

BRANDON ADAMS
MICHAEL ASHWORTH
ZACH CUMM
BRANDON DIAL
NATASHA NAPIER
JOHN SKAGGS

Alternatives Summary

- Comparison Criteria
 - Cost
 - Construction
 - Material
 - Shipping Limitations
 - 100 feet shipping limit
 - Scheduling
 - Manufacturing Availability
 - Capacity Requirements

- Alternatives
 - Steel Plate Girder
 - AASHTO Type V Concrete I-Beam
 - Steel Rolled Beam

Design Alt. #1

- Steel Plate Girder
 - AASHTO M 270 (ASTM 709M) Grade 50 Steel
 - $F_v = 50 \text{ ksi}$
 - $F_u = 65 \text{ ksi}$
 - 4 plate girders
 - 9.0 feet spacing (center-to-center)
 - 2 ft 10 in deck overhang
 - 18 in x 20 in x 5.875 in elastomeric bearing pad (e-Span 140)

Design Alt. #1

- Steel Plate Girder
 - Spliced at L = 100' and L = 25'
 - AASHTO M 164 Type 3 Bolts
 - 7/8 in diameter
 - 328 bolts/beam x 4 beams = 1312 bolts total

Splice Plate Dimensions (in)				
Component	Plate Thickness	Plate Dimensions	Number of Plates	
Top Flange	0.5	16 x 39.5	1 (top)	
	0.5	7.5 x 39.5	2 (bottom)	
Web	0.5	45 x 34	2	
Bottom Flange	1.0	69.5 x 8.5	2 (top)	
	1.0	69.5 x 16	1 (bottom)	

Design Alt. #3

- Rolled Steel Beam (W Shape)
 - W40x593
 - 4 Beams
 - 9' spacing
 - 34" overhang
 - 593lbs per foot.
 - Total weight = 148.5 tons

*The total weight of the rolled beam is greater than the plate girder. The rolled steel beam is a more expensive alternative.

Bridging The Gap Engineering

Cost Assumptions

- Excludes any features that have a consistent design & cost (deck, parapet wall, etc.)
- Crane size calculated using an online crane calculator based off of weight and radius required.
- Running percent of 15% on job office overhead (Primary Contractor),
 15% on home office overhead (Primary Contractor),
 10% on Profit
 (Primary Contractor),
 2% on bond (Primary Contractor),
 and
 on taxes (Project).
 25% running percent for sub-contractor.
- MII & RSMeans cost books used for any pricing that is not separately noted.
- · 10% of girder cost estimated for shipping

Cost Comparison

Cost Comparison of Alternatives				
Alternative	Direct Material Cost	Project Cost	Direct Cost	
Steel Plate Girders	\$215,000	\$445,000	\$295,000	
AASHTO Type V Concrete I- Beam	\$225,000	\$500,000	\$330,000	
Steel Rolled Beam	\$231,000	\$511,000	\$339,000	

- Steel Plate Girder Alternative was determined to be the cheapest with the next closest being 12% higher in cost
- Difference between Steel Plate Girder and Rolled Steel Girder is significant enough (\$45,000) to deem the Steel Plate Girder as a better choice from a cost perspective.

Alternative Selection

Selected Alternative:

- o Alternative #1 Steel Plate Girder
- Justification for Alternative #1:
 - ▼ Shipping length made the AASHTO Type V Beam Concrete I-Beams not feasible
 - Cost of the Rolled Beam alternative compared to the Plate Girder alternative was too high

Beam Optimizations

- Calculated deflection limit
 - o 1.875"
- Flange changes required
 - Top flange thickness increased from 3/4" to 1 1/2"
 - o Bottom flange thickness increased from 1 1/4" to 1 3/4"
- New optimized deflection
 - o 1.731"

Design Capacity

- Design capacity
 - Ultimate Moment
 - × 10,215.625 foot-kips
 - Ultimate Shear
 - × 335.09 kips
 - Plastic moment (AASHTO Table D6.1-1)
 - × 10,924.141 foot-kips
 - Nominal moment (AASHTO 6.10.7.1.2)
 - × 10,601.84 foot-kips
 - Nominal moment > Ultimate moment
 - ➤ Moment Capacity Performance Ratio of 96%

Design Calculations

- Shear capacity
 - Longitudinal stiffener required 55 inches from abutment
 - o Nominal shear (AASHTO 6.10.9.3.2-2)
 - × 479.336 kips
 - o Nominal Shear > Ultimate Shear
 - ▼ Shear capacity is adequate

Final Design

- Final design contains
 - Four steel plate girders
 - Reinforced concrete deck
 - Diaphragms
 - Shear studs
 - Parapet wlls
 - Elastomeric bearings

Final Design

- Elastomeric bearing pads
 - o 18" x 20" x 5.875"
 - o 1/8" thick internal steel plates
- Bridge Deck
 - o 8" thick reinforced concrete deck
 - o 1/4" integral wearing surface
 - o Total deck thickness of 8 1/4"
 - o Compressive strength of 4 ksi
 - Reinforced with #5 steel reinforcing bars
- Parapets
 - WVDOT Type F barrier
 - o Minimum height of 32"

Plate Girder Costs

Steel Plate Girders: grade 50, 125' long \$343,669 \$102,817 Steel Plate Girder Installation Shipping for Steel Plate Girder \$35,483 Steel Plate Girder Misc. \$34,573 (Bolts, Plates, stiffeners,

sheer studs, etc.)

Total Cost for Steel Plate Girders \$516,542

