

Searches for invisible decay modes of the Higgs boson with the CMS detector

P. Dunne - Imperial College London

CMS and the LHC

CMS

The Higgs Boson

Why Higgs to Invisible?

Why Higgs to Invisible?

Experimental motivation

- Current measurements of the 125 GeV Higgs boson are compatible with Standard Model (SM) expectations
 - large uncertainties can still accommodate significant beyond the SM (BSM) properties
- Additional Higgs bosons with exotic decays are not excluded

Theoretical motivation

- ► Many BSM theories predict Higgs boson decays to invisible final states:
- e.g. SUSY, extra dimensions, fourth-generation neutrinos
- ► These final state particles are often dark matter candidates

Direct and Indirect Searches

Indirect searches

- ► BSM Higgs decays affect the total Higgs width:
- Visible decays can, therefore, constrain the invisible branching fraction

Direct searches

- Direct searches must be performed in channels where the Higgs recoils against a visible system
- We look in the VBF (left) and ZH (right) channels
- For ZH we study the case where the Z decays to two leptons $Z(\ell\ell)H$ or two b quarks Z(bb)H

VBF outline

Signal Topology and Selection

- ➤ Two high p_T VBF jets with large rapidity separation:
- large invariant mass and rapidity separation
- low azimuthal angle separation
- Large missing transverse momentum (MET)

Backgrounds and Rejection Cuts

- $W \rightarrow \ell \nu + \text{jets}$: Veto leptons
- ightharpoonup Z
 ightharpoonup
 u + jets: Irreducible
- QCD multijet events:
- Veto events with additional jets between the two selected jets (CJV)
- ► Minor backgrounds from: top and diboson

VBF background estimation

Data Driven Background Estimation

- Choose control region enriched in background
- Use MC signal-control ratio to go to signal region:

$$N_{Bkg}^{signal} = (N_{obs}^{control} - N_{otherbkgs}^{control}) \cdot \frac{N_{MC}^{signal}}{N_{MC}^{control}}.$$

- ▶ Z+jets: Estimate using $Z \rightarrow \mu\mu$ +jets events
 - Correct for difference in cross section
- ► W+jets: Estimate using $W \to \ell \nu$ +jets events

$Z \rightarrow \mu\mu$	$W o e \nu$	$W o \mu \nu$	W o au u
99 ± 38	63 ± 20	67 ± 17	53 ± 25

QCD - Use "ABCD method" in MET and CJV

 $N_{QCD} = 30.9 \pm 1.6(stat.) \pm 23.0(syst.)$

arXiv:1404.1344

VBF results

Total background	$332\pm35(stat.)\pm45(syst.)$	
VBF H(inv.) assuming B(H→inv)=100%	$210 \pm 30 (syst.)$	
ggF H(inv.) assuming B(H \rightarrow inv)=100%	$14\pm11 (\mathit{syst.})$	
Observed data	390	

- Set limits on $\sigma \times B(H \to inv)$
 - Perform a single bin counting experiment using CL_S method
- Assuming SM Higgs production cross-section and acceptance:
- observed(expected) 95% C.L. limit on B(H o inv) for $m_H = 125$ GeV is 65(49)%

$Z(\ell\ell)H$ outline

Signal Topology and Selection

- ► Two opposite sign electrons or muons
 - Consistent with Z mass
- ► Large MET that balances leptons
- $ightharpoonup \leq 1$ jet, no b-tagged jets, no extra leptons

Backgrounds

- ightharpoonup ZZ($\ell\ell\nu\nu$)+jets, WZ($\ell\nu\ell\ell$)+jets: From MC
- WW($\ell\nu\ell\nu$)+jets, $t\bar{t}$, single top, W($\ell\nu$), QCD:
- No real Z: use $m_{\ell\ell}$ side bands
- $N_{\ell\ell}^{sig} = N_{e\mu}^{sig} \cdot N_{\ell\ell}^{SB}/N_{e\mu}^{SB}$
- $ightharpoonup Z(\ell\ell)$ +jets: normalised in γ +jets region

$Z(\ell\ell)H$ results

- lacksquare Limits obtained from a 2D fit to $m_{\mathcal{T}}$ and $\Delta\phi(\ell\ell)$
- 1D fit to m_T for 7 TeV data
- ► Assuming SM Higgs production cross-section and acceptance:
- observed(expected) 95% C.L. limit on $B(H \to inv)$ for m_H =125 GeV is 83(86)%

Z(bb)H outline and backgrounds

Signal Topology and Selection

- ► Two b-tagged jets: high invariant mass
- ► Three categories in MET

Backgrounds and Rejection Cuts

- ightharpoonup $Z(\nu\nu)+jets$, $W(\ell\nu)+jets$
- ightharpoonup ZZ($\nu\nu b\bar{b}$)
- ► WZ($\ell\nu b\bar{b}$), $t\bar{t}$, single top
- Veto events with leptons
- QCD
- MET quality requirements

Background estimation - data normalised MC

Use MC normalised with a simultaneous fit in seven control regions

arXiv:1404.1344

Imperial College London

$Z(b\bar{b})H$ results

Process	High MET	Intermediate MET	Low MET
Total backgrounds	181.3 ± 9.8	64.8 ± 4.1	40.5 ± 4.1
$Z(b\bar{b})H(inv)$	12.6 ± 1.1	3.6 ± 0.3	1.6 ± 0.1
Observed data	204	61	38

- Multivariate analysis (BDT):
- performed for each mass hypothesis and boost region
- Limits from a fit to the BDT output distribution
- Assuming SM Higgs production cross-section and acceptance:
 - observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ for $m_H{=}125$ GeV is 182(199)%

Combined Results

- The individual limits on $\sigma \times B(H \to inv)$ from the three channels are combined
- SM production cross-sections are used to interpret this as a limit on $B(H{\to}\text{inv})$

Observed (expected) limits on B(H \rightarrow inv) at 95% C.L. for m_H =125 GeV Channel Limit/% VBF 65(49) ZH($\ell\ell$ +bb) 81(83) VBF + ZH 58(44)

Signatures of Dark Matter (DM)

▶ If DM couples to the Higgs the following diagrams are possible

- ▶ Limits on $\mathcal{B}(H\rightarrow inv)$ therefore constrain Higgs Portal DM models
- These constraints are directly comparable to those from other experiments

Dark Matter Interpretation - Results

- Use an effective field theory Higgs Portal model which translates $B(H \to inv)$ into a DM-nucleon cross-section (details in backup)
- ▶ At 90% C.L. the CMS limit on B(H \rightarrow inv) is 51% for a 125 GeV Higgs
- ► Consider three DM spin scenarios: scalar, vector, Majorana fermion:
 - CMS limits shown in green, blue and red respectively

Min, lattice and max are varying values of Higgs-nucleon coupling (see backup)

 $\mathcal{B}(H o inv)$ gives important exclusion in the $M_\chi < m_h/2$ region

Conclusions

- A Direct search for Higgs to invisible decays has been performed at CMS:
- The VBF, $Z(\ell\ell)H$ and Z(bb)H channels have been considered
- No significant excesses are seen over the background predictions
- ► The combined limit is 58(44)% observed (expected) at 95% C.L. for $m_H = 125 \text{GeV}$
- It is broadly comparable with CMS indirect limits
- ► A dark matter interpretation has been presented

References

- ► CMS Higgs combination CMS-PAS-HIG-14-009
- ► CMS Higgs to Invisible paper arXiv:1404.1344
- CMS TWIKI with addition Higgs to Invisible results https://twiki.cern.ch/twiki/bin/view/CMSPublic/ Hig13030PubTWiki

Backup

High mass combination

- ▶ $Z(\ell\ell)H(inv)$ and VBF searches both go up to at least m_H =300 GeV
- ► The same combination method as used above was used to combine these two channels between 115 and 300 GeV

Other direct Limits

- ▶ ATLAS also produce a limit in the $Z(\ell\ell)H$ channel:
- observed (expected) 75% (62%) at 95% C.L.

DM model

Formulae

- ► EFT model as described in Phys.Lett. B709 (2012) 6569

- - m_N is the nucleon mass, 0.939 GeV
 - f_N is the Higgs-nucleon coupling, central value 0.326, from Phys. Rev. D 81 (2010) 01453
 - Min and max values of fN from MILC collaboration Phys. Rev. Lett. 103 (2009) 122002
 - v is the Higgs vacuum expectation, 174 GeV
- $\beta = \sqrt{1 4M_\chi^2/m_H^2}$
- $B(H \rightarrow inv.) = \Gamma_{inv}/(\Gamma_{SM} + \Gamma_{inv})$