Week 7en

Siva Sundar, EE23B151

December 14, 2024

2^{nd} December

- **Graphs**: consists of the following:
 - Set V which contains **vertices** and set A with **arrows**,
 - -s and t are the **source** and **target** functions respectively.

Note: From every graph we can get a *preorder*. **Hasse Diagram** is a graph that gives a *presentation* of a preorder (P, \leq) . (See page.14)

- Total order: They are posets (partially ordered sets), with an additional condition: "for all x, y, either $x \le y$ or $y \le x$ ". (They should be comparable)
- Partitions can be made from preorders. (See page.16)
- Preorder of **upper sets** (U(X) contains q, if $p, q \in X$ and $p \leq q$) on a discrete preorder on set X is same as power set P(X).
- **Product Preorder:** Given (P, \leq) and (Q, \leq) , we define $(P \times Q, \leq)$ such that:

$$(p,q) \leqslant (p',q') \iff p \leqslant p' \& q \leqslant q'$$

4th December

• Monotone map is a structure preserving function $f: A \to B$, such that:

$$\forall x, y \in A$$
, if $x \leq_A y$ then $f(x) \leq_B f(y)$.

Cardinality is a function which maps a set to a natural number (which is the number of elements in the set). This function is a monotone map, as:

if
$$X \subseteq Y$$
, then $n(X) \leq n(Y)$.

If a map $f: X \to Y$ exists, then there exists a monotone map $g; Prt(Y) \to Prt(X)$. (Prt(X) gives the set of all partitions on X).

If f and q are monotones, then $f \circ q$ is also monotone.

Let P be a preorder. Monotone maps $P \to \mathcal{B}$ are in one-to-one correspondence with upper sets of P. (See page.22).

- Yoneda Lemma: to know an element is the same as knowing its upper set (the relationships it has with other elements). (see page 20).
- Pullback map: Let P and Q be preorders, and $f: P \to Q$ be a monotone map. Then we can define a monotone map $g: U(Q) \to U(P)$ which is called the *pullback along f.* (U(X)) is the set of all uppersets of X).

7th December

• For a preorder (P, \leq) , and $A \subseteq P$ be a subset, we say $p \in P$ is a **meet** of A if

- $\star \ \forall a \in A$, we have $p \leq a$.
- $\star \ \forall q, q \leqslant a \ \forall a \in A$, we have $q \leqslant p$.

We denote meet 'p' as: $p \cong \bigwedge A$ or $p \cong \bigwedge_{a \in A} a$. This represents the *greatest lower bound* of the subset A. As the **GLB** is the "greatest among **all** lower bounds", we can say this is a **Universal property**.

- Similarly, for the preoreder discussed above, we say p is a **join** of A if:
 - $\star \ \forall a \in A$, we have $a \leq p$.
 - $\star \ \forall q, \ a \leqslant q \ \forall a \in A$, we have $p \leqslant q$.

We denote join p as: $p \cong \bigvee A$ or $p \cong \bigvee_{a \in A} a$. This represents the *lowest upper bound* of subset A. This is also a universal property.

- Any two things defined by the **same** universal property are automatically **equivalent** in a way known as 'unique up to unique isomorphism'. For example, we can see that if there exists two meets p and q for a preorder, they will be isomorphic to each other by definition.
- In a discrete preorder, there exist no meets nor joins.
- In any partial order (where \cong and = are the same), $p \lor p = p \land p = p$. (See page 25)
- In a power set P(X), for subsets, say $A, B \in X$, the meet is their intersection, ie, $A \wedge B = A \cap B$ and their join is their union, $A \vee B = A \cup B$.
- For a preorder P, $A \subseteq B \subseteq P$, then we say
 - \star if meets of A and B exist, then $\bigwedge B \leqslant \bigwedge A$
 - \star if joins of A and B exist, then $\bigvee A \leqslant \bigvee B$
- A monotone map $f: P \to Q$ has a **generative effect** if there exist elements $a, b \in P$ such that:

$$f(a) \lor f(b) \not\cong f(a \lor b)$$

If the monotone map dosen't have a generative effect, then it will preserve the meets.

• A Galois connection between two preorders P and Q is a pair of monotone maps $f: P \to Q$ and $g: Q \to P$ such that:

$$f(p) \leqslant q \iff p \leqslant g(q)$$

We say f is the *left adjoint* and g is the *right adjoint* of the Galois connection.

- If P and Q are total orders and $f: P \to Q$ and $g: Q \to P$ are drawn with arrows bending counterclockwise, then f is left adjoint to g iff the arrows do not cross. (See page 28)
- Galois connections are a kind of relaxed version of isomorphisms. (Page 30)
- Right adjoints **preserve meets**, and Left adjoints **preserve joins** (See *Adjoint Functor Theorem*). Hence, left afjoints will not have generative effects.

- Closure operator $j: P \to P$ on a preorder P is a monotone map with:
 - $\star p \leq j(p)$
 - $\star \ j(j(p)) \cong j(p)$

They can be made by composing left adjoint f with its right adjoint g. The other composite map $g \circ f$ (interior map) satisfies: $(g \circ f)(p) \leq p$.

10^{th} December

- A \mathcal{V} -category is a set of objects where \mathcal{V} provides the structure for assessing "getting from point a" to "point b". Examples of such categories are:
 - * A Bool-category, where the answer for "getting from a to b" is true/false.
 - * A Cost-category, where the answer is a cost, $d \in [0, 1]$.
 - * A **Set**-category where the question of getting from point a to point b has a set of answers (elements of which might be called **methods**).
- Preorders are denoted as (P, \leq) , where we have two structures: X being a set and \leq being the **relation** which is **transitive** and **reflexive**.
- A symmetric monoidal structure on (X, \leq) consists of:
 - \star an element $I \in X$ (monoidal unit).
 - * a function $\otimes : X \times X \longrightarrow X$ (monoidal product), which satisfies monotonicity, unitality, symmetry, and associativity (MUSA). (Page 42)

A preorder equipped with a symmetric monoidal structure, (X, \leq, I, \otimes) , is called a **symmetric monoidal preorder**. Replacing all the conditions in page 42 with \cong in place of =, makes it a **weak monoidal structure**.

• Wiring diagrams: the wires represent *elements*, the boxes represent *relationships*, and the wiring diagrams themselves show how relationships can be **combined**. We call boxes and wires **icons**.

Wires in parallel to represent the monoidal product of their labels. (Page 44-45) No line represents the monoidal unit I.

Figure 1: Valid only if $x_1 \otimes x_2 \leq y_1 \otimes y_2 \otimes y_3$

Reflexivity says that $x \leq x$, this means the diagram just consisting of a wire is always valid. **Transitivity** allows us to connect diagrams together. See Page 46.

• These monoidal structures can be used to analyse real-life cases such as Chemical reactions or Manufacturing. In the latter, we add a new axiom called the **discard** axiom: $x \le I \ \forall x \in X$. In another case, like informatics, we have a **copy axiom**: $x \le x + x \ \forall x \in X$.

13th December

• Let $\mathcal{P} = (P, \leq_P, I_P, \bigotimes_P)$ and $\mathcal{Q} = (Q, \leq_Q, I_Q, \bigotimes_Q)$ be monoidal preorders. A X-monoindal monotone from \mathcal{P} to \mathcal{Q} is a monotone map $f: (P, \leq_P) \longrightarrow (Q, \leq_Q)$, satisfying: $(X \text{ and } \alpha \text{ are placeholders})$

- $\star I_Q \alpha f(I_P)$
- $\star f(p_1) \otimes_Q f(p_2) \alpha f(p_1 \otimes_P p_2), \quad \forall p_1, p_2 \in P$

where, $X = \text{lax } (\alpha \text{ is } \leq), \text{ oplax } (\alpha \text{ is } \geq), \text{ strong } (\alpha \text{ is } \cong), \text{ strict } (\alpha \text{ is } =)$

- V categories **MUST** follow **M** and **S** in **MUSA**. Let $V = (V, \leq, I, \bigotimes)$ be a symmetric monoidal preorder. A V category X consists of two consituents:
 - * a set $Ob(\mathcal{X})$, elements of which are called **objects** ($\notin V$).
 - * $\forall x, y \in \text{Ob}(\mathcal{X})$, one specifies an element $\mathcal{X}(x, y) \in V$, called the **hom-object**.

These constituents follow the below properties:

- $\star \ \forall x \in \mathrm{Ob}(\mathcal{X}) \text{ we have } I \leqslant \mathcal{X}(x,x).$
- $\star \ \forall x, y, z \in \mathrm{Ob}(\mathcal{X})$ we have $\mathcal{X}(x, y) \otimes \mathcal{X}(y, z) \leqslant \mathcal{X}(x, z)$.

We say V the base of the enrichment for X or X is enriched in V.

- There is a *one-to-one* correspondence between preorders and **Bool**-categories. (See ex-2.47 and page 59)
- A metric space (X, d) consists of:
 - \star a set X, elements are *points*.
 - * a function $d: X \times X \longrightarrow \mathcal{R}_{\geq 0}$, where d(x, y) is called the **distance between** points x and y.

These constituents must satisfy:

- $\star \ \forall x \in X, \ d(x, x) = 0$
- $\star \ \forall x \in X, \ d(x,y) = 0 \Leftrightarrow x = y$
- $\star \ \forall x \in X, \ d(x,y) = d(y,x)$
- $\star \ \forall x \in X, \ d(x,y) + d(y,z) \ge d(x,z)$ (Triangle inequality).

If we change $\mathcal{R}_{\geq t}$ to $[0, \infty]$, we call (X, d) an **extended** metric space.

- A Lawvere metric space is a Cost-category. (Page 61)
- Cost-weighted graphs are similar to Hasse diagrams but the edges are labelled with numbers $w \ge 0$. It represents a Lawvere metric space.

Such graphs G can be converted to matrices M_G whose row and column represents **points** in the graph and the entries represent the **edge weight** $(w \in [0, \infty])$ between the row point and column point.

14th December

• Changeing the base of enrichment: Let $f: \mathcal{V} \longrightarrow \mathcal{W}$ be a monoidal monotone. Given a \mathcal{V} -category \mathcal{C} , one forms the associated \mathcal{W} -category \mathcal{C}_f as follows: (page 64)

- $\star \operatorname{Ob}(\mathcal{C}_f) := \operatorname{Ob}(\mathcal{C})$
- $\star \ \forall c, d \in \mathrm{Ob}(\mathcal{C}), \ \mathcal{C}_f(c, d) := f(\mathcal{C}(c, d))$
- Enriched Functors: Let \mathcal{X} and \mathcal{Y} be \mathcal{V} -categories. A \mathcal{V} -functor $\mathcal{F}: \mathcal{X} \longrightarrow \mathcal{Y}$ consists of:

$$-\mathcal{F}: \mathrm{Ob}(\mathcal{X}) \longrightarrow \mathrm{Ob}(\mathcal{Y})$$

subject to one constraint:

$$-\forall x_1, x_2 \in \mathrm{Ob}(\mathcal{X}), \ \mathcal{X}(x_1, x_2) \leqslant \mathcal{Y}(\mathcal{F}(x_1), \mathcal{F}(x_2))$$

- **Product** \mathcal{V} -categories: Let \mathcal{X} and \mathcal{Y} be \mathcal{V} -categories. \mathcal{V} -product is defined as the \mathcal{V} -category $\mathcal{X} \times \mathcal{Y}$ (see ex. 2.75) with:
 - $\star \operatorname{Ob}(\mathcal{X} \times \mathcal{Y}) := \operatorname{Ob}(\mathcal{X}) \times \operatorname{Ob}(\mathcal{Y})$
 - $\star (\mathcal{X} \times \mathcal{Y})((x,y),(x',y')) := \mathcal{X}(x,x') \times \mathcal{Y}(y,y')$
- Symmetric monoidal closed preorders: A symmetric monoidal preorder $\mathcal{V} = (V, \leq, I, \otimes)$ is called **closed** (see remark 2.81), if $\forall v, w \in V$, there is an element $v \multimap w$ in \mathcal{V} , called the **hom-element**, with the property:

$$(a \otimes v) \leq w \iff a \leq (v \multimap w) \qquad \forall a, v, w \in V$$

- For $v \in V$ and $A \subseteq V$, we have $v \otimes \bigvee_{a \in A} a \cong \bigvee_{a \in A} (v \otimes a)$. (Page 70)
- Unital Commutative Quantale is a symmetric monoidal closed preorder $\mathcal{V} = (V, \leq, I, \otimes, \multimap)$ that has all joins: $\bigvee A$ exists $\forall A \subseteq V$. Empty join $\bigvee \varnothing$ is denoted as '0'.
- If \mathcal{X} is a \mathcal{V} -category $(X, \leq_X, I_X, \otimes_X)$ with objects $U, V \in X$ Generalized **Hausdorff** distance is given by:

$$\mathcal{X}(U,V) = \bigwedge_{u \in U} \bigvee_{v \in V} \mathcal{X}(u,v)$$

• Generalised Matrix Multiplication: Let $\mathcal{V} = (V, \leq, \otimes, I)$ be a quantale. Given X and Y, a \mathcal{V} -matrix is a function $M: X \times Y \longrightarrow V$. $\forall x \in X \& y \in Y$, we say M(x,y) is the $(x,y)^{th}$ entry.

Say we have two such \mathcal{V} -matrices $M: X \times Y \longrightarrow V$ and $M: Y \times Z \longrightarrow V$. Their product $(M*N): X \times Z \longrightarrow V$, whose entries are given by:

$$(M*N)(x,z) := \bigvee_{y \in Y} M(x,y) \otimes N(y,z)$$