

# LoRaWAN Gateway

Manual de Técnico

# Sumário

| 1 | Descrição                                              | 3  |
|---|--------------------------------------------------------|----|
| 2 | Especificações Técnicas  2.1 Especificação de operação | 5  |
| 3 | Integração/Hardware 3.1 Interface SPI                  | 6  |
| 4 | Operação                                               | 10 |
| 5 | Contato                                                | 11 |



#### 1 Descrição

O LoRaWAN Gateway da Radioenge é um dispositivo que permite enviar e receber mensagens através de uma rede LoRaWAN. A topologia prevista para tal cenário é uma rede em estrela, onde os rádio de aplicação, ou *end points*, LoRaWAN se comunicam única e exclusivamente com o LoRaWAN Gateway. Para tal, o equipamento trabalha "escutando" 8 canais diferentes da banda LoRaWAN, conforme configurado no *packet forwarder*<sup>1</sup>. No entanto, enquanto está transmitindo, a recepção do rádio é desligada.

É importante ressaltar que o equipamento é um *shield* que trava acoplado a um Raspberry Pi 3, o qual comanda as funcionalidades do rádio por meio de uma interface SPI. Através do Raspberry Pi 3, é executada a aplicação *packet forwarder* da Semtech que se conecta a um Servidor de Rede LoRaWAN (NS, do inglês *Network Server*) via rede. Todo o gerenciamento de pacotes é realizado por meio do NS, o qual concentra toda a "inteligência" de controle da rede LoRaWAN, inclusive a conexão com a aplicação<sup>2</sup>. O funcionamento do LoRaWAN Gateway está exemplificado na Figura 1.



Figura 1: Topologia da rede LoRaWAN

<sup>&</sup>lt;sup>1</sup>Para mais detalhes sobre a configuração do *packet forwarder*, ver Guia Rápido configuração Gateway na página do produto. <sup>2</sup>Este conceito é importante para a rede LoRaWAN. O acesso aos dados da rede é feito apenas através do servidor de rede e não diretamente pelo LoRaWAN Gateway.



### 2 Especificações Técnicas

Dispositivo para comunicação de longo alcance para projetos de Internet das Coisas (IoT) que utilizam o protocolo LoRaWAN, o qual engloba a modulação LoRa/CSS. O equipamento tem capacidade de receber pacotes em até oito canais simultaneamente.



Figura 2: Vista superior do LoRaWAN Gateway Radioenge

## 2.1 Especificação de operação

Tabela 1: Especificações técnicas

| Especificação    | Descrição                               |
|------------------|-----------------------------------------|
| Frequência       | 902-928 MHz Operação Half -Duplex (TDD) |
| Modo de Operação | CSS (Chirp Spread Spectrum)             |
| Protocolo        | LoRa                                    |
| GPS              | Opcional (verificar versão de produto)  |

Tabela 2: Especificações Transmissor/Receptor

| Especificação            | Descrição                              |
|--------------------------|----------------------------------------|
| Frequência               | 902.5-907 e 915-928MHz                 |
| Taxa de Dados RF         | 21.9kbps (efetivo máximo)              |
| Largura de Banda         | 125 kHz / 250kHz / 500kHz              |
| Potência de Saída        | 0.5W / +27dBm                          |
| Tolerância de Frequência | ±5.0ppm                                |
| Modulação/Espalhamento   | LoRa / CSS (125/250/500KHz)            |
| Sensibilidade (BER 0,1%) | -137dBm                                |
| Nível Máximo de Entrada  | -20 dBm operação normal / 0 dBm máximo |
| Conector                 | SMA-M                                  |



#### 2.2 Parâmetros de operação

Tabela 3: Alimentação

| Especificação          | Descrição               |
|------------------------|-------------------------|
| Tensão de Entrada      | 5 Vdc                   |
| Consumo em recepção    | 300 mA                  |
| Consumo em transmissão | 700 mA                  |
| Fonte de alimentação   | 5Vdc / 1A (Não inclusa) |
| Interface              | SPI                     |

Tabela 4: Ambiente

| Especificação                | Descrição           |
|------------------------------|---------------------|
| Temperatura de Operação      | -5 °C a +55 °C      |
| Temperatura de Armazenamento | -10℃ a +70℃         |
| Umidade                      | 95% não-condensante |

#### 2.3 Valores máximos absolutos

Os valores máximos absolutos suportados pelo LoRaWAN Gateway Radioenge estão apresentados na Tabela 5. Expô-lo além dos valores listados pode danificar permanentemente o equipamento. Para garantir a operação correta do dispositivo, ele deve trabalhar nos intervalos apresentados na Tabela 6.

Tabela 5: Valores máximos absolutos

| Parâmetro                    | Mínimo | Máximo | Unidade    |
|------------------------------|--------|--------|------------|
| Tensão de alimentação        | -0.3   | 5.5    | V          |
| Temperatura de armazenamento | -40    | 85     | $^{\circ}$ |
| Temperatura de funcionamento | -40    | 85     | $^{\circ}$ |

Tabela 6: Valores de operação

| Parâmetro                    | Mínimo | Máximo | Unidade |
|------------------------------|--------|--------|---------|
| Tensão de alimentação        | 4.6    | 5.5    | V       |
| Temperatura de armazenamento | -40    | 85     | ∞       |



#### 3 Integração/Hardware

O equipamento LoRaWAN Gateway Radioenge é voltado para trabalhando juntamente com um Raspberry Pi 3, no entanto, ele pode ser integrado a qualquer equipamento com interface SPI 3.3V. O acesso ao módulo GPS integrado à placa (opcional) pode ser feito por meio de uma interface 3.3V.

#### 3.1 Interface SPI

A interface SPI é utilizada para a comunicação com o concentrador SX1301 da Semtech. O protocolo para a comunicação é proprietário da Semtech e a utilização deve ser feita através do programa packet forwarder, disponibilizado pela Semtech.

#### 3.2 Interface UART

Os pinos das interface UART são ligados diretamente no módulo GPS (opcional).

#### 3.3 Conexões

Os pinos do módulo usam o espaçamento padrão de 2.54 mm (100 mils) e a respectiva numeração é mostrada na Figura 3 e as respectivas funções dos pinos são mostradas Tabela 7.

| labela 7. Fillos do Galeway Lonawain hadioelige |        |      |           |  |
|-------------------------------------------------|--------|------|-----------|--|
| Pino                                            | Função | Pino | Função    |  |
| 1                                               | GND    | 8    | MOSI      |  |
| 2                                               | GND    | 9    | CSN       |  |
| 3                                               | +5VCC  | 10   | NC        |  |
| 4                                               | +5VCC  | 11   | TimePulse |  |
| 5                                               | RESET  | 12   | GPSRESET  |  |
| 6                                               | SCK    | 13   | GPSRXD    |  |
| 7                                               | MISO   | 14   | GPSTXD    |  |

Tabela 7: Pinos do Gateway LoRaWAN Radioenge

As funções dos pinos do gateway LoRa® são apresentadas na Tabela 7 conforme numeração da Figura 3.



Figura 3: Pinout

A integração de hardware pode ser feita usando as dimensões em milímetros (mm) do módulo e o espaçamento entre pinos mostrados na Figura 4.





Figura 4: Dimensões do módulo em milímetros (mm)





Figura 5: Pinout RaspberryPi

Tabela 8: Pinos do Gateway LoRaWAN Radioenge

| Pino | Função    | Pino | Função    |
|------|-----------|------|-----------|
| 1    | 3V3       | 21   | SPI0 MISO |
| 2    | 5 V       | 22   | GPIO      |
| 3    | I2C SDA   | 23   | SPI0 SCLK |
| 4    | 5 V       | 24   | SPI0 CS0  |
| 5    | I2C SCL   | 25   | GND       |
| 6    | GND       | 26   | SPI0 CS1  |
| 7    | GPIO      | 27   | Reservado |
| 8    | UART0 TX  | 28   | Reservado |
| 9    | GND       | 29   | GPIO      |
| 10   | UART0 RX  | 30   | GND       |
| 11   | GPIO      | 31   | GPIO      |
| 12   | GPIO      | 32   | GPIO      |
| 13   | GPIO      | 33   | GPIO      |
| 14   | GPIO      | 34   | GND       |
| 15   | GPIO      | 35   | SPI1 MISO |
| 16   | GPIO      | 36   | SPI1 CS0  |
| 17   | 3V3       | 37   | GPIO      |
| 18   | GPIO      | 38   | SP1 MOSI  |
| 19   | SPI0 MOSI | 39   | GND       |
| 20   | GND       | 40   | SPI1 SCLK |

O equipamento LoRaWAN Gateway Radioenge já é fornecido como um *shield* para ao Raspberry Pi 3, conforme mostrado na Figura 6, a fim de facilitar a aplicação do Gateway. A junção final do LoRaWAN Gateway Radioenge ao Raspberry pi 3 pode ser observado na Figura 7.





Figura 6: LoRaWAN Gateway conforme fornecido pela Radioenge



Figura 7: Gateway LoRa acoplado ao Raspberry Pi 3

Tabela 9: Conexão entre o Gateway Radioenge e o Raspberry Pi 3

| Pino do Gateway | Função                 | Pino do Raspberry Pi 3         |
|-----------------|------------------------|--------------------------------|
| 1 ou 2          | GND                    | 6, 9, 14, 20, 25, 30, 34 ou 39 |
| 3 ou 4          | +5 V                   | 2 ou 4                         |
| 5               | Reset - Chip Selection | 26                             |
| 6               | SCK                    | 23                             |
| 7               | MISO                   | 21                             |
| 8               | MOSI                   | 19                             |
| 9               | Chip Selection         | 24                             |
| 13              | GPS RXD - UART TX      | 8                              |
| 14              | GPS RXD - UART RX      | 10                             |



#### 4 Operação

Após integrar o módulo em um hardware seguindo as informações de dimensões e pinos/sinais informados na Seção 3 deste manual, deve-se utilizar o programa "packet forward" da Semtech para inicializar o LoRaMESH Gateway. Este programa se conecta a uma porta IP via protocolo de rede UDP a um servidor de rede (NetworkServer) que montará e receberá os pacotes trafegados na rede sem fio.

A comunicação do "packet forward" com o servidor é feita através de mensagens JSON (Notação de Objetos JavaScript), onde são informados os campos relevantes para a comunicação sem fio, tais como frequência de transmissão/receptação do pacote, tamanho do payload, parâmetros LoRa, etc. Para mais informações sobre os campos do JSON, deve-se consultar o manual "LoRa gateway do network server interface definition" da Semtech.

Este dispositivo trabalha com duplexação do tipo TDD (Time Division Duplex) e o canal de operação é o mesmo para qualquer rádio de uma mesma rede. Portanto, não será possível receber dados enquanto ocorre uma transmissão. Além disto, deve-se ter como objetivo principal o uso racional do canal de operação para evitar excesso de transmissões ou transmissões desnecessárias.

# Atenção

Importante: Nunca ligue o módulo sem uma antena conectada. Isto pode implicar em danos ao módulo que não são cobertos pela garantia. O módulo não é fornecido sem antena devido à vasta possibilidade de aplicações que este módulo pode ser utilizado. Use uma antena que opera na faixa de 902 a 928MHz e que possua conector SMA-Macho. Quanto as antenas, deve-se respeitar o ganho máximo de 6dBi imposto pelo Ato nº 14448 de 04 de dezembro de 2017 da ANATEL.

Este módulo é um equipamento de radiação restrita e opera conforme a resolução ANATEL 680.

"Este equipamento não tem direito à proteção contra interferência prejudicial e não pode causar interferência em sistemas devidamente autorizados".



Para maiores informações, consulte o site da ANATEL www.anatel.gov.br.



#### 5 Contato

· Geral:

· Vendas:

• Suporte Técnico Internet das Coisas (IOT):

• Site: https://www.radioenge.com.br/contato/

• Fórum: https://forum.radioenge.com.br