Oct 28, 2019, Intro to Robotics

Name:

PeopleSoft ID:

Problem	Score	Possible
1		15
2		25
3		15
4		25
5		15
6		10
Totals		105

You may have on your desk:

- Your student ID card
- 1 handwritten 8.5"x11" double-sided crib sheet
- This exam (provided by Professor)

Grading: (problem difficulty) × { 2 for trying 3 if partially correct

As in Appendix A, $\theta = \text{Atan2}(\cos(\theta), \sin(\theta)) = \text{Atan2}(x, y)$

Concepts: Covers chapters 1—4, 11.1—11.2

Rotations & transformations

- Composition of rotations about world or current frame
- Construct a homogenous transform

Kinematics

- Assign DH parameters
- Given DH parameters, construct *A* matrix
- Given two *A* matrices, construct *T* matrix

Inverse Kinematics

- Two-argument arc tangent function
- Solve inverse position kinematics for a 3-link arm

Jacobian

• Construct Jacobian given sketch and *T* matrices

Computer Vision

• Move from camera frame to world frame, reason from image coordinates

Problem 1: ____/15

- I. **(5 pt)** Write the matrix product that will give the resulting rotation matrix (*DO NOT perform the matrix multiplications, DO simplify*):
 - a. Rotate by α about the current z-axis
 - b. Rotate by β about the world *y*-axis
 - c. Rotate by γ about the world z-axis
 - d. Rotate by Φ about the current z-axis
 - e. Rotate by θ about the current *x*-axis
 - f. Rotate by ψ about the world *y*-axis
- II. **(5 pt)** Suppose the three coordinate frames $o_1x_1y_1z_1$, $o_2x_2y_2z_2$, and $o_3x_3y_3z_3$ are given, and suppose

$$R_1^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}, R_1^3 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$
 Find the matrix R_3^2

III.(5 pt) Consider diagram at right. The cube front right bottom corner is (1.5,2,-2) meters from the robot base. The cube has 1-meter sides. A frame $o_1x_1y_1z_1$ is fixed to the side of the cube as shown. A second coordinate frame $o_2x_2y_2z_2$ is centered on the top of the cube as shown. A camera is situated 2 meters right and $\frac{1}{2}$ meter above frame 2 with frame $o_3x_3y_3z_3$ attached as shown. Find the homogenous transform relating the camera frame to the frame $o_ex_ey_ez_e$, that is, H_3^e :

Problem 2: ____/25 Rotation matrices
Let
$$R_{YZX} = \begin{bmatrix} c_{\alpha}c_{\theta} & -c_{\beta}s_{\alpha} + c_{\alpha}s_{\beta}s_{\theta} & s_{\alpha}s_{\beta} + c_{\alpha}c_{\beta}s_{\theta} \\ s_{\alpha}c_{\theta} & c_{\alpha}c_{\beta} + s_{\alpha}s_{\beta}s_{\theta} & -c_{\alpha}s_{\beta} + c_{\beta}s_{\alpha}s_{\theta} \\ -s_{\theta} & s_{\beta}c_{\theta} & c_{\beta}c_{\theta} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

If r_{11} and r_{21} are not both zero, then $r_{31} \neq \pm 1$, $-s_{\theta} = r_{31}$, and $\ c_{\theta} = \pm \sqrt{1-r_{31}^2}$. If c_{θ} >0 (c_{θ} positive), then

a. **(5 pt)**
$$\alpha =$$

b. **(5pt)**
$$\beta =$$

(15 pts) Matrix Identification state Ves or No. +1 for each correctly listed

c. (15 pts) Matrix	Identification, state	Yes or No . +1 for each	ch correctly listed
	valid so(k)	valid SE(n)	valid SO(n)
$ \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} $			
$\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$			
$\begin{bmatrix} 0 & -1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \end{bmatrix}$			
$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix}$			
$\begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$			

Problem 3: _____/15, Forward Kinematics a.) **(5 pt)** For the 3-link robot below, **draw** and **label** the *z* and *x*-axes according to the DH convention

b.) (5pt) Give the DH parameters for this PRR robot.

* indicates variable

Link	r_i	α_i	d_i	$ heta_i$
1				
2				
3				

c.) **(5pt)** Compute the transformation matrix A_2 using the DH parameters:

* indicates variable

Link	r_i	α_i	d_i	θ_i
1	3	45°	5	$ heta_1^*$
2	5	90°	2	θ_2^*
3	7	90°	4	$ heta_3^*$
4	9	-90°	d_4^*	-90°

Problem 4: ____/25 RPR robot for inverse kinematics. Shown: $(\theta_1, d_2, \theta_3) = (\frac{\pi}{4}, 1, \frac{7\pi}{32})$

a.) **(2pt)** draw & shade x_1 , y_1 cross-section of manipulator's *workspace* at $z_1 = 1$. Label all radii.

b.) **(8pt)** draw & shade x_0 , y_0 cross-section of manipulator's *workspace* at $z_0 = 2$. Label all radii.

What joint variables place the end-effector at the point $[x_o, y_o, z_c]$ specified in the frame $o_0x_0y_0z_0$? Assume the point is reachable and that $0 \le \theta_3^* \le \pi/2$.

c.) **(5pt)**
$$\theta_3^* =$$

d.) **(5pt)**
$$d_2^* =$$

e.) **(5pt)**
$$\theta_1^* =$$

Problem 5: ____/15

Calculate the manipulator Jacobian of the 2-link RR arm at the position $o_2 = o_c$.

$$T_{1}^{0} = \begin{bmatrix} c_{1} & -s_{1} & 0 & 4c_{1} \\ s_{1} & c_{1} & 0 & 4s_{1} \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}, T_{2}^{0} = \begin{bmatrix} c_{1+2} & 0 & -s_{1+2} & 4c_{1} + 2 & c_{1+2} \\ s_{1+2} & 0 & c_{1+2} & 4s_{1} + 2 & s_{1+2} \\ s_{2} & 0 & 0 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

a. **(3 pts)** Write out the *J* matrix in terms of z_i and o_i .

b. **(2 pt)** Write out the z_i and o_i values needed for part a.

c. **(10 pts)** Write out the *J* matrix. Calculate the cross products.

Problem 6: _____/10 Computer Vision

a. (5 pt) frames $o_1x_1y_1z_1$ and $o_0x_0y_0z_0$ are related by homogenous transformation H_0^1 . A particle has position $[4,2,-6]^T$ relative to frame $o_0x_0y_0z_0$. What is the position of the particle in frame $o_1x_1y_1z_1$?

$$H_0^1 = \begin{bmatrix} 0 & 0 & 1 & -8 \\ -1 & 0 & 0 & 2 \\ 0 & -1 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

b. (5 pt) For a camera with focal length $\lambda = 4$, suppose the optical axis is parallel with the world *y*-axis, the camera *x*-axis is parallel to the negative world *z*-axis, (and thus camera *y*-axis parallel to negative world *x*-axis) and the center of projection has world coordinates $[3, -9, 6]^T$.

Compute $[18,3,18]^w \rightarrow ($, ,)^c

And convert these to image plane coordinates \rightarrow (u,v)=