Задача Path. Кратчайший путь

 Имя входного файла:
 path.in

 Имя выходного файла:
 path.out

 Ограничение по времени:
 2 seconds

 Ограничение по памяти:
 64 мебибайта

Дан взвешенный ориентированный граф и вершина s в нем. Требуется для каждой вершины u найти длину кратчайшего пути из s в u.

Формат входного файла

Первая строка входного файла содержит n, m и s — количество вершин, ребер и номер выделенной вершины соответственно ($2 \le n \le 2\,000, \ 1 \le m \le 5\,000$).

Следующие m строк содержат описание ребер. Каждое ребро задается стартовой вершиной, конечной вершиной и весом ребра. Вес каждого ребра — целое число, не превосходящее 10^{15} по модулю. В графе могут быть кратные ребра и петли.

Формат выходного файла

Выведите n строк — для каждой вершины u выведите длину кратчайшего пути из s в u, '*' если не существует путь из s в u ' -' если не существует кратчайший путь из s в u.

Пример

path.out
0
10
-
-
-
*

Задача Paths. Покрытие путями

 Имя входного файла:
 paths.in

 Имя выходного файла:
 paths.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мебибайта

Задан ориентированный ациклический граф. Требуется определить минимальное количество непересекающихся путей, покрывающих все вершины.

Формат входного файла

Первая строка входного файла содержит n и m — количество вершин и ребер графа соответственно $(2 \leqslant n \leqslant 1000, 0 \leqslant m \leqslant 10^5)$. В следующих m строках содержатся по два числа: номера вершин u и v, которые соединяет ребро (u, v).

Формат выходного файла

В первой строке выходного файла выведите натуральное число k — минимальное количество путей, необходимых, что- бы покрыть все вершины.

Примеры

paths.in	paths.out
3 3	1
1 3	
3 2	
1 2	

Задача Dominoes. Замощение доминошками

 Имя входного файла:
 dominoes.in

 Имя выходного файла:
 dominoes.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мебибайта

Дано игровое поле размерами $n \times m$, некоторые клетки кото-

рого уже замощены. Замостить свободные соседние клетки поля доминошкой размерами 1×2 стоит a условных единиц. Замостить свободную клетку поля квадратиком размерами 1×1 стоит b условных единиц.

Определите, какая минимальная сумма денег нужна, чтобы замостить все поле.

Формат входного файла

Первая строка входного файла содержит 4 числа n, m, a, b ($1 \leqslant n, m \leqslant 100$, a, b — целые числа, по модулю не превосходящие 1000). Каждая из последующих n строк содержит по m символов: символ "."(точка) обозначает занятую клетку поля, а символ "*"(звездочка) - свободную.

Формат выходного файла

В выходной файл выведите одно число — минимальную сумму денег, имея которую можно замостить свободные клетки поля (и только их).

Пример

dominoes.in	dominoes.out
2 3 3 2	5
.**	
.*.	

Задача Pairs. Паросочетание

 Имя входного файла:
 pairs.in

 Имя выходного файла:
 pairs.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мебибайта

Двудольным графом называется неориентированный граф $(V,E),E\subset V\times V$ такой, что его множество вершин V можно разбить на два множества A и B для которых $\forall (e_1,e_2)\in E: e_1\in A,e_2\in B$ и $A,B\subset E,A\cap B=\varnothing.$

Паросочетанием в двудольном графе называется любой его набор несмежных ребер, то есть такой набор $S \subset E$ что для любых двух ребер $e_1 = (u_1, v_1), e_2 = (u_2, v_2)$ из S выполнено $u_1 \neq u_2$ и $v_1 \neq v_2$.

Ваша задача — найти максимальное паросочтание в двудольном графе, то есть паросочетание с максимально возможным числом ребер.

Формат входного файла

В первой строке записаны два целых числа n и m (1 \leq $n,m\leqslant 250$), где n — число вершин в множестве A, а m — число вершин в B.

Далее следуют n строк с описаниями ребер — i-я вершина из A описана в i+1-й строке файла. Каждая из этих строк содержит номера вершин из B, соединенных с i-й вершиной A. Вершины в A и B нумеруются независимо (с единицы). Список завершается числом 0.

Формат выходного файла

Первая строка выходного файла должна содержать одно целое число l — количество ребер в максимальном паросочетании. Далее следуют l строк, в каждой из которых должны быть два целых числа u_j и v_j — концы ребер паросочетания в A и B, соотвественно.

Пример

pairs.in	pairs.out
2 2	2
1 2 0	1 1
2 0	2 2