

Robustness, reliability, resilience and elasticity for Big Data/Machine Learning systems

Hong-Linh Truong
Department of Computer Science
linh.truong@aalto.fi, https://rdsea.github.io

Our focus in this course

Content

- Big Data/ML background
- Design for robustness, reliability, resilience and elasticity
- An elasticity-based approach for R3E

Recap

Big data and Machine learning systems

System view: common characteristics of big data and ML systems?

- (Static) system structures and functions
 - Include components, algorithms, relationships, possible input/output data
 - As a whole, sub-systems, and individual parts
- Computing and data infrastructures/platforms?
 - Virtual machines, containers, brokers, storage, data
- Runtime quality/capability
 - Fault-tolerance, high-performance, high availability, secure, etc.

Big data with V*

Volume:

big size, large data set, massive of small data

Variety:

complexity of different formats and types of data

Velocity:

generating speed, data movement speed

Veracity:

quality is very different (timeliness, accuracy, etc.)

A bird view of big data platforms

Big data at large-scale: example of common stacks

ML systems

Components in machine learning

- machine learning algorithms can be considered "data processing"
- there are many other components for data-preparation, data management, experiment management

ML pipelines

complex structured components, (meta)workflows

Data

- models, training data, data to be learned!
- experiment settings and experiment data
- from the big data platforms viewpoint: they are all data!

ML workflows

Two possible levels:

- meta-workflow or pipeline
- inside each phase: pipeline/workflow or other types of programs

Workflows, function-a-as-service, Spark, Tensorflow, Keras, PyTorch,...

Structures: examples of common components

- Data collection, ingestion, verification
- Algorithms and service service/components
 - Serving platforms and infrastructures
- Configuration and process execution management
- Monitoring and analysis
- Resource management

Examples of common components in big data and ML systems

Resource management, workflow execution, data management tools, etc.

Computing and data infrastructures

View: end-to-end resource slice

End-to-end Resource slice for big data/ML

Edge-Cloud systems

New types of edge and edge-cloud

Coral with Edge TPU
System-on-Module, Google
Edge TPU ML accelerator
coprocessor

Jetson NVIDIA (GPU+CPU)

New (hype?) quantum computing services for ML

Quantum Computing Playground

quantumplayground.net

Assumption and setting for this course

- You know how to build big data/ML systems
 - it DOES NOT mean to be master in both big data AND ML
- You focus on YOUR "systems/applications"
- We try to help to look from systems viewpoint
 - which are key abilities that we should define, design, monitor, and measure?
 - how to enable flexibility and execution management?
 - how to prepare for "future"/"emerging" infrastructures?
 - which are tools and frameworks that help our engineering?

Issues in our concerns

Development

 testing, experimenting, benchmark, optimization, cost management

Resources

 execution atop multiple computing frameworks suitable for ML, such as Clouds, Supercomputing, edge, ...

(Runtime) Ability/Quality Assurance

 specification, monitoring and assurance of performance, availability, costs, reliability, etc.

Runtime abilities/capabilities

Can you name some runtime abilities/capabilities that are important for your big data/ML systems?

Quality of Analytics (QoA)

QoA = {quality of result, performance, cost}

Our focus – R3E

Robustness

ability to cope with errors

Reliability

ability to function according to the indented specification (in a proper way)

Resilience

 "ability to provide the required capability in the face of adversity"(https://www.sebokwiki.org/wiki/System_Resilience)

Elasticity

ability to stretch and return to normal forms (under external forces)

Robustness

In ML

- overfitting/underfitting
- transfer learning
- machine learning in an open-world
 - how to deal with OOD (out-of-distribution) situations?
- when we can decide to stop training if performance/robustness does not improve?

Big data

• hwow to deal with erroneous and bad data?

Reliability

- System reliability versus "reliable service" (quality of analytics)
- System reliability
 - reliable infrastructures, components, networks, ...
- "Reliable service" → reliable analysis
 - without failure, with specified performance
- Some hard problems
 - have good and enough data, clean data
 - robust pipelines without degraded performance and accuracy

Resilience

- Common issues in resilience
 - distributed software and systems bugs
 - system attacks
- Some specific issues in big data/ML systems
 - bias in data
 - well-known problems in adversary attacks in ML phases

Elasticity

- Add and remove resources
 - CPUs, memory, data, networks, ...
- Dynamic changes of algorithms
- Shift computation between edge and cloud infrastructures dynamically
 - cloud data centers, edge systems and edge-cloud systems
- Remove data to improve performance
- Hyperparameter tuning tradeoffs

Reactive systems – an architectural style for R3E?

Reactive systems

Source: https://www.reactivemanifesto.org/

For enabling R* abilities:

- Responsive: quality of services
- Resilient: deal within failures
- Elastic: deal with different workload and quality of analytics
- Message-driven: allow loosely coupling, isolation, asynchronous

Do we need to treat them all equally in all your design?

Multi-dimensional view for optimization

Structures

 multiple algorithms, components, and services can be combined in different ways

Resources

- data, networks, machines, humans
- cross-infrastructures/providers

Runtime quality/capabilities

customized based on context and requirements

Our goal in the course is to seek for generic techniques and solutions (not specific optimizations for a specific applications)

An Approach with Elasticity Principles for R3E

Elasticity

- Demand elasticity
 - elastic demands from consumers
- Output elasticity
 - multiple outputs with different price and quality
- Input elasticity
 - elastic data inputs, e.g., deal with opportunistic data
- Elastic pricing and quality models associated resources

But the key thing is to be "elastic" in the way we should optimize our big data/ML systems

Elasticity in (big) data analytics

- More data → more compute resources (e.g. more VMs)
- More types of data → more, different tasks → more analytics processes
- Change quality of analytics
 - Change quality of data
 - Change response time
 - Change cost
 - Change types of result (form of the data output, e.g. tree, table, story)

Multi-dimensiona' Elasticity

Example
You can build your own
dimensions

Fundamental building blocks for the elasticity

- Conceptualizing and modeling elastic objects (and their instances) and execution environments
 - Diverse types of artifacts and their runtime in a similar manner
- Defining and capturing elasticity primitive operations associated with elastic objects and environments
- Recommending and Programming elastic objects
 - An elastic system can be built from elastic objects
- Runtime deploying, control, and monitoring techniques for elastic objects

Detecting elasticity

Alessio Gambi, Daniel Moldovan, Georgiana Copil, Hong Linh Truong, Schahram Dustdar: On estimating actuation delays in elastic computing systems. SEAMS 2013: 33-42

Multi-level cross platforms monitoring and analysis

Using Elasticity Management Process to ensure QoA

Examples: Optimizing QoA for Retail

Quality of analytics management of data pipelines for retail forecasting

Title: Quality of analytics management of data pipelines for retail forecasting

Author(s): Kreics, Krists

Date: 2019-08-19

Language: en Pages: 54+3

Major/Subject: Data science

Supervising

Truong, Hong-Linh

professor(s):

Thesis advisor(s): Ervasti, Mikko; Luukkonen, Teppo

Keywords: machine learning, offline learning, data pipelines, quality of analytics, apache airflow

Location: Archive

OEV Publication only in digital format

https://aaltodoc.aalto.fi/handle/123456789/39908

Training industrial retail forecast ML

Forecast where to put marketing information, example of data

	date	id	name	volume	price	cost	promo	category_net	margin	category 1	category2	location	sales
(07/01/2018	100	Chicken	38144.0	3.79	2.7	0	451692.0	0.25	Meat	Food	Helsinki	144565.76
1	14/01/2018	100	Chicken	36420.0	3.79	2.66	0	414342.0	0.25	Meat	Food	Helsinki	138031.8
2	21/01/2018	100	Chicken	35322.0	3.79	2.66	0	381854.0	0.25	Meat	Food	Helsinki	133870.38

Metrics:

 Data size, R square value, time, and cost

Pipelines

Tune pipelines with QoA primitive actions

Initial results

- Running with Airflows in Amazon EC2
- Apply different actions to change "store" (domain objects) and computing resources
- Real improvement (from the domain expert) with 1 million rows case

13.3% lower accuracy and 44% shorter time, R squared value was 9.5% lower → could good enough results for 50% of total store locations

The application-aware data reduction strategy and cost-accuracy tradeoffs may be more intelligently made based on knowledge of the application domain.

Study log for this week

Think about

 What does it mean R3E for YOUR big data and machine learning systems?

Then

- in your experience/work, which ones of R3E concern you most? Why? What would you do? What do you look for?
- 1 page submit into the mycourses for comments/feedback (keep it in your git)

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

