### TITLE - Heart Disease Prediction

Group Members -

Mr. Vaibhav Pawar 2127052

Mr. Avdhoot Kumbhar 2127037

Mr. Yashraj Devrat 2127011

Mr. Shubham Keskar 2127029

Mr. Tushar Mamadge 2127040

Explanation – The Objective of this project is to create a model that can predict the patient's heart disease Status. Another Objective is to explore the data we have been given and find key insights into Heart Disease that could be helpful for the Medical community going forward. Dataset for this project is taken from Kaggle website <a href="https://www.kaggle.com/datasets/priyanka841/heart-disease-prediction-uci">https://www.kaggle.com/datasets/priyanka841/heart-disease-prediction-uci</a>. Here we use Logistic Regression model. In this Dataset there are 303 Rows and 14 Columns, means 302 Persons Data out of which 241 are use for Training the Data and 61 use for Testing the Data.

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
```

#### **Data Collection and Processing**

```
#loading the csv data to a Pandas DataFrame
heart data = pd.read csv('/content/heart disease.csv')
```

# # print first 5 rows of the dataset

heart data.head()

| c l i       | age<br>ope | sex | ср | trestbps | chol | fbs | restecg | thalach | exang | oldpeak |
|-------------|------------|-----|----|----------|------|-----|---------|---------|-------|---------|
| 0           | 63         | ` 1 | 3  | 145      | 233  | 1   | 0       | 150     | 0     | 2.3     |
| 1           | 37         | 1   | 2  | 130      | 250  | 0   | 1       | 187     | 0     | 3.5     |
| 2           | 41         | 0   | 1  | 130      | 204  | 0   | Θ       | 172     | 0     | 1.4     |
| 3           | 56         | 1   | 1  | 120      | 236  | 0   | 1       | 178     | Θ     | 0.8     |
| 2<br>4<br>2 | 57         | 0   | 0  | 120      | 354  | Θ   | 1       | 163     | 1     | 0.6     |

```
thal
            target
   ca
0
    0
          1
                   1
          2
1
    0
                   1
2
          2
    0
                   1
3
          2
                   1
    0
          2
                   1
4
    0
# print last 5 rows of the dataset
heart data.tail()
                   trestbps
                             chol fbs restecg thalach exang
     age sex cp
oldpeak \
298
      57
            0
                0
                         140
                               241
                                                1
                                                        123
                                       0
                                                                 1
0.2
299
      45
                3
                         110
                               264
                                                1
                                                        132
            1
                                       0
                                                                 0
1.2
300
      68
            1
                0
                         144
                               193
                                       1
                                                1
                                                        141
                                                                 0
3.4
301
      57
                                                                 1
            1
                0
                         130
                               131
                                       0
                                                1
                                                        115
1.2
302
            0
                1
                         130
                               236
                                                                 0
      57
                                       0
                                                0
                                                        174
0.0
     slope
                thal
                       target
            ca
298
                    3
         1
             0
                            0
299
         1
             0
                    3
                            0
             2
300
         1
                    3
                            0
             1
                    3
         1
                            0
301
302
             1
                    2
                            0
         1
# number of rows and columns in the dataset
heart data.shape
(303, 14)
# getting some info about the data
heart data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
               Non-Null Count Dtype
#
     Column
- - -
0
                303 non-null
                                 int64
     age
 1
     sex
                303 non-null
                                 int64
 2
```

int64

int64

int64

int64

int64

int64

303 non-null

303 non-null

303 non-null

303 non-null

303 non-null

303 non-null

ср

chol

fbs

trestbps

restecq

thalach

```
303 non-null
                              int64
8
    exang
 9
    oldpeak
              303 non-null
                              float64
 10 slope
              303 non-null
                              int64
 11
   ca
              303 non-null
                              int64
12
    thal
              303 non-null
                              int64
 13 target
              303 non-null
                              int64
dtypes: float64(1), int64(13)
```

memory usage: 33.3 KB

## # checking for missing values heart\_data.isnull().sum()

0 age 0 sex 0 ср trestbps 0 chol 0 fbs 0 resteca thalach 0 0 exang 0 oldpeak 0 slope 0 ca thal 0 target 0 dtype: int64

## # statistical measures about the data

heart\_data.describe()

| age              | sex        | ср         | trestbps   | chol       |
|------------------|------------|------------|------------|------------|
| fbs \            |            | ·          | •          |            |
| count 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 |
| 303.000000       |            |            |            |            |
| mean 54.366337   | 0.683168   | 0.966997   | 131.623762 | 246.264026 |
| 0.148515         |            |            |            |            |
| std 9.082101     | 0.466011   | 1.032052   | 17.538143  | 51.830751  |
| 0.356198         |            |            |            |            |
| min 29.000000    | 0.000000   | 0.000000   | 94.000000  | 126.000000 |
| 0.000000         |            |            |            |            |
| 25% 47.500000    | 0.000000   | 0.000000   | 120.000000 | 211.000000 |
| 0.000000         |            |            |            |            |
| 50% 55.000000    | 1.000000   | 1.000000   | 130.000000 | 240.000000 |
| 0.000000         |            |            |            |            |
| 75% 61.000000    | 1.000000   | 2.000000   | 140.000000 | 274.500000 |
| 0.000000         |            |            |            |            |
| max 77.000000    | 1.000000   | 3.000000   | 200.000000 | 564.000000 |
| 1.000000         |            |            |            |            |
|                  |            |            |            |            |
| restecg          | thalach    | exang      | oldpeak    | slope      |

| ca \ count 303                       | .000000                                                                | 303.000000                                                              | 303.000000 | 303.000000 | 303.000000 |
|--------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|------------|------------|------------|
| 303.000000                           | .000000                                                                | 303.000000                                                              | 303.000000 | 303.000000 | 303.000000 |
|                                      | .528053                                                                | 149.646865                                                              | 0.326733   | 1.039604   | 1.399340   |
| std 0<br>1.022606                    | .525860                                                                | 22.905161                                                               | 0.469794   | 1.161075   | 0.616226   |
| min 0<br>0.000000                    | .000000                                                                | 71.000000                                                               | 0.000000   | 0.000000   | 0.000000   |
| 25% 0<br>0.000000                    | .000000                                                                | 133.500000                                                              | 0.000000   | 0.000000   | 1.000000   |
| 50% 1<br>0.000000                    | .000000                                                                | 153.000000                                                              | 0.000000   | 0.800000   | 1.000000   |
| 1.000000                             | .000000                                                                | 166.000000                                                              | 1.000000   | 1.600000   | 2.000000   |
| max 2<br>4.000000                    | .000000                                                                | 202.000000                                                              | 1.000000   | 6.200000   | 2.000000   |
| mean 2 std 0 min 0 25% 2 50% 2 75% 3 | thal<br>.000000<br>.313531<br>.612277<br>.000000<br>.000000<br>.000000 | target 303.000000 0.544554 0.498835 0.000000 0.000000 1.000000 1.000000 |            |            |            |

# Data Visualization

```
x = [2,3,4,5,6,7,8,9]

y = [2,3,4,5,6,7,8,9]
fig, ax = plt.subplots()
ax.plot(x,y);
```



fig, ax = plt.subplots()

ax.bar(x,y);



fig, ax = plt.subplots()

ax.pie(y);



```
# checking the distribution of Target Variable
heart_data['target'].value_counts()

1    165
0    138
Name: target, dtype: int64

Splitting the Features and Target

X = heart_data.drop(columns='target', axis=1)
Y = heart_data['target']

print(X)

   age sex cp trestbps chol fbs restecg thalach exang oldpeak \
0    63    1    3    145   233    1    0    150    0
```

|          | aye | Sex | Сþ | crescups | CHOL | 105 | restecy | tilatatii | examy |  |
|----------|-----|-----|----|----------|------|-----|---------|-----------|-------|--|
| oldp     | eak | \   |    |          |      |     |         |           |       |  |
| 0        | 63  | 1   | 3  | 145      | 233  | 1   | 0       | 150       | 0     |  |
| 2.3      | 27  | 1   | 2  | 120      | 250  | ^   | -       | 107       | 0     |  |
| 1<br>3.5 | 37  | 1   | 2  | 130      | 250  | 0   | 1       | 187       | 0     |  |
| 2        | 41  | 0   | 1  | 130      | 204  | 0   | 0       | 172       | 0     |  |
| 1.4      |     |     |    |          |      |     |         |           |       |  |
| 3        | 56  | 1   | 1  | 120      | 236  | 0   | 1       | 178       | 0     |  |
| 0.8      | F 7 | 0   | 0  | 120      | 254  | ^   | -       | 160       | 1     |  |
| 4<br>0.6 | 57  | 0   | 0  | 120      | 354  | 0   | 1       | 163       | 1     |  |
|          |     |     |    |          |      |     |         |           |       |  |
|          |     |     |    |          |      |     |         |           |       |  |
| 298      | 57  | 0   | 0  | 140      | 241  | 0   | 1       | 123       | 1     |  |
| 0.2      |     | _   |    |          |      |     | _       |           | _     |  |
| 299      | 45  | 1   | 3  | 110      | 264  | 0   | 1       | 132       | 0     |  |
| 1.2      |     |     |    |          |      |     |         |           |       |  |

```
300
       68
                             144
                                     193
                                                        1
              1
                   0
                                             1
                                                                 141
3.4
301
       57
              1
                   0
                             130
                                     131
                                             0
                                                        1
                                                                 115
1.2
302
       57
              0
                   1
                             130
                                     236
                                             0
                                                        0
                                                                 174
0.0
      slope
              ca
                   thal
0
                       1
                0
                       2
1
           0
                0
2
           2
                       2
                0
3
           2
                0
                       2
           2
4
                0
                       2
298
           1
                0
                       3
                       3
299
                0
           1
                       3
300
                2
           1
301
           1
                1
                       3
                       2
302
           1
                1
[303 rows x 13 columns]
print(Y)
0
        1
1
        1
2
        1
3
        1
4
        1
298
        0
299
        0
300
        0
301
        0
302
Name: target, Length: 303, dtype: int64
Splitting the Data into Training data & Test Data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
(303, 13) (242, 13) (61, 13)
Model Training 1
Logistic Regression
model = LogisticRegression()
```

```
# training the LogisticRegression model with Training data
model.fit(X train, Y train)
/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/
logistic.py:818: ConvergenceWarning: lbfgs failed to converge
(status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as
shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear model.html#logistic-
regression
  extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
LogisticRegression()
Model Evaluation 1
Accuracy Score
# accuracy on training data
X train prediction = model.predict(X train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy on Training data : ', training data accuracy)
Accuracy on Training data : 0.8512396694214877
# accuracy on test data
X test prediction = model.predict(X test)
test data accuracy = accuracy score(X test prediction, Y test)
print('Accuracy on Test data : ', test data accuracy)
Accuracy on Test data : 0.819672131147541
Model Training 2
RANDOM FOREST CLASSIFIER
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X_train, Y_train)
RandomForestClassifier()
Model Evaluation 2
Accuracy Score
```

```
# accuracy on training data
X train prediction = model.predict(X train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy on Training data : ', training data accuracy)
Accuracy on Training data: 1.0
# accuracy on test data
X test prediction = model.predict(X test)
test data accuracy = accuracy score(X test prediction, Y test)
print('Accuracy on Test data : ', test data accuracy)
Accuracy on Test data : 0.819672131147541
Building a Predictive System
input data = (62,0,0,140,268,0,0,160,0,3.6,0,2,2)
# change the input data to a numpy array
input data as numpy array= np.asarray(input data)
# reshape the numpy array as we are predicting for only on instance
input data reshaped = input data as numpy array.reshape(1,-1)
prediction = model.predict(input data reshaped)
print(prediction)
if (prediction[0]== 0):
  print('The Person does not have a Heart Disease')
  print('The Person has Heart Disease')
The Person does not have a Heart Disease
/usr/local/lib/python3.7/dist-packages/sklearn/base.py:451:
UserWarning: X does not have valid feature names, but
RandomForestClassifier was fitted with feature names
  "X does not have valid feature names, but"
```