

Fabian Herzog

Fooling Neural Networks

Machine Learning and Neural Networks

- Neural Networks are very successful function approximation machines
- Benchmark results in fields of image processing, computer vision, speech recognition, ...
- Deep Learning lately became a major buzzword

Machine Learning Classifier

Example: Image Recognition

Given an input image, the classifier should answer with a probability distribution of output classes.

Machine Learning Classifier

Example: Image Recognition

Given an input image, the classifier should answer with a probability distribution of output classes.

Adversarial Example

A small perturbation in the input image can lead to misclassification:

 $+.007 \times$

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_{x}J(\theta, x, y))$ "gibbon"

99.3 % confidence

More Adversarial Examples

What does happen here!?

Image space

Probability space

What does happen here!?

Image space

Probability space

What does happen here!?

Adjust the input image slightly in the direction that leads to a misclassification

Image space

Probability space

How does it work?

Single Neuron Classifier

How does it work?

How does it work?

Now we do the opposite!

• Instead of following $\,
abla_{\mathbf{w}} J(\mathbf{w},b;\mathbf{x},y) \,$, we follow

$$\nabla_{\mathbf{x}} J(\mathbf{w}, b; \mathbf{x}, y)$$

until we achieve misclassification

This is what happens:

We follow $\nabla_{\mathbf{x}}J(\mathbf{w},b;\mathbf{x},y)$ and move our point in image space, leading to a probability vector corresponding to another class.

Image space

Probability space

Adversarial Example

x
"panda"
57.7% confidence

+.007 ×

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"
99.3 % confidence

Problems

- A model is easy to train if it's more or less linear
- · The more linear a model is, the easier the optimization
- But the same linearity can be used against the network
- LSTMs, ReLUs, ...
- Small perturbations can lead to misclassifications of the ImageNet database for more than 99% of the images (there are 14 Million classified images in ImageNet)

Real World Problems

(a) Image from dataset

(b) Clean image

(c) Adv. image, $\epsilon=4$

(d) Adv. image, $\epsilon=8$

Potential Targets

- Robots / Self-driving cars?
- Financial data (manipulate credit rating)?
- Other areas where people rely on the rationality of algorithms

Types of Attacks

Original image: **X** Adversarial Image: **X**

Set of classes: $C := \{y_1, \dots, y_m\}$ True label: $y^* \in C$

• Non-targeted attack: $rgmax_{y \in C} \; p(y \mid ilde{\mathbf{x}})
eq y^*$

- Targeted attack: $rgmax_{y \in C} p(y \mid ilde{\mathbf{x}}) = y_t$

Types of Attacks: Whitebox

Types of Attacks: Blackbox

Counter Measures

Blackbox:

- We hide the weights, the gradient, the loss function and everything else and only output the probability vector for the given input!
- This is not sufficient!

Blackbox as a Counter Measure

- The attacker can train his/her own network based on the input/output relations of the original network
- Empirically, adversarial inputs for one network tend to be adversarial for another network
- Even if we limit the number of queries, the blackbox is not a sufficient counter measure (cf. Ilyas 2018)
- Even if we limit the output, the blackbox is not a sufficient counter measure (cf. Ilyas 2018)

Counter Measures

- Most attacks use the neural network gradient
- We find a search direction by modifying the gradient and move in a promising direction
- Hiding the gradient (like in the blackbox case) does not make the model more robust (cf. Goodfellow 2017)

Some Counter Measures

Adversarial Training

- While training, generate adversarial examples yourself and train the network to correctly classify the perturbated examples!
- Generation of examples is fast (using the method presented in these slides)
- However, there is a large number of possible perturbations...

Some Counter Measures

Defensive distillation:

 Use the first trained network (with harder decision boundaries) to train a second, smoothed network (with smoothed decision boundary)

What to do / Further Reading?

- Cleverhans Library for generating adversary examples and testing models (http://www.cleverhans.io/)
- We currently do not really know "what to do". There is no perfect solution
- There is no true theoretical understanding / no underlying mathematical theory that would allow us to derive a solid and adaptive counter measure
- For now, we can only try to make ML models more robust
- Arms race...
- Maybe there is no solution after all

Scientific Sources / Reading List

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." *arXiv preprint arXiv:1412.6572* (2014).

Ilyas, Andrew, et al. "Black-box adversarial attacks with limited queries and information." arXiv preprint arXiv:1804.08598(2018).

Kurakin, Alexey, Ian Goodfellow, and Samy Bengio. "Adversarial examples in the physical world." *arXiv preprint arXiv:1607.02533* (2016).