Transformations of Quadratic Functions - Worksheet

MCR3U Jensen

1) For each of the following graphs:

- i) describe the transformations in order (a \rightarrow k \rightarrow d \rightarrow c)
- ii) create a table of values for the transformed function
- iii) graph the transformed function

x y	Key points for $y = x^2$			
	x	y		

a)
$$y = -x^2 + 2$$

b)
$$y = (x - 3)^2 + 1$$

c)
$$y = 2x^2 - 5$$

d)
$$y = -3(x+1)^2$$

e)
$$y = -(x+2)^2 + 4$$

f)
$$y = -\frac{1}{2}x^2$$

2) For each function g(x):

- i) describe the transformations from the parent function $f(x) = x^2$ ii) create a table of values of image points for the transformed function
- iii) graph the transformed function and write its equation

a)
$$g(x) = -2f\left[\frac{1}{2}(x+2)\right]$$

b)
$$g(x) = 4f(x-3) - 2$$

c)
$$y = 2f(x+4) - 3$$

d)
$$y = \frac{1}{2}f[-2(x+2)] - 3$$

