5MCACC1: MACHINE LEARNING USING PYTHON

Total No. of Hours: 52 Hours/Week: 04

<u>Course Objective:</u> To understand the basic theory underlying Machine Learning, and also to apply machine Learning algorithms to solve problems of complexity, to formulate machine Learning problems corresponding to different applications.

Course Outcome: Students will be able to

- **CO1:** Understand the concepts of machine learning and types of machine learning
- **CO2:** Learn neural networks, classifiers and different algorithms
- **CO3:** Understand the concepts Support vector machine, Ensemble Classifiers, clustering and decision problems
- **CO4:** Familiarize with Python, data types, operators, List, Tuple, Dictionary, Functions, Modules and Packages
- **CO5:** Understand the applications of machine learning in various fields like text data processing and computer vision

	Introduction to learning - Types of Learning, Rote learning, Learning by parameter	
Unit I	adjustment, Learning by general problem solving, Concept learning, Learning	10 hrs
	by analogy. Introduction to machine learning, Why machine learning. Types of	
	problems in machine learning, History of machine learning, Aspects of inputs	
	to training, Learning systems, Machine learning as a classifier, Intelligent agents,	
	Machine learning applications. Evaluation of machine learning algorithms.	
	Neural Networks: Artificial Neural Nets, ANN Basics, ANN - Learning	
Unit II	Process, Types of Networks, Perceptron, Multilayer Perceptron, Error back	12 hrs
	Propagation Algorithm, RBF Networks. Linear Classifiers, Quadratic Classifiers,	
	Decision Trees, C 4.5 Algorithm, Random Forest, Bayesian Networks, Bayesian	
	Networks Learning, Limitation of Bayesian Networks. Self-Organizing Maps,	
	Learning Process of SOM, Adaptive Resonance Theory, ART Networks, ART	
	Architecture, ART Algorithms	
	Support Vector Machines, Inductive Logic Programming, Generic ILP	
Unit III	Algorithm, Principal Approaches to ILP, Characteristics of ILP System,	12 hrs
	Ensemble Classifiers, Ada Boost algorithm, Bayes Optimal Classifier, Nearest	
	Neighbourhood techniques, Fuzzy Network, Fuzzy Systems, Fuzzy Neural	
	Systems. Clustering, Fuzzy Clustering, Reinforcement Learning, Markov Decision	
	Problem, Q-learning, Q-Learning Algorithms.	
	Core Python : Data Types, Operators, Control Statements, List, Tuple, Dictionary,	
Unit IV	Functions, Modules and Packages. Machine Learning and Python: Introduction	10 hrs
	to NumPy, SciPy, Matplotlib. Reading in data, Pre-processing and cleaning data,	
	Building a Classifier, Evaluation, Improve performance of the classifier,	
	Clustering, Tweaking the parameters, Regression – Single and Multidimensional	
	regression, Cross Validation, Penalized regression.	
	Applications in some fields: Text Data Processing, Topic Modelling – LDA,	
Unit V	Sentiment Analysis from Twitter Data, Basket Analysis, Music Genre	8 hrs
	Classification, Computer Vision – Pattern Recognition, Dimensionality Reduction.	

REFERENCE BOOKS

- [1] Vinod Chandra S S, Anand Hareendran S, "Artificial Intelligence and Machine Learning", PHI, 2014
- [2] Willi Richert, Luis Pedro Coelho, "Building Machine Learning Systems with Python", Packt Publishing, 2013.
- [3] EthemAlpaydin, "Introduction to Machine Learning", 2nd Ed., PHI Learning Pvt. Ltd., 2013.
- [4] Tom M Mitchell, "Machine Learning", McGraw Hill.
- [4] Jacek M. Zurada, "Introduction to Artificial Neural Systems", Jaico Publishing home,2002
- [5] LauranceFausett, "Fundamentals of Neural Networks", Pearson Education, 2004.