Modèles et Méthodes d'Analyse et de Conception

Types de modèles Langage graphique

Le contenu est basé sur les transparents de la 10^{ème} édition de "Software Engineering" de Ian Sommerville

L'Analyse

Modèles de système

- Objectifs
 - Comprendre la fonctionnalité
 - Communiquer avec les clients
 - Documentation du logiciel
- Les perspectives
 - Externe
 - De comportement
 - Structurale
- Si on prend en compte le temps
 - Statiques
 - Dynamiques

Types de modéles

- Modèle de traitement des données
- Modèle de composition
- Modèle d'architecture
- Modèle des classes
- Modèle de stimulus et réactions

Modèle de contexte

 Système de distributeurs de billets – ils spécifient les bornes et les interfaces

Modèle des processus

- Le processus générale et les sous-processus
- Il peut être fait par le DFD diagramme (flux de données)

Commande et livraison d'équipement

Modèles de comportement

- Types deux perspectives différentes
 - Modèle de traitement des données
 - Modèle d'états
- Modèle de traitement des données
 - Diagramme des flux des données
 - Le traitement des données de début à la fin
 - On peut l'utiliser pour montrer l'échange de données avec les systèmes de contexte
 - Diagramme des activités (en UML)

Traitement d'une commande

Le DFD de la pompe d'insulin

Le modèle d'états

- Modèle qui démontre les réaction du système aux événements externes et internes.
- Il est appelé encore un automate fini.
- Il permit la décomposition aux sous-modèles

Le modèle d'un four micro-ondes

Le modèle d'un four micro-ondes

Opération

Le modèle d'un four micro-ondes

Présentation comme tableau

Etat	Description
Waiting	Le four attend la saisie. L'écran montre le temps
Half power	La puissance est fixée à 300 Watt. L'écran montre « Half power »
Full power	La puissance est fixée à 600 Watt. L'écran montre « Full power »
Set time	Le temps pour l'opération est entré par l'usager. Le temps est montré à l'écran.

Modèle sémantique des données

- En fait c'est le modèle conceptuel des données
- On utilise le diagramme des classes

Modèle des données de LYBSYS

Dictionnaire des données

- C'est une liste des données avec leurs noms et description (voir les BD)
- On peut inclure et les descriptions des entités, associations et attributs.
- Objectifs
 - Ensembles des noms du système
 - Eviter les dublicats
 - Aider l'analyse

Les modèles objets

 Ils présentent le système ou différentes parties comme ensembles des objets avec leurs membres leurs fonctionnalités et les associations entre eux.

Les modèles objets (UML)

- Types d'associations
 - Héréditaire
 - D'agrégation
 - De dépendance
 - D'interaction (utilisation)
- Notation des contraintes
 - {spécification de la contrainte}
 - Types
 - Langue naturelle
 - Pseudo code
 - Expression mathématique

Modélisation du comportement des objets

- Diagramme des séquences
- Diagramme d'activités
- Diagramme des états
- Diagramme de communication

Les faiblesses des modèles

- Les besoins non-fonctionnels
- Trop détaillés et incompréhensibles.

Les Méthodes d'analyse et de conception

Dans les méthodes on retrouve les concepts de base

- la construction de modèles
- la description du général au particulier
- la recherche d'une solution d'ensemble
 (données, traitements, organisation de travail, etc.)
- la préoccupation constante pour une solution de qualité
- l'adaptabilité de la solution implantée par rapport à l'évolution de son environnement (mission, lois et règlements, nouvelles technologies)

Les grands types de méthodes d'analyse et de conception

- □ Méthodes Fonctionnelles (SADT, DFD)
- □ Méthodes Systémiques (Merise)
- **Méthodes Dynamiques** (SART)
- □ Méthodes orientées objet (UML, OMT)
- □ Méthodes formelles (B, Z, VDM, Lotos)

Spécification fonctionnelle Analyse Structurée (SA)

- □ **Démarche:** recenser les fonctionnalités à implanter
- □ **Résultat:** cahier des charges fonctionnel
- □ On distingue
 - ☐ Les fonctions de service: besoins des utilisateurs
 - ☐ Les fonctions techniques: requises pour implanter les fonctions de service
 - □ pour chaque fonction, on précise
 - □ son importance
 - □ des critères de qualité
- □ Application: Approche fonctionnelle
 - □ Les Diagrammes de Flux de Données (DFD)
 - □ SADT (Structured Analysis and Design Technique)

Approche fonctionnelle

Méthode des DFD

- □ Il s'agit d'une technique semi-formelle et opérationnelle. Les DFD décrivent des collections de données manipulées par des fonctions. Les données peuvent être persistantes (dans des stockages) ou circulantes (flots de données).
- □ La représentation graphique classique distingue :
 - □ les *fonctions*
 - □ les *stockages*
 - □ les *flots*
 - □ les *entités externes*

Méthode des DFD

Fonction: activité qui manipule des données

Flot de données: cheminement des données

Stockages ou dépôts : collection de données

Entité externe: source ou destination de données

•Règles de construction des DFDs

- •le niveau 01 présente le système comme un seul processus: diagramme de contexte
- •les flots indiquent des transferts de données
- •tous les composants des diagrammes doivent être étiquetés
- •ne montrer un dépôt de données qu'à partir du moment où il est interface entre plusieurs processus
- •les raffinements s'arrêtent lorsque les processus ne se décomposent plus

Les Diagrammes de Flux de Données

Diagramme de contexte

- associé à un diagramme de flot de données
- représente les échanges de flots de données avec les acteurs extérieurs du système à modéliser

Diagrammes de niveau 1 et plus

- DFD niveau 1 construit en prenant le processus représentant le système en le découpant en d'autres unités de traitement
- DFDs niveau i construits en détaillant les processus définis au niveau i-1 en montrant les flots de données entre ces unités

Les Diagrammes de Flux de Données

Un exemple de DFD :

le diagramme de contexte de la sélection des réponses à un appel d'offre

Raffinement du DFD précédent : la fonction « sélection des réponses » est raffinée ici.

Méthode orientée Flux de Données

□ Résultat de la méthode

- ensemble de Diagrammes de Flux avec le nombre de niveaux de raffinements nécessaires
- dictionnaire des données qui documente la totalité du système tout au long du développement
- description en pseudo code des algorithmes

Avantages

- méthode relativement formelle
- applique tous les principes d'analyse
- □ méthode facile à apprendre

Méthode orientée Flux de Données

Faiblesses

- absence d'indication du flot de contrôle
- □ faiblesse des outils de description de la logique des traitements
- apparition de formes 'pathologiques', comme par exemple: trou noir

plusieurs interprétations sont possibles pour le DFD élémentaire suivant:

A produit une donnée et attend que **B** la traite pour en produire une autre, ou

A et **B** sont des processus autonomes avec un tampon entre eux

Conclusion DFD

- □ Pour ces raisons les DFDs sont :
 - soit complétés par d'autres spécifications
 - □ soit étendus
- ☐ Ils connaissent un très grand succès pour spécifier les fonctions d'un système à cause de leur *simplicité et de leur facilité de compréhension par des non informaticiens*.

Structured Analysis and Design Technique SADT

Représentation sous forme d'actigrammes

Les entrées et sorties sont des données

Structured Analysis and Design Technique SADT

Décomposition de la boite « Activité »

Structured Analysis and Design Technique SADT

Représentation sous forme de datagrammes

Les entrées et sorties sont des activités

Approche structurée

Descendante

Séquentielle

Ascendante

Récursive

La Conception

Conception

Objectifs

- Connaître quelques méthodes qui permettent de développer des systèmes logiciels avec une approche structurée
- Assimiler la démarche méthodologique de conception
- Maîtriser les qualités d'une conception

Conception générale

- Buts
 - □ mettre en place des entités de base
 - faire apparaître les choix de réalisation
 - définir un mode de fonctionnement général du système

Principes

- données et fonctions, abstraction, raffinements successifs, primitives
- modularité
- □ indépendance fonctionnelle

Livrable conception générale

- □ dossier d'architecture (fonctions logicielles, structure banque de données, interaction usager système)
- □ manuel utilisateur
- planning conception détaillée

Les étapes de conception

- ☐ La conception d'architecture: identification des sous-systèmes et des relations qui existent entre eux
- La spécification abstraite: spécification des sous-systèmes
- La conception d'interfaces: description des interfaces
- La conception de composants: découpage des sous-systèmes en plusieurs composants
- La conception des structures de données: définition des structures de données
- □ La conception d'algorithmes: conception des algorithmes pour chacune des fonctions

Outil : Diagramme de structure

- Organisation hiérarchique des différents modules du système (du général au particulier)
- ☐ Un module pourra être programmé comme un module, une procédure, une fonction ou une autre unité de traitement
- Quatre types d'unités ou de modules:
 - □ Entrée: unité chargée d'accepter des données des périphériques d'entrée et de les transmettre aux unités de traitement
 - □ **Sortie:** unité chargée d'accepter les données des unités de traitement et de les transmettre aux entités externes
 - ☐ Transformation: unité qui accepte une ou plusieurs données d'autres unités, les transforme, les traite et les transmet à d'autres unités
 - □ Coordination: unité responsable du contrôle et de la gestion d'autres unités

Diagramme de structure

Profondeur: niveaux de raffinement

Largeur: degré de décomposition fonctionnelle

Fan-out: nombre de modules subordonnés d'un module

Fan-in: nombre de modules contrôlant un module

Conception détaillée

Buts

- □ spécifier la manière dont chacune des entités de base définie dans la phase de conception générale sera réalisée et la manière dont ils interagiront
 - spécification des modules
 - description de la banque de données
 - description des E/S

Livrable conception détaillée

- Structures de données
- Détail procédural
- Dossiers de tests d'intégration
- Dossiers de tests unitaires
- □ Planning de la phase de codage

Propriétés de conception

Cohésion: définit l'homogénéité de l'intérieur d'un module

Couplage: définit le degré de liaison entre modules

Cohésion de

- coïncidence
- logique
- temporelle
- de communication
- séquentielle
- fonctionnelle

Couplage de

- contenu
- de COMMON
- externe
- de contrôle
- de données

Analyse et conception d'une interface

Conseils pour faire une interface usager

- Analyse de tâches
- Conception ou choix d'une métaphore
- Choix d'un ensemble d'outils
- Conception préliminaire de l'interface
- Prototypage avec outil de haut niveau
- Cycle évaluation modification
- ☐ Implantation avec l'ensemble d'outils

Critères quantitatifs d'évaluation d'une interface usager

- Temps d'apprentissage
- Performance
- □ Taux d'erreurs par les usagers
- Satisfaction subjective

Cycle de développement des interfaces

Facteurs humains: diversité des usagers

Conception préliminaire:

- Aspects visuels, choix des composants
- Disposition
- Actions