ESTUDIO DEL AISLAMIENTO ACÚSTICO

Ejemplo del Edificio del Banco de España de Palma, Mallorca, Islas Baleares, España:

Dos tipos:

- 1) Protección frente al ruido aéreo.
- 2) Protección frente al ruido de impacto.

El cliente solicita una batería de ensayos, donde se deben cumplir tres Normas:

1) La **ISO 16283-1** => es un estándar internacional para determinar el aislamiento acústico frente al ruido aéreo.

Se lleva a cabo en espacios entre $[10,250] \, \mathrm{m}^3$ y cuyas frecuencias estén entre $[50,5000] \, \mathrm{Hz}$.

Los espacios pueden ser vacíos o llenos (con muebles), donde en ambos casos el campo sonoro puede ser difuso o no difuso.

- 2) La **ISO 16283-2** => es un estándar internacional para determinar el aislamiento acústico frente al ruido de impacto que actúa sobre el suelo, las paredes, las escaleras y/o cualquier objeto dentro de un espacio.
 - Se lleva a cabo en espacios entre $[10,250] \, \mathrm{m}^3$ y cuyas frecuencias estén entre $[50,5000] \, \mathrm{Hz}$.
 - Los espacios pueden ser vacíos o llenos (con muebles), donde en ambos casos el campo sonoro puede ser difuso o no difuso.
- 3) El **CTE DB-HR** => es un documento básico de protección frente al ruido con reglas y procedimientos, recogido en el código técnico de la edificación y aprobado por el RD 1371/2007 de España el día 23 de octubre de 2007.

Dicho Decreto ha tenido las siguientes modificaciones:

- El día 20 de diciembre de 2007 => Su corrección de errores.
- El día 18 de octubre de 2008 => La redacción de su nuevo RD 1675/2008.
- El día 23 de septiembre de 2009 => Su corrección de errores.
- El día 20 de diciembre de 2019 => La redacción de su nuevo RD 732/2019.

Valores a tener en cuenta en los ensayos frente al ruido aéreo:

- 1) Valor de emisión (E): valor que emite una fuente sonora externa hacia el espacio donde se lleva a cabo el estudio acústico.
- 2) Valor de inmisión (I): valor que se emite en el propio espacio donde se lleva a cabo el estudio acústico.
- 3) Ruido de fondo (RF): ruido externo que afecta a la condición acústica del espacio.
- 4) Tiempo de reverberación (TR).

Sobre el **TR**: es la persistencia que tiene un sonido en una sala después de que la emisión de su fuente sonora finalizara.

Su cálculo se lleva a cabo mayormente cuando la caída es a 60 dB (TR60), sabiendo que los materiales se distribuyen de forma independiente y de acuerdo con la siguiente característica:

- Campo sonoro difuso: puede ser
 - Con uniformidad en los materiales: se pueden aplicar dos métodos:
 - Método de Sabine: si el coeficiente de absorción es menor o igual a 0,2.

El tiempo de reverberación se calcula así:

Sabiendo que:

V es el volumen total del espacio en m³.

Att es la atenuación en dB.

0,161 es una cte.

TR60 es el tiempo de reverberación en seg para una caída de 60 dB.

 Método de Eyring: si el coeficiente de absorción es cualquiera salvo que sea extremadamente grande.

El tiempo de reverberación se calcula así:

Sabiendo que:

V es el volumen total del espacio en m³.

α es el coeficiente de absorción mencionado previamente.

0,161 es una cte.

S es la superficie total del espacio en m².

TR60 es el tiempo de reverberación en seg para una caída de 60 dB.

- Sin uniformidad en los materiales: se aplica el **Método de Millington-Sette**, teniendo en cuenta que:

El coeficiente de absorción puede ser cualquiera salvo que sea extremadamente pequeño.

El tiempo de reverberación se calcula así:

Sabiendo que:

V es el volumen total del espacio en m³.

0,161 es una cte.

- El sumatorio es la suma de las partes del espacio a partir de la multiplicación entre la superficie de una parte y el logaritmo neperiano de 1 el coeficiente de absorción de dicha parte.
- TR60 es el tiempo de reverberación en seg para una caída de 60 dB.
- Campo sonoro **no difuso**: se aplica el **Método de Arau**, teniendo en cuenta:

Sin uniformidad en los materiales.

- 1°) Techo y suelo => $SX = 2 \times (Largo \times Ancho) \text{ m}^2$.
- 2°) Paredes largo => SY = $2 \times (Largo \times Alto) \text{ m}^2$.
- 3°) Paredes ancho => SZ = 2 x (Alto x Ancho) m^2 .

S total = $SX + SY + SZ m^2$.

V total = Largo x Ancho x Alto m^3 .

Coeficiente de absorción medio del techo/suelo: ax

Coeficiente de absorción medio de las paredes laterales del largo: **ay** Coeficiente de absorción medio de las paredes laterales del ancho: **az** NOTA: dichos coeficientes no pueden ser extremadamente pequeños. Y dentro de las paredes podría haber ventanas que tienen otro coeficiente de absorción diferente, entre otros casos.

Fórmula a tener en cuenta:

Valores a tener en cuenta en los ensayos frente al ruido de impacto:

- 1) Valor de inmisión (I): valor que se emite en el propio espacio donde se lleva a cabo el estudio acústico.
- 2) Ruido de fondo (RF): ruido externo que afecta a la condición acústica del espacio.
- 3) Tiempo de reverberación (TR).

Pasos a tener en cuenta en el estudio a llevar a cabo:

- Analizar los registros obtenidos para la caracterización frecuencial del aislamiento acústico frente al ruido aéreo entre recintos colindantes, calculando:
 - DnT, A => es la diferencia de niveles estandarizados, en dBA, entre un recinto emisor y otro receptor => para interiores.
 - D2m,nT, A => es la diferencia de niveles estandarizados, en dBA, entre un recinto emisor y otro receptor => para fachadas o cubiertas cuyo ruido exterior dominante es rosa o ferroviario.
 - D2m,nT,Atr => es la diferencia de niveles estandarizados, en dBA, entre un recinto emisor y otro receptor => para fachadas o cubiertas cuyo ruido exterior dominante es de automóviles o aereonaves.
 - LnT, w => es el nivel de intensidad sonora de protección frente al ruido de impacto.
- Calcular la **incertidumbre** asociada al ensayo. A la incertidumbre también se la conoce como **entropía** y se calcula así:

$$H(X) = \sum_{i} p_i log_2 \frac{1}{p_i}$$

- Comparar los valores obtenidos con los valores límites de las normas oficiales.
- Redactar un informe y una declaración de conformidad.
- Guardar y proteger toda la información registrada y a disposición del cliente.
- Redactar consideraciones finales (conclusiones) y mejoras.

Tipos de zonas para estudio acústico:

Ld	Le	Ln		
65	65	55	Α	Residencial
75	75	65	B1	Industrial
75	75	65	B2	Serveis Públics
73	73	63	C1	Hospedatje
73	73	63	C2	Oficines/Serveis
73	73	63	СЗ	Comercial
73	73	63	C4	Esportiu
73	73	63	C5	Recreatiu
75	75	65	D	Terciari distint a C
60	60	50	E1	Sanitari
60	60	50	E2	Docent
60	60	50	E3	Cultural

El edificio del ejemplo está situado en la zona Residencial – A.

Clases de Sonómetros:

Clase 0: sonómetros de laboratorio y profesionales, cuya precisión es máxima.

Clase 1: sonómetros para proyectos de ingeniería, cuya precisión es alta, pero no máxima.

Clase 2: sonómetros de uso general, utilizados en las Universidades, cuya precisión es media.

Clase 3: sonómetros de inspección, cuya precisión es baja. Clase eliminada en las últimas normativas.

Los **Calibradores**: generan una señal patrón, conocida como tono puro. Los rangos dinámicos de un calibrador están entre **0 y 140 dB** y **20 y 20000 Hz**. Un tono puro es de 94 dB de intensidad sonora y 1000 Hz de frecuencia.

Calibradores vs Sonómetros:

Clase 0:

- Calibrador: tiene un valor de tolerancia de +/- 0,15.
- Sonómetro: tiene un valor de tolerancia de +/- 0,4.

Clase 1:

- Calibrador: tiene un valor de tolerancia de +/- 0,3.
- Sonómetro: tiene un valor de tolerancia de +/- 0,7.

Clase 2:

- Calibrador: tiene un valor de tolerancia de +/- 0,5.
- Sonómetro: tiene un valor de tolerancia de +/- 1,5.

Nota: Si en una fuente sonora A la sensibilidad es mayor que en la B, quiere decir que la A es más resistente/robusta al ruido inherente.

Modelos de propagación empleados y oficiales para la medición de niveles de presión sonora:

1) Para la industria o a nivel general: ISO 9613

2) Para las carreteras: NMPB96

3) Para los trenes: SRMII

Cálculo del nivel de presión sonora:

Lp = 10 x $\log_{10}(\text{Pef}^2 / \text{Pref}^2)$, sabiendo que Pref = 2 x 10⁻⁵ Pa.

Software usado para estudios acústicos:

SVANTEK

VI. VERIFICACIÓN DE LA SENSIBILIDAD DE LA CADENA DE MEDIDA

Se verifica al inicio y final del ensayo, la sensibilidad de la cadena de medida. Se toma una medida de un ruido generado por un calibrador sonoro, a un nivel de 114 dB a la frecuencia de 1 kHz. La lectura registrada ha de estar dentro de un rango de \pm 0.3 dB, para que el ensayo sea válido.

	Nivel inicial dB	Nivel final dB
Sonómetro SVAN 977W Calibrador SV31 (08/10/2021)	113.7	113.8
Validez	Si	Si

La lectura registrada en el calibrador ha de estar dentro de un rango de +/- 0,3 dB para que el ensayo sea válido.

II. NIVELES DE RUIDO DE FONDO OBTENIDOS

	Fuentes en Evaluación	Niveles Obtenidos LAeq,Ti dB(A)
Punto I1		30.4
Punto I2	Ruido de Fondo	27.9
Punto I3	Recinto Receptor	31.8
Punto I4	08/10/2021	27.9
Punto I5		25.3

Se lleva a cabo por estas dos fórmulas:

Tipos de frecuencias límite:

III. AISLAMIENTO A RUIDO AÉREO

Se expone a continuación la contrastación de los niveles de aislamiento acústico obtenidos respecto a lo establecido en los documentos normativos de aplicación y niveles de referencia mostrados en el punto 3.

Elemento Separador	Recinto Emisor	Recinto Receptor	Ensayo ISO 16283-1	Valor mínimo dB(A)	Contrastación
Forjado entre Planta 1ª y 2ª	Planta 2ª	Planta 1ª	DnT,A 47 ± 2 dB(A)	CTE DB-HR 50	FAVORABLE*
Tabique entre viviendas 1º2ª y 1º 3ª	Planta 1ª	Planta 1ª	DnT,A 61 ± 2 dB(A)	CTE DB-HR 50	FAVORABLE

*Según especifica el CTE DB-HR en el punto 3 del epígrafe 5.3 Control de Obra Terminada: "Para el cumplimiento de las exigencias de este DB se admiten tolerancias entre los valores obtenidos por mediciones in situ y los valores límite establecidos en el apartado 2.1 de este DB, de 3 dBA para aislamiento a ruido aéreo, de 3 dB para aislamiento a ruido de impacto..." Por tanto los valores obtenidos se consideran favorables.

Aquí si en el ensayo de la planta 2º como emisor y la planta 1º como receptor fuera de 46 dBA, la contrastación sería desfavorable porque el valor límite mínimo establecido en el CTE DB-HR debe ser de 50 dB con una tolerancia de +/- 3 dBA.