Tutorial III

- 1. Show that $\exp(z_1) = \exp(z_2)$ if and only if $z_1 z_2 = 2\pi ni$ for some $n \in \mathbb{Z}$.
- 2. Prove that
 - (i) $\sin z = \sin x \cosh y + i \cos x \sinh y$;
 - (ii) $\cos z = \cos x \cosh y i \sin x \sinh y$.
- 3. Let γ be the boundary of the triangle $\{0 \le y \le 1 x; 0 \le x \le 1\}$ taken with the anticlockwise orientation. Evaluate:
 - a) $\int_{\gamma} \operatorname{Re}(z) dz$;
 - b) $\int_{\gamma} z^2 dz$.
- 4. Show that $\sin; \cos : \mathbb{C} \to \mathbb{C}$ are surjective. How often does it attain a given value?
- 5. Let γ be the circle with radius R around the origin with counter-clockwise orientation. Compute the following integrals :
 - a) $\int_{\gamma} z^m dz, m \in \mathbb{Z};$
 - b) $\int_{\gamma} \bar{z}^m dz, m \in \mathbb{Z};$
 - c) $\int_{\gamma} |z|^m dz, m \in \mathbb{Z}$.
- 6. Show that if D is a bounded domain with C^1 boundary,

$$\int_{\partial D} \bar{z} \ dz = 2i \text{Area}(D).$$