SCHNIRELMANN-TYPE DENSITY IN STRUCTURED ALGEBRAIC SYSTEMS: FINITE FIELDS AND MODULAR GROUPS

PU JUSTIN SCARFY YANG

ABSTRACT. We introduce generalizations of Schnirelmann density to structured algebraic systems, including finite fields \mathbb{F}_q and modular groups $\mathbb{Z}/n\mathbb{Z}$. We define algebraic analogues of additive closure, explore their properties, and compare with classical density theory on \mathbb{N}

1. Introduction

Schnirelmann density has been foundational in additive number theory over \mathbb{N} . To extend this theory to algebraic systems, we must adapt its definition to account for modular structure, finite cardinality, and the behavior of additive subsets in non-linear contexts. In this paper, we explore:

- Finite field analogues
- Density on $\mathbb{Z}/n\mathbb{Z}$
- Behavior under group action and coset partitioning

2. Schnirelmann Density on Finite Groups

Definition 2.1 (Group Density). Let G be a finite abelian group, and $A \subseteq G$. Define

$$\sigma_G(A) := \frac{|A|}{|G|}.$$

Definition 2.2 (Additive Closure in Groups). Let $k \in \mathbb{N}$ and define

$$kA := \{a_1 + \dots + a_k : a_i \in A\} \subseteq G.$$

We say A is k-additively closed if kA = G.

Proposition 2.3. If $A \subseteq \mathbb{Z}/n\mathbb{Z}$ with $\sigma(A) > \frac{1}{2}$, then $2A = \mathbb{Z}/n\mathbb{Z}$.

Proof. Standard result in additive combinatorics (Cauchy–Davenport-type theorem) implies this for cyclic groups. \Box

3. Density in Finite Fields

Let \mathbb{F}_q be a finite field of order q.

Definition 3.1 (Vector Space Density). Let $V = \mathbb{F}_q^d$ be a vector space. For $A \subseteq V$, define

$$\sigma_{q,d}(A) := \frac{|A|}{q^d}.$$

Date: May 5, 2025.

Theorem 3.2 (Finite Field Additive Closure). Let $A \subseteq \mathbb{F}_q^d$ with $\sigma_{q,d}(A) > 1 - \epsilon$. Then for sufficiently large k, the sumset $kA = \mathbb{F}_q^d$.

Remark 3.3. This is a finite-field analogue of Schnirelmann's theorem, with tight bounds depending on the additive energy and structure of A.

4. Modular Structures and Generalizations

Definition 4.1 (Modular Schnirelmann Density). Let $A \subseteq \mathbb{Z}/n\mathbb{Z}$, define

$$\sigma_{\text{mod}}(A) := \frac{|A|}{n}$$
, and define kA modulo n .

Proposition 4.2. If $\sigma_{mod}(A) > \frac{1}{\sqrt{k}}$, then kA covers a positive proportion of $\mathbb{Z}/n\mathbb{Z}$.

Example 4.3. Let $A = \{1, 2, 3, \dots, m\} \subset \mathbb{Z}/p\mathbb{Z}$. As $m \to p$, $kA = \mathbb{Z}/p\mathbb{Z}$ for smaller k.

5. Future Directions

- Nonabelian group extensions: define density under conjugation classes
- Multiplicative analogues of Schnirelmann density
- Connections with sum-product theorems
- Generalization to algebraic structures: rings, modules, coset spaces