e1	e2	e3	e4	e5	e6	ri	Тест 1
0	1			1		2	Вариант 2
1	0	1	1		1	4	

$$\max r_i = r_2 = 4$$
. Выбираем x_2

1

1

1

e3

e5

$$\Gamma x_2 = \{ x_1, x_3, x_4, x_6 \}; C_2 = x_2 v x_1 x_3 x_4 x_6$$

Из матрицы R удаляем строку и столбец соответствующие вершине \mathbf{x}_2

2

2

3

3

	e1	e3	e4	e5	e6	ri
e1	0			1		1
e3		0			1	1
e4			0	1		1
e5	1		1	0	1	3
e6		1		1	0	2

 $\max r_i = r_5 = 3$. Выбираем x_5

$$\Gamma x_5 = \{x_1, x_4, x_6\};$$
 $C_5 = x_5 v x_1 x_4 x_6$

Из матрицы R удаляем строку и столбец соответствующие вершине x_5

	e1	e3	e4	e6	ri
e1	0				0
e3		0		1	1
e4			0		0
e6		1		0	1

 $max \ r_i = r_3 = r_6 = 1$. Выбираем x_3

$$\Gamma x_3 = \{ x_6 \}; C_3 = x_3 v x_6$$

Из матрицы R удаляем строку и столбец соответствующие вершине x_3

	e1	e4	e6	ri
e1	0			0
e4		0		0
e6			0	0

$$R = \emptyset$$

$$\begin{split} \Pi &= \wedge C_i = C_2 \wedge C_5 \wedge C_3 = (x_2 \, v \, \, x_1 x_3 x_4 x_6) (\,\, x_5 \, v \, \, x_1 x_4 x_6) (x_3 \, v \, \, x_6) = \\ &= \quad x_2 x_3 x_5 \, v \, \, x_2 x_5 x_6 \, v \, \, x_1 x_2 x_4 x_6 \, v \, \, x_1 x_3 x_4 x_6 = \\ &= v K_j = \quad K_1 \quad v \quad K_2 \quad v \quad K_3 \quad v \quad K_4 \\ \phi_1 &= \{ \, x_1, \, x_4, \, x_6 \} \, \phi_2 = \{ \, x_1, \, x_3, \, x_4 \} \, \phi_3 = \{ \, x_3, \, x_5 \} \, \phi_4 = \{ \, x_2, \, x_5 \, \} \\ t_i &= v \, \phi_j \\ t_1 &= \phi_1 \, v \, \phi_2 \qquad t_2 = \phi_4 \quad t_3 = \phi_2 \, v \, \phi_3 \qquad t_4 = \phi_1 \, v \, \phi_2 \qquad t_5 = \phi_3 \, v \, \phi_4 \qquad t_6 = \phi_1 \\ \Pi' &= \wedge t_i = \phi_1 \phi_4 \, (\phi_1 \, v \, \phi_2) (\, \phi_2 \, v \, \phi_3) (\, \phi_1 \, v \, \phi_2) (\, \phi_3 \, v \, \phi_4) = \\ &= \phi_1 \phi_2 \phi_4 \, v \, \phi_1 \phi_3 \phi_4 \end{split}$$

Хроматическое число графа $\chi(G) = 3$. Существует 2 варианта раскраски графа:

Первый: Второй:

Цвет 1: $\{x_1, x_4, x_6\}$ Цвет1: $\{x_1, x_4, x_6\}$ Цвет2: $\{x_3\}$ Цвет3: $\{x_2, x_5\}$ Цвет3: $\{x_2\}$