

FILE COPY ATT LO

Ontario Drinking Water Objectives

INTRODUCTION

The primary purpose of Ontario's Drinking Water Objectives is to protect public health. Water for human consumption should contain neither disease-causing organisms nor hazardous concentrations of toxic chemicals or radioactive substances.

Ontario's drinking water objectives also take into account aesthetic and physical characteristics. Drinking water should look, taste and smell pleasant. Physical characteristics - corrosiveness, hardness and tendency to leave mineral deposits - need to be controlled because of the potential effects on the distribution system and the intended domestic and industrial use of the water.

Objectives are considered to be the minimum level of quality and should not be regarded as implying approval of the degradation of a high quality supply to the specified level. The drinking water objectives described herein have been derived from the best information currently available. Almost all objectives are based on a 70 kg person consuming 1.5 litres of water per day for 70 years.

THE TYPES OF OBJECTIVES AND GUIDELINES

Maximum Acceptable Concentrations:

Maximum Acceptable Concentrations (MAC) are health-related objectives established for parameters which when present above a certain concentration, there are known or suspected adverse health effects: The length of time the MAC can be exceeded without injury to health will depend on the nature and concentration of the contaminant. In the event that a MAC is exceeded in drinking water the local Medical Officer of Health (MOH) must be notified.

Ultimate judgements regarding human health issues are made by the local MOH under the legislation of the Health Promotion and Protection Act.

Interim Maximum Acceptable Concentrations:

Interim Maximum Acceptable Concentrations (IMAC) are health-related objectives established for parameters when there is insufficient toxicological data to establish a MAC with reasonable certainty. When it is not feasible for practical reasons to establish a MAC at a desired level, an interim objective may be established at an achievable level.

Aesthetic Objectives:

Aesthetic Objectives (AO) are established for parameters which may impair the taste, smell or colour of water or which may interfere with good water quality control practices. For certain parameters, both aesthetic objectives and health-related MACs have been derived.

Operational Guidelines:

Operational Guidelines (OG) are established for parameters which need to be controlled to ensure efficient treatment of the water.

APPLICATION

The Ontario Drinking Water Objectives prescribe an acceptable level of quality for drinking water supplies. The objectives are applied in approving the establishment of, the extension of, or any change to existing water works capable of supplying water at a rate greater than 50,000 litres per day or used to supply water for five or more private residences. Water works includes any works for the collection,

production, treatment, storage, supply and distribution of water but does not include plumbing. The ministry recommends that supplies serving five or fewer private residences use these objectives to ensure the quality of drinking water.

Unless otherwise stated these objectives apply to the treated water leaving the water treatment plant.

(Table 1) CHEMICAL/PHYSICAL OBJECTIVES - HEALTH RELATED

PARAMETER	MAC (mg/L)	IMAC (mg/L)	AO (mg/L)
Alachlor		0.005	0
Aldicarb	0.009		
Aldrin + Dieldrin	0.0007		
Arsenic		0.025	
Atrazine		0.06	
Azinphos-methyl	0.02		
Barium	1.0		
Bendiocarb	0.04		
Benzene	0.005		-
Benzo(a)pyrene	0.00001		
Boron		5.0	
Bromoxynil		0.005	
Cadmium	0.005		
Carbaryl	0.09		
Carbofuran	0.09		
Carbon Tetrachloride	0.005		
Chlordane	0.007		
Chlorpyrifos	0.09		
Chromium	0.05		
Cyanazine		0.01	
Cyanide	0.2		
Diazinon	0.02		•
Dicamba	0.12		
1,2-Dichlorobenzene	0.2		0.003
1,4-Dichlorobenzene	0.005		0.001
Dichlorodiphenyltrichloroethane	•		
(DDT)+metabolites	0.03		
1,2-Dichloroethane		0.005	
Dichloromethane	0.05		
2,4-Dichlorophenol	0.9		0.0003
2,4-Dichlorophenoxy			
acetic acid (2,4-D)		0.1	
Diclofop-methyl	0.009		
Dimethoate		0.02	•
Dinoseb	0.01		

Notes on Table 1:

Shortforms:

MAC

Maximum Acceptable Concentration

· IMAC

Interim Maximum Acceptable Concentration

AO(mg/L)

Aesthetic Objective

NTU

Nephelometric Turbidity Unit

mg/L

milligrams per litre

(Table 1) CHEMICAL/PHYSICAL OBJECTIVES - HEALTH RELATED

PARAMETER	MAC (mg/L)	IMAC (mg/L)	AO(mg/L)
Dioxin and Furan		0.000000015a	
Diquat	0.07		
Diuron	0.15		
Fluoride	b		
Glyphosate		0.28	
Heptachlor + Heptachlor Epoxide	0.003		
Lead	0.01c		
Lindane	0.004		
Malathion	0.19		
Mercury	0.001		
Methoxychlor	0.9		
Metolachlor		0.05	
Metribuzin	0.08		
Monochlorobenzene	0.08		0.03
Nitrate (N)	10.0d		
Nitrite (N)	. 1.0d		
Nitrate + Nitrite (N)	10.0d		
Nitrilotriacetic Acid	0.4		
Nitrosodimethylamine(NDMA)		0.000009	
Paraquat		0.01	
Parathion	0.05		
Pentachlorophenol	0.06		0.03
Phorate		0.002	
Picloram		0.19	
Polychlorinated Biphenyl (PCBs)		0.003	
Prometryne		0.001	
Selenium	0.01		
Simazine		0.01	
Temephos		0.28	
Terbufos		0.001	
2,3,4,6-Tetrachlorophenol	0.10		0.001
Triallate	0.23		
Trichloroethylene	0.05		
2,4,6-Trichlorophenol	0.005		0.002
2,4,5-Trichlorophenoxy			
acetic acid (2,4,5-T)	0.28		0.02
Trifluralin		0.045	
Trihalomethanes	0,35e -		
Turbidity	f		
Uranium	0.10		
Vinyl Chloride	0.002		

Footnotes:

- a) Total toxic equivalents when compared with 2,3,7,8-TCDD (tetrachlorodibenzo-p-dioxin)
- b) The MAC for naturally occurring fluoride in drinking water is 2.4 mg/L. A MAC of 1.5 mg/L was established to ensure that when fluoride is added to drinking water, the concentration (1.2 +/-0.2 mg/L) is maintained such that the population obtains optimal benefit in the prevention of dental caries yet not develop mottling of teeth or skeletal fluorosis.
- c) This objective applies to water at the point of consumption. Since lead is a component in some plumbing systems, first flush water may contain higher concentrations of lead than water that has been flushed for five minutes. Faucets, therefore, should be thoroughly flushed before water is taken for consumption.
- d) Where nitrate and nitrite are present, the total of the two should not exceed 10 mg/L.
- e) The term trihalomethanes include chloroform, bromoform, bromodichloromethane and chlorodibromomethane. Their total concentration should not exceed 0.35 mg/L at anytime.
- f) A MAC for turbidity of 1 NTU in drinking water leaving the treatment plant was established to ensure the efficiency of the disinfection process. Treatment processes can result in increased turbidity in the distribution system. To ensure that the aesthetic quality is not degraded, an aesthetic objective for turbidity at the free flowing outlet of the ultimate consumer has been set at 5 NTU.

(Table 2) MICROBIOLOGICAL OBJECTIVES - HEALTH RELATED

PARAMETER	MAC (per 100 mL)
Total Coliforms	5 or not detected within 48 hours by a Presence/Absence method
Escherichia coli and/or Fecal Coliforms*	0 or not detected by a Presence/Absence method
General Bacterial Population	+

Where one of the following occurs:

- a) more than 5 total coliform bacteria per 100 mL are detected in any sample; or positive reaction occurs within 48 hours by Presence/Absence method;
- b) Escherichia coli (E. coli) and/or fecal coliform are detected in any 100 mL distribution sample;
- c) consecutive samples from the same site or multiple samples from a distribution system are positive for total coliform bacteria;

the water is considered to be unsafe and the MOEE Regional Office and District Officer must be notified immediately. They, in turn, will immediately notify the Medical Officer of Health and the operating authority to initiate corrective action. The corrective action includes immediately increasing the disinfection dose and flushing the mains to ensure a total chlorine residual of at least 1.0 mg/L or a free chlorine residual of 0.2mg/L to all points in the affected part(s) of the distribution system. Corrective action outlined should begin immediately and continue until the objectives are no longer exceeded in two consecutive sets of samples.

Footnotes:

- * E. coli is a definitive indicator of fecal contamination.
- + All water supplies should be routinely analyzed for coliform bacteria and general bacteria population. This general population can be estimated from either background colony counts on total coliform membrane filters or heterotrophic plate counts (HPC). If the membrane filter contains more than 200 background colonies on a total coliform medium per 100 mL or if the HPC exceeds 500 colonies per mL, the site should be resampled. If there is a recurrence of unacceptable background or heterotrophic plate counts, an inspection of the sife should be undertaken to determine the cause.

(TABLE 3) RADIONUCLIDE OBJECTIVES HEALTH RELATED

PARAMETER	. MAC (BECQUERELS/L)
Cesium-137	50
lodine-131	10
Radium-226	. 1
Strontium-90	10
Tritium	. 40,000

Notes on Table 3:

Radionuclide concentrations that exceed the MAC may be tolerated for a short while, provided that the annual average concentrations remain below the MAC and the restriction (see immediately below) for multiple radionuclides is met.

Restrictions for multiple radionuclides - If two or more radionuclides affecting the same organ or tissue are present, the following relationship based on International Commission on Radiological Protection(ICRP) Publication 26, should be satisfied:

where c1, c2, and ci are the observed concentrations, and C1, C2, and Ci are the maximum acceptable concentrations for each contributing radionuclide.

(Table 4) CHEMICAL/PHYSICAL OBJECTIVES - NOT HEALTH RELATED

PARAMETER	OBJECTIVE	TYPE OF OBJECTIVE
•	(mg/L - unless otherwise specified)	
Alkalinity (as CaCO ₃)	30-500	OG .
Aluminum	0.10	OG ,
Chloride	250	AO
Colour	5 TCU	AO
Copper	1.0	АО
Dissolved Organic Carbon	5.0	AO
Ethylbenzene	0.0024	. AO
Hardness (as CaCO ₃)	80-100	OG ,
Iron	0.30	AO
Manganese	0.05	AO
Methane	3L/m³	AO
Odour	Inoffensive	AO
Organic Nitrogen	0.15	OG
pH	6.5-8.5 (no units)	OG
Sodium	a	AO
Sulphate :	500b	`AO
Sulphide .	0.05	AO .
Taste	Inoffensive	AO .
Temperature	15℃	AO
Toluene	0.024	AO
Total Dissolved Solids	500	AO
Xylenes	0.30	AO
Zinc	5.0	AO

Notes on Table 4:

Shortforms:

AO

Aesthetic objective.

OG

Operational Guideline

TCU

True Colour Units

Footnotes:

a) The aesthetic objective for sodium in drinking water is 200 mg/L.

The Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be disseminated to local physicians for their use with patients on sodium restricted diets.

b) When sulphate levels exceed 500 mg/L, water may have a laxative effect on some people.

Les objectifs de qualité de l'eau potable de l'Ontario

INTRODUCTION

Les normes de qualité pour l'eau potable de l'Ontario visent principalement à protéger la santé humaine. L'eau destinée à la consommation doit être exempte d'organismes pathogènes et ne doit pas renfermer de substances toxiques ou radioactives à des concentrations qui constituent un risque pour la santé.

Ces normes tiennent également compte des caractéristiques esthétiques et physiques de l'eau. En effet, l'eau doit avoir bon goût, bonne odeur et être limpide. De plus, ses caractéristiques physiques — corrosivité, dureté et tendance à laisser des dépôts minéraux — doivent faire l'objet d'une surveillance étroite en raison des effets qu'elles peuvent avoir sur le réseau de distribution et sur l'utilisation résidentielle ou industrielle de l'eau.

Les normes qui figurent dans le présent document ont été établies à partir des meilleures informations qui existent à l'heure actuelle. La plupart sont fondées sur une consommation théorique de 1,5 litre d'eau par jour pour une personne de 70 kilogrammes, sur une période de 70 ans.

NORMES ET LIGNES DIRECTRICES

Concentration maximale admissible:

Des concentrations maximales admissibles (CMA) sont établies pour les substances qui pourraient présenter un risque pour la santé humaine. La période pendant laquelle la CMA d'un contaminant peut être dépassée sans nuire à la santé dépend de la nature et de la concentration du contaminant. Si l'eau potable d'une localité contient des concentrations excessives d'un contaminant, le médecin-hygiéniste doit en être avisé. C'est ce

dernier qui détermine, en vertu de la *Loi sur la* protection et la promotion de la santé, si la concentration d'une substance est nuisible pour la santé.

Concentration maximale admissible provisoire:

Les concentrations maximales admissibles provisoires (CMAP) sont établies pour les paramètres sur lesquels on ne possède pas suffisamment de données toxicologiques pour fixer une CMA raisonnablement certaine. Lorsqu'il est impossible pour des raisons pratiques d'établir une CMA qui soit aussi stricte qu'on le voudrait, on peut établir une limite provisoire qu'il est possible de respecter.

Normes esthétiques :

Les limites esthétiques (LE) sont établies pour les paramètres susceptibles de perturber le goût, l'odeur ou la couleur de l'eau, ou qui risquent de faire obstruction aux bonnes pratiques de contrôle de la qualité de l'eau. Certains paramètres font l'objet de limites reliées à la santé et de limites esthétiques.

Lignes directrices:

Des lignes directrices sont établies pour les paramètres qui doivent être surveillés pour assurer l'efficacité du processus de traitement de l'eau.

PORTÉE DES NORMES

Les normes de qualité pour l'eau potable de l'Ontario servent de critères d'autorisation pour les projets d'aménagement, d'agrandissement ou de modification d'ouvrages d'eau d'une capacité de plus de 50 000 litres par jour ou pour les réseaux de distribution d'eau potable desservant cinq résidences privées ou plus. Par ouvrage d'eau, on entend toute installation de collecte, de traitement, de

stockage, d'approvisionnement et de distribution de l'eau. Le terme ne s'applique pas aux systèmes de plomberie. Le Ministère recommande que les usines de traitement qui desservent cinq résidences privées ou moins adoptent les mêmes directives

pour que tous les résidents de la province puissent profiter d'une eau potable de première qualité.

À moins d'avis contraire, ces normes s'appliquent à l'eau traitée depuis la sortie de l'usine de traitement de l'eau.

(Tableau 1) Limites recommandées pour les substances chimiques reliées à la santé

SUBSTANCE	CMA(mg/L)	CMAP(nig/L)	LE(mg/L
Acide dichloro-2,4 phénoxyacétique (2,4-D)		0,01	
Acide nitrilotriacétique	0,4		
Acidetrichloro-2,4,5 phénoxyacétique(2,4,5-T)	0,28		0,02
Alachlore		0,005	
Aldicarbe	0,009		
Aldrine + dieldrine	0,0007		
Arsenic		0,025	
Atrazine		0,06	
Azinphos-méthyl	0,02		
Baryum		1,0	
Bendiocarbe	0,04		
Benzène	0,005		1.
Benzo[a]pyrène	0,00001		
Biphényles polychlorés (BPC)		.0,003	
Bore		5,0	
Bromoxynile		0,005	
Cadmium	0,005		
Carbaryl	0,09		
Carbofurane	0,09	·	
Chlordane	0,007		
Chlorpyrifos	0,09		
Chlorure de vinyle	0,002		
Chrome	0,05		
Cyanazine		0,01	
Cyanure	0,2		
Diazinon	0,02		
Dicamba	0,12		
1,2 dichlorobenzène	0,2		0,003
1,4 dichlorobenzène	0,005		0,001
Dichlorodiphényle trichloroéthane (DDT) + métabolites	0,03		
1,2 dichloroéthane		0,005	
Dichlorométhane	0,05		

Légende :

Abréviations:

CMA

concentration maximale admissible

CMAP

concentration maximale admissible provisoire

LE

limite esthétique

UTN

unité de turbidité néphélémétrique

mg/L

milligramme(s) par litre

(Tableau 1 - suite)

SUBSTANCE	CMA(mg/L)	CMAP(mg/L)	LE(mg/L
2,4 dichlorophénol	0,9		0,0003
Dichlofop-méthyle	0,009		
Diméthoate		0,02	
Dioxines et furannes		0,000000015*	
Diquat	0,07		
Diuron	0,15		
Fluorure	b		• .
Glyphosate		0,28	,
Heptachlore + époxyde			
d'heptachlore	0,003		
Lindane	0,004		
Malathion	0,19		
Mercure	0,001		
Méthoxychlore	0,9		
Métolachlore		0,05	
Métribuzine	0,08		
Monochlorobenzène	0,08		0,03
Nitrates (en N)	10,0d		
Nitrites (en N)	1,0d		
Nitrates + nitrites (en N)	10,0d		
Nitrosodiméthylamine (NDMA)		0,000009	
Paraquat		0,01	
Parathion	0,05		
Pentachlorophénol	0,06		0,03
Phorate		0,002	
Piclorame		0,19	
Plomb	0,01c		
Prométryn		0,001	
Sélénium	0,01		<u> </u>
Simazine		0,01	
Téméphos		0,28	
Terbufos		0,001	
2,3,4,6 tétrachlorophénol	0,1		0,001
Tétrachiorure de carbone	0,005		
Triallate	0,23		
Trichloroéthylène	0,05		
2,4,6 trichlorophénol	0,005		0,002
Trifluraline		0,045	
Trihalométhanes	0,35e		
Turbidité	f		f
Uranium	0,1		-

Notes:

- a) Équivalents toxiques totaux, par rapport à la 2,3,7,8 TCDD (tétrachlorodibenzoparadioxine).
- b) La CMA de fluorure naturel dans l'eau potable est de 2,4 mg/L. La limite de 1,5 mg/L a été établie pour tenir compte du fluorure ajouté à l'eau potable. Ainsi, la concentration de fluorure (1,2 ± 0,2 mg/L) est maintenue à un taux qui offre à la population une protection efficace contre la carie dentaire sans causer de taches dentaires ni la fluorose des os.
- c) Cette limite est établie pour l'eau prélevée au point de consommation. Certaines composantes de la plomberie contiennent du plomb qui contamine l'eau. La concentration de plomb dans l'eau est donc généralement moins forte après qu'on ait laissé couler le robinet pendant cinq minutes. On doit donc laisser couler suffisamment d'eau du robinet avant d'en prélever à des fins de consommation.
- d) Lorsque des nitrates et des nitrites sont présents dans l'eau, leur concentration totale ne doit pas dépasser 10 mg/L.
- e) Les trialométhanes comprennent le chloroforme, le bromoforme, le bromodichlorométhane et le chlorodibromométhane. Leur concentration totale ne doit jamais dépasser 0,35 mg/L.
- f) La limite de turbidité de l'eau prélevée à la sortie de l'usine a été établie à 1 UTN pour assurer une désinfection efficace de l'eau. Les procédés de traitement peuvent être à l'origine d'une augmentation de la turbidité de l'eau. Pour préserver les caractéristiques esthétiques de l'eau, on a fixé à 5 UTN la limite de turbidité de l'eau prélevée au point de consommation le plus éloigné de la source de distribution.

TABLEAU 2 - Limites recommandées pour les caractéristiques microbiologiques reliées à la santé

PARAMÈTRE	CMA
Coliformes totaux	.5/100 mL ou test de détection négatif dans les 24 heures du prélèvement
Escherichia Coli, coliformes fécaux* ou les deux	0/100 mL ou test de détection négatif
Population bactérienne générale .	+

Si un des cas suivants se produit :

- a) plus de 5 coliformes par 100 mL sont détectés dans un échantillon, ou le test de détection est positif dans les 24 heures du prélèvement;
- b) *Escherichia coli* (*E. Coli*) ou coliformes fécaux décelés dans un échantillon de 100 mL d'eau prélevé dans le réseau de distribution;
- c) plusieurs échantillons, consécutifs ou non, prélevés dans le réseau de distribution indiquent la présence de coliformes totaux;

l'eau n'est pas propre à la consommation et l'on doit immédiatement aviser le bureau régional ou le bureau de district du ministère de l'Environnement et de l'Énergie. Le Ministère se chargera par la suite d'aviser le médecin-hygiéniste et les autorités compétentes pour que soient prises les mesures correctrices qui s'imposent. Les mesures correctrices comprennent l'augmentation immédiate de la quantité de désinfectant utilisée et le rinçage des conduites principales pour porter le taux de chlore résiduel total à au moins 1 mg/L ou le taux de chlore résiduel libre à 0,2 mg/L dans toutes les sections contaminées du réseau. Ces mesures doivent être prises aussi longtemps que la concentration de coliformes dans l'eau de deux séries d'échantillons consécutifs dépasse les limites prescrites.

Notes:

- * E. Coli est le principal indicateur de contamination fécale.
- + Toutes les sources d'approvisionnement en cau devraient faire l'objet d'analyses de routine pour déceler la présence de coliformes ou connaître la population bactérienne générale. La population bactérienne générale peut être déterminée par des méthodes de numération par membranes filtrantes ou de numération normalisée sur plaques. Si la membrane filtrante contient plus de 200 colonies bactériennes totales par 100 mL ou si la numération sur plaques révèle plus de 500 colonies par mL, on doit procéder à un autre échantillonnage dans le réseau. Si les analyses subséquentes donnent toujours des résultats inacceptables, on doit procéder à une inspection du réseau et établir la source de contamination.

TABLEAU 3 Limites reliées à la santé recommandées pour les radionucléides

RADIONUCLÉIDE		CMA (BECQUERELS/L)	
Césium -137		50	
lode -131		10	
Radium -236		1 .	
Strontium -90	,	10	
Tritium	•	40 000	

Notes:

Des concentrations de radionucléides supérieures aux concentrations maximales admissibles peuvent être tolérées pourvu qu'elles soient de courte durée et que les concentrations moyennes annuelles demeurent inférieures aux CMA et qu'elles satisfassent à la restriction relative aux radionucléides multiples mentionnée ci-dessous.

Restriction relative aux radionucléides multiples — Si deux nucléides, ou plus, ayant des effets sur les mêmes organes ou tissus sont présents dans l'eau, l'équation suivante, tirée de la publication n° 26 de la Commission internationale de protection contre les radiations (CIPR), s'applique:

où c1, c2 et ci sont les concentrations mesurées et C1, C2 et Ci sont les concentrations maximales admissibles pour chacun des radionucléides.

TABLEAU 4 Limites recommandées pour les caractéristiques physiques et les substances chimiques (non reliées à la santé)

PARAMÈTRE	LIMITE	ТҮРЕ
	(en mg/L — à moins d'indication contraire)	
Alcalinité (en CaCO ₃)	30-500	· LD
Aluminium	0,1	. LD
Azote organique	0,15	· LD
Chlorure	250	LE
Couleur	5 UCV	LE
Cuivre	1,0	LE
Carbone organique dissous	5,0	LE
Dureté (en CaCO ₃)	80-100	LD
Éthylbenzène	0,0024	LE
Fer	0,3	· LE
Goût	inoffensif	· LE
Manganèse	0,05	. LE
Matières solides dissoutes totales	500	LE
Méthane	3 L/m³	LE
Odeur	inoffensive	LE
рН	6,5-8,5	LD
Sodium	a	. LE
Sulfates	500Ъ	LE
Sulfures	0.05	LE
Température	15 °C	LE
Toluène	0.024	LE
Xylènes	0,3	LE
Zinc	5,0	LE '

5

Légende :

Abréviations:

LE

limite esthétique

LD

UCV

lignes directrices

Unités de couleur vraie

Notes:

a) La limite esthétique pour le sodium dans l'eau potable est de 200 mg/L. Toutefois, le médecin-hygiéniste devrait être avisé lorsque la concentration de sodium dépasse 20 mg/L pour qu'il puisse communiquer cette information aux médecins de la région ayant des patients qui doivent suivre un régime hyposodique.

b) Lorsque la concentration de sulfates dépasse 500 mg/L, l'eau peut avoir des effets laxatifs chez certaines personnes.

