Student: Arfaz Hossain

Date: 10/30/21 Course: MATH 100 (A01, A02, A03) Fall Assignment: Assignment 6

Instructor: UVIC Math

2021

Find the value(s) of c that satisfy the equation $\frac{f(b) - f(a)}{b - a} = f'(c)$ in the conclusion of the mean value theorem for the function

$$f(x) = \sin^{-1} x$$
 in the interval $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$.

If $f(x) = \sin^{-1} x$ and the interval [a,b] is $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$, what are f(a) and f(b)?

$$f(a) = \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$$
, $f(b) = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$

(Simplify your answer. Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression.)

Evaluate f'(c).

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$= \frac{\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)}{\frac{1}{\sqrt{2}} - \left(-\frac{1}{\sqrt{2}}\right)}$$

$$= \frac{\pi}{2\sqrt{2}}$$

(Simplify your answer. Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression.)

Put $y = f(x) = \sin^{-1} x$, then $\sin y = x$. Differentiate both sides to obtain $\frac{d}{dx}(\sin y) = \frac{d}{dx}(x)$.

Use the chain rule, $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ to evaluate the derivative.

$$\frac{d}{dx}(\sin y) = \frac{d}{dx}(x)$$

$$\cos y = \frac{dy}{dx} = 1$$

(Simplify your answer.)

Express cos y as a function of x. Use $\sin^2 y + \cos^2 y = 1$ to obtain $\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$.

Substitute $\cos y = \sqrt{1 - x^2}$ in the above.

$$\cos y \frac{dy}{dx} = 1$$

$$\sqrt{1-x^2} \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = 1 \div \sqrt{1 - x^2}$$

Put $\frac{dy}{dx} = f'(x) = \frac{1}{\sqrt{1-x^2}}$, then what is f'(x) at x = c?

$$f'(c) = \frac{1}{\sqrt{1 - c^2}}$$

(Simplify your answer. Type an exact answer, using radicals as needed.)

From above, $f'(c) = \frac{\pi}{2\sqrt{2}}$. Simplify the expression.

$$\frac{1}{\sqrt{1-c^2}} = \frac{\pi}{2\sqrt{2}}$$

$$1-c^2 = \frac{8}{\pi^2}$$

(Simplify your answer. Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression.)

Solve for c.

$$1 - c^2 = \frac{8}{\pi^2}$$

$$c = \pm \sqrt{1 - \frac{8}{\pi^2}}$$

(Simplify your answer. Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression.)

The values of c that satisfy the equation $\frac{f(b)-f(a)}{b-a}=f'(c)$ for the function $f(x)=\sin^{-1}x$ in the interval $\left[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right]$ are

$$c = \pm \sqrt{1 - \frac{8}{\pi^2}}.$$