The Brownie Camera

Lens Design OPTI 517

http://www.history.roch ester.edu/class/kodak/k odak.htm

George Eastman (1854-1932), was an ingenious man who contributed greatly to the field of photography. He developed dry plates, film with flexible backing, roll holders for the flexible film, a Kodak camera (a convenient form of the camera for novices), and an amateur motion-picture camera. Through his experimental photography, he accumulated a large sum of money.

His philanthropic personality prompted him to give his money to various Prof. Jose Speisiness endeavors, including the University of Rochester.

The problem

What are the specs?

- The specs follow from the application
- From the specs we define the design tasks
- Need to find out the <u>complete</u> specification list (not always, usually, possible)
- When in doubt re-consider the application

The Application is the guideline

- Focal length
- Magnification
- Afocal
- Telecentric
- •F/#
- Field of view
- Image quality
- Packaging
- Efficiency
- Cost

Brownie camera issues I

- Specifications: f = 100 mm @ f/15, +/- 30 degrees
- Resolution: observer can resolve 3.4 arc minutes
- Stop location
- Shutter and window
- Manufacturing tolerances
- Use of a plano-convex lens
- Degrees of freedom
- Flattening of the tangential or sagittal field
- Stop sizes
- Limiting aberrations
- Depth of focus and field (geometrical and diffraction limited)
- Film Flatness
- Alignment requirements
- Alternate solution
- Tolerance on positioning the film

Brownie camera issues II

- Tolerance on image plane tilt
- Tolerance in manufacturing the lens and on its placement
- "Spherical and chromatic aberrations tend to increase the depth of field" Kingslake p.268 Optical System Design
- Two-brilliant finders; Opaque finder
- Kingslake p. 211, Lens Design Fundamentals
- Wollanston 1812; Chevalier 1839
- Two sizes for aperture stop
- Optomechanics easy to make
- Simple light Baffles
- Single fixed lens
- Challenges: Parallax, speed, focusing, volume, waist level, no AR coating
- Inexpensive

The plano-convex lens

$$W_{040} = -\frac{1}{8}A^2\Delta\left\{\frac{u}{n}\right\}y$$

$$W_{222} = -\frac{1}{2} \overline{A}^2 \Delta \left\{ \frac{u}{n} \right\} y$$

$$W_{131} = -\frac{1}{2} A \overline{A} \Delta \left\{ \frac{u}{n} \right\} y$$

- Simplicity
- •Use of Seidel coefficients
- •No coma or astigmatism
- •Stop size, spherical aberration
- •Good imaging on a curved surface (Petzval surface)

Earlier spectacle lenses

"Periscopic lenses"

Periscopic from the Greek *periskopeein* "to look around"

W. H. Wollaston 1766-1828

"The opportunity afforded by these glasses of *looking round* at various objects, it is thought may not improperly be expressed by the name of Periscopic Spectacles."

Wollaston meniscus (or landscape lens)

- Flattening the tangential field (for best image on a flat surface)
- The degrees of freedom are the lens bending and the stop position
- Aperture stop diameter, F/16, makes spherical aberration negligible
- Alternate solution, stop in back
- Limiting aberrations are spherical aberration and astigmatism
- Spherical aberration
- It has about 5% barrel distortion

Depth of focus enhancement

- Phase
- Axial Chromatic Aberration
- Axicons
- Scatter
- Diffractive
- Wavefront coding; cubic phase plate
- Amplitude
- Entrance pupil apodization

 [&]quot;Spherical and chromatic aberrations tend to increase the depth of field" Kingslake p.268 Optical System Design

[•]Tradeloff between DOF and resolution

Opaque finder

One for Portrait photos
One for Landscape photos

Scattered light

Ground glass

Folding Mirror

Lens

Parallax

Prof. Jose Sasian

Main camera lens

Brilliant finder

Hyperfocal distance

Objects beyond half the hyper-focal distance H appear in focus.

$$H = \frac{f^2}{f / \# c}$$

c is the diameter of the minimum spot size allowed

Hyperfocal distance H

In this lecture

- Wollaston landscape lens
- The concept of artificially flattening the field
- The Brownie camera

