MECH 325 Power Screw Analysis

Objectives

By the end of today's class, you should be able to:

- Calculate torque for various power screw applications
- Describe the characteristic of self-locking and determine conditions necessary for self-locking
- Describe and quantify the effect of the thread type and nut on raising and lowering torque
- Analyze power screw thread stress

Stresses

 Sketch the stress distribution present on the screw threads for an axial load F on the nut and a torque T on the screw

Origin of Power Screw Torque

 Complete the diagrams (represent stresses and torques as point forces on the unrolled incline planes)

Torque Relationships

Express the driving forces in terms of other known variables:

• With some simple geometry, and noting that the driving force (P_R or P_L) is actually a torque (T_R or T_L) acting at a distance, we get the two characteristic torque equations

$$T_{R} = \frac{Fd_{m}}{2} \left(\frac{\pi f d_{m} + l}{\pi d_{m} - f l} \right)$$

$$T_{L} = \frac{Fd_{m}}{2} \left(\frac{\pi f d_{m} - l}{\pi d_{m} + f l} \right)$$

Conditions for Self Locking

Starting with the lowering torque equation:

$$T_{L} = \frac{Fd_{m}}{2} \left(\frac{\pi f d_{m} - l}{\pi d_{m} + f l} \right)$$

• Self-locking occurs when:

• Efficiency, e, is the ratio of raising torque without friction to with friction:

Effect of Thread Angle

Change when ACME threads used:

$$T_{R} = \frac{Fd_{m}}{2} \left(\frac{\pi f d_{m} \sec \alpha + l}{\pi d_{m} - f l \sec \alpha} \right)$$

$$T_{L} = \frac{Fd_{m}}{2} \left(\frac{\pi f d_{m} \sec \alpha - l}{\pi d_{m} + f l \sec \alpha} \right)$$

Friction Coefficients

Screw-Nut friction coefficient, f

Screw	Nut Material			
Material	Steel	Bronze	Brass	Cast Iron
Steel, dry	0.15-0.25	0.15-0.23	0.15-0.19	0.15-0.25
Steel, machine oil	0.11-0.17	0.10-0.16	0.10-0.15	0.11-0.17
Bronze	0.08-0.12	0.04-0.06	-	0.06-0.09

Thrust collar friction coefficient, f_c

Combination	Running	Starting
Soft steel on cast iron	0.12	0.17
Hard steel on cast iron	0.09	0.15
Soft steel on bronze	0.08	0.10
Hard steel on bronze	0.06	0.08

MECH 325

Collar Friction Torque

- A thrust collar is needed to carry axial loads
- Creates additional frictional torque:

Thread Stress

Thread stress arises from:

Resulting equations:

$$\sigma_{x} = \frac{6F}{\pi d_{r} n_{t} p}$$

$$\sigma_{z} = -\frac{4F}{\pi d_{r}^{2}}$$

$$\tau_{yz} = \frac{16T}{\pi d_{z}^{3}}$$

Engaged Threads

- Power screw in compression raising an axial load:
 - How does the screw deform?
 - How does the nut deform?
- All threads not equally engaged
 - 1st engaged thread carries ~38% of load
 - 2nd engaged thread carries ~25% of load
 - 3rd engaged thread carries ~18% of load
 - ... 7th engaged thread carries ~0% of load

Power Screw Efficiency

MECH 325

Design Examples

- For the designs that follow, will they work as intended?
 - If no, how should the design be changed?
 - If yes, could the design be further improved?

Design Examples

MECH 325