TP7 - Travail Préparatoire

MODULE DE CONVERSION ADC

Mai 2024

TOUJANI Mohamed

ZOUGGARI Taha

www.ensicaen.fr

QUESTIONS + REPONSES

 A l'aide d'un schéma commenté, des cours connexes à l'école et d'internet, expliquer le fonctionnement d'un ADC à approximation successive.

Entrée Analogique : Un signal analogique est appliqué à l'entrée du microcontrôleur.

Conversion : L'ADC convertit ce signal en une valeur numérique par approximations successives.

Affichage : Les LEDs connectées aux sorties du microcontrôleur affichent le résultat numérique de la conversion.

Représenter graphiquement la caractéristique de transfert analogique/numérique de l'ADC ainsi configuré.

3. Pour la configuration précédemment présentée, quelle est la résolution de l'ADC ?

Résolution =
$$\frac{\text{Plage de tension}}{2^{\text{résolution}}}$$

où:

- La plage de tension est de 3.3V (0V à 3.3V).
- La résolution est de 8 bits, ce qui donne 2⁸ = 256 niveaux discrets.

Calculons la résolution :

Résolution =
$$\frac{3.3 \text{ V}}{256}$$

Résolution=0.0129 V

Donc, la résolution de l'ADC est de 0.0129 V par niveau, soit environ 12.9 mV.

4. Qu'est-ce qu'un échantillonneur bloqueur? Représenter le schéma de l'échantillonneur bloqueur intégré dans le MCU (spécifier les valeurs des composants passifs responsables des phases de précharge et d'acquisition).

Un échantillonneur-bloqueur, ou circuit de maintien-échantillon (Sample and Hold Circuit), est un dispositif électronique utilisé dans les convertisseurs analogiques-numériques (ADC) pour capturer et maintenir une tension d'entrée analogique stable pendant le temps nécessaire à la conversion numérique.

Valeurs des composants passifs :

- Résistance (R) : 10 k Ω

- Condensateur (C): 100 pF

5. Pour un ADC à approximation successive, par quels facteurs sera contraint le choix de la période d'échantillonnage?

Le choix de la période d'échantillonnage pour un ADC à approximation successive (SAR ADC) est influencé par plusieurs facteurs, tant externes qu'internes au microcontrôleur (MCU). Ces facteurs sont résumés dans le tableau suivant :

Facteurs Externes	Signal d'Entrée Analogique :	Bande Passante du Signal : La fréquence maximale du signal analogique doit être inférieure à la moitié de la fréquence d'échantillonnage (théorème de Nyquist). Cela garantit que le signal est correctement échantillonné sans aliasing. Caractéristiques du Signal : Les variations rapides du signal analogique nécessitent une période d'échantillonnage plus courte pour capturer les changements avec précision.
	Qualité du Signal Analogique :	Bruitage : Un signal bruité peut nécessiter un échantillonnage plus rapide pour permettre une moyenne ou un filtrage numérique ultérieur.
		Impédance de la Source : Une impédance élevée de la source peut ralentir le temps de montée et de descente du signal, nécessitant un temps d'échantillonnage plus long pour atteindre la pleine précision.
Facteurs Internes au MCU	Structure de l'ADC :	Temps de Conversion : Le SAR ADC effectue des comparaisons successives pour chaque bit. Le temps nécessaire pour ces comparaisons fixe un minimum pour la période d'échantillonnage.
		Précharge et Acquisition : Le temps nécessaire pour précharger et acquérir la tension d'entrée par l'échantillonneur-bloqueur affecte directement la période d'échantillonnage.
	Caractéristiques du Convertisseur :	Vitesse de l'Horloge ADC : La fréquence de l'horloge du convertisseur détermine la rapidité avec laquelle les comparaisons successives peuvent être effectuées.
		Résolution du Convertisseur : Un ADC de haute résolution (plus de bits) nécessitera plus de temps pour effectuer toutes les comparaisons successives.
	Performance des Composants Internes:	Stabilité de l'Amplificateur Opérationnel : L'amplificateur utilisé dans le circuit d'échantillonnage doit avoir une réponse rapide et stable pour ne pas limiter la vitesse d'échantillonnage.
	THE THE S	Temps de Réponse du Commutateur : La vitesse à laquelle le commutateur peut ouvrir et fermer affecte également la période d'échantillonnage.

6. Quelle broche du MCU est utilisée par défaut comme entrée analogique ?

La broche du MCU PIC18F27K40 utilisée par défaut comme entrée analogique sur la carte Curiosity HPC est la broche RA0/AN0.

7. Proposer une configuration en assembleur des registres ADC0N0 (configuration), ADREF (référence analogique) et ADPCH (sélection du canal) assurant l'initialisation de l'ADC donnée :

•

Ecole Publique d'ingénieures et d'ingénieurs en 3 ans

6 boulevard Maréchal Juin, CS 45053 14050 CAEN cedex 04

