Úvod do robotiky a mechatroniky (URM)

Přednáška č. 3:

Úmluvy pro popis kinematiky manipulátorů

M. Švejda

FAV, ZČU v Plzni, Katedra kybernetiky

poslední revize: 2. 12. 2013

- Jak systematickou cestou popsat pohyb mech. konstrukce manipulátoru?
- každé rameno manipulátoru je pevně spojeno se svým s.s.
- ullet \Rightarrow pohyb manipulátoru = transformace mezi s.s. jeho ramen
- dva typy parametrů ovlivňující pohyb manipulátoru:
 geometrické (návrhové parametry) určují mechanickou konstrukci (tvar ramen, rozmístění kloubů) kloubové souřadnice určují DoF manipulátoru (aktuátory)
- obecně: pro lib. transformaci polohy s.s. v prostoru je potřeba 6 nezávislých souřadnic (parametrů)
- spec. případ: vhodným definováním s.s. ve struktuře manipulátoru (omezení) možno redukovat počet parametrů na 4
- účel úmluv: jednoduchou, systematickou, rekurzivní (algoritmizovatelnou) cestou definovat s.s. ramen manipulátoru a jejich vzájemné transformace (s min. počtem parametrů)

Denavit-Hartenbergova úmluva

Denavit-Hartenbergova (D-H) úmluva

- dnes asi nejznámější a nejrozšířenější pro popis sériových manipulátorů
- předpokládejme dvě ramena manipulátoru Link i 1 a Link i spojené
 1 DoF kloubem Joint i

Definice s.s. F_i a pomocného s.s. F'_i za předpokladu znalosti s.s. F_{i-1} :

• osa z_i = osa rotace/translace kloubu Joint i + 1, osa z'_i = osa rotace/translace JOINT i-1kloubu Joint i

normála os
$$z_{i-1}, z_i$$

- $O_i \in \mathbf{z}_i \cap (\mathbf{z}_{i-1} \perp \mathbf{z}_i)$ $O'_i \in \mathbf{z}_{i-1} \cap (\mathbf{z}_{i-1} \perp \mathbf{z}_i)$
- \mathbf{x}_i , \mathbf{x}_i' ve směru $(\mathbf{z}_{i-1} \perp \mathbf{z}_i)$, z *Joint i* do *Joint i* + 1
- pravotočivé s.s. ⇒ y_i, y_{i'}
- Pozn.: počátky s.s. obecně neleží ve fyzických středech kloubů!

Denavit-Hartenbergova úmluva

Umístění s.s. dle D-H úmluvy není jednoznačně definováno v případě:

- pro F₀ jednoznačně určena pouze osa
 z₀ (dle Joint i), x₀ a O₀ lze volit libovolně
- pro F_n (n...# 1 DoF kloubů) není jednoznačně určena osa z_n (Joint n + 1 neexistuje), osa x_n však musí ležet ve směru z_{n-1} ⊥ z_n
- dvě po sobě jdoucí osy kloubů (z_{i-1}, z_i) jsou rovnoběžné ⇒ (z_{i-1} ⊥ z_i) není jednoznačně def. (může být volena libovolně ve směru os kloubů, např. aby d_i = 0)
- dvě po sobě jdoucí osy kloubů (z_{i-1}, z_i) se protínají $\Rightarrow (z_{i-1} \perp z_i)$ není def. (osa x_i volena kolmo na rovinu tvořenou osami z_{i-1}, z_i , směr (\pm) libovolný)

Denavit-Hartenbergova úmluva

Význam geometrických parametrů:

 možné plně popsat 4 tzv. D-H geometrickými parametry

```
a_i.....vzdálenost počátků O_i a O_i' kolmá vzd. os \mathbf{z}_{i-1} a \mathbf{z}_i d_i.....vzdálenost počátků O_{i-1} a O_i' kolmá vzd. os \mathbf{x}_{i-1} a \mathbf{x}_i \alpha_i..... úhel mezi osami \mathbf{z}_{i-1}, \mathbf{z}_i (pootočení s.s. F_i' okolo \mathbf{x}_i' resp. \mathbf{x}_i) úhel natočení mezi osami \mathbf{z}_{i-1}, a \mathbf{z}_i (pootočení s.s. F_{i-1}, okolo \mathbf{z}_{i-1}) úhel natočení mezi osami \mathbf{x}_{i-1}, \mathbf{x}_i (pootočení s.s. F_{i-1} okolo \mathbf{z}_{i-1}) úhel natočení mezi osami \mathbf{x}_{i-1} a \mathbf{x}_i
```


Role aktivních kloubů v popisu transformací:

kloub *Joint i* je typu \mathbf{P} : d_i - proměnná definující pohyb kloubu

 $a_i,\,lpha_i,\, heta_i$ - konst. def. geom. uspořádání ramene $Link\ i$

kloub *Joint i* je typu **R**: θ_i - proměnná definující pohyb kloubu

 a_i , α_i , d_i - konst. def. geom. uspořádání ramene Link i

Denavit-Hartenbergova úmluva

Definice vzájemných transformací dvou po sobě jdoucích s.s. F_{i-1} , F_i :

- vyber s.s. F_{i-1}
- posuň s.s. F_{i-1} podél osy z_{i-1} o vzd. d_i
 a otoč jej okolo osy z_{i-1} o úhel θ_i ⇒
 s.s. F'_i
- posuň s.s. F_i podél osy x_i o vzd. a_i a otoč jej okolo osy x_i o úhel α_i ⇒ s.s. F_i

Homogenní transformační matice $F_{i-1} \rightarrow F'_i$, $F'_i \rightarrow F_i$:

$$\boldsymbol{T}_{i'}^{i-1} = \operatorname{Trans}(\boldsymbol{z}, d_i) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_i) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{T}_{i}^{i'} = \operatorname{Trans}(\boldsymbol{x}, a_{i}) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_{i}) = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & -c_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Pozn.: video D-H úmluva

Denavit-Hartenbergova úmluva

Výsledná transformace přechodu ze s.s. F_{i-1} do s.s. F_i :

$$\begin{aligned} \boldsymbol{T}_{i}^{i-1} &= \boldsymbol{T}_{i'}^{i-1} \cdot \boldsymbol{T}_{i}^{i'} = \\ &= \operatorname{Trans}(\boldsymbol{z}, d_{i}) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_{i}) \cdot \operatorname{Trans}(\boldsymbol{x}, a_{i}) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_{i}) = \\ &= \begin{bmatrix} \boldsymbol{c}_{\theta_{i}} & -\boldsymbol{s}_{\theta_{i}} \boldsymbol{c}_{\alpha_{i}} & \boldsymbol{s}_{\theta_{i}} \boldsymbol{s}_{\alpha_{i}} & \boldsymbol{a}_{i} \boldsymbol{c}_{\theta_{i}} \\ \boldsymbol{s}_{\theta_{i}} & \boldsymbol{c}_{\theta_{i}} \boldsymbol{c}_{\alpha_{i}} & -\boldsymbol{c}_{\theta_{i}} \boldsymbol{s}_{\alpha_{i}} & \boldsymbol{a}_{i} \boldsymbol{s}_{\theta_{i}} \\ \boldsymbol{0} & \boldsymbol{s}_{\alpha_{i}} & \boldsymbol{c}_{\alpha_{i}} & \boldsymbol{d}_{i} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{1} \end{bmatrix} \end{aligned}$$

- homogenní transformační matice T_i^{i-1} je závislá na geometrických parametrech ramen a na kloubových souřadnicích
- pro účely řešení kinematických úloh platí (geom. par. ramene isou konstanty):

kloub *Joint i* je typu
$$\mathbf{P}: \dots : \mathbf{T}_i^{i-1} = \mathbf{T}_i^{i-1}(d_i)$$
 kloub *Joint i* je typu $\mathbf{R}: \dots : \mathbf{T}_i^{i-1} = \mathbf{T}_i^{i-1}(\theta_i)$

Denavit-Hartenbergova úmluva - Příklady

Sériový planární 3 DoF manipulátor:

D-H parametry:

		-		
Joint i	di	θ_i	ai	α_i
1	0	θ_1	L ₁	0
2	0	θ_2	L ₂	0
3	0	θ_3	L ₃	0

Denavit-Hartenbergova úmluva - Příklady

Sériový prostorový antropomorfní 3 DoF manipulátor:

D-H parametry:

		-		
Joint i	di	θ_i	a_i	α_i
1	<i>I</i> ₁	θ_1	0	$\frac{\pi}{2}$
2	0	θ_2	l ₂	0
3	0	θ_3	0	$\frac{\pi}{2}$

Denavit-Hartenbergova úmluva - Příklady

Sériový prostorový antropomorfní manipulátor. se sférickým zápěstím (6 DoF):

D-H parametry:

p						
Joint i	di	θ_i	ai	α_i		
1	1/1	θ_1	0	$\frac{\pi}{2}$		
2	0	θ_2	<i>l</i> ₂	0		
3	0	θ_3	0	$\frac{\pi}{2}$		
4	14	θ_4	0	$-\frac{\pi}{2}$		
5	0	θ_5	0	$\frac{\pi}{2}$		
6	16	θ_{6}	0	0		

Khalil-Kleinfingerova úmluva

Khalil-Kleinfingerova (K-K) úmluva

- modifikací D-H úmluvy rozdíl v přidělení s.s.
- pro D-H: s.s. F_i (pevně svázán s ramenem Link i) je umístěn v ose kloubu Joint i + 1 (osa z_i shodná s osou rotace/translace Joint i + 1)
- pro K-K: s.s. F_i (pevně svázán s ramenem Link i) je umístěn přímo v ose kloubu určující jeho pohyb, tedy Joint i (osa z_i shodná s osou rotace/translace Joint i)
- pravděpodobně přirozenější vyjádření
- možnost jednoznačně popisovat rozvětvené kinematické řetězce

Khalil-Kleinfingerova úmluva

Definice s.s. F_i a pomocného s.s. F'_i za předpokladu znalosti s.s. F_{i-1} :

- osa z_i, z'_i = osa rotace/translace kloubu
 Joint 1
- $O_i \in \mathbf{z}_i \cap (\mathbf{z}_i \perp \mathbf{z}_{i+1})$ $O'_i \in \mathbf{z}_i \cap (\mathbf{z}_{i-1} \perp \mathbf{z}_i)$
- x_i ve směru (z_i ⊥ z_{i+1}), z Joint i do Joint i + 1
- \mathbf{x}_i' ve směru $(\mathbf{z}_{i-1} \perp \mathbf{z}_i)$, z Joint i-1 do Joint i
- pravotočivé s.s. ⇒ y_i, y_{i'}

Khalil-Kleinfingerova úmluva

Umístění s.s. dle K-K úmluvy není jednoznačně definováno v případě:

- s.s. F₀ lze volit libovolně (zpravidla totožný s F₁ pro d₁ = 0 resp. θ₁ = 0 tzn. nulová poloha kloubu *Joint* 1)
- pro F_n je jednoznačně určena pouze osa z_n (Joint n + 1 neexistuje), x_n může být volena libovolně (zpravidla totožná s x_{n-1} pro nul. polohu kloubu Joint n)
- dvě po sobě jdoucí osy kloubů ($\mathbf{z}_i, \mathbf{z}_{i+1}$) jsou rovnoběžné $\Rightarrow (\mathbf{z}_i \perp \mathbf{z}_{i+1})$ není def. (může být volena libovolně ve směru os kloubů, např. aby $d_i = 0$)
- dvě po sobě jdoucí osy kloubů (z_i, z_{i+1}) se protínají ⇒ (z_i ⊥ z_{i+1}) není def. (osa x_i volena kolmo na rovinu tvořenou osami z_i, z_{i+1}, směr (±) libovolný)

Khalil-Kleinfingerova úmluva

Význam geometrických parametrů:

- možné plně popsat 4 tzv. K-K geometrickými parametry
 - α_iúhel mezi osami \mathbf{z}_{i-1} a \mathbf{z}_i kolem normály \mathbf{x}_{i-1}
 - $a_i \dots v$ zdálenost mezi počátkem O_{i-1} a osou z_i (kolmá vzdálenost mezi osami)
 - $d_i \dots vz$ dálenost mezi počátky O'_i a O_i
 - θ_i úhel mezi osami \mathbf{x}_{i-1} a \mathbf{x}_i daný kolem osy \mathbf{z}_i

Role aktivních kloubů v popisu transformací (totožná jako u D-H úmluvy):

kloub *Joint i* je typu \mathbf{P} : d_i - proměnná definující pohyb kloubu

 a_i, α_i, θ_i - konst. def. geom. uspořádání ramene Link i

kloub *Joint i* je typu \mathbf{R} : θ_i - proměnná definující pohyb kloubu

 $a_i, \, \alpha_i, \, d_i$ - konst. def. geom. uspořádání ramene $Link \, i$

Khalil-Kleinfingerova úmluva

Definice vzájemných transformací dvou po sobě jdoucích s.s. F_{i-1} , F_i :

- vyber s.s. F_{i-1}
- posuň tento systém podél osy
 x_{i-1} o vzd. a_i a otoč jej okolo osy
 x_{i-1} o úhel α_i ⇒ s.s. F_i'
- posuň s.s. F_i podél osy z_i o vzd.
 d_i a otoč jej okolo osy z_i o úhel
 θ_i ⇒ dostáváme s.s. F_i

Homogenní transformační matice $F_{i-1} \rightarrow F'_i$, $F'_i \rightarrow F_i$:

$$\boldsymbol{T}_{i'}^{i-1} = \operatorname{Trans}(\boldsymbol{x}, a_i) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_i) = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_i} & -s_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & c_{\alpha_i} & -s_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{T}_{i}^{l'} = \operatorname{Trans}(\boldsymbol{z}, \, d_{i}) \cdot \operatorname{Rot}(\boldsymbol{z}, \, \theta_{i}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Khalil-Kleinfingerova úmluva

Výsledná transformace přechodu ze s.s. F_{i-1} do s.s. F_i :

$$\begin{aligned} \boldsymbol{T}_{i}^{i-1} &= \boldsymbol{T}_{i'}^{i-1} \cdot \boldsymbol{T}_{i}^{i'} = \\ &= \operatorname{Trans}(\boldsymbol{x}, \boldsymbol{a}_{i}) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_{i}) \cdot \operatorname{Trans}(\boldsymbol{z}, d_{i}) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_{i}) = \\ &= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & a_{i} \\ c_{\alpha_{i}}s_{\theta_{i}} & c_{\alpha_{i}}c_{\theta_{i}} & -s_{\alpha_{i}} & -s_{\alpha_{i}}d_{i} \\ s_{\alpha_{i}}s_{\theta_{i}} & s_{\alpha_{i}}c_{\theta_{i}} & c_{\alpha_{i}} & c_{\alpha_{i}}d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Khalil-Kleinfingerova úmluva - Příklady

Sériový planární 3 DoF manipulátor:

K-K parametry:

Joint i	di	θ_i	ai	α_i
1	0	θ_1	0	0
2	0	θ_2	L ₂	0
3	0	θ_3	L ₃	0

Khalil-Kleinfingerova úmluva - Příklady

Sériový prostorový antropomorfní manip. se sférickým zápěstím (6 DoF):

K-K parametry:

Joint i	di	θ_i	ai	α_i	
1	0	θ_1	0	0	
2	0	θ_2	0	$\frac{\pi}{2}$	
3	0	θ_3	l ₃	0	
4	<i>I</i> ₄	θ_4	0	$\frac{\pi}{2}$	
5	0	θ_5	0	$-\frac{\pi}{2}$	
6	0	θ_{6}	0	$\frac{\pi}{2}$	

Khalil-Kleinfingerova úmluva (rozvětvený kinematický řetězec)

D-H úmluva pro rozvětvený kinematický řetězec:

- dle D-H úmluvy:
 - s.s. F_i v kloubu *Joint i* (spřažen s ramenem *Link i*)
 - s.s. \tilde{F}_i v kloubu *Joint* i + 2 (opět spřažen s ramenem *Link* i)
- Otázka: jaké parametry popisují polohu ramene Link i (d_i, θ_i, a_i, α_i či d̄_i, θ̄_i, ā̄_i, ᾱ_i) ???
- Odpověď: Není jednoznačné!
- Řešení: použití K-K úmluvy

Khalil-Kleinfingerova úmluva (rozvětvený kinematický řetězec)

K-K úmluva pro rozvětvený kinematický řetězec:

- transformace Joint i − 1 → Joint i je popsána standardně dle K-K úmluvy 4 K-K parametry a_i, α_i, d_i, θ_i (F_{i-1} a F_i ve vzájemně specifické poloze)
- definujme nový pom. s.s. ¹F_{i-1} daný
 z_{i-1} ⊥ z_{i+1}
- transformace $F_{i-1} \rightarrow {}^1F_{i-1}$ určena pouze 2 parametry b_{i+1} , γ_{i+1}

$$b_{i+1}$$
 ... vzd. mezi počátky $m{O}_{i-1}$, $m{O}'_{i-1}$ γ_{i+1} ... úhel mezi osami $m{x}_{i-1}$ a $m{x}'_{i-1}$

Definice vzájemné transformace $F_{i-1} \rightarrow F'_{i-1}$:

• posuň ss. F_{i-1} podél osy \mathbf{z}_{i-1} o vzd. b_{i-1} a otoč jej okolo osy \mathbf{z}_{i-1} o úhel γ_{i-1} \Rightarrow s.s. ${}^1F'_i$

Khalil-Kleinfingerova úmluva (rozvětvený kinematický řetězec)

Transformace ${}^1F_{i-1} \to F_{i+1}$ dána opět dle K-K úmluvy ($a_{i+1}, \alpha_{i+1}, d_{i+1}, \theta_{i+1}$):

$$\begin{aligned} \boldsymbol{T}_{i+1}^{l_{i-1}} &= \operatorname{Trans}(\boldsymbol{x}, a_{i+1}) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_{i+1}) \cdot \operatorname{Trans}(\boldsymbol{z}, d_{i+1}) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_{i+1}) = \\ &= \begin{bmatrix} c_{\theta_{i+1}} & -s_{\theta_{i+1}} & 0 & a_{i+1} \\ c_{\alpha_{i+1}} s_{\theta_{i+1}} & c_{\alpha_{i+1}} c_{\theta_{i+1}} & -s_{\alpha_{i+1}} & -s_{\alpha_{i+1}} d_{i+1} \\ s_{\alpha_{i+1}} s_{\theta_{i+1}} & s_{\alpha_{i+1}} c_{\theta_{i+1}} & c_{\alpha_{i+1}} & c_{\alpha_{i+1}} d_{i+1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Khalil-Kleinfingerova úmluva (rozvětvený kinematický řetězec)

Výsledná transformace přechodu ze s.s. F_{i-1} do s.s. F_{i+1} :

Pozn.: parametry b_{i+1} , γ_{i+1} jsou konst. geom. parametry (tvar $Link \ i-1$)

- Obecně:
 - Jaká bude poloha koncového efektoru manipulátoru (zobecněné souřadnice \boldsymbol{X}), pokud známe polohy jeho kloubů (kloubové souřadnice \boldsymbol{Q})?
- Matematicky:

$$X = F(Q, \xi)$$

kde ξ ... návrhové (geometrické) parametry manipulátoru

- S ohledem na zavedené úmluvy pro popis kin. řetězců (D-H, K-K úmluva):
 - Vyjádření postupné transformace mezi s.s. jednotlivých ramen manipulátoru + skládání transformací
- Předpokládejme *n* kloubových souřadnic **Q** ve tvaru:

$$m{Q} = egin{bmatrix} q_1 \ q_2 \ dots \ q_n \end{bmatrix}, \quad ext{kde } q_i = egin{bmatrix} heta_i, & ext{pokud } \textit{Joint } i ext{ je typu } m{R} \ d_i, & ext{pokud } \textit{Joint } i ext{ je typu } m{P} \end{bmatrix}$$

Využití přímého geometrického modelu

- téměř vždy lze měřit pouze polohy aktuátorů ${\bf Q}$ (enkodery pohonů) nikoli polohu konc. efektoru ${\bf X}$ DGM: ${\bf Q} \to {\bf X}$
- určení polohy koncového efektoru po zapnutí manipulátoru ze známé polohy z enkodérů aktuátorů
- plánování trajektorie z aktuálně dosažené polohy konc. efektoru do nové zadané polohy
 Např.: k naplánování translačního pohybu po přímce z akt. polohy konc. efektoru potřebujeme znát počáteční (rekonstruovaný z Q) a koncový bod přímky (zadaný)
- v kalibračních algoritmech (metody opravy geometrických parametrů manipulátoru podle skutečného měření) Např.: Přesné specializované kalibrační zařízení dokáže měřit polohu (pozici a orientaci) konc. efektoru X*, pomocí DGM lze z odpovídající měřené polohy aktuátorů Q určit předpokládanou polohu konc. efektoru X (závislou na hodnotách geometrických parametrů §). Porovnání X a X* ⇒ korekce §
- atd.

Kompenzace polohy základny a koncového efektoru

Kompenzace polohy koncového základny a koncového efektoru:

- první (F₀) a poslední (F_n) s.s. manipulátoru určen (alespoň částečně) dle úmluvy pro zavedení s.s. (počátky s.s. nemusí ani ležet ve středech kloubů!)
- **kompenzace polohy základny** hom. transform. matice T_0^b nebo T_0^{-1} \Rightarrow umístění celého manipulátoru (s.s. F_0) vzhledem k bázovému s.s. F_b nebo F_0^{-1}
 - **Např.:** umístění manipulátoru na výrobní lince (F_b , F_{-1} ... s.s. výrobní linky)
- kompenzace polohy konc. efektoru hom. transform. matice T_e^n nebo T_{n+1}^n
 - \Rightarrow umístění s.s. konc. efektoru (s.s. F_e nebo F_{n+1}) vzhledem k poslednímu s.s. F_n
 - **Např.:** umístění pracovního nástroje na koncovém efektoru (F_e , F_{n+1} ... s.s. pracovního nástroje)
- hom. transform. matice T_0^b nebo T_0^{-1} a T_e^n nebo T_{n+1}^n jsou **konstantní** matice (vyjma např. mobilních robotů)

Kompenzace polohy základny a koncového efektoru

Přímý geometrický model lze tedy vyjádřit:

$$m{X} = m{T}_0^b \cdot \prod_{i=1} m{T}_i^{i-1}(q_i, m{\xi}) \cdot m{T}_e^n = m{F}(m{Q}, m{\xi})$$

- $T_i^{i-1}(q_i, \xi)$ je hom. trans. matice definující polohu s.s. F_i vzhledem k s.s. F_{i-1} (proměnná matice závislá na aktuální poloze kloubové souřadnice q_i)
- ullet $oldsymbol{T}_0^b, oldsymbol{T}_e^n$ jsou konst. hom. trans. matice (kompenzace polohy základny a konc. ef.)
- ξ jsou geometrické návrhové parametry manipulátoru (D-H respektive K-K parametry nereprezentující polohy aktuátorů)
- výsledná polohy konc. efektoru $T_e^b = X \Rightarrow$ hom. transform matice: $r_e^b = T_e^b [1:3,4] \dots$ pozice, $R_e^b = T_e^b [1:3,1:3] \dots$ orientace_

Příklady (D-H úmluva), Sériový planární 2DoF manipulátor (1/3)

Sériový planární 2DoF manipulátor:

D-H parametry:

Joint i	di	θ_i	ai	α_i
1	0	θ_1	L ₁	0
2	0	θ_2	L ₂	0

Kloubové souřadnice:
$$\mathbf{Q} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

Zobecněné souřadnice: $\mathbf{X} = \mathbf{O}_{2}^{0}[1:2]$

Geometrické parametry: $\boldsymbol{\xi} = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}$

Hom. trans. matice:

$$\begin{aligned} \boldsymbol{T}_{i}^{i-1} &= \operatorname{Trans}(\boldsymbol{z}, d_{i}) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_{i}) \cdot \\ &\cdot \operatorname{Trans}(\boldsymbol{x}, a_{i}) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_{i}) = \\ &= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Příklady (D-H úmluva), Sériový planární 2DoF manipulátor (2/3)

Homogenní transformační matice:

$$\boldsymbol{T}_1^0 = \begin{bmatrix} c_1 & -s_1 & 0 & c_1 \cdot L_1 \\ s_1 & c_1 & 0 & s_1 \cdot L_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \boldsymbol{T}_2^1 = \begin{bmatrix} c_2 & -s_2 & 0 & c_2 \cdot L_2 \\ s_2 & c_2 & 0 & s_2 \cdot L_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \ \begin{array}{c} s_i = \sin(\theta_i) \\ c_i = \cos(\theta_i) \end{array}$$

$$\boldsymbol{T}_2^0 = \boldsymbol{T}_1^0 \cdot \boldsymbol{T}_2^1 = \begin{bmatrix} c_1 c_2 - s_1 s_2 & -c_1 s_2 - s_1 c_2 & 0 & c_1 c_2 L_2 - s_1 s_2 L_2 + c_1 L_1 \\ s_1 c_2 + c_1 s_2 & c_1 c_2 - s_1 s_2 & 0 & s_1 c_2 L_2 + c_1 s_2 L_2 + s_1 L_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

aplikace součtových vzorců: $s_{x+y}=s_xc_y+c_xs_y,\ c_{x+y}=c_xc_y-s_xs_y$

$$\boldsymbol{T}_{2}^{0} = \begin{bmatrix} c_{12} & -s_{12} & 0 & L_{2}c_{12} + L_{1}c_{1} \\ s_{12} & c_{12} & 0 & L_{2}s_{12} + L_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_{2}^{0} & \boldsymbol{r}_{0,2}^{0} \\ -\overline{0} - \overline{0} - \overline{0} - \overline{1} - 1 \end{bmatrix}, \quad s_{ij} = \sin(\theta_{i} + \theta_{j}) \\ c_{ij} = \cos(\theta_{i} + \theta_{j}) \end{bmatrix}$$

$$\mathbf{X} = \mathbf{r}_{0,2}^{0}[1:2] = \begin{bmatrix} L_{2}c_{12} + L_{1}c_{1} \\ L_{2}s_{12} + L_{1}s_{1} \end{bmatrix}$$

Příklady (D-H úmluva), Sériový planární 2DoF manipulátor (3/3)

Model v SimMechanics:

Příklady (D-H úmluva), Sériový cylindrický 3DoF manipulátor (1/3)

Sériový cylindrický 3DoF manipulátor:

D-H parametry:

Joint i	di	θ_i	ai	α_i
1	<i>L</i> ₁	θ_1	0	0
2	d_2	0	0	$-\frac{\pi}{2}$
3	d ₃	0	0	0

Kloubové souřadnice: $\mathbf{Q} = \begin{bmatrix} \theta_1 \\ d_2 \\ d_3 \end{bmatrix}$

Zobecněné souřadnice: $\mathbf{X} = \mathbf{O}_3^0$ Geometrické parametry: $\boldsymbol{\xi} = \begin{bmatrix} L_1 \end{bmatrix}$ Hom. trans. matice:

$$T_i^{i-1} = \operatorname{Trans}(\boldsymbol{z}, d_i) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_i) \cdot \operatorname{Trans}(\boldsymbol{x}, a_i) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_i)$$

Příklady (D-H úmluva), Sériový cylindrický 3DoF manipulátor (2/3)

Homogenní transformační matice:

$$\boldsymbol{T}_{1}^{0} = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \boldsymbol{T}_{2}^{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \boldsymbol{T}_{3}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$m{T}_3^0 = m{T}_1^0 \cdot m{T}_2^1 \cdot m{T}_3^2 = egin{bmatrix} c_1 & 0 & -s_1 & -s_1 d_3 \ s_1 & 0 & c_1 & c_1 d_3 \ 0 & -1 & 0 & d_2 + L_1 \ 0 & 0 & 0 & 1 \end{bmatrix}$$
 $m{X} = m{r}_{0,3}^0 = egin{bmatrix} -s_1 d_3 \ c_1 d_3 \ d_2 + L_1 \end{bmatrix}$

Příklady (D-H úmluva), Sériový cylindrický 3DoF manipulátor (3/3)

Model v SimMechanics:

Příklady (D-H úmluva), Sériový antropomorfní 3DoF manipulátor (1/3)

Sériový antropomorfní 3DoF manipulátor:

D-H parametry:

Joint i	di	θ_i	ai	α_i
1	L ₁	θ_1	0	$\frac{\pi}{2}$
2	0	θ_2	L ₂	0
3	0	θ_3	0	$\frac{\pi}{2}$

Kloubové souřadnice:

$$\mathbf{Q} = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 \end{bmatrix}$$

Zobecněné souřadnice: $\mathbf{X} = \mathbf{O}_e^0$

Geometrické parametry:

$$\boldsymbol{\xi} = \begin{bmatrix} L_1 & L_2 & L_3 \end{bmatrix}$$

Komp. polohy konc. efektoru.: T_e^3

$$\boldsymbol{T}_{e}^{3} = \operatorname{Trans}(\boldsymbol{z}, L_{3}) \cdot \operatorname{Rot}(\boldsymbol{x}, -\frac{\pi}{2})$$

 \rightarrow F_3 má pevně určený počátek dle D-H úmluvy, ale např. pracovní nástroj je umístěn ve vzd. L_3 ve směru osy z_3 s jinou orientací.

Příklady (D-H úmluva), Sériový antropomorfní 3DoF manipulátor (2/3)

Homogenní transformační matice:

$$\begin{split} \boldsymbol{T}_{0}^{0} &= \boldsymbol{T}_{1}^{0} \cdot \boldsymbol{T}_{2}^{1} \cdot \boldsymbol{T}_{3}^{2} \cdot \boldsymbol{T}_{e}^{3} = \\ & \begin{bmatrix} -c_{1} \left(s_{2}s_{3} - c_{2}c_{3} \right) & -c_{1} \left(s_{2}c_{3} + c_{2}s_{3} \right) & s_{1} & c_{1} \left(L_{3}c_{2}s_{3} + L_{3}s_{2}c_{3} + c_{2}L_{2} \right) \\ -s_{1} \left(s_{2}s_{3} - c_{2}c_{3} \right) & -s_{1} \left(s_{2}c_{3} + c_{2}s_{3} \right) & -c_{1} & s_{1} \left(L_{3}c_{2}s_{3} + L_{3}s_{2}c_{3} + c_{2}L_{2} \right) \\ s_{2}c_{3} + c_{2}s_{3} & -s_{2}s_{3} + c_{2}c_{3} & 0 & L_{3}s_{2}s_{3} - L_{3}c_{2}c_{3} + s_{2}L_{2} + L_{1} \\ 0 & 0 & 0 & 1 \\ X &= \boldsymbol{r}_{0,e}^{0} &= \begin{bmatrix} c_{1} \left(L_{3}c_{2}s_{3} + L_{3}s_{2}s_{3} + c_{2}L_{2} \right) \\ s_{1} \left(L_{3}c_{2}s_{3} + L_{3}s_{2}s_{3} + c_{2}L_{2} \right) \\ L_{3}s_{2}s_{3} - L_{3}c_{2}s_{3} + s_{2}L_{2} + L_{1} \end{bmatrix} \end{split}$$

Příklady (D-H úmluva), Sériový antropomorfní 3DoF manipulátor (3/3)

Model v SimMechanics:

Příklady (D-H úmluva), 3DoF manipulátor typu sférického zápěstí (1/4)

3DoF manipulátor typu sférického zápěstí ($z_0 \cap z_1 \cap z_2 \vee 1$ bodě!):

D-H parametry:

Joint i	di	θ_i	ai	α_i
1	L ₁	θ_1	0	$-\frac{\pi}{2}$
2	0	θ_2	0	$\frac{\pi}{2}$
3	L ₂	θ_3	0	0

Kloubové souřadnice:
$$\mathbf{Q} = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

Zobecněné souřadnice:

$$X = R_3^0$$

Geometrické parametry: $\boldsymbol{\xi} = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}$

Hom. trans. matice:

$$T_i^{i-1} = \operatorname{Trans}(\boldsymbol{z}, d_i) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_i) \cdot \operatorname{Trans}(\boldsymbol{x}, a_i) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_i)$$

Příklady (D-H úmluva), 3DoF manipulátor typu sférického zápěstí (2/4)

Homogenní transformační matice:

$$\boldsymbol{T}_1^0 = \begin{bmatrix} c_1 & 0 & -s_1 & 0 \\ s_1 & 0 & c_1 & 0 \\ 0 & -1 & 0 & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \boldsymbol{T}_2^1 = \begin{bmatrix} c_2 & 0 & s_2 & 0 \\ s_2 & 0 & -c_2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \boldsymbol{T}_3^2 = \begin{bmatrix} c_3 & -s_3 & 0 & 0 \\ s_3 & c_3 & 0 & 0 \\ 0 & 0 & 1 & L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{T}_3^0 = \boldsymbol{T}_1^0 \cdot \boldsymbol{T}_2^1 \cdot \boldsymbol{T}_3^2 = \begin{bmatrix} c_1c_2c_3 - s_1s_3 & -c_1c_2s_3 - s_1c_3 & c_1s_2 & c_1s_2L_2 \\ s_1c_2c_3 + c_1s_3 & -s_1c_2s_3 + c_1c_3 & s_1s_2 & s_1s_2L_2 \\ -s_2c_3 & s_2s_3 & c_2 & c_2L_2 + L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Zobecněné souřadnice (neminimální reprezentace maticí rotace):

$$\boldsymbol{X} = \boldsymbol{R}_3^0 = \begin{bmatrix} c_1c_2c_3 - s_1s_3 & -c_1c_2s_3 - s_1c_3 & c_1s_2 \\ s_1c_2c_3 + c_1s_3 & -s_1c_2s_3 + c_1c_3 & s_1s_2 \\ -s_2c_3 & s_2s_3 & c_2 \end{bmatrix}$$

Příklady (D-H úmluva), 3DoF manipulátor typu sférického zápěstí (3/4)

Zobecněné souřadnice (v minimální reprezentaci - Eulerovy úhly): Předpokládejme postupnou rotaci ve schématu ZYZ o úhly θ_1 , θ_2 , θ_3 :

$$\mathbf{R}_{z}(\theta_{1}) \cdot \mathbf{R}_{y}(\theta_{2}) \cdot \mathbf{R}_{z}(\theta_{3}) = \\
= \begin{bmatrix} c_{1} & -s_{1} & 0 \\ s_{1} & c_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_{2} & 0 & s_{2} \\ 0 & 1 & 0 \\ -s_{2} & 0 & c_{2} \end{bmatrix} \cdot \begin{bmatrix} c_{3} & -s_{3} & 0 \\ s_{3} & c_{3} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{R}_{3}^{0}$$

Zobecněné souřadnice koncového efektoru sférického zápěstí lze vyjádřit Eulerovými úhly dle schématu ZYZ:

$$\boldsymbol{X} = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 \end{bmatrix}^T$$

Pozn.: Singularita v reprezentaci Eulerovými úhly ($\theta_2 = 0$ resp. $\theta_2 = \pi$):

$$\textit{\textbf{R}}_{3}^{0} = \begin{bmatrix} c_{\theta_{1}+\theta_{3}} & -s_{\theta_{1}+\theta_{3}} & 0 \\ s_{\theta_{1}+\theta_{3}} & c_{\theta_{1}+\theta_{3}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ resp. } \textit{\textbf{R}}_{3}^{0} = \begin{bmatrix} -c_{\theta_{1}-\theta_{3}} & -s_{\theta_{1}-\theta_{3}} & 0 \\ -s_{\theta_{1}-\theta_{3}} & c_{\theta_{1}-\theta_{3}} & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Příklady (D-H úmluva), 3DoF manipulátor typu sférického zápěstí (4/4)

Model v SimMechanics:

Příklady (D-H úmluva), 6DoF cylin. manipulátor se sférickým zápěstím (1/2)

6DoF cylin. manipulátor se sférickým zápěstím:

- napojení 3DoF cylindrického manipulátoru na 3DoF sférické zápěstí
- sfér. zápěstí $\theta_{1...3} \rightarrow \theta_{4...6}$, $L_1 = 0$ (středy kloubů zápěstí v jediném bodě)

D-H parametry:

	,			
Joint i	di	θ_i	ai	α_i
1	L ₁	θ_1	0	0
2	d_2	0	0	$-\frac{\pi}{2}$
3	d ₃	0	0	0
4	0	θ_4	0	$-\frac{\pi}{2}$
5	0	θ_5	0	$\frac{\pi}{2}$
6	L ₂	θ_{6}	0	0

Kloubové souřadnice:

Richard Reserve Schradnice:
$$\mathbf{Q} = \begin{bmatrix} \theta_1 & d_2 & d_3 & \theta_4 & \theta_5 & \theta_6 \end{bmatrix}^T$$

Zobecněné souřadnice: $\mathbf{X} = \{ \mathbf{O}_0^6, \mathbf{R}_0^6 \}$
Geometrické parametry: $\boldsymbol{\xi} = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}$

Příklady (D-H úmluva), 6DoF cylin. manipulátor se sférickým zápěstím (2/2)

- homogenní trans. matice T_3^0 odpovídá cylindrickému manipulátoru (viz výše)
- homogenní transformační matice T_6^3 je formálně shodná s maticí 3DoF sférického zápěstí (viz výše)

$$T_3^0 = egin{bmatrix} c_1 & 0 & -s_1 & -s_1 d_3 \ s_1 & 0 & c_1 & c_1 d_3 \ 0 & -1 & 0 & d_2 + L_1 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{\mathcal{T}}_{6}^{3} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}L_{2} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}L_{2} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}L_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Výsledná homogenní transformační matice = zobecněné souřadnice:

$$X = T_6^0 = T_3^0 \cdot T_6^3$$

Příklady (D-H úmluva), 6DoF antrop. manipulátor se sférickým zápěstím (1/2)

6DoF antrop. manipulátor se sférickým zápěstím:

- napojení 3DoF antropomorfního manipulátoru na 3DoF sférické zápěstí
- sfér. zápěstí $\theta_{1...3} \to \theta_{4...6},\, L_1 \to L_3,\, L_2 \to L_4$ (středy kloubů zápěstí v jediném bodě)

D-H parametry:

B 11 paramony.						
Joint i	di	θ_i	ai	α_i		
1	L ₁	θ_1	0	$\frac{\pi}{2}$		
2	0	θ_2	L ₂	0		
3	0	θ_3	0	$\frac{\pi}{2}$		
4	L ₃	θ_4	0	$-\frac{\pi}{2}$		
5	0	θ_5	0	$\frac{\pi}{2}$		
6	L ₄	θ_{6}	0	0		

Kloubové souřadnice:

$$\mathbf{Q} = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 & \theta_6 \end{bmatrix}^T$$

Zobecněné souřadnice: $\mathbf{X} = \{ \mathbf{O}_6^0, \mathbf{R}_6^0 \}$
Geom. par.: $\mathbf{\xi} = \begin{bmatrix} L_1 & L_2 & L_3 & L_4 \end{bmatrix}^T$

Příklady (D-H úmluva), 6DoF antrop. manipulátor se sférickým zápěstím (2/2)

- homogenní trans. matice T_3^0 odpovídá antropomorfnímu manipulátoru (viz výše, bez uvažování kompenzace T_e^3)
- homogenní transformační matice T_6^3 je formálně shodná s maticí 3DoF sférického zápěstí (viz výše)

$$\boldsymbol{\mathcal{T}}_{3}^{0} = \begin{bmatrix} -c_{1}\left(s_{2}s_{3} - c_{2}s_{3}\right) & s_{1} & c_{1}\left(s_{2}s_{3} + c_{2}s_{3}\right) & c_{1}c_{2}L_{2} \\ -s_{1}\left(s_{2}s_{3} - c_{2}s_{3}\right) & -c_{1} & s_{1}\left(s_{2}s_{3} + c_{2}s_{3}\right) & s_{1}c_{2}L_{2} \\ s_{2}s_{3} + c_{2}s_{3} & 0 & s_{2}s_{3} - c_{2}s_{3} & s_{2}L_{2} + L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{T}_{6}^{3} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}L_{4} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}L_{4} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}L_{4} + L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Výsledná homogenní transformační matice = zobecněné souřadnice:

$$X = T_6^0 = T_3^0 \cdot T_6^3$$

Děkuji za pozornost.

Dotazy?