Skriftlig eksamen på Økonomistudiet

Vinteren 2017 - 2018

MATEMATIK B

Tirsdag den 9. januar 2018

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

1. årsprøve 2018 V-1B ex

Skriftlig eksamen i Matematik B Tirsdag den 9. januar 2018

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert tal $s \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(s) = \begin{pmatrix} 1 & s & 1 \\ s & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- (1) Udregn determinanten for matricen A(s), og bestem de $s \in \mathbf{R}$, for hvilke A(s) er regulær.
- (2) Vis, at matricen A(s) er positiv semidefinit, når og kun når s=1.
- (3) Vis, at matricen A(s) er indefinit for ethvert $s \in \mathbf{R} \setminus \{1\}$.
- (4) Bestem egenværdierne for matricen A(1). (Her er s=1.)
- (5) Udregn matricen $B = A(1)A(1) = ((A(1))^2$.
- (6) Bestem egenværdierne for matricen B, og angiv deres egenværdimultipliciteter.

Opgave 2. Vi betragter den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = \frac{x+y}{e^x}.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

- (2) Bestem eventuelle stationære punkter for funktionen f.
- (3) Bestem værdimængden for funktionen f.
- (4) Udregn størrelsen

$$S(x,y) = \frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y)$$

for ethvert punkt $(x, y) \in \mathbf{R}^2$, og vis derved, at S(x, y) = -f(x, y).

(5) Bestem de partielle elasticiteter $f_x^{\epsilon}(x,y)$ og $f_y^{\epsilon}(x,y)$ i ethvert punkt $(x,y) \in \mathbf{R}^2$, hvor $x+y \neq 0$.

Opgave 3. For ethvert t > 0 betragter vi differentialligningen

$$\frac{dx}{dt} + (\ln t + 1)x = e^{t - t \ln t}.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til (*), så betingelsen $\tilde{x}(1) = 5e$ er opfyldt.
- (3) Bestem en forskrift for funktionen $\tilde{x}(e^{-s})$, hvor $s \in \mathbf{R}$, og bestem grænseværdien

$$\lim_{s \to \infty} \tilde{x}(e^{-s}).$$

Opgave 4. Betragt den hyperplan H_0 i vektorrummet \mathbf{R}^4 , som er givet ved ligningen

$$H_0: x_1 + 2x_2 - x_3 + 3x_4 = 0,$$

idet \mathbf{R}^4 er forsynet med det sædvanlige indre produkt (prikproduktet), og underrummet

$$U = \text{span}\{(1, 0, 1, 2), (0, 1, 0, 1)\}.$$

(1) Begrund, at hyperplanen H_0 er et underrum af ${\bf R}^4$, og bestem tre vektorer v_1,v_2 og $v_3,$ så

$$H_0 = \text{span}\{v_1, v_2, v_3\}.$$

- (2) Bestem fællesmængden $M=H_0\cap U,$ og godtgør, at M er et underrum af $\mathbf{R}^4.$
- (3) Bestem mængden

$$M^{\perp} = \{ x \in \mathbf{R}^4 \mid \forall z \in M : x \perp z \},\$$

og godtgør, at mængden M^{\perp} er et underrum af vektorrummet $\mathbf{R}^4.$

Mængden M^\perp kaldes det ortogonale komplement til M.