Evaluating clustering

CSCI 347

Adiesha Liyana Ralalage

Clustering validation

- It is important to develop approaches to assess clustering results.
- This process has three main tasks:
 - Clustering evaluation: assess goodness or quality of the clustering
 - Clustering stability: assess the sensitivity of the clustering results to various algorithmic parameters.
 - Clustering tendency: assessing the suitability of applying clustering in the first place, e.g., whether the data has inherent grouping structures.

Clustering validation

- There are three types of validation.
- External: External validation measures employ criteria that are not inherent to the dataset. E.g., class labels for each point.
- **Internal:** Internal validation measures employ criteria that are derived from the data itself.
 - we can use intra-cluster and inter-cluster distances to obtain measures of cluster compactness (e.g., how similar are the points in the same cluster) and separation (e.g., how far apart are the points in different clusters).
- **Relative:** Relative validation measures aim to directly compare different clustering, usually those obtained via different parameter settings for the same algorithm.

Evaluating clustering: the F-Score

CSCI 347

Adiesha Liyana Ralalage

F-Score

- External measure.
- Assumes that the correct or ground-truth clustering is known a priori.
- Ground truth plays the role of external information to evaluate clustering.
- External evaluation measures try capture the extent to which points from the same partition appear in the same cluster, and the extent to which points from different partitions are grouped in different clusters.

Example

• 1-dimensional example

	X_1
x_1	4
x_2	1.1
x_3	12
x_4	16.4
x_5	2.3
x_6	5
x_7	15
x_8	13.7
x_9	3.5

Looks like the true clusters.

Example

$$\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$\mathcal{T} = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

$$n_1 = 4 n_2 = 5$$

$$C = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$\mathcal{T} = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
T_1 T_2		
C_1	4	0
C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$$n_1 = 4 n_2 = 5$$

$$C = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

• 1-dimensional example

$$\mathcal{T} = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
	T_1	T_2
C_1	4	0
C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$$prec_i = \frac{1}{n_i} \max_{j=1}^k \{n_{ij}\}$$

quantifies the extent to which a cluster C_i contains entities from only one partition

$$n_1 = 4 n_2 = 5$$

$$C = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$\mathcal{T} = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
	T_1	T_2
C_1	4	0
C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$$prec_{i} = \frac{1}{n_{i}} \max_{j=1}^{k} \{n_{ij}\}$$
$$prec_{1} = \frac{1}{n_{1}} \max\{n_{11}, n_{12}\}$$

$$n_1 = 4 n_2 = 5$$

$$C = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$\mathcal{T} = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
	T_1	T_2
C_1	4	0
C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$prec_i = \frac{1}{n_i} \max_{j=1}^k \{n_{ij}\}$
$prec_1 = \frac{1}{n_1} \max\{n_{11}, n_{12}\}$
$prec_1 = \frac{1}{4}max\{4,0\}$

$$n_1 = 4 n_2 = 5$$

$$C = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$\mathcal{T} = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
	T_1	T_2
C_1	4	0
C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$prec_i = \frac{1}{n_1} \max_{j=1}^k \{n_{ij}\}$
$prec_1 = \frac{1}{n_1} max\{n_{11}, n_{12}\}$
$prec_1 = \frac{1}{4}max\{4,0\} = \frac{1}{4} \cdot 4 = 1$

$$n_1 = 4 n_2 = 5$$

$$C = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$\mathcal{T} = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
	T_1	T_2
C_1	4	0
C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$prec_i = \frac{1}{n_1} \max_{j=1}^k \{n_{ij}\}$
$prec_2 = \frac{1}{n_2} max\{n_{21}, n_{22}\}$
$prec_2 = \frac{1}{5}max\{1,4\} = \frac{1}{5} \cdot 4 = 0.8$

$$C = \{C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9\}$$

= \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}, \{x_9\},\}

	X_1
x_1	4
x_2	1.1
x_3	12
x_4	16.4
x_5	2.3
x_6	5
x_7	15
x_8	13.7
x_9	3.5

Contingonal			
Col	Contingency table		
	T_1	T_2	
C_1	1	0	
C_2	1	0	
C_3	0	1	
C_4	0	1	
C_5	1	0	
C_6	1	0	
C_7	0	1	
C_8	0	1	
C_9	1	0	

$$C = \{C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9\}$$

= \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}, \{x_9\},\}

	X_1
x_1	4
x_2	1.1
x_3	12
x_4	16.4
x_5	2.3
x_6	5
x_7	15
x_8	13.7
χ_9	3.5

Contingency table		
	T_1	T_2
C_1	1	0
C_2	1	0
C_3	0	1
C_4	0	1
C_5	1	0
C_6	1	0
C_7	0	1
C_8	0	1
C_9	1	0

$$n_{ij} = |C_i \cap T_j|$$

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2
$$T = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

$$prec_i = \frac{1}{n_i} \max_{j=1}^k \{n_{ij}\}$$

$$prec_2 = \frac{1}{n_2} \max\{n_{11}, n_{12}\}$$

$$prec_2 = \frac{1}{1} \max\{1, 0\} = \frac{1}{1} \cdot 1 = 1$$

$$\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

• 1-dimensional example

$$T_1 = 5 T_2 = 4$$

$$T = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table			
	T_1 T_2		
C_1	4	0	
C_2	1	4	

$$n_{ij} = \left| C_i \cap T_j \right|$$

$$recall_i = \frac{n_{ij}}{|T_{j_i}|}$$
 $j_i = argmax_{j=1}^k \{n_{ij}\}$

measures the fraction of point in partition T_{ii} shared with cluster C_i .

$$\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$T_1 = 5 T_2 = 4$$

$$T = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
T_1 T_2		
C_1	4	0
C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$$recall_{i} = \frac{n_{ij}}{|T_{j_{i}}|}$$
 $j_{i} = argmax_{j=1}^{k} \{n_{ij}\}$ $j_{1} = argmax_{j=1}^{k} \{n_{1j}\} = 1$

$$\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$T_1 = 5$$
 $T_2 = 4$ $T_1 = T_1 = T_2 = T_2 = T_1 = T_2 = T_2 = T_1 = T_2 = T_$

Contingency table				
	T_1 T_2			
C_1	4	0		
C_2	1	4		

$$n_{ij} = \left| C_i \cap T_j \right|$$

$$recall_{i} = \frac{n_{ij}}{|T_{j_{i}}|}$$
 $j_{i} = argmax_{j=1}^{k} \{n_{ij}\}$ $j_{1} = argmax_{j=1}^{k} \{n_{1j}\} = 1$ $recall_{1} = \frac{n_{11}}{|T_{1}|}$

$$\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$T_1 = 5 \qquad T_2 = 4$$

$$T = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table			
	T_1 T_2		
C_1	4	0	
C_2	1	4	

$$n_{ij} = \left| C_i \cap T_j \right|$$

$recall_i = \frac{n_{ij}}{1}$	$j_i = argmax_{j=1}^k \{n_{ij}\}$
$ T_{j_i} $	$j_{i} = argmax_{j=1}^{k} \{n_{ij}\}$ $j_{1} = argmax_{j=1}^{k} \{n_{1j}\} = 1$ $recall_{1} = \frac{n_{11}}{n_{12}}$
	$recall_{-}-\frac{n_{11}}{n_{11}}$
	$ T_1 $
	$recall_1 = \frac{4}{5} = 0.8$

$$\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$T_1 = 5 \qquad T_2 = 4$$

$$T = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
	T_1	T_2
C_1	4	0
C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$recall_i = \frac{n_{ij}}{1}$	$j_i = argmax_{j=1}^k \{n_{ij}\}$
$ T_{j_i} $	$j_{i} = argmax_{j=1}^{k} \{n_{ij}\}$ $j_{2} = argmax_{j=1}^{k} \{n_{2j}\} = 2$ $recall_{2} = \frac{n_{22}}{n_{22}}$
	$recall_2 = \frac{n_{22}}{ T_2 }$
	$recall_2 = \frac{4}{4} = 1$
	4

$$C = \{C_1\} = \{\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}\}$$

• 1-dimensional example

$$T_1 = 5 T_2 = 4$$

$$T = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
	T_1	T_2
C_1	5	4

 $n_{ij} = |C_i \cap T_j|$

$$recall_{i} = \frac{n_{ij}}{|T_{j_{i}}|} \quad j_{i} = argmax_{j=1}^{k} \{n_{ij}\}$$

$$j_{1} = argmax_{j=1}^{k} \{n_{1j}\} = 1$$

$$recall_{1} = \frac{n_{11}}{|T_{1}|}$$

$$recall_{1} = \frac{5}{5} = 1$$

Exercise

$$C = \{C_1\} = \{\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}\}$$

• 1-dimensional example

 $n_{ij} = |C_i \cap T_i|$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T = \{T_{1}, T_{2}\} = \{\{x_{1}, x_{2}, x_{5}, x_{6}, x_{9}\}, \{x_{3}, x_{4}, x_{7}, x_{8}\}\}$$

$$Contingency table \qquad recall_{i} = \frac{n_{ij}}{|T_{j_{i}}|} \qquad j_{i} = argmax_{j=1}^{k} \{n_{ij}\}$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 1$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 1$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{2} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{2} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{2} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{2} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{2} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{2} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{2} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{2} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{2} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{3} = 4 \qquad T_{3} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{3} = 4 \qquad T_{4} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{3} = 4 \qquad T_{4} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{3} = 4 \qquad T_{4} = 4$$

$$T_{1} = 5 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{3} = 4 \qquad T_{4} = 4$$

$$T_{1} = 4 \qquad T_{2} = 4$$

$$T_{2} = 4 \qquad T_{3} = 4$$

$$T_{3} = 4 \qquad T_{4} = 4$$

$$T_{4} = 4 \qquad T_{4} = 4$$

$$T_{5} = 4 \qquad T_{5} = 4$$

$$T_{7} = 4 \qquad$$

What is the precision of C_1 ?

Exercise

$$C = \{C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9\}$$

= \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}, \{x_9\},\}

• 1-dimensional example

	X_1	Coi	ntinge	ncy
x_1	4		table	
x_2	1.1		T_1	T_2
x_3	12	\mathcal{C}	1	0
x_4	16.4	C_1	ı	U
x_5	2.3	C_2	1	0
x_6	5	C_3	0	1
x_7	15 12.7	C_4	0	1
x_8	13.7	<u> </u>		
x_9	3.5	C_5	1	0
		C_6	1	0
=	$ C_i \cap T_j $	C_7	0	1
	1-1	C_8	0	1
		\mathcal{C}	1	0

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
$$\mathcal{T} = \{T_1, T_2\} = \left\{ \{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\} \right\}$$

$$recall_i = \frac{n_{ij}}{|T_{ji}|} \quad j_i = argmax_{j=1}^k \{n_{ij}\} \quad prec_i = \frac{1}{n_i} \max_{j=1}^k \{n_{ij}\}$$

What is the recall of C_1 ?

$$\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

$$T_1 = 5 T_2 = 4$$

$$T = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
	T_1	T_2
\mathcal{C}_1	4	0
C_2	1	4

$$recall_{i} = \frac{n_{ij}}{|T_{j_{i}}|} \quad j_{i} = argmax_{j=1}^{k} \{n_{ij}\}$$

$$prec_{i} = \frac{1}{n} \max_{j=1}^{k} \{n_{ij}\}$$

$$n_{ij} = \left| C_i \cap T_j \right|$$

F-score is the harmonic mean of precision and recall

• 1-dimensional example $\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$

-1 0 1 2 3 4 5 6 7 8	9 10 11 12 13 14 15 16 47 18 19 20 21 22

$$T_1 = 5 T_2 = 4$$

$$T = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
	T_1	T_2
C_1	4	0
C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$recall_i = \frac{n_{ij}}{ T_i }$ $j_i = argmax_{j=1}^k \{n_{ij}\}$
$prec_{i} = \frac{1}{n} \max_{j=1}^{ I_{j_{i}} } F_{i} = \frac{1}{\frac{1}{2} \left(\frac{1}{prec_{i}} + \frac{1}{recall_{i}}\right)}$ $2(prec_{i})(recall_{i})$
$F_i = \frac{2(prec_i)(recall_i)}{prec_i + recall_i}$

$$\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

• 1-dimensional example

$$prec_1 = \frac{4}{4} = 1$$

$$recall_1 = \frac{4}{5} = 0.8$$

$$F_1 = \frac{2(1)(0.8)}{1 + 0.8} = 0.89$$
 Contingency table

$$T_1 = 5$$
 $T_2 = 4$ $T_1 = T_1 = T_2 = T_2 = T_1 = T_2 = T_2 = T_1 = T_2 = T_$

Contingency table
$$T_1$$
 T_2 C_1 4 0 C_2 1 4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$$recall_i = \frac{n_{ij}}{|T_{j_i}|}$$

$$prec_i = \frac{1}{n} \max_{j=1}^{k} \{n_{ij}\}$$

$$F_i = \frac{2(prec_i)(recall_i)}{prec_i + recall_i}$$

 $j_i = argmax_{j=1}^{k} \{n_{ij}\}$

 $\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$

$$prec_2 = \frac{4}{5} = 0.8$$

$$recall_2 = \frac{4}{4} = 1$$

$$recall_2 = \frac{1}{4} = 1$$

$$F_2 = \frac{2(0.8)(1)}{0.8 + 1} = 0.89$$

)	Contingency table		
		T_1	T_2
	C_1	4	0
	C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$$\mathcal{T} = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

$$recall_{i} = \frac{n_{ij}}{|T_{j_{i}}|} \quad j_{i} = argmax_{j=1}^{k} \{n_{ij}\}$$

$$prec_{i} = \frac{1}{n} \max_{j=1}^{k} \{n_{ij}\} \quad F_{i} = \frac{1}{\frac{1}{2} \left(\frac{1}{prec_{i}} + \frac{1}{recall_{i}}\right)}$$

$$F_i = \frac{2(prec_i)(recall_i)}{prec_i + recall_i}$$

 $\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$

$$F = \frac{1}{r} \sum_{i=1}^{r} F_i$$

$$\mathcal{T} = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

Contingency table		
	T_1	T_2
C_1	4	0
C_2	1	4

$$n_{ij} = \left| C_i \cap T_j \right|$$

$$recall_{i} = \frac{n_{ij}}{|T_{j_{i}}|} \quad j_{i} = argmax_{j=1}^{k} \{n_{ij}\}$$

$$prec_{i} = \frac{1}{n} \max_{j=1}^{k} \{n_{ij}\} \quad F_{i} = \frac{1}{\frac{1}{2} \left(\frac{1}{prec_{i}} + \frac{1}{recall_{i}}\right)}$$

$$F_i = \frac{2(prec_i)(recall_i)}{prec_i + recall_i}$$

$$\mathcal{C} = \{C_1, C_2\} = \{\{x_1, x_2, x_5, x_9\}, \{x_3, x_4, x_6, x_7, x_8\}\}$$

• 1-dimensional example

$$F = \frac{1}{r} \sum_{i=1}^{r} F_i$$

Contingency table		
	T_1	T_2
C_1	4	0
C_2	1	4

 $F_1 = 0.89$

$$\mathcal{T} = \{T_1, T_2\} = \{\{x_1, x_2, x_5, x_6, x_9\}, \{x_3, x_4, x_7, x_8\}\}$$

$$n_{ij} = \left| C_i \cap T_j \right|$$

$$recall_{i} = \frac{n_{ij}}{\left|T_{j_{i}}\right|} \quad j_{i} = argmax_{j=1}^{k} \left\{n_{ij}\right\}$$

$$prec_{i} = \frac{1}{n} \max_{j=1}^{k} \left\{n_{ij}\right\} \quad F_{i} = \frac{1}{\frac{1}{2} \left(\frac{1}{prec_{i}} + \frac{1}{recall_{i}}\right)}$$

$$F_2 = 0.89$$

$$F = \frac{1}{2}(F_1 + F_2) = 0.89$$

$$F_i = \frac{2(prec_i)(recall_i)}{prec_i + recall_i}$$

F-score - exercise

$$C = \{C_1, C_2\} = \{\{x_2, x_5\}, \{x_1, x_3, x_4, x_6, x_7, x_8, x_9\}\}$$

$$\mathcal{C} = \{C_1, C_2\} = \{\{x_2, x_5\}, \{x_1, x_3, x_4, x_6, x_7, x_8, x_9\}\}$$

Contingency table		
	T_1	T_2
C_1	2	0
C_2	3	4

$$F_{1} = 0.57 n_{ij} = |C_{i} \cap T_{j}|^{T} = \{T_{1}, T_{2}\} = \{\{x_{1}, x_{2}, x_{5}, x_{6}, x_{9}\}, \{x_{3}, x_{4}, x_{7}, x_{8}\}\}$$

$$F_{2} = 0.73 recall_{1} = \frac{2}{5} recall_{2} = \frac{4}{4}$$

$$F = \frac{1}{2}(F_{1} + F_{2}) = 0.65 prec_{1} = 1 mass = 4$$

$$recall_1 = \frac{2}{5}$$

$$prec_1 = 1$$

$$F_1 = \frac{2(1)(0.4)}{1 + 0.4} = 0.57$$

$$recall_1 = \frac{2}{5}$$
 $recall_2 = \frac{4}{4}$ $prec_1 = 1$ $prec_2 = \frac{4}{7}$ $F_1 = \frac{2(1)(0.4)}{1+0.4} = 0.57$ $F_2 = \frac{2(0.57)(1)}{0.57+1} = 0.73$

