

W/O-based antiperspirant or deodorant compositions contain a W/O emulsifier, especially polyethyleneglycol-30-dipolyhydroxystearate

Publication number: DE10210461 Publication date: 2003-09-18

Inventor: K

KROEPKE RAINER (DE); KUX ULRICH (DE);

BLECKMANN ANDREAS (DE); DIEC KHIET HIEN (DE)

Applicant:

BEIERSDORF AG (DE)

Classification:

- international:

A61K8/06; A61K8/26; A61K8/28; A61K8/73; A61K8/86;

A61Q15/00; A61K8/04; A61K8/19; A61K8/72;

A61Q15/00; (IPC1-7): A61K7/32

- european:

A61K8/06; A61K8/26; A61K8/28; A61K8/73F;

A61K8/73P; A61K8/86; A61Q15/00

Application number: DE20021010461 20020309 Priority number(s): DE20021010461 20020309

Report a data error here

Abstract of DE10210461

A cosmetic and/or dermatological composition comprises by wt.: (A) an aqueous phase (at least 70 %); (B) a lipophilic phase (5-20 %); (C) W/O emulsifier(s) (0.1-5 %); and (D) an antiperspirant (actives concentration 5-20 %). An Independent claim is also included for production of the compositions.

Data supplied from the esp@cenet database - Worldwide

Offenlegungsschaift

_® DE 102 10 461 A 1

A 61 K 7/32

(51) Int. Cl.7:

DEUTSCHES PATENT- UND **MARKENAMT**

102 10 461.1 Anmeldetag: 9. 3. 2002 (3) Offenlegungstag: 18. 9. 2003

(71) Anmelder:

Beiersdorf AG, 20253 Hamburg, DE

(72) Erfinder:

Kröpke, Rainer, 22869 Schenefeld, DE; Kux, Ulrich, Dr., 22559 Hamburg, DE; Bleckmann, Andreas, 22926 Ahrensburg, DE; Diec, Khiet Hien, 22523 Hamburg, DE

55 Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> 01185 118 A2 WO 0185 121 A2

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Antitranspirante kosmetische Zubereitungen
- Kosmetische und/oder dermatologische Zubereitung, enthaltend
 - a) eine wässrige Phase in einer Konzentration von mindestens 70 Gewichts-%,
 - b) eine lipophile Phase in einer Konzentration von 5 bis 20 Gewichts-%.
 - c) einen oder mehrere W/O-Emulgatoren in einer Konzentration von 0,1 bis 5 Gewichts-%,
 - d) einen oder mehrere Antitranspirant-Wirkstoffe in einer Aktivgehalt-Konzentration von 5 bis 20 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung.

DE 102 10 461 A 1

Beschreibung

[0001] Die vorliegende Erfindung betrifft kosmetische und/oder dermatologische Zubereitungen, welche eine wässrige Phase, eine lipophile Phase, mindestens einen W/O-Emulgator und mindestens einen Antitranspirant-Wirkstoff enthalten, sowie deren Verwendung.

[0002] Die menschliche Haut ist mit zwei bis drei Millionen Schweißdrüsen durchsetzt. Diese dienen der Befeuchtung der Hautoberfläche und beugen damit der Überhitzung des Organismus vor. Der austretende Schweiß verdunstet auf der Hautoberfläche wobei die dadurch erzeugte Verdunstungskälte für die notwendige Abkühlung des Organismus sorgt.

- [0003] Täglich werden im Normalfall 0,5 bis 1 Liter Schweiß produziert. Bei Belastung des Körpers und erhöhtem Stoffwechsel kann sich die Menge jedoch vervielfachen. Der Mensch besitzt zwei unterschiedliche Formen von Schweißdrüsen. Die ekkrinen Schweißdrüsen (kleine Schweißdrüsen) arbeiten von Geburt an und sondern hauptsächlich Wasser und Salze ab. Mit Beginn der Pubertät kommt es überwiegend im Bereich der Achseln sowie im Anal- und Genitalbereich zur Ausbildung der apokrinen Schweißdrüsen (große Schweißdrüsen), die auch Fettsäuren, Cholesterin und andere Verbindungen ausscheiden. Diese Substanzen werden von Bakterien auf der Haut zersetzt, wobei die Abbaupro-
- dukte den für Schweiß typischen Geruch erzeugen. Der Schweißgeruch ist personenspezifisch und bei jedem Menschen unterschiedlich ausgeprägt. Durch einfaches Waschen lässt sich bei den meisten Menschen nur eine kurzfristige Reduzierung des Schweißgeruches erzielen. Um den Schweißgeruch über einen längeren Zeitraum zu unterdrücken, ist der Einsatz kosmetischer Zubereitungen unerlässlich.

[0004] Um eine Deowirkung zu erreichen gibt es verschiedene Wege, die im Normalfall kombiniert angewendet werden:

Zum einen werden Deowirkstoffe eingesetzt, die das Wachstum der den Schweißgeruch verursachenden Bakterien unterdrücken. Zu diesen keimhemmenden (bakteriostatischen) Mitteln zählen beispielsweise Chlorhexidin, Triclosan oder die natürlich vorkommenden Verbindungen wie Farnesol und Phenoxyethanol.

- [0005] Zum anderen werden Antitranspirantien eingesetzt, welche die Schweißabsonderung durch Blockierung der Schweißdrüsenausgänge behindern. Verwendung finden hier in aller Regel Aluminium- und Aluminium/Zirkonium-salze. Die durch diese Verbindungen verringerte Ausscheidung von Schweiß hat nach neuesten Erkenntnissen keine Auswirkung auf den Organismus, da die "Kühlwirkung" zum großen Teil über das "Schwitzen" mit Deostoffen unbehandelter Hautpartien (ekkrine Drüsen) erfolgt. Ferner werden Parfümstoffe zur Überdeckung des Schweißgeruches eingesetzt. [0006] Die Antitranspirantien, die in der Regel auch bakteriostatische Eigenschaften aufweisen, werden heutzutage meist in Kombination mit Silikonölen (z. B. Cyclomethicone) in Form von wasserfreien Aerosolen eingesetzt. Darüber hinaus sind Öl-in-Wasser-Emulsionen (O/W-Emulsionen) mit Antitranspirantien weit verbreitet. Wasser-in-Öl-Emulsionen sind dagegen eher selten.
 - [0007] Unter Emulsionen versteht man im allgemeinen heterogene Systeme, die aus zwei nicht oder nur begrenzt miteinander mischbaren Flüssigkeiten bestehen, die üblicherweise als Phasen bezeichnet werden. In einer Emulsion ist eine der beiden Flüssigkeiten in Form feinster Tröpfehen in der anderen Flüssigkeit dispergiert.
 - [0008] Sind die beiden Flüssigkeiten Wasser und Öl und liegen Öltröpfehen fein verteilt in Wasser vor, so handelt es sich um eine Öl-in-Wasser-Emulsion (O/W-Emulsion, z. B. Milch). Der Grundcharakter einer O/W-Emulsion ist durch das Wasser geprägt. Bei einer Wasser-in-Öl-Emulsion (W/O-Emulsion, z. B. Butter) handelt es sich um das umgekehrte Prinzip, wobei der Grundcharakter hier durch das Öl bestimmt wird.
- 40 [0009] Herkömmliche W/O-Emulsionen auf Antitranspirant-Basis haben bisher den Nachteil, dass sie üblicherweise auf Wasser-in-Silikonöl-Basis formuliert sind, die ein vom Verbraucher nicht gut akzeptiertes schmieriges Hautgefühl mit sich bringen. Ein weiterer großer Nachteil besteht in der schlechten Wirkstofffreisetzung der in der inneren wässrigen Emulsionsphase gelösten Antitranspirant-Salze. Außerdem sind diese Zubereitungen in der Regel zu zähflüssig als das sie beispielsweise sprühbar wären.
- [0010] Es war daher die Aufgabe der vorliegenden Erfindung, den Mängeln des Standes der Technik abzuhelfen und antitranspirante Deoprodukte auf W/O-Basis zu entwickeln, die sich durch einen hohen Wasseranteil auszeichnen und damit dünnflüssige Zubereitungen mit einem hohen Wirkstoffgehalt an Antitranspirant ermöglichen.
 - [0011] Überraschend wird die Aufgabe gelöst durch kosmetische und/oder dermatologische Zubereitungen enthaltend
 - a) eine wässrige Phase in einer Konzentration mindestens 70 Gewichts-%,
 - b) eine lipophile Phase in einer Konzentration von 5 bis 20 Gewichts-%,
 - c) einen oder mehrere W/O-Emulgatoren in einer Konzentration von 0,1 bis 5 Gewichts-%
 - d) einen oder mehrere Antitranspirant-Wirkstoffe in einer Aktivgehalt-Konzentraion von 5 bis 20 Gewichts-%,
- 55 jeweils bezogen auf das Gesamtgewicht der Zubereitung.

50

- [0012] Es ist dabei erfindungsgemäß besonders bevorzugt, die wässrige Phase in einem Konzentrationsbereich von mindestens 80 Gewichts-% und insbesondere mindestens 85 Gewichts-% jeweils bezogen auf das Gesamtgewicht der Zubereitung einzusetzen.
- [0013] Die wässrige Phase kann neben Wasser erfindungsgemäß auch andere Inhaltsstoffe enthalten, beispielsweise Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder -monobutylether, Propylenglykolmonomethyl, -monoethyloder -monobutylether, Diethylenglykolmonomethyl- oder -monoethylether und analoge Produkte, ferner Alkohole niedriger C-Zahl, z. B. Ethanol, Isopropanol, 1,2-Propandiol, Glycerin sowie insbesondere ein oder mehrere Verdickungsmittel, welches oder welche vorteilhaft gewählt werden können aus der Gruppe Siliciumdioxid, Aluminiumsilikate, Poly-
- 65 saccharide bzw. deren Derivate, z.B. Hyaluronsäure, Xanthangummi, Hydroxypropylmethylcellulose, besonders vorteilhaft aus der Gruppe der Polyacrylate, bevorzugt ein Polyacrylat aus der Gruppe der sogenannten Carbopole, beispielsweise Carbopole der Typen 980, 981, 1382, 2984, 5984, jeweils einzeln oder in Kombination.
 - [0014] Die lipophile Phase wird erfindungsgemäß vorteilhaft in einer Konzentration von 5 bis 20 Gewichts-%, und ins-

[0015] Erfindungsgemäß vorteilhafte Bestandteile der lipophilen Phase werden beispielsweise aus folgenden Substanzgruppen gewählt

- Mineralöle, Mineralwachse
- Öle, wie Triglyceride der Caprin- oder der Caprylsäure, vorzugsweise aber Rizinusöl;
- Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettsäuren mit Alkoholen niedriger C-Zahl, z. B. mit Isopropanol, Propylenglykol oder Glycerin, oder Ester von Fettalkoholen mit Alkansäuren niedriger C-Zahl oder mit Fettsäuren;

10

55

- Alkylbenzoate;
- Silikonöle wie Dimethylpolysiloxane, Diethylpolysiloxane, Diphenylpolysiloxane sowie Mischformen daraus.

[0016] Die Lipidphase der Emulsion wird im Sinne der vorliegenden Erfindung vorteilhaft gewählt aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyldodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucyloreat, Erucyloreat

[0017] Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der Silkonöle, der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12–18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, z. B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl und dergleichen mehr.

[0018] Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Es kann auch gegebenenfalls vorteilhaft sein, Wachse, beispielsweise Cetylpalmitat, als alleinige Lipidkomponente der Ölphase einzusetzen.

[0019] Vorteilhaft wird die Ölphase gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C_{12-15} -Alkylbenzoat, Capryl-Caprinsäure-triglycerid, Dicaprylylether, Dicaprylyl Carbonat, Butylen Glycol Dicaprylat/Dicaprat.

[0020] Besonders vorteilhaft sind Mischungen aus C_{12-15} -Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C_{12-15} -Alkylbenzoat und Isotridecylisononanoat sowie Mischungen aus C_{12-15} -Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat.

[0021] Von den Kohlenwasserstoffen sind Paraffinöl, Squalan und Isoparaffin vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.

[0022] Vorteilhaft kann die Ölphase ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden.

[0023] Vorteilhaft wird Cyclomethicon (Octamethylcyclotetrasiloxan, Cyclopentasiloxan, Cyclohexasiloxan oder Mischungen aus diesen Rohstoffen) oder Dimethicon als erfindungsgemäß zu verwendendes Silikonöl eingesetzt. Aber auch andere Silikonöle sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden, beispielsweise Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Poly(meahylphenylsiloxan).

[0024] Besonders vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, aus Cyclomethicon und 2-Ethylhexylisostearat.

[0025] Die erfindungsgemäßen Zubereitungen enthalten erfindungsgemäß mindestens einen W/O-Emulgator. Dieser wird besonders vorteilhaft in einer Konzentration von 0,25 bis 5 Gewichts-% und insbesondere in einer Konzentration von 0,75 bis 3,5 Gewichts-% eingesetzt.

[0026] Als erfindungsgemäße W/O-Emulgatoren können eingesetzt werden Substanzen mit der allgemeinen Formel

$$A \longrightarrow O \left(\begin{array}{ccc} CH - X - CH - O \\ R_1 & R_2 \end{array} \right)_a$$

wobei A und A' gleiche oder verschiedene organische Reste, gewählt aus der Gruppe der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste und Hydroxyacylreste mit 10-30 Kohlenstoffatomen sowie ferner aus der Gruppe der über Esterfunktionen miteinander verbundenen Hydroxyacylgruppen, nach dem Schema

wobei R' gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylgruppen mit 1 bis 20 Kohlenstoffatomen und R" gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylengruppen mit 1 bis 20 Kohlenstoffatomen und b Zahlen von 0 bis 200 annehmen kann,

a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, insbesondere 5 bis 40 darstellt, X eine Einfachbindung oder die Gruppe

30

45

65

darstellt,

R₁ und R₂ unabhängig voneinander aus der Gruppe H, Methyl gewählt werden, R₃ gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1-20 Kohlenstoffatomen.

[0027] Die Strukturformel ist nicht so zu interpretieren, daß durch den Index a alle in der Klammer repräsentierten Reste R₁, R₂ bzw R₃ im gesamten Molekül jeweils gleich sein müssen. Vielmehr können diese Reste in jedem der a Frag-

frei gewählt werden.

[0028] Ein Beispiel für besonders vorteilhaft im Sinne der vorliegenden Erfindung zu verwendende grenzflächenaktiven Substanzen ist das Polyethylenglycol-30-Dipolyhydroxystearat (PEG-30-Dipolyhydroxystearat), welches von der Gesellschaft ICI Surfactants unter der Warenbezeichnung ARLACEL® P135 verkauft wird.

50 [0029] Ein weiterer vorteilhafter Polymeremulgator ist Cetyl Dimethicone Copolyol, welches von der Gesellschaft Goldschmidt under der Warenbezeichnung ABIL® EM90 verkauft wird.

[0030] Erfindungsgemäß vorteilhaft lassen sich große Mengen saurer Aluminium- und/oder Aluminium/Zirkonium-salze stabil in die Emulsionen einarbeiten. Es können 5 bis 20 Gewichts-%, insbesondere 10 bis 20 Gewichts-% Aluminium/Dirkoniumchlorhydrat stabil in die Emulsionen eingearbeitet werden. Hierbei be-

ziehen sich die beschriebenen Konzentrationsbereiche auf die sogenannte Aktivgehalte der Antitranspirant-Komplexe: bei den Aluminium-Verbindungen auf wasserfreie Komplexe, bei den Aluminium/Zirkonium-Verbindungen auf wasserund pufferfreie Komplexe. Als Puffer wird hier üblicherweise Glycin verwendet.

[0031] Die nachfolgende Auflistung vorteilhaft einzusetzender Antitranspirant-Wirker soll in keinster Weise einschränkend sein:

- 60 Aluminium-Salze (der empirischen Summenformel (Al₂(OH)_mCl_n), wobei m + n = 6)
 - Aluminium-Salze wie Aluminiumchlorid AlCl₃, Aluminiumsulfat Al₂(SO₄)₃

- Aluminiumchlorhydrat [Al₂(OH)₅Cl] × H₂O

Standard Al-Komplexe: Locron L (Clariant), Chlorhydrol (Reheis), ACH-303 (Summit), Aloxicoll L (Giulini). Aktivierte Al-Komplexe: Reach 501 (Reheis), AACH-324 (Summit)

- Aluminiumsesquichlorhydrat [Al₂(OH)_{4.5}Cl_{1.5}] × H₂O

Standard Al-Komplexe: Aluminum Sesquichlorohydrate (Reheis), ACH-308 (Summit), Aloxicoll 31L (Giulini) Aktivierte Al-Komplexe: Reach 301 (Reheis)

Aluminium-Zirkonium-Salze

Aluminium/Zirkonium Trichlorhydrex Glycin [Al₄Zr(OH)₁₃Cl₃] × H₂O × Gly
 Standard Al/Zr-Komplexe: Rezal 33GP (Reheis), AZG-7164 (Summit), Zirkonal P3G (Giulini)
 Aktivierte Al/Zr-Komplexe: Reach AZZ SiO₂ (Reheis), AAZG-7160 (Summit), Zirkonal AP3G (Giulini)
 Aluminium/Zirkonium Tetrachlorhydrex Glycin [Al₄Zr(OH)₁₂Cl₄] × H₂O × Gly

Standard Al/Zr-Komplexe: Rezal 36G (Reheis), AZG-368 (Summit), Zirkonal L435G (Giulini)

Aktivierte Al/Zr-Komplexe: Reach AZP 855 (Reheis), AAZG-6313-15 (Summit), Zirkonal AP4G (Giulini) – Aluminium/Zirkonium Pentachlorhydrex Glycin [Al₈Zr(OH)₂₃Cl₅] × H₂O × Gly

10

Standard Al/Zr-Komplexe: Rezal 67 (Reheis), Zirkonal L540 (Giulini)

Aktivierte Al/Zr-Komplexe: Reach AZN 885 (Reheis)

- Aluminium/Zirkonium Octachlorhydrex Glycin [Al₈Zr(OH)₂₀Cl₈] × H₂O × Gly

[0032] Ebenso von Vorteil können aber auch Glycin-freie Aluminium/Zirkonium-Salze sein.

[0033] Dabei soll die Verwendung der Antitranspirant-Wirker aus den Rohstoffklassen Aluminium- und Aluminium/Zirkonium-Salzen nicht auf die handelsüblichen zumeist wäßrigen Lösungen, wie z.B. Locron L (Clariant), beschränkt sein, sondern es kann auch von Vorteil sein, die ebenfalls handelsüblichen wasserfreien Pulver derselbigen Rohstoffe durch Einbringung in die beanspruchten Formulierungen zum Einsatz zu bringen, wie z.B. Locron P (Clariant).

[0034] Vorteilhaft kann auch die Verwendung von sogenannten Antitranspirant-Salz Suspensionen sein, bei denen pulverförmig vorliegende Aluminium- und Aluminium/Zirkonium-Salze in diversen Ölen dispergiert angeboten werden.

[0035] Desweiteren kann es aber auch von Vorteil sein, spezielle Aluminium- und Aluminium/Zirkonium-Salze zum Einsatz zu bringen, die zur Löslichkeitsverbesserung als Glykol-Komplexe angeboten werden.

[0036] Weitere vorteilhafte Antitranspirant-Wirker basieren anstelle von Aluminium bzw. Zirkonium auf anderen Metallen, wie z. B. Beryllium, Titan, Hafnium.

[0037] Dabei soll die Liste der verwendbaren Antitranspirant-Wirker aber nicht auf metallhaltige Rohstoffe begrenzt sein, sondern von Vorteil sind auch Verbindungen, die Nichtmetalle wie Bor enthalten sowie solche, die dem Bereich der organischen Chemie zuzurechnen sind, wie z. B. Anticholinergika.

[0038] Vorteilhaft sind in diesem Sinne auch Polymere, die sowohl metallhaltig als auch metallfrei sein können.

[0039] Der in zahlreichen Zubereitungen auftretende Effekt, dass nach dem Auftragen der Zubereitung auf der Haut ein sichtbarer weißlicher Rückstand zurückbleibt, wird in der Regel vom Anwender als störend empfunden. In wasserfreien Zubereitungen hat sich der Einsatz von propoxylierten Alkoholen zur Kaschierung dieser Erscheinung bewährt. Im Falle von wasserhaltigen Zubereitungen ist bisher keine zufriedenstellende Lösung dieses Problems bekannt. Der Zusatz von propoxylierten Alkoholen mit 10 bis 20 Propyloxyeinheiten und 2 bis 10 Kohlenstoffatomen in der Alkylkette, insbesondere PPG-14-Butylether, als Bestandteil der Lipidphase hilft dem beschriebenen Mangel des Standes der Technik ab, indem das Auftreten derartiger weißlicher Rückstände zuverlässig kaschiert wird.

[0040] Die erfindungsgemäßen Zubereitungen können gewünschtenfalls ferner ein oder mehrerere kationische, nichtionische und/oder anionische Polymere enthalten, bevorzugt in Konzentrationen von 0,01 bis 10 Gewichts-%, vorzugsweise 0,1 bis 5 Gewichts-% und besonders bevorzugt 0,25 bis 2,5 Gewichts-%. Diese dienen dazu den Zeitpunkt für das sogenannte "Aufbrechen" der Emulsion bei ihrem Verteilen auf der Haut einzustellen. Das erfindungsgemäß bevorzugte kationische Polymer ist Chitosan.

[0041] Unter "Aufbrechen" im Sinne der Erfindung versteht man dabei eine Art Umkehr der Emulsion in eine Öl-in-Wasser-Emulsion (O/W-Emulsion) auf der Haut.

[0042] Vorteilhaft können erfindungsgemäßen Zubereitungen Desodorantien zugesetzt werden. Den üblichen kosmetischen Desodorantien liegen unterschiedliche Wirkprinzipien zugrunde.

[0043] Durch die Verwendung antimikrobieller Stoffe in kosmetischen Desodorantien kann die Bakterienflora auf der Haut reduziert werden. Dabei sollten im Idealfalle nur die Geruch verursachenden Mikroorganismen wirksam reduziert werden. Der Schweißfluß selbst wird dadurch nicht beeinflußt, im Idealfalle wird nur die mikrobielle Zersetzung des Schweißes zeitweilig gestoppt. Auch die Kombination von Adstringentien mit antimikrobiell wirksamen Stoffen in ein und derselben Zusammensetzung ist gebräuchlich.

[0044] Alle für Desodorantien gängigen Wirkstoffe können vorteilhaft genutzt werden, beispielsweise Geruchsüberdecker wie die gängigen Parfümbestandteile, Geruchsabsorber, beispielsweise die in der DE 40 09 347 beschriebenen Schichtsilikate, von diesen insbesondere Montmorillonit, Kaolinit, Ilit, Beidellit, Nontronit, Saponit, Hectorit, Bentonit, Smectit, ferner beispielsweise Zinksalze der Ricinolsäure. Keimhemmende Mittel sind ebenfalls geeignet, in die erfindungsgemäßen Emulsionen eingearbeitet zu werden. Vorteilhafte Substanzen sind zum Beispiel 2,4,4'-Trichlor-2'-hdroxydiphenylether (Irgasan), 1,6-Di-(4-chlorphenylbiguanido)-hexan (Chlorhexidin), 3,4,4'-Trichlorcarbonilid, quaternäre Ammoniumverbindungen, Nelkenöl, Minzöl, Thymianöl, Triethylcitrat, Farnesol (3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol) sowie die in den DE 37 40 186, DE 39 38 140, DE 42 04 321, DE 42 29 707, DE 42 29 737, DE 42 37 081, DE 43 09 372, DE 43 24 219 beschriebenen wirksamen Agenzien. Auch Natriumhydrogencarbonat ist vorteilhaft zu verwenden.

[0045] Die Liste der genannten Wirkstoffe bzw. Wirkstoffkombinationen, die in den erfindungsgemäßen Emulsionen verwendet werden können, soll selbstverständlich nicht limitierend sein.

[0046] Die Menge der Desodorantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,01 bis 10 Gew.%, besonders bevorzugt 0,05 bis 5 Gew.%, insbesondere 0,1 bis 1 Gew.%, bezogen auf das Gesamtgewicht der Zubereitung.

[0047] Die erfindungsgemäßen kosmetischen und dermatologischen Zubereitungen können kosmetische Hilfsstoffe enthalten, wie sie üblicherweise in solchen Zubereitungen verwendet werden, z. B. Konservierungsmittel, Antioxidan-

DE 102 10 461 A 1

tien, Parfüme, Hydrocolloide, Substanzen zum Verhindern des Schäumens, Farbstoffe, Pigmente, die eine färbende Wirkung haben, Verdickungsmittel, anfeuchtende und/oder feuchthaltende Substanzen, Fette, Öle, Wachse oder andere übliche Bestandteile einer kosmetischen oder dermatologischen Formulierung wie Alkohole, Polyole, Polymere, Schaumstabilisatoren, organische Lösungsmittel oder Silikonderivate sowie Moisturizer. Auch können sie kosmetische und/oder dermatologische Wirkstoffe enthalten, die sowohl Öl- als auch wasserlöslich sein können.

[0048] Erfindungsgemäß ist ferner die Verwendung der erfindungsgemäßen kosmetischen und/oder dermatologischen als Antitranspirant und als Deodorant.

[0049] Ausserdem ist die Verwendung der erfindungsgemäßen kosmetischen und/oder dermatologischen Zubereitungen in der Darreichungsform eines Rollers, Stiftes, Zerstäubers, Aerosols oder einer Creme erfindungsgemäß, ohne dass diese Beispiele limitierend zu sehen sind.

[0050] Die nachfolgenden Beispiele sollen die vorliegende Erfindung verdeutlichen, ohne sie einzuschränken. Alle Mengenangaben, Anteile und Prozentanteile sind, soweit nicht anders angegeben, auf das Gewicht und die Gesamtmenge bzw. auf das Gesamtgewicht der Zubereitungen bezogen.

[0051] Zur Herstellung der Zubereitungen werden wasserlösliche Komponenten mit Ausnahme der Antitranspirant-Wirkstoffe in Wasser gelöst und auf 75°C erwärmt. Lipophile Komponenten mit Ausnahme leichtflüchtiger Silikonöle wie Decamethylcyclopentasiloxan werden vereinigt und ebenfalls auf 75°C erwärmt. Beide Phasen werden unter Rühren vermischt und gekühlt. Bei 65°C werden die leichtflüchigen Sifikonöle wie Decamethylcyclopentasiloxan zugegeben und anschließend homogenisiert. Bei 40°C werden die Antitranspirant-Wirkstoffe und gegebenenfalls noch weitere flüchtige Bestandteile zugegeben und anschließend erneut homogenisiert. Man erhält eine stabile W/O-Emulsion.

Beispiele

	•								٠.
	Polyethylenglycol-30-Dipoly-	1,000	3,000	1,500	1,000	1,000	0,950	0,950	0,950
25	hydroxystearat			e.					1
	Dicaprylylether	9,000	•	2,000	9,000		•	-	-
	Mikrokristallinwachs	-	1,000	1,000	-	-	-	-	-
30	Mineralöl	•	5,000	-	- •	7,000	2,700		-
	Isopropylstearat	<u>-</u>	5,000	,	-			4,800	2,700
	C ₁₅₋₁₉ Alkan	-	5,000	-	•	•	-	-	
35	Caprylcaprinsäuretriglycerid	<u>-</u>	-	2,000	-	•	-		-
	Octyldodecanol ,	-	-	2,000	· -	. •	-	-	-
	Avocadoöl	-	-	1,000	-	-	•	-	•
40	Traubenkernöl		-	1,000	-	-		-	- '
	Decamethylcyclopentasiloxan	-	•	1,000	-		4,800	-	- ,
	(Cyclomethicon)			1	·				
45	Isohexadekan	-	-		-	3,000	-	-	-
	Dicaprylylkarbonat	-	•	-		-	4,500		-
	Isopropylpalmitat	- '		-	-	-	•	2,700	-
50	Ethylhexylcocoat	-	-	-	-	•	-	-	4,800
	Milchsäure	• .	-	0,600	0,450	. 0,300	0,210	0,210	0,210
	Glykolsäure	-	-	-	-	0,300	-	-	-

55

20

60

65

Natronlauge	-	-	•	-		0,075	0,075	0,075	
Glycerin	5,000	5,000	3,000	5,000	5,000	3,000	3,000	3,000	
Magnesiumsulfat	0,600	0,700	-	0,600	-	-	-	-	5
Natriumchlorid	-	-	1,000	-	1,000	1,000	1,000	1,000	
Chitosan (Deacetyliertes	-	•	1,000	0,750	0,500	0,350	0,350	0,350	
Chitin)									10
Aluminiumstärkeoctenylsuccin	-	· •	-	-	-	0,750	0,750	0,750	
at									
Aluminiumchlorhydrat	10,00	20,00	20,00	30,00	30,00	_	-	-	15
(50%ige wäßrige Lösung)									
Aluminum/Zirkoniumtetrachlor						20,00	30,00	30,00	
-hydrexglycin	<u>.</u>								20
(36%ige wäßrige Lösung)			·						
Parfüm / Konservierungsmittel	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	
Wasser	ad.100	ad.100	ad.100	ad.100	ad.100	ad.100	ad.100	ad.100	25

Patentansprüche

1. Kosmetische und/oder dermatologische Zubereitung enthaltend

30

- a) eine wässrige Phase in einer Konzentration von mindestens 70 Gewichts-%,
- b) eine lipophile Phase in einer Konzentration von 5 bis 20 Gewichts-%,
 c) einen oder mehrere W/O-Emulgator in einer Konzentration von 0,1 bis 5 Gewichts-%,
- d) einen oder mehrere Antitranspirant-Wirkstoffe in einer Aktivgehalt-Konzentration von 5 bis 20 Gewichts-

jeweils bezogen auf das Gesamtgewicht der Zubereitung.

2. Kosmetische und/oder dermatologische Zubereitung nach Anspruch 1, dadurch gekennzeichnet, dass als Emulgatoren Substanzen mit der allgemeinen Formel (I)

$$A \longrightarrow O \xrightarrow{CH-X-CH-O} A'$$

$$R_1 \qquad R_2$$

eingesetzt werden.

- 3. Kosmetische und/oder dermatologische Zubereitung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als Emulgator Polyethylenglycol-30-Dipolyhydroxystearat eingesetzt wird.
- 4. Kosmetische und/oder dermatologische Zubereitung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Antitranspirant-Wirkstoff Aluminiumchlorhydrat und/oder Aluminium/Zirkoniumchlorhydrat eingesetzt wird.
- 5. Kosmeusche und/oder dermatologische Zubereitung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie Polymere aus der Gruppe der nichtionischen, anionischen und/oder kationischen Polymere enthält.
- 6. Kosmetische und/oder dermatologische Zubereitung nach Anspruch 5, dadurch gekennzeichnet, dass als Polymer Chitosan eingesetzt wird.
- 7. Verfahren zur Herstellung kosmetischer und/oder dermatologischer Zubereitungen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die wasserlöslichen Komponenten mit Ausnahme der Antitranspirant-Wirkstoffe in Wasser gelöst und auf 75°C erwärmt, mit den ebenfalls auf 75 C° erwärmten lipophilen Komponenten mit Ausnahme leichtflüchtiger Silikonöle vereinigt werden und beide Phasen unter Rühren vermischt und anschließend abgekühlt werden, wobei bei 65°C die leichtflüchigen Silikonöle sowie bei 40°C die Antitranspirant-Wirkstoffe und gegebenenfalls noch weitere flüchtige Bestandteile unter jeweils anschließender Homogenisierung zugegeben werden.
- 8. Verwendung einer kosmetischen und/oder dermatologischen Zubereitung nach einem der vorhergehenden Ansprüche als Antitranspirant.
- 9. Verwendung einer kosmetischen und/oder dermatologischen Zubereitung nach einem der vorhergehenden Ansprüche als Deodorant.

10. Verwendung der kosmetischen und/oder dermatologischen Zubereitung nach einem der vorhergehenden Ansprüche in der Darreichungsform eines Rollers, Stiftes, Zerstäubers, Aerosols oder einer Creme.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.