Labo Signaalverwerking

Dries Kennes (R0486630)

May 15, 2018

Opdracht 2A: Analyse v.e. actieve filtertrap

Specificatie

Figure 1: Het schema.

- Low Pass KHN Non Inverting (schema nr 5)
- Filter is een LDL
 - -|H(0)| = 6dB
 - |H(10kHz)| = -34dB
 - $-Q_p=4$

Analyse

DC & HF

Bij DC zijn condensatoren open kring, dus wordt de versterking bepaald door de feedback weerstanden R_4 , R_5 , en R_6 . Dit is dus een vaste versterking. |H(DC)| = A.

Bij HF $(f = \infty)$ zijn de condensatoren kortsluitingen, dus wordt het signaal volledig onderdrukt door het ontbreken van de feedback lussen C_1 en C_2 . $|H(HF)| = -\infty dB$

Figure 2: Schema met alle condensatoren open kring. (DC)

Bepaal de transferfunctie

Ik heb de transfer functie uitgerekend door het schema op te splitsen in twee integrators en de eerste opamp.

De integrators

Figure 3: Deel van het schema met de integrators.

De algemene formule voor een integrator is $v_o = \frac{-v_1}{sRC}$.

Voor deze twee specifieke gevallen: $v_5 = \frac{-v_4}{sR_1C_1}$ en $v_{out} = \frac{-v_5}{sR_2C_2}$.

Gecombineerd: $v_{out} = \frac{v_4}{s^2 R_1 C_1 R_2 C_2}$ of $v_4 = s^2 R_1 R_2 C_1 C_2 v_{out}$

Superpositie

Figure 4: Superpositie schemas

Geval 1: v_{in} , $v_{out} = v_5 = 0$

De opamp is nu een niet inverterende versterker.

$$\begin{aligned} v_4 &= v_1 \cdot \left(1 + \frac{R_6}{R_5}\right) \\ v_1 &= v_{in} \cdot \frac{R_4}{R_3 + R_4} \Rightarrow v_4 = v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \left(1 + \frac{R_6}{R_5}\right) = v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} \end{aligned}$$

Geval 2: v_5 , $v_{out} = v_{in} = 0$

De opamp is nu een niet inverterende versterker.

$$\begin{aligned} v_4 &= v_1 \cdot \left(1 + \frac{R_6}{R_5}\right) \\ v_1 &= v_5 \cdot \frac{R_3}{R_3 + R_4} \Rightarrow v_4 = v_5 \cdot \frac{R_3}{R_3 + R_4} \cdot \left(1 + \frac{R_6}{R_5}\right) = v_5 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} \end{aligned}$$

Geval 3:
$$v_{out}$$
, $v_5 = v_{in} = 0$

De opamp is nu een inverterende versterker.

$$v_4 = \frac{-R_6}{R_5} \cdot v_{out}$$

Totaal

$$v_4 = \sum v_4 = v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + v_5 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{-R_6}{R_5} \cdot v_{out}$$

$$v_{in} \cdot \tfrac{R_4}{R_3 + R_4} \cdot \tfrac{R_6 + R_5}{R_5} = -v_5 \cdot \tfrac{R_3}{R_3 + R_4} \cdot \tfrac{R_6 + R_5}{R_5} + \tfrac{R_6}{R_5} \cdot v_{out} + v_4$$

Vervang in deze formule v_5 en v_4 door de formules van de twee integrators:

$$v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} = v_{out} \cdot \left(sR_2C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{R_6}{R_5} + s^2R_1R_2C_1C_2v \right)$$

$$\frac{v_{in}}{v_{out}} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} = s^2 R_1 R_2 C_1 C_2 + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{R_6}{R_5}$$

$$\frac{v_{out}}{v_{in}} = \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} \cdot \frac{1}{s^2 R_1 R_2 C_1 C_2 + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{R_6}{R_5}}$$

$$\frac{v_{out}}{v_{in}} = \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} \cdot \frac{1}{\frac{R_6}{R_5} \cdot (s^2 \cdot \frac{R_1 R_2 C_1 C_2 R_5}{R_6} + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} + 1)}{\frac{R_6}{R_5} \cdot (s^2 \cdot \frac{R_1 R_2 C_1 C_2 R_5}{R_6} + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} + 1)}$$

Het resultaat:

$$H(s) = \frac{v_{out}}{v_{in}} = \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} \cdot \frac{1}{s^2 \cdot \frac{R_1 R_2 C_1 C_2 R_5}{R_6} + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} + 1}{\frac{R_6 + R_5}{R_6} + 1}$$

Pole-zero plot

Geen zeros, wel polen, namelijk:

$$\frac{s^2}{\omega_n^2} + \frac{s}{Q\omega_n} + 1 = 0$$

$$\frac{s^2}{(2000\pi)^2} + \frac{s}{4 \cdot 2000\pi} + 1 = 0$$

$$\frac{s^2}{(2000\pi)^2} + \frac{s}{8000\pi} + 1 = 0$$

2 complexe polen:

$$250\pi(-1+3\sqrt{7}i)$$
 en $250\pi(-1-3\sqrt{7}i)$

of ongeveer

$$-785 + 6234i = 6283 \angle 97^{\circ}$$
 en $-785 - 6234i = 6283 \angle -97^{\circ}$

(Schets) Pole-Zero Plot

Frequentiegedrag

Asymptotisch Bodediagram

De lijn van -40dB/dec, het beginpunt bij 10kHz, -34dB, en het filtertype (LDF) laat toe f_n te berekenen. We moeten 40dB zakken van 6dB to -34dB, dit is dus 1 decade, ofwel $f_n = 1kHz$. Door de dubbele pool is er maar 1 knik in de grafiek, daar gaat de helling van 0 naar -40dB/dec.

Tijdsgedrag

Step Response 3 1 2 0.5 1.5 2.5 3 3.5 4 4.5 5 5.5 6.5 6 t [ms]

Het tijdsgedrag van een filter wordt bepaald door de transfer functie vanuit het s domein om te zetten naar het t domein met een inverse Laplace transformatie.

$$H(t) = K(1 - \frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_0 t}cos(\omega_0\sqrt{1-\zeta^2}t))$$

met
$$K=2$$
 en $\zeta=\frac{1}{2Q}=\frac{1}{2\cdot 4}=0.125$ en $\omega=2\pi\cdot f_n=2000\pi$

$$H(t) \approx 2 - 2e^{-250\pi \cdot t} \cos(2000\pi \cdot t)$$

Deze afronding is nauwkeurig genoeg om de functie te tekenen.

Synthese

Vergelijk transfer functie met de algemene vorm

Algemene vorm LDL filter: $H(s) = K \frac{1}{(\frac{s}{\omega_n})^2 + \frac{1}{O} \cdot (\frac{s}{\omega_n}) + 1}$

- $K = \frac{R_4}{R_3 + R_4} \cdot \frac{R_5 + R_6}{R_6}$ $\cdot \frac{1}{\omega_n^2} = \frac{C_1 C_2 R_1 R_2 R_5}{R_6}$ $\cdot \frac{1}{Q\omega_n} = C_2 R_2 \cdot \frac{R_3}{R_4 + R_3} \cdot \frac{R_5 + R_6}{R_6}$

Ontwerpvergelijkingen

Kies:

- $\begin{array}{l} \bullet \ \ \, C_2 = c^{te} = 1 \\ \bullet \ \ \, R = R_1 = R_2 = R_3 = R_4 = R_6 \\ \end{array}$

Motiverting:

- $C_2 = 1$ omdat van C_1 makkelijker een ontwerpvergelijking te vinden is.
- \bullet R_5 variabel omdat die enkel in tellers zit. Dit maakt ontwerpvergelijkingen makkelijker.

De transfer functie wordt dan:

$$H(s) = \frac{R + R_5}{2R} \cdot \frac{1}{s^2 R C_1 C_2 R_5 + s \cdot (R + R_5) \cdot \frac{C_2}{2} + 1}$$

Met de vergelijkingen van uit de transfer functie:

- $$\begin{split} \bullet \quad K &= \frac{R_4}{R_3 + R_4} \cdot \frac{R_5 + R_6}{R_6} \\ \bullet \quad \frac{1}{\omega_n^2} &= \frac{C_1 C_2 R_1 R_2 R_5}{R_6} \\ \bullet \quad \frac{1}{Q\omega_n} &= C_2 R_2 \cdot \frac{R_3}{R_4 + R_3} \cdot \frac{R_5 + R_6}{R_6} \end{split}$$

Geeft:

```
 \begin{array}{l} \bullet \quad K = \frac{R}{2R} \cdot \frac{R_5 + R}{R} = \frac{R_5 + R}{2R} \Rightarrow R_5 + R = 2KR \Rightarrow R_5 = R(2K-1) \\ \bullet \quad \frac{1}{\omega_n^2} = \frac{C_1 C_2 R^2 R_5}{R} = C_1 C_2 R R_5 \Rightarrow C_1 = \frac{1}{\omega_n^2 C_2 R_5 R} \\ \bullet \quad \frac{1}{Q\omega_n} = C_2 R_2 \cdot \frac{R_3}{R_4 + R_3} \cdot \frac{R_5 + R_6}{R_6} = C_2 R \cdot \frac{R}{2R} \cdot \frac{R_5 + R}{R} = \frac{C_2 (R_5 + R)}{2} \Rightarrow Q = \frac{2}{\omega_n C_2 2KR} \Rightarrow R = \frac{1}{Q\omega_n C_2 K} \\ \end{array}
```

De ontwerpvergelijkingen:

```
• R = \frac{1}{Q\omega_n C_2 K}
• R_5 = R(2K - 1)
• C_1 = \frac{1}{\omega_n^2 C_2 R_5 R}
```

Impedantieschaling

Waarden zonder impedantieschaling:

```
• R = 0.0000198943...\Omega
• R_5 = 0.0000596831...\Omega
• C_1 = 21.33...F
• C_2 = 1F
```

Met schalingsfactor 10⁹:

```
• R = R*ISF = 19894.36... = 19.89k\Omega

• R_5 = R_5*ISF = 59683.10... = 59.68k\Omega

• C_1 = \frac{C_1}{ISF} = 0.000000021333... = 21.33nF

• C_2 = \frac{C_2}{ISF} = 0.000000001 = 1nF
```

Simulatie op basis van de transferfunctie (Matlab)

```
% Gegevens
   fn = 1000; \% 1kHz
2
                \% 6dB
3 	ext{ K} = 2;
   Q = 4;
5
   wn = 2 * \mathbf{pi} * fn;
   H_N = K * [0 0 1];

H_D = [1/wn^2 1/(Q*wn) 1];
7
8
   H = tf(H_N, H_D) \% H_N / H_D;
10
   % Figuren uit gegevens
11
   figure(1); hold on; pzmap(H); figure(2); hold on; bode(H); figure(3); hold on; step(H);
13
14
   % Ontwerpvergelijkingen
   C2 = 1;
15
16 R=1/(C2*K*Q*wn);
17
   R5=R*(2*K-1);
   C1=1/(wn^2*C2*R5*R);
18
19
20
   % Impedantieschaling
   ISF= 10^9:
21
   C1 = C1/ISF, C2 = C2/ISF

R = R*ISF, R5 = R5*ISF
                                                          \% OUTPUT: C1 = 2.1333e - 08 C2 = 1.0000e - 09
22
                                                          \% OUTPUT: R = 1.9894 e+04
                                                                                          R5 = 5.9683e + 04
23
24
25
   % K, wn, fn, en Q uit componenten
                                                          % OUTPUT: 2 => OK
26
   Kc = (R+R5)/(2*R)
    wnc = 1/\mathbf{sqrt} (C1*C2*R*R5);
27
                                                          \% OUTPUT: 1.00000e+03 \implies OK
28
   fnc = wnc/(2*pi)
   Qc = 2/(C2*wn*(R5+R))
29
                                                          \% OUTPUT: 4 \implies OK
30
   % H uit componenten
32 \text{ H\_Nc} = ((R5+R)/(2*R)) * [0]
                               [C1*C2*R*R5 C2*(R5+R)/2 1];
33
   Hc = tf(H_Nc, H_Dc);
34
35
36 % Figuren uit componentwaarden
37 figure(1); pzmap(Hc); figure(2); bode(Hc); figure(3); step(Hc);
```

Pole Zero plot

Figure 5: Pole zero plot

Bode plot

Figure 6: Bode Plot

Door de dubbele pool is er maar 1 knik in de (anymptotosche) grafiek, daar gaat de helling van 0 naar -40dB/dec.

Stapresponsie

Figure 7: Stapresponsie

Simulatie op basis van de componenten (SPICE)

De numering van de nodes is niet systematish. Ze zijn aangeduid op het schema uit de opgave in lichtgrijs.

Ideaal

```
* Ideaal schema
 2
    .inc opampIdeaal.cir
 3
    R3 N006 vin 19894
 4
    R1 N002 N005 19894
 5
    R2 N004 N003 19894
 6
    C2 Vout N004 1n
    C1 N003 N002 21.33n
    R6 N005 N001 19894
 8
    R4 N003 N006 19894
 9
10
    R5 Vout N001 59683
    V1\ vin\ 0\ AC\ 1
11
    XU4\ N001\ N006\ N005\ opampIdeal
12
    XU5 N002 0 N003 opampIdeal
13
    {
m XU6~N004~0~Vout~opampIdeal}
14
15
    .ac dec 100\ 100\ \text{IMEG}
    . probe
16
17
    .\,\mathrm{end}
```


Figure 8: Ideaal Bode Plot

VCVS

Netlist vrijwel identiek aan het ideaal geval, enkel het opamp model is aangepast.

Figure 9: VCVS Bode Plot

tl084

Netlist vrijwel identiek aan het ideaal geval, het op
amp model is aangepast en extra voeding ($\pm 15V$) toegevoegd voor de opamps.

Figure 10: TL084 Bode Plot

Monte Carlo analyse R5% - C20%

Bij een Monte Carlo analyse worden de weerstanden en condensatoren vervangen door een model dat rekening houd met de toleranties van de componenten.

Figure 11: Monte Carlo analyse 5%

Hier is duidelijk op te zien dat de kantelfrequentie een stukje kan verschuiven, ongeveer 100Hz naar beneden en 300Hz naar boven.

Monte Carlo analyse 1%

Code bijna gelijk aan de vorige, alleen 1%i.p.v. 5%en 20%.

Figure 12: Monte Carlo analyse 1%

Hier is duidelijk veel minder verschil. M.a.w. als de filter nauwkeurig moet zijn, is investeren in 1% componenten geen slecht idee.

Ingangsimpedantie

Figure 13: Cartesiaanse Ingangsimpedantie

Omdat er 180° fasedraaing zit op de ingangsstroom is de reele as (links) negatief en lijkt deze ondersteboven te staan. De reele impedantiecomonent daalt rond de kantelfrequentie. De maximale ingangsimpedantie is $40k\Omega$, de minimale $20k\Omega$.

Figure 14: Polaire Ingangsimpedantie

Staprespontie

Figure 15: Staprespontie

De staprespontie berekend via SPICE is vrijwel identiek aan die berekend via Matlab.