Bevezetés a számításelméletbe 1. tételsor

Zsolt Hegyi

A tételsor Szeszlér Dávid fantasztikus előadásai és jegyzete alapján készült.

Álljon itt egy névsor azokról, akik a megjegyzéseikkel, támogatásukkal és munkájukkal érdemben részt vettek e tételsor létrehozásában illetve javításában:

Bálint Ádám, Bereczki Márk, Bognár Márton, Bokros Bálint, Braun Márton, Dános Péter, Hanusch Róbert, az IRC-s baráti társaságom, Koczka Tamás, Kormány Zsolt, a KSZK reszort tagjai, Müller András, Nagy "Sid" Jenő, Rostás Balázs.

Kellemes vizsgázást!

Tartalomjegyzék

1. tétel	2
2. tétel	4
3. tétel	6
4. tétel	8
5. tétel	9
6. tétel	11
7. tétel	12
8. tétel	13
9. tétel	15
10. tétel	16
11. tétel	17
12. tétel	18
13. tétel	19
14. tétel	21
15. tétel	22
16. tétel	23
17. tétel	24

TÉRVEKTOR TULAJDONSÁGOK Tétel: Legyenek $\underline{\mathbf{u}}=(u_1,u_2,u_3)\in\mathbb{R}^3$ és $\underline{\mathbf{v}}=(v_1,v_2,v_3)\in\mathbb{R}^3$ térvektorok és $\lambda\in\mathbb{R}$: Ekkor

$$\underline{u} + \underline{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

$$\underline{u} - \underline{v} = (u_1 - v_1, u_2 - v_2, u_3 - v_3)$$

$$\lambda \underline{u} = (\lambda u_1, \lambda u_2, \lambda u_3)$$

SKALÁRIS SZORZAT Definíció: u és v skaláris szorzatán az alábbit értjük:

$$\underline{u} \cdot \underline{v} = |u| \cdot |v| \cdot \cos \phi$$

Ha $\phi=k\cdot 90^\circ\quad k\in\mathbb{Z},$ akkor a szorzatösszeg 0.

SKALÁRIS SZORZAT Tétel: Egy alternatív meghatározása a skaláris szorzatnak: Legyenek $\underline{\mathbf{u}} = (u_1, u_2, u_3) \in \mathbb{R}^3$ és $\underline{\mathbf{v}} = (v_1, v_2, v_3) \in \mathbb{R}^3$ térvektorok. Ekkor

$$\underline{u} \cdot \underline{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

EGYENES Az e egyenes paraméteres egyenletrendszere (1. tétel miatt):

$$x = x_0 + \lambda \cdot a$$
$$y = y_0 + \lambda \cdot b$$
$$z = z_0 + \lambda \cdot c$$
$$\lambda \in \mathbb{R}$$

Ahol $P_0(x_0,y_0,z_0)$ ponton átmegy a vonal és $\underline{v}=(a,b,c)(\underline{v}\neq 0)$ irányvektora. Nem paraméteres alakban ugyanez:

EGYENES Tétel: Legyen az e egyenesnek $P_0(x_0,y_0,z_0)$ pontja és $\underline{v}=(a,b,c)(\underline{v}\neq 0)$ irányvektora. Ekkor tetszőleges pontjának NEM paraméteres alakja:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \quad a, b, c \neq 0$$
$$\frac{x - x_0}{a} = \frac{y - y_0}{b} \text{ \'es } z = z_0 \quad c = 0$$
$$x = x_0 \quad y = y_0 \quad a, b = 0$$

Biz: P \in e akkor igaz, ha e param.egy.rszr-ére $\lambda \in \mathbb{R}$ értékre P-t adja. Ha $a,b,c \neq 0$, akkor a három egyenletből egy közös λ -ra kell jutnunk. Ha c=0, akkor megfelelő λ létezése azt jelenti, hogy $z=z_0$ és az első két egyenletből közös λ értéket kell kapnunk. Végül ha csak $c \neq 0$, akkor az első két egyenlet egyértelmű míg a harmadik egyenlet mindig kielégíthető a $\lambda = \frac{z-z_0}{c}$ választással.

SÍK Tétel: Legyen adott az S síknak $P_0(x_0, y_0, z_0)$ és $\underline{n} = (a, b, c)$ $n \neq 0$ normálvektora. Ekkor P(x, y, z) $P \in S$ akkor igaz, ha

$$ax + by + cz = ax_0 + by_0 + cz_0$$

Biz: $P \in S$ akkor igaz, ha $\overrightarrow{P_0P} \mid |$ S-el, $\overrightarrow{P_0P}$ pedig akkor || S-el, ha merőleges $\underline{\mathbf{n}}$ -el, ez akkor igaz, ha (skaláris szorzat def!) skaláris szorzatuk 0. Az skal. szorzat alternatív formáját véve és átrendezve megkapjuk az egyenletet.

VEKTORIÁLIS SZORZAT Definíció: Az \underline{u} és \underline{v} vektorok vektoriális szorzata az az $\underline{u} \times \underline{v}$ -vel jelölt vektor, amelyre az alábbi feltételek fennállnak:

$$\underline{u} \times \underline{v} \ hossza : \ |u \times v| = |u| \cdot |v| \cdot \sin \phi$$

$$\underline{u} \times \underline{v} \ mer\"{o}leges \ \underline{u} \ \acute{e}s \ \underline{v} - re$$

Ezek jobbsodrású rendszert alkotnak. Ha valamelyik vektor 0, akkor az eredmény is nulla.

VEKTORIÁLIS SZORZAT Tétel: Legyenek $\underline{\mathbf{u}} = (u_1, u_2, u_3)$ és $\underline{\mathbf{v}} = (v_1, v_2, v_3)$ vektorok, ekkor:

$$\underline{u} \times \underline{v} = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix}$$

VEGYESSZORZAT Definíció: Az $\underline{u},\,\underline{v},\,\underline{w}$ vektorok vegyesszorzata $(\underline{u}\times\underline{v})\cdot\underline{w}.$ Jelölés: \underline{u} v w.

VEGYESSZORZAT Tétel: A vegyesszorzat kapcsolata a térfogattal - az $\underline{\mathbf{u}}$, $\underline{\mathbf{v}}$ és $\underline{\mathbf{w}}$ által kifeszített paralelepipedon térfogata:

$$V = |\underline{u}\,\underline{v}\,\underline{v}|$$

Biz: A térfogatot a paralelogramma T területének és m magasságának a szorzatából kapjuk meg. T terület egyenlő az $|\underline{u} \times \underline{v}|$ -vel, m magasságot pedig úgy kapjuk meg, hogy meghatározunk egy OMW háromszöget, melyben O az origó, M a W-ből az $\underline{u} \times \underline{v}$ -re állított merőleges talppontja és W pedig \underline{w} végpontja. Pitagorasz -> $OM = m = |\underline{w}| \cdot \cos \phi$. Tehát összvissz

 \mathbb{R}^n Definíció: $n \geq 1$ esetén az n db. valós számból álló számoszlopok halmazát \mathbb{R}^n jelöli. Ezen értelmezett összeadás "+" és tetszőleges $\lambda \in \mathbb{R}$ "·" skalárszorzást az alábbi alapján értelmezzük:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix} \quad \acute{e}s \quad \lambda \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix}$$

 \mathbb{R}^n TULAJDONSÁGOK Tétel: Legyen $\underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n$ és $\lambda, \mu \in \mathbb{R}$, ekkor igazak az alábbiak:

Összeadás asszociatív, kommutatív.

Szorzás asszociatív, kommutatív és disztributív.

Biz: Triviális.

 \mathbb{R}^n ALTERE Definíció: Legyen $V\subseteq\mathbb{R}^n\neq\varnothing$ az \mathbb{R}^n tér egy nemüres részhalmaza. V-t az \mathbb{R}^n alterének nevezzük, ha az alábbi két feltétel teljesül:

Bármely $u, v \in V$ esetén $u + v \in V$ is igaz, és

Bármely $\underline{u} \in V, \lambda \in \mathbb{R}$ esetén $\lambda \cdot \underline{u} \in V$ is igaz.

Jelölés: $V \leq \mathbb{R}^n$.

LINEÁRIS KOMBINÁCIÓ Definíció: Legyenek $\underline{v}_1, \dots, \underline{v}_k \in \mathbb{R}^n$ vektorok és $\lambda_1, \dots, \lambda_k \in \mathbb{R}$ skalárok. Ekkor $\lambda_1 \underline{v}_1 + \dots + \lambda_k \underline{v}_k$ vektort a $\underline{v}_1, \dots, \underline{v}_k$ vektorok $\lambda_1, \dots, \lambda_k$ skalárokkal vett lineáris kombinációjának nevezzük.

GENERÁLT ALTÉR Definíció: Legyenek $\underline{v}_1,\ldots,\underline{v}_k\in\mathbb{R}^n$ vektorok, ezekenek a lineáris kombinációval kifejezhető \mathbb{R}^n -beli vektorok halmazát $\underline{v}_1,\ldots,\underline{v}_k$ generált alterének nevezzük. Jelölés: $\langle \underline{v}_1,\ldots,\underline{v}_k \rangle$

GENERÁTORRENDSZER Definíció: Legyenek $\underline{v}_1,\ldots,\underline{v}_k\in\mathbb{R}^n$ vektorok, ha W = $\langle\underline{v}_1,\ldots,\underline{v}_k\rangle$, akkor a $\underline{v}_1,\ldots,\underline{v}_k$ vektorhalmazt a W altér generátorrendszerének nevezzük.

LINEÁRIS FÜGGETLENSÉG Definíció: A $\underline{v}_1,\ldots,\underline{v}_k\in\mathbb{R}^n$ vektorrendszert akkor nevezzük lineárisan függetlennek, ha $\underline{v}_1,\ldots,\underline{v}_k$ vektorok közül semelyik sem fejezhető ki a többi lineáris kombinációjaként. Ha ez nem teljesül – vagyis a $\underline{v}_1,\ldots,\underline{v}_k$ vektorok között legalább egy olyan, ami kifejezhető a többi lineáris kombinációjaként, akkor a $\underline{v}_1,\ldots,\underline{v}_k$ vektorrendszert lineárisan összefüggőnek nevezzük.

LINEÁRIS FÜGGETLENSÉG Tétel: A $\underline{v}_1, \dots, \underline{v}_k \in \mathbb{R}^n$ vektorrendszer akkor és csak akkor lineárisan független, ha $\lambda_1\underline{v}_1, \dots, \lambda_k\underline{v}_k = \underline{0}$ egyenlőség kizárólag abban az esetben teljesül, ha $\lambda_1 = \dots = \lambda_k = 0$ – ezt nevezzük a triviális lineáris kombinációnak.

Biz: "akkor":

T.f.h. $\lambda_1\underline{v}_1,\ldots,\lambda_k\underline{v}_k=\underline{0}$ csak a triviális lin. kombináció esetén teljesül, belátjuk, hogy $\underline{v}_1,\ldots,\underline{v}_k$ lin.flen. INDIREKT bizonyítjuk: feltesszük, hogy ez mégsem lin.flen. Ha $\underline{v}_1,\ldots,\underline{v}_k$ nem lin. flen., akkor valamelyikük kifejezhető a többi lineáris kombinációjából: legyen ez pl. \underline{v}_1 . Ekkor

$$\underline{v}_1 = \alpha_2 \underline{v}_2 + \ldots + \alpha_k \underline{v}_k \quad \alpha_1, \ldots, \alpha_k \in \mathbb{R}$$

Átrendezve:

$$1\underline{v}_1 - \alpha_2\underline{v}_2 - \ldots - \alpha_k\underline{v}_k = \underline{0}$$

Ezzel ellentmondásra jutottunk: Az fentebbi egyenlet nemtriviális lin. kombináció esetén is teljesül $(\lambda_1=1,\ \lambda_2=-\alpha_2,\dots,\lambda_k=-\alpha_k)$, tehát ezt az állítást igazoltuk.

A "csak akkor" állítás: feltesszük, hogy $\underline{v}_1,\dots,\underline{v}_k$ lin.flen. és megmutatjuk, hogy ekkor $\lambda_1\underline{v}_1,\dots,\lambda_k\underline{v}_k=\underline{0}$ csak a $\lambda_1=\dots=\lambda_k=0$ esetben teljesül. INDIREKT bizonyítjuk: T.f.h. $\lambda_1\underline{v}_1,\dots,\lambda_k\underline{v}_k=\underline{0}$ de a lambdák között van nemnulla, pl: $\lambda_1\neq 0$. Ekkor átrendezés és $\lambda_1\neq 0$ -val való osztás után a következő alakot kapjuk:

$$\underline{v}_1 = -\frac{\lambda_2}{\lambda_1}\underline{v}_2 - \ldots - \frac{\lambda_k}{\lambda_1}\underline{v}_k$$

Ezzel ellentmondásra jutottunk, $\underline{v}_1, \dots, \underline{v}_k$ mégsem lin.flen., mert \underline{v}_1 kifejezhető a többiből lin. kombinációval.

ÚJONNAL ÉRKEZŐ VEKTOR LEMMÁJA Lemma: T.f.h. az f_1,\ldots,f_k rendszer lin.flen., de f_1,\ldots,f_k,f_{k+1} lin.öf. Ekkor $f_{k+1}\in\langle f_1,\ldots,f_k\rangle$, tehát f_{k+1} kifejezhető f_1,\ldots,f_k lin. kombinációjaként.

Biz: Mivel $f_1, \ldots, f_k, f_{k+1}$ lin.öf., ezért a lin.flen. tétele alapján létezik nemtriviális lin. kombináció, mely a nullvektort adja végeredményül. Ha a $\lambda_1 f_1 + \ldots + \lambda_k f_k, \lambda_{k+1} = \underline{0}$ egyenletben $\lambda_{k+1} = 0$, az azt jelenti, hogy a maradék egyenlet így néz ki $\lambda_1 f_1 + \ldots + \lambda_k f_k = \underline{0}$ ÉS a $\lambda_1, \ldots, \lambda_k$ skalárok között van egy (vagy több) nemnulla tag. Ez az állítás viszont azt eredményezné, hogy az eredeti f_1, \ldots, f_k rendszer lin.öf., ezzel ellentmondásra jutottunk. Ebből következtetve $\lambda_{k+1} \neq 0$, és az ezzel való osztás után kapott egyenletből az következik, hogy f_{k+1} előállítható az f_1, \ldots, f_k rendszer lineáris kombinációjaként, tehát $f_{k+1} \in \langle f_1, \ldots, f_k \rangle$.

F-G EGYENLŐTLENSÉG Tétel: Legyen V $\leq \mathbb{R}^n$ altér, $\underline{f}_1, \dots, \underline{f}_k$ V-beli vektorokból álló lineárisan független rendszer, $\underline{g}_1, \dots, \underline{g}_m$ pedig genenátorrendszer V-ben, ekkor $\overline{k} \leq m$.

Biz: TELJES INDUKCIÓVAL:

Ha k = 1, akkor V-ben van a nullvektortól különb vektor (mert $\underline{f}_1 \neq 0$), így minden gen.rszr.-e legalább 1 elemű (üres halmaz $\{\underline{0}\}$ alteret generálja csak). Tétel k = 1 esetén igaz. Továbbiakban t.f.h. $k \geq 2$ és a tétel (k-1)-re már igaz, cél belátni, hogy k-ra is igaz a tétel.

(k-1)-re már igaz, cél belátni, hogy k-ra is igaz a tétel. Mivel $\underline{g}_1,\dots,\underline{g}_m$ gen.rszr. V-ben, ezért minden V-beli vektor, így f_k is előáll ennek a lin. kombinációjaként: $f_k=\lambda_1\underline{g}_1+\dots+\lambda_m\underline{g}_m$. A lambdák között kell legyen nemnulla (mert $f_k\neq 0$). Legyen pl. $\lambda_m\neq 0$ és legyen $W=\langle \underline{g}_1,\dots,\underline{g}_{m-1}\rangle$. Megmutatjuk, hogy minden $1\leq j\leq k-1$ esetén az \underline{f}_j -hez található olyan α_j skalár, hogy $\underline{f}_j+\alpha_j\underline{f}_k\in W$. Ugyanis \underline{f}_j felírható $\underline{g}_1,\dots,\underline{g}_m$ lin. kombinációjaként: $\underline{f}_j=\beta_1\underline{g}_1+\dots+\beta_m\underline{g}_m$. Ekkor $\alpha_j=-\frac{\beta_m}{\lambda_m}$ megfelel a célnak. A bizonyítás további része megtalálható a hivatalos, Szeszlér-féle BSz1 jegyzet 23. oldalán, mivel az író megunta ennek a nagyon unalmas bizonyításnak a leírását.

BÁZIS Definíció: Legyen $V \leq \mathbb{R}^n$ altér. A V-beli vektorokból álló $\underline{b}_1, \dots, \underline{b}_k$ rendszert bázisnak nevezzük V-ben, ha a rendszer lin.flen. és gen.rszr. V-ben.

BÁZIS EGYÉRTELMŰSÉGE Tétel: T.f.h. a $V \leq \mathbb{R}^n$ altérben a $\underline{b}_1, \dots, \underline{b}_k$ rendszer és a $\underline{c}_1, \dots, \underline{c}_m$ rendszer egyaránt bázisok. Ekkor k=m.

Biz: Mindkét rendszer bázis, ezért $\underline{b}_1, \ldots, \underline{b}_k$ lin.flen. és $\underline{c}_1, \ldots, \underline{c}_m$ gen.rszr. V-ben. F-G egyenlőtlenséget alkalmazva: $k \leq m$. Ennek a fordítottját is kimondhatjuk: $\underline{b}_1, \ldots, \underline{b}_k$ gen.rszr. V-ben és $\underline{c}_1, \ldots, \underline{c}_m$ lin.flen. Az F-G egyenlőtlenség alapján $m \leq k$. Mivel mindkét állítás egyszerre igaz, ezért k = m.

DIMENZIÓ Definíció: Legyen $V \leq \mathbb{R}^n$ altérben $\underline{b}_1,\dots,\underline{b}_k$ rendszer bázis. Ekkor azt mondjuk, hogy a V dimenziója k.

Jelölés: $\dim V = k$.

STANDARD BÁZIS \mathbb{R}^n -BEN Definíció: Jelölje minden $1 \leq i \leq n$ esetén \underline{e}_i azt az \mathbb{R}^n -beli vektort, amelynek (felülről) az i-edik koordinátája 1, az összes többi koordinátája 0. Ekkor $\underline{e}_1, \ldots, \underline{e}_n$ bázis az \mathbb{R}^n -ben és ennek külön nevet is szentelünk - standard bázis. Jelölés: E_n .

Biz: $\underline{e}_1, \dots, \underline{e}_n$ lineáris kombinációja $\lambda_1, \dots, \lambda_n$ skalárokkal:

$$\lambda_1 \underline{e}_1 + \ldots + \lambda_n \underline{e}_n = \lambda_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \lambda_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Látszik, hogy $\underline{e}_1, \dots, \underline{e}_n$ gen.
rszr. \mathbb{R}^n -ben, hiszen lin. kombinációjukként tetszőleges vektor elő
állhat. Ha a nullvektort akarjuk kifejezni, akkor csak a triviális lineáris kombináció esetén fog az elő
állni, tehát a rendszer lin.flen., és ezek alapján $\underline{e}_1, \dots, \underline{e}_n$ tényleg bázist alkot az \mathbb{R}^n -ben.

A fenti állításból következik, hogy dim $\mathbb{R}^n = n$, viszont figyeljünk arra, hogy \mathbb{R}^n csak az egyike az "n-dimenziós tereknek" és minden $(n \leq m)$ \mathbb{R}^m -nek van n-dimenziós altere.

BÁZIS Tétel: A V $\leq \mathbb{R}^n$ altérben $\underline{b}_1, \dots, \underline{b}_k$ vektorok akkor és csak akkor alkotnak bázist, ha minden $\underline{v} \in V$ egyértelműen, tehát pontosan egyféleképpen fejezhető ki lineáris kombinációjukként.

Biz: "csak akkor": akkor bázis, ha gen.rszr V-ben és lin.flen. Előbbi következik tételből, utóbbi pedig 2. tételsor alternatív lin.flen. def.-jéből.

"akkor": Minden $\underline{v} \in \mathbb{R}^n$ kifejezhető $\underline{b}_1, \dots, \underline{b}_k$ lin. kombinációjaként, INDIREKT t.f.h. valamely $\underline{v} \in V$ kétféleképpen kifejezhető:

$$\underline{v} = \lambda_1 \underline{b}_1 + \ldots + \lambda_k \underline{b}_k = \mu_1 \underline{b}_1 + \ldots + \mu_k \underline{b}_k$$
 és $\lambda_i \neq \mu_i$

A kettő különbségét véve

$$\underline{0} = (\lambda_1 - \mu_1)\underline{b}_1 + \ldots + (\lambda_k - \mu_k)\underline{b}_k$$

Azt kaptuk tehát, hogy a $\underline{0}$ kifejezhető a $\underline{b}_1, \dots, \underline{b}_k$ nemtriviális lin. kombinációjából, hiszen $(\lambda_j - \mu_j) \neq 0$, ez ellentmondás, tehát ezt az irányt is bizonyítottuk.

KOORDINÁTAVEKTOR Definíció: Legyen V $\leq \mathbb{R}^n$, B = $\{\underline{b}_1,\dots,\underline{b}_k\}$ bázis V-ben és $\underline{\mathbf{v}} \in \mathbf{V}$ tetszőleges vektor. Azt mondjuk, hogy a $\underline{k} = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix} \in \mathbb{R}^k$ vektor a $\underline{\mathbf{v}}$ vektor B szerinti koordinátavektora, ha $\underline{v} = \mathbf{v}$

 $\lambda_1 \underline{b}_1 + \ldots + \lambda_k \underline{b}_k$. Jelölés: $\underline{k} = [\underline{v}]_B$

Fontos még, hogy $[\underline{v}]_B$ nem csak \underline{v} -től függ: ugyanannak a vektornak más-más bázis esetén más-más ko-ordinátavektorok felelnek meg.

BÁZIS LÉTEZÉSE Tétel: Legyen $V \leq \mathbb{R}^n$ altér, f_1, \ldots, f_k V-beli vektorokból álló lineárisan független rendszer. Ekkor f_1, \ldots, f_k kiegészíthető véges sok további vektorral úgy, hogy a kapott rendszer bázis legyen.

Biz: Leqyen W = $\langle f_1, \dots, f_k \rangle$. Nyilván igaz, hogy W \subseteq V, mivel V altér. Ha V = W, akkor f_1, \dots, f_k gen.rszr. és így bázis V-ben, tehát a tételt beláttuk. Ha W \neq V, akkor létezik egy $\underline{\mathbf{v}} \in \mathbf{V}$, $\underline{\mathbf{v}} \notin \mathbf{W}$ vektor. Újonnal érkező vektor lemmája szerint ekkor $f_1, \dots, f_k, \underline{\mathbf{v}}$ lin.flen. Ha ez már gen.rszr. V-ben, akkor a tételt beláttuk, ellenkező esetben ismételjük meg a lépéseket. Be kell még látnunk, hogy ez a folyamat egy idő után leáll, ekkor az F-G egyenlőtlenséget vesszük igénybe, ez alapján n-nél nagyobb elemszámú lin.flen rendszer nem létezhet \mathbb{R}^n -ben, és létezik n elemű gen.rszr. is ebben a térben. Tehát az eljárás n-k lépés után biztosan leáll.

Ebből következik, hogy minden V $\leq \mathbb{R}^n$ altérben van bázis – tehát dim V is létezik.

Ha V = $\underline{0}$, akkor az üres halmaz bázis V-ben, viszont ha V tartalma egy $\underline{v} \neq \underline{0}$ vektort, akkor \underline{v} -re alkalmazva fenti tételt kapunk egy V-beli bázist.

Lásd Szeszlér-féle BSz1 jegyzet 35.-40. oldalt, annál jobban nem lehet lebutítani. (lel)

DETERMINÁNS Definíció: Legyen adott egy $(n \times n)$ -es A mátrix. Az A minden bástyaelhelyezésére szorozzuk össze az azt alkotó n elemet, majd a szorzatot lássuk el előjellel a következő szabály szerint: ha a bástyaelhelyezésnek megfelelő permutáció inverziószáma páros, akkor az előjel legyen pozitív, ha viszont páratlan az inverziószám, akkor az előjel legyen negatív. Az így kapott n! darab, n tényezős előjelezett szorzat összegét az A determinánsának nevezzük.

Jelölés: |A| vagy detA.

DETERMINÁNS ALAPTULAJDONSÁGAI Tétel: Legyen A egy $(n \times n)$ -es mátrix,

Ha A-nak van csupa 0 elemet tartalmazó sora vagy oszlopa, akkor $\det A = 0$.

Ha A felsőháromszög-mátrix vagy alsóháromszög-mátrix, akkor a determinánsa a főátlóbeli elemek szorzata:

$$det A = a_{1,1} \cdot a_{2,2} \cdot \ldots \cdot a_{n,n}$$

Biz: Az első állítás bizonyítása azonnal következik a determináns definíciójából: mivel mind az n! db. szorzat tartalmaz elemet abból a sorból/oszlopból, amelyiknek minden tagja 0, ezért minden szorzat értéke és ezek összege is 0 lesz.

A második állítás bizonyításához vegyük A felsőháromszög-mátrixot. A bástyaelhelyezések akkor nem tartalmaznak 0 elemet, ha az első oszlopból az első elemet, a második oszlopból a második elemet, választjuk ki (a többit nem válaszhatnánk ki) és így tovább... Az így kapott permutáció inverziószáma 0, így pozitív előjelű ez a tag, és mivel ez az egyetlen tag, amiben nem szerepel 0, ezért ez lesz az előjeles összeg eredménye. Ezt megismételve az oszlop és a sor szavak megcserélésével megkapjuk ugyanezt a bizonyítást az alsóháromszög-mátrixra is.

DETERMINÁNS ALAPTULAJDONSÁGAI Tétel: Legyen A $(n \times n)$ -es mátrix, $\lambda \in \mathbb{R}$ skalár, $1 \le i, j \le n, i \ne j$ egészek.

Ha A egy sorát/oszlopát megszorozzuk λ -val, akkor a kapott A' mátrix determinánsa λ -szorosa A-énak:

$$det A' = \lambda \cdot det A$$

Ha A két sorát/oszlopát felcseréljük, akkor a kapott A' mátrix determinánsa ellentetje az A-énak:

$$detA' = (-1) \cdot detA$$

Ha A i-edik sorát helyettesítjük sajátmagának és a j-edik sor λ -szorosának összegével, akkor a kapott A' mátrix determinánsa megegyezik A-éval:

$$detA' = detA$$

Ugyanez igaz oszlopokra is.

Lásd 48-50. oldal Szeszlér-jegyzet.

DETERMINÁNS KISZÁMOLÁSA - GAUSS ELIMINÁCIÓVAL

Bemenet - $n \times n$ mátrix.

0. lépés: i <- 1, D <- 1

1. lépés:

- Ha $a_{i,j} = 0$, akkor folytassuk **2. lépésnél**.
- Szorozzuk meg i-edik sort $\frac{1}{a_{i,j}}$ -vel.
- D <- $D \cdot a_{i,i}$
- Ha i = n, akkor PRINT "detA =", D; STOP.
- Minden $i < t \le n$ esetén adjuk a t-edik sorhoz az i-edik sor $(-a_{t,i})$ -szeresét.

- i < -i + 1
- Folytassuk az 1. lépésnél.

2. lépés

- Hai < nés van olyan $i < t \leq k,$ melyre $a_{t,i} \neq 0,$ akkor:
 - Cseréljük fel az i-edik sort a t-edik sorral.
 - D < \cdot $(-1) \cdot D$
 - Folytassuk az 1. lépésnél.
- PRINT "det A = 0"; STOP.

TRANSZPONÁLT DETERMINÁNSA Tétel: Minden A négyzetes mátrixra $detA^T=detA$

A bizonyítás megtalálható a Szeszlér-jegyzet 65-66. oldalán.

KIFEJTÉSI Tétel: Ha az $(n \times n)$ -es A mátrix valamelyik sorának, vagy oszlopának minden elemét megszorozzuk a hozzá tartozó előjeles aldetermináns értékével és a kapott n darab kéttényezős szorzatot összeadjuk, akkor az A determinánsának értékét kapjuk.

Biz: A Szeszlér-jegyzet 55-58. oldalán.

MÁTRIX Definíció: Adott $k,n \geq 1$ egészek esetén $(k \times n)$ -es mátrixnak nevezünk egy k sorból és n oszlopból álló táblázatot, melynek minden cellájában egy valós szám áll. A $(k \times n)$ -es mátrixok halmazát $\mathbb{R}^{k \times n}$ jelöli. Az A mátrix i-edik sorának és j-edik oszlopának kereszteződésében álló elemet $a_{i,j}$ jelöli. Az $\mathbb{R}^{k \times n}$ -en értelmezett, "+"-al jelölt összeadást és tetszőleges $\lambda \in \mathbb{R}$ esetén "·"-tal jelölt skalárral való szorzást tudjuk értelmezni. Nem, nem fogom leírni, hogyan néz ki egy szorzás/összeadás $k \times n$ -es mátrixon.

MÁTRIXMŰVELETEK Tétel: Legyen A,B,C $\in \mathbb{R}^{k \times n}$ és $\lambda, \mu \in \mathbb{R}$. Ekkor igazak az alábbiak: A mátrixösszeadás asszociatív és kommutatív.

A mátrixszorzás asszociatív és disztributív. (NEM KOMMUTATÍV)!

TRANSZPONÁLT Definíció: A $(k \times n)$ -es A mátrix transzponáltjának nevezzük az $(n \times k)$ -as B mátrixot, ha $b_{i,j} = a_{j_i}$ teljesül minden $1 \le i \le n$ és $1 \le j \le k$ esetén. Jelölés: $B = A^T$

MÁTRIXSZORZÁS Definíció: A $(k \times n)$ -es A $(n \times m)$ -es B mátrixok szorzatának nevezzük és $A \cdot B$ -vel jelöljük azt a $(k \times m)$ -es C mátrixot, melyre minden $1 \le i \le k$ és $1 \le j \le m$ esetén

$$c_{i,j} = a_{i,1} \cdot b_{1,j} + \ldots + a_{i,n} \cdot b_{n,j}$$

Ha az A és B mátrixokra $A \cdot B$ szorzat létezik, akkor $B^T \cdot A^T$ is létezik és $(A \cdot B)^T = B^T \cdot A^T$.

DETERMINÁNSOK SZORZÁSTÉTELE Tétel: Bármely A és B $(n \times n)$ -es mátrixokra:

$$det(A \cdot B) = detA \cdot detB$$

Legyen $(A|\underline{b})$ egy n változós, n egyenletből álló lin. egyenletrendszer kibővített együtthatómátrixa. Ekkor az egyenletrendszer akkor és csak akkor egyértelműen megoldható, ha det $A \neq 0$

Futtassuk (A|b)-re Gauss-eliminációt. Az algoritmus által megtett sorekvivalens lépések az együtthatómátrix determinánsát megváltoztatják ugyan, de annak nulla/nemnulla mivoltán nem változtatnak. A Gauss-elimináció az alábbi három lehetőség valamelyikével ér véget:

- Az egyenletrendszer nem megoldható: tilos sor.
- Az egyenletrendszernek végtelen sok megoldása van: Kevesebb sor, mint oszlop (és fordítva) mivel A eredetileg $(n \times n)$ -es volt, ezért az első fázis 3. lépsében keletkeznie kellett csupa 0 sornak, ez pedig azt jelenti, hogy detA eredetileg is 0.
- Az egyenletrendszer megoldása egyértelmű: A redukált lépcsős alak determinánsa 1, főátlóban csupa 1-es, mindenhol máshol 0 áll. Mivel det végül nem nulla, ezért eredetileg is detA ≠ 0.

Tétel: Legyenek $\underline{a}_1,\dots,\underline{a}_n,\underline{b}\in\mathbb{R}^k$ vektorok és legyen A az \underline{a}_i -k egyesítésével keletkező $(k\times n)$ -es mátrix. Ekkor az alábbi állítások ekvaliensek:

Megoldható az $A \cdot \underline{x} = \underline{b}$ "mátrixegyenlet"

Megoldható az $(A|\underline{b})$ kibővített együtthatómátrixú lineáris egyenletrendszer.

 $\underline{b} \in \langle \underline{a}_1, \dots \underline{a}_n \rangle$

Biz: A 2. és a 3. állítás ekvivalens. A 3. állítás teljesülése azt jelenti, hogy létezik a $\lambda_1\underline{a}_1+\ldots+\lambda_n\underline{a}_n=\underline{b}$ lineáris kombináció. Itt a $\lambda_1\underline{a}_1+\ldots+\lambda_n\underline{a}_n=\underline{b}$ vektor i-edik koordinátája minden $1\leq i\leq k$ esetén $\lambda_1\underline{a}_{i,1}+\ldots+\lambda_n\underline{a}_{i,n}=\underline{b}_i$. Következtetésképp azt kapjuk, hogy a felső és alsó egyenlet ekvaliens, és ezzel épp az (A| \underline{b}) lineáris egyenletrendszert kapjuk.

1. és 2. ekvivalenciájához azt kell észrevennünk, hogy \underline{x} csak \mathbb{R}^n -beli oszlopvektor lehet (mert egyrészt n sora van, ha $A \cdot \underline{x}$, másrészt 1 oszlopa van, ha $A \cdot \underline{x}$ 1 oszlopú). Az \underline{x} j-edik koordinátáját minden $1 \leq j \leq n$ esetén x_j -vel jelölve az $A \cdot \underline{x}$ szorzat i-edik koordinátája a mátrixszorzás definíciója szerint $a_{i,1}x_1 + \ldots + a_{i,n}x_n$. Ezért $A \cdot \underline{x} = \underline{b}$ azzal ekvivalens, hogy $a_{i,1}x_1 + \ldots + a_{i,n}x_n = b_i$ teljesül minden $1 \leq i \leq k$ esetén - vagyis ismét az $(A|\underline{b})$ lineáris egyenletrendszert kaptuk.

Ebből következmény: Az $A \cdot \underline{x} = \underline{0}$ lineáris egyenletrendszernek az egyetlen megoldása $\underline{x} = \underline{0}$. Ez ekvivalens a következővel: Az $\underline{a}_1, \dots, \underline{a}_n$ vektorok lineárisan függetlenek.

Biz: $\underline{a}_1,\ldots,\underline{a}_n$ akkor és csak akkor lin.flen., ha $\lambda_1\underline{a}_1,\ldots,\lambda_n\underline{a}_n=\underline{0}$ csak a triviális lin. kombináció esetén, vagyis $\lambda_1=\ldots=\lambda_n=0$. Ez ekvaliens azzal, hogy az $A\cdot\underline{x}=\underline{0}$ lineáris egyenletnek egyetlen megoldása az, hogy minden változó értéke 0.

Tétel: Legyen A $(n \times n)$ -es mátrix. Ekkor az alábbi állítások ekvivalensek:

A oszlopai, mint \mathbb{R}^n -beli vektorok lineárisan függetlenek;

 $\det A \neq 0$;

A sorai, mint n hosszú sorvektorok lineárisan függetlenek.

Biz: 1. állítás az előző következmény miatt azzal ekvivalens, hogy az $(A|\underline{0})$ kibővített együtthatómátrixú lin. egyenletrendszer egyértelműen megoldható. Mivel A négyzetes mátrix, ezért 1. tétel szerint ez akkor és csak akkor teljesül, ha $\det A \neq 0$. Bizonyítottuk, hogy 1. és 2. állítás ekvivalens.

2. és 3. állítás közötti ekvivalenciához A transzponáltjára alkalmazzuk az 1. és 2. közötti, már bizonyított ekvivalenciát. Ezt megtehetjük, mivel A^T oszlopai megegyeznek A soraival, és fordítva, ezért A sorai akkor és csak akkor lin.flen.-ek, ha $\det A^T \neq 0$. Azonban transzponált-determináns tétel miatt $\det A = \det A^T$, ezért ez valóban ekvivalens $\det A \neq 0$ feltétellel.

INVERZ MÁTRIX Definíció: Egy $(n \times n)$ -es A mátrix inverzének nevezzük az $(n \times n)$ -es X mátrixot, ha $A \cdot X = E = X \cdot A$ teljesül. Jelölés: $X = A^{-1}$.

INVERZ LÉTEZÉSE Tétel: Az $(n \times n)$ -es A mátrixnak akkor és csak akkor létezik inverze, ha $det A \neq 0$. Ha A^{-1} létezik, akkor az egyértelmű.

Biz: T.f.h. $X = A^{-1}$ létezik: megmutatjuk, hogy $det A \neq 0$. Def. szerint $A \cdot X = E$ egyenlet mindkét oldalának determinánását véve: $det(A \cdot X) = det E$, ahol det E = 1, alkalmazzuk szorzástételt: $det A \cdot det X = 1$, ebből adódik, hogy $det A \neq 0$.

INVERZ MÁTRIX LÉTEZÉSE Lemma: Ha $A \in \mathbb{R}^{n \times n}$ és $det A \neq 0$, akkor egyértelműen létezik $X \in \mathbb{R}^{n \times n}$ mátrix, hogy $A \cdot X = E$.

Biz: Fenti szorzás ekvivalens, mátrixszorzás szerint a következővel: $A \cdot \underline{x}_1 = \underline{e}_1, \dots, A \cdot \underline{x}_n = \underline{e}_n$. Az $A \cdot \underline{x}_i = \underline{e}_i$ lin. egyenletrendszer, ami úgy jelölhető, hogy $(A|\underline{e}_i)$. Mivel $detA \neq 0$, ezért ez az egyenletrendszer egyértelműen megoldható. Beláttuk a lemmát: a keresett X i-edik oszlopa a $A \cdot \underline{x}_i = \underline{e}_i$ rendszer egyértelmű megoldása minden $1 \leq i \leq n$ esetén.

Az inverz kiszámítása: Egymás mellé felírjuk az $(n \times n)$ -es A mátrixot valamint az $(n \times n)$ -es egységmátrixot. Gauss-eliminációt lefuttatjuk az A-n, úgy, hogy a sorekvivalens lépéseket megismételjük az E-n is. Addig folytatjuk a Gauss-eliminációt, amíg az A redukált lépcsős alakban nem lesz. Ekkor az $E' = A^{-1}$.

NÉGYZETES RÉSZMÁTRIX Definíció: Legyen A $(k \times n)$ -es mátrix és $r \leq k, n$ egész. Válasszuk ki tetszőlegesen A sorai és oszlopai közül r-r darabot. Ekkor a kiválasztott sorok és oszlopak kereszteződéseiben kialakuló $(r \times r)$ -es mátrixot A egy négyzetes részmátrixának nevezzük.

RANG Definíció: Legyen A tetszőleges mátrix. Azt mondjuk, hogy

- A oszloprangja r, ha A oszlopai közül kiválasztható r db. úgy, hogy a kiválasztott oszlopok lin.flen.-ek, de r+1 már nem választható ki így;
- A sorrangja r, ha A sorai közül kiválaszható r db. úgy, hogy a kiválasztott sorok lin.flen.-ek, de r+1 már nem válaszható ki így;
- A determináns
rangja r, ha A-nak van nemnulla determinánsú $(r \times r)$ -es részmátrixa, de
 $(r+1 \times r+1)$ -es nemnulla determinánsú már nincs.

RANGFOGALMAK EGYENLŐSÉGE Tétel: Minden A mátrixra o(A) = s(A) = d(A).

Biz: Elég belátni, hogy o(A) = d(A) igaz minden A mátrixra, mivel A^T oszlopai megegyeznek A soraival, ezért $s(A) = o(A^T)$, valamint $d(A) = d(A^T)$, mivel az A^T -ből választható négyzetes részmátrixok az A-ból választhatók transzponáltjai, és a legnagyobb nemnulla determinánsú is ugyanazon méretű. Ha az o(A) = d(A) állítást minden mátrixra, így A^T -ra is igaznak fektltekezzük, akkor összesítve az $s(A) = o(A^T) = d(A^T) = d(A) = o(aA)$ egyenlőségeket kapjuk. Tehát azt kell bizonyítanunk csak, hogy o(A) = d(A). Először megmutatjuk, hogy $o(A) \ge d(A)$, majd hogy $o(A) \le d(A)$. Ezekről a Szeszlér-jegyzet 83-85. oldalán többet olvashat.

RANG Definíció: Az A mátrix rangjának nevezzük az o(A), s(A), d(A) közös értékét. Jelölés: r(A).

RANG KISZÁMOLÁSA Tétel: Legyen A $(k \times n)$ -es mátrix és az oszlopai legyenek $\underline{a}_1, \dots, \underline{a}_n$, ekkor $r(A) = dim \langle \underline{a}_1, \dots, \underline{a}_n \rangle$

Biz: Válasszuk ki A oszlopai közül a legtöbbet őgy, hogy ezek lin.flen.-ek legyenek. Oszloprang def. szerint ekkor r=r(A). Állítjuk, hogy $\underline{a}_1,\dots,\underline{a}_n$ bázist alkot a W = $\dim\langle\underline{a}_1,\dots,\underline{a}_n\rangle$ altérben. Be kell látnunk tehát, hogy $\underline{a}_1,\dots,\underline{a}_n$ gen.rszr. W-ben. Legyen U = $\langle\underline{a}_1,\dots,\underline{a}_r\rangle$, célunk belátni, hogy U = W. $r< i\leq n$ esetén $\underline{a}_1,\dots,\underline{a}_r,\underline{a}_i$ lin.öf, mivel A-ból r+1 lin.flen. oszlopot nem lehet kiválasztani. Az újonnal érkező vektor lemmája szerint ekkor $\underline{a}_i\in\langle\underline{a}_1,\dots,\underline{a}_r\rangle=U$, tehát $\underline{a}_1,\dots,\underline{a}_n$ mind U-beli, és mivel U altér, ezért minden W-beli, tehát $\underline{a}_1,\dots,\underline{a}_n$ vektorokból lin. kombinációval kifejezhető vektor is U-beli kell, hogy legyen. Ezzel $W\subseteq U$ bizonyítottuk, és a tételt is.

RANG KISZÁMOLÁSA Tétel: Az elemi sorekvivalens lépések a mátrix rangját nem változtatják meg. A lépcsős alakú mátrix sorainak a száma egyenló a mátrix rangjával.

■ Biz: majd

LINEÁRIS LEKÉPEZÉS Definíció: Az $f \colon \mathbb{R}^n \to \mathbb{R}^k$ függvényt lineáris leképezésnek hívjuk, ha létezik egy olyan $(k \times n)$ -es mátrix, melyre $f(\underline{x}) = A \cdot \underline{x}$ teljesül minden $\underline{x} \in \mathbb{R}^n$ esetén. Az n = k esetben f-et lineáris transzformációnak is nevezzük. Ha $f : \mathbb{R}^n \to \mathbb{R}^k$ lineáris leképezés és $f(\underline{x}) = A \cdot \underline{x}$ minden $\underline{x} \in \mathbb{R}^n$ -re, akkor azt mondjuk, hogy a mátrixa A. Jelölés: A = [f].

LINEÁRIS LEKÉPEZÉS FELTÉTELE Tétel: Az $f \colon \mathbb{R}^n \to \mathbb{R}^k$ függvény akkor és csak akkor lineáris leképezés, ha:

- $f(\underline{x} + \underline{y}) = f(\underline{x}) + f(\underline{y})$ igaz minden $x, y \in \mathbb{R}^n$ esetén;
- $f(\lambda \cdot \underline{x}) = \lambda \cdot f(\underline{x})$ igaz minden $x \in \mathbb{R}^n$ és $\lambda \in \mathbb{R}$ esetén.

Ha pedig f teljesíti ezt a két tulajdonságot, akkor az [f] egyértelmű és azonos azzal a $(k \times n)$ -es mátrixszal, melynek minden $1 \le i \le n$ esetén az i-edik oszlopa $f(\underline{e}_i)$.

Biz: 92. oldal Szeszlér-jegyzet.

LINEÁRIS LEKÉPEZÉSEK SZORZATA Tétel: Legyenek $f: \mathbb{R}^n \to \mathbb{R}^k$ és $g: \mathbb{R}^k \to \mathbb{R}^m$ lineáris leképezések. Ekkor ezeknek a $g \circ f$ szorzata is lineáris leképezés, melyre $[g \circ f] = [g] \cdot [f]$.

Biz: 94. oldal Szeszlér-jegyzet.

ADDÍCIÓS TÉTELEK Tétel: Tetszőleges α és β szögekre teljesülnek alábbi összefüggések:

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

Biz: 95. oldal Szeszlér-jegyzet.

LINEÁRIS TRANSZFORMÁCIÓ INVERTÁLHATÓSÁGA Tétel: Egy $f \colon \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformáció akkor és csak akkor invertálható, ha $det[f] \neq 0$. Ha pedig ez a feltétel fennál, akkor $[f^{-1}] = [f]^{-1}$ -vagyis az f^{-1} inverz transzformáció mátrixa az f mátrixának az inverze.

Biz: 100. oldal Szeszlér-jegyzet.

MAGTÉR, KÉPTÉR Definíció: Legyen $f: \mathbb{R}^n \to \mathbb{R}^k$ lineáris leképezés. f magterének nevezzük és Kerf-fel jelöljük azon \mathbb{R}^n -beli vektorok halmazát, melyeknek a képe az \mathbb{R}^k -beli nullvektor:

$$Kerf = \{\underline{x} \in \mathbb{R}^n : f(\underline{x}) = \underline{0}\}$$

f képterének nevezzük és $\mathrm{Im} f$ -fel jelöljük azon \mathbb{R}^k -beli vektorok halmazát, melyek megkaphatók (legalább) egy alkalmas \mathbb{R}^n -beli vektor f-fel vett képeként.

$$Im f = \{ \underline{y} \in \mathbb{R}^k : \exists \underline{x} \in \mathbb{R}^n, f(\underline{x}) = \underline{y} \}$$

MAGTÉR, KÉPTÉR ALTÉR VOLTA Tétel: Legyen $f\colon \mathbb{R}^n \to \mathbb{R}^k$ lineáris leképezés. Ekkor:

- Ker $f \leq \mathbb{R}^n$, vagyis Kerf altér \mathbb{R}^n -ben;
- $\operatorname{Im} f \leq \mathbb{R}^k$, vagyis $\operatorname{Im} f$ altér \mathbb{R}^k -ban.
- Biz: 96. oldal Szeszlér-jegyzet.

DIMENZIÓTÉTEL Tétel: Ha $f: \mathbb{R}^n \to \mathbb{R}^k$ lineáris leképezés, akkor dim Kerf + dim Imf = n.

Biz: 97. oldal Szeszlér-jegyzet.

BÁZISTRANSZFORMÁCIÓ Tétel: Legyen $f: \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformáció és B egy $(n \times n)$ -es mátrix, melynek az oszlopai bázist alkotnak \mathbb{R}^n -ben. Jelölje $g: \mathbb{R}^n \to \mathbb{R}^n$ azt a függvényt, mely minden $\underline{x} \in \mathbb{R}^n$ esetén $[\underline{x}]_B$ -hez $[f(\underline{x})]_B$ -t rendeli. Ekkor g is lineáris transzformáció, melynek a mátrixa $[g] = B^{-1} \cdot [f] \cdot B$.

Biz: 102. oldal Szeszlér-jegyzet.

BÁZISTRANSZFORMÁCIÓ Tétel: Legyen $h: \mathbb{R}^n \to \mathbb{R}^n$ az a függvény, mely minden $\underline{x} \in \mathbb{R}^n$ esetén $[\underline{x}]_B$ -hez \underline{x} -et rendeli. Ekkor h lineáris transzformáció, amelynek mátrixa [h] = B.

Biz: 102. oldal Szeszlér-jegyzet.

LINEÁRIS TRANSZF. ADOTT BÁZIS SZERINT Definíció: Legyen $f\colon \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformáció és B bázis \mathbb{R}^n -ben. Ekkor a $g\colon [\underline{x}]_B \mapsto [f(\underline{x})]_B$ lineáris transzformáció mátrixát az f transzformáció B bázis szerinti mátrixának nevezzük. Jelölés: $[f]_B$

BÁZISTRANSZFORMÁCIÓ KISZÁMÍTÁSA Tétel: Az $[f]_B$ mátrix i-edik oszlopa egyenlő az $[f(\underline{b}_i)]_B$ koordinátavektorral minden $1 \leq i \leq n$ esetén, ahol $f \colon \mathbb{R}^n \to \mathbb{R}^n$ tetszőleges lineáris transzformáció és $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ bázis \mathbb{R}^n -ben.

Biz: 104. oldal Szeszlér-jegyzet.

DIAGONÁLIS MÁTRIX Definíció: Az A $(n \times n)$ -es mátrix akkor nevezzük diagonális mátrixnak, ha minden $i \neq j$ esetén $a_{i,j} = 0$ teljesül.

KAPCSOLAT SAJÁTÉRTÉK ÉS LINEÁRIS LEKÉPEZÉSEK KÖZT Valami: Legyen $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ tetszőleges bázis és t.f.h. az $[f]_B$ mátrix diagonális, a főátlóban álló elemeket jelölje sorban $\lambda_1, \dots, \lambda_n$. Ekkor az $[f]_B$ i-edik oszlopa $\lambda_i \cdot \underline{e}_i$ -vel egyenlő, ebből kifolyólag $[f(\underline{b}_i)]_B = \lambda_i \cdot \underline{e}_i$. Ez viszont azt jelenti, hogy $f(b_i) = 0 \cdot \underline{b}_1 + \dots + \lambda_i \cdot \underline{b}_i + \dots + 0 \cdot \underline{b}_n$, vagyis $f(b_i) = \lambda_i \cdot \underline{b}_i$. ÖSSZEFOGLALVA: $[f]_B$ akkor lesz diagonális, ha B minden tagjára $f(b_i) = \lambda_i \cdot \underline{b}_i$ teljesül valamilyen λ skalárral.

SAJÁTÉRTÉK, SAJÁTVEKTOR Definíció: Legyen A egy $(n \times n)$ -es mátrix.

- A sajátértékének nevezzük a $\lambda \in \mathbb{R}$ skalárt, ha létezik olyan $\underline{x} \in \mathbb{R}^n$, $\underline{x} \neq \underline{0}$ vektor, melyre $A \cdot \underline{x} = \lambda \cdot \underline{x}$
- A sajátvektorának nevezzük az $\underline{x} \in \mathbb{R}^n$ vektort, ha $\underline{x} \neq \underline{0}$ és létezik olyan $\lambda \in \mathbb{R}$ skalár, melyre $A \cdot \underline{x} = \lambda \cdot \underline{x}$

Rövidítve: Ha $A \cdot \underline{x} = \lambda \cdot \underline{x}$ teljesül és $\underline{x} \neq \underline{0}$, akkor λ a sajátértéke és \underline{x} a sajátvektora az A-nak.

SAJÁTÉRTÉK MEGHATÁROZÁSA Tétel: A négyzetes A mátrixnak a $\lambda \in \mathbb{R}$ skalár akkor és csak akkor sajátértéke, ha $det(A-\lambda \cdot E)=0$.

Biz: 106. oldal Szeszlér-jegyzet.

KARAKTERISZTIKUS POLINOM Definíció: Az $(n \times n)$ -es A mátrix karakterisztikus polinomjának nevezzük a $det(A - \lambda \cdot E)$ determináns értékét, ahol λ változó. Jelölés: $k_A(\lambda)$.

A sajátérték definíciója átfogalmazva az előző tétel és definíció felhasználásával: A mátrix sajátértékei a $k_A(\lambda)$ karakterisztikus polinom gyökei, tehát a $k_A(\lambda)=0$ egyenlet megoldásai. Az algebra egyik tétele szerint tehát nedfokú polinomnak legfeljebb n gyöke lehet, amiből következik, hogy $(n\times n)$ -es mátrixnak legfeljebb n sajátértéke van

OSZTHATÓSÁG Definíció: Azt mondjuk, hogy az $a \in \mathbb{Z}$ egész osztója $b \in \mathbb{Z}$ egésznek, ha létezik olyan $c \in \mathbb{Z}$, melyre $a \cdot c = b$. Ugyanezt fejezzük ki, ha b-t az a többszörösének mondjuk. Jelölés: a|b, ha pedig a nem osztója b-nek, $a \not\mid b$.

Az a valódi osztója b-nek, ha a|b fennál és 1 < |a| < |b|.

PRÍMSZÁM Definíció: A $p \in \mathbb{Z}$ egészt prímszámnak nevezzük, ha |p| > 1 és p-nek nincsen valódi osztója. Tehát $p = a \cdot b$ csak akkor lehetséges, ha $a = \pm 1$ vagy $b = \pm 1$. Ha |p| > 1 és p nem prím, akkor összetett számnak nevezzük.

SZÁMELMÉLET ALAPTÉTELE Tétel: Minden 1-től, 0-tól és (-1)-től különböző egész szám felbontható prímek szorzatára és ez a felbontás a tényezők sorrendjétől és előjelétől eltekintve egyértelmű.

Biz: 114. oldal Szeszlér-jegyzet.

PRÍMEK SZÁMOSSÁGA Tétel: A prímek száma végtelen.

Biz: 117. oldal Szeszlér-jegyzet.

SZOMSZÉDOS PRÍMEK KÖZTI HÉZAGOK Tétel: Minden N>1 egészhez találhatóak olyan p< q prímek, hogy p és q között nincs további prím és q-p>N.

Biz: 117-118. oldal Szeszlér-jegyzet.

NAGY PRÍMSZÁMTÉTEL Tétel: $\pi(n) \approx \frac{n}{\ln n}$ vagyis $\lim_{n \to \infty} \frac{\pi(n)}{\frac{n}{\ln n}} = 1$

KONGRUENCIA Definíció: legyenek $a,b,m\in\mathbb{Z}$ tetszőleges egészek. Azt mondjuk, hogy a konguens b-vel modulo m, ha a-t és b-t m-mel maradékosan osztva azonos maradékokat kapunk. Az m számot a kongruencia modulusának nevezzük.

Jelölés: $a \equiv b \pmod{m}$

Tetszőleges $a, b, m \in \mathbb{Z}$ egészekre $a \equiv b \pmod{m}$ akkor és csak akkor igaz, ha m|a-b.

Biz: 119. oldal Szeszlér-jegyzet.

ALAPMŰVELETEK KONGRUENCIÁKKAL Tétel: T.f.h. $a \equiv b \pmod{m}$ és $c \equiv d \pmod{m}$ fennállnak a,b,c,d,m egészekre és $k \geq 1$ tetszőleges. Ekkor igazak az alábbiak:

- $a + c \equiv b + d \pmod{m}$
- $a c \equiv b d \pmod{m}$
- $a \cdot c \equiv b \cdot d \pmod{m}$
- $a^k \equiv b^k \pmod{\mathbf{m}}$

Biz: 120. oldal Szeszlér-jegyzet.

KONGRUENCIA Tétel: Legyenek a,b,c,m tetszőlegesek és d=(c,m) (lnko). Ekkor $a\cdot c\equiv b\cdot c$ (mod m) akkor és csak akkor igaz, ha $a\equiv b \pmod{\frac{m}{d}}$.

Biz: 120-121. oldal Szeszlér-jegyzet.

LINEÁRIS KONGRUENCIÁK MEGOLDHATÓSÁGA Tétel: Az $a \cdot x \equiv b \pmod{m}$ lineáris kongruencia akkor és csak akkor megoldható, ha (a,m)|b. Ha pedig ez a feltétel teljesül, akkor $a \cdot x \equiv b \pmod{m}$ megoldásainak a száma modulo m (a,m)-val egyenlő.

Biz: 124. oldal Szeszlér-jegyzet.

EUKLIDESZI ALGORITMUS: Bemenet: a és m (0 < a < m) | Kimenet: (a,m).

1. lépés: m-et maradékosan osztjuk a-val, megkapva a maradékot, felírjuk őket a következő módon:

$$a = b \cdot q_1 + r_1$$

2. lépés: az a-t eloszjuk a kapott maradékkal:

$$b = r_1 \cdot q_2 + r_2$$

:

i. lépés: az (i-2). lépésben kapott maradékot elosztjuk az (i-1).-ben kapottal.

$$r_{i-2} = ri - 1 + r_i$$

Utolsó lépés Akkor érünk el ide, ha $r_i = 0$, ekkor r_{i-1} lesz a legnagyobb közös osztó.

EUKLIDESZI ALGORITMUS Tétel: Az Euklideszi algoritmus végrehajtása után $r_k = (a, m)$.

Biz: 142. oldal Szeszlér-jegyzet.

EUKLIDESZI ALGORITMUS LÉPÉSSZÁMA Tétel: Az Euklideszi algoritmus polinomiális időben lefut és legfeljebb $2 \cdot [\log_2 a]$ maradékos osztás után megáll.

Biz: 142. oldal Szeszlér-jegyzet.

A tételhez hozzá tartozik az Euklidesz algoritmus alkalmazása lineáris kongruenciák megoldásához, konkrét példán.

EULER-FÉLE φ -FÜGGVÉNY Definíció: Ha $n \geq 2$ egész, akkor az $1, \ldots, n-1$ számok között n-hez relatív prímek számát $\varphi(n)$ -el jelöljük. Az $n \mapsto \varphi(n)$ függvényt Euler-féle φ függvénynek nevezzük.

EULER-FÉLE φ -FÜGGVÉNYRE KÉPLET Tétel: Legyen az n>1 egész kanonikus alakja $n=p_1^{\alpha_1}\cdot\ldots\cdot p_k^{\alpha_k}$ Ekkor

$$\varphi(n) = (p_1^{\alpha_1} - p_1^{\alpha_1 - 1}) \cdot (p_2^{\alpha_2} - p_2^{\alpha_2 - 1}) \cdot \dots \cdot (p_k^{\alpha_k} - p_k^{\alpha_k - 1})$$

Biz: 130-131. oldal Szeszlér-jegyzet.

REDUKÁLT MARADÉKRENDSZER Definíció: Az $R = \{c_1, \dots, c_k\}$ számhalmaz redukált maradékrendszer modulo m, ha a következő feltételeknek eleget tesz:

- $(c_i, m) = 1$ minden i = 1, ..., k esetén;
- $c_i \not\equiv c_j \pmod{m}$ bármely $i \neq j, 1 \leq i, j \leq k$ esetén;
- $k = \varphi(m)$.

REDUKÁLT MARADÉKRENDSZER Tétel: Legyen $R = \{c_1, \ldots, c_k\}$ redukált maradékrendszer modulo m és legyen tetszőleges egész, melyre (a,m) = 1. Ekkor az $R' = \{a \cdot c_1, \ldots, a \cdot c_k\}$ halmaz szintén redukált maradékrendszer modulo m.

Biz: 132. oldal Szeszlér-jegyzet.

EULER-FERMAT Tétel: Ha az a és m ≥ 2 egészekre (a,m) = 1, akkor $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Biz: 132-133. oldal Szeszlér-jegyzet.

"KIS" FERMAT-Tétel: Ha p prím és a tetszőleges egész, akkor $a^p \equiv a \pmod{p}$.

Biz: 133. oldal Szeszlér-jegyzet.

A tételhez hozzátartozik diofantikus illetve két kongruenciából álló kongruenciarendszerek megoldása is, konkrét példán.

POLINOMIÁLIS FUTÁSIDEJŰ ALGORITMUS: Definíció: (vázlatos) A algoritmust polinomiális futásidejűnek tekintjük, ha n méretű bemenethez tartozó f(n) függvényre, mely az algoritmus lépésszámát határozza meg, a következő MINDEN n esetén fennáll:

$$f(n) \le c \cdot n^k$$

ahol c és k rögzített konstansok.

A Szeszlér-jegyzet 137-141. oldalán található egy hosszas mese a számelméleti algoritmusokról, ezek közül az ALAPMŰVELETEK és a HATVÁNYOZÁS, valamint HATVÁNYOZÁS MODULO M a fontosak.

PRÍMTESZTELÉS Fermat-teszt:

Bemenet m egész

- 0. lépés $k \leftarrow 1$
- 1. lépés Generáljunk véletlen számot 1 és m-1 közt.
- 2. lépés Euklideszi-algoritmussal számoljuk ki (a,m) értékét. Ha $(a,m)\neq 1$, m NEM prím, STOP.
- 3. lépés Számítsuk ki $a^{m-1} \pmod {\rm m}$ értékét ISMÉTELT NÉGYZETRE EMELÉSEK MÓDSZERÉVEL. Ha nem 1, m NEM prím, STOP.
- 4. lépés Ha k = 100, m VALÓSZÍNŰLEG prím.
- 5. lépés $k \leftarrow k+1$, vissza 1. lépéshez

FERMAT-TESZT ÁRULÓK SZÁMA Tétel: Ha m > 1 összetett szám és m-nek van árulója, akkor az 1 és m közötti, m-hez relatív prím számoknak legalább a fele áruló.

Biz: 147. oldal Szeszlér-jegyzet.

Az m > 1 összetett számot univerzális álprímnek, vagy más néven Carmichael-számnak nevezzük, ha nincsen árulója, vagyis, ha minden 1 < a < m, (a,m) = 1 esetén $a^{m-1} \equiv 1 \pmod{m}$.

Nyilvános kulcsú titkosítás és az RSA-algoritmus: 152-154. oldal Szeszlér-jegyzet.

NEM KELL - SEGÉDDEFINÍCIÓK: Legyenek A és B tetszőleges halmazok és $f: \mathcal{A} \to \mathcal{B}$ egy függvény. Az f függvényt

- injektívnek nevezzük, ha bármely $x_1, x_2 \in A, x_1 \neq x_2$ esetén $f(x_1) \neq f(x_2)$.
- szürjektívnek nevezzük, ha bármely $y \in B$ esetén létezik olyan $x \in A$, melyre f(x) = y.
- bijektívnek nevezzük, ha injektív és szürjektív.

HALMAZOK SZÁMOSSÁGÁNAK EGYENLŐSÉGE Definíció: Azt mondjuk, hogy a (tetszőleges) A és B halmazok számossága egyenlő, ha létezik egy $f: \mathcal{A} \to \mathcal{B}$ bijekció.

Jelölés: |A| = |B|

 $\mathbb N$ SZÁMOSSÁGA: Az A halmazt megszámlálhatóan végtelennek nevezzük, ha a számossága egyenlő a természetes számok halmazáéval (tehát $|\mathcal A|=|\mathbb N|$).

Jelölés: $|A| = \aleph_0$

 $\mathbb{Q},\,\mathbb{Z}$ SZÁMOSSÁGA Tétel: Az egész számok \mathbb{Z} halmaza és a racionális számok \mathbb{Q} halmaza egyaránt megszámlálhatóan végtelen.

Biz: 161. oldal Szeszlér-jegyzet

CANTOR Tétel: A valós számok $\mathbb R$ halmaza nem megszámlálhatóan végtelen, vagyis

 $|\mathbb{N}| \neq |\mathbb{R}|$

Biz: 162-164. oldal Szeszlér-jegyzet.

 \mathbb{R} SZÁMOSSÁGA Definíció: Az A halmazt kontinuum számosságúnak nevezzük, ha a számossága egyenlő a valós számok halmazáéval (vagyis $|A|=|\mathbb{R}|$). Jelölés: |A|=c.

A (0,1) nyílt intervallum is kontinuum számosságú. Ld. 163. oldal Szeszlér-jegyzet.

Legyenek A és B (tetszőleges) halmazok.

- Azt mondjuk, hogy A számossága kisebb vagy egyenlő B számoságánál, ha létezik $f:A\to B$ injektív függvény. Jelölés: $|A|\le |B|$
- Azt mondjuk, hogy A számossága kisebb B számosságánál, ha $|A| \leq |B|,$ de $|A| \neq |B|.$ Jelölés: |A| < |B|

CANTOR-BERNSTEIN Tétel: Az A és B halmazokra $|\mathbf{A}|=|\mathbf{B}|$ akkor és csak akkor igaz, ha $|A|\leq |B|$ és $|B|\leq |A|$

 $\mathbb Q$ SZÁMOSSÁGA Tétel: $|\mathbb Q|=|\mathbb N|$

Biz: 167. oldal Szeszlér-jegyzet.

HATVÁNYHALMAZ Definíció: Tetszőleges A halmaz hatványhalmazának nevezzük az A összes részhalmaza által alkotott halmazt.

Jelölés: P(A)

(ismét?) CANTOR-Tétel: Minden A halmazra |A| < |P(A)|.

Biz: 169. oldal Szeszlér-jegyzet.

 $\mathbb N$ HATVÁNYHALMAZÁNAK SZÁMOSSÁGA Tétel: $|P(\mathbb N)|=|\mathbb R|$

Biz: 170-171. oldal Szeszlér-jegyzet.