ROBOTICS

(Open Elective)

OBJECTIVES:

- To introduce the basic concepts, parts of robots and types of robots.
- To make the student familiar with the various drive systems for robot, sensors and their applications in robots and programming of robots.
- To discuss about the various applications of robots, justification and implementation of robot.

UNIT-I:

Introduction

Specifications of Robots- Classifications of robots – Work envelope - Flexible automation versus Robotic technology – Applications of Robots ROBOT KINEMATICS AND DYNAMICS Positions,

UNIT-II:

Orientations and frames, Mappings

Changing descriptions from frame to frame, Operators: Translations, Rotations and Transformations - Transformation Arithmetic - D-H Representation - Forward and inverse Kinematics Of Six Degree of Freedom Robot Arm - Robot Arm dynamics

UNIT-III:

Robot Drives and Power Transmission Systems

Robot drive mechanisms, hydraulic – electric – servomotor- stepper motor - pneumatic drives, Mechanical transmission method - Gear transmission, Belt drives, cables, Roller chains, Link - Rod systems - Rotary-to-Rotary motion conversion, Rotary-to-Linear motion conversion, Rack and Pinion drives, Lead screws, Ball Bearing screws,

UNIT-IV:

Manipulators

Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators

UNIT- V:

Robot End Effectors

Classification of End effectors – Tools as end effectors. Drive system for grippers-Mechanical adhesive-vacuum-magnetic-grippers. Hooks&scoops. Gripper force analysis and gripper design. Active and passive grippers.

UNIT-VI:

Path planning & Programming

Trajectory planning and avoidance of obstacles, path planning, skew motion, joint integrated motion – straight line motion-Robot languages-computer control and Robot software.

OUTCOMES:

- The Student must be able to design automatic manufacturing cells with robotic control using
- The principle behind robotic drive system, end effectors, sensor, machine vision robot Kinematics and programming.

TEXT BOOKS:

- 1. Deb S. R. and Deb S., "Robotics Technology and Flexible Automation", Tata McGraw HillEducation Pvt. Ltd, 2010.
- 2. John J.Craig, "Introduction to Robotics", Pearson, 2009.
- 3. Mikell P. Grooveret. al., "Industrial Robots Technology, Programming and Applications", McGraw Hill, New York, 2008.

REFERENCE BOOKS:

- 1. Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering An Integrated Approach", Eastern Economy Edition, Prentice Hall of India Pvt. Ltd., 2006.
- 2. Fu K S, Gonzalez R C, Lee C.S.G, "Robotics: Control, Sensing, Vision and Intelligence", McGraw Hill, 1987