Real Analysis Summary

Mathematical Notes

October 19, 2025

Contents

1	The	e Real Numbers	3			
	1.1	Field Axioms	3			
	1.2	Order Axioms	3			
	1.3	Completeness Axiom	3			
	1.4	Archimedean Property	3			
	1.5	Density of Rationals	3			
2	Sequences					
	2.1	Definition and Convergence	3			
	2.2	Properties of Convergent Sequences	4			
	2.3	Monotone Sequences	4			
	2.4	Subsequences	4			
	2.5	Cauchy Sequences	4			
3	Limits of Functions					
	3.1	Definition	4			
	3.2	Sequential Characterization	4			
	3.3	One-Sided Limits	4			
	3.4	Limit Laws	5			
4	Con		5			
	4.1	Definition	5			
	4.2	Equivalent Characterizations	5			
	4.3	Properties of Continuous Functions	5			
	4.4	Continuity on Intervals	5			
5	Uniform Continuity 5					
	5.1	Definition	5			
	5.2	Properties	6			
6	Differentiation					
	6.1	Definition	6			
	6.2	Properties	6			
	6.3	•	6			

7	Integration					
	7.1	Riemann Sums	6			
	7.2	Riemann Integrability	7			
	7.3	Properties of Integrable Functions	7			
	7.4	Fundamental Theorem of Calculus	7			
8	Seri	ies	7			
	8.1	Definition	7			
	8.2	Convergence Tests	7			
	8.3	Absolute and Conditional Convergence	8			
9	Power Series 8					
	9.1	Definition	8			
	9.2	Radius of Convergence	8			
	9.3	Properties	8			
10	Uni	iform Convergence	8			
	10.1	Definition	8			
	10.2	Properties	9			
11	Con	npactness	9			
	11.1	Definition	9			
	11.2	Heine-Borel Theorem	9			
	11.3	Properties	9			
12	Con	nnectedness	9			
	12.1	Definition	9			
	12.2	Characterization	9			
13	Imp	portant Theorems	9			
	13.1	Weierstrass Approximation Theorem	9			
	13.2	Stone-Weierstrass Theorem	9			
			10			
	13.4	Arzelà-Ascoli Theorem	10			
14	App	plications	10			
			10			
			10			
	14.3	Analysis of Functions	10			

1 The Real Numbers

1.1 Field Axioms

The real numbers \mathbb{R} form a field with operations + and \cdot satisfying:

- Associativity: (a+b)+c=a+(b+c), (ab)c=a(bc)
- Commutativity: a + b = b + a, ab = ba
- Identity: a + 0 = a, $a \cdot 1 = a$
- Inverses: a + (-a) = 0, $a \cdot a^{-1} = 1$ for $a \neq 0$
- **Distributivity**: a(b+c) = ab + ac

1.2 Order Axioms

There exists a relation < on \mathbb{R} such that:

- Trichotomy: For any $a, b \in \mathbb{R}$, exactly one of a < b, a = b, or b < a holds
- Transitivity: If a < b and b < c, then a < c
- Addition: If a < b, then a + c < b + c
- Multiplication: If a < b and c > 0, then ac < bc

1.3 Completeness Axiom

Definition 1.1. A set $S \subseteq \mathbb{R}$ is **bounded above** if there exists $M \in \mathbb{R}$ such that $s \leq M$ for all $s \in S$. Such an M is called an **upper bound**.

Definition 1.2. The **supremum** (least upper bound) of S, denoted $\sup S$, is the smallest upper bound of S.

Theorem 1.1 (Completeness Axiom). Every non-empty subset of \mathbb{R} that is bounded above has a supremum in \mathbb{R} .

1.4 Archimedean Property

Theorem 1.2. For any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > x.

1.5 Density of Rationals

Theorem 1.3. Between any two real numbers, there exists a rational number.

2 Sequences

2.1 Definition and Convergence

Definition 2.1. A sequence is a function $a : \mathbb{N} \to \mathbb{R}$, denoted (a_n) .

Definition 2.2. A sequence (a_n) converges to $L \in \mathbb{R}$ if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ for all $n \ge N$. We write $\lim_{n \to \infty} a_n = L$.

2.2 Properties of Convergent Sequences

Theorem 2.1. If (a_n) converges to L, then L is unique.

Theorem 2.2. If (a_n) converges, then (a_n) is bounded.

Theorem 2.3. If $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$, then:

- $\lim_{n\to\infty} (a_n + b_n) = L + M$
- $\lim_{n\to\infty} (a_n b_n) = LM$
- $\lim_{n\to\infty} (a_n/b_n) = L/M$ (if $M\neq 0$)

2.3 Monotone Sequences

Definition 2.3. A sequence (a_n) is **monotone increasing** if $a_{n+1} \ge a_n$ for all n.

Theorem 2.4 (Monotone Convergence Theorem). A monotone sequence converges if and only if it is bounded.

2.4 Subsequences

Definition 2.4. A subsequence of (a_n) is a sequence (a_{n_k}) where (n_k) is a strictly increasing sequence of natural numbers.

Theorem 2.5 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.

2.5 Cauchy Sequences

Definition 2.5. A sequence (a_n) is **Cauchy** if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|a_n - a_m| < \epsilon$ for all $n, m \ge N$.

Theorem 2.6. A sequence converges if and only if it is Cauchy.

3 Limits of Functions

3.1 Definition

Definition 3.1. Let $f: A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$, and let c be a limit point of A. We say $\lim_{x \to c} f(x) = L$ if for every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - c| < \delta$ and $x \in A$.

3.2 Sequential Characterization

Theorem 3.1. $\lim_{x\to c} f(x) = L$ if and only if for every sequence (x_n) in $A \setminus \{c\}$ that converges to c, we have $\lim_{n\to\infty} f(x_n) = L$.

3.3 One-Sided Limits

Definition 3.2. $\lim_{x\to c^+} f(x) = L$ if for every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < x - c < \delta$.

3.4 Limit Laws

Theorem 3.2. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then:

- $\lim_{x\to c} [f(x) + g(x)] = L + M$
- $\lim_{x\to c} [f(x)g(x)] = LM$
- $\lim_{x\to c} [f(x)/g(x)] = L/M$ (if $M\neq 0$)

4 Continuity

4.1 Definition

Definition 4.1. A function $f: A \to \mathbb{R}$ is **continuous** at $c \in A$ if for every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(c)| < \epsilon$ whenever $|x - c| < \delta$ and $x \in A$.

4.2 Equivalent Characterizations

Theorem 4.1. The following are equivalent for $f: A \to \mathbb{R}$ at $c \in A$:

- 1. f is continuous at c
- 2. $\lim_{x \to c} f(x) = f(c)$
- 3. For every sequence (x_n) in A converging to c, $\lim_{n\to\infty} f(x_n) = f(c)$

4.3 Properties of Continuous Functions

Theorem 4.2. If f and g are continuous at c, then so are f + g, f - g, fg, and f/g (if $g(c) \neq 0$).

Theorem 4.3 (Composition). If f is continuous at c and g is continuous at f(c), then $g \circ f$ is continuous at c.

4.4 Continuity on Intervals

Definition 4.2. A function f is **continuous on an interval** I if it is continuous at every point in I.

Theorem 4.4 (Intermediate Value Theorem). If f is continuous on [a, b] and f(a) < k < f(b) (or f(b) < k < f(a)), then there exists $c \in (a, b)$ such that f(c) = k.

Theorem 4.5 (Extreme Value Theorem). If f is continuous on [a, b], then f attains its maximum and minimum values on [a, b].

5 Uniform Continuity

5.1 Definition

Definition 5.1. A function $f: A \to \mathbb{R}$ is **uniformly continuous** on A if for every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$ and $x, y \in A$.

5.2 Properties

Theorem 5.1. If f is uniformly continuous on A, then f is continuous on A.

Theorem 5.2 (Uniform Continuity Theorem). If f is continuous on a closed and bounded interval [a, b], then f is uniformly continuous on [a, b].

6 Differentiation

6.1 Definition

Definition 6.1. A function $f: A \to \mathbb{R}$ is **differentiable** at $c \in A$ if the limit

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists. This limit is called the **derivative** of f at c, denoted f'(c).

6.2 Properties

Theorem 6.1. If f is differentiable at c, then f is continuous at c.

Theorem 6.2 (Product Rule). If f and g are differentiable at c, then (fg)'(c) = f'(c)g(c) + f(c)g'(c).

Theorem 6.3 (Chain Rule). If f is differentiable at c and g is differentiable at f(c), then $(g \circ f)'(c) = g'(f(c))f'(c)$.

6.3 Mean Value Theorems

Theorem 6.4 (Rolle's Theorem). If f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Theorem 6.5 (Mean Value Theorem). If f is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Theorem 6.6 (Cauchy's Mean Value Theorem). If f and g are continuous on [a, b] and differentiable on (a, b), and $g'(x) \neq 0$ for all $x \in (a, b)$, then there exists $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

7 Integration

7.1 Riemann Sums

Definition 7.1. Let $f : [a,b] \to \mathbb{R}$ be bounded. A **partition** of [a,b] is a finite set $P = \{x_0, x_1, \ldots, x_n\}$ where $a = x_0 < x_1 < \cdots < x_n = b$.

Definition 7.2. The upper Riemann sum is $U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i$ where $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$. The lower Riemann sum is $L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i$ where $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$.

7.2 Riemann Integrability

Definition 7.3. A function $f:[a,b]\to\mathbb{R}$ is **Riemann integrable** if

$$\sup_{P} L(f, P) = \inf_{P} U(f, P)$$

This common value is called the **Riemann integral** of f over [a,b], denoted $\int_a^b f(x) dx$.

7.3 Properties of Integrable Functions

Theorem 7.1. If f is continuous on [a, b], then f is Riemann integrable on [a, b].

Theorem 7.2. If f is monotone on [a, b], then f is Riemann integrable on [a, b].

Theorem 7.3. If f is bounded and has only finitely many discontinuities on [a, b], then f is Riemann integrable on [a, b].

7.4 Fundamental Theorem of Calculus

Theorem 7.4 (FTC Part 1). If f is continuous on [a,b] and $F(x) = \int_a^x f(t) dt$, then F is differentiable on [a,b] and F'(x) = f(x).

Theorem 7.5 (FTC Part 2). If f is continuous on [a, b] and F is any antiderivative of f, then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

8 Series

8.1 Definition

Definition 8.1. A series is an expression of the form $\sum_{n=1}^{\infty} a_n$ where (a_n) is a sequence.

Definition 8.2. The **partial sums** of the series are $S_n = \sum_{k=1}^n a_k$. The series **converges** to S if $\lim_{n\to\infty} S_n = S$.

8.2 Convergence Tests

Theorem 8.1 (Divergence Test). If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem 8.2 (Comparison Test). If $0 \le a_n \le b_n$ for all n and $\sum b_n$ converges, then $\sum a_n$ converges.

Theorem 8.3 (Ratio Test). If $\lim_{n\to\infty} |a_{n+1}/a_n| = L$, then:

- If L < 1, then $\sum a_n$ converges absolutely
- If L > 1, then $\sum a_n$ diverges
- If L=1, the test is inconclusive

Theorem 8.4 (Root Test). If $\lim_{n\to\infty} |a_n|^{1/n} = L$, then:

• If L < 1, then $\sum a_n$ converges absolutely

- If L > 1, then $\sum a_n$ diverges
- If L=1, the test is inconclusive

Theorem 8.5 (Integral Test). If f is positive, continuous, and decreasing on $[1, \infty)$, then $\sum_{n=1}^{\infty} f(n)$ converges if and only if $\int_{1}^{\infty} f(x) dx$ converges.

8.3 Absolute and Conditional Convergence

Definition 8.3. A series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.

Definition 8.4. A series **converges conditionally** if it converges but does not converge absolutely.

Theorem 8.6. If a series converges absolutely, then it converges.

9 Power Series

9.1 Definition

Definition 9.1. A power series is a series of the form $\sum_{n=0}^{\infty} a_n(x-c)^n$.

9.2 Radius of Convergence

Theorem 9.1. For any power series $\sum a_n(x-c)^n$, there exists $R \in [0,\infty]$ such that:

- The series converges absolutely for |x-c| < R
- The series diverges for |x-c| > R

R is called the **radius of convergence**.

9.3 Properties

Theorem 9.2. A power series converges uniformly on any closed interval contained in its interval of convergence.

Theorem 9.3. A power series can be differentiated and integrated term by term within its radius of convergence.

10 Uniform Convergence

10.1 Definition

Definition 10.1. A sequence of functions (f_n) converges uniformly to f on A if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \epsilon$ for all $n \geq N$ and all $x \in A$.

10.2 Properties

Theorem 10.1 (Uniform Limit Theorem). If (f_n) is a sequence of continuous functions that converges uniformly to f on A, then f is continuous on A.

Theorem 10.2. If (f_n) converges uniformly to f on [a,b] and each f_n is Riemann integrable, then f is Riemann integrable and

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx$$

Theorem 10.3. If (f_n) converges pointwise to f on [a,b], each f_n is differentiable, and (f'_n) converges uniformly on [a,b], then f is differentiable and $f' = \lim_{n \to \infty} f'_n$.

11 Compactness

11.1 Definition

Definition 11.1. A set $K \subseteq \mathbb{R}$ is **compact** if every open cover of K has a finite subcover.

11.2 Heine-Borel Theorem

Theorem 11.1. A subset of \mathbb{R} is compact if and only if it is closed and bounded.

11.3 Properties

Theorem 11.2. If f is continuous on a compact set K, then f is uniformly continuous on K.

Theorem 11.3. If f is continuous on a compact set K, then f attains its maximum and minimum values on K.

12 Connectedness

12.1 Definition

Definition 12.1. A set $A \subseteq \mathbb{R}$ is **connected** if there do not exist disjoint open sets U and V such that $A \subseteq U \cup V$ and $A \cap U \neq \emptyset$, $A \cap V \neq \emptyset$.

12.2 Characterization

Theorem 12.1. A subset of \mathbb{R} is connected if and only if it is an interval.

13 Important Theorems

13.1 Weierstrass Approximation Theorem

Theorem 13.1. Every continuous function on [a, b] can be uniformly approximated by polynomials.

13.2 Stone-Weierstrass Theorem

Theorem 13.2. Let A be an algebra of continuous functions on a compact set K that separates points and contains the constant functions. Then A is dense in C(K).

13.3 Baire Category Theorem

Theorem 13.3. The intersection of countably many dense open sets in \mathbb{R} is dense in \mathbb{R} .

13.4 Arzelà-Ascoli Theorem

Theorem 13.4. A sequence of functions in C[a, b] has a uniformly convergent subsequence if and only if it is uniformly bounded and equicontinuous.

14 Applications

14.1 Existence Theorems

- Fixed point theorems (Brouwer, Banach)
- Existence of solutions to differential equations
- Existence of optima in constrained optimization

14.2 Approximation Theory

- Polynomial approximation
- Fourier series and transforms
- Numerical analysis foundations

14.3 Analysis of Functions

- Differentiability and smoothness
- Integration theory
- Measure theory foundations