STATS300A - Lecture 15

Dominik Rothenhaeusler Scribed by Michael Howes

11/10/21

Contents

1	Motivation	1
2	Unbiased tests	1
3	Constructing UMPU tests	2
	3.1 A recipe	2
	3.2 α -similar tests	2
	3.3 Method of undetermined multipliers	3

1 Motivation

Today we are going to develop optimal tests in one-dimensional exponential families. A UMP test need not exist in this case. Indeed, in the Gaussian model there is no UMP test for $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$. This is because for an alternative $\mu_1 < \mu_0$, the MP test rejects H_0 when our data is small. For $\mu_1 > \mu_0$ the MP test rejects H_0 when our data is large (see picture below).

There are various approaches that can be used when the UMP test does not exist. These include:

- (a) Symmetric constraints on test. For example $\phi(cx) = \phi(x)$ for c > 0.
- (b) Put a probability distribution on Ω_1 . Then collapse the risk function and maximize the average power.
- (c) Maximize the worst case power (maximin test).
- (d) Monotonicity constraints.
- (e) Unbiasedness.

2 Unbiased tests

We will use the unbiasedness approach but it is good to know that there are other method available.

Definition 1. A test ϕ is unbiased at level α if

- (a) For all $\theta_0 \in \Omega_0$, $\mathbb{E}_{\theta_0} \phi \leq \alpha$.
- (b) For all $\theta_1 \in \Omega_1$, $\mathbb{E}_{\theta_1} \phi \geq \alpha$.

Remark 1. Some remarks on the above definition

- \bullet This is a form of risk unbiasedness. It corresponds to having level α and being risk unbiased under 0-1 loss.
- UMP tests (if they exist) are always unbiased tests.
- Recommending reading: Optimal inference after model selection by Fiftian, Sun and Taylor. This is a recent paper that uses ideas of unbiased tests.

The definition of unbiased gives us a new optimality condition.

Definition 2. A uniformly most power unbiased (UMPU) test is an unbiased level α test which is uniformly most powerful among all unbiased level α tests.

Thus we are restricting our set of tests. We have

unbiased test \subseteq all tests.

A UMPU test is a test in the first class which is uniformly optimal in the first class. Unlike UMP tests, UMPU tests often exist for test $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ and for testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$ in multiple parameter settings.

3 Constructing UMPU tests

3.1 A recipe

Constructing UMPU tests is not a straight forward proceedure. The general recipe that we will use is

- (a) Rewrite constraints as weaker constraints. We will replace unbiasedness with a weaker condition.
- (b) Fix a simple alternative $\theta_1 \in \Omega_1$.
- (c) Find a MP under the constraints from (a). This will require a generalized Neyman Pearson lemma. Call this test ϕ_{θ_1} .
- (d) If the test $\phi = \phi_{\theta_1}$ does not depend on θ_1 , then ϕ is in fact the UMP under the constraints in (a).
- (e) Show that ϕ actually satisfies the stronger unbiased constraint and thus ϕ is UMPU.

We will now work on each of the ingredients.

3.2 α -similar tests

Typically Ω_0 and Ω_1 are subsets of \mathbb{R}^k and so we can define

$$W = \overline{\Omega}_0 \cap \overline{\Omega}_1$$
,

where \overline{A} is used to denote the closure of $A \subseteq \mathbb{R}^k$.

Examples 1. • If we have the test $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$, then $W = \{\theta_0\}$.

• If we have the test $H_0: \theta_1 \leq \widetilde{\theta}$ and $H_1\theta_1 > \widehat{\theta}$ where $\theta = (\theta_1, \dots, \theta_k) \in \mathbb{R}^k$, then

$$W = \{ \theta \in \mathbb{R}^k : \theta_1 = \widetilde{\theta} \}.$$

Definition 3. A test ϕ is α -similar if $\mathbb{E}_{\theta}\phi = \alpha$ for all $\theta \in W$.

Lemma 1. Suppose that the function $\beta_{\phi}(\theta) = \mathbb{E}_{\theta} \phi$ is continuous on Ω for all test functions ϕ . If a test ϕ_0 is UMP among all α -similar tests, then ϕ_0 is also UMP among all unbiased test.

Proof. We will first show that ϕ_0 is unbiased. Consider the constant test $\phi = \alpha$. The test ϕ is α -similar. Since ϕ_0 is UMP among all α -similar tests we must have that for all $\theta \in \Omega_1$,

$$\mathbb{E}_{\theta_1} \phi_0 \geq \mathbb{E}_{\theta_1} \phi = \alpha.$$

Thus ϕ_0 is unbiased at level α . To show that ϕ_0 is the UMPU test, it suffices to show that every unbiased test is a level α test. If ϕ is unbiased, then by continuity of β_{ϕ} we have that

$$\mathbb{E}_{\theta} \phi = \beta_{\phi}(\theta) \leq \alpha$$
, for all $\theta \in \overline{\Omega}_0$.

Likewise,

$$\mathbb{E}_{\theta} \phi = \beta_{\phi}(\theta) \geq \alpha$$
, for all $\theta \in \overline{\Omega}_1$.

Thus $\mathbb{E}_{\theta}\phi = \alpha$ for all $\theta \in W = \overline{\Omega}_0 \cap \overline{\Omega}_1$.

The idea behind this proof is that we have shown:

Thus a test with UMP among α -similar tests is UMP among unbiased tests.

3.3 Method of undetermined multipliers

We will now restrict our attention to one-dimensional exponential families so that

$$p_{\theta}(x) \propto h(a) \exp \{\theta T(x)\}$$
.

We wish to test $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$. Recall that no UMP test exists. One can show by the dominated convergence theorem that the map $\beta_{\phi}(\theta) = \mathbb{E}_{\theta} \phi$ is continuous and in fact differentiable for all test functions ϕ .

By our lemma from before we know that if ϕ is unbiased then $\mathbb{E}_{\theta_0}\phi = \alpha$ and $\mathbb{E}_{\theta}\phi \geq \alpha$ for all θ . Thus every unbiased level α test must statisfy $\mathbb{E}_{\theta_0}\phi = \alpha$ and θ_0 must be a global minimum of $\theta \mapsto \beta_{\phi}(\theta)$. So our power function looks something like this:

Thus the derivative of the power function at $\theta = \theta_0$ must be zerp. Hence every unbiased test must satisfy the two constraints:

$$\int_{\mathcal{X}} \phi(x) p_{\theta}(x) d\mu(x) = \alpha \quad \text{and} \quad \partial_{\theta} \beta_{\phi}(\theta) \mid_{\theta = \theta_0} = \int_{\mathcal{X}} \phi(x) \partial_{\theta} p_{\theta_0}(x) d\mu(x) = 0. \tag{1}$$

In the second constrain we used some of the regularity properties of exponential families to exchange integration and differentiation.