1/16

2/16

6/16

Fig. 6

13/16

Fig.13

Fig.14

					15/	16	.												
HP'S POWER CONSUMPTION / TOTAL POWER CONSUMPTION [%]	68.0	78.0	83.2	78.4	79.0	79.6	81.0	82.7	84.3	9.08	85.0	86.1	88.0	79.9	85.4	92.0	95.4	92.9	96.0
TOTAL RESISTANCE OF LP [Q]	12.3	7.4	5.3	7.2	6.9	6.7	6.1	5.5	4.8	6.3	4.6	4.2	3.6	6.5	4.5	2.3	1.3	2.0	1.1
RESISTANCE OF HP (Q)	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1	26.1
SHEET RESISTANCE FOR UP: OF LP: SR3 [9]	1.53	0.92	99.0	06.0	0.87	0.84	0.77	0.68	0.61	0.78	0.58	0.53	0.45	0.82	0.56	0.28	0.16	0.25	0.14
SR2/SR1 [-]	-	1.50	0.75	1.40	1.30	1.20	1.00	0.81	0.65	1.04	09.0	0.52	0.41	1.14	0.57	0.23	0.11	0.20	0.10
SHEET RESISTANCE OF ACL: SR2 SR2	1	2.30	1.15	2.15	2.00	1.84	1.53	1.23	1.00	1.60	0.92	08.0	0.63	1.75	0.88	0.35	0.18	0.30	0.15
THICKNESS OF ACL: d.2 [nm]	ı	100	200	63	100	108.5	131	162	200	100	173	200	255	100	200	100	200	100	200
RESISTIVITY OF ACL: $\rho 2$ [$\mu \Omega \cdot cm$]	ı	23.0	23.0	20.0	20.0	20.0	20.0	20.0	20.0	16.0	16.0	16.0	16.0	17.5	17.5	3.5	3.5	3.0	3.0
MATERIAL FOR ACL	ı	NiFe	NiFe	CoFe	CoFe	CoFe	CoFe	CoFe	CoFe	Mo	Mo	Mo	Mo	Rh	R	Αn	Au	Cu	J
SS RESISTANCE MATE OF HP & BP: FG SR1 A SR1 A	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53
THICKNESS OF HP & BP: d1 [nm]	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
RESISTIVITY THICKNESS OF OF OF D 0 1 [μ Ω τ cm]	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
MATERIAL FOR HP & BP	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe	NiFe
	COMP. EX1	EX.1	EX.2	EX.3	EX.4	EX.5	EX.6	EX.7	EX.8	EX.9	EX.10	EX.11	EX .12	EX.13	EX.14	EX.15	EX.16	EX.17	EX.18

ACL:ADDITIONAL CONDUCTIVE LAYER

LP:LEAD PART

BP:BASE PART

HP:HEATING PART

Fig. 10

16/16									
HP'S POWER CONSUMPTION / TOTAL POWER CONSUMPTION [%]	0.89	78.0	78.9	79.6	91.1	92.0			
TOTAL RESISTANCE OF LP [Q]	10.7	6.4	6.1	5.8	2.2	2.0			
RESISTANCE OF HP	22.7	22.7	22.7	22.7	22.7	22.7			
SHET SR1 RESISTANCE RE OF LP: SR3 [2]	1.33	08.0	0.76	0.73	0.28	0.24			
	_	1.50	1.31	1.20	0.26	0.23			
S RESISTANCE SR2 OF ACL: SR2 [\Omega]	-	2.00	1.75	1.60	0.35	0:30			
THICKNESS OF ACL: d 2 [nm]	_	100	100	100	100	100			
RESISTIVITY OF ACL: ρ2 [μΩ·cm]	1	20.0	17.5	16.0	3.5	3.0			
MATERIAL FOR ACL	ı	CoFe	Rh	Mo	Au	Cu			
SHEET RESISTANCE OF HP & BP: SR1 [\alpha]	1.33	1.33	1.33	1.33	1.33	1.33			
THICKNESS OF HP & BP: d1 [nm]	150	150	150	150	150	150			
MATERIAL RESISTIVITY THICKNESS ROF FOR HP&BP HP&BP: d1 d1 fm]	20	20	50	20	20	20			
MATERIAL FOR HP & BP	CoFe	CoFe	CoFe	CoFe	CoFe	CoFe			
	COMP. EX.2 CoFe	EX.19	EX.20	EX.21	EX.22	EX.23			

HP:HEATING PART BP:BASE PART A

ACL:ADDITIONAL CONDUCTIVE LAYER

LP:LEAD PART