

Presentacion Final

Elias Guerra Pensado A01737354 2 de Junio del 2025

Implementación de Robótica Inteligente
Alfredo García Suarez

Introducción

El presente documento describe el procedimiento analítico llevado a cabo para modelar distintos sistemas robóticos mediante transformaciones homogéneas utilizando MATLAB y el toolbox Robotics Toolbox. Se analizan cuatro configuraciones geométricas con visualización animada y un sistema simbólico de 7 grados de libertad para derivar su cinemática directa y diferencial.

Procedimiento Analítico

Caso 1: Cadena Lineal de Rotaciones y Traslaciones

- Se define un sistema base y una secuencia de transformaciones homogéneas que incluyen una rotación en X seguida de traslaciones en X.
- Se construye paso a paso la cadena de transformaciones desde Base hasta Frame4.
- Se grafica la línea y cada trama con animación.

Caso 2: Rotaciones Compuestas

- Se realiza una rotación en Z seguida de una en Y y una rotación inclinada en X.
- Se visualiza el efecto acumulado de cada transformación sobre el sistema de referencia.

Caso 3: Sistema Articulado con Múltiples Giros

- Se componen seis transformaciones homogéneas que incluyen rotaciones completas y rotaciones parciales en X y Z.
- Se analizan los efectos de estas transformaciones secuenciales sobre una línea base.

Caso 4: Sistema Complejo de Piernas

- Se define una cadena compleja con nueve transformaciones que simulan una extremidad robótica.

Cinemática Directa y Diferencial

- Incluye traslaciones y combinaciones de rotaciones en diferentes ejes para simular articulaciones.

Caso 5: Análisis Simbólico de un Robot de 7 GDL

- Se define simbólicamente la orientación y posición de cada junta usando variables temporales q(t).
- Se construyen las matrices de transformación homogénea locales y se acumulan para obtener las globales.

- Se deriva el Jacobiano analítico lineal y angular a partir de las posiciones y orientaciones.
- Finalmente, se obtiene la velocidad lineal V = Jv * qDot y la velocidad angular W = Jw * qDot.

Resultados Obtenidos

- Se generan representaciones gráficas animadas para cada conjunto de transformaciones.
- Se obtienen expresiones simbólicas para las matrices T1 a T7 del manipulador de 7 GDL.
- Se calculan las matrices del Jacobiano y las velocidades del efector final de manera simbólica.

Conclusión

El uso de transformaciones homogéneas permite modelar con precisión la cinemática directa de sistemas robóticos. La formulación simbólica es especialmente útil para obtener modelos analíticos generalizables y para derivar el Jacobiano, lo cual es clave para control y análisis dinámico.