Relación de problemas 3: Hipercuádricas reales.

- 1. Clasifica las hipercuádricas de un espacio afín euclídeo de dimensión 1.
- 2. Sea $\mathcal A$ un espacio afín de dimensión n y $\mathcal S$ un subespacio afín suyo de dimensión m>0. Demuestra que:
 - a) Existe un sistema de referencia \mathcal{R} de \mathcal{A} tal que las ecuaciones implícitas de \mathcal{S} en dicho sistema son $x_{m+1} = 0, \dots, x_n = 0$.
 - b) Si H es una hipercuádrica de \mathcal{A} entonces $H \cap \mathcal{S}$ es una hipercuádrica de \mathcal{S} o bien vacío o todo \mathcal{S} .
- 3. Sean H una hipercuádrica y R una recta de un espacio afín A. Prueba que $R \subset H$ puede ser vacío, un punto, dos puntos o toda la recta. Da un ejemplo conocido de cada uno de los casos cuando A tiene dimensión dimensión 2 y dimensión 3.
- 4. a) Dados dos puntos distintos p_1, p_2 de un plano afín euclídeo \mathcal{A} y $r > d(p_1, p_2)$, demuestra que $H = \{p \in \mathcal{A} : d(p, p_1) + d(p, p_2) = r\}$ es una elipse. Los puntos p_1, p_2 reciben el nombre de focos de la elipse. Se llama centro de la elipse al punto medio de sus focos y vértices a los puntos de intersección de la elipse con la recta que pasa por sus focos.
 - b) Prueba que toda elipse se puede escribir como en el apartado anterior, para ciertos puntos $p_1, p_2 \in \mathcal{A}$.
 - c) Demuestra que toda elipse H es simétrica con respecto a la recta $R_{p_1p_2}$ que pasa por sus focos y con respecto a la mediatriz de sus focos.
 - d) Prueba que, para cada punto p de una elipse H, la recta tangente a H en p forma ángulos iguales con las rectas que pasan por p y cada uno de sus focos.
- 5. a) Dados dos puntos distintos p_1, p_2 de un plano afín euclídeo \mathcal{A} y $r > d(p_1, p_2)$, demuestra que $H = \{p \in \mathcal{A} : |d(p, p_1) d(p, p_2)| = r\}$ es una hipérbola. Los puntos p_1, p_2 reciben el nombre de focos de la hipérbola. Se llama centro de la hipérbola al punto medio de sus focos y vértices a los puntos de intersección de la hipérbola con la recta que pasa por sus focos.
 - b) Prueba que toda hipérbola se puede escribir como en el apartado anterior, para ciertos puntos $p_1, p_2 \in \mathcal{A}$.
 - c) Demuestra que toda hipérbola H es simétrica con respecto a la recta $R_{p_1p_2}$ que pasa por sus focos y con respecto a la mediatriz de sus focos.
 - d) Prueba que, para cada punto p de una hipérbola H, la recta tangente a H en p forma ángulos iguales con las rectas que pasan por p y cada uno de sus focos.
- 6. a) Sean p_0 un punto de un plano afín euclídeo \mathcal{A} y R una recta de \mathcal{A} que no contiene a p_0 . Demuestra que $H = \{p \in \mathcal{A} : d(p, p_0) = d(p, R)\}$ es una parábola. El punto p_0 recibe el nombre de foco de la parábola y R se llama directriz de la parábola. Se llama vértice de la parábola al punto de la parábola más próximo al foco o, equivalentemente, a la directriz.
 - b) Prueba que toda parábola se puede escribir como en el apartado anterior, para cierto punto p_0 y cierta recta R de A.
 - c) Demuestra que toda parábola H es simétrica con respecto a la recta que pasa por su foco y es perpendicular a su directriz (esta recta se llama eje de la parábola).
 - d) Prueba que, para cada punto p de una parábola H, la recta tangente a H en p forma ángulos iguales con la recta que pasa por p y su foco y con la recta que pasa por p y es paralela al eje de la parábola.
- 7. Consideremos las rectas $R_1 = (1,0,0) + \mathbb{E}(\{(0,1,1)\})$ y $R_2 = (1,0,0) + \mathbb{E}(\{(0,-1,1)\})$ de \mathbb{R}^3 .
 - a) Demuestra que la superficie generada al rotar R_1 (o bien R_2) alrededor del eje z es el hiperboloide de una hoja que tiene ecuación $x^2 + y^2 z^2 = 1$.
 - b) Deduce que si H es cualquier hiperboloide de una hoja de \mathbb{R}^3 y $p \in H$ entonces existen dos rectas distintas contenidas en H que pasan por p.

- 8. Prueba que cualquier plano de \mathbb{R}^3 corta al hiperboloide de una hoja que tiene ecuación $x^2 + y^2 z^2 = 1$.
- 9. Encuentra, si existe, una parábola de \mathbb{R}^2 que pase por los puntos (2,0), (0,1), (3,1) y (0,0).
- 10. Clasifica euclídeamente las siguientes cónicas de \mathbb{R}^2 y obtén, en cada caso, un sistema de referencia euclídeo en el cual su expresión sea reducida:
 - a) $-125 220x 14x^2 40y 96xy + 14y^2 = 0$.
 - b) $3x^2 + 2xy + 3y^2 + 4\sqrt{2}x + 4\sqrt{2}y + 2 = 0$.
- 11. Clasifica euclídeamente las siguientes cuádricas de \mathbb{R}^3 y obtén, en cada caso, un sistema de referencia euclídeo en el cual su expresión sea reducida:
 - a) $3x^2 + 4y^2 + 2z^2 4xy + 4xz 6x 6y + 3 = 0$.
 - b) $3x^2 + y^2 + 3z^2 2xz + 2\sqrt{2}x + 2y + 2\sqrt{2}z + 2 = 0$.
- 12. Clasifica las siguientes cónicas afines de \mathbb{R}^2 y determina un sistema de referencia donde su expresión sea reducida:
 - a) $4x^2 2xy + 2y^2 + x 3y 3 = 0$.
 - b) $2x^2 4xy + 2y^2 + 12x 18y + 11 = 0$.
 - c) $2x^2 + 12xy + 18y^2 + 4x 6y + 10 = 0$.
 - d) $x^2 4xy + 4y^2 + 4x 9y + 2 = 0$.
 - e) $x^2 4xy + 4y^2 + 2x 4y + 1 = 0$.
 - f) $3x^2 + 6xy + 3y^2 12x 11y + 11 = 0$.
- 13. Clasifica las siguientes cuádricas afines de \mathbb{R}^3 y encuentra un sistema de referencia donde su expresión quede reducida:
 - a) $3x^2 + 4y^2 + 21z^2 + 6xy + 12xz + 18yz 12x 14y 29z + 14 = 0$.
 - b) $3x^2 + 2y^2 + 7z^2 + 6xy + 12xz + 6yz 12x 10y 10z + 12 = 0$.
 - c) $x^2 + 2y^2 2z^2 2xy + 2xz 4yz + 4y 12z = 0$.
 - d) $x^2 + 4y^2 + z^2 4xy + 2xz 4yz + 2x 3y + 4 = 0$.
 - e) $x^2 + 11y^2 + 9z^2 6xy + 4xz 8yz + 2x 2y + 2z + 3 = 0$.
 - f) xy + xz + yz 1 = 0.
- 14. Clasifica, según los valores del parámetro $a \in \mathbb{R}$, la siguientes cónicas de \mathbb{R}^2 :
 - a) $x^2 + ay^2 + 2xy 2x + a = 0$.
 - b) $ax^2 + 4axy + y^2 2xy + x 3y 3 = 0$.