CSC 116 How to build AI models using medical datasets?

Features

57 features:

```
COHORT – Group or study population identifier.
age - Age of the participant.
fampd – Family history of Parkinson's disease (yes/no).
age datscan – Age when DAT scan was performed (dopamine transporter scan).

▲ Olfactory (Smell) Tests

upsit – University of Pennsylvania Smell Identification Test score.
upsit pctl - Percentile rank of UPSIT score.
upsit_pctl15 – Whether UPSIT is ≤15th percentile (yes/no).
Cognitive Assessments
moca – Montreal Cognitive Assessment (general cognitive screening).
bilot – Benton Judgment of Line Orientation Test (spatial judgment).
DVS JLO MSSA – Digitally scored version of JLO (accuracy score).
DVS JLO MSSAE – JLO efficiency score (accuracy per time).
Memory Tests (HVLT, DVT)
clockdraw – Clock Drawing Test (visuospatial and executive function).
hvlt_discrimination - Hopkins Verbal Learning Test (discrimination index).
hvlt immediaterecall - HVLT immediate recall score.
hvlt retention - HVLT retention score.
HVLTFPRL – HVLT false positive recognition.
HVLTRDLY - HVLT delayed recall.
HVLTREC – HVLT recognition score.
DVT TOTAL RECALL – Digital Verbal Test (total recall).
DVT DELAYED RECALL – DVT delayed recall.
DVT RETENTION – DVT retention rate.
DVT RECOG DISC INDEX – DVT recognition discrimination index.
· Verbal Fluency & Language
lexical – Lexical fluency (word generation).
DVT FAS – FAS test (letters-based fluency).
DVS FAS - Digital version of FAS test.
```

```
DVS LNS - Digital version of LNS.
MODBNT - Modified Boston Naming Test (object naming).
DVS BNT – Digital BNT.
PCTL BNT – BNT percentile.
Processing Speed & Executive Function
SDMTOTAL - Symbol Digit Modalities Test (processing speed).
DVT SDM - Digital SDM score.
DVSD SDM – Digital SDM duration.
TMT A – Trail Making Test Part A (attention).
TMT_B – Trail Making Test Part B (executive function).
DVZ TMTA – Digital TMT-A z-score.
DVZ_TMTB – Digital TMT-B z-score.
Semantic Fluency
VLTANIM – Animal fluency (number of animals named).
DVT SFTANIM – Digital semantic fluency test for animals.
DVS SFTANIM – Digital semantic fluency efficiency.
▲ Cognitive Diagnosis
MCI testscores - Mild Cognitive Impairment (MCI) diagnosis from test scores.
cogstate - Cognitive status category.
A Daily Living
MSEADLG - Modified Schwab and England Activities of Daily Living scale.
Behavioral Symptoms
quip_any - Presence of any impulse control disorder.
quip walk - Walking-based impulse control issues.
<sup>1</sup>Zz Sleep
ess - Epworth Sleepiness Scale (daytime sleepiness).
rem - REM sleep behavior disorder status.
Mood
qds - Geriatric Depression Scale.
stai – State-Trait Anxiety Inventory total score.
stai state - STAI state anxiety (current).
stai trait - STAI trait anxiety (general tendency).
V Other Clinical Measures
orthostasis - Presence of orthostatic hypotension.
NP1DPRS - Depression rating from MDS-UPDRS Part I.
Biomarkers
abeta - Amyloid-beta levels.
tau - Tau protein levels.
ptau - Phosphorylated tau levels.
urate – Uric acid level (sometimes linked to neuroprotection).
```

Ins – Letter-Number Sequencing (working memory).

2	100889	1	Sporadic PD	
2	100890	2	Healthy Control	
2	100890	2	Healthy Control	
2	100890	2	Healthy Control	
2	100890	2	Healthy Control	
3	100891	1	Sporadic PD	

Label: Parkinson or Healthy

Parkinson Feature 1, 2, 3,4,5,6,7,8,9...

Healthy Feature 1, 2, 3,4,5,6,7,8,9...

We I uses the features to train the labels.

Put all the features in the trained model, the model will tell you based-on these features, the patient is likely parkinson or Healthy

4000+ patient records with 57 features

Will you use all the datasets for training??

3200 for training

800 for evaluations

How to find your datasets?

Find your datasets in Kaggle, Hugging face or Github, or others.

GPU version – NVIDIA

Check the memory of your GPU.

4090 4080 GPUs need more \$3000. It can be used for train very good models except very LLMs.

Accelera tor			Ideal For	Notes	
RTX 4080	on TO OB OBBITO		Medium-sized models, inference	Great for developers, high value	
RTX 4090	24 GB	GDDR6 X	✓ Yes	Large models, high-end training	Very powerful consumer GPU
Tesla P100	16 GB	НВМ2	✓ Yes	Traditional model training	Older, but still used in data centers
T4 ×2	2 × 16 GB	GDDR6	✓ Yes	Inference, light training	Energy-efficient, not great for big training
A100 40GB	40 GB	НВМ2	✓ Yes	Large-scale training	Data center GPU, expensive
A100 80GB	80 GB	HBM2e	✓ Yes	Extra-large model training (e.g. GPT-3)	Very high memory, powerful
TPU v3-8	8 × 16 GB = 128 GB	НВМ	X No (only TensorFlow/JAX)	TensorFlow/JAX, massive model training	Requires special setup, not for beginners

Т

-

GPU platform for training

Kaggle

Google Colab

Cursor — for local training

Datasets

https://github.com/elastic/ember?utm_source
=chatgpt.com

Model **test accuracy** is high in the test datasets.

But it is pretty low in the real cases. What should we do?

Fine-tuning

"Fine-tuning" refers to a transfer learning technique where a pre-trained model is further trained on a new, specific dataset to improve its performance on a particular task, rather than training a model from scratch.

Training Accuracy:

Definition: The percentage of correct predictions made by the model on the **training dataset**, which is the data used to train the model.

Purpose: It tells you how well the model has **learned** from the data it was trained on.

Testing Accuracy:

Definition: The percentage of correct predictions made by the model on the **testing dataset**, which is separate from the training data.

Purpose: It shows how well the model generalizes to new, unseen data.

AUC/ROC

AUC, or Area Under the Curve, is a metric used in machine learning, particularly for evaluating the performance of binary classification models.

How good the model it is?

• **AUC = 1.0**: Perfect classifier

• **AUC = 0.5**: No discriminative power (equivalent to random guessing)

• **AUC < 0.5**: Worse than random (model is misclassifying)

Feature Importances

SHAP

Explainable Al solutions:

Drift Detection Solution

Your code editor. Redefined with Al.

Download for Windows

Try agent mode

Web, Insiders edition, or ether platforms

https://code.visualstudio.com/

Kaggle

Lung cancer: https://www.kaggle.com/code/sandr

agracenelson/lung-cancer-prediction

Thanks