Matheus de Moura Rosa Pedro Henrique Chaves Junqueira

Professor Orientador: Jacson Barbosa

Hospiguard Documento de Arquitetura de Software

Versão 1.0

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>

Histórico da Revisão

Data	Versão	Descrição	Autor
10/01/2024	1.0	Primeira versão do Documento	Matheus de Moura Rosa, Pedro Henrique Chaves Junqueira

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>

Índice

1.	Intro	dução	4
	1.1	Objetivo	4
	1.2	Escopo	4
	1.3	Definições, Acrônimos e Abreviações	4
	1.4	Visão Geral	4
2.	Cont	exto da Arquitetura	
	2.1	Funcionalidades e Restrições Arquiteturais	4
	2.2	Atributos de Qualidades Prioritários	5
		2.2.1 Métricas para avaliar os atributos de qualidade	5
	2.3	Tecnologias	5
3.	Repr	esentação da Arquitetura Candidata	5
	3.1	Arquitetura de Pub/Sub	6
4.	Visão	o Geral	6
	4.1	Componentes Principais	7
5.	Decis	sões arquiteturais	7
	5.1	Requisitos Arquiteturalmente Significativos	7
6.	Ponto	o de vista dos Casos de Uso	8
	6.1	Visão de Casos de Uso	8
7.	Ponto	o de vista do Projetista	8
	7.1	Descrição	8
	7.2	Visão em Módulos	8
8.	Ponto	o de vista de Segurança	9
	8.1	Descrição	10
	8.2	Visão de Segurança	9
9.	Ponto	o de vista do Fluxo de Dados	10
	9.1	Descrição	9
	9.2	Publicação de Dados	9
	9.3	Assinatura e Processamento	10
	9.4	Atualização do Gêmeo Digital	10
10.	Aspe	ectos de computação ubiqua contemplados	10
		0.1 Ciência de contexto	10
		0.2 Continuidade	10
		0.3 Consistência	10
		0.4 Atualização do Gêmeo Digital	10
		0.5 Complementariedade	11
	10	0.6 Descrição do conceito de gêmeo digital será integrado na anlicação/sistema	11

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>

Documento de Arquitetura de Software

1. Introdução

O presente Documento de Arquitetura de Software visa proporcionar uma visão abrangente do sistema HospiGuard, um projeto inovador direcionado à melhoria da segurança e atendimento a pacientes em ambientes hospitalares. Por meio de um sistema ubíquo de monitoramento, o HospiGuard utiliza uma variedade de sensores e dispositivos inteligentes para oferecer uma solução completa, visando monitorar quartos de hospitais, assegurando o bem-estar dos pacientes, otimizando a eficiência do atendimento e proporcionando tranquilidade tanto para os pacientes quanto para os profissionais de saúde.

1.1 Objetivo

Este documento tem como objetivo principal apresentar uma visão arquitetural abrangente do sistema HospiGuard. Ele utiliza diversas visões de arquitetura para representar diferentes aspectos do sistema, buscando capturar e transmitir as decisões arquiteturais significativas tomadas em relação ao projeto. Destina-se a arquitetos de software, desenvolvedores, profissionais de saúde e demais stakeholders envolvidos no projeto, fornecendo uma base sólida para o entendimento da arquitetura do sistema.

1.2 Escopo

O escopo deste Documento de Arquitetura de Software abrange todos os componentes e aspectos relacionados ao sistema HospiGuard. Ele descreve a arquitetura do sistema, incluindo o Digital Twin dos Quartos de Hospital e o Digital Twin dos Sensores, fornecendo uma visão detalhada das interações e funcionalidades essenciais. Este documento influencia diretamente o desenvolvimento, a implementação e a manutenção do sistema HospiGuard.

1.3 Definições, Acrônimos e Abreviações

Digital Twin: Réplica digital de um ambiente físico, neste contexto, referindo-se aos quartos de hospital monitorados pelo sistema HospiGuard.

Sensores: Dispositivos inteligentes utilizados para coletar dados sobre temperatura, umidade, presença de pacientes, níveis de gases, entre outros.

Ubíquo: Presente em todos os lugares; onipresente.

Stakeholders: Indivíduos ou grupos interessados e impactados pelo sistema HospiGuard.

1.4 Visão Geral

O documento visa descrever a estrutura geral do sistema a ser desenvolvido, incluindo etapas de organização lógica e física, bem como de componentes e suas relações e ainda acerca de possíveis interfaces.

2. Contexto da Arquitetura

2.1 Funcionalidades e Restrições Arquiteturais

HC01a-C01 - Detecção de Queda do Paciente

HC01a-C02 - Falso Alarme de Queda

HC01b-C01 - Monitoramento Contínuo da Pressão Arterial e Batimentos Cardíacos

HC01b-C02 - Alerta de Leituras Anormais

HC02a-C01 - Monitoramento de Condições Ambientais

HC02b-C01 - Detecção de Gases Perigosos

HC03a-C01 - Acesso Autorizado aos Dados do Paciente

HC03a-C02 - Tentativa de Acesso Não Autorizado aos Dados do Paciente

Requisitos Não funcionais

RNF 01 - Confiabilidade: O aplicativo deverá ser capaz de se recuperar de uma falha do sistema em 5

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>

minutos.

RFN02 – Segurança - A autenticação do usuário deve seguir as práticas recomendadas do setor e oferecer suporte à autenticação multifator.

RFN03 – Compatibilidade - O aplicativo deve ser compatível com as versões mais recentes dos principais sistemas operacionais dos celulares (iOS, android) e navegadores da web (Chrome, Firefox, Safari e Edge).

2.2 Atributos de Qualidade Prioritários

1. Confiabilidade (RFN 01):

A confiabilidade é um dos pilares fundamentais para garantir a satisfação do usuário. Nosso aplicativo deve ser capaz de se recuperar de falhas do sistema em um curto período, especificamente em 5 minutos. Isso significa que, em caso de interrupções inesperadas, como falhas de servidor ou outros contratempos, o aplicativo deverá ser projetado para retomar suas operações normais dentro desse intervalo de tempo. Essa rápida recuperação contribuirá para a manutenção da confiança dos usuários, assegurando uma experiência contínua e sem frustrações.

2. Segurança (RFN 02):

A segurança é uma preocupação essencial no desenvolvimento de qualquer aplicativo, e a autenticação do usuário desempenha um papel crucial nesse aspecto. O aplicativo deve seguir as práticas recomendadas do setor para autenticação, incorporando medidas robustas que garantam a proteção das informações dos usuários. Além disso, é imperativo oferecer suporte à autenticação multifator (MFA), uma camada adicional de segurança que fortalece o acesso às contas dos usuários. Ao implementar essas medidas, nosso aplicativo se posicionará como uma escolha confiável e segura para os usuários, protegendo suas informações sensíveis.

3. Compatibilidade (RFN 03):

A variedade de dispositivos e sistemas operacionais utilizados pelos usuários é vasta, e nosso aplicativo deve se adaptar a essa diversidade. Garantir a compatibilidade com as versões mais recentes dos principais sistemas operacionais móveis, como iOS e Android, é crucial.

2.2.1 Métricas para avaliar os atributos de qualidade

A efetiva avaliação dos atributos de qualidade prioritários - confiabilidade, segurança e compatibilidade - requer a definição e monitoramento de métricas específicas que refletem o desempenho e a eficácia do aplicativo em cada um desses aspectos cruciais. Aqui estão algumas métricas-chave para orientar a avaliação dos atributos de qualidade:

1. Confiabilidade:

Tempo de Recuperação de Falhas (TRF): Mensura o tempo que o aplicativo leva para se recuperar totalmente de uma falha do sistema, sendo crucial para garantir uma experiência contínua para os usuários. O objetivo é manter o TRF dentro do limite estabelecido de 5 minutos, conforme especificado na RFN 01.

Taxa de Disponibilidade: Calcula a porcentagem de tempo em que o aplicativo está operacional e disponível para os usuários. Uma alta taxa de disponibilidade reflete a capacidade do aplicativo de resistir a interrupções e proporcionar uma experiência estável.

2. Segurança:

Taxa de Autenticação Bem-Sucedida: Avalia a eficácia do processo de autenticação, indicando a porcentagem de tentativas de login que são bem-sucedidas. O objetivo é garantir que a autenticação do usuário, seguindo as práticas recomendadas, seja eficiente e segura.

Uso de Autenticação Multifator (MFA): Monitora a proporção de usuários que ativaram e utilizam a autenticação multifator. Um aumento nessa métrica indica uma maior adesão à camada de segurança adicional oferecida pela MFA.

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>
-	

3. Compatibilidade:

Taxa de Adoção de Atualizações: Acompanha a rapidez com que os usuários adotam as versões mais recentes do aplicativo, refletindo a compatibilidade com os sistemas operacionais móveis e navegadores web mais recentes.

Taxa de Usuários em Plataformas Diversas: Avalia a diversidade de dispositivos e plataformas utilizados pelos usuários. Uma ampla distribuição indica uma boa compatibilidade, enquanto uma concentração em um único sistema pode indicar a necessidade de ajustes.

2.3 Tecnologias

Linguagem de Programação: Kotlin.

Linguagens para o front-end: Javascript, html e css. Ambiente de Execução: Aplicativo e navegador web.

Frameworks:

Broker: Cliente MQTT Móvel Autenticação: Firebase Nuvem: AWS (EC2) Controle da versão: Github

Sensores: Temperatura Ambiente, Iluminação, Sensor de proximidade real e aproximada.

3. Representação da Arquitetura Candidata

O software Hospiguard optou por adotar o padrão de comunicação pub/sub utilizando um Broker MQTT. Esse modelo, conhecido por sua natureza assíncrona, organiza os participantes do sistema em dois papéis principais: os publicadores, encarregados de enviar mensagens para canais centrais, e os assinantes, que expressam seu interesse em receber mensagens de canais específicos.

Essa abordagem busca promover um alto grau de desacoplamento entre os diversos componentes do sistema. A separação clara entre quem envia e quem recebe mensagens propicia benefícios significativos, tais como escalabilidade, flexibilidade e resiliência a falhas. A escalabilidade é possibilitada pela capacidade de adicionar ou remover participantes sem afetar o restante do sistema, enquanto a flexibilidade é alcançada pela independência entre os componentes. Além disso, a resiliência a falhas é fortalecida, uma vez que a interrupção de um componente não impacta diretamente outros participantes do sistema.

Essa escolha estratégica do modelo pub/sub com MQTT como Broker destaca-se como uma solução eficiente e moderna, proporcionando uma arquitetura robusta que atende às necessidades do Hospiguard.

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>
	_

3.1 Arquitetura de Pub/Sub

Sensores realizam o publish

Clientes realizam o subscribe

4. Visão Geral

Sensor de Temperatura Sensor de Localização

Clientes realizam o subscribe

UFG - 2024

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>

4.1 Componentes Principais

Publishers:

Sensores de Localização: Publicam dados sobre a localização de dispositivos móveis e possivéis smart watches, indicando a presença de usuários no quarto de hospital

Subscribers:

Servidor Central: Atua como um assinante para os dados publicados pelos sensores. É responsável por processar e distribuir as informações relevantes para outros componentes do sistema.

Tópicos:

Tópico de Temperatura: Onde os sensores de temperatura publicam a temperatura em tempo real dos quartos.

Tópico de Localização: Onde os sensores de localização irão informar se os pacientes estão em seus devidos quartos. Gêmeo Digital:

Atualização por Subscrição: A atualização do gêmeo digital ocorre por meio da subscrição aos tópicos pertinentes, garantindo uma sincronização contínua com os dados do mundo real.

5. Decisões arquiteturais

5.1 Requisitos Arquiteturalmente Significativos

Requisito Arquitetural para Confiabilidade (RNF 01):

O sistema deve ser projetado com mecanismos de recuperação de falhas que permitam a restauração total do aplicativo em até 5 minutos após uma interrupção do sistema.

Deve haver redundância em componentes críticos para garantir alta disponibilidade e minimizar o impacto de falhas.

Requisito Arquitetural para Segurança (RFN 02):

A arquitetura deve suportar práticas avançadas de autenticação de usuário, incluindo autenticação multifator (MFA). Deve ser implementada uma infraestrutura de segurança robusta para proteger as credenciais do usuário durante a autenticação e garantir a integridade dos dados sensíveis.

Requisito Arquitetural para Compatibilidade (RFN 03):

A arquitetura deve ser modular e flexível para suportar atualizações contínuas e garantir a compatibilidade com as versões mais recentes dos sistemas operacionais móveis, como iOS e Android.

Deve ser adotada uma abordagem de desenvolvimento responsivo para garantir a compatibilidade com os principais navegadores web, incluindo Chrome, Firefox, Safari e Edge.

Mecanismos de detecção automática de versão do sistema operacional e navegador devem ser incorporados para otimizar a experiência do usuário em diferentes plataformas.

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>

6. Ponto de vista dos Casos de Uso

6.1 Visão de caso de Uso

7. Ponto de vista do Projetista

7.1 Descrição

O ponto de vista do projetista no contexto do Hospiguard concentra-se na decomposição do sistema em módulos e na especificação detalhada de cada componente.

7.2 Visão em Módulos

Módulo de Monitoramento de Pacientes:

Descrição: Responsável por supervisionar as condições do paciente, incluindo detecção de quedas e monitoramento contínuo de sinais vitais.

Componentes:

HC01a - Detecção de Quedas

HC01b - Monitoramento de Sinais Vitais

Módulo de Monitoramento Ambiental:

Descrição: Encarregado de monitorar as condições ambientais nos quartos dos pacientes, incluindo temperatura, umidade e detecção de gases perigosos.

Componentes:

HC02a - Monitoramento de Temperatura e Umidade

HC02b - Detecção de Gases Perigosos

Módulo de Comunicação e Alerta:

Descrição: Gerencia a comunicação entre os diferentes módulos e envia alertas em tempo real para as equipes relevantes.

Componentes:

Sistema de Alerta de Quedas

Sistema de Alerta de Condições Ambientais Anormais

Módulo de Digital Twin:

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>

Descrição: Cria e mantém uma réplica digital dos quartos de hospital e dos sensores, permitindo uma visualização em tempo real do estado do ambiente hospitalar.

Componentes:

Digital Twin dos Quartos de Hospital

Digital Twin dos Sensores

8. Ponto de vista de Segurança

8.1 Descrição

O ponto de vista de segurança no contexto do Hospiguard concentra-se nas estratégias e medidas adotadas para garantir a proteção dos dados sensíveis, a integridade das operações do sistema e a confidencialidade das informações críticas.

8.2 Visão de Segurança

Camadas de Segurança:

Descrição: Implementa várias camadas de defesa para proteger o sistema contra acessos não autorizados e ataques maliciosos.

Componentes:

Firewall de Rede

Sistema de Detecção de Intrusões (IDS)

Filtros de Pacotes

Protocolos de Autenticação:

Descrição: Define práticas de autenticação robustas para garantir que apenas usuários autorizados acessem o sistema.

Componentes:

Autenticação Multifator (MFA)

Políticas de Senhas Fortes

Monitoramento de Tentativas de Acesso Não Autorizado

Práticas de Autorização:

Descrição: Estabelece políticas claras de autorização para garantir que apenas usuários com as permissões adequadas possam acessar e modificar informações sensíveis.

Componentes:

Controle de Acesso Baseado em Funções (RBAC)

Auditorias de Autorização

Gerenciamento de Sessão Segura

9. Ponto de vista do Fluxo de Dados

9.1 Descrição

O ponto de vista do fluxo de dados no contexto do Hospiguard examina como as informações fluem dentro do sistema, destacando os principais processos de publicação, assinatura e processamento de dados.

9.2 Publicação de Dados

Define como os dados são originados e publicados no sistema Hospiguard.

Identifica as fontes de dados, os formatos de mensagem e os protocolos de comunicação utilizados.

Componentes:

Sensores de Monitoramento de Pacientes Dispositivos de Monitoramento Ambiental Sistemas Externos de Infraestrutura Hospitalar Interfaces de Entrada de Dados Fluxo de Processo:

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>

Dados gerados pelos sensores e dispositivos.

Dados provenientes de sistemas hospitalares externos.

Entrada manual de informações relevantes.

9.3 Assinatura e Processamento

Descreve como os dados são assinados, processados e roteados para as partes interessadas.

Enfatiza os métodos de assinatura e os algoritmos de processamento adotados.

Componentes:

Módulo de Autenticação e Segurança Módulo de Comunicação e Alerta Módulo de Digital Twin Fluxo de Processo:

Dados assinados para garantir integridade.

Processamento para identificar eventos críticos.

Roteamento para os módulos apropriados.

9.4 Atualização do Gêmeo Digital

Detalha como o Gêmeo Digital é mantido atualizado em tempo real com base nos dados recebidos.

Destaca os eventos ou condições que acionam a atualização do Gêmeo Digital.

Componentes:

Módulo de Digital Twin Módulo de Monitoramento de Pacientes Módulo de Monitoramento Ambiental Fluxo de Processo:

Recebimento contínuo de dados dos sensores.

Identificação de eventos críticos.

Atualização do Gêmeo Digital em tempo real.

10. Aspectos de computação ubiqua contemplados

10.1 Ciência de contexto

A computação ubíqua no Hospiguard incorpora ciência de contexto para compreender e adaptar-se dinamicamente ao ambiente hospitalar. Sensores monitoram continuamente as condições do paciente, as variáveis ambientais e outros contextos relevantes para fornecer uma visão precisa e atualizada do estado do sistema

10.2 Continuidade

A computação ubíqua no Hospiguard prioriza a continuidade, garantindo que os serviços e monitoramentos sejam ininterruptos. Mesmo em casos de falha temporária, o sistema busca retomar a operação normal rapidamente, assegurando a continuidade do monitoramento e alerta.

10.3 Consistência

Para garantir uma experiência coesa e confiável, a computação ubíqua no Hospiguard mantém consistência nos dados e nas informações. O Gêmeo Digital é atualizado em tempo real, proporcionando uma representação consistente e precisa do ambiente hospitalar.

10.4 Atualização do Gêmeo Digital

A computação ubíqua no Hospiguard utiliza a atualização do Gêmeo Digital como um componente essencial. O Gêmeo Digital reflete fielmente o estado real do ambiente hospitalar, sendo continuamente atualizado com base nos dados recebidos dos sensores e dispositivos.

<nome do="" projeto=""></nome>	Versão: <1.0>
Documento de Arquitetura de Software	Data: 10/01/2024>

10.5 Complementariedade

A computação ubíqua no Hospiguard adota uma abordagem complementar, integrando-se harmoniosamente com a infraestrutura hospitalar existente. Os dados coletados pelos sistemas Hospiguard são complementares às informações já disponíveis nos sistemas hospitalares, proporcionando uma visão abrangente e aprimorada do ambiente.

10.6 Descrição do conceito de gêmeo digital será integrado na aplicação/sistema

O conceito de Gêmeo Digital no Hospiguard representa uma representação virtual precisa e dinâmica dos quartos de hospital e seus sensores. Essa representação é integralmente integrada ao sistema, permitindo uma visão em tempo real do estado do ambiente hospitalar. O Gêmeo Digital é constantemente atualizado, refletindo alterações instantâneas nas condições do paciente, no ambiente e em eventos críticos.