Fabrication, Microstructure and Mechanical Properties of an Osteochondral Scaffold

Lorna J. Gibson

Materials Science and Engineering

MIT

Collaborators

- MIT: IV Yannas, BA Harley, S Vickers, B Kanungo, Z Wissner-Gross
- BWH: M Spector, H-P Hsu
- Cambridge: W Bonfield, AK Lynn, S Best, RE Cameron

Outline

- Cartilage and Current Treatments
- Design Considerations for Osteochondral Scaffolds
- Collagen-GAG Scaffold
- Mineralized Collagen-GAG Scaffold
- Osteochondral Scaffold: Fabrication, Microstructure, Animal Studies

Articular Cartilage

Image by MIT OpenCourseWare.

Bone: Type I collagen Cartilage: Type II collagen Superficial and transition cartilage zones

Radial (deep) cartilage zone Tidemark Calcified cartilage zone Subchondral bone

Trabecular bone

Greene WB (2006) Netter's Orthopaedics

Articular Cartilage

- Avascular: no blood supply
- Low density of chondrocytes
- Damage: sports injuries, osteoarthritis
- Poor capacity for self-repair

Current Treatments: Marrow Stimulation

- Subchondral bone plate punctured to induce bleeding from marrow cavity
- Marrow derived stem cells entrapped in blood clot
- Stem cells form repair tissue throughout defect
- > 75,000 procedures in the US/year

POOR QUALITY OF REPAIR

Courtesy of Andrew Lynn. Used with permission.

Current Treatments: Osteochondral Autograft

- Plugs of bone and cartilage harvested from non load-bearing sites
- Plugs used to fill defect site in a mosaic pattern (mosaicplasty)
- < 2,000 procedures in the US/year

DONOR SITE MORBIDITY

Courtesy of Andrew Lynn. Used with permission.

Current Treatments: Autologous Chondrocyte Implantation

- Cartilage cells harvested from non load-bearing site
- Cells isolated and cultured
 2-3 weeks
- Cells re-implanted
- < 2,000 procedures in the US/year

TWO SURGERIES,

COST OF CELL CULTURE

Courtesy of Andrew Lynn. Used with permission.

Lynn (2005)

(Dara Torres age 45; Olympic swimmer 84, 88, 92, 00, 08 – 3 silvers)

Osteochondral Scaffolds: Design Considerations

- Use healthy articular joint as a model for scaffold structure and composition
- Bone layer allows access to mesenchymal stem cells
- Control of scaffold parameters (e.g. mineral content, pore size)
- Use materials appropriate for rapid regulatory compliance

Osteochondral Scaffold

Unmineralized type II collagen

Interdiffusion region

Mineralized type I collagen

Courtesy of Andrew Lynn. Used with permission.

Collagen-GAG Scaffold: Fabrication

Production of CG Suspension

Courtesy of Brendan Harley. Used with permission.

CG Scaffold: Fabrication

Place CG suspension into stainless steel pan (12.5 x 12.5 cm)

Freeze:

Ice crystals surrounded by collagen and GAG fibers Sublimation: P=75mTom, T=0°C Removes ice content

Porous, CG scaffold

Yannas, Harley

12

CG Scaffold: Microstructure

Fig. 1: Pek, Y. S., M. Spector, et al. *Biomaterials* 25 (2004): 473-82. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0142961203005416

96 µm

Fig. 4: F. J. O'Brien, B. A. Harley, et al. *Biomaterials* 25 (2004): 1077-86. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0142961203006306

Pek et al., 2004

O' Brien, Harley et al., 2004

CG Scaffold: Pore Size

O'Brien, B. A. Harley, I. V. Yannas, et al. *Biomaterials* 26 (2005): 433-41. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0142961204002017

CG Scaffold: Compression (Dry)

CG Scaffold: Mechanical Properties

	E* (Pa)	σ* _{el} (Pa)
Dry	30,000	5,150
Wet	208	21

Mineralized CG Scaffolds: Fabrication

Collagen:

type I, bovine tendon

GAG:

chondroitin 6-sulfate, shark cartilage

Calcium (Ca^{2+}): $Ca(NO_3)_3 H_3 O \& Ca(OH)_3$

Phosphoric Acid: 0.05M, pH~3.2

Courtesy of Brendan Harley. Used with permission.

Mineralized CG Scaffolds: Fabrication

- Mineral: brushite (CaHPO₄.2H₂O)
- Can control mass fraction of brushite between 0 and 80 wt% by controlling the molar ratio of the calcium nitrate hydrate and calcium hydroxide used and the molarity of the phosphoric acid
- Brushite then converted to octacalcium phosphate and then to apatite by hydrolytic conversion

Mineralized CG Scaffold: Microstructure

Figures removed due to copyright restrictions. See Figure 1b: Harley, B. A., et al. Journal of Biomedical Materials Research 92A (2010): 1066-77. http://onlinelibrary.wilev.com/enhanced/doi/10.1002/ibm.a.32361/

Harley et al., 2010

Kanungo et al, 2008

Kanungo, B. P., et al. "Characterization of Mineralized Collagen-glycosaminoglycan Scaffolds for Bone Regeneration." Acta Biomaterialia 4, no.3 (2008): 490-503. Courtesy of Elsevier. Used with permission.

Pore size 50-1000 µm depending on freezing conditions

Pore size for bone regeneration: 100-500 µm

Mineralized CG Scaffold: μCT

Figures removed due to copyright restrictions. See Figure 2: Harley, B. A., et al. *Journal of Biomedical Materials Research* 92A (2010): 1066-77. http://onlinelibrary.wiley.com/enhanced/doi/10.1002/jbm.a.32361/

Uniform distribution of mineral

Mineralized CG Scaffold: EDX

Figures removed due to copyright restrictions. See Figure 3: Harley, B. A., et al. *Journal of Biomedical Materials Research* 92A (2010): 1066-77. http://onlinelibrary.wiley.com/enhanced/doi/10.1002/jbm.a.32361/

1mm

Uniform distribution of mineral

Mineralized CG Scaffold: Compression

Scaffold	E* (kPa)	σ⁺ (kPa)	£* (%)
Dry	762	85	11
Wet	4.12	0.29	0.07

Mineralized CG Scaffold: Compression

- Mineralized scaffold can be manually compressed
- On unloading and hydration, recovers all deformation
- Interested in increasing mechanical properties of the mineralized scaffold for improved handling during surgery

Mineralized CG Scaffold: Compression

- Cross-linked collagen of osteoid has a hydrated modulus in the range of 25-40 kPa
- Engler et al. (2006) show that differentiation of MSCs depends on substrate stiffness
- Substrate stiffness similar to collagen of osteoid leads to differentiation to osteoblast-like morphology
- Interest in increasing stiffness of mineralized scaffold to mimic osteoid stiffness

Cellular Solids Modelling

$$E^*/E_s = (\rho^*/\rho_s)^2$$

$$E^*/E_s = (\rho^*/\rho_s)^2$$
 $\sigma^*/\sigma_s = 0.3(\rho^*/\rho_s)^{3/2}$

Foam properties depend on:

- solid properties: Ε_s, σ_s
- relative density: ρ*/ρ_s
- geometrical factor: 1, 0.3

Increase Mineral Content

Kanungo et al., 2008

Increase Mineral Content

Scaffold	E* (kPa)	σ' (kPa)	ε* (%)
50 wt.%	780	90	12
75 wt.%	370	35	10

Scaffolds of higher mineral content have increased defects: e.g. voids in cell walls, disconnected walls

Increase Mineral Content

Kanungo, B. P., et al. "Characterization of Mineralized Collagen-glycosaminoglycan Scaffolds for Bone Regeneration." *Acta Biomaterialia* 4, no.3 (2008): 490-503. Courtesy of Elsevier. Used with permission.

Increase Relative Density

 $\rho/\rho_{s} = 0.045$ d = 311 μ m

 ρ/ρ_s = 0.098 d = 196 μ m

 $\rho/\rho_s = 0.137$ d = 159 μ m

 $\rho/\rho_s = 0.187$ d = 136 μ m

Kanungo and Gibson, 2009

Increase Relative Density

ρ^*/ρ_s	E (dry)	E(wet)	σ* (dry)	σ* (wet)
(-)	(kPa)	(kPa)	(kPa)	(kPa)
0.045	780	6.44	39	0.55
0.098	3156	17.8	132	0.83
0.137	6500	34.8	242	2.12
0.187	3660	38.8	275	1.79

Increase Cross-linking $(\rho^*/\rho_s = 0.137, wet)$

	E* (kPa)	σ* (kPa)
Non-cross- linked	34.8	2.12
DHT	56.0	3.26
EDAC	91.7	4.15

Increase Relative Density

ρ^*/ρ_s	E (kPa)	E (kPa)	E (kPa)
(-)	(no x- link)	(DHT)	(EDAC)
0.045	6.44		
0.098	17.8		
0.137	34.8	56.0	91.7
0.187	38.8		

Can obtain E (wet) in range of 25-40kPa for MSC differentiation to osteoblast-like cells

Mineralized CG Scaffold: Strut Properties

MCG scaffold: $E_s = 7.34 + 3.73$ GPa (dry)

Nanoindentation: $\sigma_s = 201 + 52$ MPa (dry)

Trabecular bone: E_s = 18 GPa, σ_s = 182 MPa

Cellular Solids Models

Kanungo, B. P., and L. J. Gibson. *Acta Biomaterialia* 5 (2009): 1006-18. Courtesy of Elsevier. Used with permission.

http://www.sciencedirect.com/science/article/pii/S1742706108003796

Cellular Solids Models

Kanungo, B. P., and L. J. Gibson. *Acta Biomaterialia* 5 (2009): 1006-18. Courtesy of Elsevier. Used with permission.

http://www.sciencedirect.com/science/article/pii/S1742706108003796

Osteochondral Scaffolds: Design Considerations

- Use healthy articular joint as a model for scaffold structure and composition
- Control of scaffold parameters (e.g. mineral content, pore size)
- Use materials appropriate for rapid regulatory compliance

Osteochondral Scaffold: Fabrication

- Liquid-phase co-synthesis
- Pour mineralized CG slurry into mold, then CG slurry into mold
- Allow the two slurries to interdiffuse for 30 minutes at room temperature
- Place the mold containing the slurries into the freeze drier
- Cross-link with EDAC

Osteochondral Scaffold

Mineralized CG scaffold
Type II collagen scaffold

Osteochondral Scaffold: Micro-CT

Figures removed due to copyright restrictions. See: Harley, B. A., et al. *Journal of Biomedical Materials Research* 92A (2010): 1078–93.

http://onlinelibrary.wiley.com/doi/10.1002/jbm.a.32387/abstract

Osteochondral Scaffold: Microstructure

Scaffold	Porosity	Pore size
		(µm)
Collagen- GAG	98.3%	653
Mineralized CG	95.5%	419

Osteochondral Scaffold: Gradual Interface

Collagen-GAG

Mineralized Collagen-GAG Figures removed due to copyright restrictions. See: Harley, B. A., et al. *Journal of Biomedical Materials Research* 92A (2010): 1078–93.

http://onlinelibrary.wiley.com/doi/10.1002/jbm.a.32387/abstract

Energy-dispersive X-ray (EDX)
Harley et al., 2010

Osteochondral Scaffold: Goat Model

Source: Vickers, S. "Cell-seeded Type II Collagen Scaffolds for Articular Cartilage Tissue Engineering." Ph.D. Thesis. MIT, Department of Mechanical Engineering, 2007.

Vickers, 2007

- Initial animal studies indicate bone and cartilage regeneration (Vickers, 2007)
- Longer term (52 week) animal studies ongoing (Lynn)

Osteochondral Scaffold: Clinical Use

- CE Mark approval for clinical use in Europe obtained January 2009
- First clinical use February 2009 in backfill of mosaicplasty donor site
- Currently using for primary sites
- As of April 2012: roughly 200 patients treated

Conclusions

- Fabricated bilayer osteochondral scaffold with gradient interface
- Structure and composition mimic osteochondral tissues
- Range of mineral content, porosity, pore sizes possible by control of the process
- Used materials already approved for medical devices

Acknowledgements

- Cambridge-MIT Institute
- Matoula S. Salapatas Professorship (LJG)
- Whitaker-MIT Health Science Fund Fellowship (BAH)
- Universities UK, Cambridge Commonwealth Trust, St. John's College Cambridge (AKL)

MIT OpenCourseWare http://ocw.mit.edu

 $3.054\ /\ 3.36$ Cellular Solids: Structure, Properties and Applications $\mbox{Spring 2015}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.