U.S.N.

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU October / November 2021 Supplementary Examinations

Programme: B.E.

Branch: ALL

Course Code: 18EC1ESECE / 18EC2ESECE

Course: Elements of Electronics Engineering

Semester: I / II

Duration: 3 hrs.

Max Marks: 100

Date: 30.10.2021

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. Missing data, if any, may suitably assumed.

UNIT - I

- 1. a) What is PN junction? With the help of neat diagrams, explain the VI **08** characteristics of PN junction diode.
 - b) A bridge rectifier supplies a load of $10 \text{K}\Omega$. The ac voltage applied to the diode is 6V V_{rms}. If the diode forward resistance is neglected, calculate i_{dc} , output current. ii) dc output voltage. iii) ripple factor.
 - c) With a neat circuit diagram, explain the working of Zener diode voltage 06 regulator.

UNIT - II

- 2. a) With a neat circuit diagram and input output characteristics, explain the working of NPN transistor CE configuration.
 - b) With a neat diagram, explain the working of transistor as a switch.
 - An amplifier has an input signal of 0.5V and draws 1.5mA from the source. It delivers 10V to a load at 15mA find. i) voltage gain ii) current gain iii) power gain.

OR

- 3. a) Derive the expression for V_{CE} and I_E of a voltage divider bias circuit. **08**
 - b) With a neat block diagram, derive the expression for feedback gain of an 06 negative feedback system.
 - c) What are the advantages of negative feedback amplifier? Explain any one **06** in detail.

UNIT - III

- 4. a) With a neat circuit diagram, explain the working of Colpitts oscillator. **08**
 - b) Derive the expression for output voltage of a three input Non-inverting **06** summing amplifier using Op-Amp.
 - c) For the inverting amplifier shown in fig 4C, determine A_f , V_o , i_{in} , i_f , and i_L .

UNIT - IV

- 5. a) Realize EX-NOR gate using basic gates and NOR gates.
 - b) Convert the given expression in standard POS form: f(a, b, c) = (a + b) (b + c') (a + c).06

06

Simplify the given expression and implement using NAND gates and basic gates: F = (w x + w y') (x + w) + w x (x' + y')

OR

- 6. a) Simplify the given expression using 3-variable K-map: $f(a, b, c) = \sum (1,2,3,6,7).$
 - b) What is multiplexer? With a neat logic diagram and truth table, explain **08** the working of 8:1 multiplexer.
 - c) What is a decoder? Implement 3X8 decoder. **08**

UNIT - V

7. a) List the difference between analog and digital signals. 03

b) With a neat block diagram, explain the working of digital communication
 system.

07

c) Discuss the evolution of cellular communication system.
