Intro to Robotics

Lecture 10

The World

- Robot itself
- Obstacles
 - Robots can't go there
- Free Space
 - Robots "might" be able to go here
 - Have workspace robot-reachable

Configuration Space

- The **configuration space** *C* is the set of all possible configurations.
 - A configuration is a point in C.
- C can be very high dimensional while the workspace is just 2D or 3D

Simple Robot Example

Articulated robot in 2-D workspace

Paths in the configuration space

 A path in C is a continuous curve connecting two configurations q and q':

$$\tau: s \in [0,1] \to \tau(s) \in C$$

such that $\tau(0) = q$ and $\tau(1) = q'$.

Example

- θ_1 and θ_2 have motion range as $10 \le \theta_1 \le 0$ and $10 \le \theta_1 \le 50$, and $30 \le \theta_2 \le 80$ and $100 \le \theta_2 \le 180$ respectively.
- θ_1 and θ_2 have motion range as $90 \le \theta_1 \le 90$, and $-90 \le \theta_2 \le 90$ respectively. In addition, θ_2 is coupled with θ_1 when $-30 \le \theta_2 \le 30$ as $\theta_2 = \theta_1$.

Motion Planning

Mobile robot

2D Configuration Space - Translation

Obstacle in Configuration Space

Motion Planning in 2D

From one configuration point to another

For a point robot moving in 2-D plane, C-space is \mathbb{R}^2

Obstacle in C-space: robot configuration at those places are not valid: collision, no reachable

3D C-Space With Rotation

Translating & Rotating in 2-D workspace

Configuration Space

For a point robot moving in 3-D, the C-space is \mathbb{R}^3

What is the difference between Euclidean space and *C*-space?

Configuration Space

Free Paths in the configuration space

 A free path in C is a continuous curve connecting two configurations q and q':

$$\tau: s \in [0,1] \to \tau(s) \in F$$

such that $\tau(0) = q$ and $\tau(1) = q'$.

 A semi-free path allows the robot and obstacles to contact (but not interpenetrate).

How to Find a Path?

