gas AI - math formula

person usage index

$$x_{i,s,e} = \frac{U_{i,s,e}}{A_i \times \left(\sum_{s}^{e} \theta - (e - s)\vartheta_i\right)}$$
(1)

where is:

- *i* : person index
- s : start date
- $_e$: end date
- + $U_{i,s,e}$: Person i Consumption Between the start and end dates
- A_i : Area of person i houses
- $\sum_{s}^{e} \theta$: Total average daily temperature Between the start and end dates
- ϑ_i : person i desired temperature = temperature at the minimum gas consumption per year

Weighted average and standard deviation

$$\omega_k = \frac{7.87 \times \sigma_{k \, all}}{(e - e_k)|x_i - \mu_{k \, all}| \times \mu_k} \tag{2}$$

Ebbinghaus forgetfulness curve

$$\mu_i = \sum_{k=1}^{i \text{ all data}} \frac{x_k \times \omega_k}{\Sigma \omega}$$
 (3)

$$\sigma_i = \sqrt{\sum_{k=1}^n \frac{(x_k - \mu_i)^2}{n}}$$
 (4)

where is:

• e_k : End date in load reading k

• *e* : end date

• $\mu_{k \, all}$: data mean in load reading k

• σ_{kall} : Standard deviation of all data in load reading k

• *n* : all person i data

Conditions under consideration

$$E_i = \frac{X_i - \mu_i}{\sigma_i} = Error factor$$

if $-2 < E_i < 2$ then data is safe

