Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

Computing the Modular Inverse of a Polynomial Function over $GF(2^P)$ Using Bit Wise Operation

Seshagiri Prabhu N

M.Tech, Cyber Security and Networks (First Year) Amrita School of Engineering, Amritapuri Campus

April 27, 2013

Outline

Computing the Modular Inverse of a Polynomial Function over GF(2) Using Bit Wise Operation

Seshagiri Prabh N

- 2 Introduction
 Language and
 platform
- Qt Framework 3 Collage Creato

Tool Kev features

4 Demo

- Introduction
- Collage Creator Tool
- 3 Demo

Introduction

Computing the Modular Inverse of a Polynomial Function over GF(2)
Using Bit Wise Operation

Seshagiri Prabhi N

2 Introduction

Language and platform Qt Framework

3 Collage Creator

Key feature

- Relevance of Modulo arithmetic in public key crypto system
- ② The use of Extended Euclidean Algorithm (EEA) to evaluate the multiplicative inverse

Contribution of this paper

Computing the Modular Inverse of a Polynomial Function over GF(2)
Using Bit Wise Operation

Seshagiri Prabh N

2 Introduction

platform Qt Frameworl

3 Collage Creator Tool

Key feature

4 Demo

Contribution of this paper

Computerized algorithm for the determination of the multiplicative inverse of a polynomial over $GF(2^P)$ using simple bit wise shift and XOR operations.

Problem Description

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

4 Demo

EEA

Let A(x) and B(x) be polynomials. EEA gives U and V such that gcd(A, B) = U * A + V * B

Note

If A is irreducible, then its gcd is 1, and we are only interested in V, which is the inverse of B[modA]

Computing the Modular Inverse of a Polynomial Function over GF(2)
Using Bit Wise Operation

Seshagiri Prabh N

2 Introduction

platform Qt Framework

3 Collage Creator Tool

Key features

4 Demo

Polynomial representation

The finite field is a representative of a polynomial function with respect to one variable x: $GF(2^{\mathbf{p}}) = x^{\mathbf{p-1}} + x^{\mathbf{p-2}} + ... + x^2 + x^1$

Example

Finite field $GF(2^8) = x^8 + x^4 + x^3 + x + 1$ $53_{10} \rightarrow 1010011_2 \rightarrow (x^6 + x^4 + x + 1)$ The EEA of 53 on $GF(2^8)$ is $x^7 + x^6 + x^3 + x$

Proposed Algorithm

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

```
procedure MULTIPLICATIVE INVERSE(A_3[], B_3[])
   C_1 = A_2 = B_2 = 0;
   while (B_3>1) do

⊳ Step 1 do

      Q = 0;
      Temp = B_3;
      while (A3 > Temp \mid\mid BitSize(C) > BitSize(Temp)) do
         Q_1 = 1;
         while (A_{3MSB} == B_{3MSB}) do
            B_3 = B_3 << LinearLeftShift;
            Q_1 = Q_1 * 2:
         end while
         Q = Q + Q_1;
         A_3 = A_3[] \oplus B_3[];
         B_3 = Temp;
      end while
      A_2 = B_2; B_3 = A_3; A_3 = Temp;
      N = BitSize(Q);
                                                                     Temp = B_2; C_2 = 0;

⊳ Step2

      while (N > 1) do
         C_2 = 0_{d}:
         if (Q_N == 1) then

    ▷ Testing if Nth bit of Q is 1

            C_1 = B_2 << N-1:
                                                              C_2 = C_2 \oplus C_1:
         end if
         N - -:
      end while
      B_2 = C_2; A_2 = Temp; B_2 = B_2 \oplus A_2;
                                                                    ◆□▶ ◆圖▶ ◆圖▶ ◆臺▶ ■
   end while
```

Implementation of Algorithm. Let's apply EEA to A = 283 and B = 42

Computing the Modular Inverse of a Polynomial Function over GF(2)
Using Bit Wise Operation

Seshagiri Prabh N

2 Introductio

Qt Framew

3 Collage Creato

Tool

...,

4 Demo

	i	Operation	Binary	U	V
	0	Α	100011011	1	0
ĺ	1	В	000101010	0	1
ĺ		3 << B	101010000	0	1000
	2	$A \leftarrow A \oplus (3 << B)$	001001011	1	1000
ĺ		1 << B	001010100	0	0010
	3	$A \leftarrow A \oplus (1 << B)$	000011111	1	1010
ĺ		$A < B A \rightleftharpoons B$			
		Α	000101010	00	00001
		В	000011111	01	01010
		1 << B	000111110	10	10100
	4	$A \leftarrow A \oplus (1 << B)$	000010100	10	10101
		$A < B A \rightleftharpoons B$			
		A	000011111	01	01010
		В	000010100	10	10101
	5	$A \leftarrow A \oplus B$	000001011	11	11111
		$A < B A \rightleftharpoons B$			
		A	000010100	010	010101
		В	000001011	011	011111
		1 << B	000010110	110	111110
	6	$A \leftarrow A \oplus (1 << B)$	000000010	100	101011
		$A < B A \rightleftharpoons B$			
		A	000001011	00011	00011111
		В	000000010	00100	00101011
	_	2 << B)	000001000	10000	10101100
Į	7	$A \leftarrow A \oplus (1 << B)$	000000011	10011	10110011
	8	$A \leftarrow A \oplus B$	000000001	10111	10011000

Conclusion

Computing the Modular Inverse of a Polynomial Function over GF(2)
Using Bit Wise Operation

Seshagiri Prabhi

- Language and platform
- 3 Collage Creato Tool
- ...,

- This algorithm can be easily extended for determining the elements of the S-Box used in AES.
- 2 This algorithm is efficient for determining the multiplicative inverse of polynomial over $GF(2^P)$

Future works

Computing the Modular Inverse of a Polynomial Function over GF(2)
Using Bit Wise Operation

Seshagiri Prabh N

2 Introduction

Qt Framewor

3 Collage Creato Tool

Key feature

4 Demo

Possible future works

- Optimize the algorithm
- Comparative study with many existing algorithm
- Implementation in hardware for real time applications

Computing the Modular Inverse of a Polynomial Function over $GF(2^{\circ})$ Using Bit Wise Operation

Seshagiri Prabhi N

2 Introduction

Language and

Qt Framewo

3 Collage Creato Tool

rtey leature

4 Demo

Questions?

Seshagiri Prabhu seshagiriprabhu@gmail.com

4□ > 4□ > 4□ > 4□ > 4□ > 4□