Name: _____ NetID: ____

STATISTICS AND DATA SCIENCE 355 / 555

Introductory Machine Learning

Quiz 2 (practice), Thursday, October 31, 2019

1. Decision trees (5 points)

Consider the following figure showing 13 points in \mathbb{R}^2 and a partition of the unit square $[0,1]\times[0,1]$. Eight points are from class Y=1 (labeled "+") and five points are from class Y=-1 (labeled "-").

draw tree below:

- (a) Draw (to the right of the above figure) the decision tree that corresponds to the illustrated partition. Label the questions asked at each node.
- (b) What is the training error (as a percentage) for these 13 data points? $100 \cdot \frac{3}{13}\%$
- (c) What is the predicted value of Y for the point $X=(X_1,X_2)=(.6,.2)$? $\widehat{Y}=1$

STATISTICS AND DATA SCIENCE 355 / 555

Introductory Machine Learning

Quiz 2 (practice), Thursday, October 31, 2019

No notes or computers are allowed

1. Bayesian inference (5 points)

Suppose that X is a random variable denoting a coin flip, where X=1 is "heads" with probability θ , and X=0 is "tails" with probability $1-\theta$. We want to carry out Bayesian inference on θ , using a Beta (α,α) prior $p(\theta)$. Suppose that we flip the coin five times and observe X_1,X_2,\ldots,X_5 , with three heads and two tails.

(a) Give the formula for $p(\theta)$. You can state it up to a constant of proporationality.

$$p(\theta) = \frac{\Gamma(2\alpha)}{\Gamma(\alpha)^2} \, \theta^{\alpha - 1} (1 - \theta)^{\alpha - 1} \propto \, \theta^{\alpha - 1} (1 - \theta)^{\alpha - 1}$$

(b) Give an expression for the likelihood of the data given θ .

$$p(X \mid \theta) = \theta^3 (1 - \theta)^2$$

(c) What is the posterior distribution $p(\theta | X_1, ..., X_5)$?

Beta
$$(3 + \alpha, 2 + \alpha)$$

Posterior = likelihood * prior $\theta \wedge 3 (1 - \theta) \wedge 2 + \theta \wedge \alpha - 1 (1 - \theta) \wedge \alpha - 1$ $\theta \wedge 2 + \alpha (1 - \theta) \wedge 1 + \alpha$ === > Beta(3 + \alpha, 2 + \alpha)

2. Topic modeling (5 points)

The latent Dirichlet allocation topic model is represented by the diagram

where $\theta_d \sim \text{Dirichlet}(\alpha)$ are the per-document topic proportions, $Z_{d,n} \sim \text{Multinomial}(\theta_d)$ are the per-word topic assignments, $W_{d,n} \sim \text{Multinomial}(\beta_{Z_{d,n}})$ are the observed words, and $\beta_k \sim \text{Dirichlet}(\eta)$ are the topics.

Circle the correct answers:

TRUE FALSE (1)

(1) The model is generative, and can assign a probability to documents that are not in the training data.

TRUE FALSE

(2) According to the model, each document is generated by a single topic.

TRUE FALSE

(3) According to the model, the words are generated independently.

TRUE FALSE

(4) As α decreases from one toward zero, the topic proportions vector θ_d tends to have small values for a larger number of topics.

TRUE FALSE

(5) The Gibbs sampling algorithm chooses the most probable topic $Z_{d,n}$ for a selected word $W_{d,n}$ while holding all of the other Z values fixed.