

Namelist

Controller

Variables

Aturan penulisan input FOROO5.dat

- Komponen Utama Input: Controller, Namelist
 - dan Variables ditulis dengan struktur sebagaimana terlihat ->
- Setiap awal dan akhir namelist, selalu ada tanda **'\$'**
- Nilai tiap variable ditulis setelah tanda '=',
- Tiap nilai ditulis dengan minimal satu angka dibelakang koma
- Tiap nilai diakhiri dengan ',' (koma)

🚺 for005.dat - Notepad

<u>File Edit Format View Help</u>

DIM M

'SF'LTCON

NMACH=1.0.

MACH(1)=0.124

NALPHA=20.0. ALSCHD(1)=-16.0,-14.0,-12.0,-10.0,-8.0,-

4.0,6.0,8.0,10.0,12.0,14.0,16.

RNNUB(1)=9.1875E6\$

\$CPTINS

SREF=64.00,

CBARR=6.35, BLREF=14.69\$

\$SYNTHS

XCG=5.94.

ZCG=0.95,

XW=4.54.

ZW=1.213, ALIW=4.000,

XH=13.724,

ZH=2.665,

ALIH=0.0,

WERTUP=.TRUE.\$ ı\$WGPLNF

Group I		Group II		Group III		Group IV
	NameList Input					Control Input
Reference Data Definition		Basic Configuration Definition		Additional/Special Configuration Definition		Job Control Card
FLTCON	17	SYNTHS	15	PROPWR	14	NAMELIST
OPTINS	4	BODY	14	JETPWR	15	SAVE
		WGPLNF	20	GRNDEF	2	DIM
		HTPLNF	20	TVTPAN	8	NEXT CASE
		VTPLNF	20	SYMFLP	25	TRIM
		VFPLNF	20	ASYFLP	15	DAMP
		WGSCHR	31	LARWB	21	NACA
		HTSCHR	31	TRNJET	12	CASEID
		VTSCHR	31	HYPEFF	7	DUMP
		VFSCHR	31	CONTAB	20	DERIV
		EXPR	32			PART
						BUILD
						PLOT

Aturan penulisan input FOR005.dat

- Tidak ada aturan khusus mengenai urutan tiap namelist dan variabel yang berkaitan.
- Akan tetapi akan lebih mudah menghafal dan mendeteksi salah dalam input apabila pola penulisannya sama terus
- □ Jadi di pelatihan ini akan diterapkan urutan Namelist sebagai berikut →
- DATCOM masih memiliki banyak lagi namelist dan control card yang bisa digunakan

CASEID → Judul Analisis

DIM → Dimensi yang digunakan

\$FLTCON → Flight Condition, kondisi terbang pesawat yang dianalisis

\$WGPLNF → **Wing Planform**, Data-data geometri Planform sayap

\$WGSCHR → Wing Section Chord, Data-data Geometri Chord sayap

\$HTPLNF → HTP Planform, Data-data geometri Planform HTP

\$HTSCHR → HTP Section Chord, Data-data Geometri Chord HTP

\$VTPLNF → **VTP Planform**, Data-data geometri Planform VTP

\$VTSCHR → **VTP Section** Chord, Data-data Geometri Chord VTP

\$BODY → Data-data geometri Fuselage
\$SYNTHS → Synthesis, posisi bagian-bagian

Judul, ditulis satu spasi setelah controlcard CASEID

Control Card

- Berfungsi untuk mengontrol jalannya analisis di DATCOM, termasuk diantaranya : Judul Analisis, Dimensi, Pilihan perhitungan dll
- Control Card harus dituliskan di kolom pertama file input

Control Card lainnya, lihat manual

[\$SYNTHS Namelist]

\$SYNTHS XCG=29.09, ZCG=0.0, XW=21.33, ZW=-2.42, ALIW=0.0, XH=57.21, ZH=2.18, ALIH=0.0, XV=53.33, ZV=2.91\$

[\$HTPLNF dan \$VTPLNF Planform Namelist]

- Input mirip dengan wing planform namelist.
- Tidak ada dihedral dan twist pada VTP.
- IngatVTP hanya punya 1 bagian (not mirrored).

SHTPLNF

```
CHRDR=10.18,
CHRDTP=2.91,
SSPN=10.67,
SSPNE=9.94,
SAVSI=40.0,
CHSTAT=0.25,
TWISTA=0.0,
DHDADI=7.0,
TYPE=1.0$
```

NACA-H-4-0012

\$VTPLNF

```
CHRDR=12.12,
CHRDTP=4.36,
SSPN=10.67,
SSPNE=9.70,
SAVSI=45.0,
CHSTAT=0.25,
TYPE=1.0$
NACA-V-4-0012
```


[NACA control card]

DESIGNAT		NACA SERIES AIRFOIL	RESTRICTIONS
0012 0012.25		4-DIGIT 4-DIGIT	NONE NONE (NOTE: THICKNESS CAN BE FRACTIONAL ONLY FOR 4—DIGIT SERIES)
23118		5-DIGIT	NONE
2406–3 <u>2</u>		4-DIGIT Modified	POSITION OF MAXIMUM THICKNESS MUST BE AT 20, 30, 40, 50 OR 60% CHORD
43006–6 <u>5</u>		5-DIGIT MODIFIED	POSITION OF MAXIMUM THICKNESS MUST BE AT 20, 30, 40, 50 OR 60% CHORD
1 <u>6</u> –212		1-SERIES	X FOR MINIMUM PRESSURE MUST BE .6, .8 OR .9
64-005 64-205 63A005 652A215 65,2A215	A=0.6 A=0.6 A=0.6	6-SERIES	X FOR MINIMUM PRESSURE MUST BE .3, .4, .5 OR .6 (NOTE: THE PROGRAM DOES NOT DISTINGUISH BETWEEN A 64, 2-210 AND A 64 ₂ -210. DIFFERENCE IN COORDINATES BETWEEN THE TWO DESIGNATIONS
A Serie	S		IS NEGLIGIBLE)

NACA-H-4-0012
Planform NACA Serie

NACA Airfoil/input designation

Source: DATCOM User Manual

[\$BODY Namelist]

- ⚠ ONLY REQUIRED FOR SUBSONIC ASYMMETRIC BODIES
- 🖄 NOT REQUIRED IN SUBSONIC SPEED REGIME
- A HYPERSONIC SPEED REGIME ONLY
- ONLY ONE VARIABLE IS REQUIRED

IF ONE VARIBLE IS INPUT THE OTHER TWO ARE COMPUTED FROM IT, ASSUMING A CIRCULAR CROSS-SECTION

IF TWO VARIABLES ARE INPUT, THE THIRD IS CALCULATED AS FOLLOWS:

S AND P INPUT, R = $\sqrt{S/\pi}$

P AND R INPUT, $S = \pi R^2$

Source: DATCOM User Manual

S AND R INPUT, P * 2πR WHERE R = VS/π OR INPUT R, WHICHEVER IS THE LARGEST

Untuk mempermudah perhitungan, bisa diasumsikan section berbentuk lingkaran dengan r=(ZU-ZL)/2

		ARRAY DIMENSION	DEFINITION			
	1 1		NUMBER OF LONGITUDINAL BODY STATIONS AT WHICH DATA IS SPECIFIED, MAXIMUM OF 20.			
×i	X	20	LONGITUDINAL DISTANCE MEASURED FROM ARBITRARY LOCK	1		
s;	△ S	20	CROSS SECTIONAL AREA AT STATION x:	l A		
Pi	A P	20	PERIPHERY AT STATION X;	١,		
ri	4 R**	20	PLANFORM HALF WIDTH AT STATION x;	1		
z_{u_i}	∆ zu	20	z – Z-COORDINATE AT UPPER BODY SURFACE AT STATION x; (POSITIVE WHEN ABOVE CENTERLINE)	,		
z _{Li}	∆zι	20	z — Z-COORDINATE AT LOWER BODY SURFACE AT STATION x; (NEGATIVE WHEN BELOW CENTERLINE)	1		
	A BN#SE	-	BNOSE = 1.0 CONICAL NOSE, BNOSE = 2.0 OGIVE NOSE	-		
	A BTAIL	-	BTAIL = 1.0 CONICAL TAIL, BTAIL = 2.0 OGIVE TAIL OMIT FOR ABT = 0	-		
^J N	Æ BLN	-	LENGTH OF BODY NOSE	1		
, _A	Æ BLA	-	LENGTH OF CYLINDRICAL AFTERBODY SEGMENT $t_A = 0.0$ For nose alone or nose-tail configurations	,		
d _s	∕3\ DS	-	NOSE BLUNTNESS DIAMETER, ZERO FOR SHARP NOSEBODIES	,		
	ITYPE*	-	* 1. STRAIGHT WING, NO AREA RULE	-		
			= 2. SWEPT WING, NO AREA RULE	1		
			= 3. SWEPT WING, AREA RULE	1		
			SET TO 2.0 IF NOT INPUT	1		
	METHØD	-	= 1. USE EXISTING METHODS (DEFAULT) = 2. USE JORGENSEN METHOD	1-		

^{*}USED IN CALCULATION OF TRANSONIC DRAG DIVERGENCE MACH NUMBER, DATCOM FIGURE 4.5.3.1-19

^{**}USE EQUIVALENT RADIUS AT TRANSONIC AND SUPERSONIC MACH NUMBER, $R_{EQ} = \sqrt{S/\pi}$

Estimasi Penampang

\$BODY

Metode untuk perhitungan fuselage

Banyak input

Posisi X Fuselage (fuselage station)

Posisi koordinat kurva Atas Fuselage

Posisi koordinat **kurva Bawah** Fuselage

Luas Ekuivalen (πr^2)

[\$BODY Namelist]

Station	X (measure	Zu (measur	ZL (measu	r	S_ekivalen
1	0.00	0.00	0.00	0.000	0.000
2	0.20	0.18	-0.13	0.155	0.075
3	0.70	0.48	-0.35	0.415	0.541
4	1.60	0.78	-0.50	0.640	1.287
5	2.50	1.35	-0.56	0.955	2.865
6	3.54	1.70	-0.62	1.160	4.227
7	6.41	1.80	-0.69	1.247	4.885
8	7.48	1.80	-0.78	1.290	5.228
9	8.55	1.80	-0.82	1.312	5.408
10	9.62	1.80	-0.82	1.311	5.395
11	10.68	1.80	-0.77	1.285	5.187
12	11.75	1.80	-0.73	1.265	5.027
13	12.82	1.79	-0.62	1.205	4.562
14	13.89	1.75	-0.50	1.125	3.976
15	14.96	1.68	-0.36	1.020	3.269
16	16.03	1.60	-0.12	0.860	2.324
17	17.09	1.53	0.10	0.715	1.606
18	18.16	1.45	0.40	0.525	0.866
19	19.35	1.34	0.90	0.220	0.152
20	19.52	1.25	1.25	0.000	0.000

[\$WGSCHR Namelist]

