TU DRESDEN

FORTGESCHRITTENENPRAKTIKUM PRAKTIKUMSBERICHT

Positron en-Emissions-Tomographie

Autoren:
Toni EHMCKE
Christian SIEGEL

Betreuer: Carsten BITTRICH

Dresden, 13. November 2015

Inhaltsverzeichnis

1	${f A}$ ufgabenstellung			2
2	Physikalische Grundlagen			2
3 Durchführung				2
	3.1	Theor	etischer Teil	. 2
	3.2	Kalibr	iermessungen	. 2
		3.2.1	Messung einer Quelle bekannter Aktivität bei mittiger Quellposition	. 2
		3.2.2	Messung bei Positionen direkt an den Detektoren	. 2
		3.2.3	Schwerpunktsdiagramme	. 3
	3.3	Tomog	grafische Messungen	. 4
		3.3.1	Messung einer Quellkonfiguration, Phantom isotroper Dichteverteilung	. 4
		3.3.2	Messung einer Quellkonfiguration, Phantom isotroper Dichteverteilung	. 5
		3.3.3	$Messung \ mit \ einer \ Punktquelle, \ Phantom \ an-/insotroper \ Dichteverteilung \ \ .$. 7
4 Auswertung		9		
5	6 Literatur		10	

- 1 Aufgabenstellung
- 2 Physikalische Grundlagen
- 3 Durchführung
- 3.1 Theoretischer Teil
- 3.2 Kalibriermessungen

3.2.1 Messung einer Quelle bekannter Aktivität bei mittiger Quellposition

Zunächst haben wir eine Quelle in mittigem Abstand zu den beiden Detektoren vermessen. Die Quelle hatte am 29.10.2015 eine Aktivitiät $A=1,02\,\mathrm{MBq}$.

Tabelle 2: Kalibrationsmessung bei Quelle mittig zwischen den Detektoren A und B

3.2.2 Messung bei Positionen direkt an den Detektoren

Abbildung 1: Gegenüberstellung der Messungen mit der Quelle an Det. A (links) und Det. B (rechts)
3.2.3 Schwerpunktsdiagramme

Als nächstes sind die Schwerpunktsdiagramme zu betrachen. Es wurden drei von Detektor A erstellt. Einmal als die Quelle an Detektor B positioniert wurde, danach an Detektor A und einmal mittig zwischen beiden.

In Abbildung 2 kann gegenüber 4 ein schwächeres Muster. Gegenüber Abbildung 4 ist sogar deutlich, die Kristallstruktur erkennbar.

Abbildung 3: Messung bei Quelle in der Mitte

Abbildung 4: Messung bei Quelle an Detektor A

3.3 Tomografische Messungen

3.3.1 Messung einer Quellkonfiguration, Phantom isotroper Dichteverteilung Hauptversuch

Untersuchung des Einflusses verschiedener Filter

Abbildung 5: Gefilterte und Ungefilterte Rückprojektion der Aktivitätsverteilung

Quantitative Auswertung

Anschließend quantifiziert man die Aktivität der Quellen, indem man über eine

3.3.2 Messung einer Quellkonfiguration, Phantom isotroper Dichteverteilung

Hauptversuch

Als nächsten wurde eine Messung mit unbekannter Quellverteilung gestartet. Die Energie- und das Zeitfenster entsprechen den oben bestimmten Intervallen.

Abbildung 6: Screenshots der Bildenstehung der gefilterten (rechts) und ungefilterten (links) Rückprojektion

Test, Test Untersuchung des Einflusses verschiedener Filter

Die Abbildungen drei bis elf zeigen die Anwendung verschiedener Filter auf die ungefilterte Rückprojektion, wobei der Standardwert der Dimension 13 ist.

3.3.3 Messung mit einer Punktquelle, Phantom an-/insotroper Dichteverteilung Qualitative Gegenüberstellung an-/isotroper Dichteverteilung

Gegenüberstellung der registrierten Ereigniszahlen und Ermittlung einer Korrekturfunktion

Abbildung 8: registrierte Ereignisse (gelb), korrigierte Ereigniszahlen (schwarz) und Korrekturfunktion (blau)

Die Korrekturfunktion, die man sich anhand der gelben Kurve ausdenken könnte, ist eine Gauß-Funktion, die ihr Maximum gerade im Minimum der erfassten Daten hat. Sie sieht folgendermaßen aus:

$$K(\theta) = \frac{A}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{\theta-\Delta\theta}{\sigma}\right)^2} \text{ mit folgenden Parametern } \sigma = 14\,^\circ, A = 1300\,^\circ \text{ und } \Delta\theta = 98\,^\circ$$

4 Auswertung

5 Literatur