確率論 宿題4の解答

1019163 2-G 日置竜輔

次の問題を解き、解答過程を示したレポートを提出しなさい.

ただし、解答は単に答えを書くのではなく、どのように考えたかが分かるように書きなさい.

問題 あるサイコロを n 回投げたとき, i の目が出る回数を Xi で表す.

このとき,以下の問いに答えよ.

但し、解答は単に答えを書くのではなく、どのように考えたかが分かるように書きなさい.

問1 サイコロの偶数の目が奇数の目より 2 倍でやすいサイコロの Xi E Xj の同時確率 P(Xi, Xj) が従う確率分布を求めよ.

ただし、奇数となるどの目が出る確率も等しく、偶数となるどの目が出る確率も等しいとする.

まず、「偶数の目が奇数の目より2倍でやすい」ので、サイコロを1回振ったら

 $\left\{egin{array}{ll} 1,3,5\$ の出る確率はそれぞれ $& rac{1}{9} \\ 2,4,6\$ の出る確率はそれぞれ $& rac{2}{9} \\ \end{array}
ight.$ であることがわかる。

(a)i, jが共に奇数であるとき、

さいころを n 回振って、k 回だけ i が出る確率(すなわち $X_i = k$)は、

$${}_{n}C_{k}\left(rac{1}{9}
ight)^{k}\left(rac{8}{9}
ight)^{n-k}$$
 (反復試行の回数)

また、サイコロを n 回振って、k 回だけ i が出て、 l 回だけ j が出る確率(すなわち $X_i=k$, $X_j=l$ の同時確率)は、

$$\frac{n!}{k! \ l! \ (n-k-l)!} \left(\frac{1}{9}\right)^k \left(\frac{1}{9}\right)^l \left(\frac{7}{9}\right)^{n-k-l}$$

したがって、i,jが共に奇数のときの表は以下のようになる。

表1 i,j が共に奇数のときの確率分布

$(横:X_i)/(縦:X_j)$	 k	
0	 $\frac{n!}{k!(n-k)!} \frac{7^{n-k}}{9^n}$	
1	 $\frac{n!}{k! \ (n-k-1)!} \frac{7^{n-k-1}}{9^n}$	
2	 $\frac{n!}{2! \ k! \ (n-k-2)!} \frac{7^{n-k-2}}{9^n}$	
l	 $\frac{n!}{k! \ l! \ (n-k-l)!} \frac{7^{n-k-l}}{9^n}$	•••

(b) i が奇数, j が偶数であるとき、

さいころを n 回振って、k 回だけ i が出る確率(すなわち $X_i = k$)は、

$${}_{n}C_{k}\left(\frac{1}{9}\right)^{k}\left(\frac{8}{9}\right)^{n-k}$$
 (反復試行の回数)

また、サイコロを n 回振って、k 回だけ i が出て、 l 回だけ j が出る確率(すなわち $\mathbf{X}_i=k$, $X_j=l$ の同時確率)は、

$$\frac{n!}{k! \ l! \ (n-k-l)!} \left(\frac{1}{9}\right)^k \left(\frac{2}{9}\right)^l \left(\frac{2}{3}\right)^{n-k-l}$$

したがって、iが奇数,jが偶数のときの表は以下のようになる。

表 2 i が奇数, j が偶数のときの確率分布

$(横:X_i)/(縦:X_j)$	 2	k	
0	 $\frac{n(n-1)}{2} \left(\frac{1}{9}\right)^2 \left(\frac{2}{3}\right)^{n-2}$	$\frac{n!}{k! \ (n-k)!} \left(\frac{1}{9}\right)^k \left(\frac{2}{3}\right)^{n-k}$	
1	 $\frac{n(n-1)(n-2)}{2} \frac{2}{9^3} \left(\frac{2}{3}\right)^{n-3}$	$\frac{n!}{k! \ (n-k-1)!} \frac{2}{9^{k+1}} \left(\frac{2}{3}\right)^{n-k-1}$	
2	 $\frac{n(n-1)(n-2)(n-3)}{4} \frac{4}{9^4} \left(\frac{2}{3}\right)^{n-4}$	$\frac{n!}{2! \ k! \ (n-k-2)!} \frac{4}{9^{k+2}} \left(\frac{2}{3}\right)^{n-k-2}$	
l	 $\frac{n!}{l! \ (n-l-2)!} \frac{2^l}{9^{l+2}} \left(\frac{2}{3}\right)^{n-l-2}$	$\frac{n!}{k! \ l! \ (n-k-l)!} \frac{2^l}{9^{k+l}} \left(\frac{2}{3}\right)^{n-k-l}$	

(c) i が偶数, j が奇数であるとき、

さいころを n 回振って、k 回だけ i が出る確率(すなわち $X_i = k$)は,

$${}_{n}C_{k}\left(rac{2}{9}
ight)^{k}\left(rac{7}{9}
ight)^{n-k}$$
 (反復試行の回数)

また、サイコロを n 回振って、k 回だけ i が出て、 l 回だけ j が出る確率(すなわち $\mathbf{X}_i=k$, $X_j=l$ の同時確率)は、

$$\frac{n!}{k! \; l! \; (n-k-l)!} \left(\frac{2}{9}\right)^k \left(\frac{1}{9}\right)^l \left(\frac{2}{3}\right)^{n-k-l}$$

したがって、iが偶数,jが奇数のときの表は以下のようになる。

表 3 i が偶数, j が奇数のときの確率分布

$(横:X_i)/(縦:X_j)$	0	1	
0	$\left(\frac{2}{3}\right)^n$	$\frac{n!}{(n-1)!} \frac{2}{9} \left(\frac{2}{3}\right)^{n-1}$	
1	$n\frac{1}{9}\left(\frac{2}{3}\right)^{n-1}$	$n(n-1)\frac{2}{81}\left(\frac{2}{3}\right)^{n-2}$	
2	$\frac{n(n-1)}{2} \left(\frac{1}{9}\right)^2 \left(\frac{2}{3}\right)^{n-2}$	$\frac{n(n-1)(n-2)}{2} \frac{2}{9^3} \left(\frac{2}{3}\right)^{n-3}$	
l	$\frac{n!}{(n-l)!} \left(\frac{1}{9}\right)^l \left(\frac{2}{3}\right)^{n-l}$	$\frac{n!}{l! \ (n-l-1)!} \frac{2}{9^{l+1}} \left(\frac{2}{3}\right)^{n-l-1}$	

$(横:X_i)/(縦:X_j)$	 2	k	
0	 $\frac{n(n-1)}{2} \frac{4}{81} \left(\frac{2}{3}\right)^{n-2}$	$\frac{n!}{k! \ (n-k)!} \left(\frac{2}{3}\right)^{n-k}$	
1	 $\frac{n(n-1)(n-2)}{2} \frac{4}{9^3} \left(\frac{2}{3}\right)^{n-3}$	$\frac{n!}{k! \ (n-k-1)!} \frac{2^k}{9^{k+1}} \left(\frac{2}{3}\right)^{n-k-1}$	
2	 $\frac{n(n-1)(n-2)(n-3)}{4} \frac{4}{9^4} \left(\frac{2}{3}\right)^{n-4}$	$\frac{n!}{2! \ k! \ (n-k-2)!} \frac{2^k}{9^{k+2}} \left(\frac{2}{3}\right)^{n-k-2}$	
l	 $\frac{n!}{2! \ l! \ (n-l-2)!} \frac{4}{9^{l+2}} \left(\frac{2}{3}\right)^{n-l-2}$	$\frac{n!}{k! \ l! \ (n-k-l)!} \frac{2^k}{9^{k+l}} \left(\frac{2}{3}\right)^{n-k-l}$	
	 	•••	

(d) i ,j が共に偶数であるとき、

さいころを n 回振って、k 回だけ i が出る確率(すなわち $X_i=k$)は,

$${}_{n}C_{k}\left(rac{2}{9}
ight)^{k}\left(rac{7}{9}
ight)^{n-k}$$
 (反復試行の回数)

また、サイコロを n 回振って、k 回だけ i が出て、 l 回だけ j が出る確率(すなわち $\mathbf{X}_i=k$, $X_j=l$ の同時確率)は、

$$\frac{n!}{k! \; l! \; (n-k-l)!} \left(\frac{2}{9}\right)^k \left(\frac{2}{9}\right)^l \left(\frac{5}{9}\right)^{n-k-l}$$

したがって、 i, j が共に偶数のときの表は以下のようになる。

表 4 i, j が共に偶数のときの確率分布

$(横:X_i)(縦:X_j)$	1	2	
1	$n(n-1)4\frac{5^{n-2}}{9^n}$	$\frac{n(n-1)(n-2)}{2} 8 \frac{5^{n-3}}{9^n}$	
2	$\frac{n(n-1)(n-2)}{2}8\frac{5^{n-3}}{9^n}$	$\frac{n(n-1)(n-2)(n-3)}{4} \cdot 16^{\frac{5^{n-4}}{9^n}}$	
l	$\frac{n!}{l! \ (n-l-1)!} 2^{l+1} \frac{5^{n-l-1}}{9^n}$	$\frac{n!}{2! \ l! \ (n-l-2)!} 2^{l+2} \frac{5^{n-l-2}}{9^n}$	

$(横:X_i)(縦:X_j)$	 k	
1	 $\frac{n!}{k! (n-k-1)!} 2^{k+1} \frac{5^{n-k-1}}{9^n}$	
2	 $\frac{n!}{2! \ k! \ (n-k-2)!} 2^{k+2} \frac{5^{n-k-2}}{9^n}$	
	 • • •	
l	 $\frac{n!}{k! \ l! \ (n-k-l)!} 2^{k+l} \frac{5^{n-k-l}}{9^n}$	

問2 問1の同時確率分布から Xi の周辺確率分布を求めよ.

 X_i の確率分布は j の出る回数によらずに全ての場合での和を求めれば良い。 したがって、問 1 の結果より、i=k 回、すなわち $X_i=k$ の時の周辺確率分布は、

(a)i, jが共に奇数であるとき、

$$\sum_{l=0}^{n} \frac{n!}{k! \ l! \ (n-k-l)!} \left(\frac{1}{9}\right)^{k} \left(\frac{1}{9}\right)^{l} \left(\frac{7}{9}\right)^{n-k-l}$$

$$= \sum_{l=0}^{n} \frac{n!(n-k)!}{k! \ l! \ (n-k-l)!(n-k)!} \left(\frac{1}{9}\right)^{k} \left(\frac{1}{9}\right)^{l} \left(\frac{7}{9}\right)^{n-k-l}$$

$$= \frac{n!}{k!(n-k)!} \left(\frac{1}{9}\right)^{k} \sum_{l=0}^{n} \frac{(n-k)!}{l!(n-k-l)!} \left(\frac{1}{9}\right)^{l} \left(\frac{7}{9}\right)^{n-k-l}$$

$$= {}_{n}C_{k} \left(\frac{1}{9}\right)^{k} \sum_{l=0}^{n} {}_{n-k}C_{l} \left(\frac{1}{9}\right)^{l} \left(\frac{7}{9}\right)^{n-k-l}$$

$$= {}_{n}C_{k} \left(\frac{1}{9}\right)^{k} \left(\frac{1}{9} + \frac{7}{9}\right)^{n-k}$$

$$= {}_{n}C_{k} \left(\frac{1}{9}\right)^{k} \left(\frac{8}{9}\right)^{n-k}$$

(b)i が奇数, j が偶数であるとき、

$$\sum_{l=0}^{n} \frac{n!}{k! \ l! \ (n-k-l)!} \left(\frac{1}{9}\right)^{k} \left(\frac{2}{9}\right)^{l} \left(\frac{2}{3}\right)^{n-k-l}$$

$$= \sum_{l=0}^{n} \frac{n!(n-k)!}{k! \ l! \ (n-k-l)!(n-k)!} \left(\frac{1}{9}\right)^{k} \left(\frac{2}{9}\right)^{l} \left(\frac{2}{3}\right)^{n-k-l}$$

$$= \frac{n!}{k!(n-k)!} \left(\frac{1}{9}\right)^{k} \sum_{l=0}^{n} \frac{(n-k)!}{l!(n-k-l)!} \left(\frac{1}{9}\right)^{l} \left(\frac{2}{3}\right)^{n-k-l}$$

$$= {}_{n}C_{k} \left(\frac{1}{9}\right)^{k} \sum_{l=0}^{n} {}_{n-k}C_{l} \left(\frac{2}{9}\right)^{l} \left(\frac{2}{3}\right)^{n-k-l}$$

$$= {}_{n}C_{k} \left(\frac{1}{9}\right)^{k} \left(\frac{2}{9} + \frac{2}{3}\right)^{n-k}$$

$$= {}_{n}C_{k} \left(\frac{1}{9}\right)^{k} \left(\frac{8}{9}\right)^{n-k}$$

(c)i が偶数, j が奇数であるとき、

$$\sum_{l=0}^{n} \frac{n!}{k! \ l! \ (n-k-l)!} \left(\frac{2}{9}\right)^{k} \left(\frac{1}{9}\right)^{l} \left(\frac{2}{3}\right)^{n-k-l}$$

$$= \sum_{l=0}^{n} \frac{n!(n-k)!}{k! \ l! \ (n-k-l)!(n-k)!} \left(\frac{2}{9}\right)^{k} \left(\frac{1}{9}\right)^{l} \left(\frac{2}{3}\right)^{n-k-l}$$

$$= \frac{n!}{k!(n-k)!} \left(\frac{2}{9}\right)^{k} \sum_{l=0}^{n} \frac{(n-k)!}{l!(n-k-l)!} \left(\frac{1}{9}\right)^{l} \left(\frac{2}{3}\right)^{n-k-l}$$

$$= {}_{n}C_{k} \left(\frac{2}{9}\right)^{k} \sum_{l=0}^{n} {}_{n-k}C_{l} \left(\frac{1}{9}\right)^{l} \left(\frac{2}{3}\right)^{n-k-l}$$

$$= {}_{n}C_{k} \left(\frac{2}{9}\right)^{k} \left(\frac{1}{9} + \frac{2}{3}\right)^{n-k}$$

$$= {}_{n}C_{k} \left(\frac{2}{9}\right)^{k} \left(\frac{7}{9}\right)^{n-k}$$

(d)i, j が共に偶数であるとき、

$$\sum_{l=0}^{n} \frac{n!}{k! \ l! \ (n-k-l)!} \left(\frac{2}{9}\right)^{k} \left(\frac{2}{9}\right)^{l} \left(\frac{5}{9}\right)^{n-k-l}$$

$$= \sum_{l=0}^{n} \frac{n!(n-k)!}{k! \ l! \ (n-k-l)!(n-k)!} \left(\frac{2}{9}\right)^{k} \left(\frac{2}{9}\right)^{l} \left(\frac{5}{9}\right)^{n-k-l}$$

$$= \frac{n!}{k!(n-k)!} \left(\frac{2}{9}\right)^{k} \sum_{l=0}^{n} \frac{(n-k)!}{l!(n-k-l)!} \left(\frac{2}{9}\right)^{l} \left(\frac{5}{9}\right)^{n-k-l}$$

$$= {}_{n}C_{k} \left(\frac{2}{9}\right)^{k} \sum_{l=0}^{n} {}_{n-k}C_{l} \left(\frac{2}{9}\right)^{l} \left(\frac{5}{9}\right)^{n-k-l}$$

$$= {}_{n}C_{k} \left(\frac{2}{9}\right)^{k} \left(\frac{2}{9} + \frac{5}{9}\right)^{n-k}$$

$$= {}_{n}C_{k} \left(\frac{2}{9}\right)^{k} \left(\frac{7}{9}\right)^{n-k}$$

問3 n が十分大きな値のとき, 問2の周辺確率分布が収束する確率分布を求めよ.

n が十分大きな値をとる時、問2の周辺確率分布は正規分布に近似するため、正規分布の公式に当てはめる。

$$\mu = \frac{n}{9}$$
 , $\sigma^2 = np(1-p) = \frac{8}{81}n$ であるから、正規分布は

$$f(l) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$
$$= \frac{1}{\sqrt{2\pi\frac{8}{81}n}} \exp\left\{-\frac{(x-\frac{n}{9})^2}{2\frac{8}{81}n}\right\}$$
$$= \frac{9}{4\sqrt{n\pi}} \exp\left\{\frac{81}{16n} \left(x - \frac{n}{9}\right)^2\right\}$$

したがって、求める確率分布は

$$f(l) = \frac{9}{4\sqrt{n\pi}} \exp\left\{\frac{81}{16n} \left(x - \frac{n}{9}\right)^2\right\}$$

問4 n=25920000, X3=2877000 であったとき,このサイコロが,偶数の目が奇数の目より 2 倍以上でやすいサイコロであるかどうかを,有意水準 5% で検定せよ.ただし,n=25920000 は十分大きな値であると見做し,問 3 の確率分布に収束していると見做してよい.

さらに, 奇数となるどの目が出る確率も等しく, 偶数となるどの目が出る確率も等 しいとする.

このサイコロが、普通のサイコロ $(1 \sim 6)$ が等確率で出る) と仮定すると、 X_3 の確率分布は、n が十分大きいならば、

$$P_{(x,n)}=rac{6}{\sqrt{10n\pi}}\exp\left\{-rac{8}{15n}\left(x-rac{n}{6}
ight)^2
ight\}$$
に収束する。
したがって、 $n=2,592,0000$ より、 $rac{n}{6}=4,320,000$
 $P_{(x)}=rac{1}{1200\sqrt{5\pi}}\exp\left\{-rac{1}{7.2 imes10^6}\left(x-4.32 imes10^6
ight)^2
ight\}$ となる。
また、 $\sigma=600\sqrt{10}=1897.3\ldots$, $2\sigma=3794.7\ldots$
 $rac{n}{6}-20=4,316,205.2\ldots$, $rac{n}{6}+20=4,323,794.7\ldots$ である。

以上より、 $4,316,205 \le X_3 \le 4,323,795$ となる確率が 95.4% 以上なので、 このサイコロは偶数の目が奇数の目より 2 倍以上でやすいサイコロである可能性が高い。