p+q=n. A (p,q)-clan is an ordered set of n symbols $c_1 \ldots c_n$ such that:

- (i) Each symbol c_i is either "+", "-" or a $\mathbb{N}_{>0}$.
- (ii) If $c_i \in \mathbb{N}$, then there is a unique index $j \neq i$ such that $c_i = c_j$.
- (iii) The difference between the numbers of " + " and " " symbols in the clan is equal to p-q. If q>p, then we have q-p more " signs than " + " signs.

We denote the set of all (p,q)-clans by $\mathcal{C}_{p,q}$.

Clans

Definition (Yamamoto '97 - Wyser '06)

Let p and q be two positive integers such that p+q=n. A (p,q)-clan is an ordered set of n symbols $c_1 \ldots c_n$ such that:

- (i) Each symbol c_i is either "+", "-" or a $\mathbb{N}_{>0}$.
- (ii) If $c_i \in \mathbb{N}$, then there is a unique index $j \neq i$ such that $c_i = c_j$.
- (iii) The difference between the numbers of "+" and "-" symbols in the clan is equal to p-q. If q>p, then we have q-p more "-" signs than "+" signs.

We denote the set of all (p,q)-clans by $\mathcal{C}_{p,q}$.

Example

 $\gamma_1=+1212-$ and $\gamma_2=+1717-$ are equivalent (3,3)-clans. Likewise, $\gamma_3=12+21$ is a (3,2)-clan and $\gamma_4=+1+1$ is a (3,1)-clan.

Stemming from...

Theorem (Matsuki-Oshima '90)

Let $\mathcal{C}_{p,q}$ denote the set of (p,q)-clans. Then

$$\mathcal{C}_{p,q} \underset{1:1}{\longleftrightarrow} \left\{ \begin{aligned} \textbf{B} \text{-orbits in } & \mathsf{GL}_{p+q} \, / \, \mathsf{GL}_p \times \mathsf{GL}_q \\ & \text{or} \\ & \mathsf{GL}_p \times \mathsf{GL}_q \text{-orbits in } & \mathsf{GL}_n \, / \, \textbf{B} \end{aligned} \right\}.$$

Moreover, a clan is matchless if it consists only of +/-'s. Hence,

 $\{\text{matchless clans}\} \stackrel{\longleftarrow}{\longleftrightarrow} \{\text{closed orbits/min. dim.}\}.$

Stemming from...

Theorem (Matsuki-Oshima '90)

Let $\mathcal{C}_{p,q}$ denote the set of (p,q)-clans. Then

$$\mathcal{C}_{p,q} \underset{1:1}{\longleftrightarrow} \left\{ \begin{aligned} \textbf{B} \text{-orbits in } & \mathsf{GL}_{p+q} \, / \, \mathsf{GL}_p \times \mathsf{GL}_q \\ & \text{or} \\ & \mathsf{GL}_p \times \mathsf{GL}_q \text{-orbits in } & \mathsf{GL}_n \, / \, \textbf{B} \end{aligned} \right\}.$$

Moreover, a clan is $\frac{\text{matchless}}{\text{matchless}}$ if it consists only of +/-'s. Hence,

 $\{\text{matchless clans}\} \underset{1:1}{\longleftrightarrow} \{\text{closed orbits/min. dim.}\}.$

In other words, for clans γ_1, γ_2 in $\mathcal{C}_{p,q}$, we have corresponding **B**-orbits \mathcal{O}_{γ_1} and \mathcal{O}_{γ_2} . Then the Bruhat poset $(\mathcal{C}_{p,q},\leq)$ is defined by the relation

$$\gamma_1 \leq \gamma_2 \iff \mathcal{O}_{\gamma_1} \subseteq \overline{\mathcal{O}_{\gamma_2}}.$$

Stemming from...

Theorem (Matsuki-Oshima '90)

Let $C_{p,q}$ denote the set of (p,q)-clans. Then

$$\mathcal{C}_{p,q} \underset{1:1}{\longleftrightarrow} \left\{ \begin{aligned} \textbf{B} \text{-orbits in } & \mathsf{GL}_{p+q} \, / \, \mathsf{GL}_p \times \mathsf{GL}_q \\ & \text{or} \\ & \mathsf{GL}_p \times \mathsf{GL}_q \text{-orbits in } & \mathsf{GL}_n \, / \, \textbf{B} \end{aligned} \right\}.$$

Moreover, a clan is matchless if it consists only of +/-'s. Hence,

 $\{\text{matchless clans}\} \underset{1.1}{\longleftrightarrow} \{\text{closed orbits/min. dim.}\}.$

In other words, for clans γ_1, γ_2 in $\mathcal{C}_{p,q}$, we have corresponding **B**-orbits \mathcal{O}_{γ_1} and \mathcal{O}_{γ_2} . Then the Bruhat poset $(\mathcal{C}_{p,q},\leq)$ is defined by the relation

$$\gamma_1 \leq \gamma_2 \iff \mathcal{O}_{\gamma_1} \subseteq \overline{\mathcal{O}_{\gamma_2}}.$$

Shortcoming: There is no longer a unique minimal element...

Bruhat poset $\mathcal{C}_{2,2}$ (à la Wyser '16)

Sects

Def/Prop (Bingham-Can '20)

Let C_{λ} denote the Schubert cell of $\mathrm{GL}_{p+q}/\mathbf{P}$ associated to the partition $\lambda \in \binom{[p+q]}{p}$. Then the **sect** $\mathcal{C}^{\lambda}_{p,q}$ is the collection of clans γ whose corresponding orbits satisfy $\pi(\mathcal{O}_{\gamma}) = C_{\lambda}$ where $\pi: \mathbf{G}/\mathbf{L} \to \mathbf{G}/\mathbf{P}$ is the natural projection map.

Sects

Def/Prop (Bingham-Can '20)

Let C_{λ} denote the Schubert cell of $\mathrm{GL}_{p+q}/\mathbf{P}$ associated to the partition $\lambda \in \binom{[p+q]}{p}$. Then the **sect** $\mathcal{C}^{\lambda}_{p,q}$ is the collection of clans γ whose corresponding orbits satisfy $\pi(\mathcal{O}_{\gamma}) = C_{\lambda}$ where $\pi: \mathbf{G}/\mathbf{L} \to \mathbf{G}/\mathbf{P}$ is the natural projection map.

Combinatorially

(i) {matchless/base clans τ } \longleftrightarrow {sects/Schubert cells/partitions λ }

$$\tau_{\gamma} = -+--++ \longleftrightarrow$$

(ii) Label the symbols of γ as $\gamma = c_1 \cdots c_{p+q}$. For each pair $c_i = c_j \in \mathbb{N}$ with i < j, replace c_i by a - symbol and c_j by a + symbol.

$$\gamma = 1 + -221 \quad \mapsto \quad - + - - + + = \tau_{\gamma}$$

From sects to rooks

Let $R(\lambda)$ denote the set of **rook placements** of partition λ . For ρ, π in $R(\lambda)$, we say $\rho \leq \pi \iff rt_{\rho} \leq rt_{\pi}$ where $R(\lambda) \xrightarrow{rt} \mathbb{N}$ is a labeling of the boxes of $[\lambda]$ by the number of rooks weakly NW of each box.

From sects to rooks

Let $R(\lambda)$ denote the set of **rook placements** of partition λ . For ρ, π in $R(\lambda)$, we say $\rho \leq \pi \iff rt_{\rho} \leq rt_{\pi}$ where $R(\lambda) \xrightarrow{rt} \mathbb{N}$ is a labeling of the boxes of $[\lambda]$ by the number of rooks weakly NW of each box.

Bingham '21

There is an isomorphism between $R(\lambda)$ and $C_{p,q}^{\lambda}$ as follows.

- (i) Let the positions of the symbols in τ_{γ} be i_1,\ldots,i_q and the positions of the + symbols be j_1,\ldots,j_p from left to right,
- (ii) For each pair $c_{i_k} = c_{j_l} \in \mathbb{N}$ in γ , we place a rook in the square with northeast corner (k, l).

From sects to rooks

Let $R(\lambda)$ denote the set of **rook placements** of partition λ . For ρ, π in $R(\lambda)$, we say $\rho \leq \pi \iff rt_{\rho} \leq rt_{\pi}$ where $R(\lambda) \xrightarrow{rt} \mathbb{N}$ is a labeling of the boxes of $[\lambda]$ by the number of rooks weakly NW of each box.

Bingham '21

There is an isomorphism between $R(\lambda)$ and $C_{p,q}^{\lambda}$ as follows.

- (i) Let the positions of the symbols in τ_{γ} be i_1, \ldots, i_q and the positions of the + symbols be j_1, \ldots, j_p from left to right,
- (ii) For each pair $c_{i_k} = c_{j_l} \in \mathbb{N}$ in γ , we place a rook in the square with northeast corner (k, l).

 $\gamma=1+-221 \leadsto au_{\gamma}=-+--++$. The labels of au_{γ} are $c_{i_1}c_{j_1}c_{i_2}c_{i_3}c_{j_2}c_{j_3}$. As $c_{i_1}=c_{j_3}$, we have a Ξ in the box with NE corner (1,3) and so on.

The partial permutation associated to a clan $\gamma \in \mathcal{C}_{p,q}$ is the function $\phi_{\gamma}: [q] \to [p] \cup \{0\}$ defined by labeling the positions of the - symbols in τ_{γ} by i_1, \ldots, i_q and the positions of the + symbols as j_1, \ldots, j_p in ascending order.

The partial permutation associated to a clan $\gamma \in \mathcal{C}_{p,q}$ is the function $\phi_{\gamma}: [q] \to [p] \cup \{0\}$ defined by labeling the positions of the - symbols in τ_{γ} by i_1,\ldots,i_q and the positions of the + symbols as j_1,\ldots,j_p in ascending order. Then we read the symbols $c_1\cdots c_{p+q}$ left to right and construct ϕ_{γ} as

The partial permutation associated to a clan $\gamma \in \mathcal{C}_{p,q}$ is the function $\phi_{\gamma}:[q] \to [p] \cup \{0\}$ defined by labeling the positions of the - symbols in τ_{γ} by i_1,\ldots,i_q and the positions of the + symbols as j_1,\ldots,j_p in ascending order. Then we read the symbols $c_1\cdots c_{p+q}$ left to right and construct ϕ_{γ} as

(1) If $c_{i_s} = c_{j_t} \in \mathbb{N}$ in γ , then $\phi_{\gamma}(s) = t$. These are the rooks that are placed within the associated partition λ under (B.'21)-iso.

The partial permutation associated to a clan $\gamma \in \mathcal{C}_{p,q}$ is the function $\phi_{\gamma}:[q] \to [p] \cup \{0\}$ defined by labeling the positions of the - symbols in τ_{γ} by i_1,\ldots,i_q and the positions of the + symbols as j_1,\ldots,j_p in ascending order. Then we read the symbols $c_1\cdots c_{p+q}$ left to right and construct ϕ_{γ} as

- (1) If $c_{i_s}=c_{j_t}\in\mathbb{N}$ in γ , then $\phi_{\gamma}(s)=t$. These are the rooks that are placed within the associated partition λ under (B.'21)-iso.
- (2) Modify γ by iteratively replacing all 1212 patterns by 1221 patterns to obtain a clan which we call $\hat{\gamma}_0 \in \mathcal{C}^{\lambda}_{p,q}$ and which has symbols $\hat{c}_1 \cdots \hat{c}_{p+q}$.

The partial permutation associated to a clan $\gamma \in \mathcal{C}_{p,q}$ is the function $\phi_\gamma: [q] \to [p] \cup \{0\}$ defined by labeling the positions of the - symbols in τ_γ by i_1,\ldots,i_q and the positions of the + symbols as j_1,\ldots,j_p in ascending order. Then we read the symbols $c_1\cdots c_{p+q}$ left to right and construct ϕ_γ as

- (1) If $c_{i_s} = c_{j_t} \in \mathbb{N}$ in γ , then $\phi_{\gamma}(s) = t$. These are the rooks that are placed within the associated partition λ under (B.'21)-iso.
- (2) Modify γ by iteratively replacing all 1212 patterns by 1221 patterns to obtain a clan which we call $\hat{\gamma}_0 \in \mathcal{C}^\lambda_{p,q}$ and which has symbols $\hat{c}_1 \cdots \hat{c}_{p+q}$.
- (3) For each 1+-1 pattern in $\hat{\gamma}_0$ of the form $\hat{c}_a\hat{c}_{j_l}\hat{c}_{i_k}\hat{c}_b$, set $\phi_\gamma(k)=l$. Delete all of the symbols involved in any 1+-1 pattern to obtain a new clan $\hat{\gamma}_1$ which inherits position labels from $\hat{\gamma}_0$.

The partial permutation associated to a clan $\gamma \in \mathcal{C}_{p,q}$ is the function $\phi_\gamma:[q] \to [p] \cup \{0\}$ defined by labeling the positions of the - symbols in τ_γ by i_1,\ldots,i_q and the positions of the + symbols as j_1,\ldots,j_p in ascending order. Then we read the symbols $c_1\cdots c_{p+q}$ left to right and construct ϕ_γ as

- (1) If $c_{i_s}=c_{j_t}\in\mathbb{N}$ in γ , then $\phi_{\gamma}(s)=t$. These are the rooks that are placed within the associated partition λ under (B.'21)-iso.
- (2) Modify γ by iteratively replacing all 1212 patterns by 1221 patterns to obtain a clan which we call $\hat{\gamma}_0 \in \mathcal{C}^\lambda_{p,q}$ and which has symbols $\hat{c}_1 \cdots \hat{c}_{p+q}$.
- (3) For each 1+-1 pattern in $\hat{\gamma}_0$ of the form $\hat{c}_a\hat{c}_{j_l}\hat{c}_{i_k}\hat{c}_b$, set $\phi_\gamma(k)=l$. Delete all of the symbols involved in any 1+-1 pattern to obtain a new clan $\hat{\gamma}_1$ which inherits position labels from $\hat{\gamma}_0$.
- (4) Repeat the procedure of the previous step on $\hat{\gamma}_1$, and so on until we obtain a clan $\hat{\gamma}_s$ which is free of 1+-1 patterns.

Example: hidden rooks

The hidden rook associated to the pattern $2+-2=\hat{c}_{i_2}\hat{c}_{j_2}\hat{c}_{i_5}\hat{c}_{j_5}$ is obtained from $\hat{\gamma}_1$, after changing the 1212 pattern to 1221 and deleting the symbols $3+-3=\hat{c}_{i_3}\hat{c}_{j_3}\hat{c}_{i_4}\hat{c}_{j_4}$.

$$\gamma = 12+3++-3-1-2 \mapsto \phi_{\gamma} = (5, 6, 4, 3, 2, 1).$$

Lemma (Bingham-D, '25)

Let $\gamma = c_1 \cdots c_{p,q} \in \mathcal{C}^{\lambda}_{p,q}$ with partial permutation $\phi_{\gamma} = (a_1, \dots, a_q)$.

Lemma (Bingham-D, '25)

Let $\gamma=c_1\cdots c_{p,q}\in \mathcal{C}^\lambda_{p,q}$ with partial permutation $\phi_\gamma=(a_1,\ldots,a_q).$

(1) An *ff*-rise move applied to
$$(c_{i_k}, c_{j_l})$$
 changes the symbol a_k from 0 to l .

Lemma (Bingham-D, '25)

Let $\gamma=c_1\cdots c_{p,q}\in\mathcal{C}^\lambda_{p,q}$ with partial permutation $\phi_\gamma=(a_1,\ldots,a_q)$.

- (1) An ff-rise move applied to (c_{i_k}, c_{j_l}) changes the symbol a_k from 0 to I.
- (2) An <u>fe-rise</u> move applied to (c_{i_k}, c_{i_m}) where $c_{i_m} = c_{j_l} \in \mathbb{N}$ swaps the symbol pair (a_k, a_m) from (0, l) to (l, 0).

Lemma (Bingham-D, '25)

Let $\gamma = c_1 \cdots c_{p,q} \in \mathcal{C}_{p,q}^{\lambda}$ with partial permutation $\phi_{\gamma} = (a_1, \dots, a_q)$.

- (1) An ff-rise move applied to (c_{i_k}, c_{j_l}) changes the symbol a_k from 0 to I.
- (2) An *fe*-rise move applied to (c_{i_k}, c_{i_m}) where $c_{i_m} = c_{j_l} \in \mathbb{N}$ swaps the symbol pair (a_k, a_m) from (0, l) to (l, 0).
- (3) An ef-rise move applied to (c_{i_k}, c_{j_m}) where $c_{i_k} = c_{j_l} \in \mathbb{N}$ changes the symbol a_k from l to m.

Lemma (Bingham-D, '25)

Let $\gamma = c_1 \cdots c_{p,q} \in \mathcal{C}_{p,q}^{\lambda}$ with partial permutation $\phi_{\gamma} = (a_1, \dots, a_q)$.

- (1) An f-rise move applied to (c_{i_k}, c_{j_l}) changes the symbol a_k from 0 to I.
- (2) An *fe*-rise move applied to (c_{i_k}, c_{i_m}) where $c_{i_m} = c_{j_l} \in \mathbb{N}$ swaps the symbol pair (a_k, a_m) from (0, l) to (l, 0).
- (3) An ef-rise move applied to (c_{i_k}, c_{j_m}) where $c_{i_k} = c_{j_l} \in \mathbb{N}$ changes the symbol a_k from l to m.
- (4) A non-crossing ee-rise move applied to (c_{i_k}, c_{i_m}) where $c_{i_k} = c_{j_l} \in \mathbb{N}$ and $c_{i_m} = c_{j_n} \in \mathbb{N}$ swaps the symbol pair (a_k, a_m) from (l, n) to (n, l).

Lemma (Bingham-D, '25)

Let $\gamma = c_1 \cdots c_{p,q} \in \mathcal{C}_{p,q}^{\lambda}$ with partial permutation $\phi_{\gamma} = (a_1, \dots, a_q)$.

- (1) An *ff*-rise move applied to (c_{i_k}, c_{j_l}) changes the symbol a_k from 0 to l.
- (2) An *fe*-rise move applied to (c_{i_k}, c_{i_m}) where $c_{i_m} = c_{j_l} \in \mathbb{N}$ swaps the symbol pair (a_k, a_m) from (0, l) to (l, 0).
- (3) An ef-rise move applied to (c_{i_k}, c_{j_m}) where $c_{i_k} = c_{j_l} \in \mathbb{N}$ changes the symbol a_k from l to m.
- (4) A non-crossing *ee*-rise move applied to (c_{i_k}, c_{i_m}) where $c_{i_k} = c_{j_l} \in \mathbb{N}$ and $c_{i_m} = c_{j_n} \in \mathbb{N}$ swaps the symbol pair (a_k, a_m) from (l, n) to (n, l).
- (5) A crossing ee-rise move applied to (c_{i_k}, c_{i_m}) where $c_{i_k} = c_{j_l} \in \mathbb{N}$ and $c_{i_m} = c_{j_n} \in \mathbb{N}$ swaps the symbol pair (a_k, a_m) from (I, n) to (n, I).

Labelling on $\mathcal{C}^{\lambda}_{p,q}$

Definition (Bingham-D, '25)

Suppose that $\gamma \lessdot \tau$ is a covering relation where γ and the covering moves are as before. Then we label the covering relation (γ, τ) in $C(\mathcal{C}_{p,q}^{\lambda})$ with an element of \mathbb{N}^2 as follows.

- (1) If τ is obtained from an ff-rise move, then apply the label (0, l).
- (2) If τ is obtained from an *fe*-rise move, then apply the label (0, I).
- (3) If τ is obtained from an *ef*-rise move, then apply the label (I, m).
- (4) If τ is obtained from a non-crossing *ee*-rise move, then apply the label (I, n).
- (5) If τ is obtained from a crossing *ee*-rise move, then apply the label (I, n).

Labelling on $C_{p,q}^{\lambda}$

Definition (Bingham-D, '25)

Suppose that $\gamma \leqslant \tau$ is a covering relation where γ and the covering moves are as before. Then we label the covering relation (γ, τ) in $C(\mathcal{C}_{p,q}^{\lambda})$ with an element of \mathbb{N}^2 as follows.

- (1) If τ is obtained from an ff-rise move, then apply the label (0, I).
- (2) If τ is obtained from an *fe*-rise move, then apply the label (0, I).
- (3) If τ is obtained from an *ef*-rise move, then apply the label (I, m).
- (4) If τ is obtained from a non-crossing *ee*-rise move, then apply the label (I, n).
- (5) If τ is obtained from a crossing *ee*-rise move, then apply the label (*I*, *n*).

Theorem (Bingham-D' 25)

The Bruhat order on $GL_{p+q}/GL_p \times GL_q$ restricted to any sect $\mathcal{C}_{p,q}^{\lambda}$ is an EL -shellable poset.

Open questions...

- (1) How could we conclude that $C_{p,q}$ is shellable?
- (2) What about the Möbius function function on $C_{p,q}^{\lambda}$?
- (2) Other (sects of) symmetric spaces (of Hermitian type)?

Open questions...

- (1) How could we conclude that $C_{p,q}$ is shellable?
- (2) What about the Möbius function function on $\mathcal{C}_{p,q}^{\lambda}$?
- (2) Other (sects of) symmetric spaces (of Hermitian type)?

Thank You/Gracias/Obrigado ⊜

"If you spend your time chasing butterflies, they will just fly away. But if you build a beautiful garden, the butterflies will come" Mario Quintana.