Задание на лабораторную работу №3 "Прогнозирование количества подвижных единиц грузового поезда в сходе с рельсов на основе квантильной регрессии"

по курсу "Управление рисками на железнодорожном транспорте"

1. Ознакомиться со структурой датасета, в котором хранятся сведения о результатах сходов/крушений подвижного состава вне стрелочных переводов по причине неисправности подвижного состава.

length	commonlength	maxder	dcar	speed	weight	load	curve	profile
81	84	82	26	54	2080	0,038826	0,002463	-0,008

length – количество вагонов в поезде;

commonlength – количество вагонов и секций локомотива в поезде;

maxder — количество вагонов и секций локомотива в поезде минус номер первой сошедшей с рельсов подвижной единицы (от головы поезда) + 1;

dcar – количество вагонов и секций локомотива в сходе;

speed – скорость поезда в месте схода, км/ч;

weight – вес поезда, т.;

load – показатель, характеризующий степень загруженности поезда полезной нагрузкой, чем меньше порожних вагонов, тем больше этот показатель;

curve – кривизна пути в месте схода;

profile – величина профиля пути в месте схода в тысячных.

- 2. Загрузить указанный датасет в любой математический пакет по выбору студента.
- **3.** Построить различные зависимости вида dcar=f(length, ..., profile) на основе квантильной регрессии, полагая, что

$$dcar_k = f(length_k, ..., profile_k) + \epsilon_k,$$

где $k=1,\ldots,n,$ n- количество наблюдений, $\epsilon_1,\ldots,\epsilon_n-$ независимые одинаково распределенные ошибки. Уровень квантильной регрессии выбрать равным 0.25, 0.5, 0.75.

Построить не менее 12 таких зависимостей (по 4 на каждый уровень). Проводить построение зависимостей на выборках с вычеркиванием строк, в которых имеется хотя бы одно пропущенное наблюдение чего-либо; а также необходимо проводить построение

зависимостей с вычеркиванием только тех строк, в которых пропущено необходимое для построения зависимости наблюдение.

Для каждой построенной зависимости привести значения скорректированного коэффициента детерминации, средней абсолютной погрешности, средней относительной погрешности, оценку дисперсии ошибок.

Результаты должны быть представлены в виде следующей таблицы

Зависимость	Уровень	R_{adj}^2	Δ (средняя абсолютная	δ (средняя относительная	$\hat{\sigma}^2$ (оценка дисперсии ошибок)
1 01 102		0.07	погрешность)	погрешность)	ошиоок)
dcar=0.1speed+0.2	•••	0.95	1.17	0.01	2

- **5.** Определить наилучшую из построенных зависимостей и объяснить, почему она, на взгляд студента, является наилучшей.
- **6.** Определив вид наилучшей зависимости, разбить выборку на две части в пропорции: 70 на 30. Выбор разбиения предоставляется студенту: например, можно выбрать эти 70 процентов наблюдений случайным образом, можно же взять первые 70 процентов наблюдений по порядку их нахождения в датасете. На 70 процентах наблюдений провести обучение модели (то есть подбор неизвестных коэффициентов). На этих 70 процентах наблюдений вычислить значения
 - скорректированного коэффициента детерминации;
 - средней абсолютной погрешности;
 - средней относительной погрешности;
 - оценки дисперсии ошибок.

А также для полученной модели на 30 процентах наблюдений, на которых модель не обучалась, привести значения

- скорректированного коэффициента детерминации;
- средней абсолютной погрешности;
- средней относительной погрешности;
- оценки дисперсии ошибок.

Сделать вывод из полученных результатов.

Литература

- 1. Горяинова Е.Р., Панков А.Р., Платонов Е.Н. Прикладные методы анализа статистических данных. М.: Изд. дом Высшей школы экономики, 2012.
- 2. https://www.dependability.ru/jour/article/view/255/438
- 3. https://lms.mai.ru/mod/resource/view.php?id=265109 (датасет)