3/24/23, 5:04 PM hw7_20230315

```
In [1]: import numpy as np
from sympy import Matrix
```

1.Find the Jordan normal form of teh following matrices.

$$(a) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The eigencvalues are along the diagonal.

$$P_A(x) = (x-1)^3$$

Now we find...

$$dimKer(A-I)^3=3$$

 $dimKer(A-I)^2=3$
 $dimKer(A-I)=2$

Showing my work...

$$dim Ker(A-I)^3 = 2 \ dim Ker(egin{pmatrix} 0 & 1 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix})$$

So this matrix contains a single length two chain and one length one chain. The minimal polynomial is $(x-1)^2$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Checking the jordan form using phyon.

Again, the eigenvalues are along the diagonal. The characteristic equation is...

$$P_A(x) = (x+1)^3$$

Now we find...

$$dimKer(A+I)^3=3$$

 $dimKer(A+I)^2=2$
 $dimKer(A+I)=1$

So this matrix contains a single three chain. The minimal polynomial is $(x+1)^3$ and the jordan form is....

$$\begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

checking my answer with python....

Out[37]:
$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

Here we will do my favorate. Co-factor expansion to find $P_A(x)$

$$-1*det(egin{pmatrix} -11 & 4 & 4 \ -22 & \lambda + 8 & 9 \ 3 & -1 & \lambda - 2 \end{pmatrix})$$
 $\lambda*det(egin{pmatrix} \lambda - 6 & 4 & 4 \ -15 & \lambda + 8 & 9 \ 2 & -1 & \lambda - 2 \end{pmatrix})$

This is painful. I will just use python.

Out[45]:
$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. For each of the matrices in the previous problem, find a formula for the matrix you get by raising it to the n^{th} power.

To find a formula for each matrix above raised to the nth power I would find their jordan normal form (which I have), the rais that to the nth power. So...

$$J = X^{-1}JX$$
 $J^2 = X^{-1}J^nXX^{-1}J^nX$
 $J^2 = X^{-1}J^2X$
 \dots
 $J^n = X^{-1}J^nX$

A the very least the characteristic polynomial is easy to find. The eigenvectors stay the same, but the eigenvalues are raised to the nth power.

$$egin{aligned} (a)P_{A^n}(x) &= (x-1^n)^2 \ (b)P_{A^n}(x) &= (x+1^n)^3 \end{aligned}$$

Did some googleing and looked back at the notes. The general form of a Jordan block isas follows...

$$J_k(\lambda)^n = egin{pmatrix} \lambda^n & inom{n}{1}\lambda^{n-1} & inom{n}{2}\lambda^{n-2} & \dots & inom{n}{k-1}\lambda^{n-k+1} \ \lambda^n & inom{n}{1}\lambda^n & \dots & inom{n}{k-2}\lambda^{n-k+2} \ & \dots & \dots & \dots \ & \lambda^n & inom{n}{1}\lambda^{n-1} \ & & \lambda^n \end{pmatrix}$$

For (a) we have two blocks. 1 and (1,1,0,1). The single 1 block is easy. That's 1. For the 2x2 block we get...

$$J_k(\lambda)^n = egin{pmatrix} \lambda^n & inom{n}{1}\lambda^{n-1} \ \lambda^n \end{pmatrix} = egin{pmatrix} 1 & inom{n}{1}1^{n-1} \ 0 & 1 \end{pmatrix} = egin{pmatrix} 1 & 1+n-1 \ 0 & 1 \end{pmatrix}$$

The complete jordan form matrix is...

$$J(\lambda) = egin{pmatrix} 1 & 1+n-1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

For (b) we have a single three by three block with only the -1 eigenvalue.

Using the jordan block general form we get the equation for A^n .

$$J(\lambda)^n = \begin{pmatrix} \lambda^n & \binom{n}{1}\lambda^{n-1} & \binom{n}{2}\lambda^{n-2} \\ & \lambda^n & \binom{n}{1}\lambda^n \\ & & \lambda^n \end{pmatrix} = \begin{pmatrix} -1^n & \binom{n}{1}(-1)^{n-1} & \binom{n}{2}(-1)^{n-2} \\ & & -1^n & \binom{n}{1}(-1)^n \\ & & (-1)^n \end{pmatrix}$$

For (c) we have two 2x2 blocks. One for -1 eigenvalue and one for the 1 eigenvalue.

$$J_k(1)^n = \left(egin{array}{cc} 1 & inom{n}{1}1^{n-1} \ & 1 \end{array}
ight)$$

$$J_k(-1)^n = egin{pmatrix} (-1)^n & inom{n}{1}(-1)^{n-1} \ & (-1)^n \end{pmatrix}$$

The complete jordan amtrix is...

3. Let A be a matrix such that $pA(x) = x^4(x-1)^2(x-3)^6$.

Suppose that...

 $\dim \operatorname{Ker}(A^4) = 5$ I'm changing this to 4 not 5.

$$\dim \operatorname{Ker}(A^3) = 3$$

$$\dim \operatorname{Ker}(A^2) = 2$$

$$\dim \operatorname{Ker}(A) = 1$$

$$\dim \operatorname{Ker}(A-I)^2 = 2$$

$$\dim \operatorname{Ker}(A-I)=2$$

$$\dim \operatorname{Ker}(A - 3I)^6 = 6$$

$$\dim \operatorname{Ker}(A - 3I)^5 = 6$$

$$\dim \operatorname{Ker}(A - 3I)^4 = 6$$

$$\dim \operatorname{Ker}(A - 3I)^3 = 6$$

$$\dim \ker(A - 3I)^2 = 5$$

$$\dim \operatorname{Ker}(A - 3I) = 3$$

Find the Jordan normal form of A.

So we have a 12 x 12 matrix. Fill in the eigenvalues...

now fill in the chains using 1's. There's one length 4 chain for \lambda = 0. There's two length 1 chain for \lambda = 1. There's three chains for $\lambda = 3$, one of length 1, one of length 2, and one

of thength 3.

4. An $n \times n$ matrix A is said to have finite order if there exists k > 0 such that $A^k = In$. Show that if we are working over the field C, every finite order matrix is diagonalizable.

To show A is invertible we will to show that it has n independent eigenvectors and eigenvalues. A matrix is independent iff it has linearly independent eigenvectors, and all unique eigenvalues, with no eigenvalues being 0.

Oof i was working to proive invertibility, not diagonalizability.

All invertible matrixes are diagonalizable? No. Eigenvalues of 0 can show up in diagonal matrix's. No, I'm just showing eigenvectors are independent, meaning they have unique eigenvalues, and the matrix A can be diagonalized.

Let $a_1 \ldots a_n$ be scalars where $a \in \mathbb{C}$, and $v_1 \ldots v_n$ be the eigenvectors of A.

We must show that when $A^k=I_n$ for k>0 we have...

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0$$
 only when $a_1 = a_2 = \ldots = a_n = 0$

If we have unique eigenvectors, then we must have unique eigenvalues.

If we have unique eigenvalues then we have a diagonalizable matrix.

Suppose for contradicion that...

Multiply both sides by A. Keep multiplying both sides by A.

Let's say it's invertable.

For contradiction lets supose $a_1v_1+a_2v_2+\ldots+a_nv_n=0$ when $a_1\neq a_2\neq\ldots\neq a_n\neq 0$

Note. I'm thinking of doing a proof by contracdiction and using the knowledge that $A^k=I_n$

Starting over and taking a new approuch.

3/24/23, 5:04 PM hw7 20230315

Lets put A^k into jordan form, call it $J(\lambda)^k$. $A^k=In$, means A is invertible and has no 0 eigenvalues. Then the Jordan blocks of A, call them $B(\lambda)$ are, $B_m(\lambda)^k=I_m$. So then...

$$A^k = X^{-1}J^kX$$

and

$$A^k = I_n$$

which is already in jordan normal form, so...

$$J^k = I_n$$

We need to show that m = 1 for all jordan blocks in the jordan neomal form of A.

Raising J^k to the k^{th} power does not change the size of the blocks in J. So the block sizes in J^k are equal to the block sizes in J. The block sizes in J^k are all one, because J^k is the identity matrix. So the block sies in J are all one. Aditionally, J is the jordan normal form of A.

$$A = X^{-1}JX$$

So then J can be represented as the diagonal matrix of A, call it Λ , because J is a diagonal matrix with the eigenvalues λ of A along it's diagonal. So then..

$$A = X^{-1}JX = X^{-1}\Lambda X$$

Therefore A, any finite dimensional matrix, is diagonalizable.

Recall that for any real number x, $e^x = \sum_{i=0}^{\inf} rac{1}{i!} x^i$.

We can define a similar operation for matrices, which is useful in many areas of mathematics. If A is an nxn matrix, then $e^A == \sum_{i=0}^{\inf} \frac{1}{i!} A^i$.

(a) If A is a diagonal matrix with the numbers $\lambda_1,\lambda_2,\ldots,\lambda_k$ on the diagonal, explain why e^A is a diagonal matrix with the numbers $e^{\lambda_1},\ldots,e^{\lambda_k}$ on the diagonal.

$$e^A = \Sigma_{i=0}^{\inf} rac{1}{i!} A^i$$

Lets open A and carry out some arithmatic...

$$\Sigma_{i=0}^{\inf} rac{1}{i!} egin{pmatrix} \lambda_1 & \dots & \dots & 0 \ 0 & \lambda_2 & \dots & 0 \ 0 & \dots & \dots & 0 \ 0 & \dots & \dots & \lambda_k \end{pmatrix}^i \ \Sigma_{i=0}^{\inf} egin{pmatrix} rac{1}{i!} \lambda_1^i & \dots & \dots & 0 \ 0 & rac{1}{i!} \lambda_2^i & \dots & 0 \ 0 & \dots & \dots & 0 \ 0 & \dots & \dots & rac{1}{i!} \lambda_k^i \end{pmatrix}$$

Similarly the sum caries out during matrix adition...

$$egin{pmatrix} \Sigma_{i=0}^{\inf} rac{1}{i!} \lambda_1^i & \dots & \dots & 0 \ 0 & \Sigma_{i=0}^{\inf} rac{1}{i!} \lambda_2^i & \dots & 0 \ 0 & \dots & \dots & 0 \ 0 & \dots & \sum_{i=0}^{\inf} rac{1}{i!} \lambda_k^i \end{pmatrix}$$

Each element along the diagonal now equals $e^{\lambda_1},\dots,e^{\lambda_k}$, so... \$\$

e^A

$$egin{pmatrix} e^{\lambda_1} & \dots & \dots & 0 \ 0 & e^{\lambda_2} & \dots & 0 \ 0 & \dots & \dots & 0 \ 0 & \dots & \dots & e^{\lambda_k} \end{pmatrix}$$

\\blacksquare{} \$\$

(b) If A is an $n \times n$ matrix with λ 's on the diagonal and 1's on the off diagonal, explain how to calculate e^A .

$$e^A=\Sigma_{i=0}^{\inf}rac{1}{i!}A^i$$
 $A=egin{pmatrix} \lambda_1 & 1 & \dots & 0 \ 0 & \lambda_2 & 1 & 0 \ 0 & \dots & \dots & 0 \ 0 & \dots & \lambda_k \end{pmatrix}$

Assuming 1's run the entire off diagonal, thenm A is a jordan matrix of one block. So raising it to a power should be easy. We us the structure...

3/24/23, 5:04 PM

$$J_k^i = \begin{pmatrix} \lambda^1 & \binom{i}{1}\lambda^{i-1} & \binom{i}{2}\lambda^{i-2} & \dots & \binom{i}{n-1}\lambda^{i-n+1} \\ & \lambda^2 & \binom{i}{1}\lambda^i & \dots & \binom{i}{n-2}\lambda^{i-n+2} \\ & \dots & \dots & \dots \\ & & \lambda^{k-1} & \binom{i}{1}\lambda^{i-1} \\ & & & \lambda^k \end{pmatrix}$$

furthermore, A is already in jordan form so we don't need to use the X^{-1} and X matrixes.

We jump straight to....

$$e^A = egin{pmatrix} e^{\lambda_1} & inom{i}{1}\lambda^{i-1} & inom{i}{2}\lambda^{i-2} & \dots & inom{i}{n-1}\lambda^{i-n+1} \ & e^{\lambda_1} & inom{i}{1}\lambda^i & \dots & inom{i}{n-2}\lambda^{i-n+2} \ & \dots & \dots & \dots \ & e^{\lambda_1} & inom{i}{1}\lambda^{i-1} \ & & e^{\lambda_1} \end{pmatrix}$$

I'm not sure how to simplify what's going on above the diagonal. I have not carried out the multiplication, and I want to represent it in the form of e^{λ}

(c) if $B=X^{-1}AX$, explain why $e^B=X^{-1}e^AX$.

$$e^B = \Sigma_{i=0}^{\inf} rac{1}{i!} B^i$$

substitute $X^{-1}AX$ for B, and expand...

$$egin{align} e^B &= \Sigma_{i=0}^{\inf} rac{1}{i!} (X^{-1}AX)^i \ &= \Sigma_{i=0}^{\inf} rac{1}{i!} X^{-1}A^i X \end{split}$$

now the expansion of the sum...

$$=rac{1}{0!}X^{-1}A^{0}X+\ldots+rac{1}{ ext{inf!}}X^{-1}A^{ ext{inf}}X$$

pull X^{-1} out of the sum...

$$=X^{-1}(rac{1}{0!}A^{0}X+\ldots+rac{1}{\inf!}A^{\inf}X)$$

bring the sum back down to earth...

$$X=X^{-1}\Sigma_{i=0}^{\inf}rac{1}{i!}A^{i}X^{i}$$

that middle part is e^A

(d) sing Jordan normal form, explain how to calculate e^A for any A.

Any matrix A can be written as $A=X^{-1}JX$ where J is the jordan normal from of A, in some basis.

So takig a similar aprouch as the last question, we get...

$$egin{aligned} A^B &= \Sigma_{i=0}^{\inf} rac{1}{i!} (X^{-1}JX)^i \ &= \Sigma_{i=0}^{\inf} rac{1}{i!} X^{-1}J^i X \end{aligned}$$

pulling the matrix out of the sum as I did before.

$$X=X^{-1}\Sigma_{i=0}^{\inf}rac{1}{i!}J^{i}X^{i}$$
 $e^{A}=X^{-1}e^{J}X^{i}$

So that's how we do it.

(e) Let
$$A=egin{pmatrix} 2 & 0 \ 1 & 3 \end{pmatrix}$$
 . Calculate e^A

I never actually do this but will need to for a test I bet.

It's a diagonalizable matrix, so that simplies things, making X easier to find.

6. Let $A=J_{m,\lambda}$ be the $m\times m$ matrix defined in class, with with λ 's on the diagonal and 1's on the off diagonal. Find examples of the following.

(a) m, λ where A 2 has a different Jordan normal form than A.

Any matrix with eigenvalues not all equal to 1 or 0.

This will $makeJ^2 \neq J$ because the eigenvalues will not be eaqual.

(b) m, λ where A 2 has the same Jordan normal form as A.

observe the identity matrix, I.

3/24/23, 5:04 PM hw7_20230315