Real Analysis Royden - Fourth Edition Notes + Solved Exercises :)

Latex Symbols

J.B.

May 2024

ΙL	LEBESGUE INTEGRATION FOR FUNCTIONS OF A SINGLE REAL VARIABLE	5
Pr	eliminaries on Sets, Mappings, and Relations	7
1	The Real Numbers: Sets, Sequences, and Functions 1.1 The Field, Positivity, and Completeness Axioms 1.2 The Natural and Rational Numbers 1.3 Countable and Uncountable Sets 1.4 Open Sets, Closed Sets, and Borel Sets of Real Numbers 1.5 Sequences of Real Numbers 1.6 Continuous Real-Valued Functions of a Real Variable	9 9 10 10 11 11
2	Lebesgue Measure	13
3	Lebesgue Measurable Functions	15
4	Lebesgue Integration	17
5	Lebesgue Integration: Further Topics	19
6	Differentiation and Integration	21
7	The L^p Spaces: Completeness and Approximation	23
8	The L^p Spaces: Duality and Weak Convergence	25
II .	ABSTRACT SPACES: METRIC, TOPOLOGICAL, BANACH, AND HILBERT SPACES	27
9	Metric Spaces: General Properties	29
10	Metric Spaces: Three Fundamental Theorems	31
11	Topological Spaces: General Properties	33
12	Topological Spaces: Three Fundamental Theorems	35

4 CONTE	NTS
---------	-----

13	Continuous Linear Operators Between Banach Spaces	37
14	Duality for Normed Linear Spaces	39
15	Compactness Regained: The Weak Topology	41
16	Continuous Linear Operators on Hilbert Spaces	43
Ш	MEASURE AND INTEGRATION: GENERAL THEORY	45
17	General Measure Spaces: Their Properties and Construction	47
18	Integration Over General Measure Spaces	49
19	General \mathcal{L}^p spaces: Completeness, Duality, and Weak Convergence	51
20	The Construction of Particular Measures	53
21	Measure and Topology	55
22	Invariant Measures	57

I LEBESGUE INTEGRATION FOR FUNC-TIONS OF A SINGLE REAL VARIABLE

6 CONTENTS

Preliminaries on Sets, Mappings, and Relations

8 CONTENTS

The Real Numbers: Sets, Sequences, and Functions

Contents

1.1	The Field, Positivity, and Completeness Axioms	9
1.2	The Natural and Rational Numbers	9
1.3	Countable and Uncountable Sets	10
1.4	Open Sets, Closed Sets, and Borel Sets of Real Numbers	10
1.5	Sequences of Real Numbers	11
1.6	Continuous Real-Valued Functions of a Real Variable	11

1.1 The Field, Positivity, and Completeness Axioms

PROBLEMS

- 1. For $a \neq 0$ and $a \neq 0$, show that $(ab)^{-1} = a^{-1}b^{-1}$.
- 2. Verify the following:
 - (i) For each real number $a \neq 0$, $a^2 > 0$. In particular, 1 > 0 since $1 \neq 0$ and $1 = 1^2$.
 - (ii) For each positive number a, its multiplicative inverse a^{-1} also is positive.
 - (iii) If a > b, then

$$ac > bc$$
 if $c > 0$ and $ac < bc$ if $c < 0$.

1.2 The Natural and Rational Numbers

PROBLEMS

8. Use an induction argument to show that for each natural number n, the interval (n, n + 1) fails to contain any natural number.

- 9. Use an induction argument to show that if n > 1 is a natural number, then n 1 also is a natural number. The use another induction argument to show that if m and n are natural numbers with n > m, then n m is a natural number.
- 10. Show that for any real number r, there is exactly one integer in the interval [r, r+1).
- 11. Show that ay nonempty set of integers that is bounded above has a largest member.
- 12. Show that the irrational numbers are dense in \mathbb{R} .
- 13. Show that each real number is the supremum of a set of rational numbers and also the supremum of a set of irrational numbers.
- 14. Show that if r > 0, then, for each natural number n, $(1+r)^n \ge 1 + n \cdot r$.
- 15. Use induction arguments to prove that for every natural number n,

(i)
$$\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6},$$

(ii)
$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2,$$

(iii)
$$1 + r + \dots + r^n = \frac{1 - r^{n+1}}{1 - r} \text{ if } r \neq 1.$$

1.3 Countable and Uncountable Sets

1.4 Open Sets, Closed Sets, and Borel Sets of Real Numbers

The Nested Set Theorem. Let $\{F_n\}_{n=1}^{\infty}$ be a descending countable collection of nonempty closed sets of real numbers for which F_1 is bounded. Then

$$\bigcap_{n=1}^{\infty} F_n \neq \emptyset.$$

Proof. By contradiction, suppose that $\bigcap_{n=1}^{\infty} F_n = \emptyset$. Then $\bigcup_{n=1}^{\infty} F_n^c = (\bigcap_{n=1}^{\infty} F_n)^c = \emptyset^c = \mathbb{R}$, and we have an open cover of \mathbb{R} and thus an open cover of $F_1 \subseteq \mathbb{R}$. By the Heine-Borel Theorem, there exists an $N \in \mathbb{N}$ such that $F_1 \subseteq \bigcup_{n=1}^N F_n^c$. Because $\{F_n\}$ is descending, $F_n \supseteq F_{n+1}$ for any $n \ge 1$. This implies $F_n^c \subseteq F_{n+1}^c$, and thus $F_1 \subseteq \bigcup_{n=1}^N F_n^c = F_N^c = \mathbb{R} \setminus F_N$. This is a contradiction to the assumption that F_N is a nonempty subset of F_1 .

PROBLEMS

- 27. Is the set of rational numbers open or closed?
- 28. What are the sets of real numbers that are both open and closed?
- 29. Find two sets A and B such that

- 1.5 Sequences of Real Numbers
- 1.6 Continuous Real-Valued Functions of a Real Variable

Lebesgue Measure

Lebesgue Measurable Functions

Lebesgue Integration

Lebesgue Integration: Further Topics

Differentiation and Integration

The L^p Spaces: Completeness and Approximation

The L^p Spaces: Duality and Weak Convergence

II ABSTRACT SPACES: METRIC, TOPO-LOGICAL, BANACH, AND HILBERT SPACES

Metric Spaces: General Properties

Metric Spaces: Three Fundamental Theorems

Topological Spaces: General Properties

Topological Spaces: Three Fundamental Theorems

Continuous Linear Operators Between Banach Spaces

Duality for Normed Linear Spaces

Compactness Regained: The Weak Topology

Continuous Linear Operators on Hilbert Spaces

III MEASURE AND INTEGRATION: GENERAL THEORY

General Measure Spaces: Their Properties and Construction

48 CHAPTER 17. GENERAL MEASURE SPACES: THEIR PROPERTIES AND CONSTRUCTION

Integration Over General Measure Spaces

General L^p spaces: Completeness, Duality, and Weak Convergence

52CHAPTER 19. GENERAL L^p SPACES: COMPLETENESS, DUALITY, AND WEAK CONVERGENCE

The Construction of Particular Measures

Measure and Topology

Invariant Measures