Microeconomics

Homework 2: Utility & the Utility Maximization Problem

Javier Tasso

- 1. The consumption set is $X = \mathbb{R}^2_+$.
 - (a) Solve the following utility maximization problem: $\max_{x_1,x_2} \ln(x_1) + x_2$ s.t. $x_1 + 6x_2 = 12$. At the optimal bundle, is the marginal rate of substitution equal to the price ratio? Explain why.
 - (b) Now solve $\max_{x_1,x_2} \ln(x_1) + x_2$ s.t. $x_1 + 6x_2 = 3$. At the optimal bundle, is the marginal rate of substitution equal to the price ratio? Explain why.
- 2. Consider the following utility functions:
 - Cobb-Douglas: $u(x_1, x_2) = x_1^2 x_2$
 - Perfect substitutes: $u(x_1, x_2) = x_1 + 2x_2$
 - Perfect complements: $u(x_1, x_2) = \min\{x_1, 2x_2\}$
 - Quasi-linear: $u(x_1, x_2) = \sqrt{x_1} + x_2$

For each of them:

- (a) Plot an indifference curve.
- (b) Whenever possible, calculate the marginal rate of substitution (MRS).
- (c) Are the preferences strongly monotone? Are they weakly monotone?
- (d) Are the preferences strictly convex? Are they convex?
- 3. Consider the utility function $u(x_1, x_2) = \sqrt{x_1} + x_2$. In the same graph, plot the marginal utility of good 1 and marginal utility of good 2. The horizontal axis should be x_1 (or x_2) and the vertical axis the marginal utility. Using your graph, explain why we may have corner solutions with these preferences.
- 4. Consider the utility functions $u_1(x_1, x_2) = x_1^{\gamma_1} x_2^{\gamma_2}$ and $u_2(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$ with $\gamma_1, \gamma_2 > 0$ and $0 < \alpha < 1$.
 - (a) Find the relation between α , γ_1 , and γ_2 such that they represent the same preferences.
 - (b) Solve the utility maximization problem.
- 5. The constant elasticity of substitution (CES) utility function. Consider the utility function $u(x_1, x_2) = (x_1^{\rho} + x_2^{\rho})^{1/\rho}$. Here $\rho \leq 1$ is a parameter.
 - (a) Find the marginal rate of substitution (MRS).
 - (b) Set MRS equal to p_1/p_2 and solve for the ratio $x \stackrel{\text{Def}}{=} x_2/x_1$. This is the relative demand of good x_2 (relative to good x_1) as a function of the relative prices. How does the relative demand change with an increase of the relative price $p \stackrel{\text{Def}}{=} p_2/p_1$?

- (c) Define $x \stackrel{\text{Def}}{=} x_2/x_1$ and $p \stackrel{\text{Def}}{=} p_2/p_1$. Find the elasticity of substitution: $\frac{dx}{dp} \cdot \frac{p}{x}$ and show it is constant.
- (d) Comment on the value of the elasticity of substitution when $\rho = 1$ and $\rho \to -\infty$.
- 6. Consider the CES utility function $u(x_1, x_2) = (x_1^{\rho} + x_2^{\rho})^{1/\rho}$.
 - (a) Plot an indifference curve when $\rho = 1$.
 - (b) Plot an indifference curve when $\rho = -20$.
- 7. Consider another version of the CES utility function:

$$u(x_1, x_2) = \frac{1}{\rho} \ln \left(\frac{x_1^{\rho}}{2} + \frac{x_2^{\rho}}{2} \right)$$

- (a) Why is this version equivalent to $(x_1^{\rho} + x_2^{\rho})^{1/\rho}$? Explain your answer.
- (b) Take the limit of $u(x_1, x_2)$ when $\rho \to 0$ and use L'Hopital's rule to show this utility function converges to Cobb-Douglas.
- 8. Prove the following statement. If u(x) represents \succeq , then \succeq is complete and transitive.
- 9. Given the following utility functions:
 - Cobb-Douglas: $u(x_1, x_2) = x_1 x_2^3$
 - Perfect Substitutes: $u(x_1, x_2) = x_1 + 3x_2$
 - Perfect Complements: $u(x_1, x_2) = \min\{x_1, 3x_2\}$
 - Quasi-Linear: $u(x_1, x_2) = \ln(x_1) + x_2$
 - (a) Solve the utility maximization problem. Your answer should include $x_1(p_1, p_2, m), x_2(p_1, p_2, m),$ and $v(p_1, p_2, m).$
 - (b) Verify Roy's identity.
- 10. Suppose the utility function is $u(x_1, x_2) = \max\{x_1, x_2\}$.
 - (a) Plot an indifference curve.
 - (b) Are the preferences monotone?
 - (c) Are the preferences strictly convex?
 - (d) Find the Marshallian demands and the indirect utility function. Hint: there will be corner solutions.
- 11. Consider the CES utility function $u(x_1, x_2) = (x_1^{\rho} + x_2^{\rho})^{1/\rho}$. Prove that it converges to min $\{x_1, x_2\}$ when $\rho \to -\infty$.
- 12. Isoelastic demand. Consider the following utility function where $\varepsilon > 0$ is a parameter.

$$u(x_1, x_2) = \frac{x_1^{1 - \frac{1}{\varepsilon}} - 1}{1 - \frac{1}{\varepsilon}} + x_2$$

- (a) Plot the marginal utilities of goods 1 and 2 in the same graph for $\varepsilon = 0.5, 1, 2$. Argue intuitively that there will be corner solutions.
- (b) Focus on the first term $f(\varepsilon) = \frac{x_1^{1-\frac{1}{\varepsilon}}-1}{1-\frac{1}{\varepsilon}}$. Use L'Hopital's rule to show that $f(\varepsilon) \to \ln(x_1)$ as $\varepsilon \to 1$.

- (c) Assume the solution is interior. Find the Marshallian demand for good 1 $x_1(p_1, p_2, m)$. The
- budget constraint is the usual $p_1x_1 + p_2x_2 = m$. (d) Calculate the elasticity of demand: $\left| \frac{\partial x_1(p_1, p_2, m)}{\partial p_1} \cdot \frac{p_1}{x_1(p_1, p_2, m)} \right|$. Show it is a constant.

Answers

- 1. (a) $x_1^* = 6$, $x_2^* = 1$. MRS equals the price ratio because we are in an interior solution.
 - (b) $x_1^* = 3$, $x_2^* = 0$. MRS is not equal to the price ratio because this is a corner solution.

2. In order:

- (a) See figure.
- (b) $\frac{1}{2}$, $\frac{2x_2}{x_1}$, undefined, $\frac{1}{2\sqrt{x_1}}$.
- (c) SM (whenever consumption is positive), SM, M, SM.
- (d) SC (whenever consumption is positive), C, C, SC.

Figure 1: Exercise 2

- 3. The marginal utility of good 2 is constant, while the marginal utility of good 1 is decreasing. For small values of x_1 , its marginal utility is higher. If the consumer has very little money, she will choose to buy only x_1 because it gives her higher marginal utility. This is the corner solution we see in quasi-linear preferences.
- 4. (a) $\alpha = \frac{\gamma_1}{\gamma_1 + \gamma_2}$.
 - (b) $x_1(p_1, p_2, m) = \alpha \frac{m}{p_1}$ and $x_2(\cdot) = (1-\alpha) \frac{m}{p_2}$. The indirect utility is $v(p_1, p_2, m) = \left(\frac{\alpha}{p_1}\right)^{\alpha} \left(\frac{1-\alpha}{p_2}\right)^{1-\alpha} m$
- 5. (a) MRS = $\left(\frac{x_2}{x_1}\right)^{1-\rho}$
 - (b) $x = \left(\frac{1}{p}\right)^{\frac{1}{1-\rho}} \text{ or } \frac{x_2}{x_1} = \left(\frac{p_1}{p_2}\right)^{\frac{1}{1-\rho}}$
 - (c) $\varepsilon = \frac{dx}{dp} \cdot \frac{p}{x} = -\frac{1}{1-\rho}$.
 - (d) When $\rho \to 1$, $\varepsilon \to -\infty$, goods are very substitutes with each other. When $\rho \to -\infty$, $\varepsilon \to 0$, goods are not substitutes with each other.

Figure 2: Exercise 3

- 6. (a) This should be perfect substitutes.
 - (b) This should be close to perfect complements.
- 7. (a) Because it's a increasing transformation of $(x_1^{\rho} + x_2^{\rho})^{1/\rho}$. First divide by $2^{1/\rho}$ and then apply $\ln(\cdot)$.
 - (b) Consider x_1 and x_2 constant.

$$\lim_{\rho \to 0} \frac{1}{\rho} \ln \left(\frac{x_1^{\rho}}{2} + \frac{x_2^{\rho}}{2} \right) = \lim_{\rho \to 0} \frac{x_1^{\rho} \ln(x_1) + x_2^{\rho} \ln(x_2)}{x_1^{\rho} + x_2^{\rho}}$$
$$= \frac{\ln(x_1) + \ln(x_2)}{2}$$

The last step is an increasing transformation of x_1x_2 .

- 8. Use the definition of utility function $x \succeq y \iff u(x) \ge u(y)$.
 - (a) Completeness. Take two real numbers u(x) and u(y). You can always tell $u(x) \ge u(y)$ or $u(x) \le u(y)$ (or both). Using the definition of utility function we have $x \succeq y$ or $y \succeq x$ (or both).
 - (b) Transitivity. Take three real numbers u(x), u(y), and u(z) such that $u(x) \geq u(y)$ and $u(y) \geq u(z)$. Because these are numbers, it must be that $u(x) \geq u(z)$. We have shown that if $x \succeq y$ and $y \succeq z$, then $x \succeq z$.
- 9. You can use Roy's identity to find the other demand. If there are corner solutions, you should apply Roy's identity by cases.
 - Cobb-Douglas: $v(p_1, p_2, m) = \frac{27}{256} \frac{m^4}{p_1 p_2^3}$. $x_1(\cdot) = \frac{m}{4p_1}$.
 - Perfect Substitutes: $v(p_1, p_2, m) = \frac{m}{\min\{p_1, p_2\}}$. $x_1(\cdot) = \begin{cases} m/p_1 & \text{if } 3p_1 < p_2 \\ [0, m/p_1] & \text{if } 3p_1 = p_2 \\ 0 & \text{if } 3p_1 > p_2 \end{cases}$
 - Perfect Complements: $v(p_1, p_2, m) = \frac{3m}{3p_1+p_2}$. $x_2(\cdot) = \frac{m}{3p_1+p_2}$
 - Quasi-Linear: $v(p_1, p_2, m) = \ln\left(\min\left\{\frac{p_2}{p_1}, \frac{m}{p_1}\right\}\right) + \max\left\{\frac{m p_2}{p_2}, 0\right\}$. $x_1(\cdot) = \min\left\{\frac{p_2}{p_1}, \frac{m}{p_1}\right\}$ and $x_2(\cdot) = \max\left\{\frac{m p_2}{p_2}, 0\right\}$
- 10. (a) They are inverted L shaped. See figure.
 - (b) Yes, they are strongly monotone.

- (c) No, they are not strictly convex convex. A linear combination of bundles can be strictly worse.
- (d) $v(p_1, p_2, m) = \frac{m}{\min\{p_1, p_2\}}$, the Marshallian demand are similar to perfect substitutes:

$$x_1(p_1, p_2, m) = \begin{cases} \frac{m}{p_1} & \text{if } p_1 < p_2\\ \frac{m}{p_1} \text{ or } 0 & \text{if } p_1 = p_2\\ 0 & \text{if } p_1 > p_2 \end{cases}$$

Figure 3: Exercise 10

11. Suppose $x_1 \leq x_2$. We want to show that $u(x_1, x_2) \to x_1$ as $\rho \to -\infty$.

$$u(x_1, x_2) = (x_1^{\rho} + x_2^{\rho})^{1/\rho}$$

$$u(x_1, x_2) = [x_1^{\rho} \cdot (1 + (\frac{x_2}{x_1})^{\rho})]^{1/\rho}$$

$$u(x_1, x_2) = x_1 \cdot [1 + (x_2/x_1)^{\rho}]^{1/\rho}$$

Now make $\rho \to -\infty$. Note that $(x_2/x_1)^{\rho} \to 0$ because x_1/x_2 is less than 1. Then we see that $u(x_1, x_2) = x_1$.

Next assume $x_1 \ge x_2$ and repeat the same steps to show $u(x_1, x_2) = x_2$. This completes the proof: when $\rho \to -\infty$ the utility function is either x_1 or x_2 , whichever is smaller.

12. (a) See figure. These are quasi-linear preferences. If the income is low enough, the consumer will buy only good 1 so $x_1 > 0$ while $x_2 = 0$, a corner solution. $MU_2 = 1$ and $MU_1 = x_1^{-\frac{1}{\varepsilon}}$.

6

(b) The first limit is undetermined. Differentiate the numerator and the denominator both with respect to ε and take the limit again.

$$\lim_{\varepsilon \to 1} \frac{x_1^{1 - \frac{1}{\varepsilon}} - 1}{1 - \frac{1}{\varepsilon}} = \lim_{\varepsilon \to 1} \frac{x_1^{1 - \frac{1}{\varepsilon}} \ln(x_1) \frac{1}{\varepsilon^2}}{\frac{1}{\varepsilon^2}} = \ln(x_1)$$

- (c) $x_1(p_1, p_2, m) = \left(\frac{p_2}{p_1}\right)^{\varepsilon}$.
- (d) The elasticity of demand is ε .

Figure 4: Exercise 12