

Algebra

Alessandro D'Andrea

8. La relazione di coniugio

Richiami

- ▶ Gruppo additivo \mathbb{Z}/n
- ▶ Gruppo moltiplicativo $(\mathbb{Z}/n)^{\times}$
- \triangleright C_n, D_n, S_n, A_n
- Posso contare gli elementi di un gruppo ripartendoli in classi laterali (Teorema di Lagrange)
- ► Oggi: Relazione di coniugio
 - Ripartisco gli elementi in classi coniugate
 - Le classi coniugate non hanno tutte lo stesso numero di elementi
 - ▶ I gruppi di ordine p^n hanno centro non banale
 - ▶ I gruppi di ordine p² sono abeliani

Elementi coniugati

Due elementi $a, b \in G$ si dicono coniugati se esiste $g \in G$ tale che $b = gag^{-1}$. Scriveremo $a \sim b$ per indicare che a, b sono coniugati.

Vedremo più avanti nel corso che matrici coniugate vengono fuori in modo naturale dai cambiamenti di base.

Due elementi coniugati hanno necessariamente lo stesso ordine. In effetti $(gag^{-1})^n = ga^ng^{-1}$, quindi $a^n = 1$ se e solo se $(gag^{-1})^n = 1$.

Ogni elemento è coniugato a se stesso. L'elemento $a \in G$ è coniugato solo a se stesso esattamente quando ag = ga per ogni $g \in G$: questi elementi sono detti centrali e formano un sottogruppo Z(G), detto centro di G. L'identità è sempre centrale.

In un gruppo abeliano, ogni elemento è centrale.

Relazione di coniugio

La relazione di coniugio è una relazione di equivalenza.

- ▶ Riflessività: a ~ a
 - $a = 1 \cdot a \cdot 1^{-1}$.
- ▶ Simmetria: $a \sim b \implies b \sim a$

• Se
$$b = gag^{-1}$$
, allora $a = g^{-1}bg = g^{-1}b(g^{-1})^{-1}$.

- ▶ Transitività: $a \sim b, b \sim c \implies a \sim c$
 - Se $b = gag^{-1}$ e $c = hbh^{-1}$, allora $c = h(gag^{-1})h^{-1} = (hg)a(hg)^{-1}$.

Come accade per ogni relazione di equivalenza, il gruppo G risulta ripartito nell'unione disgiunta di classi di equivalenza, dette classi di coniugio o classi coniugate. Indicheremo la classe di coniugio di a con il simbolo [a].

Classi di coniugio in S₃

Gli elementi di S₃ sono

- Ordine 1: l'identità Id.
- Ordine 2: le trasposizioni (12), (13), (23).
- Ordine 3: i 3-cicli (123) e (132).

Ogni trasposizione commuta solo con l'identità e se stessa. Questo mostra che l'unico elemento centrale di S_3 è l'identità. Di conseguenza, l'unica classe di coniugio costituita da un solo elemento è quella di Id.

Le altre classi devono tutte contenere strettamente più di un elemento; inoltre ciascuna classe deve contenere elementi tutti dello stesso ordine.

L'unica possibilità è:

$$[Id] = \{Id\}, \quad [(1\,2)] = \{(1\,2), (1\,3), (2\,3)\}, \quad [(1\,2\,3)] = \{(1\,2\,3), (1\,3\,2)\}.$$

Quanti elementi in una classe? UNITELMA SAPIENZA UNITELMA SAPIENZA

Quanti e quali elementi di G sono coniugati all'elemento $a \in G$?

Sicuramente, se $g \in G$ commuta con a, allora $gag^{-1} = agg^{-1} = a$. Gli elementi che commutano con a costituiscono il centralizzatore C(a) di a, che è un sottogruppo di G.

I coniugati $gag^{-1}=hah^{-1}$ coincidono se e solo se $(g^{-1}h)a=a(g^{-1}h)$, cioè quando $g^{-1}h\in C(a)$. Questo è un altro modo di dire che $g\equiv h\mod C(a)$.

In altre parole, $g \in h$ inducono lo stesso coniugato di a se e solo se $g \equiv h \mod C(a)$, cioè se e solo se g, h appartengono allo stesso laterale sinistro di C(a) in G. Questo mostra che a possiede tanti coniugati quante sono le classi laterali di C(a) in G. In altre parole

$$|[a]| = [G : C(a)].$$

Il numero di coniugati di a in G è un divisore di |G|.

L'equazione delle classi - I

Ogni gruppo G è unione disgiunta delle sue classi coniugate.

Pertanto, l'ordine di *G* si può ricavare sommando il numero di elementi di tutte le sue classi coniugate.

Ad esempio, in S₃

$$S_3 = [Id] \cup [(1\,2)] \cup [(1\,2\,3)] \implies 6 = 1 + 2 + 3.$$

L'equazione delle classi - II

Supponiamo che G sia un gruppo con p^n elementi, dove p è un numero primo. L'equazione delle classi diventa

$$p^n = |Z(G)| + \text{ potenze di } p.$$

Questo mostra che |Z(G)| è un multiplo di p, e quindi Z(G) non può essere limitato alla sola identità, ma deve contenere anche altri elementi.

Gruppi di ordine p^2

Se $|G|=p^n$, allora |Z(G)| non può essere uguale a p^{n-1} . Se così fosse, un elemento $a \notin Z(G)$ dovrebbe commutare sicuramente con se stesso e con tutti gli elementi di Z(G). Ma l'unico divisore di p^n strettamente più grande di p^{n-1} è proprio p^n , e quindi a dovrebbe commutare con tutto G. Questo mostrerebbe che $a \in Z(G)$, un assurdo.

- ▶ $|G| = p \implies G$ è ciclico
- ▶ $|G| = p^2 \implies |Z(G)| = p^2$, e quindi G è abeliano
- ▶ $|G| = p^3 \implies |Z(G)| = p$ oppure p^3
- ▶ $|G| = p^4 \implies |Z(G)| = p, p^2$ oppure p^4
- **>** ...

Coniugio in S_n

Se $\tau \in S_n$, allora

$$\tau(a_1 a_2 \ldots a_k) \tau^{-1} = (\tau(a_1) \tau(a_2) \ldots \tau(a_k)).$$

Allo stesso modo, due permutazioni coniugate in S_n hanno la stessa struttura ciclica, ed è vero anche il viceversa!

Ad esempio, la permutazione (12345) viene coniugata in (14235) dalla permutazione

$$\sigma = \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 4 \\ 3 \mapsto 2 \\ 4 \mapsto 3 \\ 5 \mapsto 5. \end{cases}$$

Si ha in effetti $(14235) = \sigma(12345)\sigma^{-1}$.

Sottogruppi normali

Un sottogruppo N < G è normale se $gNg^{-1} \subset N$. Equivalentemente, se N contiene i coniugati di ogni suo elemento.

Un sottogruppo normale è unione di classi di coniugio.

Le classi di coniugio di S₅ sono

- ▶ L'identità: 1 elemento
- ► [(12)]: 10 elementi
- ► [(123)]: 20 elementi
- ► [(1234)]: 30 elementi
- ► [(12345)]: 24 elementi
- ► [(12)(34)]: 15 elementi
- ► [(123)(45)]: 20 elementi.

Un sottogruppo di S_5 contiene Id e il suo ordine divide $120 = |S_5|$. Le uniche unioni di classi di coniugio con queste proprietà sono 1, 120, 40 = 1 + 15 + 24, 60 = 1 + 15 + 20 + 24.

Sottogruppi normali di S₅

- L'identità: 1 elemento
- ▶ [(12)]: 10 elementi
- ► [(123)]: 20 elementi
- ► [(1234)]: 30 elementi
- ► [(12345)]: 24 elementi
- ► [(12)(34)]: 15 elementi
- ► [(123)(45)]: 20 elementi.

40=1+15+24 fornisce [Id] \cup [(12)(34)] \cup [(12345)]. Se fosse un sottogruppo di S_5 , sarebbe tutto contenuto in A_5 , e dovrebbe dividere 60 per il teorema di Lagrange.

60 = 1 + 15 + 20 + 24 dà due possibilità. Una è A_5 , che è un sottogruppo normale. Se l'altra unione fosse un sottogruppo, allora la sua intersezione con A_5 sarebbe il sottogruppo di ordine 40 del caso precedente, che abbiamo visto non esistere.

Sottogruppi normali di A₄

Proviamo ad eseguire lo stesso conto per A₄. Le strutture cicliche degli elementi sono:

- L'identità: 1 elemento
- ► I 3-cicli: 8 elementi
- ▶ I prodotti di due trasposizioni disgiunte: 3 elementi

Anche nei gruppi alterni, gli elementi coniugati hanno la stessa struttura ciclica. Tuttavia, due elementi con la stessa struttura ciclica non sono necessariamente coniugati. Le classi coniugate in A₄ sono

- ▶ [Id]: 1 elemento
- ► [(123)] = {(123), (142), (134), (243)}: 4 elementi
- ► [(132)] = {(132), (124), (143), (234)}: 4 elementi
- ightharpoonup [(12)(34), (13)(24), (14)(23)}: 3 elementi

Le uniche possibilità per i sottogruppi normali sono $\{Id\}$, A_4 e $V_4 = [Id] \cup [(12)(34)]$, che è effettivamente un sottogruppo.