Úvod do problematiky

Karel Richta

Katedra technických studií Vysoká škola polytechnická Jihlava

© Karel Richta, 2020

Softwarové inženýrství, SWI 02/2020, Lekce 1

https://moodle.vspj.cz/course/view.php?id=200214

Úvodem trochu historie

- Termín "<u>software</u>" zavedl v roce 1958 statistik John Tukey (také autor termínu "bit").
- Počítačů přibývalo, přibývalo i softwarových projektů, ale ubývalo úspěšně dokončených projektů. Někdy to došlo až na hranici únosnosti – software byl, nebo mohl být, příčinou havárií.
- Za okamžik zrození termínu "<u>softwarové inženýrství</u>" se obvykle považuje rok 1968, kdy NATO sponzoruje první konferenci s tímto názvem a na toto téma.
- V roce 1972 vychází první časopis "Transactions on Software Engineering" (IEEE Computer Society).
- V roce 1976 vytváří IEEE Computer Society první komisi, která by měla definovat obsah oboru "softwarové inženýrství".

Případ sondy Mariner I. (1962)

- Mariner I. byla sonda, která měla za cíl Venuši. Musela být zničena 293 sekund po startu.
- Příčinou byla hardwarová chyba v anténě, ta ale způsobila, že ovládání přešlo z počítače na zemi na lokální počítač rakety.
- A tam byla v softwaru chyba. Vznikla ručním přepisem vzorce, ve kterém programátor přehlédl aplikaci funkce (znázorněné nadepsanou čarou - ō), což způsobilo chybu ve výpočtu, která způsobila odklon rakety z požadované dráhy.

Případ Mercury (1962)

- Záměna čárky za tečku ve FORTRANu:
 - Místo "DO 17 I = 1,10", což je cykl,
 - bylo "DO17I = 1.10",
 - to je ale přiřazení hodnoty 1.10 proměnné DO17I
 - Pozn.: Mezery nejsou ve FORTRANu důležité.
- Naštěstí se ale chyba odhalila před startem dříve, než se mohla projevit. Iniciovala testování podle struktury programu, neboť výše uvedený cyklus nebyl v testování nikdy vyzkoušen.

Případ Apollo 11 (1969)

- První přistání na Měsíci se v roce 1969 nezdařilo přesně podle představ.
- Přistávací modul Eagle se o 4 vteřiny odchýlil od plánované trajektorie.
- Mezi velké kameny poblíž kráteru dosednul pod manuálním řízením Neila Armstronga (míle daleko od zvoleného místa).
- Způsobil to zapnutý radar, který spotřeboval neplánovaný čas procesoru, místo aby se věnoval řízení.

3. světová válka ... téměř (září 1983)

- Katastrofa: Chyba v sovětském softwaru nedokázala odfiltrovat detekci falešných střel způsobenou odrazy slunečního záření od mraků.
- Systém sovětského včasného varování falešně ukázal, že Spojené státy zahájily útok pomocí pěti balistických raket. Naštěstí úřadující sovětský důstojník (Stanislav Petrov) měl "podivné lechtání v žaludku", že kdyby USA skutečně útočily, že by poslaly více než pět střel, takže ohlásil zjevný útok jako falešný poplach.

Úplně se to vždy nepovedlo (1996)

- Pád rakety Ariane 5 (1996):
 - Neobsloužená výjimka při operaci v pohyblivé řádové čárce
 - Ztráta 100 mil. \$,
 včetně družic Cluster 500 mil. \$.

- Návrat programu Ariane o několik let zpět.
- Díky chybě dal řídicí počítač rakety příkaz k současnému vychýlení trysek urychlovacích bloků, tak i trysky motoru. Tím se kurs rakety prudce změnil a v důsledku aerodynamických sil se horní část rakety odlomila. Byl aktivován vlastní autodestrukční systém rakety a raketa se změnila v oblak hořících úlomků

Přistávací modul na Marsu (1999)

Problém komunikace mezi komponentami – uživatel rozhranní očekával hodnotu v kilometrech, poskytovatel ji udával v mílích. Ve výšce 57 km se nepodařilo modul ukotvit na oběžné dráze (měl být ve výšce 145 km).

Celková ztráta Mars Climate Orbiter 125 mil. \$

Výpadek elektřiny USA (2003)

Postihlo to až 50 mil. obyvatel, zemřeli 3 lidé, škoda 6 mld. \$.

Způsoben neregistrovaným výpadkem automatizovaného hlásiče poruch v elektrárně u Niagary, který se kaskádně rozšířil sítí.

Semafory v Praze (2008)

- Závada počítačového programu zavinila v metropoli dlouhé kolony. Kvůli tomu se ucpala Severojižní magistrála nebo například ulice Ječná, Žitná, Vinohradská.
- Semafory se vždy mezi šestou a sedmou hodinou ranní, podle toho, jak jsou nastaveny, přepnou z nočního do denního režimu. Došlo ale k výpadku softwaru, který řídí některé křižovatky a semafory na nich se nepřepnuly.

Výpadek služby Amazon S3 (2008)

- Amazon S3 (Simple Storage Service) ukládání datových objektů na servery Amazonu s HTTP, SOAP a REST rozhraním.
- Ve 4:31 ráno 15.2.2008 překročilo množství autentizovaných požadavků kapacitu autentizačních serverů.
- Do 6:48 byla služba zcela nedostupná.
- Amazon plánuje lepší monitoring a stavové informace služby dostupné pro zákaznické aplikace spoléhající na 24/7 dostupnost.

Centrální registr vozidel ČR (2012)

- V pondělí 9. července 2012 byla ministerstvem dopravy spuštěna nová aplikace Centrálního registru vozidel, ale během několika minut však došlo k výpadku a od té doby se dlouho potýkala s problémy.
- Ministerstvo dopravy stál software 37 milionů korun. 10 milionů korun by měly být náklady za nákup výpočetní techniky pro cca 1440 koncových uživatelů.

Výpadek Centrálního registru vozidel Aktualizováno 11.01.2013

Z důvodu výpadku Centrálního registru vozidel nebude možné během dnešního dne provádět úkony s tímto registrem spojené. Pracovníci IT na tomto výpadku intenzívně pracují, avšak není možné určit, kdy se jim podaří závadu odstranit.

Termín softwarové inženýrství

 "Softwarové inženýrství je disciplina, která se zabývá zavedením a používáním řádných inženýrských principů do tvorby software tak, abychom dosáhli ekonomické tvorby software, který je spolehlivý a pracuje účinně na dostupných výpočetních prostředcích."

Konference "Softwarové inženýrství 1968"

Termín softwarové inženýrství

 "Softwarové inženýrství je disciplina, která se zabývá zavedením a používáním řádných <u>inženýrských principů</u> do tvorby software tak, abychom dosáhli ekonomické tvorby software, který je spolehlivý a pracuje účinně na dostupných výpočetních prostředcích."

Konference "Softwarové inženýrství 1968"

Termín softwarové inženýrství

 "Softwarové inženýrství je disciplina, která se zabývá zavedením a používáním řádných inženýrských principů do tvorby software tak, abychom dosáhli <u>ekonomické tvorby</u> software, který je spolehlivý a pracuje účinně na dostupných výpočetních prostředcích."

Konference "Softwarové inženýrství 1968"

Další historie – SWI jako profese

- V roce 1993 vznikají komise IEEE a ACM, které ústí do společného úsilí definovat softwarové inženýrství jako disciplinu. V roce 1998 společná komise IEEE a ACM definuje profesi softwarového inženýra.
- Nakonec v roce 2004 vzniká společný návrh "curricula" pro výuku tohoto oboru, označovaného <u>SE2004</u>.
- Tím se završilo uznání softwarového inženýrství jako discipliny, podobně jako CS1991 završilo uznání informatiky.
- Softwarové inženýrství je definované jako standard <u>IEEE</u>
 610.12.

Příčina vzniku SWI?

- Obvykle se říká, že to způsobila "softwarová krize".
- Dokud výkon počítačů nepřesáhl určitý rozměr, bylo možno se spolehnout na programátorské "hvězdy".
- Často se počítače se využívaly pro vědecko-technické výpočty, kde záleželo spíše na preciznosti řešení, než na efektivitě tvorby programů.
- Edsger W. Dijkstra: "Hlavní příčinou softwarové krize byl nárůst výkonu hardware - programování nemělo problémy, dokud neexistovaly počítače. Dokud jsme měli slabé počítače, mělo programování jen snesitelně těžké problémy. Nyní máme gigantické počítače a k nim gigantické problémy se softwarem".

Moorův zákon:

- "Výkon hardwaru vzrůstá zhruba dvakrát za dva roky".
 - Přestože sám autor prohlásil svou extrapolaci jako "pěkně divokou", zákon zhruba platí dodnes.
 - Firma Intel nedávno zveřejnila výsledky výzkumné zprávy uvádějící, že Moorův zákon pravděpodobně přestane platit až kolem roku 2021 (křemík se dostane na hranici svých možností).

Tvorba software ↔ inženýrství

- Všechny tyto problémy související se softwarovou krizí vedly tedy nakonec k pokusu udělat z vývoje produkovaného nadšenci inženýrskou disciplinu.
- V 70-tých letech dochází k formulaci základních principů tohoto oboru.
- Vzniká také první generace nástrojů pro podporu této discipliny, které jsou označovány jako CASE (Computer Aided Software Engineering).

Co to je inženýr?

- Ideální prototyp inženýra představuje C.Smith z Verneova románu Tajuplný ostrov. Uměl vše - vyrobit nitroglycerin i postavit loď.
- Takový inženýr všeuměl mohl možná existovat v 19. století.
 Dnes suma inženýrských poznatků již značně překračuje kapacitu šedé kůry mozkové jednoho individua.
- Univerzální inženýr je již jen romantickou představou a v našem století by působil spíše jako diletant.

e 1, 21/41

Etika osobnosti inženýra (FEANI)

Inženýr:

- vykonává svou činnost na co nejvyšší úrovni respektujíc zákony země, v níž působí - tak, aby jím poskytované služby byly v souladu s tím, co je v jeho profesi považováno za úroveň odpovídající současnému stavu poznání,
- zachovává profesionální poctivost a intelektuální čest jako záruku nestrannosti v analýze a úsudku a v následném rozhodování,
- je vázán každou v dobré víře uzavřenou smlouvou, na kterou dobrovolně přistoupil,
- v souvislosti s výkonem své profese nepřijímá žádné peníze bez souhlasu svého zaměstnavatele,
- projevuje svou oddanost inženýrské profesi účastí na činnosti inženýrských organizací, zejména takových, které působí při ochraně profesních zájmů a přispívají k rozšiřování vědeckotechnických poznatků a k trvalému zvyšování odbornosti svých členů,
- používá pouze ty tituly a označení, na něž má právo.

Profesionální etika inženýra (FEANI)

Inženýr:

- může přijímat pouze takové úkoly a pověření, která odpovídají jeho kvalifikaci a oprávnění - při zajišťování činností ležících mimo tyto hranice spolupracuje s příslušnými odborníky,
- odpovídá za organizování a provádění úkolů, jejichž zajišťování převzal,
- zřetelně a úplně specifikuje služby, k jejichž provádění se zavázal,
- při plnění úkolů, jimiž je pověřen, činí veškeré nezbytné kroky k tomu, aby byla zajištěna bezpečnost osob a majetku,
- přijímá odměnu ve výši odpovídající poskytnutým službám a převzaté odpovědnosti,
- pečuje o to, aby každé odměňování, které souvisí s činností, za niž odpovídá, bylo přiměřené poskytnutým službám,
- usiluje o dosažení vysoké kvality technických řešení a přispívá ke zvyšování jejich úrovně,
- pečuje o vytváření zdravého a příjemného pracovního prostředí pro své spolupracovníky.

Rozmanité inženýrské profese

- Stavební inženýr
- Chemický inženýr
- Inženýr architekt
- Genetický inženýr
- Softwarový inženýr
- •
- Sociální inženýr?
- **-** ...
- Byli stavitelé katedrál inženýři?

Co to je softwarové inženýrství?

Wikipedie: Pojem "<u>softwarové inženýrství</u>" není nijak jednotný, může mít víc významů:

- Obecný termín, který znamená mnoho činností, dříve označovaných jako <u>programování</u>? – *rozhodně ne*
- Obecný termín, který znamená praktickou činnost s počítači, na rozdíl od teoretického přístupu, který se nazývá informatika? – rozhodně ne
- Argument pro jisté přístupy k programování se zaměřením na <u>inženýrskou profesi</u>, nikoli jako pohled na programování jako druh umění, řemeslné zručnosti a kultury? – *částečně ano*
- Softwarové inženýrství je definované jako standard <u>IEEE</u>
 610.12.? *spíše ano*

Definice IEEE 610.12:

 "Softwarové inženýrství je aplikace systematického, disciplinovaného, kvantifikovatelného přístupu k vývoji, provozu a údržbě softwaru, tj. aplikace inženýrství na software. Také je to studium postupů dle výše uvedeného."

Je vývoj softwaru umění, věda nebo rutina?

Softwarové inženýrství má blízko k různým disciplínám:

- Na jedné straně je možné jej považovat za inženýrství, neboť se jedná o disciplinované využívání pragmatických zkušeností, tj. rutinní postupy, které se očekávají od inženýra.
- Na druhé straně je možné softwarové inženýrství považovat za vědu, neboť v sobě zahrnuje rozvoj matematických disciplin potřebných k řešení úloh.
- Na straně třetí lze softwarové inženýrství považovat za umění, neboť v sobě zahrnuje aspekty běžně přisuzované umění návrhu – návrh vzhledu, návrh ovládání apod.

Lze SI srovnat s jinými inženýry?

- Srovnáme-li softwarového inženýra s inženýrem stavebním, pak stavební inženýr realizuje stavbu podle modelu, programátor programuje podle modelu.
- Model stavebnímu inženýrovi navrhl architekt (územní rozhodnutí, stavební povolení, realizace stavby), programátorovi softwarový architekt (úvodní studie, návrh architektury, konceptuální model) a návrhář (logický model).
- Chemický inženýr navrhuje postup výroby nějaké látky z ingrediencí, softwarový návrhář navrhuje skladbu celku z rozmanitých komponent.
- Postup přípravy látky v laboratoři je jiný, než postup výroby v továrně, záleží na použité technologii. Softwarový inženýr rovněž využívá různé technologie podle cílového prostředí.

Jak se SI vyvíjí?

- Softwarové inženýrství nedávno oslavilo padesátiny. Zajímavá otázka je, jak se softwarové inženýrství za tuto dobu vyvinulo? Jaké trendy či změny jsou nejpodstatnější?
- Jiným zajímavým hlediskem je otázka, proč se některé trendy prosazuji s určitým zpožděním, pokud je softwarové inženýrství srovnatelné s ostatními inženýrskými disciplinami.
- Co je v současnosti základní problém, se kterým se softwarové inženýrství potýká? Poučili jsme se již ze zkušeností, podobně jako se to stalo v jiných inženýrských disciplinách?

Smysl předmětu SWI

- Seznámit se s metodami a nástroji používanými při modelování a realizaci programových systémů, protože to patří k běžnému vybavení absolventů universit v oboru softwarové inženýrství.
- Absolventi KTS VŠP by neměli být pozadu a měli by se umět domluvit s absolventy jiných škol, neboť se zdá, že tyto profese budou ještě určitý čas žádané.
- Předmět SWI se zabývá zejména sběrem požadavků, analýzou a modelováním.
- Návrhem a implementací programových systémů se zabývají jiné předměty.
- Řízením projektů se zabývají jiné předměty.

Co tedy budeme probírat?

- Vyjdeme z definice toho, co by měl softwarový inženýr znát.
- Od toho odečteme to, co se učí jinde (v jiných předmětech) a zůstane nám obsah tohoto předmětu.
- Všechny materiály a podmínky pro absolvování najdeme na stránkách předmětu, které jsou umístěny na e-learningovém portálu Moodle, který škola pro výuku poskytuje. Adresa portálu je:
 - https://moodle.vspj.cz/course/view.php?id=200214
- Pro přístup se musíte na portálu autentizovat.

Sada znalostí softwarového inženýra

- <u>SWEBOK</u> (Software Engineering Body of Knowledge IEEE a ACM 2004)
- SEEK (Software Engineering Education Knowledge <u>SE2004</u>)
 - Co se má učit v bakalářských programech (undergraduate).
 - Pozn.: Na přípravě se podílejí známá jména jako Pressman,
 Sommerville, McConnell, na revizi ale také Jan Pavelka, Mária Bieliková, Pavol Návrat.
- **GSwE2009**
 - Totéž pro magisterské programy (Graduate SwE).

Základní členění informatiky (CS)

Diskrétní struktury (43)

Základy programování (38)

Algoritmy a složitost (31)

Architektura a organizace (36)

Operační systémy (18)

Výpočty orientované na síť (15)

Programovací jazyky (21)

Styk člověka s počítačem (8)

Grafika a vizualizace (3)

Inteligentní systémy (10)

Správa informací (10)

Sociální a profesionální otázky (16)

Softwarové inženýrství (31 – 11%)

Počítačová věda a numerické metody (0)

Minimální počet hodin povinné výuky (core hours) – celkem 285

Zdroj: CS2001 (CS2008)

Z toho softwarové inženýrství

Povinný základ:

```
Návrh (8)
Programová rozhranní (API) (5)
Softwarové nástroje a prostředí (3)
Softwarové procesy (2)
Požadavky a specifikace (4)
Validace softwaru (3)
Vývoj softwaru (3)
Řízení softwarových projektů (3)
```

Volitelné doplňky:

Komponentový vývoj
Formální metody
Spolehlivost softwaru
Vývoj specializovaných systémů

Základní znalostní oblasti SWI

- Správa požadavků (Software requirements)
- Softwarový návrh (Software design)
- Tvorba softwaru (Software construction)
- Testování softwaru (Software testing)
- Údržba softwaru (Software maintenance)
- Správa konfigurací (Software configuration management)
- Řízení vývoje (Software engineering management)
- Softwarový proces (Software engineering process)
- Nástroje a metody softwarového inženýrství (Software engineering tools and methods)
- Kvalita softwaru (Software quality)

Zdroj: SE2004

Osnova přednášek

- Úvod do softwarového inženýrství
- Plánování projektů
- Modelování požadavků (CIM)
- Analýza (PIM)
- Architektura SW, MDA
- Návrh (PSM)
- Návrhové vzory
- Metodiky
- Testování

Softwarové týmy a softwarové profese

- Jedním z projevů přechodu od ruční výroby k manufaktuře je definice softwarových profesí.
- Řešení velkých projektů vyžaduje spolupráci mnoha řešitelů a práci je nutno rozdělit.
- Dělba práce vyžaduje organizaci týmů řešících větší softwarové projekty.
- Týmy lze organizovat jako strukturované nebo nestrukturované.

Organizace týmů

Nestrukturované týmy

- Dělí práci podle objemu.
- Mohou být organizovány jako:
 - "Osamělí vlci"
 - "Horda"
 - "Demokratická skupina"

Strukturované týmy

- Dělí práci podle profese.
- Mohou být organizovány jako:
 - "Chirurgický tým"
 - "Tým hlavního programátora"
 - "Agilní skupina"
 - "Více-týmová organizace"

Kterou organizaci zvolit?

- Volba organizace je dána rozsahem projektu.
- Na větší projekty je třeba více-týmová organizace.
- Pro větší projekty se samozřejmě hodí strukturované týmy.
- Máme-li dost prostředků, je nejvýkonnější chirurgický tým.
- Nemáme-li, nejefektivnější může být agilní skupina.

The End