Ford Tang

46564602

CS 178

Homework #1

Problem 1

a. size(X,2) = 4size(X,1) = 148

b. hist(X(:,1)) =

hist(X(:,2)) =

hist(X(:,3)) =

hist(X(:,4)) =


```
c. mean(X) = 5.9001 3.0989 3.8196 1.2526
```

- d. var(X) = 0.6993 0.1916 3.0976 0.5797 std(X) = 0.8362 0.4378 1.7600 0.7613
- e. normX = X;
 normX = bsxfun(@minus, X, mean(X));
 normX = bsxfun(@rdivide, normX, std(normX));

f. scatter(X(:,1),X(:,2),[],y) =

scatter(X(:,1),X(:,3),[],y) =

scatter(X(:,1),X(:,4),[],y) =

Problem 2

```
a. iris = load('data/iris.txt'); y = iris(:,end); X = iris(:,1:2);
[X y] = shuffleData(X,y);
[Xtr Xte Ytr Yte] = splitData(X,y, .75);
knn = knnClassify(Xtr, Ytr, 1);
plotClassify2D(knn, Xtr, Ytr);
```


knn = knnClassify(Xtr, Ytr, 5);
plotClassify2D(knn, Xtr, Ytr);
K = 5

knn = knnClassify(Xtr, Ytr, 10); plotClassify2D(knn, Xtr, Ytr); K = 10

knn = knnClassify(Xtr, Ytr, 50);
plotClassify2D(knn, Xtr, Ytr);
K = 50


```
b. iris = load('data/iris.txt'); y = iris(:,end); X = iris(:,1:2); [X y] = shuffleData(X,y); [Xtr Xte Ytr Yte] = splitData(X,y, .75); K=[1,2,5,10,50,100,200]; for i=1:length(K) learner = knnClassify(Xtr, Ytr, K(i)); errTrain(i) = err(learner, Xtr, Ytr); errTest(i) = err(learner, Xte, Yte); end; figure; semilogx(errTrain, 'r'); hold on; semilogx(errTest, 'g'); hold off;
```


K = 5 would work best.

Problem 3

$$P(X4 = 1 | y = 1) = 2/4$$

 $P(X5 = 1 | y = 1) = 1/4$
 $P(y = 1) = 4/10$
 $P(y = -1) = 6/10$

b.

(X1 X2 X3 X4 X5)	P(y = -1 X)	P(y = 1 X)	Ŷ
(0 0 0 0 0)	3/6 * 1/6 * 2/6 * 1/6 * 4/6	14 * 1 * 14 * 2/4 * 34 * 4/10	1
	* 6/10 = 0.00185	= 0.009375	
(11010)	3/6 * 5/6 * 2/6 * 5/6 * 4/6	³ / ₄ * 0/4 * ¹ / ₄ * 2/4 * ³ / ₄ *	-1
	* 6/10 = 0.0463	4/10 = 0	

- c. $P(y = 1 | (1 1 0 1 0)) = \frac{3}{4} * 0/4 * \frac{1}{4} * \frac{2}{4} * \frac{3}{4} * \frac{4}{10} = 0$
- d. With many variables, calculating dependence with Bayes classifier will be much more difficult (or impossible) and time consuming. Naïve Bayes is easier and works well enough.