Ubungen zum Ferienkurs Analysis II 2014

Extrema mit/ohne Nebenbedingungen, Implizite Funktionen

3.1 kritische Punkte

Bestimmen Sie die kritischen Punkte der Abbildung $f: \mathbb{R}^3 \to \mathbb{R}, (x,y,z) \mapsto 2x^2 + y^4 + 2z^2 + 4yz$ und untersuchen Sie diese auf lokale Minima, Maxima oder Sattelpunkte.

Lösung:

Die Bedingung
$$\nabla f(x,y,z) = \begin{pmatrix} 4x \\ 4y^3 + 4z \\ 4z + 4y \end{pmatrix} = 0$$
 liefert die kritischen Punkte $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ $Hf(x,y,z) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 12y^2 & 4 \\ 0 & 4 & 4 \end{pmatrix}$ $Hf(0,0,0) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 4 & 4 \end{pmatrix}$ $Hf(0,\pm 1,\pm 1) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 12 & 4 \\ 0 & 4 & 4 \end{pmatrix}$

$$Hf(x,y,z) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 12y^2 & 4 \\ 0 & 4 & 4 \end{pmatrix} \qquad Hf(0,0,0) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 4 & 4 \end{pmatrix} \qquad Hf(0,\pm 1,\pm 1) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 12 & 4 \\ 0 & 4 & 4 \end{pmatrix}$$

Hf(0,0,0) ist indefinit, da offenbar e_1 Eigenvektor zum Eigenwert $\lambda_1 = 4 > 0$ ist, aber die det(Hf(0,0,0)) = $-4^3 < 0$ und daher einer der beiden anderen Eigenwerte negativ sein muss (Explezite Rechnung ergibt $\lambda_{2,3} = 2 \pm \sqrt{20}$). Daher handelt es sich um einen Sattelpunkt.

An den beiden anderen Punkten ist die Hessematrix nach dem Kriterium über die Hauptabschnittsdeterminanten positiv definit. Also hat f an diesen beiden Punkten jeweils ein lokales Minimum.

3.2 Extrema

Sei $D = \{(x,y) \in \mathbb{R}^2 \mid xy \leq 0\}$ und $f: D \to \mathbb{R}$ gegeben durch $f(x,y) = \cos x + y(y+2)$. Bestimmen Sie die lokalen und globalen Extrema von f.

Lösung

Zur Bestimmung der lokalen Extma suche die kritischen Punkte.

$$\nabla f(x,y) = \begin{pmatrix} -\sin x \\ 2y + 2 \end{pmatrix} = 0 \qquad \text{Das ergibt die kritischen Punkte } \begin{pmatrix} k\pi \\ -1 \end{pmatrix}, \ k \in \mathbb{N}_0 \text{ da } \text{xy} < 0$$

$$Hf(x,y) = \begin{pmatrix} -\cos x & 0 \\ 0 & 2 \end{pmatrix}$$

$$Hf(x,y) = \begin{pmatrix} -\cos x & 0\\ 0 & 2 \end{pmatrix}$$

$$Hf(x,y) = \begin{pmatrix} 0 & 2 \end{pmatrix}$$

$$Hf(k\pi, -1) = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} \text{ für k gerade und } Hf(k\pi, -1) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \text{ für k ungerade.}$$

Für k gerade ist Hf indefinit. Daher handelt es sich bei dem Extremum um einen Sattelpunkt.

Für k ungerade ist Hf positiv definit. Es handelt sich folglich um ein lokales Minimum. $f(k\pi, -1) = -2$ Da $cosx \leq -1$ kann f bezüglich x nicht kleiner werden als in den lokalen Minima. Weiterhin gilt $y(y+1) = y^2 + 2y = (y+1)^2 - 1 \le -1$. Somit sind die lokalen Minima auch globale Minima.

Da $f \to \inf$ für $y \to \infty$ gibt es kein globales Maximum.

3.3 Implizite Funktionen

a=(3,0,1) ist die Lösung des nichtlinearen Gleichungssystems

$$x^2 + y^2 + z^2 - 6\sqrt{x^2 + y^2} = -8$$

$$x^2 + y^2 + z^2 - 6x - 2y = -8$$

a) Welche Aussage können Sie mit Hilfe des Satzes über implizite Funktionen über die Auflösbarkeit des Gleichungssystems in einer Umgebung um a nach (y,z) und über die Ableitung der Funktion $x \mapsto (y(x), z(x))$

b) Überprüfen Sie die Auflösbarkeit nach (x,y) und nach (x,z) um a.

Lösung

a)
$$f: \mathbb{R}^n \times \mathbb{R}^m \mapsto \mathbb{R}^m$$
 $f(\xi, \eta) = 0$
 $I_f = \begin{pmatrix} D_\xi f & D_\eta f \end{pmatrix}$ $D_\xi f \in \mathbb{R}^{n \times m}$ $D_\eta f \in \mathbb{R}^m$
Wenn $D_\eta f$ invertierbar, dann gibt es ein $g(\xi)$ mit $f(\xi, g(\xi)) = 0$
Hier: $x \leftrightarrow \xi$ $(y, z) \leftrightarrow \eta$
 $f: \mathbb{R}^{1+2} \mapsto \mathbb{R}^2$ $f(x, y, z) = \begin{pmatrix} x^2 + y^2 + z^2 - 6\sqrt{x^2 + y^2} + 8 \\ x^2 + y^2 + z^2 - 6x - 2y + 8 \end{pmatrix} = 0$
Nach (y,z) auflösbar und \exists ein $g: x \mapsto \begin{pmatrix} y(x) \\ z(x) \end{pmatrix}$ mit $f(x,g(x)) = 0$?

$$I_{f}(x,y,z) = (D_{x}f, D_{(y,z)}f) = \begin{pmatrix} 2x - \frac{6x}{\sqrt{x^{2}+y^{2}}} & 2y - \frac{6y}{\sqrt{x^{2}+y^{2}}} & 2z \\ 2x - 6 & 2y - 6 & 2z \end{pmatrix}$$

$$I_{f}(a) = \begin{pmatrix} 0 & 0 & 2 \\ 0 & -2 & 2 \end{pmatrix} \qquad D_{y,z}f(a) \text{ invertierbar da } \det(D_{y,z}f(a) \neq 4$$

$$\Rightarrow \exists W \subset \mathbb{R}, x = 3 \in W \qquad \exists g : W \mapsto \mathbb{R}^{2}, g(3) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ stetig diffbar}$$

$$f(x, y(x), z(x)) = 0 \quad \forall x \in W \text{ und } g'(3) = -[D_{y,z}f(a, g(a))]^{-1}D_{x}f(a, g(a)) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

b) $D_{x,y}f(a) = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}$ und $D_{x,z}f(a) = \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix}$ sind beide nicht invertierbar, weil det=0. Es ist keine Aussage über die Auflösbarkeit möglich.

3.4 Implizite Funktionen

Zeigen Sie, dass sich die Gleichung $x+y+z=\sin(xyz)$ in einer Umgebung V von $(0,0,0)\in\mathbb{R}^3$ eindeutig nach z auflösen lässt. D.h. in einer geeigneten Umgebung U von (0,0) existiert eine Funktion z=g(x,y) mit $f(x,y,z)=x+y+z-\sin(xyz)=0$. Berechnen Sie die partiellen Ableitungen von g an der Stelle (0,0).

Lösung

$$\begin{array}{l} f(x,y,z)=x+y+z-\sin(xyz)=0\\ I_f=\left(1-yz\cos(xyz)-1-xz\cos(xyz)-1-xy\cos(xyz)\right)\\ \partial_z(0,0,0)=1\neq 0. \ \ \text{Damit existiert in einer Umgebung von } (0,0) \ \text{eine Funtion g(x,y) mit f(x,y,g(x,y))=0.}\\ \text{Die Ableitung ergibt sich nach dem Satz "über implizite Funktionen.}\\ D_{(x,y)}g(0,0)=-(D_zf(0,0,g(0,0))^{-1}\ D_{(x,y)}f(0,0,g(0,0))=(-1,-1) \end{array}$$

3.5 Extrema mit Nebenbedingungen

Sie $f: S \to \mathbb{R}$ $f(x_1, x_2, x_3) := \sin(x_1) + \sin(x_2) + \sin(x_3)$ und $S:= \{x \in \mathbb{R}^3 : ||x||_2^2 = \frac{1}{4}\pi^2\}$. Bestimmen Sie globale Maxima und Minima von f.

Lösung

Setze
$$g: \mathbb{R}^3 \to \mathbb{R}$$
, $g(x) = x_1^2 + x_2^2 + x_3^2 - \frac{1}{4}\pi^2$.
Dann ist $\nabla f(x) = \begin{pmatrix} \cos(x_1) \\ \cos(x_2) \\ \cos(x_3) \end{pmatrix}$ und $\nabla g(x) = 2x$.

Da S kompakt ist, nimmt f
 auf S Maximum und Minimum an und es gibt für jedes Minimum und Maximum (Minimum von -
J) einen Lagrange-Multiplikator mit $\nabla f + \lambda \nabla g = 0$

$$\begin{pmatrix} \cos(x_1) \\ \cos(x_2) \\ \cos(x_3) \end{pmatrix} + 2\lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \quad \rightarrow \quad -2\lambda = \frac{\cos(x_1)}{x_1} = \frac{\cos(x_2)}{x_2} = \frac{\cos(x_3)}{x_3}$$

 $x_1, x_2, x_3 \neq 0$ (Sonst $\cos(x_1) = 1 \neq \lambda \cdot 0$).

Fall 1: $\lambda = 0$

Dann sind $x_1, x_2, x_3 \in \{\frac{\pi}{2}, -\frac{\pi}{2}\}$. Dann ist aber $g(x) \neq 0$

Fall 2: $\lambda \neq 0$

Dann sind $x_1, x_2, x_3 \notin \{\frac{\pi}{2}, -\frac{\pi}{2}, 0\}$ Die Funktion $h(t) := \frac{\cos(t)}{t}$ ist auf $(-\frac{\pi}{2}, \frac{\pi}{2}) \setminus 0$ injektiv und φ ihre Umkehrfunktion, für die gilt $\varphi(-2\lambda) = x_1 = x_2 = x_3$. Setzt man dies in die Nebenbedingung ein ergibt das $\frac{1}{4}\pi^2 = 3x_1^2 + x_2^2 + x_3^2 = 3\varphi(-2\lambda)^2 \rightarrow \varphi(-2\lambda) = \pm \frac{\pi\sqrt{3}}{6}$

Die Extrema sind also $\pm \frac{\pi\sqrt{3}}{6} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

Einsetzen in f ergibt, dass $\frac{\pi\sqrt{3}}{6}\begin{pmatrix}1\\1\\1\end{pmatrix}$ das Maximum und $-\frac{\pi\sqrt{3}}{6}\begin{pmatrix}1\\1\\1\end{pmatrix}$ das Minimum ist.

3.6 Extrema mit Nebenbedingungen

Sei $f: M \to \mathbb{R}^3$ gegeben durch f(x,y,z) := xyz, mit $M := \{(x,y,z) \in \mathbb{R}^3 : x+y+2z^2=10\}$. Bestimmen Sie Kandidaten für Extrema von f.

Lösung: Sei $g(x, y, z) := x + y + 2z^2 - 10$ und $L = f + \lambda g$ Da $g \neq 0$ gibt es zu jedem Extremum von f auf M ein $\lambda \in \mathbb{R}$, sodass $\nabla L = 0$ erfüllt ist.

$$\nabla L = \begin{pmatrix} yz + \lambda \\ xz + \lambda \\ xy + 4z\lambda \\ x + y + 2z^2 - 10 \end{pmatrix} = 0$$

yz = 0 xz = 0 xy = 0 $x + y + 2z^2 - 10 = 0$

- $x = 0, y = 0 \implies z = \pm \sqrt{5}$
- $y = 0, z = 0 \implies x = 10$
- $x = 0, z = 0 \Rightarrow y = 10$

Fall 2: $\lambda \neq 0 \implies x = y = \frac{\lambda}{z}$ falls $z \neq 0$. Der Fall z=0 kann nur eintreten wenn $\lambda = 0$. Einsetzen in ∇_z ergibt: $\frac{\lambda^2}{z^2} + 4z\lambda = 0 \implies \lambda^2 + 4z^3\lambda = 0 \implies \lambda = -4z^3$ Einsetzen in die Nebenbedingung ergibt: $\frac{2\lambda}{z} + 2z^2 - 10 = 8z^2 + 2z^2 - 10 = 0 \implies z = \pm 1$ Daraus lässt sich λ , x und y berechnen.

Demnach ergeben sich 6 Kandidaten für Extrema: $\begin{pmatrix} 0 \\ 0 \\ \sqrt{5} \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ \sqrt{5} \end{pmatrix}$, $\begin{pmatrix} 10 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 4 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 4 \\ 1 \end{pmatrix}$