Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Bernhardt Mark Гр. 320207

Вариант 25

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:4d61:726b::/96

Задание 1.2: разбить сеть из п.1.1 на 63 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\'\Gamma C,}$	2001:db8:0:4eef:4d61:726b::/102
Префикс $N_{\rm C,PePS}$	2001:db8:0:4eef:4d61:726b:f800:0/102

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (25*16)/256+10=11

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (25*16)/256=144

Дано: Сеть 11.144.0.0/12

Задание 2.1.1: разбить сеть на 1024 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	144	0	0
Адрес сети	00001011	10010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 6 бит из 2-го октета.

3. Итого, получается, что сеть 11.144.0.0/12 мы разбили на 1024 подсети, в каждой из которых по 1022 узлов, указываем первые 5 подсетей:

	11	144	0	0
Адрес сети дв.с	00001011	10010000	00000000	00000000
Маска дв.с	11111111	11111111	11111100	00000000
	255	255	252	0

200	200	202
Адрес сети $N_1/$ Префикс N_1	11.144.0.	0/22
Адрес первого узла N_1	11.144.0.	1
Адрес последнего узла N_1	11.144.3.	254
Широковещательный адрес N_1	11.144.3.	255
Адрес сети $N_2/$ Префикс N_2	11.144.4.	0/22
Адрес первого узла N_2	11.144.4.	1
Адрес последнего узла N_2	11.144.7.	254
Широковещательный адрес N_2	11.144.7.	255
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.144.8.	0/22
Адрес первого узла N_3	11.144.8.	1
Адрес последнего узла N_3	11.144.11	1.254
Широковещательный адрес N_3	11.144.11	1.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.144.12	2.0/22
Адрес первого узла N_4	11.144.12	2.1
Адрес последнего узла N_4	11.144.15.254	
Широковещательный адрес N_4	11.144.15	5.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.144.16	6.0/22
Адрес первого узла N_5	11.144.16	5.1
Адрес последнего узла N_5	11.144.19.254	
Широковещательный адрес N_5	11.144.19	9.255

Дано: Сеть 11.144.0.0/12

Задание 2.1.2: разбить сеть на 1400 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(1400\leqslant 2^{11}=2048)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 7 бит из 2-го октета (получается, что сеть можно разбить на 2048 подсетей: $2^{11}=2048$; оставшиеся 9 бит идут под узлы: $2^9-2=510$ в каждой подсети).

3. Указываем первую и последнюю подсети:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.144.0.0/23
Λ дрес первого узла N_1	11.144.0.1
Адрес последнего узла N_1	11.144.1.254
Широковещательный адрес N_1	11.144.1.255

Адрес сети $N_2/$ Префикс N_2	$\fbox{11.154.238.0/23}$
Адрес первого узла N_2	11.154.238.1
Адрес последнего узла N_2	11.154.239.254
Широковещательный адрес N_2	11.154.239.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 16384 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	144	0	0
Адрес сети	00001011	10010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=14, т.к. $2^{14}-2=16382$. Т.е. нужно выбрать такую маску, которря выделит ровно 14 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^6=512$ подсетей по 16382 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.158.192.0/18
Адрес первого узла N_1	11.158.192.1
Адрес последнего узла N_1	11.158.255.254
Широковещательный адрес N_1	11.158.255.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.159.0.0/18
Адрес первого узла N_2	11.159.0.1
Адрес последнего узла N_2	11.159.63.254
Широковещательный адрес N_2	11.159.63.255
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.159.64.0/18
Адрес первого узла N_3	11.159.64.1
Адрес последнего узла N_3	11.159.127.254
Широковещательный адрес N_3	11.159.127.255

$oxed{\mathrm{A}}$ дрес сети $N_4/$ Префикс N_4	11.159.128.0/18
Адрес первого узла N_4	11.159.128.1
Адрес последнего узла N_4	11.159.191.254
Широковещательный адрес N_4	11.159.191.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.159.192.0/18
Адрес первого узла N_5	11.159.192.1
Адрес последнего узла N_5	11.159.255.254
Широковещательный адрес N_5	11.159.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 2000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	144	0	0
Адрес сети	00001011	10010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=11, т.к. $2^{11}-2=2046 \geqslant 2000$.

	11	144	U	U
Адрес сети дв.с	00001011	10010000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.144.0.0/21
Λ дрес первого узла N_1	11.144.0.1
Адрес последнего узла N_1	11.144.7.254
Широковещательный адрес N_1	11.144.7.255

Адрес сети $N_2/$ Префикс N_2	11.159.248.0/21
Адрес первого узла N_2	11.159.248.1
Адрес последнего узла N_2	11.159.255.254
Широковещательный адрес N_2	11.159.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 200 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	144	0	0
Адрес сети	00001011	10010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=8, т.к. $2^8-2=254$.

	11	144	0	0
Адрес сети дв.с	00001011	10010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	00000000
	255	255	255	0

3. Указываем последние 5 подсетей:

Λ дрес сети $N_1/$ Префикс N_1	11.159.251.0/24
${ m A}$ дрес первого узла N_1	11.159.251.1
${ m A}$ дрес последнего узла N_1	11.159.251.254
Широковещательный адрес N_1	11.159.251.255
${ m Agpec}$ сети $N_2/$ Префикс N_2	11.159.252.0/24
${ m A}$ дрес первого узла N_2	11.159.252.1
Адрес последнего узла N_2	11.159.252.254
Широковещательный адрес N_2	11.159.252.255

Адрес сети $N_3/$ Префикс N_3	$ \boxed{ 11.159.253.0/24 } $
Адрес первого узла N_3	11.159.253.1
Адрес последнего узла N_3	11.159.253.254
Широковещательный адрес N_3	11.159.253.255
$oxedsymbol{\Lambda}$ Адрес сети $N_4/$ Префикс N_4	11.159.254.0/24
Адрес первого узла N_4	11.159.254.1
Адрес последнего узла N_4	11.159.254.254
Широковещательный адрес N_4	11.159.254.255
$oxedsymbol{\Lambda}$ дрес сети $N_5/$ Префикс N_5	11.159.255.0/24
Адрес первого узла N_5	11.159.255.1
Адрес последнего узла N_5	11.159.255.254
Широковещательный адрес N_5	11.159.255.255