

Trouvez la structure qui donne ce spectre

THE CHANGE OF THE PARTY OF THE

EXERCICE 1

Trouvez la structure qui donne ce spectre

Trouvez la structure qui donne ce spectre

CHINA IN THE SCIENCE OF THE STATE OF THE SCIENCE OF

EXERCICE 2

Trouvez la structure qui donne ce spectre

See China III

EXERCICE 3

Trouvez la structure qui donne ce spectre

4,4-dimethyl-5-oxovaleronitrile

δ (ppm)

4,4-dimethyl-5-oxovaleronitrile

Trouvez la structure qui donne ce spectre

Trouvez la structure qui donne ce spectre

4,4-dimethyl-3-oxovaleronitrile

Assign.	Shift(ppm)
۸	2 670

A 3.679 B 1.211 δ (ppm)

Trouvez la structure qui donne ce spectre

Comment peut-on distinguer les deux molécules ci-dessous par ¹H RMN?

Comment peut-on distinguer les deux molécules ci-dessous par ¹H RMN?

Comment peut-on distinguer les deux molécules ci-dessous par ¹H RMN?

Lors d'une expérience ¹H RMN réalisée à 25 °C, une molécule est soumise à un champs magnétique $B_0 = 14.1$ T. Elle présente un pic avec un déplacement chimique de 4 ppm

En déduire le ratio de nombre de spins dans l'état β divisé par le nombre de spins dans l'état α

Détaillez votre calcul

MINITED TO ALGORITHM WITH LESS TO ALGORITHM W

EXERCICE 6

Lors d'une expérience ¹H RMN réalisée à 25 °C, une molécule est soumise à un champs magnétique $B_0 = 14.1$ T. Elle présente un pic avec un déplacement chimique de 4 ppm

En déduire le ratio de nombre de spins dans l'état β divisé par le nombre de spins dans l'état α

Il faut en premier lieu calculer la fréquence, v, associée au champs magnétique B₀

$$v = 600 \text{ MHz}$$

Il faut ensuite corriger cette valeur pour tenir compte du déplacement chimique de 4 ppm

$$\delta = \frac{v - v_{\text{ref}}}{v_0} \times 10^6$$
 $v_{4ppm} = 600\ 002\ 400\ Hz$

Ce qui nous permet de calculer la difference énergétique entre les deux populations de spins, et donc d'en déduire leur ratio

à 4 ppm,
$$\Delta E = 3.97562 \times 10^{-25} J$$

Donc, à 25 °C, $N\beta/N\alpha = 0.999903421$