

http://workcraft.org/

Overview

- Verification-driven design of circuits based on formal graph models.
- Graphical frontend for visual editing, analysis, simulation and verification.
- Interoperability between different abstraction levels using Petri nets as a common language.
- Established backend tools for synthesis and model checking (Petrify, MPSat).
- Open source code and plugin-based architecture for new graph formalisms and analysis tools.

Workcraft in Action

Modelling and verification of concurrent algorithms with Petri Nets.

 Specification and synthesis of speed-independent controllers based on Signal Transition Graphs and Circuit Petri nets.

Designing instruction decoders with Conditional Partial Order Graphs.

 Modelling self-timed pipelines with Spread-token and Counterflow execution semantics using Dataflow Structures.

Supported Models

Model

	 - Cillianation	Tomioun	Cynanoone	J
Directed Graph] 5
Finite State Machine				eha
Petri Net				viou
Policy Net [1]] 득
Digital Timing Diagram				ွှ
Finite State Transducer				ema
Signal Transition Graph [2]				nantio
Conditional Partial Order Graph [3]				CS
Structured Occurrence Net [4]] =
Dataflow Structure [5]				forr
Digital Circuit [6]				nati
xMAS Circuit [7]				On I

Simulation Verification Synthesis

- [1] J. Fernandes, et al: "Persistent and nonviolent steps and the design of GALS systems", Fundamenta Informaticae, 2015 [2] A. Yakovlev, et al: "A unified signal transition graph model for asynchronous control circuit synthesis", ICCAD, 1992
- [3] A. Mokhov, A. Yakovlev: "Conditional partial order graphs: model, synthesis and application", IEEE Trans. Computers, 2010
- [4] M. Koutny, B. Randell: "Structured occurrence nets: a formalism for aiding system failure prevention and analysis techniques", Fundamenta Inf., 2009
- [5] I. Poliakov, et al: "Automated verification of asynchronous circuits using circuit Petri nets", ASYNC, 2008
- [6] D.Sokolov, et al: "Analysis of static data flow structures", Fundamenta Inf., 2008 [7] F. Burns, et al: "GALS synthesis and verification for xMAS models", DATE, 2015
- [8] D.Sokolov, et al: "Benefits of asynchronous control for analog electronics: multiphase buck case study", DATE, 2017 (paper 12.6.1)

