CRYPTOGRAPHY

МЕТОДИ ТА ЗАСОБИ КРИПТОГРАФІЧНОГО ЗАХИСТУ ІНФОРМАЦІЇ

МОДУЛЬНАЯ АРИФМЕТИКА

Целочисленное деление: ДВА входа, ДВА выхода

Модульное «деление»: ОДИН выход - остаток

ВХОД	выход
<i>а</i> – делимое (целое)	
<i>n</i> – делитель (<i>n</i> >0) МОДУЛЬ	
	r - остаток(r>0) ВЫЧЕТ

Соотношение:

$$\begin{array}{c} a \mod n = r \\ Python \rightarrow r = a \% n \end{array}$$

Модуль по ... п

Множество вычетов - система вычетов по модулю n $\mathbb{Z}_n = \{0, 1, 2, ..., (n-1)\}$

Множество вычетов

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, 3, ..., \}$$

$$\mathbb{Z}_n = \{0, 1, 2, ..., (n-1)\}$$

Примеры:

$$\mathbb{Z}_2 = \{0, 1\}$$
 $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$
 $\mathbb{Z}_{10} = \{0, 1, 2, ..., 9\}$
 $\mathbb{Z}_{12} = \{0, 1, 2, ..., 11\}$

Одно **бесконечное** множество целых и **бесконечное** множество **конечных** множеств вычетов

5

Сравнения

```
!!!
3  mod 10 = 3
13 mod 10 = 3
15 mod 12 = 3
23 mod 10 = 3
27 mod 12 = 3
```

Целые 3, 13, 23 сравнимы по модулю 10 Целые 3, 15, 27 сравнимы по модулю 12

```
Оператор сравнения (\equiv)
3 \equiv 13 (mod \ 10)
3 \equiv 23 (mod \ 10)
```

$$3 \equiv 15 \pmod{12}$$
 $3 \equiv 27 \pmod{10}$

Оператор сравнения (\equiv) отображает \mathbb{Z} в \mathbb{Z}_n

Система вычетов

Система вычетов [а] (или $[a]_n$) - множество целых чисел, сравнимых по модулю n. Иначе это набор таких целых x, что

$$x = a \pmod{n}$$

Например: для
$$n=5$$
 $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ и $[0] = \{..., -15, -10, -5, 0, 5, 10, 15,\}$ $[1] = \{..., -14, -9, -4, 1, 6, 11, 16,\}$ $[2] = \{..., -13, -8, -3, 2, 7, 12, 17,\}$ $[3] = \{..., -12, -7, -2, 3, 8, 13, 18,\}$ $[4] = \{..., -11, -6, -1, 4, 9, 14, 19,\}$

Операторы в \mathbb{Z}_n

Бинарные операторы:

сложение, вычитание, умножение.

Операторы в \mathbb{Z}_n Бинарные операторы: сложение, вычитание, умножение.

Важные свойства

$$(a+b) mod n = [(a mod n) + (b mod n)] mod n$$

$$(a-b) mod n = [(a mod n) - (b mod n)] mod n$$

$$(a*b) mod n = [(a mod n) * (b mod n)] mod n$$

Операторы в \mathbb{Z}_n Остаток от степени числа 10

Найти $10^k mod n$

```
Например, найти: {\bf 10^1 mod~3} \ {\bf 10^2 mod~3} \ {\bf 10^3 mod~3} \ \dots Свойство
```

 $10^{2} mod 3 = (10 * 10) mod 3$ = (10 mod 3 * 10 mod 3) mod 3= $(10 mod 3)^{2} mod 3$

 $10^k mod n = (10mod n)^k mod n$

(a*b)**mod** n = [(a**mod** n)*(b**mod** n)]**mod** n

Операторы в \mathbb{Z}_n Инверсные (обратные) операции

Обычная арифметика.

Вычитание - операция инверсная сложению:

$$a+b=0$$
 $b=-a$

Деление - операция инверсная умножению:

$$a * b = 1$$
 $b = \frac{1}{a} = a^{-1}$

Операторы в \mathbb{Z}_n . Модульная арифметика: Инверсные операции

Аддитивная инверсия в \mathbb{Z}_n . Два числа аддитивны, если: $a+b\equiv 0 (mod\ n)$ Или b=n-a

Например: в \mathbb{Z}_{10} a = 3 b = 10-3 = 7 !! пары взаимно аддитивных в \mathbb{Z}_{10} (0,0) (1,9) (2,8) (3,7) (4,6) (5,5)

 $B \ \mathbb{Z}_n$ каждое целое имеет OДНУ аддитивную инверсию (м.б. само число)

Операторы в \mathbb{Z}_n . Модульная арифметика: Инверсные операции

Таблица сложения в \mathbb{Z}_{10} .

n=10	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2
4	4	5	6	7	8	9	0	1	2	3
5	5	6	7	8	9	0	1	2	3	4
6	6	7	8	9	0	1	2	3	4	5
7	7	8	9	0	1	2	3	4	5	6
8	8	9	0	1	2	3	4	5	6	7
9	9	0	1	2	3	4	5	6	7	8

Операторы в \mathbb{Z}_n . Модульная арифметика: Инверсные операции

Мультипликативная инверсия в \mathbb{Z}_n . Два числа мультипликативные, если:

 $a * b \equiv 1 \pmod{n}$

n=10	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0 (1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	$)$ ∞	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

 \mathbb{Z}_{10} : (1,1) (3,7) (9,9)

Операторы в \mathbb{Z}_n . Модульная арифметика: Инверсные операции

Доказано для \mathbb{Z}_n .

Два числа мультипликативные в \mathbb{Z}_n , если: gcd(n, a) = 1 N = 10 gcd(10,a) N = 11 gcd(11,a)

N =10	gcd(10,a)
1	(1)
2	2
3	(1)
4	2
5	5
6	2
7	(1)
8	2
9	(1)

	$-\pi$
N =11	gcd(11,a)
1	1
2	1
3	1
4	1
5	1
6	1
7	1
8	1
9	1
10	1

Операторы в \mathbb{Z}_n . Модульная арифметика: Мультипликативная инверсия.

Расширенный алгоритм Эвклида может найти мультипликативную инверсию для заданного b в \mathbb{Z}_n (! Если инверсия существует).

```
s*n+t*b=\gcd(n,b)=1 (s*n+t*b)mod n=1 mod n [(s*n)mod n+(t*b)mod n]mod n=1 mod n =1 mod n 0+(t*b)mod n=1 (t*b)mod n=1 T.e. t мультипликативная инверсия b, при \gcd(n,b)=1
```

Операторы в \mathbb{Z}_n . Модульная арифметика: Мультипликативная инверсия. (Эвклид)

Здесь q=r1//r2, r=r1-q*r2, t=t1-q*t2, Если R1=1 то $b^{-1}=t1$

Операторы в \mathbb{Z}_n . Модульная арифметика: Мультипликативная инверсия. (Эвклид)

Найти b^{-1} для b = 11 в \mathbb{Z}_{26}

r1	r2	r	q	t1	t2	t
26	11	4	2	0	1	-2
11	4	3	2	1	-2	5
4	3	1	1	-2	5	-7
3	1	0	3	5	-7	26
1	0			-7		

$$t1 = -7 \notin \mathbb{Z}_{26}.(-7) \mod 26 = 19$$

$$11^{-1} = 19 in \mathbb{Z}_{26}$$

Операторы в \mathbb{Z}_n . Модульная арифметика: Мультипликативная инверсия. (Эвклид)

Пример: Найти b^{-1} для b = 23 в \mathbb{Z}_{100} $t1 = -13 \notin \mathbb{Z}_{100}$. $(-13) mod \ 100 = 87$ Проверка: $(23 * 87) mod \ 100 = 2001 mod \ 100 = 1$

Операторы в \mathbb{Z}_n . Модульная арифметика: Мультипликативная инверсия.

Обозначим \mathbb{Z}_{n*} подмножество \mathbb{Z}_{n} целых чисел имеющих мультипликативную инверсию

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}. \quad \mathbb{Z}_{6*} = \{1, 5\}.$$

$$\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$
 $\mathbb{Z}_{10*} = \{1, 3, 7, 9\}.$

$$\mathbb{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$
 $\mathbb{Z}_{11*} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

Операторы в \mathbb{Z}_n . Модульная арифметика: Мультипликативная инверсия.

Обозначим \mathbb{Z}_{p} множество целых, где p ПРОСТОЕ число.

Например

$$\mathbb{Z}_{13} = \{\, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 \}$$
 И, соответственно, \mathbb{Z}_{p^*} множество целых по модулю p (ПРОСТОЕ), имеющих мультипликативную инверсию.

$$\mathbb{Z}_{13*} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

Матрица
$$A = \begin{pmatrix} a_{0,0} & \cdots & a_{0,m-1} \\ \vdots & \ddots & \vdots \\ a_{n-1,0} & \cdots & a_{n-1,m-1} \end{pmatrix}$$

где n — строк, m — столбцов.

Если n = m - квадратная

Если n = 1 —строка (вектор — строка)

Если m = 1 — столбец (вектор — столбец)

Равенство матриц

$$A = B$$
, if $a_{i,j} = b_{i,j}$

для всех i,j .

Сложение, вычитание

$$C = A + B / C = A - B$$

$$c_{i,j} = a_{i,j} + b_{i,j} / c_{i,j} = a_{i,j} - b_{i,j}$$

!!! Одинаковые n, m

Умножение
$$C = A \times B$$
!!! Число столбцов A равно числу строк B

$$c_{i,k} = \sum_{j=0}^{m-1} a_{i,j} * b_{j,k}$$

$$i=0,1,...,n-1$$

$$k=0,1,...,l-1$$

Скалярное умножение
$$\boldsymbol{C} = \boldsymbol{n} \times \boldsymbol{A}$$
 $\boldsymbol{c_{i,j}} = \boldsymbol{n} \times \boldsymbol{a_{i,j}}$

Детерминант
$$\det(A)$$
 КВАДРАТНОЙ матрицы A if $n=1$, $\det(A)=a_{0,0}$ if $n>1$ $\det(A)=\sum_{i=0}^{m-1}(-1)^{i+j}\times a_{i,j}\times \det(A_{i,j})$

Аддитивная инверсия матриц Матрица *C* аддитивно инверсна *A*, если A + C = 0 или $c_{i,i} = -\alpha_{i,i}$. Обозначается -A.

Мультипликативная инверсия матриц Матрица C мультипликативно инверсна A, если $A \times C = C \times A = I$. Обозначается A^{-1} . Существует только для **квадратных** матриц, если $\det(A) \neq 0$.

Матрицы в \mathbb{Z}_n . Матрицы вычетов

Особенность:

Мультипликативная инверсия матриц Матрица A , где все $a_{j,j} \in \mathbb{Z}_n$, имеет мультипликативную инверсию, только если $\det(A)$ имеет мультипликативную инверсию в \mathbb{Z}_n .

Матрицы в \mathbb{Z}_n . Матрицы вычетов

Сравнение матриц:

$$A \equiv C \mod n$$

Две матрицы A и C сравнимы по модулю n, если они имеют одинаковое число строк и столбцов и все их элементы сравнимы по модулю n. То есть

$$a_{i,j} \equiv b_{i,j} \mod n \quad \forall i,j$$

Вопросы:

- Укажите различие между Z и Z_n .
- Укажите четыре свойства теории делимости целых чисел .
- Определите понятие наибольшего общего делителя двух целых чисел.
- Опишите алгоритм Эвклида определения НОД.
- Опишите расширенный алгоритм Эвклида.
- Определите понятие наименьшего общего кратного.

ЛИТЕРАТУРА

Нечаев В.И. Элементы криптографии (Основы теории защиты информации).- Учеб. пособие. — М.:, ВШ., 1999.- 109 с.

Введение в криптографию. **Под общ. ред. В.В.Ященко.** — 4-е изд., доп. М.: МЦНМО, 2012 — 348 с. ISBN 978-5-4439-0026-1

ЛИТЕРАТУРА

Венбо Мао. Современная криптография: теория и практика.—М.: Издательский дом «Вильямс», 2005.—768 с.: ил. ISSN 5-8459-0847-7 (рус.)

Шнайер Б. Прикладная криптография. Протоколы, алгоритмы и исходный код на Си. – Москва: Вильямс, 2016. 1024 с.

ЛИТЕРАТУРА

Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, Cetin Kaya Koc.

Cryptographic Algorithms on Reconfigurable Hardware. - Springer, 2006.

A. Menezes, P. van Oorschot, S. Vanstone.

Handbook of Applied Cryptography.- CRC Press, 1996.

END # 5