Gapar
Chial
June June
8611

		energy stored in this capacitor.	(ii)
[3 marks]			•••

		capacitance of this capacitor	(1)
			(i)
		न्या वाहा	
d piate separation	ance of 500 V.	10^{-5} m is charged to a potential differ	x 0.1
	area $5.0 \times 10^{-3} \text{ m}^2$ and ence of 500 V .	allel-plate, air-filled capacitor having $10^{-3}~\mathrm{m}$ is charged to a potential differ	risq A x 0.1
[3 marks] d plate separation	area $5.0 imes 10^{-3} ext{ m}^2$ and ence of $500 imes V$.	allel-plate, air-filled capacitor having 10 ⁻³ m is charged to a potential differ	sasq A x 0.1
	area 5.0 x 10 ⁻³ m ² and ence of 500 V.	allel-plate, air-filled capacitor having $10^{-3}\mathrm{m}$ is charged to a potential differ	arsq A
	area 5.0 x 10 ⁻³ m ² and ence of 500 V.		
	area 5.0 x 10 ⁻³ m ² and ence of 500 V.	, allel-plate, air-filled capacitor having 10 ⁻³ m is charged to a potential differ	
	area 5.0 x 10 ⁻³ m ² and ence of 500 V.		
			 steq A x 0.1
			 steq A x 0.1
			 steq A x 0.1
			rieq A
[3 marks]		·	Selles
s, C ₁ , C ₂ and C ₃ , in [3 marks]			Selles
[3 marks]		·	Selles

GO ON TO THE NEXT PAGE

005474/CAPE 2003

(a)) Defin	ne EACH of the following terms:	
	(i)	Magnetic flux:	
		·	
			[1 mark
	(ii)	Tesla:	
(b)	State		[1 mark]
` ′	(i)	Faraday's Law	
	(1)	Tulday S Law	
			[1 mark]
	(ii)	Lenz's Law.	
			[1 mark]

(c) Two conducting rods are joined at right angles to each other as shown in Figure 1.

Figure 1

A conducting bar in contact with the rods starts at the vertex and moves with a constant velocity (v) of 4.20 m s^{-1} along them as shown. A magnetic field of magnitude 0.450 T is directed perpendicularly out of the page.

Find the

	ting rods	
-		
-		
		[2
magneti	c flux through the triangle at seconds	
-		
. 1		[2 1
electrom	otive force (e.m.f.) induced in the moving rod at 2	seconds.

3.	(a)	Write an expression for the total resistance, R_T , of three resistors R_1 , R_2 and R_3 , in parallel.
		[1 mark]
	(b)	State Ohm's Law.
		[1 mark]
	(c)	Explain the difference between the electromotive force (e.m.f.) and the terminal potential difference (p.d.) of a battery.
		[2 marks]

(d) A set of measurements were made using the circuit of Figure 2.

Figure 2

Table 1 below shows some of the results obtained.

R	V	I
0	0	0.15 A
300 Ω	10 V	
∞		

Table 1

Fill in the blank spaces in the table with the missing data.

[6 marks]

(a	a) Expl	ain what is meant by EACH of the following:	
	(i)	P-type semiconductor	
	(ii)	N-type semiconductor	[1 mark
			[1 mark
	(iii)	Doping, as applied to semiconductors	
			[1 mark
	(iv)	Depletion region	
(b)) Sugg	est ONE application of a p-n junction diode.	[1 mark]
(0,		The state of the projection divides	(1 mark)

(c) Figure 3 shows a combination of two silicon diodes in a circuit.

Figure 3

The characteristic I-V curve for the diodes is shown in Figure 4.

Figure 4

(i) Calculate the value of the output voltage, V_0 , when

a)	$V_i =$	10 V

[2 marks]

b)
$$V_i = -10.0 \text{ V}.$$

[1 mark]

(ii) Sketch the output when $V_i = 10 \, \text{Sin } \omega t$, where $\omega = 100 \, \text{rad s}^{-1}$, including appropriate numerical values on the scales.

[2 marks]

(a)	In the space provided below, sketch a typical gain frequency curve for a amplifier.	an operationa
		52 1
(b)	What is meant by a 'virtual earth' in an operational amplifier circuit?	[3 marks
(b)	What is meant by a 'virtual earth' in an operational amplifier circuit?	[3 marks
(b)	What is meant by a 'virtual earth' in an operational amplifier circuit?	[3 marks
(b)		[3 marks
(b)		
(b)		
		[3 marks]

(d) Figure 5 shows a cascade amplifier circuit.

Figure 5

Calculate the

	[4 m
output voltage, V_0 , when $V_i = 0.01$ V.	
	[1 m
	Total 10 m

6. (a) (i) Arithmetic operations are usually performed by adders. A half adder circuit is used to add the 1's column in binary addition. Write the truth table for a half-adder.

[2 marks]

(ii) You are provided with an Exclusive-OR (EX-OR) gate and an AND gate for designing a half adder circuit. Draw a circuit diagram to show how these could be arranged.

[2 marks]

(b) Draw a circuit diagram to show how the NAND gates could be used to build a flip-flop.

[1 mark]

(c) Write the truth table for the circuit shown in Figure 6, indicating the output at X, Y and Z.

Figure 6

[3 marks]

(d) Draw a simple logic circuit to represent the truth table below in which A and B are inputs and X is the output.

A	В	X
0	0	0
0	1	0
1	0	1
1	1	0

[2 marks]

(a)		e THREE experimental facts about iculate (photon) model of light.	the photoelectric effect which support the
			[3 marks
(b)	Whe	n ultraviolet light is incident on an incident	sulated metal plate, the plate emits electron
	for a	while and then stops.	
	Expl	ain why the process eventually stops.	r
			[1 mark
(c)		energy level scheme for a newly di re 7. The electron is in its ground stat	scovered one-electron element is shown inte.
			-2 eV
		n = 3	
		n = 2	
		n = 1	-20 eV
		Figure 7	
	(i)	Determine the amount of energy ground state.	it will take to ionize an electron from the
		8	
\			
			[1 mark
	(ii)	State what will happen if a 6 eV ph	[1 mark]
	(ii)		
	(ii)		

Calculate the frequency of radiation emitted.
[2 marks]
Calculate the wavelength of radiation emitted.
3
·
[1 mark]
In which region of the electromagnetic spectrum would this radiation be found?
and the second and second shape of the second secon
[1 mark]
Total 10 montes

(d)

8.	(a)	(i)	Explain the principle by which a continuous X-ray spectrum is produced.
	(ii)	[2 marks]	
		(ii)	Why is a vacancy in an inner electron shell usually required for an atom to emit an X-ray photon?
			,
			[2 marks]

(b) A beam of X-rays, of intensity I_0 , is incident on a slab of material of thickness x_1 and absorption coefficient μ_I , as shown in Figure 8 a.

Figure 8 a

(i) Write an expression for the emerging intensity, l, in terms of l_0 , μ_l and x_l .

[1 mark]

(ii) A second slab of material, of thickness x_2 and absorption coefficient μ_2 , is placed alongside the first slab as shown in Figure 8 b.

Figure 8 b

a)	Show	that the	Intensity,	I.	is given	bv
∽ ,	011011		*************	., .		

$$I = I_0 e^{-(\mu_1 x_1 + \mu_2 x_2)}$$

b) Calculate the value of I where $I_0 = 500 \text{ Wm}^{-2}$, $\mu_I = 8.0 \text{ m}^{-1}$, $x_I = 2.0 \text{ mm}$, $\mu_2 = 4.0 \text{ m}^{-1}$, $x_2 = 4.0 \text{ mm}$.

[2 marks]

[3 marks]

9.	(a)	Expl	ain what is meant by EACH of the following terms:
		(i)	Nuclear fission
			[1 mark
		(ii)	Nuclear fusion
			[1 mark
		(iii)	Binding energy
			[1 mark
	(b)	The n of the	ucleus of an atom of uranium can be represented by $^{235}_{92}$ U. How many of EACH following particles are there in the nucleus?
		(i)	Protons
			[1 mark]
		(ii)	Neutrons
			[1 mark]

(c)	An in	iduced fission reaction is described by the following equation.							
		$_{0}^{1} n + _{92}^{235}U \rightarrow _{92}^{236}U^{*} \rightarrow _{56}^{141}Ba + _{36}^{92}kr + 3_{0}^{1}n + E$							
	Mass	es:							
	$^{235}_{92}{ m U}$	= 235.0439 u							
	¹⁴¹ ₅₆ Ba	u = 140.9141 u							
	⁹² ₃₆ kr	= 91.9262 u							
	$_{0}^{1}n =$	= 1.0087 u							
	1 u =	931.5 MeV/c ²							
	4								
	Calcu	Calculate							
	(i)	(i) the energy E, in eV, released during the reaction							
		.							
			[4 marks]						
	(ii)	the energy, in eV, of EACH neutron produced in the reaction.							
			[1 mark]						
		To	otal 10 marks						

END OF TEST