```
import numpy as np
import pandas as pd
from numba import njit
import matplotlib.pyplot as plt
import mplcyberpunk
plt.style.use("cyberpunk")
plt.rcParams["figure.figsize"] = (15, 10)
```

Lista 4 - PRP41

Leonardo Antonio Lugarini

Questão 1:

Parameter	FUEL (C2H5OH)	OXIDANT (O2(L))
REACTANT	WT FRACTION	TEMP (K)
FUEL	1.0000000	400.000
OXIDANT	1.0000000	90.170

• O/F= 1.60000

Pressure Ratio (Pinf/P)	CHAMBER	THROAT	EXIT	EXIT	EXIT
P, BAR	30.000	17.368	1.4809	0.49714	0.23281
T, K	3351.20	3188.32	2483.01	2134.41	1892.65
RHO, KG/CU M	2.4259	1.4946	1.7052-1	6.7005-2	3.5429-2

H, KJ/KG	-2148.83	-2804.10	-5295.27	-6174.14	-6704.48
U, KJ/KG	-3385.48	-3966.11	-6163.71	-6916.08	-7361.62
G, KJ/KG	-42110.3	-40823.3	-34904.0	-31626.0	-29273.5
S, KJ/(KG)(K)	11.9245	11.9245	11.9245	11.9245	11.9245
M, (1/n)	22.531	22.813	23.773	23.919	23.947
(dLV/dLP)t	-1.03227	-1.02681	-1.00431	-1.00079	-1.00018
(dLV/dLT)p	1.6108	1.5347	1.1102	1.0225	1.0056
Cp, KJ/(KG)(K)	6.5169	6.1254	3.1450	2.3353	2.1367
GAMMAs	1.1295	1.1278	1.1531	1.1832	1.1964
SON VEL,M/SEC	1181.9	1144.8	1000.7	937.0	886.7
MACH NUMBER	0.000	1.000	2.507	3.028	3.404

PERFORMANCE PARAMETERS

Ae/At	CSTAR, M/SEC	CF	Ivac, M/SEC	Isp, M/SEC
1.0000	1753.3	0.6529	2159.8	1144.8
4.0000	1753.3	1.4308	2854.8	2508.6
9.0000	1753.3	1.6183	3098.9	2837.4
16.000	1753.3	1.7216	3236.2	3018.5

In [65]: #utilizando dados da CHAMBER

c_star = 1753.3 #m/s P0 = 30*1e5 #Pa

```
At = np.pi*(3*1e-2)**2 #m^2
Isp = 1144.8 #m/s
Ivac = 2159.8 #m/s

dot_m = P0*At/c_star

g0 = 9.81 #m/s2
E = dot_m*Isp*g0 #N

data_dict = {
    "vazão (kg/s)": [dot_m],
    "Impulso Esp. Vácuo (m/s)": [Ivac],
    "Empuxo (N)": [E]
}

df = pd.DataFrame(data_dict, index=["Values"])
df
```

Out[65]:

Vazão (kg/s) Impulso Esp. Vácuo (m/s) Empuxo (N)

Values

4.837906

2159.8 54332.042555

Questão 2:

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

- Pin = 435.1 PSIA
- Ac/At = 4.0000
- Pinj/Pinf = 1.012641
- CASE = ____

REACTANT COMPOSITION

FUEL C2H5OH	1.0000000	-227485.078	400.000
OXIDANT O2(L)	1.0000000	-12979.000	90.170

- O/F = 1.60000
- %FUEL = 38.461538
- R,EQ.RATIO = 1.248436
- PHI,EQ.RATIO = 1.302361

PERFORMANCE PARAMETERS

Parameter	INJECTOR	COMB END	THROAT	EXIT 1	EXIT 2	EXIT 3
Pinj/P	1.0000	1.0258	1.7491	20.509	61.086	130.44
P, BAR	30.000	29.247	17.152	1.4628	0.49111	0.23000
T, K	3351.20	3345.81	3187.08	2482.90	2134.69	1892.99
RHO, KG/CU M	2.4259 0	2.3692 0	1.4764 0	1.6844-1	6.6183-2	3.4994-2
H, KJ/KG	-2148.83	-2164.73	-2803.88	-5294.45	-6173.29	-6703.71
U, KJ/KG	-3385.48	-3399.20	-3965.59	-6162.88	-6915.34	-7360.97
G, KJ/KG	-42110.3	-42077.5	-40823.2	-34913.4	-31638.4	-29285.6
S, KJ/(KG)(K)	11.9245	11.9292	11.9292	11.9292	11.9292	11.9292
M, (1/n)	22.531	22.535	22.810	23.772	23.919	23.947
(dLV/dLP)t	-1.03227	-1.03221	-1.02687	-1.00434	-1.00079	-1.00018
(dLV/dLT)p	1.6108	1.6106	1.5362	1.1109	1.0227	1.0057
Cp, KJ/(KG)(K)	6.5169	6.5215	6.1377	3.1518	2.3373	2.1373
GAMMAs	1.1295	1.1294	1.1277	1.1529	1.1831	1.1963

SON VEL,M/SEC	1181.9	1180.8	1144.6	1000.6	937.0	886.7
MACH NUMBER	0.000	0.151	1.000	2.507	3.028	3.404

TRANSPORT PROPERTIES (GASES ONLY)

CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

Parameter	INJECTOR	COMB END	THROAT	EXIT 1	EXIT 2	EXIT 3
VISC,MILLIPOISE	1.0766	1.0755	1.0419	0.88075	0.79081	0.72497

```
In [66]: #### Dados do CEA Online
         T = np.array([3351.20, 3345.81, 3187.08, 2482.9, 2134.69]) #K
         Gammas = np.array([1.1295, 1.1294, 1.1277, 1.1529, 1.1831])
         Mach = np.array([0.0, 0.151, 1.0, 2.507, 3.028])
         A_At = np.array([4.0, 4.0, 1.0, 4.0, 9.0])
         MM = np.array([22.531, 22.535, 22.810, 23.772, 23.919])/1000 #kg/mol
         ##Constantes
         R = 8.3144621 \ #J/(K \ mol)
         R_t = (R/MM[2]) #J/ (Kg K)
         T_k = T[0]
         T_w = 1000
         D_t = 6*1e-2 \#m
         r_m = 2*1e-2 \# m
         u_t = 1.0419*1e-4 #Pa.s
         Cp = Gammas[2]*R_t/(Gammas[2] - 1)
         Pr_t = (4*Gammas[2])/(9*Gammas[2] - 5)
         C = (0.026/(D_t * r_m)**0.1)*((u_t**0.2*Cp)/Pr_t**0.6)*((dot_m/At)**0.8)
         ##Calculo dos coeficientes de transferencia de calor
```

```
tau = 1 + ((Gammas - 1)/2)*Mach**2
h_g = C * (A_At**-0.9) * (((T_w/T_k)*tau/2 + 1/2)**-0.68) * tau**-0.12

df = pd.DataFrame({'Temperature (Tg)': T, 'Heat Transfer Coefficient (h_g)': h_g}, index=["x1", "x2", "x3", "x4", "xdf.round(2)
```

Out [66]: Temperature (Tg) Heat Transfer Coefficient (h_g) x1 3351.20 4218.61 x2 3345.81 4216.89 x3 3187.08 14437.62 x4 2482.90 3747.89

2134.69

Questão 3:

х5

1676.29

```
A_ch = (1_canal)*h_canal
d_h = 2*(A_ch/(1_canal + h_canal))

h_l = 0.023*((dot_m/(n_ch*A_ch))**0.8)*((Cp_etanol**0.4)*(lambda_etanol**0.6)/(mu_etanol**0.4))*(f_a/(d_h**0.2))
print(f"h_l = {h_l:.2f}")

h_l = 240354.92
```

Questão 4:

```
In [69]: from scipy.optimize import root
         dados_tabela = {
             "Estação": ["x1", "x1", "x2", "x2", "x3", "x3", "x4", "x4", "x5", "x5"],
             "Segmento": ["s1,1", "s1,2", "s2,1", "s2,2", "s3,1", "s3,2", "s4,1", "s4,2", "s5,1", "s5,2"],
             "Comprimento de canal (mm)": [2.5, 2.5, 2.5, 3.0, 3.0, 2.7, 2.97, 2.97, 2.97],
         df_camara = pd.DataFrame(dados_tabela)
         k_m = 1.6
         dot_m_0 = dot_m/(1 + (1/k_m))
         dot m F = dot m O/k m
         eps ch = 1.5*1e-3
         rho_etanol = 790 \#kg/m3
         v = dot_m_F/(rho_etanol*(A_ch*n_ch))
         Re = rho etanol*v*d h/mu etanol
         def function_f_d(f_d):
             return f_d^{**}-0.5 + 2*np.log10(eps_ch/(3.7*d_h) + (2.51*(f_d^{**}-0.5))/Re)
         sol = root(function_f_d, 1)
         f_D = sol.x[0]
         def delta_p(L):
             return L*((f_D*rho_etanol*v**2)/(2*d_h))
         #Como a entrada da jaqueta é no segmento s4,2, é feito a soma das perdas de pressão a partir de s4,2 ate s1,1
```

```
df_{camara} = df_{camara.iloc[0:8]}
df_camara["\Dp (bar)"] = delta_p(df_camara["Comprimento de canal (mm)"]*1e-3)/1e5
P_{entrada} = df_{camara["\Delta p (bar)"].sum() + 33
df_camara["P (bar)"] = P_entrada - df_camara.iloc[::-1]["Δp (bar)"].cumsum().shift(1)
df_camara = df_camara.fillna(P_entrada)
dados_entrada = {
    "Estação": ["Entrada Jaqueta"],
    "Segmento": [""],
   "Comprimento de canal (mm)": np.nan,
   "∆p (bar)": np.nan,
    "P (bar)": P_entrada
entrada = pd.DataFrame(dados_entrada,index=[8])
dados_saida = {
    "Estação": ["Saida Jaqueta"],
    "Segmento": [""],
    "Comprimento de canal (mm)": np.nan,
   "∆p (bar)": np.nan,
    "P (bar)": 33
saida = pd.DataFrame(dados_saida,index=[0])
df_camara = pd.concat([saida, df_camara, entrada]).reset_index(drop=True).fillna("").iloc[::-1]
df_camara.round(2)
```

Out[69]:

	Estação	Segmento	Comprimento de canal (mm)	Δp (bar)	P (bar)
9	Entrada Jaqueta				85.62
8	x4	s 4 ,2	2.97	7.058949	85.62
7	x4	s4,1	2.97	7.058949	78.56
6	х3	s3,2	2.7	6.417226	71.50
5	х3	s3,1	3.0	7.130251	65.09

4	x2	s2,2	3.0 7.1302	251 57.96
3	x2	s2,1	2.5 5.9418	376 50.83
2	x1	s1,2	2.5 5.9418	376 44.88
1	x1	s1,1	2.5 5.9418	38.94
0	Saida Jaqueta			33.00

Questão 5:

```
In [70]: #a)

area_df = pd.DataFrame({"Segmento": ["s1,1", "s1,2", "s2,1", "s2,2", "s3,1", "s3,2", "s4,1", "s4,2"],

"\DeltaS": [94.25*1e-4, 94.25*1e-4, 94.25*1e-4, 110.64*1e-4, 79.03*1e-4, 72.77*1e-4, 109.76*1e-4, 141.12*1e-4]

})

area_df
```

Out[70]: Segmento ΔS s1,1 0.009425 0 s1,2 0.009425 1 2 s2,1 0.009425 3 s2,2 0.011064 4 s3,1 0.007903 5 s3,2 0.007277 6 s4,1 0.010976 7 s4,2 0.014112

```
In [71]: e = 1e-3 \# m
         k = 400 \#W/m/K
         AUX = (1/h_q + e/k + 1/h_l)*dot_m_F*Cp_etanol
         T_1 = [300]
         q = []
         T_q = []
         T_f = []
         i = 0
         while i<=3:
             ponteiro = 3-i
             num1 = AUX[ponteiro]*T_l[i]
             if i == 0:
                 num2 = 0
             else:
                 num2 = q[i-1]*(AUX[ponteiro]/(dot_m_F*Cp_etanol))*area_df[area_df["Segmento"] == f"s{ponteiro+2},1"]["\DeltaS"].
             num3 = T[ponteiro]*area_df[area_df["Segmento"] == f"s{ponteiro+1}, 2"]["\Delta S"].values[0]
             den1 = AUX[ponteiro]
             den2 = area_df[area_df["Segmento"] == f"s{ponteiro+1}, 2"]["\DeltaS"].values[0]
             T_aux = (num1 + num2 + num3)/(den1+ den2)
             T_1.append(T_aux)
             q.append(dot_m_F*Cp_etanol*(T[ponteiro] - T_l[i+1])/AUX[ponteiro])
             T_q.append(T[ponteiro] - q[i]/h_g[ponteiro])
             T_f.append(T_q[i] - (e/k)*q[i])
             i +=1
         final_df = pd.DataFrame({"Tq": T_q, "Tf":T_f, "Tl":T_l[1:], "q":q}, index=["4", "3", "2", "1"])
         final_df
```

4 370.324957 350.530693 317.588968 7.917706e+06

Τf

ΤI

q

Τq

Out[71]:

```
3 620.521949 527.884489 373.716709 3.705498e+07
         2 519.939281 490.148311 440.570013 1.191639e+07
         1 554.341730 524.844602 475.755316 1.179885e+07
In [72]: #b)
         k_718 = 26.3 \#W/m/K
         sigma = 5.67*1e-8 \#W/m^2/K^4
         epsilon = 0.95 #emissividade
         def T_function(T_f5):
             AUX = sigma*epsilon*(1/h_g[4] + e/k_718)
             return AUX*(T_f5**4) + T_f5 - T[4]
         sol = root(T_function, 400)
         T_f5 = sol.x[0]
         q_5 = sigma*epsilon*(T_f5**4)
         T_q5 = q_5*(e/k_718) + T_f5
         T_q5
         dados_5 = {
             "Tq": T_q5,
             "Tf": T_f5,
             "Tl": np.nan,
             "q": q_5
         secao5 = pd.DataFrame(dados_5,index=[5])
         final_df = pd.concat([secao5, final_df]).iloc[::-1].fillna("")
         final_df["Tg"] = T
         final_df
                                                               Tg
```

Out[72]: Τq Τf ΤI q

1	554.341730	524.844602	475.755316	1.179885e+07	3351.20
2	519.939281	490.148311	440.570013	1.191639e+07	3345.81
3	620.521949	527.884489	373.716709	3.705498e+07	3187.08
4	370.324957	350.530693	317.588968	7.917706e+06	2482.90
5	1807.368476	1786.505863		5.486867e+05	2134.69

c)