

Nicolas Bahl

Nicolas Delplanque

Adrien Marion

SOMMAIRE:

l. Gestion d'erreurs :	Page n°2
II. Critères de validation :	Page n°3
III. Scénarios de tests :	Page n°4
V. Gestion énergétique :	Page n°5
V. Spécifications techniques du programme :	Page n°5
VI. Tableau Comparatif : C++ vs MicroPython :	Page n°6
VII. Contraintes matérielles et logicielles	Page n°7
VIII. Diagramme de classe	Page n°8
X. Plan de formation	Page n°9
X. Étapes de maintenance post-livraison	Page n°10

I. <u>Gestion d'erreurs</u>

Erreur	Action corrective
Coupure de courant	Mise au rebut des colis* déjà scannés sur le tapis
Passage trop rapide du colis	Mise au rebut du colis*
Erreur de lecture RFID	Mise au rebut du colis*
Référence produit non reconnue	Mise au rebut du colis*
Embouteillage de colis	Arrêt + mise au rebut des colis* bloquant
Erreur de tri du bras mécanique	Intervention humaine pour corriger l'erreur
Décalibrage du bras mécanique	Arrêt et maintenance
Bras cassé	Arrêt et maintenance
Moteur du tapis tombe en panne	Arrêt et maintenance
Dysfonctionnement de l'API	Arrêt et maintenance
Erreur de communication avec l'API	Relance d'une nouvelle communication
Dysfonctionnement du réseau	Arrêt et maintenance
Accident	Arrêt total

^{*}mise au rebut : colis poussé hors du tapis dans un bac spécifique à la gestion d'erreurs

II. <u>Critères de validation</u>

Critère de validation	Indicateur de succès	Valeur cible / Objectif
Taux de colis correctement triés	Pourcentage de colis triés sans erreur	98% ou plus de colis triés correctement
Temps de traitement par colis	Temps moyen pour traiter un colis	Moins de 10 secondes par colis
Taux d'erreurs de lecture RFID	Nombre d'erreurs de lecture RFID par rapport au nombre total de lectures	Moins de 1% des colis scannés
Taux de colis mis au rebut	Pourcentage de colis mis au rebut en raison d'erreurs	Moins de 3% des colis mis au rebut
Temps de réponse de l'API	Temps moyen de réponse de l'API	Moins de 200 ms par requête
Taux de succès de communication avec l'API	Nombre de communications réussies / Nombre total de tentatives	99% de réussites pour les communications API
Disponibilité du réseau	Temps de disponibilité du réseau	99,9% de disponibilité
Efficacité du tri par bras mécanique	Nombre d'erreurs de tri / Nombre total de colis triés par le bras	Moins de 2% d'erreurs de tri
Durée moyenne de maintenance pour panne	Temps moyen de réparation pour les pannes mécaniques ou API	Moins de 30 minutes pour les pannes mécaniques
Taux d'accidents	Nombre d'accidents / Nombre total de sessions	Moins de 0,1% d'incidents

III. <u>Scénarios de tests</u>

Scénario de test	Objectif	Conditions de test	Critère de validation
Test de coupure d'alimentation	Valider la gestion des coupures d'alimentation et la récupération	Simuler une coupure d'alimentation de 5 à 10 secondes pendant un processus de tri	Vérifier que le système redémarre correctement et reprend à l'état précédent
Test d'interruption réseau (API)	Vérifier la robustesse de la communication avec l'API en cas de déconnexion	Simuler une coupure de réseau de 5 secondes à 1 minute pendant une communication avec l'API	Relancer une communication automatiquement et réussir à récupérer l'état précédent
Test de perte de réseau avec redémarrage API	Tester la capacité à relancer une communication API après une perte de réseau	Déconnecter le réseau pendant une communication avec l'API, puis reconnecter	Vérifier que la communication avec l'API est rétablie sans erreur
Test de surcharge réseau	Vérifier comment le système gère les interruptions causées par une surcharge du réseau	Générer un trafic réseau excessif pendant l'envoi ou la réception de données API	Mesurer le temps de réponse et vérifier la stabilité du système sous surcharge
Test d'erreur de lecture RFID pendant interruption réseau	Tester la gestion des erreurs en cas de perte de signal RFID pendant un problème réseau	Simuler un passage rapide du colis (absence de lecture RFID) pendant une coupure réseau	Vérifier que le colis est mis au rebut et que le processus de tri continue après la coupure
Test de reprise après réinitialisation d'alimentation	Valider que le système reprend correctement après une réinitialisation	Couper et rétablir l'alimentation après une interruption pendant la lecture ou le tri des colis	S'assurer que le système redémarre et que les colis traités ou non traités sont récupérés dans le bon état

IV. Gestion énergétique

Aspect	Détails
Type de capteur	- Infrarouge (PIR) : Détecte la présence ou absence de colis sur le tapis.
Scénario	- Si aucun colis n'est détecté pendant 1 minute : le tapis ralentit ou passe en mode veille.
Reprise rapide	- Dès qu'un colis est détecté : le tapis reprend sa vitesse normale en moins de 1 seconde .
Économie attendue	- Réduction de 20% de la consommation énergétique grâce aux périodes de veille.

V. <u>Spécifications techniques du programme</u>

Propriété	Valeur
Platform	espressif32
Board	m5stack-core2
Framework	Arduino
Dépendances	m5stack/M5Stack@^0.4.6 bblanchon/ArduinoJson@^7.2.0 m5stack/Module_GRBL_13.2@^0.0.3

VI. <u>Tableau Comparatif: C++ vs MicroPython</u>

	C++	MicroPython
Performances	Très élevées	Moyennes, suffisantes pour des tâches simples
Complexité	Élevée	Faible
Gestion des Ressources	Fine et optimisée	Automatisée, moins efficace
Portabilité	Très portable (multiplateforme)	Limité aux plateformes compatibles
Communauté	Très vaste et mature	Croissante mais encore limitée
Écosystème	Richesse des bibliothèques et outils	Moins riche, mais suffisant pour des microcontrôleurs
Courbe d'Apprentissage	Plus raide	Accessible aux débutants

VII. <u>Contraintes matérielles et logicielles</u>

Catégorie	Modèle	Description	Référence	Alternatives
RFID	RFID RC522 (M5Stack)	Module RFID compatible avec M5Stack pour lecture/écriture.	Utilisé avec M5 Core	PN532 (plus courant et avec NFC étendu)
Servo moteur	Micro Servo SG90	Micro servo 9g pour des mouvements précis et légers.	Couple max : 1.8 kg/cm à 4.8V	Tower Pro MG90S (similaire mais avec engrenages métalliques, plus robuste)
Moteur pas-à-pas	STEP MOTOR (Chine)	Moteur pas-à-pas générique.	N/A (dépend du modèle spécifique)	NEMA 17 (plus standard, avec documentation plus fournie)
Unité centrale	M5 Core V2.61	Microcontrôleur principal avec écran et compatibilité M5.	Version : 2021-0907	ESP32 DevKit (sans l'interface utilisateur de M5)
Extension M5	M5 GRBL	Extension pour contrôle moteur avec GRBL.	Compatible avec M5 Core	
Contrôleur moteur	M5 GoPlus2	Contrôleur pour moteurs à courant continu.	Fournit des ports pour moteurs et PWM	
Batterie	M5Go	Batterie rechargeable LiPo pour M5 Core.	3.7V 500mAh (1.85Wh)	Batteries LiPo génériques 3.7V
Alimentation externe	Adaptateu r AC/DC 9V 1A	Alimentation pour le module GRBL.	Sortie : 9V DC, 1A	Adaptateur AC/DC 12V 2A (plus courant, à ajuster avec régulateur si besoin)

VIII. Diagramme de classe :

IX. Plan de formation:

Durée totale de la formation :

3 jours (21 heures), avec un équilibre entre théorie et pratique.

Programme détaillé :

Jour 1: Introduction et fondamentaux (7 heures)

- 1. Présentation générale (1h)
 - o Objectifs du système, architecture et fonctionnalités clés.
- 2. Mise en route (2h)
 - o Initialisation des équipements (tapis, bras mécanique).
 - o Test des capteurs et configurations de base.
- 3. Fonctionnalités principales (3h)
 - o Utilisation de l'interface utilisateur.
 - o Scénarios courants : tri de colis, traitement des erreurs (RFID, API).
- 4. Maintenance préventive (1h)
 - Vérifications régulières et prévention des pannes.
 - Présentation de la documentation

Jour 2 : Cas pratiques et gestion des erreurs (7 heures)

- 5. Formation pratique sur le terrain (4h)
 - Simulation : manipulation des colis avec scénarios réels.
 - o Cas particuliers : interruptions réseau, coupures électriques.
- 6. Diagnostic des erreurs (2h)
 - o Résolution des erreurs fréquentes (RFID, communication API).
- 7. Personnalisation du système (1h)
 - Ajustement des paramètres pour des besoins spécifiques.

Jour 3 : Validation et autonomie (7 heures)

- 8. Projet pratique final (4h)
 - o Mise en situation réelle avec scénarios variés.
 - o Tri de colis, simulation de pannes, dépannage en autonomie.
- 9. Quiz de validation des compétences (1h)
 - Test des connaissances sur les fonctionnalités et diagnostics.
- 10. Clôture et autonomie (2h)
 - FAQ et synthèse de la formation.
 - Remise des attestations et ressources complémentaires.

X. Étapes de maintenance post-livraison : (à étoffer à la fin du projet)

1. Objectifs

- [Indiquez les objectifs généraux de la maintenance, par exemple : assurer la stabilité du système, maintenir les performances, etc.]
- 2. Planification de la Maintenance
 - Fréquence des interventions :
 - [Exemple : Hebdomadaire, mensuel, trimestriel]
 - Responsables :
 - [Nom des responsables ou des équipes en charge de la maintenance]
- 3. Maintenance Préventive
 - [Listez les vérifications et actions récurrentes à effectuer pour anticiper les pannes.]
 - Exemple : Inspection visuelle des composants.
 - Exemple : Vérification des journaux système.
- 4. Maintenance Corrective
 - [Ajoutez les étapes nécessaires pour diagnostiquer et résoudre les problèmes identifiés.]
 - Exemple : Diagnostic des messages d'erreur.
 - o Exemple : Remplacement de composants défectueux.
- 5. Mise à Jour du Firmware
 - 1. [Étape 1 : Décrire l'action à effectuer.]
 - 2. [Étape 2 : Décrire l'action suivante.]
 - 3. [Étape : Etc.]
- 6. Résolution des Problèmes Courants
 - [Ajoutez les procédures à suivre en cas d'erreurs durant la mise à jour.]
 - Exemple : Échec de téléchargement.
 - Exemple : Restauration après une mise à jour défectueuse.
- 7. Suivi et Assistance
 - Contrôles post-maintenance :
 - [Définir une liste de vérifications après intervention.]
 - Support technique:
 - [Ajouter les coordonnées ou moyens d'assistance pour les utilisateurs.]