Image and Video Understanding Arguments Grid

CA' FOSCARI UNIVERSITY OF VENICE Department of Environmental Sciences, Informatics and Statistics

Academic Year 2022 - 2023

Student Zuliani Riccardo 875532

Contents

1	Introduction		
	1.1	Theories of vision: from Pythagoras to Marr	1
	1.2	Computer Vision	
2	Machine Learning Basics		3
	2.1	Supervised Learning a.k.a. Classification	4
	2.2	Neural Network	4
3	Detecting Faces		
	3.1	Knowledge-Based Method	6
	3.2	Feature-Based Methods	7
	3.3	Template Matching Methods	7
	3.4	Appearence-Based Methods	7
		3.4.1 Sun and Poggio	
		3.4.2 Rowley - Baluja - Kandle	8
	3.5	The Viola - Jones Face Detector	9
4	Human Detection		11
	4.1	Support Vector Machines	11
	4.2	Histogram of Oriented Gradients	12
	4.3	The Hog Detector-Post Processing	12
5	Deep Convolutional Neural Networks		13
	5.1	Semantic Segmentation	15
	5.2		
6	Graph-Based Methods in Computer Vision: Recent Advances		17
	6.1	Context-Aware of Classification	20

Introduction

1.1 Theories of vision: from Pythagoras to Marr

- The emission theory
- Foundamentally misunderstanding visual perception
- The intromission theory
- Plato's view
- Alhazen's synthesis: book of optics
- Kepler's modern theory of retinal images
- Nativism vs Empiricism
- Helmholtz: vision as unconcius inference
- The Gestal School
- David MArr ad the computational approach
- Missing component

1.2 Computer Vision

- What is computer vision
- Image processing
- Pattern recognition
- Scene analysis
- Block worlds
 - Input image
 - Primal sketch
 - $-2\frac{1}{2}D$ sketch

- 3D model representation
- Edge detection
- Image segmentation and clustering
- Face Detection: Viola & Jones
- Sift Features
- Pascal Visual object challenge
- ImageNet
- Deep learning philosophy
- Inspiration from biology
- Foveal vision

Machine Learning Basics

- What is Machine Learning
 - Given n obj, nxn matrix of pairwise similarity
 - Goal
 - Usual assumption
- Clustering
- Image segmentation as cluster
 - Partition the image in choerence region
 - Group pixels togheter
 - How compare pixels? measure distance in 3d using euclidean distance
- K-Means
 - Iterative algorithm, obj represented as feature vector
 - Algorithm
 - 1. Initialize: pick k random points as cluster center
 - 2. Alternate: assign data point to closest cluster center, change cluster center to average of its points
 - 3. Stop: when no changes
 - Proprieties:
 - * Converge
 - * Minimize an objective function, thus convergence is proved
 - * Pros: very efficient, simple
 - * Cons:
 - 1. Converges to local minimum
 - 2. Need to pick K
 - 3. Sensitive to initialization
 - 4. Sensitive to outliers

2.1 Supervised Learning a.k.a. Classification

- Classification Problem
- Geometric Interpretation
- The formal Setup: statistical learning theory deal with supervised learning problems
 - Given Input feature space X
 - Output label space $Y = \{-1, +1\}$
- Estimate a functional relation between the input and the output
- Training data
- Given the training set find a good classifier
- Assumption
- Loss & Risk
- Bayes Classifier
- Bayes' Theorem
- The classification problem revisited
- The Nearest Neighbour (NN) Rule
 - Definition
 - How good is the NN rule
 - Variations: K-NN, K_n -NN
 - Stone theorem

2.2 Neural Network

- McCulloch and Pitts Model
- Network Topologies and Architectures
 - Feedforward only: fully connected and single layer
 - Feedback networks: sparsely connected and multilayer
- Classification Problem
 - Features, classes
 - Finding the best configuration of weights on the income connection and the threshold
 - Forget the threshold by adding an extra unit set to -1
- Perceptron: definition

- The perceptron Convergence Theorem
- Multilayer feedforward networks
 - Single layer
 - Multilayer feedforward network by adding a hidden layer
 - Universal Approximation Power
- Continuous values units:
 - Sigmoid
 - Hyperblioc Tangent

• Back - propagation Learning Algorithm

- Definition, Supervised Learning
- In what consist the learning
- Error Function
- What is our aim
- What do we use to achieve this
- Pass:
 - * Feedforward Pass
 - * Backword Pass
- Locality of Back propagation
 - * Off Line
 - * On Line
 - * Compromise

• The Algorithm

- Problem of the choice of the learning rate:
 - Small
 - Big
 - Solution: momentum term: definition and characteristics
- Problem of local minima
- Theoretical / Practical questions
 - Generalization
 - Training, Validation and Test set
 - Learning phase stopped in the minimum validation error
- Cross validation
- Overfitting

Detecting Faces

- Difficulties
- Related Problems:
 - Face localization
 - Face feature extraction
 - Face recognition
 - Face Authentication
 - Face Tracking
 - Emotion Recognition
- Detection: concerned with a category of object
- Recognition: concernes with the identity of the object
- Methods to detect faces:
 - Knowledge-Based Methods: encode human knowledge of what constitutes a typical face
 - Feature Invariant Approaches: aim to find structural features, invariant in some scenario
 - Template Matching Methods
 - Appearence-Based Methods: the models are learned from a set of training images

3.1 Knowledge-Based Method

- Top down approaches
- Multi resolution focus of attention approach
 - Level 1: lowest resolution, make the hypothesis
 - Level 2: local histogram equilibrium followed by edge detection
 - Level 3: search fro eye and mouth for feature validation

- Takes horizontal and vertical projection of rows and columns of our image to get an histogram of the pixel level of roes and columns
- Pros:
 - Easy, simple rules
 - Facial features in an input image are extracted first
 - Work well for face localization in uncluttered background
- Cons:
 - Difficult to translate human knowledge
 - Different poses of faces are difficut to detect

3.2 Feature-Based Methods

- Bottom Up approach
- Random graph matching
- Pro: features are invariant to pose and orientation
- Cons:
 - Difficult to locate facial features due to several corruption
 - Difficult to detect features in complex background

3.3 Template Matching Methods

- Store a template, predefined or deformable
- Templates are hard coded
- Use correlation to locate faces
- Abstraction of the face in term of line drawing, move the template around the image trying to find the best match
- Pro: simple
- Cons:
 - Template must be first initialized near a face image
 - Difficult to enumerate templates for different poses

3.4 Appearence-Based Methods

- Collect a large set of face and non face images and train a classifier to discriminate them
- given a test image, detect faces by applying the classifier at each position and scale of the image

3.4.1 Sun and Poggio

- The system was capable of:
 - Be invariant on the position of the face (19 x 19 pixels sliding window)
 - Detect faces in different scale
- Preprocessing
 - Resizing: 19 x 19
 - Masking: cropping image angle of the window
 - Illumination gradient correction: find the best brightness plane and the subtract
 - Histogram equalization: compensates the imaging effects
- Distribution of the face patterns
 - Record are grouped in 6 clusters using k-means with k = 6
 - cluster modified via a multi-dimensional gaussian with cetroid and a covariance matrix
 - Spectro analysis using the largest eigenvector
- Distance Metrics: distances of a sample to all the dace and non face clusters, each distance has two metrics
 - Distance between the point and the subspace corresponding to the cluster
 - Given the projection of the point on the subspace what is the distance between the point and the centroid of the clusters
 - each face non face is represented by a vector of these two distances
- The classifier
 - Multilayer NN to identify "face" window patterns from "non face" patterns on their "difference" feature vector of the 12 distance measurements
- Create virtual positive examples, data argumentation
- Bootstrapping: how can i create a dataset that contains all the non faces -¿ Algorithm

3.4.2 Rowley - Baluja - Kandle

- Features:
 - Similar to sun and poggio
 - $-20 \times 20 \text{ instead of } 19 \times 19$
 - same technique for bootstrapping and pre-processing
 - NN applied directly to the image
 - Different heuristic

- Faster than sun and poggio
- The architecture:
 - Neurons as feature detector, each see only a small part of the image and respond in a specific scenario
- Problem & Solution: only detect faces in upper right position
 - Image in input to the first NN -; output the probable orientation
 - Roteate the image with the angle obtained and feed this input to the previous NN
- Router Network:
 - Roteate a dace sample at 10 degree increment
 - Create virtual examples from each sample
 - Train a multilayer NN

3.5 The Viola - Jones Face Detector

- Previous algorithm quite slow, create a fast and accurate one
- Has the following main
 - Integral images for fast future evaluation
 - Boosting for feature selection
 - Attention cascade for fast rejection of non-face windows
- Rectangular image features: by nose, mouth, face approx in rect features, dark and lighter
- Fast computation with integral images
 - sum of pixels value to the top and left of (x,y)
 - done in 1 pass in linear time starting from the top left corner
 - cum sum row
 - integral image
- Computing sum within a rectangle
 - A,B,C,D
 - A-B-C+D
- Feature selection aka boosting
 - 24 x 24 detection region, how learn the best rectangle
 - boosting build ensamble sequntially
 - each mdoel corrects the mistakes of its predecessors

• Boosting:

- Combination of weak learners
- Training consist in multiple boosting round
 - 1. find weak learner with lowest weighted error
 - 2. raise the weight of missclassifierd examples
- Final classifier is the combination of the weak learner

• Boosting for face detection

- Algorithm intuition
- Algorithm definition

• Attention cascade

- Simple classifier which reject many of the negative sub windows while detecting almost all positive sub-windows
- negative outcome at any point leads to the immediate rejection of the sub-window

• Non-Maximum suppression

- Set of detections \rightarrow partitioned \rightarrow disjoint subset
- Two detection are in the same subset if their regions overlap
- Each partition yields a single final detection
- Corner of the final region are the average of the corners of all detections in the set

Human Detection

- Challenges
- Research issues
- The detection phase, sliding window detectors find object in 4 steps
- Search over space and scale
 - Space: windows is 128 px tall and 64 px wide, 2:1 aspect ration (person viewed from the front and side)
 - Scale: down-scale the image and slide the window again

4.1 Support Vector Machines

- Definition
- Issue and question
- Hyperplane, support vectors, margin
- Only support vector thrown away the other examples
- Goals:
 - 100% accuracy
 - maximize the distance respect to the margin
- Hyperplane $w^t x + b = 0$, scalar product does not change it
- Canonical from
- Optimization problem
- Convex quadratic problem, unique minimum
- Assumption: linearly separable problem
- Slack variable
- Regularization term

4.2 Histogram of Oriented Gradients

- Definition
- Steps
- Compute Gradients
 - Images as continuous function
 - Derivaty definition and approximation
 - Gradient vector, magnitude and direction
 - Horizontal and vertical derivaty by taking the difference of the next and previous points
 - Overlapping the mask and computing gradients we obtain the edge detection features
- Hog Step
 - 1. Horizontal and vector gradients, no pre-processing
 - 2. Gradient orientation and magnitudes
 - 3. $64x128 \rightarrow 16x16$ blocks of 50% overlap
 - 4. Each block is 2x2 cells with size 8x8
 - 5. Quantize the gradient orientation into 9 bins
 - 6. Concatenate histograms
- Classification

4.3 The Hog Detector-Post Processing

- Non-Maxima Suppression
- Are we done? Objects articulated
- Two component bycicle model-latent SVMs

Deep Convolutional Neural Networks

- Learn feature hierarchy from the initial pixel in order to obtain a classifier
- Inspiration from biology, receptive fields
- Image classification, image, height x weight x 3 of 0 x 255 dimension
- Challenge
 - Viewpoint
 - Illumination
 - Scale
 - Deformation
 - Background clutter
 - Occlusion
 - Intraclass
- Data driven approch
- Convolution
- Matrix dot product with filter
- Convolution
- Mask: identity, edge detection, sharpeon, box blur, gaussian blur
- Strade, Padding
- Traditional approach and deep learning
- Convolutional Neural Networks (CNN)
 - Object Character Recognition
 - Fully Connected NN
 - Locally Connected NN

• Maxpooling

• AlexNET

- 8 layer in the following schema:
 - 1. Conv + Pool
 - 2. Conv + Pool
 - 3. Conv
 - 4. Conv
 - 5. Conv + Pool
 - 6. Full
 - 7. Full
 - 8. SoftMax Output (1000 way)
- $-\,$ 2 independent GPU, run in parallel and there are connection between the two GPUs
- Way GPU
- Deepening in softmax
- Using the sigmoid activation function to propagate G, becomes zero
- ReLU
- Mini-Batch stochastic gradient descent
- Technique to reduce overfitting
 - Data Argumentation
 - Dropout

• ImageNET

- What is and how it has been build
- Overall
- Hierarchy of features
- Feature analysis
- Other Computer vision task
 - Semantic segmentation
 - Classification + Localization
 - Object Detection
 - Instance Segmentation
 - Image Captioning

5.1 Semantic Segmentation

- Problems
- First ides: sliding window
 - Classify the central pixel of the patch
 - Process does not consider contextual information
- Second Idea: Fully convolutional
 - Feature extractor without pooling layers
 - Very expensive
- Third idea: Encoder & Decoder
 - Encoder: downsapmling
 - Decoder: upsampling
- Upsampling
 - Stride and padding as before
 - Manage overlapping area: sum the overlapping results
 - Solve "what" but not "where"
 - Branches
 - U-Net

5.2 2D Object detection

- Classification + Localization (ass: single object)
 - Classification, soft max
 - Regression, L2 loss
 - Losses sum, back propagation
- Aside: human pose estimation (ass: single object)
 - I want the position of the relevant part of the object
 - Many output layers, many losses, losses sum, back propagation
- Object detection as regression
 - Can we relax the assumption of a single predominant object
 - We have to know in advance the number of object
 - Not possible
- Object detection as classification: sliding window
 - Apply the cnn in to huge number of locations

- Expensive
- R-CNN / Region proposal -selective search
 - Find region that are likely to contain objects, selective search
 - Image
 - Ad Hoc Training Objective
 - * Log loss
 - * Hinge loss
 - * Least squares
 - Training slow, heavy in disk
 - Inference is slow

• Fast R-CNN

- Input the entire image
- Process the whole image with several conv and max pool layer, get conv feature map
- For each object proposal region of interest pooling layer extract featre vector
- FC Layers, two branches:
 - * Linear + softmax: estimats all k object + "catch-all background class"
 - * Linear: for each of the k object output 4 real number (bounding box regression)
- Losses combined by sum and back propagation

• Faster-RCNN

- Learn proposal region and is able to recognize them
- Insert region proposal network to predict proposal from features
- -4 losses from the feature map:
 - * RPN object / non-object
 - * PRN box coordinates
 - * Final classification score (obj class)
 - * Final box coordinates

• Recurrent Neural Network

- Image captioning solved by RNN
- Definition
- Types

Graph-Based Methods in Computer Vision: Recent Advances

- Images as graphs
- Connection between graphs and matricies
- Matrix representation is sensitive to way we number nodes
- Eigenvalue and eigenvectors are useful
- Invariant respect the way we number the nodes
- Edge weights = similarity
- \bullet Pixel with feature vector x, define distance function for this feature rep
- Convert distance between pixels in affinity using gaussial kernel
- Formula
- Clustering on graphs
 - n objects, nxn pairwise similarity matrix A
 - Goal
 - Cluster:
 - * Internal criteria
 - * External criteria
 - * How do we formalize these two
 - S in or equal to C and i in S
 - Average weight degree of i with regard the set S
 - Relative similarity bet i and j respect to the average similarity bet i and its neighbours
 - Weigh of i with regard to S, gives the similarity bet i and S i with respect to the overall similarity among the vertices of S i

- The total weight of S
- Definition of Dominant Set
 - * Internal homogeneity: all node in the cluster are important for it
 - * External homogeneity: considering a new point to add the cluster cohesiveness will decrease
- From dominant set to local optima
 - * Cluster as a vector expressing the partecipation of each node to a cluster
 - $* f(x) = x^T A x$
 - * Finding x that maximizes f
 - * Normalization, standard simplex
 - * Standard quadratic problem
 - * $x_i = 0 \text{ or } x_i >> 0$
 - * Charateristics
- Using binary symmetric affinities
 - * Clique
 - * Maxclique
- Finding dominant sets
 - * Replicator dynamics
 - * Formula
- Results in image segmentation
 - * Need more sophisticated features
 - * Similarity measre that takes into account the context of the sorrounding pixels
- Replicator dynamics useful for ranking elements in the cluster
- Summary of dominant set

• Detecting conversational groups in image and sequences

- F-Formations
- Similarity: frustrum of visual attention, definition

• Dominant set for constrained image segmentation

- Extract dominant set containing a particular node
- Formula
- $-\hat{I}_s$ special diagonal matrix
- $-\alpha > \lambda_{max}(A_{V/S})$
- Modalities:
 - * Scribble
 - * Bounding box
- Pelillo algo take into account both

- Framework:
 - * Superpixel
 - * Affinity matrix
 - * Replicator Dynamic
 - * Get non zero element from the resulting vector
- Bounding box \rightarrow detect background instead of the foreground

• Large-Scale image geo-localization using dominant set

- Problem
- Strategy
- Pipeline
 - * Sift features
 - * NN for each feature
 - * NN pruning
 - * DS using global info
 - * CDS
 - * Extract the best matching
 - * Get GPS coordinates

• Multi-Target Tracking in Multiple Non-Overlapping Cameras using Fast-Constrained Dominant Set

- Recognize an individual over different non-overlapping cameras
- Gallery of person image, recognize a new observed image, probe
- Video-Based Person Re-Identification
 - * Traditional Methods
 - * Pelillo's approach
 - · Bounding box n consecutive frames
 - · Similarity: person appearance and person motion
 - · Graph as many nodes as elements plus the probe
 - · Run CDS to have the probe
 - · Return a rank, take the top one
- Multi-Target Multi-Camera Tracking
 - * Track people in each camera
 - * Short tracklets using amount of overlap of bounding box in cons fames
 - * DS same simialrity, return bigger tracklets
 - * DS nodes are the tracklets, return bigger tracklets
 - * Combine all the tracklets, CDS to the camera

6.1 Context-Aware of Classification

- Context
- The Consistent Labelling Problem
 - Involves
 - Goal
 - Local measurements and contextual information
 - -R
- Relaxation Labelling Process
- Hummel and Zucker's Consistency
- Relaxation Labeling as a non-cooperatibve game
 - players = objects
 - pure strategies = labels
 - mixed strategies = weighted labeling assignments
 - payoffs = compatibility coefficients
- Graph Transduction
 - Description
 - Goal
 - Cluster assumption
- Graph Transduction Game
- Word Sense Disambiguation
 - Intended meaning of a word based on the context
 - Game teoretic model
 - * players = words
 - * pure strategies = senses
 - * mixed strategies = sense similarity
 - * payoffs = weighted graph
- The Protein Function Protection game
 - Motivation
 - Hume's principle
 - Game:
 - * players = proteins
 - * strategies = functional classes
 - * payoff function = combination of protein and function-level similarities

CHAPTER 6. GRAPH-BASED METHODS IN COMPUTER VISION: 6.1. CONTEXT-AWARE OF CLASSIFICATION RECENT ADVANCES

• Metric Learning: Triplet Loss

- Problem
- Triplet Loss
- Formula
- Triplet Loss Pipeline
 - 1. Prepare data: mini batch of k images
 - 2. Extract Feature Embedding: DNN
 - 3. Select Triplets: select subset via its selection method
 - 4. Evaluate loss using the selected one

• Beyond Triplets: The "Group" Loss

- Initialization: x, softmax, nxn pairwise similarity, nn embedding
- Refiniment: refine x, similarity between all mini-batch and labeling preferences
- cross-entropy loss, update the weights via backprop
- Goal

• Puzzle Solving with RLP