Matlab OPP

May 31, 2018

0.1 Object Oriented Malab programming

0.1.1 1. Objects

In [14]: methods(a)

Methods for class double:

abs	cscd	hess	polylog
accumarray	csch	hypot	pow2
acos	ctranspose	ichol	power
acosd	cummax	igamma	psi
acosh	cummin	ilu	qrupdate
acot	cumprod	imag	rcond
acotd	cumsum	inv	rdivide
acoth	dawson	isbanded	real
acsc	delete	isdiag	reallog
acscd	det	isfinite	realpow
acsch	diag	isinf	realsqrt
airy	diff	isnan	rectangularPulse
all	dilog	issorted	rem
amd	dirac	issortedrows	reshape
and	display	istril	round

any	divisors	istriu	sec
asec	dmperm	jacobiP	secd
asecd	ei	jordan	sech
asech	ellipticCE	kummerU	sign
asin	ellipticCK	laguerreL	signIm
asind	ellipticCPi	ldivide	sin
asinh	ellipticE	le	sind
atan	ellipticF	legendreP	sinh
atan2	ellipticK	linsolve	sinhint
atan2d	${\tt ellipticNome}$	log	sinint
atand	ellipticPi	log10	sort
atanh	eps	log1p	sortrowsc
bernoulli	eq	log2	sparse
besselh	erf	logint	sqrt
besseli	erfc	lt	ssinint
besselj	erfcinv	ltitr	superiorfloat
besselk	erfcx	maxk	symrcm
bessely	erfi	mink	tan
betainc	erfinv	minpoly	tand
betaincinv	euler	minus	tanh
bsxfun	exp	mldivide	times
ceil	expm1	mod	transpose
charpoly	find	mpower	${\tt triangularPulse}$
chebyshevT	fix	mrdivide	tril
chebyshevU	floor	mtimes	triu
colon	fresnelc	ne	uminus
conj	fresnels	nnz	uplus
cos	gamma	nonzeros	whittakerM
cosd	gammainc	not	whittakerW
cosh	gammaincinv	nzmax	${\tt wrightOmega}$
coshint	gammaln	or	xor
cosint	ge	ordeig	zeta
cot	gegenbauerC	permute	
cotd	gt	plus	
coth	harmonic	pochhammer	
csc	hermiteH	poly2sym	

In [16]: log10(a)

ans =

0.3010

Examples from Alitrack

ans =

```
In [5]: p_folder = '/Users/ryanlab/Desktop/AliT/Data/ALITracker_Data/aj031ro/aj031ro.edf';
                        myparticipant = participant(p_folder, 'samples', true);
Importing file /Users/ryanlab/Desktop/AliT/Data/ALITracker_Data/aj031ro/aj031ro.edf...
Loading 70 trials [|
                                                                                                                                                      \Pi\Pi\Pi
                                                                                                                                                                                   \Pi
                                                                                                                       \Pi\Pi
                                                                                                                                                                                                                                                  \Pi\Pi\Pi\Pi
Truncating samples to exclude empty ones
done!
In [6]: %Object orientted easy to read code, easy to us
                        myparticipant.set_trial_features(1:70, 'start_event', "Study_display", 'end_event', "Study_display, 
In [7]: %Making a new object.
                        new_trial = myparticipant.gettrial(1)
new_trial =
     trial with properties:
                                                   parent: [1x1 participant]
                                                         data: []
                                             trial_no: 1
                        trial_fieldname: 'trial_1'
                                    num_samples: 3992
                                                       index: [1x3992 uint32]
                                    sample_time: [1x3992 uint32]
                                       trial_time: [1x3992 uint32]
                                                                   x: [1x3992 double]
                                                                   y: [1x3992 double]
                                                             rho: []
                                                       theta: []
            issaccadeorfixation: []
                                          fixations: [1x1 struct]
                                       isfixation: []
                                             saccades: [1x1 struct]
                                           issaccade: []
                                                         rois: [1x1 struct]
                                           condition: []
In [8]: new_trial.saccades
```

struct with no fields.

```
In [9]: new_trial.number_of_saccade()
        new_trial.saccades
ans =
  struct with fields:
    rawindex: [3x1 double]
      number: 3
       start: [736000 1869000 2597000]
         end: [744000 1876000 2615000]
In [10]: new_trial.number_of_fixation()
         new_trial.number_of_saccade()
         new_trial.duration_of_fixation()
         new_trial.duration_of_saccade()
         new_trial.location_of_fixation()
         new_trial.location_of_saccade()
         new_trial.amplitude_of_saccade()
         new_trial.deviation_of_duration_of_fixation
         new_trial.deviation_of_duration_of_saccade
         new_trial.get_polar
         new_trial.get_issaccade
         new_trial.get_isfixation
         new_trial
new_trial =
  trial with properties:
                 parent: [1x1 participant]
                   data: []
               trial_no: 1
        trial_fieldname: 'trial_1'
            num_samples: 3992
                  index: [1x3992 uint32]
            sample_time: [1x3992 uint32]
             trial_time: [1x3992 uint32]
                      x: [1x3992 double]
                      y: [1x3992 double]
```

rho: [1x3992 double] theta: [1x3992 double]

issaccadeorfixation: []

fixations: [1x1 struct]
isfixation: [1x3992 double]
 saccades: [1x1 struct]
issaccade: [1x3992 double]

rois: [1x1 struct]

condition: []

In [11]: new_trial.saccades

ans =

struct with fields:

rawindex: [3x1 double]

number: 3

start: [736000 1869000 2597000] end: [744000 1876000 2615000] duration: [1123000 719000 1375000]

start_gazex: [3x1 double]
start_gazey: [3x1 double]
end_gazex: [3x1 double]
end_gazey: [3x1 double]
amplitude: [3x1 double]

duration_variation: [0.1531 -1.0677 0.9146]

In [12]: new_trial.animate

0.1.2 2. Creating Classes

excerpt from matlab's website MATLAB classes use the following words to describe different parts of a class definition and related concepts.

Class definition — Description of what is common to every instance of a class.

Properties — Data storage for class instances

Methods — Special functions that implement operations that are usually performed only on instances of the class

Events — Messages defined by classes and broadcast by class instances when some specific action occurs

Attributes — Values that modify the behavior of properties, methods, events, and classes

Listeners — Objects that respond to a specific event by executing a callback function when the event notice is broadcast

Objects — Instances of classes, which contain actual data values stored in the objects' properties

In [19]: imshow('1.object_oriented/assets/classes_matlab.png')

Subclasses — Classes that are derived from other classes and that inherit the methods, properties, and events from those classes (subclasses facilitate the reuse of code defined in the superclass from which they are derived).

Superclasses — Classes that are used as a basis for the creation of more specifically defined classes (that is, subclasses).

Packages — Folders that define a scope for class and function naming

```
In []: myparticipant
myparticipant =
  participant with properties:
```

```
id: []
address: []
trials: {1x70 cell}
subs: {[31]}
data: {[1x70 struct]}
raw: []
subject_var: 'ID'
screen: [1x1 struct]
rois: [1x1 struct]
log: [1x1 struct]
```

0.1.3 3. Handles

0.1.4 3. Resources

External relevant links

- Referenced mit lecture slides
- Reference mit lecture video
- Matlab documentation

My personal links

- Javascript javascript code
- Referenced matlab code
- this talk's directory on github

written by Alireza Tajdod