DUALITY

Associated with any LP is another LP, called the dual. Knowing the relation between an LP and its dual is vital to understanding advanced topics in linear and non-linear programming. This relation is important because it gives us interesting economic insights. Knowledge of duality will also provide additional insights into sensitivity.

FINDING THE DUAL OF AN LP

When taking the <u>dual</u> of a given LP, we refer to the given LP as the <u>primal</u>.

Two problems are said to be duals to each other (or mutually dual) if they possess the following properties:

- One is <u>maximization</u> and the other is a <u>minimization</u> problem.
- If one has (<u>m</u>) constraints and (<u>n</u>) decision variables, the other has (<u>n</u>) constraints and (<u>m</u>) decision variables.
- The [A] matrix of one is the transpose of the other.
- The <u>RHS coefficients</u> of one constitute the <u>objective function coefficients</u> of the other.
- If the primal is unbounded the dual problem is infeasible.
- If the dual is unbounded, the primal is infeasible.

For convenience, we define the variables for the max problem to be $x_1,x_2,x_3,...,x_n$ and the variables for the min problem $y_1,y_2,y_3,...,y_m$.

A normal max problem (all constraints are ≤) may be written as

The dual of a normal max problem is defined to be

Min W =
$$b_1y_1 + b_2 y_2 + \dots + b_m y_m$$

s.t.
$$a_{11}y_1 + a_{21} y_2 + \dots + a_{m1} y_m = c_1$$

$$a_{12}y_1 + a_{22} y_2 + \dots + a_{m2} y_m = c_2$$

$$\vdots$$

$$a_{1n}y_1 + a_{2n} y_2 + \dots + a_{mn} y_m = c_n$$

$$y_i \ge 0 \ (i=1,2,...,m)$$

A min problem that has all \geq constraints all variables nonnegative is called <u>normal min problem</u>.

The general structure of the primal and dual problems may be represented as

Primal

$$MaxZ = \sum_{j=1}^{n} c_j x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \quad i = 1, 2, ..., m \qquad x_{j} \ge 0$$

Dual

$$MinW = \sum_{i=1}^{m} b_i yi$$

s.t.
$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j$$
 $j = 1, 2, ..., n$ $y_i \ge 0$

Finding the dual of a non-normal LP

Unfortunately, many LPs are not normal max problems or normal min problems. For example,

Max
$$z = 2x_1 + x_2$$

s.t. $x_1 + x_2 = 2$
 $2x_1 - x_2 \ge 3$
 $x_1 - x_2 \le 1$
 $x_1, x_2 \ge 0$

- Replace each equality constraint by two inequality constraints ($a \ge \text{constraint}$ and $a \le \text{)}$
- Multiply each \geq constraint by -1. This converts each \geq constraint into a \leq constraint.

Max
$$z = 2x_1 + x_2$$

s.t. $x_1 + x_2 \le 2$
 $-x_1 - x_2 \le -2$
 $-2x_1 + x_2 \le -3$
 $x_1 - x_2 \le 1$
 $x_1, x_2 \ge 0$

After these transformations are complete normal max problem

Primal

s.t.
$$x_1 + x_2 \le 2$$

$$-x_1 - x_2 \le -2$$

$$-2 x_1 + x_2 \le -3$$

$$x_1 - x_2 \le 1$$

$$x_1, x_2 \ge 0$$

Dual

Min W =
$$2y_1 - 2y_1 - 3y_2 + y_3$$

s. t.
$$y_1 - y_1 - 2y_2 + y_3 \ge 2$$
$$y_1 - y_1 + y_2 - y_3 \ge 1$$
$$y_1, y_1, y_2, y_3 \ge 0$$

We define $y_1 = y_1 - y_1$. Now the final dual problem is

Dual

Min W =
$$2y_1 - 3y_2 + y_3$$

s. t.
$$y_1 - 2y_2 + y_3 \ge 2$$

$$y_1 + y_2 - y_3 \ge 1$$

$$y_1, y_2, y_3 \ge 0$$

Example

Non-normal LP minimization problem

Min Z =
$$6 x_1 + 10 x_2$$

s.t.
$$5 x_1 + 3 x_2 \ge 10$$
$$x_1 - x_2 \le 4$$
$$x_1, x_2 \ge 0$$

Normal LP minimization problem

Min Z =
$$6 x_1 + 10 x_2$$

s.t.
$$5 x_1 +3 x_2 \ge 10$$
$$-x_1 + x_2 \ge -4$$
$$x_1, x_2 \ge 0$$

Dual Problem

Max W =
$$10 y_1 - 4 y_2$$

s.t.
$$5 y_1 - y_2 \le 6$$
$$3y_1 + y_2 \le 10$$
$$y_1, y_2 \ge 0$$

Property

If the dual problem has <u>an optimal solution</u>, the primal problem has an <u>optimal solution</u>, and vice versa. Furthermore, the values of the optimal solutions to the dual and primal problems are <u>equal</u>.

How to read the solution?

Comparisons primal and dual solutions.

Primal Problem

Min
$$\mathbf{Z} = 4 x_1 + 6 x_2 + 18 x_3$$

s.t. $x_1 + 3 x_3 \ge 3$
 $x_2 + 2 x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

$$x_1 + 3 x_3 - x_4 + x_6 = 3$$
 $x_2 + 2x_3 - x_5 + x_7 = 5$
 $w = x_6 + x_7$
 $-w - x_1 - x_2 - 5x_3 + x_4 + x_5 = -8$

Dual Problem

Max Z' =
$$3y_1 + 5y_2$$

s.t. $y_1 \le 4$
 $y_2 \le 6$
 $3y_1 + 2y_2 \le 18$
 $y_1, y_2 \ge 0$

Property

Given the simplex tableau corresponding to the optimal dual solution, the optimal values of the primal decision variables are given by the \mathbf{Z}_j entries for the surplus variables.

Primal Solution (with two-phase simplex)

BASIS	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS	RATIO
X ₆	1	0	3<	-1	0	1	0	3	1
X ₇	0	1	2	0	-1	0	1	5	2.5<
-w	-1	-1	-5<	1	1	0	0	-8	
-Z	4	6	18	0	0	0	0	0	
X ₃	1/3	0	1	-1/3	0	1/3	0	1	
X ₇	2/3	1	0	2/3	-1	-2/3	1	3	3<
-w	2/3	-1	0	-2/3	1	5/3	0	-3	
-Z	-2	6	0	6	0	-6	0	-18	
\mathbf{x}_3	1/3	0	1	-1/2	0	1/3 /	0 /	1	
\mathbf{x}_2	-2/3	1	0	2/3	-1	2/3	1/	3	
-w	0	0	0	0	0	/1	<u>/1</u>	0	
-Z	2	0	0	2	6	-2	/-6	-36	

Dual Solution (with simplex)

BASIS	\mathbf{y}_1	y ₂	y ₃	y 4	y 5	RHS	RATIO
$\mathbf{y_3}$	1	0	1	0	0	4	_
y_4	0	1<	0	1	0	6	6<
y 5	3	2	0	0	1	18	9
Z'	-3	-5<	0	0	0	0	
\mathbf{y}_3	1	0	1	0	0	4	4
\mathbf{y}_2	0	1	0	1	0	6	_
\mathbf{y}_{5}	3	0	0	-2	1	6	2
Z'	-3	0	0	5	0	30	
\mathbf{y}_3	0	0	1	2/3	-1/3	2	
\mathbf{y}_2	0	1	0	1	0	6	
\mathbf{y}_1	1	0	0	-2/3	1/3	2	
Z'	0	0	0	3	1	36	

$$x_1=0$$
 $x_2=3$ $x_3=1$ $Z'_{max}=Z_{min}=36$