

ÉDL linéaires et nombres complexes À rendre le 27 novembre

■ Définition 1. Une fonction à valeurs complexes f est dite dérivable si les fonctions à valeurs réelles $\Re(f)$ et $\Im(f)$ le sont. Dans ce cas, on a :

$$f' = (\mathfrak{Re}(f))' + i(\mathfrak{Im}(f))'.$$

Sur l'exemple précédent : f est dérivable sur \mathbf{R} et

$$\forall x \in \mathbf{R}, \quad f'(x) = 2e^{2x} + 2ix.$$

Rappel: Pour $z \in \mathbf{C}$, on a défini e^z par:

$$e^z = e^{\Re \mathfrak{e}(z)} \times e^{i\Im \mathfrak{m}(z)}$$
.

Partie A

Questions préliminaires

Soit $(\alpha, \beta) \in \mathbb{R}^2$. On considère la fonction h définie sur \mathbb{R} par $h(x) = e^{(\alpha + i\beta)x}$.

- **1.** Déterminer $\mathfrak{Re}(h)$ et $\mathfrak{Im}(h)$.
- **2.** En déduire que h est dérivable sur \mathbf{R} et que

$$\forall x \in \mathbf{R}, \quad h'(x) = (\alpha + i\beta)e^{(\alpha + i\beta)x}.$$

Ainsi, pour tout $m \in \mathbf{C}$, on a montré que :

$$\forall x \in \mathbf{R}, \quad (e^{mx})' = me^{mx}.$$

Partie B

On considère l'équation différentielle :

(E)
$$az'' + bz' + cz = f(x)$$

où a, b, c sont des réels tels que $a \neq 0$ et f est une fonction continue sur \mathbf{R} et à valeurs dans \mathbf{C} . On considère les équations différentielles suivantes :

$$(E_1)$$
 $ay'' + by' + cy = \Re(f)(x)$ et (E_2) $ay'' + by' + cy = \Im(f)(x)$

On rappelle que:

$$\forall x \in \mathbb{R}, \quad f(x) = \mathfrak{Re}(f)(x) + i\mathfrak{Im}(f)(x)$$

- **1.** Montrer que z est solution de (E) si, et seulement si, $\mathfrak{Re}(z)$ est solution de (E_1) et $\mathfrak{Im}(z)$ est solution de (E_2) .
- **2.** Dans cette question, on pose $f(x) = e^{mx}$, où $m \in \mathbb{C}$. On suppose que m n'est pas solution de l'équation caractéristique.

Montrer que (E) admet une solution particulière z_p de la forme λe^{mx} avec $\lambda \in \mathbf{C}$ à déterminer.

ÉDL linéaires et nombres complexes À rendre le 27 novembre

Partie C

Une application

On souhaite résoudre l'équation différentielle

(F)
$$y'' + 2y' + 5y = \cos(2x)e^x$$

1. Déterminer $m \in \mathbf{C}$ tel que

$$\forall x \in \mathbf{R}, \quad \cos(2x)e^x = \mathfrak{Re}(e^{mx}).$$

2. Déterminer une solution particulière de

$$z'' + 2z' + 5z = e^{mx}$$
.

3. En déduire les solutions de (F).

* * *