# Simple Linear Regression Part 1: Introduction

STAT 705: Regression and Analysis of Variance



#### Example



In order to assess the impact of vehicle emissions on the environment, a researcher selected several sites along a freeway. At each site, he counted the number of vehicles that passed the site in a 24 hour period. He also measured the concentration of lead in the bark of trees near the site

Do you expect to have a relationship between these two variables?

#### Example, continued

- Data collected by the researcher are shown in the table
- Columns are variables
  - Traffic is measured in thousands of vehicles in a
     24-hour period
  - Concentration of lead is measured in micrograms of lead per gram of tree bark
- Rows are the sites (locations) along the highway

| Traffic | Lead |  |  |
|---------|------|--|--|
| 8.1     | 227  |  |  |
| 8.3     | 312  |  |  |
| 12.1    | 362  |  |  |
| 13.2    | 521  |  |  |
| 16.5    | 640  |  |  |
| 17.5    | 539  |  |  |
| 19.2    | 728  |  |  |
| 24.8    | 945  |  |  |
| 24.1    | 738  |  |  |
| 26.1    | 759  |  |  |
| 33.6    | 1263 |  |  |

#### **Bivariate Data**

- The data in the table is an example of bivariate data
- Both Traffic and Lead are measured at each site
- Define
  - X = Traffic ... explanatory (predictor) variable... it might explain the amount of Lead
  - Y = Lead ... dependent (response) variable
    - ... it might depend on Traffic
- The data are (X, Y) pairs; generate a scatterplot

#### Information from a Scatterplot

- Stochastic or deterministic?
- Shape of the relationship?
  - Linear or curved?
- Direction (sign) of the relationship?
- Strength of the relationship?



 We will return to this data after a brief introduction to regression analysis

#### Stochastic vs. Deterministic

#### **Stochastic (Statistical)**

$$Y = f(X) + \varepsilon$$



Other things (besides X) can affect the value of Y.

#### **Deterministic (Functional)**

$$Y = f(X)$$



If we know the value for X, we know exactly the value for Y.

These scatterplots are for illustration only. They are not related to the Lead vs. Traffic example.

### Shape of the Relationship



Х







- Other shapes are possible
- We focus on linear

### Direction of the Relationship

**Positive**As X increases, Y increases



## Negative As X increases, Y decreases



### Strength of the Relationship





- How much variability in Y is explained by X?
- Source of unexplained variability

Noise? ... Measurement error? ... Other variables that affect Y?

### Other Examples

| Y = Response Variable       | X = Predictor Variable          |  |  |
|-----------------------------|---------------------------------|--|--|
| Risk for heart disease      | Cholesterol concentration       |  |  |
| Sales of a product (\$\$\$) | Advertising investment (\$\$\$) |  |  |
| Cement compression strength | Water content of cement         |  |  |
| Milk yield of dairy cows    | Feed consumption                |  |  |
| Person's muscle mass        | Age                             |  |  |



#### Example: Lead vs. Traffic

- Relationship appears to be
  - ⇒ Stochastic
  - ⇒Linear, positive
  - ⇒ Fairly strong
- A simple linear regression model seems appropriate

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$



### Simple Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

 $\beta_0$  intercept

 $eta_{\!\scriptscriptstyle 1}$  slope

Note that these do <u>not</u> depend on i. There is one  $\beta_0$  and one  $\beta_1$  for all possible (x, y) pairs

 $X_i$  value of predictor (independent) variable for  $i^{th}$  experimental unit

 $\mathcal{E}_i$  'error' for  $i^{th}$  experimental unit

 $Y_i$  value of response (dependent) variable for  $i^{th}$  experimental unit

#### Setting up the Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- $Y_i$  is lead concentration in the tree bark at site i
- $X_i$  is the traffic volume at site i
- $\beta_0$  and  $\beta_1$  are parameters (intercept and slope) that define the linear relationship between X and Y
- $\varepsilon_i$  is a leftover random error term
  - ⇒"residual"
  - $\Rightarrow$  unique to the  $i^{th}$  site
  - ⇒ measures how far "off" the model is from the observed Y

### Interpreting the Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Suppose a site has traffic flow equal to x
- The lead concentration at this site is expected to be  $\beta_0 + \beta_1 x$
- But there can be other circumstances that affect the amount of lead, for example
  - tree characteristics (age, species, etc.)
  - location characteristics (nearby manufacturing plant, prevailing wind, etc.)
- These 'other circumstances' are captured by the error term  $\varepsilon$ , so the actual amount of lead is  $\beta_0 + \beta_1 x + \varepsilon$

#### Line of "Best" Fit

- We want to find a line that is a 'best' fit to the data
- What is "best"?
- Use Least Squares criterion
  - minimize the sum of squared residuals
    - ... what is a residual?



#### Residuals



Note: Only six of our (x, y) pairs are shown in this graph.

- Residual (i.e. 'error') for i<sup>th</sup>
   observation is difference
   between the observed Y and
   the Y value on the line
- $r_i = Y_i (\beta_0 + \beta_1 X_i)$
- We want to minimize

$$\sum r_i^2 = \sum (Y_i - (\beta_0 + \beta_1 X_i))^2$$

#### Calculating Least Squares Estimates

• Want to find the values of  $eta_0$  and  $eta_1$  that minimize

$$\sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

- If you know calculus, take derivatives, set them to 0, and solve the simultaneous equations
- If you don't know calculus ...

#### Least Squares Estimates

#### **Basic Statistics**

#### **Sums of Squares**

$$n = \text{number of } (x, y) \text{ pairs}$$

$$\overline{X} = \frac{1}{n} \sum X_i$$

$$\overline{Y} = \frac{1}{n} \sum Y_i$$

$$SS_{XX} = \sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} X_i^2 - n(\bar{X})^2$$

$$SS_{YY} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n(\overline{Y})^2$$

$$SS_{XY} = \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y}$$

- slope estimate is  $\hat{\beta}_1 = \frac{SS_{XY}}{SS_{XX}}$
- intercept estimate is  $\hat{\beta}_0 = \overline{Y} \hat{\beta}_1 \, \overline{X}$

Note: A bar on the top indicates the average. A caret ("hat") indicates an estimate.

### Sums Needed for Least Squares

| Site (i) | Traffic (X) | Lead (Y) | X <sup>2</sup> | Y²        | X*Y       |
|----------|-------------|----------|----------------|-----------|-----------|
| 1        | 8.1         | 227      | 65.61          | 51,529    | 1,838.7   |
| 2        | 8.3         | 312      | 68.89          | 97,344    | 2,589.6   |
| 3        | 12.1        | 362      | 146.41         | 131,044   | 4,380.2   |
| 4        | 13.2        | 521      | 174.24         | 271,441   | 6,877.2   |
| 5        | 16.5        | 640      | 272.25         | 409,600   | 10,560.0  |
| 6        | 17.5        | 539      | 306.25         | 290,521   | 9,432.5   |
| 7        | 19.2        | 728      | 368.64         | 529,984   | 13,977.6  |
| 8        | 24.8        | 945      | 615.04         | 893,025   | 23,436.0  |
| 9        | 24.1        | 738      | 580.81         | 544,644   | 17,785.8  |
| 10       | 26.1        | 759      | 681.21         | 576,081   | 19,809.9  |
| 11       | 33.6        | 1263     | 1,128.96       | 1,595,169 | 42,436.8  |
| Sums     | 203.5       | 7034     | 4,408.31       | 5,390,382 | 153,124.3 |



### Estimated Slope and Intercept

Sums from the table

$$\sum_{i} X_{i} = 203.5$$
$$\sum_{i} Y_{i} = 7,034$$

$$\sum X_i^2 = 4,408.31$$
$$\sum Y_i^2 = 5,390,382$$

$$\sum Y_i^2 = 5,390,382$$
  $\sum X_i Y_i = 153,124.3$ 

Sample means: 
$$\overline{X} = \frac{1}{11}(203.5) = 18.5$$
 and  $\overline{Y} = \frac{1}{11}(7034) = 639.45$ 

$$SS_{XX} = 4,408.31 - (11)(18.5)^2 = 643.56$$

$$SS_{YY} = 5,390,382 - (11)(639.45)^2 = 892,522.67$$

$$SS_{XY} = 153,124.3 - (11)(18.5)(639.45) = 22,996.23$$

$$\hat{\beta}_1 = \frac{SS_{XY}}{SS_{XX}} = \frac{22,996.23}{643.56} = 35.7$$
 and  $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 639.45 - 35.7 * 18.5 = -21$ 

#### Summary

- For regression, the data consist of (X, Y) pairs
- Scatterplots can reveal the nature and strength of the relationship between X and Y
- The Least Squares criterion is used to generate the "best" line that describes the relationship between X and Y
- Know how to calculate the estimates for slope and intercept (including the table of sums)