Cauê Castro Mendes Costa Rezende -

Gustavo de Morais -

João Pedro Duarte Silva -

Nicolas Nunes dos Santos -

Pedro Henrique Lacerda dos Santos -

Rian de Oliveira Ferrari -

O "Meats Control" é um projeto, da empresa TermoGuard, voltado para o controle de temperatura de frigoríficos para evitar que a carne perca a qualidade. O processo de resfriamento da carne deve ocorrer de forma rápida após o abate do animal, e nesse resfriamento deve ser mantido uma temperatura e umidade específica para manter essa qualidade. Os frigoríficos e no varejo, os supermercados enfrentam desafios semelhantes para manter a temperatura adequada em seus refrigeradores e geladeiras.

Para que as empresas não percam produtos por essa falta de regulação e controle de temperatura, após estudos, foram encontrados 3 métodos para conservar a qualidade dessa carne utilizando a temperatura, são eles:

- Método usual: a temperatura da câmara é mantida entre 0 a 4°C. Carcaças bovinas atingem 10°C em 24 horas e de 0 a 4°C em 48 horas. Carcaças suínas atingem 10°C em 12 horas e 0°C em 24 horas. A perda de peso estimada é de 2,0 a 2,5%.
- Método rápido: a temperatura da câmara é mantida de -1 a 2°C, com umidade relativa (UR) de 85-90% e velocidade de circulação de ar de 2 a 4 m/s. As carcaças de bovinos atingem temperaturas iguais ou inferiores a 4°C em 18-24 horas e suínos entre 12-16 horas. A perda de peso estimada é de 1,8%.
- Método super-rápido ou shock: inicialmente as carcaças são mantidas por 2 horas em antecâmaras com temperaturas de -8 a -5°C, UR de 90%, e velocidade de circulação de ar de 2 a 4 m/s. A seguir são transferidas para câmara a 0°C, UR de 90% e velocidade de circulação de ar de 0,1m/s. A duração do resfriamento (para atingir < 4°C) é de 12 a 18 horas para bovinos e 8 a 12 horas para suínos. A perda de peso estimada é de 1,3 a 1,4%.

O método mais usado é justamente o usual, onde a temperatura deve ser mantida entre 0° e 4°C. Por isso o Meats Control funciona com base nesse método. Utilizando sensores de temperatura dentro do frigorifico ou câmara escolhido pelo cliente, conseguimos monitorar de maneira

remota a temperatura do local escolhido e caso aconteça algum imprevisto com a temperatura e umidade, será enviado alertas antes da temperatura passar os 4°C máximos ou o 0°C mínimo, para que seja resolvido o problema e o cliente não perca nenhum de seus produtos.

Exemplificando:

UMIDADE								
CRÍTICO	ALERTA	IDEAL	ALERTA	CRÍTICO				
80% UR	84%UR	87,4% UR	92,85% UR	95,13% UR				
		TEN 1050 1	TUDA					
TEMPERATURA								
CRÍTICO	ALERTA	IDEAL	ALERTA	CRÍTICO				
0°C	0,07°C	1,43°C	2,95°C	4°C				

Para isso, iremos utilizar um sensor DHT11 que consegue medir temperatura e umidade, de excelente qualidade. Que trabalha numa faixa de 0 a 50°C e uma umidade de 20% a 80%, como visto na tabela seguinte:

Alimentação	3V ~ 5V		
Temperatura (Mín. / Máx.)	0°C / +50°C		
Precisão de temperatura	±2°C		
Umidade (Mín. / Máx.)	20% / 80%		
Precisão de umidade	0.05		
Razão de leitura	1 Hz		
Dimensões (C x L x A)	5,5mm x 12mm x 15,5mm		
Quantidade de pinos	4		

Abaixo seguem as equações dos dados coletados com os sensores na sala de aula:

			Umidade						
Umidade			Posição	Descrição alerta	Faixa alerta	Cor alerta			
Q0	0.022	Mínimo	80.023	Alerta umidade baixa crítica	≤ 80,023				
Q1	0.07325	1º quartil	83.9815	Alerta umidade abaixo do esperado	80, 024 - 83,9815				
Q2	1.4365	Mediana	87.394	Umidade ideal	83,9816 - 87,394				
Q3	2.9535	2º quartil	92.854	Alerta umidade acima do esperado	87,395 - 92,854				
Q4	3.999	Máximo	95.129	Alerta umidade alta crítica	≥ 95,129				
Temp			Temperatura						
Q0	80.023		Posição	Descrição alerta	Faixa alerta	Cor alerta			
Q1	83.9815	Mínimo	0.022	Alerta temperatura baixa crítica	≤ 0,022				
Q2	87.394	1º quartil	0.073	Alerta temperatura abaixo do esperado	0,023 - 0,073				
Q3	92.854	Mediana	1.436	Temperatura ideal	0,074 - 1,436				
Q4	95.129	2º quartil	2.953	Alerta temperatura acima do esperado	1,437 - 2,953				
		Máximo	3.999	Alerta temperatura alta crítica	≥ 3,999				