ME41116 Vehicle Control

Vehicle Stability Control

Course Instructor:

Barys Shyrokau Mohsen Alirezaei

Submitted by Group 10:

- Chatrath K. 4739205
- Chowdhri N. 4744055
- Damian M. 4749405
- Vitiello P. 4719557

Contents

- Motivation
- Problem Statement
- ESC
- Control Strategies
- Vehicle Validation Model
- Simulation and Results
- Conclusion

Motivation

- **National Highway Traffic Safety** Administration (NHTSA - 2017), in **2015-**
 - > 22,441 Passenger Vehicle (PV) occupant fatalities
 - > 2,272 fatalities despite use of ESC !!!
 - <u>1,411</u> fatalities- Passenger Car
 - 861 fatalities- Light-truck and Van
 - **≥**10.1% of fatalities in PVs equipped with ESC

Table 1 ESC Lives Saved Estimates, by Year and Vehicle Type, 2011–2015

Year	Passenger Cars With ESC Standard (1)	Light Trucks/Vans With ESC Standard (2)	Passenger Vehicles With ESC Standard Total = (1) + (2)
2015	857	1,091	1,949
2014	657	918	1,575
2013	551	829	1,380
2012	466	759	1,225
2011	329	567	896
TOTAL	2,860	4,164	7,024

Data Source: NHTSA, NCSA, 2011-2014 FARS Final Files, FARS 2015 Annual Report File and IIHS list of ESC-equipped vehicles.

Problem Statement

TO INVESTIGATE AND COMPARE THE PERFORMANCE OF AN ESC SYSTEM USING VARIOUS NON-LINEAR CONTROL STRATEGIES

ESC

- **■** Electronic Stability Control (ESC):
 - > To improve lateral stability and avoid vehicle skidding using differential braking

□ 3 strategies have been put to test:

1. Non-Linear State Feedback using Lyapunov Stability Method

- It is assumed that lateral, longitudinal velocities and accelerations respectively (v_x, v_y, a_x, a_y) and yaw rate (r) are available measurement
- Model based approach: Non-Linear Bicycle Model

$$\dot{v} = P - ur; \qquad P = \frac{1}{M} \{ (F_{yfl} + F_{yfr}) \cos \delta + (F_{yrl} + F_{yrr}) \}$$

$$\dot{r} = \frac{1}{I_z} (Q + M_z); \qquad Q = a (F_{yfl} + F_{yfr}) \cos \delta - b (F_{yrl} + F_{yrr}) + e (F_{yfl} - F_{yfr}) \sin \delta$$

- Candidate Lyapunov Function: $V = \frac{1}{2} \left[A(v v_{ref})^2 + BI_z(r r_{ref})^2 \right] > 0$
- The time derivative is ensured to be negative semidefinite. Stability can be proved via LaSalle's Invariance Principle. Based on these ideas, the corrective yaw moment is:
- $M_Z = -\frac{Av(P-ur)}{B(r-r_{ref}+\epsilon)} Q K(r-r_{ref})$ where, A, B, ϵ and K are positive valued tuning parameters
- $\bullet \quad \dot{V} = -BK(r r_{ref})^2 < 0$

☐ Sliding Mode Control (SMC)

CHATTERING

□ 3 strategies have been put to test:

2. Second Order Sliding Model Control (SMC) with Super-Twisting Algorithm

- Assumptions: Measurements available- v_x , v_y , r, and a_y
- $\sigma = r r_{ref}$ is the sliding surface

•
$$\dot{\sigma} = \frac{1}{l_z} \left(l_f (F_{y,fl} + F_{y,fr}) - l_r (F_{y,rl} + F_{y,rr}) + M_z \right) - \dot{r}_{ref}$$

•
$$\ddot{\sigma} = \left(-\ddot{r}_{ref} + \frac{1}{l_z} \left(l_f (\dot{F}_{y,fl} + \dot{F}_{y,fr}) - l_r (\dot{F}_{y,rl} + \dot{F}_{y,rr}) \right) \right) + \frac{1}{l_z} \dot{M}_z$$

- $\dot{u} = \dot{M}_z$
- $u_{ST}(t) = u_1(t) + u_2(t)$

- $\dot{u}_1 = \begin{cases} -u, & |u| > 0 \\ -Wsign(\sigma), & |u| \le 0 \end{cases}$
- $u_2 = \begin{cases} -\eta |\sigma_0|^{\rho} sign(\sigma), & |\sigma| > \sigma_0 \\ -\eta |\sigma|^{\rho} sign(\sigma), & |\sigma| \le \sigma_0 \end{cases}$
- $M_z = -l_f (F_{y,fl} + F_{y,fr}) + l_r (F_{y,rl} + F_{y,rr}) + I_{zz} \dot{r}_{ref} + u_{ST}$

Control action is a function of Lateral Force which therefore required reconstruction using 'dteval_light'.

□ 3 strategies have been put to test:

3. Higher Order Sliding Mode Observer with Adaptive Super-Twisting Controller Design

- Assumptions: Measurements available- v_x , r, a_x and a_y
- States to be estimated by Observer- v_v

•
$$\dot{\hat{v}}_x = \hat{v}_y r + a_x - \frac{m_s}{m} h r \hat{\theta} + v_1$$

•
$$\dot{\hat{v}}_y = -v_x r + \frac{J_x}{J_{x,e}} a_y - \frac{k_{x,e}}{J_{x,s}} \hat{\theta} - \frac{b_x}{J_{x,s}} \hat{\theta} + v_2$$

•
$$\hat{\theta} = -\frac{k_{x,e}}{J_{x,e}}\hat{\theta} - \frac{b_x}{J_{x,e}}\hat{\theta} + \frac{m_S}{J_{x,e}}ha_y$$

•
$$v_1 = k_1 |\tilde{v}_{\chi}|^{\frac{1}{2}} sign(\tilde{v}_{\chi})$$

•
$$v_2 = k_2 sign(\tilde{v}_x) sign(r)$$

•
$$\tilde{v}_x = v_x - \hat{v}_x$$

[6] "Robust observer-based sliding mode controller for vehicles with roll dynamics" Juan J. Ley-Rosas, Luis Enrique Gonzalez-Jimenez, Alexander G. Loukianov and Jorge E. Ruiz-Duarte

3. Higher Order Sliding Mode Observer with Adaptive Super-Twisting Controller Design

• Corrective action is δ_c – active steering correction and M_z – corrective moment action

•
$$\Delta F_{y,f} = F_{y,f} - F_{y,f,d}$$

•
$$\Delta F_{y,f} = \frac{J_{x,e}}{J_x} \frac{m}{\mu_y} \left(\lambda_{11} |s_1|^{\frac{1}{2}} sign(s_1) + \sigma_1 - v_2 \right)$$

•
$$M_z = J_z(-\lambda_{21}|s_2|^{\frac{1}{2}}sign(s_2) + \sigma_2)$$

•
$$\delta_c = \Delta F_{v,f}^{-1}$$

•
$$\Delta F_{y,f}^{-1} = \frac{1}{B_{y,f}} tan \left[\left(\frac{1}{C_{y_f}} \right) arcsin \left(\frac{\Delta F_{y,f}}{D_{y_f}} \right) \right]$$

•
$$s_1 = \hat{v}_y - v_{y,ref}$$

•
$$s_2 = r - r_{ref}$$
 where,

 s_1 and s_2 are the 2 sliding surfaces

•
$$\dot{s}_1 = -\lambda_{11} |s_1|^{\frac{1}{2}} sign(s_1) + \sigma_1 + \rho_1$$

•
$$\dot{\sigma}_1 = -\lambda_{12} sign(s_1)$$

•
$$\dot{s}_2 = -\lambda_{21} |s_2|^{\frac{1}{2}} sign(s_2) + \sigma_2 + \rho_2$$

•
$$\dot{\sigma}_2 = -\lambda_{22} \operatorname{sign}(s_2)$$

$$\dot{\lambda}_{11} = \begin{cases} \omega_1 \sqrt{\frac{\gamma_1}{2}}, & if \ s_1 \neq 0 \\ 0 & \end{cases}$$

•
$$\lambda_{12} = 2\epsilon_1\lambda_{11} + \eta_1 + 4\epsilon_1^2$$

$$\dot{\lambda}_{21} = \begin{cases} \omega_2 \sqrt{\frac{\gamma_2}{2}}, & \text{if } s_2 \neq 0 \\ 0 & \end{cases}$$

•
$$\lambda_{22} = 2\epsilon_2\lambda_{21} + \eta_2 + 4\epsilon_2^2$$

Vehicle Validation Model

■ Vehicle data

Symbol	Description	Value	Unit
\overline{M}	total vehicle mass	1,900	[kg]
I_{xx}	Inertia along x-axis	700	$[kgm^2]$
I_{yy}	Inertia along y - axis	3,200	$[kgm^2]$
I_{zz}^{gg}	Inertia along z-axis	3,500	$[kgm^2]$
r_{eff}	Effective Wheel Radius	0.3035	[m]
$r_{w,l}$	Wheel Loaded Radius	0.2866	[m]
m_{rim}	Rim mass	0.15	[kg]
m_{tire}	Tire mass	9.8	[kg]
$I_{xx,tire}$	Rim Inertia along x - axis	1	$[kgm^2]$
$I_{yy,tire}$	Rim Inertia along y - axis	1	$[kgm^2]$
l_f	Front Wheelbase	1.48	[m]
l_r^{\prime}	Rear Wheelbase	1.41	[m]
h_{Bf}	Half of Front Trackwidth	0.5*1.56	[m]
h_{Br}	Half of Rear Trackwidth	0.5*1.58	[m]
h_{cg}	Height of CoG	0.54	[m]
h_r	Height of Rear Roll Center	0	[m]
h_f	Height of Front Roll Center	0	[m]
$m_{us,f}$	Front Axle mass	120	[kg]
$m_{us,r}$	Rear Axle mass	90	[kg]
*			

☐ Vehicle Model

- Meant for all controllers to be tested and tuned
- Multibody nonlinear vehicle model created using SimMechanics

Assumption

- No throttle input considered to be imparted to the vehicle
- No heave motion has been considered
- Flat Road profile

☐ Vehicle data

Symbol	Description	Value	Unit
Kz_f	Front Vertical Stiffness	52,000	[N/m]
Kz_r	Rear Vertical Stiffness	40,000	[N/m]
Dz_f	Front Vertical Damping Coefficient	3,000	[Ns/m]
Dz_r	Rear Vertical Damping Coefficient	3,000	[Ns/m]
$Kroll_f$	Front Roll Stiffness	130,000	[N/rad]
$Kroll_r$	Rear Roll Stiffness	40,000	[N/rad]
$Droll_f$	Front Roll Damping Coefficient	2,000	[Ns/rad]
$Droll_r$	Rear Roll Damping Coefficient	2,000	[Ns/rad]
i_s	Natural Steering Ratio	15.4	[-]

☐ Sine with Dwell

- Testing and tuning of controllers
- Initial longitudinal speed: 25m/s
- Time Response- yaw rate and lateral distance

- Testing and tuning of controllers
- Initial longitudinal speed: 25m/s
- Time Response- lateral velocity

☐ Sine with Dwell

■ Step Steer

- Lateral stability performance evaluation
- Steering wheel step input: 90°
- Initial longitudinal speed: 25m/s
- Time Response- lateral acceleration

Skid Pad

- Performance evaluation
- Steady state manoeuvre with constant steering wheel angle: 45°
- Initial longitudinal speed: 15m/s which is increasing as the manoeuvre progresses
- Time Response- vehicle trajectory and lateral acceleration

\square Sine with Dwell μ split

- Performance evaluation
- Initial longitudinal speed: 25m/s
- The μ split is given in the dwell on outer wheels, with a lower friction of **0.1** on outer wheels
- Time Response- tire lateral forces, yaw rate

\square Sine with Dwell μ split

- Performance evaluation
- Initial longitudinal speed: 25m/s
- The μ split is given in the dwell on outer wheels. With a lower friction of **0.1** on outer wheels
- Time Response- lateral distance

Conclusion

- □ The controllers successfully track the reference yaw rate even with variations in road friction, as demonstrated in the μ split manoeuvre
- The introduction of an Active Front Steering correction is able to reduce the lateral velocity at the benefits of bodyslip angle β
- As demonstrated in Step steer, both lateral stability and comfort have been improved by reducing the oscillatory response in the lateral acceleration
- The Skid pad manoeuvre demonstrates that in the absence of control, the lateral acceleration exhibits a high initial response. However when steady state condition is achieved, the handling performance is degraded when compared to the closed loop response
- \square The control action ensures that a safe trajectory is achieved as compared to the open loop performance seen with μ split conditions
- ☐ An integrated control strategy outperformes the other approaches

Extra slides (1): Tuning Parameters

- Controller 1
 - A= 1
 - B= 1
 - K= 250000
 - *ϵ*= 1
- Controller 2
 - W= 10^6
 - $\sigma_0 = 0.1$
 - $\rho = 10^6$

Controller 3

•
$$k_1 = 20$$

•
$$k_2 = 55$$

•
$$\omega_1 = 3$$

•
$$\omega_2 = 60$$

•
$$\eta_1 = 1$$

•
$$\eta_2 = 1$$

•
$$\gamma_1 = 1$$

•
$$\gamma_2 = 1$$

•
$$\epsilon_1 = 0.001$$

•
$$\epsilon_2 = 0.01$$

Extra slides (2): PID Controller

PID:

$$G(s) = 7 \cdot 10^4 \frac{(s+10)(s+3)}{(s+1)(s+35)}$$

Extra slides (3): Chattering

Extra slides (4): Transient response

