Zero-Jitter Task Chains via Algebraic Rings

Enrico Bini, Paolo Pazzaglia, Martina Maggio

IEEE Transactions on Computers, 2023

WaP @RTSS 2023, December 6th 2023 Taipei, Taiwan

Model of a LET task τ_i

- A LET *task* τ_i is composed by *periodic jobs* (curvy arrows)
 - in LET, we only care of the read and write instants

$$\begin{array}{ll} \theta_i^{\rm r} & \textit{read phasing of τ_i, relative to the period T_i (aka the offset)} \\ \theta_i^{\rm w} & \textit{write phasing of τ_i, rel. to period T_i ($\theta_i^{\rm w}-\theta_i^{\rm r}$ is aka the deadline)} \\ {\rm rd}_i(j) = j\,T_i + \theta_i^{\rm r} & \textit{read instant of job j of τ_i} \\ {\rm wr}_i(j) = j\,T_i + \theta_i^{\rm w} & \textit{write instant of job j of τ_i} \end{array}$$

Chain of LET tasks

- each task reads data written by the previous one
- data is on shared memory
 - * au_1 may over-write data before au_2 reads (if $T_1 < T_2$)
 - * τ_2 may read again the same data (if $T_2 < T_1$)

Chain of LET tasks

- each task reads data written by the previous one
- data is on shared memory
 - * au_1 may over-write data before au_2 reads (if $T_1 < T_2$)
 - * au_2 may read again the same data (if $T_2 < T_1$)
- Chains of jobs have variable read-to-write delay

			rd→wr delay
(j_1,j_2)	$rd_1(j_1)$	$wr_2(j_2)$	$wr_2(j_2) - rd_1(j_1)$
(0,2)	4	30	26 = 13 + 3 + 10
(1, 4)	20	50	30 = 13 + 7 + 10
(2,5)	36	60	24 = 13 + 1 + 10
(3,7)	52	80	28 = 13 + 5 + 10
(4, 9)	68	100	32 = 13 + 9 + 10

• The source of variability is $rd_2(j_2) - wr_1(j_1)$. In the example: $3, 7, 1, 5, 9, 3, 7, \ldots$

ullet rd $_2(j_2)-{\sf wr}_1(j_1) < T_2$ (= 10 in the example), always. Let's zoom in . . .

• ... and take $\operatorname{rd}_2(j_2)$ as reference for all $\operatorname{wr}_1(j_1) \to \operatorname{rd}_2(j_2)$ delays.

• A repetitive requence: let's bend all the T_2 -long segments over the (algebraic) ring $\mathbb{Z}/T_2\mathbb{Z}$.

• By inverting over the ring $\mathbb{Z}/T_2\mathbb{Z}$, max/min delay is found **without** unrolling the schedule.

(min delay) $j_1=2$ $j_1=4$ (max delay) $j_1=0$ $j_1=1$

• We can **eliminate the jitter** of a 2-tasks chain, by adding a copier task.

(min delay) $j_1=2$ $j_1=4$ (max delay) $j_1=0$ $j_1=1$