BAYESIAN GAMES

Dripto Bakshi

Retro – Dating

Battle of Sexes

■ Two Players: Boy (Player 1) & Girl (Player 2)

Battle of Sexes

- Two Players: Boy (Player 1) & Girl (Player 2)
- Pure Strategy set of each player: {Cricket (C), Movie (M)}

Battle of Sexes

- Two Players: Boy (Player 1) & Girl (Player 2)
- Pure Strategy set of each player: {Cricket (C), Movie (M)}
- The pay off matrix is given by:

	Cricket (C)	Movie (M)
Cricket (C)	10,5	0,0
Movie (M)	0,0	5,10

Best Responses

	Cricket (C)	Movie (M)
Cricket (C)	10*, 5*	0,0
Movie (M)	0,0	5 *, 10 *

Pure Strategy Nash Equilibria

■ The two pure strategy Nash equilibria are: (C,C) & (M,M)

Pure Strategy Nash Equilibria

■ The two pure strategy Nash equilibria are: (C,C) & (M,M)

Does there exist mixed strategy N.E?

Let's find them!

Mixed Strategies

■ Boy (P_1) plays the mixed strategy (p, 1-p), i.e He plays C with probability p and M with probability 1-p.

• Girl (P_2) plays the mixed strategy (q, 1-q), i.e She plays C with probability q and M with probability 1-q.

Mixed Strategy Nash Equilibrium

■ The MSNE of the game is given by: $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$

i.e Boy plays the mixed strategy $(\frac{2}{3}, \frac{1}{3})$ & the Girl plays the mixed

strategy
$$(\frac{1}{3}, \frac{2}{3})$$

Incomplete Information

Now let's make it a little more realistic.

The Boy does not know whether the girl is "Interested" or "Uninterested".

 So the Girl in this case has two "types" namely: "Interested" and "Uninterested"

The "Interested" Girl

■ The pay off matrix is given by:

	Cricket (C)	Movie (M)
Cricket (C)	10,5	0,0
Movie (M)	0,0	5,10

The "Uninterested" Girl

■ The pay off matrix is given by:

	Cricket (C)	Movie (M)
Cricket (C)	10,0	0,10
Movie (M)	0,5	5,0

Belief

- The boy does not know the type of the girl.
- But he has a belief about the type of the girl.
- The belief is a probability distribution over the set of types.
- Let's say the girl has given no hint.
- So the "belief" he has that the girl is of type "Interested" is = $\frac{1}{2}$.
- The **belief** is common knowledge

Bayesian Nash Equilibrium (Def.)

A **Bayesian Nash Equilibrium (BNE)** is a set of strategies, one for each "type" of a player, such that no "type" of any player has any incentive to change his/her strategy, given the beliefs (*which are common knowledge*) & what other players are doing.

	C,C	C , M	M,C	M , M
С	10			
M				

	C,C	C , M	M,C	M , M
С	10			
M	0			

	C,C	С,М	M,C	M , M
С	10			
M	0	$\frac{1}{2}.0 + \frac{1}{2}.5 = 5/2$		

	C , C	C , M	M,C	M , M
С	10	$\frac{1}{2}.10 + \frac{1}{2}.0 = 5$		
M	0	$\frac{1}{2}.0 + \frac{1}{2}.5 = 5/2$		

	С,С	C , M	M,C	M , M
С	10	$\frac{1}{2}.10 + \frac{1}{2}.0 = 5$	5	0
M	0	$\frac{1}{2}.0 + \frac{1}{2}.5 = 5/2$	5/2	5

Boy's Expected Payoffs (Best Responses)

	C,C	C , M	M , C	M , M
С	10	5	5	0
M	0	5/2	5/2	5

Boy's Expected Payoffs (Best Responses)

	C,C	C , M	M , C	M , M
С	10	5	5	0
M	0	5/2	5/2	5

Let's inspect:

- **(**C, (C,C))
- **(**C, (C,M))
- **(**C, (M,C))
- **■** (M, (M,M))

■ (C, (C,C)): If the Boy plays C it is NOT optimal for the "Uninterested girl" to play C. So (C, (C,C)) is not a BNE.

 (C, (C,C)): If the Boy plays C it is NOT optimal for the "Uninterested girl" to play C. So (C, (C,C)) is not a BNE.

(C,(C,M)): If the Boy plays C it is optimal for the "interested" type girl to play C & it is also optimal for the "Uninterested" type girl to play M. So (C,(C,M)) is indeed a pure strategy BNE.

 (C, (C,C)): If the Boy plays C it is NOT optimal for the "Uninterested girl" to play C. So (C, (C,C)) is not a BNE.

(C,(C,M)): If the Boy plays C it is optimal for the "interested" type girl to play C & it is also optimal for the "Uninterested" type girl to play M. So (C,(C,M)) is indeed a pure strategy BNE.

Similarly we can argue that (C, (M,C)) & (M, (M,M)) are not BNE.

Bayesian Nash Equilibrium (Def.)

A **Bayesian Nash Equilibrium (BNE)** is a set of strategies, one for each "type" of a player, such that no "type" of any player has any incentive to change his/her strategy, given the beliefs (*which are common knowledge*) & what other players are doing.

Mixed Strategy BNE (MSBNE)

Let's consider the following mixed strategy profile:

- \triangleright The Boy (P_1) plays (p,1-p)
- The girl of "Interested" type plays $(q_1, 1-q_1)$
- The girl of "Un-Interested" type plays $(q_2, 1-q_2)$

Mixed Strategy BNE (MSBNE)

Let's consider the following mixed strategy profile:

- \triangleright The Boy (P_1) plays (p,1-p)
- The girl of "Interested" type plays $(q_1, 1-q_1)$
- The girl of "Un-Interested" type plays $(q_2,1-q_2)$

Is this mixed strategy profile a BNE given the beliefs??

The Boy's Payoffs

• Given that the girl of "Interested" type plays $(q_1,1-q_1)$ & the girl of "Un-Interested" type plays $(q_2,1-q_2)$

The Boy's Payoffs

• Given that the girl of "Interested" type plays $(q_1,1-q_1)$ & the girl of "Un-Interested" type plays $(q_2,1-q_2)$

Expected Payoff of the "Boy" if he plays C:

$$\{10.q_1 + 0.(1-q_1)\}.\frac{1}{2} + \{10.q_2 + 0.(1-q_2)\}.\frac{1}{2}$$

The Boy's Payoffs

• Given that the girl of "Interested" type plays $(q_1,1-q_1)$ & the girl of "Un-Interested" type plays $(q_2,1-q_2)$

Expected Payoff of the "Boy" if he plays C:

$$\{10.q_1 + 0.(1-q_1)\}.\frac{1}{2} + \{10.q_2 + 0.(1-q_2)\}.\frac{1}{2}$$

Expected Payoff of the "Boy" if he plays M:

$$\{0.q_1 + 5.(1-q_1)\}.\frac{1}{2} + \{0.q_2 + 5.(1-q_2)\}.\frac{1}{2}$$

■ Remember in the mixed strategy profile the Boy is playing is (p,1-p)

Remember in the mixed strategy profile the Boy is playing is (p,1-p)

■ Since he is randomizing between C & M, that can only happen if the expected payoffs (*ceteris paribus*) of playing them are the same.

Remember in the mixed strategy profile the Boy is playing is (p,1-p)

Since he is randomizing between C & M, that can only happen if the expected payoffs (ceteris paribus) of playing them are the same. i.e

$$\{10.q_1 + 0.(1-q_1)\}.\frac{1}{2} + \{10.q_2 + 0.(1-q_2)\}.\frac{1}{2} = \{0.q_1 + 5.(1-q_1)\}.\frac{1}{2} + \{0.q_2 + 5.(1-q_2)\}.\frac{1}{2}$$

Remember in the mixed strategy profile the Boy is playing is (p,1-p)

Since he is randomizing between C & M, that can only happen if the expected payoffs (ceteris paribus) of playing them are the same. i.e

$$\{10.q_1 + 0.(1-q_1)\}.\frac{1}{2} + \{10.q_2 + 0.(1-q_2)\}.\frac{1}{2} = \{0.q_1 + 5.(1-q_1)\}.\frac{1}{2} + \{0.q_2 + 5.(1-q_2)\}.\frac{1}{2}$$

The Girl Connect Equation !!!!!

"Interested" Girl

• Is it optimal for the interested girl to play mixed strategy $(q_1, 1-q_1)$

"Interested" Girl

- Is it optimal for the interested girl to play mixed strategy $(q_1, 1-q_1)$
- Given that the boy is playing (p,1-p)
- ➤ Her expected payoff from playing C: 5.p + 0.(1-p)
- ➤ Her expected payoff from playing M: 0.p + 10.(1-p)

"Interested" Girl

- Is it optimal for the interested girl to play mixed strategy $(q_1, 1-q_1)$
- Given that the boy is playing (p,1-p)
- ➤ Her expected payoff from playing C: 5.p + 0.(1-p)
- \triangleright Her expected payoff from playing M: 0.p + 10.(1-p)
- If the "Interested" girl playing $(q_1, 1-q_1)$ with $q_1 > 0$ in response to the Boy playing (p,1-p) is a BNE:

5.p + 0.(1-p) = 0.p + 10.(1-p) i.e
$$P = \frac{2}{3}$$

"Uninterested" Girl

• Is it optimal for the interested girl to play mixed strategy $(q_2, 1-q_2)$

"Uninterested" Girl

- Is it optimal for the interested girl to play mixed strategy $(q_2, 1-q_2)$
- Given that the boy is playing (p,1-p)
- ➤ Her expected payoff from playing C: 0.p + 5.(1-p)
- > Her expected payoff from playing M: 10.p + 0.(1-p)

"Uninterested" Girl

- Is it optimal for the interested girl to play mixed strategy $(q_2, 1-q_2)$
- Given that the boy is playing (p,1-p)
- ➤ Her expected payoff from playing C: 0.p + 5.(1-p)
- > Her expected payoff from playing M: 10.p + 0.(1-p)
- If the "Uninterested" girl playing $(q_2,1-q_2)$ with $q_2>0$ in response to the Boy playing (p,1-p) is a BNE:

$$0.p + 5.(1-p) = 10.p + 0.(1-p) i.e P = \frac{1}{3}$$

If P = 2/3 Then?

- For the "Interested" girl:
- > Her expected payoff from playing C: 5.p + 0.(1-p) = 5.($\frac{2}{3}$) = $\frac{10}{3}$
- ightharpoonup Her expected payoff from playing M: 0.p + 10.(1-p) = 10 ($\frac{2}{3}$) = $\frac{10}{3}$

If P = 2/3 Then?

- For the "Interested" girl:
- ➤ Her expected payoff from playing C: 5.p + 0.(1-p) = 5.($\frac{2}{3}$) = $\frac{10}{3}$ ➤ Her expected payoff from playing M: 0.p + 10.(1-p) = 10($\frac{2}{3}$) = $\frac{10}{3}$
- For the "Uninterested girl":
- \triangleright Her expected payoff from playing C: 0.p + 5.(1-p) = $\frac{5}{3}$
- \rightarrow Her expected payoff from playing M: 10.p + 0.(1-p) = $\frac{20}{3}$
- > So it is optimal for her to play M.
- \geq i.e $q_2 = 0$

- If $p = \frac{2}{3}$ i.e if the Boy plays the mixed strategy $(\frac{2}{3}, \frac{1}{3})$
- > The "Interested" girl will (can?) opt for a mixed strategy.
- \triangleright The "Uninterested" girl simply plays the pure strategy M. i.e $q_2 = 0$

- If $p = \frac{2}{3}$ i.e if the Boy plays the mixed strategy $(\frac{2}{3}, \frac{1}{3})$
- > The "Interested" girl will (can?) opt for a mixed strategy.
- \succ The "Uninterested" girl simply plays the pure strategy M. i.e $q_2 = 0$

Recall the "girl connect Equation"

$$\{10.q_1 + 0.(1-q_1)\}.\frac{1}{2} + \{10.q_2 + 0.(1-q_2)\}.\frac{1}{2} = \{0.q_1 + 5.(1-q_1)\}.\frac{1}{2} + \{0.q_2 + 5.(1-q_2)\}.\frac{1}{2}$$

$$\rightarrow$$
 If $q_2 = 0$ it implies $q_1 = \frac{2}{3}$

• So p=
$$\frac{2}{3}$$
, $q_1 = \frac{2}{3}$, $q_2 = 0$ seems to do the trick!

■ So $\left\{ \left(\frac{2}{3}, \frac{1}{3} \right), \left[\left(\frac{2}{3}, \frac{1}{3} \right), \left(0, 1 \right) \right] \right\}$ is a MSBNE given the Boy's belief $\left(\frac{1}{2}, \frac{1}{2} \right)$ about the Girl's type

If P = 1/3 Then?

- For the "Interested" girl:
- > Her expected payoff from playing C: 5.p + 0.(1-p) = 5. $(\frac{1}{3}) = \frac{5}{3}$
- ightharpoonup Her expected payoff from playing M: 0.p + 10.(1-p) = 10 $(\frac{2}{3}) = \frac{20}{3}$
- ➤ So it is optimal for her to play M.
- > i.e $q_1 = 0$

If P = 1/3 Then?

- For the "Interested" girl:
- ➤ Her expected payoff from playing C: 5.p + 0.(1-p) = $5.(\frac{1}{3}) = \frac{5}{3}$ ➤ Her expected payoff from playing M: 0.p + 10.(1-p) = $10.(\frac{2}{3}) = \frac{20}{3}$
- ➤ So it is optimal for her to play M.
- \geq i.e $q_1 = 0$
- For the "Uninterested girl":
- ➤ Her expected payoff from playing C: 0.p + 5.(1-p) = $\frac{10}{3}$ ➤ Her expected payoff from playing M: 10.p + 0.(1-p) = $\frac{10}{3}$

- If $p = \frac{1}{3}$ i.e if the Boy plays the mixed strategy $(\frac{1}{3}, \frac{2}{3})$
- The "Interested" girl simply plays the pure strategy M. i.e $q_1 = 0$
- ➤ The "UnInterested" girl will (can?) opt for a mixed strategy.

Recall the "girl connect Equation"

$$\{10.q_1 + 0.(1-q_1)\}.\frac{1}{2} + \{10.q_2 + 0.(1-q_2)\}.\frac{1}{2} = \{0.q_1 + 5.(1-q_1)\}.\frac{1}{2} + \{0.q_1 + 5.(1-q_1)\}.\frac{1}{2}$$

 \rightarrow If $q_1 = 0$ it implies $q_2 = 2/3$

• So p=
$$\frac{1}{3}$$
, q_1 = 0, q_2 = $\frac{2}{3}$ seems to do the trick!

■ So $\{(\frac{1}{3}, \frac{2}{3}), [(0,1), (\frac{2}{3}, \frac{1}{3})]\}$ is a MSBNE given the Boy's belief $(\frac{1}{2}, \frac{1}{2})$ about the Girl's type