МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Институт (факультет)	информационных технологий
Кафедра	Математического и программного обеспечения ЭВМ
	Лабораторные работы
по дисциплине Пр	оограммирование графики / Графические системы и языки

СОДЕРЖАНИЕ

	1. Общие требования	3
	2. Лабораторная работа: "Создание инфографики"	6
	3. Лабораторная работа: "Физическая симуляция ткани"	. 11
	4. Лабораторная работа: "Моделирование и анимация человека"	' 14
	5. Лабораторная работа: "Трансформация объектов с помощью систе	ЗМЫ
ча	стиц"	17
	6. Лабораторная работа: "Анимация разбитого стекла"	20
	7. Лабораторная работа: "Программирование в Blender (Python)"	23
	8. Задание на зачет: "Создание сложной сцены или модели"	26

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Формат и поля документа

Текстовые документы оформляются на белых листах формата А4.

Поля: левое -30 мм; правое -10 мм; верхнее -20 мм; нижнее -20 мм.

1.2. Шрифт и интервал

Шрифт: Times New Roman Cyr, размер 14. Интервал: Полуторный (около 30 строк на странице). Отступ первой строки абзаца: 0,75 см. Количество знаков в строке (включая пробелы): 60. Текст программы может быть расположен в две колонки, шрифт – Times New Roman Cyr, размер 8.

1.3. Нумерация страниц

Нумерация всех страниц (включая приложения) сквозная арабскими цифрами. Номер страницы проставляется в середине верхнего поля страницы. На титульном листе, аннотации и оглавлении номера страниц не указываются.

1.4. Структура отчета

- 1) Титульный лист.
- 2) Оглавление.
- 3) Задание на лабораторную работу.
- 4) Выполнение задания (15-20 скриншотов этапов работы).
- 5) Листинг (при необходимости).
- 6) Ответы на контрольные вопросы.

7) Список литературы (при необходимости).

Каждая раздел начинается с новой страницы.

1.5. Оформление заголовков

Название разделов пишется прописными буквами по центру строки. Название подразделов и пунктов печатается с абзацного отступа (0,75 см), с прописной буквы, без подчеркивания и точки в конце. Расстояние между заголовками и текстом, а также между заголовками разделов и подразделов: два интервала. Расстояние между последней строкой текста предыдущего раздела и заголовком следующего раздела: три интервала.

1.6. Нумерация разделов и подразделов

Разделы нумеруются арабскими цифрами с точкой (например: 1., 2.). Подразделы нумеруются через точку (например: 1.1, 2.5). При ссылках на разделы или подразделы указывается их порядковый номер (например: «в разд. 2», «в п. 2.3.1»).

1.7. Перечисления

Перечисления нумеруются арабскими цифрами со скобкой (например: 1), 2), 3)) с абзацного отступа.

Допускается использование маркированных списков одного вида.

1.8. Рисунки и таблицы

Рисунки и таблицы нумеруются арабскими цифрами (сквозная или относительная нумерация). Подпись к рисунку размещается под рисунком по центру. Например:

Рис. 5. Название

Номер таблицы размещается в правом верхнем углу над заголовком. Например:

Таблица 1

Название таблицы

Название варианта	Прогнозирование отказов промышленного оборудования
Цель	Получение прогноза отказа оборудования
Действующие лица	Пользователь
Краткое описание	Получение прогноза предполагает получение данных с кластера, расчет модели на нем, выдача прогноза в виде таблицы и\или графика
Тип варианта	Основной

Рисунки и таблицы размещаются сразу после абзаца, в котором они упоминаются, или как можно ближе к этому абзацу на следующей странице. При ссылках на рисунки, таблицы и формулы используются следующие обозначения: «...(рис. 2)», «...в табл. 5», «...по формуле (9)».

2. ЛАБОРАТОРНАЯ РАБОТА: "СОЗДАНИЕ ИНФОГРАФИКИ"

Создание информативной и наглядной инфографики по выбранной теме, связанной с одной из областей России или штатов США. Темы могут охватывать следующие направления:

- Экономика (например, ВВП, уровень безработицы, ключевые отрасли).
- Политика (например, выборы, политические партии, демография).
- Социальная сфера (например, образование, здравоохранение, уровень жизни).
- Религия (например, религиозный состав населения, культурные особенности).
- И другие актуальные темы.

2.1. Цель работы

Освоить навыки создания инфографики с использованием современных инструментов визуализации данных. Научиться представлять сложную информацию в наглядной и доступной форме.

2.2. Задачи

- Выбрать область России или штат США для анализа (записаться в файле по ссылке: https://clck.ru/3GSu6w), тему исследования (экономика, политика, социальная сфера и т.д.)
- Собрать достоверные данные по выбранной теме.

Создать инфографику, используя один из предложенных инструментов (PowerPoint, Excel, Word, Canva (canva.com), Easel.ly (easel.ly), Piktochart (create.piktochart.com), Venngage (venngage.com), Creately (creately.com) и

другие). Содержание инфографики: текстовые блоки с кратким описанием данных, графики, диаграммы, карты или другие визуальные элементы, логичную структуру и последовательность представления информации).

- Подготовить отчет, содержащий описание исходных данных и источников информации (формат Word или PDF).
- Защитить работу, предоставив исходный файл и финальный результат в формате PNG или PDF.

2.3. Критерии оценки

Информативность (30%):

Инфографика должна содержать точные и актуальные данные.

Информация должна быть представлена в доступной и понятной форме.

Наглядность (30%):

Использование графиков, диаграмм, карт и других визуальных элементов.

Четкая структура и логичное расположение элементов.

— Дизайн (20%):

Эстетика и гармоничность оформления.

Цветовая гамма и шрифты должны быть удобны для восприятия.

Оформление отчета (10%):

Полнота описания исходных данных и источников.

Корректность оформления ссылок.

Защита работы (10%):

Качество презентации и умение объяснить свой выбор решений.

2.4. Пример тем для инфографики

- ВВП региона за последние 5 лет.
- Уровень безработицы в регионе.

- Основные отрасли экономики.
- Результаты последних выборов.
- Распределение голосов между партиями.
- Демографический состав избирателей.
- Уровень образования населения.
- Количество больниц и школ на душу населения.
- Уровень доходов населения.
- Религиозный состав населения.
- Количество религиозных организаций.
- Культурные особенности региона.

Примеры инфографики:

Рис. 1. Пример инфографики «Демография области»

Рис. 2. Пример инфографики «Схема производства»

Рис. 3. Пример инфографики «Туристская карта»

Рис. 4. Пример инфографики «Государственные награды»

2.5. Контрольные вопросы

- 1. Что такое инфографика? Какова её основная цель?
- 2. Какие основные элементы должна содержать качественная инфографика?
- 3. В чем разница между инфографикой и обычной презентацией?
- 4. Как проверить достоверность данных, найденных в интернете?
- 5. Какие альтернативные инструменты для создания инфографики вы знаете?
- 6. Почему важно соблюдать баланс между текстом и визуальными элементами?
 - 7. Что такое визуальная иерархия? Как она применяется в инфографике?

3. ЛАБОРАТОРНАЯ РАБОТА: "ФИЗИЧЕСКАЯ СИМУЛЯЦИЯ ТКАНИ"

3.1. Цель работы

Освоить основы физической симуляции в Blender, научиться настраивать параметры материалов и взаимодействия объектов. Создать реалистичную анимацию, демонстрирующую поведение ткани (скатерти) при различных воздействиях.

3.2. Задачи

- Создать модель стола и скатерти, воспользовавшись методическими указаниями ЧАСТЬ 1.
- Настроить физическую симуляцию ткани, экспериментируя с параметрами (жесткость, гравитация, трение и др.).
- Добавить анимацию взаимодействия объектов:
 - Реакция скатерти на движение стола.
 - Реакция скатерти на падение предмета (например, книги или чашки).
- Подготовить отчет, описывающий процесс создания и настройки симуляции.
- Защитить работу (примерный результат на рис. 5), предоставив исходный файл проекта Blender и видеофайл с результатом анимации.

Рис. 5. Возможный результат выполнения работы

3.3. Критерии оценки

- Моделирование объектов (20%):
 - Качество модели стола и скатерти.
 - Корректность применения текстур.
- Настройка физики (30%):
 - Реалистичность поведения ткани.
 - Понимание влияния параметров симуляции.
- Анимация взаимодействия (30%):
 - Наличие и качество анимации (движение стола, падение предмета).
 - Реалистичность реакции ткани.
- Оформление отчета (10%):
 - Полнота описания процесса.
 - Четкость изложения.
- Защита работы (10%):
 - Качество презентации и умение объяснить свои решения.

3.4. Контрольные вопросы

- 1. Что такое физическая симуляция? Как она используется в компьютерной графике?
 - 2. Как параметр жесткости (Stiffness) влияет на поведение ткани?
 - 3. Как изменение гравитации (Gravity) влияет на симуляцию?
 - 4. Как добавить анимацию движения объекта в Blender?
 - 5. Как применить текстуру к объекту в Blender?
 - 6. Как экспортировать анимацию в видеофайл?
 - 7. Почему важно тестировать различные параметры симуляции?

4. ЛАБОРАТОРНАЯ РАБОТА: "МОДЕЛИРОВАНИЕ И АНИМАЦИЯ ЧЕЛОВЕКА"

4.1. Цель работы

Научиться создавать 3D-модель человека, настраивать материалы, добавлять скелет (риг) и создавать анимации. Освоить базовые принципы риггинга и анимации персонажей в Blender.

4.2. Задачи

- Создать 3D-модель человека.
- Наложить материалы и текстуры на модель для придания реалистичности.
- Добавить скелет (риг) и настроить весовые карты (Weight Painting) для корректной деформации модели.
- Создать три анимации:
 - 1. Стояние на месте (например, дыхание или легкое покачивание).
 - 2. Бег.
 - 3. Прыжок (с физическим взаимодействием, например, отскоком).
- Протестировать анимацию, проверить её плавность и исправить возможные ошибки.
- Подготовить отчет, описывающий процесс создания модели и анимации.
- Защитить работу (примерный результат на рис. 6), предоставив исходный файл проекта Blender (ОДИН, С 3 АНИМАЦИЯМИ) и видеофайлы с результатами анимации.

Рис. 6. Возможный результат выполнения работы

4.3. Критерии оценки

Моделирование (20%):

Качество модели (оптимальное количество полигонов, использование ретопологии).

Реалистичность формы и пропорций.

Материалы и текстуры (20%):

Корректность наложения материалов и текстур.

Реалистичность внешнего вида модели.

Риггинг и анимация (30%):

Корректность настройки скелета и весовых карт.

Плавность и реалистичность анимации.

Дополнительные эффекты (10%):

Использование частиц или физических взаимодействий.

Оформление отчета (10%):

Полнота описания процесса.

Четкость изложения.

Защита работы (10%):

Качество презентации и умение объяснить свои решения.

4.4. Контрольные вопросы

- 1. Какие инструменты в Blender можно использовать для создания 3D-модели человека?
 - 2. Как наложить текстуры на 3D-модель в Blender?
 - 3. Что такое UV-развертка? Как её создать?
 - 4. Что такое скелет (Armature) и зачем он нужен?
- 5. Как настроить весовые карты (Weight Painting) для корректной деформации модели?
 - 6. Как создать циклическую анимацию (например, бег)?
 - 7. Какие ограничения существуют у анимации в Blender?

5. ЛАБОРАТОРНАЯ РАБОТА: "ТРАНСФОРМАЦИЯ ОБЪЕКТОВ С ПОМОЩЬЮ СИСТЕМЫ ЧАСТИЦ"

5.1. Цель работы

Научиться использовать систему частиц в Blender для создания эффекта трансформации одного объекта в другой. Освоить базовые принципы управления параметрами частиц (размер, скорость, цвет) для достижения различных визуальных эффектов.

5.2. Задачи

- Выбрать два объекта для трансформации (например, куб в сферу или текст в облако частиц).
- Настроить систему частиц для создания эффекта трансформации.
- Использовать модификатор Explode для разрушения исходного объекта и его последующего преобразования в целевой объект.
- Экспериментировать с параметрами частиц (размер, скорость, цвет) для достижения различных визуальных эффектов.
- Создать анимацию процесса трансформации и сохранить её в видеоформате.
- Подготовить отчет, описывающий процесс создания анимации.
- Защитить работу, предоставив исходный файл проекта Blender и видеофайл с результатом анимации.

5.3. Краткая инструкция по выполнению работы

1. Выберите два объекта для трансформации. Например:

Куб → Сфера.

Текст → Облако частиц.

Плоскость → Фигура сложной формы (например, звезда).

- 2. Убедитесь, что объекты имеют достаточное количество вершин для корректной работы системы частиц.
 - 3. Настройка системы частиц

Добавьте систему частиц к исходному объекту.

Настройте параметры частиц:

Размер (Size): определяет размер каждой частицы.

Скорость (Velocity): влияет на движение частиц.

Цвет (Color): можно использовать градиенты для создания динамических эффектов.

Экспериментируйте с параметрами для достижения желаемого визуального эффекта.

4. Использование модификатора Explode

Примените модификатор Explode к исходному объекту.

Настройте параметры модификатора для создания эффекта разрушения объекта.

Убедитесь, что частицы правильно формируют целевой объект после трансформации.

5. Создание анимации

Настройте ключевые кадры для управления появлением и движением частиц.

Создайте плавную анимацию трансформации объектов.

Добавьте дополнительные эффекты (например, свечение частиц или изменение их цвета).

6. Рендеринг и сохранение результата

Отрендерите анимацию в виде видеофайла (формат MP4 или AVI).

Сохраните исходный файл проекта Blender для проверки.

5.4. Критерии оценки

— Выбор объектов и идея (20%):

Интересная и оригинальная идея для трансформации.

Корректность выбора объектов.

Настройка системы частиц (30%):

Реалистичность и качество эффекта трансформации.

Экспериментирование с параметрами частиц (размер, скорость, цвет).

— Использование модификатора Explode (20%):

Корректность настройки модификатора.

Плавность перехода между объектами.

Анимация и дополнительные эффекты (20%):

Наличие и качество анимации.

Использование дополнительных эффектов (например, свечение или изменение цвета).

Оформление отчета (5%):

Полнота описания процесса.

Четкость изложения.

Защита работы (5%):

Качество презентации и умение объяснить свои решения.

5.5. Контрольные вопросы

- 1. Что такое система частиц? Как она используется в графике?
- 2. Какие типы частиц можно создавать в Blender?
- 3. Что делает модификатор Explode?
- 4. Как настроить параметры модификатора для создания эффекта разрушения объекта?
 - 5. Какие ограничения существуют у системы частиц в Blender?

6. ЛАБОРАТОРНАЯ РАБОТА: "АНИМАЦИЯ РАЗБИТОГО СТЕКЛА"

6.1. Цель работы

Научиться создавать реалистичную анимацию разбивающегося стекла с учетом физики взаимодействия материалов. Освоить базовые принципы работы с динамикой разрушения (Fracture Dynamics) и добавления вторичных эффектов (звук, частицы).

6.2. Задачи

- Создать сцену с летящим шариком и стеклом.
- Настроить физику взаимодействия материалов (например, масса шарика, прочность стекла).
- Добавить эффект разрушения стекла при ударе шарика.
- Добавить вторичные эффекты: звук удара и частицы осколков.
- Провести анализ результатов симуляции, сравнив их с реальными примерами (например, видео разбивающегося стекла).
- Подготовить отчет, описывающий процесс создания анимации.
- Защитить работу, предоставив исходный файл проекта Blender и видеофайл с результатом анимации.

6.3. Краткая инструкция по выполнению работы

1. Предварительный анализ

Изучите, как физика взаимодействия материалов влияет на результат: масса шарика: чем больше масса, тем сильнее удар; прочность стекла: определяет, насколько легко стекло разрушается; скорость шарика: влияет на силу удара.

Найдите реальные примеры разбивающегося стекла (например, видео в интернете) для сравнения с результатами симуляции.

2. Создание сцены

Создайте объект стекла (плоскость или объемная форма).

Создайте объект шарика и настройте его движение (например, по траектории полета).

Убедитесь, что объекты имеют достаточное количество вершин для корректной работы физики разрушения.

3. Настройка физики разрушения

Примените модификатор Cell Fracture или другой инструмент для разрушения стекла.

Настройте параметры разрушения: количество осколков, прочность материала, влияние силы удара. Убедитесь, что разрушение происходит реалистично.

4. Добавление вторичных эффектов

Добавьте звук удара (например, используя звуковой клип из библиотеки Blender или внешний файл).

Добавьте частицы осколков для усиления эффекта разрушения.

Настройте освещение и камеру для лучшей визуализации сцены.

5. Тестирование и доработка

Проверьте реалистичность анимации.

Сравните результаты с реальными примерами разбивающегося стекла.

Исправьте возможные ошибки (например, некорректное поведение осколков или отсутствие звука).

6. Рендеринг и сохранение результата

Отрендерите анимацию в виде видеофайла (формат MP4 или AVI).

Сохраните исходный файл проекта Blender для проверки.

6.4. Критерии оценки

Предварительный анализ (10%):

Глубина изучения физики взаимодействия материалов, сравнение с реальными примерами.

Создание сцены (20%):

Качество модели стекла и шарика, корректность настройки движения шарика.

Физика разрушения (30%):

Реалистичность эффекта разрушения, настройка параметров разрушения.

Вторичные эффекты (20%):

Наличие и качество звука удара.

Реалистичность частиц осколков.

Оформление отчета (10%):

Полнота описания процесса.

Четкость изложения.

Защита работы (10%):

Качество презентации и умение объяснить свои решения.

6.5. Контрольные вопросы

- 1. Что такое динамика разрушения (Fracture Dynamics)? Как она используется в компьютерной графике?
 - 2. Как масса объекта влияет на силу удара?
 - 3. Как прочность материала определяет его поведение при разрушении?
 - 4. Как скорость объекта влияет на результат столкновения?
 - 5. Как добавить звук удара в Blender?
 - 6. Как настроить частицы осколков для усиления эффекта разрушения?
 - 7. Какие ограничения существуют у физической симуляции в Blender?

7. ЛАБОРАТОРНАЯ РАБОТА: "ПРОГРАММИРОВАНИЕ В BLENDER (PYTHON)"

7.1. Цель работы

Научиться программировать в Blender с использованием Python для автоматизации создания 3D-объектов. Освоить базовые принципы написания скриптов, которые позволяют генерировать сложные объекты (например, башню) с возможностью настройки параметров.

7.2. Задачи

- Написать программу на Python для создания башни из примитивов (кубы, сферы, конусы и т.д.).
- Убедиться, что башня состоит из определенного количества этажей (минимум 7), каждый из которых можно настраивать (высота, форма, материалы).
- Добавить возможность изменения параметров башни через код или конфигурационный файл (высота этажа, форма этажа (куб, цилиндр, сфера и т.д.), материалы (цвет, текстура)).
- Добавить документацию к коду и объяснить, как работает каждая часть программы.
- Подготовить отчет, описывающий процесс создания программы.
- Защитить работу (примерный результат на рис. 7), предоставив исходный код программы и видеофайл с демонстрацией результата.

Рис. 7. Примерный результат работы

7.3. Критерии оценки

Функциональность программы (30%):
Корректность создания башни.

Возможность настройки параметров этажей.

Автоматизация (20%):

Реализация изменения параметров через интерфейс или конфигурационный файл.

Обработка входных данных без ошибок.

Документация (20%):

Наличие и качество комментариев в коде.

Четкость описания функций и переменных.

Результат работы (20%):

Качество созданной башни (реалистичность, дизайн).

Наличие демонстрации результата (видео или изображение).

Оформление отчета (5%):

Полнота описания процесса.

Четкость изложения.

Защита работы (5%):

Качество презентации и умение объяснить свои решения.

- 7.4. Контрольные вопросы
- 1. Какие возможности предоставляет Python для работы с Blender?
- 2. Какие основные объекты и методы API Blender используются для создания 3D-моделей?
 - 3. Как создать примитив (например, куб или цилиндр) с помощью Python?
 - 4. Как изменить размер, положение и ориентацию объекта через скрипт?
 - 5. Как добавить материалы и текстуры к объектам через Python?
 - 6. Как отлаживать код в Blender?

8. ЗАДАНИЕ НА ЗАЧЕТ: "COЗДАНИЕ СЛОЖНОЙ СЦЕНЫ ИЛИ МОДЕЛИ"

8.1. Цель работы

Продемонстрировать навыки, полученные в рамках курса, создав сложную 3D-сцену или модель с использованием продвинутых техник компьютерной графики. Работа должна отражать глубину понимания выбранной темы и демонстрировать умение решать сложные задачи.

8.2. Задачи

- Создать сложную 3D-сцену или модель, используя любые доступные инструменты (Blender, Unity, Unreal Engine, Maya и др.).
- Применить техники (например, процедурная генерация, физика, освещение, текстурирование).
- Подготовить отчет о работе, включающий описание используемых инструментов, методов и решений проблем.
- Защитить работу, предоставив исходный файл проекта, видеофайл или изображения с результатом, а также отчет.

8.3. Критерии оценки

Сложность сцены или модели (30%):

Насколько сложна и детализирована работа.

Использование нескольких элементов (например, моделирование + анимация + освещение).

Использование продвинутых техник (30%):

Применение процедурной генерации, физики, освещения и других сложных техник.

Реалистичность и качество реализации.

Качество рендера (20%):

Реалистичность материалов, освещения и текстур.

Чистота и четкость изображения/видео.

— Оформление отчета (10%):

Полнота описания процесса.

Четкость изложения и наличие скриншотов.

Защита работы (10%):

Качество презентации и умение объяснить свои решения.

8.4. Формат сдачи работы

Исходный файл проекта (Blender, Unity, Unreal Engine и т.д.). Видеофайл или изображения с результатом (MP4, PNG/JPG). Отчет в формате DOCX или PDF.

8.5. Примеры зачетных сцен

Рис. 8. Пример зачетной сцены / модели

Рис. 9. Пример зачетной сцены / модели

Рис. 10. Пример зачетной сцены / модели

Рис. 11. Пример зачетной сцены / модели