ArchSummit全球架构师峰会北京站2015

百度开放云网络架构之路

杨毅 yangyi@baidu.com

Geekbang》. 极客邦科技

整合全球最优质学习资源,帮助技术人和企业成长 Growing Technicians, Growing Companies

技术媒体

高端技术人员 学习型社交网络

实践驱动的 IT职业学习和服务平台

一线专家驱动的 企业培训服务

旧金山 伦敦 北京 圣保罗 东京 纽约 上海 San Francisco London Beijing Sao Paulo Tokyo New York Shanghai

2016年4月21-23日 | 北京·国际会议中心

主办方 **Geek bang》**. **InfoQ**®

优惠(截至12月27日) 现在报名,节省2040元/张,团购享受更多优惠

开始之前

http://bce.baidu.com 面向企业和开发者的云计算服务平台 http://yun.baidu.com 主要面向个人的云存储

计算与网络	存储和CDN	数据库	安全和管理	应用服务
云服务器 BCC 负载均衡 BLB	对象存储 BOS 云磁盘 CDS 内容分发网络 CDN	关系型数据库 RDS 简单缓存服务 SCS NoSQL数据库 MolaDB	云安全 BSS 云监控 BCM	简单邮件服务 SES 简单消息服务 SMS 应用性能管理服务 APM 问卷调研服务 移动App测试服务
中间件服务	智能多媒体服务	数据分析	网站服务	
应用引擎 BAE 队列通知服务 QNS	音视频转码 MCT 音视频直播 LSS 人脸识别 BFR 文字识别 OCR	百度MapReduce BMR 百度机器学习 BML 百度OLAP引擎 Palo 百度Elasticsearch	云虚拟主机 BCH	

大纲

- 背景
- 需求
- 架构
- 发展

背景 - Network as a Service

• IaaS三大基础能力之一

背景 - 传统物理网络

图片来源: http://baike.baidu.com/view/33936.htm

需求 - 多租户共享的云中网络

需求 – 用户自定义 Virtual Private Cloud

场景1:租户隔离

场景2:服务分层

• 场景3:混合云

架构 - 传统物理网络无法满足需求

需求	云中网络	物理网络	
配置变更	用户完成, 100 q/s	网管完成,1次/天	
资源池化	虚机自由迁移 服务自由组合	预先划分IP/路由/内 网/外网/DMZ等	
多租户	百万级别	vlan隔离,4K	
弹性扩展	数据面+控制面	纯数据面, 收敛比	
稳定性	SLA: 99.95%以上		

架构 - 理想美好, 现实骨感的SDN

图片来源:https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-sdn-nvf-solution.pdf

百度开放云网络架构选型

	技术方案	选型思考
网络管理	openstack neutron	标准、兼容
大二层	overlay / vxlan	可扩展、物理无关
虚拟接入	openvswitch / openflow	灵活、可控
物理融合	独立内网核心 统一NAT网关	安全、复用

原理 VxLAN

图片来源: https://blogs.vmware.com/vsphere/2013/07/vxlan-series-how-vmotion-impacts-the-forwarding-table-part-6.html

原理 openstack neutron

图片来源: http://blog.gampel.net/2015/01/dragonflow-sdn-based-distributed.html

工程实践

架构之路 - 社区蛮荒时代

架构 – vRouter的瓶颈

- 单点问题
- 性能瓶颈
- 可扩展性

架构之路 - 自力更生时代

快速迭代:热升级

- 断网时间:秒级

 高可用: dpdk + ECMP实现的 BvRouter集群

- vrouter转发性能:5*N倍

- NN单机故障损失:分钟级 -> 秒级

- 单租户规模:100->5000

• 高性能:流表优化

- ARP代答:去除广播流量

- 分布式路由:东西流量不过NN

L2 population和ARP代答

图片来源: http://www.xlgps.com/article/10555.html

可扩展: Neutron不能Scale的关键

• 控制平面

- 集中而混乱的元数据管理
- 预配置:单个port up可能需要修改所有计算节点的配置
- agent重启时的全量sync

• 数据平面

- 数据通路上的"瓶颈"
- 单个network消耗的资源:namespace, dnsmasq进程...
- 软件实现的性能损耗

架构之路 - 软硬结合的分布式时代

元数据分层及Sharding

– 抽象的逻辑元数据 (loigical network/subnet/ports)

具体的物理位置数据 (location of ports, tunnel ...)

• 支持差分及按需同步的 通信方式

- 北向RPC
- 南向openflow
- 混合overlay
 - 物理交换机的容量限制
 - 容器带来的新挑战

总结

- 云计算网络需求复杂
- 传统物理网络技术无法应对
- 新兴SDN技术还不够成熟
- 架构需要逐步演进

Thanks!

