MACHINE LEARNING -2

Q1 to Q11 have only one correct answer. Choose the correct option to answer your question.

- 1. Movie Recommendation systems are an example of:
 - i) Classification
 - ii) Clustering iii)

Regression

Options:

- a) 2 Only
- b) 1 and 2
- c) 1 and 3
- d) 2 and 3

Answer: b) 1 and 2

- 2. Sentiment Analysis is an example of:
 - i) Regression
 - ii) Classification iii) Clustering iv) Reinforcement Options:
 - a) 1 Only
 - b) 1 and 2
 - c) 1 and 3
 - d) 1, 2 and 4

Answer: d) 1,2 and 4

- 3 Can decision trees be used for performing clustering?
 - a) True
 - b) False

Answer: True

- 4 Which of the following is the most appropriate strategy for data cleaning before performing clustering analysis, given less than desirable number of data points: i) Capping and flooring of variables
 - ii) Removal of outliers Options:
 - a. 1 only
 - b. 2 only
 - c. 1 and 2
 - d. None of the above

Answer: a) 1 only

- 5 What is the minimum no. of variables/ features required to perform clustering? a) 0
 - b) 1
 - c) 2
 - d) 3

Answer: b) 1

- 6 For two runs of K-Mean clustering is it expected to get same clustering results?
 - a) Yes
- b) No

Answer: b) No

- 7 Is it possible that the Assignment of observations to clusters does not change between successive iterations in K-Means?
 - a. Yes
 - b. No
 - c. Can't say
 - d. None3 of these

Answer: a) yes

- 8 Which of the following can act as possible termination conditions in K-Means?
 - i) For a fixed number of iterations. ii) Assignment of observations to clusters does not change between iterations. Except for cases witha bad local minimum.
 - iii) Centroids do not change between successive iterations.
 - iv) Terminate when RSS falls below a threshold. Options:
 - a. 1, 3 and 4
 - b. 1, 2 and 3
 - c. 1, 2 and 4
 - d. All of the above

Answer: d) All of above

- 9 Which of the following algorithms is most sensitive to outliers?
 - a. K-means clustering algorithm
 - b. K-medians clustering algorithm
 - c. K-modes clustering algorithm
 - d. K-medoids clustering algorithm

Answer: a) K-means clustering algorithm

- 10 How can Clustering (Unsupervised Learning) be used to improve the accuracy of Linear Regression model (Supervised Learning):
 - i) Creating different models for different cluster groups.
 - ii) Creating an input feature for cluster ids as an ordinal variable. iii) Creating an input feature for cluster centroids as a continuous variable.
 - iv) Creating an input feature for cluster size as a continuous variable. Options:
 - a. 1 only
 - b. 2 only
 - c. 3 and 4
 - d. All of the above

Answer: d) All of the above

- 11 What could be the possible reason(s) for producing two different dendrograms using agglomerative clustering algorithms for the same dataset?
 - a. Proximity function used
 - b. of data points used
 - c. of variables used
 - d. All of the above

Answer: d) All of the above

Q12 to Q14 are subjective answers type questions, Answers them in their own words briefly

12 Is K sensitive to outliers?

Answer: Yes, the k-means algorithm is sensitive to the outliers.

13 Why is K means better?

Answer: According to some users, K-means is very simple and easy to implement. However, it is unlikely to be state-of-the-art, but for straightforward clustering, it is also a part of a larger data-processing pipeline, K-means is a reasonable default choice, at least until you figure out that the clustering step is your bottleneck in terms of overall performance.

- It gives good results
- It is already implemented in the software
- Number of clusters has to be fixed before
- Dependent of the initialization parameters and the chosen distance

14 ls K means a deterministic algorithm?

Answer: The basic k-means clustering is based on a **non-deterministic algorithm**. This means that running the algorithm several times on the same data, could give different results.