

चला, शिकूया.

- समांतरभुज चौकोन
- समांतरभुज चौकोनाच्या कसोट्या
- समभुज चौकोन

- आयत
- चौरस
- समलंब चौकोन
- त्रिकोणाच्या दोन बाजूंच्या मध्यबिंदूंचे प्रमेय

जरा आठवूया.

आकृती 5.1

1. □ADCD या चाकानाच्या सद्	।ति खालाल जाड्या ।लहा.	
लगतच्या बाजूंच्या जोड्या :	लगतच्या कोनांच्या जोड्या :	
$(1) \dots, \dots (2) \dots, \dots$	$(1) \dots, \dots (2) \dots,$	• • •
$(3) \dots, \dots (4) \dots, \dots$	$(3) \dots, \dots (4) \dots,$	• • •
संमुख बाजूंच्या जोड्या (1)	, (2) ,	
मंगात कोगंच्या जोट्या (1)		

आठवा पाहू माझा प्रकार आणि माझे गुणधर्म

चौकोनाचे वेगवेगळे प्रकार आणि त्यांचे गुणधर्म तुम्हांला माहीत आहेत. बाजू व कोन मोजणे, घड्या घालणे अशा कृतींतून ते तुम्ही जाणून घेतले आहे. हे गुणधर्म तर्काने कसे सिद्ध होतात हे आता आपण अभ्यासणार आहोत.

एखादा गुणधर्म तर्काने सिद्ध केला की त्या गुणधर्माला प्रमेय म्हणतात.

आयत, समभुज चौकोन आणि चौरस हे विशिष्ट असे समांतरभुज चौकोनच असतात. कसे, हे या पाठाचा अभ्यास करताना तुम्हांला समजेल. म्हणून अभ्यासाची सुरुवात समांतरभुज चौकोनापासून करू.

समांतरभुज चौकोन (Parallelogram)

ज्या चौकोनाच्या संमुख बाजूंच्या दोन्ही जोड्या समांतर असतात, त्या चौकोनाला समांतरभुज चौकोन असे म्हणतात.

प्रमेय सिद्ध करताना, उदाहरणे सोडवताना या चौकोनाची आकृती वारंवार काढावी लागते. म्हणून ही आकृती कशी काढता येते हे पाह.

समजा आपल्याला □ABCD हा समांतरभुज चौकोन काढायचा आहे.

रीत I:

- प्रथम AB आणि BC हे कोणत्याही लांबीचे, एकमेकांशी कोणत्याही मापाचा कोन करणारे रेषाखंड काढू.
- आता रेख AD आणि रेख BC समांतर असले पाहिजेत. म्हणून बिंदू A मधून रेख BC ला समांतर रेषा काढ़.

• तसेच रेख AB ।। रेख DC, म्हणून बिंदू C मधून रेख AB ला समांतर रेषा काढू. दोन्ही रेषा ज्या बिंदूत छेदतील, तो बिंदू D असणार. म्हणून तयार झालेला चौकोन ABCD हा समांतरभुज चौकोन असणार.

रीत II:

- रेख AB आणि रेख BC हे कोणत्याही लांबीचे, एकमेकांशी कोणत्याही मापाचा कोन करणारे रेषाखंड काढू.
- कंपासमध्ये BC हे अंतर घेऊन आणि बिंदू A केंद्र घेऊन एक कंस काढू.
- कंपासमध्ये AB हे अंतर घेऊन, बिंदू C केंद्र घेऊन पहिल्या कंसाला छेदणारा कंस काढू.
- कंसांच्या छेदनिबंदूला D नाव देऊ.
 रेख AD आणि रेख CD जोडू.
 तयार झालेला

 —ABCD हा समांतरभुज
 चौकोन असेल.

दुसऱ्या रीतीने काढलेल्या चौकोनात आपण संमुख बाजू समान असलेला चौकोन काढलेला आहे. याच्या संमुख बाजू समांतर का येतात, हे एका प्रमेयाच्या सिद्धतेनंतर तुम्हांला समजेल.

कृती I लगतच्या बाजू वेगवेगळ्या लांबीच्या आणि त्यामधील कोन वेगवेगळ्या मापांचे घेऊन पाच वेगवेगळे समांतरभुज चौकोन काढा.

समांतरभुज चौकोनाची प्रमेये सिद्ध करण्यासाठी एकरूप त्रिकोणांचा उपयोग होतो. तो कसा करून घ्यायचा हे समजण्यासाठी पुढील कृती करा.

कृती II

- एका जाड कागदावर □ABCD हा समांतरभुज चौकोन काढा. त्याचा कर्ण AC काढा. आकृतीत दाखवल्याप्रमाणे शिरोबिंदूंची नावे चौकोनाच्या आतही लिहा.
- कर्ण AC वर घडी घालून Δ ADC आणि Δ CBA एकमेकांशी तंतोतंत जुळतात का हे पाहा.
- \square ABCD त्याच्या AC कर्णावर कापून Δ ADC आणि Δ CBA वेगळे करा. Δ CBA फिरवून घेऊन Δ ADC शी तंतोतंत जुळतो का ते पाहा.

काय आढळले? ΔCBA च्या कोणत्या बाजू ΔADC च्या कोणत्या बाजूंशी जुळल्या? ΔCBA चा कोणता कोन ΔADC च्या कोणत्या कोनाशी जुळला?

बाजू DC ही बाजू AB शी आणि बाजू AD ही बाजू CB शी तंतोतंत जुळते. तसेच \angle B हा \angle D शी जुळतो.

आकृती 5.6

म्हणजेच समांतरभुज चौकोनाच्या संमुख बाजू व संमुख कोन एकरूप आहेत असे दिसते. समांतरभुज चौकोनाचे हेच गुणधर्म आपण सिद्ध करूया. प्रमेय 1. समांतरभुज चौकोनाच्या संमुख भुजा एकरूप असतात व संमुख कोन एकरूप असतात.

पक्ष : □ABCD समांतरभुज चौकोन आहे.

म्हणजेच बाजू AB ।। बाजू DC, बाजू AD ।। बाजू BC.

साध्य : रेख $AD \cong \overline{\lambda}$ ख BC ; रेख $DC \cong \overline{\lambda}$ ख AB

∠ADC ≅ ∠CBA, आणि ∠DAB ≅ ∠BCD.

रचना : कर्ण AC काढा.

सिद्धता : रेख DC ।। रेख AB व कर्ण AC ही छेदिका.

$$\therefore$$
 $\angle DCA \cong \angle BAC$ (1) आणि $\angle DAC \cong \angle BCA$ (2) $\Big\}$ व्युत्क्रम कोन

आता, \triangle ADC व \triangle CBA यांमध्ये,

 $\angle DAC \cong \angle BCA$ विधान (2) वरून

 $\angle DCA \cong \angle BAC$ विधान (1) वरून

बाजू $AC\cong$ बाजू CA सामाईक बाजू

 \therefore \triangle ADC \cong \triangle CBA \dots कोबाको कसोटी

∴बाजू AD ≅ बाजू CB एकरूप त्रिकोणांच्या संगत बाजू

आणि बाजू $DC\cong$ बाजू AB एकरूप त्रिकोणांच्या संगत बाजू

तसेच, $\angle ADC \cong \angle CBA$ एकरूप त्रिकोणाचे संगत कोन

याप्रमाणेच $\angle DAB \cong \angle BCD$ हे सिद्ध करता येईल.

विचार करूया

वरील प्रमेयात $\angle DAB \cong \angle BCD$ हे सिद्ध करण्यासाठी रचनेत काही बदल करावा लागेल का? तो बदल करून सिद्धता कशी लिहिता येईल?

समांतरभुज चौकोनाचा आणखी एक गुणधर्म समजून घेण्यासाठी पुढील कृती करा.

कृती : □PQRS हा कोणताही एक समांतरभुज चौकोन काढा. कर्ण PR आणि कर्ण QS काढून त्यांच्या छेदनबिंदूला O हे नाव द्या. प्रत्येक कर्णाच्या झालेल्या दोन भागांच्या लांबीची तुलना कर्कटकाच्या साहाय्याने करा. काय आढळले?

प्रमेय : समांतरभुज चौकोनाचे कर्ण परस्परांना दुभागतात.

पक्ष : □PQRS हा समांतरभुज चौकोन आहे.

कर्ण PR व कर्ण QS हे O बिंदूत छेदतात.

साध्य : रेख $PO \cong \lambda$ ख RO, रेख $SO \cong \lambda$ ख QO

सिद्धता : $\Delta ext{POS}$ व $\Delta ext{ROQ}$ मध्ये

$$\angle \text{OPS} \cong \angle \text{ORQ}$$
 व्युत्क्रम कोन

बाजू
$$PS \cong$$
 बाजू RQ समांतरभुज चौकोनाच्या संमुख भुजा

$$∠$$
PSO \cong $∠$ RQO व्युत्क्रम कोन

$$\therefore \Delta POS \cong \Delta ROQ$$
 कोबाको कसोटी

ं. रेख PO
$$\cong$$
 रेख RO } \cdots एकरूप त्रिकोणाच्या संगत भुजा

- समांतरभुज चौकोनाच्या संमुख भुजा एकरूप असतात.
- समांतरभुज चौकोनाचे संमुख कोन एकरूप असतात.
- समांतरभुज चौकोनाचे कर्ण परस्परांना दभागतात.

सोडवलेली उदाहरणे

उदा (1) □PQRS हा समांतरभुज चौकोन आहे. PQ = 3.5, PS = 5.3 ∠Q = 50° तर □PQRS च्या इतर बाजूंच्या लांबी आणि कोनांची मापे काढा.

उकल : □PQRS हा समांतरभुज चौकोन आहे.

$$\therefore \angle Q + \angle P = 180^{\circ} \dots$$
आंतरकोन

$$\therefore 50^{\circ} + \angle P = 180^{\circ}$$

$$\therefore \angle P = 180^{\circ} - 50^{\circ} = 130^{\circ}$$

आता, $\angle P = \angle R$ आणि $\angle Q = \angle S$ समांतरभुज चौकोनाचे संमुख कोन

तसेच, PS = QR आणि PQ = SRसमांतरभुज चौकोनाच्या संमुख भुजा.

आकृती 5.10

उदा (2) □ABCD समांतरभुज आहे. □ABCD मध्ये $\angle A = (4x + 13)^\circ$ आणि $\angle D = (5x - 22)^\circ$ तर $\angle B$ आणि $\angle C$ यांची मापे काढा.

उकल: समांतरभुज चौकोनाचे लगतचे कोन पूरक असतात.

 $\angle A$ आणि $\angle D$ हे लगतचे कोन आहेत.

$$\therefore (4x + 13)^{\circ} + (5x - 22)^{\circ} = 180$$

$$\therefore 9x - 9 = 180$$

$$\therefore 9x = 189$$

$$\therefore x = 21$$

आकृती 5.11

$$\therefore$$
 $\angle A = 4x + 13 = 4 \times 21 + 13 = 84 + 13 = 97^{\circ} \therefore \angle C = 97^{\circ}$
 $\angle D = 5x - 22 = 5 \times 21 - 22 = 105 - 22 = 83^{\circ} \therefore \angle B = 83^{\circ}$

सरावसंच 5.1

- 1. समांतरभुज \square WXYZ चे कर्ण बिंदू \bigcirc मध्ये छेदतात. \angle XYZ = 135° तर \angle XWZ = ?, \angle YZW = ? जर $l(\bigcirc$ OY)= 5 सेमी तर $l(\bigcirc$ WY)= ?
- 2. समांतरभुज $\Box ABCD$ मध्ये $\angle A = (3x + 12)^\circ$, $\angle B = (2x 32)^\circ$ तर x ची किंमत काढा, त्यावरून $\angle C$ आणि $\angle D$ ची मापे काढा.
- 3. एका समांतरभुज चौकोनाची परिमिती 150 सेमी आहे आणि एक बाजू दुसरीपेक्षा 25 सेमी मोठी आहे. तर त्या समांतरभुज चौकोनाच्या सर्व बाजुंची लांबी काढा.
- **4.** एका समांतरभुज चौकोनाच्या लगतच्या दोन कोनांचे गुणोत्तर 1 : 2 आहे. तर त्या समांतरभुज चौकोनाच्या सर्व कोनांची मापे काढा.
- 5*. समांतरभुज $\square ABCD$ चे कर्ण परस्परांना बिंदू \bigcirc मध्ये छेदतात. जर AO = 5, BO = 12 आणि AB = 13 तर $\square ABCD$ समभुज आहे हे दाखवा.
- 6. आकृती 5.12 मध्ये $\square PQRS$ व $\square ABCR$ हे दोन समांतरभुज चौकोन आहेत. $\angle P = 110^\circ$ तर $\square ABCR$ च्या सर्व कोनांची मापे काढा.

 आकृती 5.13 मध्ये □ABCD समांतरभुज चौकोन आहे. किरण AB वर बिंदू E असा आहे की BE = AB. तर सिद्ध करा, की रेषा ED ही रेख BC ला F मध्ये दभागते.

समांतर रेषांच्या कसोट्या

- 1. जर दोन रेषांना एका छेदिकेने छेदले असता होणाऱ्या संगत कोनाची एक जोडी एकरूप असेल, तर त्या दोन रेषा एकमेकींना समांतर असतात.
- 2. जर दोन रेषांना एका छेदिकेने छेदले असता व्युत्क्रम कोनांची एक जोडी एकरूप असेल, तर त्या दोन रेषा एकमेकींना समांतर असतात.
- 3. जर दोन रेषांना एका छेदिकेने छेदले असता आंतरकोनांची एक जोडी पूरक असेल, तर त्या दोन रेषा एकमेकींना समांतर असतात.

समांतरभुज चौकोनाच्या कसोट्या (Tests for parallelogram)

समजा, □PQRS मध्ये PS = QR आणि PQ = SR आहे. □PQRS हा समांतरभुज आहे हे सिद्ध करायचे आहे. त्यासाठी या चौकोनाच्या बाजूंच्या कोणत्या जोड्या समांतर आहेत असे दाखवावे लागेल? त्यासाठी समांतर रेषांची कोणती कसोटी उपयोगी पडेल? कसोटीसाठी आवश्यक असणारे कोन मिळवण्यासाठी कोणती रेषा छेदिका म्हणन घेणे सोईचे होईल?

प्रमेय : चौकोनाच्या संमुख बाजूंच्या जोड्या एकरूप असतील तर तो चौकोन समांतरभुज असतो.

पक्ष : □PQRS मध्ये

बाजू $PS \cong$ बाजू QR

बाजू $PQ \cong$ बाजू SRसाध्य : $\Box PQRS$ हा समांतरभुज आहे.

रचना : कर्ण PR काढला.

सिद्धता : Δ SPR व Δ QRP मध्ये,

बाजू $SP \cong$ बाजू $QR \dots (पक्ष)$

बाजू $SR \cong$ बाजू $QP \dots ($ पक्ष)

बाजू $PR \cong$ बाजू $RP \dots$ सामाईक बाजू

 $\therefore \Delta$ SPR $\cong \Delta$ QRP \dots बाबाबा कसोटी

 $\therefore \angle SPR \cong \angle QRP \dots$ एकरूप त्रिकोणांचे संगत कोन

तसेच $\angle PRS \cong \angle RPQ$ एकरूप त्रिकोणांचे संगत कोन

∠SPR आणि ∠QRP हे रेख PS आणि रेख QR यांच्या PR या छेदिकेमुळे झालेले व्युत्क्रम कोन आहेत.

∴ बाजू PS || बाजू QR(I) समांतर रेषांची व्युत्क्रम कोन कसोटी.

तसेच ∠PRS आणि ∠RPQ हे रेख PQ आणि रेख SR यांच्या PR या छेदिकेमुळे झालेले व्युत्क्रम कोन आहेत.

- \therefore बाजू $PQ \parallel$ बाजू $SR \dots(II)$ समांतर रेषांची व्युत्क्रम कोन कसोटी.
- \therefore (I) व (II) वरून \square PQRS हा समांतरभुज आहे.

समांतरभुज चौकोन काढण्याच्या दोन रीती सुरुवातीला दिल्या आहेत. दुसऱ्या रीतीत प्रत्यक्षात संमुख बाजू समान असलेला चौकोन काढला आहे. असा चौकोन समांतरभुज का असतो, हे आता लक्षात आले का?

प्रमेय: चौकोनाच्या संमुख कोनांच्या जोड्या एकरूप असतील तर तो समांतरभुज चौकोन असतो. खाली दिलेल्या पक्ष, साध्य आणि सिद्धतेतील रिकाम्या जागा भरा.

पक्ष : □EFGH मध्ये ∠E ≅ ∠G

आणि ∠..... ≅ ∠.....

साध्य : □EFGH हा

सिद्धता : $\angle E = \angle G = x$ आणि $\angle H = \angle F = y$ मानू. चौकोनाच्या कोनांच्या मापांची बेरीज असते.

$$\therefore$$
 \angle E + \angle G + \angle H + \angle F =

$$\therefore x + y + \dots + \dots = \dots$$

$$\therefore \Box x + \Box y = \dots$$

$$\therefore x + y = 180^{\circ}$$

रेख HE आणि रेख GF यांना छेदिका HG ने छेदल्यामुळे \angle G आणि \angle H हे आंतरकोन तयार झाले आहेत.

 \therefore बाजू HE \parallel बाजू GF (I) समांतर रेषांची आंतरकोन कसोटी.

त्याचप्रमाणे $\angle G + \angle F = \dots$

 \therefore बाजू \parallel बाजू (\amalg) समांतर रेषांची आंतरकोन कसोटी.

∴ (I) व (II) वरून □EFGH हा आहे.

प्रमेय : चौकोनाचे कर्ण परस्परांना दुभागत असतील तर तो चौकोन समांतरभुज असतो.

पक्ष : $\square ABCD$ चे कर्ण परस्परांना बिंदू E मध्ये दुभागतात. म्हणजेच रेख $AE\cong$ रेख CE

रेख BE ≅ रेख DE

साध्य : □ABCD हा समांतरभूज आहे.

सिद्धता : पुढील प्रश्नांची उत्तरे शोधा आणि सिद्धता तुम्ही स्वतः लिहा. 🔬

- रेख AB || रेख DC हे सिद्ध करण्यासाठी व्युत्क्रम कोनांची कोणती जोडी एकरूप दाखवावी लागेल? व्युत्क्रम कोनांची ती जोडी कोणत्या छेदिकेमुळे मिळेल?
- 2. व्युत्क्रम कोनांच्या निवडलेल्या जोडीतील कोन हे कोणकोणत्या त्रिकोणांचे कोन आहेत?

आकृती 5.17

आकृती 5.18

- 3. त्यांपैकी कोणते त्रिकोण कोणत्या कसोटीने एकरूप होतात?
- 4. याप्रमाणे विचार करून रेख AD || रेख BC हे सिद्ध करता येईल ना?

एखादा चौकोन समांतरभुज आहे असे सिद्ध करायचे असते तेव्हा वरील प्रमेये उपयोगी पडतात. म्हणून या प्रमेयांना समांतरभुज चौकोनाच्या कसोट्या म्हणतात.

आणखी एक प्रमेय समांतरभुज चौकोनाची कसोटी म्हणून उपयोगी पडते.

प्रमेय : चौकोनाच्या संमुख बाजूंची एक जोडी एकरूप आणि समांतर असेल तर तो चौकोन समांतरभुज

असतो.

पक्ष : $\square ABCD$ मध्ये रेख $CB \cong$ रेख DA आणि रेख $CB \parallel$ रेख DA

साध्य : □ABCD समांतरभुज आहे.

रचना : कर्ण BD काढला.

खाली थोडक्यात दिलेली सिद्धता तुम्ही विस्ताराने लिहा.

 Δ CBD $\cong \Delta$ ADBबा-को-बा कसोटी.

 \therefore \angle CDB \cong \angle ABD \dots एकरूप त्रिकोणांचे संगत कोन.

∴ रेख CD || रेख BA समांतर रेषांची व्युत्क्रम कोन कसोटी.

- ☀ ज्या चौकोनाच्या संमुख कोनांच्या जोड्या एकरूप असतात तो चौकोन समांतरभुज असतो.
- 🌞 ज्या चौकोनाच्या संमुख बाजूंच्या जोड्या एकरूप असतात तो चौकोन समांतरभुज असतो.
- ज्या चौकोनाचे कर्ण परस्परांना दुभागतात तो चौकोन समांतरभुज असतो.

★ चौकोनाच्या संमुख बाजूंची एक जोडी एकरूप आणि समांतर असेल तर तो चौकोन समांतरभुज असतो.
या प्रमेयांना समांतरभुज चौकोनाच्या कसोट्या म्हणतात.

वहीमधील छापलेल्या रेषा एकमेकींना समांतर असतात. या रेषांचा उपयोग करून एखादा समांतरभुज चौकोन कसा काढता येईल?

	10		
साड०	लिला	उदाहरणे	_

- उदा (1) □PQRS हा समांतरभुज आहे. बाजू PQ चा मध्यबिंद् M आणि बाजू RS चा मध्यबिंद् N आहे तर □PMNS आणि □MQRN समांतरभुज आहेत हे सिद्ध करा.
- : □PQRS समांतरभुज आहे. बाजू PQ आणि पक्ष बाजू RS यांचे अनुक्रमे M आणि N हे मध्यबिंदु आहेत.

∴ बाजू PM || बाजू SN (∵ P-M-Q; S-N-R)(I) तसेच बाजू PQ = बाजू SR.

$$\therefore \frac{1}{2}$$
बाजू PQ = $\frac{1}{2}$ बाजू SR

- ∴ बाजू PM = बाजू SN (∵ M a N हे मध्यबिंदू आहेत.).....(Ⅱ)
- \therefore (I) व (II) वरून \square PMNQ हा समांतरभुज आहे, त्याचप्रमाणे □MQRN समांतरभुज आहे हे सिद्ध करता येईल.
- उदा (2) Δ ABC च्या बाजू AB आणि AC यांचे अनुक्रमे D व E हे मध्यबिंदू आहेत. किरण ED वर बिंद F असा आहे, की ED = DF. तर सिद्ध करा, □AFBE हा समांतरभूज आहे. या उदाहरणासाठी पक्ष आणि साध्य तुम्ही लिहा आणि सिद्धतेतील रिकाम्या जागा भरून ती पूर्ण करा.

पक्ष

साध्य

सिद्धता : रेख AB आणि रेख EF हे □AFBE चे आहेत.

रेख AD ≅ रेख DB......

≅ रेख

∴ □AFBE चे कर्ण परस्परांना

कसोटीने □AFBE समांतरभुज आहे.

आकृती 5.19

उदा (3) कोणताही समभुज चौकोन हा समांतरभुज असतो हे सिद्ध करा.

: □ABCD समभुज आहे पक्ष

: □ABCD समांतरभुज आहे. साध्य

सिद्धता : बाजू AB = बाजू BC = बाजू CD = बाजू DA (पक्ष)

 \therefore बाजू AB = बाजू CD आणि बाजू BC = बाजू AD

∴ □ABCD समांतरभुज आहे..... (समांतरभुज चौकोनाची संमुख भुजा कसोटी)

सरावसंच 5.2

 आकृती 5.22 मध्ये, □ABCD हा समांतरभुज आहे. बिंदू P व बिंदू Q हे अनुक्रमे बाजू AB व बाजू DC यांचे मध्यबिंदू आहेत तर सिद्ध करा की, □APCQ समांतरभुज आहे.

- 2. कोणताही आयत समांतरभुज असतो, हे सिद्ध करा.
- 3. आकृती 5.23 मध्ये, बिंदू G हा Δ DEF चा मध्यगा संपात आहे. किरण DG वर बिंदू H असा घ्या, की D-G-H आणि DG = GH, तर सिद्ध करा $\Box GEHF$ समांतरभुज आहे.

- 4*.समांतरभुज चौकोनाच्या चारही कोनांच्या दुभाजकांमुळे तयार झालेला चौकोन आयत असतो, हे सिद्ध करा. (आकृती 5.24)
- 5. शेजारील आकृती 5.25 मध्ये □ABCD ह्या समांतरभुज चौकोनाच्या बाजूंवर P, Q, R, S बिंदू असे आहेत की, AP = BQ = CR = DS तर सिद्ध करा, की □PQRS हा समांतरभुज चौकोन आहे.

आयत, समभुज चौकोन आणि चौरस यांचे विशेष गुणधर्म (Properties of rectangle, rhombus and square)

आयत, समभुज चौकोन आणि चौरस हे समांतरभुज चौकोनही असतात. त्यामुळे संमुख बाजू समान असणे, संमुख कोन समान असणे आणि कर्ण परस्परांना दुभागणे हे गुणधर्म या तिन्ही प्रकारच्या चौकोनांत असतात. परंतु यापेक्षा काही अधिक गुणधर्म या प्रत्येक प्रकारच्या चौकोनात असतात. ते आपण पाहू.

या गुणधर्मांच्या सिद्धता पुढे थोडक्यात दिल्या आहेत. दिलेल्या पायऱ्या विचारात घेऊन तुम्ही त्या सिद्धता विस्ताराने लिहा.

प्रमेय : आयताचे कर्ण एकरूप असतात.

पक्ष : □ABCD हा आयत आहे.

साध्य : कर्ण $AC \cong$ कर्ण BD

सिद्धता : थोडक्यात दिलेली सिद्धता कारणे देऊन पूर्ण करा.

 Δ ADC $\cong \Delta$ DAB बाकोबा कसोटी.

कर्ण $AC \cong$ कर्ण BD..... (एकरूप त्रिकोणांच्या संगत बाजू)

प्रमेय : चौरसाचे कर्ण एकरूप असतात. पक्ष, साध्य आणि सिद्धता तुम्ही लिहा.

प्रमेय : समभुज चौकोनाचे कर्ण परस्परांचे लंबदुभाजक असतात.

पक्ष : □EFGH समभुज आहे.

साध्य : (i) कर्ण EG हा कर्ण HF चा लंबदुभाजक आहे.

(ii) कर्ण HF हा कर्ण EG चा लंबदुभाजक आाहे.

सिद्धता : (i) रेख $EF \cong \overline{\iota}$ ख EH रेख $GF \cong \overline{\iota}$ ख GH

आकृती 5.26

रेषाखंडाच्या टोकांपासून समदूर असणारा प्रत्येक बिंदू त्या रेषाखंडाच्या लंबदुभाजकावर असतो.

∴ बिंदू E व बिंदू G हे रेख HF च्या लंबदुभाजकावर आहेत.

दोन भिन्न बिंदूंतून एक आणि एकच रेषा जाते.

- .. रेषा EG ही कर्ण HF ची लंबदुभाजक रेषा आहे.
- ∴ कर्ण EG हा कर्ण HF चा लंबदुभाजक आहे.
- (ii) याप्रमाणेच कर्ण HF हा कर्ण EG चा लंबदुभाजक आहे हे सिद्ध करता येईल.

पुढील प्रमेयांच्या सिद्धता तुम्ही लिहा.

- चौरसाचे कर्ण परस्परांचे लंबदुभाजक असतात.
- समभुज चौकोनाचे कर्ण त्याचे संमुख कोन दुभागतात.
- चौरसाचे कर्ण त्याचे संमुख कोन दुभागतात.

हे लक्षात ठेवूया.

- आयताचे कर्ण एकरूप असतात.
- समभुज चौकोनाचे कर्ण परस्परांचे लंबदुभाजक असतात.
- समभुज चौकोनाचे कर्ण संमुख कोन दुभागतात.
- चौरसाचे कर्ण एकरूप असतात.
- चौरसाचे कर्ण परस्परांचे लंबदुभाजक असतात.
- चौरसाचे कर्ण संमुख कोन दुभागतात.

सरावसंच 5.3

- 1. \Box ABCD या आयताचे कर्ण O मध्ये छेदतात. जर AC = 8 सेमी, तर BO = ? जर ∠CAD = 35° तर ∠ACB = ?
- 2. \Box PQRS या समभुज चौकोनात जर PQ = 7.5 सेमी, तर QR = ? जर \angle QPS = 75° तर \angle PQR = ?, \angle SRQ = ?
- 3. \square IJKL या चौरसाचे कर्ण परस्परांना बिंदू M मध्ये छेदतात. तर \angle IMJ, \angle JIK आणि \angle LJK यांची मापे ठरवा.
- 4. एका समभुज चौकोनाच्या कर्णांची लांबी अनुक्रमे 20 सेमी, 21 सेमी आहे, तर त्या चौकोनाची बाजू व परिमिती काढा.
- 5. खालील विधाने सत्य की असत्य हे सकारण लिहा.
 - (i) प्रत्येक समांतरभुज चौकोन समभुज चौकोन असतो. (ii) प्रत्येक समभुज चौकोन हा आयत असतो.
 - (iii) प्रत्येक आयत हा समांतरभुज चौकोन असतो.
- (iv) प्रत्येक चौरस हा आयत असतो.
- (v) प्रत्येक चौरस हा समभुज चौकोन असतो.
- (vi) प्रत्येक समांतरभुज चौकोन आयत असतो.

समलंब चौकोन (Trapezium)

ज्या चौकोनाच्या संमुख बाजूंची एकच जोडी समांतर असते, त्या चौकोनाला समलंब चौकोन म्हणतात.

सोबतच्या आकृतीत □ABCD च्या फक्त AB आणि DC याच बाजू एकमेकींना समांतर आहेत. म्हणजे हा समलंब चौकोन आहे.

समांतर रेषांच्या गुणधर्मानुसार ∠A आणि ∠D ही लगतच्या कोनांची जोडी पूरक आहे. तसेच ∠B आणि ∠C ही लगतच्या कोनांची जोडीसुद्धा पूरक आहे. समलंब चौकोनात लगतच्या कोनांच्या दोन जोड्या पूरक असतात.

समलंब चौकोनाच्या समांतर नसलेल्या (असमांतर) बाजूंची जोडी एकरूप असेल तर त्या चौकोनाला समद्विभुज समलंब चौकोन (Isosceles trapezium) म्हणतात.

समलंब चौकोनाच्या असमांतर बाजूंचे मध्यबिंदू जोडणाऱ्या रेषाखंडाला त्या समलंब चौकोनाची मध्यगा म्हणतात.

सोडवलेली उदाहरणे :

उदा (1) □ABCD च्या कोनांची मापे 4 : 5 : 7 : 8 या प्रमाणात आहेत. तर □ABCD समलंब आहे, हे दाखवा.

उकल : समजा, $\angle A$, $\angle B$, $\angle C$, $\angle D$ यांची मापे अनुक्रमे $(4x)^{\circ}$, $(5x)^{\circ}$, $(7x)^{\circ}$, व $(8x)^{\circ}$ असे मानू. चौकोनाच्या सर्व कोनांच्या मापांची बेरीज 360° असते.

$$\therefore$$
 4x + 5x + 7x + 8x = 360

आकृती 5.30

$$\therefore 24x = 360$$
 $\therefore x = 15$

$$\angle A = 4 \times 15 = 60^{\circ}$$
, $\angle B = 5 \times 15 = 75^{\circ}$, $\angle C = 7 \times 15 = 105^{\circ}$,

आणि
$$\angle D = 8 \times 15 = 120^{\circ}$$

आता,
$$\angle B + \angle C = 75^{\circ} + 105^{\circ} = 180^{\circ}$$

परंतु
$$\angle B + \angle A = 75^{\circ} + 60^{\circ} = 135^{\circ} \neq 180^{\circ}$$

उदा (2) समलंब $\square PQRS$ मध्ये बाजू $PS \parallel$ बाजू QR आणि बाजू $PQ \cong$ बाजू SR,

बाजू QR > बाजू PS तर सिद्ध करा $\angle PQR \cong \angle SRQ$

पक्ष : \square PQRS मध्ये बाजू PS \parallel बाजू QR आणि बाजू PQ \cong बाजू SR

साध्य : $\angle PQR \cong \angle SRQ$

रचना : बिंदू S मधून बाजू PQ ला समांतर रेषाखंड काढला.

तो बाजू QR ला T मध्ये छेदतो.

रेख PS || रेख QTपक्ष आणि Q-T-R

रेख PQ || रेख STरचना

∴ □PQTS हा समांतरभुज चौकोन आहे.

∴ ∠PQT \cong ∠STR संगत कोन (I)

तसेच रेख $PQ \cong$ रेख ST

परंतु रेख $PQ \cong$ रेख $SR \dots (पक्ष)$

∴ रेख ST ≅ रेख SR

 \therefore \angle STR \cong \angle SRT \dots .समद्विभुज त्रिकोणाचे प्रमेय (\coprod)

 $\therefore \angle PQT \cong \angle SRT \dots(I)$ व (II) वरून.

 \therefore \angle PQR \cong \angle SRQ Q-T-R.

यावरून सिद्ध होते, की समद्विभुज समलंब चौकोनाचे पायालगतचे कोन एकरूप असतात.

सरावसंच 5.4

1. □IJKL मध्ये बाजू IJ \parallel बाजू KL असून \angle I = 108° \angle K = 53° तर \angle J आणि \angle L यांची मापे काढा.

2. $\Box ABCD$ मध्ये बाजू BC \parallel बाजू AD असून बाजू AB \cong बाजू DC जर $\angle A = 72^\circ$ तर $\angle B$, आणि $\angle D$ यांची मापे ठरवा.

3. आकृती 5.32 मधील □ABCD मध्ये बाजू BC < बाजू AD असून बाजू BC || बाजू AD आणि जर बाजू BA ≅ बाजू CD तर ∠ABC ≅ ∠DCB हे सिद्ध करा.

त्रिकोणाच्या दोन बार्जूच्या मध्यबिंद्ंचे प्रमेय (Theorem of midpoints of two sides of a triangle)

विधान : त्रिकोणाच्या कोणत्याही दोन बाजूंचे मध्यबिंदू जोडणारा रेषाखंड तिसऱ्या बाजूला समांतर असतो व त्या बाजूच्या निम्म्या लांबीचा असतो.

पक्ष : Δ ABC मध्ये बिंदू P हा रेख AB चा मध्यबिंदू व बिंदू Q हा रेख AC चा मध्यबिंदू आहे.

साध्य : रेख PQ \parallel रेख BC आणि PQ = $\frac{1}{2}$ BC

रचना : रेख PQ हा R पर्यंत असा वाढवा की PQ = QR रेख RC काढा.

सिद्धता : Δ AQP व Δ CQR मध्ये

रेख $PQ \cong$ रेख $QR \dots$ रचना

रेख AQ ≅ रेख QC Q हा AC चा मध्यबिंदू.

 $\angle AQP \cong \angle CQR$ परस्पर विरुद्ध कोन.

 \therefore \triangle AQP \cong \triangle CQR बाकोबा कसोटी

 $\angle PAQ \cong \angle RCQ \dots$ (1) एकरूप त्रिकोणांचे संगत कोन.

 \therefore रेख AP \cong रेख CR(2) एकरूप त्रिकोणांच्या संगत भुजा

विधान (1) वरून रेषा AB || रेषा CR.........च्युत्क्रम कोन कसोटी.

विधान (2) वरून रेख $AP \cong \overline{\lambda}$ ख CR

परंतु रेख $AP \cong \lambda$ ख $PB \cong \lambda$ ख CR आणि रेख $PB \parallel \lambda$ ख CR

∴ □PBCR हा समांतरभुज चौकोन आहे.

∴ रेख PQ ।। रेख BC आणि PR = BC कारण संमुख बाजू समान लांबीच्या असतात.

$$PQ = \frac{1}{2} PR \dots$$
 रचना

$$\therefore$$
 PQ = $\frac{1}{2}$ BC \therefore PR = BC

(त्रिकोणाच्या दोन बाजूंच्या मध्यबिंदुंच्या प्रमेयाचा व्यत्यास)

ः त्रिकोणाच्या एका बाजूच्या मध्यबिंदुतून जाणारी व दुसऱ्या बाजूला समांतर असणारी रेषा तिसऱ्या प्रमेय बाजूला दुभागते.

> या विधानासाठी आकृती, पक्ष, साध्य, रचना दिलेली आहे. त्यावरून त्या विधानाची सिद्धता लिहिण्याचा प्रयत्न करा.

: Δ ABC च्या बाजू AB चा मध्यबिंदु D पक्ष आहे.बिंद् D मधून जाणारी बाजू BC ला समांतर असणारी रेषा l ही बाजू AC ला बिंद E मध्ये छेदते.

- : बिंदू C मधून रख AB ला समांतर रषा काढा. ϵ रषा, रषा l ला ज्या बिंदूत छदत, रचना त्या बिंदूला F नाव द्या.
- **सिद्धता** : रेषा $l \parallel$ रेख BC (पक्ष) आणि केलेली रचना यांचा उपयोग करून \square BCFD हा समांतरभुज चौकोन आहे, हे दाखवा. Δ ADE $\cong \Delta$ CFE हे सिद्ध करा आणि त्यावरून साध्य सिद्ध करा.

सोडवलेली उदाहरणे

- उदा (1) Δ ABC च्या बाजू AB व AC चे अनुक्रमे बिंदू E व F हे मध्यबिंदू आहेत. जर EF = 5.6 तर
- BC ची लांबी काढा. उकल : Δ ABC मध्ये बिंदू E व बिंदू F हे अनुक्रमे

बाजू AB व बाजू AC चे मध्यबिंदू आहेत.
$$EF = \frac{1}{2}$$
 BCमध्यबिंदूचे प्रमेय.

$$5.6 = \frac{1}{2}$$
 BC \therefore BC = $5.6 \times 2 = 11.2$

आकृती 5.37

- उदा (2) कोणत्याही चौकोनाच्या बाजूंचे मध्यबिंदू क्रमाने जोडून होणारा चौकोन समांतरभुज चौकोन असतो हे सिद्ध करा.
- : □ABCD च्या बाजू AB, BC, CD व पक्ष AD चे मध्यबिंदू अनुक्रमे P, Q, R, S आहेत.
- : □PQRS हा समांतरभुज चौकोन आहे.

: कर्ण BD काढा.

S

सिद्धता : Δ ABD मध्ये S हा AD चा मध्यिबंदू व P हा AB चा मध्यिबंदू आहे.

- \therefore मध्यिबंदूच्या प्रमेयानुसार, PS || DB आणि PS = $\frac{1}{2}$ BD(1) तसेच Δ DBC मध्ये Q व R हे अनुक्रमे BC व DC या बाजूंचे मध्यबिंदू आहेत.
- \therefore QR || BD, QR = $\frac{1}{2}$ BD(2) मध्यबिंदूच्या प्रमेयानुसार
- ∴PS || QR, PS = QR(1) व (2) वरून
- ∴ □PQRS हा समांतरभुज चौकोन आहे.

सरावसंच 5.5

- आकृती 5.38 मध्ये Δ ABC च्या बाजू AB, बाजू BC व बाजू AC चे अनुक्रमे बिंदू X, Y, Z हे मध्यबिंद् आहेत. AB = 5 सेमी, AC = 9 सेमी व BC = 11 सेमी, तर XY, YZ, XZ ची लांबी काढा.
- 2. आकृती 5.39 मध्ये □PQRS आणि □MNRL हे आयत आहेत. बिंदू M हा PR चा मध्यबिंदू आहे. तर सिद्ध करा (i) SL = LR, (ii) $LN = \frac{1}{2}SQ$.
- 3. आकृती 5.40 मध्ये Δ ABC या समभुज त्रिकोणात बिंदू F, D, E हे अनुक्रमे बाजू AB, बाजू BC, बाजू AC चे मध्यबिंद् आहेत तर Δ FED हा समभ्ज त्रिकोण आहे हे सिद्ध करा.
- 4. आकृती 5.41 मध्ये रेख PD ही Δ PQR ची मध्यगा आहे. बिंदू T हा PD चा मध्यबिंदू आहे. QT वाढवल्यावर PR ला M बिंदूत छेदतो, तर दाखवा की $\frac{PM}{PR} = \frac{1}{3}$. [सूचना : DN || QM काढा.]

आकृती 5.40

- खालील बहुपर्यायी प्रश्नांच्या दिलेल्या उत्तरांपैकी अचूक पर्याय निवडा. 1.
 - (i) ज्या चौकोनाच्या लगतच्या बाजूंच्या सर्व जोड्या एकरूप असतात त्या चौकोनाचे नाव कोणते ?
 - (A) आयत (B) समांतरभुज चौकोन (C) समलंब चौकोन (D) समभुज चौकोन

- (ii) एका चौरसाच्या कर्णाची लांबी $12\sqrt{2}$ सेमी आहे. तर त्याची परिमिती किती ?
 - (A) 24 सेमी (B) $24\sqrt{2}$ सेमी (C) 48 सेमी (D) $48\sqrt{2}$ सेमी
- (iii) एका समभुज चौकोनाच्या संमुख कोनांची मापे $(2x)^\circ$ व $(3x 40)^\circ$ असतील तर x = ?
 - (A) 100 ° (B) 80 ° (C) 160 ° (D) 40 °
- 2. एका काटकोन चौकोनाच्या लगतच्या बाजू अनुक्रमे 7 सेमी व 24 सेमी आहेत तर त्या चौकोनाच्या कर्णाची लांबी काढा.
- 3. चौरसाच्या कर्णाची लांबी 13 सेमी आहे तर चौरसाची बाजू काढा.
- 4. समांतरभुज चौकोनाच्या दोन लगतच्या बाजूंचे गुणोत्तर 3:4 आहे जर त्याची परिमिती 112 सेमी असेल तर त्याच्या प्रत्येक बाजूची लांबी काढा.
- 5. समभुज चौकोनाचे कर्ण PR व कर्ण QS यांची लांबी अनुक्रमे 20 सेमी व 48 सेमी आहे, तर समभुज चौकोन PQRS च्या बाजू PQ ची लांबी काढा.
- 6. आयत PQRS चे कर्ण परस्परांना M बिंदूत छेदतात. जर \angle QMR = 50 $^{\circ}$ तर \angle MPS चे माप काढा.
- 7. शेजारील आकृती 5.42 मध्ये रेख AB \parallel रेख PQ, रेख AB \cong रेख PQ, रेख AC \cong रेख PR तर सिद्ध करा की, रेख BC \parallel रेख QR व रेख BC \cong रेखQR.

8*. शेजारील आकृती 5.43 मध्ये □ABCD हा समलंब चौकोन आहे. AB || DC आहे.
 P व Q हे अनुक्रमे रेख AD व रेख BC चे मध्यबिंदू आहेत, तर सिद्ध करा की,
 PQ || AB a PQ = 1/2 (AB + DC)

9. शेजारील आकृती 5.44 मध्ये □ABCD हा समलंब चौकोन आहे. AB || DC. M आणि N हे अनुक्रमे कर्ण AC व कर्ण DB चे मध्यबिंदू आहेत. तर सिद्ध करा की, MN || AB

कृती

चौकोनाच्या विविध गुणधर्मांचा पडताळा घेणे.

साहित्य : 15 सेमी × 10 सेमी चा प्लायवुडचा तुकडा; 12 ते 15 खिळे, जाडा दोरा, कात्री.

सूचना : 15 सेमी × 10 सेमी चा प्लायवुडच्या तुकड्यावर सरळरेषेत 2 सेमी अंतरावर 5 खिळे ठोका. तसेच खालच्या सरळ रेषेत सुद्धा खिळे ठोका. दोन रेषांमधील अंतरसुद्धा 2 सेमी ठेवा. दोऱ्याने वेगवेगळे चौकोन (खिळ्चाचे आधाराने) तयार करा. बाजूसंबंधी गुणधर्म दोऱ्याने पडताळा. यावरून चौकोनांच्या कोनांसंबंधी गुणधर्म पडताळा.

आकृती 5.45

अधिक माहितीसाठी

त्रिकोणांचा मध्यगा संपातबिंदू प्रत्येक मध्यगेला 2:1 या प्रमाणात विभागतो, हा गुणधर्म तुम्हाला माहीत आहे.

त्याची खाली दिलेली सिद्धता अभ्यासा.

पक्ष : Δ ABC च्या रेख AD आणि रेख BE

या मध्यगा, बिंदु G मध्ये छेदतात.

साध्य : AG : GD = 2 : 1

रचना : किरण AD वर बिंदू F असा घेतला की

G-D-F आणि GD = DF

सिद्धता : □BGCF चे कर्ण परस्परांना दुभागतात. पक्ष व रचना.

∴ □BGCF समांतरभुज आहे.

आकृती 5.46

∴ रेषा BE || रेषा FC समांतरभुज चौकोनाच्या संमुख बाजूंना सामावणाऱ्या रेषा.

आता Δ AFC च्या बाजू AC चा E हा मध्यबिंद् आहे. (पक्ष)

रेख EB || रेषा FC

त्रिकोणाच्या एका बाजूच्या मध्यबिंदूतून दुसऱ्या बाजूला समांतर असलेली रेषा तिसऱ्या बाजूला दुभागते.

- ∴ रेख AF चा G हा मध्यबिंदू आहे.
- ∴ AG = GF

परंतु AG = 2 GD

 $\therefore \frac{AG}{GD} = \frac{2}{1}$ म्हणजेच AG : GD = 2 : 1