登录 | 注册

wutong_login的专栏

对比上图和基本原理图,我们会发现只是多了一个Fitler,那么H.264和MPEG-2编码之间的区别只是在于这一个Filter吗?

H.264和MPEG-2编码<u>效率的主要提升在于以下几方面</u>的主要区别:

- n 帧内预测编码
- n <u>多帧参考</u>
- n ME时宏块和ME时细化宏块,子宏块比较,¼像素ME
- n 多帧参考
- n 更高效的熵编码CAVLC和CABAC
- n Deblock Filter

5.2 H.264的Profile

到目前为止, H.264共有四个级别的Profile:

H.264-AVC视频编码原理
(11238)
P2P中的NAT穿越方案
(10829)
H.264-AVC视频编码原理
(10582)
H.264学习笔记之一(层)
(10040)
msvc compile vlc forums (9689)
H.264-AVC视频编码原理 (9543)
msvc 编译 VLC (9467)

评论排行	
基于IP播放TS流的码率搭	(23)
crtmpserver流媒体服务器	(11)
单节目变码率TS流复用算	(10)
HLS协议实现	(5)
msvc 编译 VLC	(5)
H.264学习笔记之一(层)	(4)
Linux中配置samba服务器	(4)
一种基于TS包比例占用的	(3)
windows平台下vlc编译之	(3)
ffmpeg的编译大全【转载	(3)

推荐文章

最新评论

crtmpserver流媒体服务器的介绍 莴笋Ho: 不错,谢谢分享~

HLS协议实现 usbfans2013: 谢谢分享

msvc 编译 VLC

fengbingchun: 你好

http://www.megaupload.com/? d=EYG5IAE6 你上面给的这个网址...

H.264-AVC视频编码原理及实现 ooXingKong123456789: 很好的 文章,收藏了

Apple, HLS, NAL_AUD, ——chinapacs: 高手!!

单节目变码率TS流复用算法的研 武爱敏: @yyd01245:你好,如果 编出来的数据是固定码率的话, pts-pcr应该在一个比较稳定的范 周

单节目变码率TS流复用算法的研yyd01245: 楼主你好,我目前也是用音频生成pcr,用检测工具pcr间隔是保持24ms,但是pts-pcr这个值波...

crtmpserver流媒体服务器的介绍。 Jason_Plus: @wutong_login:恩. 想用他来代替FMS

VirtualBox修改虚拟机磁盘VDI的; 武爱敏: virtualbox可以用这个命 令修改GUID: VBoxManage internalcommand...

crtmpserver流媒体服务器的介绍 武爱敏: @jingjing123123jing:你好,我没有使用过P2P的功能。 我理解P2P应该是播放器端来...

各个Profile的特点在图中已经标明,这些不同的特点决定不同Profile的不同应用场合。

Baseline:一般用在可视电话,会议电视,无线通信等实时通讯情况下。

Main:运行隔行,主要用于数字电视与数字视频存储。

Extended:支持码流的切换,主要用于流媒体。

High:用在高清分辨率的场合。

由上图我们可知,各等级之间并不是子集的关系。

5.3 帧内预测编码

我们知道,在MPEG-2中,帧内编码就是直接对MB进行DCT变换,然后保存相关的参数。在H.264中,对帧内编码引入了预测编码,所谓帧内预测就是在对MB进行DCT变换前,先根据其周围已编码的MB或sub-MB进行预测,仅对预测后的残差和预测方式进行编码。

针对16x16和4x4, H.264提供了多种预测方式。

5.3.1 4x4帧内预测编码

4x4预测适用于细节较多的MB。

图 6.14 a)利用像素 A-Q 对方块中 a-p 像素进行帧内 4×4 预测

b)帧内 4×4 预测的 8 个预测方向

4x4预测编码共9种方式:

图 6.15 4×4 亮度块预测模式

表 6.3 预测模式描述

模式	描述
模式0(垂直)	由A、B、C、D垂直推出相应像素值
模式1(水平)	由I、J、K、L水平推出相应像素值
模式 2 (DC)	由 A~D 及 I~L 平均值推出所有像素值
模式 3(下左对角线)	由 450 方向像素内插得出相应像素值
模式 4(下右对角线)	由 450 方向像素内插得出相应像素值
模式5(右垂直)	由 26.60 方向像素值内插得出相应像素值
模式6(下水平)	由 26.60 方向像素值内插得出相应像素值
模式7(左垂直)	由 26.60 方向像素值内插得出相应像素值
模式8(上水平)	由 26.60 方向像素值内插得出相应像素值

模式	描述
模式0(垂直)	由上边像素推出相应像素值
模式1(水平)	由左边像素推出相应像素值
模式 2 (DC)	由上边和左边像素平均值推出相应像素值
模式3(平面)	利用线形"plane"函数及左、上像素推出相应像素值,适用于亮度变化平缓区域

5.3.2 16x16帧内预测编码

16x16预测适合平坦区域的MB的。

5.3.3色度8x8帧内预测

每个帧内编码宏块的8×8 色度成分由已编码左上方色度像素预测而得,两种色度成分常用同一种预测模式。4 种预测模式类似于帧内16×16 预测的4 种预测模式,只是模式编号不同。其中DC(模式0)、水平(模式1)、垂直(模式2)、平面(模式3)。

5.4 多帧参考

在H.264中,参考帧最多数目可以达到16个。H.264维护了两个List用于保存参考帧图像,List中图像基于POC进行排序,包括了前向参考和后向参考的图像。

5.5 帧间ME

5.5.1帧间ME的宏块及宏块分割

I 宏块分割

ME时16x16MB有以下几种分割方式:

色度块分割则为相应的亮度的一半。

下图是一个预测后的残差帧:

我们可以看到在平坦区域一般是16x16分割,在细节较多的区域采用较细的分割。

I MV预测

预测矢量MVp 基于已计算MV 和MVD(预测与当前的差异)并被编码和传送。MVp 则取决于运动补偿尺寸和邻近MV 的有无。

其中:

- 1) 传输分割不包括16×8 和8×16 时, MVp 为A、B、C 分割MV 的中值;
- 2) 16×8 分割,上面部分MVp 由B 预测,下面部分MVp 由A 预测;
- 3) 8×16 分割,左面部分MVp由A预测,右面部分MVp由C预测;
- 4) 跳跃宏块 (skipped MB),同1)。

1/2,1/4像素搜索

1/2像素内插:

图 6.22 亮度半像素位置内插

内插算法:

$$\mathbf{b} = \text{round}((E - 5F + 20G + 20H - 5I + J)/32)$$

1/4内插:

1/4内插算法在1/2基础上通过线性进行。

 $\mathbf{a} = \text{round}((\mathbf{G} + \mathbf{b}) / 2)$

5.6 熵编码

- n CAVLC
- n CABAC

5.7 Deblock filter

块效应的产生,是由于预测时基于方块进行的。在进行量化后,方块的边界有时变得非常明显。

- n 解码完的一帧数据进行Deblocking
- n Intra编码的MB没有进行Deblocking

Figure 6 Reconstructed, QP=36 (no filter) Figure 7 Reconstructed, QP=36 (with filter)

去块效应的具体方法:

表 6.22 滤波器强度参数与编码模式的关系

农 0.22 滤放新速度多数引编时快入的大东		
图像块模式与条件	Bs	
边界两边一个图像块为帧内预测并且边界为宏块边界	4	
边界两边一个图像块为帧内预测	3	
边界两边一个图像块对残差编码	2	
边界两边图像块运动矢量差不小于1个亮度图像点距离	1	
边界两边图像块运动补偿的参考帧不同	1	
其它	0	

版权声明:本文为博主原创文章,未经博主允许不得转载。

上一篇 H.264-AVC视频编码原理及实现(四)

下一篇 H.264-AVC视频编码原理及实现(六)

主题推荐 h.264 视频 编码

猜你在找

有趣的算法(数据结构)

数据结构和算法

Java经典算法讲解

数据结构(C版)

Spark应用实战

REALLY! 1.5 million data analyst jobs by 2018

earn your master's >

查看评论

暂无评论

您还没有登录,请[登录]或[注册]

* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

核心技术类目