

ARQUITECTURAS BIG DATA, APACHE SPARK Y KAFKA

Actividad de transferencia

Definiendo Tecnologías

En los proyectos de Big Data y fundamentalmente en aquellos proyectos que son de Big Data Streaming, es decir, de tiempo casi-real, hemos visto que existen arquitecturas por un lado y tecnologías por otro que permiten de alguna forma dar respuesta eficiente a estos proyectos.

Entre las arquitecturas vimos la arquitectura Lambda y la Arquitectura Kappa. Entre las tecnologías, vimos Apache Spark y Apache Kafka. No obstante, es frecuente que en los proyectos de big data se combinen diversas tecnologías.

La actividad de esta semana consiste en armar un **cuadro comparativo**, para que puedas conocer otras tecnologías también muy utilizadas y, sobre todo, para revisar algunas diferencias sutiles que hay entre ellas.

Vamos a comparar las siguientes tecnologías:

- Apache Storm
- Apache Spark
- Apache Samza

Aplicaci ón	¿Para qué se utiliza?	Algunas ventajas	Proyectos ideales para implementar esta tecnología	Ejemplo de empresa que lo utiliza
Apache Storm	Procesamiento de datos en tiempo real y en flujos continuos.	Baja latencia.Alto rendimient o	 Análisis de redes sociales en 	Twitter

		 Escalabilid ad horizontal Arquitectu ra basada en topologías flexibles 	tiempo real Monito reo de sistema s y detecci ón de fraudes Proces amient o de logs y clics
Apache Spark	Procesamiento en tiempo real (con Spark Streaming), por lotes y análisis avanzado de grandes volúmenes de datos.	 Soporte para múltiples lenguajes (java, scala, python y R) Alto rendimient o con procesami ento en memoria API unificada para batch y streaming 	 Machin e learnin g con grandes volúme nes de datos Proces amient o ETL Análisis de logs, métrica s y compor tamient o de usuario s
Apache Samza	Procesamiento de flujos en tiempo real, especialmente con integración nativa a Kafka y YARN.	 Integración nativa con Apache Kafka Alta tolerancia a fallos Procesami ento local 	 Aplicaci ones de monito reo en tiempo real Dashbo ards de

	(near data	eventos	
	processing)	en vivo	
		Enrique	
		cimient	
		o de	
		datos	
		en	
		flujos	
		Kafka	

Fuente de datos consultada:

- Apache Storm Official Documentation: https://storm.apache.org/
- Apache Spark Official Documentation: https://spark.apache.org/
- Apache Samza Official Documentation: https://samza.apache.org/
- Karau, H., & Warren, R. (2015). High Performance Spark. O'Reilly Media.
- Gulisano, V., et al. (2012). StreamCloud: An elastic and scalable data streaming system. IEEE Transactions on Parallel and Distributed Systems.
- Zaharia, M. et al. (2016). Apache Spark: a unified engine for big data processing. Communications of the ACM.
- Toshniwal, A. et al. (2014). Storm@Twitter: Scaling distributed stream processing. VLDB.
- Noghabi, S.A. et al. (2017). Samza: stateful scalable stream processing at LinkedIn. Proceedings of the VLDB Endowment.
- Netflix Tech Blog: https://netflixtechblog.com/

La entrega será un documento WORD o PDF con el cuadro comparativo. Debes de estar lo más completo que puedas y, sobre todo, debes colocar las referencias de dónde has obtenido la información.

NOTA: Recuerda utilizar recursos como Google Académico, para acceder a papers o documentos académicos que puedan tener validez para educación.

