Università di Trieste - Facoltà d'Ingegneria.

Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott. Franco Obersnel

Esercizio 1 Rispondere alle seguenti questioni:

a) Siano

$$a_0 + a_1 + a_2 + \dots$$

 \mathbf{e}

$$b_0 + b_1 + b_2 + \dots$$

due serie convergenti. Cosa si può dire della serie somma

$$(a_0 + b_0) + (a_1 + b_1) + (a_2 + b_2) + \dots$$
?

E se una delle due serie diverge e l'altra converge?

b) Supponiamo che

$$\sum_{n=0}^{+\infty} a_n = s \in \mathbb{R}.$$

Cosa possiamo dire di

$$\sum_{n=2}^{+\infty} a_n ?$$

c) Supponiamo che

$$a_0 + a_1 + a_2 + \dots$$

sia una serie a termini positivi e che

$$\sum_{n=0}^{+\infty} a_n = s \in \mathbb{R}.$$

Cosa possiamo dire di

$$\sum_{n=0}^{+\infty} a_{2n} ?$$

d) Supponiamo che

$$a_0 + a_1 + a_2 + \dots$$

sia una serie a termini positivi e che

$$\sum_{n=0}^{+\infty} a_{2n} = s \in \mathbb{R}.$$

Cosa possiamo dire di

$$\sum_{n=0}^{+\infty} a_n ?$$

e) Si provi che il carattere della serie

$$\sum_{n=0}^{+\infty} a_n$$

è uguale al carattere della serie

$$\sum_{n=k}^{+\infty} a_n$$

per ogni $k \in \mathbb{N}$.

(Sol. a) converge alla somma della serie, diverge, b) = $s - a_0 - a_1 - a_2$, c) converge a $s' \leq s$, d) nulla, e) le ridotte delle due serie differiscono per una costante)

Esercizio 2 Si usi l'integrale generalizzato per provare

- a) che la serie $\sum_{n=3}^{+\infty} \frac{1}{n \log(n) \log(\log n)}$ diverge;
- b) che la serie $\sum_{n=3}^{+\infty} \frac{1}{n (\log(n))^2}$ converge ad una somma s con $s < \frac{1}{\log 2}$.

$$(\operatorname{Sol. a}) \int_3^{+\infty} \frac{1}{x \log x \log(\log x)} \, dx = \lim_{b \to +\infty} \log(\log(\log b)) - \log(\log(\log 3)) = \\ +\infty, \, \mathbf{b}) \int_2^{+\infty} \frac{1}{x (\log x)^2} \, dx = \frac{1}{\log 2})$$

Esercizio 3 Si calcoli la somma della serie

$$\frac{11}{100} + \frac{101}{100^2} + \frac{1001}{100^3} + \frac{10001}{100^4} + \dots$$

(Sol. È la serie somma di due serie geometriche convergenti di termine generale $(1/10)^n+(1/100)^n$; la somma è 1/9+1/99)

Esercizio 4 Si provi che la serie

$$\sum_{n=1}^{+\infty} a_n$$

di termine generale

$$a_n = \frac{3}{1 + \cos n + 2^n}$$

è convergente ad un numero reale s e che

$$\frac{3}{2} \le s \le 3.$$

(Suggerimento: $-1 \le \cos n \le 1$; inoltre se $n \ge 1$ si ha $2^n + 2 \le 2^{n+1}$)

(Sol. confronto con serie geometriche $3/2 (1/2)^n \le a_n \le 3 (1/2)^n$)

Esercizio 5

a) Si determinino i valori di $x \in \mathbb{R}$ per i quali la serie

$$\sum_{n=0}^{+\infty} (1+3x)^n$$

risulta essere convergente, e se ne calcoli la somma.

b) Si determinino i valori di $\alpha \in]0, \frac{\pi}{2}[$ per i quali la serie

$$\sum_{n=0}^{+\infty} 2^n \sin^{2n} \alpha$$

risulta essere convergente, e se ne calcoli la somma.

(Sol. a)
$$-(1/(3x))$$
 per $-(2/3) < x < 0$, b) $1/(1-2\sin^2(\alpha))$ per $0 < \alpha < \pi/4$)

Esercizio 6

- a) Si provi che se una serie è semplicemente convergente (non assolutamente convergente), allora esistono necessariamente infiniti termini di segno negativo e infiniti termini di segno positivo della serie.
- b) Si provi che se per una serie è applicabile il criterio del rapporto, allora il termine generale della serie è un infinitesimo di ordine soprareale. (Si pensi alla serie geometrica, che tipo di infinitesimo è il termine generale di una serie geometrica? Con cosa si maggiora una serie per la quale vale il criterio del rapporto?)
- (Sol. a) Si veda l'Esercizio 1 e), b) Se $a_{n+1} \leq ka_n$ per ogni n, si ha $a_n \leq a_0 k^n$ per ogni n)

Esercizio 7 Si studi il carattere delle serie seguenti:

a)
$$\sum_{n=1}^{\infty} \frac{2}{n\sqrt{n}} + \frac{3}{n^3}$$

a)
$$\sum_{n=1}^{\infty} \frac{2}{n\sqrt{n}} + \frac{3}{n^3}$$
 b) $\sum_{n=1}^{\infty} \frac{n^{\alpha}}{\alpha^n} \operatorname{con} \alpha \in \mathbb{R}, \ \alpha > 0$

c)
$$\sum_{n=1}^{\infty} e^{-n} n!$$

c)
$$\sum_{n=1}^{\infty} e^{-n} n!$$
 d) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$

e)
$$1 - a + \frac{1}{2} - a^2 + \frac{1}{3} - a^3 + \dots$$
 con $0 < a < 1$

f)
$$\sum_{n=1}^{\infty} \frac{n!}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

(Sol. a) converge (ord. inf.), b) converge per $\alpha > 1$ (rapporto o ord. inf.), c) diverge $(a_n > 2e^{-3}n \text{ per } n \geq 3)$, d) converge (radice), e) diverge (somma di una serie armonica e di una serie geometrica convergente), f) converge (rapporto o si osservi che $a_n = \frac{1}{2^n}$)

Esercizio 8 Si consideri la seguente serie (di Mengoli)

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} ;$$

- a) si provi che $a_n = \frac{1}{n} \frac{1}{n+1}$;
- b) si scrivano le ridotte s_1 , s_2 , s_3 e si calcoli la ridotta n-esima s_n ;
- c) si calcoli $\lim_{n\to+\infty} s_n$;
- d) si scrivano le somme di $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$ e di $\sum_{n=2}^{+\infty} \frac{1}{n(n+1)}$.

(Sol. b)
$$s_n = 1 - \frac{1}{n+1}$$
, c) 1, d) 1 e $\frac{1}{3}$)

Esercizio 9 Si studi il carattere delle seguenti serie, distinguendo se è il caso tra convergenza semplice e convergenza assoluta:

a)
$$\sum_{n=1}^{\infty} \frac{\cos(\pi n) \cos(\frac{\pi}{n})}{n}.$$

b)
$$\sum_{n=2}^{\infty} (-1)^n \frac{na}{n^2 + a^2}$$
 con $a \in \mathbb{R}$.

c)
$$\sum_{n=1}^{\infty} \frac{\sin(n\frac{\pi}{2})}{\sqrt{n+1}}$$

c)
$$\sum_{n=1}^{\infty} \frac{\sin(n\frac{\pi}{2})}{\sqrt{n+1}}$$
 d) $\sum_{n=1}^{\infty} (-1)^n \log(1 + \frac{1}{n} + \frac{1}{\sqrt{n}})$

e)
$$\sum_{n=1}^{+\infty} n! \, n^{-\frac{n}{2}} \arctan(n).$$

(Sol. a) converge semplicemente, b) converge semplicemente per ogni $a \neq 0$, assolutamente per a=0, c) converge semplicemente, d) converge semplicemente, e) diverge)

Esercizio 10 Si studi il carattere delle seguenti serie di numeri complessi:

a)
$$\sum_{n=1}^{+\infty} \left(\sqrt{\log(\frac{4}{3})} + i\sqrt{\log(\frac{3}{2})} \right)^n$$
 b)
$$\sum_{n=1}^{+\infty} \frac{1}{n} \left(\cos \frac{1}{n} + i \sin \frac{1}{n} \right)$$

b)
$$\sum_{n=1}^{+\infty} \frac{1}{n} \left(\cos \frac{1}{n} + i \sin \frac{1}{n} \right)$$

c)
$$\sum_{n=1}^{+\infty} \frac{1 + i n^2 \log \left(1 + \frac{1}{n^2}\right)}{n\sqrt{n}}$$
 d) $\sum_{n=0}^{+\infty} \frac{2n + i}{3^n - ni}$

$$d) \sum_{n=0}^{+\infty} \frac{2n+i}{3^n - n^n}$$

e)
$$\sum_{n=0}^{+\infty} \frac{(4+3i)^n}{5^n + n^2 i}$$

e)
$$\sum_{n=0}^{+\infty} \frac{(4+3i)^n}{5^n + n^2i}$$
 f) $\sum_{n=1}^{+\infty} \frac{i^n(\sqrt{n} - \sqrt{n-1}) + i^{2n} \cdot \sqrt{n+1}}{n}$

(Sol. a) converge assolutamente b) non converge, c) converge assolutamente, d) converge assolutamente, e) non converge, f) converge semplicemente)

Esercizio 11 Rispondere alle seguenti questioni:

- a) Si verifichi che se la funzione f è limite uniforme della successione di funzioni $(f_n)_{n\in\mathbb{N}}$, allora f è pure limite puntuale della successione.
- b) Si provi che la successione di funzioni $(f_n)_n$ dove $f_n(x):[0,1]\to \mathbb{R}$ è definita da $f_n(x) = x^n$ non ammette limite uniforme per $n \to +\infty$.

Esercizio 12

- a) Si calcoli il limite puntuale della successione di funzioni $(f_n)_n$ dove f_n : $\mathbb{R} \to \mathbb{R}$ è definita da $f_n(x) = \left(1 + \frac{x}{n}\right)^n$.
- b) Detto f(x) tale limite si verifichi che f_n non converge uniformemente a fper $n \to +\infty$. (Fissato $\epsilon > 0$, per esempio si prenda $0 < \epsilon < e - 2$, deve essere $|f_n(x)-f(x)|<\epsilon$ per ogni $n\geq N_\epsilon$ e per ogni x. In particolare si può prendere x = n e si giunge ad una contraddizione).

Esercizio 13 Si consideri la serie di funzioni

$$\sum_{n=1}^{+\infty} \frac{\sin(3^n x)}{2^n}.$$

- a) Si verifichi che la serie converge uniformemente su IR.
- b) Si verifichi che la serie delle derivate non converge su \mathbb{R} .

Esercizio 14 Si consideri la serie di funzioni

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n+x^2}.$$

- a) Si verifichi che per la serie assegnata non è possibile applicare il test di Weierstrass.
 - b) Si verifichi che la serie converge uniformemente.

Esercizio 15 Si consideri la serie di funzioni

$$f(x) = \sum_{n=0}^{+\infty} e^{-n^2 x}.$$

- a) Si verifichi che la serie converge uniformemente in ogni intervallo del tipo $[\varepsilon, +\infty[, \cos \varepsilon > 0.$
 - b) Si verifichi che $f:]0, +\infty[\to \mathbb{R}$ è continua e derivabile.

Esercizio 16 Supponiamo di sapere che la serie di potenze $\sum_{n=0}^{\infty} a_n(x+1)^n$ converge semplicemente (non assolutamente) nel punto x = -3. Può la serie convergere nel punto x=2?

Esercizio 17 Si calcoli il raggio di convergenza e si studi il comportamento agli estremi dell'intervallo di convergenza delle serie seguenti: a) $\sum_{n=0}^{\infty} \frac{2^n x^{2n}}{\sqrt{n+1}}$. b) $\sum_{n=1}^{\infty} n^{\sqrt{n}} x^n$.

a)
$$\sum_{n=0}^{\infty} \frac{2^n x^{2n}}{\sqrt{n+1}}$$
.

b)
$$\sum_{n=1}^{\infty} n^{\sqrt{n}} x^n$$
.

c)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n} x^n.$$

c)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n} x^n$$
. d) $\sum_{n=1}^{\infty} \frac{n^2}{2^n} (x-4)^n$.

e)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n}} x^n$$
.

e)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n}} x^n$$
. f) $\sum_{n=1}^{\infty} \frac{\log n}{e^n} (x - e)^n$.

g) (Si calcoli solo il raggio di convergenza) $\sum_{i=1}^{\infty} \frac{(n!)^k}{(kn)!} x^n$ con $k \in \mathbb{N}^+$.

(Sol. a)
$$E=]-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}[$$
, b) $E=]-1,1[$, c) $E=]-\frac{1}{2},\frac{1}{2}[$, d) $E=]2,6[$, e) $E=]-2,2[$, f) $E=[0,2e[$, g) $\rho=k^k.$

Esercizio 18

- a) Si calcoli la somma di $\sum_{n=1}^{+\infty} (n^2 n) x^n$.
- b) Calcolare la somma della serie $\sum_{n=0}^{\infty} \frac{x^{2n}}{2n+1}$ usando il teorema di integra
 - c) Si calcoli la somma della serie $\sum_{n=1}^{+\infty} \frac{n+2}{n+1} x^n$.
 - d) Calcolare la somma della serie $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2n+1}$.
- e) Calcolare la somma della serie $\sum_{n=0}^{\infty} \frac{x^n}{2n+1}$ distinguendo i casi x>0, x=00, x < 0.

(Sol. a)
$$\frac{2x^2}{(1-x)^3}$$
, b) $\frac{1}{2x}\log(\frac{1+x}{1-x})$ per $|x| < 1, x \neq 0, 1$ se $x = 0, c$)

$$\frac{1}{1-x} - \frac{\log(1-x)}{x} \text{ per } |x| < 1, \text{ 2 se } x = 0 \text{ d}) \frac{1}{x} \operatorname{arctg} x \text{ per } |x| < 1, x \neq 0, \\ 1 \text{ se } x = 0, \text{ e}) \text{ se } x < 0 \text{ si ha } x = -(\sqrt{-x})^2 \text{ e posso usare l'esercizio d}):$$

 $\frac{1}{\sqrt{-x}} \operatorname{arctg} \sqrt{-x} \operatorname{per} x > -1; 1 \operatorname{se} x = 0; \operatorname{se} x > 0 \operatorname{si} \operatorname{ha} x = (\sqrt{x})^2 \operatorname{e posso usare}$ l'esercizio b): $\frac{1}{2\sqrt{x}} \log(\frac{1+\sqrt{x}}{1-\sqrt{x}}) \operatorname{per} x < 1.)$

Esercizio 19 Si dimostri il seguente criterio di sviluppabilità. Sia h > 0, e sia $I =]x_0 - h, x_0 + h[\subset \mathbb{R}$. Supponiamo che esista una costante M > 0 tale che $\left| f^{(n)}(x) \right| \leq M \frac{n!}{h^n}$ per ogni n e per ogni $x \in I$. Allora la funzione f è sviluppabile in serie di Taylor in x_0 .

Esercizio 20 Si rappresenti in serie di Taylor di centro 0 la funzione $e^x - \frac{1}{1-x}$ e se ne calcoli il raggio di convergenza.

(Sol.
$$\sum_{n=1}^{+\infty} \frac{1-n!}{n!} x^n$$
, $\rho = 1$.)

Esercizio 21 Si verifichi che $\cos \vartheta = \frac{e^{i\vartheta} + e^{-i\vartheta}}{2}$ e $\sin \vartheta = \frac{e^{i\vartheta} - e^{-i\vartheta}}{2i}$.

(Sol. Si usi la formula di Eulero.)

Esercizio 22 Si calcoli una primitiva della funzione

$$f(x) = e^{(x^k)}$$

dove $k \in \mathbb{N}$, $k \ge 1$, rappresentandola in serie.

(Sol.
$$\sum_{n=0}^{+\infty} \frac{x^{nk+1}}{n!(nk+1)}$$
.)

Esercizio 23 Mediante lo sviluppo in serie della funzione

$$f(x) = e^{(x^2)}$$

si calcolino nel punto x = 0 le derivate di ogni ordine $f^{(n)}(0)$.

(Sol. Confrontando i coefficienti dello sviluppo in serie della funzione e della sua serie di Taylor si ottiene $f^{(2n)}(0) = (n+1)(n+2)\cdots(2n), f^{(2n+1)}(0) = 0.$)

Esercizio 24 Calcolare (esprimendo il risultato in serie numerica)

$$\int_0^{\frac{1}{2}} \frac{\arctan(t^2)}{t^2} dt.$$

(Sol.
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)(4n+1)2^{4n+1}}.$$
)

Esercizio 25 Si risolva l'equazione $\frac{1+x}{1-x}=3$. Si usi tale soluzione per rappresentare il numero $\log 3$ come serie di potenze.

(Sol.
$$y = \frac{1}{2}$$
; $\log(1 + \frac{1}{2}) - \log(1 - \frac{1}{2}) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{(1/2)^n}{n} + \sum_{n=1}^{+\infty} \frac{(1/2)^n}{n} = \sum_{n=1}^{+\infty} \frac{1}{(2n+1)4^n}$.)