

DEEP LEARNING FOR REMOTE SENSING

Geospatial Programming

Modern Integrated Surveying Technologies 2024

Thepchai Srinoi

Master Degree Student and Teaching Assistant,

Department of Survey Engineering Chulalongkorn University

Artificial Neural Network

CHULA **SNGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

Band Selection
Convert to one vector
Field Data
Satellite Imagery

Classification Result
Estimation Result
Single Value
Raster of Result Value

hidden layer 1 hidden layer 2

Artificial Neural Network: Activate Function

CHULA **SNGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

An example of a neuron showing the input ($x_1 - x_n$), their corresponding weights ($w_1 - w_n$), a bias (b) and the activation function f applied to the weighted sum of the inputs.

Problem Type	Output Type	Final Activation Function	Loss Function
Regression	Numerical value	Linear	Mean Squared Error (MSE)
Classification	Binary outcome	Sigmoid	Binary Cross Entropy
Classification	Single label, multiple classes	Softmax	Cross Entropy
Classification	Multiple labels, multiple classes	Sigmoid	Binary Cross Entropy

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	-
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	-
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	-
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

Artificial Neural Network: Loss Function

CHULA **SNGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

Gradient Decent and Backpropagation

Innovation toward Sustainability | ∧CTN⊪W

$$\mathbf{w}_{\mathrm{up}} = \mathbf{w} - \nu \cdot \nabla e(\mathbf{w})$$

LEARNING RATE

Backpropagation

forward pass

$$a = x \cdot w_1$$

 $e = x \cdot w_1 \cdot w_2 \longrightarrow Min.$

backward pass

$$\frac{\partial e}{\partial w_2} = x \cdot w_1$$

$$\frac{\partial e}{\partial a} = w_2$$

$$\frac{\partial a}{\partial w_1} = x$$

$$\frac{\partial e}{\partial w_1} = x \cdot w_2$$

$$\frac{\partial e}{\partial w_1} = x \cdot w_2$$

Backpropagation Neural Network

CHULA **ENGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

Chaining

$$\frac{\partial e}{\partial w_1} = \frac{\partial a_1}{\partial w_1} \cdot \frac{\partial a_2}{\partial a_1} \cdot \ldots \cdot \frac{\partial e}{\partial a_N}$$

LEARNING RATE

forward propagation

backward propagation

Neural Network Training

CHULA **SNGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

Convolution

เราไม่ถอดที่ละแถว/หลัก เป็นเวกเตอร์เดี่ยวยาวๆ โยนเข้า Deep Neural Network (DNN) แต่เราจะเอาภาพมาปรับก่อน ด้วย Kernel Filter แล้วโยนเข้า DNN Fully Connected Layer

Convolution Neural Network (CNN)

Transfer Learning

CHULA **ENGINEERING**Innovation toward Sustainability | ACTNIBW

หยิบ Deep Learning Architecture ที่เค้าทำไว้แล้ว มาใช้ในงาน หรือมีการเทรนใหม่ ปรับให้เข้ากับงานเรา

Use a **pre-trained** network (opposite: training from scratch)

EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification

Article in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing · August 2017

> Industrial

Landcover Classification

Fig. 4: This overview shows sample image patches of all 10 classes covered in the proposed EuroSAT dataset. The images measure 64x64 pixels. Each class contains 2,000 to 3,000 image. In total, the dataset has 27,000 geo-referenced images.

Fig. 8: Confusion matrix of a fine-tuned ResNet-50 CNN on the proposed EuroSAT dataset using satellite images in the RGB color space.

Method	UCM	AID	SAT-6	BCS	EuroSAT
ResNet-50	96.42	94.38	99.56	93.57	98.57
GoogLeNet	97.32	93.99	98.29	92.70	98.18

Land Cover Segmentation Using Convolutional Neural Network and Transfer Learning

Wachirawit Tangsirivichaikul Kritchayan Intarat

Faculty of Liberal Arts, Thammasat University, Thailand Corresponding author's email: wachirawit.srd@gmail.com

Image Segmentation

PSPNet

Feature Map

Pyramid Pooling Module

Model	Precision	Recall	F1-Socre
DeepLabV3	0.906	0.940	0.921
PSPNet	0.904	0.864	0.867
object-based	0.620	0.668	0.607

CHULA **SNGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

Table 7 Mean absolute error (MAE) per ESA WorldCover class on the test set

Worldcover class	Mean MAE
Trees	0.104186
Shrubland	0.106922
Grassland	0.104518
Cropland	0.103508
Built-up	0.106082
Barren/sparse vegetation	0.115451
Snow and ice	0.108554
Open water	0.099051
Herbaceous wetland	0.104841
Mangroves	0.105674
Moss and lichen	0.105813

The performance is averaged over five models, each using σ° backscatter data, the WorldCover, and the DEM as input. For each model, first, the MAE per land-cover class is calculated and then the mean calculated. The class Unknown is discarded, because only 0.01% of the test pixels belong to that class

Sentinel-2 RGB Sentinel-1 SAR

A Globally Applicable Method for NDVI Estimation from Sentinel-1 SAR Backscatter Using a Deep Neural Network and the SEN12TP Dataset

Thomas Roßberg¹ · Michael Schmitt¹

Fig. 6 U-Net architecture based on Ronneberger et al. (2015). Features are extracted from the model inputs in the Encoder and transformed by the Decoder to the model output. To extract abstract features, the data size is reduced in the encoder. Spatial details are added in the decoder by the skip connections to end up with a spatially

accurate prediction. Unlike the original paper, the feature maps are enlarged by a bilinear upsampling. Conv, BN, and ReLU denote convolutional layer, batch normalisation, and ReLU activation function, respectively. The number of filters a convolutional layer has is shown below each layer, next to it are the width and height wxh

Innovation toward Sustainability | ∧CTN⊪W

Building Height Estimation

Fig. 4. Structure of the proposed M^3 Net consisting of (a) the multi-view branch and (b) the multi-spectral branch. The dimension of features is described by the number of channels and resolution. For instance, 400^2 (pixels) refers to the width and the height of features, and 1 denotes the number of feature channels. Conv. convolution layer; BN: batch normalization; Trans-conv. transposed convolutional layer; ReLU: rectified linear unit activation function. 3×3 or 2×2 corresponds to the kernel size.

GOOD LUCK:)

Geospatial Programming

Modern Integrated Surveying Technologies

31st January 2024

Thepchai Srinoi

Master Degree Student and Teaching Assistant,

Department of Survey Engineering Chulalongkorn University