Massive Stars: Late time evolution and wave heating

08/12/2014 Lecturer: Eliot Quataert; TA: Jared Brooks MESA Summer School 2014

Mini-Lab Instructions

- Start a blank standard work directory
- Copy in history_columns.list from mesa/star/defaults and uncomment log_Ledd
- Copy in inlist_massive_defaults from mesa/star/
- Copy in inlist_massive_pgstar from mesastar.org and point your inlist to read pgstar info from this
- Change initial mass value to a random number between 10 and 100
- Set Zbase = 0.02
- Change Dutch_wind_eta value to 0.3
- Add a stopping condition to stop the run when the center mass fraction for helium falls below 10^{-3} and save the model
- Load this model and run until fe_core_infall_limit is reached
- Note the higher luminosities (compared to $L_{\rm edd}$) and shorter evolution times for oxygen and later burning than for carbon burning.
- If you have time, you might find it more instructive to plot L fusion as a function of $\log(t_{\rm end}-t)$ to more clearly see the increase in luminosity during late stages of stellar evolution.
- That plot should look something like this:

Long Lab Instructions

- Similar to minilab, start a new work directory and copy in inlist_massive_defaults from mesa/star/defaults, and run_star_extras.f and RSG_15M.mod from the mesastar.org page for this lab
- Include the commands in inlist_massive_defaults to load this model
- Set Zbase = 0.02
- To access the routine for extra heating in the run_star_extras.f, you must include the command use_other_energy = .true.
- Then you can set x_ctrl(1) to control the amount of extra heating, in L_{Edd} units, and x_ctrl(2) to control the radius of energy deposition, in R_☉ units
- Also set super_eddington_wind_eta=1 to allow a mechanism for mass loss due to wave heating
- For this $15M_{\odot}$ model, try parameters in the range $0.1L_{\rm Edd} \leq L_{\rm wave} \leq 10L_{\rm Edd}$ and $0.1R_{\odot} \leq R_{\rm input} \leq 3R_{\odot}$.
- When your run finished, report your chosen heating rate (in $L_{\rm Edd}$ units) and radius (in R_{\odot} units), along with your final mass and radius (again, in solar units) to the corresponding google spreadsheet for this lab
- Try running a model with super-Eddington winds off and RLO winds on instead. Set $rlo_wind_eta = 0.1$ or near this value, and $rlo_wind_roche_lobe_radius$ to a value between 200 and 1500 (in R_{\odot} units) to see how this changes the late time evolution of the model
- Now download and copy in the starting model 50M_O_burn.mod and try running it with the heating rate and deposition radius in the same range as before
- Again, report your heating rate, deposition radius, final mass, and final radius
- Note the much smaller changes for the $50M_{\odot}$ model because of the faster evolution times prevent the injected energy from reaching the surface before core collapse
- If you have time, you can run a high mass (> $30M_{\odot}$) model from ZAMS to core collapse with various rlo wind parameters set to model the evolution of the star given that it is in a binary. See how different rlo_wind_roche_lobe_radius values changes the final mass at core collapse.