Problem Set 1

Due: TA Discussion, 30 August 2024.

1 Exercises from class notes

Exercise 7 from "1. Real Sequences.pdf". Let *S* and *T* be nonempty and bounded subsets of \mathbb{R} . TFU: $\sup(S \cup T) = \max\{\sup S, \sup T\}$.

2 Additional Exercises

Exercise 1. Let *A* and *B* be nonempty subsets of \mathbb{R} . Define $A + B := \{a + b : a \in A \text{ and } b \in B\}$, and define A - B similarly. Show the following:

- (i) $\sup(A + B) = \sup(A) + \sup(B)$;
- (ii) $\sup(A B) = \sup(A) \inf(B)$.

Exercise 2. Let *A* and *B* be nonempty sets, and let $f: A \times B \to \mathbb{R}$ be some real valued function.

(i) Show that

$$\sup_{a\in A}\inf_{b\in B}f\left(a,b\right)\leq\inf_{b\in B}\sup_{a\in A}f\left(a,b\right).$$

(ii) Give an example of a function $f:[0,1]^2 \to \mathbb{R}$ for which the above inequality is strict.

Note: For a real valued function, f, on a nonempty set, S, $\sup_{x \in S} f(x) := \sup\{f(x) : x \in S\}$.