Лабораторная работа №1. Занятие №1.1. Основы работы в Scilab

1.1. Запуск Scilab

Запуск Scilab в операционных системах Linux и Windows немного отличается. Далее, для определенности, будем рассматривать работу с пакетом Scilab 4.1.2 в операционной системе Microsoft Windows XP.

Запуск Scilab производится с помощью выбора пунктов

Окно программы состоит из заголовка, меню, панели инструментов и рабочей области.

Заголовок программы содержит ее название и номер запущенного экземпляра программы (scilab-4.1.2(0)).

Меню содержит пункты File, Edit, Preferences, Control, Editor, Applications, ?.

Элементы панели инструментов дублируют отдельные пункты меню.

1.2. Простейшие вычисления в Scilab

Работа в Scilab производится с помощью команд, набираемых после приглашения —>. Выполнение команды осуществляется с помощью нажатия клавиши Enter.

Например, для вычисления 2+2 необходимо набрать 2+2 и нажать Enter.

Переменная ans (от англ. answer - ответ) содержит результат операции.

Если в конце команды стоит символ «;», то результат операции вычисляется, но не выводится на экран. Это удобно при вводе нескольких команд.

```
-->2+2;
-->ans=ans+3
ans =
```

```
7.
```

Длинные команды можно разделить на несколько строк. Для этого в конце строки нужно поставить две или более точки.

```
-->2+2..
-->+3+3...
-->+10
ans =
20.
```

Для создания комментариев можно использовать команду //. Все, что написано справа от символов //, рассматривается как текст.

```
-->2*2 //comment
ans =
4.
```

Редактирование команд осуществляется с помощью клавиш управления курсором ←, →, клавиш Delete (удаление символа, стоящего после курсора), ←Васкѕрасе (удаление символа, стоящего перед курсором), Ноте (переход в начало строки) и End (переход в конец строки).

Клавиши управления курсором ↑ и ↓ позволяют пролистывать выполненные команды, а клавиши PageUp и PageDown — пролистывать рабочую область.

При вводе действительного числа в качестве разделителя целой и дробной части десятичного числа используется точка (например 55.777).

Для записи скобок используются круглые скобки ().

При вводе выражений можно использовать операторы:

```
- сложение;
- вычитание;
* умножение;
- возведение в степень;
/ деление слева направо;
\ деление справа налево.
```

Также можно использовать встроенные переменные %рі (число π) и %е (число е).

В пакете существует большое количество встроенных функций, которые можно использовать при записи выражений.

Приведем некоторые из них:

```
sqrt(x)

    квадратный корень из числа х;

abs(x) — модуль числа x;
\sin(x)
        — синус числа х;
\cos(x)
        — косинус числа х;
tan(x) — тангенс числа x;
\cot g(x)
        — котангенс числа х;
asin(x)

    арксинус числа х;

acos(x)

    арккосинус числа х;

atan(x) — арктангенс числа x;
\exp(x)
         — экспонента числа х;
log(x) — натуральный логарифм числа x;
log10(x) — десятичный логарифм числа x.
```

Подробное описание всех функций можно найти в справочной системе Scilab.

Заметим, что по умолчанию результат содержит восемь значащих цифр. Количество цифр, отображаемых в результате, можно изменить с помощью команды printf.

Например,

Пример. Вычислить значение выражения

$$\frac{2 + \frac{3}{7} + \sin^3(\frac{\pi}{2})}{5 \cdot \sqrt{224}}.$$

Решение.

1.3. Переменные и функции

Для присваивания значений переменным используется оператор "=". Например, чтобы присвоить x значение 5, нужно выполнить команду x=5.

Если в конце команды стоит символ «;», то значение переменной не выводится на экран.

В имени переменной учитывается регистр. Например, x и X — две разные переменные. Имя переменной не должно совпадать с названием встроенных переменных, процедур и функций. В имени переменной можно использовать не более 24 символов. Переменная может быть числового типа или строкового типа. Для присваивания переменной строки символов необходимо заключить эту строку в одинарные кавычки. Например, чтобы присвоить x = abc, нужно набрать x = abc.

```
-->x='abc'
x =
abc
-->
```

Команда clear позволяет очищать значения переменных. Например, команда clear очищает значения всех переменных, а команда clear x очищает значение переменной x.

Функции в Scilab делятся на встроенные и определенные пользователем. Некоторые встроенные функции были приведены выше. Рассмотрим определение пользовательских функций.

Пользовательские функции можно определить с помощью команды deff или конструкции function ... endfunction.

Формат команды deff:

Пример. Определить функцию $y = x^2$ и вычислить ее значение при x = 2.

```
-->deff('[y]=myfunction(x)','y=x^2')
-->myfunction(2)
ans =
   4.
-->
```

Пример. Определить функцию $z=x^2+y^2$ и вычислить ее значение при x=4 и y=5.

```
-->deff('[z]=myfunction1(x,y)','z=x^2+y^2')
-->myfunction1(4,5)
ans =
   41.
-->
```

Пример. Определить функцию для решения уравнения $x^2=a(a\geq 0).$

```
-->deff('[x1,x2]=myfunction2(a)',...
-->'x1=sqrt(a);x2=-sqrt(a);')
-->[x1,x2]=myfunction2(4)
x2 =
- 2.
x1 =
2.
```

Формат команды function ... endfunction: function[y1,y2,..,yn]=название_функции(x1,x2,...,xn) команды endfunction

или в одну строку

function[y1,y2,..,yn]=название_функции(x1,x2,...,xn), команды, endfunction, где y1,y2,..,yn - выходные параметры функции, x1,x2,...,xn - входные параметры функции.

Пример. Определить функцию $y = x^3$ и вычислить ее значение при x = 2.

```
-->function[y]=myfunction4(x)
-->y=x^3
-->endfunction
-->myfunction4(2)
ans =
8.
-->
или
-->function[y]=myfunction4(x), y=x^3, endfunction
-->myfunction4(2)
ans =
8.
-->
```

Для вызова функции, находящейся в другом файле, можно использовать функцию exec(path).

При работе с функциями можно использовать локальные и глобальные переменные. Локальные переменные определены только внутри функции. Глобальные переменные определены в любом месте программы. Для определения глобальных переменных используется функция global('var1',...,'varn'). Для уничтожения глобальных переменных используется функция clearglobal('var1',...,'varn'). Для уничтожения всех глобальных переменных используется функция clearglobal().

1.4. Построение графиков

Графики функций одной переменной

Для построения графиков функций одной переменной в Scilab можно использовать функцию plot2d(x,y,options), где x — вектор значений аргумента функции, y — вектор значений функции, options — параметры графика.

Пример. Построить график функции $y=x^2$ на отрезке [-10,10] с шагом изменения аргумента h=0.001.

-->

В результате выполнения этих команд открывается графическое окно, содержащее график

Полученный график можно сохранить в графический файл, выбрав пункт меню File—Save или File—Export.

Рассмотрим подробнее параметры настройки графика options. Options представляет собой последовательность выражений параметр1=значение1, параметр2=значение2, . . . , где параметр1, параметр2, . . . может быть одним из следующих:

style — устанавливает стиль графика (например, команда <math>plot(x,y,style=3) делает цвет линии графика зеленым). Если изображены графики нескольких функций, то стилем i-графика управляет параметр style(i);

rect — устанавливает размеры графического окна вокруг графика. Значение должно быть вектором вида [xmin,ymin,xmax,ymax];

logflag — устанавливает масштаб оси (линейный или логарифмический). Значение должно быть строкой с возмож-

ными значениями 'nn', 'nl', 'ln', 'll'. Первая буква отвечает за масштаб оси абсцисс, а вторая — оси ординат (побычный, l-логарифмический);

frameflag — устанавливает параметры графической области. Может принимать целые значения от 0 до 8;

ахеяflад — устанавливает стиль осей координат. Может принимать целые значения от 0 до 5. (0 — оси координат не отображаются, 1 — ось ординат слева, 2 — график заключен в прямоугольник без числовых меток, 3 — ось ординат справа, 4 — оси координат в середине графической области, 5 — оси координат проходят через точку (0,0) (если она отсутствует, то не отображаются));

пах — используется для изменения меток на осях координат (требуется, чтобы axesflag=1). Значение должно быть вектором [nx,Nx,ny,Ny], где nx,ny —число делений на осях абсцисс и ординат (без цифр), Nx,Ny —число делений с цифрами на осях;

 \log — используется для создания заголовков линий. Значение должно быть строкой вида ' \log 1@ \log 2@...', где \log 1, \log 2, ... -заголовки линий.

Для очистки графической области служит команда clf(). Для изображения линий сетки служит команда xgrid().

```
-->x=[-10:0.001:10]';
-->y=sin(x);
-->plot2d(x,y,style=2,axesflag=5)
```



```
-->x=[-10:0.001:10]';

-->y=sin(x);

-->plot2d(x,y,style=2,axesflag=5,rect=[-10,-10,10])
```


Пример.

-->

```
-->x=[-10:0.001:10]'; y=sin(x);
-->plot2d(x,y,style=2,axesflag=5,rect=[-10,-10,10])
-->xgrid(3)
```

13


```
-->x=[-5:0.001:5]';

-->y1=sin(x);

-->y2=sin(2*x);

-->y3=-x;

-->plot2d(x,[y1 y2 y3],style=[3 4 5],...

-->axesflag=5,rect=[-5,-5,5,5])

-->xgrid(3)

-->
```


Построение графика функции, заданной параметрически

```
-->t=0:0.01:2*%pi;

-->r=4;

-->x=r*sin(t);

-->y=r*cos(t);

-->plot2d(x,y,style=2,frameflag=3,...

-->rect=[-5,-5,5],axesflag=5)

-->xgrid(3)

-->
```


Построение графика функции в полярной системе координат

Для построения графика в полярной системе координат используется функция polarplot(phi,rho,options), где rho—вектор, содержащий значения радиуса, phi - вектор со значениями угла, options — параметры графика.

```
-->phi=0:0.01:2*%pi;
-->rho=2*phi;
-->clf(); xset("color",2);
-->polarplot(phi,rho,style=3,frameflag=3)
-->
```


Графики функций двух переменных

Для построения графиков функций двух переменных в Scilab можно использовать функцию $\operatorname{mesh}(X,Y,Z)$, где X и Y определяют сетку, а Z — значения функции в узлах сетки. Для формирования сетки удобно использовать функцию $\operatorname{meshgrid}()$.

Пример. Построить график функции $z=x^2-y^2$ в области $D=[-1,1]\times[-1,1].$

```
-->[X,Y]=meshgrid(-1:0.1:1,-1:0.1:1);

-->Z=X.^2-Y.^2;

-->mesh(X,Y,Z)

-->
```


Построение графика функции двух переменных, заданной параметрически

Пример. Построить график функции, заданной параметрически

```
 \begin{split} X &= cos(u) \cdot cos(v), Y = cos(u) \cdot sin(v), Z = sin(u). \\ &-> u = \text{ $[-\%\text{pi}/2:\%\text{pi}/50:\%\text{pi}/2]$;} \\ &-> v = \text{ $[0:\%\text{pi}/20:2*\%\text{pi}]$;} \\ &-> X = cos(u) \cdot *cos(v); \\ &-> Y = cos(u) \cdot *sin(v); \\ &-> Z = sin(u) \cdot *ones(v); \\ &-> \text{plot3d3}(X,Y,Z); \\ &-> \end{split}
```


Построение нескольких графиков в одной графической области

Функция $\operatorname{subplot}(m,n,p)$ делит графическую область на $m \times n$ подобластей, в каждой из которых можно построить свой график, и делает активной p-ю область.

```
-->x=[-5:0.01:5]';

-->subplot(2,2,1);

-->plot2d(x,sin(x),style=3,...

-->axesflag=5,rect=[-5,-5,5,5])

-->subplot(2,2,2);

-->plot2d(x,cos(x),style=3,...
```

```
-->axesflag=5,rect=[-5,-5,5,5])
-->subplot(2,2,3);
-->plot2d(x,abs(x),style=3,...
-->axesflag=5,rect=[-5,-5,5,5])
-->subplot(2,2,4);
-->plot2d(x,x.*sin(x),style=3,...
-->axesflag=5,rect=[-5,-5,5,5])
-->
```

