Exchange Options (cont'd). W: April 8th, 2019.

S... underlying S_s , σ_s , driving Z_s S_s , S_s , S_s , driving S_s , S_s , S_s , driving S_s , S_s , S_s , driving S_s , S_s , S_s , S_s , driving S_s , driving S_s , S_s , driving S_s

Black Scholes pricing formula (master).

 $Y_{EC}(0) = F_{0,T}^{P}(S) \cdot N(d_1) - F_{0,T}^{P}(Q) \cdot N(d_2)$

w/ $d_1 = \frac{1}{\text{CVF}} \left[ln \left(\frac{F_{0,T}(S)}{F_{0,T}(Q)} \right) + \frac{1}{2} \sigma^2 . T \right]$

and $d_2 = d_1 - O\sqrt{T}$.

where $\sigma^2 = \sigma_s^2 + \sigma_a^2 - 2p \cdot \sigma_s \cdot \sigma_a$

Note: We can price exchange puts by changing the roles of S and a.

- · This pricing formula simplifies to the vanilla B.S price when Q is a riskless
- · S(t), t>0 Q(t), t>0

For every t: (Var[war]=) Var [ln(s(t)) - ln(a(t))] = (under P*)

deterministic

= $Var[ln(s(0)) + (r - S_s - \frac{\sigma_s^2}{2}) \cdot t] + \sigma_s \cdot [t] \cdot Z_s$ $-ln(Q(0)) + (r - S_a - \frac{\sigma_a^2}{2}) \cdot t - \sigma_a \cdot [t] \cdot Z_a]$

=
$$Var \left[\sigma_s \sqrt{t} \cdot Z_s - \sigma_a \cdot \sqrt{t} \cdot Z_a \right] =$$

= $t \cdot Var \left[\sigma_s Z_s - \sigma_a Z_a \right] =$

= $t \cdot \left(\sigma_s^2 \cdot Var \left[Z_s \right] + \sigma_a^2 \cdot Var \left[Z_a \right] \right)$

= $t \cdot \left(\sigma_s^2 \cdot \sigma_a \cdot Cov \left[Z_s, Z_a \right] \right)$

= $t \cdot \left(\sigma_s^2 + \sigma_a^2 - 2\sigma_s \cdot \sigma_a \cdot \rho \right) = t \cdot \sigma^2$

· Continuous dividend · paying stocks S and a: YEC(0) = S(0) e - So'T. N(d1) - Q(0) e - Sa'T. N(d2)

$$\omega / d_1 = \frac{1}{\sigma T T} \left[ln \left(\frac{S(0)e^{-\delta_0 \cdot T}}{Q(0)e^{-\delta_0 \cdot T}} \right) + \frac{1}{2}\sigma^2 \cdot T \right]$$

=>
$$d_1 = \frac{1}{\sigma \sqrt{r}} \left[ln \left(\frac{S(0)}{Q(0)} \right) + \left(\frac{S_Q - S_3 + \frac{Q^2}{2}}{1} \right) \cdot T \right]$$

I S... underlying asset r...ccrfir

and
$$d_2 = d_1 - \sigma \sqrt{T}$$

where $\sigma^2 = \sigma_s^2 + \sigma_a^2 - 2\sigma_s \cdot \sigma_a \cdot g$

54. Assume the Black-Scholes framework. Consider two nondividend-paying stocks whose time-t prices are denoted by $S_1(t)$ and $S_2(t)$, respectively.

(i)
$$S_1(0) = 10$$
 and $S_2(0) = 20$.

You are given:

(ii) Stock 1's volatility is 0.18.
$$\Rightarrow$$
 0, 48

(vi) A one-year European option with payoff
$$\max\{\min[2S_1(1), S_2(1)] - 17, 0\}$$
 has a current (time-0) price of 1.632.

SPECIAL OPTION: PUT"

Consider a European option that gives its holder the right to sell either two shares of Stock 1 or one share of Stock 2 at a price of 17 one year from now.

Calculate the current (time-0) price of this option.

(A)
$$0.67$$
(B) 1.12
(C) 1.49
(D) 5.18

The payeff of the special option ("put"):

(The payeff of the special option ("put"):

=> This is, indeed, a put option on Y w/ strike 17.

(vi) gives us the price of the corresponding call option on Y. (SC)

Focus on $F_{0,T}^{p}(Y)$: this is the price we have to pay @ time.0 to receive Y(1) = min (2.5,(1), S2(1)) @ time. 1. $Y(1) = \min(2S_1(1), S_2(1))$ = S2(1) + min (25,(1) - S2(1),0) = S2(1) - max (S2(1)-25,(1),0) prepaid exchange call forward and strike asset (2 25,(T) =25,(0)e (r-8,-23).T + 5, 17.Z, It's the same of, and or, as for the original stock.

At time \cdot 0: (the prepaid forward is priced \otimes $S_2(0)$ (no dividends) we use the B·S formula to price the exchange call