CFG and Nuts-and-Bolts Parsing

Computational Linguistics
Spring 2023

He saw a man with a telescope.

VP reading:

Using a telescope, he saw a man.

He saw a man with a telescope.

NP reading:

He saw a man who had a telescope.

[a man with a telescope] was seen. [what man with a telescope] did he see? [a man with a telescope] he saw. He saw [a man with a telescope]
[a man with a telescope] was seen.
[what man with a telescope] did he see?
[a man with a telescope] he saw.

Movement diagnostics: when phrases "move", they do so as units, and transform the semantics in as systematic way.

This is reason to think that in the "NP reading", the PP forms a unit with man.

a man was seen with a telescope what man did he see with a telescope? a man he saw with a telescope (... but not a woman)

All are intuitively ambiguous.

This could be because PPs can rightward.

the man was seen with a telescope the man with a telescope was seen

a man on a spaceship with a telescope a man on a spaceship who has a telescope

a man on a spaceship with a telescope a man on a spaceship that has a telescope

Simplified tree language with nouns and PP Plural nouns

```
covers NPL
doors NPL
books NPL
tables NPL
titles NPL
carpets NPL
floors NPL
windows NPL
```

Prepositions

by P

near P

onP

with P

under P

Tree shapes

Productivity

Speakers can use many phrases in this family, of seemingly unbounded size.

titles of books on tables near windows in gardens by rivers in kingdoms

Ambiguity

Individual phrases have multiple readings, which (by hypothesis) correlate with tree shape.

Large tree language

$$P =$$

Grammar for tree language

Context free grammar Feature constraint grammar -- soon Minimalist movement grammar

_ later in term

_

Context free grammar for P

Set of "rules" or "productions" or "local trees" constructed from these vocabularies:

Terminals

Σ={covers, doors, books, tables, titles, carpets, floors, windows, by, near, on, with, under}

Non-terminals N = {NPL, P, PP}

Context free grammar for P

NPL→NPL PP

PP → P NPL

 $NPL \rightarrow covers$ $P \rightarrow by$

NPL→doors P→near

NPL→books P→on

NPL→tables P→with

NPL→titles P→under

NPL→carpets

NPL→floors

NPL→ windows

Tree licensing

is licensed as an NPL because the *local tree* at each non-terminal vertex is a production of the grammar, and the root label $t(\varepsilon)=NPL$.

- ε NPL→NPL PP
- 0 NPL→windows
- 1 PP \rightarrow P NPL
- 10 P**→**on
- 11 NPL→tables

NPL→NPL PP

PP → P NPL

NPL→covers P→by

NPL→doors P→near

NPL→books P→on

NPL→tables P→with

NPL→titles P→under

NPL→ carpets

NPL**→**floors

NPL→ windows

is *not* licensed because 11111 is a non-terminal vertex in u, and the local tree in u at 11111, namely PP→NPL P, is not a production of the grammar.

Parsing

Parsing: given a terminal string and a grammar, find all the trees that have the given terminal string and are licensed by the grammar, with the start symbol of the grammar at the root.

The grammar includes a start symbol.

Continue in Notebook