CPU 各模块及接口说明

喵喵喵喵喵?

December 11, 2017

Contents

1				3
	1 简介			3
	2 接口定义			3
2	:/ID			3
	1 简介			3
	2 接口定义			3
3				3
	1 简介			3
	2 接口定义			4
4	D/EX			5
	1 简介			5
	2 接口定义			5
5				6
	1 简介			
	2 接口定义	•		6
6	C/MEM			8
	1 简介			
	2 接口定义	•	•	8
_				_
7				9
	1 简介			
	2 接口定义	٠	•	9
0	EM/WB			10
0	1 简介			
	2 接口定义			10

9	REGISTERS																																							11
	9.1 简介																																							11
	9.2 接口定义		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	11
10	HI_LO																																							11
	HI_LO 10.1简介																																							11
	10.2接口定义																																							
11	PAUSE_CTRL																																							12
	PAUSE_CIRL 11.1简介																																							12
	11.2接口定义				•	•	•	•				•	•				•		•		•			•			•	•	•	•		•								12
12	MIPS_CPU																																							12
	MIPS_CPU 12.1简介																																							12
	12.2接口定义		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
Α	常数和宏定义																																							13
	A.1 TNTEGER	类	型	竹	学者	∜⊤							_									_											_							13

1 PC

1.1 简介

取指模块。然后好像没什么好说的了。

1.2 接口定义

Table 1: PC 模块的接口

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU.rst	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU.clk	时钟信号
in	pause_i	STD_LOGIC_VECTOR	CTRL_PAUSE_LEN	PAUSE_CTRL.pause_o	此模块是否暂
					停
in	branch_i	STD_LOGIC	1	ID.branch_o	是否跳转
in	branch_target_addr_i	STD_LOGIC_VECTOR	INST_ADDR_LEN	<pre>ID.branch_target</pre>	如果跳转,跳
				addr_o	到什么位置
out	en_o	STD_LOGIC	1	MIPS_CPU.rom_en_o	是否读指令
out	pc_o	STD_LOGIC_VECTOR	INST_ADDR_LEN	MIPS_CPU.rom_addr_o,	下一条指令的
				IF/ID.pc_i	位置

2 IF/ID

2.1 简介

2.2 接口定义

Table 2: IF/ID 模块的接口

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU.rst	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU.clk	时钟信号
in	pc_i	STD_LOGIC_VECTOR	INST_ADDR_LEN	PC.pc_o	指令地址
in	inst_i	STD_LOGIC_VECTOR	INST_LEN	MIPS_CPU.inst_i	指令
in	pause_i	STD_LOGIC_VECTOR	CTRL_PAUSE_LEN	PAUSE_CTRL.pause_o	是否暂停
out	pc_o	STD_LOGIC_VECTOR	INST_ADDR_LEN	ID.pc_i	指令地址
out	inst_o	STD_LOGIC_VECTOR	INST_LEN	ID.inst_i	指令

3 ID

3.1 简介

译码模块。主要工作流程是,先根据 op 确定指令类型,再根据 special_funct 确定具体是什么指令,然后根据指令类型进行译码。

SPECIAL 类指令 **SHIFT** 类指令 读 rt, 扩展 shamt, 写 rd 待写

待写

在译码结束之后,最后还有一段,根据 EX 和 MEM 阶段写寄存器的情况解决数据冲突,然后确定指令对应的两个操作数 $operand_1_o$ 和 $operand_2_o$ 。

3.2 接口定义

Table 3: ID 模块的接口

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU.rst	复位信号
in	pc_i	STD_LOGIC_VECTOR	INST_ADDR_LEN	IF/ID.pc_o	指令地址
in	inst_i	STD_LOGIC_VECTOR	INST_LEN	<pre>IF/ID.inst_o</pre>	指令
in	reg_rd_data_1_i	STD_LOGIC_VECTOR	REG_DATA_LEN	REGISTERS.reg_rd_data 1_o	寄存器 1 读出数据
in	reg_rd_data_2_i	STD_LOGIC_VECTOR	REG_DATA_LEN	REGISTERS.reg_rd_data 2_o	寄存器 2 读出数据
in	ex_reg_wt_en_i	STD_LOGIC	1	EX.reg_wt_en_o	EX 模块是否 写寄存器
in	ex_reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	EX.reg_wt_addr_o	EX 模块写寄 存器地址
in	ex_reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	EX.reg_wt_data_o	EX 模块写寄 存器数据
in	mem_reg_wt_en_i	STD_LOGIC	1	MEM.reg_wt_en_o	MEM 模块是否 写寄存器
in	mem_reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	MEM.reg_wt_addr_o	MEM 模块写寄 存器地址
in	mem_reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM.reg_wt_data_o	MEM 模块写寄 存器数据
in	is_in_delayslot_i	STD_LOGIC	1	<pre>ID/EX.is_in_delayslot_o</pre>	当前指令是否 在延迟槽内
out	op_o	STD_LOGIC_VECTOR	OP_LEN	ID/EX.op_i	指令操作类型
out	funct_o	STD_LOGIC_VECTOR	FUNCT_LEN	ID/EX.funct_i	指令子操作类 型
out	reg_rd_en_1_o	STD_LOGIC	1	REGISTERS.reg_rd_en_1_i	一 寄存器 1 读 使能
out	reg_rd_en_2_o	STD_LOGIC	1	REGISTERS.reg_rd_en_2_i	寄存器 2 读使能
out	reg_rd_addr_1_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	REGISTERS.reg_rd_addr 1_i	寄存器 1 读 地址

方向	名称	类型	宽度	连接到	详细描述
out	reg_rd_addr_2_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	REGISTERS.reg_rd_addr 2_i	寄存器 2 读 地址
out	operand_1_o	STD_LOGIC_VECTOR	DATA_LEN	ID/EX.operand_1_i	指令操作数 1
out	operand_2_o	STD_LOGIC_VECTOR	DATA_LEN	ID/EX.operand_2_i	指令操作数 2
out	<pre>extended_offset_o</pre>	STD_LOGIC_VECTOR	DATA_LEN	<pre>ID/EX.extended_offset_i</pre>	扩展后立即数
out	reg_wt_en_o	STD_LOGIC	1	ID/EX.reg_wt_en_i	寄存器写使能
out	reg_wt_addr_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	<pre>ID/EX.reg_wt_addr_i</pre>	寄存器写地址
out	pause_o	STD_LOGIC	1	PAUSE_CTRL.id_pause_i	是否需要暂停
out	branch_o	STD_LOGIC	1	PC.branch_i	当前是否为分 支跳转指令
out	<pre>branch_target addr_o</pre>	STD_LOGIC_VECTOR	INST_ADDR_LEN	PC.branch_target_addr_i	跳转地址
out	is_in_delayslot_o	STD_LOGIC	1	<pre>ID/EX.is_in_delayslot_i</pre>	当前指令是否 在延迟槽内
out	<pre>next_inst_in_de- layslot_o</pre>	STD_LOGIC	1	<pre>ID/EX.next_inst_in_de- layslot_i</pre>	下一条指令是 否在延迟槽内
out	link_addr_o	STD_LOGIC_VECTOR	INST_ADDR_LEN	ID/EX.link_addr_i	跳转指令的返 回地址

4 ID/EX

4.1 简介

4.2 接口定义

Table 4: ID/EX 模块的接口

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU.rst	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU.clk	时钟信号
in	op_i	STD_LOGIC_VECTOR	OP_LEN	ID.op_o	指令操作类型
in	funct_i	STD_LOGIC_VECTOR	FUNCT_LEN	<pre>ID.funct_o</pre>	指令子操作类
					型
in	operand_1_i	STD_LOGIC_VECTOR	REG_DATA_LEN	<pre>ID.operand_1_o</pre>	指令操作数 1
in	operand_2_i	STD_LOGIC_VECTOR	REG_DATA_LEN	ID.operand_2_o	指令操作数 2
in	extended_off-	STD_LOGIC_VECTOR	DATA_LEN	<pre>ID.extended_offset_o</pre>	扩展后立即数
	set_i				
in	reg_wt_en_i	STD_LOGIC	1	ID.reg_wt_en_o	寄存器写使能
in	reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	<pre>ID.reg_wt_addr_o</pre>	寄存器写地址
in	pause_i	STD_LOGIC_VECTOR	CTRL_PAUSE_LEN	PAUSE_CTRL.pause_o	是否暂停
in	is_in_de-	STD_LOGIC	1	<pre>ID.is_in_delayslot_o</pre>	当前指令是否
	layslot_i				在延迟槽中

方向	名称	类型	宽度	连接到	详细描述
in	next_inst_in	STD_LOGIC	1	ID.next_inst_in_de-	下一条指令是
	delayslot_i			layslot_o	否在延迟槽中
in	link_addr_i	STD_LOGIC_VECTOR	<pre>INST_ADDR_LEN</pre>	ID.link_addr_o	跳转指令的返
					回地址
out	op_o	STD_LOGIC_VECTOR	OP_LEN	EX.op_i	指令操作类型
out	funct_o	STD_LOGIC_VECTOR	FUNCT_LEN	EX.funct_i	指令子操作类
					型
out	operand_1_o	STD_LOGIC_VECTOR	REG_DATA_LEN	EX.operand_1_i	指令操作数 1
out	operand_2_o	STD_LOGIC_VECTOR	REG_DATA_LEN	EX.operand_2_i	指令操作数 2
out	extended_off-	STD_LOGIC_VECTOR	DATA_LEN	EX.extended_offset_i	扩展后立即数
	set_o				
out	reg_wt_en_o	STD_LOGIC	1	EX.reg_wt_en_i	寄存器写使能
out	reg_wt_addr_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	EX.reg_wt_addr_i	寄存器写地址
out	is_in_de-	STD_LOGIC	1	EX.is_in_delayslot_i	当前指令是否
	layslot_o				在延迟槽中
out	next_inst_in	STD_LOGIC	1	<pre>ID.is_in_delayslot_i</pre>	下一条指令是
	delayslot_o				否在延迟槽中
out	link_addr_o	STD_LOGIC_VECTOR	INST_ADDR_LEN	EX.link_addr_i	跳转指令的返
					回地址

5 EX

5.1 简介

5.2 接口定义

Table 5: EX 模块的接口

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU.rst	复位信号
in	op_i	STD_LOGIC_VECTOR	OP_LEN	ID/EX.op_o	指令操作类型
in	funct_i	STD_LOGIC_VECTOR	FUNCT_LEN	ID/EX.funct_o	指令子操作类 型
in	operand_1_i	STD_LOGIC_VECTOR	REG_DATA_LEN	ID/EX.operand_1_o	指令操作数 1
in	operand_2_i	STD_LOGIC_VECTOR	REG_DATA_LEN	ID/EX.operand_2_o	指令操作数 2
in	extended_offset_i	STD_LOGIC_VECTOR	DATA_LEN	<pre>ID/EX.extended_offset_o</pre>	扩展后立即数
in	reg_wt_en_i	STD_LOGIC	1	ID/EX.reg_wt_en_o	寄存器写使能
in	reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	<pre>ID/EX.reg_wt_addr_o</pre>	寄存器写地址
in	hi_i	STD_LOGIC_VECTOR	REG_DATA_LEN	HI_LO.hi_o	HI 寄存器
in	lo_i	STD_LOGIC_VECTOR	REG_DATA_LEN	HI_LO.lo_o	LO 寄存器
in	mem_hilo_en_i	STD_LOGIC	1	MEM.hilo_en_o	MEM 阶段的
					指令是否写
					HILO

方向	名称	类型	宽度	连接到	详细描述
in	mem_hi_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM.hi_o	MEM 阶段的指
					令写 HI 的数
					据
in	mem_lo_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM.lo_o	MEM 阶段的指
					令写 LO 的数
					据
in	wb_hilo_en_i	STD_LOGIC	1	MEM/WB.hilo_en_o	WB 阶段的
					指令是否写
					HILO
in	wb_hi_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM/WB.hi_o	WB 阶段的指
					令写 HI 的数
					据
in	wb_lo_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM/WB.lo_o	WB 阶段的指
					令写 LO 的数
					据
in	clock_cycle_cnt_i	STD_LOGIC_VECTOR	ACCU_CNT_LEN	EX/MEM.clock_cycle	进行到了乘累
				cnt_o	加指令的第几
					个周期
in	mul_cur_result_i	STD_LOGIC_VECTOR	DOUBLE_DATA_LEN	EX/MEM.mul_cur_result_o	乘累加指令当
					前结果
in	is_in_delayslot_i	STD_LOGIC	1	<pre>ID/EX.is_in_delayslot_o</pre>	当前指令是否
		CTD 0.0TO //T.OTOD	THET 1000 1511	TD /TV 31	在延迟槽内
in	link_addr_i	STD_LOGIC_VECTOR	INST_ADDR_LEN	ID/EX.link_addr_o	跳转指令的返
4		CTD LOCTC	1	EV/MEM	回地址
out	reg_wt_en_o	STD_LOGIC	1	EX/MEM.reg_wt_en_i	寄存器写使能
out	reg_wt_addr_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	EX/MEM.reg_wt_addr_i	寄存器写地址
out	reg_wt_data_o	STD_LOGIC_VECTOR	REG_DATA_LEN	EX/MEM.reg_wt_data_i	寄存器写数据
out	is_load_store_o	STD_LOGIC	1	EX/MEM.is_load_store_i	当前指令是否 为访存指令
	funct	CTD LOCTC VECTOR	FUNCT LEN	EV/MEM Sugat :	
out	funct_o	STD_LOGIC_VECTOR	FUNCI_LEN	EX/MEM.funct_i	访存指令子操 作类型
ou+	load store addr o	STD LOCIC VECTOR	ADDR LEN	EV/MEM load stone	访存指令访问
out	Toau_Store_addr_o	STD_LOGIC_VECTOR	ADDK_LEN	EX/MEM.load_store	的地址
out	store_data_o	STD_LOGIC_VECTOR	DATA LEN	addr_i EX/MEM.store_data_i	store 指令要
out	Store_uata_o	31D_LOGIC_VECTOR	DATA_LEN	EX/MEM.Store_uata_1	存储的数据
out	hilo_en_o	STD_LOGIC	1	EX/MEM.hilo_en_i	写 HILO 使能
out	hi_o	STD_LOGIC_VECTOR	REG_DATA_LEN	EX/MEM.hi_i	写 HI 数据
out	lo_o	STD_LOGIC_VECTOR		EX/MEM.lo i	与 N1 数据 写 L0 数据
out	pause_o	STD_LOGIC_VECTOR STD_LOGIC	1	PAUSE_CTRL.ex_pause_i	是否需要暂停
out	clock_cycle_cnt_o	STD_LOGIC_VECTOR	ACCU_CNT_LEN	EX/MEM.clock_cycle	进行到了乘累
Juc	clock_cyclc_cnc_0	3.D_1001C_V1C10K	ACCO_CNT_LLN	cnt_i	加指令的第几
				cc_1	个周期
			拉丁五		一月別

方向	名称	类型	宽度	连接到	详细描述
out	mul_cur_result_o	STD_LOGIC_VECTOR	DOUBLE_DATA_LEN	EX/MEM.mul_cur_result_i	乘累加指令当 前结果

6 EX/MEM

6.1 简介

6.2 接口定义

Table 6: PC 的接口

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU.rst	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU.clk	时钟信号
in	reg_wt_en_i	STD_LOGIC	1	EX.reg_wt_en_o	寄存器写使能
in	reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	EX.reg_wt_addr_o	寄存器写地址
in	reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	EX.reg_wt_data_o	寄存器写数据
in	is_load_store_i	STD_LOGIC	1	EX.is_load_store_o	当前指令是否为 访存指令
in	funct_i	STD_LOGIC_VECTOR	FUNCT_LEN	EX.funct_o	访存指令子操作 类型
in	load_store_addr_i	STD_LOGIC_VECTOR	ADDR_LEN	EX.load_store_addr_o	访存指令访问的 地址
in	store_data_i	STD_LOGIC_VECTOR	DATA_LEN	EX.store_data_o	store 指令要存储的数据
in	hilo_en_i	STD_LOGIC	1	EX.hilo_en_o	写 HILO 使能
in	hi_i	STD_LOGIC_VECTOR	REG_DATA_LEN	EX.hi_o	写 HI 数据
in	lo_i	STD_LOGIC_VECTOR	REG_DATA_LEN	EX.lo_o	写 LO 数据
in	pause_i	STD_LOGIC_VECTOR	CTRL_PAUSE_LEN	PAUSE_CTRL.pause_o	流水线当前阶段 是否需要暂停
in	<pre>clock_cycle_cnt_i</pre>	STD_LOGIC_VECTOR	ACCU_CNT_LEN	EX.clock_cycle_cnt_i	进行到了乘累加 指令的第几个周 期
in	mul_cur_result_i	STD_LOGIC_VECTOR	DOUBLE_DATA_LEN	EX.mul_cur_result_o	乘累加指令当前 结果
out	reg_wt_en_o	STD_LOGIC	1	MEM.reg_wt_en_i	寄存器写使能
out	reg_wt_addr_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	MEM.reg_wt_addr_i	寄存器写地址
out	reg_wt_data_o	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM.reg_wt_data_i	寄存器写数据
out	is_load_store_o	STD_LOGIC	1	MEM.is_load_store_i	当前指令是否为 访存指令

方向	名称	类型	宽度	连接到	详细描述
out	funct_o	STD_LOGIC_VECTOR	FUNCT_LEN	MEM.funct_i	访存指令子操作 类型
out	load_store_addr_o	STD_LOGIC_VECTOR	ADDR_LEN	MEM.load_store_addr_i	访存指令访问的 地址
out	store_data_o	STD_LOGIC_VECTOR	DATA_LEN	MEM.store_data_i	store 指令要存 储的数据
out	hilo_en_o	STD_LOGIC	1	MEM.hilo_en_i	写 HILO 使能
out	hi_o	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM.hi_i	写 HI 数据
out	lo_o	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM.lo_i	写 LO 数据
out	clock_cycle_cnt_o	STD_LOGIC_VECTOR	ACCU_CNT_LEN	EX.clock_cycle_cnt_i	进行到了乘累加 指令的第几个周 期
out	mul_cur_result_o	STD_LOGIC_VECTOR	DOUBLE_DATA_LEN	EX.mul_cur_result_o	乘累加指令当前 结果

7 MEM

7.1 简介

现在正在研究要不要写暂停。但是可能就不写了, 因为可以抄别的组的文档。

7.2 接口定义

Table 7: PC 的接口

	L-71.	No mal		\& \dot \\ \= \dot \	AND AND LIKE A D
方向	名称 	类型 	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU.rst	复位信号
in	reg_wt_en_i	STD_LOGIC	1	EX/MEM.reg_wt_en_o	寄存器写使能
in	reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	EX/MEM.reg_wt_addr_o	寄存器写地址
in	reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	EX/MEM.reg_wt_data_o	寄存器写数据
in	ram_rd_data_i	STD_LOGIC_VECTOR	DATA_LEN	MIPS_CPU.ram_data_o	从外部读取的数据
in	is_load_store_i	STD_LOGIC	1	<pre>EX/MEM.is_load</pre>	当前指令是否为访存
				store_o	指令
in	funct_i	STD_LOGIC_VECTOR	FUNCT_LEN	EX/MEM.funct_o	访存指令子操作类型
in	load_store_addr_i	STD_LOGIC_VECTOR	ADDR_LEN	EX/MEM.load_store	访存指令访问的地址
				addr_o	
in	store_data_i	STD_LOGIC_VECTOR	DATA_LEN	EX/MEM.store_data_o	store 指令要存储的
					数据
in	hilo_en_i	STD_LOGIC	1	EX/MEM.hilo_en_o	写 HILO 使能
in	hi_i	STD_LOGIC_VECTOR	REG_DATA_LEN	EX/MEM.hi_o	写 HI 数据
in	lo_i	STD_LOGIC_VECTOR	REG_DATA_LEN	EX/MEM.lo_o	写 LO 数据

方向	名称	类型	宽度	连接到	详细描述
out	reg_wt_en_o	STD_LOGIC	1	MEM/WB.reg_wt_en_i	寄存器写使能
out	reg_wt_addr_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	<pre>MEM/WB.reg_wt_addr_i</pre>	寄存器写地址
out	reg_wt_data_o	STD_LOGIC_VECTOR	REG_DATA_LEN	<pre>MEM/WB.reg_wt_data_i</pre>	寄存器写数据
out	ram_en_o	STD_LOGIC	1	MIPS_CPU.ram_en_o	RAM 读写使能
out	ram_is_read_o	STD_LOGIC	1	MIPS_CPU.ram_is	RAM 是否为读
				read_o	
out	ram_addr_o	STD_LOGIC_VECTOR	ADDR_LEN	MIPS_CPU.ram_addr_o	RAM 的访问地址
out	ram_data_o	STD_LOGIC_VECTOR	DATA_LEN	MIPS_CPU.ram_data_o	RAM 的写数据
out	ram_data_sel_o	STD_LOGIC_VECTOR	BYTE_IN_DATA	MIPS_CPU.ram_data	RAM 数据选择
				sel_o	
out	hilo_en_o	STD_LOGIC	1	MEM/WB.hilo_en_i,	写 HILO 使能
				EX.mem_hilo_en_i	
out	hi_o	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM/WB.hi_i,	写 HI 数据
				EX.mem_hi_i	
out	lo_o	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM/WB.lo_i,	写 LO 数据
				EX.mem_lo_i	

8 MEM/WB

8.1 简介

8.2 接口定义

Table 8: PC 的接口

-					
方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU.rst	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU.clk	时钟信号
in	reg_wt_en_i	STD_LOGIC	1	MEM.reg_wt_en_o	寄存器写使能
in	reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	MEM.reg_wt_addr_o	寄存器写地址
in	reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM.reg_wt_data_o	寄存器写数据
in	hilo_en_i	STD_LOGIC	1	MEM.hilo_en_o	写 HILO 使能
in	hi_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM.hi_o	写 HI 数据
in	lo_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM.lo_o	写 LO 数据
in	pause_i	STD_LOGIC_VECTOR	CTRL_PAUSE_LEN	PAUSE_CTRL.pause_o	是否暂停
out	reg_wt_en_o	STD_LOGIC	1	REGISTERS.reg_wt_en_i	寄存器写使能
out	reg_wt_addr_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	REGISTERS.reg_wt_addr_i	寄存器写地址
out	reg_wt_data_o	STD_LOGIC_VECTOR	REG_DATA_LEN	REGISTERS.reg_wt_data_i	寄存器写数据
out	hilo_en_o	STD_LOGIC	1	HI_LO.en, EX.wb_hilo_en_i	写 HILO 使能
out	hi_o	STD_LOGIC_VECTOR	REG_DATA_LEN	HI_LO.hi_i, EX.wb_hi_i	写 HI 数据
out	lo_o	STD_LOGIC_VECTOR	REG_DATA_LEN	HI_LO.lo_i, EX.wb_lo_i	写 LO 数据
			₩ .		

9 REGISTERS

9.1 简介

9.2 接口定义

Table 9: REGISTERS 模块的接口

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU.rst	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU.clk	时钟信号
in	reg_rd_en_1_i	STD_LOGIC	1	ID.reg_rd_en_1_o	寄存器 1 读使能
in	reg_rd_en_2_i	STD_LOGIC	1	ID.reg_rd_en_2_o	寄存器 2 读使能
in	reg_rd_addr_1_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	<pre>ID.reg_rd_addr_1_o</pre>	寄存器 1 读地址
in	reg_rd_addr_2_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	ID.reg_rd_addr_2_o	寄存器 2 读地址
in	reg_wt_en_i	STD_LOGIC	1	MEM/WB.reg_wt_en_o	寄存器写使能
in	reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	MEM/WB.reg_wt_addr_o	寄存器写地址
in	reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM/WB.reg_wt_data_o	寄存器写数据
out	reg_rd_data_1_o	STD_LOGIC_VECTOR	REG_DATA_LEN	<pre>ID.reg_rd_data_1_i</pre>	寄存器 1 读出数据
out	reg_rd_data_2_o	STD_LOGIC_VECTOR	REG_DATA_LEN	ID.reg_rd_data_2_i	寄存器 2 读出数据

10 HI_LO

10.1 简介

10.2 接口定义

Table 10: HILO 模块的接口

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU.rst	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU.clk	时钟信号
in	en	STD_LOGIC	1	MEM/WB.hilo_en_o	使能
in	hi_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM/WB.hi_o	HI
in	lo_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM/WB.lo_o	LO
out	hi_o	STD_LOGIC_VECTOR	REG_DATA_LEN	EX.hi_i	HI
out	lo_o	STD_LOGIC_VECTOR	REG_DATA_LEN	EX.hi_o	LO

11 PAUSE_CTRL

11.1 简介

11.2 接口定义

Table 11: PAUSE_CTRL 模块的接口

方向	名称	类型	宽度	连接到	详细描述
in in	rst id_pause_i	STD_LOGIC STD_LOGIC	1	MIPS_CPU.extended_offset_i ID.pause_o	复位信号 ID 模块是否 暂停
in	ex_pause_i	STD_LOGIC	1	EX.pause_o	EX 模块是否 暂停
out	pause_o	STD_LOGIC_VECTOR	CTRL_PAUSE_LEN	<pre>PC.pause_i, IF/ID.pause_i, ID/EX.pause_i, EX/MEM.pause i, MEM/WB.pause_i</pre>	各模块是否暂 停

12 MIPS_CPU

12.1 简介

12.2 接口定义

Table 12: MIPS_CPU 模块的接口

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	PC.rst, IF/ID.rst, ID.rst,	复位信号
				ID/EX.rst, EX.rst,	
				EX/MEM.rst, MEM.rst,	
				MEM/WB.rst, REGISTERS.rst,	
				<pre>HI_LO.rst, PAUSE_CTRL.rst</pre>	
in	clk	STD_LOGIC	1	PC.clk, IF/ID.clk,	时钟信号
				<pre>ID/EX.clk, EX/MEM.clk,</pre>	
				MEM/WB.clk, REGISTERS.clk,	
				HI_LO.clk	
in	inst_i	STD_LOGIC_VECTOR	INST_LEN	<pre>IF/ID.inst_i, ROM</pre>	输入指令
in	ram_rd_data_i	STD_LOGIC_VECTOR	INST_LEN	MEM.ram_rd_data_i, RAM	输入数据
out	rom_en_o	STD_LOGIC	1	PC.en_o, ROM	ROM 使能
out	rom_addr_o	STD_LOGIC_VECTOR	INST_LEN	PC.pc_o, ROM	指令地址
out	ram_en_o	STD_LOGIC	1	MEM.ram_en_o, RAM	RAM 使能
out	ram_is_read_o	STD_LOGIC	1	MEM.ram_is_read_o, RAM	RAM 是否是读
out	ram_addr_o	STD_LOGIC_VECTOR	INST_LEN	MEM.ram_addr_o, RAM	读写 RAM 的地址

方向	名称	类型	宽度	连接到	详细描述
out	ram_data_o	STD_LOGIC_VECTOR	DATA_LEN	MEM.ram_data_o, RAM	写 RAM 的数据
out	ram_data_sel_o	STD_LOGIC_VECTOR	BYTE_IN_DATA	MEM.ram_data_sel_o, RAM	读写内容选择

A 常数和宏定义

A.1 INTEGER 类型的常数

Table 13: INTEGER 类型的常数

名称	内容	详细描述
INST_ADDR_LEN	32	指令的地址长度
ADDR_LEN	32	普通的地址长度
INST_LEN	32	指令长度
REG_ADDR_LEN	5	寄存器地址长度
REG_DATA_LEN	32	寄存器内数据长度
DATA_LEN	32	一般的数据长度
DOUBLE_DATA_LEN	64	乘法结果的数据长度
CTRL_PAUSE_LEN	6	暂停控制数据长度
OP_LEN	6	指令操作码长度
FUNCT_LEN	6	指令子操作码长度
ACCU_CNT_LEN	2	乘累加/减指令周期数
BYTE_IN_DATA	4	一个普通的数据中有多少字节