EarthQuake Analysis

Introduction

This project aims to develop a big data analytics pipeline for earthquake prediction using various big data technologies, including PySpark, MLlib, Power BI, and MongoDB. By leveraging these tools, we aim to create a robust pipeline for processing earthquake data, training predictive models, and visualizing insights through reports and dashboards.

Problem Statement

The primary objective of this project is to create a predictive model to forecast the likelihood of earthquakes based on historical earthquake data spanning from 1965 to 2016

We will initially work with sample data to develop and validate the model. The pipeline involves the following steps:

Data Preprocessing: Transforming raw earthquake data into summary tables suitable for model training.

Model Training: Utilizing MLlib to train predictive models based on historical earthquake data.

Prediction: Using trained models to predict future earthquakes.

Data Storage: Writing the final datasets to MongoDB for storage and retrieval.

Data Analysis and Visualization: Building reports and dashboards in Power BI Desktop to analyze and visualize insights derived from the earthquake data.

Dataset Details

Database.csv: This file will be the source file containing earth quake details

Steps Performed

- A. Data Loading and Data Pre-Processing
 - 1.Load the dataset containing earthquake details
 - 2.Drop the columns which are not required
 - 3.Extract the year component from the date field in the dataframe and create a new column to store the year information
 - 4. Build the quakes frequency dataframe using the year field and counts for each year
 - 5. Check the schema and convert relevant fields from string to numeric datatype as necessary
 - 6.Calculate the average and maximum magnitude of earthquakes add to df_quake_freq
 - 7. Write dataframes to mongodb

B. Model Training

Utilizing PySpark's MLlib to train machine learning models, such as random forests on the preprocessed earthquake data and then evaluate model performance using appropriate metrics, such as accuracy, precision, and recall.

- 8.Load the earthquake test data
- 9.Load the training data from mongodb and Perform the data cleansing activity
- 10.Create testing and training dataframes
- 11.Import the relevant modules for machine learning, create model and evaluate it

C. Prediction

Use the trained models to predict the likelihood of future earthquakes based on input data.

- 12.Create the prediction Dataset
- D. Data Storage
 - 13.Load the Prediction dataset to Mongodb
- E. Data Analysis and Visualization
 - 14. Connect Power BI to the MongoDB instance containing the prediction tables
 - 15. Create a report in Power BI which will showcase the different metrics and predictions.

Implementation Details

A. Data Loading and Data Pre-Processing

Dataset containing earth quake details are uploaded into Filestore of databricks /dbfs/FileStore/ProjectPyspark

1.Load the dataset containing earthquake details

Sample data:

Date='01/02/1965', Time='13:44:18', Latitude='19.246', Longitude='145.616', Type='Earthquake', Depth='131.6', Depth Error=None, Depth Seismic Stations=None, Magnitude='6', Magnitude Type='MW', Magnitude Error=None, Magnitude Seismic Stations=None, Azimuthal Gap=None,

Horizontal Distance=None, Horizontal Error=None, Root Mean Square=None, ID='ISCGEM860706', Source='ISCGEM', Location Source='ISCGEM', Magnitude Source='ISCGEM', Status='Automatic'

2.Drop the columns which are not required

3.Extract the year component from the date field in the dataframe and create a new column to store the year information

4.Group the dataframe by the year field and calculate the count of earthquakes for each year to create a summary dataframe

5. Check the schema and convert relevant fields from string to numeric datatype as necessary.

6.Calculate the average and maximum magnitude of earthquakes and for each year and add these fields to the earthquake frequency DataFrame

```
✓ 05:21 AM (4s)
   # Create avg magnitude and max magnitude fields and add to df_quake_freq
   df_max_avg = df_loaddb.groupBy('Year').agg(max('Magnitude').alias('Max_Magnitude'),avg('Magnitude').alias('Avg_Magnitude'))
   df_max_avg.show(5)
  • 🔳 df_max_avg: pyspark.sql.dataframe.DataFrame = [Year: integer, Max_Magnitude: double ... 1 more field]
 |Year | Max Magnitude | Avg Magnitude |
 only showing top 5 rows
    ✓ 05:21 AM (6s)
  # Join df_max_avg to df_quake_freq
  df_quake_freq=df_quake_freq.join(df_max_avg,'Year')
  # Preview df_quake_freq
  df_quake_freq.show(5)
▶ (4) Spark Jobs
 • 🔳 df_quake_freq: pyspark.sql.dataframe.DataFrame = [Year: integer, Counts: long ... 2 more fields]
|Year|Counts|Max_Magnitude| Avg_Magnitude|
| 1990 | 196 | 7.6|5.858163265306125 | 1975 | 150 | 7.8| 5.84866666666667 | 1977 | 148 | 7.6|5.757432432432437 | 2003 | 187 | 7.6|5.850802139037435 | 2007 | 211 | 8.4 | 5.89099526066351 |
+---+
only showing top 5 rows
```


7. Write data frames to Mongo Db

To establish a connection from databricks to mongodb we need to install mongo-spark connector library.

Write dataframe containing earthquake details and the earthquake frequency summary dataframe to MongoDB

```
# Build the tables/collections in mongodb
# Write df_loaddb to mongodb

df_loaddb.write.format('mongodb')\
.mode('overwrite')\
.option("spark.mongodb.connection.uri", "mongodb+srv://
.option("database", "Quake")\
.option("collection", "quakes")\
.save()

v (1) Spark Jobs
v Job 32 View (Stages: 1/1)
Stage 48 1/1 succeeded View
```

Mongodb:

Machine Learning

- B. Model Training
- 8.Load the Load the Earthquake Test Data.

Query.csv file stored in the HDFS contains the earthquake test data

Sample

time,latitude,longitude,depth,mag,magType,nst,gap,dmin,rms,net,id,updated,place,type,horizontalError,depthError,magError,magNst,status,locationSource,magSource 2017-01-02T00:13:06.300Z,-36.0365,51.9288,10,5.7,mwb,,26,14.685,1.37,us,us10007p5d,2017-03-27T23:53:17.040Z,"Southwest Indian Ridge",earthquake,10.3,1.7,0.068,21,reviewed,us,us

Section: Machine Learning with Spark

```
# Load the test data file into a dataframe

df_test = (spark.read

.format("csv")
.option("header", "true")
.load("dbfs:/FileStore/ProjectPyspark/query.csv")
)

# Preview df_test

df_test.take(1)

* (2) Spark Jobs

Image: dataframe.DataFrame = [time: string, latitude: string ... 20 more fields]

[Row(time='2017-01-02T00:13:06.3002', latitude='-36.0365', longitude='51.9288', depth='10', mage'5.7', magType='mwb', nst=None, gap='26', dmin='14.685', rms='1.37', net='us', ide'us10007p5d', updated='2017-03-27T23:53:17.0402', place='Southwest Indian Ridge', type='earthquake', horizontalError='10.3', depthError='1.7', magError='0.068', magNst='21', status='reviewed', locationSource='us', magSource='us')]
```

9.Load the training data from mongodb and Perform the data cleansing activity such as selecting only required fields, Renaming fields, casting specific fields to the desired datatype

10. Create testing and training dataframes

11.Import the relevant modules for machine learning and create model and evaluate it

Random Forest Regressor

VectorAssembler

RegressionEvaluator

Select features to parse into model and then create the feature vector. After that create and train the model and make the predictions.

```
✓ 06:38 AM (1s)
from pyspark.ml import Pipeline
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.evaluation import RegressionEvaluator
                                                                                                                            Python []
# Select features to parse into our model and then create the feature vector
assembler = VectorAssembler(inputCols=['Latitude', 'Longitude', 'Depth'], outputCol='features')
# Create the Model
model_reg = RandomForestRegressor(featuresCol='features', labelCol='Magnitude')
# Chain the assembler with the model in a pipeline
pipeline = Pipeline(stages=[assembler, model_reg])
# Train the Model
model = pipeline.fit(df_training)
# Make the prediction
pred_results = model.transform(df_testing)
▶ ■ pred_results: pyspark.sql.dataframe.DataFrame = [Latitude: double, Longitude: double ... 4 more fields]
```


Evaluate the model.rmse and it should be less than 0.5 for the model to be useful

```
# Evaluate the model
# rmse should be less than 0.5 for the model to be useful
evaluator = RegressionEvaluator(labelCol='Magnitude', predictionCol='prediction', metricName='rmse')
rmse = evaluator.evaluate(pred_results)
print('Root Mean Squared Error (RMSE) on test data = %g' % rmse)

1 Spark Jobs

Root Mean Squared Error (RMSE) on test data = 0.403077
```

C. Prediction

12.Create the prediction Dataset

```
Just now (1s)
                                                                                                                 Python []
  # Create the prediction dataset
  df_pred_results = pred_results['Latitude', 'Longitude', 'prediction']
  # Rename the prediction field
  df_pred_results = df_pred_results.withColumnRenamed('prediction', 'Pred_Magnitude')
  # Add more columns to our prediction dataset
  df_pred_results = df_pred_results.withColumn('Year', lit(2017))\
     .withColumn('RMSE', lit(rmse))
  # Preview df_pred_results
  df_pred_results.show(5)
(1) Spark Jobs
 • 🔳 df_pred_results: pyspark.sql.dataframe.DataFrame = [Latitude: double, Longitude: double ... 3 more fields]
+-----
|Latitude|Longitude| Pred_Magnitude|Year|
                                                     RMSE
 +----+-----
|-36.0365| 51.9288| 5.850136724800972|2017|0.40307689171713734|
  -4.895 | -76.3675 | 5.869637793167875 | 2017 | 0.40307689171713734 |
|-23.2513| 179.2383| 5.896591561887881|2017|0.40307689171713734|
| 24.0151| 92.0177| 5.931774818629581|2017|0.40307689171713734|
|-43.3527| -74.5017|5.9204458792780486|2017|0.40307689171713734|
only showing top 5 rows
```

D. Data Storage

13.Load the Prediction dataset to Mongodb

```
▶ ✓ ✓ Just now (4s)
                                                                                                               Python []
  # Load the prediction dataset into mongodb
  # Write df_pred_results
  df_pred_results.write.format('mongodb')\
     .mode('overwrite')\
     .option("spark.mongodb.connection.uri", "mongodb+srv:/
                                                                               tlusteredu.vazezro.mongodb.net/")
     . {\tt option("database","Quake")} \setminus
     . {\tt option("collection","pred\_results")} \setminus
     .save()
▶ (1) Spark Jobs
■ Quake (3)

■ pred_results (397)

          ■ schema
           validator (empty)

■ indexes (1)

              id (28.0KB)
    p quake_freq (52)
    p quakes (23.4K)
```

E. Data Analysis and Visualization

14. Connect Power BI to the MongoDB instance containing the prediction tables

https://www.mongodb.com/docs/atlas/data-federation/query/sql/powerbi/connect/#std-label-sql-connect-powerbi

15.Create a report in Power BI which will showcase the different metrics and predictions.

Earthquake Analysis - Detail										
Category										
Danger	Year	Date	Category	Latitude	Longitude	Magnitude	Depth	Туре	Magnitude Type	ID
Extreme Danger	2006	01/02/2006	Danger	-60.96	-21.61	7.40	13.00	Earthquake	MWC	USP000E7DD
Moderate	2003	08/04/2003	Danger	-60.53	-43.41	7.60	10.00	Earthquake	MWC	USP000C41F
Normal	1970	06/11/1970	Danger	-59.23	158.90	7.30	15.00	Earthquake	MW	ISCGEM794513
	1987	09/03/1987	Danger	-58.89	158.51	7.40	33.00	Earthquake	MW	USP000381S
	1965	08/02/1965	Danger	-56.05	157.92	7.30	10.00	Earthquake	MW	ISCGEM854292
	1971	01/03/1971	Danger	-55.92	-2.67	7.10	15.00	Earthquake	MW	ISCGEM787884
9201	2008	04/12/2008	Danger	-55.66	158.45	7.10	16.00	Earthquake	MWC	USP000G3Q9
Total Earthquakes	2015	12/04/2015	Danger	-47.62	85.09	7.10	35.00	Earthquake	MWW	US100043Z2
	1979	10/12/1979	Danger	-46.68	165.71	7.40	33.00	Earthquake	MS	USP00013CK
	2001	12/12/2001	Danger	-42.81	124.69	7.10	10.00	Earthquake	MWC	USP000AUFX
5.89	2011	01/02/2011	Danger	-38.36	-73.33	7.20	24.00	Earthquake	MWW	USP000HSFQ
Average Magnitude	1975	05/10/1975	Danger	-38.18	-73.23	7.70	6.00	Earthquake	MS	USP0000AZ9
	1995	02/05/1995	Danger	-37.76	178.75	7.10	21.10	Earthquake	MW	USP0006SEF
	1985	04/09/1985	Danger	-34.13	-71.62	7.20	37.80	Earthquake	MW	USP0002DM4
9.10	1985	03/04/1985	Danger	-33.21	-71.66	7.40	33.00	Earthquake	MW	USP0002CD3
	1985	03/03/1985	Danger	-33.14	-71.87	8.00	33.00	Earthquake	MW	USP0002CCZ
Maximum Magnitude	1971	07/09/1971	Danger	-32.60	-71.08	7.80	60.30	Earthquake	MW	ISCGEM782010
	1978	02/09/1978	Danger	-30.68	-177.36	7.20	33.00	Earthquake	MS	USP0000SWB
	2001	06/03/2001	Danger	-29.67	-178.63	7.20	178.10	Earthquake	MWC	USP000AFYG
	2011	07/06/2011	Danger	-29.54	-176.34	7.60	17.00	Earthquake	MWW	USP000J48H
	1995	07/03/1995	Danger	-29.21	-177.59	7.20	35.30	Earthquake	MWB	USP000702Z
	1974	07/02/1974	Danger	-29.08	-175.95	7.20	33.00	Earthquake	MS	USP00006ZM
	1983	10/04/1983	Danner	-26 54	-70 56	7.40		Farthouake	MW	LISPONO1YTI

Conclusion

In this project, we have developed a comprehensive big data analytics pipeline for earthquake prediction using PySpark, MLlib, Power BI, and MongoDB. The pipeline encompasses various stages, including data loading, preprocessing, model training, prediction, data storage, and analysis/visualization.