Ejercicios en clase: Crecimiento de funciones

Análisis y Diseño de Algoritmos

14 de septiembre de 2021

Ejercicio 1. Demostrar, usando las definiciones que

(a)
$$n^2 - 10n + 2 = O(n^2)$$

$$(b) \lceil n/3 \rceil = O(n)$$

(c)
$$\lg n = O(\log_{10} n)$$

$$(d) n = O(2^n)$$

(e)
$$\lg n$$
 no es $\Omega(n)$

$$(f)$$
 $n/100$ no es $O(1)$

$$(g)$$
 $n^2/2$ no es $O(n)$

(h)
$$n \lg n - \lceil 2n/3 \rceil - \lg n + 4 \text{ es } \Omega(2n \lg n)$$

(i) $\lg n!$ es $\Omega(n \lg n)$

Ejercicio 2. Demostrar o dar un contraejemplo

(a)
$$\lg \sqrt{n} = O(\lg n)$$

(b) Si
$$f(n) = O(g(n))$$
 y $g(n) = O(h(n))$ entonces $f(n) = O(h(n))$

(c) Si
$$f(n) = O(g(n))$$
 y $g(n) = \Theta(h(n))$ entonces $f(n) = \Theta(h(n))$

(d) Si
$$f(n) = O(g(n))$$
 entonces $2^{f(n)} = O(2^{g(n)})$

$$(e) \ o(g(n)) \cap \omega(g(n)) = \emptyset$$

$$(f)$$
 máx $\{f(n),g(n)\}=\Theta(f(n)+g(n))$, para funciones no negativas $f(n)$ y $g(n)$.

$$(g)$$
 $(n+a)^b = \Theta(n^b)$, donde $a, b \in \mathbb{R}$ y $b > 0$.

$$(h) \ \sqrt{n} = O(\lg^2 n).$$

(i)
$$\sum_{k=1}^{n} k^{99} = \Theta(n^{100})$$