J.Kimbrough_DATA-413_HW2

2024-10-02

Problem 1:

```
library(tidyverse)
tribble( ~x,
                   ~y,
                          ~W,
                                 ~z,
          210,
                   300,
                          220,
                                 180,
          102,
                   100,
                          119,
                                 187,
                   175,
          176,
                          188,
                                 173,
                   95,
          87,
                          91,
                                 94,
          202,
                   210,
                          234,
                                 218,
          110,
                   122,
                          131,
                                 128,
) -> dt
dt
```

```
## # A tibble: 6 x 4
##
         Х
               У
                            Z
##
     <dbl> <dbl> <dbl> <dbl> <
## 1
             300
                    220
       210
                          180
## 2
       102
             100
                    119
                          187
       176
## 3
             175
                    188
                          173
       87
              95
                    91
                           94
## 5
       202
             210
                    234
                          218
## 6
       110
             122
                    131
                          128
```

1a.

Use and show a map function to find the "mean" of each column of the dt data table.

1b.

Use and show a map function that will calculate the "standard deviation" of each value of each column of the data table dt.

```
column_sds <- dt %>%
  map_dbl(sd)
column_sds
```

```
## x y w z
## 54.45151 79.12016 58.40348 44.66617
```

1c.

Use and show a map function that will calculate the "square root" of each value of each column of the data table dt.

```
column_sqrts <- dt %>%
  map_df(sqrt)
column_sqrts
```

```
## # A tibble: 6 x 4

## x y w z

## < dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 13.4

## 2 10.1 10 10.9 13.7

## 3 13.3 13.2 13.7 13.2

## 4 9.33 9.75 9.54 9.70

## 5 14.2 14.5 15.3 14.8

## 6 10.5 11.0 11.4 11.3
```

1d.

Use R code to find the "mean", "max", "1st Quartile", "3rd Quartile", "Median", and "Min" for each column of the dt data table. (Hint: You do not have to use a map function).

```
column_summaries <- dt %>%
  summary()
column_summaries
```

```
##
         X
                                         W
                                                         z
##
          : 87.0
                   Min.
                          : 95.0
                                   Min.
                                         : 91.0
                                                          : 94.0
##
   1st Qu.:104.0
                   1st Qu.:105.5
                                   1st Qu.:122.0
                                                   1st Qu.:139.2
  Median :143.0
                   Median :148.5
                                   Median :159.5
                                                   Median :176.5
## Mean
          :147.8
                          :167.0
                                          :163.8
                                                          :163.3
                   Mean
                                   Mean
                                                   Mean
## 3rd Qu.:195.5
                   3rd Qu.:201.2
                                   3rd Qu.:212.0
                                                   3rd Qu.:185.2
## Max. :210.0
                          :300.0
                                          :234.0
                                                          :218.0
                   Max.
                                   Max.
                                                   Max.
```

Problem 2:

Write a function that uses a for loop for each iteration, randomly draws 5 observations from an exponential distribution with "rate" parameter 1 (use rexp()) and calculates its "mean". It should do this 10,000 times. Choose an appropriate plot to plot the distribution of "means".

```
set.seed(123)

draw_means_for <- function(iterations = 10000, sample_size = 5, rate = 1){
    means <- numeric(iterations)

    for(i in 1:iterations){
        sample <- rexp(sample_size, rate)
        means[i] <- mean(sample)
    }
    return (means)
}</pre>
means_for <- draw_means_for()
```

```
means_df <- data.frame(means = means_for)

ggplot(means_df, aes(x = means)) +
   geom_histogram(fill = "blue", color = "black") +
   xlab("Mean") +
   ggtitle("Distribution of Means (For Loop)")</pre>
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Distribution of Means (For Loop)

2a.

Repeat part 1 by using a map_* () function.

```
set.seed(123)
means_map <- map_dbl(1:10000, ~ mean(rexp(5, rate = 1)))

means_map_df <- data.frame(means = means_map)

ggplot(means_map_df, aes(x = means)) +
   geom_histogram(fill = "blue", color = "black") +
   xlab("Mean") +
   ggtitle("Distribution of Means (map_dbl)")</pre>
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Distribution of Means (map_dbl)

2b.

Repeat part 1 by using the replicate () function.

```
set.seed(123)
means_replicate <- replicate(10000, mean(rexp(5, rate = 1)))

means_replicate_df <- data.frame(means = means_replicate)

ggplot(means_replicate_df, aes(x = means)) +
    geom_histogram(fill = "blue", color = "black") +
    xlab("Mean") +
    ggtitle("Distribution of Means (replicate)")</pre>
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Distribution of Means (replicate)

2c.

Use another for loop that will print out plots for sample size of 5, 10, and 20 observations (instead of just 5).

```
sample_sizes <- c(5, 10, 20)

set.seed(123)

for(n in sample_sizes){
  means <- numeric(10000)

  for(i in 1:10000){
    sample <- rexp(n, rate = 1)
       means[i] <- mean(sample)
  }
  hist(means, main = paste("Distribution of Means (Sample Size:", n, ")"),
       xlab = "Mean", breaks = 30)
}</pre>
```

Distribution of Means (Sample Size: 5)

Distribution of Means (Sample Size: 10)

Distribution of Means (Sample Size: 20)

#helpful link: https://www.geeksforgeeks.org/histograms-in-r-language/

Problem 3:

Use and show R coding to calculate the "standard deviation" for each variable of the data table mtcars using the "Special For Loop Method".

```
data("mtcars")
mtcars
##
                        mpg cyl
                                 disp hp drat
                                                   wt
                                                       qsec vs am gear carb
## Mazda RX4
                       21.0
                              6 160.0 110 3.90 2.620 16.46
                                                                           4
## Mazda RX4 Wag
                       21.0
                              6 160.0 110 3.90 2.875 17.02
                                                                           4
                       22.8
                              4 108.0 93 3.85 2.320 18.61
                                                                          1
## Datsun 710
## Hornet 4 Drive
                       21.4
                              6 258.0 110 3.08 3.215 19.44
                                                                          1
## Hornet Sportabout
                       18.7
                              8 360.0 175 3.15 3.440 17.02
                                                                     3
                                                                           2
## Valiant
                       18.1
                              6 225.0 105 2.76 3.460 20.22
                                                                          1
## Duster 360
                       14.3
                              8 360.0 245 3.21 3.570 15.84
                                                                     3
                                                                          4
## Merc 240D
                       24.4
                              4 146.7
                                        62 3.69 3.190 20.00
                                                                           2
                       22.8
                                      95 3.92 3.150 22.90
                                                                           2
## Merc 230
                              4 140.8
```

```
6 167.6 123 3.92 3.440 18.30 1 0
## Merc 280
                      19.2
## Merc 280C
                      17.8
                             6 167.6 123 3.92 3.440 18.90
                                                           1
                                                                        4
                             8 275.8 180 3.07 4.070 17.40
                                                                        3
## Merc 450SE
                      16.4
## Merc 450SL
                      17.3
                             8 275.8 180 3.07 3.730 17.60 0
                                                                  3
                                                                        3
## Merc 450SLC
                      15.2
                             8 275.8 180 3.07 3.780 18.00
                                                                  3
                                                                        3
## Cadillac Fleetwood 10.4
                             8 472.0 205 2.93 5.250 17.98 0
                                                             0
                                                                  3
                                                                        4
## Lincoln Continental 10.4
                             8 460.0 215 3.00 5.424 17.82
## Chrysler Imperial 14.7
                             8 440.0 230 3.23 5.345 17.42
                                                                  3
                                                           0
                                                             0
                                                                        4
## Fiat 128
                      32.4
                             4 78.7 66 4.08 2.200 19.47
                                                           1
                                                             1
                                                                  4
                                                                        1
## Honda Civic
                      30.4
                             4 75.7 52 4.93 1.615 18.52 1
                                                                  4
                                                                        2
                                                             1
## Toyota Corolla
                      33.9
                             4 71.1 65 4.22 1.835 19.90 1
                                                                        1
                             4 120.1 97 3.70 2.465 20.01 1
                                                                  3
## Toyota Corona
                      21.5
                                                             0
                                                                        1
## Dodge Challenger
                             8 318.0 150 2.76 3.520 16.87
                                                                  3
                                                                        2
                      15.5
                                                          0
                                                              0
                                                                  3
                                                                        2
## AMC Javelin
                      15.2
                             8 304.0 150 3.15 3.435 17.30 0
                                                             Ω
## Camaro Z28
                      13.3
                             8 350.0 245 3.73 3.840 15.41 0
                                                             0
                                                                  3
                                                                        4
## Pontiac Firebird
                                                                        2
                      19.2
                             8 400.0 175 3.08 3.845 17.05
                                                           0
                                                             0
                                                                  3
## Fiat X1-9
                      27.3
                             4 79.0 66 4.08 1.935 18.90 1
                                                                  4
                                                                        1
                                                             1
                             4 120.3 91 4.43 2.140 16.70
                                                                  5
                                                                        2
## Porsche 914-2
                      26.0
## Lotus Europa
                      30.4
                             4 95.1 113 3.77 1.513 16.90 1 1
                                                                  5
                                                                        2
                             8 351.0 264 4.22 3.170 14.50 0 1
                                                                  5
## Ford Pantera L
                      15.8
                                                                       4
## Ferrari Dino
                      19.7
                             6 145.0 175 3.62 2.770 15.50 0 1
                                                                  5
                                                                        6
## Maserati Bora
                      15.0
                             8 301.0 335 3.54 3.570 14.60 0 1
## Volvo 142E
                      21.4
                             4 121.0 109 4.11 2.780 18.60 1 1
                                                                        2
output <- vector("double", ncol(mtcars))</pre>
for(i in seq_along(mtcars)){
 output[[i]] <- sd(mtcars[[i]])</pre>
}
names(output) <- colnames(mtcars)</pre>
output
```

```
##
                                   disp
           mpg
                        cyl
                                                  hp
                                                             drat
                                                                           wt.
##
     6.0269481
                 1.7859216 123.9386938 68.5628685
                                                       0.5346787
                                                                    0.9784574
##
          qsec
                         vs
                                     am
                                                gear
                                                             carb
##
     1.7869432
                 0.5040161
                                                       1.6152000
                              0.4989909
                                          0.7378041
```