Hybrid Ray Tracer

Arthur Adriaens

December 13, 2022

what?

arrival zenith difference arrival time difference Reflected rays 68%=12.60 mdeg 68%=0.00 ns 0.4 0.2 0.5 -75 -50 -25 0.0 Refracted rays 68%=0.01 ns 68%=15.26 mdeg 0.50 0.25 20 30 s 0.50 68%=0.02 ns 68%=27.57 mdea 0.25 0.25 0.2 0.00 -0.5 0.0 0.5 20 40 60 millidegree nanoseconds

Figure: Hybrid

Figure: Iterative

Why?

- ► Complex ice models needed
- ▶ full path might be needed

- 1. How the iterative ray tracer works
- 2. previous attempt to make it better
- 3. my attempt to make it better
- 4. optimisation of my attempt (the hybrid raytracer)
- 5. final results

Iterative ray tracer

Non optimal \rightarrow scipy.optimize.minimize

 \implies minimizer

Problem: can't find the intervals for certain cases

Greenland simple trajectory with GL1 attenuation solved with radiopropa ray tracer

Greenland simple trajectory with GL1 attenuation solved with radiopropa minimize ray tracer

My solution

process is broken out of as 2 distinct launch regions (region 1 & 2) are found.

Greenland simple trajectory with GL1 attenuation solved with hybrid ray tracer

Figure: Hybrid

Whilst $\approx 15\%$ faster

Figure: Iterative

Optimization

Length of the normal vector:

First optimization conclusion:

Take the normal vector length to be 1 meter.

Second optimization conclusion: Take ztol to be 0.05 m.

Sphere Size & Step Size

process is broken out of as 2 distinct launch regions (region 1 & 2) are found.

Sphere Size & Step Size

Sphere Size & Step Size

Final Result

- ightharpoonup norm = 1m
- ► ztol = 0.05m
- ► Sphere size = 45m
- ▶ step size = 0.7

Figure: Hybrid

Figure: Iterative

▶ iterative :1.627s

▶ hybrid : 1.226s (32.7% faster)

▶ analytic: 9.719e-05 seconds

What if the same sphere and stepsize?

▶ iterative :1.80317s

hybrid : 1.35776s (32.8% faster)

▶ analytic: 9.8812e-05 seconds

Exactly the same σ 's