What is cluster analysis?

CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn Lead Data Scientist,

A form of exploratory data analysis (**EDA**) where **observations** are divided into meaningful groups that share common characteristics (**features**).

Pre-process Data

Structure of this course

Structure of this course

Let's learn!

CLUSTER ANALYSIS IN R

Distance between two observations

CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Distance vs Similarity

Distance vs Similarity

Distance = 1 - Similarity

	х	Υ
Blue	0	0
Red	12	9

	х	Υ
Blue	0	0
Red	12	9

	х	Υ
Blue	0	0
Red	12	9

	х	Υ
Blue	0	0
Red	12	9

dist() function

```
print(two_players)
    X Y
BLUE 0 0
RED 9 12
dist(two_players, method = 'euclidean')
     BLUE
     15
RED
```

More than 2 observations

```
print(three_players)
BLUE 0 0
RED 9 12
GREEN -2 19
dist(three_players)
              RED
         BLUE
RED 15.00000
GREEN 19.10497 13.03840
```


Let's practice!

CLUSTER ANALYSIS IN R

The importance of scale

CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Distance between individuals

Observation	Height (feet)	Weight (lbs)
1	6.0	200
2	6.0	202
3	8.0	200
•••	•••	•••
•••	•••	•••

Distance between individuals

DISTANCE: 2

DISTANCE: 2

DISTANCE: 2

DISTANCE: 2

Scaling our features

$$height_{scaled} = rac{height - mean(height)}{sd(height)}$$

DISTANCE: 0.06

DISTANCE: 10.7

scale() function

```
print(height_weight)
  Height Weight
      6
           200
      6
         202
      8
3
           200
scale(height_weight)
   Height
           Weight
    0.60
          0.67
         0.73
    0.60
3
    11.3
          0.67
```

Let's practice!

CLUSTER ANALYSIS IN R

Measuring distance for categorical data

CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Binary data

	wine	beer	whiskey	vodka
1	TRUE	TRUE	FALSE	FALSE
2	FALSE	TRUE	TRUE	TRUE
•••	•••	•••	•••	•••

Jaccard index

$$J(A,B) = \frac{A \cap B}{A \cup B}$$

Calculating Jaccard distance

	wine	beer	whiskey	vodka
1	TRUE	TRUE	FALSE	FALSE
2	FALSE	TRUE	TRUE	TRUE

$$J(1,2) = rac{1 \cap 2}{1 \cup 2} = rac{1}{4} = 0.25$$

$$Distance(1,2) = 1 - J(1,2) = 0.75$$

Calculating Jaccard distance in R

```
print(survey_a)
  wine beer whiskey vodka
 <lgl> <lgl> <lgl> <lgl> <lgl> <
  TRUE TRUE FALSE FALSE
2 FALSE TRUE TRUE TRUE
3 TRUE FALSE TRUE FALSE
dist(survey_a, method = "binary")
2 0.7500000
3 0.6666667 0.7500000
```

More than two categories

	color	sport	
1	red	soccer	
2	green	hockey	
3	blue	hockey	
4	blue	soccer	

	colorblue	colorgreen	colorred	sporthockey	sportsoccer
1	0	0	1	0	1
2	0	1	0	1	0
3	1	0	0	1	0
4	1	0	0	0	1

Dummification in R

```
print(survey_b)
  color sport
    red soccer
2 green hockey
  blue hockey
  blue soccer
library(dummies)
dummy.data.frame(survey_b)
 colorblue colorgreen colorred sporthockey sportsoccer
          0
```


Generalizing categorical distance in R

```
print(survey_b)
  color sport
   red soccer
2 green hockey
  blue hockey
  blue soccer
dummy_survey_b <- dummy.data.frame(survey_b)</pre>
dist(dummy_survey_b, method = 'binary')
2 1.0000000
3 1.0000000 0.6666667
4 0.6666667 1.0000000 0.6666667
```


Let's practice!

CLUSTER ANALYSIS IN R

