Projeto 1

Projeto 1

- Serão 6 projetos distribuídos entre os grupos
- Não utilizar funções prontas para implementar o principal conceito associado ao tema. Na dúvida, pergunte que funções/bibliotecas podem ser utilizadas no projeto.
- Entregáveis:
 - Código produzido
 - Um breve texto (2 ou 3 páginas) contendo:
 - o Explicação do método implementado
 - Motivação do uso do método (porque usar? Em que situações ele é importante?)
 - Explicação da parte mais importante do código
- Data de entrega 23/09:
- É esperado que todos os integrantes tenham bom entendimento sobre o trabalho realizado.

Implementar os filtros de média geométrica e mediana

Filtro média geométrica

$$\hat{f}(x,y) = \left[\prod_{(s,t) \in S_{xy}} f(s,t) \right]^{\frac{1}{mn}}$$

Filtro mediana

$$\hat{f}(x,y) = \underset{(s,t) \in S_{xy}}{\text{mediana}}[f(s,t)]$$

* Similar à implementação da correlação cruzada, mas ao invés de somar os valores ponderados pelo filtro, as equações acima serão utilizadas.

Implementar o filtro de suavização gaussiana em imagens coloridas.

- Cada canal de cor é suavizado separadamente, formando uma nova imagem colorida.
- Verificar o que acontece se níveis de suavização diferentes forem utilizados em cada canal.

• Implementar as duas técnicas abaixo de preenchimento de borda em imagens

Original

2	3	1	4	
1	5	3	7	
2	9	2	0	
8	7	2	4	

Mais próximo

2	2	2	3	1	4	4	4
2	2	2	3	1	4	4	4
2	2	2	3	1	4	4	4
1	1	1	5	3	4 7 0 4	7	7
2	2	2	9	2	0	0	0
8	8	8	7	2	4	4	4
8	8	8	7	2	4	4	4
8	8	8	7	2	4	4	4

Espelhado

2	9	2	9	2	0	2	9
3	5	1	5	3	7		
1			3			1	
3	5	1	5		7		
2	9	2	9	2	0	2	9
2	7	8	7	2	4	2	7
2	9	2	9	2	0	2	9
3	5	1	5	3	7	3	5

- Implementar o filtro laplaciano utilizando diferença de gaussianas
- Cada valor do filtro é dado pela diferença entre as duas funções abaixo

$$f_1(x,y) = \frac{1}{2\pi\sigma_1^2}e^{-\frac{x^2+y^2}{2\sigma_1^2}}$$

$$f_2(x,y) = \frac{1}{2\pi\sigma_2^2}e^{-\frac{x^2+y^2}{2\sigma_2^2}}$$

onde
$$\sigma_1 = 2\sigma_2$$

• Após criar o filtro, subtraia a média para que a soma do mesmo seja 0: w = w - np. mean(w)

- Implementar a técnica de equalização local de histograma
- A imagem é dividida em sub-regiões, e a técnica de equalização de histograma é aplicada a cada sub-região separadamente.

- Implementar a técnica de alargamento de contraste com dois pontos
- Dados dois pontos, é definida uma função de transformação composta por três retas

$$y_0(x) = \frac{s_1}{r_1}x$$

$$y_1(x) = s_1 + \frac{s_2 - s_1}{r_2 - r_1}(x - r_1)$$

$$y_2(x) = s_2 + \frac{L - 1 - s_2}{L - 1 - r_2}(x - r_2)$$

Projetos

- 1. Filtros não-lineares
- 2. Suavização de imagens coloridas
- 3. Preenchimento de borda
- 4. Filtro laplaciano utilizando diferença de gaussianas
- 5. Equalização local de histograma
- 6. Alargamento de contraste