SBML Model Report

Model name: "Guyton1972_PulmonaryOxygenIntake"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	0	constraints	0
reactions	0	function definitions	0
global parameters	24	unit definitions	21
rules	15	initial assignments	0

Model Notes

This a model from the article:

Circulation: overall regulation.

Guyton AC, Coleman TG, Granger HJ. Annu Rev Physiol 1972;34:13-46 4334846,

Abstract:

No abstract available

This model was taken from the CellML repository and automatically converted to SBML. The original model was: **Guyton AC, Coleman TG, Granger HJ. (2008) - version02**

The original CellML model was created by:

Terkildsen, Jonna,

j.terkildsen@aukland.ac.nz The University of Auckland Auckland Bioengineering Institute

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of 25 unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit minute

Name minute

Definition 60 s

2.2 Unit per_minute

Name per_minute

Definition $(60 \text{ s})^{-1}$

2.3 Unit mmHg

Name mmHg

Definition $133.322 \,\mathrm{N}\cdot\mathrm{m}^{-2}$

2.4 Unit per_mmHg

Name per_mmHg

Definition $(133.322 \text{ N})^{-1} \cdot \text{m}^2$

2.5 Unit mmHg_per_mL

Name mmHg_per_mL

Definition $133.322 \text{ N} \cdot \text{m}^{-2} \cdot \text{ml}^{-1}$

2.6 Unit per_mmHg2

Name per_mmHg2

Definition $(133.322 \text{ N})^{-2} \cdot \text{m}^4$

2.7 Unit mmHg3

Name mmHg3

Definition $(133.322 \text{ N})^3 \cdot \text{m}^{-6}$

2.8 Unit monovalent_mEq

Name monovalent_mEq

Definition mmol

2.9 Unit monovalent_mEq_per_minute

Name monovalent_mEq_per_minute

Definition $mmol \cdot (60 s)^{-1}$

2.10 Unit monovalent_mEq_per_litre

Name monovalent_mEq_per_litre

Definition $mmol \cdot l^{-1}$

2.11 Unit monovalent_mEq_per_litre_per_minute

Name monovalent_mEq_per_litre_per_minute

Definition $mmol \cdot l^{-1} \cdot (60 \text{ s})^{-1}$

2.12 Unit litre2_per_monovalent_mEq_per_minute

Name litre2_per_monovalent_mEq_per_minute

Definition $l^2 \cdot mmol^{-1} \cdot (60 \text{ s})^{-1}$

2.13 Unit L_per_minute

Name L_per_minute

Definition $1 \cdot (60 \text{ s})^{-1}$

2.14 Unit mL

Name mL

Definition ml

2.15 Unit mL_per_L

Name mL_per_L

Definition $1^{-1} \cdot ml$

2.16 Unit mL_per_L_per_minute

Name mL_per_L_per_minute

Definition $1^{-1} \cdot ml \cdot (60 \text{ s})^{-1}$

2.17 Unit mL_per_minute_per_mmHg

Name $mL_per_minute_per_mmHg$

Definition $ml \cdot (60 \text{ s})^{-1} \cdot (133.322 \text{ N})^{-1} \cdot m^2$

2.18 Unit L_mL_per_minute_per_mmHg

Name L_mL_per_minute_per_mmHg

Definition $dl^2 \cdot (60 \text{ s})^{-1} \cdot (133.322 \text{ N})^{-1} \cdot m^2$

2.19 Unit mL_per_minute

Name mL_per_minute

Definition $ml \cdot (60 s)^{-1}$

2.20 Unit L_per_minute_per_mmHg

Name L_per_minute_per_mmHg

Definition $1 \cdot (60 \text{ s})^{-1} \cdot (133.322 \text{ N})^{-1} \cdot \text{m}^2$

2.21 Unit time

Name time

Definition 60 s

2.22 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.23 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.24 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.25 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Compartment			3	1		Z	

3.1 Compartment Compartment

This is a three dimensional compartment with a constant size of one litre.

4 Parameters

This model contains 24 global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
VPF	VPF		0.012	1	\overline{Z}
DOB	DOB		163.508	$ml \cdot (60 s)^{-1}$	
QRO	QRO		4.978	$1 \cdot (60 \text{ s})^{-1}$	
RMO	RMO		56.806	$ml \cdot (60 s)^{-1}$	$ \overline{\mathbf{Z}} $
HM	HM		40.038	dimensionless	$\overline{\mathbf{Z}}$
02UTIL	O2UTIL		0.000	$ml \cdot (60 s)^{-1}$	\Box
ALVENT	ALVENT		0.000	$1 \cdot (60 \text{ s})^{-1}$	\Box
PO2ALV	PO2ALV		0.000	$133.322 \text{ N} \cdot \text{m}^{-2}$	\Box
02DFS	O2DFS		0.000	$ml \cdot (60 s)^{-1}$	\Box
RSPDFC	RSPDFC		0.000	$ml \cdot (60 s)^{-1} \cdot$	
				$(133.322 \text{ N})^{-1} \cdot \text{m}^2$	
OVA	OVA		204.497	$1^{-1} \cdot m1$	\Box
DOVA	DOVA		0.000	$1^{-1} \cdot \text{ml} \cdot (60 \text{ s})^{-1}$	\Box
PO2ART	PO2ART		0.000	$133.322 \text{ N} \cdot \text{m}^{-2}$	
OSA	OSA		0.000	dimensionless	
02VTS2	O2VTS2		0.000	dimensionless	\Box
02VTST	O2VTST		0.000	dimensionless	\Box
02VTST1	O2VTST1		0.000	dimensionless	
O2VAD2	O2VAD2		0.000	dimensionless	
DO2VAD	DO2VAD		0.000	$(60 \text{ s})^{-1}$	\Box
O2VAD1	O2VAD1		$2.368 \cdot 10^{-7}$	dimensionless	
PO2AMB	PO2AMB		150.000	$133.322 \text{ N} \cdot \text{m}^{-2}$	
PL2	PL2		1.800	$dl^2 \cdot (60 s)^{-1} \cdot$	
				$(133.322 \text{ N})^{-1} \cdot \text{m}^2$	
VPTISS	VPTISS		0.018	1	$\mathbf{Z}_{\underline{\mathbf{I}}}$
VNTSTM	VNTSTM		1.000	dimensionless	\square

5 Rules

This is an overview of 15 rules.

5.1 Rule OVA

Rule OVA is a rate rule for parameter OVA:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{OVA} = \mathrm{DOVA} \tag{1}$$

Derived unit $(60 \text{ s})^{-1}$

5.2 Rule 02VAD1

Rule 02VAD1 is a rate rule for parameter 02VAD1:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{O2VAD1} = \mathrm{DO2VAD} \tag{2}$$

Derived unit $(60 \text{ s})^{-1}$

5.3 Rule 02UTIL

Rule O2UTIL is an assignment rule for parameter O2UTIL:

$$O2UTIL = DOB + RMO (3)$$

Derived unit $ml \cdot (60 s)^{-1}$

5.4 Rule OSA

Rule OSA is an assignment rule for parameter OSA:

$$OSA = \frac{\frac{OVA}{HM}}{5.25} \tag{4}$$

5.5 Rule PO2ART

Rule PO2ART is an assignment rule for parameter PO2ART:

$$PO2ART = \begin{cases} 114 + (OSA - 1) \cdot 6667 & \text{if OSA} > 1 \\ 74 + (OSA - 0.936) \cdot 625 & \text{if } (OSA > 0.936) \wedge (OSA \leq 1) \\ 46 + (OSA - 0.8) \cdot 205.882 & \text{if } (OSA > 0.8) \wedge (OSA \leq 0.936) \\ OSA \cdot 57.5 & \text{otherwise} \end{cases}$$
 (5)

5.6 Rule 02VTST1

Rule 02VTST1 is an assignment rule for parameter 02VTST1:

$$O2VTST1 = \frac{PO2ART - 67}{30} \tag{6}$$

5.7 Rule 02VTST

Rule 02VTST is an assignment rule for parameter 02VTST:

$$O2VTST = \begin{cases} 1 & \text{if } O2VTST1 > 1\\ 0.6 & \text{if } O2VTST1 < 0.6\\ O2VTST1 & \text{otherwise} \end{cases} \tag{7}$$

5.8 Rule 02VTS2

Rule 02VTS2 is an assignment rule for parameter 02VTS2:

$$O2VTS2 = \frac{1}{O2VTST} \tag{8}$$

5.9 Rule DO2VAD

Rule DO2VAD is an assignment rule for parameter DO2VAD:

$$DO2VAD = ((O2VTS2 - 1) \cdot 3 - O2VAD1) \cdot 5 \cdot 10^{-4}$$
(9)

5.10 Rule 02VAD2

Rule O2VAD2 is an assignment rule for parameter O2VAD2:

$$O2VAD2 = O2VAD1 + 1 \tag{10}$$

5.11 Rule ALVENT

Rule ALVENT is an assignment rule for parameter ALVENT:

$$ALVENT = O2UTIL \cdot VNTSTM \cdot 0.026667 \cdot O2VTS2 \cdot O2VAD2 \tag{11}$$

5.12 Rule PO2ALV

Rule PO2ALV is an assignment rule for parameter PO2ALV:

$$PO2ALV = PO2AMB - \frac{\frac{O2UTIL}{ALVENT}}{0.761}$$
 (12)

5.13 Rule RSPDFC

Rule RSPDFC is an assignment rule for parameter RSPDFC:

$$RSPDFC = \frac{PL2}{VPTISS + VPF}$$
 (13)

Derived unit $0.010000000000000001 \cdot (60 \text{ s})^{-1} \cdot (133.322 \text{ N})^{-1} \cdot m^2$

5.14 Rule 02DFS

Rule O2DFS is an assignment rule for parameter O2DFS:

$$O2DFS = (PO2ALV - PO2ART) \cdot RSPDFC \tag{14}$$

Derived unit $ml \cdot (60 s)^{-1}$

5.15 Rule DOVA

Rule DOVA is an assignment rule for parameter DOVA:

$$DOVA = \frac{O2DFS - O2UTIL}{QRO \cdot 1}$$
 (15)

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany