逻辑与计算机设计基础学习复习要点

第一章 数字系统与信息

Chapter 1 Digital systems and Information

1. 数字系统:数字信号,典型数字系统。

Digital Systems: Digital signal, typical digital systems

2. 计算机内信息表示法

Information Representation

3. 数制

Number systems

进位计数制的概念和十、二、十六、八制数的表示

Positive radix, positional number systems, decimal, binary, octal and hexadecimal 不同进位数制之间的转换

Conversion Between Bases

4. 编码的概念及带符号二进制数的编码(ch5)。

Representation for unsigned and signed binary numbers

真值、指定长度的机器数:原码、反码、补码。

Magnitude, Signed-Magnitude, Signed-1's Complement, Signed-2's Complement 十进制数的二进制编码: BCD 码

Binary coded decimal (BCD)

字符编码: ASCII

ASCII Character Codes

5. 各种信息的编码

Non-numeric Binary Codes

第二章 组合逻辑电路

Chapter 2 Combinational Logic Circuits

1. 布尔代数(Boolean)的概念

Boolean Algebra

变量与真值的关系

Binary Variables

二值逻辑和门

Binary Logic and Gates

三种基本运算

Three basic logic operations

2. 基本运算法则与电路符号

Operation Definitions and Logic Gate Symbols

3. 基本运算公式、规则、反演,对偶规则

basic identities, DeMorgan's Theorem, Dual Theorem

- 4. 基本逻辑电路与其逻辑特性。与,或的开、关门特点,异或的同相、反相性质 Logic Gates and implementation, AND, OR gates used to control gate open or close, XOR gates used as a controllable invertor
- 5. 逻辑函数的化简

Simplification

化简的标准、公式化化简、最小项,最大项及其相互关系、卡诺图化简、 蕴涵项

Boolean Algebraic Proof, Boolean Function Optimization, Canonical Forms, Minterms, Maxterms and their relationship, K-map simplification, Prime Implicants, Gate input Cotes

含任意项函数化简

Don't Cares in K-Maps

6. 不同函数形式的变换及与最小项的关系

SOM form, POM form, Standard forms, SOP form, POS form, Conversion between forms

- 7. 函数的五种表示形式: 真值表、逻辑解析式、波形图、卡诺图、逻辑电路图 Truth Table, Boolean Equations, Wave form, K-map, Logic Diagram
- 8. 高阻输出(三态门)

Hi-Impedance Outputs, Three state buffer

第三章 组合逻辑设计

Chapter 3 Combinational Logic Design

- 1. 组合电路定义(逻辑电路的两大类型:组合逻辑电路、时序逻辑电路) Definition of Combinational Circuits
- 2. 模块与层次设计

Hierarchical Design

3. 逻辑事件的描述方法*

Description of logic events

4. 逻辑门的主要参数

Technology Parameters

扇入(Fan-in)、扇出(Fan-out)、噪音容限(Noise Margin)、门的成本(Cost for a gate)、传输延迟(Propagation Delay)

5. 器件状态值或状态表与正逻辑,负逻辑的概念

Positive and Negative Logic

6. 三态门使用原则与总线(BUS)

BUS

7. 信号系统延时、上升和下降时间、时钟上升和下降沿概念。

Delay Models, Positive and Negative Edge

8. 组合逻辑电路分析方法

Analysis of Combinational Circuits

9. 组合逻辑电路的设计方法

Design of Combinational Circuits

10. 可编程技术

Programmable Technology

ROM、PAL、PLA,使用 ROM、PAL 和 PLA 来实现逻辑电路

11. 函数与函数模块,基本逻辑功能

Functions and functional blocks

12. 计算机中的常用组合逻辑电路(功能芯片)

Frequently used Combinational Circuit in Computer Design

译码器、编码器、数据选择器(多路复用选择器)、数据分配器。

13. 组合函数的实现技术

Implementing Combinational Functions Using:

译码器和或门

Decoders and OR gates

多路复用器 (加反相器)

Multiplexers (and inverter)

ROMs

PLAs

PALs

14. 使能信号(EN, OE)的作用。

Function of Enable Signal

第四章 算术函数及相应电路

Chapter 4 Arithmetic Functions and HDLs

1. 组合电路的迭代结构

Iterative combinational circuits

2. 算术函数:了解加、减、乘、除、增量函数及运算

Arithmetic function: Add, subtraction, multiplication, division, increment

3. 补码运算

2's complement

4. 半加器及全加器函数及电路设计

Equations and Circuit implementation of 1 bit Half Adder and Full Adder

5. 多位全加器、全减器及设计

Design of multiple-bit Full Adder/ Subtracter

6. 超前进位: 进位传递与延迟,进位函数: generate, Gi、propagate, Pi Carry Lookahead: carry propagation and delay

第五章 时序电路

Chapter 5 Sequential Circuits

1. 时序电路概念和组成

Introduction to Sequential Circuits

1. 输出方程、激励函数、次态方程、输出方程类型

Output function, Excitation function, Next state function, type of output functions

2. 时序电路类型

Types of sequential circuits

3. 电路延迟模型

Circuit delay model

4. 锁存器与触发器

Latch and Flip-Flop

1) S-R 锁存器的原理、特征表、特征方程,内部电路分析,不确定状态的原因及出现条件

Analysis of Basic S-R Latch, Characteristic Table, Characteristic Equation, reason of unstable state

- 2) D 锁存器、D 触发器的原理、特征表、特征方程,内部电路分析 Theory of D Latch and D Flip-Flop, Characteristic Table, Characteristic Equation
- 3) JK 触发器、T 触发器的行为、特征表、特征方程 Behavior of JK Flip-Flop, T Flip-Flop, Characteristic Table, Characteristic Equation
- 4) 脉冲触发和边沿触发的概念,脉冲触发的一次性采样行为原因 Concept of Master-slave and edge-triggered flip-flop, 1s catching of Mast-slave flip-flop
- 5) 锁存器和触发器的时序,建立时间、保持时间、传输延迟等各种时序成分 Flip-Flop Timing Parameters, setup time, hold time, propagation delay
- 6) 各种触发器的图形符号 Symbols of Flip-Flops
- 5. 状态表、状态图

State Table, State Diagram

6. 同步时序电路分析

Sequential Circuit Analysis

- 1) 根据给定电路,写出输出方程和激励函数/次态方程; Derive output functions and excitation function/Next state function
- 2) 列出状态真值表;

Obtain State truth table

3) 列出时序电路的次态;

List next state of sequential circuit

4) 作状态表和状态图;

Obtain State Table and State Diagram

5) 分析时序电路的外部性能;

Analysis the behavior of sequential circuit

- 6) 对电路进行评述,通常需检查自恢复功能及画出时序波形图 Evaluate the circuit, validate the self-recovery ability
- 7. 电路和系统级时序分析,时序电路各路径的时序成分分析计算

Circuit and System Level Timing, analyze and compute time component along any path of the sequential circuit

8. 米利型和穆尔型电路分析

analyze Mealy and Moore type circuit

9. 时序电路设计

Sequential Circuit Design

1) 写出规格说明书

Specification

2) 系统描述 – 从问题陈述中得出状态图和状态表 Formulation - Obtain a state diagram or state table

3) 状态赋值 - 为状态表中的每个状态赋二进制代码

State Assignment - Assign binary codes to the states

4) 得到触发器的输入方程 - 选择触发器的类型,从状态表的次态栏得到触发器的输入方程

Flip-Flop Input Equation Determination - Select flip-flop types and derive flip-flop equations from next state entries in the table

5) 确定输出方程 - 从状态表的输出栏得到输出方程
Output Equation Determination - Derive output equations from output entries in the table

6) 优化 - 优化触发器的输入方程和输出方程

Optimization - Optimize the equations

7) 工艺映射 - 根据方程画出电路图,并映射到触发器和门工艺 Technology Mapping - Find circuit from equations and map to flip-flops and gate technology

8) 验证 - 验证最终设计的正确性

Verification - Verify correctness of final design

10. 米利型和穆尔型电路的设计方法

Design of Mealy and Moor type circuits

第七章 寄存器和寄存器传输

Chapter 7 Registers and Register Transfers

1. 寄存器的概念、设计模型和结构

Register, Register Design Models

门控时钟、并行加载控制
 Registers with Clock Gating, Registers with Load-Controlled Feedback

2. 移位寄存器的概念、结构

Shift Registers

串行输入、左移、右移、并行加载
 serial input, shift left, shift right, parallel load

3. 计数器的功能、类型

Function and type of counters

- 纹波计数器的结构、工作原理、优缺点
 Structure, theory, characteristic of ripple counter
- 同步计数器的结构、工作原理、优缺点 Structure, theory, characteristic of synchronous counter

- 进位链、并行进位、并行加载 carry chain, parallel carry, parallel load
- 4. 采用同步时序电路设计方法设计模 n 计数器

Use the sequential logic model to design modulo n counters

5. 采用输出结果反馈的方法设计模 n 计数器

Use output feedback model to design modulo n counters

6. 寄存器传输操作基本概念

Register transfer operations

寄存器传输语言、基本微操作、条件传输原理、多寄存器传输的三种基本结构、原理和优缺点

Register Transfer Language (RTL), Microoperations, conditional transfer, three types of Register Transfer Structures: Multiplexer-Based Transfers, Bus-Based Transfers, Three-State Bus

RTL 与硬件描述语言的关系
 Relationship of RTL and Verilog, implementation of conditional operations

第八章 存储器基础

Chapter 8 Memory basics

1. 存储器基本概念

Basic concepts of memory

存储器定义、RAM 的定义、存储器地址概念定义、存储器基本数据单元和操作

Memory definitions, RAM, memory address, RAM cell, basic memory operations

2. 存储器的组织

memory organization

地址、字长和存储单元个数之间关系 Relationship between address, word width and storage cells

3. 存储器的基本结构框图

Memory block diagram

- 地址线、数据线、控制线
 Address lines, Data lines, Control lines
- 4. 读、写过程中各信号的时序、DRAM 的访问时序

Memory Read or Write Operation Timing, DRAM Read Timing

5. 静态 RAM 和动态 RAM 的基本概念

Basic concepts of Static RAM and Dynamic RAM

- 静态存储器 SRAM 结构、动态存储器 DRAM 结构、区别 Structure and difference of SRAM and DRAM
- 6. DRAM 控制电路与刷新

DRAM block diagram and refresh

7. 两次(分时)地址加载,先加载行地址后加载列地址

Row Address and Column Address

- 8. 存储器的字扩展和位扩展方法 Memory word expansion and width expansion
- 9. 同步 SDRAM 的猝发读的基本概念 Burst read in SDRAM