Data: 27 Settembre 2024 Laureando: Tomas Lovato Relatore: Prof. Luca Boldrin

Università degli Studi di Padova

Analisi di Algoritmi di Firma Digitale
Post-Quantum

FONTI:

ACN: https://www.acn.gov.it/portale/documents/20119/85999/ACN_Crittografia_Quantum_Safe.pdf **NIST:** https://csrc.nist.gov/projects/post-quantum-cryptography

La **sicurezza** nelle comunicazioni è basata su tre proprietà:

- 1. Autenticità
- 2. Integrità
- 3. Confidenzialità

In questa ricerca vengono approfonditi i **DSS** (Digital Signature Systems), il cui scopo è garantire l'integrità e la confidenzialità di una comunicazione tra due o più entità.

La firma digitale necessita espressamente di due chiavi:

- 1. Chiave privata
- 2. Chiave pubblica

FONTI:

NATURE: https://www.nature.com/articles/nature23461

Un altro motivo per cui ci si sta concentrando sugli algoritmi a chiave asimmetrica è che sono i più colpiti: l'algoritmo di Shor minaccia fortemente la sicurezza degli attuali sistemi a chiave asimmetrica, in termini di tempi.

Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
≤80	2TDEA ²¹	L = 1024 N = 160	k = 1024	f= 160-223
112	3TDEA	L = 2048 $N = 224$	k = 2048	f= 224-255
128	AES-128	L = 3072 $N = 256$	k = 3072	f= 256-383
192	AES-192	L = 7680 N = 384	k = 7680	f= 384-511
256	AES-256	L = 15360 N = 512	k = 15360	f= 512+

Definizione dei Security Levels (NIST)

	Dimensione	Livello di sicurezza	Livello di sicurez-
Algoritmo	della chiave	in bit (computer at-	za in bit (computer
	(in bit)	tuale)	quantistico)
RSA-1024	1024	80	~0
RSA-2048	2048	112	~0
ECC-256	256	128	~0
ECC-384	384	192	~0
AES-128	128	128	\sim 64
AES-256	256	256	~128

Security
Levels di RSA
ed ECC
considerando
l'algoritmo di
Shor

FONTI:

L'obiettivo della tesi è verificare le performance di parte dei candidati, specialmente i finalisti, e comprendere se essi sono veramente pronti per la standardizzazione e l'utilizzo nei futuri sistemi di crittografia e di firma digitale.

FONTI:

NIST PROGETTO PQC: https://csrc.nist.gov/projects/post-quantum-cryptography **ENISA:** https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation

Le caratteristiche fondamentali misurate:

- 1. Lunghezza delle chiavi generate
- 2. Lunghezza delle firme generate
- 3. Tempi medi di generazione delle chiavi
- 4. Tempi medi di firma di un messaggio
- 5. Tempi medi di validazione della firma

```
def main(ITER=100, OUT, HASHING, HASH):
                                                  test.c (minificato)
        for msg_len in range(64, 16MB):
           for i in range(ITER):
                start_timer + time.now()
                keypair + pqc_keygen()
                end_timer + time.now()
                gen_times.append(end_timer - start_timer)
               pub_key_len + len(keypair.public_key)
               priv_key_len + len(keypair.private_key)
            end for # Fine del loop sulle iterazioni
10
           avg_gen_time + sum(gen_times) / ITER
            message + generate_random_message(msg_len)
12
           for i in range(ITER):
13
                start_timer + time.now()
14
                signature + pqc_sign(keypair.private_key, message)
                end_timer + time.now()
                sign_times.append(end_timer - start_timer)
17
                start_timer + time.now()
18
                valid + pqc_verify(keypair.public_key, signature, message)
                end_timer + time.now()
20
                verify times.append(end timer - start timer)
21
            end for
           avg_sign_time + sum(sign_times) / ITER
           avg_verify_time + sum(verify_times) / ITER
24
            print(format_output_record(message_len, pub_key_len, priv_key_len,
25

→ avg gen time, avg sign time, avg verify time))
```

STRUMENTI E SOFTWARE

VERSIONING

SVILUPPO (IDE) VIRTUALIZZAZIONE

LINGUAGGI DI PROGRAMMAZIONE

DISPOSITIVI HARDWARE

PC#2 CPU: INTEL i7 11° RAM: 16GB DDR4

FONTI:

RISULTATI (2/3): KEYGEN TIMEs

RISULTATI (3/3): SIGN TIME & VALIDATION TIME

I FINALISTI DEL ROUND 3

Fast-Fourier Lattice-based Compact Signatures over NTRU

PRO

- Efficienza in termini di dimensione
- Velocità nelle operazioni di firma
- 3. Robustezza teorica

CONTRO

- 1. Difficoltà di implementazione
- Prestazioni meno stabili, soprattutto con hardware limitati

PRO

- 1. Efficienza computazionale
- Semplicità di implementazione
- 3. Livelli di sicurezza elevati
- 4. Versatilità nelle applicazioni

CONTRO

- 1. Dimensione delle chiavi
- Limitazioni hardware

PRO

- 1. Sicurezza elevata
- 2. Hash-Based Stateless
- 3. Robustezza crittografica

CONTRO

- 1. Performance
- 2. Dimensione delle firme
- Maggiore complessità operativa

13 Agosto 2024 → Rilasciati i primi standard PQC da parte del NIST: CRYSTALS Kyber (KEM); CRYSTALS Dilithium (**DSS**); SPHINCS+ (DSS).

FONTI: