FORMULÁRIO FORNECIDO PELOS ALUNOS

Divisor de tensões:	
$v_{\chi} = Vcc \cdot \frac{R1}{R1 + R2}$	

	t = Os	t→∞
С	Curto	Aberto
L	Aberto	Curto

_	~			
Conve	archac	do I	Inid	· 2ahc
COLIVE	-13063	ucı	Jillu	aucs.

1CV = 735W

1 J = 0,239 cal

1 W = 1 J/s

 $[L] = H = \Omega.s$

 $[C] = F = s/\Omega$

 $[\tau] = s$

Obs: $(t = \Delta t)$	Indutor	Capacitor
Carga	$v_L(t) = v_L(0)e^{-\frac{R}{L}t}$	$v_c(t) = V_{CC}(1 - e^{\frac{-t}{RC}})$
	$i_L(t) = i_L(0) \left(1 - e^{-\frac{R}{L}t} \right)$	$i(t) = I(0)e^{-\frac{1}{RC}t}$
Descarga	$v_L(t) = -v_L(0)e^{-\frac{R}{L}t}$	$v_c(t) = V_{CC} e^{\frac{-t}{RC}}$
	$i_L(t) = i_L(0)e^{-\frac{R}{L}t}$	$i(t) = -I(0)e^{-\frac{1}{RC}t}$
Equação Geral: (Recarga)	$i_{L}(t) = I_{i} + (I_{0} - I_{i}) \left(1 - e^{-\frac{R}{L}t}\right)$	$v_c(t) = v_i + (v_f - v_i).(1 - e^{\frac{-t}{RC}})$

	Resistor	Indutor	Capacitor
Tensão	v(t) = Ri(t)	$v(t) = L \frac{di(t)}{dt}$	$v(t) = \frac{1}{C} \int i(t)dt$
Corrente	$i(t) = \frac{v(t)}{R}$	$i(t) = \frac{1}{L} \int v(t)dt$	$i(t) = C \frac{dv(t)}{dt}$
Série	$R_{eq} = \sum_{1}^{n} R_{n}$	$L_{eq} = \sum_{1}^{n} L_{n}$	$\frac{1}{C_{eq}} = \sum_{1}^{n} \frac{1}{C_{n}}$
Paralelo	$\frac{1}{R_{eq}} = \sum_{1}^{n} \frac{1}{R_n}$	$\frac{1}{L_{eq}} = \sum_{1}^{n} \frac{1}{L_{n}}$	$C_{eq} = \sum_{1}^{n} C_{n}$
Energia	W(t) = v(t)i(t)	$W(t) = L\frac{i(t)^2}{2}$	$W(t) = C \frac{v(t)^2}{2}$