| (a)
$$\frac{1}{k+2} = \sqrt{x} = \sqrt{c}$$
 for $c \ge 0$

w.t.s. $|\sqrt{x} - \sqrt{c}| \le \varepsilon$ if $|x - c| \le \delta$

Let $\delta = \varepsilon^2$, we have $|\sqrt{x} - c| \le |\sqrt{\varepsilon} - \varepsilon| = \varepsilon$
 $c \ge 0$, so $|x - c| \ge |x - c| \le |x - c| \ge |x - c| \le |x - c|$

$$-\left(\leq \cos\left(\frac{1}{x}\right) \leq \right) \qquad \left| \cos\left(\frac{1}{x}\right) \leq \right| \qquad \left| \cos\left(\frac{1}{x}\right) \right| \leq \left| x^{2} \right|$$

$$Since x \Rightarrow 0 , |x-0| = |x| < \delta < |, so x^{2} |\cos\left(\frac{1}{x}\right)| \leq |x|$$

$$Pick S = \min\left(1, \xi\right) so |x^{2} \cos\left(\frac{1}{x}\right) - 0| \leq x^{2} < \delta \leq \xi$$

$$Using squeeze theorem: -1 \leq \cos\left(\frac{1}{x}\right) \leq 1$$

$$-x^{2} \leq x^{2} \cos\left(\frac{1}{x}\right) \leq x^{2} \qquad \lim_{x \to 0} -x^{2} = \lim_{x \to 0} x^{2} = 0$$

$$so \lim_{x \to 0} x^{2} \cos\left(\frac{1}{x}\right) = \lim_{x \to 0} -x^{2} = \lim_{x \to 0} x^{2} = 0$$

$$so \lim_{x \to 0} x^{2} \cos\left(\frac{1}{x}\right) = \lim_{x \to 0} -x^{2} = \lim_{x \to 0} x^{2} = 0$$

$$(a) \lim_{x \to 0} x^{2} \cos\left(\frac{1}{x}\right) = \lim_{x \to 0} -x^{2} = \lim_{x \to 0} x^{2} = 0$$

$$(b) \lim_{x \to 0} x^{2} \cos\left(\frac{1}{x}\right) = \lim_{x \to 0} x^{2} = 0$$

$$(c) \lim_{x \to 0} x^{2} \cos\left(\frac{1}{x}\right) = \lim_{x \to 0} x^{2} = 0$$

$$(d) \lim_{x \to 0} x^{2} \cos\left(\frac{1}{x}\right) = \lim_{x \to 0} x^{2} = 0$$

$$(e) \lim_{x \to 0} \sin\left(\frac{1}{x}\right) \cos\left(\frac{1}{x}\right) = \lim_{x \to 0} \sin\left(\frac{1}{x}\right) =$$

2. Let
$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$$
 $\forall x_n \quad s.t. \quad x_n \in S \setminus \{c\} \forall n$
 $\lim_{x \to c} x_n = L$

and $f(x_1) \to L$, $\{h(x_n)\} \to L$

So we have $\forall x > 0$, $\exists N \in \mathbb{N} \quad s.t. \quad \forall n \supset \max\{N_1, N_2\}$
 $|f(x_1) - L| \subset x \quad \text{and} \quad |h(x_1) - L| \subset x$
 $-x \subset f(x_1) - L \subset x \quad -x \subset h(x_1) - L \subset x$
 $-x \subset f(x_1) - L \subseteq x \subset x \subset x \subset x \subset x$

So $|g(x_1) - L| \subseteq x \subset x$

Therefore $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = \lim_{x \to c} h(x)$
 $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = \lim_{x \to c} h(x)$

3.
$$\lim_{x\to c} (f(x) + g(x)) = (1)$$
 $\{c_h = a_h + b_h\} \to (1)$

From ② and ③,
$$\forall 270$$
, $\exists N_2, N_3 \in \mathbb{N} \text{ s.t.}$
 $\forall n \supset N_2, |\alpha_n - \alpha| \subset \frac{\varepsilon}{2} \quad \forall n \supset N_3, |b_n - b| \subset \frac{\varepsilon}{2}$

$$\left| (a_n + b_n) - (a+b) \right| = \left| (a_n - a) + (b_n - b) \right|$$

$$\leq \left| a_n - a \right| + \left| b_n - b \right| < \frac{\xi}{2} + \frac{\xi}{2} = \xi$$

So
$$L_1 = L_2 + L_3$$
, $\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$

(b) Similarly,
$$|(a_n-b_n)-(a-b)| = |(a_n-a)-(b_n-b)| \le |(a_n-a)+|(b_n-b)|$$

So $\lim_{x\to c} (f(x)-g(x)) = \lim_{x\to c} f(x)-\lim_{x\to c} g(x)$ $< \frac{\varepsilon}{z} + \frac{\varepsilon}{z} = \varepsilon$

$$\begin{aligned} & (c) & \lim_{x \to c} f(x)g(x) = L_{1} = \int \{a_{n}b_{n}\} \to L_{1} & 0 \\ & \left[a_{n}b_{n} - ab\right] = \left[a_{n}b_{n} + ab_{n} - ab_{n} - ab\right] = \left[(a_{n}-a)b_{n} + a(b_{n}-b)\right] \\ & \left[(a_{n}-a)b_{n}\right] + \left[a_{1}(b_{n}-b)\right] = \left[a_{n}-a\right]\left[b_{n}\right] + \left[a\right]\left[b_{n}-b\right] \end{aligned}$$

Since (bn) - (3,) M > 0 s.t. |bal < M, so $|\alpha_n - \alpha| |b_n| + |\alpha| |b_n - b| \leq M |\alpha_n - \alpha| + |\alpha| |b_n - b|$ Since $|a_n-a| < \frac{\xi}{2a_n}$, $|b_n-b| < \frac{\xi}{2(\ln(+1))}$ $\left| \left(a_n b_n - ab \right) \right| \leq \frac{M \varepsilon}{2aA} + \frac{\left| a \right| \varepsilon}{2 \left| a_n \right| \left| a_n \right|} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ So Li = Lz·Lz, lim f(x)g(x) = lim f(x). lim o(x) (d) Let $b=L_3$, $\forall \frac{|b|}{2} > 0 \ni N, \in \mathbb{N}$ s.t. u>N, , $|b_n-b| < \frac{|b|}{2}$ $SO(|b_n| = |b+(b_n-b)| > |b| - |b_n-b| > |b| - \frac{|b|}{2} = \frac{|b|}{2} > 0$ Since, bn-7L, 4 270, 7N3 EN S.T. Un>Nz. Let N= max {Nz, Nz}, we have $|b_b-b|<\frac{b^2\Sigma}{3}$ $\forall n > N$, $\left| \frac{1}{b_n} - \frac{1}{b} \right| \leq \frac{2}{b^2} \left| \frac{b_n - b}{b_n} \right| < \frac{2}{b^2} \cdot \frac{b^2 \epsilon}{2} = \epsilon$ So $\{b_n\}$ $\rightarrow b = \frac{1}{L_3}$ From (c), $\{a_n\} \rightarrow \frac{1}{L_3} = \frac{9}{b}$ So lin f(x) = lin f(x)

you g(x) = lin g(x)

 $(+, w, t, s, b) \times (x_n, y_n) = \lim_{k \to \infty} f(x_n) = \lim_{k \to \infty} f(y_n)$ Assume $f(x_n) \to L_1$, $f(y_n) \to L_2$ $2 := X_1, Y_1, X_2, Y_2, \dots X_n = \begin{cases} X_k : n = 2k + 1 \\ Y_k, n = k + 1 \end{cases}$ So $f(x_n)$ is cancegent $f(x_n) \to L$ so X_n and Y_n are convergent as subsequences of X_n $L_1 = L_2 = L$ By the transfer principle, $X_{> 0}$

5 fat 1., 4270, 38 s.t. 1f(x)-f(1)/=1x-1)<855 if(x-1)<8 fis continuous at 1 fat 2: w.f.s. 750, WS s,t. $|f(x) - f(2)| = |x^2 - 2| > \xi + |x - 2| < \xi$ When $\Sigma = 1$, $\chi = 2 + \frac{d}{\sqrt{2}}$. $|x^2-2| = |4+2\sqrt{2}\xi+\frac{\xi^2}{2}-2| = |2+2\sqrt{2}\xi+\frac{\xi^2}{2}|$ Since 800, 1x2-21) 2>1=8 So f is discontinuous at 2

6. $\lim_{x \to c} f(x) = L = \lim_{x \to c} f(x_n) = L$ $(e + (X_n)_1 := \frac{1}{\sqrt{12}} + 2n\pi$ $(x_n)_2 := \frac{1}{\sqrt{12}} + 2n\pi$ $(x_n)_2 := \frac{1}{\sqrt{12}} + 2n\pi$ $(x_n)_2 := \frac{1}{\sqrt{12}} + 2n\pi$ $f(x_n) \neq f(x_n)$ so lim sin(x) does not exist. 50 f is not continuous 7. 45>0, 38=8 s.t. if [x]<8 $|f(x)-f(x)| = \int |x\sin(x)| \leq |x| < \delta = \xi$ Therefore, f is continuous at 0 f is continuous because composition of

Continuous functions is continuous

8. w.f.s.
$$|g(c)-f(c)| < \Sigma \quad \forall z > 0$$
 $g(x)=f(x) \quad \forall x$
 $|x-c| < \delta_1, \quad |f(x)-f(c)| < \frac{\varepsilon}{2}$
 $|x-c| < \delta_2, \quad |g(x)-g(c)| < \frac{\varepsilon}{2}$
 $S=\min \{\delta_1, \delta_2\}$
 $\exists S\in (C-\delta, C+\delta) \quad by \quad density \quad of \quad Q$
 $f(c)-g(c) = f(c)-f(c)+f(c)-g(c)$
 $f(c)-g(c) = f(c)-f(c)+f(c)-g(c)$
 $f(c)-g(c) = f(c)-f(c)+f(c)-g(c)$
 $f(c)-g(c) = f(c)-f(c)+f(c)-g(c)$
 $f(c)-g(c) = f(c)-f(c)+f(c)-g(c)$

9. Take E= fce), 7420 st. $\forall x \in (C-\alpha, C+\alpha)$ $|f(x) - f(c)| < S = \frac{f(c)}{2}$ Since f(c) > 0, $-\frac{f(c)}{2} < f(x) - f(c) < \frac{f(c)}{2}$ $f(x) > \frac{f(x)}{2} = 270$ 10. HE70, 38 s.t. if [X-y[< 8, (3(x)-g(y)] < E 50 if 1x-y-01=1x-y/c8, 1g(x-y)-g(0)/cg Since 9(0)=0, (9(x-y)) < E Also if |x-y/cs, |f(x)-f(y)| \(\xi_9(x-y) < \xi So f is continuous