MA1521 Finals Cheat Sheet AY22/23 Sem2

Exponent Integral: $\int_{a}^{a} x^{n} e^{x^{n+1}} dx = \left[\frac{1}{n+1} e^{x^{n}} \right]$

Chapter 0: Numbers & Functions				
N: set of all natural numbers (no −'ve)	Z: set of all integers			
Q: set of all rational numbers	R: set of all real numbers			
C: set of all complex numbers	$0 \in \{\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}\}$			
Functions:				

r	u	n	C	τ	О	r	ľ
	-	-	-	-	-	-	-

Poly- nomials	 p(x) = a₀xⁿ + a₀₋₁xⁿ⁻¹ + + a₁x + a₀, where a₀, a₁,, a_n are constants, is called a polynomial of degree n Can be factored as a product of linear & quadratic factors In general, a polynomial of degree n has at most n real roots
Rational	 Has a form p(x) where p(x) & q(x) are polynomials Domain of p(x) / q(x) consists of all R except the roots of q(x)
Trigo	sin x cos x tan x coc x sec x cot x
Exp & Log	 Exponential: f(x) = a^x, where a > 0 Logarithmic: log_ax (a > 0, a ≠ 1) They are inverses of each other

Chapter 1: Limits & Continuity

Limits of the form $\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)'}$ where P(x) and Q(x) are polynomials in x

$$\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)} = \lim_{x \to \pm \infty} \frac{Ax^{\alpha} + \cdots}{Bx^{\beta} + \cdots} = \begin{cases} 0 & \text{if } \alpha < \beta \\ \frac{A}{B} & \text{if } \alpha = \beta \\ \infty & \text{or } -\infty \end{cases}$$
Leading term

If $\lim_{x \to c} g(x) = 0$	$\lim_{x \to c} \frac{\sin(g(x))}{g(x)} = \lim_{x \to c} \frac{g(x)}{\sin(g(x))} = 1$ $\lim_{x \to c} \frac{\tan(g(x))}{g(x)} = \lim_{x \to c} \frac{g(x)}{\tan(g(x))} = 1$
when $c = 0$ & $g(x) = x$	$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{x}{\sin(x)} = 1$ $\lim_{x \to 0} \frac{\tan(x)}{x} = \lim_{x \to 0} \frac{x}{\tan(x)} = 1$

- Suppose $g(x) \le f(x) \le h(x)$ for all x in some open interval containing a point c, except possibly at x = c, IF $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$, then $\lim_{x \to c} f(x) = L$
- If $\lim_{x \to 0} g(x) = 0$, then for any function h, $\lim_{x \to 0} g(x) \sin(h(x)) = 0$ and $\lim_{x \to 0} g(x) \cos(h(x)) = 0$.
- If f is continuous on [a, b] and k is a number between f(a) & f(b), then f(c) = k for some $c \in [a, b]$

	** Compare the biggest n th term to find limit ** Try to convert to same			e n ^{ui} term for numer and denom	
	Ind. form	Limit	Conditions	Conversion Rule	
8	0 0	$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\lim_{x \to a} f(x) = 0 \& \lim_{x \to a} g(x) = 0$	L Hospital	
s _ 0r	8 8	$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\lim_{x \to a} f(x) = \infty \& \lim_{x \to a} g(x) = \infty$	L Hospital	
L HOSPITAI WNEN ITS	0 * ∞	$\lim_{x \to a} f(x)g(x)$	$\lim_{x \to a} f(x) = 0 \& \lim_{x \to a} g(x) = \infty$	Convert to $\lim_{x \to a} \frac{f(x)}{1/g(x)}$	
	8 – 8	$\lim_{x \to a} f(x)^{g(x)}$	$\lim_{x \to a} f(x) = \infty \& \lim_{x \to a} g(x) = \infty$	Remove common factor, rationalise	
LHOS	0_0	$\lim_{x \to a} f(x)^{g(x)}$ $\lim_{x \to a} f(x)^{g(x)}$	$\lim_{x \to a} f(x) = 0 \& \lim_{x \to a} g(x) = \infty$ $\lim_{x \to a} f(x) = \infty \& \lim_{x \to a} g(x) = \infty$	$\lim_{x \to a} f(x)^{g(x)} = e^{g(x)lnf(x)}$ OR	
	1 [∞]	$\lim_{x \to a} f(x)^{g(x)}$	$\lim_{x \to a} f(x) = 1 \& \lim_{x \to a} g(x) = \infty$	$let y = f(x)^{g(x)}, then \ln y$ $= g(x) \ln f(x)$	

Chapter 2: Derivatives

$f'(x_0)$	- lim J	$(x_0 + n) -$	$f(x_0)$
) (x ₀)	_ h→0	h	

Function	Derivative
Elem	nentary Functions
x^n	nx^{n-1}
e ^x	e ^x
ln (x)	$\frac{1}{x}$
Trigor	nometric Functions
cos (x)	-sin (x)
sin (x)	cos (x)
tan (x)	$sec^{2}(x)$
sec (x)	sec(x) tan(x)
csc (x)	$-\csc(x)\tan(x)$

) h	
Function	Derivative
	Elementary Functions
$(f(n))^n$	$nf'(x) (f(n))^{n-1}$
$e^{f(x)}$	$f'(x)e^{f(x)}$
$\ln (f(x))$	f'(x)
III () (x))	$\overline{f(x)}$
Т	rigonometric Functions
$\cos(f(x))$	$-f'(x)\sin(f(x))$
$\sin(f(x))$	$f'(x)\cos(f(x))$
tan(f(x))	$f'(x)sec^2(f(x))$
sec(f(x))	$f'(x) \sec(f(x)) \tan(f(x))$
$\csc(f(x))$	$-f'(x)\csc(f(x))\tan(f(x))$
	•

cot (x)	$-csc^{2}(x)$	
Inverse Tri	igonometric Functions	
$sin^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$	
$cos^{-1}(x)$	$-\frac{1}{\sqrt{1-x^2}}$	
$tan^{-1}(x)$	$\frac{1}{1+x^2}$	
$cot^{-1}(x)$	$-\frac{1}{1+x^2}$	
$sec^{-1}(x)$	$\frac{1}{ x \sqrt{x^2-1}}, x > 1$	
$csc^{-1}(x)$	$-\frac{1}{ x \sqrt{x^2 - 1}}, x > 1$	
Rules of Differentiation: Let u and v be diff		
Constant Rule	$\frac{d}{dx}(c) = 0$	

	$\cot (f(x))$	$-f'(x)csc^2(f(x))$	ı
	Inverse Trigonometric Functions		L
	$sin^{-1}(f(x))$	$\frac{f'(x)}{\sqrt{1-f(x)^2}}$	ŀ
	$cos^{-1}(f(x))$	$-\frac{f'(x)}{\sqrt{1-f(x)^2}}$	ŀ
	$tan^{-1}(f(x))$	$\frac{f'(x)}{1+f(x)^2}$	ŀ
	$cot^{-1}(f(x))$	$-\frac{f'(x)}{1+f(x)^2}$	ŀ
	$sec^{-1}(f(x))$	$\frac{f'(x)}{ f(x) \sqrt{f(x)^2 - 1}}, f(x) > 1$	l
	$csc^{-1}(f(x))$	$-\frac{f'(x)}{ f(x) \sqrt{f(x)^2 - 1}}, f(x) > 1$	l
ntia	tiable functions of x and c be a constant		ŀ
	Sum Rule $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$		1
	Product Rule	$\frac{d}{dx}(uv) = \frac{du}{dx}v + u\frac{dv}{dx}$	ſ

a	Ш	
	_li	
	-11	_

Multiple

Turning

Critical pt

- Differentiate both sides wrt x and solving the resultant equation for $\frac{dy}{dx}$
- Obtain $\frac{dy}{dx}$ by differentiating every term by x
- Change Base Formula: $\log_a x = \frac{\ln x}{\ln a'}$ $a>0\,\&\,a\neq1$

 $\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$

•	When differentiating a function in y wrt x : $\frac{d}{dx}g$	$g(y) = g'(y) \times \frac{dy}{dx}$

 $\frac{d}{dx}(cu) = c\frac{du}{dx}$

ux	ax
Inverse Functions:	Higher Order Derivatives
$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))} = \frac{1}{f'(b)}$	$f^{(n)}(x) = \frac{d^n y}{dx^n} = D^n y = D^n f(x)$
Parametric Form	$f(x)^{g(x)}$
$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{dx/dt}$	$\frac{d}{dx}f(x)g(x) = f(x)g(x)\left(g'(x)\ln(f(x)) + \frac{f'(x)}{f(x)}g(x)\right)$

Chain Rule

2 nd I	Derivative Test: Chec	tk signs of $\frac{d^2y}{dx^2}$ at $x = k$	
	$\left \int \frac{d^2y}{dx^2} \right _{x=k} < 0$	Then $ig(k,f(k)ig)$ is a MAX turning point	
	$If \frac{d^2y}{dx^2} \mid_{x=k} > 0$	Then $ig(k,f(k)ig)$ is a MIN turning point	
	$If \frac{d^2y}{dx^2} \mid_{x=k} = 0$	Use 1^{st} derivative test. $f''(x)$ may be inflection point	
a)	It is NOT an end-	point b) Either $f'(c) = 0$ OR $f'(c)$ DOES NOT exist	

Differentiation with L'Hospital	$\lim_{x \to c} f(x) = 0 = \lim_{x \to c} g(x) \text{ OR } \lim_{x \to c} f(x) = \infty = \lim_{x \to c} g(x), \text{ then }$ $\lim_{x \to c} \frac{f'(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$
Rolle's Theorem	If $f(a) = f(b) \rightarrow$ at least 1 no. c in (a, b) such that $f'(c) = 0$
Mean Value	gradient = $f'(c) = \frac{f(b) - f(a)}{b}$

	Chapter	4: Integrals		
		Integration of Elementa	ry Functions	
	1.	$\int (ax+b)^n dx$	$\frac{(ax+b)^{n+1}}{(n+1)a} + C (n \neq -1)$	
	2.	$\int \frac{1}{ax+b} dx$	$\frac{1}{a}\ln ax+b +C$	
	3. $\int e^{ax+b} dx$ Integration of Trigonome 4. $\int \sin(ax+b) dx$		$\frac{1}{a}e^{ax+b}+C$	
			etric Functions	
			$-\frac{1}{a}\cos(ax+b)+C$	
	5.	$\int \cos(ax+b)dx$	$\frac{1}{a}\sin(ax+b)+C$	
	6.	$\int \tan(ax+b) dx$	$\frac{1}{-\ln \sec(ax+b) } + C$	

Global/Local Min/Max (self-explanatory)

- Point of inflection Test: f'≠0&f"=0
- If sign changes, it is a point of inflection

Х	X.	х	x ⁺
f"	-'ve	0	+'ve
f"	+'ve	0	-'ve

7.	$\int \sec(ax+b)dx$	$\frac{1}{a}\ln \sec(ax+b)+\tan(ax+b) +C$		
8.	$\int \csc(ax+b)dx$	$-\frac{1}{a}\ln \csc(ax+b) + \cot(ax+b) + C$		
9.	$\int \cot(ax+b)dx$	$-\frac{1}{a}\ln \csc(ax+b) +C$		
10.	$\int \sec^2(ax+b)dx$	$\frac{1}{a}\tan(ax+b)+C$		
11.	$\int \csc^2(ax+b)dx$	$-\frac{1}{a}\cot(ax+b)+C$		
12.	$\int \sec(ax+b)\tan(ax+b)dx$	$a = \sec(ax + b) + c$		
13.	$\int \csc(ax+b)\cot(ax+b)dx$	$-\frac{1}{a}\csc(ax+b)+C$		
	Integration of Polynomials	(Partial Fractions)		
14.	$\int \frac{1}{a^2 + (x+b)^2} dx$	$\frac{1}{a}\tan^{-1}\left(\frac{x+b}{a}\right) + C$		
15.	$\int \frac{1}{\sqrt{a^2 - (x+b)^2}} dx$	$\sin^{-1}\left(\frac{x+b}{a}\right) + C$		
16.	$\int \frac{1}{\sqrt{a^2 - (x+b)^2}} dx$ $\int \frac{-1}{\sqrt{a^2 - (x+b)^2}} dx$	$\cos^{-1}\left(\frac{x+b}{a}\right) + C$		
17.	$\int \frac{1}{a^2 - (x+b)^2} dx$	$\frac{1}{2a}\ln\left \frac{x+b+a}{x+b-a}\right + C$		
18.	$\int \frac{1}{(x+b)^2 - a^2} dx$	$\frac{1}{2a} \ln \left \frac{x+b+a}{x+b-a} \right + C$ $\frac{1}{2a} \ln \left \frac{x+b-a}{x+b+a} \right + C$		
19.	$\int \frac{1}{(x+b)^2 - a^2} dx$ $\int \frac{1}{\sqrt{(x+b)^2 + a^2}} dx$	$\ln\left (x+b) + \sqrt{(x+b)^2 + a^2}\right + C$		
20.	$\int \frac{1}{\sqrt{(x+b)^2 - a^2}} dx$	$\ln\left (x+b) + \sqrt{(x+b)^2 - a^2}\right + C$		
21.	$\int \sqrt{a^2 - x^2} dx$	$\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right) + C$ $\frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\ln\left x + \sqrt{x^2 - a^2}\right + C$		
22.	$\int \sqrt{x^2 - a^2} dx$	$\frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2}\ln\left x + \sqrt{x^2-a^2}\right + C$		
Modulus				
23.	$\int_{-a}^{a} bx^{n} \ dx$	$\left[\frac{x^{n+1}}{b(n+1)}\right]_0^a - \left[\frac{x^{n+1}}{b(n+1)}\right]_{-a}^0$		
	Result from tutorials (prob only w	orks with trigonometry)		
24.	$\int_{a}^{b} f(x) dx$	$bf(b) - af(a) - \int_{f(a)}^{f(b)} f^{-1}(x) dx$		

		ricourt from tatoriais (pros o	,	one man a gonomea //
1	24. $\int_{a}^{b} f(x) dx$ 25. $\int_{0}^{a} f(x) dx$ By Parts $\int u \frac{dv}{dx} = uv - \int v \frac{du}{dx} dx$			$bf(b) - af(a) - \int_{f(a)}^{f(b)} f^{-1}(x) dx$
				$\int_0^a f(a-x)dx$
^				By Substitution
				u = f(x)

Partial Fractions:	
Non-Repeated Linea	px + q A B
Factors	$\frac{(ax+b)(cx+d)}{(ax+b)} = \frac{(ax+b)}{(cx+d)}$
Repeated Linear Facto	rs $\frac{px^2 + qx + r}{(ax+b)(cx+d)^2} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^2}$
Non-Repeated Quadratic Factors	$\frac{px^2 + qx + r}{(ax+b)(x^2+c^2)} = \frac{A}{(ax+b)} + \frac{B}{(x^2+c^2)}$

Kiemann Sums & Dennite integ	i ais
Riemann Sum of f	Approximation (For large n, ≈)
$\sum_{k=1}^{n} \left(\frac{b-a}{n} \right) f\left(a + k \left(\frac{b-a}{n} \right) \right)$	$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \left\{ \sum_{k=1}^{n} \left(\frac{b-a}{n} \right) f\left(a + k\left(\frac{b-a}{n}\right) \right) \right\} \approx \sum_{k=1}^{n} \left(\frac{b-a}{n} \right) f\left(a + k\left(\frac{b-a}{n}\right) \right)$

H	k=1	\	' /	-u (k=1 / /) k=1	
l	Chapter 5: App	plications of Integration			
		x-axis		$A = \int_{a}^{b} f(x) - g(x) dx$	
	Area	y-axis		$A = \int_{c}^{d} f(y) - g(y) dy$	
		Resolve about x-axis	Disk	$V = \pi \int_{a}^{b} f(x)^{2} dx - \pi \int_{a}^{b} g(x)^{2} dx$	
ı	Volume		Shell	$V = 2\pi \int_{c}^{d} y f(y) - g(y) dy$	
		Resolve about	Disk	$V = \pi \int_{c}^{d} f(y)^{2} dy - \pi \int_{c}^{d} g(y)^{2} dy$	
		y-axis	$A = \int_{c}^{d} f(y) - g(y) dy$ $Disk \qquad V = \pi \int_{a}^{b} f(x)^{2} dx - \pi \int_{a}^{b} g(x)^{2} dx$ $Shell \qquad V = 2\pi \int_{c}^{d} y f(y) - g(y) dy$		
l	Arc Length			$\int_a^b \sqrt{1 + f'^{(x)^2}} dx$	
•	·				

 $T \rightarrow t_{1/2} \text{ of } x$

 $t \rightarrow time\ elapsed$

 $A \rightarrow constant \in \mathbb{R}$

 $k = \frac{\ln 2}{T}$

 $\sqrt{1 + (x - y)^2} = \sqrt{(x + y)^2}$

 $\int f(x)g(x) dx = A \pm B \pm \int f(x)g(x) dx$

Ans: $\frac{f(x)}{2}(A \pm B)$

If integral forms a cycle:

Series		
		$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n = \frac{1}{1-x}, r < 1$
Power Series	Sequence Differential	$f'(x) = \sum_{n=0}^{\infty} nc_n(x-a)^{n-1}$, for all $ x-a < R$
	Sequence Integral	$\int f(x) dx = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1} + C, for x-a < R$
	Power Series	$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, x-a < R, \text{for some } R > 0$
Taylor Series	Coefficient	$c_n = \frac{f^{(n)}(a)}{n!}$
	Function	$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$
Maclaurin Series		$f(x) = \sum_{n=0}^{\infty} f^{(n)}(0) \frac{(x-0)^n}{n!} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$
		to convert it to $\frac{1}{1-(x\pm a)}$, then $\sum_{n=0}^{\infty}(x\pm a)^n$
Common Maclaurir	n Series:	

Common Maciaurin Series:	
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$	
$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$	- for all x
$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$	
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots, \text{for } x < 1$	
$ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n+1} x^n}{n} + \dots,$	$for -1 < x \leq 1$
$1 + x^2 + x^4 + x^6 + \dots = \frac{1}{1 - x^2}$	

	Pythagorean Identity		
$sec^2x = 1 + tan^2x$	$\csc^2 x = 1 + \cot^2 x$	$\sin^2 x + \cos^2 x = 1$	
	Addition/Subtraction Identities		
$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$	$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$	$tan(A \pm B) = \frac{tan A \pm tan B}{1 \mp tan A tan B}$	
	Double Angle Formula/ Half Angle Formula		
$\sin 2A = 2 \sin A \cos A$ $\sin^2 A = \frac{1}{2} (1 - \cos 2A)$	$\cos 2A = \cos^2 A - \sin^2 A$ = $2\cos^2 A - 1$ = $1 - 2\sin^2 A$ $\cos^2 A = \frac{1}{2}(1 + \cos 2A)$	$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$ $\tan \left(\frac{x}{2}\right) = \frac{\sin (x)}{1 + \cos (x)}$	

	Chapter 7: Vectors	i			Г		1st order o	derivative (min/max) (
		Distance Formula		Eqn Sphere					$\bullet f_{x}(a,b)$
	$ P_1P_2 = \sqrt{(x_2 - x_2)^2}$	$(-x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$	$(x-a)^2$	$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$			$J_{x}(a, b)$	$f_{y}(a,b)=0$	One of t
		istance point to π		Length u				addle Point	
;	$D = \frac{1}{2}$	$\frac{ ax_0 + by_0 + cz_0 - d }{}$		$= \sqrt{u_1^2 + u_2^2 + u_3^2}$		Extrema	1 1	itical point of f AND	Discrimina
	1	$\sqrt{a^2 + b^2 + c^2}$		$\times \mathbf{b} \parallel = \ \mathbf{a}\ \ \mathbf{b}\ \sin\theta$				pen disk centred at ontains points	$= f_{xx}(a, b)$ 1. D > 0 &
	Orthogonal	2 vectors $\mathbf{a} \otimes \mathbf{b}$ are orthogonal IF The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to					1 1 1	D where $f(x,y) <$	2. D>0&
		A	Ботти и и в	·	-11			& points $(x, y) \in D$	3. D < 0 →
		A 7						f(x,y) > f(a,b)	4. D=0→
	Perp	n /			Ch	apter 9: Doub	le Integrals		/
	Distance	a /	D-+ -	$ a \times b $				$\iint f(x,y) dA$	$-\lim_{m \to \infty} \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \right)$
		"	$Dst = a \sin \theta = \overline{A}$	$ ar = \frac{ b }{ b }$	Ш	Double		$\iint_{R} \int (x,y) dx$	$=\lim_{m,n\to\infty} \left(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\right)$
	Foot of	θ	=	P · n		Integrals		$\int_a^b A(x) = \int_a^b \left[\int_a^d \right]$	f(x 11) du] dx =
-	Perp	0 7 9	= 7	<u> n </u>	⊣IL			$\int_a A(x) = \int_a \left[\int_c \right]$	$\int (x,y) dy dx = $
	Length of	b	• /	Aujacent 7 use dot product (scalar).	Ш	Volume		ī	$V = \iint f(x, y) dx$
	Projection			$\overline{AP} \cdot \widehat{b}$	⊪		 	c cb	JJ_R
		$L.O.P = \frac{\left \overrightarrow{AP} \cdot \boldsymbol{b} \right }{\left \boldsymbol{b} \right } = \frac{\left \overrightarrow{AB} \cdot \boldsymbol{b} \right }{\left \boldsymbol{b} \right }$	$ \vec{s} \times n $	Opposite \rightarrow use cross product vectors): $ \overrightarrow{AP} \times \widehat{b} $				$\int_{R} f(x, y) dA = \int_{a}^{b} f(x, y) dA = \int_{a}^{b} f(x, y) dx$	f(x,y) dy dx =
		b	n	vectors), [× 2]	_	Fubini's	Special Case: f	f(x,y) = g(x)h(y) [1]	್ದ factored out as pro
- 1	Cross	$\begin{bmatrix} i & j & k \\ a & a & a \end{bmatrix}$	- 1 11 1 (- 1	- 1) 1 1 (- 1 - 1) 1-		Theorem			$dA = \left(\int_{a}^{b} g(x) dx \right)$
	Product	$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - b_3)$	$-a_3b_2)i + (a_3b_1)i$	$-a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$				K	\- u
	Line Eqn	$x = x_0 + at;$	$y = y_0 + bt;$	$z = z_0 + ct$	7		Lies between th	ne graphs of 2 contin	
	Plane Eqn	$x = x_0 + at;$ $\langle a, b, c \rangle \cdot \langle x, y, z \rangle = \langle a, b, c \rangle \cdot \langle x, y, z \rangle$	$(x_0, y_0, z_0) \Leftrightarrow ax + ax$	$by + cz = ax_0 + by_0 + cz_0$		Type I		$D = \{(x, y): i \in \mathcal{U}\}$	$a \le x \le b, g_1(x)$
	Flatie Eqii	ax + by + cz + d	$= 0 \Leftrightarrow d = -(a)$	$x_0 + by_0 + cz_0)$	_	Region		$\iint_{D} f(x,y)$ ne graphs of 2 contin	$dA = \int_{a} \int_{a} f$
Щ	Skew Lines	Non-Parallel (Check if direction		,	╟		Lies between th	ne graphs of 2 contin	uous functions of
	Chambar & Function	Non-Intersecting (Equate P ₁ in	to L ₂ , if no solutio	n → non-intersecting)		Type II		$D = \{(x, y) : y \in A \}$	$c < v < d h_*(v)$
_	Vector Val Fn	ons of Several Variables $r(t) = r_0 + t n = /r_0$	1. 7.\ ± t/a h c\ =	$= f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$	-1	Region	$\iint_D f(x,y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)}$		
	r(t)	$= \langle f(t), g(t), h(t) \rangle$		$- \int (t) \mathbf{t} + g(t) \mathbf{j} + h(t) \mathbf{k}$	⊪				
	C-7	w'(t)	$r(t + \Delta t) -$	-r(t)	7	Area of π			$A(D) = \iint_D 1 dA$ $r^2 = x^2 + y^2,$
	r'(t)	If all assessments for home different	$= \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \Delta t}{\Delta t}$		⊪		$r^2 = x^2 + y^2$.		
		If all components f,g,h are differentiable at $t=a \rightarrow r$ is differentiable at $t=a$ $r'(a) = \langle f'(a), g'(a), h'(a) \rangle$		Ш		$x = r \cos \theta$, $y = r$			
	Arc Length	$a = \int_{a}^{b} \left[\epsilon'(t)^{2} \right]$	$f'(t)^2 + g'(t)^2 + h'(t)^2 dt = \int_0^b r'(t) dt$			Polar Form	If f is continuous on a polar rectangle R given by: $R = \{(r,\theta) \colon 0 \le a \le r \le b, \text{ where } 0 \le \beta - \alpha \le 2\pi \text{ then:} $		
	Arc Length	$s = \int_a \sqrt{J} \otimes J$	+ y · · + n · · ut	$\int_{a} \ r'(t)\ dt$					
		Elliptic Paraboloid		Ellipsoid	Ш		•		$= \int_{a}^{\beta} \int_{a}^{b} f(r \cos \theta)$
71		Symmetric About z-axis	If a = b =	c → Sphere x ² v ² z ²				$\iint_{R} \int (x,y) dA$	$=\int_{\alpha}\int_{a}\int (r\cos\theta)$
	Quadric	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$		$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Traces:	Ш	Surface		$S.A = \iint$	$dS = \iint f_{rr}^2 +$
- 1	Surfaces	Traces:		Traces:	L	Area		JJ_D	JJ _D √ ^x ·
		x - plane A parabola $y - plane$ A parabola			II Ch			Equations (ODE)	Dadwatian to Ca
		z – plane A parabola z – plane An ellipse	y-p $z-p$		╟	Separab dv		$y' = g\left(\frac{y}{r}\right)$, where	Reduction to Se
	Partial	$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x+h,y)}{h}$		$= \lim_{h \to 0} \frac{f(x, h+y) - f(x,y)}{h}$	-11	$\frac{dy}{dx} = f(x)$			
	Derivatives	11.→0 11.		n→0 11.	- 111 -	Separating the v	variables:	• Let $v = \frac{y}{x}$, then • Then the equation	y = vx, $y = v + (y)$
	(Order	Partial Derivatives	Derivat	ives of Partial Derivatives $(f_x)_x$ and $(f_x)_y$		$\frac{1}{g(y)}dy =$	= f(x)dx	Inen the equation	cv' = g(v), which
	matters	f _y		$(f_v)_x$ and $(f_v)_y$	Ш	Integrating both	n sides:	senarahlel	
	$f_{xy} \neq f_{yx}$) Order matters however if $f_{xy} = f_{yx}$		f are both contin	are both continuous on <i>D</i> , then:		$\int \frac{1}{a(y)} dy = \int$	f(x) dx + C	• That is $\frac{dv}{g(v)-v} =$	dx r
	Clairaut's	General		licable to higher deriv		7907 7		 Solving for v, we 	obtain y
	Theorem	$f_{xy}(a,b) = f_{yx}(a,b)$		$g_{xyy} = f_{yxy} = f_{yyx}$	_∭_	Linear 1 st	$\frac{dy}{dy} + P(x)$	y = Q(x)	Integrating Fac
	Equation of	Normal Vector to Tangent Plane: (Order ODE		$Q(x) \cdot I(x) dx$	(b.ada aida a l
	Tangent Plane	Eqn of Tangent Plane: $f_x(a,b)(x-b)$	$-a) + f_y(a,b)(y -$		_ _		$y \cdot I(x) = \int$		
	Implicit Diff 2Independent	$\frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)}$		$\frac{\partial z}{\partial y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}$	Ш		whore n ≠ 0.1 is	y' called the Bernoulli	+ p(x)y = q(x)y
	Incr, Diff in z	$\Delta z = f(x + \Delta x, y + \Delta y) - f(x)$	(, v)	$dz = f_{\nu}(x, y) dx + f_{\nu}(x, y) dy$	-11	Bernoulli	Let $u = y^{1-n}$	canca the bernoun	equation.
	Δz approx	Δz approx $\Delta z \approx dz = f_x(x,y)dx + f_y(x,y)dy = f_x(x,y)\Delta x + f_y(x,y)\Delta y$ $f(x_0 + ha, y_0 + hb) - f(x_0, y_0)$				Equation	Subst into Bernoulli equation: $\underline{u' + (1-n)p(x)u} = (1-n)p(x)u$		
						This is a first orde	er linear ODE.		
	Directional $\nabla f(x,y) = \langle f_x, f_y \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$		h	Gradient		Malthus	$\frac{1}{N} = \frac{1}{N_{\infty}} + \left(\frac{1}{\widehat{N}} - \frac{1}{N_{\infty}}\right) e^{-Bt} \Rightarrow N = -\frac{1}{1}$		
			→ Gradient			Model			
		$D_{u}f(x,y) = f_{x}(x,y)a + f_{y}(x,y)$	$b = \langle f_x, f_y \rangle \cdot \langle a, f_y \rangle$	$b\rangle = \langle f_x, f_y \rangle \cdot \boldsymbol{u} = \nabla f(x, y) \cdot \boldsymbol{u}$		1		dentities 1	
	30	$D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{n \to \infty} \frac{f(x_0 + ha)}{n}$	$v_0 + hb, z_0 + hc) - u$	$\frac{f(x_0, y_0, z_0)}{f(x, y, z)} = \nabla f(x, y, z) \cdot \boldsymbol{u}$		$\frac{\sin x}{1}$		cos x sin x	sec x
	3D Directional	$\begin{split} D_{u}f(x,y) &= f_{x}(x,y)a + f_{y}(x,y)b = \langle f_{x},f_{y}\rangle \cdot \langle a,b\rangle = \langle f_{x},f_{y}\rangle \cdot u = \nabla f(x,y) \cdot u \\ D_{u}f(x_{0},y_{0},z_{0}) &= \lim_{h \to 0} \frac{f(x_{0}+ha,y_{0}+hb,z_{0}+hc) - f(x_{0},y_{0},z_{0})}{h} = \nabla f(x,y,z) \cdot u \\ \text{Gradient: } \nabla f(f_{x},f_{y}f_{z}) &= \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k} \end{split}$			tanx	= cot x Product to Sum Formula:	$\frac{\sin x}{\cos x} = \tan x$ m Formulas/Sum to Product Formulas		
	Derivatives	Tangent plane to level surface $F(x)$	$y, z) = k$ at (x_0, y_0)	₁ , z ₀) is:		$\frac{\text{Product to Sum F}}{\sin A \cos B} = \frac{1}{2} (\sin(A + B) + \sin(A + B))$		1	
		Tangent plane to level surface $F(x,y,z)=k$ at (x_0,y_0,z_0) is: $\nabla F(x_0,y_0,z_0)\cdot \langle x-x_0,y-y_0,z-z_0\rangle=0$				$\sin A \cos B = \frac{1}{2} (\sin(A+B) + \sin(B))$ $\sin A \sin B = -\frac{1}{2} (\cos(A+B) + \cos(B))$		1	
	Rates ↑/↓	$D_{\mathbf{u}}f(P) = \ \nabla f(P)\ \cos\theta$	Max: $\ \nabla f(P)\ $	Min: $-\ \nabla f(P)\ $			R-Formula (a	r is always +'ve)	
							$\theta = R \sin(\theta \pm \alpha)$ $R = \sqrt{A^2 + B^2}$	$A \cos \theta \pm B \sin \theta$ R	$= R \cos(\theta \mp \alpha)$ $= \sqrt{A^2 + B^2}$
							$\alpha = \tan^{-1}\left(\frac{B}{4}\right)$		$= \tan^{-1} \left(\frac{B}{4} \right)$

	f(a,b)	$\in D$ where $f(x,y) < 0$ \emptyset where $f(x,y) \in D$	3. $D < 0 \rightarrow (a, b)$	$f(a,b) \le 0 \Rightarrow f(a,b)$ MAX is a saddle point of f					
where $f(x,y) > f(a,b)$ 4. D = 0 \rightarrow no conclusions									
Double Integrals	e integrals $\iint_{R} f(x,y) dA = \lim_{m,n\to\infty} \left(\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \triangle A \right)$ $\int_{a}^{b} A(x) = \int_{a}^{b} \int_{a}^{d} f(x,y) dy dx = \int_{a}^{b} \int_{a}^{d} f(x,y) dy dx$								
Volume	$V = \iint_{R} f(x, y) dA$								
Fubini's Theorem	$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{c}^{b} f(x,y) dx dy$ $\mathbf{Special Case:} f(x,y) = g(x)h(y) \text{ [factored out as product of only x or y]}$ $\iint_{R} g(x)h(y) dA = \left(\int_{a}^{b} g(x) dx\right) \left(\int_{c}^{d} h(y) dy\right)$								
Type I Region	Lies between the graphs of 2 continuous functions of x , that is: $D = \{(x,y): a \le x \le b, g_1(x) \le y \le g_2(x)\}$ $\iint_D f(x,y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx$ Lies between the graphs of 2 continuous functions of y , that is:								
Type II Region	Lies between the graphs of 2 continuous functions of y , that is: $D = \{(x,y): c \le y \le d, h_1(y) \le x \le h_2(y)\}$ $\iint_D f(x,y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) dx dy$								
Area of π	$A(D) = \iint_D 1 dA$ $r^2 = x^2 + y^2,$								
Polar Form	$r^2 = x^2 + y^2,$ $x = r\cos\theta, y = r\sin\theta$ If f is continuous on a polar rectangle R given by: $R = \{(r,\theta) \colon 0 \le \alpha \le r \le b, \alpha \le \theta \le \beta\}$ where $0 \le \beta - \alpha \le 2\pi$ then: $\iint_R f(x,y) dA = \int_\alpha^\beta \int_\alpha^b f(r\cos\theta, r\sin\theta) r dr d\theta$								
Surface Area	$S.A = \iint_{\Omega} dS = \iint_{\Omega} \sqrt{f_x^2 + f_y^2 + 1} dA$								
		al Equations (ODE)							
Separab	le ODE	, ,	Reduction to Separabl	le Form $y' = f(ax + by + c)$					
Separab $\frac{dy}{dx} = f(x)$	x)g(y)	$y' = g\left(\frac{y}{x}\right)$, where g	is any function of $\frac{y}{x}$.	y' = f(ax + by + c)					
Separating the variables: $\frac{1}{g(y)} dy = f(x) dx$ Integrating both sides: $\int \frac{1}{g(y)} dy = \int f(x) dx + C$		y' = $g\left(\frac{y}{x}\right)$, where g is any function of $\frac{y}{x}$. • Let $v = \frac{y}{x}$, then $y = vx$, $y' = v + xv'$. • Then the equation $y' = g\left(\frac{y}{x}\right)$ can be written as: $v + xv' = g(v)$, which is separable!		Where f is continuous and $b \neq 0$ (If $b = 0$, eqn is separable) can be solved by setting:					
		 Solving for v, we obtain v 		u = ax + by + c					
				$= e^{\int P(x)dx}$, compute and integrate)					
Bernoulli Equation	$y'+p(x)y=q(x)y^n$ where $n\neq 0,1$ is called the Bernoulli equation. Let $u=y^{1-n}$ Subst into Bernoulli equation: $\underline{u'+(1-n)p(x)u}=(1-n)q(x)$ This is a first order linear ODE.								
Malthus Model	$M = M + (\Omega - M) \in A = M$								

 $\alpha = \tan^{-1} \left(\frac{B}{A} \right)$

 $\alpha = \tan^{-1} \left(\frac{B}{A} \right)$

Critical/Stationary Point

2nd Derivative Test

• $f_x(a,b) = 0$ and $f_y(a,b) = 0$ OR

Discriminant D = D(a, b)

 $=f_{xx}(a,b)f_{yy}(a,b)-\left[f_{xy}(a,b)\right]^2$

One of the partial deriv doesn't exist

1. D > 0 & $f_{xx}(a,b) > 0 \rightarrow f(a,b)$ MIN