

Ejemplo Prototipo (continuación)

Las posibles decisiones y sus costos asociados son:

Decisión	Estado	Costo por artículos defectuosos	Costo de decisión	Costo Producción perdida	Costo total
1. Hacer nada	0	0	0	0	0
	1	1000	0	0	1000
	2	3000	0	0	3000
2. Rep. Gral.	2	0	2000	2000	4000
3. Reemplazar	1, 2, 3	0	4000	2000	6000

¿Cuál es la política de mantenimiento óptima?

Política

Una política R es una regla que prescribe la decisión $d_i(R)$ que debe ser tomada siempre que el sistema alcance el estado i, para cada i = 0, 1, ..., M. Esta caracterizada por los valores

$$[d_0(R), d_1(R), \dots, d_M(R)].$$

Ejemplo Prototipo

Se tiene una máquina clave en el núcleo de un proceso de producción, la cual se deteriora rápidamente tanto en calidad como en la cantidad. Al final de cada mes se realiza una inspección para clasificar la condición de la máquina en uno de los siguientes estados posibles:

Estado	Condición
0	Como nueva
1	Operable -deterioro menor
2	Operable –deterioro mayor
3	No operable

Estado	0	1	2	3
0	0	7/8	1/16	1/16
1	0	3/4	1/8	1/8
2	0	0	1/2	1/2
3	0	0	0	1

Cuando se alcanza el estado 3, la maquina se debe reemplazar. Esto toma una semana durante la cual no hay producción, con un costo de \$2000. El costo de la nueva maquina es de \$4000.

Política Estacionaria

Una política es **estacionaria** si cada vez que el sistema alcanza el estado *i*, la regla para tomar la decisión siempre es la misma sin que importe el valor del tiempo actual *t*.

Política Determinística

Una política es **determinística** si cada vez en la que el sistema llega al estado *i*, la regla para tomar la decisión definitivamente selecciona una decisión específica.

Política Aleatoria

Una política es **aleatoria** si la decisión de que hacer cada vez en la que el sistema alcanza el estado *i*, se toma teniendo en cuenta una **distribución de probabilidad**.

solucionador de operaciones simultaneas

Sol. Ejemplo Prototipo (1)

Política	Descripción	$d_0(R)$	$d_1(R)$	$d_2(R)$	$d_3(R)$
R_a	Reemplazo en el estado 3	1	1	1	3
R_b	Reemplazo en el estado 3, reparación general en el estado 2	1	1	2	3
R_c	Reemplazo en los estados 2 y 3	1	1	3	3
R_d	Reemplazo en los estados 1, 2, y 3	1	3	3	3

		I	\mathbf{R}_a	
Estado	0	1	2	3
0	0	7/8	1/16	1/16
1	0	3/4	1/8	1/8
2	0	0	1/2	1/2
3	1	0	0	0

-	2/12	7/12	2/12	2/12
π_i	2/13	7/13	2/13	2/13

		I	₹ _b	
Estado	0	1	2	3
0	0	7/8	1/16	1/16
1	0	3/4	1/8	1/8
2	0	1	0	0
3	1	0	0	0

π_i	2/21	5/7	2/21	2/21

Sol. Ejemplo Prototipo (2)

	R_c			
Estado	0	1	2	3
0	0	7/8	1/16	1/16
1	0	3/4	1/8	1/8
2	1	0	0	0
3	1	0	0	0
π_{j}	2/11	7/11	1/11	1/11

	R_d			
Estado	0	1	2	3
0	0	7/8	1/16	1/16
1	1	0	0	0
2	1	0	0	0
3	1	0	0	0
π_{j}	1/2	7/16	1/32	1/32

Costos Cik

	Decisión				
Estado	1	2	3		
0	0	-	-		
1	1000	-	6000		
2	3000	4000	6000		
3	-	_	6000		

Sol. Ejemplo Prototipo (3)

Pol.	$[d_0, d_1, d_2, d_3]$	$[C_{0k}, C_{1k}, C_{2k}, C_{3k}]$	$\pi_j(\mathbf{R})$	E[R]
R_a	[1,1,1,3]	[0, 1, 3, 6]	[2/13, 7/13, 2/13, 2/13]	$\frac{1}{13}\{0 \times 2 + 1 \times 7 + 3 \times 2 + 6 \times 2\} = 1923$
R_b	[1, 1, 2, 3]	[0, 1, 4, 6]	[2/21, 15/21, 2/21, 2/21]	$\frac{1}{21}\{0 \times 2 + 1 \times 15 + 4 \times 2 + 6 \times 2\} = 1667$
R_c	[1, 1, 3, 3]	[0, 1, 6, 6]	[2/11, 7/11, 1/11, 1/11]	$\frac{1}{11}\{0 \times 2 + 1 \times 7 + 6 \times 1 + 6 \times 1\} = 1728$
R_d	[1, 3, 3, 3]	[0, 6, 6, 6]	[16/32, 14/36, 1/32, 1/32]	$\frac{1}{32} \{ 0 \times 16 + 6 \times 14 + 6 \times 1 + 6 \times 1 \} = 3000$

Matriz de Decisiones

$$\mathbf{D} = \begin{bmatrix} D_{11} & D_{12} & \cdots & D_{1K} \\ D_{21} & D_{22} & \cdots & D_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ D_{M1} & D_{M2} & \cdots & D_{MK} \end{bmatrix}$$

Ejemplos

 R_a

	Deci 1	Deci 2	Deci 3
Estado 0	1	0	0
Estado 1	1	0	0
Estado 2	1	0	0
Estado 3	0	0	1

B

 R_b

	Deci 1	Deci 2	Deci 3
Estado 0	1	0	0
Estado 1	1	0	0
Estado 2	0	1	0
Estado 3	0	0	1

 R_c

	Deci 1	Deci 2	Deci 3
Estado 0	1	0	0
Estado 1	1	0	0
Estado 2	0	0	1
Estado 3	0	0	1

 R_d

	Deci 1	Deci 2	Deci 3
Estado 0	1	0	0
Estado 1	0	0	1
Estado 2	0	0	1
Estado 3	0	0	1