Package 'ETAS.inlabru'

November 16, 2022

Type Package
Title This package uses inlabru to implement a Bayesian ETAS model for modelling seismic sequences
Version 0.1.0
Author Mark Naylor, Francesco Serafini, and Finn Lindgren
Maintainer The package maintainer <mark.naylor@ed.ac.ukt></mark.naylor@ed.ac.ukt>
Description Modelling and inversion of ETAS model of seismicity using inlabru The Epidemic Type Aftershock Sequence (ETAS) model is designed to model earthquakes that are triggered by previous events. In statistics, this is referred to as a Hawkes process. The code can be used to generate synthetic ETAS catalogues which can also include some seeded events to model specific sequences. We also implement a Bayesian inversion scheme using the Integrated Nested Laplace Approximation (INLA) using inlabru. For the temporal model, given a training catalogue of times and magnitudes, the code returns the joint posteriors for all the ETAS parameters. In the future roadmap, we will include tools to model the spatial distribution and spatio-temporal evolution of seismic sequences.
License What license is it under?
Encoding UTF-8
LazyData true
RoxygenNote 7.2.2
Roxygen list(markdown = TRUE)
Imports lemon, parallel, tidyquant, dplyr, ggplot2, foreach, INLA, inlabru
NeedsCompilation no
R topics documented:
breaks_exp

2 breaks_exp

create.input.list.temporal.withCatalogue
gamma.t
generate.temporal.ETAS.synthetic
get_posterior_N
get_posterior_param
gt
gt.2
Int.ETAS.time.trig.function
IntInjecIntensity
inv.exp.t
inv.gamma.t
Inv.Int.ETAS.time.trig.function
Inv.IntInjecIntensity
inv.loggaus.t
inv.unif.t
It_df
lambda.N
lambda
lambda_2
log.Lambda_h
log.Lambda_h2
loggaus.t
omori_plot
Plot_grid
post_sampling
sample.GR.magnitudes
sample.temoral.ETAS.daughters
sample.temoral.injection.events
sample.temporal.ETAS.generation
sample.temporal.ETAS.times
temporal.ETAS
Temporal.ETAS.fit
time.grid
unif.t

breaks_exp

Title

Description

Title

Usage

```
breaks_exp(tt_, T2_, coef_ = 2, delta_, N_exp_ = 10)
```

compute.grid 3

Arguments

List of the event times a grid is needed for days.
End of temporal domain days.
TimeBinning parameter:
TimeBinning parameter:
TimeBinning parameter: Number of bins

compute.grid Title

Description

Title

Usage

```
compute.grid(param., list.input_)
```

Arguments

```
list.input_
```

```
create.input.list.temporal.noCatalogue
```

Function to create a default input file for the ETAS Hawkes temporal model where no catalogue is specified in the input file

Description

Function to create a default input file for the ETAS Hawkes temporal model where no catalogue is specified in the input file

Usage

```
create.input.list.temporal.noCatalogue(input_path)
```

Arguments

```
input_path Input file and path as a string
```

Value

The formatted input.list with the elements required for the temporal Hawkes model

Examples

```
# HOW DO WE REFERENCE A FILE IN THE data DIRECTORY?
#create.input.list.temporal.noCatalogue('data/user_input_synthetic_noCatalog.txt')
```

4 gamma.t

```
create.input.list.temporal.withCatalogue
```

Function to create a default input file for the ETAS Hawkes temporal model where a catalogue is specified in the input file.

Description

Function to create a default input file for the ETAS Hawkes temporal model where a catalogue is specified in the input file.

Usage

```
create.input.list.temporal.withCatalogue(input_path)
```

Arguments

```
input_path
```

gamma.t

Gamma copula transformation: Conversion of ETAS para to internal scale

Description

Gamma copula transformation: Conversion of ETAS para to internal scale

Usage

```
## S3 method for class 't'
gamma(x, a, b)
```

Arguments

b

```
generate.temporal.ETAS.synthetic

Generates a sythetic catalogue using the ETAS model
```

Description

Generates a sythetic catalogue using the ETAS model

Usage

```
generate.temporal.ETAS.synthetic(
   theta,
   beta.p,
   M0,
   T1,
   T2,
   Ht = NULL,
   ncore = 1
)
```

Arguments

```
theta ETAS parameters data.frame (mu=mu, K=K, alpha=alpha, c=c, p=p).

Slope of GR relation: beta = b ln(10).

MO The minimum magnitude in the synthetic catalogue.

T1 The start time for the synthetic catalogue days.

T2 The end time for the synthetic catalogue days.

Ht A catalogue history to impose on the synthetic sequence.

ncore Integer number of compute cores to use.
```

Value

A data.frame of the temporal catalogue with columns $[t_i, M_i, gen_i]$ where, t_i are the times, M_i the magnitudes, gen_i includes information about the generation number

Examples

```
## EXAMPLE 1: Generate a 1000 day synthetic ETAS catalogue
generate.temporal.ETAS.synthetic( theta=data.frame(mu=0.1, K=0.089, alpha=2.29, c=0.11, p=1.
## EXAMPLE 2: To generate a 1000 day catalogue including a M6.7 event on day 500

Ht <- data.frame(ts=c(500), magnitudes=c(6.7))
generate.temporal.ETAS.synthetic( theta=data.frame(mu=0.1, K=0.089, alpha=2.29, c=0.11, p=1.</pre>
```

6 get_posterior_param

```
get_posterior_N Title
```

Description

Title

Usage

```
get_posterior_N(input.list)
```

Arguments

```
input.list
```

```
get_posterior_param
```

Generate summary information on the fitted ETAS model

Description

Generate summary information on the fitted ETAS model

Usage

```
get_posterior_param(input.list)
```

Arguments

input.list Which has combined the input file (for link functions) and bru output (for marginals)

Value

Data frame summary and summary plot

gt 7

gt

Time triggering function - used by bayesianETAS Used for comparing output of inlabru with Bayesian ETAS MN: TODO Cross-reference the paper

Description

Time triggering function - used by bayesianETAS Used for comparing output of inlabru with Bayesian ETAS MN: TODO Cross-reference the paper

Usage

```
gt(th, t, ti, mi, M0)
```

Arguments

M0

Minimum magnitude threshold

gt.2

 $\label{thm:constraint} \textit{Time triggering function - used by Inlabru MN: TODO Cross-reference the paper}$

Description

Time triggering function - used by Inlabru MN: TODO Cross-reference the paper

Usage

```
gt.2(th, t, ti, mi, M0)
```

Arguments

M0

Minimum magnitude threshold

8 IntInjecIntensity

```
Int.ETAS.time.trig.function

Integrated ETAS time-triggering function
```

Description

Integrated ETAS time-triggering function

Usage

```
Int.ETAS.time.trig.function(theta, th, T2)
```

Arguments

theta ETAS parameters data.frame(mu=mu, K=K, alpha=alpha, c=c, p=p)

th Time of past event? days

T2 End of temporal model domain.

IntInjecIntensity Title

Description

Title

Usage

```
IntInjecIntensity(a = 50, V.i = 1, tau = 10, T.i, T2)
```

Arguments

a	Event rate ne	er unit volume	injected
a	Livelli rate pe	or unit volunic	mijecteu

V.i Injected volumetau Decau rate days

T.i Time of injection event

Т2

inv.exp.t

inv.exp.t

Inverse exponential link function:

Description

Inverse exponential link function:

Usage

```
inv.exp.t(x, rate)
```

Arguments

rate

inv.gamma.t

Inverse gamma copula transformation:

Description

Inverse gamma copula transformation:

Usage

```
inv.gamma.t(x, a, b)
```

Arguments

b

```
Inv.Int.ETAS.time.trig.function

Inverse of integrated ETAS time-triggering function
```

Description

Inverse of integrated ETAS time-triggering function

Usage

```
Inv.Int.ETAS.time.trig.function(theta, omega, th)
```

Arguments

```
theta ETAS parameters data.frame(mu=mu, K=K, alpha=alpha, c=c, p=p) th
```

inv.loggaus.t

```
Inv.IntInjecIntensity

Title
```

Description

Title

Usage

```
Inv.IntInjecIntensity(a = 50, V.i = 1, tau = 10, T.i, number.injected.events)
```

Arguments

a Event rate per unit volume injected

V.i Injected volume

tau Decau rate days

 ${\tt T.i}$ Time of injection event

number.injected.events

inv.loggaus.t *Inverse log-gaussian copula transformation:*

Description

Inverse log-gaussian copula transformation:

Usage

```
inv.loggaus.t(x, m, s)
```

Arguments

S

inv.unif.t

inv.unif.t

Inverse uniform copula transformation:

Description

Inverse uniform copula transformation:

Usage

```
inv.unif.t(x, a, b)
```

Arguments

b

It_df

Title

Description

Title

Usage

```
It_df(param_, time.df)
```

Arguments

time.df

lambda.N

Title

Description

Title

Usage

```
lambda.N(th.mu, th.K, th.alpha, th.c, th.p, T1, T2, M0, Ht, link.functions)
```

Arguments

link.functions

12 lambda_2

lambda_

Conditional intensity - used by bayesianETAS Used for comparing output of inlabru with Bayesian ETAS

Description

Conditional intensity - used by bayesianETAS Used for comparing output of inlabru with Bayesian ETAS

Usage

```
lambda_(th, t, ti.v, mi.v, M0)
```

Arguments

M0

Minimum magnitude threshold

lambda_2

conditional intensity (used by Inlabru)

Description

conditional intensity (used by Inlabru)

Usage

```
lambda_2(th, t, ti.v, mi.v, M0)
```

Arguments

th Set of trial ETAS parameters ??

M0 Minimum magnitude threshold

log.Lambda_h

log.Lambda_h	integrated triggering function - used by bayesianETAS Used for comparing output of inlabru with Bayesian ETAS
--------------	---

Description

integrated triggering function - used by bayesianETAS Used for comparing output of inlabru with Bayesian ETAS

Usage

```
## S3 method for class 'Lambda_h'
log(th, ti, mi, M0, T1, T2)
```

Arguments

M0	Minimum magnitude threshold
T1	Start of temporal model domain.
Т2	End of temporal model domain.

log.Lambda_h2	integrated triggering function - used by Inlabru ALSO USED IN GEN-
	ERATION SAMPLES

Description

integrated triggering function - used by Inlabru ALSO USED IN GENERATION SAMPLES

Usage

```
## S3 method for class 'Lambda_h2'
log(theta, ti, mi, M0, T1, T2)
```

Arguments

theta	$ETAS\ parameters\ \texttt{data.frame}\ (\texttt{mu=mu, K=K, alpha=alpha, c=c, p=p})\ .$
ti	Time of parent event.
mi	Magnitude of parent event
MO	Minimum magnitude threshold
T1	Start of temporal model domain.
T2	End of temporal model domain.

14 omori_plot

loggaus.t

Log-gaussian copula transformation: Conversion of ETAS para to internal scale

Description

Log-gaussian copula transformation: Conversion of ETAS para to internal scale

Usage

```
loggaus.t(x, m, s)
```

Arguments

S

omori_plot

Code to plot samples from the of posterior ETAS triggering function

Description

Code to plot samples from the of posterior ETAS triggering function

Usage

```
omori_plot(list.input, n.samp = 10, t.end = 1, n.breaks = 100)
```

Arguments

```
list.input
n.breaks
```

Plot_grid 15

Plot_grid

Title

Description

Title

Usage

```
Plot_grid(
    xx = xx.,
    yy = yy.,
    delta_ = delta.,
    n.layer = n.layer.,
    bdy_ = bdy.,
    min.edge = min.edge.
)
```

Arguments

min.edge

post_sampling

Function to return a many (n.samp) samples from the posterior of the parameters

Description

Function to return a many (n.samp) samples from the posterior of the parameters

Usage

```
post_sampling(input.list, n.samp)
```

Arguments

input.list Which has combined the input file (for link functions) and bru output (for marginals)

n.samp The number of samples to draw from the posteriors

Value

n.samp samples drawn from the posteriors.

```
sample.GR.magnitudes
```

Return a sample of magnitudes drawn from the GR distribution

Description

Return a sample of magnitudes drawn from the GR distribution

Usage

```
sample.GR.magnitudes(n, beta.p, M0)
```

Arguments

n Number of events in the sample.

Related to the b-value via b ln(10).

MO Minimum magnitude for the sample.

Value

A list of magnitudes of length n drawn from a GR distribution.

Examples

```
sample.GR.magnitudes(n=100, beta.p=log(10), M0=2.5)
```

```
sample.temoral.ETAS.daughters
```

Generate a sample of new events data.frame(t_i, M_i) of length n.ev for one parent event occurring at time t_h using the ETAS model.

Description

Generate a sample of new events data.frame(t_i , M_i) of length n.ev for one parent event occuring at time t_h using the ETAS model.

Usage

```
sample.temoral.ETAS.daughters(theta, beta.p, th, n.ev, M0, T1, T2)
```

Arguments

theta	ETAS parameters data.frame (mu=mu, K=K, alpha=alpha, c=c, p=p).
beta.p	Slope of GR relation: beta = $b \ln(10)$.
th	Time of parent event days.
n.ev	The number of events to be placed.
MO	Minimum magnitude in synthetic catalogue.
T1	Start time for synthetic catalogue days.
Т2	End time for synthetic catalogue days.

Value

Generate a sample of new events data.frame(t_i, M_i) from one parent

```
sample.temoral.injection.events

Title
```

Description

Title

Usage

```
sample.temoral.injection.events(a = 50, V.i = 1, tau = 10, beta.p, M0, T.i, T2)
```

Arguments

a	Induced event rate per unit volume.
V.i	Injected volume
tau	Decay rate days.
beta.p	Related to the b-value via $b ln(10)$.
MO	Minimum magnitude threshold.
T.i	Time of injection days.
T2	End of temporal model domain days.

Value

Catalogue of parent events induced by injection data.frame(times, magnitudes)

```
sample.temporal.ETAS.generation

Take all previous parent events from Ht=data.frame[ts, magnitudes] and generates their daughters events using the ETAS model
```

Description

Take all previous parent events from Ht=data.frame[ts, magnitudes] and generates their daughters events using the ETAS model

Usage

```
sample.temporal.ETAS.generation(theta, beta.p, Ht, M0, T1, T2, ncore = 1)
```

Arguments

theta	ETAS parameters data.frame (mu=mu, K=K, alpha=alpha, c=c, p=p).
beta.p	Slope of GR relation: beta = $b \ln(10)$.
Ht	The set of parent events in the form data.frame[ts, magnitudes]
MO	The minimum earthquake magnitude in the synthetic catalogue.
T1	The start time for the synthetic catalogue days.
Т2	The end time for the synthetic catalogue days.
ncore	The number of compute cores to use

Value

Return one generation of daughters from the parents in Ht in the form data.frame(t_i, M_i).

Examples

```
# The parents are specified in Ht
Ht <- data.frame(ts=c(500), magnitudes=c(6.7))
sample.temporal.ETAS.generation( theta=data.frame(mu=0.1, K=0.089, alpha=2.29, c=0.11, p=1.0</pre>
```

```
sample.temporal.ETAS.times
```

Sampling times for events triggered by a parent at th according to the ETAS triggering function

Description

Sampling times for events triggered by a parent at th according to the ETAS triggering function

Usage

```
sample.temporal.ETAS.times(theta, n.ev, th, T2)
```

Arguments

theta	ETAS parameters data.frame (mu=mu, K=K, alpha=alpha, c=c, p=p).
n.ev	Number of events to return in the sample in time domain (th, T2].
th	Time of the parent event producing n.ev daughters.
Т2	End time of model domain.

Value

t.sample A list of times in the interval 0, T2 distributed according to the ETAS triggering function.

temporal.ETAS

Function to fit Hawkes process model

Description

function to fit a temporal ETAS model using inlabru.

Usage

```
temporal.ETAS(
   sample.s,
   M0,
   T1,
   T2,
   link.functions = NULL,
   coef.t.,
   delta.t.,
   N.max.,
   bru.opt
)
```

20 Temporal.ETAS.fit

Arguments

	sample.s	Observed events: data.frame with columns time (ts), magnitude (magnitudes), event identifier (idx.p). Column names must not be changed.
	MO	Minimum magnitude threshold, scalar
	T1	Start of temporal model domain, scalar measure unit of sample.s\$ts.
	T2	End of temporal model domain, scalar measure unit of sample.s\$ts.
link.functions		
		Functions to transform the parameters from the internal INLA scale to the ETAS scale. It must be a list of functions with names $(mu, K, alpha, c_p)$
	coef.t.	TimeBinning parameter: parameter regulating the relative length of successive bins, scalar.
	delta.t.	TimeBinning parameter: parameter regulating the bins' width, scalar.
	N.max.	TimeBinning parameter: parameter regulating the Number of bins (= $N.max + 2$), scalar.
	bru.opt	Runtime options for inlabru: See https://inlabru-org.github.io/inlabru/reference/bru_call_options.html, list

Value

The fitted model as a 'bru' object, which is a list

Temporal.ETAS.fit Fits the remporal ETAS model and returns the results. This function decomposes the input.list for the 'Hawkes.bru2" function.

Description

Fits the remporal ETAS model and returns the results. This function decomposes the input.list for the 'Hawkes.bru2" function.

Usage

```
Temporal.ETAS.fit(input.list)
```

Arguments

input.list All input data and parameters are passed to inlabru via this structured list.

Value

The fitted model as a bru object, which is a list

time.grid 21

time.grid

Generate a set of time bins for a specific event and return.

Description

Generate a set of time bins for a specific event and return.

Usage

```
## S3 method for class 'grid'
time(data.point, coef.t, delta.t, T2., displaygrid = FALSE, N.exp.)
```

Arguments

```
coef.t TimeBinning parameter:
delta.t TimeBinning parameter:
T2. End of the temporal domain days.
displaygrid Boolean variable - whether to plot the grid
N.exp. TimeBinning parameter:
```

Value

A set of time bins aggregated over all events MORE DETAIL

Examples

```
## EXAMPLE 1
events <- data.frame( ts=c(0,1 , 3 ), idx.p=c(1,2,3) )
T2 <- 20
N.exp <- 8
delta.t <- 0.1
coef.t <- 1
time.grid(events, coef.t, delta.t, T2, displaygrid = FALSE, N.exp)</pre>
```

unif.t

Uniform copula transformation: Conversion of ETAS para to internal scale

Description

Uniform copula transformation: Conversion of ETAS para to internal scale

Usage

```
unif.t(x, a, b)
```

22 unif.t

Arguments

b