

Organizing and Accessing Data in MATLAB

This reference shows common use cases, so it is not an exhaustive list.

The >> icon provides links to relevant sections of the MATLAB documentation.

Representing Data					
Homogenous					
Data type		Purpose	Syntax		
Double, single, (u)int8, (u)int16, (u)int32, (u) int64, complex	-	Numeric arrays, matrix computations, math	[1,2,3], [1;2;3], uint8(), int16(),		
String	str	Text arrays	"hello world"		
Char	c h	Single characters, character arrays	'hello'		
cellstr	{}	Cell arrays of characters	{'hello','world'}		
Categorical	0	Discrete, nonnumeric data	categorical()		
Datetime	31	Absolute dates and timestamps, including time zones	datetime('July 12, 2001 08:15:01')		
Duration	Ō	Elapsed times	duration(h,m,s), hours(), minutes(),		
Calendar of duration		Relative time based on calendar	caldays(), calweeks(),		
Logical	✓	True/false, test state, identify data by condition	logical(), ==, ~=, >, >=, <, <=, &, &&, ,		
Other specialized types		sparse, enum, custom,	<u>>></u>		

Heterogeneous				
Data type		Purpose	Syntax	
Table		Mixed-type, column-oriented data (spreadsheet-like). Store metadata.	table(x,y,z), array2table	
Timetable	C	Timestamped tabular data	<pre>timetable(t,x,y) table2timetable,array2timetable</pre>	
Structure	E	Fields can contain data of any size and type. Ideal for nonrectangular data.	<pre>struct() s.Field = 42;</pre>	
Structure array	E	Array of structures (described above)	s = [s1,s2], s(2).Field = 42;	
Cell array	{}	Each cell in the array can contain any data type, any size	cell(), {pi,ones(5), "hello"}	
Tall array	:	MATLAB data types can be made "tall" when data does not fit in memory	ds = datastore(), T = tall(ds)	
Dictionary	d	Object that maps unique keys to values	d= dictionary(keys,values)	

Data Selection				
Use array indexing to select data.				
Linear indexing for 1D arrays: x(1) First element x(end) Last element				
Row, column indexing for multidimensional arrays:				
A(1,2) A(1,1,2)				
Select multiple with a vector: A([1,3],1)				
Use colon : to select a range:				
A(1:3,1) A(:,1) All rows, column 1 A(1,:) Row 1, all columns A(1:2:end,:) Every other row				
Remove data from array: A(1,:) = [];				

Logical Indexing

Use logical expressions to select data.

Elements of X greater than 7:

$$Y = X(X > 7)$$

Combine conditions:

$$X(X > 3 & X <= 7)$$

$$X(X > 3 | | X <= 7)$$

Elements of S not equal to "hello world":

Multidimensional arrays

Use condition to identify rows or columns:

Tables and timetables

T(:,vartype('numeric'))
TT(timerange(t1,t2),:)

Container Indexing

Using parentheses () for indexing retains the initial data type. Access the underlying data with curly braces {}. Tables and structures also allow you to reference data by name.

Exam	ples	>>
	P	

Туре	Subset	Contents
Table	Returns a table: T(1,2) T(:,'A') T(:,{'A', 'B'})	Returns underlying data: T{1,2} T{:,'A'} T.A T.Rows
Timetable	Same as above: TT('Apr 1, 2004',5)	T.Variables Same as above: TT.Time
Cell array	Returns a cell: C(1,2)	C{1,2} C{:} -> comma separated list
Structure	Returns a struct: s(1,1)	S.Field