viettel

Clustering Analysis

Hoàng Anh Dũng

Trung tâm Phân tích Dữ liệu - Khối CNTT Tổng Công ty Viễn thông Viettel

Reading

Chapter 8, 9 - Data Mining - Concepts and techniques - Morgan Kaufmann
Chapter 9 - Hands-On Machine Learning. - Aurélien
Géron

1. Clustering - General Concepts

Main idea, real-life applications, types

Part I: Clustering – General Concepts
Real-life Applucations
Types of Clusterings

Part II: Typical Clustering Algorithms

What is Cluster Analysis or Clustering?

Given a set of objects, place them in **groups** such that the **objects in** a **group are similar** (or related) to **one another and different from** (or unrelated to) the objects in other groups

Google News Anomaly Detection

Fake News Detection Fraud Detection Spam Email Detection

Source:

https://towardsdatascience.com/unsupervised-anomaly-detection-on-spotify-data-k-means-vs-local-outlier-factor-f96ae783d7a7

Sport Science Find players with similar styles

Source:

tps://www.americansocceranalysis.com/home/2019/3/11/using-k-means--learn-what-soc

Image Segmentation

Input Image: cameraman

segmented Image: cameraman

Source

https://www.sciencedirect.com/science/article/pii/S0010482520301293 https://www.americansocceranal@is.com/pome/20/2010/11/using-k-meansto-learn-what-soccer-passing-tells-us-about-playing-styles

Recommendations

Cluster-based ranking Group Recommendation

What do affect on Cluster Analysis?

Clustering

Data

Cluster

Non-labeled training data No feedback Find hidden structure in data

Algorithm

The machine learns

Characteristics of the Input Data Are Important

High dimensionality

- o Dimensionality reduction
- Types of attributes
- o Binary, discrete, continuous, asymmetric
- o Mixed attribute types, e.g., continuous & nominal)
- Differences in attribute scales
- Normalization techniques
- Size of data set
- Noise and Outliers
- Properties of the data space

Characteristics of the Input Data Are Important

Data distribution

- o Parametric models
- Shape
- o Globular or arbitrary shape
- Differing sizes
- Differing densities
- Level of separation among clusters
- Relationship among clusters
- Subspace clusters

How to Measure the Similarity/Distance?

$$D(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$D(x,y) = cos(\theta) = \frac{x \cdot y}{\|x\| \|y\|}$$

$$D(x,y) = \sum_{i=1}^{k} |x_i - y_i|$$

$$D(x, y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

Notion of a Cluster can be Ambiguous

4 Clusters

6 Clusters

Types of Clusterings

01

Partitioning Methods

02

Hierachical Clustering

03

Fuzzy Clustering 04

Density Based Clustering

05

Model Based Clustering

Partitional Clustering

Data objects are separated into non-overlapping subsets, i.e., clusters

Hierarchical Clustering

Data objects are separated into nested clusters as a hierarchical tree

Hierarchical Clustering

Clustering dendrogram

Fuzzy Clustering

Fuzzy clustering, i.e., soft clustering, is a form of clustering in which each data point can belong to more than one cluster with weights

Model-based Clustering

Model-based clustering assumes that the data were generated by a model and tries to recover the original model from the data.

Gaussian Mixture Model

Density-based Clustering

A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.

Non-linear separation

2. Typical Clustering Algorithms

Intuition, Main Idea, Limitation

Typical Clustering Algorithms

- Partitional Clustering
- o K-Means & Variants
- Hierarchical Clustering
- o HAC
- O Density-based Clustering
- o DBSCAN

Two different K-means Clusterings

Importance of Choosing Initial Centroids

Solutions to Initial Centroids Problem

Multiple runs

- o Helps, but probability is not on your side Use some strategies to select the k initial centroids and then select among these initial centroids o Select most widely separated, e.g., K-means++
- Use hierarchical clustering to determine initial centroids

Bisecting K-Means

o Not as susceptible to initialization issues

K-Means++

- 1. Choose one center uniformly at random among the data points.
- 2. For each data point x not chosen yet, compute D(x), the distance between x and the nearest center that has already been chosen.
- 3. Choose **one new data point at random** as a new center, using a weighted probability distribution where a point x is chosen with probability proportional to $D(x)_2$.
- 4. Repeat Steps 2 and 3 until k centers have been chosen.
- 5. Now that the initial centers have been chosen, proceed using standard K-Means clustering

$$\frac{\min_{j} d^{2}(C_{j}, x_{i})}{\sum_{i} \min_{j} d^{2}(C_{j}, x_{i})}$$

HAC: Algorithm

Closest Pair of Clusters

- Many variants to defining closest pair of clusters
- Single-link
- o Similarity of the closet elements
- Complete-link
- o Similarity of the "furthest" points
- Average-link
- o Average cosine between pairs of elements
- Ward's Method
- o The increase in squared error when two clusters are merged

Density-based Clustering - DBSCAN

- Main Idea: Clusters are regions of high density that are separated from one another by regions on low density.
- Density = number of points within
 a specified radius (Eps)
- o Core point
- o Border point
- o Noise point

Summary

- General Concepts of Clustering
- Definition
- Real-life Applications
- Types of Clustering
- Typical Clustering Algorithms
- K-Means
- O HAC
- DBSCAN

viettel

Thanks for your attention!