

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

Alexandros Filotheou

School of Electrical and Computer Engineering Aristotle University of Thessaloniki, Greece

The gist

The method estimates the pose of a 2D LIDAR given only a single measurement and the map of the environment, while

- being robust against
- -environment repetitions
- -map distortions
- -sensor noise
- -sensor FOV (radial & angular)
- executing at ≈ 1 sec per 100 m² of environment area
- requiring no parameters to be tuned
- making no assumptions about the environment

because CAER (eq. (1))

- scales with position and orientation error
- computationally cheap at • 1S \sim O(sensor rays)

Experiments with real and synthetic data

In > 6000	Mean Position	Mean Orientation	Mean Execution
attempts	Error [m]	Error [rad]	Time [sec]
ALS [1]	0.500	1.956	6.15
CBGL	0.041	0.011	1.61

[1] Naoki Akai, "Reliable Monte Carlo Localization for Mobile Robots", Journal of Field Robotics, 2023

Setup & Motivation

Unknown $\mathbf{p}(x,y,\theta)$ estimate $\hat{\boldsymbol{p}}(\hat{x}, \hat{y}, \theta)$. $\hat{\boldsymbol{p}} - \hat{\boldsymbol{p}} = (\Delta \boldsymbol{l}, \Delta \theta)$

 $\mathrm{CAER}(\mathcal{S}_R, \mathcal{S}_V) \triangleq$

and virtual $\mathcal{S}_R(oldsymbol{p})$ $\mathcal{S}_V(\hat{\boldsymbol{p}})$ scans, in the local coordinate frame of each sensor

Definition 1. The Cumulative Absolute Error per Ray (CAER) metric

scan rays—1

