ERIC SOLOMON

FULLSTACK ENGINEER & DATA SCIENTIST

EXPERIENCES

2018 2019

Fullstack Engineer

Boid: Social Supercomputer

- Smart contract development
- · Design, implementation, and management of EOSIO-based system for managing a medium-scale distributed computing cluster

2016 2018

Graduate Research Assistant

Alfred Gessow Rotorcraft Center

♥ College Park, Maryland

- · Investigations into aerial robotics, control systems, and artificial intelligence
- Design and application of small-scale, intelligent aerial vehicles using solely on-board processors, including experimentation with optic-flow and reinforcement learning for vehicle control

SELECTED PROJECTS

2020

Concierge Intranet Manager

Personal project

{ Apache, Docker, Drupal, Go, GraphQL, HTML5, NodeJS, PostgreSQL, ReactJS, SCSS, }

- · Role-based, JAMstack-inspired process management system for local compute clusters to optimize usage of limited compute resources
- · Go-PostgreSQL-libcontainer server for container management with JWT-based authentication
- · ReactJS frontend, using functional components with hooks and context, and incorporating modern SCSS styling techniques

2018 2019

BOID-EOS

Roid

{ C++11, NodeJS, PostgreSQL, Docker, }

- · Distributed database schema for managing Boid-associated computers and their computational contributions to the Boid distributed compute cluster
- · Advanced, stake-based cryptocurrency on EOSIO mainnet blockchain
- API for querying BOID for auditing accounts and determining user involvement

2018

Metaltail Hybrid VTOL Vehicle

Alfred Gessow Rotorcraft Center

{ Flightlab, Latex, Matlab, Python, Tensorflow, }

- Hybrid hover & forward-flight vehicle for use in urban environments
- · Controls system using a hybrid of conventional LQR techniques and experimental reinforcement learning techniques for suitability in hover, forward, and transition flight
- · Avionics system focusing on: (1) maximal data throughput and network connectivity, (2) robust sensing, control, and mapping, and (3) maximal weight margins

2016 2018

Micro-aerial Vehicle Control using Snapdragon Flight

Alfred Gessow Rotorcraft Center

{ C++11, MXNet, Matlab, Python, }

- · Micro-aerial system, including modern techniques in simultaneous localization and mapping (SLAM) using only onboard, embedded processing
- "Autonomous Quadrotor Control and Navigation with Snapdragon Flight". E. Solomon, V. Hrishikeshevan, I. Chopra. American Helicopter Society Forum. Phoenix, AZ. May 2018
- "Visual Odometry Onboard a Micro Air Vehicle Using Snapdragon Flight". E. Solomon, C. Vorwald, V. Hrishikeshevan, I. Chopra. American Helicopter Society Technical Meeting. Phoenix, AZ. Jan 2017.

EDUCATION

2016 2018

M.Sc. in Aerospace Engineering

University of Maryland

♥ College Park, Maryland

Vehicle and control design of small-scale, autonomous aerial robots

2012 2016 **B.Sc.** in Aerospace Engineering

University of Maryland Minor in Computer Science ♥ College Park, Maryland

PORTFOLIO

@ errcsool.com

• han-so1omon.github.io

CONTACT INFO

 ■ errcsool@engineer.com

SKILLS

Javascript

Go

React & Gatsby

HTML5

CSS3 & SCSS

SQL (PostgreSQL & MySQL)

GraphQL

Drupal 8

C++ (incl C++11 & C++20)

Python

Scientific Computing

Machine Learning

Artificial Intelligence

Control Theory

Tensorflow

Container Orchestration Docker & Kubernetes Distributed Storage Cryptocurrency

Bash Linux

Git

This résumé was wholly typeset with HTML/CSS — see git.io/vVSYL