

[이한별] 조장(프로젝트 총괄) / 발표 / GUI 백업

[김수영] 외부 데이터 수집 / 데이터 정제

[유하나] 이론 / 데이터 추출 코드 / ppt

[김해원] GUI 총괄 개발 / 디자인

[전근호] 인공 신경망 코드 / 모델구현

개발환경

Window 10 Pro

GPU Intel(R) Iris(R) Xe Graphics

Python 3.10.0

tensorflow 2.8.0

Keras 2.8.0

Table of Contents

분류기의 기본 원리?

소리의 녹음은 여러 개의 시점의 기압을 측정하여 이루어진 소리들의 최종 합계 즉 순수 신호 여러 개의 총 합으로 구성

여러 진동수가 뒤섞인 소리에서 원래 신호들을 뽑아내고 그를 이용해 분류하는 것

푸리에 변환 기본 원리 : 시간이 아닌 진동 수(주파수) 관점으로 보자

신호를 진동수의 성분으로 분해하는 수학적 기법

단순한 파동으로 분리하여 특정 진동수의 세기를 조절할 수 있게 된다.

• 푸리에 변환 공식

$$X(f) = \int_{t1}^{t2} x(t)e^{-2\pi i f t} dt$$

 $e^{-2\pi i f t}$: 복소수 $(e^{-2\pi i t})$ 와 진동수(f)를 곱합니다. 복소수는 회전을 나타낸는데 탁월하므로 사용합니다. 2π 는 $2\pi rad$ 로 반지름이 1인 단위원의 둘레의 길이를 말합니다.

t는 이때 흐른 시간입니다.

f 는 진동수로 1/10일 경우 10초동안 1바퀴를 돕니다.

1. 이론

• 푸리에 변환 공식

$$X(f) = \int_{t1}^{t2} x(t)e^{-2\pi i f t} dt$$

 $x(t)e^{-2\pi ift}$: 위 지수함수에 진동수 그래프를 곱하여

회전 그림으로 만듭니다.

• 푸리에 변환 공식

$$X(f) = \int_{t1}^{t2} x(t)e^{-2\pi i f t} dt$$

진동수에 의해 그려지는 회전원의 한점(x좌표의 무게중심)을 미분하는데 이는 한점이 주어진 진동수에 따라서 얼마나 신호가 강한지를 알려줍니다.

1. 이론

• 푸리에 변환 사용 예시 (1)

목소리 구별 : 다른 소리의 성분들을 추출한 뒤 가장 진폭이 큰 성분의 진동수부터 시작해서 2번째, 3번째

··· 순서로 비교해 가다 보면 어느 부분부터는 그 성분의 진동수가 달라진다. 이를 통해 목소

리를 구분하거나 흡사하게 만들 수 있다.

잡음 제거: 여러가지 소리가 섞이는 경우 푸리에 변환을 통해 **특정 소리의 주파수를 제거**하므로서 잡음

제거에 사용할 수 있다.

다양한 소리를 내는 전자 악기 :

악기에는 몇 가지 주파수의 단순한 파동 발생 회로만 갖고 있으며 연주자 가 **악기의 종류를 선택하면 그에 해당하는 성분만 적당한 비율로 합쳐서**

소리를 만들어 낼 수 있다.

1. 이론

• 푸리에 변환 사용 예시 (1)

영상 자동 인식

주민등록증에 있는 지문을 저장할 때도 푸리에 변환이 활용된다. 먼저 지문 영상을 (지문 저장) : 푸리에 변환을 통해 성분을 추출한 뒤, **다른 사람의 지문과 구별할 수 있는 정도**의 성분만 남기고 더 자세한 성분들은 제거하여 필요 저장 공간은 줄일 수 있다.

영상 노이즈 제거: 영상 신호도 원하지 않는 데이터가 섞이는 경우가 있다. 이를 노이즈라고 하는데 사진을 확대할 때 흐릿하게 번져 보이는 것도 노이즈 때문이다. 이때 동영상의 앞뒤 장면을 각각 푸리에 변환해 비교하면 **노이즈에 해당하는 성분들을 제거할 수** 있다.

• MFCC (Mel-Frequency Cepstral Coefficient)

오디오 신호에서 추출할 수 있는 feature로, 소리의 고유한 특징을 나타내는 수치

❖ 음악 장르 분류(Music Genre Classification):

"동물 음성 분류"

Data 목표

1 - Refine
데이터를 깨끗하게 정제

: 대형견 / 소형견 / 노견의 짖는소리, 우는소리, 화난소리 등

: 우는소리, 화난소리, 그르릉소리 등

: 32종의 새 울음소리

(물떼새, 까마귀, 딱새, 종달새, 벌새, 도요새, 독수리, 꾀꼬리, 제비, 참새 등)

데이터 정제 기준

1. 주변 소음이 큰 데이터 : 노래, 잔디, 자동차, 물 소리 등

- (cat_112) **(**
- (cat_114) **(**
- (bird_230)

데이터 정제 기준

2. 해당 동물 외에 다른 동물의 소리가 겹쳐있는 데이터

• (cat_81)

3. 15초 이내의 데이터로만 구성하기 위해 긴 음성 데이터는 잘라서 사용

(Dog 수정 전 ; 1분) (Dog 수정 후 ; 15초)

3. Code

모델 구현 목표

New Data

새로운 데이터를 올바르게 분류 분석

UP

정확도

Test 데이터 정확도 90% 이상으로 구현 오버피팅

최소화하여 구현하기

DOWN

최적의 정확도를 가진 인공신경망 구현 과정

check

총 3층짜리 신경망(relu사용)
첫번째 시도 Optimizer='adam',
loss='categorical_crossentropy'

훈련데이터 정확도: 100% 검증데이터 정확도: 96.07%

두번째 시도

- 배치 정규화, Dropout을 추가 model.add(BatchNormalization()) model.add(Dropout(0.2))

각각 0.62%, 3.24% 감소

세번째 시도

- 배치정규화, L2 정규화 kernel_regularizer='l2' model.add(BatchNormalization())

각각 1.16%, 4.64% 감소

是利智

고양이 데이터 '만' 오분류 하는 상황

새로운 고양이 데이터 (1),(2)를 넣었을 때 높은 확률로 Dog 또는 Bird로 예측함

고양이 데이터 분류 정확도 높이기

	변경 사항	시도한 방법
첫번째 시도	데이터의 비율 8:2 → 9:1	훈련 비율을 높여 학습 훈련을 더 많이 시켜보기
두번째 시도	데이터 추가	틀린 데이터를 훈련데이터에 추가
세번째 시도	데이터 비율 + 데이터 추가	위 두가지 시도를 함께 시도
네번째 시도	GUI의 test데이터를 불러오는 코드 수정	고정적이였던 sample_rate를 수정
다섯번째 시도	하이퍼 파라미터 mfcc 조절	리턴 될 mfcc 갯수 변경

고양이 데이터 분류 정확도 높이기

	변경 사항	시도한 방법
첫번째 시도	데이터의 비율 8:2 → 9:1	훈련 데이터 비율을 높여 학습 훈련을 더 많이 시켜보기

Epoch 61/200

Epoch 61: val_accuracy did not improve from 0.98148

Epoch 61: early stopping

해결방안

고양이 데이터 분류 정확도 높이기

	변경 사항	시도한 방법
두번째 시도	데이터 추가	틀린 데이터를 훈련데이터에 추가

Epoch 65/200

Epoch 65: val_accuracy did not improve from 0.95392

Epoch 65: early stopping

해결방안

고양이 데이터 분류 정확도 높이기

		변경 사항	시도한 방법
heck	성의 세번째 시도	데이터 비율 + 데이터 추가	위 두가지 시도를 함께 시도 합니다.
U			(9:1로 변경, 틀린데이터 4개 추가)

Epoch 56/200

Epoch 56: val_accuracy did not improve from 0.97248

Epoch 56: early stopping

해결방안

고양이 데이터 분류 정확도 높이기

	변경 사항	내용
네번째 시도	GUI의 test데이터를 불러오는 코드 수정	고정적이였던 sample_path를 self.sr로 수정

```
# sample_rate 가져오기
self.sample_path = 'sample_rate.wav'
self.sample_rate = librosa.load(self.sample_path)[1]

# 샘플 파일을 집어넣으면 음성의 특징을 추출하는 함수(불러온 모델에 넣어 예측할 수 있도록 변형)
def extract_features(self):
    self.sample, self.sr = librosa.load(self.file_path) # 불러온 오디오 파일의 진폭을 담기
    extracted_reatures = np.empty((0, 61, )) # 61개의 값을 받을 비어있는 리스트 생성
    zero_cross_feat = librosa.feature.zero_crossing_rate(self.sample).mean()
    self.mfccs = librosa.feature.mfcc(y=self.sample, sr=self.sr, n_mfcc=60)
    mfccsscaled = np.mean(self.mfccs.T, axis=0)
    mfccsscaled = mfccsscaled.reshape(1, 61, )
    self.test_sample = np.vstack((extracted_features, mfccsscaled))
```

李八

PETPULS LAB 제공 강아지 소리 데이터(+노이즈)

	변경 사항	시도한 방법
다섯번째 시도	리턴 될 mfcc 갯수 변경	mfcc = librosa.feature.mfcc(audio, sr=16000, n_mfcc= ? , n_fft=400, hop_length=160)

+ 강아지와 새 소리도 97.25 %정확도로 분류

4. GUI

4. GUI

Waveform mel-spectrogram 그래프를 통한 시각화

패키지를 통한 편의성 확보 (파일명: SoundGUI)

Play / pause / stop 버튼으로 구현 99.215

정확한 정답 비율 표시

4. GUI

시연 영상

Load_audio()

Destroy()

```
def destroy(self):
    try:
      self.label.destroy() # 모델 예측 결과 출력 초기화
      self.a1.clear()
                      # 그래프 초기화
      self.a2.clear()
      self.a3.clear()
      self.spec_colorbar.remove() # colorbar 초기화
      self.mfccs_colorbar.remove()
# 없을 시 새로운 file_path 경로가 들어왔을 때 그래프 초기화가 되지 않는다.
      self.canvas.draw_idle()
    except:
      pass
```

• PLAY ()

```
def play(self):
   pygame.mixer.music.play() # 로드한 오디오 파일 재생
   # file_path에 그려지는 그래프와 모델 분류는 한번만 하고 유지되도록 함
   if self.cnt_play_event:
     try:
       self.classify() # classify 함수 호출
       self.set_plot() # set_plot 함수 호출
       # 그래프 파일 저장 버튼
       self.save_button = Button(self.root, text='Save Graph', command=self.save_graph, width=15, height=1)
       self.save_button.configure(background='#E6DFDF', font=('Arial',12,'bold'))
       self.save_button.place(x=770, y=930)
     except:
       pass
     finally: # play를 누를 때마다 그래프와 예측 결과가 텍스트가 새로 나타나지 않도록 함(겹치지 않게)
       self.cnt_play_event = False
```

Self_plot()

1. Waveform 그래프

가로축 : 시간

세로축 : Amplitude = 진폭

↓ 푸리에 변환 ; 음의 세기인 magnitude를 dB로 변환하여 색으로 표현

2. Spectrogram 그래프

가로축 : 시간

세로축 : Frequency = 주파수 (단위: Hz)

↓ mel-filter bank 통과+log scaling : 압축된 데이터로

3. MFCCs 그래프

가로축 : 시간

세로축 : MFCC coefficients

Save Graph 버튼 구체적인 기능

파일이 지정 될 경로 , 이름, 형식 설정 가능 파일이 성공적으로 저장되었다는 팝업창 출력 폴더에서 성공적으로 저장이 되었음을 확인할 수 있다.

save_graph()

```
# 그래프를 저장하는 함수
 def save_graph(self):
   try:
     files = [('PNG', '.png'), ('JPEG', '.jpg'), ("All Files", ".*")] # 저장할 수 있는 파일 형식 목록
     save_file = filedialog.asksaveasfilename(initialdir="/",
                           title="Select Folder",
                           filetypes=files,
                           defaultextension='.png')
     if save_file:
        self.f.savefig(save_file)
        messagebox.showinfo("Success!", "Save pictures successfully")
       # 파일이 저장될 때만 알림창이 나타나도록 함
   except:
     pass
```


extract_features()

샘플 파일을 집어넣으면 음성의 특징을 추출하는 함수

```
(불러온 모델에 넣어 예측할 수 있도록 변형)

def extract_features(self):

self.sample, self.sr = librosa.load(self.file_path)

extracted_features = np.empty((0, 61, ))

zero_cross_feat = librosa.feature.zero_crossing_rate(self.sample).mean()

self.mfccs = librosa.feature.mfcc(y=self.sample, sr=self.sr, n_mfcc=60)

mfccsscaled = np.mean(self.mfccs.T, axis=0)

mfccsscaled = np.append(mfccsscaled, zero_cross_feat)

mfccsscaled = mfccsscaled.reshape(1, 61, )

self.test_sample = np.vstack((extracted_features, mfccsscaled))
```

Classify()

```
def classify(self):
    self.extract_features() # extract_features 함수 호출
    pred = self.model.predict(self.test_sample.reshape(1, 61,))
    answer = np.argmax(pred)
    result_pred = str(pred[0][answer]*100)[:6]
    if answer == 0:
      self.sign='Bird: ' + result_pred + '%'
    elif answer == 1:
      self.sign='Cat:' + result_pred + '%'
    else:
      self.sign='Dog: ' + result_pred + '%'
```

코드 실행 시 발생하는 warning :그래프 관련

WavFileWarning: Chunk (non-data) not understood, skipping it. sf, sd = wavfile.read(self.file_path)

non-data : 소리데이터가 아닌 부분(메타데이터에 대한 정보-저작권,트랙이름)을 이해하지 못하는 것에 대한 경고

untimeWarning: divide by zero encountered in log10 Z = 10. * np.log10(spec)

소리가 없는 부분 0에 가까운 곳의 data에서 spectrogram으로 그려질 수 없는 것에 대한 문제

gui에서 stop을 넣지 않고 창을 닫을 경우, 소리 재생 문제

Tkinter 창을 닫으면 실행되는 함수, 창을 닫으면 재생중인 음악이 정지하는 코드 구현

해결 코드:

def on_closing(self):
 pygame.mixer.music.stop()
 self.root.destroy()

tkinter 창을 닫으면 음악이 재생되지 않도록 함 self.root.protocol("WM_DELETE_WINDOW", self.on_closing)

是利智

pygame.mixer.music.load(path) 코드 입력시

Unknown WAVE format

원인:

"32-bit floating point WAV File"

pygame으로 32비트 부동 소수점 값을 포함하는 오디오 WAV 파일을 읽을 수 없다.

해결방안

해결 방법:

soundfile 모듈을 사용하여 16비트 wav 파일로 변환하여 pygame으로 로드 한다.

해결 코드:

```
def load_audio(self):
    try:
    pygame.mixer.music.load(self.file_path)
    except:
    data, samplerate = soundfile.read(self.file_path)
    soundfile.write(self.file_path, data, samplerate, subtype='PCM_16') # wav 파일을 읽을 수 있도록 변환
    pygame.mixer.music.load(self.file_path)
```


프로젝트 self-assessment

데이터 전처리

- ✓ 3종류의 동물 데이터를 수집
- ✓ 수집 데이터를 꼼꼼하게 전처리

분류 모델 구현 (코드)

✓ 하이퍼 파라미터 조절을 통해 정확도 97% 도달

<u>GUI</u>

✔ 소리 재생 시 한번에 3가지의 그래프가 그려지도록 구현

출처 1

• PPT 템플릿:

http://pptbizcam.co.kr/?p=7677

• 사진 및 영상:

https://www.youtube.com/watch?v=Mc9PHZ3H36M&list=WL&index=7 https://www.pngwing.com https://www.clipartkorea.co.kr/

• 편집(gif):

https://gifrun.com/youtube/?v=Mc9PHZ3H36M

• 이론:

세계일보 & Segye.com - https://www.segye.com/newsView/20070322001256

출처_2

• 데이터 출처:

- 강아지 : https://www.kaggle.com/datasets/mmoreaux/audio-cats-and-dogs https://bigsoundbank.com/detail-0916-barking-dog.html https://orangefreesounds.com/sound-effects/animal-sounds/dog-sounds/page/2/https://soundbible.com/tags-dog-bark.html
- 고양이 : https://www.kaggle.com/datasets/andrewmvd/cat-meow-classification https://www.kaggle.com/datasets/mmoreaux/audio-cats-and-dogs
- 새 : https://www.kaggle.com/datasets/ttahara/birdsong-resampled-train-audio-00?select=aldfly (32종 이름 출처 : https://birdsoftheworld.org/bow/home)

Thank you!

