Cirrhosis Prediction with ML methods

Alexander BAUMANN, Naomi Mona CHMIELEWSKI

March 30, 2022

Outline

- 1. Motivation
- 2. Cirrhosis data set
- 3. Performances with different models
- 4. Improvements
- 5. Summary

Motivation

- Cirrhosis is scarring (fibrosis) of the liver caused by long-term liver damage
- Cirrhosis can eventually lead to liver failure, which can be life threatening
- Treatment may be able to stop cirrhosis from getting worse
- \Rightarrow Desire to predict cirrhosis

The Data [1, 2, 3]

- data collected from 1974 to 1984 in a Mayo Clinic trial in order to study the effects of a drug
- Total of 418 patients
 - ❖ 312 patients with full data
 - 106 patients with only some basic measurements
- 18 predictive features
- four liver stages: healthy, fatty, fibrosis, cirrhosis
- our goal: classify between cirrhosis (1) and no cirrhosis (0)

Sample from data set

	ID	N_{-} Days	Status	Drug	Age	Sex	Ascites	Hepatomegaly	Spiders	Edema	Bilirubin
0	1	400	D	D-penicillamine	21464	F	Υ	Υ	Υ	Υ	14.5
1	2	4500	C	D-penicillamine	20617	F	N	Υ	Υ	N	1.1
2	3	1012	D	D-penicillamine	25594	M	N	N	N	S	1.4
3	4	1925	D	D-penicillamine	19994	F	N	Υ	Υ	S	1.8
4	5	1504	CL	Placebo	13918	F	N	Υ	Υ	N	3.4

	Cholesterol	Albumin	Copper	Alk_Phos	SGOT	Tryglicerides	Platelets	Prothrombin	Stage
0	261.0	2.60	156.0	1718.0	137.95	172.0	190.0	12.2	4.0
1	302.0	4.14	54.0	7394.8	113.52	88.0	221.0	10.6	3.0
2	176.0	3.48	210.0	516.0	96.10	55.0	151.0	12.0	4.0
3	244.0	2.54	64.0	6121.8	60.63	92.0	183.0	10.3	4.0
4	279.0	3.53	143.0	671.0	113.15	72.0	136.0	10.9	3.0

Table: Sample from raw Cirrhosis data set

Preprocessing

- drop the columns of "ID", "N_Days", "Hepatomegaly" and "Status"
- replace missing values of numerical features by the median
- replace missing values of categorical features by the most frequent or most reasonable class
- label-encoding of categorical variables
- binarize target value

First Model

- we used 5-fold validation on all models and compared average accuracies as well as computing time of the 5-fold validation
- we used gridsearch on all models
- first simple model on preprocessed data: support vector classifier
- average test accuracy over 5 folds: 0.68
- computation time 0.28 seconds per fold

Dimensionality Reduction

PCA with 3 components

Figure: First Principal Components of PCA

- similar results for Kernel PCA see notebook. We could not find any parameter combination that resulted in seperable data
- implementing SVM on top of PCA and KPCA yielded expectedly mediocre results: test accuracy 0.68 for both, computation time 0.06s and 0.08s respectively
- LDA and QDA performed better (0.71 both), but the data was still not seperable

Boosting

- AdaBoost: accuracy 0.72, computation time 0.12 seconds
- XGBoost: accuracy 0.76, computation time 0.24 seconds

Other Methods

Model	Accuracy	Time in seconds
KNN	0.62	0.07
MLP	0.65	0.23
Gaussian Naive Bayes	0.73	0.01
Random Forest	0.74	1.77

Table: Summary of other methods

Feature Selection

• Feature importances from Random Forest:

 Combining feature selection by thresholding these importances and XGBoost achieved an accuracy of 0.76

Feature Selection

- LASSO + Logistic Regression, LASSO + LinearSVC and Elastic Net achieved maximal accuracy of 0.73
- most frequently selected features: Age, Cholesterol, Copper, Alk-Phos, Platelets

Improvement Propositions

- for this section, we split the full data set into 80% train and 20% test, performing 5-fold validation on the train set and testing the improved method on the test set
- we trained five different XGBoost classifiers using the 5-fold validation, saving each classifier seperately
- we used the best performing parameters identified previously through gridsearch
- our final model consisted in predicting cirrhosis (1) if 3 or more classifiers predicted cirrhosis, and 0 otherwise
- we were able to achieve the best accuracy yet: 0.77
- sklearn has an implementation of weighted majority vote. Giving the best performing classifier (during training) the highest weight, we achieved 80% accuracy

Conclusion - Data

- very few healthy samples (circa 5%), as the data come from a study to combat cirrhosis
 - ⇒ Imbalanced classes make multi-class classification practically impossible
- too many missing values in an already small data set
- still interesting to see the feature importances

Comparison of models

Figure: Accuracies and computational times of all models

Conclusion - Models

- interpretable models like logistic regression + penalisation did not perform very well, but are very fast
- best models were ensemble models (random forest, boosting, ensemble vote) which take longer to train and are not at all interpretable
- other papers indicated that much better accuracies can be achieved on different, more complete data sets (see [1], Indian Liver Patient Dataset, only detect 'Liver Disease' or 'No Liver Disease'); generally use methods like decision tree, random forest and SVM, where accuracies of around 90% are possible
- with a larger, more complete data set, ensemble methods might approach a similar accuracy to [1] for liver cirrhosis prediction. Note that ensemble methods are slow, which might have an impact on very large data sets.

References

- [1] P M Dattatreya et al. "Machine Learning Techniques in Analysis and Prediction of Liver Disease". In: *IJIRT* 8.2 (2021).
- [2] E Rolland Dickson et al. "Prognosis in primary biliary cirrhosis: model for decision making". In: *Hepatology* 10.1 (1989), pp. 1–7.
- [3] fedesoriano. Cirrhosis Prediction Dataset. 2020. URL: https://www.kaggle.com/fedesoriano/cirrhosis-prediction-dataset.

Appendix

AdaBoost

```
Algorithm 1 Adaboost.
Input: T \in \mathbb{N} (number of iterations), \{(X_i, Y_i)\}_{1 \le i \le n} (training sample).
    for i = 1 to n do
        D_1(i) \leftarrow \frac{1}{i}
    end for
    f_0 = 0 (null function)
    for t = 1 to T do
        q_t \leftarrow \text{base } \{\pm 1\}-classifier from \mathcal{C} with small error \epsilon_t = \sum_{i=1}^n D_t(i) \mathbf{1}_{Y_i \neq q_t(X_i)}
        w_t \leftarrow \arg\min_{w \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \exp\left(-Y_i(f_{t-1}(X_i) + wg_t(X_i))\right) = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right) (ERM)
        Z_t \leftarrow \sum_{i=1}^n D_t(i) \exp(-w_t Y_i q_t(X_i)) = 2\sqrt{\epsilon_t (1-\epsilon_t)} (normalization)
        for i = 1 to n do
            D_{t+1}(i) \leftarrow D_t(i) \exp(-w_t Y_i a_t(X_i)) / Z_t
        end for
        f_t = \sum_{i=1}^t w_i g_i
    end for
Output: q_n^T = \text{sign}(f_T).
```

Figure: Pseudocode of AdaBoost (from M Sangnier - Introduction to Machine Learning, 2021)

Gradient Boosting

```
Algorithm 2 Gradient boosting. Input: T \in \mathbb{N} (number of iterations), v \in (0,1] (shrinkage coefficient), \{(X_i,Y_i)\}_{1 \leq i \leq n} f_0 \in \arg\min_{\gamma \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n L(Y_i,\gamma) (constant function) for t=1 to T do for i=1 to n do r_{i,t} \leftarrow -\ell'_i(f_{t-1}(X_i)) (pseudo-residuals) end for g_t \leftarrow base regressor from \mathcal{R} for the training set \{(X_i,r_{i,t})\}_{1 \leq i \leq n} w_t \leftarrow \arg\min_{w \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \ell_i(f_{t-1}(X_i) + wg_t(X_i)) (line search) f_t = f_{t-1} + vw_tg_t end for Output: \sup_{t \in \mathcal{R}} f_t = f_t = f_t for classification, f_T for regression.
```

Figure: Pseudocode of Gradient Boosting (from M Sangnier - Introduction to Machine Learning, 2021)

XGBoost

```
Input: training set \{(x_i,y_i)\}_{i=1}^N, a differentiable loss function L(y,F(x)), a number of weak learners M and a learning rate \alpha. Algorithm:
```

1. Initialize model with a constant value:

$$\hat{f}_{(0)}(x) = \arg\min_{\theta} \sum_{i=1}^{N} L(y_i, \theta).$$

2. For m = 1 to M

1. Compute the 'gradients' and 'hessians':

$$\begin{split} \hat{g}_m(x_i) &= \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}_{(m-1)}(x)}, \\ \hat{h}_m(x_i) &= \left[\frac{\partial^2 L(y_i, f(x_i))}{\partial f(x_i)^2}\right]_{f(x) = \hat{f}_{(m-1)}(x)}. \end{split}$$

2. Fit a base learner (or weak learner, e.g. tree) using the training set $\{x_i, \frac{\hat{g}_m(x_i)}{\hat{h}_m(x_i)}\}_{i=1}^N$ by solving the optimization problem below:

$$\begin{split} & \hat{\phi}_m = \operatorname*{arg\,min}_{\phi \in \Phi} \sum_{i=1}^N \frac{1}{2} \hat{h}_m(x_i) \left[-\frac{\hat{g}_m(x_i)}{\hat{h}_m(x_i)} - \phi(x_i) \right]^2. \\ & \hat{f}_m(x) = \alpha \hat{\phi}_m(x). \end{split}$$
3. Update the model:
$$\hat{f}_{im_i}(x) = \hat{f}_{im_i,i_j}(x) + \hat{f}_m(x). \end{split}$$

$$f_{(m)}(x) = f_{(m-1)}(x) + f_m(x)$$

3. Output
$$\hat{f}(x)=\hat{f}_{\langle M \rangle}(x)=\sum_{m=0}^M\hat{f}_m(x).$$

Figure: Pseudocode of XGBoost (from https://en.wikipedia.org/wiki/XGBoost)