MATH 435 ASSIGNMENT 3

ARNOLD JIADONG YU

1. Chapter 9 Normal Subgroups and Factor Groups Homework

1.1. The group $Z_4 \oplus Z_{12}/\langle (2,2) \rangle$ is isomorphic to one of $Z_8, Z_4 \oplus Z_2$, or $Z_2 \oplus Z_2 \oplus Z_2$. Determine which one by elimination. proof: Let G be $Z_4 \oplus Z_{12}$ and $H = \langle (2,2) \rangle$ a normal subgroup of G where $\langle (2,2) \rangle = \{(2,2),(0,4),(2,6),(0,8),(2,10),(0,0)\}$. That is

$$(0,0) + \langle 2,2 \rangle = \{(2,2), (0,4), (2,6), (0,8), (2,10), (0,0)\}$$

$$(1,0) + \langle 2,2 \rangle = \{(3,2), (1,4), (3,6), (1,8), (3,10), (1,0)\}$$

$$(0,1) + \langle 2,2 \rangle = \{(2,3), (0,5), (2,7), (0,9), (2,11), (0,1)\}$$

$$(1,1) + \langle 2,2 \rangle = \{(3,3), (1,5), (3,7), (1,9), (3,11), (1,1)\}$$

$$(2,0) + \langle 2,2 \rangle = \{(0,2), (2,4), (0,6), (2,8), (0,10), (2,0)\}$$

$$(3,0) + \langle 2,2 \rangle = \{(1,2), (3,4), (1,6), (3,8), (1,10), (3,0)\}$$

$$(0,3) + \langle 2,2 \rangle = \{(2,5), (0,7), (2,9), (0,11), (2,1), (0,3)\}$$

$$(1,3) + \langle 2,2 \rangle = \{(3,5), (1,7), (3,9), (1,11), (3,1), (1,3)\}$$

These are the 8 cosets. We can see that (1,0) + H has an order of 4. $Z_2 \oplus Z_2 \oplus Z_2$ is not isomorphic to G/H because it doesn't have an element with order 4. If G/H is isomorphic to Z_8 , then (1,0) + H must map to 2. That is

$$(1,0) + H \mapsto 2$$

$$(2,0) + H \mapsto 4$$

$$(3,0) + H \mapsto 6$$

$$(0,0) + H \mapsto 0$$

the rest of cosets must map to 1,3,5,7. Since 1,3,5,7 are generators of Z_8 , this means the other 4 cosets are generators of the factor group G/H. But (1,3) + H is not a generator, there is an contradiction. Hence G/H is not isomorphic to Z_8 . Therefore, G/H is isomorphic to $Z_4 \oplus Z_2$ by elimination.

1.2. Prove or find a counter example to Berke's question: If H is a normal subgroup of G, does it follow that $G/H \oplus H \cong G$? proof: Let G be $Z_4 \oplus Z_2$, and H be $Z_2 \oplus Z_2$, then H is a normal subgroup of G.

$$G = \{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1), (3,0), (3,1)\}$$
$$H = \{(0,0), (0,1), (1,0), (1,1)\}$$

Then G/H is (0,0)+H and (2,0)+H. Moreover, $(3,0)\in G$ has an order of 4.

$$G/H \oplus H = \{(((0,0)+H),(0,0)),(((0,0)+H),(0,1)),(((0,0)+H),(1,0)),$$

$$(((0,0)+H),(1,1))(((2,0)+H),(0,0)),(((2,0)+H),(0,1)),$$

$$(((2,0)+H),(1,0)),(((2,0)+H),(1,1))\}$$

has no element with order of 4. Therefore, $G/H \oplus H$ is not isomorphic to G.

2. Chapter 12 Introduction to Rings

2.1. Show that $2Z \cup 3Z$ is not a subring of Z. proof:

$$2Z = \{..., -4, -2, 0, 2, 4, ...\}$$

$$3Z = \{..., -6, -3, 0, 3, 6, ...\}$$

$$2Z \cup 3Z = \{..., -6, -4, -3, -2, -, 2, 3, 4, 6, ...\}$$

Notice, $2+3=5\notin 2Z\cup 3Z$. That is $2Z\cup 3Z$ is not closed under addition, it is not even a group. Therefore, $2Z\cup 3Z$ is not a subring of Z.

2.2. Suppose that a belongs to a ring and $a^4 = a^2$. Prove that $a^{2n} = a^2$ for all $n \ge 1$.

proof: Prove by induction,

Base case: when n = 1, $a^{2n} = a^2 = a^2$. When n = 2, $a^4 = a^2$ is by assumption.

Suppose $a^{2(n-1)} = a^2$, then

$$a^{2n} = a^{2n-2+2} = a^{2n-2}a^2 = a^2a^2 = a^4 = a^2$$

That is $a^{2n} = a^2$ for all $n \ge 1$.

2.3. * Suppose that R is a ring and that $a^2 = a$ for all a in R. Show that R is commutative.

proof: WTS ab = ba for $a, b \in R$. By assumption, a is arbitrary, then $(2a)^2 = 2a$. i.e.

$$4a^2 = 2a \Rightarrow 4a = 2a \Rightarrow 4a - 3a = 2a - 3a \Rightarrow a = -a$$

Moreover $(a+b)^2 = a+b$, then

$$(a+b)^2 = a+b \Rightarrow a^2 + ab + ba + b^2 = a+b \Rightarrow ab + ba = 0$$

Since a = -a, then

$$ab = -ba \Rightarrow ab = ba$$

That is, R is commutative.

3. Chapter 13 Integral Domains

- **3.1.** Let R be the set of all real-valued functions defined for all real numbers under function addition and multiplication.
- a) Determine all zero-divisors of R.
- b) Determine all nilpotent elements of R.
- c) Show that every nonzero element is a zero-divisor or a unit. proof:
- a) Let $f, g \in R$, if f is nowhere zero, and fg = 0. Then g = 0, i.e. f is not zero-divisor. Consider f is a function intersect x-axis at least once, and g is function such that

$$g(x) = \begin{cases} 0 & f(x) \neq 0 \\ 1 & f(x) = 0 \end{cases}$$

Therefore, $f \neq 0, g \neq 0$ but fg = 0. i.e. f is a zero divisor. Hence a zero-divisor of R must have at least one zero value, which means intersect x-axis at least once, but not the zero function.

b) By definition of nilpotent, let $f \in R$ such that $f^n = 0$. i.e.

$$(f(x))^n = 0 \Rightarrow f(x) = 0 \text{ for all } x \in \mathbb{R}$$

Hence zero function is the only nilpotent element of R.

c) By the results of part a and b, we only need to show for a function $f \in R$ has no zero values, then f is a unit. Since R is a ring with unity, because one function f(x) = 1 for $\forall x \in \mathbb{R}$ is in R. Let $g = \frac{1}{f}$, such g exists since f is non-zero everywhere. Therefore, fg = 1. i.e. f is a unit. Combine the results with part f, then every nonzero element is a zero-divisor or a unit.

3.2. * Let d be a positive integer. Prove that $Q[\sqrt{d}] = \{a + b\sqrt{d} | a, b \in Q\}$ is a field. proof: