NaCTeM at 2018 n2c2 Shared-Task Extracting Adverse Drug Events and Medication in EHRs with Ensembles of Feature-based and Deep Learning Models

Nhung T.H. Nguyen, Fenia Christopoulou, Thy Thy Tran, **Meizhi Ju**, Sunil Kumar Sahu, Makoto Miwa, Sophia Ananiadou

N2C2 Shared Task: Track 2

 Input: discharge summaries from electronic health records

Tasks:

- 1. Concept recognition
- Relation extraction: binary relations
- 3. End-to-end system: identify concepts and relations from scratch

Entities	Ratio (%)	Relations	Ratio (%)
Duration	1.1	Duration-Drug	1.7
ADE	1.8	ADE-Drug	3.0
Reason	7.5	Reason-Drug	14.2
Dosage	8.28	Dosage-Drug	11.6
Route	10.7	Route-Drug	15.2
Frequency	12.3	Frequency-Drug	17.3
Form	12.9	Form-Drug	18.2
Strength	13.1	Strength-Drug	18.4
Drug	31.8		

Pipeline Workflow

- Sentence splitting
- Tokenization
- Heuristics rules

Data preprocess

Concept Recognition

- CRF (features)
- Neural networks
- Ensembling

- Neural networks
- Intra & cross sentence
- Ensembling

Relation Extraction

Data pre-process

- Data splitting
- Existing tools
- Heuristics rules

Pre-processing

	Subset	Documents	Sentences
Training data	Train (80 %)	242	44932
Training data	Dev (20 %)	61	11063
Testing data	Test	202	37390

Sentence splitting [Lingpipe]

Tokenization [OSCAR 4]

Further process [Rules]

Concept Recognition

- CRF Model
- Neural Network Model

Concept Recognition

CRF Model

Use NERSuite (Cho et al., 2013): http://nersuite.nlplab.org

Concept Recognition Neural Network Model

Motivation

Nested entity: entities embedded in longer entities.

He was assessed ... vincristine toxic polyneuropathy ...
Inner entity Drug

Outer entity ADE

- Inner entities are informative indicators for outer entities (Ju, et al. 2018).
- Rare and unseen words can be well represented by re-tokenizing sentences into subwords based on frequencies. (Sennrich, et al. 2016).

Concept Recognition Neural Network Model

Method

- Extract both nested entities and entities with multiple types
- Independent on linguistic features and external knowledge resources
- Automatically stacks BiLSTM-CRF layers.

Concept Recognition Neural Network Model

Method

- Extract both nested entities and entities with multiple types
- Independent on linguistic features and external knowledge resources
- Automatically stacks BiLSTM-CRF layers.

Experimental Results Concept

Model	Precision	Recall	F1-score
CRF			
Lexical and syntactic features (Baseline)	0.9525	0.8825	0.9162
Baseline + word shape (ws)	0.9527	0.8815	0.9157
Baseline + dictionary features (df)	0.9511	0.8829	0.9157
Baseline + cluster features (cf)	0.9504	0.8902	0.9193
Baseline + ws + df + cf	0.9486	0.8900	0.9184
Neural network			
Baseline (word + characters)	0.9385	0.9143	0.9262
Baseline (subword + characters)	0.9352	0.9115	0.9232
Baseline (word + subword)	0.9353	0.9224	0.9288
Baseline (word + subword + characters)	0.9507	0.9066	0.9281

Relation Extraction

- Weighted LSTM Model
- Walk-based Model
- Cross-sentence Model

Relation Extraction Weighted LSTM

Motivation

• Context-based word meaning

ADE - Drug

ADE - Drug

Sentence

Diarrhea- likely related to 5FU

• EHRs contain latent relation patterns e.g. Drug-Form-Frequency

ADE

important word

Drug

- Attention layer: different emphasis on each word
- Entity tags as input: learn relation patterns

Relation Extraction Weighted LSTM

Motivation

A potentially related entity pair can be supported by co-existing related pairs in the same sentence (Christopoulou, et al. 2018)

Method

- Map a sentence into a directed graph structure
- Nodes = Entities
- Edges { representation of the relation between them building block for 1-to-/ length walks between the pair entities
- Consider only X-Drug pairs
- Keep Drug-Drug pairs, even without annotation

relation prediction

Walk Generation relation prediction hypotension atropine direct representation Classification indirect representation updated relations Walks Layer dopamine entity graph Edge Creation Layer context representations **BLSTM Layer** word embeddings **Embedding Layer** sentence words ADE-Drug Drug-Drug -**RELATIONS** -ADE-Drug ... sinus bradycardia and hypotension when attempting to wean down the dopamine that required atropine SENTENCE **ADE** Drug Drug **ENTITIES**

Relation Extraction Cross-sentence Model

Motivation

 In the dataset, approx. 8 % of the relations are cross-sentence.

Method

- Only drug, non-drug pairs
- Only consider up to two span of sentences
- Employ transformer network (Vaswani et al, 2017)
 - RNN: low time efficient in longer sequence computation

Experimental Results Relation

Model	Precision	Recall	F1-score	
Weighted LSTM				
Weighted-one-BLSTM	0.9729	0.9108	0.9408	
Weighted-stack-BLSTM-hyperparam-set1	0.9751	0.9102	0.9416	
Weighted-stack-BLSTM-hyperparam-set2	0.9693	0.9146	0.9411	
Walk-based Model				
Walks-L2-random_embeddings	0.9792	0.9041	0.9402	
Walks-L4-pubmed_embeddings	0.9723	0.9112	0.9408	
Walks-L8-pubmed_embeddings	0.9782	0.9086	0.9421	
Walks-L8-random_embeddings	0.9721	0.9208	0.9457	
Cross-sentence Model				
Transformer-span-1	0.9663	0.9077	0.9361	
Cross-sentence-transformer-span-2	0.9538	0.9423	0.9480	
Cross-sentence-transformer-span-3	0.9115	0.9536	0.9321	

Ensemble Methods Majority Voting

Concept

Submission Results Track 2

Task	System	Р	R	Fl
	(1) NN ensemble	0.9664	0.8875	0.9253
Concept	(2) CRF ensemble	0.9532	0.8797	0.9150
	(3) Ensemble of NN and CRF	0.9444	0.9073	0.9255
	(1) Walked-based (BEST) + Cross sentence	0.9420	0.9517	0.9468
	(2) Ensemble: Walked-based	0.9463	0.9467	0.9465
Relation	+ Cross sentence	0.9463	0.9467	0.9463
Relation	(3) Ensemble: Weighted LSTM			
	+ Walked-based	0.9463	0.9480	0.9472
	+ Cross sentence			
	Concept (1) + Relation (1)	0.9463	0.8091	0.8723
End-to-end	End-to-end Concept (3) + Weighted LSTM + Cross sentence		0.8318	0.8765
	Concept (3) + Relation (3)	0.9284	0.8289	0.8759

Submission Results Best Concept Ensemble

Category	Р	R	F
Drug	0.9567	0.9533	0.9550
Strength	0.9815	0.9804	0.9810
Duration	0.8875	0.7513	0.8138
Route	0.9662	0.9445	0.9552
Form	0.9653	0.9436	0.9543
ADE	0.4697	0.1984	0.2790
Dosage	0.9356	0.9433	0.9395
Reason	0.7254	0.5470	0.6237
Frequency	0.9788	0.9666	0.9727
Overall (micro)	0.9444	0.9073	0.9255
Overall (macro)	0.9397	0.8932	0.9144

Submission Results Best Relation Ensemble

Category	Р	R	F
Strength -> Drug	0.9879	0.984	0.986
Dosage -> Drug	0.9814	0.9777	0.9796
Duration -> Drug	0.8968	0.9178	0.9072
Frequency -> Drug	0.9772	0.9655	0.9713
Form -> Drug	0.9921	0.9792	0.9856
Route -> Drug	0.9804	0.9729	0.9766
Reason -> Drug	0.8080	0.8182	0.8131
ADE -> Drug	0.7029	0.8458	0.7678
Overall (micro)	0.9462	0.9479	0.9472
Overall (macro)	0.9408	0.9449	0.9420

Submission Results Best End2End Ensemble

Category	Р	R	F
Strength -> Drug	0.974	0.9621	0.968
Dosage -> Drug	0.9311	0.9124	0.9217
Duration -> Drug	0.7983	0.6784	0.7335
Frequency -> Drug	0.9672	0.9286	0.9475
Form -> Drug	0.9588	0.9264	0.9423
Route -> Drug	0.9516	0.9140	0.9324
Reason -> Drug	0.7179	0.4463	0.5505
ADE -> Drug	0.502	0.1678	0.2515
Overall (micro)	0.9264	0.8318	0.8765
Overall (macro)	0.9072	0.7954	0.8423

Conclusions

Concept Recognition

- Detect nested and multi-label entities
- NN-based model does not dependent on any external knowledge resources and hand-crafted features

Relation Extraction

- Independence of external syntactic tools and dictionaries
- Detect both intra and cross-sentence relations

