IN THE SPECIFICATION

Please amend the paragraph at page 42, lines 4-15, as follows:

Dth is, for example, $\frac{(k+1)(k+\ell)}{(k+\ell)}$. Here k is such a number that the product of N(1), ..., N(k) is not less than the total number of user IDs (identification information items) $(N(1) \le N(2) \le ... \le N(M))$, and [[1]] ℓ is given by the following formula (1):

$$[1-\Pi \ 1/N(i)]^S \ge 1 - \epsilon_2 \tag{1}$$
 where the range of i that assumes \overline{H} is $i=1 \sim 1$ $\underline{\Pi}$ is $i=1$ $\sim \ell$ or $i=k+1 \sim (k+1)$ $i=k+1 \sim (k+\ell)$,

 $S = MC_{k+1}$ $S = MC_{k+l}$, and

 ϵ 2 represents the rate of error tracing in each user ID of the people responsible for collusive attacks, and satisfies 0 < $\epsilon_{\,2}$ < 1.

Please amend the paragraph beginning at page 52, line 27, to page 53, line 1, as follows:

Assume that $M = c \cdot (k + 1) \cdot M = c \cdot (k + \ell)$, C is a narrow sense [M, k, M-k+1]_q Reed-Solomon code.

Please amend the paragraph at page 53, lines 2-11, as follows:

If the following formula (2) is satisfied, the Reed-Solomon code C can be made to be a stochastic outer code:

$$\frac{[1-1/q^{\frac{1}{2}}]^{S}}{\text{where } \frac{S}{M}C_{k+1}} = \frac{[1-1/q^{\ell}]^{S}}{M}C_{k+\ell},$$
 (2)

q = N(1) = N(2) = ... = N(M),

and ϵ represents the rate of error tracing in each user ID (identification information) of the people responsible for collusive attacks, and is a real number that satisfies 0 < ϵ < 1.

Please amend the paragraph at page 53, lines 12-17, as follows:

In this case, the above-described tracing algorithm example as a stochastic method is applicable. In the tracing algorithm example as a stochastic method, $[[1]] \ell$ included in the formula, $\frac{Dth = k + 1}{Dth} = \frac{k + \ell}{\ell}$, may be given by, for example, formula (2) instead of formula (1).