32 64 256

1036-15b

100

75

25

Percent Survival 50

0.125 -0.5 128 Concentration (ppm) ${\bf 1036\text{-}15b}~{\rm LC}_{50}$ cannot be estimated with the given data.

1036-15c LC₅₀: 1.55e3 ppm [16.1, 2.49e36] 3 biol. reps; 3 tech. reps; R^2 : 0.0962

1036-16a LC₅₀: 440 ppm [56.5, 3.05e90] 3 biol. reps; 3 tech. reps; R^2 : 0.118

 ${\bf 1036\text{-}16b}~{\rm LC_{50}}$ cannot be estimated with the given data. 3 biol. reps; 3 tech. reps; R^2 : -1.17e-2

1036-16c LC₅₀: 381 ppm [89.8, 3.12e9] 3 biol. reps; 3 tech. reps; R^2 : 0.238

1061-11 100 75 Percent Survival 50 25 0 -0.25 0.5 16 32 64 0.062 0.125 128 Concentration (ppm)

1036-3a LC₅₀: 117 ppm [56.3, 306] 1 biol. rep; 1 tech. rep; \mathbb{R}^2 : 0.56

1061-11 LC₅₀: 198 ppm [32.2, 1.02e6] 1 biol. rep; 1 tech. rep; R^2 : 0.321

1061-12a LC_{50} cannot be estimated with the given data. 1 biol. rep; 1 tech. rep; R^2 : 0.0231

1061-12b LC₅₀: 963 ppm [270, 2.40e90] 3 biol. reps; 3 tech. reps; R^2 : 0.0419

1061-1a LC₅₀: 236 ppm [135, 673] 3 biol. reps; 3 tech. reps; R^2 : 0.153

1061-1b LC₅₀: 833 ppm [21.4, 4.90e23] 1 biol. rep; 1 tech. rep; R^2 : 0.413

100 1061-2b

75

25

25

Concentration (ppm)

1061-2a LC₅₀: 2.06e3 ppm [21.6, 1.73e18] 3 biol. reps; 3 tech. reps; R^2 : 0.0511

 $\begin{array}{lll} \textbf{1061-2b} \ LC_{50} \colon \ 1.51e3 \ ppm \ [18.2, \ 1.45e22] \\ 1 \ biol. \ rep; \ 1 \ tech. \ rep; \ R^2 \colon \ 0.248 \end{array}$

1061-3b LC₅₀: 2.60e4 ppm [0.0662, 6.65e92] 1 biol. rep; 1 tech. rep; \mathbb{R}^2 : 0.0347

1061-4a LC₅₀ cannot be estimated with the given data. 1 biol. rep; 1 tech. rep; R^2 : -2.15e-2

1061-4b LC₅₀: 160 ppm [75, 1.12e3] 1 biol. rep; 1 tech. rep; R^2 : 0.537

1061-5a LC₅₀: 450 ppm [114, 3.10e90] 1 biol. rep; 1 tech. rep; \mathbb{R}^2 : 0.106

1061-5b LC₅₀: 440 ppm [79.3, 1.93e90] 1 biol. rep; 1 tech. rep; R^2 : 0.597

1061-7a1 LC₅₀ cannot be estimated with the given data. 1 biol. rep; 1 tech. rep; R^2 : -8.21e-3

1061-9a1 LC₅₀: 163 ppm [31.4, 2.32e5] 1 biol. rep; 1 tech. rep; R^2 : 0.361

1061-6a LC_{50} cannot be estimated with the given data. 1 biol. rep; 1 tech. rep; R^2 : -1.14e-2

1061-7a2 LC₅₀: 88.6 ppm [20.3, 3.80e3] 1 biol. rep; 1 tech. rep; R²: 0.482

1091-14 LC₅₀: 2.26e3 ppm [21.7, 6.06e7] 3 biol. reps; 3 tech. reps; \mathbb{R}^2 : 0.156

Acetamiprid LC₅₀: 1.61 ppm [1.04, 2.48] 5 biol. reps; 6 tech. reps; R^2 : 0.564

Aziphos-methyl LC₅₀: 0.17 ppm [0.148, 0.197] 4 biol. reps; 5 tech. reps; R^2 : 0.815

Carbaryl LC₅₀: 530 ppm [19.3, 1.51e4] 8 biol. reps; 9 tech. reps; R^2 : 0.0774

Aldicarb LC₅₀: 0.518 ppm [0.431, 0.636] 4 biol. reps; 5 tech. reps; R^2 : 0.944

Bifenthrin LC₅₀: 1.54 ppm [1.21, 1.97] 7 biol. reps; 8 tech. reps; R^2 : 0.764

Carbofuran LC_{50} : 0.32 ppm [0.243, 0.415] 5 biol. reps; 6 tech. reps; R^2 : 0.77

Concentration (ppm)

Chlorantraniliprole LC_{50} : 4.84 ppm [3.02, 8.25] 10 biol. reps; 11 tech. reps; R^2 : 0.417

Chlorfenapyr LC₅₀: 10.1 ppm [8.47, 11.9] 4 biol. reps; 5 tech. reps; R^2 : 0.874

Chlorpyrifos LC₅₀: 0.198 ppm [0.163, 0.24] 4 biol. reps; 5 tech. reps; R^2 : 0.956

Clothianidin LC₅₀: 0.734 ppm [0.467, 1.21] 4 biol. reps; 5 tech. reps; R^2 : 0.694

Cyantraniliprole LC₅₀: 0.882 ppm [0.606, 1.24] 9 biol. reps; 10 tech. reps; R^2 : 0.801

 β -Cypermethrin LC₅₀: 0.104 ppm [0.0744, 0.143] 7 biol. reps; 8 tech. reps; R²: 0.44

Percent Survival

25

Concentration (ppm)

ddvp

DDT LC₅₀: 70.3 ppm [11.7, 2.16e3] 4 biol. reps; 5 tech. reps; R^2 : 0.0817

DDVP LC₅₀: 0.0456 ppm [0.0289, 0.0692] 6 biol. reps; 7 tech. reps; \mathbf{R}^2 : 0.395

100

Fipronil LC₅₀: 1.78 ppm [1.46, 2.22] 5 biol. reps; 6 tech. reps; \mathbb{R}^2 : 0.677

Imidacloprid LC₅₀: 0.554 ppm [0.403, 0.774] 9 biol. reps; 11 tech. reps; R²: 0.776

Malathion LC₅₀: 0.353 ppm [0.328, 0.382] 16 biol. reps; 31 tech. reps; R^2 : 0.824

Mnaled LC₅₀: 0.0563 ppm [0.0355, 0.0785] 4 biol. reps; 5 tech. reps; R^2 : 0.43

Naled LC₅₀: 0.0534 ppm [0.0369, 0.12] 3 biol. reps; 3 tech. reps; R^2 : 0.976

S-nicotine LC₅₀: 108 ppm [55.2, 962] 4 biol. reps; 5 tech. reps; R^2 : 0.271

Phorate LC₅₀: 0.247 ppm [0.2, 0.304] 4 biol. reps; 5 tech. reps; R^2 : 0.93

Naphazoline hydrochloride LC_{50} : 1.38e3 ppm [109, 3.26e90]

2 biol. reps; 2 tech. reps; R^2 : 0.0553

Permethrin LC₅₀: 12 ppm [7.81, 27.6] 5 biol. reps; 6 tech. reps; R^2 : 0.223

Propoxur LC₅₀: 1.38 ppm [1.11, 1.74] 6 biol. reps; 7 tech. reps; R^2 : 0.824

 $\begin{array}{l} \textbf{Pyethrum} \ LC_{50}\text{: } 78.4 \ ppm \ [36.4, \ 198] \\ 8 \ biol. \ reps; \ 9 \ tech. \ reps; \ R^2\text{: } 0.227 \end{array}$

Data analysis was performed using the statistics module for the Merlin Data Analysis program. Live/dead counts from the bioassay were used to generate new survival probabilities using a Beta prior. The user-specified prior is Heldane's prior, the improper prior Beta(0,0), (set by BETA_PRIOR) and 3840 bootstrap iterations were used (set by BOOTSTRAP_ITERS). When either the live count or dead count was equal to 0, the prior the distribution Beta(0.25, 0.25) (set by BETA_PRIOR_0) was used to avoid the sunrise problem. Correlation between wells in a replicate was modelled by generating multivariate normal random variables with correlation $\rho = 0.1$ (set by RHO), which were then converted to quantiles, and then back-converted to probabilities in the appropriate beta distribution.

Each iteration of bootstrapped dose-response data was fit to Least-squares fitting was performed using the Levenberg-Marquardt algorithm with geodesic acceleration algorithm using a C interface to the GNU Scientific Library.

Credible intervals for the data points are shown at the 80% level when fewer than 10 replicates are used. The best-fit line is calculated as the median value of all fitted curves at a given concentration. The error region for the curve respresents a 95% credible region, as determined by quantiles of predicted survivals at each concentration.