Professor David Cash

Homework 6

Due at the beginning of class on Wednesday, April 3

Instructions: Point values for each problem are listed. Write your solutions neatly or type them up. Typed solutions will also be accepted via Sakai.

- 1. (5 points) Let X be a random variable on some sample space S with expected value μ and variance σ^2 . Let X_1 and X_2 be identical independent copies of X. Find $E((X_1 X_2)^2)$ in terms of μ and σ^2 . Give some intuition for why your answer makes sense.
- 2. (3 points) Prove that $V(cX) = c^2V(X)$ for any random variable X and real number c.
- 3. (5 points) Let X be the random variable that is the sum of two independent fair die rolls. Let Y be the outcome of the first roll minus the outcome of the second roll. Calculate Cov(X,Y). Are X and Y correlated?
- 4. (4 points) Let C be the random variable that is the number of heads in 100 independent fair coin flips. What are E(C) and V(C)? Find upper bounds on P(C > 75), using Markov's Inequality and Tchebychev's Inequality.
- 5. (4 points) Find an example where Markov's inequality is tight in the follow sense: For each positive integer a, find a non-negative random variable X such that $P(X \ge a) = E(X)/a$.
- 6. (4 points) Prove the following: If X is a non-negative random variable with $E(X) = \mu$, then for every k, $P(X \ge k\mu) \le 1/k$. Hint: Apply Markov's inequality.
- 7. Extra credit (4 points): If X is a non-negative random variable with $E(X) = \mu$, then Markov's inequality tells us that for every a, $P(X \ge a) \le \mu/a$. As we saw in class, this bound is sometimes very loose. In this problem we'll look at a situation in which extra information can be used to tighten the bound.

Suppose that we are told X is bounded from below by some number b, meaning $P(X \ge b) = 1$. Use this information to find a tighter bound on $P(X \ge a)$. Hint: Apply Markov's inequality to the r.v. Y = X - b.

For concreteness, suppose E(X) = 1000 and $P(X \ge 500) = 1$. Markov's says that $P(X \ge 2000) \le 1000/2000 = 1/2$. Use your method find a tighter bound on $P(X \ge 2000)$.