

Trip

Autor: stud. Floare Doru

Contribuitori: stud. Măierean Mircea, stud. Alexutan Cristian, Universitatea Babes-Bolyai Cluj-Napoca

Soluție

Înlocuind caracterele din input cu valorile -1, 0, 1, putem reformula query-urile sub forma: există o secvență continuă care începe în intervalul $[l_1, r_1]$ și se termină în intervalul $[l_2, r_2]$, cu suma k? Calculând sume parțiale, fie s[i] suma primelor i elemente din șir, query-ul se transformă în: "există un i, $l_1 - 1 \le i \le r_1 - 1$ și un j, $l_2 \le j \le r_2$, astfel încât s[j] - s[i] = k?", iar update-ul devine un update pe interval, deoarece valoarea de la o poziție p influențează toate valorile sumelor parțiale din intervalul [p, n].

Pentru rezolvarea query-urilo avem nevoie de o observație importantă: deoarece elementele din șir fac parte din mulțimea -1,01, valorile sumelor parțiale sunt "continue" în mulțimea numerelor întregi. Adică, dacă într-ul interval l avem valoarea maximă M și valoarea minimă m, atunci acel interval conține toate numerele întregi din [m, M]. Acum putem determina, pentru cele două intervale din fiecare query valorile minime și maxime, fie acelea $[m_1, M_1]$ pentru intervalul $[l_1 - 1, r_1 - 1]$ și $[m_2, M_2]$ pentru intervalul $[l_2, r_2]$. Folo sind acest raționament, aflăm că valorile posibile ale diferenței dintre o sumă parțială din intervalul 2 și una din intervalul 1 se află în intervalul 1 se află în intervalul 1 se află în intervalul 1 se află 10. Rămâne doar să verificăm dacă 11 face parte din acest interval, iar dacă face, răspunsul este 12, altfel 12.

Maximele, minimele și update-urile pe interval pot fi rezolvate folosind un arbore de intervale cu lazy update, astfel complexitatea fiind O(nlog(n)).