Rachunek Prawdopodobieństwa 1R

Lista 5

Weronika Jakimowicz

Exercise 1. Czy λ -układ jest zawsze σ -ciałem?

NIE, ale σ -ciało jest zawsze λ -układem.

Popatrzmy sobie na przestrzeń rzucania dwa razy monetą. Niech A = $\{(O, O), (O, R)\}$, a $\mathfrak L$ będzie zbiorem zdarzeń niezależnych od A (zamkniętość na sumy i różnice już troszkę była na poprzednich listach, więc nie rozpisuję). Poniższe zbiory są na przykład w takim $\mathfrak L$:

$$\{(O, O), (R, R)\}\ \{(O, O), (R, O)\}.$$

Gdyby $\mathfrak L$ było σ -ciałem, to suma powyższych zdarzeń, czyli $\{(O,O),(R,R),(R,O)\}$, należałaby do $\mathfrak L$. Tak ewidentnie nie jest, bo $\mathbb P$ przekroju wynosi $\frac{1}{4}$, a iloczyn $\mathbb P$ to $\frac{1}{2} \cdot \frac{3}{4}$.

Exercise 2. Niech X i Y będą zmiennymi losowymi. Oznaczmy przez μ_X i μ_Y ich rozkłady. Pokaż, że rodzina

$$\mathfrak{L} = \{ A \in Bor(\mathbb{R}) : \mu_X(A) = \mu_Y(A) \}$$

jest λ -układem.

- $\mathbb{R} \in \mathfrak{L}$ jest dość oczywista, bo $\mu_X(\mathbb{R}) = \mathbb{P}[X \in \mathbb{R}] = 1 = \mathbb{P}[Y \in \mathbb{R}] = \mu_Y(\mathbb{R})$.
- $A \subseteq B \implies B \setminus A \in \mathfrak{L}$

Teraz bierzemy A, B $\in \mathfrak{L}$, czyli $\mu_X(A) = \mu_Y(A)$ i $\mu_X(B) = \mu_Y(B)$ i BSO A \subseteq B. Wtedy

$$\mu_{X}(B \setminus A) = \mathbb{P}[X \in B \setminus A] = \mathbb{P}[X \in B] - \mathbb{P}[X \in A] = \mathbb{P}[Y \in B] - \mathbb{P}[Y \in A] = \mathbb{P}[Y \in B \setminus A] = \mu_{Y}(B \setminus A)$$

• $A_1 \subseteq A_2 \subseteq ... \implies \bigcup A_i \in \mathfrak{L}$

$$\mu_{X}(\bigcup A_{i}) = \mathbb{P}\left[X \in \bigcup A_{i}\right] = \lim_{N} \mathbb{P}\left[X \in \bigcup_{1}^{N} A_{i}\right] = \lim_{N} \mathbb{P}\left[X \in A_{N}\right] = \lim_{N} \mathbb{P}\left[Y \in A_{N}\right] = \lim_{N} \mathbb{P}\left[Y \in \bigcup_{1}^{N} A_{i}\right] = \mathbb{P}\left[Y \in \bigcup A_{i}\right] = \mu_{Y}(\bigcup A_{i})$$