Обобщенный первый закон Кирхгофа

Согласно закону сохранения зарядов — электрический заряд замкнутой системы остаётся постоянным.

Следствием этого закона в теории электрических цепей является первый закон Кирхгофа, электрическая цепь рассматривается как замкнутая система, в которой количество

зарядов неизменно. Тогда, если мы рассмотрим некоторую область пространства, то количество электронов выходящих из этой области, компенсируется количеством электронов в эту область входящих.

Формульная запись первого закона Кирхгофа выглядит следующим образом:

$$\sum I_{\rm BbIX} = \sum I_{\rm BX}$$

Второй закон Кирхгофа

Как известно из теории, каждая точка пространства в некоторый момент времени обладает некоторым электрическим потенциалом, более того:

$$\oint_C \varphi(z)dz = 0$$

Для любого замкнутого контура С Именно это свойство лежит в основе второго закона Кирхгофа. Всякая электрическая цепь, представляет из себя систему состоящую из замкнутых контуров, падение напряжения происходит на резисторах и на источниках ЭДС в режиме потребителя, а увеличение напряжения происходит на источниках напряжения в источниках ЭДС в режиме источника.

Формульная запись второго закона Кирхгофа выглядит следующим образом:

$$\sum I_i \cdot R_i + \sum \varepsilon_{\text{not}} - \sum \varepsilon_{\text{uct}} = 0$$

Закон Ома для участка цепи

Данный закон говорит о прямой пропорциональной зависимости между разностью потенциалов на разных концах ветви электрической цепи и током, текущему по этой ветви с сопротивлением в роли коэффициента пропорциональности. Формульная запись выглядит следующим образом:

$$U = \varepsilon_{ ext{HAY}} - \varepsilon_{ ext{KOH}} = I \cdot R$$

Закон впервые был установлен эмпирически и только потом получил теоретическое обоснование. Суть в том, что $R = \rho \cdot \frac{l}{S}$ сопротивление является независимой от напряжения и тока величиной, которая зависит лишь от свойств проводника:

Где р – удельное сопротивление, а I и S -длина и площадь сечения проводника.

Типовые задачи теории электрических цепей постоянного тока:

*Нахождение общего сопротивления системы резисторов

Нахождение общего сопротивления системы резисторов

Понятие общего сопротивления строится на идее о том, что если к некоторой системе резисторов с двумя выходами присоединить источник ЭДС и амперметр, то сложную систему резисторов можно заменить единственным резистором, сопротивление которого можно подсчитать как ЭДС источника, разделённое на показания амперметра.

Существует два основных способа соединения резисторов:

- Последовательное соединение
- Параллельное соединение

Последовательное соединение резисторов, это когда выход одного из резисторов присоединён ко входу другого резистора, общее сопротивление данной системы является суммой сопротивлений обоих резисторов (рис 1)

Параллельное соединение резисторов, это когда входы и выходы двух резисторов подключены к одним и тем же

^{*}Нахождение токов в заданной электрической цепи

узлам, общее сопротивление данной системы равно произведению сопротивлений этих резисторов, делённое на сумму их сопротивлений (рис 2)

$$\begin{split} R_1 + R_2 &= \frac{R_{12} \cdot (R_{23} + R_{13})}{R_{12} + R_{23} + R_{13}} \\ R_1 + R_3 &= \frac{R_{13} \cdot (R_{12} + R_{23})}{R_{12} + R_{23} + R_{13}} \\ R_2 + R_3 &= \frac{R_{23} \cdot (R_{12} + R_{13})}{R_{12} + R_{23} + R_{13}} \end{split}$$

$$R_1 = \frac{R_{12} \cdot R_{13}}{R_{12} + R_{23} + R_{13}}$$

$$R_2 = \frac{R_{12} \cdot R_{23}}{R_{12} + R_{23} + R_{13}}$$

$$R_3 = \frac{R_{23} \cdot R_{13}}{R_{12} + R_{23} + R_{13}}$$

По сути, общее сопротивление большей части систем резисторов можно найти, лишь руководствуясь двумя этими правилами, однако, иногда не удаётся выделить пару последовательно или параллельно подключенных резисторов. В таком случае, обычно используют преобразование треугольник-звезда или звезда-треугольник, на картинке показан принцип преобразования и соответствующие

формулы для прямого и обратного случая:

Этих методов уже хватает, чтобы найти общее сопротивление для всякой системы резисторов, что уже можно доказать строго математически, при помощи теории графов.

Нахождение токов в заданной электрической цепи

На практике, часто возникает необходимость понять, какой ток будет протекать по той или иной ветви электрической цепи, поэтому задача о нахождении токов по заданной цепи имеет важное прикладное значение, существует множество методов расчёта токов в электрической цепи, таких как:

- * Классический метод через 1 и 2 закон Кирхгофа
- * Метод контурных токов
- * Метод свёртки
- * Метод наложения
- * Метод эквивалентного генератора
- * Метод узловых потенциалов

Мы не будем подробно останавливаться на каждом из них, каждый имеет свои преимущества и недостатки, скажем только, что наиболее оптимальным с точки зрения соотношения сложность / универсальность является метод контурных токов, на нём и остановимся подробнее.

Метод контурных токов

Метод контурных токов основывается на выделении системы из:

$$B - Y + K$$

Независимых контуров, где:

В - количество ветвей в цепи

У - количество узловых точек в цепи

К – число компонент связности в цепи

Далее, мы должны представить, что вместо обычных токов по каждому из контуров течёт свой ток, называемый контурным, и каждый ток ветви выражается через эти контурные токи

Применяем к каждому контуру второй закон Кирхгофа, не забывая учитывать выбранное направление обхода контура, в результате, получается система линейных уравнений (СЛУ) с неизвестными контурными токами, порядок системы совпадает с числом неизвестных контурных токов, и данная система имеет единственное решение. В результате решения СЛУ мы получим контурные токи, и далее, выражаем токи в ветвях через контурные токи, и находим их.

Этот метод позволяет решить любую достаточно хорошую электрическую цепь, под достаточно хорошей имеется в виду цепь, не содержащая висящих ветвей и мостов, но применяя к ним обобщённый первый закон Кирхгофа, можно понять, что по висящим ветвям и мостам электрический ток не протекает, что позволяет исключить их из схемы без всяких последствий.

Это основная суть метода контурных токов, который был придуман, как метод, позволяющий уменьшить порядок решаемой СЛУ. И за счёт этого существенно сократить решение.