Livestock Breeding and Genomics

Peter von Rohr

2021-09-24

Content

- Course administration
- ► Linear Algebra
- ► R/RStudio
- ▶ Introduction to Livestock Breeding and Genomics

Who Is Who

- Your name
- Study Major
- ▶ Why this course
- ▶ Previous experiences in animal breeding / R / statistics / . . .

Goals

- Official goals from Vorlesungsverzeichnis
- Understanding basic concepts such as
 - selection
 - breeding value
 - selection response
 - difference between production and breeding
- Be able to explain certain phenomena (see next slide)
- Better understanding of statistics
- Exercises in R

Information

- ► Website: https://charlotte-ngs.github.io/lbgfs2021/
- ► Credit points: Written exam on 17.12.2021

Lecture plan

- ► Type G
- ▶ Plan from next week:
 - exercise hour: 9-10
 - ▶ lecture: 10-12

Course program

```
## Registered S3 methods overwritten by 'tibble':
## method from
## format.tbl pillar
## print.tbl pillar
```

	ъ.	
Week	Date	Topic
1	24.09	Introduction to Livestock Breeding and Genomics
2	01.10	Review of Quantitative Genetics/Single Locus
3	08.10	Genetic Evaluation
4	15.10	Genetic Covariance Between Relatives
5	22.10	Best Linear Unbiased Prediction (BLUP)
6	29.10	BLUP - Additional Aspects
7	05.11	BLUP - Multiple Traits
8	12.11	Variance and Inbreeding
9	19.11	Variance Components Estimation
10	26.11	Genomic Selection
11	03.12	Genom-Wide Association Studies
12	10.12	Review on Selection Index Theory

Exercises

- ► Topics of each lecture are repeated in exercise
- ► Exercise hours can be used to work on problems
- ► Solutions are presented one week later
- Exercise platform: (will be available soon)

Your experiences

- ... in quantitative genetics, statistics, linear algebra
- ▶ Do you know any programming languages, if yes which one?
- ▶ What tools are you using when you work with data (projects, BSc thesis, MSc thesis)
- Were there any lectures in which you got in contact with programming languages, which ones?
- Are you interested in learning how to program?

Prerequisites

- None
- ▶ all concepts will be explained
- ► Helpful are
 - quantitative genetics
 - statistics
 - linear algebra
 - ▶ R

Introduction to Livestock Breeding

- ► Terminology
 - Livestock breeding
 - Animal breeding
 - Ambiguous use
- History
 - Traditional breeding
 - Genomics

Comments from farmers

- "Deep cow families" (Schweizer Bauer https://www.schweizerbauer.ch/tiere/milchvieh/einekomplette-kuh-zuechten-17854.html)
- "I have not met anybody who can explain the concept of a breeding value. My cow has a breeding value of -900 and still gives milk." (Leserbrief im Schweizer Bauer)
- "Cows must give a lot of milk, and have good conformation scores"

What happens if ...

- selection is based on phenotypic observations of only a few traits
- ▶ how is selection response affected by such a strategy

Distribution of Phenotypes

Selection Response

ightharpoonup Selection response R is given by the breeders equation

$$R = i * r * \sigma_g$$

with i = z/p, in R: dnorm(qnorm(1-p)) / p

► Selection response per year: *R/L* where *L* is the generation interval

Fundamental Questions

- ▶ What is the best animal?
- ► How to find it?

Phenotypes and Genotypes

$$P = G + E$$

where P and E are observed and G is unknown

Improving Animal Populations

- ► Improvement via breeding → long-term
- ► Two tools
- 1. selection
 - process to determine parents of next generation
 - natural selection in wildlife and livestock
 - artificial selection in livestock: fix a goal and rank
- 2. mating
 - which animal is bred to which
 - extreme
 - complementary
 - heterosis crossbreeding

Statistics

- ► BLUP
- ► Bayesian methods

Computer Science

- ▶ Methods have been developed in 1940's 1950's
- ► Progress occured later
- ▶ Development of cheap computing power

Milk Yield

Milk Performance per Cow (Source: https://hoards.com/article-20808-what-will-dairy-cows-and-farms-look-like-in-50-years.html)

Figure 1: Yearly Milk Yield per Cow in the USA

Computer Performance

Source: https://en.wikipedia.org/wiki/Moore%27s_law

Figure 2: Computing Performance According To Moore's Law