In the Claims:

1. (currently amended) A polymer comprising a repeating unit of the formula

$$\begin{array}{c|c}
R^1 \\
\hline
Ar^1 \\
\hline
N \\
Ar^2
\end{array}$$
(I), wherein

(I), wherein

Ar¹ and Ar² are independently of each other a C₆-C₃₀aryl group or a C₂-C₂₆heteroaryl group, which can optionally be substituted,

R1 and R2 may be the same or different and are selected from are independently of each other a C_1 - C_{25} alkyl group[[,]] which can optionally be interrupted by one or more oxygen atoms, an allyl group [[,]] which can optionally be substituted one to three times with C₁-C₄alkyl, a cycloalkyl group [[,]] which can be optionally substituted one to three times with C1-C8alky I[[,]] or C1-C₈alkoxy, or a cycloalkyl group [[,]] which can optionally be condensed one or two times by phenyl [[,]] which phenyl can optionally be substituted one to three times with C_1 - C_4 -alkyl, halogen, nitro or cyano, an alkenyl group, a cycloalkenyl group, an alkynyl group, a haloalkylgroup, a haloalkenyl group, a haloalkynyl group, said C₁-C₂₅alkyl group, alkenyl group, or alkynyl group substituted partially or wholly by halogen, a ketone or an aldehyde group, an ester group, a carbamoyl group, a ketone group, a silyl group, a siloxanyl group, Ar3 or a group -CR3R4-(CH2)0-Ar3,

wherein R³ and R⁴ independently from each other stand for hydrogen, fluorine, cyano or C₁-C₄alkyl [[,]] which can be substituted by fluorine, chlorine or bromine, or phenyl[[,]] which can be substituted one to three times with C₁-C₄alkyl,

Ar3 stands for aryl or heteroaryl, in particular phonyl or 1- or 2-naphthyl which can be substitutedone to three times with C₁-C₈alkyl and/or C₁-C₈alkexy, and g stands for 0, 1, 2, 3 or 4.

2. (original) The polymer according to claim 1, wherein Ar1 and Ar2 are independently of each other

wherein R^{38} stands for hydrogen, C_6 - C_{10} aryl, C_7 - C_{12} alkylaryl, C_7 - C_{12} aralkyl, or C_1 - C_8 -alkyl.

3. (currently amended) The polymer according to claim 1, wherein Ar¹ and Ar² are independently of each other

wherein R^{25} , R^{26} and R^{27} independently from each other stands for hydrogen, C_1 - C_{25} alkyl, C_1 - C_{25} alkoxy, $-CR^{11}R^{12}$ - $(CH_2)_g$ - Ar^6 , cyano, NO_2 , halogen, $-OR^{29}$, $-NR^{29}R^{30}$, $-S(O)_pR^{31}$, C_2 - C_8 heteroaryl, such as thiophenyl, or C_6 - C_{14} aryl, such as phonyl, which can be substituted one to three times with C_1 - C_8 alkyl [[,]] or C_1 - C_8 alkoxy,

wherein R^{29} and R^{30} independently of each other stand for H, C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, - $CR^{11}R^{12}$ -(CH_2) $_9$ -Ph, C_6 - C_{24} aryl, or a saturated or unsaturated heterocyclic group comprising five to seven ring atoms, wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur,

 R^{31} stands for C_1 - C_{25} alkyl, or C_6 - C_{14} aryl,

p stands for 0, 1, 2 or 3, g and h stands for 0, 1, 2, 3 or 4,

Ar⁶ stands for phenyl or 1- or 2-naphthyl which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen, nitro, cyano [[,]] or phenyl [[,]] which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, or -NR²³R²⁴, wherein R²³ and R²⁴ represent hydrogen, C_1 - C_2 -alkyl, C_5 - C_{12} -cycloalkyl or C_6 - C_2 -aryl, in particular phenyl or 1- or 2-naphthyl which can be substituted one to three times with C_4 - C_8 alkyl, C_4 - C_8 alkoxy, halogen or cyano, or phenyl, which can be substituted with C_4 - C_8 alkyl or C_4 - C_8 alkoxy one to three times, and

 R^{11} and R^{12} independently from each other stand for hydrogen, fluorine, cyano or C_1 - C_4 alkyl [[,]] which can be substituted by fluorine, or phenyl which can be substituted one to three times with C_1 - C_4 alkyl, or

 $R^{29'}$ stands for H, C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, $-CR^{11}R^{12}$ - $(CH_2)_g$ -Ph, C_6 - C_{24} aryl,

R^{29'} and R^{30'} together with the nitrogen to which they are bonded form a group of formula

and g, R^{11} , R^{12} , R^{25} and R^{26} are as defined above.

4. (currently amended) The polymer according to claim 1 any of claims 1 to 3, comprising one or more (at least one) repeating unit(s) Ar³ which is selected from the group consisting of

r is an integer from 1 to 10, especially 1, 2 or 3, q is an integer from 1 to 10, especially 1, 2 or 3, s is an integer from 1 to 10, especially 1, 2 or 3,

 R^6 and R^7 are independently of each other H, halogen, -CN, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkonyl, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, -C(=O)-

$$R^{17}$$
, $-C(=O)OR^{17}$, or $-C(=O)NR^{17}R^{16}$,

 R^9 and R^{10} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl,

or R⁹ and R¹⁰ together form a group of formula =CR¹⁰⁰R¹⁰¹, wherein

R¹⁰⁰ and R¹⁰¹ are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, or C₂-C₂₀heteroaryl which is substituted by G,

or R^9 and R^{10} together form a five or six membered ring, which optionally can be substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkoxy, C_1 - C_{18} alkoxy, which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or -C(=O)- R^{17} , and

R¹⁶ and R¹⁷ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, or C₁-C₁₈alkoxy; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by –O-,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR⁶⁵-, -SiR⁷⁰R⁷¹-, -POR⁷²-, -CR⁶³=CR⁶⁴-, or -C \equiv C-, and E is -OR⁶⁹, -SR⁶⁹, -NR⁶⁵R⁶⁶, -COR⁶⁸, -COOR⁶⁷, -CONR⁶⁵R⁶⁶, -CN, -OCOOR⁶⁷, or halogen,

G is E, C₁-C₁₈alkyl,

17

 R^{63} , R^{64} , R^{65} and R^{66} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; or

R⁶⁵ and R⁶⁶ together form a five or six membered ring, in particular-

 R^{67} and R^{68} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{69} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{70} and R^{71} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

 R^{72} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl;

R⁴¹ can be the same or different at each occurrence and is Cl, F, CN, N(R⁴⁵)₂, a C₁-C₂₅alkyl group, a C₄-C₁₈cycloalkyl group, a C₁-C₂₅alkoxy group, in which one or more carbon atoms which are not in neighbourhood to each other could be replaced by -NR⁴⁵-, -O-, -S-, -C(=O)-O-, or -O-C(=O)-O-, and/or wherein one or more hydrogen atoms can be replaced by F, a C₆-C₂₄aryl group, or a C₆-C₂₄aryloxy group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R⁴¹, or two or more groups R⁴¹ form a ring system;

 R^{42} can be the same or different at each occurrence and is CN, a C_1 - C_{25} alkyl group, a C_4 - C_{18} cycloalkyl group, a C_1 - C_{25} alkoxy group, in which one or more carbon atoms which are not in neighbourhood to each other could be replaced by -NR⁴⁵-, -O-, -S-, -C(=O)-O-, or -O-C(=O)-O-, and/or wherein one or more hydrogen atoms can be replaced by F, a C_6 - C_{24} aryl group, or a C_6 - C_{24} aryloxy group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R^{41} , or two or more groups R^{41} form a ring system;

 R^{44} can be the same or different at each occurrence and are a hydrogen atom, a C_1 - C_{25} alkyl group, a C_4 - C_{18} cycloalkyl group, a C_1 - C_{25} alkoxy group, in which one or more carbon atoms which are not in neighbourhood to each other could be replaced by -NR⁴⁵-, -O-, -S-, -C(=O)-O-, or, -O-C(=O)-O-, and/or wherein one or more hydrogen atoms can be replaced by F, a C_6 - C_{24} aryl group, or a C_6 - C_{24} aryloxy group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R^{41} , or CN, or two or more groups R^{44} , which are in neighbourhood to each other, form a ring;

 R^{45} is H, a C_1 - C_{25} alkyl group, a C_4 - C_{18} cycloalkyl group, a C_1 - C_{25} alkoxy group, in which one or more carbon atoms which are not in neighbourhood to each other could be replaced by -NR⁴⁵-, -O-, -S-, -C(=O)-O-, or, -O-C(=O)-O-, and/or wherein one or more hydrogen atoms can be replaced by F, a C_6 - C_{24} aryl group, or a C_6 - C_{24} aryloxy group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R^{41} ;

m can be the same or different at each occurrence and is 0, 1, 2, or 3, especially 0, 1, or 2, veryespecially 0 or 1;

n can be the same or different at each occurrence and is 0, 1, 2, or 3, especially 0, 1, or 2, very especially 0 or 1;

o is 1, 2, or 3, especially 1, or 2, and u is 1, 2, 3, or 4;

A¹ is a C₆-C₂₄aryl group, a C₂-C₃₀heteroaryl group, which can be substituted by one or more non-aromatic groups R⁴¹, or NO₂, especially phenyl, naphthyl, anthryl, biphenylyl, 2-fluorenyl, phenanthryl, or perylenyl,

 A^2 and A^3 are independently of each other a C_6 - C_{30} arylene group, or a C_2 - C_{24} heteroarylene group, which can optionally be substituted, especially

and R¹⁰ are as defined above,

 R^8 is H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

¹ R¹⁴ and R¹⁵ are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by E, or C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by E, wherein E and D are as defined above[[,]]

wherein R^{41} and m and n are as defined above and p is 0,1, or 2;, especially 0 or 1;

X is O, S, or NR⁴⁵,

 R^{43} is a hydrogen atom, a C_1 - C_{25} alkyl group, a C_4 - C_{18} cycloalkyl group, a C_1 - C_{25} alkoxy group, in which one or more carbon atoms which are not in neighbourhood to each other could be replaced by -NR⁴⁵-, -O-, -S-, -C(=O)-O-, or, -O-C(=O)-O-, and/or wherein one or more hydrogen atoms can be replaced by F, a C_6 - C_{24} aryl group, or a C_6 - C_{24} aryloxy group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R^{41} , or CN, or

two or more groups R^{43} and/or R^{44} , which are in neighbourhood to each other, form a ring; and A^1 , R^{41} , R^{42} , R^{44} , R^{45} , m, n, o and p are as defined above;

and [[/or]] repeating unit(s) -T- which is selected from the group consisting of

X¹ is a hydrogen atom, or a cyano group,

 R^{41} can be the same or different at each occurrence and is CI, F, CN, $N(R^{45})_2$, a C_1 - C_{25} alkyl group, a C_4 - C_{18} cycloalkyl group, a C_1 - C_{25} alkoxy group, in which one or more carbon atoms which are not in neighbourhood to each other could be replaced by - NR^{45} -, -O-, -S-, -C(=O)-O-, or -O-C(=O)-O-, and/or wherein one or more hydrogen atoms can be replaced by F, a C_6 - C_{24} aryl group, or a C_6 - C_{24} aryloxy group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R^{41} , or two or more groups R^{41} form a ring system;

n can be the same or different at each occurrence and is 0, 1, 2, or 3, especially 0,1, or 2, veryespecially 0 or 1, and u is 1, 2, 3, or 4;

A¹ is a C₆-C₂₄aryl group, a C₂-C₃₀heteroaryl group, especially phenyl, naphthyl, anthryl, biphenylyl, 2-fluorenyl, phenanthryl, or perylenyl, which can be substituted by one or more non-aromatic groups R⁴¹.

5. (currently amended) The polymer according to claim 4, wherein the polymer comprises a repeating unit of formula

more preferably

$$\begin{array}{c|c}
 & R^1 \\
 & N \\
 & N$$

, most preferably

$$\begin{array}{c|c}
 & R^1 \\
 & Ar^1 \\
 & Ar^2 \\
 & R^2
\end{array}$$

$$\begin{array}{c|c}
 & Ar^1 \\
 & Ar^2 \\
 & R^2
\end{array}$$

$$\begin{array}{c|c}
 & Ar^2 \\
 & R^2$$

 R^1 and R^2 are independently of each other a C_1 - C_{25} alkyl group, especially a C_4 - C_{12} alkyl group, which can be interrupted by one or more oxygen atoms,

 R^6 and R^7 are as defined above and are especially H, halogen, CN, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, or C_6 - C_{14} aryl,

 A^1 is a C_6 - C_{24} aryl group, a C_2 - C_{30} heteroaryl group, which can be substituted by one or more non-aromatic groups R^{41} , or NO_2 , preferably a phenyl group, which is substituted by C_4 - C_4 alkyl, or

Ar¹ and Ar² are independently of each other a group of formula

wherein R⁶ is hydrogen, C₁-C₁₈alkyl, or C₁-C₁₈alkoxy, and R³² is methyl, Cl, or OMe.

6. (currently amended) The polymer according to claim 1, wherein the polymer is homopolymer comprising a repeating unit of formula

$$\begin{array}{c|c}
 & R^1 \\
 & N \\
 & O \\
 & N \\
 & R^2
\end{array}$$
(I), wherein

 R^1 and R^2 are independently of each other a C_1 - C_{25} alkyl group, especially a C_4 - C_{42} alkyl-group, which can be interrupted by one or more oxygen atoms, and

Ar¹ and Ar² are independently of each other a group of formula

7. (currently amended) The polymer according to claim 1, wherein the polymer comprises a repeating unit of formula

 R^1 and R^2 are independently of each other a C_1 - C_{25} alkyl group, especially a C_4 - C_{42} alkyl group, which can be interrupted by one or more oxygen atoms, and Ar^1 and Ar^2 are independently of each other a group of formula

wherein -Ar3- is a group of formula

wherein

 R^6 is hydrogen, C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy, and R^{32} is methyl, CI, or OMe, and R^8 is H, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, especially C_1 - C_{18} alkyl which is interrupted by -O-,

wherein D and E are as defined in claim 4.

<u>D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR⁶⁵-, -SiR⁷⁰R⁷¹-, -POR⁷²-, -CR⁶³=CR⁶⁴-, or -C≡C-, and E is -OR⁶⁹, -SR⁶⁹, -NR⁶⁵R⁶⁶, -COR⁶⁸, -COR⁶⁷, -CONR⁶⁵R⁶⁶, -CN, -OCOOR⁶⁷, or halogen,</u>

R⁶³, R⁶⁴, R⁶⁵ and R⁶⁶ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-; or

R⁶⁵ and R⁶⁶ together form a five or six membered ring,

 R^{67} and R^{68} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O_1$ - C_1 -C

 R^{69} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-,

R⁷⁰ and R⁷¹ are independently of each other C₁-C₁₈alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl, which is substituted by C₁-C₁₈alkyl, and

R⁷² is C₁-C₁₈alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl, which is substituted by C₁-C₁₈alkyl.

8. (currently amended) The polymer according to claim 1, wherein the polymer is a terpolymer comprising a repeating unit of formula

 R^1 and R^2 are independently of each other a C_1 - C_{25} alkyl group, especially a C_4 - C_{42} alkyl group, which can be interrupted by one or more oxygen atoms, and Ar^1 and Ar^2 are independently of each other a group of formula

 R^6 and R^7 are independently of each other H, halogen, CN, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, or C_6 - C_{14} aryl,

 R^{41} is CI, F, CN, $N(R^{45})_2$, C₁-C₁₈alkyl, C₁-C₁₈alkoxy, or C₆-C₁₄aryl, wherein

 R^{45} is H, a C_1 - C_{25} alkyl group, or a C_1 - C_{25} alkoxy group, and n is 0, 1, or 2.

9. (currently amended) The polymer according to claim 1, wherein the polymer is a polymer of formula

$$\begin{array}{c|c}
R^1 \\
O \\
O \\
N \\
Ar^2 \\
Ar^2 \\
Ar^2 \\
Ar^3 \\
Ar^4 \\
Ar^3 \\
Ar^4 \\
Ar^4 \\
Ar^4 \\
Ar^5 \\
Ar^4 \\
Ar^5 \\
Ar$$

(VII), wherein

R¹, R², Ar¹, Ar² [[, T]] and Ar³ are as defined in claim 1,

T is selected from the group consisting of

X¹ is a hydrogen atom, or a cyano group,

 R^{41} can be the same or different at each occurrence and is CI, F, CN, $N(R^{45})_2$, a C_1 - C_{25} alkyl group, a C_4 - C_{18} cycloalkyl group, a C_1 - C_{25} alkoxy group, in which one or more carbon atoms which are not in neighbourhood to each other could be replaced by - NR^{45} -, -O-, -S-, -C(=O)-O-, or -O-C(=O)-O-, and/or wherein one or more hydrogen atoms can be replaced by F, a C_6 - C_{24} aryl group, or a C_6 - C_{24} aryloxy group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R^{41} , or two or more groups R^{41} form a ring system;

n can be the same or different at each occurence and is 0, 1, 2, or 3 and u is 1, 2, 3, or 4;

A¹ is a C₆-C₂₄aryl group, a C₂-C₃₀heteroaryl group, especially phenyl, naphthyl, anthryl, biphenylyl, 2-fluorenyl, phenanthryl, or perylenyl, which can be substituted by one or more non-aromatic groups R⁴¹,

a is 1,
b is 0, or 1,
c is 0.005 to 1,
d is 0, or 1,
e is 0, or 1, wherein e is not 1, if d is 0,
f is 0.995 to 0, wherein the sum of c and f is 1.

10. (currently amended) An electronic device or a component therefore, comprising the polymer according to claim 1. to any of claims 1 to 9.

- 11. (original) An electronic device according to claim 10, wherein the device comprises an electroluminescent device.
- 12. (currently amended) An electronic device according to claim 11, wherein the electroluminescent device comprises
 - (a) a charge injecting layer for injecting positive charge carriers,
 - (b) a charge injecting layer for injecting negative charge carriers,
 - (c) a light-emissive layer located between the layers (a) and (b) comprising the polymer according to claim 1.-any of claims 1 to 9.

13. (cancelled)

- 14. **(currently amended)** PLEDs, organic integrated circuits (O-ICs), organic field effect transistors (OFETs), organic thin film transistors (OTFTs), organic solar cells (O-SCs), or organic laser diodes comprising one or more of the polymers according to claim 1. any of claims 1-to 9.
- 15. (new) The polymer according to claim 1, wherein Ar^3 stands for phenyl or 1- or 2-naphthyl which phenyl or 1- or 2-naphthyl can be substituted one to three times with C_1 - C_8 alkyl and/or C_1 - C_8 alkoxy.
- 16. (new) The polymer according to claim 3, wherein the C_6 - C_{30} arylene of $R^{28'}$ or $R^{30'}$ is independently of the other

$$\mathbb{R}^{25}$$
, \mathbb{R}^{26} , \mathbb{R}^{26} or \mathbb{R}^{26}

17. (new) The polymer according to claim 16, wherein Ar¹ and Ar² are independently of each other

$$R^{28}$$

18. (new) The polymer according to claim 5, wherein the polymer comprises a repeating unit of formula

$$\begin{bmatrix}
Ar^{1} & N & O & R^{6} \\
O & N & Ar^{2} & R^{7}
\end{bmatrix}$$
or
$$\begin{bmatrix}
Ar^{1} & N & O \\
O & N & Ar^{2} & N
\end{bmatrix}$$
or