Short lecture– How to make a transcriptome

What to consider I

- What do I want?
- What will I use it for?
- Which resources are available for your species (very closely related species)?
- What kind of data do I have?
- 2n or xn ploidy?

The strategies I

- Reference based (ab initio)
 - Maps RNAseq reads back towards reference genome and builds transcripts
 - Needs a certain amount of splice-junction covering reads
- De novo (with/without genome guiding)
 - Assembly of RNAseq reads only
 - Guided: reads are clustered according to chromosome
 / scaffold prior to assembly
- Mixed approach
 - Merging several assemblies to one

Reference based

Reference based II

Benefits

- Time efficient / single computer job
- Requires less coverage of samples
- Artefacts / contaminations does not align to the reference
- Low abundance / novel isoforms are resolved

Complications

- Depends on quality of reference
- Gene dense organisms
- Higher eukaryotes with complex splice variants especially trans-splicing
- Software settings may discard splice variants / transcripts
- Different treatment of multi-mapping reads

De novo

De novo II

Benefits

- No reference needed
- Detects all transcripts (coverage dependent)
- No knowledge/prediction of splice sites needed
- Complex splice patterns can be resolved

Complications

- Requires lots of computing power
- Requires more coverage to resolve transcripts
- Sensitive to read errors and artefacts / contaminations
- Paralog ("gene copies") resolution is an issue

Mixed approach

- De novo and ab initio assembly concatenation
- Multiple kmer strategy

- Who benefits from a mixed approach?
 - Gene dense eukaryotes
 - Polyploid species
 - When the aim is to make a really good reference transcriptome

How to make it I

- Use all available data
- Consider
 normalization to
 shorten computation
 time and increase
 chances of resolving
 less abundant
 transcripts

How to make it II

- Consider the assembly algorithm
 - Large datasets with short reads benefits from using De bruijn graph based assembly programs (more than a hundred million read pairs)
 - Small datasets with short reads benefits from using Overlap-Layout-Consensus (OLC) based assembly programs

How to make III

- Do you have a an organism known to be gene dense with overlapping UTRs?
 - Select a program with options like jaccard clip to improve algorithm
 - The cost is more computation time so do not use it unless necessary

What to consider – INFBIO case

- What do I want? transcriptome
- What will I use it for? differential expression
- Which resources are available for your species (very closely related species)? – genome
- What kind of data do I have? Illumina PE
- 2n or ploidy? 2n

Choosing our strategy

Choosing our strategy

- Non-model species
- Genome resource
- Genes of interest are poorly annotated
- Genes of interest are in fragmented area of genome

Trinity assembler

- Trinity is the best single parameter de novo RNA assembly pipeline available
- Good on splice variants, full length transcripts and resolution of lowly expressed transcripts
- Contains tools to help with visualizations

Trinity pipeline - Inchworm

• It employs a greedy kmer based approach to reconstruct the best representative for a transcriptionally active region (often full-length dominant isoform).

Trinity pipeline

- Chrysalis clusters Inchworm related contigs into components (alternatively spliced variants)
- Then a De Bruijn graph is made for each component

Trinity pipeline

 Butterfly analyzes the paths taken by reads and read pairings in the graphs and reports all plausible transcripts including splice variants and transcripts derived from paralogs (duplicated genes)

Trinity computation requirements

- Assembly algorithms require large amounts of memory
- 2/3rds of Trinity is parallelized to save computation time
- Estimate at least 1 week of trial/error/final computation
- Remember to calculate memory/time requirements before starting!
 - 1Gb RAM / million reads
 - $-\frac{1}{2}$ 1 hour / million reads

What to expect

- Significantly more transcripts than predicted in the same or closely related species!
- Low coverage over splice junctions, sequencing errors and heterozygosity restricts full-length transcript reconstruction

```
################################
## Counts of transcripts, etc.
Total trinity 'genes': 320520
Total trinity transcripts:
                             468626
Percent GC: 47.31
Stats based on ALL transcript contigs:
Contig N10: 3657
       Contig N20: 2645
       Contig N30: 2042
       Contig N40: 1597
       Contig N50: 1235
       Median contig length: 459
       Average contig: 784.28
       Total assembled bases: 367534825
## Stats based on ONLY LONGEST ISOFORM per 'GENE':
       Contig N10: 3360
       Contig N20: 2278
       Contig N30: 1635
       Contig N40: 1193
       Contig N50: 880
       Median contig length: 382
       Average contig: 634.85
       Total assembled bases: 203483069
```

How to make it comparable

- Trinity comes with:
 - Full length estimation (BLAST based)
 - Abundance estimation (simple expression analysis)
- Consider mapping transcripts towards a reference genome if available

