

Lecture 6

Census

Announcements

- HW 2 due on Thursday, 2/6
 - Turn in on Wednesday for a bonus point!
- Tutoring sections start today
 - We'll be adding more later this week
- Swupnil's office hours are live!
 - Sundays 5-7PM at Caffe Strada

Weekly Goals

- Today
 - Table review
 - Working with Census data
- Wednesday
 - Visualizing data
 - Distributions
- Friday
 - Visualizing two kinds of distributions
 - Proportions as areas

Table Review

Table Structure

- A Table is a sequence of labeled columns
- Labels are strings
- Columns are arrays, all with the same length

Table Methods

- Creating and extending tables:
 - Table().with column and Table.read table
- Finding the size: num rows and num columns
- Referring to columns: indices
 - column indices start at 0
- Accessing data in a column
 - column takes a label or index and returns an array
- Using array methods to work with data in columns
 - o item, sum, min, max, and so on
- Creating new tables containing some of the original columns:
 - o select, drop

(Demo)

Manipulating Rows

- t.sort(column) sorts the rows in increasing order
- t.sort(column, descending=True) sorts the rows in decreasing order
- t.take(row_numbers) keeps the numbered rows
 - Each row has an index, starting at 0
- t.where(column, are.condition) keeps all rows for which a column's value satisfies a condition
- t.where (column, value) keeps all rows for which a column's value equals some particular value
 - Same as t.where(column, are.equal_to(value))

Discussion Questions

The table nba has columns PLAYER, POSITION, and SALARY.

a) Create an array containing the names of all point guards (PG) who make more than \$15M/year

```
guards = nba.where('POSITION', 'PG')
guards.where('SALARY', are.above(15)).column('PLAYER')
```

b) After evaluating these two expressions in order, what's the result of the second one?

```
nba.drop('POSITION')
nba.num columns (Demo)
```

Attribute Types

Types of Attributes

All values in a column of a table should be both the same type **and** be comparable to each other in some way

- Numerical Each value is from a numerical scale
 - Numerical measurements are ordered
 - Differences are meaningful
- Categorical Each value is from a fixed inventory
 - May or may not have an ordering
 - Categories are the same or different

"Numerical" Attributes

Just because the values are numbers, doesn't mean the variable is numerical

- Census example has numerical SEX code (0, 1, and 2)
- It doesn't make sense to perform arithmetic on these "numbers", e.g. 1 - 0 or (0+1+2)/3 are meaningless
- The variable SEX is still categorical, even though numbers were used for the categories

Census Data

The Decennial Census

- Every ten years, the Census Bureau counts how many people there are in the U.S.
- In between censuses, the Bureau estimates how many people there are each year.
- Article 1, Section 2 of the Constitution:
 - "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers ..."

Census Table Description

- Values have column-dependent interpretations
 - The SEX column: 1 is *Male*, 2 is *Female*
 - The POPESTIMATE2010 column: 7/1/2010 estimate
- In this table, some rows are sums of other rows
 - The SEX column: 0 is *Total* (of *Male + Female*)
 - The AGE column: 999 is *Total* of all ages
- Numeric codes are often used for storage efficiency
- Values in a column have the same type, but are not necessarily comparable (AGE 12 vs AGE 999)

Analyzing Census Data

Leads to the discovery of interesting features and trends in the population

(Demo)