Page 1 of 13 Eksamen Efterår 2016

In English Log ud

CampusNet / 26050 Indledende kemi for biovidenskaberne E16 / Opgaver Eksamen Efterår 2016 O Vis rigtige svar Side 1 Skjul rigtige svar Spørgsmål 1 Vægtning 5%: Hvilket udsagn er sandt? Mn har 5 valenselektroner. Elektronkonfigurationen for valenselektronerne er: Mn har 2 valenselektroner. Elektronkonfigurationen for valenselektronerne er: \Box $4s^2$ Mn har 25 valenselektroner. Elektronkonfigurationen for valenselektronerne er: \square $[Ar]4s^23p^5$ Mn har 7 valenselektroner. Elektronkonfigurationen for valenselektronerne er: \Box $4s^23d^5$ Mn har ingen valenselektroner. Spørgsmål 2 Vægtning 5%: Hvad er elektronkonfigurationen i grundtilstanden for Ni^{2+} : \square [Ar]4s²3d⁶ \square [Ar]4s²3d⁵ □ [Ar]3d⁵ □ [Ar]4s⁶ \square [Ar]3d⁸ Spørgsmål 3 Vægtning 4%: Hvilket af følgende generelle udsagn er normalt sandt? ☐ Hen igennem en periode (fra venstre mod højre) falder ioniseringsenergien. Op gennem en gruppe stiger ioniseringsenergien. Ædelgasserne har de laveste ioniseringsenergier ☐ Hvis to atomer er isoelektroniske, så vil det atom, der har størst kerneladning have den mindste ioniseringsenergi. Hvis et atom har en stor ioniseringsenergi, er det meget reaktivt.

Eksamen Efterår 2016 Page 2 of 13

Side 2
Molekylorbitalteori
Vedhæftet er molekylorbitaldiagrammet for O ₂
Filer: MO for O2.jpg
Spørgsmål 4
Vægtning 3%:
Molekylorbitalteori:
Angiv om O_2 er stabilt og angiv de magnetiske egenskaber for O_2 .
O ₂ er ustabilt og diamagnetisk
\square O ₂ er stabilt og paramagnetisk
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\square O ₂ er stabilt og ferromagnetisk
\square O ₂ er stabilt og diamagnetisk
Spørgsmål 5
Vægtning 4%:
Molekylorbitalteori:
Angiv bindingsordenen for N_2^{2+}
☐ Bindingsorden = 0
☐ Bindingsorden = 1
☐ Bindingsorden = 2
☐ Bindingsorden = 3
□ Bindingsonder 4

Eksamen Efterår 2016 Page 3 of 13

Side 3
Lewisstrukturer
Spørgsmål 6
Vægtning 3%: Angiv hvilken af følgende forbindelser der er isoelektronisk med SrO
□ BaO
□ LiF
□ NaI
□ RbF
□ KBr
Spørgsmål 7
Vægtning 2%: Angiv antallet af lonepairs på S for forbindelsen SF ₄
□ 1
□ 3
\square ⁴
Spørgsmål 8
Vægtning 1%: Angiv antallet af lonepairs på hver F for forbindelsen SF₄
□°
□ 3
Spørgsmål 9
Vægtning 2%: Angiv antallet af lonepairs på B for forbindelsen BCl ₃
□ °
□ 1
\square ²
□ 3
□ 4

Eksamen Efterår 2016 Page 4 of 13

Spørgsmål 10
Vægtning 1%:
Angiv antallet af lonepairs på hver CI for forbindelsen BCI ₃
o
□ 1
_ 2
□ 3
□ 4

Side 4
Navngivning
Spørgsmål 11
Vægtning 1%: Navngiv følgende ion: CIO ₃
☐ Hypochlorit
Chlorit
□ Chlorat
☐ Perchlorat
☐ Chloroxid
Spørgsmål 12
Vægtning 1%: Navngiv KH
☐ Kaliumhydrid
☐ Kaliumhydrat
☐ Kallumhydrogen
☐ Kalciumhydrat
☐ Hydrogenkalium
Spørgsmål 13
Vægtning 1%: Opskriv formlen for aluminiumsulfat.
☐ AISO ₃
□ AISO ₄
\square Al ₂ (SO ₃) ₃
\square Al ₂ (SO ₄) ₃
☐ Al(SO ₄) ₂
Spørgsmål 14
Vægtning 1%: Opskriv formlen for cobalt(III)oxid.
□ KoO₃
□ Ko ₂ O ₃
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\square Co ₂ O ₃
Spørgsmål 15
Vægtning 1%: Opskriv formlen for magnesiumnitrid.
☐ MgN
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Eksamen Efterår 2016 Page 6 of 13

\square Mg(NO ₂) ₂
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Side 5
Navngivning
Spørgsmål 16
Vægtning 1%:
Opskriv formlen for sølvnitrat.
☐ AgNO₂
☐ AgNO₃
☐ SbNO ₃
☐ AuNO ₃
☐ AuNO₂

Eksamen Efterår 2016 Page 7 of 13

Side 6
Kompleksforbindelser
Vedhæftet er ligandfeltopsplitningen af d-orbitaler for oktaedriske komplekser (uden elektroner)
Filer: ligandfeltopsplitning.jpg
Spørgsmål 17
Vægtning 1%: $\label{eq:partial} \mbox{Angiv centralatomets koordinationstal for den ioniske kompleksforbindelse:} \\ \mbox{[PdCl}_4]^{2\cdot}$
□ 1
□ 2
□ 3
□ 4
□ 6
Spørgsmål 18 Vægtning 2%:
Angiv centralatomets oxidationstrin for den ioniske kompleksforbindelse: $[\text{Cr}(\text{H}_2\text{O})_4\text{Cl}_2]^+$
<u>+6</u>
□ -2
<u>+1</u>
□ +3
<u>+4</u>
Spørgsmål 19
Vægtning 3%:
Angiv antallet af d-elektroner i eg og t2g for følgende kompleks:
[Co(CN) ₆] ³⁻
e _g : 0
$\Box \begin{array}{c} e_g: \ 2 \\ t_{2g: \ 6} \end{array}$
$\square \stackrel{e_g: \ 2}{\underset{t_{2g: \ 4}}{}}$

Eksamen Efterår 2016 Page 8 of 13

Spørgsmål 20
Vægtning 3%:
Navngiv følgende kompleksforbindelse: [Co(NH ₃) ₄ Cl ₂]Cl
☐ cobalttetraammoniakchlorid
☐ tetraammindichloridocobalt(II)
tetraammindichloridocobalt(III)chlorid
dichloridotriammincobalt(II)chlorid
☐ cobalt(III)dichloridotetraammindichlorid
Spørgsmål 21
vægtning 3%:
Opskriv formlen for tetrachloridonikkelat(II)-ionen.
☐ [NiCl ₆] ⁴⁻
☐ [NiCl ₄] ²⁻
$\square [NiCl_4]^{2+}$
☐ [NiCl₃]*
☐ [NiCla]

Side 7

Reaktionsskemaer

Spørgsmål 22

Vægtning 4%:

Færdiggør og afstem følgende reaktion. Afbrænding i overskud af dioxygen.

$$K(s) + O_2(g) \rightharpoonup ?$$

- \square 2K(s) + O₂(g) \rightharpoonup K₂O₂(s)
- \square K(s) + O₂(g) \rightharpoonup KO₂(s)
- \square 2K(s) + O₂(g) \rightarrow 2KO(s)
- \square 4K(s) + 3O₂(g) \rightharpoonup 2K₂O₃(s)

Spørgsmål 23

Vægtning 4%:

Færdiggør og afstem følgende reaktion, hvori lithium reagerer med stort overskud af vand.

$$Li(s) + H_2O(l) \rightarrow ?$$

- $\ \ \, \bigsqcup \, 4 \text{Li}(s) + 2 \text{H}_2 O(l) \rightharpoonup 4 \text{LiH}(s) + O_2(aq)$
- $\ \ \, \underline{\ \ }\ \ \, 2Li(s)+2H_2O(l) \rightharpoonup 2LiOH(s)+H_2(g)$
- $\ \ \, \bigsqcup \ \, 2 \text{Li}(s) + \text{H}_2 O(l) \rightharpoonup \text{Li}_2 O(s) + \text{H}_2(g)$
- $\ \ \, \bigsqcup \, Li(s) + 2H_2O(l) \rightharpoonup Li(OH)_2(aq) + H_2(g)$

Spørgsmål 24

Vægtning 4%:

Opskriv den afstemte reaktionsligning for fremstilling af phosphor(V)oxid ud fra hvid phosphor ved afbrænding i overskud af dioxygen.

- $\ \ \, \square \ \, P_4(s) + 3O_2(g) \rightharpoonup P_4O_6(s)$
- \square P₄(s) + 5O₂(g) \rightharpoonup P₄O₁₀(s)
- $\ \ \square \ P_4(s) + 8O_2(g) + 6H_2(g) \rightharpoonup 4H_3PO_4(s)$
- $\label{eq:P4S} \square \ P_4(s) + 10 H_2 O(g) \rightharpoonup P_4 O_{10}(s) + 10 H_2(g)$

Spørgsmål 25

Vægtning 4%:

Angiv den korrekt afstemte reaktionsligning for fremstilling af Cr metal ud fra chrom(III)oxid ved hjælp af Al metal.

- $\ \ \, \square \ \, \operatorname{Cr}_2O_3(s) + 2\operatorname{Al}(s) \rightharpoonup 2\operatorname{Cr}(s) + \operatorname{Al}_2O_3(s)$
- $\ \ \, \square \ \, 3CrO(s) + 2Al(s) \rightharpoonup 3Cr(s) + Al_2O_3(s)$
- $\ \ \, \bigsqcup \ \, CrO_3(s) + 2Al(s) \rightharpoonup Cr(s) + Al_2O_3(s)$
- $\ \ \, \bigsqcup \ \, Cr_2O_3(s) + 3Al(s) \rightharpoonup 2Cr(s) + 3AlO(s)$
- $\ \ \, \bigsqcup \ \, Cr_2O_3(s) + 6Al(s) \rightharpoonup 2Cr(s) + 3Al_2O(s)$

Eksamen Efterår 2016 Page 10 of 13

Side 8
Støkiometri
Spørgsmål 26
Vægtning 6%:
Sammensætningen af ibuprofen (masseprocent) er 75,69% C, 8,80% H og 15,51% O. Bestem den empiriske formel for ibuprofen.
C ₁₀ H ₁₈ O ₁₀
☐ C ₁₃ H ₁₈ O ₂
☐ C ₁₀ H ₂₂ O ₂
C ₁₂ H ₉ O ₂
□ C ₇ H ₈ O ₂

Eksamen Efterår 2016 Page 11 of 13

Side 9
Syre-base- og puffersystemer
Spørgsmål 27
Vægtning 6%: Hvilken af de følgende blandinger kan klassificeres som en puffer?
$\hfill \Box$ 500 mL 0,50 M natriumacetat + 500 mL $\hfill H_2O$
☐ 500 mL 0,50 M natriumacetat + 500 mL 0,25 M HCI
☐ 500 mL 0,50 M natriumacetat + 500 mL 0,75 M HCI
500 mL 0,50 M natriumacetat + 500 mL 0,50 M HCI
500 mL 0,50 M natriumacetat + 500 mL 0,50 M NaCl
Spørgsmål 28
Vægtning 6%:
Ethylamin, C ₂ H ₅ NH ₂ , har en $\mathit{K}_{\scriptscriptstyle D}$ på $5,6\cdot 10^{-4}$
Hvad er hydroxidionkoncentrationen ([OH ⁻]) i 0,200 M ethylamin.
☐ 11,52 M
☐ 2,48 M
□ 0,033 M
□ 0,011 M
□ 0,00024 M

Eksamen Efterår 2016 Page 12 of 13

0,0041 bar

Side 11

Kinetik

Filer: Capture.PNG

Spørgsmål 31

Vægtning 6%:

 $Ne denunder \ ser \ du \ m\'alinger \ af \ koncentrationen \ af \ SO_2Cl_2 \ som \ funktion \ af \ tiden. \ SO_2Cl_2 \ de komponerer \ til \ SO_2 \ og \ Cl_2:$

$$SO_2Cl_2(g) \rightharpoonup SO_2(g) + Cl_2(g)$$

 $\label{thm:potential} \mbox{ Det er en f} \mbox{ \textit{posteordensreaktion}}. \mbox{ Bestem hastighedskonstanten}.$

Tid (s)	[SO ₂ Cl ₂] (M)
0	0,100
200	0,0944
400	0,0890
600	0,0840
800	0,0793
1000	0,0748
1200	0,0706

- \square 2,9 × 10⁻⁴s⁻¹
- $\ \ \, \square \ \, 2,9\times 10^{-1}\rm s^{-1}$
- $2.9 \times 10^{-3} \text{s}^{-1}$
- $2.9 \times 10^{-9} \text{s}^{-1}$
- $2.9 \times 10^{-5} s^{-1}$