Если отображении $\{a_n\}$ в сигналы $\{S_m(t)\}$ происходит так, что передаваемые не зависят от ранее переданных, то говорят, что модулятор не имеет памяти.

Так же модуляторы бывают линейными и нелинейными. Линейность требует выполнения принципа суперпозиций (наложении) при отображении $\{a_n\}$ в $\{S_m(t)\}$.

3.1 Методы модуляции без памяти.

3.1.1. Амплитудно – импульсная модуляция (АИМ) или (ДАМ).

АИМ – линейная цифровая модуляция.

$$S_m(t) = A_m(t)g(t)\cos(2\pi f_c t), \text{ m} = \overline{1:M}, 0 \le t \le T,$$
(3.1)

где A_m — амплитуда сигнала, соответствующая возможным k — битовым блокам или символам. A_m принимает дискретные значения. A_m =(2m-1-M)d , где 2d — расстояние между соседними амплитудами сигналов, g(t) — вещественный сигнальный импульс, форму которого определяет спектр передаваемого сигнала. Скорость передачи канальных символов при AM равна $\frac{R}{k}$ — скорость с которой происходит изменения амплитуды гармонического сигнала. Временной интервал $T_B = \frac{1}{R}$ — называют информационным (битовым) интервалом, а временной интервал $T = kT_B = \frac{k}{R}$ — называют символьным интервалом или интервалом информационного символа. (R бит — скорость появления двоичной информационной последовательности $\{a_n\}$). Сигналы AM имеют энергию:

$$E_m = \int_0^T S_m^2(t)dt = \frac{1}{2}A_m^2 \int_0^T g^2(t)dt = \frac{1}{2}A_m^2 E_g$$

 E_g - энергия импульса $\mathrm{g}(\mathrm{t}).$

Пространственная диаграмма сигналов цифровой AM показана на рисунке 3.1.

