How Euphemism Shapes Implicit Toxicity in Online Discourse

Shiyao Cui

The Conversational AI (CoAI) group, DCST, Tsinghua University

Background

Toxicity Content

◆ Language that is *overtly harmful, abusive, or offensive*, such as insults, threats, hate speech, harassment, or any expression intended to degrade, attack, or distress others.

Implicit Toxicity Content

◆ Language that conveys harmful or abusive intent *in subtle, indirect, or coded ways*, making it harder to detect than explicit toxicity

Cases	Type	Sentence	
#1	Explicit	You are such <i>an idiot</i> , nobody wants you here	
#2		People like you are always lazy, but I guess that's just your culture	
#3	Implicit	We need to be careful; too many 'urban youths' hanging around usually means trouble	
		Funhamism	

Background

Euphemism

◆ Terms, or phrases used to substitute more offensive terms to downplay its unpleasantness

• Where is euphemism used and for what

- ♦ Hate speech communities: evade moderation
- ◆ Youth social media (Gen Alpha): hide from parents/teachers/AI
- ◆ Political discourse: signal ideology subtly
- ◆ Everyday interaction: reduce offense / maintain politeness

Background

- Typical forms of euphemism to express toxicity
 - Jargon
 - Dow Whistle
 - Slang
 - Digital language

Reading Thieves' Cant: Automatically Identifying and Understanding Dark Jargons from Cybercrime Marketplaces

Jargon Detection: Motivation

Jargons

Innocently-looking terms that serves sinister purposes

```
(1) My fav is slayers new rat, its open source, gonna have his rootkit implemented into it.

Remote access trojan
(2) Strains i manage these days are BLUEBERRY and NYC Diesel.

Marijuana (大麻)

(3) I vouch for this user he crypted my athena code.

a botnet framework
```

Jargons propose two challenges to existing word-based moderation systems

- Word-based restrictions are easily bypassed by alternative terms for moderated words
- Euphemistic jargon has benign usages that can cause false positives

Jargon Detection: Motivation

- How to detect drug jargon detection
 - Moderation systems must be trained to evaluate words within their specific context

Step1: Dataset Construction

- **Data Cleaning:** separate training corpus into sentences; remove non-ASCII characters, HTML patterns, etc.
- **Data Filtering:** filter out longer and shorter sentences;
- **Data Splitting:** Seed Term Mentioning Sentences (STMS) and sentences without seed terms (non-STMS)
- Labeling with Negative Sampling: annotate the seed terms in the STMS; creating negative training data requires more careful sampling

Step2: Context-only Module

- Delexicalize the prediction process by masking the target word with the [MASK] token
- Calculate the probability that the masked word is drug jargon

$$\mathbf{o}_{pooled} = tanh(\mathbf{W}_1\mathbf{h}_{[CLS]} + \mathbf{b}_1)$$

$$p_c = sigmoid(\mathbf{W}_2 \mathbf{o}_{pooled})$$

Step3: Word Attribute Module

- We utilize a BERT model pretrained on the target domain as the word encoder, allowing us to utilize the context-sensitive intrinsic information of target words
- We train a feed-forward network and a classification layer that use the dynamic embeddings of the target word.

$$\mathbf{z}_{word} = \mathbf{W}_{3}\mathbf{e}_{word} + \mathbf{b}_{3}$$

$$\mathbf{o}_{word} = Dropout(tanh(LayerNorm(\mathbf{z}_{word})))$$

$$p_{w} = sigmoid(\mathbf{W}_{4}\mathbf{o}_{word})$$

Overview of the method

Jargon Detection: Results

		Redd	it Drug			Silk Ro	ad Forum	
	Precision	Recall	F1-score	# Jargon	Precision	Recall	F1-score	# Jargon
Word2Vec [23]	0.8908	0.2371	0.3746	32	0.7908	0.3277	0.4634	39
CantReader [48]	0.7778	0.1879	0.3027	17	0.7208	0.2347	0.3541	22
Zhu et al. [54]	$\overline{0.5897}$	0.2573	0.3583	17	$\overline{0.5026}$	0.4123	0.4530	27
PETD [15]	0.4760	0.2215	0.3023	28	0.5789	0.2326	0.3318	26
MLM (w/o pretrain)	0.5094	0.3043	0.3810	61	0.4569	0.2579	0.3297	57
MLM	0.5241	0.6085	0.5631	98	0.5783	0.6321	0.6040	102
DarkBERT [11]	0.5460	0.5705	0.5580	92	0.4790	0.5793	0.5244	109
GPT4o-mini [28]	0.4307	0.7919	0.5579	129	0.3920	0.7907	0.5242	137
JEDIS (w/o Neg _{STMS})	0.6052	0.6309	0.6177	105	0.5367	0.6808	0.6002	112
JEDIS (w/o pretrain&word)	0.6318	0.5951	0.6129	97	0.5368	0.6321	0.5806	104
JEDIS (w/o word)	0.6454	0.6107	0.6276	97	0.5507	0.6998	0.6164	<u>116</u>
JEDIS (w/o pretrain)	0.6475	0.5794	0.6116	92	0.5573	0.6068	$\overline{0.5810}$	101
JEDIS	0.6659	0.6197	0.6419	101	0.5805	0.6934	0.6320	113

- Word-based approaches performed better on the SilkRoad dataset than on the Reddi Drug dataset, suggesting that the two datasets might be different in the distribution of more difficult jargon terms
- The context-based methods that explicitly consider contexts generally performed better
- JEDIS performed best underscoring its superior detection converage

Jargon Detection: Error Analysis

	Example sentences	Limitations	Example words
Word2Vec [23]	I have also heard that smoking crack with weed is an amazing experience .	Cannot find euphemisms	crack, speed, weed
CantReader [48]	I've just tried it before and its niceeeeee.	Sensitive to typos	comfused, niceeeeee
Zhu et al. [54]	Same thing happened with 10mg valium + 40mg meth .	limited to BERT vocabulary	add, met, valium

- Word2Vec may not be able to effectively identify euphemisms since it assumes a single meaning for each word.
- CantReader showed low overall precision with many false positives.
- Words which are not contained in the vocabulary of BERT can not be identified

Making FETCH! Happen: Finding Emergent Dog Whistles Through Common Habitats

Dog Whistle: Background

Dog Whistle

 Expression that sends one message to an outgroup while at the same time sending a second (often taboo, controversial, or inflammatory) message to an ingroup

- Dog whistles could be slip by content moderation, toxicity filters due to the benign second meaning
- Detecting dog whistles with manually curated lexicons is labor-intensive due to dynamic evolution language

Dog Whistle: Task Formulation

- A novel task: Finding Emergent Dog Whistles in Common Habitats or FETCH!
- Formulation
 - ◆ **Input:** a corpus and a set of initial seed dog whistles
 - ◆ Output: dog whistles which are semantically similar to the seed dog whistles
 - ◆ **Task goal:** use the initial seed words and the corpus to discover other known dog whistles called the emergent dog whistles

Metrics

- We use precision, recall and F-score to measure the performance of different methods for our task.
- Precision is computed as normal, but we modify recall to normalize by only the positive terms that exist in the corpus (Data Potential Recall, DPR)

Dog Whistle: Method

EarShot

Step1: all posts in the corpora are turned into vectors using a sentence transformer

Social Media Posts Embed Posts

Nearest Neighbor Lookup

Post with known dog whistle

Step2: find the closest vector to each seed post vector (to capture posts that are likely related in meaning or intent)

Step3-1: pass all the posts to a LLM to extract the dog whistles from the posts.

LLM Direct

BERT/LLM Predict Keyword Extraction

Step3-2: pass potentially dog whistle contained posts for a keyword extractors

Dog Whistle: Experiments

EarShot (F_{0.5} Score)

- ✓ Synthetic (Reddit) refers to an idealized setting where every post contains an associated dog whistle
- ✓ Balanced (Gab) represents a context with a higher-than-average prevalence of dog whistles
- ✓ Realistic (Twitter) reflects a typical online environment where dog whistles are sparse and most are benign

Method	Synthetic	Balanced	Realistic
Word2Vec/Phrase2Vec	5.91	1.86	2.47
EPDSpanBERT	2.03	0.00	0.61
MLMBERTweet	1.14	0.28	0.58
EarShot-Predict	14.55	5.70	4.63
EarShot-Direct	23.29	3.52	0.00

Dog Whistle: Analysis

- EarShot (F_{0.5} Score)
 - Synthetic: Word2Vec model finds very simplistic dog whistles like pepe (另类右翼), autogynophilia (跨性别变态), 13/50 (黑人犯罪), npc (没有灵魂的工具人), while our method is able to capture more complex phraseology like middle class (被当作选票对象的特定收入群体), climate alarmists (小题大做、夸大气候危机)
 - Realistic: Earshot achieves high precision. It identifies only explicit terms like illegal aliens (非法移民) while W ord2Vec found some, like pedophilia (原指恋童癖,引申为极度负面的指控、抹黑), but struggles with false positives.
 - Balanced: Word2Vec identifies subtler and novel dog whistles (e.g., gibsmedats (五化黑人群体贪婪、依赖福利), we wuz kangs (暗示黑人夸大历史成就), while our method focuses on explicit slurs like kike (反犹主义), faggotry (贬低 LGBTQ+ 群体)

Dog Whistle: Challenging Ones and Future

Challenges

- ◆ First, emoji-based dog whistles were difficult to find
- Second, context dependency and deliberate ambiguity posed significant challenges
- ◆ Third, recency presented an issue

Future

- ◆ First, complex, nuanced, and recent phrases frequently escape discovery
- Second, the dependence on hate speech classifiers tends to prioritize explicit slurs while overlooking subtler forms of harmful language
- ◆ Third, the inherent precision-recall tradeoff presents substantial challenges

WATCHED: A Web AI Agent Tool for Combating Hate Speech by Expanding Data

Slang: Background

Slang

• a common type of informal language that is ubiquitous across day-to-day conversations

- · nigger / nigga —— 针对黑人的最常见仇恨词
- chink —— 辱骂华裔或东亚人
- gook —— 辱骂东南亚人(尤其越南)
- spic —— 针对拉丁裔/西班牙裔
- · paki —— 在英国语境中贬低巴基斯坦裔或南亚人

Existing systems struggle with implicit language, slang, sarcasm, and context, and often lack interpretability

Slang: Method

• Workflow

we use the *pydantic ai* framework, defining an Agent, configured with a custom system prompt.

- Invoke external tools and APIs: call external functions or APIs when necessary to overcome LLM limitations
- Incorporate external results into reasoning: The retrieved information is integrated into the model's reasoning process,
- Iteratively refine prompts: Agents continuously adjust and improve their prompts based on new information to enhance task performance.
- Adapt behavior dynamically: By responding to feedback and context, agents adjust their reasoning and actions over time for better adaptability.

Slang: Method

Components

Human Feedback

- Hate Speech Classifier: MetaHateBERT
- Similar Posts: Agentic Retrieval-Augmented Generation (RAG) system to fetch similar examples to the users' input query
- Urban Dictionary: invokes a distilled large language model fine tuned for this task to support reasoning for hate speech classification
- Social Network Guidelines: content mod eration guidelines from major social networks, supplementing the reasoning models

Slang: Results

	F1	$F1_{MICRO}$	$F1_{MACRO}$
Llama 3 8b $(Few ext{-}Shot\ Co\ T)$	0.8219	0.8221	0.8152
Llama 3 70b $(Few ext{-}Shot\ Co\ T)$	0.8542	0.8536	0.8496
Distil MetaHate $[\![32 \!]$	0.8826	0.8816	0.8807
MetaHateBERT [31]	0.8836	0.8831	0.8801
Perspective API 44	0.8061	0.8066	0.7985
WATCHED	0.9168	0.9165	0.9139

	F1	$F1_{MICRO}$	$F1_{MACRO}$
no tools	0.8148	0.8184	0.8053
w/o Hate Speech Classifier	0.8608	0.8598	0.8571
w/o Similar Posts	0.8786	0.8789	0.8733
w/o Urban Dictionary	0.8784	0.8780	0.8753
w/o Reasoning	0.8887	0.8882	0.8853
WATCHED	0.9168	0.9165	0.9139

 The removal of similar posts and urban dictionary also leads to noticeable performance drops, highlighting the importance of contextual grounding and slang understanding.

Slang: Case

IRLab - Hate Speech Detection

- Human-in-the-loop feedback supports
 studies on the evolution of hateful discourse,
 the effectiveness of interventions
- AI adaptability to new linguistic and cultural trends

Understanding Gen Alpha's Digital Language: Evaluation of LLM Safety Systems for Content Moderation

Gen Alpha's Digital Language: Background

Gen Alpha (Generation Alpha)

◆ refers to the generation of people born roughly between 2010 - 2025. They are the first generation to grow up entirely in a digital world, often described as "digital natives."

Platform	Category	Examples
Social Media	Status expressions Self-referential Behavioral	"in my flop era" "having my glow up" "gaslight gatekeep girlboss"
Gaming	Achievement Performance Social dynamics	"secured the bag" "ate that up" "got ratioed"
Video	Quality descriptors Reaction phrases Trend markers	"fire", "hits different" "And I oop" "English or spanish"

• Gen Alpha experiences a fundamental disconnect between their communication patterns and traditional protection mechanisms

Gen Alpha's Digital Language: Challenges

- Gen Alpha (Generation Alpha)
 - ◆ **Digital Immersion Vulnerability**: Gen Alpha's deep digital immersion makes them vulnerable to manipulation, as their digital skills often prevents them from seeking adult help.
 - ◆ Moderation Gap: A moderation gap arises because adults and systems struggle to keep pace with Gen Alpha's fast-evolving language, leaving harmful interactions unnoticed.
 - ◆ AI Safety Limitations: AI moderation systems fail to fully grasp Gen Alpha's unique communication, creating safety risks that neither humans nor AI can reliably address.

Research goal: Understanding how AI systems interpret and moderate Gen Alpha's unique communication patterns

Gen Alpha's Digital Language: Dataset

Dataset

- Systematic observation of digital platforms where Gen Alpha users frequently interaction
- Our dataset comprises 100 contemporary Gen Alpha expressions:

Туре	Expression	Dimensional Analysis
Context Dependent	"let him cook"	Platform: Gaming (skill praise), Social (general encouragement), Video (entertainment value) Safety: Context determines supportive vs. mocking intent Evolution: Shifted from cooking reference to performance evaluation
Masked Ha- rassment	"are you fr"	Platform: Similar usage across platforms but with varied intensity Safety: Provides plausible deniability in bullying interactions Evolution: From genuine question to dismissive response
Evolution Based	"sigma"	Platform: Primarily gaming, spreading to broader social contexts Safety: Growing negative connotations in specific communities Evolution: Personality type → gaming skill → discriminatory marker

- Context (Platform) Awareness focuses on how meaning changes across platforms, e.g., gaming, social media.
- Safety Awareness identifies potentially harmful usage patterns.
- Evolution Awareness tracks how expressions evolve across digital spaces.

Gen Alpha's Digital Language: Evaluation

• Evaluation

Component	Parameters	Implementation
Participant Groups	 Gen Alpha (11-14y) Human moderators/ parents LLMs (4) 	Balanced representa- tion across demograph- ics and expertise levels
Evaluation Tasks	Basic understandingPlatform (context)Safety	Each expression evaluated across all three dimensions with multiple raters
Assessment Metrics	Meaning recognitionPlatform recognitionSafety (risk)identification	Quantitative scoring with qualitative vali- dation through expert review
Model Testing GPT-4, Claude, Gemini, and Llama 3	 Standardized prompt template Multiple evaluation contexts Cross-validator raters 	Statistical significance evaluated using chisquare tests ($\alpha = 0.05$)

Group	Basic	Context	Safety
Gen Alpha	98.0	96.0	92.0
Parents	68.0	42.0	35.0
Moderators	72.0	45.0	38.0
GPT-4	64.2	52.3	38.4
Claude	68.1	56.2	42.3
Gemini	62.4	48.7	36.2
Llama 3	58.3	42.1	32.5

- Gen Alpha mastery
- Adult comprehension limitations
- AI systems demonstrated comparableper show potential complementary roles in content moderation.
- Basic Understanding: Explain meaning in online communication
- Context Awareness: Explain how might the meaning vary across platforms
- Safety Recognition: Identify potential safety concerns

Gen Alpha's Digital Language: Discussion

How implicit the corresponding risks are in a given Gen Alpha expression

Risk Type	Sub- Category	Example Expression	Content Modera- tion Implications
Direct Risks	Overt bullying Direct exclusion Status attacks	"you're such a pick me" "NPC behavior" "beta male behavior"	Explicit social exclusion tactics Dehumanizing language patterns Hierarchy-based harassment
Masked Risks	Coded harassment Subtle manipulation Social pressure	"is it acoustic" "let him cook" (mocking) "you're not him"	Discriminatory content masked as inquiry Context-dependent negativity Peer pressure through trending phrases
Grooming Indicators	Trust building Isolation attempts Secret- keeping	"you passed the vibe check" "they're not giv- ing" "keep it lowkey"	False sense of security creation Social separation tactics Privacy boundary manipulation

- **Direct Risks:** Overtly harmful content such as bullying, threats, or hate speech with explicit negative intent.
- Masked Risks: Harassment or exclusion concealed through slang, memes, or humor; requires contextual inference
- **Grooming Indicators:** Expressions that gain harmful con notation over time or through plat form migration.

Model	Direct Risks	Masked Risks	Evolution-Based
GPT-4	72.4	45.6	38.2
Claude	75.8	48.9	41.5
Gemini	69.3	42.8	35.7
Llama 3	65.7	38.4	32.3

The evolving digital languages are much challenging.

Conclusion

Typical forms of Euphemism to express toxicity

Types	Definition	Examples
Jargon	Seemingly neutral terms with hidden harmful intent	RatRemote access trojan
Dog whistle	One phrase, two audiences — neutral outwardly, inflammatory inwardly	cosmopolitan
Slang	informal language common in everyday talk	nigger
Digital language	online-born expressions shaped by internet culture	in my flop era

- Jargon vs. Dog whistle
 - ◆ 相似点:都有"圈内人懂、圈外人不懂"的特征
 - ◆ 不同点: Jargon有很多中性的用法,用于专业沟通; dog whistle 则主要是隐含政治/社会意义的表达
- Slang vs. Digital language
 - ◆ 相似点:都是非正式语言,很多网络用语就是slang
 - ◆ 不同点: digital language更依赖于互联网环境和数字媒介,不仅是文本,还可能有表情符等

Conclusion

- Characteristics of Euphemism
 - ◆ **Surface Neutrality** (字面中性): Euphemisms appear harmless or neutral on the surface, reducing direct offensiveness.
 - ◆ Diverse Forms (表达形式多): They can take multiple forms, including abbreviations, memes, or emojis.
 - ◆ Knowledge Dependence (依赖特定知识或背景): Their meaning often relies on shared knowledge, cultural background, or insider understanding.
 - ◆ **Dynamic Evolution**(动态演进): Euphemisms constantly shift and adapt over time, especially when older terms are exposed or lose effectiveness.

Conclusion

- Challenges to identify implicit toxicity expressed with euphemism
 - ◆ **Detection Difficulty** (Surface Harmlessness): Euphemisms often look neutral or benign, making them hard to flag with standard moderation filters.
 - ◆ **Coverage Limitation** (Form Diversity): They appear in many forms like misspellings, abbreviations, memes, emojis, creating a wide variety of expressions to track.
 - ◆ **Interpretation Ambiguity** (Context Dependence): Their meaning depends heavily on cultural background, shared knowledge, or specific community context, which can confuse moderators and AI systems.
 - ◆ **Adaptation Lag** (Dynamic Evolution): Euphemisms evolve quickly as users invent new terms to evade detection, outpacing the update cycles of moderation tools.

Thanks for your attention!

Ref

- 1. USENIX18: Reading Thieves' Cant: Automatically Identifying and Understanding Dark Jargons from Cybercrime Marketplaces
- 2. USENIX24: Investigating Moderation Challenges to Combating Hate and Harassment: The Case of Mod-Admin Power Dynamics and Feature Misuse on Reddit
- 3. ACL 25: Making FETCH! Happen: Finding Emergent Dog Whistles Through Common Habitats
- 4. ACL 24: Silent Signals, Loud Impact: LLMs for Word-Sense Disambiguation of Coded Dog Whistles
- 5. ACL 25 Findings: STATE ToxiCN: A Benchmark for Span-level Target-Aware Toxicity Extraction in Chinese Hate Speech Detection
- 6. ACL 23: From Dogwhistles to Bullhorns: Unveiling Coded Rhetoric with Language Models
- 7. Chinese Harm-Bench: A Chinese Harmful Content Detection Benchmark
- 8. https://swu-union.org.uk/wp-content/uploads/SWU-blog-series-Dog-Whistles-2023.pdf
- 9. Understanding Gen Alpha's Digital Language: Evaluation of LLM Safety Systems for Content Moderation https://arxiv.org/pdf/2505.10588
- 10. Toward Informal Language Processing: Knowledge of Slang in Large Language Models. NAACL-2024
- 11. Covering Cracks in Content Moderation: Delexicalized Distant Supervision for Illicit Drug Jargon Detection (KDD)
- 12. Watch Your Language: Investigating Content Moderation with Large Language Models (https://arxiv.org/pdf/2309.14517)
- 13. WATCHED: A Web AI Agent Tool for Combating Hate Speech by Expanding Data (https://arxiv.org/pdf/2509.01379)
- 14. From dogwhistles to bullhorns: Unveiling coded rhetoric with language models. ACL 2023
- 15. ACL 23: Facilitating Fine-grained Detection of Chinese Toxic Language: Hierarchical Taxonomy, Resources, and Benchmarks