EE447 EXPERIMENT #5

PRELIMINARY REPORT

Question 1-) Init_ADC.s

; ADC Registers **RCGCADC** EQU 0x400FE638; ADC clock register ;ADC0 base address EQU 0x40038000 ADC0_ACTSS EQU 0x40038000; Sample sequencer (ADC0 base address) EQU 0x40038004; Interrupt status ADC0_RIS EQU 0x40038008; Interrupt select ADC0_IM EQU 0x40038014; Trigger select ADC0_EMUX ADC0_PSSI EQU 0x40038028; Initiate sample ADC0_SSMUX3 EQU 0x400380A0; Input channel select ADC0_SSCTL3 EQU 0x400380A4; Sample sequence control EQU 0x400380A8; Channel 3 results ADC0_SSFIFO3 EQU 0x40038FC4; Sample rate ADC0_PP ; GPIO Registers **RCGCGPIO** EQU 0x400FE608; GPIO clock register ;PORT E base address EQU 0x40024000 PORTE_DEN EQU 0x4002451C; Digital Enable PORTE_PCTL EQU 0x4002452C; Alternate function select PORTE_AFSEL EQU 0x40024420; Enable Alt functions PORTE_AMSEL EQU 0x40024528; Enable analog PORTE_DIR **EQU** 0x40024400 ;Set direction AREA routines, CODE, READONLY **THUMB EXPORT** Init_ADC Init_ADC **PROC** ; Start clocks for features to be used LDR R1, =RCGCADC; Turn on ADC clock LDR R0, [R1] ORR R0, R0, #0x01; set bit 0 to enable ADC0 clock STR R0, [R1] NOP NOP NOP; Let clock stabilize LDR R1, =RCGCGPIO; Turn on GPIO clock LDR R0, [R1] ORR R0, R0, #0x10; set bit 4 to enable port E clock STR R0, [R1] NOP NOP NOP: Let clock stabilize LDR R1, =PORTE_AFSEL; Setup GPIO to make PE3 input for ADC0 LDR R0, [R1]; Enable alternate functions ORR R0, R0, #0x08; set bit 3 to enable alt functions on PE3 STR R0, [R1] LDR R1, =PORTE_DIR LDR R0, [R1] BIC R0, R0, #0x08; set bit 3 to input for PE3 STR R0, [R1] ; PCTL does not have to be configured ; since ADC0 is automatically selected when ; port pin is set to analog. LDR R1, =PORTE_DEN LDR R0, [R1] ; Disable digital on PE3 BIC R0, R0, #0x08; clear bit 3 to disable analog on PE3

STR R0, [R1]

```
LDR R1, =PORTE_AMSEL; Enable analog on PE3
                          LDR R0, [R1]
                          ORR R0, R0, #0x08; set bit 3 to enable analog on PE3
                          STR R0, [R1]
                          LDR R1, =ADC0_ACTSS ; Disable sequencer while ADC setup
                          LDR R0, [R1]
                          BIC R0, R0, #0x08; clear bit 3 to disable seq 3
                          STR R0, [R1]
                          ; Select trigger source
                          LDR R1, =ADC0_EMUX
                          LDR R0, [R1]
                          BIC R0, R0, #0xF000; clear bits 15:12 to select SOFTWARE
                          STR R0, [R1]; trigger
                          ; Select input channel
                          LDR R1, =ADC0_SSMUX3
                          LDR R0, [R1]
                          BIC R0, R0, #0x000F; clear bits 3:0 to select AIN0
                          STR R0, [R1]
                          ; Config sample sequence
                          LDR R1, =ADC0_SSCTL3
                          LDR R0, [R1]
                          ORR R0, R0, #0x06; set bits 2:1 (IE0, END0)
                          STR R0, [R1]
                          ; Set sample rate
                          LDR R1, =ADC0_PP
                          LDR R0, [R1]
                          ORR R0, R0, #0x01; set bits 3:0 to 1 for 125k sps
                          STR R0, [R1]
                          ; Done with setup, enable sequencer
                          LDR R1, =ADC0_ACTSS
                          LDR R0, [R1]
                          ORR R0, R0, #0x08; set bit 3 to enable seq 3
                          STR R0, [R1]; sampling enabled but not initiated yet
                          BX
                          ENDP
                          ALIGN
                          END
main.s
ADC0_RIS
                          EQU 0x40038004; Interrupt status
ADC0_SSFIFO3 EQU 0x400380A8; Channel 3 results
ADC0 PSSI
                          EQU 0x40038028; Initiate sample
ADC0 ISC
                          EOU
                                  0x4003800C; ISC
;LABEL
                 DIRECTIVE
                                  VALUE
                                                    COMMENT
                                           main, READONLY, CODE
                                  AREA
                                  THUMB
                                  IMPORT
                                                    Init_ADC; Initialize subroutine
                                  EXPORT
                                                    __main ; Make available
__main
                                  BL
                                           Init_ADC; GPIO & ADC initialized
                                  MOV
                                                    R6,#0;
getsample
                          LDR
                                           R1,=ADC0_PSSI; request a sample
                                  LDR
                                                    R2,[R1];
                                  ORR
                                                    R2,R2,#0x08; get a sample
                                  STR
                                                    R2,[R1];
                          LDR
loop
                                           R1,=ADC0_RIS; check for interrup flag
                                  LDR
                                                    R2,[R1];
                                  ANDS
                                           R2,#0x08;
                                  BEQ
                                  LDR
                                                    R1,=ADC0_ISC; clear the interrupt flag
                                  LDR
                                                    R2,[R1];
```

R2.#0x08:

ORR

STR R2,[R1]; Interrupt flag is cleared R1,=ADC0_SSFIFO3; LDR LDR R2,[R1]; R2 is the data getsample В ALIGN **END** Question 2-) __main.s ADC0_RIS EQU 0x40038004; Interrupt status ADC0_SSFIFO3 EQU 0x400380A8; Channel 3 results ADC0 PSSI EQU 0x40038028; Initiate sample 0x4003800C; ISC ADC0 ISC **EOU** COMMENT ;LABEL DIRECTIVE **VALUE** main, READONLY, CODE AREA **THUMB IMPORT** Init_ADC; Initialize subroutine **EXPORT** __main ; Make available __main BLInit_ADC; GPIO & ADC initialized MOV R6.#0: LDR R1,=ADC0_PSSI; request a sample getsample LDR R2,[R1];ORR R2,R2,#0x08; get a sample STR R2,[R1]; LDR loop R1,=ADC0_RIS; check for interrup flag LDR R2,[R1];**ANDS** R2,#0x08; BEQ loop LDR R1,=ADC0_ISC; clear the interrupt flag LDR R2,[R1];ORR R2,#0x08; STR R2,[R1]; Interrupt flag is cleared R1,=ADC0_SSFIFO3; LDR LDR R2,[R1]; R2 is the data R0,#1241; get the first digit MOV move R7,R2,R0; **UDIV** MOV R1. R7 MUL R1.R1.R0: SUB R2,R2,R1; R2 is newed R0,#124; get the second digit MOV **UDIV** R8,R2,R0; MOV R1. R8 R1,R1,R0; MUL R2,R2,R1; R2 is newed SUB MOV R0,#12; get the last digit **UDIV** R9,R2,R0; В getsample; ALIGN **END** Question 3-) __main.s ADC0_RIS EQU 0x40038004; Interrupt status ADC0_SSFIFO3 EQU 0x400380A8; Channel 3 results ADC0_PSSI EQU 0x40038028; Initiate sample 0x4003800C; ISC ADC0_ISC **EQU** ;LABEL DIRECTIVE **VALUE COMMENT AREA** main, READONLY, CODE **THUMB IMPORT** Init_ADC; Initialize subroutine **IMPORT** OutChar;

main		EXPORT		main	; Make available
		BL MOV	Init_ADC	C; GPIO & R6,#0;	ADC initialized
getsample	LDR	1,10 ,	R1,=ADC		request a sample
		LDR		R2,[R1];	
		ORR		R2,R2,#0	0x08; get a sample
		STR		R2,[R1];	
loop	LDR		R1,=ADC	0_RIS; cl	heck for interrup flag
		LDR		R2,[R1];	
		ANDS	R2,#0x08	3;	
		BEQ		loop	
		LDR			CO_ISC; clear the interrupt flag
		LDR		R2,[R1];	
		ORR		R2,#0x08	
		STR			Interrupt flag is cleared
		LDR LDR			CO_SSFIFO3; R2 is the data
		SUB			5; check sampled data - previous > 0.02
		CMP		R0,#24;	5, check sampled data - previous > 0.02
		BGT		move;	
		SUB		R0,R6,R2	2.
		CMP			check previous - sampled data > 0.02
		BLT		getsample	•
move	MOV		R6,R2;		
		MOV		R0,#1241	; get the first digit
		UDIV	R1,R2,R0);	
		MOV		R5,R1;	
		ADD		R5,R5,#0	0x30; ascii conversion
		PUSH{R0,R1,R2} BL POP{R0,R1,R2}		0.401	. ,
				OutChar;	print
		MOV	K1,K2}	R5,#0x2E	7. for!!
		PUSH{R	0 R1 R2)	NJ,#UXZL	2, 101 .
		BL	0,1(1,1(2)	OutChar;	print
		POP{R0,	R1.R2}	outenur,	P
		MUL	, ,	R1,R1,R0);
		SUB		R2,R2,R1	1; R2 is newed
		UDIV R1,R2,R0;		R0,#124;	get the second digit
);	
		MOV		R5,R1;	
		ADD		R5,R5,#0	0x30; ascii conversion
		PUSH{R	υ, κ1, R2}	O-vC!	
		BL BOD(BO	D1 D2)	OutChar;	рпи
		POP{R0, MUL	K1,K2}	R1,R1,R0	١٠
		SUB		, ,	1; R2 is newed
		MOV			get the last digit
		UDIV	R1,R2,R0	_	2-1 <u>8</u>
		MOV	, ,	R5,R1;	
		ADD			x30; ascii conversion
		PUSH{R	0,R1,R2}		
		BL		OutChar;	print
		POP{R0,	R1,R2}		
		MOV	0.01.55	R5,#0x0I	D; for new line
		PUSH{R	0,R1,R2}	O-vC!	
		BL BOD(BO	D1 D2)	OutChar;	print
		POP{R0, B	K1,K2}	getsample	a•
		ALIGN		gersample	·,
		END			
		21.10			