ĆWICZENIE NR 77

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK

I. Cel ćwiczenia:

- 1. Zapoznanie się z procesem wytwarzania obrazów przez soczewki cienkie.
- 2. Wyznaczanie odległości ogniskowych soczewek cienkich różnymi metodami.

II. Zestaw przyrządów:

- 1. Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran.
- 2. Komplet soczewek z oprawkami.
- 3. Kolimator z płytką ogniskową.
- Okular mikrometryczny.
- 5. Sferometr (pierścień wraz z czujnikiem mikrometrycznym zegarowym).
- 6. Płytka płasko równoległa.
- 7. Suwmiarka.

III. Czynności przygotowawcze:

1. Wybrać soczewkę skupiającą i rozpraszającą tak, aby układ obu soczewek był układem skupiającym oraz oszacować orientacyjnie ogniskową **f'** wybranej soczewki skupiającej i układu skupiającego. W tym celu skierować soczewkę (układ soczewek) na odległe źródło światła i znaleźć na ekranie ostry rzeczywisty obraz tego źródła. Odległość od soczewki (układu soczewek) do ekranu jest w przybliżeniu równa odległości ogniskowej badanej soczewki (lub układu soczewek).

Zadania podstawowe:

Pomiary wykonać dla jednej soczewki skupiającej i jednej rozpraszającej metodą wzoru soczewkowego.

IV. Przebieg pomiarów:

A. METODA WZORU SOCZEWKOWEGO

- 1. Badaną soczewkę skupiającą włożyć do oprawy. Zalecane jest zastosowanie przesłony. Na jednym końcu ławy ustawić źródło światła, szkło matowe i płytka z wyciętym wzorkiem. Na drugim końcu ustawić ekran (matowa płytka szklana), a między nimi soczewkę. Przedmiot (oświetlona płytka z wyciętym wzorkiem), soczewkę i ekran ustawić tak, aby ich środki leżały na prostej pokrywającej się z główną osią optyczną soczewki, a płaszczyzny przedmiotu i ekranu były do niej prostopadłe. Soczewkę ustawić w odległości s od przedmiotu (f' < s < 2f'). Przesuwając ekran wzdłuż ławy optycznej wyznaczyć takie jego położenie s' względem soczewki, aby uzyskać ostry obraz przedmiotu. Nie zmieniając odległości s przedmiotu od soczewki odczytać trzykrotnie odległość s' ekranu od soczewki. Ponieważ soczewki badane nie są idealnie cienkie należy soczewkę wyjąć z oprawy i ustawić ją drugą powierzchnią łamiącą w stronę źródła światła i powtórzyć trzykrotnie pomiary odległości s'.
- 2. Według wskazówek prowadzącego pomiar odległości s' powtórzyć dla innych odległości s przedmiotu od soczewki np. dla s > 2f', s = 2f'.
- 3. Analogiczne pomiary przeprowadzić dla skupiającego układu soczewek.

B. METODA BESSELA

- 1. Ustawić na ławie optycznej przedmiot, badaną soczewkę skupiającą w oprawie z przesłoną irysową i ekran w takiej odległości od przedmiotu, aby można było uzyskać na nim dwa razy obraz przedmiotu: raz pomniejszony, raz powiększony, podczas przesuwania soczewki wzdłuż ławy optycznej
- 2. Przesuwając soczewkę wzdłuż ławy optycznej znaleźć takie położenie soczewki **c**₁, w którym na ekranie powstanie ostry powiększony obraz przedmiotu. Pomiary położenia **c**₁ powtórzyć kilkakrotnie. Analogicznie znaleźć położenie **c**₂ soczewki, w którym powstaje ostry pomniejszony obraz.

- 3. Powtórzyć pomiary położenia **c**₁ i **c**₂ dla innej odległości **d** przedmiotu od ekranu.
- 4. W celu wyznaczenia ogniskowej soczewki rozpraszającej w przesłonie irysowej umieścić układ soczewek (**skupiająca** + **rozpraszająca**) wybranych tak, aby tworzyły układ skupiający.
- 5. Przeprowadzić pomiary położenia c_1 i c_2 dla układu soczewek.

D METODA SFEROMETRU (dla wszystkich soczewek)

- 1. Przygotować sferometr do pomiarów: na trzpień czujnika zegarowego nałożyć pierścień przeznaczony do pomiaru wartości strzałki **h** czaszy kulistej o średnicy **2R**. (2R_{zew} dla powierzchni wklęsłej, 2R_{wew.} dla powierzchni wypukłej)
- 2. Ustawić sferometr na powierzchni płytki płasko-równoległej wartość wskazywana przez czujnik jest wartością odniesienia. Jest możliwość regulacji położenia czujnika względem pierścienia proponuje się takie ustawienie aby czujnik wskazywał ok.½ wartości zakresu pomiarowego np. 5.00 mm dla zakresu 10 mm. (mała wskazówka wskazuje pełne milimetry, a duża setne części milimetra).
- 3. Ustawić sferometr na mierzonej powierzchni soczewki i odczytać wskazanie czujnika zegarowego. Wartość **h** strzałki czaszy kulistej soczewki jest różnicą wskazań czujnika na płytce płasko-równoległej i na mierzonej powierzchni. Pomiar strzałki **h** należy powtórzyć kilkakrotnie. Analogiczne pomiary wartości strzałki dokonać dla drugiej powierzchni soczewki.
- 4. Zmierzyć suwmiarką średnicę zewnętrzną $2R_z$ i średnicę wewnętrzną $2R_w$ pierścienia sferometru.
- 5. Pomiarów strzałek dokonać dla soczewki skupiającej i rozpraszającej.

E. METODA OKULARU MIKROMETRYCZNEGO I KOLIMATORA (dla układów skupiających)

Przecięcie nitek krzyża na skali kolimatora wskazuje wartość **5,0** co na skali okularu mikrometrycznego odpowiada wartości

$$x_L=0,\!24\;\text{mm}$$

Przecięcie nitek krzyża na skali kolimatora wskazuje wartość **9,0** co na skali okularu mikrometrycznego odpowiada wartości

$$x_P = 6.15 \text{ mm}$$

Rys. 2

- 1. Wyregulować ustawienie okularu mikrometrycznego na ostre widzenie krzyża.
- 2. Zestawić na ławie optycznej przyrządy w następującej kolejności: oświetlacz, kolimator z podziałką, badany układ skupiający, okular mikrometryczny ze skalą tak, aby ich środki leżały na jednej prostej pokrywającej się z główną osią optyczną soczewki.
- 3. Przesuwając okular lub badaną soczewkę wzdłuż ławy optycznej znaleźć takie położenie, aby widzieć ostro, bez paralaksy, obraz skali kolimatora na tle krzyża okularu.
- 4. Wybrać dwie odległe kreski na skali kolimatora i policzyć liczbę \mathbf{k} małych działek między tymi kreskami (na rys. 2 $\mathbf{k} = \mathbf{10} \cdot (\mathbf{9}, \mathbf{0} \mathbf{5}, \mathbf{0}) = 40$).
- 5. Ustawić przecięcie nitek krzyża okularu mikrometrycznego na wybraną lewą kreskę skali kolimatora i odczytać jego położenie $\mathbf{x_L}$. W ten sam sposób dokonać pomiaru położenia $\mathbf{x_P}$ dla prawej wybranej kreski skali. Pomiary $\mathbf{x_L}$ i $\mathbf{x_P}$ powtórzyć trzykrotnie. Wartość elementarnej działki bębna okularu mikrometrycznego wynosi 0,01 mm, a odstęp między

numerowanymi kreskami skali okularu mikrometrycznego wynosi 1mm i odpowiada pełnemu obrotowi bębna. Przykład odczytu położenia krzyża jest zilustrowany na rys. 2.

V. Opracowanie wyników pomiarów:

METODA WZORU SOCZEWKOWEGO Α.

- Obliczyć średnia wartość s' ekranu od soczewki i wyznaczyć jej niepewność bezwzględna. 1.
- 2. Na podstawie wzoru soczewkowego

$$\frac{1}{\mathbf{f'}} = \frac{1}{\mathbf{s'}} + \frac{1}{\mathbf{s}}$$

gdzie:

- odległość przedmiotu od soczewki

odległość obrazu od soczewki,

obliczyć odległość ogniskowa f'. Analogiczne obliczenia wykonać dla innych odległości s przedmiotu od soczewki.

- Obliczyć zdolność skupiającą soczewki $\varphi = \frac{1}{f'}$, gdzie f' wyrażone jest w metrach. 3.
- 4. Obliczyć niepewność względną i bezwzględną ogniskowej soczewki np. metodą różniczki zupełnej oraz zdolności skupiającej np. metodą pochodnej logarytmicznej.

METODA BESSELA В.

- 1. Dla danej odległości **d** przedmiotu od ekranu obliczyć średnie wartości **c**₁ i **c**₂ położeń soczewki, przy których otrzymano ostry obraz powiększony i pomniejszony oraz wyznaczyć ich niepewności.
- Wyznaczyć odległość **c** między obu położeniami soczewki ze wzoru: 2.

$$\mathbf{c} = |\mathbf{c}_2 - \mathbf{c}_1|$$

oraz jej niepewność.

Obliczyć dla danej odległości d odległość ogniskową soczewki skupiającej wg wzoru 3.

$$\mathbf{f}_{s}' = \frac{\mathbf{d}^2 - \mathbf{c}^2}{4\mathbf{d}}$$

- Analogiczne obliczenia odległości ogniskowej $\mathbf{f_u}'$ przeprowadzić dla układu soczewek 4.
- Wyznaczyć niepewność względną i bezwzględną ogniskowej soczewki skupiającej 5. i ogniskowej układu np. metodą różniczki zupełnej.
- 6. Obliczyć odległość ogniskową fr' soczewki rozpraszającej z zależności

$$\frac{1}{\mathbf{f_r'}} = \frac{1}{\mathbf{f_u'}} - \frac{1}{\mathbf{f_s'}}$$

oraz jej niepewność względną i bezwzględną.

- 7. Powtórzyć obliczenia dla innej odległości **d** przedmiotu od ekranu.
- 8. Uśrednić otrzymane odległości ogniskowe danej soczewki dla różnych odległości d oraz ich niepewności.

METODA SFEROMETRU D.

- 1. Obliczyć średnią wartość **h** strzałki czaszy kulistej dla obu powierzchni soczewki i jej niepewność.
- Obliczyć promienie obu krzywizn soczewki ze wzoru 2.

$$r = \frac{R^2 + h^2}{2h}$$

przy czym

 $\mathbf{R} = \mathbf{R}_{\mathbf{z}}$ dla wklęsiej powierzchni soczewki

 $\mathbf{R} = \mathbf{R}_{\mathbf{w}}$ dla wypukłej powierzchni soczewki

Obliczyć niepewności promieni krzywizn soczewki.

3. Obliczyć odległość ogniskową f' badanej soczewki i jej zdolność skupiającą ze wzoru:

$$\frac{1}{\mathbf{f'}} = \left(\frac{\mathbf{n}}{\mathbf{n'}} - 1\right) \left(\frac{1}{\mathbf{r}_1} - \frac{1}{\mathbf{r}_2}\right)$$

gdzie:

 $n/n' = 1,52 \pm 0,01$

współczynnik załamania szkła względem powietrza,

promienie krzywizn odpowiednio pierwszej i drugiej powierzchni soczewki

<u>UWAGA!</u> Promień krzywizny powierzchni łamiącej soczewki jest dodatni, gdy promienie świetlne padają na stronę wypukłą soczewki, a ujemny - gdy promienie świetlne padają na powierzchnie wklęsłą.

4. Obliczyć niepewność względną i bezwzględną ogniskowej soczewki **f**′ i zdolności skupiającej **φ**.

E. METODA KOLIMATORA I OKULARU MIKROMETRYCZNEGO.

- 1. Wyznaczyć średnią wartość położenia $\mathbf{x_L}$ dla lewej kreski oraz średnią wartość położenia $\mathbf{x_P}$ dla prawej kreski skali kolimatora i wyznaczyć ich niepewność np. metodą Studenta Fichera.
- 2. Obliczyć odległość x' między wybranymi do pomiaru kreskami skali ze wzoru

$$\mathbf{x'} = \mathbf{x_P} - \mathbf{x_L}$$

3. Obliczyć odległość ogniskową soczewki i układu skupiającego ze wzoru

$$\mathbf{f'} = \frac{\mathbf{x'}}{\mathbf{tg}(\mathbf{k} \cdot \boldsymbol{\alpha_o})}$$

gdzie: $\alpha_0 = 4,3'$ odległość kątowa między kolejnymi małymi kreskami skali kolimatora \mathbf{k} - liczba małych działek między wybranymi kreskami skali kolimatora

- 4. Wyznaczyć niepewność względną i bezwzględną odległości ogniskowej.
- 5. Znaleźć odległość ogniskowa soczewki rozpraszającej ze wzoru:

$$\frac{1}{f_{r'}} = \frac{1}{f_{n'}} - \frac{1}{f_{s'}}$$

gdzie: $\mathbf{f'}_{s}$, $\mathbf{f'}_{r}$, $\mathbf{f'}_{u}$ - odległość ogniskowa odpowiednio soczewki skupiającej, rozpraszającej i układu soczewek.

6. Wyznaczyć niepewność względną i bezwzględną odległości ogniskowej soczewki rozpraszającej.

VI. Przykładowe tabele:

A. METODA WZORU SOCZEWKOWEGO

Nr	s	Δs	s'	\bar{s}'	$\Delta \bar{s}'$	f'	Δf'	$\Delta \mathbf{f'}/\mathbf{f}$	φ	Δφ	Δφ/φ
soczewki	cm	cm	cm	cm	cm	cm	cm	%	1/m	1/m	%

B. METODA BESSELA

Nr	d	$\mathbf{c_1}$	\bar{c}_1	$\Delta \overline{c}_1$	\mathbf{c}_2	$\overline{\mathbf{c}}_{2}$	$\Delta \overline{c}_2$	c	Δc	f′	Δf'	$ar{\mathbf{f}}$	$\Deltaar{ ext{f}}$	$\Delta ar{\mathbf{f}}'/ar{\mathbf{f}}'$
soczewki	cm	cm	cm	cm	cm	cm	cm	cm	cm	cm	cm	cm	cm	%

C. METODA SFEROMETRU

Nr	Rodzaj	h	$\overline{\mathbf{h}}$	$\Delta \overline{h}$	2R	$\Delta(2R)$	r	Δr	f′	$\Delta f'$	$\Delta \bar{\mathbf{f}}'/\bar{\mathbf{f}}'$	φ	Δφ	Δφ/φ
soczewki	powie- rzchni	mm	mm	mm	mm	mm	mm	mm	mm	mm	%	1/m	1/m	%

D. METODA KOLIMATORA I OKULARU MIKROMETRYCZNEGO

Nr	k	$\mathbf{X}_{\mathbf{L}}$	$\overline{\mathbf{X}}_{\mathbf{L}}$	$\Delta \overline{x}_{\rm L}$	$\mathbf{X}_{\mathbf{P}}$	$\overline{\mathbf{X}}_{\mathbf{p}}$	$\Delta \overline{x}_p$	x'	$tg(k\cdot\alpha_0)$	f'	Δf′	$\Delta ar{\mathbf{f}}'/ar{\mathbf{f}}'$
soczewki		mm	mm	mm	mm	mm	mm	mm		mm	mm	%

ĆWICZENIE NR 77

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH

WERSJA ZMODYFIKOWANA

W stosunku do ćwiczenia 77 modyfikacja dotyczy: nowych ław optycznych, nowych soczewek o większej średnicy, i nowych pierścieni do metody sferometru. Uwagi przedstawione poniżej dotyczą techniki pomiaru.

- 1. Soczewki znajdują się w oprawkach, których brzegi oznaczone są kropkami lub kreskami. Liczba kropek to numer soczewki skupiającej (dodatniej). Liczba kresek to numer kolejny litery alfabetu. Litery zaś oznaczają soczewki rozpraszające (ujemne).
- 2. Aby można było mierzyć układ soczewek (soczewka dodatnia + soczewka ujemna) na nowych ławach, należy mieć na uwadze poniższe warunki:
 - Soczewka A tworzy układ z soczewkami 1 i 2,
 - Soczewka B tworzy układ z soczewkami 1 ÷ 3,
 - Soczewka C tworzy układ z soczewkami 1 ÷ 5.
- 3. Aby zminimalizować błędy pomiarowe (soczewki bowiem są uważane za cienkie) należy soczewki wkładać do uchwytu w odpowiedni sposób:
 - Każdą soczewkę należy wkładać w taki sposób, by pierścień mocujący w oprawie soczewkę był skierowany w stronę ekranu-matówki.
 - W przypadku badania układu soczewek: soczewkę dodatnią ustawiamy, w uchwycie, bliżej przedmiotu-źródła światła, a soczewkę ujemną dalej od źródła.
- 4. Położenia: przedmiotu, soczewki i ekranu-matówki, wyznaczają ścięte brzegi koników!, na których się one przesuwają na ławie.

Uwaga: konik soczewki ma dwa ścięte brzegi! Ten ścięty brzeg bliżej zewnętrznej strony ławy służy do pomiaru położenia pojedynczej-dodatniej soczewki. Ścięty brzeg bliżej środka ławy służy do pomiaru położenia układu soczewek.