Sistemi Elettronici, Tecnologie e Misure Appello del 2/3/2018

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
С						
d						

- 1. In un transistore MOS per applicazioni analogiche, assumendo che $v_{\rm GS}$ e $v_{\rm DS}$ non siano tali da danneggiare il dispositivo, la corrente di gate i_G
 - (a) in condizioni statiche può considerarsi nulla indipendentemente da $v_{\rm GS}$ e da $v_{\rm DS}$
 - (b) in condizioni statiche può considerarsi nulla solo se $v_{\rm GS} < V_{\rm TH}$
 - (c) è sempre nulla, indipendentemente dalla frequenza dei segnali applicati
 - (d) in condizioni dinamiche non è generalmente nulla, ma è sempre indipendente da $v_{\rm GS}$ e $v_{\rm DS}$
- 2. Un amplificatore differenziale con ingressi v^+ e v^- fornisce in uscita una tensione $v_{\rm out}=100\,v^+-100v^-$. L'amplificazione differenziale $A_{\rm d}$ è pertanto:
 - (a) $A_{\rm d} = 20 \, {\rm dB}$
 - (b) $A_{\rm d} = 46 \, {\rm dB}$
 - (c) $A_{\rm d} = 100 \, {\rm dB}$
 - (d) $A_{\rm d} = 40 \, {\rm dB}$
- 3. Applicando all'ingresso di un amplificatore un segnale sinusoidale a frequenza 1kHz, lo spettro dell'uscita presenta componenti significative alle frequenze 1kHz, 2kHz, 3kHz e 4kHz, la cui ampiezza varia al variare dell'ampiezza della sinusoide applicata in ingresso. Da questo si può concludere che:
 - (a) la frequenza $f=1 \mathrm{kHz}$ è al di fuori della banda passante dell'amplificatore
 - (b) l'amplificatore presenta quattro bande passanti
 - (c) l'amplificatore non è unidirezionale
 - (d) la relazione ingresso-uscita dell'amplificatore non è lineare
- 4. Un amplificatore di transresistenza descritto dai parametri $R_{\rm m}$, $R_{\rm in}$, $R_{\rm out}$, è collegato ad una sorgente di segnale con resistenza interna $R_{\rm S}$ e pilota un carico $R_{\rm L}$. Gli effetti di carico possono considerarsi trascurabili se
 - (a) $R_{\rm in} \ll R_{\rm S}$, $R_{\rm out} \ll R_{\rm L}$
 - (b) $R_{\rm in} \gg R_{\rm S}, R_{\rm out} \gg R_{\rm L}$
 - (c) $R_{\rm in} \ll R_{\rm S}, R_{\rm out} \gg R_{\rm L}$
 - (d) $R_{\rm m} \ll R_{\rm S}$, $R_{\rm m} \ll R_{\rm L}$
- 5. Un operazionale con prodotto banda-guadagno $f_{\rm T}$, amplificazione differenziale a bassa frequenza $A_{\rm d0}$, $R_{\rm in,d} \to \infty$, $R_{\rm out} = 0$ è utilizzato in un amplificatore di tensione non invertente con amplificazione di tensione $A_v < A_{\rm d0}$. La banda dell'amplificatore di tensione
 - (a) è indipendente da A_v e dalle caratteristiche dell'operazionale
 - (b) è inversamente proporzionale ad A_v
 - (c) è proporzionale ad A_v
 - (d) indipendentemente da A_v , è pari al prodotto banda-guadagno dell'operazionale $f_{\rm T}$
- 6. In un amplificatore invertente basato su operazionale ideale, il resistore che collega l'uscita con l'ingresso invertente è sostituito da un condensatore C. Il circuito che si ottiene
 - (a) si comporta come integratore invertente e presenta impedenza d'ingresso finita
 - (b) si comporta come derivatore invertente e presenta impedenza d'ingresso infinita
 - (c) si comporta come derivatore invertente e presenta impedenza d'ingresso pari all'impedenza condensatore C
 - (d) si comporta come integratore invertente e presenta impedenza d'ingresso infinita

Esercizio 1.

Con riferimento al circuito in figura, in cui sono date le tensioni ai nodi A e B nel punto di funzionamento a riposo:

- 1. verificare la regione di funzionamento di MP e determinarne i parametri del modello per il piccolo segnale;
- 2. considerando il condensatore C come un circuito aperto, valutare l'amplificazione di tensione $A_v = \frac{v_{\rm out}}{v_{\rm in}}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ in condizioni di piccolo segnale [sono richiesti: il circuito equivalente per il piccolo segnale, le espressioni simboliche (passaggi essenziali) ed i valori numerici].
- 3. determinare la funzione di trasferimento $A_v(s) = \frac{V_{\rm out}}{V_{\rm in}}$ e tracciarne i diagrammi di Bode di modulo e fase [sono richiesti: l'espressione della funzione di trasferimento, i valori numerici di costante moltiplicativa/poli/zeri di $A_v(s)$, i diagrammi di Bode quotati].

Esercizio 2.

Con riferimento al circuito in figura, assumendo $v_i = 6V$:

- 1. calcolare v_2 e la tensione v^+ dell'amplificatore operazionale OP2 [sono richieste le espressioni simboliche (passaggi essenziali) ed i valori numerici].
- 2. calcolare le correnti i_L e i_0 indicate in figura [sono richieste le espressioni simboliche (passaggi essenziali) ed i valori numerici].