

### Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos

### Candidatura de 2021

#### Exame de Matemática

Tempo para realização da prova: 2 horas

Tolerância: 30 minutos

Material admitido: material de escrita e uma calculadora científica sem capacidade gráfica

\_\_\_\_\_\_

### A prova é constituída por duas partes, designadas por Parte I e Parte II.

- <u>A Parte I</u> inclui 7 questões de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais apenas uma está correta.
- Se apresentar mais do que uma resposta ou se a resposta for ilegível, a questão será anulada.
- Não apresente cálculos nem justificações neste grupo de questões.
- Na folha de respostas, para cada questão, indique o número da mesma e apenas a letra correspondente à alternativa que considera correta.
- A Parte II inclui 6 questões de resposta aberta.
- Nas questões desta parte, apresente de forma clara o seu raciocínio, indicando todos os cálculos que efetuar e todas as justificações que considerar necessárias.
- Nas aproximações numéricas, quando necessárias, deve ser usada a aproximação às centésimas.
- A avaliação incidirá sobre a qualidade das justificações e tipo de cálculos apresentados, para além do grau de acerto atingido, por cada resposta dada.

# GRELHA DE COTAÇÃO DA PROVA

| QUESTÕES          | COTAÇÃO (valores) |
|-------------------|-------------------|
|                   |                   |
| PARTE I           |                   |
| 1                 | 1                 |
| 2                 | 1                 |
| 3                 | 1                 |
| 4                 | 1                 |
| 5                 | 1                 |
| 6                 | 1                 |
| 7                 | 1                 |
| TOTAL DA PARTE I  | 7                 |
|                   |                   |
| PARTE II          |                   |
| 1.1               | 1,6               |
| 1.2               | 0,8               |
| 1.3               | 0,6               |
| 2.1               | 0,8               |
| 2.2               | 0,4               |
| 2.3               | 0,3               |
| 3.1               | 1,2               |
| 3.2               | 0,9               |
| 3.3               | 0,7               |
| 4.1               | 0,9               |
| 4.2               | 0,6               |
| 4.3               | 1,1               |
| 5.1               | 1,4               |
| 5.2               | 0,5               |
| 6                 | 1,2               |
| TOTAL DA PARTE II | 13                |
| TOTAL DA PROVA    | 20                |

# **FORMULÁRIO**

### **NÚMEROS**

Como valor aproximado de  $\pi$  use 3,14159

### **GEOMETRIA**

Perímetro do círculo:  $2 \pi r$ , sendo r a medida do raio do círculo

# Áreas

**Paralelogramo:**  $Base \times Altura$ 

**Losango:**  $\frac{\textit{Diagonal maior} \times \textit{Diagonal Menor}}{2}$ 

**Trapézio:**  $\frac{Base\ maior\ +\ Base\ menor}{2} \times Altura$ 

**Polígono Regular:**  $\frac{Perimetro}{2} \times Altura$ 

**Círculo:**  $\pi$   $r^2$ , sendo r a medida do raio do círculo

Área lateral do cone:  $\pi r g$ , sendo r a medida do raio da base do cone e g a sua geratriz

## Volumes

Prisma e cilindro: Área da base × Altura

Pirâmide e cone:  $\frac{\acute{a}rea\ da\ base\ \times\ Altura}{3}$ 

**Esfera**:  $\frac{4\pi r^3}{3}$ , sendo r a medida do raio da esfera

## ÁLGEBRA

$$ax^2 + bx + c = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

### **TRIGONOMETRIA**

$$sen^2(x) + cos^2(x) = 1$$

$$tg(x) = \frac{sen(x)}{\cos(x)}$$

## Parte I

1. Uma variável aleatória contínua *X* tem uma distribuição normal de valor médio 75.

Sabe-se que  $P(75 \le X \le 90) = 0.3$ .

Qual das seguintes afirmações é verdadeira?

A)  $P(X \ge 100) = 0.2$ 

- C)  $P(X \le 65) > 0.2$
- B)  $P(60 \le X \le 75) = 0.35$
- D)  $P(X \le 50) > 0.2$
- 2. Na figura 1, está representada parte do gráfico de uma função f de domínio  $]-\infty$ , 2[.



Figura 1

A reta t, de equação y = -x - 1, é assintota do gráfico de f quando x tende para  $-\infty$ . Qual é o valor do seguinte limite?

$$\lim_{x\to-\infty}(f(x)+x+1)$$

A) -1

C) 1

B) 0

D)  $+\infty$ .

3. Na figura 2, está representada, num referencial o. n. xOy, parte do gráfico de uma função polinomial f de grau 3, de domínio  $\mathbb{R}$ .



Figura 2

Sabe-se que que:

• -2, 2 e 5 são zeros de f;

• f' representa a função derivada de f.

Qual das afirmações seguintes é verdadeira?

A) 
$$f'(0) \times f'(6) = 0$$

C) 
$$f'(-3) \times f'(0) > 0$$

B) 
$$f'(-3) \times f'(6) < 0$$

D) 
$$f'(0) \times f'(6) < 0$$

4. Sabe-se que P(4, 511) pertence ao gráfico da função  $g(x)=2^{\frac{kx}{3}}-1$ , com  $k\in\mathbb{R}$ . Qual é o valor de k?

A) 
$$\frac{2}{9}$$

C) 
$$\frac{27}{4}$$

B) 
$$\frac{3}{2}$$

D) 
$$\frac{27}{16}$$

5. Se  $log_3 y = -\frac{1}{2} + \frac{3}{4} log_3 x$ , para x > 0, então

A) 
$$y = \sqrt{\frac{\sqrt{x^3}}{3}}$$

$$C) y = \sqrt{\frac{x^3}{3}}$$

B) 
$$y = \sqrt{3} \times \sqrt[4]{x^3}$$

$$D) \ y = \sqrt{3x^3}$$

6. Aumentou-se um terreno quadrado em 4 metros segundo umas das suas dimensões, obtendo-se como resultado um retângulo com 192 m² de área. Se pretendermos determinar o comprimento do lado do quadrado inicial, a equação que nos permite obter este valor é:

A) 
$$x^2 + 4 = 192$$

C) 
$$2x + 4 = 192$$

B) 
$$(x + 4)^2 = 192$$

D) 
$$x(x + 4) = 192$$

7. Um torneio de futebol de salão disputado em uma volta tem um total de 66 jogos. Quantas equipas entraram?

### Parte II

1. Na figura 3, está representada, num referencial o. n. xOy, parte do gráfico da função f, de domínio  $\mathbb{R}$ , definida por  $f(x) = 4\cos(2x)$ .

Sabe-se que:

- os vértices A e D do trapézio [ABCD] pertencem ao eixo Ox;
- o vértice B do trapézio [ABCD] pertence ao eixo Oy;
- o vértice D do trapézio [ABCD] tem abcissa  $-\frac{\pi}{6}$ ;
- os pontos A e C pertencem ao gráfico de f;
- a reta CD é paralela ao eixo Oy.



Resolva as alíneas seguintes recorrendo a métodos exclusivamente analíticos.

- 1.1 Determine o valor exato do perímetro do trapézio [ABCD].
- 1.2 Determine o valor exato da área do trapézio [ABCD].
- 1.3 Seja  $f^{\prime}$ a primeira derivada da função fe seja  $f^{\prime\prime}$ a segunda derivada da função f. Mostre que

$$2f(x) + f'(x) + f''(x) = -8(\cos(2x) + \sin(2x)),$$

para qualquer número real x.

2. O lucro mensal de uma empresa, em milhares de euros, é dado pela função

$$l(x) = -x^2 + 10x - 16,$$

sendo x a quantidade de artigos vendidos.

Resolve, recorrendo a métodos exclusivamente analíticos, as seguintes alíneas.

- 2.1 Para que valores de x o lucro é nulo?
- 2.2 Que valor de *x* gera maior lucro para a empresa?
- 2.3 Determine o lucro mensal máximo que a empresa pode obter.
- 3. Na figura 4 estão representados dois quadriláteros: um quadrado [ABCD] cuja área é igual a 81 cm<sup>2</sup> e um quadrilátero [PQRS], onde:

$$\overline{AP} = \frac{1}{3} \overline{AB}$$

$$\overline{BQ} = \frac{1}{3} \overline{BC}$$

$$\overline{CR} = \frac{1}{3} \overline{CD}$$

$$\overline{\rm DS} = \frac{1}{3} \, \overline{\rm DA}$$



Figura 4

- 3.1 Mostre que [PQRS] é um quadrado.
- 3.2 Sendo N o ponto de interseção entre AC e PR, determine a medida do comprimento do segmento [PN].
- 3.3 Calcule a área do quadrado [PQRS].
- 4. Considere num referencial o. n. xOy, os pontos A(10, -8) e C(2, -4) e os vetores  $\overrightarrow{AB} = (-1, 5)$  e  $\overrightarrow{CD} = (3, -7)$ .

Determine, sem usar valores aproximados:

- 4.1 As coordenadas de um vetor  $\vec{u}$  perpendicular ao vetor  $\overrightarrow{AB}$ , tal que  $||\vec{u}|| = 13$ .
- $4.2 \text{ A equação vetorial da reta que passa pelo ponto B e é paralela à direção do vetor <math>\overrightarrow{\text{CD}}$ .
- 4.3 Uma equação da circunferência que tenha [AM] por diâmetro, onde M é o ponto médio do segmento [AC].

5. Na figura 5 está representado um sólido que se pode decompor num cubo e num cone equilátero.

## Sabe-se que:

- A base do cone equilátero está contida no plano EFG;
- As medidas dos comprimentos da altura do cone e da aresta do cubo são iguais;
- O ponto M, projeção do vértice V sobre o plano EFG, é centro da face [EFGH] do cubo;
- O volume total do sólido é igual a  $27 + 3\pi$  cm<sup>3</sup>.



- 5.1 Mostre que a medida do comprimento da aresta do cubo é 3 cm e que a medida do comprimento do diâmetro da base do cone equilátero é  $2\sqrt{3}$  cm.
- 5.2 Calcule a área lateral do cone equilátero.
- 6. Lança-se uma moeda viciada cuja probabilidade de sair cara é de 2/3 e a probabilidade de sair coroa é de 1/3. Se após o lançamento surgir cara, então seleciona-se aleatoriamente um número do conjunto {1, 2, 3, 4, 5, 6, 7, 8, 9}, se surgir coroa, seleciona-se aleatoriamente um número do conjunto {1, 2, 3, 4, 5}. Determine a probabilidade de ser selecionado um número par.

# **FIM**