P10

June 6, 2019

1 Reporte de práctica 10: Clasificación de datos con sklearn

Para esta práctica solamente trabajamos con los datos del año 2017 para clasificar la categoría a la que pertenecen los cortos tomando como base la edad y sexo del concursante y el género del corto. Utilizaremos los clasificadores de scikit-learn y la distribución de los datos que vamos a usar serán 60% para entrenar y 40% para validar.

1.1 Objetivos

- Utiliza por lo menos tres distintos métodos de clasificación
- Por lo menos una división de interés en tus datos

1.2 Preparación de los datos

Primero tomamos los archivos originales y los procesamos fuera de la nube, producto de esta limpieza se generó el archivo "clasificacion2017.csv"

Para poder trabajar importaremos la librería necesaria y cargaremos el documento .csv

```
[7]: import pandas as pd
   from sklearn.decomposition import PCA
   from matplotlib.colors import ListedColormap
   from numpy import isnan, nan
   from sklearn import metrics
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import StandardScaler
   from sklearn.datasets import make_moons, make_circles, make_classification
   from sklearn.neural_network import MLPClassifier
   from sklearn.neighbors import KNeighborsClassifier
   from sklearn.svm import SVC
   from sklearn.gaussian_process import GaussianProcessClassifier
   from sklearn.gaussian_process.kernels import RBF
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
   from sklearn.naive_bayes import GaussianNB
   from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
   df = pd.read_csv("https://raw.githubusercontent.com/SamatarouKami/
     →CIENCIA_DE_DATOS/master/old/clasificacion2017.csv")
```

```
df = df.dropna()
print(len(df))
```

649

1.3 Categorización de los campos

Como tenemos campos con cadenas de caracteres utilizaremos la Categorización por defecto de pandas, y generaremos una columna con la etiqueta que utilizaremos para la clasificación.

```
[8]: gen = pd.Categorical(df.Genero)
   df.Genero = gen.codes
   pai = pd.Categorical(df.Pais)
   df.Pais = pai.codes
   sex = pd.Categorical(df.Sexo)
   df.Sexo = pai.codes
   #cat = pd.Categorical(df.Categoria)
   #df['CategoriaCat'] = cat.codes
   df['etiquetas1'] = [1 if df['Categoria'][i] == 'Aficionado' else 0 for i inu
     →df['Categoria'].keys()]# Clasificar Categorias
   df['etiquetas2'] = [1 if df['Categoria'][i] == 'Juvenil' else 0 for i in_
    →df['Categoria'].keys()]# Clasificar Categorias
   df['etiquetas3'] = [1 if df['Categoria'][i] == 'Profesional' else 0 for i in_
    →df['Categoria'].keys()]# Clasificar Categorias
   df['etiquetas4'] = [1 if df['Categoria'][i] == 'SmarTIC' else 0 for i in_
    →df['Categoria'].keys()]# Clasificar Categorias
   #df['etiquetas'] = df.CategoriaCat
   print(df.etiquetas1.value_counts())
   print(df.etiquetas2.value_counts())
   print(df.etiquetas3.value_counts())
   print(df.etiquetas4.value_counts())
```

```
1    362
0    287
Name: etiquetas1, dtype: int64
0    521
1    128
Name: etiquetas2, dtype: int64
0    573
1    76
Name: etiquetas3, dtype: int64
```

```
0 566
1 83
Name: etiquetas4, dtype: int64
```

1.4 Procedimiento

Se preparan las variables que necesitamos para preparar el clasificador y además aplicamos un PCA. Se separan los datos y se pone el 60% para entrenamiento del clasificador y el 40% para pruebas. Se busca clasificar la categoría de participación del filme, donde cada categoría es clasificada individualmente, y no en grupo, para buscar particularidades en los datos.

Después se muestran las tablas de confusión para entender mejor porque les otorgaron esas precisiones a los diferentes métodos de clasificación.

```
[12]: for indexEtiqueta in range(1,5):
         print("-----Iniciando Proceso con Etiqueta {:
      \rightarrowd}-----".format(indexEtiqueta))
         y = df['etiquetas'+str(indexEtiqueta)]
         xVars = ['Edad', 'Sexo', 'Genero']
         x = df.loc[:, xVars].values
         \#x = StandardScaler().fit transform(x)
         pca = PCA(n_components = 2) # pedimos uno bidimensional
         X = pca.fit_transform(x)
         from math import ceil, sqrt
         from numpy import isnan, nan, arange, meshgrid, c_
         import matplotlib.pyplot as plt
         h=0.2
         # código de https://scikit-learn.org/stable/auto_examples/classification/
      \rightarrow plot\_classifier\_comparison.html
         names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", \
                  "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes"]
         classifiers = [KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), \
             SVC(gamma=2, C=1), GaussianProcessClassifier(1.0 * RBF(1.0)),
             DecisionTreeClassifier(max_depth=5),__
      →RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), \
             AdaBoostClassifier(), GaussianNB()]
         k = int(ceil(sqrt(len(classifiers) + 1)))
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4,_
      →random_state=42) # división
         x_{\min}, x_{\max} = X[:, 0].min() - .5, X[:, 0].max() + .5
         y_{min}, y_{max} = X[:, 1].min() - .5, X[:, 1].max() + .5
         xx, yy = meshgrid(arange(x_min, x_max, h), arange(y_min, y_max, 0.02))
         cm = plt.cm.RdBu
         cm_bright = ListedColormap(['#FF0000', '#0000FF'])
         plt.rcParams["figure.figsize"] = [16, 16]
         figure = plt.figure()
         ax = plt.subplot(k, k, 1)
```

```
ax.set_title("Datos de entrada")
  ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, alpha=0.
→2, edgecolors='k') # entrenamiento
  ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.2,_
→edgecolors='k') # validación
  ax.set_xlim(xx.min(), xx.max())
  ax.set_ylim(yy.min(), yy.max())
  ax.set_xticks(())
  ax.set_yticks(())
  i = 2
  for name, clf in zip(names, classifiers):
      ax = plt.subplot(k, k, i)
      clf.fit(X_train, y_train)
      score = clf.score(X_test, y_test)
      if hasattr(clf, "decision_function"):
           Z = clf.decision_function(c_[xx.ravel(), yy.ravel()])
      else:
           Z = clf.predict_proba(c_[xx.ravel(), yy.ravel()])[:, 1]
      Z = Z.reshape(xx.shape)
      ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
      ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,_u
→edgecolors='k')
      ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,_
→edgecolors='k', alpha=0.6)
      ax.set_xlim(xx.min(), xx.max())
      ax.set_ylim(yy.min(), yy.max())
      ax.set_xticks(())
      ax.set_yticks(())
      ax.set_title(name)
      ax.text(xx.max() - .3, yy.min() + .3, ('%.3f' % score).lstrip('0'), __
→size=40, horizontalalignment='right')
       i += 1
  plt.tight_layout()
  plt.show()
  print("Ahora calcularemos las matrices de confusión para la etiqueta{:d}.".
→format(indexEtiqueta))
   # código de https://scikit-learn.org/stable/auto_examples/classification/
\rightarrow plot\_classifier\_comparison.html
  names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", \
            "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes"]
  classifiers = [KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), \
       SVC(gamma=2, C=1), GaussianProcessClassifier(1.0 * RBF(1.0)), \
      DecisionTreeClassifier(max_depth=5),__
→RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), \
```


Ahora calcularemos las matrices de confusión para la etiqueta1. ('Nearest Neighbors', 0.7576923076923077) precision recall f1-score support 0 0.68 0.66 0.67 96 0.80 1 0.82 0.81 164 avg / total 0.76 0.76 0.76 260 [[63 33] [30 134]] ('Linear SVM', 0.5269230769230769) precision recall f1-score support 0 0.41 0.61 0.49 96 0.68 0.48 1 0.56 164 260 avg / total 0.58 0.53 0.53 [[59 37] [86 78]] ('RBF SVM', 0.7423076923076923) precision recall f1-score support 0.67 0.60 0.63 0 96 1 0.78 0.82 0.80 164 0.74 260 avg / total 0.74 0.74 [[58 38] [29 135]] ('Gaussian Process', 0.7961538461538461) precision recall f1-score support 0.68 0 0.80 0.59 96 0.79 1 0.91 0.85 164 avg / total 0.80 0.80 0.79 260 [[57 39] [14 150]]

('Decision T	ree', 0.7346	153846153	847)		
	precision	recall	f1-score	support	
0	0.64	0 65	0.64	96	
1			0.64		
1	0.10	5.15	0.13	101	
avg / total	0.74	0.73	0.73	260	
[[62 34] [35 129]]					
('Random For	est', 0.7807	692307692	308)		
	precision	recall	f1-score	support	
^	0.70	0 50	0.07	0.0	
0 1	0.76 0.79		0.67 0.84		
1	0.13	0.09	0.04	104	
avg / total	0.78	0.78	0.77	260	
[[57 39] [18 146]]					
('AdaBoost',	0.780769230	7692308)			
	precision	recall	f1-score	support	
•	^ 5 5	0.04	0.05	0.0	
0 1	0.75		0.67 0.83		
1	0.00	0.00	0.03	104	
avg / total	0.78	0.78	0.78	260	
[[59 37] [20 144]]					
('Naive Baye	 s'. ().65)				
Charle Daye	precision	recall	f1-score	support	
0	0.52	0.60	0.56	96	
1	0.74	0.68	0.71	164	
avg / total	0.66	0.65	0.65	260	
[[58 38] [53 111]]					

-----Iniciando Proceso con Etiqueta 2-----

Ahora calcularemos las matrices de confusión para la etiqueta2. ('Nearest Neighbors', 0.9692307692307692)

	precision	recall	f1-score	support	
0 1	1.00 0.82	0.96 1.00	0.98 0.90	223 37	
avg / total	0.97	0.97	0.97	260	
[[215 8] [0 37]]					

('Linear SVM', 0.9192307692307692)

	precision	recall	f1-score	support	
0	1.00	0.91	0.95	223	
1			0.78		
avg / total	0.95	0.92	0.93	260	
[[202 21]					
[0 37]]					
('RRE SVM'	 0.973076923				
(ILDI DVII ,	precision		f1-score	support	
	F				
0			0.98		
1	0.88	0.95	0.91	37	
avg / total	0.97	0.97	0.97	260	
[[218 5]					
[2 35]]					
('Gaussian H	Process', 0.				
	precision	recall	II-score	support	
0	0.99	0.97	0.98	223	
1	0.85	0.95	0.90	37	
avg / total	0.97	0.97	0.97	260	
[[047 6]					
[[217 6] [2 35]]					
('Decision 7	Tree', 0.969				
	precision	recall	f1-score	support	
0	0.99	0.97	0.98	223	
1	0.85	0.95	0.90	37	
a / +a+a1	0.07	0.07	0.07	260	
avg / total	0.97	0.97	0.97	260	
[[217 6] [2 35]]					
('Random For	rest', 0.969	2307692307	 (692)		
,	precision		f1-score	support	
0	0.99 0.85	0.97 0.95	0.98 0.90	223 37	
1	0.05	0.95	0.90	31	

avg / total	0.97	0.97	0.97	260	
[[217 6] [2 35]]					
('AdaBoost',	0.969230769	2307692)			
	precision	recall	f1-score	support	
0	0.99	0.97	0.98	223	
1	0.85	0.95	0.90	37	
avg / total	0.97	0.97	0.97	260	
[[217 6] [2 35]]					
('Naive Baye	s', 0.976923	 3076923076	9)		
	precision	recall	f1-score	support	
0	1.00	0.97	0.99	223	
1	0.86	1.00	0.92	37	
avg / total	0.98	0.98	0.98	260	
[[217 6]					
[0 37]]					
%%%%%%%%%%%% %					
		Iniciand	o Proceso	con Etique	ta 3

Ahora calcularemos las matrices de confusión para la etiqueta3. ('Nearest Neighbors', 0.8615384615384616)

	precision	recall	f1-score	support	
0 1	0.91 0.21	0.94 0.16	0.92 0.18	235 25	
avg / total	0.85	0.86	0.85	260	
[[220 15] [21 4]]					

('Linear SVM', 0.9038461538461539)

	precision	recall	f1-score	support	
0	0.90	1.00	0.95	235	
1			0.00		
avg / total	0.82	0.90	0.86	260	
[[235 0] [25 0]]					
(IDDE CVMI	0.857692307	 (6022076)			
(RDF SVFF ,			f1-score	support	
	precibion	ICCUII	II DOOLG	buppor	
0	0.90	0.94	0.92	235	
1	0.07	0.04	0.05	25	
avg / total	0.82	0.86	0.84	260	
[[222 13]					
[24 1]]					
('Gaussian 1	Process', 0.	9038461538	3461539)		
	precision	recall	f1-score	support	
_					
0					
1	0.00	0.00	0.00	25	
avg / total	0.82	0.90	0.86	260	
55000 03					
[[235 0]					
[25 0]]					
('Decision'	Гree', 0.896	31538461538	3462)		
(200121011 .	precision	recall		support	
	1			11	
0	0.91	0.98	0.94	235	
1	0.33	0.08	0.13	25	
avg / total	0.85	0.90	0.87	260	
[[024 4]					
[[231 4] [23 2]]					
[23 2]]					
('Random For	rest', 0.873	0769230769	231)		
			f1-score	support	
	-				
0	0.91	0.95	0.93	235	
1	0.21	0.12	0.15	25	

avg / to	tal	0.84	0.87	0.86	260	
[[224 1:						
('AdaBoos	 st',	0.9)				
		precision	recall	f1-score	support	
	0	0.90	1.00	0.95	235	
	1	0.00	0.00	0.00	25	
avg / to	tal	0.82	0.90	0.86	260	
[[234 :	_					
('Naive H	 Baye	s', 0.903846	153846153	9)		
		precision	recall	f1-score	support	
	0	0.90	1.00	0.95	235	
	1	0.00	0.00	0.00	25	
avg / to	tal	0.82	0.90	0.86	260	
[[235 (0]					
[25 ()]]					
 %%%%%%%%% %	 %%%%	 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	 %%%%%%%%%%%%		 %%%%%%%%%%%%%%	 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ahora calcularemos las matrices de confusión para la etiqueta4. ('Nearest Neighbors', 0.8461538461538461)

	precision	recall	f1-score	support	
0 1	0.89 0.36	0.94 0.24	0.91 0.29	226 34	
avg / total	0.82	0.85	0.83	260	
[[212 14] [26 8]]					

('Linear SVM', 0.8692307692307693)

	precision	recall	f1-score	support	
0	0.87	1.00	0.93	226	
1			0.00		
avg / total	0.76	0.87	0.81	260	
[[226 0] [34 0]]					
('RRF SVM'	0.834615384	6153846)			
(IUDI DVII ,			f1-score	support	
	proorbron	100011	11 20010	Dupporo	
0	0.87	0.95	0.91	226	
1			0.12		
avg / total	0.79	0.83	0.81	260	
[[214 12]					
[31 3]]					
('Gaussian l	Process', 0.	8923076923	076924)		
	precision	recall	f1-score	support	
0	0.89	1.00	0.94	226	
1	1.00	0.18	0.30	34	
avg / total	0.90	0.89	0.86	260	
[[226 0]					
[28 6]]					
('Decision	Tree', 0.861				
	precision	recall	f1-score	support	
^	0.00	0.05	0.00	003	
0	0.90	0.95	0.92	226	
1	0.45	0.29	0.36	34	
avg / total	0.84	0.86	0.85	260	
[[044 40]					
[[214 12]					
[24 10]]					
(IDandom For	 rest', 0.861	E30/61E30/	616)		
(nandom FO			f1-score	gunnor+	
	brecipion	recarr	11 20016	support	
0	0.89	0.96	0.92	226	
1	0.43	0.18	0.25	34	
_			· -	- -	

avg /	total	0.83	0.86	0.84	260	
[[218	8] 6]]					
('Adal	Boost',	0.87692307	69230769)			
		precision	recall	f1-score	support	
	0	0.90	0.97	0.93	226	
	1	0.56	0.26	0.36	34	
avg /	total	0.85	0.88	0.86	260	
[[219 [25	7] 9]]					
('Nai	ve Baye	s', 0.85769	 2307692307	· ·6)		
		precision	recall	f1-score	support	
	0	0.87	0.98	0.92	226	
	1	0.20	0.03	0.05	34	
avg /	total	0.78	0.86	0.81	260	
[[222	_					
[33	1]] 					

1.5 Conclusión

Después de probar los diferentes métodos y buscar clasificar todas las categorías de participación individualmente, se obtuvieron los siguientes resultados.

```
[1]: from IPython.display import Image
Image(filename='14.png')
```

[1]:

Método de Clasificación	Etiqueta1	Etiqueta2	Etiqueta3	Etiqueta4
Nearest Neighbors	.758	.969	.862	.846
Linear SVM	.527	.919	<u>.904</u>	.869
RBF SVM	.742	<u>.973</u>	.858	.835
Gaussian Process	<u>.796</u>	.969	<u>.904</u>	.892
Decision Tree	.735	.969	.896	.862
Random Forest	<u>.8</u>	.954	.892	.865
AdaBoost	.781	.969	.9	<u>.877</u>
Naive Bayes	.650	<u>.977</u>	<u>.904</u>	.858

Se puede concluir que con los datos de edad y sexo del participante y el género del Filme, se puede precisar si la participación del concursante es en la categoría Juvenil. En cambio, para identificar las otras categorías, los datos proporcionados otorgaron al clasificador una precisión a lo más del 79.6% para las demás categorías.

--05 de junio 2019-- Luis Angel Gutiérrez Rodríguez 1484412