第4章 逻辑与证明

邮箱:jhcui@hust.edu.cn 主页: https://csjhcui.github.io/

办公地址:华中科技大学南一楼东406 室

致谢:课件主要参考《 Discrete Mathematics and its application》(Seventh Edition) Keneth H. Rosen 和《离散数学》(第2版) 屈婉玲,耿素云,张立昂版本的相关课件, 特此致谢!!!

- 命题等价式 Propositional Equivalences
- 谓词和量词和嵌套量词
 Predicates and Quantifiers and Nested Quantifiers
- **推理规则**Rules of Inference
- 8 证明导论 Introduction to Proofs

第4.1节 命题逻辑

Section 4.1: Propositional Logic

我们将学到的知识

- □命题的概念
- □复合命题
 - ▶ 非、合取、析取、异或
 - > 蕴含
 - ▶ 逆命题, 逆否命题, 反命题
 - > 双向蕴含
- □真值表

4.1.1 命题

□定义:**命题**是一个陈述语句(陈述事实的语句), 它或者为真或者为假, 但不能不真不假.

□举例:

- > 月亮是由绿色的奶酪组成的.
- > 华盛顿特区是美国的首都.
- ▶ 加拿大的首都是多伦多.
- > 1 + 0 = 1
- \rightarrow 0 + 0 = 2

4.1.1 命题

□举例(不是命题):

- > 坐下!
- ▶ 现在几点?
- > x + 1 = 2
- \rightarrow x + y = z

4.1.2 命题逻辑

□构造命题

- ▶命题变元: *p*, *q*, *r*, *s*, ...
- ▶如果一个命题是真命题, 它的真值为真, 用T表示; 如果它是假命题, 它的真值为假, 用F表示.
- ▶复合命题: 由一个或者多个命题用逻辑运算组合而来的新命题
 - 非/否 ¬
 - 合取 ^
 - 析取 >
 - 蕴含 →
 - 双向蕴含 ↔

4.1.2 非命题

□命题p的**非命题**(否定命题)表示为¬p, 它的真值表为:

p	$\neg p$
Т	F
F	Т

□举例: p表示 "地球是圆的", 那么 $\neg p$ 表示 "并非地球是圆的" 或者更简单地表述 "地球不是圆的"

4.1.2 合取命题

 $\square p$ 和q的**合取命题**表示为 $p \land q$, 它的真值表为:

p	q	$p \wedge q$	
T	Т	Т	
Т	F	F	
F	Т	F	
F	F	F	

□举例:p表示"我在家." q表示"今天在下雨." 那么 $p \land q$ 则表示 '我在家并且今天在下雨."

4.1.2 析取命题

 $\square p$ 和q的**析取命题**表示为 $p \vee q$, 它的真值表为:

p	q	$p \lor q$	
Т	Т	Т)
Т	F	Т	
F	Т	Т	
F	F	F	

□举例: p表示 "我在家." q表示 "今天在下雨." 那么 $p \lor q$ 则表示 '我在家, 或者今天在下雨."

4.1.2 异或命题

- □在自然语言中"或"字有两种不同的含义:
 - \blacktriangleright "**兼或**" 在句子 "Students who have taken CS202 or Math120 may take this class"中,我们假设学生需要先完成至少一个先导课,但是也可以两门先导课都参加过. 这表示析取($p \lor q$). 要想 $p \lor q$ 为真,那么至少其中一个,或者两个都为真.
 - ightharpoonup "**异或** $" 在句子 "Soup or salad comes with this entrée," 我们不希望开胃小菜同时有汤、沙拉. 这表示异或(<math>p \oplus q$), p和q中至少有一个为真, 但不能同时为真. 它的真值表如下:

p	q	$p \oplus q$
Τ	T	F
Τ	F	Т
F	Т	Т
F	F	F

4.1.3 蕴含命题

□如果p和q是命题,那么 $p \to q$ 表示**条件语句**或者蕴含命题,读作"如果p,那么q",它的真值表为:

p	q	$p\! o\! q$	
Т	Т	Т	
T	F	F	真推出假,条件语句才为假
F	T	Т	
F	F	Т	

□举例: p表示 "我在家." q表示 "今天在下雨." 那么 $p \rightarrow q$ 则表示 "如果我在家,那么今天在下雨."

4.1.3 蕴含命题

- □ 在 $p \rightarrow q$ 中, p是假设(前提), q是结论(推论).
- □ $cp \rightarrow q$ 中,前提和结论之间不需要有关联. $p \rightarrow q$ 的真值仅仅与p, q的真值有关系.
- □ 蕴含命题可能在中文表示不通顺, 但在命题逻辑中表示真.
 - ▶ "如果月亮由绿色的奶酪组成, 那么我比比尔.盖茨更富有."
 - ▶ "如果月亮由绿色的奶酪组成, 那么我得靠救济生活."
 - ▶ "如果1+1=3, 那么你奶奶穿着军靴."

4.1.3 蕴含命题

- □为了便于理解条件语句的真值表, 可以将条件语句想象为义务或合同.
 - "如果我当选了,那么我将减税."
 - 只有在该政治家当选了但却没有减税的情况下, 选民才能说政治家违背了竞选诺言.
 - ▶ "如果你在期末考试得了满分,那么你的成绩将被评定为A."
 - 你得到满分, 教授没有给你A, 你才会有受骗的感觉. 在这儿对应了条件语句中p为真, q为假时, $p \to q$ 的真值为假的情况.