Notas de estudio para Examen Privado Licenciatura en Física

J.A. de León

13 de mayo de 2024

Índice general

1.	Terr	nodinámica	2
	1.1.	Conceptos Básicos	2
	1.2.	Sistemas Termodinámicos y Cantidades de Estado	2

Capítulo 1

Termodinámica

La termodinámica es el estudio de las restricciones a las posibles propiedades de la materia que se derivan de las propiedades de simetría de las leyes fundamentales de la física.

1.1. Conceptos Básicos

Propósito: La termodinámica busca describir sistemas de muchas partículas (10^{23} típicamente). Gases, líquidos, cristales, estrellas, universo, ..., <u>sistemas macroscópicos</u> y en particular, estudiar los procesos de transferencia de energía (trabajo y calor) entre cuerpos macroscópicos¹.

- \blacksquare Definir cantidades físicas, "variables de estado" que caracterizan un sistema macroscópico: V,T,N,U,\ldots
- Relacionar estas cantidades entre sí:
 - 1. Válidas para cualquier sistema en equilibrio:
 - a) Leyes axiomáticas de la termodinámica, como Ley de la Energía, Ley de la Entroía, etc.
 - 2. Específicas
 - a) Por ecuaciones de estado como: fenomenológicas, empíricas, experimentales en la mayoria de los casos.

Es importante mencionar que la termodinámica clásica macroscópica no puede explicar porqué una ecuación de estado describe un sistema partícular.

1.2. Sistemas Termodinámicos y Cantidades de Estado

1. Sistema Termodinámico:

¹Más adelante se tratará la parte microscópica con la Mecánica Estadística, poder explicativo y predictivo sobre propiedades macroscópicas de la materia, partiendo de una descripción microscópica.

Figura 1.1: Representación gráfica de las partes de un sistema termodinámico.

- 2. Tipos de Sistemas: (depende de la frontera)
 - Sistemas aislados: No intercambian energía con el entorno.
 - Sistemas cerrados