50.039 Theory and Practice of Deep Learning W10-S1 Graph Convolutional Networks

Matthieu De Mari

About this week (Week 10)

- 1. What are graph objects?
- 2. How do we **define** a graph object **mathematically**?
- 3. What are typical graph problems?
- 4. How can we **embed a graph object** to later feed it to a Neural Network?
- 5. What is a **graph convolution** and how des it relate to the concept of image convolution?
- 6. What are more **advanced problems** and **approaches** on graph convolutional Neural Networks?

Outline

In this lecture

- Introduction to graph theory
- Definitions for key concepts
- Typical problems in Graph Theory
- A few practical applications for graph theory (social networks, neural networks, transport networks, etc.)

In the next lectures

- Using graph types datasets
- Graph convolutions and graph embeddings
- Graph Convolutional Neural Networks
- Graph Convolutional Neural Networks with Attention Mechanisms
- Some more advanced embeddings

Graph theory

Definition (graph theory):

In mathematics, graph theory is the study of graphs objects, which are mathematical structures used to model pairwise relations between objects.

Graphs are one of the principal objects of study in **discrete mathematics**.

Graphs: a general and minimal definition

- Definition (graph): A graph is a mathematical object, defined by an ordered pair G = (V, E), with
- $V = \{x_1, x_2, ..., x_N\}$ a set of N vertices (also called **nodes** or **points**),
- And E a set of edges (also called links or lines), defined as a subset of $\{(i,j) \mid \forall i \in [1,N], \forall j \in [1,N]\}$.

Nodes definition and attributes

- Definition (nodes): A node x_i is a point in the graph.
- A **node** has a **name** x_i , which is used for indexing and differs from one node to another.
- A node may also have attributes, for instance:
 - Some **node features**, defined, for instance, as a vector $h_i \in \mathbb{R}^F$, with F elements,
 - Some **node label** y_i , defining a class for the node.

Edges definition

- Definition (edges): An edge (i, j) defines a connection from node x_i to node x_j .
- If edge $(i, j) \in E$, then nodes x_i and x_j are connected in the graph G.

• In our example, we have

$$E = \{(1,2), (2,3), (2,4), (3,4), (4,5)\}$$

Undirected graph definition

- **Definition (undirected graph):** A graph *G* is **undirected**, if connections go both ways.
- Undirected property: "if node x_i is connected to node x_j , then node x_j is also connected to node x_i ".
- Our example is an undirected graph, and the edges set writes as

$$E = \{(1,2), (2,1), (2,3), (3,2), (2,4), (4,2), (3,4), (4,3), (4,5), (5,4)\}$$

Or, to avoid redundancy,

$$E = \{(1,2), (2,3), (2,4), (3,4), (4,5)\}$$

Examples of an undirected graph

facebook

- An examples of an undirected graph is... Facebook!
- A node x_i simply consists of a Facebook user, and its features are user data.
- If two users *i* and *j* are friends, then there exist an **edge** (*i*, *j*) connecting both users.
- Undirected property: "if node x_i is connected to node x_j , then node x_i is also connected to node x_i ".

Node name: x_i = User ID

Node features: h_i = (user first name, user family name, date of birth, age, etc.)

Directed graph definition

- **Definition (directed graph):** A graph *G* is **directed**, if the undirected property does not hold.
- Undirected property: "if node x_i is connected to node x_j , then node x_j is also connected to node x_i ".

 Our example is a directed graph, and our edges set writes as

$$E = \{(1,2), (2,1), (3,2), (4,2), (3,4), (4,3), (4,5)\}$$

Examples of a directed graph

- An examples of a directed graph is...
 Twitter/Instagram!
- As before, a $node x_i$ consists of a Twitter user, and its features are user data.

• On Twitter, the undirected property does not hold: you can follow people, but they do not have to follow you back.

Node name: x_i = User ID

Node features: h_i = (user first name, user family name, date of birth, age, etc.)

• Definition (adjacency matrix): The adjacency matrix of a graph G, is the square matrix A, with general term a_{ij}

general term
$$a_{ij}$$

$$a_{ij} = \begin{cases} 1 & if \ (i,j) \in E \\ 0 & otherwise \end{cases}$$

• In our example, we have

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

 Property (adjacency matrix in undirected graphs):

The **adjacency matrix** of an undirected graph G is **symmetric**.

• In our example, we have

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Property (adjacency matrix in undirected graphs):

The **adjacency matrix** of an undirected graph G is **symmetric**.

• In our example, we have

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Definition (Hermitian matrix):

A real-valued matrix A is **Hermitian** if and only if $a_{ij} = \overline{a_{ji}}$. (a.k.a. symmetric matrix)

Theorem (Spectral Theorem):

A Hermitian matrix is **unitarily diagonalizable** (i.e. it admits a basis of orthonormal vectors) with **real eigenvalues**.

 Property (adjacency matrix in undirected graphs):

The **adjacency matrix** of an undirected graph G is **symmetric**.

• In our example, we have

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

 Property (adjacency matrix in directed graphs):

The adjacency matrix of a directed graph G is not necessarily symmetric.

• In our example, we have

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Degree of a node and degree matrix

• Definition (degree matrix): The degree matrix of an <u>undirected</u> graph G, is the diagonal square matrix D, with general term d_{ii} d_{ii} = number of nodes connected to node x_i

In practice, we call d_{ii} the **degree** of the node x_i .

In the Facebook example, the degree of node x_i is simply the number of friends of user x_i .

Degree of a node and degree matrix

• Definition (degree matrix): The degree matrix of an <u>undirected</u> graph G, is the diagonal square matrix D, with general term $d_{ii} = degree \ of \ node \ x_i$

$$D = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

In-degree/out-degree of a node

• **Note:** this is applicable only for directed graphs.

• Definition (in-degree of a node): The in-degree d_{ii}^+ of node i of a directed graph G is the number of edges incoming to node x_i .

• In our example, the in-degree of node x_2 is 3.

In-degree/out-degree of a node

 Note: this is applicable only for directed graphs.

• Definition (out-degree of a node): The out-degree d_{ii}^- of node i of a directed graph G is the number of edges outgoing from node x_i .

• In our example, the out-degree of node x_2 is 1.

In-degree/out-degree of a node

- **Note:** this is applicable only for directed graphs.
- In our Twitter example,
 - the in-degree is the number of accounts following user x_i ,
 - and the out-degree the number of accounts that user x_i follows.
- Definition (degree of a node): The degree of a node x_i in an directed graph G, is the sum of its in- and out-degrees.

Degree of a graph

- Definition (degree of a graph): The degree of a graph *G* is the sum of all nodes degrees.
- Undirected: $\sum_i d_{ii} = Tr(D)$
- Directed: $\sum_i d_{ii} = \sum_i (d_{ii}^+ + d_{ii}^-)$

Laplacian matrix (undirected graphs)

Definition (Laplacian matrix):

The Laplacian matrix of a graph is defined as L = D - A.

(Following our previous notation, we have D denoting the degree matrix of the graph, and A its adjacency matrix)

- The Laplacian matrix L has very interesting properties:
 - Some of these I will list as challenges in the next slide (only for the braves, who feel like practicing!)
 - Some others properties, we will discuss in the next lectures.

Challenge question #1 (easy):

Consider an undirected graph G, with a Laplacian matrix L. Prove that **every row sum** and **column sum** of L is **zero**.

Challenge question #2 (medium):

Prove that the Laplacian matrix L of an undirected graph G is **symmetric** and **positive semidefinite** (i.e. all its eigenvalues are positive).

Challenge question #3 (good luck!):

Consider an undirected graph G, with a Laplacian matrix L. Prove that the number of connected <u>components</u> in the graph is the dimension of the nullspace of matrix L, and the algebraic multiplicity of its 0 eigenvalue.

- **Definition (component of a graph):** a **component** is a set of nodes in the graph (also called a subgraph), in which
 - 1. All nodes in the subgraph are connected to each other.
 - 2. None of the nodes in the subgraph are connected to any of the nodes in the supergraph (i.e. the other nodes in the graph, which are not part of the subgraph).

The graph, in our example on the right, has three components, in red, blue and purple.

Reachability in a graph

• **Definition (reachability):** A node x_i is **reachable** from node x_i , if and only if there exists a sequence

$$((k_1, k_2), (k_2, k_3), \dots (k_{m-1}, k_m)),$$

such that

- $k_1 = x_i$
- $k_m = x_i$
- And $\forall t \in [1, m-1], (k_t, k_{t+1}) \in E$
- In our example, x_5 is reachable from x_3 . The converse is not true.

Distances in a graph: hops/jumps

• Definition (hop-distance): Consider a node x_j reachable from x_i . The hop-distance $d(x_i \rightarrow x_j)$ from node x_i to node x_j is the length of the smallest sequence

$$((k_1, k_2), (k_2, k_3), ... (k_{m-1}, k_m)),$$
 such that

- $k_1 = x_i$
- $k_m = x_i$
- And $\forall t \in [1, m-1], (k_t, k_{t+1}) \in E$
- In our example, the hop-distance from x_4 to x_1 is 2.

Distances in a graph: hops/jumps

2nd-degree connections - People who are connected to your 1st-degree connections. You'll see a **2nd** degree icon next to their name in search results and on their profile. You can send them an invitation by clicking the Connect button on their profile page, or by contacting them through an InMail. Learn more about InMail.

Jun Liu • 2nd Assistant Professor, Singapore University of Technology and Design Singapore

Tianruo Shen, Pranav Agarwal, and 8 other shared connections

Distances in a graph: hops/jumps

Note: in directed graphs,

- We must to take into account the direction of the edges!
- Reachability might exist from x_i to x_j , but not from x_j to x_i !
- Number of hops to get from x_i to x_j is not necessarily the same as the number of hops to get from x_j to x_i !

Edge attributes

We have seen earlier that:

- A **node** has a **name** x_i , which is used for indexing and differs from one node to another.
- A node may also have **attributes**, for instance:
 - Some **node features**, defined as a vector h_i ,
 - Some **node label** y_i , defining a class for the node.

- An edge (i, j) may also have attributes, for instance:
 - Some **edge features**, defined as a vector $e_{ii} \in \mathbb{R}^{F'}$, with F' elements,
 - Some **edge label** l_{ij} , defining a class for the edge.
- Open question: Could you think of possible edge attributes for our Facebook/Twitter/Instagram examples?

Some illustrative examples

 On top of the examples we have seen so far (mostly social networks, such as Facebook, Twitter, LinkedIn,...)

• Here are a few examples of graphs and some interesting underlying problems, which could be investigated.

Distances in a graph: using edge features

- It is very common for the edge features to carry an information related to the distance between the nodes connected by this edge.
- This information can be used to define a distance metric between two nodes.
- Typical problem: define the shortest path/distance between two places.

Traveling salesman problem

- Consider a fully connected graph (i.e. a graph with all possible edges drawn).
- Edges weight e_{ij} consists of the amount of time needed to go from node x_i to node x_i .
- What is the best sequence to visit all nodes, starting from x_1 and ending in x_1 ?
- It should **minimize** the sum of visited edges.

Distances in a graph: an images example

- In computer vision, you might also need to compute a similarity between pictures of a same dataset.
- This similarity measure (e.g. triplet loss) can also be interpreted as a distance measure on edges connecting images (nodes).

COVID-19 contagion graph

COVID-19 contagion graph

- Nodes are all Singaporean individuals
- Nodes names: person's name
- Nodes features: age, work, address, etc.
- Node labels: (infected, not infected)
- Edges indicate contact links between individuals

- Edge features could be details related to the contact between individuals (work/leisure, cluster address, etc.)
- Edge might be directed, to indicate the contagion direction
- Edge labels are 1 if this contact led to an infection from one person/node to another, and 0 otherwise.

COVID-19 contagion graph

Many application for such a COVID-19 contagion graph.

- Contact tracing: reconstructing the contagion links in the graph as close to the reality as possible.
- Confinement and social distancing: limiting the number of edges between nodes, to prevent contagion.

- Finding patient zero: consists of looking for the one infected node that can reach all other infected nodes through infected edges.
- Contagion inference: attempt to predict the next infected person based on current graph state.

• Etc.

Knowledge graphs: a.k.a. Wikipedia

Alexander

Hamilton

Neural Networks are graphs as well?!

- Yes, neural networks can also be modeled as directed graphs...
 - Nodes = neurons
 - Nodes features = logits, input/output nodes values, etc.
 - Edges = node connections (might be erased by dropout)
 - Edges features = weights, activation functions, propagation rules, etc.
 - Forward propagation and backpragation mechanisms...

More problems on Graph Theory

Graph theory has many more open problems, which are currently unsolved.

- Graph coloring
- Radius and diameter of a graph
- Graph cycles detection
- Many other optimization problems on graphs...
- Stochasticity on Graphs...

Restricted

Conclusion

In this lecture

- Introduction to graph theory
- Definitions for key concepts
- A few practical applications for graph theory (social networks, neural networks, transport networks, molecular structures, 3D mappings, etc.)

 Answers to challenges: [Luxburg] U. von Luxburg, A Tutorial on Spectral Clustering. (refer to Chapter 3 of paper)

Conclusion

In this lecture

- Introduction to graph theory
- Definitions for key concepts
- A few practical applications for graph theory (social networks, neural networks, transport networks, molecular structures, 3D mappings, etc.)

In the next lectures

- Using graph types datasets
- Graph convolutions and graph embeddings
- Graph Convolutional Neural Networks
- Graph Convolutional Neural Networks with Attention Mechanisms
- Some more advanced embeddings

Learn more about these topics

Out of class, for those of you who are curious

- [Bondy1976] Bondy et al., "Graph Theory with applications", 1976.
- [Bondy2008] Bondy and Murty, "Graph Theory, 2008.
- [Medium1] A Gentle Introduction To Graph Theory, 2017. https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8

• [MiniMetro] MiniMetro game (Web Demo) https://www.coolmathgames.com/0-mini-metro-london

Let us practice a bit

Have a look at the practice exercises on the whiteboard!