DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY CIRCULAR NO.SU/Engg./S.Y.B.Tech./02/2017

It is hereby informed to all concerned that, the syllabi prepared by the Committees & recommended by the Dean, Faulty of Science & Technology, the Academic Council at its meeting held on 20 & 21 June 2017 has accepted the following syllabi in accordance with Choice Based Credits & Grading System for all Branches S.Y.B.Tech under the Faulty of Science & Technology as enclosed herewith.

Sr.No.	Syllabi as per CBC & GS
[1]	Second Year B.Tech.[Civil Engineering],
[2]	Second Year B.Tech. [Mechanical Engineering],
[3]	Second Year B.Tech. [Agricultural Engineering],
[4]	Second Year B.Tech.[Electrical Engineering],
[5]	Second Year B.Tech. [Plastic & Polymer Engineering],
[6]	Second Year B.Tech [Electronics & Telecommunication Engg.],
[7]	Second Year B.Tech. [Computer Science Engineering].

This is effective from the Academic Year 2017-2018 and onwards.

All concerned are requested to note the contents of this circular and bring the notice to the students, teachers and staff for their information and necessary action.

Deputy Registrar, Syllabus Section.

Copy forwarded with compliments to:-

- 1] The Principals, affiliated concerned Colleges, Dr. Babasaheb Ambedkar Marathwada University.
- 2] The Director, University Network & Information Centre, UNIC, with a request to upload this Circular on University Website.

 Copy to:-
- 1] The Director, Board of Examinations & Evaluation,
- 2] The Section Officer, [Engineering Unit | Examination Branch,
- 3] The Section officer, [Eligibility Unit],
- 4] The Programmer [Computer Unit-1] Examinations,
- 5] The Programmer [Computer Unit-2] Examinations,
- 6] The In-charge, [E-Suvidha Kendra],
- 7] The Public Relation Officer,
- 8] The Record Keeper,

SCHEME AND DETAILED SYLLABUS

of

S. Y. B. Tech. (Plastic and Polymer Engineering)
Under Choice Based Credit & Grading System
(w.e.f. academic year 2017-18 & onwards/-)

FOUR YEAR DEGREE COURSE IN SCIENCE & TECHNOLOGY

DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD

FACULTY OF SCIENCE AND TECHNOLOGY

Revised Syllabus Structure w.e.f. 2017-18

Second Year B. Tech. (Plastic and Polymer Engineering)

	SEMESTER - III	Co	ntact	Hrs/	Week			F	Examin	ation Sc	heme	
Course Code	Subject	L	Т	P	Total	СТ	ТН	TW	P	Total	Credits	Duration of Theory Exam
BSH201	Engineering Mathematics-III	3	1	-	4	20	80	-	-	100	4	3 Hrs
PPE202	Organic Chemistry	4	-	-	4	20	80	-	-	100	4	3 Hrs
PPE203	Introduction to Polymer Engineering	3	1	-	4	20	80	-	-	100	4	3 Hrs
PPE204	Polymer Testing	4	-	-	4	20	80	-	-	100	4	3 Hrs
PPE205	Materials Engineering	4	-	-	4	20	80	-	-	100	4	3 Hrs
PPE206	Mechanical Operation	2	-	-	2	10	40	-	-	50	2	2 Hrs
PPE221	Lab I: Organic Chemistry	-	-	2	2	-	-	25	25	50	1	
PPE222	Lab II: Analysis of Polymer	-	-	2	2	-	-	25	25	50	1	
PPE223	Lab III: Polymer Testing	-	-	2	2	-	-	25	25	50	1	
PPE224	Lab IV: Mechanical Operation		-	2	2	-	-	50	-	50	1	
BSH225	Lab V: Development of Skills-II		-	2	2	-	-	50	-	50	1	
	Total of semester-III	20	2	10	32	110	440	175	75	800	27	
	SEMESTER - IV	Contact Hrs / Week Examination Scheme										
Course Code	Subject	L	Т	P	Total	СТ	ТН	TW	P	Total	Credits	Duration of Theory Exam
BSH251A	Engineering Mathematics-IV	3	1	-	4	20	80	-	-	100	4	3 Hrs
PPE252	Process Calculations	4	-	-	4	20	80	-	-	100	4	3 Hrs
PPE253	Physical Chemistry of Polymers	4	-	-	4	20	80	-	-	100	4	3 Hrs
PPE254	Polymer Synthesis and Manufacturing	3	1	-	4	20	80	-	-	100	4	3 Hrs
PPE291-293	Programme Elective-I	4		-	4	20	80	-	-	100	4	3 Hrs
PPE255	Fluid Mechanics	2	-	-	2	10	40	-	-	50	2	2 Hrs
PPE271	Lab VI: Physical Chemistry of Polymers	-	-	2	2	-	-	25	25	50	1	
PPE272	Lab VII: Polymer Synthesis-I	_	-	4	4	-	-	50	50	100	2	
PPE273	Lab VIII: Fluid Mechanics	-	-	2	2	-	-	25	25	50	1	
PPE274	Lab IX: DOS-III Design Lab-I (CAD)	-	-	2	2	-	-	50	-	50	1	
	Total of semester-IV	20	2	10	32	110	440	150	100	800	27	
	Grand Total of III & IV	40	4	20	64	220	880	325	175	1600	54	

L: Lecture hours per week

T: Tutorial hours per week

P: Practical hours per week

CT: Class Test

TH: University Theory Examination

TW: Teachers Assessment

P: Practical/Oral Examination

Programme Elective-I

PPE291: Specialty Polymers PPE292: Fibre Technology PPE293: Biopolymers

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad(Faculty of Engineering & Technology)

	(Faculty of Engineering & Technology) Syllabus of S. Y. B. Tech. (All) Semester-III						
Teacl Theo	niną ry: rial	Code: BSH201 Course: Engineering Mathematics –III g Scheme: 04Hrs/week Class Test: 20marks 03Hrs/week Theory Examination (Duration): 03 Hrs : 01Hr/week Theory Examination (Marks): 80					
Objectives	:	1. The contents aims to develop and apply the knowledge of the student in the direction of solving the practical problem of differential equation in the					
		engineering and technology.To develop Logical understanding of statistics.					
		3. To study the basic of Laplace transform.					
Unit-I	:	Linear Differential Equation:					
		Solution of linear differential equation of order n with constant coefficients: The					
		complementary function, Method of finding particular integral: Short method,					
		General method, Method of variation of parameters. Equations reducible to linear equations with constant coefficients: i) The					
		Cauchy's linear equation. ii) The Legendre's linear equation. (10 Hrs)					
Unit-II		Application of linear differential equations to:					
		i) Mechanical system.					
		ii) Electrical System					
		iii) Beam and Shafts					
		(04 Hrs)					
Unit-III	:	Vector Differentiation:					
		Differentiation of vectors, Radial, Transverse, Normal and tangential					
		components of velocity and acceleration, Scalar and vector point function,					
		Gradient of scalar point function, Divergence and curl of vector point function, Second order differentiation operator, Irrotational and solenoid fields.					
		(10 Hrs)					
Unit-IV	:	Laplace Transform:					
		Definition, Laplace Transform of elementary function and its table, Theorem					
		and properties of Laplace Transform: First shifting theorem, Second Shifting					
		Theorem, Multiplication by t, Division by t, Change of scale property, Laplace					
		Transform of integral, Laplace Transform of Derivative. Laplace Transform of some special functions: Periodic function, Heaviside Unit					
		Step Function, Displaced Heaviside Unit Step Function Laplace Transform					
		using Heaviside Unit function, Dirac delta function.					
		Method to find inverse Laplace Transform:					
		i. Use of Laplace Transform table					
		ii. Use of Theorem and properties of Laplace					
		iii. Use of partial fraction iv. Convolution theorem					
		v. Use of development of Heaviside Unit Step Function					
		Application of Laplace Transform to solve linear differential equation					
		(12 Hrs)					
Unit-V	:	Fourier Transform:					
		Fourier integral: Complex form of Fourier integral, sine and cosine integral,					
		Fourier transform and inverse transform. D.U.I.S. rule (only statement), Fourier					

		transform and inverse transform for even and odd function, Fourier sine and			
		cosine transform and inverse transform.(7 Hrs)			
Unit-VI	:	Statistics:			
		Measures of central tendency: Mean, Median, Quartiles and Mode. Measures of			
		dispersion: Quartile deviation, Mean deviation, Standard deviation, coefficient			
		of variation. (5 Hrs)			
Reference	:	1. A Text Book of Applied Mathematics Volume-III by P.N. Wartikar			
Books:		J.N.Wartikar, Pune Vidyarthi Griha Prakashan.			
		2. Advanced Engineering Mathematics by H. K. Dass, S. Chand and Co.			
		Ltd.			
		3. Higher Engineering Mathematics by Dr. B. S. Grewal, Khanna Publishers.			
		4. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill Publishing Co. Ltd.			
		5. Solution to Higher Engineering Mathematics Volume –III by C. P.			
		Gandhi			

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six/four units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (Faculty of Science & Technology) Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-III **Course Code: PPE202 Credits: 4 Course: Organic Chemistry** Class Test: 20 Marks **Teaching Scheme: Theory Examination: 80 Marks** Theory: 4 hrs/week Theory Examination (Duration): 3 hrs 1) To teach students an understanding of different organic materials used in **Objectives** preparation of different polymers. 2) To teach students how the organic materials are related the fundamental properties of organic chemicals, their nomenclature, their different reaction mechanisms, their properties and applications. **Nomenclature of Organic Compounds** Unit-I Common Name System **IUPAC Name System** (05 h)**Fundamentals of Chemical Bonding: Unit-II** Concept of hybridization, geometry of molecules, molecular orbital theory and valence bond theory (06 h)**Fundamentals of Organic Reactions:** Unit-III A) Electronic Theory: Introduction, Types of bonds, Bond fission, Generation, Structure and stability of reactive intermediates (Carbocation, Carbanion, Free radicals and Carbene), Inductive Effect, Resonance effect and Steric effect. (06 h)**B) Organic Reaction Mechanism:** Types of reactions: Addition, Substitution, Elimination, Rearrangement Reactions, Electrophilic and Nucleophilic substitution reactions of Benzene (Nitration, Sulphonation, Halogenation) (07 h)**Stereochemistry:** Unit-IV Stereoisomerism, Structural isomerism, Configurational Conformationalstrereoisomer. Geometric isomerism. Optical isomerism. Enantiomers, Diastereomers, Mesomers, Concept of chirality, Methods racemisation and resolution, E & Z nomenclature, R-S system of nomenclature. (07 h)**Selective Organic Name Reactions and Rearrangements:** Unit-V Aldol Condensation, Gabriel Synthesis, Cannizzaro Reaction, Friedel-Crafts Reaction, Knoevenagel condensation, Darzen Reaction, Reformatsky Reaction, Beckmann Rearrangement, Yamaguchi Reaction. (07 h)

Unit-VI	Study of some Organic Compounds and their functional group detections: Hydrocarbons & Sub. Hydrocarbons: Ethylene, Propylene, Butadiene, Styrene, Vinyl chloride Carboxylic Acids: Adipic Acid, Terepthalic acid Alcohols: Ethylene glycol, Glycerol					
	Phen	ols: Phenol, Cresol, Reso	rcinol			
		es:Hexamethylene tetran	nine, Melamine			
		le: Urea, ε-caprolactum				
		le: Acrylonitrile	ataldahyyda			
		hydes: Formaldehyde, Acohydrates: Glucose, Fru	<u> </u>			
	Carb	onyurates. Ordeose, 11d	ctose		(10 h)	
Reference	Sr. No.	Title	Author	Publication	Edition	
Books:	1.	Textbook of Organic Chemistry	Bahl & Bahl	S. Chand	18 th	
	2.	Stereochemistry of Organic Compounds	P. S. Kalsi	New Age	5 th	
	3.	Reactions, Reagents and Rearrangements	S.N. Sanyal	Bharti□Bhavan	1 st	
	4.	Organic Chemistry	F. A. Carry	Mc Graw Hill	3 rd	
	5.	Organic Chemistry	T.W. Graham Solomons and Craig Fryle	John iley□and Sons	7 th	
	6.	Practical Organic Chemistry	Frederick ☐ G. Mann and ☐ Bernard Charles ☐ Saunders	Longman□Inc, New□York	4 th	
	7.	Practical Organic Chemistry	Arthur Vogel	Longman□Inc, New□York	5 th	

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 10 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-III

Course Code: PPE203

Course: Introduction to Polymer Engineering Credits: 4

Teaching Scheme: Class Test: 20 Marks

Theory: 3 hrs/week
Tutorial: 1 hr/week
Theory Examination: 80 Marks
Theory Examination (Duration): 3 hrs

Tutoriai: 1 III/	Theory Examination (Duration): 5 ms
Objectives	To provide a general overview of polymers, their types, molecular weight concept and to understand the structure of polymers and predict polymer properties.
Unit-I	Introduction to Polymers: Historical developments in polymeric materials, Basic raw materials for polymers, Basic concepts and definitions: Macromolecules, Monomers, Oligomers, Telomers, polymer, repeating unites. Functionality concept and determination of functional groups. Carothers equation and their application. Introduction to types of polymerization, emulsion, solution, Bulk with typical examples. (08 h)
Unit-II	Classification of Polymers: Classification of polymers: Thermoplastic/Thermoset, Addition/Condensation, Natural/Synthetic, Crystalline/Amorphous, Step growth/ Chain growth, Homochain/ Heterochain, Confirmation: Homo and Copolymers, Configuration Cis/Trans; Tacticity, Branched/Crosslinked, Classification based on end use, Commodity/Specialty. Polymer degradation and polymer stabilization. (08 h)
Unit-III	Molecular Weight, its Distribution and Determination: Concept of average molecular weight of polymers (M _n , M _w , M _v and M _z), Molecular weight distribution: monodispersity, polydispersity, degree of polymerization, size of the polymer molecules. Molecular weight determination by end group analysis, solution viscosities, gel permeation chromatography etc. (08 h)
Unit-IV	Mechanical and Thermal Properties: Effect of crystallinity, molecular weight, cross link-density and additives on modulus of elasticity, tensile strength, flexural strength, impact strength, yield strength, fracture toughness. Transition temperature in polymers: glass transition (T _g), melt transition (T _m), relationship between T _g and T _m , factors affecting T _g , significance of T _g . (10 h)
Unit-V	Electrical and Optical Properties: Effect of polymer structure on dielectric constant, power factor, dissipation factor, and loss factor. Factors affecting the electrical conductivity of polymers. Effect of polymer structure on clarity, transparency, haze, transmittance, absorbance, reflectance, gloss, Static charges, volume & surface resistivity, arc resistance. (08 h)

Unit-VI	Effect of polymer structure on solubility in solvents and oils, Cohesive energy, solubility parameter, determination and Prediction of solubility parameter of polymers, water repellency, Chemical resistance of polymers, diffusion and permeability, Polymer toxicity. (06 h)				
Reference	Sr. No.	Title	Author	Publication	Edition
Books	1	Polymer Science & Technology of Plastics & Rubbers	P. Ghosh	TataMcGraw Hill	2 nd
	2	Polymer Science & Technology	Joel R. Fried	Prentice Hall of India Pvt. Ltd.	3 rd
	3	Text Book of Polymer Science	F.W. Billmeyer	Wiley Interscience	3 rd
	4	Principles of Polymerisation	George Odian	Wiley Interscience	4 th
	5	Polymer Structure, Property and application	R.D. Deanin	American Chemical Society	1974
	6	Polymer Science	V R Gowarikar	New Age International Publishers	3 rd , 2005
	7	Introduction to Polymer Science and Technology	S. D. Dawande	Denett & Co.	2006
	8	Plastic Materials	J A Brydson	Butterworth Heinemann Ltd	6 th , 1995

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Chemical Properties:

Unit-VI

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 10 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

(Faculty of Science & Technology)
Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-III

	· ·					
Objectives	To study and understand the necessity and methodology of various polymer testing processes to evaluate various polymer properties.					
Unit-I	 A. Introduction: Basic Concepts, Purpose of testing, Specifications and Standards, Purpose of specifications, Basic specification format, Testing samples, Sample conditioning. B. Electrical Properties: Introduction, Dielectric strength, Dielectric constant and dissipation factor, Electrical resistance test, Arc resistance. 					
Unit-II	Mechanical Properties: Introduction, Stress-strain relationship, Tensile tests, Flexural properties, Compressive properties, Impact properties, Shear strength, Abrasion, Fatigue resistance, creep and stress relaxation, Hardness Tests. Burst strength test. (08 h)					
Unit-III	 A. Optical Properties: Introduction, Refractive Index, Luminous Transmittance, Haze, color evaluation, Gloss. B. Analytical Tests: Specific gravity tests, Density gradient method, Water absorption tests, Moisture analysis. (08 h) 					
Unit-IV	Material Characterization Test: Melt flow index, Capillary rheometer test, Viscosity test, Gel permeation chromatography, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Thermo-mechanical Analysis (TMA), Material characterization tests for thermosets – bulk density, bulk factor and pourability of plastic, viscosity tests, styrene content. (08 h)					
Unit-V	 A. Flammability: Introduction, Flammability test, Ignition properties of plastics, Ignition temperature determination, Oxygen index test, UL 94 flammability test. B. Thermal Properties: Introduction, Heat distortion temperature, Vicat softening temperature, Long term heat resistance test, Thermal conductivity, Thermal expansion, Brittleness temperature. 					
Unit-VI	 A. Chemical Properties: Introduction, Immersion tests, Stain resistance test, Solvent stress cracking resistance, Environmental stress cracking resistance, Acetone immersion test. B. Weathering Properties: Accelerated Weathering tests, Outdoor weathering properties, Resistance of plastics to fungi and bacteria. 					

Reference Books:	Sr. No.	Title	Author	Publication	Edition
DOOKS.	1	Handbook of Plastics Testing Technology	Vishu Shah	A Wiley Interscience	2 nd
	2	Handbook of Plastics Test Methods	R.P. Brown	Longman Scientific And Technical	3 rd
	3	Testing & Evaluation of Plastics.	Mathur & Bhardwaj	Allied publisher Pvt Ltd. 2003	1 st
	4	Identification and Testing of Plastics	A.S. Athalye	Multi-Tech Publishing, 1992	1 st

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions.
- 2. Five questions in each section.
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 10 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad(Faculty of Science & Technology)
Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-III

		Credits: 4 Class Test: 20 Marks Theory Examination: 80 Marks Theory Examination (Duration): 3 hrs		
Objectives		ucture-properties relationships in materials. nipulate atomic/micro-structural processes to ies.		
Unit I	Types of Materials: Materials, Materials Classification, Er of amorphous, single crystals, polycry	ngineering requirements of materials, concept stalline materials. (04 h)		
Unit II	Structure of Materials: Crystal symmetry, point groups, space groups, indices of planes, close packing in solids, bonding in materials, coordination and radius ratio concepts, point defects, dislocations, grain boundaries, surface energy and equilibrium shapes of crystals, crystallinity and its effect on physical properties. (12 h)			
Unit III	· ·	der Synthesis, Sintering, Chemical methods, g, preparation of nanoparticles and thin films. (08 h)		
Unit IV	Thermodynamics and Diffusion: Concepts of Enthalpy, Entropy, Gibbs Free Energy, First and second law of thermodynamics, Phase rule, phase diagrams, solid solutions, solidification and phase transformations, Fick's laws of diffusion, mechanisms of diffusion, temperature dependence of diffusion. (08 h)			
Unit V	A) Mechanical Properties: Stress-strain response of metallic, ceramic, and polymer materials, yield strength tensile strength and modulus of elasticity, toughness, plastic deformation, fatigue creep and fracture.			
	B) Thermal Properties:: Specific heat, thermal conductivity, the	ermal expansion, thermoelectricity. (04 h)		

Unit VI	Free sem	Electronic Properties: e electron theory, Fermi en niconductors, Hall effect oelectricmaterials. Magnetic Properties:	nergy, density of statet, dielectric beh			
		igin of magnetism in m	etallic and ceramic	materials, parama	ignetism,	
		nagnetism, ferro and ferrim		, I	,	
		-	-		(02 h)	
	Refractive index, absorption and transmission of electromagnetic rac solids, electro-optic and magneto-optic materials, spontaneous and se emission, gas and solid state lasers.					
Reference □	Sr. No.	Title	Author	Publication	(03 h) Edition	
Books	1	Material s Science and Engineering	William D. Callister	Wiley India	6 th	
	2	Materials Science and Engineering	V. Raghavan	PHI	5 th	
	3	Material Science and Metullergy	V. D. Kodgire	Everest Publication House	1 st	
	4	Essentials of Materials For Science And Engineering	Donald R. Askeland, Pradeep P. Phule	Thomson- Engineering	1 st	
	5	Introduction to Material Science for Engineering	James F. Shackel ford	Prentice Hall	6 th	
	6	Foundation of Material Science and Engineering	Smith	McGraw Hill	3 rd	

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions.
- 2. Five questions in each section.
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 10 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad(Faculty of Science & Technology)
Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-III

		Credits: 2 Class Test: 10 Marks Theory Examination: 40 Marks Theory Examination (Duration): 2 hrs				
Objectives	mechanical operating elements and a	of different operations like size reduction,				
Unit-I	Particulate Solids and Sorting: Properties of solids, characterization of solid particles, particle size analysis. Gravity settling, classifier, hydraulic jig, cyclones. (04 h)					
Unit-II	Size Reduction: Principles and laws of crushing, construction and working of equipments like jaw crusher, pulverizer, ball mill. Screening and screen efficiency, open and closed circuit grinding.					
Unit-III	Sedimentation and Filtration: Free and hindered settling, thickeners and settlers, Flocculation. Filter media, filter aids, plate and frame press, rotary drum filter and filter leaf, Centrifugal filtration. (04 h)					
Unit-IV	Mixing and Agitation: Agitation and mixing of liquids/solid/gas, Types of mixers dispersion operations, design of agitator and its effects on viscosity of liquids. (05 h)					
Unit-V	Gas Cleaning: Gas cleaning equipment, Gravity separators, Centrifugal separators, Momentum separators, Electrostatic precipitators, Liquid washing, Odour removal, Fabric filters, Impingement method and Miscellaneous methods, and Coal essence. (05 h)					
Unit-VI	Storage and conveying of solids: Different methods of solids storage (Bur Conveyors, elevators, pneumatic convey	nkers, Silos, Bins Hoppers)				

Reference Books:	Sr. No.	Title	Author	Publication	Edition
DOOKS:	1	Unit Operations In	McCabe and	McGraw Hill	1 st
	1	Chemical Engineering	Smith		
	2	Chemical Engineering	Richardson and	Butterworth	5 th
		(Vol. 2)	Coulson	Heinemann Titles	
	2	Chemical Engineers	Perry and Chilton.	McGraw Hill	1 st
3	3	Handbook			
	4	Principles of Unit	Foust A.S and	John Wiley and Sons	1 st
	4	operations	Associates		

Section A: Includes Unit I, IV, V; **Section B**: Includes Unit II, III and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 6 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 7 marks each from remaining questions from each section A and B be asked to solve.

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-III

Course Code: PPE221 Credits:1

Course: Lab I: Organic Chemistry Practical: 25 marks
Teaching Scheme: Termwork: 25 marks

Practical: 2 hrs/week

5.

6.

Chemistry

Organic Chemistry

1 Tucticuit	_ 1115, ***										
Course Objectives		To study the Organic Chemistry applicable to Plastics and Polymer Engineering.									
List of	1. Ide	entification of functional g	groups: primary amine, ca	rboxylic, pheno	lic, carbonyl,						
Practicals	arc	aromatic hydrocarbon etc.									
	2. So.	2. Solubility test and classification of the compound.									
	3. Pre	eparation of derivative, of	conclusion, naming of the	he compound /	structure of						
		mpound.		•							
	4. De	tection of N, S and haloge	ens in organic compounds	i.							
	5. Est	timation of Phenol from g	iven solution.								
	6. Est	timation of Formaldehyde	from given solution								
	7. De	termination of the percent	tage purity of Styrene.								
	8. De	termination of Iodine valu	ne of given compound.								
	9. Mo	olecular weight determinate	tion by acid base titration	method.							
	10. De	termination of melting	point of solid and boili	ing point of li	quid organic						
	coı	mpounds.									
	At least any 8 experiments from the above-mentioned list of experiments should be performed.										
List of Reference	Sr. No.	Title	Author	Publication	Edition						
Books	1.	Text book of Organic Chemistry	Bahl & Bahl	S. Chand	18 th						
	2.	Stereochemistry of Organic Compounds	P. S. Kalsi	New Age	5 th						
	3.	Reactions, Reagents and Rearrangements	S. N. Sanyal	Bharti Bhavan	1 st						
	4.	Organic Chemistry	F. A. Carry	Mc Graw Hill	$3^{\rm rd}$						
	5.	Practical Organic	Frederick G. Mann and	Longman	$4^{ ext{th}}$						

Bernard Charles

and Craig B.Fryle

T.W. Graham Solomons

Saunders

Inc,New

John Wiley

and Sons

 7^{th}

York

The assessment of term work shall be done on the basis of the following:

- 1. Continuous assessment.
- 2. Performing the experiments in the laboratory.
- 3. Oral examination conducted on the syllabus and term work mentioned above.

Practical Examination

The practical examination shall consist of performing an experiment based on the practical work done during the course, the record of the experiment performed by the candidate and viva voce based on the syllabus. The assessment will be based on

- 1. Performing the experiment.
- 2. Record of experiment performed by the candidate.
- 3. Viva-voce on the syllabus.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-III

Course Code: PPE222 Credits:1

Course: Lab II: Analysis of Polymer Practical: 25 marks **Teaching Scheme:** Termwork: 25 marks

Practical: 2 hrs/week

1 Tactical. 2 III S/	WCCK								
Objectives	To io	dentify and analyze the va	rious properties of	polymer materia	als.				
List of	1. D	etermination of bulk dens	sity of polymers.						
Practicals	2. D	2. Determination of Iodine value							
	3. D	Determination of Amine va	alue						
	4. D	Determination of molecula	r weight of polymen	by end group a	analysis.				
		Determination of molecula			•				
	J. D	etermination of molecula	i weight of polymer	by viscomeny	•				
	6. D	Determination of moisture	and volatile conten	t in plastics/rub	bers.				
	7. D	etermination of water abs	sorption in polymer	sample.					
	8. D	Determination of the perce	ntage purity of HM	TA.					
	9 D	Determination of Melamin	e content						
). D	otermination of Melanini	e content.						
		east any 8 experiments ald be performed.			_				
List of	Sr. No.	Title	Author	Publication	Edition				
ReferenceBooks	1	Handbook of Plastics	Vishu Shah	A Wiley	2 nd				
		Testing Technology		Interscience					
	2	Handbook of Polymer	Enrique Saldívar-	Wiley	1 St				
		Synthesis,	Guerra, Eduardo	Interscience					
		Characterization, and Processing	Vivaldo-Lima.						
	3	Polymer Synthesis and	Sandler, Karo,	Elsevier	1 St				
		Characterization:	Bonesteel &						
		Laboratory Manual	Pearce		S ₄				
	4	Laboratory experiments	Eli M. Pearce,	Article	1 St				
		in polymer synthesis and characterization	Carl E. Wright, Binoy K. Bordoli						
				1					
	5	Experiments in Polymer	Dr A D	_	1 St				
	5	Experiments in Polymer Science, Technology and	Dr. A. D. Ashtaputre	-	1 St				

The assessment of term work shall be done on the basis of the following:

- 4. Continuous assessment.
- 5. Performing the experiments in the laboratory.
- 6. Oral examination conducted on the syllabus and term work mentioned above.

Practical Examination

The practical examination shall consist of performing an experiment based on the practical work done during the course, the record of the experiment performed by the candidate and viva voce based on the syllabus. The assessment will be based on

- 1. Performing the experiment.
- 2. Record of experiment performed by the candidate.
- 3. Viva-voce on the syllabus.

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-III

Course Code: PPE223 Credits:1

Course: Lab III: Polymer Testing Practical: 25 marks
Teaching Scheme: Termwork: 25 marks

Practical: 2 hrs/week

Practical:	2 nrs/week						
Course Objectives	To study and perform testing of various properties of plastics materials.						
List of	1. To determine the Tensile strength of given polymer sample.						
Practicals	2. To determine the Compression strength of given polymer sample.						
	3. To determine the Flexural strength of given polymer sample.						
	4. To determine the Impact strength of given polymer sample.						
	5. To determine the Hardness of given polymer sample.						
	6. To determine the Heat Deflection Temperature of given polymer sample.						
	7. To determine the Vicat Softening Temperature of given polymer sample.						
	8. To determine specific gravity/density of given polymer sample.						
	9. To determine Melt Flow Index of given polymer sample.						
	10. To determine the surface resistance of given polymer product.						
	11. Determination of moisture content of calcium carbonate, silica, carbon bla						
	china clay.						
	12. Determination of ash content of calcium carbonate, silica, carbon black, china						
	clay.						
	At least any 8 experiments from the above-mentioned list of experiments should be performed.						

List of Reference Books	Sr. No.	Title	Author	Publication	Edition
	1	Handbook of Plastics Testing Technology	Vishu Shah	A Wiley Interscience	2 nd
	2	Handbook of Plastics Test Methods	R.P. Brown	Longman Scientific And Technical	3 rd
	3	Experiments in Polymer Science, Technology & Testing of Polymers	Dr. A.D. Ashtaputre	-	1 st
	3	Testing & Evaluation of Plastics.	Mathur & Bhardwaj	Allied publisher Pvt Ltd. 2003	1 st
	4	Identification and Testing of Plastics	A.S. Athalye	Multi-Tech Publishing, 1992	1 st

The assessment of term work shall be done on the basis of the following:

- 7. Continuous assessment.
- 8. Performing the experiments in the laboratory.
- 9. Oral examination conducted on the syllabus and term work mentioned above.

Practical Examination

The practical examination shall consist of performing an experiment based on the practical work done during the course, the record of the experiment performed by the candidate and viva voce based on the syllabus. The assessment will be based on

- 1. Performing the experiment.
- 2. Record of experiment performed by the candidate.
- 3. Viva-voce on the syllabus.

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-III

Course Code: PPE224 Credits:1

Course: Lab IV: Mechanical Operation

Teaching Scheme: Termwork: 50 marks

Practical: 2 hrs/week

Course
Objectives

To understand the working principles of various unit operations required in Plastics and Polymer Engineering.

List of Practicals

- 1. To find particle size distribution by sieve analysis.
- 2. To determine the effectiveness of double deck vibrating screen.
- 3. To determine the crushing efficiency, reduction ratio in jaw crusher.
- 4. To determine the crushing efficiency of pulverizer.
- 5. To determine the effect of dry grinding, critical speed of ball mill and effect of grinding with change in number of balls.
- 6. To determine the effect of wet grinding, critical speed of ball mill and effect of grinding with change in number of balls.
- 7. To determine the effect of diameter of the tank on batch settling.
- 8. To study constant pressure filtration characteristics and washing of cake in a plate and frame filter.
- 9. To study filter characteristics using vacuum filter.
- 10. To determine the efficiency of the grinder.

At least any 8 experiments from the above-mentioned list of experiments should be performed.

List of Reference	Sr. No.	Title	Author	Publication	Edition
Books	1	Unit Operations In Chemical Engineering	McCabe and Smith	McGraw Hill	1 st
	2	Chemical Engineering (Vol.2)	Richardson and Coulson	Butterworth Heinemann Titles	5 th
	3	Chemical Engineering Handbook	Perry and Chilton	McGraw Hill	1 st
	4	Principles of Unit Operations	Foust A.S. and Associates	John Wiley and Sons	1 st

The assessment of term work shall be done on the basis of the following:

- 1. Continuous assessment.
- Performing the experiments in the laboratory.
 Oral examination conducted on the syllabus and term work mentioned above.

(Faculty of Science & Technology) Syllabus of S. Y. B. Tech. (All) Semester-III

Course Code: BSH225 Credits:1

Course: Lab V: Development of Skills-II

Teaching Scheme: Termwork: 50 marks

Practical: 2 hrs/week

Objectives

- 1.Students will be able to apply communicative English Grammar in communication.
- 2.Students will be able to enhance the level of English vocabulary.
- 3.Students will be able to pronounce and articulate words as well as sentences accurately.
- 4. Students will be able to understand and apply correct body language eventually.
- 5.Students will be able to develop life skills.
- 6.Students will be able to develop placeability skills and business correspondence.

	Sr.	Section	Contents	Duration	
	No.				
List of		English	Structure of sentences, types of sentences,		
Practical	1	Communicative	clauses, grammatical common errors in English	4.1	
	1	Grammar		4 hrs	
		Vocabulani	Usage of words in sentences, common errors in		
	2	Vocabulary	spelling of words, synonyms, antonyms,	2 hrs	
		Building	phrases and idioms		
			Syllables, Stress, intonation, pronunciation of		
			words, phonetic transcription - conversion of		
			words to phonetic symbols and from phonetic		
	3	Phonetics	symbols to words, British and American	4 hrs	
			English (basic difference in vocabulary,		
			spelling, pronunciation and structure), non-		
			verbal language.		
		Non-verbal	Posture, gesture, eye contact, facial expression,		
	4	Communication	proxemics, chronemics, appearance and	2 hrs	
		(Body language)	symbols.		
			Personality development, self analysis through		
	5	Soft Skills	SWOT, Johari window, interpersonal skills,	2 hrs	
	5	SOIL SKIIIS	perception and attitude, values and ethics,		
			career planning.		
		Placeability	Job application, resume writing, analytical and		
6		Skills	reasoning test, debate, group discussion, demo		
		DKIIIS	presentation and interview skills.		
		Business	Letter writing at work place (hard copy and soft		
	7	Correspondence	copy), telephone and Email etiquette, report	2 hrs	
		Correspondence	writing.		

List of	Sr. No.	Title	Author	Publication
Reference Books	1	The Essence of Effective Communication	Adrian Budday, Ron Ludlow and Fergus' Panton	Prentice Hall of India- Private Ltd.
	2	Communicating in Style	Yateendra Joshi	The energy Resource Institute
	3	Effective Technical Communication	Anne Eisenberge	Mc Graw Hill International Editors
	4	Professional Communication Skills	A. K. Jain, Pravin, S. R. Bhatia, A. M. Sheikh	S. Chand & Company Ltd.
	5	Business Communication	Urmila Rai, S. M. Rai	Himalya Publishing House
	6	Developing Communication Skills	Krishna Mohan and Meera Banerjee	Macmillan India Limited
	7	Better English Pronunciation	J.D.O'Connor.	Cambridge Publication
	8	Professional Communication Skill	Pravil S.R. Bhatia, S.Bhatia	S. Chand & Co
	9	Living English Structure	Allan Walter	Pearson Education India
	10	Communication Techniques & Skill	R.K. Chadha	
	11	Technical Communication- Principles and Practice	Meenakshi Raman & Sangeeta Sharma	Oxford University Press
	12	A course in Phonetics & Spoken English	J.Sethi,P.V.Dharmatma	PHI publication
	13	Communication Skills for Engineers	Sunita Mishra, C. Murli Krishna	Pearson Education
	14	Communication Skills	Leena Sen	PHI
	15	Technical Communication A Reader Centered Approach	Paul V. Anderson	Thomson Publication
	16	Grammar of Spoken and Written English	Dauglas Biber, Geoffrey Leech	Longman
	17	A Practical English Grammar	A.J. Thomson & A.V. Martinet	Oxford University Press
	18	Oxford English Grammar	Sydney Greenbaum	Oxford University Press
	19	Developing Graduate Employability Skills: Your Pathway to Employment	Mercy V. Chaita	Universal Publishers

The assessment of term work shall be done on the basis of the following:

- 1. Continuous assessment.
- Performing the experiments in the laboratory.
 Oral examination conducted on the syllabus and term work mentioned above.

(Faculty of Engineering & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester- IV

Course Code: BSH251A Course: Engineering Mathematics -IV

Teaching Scheme: 04Hrs/week Class Test: 20 marks

Theory: 03 Hrs/week
Tutorial: 01 Hr/week
Theory Examination (Duration): 03 Hrs
Theory Examination (Marks): 80

Credits: 04

Objectives	:	1) To develop the mathematical skills of the student related to Function of complex
		variable and Vectors.
		2) To study and apply various types of transforms and partial derivatives.
		3) To provide Numerical techniques for solving the practical problem in engineering and
		technology.
Unit-I	:	Function of complex variable :
		Introduction , Analytic function ,Cauchy-Riemann equation in Cartesian and polar
		coordinates, Harmonic function, orthogonal system, Integration in complex plane: Line
		integral, Contour integral, Cauchy's integral theorem, Cauchy's integral formula,
		Extension of Cauchy's theorem on multiply connected region, Singularities, Residues,
		Cauchy's residue theorem. (12 Hrs)
Unit-II	:	Application of Complex Variable:
		Evaluation of real integrals: Integration along unit sirals and along the upper half somi
		Evaluation of real integrals: Integration along unit circle and along the upper half semi- circle, Conformal Transformation, Bilinear transformation. (5Hrs)
		circle, Conformal Transformation, Bilinear transformation. (5Hrs)
Unit-III	:	Vector Integration:
		Line integral, Surface integral, Gauss divergent theorem, Stoke's theorem, Green's
		theorem. (7 Hrs)
Unit-IV	:	Numerical Method:
		Solution of algebraic and transcendental equation, Newton Raphson method, Lagrange's
		interpolation, Solution of linear simultaneous equation by Gauss Elimination method,
		Gauss-Seidel method, Solution of ordinary differential equations: Taylor series method,
		Fourth order Runge-Kutta method.(10 Hrs)
Unit-V	:	Probability:
		Introduction, Probability Distributions: Binomial Distribution, Poisson Distribution,
		Normal Distribution. (6 Hrs)
Unit-VI	:	Application of partial differential equation :
		Solution of partial differential equation by method of separation variable, Application to
		i. Vibration of a string (The wave equation) (without proof)
		ii. One dimensional heat flow (The diffusion equation) (without proof)
		iii. Two dimensional heat flow (The diffusion equation) (without proof)
		(8 Hrs)

Reference	:	1. A Text Book of Applied Mathematics Volume-III BY P.N. Wartikar J.N.Wartikar,
Books:		Pune Vidyarthi Griha Prakashan.
		2. Advanced Engineering Mathematics BY H. K. Dass, S. Chand and Co. Ltd.
		3. Higher Engineering Mathematics BY Dr. B. S. Grewal, Khanna Publishers.
		4. Higher Engineering Mathematics BY B. V. Ramana, Tata McGraw-Hill Publishing
		Co. Ltd.
		5. Solution to Higher Engineering Mathematics Volume –III BY C. P. Gandhi

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six/four units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (Faculty of Science & Technology) Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester–IV **Course Code: PPE252** Credits: 4 **Course: Process Calculation** Class Test: 20 Marks **Theory Examination: 80 Marks Teaching Scheme:** Theory: 4 hrs/week Theory Examination (Duration): 3 hrs 1) To understand the basic calculation of various processes in Polymer **Objectives** Engineering. 2) To study the calculations of energy requirements of processes. 3) To understand the implications of steady state processes of various unit operations through material balances with and without chemical reactions. **Basic Units and Conversion:** Unit-I Vapor pressure, partial pressure, ideal gas law, Dalton's law, Raoult's law, Amagat's law, Weight percent, volume percent, mole percent, density of gas mixture, average molecular weight of mixture. (08 h)Material Balance without Chemical Reaction: Unit-II Material balance for distillation, drying, extraction, absorption, crystallization, blending, evaporation and filtration. Purge and bypass calculations. (08 h)**Material Balance with Chemical Reaction: Unit-III** Material balance with different types of chemical reaction. Limiting and excess reactants. (08 h)**Energy Balance:** Unit-IV Energy balances with chemical reaction, heat capacity of pure substances and mixtures, standard heat of reaction, standard heat of formation, standard heat of combustion and standard heat of neutralization. (10 h)**Humidification:** Unit-V Relative humidity, percent saturation, dew point, dry and wet bulb temperature, psychometric chart. (06 h)**Fuels and Combustion:** Unit-VI Types of fuels and combustion, calorific value, air requirement, theoretical and

(08 h)

excess calculations

Reference Books/	Sr. No.	Title	Author	Publication	Edition
Websites	1	Stoichiometry	Bhatt and Vora	Tata McGraw Hill	4 th
	2	Chemical Process Principles - Part I	Hougen & Watson	Asia Publishing House	2 nd
	3	Basic Principles and Calculation in Chemical Engineering	D. M. Himmelblau.	Prentice – Hall India	6 th
Website		http://www.nptelvideos.in/2012/12	2/materials-and-en	ergy-balance.html	

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 10 marks each. The Question no.1 and 6 should be of objective nature.
- 4. From each section solve any two questions of 15 marks each.

Dr.BabasahebAmbedkarMarathwada University, Aurangabad
(Faculty of Science & Technology)
Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-IV

	hrs/week	Credits: 4 Class Test: 20 Marks Theory Examination: 80 Marks Theory Examination (Duration): 3 hrs		
Objectives	associated with the macromolecular 2) The student will have a base physicochemical principles which synthetic macromolecules. 3) The student can predict major characteristic structure and molecular architecture.	result from the chainlike structure of racteristics of a polymer from its chemical		
Unit-I	Structure of Polymer Chain: Introduction to chain conformation, configurations, isomerism and stereochemistry. Origin and types of stereoisomerism in polymers; factors influencing stereo-regulation, Conformation of Polymer Chain. (8 h)			
Unit-II	Crystalline State of Polymers: Spherulite formation, nucleation, grain boundary, crystalline structures. Intermolecular orders: Amorphous, crystalline and oriented forms of polymers, crystallinity in polymers, factors affecting crystallinity, properties affected by crystallinity of polymers. (10 h)			
Unit-III	Polymer Solutions: Polymer Solutions: Dilute and Concersolvents; Hilderbrand and Hansen solu	attrate, phase separation;good, bad and theta bility parameter. (06 h)		
Unit-IV	energy, Clausius inequality, thermo Huggins theory, Phase diagrams of solution temperature with examples of	entropy, Gibbs free energy, Helmholtz free dynamic condition for solubility, Florybinary solution; Upper and lower critical of each kind. Thermodynamic and kinetic as determining chain flexibility, Practical (12 h)		
Unit-V	Osmosis: Osmotic pressure, vapour pressure osn virial expansion, Application in determ	nometry, ideal solution, Vant Hoff analysis,		

Unit-VI	Polymer Surface Chemistry: Cohesive energy, surface tension and surface energy, contact angle (definition,					
Cint VI						
	theory and application), hydrophilic and hydrophobic polymer surfaces.					
	(06 h)					
Reference	Sr. No.	Title	Author	Publication	Edition	
Books:	1	Polymer Science & Technology of Plastics & Rubbers	P. Ghosh	TataMcGrawHill	2 nd	
	2	Polymer Science & Technology	Joel R. Fried	Prentice Hallof IndiaPvt.Ltd.	3 rd	
	3	Polymer Science	V.R. Gowarikar	New Age International Publishers	3 rd 2005	
	4	Introduction to Polymer Physics	M. Doi	Oxford Science	1995	
	5	Principles of Polymer Chemistry	P.J. Flory	Cornell Univ. Press, New York	1955	
	6	Introduction to Polymers.	Young, R. J., and P. A. Lovell	Boca Raton, FL: CRC Press, ISBN: 9780748757404.	2 nd 2000	
	7	Textbook of Polymer Science	Golding	Van Nostrand Reinhold company	-	
	8	Plastics Materials	J.A.Brydson	Elsevier	6 th	
	9	Textbook of Polymer Science	PL Nayak, S Lenka	Kalyani	2 nd	

Section A: Includes Unit I, II and III; **Section B**: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 10 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-IV

Course Code: PPE254 Credits: 4

Course: Polymer Synthesis and Manufacturing Class Test: 20 Marks

Teaching Scheme: Theory Examination: 80 Marks
Theory: 4 hrs/week Theory Examination (Duration): 3 hrs

Objectives

- 1) To provide a general overview on polymer synthesis and their kinetics.
- 2) To provide athorough understanding and knowledge on manufacturing process of various thermoplastics.

Unit-I

A. Introduction to Polymer Synthesis:

Definition and characteristics of monomers, initiators, catalyst, chain transfer agent, inhibitors, retarder. Homo-polymerization, co-polymerization.

(02 h)

B. Polymerization Techniques:

Bulk, solution, emulsion, suspension, ring-opening and interfacial polymerization; examples of various polymers prepared by each polymerization techniques.

(06 h)

Unit-II

Addition Polymerization:

Radical, cationic and anionic polymerization: theory, Techniques and mechanism, advantages and disadvantages, Chain transfer, inhibition, retardation, auto-acceleration, Initiator efficiency, Kinetics of additionpolymerization reaction, Rate of polymerization of the reaction (Derivation and assumptions), Extent of reaction, Number average degree of polymerization.

(08 h)

Unit-III

Condensation Polymerization:

Kinetics of step polymerization, copolymerization with few examples. Reactivity of functional groups; Stoichiometric control of molecular weight for step polymers. Effect of temperature on rate of polymerization reaction. Reactivity ratio and its influence on type of copolymer formation. Carother's equation, Extent of reaction, Number average degree of polymerization, Numerical problems.

(08 h)

Unit-IV

Manufacturing of Thermoplastic Materials:

Coordination polymerization (Ziegler-Natta polymerization, metallocene polymerization), manufacturing process for polyolefins (LDPE, LLDPE, HDPE, Isotactic and Syndiotactic PP), Manufacturing process of Polystyrene (PS), high impact grades (HIPS), Acrylonitrile-co-Butadiene-co-Styrene (ABS). Preparation and processing of Polyethylene terephthalate (PET), Polyamides (Nylon 6 and Nylon 6,6) and Polycarbonate, Poly(tetrafloro ethylene)

(10 h)

Unit-V Unit-VI	Manufacturing of Thermosets: Raw materials, commercial production, resinification and hardening of Phenolic resins (Novolac and Resol), Amino resins (Urea formaldehyde and Melamine formaldehyde), Epoxies, Alkyd resins. (08 h) Miscellaneous Polymeric Materials: Raw materials and manufacturing process of Polyurethanes (Elastomer, Fibre,				
	Foam and Adhesive) and Silicones (Plastics resin and Rubber). (06 h)				
Reference Books:	Sr. No.	Title	Author	Publication	Edition
DOOKS.	1	Polymer Science and Technology	P. Ghosh	Tata McGraw Hill	2 nd
	2	Plastics Materials	J.A. Brydson	Elsevier	7^{th}
	3	Textbook of Polymer Science	Golding	Van Nostrand Reinhold company	
	4	Introduction to Polymers	Young, R. J., and P. A. Lovell	CRC Press	2 nd
	5	Handbook of Polyolefins	Cornelia Vasile	Marcel Dekker	2 nd
	6	Manufacture and Processing of PVC	R. H. Burgess	Elsevier Applied Science Publishers	1 st
	7	Polyesters and polyamides	BL Deopura, R. Alagirusamy, M. Joshi, B. Gupta	Woodhead Publishing in Textiles	1 st
	8	Polystyrene: Synthesis, Production and Applications	J. R. Wünsch	Smithers Rapra Publishing	1 st

Section A: Units I, II, III and Section B: Units IV, V, VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 10 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

(Faculty of Science & Technology)
Syllabus of S. Y. B. Tech.(Plastic and Polymer Engineering)Semester-IV

Course Code: Course: Progr Teaching Scho Theory: 4 hrs/	ramme Elective-I: Specialty Polymers Class Test: 20 Marks reme: Theory Examination: 80 Marks		
Objectives	To provide general idea of different specialty polymers, their synthesis, structure-property relationships and applications.		
Unit-I	Heat Resistant Polymer Introduction, preparations, structure-property relationships, properties and application of the followings polymers: a) Polyetherether ketone, b) Polysulphone, c) Polybenziimidazole d)Polyphenylene oxide, e)Polyphenylene sulphide (08 h)		
Unit-II	Inorganic Polymers Classifications based on chemical constituents (fully inorganic, organometallic, organic-inorganic polymers and hybrids), dimensionality (1D, 2D and 3D), connectivity (1, 2, 3, 4, 6, 8 and mixed connectivities) and polymerization methods (step-growth, chain-growth, ring-opening polymerization). Preparation, properties and applications of the following polymers: a)Polysilane, b) Polydimethylsiloxanes, c) Polyphosphazene, d) Polyborazylene (08 h)		
Unit-III	Liquid Crystalline Polymer Introduction of liquid crystals, Classification, definition of mesophase, spacer and disruptor, Lyotropic and Thermotropic System, Temperature dependent phase change in liquid crystals, Liquid crystal main chain polymer, Liquid crystal side chain polymer, liquid crystal dendrimer. Synthesis, Structure-Property Relationships, Characterization and Applications of LCPs. (08 h)		
Unit-IV	Conducting Polymers Introduction of conducting polymers and classifications. Different synthesis methods (oxidative chemical, electrochemical, interfacial, solid state and enzymatic synthesis) and techniques (template and template-free synthesis). Doping of intrinsically conducting polymers. Dedoping, redoping, secondary doping, self doping and simultaneous dual doping mechanisms. Polaron, bipolaron and solition states. Electrical and electrochemical characterizations of conducting polymers. Miscellaneous applications of conducting polymers. Synthesis, properties and applications of the following polymers: a)Polyaniline, b) Polypyrrole, c) Polythiophene and d) Polyacetylene.		

(10 h)

Unit-V	Ionic Polymers Introduction and classifications of ionic polymers. Synthesis, properties and applications of ionomers and polyelectrolytes. (04 hr)				
Unit-VI	Smart Polymers Stimuli-responsive characteristics of polymers. Physical forms of the smart polymer chains. Polymers showing LCST behaviour. Polymers with dual responsive characteristics. Polymers with amphiphilic balance. Basic idea of shape memory polymers with examples. Working mechanisms of temperature, strain, pH, solvent, gas and vapour sensitive smart polymeric systems with examples. Smart polymers for drug delivery. (10 hr)				
Reference	Sr. No.	Title	Author	Publication	Edition
Books:	1	Liquid Crystalline Polymers	Xin-Jiu Wang. Qi Feng Zhou	World Scientific Publishing Co. Pvt. Ltd.	1 st (2004)
	2	Specialty Polymers	R.W. Dyson	Chapman & Hall, New York	2 nd (1998)
	3	Engineering Polymer Sourcebook	Raymond B. Seymour	McGraw-Hill, USA	1 st (1990)
	4	Stimuli-Responsive Polymers: Synthesis and Properties	Andrew B. Lowe, Peter J. Roth	Wiley	1 st (2016)
	5	Smart Polymers and their Applications	M.R. Aguilar De Armas and J.S. Román	Woodhead Publishing	1 st (2014)
	6	Inorganic and Organometallic Polymers	Ronald D. Archer	Wiley	1 st (2001)
	7	Heat-Resistant Polymers: Technologically Useful Materials	J.P. Critchley, G.J. Knight, W.W. Wright	Springer	1 st (1983)

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 10 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr.BabasahebAmbedkarMarathwada University, Aurangabad

(Faculty of Science & Technology)
Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-IV

		Credits: 4 Class Test: 20 Marks Theory Examination: 80 Marks Theory Examination (Duration): 3 hrs
Objectives	 To understand different terminologies as To acquire fundamental knowledge about structures and basic characteristics. To gain knowledge about preparation of To acquire knowledge about processing a 	nt natural and man-made fbres, their man-made fibres.
Unit-I	Introduction to Fibres: Definitions and terminologies, classification staple and filament fibres, orientation in fibre properties of fibres (fibre length, fineness, moisture regain), physical and chemical identity	re structure, general idea about the physical tenacity, initial modulus, work of rupture,
Unit-II	Natural Fibres: Origin, structure, properties and applications jute, flax and sisal.	s of the following fibres: cotton, wool,silk, (08h)
Unit-III	Fibre Production Methods: Melt spinning, dry spinning, wet spinning, d	
Unit-IV	Synthetic Fibres: Origin, structure, preparation, properties polyester, polyamide, polyacrylic, polyolefin	
Unit-V	Regenerated and Inorganic Fibres: Structure, preparation (in brief), properticellulosic fibres: rayon (viscose, cupra applications of the following inorganic fibres:	ammonium, polynosic). Properties and
Unit-VI	 A) Chemical Processing of Fibres: Scouring, Bleaching, Dyeing. B) Mechanical Processing of Fibres: General idea about post-synthesis proceedibles, nonwoven fabrics, fibre reinforced 	(04 h) essing of fibres, twisting and spinning of d composites (FRP). (04h)

Reference	Sr.	Title	Author	Publication	Edition
Reference	No.				
Books:	1	Manufactured Fibre Technology	V. B. Gupta,	Springer	1^{st}
			V. B. Kothari		
	2	Man-made Fibres	R. W. Moncrieff	Wiley	1 st
	3	Textile Science: An Explanation of	E. P. G. Gohl,	Guilford	1 st
		Fibre Properties	L. D. Vilensky	Publications	
	4	Dyeing and Chemical Technology of	E. R. Trotman	John Wiley	4 th
		Textile Fibres		& Sons Inc.	
	5	Man-made fibres	Gordon J. Cook	Woodhead	1 st
				Publishing	

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:

- 1. Minimum ten questions.
- 2. Five questions in each section.
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 10 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr.BabasahebAmbedkarMarathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-IV

Course Code: PPE293 Credits: 4

Course: Programme Elective-I: Biopolymers Class Test: 20 Marks

Teaching Scheme: Theory Examination: 80 Marks
Theory: 4 hrs/week Theory Examination (Duration): 3 hrs

Objectives

- 1) To gain an understanding on the chemical structure of biopolymers, their classification and nomenclature.
- 2) To acquire acknowledge about the resources and preparation involved in the production and the recovery of biopolymers.
- 3) To acquire knowledge about the basic properties of biopolymers and their various applications.

Unit-I

Biopolymers:

Definition, classification and nomenclature of biopolymers, origin of various natural biopolymers, structure, properties and applications of various biopolymers, advantages and disadvantages of biopolymers.

(06 h)

Unit-II

Preparation, Properties and Applications of Biopolymers:

Technology, production and application of biopolymers based on Lactic acid, Lipids, Cellulose, Starch, Chitosan and glycol-proteins.

(08 h)

Unit-III

Microbial Biopolyesters [Polyhydroxyalkanoates]:

Introduction, biosynthesis, isolation – solvent extraction - sodium hypo chloride digestion, enzymatic digestion, properties – crystal structure – nascent morphology, degradation - intracellular biodegradation - extra cellular biodegradation - thermal degradation - hydrolytic degradation - environmental degradation - effects of recycling, applications, economics, future prospects.

(10 h)

Unit-IV

A) Test Methods and Standards for Biodegradable Plastics:

Introduction, defining biodegradability, criteria used in the evaluation of biodegradable polymers, tiered systems for evaluating biodegradability, choice of environment, choosing the most appropriate methodology, description of current test methods - screening test for ready biodegradability, tests for inherent biodegradability, tests for simulation studies, other methods for assessing biodegradability - petri dish screen - environmental chamber method - soilburial tests, test method developments for the future.

(06 h)

B) Biocompatibility and Toxicological Screening of biomaterials:

Biocompatibility & Toxicological screening of biomaterials [Definition of Biocompatibility, cytotoxicity (Principal, method and few examples)], *in vitro* hemocompatibility, cell adhesion property and morphology.

(04 h)

Unit-V

Biopolymer Based Materials:

A) Blends and composites: Processing technique, Mechanical and dynamic properties and applications. Comparative properties (mechanical and physicchemical) of tissue and body parts with bio-polymers.

(04 h)

B) Bio-nanocomposites: Properties, characteristics and applications of Poly(lactic acid) based bio-nanocomposites, Polyhydroxyalkanoate based bionanocomposites, Polycaprolactone based bio-nanocomposites, Starch based bionanocomposites, nanoclaybased bio-nanocomposites.

(04 h)

Unit-VI

Renewable Raw Materials and Feedstock for Biopolymers:

Introduction-First- and Second-generation crops: advantages and disadvantages-The amount of land needed to grow feedstock for bio-based plastics- productivity and availability of arable land- research on feedstock optimization- advanced breeding technologies and green biotechnology- some facts about food prices and recent food price increases- availability of land for food, animal feed, bio-energy and industrialmaterial use, including bio-based plastics.

(06 h)Editio

Reference
books

nce	Sr.	Title	Author	Publication	Editio
iicc	No.				n
	1	Bio-Based Plastics	Stephan Kabasci	Wiley	1 st
					2014
	2	Handbook of	Sabu Thomas, Dominique	Wiley	1 st
		Biopolymer-Based	Durand, Christophe		2013
		Materials	Chassenieux, andP.		
			Jyotishkumar		
	3	Chemistry &Technology	G.J.L.Griffin Blackie(ed.)	Academic &	1 st
		of Biodegradable		Professional	1994
		Polymers		London	-4
	4	Handbook of	Abraham J.Donb and	Harwood	1 st
		Biodegradable Polymers	others(ed.)	Academic	1998
				Publishers	at
	5	Green Polymer	Inamuddin	Taylor &	1 st
		Composites Technology		Francis CRC	2016
		Properties and		Press	
		Applications			
	6	Biopolymer	Alain Dufresne, Sabu	Wiley	1 st
		Nanocomposites	Thomas and	•	2013
		Processing, Properties,	Laly A. Pothan		
		And Applications	,		
	7	Polymeric Biomaterials	Piskin and A.S.	MartinusNijhof	2 nd
			Hoffmann	f Publishers.	1986
				(Dordrecht.)	
	8	Biomaterials – An	J.B. Park	Plenum Press	2^{nd}
		introduction			1979

Ģ	9	Bio-materials Science-	Buddy D. Ratner,	Academic press	-
		An introduction to	Allans S. Hoffman,		
		materials in medicine	Frederick J. Schoen,		
			Jack E. Lemons		
	10	The intersection of	G. M. Whitesides and A.	MRS bulletin	-
		biology and materials	P. Wong		
		science			
	11	Sujata V. Bhat	Biomaterials	Alpha Science	-
				International	
				Ltd. New	
				Delhi, India	

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 10 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr.BabasahebAmbedkarMarathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-IV

Course Code: PPE255 Credits: 2

Course: Fluid Mechanics Class Test: 10 Marks

Teaching Scheme: Theory Examination: 40 Marks
Theory: 2 hrs/week Theory Examination (Duration): 2 hrs

Objectives	To understand basic concepts of fluid flow and its applications in upstream and downstream process industry.
Unit-I	Introduction: Fluid, Properties of fluid, classification of fluids, Newton's law of viscosity and numerical, rheological classification of fluids, types of flow, lines to describe the flow. (04h)
Unit-II	Fluid Pressure and Measurement: Pascal's law, Hydrostatic law, concept of atmospheric, gauge, vacuum and absolute pressure, manometers, and pressure measurement by simple and differential manometer, Numerical based on above. (04h)
Unit-III	Basic Equations of Fluid Flow and Flow Measuring Devices: Basic equations of fluid flow: continuity equation, equation of motion, flow measurement using venturimeter, orifice meter, rotameter, pitot tube, Numerical based on above (04h)
Unit-IV	Dimensional Analysis: Fundamental dimensions of quantities, dimensional homogeneity, types of similarities dimensional analysis by Rayleigh's method and Buckingham's method, dimensionless numbers.
Unit-V	Single and Multi Phase Flows: Flow of incompressible fluid in circular pipe; Hagen-Poiseuille equation, friction factor-Fanning and Darcy equation, major and minor losses; pipe fittings and equivalent diameter. Turbulent flow in a pipe, Boundary Layer theory and its significance, Flow resistance of immersed bodies, concept of drag and lift; variation of drag coefficient with Reynolds number. Flow through porous media, packed bed and fluidized bed. (04 h)
Unit-VI	Fluid Transporting Machines: Classification fluid flow Machinery as Fans, Blowers, Pumps and Compressors and their types and applications. Centrifugal Pumps: Operating Characteristics, Performance curves, NPSH. (04 h)

Reference	Sr.N	Title	Author	Publication	Edition
□Books	0.				
DOOKS	1	Unit Operations of	McCabe, W. L, J.	McGraw-Hill	
	1	Chemical Engineering	Smith, and P.	International	7^{th}
			Harriot	Edition	
	2	Hydraulics and Fluid	Modi, L.P., Seth,	Standard Book	5 th
		Mechanics	S.M.,	House)
	3	Fluid Mechanics for	Noel de Nevers	McGraw Hill	3 rd
		Chemical Engineers			3
		Coulson, Richardson	M. Coulson, J.F.	Butterworth-	
	4	Chemical Engineering,	Richardson, with	Heinemann	6 th
		Volume-1	J.R. Backhurst and		0
			J.H. Harker		
	5	Fluid Mechanics:	Yunus A Cengel,	McGraw-Hill	
	3	fundamentals and	John M. Cimbala		$3^{\rm rd}$
		Applications			

Section A: Includes Unit I, II and III; Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 40 marks Paper:

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for 6 marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 7 marks each from remaining questions from each section A and B be asked to solve.

Dr.Babasaheb AmbedkarMarathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-IV

Course Code: PPE271 Credits:1

Course: LabVI: Physical Chemistry of Polymers

Teaching Scheme:

Practical: 25 marks

Termwork: 25 marks

Practical: 2 hrs/week

Course Objectives	To study the physical structure of polymers and understand how their properties are dependent upon their internal structure.
List of	13. Determine of molecular weight by conductometric titration.
Practicals	14. Determination of molecular weight by potentiometric titration.
	15. Determination of softening point of polymer.

- 16 D
- 16. Determination of solubility parameter.
- 17. Determination of swelling parameter.
- 18. Determination of UCST/LCST of polymer.
- 19. Verify the applicability of a mixture of non-solvents as effective solvent of a polymer.
- 20. Determination of surface energy of polymer.
- 21. Determination of refractive index of polymer solutions.

At least any 8 experiments from the above-mentioned list of experiments should be performed.

List of	Sr. No.	Title	Author	Publication	Edition
Reference Books	1	OrganicSpectroscopy	William Kemp	Macmillan	-
	2	Introduction toPhysical Polymer Science	L.H.Sperling	Wiley Interscience	2006
	3	The Elements of Polymer Science and Engineering	A. Rudin	Academic Press	1999
	3	Characterization ofPolymers (EncyclopediaReprints) Norbert M. Bikales (Ed.) Wiley Interscience		-	
	4	Stereochemistry of Organic Compounds: Principles and Applications	D. Nasipuri	New Age International Pvt. Ltd	-

The assessment of term work shall be done on the basis of the following.

- 1. Continuous assessment.
- 2. Performing the experiments in the laboratory.
- 3. Oral examination conducted on the syllabus and term work mentioned above.

Practical Examination

The practical examination shall consist of performing an experiment based on the practical work done during the course, the record of the experiment performed by the candidate and viva-voce based on the syllabus. The assessment will be based on

- 1. Performing the experiment.
- 2. Record of experiment performed by the candidate.
- 3. Viva-voce on the syllabus.

Dr.Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-IV

Course Code: PPE272 Credits: 2

Course: Lab VII: Polymer Synthesis-I Practical: 50 marks
Teaching Scheme: Termwork: 50 marks

D di i			1011	iiwork. 20 marks	•				
Practical:									
Objectives		To prepare various polymers through different polymerization techniques							
List of 1. Synthesis of Polystyrene (PS) or Poly(Methyl methacrylate)(PMMA) by									
Practicals	polyr	polymerization technique.							
	2. Synthesis of PMMA by solution polymerization technique.								
	3. Sy	3. Synthesis of PS or PMMA by suspension polymerization technique.							
	4. Sy	nthesis of PS or PMMA by er	nulsion polymerization	on technique.					
	5. Sy	nthesis of Nylon 6 using cond	lensation polymerizat	ion technique.					
	6. Ri	ng opening polymerization of	Caprolactone.						
	7. Int	erfacial polymerization of ani	line.						
	8. Sy	nthesis of Acrylamide/Acryla	te copolymer (Bulk/S	Solution/Emulsion))				
List of	Sr. No.	Title	Author	Publication	Edition				
Reference Books	1	Polymer Science & Technology of Plastics & Rubbers	P. Ghosh	TataMcGrawHill	2 nd				
	2	Handbook of Polymer Synthesis, Characterization, and Processing	Enrique Saldívar- Guerra, Eduardo Vivaldo-Lima.	Wiley Interscience	-				
	3	Polymer Synthesis and Characterization: Laboratory Manual	Sandler , Karo , Bonesteel & Pearce	Elsevier	-				
	4	Laboratory experiments in polymer synthesis and characterization	Eli M. Pearce, Carl E. Wright, Binoy K. Bordoli	Article	-				
	5	Experiments in Polymer Science, Technology and Testing of Polymer	Dr. A. D. Ashtaputre	-	1 St				
	6	Principles of Polymerisation	George Odian	Wiley Interscience	4 th				

The assessment of term work shall be done on the basis of the following.

- 1. Continuous assessment.
- 2. Performing the experiments in the laboratory.
- 3. Oral examination conducted on the syllabus and term work mentioned above.

Practical Examination

The practical examination shall consist of performing an experiment based on the practicalwork done during the course, the record of the experiment performed by the candidate and vivavoce based on the syllabus. The assessment will be based on

- 1. Performing the experiment.
- 2. Record of experiment performed by the candidate.
- 3. Viva-voce on the syllabus.

Dr.Babasaheb AmbedkarMarathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-IV

Course Code: PPE273 Credits:1

Course: Lab VIII: Fluid Mechanics Practical: 25 marks **Teaching Scheme:** Termwork: 25 marks

Practical:	2 hrs/we	eek						
Course Objectives	To stud	ly/demonstrate conce	ptual understandings of Flu	uid Mechanics pra	ctically.			
List of	11. To	determine nature	of flow (laminar or tur	rbulent) by usin	g Reynold's			
Practicals	experiment.							
	12. To verify the Bernoulli's Equation.							
	13. To	determine the coeffic	cient of discharge of Orific	e meter.				
			cient of discharge of Ventu					
			ses in pipe during flow.					
		-	ses in pipe during flow.					
		w through packed be						
	18. Flo	ow through fluidized	beds.					
	19. To	study construction ar	nd working of centrifugal a	and reciprocating p	pumps.			
	20. Stu	dy of Centrifugal P	Pumps: Pump curves, NPS	SH, Cavitation, S	Selection and			
	Per	rformance.						
	21. Stu	dy of different types	of valves and pipe fittings					
	At leas	t any 8 avnariments	from the above-mention	ed list of evnerin	nents should			
		-	in om the above-mention	ed list of experim	iiciits siloulu			
	be performed.							
List of	Sr.No.	Title	Author	Publication	Edition			
Reference	1	Unit Operations of	McCabe, W. L, J. Smith,	McGraw-Hill	7 th			
Books		Chemical Engineering	and P. Harriot	International Edition	7			
	2	Hydraulics and Fluid Mechanics	Modi, L.P., Seth, S.M.	Standard Book House	5 th			
	3	Fluid Mechanics for Chemical Engineers	Noel de Nevers	McGraw Hill	3 rd			

4	Coulson, Richardson Chemical	M. Coulson, J.F. Richardson, with J.R.	Butterworth- Heinemann	6 th
	Engineering, Vol. 1	Backhurst and J.H. Harker		
5	Fluid Mechanics: fundamentals and Applications	Yunus A Cengel , John M. Cimbala	McGraw-Hill	3 rd

The assessment of term work shall be done on the basis of the following.

- 1. Continuous assessment.
- 2. Performing the experiments in the laboratory.
- 3. Oral examination conducted on the syllabus and term work mentioned above.

Practical Examination

The practical examination shall consist of performing an experiment based on the practical work done during the course, the record of the experiment performed by the candidate and vivavoce based on the syllabus. The assessment will be based on

- 4. Performing the experiment.
- 5. Record of experiment performed by the candidate.
- 6. Viva voce on the syllabus.

Dr.Babasaheb AmbedkarMarathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of S. Y. B. Tech. (Plastic and Polymer Engineering) Semester-IV

CourseCode: PPE274 Credits:1

Course: Lab IX: DOS-III Design Lab-I (CAD)

Teaching Scheme: Termwork: 50 marks

Practical: 2 hrs/week

Course Objective

To impart knowledge of handling CAD 2D package in order to draft the engineering drawing including plastics products and mould components.

List of Practicals

- 1. Introduction to CAD software.
- 2. To study and practice setting up limits, units, and other settings.
- 3. To study and practice basic draw tools like line, circle, rectangle, arc etc.
- 4. To study and practice use of drawing & construction aids like ORTHO, OSNAP, OTRACK, DYN, POLAR etc.
- 5. To study and practice line type, line weight, grouping, blocks, quick properties etc.
- 6. To study and practice modifying tools like copy, move, rotate, trim, mirror, scale, fillet, offset etc.
- 7. To study and practice use of TEXT, TEXT stylesetc. for 2D drawing.
- 8. To study and practice use of blocks, dimensions, dimensioning style, editing dimensions, utilities applicable for 2D drawing.
- 9. To study and practice use of layers, colors.
- 10. To study and practice layout, printing and plotting.

At least any 8 experiments from the above-mentioned list of experiments should be performed.

List of Reference	Sr. No.	Title	Author	Publication	Edition
Books	1	Up and Running with AutoCAD 2012	Elliot Gindis	Elsevier	-
	2	Up and Running with AutoCAD 2015	Elliot Gindis	Elsevier	-
	3	Up and Running with AutoCAD 2017	Elliot Gindis	Elsevier	ı
	4	AutoCAD 2012 Essentials	Scott Onstott	John Wiley & Sons	-

The assessment of term work shall be done on the basis of the following:

- 1. Continuous assessment.
- 2. Performing the experiments in the laboratory.
- 3. Oral examination conducted on the syllabus and term work mentioned above.