Fondamenti di Informatica - A.A. 2021-2022

Scuola di Ingegneria Industriale e dell'Informazione Prof. Cristiana Bolchini Appello del **03/09/2022**

gnome	Nome	Matricola o Cod. Persona						
<:								
3:	Quesito:	1	2	3	4	5	Totale	
2:	Valutazione massima:	4	5	6	7	8	30	
⊈.	Valutazione in decimi (/10):							
• si può scr	sibile consultare libri, appunti, la calcolatrice ivere con qualsiasi colore, anche a matita, ad lisposizione: 1h 40m	-	-		ronico, ne	comunica	ire;	
Stile del codice C	<u> </u>							
• non è nec	essario inserire direttive #include;							
	ti non sono necessari, ma potrebbero essere	utili nel	caso di er	rore;				
11.5	e utilizzare sottoprogrammi di libreria.							

Quesito 1 [4 pti]

Dati i due valori X = $1111000011101010101_{2MS}$ e Y = $+ABCFE_{16MS}$ effettuare la conversione in base 2, notazione complemento a 2 (2C2), di ognuno degli operandi sul numero **minimo** di bit necessari. Si effettuino quindi le operazioni X+Y e X-Y indicando esplicitamente se si verifica overflow o meno, e motivando la risposta. **Mostrare i passaggi fatti e motivare la risposta relativa all'overflow**.

Riportare nello spazio sottostante la codifica di X_{2C2} , Y_{2C2} e i risultati finali delle operazioni (tutti i passaggi devono essere sui fogli di protocollo), utilizzando solo le caselle necessarie (**allineati a destra**) ed indicando se si è verificato overflow (segnare la casella corrispondente).

X _{2C2}	Y _{2C2}
X+Y _{2C2}	X-Y _{2C2}

Quesito 2 [5 pti]

Si scriva un sottoprogramma medianodup che riceve in ingresso un array monodimensionale di valori interi e qualsiasi altro parametro ritenuto strettamente necessario e restituisce la media dei valori presenti non considerando eventuali valori duplicati. Per esempio, se i valori contenuti sono 2 4 4 3 la media viene calcolata sui valori 2 4 3.

Quesito 3 [6 pti

Un file contiene una sequenza di stringhe formate da ripetizioni dell'unico carattere ' *', separate tra loro da uno o più spazi e ritorni a capo. Le stringhe rappresentano una sequenza di interi positivi codificati in *codice unario*. Ad esempio, il file con il contenuto

****** ** *******

contiene i valori 7, 6, 2, 16. Scrivere un sottoprogramma che riceve il nome del file calcola e restituisce al chiamante la media (arrotondata per difetto) dei valori contenuti nel file, visualizzandola anche in codice unario. Nell'esempio precedente, il sottoprogramma restituisce 7 e visualizza

Il valore 7 è la media arrotondata per difetto dei valori 7, 6, 2, 16. Si assuma che un valore non possa continuare su più righe, ed ogni riga è al più di 80 caratteri. Si assuma inoltre che i dati nel file siano corretti, ma che il file di ingresso possa non esistere.

Quesito 4 [7 pti]

Un numero in una base b, con $1 \le b \le 36$, può essere scritto utilizzando i primi b caratteri dell'insieme dei simboli SIMBOLI = {'0', . . . , '9', 'A', . . . , 'Z'}. Ad esempio, un numero in base 24 può essere espresso utilizzando i caratteri {'0', . . . , '9', 'A', . . . , 'N'}. Una qualsivoglia stringa b0 essere espresso utilizza i primi b0 caratteri di SIMBOLI. Ad esempio, "AB8" è una stringa valida per la base 14 ma non per la base 11.

Si scriva un sottoprogramma che ricevuta in ingresso una stringa s contenente un valore in base b calcoli e restituisca al chiamante il valore corrispondente alla base minima cui appartiene la stringa. La stringa conterrà senz'altro solo caratteri numerici e caratteri alfabetici maiuscoli.

Per esempio, se il sottoprogramma riceve in ingresso la stringa AB8 restituisce il valore 12, facendo riferimento alla base 12 e all'alfabeto di simboli {'0', . . . , '9', 'A', 'B'}.

Quesito 5 [8 pti]

Scrivere un sottoprogramma setunione che riceve in ingresso due liste ordinate in senso crescente di valori interi e restituisce una nuova lista che contiene unione senza valori ripetuti dei valori appartenenti alle due liste, ordinati in senso crescente. Per esempio, se in ingresso si ha:

$$\begin{array}{c} l1: -5 \longrightarrow -5 \longrightarrow -1 \longrightarrow 7 \longrightarrow 12 \longrightarrow 15 \longrightarrow 20 \longrightarrow 100 \\ l2: -6 \longrightarrow -2 \longrightarrow -1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 3 \longrightarrow 7 \longrightarrow 7 \longrightarrow 15 \longrightarrow 101 \end{array}$$

la nuova lista conterrà:

$$l3:-6\longrightarrow -5\longrightarrow -2\longrightarrow -1\longrightarrow 0\longrightarrow 3\longrightarrow 7\longrightarrow 12\longrightarrow 15\longrightarrow 20\longrightarrow 100\longrightarrow 101$$

Si considerino già disponibili e non da sviluppare i sottoprogrammi seguenti:

```
/* inserisce in testa alla lista */
elem_t * push(elem_t *, int);
/* inserisce in coda alla lista */
elem_t * append(elem_t *, int);
/* inserisce un elemento nella lista in ordine crescente */
elem_t * insert_inc(elem_t *, int);
/* inserisce un elemento nella lista in ordine decrescente */
elem_t * insert_dec(elem_t *, int);
/* elimina dalla lista il primo elemento */
elem_t * pop(elem_t *);
/* elimina dalla lista tutti gli elementi con il valore indicato */
elem_t * delete(elem_t *, int);
/* restituisce il riferimento all'elemento nella lista che ha il valore indicato, se esiste, NULL altrimenti */
elem_t * exists(elem_t *, int);
/* restituisce il numero di elementi nella lista */
int length(elem_t *);
```