BEC tubes Localization and Shear Viscosity

Camilla Polvara

Nearest Neighbor Interaction

• Spatial distribution (y-axis) of the lowest mode

• IPRs vs wavefunction index

• IPRs vs system size (tubes number)

$$U_d = 0.5, \sigma = 0.5$$

Lowest IPR vs system size (tubes number)

• Lowest IPR vs dipolar interaction strength

• Lowest IPR vs disorder parameter magnitude

• Shear viscosity kernel vs momentum

Shear viscosity vs dipolar interaction strength

• Shear viscosity vs t, for three values of Ud

• Shear viscosity vs t, for three values of sigma

Time-Fourier transform of the viscosity vs omega

$$N=2$$
 tubes, $n=1$ tube distance, $\sigma=0.5$

Shear viscosity vs tube distance

Dipolar Interaction

• Spatial distribution (y-axis) of the lowest mode

• IPRs vs wavefunction index

• IPRs vs system size (tubes number)

$$U_d = 0.5, \sigma = 0.5$$

Lowest IPR vs system size (tubes number)

• Lowest IPR vs dipolar interaction strength

• Lowest IPR vs disorder parameter magnitude

• Shear viscosity kernel vs momentum

Shear viscosity vs dipolar interaction strength

Shear viscosity vs t, for three values of Ud

• Shear viscosity vs t, for three values of sigma

Time-Fourier transform of the viscosity vs omega

N=2 tubes, n=1 tube distance, $\sigma=0.5$

Shear viscosity vs tube distance

