







# 历史背景: 哥尼斯堡七桥问题与欧拉图









#### 定义8.13

- (1) 欧拉通路——经过图中每条边一次且仅一次行遍所有顶点的通路.
- (2) 欧拉回路——经过图中每条边一次且仅一次行遍所有顶点的回路.
- (3) 欧拉图——具有欧拉回路的图.
- (4) 半欧拉图——具有欧拉通路而无欧拉回路的图.

#### 几点说明:

规定平凡图为欧拉图.

欧拉通路是生成的简单通路,欧拉回路是生成的简单回路.

环不影响图的欧拉性.



## 欧拉图实例





上图中, (1),(4)为欧拉图, (2),(5)为半欧拉图, (3),(6)既不是欧拉 图,也不是半欧拉图.



## 无向欧拉图的判别法

### 离散数学



定理8.7 无向图G是欧拉图当且仅当G连通且无奇度数顶点.

证 若G 为平凡图无问题. 下设G为n 阶m 条边的无向图. 必要性 设C 为G 中一条欧拉回路.

- (1) G 连通显然.
- (2)  $\forall v_i \in V(G)$ , $v_i$ 在C上每出现一次获2度,所以 $v_i$ 为偶度顶点. 由 $v_i$  的任意性,结论为真.

**充分性** 对边数m做数学归纳法.

- (1) m=1时,G为一个环,则G为欧拉图.
- (2) 设 $m \le k$  ( $k \ge 1$ ) 时结论为真,m = k + 1时证明:



5



不难看出: 欧拉图是若干个边不重的圈之并,见示意图.









定理8.8 无向图G是半欧拉图当且仅当G 连通且恰有两个奇度顶点.

证 必要性简单.

充分性(利用定理8.7)

设u,v为G中的两个奇度顶点,令

$$G' = G \cup (u,v)$$

则G'连通且无奇度顶点,由定理8.7知G'为欧拉图,因而存在欧拉回路C,令

$$\Gamma = C - (u,v)$$

则 $\Gamma$ 为G中欧拉通路.



## 欧拉图的应用



例1: 邮递员投递问题.



例2: 一笔画问题.















### THE END

