MATH 5302 Elementary Analysis II - Homework 2

Jonas Wagner

2022, Febuary 9th

Problem 1

Let

$$f(t) = \begin{cases} 0 & \text{if } t < 0 \\ t & \text{if } 0 \le t \le 1 \\ 4 & \text{if } t > 1 \end{cases}$$

Let $F(x) = \int_0^x f(t) dt$.

- a. Find F(x)
- b. Where is F continuous?
- c. Where is F differentiable? Calculate F' at the points of differentiability.

Definition 1. Let $f:[a,b)\to\mathbb{R}$ be integrable $\forall [a,A]\subset [a,b)$. If

$$\lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) \, \mathrm{d}x$$

exists, then

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) \, \mathrm{d}x$$

is an improper integral from a to b.

- a. If $\int_a^b f(x) dx$ is finite, then the improper integral converges.
- b. Otherwise $\int_a^b f(x) dx$ diverges, and thus the improper integral diverges.

Definition 2. A function $f:(a,b)\to\mathbb{R}$ is continuous on [a,b] if

$$\forall_{x \in (a,b)} \forall_{\epsilon > 0} \exists_{\delta(x,\epsilon) > 0} \forall_{y \in \mathbb{R}} |y - x| < \epsilon \implies |f(y) - f(x)| < \delta$$

Definition 3. Let $f:(a,b) \to \mathbb{R}$ be a function.

a. The derivative of the function at point x_0 is defined as

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

- b. If the derivative is defined at x_0 , then it is differentiable at x_0 .
- c. If the derivative is defined for all $x_0 \in (a,b)$, then the function f is said to be differentiable.

d. When f is differentiable, the derivative of f(x) is defined as:

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Example 1. Let $f : \mathbb{R} \to \mathbb{R}$, be defined as

$$f(t) = \begin{cases} 0 & t < 0 \\ t & 0 \le t \le 1 \\ 4 & t > 1 \end{cases}$$

a) Find F(x)

Define the integral $F: \mathbb{R}^+ \to \mathbb{R}$ is defined as

$$F(t) = \begin{cases} \frac{1}{2}t^2 & 0 \le t \le 1\\ \frac{1}{2} + 4(t-1) & t > 1 \end{cases}$$

Proof. For 0 < t < 1,

$$F(t) = \int_0^t f(x) dx$$
$$= \int_0^t x dx$$

which is monotopically increasing, therefore:

$$= \frac{1}{2}x^2 \Big|_0^t$$
$$= \frac{1}{2}t^2 - 0$$
$$= \frac{t^2}{2}$$

For t > 1,

$$F(t) = \int_0^t f(x) dx$$

$$= \int_0^1 x dx + \int_1^t 4 dx$$

$$= \frac{1}{2} x^2 \Big|_0^1 + 4x \Big|_1^t$$

$$= \frac{1^2}{2} - 0 + 4(t) - 4(1)$$

$$= \frac{1}{2} + 4(t - 1)$$

For t = 1 and $t \ge 1$, $1 \in [0, t)$ is a discontinuity within f; however, F remains continuous but not differentiable at the discontinuity point.

$$F(t \to 1^{-}) = \lim_{t \to 1^{+}} \frac{t^{2}}{2} = \frac{1}{2} = \lim_{t \to 1^{+}} \frac{1}{2} + 4(t - 1) = F(t \to 1^{+})$$

b) Where is F continuous?

F(t) is continuous for the entire domain, $[0, \infty)$. i.e.

$$\forall_{x \in [0,\infty)} \forall_{\epsilon > 0} \exists_{\delta(x,\epsilon) > 0} \ : \ \forall_{y \in \mathbb{R}} |y - x| < \epsilon \implies |f(y) - f(x)| < \delta$$

Proof. (not required by problem...) Essentially, this is proven by demonstrating that

$$\lim_{t \to 1^{-}} F(t) = \lim_{t \to 1^{+}} F(t)$$

c) Where is F differentiable? Calculate F' at the points of differentiability.

F(t) is differentiable in $(a,1) \cup (1,\infty)$ which excludes 2 points from the domain: 0 and 1.

$$F' = \begin{cases} t & 0 < t < 1 \\ 4 & t > 1 \\ \textbf{Undefined} & t \in \{0, 1\} \end{cases}$$

Proof. (not required by problem...) Essentially, this is proven by demonstrating that

$$\forall_{x \in (a,1) \cup (1,\infty)} \lim_{t \to x^{-}} F'(t) \neq \lim_{t \to x^{+}} F'(t)$$

This is also true since on regions (a, 1) and $(1, \infty)$, F(t) is smooth continuous which by definition implies differentiability. However, this is not the case for the boundary, x = 1:

$$\lim_{t \to 1^{-}} F'(t) \neq \lim_{t \to 1^{+}} F'(t)$$

which by definition means that F(x) not differentiable at x = 1.

Let f be a continuous function on \mathbb{R} and define

$$F(x) = \int_0^{\sin x} f(t) \, \mathrm{d}t$$

Show that F is differentiable on \mathbb{R} and compute F'.

Theorem 1. If g is a continuous function on [a,b] that is differentiable on (a,b), and if g' is integrable on [a,b], then

$$\int_{a}^{b} g' = g(b) - g(a)$$

Theorem 2. If u and v are continuous function on [a,b] that are differentiable on (a,b), and if u' and v' are integrable on [a,b], then

$$\int_{a}^{b} u(x)v'(x) dx + \int_{a}^{b} u'(x)v(x) dx = \int_{a}^{b} u(x)v(x) dx = u(b)v(b) - u(a)v(a)$$

Theorem 3. Let $u: J \to l$ be differentiable with u' continuous. If f continuous on l, then $f \odot u$ is continuous on J and

$$\int_a^b f \odot u(x)u'(x) dx = \int_{u(a)}^{ub} f(u) du$$

for $a, b \in J$.

Example 2. Let

$$F(x) = \int_0^{\sin x} f(t) \, \mathrm{d}t$$

where f is some continuous function on \mathbb{R} .

a) Show that F is differentiable on \mathbb{R}

Let $u(x) = \sin x$. This definition results in $u'(x) = \cos x$. Applying Theorem 3, we have

$$u(a) = \sin a = 0 \implies a = 0$$

and

$$u(b) = \sin b = \sin x \implies b = x$$

which defines the necessary conditions for differentiability according to the theorem.

b) Compute F'.

Following,

$$F(x) = \int_0^{\sin x} f(t) dt$$
$$= \int_{u(a)}^{u(b)} f(t) dt$$
$$= \int_a^b f(u(x))u'(x) dx$$
$$= \int_0^x f(\sin(x))\cos(x) dx$$

Therefore, by the Fundamental Theorem of Calculus (Theorem 1),

$$F'(x) = f(\sin(x))\cos(x)$$

Let

$$F(x) = \begin{cases} x^2 \sin(\frac{1}{x^2}) & \text{if } 0 < x \le 1; \\ 0 & \text{if } x = 0. \end{cases}$$

- a. Show that F has a derivative at every $x \in [0, 1]$.
- b. Show that F' is not Riemann Integrable on [0,1]. (So F is not the integral of its derivative.)

Definition 4. Define bounded function $f:[a,b] \to \mathbb{R}$ and set $S \subseteq [a,b]$. Let $M(f,S) := \sup f(x): x \in S$ and $m(f,S) = \inf f(x): x \in S$ Let U(f,P) and L(f,P) for f w.r.t. P be defined by

$$U(f,P) = \sum_{i=1}^{n} M(f,[x_{i-1},x_i]) \cdot (x_i - x_{i-1})$$

and

$$L(f,P) = \sum_{i=1}^{n} m(f,[x_{i-1},x_i]) \cdot (x_i - x_{i-1})$$

The Upper Darboux Integral U(f) for f over [a,b] is defined as

$$U(f) = \inf \{ U(f, P) : P = \{ a = x_0 < x_1 < \dots < x_n = b \} \}$$

The Lower Darboux Integral L(f) for f over [a,b] is defined as

$$L(f) = \sup \{ L(f, P) : P = \{ a = x_0 < x_1 < \dots < x_n = b \} \}$$

Definition 5. f is Darboux Integrable on [a,b] iff L(f) = U(f). i.e.

$$\int_{a}^{b} f = \int_{a}^{b} f(x) dx = L(f) = U(f)$$

Example 3. Let $F:[0,1] \to \mathbb{R}$ be defined as

$$F(x) = \begin{cases} x^2 \sin\left(\frac{1}{x^2}\right) & x \in (0, 1] \\ 0 & x = 0; \end{cases}$$

a) Show that F has a derivative at every $x \in [0, 1]$.

From Definition 3, the derivative of f at point x_0 , $f'(x_0)$ is defined as:

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

The derivative $F'(x_0)$ is defined $\forall_{x_0 \in [0,1]}$.

Proof. For $x_0 \in (0,1)$,

$$F'(x_0) = \lim_{x \to x_0} \frac{x^2 \sin\left(\frac{1}{x^2}\right) - (x_0)^2 \sin\left(\frac{1}{x_0^2}\right)}{x - x_0}$$

$$F'(x) = \lim_{h \to 0} \frac{(x+h)^2 \sin\left(\frac{1}{(x+h)^2}\right) - (x)^2 \sin\left(\frac{1}{x^2}\right)}{h}$$

$$= \lim_{h \to 0} \frac{(x^2 + 2xh + h^2) \sin\left(\frac{1}{(x+h)^2}\right) - (x)^2 \sin\left(\frac{1}{x^2}\right)}{h}$$

$$= \lim_{h \to 0} \frac{(x)^2 \left(\sin\left(\frac{1}{(x+h)^2}\right) - \sin\left(\frac{1}{x^2}\right)\right) + (2xh + h^2) \sin\left(\frac{1}{(x+h)^2}\right)}{h}$$

$$= \lim_{h \to 0} \frac{x^2 \left(\sin\left(\frac{1}{(x+h)^2}\right) - \sin\left(\frac{1}{x^2}\right)\right)}{h}$$

$$+ \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{(x+h)^2}\right)}{h}$$

$$+ \lim_{h \to 0} \frac{2xh \sin\left(\frac{1}{(x+h)^2}\right)}{h}$$

$$= x^2 \lim_{h \to 0} \frac{\sin\left(\frac{1}{x^2}\right) - \sin\left(\sin 1x^2\right)}{h} + 0 + \lim_{h \to 0} 2x \sin\left(\frac{1}{(x+h)^2}\right)$$

$$= 2x \sin\left(\frac{1}{x^2}\right) + x^2 \frac{d}{d\sin\left(\frac{1}{x^2}\right)}$$

$$= 2x \sin\left(\frac{1}{x^2}\right) + x^2 \left(-2\frac{1}{x^3}\cos\left(\frac{1}{x^2}\right)\right)$$

$$F'(x) = 2x \sin\left(\frac{1}{x^2}\right) - 2\frac{1}{x}\cos\left(\frac{1}{x^2}\right)$$

Which means that F(x) is differentiable $\forall_{x_0 \in (0,1)}$.

This result can be expanded to the closed interval by taking the limit of F(x) to the boundaries which also exist; therefore, F(x) is differentiable $\forall_{x_0 \in [0,1]}$.

b) Show that F' is not Riemann Integrable on [0,1]. (So F is not the integral of its derivative.)

Note: Stating F' is not Riemann Integrable is equivalent to saying F' is not Darboux Integrable.

Show that for each p > 0, $\int_1^\infty \frac{\sin(x)}{x^p} dx$ converges. Hint: For 0jpj1, you may find it helpful to use integration by parts.

Theorem 4. For all p > 0, the integral

$$\int_{1}^{\infty} \frac{\sin(x)}{x^{p}}$$

converges.

Proof. First, letting p = 1,

Consider
$$\int_1^\infty \frac{x^p}{1+x^q}$$
.

- a. For what values of p and q are the integral convergent?
- b. For what values of p and q are the integral absolutely convergent?

Example 4. Define the integral

$$\int_{1}^{\infty} \frac{x^p}{1 + x^q}$$