Теория автоматов и формальных языков Иерархия Хомского

Автор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

13 декабря 2016г.

В предыдущей серии

- Регулярные языки и конечные автоматы
- Контекстно-свободные языки и магазинные автоматы
- Неограниченные языки и машины Тьюринга

Контекстно-зависимые грамматики

K3 грамматика: (V_T, V_N, P, S)

- \bullet V_T алфавит терминалов
- ullet V_N алфавит нетерминалов, $V_T \cap V_N = arnothing$
- P конечное множество продукций грамматики вида $\alpha A \beta \to \alpha \gamma \beta$: $\alpha, \beta \in (V_T \cup V_N)^*, A \in V_N, \gamma \in (V_T \cup V_N)^+$ α, β контекст
- ullet $S \in V_N$ стартовый нетерминал

Язык: $\{\omega \in V_T^* \mid S \stackrel{*}{\Rightarrow} omega\}$

Неукорачивающие грамматики

Неукорачивающая: (V_T, V_N, P, S)

- V_T алфавит терминалов
- ullet V_N алфавит нетерминалов, $V_T \cap V_N = arnothing$
- P конечное множество продукций грамматики вида $lpha o eta: lpha, eta \in (V_T \cup V_N)^+, 1 \le |lpha| \le |eta|$
- ullet $S \in V_N$ стартовый нетерминал

Язык: $\{\omega \in V_T^* \mid S \stackrel{*}{\Rightarrow} omega\}$

Эквивалентность КЗ и неукорачивающих грамматик

Теорема

Контекстно-зависимые и неукорачивающие грамматики задают один и тот же класс языков

Доказательство

⇒: Любая КЗ-грамматика является неукорачивающей

Эквивалентность КЗ и неукорачивающих грамматик

Доказательство

 \Leftarrow : Преобразуем правила неукорачивающей грам. к виду $\alpha \mathsf{A}\beta \to \alpha\gamma\beta$

- Заменим все вхождения терминалов в правило на нетерминалы, добавим соответствующие правила (вида $Z o a, Z \in V_N, a \in V_T$)
- ullet Теперь все правила имеют вид $X_1 X_2 \dots X_m o Y_1 Y_2 \dots Y_{m+q}, m>0, q\geq 0, X_i, Y_j \in V_N$
- Такие правила эквивалентны группе правил (требуемого вида):
 - $X_1X_2\ldots X_m\to A_1X_2\ldots X_m$
 - $A_1X_2\ldots X_m\to A_1A_2\ldots X_m$

 - $A_1A_2\ldots X_m \to A_1A_2\ldots A_m$
 - $A_1A_2\ldots A_m \to Y_1A_2\ldots A_m$
 - $Y_1A_2\ldots A_m \to Y_1Y_2\ldots A_m$
 - ▶
 - $Y_1 Y_2 \dots A_{m-1} A_m \rightarrow Y_1 Y_2 \dots Y_{m-1} Y_m$
 - $Y_1 Y_2 \dots Y_{m-1} A_m \to Y_1 Y_2 \dots Y_{m-1} Y_m Y_{m+1} \dots Y_{m+q}$

Неукорачивающая грамматика:

$$\begin{array}{ccc} S & \rightarrow & abc \mid aSQ \\ bQc & \rightarrow & bbcc \\ cQ & \rightarrow & Qc \end{array}$$

Неукорачивающая грамматика:

$$\begin{array}{ccc} S & \rightarrow & abc \mid aSQ \\ bQc & \rightarrow & bbcc \\ cQ & \rightarrow & Qc \end{array}$$

$$S \Rightarrow aSQ \Rightarrow aabcQ \Rightarrow aabQc \Rightarrow aabbcc$$

Неукорачивающая грамматика:

$$\begin{array}{ccc} S & \rightarrow & abc \,|\, aSQ \\ bQc & \rightarrow & bbcc \\ cQ & \rightarrow & Qc \end{array}$$

$$S \Rightarrow aSQ \Rightarrow aabcQ \Rightarrow aabQc \Rightarrow aabbcc$$

Преобразуем в КЗ-грамматику:

Неукорачивающая грамматика:

$$\begin{array}{ccc} S & \rightarrow & abc \,|\, aSQ \\ bQc & \rightarrow & bbcc \\ cQ & \rightarrow & Qc \end{array}$$

$$S \Rightarrow aSQ \Rightarrow aabcQ \Rightarrow aabQc \Rightarrow aabbcc$$

Преобразуем в КЗ-грамматику:

- ullet cQ o Qc
 - ightharpoonup ZQ
 ightarrow QZ
 - ightharpoonup Z
 ightharpoonup c

Неукорачивающая грамматика:

$$\begin{array}{ccc} S & \rightarrow & abc \mid aSQ \\ bQc & \rightarrow & bbcc \\ cQ & \rightarrow & Qc \end{array}$$

$$S \Rightarrow aSQ \Rightarrow aabcQ \Rightarrow aabQc \Rightarrow aabbcc$$

Преобразуем в КЗ-грамматику:

- $cQ \rightarrow Qc$
 - ightharpoonup ZQ
 ightarrow QZ
 - ightharpoonup Z
 ightharpoonup c
- $ZQ \rightarrow QZ$
 - ightharpoonup ZQ
 ightarrow AQ
 - $AQ \rightarrow AB$
 - ► AB → QB
 - ightharpoonup QB
 ightarrow QZ

Рекурсивность КЗ-грамматик

Грамматика *рекурсивна*, если существует алгоритм, определяющий, выводится ли данная строка в данной грамматике

Теорема

Контекстно-зависимые грамматики рекурсивны

Доказательство

Действуем в предположении, что в грамматике нет правила $S \to \varepsilon$ Строим алгоритм, проверяющий, выводится ли в грамматике $\omega \in V_T^+$ Определим множества $T_m = \{\alpha \in (V_T \cup V_N)^+ \mid S \stackrel{i}{\Rightarrow} \alpha, i \leq m, |\alpha| \leq n\}$ $T_0 = \{S\}; T_m = T_{m-1} \cup \{\alpha \mid \beta \Rightarrow \alpha, \beta \in T_{m-1}, |\alpha| \leq n\}; T_i \subseteq T_{i+1}$ Если $S \stackrel{*}{\Rightarrow} \alpha, |\alpha| \leq n$, то $\exists m.\alpha \in T_m$ Последовательно считаем множества T_i , пока не окажется $T_m = T_{m-1}$ Количество всех возможных строк заданной длины ограничено, поэтому такая ситуация обязательно настанет Если $\omega \in T_m$, то она в языке; иначе — нет. Алгоритм построен

Линейно-ограниченные автоматы

Линейно-ограниченный автомат — недетерминированная одноленточная МТ, которая никогда не покидает те ячейки, в которых размещен ее вход.

Формально: $(Q, \Sigma, \Gamma, \delta, q_0, F)$

- Q конечное множество состояний
- ullet $q_0 \in Q$ стартовое состояние
- ullet $F\subseteq Q$ множество конечных состояний
- Г алфавит допустимых символов ленты
- ullet $\Sigma \subseteq \Gamma$ входной алфавит
 - ightharpoonup $arphi \in \Sigma$ маркер начала строки
 - ▶ $\$ \in \Sigma$ маркер конца строки
 - Маркеры нельзя перезаписывать или писать на место символов входной строки
- $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{-1,+1\}}$ отображение перехода

Конфигурация и шаг

- Конфигурация: $(p, A_0, A_1, \dots, A_{n+1}, i)$
 - $ightharpoonup p \in Q$ текущее состояние автомата
 - ▶ $A_0 = ¢$ маркер начала строки
 - ▶ $A_{n+1} = \$$ маркер конца строки
 - ▶ $A_1 \dots A_n : A_j \in \Gamma$ содержимое ленты
 - $lacksymbol{i} i \in \mathbb{Z}, 0 \leq i \leq n+1$ позиция головки
- Отношение ⊢ на конфигурациях (шаг)
 - orall $\forall (p,A,-1) \in \delta(q,A_i), i>0$, верно $(q,A_0,A_1,\ldots,A_{n+1},i) \vdash (p,A_0,A_1,\ldots,A_{i-1},A,A_{i+1},\ldots,A_{n+1},i-1)$
 - orall $\forall (p,A,+1) \in \delta(q,A_i), i < n+1$, верно $(q,A_0,A_1,\ldots,A_{n+1},i) \vdash (p,A_0,A_1,\ldots A_{i-1},A,A_{i+1},\ldots,A_{n+1},i+1)$
- Языком, принимаемым линейно-ограниченным автоматом, называется $\{\omega \in (\Sigma \setminus \{ \diamondsuit, \$ \})^* \mid (q_0, \diamondsuit\omega\$, 0) \vdash^* (q, \diamondsuit\alpha\$, i), q \in F, \alpha \in \Gamma^*, 0 \leq i \leq n+1, |\omega| = n \}$

Линейно-ограниченные автоматы и КЗ-языки

Теорема

входной.

Для любого K3-языка существует линейно-ограниченный автомат, принимающий его

Доказательство

Работаем с двудорожечной МТ: на первой ленте записано входное слово, вторая используется для вывода.

Записываем на вторую дорожку символ S.

На каждом шаге выбираем недетерминированно правило $\alpha \to \beta$, такое что α — подстрока строки, записанной на второй дорожке. Заменяем α на β , сдвигая символы справа от α , если необходимо.

Если на каком-то шаге вышли за пределы длины слова — провал. Если удалось породить терминальную цепочку, сравниваем ее с

Если совпала — успех, иначе — повторяем процесс

Линейно-ограниченные автоматы и КЗ-языки

Теорема

Если язык принимается линейно-ограниченным автоматом, он является контекстно-зависимым

КЗ-языки и рекурсивные множества

Теорема

Существуют рекурсивные множества, не являющиеся КЗ-языками

Иерархия Хомского: грамматики

Грамматика: V_T, V_N, P, S (обозначим $V = V_T \cup V_N$). В зависимости от вида правил в P, выделяют разные классы грамматик:

- Типа 0: $\alpha \to \beta, \alpha = \gamma A \delta, A \in V_N, \gamma, \delta, \beta \in V^*$
- ullet Типа 1: $lpha Aeta o lpha \gammaeta, lpha, eta \in V^*, A \in V_N, \gamma \in V^+$
 - ▶ Или $\alpha \to \beta: 1 \le |\alpha| \le \beta$
- Типа 2: $A \rightarrow \alpha, A \in V_N, \alpha \in V^*$
- ullet Типа 3: A o a, или A o aB, или A o arepsilon; $A,B\in V_N,a\in V_T$
 - lacktriangle Или A o a, или A o Ba, или A o arepsilon; $A,B\in V_N,a\in V_T$

Очевидным образом классы грамматик вкладываются друг в друга

Иерархия Хомского: грамматик, языки, распознаватели

Грамматики	Языки	Распознаватели
Типа 0	неограниченные	машины Тьюринга
Типа 1	контекстно-зависимые	линейно-ограниченные автоматы
Типа 2	контекстно-свободные	магазинные автоматы
Типа 3	регулярные	конечные автоматы