Math 211 Ass 2.

Dryden Bryson

September 2024

Question 1,

Let $\vec{x}, \vec{y} \in Y$, $\vec{v_1}, \vec{v_2}$ be vectors in \mathbb{R}^n and $t \in \mathbb{R}$. Since $\vec{x}, \vec{y} \in Y$ then,

$$\begin{cases} x_1 v_1 + x_2 v_2 = 0 \\ y_1 v_1 + y_2 v_2 = 0 \end{cases}$$

Non Empty:

Since
$$0\vec{v_1} + 0\vec{v_2}$$

= $\vec{0} + \vec{0}$
= $\vec{0} = \vec{0}$

Then
$$\vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in Y$$

Closure Under Addition:

Form $\vec{w} = \vec{x} + \vec{y}$. We have,

$$\begin{array}{lll} w_1 \vec{v_1} + w_2 \vec{v_2} & = & (x_1 + y_1) \vec{v_1} + (x_2 + y_2) \vec{v_2} \\ & = & x_1 \vec{v_1} + y_1 \vec{v_1} + x_2 \vec{v_2} + y_2 \vec{v_2} & \text{Distributivity} \\ & = & (x_1 v_1 + x_2 v_2) + (y_1 v_1 + y_2 v_2) & \text{Associativity} \\ & = & (0) + (0) & & \because \vec{x}, \vec{y} \in Y \\ & = & 0 \end{array}$$

Thus since $w_1\vec{v_1} + w_2\vec{v_2} = 0$ then, $\vec{w} = \vec{x} + \vec{y} \in Y$

Closure Under Scalar-Multiplication:

Form $\vec{w} = t\vec{x}$. We have,

$$\begin{array}{rcl} w_1\vec{v_1} + w_2\vec{v_2} & = & (tx_1)\vec{v_1} + (tx_2)\vec{v_2} \\ & = & tx_1\vec{v_1} + tx_2\vec{v_2} & \text{Associativity} \\ & = & t(x_1\vec{v_1} + x_2\vec{v_2}) & \text{Distributivity} \\ & = & t(0) & \because \vec{x} \in Y \\ & = & 0 \end{array}$$

Thus since, $w_1\vec{v_1} + w_2\vec{v_2} = 0$ then $\vec{w} = t\vec{x} \in Y$

 \therefore As Y satisfies being non-empty, closure under vector addition, closure under scalar multiplication then Y is a subspace by definition. \square

Question 2,

a)

Let $\vec{x} \in W$ and $\vec{t} \in \mathbb{R}$,

W is not a subspace since it fails closure under scalar multiplication, since our scalar $t \in \mathbb{R}$ need not be an integer, when we perform scalar multiplication on \vec{x} the result may not lead to x_1, x_2 and x_3 being integers, for example:

Let $t = \frac{1}{2}$ and let $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, thus \vec{x} satisfies the condition of x_1, x_2 and x_3 being integers, under scalar multiplication, form $\vec{w} = t\vec{x}$:

$$\vec{w} = t\vec{x} = \frac{1}{2} \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} (\frac{1}{2})1\\(\frac{1}{2})2\\(\frac{1}{2})3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\1\\\frac{3}{2} \end{bmatrix}$$

 $\vec{w} = t\vec{x}$ does not satisfy the condition of the subspace W that w_1, w_2 and w_3 are all integers. Thus W is not a subspace since it fails under scalar multiplication.

b)

Let $\vec{x}, \vec{y} \in X$,

X is not a subspace since it fails closure under vector addition, while maintaining the property that $x_1 = x_2$ or $x_1 = x_3$ and $y_1 = y_2$ or $y_1 = y_3$ it is not necessarily true that that the result of $\vec{x} + \vec{y}$ will yield a result that satisfies this condition, for example:

Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ then form $\vec{w} = \vec{x} + \vec{y}$,

$$\vec{w} = \vec{x} + \vec{y} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1+1 \\ 2+1 \\ 1+2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$$

We see that in \vec{w} that nor $w_1 = w_2$ or $w_1 = w_3$ is true, thus X fails closure under scalar addition proving that X is not a subspace by definition.

Question 3,

Let $\vec{x}, \vec{y} \in W$, \vec{v} be a vector in \mathbb{R}^n and $t \in \mathbb{R}$, then:

$$\begin{cases} \vec{x} \cdot \vec{v} = 0 \\ \vec{y} \cdot \vec{v} = 0 \end{cases}$$

Non-Empty:

Let $\vec{x} = \vec{0}$ we have:

$$\vec{x} \cdot \vec{v} = x_1 v_1 + x_2 v_2 + \dots + x_n v_n \quad \text{Dot Product Definition}$$

$$= 0 v_1 + 0 v_2 + \dots + 0 v_3$$

$$= 0 + 0 + \dots + 0$$

$$= 0$$

Thus since $\vec{x} \cdot \vec{v} = 0$ when $\vec{x} = \vec{0}$, then $\vec{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in W$

Closure Under Vector Addition:

Form $\vec{w} = \vec{x} + \vec{y}$, we have:

$$\begin{array}{rcl} \vec{w} \cdot \vec{v} & = & (\vec{x} + \vec{y}) \cdot \vec{v} \\ & = & (\vec{x} \cdot \vec{v}) + (\vec{y} \cdot \vec{v}) & \text{Distributivity} \\ & = & 0 + 0 & \because \vec{x}, \vec{y} \in W \\ & = & 0 \end{array}$$

Thus since $\vec{w} \cdot v = 0$ then $\vec{w} = \vec{x} + \vec{y} \in W$

Closure Under Scalar Multiplication:

Form $\vec{w} = t\vec{x}$, we have:

$$\begin{array}{rcl} \vec{w} \cdot \vec{v} & = & (t\vec{x}) \cdot \vec{v} \\ & = & t(\vec{x} \cdot \vec{v}) & \text{Associativity} \\ & = & t(0) & \because \vec{x} \in W \\ & = & 0 \end{array}$$

Thus since $\vec{w} \cdot \vec{v} = 0$ then $\vec{w} = t\vec{x} \in W$

 \therefore As W satisfies being non-empty, closure under vector addition, closure under scalar multiplication then W is a subspace by definition. \square

4

Question 4,

a)

Using properties of the dot product and given conditions we determine the value:

```
\vec{z} \cdot (2\vec{y} + \vec{z}) = (2\vec{y} \cdot z) + (\vec{z} \cdot \vec{z})
                                                            Distributivity
                    = (2\vec{y} \cdot 3\vec{x}) + (3\vec{x} \cdot 3\vec{x})
                                                            Given Condition (i)
                    = 2(\vec{y} \cdot 3\vec{x}) + 3(\vec{x} \cdot 3\vec{x})
                                                            Associativity \times 2
                    = 6(\vec{y} \cdot \vec{x}) + 9(\vec{x} \cdot \vec{x})
                                                            Associativity \times 2
                    = 6(4) + 9(\vec{x} \cdot \vec{x})
                                                            Given Condition (ii)
                    = 6(4) + 9(\|\vec{x}\|^2)
                                                            Relation between length and dot product
                    = 6(4) + 9(5^2)
                                                            Given Condition (iv)
                           24 + 9(25)
                           24 + 225
                           249
```

b)

Using properties of the cross product and given conditions we determine the value: