

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

Topología I

Autor: Jesús Muñoz Velasco

Índice general

1. Tema 1: Espacios Topológicos

5

Topología I Índice general

Tema 1: Espacios Topológicos

Un **espacio topológico** es una par (X, \mathcal{T}) , donde $X \neq \emptyset$ es un conjunto y $\mathcal{T} \subset \mathcal{P}(X)$ es una familia de subconjuntos de X.

- (A1) $\emptyset, X \in \mathcal{T}$.
- (A2) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$, entonces $\bigcup_{i\in I} U_i \in \mathcal{T}$.
- (A3) Si $U_1, U_2 \in \mathcal{T}$, entonces $U_1 \cap U_2 \in \mathcal{T}$.

A la familia \mathcal{T} se le llama **topología** en el conjunto X. A los elementos de \mathcal{T} se les llama **abiertos** en el espacio topológico (X, \mathcal{T}) .

Observación. De (A1) podemos concretar que si $U_1, \ldots, U_k \in \mathcal{T}$, entonces $\bigcap_{i=1}^{\infty} U_i \in \mathcal{T}$. En general, si $\{U_i\}_{i=1}^{\infty} \in \mathcal{T}$, entonces $\bigcap_{i=1}^{\infty}$ no tiene por qué ser abierto.

Ejemplo.

- •) Topología trivial: Sea $X \neq \emptyset$, $\mathcal{T}_t = \{\emptyset, X\} \Rightarrow (X, \mathcal{T}_t)$ es un e.t¹.
- •) Topología discreta: Sea $X \neq \emptyset$, $\mathcal{T}_{disc} = \mathcal{T}_D = \mathcal{P}(X) \Rightarrow (X, \mathcal{T}_D)$ es un e.t.

¹A partir de ahora notaremos así a un espacio topológico