

Université Sultane Moulay Slimane Faculté Polydisciplinaire Khouribga, Juillet 2022

EPREUVE DE L'ELECTRICITE-SMIA-S₂-(1h :30 mins)

- Il sera tenu compte de la clarté de la rédaction.
 - Aucun document n'est autorisé.
 - Prof responsable M. EL IDRISSI

Exercice-1: Questions de cours, (4 points)

- 1. Donner la formule de Green-Ostrogradski.
- 2. Enoncer la loi de Coulomb.
- 3. Préciser les propriétés d'un conducteur comportant une cavité vide.

Exercice-2: (8 points)

- 1. Enoncer le Théorème de Gauss.
- 2. Soit un fil **infini** portant une densité de charge linéique uniforme $\lambda > 0$.
 - Discuter les symétries et les invariances de cette distribution de charge.
 - En utilisant le calcul direct, calculer en un point M de l'espace le champ électrique crée par cette distribution.
 - Retrouver ce résultat en utilisant le Théorème de Gauss.
- 3. Le volume compris entre les surfaces définies par deux sphères concentriques de centre O et de rayons respectifs R_1 et R_2 ($R_1 < R_2$) est chargé uniformément par une densité volumique de charges constante ($\rho > 0$). Le reste de l'espace (intérieur de la sphère de rayon R_1 et de volume extérieur à la sphère de rayon R_2) ne comporte aucune charge (figure-1).
 - Calculer à l'aide du Théorème de Gauss le champ électrique \overrightarrow{E} à la distance r du centre. Distinguer les 3 cas : $r < R_1$, $r > R_2$ et $R_1 < r < R_2$.
 - Y a-t-il continuité du champ aux interfaces $r = R_1$ et $r = R_2$? Tracer E(r).

figure-1

Exercice-3: (7 points)

1. On considère le circuit de la figure-2 :

- (a) Calculer la résistance équivalente du circuit.
- (b) En utilisant le diviseur de courant, calculer le courant I_1 circulant dans la résistance R_1 .
- (c) Que devient la valeur de I_1 si $R_1 = R_2$.

2. On considère le circuit de la figure-3 :

- a) En utilisant le diviseur de tension, calculer la valeur de la tension $U_1.$
- b) En déduire la valeur du courant I_{AB} .

3. On considère le circuit de la figure-4 :

- Proposer une approche simple et rapide et montrer que la valeur du courant I_1 donné sur le circuit de la figure-4 est $I_1 = 1, 2A$.
- En utilisant le théorème de Thévenin, trouver l'expression du courant I_3 circulant dans la résistance $R_c=2R$ en fonction de E et R.

On donne : $E=12V,\quad R_1=20\Omega,\quad R_2=10\Omega,\quad R=10\Omega.$

Bon courage!