

Low-latency Ethernet Communications on FPGA SoC for High Frequency Trading

Rudy Osuna, Brandon Reponte & Leeza Gutierrez-Ramirez

Overview

90% of trades are made algorithmically (HFT)

We Created:

- Baseline solution so people can improve and develop their own strategies
- What we need: ethernet, udp parser, fast encoder/decoder, order book manager, trading logic
- Very niche problem that requires high speed, important to show the architecture
- Tradeoff: smart or fast

Solution

Optimizing + Downscaling

- Order Book:
 - 4096 BID + 4096 ASK -> 16 BID + 16
 ASK
- order_data_converter:
 - 8→12 TO 4→6 bytes
- top_bid_converter (+ask):
 - 12→8 to 6→4 bytes
- meta_converter:
 - 12→8 bytes (was 16→12)
- NEW time_converter_in + time_converter_out:
 - 32-bit Time signals

References: [1] A. Boutros, B. Grady, and M. Abbas, "A Low-Latency FPGA-based Infrastructure for High Frequency Trading Systems," Dept. of Electrical and Computer Engineering, University of Toronto, 8 pages. [Online]. Available: https://github.com/mustafabbas/ECE1373_2016_hft_on_fpga

Solution

@pynq:/home/xilinx/jupyter_notebooks/HFT# py

Total trades matched : 63

Realized P&L : \$340.20

Note: unmatched buys or sells are ignored in this

root@pynq:/home/xilinx/jupyter_notebooks/HFT#

References: [1] A. Boutros, B. Grady, and M. Abbas, "A Low-Latency FPGA-based Infrastructure for High Frequency Trading Systems," Dept. of Electrical and Computer Engineering, University of Toronto, 8 pages. [Online]. Available: https://github.com/mustafabbas/ECE1373_2016_hft_on_fpga

Outcome?

- Full complete bitstream programmed onto the PYNO-Z1
- 292 lines are new orders (i.e. type BID or ASK), and 252 lines are cancels/removes

IP Core	F _{max} (MHz)	Clock Period (ns)
fast_protocol (fast_hls)	57.16	17.50
order_book (order_book_hls)	137.19	7.29
simple_threshold (threshold_hls)	137.81	7.26
microblaze_to_switch (microblaze_to_switch_hls)	285.76	3.50

References: [1] A. Boutros, B. Grady, and M. Abbas, "A Low-Latency FPGA-based Infrastructure for High Frequency Trading Systems," Dept. of Electrical and Computer Engineering, University of Toronto, 8 pages. [Online]. Available: https://github.com/mustafabbas/ECE1373_2016_hft_on_fpga

Challenges with Ethernet

PYNQ-Z2 board wires the Ethernet directly to the processing system!

Use direct memory move data quickly

Challenges with UDP Parsing

- No existing implementation to reference
- Integrating the UDP packets to FAST decoding pipeline
- Having to get familiar with the quickfast codebase

References: [3] Object Computing, Inc., "QuickFAST: A high performance implementation of the FAST protocol," GitHub repository, [Online]. Available: https://github.com/objectcomputing/quickfast. [Accessed: Jun. 3, 2025].

Unfinished Goals

- Complete the Step-by-Step Setup & Use guide
- Do not have a definite way to log round trip latency (without using the PS via Jupyter)
- Backtester to show PnL (profits and losses)

UC San Diego

What's Next?:

- 1. Optimization Through SystemVerilog Code Instead of Vitis HLS
 - 2. Implement Different Trading Strategy Logic
 - 3. Experiment Upscaling Boards: ZCU104 -> Xilinx Ultrascale+
 - 4. Experiment With Real Data