Grafos, Dígrafos y Árboles

Alejandra Isola Joaquín Azcarate

1. Grafos

Conjunto de puntos o nodos unidos por arcos o aristas. Un grafo se describe con una terna (V, A, φ) , siendo:

- V: Conjunto de vértices
- A: Conjunto de aristas
- $\varphi: A \to \mathcal{V} \subseteq \{x \in \mathcal{P}(V) : |x| = 2\}$

1.1. Vértices

Vértices Adyacentes v_i es adyacente a $v_j \iff \exists a_k \in A/\varphi(a_k) = \{v_i, v_i\}$

Vértices Aislados v_k es aislado $\iff \exists a_k \in A/v_k \in \varphi(a_k)$

Istom v es istmo \iff G es conexo \Rightarrow $G' = (V - \{v\}, A, \varphi)$ no es conexo

1.2. Aristas

Aristas Paralelas a_i es paralela a $a_j \iff \varphi(a_i) = \varphi(a_J)$

Aristas Adyacentes a_i es adyacente a $a_j \iff \exists v_k \in V/v_k \in \varphi(a_i) \land v_k \in \varphi(a_j)$

Bucle o lazo a_k es un bucle $\iff \varphi(a_k) = \{v, v\}$

Aristas incidentes a un vértice a_i y a_j son incidentes en el vértice $v \iff v \in \varphi(a_i) \land v \in \varphi(a_j)$

Grado o valencia de un vértice $g:V\to \mathbb{Z}/g(v_i)=$ cantidad de aristas incidentes

 $Nota: Los \ bucles \ se \ cuentan \ doblemente$

$$\sum_{i} g(v_i) = 2|A|$$

Puente a es puente $\iff G$ es conexo $\Rightarrow G' = (V, A - \{a\}, \varphi/_{A - \{a\}})$ no es conexo

Conjunto desconectante Un conjunto de puentes

Conjunto de Corte Mínimo conjunto desconectante

1.3. Grafos Particulares

Grafo Simple No tiene aristas paralelas ni bucles

Grafo K-Regular G es K-Regular \iff $K \in \mathbb{N}_0 \land \forall v \in V : g(v) = k$

Grafo Completo $(K_n) \ \forall v, w \in V : v \neq w \Rightarrow \exists a \in A : \varphi(a) = \{v, w\}$

Grafo Bipartito $V = V_1 \bigcup V_2$; $V_1 \neq \phi \land V_2 \neq \phi \land V_1 \bigcup V_2 \neq \phi \land \forall a_i \in A : \varphi(a_i) = \{v_j, v_k\}/v_i \in V_1 \land v_k \in V_2$

Subgrafos $G' = (V', A', \varphi/A') / V' \subseteq V, A' \subseteq A$

Componente Conexa Son las clases de equivalencia de la relación $R: v_i R v_k \iff \exists$ un camino de v_i a $v_j \lor v_i = v_j$

Grafo Conexo Un grafo con una única componente conexa

Conectividad El menor número de istmos

Grafos Planos Grafo que se puede dibujar sin que se crucen aristas

1.4. Caminos y Cliclos

Camino Sucesión de aristas advacentes distintas

Ciclo o circuito Camino cuyo vértice inicial conicide con el final

Longitud Cantidad de aristas que componen un camino

Camino Simple Camino con todos los vértices distintos

Camino/Ciclo hamiltoniano Camino/Ciclo que pasa por todos los vértices una sola vez

Camino Euleriano Camino que pasa por *todas* las aristas *una sola vez* CNyS:

- Ser Conexo
- $\forall v_i : g(v_i) = 2k; k \in \mathbb{R}$ o a lo sumo dos vértices de grado impar

Ciclo euleriano Ciclo que pasa por todas las aristas $una\ sola\ vez$ CNyS:

- Ser Conexo
- $\forall v_i : g(v_i) = 2k$

1.5. Representación Matricial

 $\textbf{Matriz de incidencia} \ Ma_{ij}^{|V|x|A|} = \left\{ \begin{array}{ll} 1 & v_i \text{ es incidente a } a_j \\ 0 & v_i \text{ no es incidente a } a_j \end{array} \right.$

 $\textbf{Matriz de adyacencia} \ Ma_{ij}^{|V|x|V|} = \left\{ \begin{array}{ll} 1 & v_i \text{ es adyacente a } v_j \\ 0 & v_i \text{ no es adyacente a } v_j \end{array} \right.$

1.6. Isomorfismo

Dado $G_1 = (V_1, A_1, \varphi_1)$ y $G_2 = (V_2, A_2, \varphi_2)$ G_1 es isomorfo a $G_1 \iff \exists f: V_1 \to V_2 \land h: A_1 \to A_2$ ambas funciones biyectivas y $\forall a \in A_1: \varphi_2(\ h(a)\) = f(\ \varphi(a)\)$

1.7. Teorema de Kuratowski

Un grafo es plano \iff no contiene ningún subgrafo isomorfo al $K_{3,3}$ o al K_5

2. DÍGRAFOS

Conjunto de puntos o nodos unidos por arcos o aristas direccionadas. Un grafo se describe con una terna (V, A, δ) , siendo:

- V: Conjunto de vértices
- $\,\blacksquare\,\,A$: Conjunto de aristas
- $\delta: A \to VxV$

2.1. Grado

Grado Positivo (g^+) Cantidad de aristas que "entran" al vértice

Grado Negativo (g^{-}) Cantidad de aristas que "salen" del vértice

Grado Total (g) $g^+ + g^-$

Grado Neto (g_N) $g^+ - g^-$

Pozo $g^{-}(v) = 0$

Fuente $g^+(v) = 0$

2.2. Grafo asociado

Dado el Dígrafo (V, A, δ) , se define el Grafo asociado (V, A, ϕ) , tal que:

$$\forall a_i \in A, \ \phi(a_i) = \{Primero(\delta(a_i)), Segundo(\delta(a_i))\}\$$

2.3. Dígrafos

Dígrafos Conexo Aquel cuyo grafo asociado sea conexo

Dígrafos Fuertemente Conexo 3 camino entre todo par de vértices

2.4. Caminos y Ciclos

Se debe respetar el sentido de las aristas

Ciclo de Euler CNyS: $\forall v \in V : g^+(v) = g^-(v)$

2.5. Representación Matricial

$$\textbf{Matriz de adyacencia} \ \ Ma^{|V|x|V|}_{ij} = \left\{ \begin{array}{ll} 1 & \exists a \in A \ : \delta(a) = (v_i, v_j) \\ 0 & \not\exists a \in A \ : \delta(a) = (v_i, v_j) \end{array} \right.$$

3. Árboles

Grafo conexo y sin ciclos

Un grafo donde existe un único camino simple entre todo par de vértices

- Todas las aristas son puente
- |V| = |A| + 1

Hoja g(v) = 1

Antecesor v es antecesor de $w \iff \exists !$ camino simple de v a w

Sucesor v es sucesor de $w \iff w$ es antecesor de v

Padre v es padre de $w \iff \exists a_k / \varphi(a_k) = \{v, w\}$

Hijo v es hijo de $w \iff w$ es padre de v

Hermanos v es hermano de $w \iff v \wedge w$ tienen el mismo padre

Nivel Cuantos padres tiene hasta llegar a la raiz

Altura Máximo nivel