Física 1 - Práctica #2 - Problema 5 (Parte a)

Profesor: Andrés Castro Núñez

Fecha: 28 de febrero de 2025

Problema 5 (20%)

Tiempo perdido por una parada del tren

1. Datos:

• Velocidad inicial del tren: v_i =72 km/h = 20 m/s

• Tiempo de parada: $t_p = 2.0 \text{ min} = 120 \text{ s}$

• Desaceleración del tren: $a_d = -1.0 \text{ m/s}^2$

• Aceleración del tren tras la parada: $a_a = 0.5 \text{ m/s}^2$

2. Tipo de movimiento:

El tren experimenta **Movimiento Rectilíneo Uniformemente Acelerado (MRUA)** en dos fases:

- 1. Fase de frenado: El tren desacelera hasta detenerse.
- 2. **Fase de aceleración:** El tren **acelera** de nuevo hasta alcanzar su velocidad original.

3. Fórmula:

a. Tiempo que tarda en frenar

$$v_f = v_i + at$$

Fase de frenado $v_f = 0$

$$0 = v_i + a_d t_d$$

Despeje de t_d

$$t_d = \frac{-v_i}{a_d}$$

b. Tiempo de aceleración:

$$v_f = v_i + at$$

Ahora, el tren parte desde v_i =0 y alcanza v_f =20 m/s con aceleración a_a :

$$t_a = \frac{v_f - v_i}{a}$$

c. Tiempo total perdido:

$$t_{perdido} = t_d + t_p + t_a$$

4. Cálculo:

$$t_d = \frac{-20}{-1} = 20 \text{ s}$$

$$t_a = \frac{20 - 0}{0.5} = 40 \text{ s}$$

$$t_{perdido} = 20+120+40$$

$$t_{perdido}$$
 = 180s = 3 min

Respuesta:

El tren pierde un total de **3.0 minutos** debido a la parada, considerando el tiempo de frenado, la detención y la aceleración nuevamente hasta su velocidad inicial.