Insiemi

DEFINIZIONE

È una collezione di oggetti, detti **elementi**, appartenenti all'insieme. Gli elementi dell'insieme vengono elencati, separati da una virgola e racchiusi tra parentesi graffe \rightarrow $A = \{linea, 2, estate\}$

ALCUNE P	ROPRIETÀ
$A \cap B = A$ intersecato a B	$A \cup B = A \text{ unito a B}$
$A \setminus B = A \text{ meno } B \text{ (differenza)}$	$\mathbf{A} \Delta \mathbf{B} = \text{differenza simmetrica}$
$A \cap B = B \cap A$ (proprietà commutativa dell'intersezione)	A U B = B U A (proprietà commutativa dell'unione)
$(A \cap B) \cap C = A \cap (B \cap C)$ (proprietà associativa dell'intersezione)	(A U B) U C = A U (B U C) (proprietà associativa dell'unione)
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (proprietà distributiva)	$AU(B\cap C) = (AUB) \cap (AUC)$ (proprietà distributiva)
$(A \cap B)' = A' \cup B'$ (1° legge di De Morgan)	$(A \cup B)' = A' \cap B'$ (2° legge di De Morgan)

ALTRO...

- · In un insieme l'ordine non conta
- In un insieme non ci sono ripetizioni
- Insieme vuoto non ha elementi e si indica con Ø
- L'insieme U è l'insieme universo che si assume per evitare paradossi: in questo insieme tutti gli insiemi sono sottoinsiemi.
- C_A = significa complementare dell'insieme A

Intervalli

Se a e b sono due elem	enti appartenenti a R
[a,b] = intervallo chiuso e limitato a,b[= intervallo aperto	
[a,b] = intervallo chiuso a sinistra e aperto a destra [a,b] = intervallo aperto a sinistra e chiuso destra	

Quando in un intervallo è presente la parentesi tonda il valore non viene compreso \rightarrow esempio: [2, 8] saranno tutti i valori compresi tra 2 e 8 escluso l'8 quindi $2 \le x < 8$

MATEMATICA 0

· Prodotti notevoli

Quadrato di un binomio	$(a+b)^2 = a^2 + 2ab + b^2$
Differenza di quadrati	$a^2 - b^2 = (a+b)(a-b)$
cubo di un binomio	$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
somma di cubi	$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$
differenza di cubi	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
Quadrato di trinomio	$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$

· Altre nozioni di matematica 0...

Equazioni di primo grado ad una incognita \rightarrow ax = b si risolve nel seguente modo x = b/a

Equazioni di primo grado a due incognite \rightarrow ax + by = c ha infinite soluzioni bisogna risolverla attraverso un sistema di equazioni lineari

Disequazioni di primo grado ad una incognita \rightarrow ax > b si risolve nel seguente modo x > b/a

Disequazioni di primo grado a due incognite \rightarrow ax + by > c si considera un punto qualsiasi e si controlla numericamente se la disequazione è verificata o meno per quel punto (sistema).

Equazioni di secondo grado generica $\rightarrow ax^2 + bx + c = 0$ si risole con la seguente formula

risolutiva
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 o si può anche usare $x = \frac{-\frac{b}{2} \pm \sqrt{\frac{b^2 - 4ac}{4}}}{a}$

Il valore assoluto o modulo
$$\stackrel{\text{def}}{=} |x| = \begin{cases} -x & \text{se } x < 0 \\ x & \text{se } x > 0 \end{cases}$$

Logaritmi

		100000000000000000000000000000000000000	
		defin	lizione
$log_b a = x$	b = base a = argomento x = logaritmo in base b di a	b > 0 b ≠ 1 a > 0 x ∈ R	il logaritmo di un numero è l'esponente da dare alla base per ottenere l'argomento cioè: $b^x=a$ esempio: $log_3 8=3$ perché $2^3=8$
		teoremi	principali
$log_b a + log_b c$	$= log_b(a \cdot c)$		teorema del prodotto
$log_b a - log_b c$	$= log_b \left(\frac{a}{c}\right)$		teorema del rapporto
$c \log_b a = \log_b a$	a ^c		teorema della potenza
	prop	rietà derivate (dai teoremi principali
$log_{b^n} a^m = log_b$			potenza ad esponente frazionario
$log_{\frac{1}{b}}a = -log_b a$			invertire la base
$log_b \frac{1}{a} = -log_b a$			invertire l'argomento
$log_{\frac{1}{b}} \frac{1}{a} = log_b a$			invertire la base con l'argomento
$log_b a = \frac{1}{log_a b}$			scambiare di base ed argomento
$\log_n a = \frac{\log_v a}{\log_v n}$	v = n =	vecchia base nuova base	cambio di base
$n = log_b b^n$ opp	pure $n = b^{log}$	h n	trasformare un numero n in logaritmo o in potenza
$log_b b = 1$	$log_b 1 = 0$	$b^{x} > 0$	casi particolari

RADICALI

indice di radice pari	indice di radice dispari
$\sqrt{0} = 0$	$\sqrt[3]{0} = 0$
$\sqrt{9} = \pm 3$ radice algebrica	³ √8 = 2
$\sqrt{-9}=3$ non esiste in $\mathbb R$	³ √−8 =− 2

Altre proprietà...

$\sqrt[mn]{a^n} = \sqrt[m]{a}$	semplificazione
$ \sqrt[m]{a} e \sqrt[n]{b} \rightarrow \sqrt[mn]{a^n} e \sqrt[mn]{b^m} $	riduzione allo stesso indice
$ \sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b} $ $ \sqrt[n]{a} \cdot \sqrt[m]{b} = \sqrt[nm]{a^m \cdot b^n} $	prodotto di radicali
$\sqrt[n]{a} : \sqrt[n]{b} = \sqrt[n]{\frac{a}{\sqrt[n]{b}}} = \sqrt[n]{\frac{a}{b}}$	rapporto di radicali
$a\sqrt[n]{b} = \sqrt[n]{a^n b}$	trasporto di fattore dentro il segno di radice *
$\sqrt[n]{a^{m+n}} = \sqrt[n]{a^m \cdot a^n} = a\sqrt[n]{a^m}$ $\sqrt[n]{a^n b} = a\sqrt[n]{b}$	trasporto di fattore fuori il segno di radice *
$\left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$	potenza di radicali
$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$	radice di radice
$\alpha \sqrt[n]{a} \pm \beta \sqrt[n]{a} = (\alpha \pm \beta) \sqrt[n]{a}$	somma algebrica di radicali simili

ESPONENZIALI E POTENZE

L'esponenziale è un equazione in cui l'incognita compare almeno in un esponente $\implies a^{f(x)} = b$

		propr	ietà	
$a^0 = 1$	con a ≠ 0	$0^n = 0$	con n≠0	$0^0 = perde di significato$

Altre proprietà...

$a^m\cdot a^n=a^{m+n}$	prodotto di potenze con la stessa base
a^m : $a^n = a^{m-n}$	rapporto di potenze con la stessa base
$(a^m)^n=a^{m\cdot n}$	potenza di potenza
$a^n\cdot b^n=(a\cdot b)^n$	prodotto di potenze con lo stesso esponente
$a^n : b^n = \left(\frac{a}{b}\right)^n$	rapporto di potenze con lo stesso esponente
$a^{-n} = \frac{1}{a^n}$	potenza ad esponente negativo
$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	frazione ad esponente negativo
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	potenza ad esponente frazionario
$\left(\frac{a}{b}\right)^{\frac{m}{n}} = \sqrt[n]{\left(\frac{a}{b}\right)^m}$	frazione ad esponente frazionario
$a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}} = \frac{1}{\sqrt[n]{a^m}}$	potenza ad esponente frazionario negativo

• Funzioni trigonometriche

PROPRIETA		
1) Limitazioni	$ \sin x \le 1$	
2) Teorema di Pitagora	$ \cos x \le 1$ $\sin^2 x + \cos^2 x = 1$	
3) Archi opposti		
- sa can opposti	$\sin(-x) = -\sin x$	
	cos(-x) = cos x tg(-x) = -tg x	
A 1-1-2		
 Archi complementari 	$\sin\left(\frac{\pi}{2} - x\right) = \cos x$	
	$\cos\left(\frac{\pi}{2} - x\right) = \sin x$	
	$\operatorname{tg}\left(\frac{\pi}{2} - x\right) = 1/\operatorname{tg} x$	
Archi supplementari	tin (= x) = sin s	
	$\sin(\pi - x) = \sin x$ $\cos(\pi - x) = -\cos x$	
	$\operatorname{tg}(\pi - x) = -\operatorname{tg} x$	

3)	Archi supplementari	$\sin\left(\pi - x\right) = \sin x$
6)	Formule di duplicazione	$\cos (\pi - x) = -\cos x$ $\operatorname{tg} (\pi - x) = -\operatorname{tg} x$ $\sin (2x) = 2\sin x \cos x$
		$\cos (2x) = \cos^2 x - \sin^2 x = \begin{cases} 1 - \cos^2 x \\ 2\cos x \end{cases}$

7) Formule parametriche
$$\sin x = \frac{2t}{1+t^2}$$

$$\cos x = \frac{1-t^2}{1+t^2} \qquad t = \operatorname{tg} \frac{x}{2}$$

$$\operatorname{tg} x = \frac{2t}{1-t^2}$$

	Formule di addizione	$\sin(x\pm y) = \sin x \cos y \pm \cos x \sin y$
		$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$
		$\operatorname{tg}(x \pm y) = \frac{\operatorname{tg} x \pm \operatorname{tg} y}{1 + \operatorname{tg} x + \operatorname{tg} y}$

9) Formule di prostateresi	$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$
	$\cos x + \cos y = 2\cos \frac{x+y}{2}\cos \frac{x-y}{2}$
	$\operatorname{tg} x + \operatorname{tg} y = \frac{\sin(x+y)}{\cos x \cos y}$
10) Formule di Werner	$\sin x \sin y = \frac{1}{2} (\cos (x - y) - \cos (x + y))$
	$\cos x \cos y = \frac{1}{2} (\cos (x+y) + \cos (x-y))$
	$\sin x \cos y = \frac{1}{2} \left(\sin \left(x + y \right) + \sin \left(x - y \right) \right)$

Angolo in gradi	Angolo in radianti	Seno	Coseno	Tangente	Cotangente
0* = 360*	2π	0	1	0	+∞
30°	<u>#</u>	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	√3
45°	<u>#</u>	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
60*	<u>#</u>	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{\sqrt{3}}{3}$
90°	<u>#</u>	1	0	+100	0
180°	π	0	-1	0	-00
270°	$\frac{3\pi}{2}$	-1	0	-10	0

	le cinque	relazioni fondamentali		
$sin^2(\alpha)+cos^2(\alpha)=1$	$tan(\alpha) = \frac{sin(\alpha)}{cos(\alpha)}$	$cot(\alpha) = \frac{cos(\alpha)}{sin(\alpha)}$	$sec(\alpha) = \frac{1}{\cos(\alpha)}$	$cosec(a) = \frac{1}{sin(a)}$

• Dominio

FUNZIONI FRATTE $y = \frac{f(x)}{g(x)} \qquad D: g(x) \neq 0$

FUNZIONI TRIC	GONOMETRICHE
$y = sin [f(x)]$ D: $\forall x \in R$	$y = cos [f(x)]$ $D: \forall x \in R$
$y = tg [f(x)] D: f(x) \neq \frac{\pi}{2} + k\pi$	$y = cotg [f(x)]$ D: $f(x) \neq k\pi$
$y = arcsin[f(x)]$ D: $-1 \le f(x) \ge 1$	$y = arccos [f(x)]$ D: $-1 \le f(x) \ge 1$

FUNZIONI CONTINUE

Si dice continua se esiste il limite di f(x) per $x \to x_0$ e tale limite è uguale al valore $f(x_0)$ della funzione calcolata in x_0

$$\lim_{x\to x_0}f(x)=f(x_0)$$

FUNZIONI DISCONTINUE

Si dice discontinua se $\lim_{x\to x_0} f(x)$ non esiste, è infinito o esiste ma è diverso da $f(x_0)$.

TRE SPECIE DI DISCONTINUITA'...

1º specie: il limite destro e il limite sinistro sono finiti ma diversi tra loro

2º specie: almeno uno dei 2 limiti, sia destro che sinistro, di f(x) sono infiniti o non esistono

3° specie: il limite c'è (esiste) ed è finito, ma il valore del limite non c'è

· Rapporto incrementale

DEFINIZIONE

$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

SIGNIFICATO GEOMETRICO

il coefficiente angolare (quello che prima abbiamo indicato con m) della secante al grafico della funzione nei punti P e Q

· Derivate

DEFINIZIONE

il limite, se esiste ed è finito, per h che tende a 0 del rapporto incrementale.

$$f^{l}(x) = \lim_{h \to 0} \frac{Dy}{Dx} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

SIGNIFICATO GEOMETRICO

coefficiente angolare della retta tangente

regole di derivazione	
$D k \cdot f(x) = k \cdot f'(x)$	prodotto di una costante k per una funzione
$D f(x) \pm g(x) \pm h(x) = f'(x) \pm g'(x) \pm h'(x)$	somma di due o più funzioni
$D f(x) \cdot g(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$	prodotto di due funzioni
$D f(x) \cdot g(x) \cdot h(x) = f'(x) \cdot g(x) \cdot h(x) + f(x) \cdot g'(x) \cdot h(x) + f(x) \cdot g(x) \cdot h'(x)$	prodotto di tre funzioni
$D \frac{f(x)}{g(x)} = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$	rapporto di due funzioni
$Df[g(x)] = f'[g(x)] \cdot g'(x)$	funzione composta
$Df(x)^{g(x)} = f(x)^{g(x)} \cdot \left[g'(x) \cdot ln[f(x)] + g(x) \cdot \frac{f'(x)}{f(x)} \right]$	funzione elevata ad una funzione

y = K	$y^I = 0$
dove k è una costante	
$y = x^n$	$y^l = n (per) x^{n-1}$
$y = e^x$	$y^t = e^x$
$y = a^x$	$y^{t} = a^{x} (per) \ln a$
$y = \ln x$	$y^I = \frac{1}{x}$
$y = log_a x$	$y^I = \frac{1}{x \ln a}$
$y = \sqrt{x}$	$y^{l} = \frac{1}{2\sqrt{x}}$
$y = \sqrt[n]{x}$	$y^I = \frac{1}{n \sqrt[n]{x^{n-1}}}$
$y = \sin x$	$y^t = \cos x$
$y = \cos x$	$y^I = -\sin x$
y = tan x	$y^i = \frac{1}{\cos^2 x}$

FUNZIONI

DERIVATE

FUNZIONI	DERIVATE
$y = \cot x$	$y^t = -\frac{1}{\sin^2 x}$
y = arcsin x	$y^t = \frac{1}{\sqrt{1-x^2}}$
y = arccos x	$y^I = -\frac{1}{\sqrt{1-x}}$
y = arctan x	$y^I = \frac{1}{1 + x^2}$
y = arccot x	$y^t = -\frac{1}{1+x^2}$