```
\Rightarrow \sum_{n=0}^{\infty} \frac{1}{4n^2} = \frac{1}{4} \sum_{n=0}^{\infty} \frac{1}{n^2} \quad \text{by Linearity Theorem}
\therefore \text{ Given } \sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\mathbb{Z}^2}{b}, \quad \sum_{n=0}^{\infty} \frac{1}{4n^2} = \frac{\mathbb{Z}^2}{a4} \quad \text{if } \sum_{n=0}^{\infty} \frac{1}{(an+1)^2} \quad \left( \text{Comparison Test} \right)
                                                  \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} is convergent.
                  1-2) Because \sum_{n=0}^{\infty} a_n and \sum_{n=0}^{\infty} b_n are convergent series with non-negative terms, they are
                                     both monotonically increasing and bounded above.
                                     Let \sum_{n=0}^{\infty} a_n \leq L and \sum_{n=0}^{\infty} b_n \leq M, then,
                                      \sum_{n=0}^{\infty} a_n b_n \leq \sum_{n=0}^{\infty} L \cdot b_n \leq \sum_{n=0}^{\infty} L M, and a_n b_n are non-negative terms.
                                  i. Because \( \frac{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\ti
                                                   \sum_{n=0}^{\infty} a_n b_n converges by the Completeness Property.
               \sum_{k=0}^{\infty} b_k = b_1 + b_2 + \cdots + b_K
                                          = (a_0 + a_1) + (a_2 + a_3) + \cdots + (a_{2k} + a_{2k+1})
                                         = a_0 + a_1 + a_2 + a_3 + \cdots + a_{2k} + a_{2k+1}, by the subsequence theorem,
                                         = \sum_{n=0}^{\infty} Q_n = S
                                        \lim_{n \to \infty} \frac{1}{\sqrt{n}} = \lim_{n \to \infty} \frac{2\sqrt{n!}}{\sqrt{n}} = 0, \text{ by } n^{+n} \text{ root test}
              3-2) \frac{\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^{p}}}{\frac{a_{n+1}}{a_{n}} = \frac{n(\ln n)^{p}}{(n+1)(\ln n+1)^{p}}, \quad \frac{\sum_{n \neq \infty} \frac{a_{n+1}}{a_{n}} = 1}{\frac{1}{n(\ln n)^{p}}} = \frac{1}{n \ln n}, \quad \frac{1}{n + n + 1} = 1, ratio test fails
                                     \Rightarrow \lim_{n \to \infty} \frac{1}{n} = 0 < 1
                                      .. By comparison test, \sum_{n=1}^{\infty} \frac{1}{n(\ln n)^n} converges
4) 4-1) \sum_{n=1}^{\infty} \frac{(-1)^n}{\hbar x_n^{-1} n} = \cdots + \frac{2}{\pi} - \frac{2}{\pi} + \frac{2}{\pi} - \frac{2}{\pi} + \cdots for n > 1, so because it is alternating in signs, it
                                  is not convergent.
                                  \sum_{n=1}^{\infty} \frac{(-1)^n}{4\pi^n n} is not conditionally convergent
                (4-2) \sum_{n=1}^{\infty} (-1)^n \frac{n^n}{n^n} is absolutely convergent since,
                                              \int_{n\to\infty} \left| \sqrt{a_n} \right| = \int_{n\to\infty} \frac{n^{\frac{5}{n}}}{2} = \frac{1}{2} \langle 1
                                          \sum_{n=1}^{\infty} (-1)^n \frac{n^s}{a^n} is not conditionally convergent
```

5)	Let $\left \frac{a_{n+1}}{a_n}\right = x_n$ and $\left \frac{b_{n+1}}{b_n}\right = y_n$. By the Absolute Convergence Theorem, $\sum_{n=0}^{\infty} b_n$ is
	convergent. By the n^{th} term test of divergence, $\lim_{n\to\infty} b_n = 0$, which means
	$\frac{1}{n \to \infty} \left \frac{b_{n+1}}{b_n} \right = \frac{1}{2} < \frac{1}{2}.$
	Then it can be revised as, $\left \frac{a_{n+1}}{a_n}\right \leq L$, and L becomes the upper bound for $\left \frac{a_{n+1}}{a_n}\right $.
	Since $\left \frac{a_{n+1}}{a_n}\right \le L < 1$, by Limit Location Theorem, $\frac{1}{n \to \infty} \left \frac{a_{n+1}}{a_n}\right \le L < 1$, and this
	satisfies the ratio test, so $\sum_{n=0}^{\infty} a_n$ is absolutely convergent
6)	$\left \frac{a_{n+1}}{a_n}\right \le r < f_{\delta r} > 1$
	$ pf \qquad \left \frac{a_{n+1}}{a_n} \right = \frac{ a_{n+1} }{ a_n }$
	$\Rightarrow a_{n+1} < a_n r for n >> 1$
	=
	;
	$= > \Omega_{n+k} < \Omega_n M^k \text{for } k \ge 1.$
	$\Rightarrow \sum_{k=1}^{\infty} a_n M^k$ is convergent by the Linearity Theorem, and by the Comparison test,
	$\sum_{k=1}^{\infty} \Omega_{n+k} $ is also convergent. The Tail-Convergence Theorem can be then applied to
	$Verify \sum_{n=0}^{\infty} a_n $ is convergent.