

• ternary (x,y, 2) is ternary relation.
It means "x is a y in z."
2. 6-)
• x is a free variable because it is not bounded by any quantifier.
• y is a bound variable because it is bounded by leftmost
existential quantifier.
• u is a bound variable because it is bounded by middle
existential quantifier. • W is a bound variable because it is bounded by rightmost
existential quantifier according to my relational sentence.
Question 2)
1.
$\left[\exists x \left(\text{tpayer}(x) \Rightarrow \forall y \left(\text{musician}(y) \Rightarrow \text{tpayer}(y) \right) \right) \right]$
$\exists x \left(\rho hila(x) \Rightarrow \forall y \left(t \rho a y e r(y) \Rightarrow \rho hila(y) \right) \right) \Rightarrow$ $\exists x \left(t \rho a y e r(x) \land \rho hila(x) \Rightarrow \forall y \left(m u s c i a n(y) \Rightarrow \rho hila(y) \right) \right)$
• x and y are variables.
• tpayer(x) is unary relation. It means "x is tax payer"
• musician (x) is unary relation. It means "x is musician"
. phila(x) is unary relation. It means "x is philanthropist"
It can be expressed in ground logic
without using any variable and quantifier.
However, this process has important limitation.

tpayer (Joe) => (musician (Mary) => tpayer (Mary)) V- (check Joe and others) tpayer (Mary) = (musician (Arnold) = tpayer (Arnold)) v (check Mary check for all people in universe of discourse tpayer (Scott) = (musician (Lisa) = + payer (Lisa)) phila (Joe) = (trayer(Mary) =) phila(Mary)) V phila (Mary) => (tpayer (Arnold) => phila (Arnold)) V check for all people in universe of discourse phila (Scott) => (tpoyer (Lisa) => phila (Lisa)) trayer (Joe) n phila (Joe) = (musician (Mary) = phila (Mary)) v. (check ond Joe others) tpoyer (Mary) nphila (Mary) => musician (Arnold) => phila (Arnold)) V. check continue for checking all people in universe others) of discourse. * As a result, if the universe of discourse is large, it can be impossible to write every case one by one without quantifiers And, this is very impractical.

Question 3)
1. O(x,y): x loves y.
C(y): y dies.
A(x): x is happy.
Every person is unhappy when his loved one dies."
2. A(x): x is girl.
H(x): x is beautiful.
B(y,x): y sees x
S(y): y is excited
C(y,x): y talks with x.
Q(y): y is happy.
$\psi(y) : y = y + y + y + y + y + y + y + y + y +$
" For every beautiful girl, there is someone who is excited
to see her or is happy to talk with her."
Question 4)
Question 4) x = start("aa") \(\text{sprecede} \(\text{E} \) \"ab" \)
Question 4) x = start("aa") \(\text{sprecede} \left(\varepsilon \) \(\text{sprecede} \left(\varepsilon \varepsilon \) \(\text{sprecede} \left(\varepsilon \varepsilon \varepsilon \varepsilon \) \(\text{sprecede} \left(\varepsilon \vare
Question 4) x = start("aa") \(\text{sprecede}(\varepsilon, \text{"ab"}) \) y = start("aa") \(\text{sprecede}(\varepsilon, \text{"ac"}) \) z = start("aa") \(\text{sprecede}(\varepsilon, \text{"bb"}) \)
Question 4) x = start("aa") \(\text{ sprecede} \(\xi \), "ab") y = start ("aa") \(\text{ sprecede} \(\xi \), "ac") = start ("aa") \(\text{ sprecede} \(\xi \), "bb") u = start ("aa") \(\text{ sprecede} \(\xi \), "cc")
Question 4) x = start("aa") \(\text{ sprecede} \(\text{\va} \) \(\text{\va} \) y = start("aa") \(\text{ sprecede} \(\text{\va} \) \(\text{\va} \) z = start("aa") \(\text{ sprecede} \(\text{\va} \) \(\text{\va} \) u = start("aa") \(\text{ sprecede} \(\text{\va} \) \(\text{\va} \) \(\text{\va} = \text{sprecede} \(\text{\va} \) \(\text{\va} \) \(\text{\va} = \text{\va} \) \(\text
Question 4) x = start("aa") \(\text{ sprecede} \(\text{ \infty} \) \\ y = start ("aa") \(\text{ sprecede} \(\text{ \infty} \) \\ \tau = start ("aa") \(\text{ sprecede} \(\text{ \infty} \) \\ \tau = start ("aa") \(\text{ sprecede} \(\text{ \infty} \) \\ \tau = start ("aa") \(\text{ sprecede} \(\text{ \infty} \) \\ \tau = sprecede ("aa", "ab") \[q = sprecede ("aa", "ac") \]
Question 4) x = start("aa") \(\) sprecede (\(\xi \), "ab") y = start("aa") \(\) sprecede (\(\xi \), "ac") z = start("aa") \(\) sprecede (\(\xi \), "bb") u = start("aa") \(\) sprecede (\(\xi \), "cc") \[\rho = \] sprecede ("aa", "ab") \[\rho = \] sprecede ("aa", "bb") \[\rho = \] sprecede ("aa", "bb")
Question 4) x = start("aa") \(\text{ sprecede} \(\text{ \infty} \) \\ y = start ("aa") \(\text{ sprecede} \(\text{ \infty} \) \\ \tau = start ("aa") \(\text{ sprecede} \(\text{ \infty} \) \\ \tau = start ("aa") \(\text{ sprecede} \(\text{ \infty} \) \\ \tau = start ("aa") \(\text{ sprecede} \(\text{ \infty} \) \\ \tau = sprecede ("aa", "ab") \[q = sprecede ("aa", "ac") \]

w = x v y v z v u sprecede (E, E) V sprecede (E,p) v sprecede (E,q) sprecede (E, r) v sprecede (E, s) Answer (L(G): Wnththth. Question 5) We know that logical entailment holds $\Delta \models \emptyset$ when models of Δ (premise) is the subset of models of (result). Therefore, clearly, YES, there is a difference about logical entailment for propositional logic and relational logic in terms of decidability. for example, in propositional logic, for checking logical entailment, we can simply use truth table method to see whether interpretations that hold premise also hold the result or not, and we can easily say that A entails Q or A does not entail Q. Thus, logical entailment for propositional logic is decidable. However, in relational logic, this process may not half. For example, Vn divisible By Six (n) => divisible By Two (n) / divisible By Three (n) and domain is natural numbers i.e. n E {0,1,2,3,4,5,....3 Clearly, there is no way to show that $\Delta \models \mathbb{Q}$ or not in finite amount of time. For this reason, logical entailment for relational logic is undecidable.