DIFFERENTIATION

1. The point at which the normal to the curve $y=x+\frac{1}{x}, X>0$ is perpendicular to the line 3x-4y7=0 is:

(a)
$$(2, \frac{5}{2})$$

(b)
$$(\pm 2, \frac{5}{2})$$

(c)
$$\left(-\frac{1}{2}, \frac{5}{2}\right)$$

(d)
$$(\frac{1}{2}, \frac{5}{2})$$

2. If $y = log(\cos e^x)$, then $\frac{dx}{dy}$ is:

(a)
$$\cos e^{x-1}$$

(b)
$$e^{-x}\cos e^x$$

(c)
$$e^x \sin e^x$$

(d)
$$-e^x \tan e^x$$

3. The least value of the function $f(x) = 2\cos x + x$ in the closed interval $[0, \frac{\pi}{2}]$ is:

(b)
$$\frac{\pi}{6} + \sqrt{3}$$

(c)
$$\frac{\pi}{2}$$

(d) The least value does not exist.

4. If $x = a \sec \theta, y = b \tan \theta$, then $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{2}$ is:

(a)
$$\frac{-3\sqrt{3}b}{a^2}$$

(b)
$$\frac{-2\sqrt{3}b}{a}$$

(c)
$$\frac{-3\sqrt{3}b}{a}$$

(b)
$$\frac{-2\sqrt{3}b}{a}$$
(c)
$$\frac{-3\sqrt{3}b}{a}$$
(d)
$$\frac{-b}{3\sqrt{3}a^2}$$

- 5. The derivative of $\sin^{-1}(2x\sqrt{1}-x^2)$ w.r.t $\sin^{-1}x, -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$, is:
 - (a) 2
 - (b) $\frac{\pi}{2} 2$
 - (c) $\frac{\pi}{2}$
 - (d) -2
- 6. The point(s) on the curve $y=x^3-11x+5$ at which the tangent is y=x-11 is/are:
 - (a) (-2, 19)
 - (b) (2, -9)
 - (c) $(\pm 2, 19)$
 - (d) (-2,19) and (2,-9)
- 7. For which value of m is the line y = mx + 1 a tangent to the curve $y^2 = 4x$?
 - (a) $\frac{1}{2}$
 - (b) 1
 - (c) 2
 - (d) 3
- 8. The maximum value of $[x(x-1)+1]^{\frac{1}{3}}, 0 \le x \le 1$ is:
 - (a) 0
 - (b) $\frac{1}{2}$
 - (c) 1
 - (d) $\sqrt{3}\frac{1}{3}$