Mathematisches Seminar Prof. Dr. Mathias Vetter Dr. Mark Foodoria, Ola Ma

Dr. Mark Feodoria, Ole Martin

Sheet 07

Risk Management

Exercises for participants of mathematical programmes

C-Exercise 24

(a) Write a scilab-function

```
[VaR, ES] = VaR_ES_historic_mult (x_data, 1, alpha),
```

which computes the estimates \widehat{VaR}_{α} and \widehat{ES}_{α} of the historical simulation method for given historical risk factor changes $x_data = (x_1, \dots, x_n) \in \mathbb{R}^{n \times d}$, a d-dimensional loss operator $l : \mathbb{R}^d \to \mathbb{R}$ and level $\alpha \in (0,1)$.

(b) Consider a portfolio with initial value of $1000 \in$, that always invests 50% of the current portfolio value in the BMW stock and 50% in the Continental stock. Using the time series on OLAT compute for each trading day $m = 254, \ldots, 4361$ the estimates for value at risk and expected shortfall at level $\alpha = 0.99$: apply the function from (a) on the last n = 252 risk factor changes $(x_m, x_{m-1}, \ldots, x_{m-n+1})$. Plot the estimates. Compute the number of violations, i.e. the days when the actual loss lies above the estimated VaR, and compare it with the theoretical number of violations.

Hint: T-Exercise 03

C-Exercise 25

(a) Write a *scilab*-function

$$tau = Kendall(x)$$
,

which estimates and returns *Kendall's tau* $\rho_{\tau}(X_1, X_2)$ for iid samples of a random vector $X = (X_1, X_2)$.

(b) Write a scilab-function

$$rho = Spearman(x)$$
,

which estimates and returns *Spearman's rho* $\rho_S(X_1, X_2)$ for iid samples of a random vector $X = (X_1, X_2)$.

- (c) Assume that the log returns of the BMW stock and the continental stock time series on the OLAT entry of this course are iid samples from a random vector (X_1, X_2) . Estimate the correlation coefficients $\rho(X_1, X_2)$, Kendall's tau $\rho_{\tau}(X_1, X_2)$ and Spearman's rho $\rho_S(X_1, X_2)$. Use a two-dimensional plot in order to visualize the common daily log returns.
- (d) Estimate the mean μ and the covariance matrix Σ of (X_1, X_2) with appropriate estimators $\widehat{\mu}$ and $\widehat{\Sigma}$. Simulate N=4361 iid samples of a $N(\widehat{\mu}, \widehat{\Sigma})$ distribution. Plot these samples and estimate *Kendall's tau* and *Spearman's rho*.

T-Exercise 26M

Let $X = (X_1, X_2)$ be a random vector on a probability space (Ω, \mathcal{F}, P) , such that X_1 and X_2 have strictly increasing and continuous cumulative distributions functions F_1 and F_2 . Let \widetilde{X} and \widehat{X} be independent copies of X. Show that

$$\rho_{S}(X_{1}, X_{2}) = 3\left\{P\left((X_{1} - \widetilde{X}_{1})(X_{2} - \widehat{X}_{2}) > 0\right) - P\left((X_{1} - \widetilde{X}_{1})(X_{2} - \widehat{X}_{2}) < 0\right)\right\}.$$

Hint: First, show the assertion for $X_1, X_2 \sim \text{uniform}([0, 1])$.

P-Exercise 27M

Prove Lemma 4.8 of the lecture notes.

P-Exercise 27QF

Prove assertions 3 and 4 in Lemma 4.8 of the lecture notes.

Please save your solution of each C-Exercise in a file named Exercise_##.sce, where ## denotes the number of the exercise. Please include your name(s) as comment in the beginning of the file.

Submit until: Wednesday, 21.12.2016, 12:00

Discussion: in tutorials on Mon, 16.01.2017 and Wed, 18.01.2017