ABSTRACT ALGEBRA — FIRST MIDTERM EXAM

ARDEN RASMUSSEN OCTOBER 7, 2019

Problem 1

Let $\omega \in \mathbb{C}$ be a solution of the equation

$$\omega^2 + \omega + 1 = 0.$$

Consider the set $\mathbb{Z}[\omega] = \{a + b\omega | a, b \in \mathbb{Z}\}$. Show that the set $\mathbb{Z}[\omega]$ is closed under the ordinary addition and under the ordinary multiplication. Conclude that $\mathbb{Z}[\omega]$ is a ring which is a subring of the field of complex numbers.

Proof. Consider the set $\mathbb{Z}[\omega] = \{a + b\omega | a, b \in \mathbb{Z}\}$. Let $a_1 + b_1\omega, a_2 + b_2\omega \in \mathbb{Z}[\omega]$, then we compute

$$(a_1 + b_1\omega) + (a_2 + b_2\omega) = (a_1 + a_2) + (b_1 + b_2)\omega.$$

It is clear that $a_1 + a_2 \in \mathbb{Z}$ and $b_1 + b_2 \in \mathbb{Z}$, so we can conclude that $\mathbb{Z}[\omega]$ is closed under ordinary addition. Now we compute

$$(a_1 + b_1\omega) \cdot (a_2 + b_2\omega) = a_1a_2 + a_1b_2\omega + a_2b_1\omega + b_1b_2\omega^2.$$

Since $\omega^2 + \omega + 1 = 0$, then we know that $\omega^2 = -\omega - 1$, so we can rewrite this to be

$$a_1 a_2 + a_1 b_2 \omega + a_2 b_1 \omega - b_1 b_2 (\omega + 1)$$

= $(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1 - b_1 b_2) \omega$.

Again, we can see that $a_1a_2 - b_1b_2 \in \mathbb{Z}$ and $a_1b_2 + a_2b_1 - b_1b_2 \in \mathbb{Z}$, thus we conclude that $\mathbb{Z}[\omega]$ is closed under ordinary addition.

Since $\mathbb{Z}[\omega] \subset \mathbb{C}$ and it is closed under addition and multiplication, then we are able to conclude that $(\mathbb{Z}[\omega], +, \cdot)$ is a ring, and is a subring of \mathbb{C} .

Problem 2

Consider the set $\mathbb{Z}[2i] = \{a + 2bi | a, b \in \mathbb{Z}\}$. Standard number addition and multiplication turn $\mathbb{Z}[2i]$ into a commutative integral domain with identity.

(a). Prove that 2 is irreducible in this ring.

Proof. Assmume that 2 is reducible, that is that there exists some $a, b \in \mathbb{Z}[2i]$ such that 2 = ab, where a, b are non-unit and non-zero. Then we compute

$$2 = ab$$

$$N(2) = N(a)N(b)$$

$$4 = N(a)N(b).$$

Since a, b are not unit, then $N(a), N(b) \neq 1$, so that means

$$N(a) = N(b) = 2.$$

If $a = \alpha + 2\beta$, with $\alpha, \beta \in \mathbb{Z}$, then $N(a) = \alpha^2 + 4\beta^2 = 2$. There can be no α, β that satisfy this equation. Thus we conclude that a must be unit. However, this is a contradiction of our assumption, thus 2 must be irreducible in $\mathbb{Z}[2i]$.

(b). Prove that 2i is irreducible in this ring.

Proof. Assmume that 2i is reducible, that is that there exists some $a, b \in \mathbb{Z}[2i]$ such that 2i = ab, where a, b are non-unit and non-zero. Then we compute

$$2i = ab$$

$$N(2i) = N(a)N(b)$$

$$4 = N(a)N(b).$$

Since a, b are not unit, then $N(a), N(b) \neq 1$, so that means

$$N(a) = N(b) = 2.$$

If $a = \alpha + 2\beta$, with $\alpha, \beta \in \mathbb{Z}$, then $N(a) = \alpha^2 + 4\beta^2 = 2$. There can be no α, β that satisfy this equation. Thus we conclude that a must be unit. However, this is a contradiction of our assumption, thus 2i must be irreducible in $\mathbb{Z}[2i]$.

(c). Is it true that 2|2i in this ring?

Proof. Assume 2|2i, this implies that there exists some $q \in \mathbb{Z}[2i]$ such that $2i = 2 \cdot q$. However, the only q that would satisfy this statement would be i, and $i \notin \mathbb{Z}[2i]$. Thus $2 \nmid 2i$

(d). Are 2 and 2i associates in this ring?

Proof. Units in this ring are ± 1 . Thus 2 and 2i are not associates, as they are not off by a unit of one another.

(e). Can you provide two factorizations of 4 into irreducible?

$$4 = 2 \cdot 2$$
$$4 = 2i \cdot (-2i)$$

(f). Is 2 prime in this ring? Justify your claim.

No 2 is not prime. Consider $2|4 \rightarrow 2|2i \cdot -2i$, but $2 \nmid 2i$ and $2 \nmid -2i$.

- (g). Is 2i prime in this ring? No 2i is not prime. Consider $2i|4 \rightarrow 2|2 \cdot 2$, but $2i \nmid 2$.
- (g). Is $\mathbb{Z}[2i]$ a Euclidean domain? Is it a PID?

It is neither. It is not a Euclidean domain, because primes \neq irreducibles, and it is not a PID, with a counter example of (2, 2i).

PROBLEM 3

Let I be an ideal of a commutative ring R with identity. Define the following set:

$$\mathrm{rad}\,(I)=\left\{r\in R|r^n\in I \text{ for some } n\in\mathbb{N}\right\}.$$

Note: \mathbb{N} is the set of positive integers only. In particular, $0 \notin \mathbb{N}$.

(a). Suppose temporarily that $R = \mathbb{Z}$. Find rad (I) for the following choices of I:

(i).
$$I = (9)$$

$$rad(I) = \{\pm 3, \pm 6, \pm 9, \ldots\}$$
$$= \{k \cdot 3 | k \in \mathbb{Z}\}$$
$$= (3)$$

(i). I = (43)

rad
$$(I) = \{\pm 43, \pm 86, \pm 129, ...\}$$

= $\{k \cdot 43 | k \in \mathbb{Z}\}$
= (43)

(iii). I = (72)

rad
$$(I) = \{\pm 6, \pm 12, \pm 18, ...\}$$

= $\{k \cdot 6 | k \in \mathbb{Z}\}$
= (6)
= $(2 \cdot 3)$
= $(2) \cap (3)$

(b). Going back to the general situation, show rad(I) is an ideal. Hint: Look at your very first homework assignment.

Proof.