

| Pass                   |
|------------------------|
|                        |
|                        |
|                        |
| Single Finplate        |
| Shear Connection       |
| <u> </u>               |
| Column flange-Beam web |
| Bolted                 |
| Welded                 |
|                        |
| 200                    |
| <u> </u>               |
| ISSC 200               |
| Fe 410                 |
| ISMB 400               |
| Fe 410                 |
| STD                    |
| 250X85X16              |
| 16                     |
| 85                     |
| 250                    |
| STD                    |
|                        |
| Double Fillet          |
| 13                     |
|                        |
| HSFG                   |
| 8.8                    |
| 12                     |
| 7                      |
| 1                      |
| 7                      |
| 0                      |
| 31                     |
| 30                     |
| 30                     |
| ·                      |
|                        |

|  | , |  |
|--|---|--|
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |



| Design Check                |                                                                                             |                                                                                   |        |
|-----------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------|
| Check                       | Required                                                                                    | Provided                                                                          | Remark |
| Bolt shear capacity (kN)    |                                                                                             | $V_{\rm dsb}$ = (800*0.6126*12*12)/( $\sqrt{3}$ *1.25*1000) = 31.223 [cl. 10.3.3] |        |
| Bolt bearing capacity (kN)  |                                                                                             | $V_{\text{dpb}}$ = (2.5*0.519*12*8.9*410)/(1.25*1000) = 45.452 [cl. 10.3.4]       |        |
| Bolt capacity (kN)          |                                                                                             | Min (31.223, 45.452) = 31.223                                                     |        |
| No. of bolts                | 200/31.223 = 6.4                                                                            | 7                                                                                 | Pass   |
| No.of column(s)             | ≤ 2                                                                                         | 1                                                                                 |        |
| No. of bolts per column     |                                                                                             | 7                                                                                 |        |
| Bolt pitch (mm)             | ≥ 2.5* 12 = 30, ≤ Min(32*8.9, 300) = 285 [cl. 10.2.2]                                       | 31                                                                                | Pass   |
| Bolt gauge (mm)             | ≥ 2.5*12 = 30, ≤ Min(32*8.9, 300) = 285<br>[cl. 10.2.2]                                     | 0                                                                                 |        |
| End distance (mm)           | ≥ 1.7*13 = 22.1, ≤ 12*8.9 = 106.8<br>[cl. 10.2.4]                                           | 30                                                                                | Pass   |
| Edge distance (mm)          | ≥ 1.7*13 = 22.1, ≤ 12*8.9 = 106.8<br>[cl. 10.2.4]                                           | 30                                                                                | Pass   |
| Block shear capacity (kN)   | ≥ 200                                                                                       | V <sub>db</sub> = 467                                                             | Pass   |
| Plate thickness (mm)        | (5*200*1000)/(250*250) = 16.0<br>[Owens and Cheal, 1989]                                    | 16                                                                                | Pass   |
| Plate height (mm)           | ≥ 0.6*400=240.0, ≤ 400-16-14-<br>10=330.0<br>[cl. 10.2.4, Insdag Detailing Manual,<br>2002] | 250                                                                               | Pass   |
| Plate width (mm)            |                                                                                             | 100                                                                               |        |
| Plate moment capacity (kNm) | (2*31.223*31 <sup>2</sup> )/(31*1000) = 11.99                                               | $M_{\rm d}$ = (1.2*250* $Z$ )/(1000*1.1) = 45.45 [cl. 8.2.1.2]                    | Pass   |
| Effective weld length (mm)  |                                                                                             | 250-2*16 = 218                                                                    |        |
| Weld strength (kN/mm)       | $\sqrt{[(11990*6)/(2*218^2)]^2} + [200/(2*218)]^2 = 0.885$                                  | $f_V = (0.7*13*410)/(\sqrt{3}*1.25)$<br>= 2.121<br>[cl. 10.5.7]                   | Pass   |
| Weld thickness<br>(mm)      | Max((0.885*1000*√3* 1.25)/(0.7 * 410),16* 0.8) = 12.8 [cl. 10.5.7, Insdag Detailing Manual, | 13                                                                                | Pass   |

| 2002] |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |





| Victor PS 10        |              |                      | Created with OSdag                      |
|---------------------|--------------|----------------------|-----------------------------------------|
| <b>Company Name</b> | Vardani      | <b>Project Title</b> | Connection                              |
| Group/Team Name     | DYPCOE       | Subtitle             | Finplate                                |
| Designer            | V            | Job Number           | 004                                     |
| Date                | 06 /06 /2016 | Method               | Limit State Design (No Earthquake Load) |

| Additional Comments |  |
|---------------------|--|