Cellular Network Planning

Cellular systems

- Implement Space Division Multiplexing (SDM)
- Each transmitter (base station) covers a certain area (cell)
- Cell radius varies from 10s of meters to 10s of kms
- Cell shapes depend on environment, weather and system load

Cellular systems II

Advantages

- Higher capacity, more users with SDM frequency reuse
- Less transmission power with smaller cells
- Local interference only
- Robustness, failures only affect small cell area

Disadvantages

- Infrastructure required to connect base stations
 - Antennas, call forwarding switches, location registers
- Handover needed: often for small cells
- Interference with other cells using same freqs.

Frequency planning

- Transmitters in cells use FDM (+ TDM)
- Clusters: cell patterns to minimise interference
 - Cells in cluster use disjoint frequencies
 - Sender transmission power limited to avoid interference with other cells with same frequencies
 - Sectorised antennas: reduce interference further
 - Several sectors per cell
 - Used for large-radius cells

Frequency planning II

3 cell cluster

7 cell cluster

3 cell cluster with 3 sector antennas

Frequency planning III

- Fixed frequency allocation
 - Each cell has certain frequencies assigned
 - Requires careful traffic analysis, load prediction
 - Fixed Channel Allocations (FCA) used in GSM
- Dynamic frequency allocation
 - Base stations choose frequencies depending on usage on neighbour cells
 - More capacity available on higher-load cells
 - Assignment can be based on interference levels

Cell breathing

- CDM systems do not need dynamic frequency allocation
 - Users separated by code
- Cell size varies with load: "breathing"
 - Growing noise with additional users causes higher path loss and errors
 - Receivers far from base station end up dropping out of the cell

Network planning

- Outcomes
 - Base station installation plan
 - Location, capacities, transmitter/receiver characteristics
 - Frequency plan
 - Fixed network architecture
 - Base station controllers, switching centers, databases
 - Transmission network to link it all
- A poorly planned network will provide bad Quality of Service, call interruptions and high blocking rates

Network planning II

- Considerations
 - Characteristics of the area
 - Morphology and propagation
 - Subscribers density and behaviour
 - Cost minimisation
 - Urban areas cost effective in short term
 - Rural areas no guarantee of profit
 - Quality of Service constraints
- Cell dimensioning
 - (Sub)urban areas: no. of cells relative to traffic density
 - Rural areas: ensure coverage with minimum number of base stations
 - QoS indicators: blocking rate and waiting time

Traffic dimensioning

- Required when
 - Planning network before deployment
 - Evaluating impact of future service
 - Evaluating impact of tariff change
 - Predict future demand
- Two main types of traffic
 - Call processing traffic: calls, voicemail/data services
 - Signaling: location updates, handover, roaming
- Factors: demography, economic activity, road traffic, existing traffic volume, population mobility
- Erlang: traffic unit
 - Channel occupation rate

Planning process

- Planning stages of a cellular network
 - Survey to find most appropriate sites for base stations
 - High points, buildings, grain silos, hilltops
 - 2. Site info processed by software with digital maps
 - Calculate interference levels
 - Draw cellular coverage
 - Determine antenna and equipment locations and characteristics
 - 3. Take measurements to optimise model
 - Determine real-world pathloss attenuation

Fixed network planning

- Fixed network plan defined after radio planning
- Includes
 - Number and location of base station controllers (BSC) and mobile switching centres (MSC)
 - Define base station links to BSC, and BSC to MSC
 - Define inter-MSC connections
 - Capacity and location of databases
- Planning reviewed constantly
 - Freq. plans change during network lifetime
 - Effficiency and cost effectiveness evaluated