Introduction

Figure 1: Construction @Concarneau, France

Mesures

Schémas de la Tiny

Mesures automatisées

information	Plage	pério	d C apteur	N°	Ctlr	topic & exemple
information	Plage	pério	d C apteur	N°	Ctlr	topic & exemple
Salon Temp (°C) & Hygro (%)	10 à 30 °C	10 min	Si7021	1 9	A	ltl/tiny/capteur/salon {"temp":20.1, "hygro":35}
Mezzanine temp. (°C)	10 à 30°C	$\frac{10}{\min}$	DS18B20) 2	A	ltl/tiny/capteur/mezzanin {"temp":20.1}
masse poele (°C)	20°C à 200°C	10 min	MAX318 + PT100	63	D	ltl/tiny/capteur/poele {"temp":20.1}
Extérieur Temp (°C) & Hygro (%)	-20 à 50°C	10 min	Si7021	4 10	С	ltl/tiny/capteur/dehors {"temp":10.3, "hygro":95}
Serre (°C)	-20 à 50°C	$\frac{10}{\min}$	DS18B20	5	В	ltl/tiny/capteur/serre {"temp":20.1}
sortie capteur air chaud (°C)	10 à 80°C	10 min	DS18B20	6	(A?)	ltl/tiny/capteur/airChaud {"temp":65.1}
liquide caloporteur sortie de chauffe- eau sol. (°C)	10 à 120°C	10 min	DS18B20	7	Е	ltl/tiny/capteur/solaireOu {"temp":65.1}
ballon eau chaude (°C)	20 à 100°C	10 min 10	DS18B20) 8 11	E	ltl/tiny/capteur/ECS {"temp":65.1}
Ensoleillement (si pas tp compliqué) (W/m2)		min	į	11		ltl/tiny/capteur/soleil {"sol":578}
Production énergétique phovoltaique (W)		10 min	PZEM- 017	12	F	ltl/tiny/capteur/prodPV {"p":57, "u":12.2, "i":4.7}
Consommation énergétique (W)		10 min	PZEM- 017	13	F	ltl/tiny/capteur/consoEle {"p":57, "u":12.2, "i":4.7}
Marche/Arrêt Ventilation destratificateur (bit)		-	??	14		ltl/tiny/capteur/ventilo {"on":true}
Marche/Arrêt Pompe chauffe eau (bit)		-	??	15	Е	$ \begin{array}{l} ltl/tiny/capteur/pompeCl\\ \{"on":false\} \end{array} $

 $\mathbf{N}^{\circ} = \text{Numéro sur le shéma}$

 $\mathbf{Ctlr} = \mathrm{microcontroleur} = \mathrm{carte}$ électronique interface entre le capteur et le réseau \mathbf{topic} Il seront de la forme :

ltl/tiny/capteur/xxxx pour tout ce qui vient des capteurs ltl/tiny/manu/xxxx

Mesures manuelles

Information	technologie Remarque		
Lancement et fin du feu (secondes)			16
Masse de bois ajouté au poele (kg)	Balance		17
Type de bois ajouté au poele			18
Humidité bois (%)			19
Debit air en sortie de capteur à air		Comment quantifier	20
chaud		cela ?	
Consommation énergétique nominal		??	21
des appareils élec			
Consommation eau douche (litres)	compteur		22
	eau		
Consommation gaz showerloop	Balance		23
(masse consommée) (kg)			
Temps passé sous la douche	Chronomètre		
(secondes)			
Temps début et fin d'utilisation de	Chronomè	tre	25
marmite norvégienne (secondes)			
Charge de la batterie (Volts		Le point 13	26
	de	nécessite la	
	$_{ m charge}$	connaissance du	
		voltage disponible	
		sur le réseau. Il sera	
		sans doute	
		intéressant de	
		transformer cette	
		valeur en $\%$	
Surface de collecte d'eau de pluie		Ca peut changer?	27
(m2)			
Niveau d'eau disponible en tps réel	Jauge	Automatisable, par	28
(litres)		capteur ultrason ou	
		pression d'air, ou	
		pesage	
Volume d'eau de pluie récolté (litres)	Compteur	Il faut de la pression	29
	d'eau ou	pour le compteur	
	pluviomètred'eau		
Qualité de l'eau en entrée de	Analyse		30
l'habitat	en labo		

Information	technologieRemarque	N°
Volume eau grise rejetée (litres)	Seaux	31
	avant	
	phyto ou	
	compteurs	
Qualité de l'eau en sortie de l'habitat	Analyse	32
	en labo	
Masse de déchet organique issu de	balance	33
gaspillage (fruit pourri,) (kg)		
Masse de dechet organique issu	Nb de	34
toilette seche	seaux	
Type de matière carbonée ajouté		35
aux toilettes		
Type et nb de commission faites aux		36
toilettes		

Matériel

Points (N°)	Modèles	Nombre	Montants
19 4 10	Si7021	2	2
$256\ 7\ 8$	DS18B20	5	1
$12\ 13\ 26$	PZEM-017	2	14
3	MAX31865	1	3
3	PT100	1	5
3	SEN0198	1	20
AB C DE	ESP8266	5	3
F	Arduino Mega + WiFi	1	12
server	OrangePi Zero	1	16
server	Carte Orange Pi NAS	1	12
server	Carte micro SD	1	4
server	Disque dur SSD	1	22
alims	step down $12V$ $5V$	7	3

Remarques:

Concernant les mesures de température au niveau du ballon d'eau chaude, je pense qu'il serait intéressant de mettre plusieurs capteurs, au moins 3, à différentes hauteurs du ballon. Cela permet d'avoir une meilleure idée de la quantité d'eau chaude présente. La liste de matériel est une liste minimale qui pourra s'étoffer par la suite. De plus, elle ne contient pas de nombreuses petites bricoles comme des cables et des résistances par exemple.