Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 26

02 de Julio MAT1106 - Introducción al Cálculo

1) Encuentre una sucesión x_n tal que

$$\lim_{n \to \infty} |x_{n+1} - x_n| \to 0,$$

pero x_n NO sea de Cauchy.

Demostración. Consideremos la serie armónica:

$$x_n = \sum_{k=1}^n \frac{1}{k}$$

Luego, tenemos que $|x_{n+1}-x_n|=1/(n+1)\to 0$, pero x_n no puede ser de Cauchy ya que $x_n\to\infty$.

2) Sea $\alpha>1,$ y q>0 racional. Pruebe que $\alpha^q>1.$ Concluya que si r>0 es real y $\alpha>1,$ entonces $\alpha^r\geq 1.$

Demostraci'on. Sean p,s naturales, y x>1. Sabemos que $x^p>1$ y $\sqrt[s]{x}>1$. Como q es racional y positivo, podemos escribir q=m/n, donde n,m son naturales. Como $\alpha>1$ y m es natural, $\alpha^m>1$. Como $\alpha^m>1$ y n es natural, tenemos que $1<\sqrt[n]{\alpha^m}=\alpha^{\frac{m}{n}}=\alpha^q$, que es lo que queríamos demostrar.

Para la segunda parte, consideremos una sucesión $r_n \to r$ de racionales positivos. Sabemos que $\alpha^r = \lim_{n \to \infty} \alpha^{r_n}$. Pero $\alpha^{r_n} > 1$ para todo n por lo probado arriba, por lo que $\alpha^r \geq 1$ por propiedad vista en clases.

3) Sea a > 1 y $x \in \mathbb{R}$. Pruebe que

$$\sup\{a^q: q \in \mathbb{Q}, q < x\} = \inf\{a^q: q \in \mathbb{Q}, q > x\}.$$

Demostración. Sea z>x racional. Sea $r_n < x$ una sucesión de racionales tal que $r_n \to x$. Por teorema visto en clases, se tiene que $a^{r_n} < a^z$. Enviando $n \to \infty$, tenemos que

$$\sup\{a^q : q \in \mathbb{Q}, q < x\} = a^x \le a^z.$$

Esto nos dice que $\sup\{a^q: q\in \mathbb{Q}, q< x\}$ es cota inferior de $\{a^q: q\in \mathbb{Q}, q> x\}.$

Ahora, consideremos una sucesión de racionales $z_n > x$ tales que $z_n \to x$. Luego, a^{z_n} pertenece a $\{a^q: q \in \mathbb{Q}, q > x\}$, y además converge a $\sup\{a^q: q \in \mathbb{Q}, q < x\}$, que era cota inferior. Esto implica que es el ínfimo, que es lo que queríamos demostrar.

4) Demuestre que $\inf\{x \in \mathbb{R} : 4x + 3 > 0\} = -\frac{3}{4}$.

Demostración. Notemos que

$${x \in \mathbb{R} : 4x + 3 > 0} = {x \in \mathbb{R} : x > -3/4} = (-3/4, \infty)$$

Esto implica directamente el resultado buscado.