武汉大学 2010-2011 学年第一学期期末考试

资源与环境学院 2008 级 地理信息系统专业

《离散数学》试题 (A 卷)

注意事项:

- 1. 本试卷共 20 道试题, 满分 100 分, 考试时间 120 分钟.
- 2. 请将答案全部写在武汉大学试卷纸上, 写在其他位置无效.

一、选择题(本题满分 10 分, 每小题 2 分)

1. 设 P 和 Q 都是命题, 则 $P \rightarrow Q$ 的真值为假, 当且仅当

(A) P 为假, Q 为真

(B) P 为假, Q 也为假

(C) P 为真, Q 也为真

(D) P 为真, Q 为假

2. 下列集合运算正确的是

 $(A) \varnothing \cup \{\varnothing\} = \varnothing$

- (B) $\{\emptyset, \{\emptyset\}\} \{\{\emptyset\}\} = \{\emptyset\}$
- (C) $\{\varnothing, \{\varnothing\}\} \{\varnothing\} = \{\varnothing, \{\varnothing\}\}\$
 - (D) $\{\emptyset, \{\emptyset\}\} \emptyset = \{\{\emptyset\}\}$
- 3. 下列 $X = \{a, b, c\}$ 上的关系中, 不具备传递性的是

(A) $R_1 = \{\langle a, b \rangle\}$

(B) $R_2 = \{\langle a, b \rangle, \langle b, c \rangle\}$

(C) $R_3 = \{\langle a, b \rangle, \langle a, a \rangle\}$

- (D) $R_4 = \{\langle a, b \rangle, \langle a, c \rangle\}$
- 4. 设 $\mathbb N$ 为自然数集合, +, × 分别是普通的加法和乘法. $\langle \mathbb N,* \rangle$ 在下列运算中不构成代数系统的是
 - (A) $a * b = a + b 2 \times a \times b$
- (B) a * b = a + b

(C) $a * b = a \times b$

- (D) a * b = |a + b|
- 5. 下列各图中, 不是平面图的是

二、填空题(本题满分10分,每小题2分)

- 6. 设 P: 天下大雨; Q: 我骑自行车上班. 命题"除非天下大雨, 否则我骑自行车上班"的符号化形式为
- 7. 设 A, B 为集合. 命题 " $A B = \emptyset \iff A = B$ " 的真值为_____
- 8. 设集合 $S = \{1,2,3,4,5\}$, 且 $C = \{\{1,2\},\{3,4\},\{5\}\}$ 是 S 的一个划分,则 C 所对应的等价 关系 R =
- 9. 设 G 是具有 6 个结点的无向完全图, 则图 G 的边数为

10. 一棵树有 2 个 4 度结点, 3 个 3 度结点, 其余是树叶. 则该树中共有 片树叶.

三、解答题(本题满分80分)

11. (6 分) 设 P 表示"今天天气很好", Q 表示"我们去郊游". 试化简下面的公式, 并用简单明了的汉语描述该公式所表达的含义:

$$((\neg P \lor Q) \to (P \land \neg Q)) \lor \neg(\neg Q \to \neg P).$$

- 12. (6分)公司打算派小李或小张出差. 若派小李去,则小赵要加班. 若派小张去,则小王也得去. 小赵没加班,问公司是如何派遣的? (要求写出命题公式,再进行相关讨论.)
- 13. (6 分) 用 L 和 D 分别表示集合 $\{1,2,3,6\}$ 上普通的小于关系和整除关系, 试用序偶列出 L, D 以及 $L \cap D$, 并指明它们的基数.
- 14. (6 分) 一个连通平面图有 9 个结点, 它们的度数分别是: 2, 2, 2, 3, 3, 3, 4, 4, 5. 问此图一共有多少个面?
- 15. (6分) 试说明: 对完全 m 叉树, 若已知树叶数 l、分枝点数(即内点数) i、结点总数 n 这三个中的任意一个,则其余两个必定可求.
- 16. (10 分) 用推理规则证明: $P \to Q$, $(\neg Q \lor R) \land \neg R$, $\neg (\neg P \land S) \Longrightarrow \neg S$.
- 17. (12 分) 设集合 $S = \{a, b, c, d\}$, S 上的二元关系 R_1 和 R_2 定义如下:

$$R_1 = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, d \rangle \},$$

$$R_2 = \{ \langle a, d \rangle, \langle b, c \rangle, \langle b, d \rangle, \langle c, b \rangle \}.$$

- (1) 试分别写出 R_1 和 R_2 所对应的关系矩阵以及关系图;
- (2) 试求出 R_1^2 , $R_1 \circ R_2$, 以及传递闭包 R_2^+ .
- 18. (12 分) 设 $A = \{1, 2, 3, 4, 5, 6, 9, 10, 15\}$, 用 "|" 表示 A 中元素之间的整除关系.
 - (1) 证明 "|" 是 *A* 上的偏序关系;
 - (2) 画出该偏序关系的哈斯图;
 - (3) 对 $B_1 = \{1, 2, 3\}$, $B_2 = A$, 分别求 B_1 , B_2 的最大元、最小元、极大元、极小元、最小上界、最大下界(请列表说明).
- 19. (8分) 某市拟在六个小镇之间架设互联网, 其网点间的距离由下面的矩阵给出. 数字 0表示两个小镇之间不能架设直接的线路. 试设计架设线路的最优方案使得总距离最小(请画出图并计算出线路长度).

$$\begin{pmatrix}
0 & 8 & 0 & 1 & 5 & 4 \\
8 & 0 & 7 & 9 & 0 & 0 \\
0 & 7 & 0 & 2 & 6 & 3 \\
1 & 9 & 2 & 0 & 0 & 0 \\
5 & 0 & 6 & 0 & 0 & 10 \\
4 & 0 & 3 & 0 & 10 & 0
\end{pmatrix}$$

20. (8 分) 画出结点数 $v \leq 5$ 的所有不同构的无向树.

参考答案·卷(A)

- 1. D
- 2. B
- 3. B
- 4. A
- 5. D
- $6. \neg P \rightarrow Q$ (或者 $\neg Q \rightarrow P$)
- 7. F (或 0)
- 8. $\{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 3, 4 \rangle, \langle 4, 3 \rangle\} \cup I_S$
- 9. 15
- 10. 9
- 11. 对公式化简:

$$((\neg P \lor Q) \to (P \land \neg Q)) \lor \neg(\neg Q \to \neg P)$$

$$\Leftrightarrow (\neg(\neg P \lor Q) \lor (P \land \neg Q)) \lor \neg(\neg \neg Q \lor \neg P)$$

$$\Leftrightarrow ((P \land \neg Q) \lor (P \land \neg Q)) \lor (\neg Q \land P)$$

$$\Leftrightarrow P \land \neg Q.$$

即该公式的含义是: 今天天气很好, 但我们没有去郊游.

12. 令 P: 派小李出差; Q: 派小张出差; R: 小赵加班; S: 派小王出差. 则

$$A = (P \vee Q) \wedge (P \to \neg R) \wedge (Q \to S) \wedge \neg R.$$

化简得 $A = \neg P \wedge Q \wedge \neg R \wedge S$. 即派遣方案为: 派小张和小王出差.

- 13. $L = \{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 6 \rangle, \langle 2, 3 \rangle, \langle 2, 6 \rangle, \langle 3, 6 \rangle\};$ $D = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 6 \rangle, \langle 2, 2 \rangle, \langle 2, 6 \rangle, \langle 3, 3 \rangle, \langle 3, 6 \rangle, \langle 6, 6 \rangle\};$ $L \cap D = \{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 6 \rangle, \langle 2, 6 \rangle, \langle 3, 6 \rangle\}.$ 基数分别为 6, 9, 5.
- 14. 结点总数为: 2+2+2+3+3+3+4+4+5=28, 所以边的数目为 14. 由欧拉公式, 面的数目为: 14-9+2=7.

15. 对完全 m 叉树,

- (1) 若结点总数 n 为已知, 则分枝点数为 i = (n-1)/m, 树叶数为 l = n-i = n-(n-1)/m.
- (2) 若分支点数 i 为已知,则结点总数为 n = mi + 1,树叶数为 l = n i = (m 1)i + 1.
- (3) 若树叶数 l 为已知,则结点总数为 n = (ml-1)/(m-1),分枝点数为 i = (l-1)/(m-1).

16. 证明:

- (1) $(\neg Q \lor R) \land \neg R$ P (2) $\neg Q \lor R$ T(1) I (3) $Q \to R$ T(2) E (4) $P \to Q$ P (5) $P \to R$ T(3),(4) T(1) I

- T(3),(4) I

T(1) I

- $T(5),(6) I(I_{12})$
- $(7) \neg P$ $(8) \neg (\neg P \land S)$ $(9) P \lor \neg S$ $(10) \neg S$
- Р
- T(8) E
- $(10) \neg S$
- T(7),(9) I

17. (1) R_1 和 R_2 的关系矩阵分别为

$$M_{R_1} = \left(egin{array}{cccc} 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight), \qquad M_{R_2} = \left(egin{array}{cccc} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight).$$

(2)由

知 $R_1^2 = \{\langle a, b \rangle, \langle a, c \rangle, \langle a, d \rangle\}.$

同理, $R_1 \circ R_2 = \{\langle a, c \rangle, \langle a, d \rangle\}.$

由 Warshall 算法得

$$M_{R_2}^+ = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

- 18. (1) 验证满足自反性、反对称性、传递性, 所以是偏序关系.
 - (2) 哈斯图(形式不唯一):

		最大元	最小元	极大元	极小元	最小上界	最大下界
(3)	B_1	无	1	2,3	\mathcal{U}_1	6	1
	B_2	无	1	4,6,9,10,15	1	无	1

19. (1) 图形可以表达如下(形式不唯一):

(2) 依次选择 $\omega_{ab}=1,\,\omega_{dc}=2,\,\omega_{cf}=3,\,\omega_{ae}=5,\,\omega_{cb}=7,$ 得到最小生成树. 其线路长度为 18.

20. v = 1: **o**

v = 2: **O—O**

v=3: $\bullet - \bullet - \bullet$

v=4: 0—0—0

