Spartan-3A DSP Starter Platform User Guide

UG454 (v1.1) January 30, 2009

© 2007-2009 Xilinx, Inc. All Rights Reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
10/3/07	1.0	Initial Xilinx release.
1/30/09	1.1	Updated to v1.1.

Table of Contents

Overview	 	 3
Design Description	 	 3
Features		
Ordering Information	 	 4
Functional Description	 	 5
Xilinx Spartan-3A DSP FPGA	 	 6
Memory	 	 7
Micron DDR2 SDRAM Interface	 	 7
Intel J3 Parallel Flash	 	 . 10
Intel S33 Serial Flash	 	 . 11
SystemACE Module (SAM) Connector	 	 . 11
Interfaces	 	 . 13
National Semiconductor 10/100/1000 Ethernet PHY	 	 . 13
RS232	 	 . 16
SPI Expansion	 	 . 17
Digilent Headers	 	 . 17
Eridon Debug Connector (This is not a Serial ATA Connector)	 	 . 18
VGA Output	 	 . 18
Miscellaneous I/O	 	 . 19
Expansion Connectors	 	 . 20
EXP Interfaces	 	 . 20
Configuration	 	 . 26
Configuration Modes	 	 . 26
Board Power	 	 . 27
Board Clocks	 	 . 29
PCR Stackun		30

Spartan-3A DSP 1800A Board Features

Overview

The purpose of this manual is to describe the functionality and contents of the Spartan®-3A DSP Starter Platform from Xilinx. This document includes instructions for operating the board and descriptions of the hardware features.

For more information about this product, reference designs, and additional documentation, please visit the product home page found at www.xilinx.com/s3adspstarter or www.xilinx.com/s3adspmb or www.xilinx.com/s3adspmb or www.xilinx.com/sadspmb or www.xilinx.com/sadspmb or <a href="https://www.xilinx.com/sa

Design Description

The Spartan-3A Starter Platform provides a platform for engineers designing with the Xilinx Spartan-3A DSP FPGA. The board provides the hardware to not only evaluate the advanced features of the Spartan-3A DSP, but also to implement complete user applications using peripherals on the Spartan-3A DSP Starter Platform and EXP modules, or both, plugged into EXP expansion connectors on the Spartan-3A DSP Starter Platform.

Features

The Spartan-3A DSP Starter Platform provides the following features:

- Xilinx 3SD1800A-FG676 FPGA
- Clocks
 - ♦ 125 MHz LVTTL SMT oscillator
 - ◆ LVTTL oscillator socket
 - ♦ 25.175 MHz LVTTL SMT oscillator (video clock)
- Memory
 - 32M x 32 (128 MB) DDR2 SDRAM
 - ♦ 16Mx8 parallel and BPI configuration flash
 - 64Mb SPI Configuration and Storage Flash (with 4 extra SPI selects)
- Interfaces
 - ◆ 10/100/1000 PHY
 - JTAG programming and configuration Port
 - ♦ RS232 Port
 - ♦ Low-cost VGA

- Buttons and switches
 - ♦ 8 User LEDs
 - ♦ 8-position user DIP switch
 - 4 User push button switches
 - Reset push button switch
- User I/O and expansion
 - Digilent 6-pin header (2)
 - EXP expansion connector (2)
- Configuration and debug
 - ◆ JTAG
 - ◆ SystemACE™ module connector
 - Eridon debug connector (SATA)

Ordering Information

Table 1 lists the evaluation kit part numbers.

Table 1: Evaluation Kit and Hardware Ordering Information

Part Number	Hardware
HW-SD1800A-DSP-SB-UNI-G	XtremeDSP Starter Platform - Spartan-3A DSP 1800A Edition

Functional Description

A high-level block diagram of the Spartan-3A DSP Starter Platform is shown in Figure 1. Subsequent sections provide details of the board design.

Figure 1: Spartan-3A DSP Starter Platform Block Diagram

Xilinx Spartan-3A DSP FPGA

The Xilinx XC3SD1800A-4FG676C device designed into the Spartan-3A DSP Starter Platform provides four I/O banks — two are fixed voltage and two are I/O voltage-selectable. The four I/O banks are described in Table 2 and detailed I/O pin usage is provided throughout this document. In some cases, voltage translation of I/O signals may be necessary in order to meet requirements of peripheral devices that are connected to a particular I/O bank, or EXP modules plugged into the EXP expansion connectors. Table 2 indicates where voltage translation will occur or, if a source is fixed at a particular voltage, even though the bank to which it is connected may be at different I/O voltage.

Table 2: XC3SD1800A Input and Output Allocation

I/O Bank Number	I/O Function	Number of I/O Pins	Number of Input-only Pins	Voltage Translation	Bank I/O Voltage
0	EXP Connector JX1	84	0		
0	User Pushbuttons	0	4		
0	8-pos DIP Switch	0	8		2.5 or 3.3 V
0	125 MHz Clock	1	0		2.5 OF 5.5 V
0	SMA Connector	1	0		
0	Configuration (PUDC_B)	1	0		
1	SystemACE Module	28	1		
1	J3 Flash Memory	28	0		
1	SPI Selects (4)	4	0		
1	DAC	14	0		
1	User LEDs	8	0		
1	Digilent Connectors	8 (1)	0		3.3 V
1	RS-232	2	0		
1	Eridon Debug Connector	4	0		
1	Configuration (Suspend)	1	0		
1	25.175 MHz Clock	1	0		
1	EXP Connector JX2	8	0	2.5 or 3.3 V	
2	EXP Connector JX2	76	0		
2	J3 Flash Memory	8 [Ref 1]	0	2.5 or 3.3 V	
2	SPI	4[Ref 1]	0		
2	Configuration	5	0		2.5 or 3.3 V
2	Plug-in Reset	1	0		
2	LED	1	0		
2	Power-on Reset	0	1		

I/O Bank Number	I/O Function	Number of I/O Pins	Number of Input-only Pins	Voltage Translation	Bank I/O Voltage
3	DDR2 Memory	73	0		1.8 V
3	Ethernet	17	13	2.5 V	1.0 V

Table 2: XC3SD1800A Input and Output Allocation (Cont'd)

Note:

1. FLASH_DO and SPI_MISO are a common pin.

Memory

The Spartan-3A DSP Starter Platform is populated with both high-speed RAM (128Mbytes DDR2) and non-volatile ROM (16Mbytes parallel, and 64Mbit serial) to support various types of applications. Additionally, a 50-pin connector is provided for SystemACE interface (not included) that can be used to configure the Spartan-3A DSP FPGA, and to provide storage for A/V media files from removable Compact Flash cards. Figure 2 shows a high-level block diagram of the memory interfaces on this board.

Figure 2: Spartan-3A DSP Memory Interface

Micron DDR2 SDRAM Interface

Two Micron MT47H32M16BM DDR2 devices provide 128Mbytes of 32-bit wide memory to the FPGA. The FPGA DDR2 interface supports SSTL18 signaling and all DDR2 signals are controlled impedance. The DDR2 data, mask, and strobe signals are matched length across all signals. Using I/O Bank 3 the DDR2 pinout on the FPGA is MIG-compliant. Pinout of the FPGA DDR2 interface is provided in Table 3 below.

SSTL18 Class I termination (series termination at the driving node and stub termination at the receiving node) is used between the FPGA and DDR on all unidirectional signals, such as Address, Control, and Clock. SSTL18 Class II termination (series and stub termination at both nodes) is used on the FPGA side of the interface for all bidirectional signals such as Data and Strobe. No board terminations are implemented for Data and Strobe on the memory side. ODT is strapped as enabled, although an FPGA I/O is still connected to allow the FPGA to drive this off. Note that stub terminations for address and control signals are not populated in production based on HyperLynx simulation and exhaustive, error-free testing of the FPGA-DDR2 interface at 133MHz.

Figure 3 shows terminator locations relative to the FPGA and the DDR2 memory devices.

Figure 3: DDR2 SDRAM Interface

The following guidelines were used in the design of the DDR2 interface to the Spartan-3A DSP FPGA. These guidelines are based on Micron recommendations and board level simulation. Ideal impedance values are listed. Actual values may vary.

- Memory clocks routed differentially
- 50-ohm controlled trace impedance
- 24-ohm series termination on bidirectional signals at the FPGA
- Parallel termination following the memory device connection on all signals
- 60-ohm pull-up resistor to the termination supply (0.9V) on data and strobe signals at the FPGA

- 60-ohm pull-up resistor to the termination supply at the split-point of shared signals (control, address)
- Termination supply that can both source and sink current
- Feedback clock routed with twice the length to simulate the total flight time

All DDR2 routing is length-matched within certain tolerances; these are:

- Members of a differential pair matched to +/-10mil
- DQ, DQS, DM and CK matched to +/- 45mil
- Control matched to +/- 100mil of data interface
- RST_DQS_DIV and MB_FB_CLK matched to +/- 45mil of sum of average DQS and average CK

The DDR2 signals are connected to I/O Bank 3 of the Spartan-3 SA DSP FPGA. The output supply pins (VCCO) for Bank 3 is connected to 1.8 Volts. A Texas Instruments TPS51116 Buck Controller and ancillary circuitry provides the 1.8V DDR2 power, the 0.9V termination voltage (FPGA_0.9V_TT) and the DDR2 reference voltage (FPGA_DDR2_VREF). This power source also supplies the 1.8V core voltage to the Ethernet PHY.

Table 3: FPGA DDR2 Interface Pinout

DDR2 Signal	FPGA Pin Number	DDR2 Signal	FPGA Pin Number
FPGA_DDR_A0	J5	FPGA_DDR_LDM_0	V2
FPGA_DDR_A1	M8	FPGA_DDR_LDM_0	V1
FPGA_DDR_A2	M10	FPGA_DDR_LDM_1	R2
FPGA_DDR_A3	K4	FPGA_DDR_UDM_1	M6
FPGA_DDR_A4	K5	DDR2_ODT_Control	G3
FPGA_DDR_A5	K2	FPGA_DDR_D0	U9
FPGA_DDR_A6	К3	FPGA_DDR_D1	V8
FPGA_DDR_A7	L3	FPGA_DDR_D2	AB1
FPGA_DDR_A8	L4	FPGA_DDR_D3	AC1
FPGA_DDR_A9	M7	FPGA_DDR_D4	Y5
FPGA_DDR_A10	M8	FPGA_DDR_D5	Y6
FPGA_DDR_A11	M3	FPGA_DDR_D6	U7
FPGA_DDR_A12	M4	FPGA_DDR_D7	U8
FPGA_DDR_BS0	K6	FPGA_DDR_D8	AA2
FPGA_DDR_BS1	J4	FPGA_DDR_D9	AA3
FPGA_DDR_RAS#	H1	FPGA_DDR_D10	Y1
FPGA_DDR_CAS#	L10	FPGA_DDR_D11	Y2
FPGA_DDR_WE#	L9	FPGA_DDR_D12	T7
FPGA_DDR_CS#	H2	FPGA_DDR_D13	U6
FPGA_DDR_CKE	L7	FPGA_DDR_D14	U5

Table 3: FPGA DDR2 Interface Pinout (Cont'd)

DDR2 Signal	FPGA Pin Number	DDR2 Signal	FPGA Pin Number
FPGA_DDR_CLK_0	N1	FPGA_DDR_D15	V5
FPGA_DDR_CLK_0#	N2	FPGA_DDR_D16	R8
FPGA_DDR_CLK_1	N5	FPGA_DDR_D17	R7
FPGA_DDR_CLK_1#	N4	FPGA_DDR_D18	U1
MB_FB_CLK (out)	M2	FPGA_DDR_D19	U2
MB_FB_CLK (in)	N7	FPGA_DDR_D20	P8
RST_DQS_DIV (out)	T10	FPGA_DDR_D21	P9
RST_DQS_DIV (in)	Т9	FPGA_DDR_D22	R5
FPGA_DDR_LDQS_0	V7	FPGA_DDR_D23	R6
FPGA_DDR_LDQS_#0	V6	FPGA_DDR_D24	P7
FPGA_DDR_LDQS_1	W3	FPGA_DDR_D25	P6
FPGA_DDR_LDQS_#_1	W4	FPGA_DDR_D26	Т3
FPGA_DDR_UDQS_0	T5	FPGA_DDR_D27	T4
FPGA_DDR_UDQS_#0	U4	FPGA_DDR_D28	N9
FPGA_DDR_UDQS_1	R2	FPGA_DDR_D29	P10
FPGA_DDR_UDQS_#_1	R4	FPGA_DDR_D30	P4
		FPGA_DDR_D31	Р3

Intel J3 Parallel Flash

The Flash memory consists of a single J3 Flash device in a TSOP-56 package and connected to the dedicated BPI configuration port of the FPGA. The Intel JS28F128J3D is a 128-Mbit device organized as 16-Mbit x 8. The installed J3 device supports asynchronous memory accesses at a 75 nanosecond access time. The Flash interface is split across two banks, with all but the 8 data bits connected to Bank 1 (3.3V), and the 8 data bits connected to Bank 2. Because Bank 2 may be set to either 2.5V or 3.3V, the 8 Flash data bits are interfaced to Bank 2 via a Texas Instruments SN74AVC8T245 dual-supply bus transceiver with the Flash Write Enable (FLASH_WE#) signal controlling transceiver direction and the Flash chip select signal (FLASH_CS) enabling the transceiver. The maximum propagation delay of 2.9 nanoseconds through this transceiver is not significant with the 75 nanosecond Flash access time. Jumper JP1 may be used to write-protect the Flash memory by placing a shunt across pins 2 and 3. Default setting is JP1 1:2. Table 4 details the Parallel Flash FPGA interface pinout.

Table 4: Parallel Flash Interface Pinout

J3 Flash Signal	FPGA Pin No.	J3 Flash Signal	FPGA Pin No.
FLASH_A0	AC23	FLASH_A18	J26
FLASH_A1	AC24	FLASH_A19	J25
FLASH_A2	R21	FLASH_A20	J21
FLASH_A3	R22	FLASH_A21	H21
FLASH_A4	T23	FLASH_A22	C26
FLASH_A5	T24	FLASH_A23	C25
FLASH_A6	R18	FLASH_WE#	Y20
FLASH_A7	R17	FLASH_OE#	AE26
FLASH_A8	R25	FLASH_CE#	AE25
FLASH_A9	R26	FLASH_Reset#	N24
FLASH_A10	M26	FLASH_D0	AF24
FLASH_A11	M25	FLASH_D1	AE18
FLASH_A12	L24	FLASH_D2	AF18
FLASH_A13	M23	FLASH_D3	Y15
FLASH_A14	N18	FLASH_D4	AE12
FLASH_A15	N17	FLASH_D5	AF12
FLASH_A16	N20	FLASH_D6	AF10
FLASH_A17	M20	FLASH_D7	AE10

Intel S33 Serial Flash

64Mbits of serial flash memory is provided by an Intel QH25F640S33B8 device interfaced to the Spartan 3A device via its dedicated SPI configuration interface. Jumper JP8 may be utilized to write-protect the device by placing a shunt across JP8 1:2 (default is open). The SPI interface signals are also connected to 0.1" 2x6 header J10 along with four additional SPI select lines (SPISEL_[1:4]); signals in Table 6 marked with an asterisk are common to both the SPI serial Flash and header J10. The built-in SPI interface is available only during configuration. The user must build the SPI controller during normal operation, or use IP available in Xilinx Platform Studio (XPS).

Table 5: Serial (SPI) Flash Interface Pinout

J3 Flash Signal	FPGA Pin
SPISEL_1	W20
SPISEL_1	W21
SPISEL_1	AD26
SPISEL_1	AC25

J3 Flash Signal	FPGA Pin
* SPI_SEL#	AA7
* SPI_CLK	AE24
* SPI_MOSI	AB15
* SPI_MISO	AF24

SystemACE Module (SAM) Connector

The Spartan-3A DSP Starter Platform provides a SAM 50-pin connector (J8) for SystemACE interface that can be used to configure the Spartan-3A DSP FPGA, and provide storage for A/V media files from removable Compact Flash cards. The Avnet SystemACE Module (DS-KIT-SYSTEMACE) can be used to perform both of these functions.

Further information on the Avnet SystemACE Module may be found at: www.em.avnet.com/systemace. This SystemACE module is not provided as part of this product.

Figure 4 shows the SystemACE Module connected to the header on the Spartan-3A DSP board; Table 6 provides the pinout of SAM connector J8. The clock from the SAM connector (Pin 6) is routed to GCLK1 on Bank 2 of the FPGA.

Figure 4: SystemACE Module Interconnections

Table 6: SAM Interface Signals

FPGA Pin Number	SystemACE Signal Name	SAM Connector Pin Number		SystemACE Signal Name	FPGA Pin Number
_	3.3 V	1	2	3.3 V	_
E23	JTAG_TDO	3	4	GND	_
D4	JTAG_TMS	5	6	SAM_CLK	AA14
G7	JTAG_TDI	7	8	GND	_
A2	FPGA_PROGn	9	10	JTAG_TCK	A25
_	GND	11	12	GND	_
V22	SAM_OEn	13	14	FPGA_INITn	AA15
AC26	SAM_A0	14	16	SAM_WEn	V24
AB23	SAM_A2	17	18	SAM_A1	AB26
_	2.5 V	19	20	SAM_A3	AB24
AA23	SAM_D0	21	22	2.5 V	_
U20	SAM_D2	23	24	SAM_D1	V21
AA25	SAM_D4	25	26	SAM_D3	AA24
U18	SAM_D6	27	28	SAM_D5	U19
Y23	SAM_D8	29	30	SAM_D7	Y22
T20	SAM_D10	31	32	SAM_D9	U21
Y25	SAM_D12	33	34	SAM_D11	Y24
T17	SAM_D14	35	36	SAM_D13	T18
V18	SAM_A4	37	38	SAM_D15	W23
AA22	SAM_A6	39	40	SAM_A5	V19
L23	SAM_IRQ	41	42	GND	_
V23	Sam_RESETn	43	44	SAM_CEn	V25
AB21	FPGA_DONE	45	46	SAM_BRDY	P21
AB24	FPGA_CCLK	47	48	BITSTREAM*	AF24
_	GND	49	50	NC (Key)	_

Interfaces

The Spartan-3A DSP FPGA has access to Ethernet and RS232 physical layer transceivers for communication purposes. Network access is provided by a 10/100/1000 Mb/s Ethernet PHY, which is connected to the Spartan-3A via a standard GMII interface. The PHY connects to the outside world with a standard RJ45 connector. Serial port communication to the FPGA fabric is provided through an RS232 transceiver using a DB9 DCE female connector.

Other interfaces consist of two 0.1'' 6-pin headers to accept Digilent plug-in modules, a 7-pin Serial ATA connector (this is not a serial ATA interface) to connect to an Eridon debug module, and a 0.1'' 2 x 6 header for SPI interface expansion.

National Semiconductor 10/100/1000 Ethernet PHY

The PHY is a National DP83865DVH Gig PHYTER" V. The DP83865 is a low power version of the National Gig PHYTER V with a 1.8V core voltage and 2.5V I/O voltage. The PHY also supports 3.3V I/O, but the 2.5V option is used on the board. The PHY is connected to a Tyco-AMP RJ-45 jack with integrated magnetics (part number: 1-6605833-1). The jack also integrates two LEDs and their corresponding resistors as well as several other passive components. External logic is used to logically OR the three link indicators for 10, 100 and 1000 Mb/s to drive a Link LED on the RJ-45 jack. The external logic is for the default strap options and may not work if the strap options are changed. Four more LEDs are provided on the board for status indication. These LEDs indicate Link at 10 Mb/s, Link at 100 Mb/s, Link at 1000 Mb/s and Full Duplex operation. The PHY clock is generated from its own 25 MHz crystal (FOX FX325BS).

Figure 5 shows a high-level block diagram of the interface to the DP83865 Tri-mode Ethernet PHY. The PHY signal connections at the FPGA are listed in Table 7. These signals are connected to FPGA Bank 3 which is fixed at +1.8V I/O voltage, necessitating voltage translation between +1.8V and +2.5V to match the PHY I/O voltage requirements.

Figure 5: 10/100/1000 Mb/s Ethernet Interface

Table 7: Ethernet PHY Interface Signals

Ethernet PHY Signal	FPGA Pin	Ethernet PHY Signal	FPGA Pin
ETH_Tx_D	Ј8	ETH_COL	Y3
ETH_Tx_D	J9	ETH_INT#	J1
ETH_Tx_D	B2	ETH_Rx_DV	D1
ETH_Tx_D	B1	ETH_Rx_ER	Ј3
ETH_Tx_D	G6	ETH_MCLK	N6
ETH_Tx_D	H7	ETH_Rx_CLK	P1
ETH_Tx_D	K9	ETH_Tx_CLK	P2
ETH_Tx_D	K8	ETH_Rx_D0	C2
ETH_Tx_EN	D3	ETH_Rx_D1	G2
ETH_Tx_ER	E4	ETH_Rx_D2	G5
ETH_GTX_CLK	ЕЗ	ETH_Rx_D3	D2
ETH_MDC	F4	ETH_Rx_D4	Ab3
ETH_MDIO	F5	ETH_Rx_D5	Aa4
ETH_RST#	G4	ETH_Rx_D6	Ab4
ETH_CRS	G1	ETH_Rx_D7	Y4

The PHY address is set to 0b00001 by default. PHY address 0b00000 is reserved for a test mode and should not be used. Three-pad resistor jumpers are used to set the strapping options. These jumper pads provide the user with the ability to change the settings by moving the resistors. The dual-function pins that are used for both a strapping option and to drive an LED have a set of two jumpers per pin. The dual-function pins are indicated by an asterisk in the table.

The default options as indicated in Table 8 are Auto-Negotiation enabled, Full Duplex mode, Speed advertised as $10/100/1000 \, \text{Mb/s}$, PHY address 0b00001, IEEE Compliant and Non-compliant support, straight cable in non-MDIX mode, auto-MDIX mode enabled, Single node (NIC) and CLK_TO_MAC enabled. These and other settings are enabled by three-pad jumpers with a resistor connecting either pads 1 and 2 or pads 2 and 3.

Table 8: Ethernet PHY Hardware Strapping Options

Function	Jumper Installation	Resistor	Mode Enabled
	JT8: Pins 1-2	0 Ohm	Auto-negation enabled (default)
Auto Negotiation	JT9: Pins 1-2	OTHI	Auto-negation enabled (defauit)
Auto Negotiation	JT8: Pins 2-3	0 Ohm	Auto-negation disabled
	JT9: Pins 2-3	OTHI	Auto-negation disabled
	JT10: Pins 1-2	0 Ohm	Enll Dunloy (default)
Full/Half Duplex*	JT10: Pins 1-2	OTHI	Full Duplex (default)
Tun/Tian Duplex	JT10: Pins 2-3	0 Ohm	Half Dunlay
	JT11: Pins 2-3	UOIIII	Half Duplex
Speed 1*	JT12: Pins 1-2 JT13: Pins 1-1 (Speed1 – 0)	0 ohm	Speed Selection: (Auto-Neg enabled) Speed1 Speed0 Speed Advertised 1 1 1000BASE-T, 10BASE-T 1 0 1000BASE-T
Speed 0*	JT6: Pins 1-2 JT7: Pins 1-1 (Speed0 – 0)	0 Ohm	0 1 1000BASE-T, 100BASE-Tx 0 0 10BASE-T Default: 1000BASE-T, 100BASE-TX, 10BASE-T
	JT14: Pins 1-2 JT15: Pins 1-2		PHY Address 0b00001 (default)
PHY address 0*	JT24: Pins 2-3 JT25: Pins 2-3	0 Ohm	PHY Address 0b00000
Non-IEEE Compliant Mode	JT1: Pins 1-2	1 K	Compliant and non-compliant operation (default)
Compliant Wode	JT1: Pins 2-3		Inhibits non-compliant operation
Manual MDIX	JT39: Pins 1-2	1 K	Straight Mode (default)
Setting	JT2: Pins 2-3	1 K	Cross-over Mode
Auto MDIX	JT4: Pins 1-2		Automatic Pair Swap – MDIX (default)
Setting	JT4: Pins 2-3	1 K	Set to manual preset – Manual MDIX Setting (JT12)
Multiple Node	JT3: Pins 1-2	1 K	Single node – NIC (default)
Enable	JT3: Pins 2-3	1 K	Multiple node priority – switch/hub
Clock to MAC	JT5: Pins 1-2	1 K	CLK_TO_MAC output enabled (default)
Enable	JT5: Pins 2-3	1 K	CLK_TO_MAC output disabled

The auto-MDIX mode provides automatic swapping of the differential pairs. This allows the PHY to work with either a straight-through cable or crossover cable. Use a CAT-5e or CAT-6 Ethernet cable when operating at 1000 Mb/s (Gigabit Ethernet). The boundary-scan Test Access Port (TAP) controller of the DP83865 must be in reset for normal operation. This active low reset pin of the TAP (TRST) is pulled low through a 1K resistor on the board.

RS232

The RS232 transceiver is a Texas Instruments MAX3221 device. This transceiver operates at 3.3V with an internal charge pump to create the RS232 compatible output levels. The RS232 interface is brought out on DB9 connector P2. This RS232 interface supports only null-modem serial cables. A male-to-female serial cable should be used to plug J11 into a standard PC serial port (male DB9). Table 9 shows the FPGA pin-out for the RS232 interface.

Table 9: RS232 Signals

Net Name	Description	FGPA Pin Number
FPGA_RS232_Rx	Receive data, RD	N21
FPGA_RS232_Tx	Transmit data, TD	P22

SPI Expansion

A 0.1" 2 x 6 header (J10) provides an expansion of the FPGA SPI interface. In addition to the SPI signals SPI_SEL#, SPI_CLK, SPI_MOSI and SPI_MISO, four additional SPI select signals are provides (SPISEL_1, SPISEL_2, SPISEL_3, and SPISEL_4). All SPI select signals have 4.7K pull-ups, SPI_CLK has a 4.7K pull-down. 3.3V power and Ground are also provided on J10. Table 10 lists and describes the J10 connections.

Table 10: SPI Connector (J10)

FPGA Pin Number	Signal	J10 Pin Number	J10 Pin Number	Signal	FPGA Pin Number
W20	SPISEL_1	2	1	SPI_SEL#	AA7
W21	SPISEL_2	4	3	SPI_MOSI	Ab15
AD26	SPISEL_3	6	5	SPI_MISO	AF24
AC25	SPISEL_4	8	7	SPI_CLK	AE24
_	GND	10	9	GND	_
_	3.3 V	12	11	3.3 V	_

Digilent Headers

Two right-angle, 6 pin (1 x 6 female) Digilent headers (J6, J7) are provided on the Spartan-3A DSP Starter Platform. Each header provides 3.3V power, Ground, and four I/Os. It has the *appearance* of an SPI port, or can be used as 4 general purpose I/Os. Figure 6 shows the pinout of the Digilent headers; Table 11 provides the FPGA pinout.

For Digilent modules, see:

http://www.digilentinc.com/Products/Catalog.cfm?Nav1=Products&Nav2=Peripheral &Cat=Peripheral.

Figure 6: Digilent Header Pinout

Table 11: Digilent Header Connections

J6 Signal	FPGA Pin	J7 Signal	FPGA Pin
DIGI2_1	K19	DIGI1_1	L18
DIGI2_2	K18	DIGI1_2	L17
DIGI2_3	F22	DIGI1_3	E24
DIGI2_4	G22	DIGI1_4	F23

Debug Connector (This is not a Serial ATA Connector)

A Serial ATA connector (J3) provides a high-speed interface for use as a serial debug port (not Serial ATA), but may be used as a general-purpose communication interface. Two 3.3V LVDS differential pairs, nominally one transmit pair (DBG_Tx_p/DBG_Tx_n) and one receive pair (DBG_Rx_p/DBG_Rx_n), provide this high-speed communication channel. Common-mode of the transmit pair is set to 1.25V by resistor R11 to 3.3V and resistor R8 to Ground. 100-ohm differential termination of the receive pair is provided by resistor R10. Nominal trace impedance is 50-ohms, with 49.9-ohm series resistors placed close to the FPGA. Table 12 identifies the connection of the J3 signals to the FPGA.

Table 12: Debug Connector (J3)

J3 Pin Number	Signal Name	FPGA Pin
1	GND	—
2	DBG_Tx_n	D26
3	DBG_Tx_p	E26

44

_	• •	
J3 Pin Number	Signal Name	FPGA Pin
4	GND	_
5	DBG_Rx_n	J20
6	DBG_Rx_p	J10
7	GND	_

Table 12: Debug Connector (J3)

VGA Output

The Spartan-3A DSP Starter Platform includes a VGA video output using a resistor-divider network and 4-bits per RGB color as shown in Figure 7. This resistor-divider network is 510, 1K, 2K, & 4K ohms for each color. The outputs of the three resistor-divider networks are presented to DB15 connector P1. Horizontal and Vertical synchronization signals are also generated by the FPGA and provided to P1. Additionally, a 25.175 MHz clock (VGA-resolution) is added to the board, feeding directly to the FPGA at RHCLK2 (P26) on Bank 1. This clock should be used in the FPGA controller for timing the output and generating the image and syncs. The VGA pin assignments are listed in Table 13.

Figure 7: VGA Output

Table 13: VGA Pin Assignments

VGA Signal	FPGA Pin	VGA Signal	FPGA Pin
DAC_G0	M19	DAC_R0	L20
DAC_G1	M18	DAC_R1	K20
DAC_G2	J23	DAC_R2	F25
DAC_G3	J22	DAC_R3	F24
DAC_B0	L22	DAC_VSYNC	K25
DAC_B1	K21	DAC_HSYNC	K26

Table 13: VGA Pin Assignments

VGA Signal	FPGA Pin
DAC_B2	G23
DAC_B3	G24

VGA Signal	FPGA Pin
CLK_25.175MHz	P26

Miscellaneous I/O

An 8-position DIP switch, 4 user Pushbuttons, and 8 user LEDs are provided on the Spartan-3A DSP Starter Platform. The connection of these devices to the FPGA is detailed in Table 14. The DIP switch is connected to FPGA Bank 0 and each switch is pulled low in the "OFF" position. Turning the switch "ON" causes the corresponding FPGA pin to be pulled to 2.5V or 3.3V, depending on the setting of the Bank 0 I/O voltage (VCCO_0). Like the DIP switch, the four user pushbuttons are also pulled low and depressing any button will cause the corresponding FPGA pin to be driven to the value of VCCO_0. Driving a "High" to the LEDs will cause them to light.

Table 14: Devices and Pin Assignments

Device	Name	FPGA Pin
	SW3.1	A7
	SW3.2	G16
	SW3.3	Е9
DID Cook of	SW3.4	D15
DIP Switch	SW3.5	D19
	SW3.6	B24
	SW3.7	A5
	SW3.8	A23
	SW5 (SWITCH_PB1)	J17
D 1 D 11	SW6 (SWITCH_PB2)	J15
Push Buttons	SW7 (SWITCH_PB3)	J13
	SW8 (SWITCH_PB4)	J10
	LED1 (D14)	P18
	LED2 (D13)	P25
	LED3 (D12)	N19
LED	LED4 (D11)	K22
LEDs	LED5 (D10)	H20
	LED6 (D9)	G21
	LED7 (D8)	D24
	LED8 (D7)	D25

Expansion Connectors

The Spartan-3A DSP Starter Platform provides expansion capabilities for customized user application daughter cards and interfaces over two EXP expansion connectors. The EXP expansion connectors on the board can support two half-card EXP modules or a single dual slot EXP module. Both off-the-shelf EXP modules and user-developed modules can easily be plugged onto the Spartan-3A DSP Starter Platform to add features and functions to the backend application of the main board.

EXP Interfaces

The EXP specification defines a 132-pin connector, with 24 power I/Os, 24 grounds I/Os, and 84 user I/Os. The standard EXP configuration implemented on the Spartan-3A DSP Starter Platform uses two connectors (Samtec part number QTE-060-09-F-D-A) in a dual slot EXP configuration, for a total of 168 user I/Os. Using a jumper, the voltage levels for the EXP user I/O can be set to either 2.5V or 3.3V. As shown in Figure 8, JP2 and JP3 set the I/O voltage for the EXP connectors labeled JX1 and JX2 respectively, by setting the VCCO voltage for the banks of the FPGA that connect to the EXP I/O. Table 15 provides an overview of the EXP signals; Tables 17 and 18 provide the FPGA pinouts for EXP connectors JX1 and JX2, respectively. Table 16 and Table 17 do not show the connector ground blades (numbered 122 through 131 on the schematic and PCB) that are positioned in the center of the connector. Technically, these are not *pins* and are not identified as such in this document. For more information on the EXP open specification from Avnet, see www.em.avnet.com/exp.

Figure 8: EXP I/O Voltage Settings

The EXP specification defines four user signal types:

Single Ended I/O, Differential I/O, Differential, Single Ended Clock Inputs, and Differential and Single Ended Clock Outputs. Because the FPGA I/Os can be configured for either single-ended or differential use, the differential I/Os defined in the EXP

specification can serve a dual role. All the differential I/O signals can be configured as either differential pairs or single-ended signals, as required by the end application. In providing differential signaling, higher performance LVDS interfaces can be implemented between the baseboard and EXP module. Connection to high speed A/Ds, D/As, and flat panel displays are possible with this signaling configuration. Applications that require single-ended signals only can use each differential pair as two single-ended signals, for a total of 84 single-ended I/O per connector (168 total in the dual slot configuration).

Table 15: EXP Connector Signals

Net Names	Signal Description	Quantity	Quantity per Dual Slot
EXPx_SE_IO	Single-ended I/O	34	68
EXPx_SE_CLK_IN	Single-ended clock inputs	2	4
EXPx_DIFF_p/n	Differential I/O pairs	22	44
EXPx_DIFF_CLK_IN_p/n	Differential clock input pair, global	1	2
EXPx_DIFF_CLK_OUT_p/n	Differential clock output pairs	1	2
Total		64	168

The Spartan-3A DSP FPGA user I/O pins that connect to the two EXP connectors are shown in the following tables. The Samtec QTE connector plugs on the Spartan-3A DSP Starter Platform (part number: QTE-060-09-F-D-A) mate with the Samtec QSE high-performance receptacles (part number: QSE-060-01-F-D-A), located on the daughter card. Samtec also provides several high-performance ribbon cables that will mate to the JX1 and JX2 connectors.

Table 16: EXP Connector JX1 Pinout

FPGA Pin No.	Net Name	EXP Connector Pin No. (JX1)		Net Name	FPGA Pin No.
C22	EXP1_SE_IO_0	2	1	EXP1_SE_IO_1	G20
A22	EXP1_SE_IO_2	4	3	EXP1_SE_IO_3	G19
-	2.5V	6	5	2.5V	-
C21	EXP1_SE_IO_4	8	7	EXP1_SE_IO_5	E21
B21	EXP1_SE_IO_6	10	9	EXP1_SE_IO_7	D23
-	2.5V	12	11	2.5V	-
C20	EXP1_SE_IO_8	14	13	EXP1_SE_IO_9	B23
B20	EXP1_SE_IO_10	16	15	EXP1_SE_IO_11	C23
-	2.5V	18	17	2.5V	-
A20	EXP1_SE_IO_12	20	19	EXP1_SE_IO_13	D22
D20	EXP1_SE_IO_14	22	21	EXP1_SE_IO_15	D21
-	2.5V	24	23	2.5V	-
-	2.5V	24	23	2.5V	-

Table 16: EXP Connector JX1 Pinout (Cont'd)

FPGA Pin No.	Net Name	Net Name EXP Connector Pin No. (JX1)			FPGA Pin No.
B19	EXP1_SE_IO_16	26	25	EXP1_SE_IO_17	F20
A19	EXP1_SE_IO_18	28	27	EXP1_SE_IO_19	H17
-	2.5V	30	29	2.5V	-
C18	EXP1_SE_IO_20	32	31	EXP1_SE_IO_21	F19
B18	EXP1_SE_IO_22	34	33	EXP1_SE_IO_23	G17
-	2.5V	36	35	2.5V	-
A18	EXP1_SE_IO_24	38	37	EXP1_SE_IO_25	K16
C17	EXP1_SE_IO_26	40	39	EXP1_SE_IO_27	F17
B14	EXP1_DIFF_CLK_IN_p	42	41	EXP1_SE_IO_28	D18
A14	EXP1_DIFF_CLK_IN_n	44	43	EXP1_SE_CLK_IN	J14
-	GND	46	45	GND	-
D17	EXP1_SE_IO_30	48	47	EXP1_SE_IO_29	E17
B17	EXP1_SE_IO_31	50	49	EXP1_SE_CLK_OUT	G10
	GND	52	51	GND	-
D16	EXP1_DIFF_p20	54	53	EXP1_DIFF_p21	B15
C15	EXP1_DIFF_n20	56	55	EXP1_DIFF_n21	A15
-	GND	58	57	GND	-
D13	EXP1_DIFF_p18	60	59	EXP1_SE_IO_32	C16
C12	EXP1_DIFF_n18	62	61	EXP1_SE_IO_33	J16
-	GND	64	63	GND	-
A12	EXP1_DIFF_p16	66	65	EXP1_DIFF_p19	F15
B12	EXP1_DIFF_n16	68	67	EXP1_DIFF_n19	E15
-	GND	70	69	GND	-
A4	EXP1_DIFF_CLK_OUT_p	72	71	EXP1_DIFF_p17	E14
B4	EXP1_DIFF_CLK_OUT_n	74	73	EXP1_DIFF_n17	F14
-	GND	76	75	GND	-
C11	EXP1_DIFF_p14	78	77	EXP1_DIFF_p15	G15
D11	EXP1_DIFF_n14	80	79	EXP1_DIFF_n15	H15
C10	EXP1_DIFF_p12	82	81	EXP1_DIFF_p13	G12
D10	EXP1_DIFF_n12	84	83	EXP1_DIFF_n13	H12
-	3.3V	86	85	3.3V	-
-	3.3V	86	85	3.3V	-

Table 16: EXP Connector JX1 Pinout (Cont'd)

FPGA Pin No.	Net Name		nnector o. (JX1)	Net Name	FPGA Pin No.
B13	EXP1_RCLK_DIFF_p10	88	87	EXP1_DIFF_p11	E12
C13	EXP1_RCLK_DIFF_n10	90	89	EXP1_DIFF_n11	F12
A9	EXP1_DIFF_p8	94	93	EXP1_DIFF_p9	J12
В9	EXP1_DIFF_n8	96	95	EXP1_DIFF_n9	K12
-	3.3V	98	97	3.3V	-
A8	EXP1_DIFF_p6	100	99	EXP1_DIFF_p7	A10
B8	EXP1_DIFF_n6	102	101	EXP1_DIFF_n7	B10
-	3.3V	104	103	3.3V	-
B7	EXP1_DIFF_p4	106	105	EXP1_DIFF_p5	E10
C7	EXP1_DIFF_n4	108	107	EXP1_DIFF_n5	D9
-	3.3V	110	109	3.3V	-
В6	EXP1_DIFF_p2	112	111	EXP1_DIFF_p3	C8
C6	EXP1_DIFF_n2	114	113	EXP1_DIFF_n3	D8
-	3.3V	116	115	3.3V	-
C5	EXP1_DIFF_p0	118	117	EXP1_DIFF_p1	J11
D6	EXP1_DIFF_n0	120	119	EXP1_DIFF_n1	K11

Table 17: EXP Connector JX2 Pinout

FPGA Pin No.	Net Name		nnector o. (JX1)	Net Name	FPGA Pin No.
V16	EXP2_SE_IO_0	2	1	EXP2_SE_IO_1	AE25
Y17	EXP2_SE_IO_2	4	3	EXP2_SE_IO_3	AF25
-	2.5V	6	5	2.5V	-
AA18	EXP2_SE_IO_4	8	7	EXP2_SE_IO_5	AE23
AC20	EXP2_SE_IO_6	10	9	EXP2_SE_IO_7	AF23
-	2.5V	12	11	2.5V	-
AA17	EXP2_SE_IO_8	14	13	EXP2_SE_IO_9	AD22
AC19	EXP2_SE_IO_10	16	15	EXP2_SE_IO_11	AE21
-	2.5V	18	17	2.5V	-
AB18	EXP2_SE_IO_12	20	19	EXP2_SE_IO_13	AD21
V15	EXP2_SE_IO_14	22	21	EXP2_SE_IO_15	AC21
-	2.5V	24	23	2.5V	-

Table 17: EXP Connector JX2 Pinout (Cont'd)

FPGA Pin No.	Net Name		nnector o. (JX1)	Net Name	FPGA Pin No.
W15	EXP2_SE_IO_16	26	25	EXP2_SE_IO_17	U23
AB16	EXP2_SE_IO_18	28	27	EXP2_SE_IO_19	U24
-	2.5V	30	29	2.5V	-
M21	EXP2_SE_IO_20	32	31	EXP2_SE_IO_21	AD20
AC16	EXP2_SE_IO_22	34	33	EXP2_SE_IO_23	AF19
-	2.5V	36	35	2.5V	-
U22	EXP2_SE_IO_24	38	37	EXP2_SE_IO_25	AE19
AC15	EXP2_SE_IO_26	40	39	EXP2_SE_IO_27	AD19
AA13	EXP2_DIFF_CLK_IN_p	42	41	EXP2_SE_IO_28	R20
Y13	EXP2_DIFF_CLK_IN_n	44	43	EXP2_SE_CLK_IN	AF13
-	GND	46	45	GND	-
V14	EXP2_SE_IO_30	48	47	EXP2_SE_IO_29	R19
U15	EXP2_SE_IO_31	50	49	EXP2_SE_CLK_OUT	Y14
-	GND	52	51	GND	-
V10	EXP2_DIFF_p20	54	53	EXP2_DIFF_p21	AD14
W10	EXP2_DIFF_n20	56	55	EXP2_DIFF_n21	AC14
-	GND	58	57	GND	-
V13	EXP2_DIFF_p18	60	59	EXP2_SE_IO_32	K23
W13	EXP2_DIFF_n18	62	61	EXP2_SE_IO_33	M22
-	GND	64	63	GND	-
Y12	EXP2_DIFF_p16	66	65	EXP2_DIFF_p19	AB12
AA12	EXP2_DIFF_n16	68	67	EXP2_DIFF_n19	AC12
-	GND	70	69	GND	-
W17	EXP2_DIFF_CLK_OUT_p	72	71	EXP2_DIFF_p17	AE17
V17	EXP2_DIFF_CLK_OUT_n	74	73	EXP2_DIFF_n17	AD17
-	GND	76	75	GND	-
V12	EXP2_DIFF_p14	78	77	EXP2_DIFF_p15	AF20
W12	EXP2_DIFF_n14	80	79	EXP2_DIFF_n15	AE20
AD11	EXP2_DIFF_p12	82	81	EXP2_DIFF_p13	AE9
AC11	EXP2_DIFF_n12	84	83	EXP2_DIFF_n13	AF9
-	3.3V	86	85	3.3V	-
AF14	EXP2_RCLK_DIFF_p10	88	87	EXP2_DIFF_p11	AE8

Table 17: EXP Connector JX2 Pinout (Cont'd)

FPGA Pin No.	Net Name		onnector o. (JX1)	Net Name	FPGA Pin No.
AE14	EXP2_RCLK_DIFF_n10	90	89	EXP2_DIFF_n11	AF8
-	3.3V	92	91	3.3V	-
AB9	EXP2_DIFF_p8	94	93	EXP2_DIFF_p9	AD7
AC9	EXP2_DIFF_n8	96	95	EXP2_DIFF_n9	AE7
-	3.3V	98	97	3.3V	-
Y10	EXP2_DIFF_p6	100	99	EXP2_DIFF_p7	AC6
AA10	EXP2_DIFF_n6	102	101	EXP2_DIFF_n7	AD6
-	3.3V	104	103	3.3V	-
V11	EXP2_DIFF_p2	112	111	EXP2_DIFF_p3	AE4
U11	EXP2_DIFF_n2	114	113	EXP2_DIFF_n3	AF4
-	3.3V	116	115	3.3V	-
AF5	EXP2_DIFF_p0	118	117	EXP2_DIFF_p1	AE3
AE6	EXP2_DIFF_n0	120	119	EXP2_DIFF_n1	AF3
W9	EXP2_DIFF_p4	106	105	EXP2_DIFF_p5	AC8
Y9	EXP2_DIFF_n4	108	107	EXP2_DIFF_n5	AB7
-	3.3V	110	109	3.3V	

Configuration

The Spartan-3A DSP Starter Platform provides four mechanisms to program and configure the FPGA; these are JTAG, parallel flash, serial flash, and the SystemACE Module (SAM). The SAM configures the FPGA in Boundary Scan mode. The parallel Flash device may also be programmed via the JTAG connector, but the Serial memory device must be programmed through the J10 Header. The FPGA is the only device in the JTAG chain on the Spartan-3A DSP Starter Platform. The serial Flash, Parallel Flash, and SystemACE are described earlier in this document. Depending on the setting of configuration jumpers M[2:0], any of these configuration options can be the source. Programming the Spartan-3A DSP via Boundary Scan requires that a JTAG download cable be attached to one of two interfaces that are wired in parallel on the board as shown in Figure 9. A download cable can be attached to either the 14-pin 2mm spaced header (J2) with a ribbon cable or to the 0.1" header (J4) with flying leads. If the Xilinx Parallel Cable IV is used, the ribbon cable connector mates with the keyed J2 connector. The Xilinx Platform USB cable will also mate directly with J2.

Figure 9: Configuration Connectors

Configuration Modes

The following table shows the Spartan-3A DSP configuration modes set by Jumper JP9. All mode jumpers (including the PUDC_B pin) are pulled up; jumper installation grounds the connection. Figure 10 depicts configuration jumper JP9; Table 19 provides the various configuration settings at JP9. Table 18 shows all possible modes for a Spartan-3A DSP FPGE; however, only BPI, SPI and JTAG modes are supported on the Spartan-3A DSP Starter Platform.

A push button labeled **PROG** is connected to the FPGA PROG pin and pulled up. Pushing the button connects PROG to ground. Upon releasing the button, a reconfiguration is initiated based upon the setting of JP9. A blue LED (D1) should light when FPGA **DONE** is asserted. A jumper (JP7) connects PROG to ground; this will be used during Direct SPI programming of the SPI flash.

Mode	PC		Configuration	Mode Jumpers	
Wiode	Pullup	5-6 (M2)	3-4 (M1)	1-2 (M0)	7-8 (PUDC_B)
Master Serial	Yes	Closed	Closed	Closed	Closed
Master Serial	No	Closed	Closed	Closed	Open
Slave Serial	Yes	Open	Open	Open	Closed
Slave Serial	No Open		Open	Open	Open
Master SPI	Yes	Closed	Closed	Open	Closed
Master SPI	No	Closed	Closed	Open	Open
BPI Up	Yes	Closed	Open	Closed	Closed
BPI Up	No	Closed	Open	Closed	Open
Slave Parallel	Yes	Open	Open	Closed	Closed
Slave Parallel	No	Open	Open	Closed	Open
JTAG	Yes	Open	Closed	Open	Closed
JTAG	No	Open	Closed	Open	Open

Table 18: FPGA Configuration Mode Jumper (JP9) Settings

Figure 10: Configuration Jumpers (JP9)

Board Power

A 5V, 6A, RoHS compliant wall transformer is sufficient to power the board for the majority of applications. Power is supplied via barrel jack J5. A Texas Instruments TPS3828 supervisor monitors the incoming +5V power and holds all power conversion off until incoming power is stable. Figure 11 shows the action of the TPS3828 where the PTH_INH# signal goes high after stable +5V is applied (CH1). Channels 2, 3 and 4 (3.3V, 2.5V and 1.2V) are allowed to function by the TPS3828 200ms after PTH_INH# goes high. Slide switch SW1 inhibits conversion until set to "ON". Texas Instruments PTH05050WAZ 6A power modules are utilized to create the +2.5V and +3.3V power rails. The +1.2V power rail (VCC_INT) is produced by a Texas Instruments PTH04000WAZ 3A power module. These switching converters can exhibit switching spikes in the 650 kHz – 750 kHz region;

consequently, PI filters on the output of each of the PTH05050WAZ and PTH04000WAZ are utilized to minimize these transients.

UG454_11_050908

Figure 11: Application of Power

Based on measurements during prototyping, the PTH04000 circuit for 1.2V was tuned to increase the output voltage slightly. The voltage measured at the FPGA was observed to be about 20mV low. Therefore, the set resistor for the PTH04000 was modified based on the calculations provided in the TI data sheet to raise the voltage by 20mV. Nominally, resistor R42 should be 26.1K, but on this board it is 24.3K.

The DDR2 0.9V reference and termination voltages (FPGA_DDR2_VREF, FPGA_0.9V_TT) and the 1.8V power rail for the DDR2 memory and the DP83865 Ethernet PHY core voltage are provided by a switching power supply designed around the Texas Instruments TPS51116 Synchronous Buck Controller. The +1.2V, +2.5V and +3.3V power rails are monitored to provide an active-low reset condition (PO_RESET#) until these rails are above their threshold settings. A pushbutton switch (SW4) may be used to manually create the PO_RESET# condition. LED D6 is lit when PO_RESET# is driven active. LEDs D16, D17 and D18 are lit to show the presence of +1.2V, +2.5V and P3.3V, respectively.

Current measurements of the various power rails may be taken by removing the shunts on jumpers JP10 (+3.3V), JP14 (+2.5V), JP6 (+1.8V), and JP5 (+1.2V), and placing an ammeter across the pins. Note that these jumpers are 2x2 requiring two shunts each in order top provide enough current-carrying capacity so the user should ensure that both shunts are in place for normal operation.

The user may experiment with the Spartan-3A DSP low-power SUSPEND mode by jumpering JP11 pins 2:3 (default 1:2). The AWAKE LED (D15) indicates the SUSPEND mode status.

Proper decoupling of the various FPGA power rails is extremely important; this design adheres to Xilinx application note XAPP623

http://direct.xilinx.com/bvdocs/appnotes/xapp623.pdf. The decoupling strategy on the Spartan-3A DSP Starter Platform is shown in Table 19.

Table 19: FPGA Decoupling Capacitors

	3.3 V	2.5 V	Bank 0	Bank2	1.8 V	1.2 V	0.9 V				
Total Number of Power/Gnd Pairs	9	14	9	9	9	23	9				Total
470 uF	1	1	1	1	1	1	0	Tantalum Capacitor 4.7 uF	AVX	TAJD477K004R	6
4.7 uF (0603)	2	2	2	2	2	4	0	Ceramic Capacitor 4.7 uF 0603	PIC	ECJ1VB0J475M	14
1.0 uF (0402)	3	4	3	3	3	7	5	Ceramic Capacitor 41.0 uF 0402	PIC	EJC-EB0J105M	28
.01 uF (0201)	5	8	5	5	5	13	5	Ceramic Capacitor 0.01 uF 0201	PIC	ECJZEB0J103K	46
Actual Number of Capacitors	11	15	11	11	11	25	10				

Board Clocks

There are four clock sources provided on the Spartan-3A DSP Starter Platform:

- A 125 MHz oscillator connected to GCLK7 (Bank 0).
- A 25.175 MHz oscillator (primarily for VGA timing) connected to RHCLK2 (Bank 1).
- A socket for a half-can oscillator connected to GCLK14 (Bank 2). The user must install this oscillator.
- An SMA connector footprint (J1) connected to GCLK4 (Bank 0). The user must install
 this connector.

The clock sources are listed and described in Table 20.

Table 20:	Clock	Sources

Clock Source	FPGA Pin No.	Part Number
125 MHz oscillator (U7)	F13	Fox FXO-HC535-125.000
25.175 MHz oscillator (U4)	P26	Fox FXO-HC530-25.175
Socket	AE13	Populate with Fox 350LF-type oscillator
SMA connector J1	K14	Tyco-AMP part #221789-3

The SMA connector is AC-terminated through a 0.1uF 0402 capacitor. Between J1 and the capacitor is a 0-ohm 0402 resistor. Between the capacitor and FPGA pin K14 are two 49.9-ohm 0402 resistors, one pulling high to the Bank 0 I/O voltage (VCCO_0) and the other pulling low to GND. The user may alter this configuration to suit his requirements.

PCB Stackup

Figure 12 shows the 12-layer stackup of the Spartan-3A DSP Starter Platform Printed Circuit Board (PCB). The PCB substrate is FR4-class epoxy glass with 0.5 ounce (oz) copper used for all layers.

Figure 12: PCB Stackup

Related Resources

Xilinx would like to acknowledge the following key partners for their key contributions to this project.

For more information about this product, reference designs, and additional documentation, please visit the product home page found at www.xilinx.com/s3adspstarter or www.xilinx.com/s3adspstarter or www.xilinx.com/s3adspmb or www.xilinx.com/s3adspmb or www.xilinx.com/sadspmb or <a href="

Avnet Electronics Marketing

www.em.avnet.com/xilinx www.em.avnet.com/drc

www.em.avnet.com/exp www.em.avnet.com/systemace www.em.avnet.com/aes

Texas Instruments

www.ti.com/power www.ti.com/xilinx

Regulators

focus.ti.com/docs/prod/folders/print/pth04000w.html focus.ti.com/docs/prod/folders/print/pth05050w.html focus.ti.com/docs/prod/folders/print/tps51116.html

Supervisors

focus.ti.com/docs/prod/folders/print/tps3828-50.html focus.ti.com/docs/prod/folders/print/tps3808g01.html focus.ti.com/docs/prod/folders/print/tps3307-25.html

RS232

focus.ti.com/docs/prod/folders/print/max3221e.html

Intel

www.intel.com

www.intel.com/design/flcomp/prodbref/s33.htm?iid=ipp_embed+flash_s33&www.intel.com/design/flcomp/prodbref/308275.htm?iid=ipp_embed+flash_j3d&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_j3d&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_s33&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_s33&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_s33&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_s33&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_s33&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_s33&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_s33&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_s33&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_s33&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_s3a&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_saa&ww.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm?iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm.iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm.iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm.iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm.iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm.iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm.iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm.iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm.iid=ipp_embed+flash_saa&www.intel.com/design/flcomp/prodbref/s08275.htm.iid=ipp_embed+flash_saa&ww.intel.com/design/flcomp/prodbre

Fox

www.foxonline.com/xpresso_xo.htm www.foxonline.com/smd_xtals.htm www.foxonline.com/thruhole_osc.htm

National Semiconductor

www.national.com

www.national.com/pf/DP/DP83865.html

Samtec

www.samtec.com/

www.samtec.com/technical specifications/overview.aspx?series=QTE

Tyco/Amp

www.tycoelectronics.com/

 $\frac{http://catalog.tycoelectronics.com/TE/bin/TE.Connect?C=1\&M=BYPN\&PID=407634\&PN=1-6605833-1\&I=13$

Connector, Header, and Jumper Locations

Figure A-1 shows the board outline with the connectors, headers, and jumper locations..

Figure A-1: Connector, Header, and Jumper Locations

