<u>VS11</u>				Aufbau IPv4
IP-Adresse dezimal	192	. 168	. 17	. 65
IP-Adresse binär	1100 0000	. 1010 1000	. 0001 0001	. 0100 0001
Oktett-Nr.	1	2	3	4
Standardsubnetz- maske dezimal	255	255	255	0
Standardsubnetz-	1111 1111	1111 1111	1111 1111	0000 0000
maske binär				
Netz- bzw. Hostanteil		24bit		8bit

Netzwerkklassen

Max. Hosts

 $2^8-2 = 254 \text{ Hosts}$

			_		
Netzwerk- Klasse	Adressbereich der Netzadres- sen	Erstes Oktett	Standard Subnetz- maske	Einsatzzweck	Max. Host- Adressen
Klasse A Oktett 1 = Netz	0* bis 127**	0XXX XXXX	/8	Sehr große Netzwerke	2^8-2 = 254 Hosts
Klasse B Oktett 1,2 = Netz	128 bis 191	10xx xxxx	/16	Mittlere Netz- werke	2^16-2 = 65534
Klasse C Oktett 1,2,3 = Netz	192 bis 223	110x xxxx	/24	Kleine Netz- werke	2^24-2 = ja irgendwas
Klasse D (speziell)	224 bis 239	1110 xxxx	nicht verfügbar	Multicast Grup- penadres-sen	
Klasse E (speziell)	240 bis 255	1111 0xxx	nicht verfügbar	Experimentelle Adressen	

^{*} Das Netzwerk 0.X.X.X ist reserviert (z.B. Defaultroute und DHCP).

169.254.0.0 /16 APIPA / Zeroconf / Bonjour : Automatische Adressvergabe ohne DHCP

Privater Adress-Bereich nach RFC 1918 (werden im Internet nicht geroutet)

	(101011	3111111
Klasse-A	10.0.0.0 bis 10.255.255.255	1 Klasse-A-Netz
Klasse-B	172.16.0.0 bis 172.31.255.255	16 Klasse-B-Netze
Klasse-C	192.168.0.0 bis 192.168.255.255	256 Klasse-C-Netze

^{**}Das Netzwerk 127.X.X.X ist für Loopback-Adressen reserviert. Router und lokale Rechner können über die Adresse 127.0.0.1 Pakete an sich selbst schicken. Deshalb kann diese Netzwerkadresse keinem Netzwerk zugewiesen werden.

Wie kann ich IP-Adressen (v4) besser verstehen?

Ich könnte folgendermaßen vorgehen:

- ✓ IP-Adresse dezimal und binär angeben
- ✓ Subnet-Maske dezimal und binär angeben
- ✓ Trennung zwischen Netz-ID und Host-ID der IP-Adresse einzeichnen
- ✓ zutreffende Aussagen zu Adress-Art, Adress-Klasse, öffentliche bzw. private Adresse machen

IP-Adresse					15	0								1	02								5	55							2	253	3		
IP-Adresse	1	()	0	1	0	1	1	() (0	1	1	0	C	1	1	1	0	0	0	1	1	0	1	1	1	1	1	1	1	1		1	0
Subnet-Maske	1	1	1	1		1 '	1 1	1	1	1	1	1	1	1	1	1		1	1	0	0	0	0	0	0	0	С		0	C) (ס	0	0	0
Subnet-Maske					25	55								25	55									0								0			

O Netz-Adresse

Q Host-Adresse

Q Klasse B

Q Klasse B

Q Klasse C

O Klasse C

O Klasse D

O Klasse E

IP-Adresse		17	72				3	0				25	55				25	54		
IP-Adresse																				
Subnet-Maske																				
Subnet-Maske																				

O Netz-Adresse O Klasse A O öffentliche IP-Adresse
O Host-Adresse O Klasse B O private IP-Adresse
O Broadcast-Adresse O Klasse C
O Klasse D
O Klasse E

IP-Adresse		1	25				()				()				()		
IP-Adresse																				
Subnet-Maske																				
Subnet-Maske																				

O Netz-Adresse
O Host-Adresse
O Host-Adresse
O Broadcast-Adresse
O Klasse B
O private IP-Adresse
O Klasse C

O Klasse D O Klasse E

IP-Adresse		1:	25				2	54				25	55				25	55		
IP-Adresse																				
Subnet-Maske																				
Subnet-Maske																				

O Netz-Adresse
O Host-Adresse
O Klasse A
O öffentliche IP-Adresse
O Host-Adresse
O Klasse B
O private IP-Adresse

O Broadcast-Adresse O Klasse C

O Klasse D O Klasse E

IP-Adresse		12	25				25	55				25	55				25	55		
IP-Adresse																				
Subnet-Maske																				
Subnet-Maske																				

O Netz-Adresse
O Host-Adresse
O Klasse A
O öffentliche IP-Adresse
O Host-Adresse
O Klasse B
O private IP-Adresse

O Broadcast-Adresse O Klasse C O Klasse D

O Klasse E

IP-Adresse		1:	27				1	15				2	7				1	0		
IP-Adresse																				
Subnet-Maske																				
Subnet-Maske																				

O Netz-Adresse
O Host-Adresse
O Host-Adresse
O Klasse B
O öffentliche IP-Adresse
O private IP-Adresse

O Broadcast-Adresse O Klasse C

O Klasse D O Klasse E Aufbau IPv4 VS11

Infoblatt IP-Adresse und Subnet-Maske

Eine **IP-Adresse** (v4) besteht aus **32 Bit** und wird in zwei Teile, den Netz-Anteil (**Netz-ID**) und den Host-Anteil (**Host-ID**) unterteilt.

Die **Subnet-Maske trennt** zwischen Netz-Anteil und Host-Anteil der IP-Adresse. Sie besteht ebenfalls aus 32 Bit. Die Bit-Stellen, an denen die Subnet-Maske eine binäre 1 besitzt, gehören bei der IP-Adresse zur Netz-ID. Die Bit-Stellen, an denen die Subnet-Maske eine binäre 0 besitzt, gehören bei der IP-Adresse zur Host-ID. Die binären 1en der Subnet-Maske werden immer aneinanderhängend linksbündig angeordnet!

→ Eine IP-Adresse ist ohne die Angabe einer Subnet-Maske nicht klar bestimmt, da man nicht weiß, wo der Netzanteil aufhört bzw. wo der Hostanteil beginnt.

Darstellung von IP-Adressen und Subnetz-Masken

Die gebräuchlichste Darstellung von IP-Adressen ist die **gepunktete Dezimaldarstellung**:

Die IP-Adresse wird in 4 Gruppen zu je 8-Bit (Oktette) aufgeteilt. Jedes Oktett wird als Dezimalzahl dargestellt. Zwischen den Oktetten schreibt man einen Punkt.

Beispiel:	00001010	00000000	01010000	11111110	binär
	10	0	80	254	gepunktet dezimal
	0A	00	50	FE	hexadezimal

Weitere Beispiele zur Darstellungsweisen:

11000000 10101000 00000001 00100101 bzw. 192.168.1.37 bzw. C0A80125 11111111 11111111 11111111 00000000 bzw. 255.255.255.0 bzw. FFFFF00 bzw /24

→ Subnet-Masken werden oft in der sog. "/"-Darstellung angegeben: Nach dem "/" wird die Anzahl der gesetzten Bits angegeben, z.B: 255.0.0.0 == /8 , 255.255.0.0 == /16 , 255.255.128 == /25

VS11 Aufbau IPv4

Ermitteln Sie anhand der gegebenen '/'-Darstellung die entsprechenden dezimal gepunkteten (decimal dotted) Subnetzmasken!

Subnetzmaske '/' Darstellung	Subnetzmaske dezimal gepunktet
/25	255.255.255.128
/7	
/13	
/19	
/28	
/30	

Aufbau IPv4 VS11

Besondere IP-Adressen: Netz und Broadcast

Netz-Adresse Die Netzadresse ergibt sich, wenn alle Bits der Host-ID auf "O"

gesetzt werden.

Die Adresse des Netzes in der sich eine gegebene IP-Adresse befindet, kann auch durch eine bitweise UND-Verknüpfung von IP-Adresse

und Subnet-Maske errechnet werden: Netz=IP UND Maske

Broadcast-Adresse Die Broadcast-Adresse ergibt sich, wenn **alle Bits der Host-ID auf** "1" gesetzt werden. Die Broadcast-Adresse die zum Netz einer gegebenen IP-Adresse gehört, kann auch durch eine bitweise ODER-Verknüpfung der IP-Adresse und der bitweise invertierten Subnet-Maske errechnet werden:

Broadcast= IP ODER INV(Maske)

→ **Wichtig:** Diese Sonderadressen dürfen nicht für die Host(=Rechner)-Adressierung vergeben werden!

Richtlinien zur Adressvergabe

- **Eindeutigkeit** d.h. es gibt keine mehrfach vergebenen IP-Adressen
- keine Sonderadressen an Hosts vergeben
- IP-Adressen von Rechnern die sich direkt, d.h. ohne Router erreichen sollen, müssen aus dem selben Netz stammen (d.h. mit gleicher Netz-ID).
- keine privaten IP-Adressen im öffentlichen Netz

Typische Fehler bei der Adressvergabe

mehrfach vergebene Adressen, Routeradresse doppelt vergeben, Adresse aus anderem Netz, Sonderadressen benutzt, falsche Subnetzmaske, Adresse aus gesperrtem Bereich, private Adressen im öffentlichen Netz verwendet