ÍNDICE

☆SOME of the Available FST Operations (OpenFST Library)

– http://www.openfst.org

©2006 Nuno J. Mamede IST, Dpt. Eng. Informática

FST Transducers

Definition of the symbols (syms.txt)

red 1
green 2
blue 3
yellow 4

Q Definition of a transducer (t.txt)

0 0 red yellow .5 0 1 green blue .3 1 2 blue green 1 2 yellow red .6 2 .8

Graphical representation (t.ps)

FST Transducers

Definition of the symbols (syms.txt)

red 1
green 2
blue 3
yellow 4

Definition of a transducer (t.txt)

0 red yellow .5 0 1 green blue .3 1 2 blue green 1 2 yellow red . 6 2 .8

Geração da versão binária

fstcompile --isymbols=syms.txt --osymbols=syms.txt t.txt |
fstarcsort > t.fst

Geração da versão gráfica

inescid

fstdraw --portrait --isymbols=syms.txt --osymbols=syms.txt t.f | dot --Tpdf > t.pdf

©2006 Nuno J. Mamede IST, Dpt. Eng. Informática

UNION OF TRANSDUCERS

fstunion A.fst B.fst > C.fst

A.fst

B.fst

C.fst

CONCATENATION OF TRANSDUCERS

fstconcat A.fsm B.fsm > C.fsm

A.fst

C.fst

60

©2006 Nuno J. Mamede IST, Dpt. Eng. Informática

CLOSURE OF TRANSDUCERS

fstclosure B.fst > C.fst

B.fst

C.fst

"REVERSAL" OF TRANSDUCERS

fstreverse A.fst > C.fst

C.fst

©2006 Nuno J. Mamede IST, Dpt. Eng. Informática

INVERSION OF TRANSDUCERS

fstinvert A.fst > C.fst

C.fst

PROJECTION OF TRANSDUCERS

fstproject _project_output=true A.fst > C.fst

red/0.5

green/0.3

1 blue/0

yellow/0.6

2 /0.8

C.fst

64

©2006 Nuno J. Mamede IST, Dpt. Eng. Informática

COMPOSITION OF TRANSDUCERS

- To obtain the composition of two transducers:
 - \blacksquare Creates a new state (x,y) for all the possible pairs $x \in Q_1$ and $y \in Q_2$
 - The transition function of the composition is defines by

$$\delta((x,y),i:o)=(v,z)$$

if

$$\delta_1(x,i:c) = v$$
 and $\delta_2(y,c:o) = z$

COMPOSITION OF TRANSDUCERS

fstcompose A.fsm B.fsm > C.fsm

C.fst

©2006 Nuno J. Mamede IST, Dpt. Eng. Informática

INTERSECTION OF TRANSDUCERS

- The intersection algorithm only considers the cartesian product of the states
 - For each state q_i of the first transducer, and state q_j of the second transducer, build a new state q_{ij}
 - For the input symbol a, if the first transducer has a transition to the state q_n and the second transducer has a transition to state q_m the new transducer has a transition to state q_{nm}

INTERSECTION OF TRANSDUCERS

fstintersect A.fst B.fst > C.fst

C.fst

©2006 Nuno J. Mamede IST, Dpt. Eng. Informática

DIFFERENCE OF TRANSDUCERS

- **Q** Difference(A,B) = Intersection(A,Complement(B))
- **Q** Complement(B) = all the sentences not belonging to B

DIFFERENCE OF TRANSDUCERS

fsmdifference A.fsm B.fsm > C.fsm

C.fsm

©2006 Nuno J. Mamede IST, Dpt. Eng. Informática

REMOVAL OF INACCESSIBLE STATES

com a opção -t, devolve (exit status) 1 se a saída não tiver estados, útil para testar se a saída é vazia ...

fstconnect A.fst > C.fst

C.fst

71