Tema 2

1.41 Proposición. Sea $\varphi : \mathbb{N} \to \mathbb{R}$ una aplicación tal que $\varphi(n) < \varphi(n+1)$ para todo $n \in \mathbb{N}$. Se verifica entonces que φ es estrictamente creciente, es decir, si n,m son números naturales tales que n < m entonces $\varphi(n) < \varphi(m)$. En particular, φ es invectiva.

Si además se supone que φ toma valores en \mathbb{N} , esto es. $\varphi(\mathbb{N}) \subseteq \mathbb{N}$, entonces:

- i) $\varphi(n) \geqslant n$ para todo $n \in \mathbb{N}$.
- ii) Si $\varphi(\mathbb{N}) = \mathbb{N}$, φ es la identidad, es decir, $\varphi(n) = n$ para todo $n \in \mathbb{N}$.

1.42 Proposición. Sea A un conjunto infinito de números naturales. Entonces existe una única bivección creciente de $\mathbb N$ sobre A.

Demostración. Por ser A infinito no puede estar contenido en ningún segmento S(p), esto es, el conjunto $\{x \in A : p < x\}$ no es vacío cualquiera sea $p \in \mathbb{N}$. Haciendo uso del principio de buena ordenación podemos definir $f : \mathbb{N} \to A$ por:

$$f(1) = \min(A)$$

$$f(n+1) = \min\{x \in A : f(n) < x\} \text{ para todo } n \in \mathbb{N}$$

Con ello es claro que f(n) < f(n+1) para todo $n \in \mathbb{N}$. Del lema anterior se sigue que f es creciente e inyectiva. Probaremos que $f(\mathbb{N}) = A$. Puesto que, por su definición, es $f(\mathbb{N}) \subseteq A$, bastará probar que dicha inclusión no puede ser estricta. Pongamos $C = A \setminus f(\mathbb{N})$. Si $C \neq \emptyset$, sea $p = \min(C)$; esto es, p es el p emento de p que no está en p esta claro que $p > \min(A)$. Sea p emáx p esta p esta elemento que p esta pero p esta elemento que p esta pero p esta elemento que p esta pero p esta pero p esta que p esta p esta que p esta p

Para probar la unicidad de f supongamos que g es una biyección creciente de $\mathbb N$ sobre A. Notando g^{-1} la aplicación inversa de g, es inmediato comprobar que la aplicación $\varphi = f \circ g^{-1}$ es una biyección creciente de $\mathbb N$ sobre $\mathbb N$ y, por el lema anterior, debe ser la identidad, $f(g^{-1}(n)) = n$ para todo $n \in \mathbb N$, por lo que f(k) = g(k) para todo $k \in \mathbb N$.

1.43 Definición. Un conjunto A se llama *numerable* si es vacío o si existe alguna aplicación inyectiva de A en \mathbb{N} .

...,

1.44 Proposición. Un conjunto es numerable si, y sólo si, es finito o es equipotente a \mathbb{N} .

Demostración. Claramente todo conjunto finito es numerable. Sea A un conjunto infinito numerable y sea $\varphi: A \to \mathbb{N}$ una aplicación inyectiva. Tenemos entonces que $A \sim \varphi(A)$ por lo que, al

ser A infinito, se sigue que $\varphi(A)$ también es infinito y por el teorema anterior $\varphi(A) \sim \mathbb{N}$ con lo que también $A \sim \mathbb{N}$.

Evidentemente podemos contar los elementos de un conjunto finito y también sabemos contar los números naturales (aunque nunca acabaríamos de contarlos). En consecuencia la proposición anterior nos dice que los conjuntos numerables son aquellos cuyos elementos pueden contarse.

1.45 Proposición. Un conjunto no vacío A es numerable si, y sólo si, hay una aplicación sobrevectiva de \mathbb{N} sobre A.

Demostración. Sea $f: \mathbb{N} \to A$ una aplicación sobreyectiva. Para cada elemento $a \in A$ el conjunto $\{n \in \mathbb{N} : f(n) = a\}$ no es vacío por lo que podemos definir, haciendo uso del principio de buena ordenación, una aplicación $g: A \to \mathbb{N}$ por:

$$g(a) = \min\{n \in \mathbb{N} : f(n) = a\}$$
 para todo $a \in A$

Con ello se tiene que f(g(a)) = a para todo $a \in A$ lo que implica que g es inyectiva y por tanto que A es numerable.

La afirmación recíproca es consecuencia de la proposición anterior.

1.46 Proposición. $\mathbb{N} \times \mathbb{N}$ y $\mathbb{Z} \times \mathbb{N}$ son equipotente a \mathbb{N} .

Demostración. Sea $\varphi : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la aplicación dada por $\varphi(n) = (p,q)$ donde $(p,q) \in \mathbb{N} \times \mathbb{N}$ verifica que $n = 2^{p-1}(2q-1)$. Es decir, p-1 es la mayor potencia de 2 que divida a n (p=1 si n es impar). Es claro que la aplicación así definida es una biyección de \mathbb{N} sobre $\mathbb{N} \times \mathbb{N}$.

Es fácil probar que la aplicación $\sigma : \mathbb{N} \times \mathbb{N} \to \mathbb{Z} \times \mathbb{N}$ dada por:

$$\sigma((p,q)) = \left\{ \begin{array}{ll} (p/2,q), & \text{si } p \text{ es par;} \\ ((-p+1)/2,q), & \text{si } p \text{ es impar.} \end{array} \right.$$

es una biyección. Por tanto, la aplicación $\sigma \circ \varphi : N \to \mathbb{Z} \times \mathbb{N}$ es una biyección.

Dados dos números racionales r < s, el número $\frac{r+s}{2}$ también es racional y $r < \frac{r+s}{2} < s$. Se deduce de aquí que el conjunto $\{x \in \mathbb{Q} : r < x < s\}$ es no vacío y no tiene máximo (ni mínimo) por lo que deducimos que dicho conjunto es infinito. Resulta así que entre cada dos números racionales hay infinitos racionales. A pesar de ello no hay más números racionales que naturales. La intuición aquí es engañosa.

1.47 Proposición. El conjunto de los números racionales es numerable.

Demostración. Es consecuencia de las dos proposiciones anteriores y de que la aplicación f: $\mathbb{Z} \times \mathbb{N} \to \mathbb{Q}$ dada por f(p,q) = p/q es sobreyectiva.

Por ser $\mathbb Q$ numerable infinito sabemos que $\mathbb Q \sim \mathbb N$, es decir, existen biyecciones de $\mathbb N$ sobre $\mathbb Q$. Hemos respondido en parte a nuestra pregunta inicial con un resultado muy sorprendente: ¡hay tantos números racionales como números naturales! Nos falta todavía dar alguna información del tamaño de $\mathbb R \setminus \mathbb Q$.

1.48 Proposición (Principio de los intervalos encajados).

Para cada número natural n sea $I_n = [a_n, b_n]$ un intervalo cerrado no vacío y supongamos que para todo $n \in \mathbb{N}$ es $I_{n+1} \subseteq I_n$. Se verifica entonces que:

i)
$$\alpha = \sup\{a_n : n \in \mathbb{N}\} \leqslant \beta = \inf\{b_n : n \in \mathbb{N}\},\$$

ii)
$$\bigcap_{n\in\mathbb{N}}I_n=[\alpha,\beta].$$

En particular, el conjunto $\bigcap_{n\in\mathbb{N}}I_n$ no es vacío.

Demostración. Las hipótesis $\emptyset \neq I_{n+1} \subseteq I_n$, implican que $a_n \leqslant a_{n+1} \leqslant b_n$ para todo $n \in \mathbb{N}$. Razonando como en la primera parte de 1.41, deducimos que las aplicaciones $n \mapsto a_n$ y $n \mapsto -b_n$, son crecientes, esto es, $a_n \leqslant a_m$, $b_m \leqslant b_n$ siempre que n < m. Ahora, dados $p, q \in \mathbb{N}$ y poniendo $k = \max\{p,q\}$, tenemos que $a_p \leqslant a_k \leqslant b_k \leqslant b_q$. Hemos obtenido así que cualesquiera sean los números naturales p,q es $a_p \leqslant b_q$. Luego todo elemento de $B = \{b_n : n \in \mathbb{N}\}$ es mayorante de $A = \{a_n : n \in \mathbb{N}\}$ y por tanto $\alpha = \sup A \leqslant b_n$ para todo $n \in \mathbb{N}$. Lo cual, a su vez, nos dice que α es un minorante de B y por tanto concluimos que $\alpha \leqslant \beta = \inf B$. Hemos probado i). La afirmación ii) es consecuencia de que $x \in \bigcap I_n$ equivale a que $a_n \leqslant x \leqslant b_n$ para todo $n \in \mathbb{N}$, lo que equivale a que $\alpha \leqslant x \leqslant \beta$, es decir $x \in [\alpha, \beta]$.

1.49 Proposición. Dados dos números reales a < b se verifica que el intervalo [a,b] no es numerable.

Demostración. Si [a,b] fuera numerable tendría que ser, en virtud de la proposición 1.44, equipotente a \mathbb{N} . Veamos que esto no puede ocurrir. Supongamos que $\varphi: \mathbb{N} \to [a,b]$ es una biyección de \mathbb{N} sobre [a,b]. En particular φ es sobreyectiva por lo que deberá ser $[a,b] = \{\varphi(n): n \in \mathbb{N}\}$. Obtendremos una contradicción probando que tiene que existir algún elemento $z \in [a,b]$ tal que $z \notin \{\varphi(n): n \in \mathbb{N}\}$. Para ello se procede de la siguiente forma. Dividimos el intervalo [a,b] en tres intervalos cerrados de igual longitud:

$$\left[a,a+\frac{b-a}{3}\right], \left[a+\frac{b-a}{3},b-\frac{b-a}{3}\right], \left[b-\frac{b-a}{3},b\right]$$

y llamamos I_1 al primero de ellos (es decir el que está más a la izquierda) que no contiene a $\varphi(1)$. Dividamos ahora el intervalo I_1 en tres intervalos cerrados de igual longitud y llamemos I_2 al primero de ellos que no contiene a $\varphi(2)$. Este proceso puede "continuarse indefinidamente" pues, supuesto que $n \in \mathbb{N}$, $n \geqslant 2$, y que tenemos intervalos cerrados de longitud *positiva* I_k , $1 \leqslant k \leqslant n$, tales que $I_{k+1} \subseteq I_k$ para $1 \leqslant k \leqslant n-1$, y $\varphi(k) \not\in I_k$ para $1 \leqslant k \leqslant n$, dividimos el intervalo I_n en tres intervalos cerrados de igual longitud y llamamos I_{n+1} al primero de ellos que no contiene a $\varphi(n+1)$. De esta forma para cada $n \in \mathbb{N}$ tenemos un intervalo cerrado I_n no vacío verificándose que $I_{n+1} \subseteq I_n$ y $\varphi(n) \not\in I_n$ para todo $n \in \mathbb{N}$. El principio de los intervalos encajados nos dice que hay algún número real z que está en todos los I_n . Por tanto, cualquiera sea $n \in \mathbb{N}$, por ser $z \in I_n$ y $\varphi(n) \not\in I_n$, se tiene necesariamente que $z \neq \varphi(n)$, esto es, $z \notin \{\varphi(n) : n \in \mathbb{N}\}$ pero evidentemente $z \in [a,b]$.

1.50 Proposición. \mathbb{R} $y \mathbb{R} \setminus \mathbb{Q}$ son conjuntos no numerables.

Demostración. Evidentemente todo subconjunto de un conjunto numerable también es numerable. Como acabamos de ver que hay subconjuntos de $\mathbb R$ que no son numerables deducimos que $\mathbb R$ no es numerable. Puesto que $\mathbb R = \mathbb Q \cup (\mathbb R \setminus \mathbb Q)$ y sabemos que $\mathbb Q$ es numerable y $\mathbb R$ no lo es, deducimos que $\mathbb R \setminus \mathbb Q$ no es numerable.