Notes du cours d'Algebre Linéaire $2\,$

Yehor Korotenko

January 22, 2025

A1
Abstract
Le cours parte sur deux sujets liées:
1. la théorie des espaces euclidiens (i.e un espace vectoriel réel muni d'un produit scalaire) et leur endomorphismes

2. la réduction des endomorphismes d'un espace vectoriel de dimension finie

Chapter 1

Espaces euclidiens

1.1 Introduction

Les espaces vectoriels considérés dans ce chapitre sont réels. On suppose que E est un \mathbb{R} -espace vectoriel. Produit scalaire:

Definition 1.1. Une forme bilinéaire sur E est une application

$$B: E \times E \longrightarrow \mathbb{R}$$

 $(u, v) \longmapsto B((u, v))$

qui vérifie les conditions suivantes $\forall u, v, w \in E \ \forall \lambda \in \mathbb{R}$:

1.
$$B(u + \lambda v, w) = B(u, w) + \lambda B(v, w)$$

2.
$$B(u, v + \lambda w) = B(u, v) + \lambda B(v, w)$$

B est dite

1. symétrique si $B(u,v) = B(v,u) \ \forall u,v \in E$

2. positive si $B(.,u) \ge 0 \,\forall u \in E$

3. définie si $B(u, u) = 0 \Leftrightarrow u = 0$

Proof.

$$\begin{split} B(0,0) &= B(0+1\cdot 0,0) \\ &\stackrel{\text{lin\'earit\'e}}{=} B(0,0) + 1\cdot B(0,0) \\ &= B(0,0) + B(0,0) \\ &\Rightarrow B(0,0) = 0 \end{split}$$

Notation. Produit scalaire est noté: $\langle u, v \rangle$

Example 1.2. .

1.
$$E = \mathbb{R}^n$$
, $X = (x_1, \dots, x_n), Y = (y_1, \dots, y_n) \in E$

$$\langle X, Y \rangle := \sum_{n=1}^{n} x_i y_i$$

On l'appelle "produit scalaire canonique" (ou usuel)

2.
$$E = \mathbb{R}^2$$
 et $\langle X, Y \rangle = 2x_1y_1 + x_2y_2$

3. $E = \mathcal{C}^0([-1,1],\mathbb{R}) \ni f,g$ (un espace des fonctions continues)

$$< f, g > := \int_{-1}^{1} f(t) \cdot g(t) dt$$

4.
$$E = \mathcal{M}_n(\mathbb{R}) \ni A, B$$

$$\langle A, B \rangle := Tr(A^t B)$$

Proposition 1.3. Un espace vectoriel non-nul possede une infinité de produits scalaires differents.

Definition 1.4. Un espace euclidien est un couple (E, <.>) où E est un \mathbb{R} -espace vectoriel <u>de dimension finie</u> et <.> est un produit scalaire sur E.

Property. Soit (E, <...>) un espace euclidien. On pose:

$$||X|| := \sqrt{\langle X, X \rangle} \qquad X \in E$$

la norme (ou longeur) de X. (Il est bien définie car $\langle .,. \rangle$ est toujours positif)

Lemma 1.5. inégalité de Cauchy-Schwarz On a

$$|\langle u, v \rangle| \le ||u|| \cdot ||v|| \quad \forall u, v \in E$$

avec égalité si et seulement si u et v sont colinéaires, i.e $\exists\,t\in R$ tel que u=tv ou v=tu

Proof. Si v = 0, clair Si $v \neq 0$ on considère $\forall t \in \mathbb{R}$

$$\begin{aligned} \|u + tv\|^2 &= < u + tv, u + tv > \\ &= < u, u + tv > + t < v, u + tv > \\ &= < u, u > + t < u, v > + t < v, u > + t^2 < v, v > \\ &= \|u\|^2 + 2t < u, v > + t^2 \|v\|^2 = f(t) \end{aligned}$$

Cas 1: f(t) n'a pas de racinces différentes

$$\Delta = 4 < u, v >^2 = 4||u||^2||v||^2 \le 0$$

$$\Rightarrow < u, v >^2 \le ||u||^2 \cdot ||v||^2$$

$$\Rightarrow |< u, v > | \le ||u|| ||v||$$

Cas 2: f(t) a seulement une racine:

$$\Delta = 0$$

$$\Rightarrow \exists t \in \mathbb{R} \text{ tq } ||u + tv||^2 = 0$$

$$\Rightarrow u + tv = 0 \Rightarrow u = -tv$$

La définition suivante sera étudiée dans le cours d'analyse:

Definition 1.6. On dit que $N: E \to \mathbb{R}_+$ est une norme si:

1.
$$N(\lambda u) = |\lambda| \cdot N(u) \quad \forall \lambda \in \mathbb{R}, \forall u \in E$$

$$2. N(u) = 0 \Rightarrow u = 0$$

3.
$$N(u+v) \le N(u) + N(v) \quad \forall u, v \in E$$

Lemma 1.7. L'application

$$\sqrt{\langle .,.\rangle} = \|.\|: E \to \mathbb{R}_+$$

est dite norme euclidienne.

Proof. 1), 2) sont faites

3)
$$||u+v||^2 = ||u||^2 + 2 < u, v > +||v||^2 \le ||u||^2 + 2||u|| ||v|| + ||v||^2 = (||u|| + ||v||)^2$$

$$\Rightarrow ||u+v||^2 \le ||u||^2 + ||v||^2$$

Proposition 1.8. On les identités suivantes $\forall u, v \in E$

1. Identité du parallèlograme:

$$||u+v||^2 + ||u-v||^2 = 2(||u^2|| + ||v||^2)$$

2. Identité de polarisation:

$$< u, v > = \frac{1}{4}(\|u + v\|^2 - \|u - v\|^2)$$

Proof.

1.

$$||u + v||^2 = \langle u + v, u + v \rangle$$
$$= ||u||^2 + 2 \langle u, v \rangle + ||v||^2$$

2.
$$||u - v||^2 = ||u||^2 - 2 < u, v > +||v||^2$$

On a:

•
$$(1) + (2)$$
: $||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$

•
$$(1) - (2)$$
: $||u + v||^2 - ||u - v||^2 = 4 < u, v >$

1.2 Orthogonalité

Soit E un $\mathbb{R}\text{-espace}$ vectoriel et <,> un produit scalaire sur E.

Definition 1.9. $u, v \in E$ sont dits orthogonaux si $\langle u, v \rangle = 0$. On note $u \perp v$

 \bullet Deux sous-ensembles A, B de E sont orthogonaux si:

$$\forall u \in A, \forall v \in B, \quad \langle u, v \rangle = 0$$

• Si $A\subseteq E$ on appelle ortogonal de A, noté A^\perp l'ensemble

$$A^{\perp} = \{ u \in E \mid < u, v >= 0 \quad \forall v \in A \}$$

• Une famille (v_1, \ldots, v_n) de vecteurs de E est dite orthogonale si $\forall i \neq j, v_i \perp v_j$. Elle est dite orthogonale si elle est orthogonale et si de plus $||v_i|| = 1 \forall i \in \{1, \ldots, n\}$

Example 1.10. $E = \mathbb{R}^n, <, >$ produit scalaire canonique

$$v_i = (0, \dots, 0, \underbrace{1}_i, 0, \dots, 0)$$

$$\langle v_i, v_j \rangle = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$$

 (v_1, \ldots, v_n) est une base canonique

Proposition 1.11. 1. Si $A \subseteq E$ alors A^{\perp} est un sous-espace vectoriel de E

- 2. Si $A \subseteq B$ alors $B^{\perp} \subseteq A^{\perp}$
- 3. $A^{\perp} = Vect(A)^{\perp}$
- 4. $A \subset (A^{\perp})^{\perp}$

Proof. Exercice

Example 1.12. 1. $E = C^0([-1, 1], \mathbb{R})$

$$< f, g > := \int_{-1}^{1} f(t) \cdot g(t) dt$$

Alors, $f(t) = \cos(t)$, $g(t) = \sin(t)$ sont orthogonaux: $2\cos(t)\sin(t) = \sin(2t)$

$$\int_{-1}^{1} \cos(t) \sin(t) dt = \frac{1}{2} \int_{-1}^{1} \sin(2t) dt = 0$$

Definition 1.13. Si E est un espace euclidien, on appelle "dual de E" l'ensemble

$$L(E, \mathbb{R}) = \{ f : E \to \mathbb{R} \mid f \text{ est linéaire} \}$$

On le note E^* . Un élément $f \in E*$ s'appelle une forme linéaire.

Rappele:

Proposition 1.14. Si F, F' sont deux e.v de dimension finie, on $dim(L(F, F')) = dim(F) \cdot dim(F')$ En particulier, dim(F*) = dim(F). En effet si $n = (e_1, \ldots, e_p)$ est une base de F est $n' = (e'_1, \ldots, e'_q)$ est une base de F', alors l'application

$$: L(F, F') \longrightarrow Mat_{f \times p}(\mathbb{R})$$
$$f \longmapsto (f) = Mat_{n,n'}(f).$$

est un isomorphisme. Donc dim(F, F) = qp

Theorem 1.15. Théorème du rang: Si F est un e.v de dimension finie et $f: F \to F'$ linéaire, alors dim(F) = dim(Ker(f)) + dim(Im(f))

Proposition 1.16. Si F, F' sont deux e.v <u>de dimension finie</u> tq dim(F) = dim(F') et $f: F \to F'$ linéaire, alors f est un isomorphisme $\Leftrightarrow Ker(f) = 0$

Proof. On rappelle que si G, G' sont des sous-e.v de dimension finie dans le même e.v, alors:

$$G = G' \Leftrightarrow G \subseteq G' \text{ et } dim(G) = dim(G')$$

- \Rightarrow) f injective $\Rightarrow Ker(f) = 0$
- \Leftarrow) Soit Ker(f) = 0.

Alors, forcément dim(Ker(f)) = 0 et par le théorème du rang on a dim(F) = dim(Im(f)), donc Im(f) = F'

Lemma 1.17. du Riesz:

Soit (E, < ., .>) un espace euclidien de dimension finie et $f \in E^*$. Alors, $\exists ! u \in E$ tel que $f(x) = < u, x > \forall x \in E$. La forme linéaire f est donné par un produit scalaire avec un vecteur.

Notation. Pour tout $v \in E$ on note par f_v l'application:

$$f_v : E \longrightarrow \mathbb{R}$$

 $x \longmapsto f_v(x) = \langle v, x \rangle$.

 f_v est linéaire $\forall v \in E$ i.e E^*

Proof. lemma de Reisz On considère l'application

$$\phi: E \longrightarrow E^*$$
$$v \longmapsto \phi(v) = f_v.$$

 ϕ est linéaire (exercice). ϕ est injective:

$$v \in Ker(\phi) \Leftrightarrow f_v(x) = 0 \quad \forall x \in E$$

en particulier pour x = v, on a:

$$0 = f_v(v) = \langle v, v \rangle \Rightarrow v = 0$$

 $dim(E) = dim(E^*) \Rightarrow \phi$ est un isomorphisme $\Rightarrow \phi$ bijective

$$\forall f \in E^*, \exists ! n \in E \text{ tq } \phi(n) = f, \text{ i.e } f(x) = \langle n, x \rangle \ \forall x \in E$$

Dans ce cas $E = \mathbb{R}^n$, le lemme de Riesz est tres simple à comprendre:

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une forme linéaire. Si on note (e_1, \dots, e_n) la base canonique de \mathbb{R}^n , tout $x \in \mathbb{R}^n$ s'écrit

$$x = \sum_{n=1}^{n} \alpha_i e_i \qquad \alpha_i \in \mathbb{R}, \forall i \in \{1, \dots, n\}$$

$$x = \sum_{n=1}^{n} \alpha_i e_i \qquad \alpha_i \in \mathbb{R}, \forall i \in \{1, \dots, n\}$$

$$\Rightarrow f(x) = \sum_{n=1}^{n} \alpha_i f(e_i) = \langle (\alpha_1, \dots, \alpha_n), (a_1, \dots, a_n) \rangle = \langle (a_1, \dots, a_n), (\alpha_1, \dots, \alpha_n) \rangle$$

1.3 Bases orthonormales

Soit (E,<,>) un espace euclidien et $F\subset E$ un sous-espace vectoriel $(dim(F)<\infty)$ car $dim(E)<\infty$.

Note.

$$F^{\perp} := \{ x \in E \mid < X, Z > = 0 \, \forall z \in F \}$$

l'orthogonale de F.

Theorem 1.18. On a $E = F \oplus F^{\perp}$. En particulier, $dim(F^{\perp}) = dim(E) - dim(F)$ et $F = (F^{\perp})^{\perp}$

Proof. On doit montrer que:

- 1. $F \cap F^{\perp} = \emptyset$
- 2. $E = F + F^{\perp}$ i.e $\forall x \in E, \exists x' \in F, x'' \in F^{\perp}$ to x = x' + x''
- 1. Soit $x \in F \cap F^{\perp}$ $\Rightarrow \langle X, Z \rangle = 0 \, \forall Z \in F \text{ car } x \in F \Rightarrow \langle X, X \rangle = 0 \Rightarrow x = 0 (\langle , \rangle \text{ est définie})$
- 2. Soit $x \in E$. Considérons $f_x \in E^*$, i.e $f_x : E \to \mathbb{R}, y \mapsto \langle x, y \rangle$ et $f := f_{x|F} : F \to \mathbb{R} \Rightarrow f \in E^*$ Lemme de Riesz $\Rightarrow \exists! x' \in F \text{ tq } f = f_{x'} : F \to \mathbb{R}, z \mapsto \langle x', z \rangle$ $\Rightarrow f_x(z) = f_{x'}(z) = f(z) \, \forall z \in F$ (Attention: pas l'égalité pour tout z dans E) Posons x'' := x - x', i.e $x = x' + x'' \in F$. Montrons $x'' \in F^{\perp}$. Si $z \in F$, $\langle x'', z \rangle = \langle x - x', z \rangle = \langle x, z \rangle - \langle x', z \rangle = 0$. Donc $x'' \in F^{\perp}$ et $E = F \oplus F^{\perp}$
 $$\begin{split} (dim(E) &= dim(F) + dim(F^{\perp})) \\ F &\subseteq (F^{\perp})^{\perp} \text{ car } < x, z > = 0 \, \forall x \in F \, \forall z \in F^{\perp} \end{split}$$

$$dim(F) = dim(E) - dim(F^{\perp})$$

 $\operatorname{car} E = G \oplus G^{\perp}, \operatorname{donc} \dim(G) = \dim(E) - \dim(G^{\perp}) \operatorname{pour} G = F^{\perp}, \dim(F^{\perp}) = \dim(G)$

Definition 1.19. Soit E un espace vectoriel muni d'un produit scalaire <,>

• Une famille $(v_i)_{i>0}$ de vecteurs de E est dite orthogonale si pour $i \neq j$ on a $\langle v_i, v_i \rangle = 0$ i.e $v_i \perp v_j$

• Une famille orthogonale de E est une famille orthogonale $(v_i)_{i\geq 0}$ tq de plus $||v_i||=1$ pour $i\geq 0$

Example 1.20. 1. $E = \mathbb{R}^n$ muni du produit scalaire canonique. La base canonique (e_1, \dots, e_n) est orthogonale car

$$\langle e_i, e_j \rangle = \begin{cases} 1 \ i = j \\ 0 \ i \neq j \end{cases}$$

2. Dans $E = \mathcal{C}^0([-1,1],\mathbb{R})$ muni de $\langle f,g \rangle = \int_{-1}^1 f(t)g(t) dt$. La famille $(\cos(t),\sin(t))$ est orthogonale. La famille $(1,t^2)$ n'est pas orthogonale:

$$<1, t^2> = \int_{-1}^{1} 1t^2 dt = \frac{2}{3} \neq 0$$

Proposition 1.21. Une famille orthogonale constituée de vecteurs <u>non-nuls</u> est libre. En particulier, une famille orthonormale est libre.

Proof. Suppososns (v_1, \ldots, v_n) orthogonale avec $v_i \neq 0 \ \forall i = 1, \ldots, n \ \text{si} \ \sum_{\substack{j=1 \ \in \mathbb{R}}}^n \alpha_i v_i = 0$, alors

$$\forall i \in \{1, \dots, n\} 0 = \langle v_i, \sum_{j=1}^n \alpha_i v_i \rangle = \sum_{j=1}^n \langle v_i, v_j \rangle = \alpha_i \|v_i\|^2_{\neq 0}$$

Donc $\alpha_i = 0 \,\forall i = 1, \dots, n$.

Si (v_1, \ldots, v_n) est orthonormale, alors $||v_i|| = 1$. Donc $v_i \neq 0, \forall i = 1, \ldots, n$.

Definition 1.22. (E, <, >) espace euclidien. Une famille $B = (e_1, ..., e_n)$ est une bse orthonormale (où BON) si elle est une base et famille orthonormale.

Theorem 1.23. (E, <, >) espace euclidien. Alors, il admet une BON.

Proof. Soit n := dim(E). Soit (e_1, \ldots, e_p) une famille orthogonale (du point de vue du cardinal p) to $e_i \neq 0 \,\forall i = 1, \ldots, p$.

Supposons par l'absurde que p < n. Posons $F = Vect(e_1, \ldots, e_p)$. Alors, $E = F \oplus F^{\perp}$ et $dim(F) \le p < n$. Donc $F^{\perp} \ne \{0\}$. Soit $x \in F^{\perp}$, $x \ne 0$. Alors, (e_1, \ldots, e_p, x) est orthogonale de cardinale > p. Donc, p = n et (e_1, \ldots, e_n) est une base de E. Pour avoir une famille orthonormale (e'_1, \ldots, e'_n) il suffit de prendre $e'_i = \frac{1}{\|e_i\|} e_i \, \forall i = 1, \ldots, n$.

Proposition 1.24. Soit (E, <, >) un espace euclidien et soit (e_1, \ldots, e_n) une BON de E. Si $x \in E$, on a:

$$x = \sum_{i=1}^{n} \langle x_i e_i \rangle e_i$$

Autrement dit, le réél $\langle x, e_i \rangle$ est la $i^{\text{ème}}$ coordonnée de x dans la base (e_1, \dots, e_n) .

Proof. Posons $y := \sum_{i=1}^{n} \langle x_i, e_i \rangle e_i$. Alors,

$$\forall j = 1, \dots, n, \langle x - y, e_j \rangle = \langle x_1, e_j \rangle - \sum_{i=1}^n \langle x_1, e_i \rangle \langle e_i, e_j \rangle = \langle x_1, e_i \rangle - \langle x_1, e_i \rangle \langle e_i, e_i \rangle = 0$$

Donc,
$$x - y \in Vect(e_j, (j = 1, ..., n))^{\perp} = E^{\perp} = \{0\}.$$
 Donc $x = y$

Corollary 1.25. $\forall x \in E, \|x\|^2 = \sum_{i=1}^n \langle x, e_i \rangle^2$

Proof. On a
$$x = \sum_{i=1}^{n} \langle x_i, e_i \rangle e_i = \sum_{i=1}^{n} x_i e_i$$
 avec $x_i := \langle x_1, e_i \rangle \forall i = 1, \dots, n$ et $||x||^2 = \langle x, x \rangle = \langle \sum_{i=1}^{n} x_1 e_i, \sum_{j=1}^{n} x_1 e_j \rangle = \sum_{i,j=1}^{n} x_i x_j \langle e_i, e_j \rangle = \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} \langle x_1, e_i \rangle^2$

Proposition 1.26. Soient (E,<,>) un espace euclidien et $\varepsilon=(e_1,\ldots,e_n)$ une BON. Soient $f\in\mathcal{L}(E,E)$ et $A=(a_{i,j})_{1\leq i,j\leq n}$ la matrice représentative de f dans ε , i.e, $A=Mat_{\varepsilon}(f)$

$$a_{i,j} = \langle f(e_i), e_j \rangle \ \forall i, j = 1, \dots, n$$

Proof. A est la matrice dont les colonnes sont les vecteurs $f(e_i)$ écrits dans la base ε :

$$A = (e_1|\dots|e_n) e_j = \begin{pmatrix} a_{1,j} \\ \dots \\ a_{n,j} \end{pmatrix}$$

$$f(e_j) = a_{1,j}e_1 + \dots a_{n,j}e_n$$

par la prop ci-dessu:

$$a_{i,j} = \langle f(e_i), e_i \rangle$$

1.4 Projections orthogonales

Soit (E, <, >) un espace euclidien, $F \subseteq E$ un sous-espace vectoriel. Alors, $E = F \oplus F^{\perp}$. Donc $\forall x \in E$ s'ecrit

$$x = \underset{\in F}{x_F} + \underset{\in F^\perp}{x_{F^\perp}}$$

Definition 1.27. La **projection orthogonale** de E dans F est la projection P_F de E sur F parallèlement à F^{\perp} , i.e

$$P_F: E = F \oplus F^{\perp} \longrightarrow F$$
$$x = x_F + x_{F^{\perp}} \longmapsto P_F(x = x_F + x_{F^{\perp}}) = x_F.$$

Remark 1.28. 1. p_F est linéaire

2. $\forall x \in E \, p_F(x)$ est complétement caractérisé par la propriété suivante: Soit $y \in E$, alors

$$\eta = P_F(x) \Leftrightarrow \left(e \in F \text{ et } x - y \in F^{\perp} \right)$$

En particulier $\langle P_F(x), x - P_F(x) \rangle = 0$. Alors, si (v_1, \dots, v_R) est une BON de F, on a:

$$\forall x \in E, P_F(x) = \sum_{i=1}^{k} \langle x, v_i \rangle v_i$$

En effet, il suffit de vérfier que le vecteur $y = \sum_{i=1}^k < x, v_i > v_i$ vérfie:

$$\eta \in F$$
 et $x - y \in F^{\perp}$

Proposition 1.29. Soit $x \in E$. Alors,

$$||x - P_F(x)|| = \inf\{||x - y|| \mid y \in F\}$$

i.e $||x - P_F(x)||$ est la distance de x à F.

TODO. pic from phone

Proof. Comme $P_F(x) \in F$ il suffit de prouver que, si $\eta \in F$, alors

$$||x - P_F(x)|| \le ||x - \eta||$$

Mais, $\|x - \eta\|^2 = \|x - P_F(x)\|^2 + 2 < x - P_F(x), P_F(x) - \eta > + \underbrace{\|P_F(x) - \eta\|^2}_{\geq 0} \geq \|x - P_F(x)\|^2$

Theorem 1.30. Gram-Shmidt

Soit E un espace vectoriel muni d'un produit scalaire <,>. Soit (v_1,\ldots,v_n) une famille libre d'élement $\in E$. Alors, il existe une famille (w_1,\ldots,w_n) orthogonale tq

$$\forall i = 1, \dots, n \quad Vect(v_1, \dots, v_i) = Vect(w_1, \dots, w_i)$$

Proof. Récurrence sur i

- i = 1: $w_1 := v_1$ suffit
- $i \geq 1$: Supposons (w_1, \ldots, w_i) construits. Posons $F_i = Vect(w_1, \ldots, w_i) = Vect(v_1, \ldots, v_i)$. Alors on prend $w_{i+1} := v_{i+1} P_{F_i}(v_{i+1})$. Donc, $w_{i+1} \in F_i^{\perp}$ (par caractérisation de P_{F_i}) et (w_1, \ldots, w_{i+1}) est orthogonale. On note $P_{F_i}(v_{i+1}) \in F_i$, donc

$$Vect(w_1, \dots, w_i, w_{i+1}) = \underbrace{Vect(w_1, \dots, w_i, v_{i+1})}_{w_{i+1} = v_{i+1} - P_{F_i}(v_{i+1})} Vect(w_1, \dots, w_i, v_{i+1}) = Vect(v_1, \dots, v_i, v_{i+1})$$

Remark 1.31. La preuve donne une récette concrète pour construir une BON.

Soit (E, <, >) un espace euclidien. (v_1, \ldots, v_n) base de E.

Le but: construit une base $(w'_1, \dots w'_n)$ orthogonale de E avec $Vect(v_1, \dots, v_i) = Vect(w_1, \dots, w_i) \quad \forall i = 1, \dots, n$

Posons:

- 1. $w'_1 := v_1$ 2. $w'_{i+1} = \sum_{j=1}^{i} \frac{\langle v_{i+1}, w'_j \rangle}{\langle w'_j, w'_j \rangle} w'_j$. Alors, (w_1, \dots, w_n) avec $w_i = \frac{1}{\|w'_i\|} w'_i$ est une BON.