Esercizi prob 2

February 20, 2025

1 Esercizio 2.1

Definiamo le misure finite(*) di \mathcal{G}_1 , con $A_2 \in \Pi_2$ fissato:

$$\nu_1(A) := \mathbb{P}(A \cap A_2)$$

$$\nu_2(A) := \mathbb{P}(A)\mathbb{P}(A_2)$$

Siccome dall'ipotesi si sa che $\nu_1(A) = \nu_2(A) \quad \forall A \in \Pi_1$, per il lemma di Williams si ha che $\nu_1(A) = \nu_2(A) \quad \forall A \in \mathcal{G}_1$ Analogamente, fissato $A_1 \in \Pi_1$:

$$\tilde{\nu}_1(B) := \mathbb{P}(B \cap A_1)$$

$$\tilde{\nu}_2(B) := \mathbb{P}(B)\mathbb{P}(A_1)$$

Siccome dall'ipotesi si sa che $\tilde{\nu}_1(B) = \tilde{\nu}_2(B) \quad \forall B \in \Pi_2$, per il lemma di Williams si ha che $\tilde{\nu}_1(B) = \tilde{\nu}_2(B) \quad \forall B \in \mathcal{G}_2$ (*) Bisogna dimostrare che ν_1 e ν_2 sono misure finite:
Per ν_1 :

$$0 \le \nu_1(A) = \mathbb{P}(A \cap A_2) \le \mathbb{P}(A) < +\infty$$

$$\nu_1\left(\sqcup_k A_k\right) = \mathbb{P}\left(\left(\sqcup_k A_k\right) \cap A_2\right) = \mathbb{P}\left(\sqcup_k A_k \cap A_2\right) = \sum_k \mathbb{P}\left(A_k \cap A_2\right) = \sum_k \nu_1(A_k)$$

Per ν_2 :

$$0 < \nu_2(A) = \mathbb{P}(A)\mathbb{P}(A_2) < \mathbb{P}(A_2) < 1$$

$$\nu_2\left(\sqcup_k A_k\right) = \mathbb{P}\left(\sqcup_k A_k\right) \mathbb{P}(A_2) = \left(\sum_k \mathbb{P}(A_k)\right) \mathbb{P}(A_2) = \sum_k \mathbb{P}(A_k) \mathbb{P}(A_2) = \sum_k \nu_2(A_k)$$

2 Esercizio 2.2

$2.1 \Rightarrow$

Sia
$$A_j := \{ \omega | X_j(\omega) \le x_j \}$$

Abbiamo che $A_j \in \sigma(X_j)$ (infatti: $X_j(A_j) = (-\infty, x_j] \in \mathcal{B}(\mathbb{R})$)

Quindi
$$\mathbb{P}\left(\bigcap_{j=1}^{n} A_j\right) = \prod_{j=1}^{n} \mathbb{P}(A_j)$$

$2.2 \Leftarrow$

Osserviamo che, fissato j, si ha che $\Pi_j := \{\{X_j \leq x_j\}, x_j \in \mathbb{R}\}$ è un π -sistema (infatti $\{X_j \leq x_j\} \cap \{X_j \leq y_j\} = \{X_j \leq \min\{x_j, y_j\}\}$).

Per l'esercizio 2.1 si ha la tesi.

3 Esercizio 2.3

Prendiamo $\{A_1, \ldots A_N\}$ indipendenti:

$$\mathbb{P}\left(A_1 \cap \dots \cap A_N\right) = \prod_{n=1}^N \mathbb{P}(A_n) = \prod_{n=1}^k \mathbb{P}(A_n) \prod_{n=k+1}^N \mathbb{P}(A_m) = \mathbb{P}\left(\bigcap_{n=1}^k A_n\right) \mathbb{P}\left(\bigcap_{m=k+1}^N A_m\right)$$

Sia:

$$\Pi_{-,k} := \left\{ \bigcap_{n=1}^{k} A_n, \ A_n \in \sigma(X_n) \right\}$$

Si ha che $\sigma(X_i) \subset \Pi_{-,k}, \quad \forall i \leq k.$

Inoltre $\Pi_{-,k}$ è un sistema π ; $\sigma(\Pi_{-,k}) = \sigma(X_1,\ldots,X_k)$

$$\Pi_{+,k} := \left\{ \bigcap_{n=k+1}^{\infty} A_n, \ A_n \in \sigma(X_n) \right\}$$

 $\sigma(\Pi_{+,k}) = \sigma(X_{k+1},\dots)$

Per convergenza monotona (usata 2 volte):

$$\mathbb{P}\left(\bigcap_{N} (A_{1} \cap \dots \cap A_{N})\right) = \lim_{N \to \infty} \mathbb{P}\left(A_{1} \cap \dots \cap A_{N}\right) = \lim_{N \to \infty} \mathbb{P}\left(A_{1} \cap \dots \cap A_{k}\right) \mathbb{P}\left(A_{k+1} \cap \dots \cap A_{N}\right) =$$

$$= \mathbb{P}\left(A_{1} \cap \dots \cap A_{k}\right) \mathbb{P}\left(A_{k+1} \cap \dots\right)$$

Ma $A_1 \cap \cdots \cap A_k$ è un generico elemento di $\Pi_{-,k}$, e $A_{k+1} \cap \ldots$ è un generico elemento di $\Pi_{+,k}$ Vale cioè che $\mathbb{P}(A_+ \cap A_-) = \mathbb{P}(A_+) \mathbb{P}(A_-) \quad \forall A_+ \in \Pi_{+,k}, \ A_- \in \Pi_{-,k}$ L'esercizio 2.1 chiude la dimostrazione.

4 Esercizio 2.4

4.1 (1)

Definiamo $I_j^n := \left[\frac{j-1}{2^n}, \frac{j}{2^n}\right)$

$$\mathbb{P}\left(I_{j}^{n}\right) = \frac{1}{2^{n}}$$

Riscriviamo A_{n+1} e B in funzione degli I_i^n :

$$B = \bigsqcup_{k \in K} I_k^n$$

(per qualche insieme K)

$$A_n = \bigsqcup_{j=1}^{2^{n-1}} I_{2j}^n$$

Quindi:

$$\mathbb{P}(A_{n+1}) = \frac{1}{2}$$

$$\mathbb{P}(B) = \frac{|K|}{2^n}$$

$$\mathbb{P}\left(B \cap A_{n+1}\right) = \frac{|K|}{2^{n+1}}$$

(Quest'ultima identità la si ottiene facendo un paio di conti. Ma basta fare un disegnetto ed è ovviamente vera)

4.2 (2)

Che $(\mathbbm{1}_{A_n})_n$ siano identicamente distribuite lo abbiamo già visto (hanno tutte $\mathbb{P}(X=1) = \mathbb{P}(X=0) = \frac{1}{2}$). Inoltre $\mathbb{P}\left(I_j^n \cap A_m\right) = \frac{1}{2^{n+1}}$ con n < m.

Quindi (assumendo che n < m):

$$\mathbb{P}(A_n \cap A_m) = \sum_{j=1}^{2^{m-1}} \mathbb{P}(I_{2j}^n \cap A_m) = \sum_{j=1}^{2^{n-1}} \frac{1}{2^{n+1}} = \frac{1}{4}$$

5 Esercizio 2.5

5.1 (1)

X è variabile aleatoria perché è misurabile (è limite di funzioni semplici misurabili) ed è sempre finita $\left(\left|\frac{X_n(\omega)}{2^n}\right| \le \frac{1}{2^n}\right)$, che converge in somma).

$$\mathbb{P}(X \in \{0,1\}) \le \mathbb{P}(X = 0) + \mathbb{P}(X = 1) = \mathbb{P}(X_n = 0, \forall n) + \mathbb{P}(X_n = 1, \forall n) \le \frac{1}{2^n} + \frac{1}{2^n} \quad \forall n \in \{0,1\}$$

Siccome $0 \le X \le 1$:

$$\mathbb{P}(X \in (0,1)) = 1 - \mathbb{P}(X \in \{0,1\}) = 1$$

5.2

$$2F_X(x) = 2\mathbb{P}\left(\sum_n \frac{X_n}{2^n} \in [0, X]\right) = 2\mathbb{P}\left\{\omega | 2\sum_x \frac{X_n(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'(\omega)}{2^n} \in [0, 2x]\right\} = 2\mathbb{P}\left\{\omega | X_0' + \sum_n \frac{X_n'($$

 $\operatorname{Con} X_j' := X_{j+1}$

$$2 \left[\mathbb{P} \left(X_0' = 0 \right) \mathbb{P} \left(X \in [0, 2x] \right) + \mathbb{P} \left(X_0' = 1 \right) \mathbb{P} \left(X \in [0, 2x - 1] \right) \right]$$

Se $x < \frac{1}{2}$:

$$2F_X(x) = 2\left[\frac{1}{2} \cdot F_X(2x) + \frac{1}{2} \cdot 0\right] = F_X(2x)$$

Se $x \geq \frac{1}{2}$:

$$2F_X(x) = 2\left[\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot F_X(2x - 1)\right] = 1 + F_X(2x - 1)$$

5.3(3)

Sappiamo dalla formula che $F_X(0) = 0$ e che $F_X(1) = 1$.

Quindi, imponendo $x=\frac{m}{2^n}$, si ha che con la formula si può ricavare il valore di $F_X(x)$ in funzione dei valori $\left\{F_X(\frac{m}{2^{n-1}})\right\}_{m\in\mathbb{N}}$, quindi tutti i valori diadici sono fissati.

In particolare, si può dimostrare per induzione che $F_X(x) = x$.

5.4 (4)

$$X_1 := \sum_{n \in \mathbb{N}} \frac{X_{2n}}{2^n}$$

$$X_2 := \sum_{n \in \mathbb{N}} \frac{X_{2n+1}}{2^n}$$

Con i termini nella sommatoria IID B(1/2).

5.5 (5)

Analogamente a prima ma spartisci i vari X_j in infinite classi.