HW01

March 6, 2020

1 Computer Vision - HW01

Mohammad Doosti Lakhani - 98722278 This notebooks consists of:

- 1. Importing Libraries
- 2. Loading a Grayscale Image
- 3. Functions
- 4. Gaussian vs. Average
 - 1. Applying 5x5 Average Filter
 - 2. Applying 5x5 Gaussian Filter
 - 3. Compare Using RMSE
- 5. Gaussian vs. 2X Gaussian
 - 1. Applying 5x5 Gaussian Filter With sigma1=1 Twice
 - 2. Applying a Gaussian Filter with Proper Size Once
 - 3. Compare Using RMSE

1.1 1 Importing Libraries

```
In [15]: import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy import ndimage
    %matplotlib inline
```

1.2 2 Loading a Grayscale Image

1.3 3 Functions

Just a wrapper around built-in CV2 functions.

```
In [64]: def average(image, size):
    """
    Applies average filter to smooth image

    :param image: Open cv or numpy ndarray image
    :param size: The size of average filter
    :return: An open cv image
    """

kernel = np.ones((size, size), dtype=np.float32) / (size ** 2)
    return cv2.filter2D(src=image, ddepth=-1, kernel=kernel)
```

1.4 4. Gaussian vs. Average

- 1. Applying 5x5 Average Filter
- 2. Applying 5x5 Gaussian Filter
- 3. Compare Using RMSE

1.4.1 4.A Applying 5x5 Average Filter

1.4.2 4.B Applying 5x5 Gaussian Filter

In this step we just need to use the defined gaussian filter then using convolve2d function for doing this.

1.4.3 4.C Compare Using RMSE

As images are same in term of size and content, RMSE can project the difference adequately.

1.5 5 Gaussian vs. 2X Gaussian

- 1. Applying 5x5 Gaussian Filter With sigma1=1 Twice
- 2. Applying a Gaussian Filter with Proper Size and sigma2=sqrt(2) Once
- 3. Compare Using RMSE

1.5.1 5.A Applying 5x5 Gaussian Filter With sigma1=1 Twice

This is same as previous step, the only difference is that we apply gaussian twice subsequently.

1.5.2 5.B Applying a Gaussian Filter with Proper Size and sigma2=sqrt(2) Once

To get the proper size, there is rule of thump that says the filter size should be biggest odd number which is less than 6 times of sigma. In our case as sigma is sqrt(2), 6xSigma = 8 and the biggest odd number less than 8 is 7. So kernel size will be 7.

1.5.3 5.C Compare Using RMSE

As images are same in term of size and content, RMSE can project the difference adequately.

RMSE between an image smoothed TWICE using a 5x5 gaussian filter with std=1 and original image 5.84284289425

RMSE between an image smoothed ONCE using a 7x7 gaussian filter with std=sqrt(2) and original

5.8536208248

RMSE between an image smoothed TWICE using a 5x5 gaussian filter with std=1 and ONCE using a 7x00.297867518681

As we can see the last number which demonstrates the discrepancy between blured image using 7x7 gaussian once and 5x5 gaussian twice is very small which is a depiction for high similarity between the outputs. So the idea of using multiple gaussians filter subsequently can be achieved using a higher (bigger size) gaussian is approximately true.