Big data science Day 1 - Hands on

F. Legger - INFN Torino https://github.com/Course-bigDataAndML/MLCourse-2223

What we will use

- Python with Jupyter notebooks
- Day 1: familiarise with
 Kubernetes, spark, parquet files
- Day 2: Gradient Boosting TreesGBT MLlib
- Day 3: Neural networks
 - Multilayer Perceptron ClassifierMCP MLlib
 - Keras Sequential model
- Day 4: bigDL Sequential model

Input dataset for hands-on

https://archive.ics.uci.edu/ml/datasets/HIGGS

- Open HEP dataset @UCI
- Signal (heavy Higgs) + background (ttbar)

Baldi, Sadowski, and Whiteson. "Searching for Exotic Particles in High-energy Physics with Deep Learning." Nature Communications 5

Input dataset for hands-on

- 10M Monte Carlo events (7GB .csv)
 - 21 low level features
 - pt's, angles, MET,
 b-tag, ...
 - 7 high level features
 - Invariant masses (m(jj), m(jjj), ...)
- Smaller datasets for code testing (1M, 100k)

Hands-on today

- You will familiarize with jupyter notebooks, numpy, pandas
- Input data:
 - efficient format: convert CSV to Parquet
 - A comma-separated values (CSV) file is a delimited text file that uses a comma to separate values
 - And Apache parquet?
 - Create input for ML. Format depends on chosen ML library, in our case
 MLLib from Apache
- Visualization
 - explore dataset, plot features, correlation matrix
- Slides and notebooks available on github
 https://github.com/Course-bigDataAndML/MLCourse-2223

How to start

- 1. Point your browser to: https://yoga.to.infn.it
- 2. Authenticate through github
- 3. Open a terminal:
 - git clone
 https://github.com/Course-bigDataAndML/MLCourse-2223.git
 - cp MLCourse-2223/Notebooks/Day1/*.
- 4. From JupyterHub Home tab:
 - start and run inputForML.ipynb
 - You will receive the solutions tomorrow

Correlation matrix

Exercise 4

