Sparse Fast Fourier Transform Code Documentation (SFFT 1.0 and 2.0)

Haitham Hassanieh

Piotr Indyk

Dina Katabi

Eric Price

Massachusetts Institute of Technology {haithamh,indyk,dk,ecprice}@mit.edu

Abstract

A documentation of the Sparse Fast Fourier Transform (SFFT 1.0/2.0) C++ implementation. The documentation includes a description of the files, the input parameters, the functions and examples of run tests.

1 Introduction

Sparse Fast Fourier Transform (SFFT) is a class of sub-linear time algorithms for computing the discrete Fourier transform of a time domain signal which is *sparse* in the frequency domain, i.e. there are very few "large" coefficients in the frequency domain. The algorithm was presented in [1]. As reported in that paper, experiments with two C++ implementations of the algorithm (SFFT 1.0 and 2.0) demonstrates practical improvement in the runtime over Fast Fourier Transform (FFT) for a wide range of signal sparsities. This papers provides a documentation of the code.

Note: this code is provided for research purposes only. At this stage the code is not a standalone portable library and cannot be used blindly. In particular, it requires setting of several parameters which determine the running time and accuracy of the algorithm. The values of the parameters depend on the signal size and its sparsity. In this documentation we provide example test runs that demonstrate how we set the parameters.

2 License

Copyright (c) 2012-2013 Haitham Hassanieh, Piotr Indyk, Dina Katabi, Eric Price, Massachusetts Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3 Running the Code

Before compiling and running the code, you must install FFTW version 3.2 or later which can be found at http://www.fftw.org/. You must also install GNUPLOT version 4.2 or later which can be found at http://www.gnuplot.info/. We also recommend reading the paper [1]

The paper describes in details the SFFT 1.0 and 2.0 algorithms. The code has been compiled and tested on Ubuntu 10.04 and 11.10. We provided a make file (GNUmakefile) to compile the code. Table 1 list all the C++ files in the .tar file which are used to compile the code

<u>experiment.cc</u> runs SFFT 1.0 or 2.0 and FFTW and prints out the run times. A description of the input parameters can be found in Table 2. These parameters need to be set differently for each signal size and signal sparsity. The code outputs the time spent in each portion of the code which would allow you to see how each input parameter affects the running time of SFFT. The inputs we used to run our experiments can be found in the file parameters.cc.

<u>generate_graphs.cc</u> is a script that runs SFFT 1.0 or 2.0 and FFTW for a range of signal sizes or signal sparsity and plots the output. The input options to generate_graphs.cc are described in Table 3. Example runs of experiment.cc and generate_graphs.cc can be found in §4.

The code has not been tested for all possible input parameters. We will continue trying to improve the code and the documentation. In the meantime, if you find any bugs or errors, please let us know. All comments and suggestions are most welcome.

File	Description							
experiment.cc	Runs sFFT and FFTW once for a set of input parameters. Outputs the runtime of both algorithms and the L1 error of sFFT.							
generate_graphs.cc	Runs sFFT and FFTW for a range of parameters and plots the runtime of both verse the signal size (n) or the sparsity (k). Recreates the graphs in the paper: Simple and Practical Algorithm for Sparse Fourier Transform, SODA'12.							
kaiserbessel.cc	Plots the time domain and frequency domain response of 3 different filters: 1- Gaussian Filter 2- Dolph-Chebyshev Filter 3- Kaiser-Bessel Filter							
computerfourier.h/.cc	Contains the implementation of the sFFT algorithm.							
filters.h/.cc	Generates the filters used by sFFT.							
utils.h/.cc	Contains the Implementation of standard functions used in the code.							
fftw.h/.cc	Contains the FFTW functions.							
parameters.h/.cc	Specifies the parameters used to generate the graphs in generate_graphs.cc.							
timer.h/.cc	Contains the timing functions used to estimate the runtime of sFFT and FFTW.							
plot.h/.cc	Contains functions used to plot the graphs of the filters and runtime results.							
fft.h	Contains definitions of the used data types.							
GNUmakefile	Make file							

Table 1: C++ Files in the Source Code

Option	Variable	Description
-h		Help: Prints the set of options used by the code.
-N	n	Sets the signal size; the total number of frequencies.
-K	k	Sets the signal sparsity; the number of large frequency coefficients.
-R	repetitions	Sets the number of times the experiment is repeated and the result is averaged.
-B	Best_loc	Sets the constant for the number of Gaussian filter buckets used to find the locations (support) of the large frequencies. B_loc = Bcst_loc $\times \sqrt{nk/\log n}$
-E	Bcst_est	Sets the constant for the number of Gaussian filter buckets used to estimate the values of the large frequencies. B_est = Bcst_est $\times \sqrt{nk/\log n}$
-1	loc_loops	Sets the number of times we run the Gaussian filter used to find the locations of the large frequencies while permuting the input every time.
-r	threshold_loops	Sets the number of times a frequency coefficient has to appear in the $2\times K$ largest location filter buckets to be considered a large frequency.
-L	est_loops	Sets the number of time we run the Gaussian filter used to find the values of the large frequencies.
-M	Comb_cst	Allows the code to use the Comb filter (i.e. sFFT 2.0 instead of 1.0) and sets the constant for the number of Comb filter buckets. W_Comb = Comb_cst $\times n/B$ _loc.
-m	Comb_loops	Sets the number of times the Comb filter is run after permuting the signal.
-S	snr	Specifies the signal to noise ratio.
-A	ALGORITHM1	Avoids using a Gaussian filter to find the locations of the large frequencies only in the case of sFFT 2.0 i.e. loc_loops = 0. It directly estimates the candidate frequencies provided by the Comb filter.
-O	FFTW_OPT	Runs FFTW with optimized FFTW plan.
-t	tolerance_loc	Sets the noise (Leakage) in the Gaussian filter used to find the locations of the large frequencies.
-e	tolerance_est	Sets the noise (Leakage) in the Gaussian filter used to estimate the values of the large frequencies.
-S	simulate	Simulate the expected runtime and error of sFFT without running the full experiment.
-V	verbose	Verbose: prints detailed timing of each step of the code.

Table 2: Input Parameters to ./experiment: used to run a single experiment of sFFT

.

Option	Variable	Description
-h		Help: Prints the set of options used by the code.
-N	Graph_type	Runs sFFT and FFTW for different values of N and plots the runtime verses N
-K	Graph_type	Runs sFFT and FFTW for different values of K and plots the runtime verses K
-S	Graph_type	Runs sFFT for different signal to noise ratios and plots the error per large frequency verses the SNR
-R	repetitions	Sets the number of times we run FFTW and sFFT with different input for each value of N or K to average the runtime.
-W	WITH_COMB	Run sFFT 2.0 instead of sFFT 1.0 .
-O	FFTW_OPT	Runs FFTW with optimized FFTW plan.
-V	verbose	Verbose: prints detailed timing of each step of the code.

Table 3: Input Parameters to ./generate_graphs: used to run a range of sFFT experiments and plot the graphs.

4 Example Test Runs

4.1 ./experiment

```
1. SFFT 2.0 ( N = 65536, K = 50)
```

INPUT: ./experiment -N 65536 -K 50 -B 4 -E 2 -M 128 -m 6 -L 10 -l 4 -r 2 -t 1e-8 -e 1e-8

OUTPUT:

RUNNING EXPERIMENT: n=65536, k=50

Simulation:

Projected error rate: 0.000181988 (0.000158854 per large frequency)

Expected running time: 0.0125901

sFFT filter parameters for: n=65536, k=50.

Comb Filter: loops: 6 mod: 100/8192

Location Filter: (numlobes=1810.0, tol=1e-08, b=47) B: 100/1024 loops: 2/4 Estimation Filter: (numlobes=905.0, tol=1e-08, b=111) B: 512 loops: 10

Window size: Location Filter: 22023; Estimation Filter: 11011;

Noise in filter: Location Filter: 6.22353e-10; Estimation Filter: 1.60315e-09

sFFT Results

Total sFFT time: 0.005218

Time distribution: scoretable Comb __ perm+filter grouping estimation 0.000011 0.002111 0.002404 0.000084 0.000203

46.1%

grouping estimation stepB+C other 0.000084 0.000203 0.000376 0.000028 1.6% 3.9% 7.2% 0.5% total

0.005218

100.0%

ERROR:

0.2%

K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 8.84975e-07 (1.76995e-08 per large frequency)

FFTW Results

Time to create FFTW plan: 0.000397 Time to run FFTW: 0.001631

40.5%

2. SFFT 2.0 (N = 131072, K = 50)

INPUT: ./experiment -N 131072 -K 50 -B 1 -E 1 -M 8 -m 2 -L 12 -l 4 -r 3 -t 1e-6 -e 1e-8

OUTPUT:

RUNNING EXPERIMENT: n=131072, k=50.

Simulation:

Projected error rate: 4.5243e-05 (2.83207e-05 per large frequency)

Expected running time: 0.00569716

sFFT filter parameters for: n=131072, k=50.

Comb Filter: loops: 2 mod: 100/2048

Location Filter: (numlobes=620.0, tol=1e-06, b=279) B: 100/512 loops: 3/4 Estimation Filter: (numlobes=620.0, tol=1e-08, b=325) B: 512 loops: 12

Window size: Location Filter: 5725; Estimation Filter: 7543;

Noise in filter: Location Filter: 6.14223e-08; Estimation Filter 1.66259e-09

sFFT Results

Total sFFT time: 0.003471

Time distribution:

Comb __ perm+filter estimation stepB+C other total scoretable grouping 0.0000280.0002990.0003920.0000320.0021970.0001170.0004070.0034710.8%8.6%63.3%3.4%11.7%11.3% 0.9% 100.0%

ERROR:

K=50; MISSED (estimation, result) = (0,0); L1 ERROR= 1.51982e-06 (3.03965e-08 per large frequency)

FFTW Results

Time to create FFTW plan: 0.000533

Time to run FFTW: 0.0038723. SFFT 2.0 (N = 262144, K = 50) INPUT: ./experiment -N 262144 -K 50 -B 1 -E 1 -M 8 -m 2 -L 14 -l 5 -r 4 -t 1e-6 -e 1e-8 **OUTPUT:** RUNNING EXPERIMENT: n=262144, k=50. Simulation: Projected error rate: 5.35776e-07 (4.64458e-07 per large frequency) Expected running time: 0.00868278 sFFT filter parameters for: n=262144, k=50. ************************* Comb Filter: loops: 2 mod: 100/4096 Location Filter: (numlobes=853.0, tol=1e-06, b=405) B: 100/512 loops: 4/5 Estimation Filter: (numlobes=853.0, tol=1e-08, b=473) B: 512 loops: 14 Window size: Location Filter: 7877; Estimation Filter: 10379; Noise in filter: Location Filter: 5.61652e-08; Estimation Filter 1.69292e-09 sFFT Results ************************************ Total sFFT time: 0.005048 Time distribution: stepB+C perm+filter scoretable Comb __ grouping estimation other total 0.0037260.0002010.0004590.0000420.0004600.0001200.0000400.005048 0.8%9.1%73.8%2.4%4.0%9.1%0.8%100.0% K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 1.47387e-06 (2.94775e-08 per large frequency) *****************************

Time to create FFTW plan: 0.001045

Time to run FFTW: 0.010581

4. SFFT 2.0 (N = 1048576, K = 50)

INPUT: ./experiment -N 1048576 -K 50 -B 0.5 -E 0.5 -M 8 -m 2 -L 12 -l 4 -r 2 -t 1e-6 -e 1e-8

OUTPUT:

RUNNING EXPERIMENT: n=1048576, k=50.

Simulation: ******************************** Projected error rate: 4.64535e-05 (2.90716e-05 per large frequency) Expected running time: 0.0119937 *************************** sFFT filter parameters for: n=1048576, k=50. Comb Filter: loops: 2 mod: 100/16384 Location Filter: (numlobes=809.0, tol=1e-06, b=1710) B: 100/512 loops: 2/4 Estimation Filter: (numlobes=809.0, tol=1e-08, b=1996) B: 512 loops: 12 Window size: Location Filter: 7471; Estimation Filter: 9843; Noise in filter: Location Filter: 6.06654e-08: Estimation Filter: 1.70257e-09 sFFT Results Total sFFT time: 0.009578 Time distribution: scoretable Comb __ perm+filter grouping estimation stepB+C other total 0.0003640.0016470.004426 0.0001920.002502 0.0004100.0000370.0095783.8%17.2%46.2%2.0%26.1%4.3%0.4%100.0% ERROR: K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 1.33522e-06 (2.67043e-08 per large frequency) ************************************ FFTW Results ************************************ Time to create FFTW plan: 0.000155 Time to run FFTW: 0.0649755. SFFT 1.0 (N = 65536, K = 50) INPUT: ./experiment -N 65536 -K 50 -B 4 -E 2 -L 8 -l 5 -r 4 -t 1e-8 -e 1e-8 **OUTPUT:** RUNNING EXPERIMENT: n=65536, k=50. Simulation: ******************************** Projected error rate: 0.00105096 (8.29275e-05 per large frequency) Expected running time: 0.00882512 ****************************** sFFT filter parameters for: n=65536, k=50. Comb Filter: none Location Filter: (numlobes=1810.0, tol=1e-08, b=47) B: 100/1024 loops: 4/5

Estimation Filter: (numlobes=905.0, tol=1e-08, b=111) B: 512 loops: 8 Window size: Location Filter: 22023; Estimation Filter: 11011; Noise in filter: Location Filter: 6.22353e-10; Estimation Filter 1.60315e-09 sFFT Results ************************************ Total sFFT time: 0.005804 Time distribution: scoretable Comb __ perm+filter grouping estimation stepB+C other total 0.0000130.0000000.0046320.0005550.000113 0.0004520.0000380.0058040.2%0.0%79.8%9.6%1.9% 7.8% 0.6%100.0% ERROR: K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 8.77944e-07 (1.75589e-08 per large frequency) FFTW Results ************************** Time to create FFTW plan: 0.000440 Time to run FFTW: 0.0017476. SFFT 1.0 (N = 131072, K = 50) INPUT: ./experiment -N 131072 -K 50 -B 2 -E 1 -L 10 -l 5 -r 4 -t 1e-6 -e 1e-8 **OUTPUT:** RUNNING EXPERIMENT: n=131072, k=50. Simulation: ********************************* Projected error rate: 0.000191902 (1.47975e-05 per large frequency) Expected running time: 0.0072311 ********************************* sFFT filter parameters for: n=131072, k=50. ******************************** Comb Filter: none Location Filter: (numlobes=1241.0, tol=1e-06, b=139) B: 100/1024 loops: 4/5 Estimation Filter: (numlobes=620.0, tol=1e-08, b=325) B: 512 loops: 10 Window size: Location Filter: 11461; Estimation Filter: 7543; Noise in filter: Location Filter: 5.14335e-08; Estimation Filter 1.66259e-09 sFFT Results

Total sFFT time: 0.003615

Time distribution:

scoretable 0.000020 0.6% ERROR:	Comb 0.000000 0.0%	perm+filter 0.002429 67.2%	grouping 0.000499 13.8%	estimation 0.000190 5.3%	stepB+C 0.000445 12.3%	other 0.000031 0.9%	total 0.003615 100.0%					
ERROR: K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 2.18375e-06 (4.36751e-08 per large frequency) ************************************												
FFTW Results ************************************												
Time to create FFTW plan: 0.000528 Time to run FFTW: 0.003883 *********************************												
7. SFFT 1.0 ($N = 262144$, $K = 50$)												
INPUT: ./experiment -N 262144 -K 50 -B 2 -E 0.5 -L 14 -l 4 -r 3 -t 1e-6 -e 1e-8												
OUTPUT:												
RUNNING E	EXPERIME	NT: n=262144	k, k=50.									
Simulation: ************************************												
Projected error rate: 0.0283436 (0.00170844 per large frequency) Expected running time: 0.010498 ***********************************												
_		or: n=262144, *******		*****	******	·*******	*					
Comb Filter: none Location Filter: (numlobes=1706.0, tol=1e-06, b=202) B: 100/1024 loops: 3/4 Estimation Filter: (numlobes=426.0, tol=1e-08, b=947) B: 256 loops: 14												
Window size: Location Filter: 15757; Estimation Filter: 5183; Noise in filter: Location Filter: 4.71541e-08; Estimation Filter 1.68546e-09 ***********************************												
sFFT Result		******	******	*****	*****	·******	*					
Total sFFT t		95										
scoretable 0.000041 0.7%	Comb 0.000000 0.0%	perm+filter 0.003140 51.5%	grouping 0.000791 13.0%	estimation 0.001695 27.8%	stepB+C 0.000391 6.4%	$\begin{array}{c} \text{other} \\ 0.000035 \\ 0.6\% \end{array}$	total 0.006095 100.0%					
ERROR: $K=50$; MISSED (estimation, result) = $(0, 0)$; L1 ERROR= 1.6241e-06 (3.2482e-08 per large frequency) ************************************												
FFTW Results ************************************												

Time to create FFTW plan: 0.001094 Time to run FFTW : 0.011047

8. SFFT 1.0 (N = 1048576, K = 50)

INPUT: ./experiment -N 1048576 -K 50 -B 2 -E 0.5 -L 12 -l 5 -r 4 -t 1e-6 -e 1e-8

OUTPUT:

RUNNING EXPERIMENT: n=1048576, k=50.

Simulation:

Projected error rate: 0.000133638 (2.66753e-06 per large frequency)

Expected running time: 0.0173376

sFFT filter parameters for: n=1048576, k=50.

Comb Filter: none

Location Filter: (numlobes=3238.0, tol=1e-06, b=427) B: 100/2048 loops: 4/5 Estimation Filter: (numlobes=809.0, tol=1e-08, b=1996) B: 512 loops: 12

Window size: Location Filter: 29907; Estimation Filter: 9843;

Noise in filter: Location Filter: 5.9493e-08; Estimation Filter 1.70257e-09

sFFT Results

Total sFFT time: 0.012825

Time distribution:

scoretable Comb __ perm+filter grouping estimation stepB+C other total 0.0003590.0000000.0081360.0034650.000191 0.0006240.0000500.0128252.8%0.0%63.4%27.0%1.5%4.9%0.4%100.0%

ERROR:

K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 1.40828e-06 (2.81655e-08 per large frequency)

FFTW Results

Time to create FFTW plan: 0.000215 Time to run FFTW: 0.063955

9. SFFT 2.0 (N = 4194304, K = 100)

INPUT: ./experiment -K 100 -B 0.5 -E 0.2 -M 16 -L 12 -l 4 -r 2 -t 1.e-6 -e 1.e-8

OUTPUT:

RUNNING EXPERIMENT: n=4194304, k=100.

Simulation: ************************************ Projected error rate: 0.0252479 (0.0103216 per large frequency) Expected running time: 0.0224433 sFFT filter parameters for: n=4194304, k=100. Comb Filter: loops: 1 mod: 200/32768 Location Filter: (numlobes=2183.0, tol=1e-06, b=2536) B: 200/2048 loops: 2/4 Estimation Filter: (numlobes=873.0, tol=1e-08, b=7398) B: 512 loops: 12 Window size: Location Filter: 20163; Estimation Filter: 10621; Noise in filter: Location Filter: 6.34404e-08; Estimation Filter 1.69937e-09 sFFT Results ******************************** Total sFFT time: 0.017701 Time distribution: Comb __ perm+filter grouping estimation stepB+C other total scoretable 0.0049530.0018890.0069120.0003320.0022800.0006650.000669 0.017701 28.0% 39.0%1.9% 12.9%3.8%10.7% 3.8%100.0% ERROR: K=100; MISSED (estimation, result) = (0, 0); L1 ERROR= 1.30322e-05 (1.30322e-07 per large frequency) **************************** FFTW Results Time to create FFTW plan: 0.000273 Time to run FFTW: 0.29275710. SFFT 2.0 (N = 4194304, K = 200) INPUT: ./experiment -K 200 -B 0.5 -E 0.5 -M 32 -m 1 -L 8 -l 4 -r 2 -t 1.e-6 -e 0.5e-8 **OUTPUT:** RUNNING EXPERIMENT: n=4194304, k=200. Simulation: ******************************** Projected error rate: 0.0126673 (0.00386714 per large frequency) Expected running time: 0.0391682 sFFT filter parameters for: n=4194304, k=200. ********************************* Comb Filter: loops: 1 mod: 400/65536

Location Filter: (numlobes=3087.0, tol=1e-06, b=1793) B: 400/2048 loops: 2/4 Estimation Filter: (numlobes=3087.0, tol=5e-09, b=2092) B: 2048 loops: 8

Window size: Location Filter: 28513; Estimation Filter: 38925;

Noise in filter: Location Filter: 6.27631e-08; Estimation Filter 7.2714e-10

sFFT Results

Total sFFT time: 0.032355

Time distribution:

other Comb __ perm+filter estimation stepB+C total scoretable grouping 0.0006620.0008950.0007230.0049740.0047020.0139860.0064130.0323555.4%14.5%43.2%2.0%19.8%2.8%2.2%100.0%

ERROR:

K=200; MISSED (estimation, result) = (0, 0); L1 ERROR= 1.68204e-05 (8.41018e-08 per large frequency)

FFTW Results

Time to create FFTW plan: 0.000275 Time to run FFTW: 0.293198

11. SFFT 2.0 (N = 4194304, K = 500)

INPUT: ./experiment -K 500 -B 0.5 -E 0.5 -M 64 -L 10 -l 4 -r 3 -t 1.e-6 -e 0.5e-8

OUTPUT:

RUNNING EXPERIMENT: n=4194304, k=500.

Simulation:

Projected error rate: 0.0162385 (0.00733532 per large frequency)

Expected running time: 0.0552345

sFFT filter parameters for: n=4194304, k=500.

Comb Filter: loops: 1 mod: 1000/65536

Location Filter: (numlobes=4881.0, tol=1e-06, b=1134) B: 1000/4096 loops: 3/4 Estimation Filter: (numlobes=4881.0, tol=5e-09, b=1323) B: 4096 loops: 10

Window size: Location Filter: 45083; Estimation Filter: 61547;

Noise in filter: Location Filter: 6.28306e-08; Estimation Filter 7.28166e-10

sFFT Results

Total sFFT time: 0.047826

Time distribution:

scoretable Comb __ perm+filter grouping estimation stepB+C other total 0.0050910.0046650.028208 0.0017330.005341 0.001983 0.0008050.047826 11.2%10.6%9.8%59.0% 3.6%4.1%1.7%100.0%

ERROR: K=500; MISSED (estimation, result) = (0, 0); L1 ERROR= 0.0001241 (2.48199e-07 per large frequency) *********************************** FFTW Results ***************************** Time to create FFTW plan: 0.000275 Time to run FFTW: 0.289307 ************************************ 12. SFFT 1.0 (N = 4194304, K = 100) INPUT: ./experiment -K 100 -B 2 -E 0.2 -L 12 -l 3 -r 2 -t 1.e-6 -e 1.e-8 **OUTPUT:** RUNNING EXPERIMENT: n=4194304, k=100. Simulation: ******************************* Projected error rate: 1.28365 (0.00564662 per large frequency) Expected running time: 0.0467662 ********************************** sFFT filter parameters for: n=4194304, k=100. ******************************** Comb Filter: none Location Filter: (numlobes=8732.0, tol=1e-06, b=634) B: 200/8192 loops: 2/3 Estimation Filter: (numlobes=873.0, tol=1e-08, b=7398) B: 512 loops: 12 Window size: Location Filter: 80653; Estimation Filter: 10621; Noise in filter: Location Filter: 6.36166e-08; Estimation Filter 1.69937e-09 ************************************ sFFT Results Total sFFT time: 0.037965 Time distribution: scoretable Comb __ perm+filter grouping estimation stepB+C other total 0.0049680.0000000.012846 0.0054740.012696 0.0012410.0007400.03796513.1%0.0%33.8%14.4%33.4%3.3% 1.9%100.0%ERROR: K=100; MISSED (estimation, result) = (0, 0); L1 ERROR= 8.27891e-06 (8.27891e-08 per large frequency) ************************************* FFTW Results ********************************

Time to create FFTW plan: 0.000274

13. SFFT 1.0 (N = 4194304, K = 200)

INPUT: ./experiment -K 200 -B 4 -E 0.5 -L 10 -l 3 -r 2 -t 1.e-6 -e 0.5e-8

OUTPUT:

RUNNING EXPERIMENT: n=4194304, k=200.

Simulation:

Projected error rate: 0.0655131 (0.000348553 per large frequency)

Expected running time: 0.0729806

sFFT filter parameters for: n=4194304, k=200.

Comb Filter: none

Location Filter: (numlobes=24699.0, tol=1e-06, b=224) B: 400/16384 loops: 2/3 Estimation Filter: (numlobes=3087.0, tol=5e-09, b=2092) B: 2048 loops: 10

Window size: Location Filter: 228131; Estimation Filter: 38925;

Noise in filter: Location Filter: 6.10003e-08; Estimation Filter 7.2714e-10

sFFT Results

Total sFFT time: 0.062505

Time distribution:

scoretable perm+filter grouping estimation stepB+C other total Comb __ 0.0049150.0000000.037987 0.0057140.0106560.0024470.0007850.0625057.9% 0.0%60.8%9.1%17.0%3.9% 1.3% 100.0%

ERROR:

K=200; MISSED (estimation, result) = (0, 0); L1 ERROR= 1.02338e-05 (5.11688e-08 per large frequency)

FFTW Results

Time to create FFTW plan: 0.000277 Time to run FFTW: 0.291602

14. SFFT 1.0 (N = 4194304, K = 500)

INPUT: ./experiment -K 500 -B 2 -E 1 -L 12 -l 4 -r 3 -t 1.e-6 -e 0.5e-8

OUTPUT:

RUNNING EXPERIMENT: n=4194304, k=500.

Simulation:

Projected error rate: 0.000287754 (7.65499e-06 per large frequency) Expected running time: 0.131251 ************************* sFFT filter parameters for: n=4194304, k=500. Comb Filter: none Location Filter: (numlobes=19526.0, tol=1e-06, b=283) B: 1000/16384 loops: 3/4 Estimation Filter: (numlobes=9763.0, tol=5e-09, b=661) B: 8192 loops: 12 Window size: Location Filter: 180351; Estimation Filter: 123105; Noise in filter: Location Filter: 5.63804e-08; Estimation Filter 7.39351e-10 sFFT Results Total sFFT time: 0.111371 Time distribution: scoretable Comb __ perm+filter grouping estimation stepB+C other total 0.005113 0.000000 0.0741550.0177210.007493 0.0059100.000978 0.111371 4.6%0.0%66.6% 15.9% 6.7% 5.3% 0.9% 100.0% ERROR: K=500; MISSED (estimation, result) = (0, 0); L1 ERROR= 5.70762e-05 (1.14152e-07 per large frequency) FFTW Results ************************************ Time to create FFTW plan: 0.000273 Time to run FFTW: 0.298450 ************************************ 15. SFFT 1.0 (N = 4194304, K = 50, SNR = inf) INPUT: ./experiment -K 50 -B 4 -E 0.2 -L 15 -l 3 -r 2 -t 1e-6 -e 1e-8 **OUPUT:** RUNNING EXPERIMENT: n=4194304, k=50. Simulation: ************************* Projected error rate: 0.00103322 (5.11769e-06 per large frequency)

Expected running time: 0.0349159

sFFT filter parameters for: n=4194304, k=50.

Comb Filter: none

Location Filter: (numlobes=12349.0, tol=1e-06, b=448) B: 100/8192 loops: 2/3 Estimation Filter: (numlobes=617.0, tol=1e-08, b=10468) B: 512 loops: 15

Window size: Location Filter: 114061; Estimation Filter: 7507;

Noise in filter: Location Filter: 6.09389e-08; Estimation Filter 1.70111e-09

sFFT Results Total sFFT time: 0.030054 Time distribution: scoretableComb __ perm+filter grouping estimation stepB+C other total 0.0051040.0000000.0160140.0027610.0038130.0013620.0009990.03005417.0%0.0%53.3% 9.2%12.7%4.5%3.3% 100.0% ERROR: K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 1.14759e-06 (2.29518e-08 per large frequency) FFTW Results ******************************* Time to create FFTW plan: 0.000309 Time to run FFTW: 0.29530016. SFFT 1.0 (N = 4194304, K = 50, SNR = 20dB) **INPUT:** ./experiment -K 50 -B 4 -E 0.2 -L 15 -l 3 -r 2 -t 1e-6 -e 1e-8 -S 100 **OUPUT:** RUNNING EXPERIMENT: n=4194304, k=50. Simulation: Projected error rate: 0.00103322 (5.11769e-06 per large frequency) Expected running time: 0.0349159 SNR = 99.9788 / 20.00 dBsFFT filter parameters for: n=4194304, k=50. ******************************* Comb Filter: none Location Filter: (numlobes=12349.0, tol=1e-06, b=448) B: 100/8192 loops: 2/3 Estimation Filter: (numlobes=617.0, tol=1e-08, b=10468) B: 512 loops: 15 Window size: Location Filter: 114061; Estimation Filter: 7507; Noise in filter: Location Filter: 6.09389e-08; Estimation Filter 1.70111e-09 sFFT Results ************************************* Total sFFT time: 0.029995 Time distribution: scoretableComb __ perm+filter grouping estimation stepB+C other total 0.0050540.0000000.0155070.0032270.0038960.0013730.0009370.02999516.8%0.0%51.7%10.8%13.0%4.6%3.1%100.0% ERROR:

K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 0.307246 (0.00614491 per large frequency)

```
FFTW Results
Time to create FFTW plan: 0.000275
Time to run FFTW: 0.295379
                 ************************************
17. SFFT 1.0 ( N = 4194304, K = 50, SNR = 3dB)
INPUT: ./experiment -K 50 -B 4 -E 0.2 -L 15 -l 3 -r 2 -t 1e-6 -e 1e-8 -S 2
OUPUT:
RUNNING EXPERIMENT: n=4194304, k=50.
Simulation:
********************************
Projected error rate: 0.00103322 (5.11769e-06 per large frequency)
Expected running time: 0.0349159
SNR = 1.99962 / 3.01 dB
sFFT filter parameters for: n=4194304, k=50.
********************************
Comb Filter: none
Location Filter: (numlobes=12349.0, tol=1e-06, b=448) B: 100/8192 loops: 2/3
Estimation Filter: (numlobes=617.0, tol=1e-08, b=10468) B: 512 loops: 15
Window size: Location Filter: 114061; Estimation Filter: 7507;
Noise in filter: Location Filter: 6.09389e-08; Estimation Filter 1.70111e-09
*************************************
sFFT Results
Total sFFT time: 0.029786
Time distribution:
scoretable
        Comb
               perm+filter
                        grouping
                               estimation
                                       stepB+C
                                                other
                                                       total
 0.005065
        0.000000
                0.015559
                        0.002863
                                0.003900
                                        0.001445
                                               0.000953
                                                      0.029786
  17.0\%
         0.0\%
                 52.2\%
                         9.6\%
                                 13.1\%
                                         4.9\%
                                                3.2\%
                                                       100.0\%
ERROR:
K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 2.32729 (0.0465457 per large frequency)
********************************
FFTW Results
Time to create FFTW plan: 0.000275
Time to run FFTW: 0.291268
```

18. SFFT 1.0 (N = 4194304, K = 50, SNR = 0dB)

INPUT: ./experiment -K 50 -B 4 -E 0.2 -L 15 -l 3 -r 2 -t 1e-6 -e 1e-8 -S 1

OUPUT:

RUNNING EXPERIMENT: n=4194304, k=50.

Simulation:

Projected error rate: 0.00103322 (5.11769e-06 per large frequency)

Expected running time: 0.0349159

SNR = 1.00033 / 0.00 dB

sFFT filter parameters for: n=4194304, k=50.

Comb Filter: none

Location Filter: (numlobes=12349.0, tol=1e-06, b=448) B: 100/8192 loops: 2/3 Estimation Filter: (numlobes=617.0, tol=1e-08, b=10468) B: 512 loops: 15

Window size: Location Filter: 114061; Estimation Filter: 7507;

Noise in filter: Location Filter: 6.09389e-08; Estimation Filter 1.70111e-09

sFFT Results

Total sFFT time: 0.030106

Time distribution:

scoretable Comb __ perm+filter grouping estimation stepB+C other total 0.0050500.0000000.0158660.0027810.0040320.0014170000960 0.03010616.8%0.0%52.7%9.2%13.4%4.7%3.2%100.0%

ERROR:

K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 3.41686 (0.0683372 per large frequency)

FFTW Results

Time to create FFTW plan: 0.000276 Time to run FFTW: 0.296326

4.2 ./generate_graphs

(A) \mathbf{INPUT} : ./generate_graphs -N -R 10

OUTPUT:

(B) **INPUT:** ./generate_graphs -N -R 10 -W

OUTPUT:

(C) **INPUT:** ./generate_graphs -K -R 10

OUTPUT:

(D) $\mathbf{INPUT:}$./generate_graphs -K -R 10 -W

OUTPUT:

(E) **INPUT:** ./generate_graphs -S -R 10

OUTPUT:

(F) \mathbf{INPUT} : ./generate_graphs -S -R 10 -W

OUTPUT:

References

[1]	H. Hassanieh,	Ρ.	Indyk,	D.	Katabi,	and E.	Price,	"Simple	and	Practical	Algorithm	for	Sparse	Fourier	Transfor	m",
	SODA, 2012.		,		,		ŕ	-			Ü		-			,