szpianpian团队AETA比赛分享

一、处理方法

- 1、由于数据是精确到分钟的检测值,数据量庞大,因为自然环境、人为因素等作用导致监测结果中存在少量缺失值。
- 2、删除数据缺失严重的部分station数据(如station48等) 用经纬度临近station数据代替

二、特征提取 (地声数据)

特征选取标准:

- 1. 可解释性
- 2. 可泛化
- 3. 训练时长

三、特征提取

- 1、 magnitude' (震级)
- 2、'depth' (震源深度)
- 3、'time' (发生时间)

(经反复测试,震级和震源深度的p值显著,受制于train dataset的天数限制,如果数据更多,结果的统计显著性会更好)

(中国地震网数据 http://www.ceic.ac.cn/speedsearch)

四、样本集

- 选取地声数据集
- 降噪 (侧重夜间数据)
- 替代地声值没有变化或缺失及干扰严重的station数据
- 结合中国地震网数据 http://www.ceic.ac.cn/speedsearch

李帛珊,李金译.2020.基于回归算法和大数据云基础设施的美国加利福尼亚州地震预测.世界地震译丛.51(1):33-53.

1970~2017美国加利福尼亚州的地震事件: ANSS复合地震目录

五、样本数据干扰程度比较: 以station 77 和 35为例

六、震中分布

七、预测模型-算法和模型说明:

混合模型:回归模型,长短记忆神经网络(Long Short -Term Memory, LSTM),决策树

- LSTM 是一种循环神经网络,具有极强的非线性拟合能力 , 在训练间缓解反向传播过程中的梯度消减。
- 回归和决策树模型有很好的解释性。

八、LSTM模型验证

九、决策树预测(以部分监测站点为例)

十、检验结果

8次预测震中较小偏离(1-16周共13次>3.5级震)

		偏离震中		
		距离(km)	震中	震级
1	2020/05/18-2020/05/24	125.9	云南昭通市巧家县	5
2	2020/05/25-2020/05/31	132.5	四川乐山马边县	3.8
4	2020/06/08-2020/06/14	21.9	四川宜宾市珙县	4
7	2020/06/29-2020/07/05	121.103	贵州毕节市赫章县	4.5
8	2020/07/06-2020/07/12	153.47	云南昆明市东川区	4.2
10	2020/07/20-2020/07/26	116.525	云南普洱市澜沧县	4.1
12	2020/08/03-2020/08/09	31.98	四川宜宾市长宁县	3.9
13	2020/08/10-2020/08/16	127.489	四川宜宾市兴文县	3.8

谢谢!

(gezhan@gmail.com)