Exercices d'algèbre linéaire

 \mathbb{K} est un corps commutatif.

Exercice 1 On désigne par E l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} . Montrer que la famille de fonctions $\{f_k : x \longmapsto e^{kx} \mid k \in \mathbb{N}\}$ est libre dans E.

Solution. Il s'agit de montrer que, pour tout entier naturel n, la famille $(f_k)_{0 \le k \le n}$ est libre dans E. On procède par récurrence sur $n \ge 0$.

Pour n = 0, la fonction $f_0 : x \longmapsto 1$ n'est pas la fonction nulle, donc (f_0) est libre dans E. Supposons le résultat acquis au rang $n - 1 \ge 0$ et soient $\lambda_0, \lambda_1, \dots, \lambda_n$ des réels tels que :

$$\forall x \in \mathbb{R}, \ \sum_{k=0}^{n} \lambda_k e^{kx} = 0$$

en dérivant une fois, on a :

$$\forall x \in \mathbb{R}, \ \sum_{k=1}^{n} \lambda_k k e^{kx} = e^x \sum_{k=1}^{n} \lambda_k k e^{(k-1)x} = 0.$$

avec $e^x > 0$ pour tout réel x, ce qui nous donne, en effectuant le changement d'indice k = j + 1:

$$\sum_{j=0}^{n-1} \lambda_{j+1} (j+1) e^{jx} = 0$$

et l'hypothèse de récurrence nous dit que λ_{j+1} (j+1)=0, soit $\lambda_{j+1}=0$ pour tout j compris entre 1 et n-1. Il reste alors $\lambda_0 f_0=0$ dans E avec $f_0\neq 0$ et $\lambda_0=0$. On a donc ainsi montré que la famille $(f_k)_{0\leq k\leq n}$ est libre dans E.

Exercice 2 On désigne par E l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} . Montrer que la famille de fonctions $\{f_a: x \longmapsto |x-a| \mid a \in \mathbb{R}\}$ est libre dans E.

Solution. Il s'agit de montrer que, pour tout entier naturel n et toute suite $a_1 < a_2 < \cdots < a_n$ de réels, la famille $(f_{a_k})_{1 \le k \le n}$ est libre dans E.

On procède par récurrence sur $n \geq 0$.

Pour n = 1, la fonction $f_{a_1} : x \longmapsto |x - a_1|$ n'est pas la fonction nulle, donc (f_1) est libre dans E.

Supposons le résultat acquis au rang $n-1 \ge 0$ et soient $a_1 < a_2 < \cdots < a_n, \lambda_0, \lambda_1, \cdots, \lambda_n$ des réels tels que :

$$\forall x \in \mathbb{R}, \ \sum_{k=1}^{n} \lambda_k |x - a_k| = 0$$

On a alors:

$$\forall x \ge a_{n-1}, \ \lambda_n |x - a_n| = \sum_{k=1}^{n-1} \lambda_k (x - a_k) = 0$$

la fonction de droite dans cette égalité étant dérivable en a_n , alors que celle de gauche ne l'est pas si $\lambda_n \neq 0$. On a donc nécessairement $\lambda_n = 0$ et $\sum_{k=1}^{n-1} \lambda_k |x - a_k|$, ce qui implique la nullité de tous les λ_k pour k compris entre 1 et n-1 d'après l'hypothèse de récurrence.

Exercice 3 Soient a, b deux nombres complexes non nuls et :

$$E = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+2} = au_{n+1} + bu_n \right\}$$

1. Montrer que E est un C-espace vectoriel et préciser sa dimension.

- 2. Soit $r \in \mathbb{C}^*$. Donner une condition nécessaire et suffisante, portant sur r, pour la suite $(r^n)_{n \in \mathbb{N}}$ soit dans E.
- 3. Donner une base de E.

Solution.

1. L'application:

$$\varphi_{a,b}: u = (u_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \mapsto (u_{n+2} - au_{n+1} - bu_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$$

est linéaire et $E = \ker (\varphi_{a,b})$ est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{N}}$.

L'application $\psi: u \in E \mapsto (u_0, u_0) \in \mathbb{C}^2$ est linéaire, injective (si $(u_0, u_0) = (0, 0)$, on vérifie facilement que $u_n = 0$ pour tout $n \in \mathbb{N}$) et surjective (pour (u_0, u_0) donné dans \mathbb{C}^2 , en posant $u_{n+2} = au_{n+1} + bu_n$ pour tout $n \in \mathbb{N}$, on définit un élément de E), c'est donc un isomorphisme et dim (E) = 2.

2. Dire que $(r^n)_{n\in\mathbb{N}}\in E$ équivaut à dire que :

$$\forall n \in \mathbb{N}, \ r^{n+2} - ar^{n+1} - br^n = r^n (r^2 - ar - b) = 0$$

ce qui revient à dire que r est racine du trinôme $z^2 - az - b$ (puisque $r \neq 0$).

3. Dans le cas où $\delta=a^2+4b$ est non nul, l'équation caractéristique $az^2+bz+c=0$ a deux racines complexes distinctes r_1 et r_2 . On vérifie facilement que les suites $(r_1^n)_{n\in\mathbb{N}}$ et $(r_2^n)_{n\in\mathbb{N}}$ sont linéairement indépendantes et on a ainsi une base de E (ou alors on dit que $(r_1^n)_{n\in\mathbb{N}} = \psi^{-1}(1,r_1)$ et $(r_2^n)_{n\in\mathbb{N}} = \psi^{-1}(1,r_1)$ $\psi^{-1}(1, r_2)$, avec $((1, r_1), (1, r_2))$ base de \mathbb{C}^2 pour $r_1 \neq r_2$).

Dans ce cas $E = \{(\alpha r_1^n + \beta r_2^n)_{n \in \mathbb{N}} \mid (\alpha, \beta) \in \mathbb{C}^2\}$.

Dans le cas où $\delta = 0$, l'équation caractéristique a une racine double $r_1 = \frac{a}{2}$ et $(r_1^n)_{n \in \mathbb{N}} = \psi^{-1}(1, r_1)$ est un élément on nul de E. Un deuxième élément de E, linéairement indépendant de $(r_1^n)_{n\in\mathbb{N}}$ est $u = \psi^{-1}(0, r_1)$ (puisque $r_1 \neq 0$). Cette suite est définie par $u_0 = 0$, $u_1 = r_1$ et :

$$u_{n+2} = au_{n+1} + bu_n = au_{n+1} - \left(\frac{a}{2}\right)^2 u_n = r_1 \left(2u_{n+1} - r_1 u_n\right)$$

ce qui donne $u_2=2r_1^2,\,u_3=3r_1^3$ et par récurrence $u_n=nr_1^n.$ Dans ce cas $E=\left\{((\alpha+\beta n)\,r_1^n)_{n\in\mathbb{N}}\mid (\alpha,\beta)\in\mathbb{C}^2\right\}.$

Exercice 4 Soient E un \mathbb{K} -espace vectoriel, $a \in \mathbb{K}^*$ et $u \in \mathcal{L}(E)$ telle que $u^3 - 3au^2 + a^2u = 0$. Montrer $que E = \ker(u) \oplus \operatorname{Im}(u)$.

Solution. Dans le cas où E est de dimension finie, en tenant compte du théorème du rang, il suffit de vérifier que $\ker(u) \cap \operatorname{Im}(u) = \{0\}$.

Si $y = u(x) \in \ker(u) \cap \operatorname{Im}(u)$, on a $u^{2}(x) = u(y) = 0$ et $u^{3}(x) = 0$, il en résulte que $a^{2}u(x) = 0$ et y = 0puisque $a \neq 0$.

0, ce qui nous dit que pour tout $x \in E$, le vecteur $y = u^2(x) - 3au(x) + a^2x$ est dans $\ker(u)$. On écrit alors que $x = \frac{1}{a^2}(y - u(u(x) - 3ax))$ avec $\frac{1}{a^2}y \in \ker(u)$ et $\frac{1}{a^2}(u(u(x) - 3ax)) \in \operatorname{Im}(u)$, ce qui nous dit que $E = \ker(u) \oplus \operatorname{Im}(u)$. Dans le cas général, on a toujours $\ker(u)\cap\operatorname{Im}(u)=\{0\}$ et la condition vérifiée par u s'écrit $u\left(u^2-3au+a^2Id\right)=0$

Exercice 5 Soient E un \mathbb{K} -espace vectoriel, P un polynôme non constant tel que P(0) = 0, $P'(0) \neq 0$ et $u \in \mathcal{L}(E)$ telle que P(u) = 0. Montrer que $E = \ker(u) \oplus \operatorname{Im}(u)$.

Solution. Le polynôme P est de la forme P(X) = XQ(X) avec $Q(X) = \sum_{k=0}^{q} a_k X^k$ et $a_0 P'(0) \neq 0$. Si Q est constant (non nul), on a alors u = 0 et $E = \ker(u)$ avec $\operatorname{Im}(u) = \{0\}$. On suppose donc Q de degré $q \geq 1$.

Si $y = u(x) \in \ker(u) \cap \operatorname{Im}(u)$, on a $u^2(x) = u(y) = 0$ et $u^k(x) = 0$ pour tout $k \ge 2$, donc $P(u)(x) = a_0 u(x) = 0$ et y = 0 puisque $a_0 \ne 0$.

De $u \circ Q(u) = 0$, on déduit que pour tout $x \in E$, le vecteur $y = Q(u)(x) = a_0x + \sum_{k=1}^{q} a_k u^k(x)$ est dans

 $\ker\left(u\right)\,\mathrm{avec}\,z=\sum_{k=1}^{q}a_{k}u^{k}\left(x\right)\in\mathrm{Im}\left(u\right).\,\,\mathrm{On}\,\,\mathrm{\acute{e}crit}\,\,\mathrm{alors}\,\mathrm{que}\,x=\frac{1}{a_{0}}\left(y-z\right)\,\mathrm{avec}\,\,\frac{1}{a_{0}}y\in\ker\left(u\right)\,\mathrm{et}\,\,\frac{1}{a_{0}}z\in\mathrm{Im}\left(u\right),$ ce qui nous dit que $E=\ker\left(u\right)\oplus\mathrm{Im}\left(u\right).$

Exercice 6 Soit f_1, \dots, f_n des fonctions de \mathbb{R} dans \mathbb{C} (ou plus généralement d'un ensemble E dans un corps commutatif \mathbb{K}). Montrer que la famille $(f_k)_{1 \leq k \leq n}$ est libre dans $\mathbb{C}^{\mathbb{R}}$ (ou \mathbb{K}^E) si, et seulement si, il existe des réels x_1, \dots, x_n (ou des éléments de E) tels que :

$$\det \begin{pmatrix} f_{1}(x_{1}) & f_{2}(x_{1}) & \cdots & f_{n}(x_{1}) \\ f_{1}(x_{2}) & f_{2}(x_{2}) & \cdots & f_{n}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}(x_{n}) & f_{2}(x_{n}) & \cdots & f_{n}(x_{n}) \end{pmatrix} \neq 0.$$

(un tel déterminant est dit de Gram).

Solution. On note $G_n(x_1, \dots, x_n)$ le matrice de Gram associé aux f_i et x_j et $g_n(x_1, \dots, x_n)$ le déterminant de cette matrice.

Supposons qu'il existe des réels x_1, \dots, x_n tels que $g_n(x_1, \dots, x_n) \neq 0$.

Si $\sum_{j=1}^{n} \lambda_j f_j = 0$, on a alors $\sum_{j=1}^{n} \lambda_j f_j(x_i) = 0$ pour tout i comprisentre 1 et n, c'est-à-dire que le vecteur

 $\lambda = {}^t(\lambda_1, \dots, \lambda_n)$ est solution du système linéaire $G_n(x_1, \dots, x_n) \lambda = 0$. Comme le déterminant de cette matrice est non nul, elle est inversible et $\lambda = 0$. La famille $(f_k)_{1 \le k \le n}$ est donc libre.

Pour la réciproque, on peut procéder par récurrence sur $n \ge 1$.

Pour n = 1, on a $f_1 \neq 0$ et il existe un réel x_1 tel que $g_1(x_1) = f_1(x_1) \neq 0$.

Supposons le résultat acquis au rang n-1 et soit $(f_k)_{1 \le k \le n}$ libre dans $\mathbb{C}^{\mathbb{R}}$. Comme la famille $(f_k)_{1 \le k \le n-1}$ est également libre, l'hypothèse de récurrence nous dit qu'il existe des réels x_1, \cdots, x_{n-1} tels que $g_{n-1}(x_1, \cdots, x_{n-1}) \ne 0$. On définit alors la fonction $f: \mathbb{R} \to \mathbb{C}$ par :

$$f(x) = g_n(x_1, \dots, x_{n-1}, x) = \det \begin{pmatrix} f_1(x_1) & f_2(x_1) & \dots & f_n(x_1) \\ \vdots & \vdots & \dots & \vdots \\ f_1(x_{n-1}) & f_2(x_{n-1}) & \ddots & f_n(x_{n-1}) \\ f_1(x) & f_2(x) & \dots & f_n(x) \end{pmatrix}$$

Le développement suivant la dernière ligne nous donne :

$$\forall x \in \mathbb{R}, \ f(x) = \sum_{j=1}^{n} (-1)^{n+j} \, \delta_j f_j(x)$$

soit:

$$f = \sum_{j=1}^{n} (-1)^{n+j} \, \delta_j f_j$$

dans $\mathbb{C}^{\mathbb{R}}$, où on a noté δ_j le déterminant de la matrice extraite de $G_n\left(x_1,\cdots,x_{n-1},x\right)$ en supprimant la dernière ligne et la colonne numéro j. Comme la famille $(f_k)_{1\leq k\leq n}$ est libre et $\delta_n=g_{n-1}\left(x_1,\cdots,x_{n-1}\right)\neq 0$, on a $f\neq 0$ et il existe $x_n\in\mathbb{R}$ tel que $f\left(x_n\right)=g_n\left(x_1,\cdots,x_n\right)\neq 0$.

On peut aussi utiliser le dual de l'espace vectoriel E engendré par $(f_k)_{1 \le k \le n}$. En supposant que cette famille est libre, on a dim $(E) = \dim (E^*) = n$.

À tout réel x, on associe la forme linéaire $\varphi_x: f \in E \mapsto f(x)$ et on désigne par F le sous-espace vectoriel engendré par $(\varphi_x)_{x\in\mathbb{R}}$. L'orthogonal F° de F dans E est :

$$F^{\circ} = \{ f \in E \mid \forall \varphi \in F, \ \varphi(f) = 0 \}$$
$$= \{ f \in E \mid \forall x \in E, \ \varphi_x(f) = 0 \}$$
$$= \{ f \in E \mid \forall x \in E, \ f(x) = 0 \} = \{ 0 \}$$

donc dim (F) = dim (E) - dim (F°) = dim (E) = dim (E^{*}) et $F = E^{*}$. De la famille génératrice $(\varphi_{x})_{x \in \mathbb{R}}$, on peut alors extraire une base $(\varphi_{x_i})_{1 \leq i \leq n}$ et $g_n(x_1, \dots, x_n) \neq 0$. En effet dire que $g_n(x_1, \dots, x_n) = 0$ $\det\left(\left(f_{j}\left(x_{i}\right)\right)\right) = \det\left(\left(\varphi_{x_{i}}\left(f_{j}\right)\right)\right) = 0 \text{ \'equivaut \`a dire que } \det\left(\left(\varphi_{x_{j}}\left(f_{i}\right)\right)\right) = 0 \text{ (la transpos\'ee de } \left(\left(\varphi_{x_{i}}\left(f_{j}\right)\right)\right) = 0$ 0) ce qui signifie que la matrice $((\varphi_{x_j}(f_i)))$ est non inversible et revient à dire qu'il existe $(\lambda_1, \dots, \lambda_n) \in$ $\mathbb{C}^n \setminus \{0\}$ solution du système linéaire :

$$\sum_{i=1}^{n} \lambda_j \varphi_{x_j} (f_i) = 0 \ (1 \le i \le n)$$

On a donc $\sum_{k=1}^{n} \lambda_j \varphi_{x_j} = 0$ (cette forme linéaire est nulle sur la base $(f_k)_{1 \leq k \leq n}$) avec des λ_j non nuls, ce qui contredit le fait que $(\varphi_{x_i})_{1 \le i \le n}$ est libre.

Exercice 7 Soient A, B dans $\mathcal{M}_n(\mathbb{Z}) \cap GL_n(\mathbb{R})$ telles que $\det(A) \wedge \det(B) = 1$. Montrer qu'il existe U, V dans $\mathcal{M}_n(\mathbb{Z})$ telles que $AU + BV = I_n$.

Solution. Pour toute matrice $M \in \mathcal{M}_n(\mathbb{Z})$, la transposée de la comatrice M' est dans $\mathcal{M}_n(\mathbb{Z})$ et on a $MM' = M'M = \det(M) I_n$. En désignant par δ le pgcd de $\det(A)$ et $\det(B)$ dans \mathbb{Z} , le théorème de Bézout, nous dit qu'il existe deux entiers relatifs α, β tels que $\alpha \det(A) + \beta \det(B) = \delta$, ce qui nous donne :

$$\alpha AA' + \beta BB' = (\alpha \det(A) + \beta \det(B)) I_n = \delta I_n$$

c'est-à-dire qu'il existe $U = \alpha A', V = \beta B'$ dans $\mathcal{M}_n(\mathbb{Z})$ telles que $AU + BV = \delta I_n$.

Exercice 8 Soient $n \geq 2$ un entier et $\alpha_1, \alpha_2, \dots, \alpha_n$ des scalaires dans \mathbb{K} . On note :

$$V(\alpha_1, \dots, \alpha_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \dots & \alpha_n^{n-1} \end{vmatrix}$$

le déterminant de Vandermonde associé. On désigne par P le polynôme défini par :

$$P(X) = V(\alpha_1, \cdots, \alpha_{n-1}, X)$$

- 1. Quel est le degré de P?
- 2. Déterminer les racines de P.
- 3. En déduire une expression de P en fonction de $V(\alpha_1, \dots, \alpha_{n-1})$.
- 4. En déduire $V(\alpha_1, \dots, \alpha_n)$.

Solution. S'il existe deux indices k < j tels que $\alpha_k = \alpha_j$, on a alors $V(\alpha_1, \dots, \alpha_n) = 0$ puisque la matrice de Vandermonde corresponde a deux colonnes identiques. On suppose donc que les α_k sont deux à deux distincts.

1. On a:

$$P(X) = \begin{vmatrix} 1 & \cdots & 1 & 1 \\ \alpha_1 & \cdots & \alpha_{n-1} & X \\ \vdots & \ddots & \vdots & \vdots \\ \alpha_1^{n-1} & \cdots & \alpha_{n-1}^{n-1} & X^{n-1} \end{vmatrix}$$

et le développement suivant la dernière colonne nous dit que $P \in \mathbb{K}^{n-1}[X]$.

2. Pour $X = \alpha_k$ avec k compris entre 1 et n-1, la matrice de Vandermonde corresponde a deux colonnes identiques, donc $P(\alpha_k) = 0$ et P a n-1 racines distinctes. Il existe donc un scalaire λ (dépendant de

$$\alpha_1, \dots, \alpha_{n-1}$$
) tel que $P(X) = \lambda \prod_{k=1}^{n-1} (X - \alpha_k)$.

3. Le coefficient λ est le coefficient de X^{n-1} dans P, soit :

$$\lambda = \begin{vmatrix} 1 & \cdots & 1 \\ \alpha_1 & \cdots & \alpha_{n-1} \\ \vdots & \ddots & \vdots \\ \alpha_1^{n-2} & \cdots & \alpha_{n-1}^{n-2} \end{vmatrix} = V(\alpha_1, \cdots, \alpha_{n-1})$$

et:

$$P(X) = V(\alpha_1, \dots, \alpha_{n-1}) \prod_{k=1}^{n-1} (X - \alpha_k)$$

4. Prenant $X = \alpha_n$, on obtient :

$$P(\alpha_n) = V(\alpha_1, \dots, \alpha_n) = V(\alpha_1, \dots, \alpha_{n-1}) \prod_{k=1}^{n-1} (X - \alpha_k)$$

et par récurrence, on en déduit que :

$$V\left(\alpha_{1}, \cdots, \alpha_{n}\right) = \prod_{1 \leq j < k \leq n} \left(\alpha_{k} - \alpha_{j}\right)$$

Exercice 9

1. Soit $N \in \mathcal{M}_n(\mathbb{C})$ nilpotente d'ordre n (i. e. telle que $N^n = 0$ et $N^{n-1} \neq 0$). Montrer que N est semblable à :

$$J = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & 0 & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

- 2. Soit $N \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente d'ordre $r \in \{1, \dots, n\}$. Montrer que $I_n + N$ est inversible d'inverse $\sum_{k=0}^{n-1} (-1)^k N^k$.
- 3. Pour toute matrice N nilpotente d'ordre $r \in \{1, \dots, n\}$, on désigne par $\ln(I_n + N)$ la matrice définie par :

$$\ln(I_n + N) = \sum_{k=1}^{n-1} \frac{(-1)^{k-1}}{k} N^k$$

Montrer que, pour toute matrice nilpotente N, on a :

$$\forall t \in \mathbb{R}, \ \exp\left(\ln\left(I_n + tN\right)\right) = I_n + tN.$$

5

4. En déduire que pour tout nombre complexe non nul λ , il existe une matrice nilpotente $N' \in \mathcal{M}_n(\mathbb{C})$ telle que $\lambda I_n + N = e^{\mu I_n + N'}$.

Solution. On désigne par u l'endomorphisme de \mathbb{C}^n canoniquement associé à N. Il est aussi nilpotent d'ordre n

1. Comme $u^{n-1} \neq 0$, il existe un vecteur non nul x dans E tel que $u^{u-1}(x) \neq 0$ et on vérifie que la famille $(u^k(x))_{0 \leq k \leq n-1}$ est libre.

Si
$$\sum_{k=0}^{n-1} \lambda_k u^k(x) = 0$$
, on a alors:

$$0 = u^{n-1} \left(\sum_{k=0}^{n-1} \lambda_k u^k (x) \right) = \lambda_0 u^{n-1} (x)$$

 $(u^{n+k}=0 \text{ pour } k \geq 0)$ et $\lambda_0=0$. Si n=1, c'est fini, sinon en supposant que $\lambda_0=\cdots=\lambda_j=0$ pour $0\leq j\leq n-2$, on a $\sum_{k=j+1}^{n-1}\lambda_k u^k(x)=0$ et, en appliquant v^{n-2-j} à cette dernière égalité, on obtient

 $\lambda_{j+1}u^{n-1}(x) = 0$ et $\lambda_{j+1} = 0$. D'où le résultat. La famille $\mathcal{B}_x = (u^k(x))_{0 \le k \le n-1}$ est donc une base de E et la matrice de u dans cette base est J. Dans la base $(u^{n-1}(x), \dots, u(x), x)$ la matrice est :

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 0 & 0 & 1 \\ 0 & \cdots & 0 & 0 & 0 \end{pmatrix} = {}^{t}J$$

2. On peut remarquer que si N est nilpotente d'ordre $r \geq 1$, son polynôme minimal est alors X^r et nécessairement $r \leq n$.

Pour N nilpotente d'ordre $r \geq 1$, on a :

$$(I_n + N) \sum_{k=0}^{n-1} (-1)^k N^k = \sum_{k=0}^{n-1} (-1)^k N^k + \sum_{k=0}^{n-1} (-1)^k N^{k+1}$$
$$= \sum_{k=0}^{n-1} (-1)^k N^k - \sum_{k=1}^{n} (-1)^k N^k$$
$$= I_n - (-1)^n N^n = I_n$$

donc $I_n + N$ est inversible et $(I_n + N)^{-1} = \sum_{k=0}^{n-1} (-1)^k N^k$.

3. Pour toute matrice nilpotente N et tout réel t, la matrice :

$$N(t) = \ln(I_n + tN) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} t^k N^k = N \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} t^k N^{k-1}$$

(on a $N^n = 0$) est nilpotente et la fonction $\varphi : \mathbb{R} \to \mathcal{M}_n(\mathbb{C})$ définie par :

$$\varphi(t) = \exp\left(\ln\left(I_n + tN\right)\right) = \sum_{k=0}^{n} \frac{1}{k!} \left(N\left(t\right)\right)^k$$

est polynomiale en t, donc indéfiniment dérivable avec :

$$\varphi'(t) = N'(t) \sum_{k=1}^{n} \frac{1}{(k-1)!} (N(t))^{k-1} = N'(t) \sum_{k=0}^{n-1} \frac{1}{k!} (N(t))^{k} = N'(t) \varphi(t)$$

et:

$$N'(t) = N \sum_{k=1}^{n} (-1)^{k-1} t^{k-1} N^{k-1} = N (I_n + tN)^{-1}$$

soit:

$$(I_n + tN) \varphi'(t) = N\varphi(t)$$

En dérivant à nouveau, il vient :

$$(I_n + tN) \varphi''(t) + N\varphi'(t) = N\varphi'(t)$$

et $\varphi''(t) = 0$ (puisque $(I_n + tN)$ est inversible), ce qui nous donne :

$$\varphi'(t) = \varphi'(0) = N\varphi(0) = N$$

 $(\varphi(0) = \exp(\ln(I_n)) \text{ avec } \ln(I_n) = 0) \text{ et } :$

$$\varphi(t) = tN + \varphi(0) = tN + I_n$$

soit $\exp(\ln(I_n + tN)) = I_n + tN$.

4. Comme $\lambda \in \mathbb{C}^*$, il existe $\mu \in \mathbb{C}$ tel que $\lambda = e^{\mu}$ et on a :

$$\exp(\ln(I_n + e^{-\mu}N)) = I_n + e^{-\mu}N$$

soit:

$$e^{\mu} \exp\left(\ln\left(I_n + e^{-\mu}N\right)\right) = \lambda I_n + N$$

ou encore $\lambda I_n + N = e^{\mu I_n + N'}$ avec $N' = \ln (I_n + e^{-\mu}N)$ nilpotente.

Exercice 10

- 1. Montrer que, pour tout entier $n \geq 2$, il existe un polynôme $P_{n-1} \in \mathbb{K}_{n-1}[X]$ tel que $1 + X P_{n-1}^2$ soit divisible par X^n .
- 2. En déduire que si $N \in \mathcal{M}_n(\mathbb{K})$ est une matrice nilpotente, avec $n \geq 2$, il existe alors une matrice A telle que $I_n + N = A^2$.

Solution.

1. Si $P_{n-1}\left(X\right)=\sum_{k=0}^{n-1}a_{k}X^{k}\in\mathbb{K}_{n}\left[X\right],$ on a alors $P_{n-1}^{2}\left(X\right)=\sum_{k=0}^{2n-2}b_{k}X^{k}$ avec :

$$b_k = \sum_{\substack{0 \le i, j \le k \\ i+j=k}} a_i a_j \ (0 \le k \le 2n-2)$$

et $1+X-P_{n-1}^2$ est divisible par X^n si, et seulement si :

$$\begin{cases} b_0 = a_0^2 = 1 \\ b_1 = 2a_0a_1 = 1 \\ b_k = 2a_0a_k + \sum_{\substack{1 \le i, j \le k-1 \\ i+j=k}} a_i a_j = 0 \ (2 \le k \le n-1) \end{cases}$$

Prenant $a_0 = 1$, on détermine ainsi de manière unique les coefficients a_k pour $k = 1, \dots, n-1$.

2. Si $N \in \mathcal{M}_n(\mathbb{K})$ est nilpotente, on a alors $N^n = 0$ et :

$$I_n + N - P_{n-1}^2(N) = N^n Q(N) = 0$$

soit $I_n + N = A^2$ avec $A = P_{n-1}(N)$.

Par exemple, pour n = 3, on a :

$$(a_0 + a_1X + a_2X^2)^2 = a_0^2 + 2a_0a_1X + (2a_0a_2 + a_1^2)X^2 + 2a_1a_2X^3 + a_2^2X^4$$

donc:

$$\begin{cases} a_0 = 1 \\ 2a_0a_1 = 1 \\ 2a_0a_2 + a_1^2 = 0 \end{cases} \Leftrightarrow \begin{cases} a_0 = 1 \\ a_1 = \frac{1}{2} \\ a_2 = -\frac{1}{8} \end{cases}$$

donne la solution $P_2(X) = 1 + \frac{X}{2} - \frac{X^2}{8}$ et pour $J = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, on a :

$$A = P_2(N) = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{8} & \frac{1}{2} & 1 \end{pmatrix}^2$$

et:

$$A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = I_3 + J.$$

Exercice 11 Soit $A \in \mathcal{M}_n(\mathbb{K})$, avec $n \geq 2$, telle que $\det(A + X) = \det(A) + \det(X)$ pour toute matrice $X \in \mathcal{M}_n(\mathbb{K})$.

- 1. Montrer que A est non inversible.
- 2. Montrer que A=0.

Solution. Pour n = 1, on a toujours $\det(A + X) = \det(A) + \det(X)$.

- 1. Prenant X = A, on a det $(2A) = 2^n \det(A) = 2 \det(A)$ et det (A) = 0 puisque $n \ge 2$.
- 2. Comme A est non inversible, son rang r est compris entre 0 et n-1. Si $A \neq 0$, on a alors $1 \leq r \leq n-1$ et A est équivalente à la matrice $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, c'est-à-dire qu'il existe P,Q dans $GL_n(\mathbb{K})$ telles que $A = PJ_rQ$. En prenant $X = P\begin{pmatrix} 0 & 0 \\ 0 & I_{n-r} \end{pmatrix}Q$, on a A+X=PQ, donc det $(A+X)=\det(PQ)\neq 0$, en contradiction avec $\det(A)=\det(X)=0$ et $\det(A+X)=\det(A)+\det(X)$. On a donc r=0 et A=0.

Exercice 12 Soient a, b dans un corps commutatif \mathbb{K} . Calculer

$$D_n(a,b) = \begin{vmatrix} a+b & ab & 0 & \cdots & 0 \\ 1 & a+b & ab & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & a+b & ab \\ 0 & \cdots & 0 & 1 & a+b \end{vmatrix}$$

Solution. Si ab = 0, on a alors $D_n(a, b) = (a + b)^n$ $(a^n \text{ ou } b^n)$. Supposons $a \neq 0$ et $b \neq 0$.

Pour les premières valeurs, on trouve :

$$D_2(a,b) = a^2 + ab + b^2$$
, $D_3(a,b) = a^3 + a^2b + ab^2 + b^3$

En développant $D_n(a,b)$ suivant la dernière ligne on a :

$$D_{n}(a,b) = (a+b) \begin{vmatrix} a+b & ab & 0 & \cdots & 0 \\ 1 & a+b & ab & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & a+b & ab \\ 0 & \cdots & 0 & 1 & a+b \end{vmatrix} - \begin{vmatrix} a+b & ab & 0 & \cdots & 0 \\ 1 & a+b & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & ab & 0 \\ \vdots & \ddots & 1 & a+b & 0 \\ 0 & \cdots & 0 & 1 & ab \end{vmatrix}$$
$$= (a+b) D_{n-1}(a,b) - abD_{n-2}(a,b).$$

Supposant que $D_r(a,b) = \sum_{k=0}^r a^k b^{r-k}$ pour $1 \le r \le n-1$, on a :

$$D_n(a,b) = (a+b) \sum_{k=0}^{n-1} a^k b^{n-1-k} - ab \sum_{k=0}^{n-2} a^k b^{n-2-k}$$

$$= \sum_{k=0}^{n-1} a^{k+1} b^{n-1-k} + \sum_{k=0}^{n-1} a^k b^{n-k} - \sum_{k=0}^{n-2} a^{k+1} b^{n-1-k}$$

$$= \sum_{k=1}^{n} a^k b^{n-k} + \sum_{k=0}^{n-1} a^k b^{n-k} - \sum_{k=1}^{n-1} a^k b^{n-k} = \sum_{k=0}^{n} a^k b^{n-k}$$

Exercice 13

- 1. Soit P une matrice inversible de $\mathcal{M}_n(\mathbb{C})$. On définit les matrices réelles R et J par $R = \Re(P)$ et $J = \Im(P)$. Montrer qu'il existe un réel λ tel que la matrice $R + \lambda J$ soit inversible.
- 2. En déduire que si A, B dans $\mathcal{M}_n(\mathbb{R})$ sont semblables dans $\mathcal{M}_n(\mathbb{C})$ alors elles sont semblables dans $\mathcal{M}_n(\mathbb{R})$.

Solution.

- 1. Si le polynôme $\varphi(X) = \det(R + XJ)$ s'annule pour toute valeur réelle il est alors identiquement nul et $\varphi(i) = \det(R + iJ) = \det(P) = 0$ ce qui contredit P inversible. Il existe donc des réels λ tels que $\varphi(\lambda) = \det(R + \lambda J) \neq 0$.
- 2. Si A, B dans $\mathcal{M}_n(\mathbb{R})$ sont semblables dans $\mathcal{M}_n(\mathbb{C})$ il existe alors une matrice P inversible dans $\mathcal{M}_n(\mathbb{C})$ telle que $A = P^{-1}BP$. On a alors en notant R la partie réelle de P et J sa partie imaginaire :

$$(R+iJ)A = B(R+iJ)$$

et en identifiant parties réelles et parties imaginaires RA = BR, JA = BJ. Pour tout réel λ tel que $R + \lambda J$ soit inversible on a alors $(R + \lambda J) A = B(R + \lambda J)$, ce qui prouve que les matrices A et B sont donc semblables dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 14 Montrer que si $v \in \mathcal{L}(E)$ est nilpotent, alors 0 est valeur propre de v et $\operatorname{Tr}(v) = 0$.

Solution. Supposons v nilpotent d'ordre $q \ge 1$, soit que $v^{q-1} \ne 0$ et $v^q = 0$.

Avec $\det(v^q) = (\det(v))^q = 0$, on déduit que $\det(v) = 0$ et 0 est valeur propre de v.

On peut aussi dire si $x \in E$ est tel que $v^{q-1}(x) \neq 0$, on a alors $v(v^{q-1}(x)) = v^q(x) = 0$ et 0 est valeur propre de v (la dimension de E n'intervient pas ici).

Pour montrer que la trace d'un endomorphisme nilpotent est nulle, on procède par récurrence sur la dimension n > 1 de E.

Pour n = 1, l'unique endomorphisme nilpotent est l'endomorphisme nul et sa trace est nulle.

Supposons le résultat acquis pour les espaces de dimension au plus égale à $n-1 \geq 1$ et soit $v \in \mathcal{L}(E)$ nilpotent d'ordre $q \geq 1$ avec E de dimension $n \geq 2$. Comme 0 est valeur propre de v, il existe un vecteur non nul e_1 dans le noyau de v et en complétant ce vecteur en une base \mathcal{B} de E, la matrice de v dans cette base est de la forme $A = \begin{pmatrix} 0 & \alpha \\ 0 & B \end{pmatrix}$ où $\alpha \in \mathcal{M}_{1,n-1}(\mathbb{K})$ et $B \in \mathcal{M}_{n-1}(\mathbb{K})$. Avec $A^{q+1} = \begin{pmatrix} 0 & \alpha B^q \\ 0 & B^{q+1} \end{pmatrix} = 0$, on déduit que B est nilpotente et en conséquence $\operatorname{Tr}(B) = 0$ (l'hypothèse de récurrence nous donne le résultat sur $\mathcal{M}_{n-1}(\mathbb{K})$), ce qui entraı̂ne $\operatorname{Tr}(v) = \operatorname{Tr}(A) = \operatorname{Tr}(B) = 0$.

Exercice 15 Montrer que, pour \mathbb{K} algébriquement clos, v est nilpotent si, et seulement si, 0 est la seule valeur propre de v. Que se passe-t-il pour \mathbb{K} non algébriquement clos?

Solution. On a déjà vu que si v est nilpotent d'ordre q, alors 0 est valeur propre de v. S'il existe une autre une valeur propre $\lambda \in \mathbb{K}$ de v, on a alors pour tout vecteur propre non nul associé x, $v^q(x) = \lambda^q x = 0$ et $\lambda = 0$. On peut aussi dire que si v est nilpotent d'indice q, son polynôme minimal est X^q et 0 est l'unique valeur propre de v (le fait que \mathbb{K} soit algébriquement clos n'intervient pas ici).

Réciproquement si 0 est la seule valeur propre de v avec \mathbb{K} algébriquement clos, alors le polynôme minimal de v est X^q avec $1 \le q \le n$ et v est nilpotent.

Pour \mathbb{K} non algébriquement clos, un endomorphisme v peut avoir 0 pour seule valeur propre dans \mathbb{K} sans être nilpotent comme le montre l'exemple de l'endomorphisme v de \mathbb{R}^3 de matrice :

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

dans la base canonique avec $\theta \notin \pi \mathbb{Z}$. Le polynôme caractéristique de v est :

$$P_v(X) = -X\left(\left(\cos\left(\theta\right) - X\right)^2 + \sin^2\left(\theta\right)\right),\,$$

la seule valeur propre réelle est 0 et pour tout entier $q \geq 1$, on a :

$$A^{q} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \cos(q\theta) & -\sin(q\theta) \\ & \sin(q\theta) & \cos(q\theta) \end{pmatrix} \neq 0.$$

Exercice 16 On suppose le corps \mathbb{K} de caractéristique nulle (ce qui signifie que le morphisme d'anneaux $k \mapsto k \cdot 1$ de \mathbb{Z} dans \mathbb{K} est injectif, ce qui est encore équivalent à dire que l'égalité $k\lambda = 0$ dans \mathbb{K} avec $k \in \mathbb{Z}$ et $\lambda \in \mathbb{K}^*$ équivaut à k = 0).

Montrer qu'un endomorphisme v est nilpotent si, et seulement si, $\operatorname{Tr}(v^k) = 0$ pour tout k compris entre 1 et n.

Solution. Si v est nilpotent, il en est de même de v^k pour tout entier $k \ge 1$ et $\mathrm{Tr}\left(v^k\right) = 0$.

Pour la réciproque, on procède par récurrence sur la dimension $n \geq 1$ de E.

Pour n = 1, on a $v(x) = \lambda x$, $tr(v) = \lambda$ et le résultat est trivial.

Supposons le résultat acquis pour les espaces de dimension au plus égale à $n-1 \ge 1$ et soit $v \in \mathcal{L}(E)$ tel que $\mathrm{Tr}\left(v^k\right) = 0$ pour tout k compris entre 1 et $n = \dim\left(E\right) \ge 2$. Si $P_v\left(X\right) = \sum_{k=0}^n a_k X^k$ est le polynôme

caractéristique de v, en tenant compte de $P_v(v) = \sum_{k=0}^n a_k v^k = 0$ et $\operatorname{tr}(v^k) = 0$ pour $k = 1, \dots, n$, on déduit que $\operatorname{tr}(P(v)) = na_0 = 0$ et $a_0 = \det(v) = 0$ puisque \mathbb{K} de caractéristique nulle. Donc 0 est valeur propre de v et il existe une base \mathcal{B} de E, dans laquelle la matrice de v est de la forme $A = \begin{pmatrix} 0 & \alpha \\ 0 & B \end{pmatrix}$ où $\alpha \in \mathcal{M}_{1,n-1}(\mathbb{K})$ et $B \in \mathcal{M}_{n-1}(\mathbb{K})$. Avec $A^k = \begin{pmatrix} 0 & \alpha B^{k-1} \\ 0 & B^k \end{pmatrix}$, on déduit que $\operatorname{tr}(B^k) = \operatorname{tr}(A^k) = \operatorname{tr}(v^k) = 0$ pour tout $k = 1, \dots, n$ et l'hypothèse de récurrence nous dit que B est nilpotente. Enfin, en notant p l'indice de nilpotence de B, avec $A^{p+1} = \begin{pmatrix} 0 & \alpha B^p \\ 0 & B^{p+1} \end{pmatrix} = 0$, on déduit que A est nilpotente et il en est de même de v. Pour \mathbb{K} algébriquement clos et de caractéristique nulle, on peut donner la démonstration directe suivante. Supposons que $\operatorname{Tr}(v^k) = 0$ pour tout k compris entre 1 et $n = \dim(E)$. S'il existe des valeurs propres non nulles $\lambda_1, \dots, \lambda_p$ d'ordres respectifs $\alpha_1, \dots, \alpha_p$ avec p compris entre 1 et n, on a :

$$\operatorname{Tr}\left(v^{k}\right) = \sum_{j=1}^{p} \alpha_{j} \lambda_{j}^{k} = 0 \ (1 \le k \le p)$$

(comme \mathbb{K} est algébriquement clos, il existe une base de E dans laquelle la matrice de v est triangulaire de diagonale $(0, \lambda_1, \cdots, \lambda_1, \cdots, \lambda_p, \cdots, \lambda_p)$ et dans cette base, la matrice de v^k est aussi triangulaire de diagonale $(0, \lambda_1^k, \cdots, \lambda_1^k, \cdots, \lambda_p^k, \cdots, \lambda_p^k)$. Mais la matrice de ce système d'équations aux inconnues α_j est une matrice de type Vandermonde de déterminant :

$$\begin{vmatrix} \lambda_1 & \cdots & \lambda_p \\ \vdots & \ddots & \vdots \\ \lambda_1^p & \cdots & \lambda_p^p \end{vmatrix} = \prod_{j=1}^p \lambda_j \begin{vmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ \lambda_1^{p-1} & \cdots & \lambda_p^{p-1} \end{vmatrix} = \prod_{j=1}^p \lambda_j \prod_{1 \le i < j \le p-1} (\lambda_j - \lambda_i) \ne 0$$

ce qui entraı̂ne que tous les α_j sont nuls puisque \mathbb{K} de caractéristique nulle. Mais on a alors une contradiction avec $\alpha_j \geq 1$.

En définitive 0 est la seule valeur propre de v et v est nilpotent.