Lec04.md 9/2/2025

1. Search Concepts

In **AI**, search is about exploring possible actions to reach a goal.

The agent doesn't always know the answer — it has to **search** for it.

Analogy:

Search is like finding a book in a giant library without Google:

- Start at the entrance
- Walk aisle by aisle
- Try different paths until you find the right shelf

2. Problem Formulation

To create a **search problem**, we define **5 ingredients**:

- 1. **Initial state** → Where we start.
 - Example: "I'm at home."
- 2. **Actions** \rightarrow What moves are possible.
 - Example: "Take bus, drive car, walk."
- 3. **Transition model** \rightarrow What happens when we take an action.
 - Example: "If I take the bus, I move to the bus stop."
- 4. **Goal test** → How do we know we're done?
 - Example: "I reached the university."
- 5. **Path cost** → The "expense" of the path (time, money, distance).
 - Example: Driving costs fuel, walking costs time.
- \bigcirc Analogy: Solving a maze \rightarrow start, allowed moves, walls, exit condition, and steps taken.

3. Search Space Definition

- The **search space** = all possible states reachable from the start.
- Each state is a **node** in a graph/tree.
- Edges represent actions.
- Analogy: The search space is like the map of the entire library, with every aisle and shelf shown.

4. Types of Search Algorithms

There are two main categories:

Uninformed (Blind) Search

Lec04.md 9/2/2025

- Agent has **no additional knowledge** just explores systematically.
- Examples: BFS, DFS, Uniform Cost Search
- Analogy: Looking for a friend on campus by checking every classroom one by one, without knowing their schedule.

Informed (Heuristic) Search

- Uses extra knowledge (heuristics = educated guesses).
- Examples: Greedy Best-First Search, A*
- Analogy: Instead of checking all classrooms, you guess your friend is probably in the computer lab.

5. Breadth-First Search (BFS)

■ Definition

- BFS expands the **shallowest (closest)** nodes first.
- Explores **level by level** in the search tree.

Properties

- **Complete**: If a solution exists, BFS will find it.
- **Optimal**: \checkmark Finds the shortest path (*if step cost* = 1).
- Cons: X Uses a lot of memory (stores all nodes at a level).

© Example

Looking for the **nearest coffee shop** in a new city:

- First check all shops 1 block away
- If not found → check 2 blocks away
- Continue outward until found

Analogy: Like waves spreading in water — BFS explores outward equally in all directions.

Ⅲ Comparison Table: BFS vs DFS

Property	BFS	DFS
Strategy	Explore level by level	Explore one path deep before backtracking
Memory	High (stores many nodes)	Low (just the path stack)
Completeness	✓ Yes	X Not always (may get stuck in infinite path)
Optimality	Yes (shortest path if uniform cost)	X Not always

Lec04.md 9/2/2025

Property	BFS	DFS
Analogy	Checking all nearby classrooms first	Going into one building's basement all the way down

Key Takeaways

- **Problem formulation** = define states, actions, transitions, goal, cost.
- **Search space** = all possible states (nodes in a tree/graph).
- **Uninformed search** = no hints (BFS, DFS).
- **BFS** = complete + optimal, but memory expensive.