HW2

William Hua

January 22, 2014

6

a) 0, minimum sum is 2

b) $\frac{4}{36}$, (1,4), (4,1), (2,3), (3,2)

c) $\frac{1}{36}$, (6,6)

7

a) No. Since there is a percentage of the voters who are both Independent and swing voters, they are not mutually exclusive.

b)

c) 24%

d) 47%

e) 53%

f) They are not independent. $P(Ind \cap Swing) \neq P(Ind)P(Swing)$. $P(Ind \cap Swing) = .11$ and P(Ind)P(Swing) = .08

9

a) Independent

b) Neither

c) No

12

- a) 100 15 28 25 = 32%
- **b)** 32 + 25 = 57%
- c) 100 32 = 68
- d) I assume that the probability of the two kids missing school are inindependent of each other. .32*.32 = .1024
- e) I make the same assumptions as above. .68 * .68 = .4624
- f) Not entirely, since kids usually miss school due to sickness and if one of the kids is sick there is a high chance that the sickness could transfer to the other child.

14

- a) $\frac{15,327}{428,638} = .0357\%$
- **b)** $\frac{141,699+44,837}{428,638} = .4351\%$

15

- a) No, but if it was independent you could.
- **bi**) .3 * .7 = .21
- **bii**) .3 + .7 .21 = .79
- **biii**) $\frac{.21}{.7} = .3$
- c) No, $P(A \cap B)$ has to be .21 for it to be independent
- **d)** $\frac{.1}{7} = .1428$

16

$$\frac{.78}{.8} = .975$$

17

- a) .6 + .2 .18 = .62%
- **b**) $\frac{.18}{.2} = .9\%$
- c) $\frac{.11}{.33} = .33\%$
- d) It appears that belief is not independent since if that were true the probability of belief given that one is a liberal democrat should not differ from the probability of belief given that one is a convservative republican.
- **e**) $\frac{.06}{.34} = .1764$

$$\frac{.99*.03}{.99*.03+.02*.97} = .6048\%$$

$$\frac{.997*.259}{.997*.259+.074*.741} = .8248$$