Dummit & Foote Ch. 1.2: Dihedral Groups

Scott Donaldson

Jan. 2023

1. (1/23/23)

Compute the order of each of the elements in the following groups:

- (a) D_6
 - r, r^2 : 3
 - s, sr, sr^2 : 2
- (b) D_8
 - r: 4
 - r^2 : 2
 - r^3 : 4
 - s, sr, sr^2, sr^3 : 2
- (c) D_{10}
 - r, r^2, r^3, r^4 : 5
 - s, sr, sr^2, sr^3, sr^4 : 2

2. (1/23/23)

Use the generators and relations of $D_{2n} = \langle r, s | r^n = s^2 = 1, rs = sr^{-1} \rangle$ to show that if x is any element of D_{2n} which is not a power of r, then $rx = xr^{-1}$.

Proof. Let $x \in D_{2n}$ such that $x \neq r^k$ for all $k \in \mathbb{Z}$. Then, since all elements of D_{2n} can be written as a product of generators s and r, we must have $x = sr^k$ for some $k \in \{1, 2, ..., n-1\}$. Therefore:

$$rx = rsr^k = sr^{-1}r^k = sr^{k-1} = sr^kr^{-1} = xr^{-1}$$
,

as desired. \Box

3. (1/25/23)

Use the generators and relations above to show that every element of D_{2n} which is not a power of r has order 2. Deduce that D_{2n} is generated by the two elements s and sr, both of which have order 2.

Proof. Let $sr^k \in D_{2n}$. $(sr^k)(sr^k) = s(r^ks)r^k = s(sr^{-k})r^k = ssr^{-k}r^k = 1 \cdot 1 = 1$. Thus the order of elements of the form sr^k , that is, every element which is not a power of r, has order 2.

To show that D_{2n} is generated by s and sr, let r^k , $sr^k \in D_{2n}$. Now $s \cdot sr = r$, so $(s \cdot sr)^k = r^k$. To obtain sr^k , we simply left-multiply the previous by s: $s(s \cdot sr)^k = sr^k$. Thus every element of D_{2n} can be written as a product of s and sr, and so $\langle s, sr \rangle$ is a generator for D_{2n} .