3.11. PROBLEMS 109

Problem 3.11. In solving this problem, do not use determinants.

(1) Let (u_1, \ldots, u_m) and (v_1, \ldots, v_m) be two families of vectors in some vector space E. Assume that each v_i is a linear combination of the u_i s, so that

$$v_i = a_{i1}u_1 + \cdots + a_{im}u_m, \quad 1 \le i \le m,$$

and that the matrix $A = (a_{ij})$ is an upper-triangular matrix, which means that if $1 \leq j < i \leq m$, then $a_{ij} = 0$. Prove that if (u_1, \ldots, u_m) are linearly independent and if all the diagonal entries of A are nonzero, then (v_1, \ldots, v_m) are also linearly independent.

Hint. Use induction on m.

(2) Let $A = (a_{ij})$ be an upper-triangular matrix. Prove that if all the diagonal entries of A are nonzero, then A is invertible and the inverse A^{-1} of A is also upper-triangular.

Hint. Use induction on m.

Prove that if A is invertible, then all the diagonal entries of A are nonzero.

(3) Prove that if the families (u_1, \ldots, u_m) and (v_1, \ldots, v_m) are related as in (1), then (u_1, \ldots, u_m) are linearly independent iff (v_1, \ldots, v_m) are linearly independent.

Problem 3.12. In solving this problem, do not use determinants. Consider the $n \times n$ matrix

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 & 2 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 & 2 \\ 0 & 0 & \dots & 0 & 0 & 0 & 1 \end{pmatrix}.$$

(1) Find the solution $x = (x_1, \ldots, x_n)$ of the linear system

$$Ax = b$$
,

for

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

(2) Prove that the matrix A is invertible and find its inverse A^{-1} . Given that the number of atoms in the universe is estimated to be $\leq 10^{82}$, compare the size of the coefficients the inverse of A to 10^{82} , if $n \geq 300$.