Isomorphism of memBers	1
Shigeo Hattori bayship.org@gmail.com	2
October 17, 2019 First version: September, 2019	3
1 Notation	5
Definition 1.1 (Pair). Take $\forall \{x,y\}$ such that $x \neq y$. Then $(x,y) \neq (y,x)$.	6 7
2 Introduction	8
Definition 2.1 (memBer). Take $\forall x$ such that (there exists $\exists S$ such that $x \in S$). Then x is said a memBer.	9 10 11
This article:(1) defines a binary relation that (x,y) as memBers are isomorphic,(2) proves that the binary relation is an equivalence relation, (3) proves that all homeomorphic topological spaces are isomorphic as memBers,(4) defines that a memBer $S1$ is a minor of a memBer $S2$. I expect that readers will realize that the newly defined isomorphisms are somehow more fundamental than ,e.g., homeomorphisms of topological spaces. Because "homeomorphisms" logically resolve to "isomorphisms of memBers" whereas the inverse of it does not hold.	12 13 14 15 16 17 18
3 Deep member	20
Definition 3.1 (Deep member of memBer). This definition uses a style of recursion. Take $\forall (x, y)$ such that *1 holds. Then it is said as *2 and written as *3.	21 22 23
1 $x = y$ else (there exists $\exists z$ such that $x \in z \in \ ^{\geq 0} y$).	24

$2 \ x$ is a deep member of y	2 5
$3 \ x \in ^{\geq 0} y$	26
· ·	27
Definition 3.2 (Space of memBer). Take $\forall (x,y)$ such that *1 holds. Then it is said as *2.	28 29
1 $y = \{d \mid d \in \geq 0 x \text{ then } d \text{ is a point } \}.$	30
$2 \ y$ is the space of x .	31
· ·	32
Definition 3.3 (Proper deep member of memBer). Take $\forall x$ such that *1 holds. Then it is said as *2 and written as *3.	33 34
1 There exists $\exists z$ such that $x \in \geq 0$ $z \in y$.	35
$2 \ x$ is a proper deep member of y .	36
3 $x \in \neq 0$ y .	37
· ·	38
Definition 3.4 (Paradoxical memBer). Take $\forall x$ such that (*1 else *2) holds. Then it is said as *2.	39 40
1 "{ $d \mid d \in \geq 0 \ x$ }" is not definable.	41
$2 \ x$ is a proper deep member of x .	42
$3 \ x$ is paradoxical.	43 44
Definition 3.5 (Non-paradoxical memBer). In the rest, informally speaking, " $\forall x$ " must be interpreted as " $\forall x$ which is not paradoxical". Formally, in the rest, the domain of discourse does not include any paradoxical memBer.	45 46 47 48
4 Notations	49
Definition 4.1 (Symbols). $*1 \equiv *2$ and $*3 \equiv *4$.	50

 $\mathbf{1}$ A then B.

2 A _{then} \wedge B .	52
$3 \ A \ \text{else} \ B.$	53
4 $A_{else} \lor B$.	54
As a remark, *1 says that $((A \land B)$ and (the meaning of B may depend on that A holds)). As a remark, *3 says that $((A \lor B)$ and (the meaning of B may depend on that A fails)).	55 56 57 58
Definition 4.2 (Propositional function). Following *1 is true because *1 calls *2 passing integer 123 as the value of x . In other words, *2 is a propositional function.	59606162
1 Let $x:=123$ then *2 holds.	63
$2 \ x \in Z.$	64
Definition 4.3 (Colon). A colon(:) may be used in introducing a new variable. Some examples follow.	65 66 67 68
1 x:=1.	69
$2 \ \forall x :\in S.$	70
	71
Definition 4.4 (Restriction of binary relation). Take $\forall (L,X,Y,X1)$ such that *1 holds. Then define *2.	72 73
1 L is a binary relation on $X * Y$ _{then} $\wedge X1 \subset X$.	74
2 $L[X1]:=\{\ (x,y)\in L\mid x\in X1\ \}.$	7 5

5 Isomorphic memBers	76
Definition 5.1 (Isomorphic memBers). This definition uses a style of recursion.	77
	78
Take $\forall (x, y, F)$ such that *A holds. Then define *B.	79
A *0 $_{else} \lor$ *1 $_{else} \lor$ (*2 $_{then} \land$ *3).	80
	81
$0 \ space(x) = \varnothing \ _{then} \land \ x = y.$	82
1 (x,y) are points $_{then} \land (x,y) \in F$	83
2 $F[space(x)]$ is an ¹ injection from*to $space(x)*space(y)$.	84
3 There exists $\exists f$ such that (*4 $_{then} \land$ *5 $_{then} \land$ *6).	85
4 f is a bijection from*to $x * y$ _{then} $\land f \neq \varnothing$.	86
5 Take $\forall (m1, m2) \in f$.	87
6 *A holds for $(m1, m2, F)$ in place of (x, y, F)).	88
B (x,y) are said isomorphic by F as an isomorphism.	89

¹Some alternative definitions are to weaken *2 by replacing "injection" with "function" or "binary relation". Though such weakend condition should not be titled as "isomorphic".

6	Minors of memBers	90
Defi:	nition 6.1 (Minors). Take $\forall (x,y)$ such that *A holds. Then it is said as	91 92
A *1	$_{then}\wedge$ *2.	93
	1 Take $\forall d$. Then $d \in \geq 0$ $x \Rightarrow d \in \geq 0$ y .	94
	2 Take $\forall (d1,d2,d3)$ such that (take $\forall d \in \{d1,d2,d3\}$, then $d \in \geq 0$ x). Then (*3 \Leftarrow *4).	95 96
	3 $((x, d1, d3), (x, d2, d3))$ are isomorphic.	97
	4 $((y, d1, d3), (y, d2, d3))$ are isomorphic.	98
B *5	$_{then}\wedge$ *6.	99
	5 x is a minor of y .	100
	6 $x \leq^{minor} y$.	101
	· ·	102
7	Deep graph	103
	nition 7.1 (Deep graph). Take $\forall (x, V, E)$ such that *A1 $_{then} \land$ *A2 holds. define *B.	104 105
		106
		107
A1 1	$V = \{d \mid d \in \geq 0 x\}.$	108
A2	$E = \{ (d1, d2) \in V * V \mid d2 \in d1 \}.$	109
B (<i>V</i>	(E,E) is said the deep graph of x .	110
		111
Defi	nition 7.2 (Depth of deep member).	112
It is	defined as *1 $_{then} \wedge$ *2.	113
	defined as *5 $_{then} \wedge$ *6.	114
It is	defined as *7 $_{then} \wedge$ *8.	115
1 Ta	ke $\forall (x, y, z)$ such that $z \in \geq 0$ $y \in \geq 0$ x .	116
2 Le	$t \ down(x) := \{ p \mid *3 \ _{then} \wedge *4 \}.$	117

3 p is a path on the deep graph of x .	118
4 p is a ² directed path from x .	119
5 Let $down(y, x) := \{ p \mid p \in down(x) \mid_{then} \land p \text{ has } y \text{ as the last vertex } \}.$	120
6 Let $down(z, y, x) := \{ p \mid p \in down(z, x) \mid_{then} \land p \text{ has } y \text{ as a vertex } \}.$	121
7 Take $\forall (x, D, n)$ such that n is the maximum member of a subset D of $down(x)$.	122 123
8 Let $depth(D) := n$.	124
	125
Notation rule 7.1. Unitl redefined, let # be a 3 short for depth().	126
Proposition 1 (Depths on memBer). Take $\forall (x,y,z)$ such that $z \in y \in \geq 0$ Then $\#down(z,x) > \#down(y,x)$.	x. 127
	129
Proof.	130
• Assume it is false.	131
• There exists $\exists (x, y, z)$ such that it is a counterexample.	132
• Hence $\#down(z,x) \le \#down(y,x)$.	133
• Hence $\#down(z,x) \ge \#down(z,y,x) > \#down(y,x) \ge \#down(z,x)$.	134
• The assumption is false.	135
	□ 136
Proposition 2 (Maximum depth on memBer). Take $\forall (x,y)$ such that $y \in \text{Then } \#down(y) < \#down(x)$.	x. 137 ■ 138
Proof.	139
• Assume it is false.	140
• There exists $\exists (x,y)$ such that it is a counterexample.	141
• Hence $\#down(y) \ge \#down(x)$.	142

 $^{^2{\}rm The~edges}$ are all oriented in the same direction. $^3{\rm For~example},\,\#{\rm D}{=}{\rm depth}({\rm D}).$

• There exists $\exists v :\in y$ such that (143
$\#down(y) = \#down(v,y) \geq \#down(v,y,x) \leq \#down(x)$	144
).	145
• Though $\#down(v,y) + 1 = \#down(v,y,x)$.	146
• The assumption is false.	147
	148
8 Propositions	149
Definition 8.1. In this section, *Def refers to the definition titled as "Isomorphic memBers". And $*1 \equiv *2$, without any explicit proof because it is trivial by *Def. And *3 holds, without any explicit proof because it is trivial by *Def.	150 151 152 153
$1 \ (x_i, y_i)$ are isomorphic by F_i .	154
2 *Def.A holds for (x_i, y_i, F_i) in place of (x, y, F) .	155
3 Take $\forall (x, y, F)$ such that (*4 $_{else} \lor$ *5). Then *6 holds.	156
4 $(space(x) = \emptyset \ _{then} \land \ x = y).$	157
5 $((x,y) \text{ are points } then \land (x,y) \in F).$	158
6 (x,y) are isomorphic by F .	159
Proposition 3 (Restriction). Take $\forall (x, y, F1, F2)$ such that (*A1 $_{then} \land *A2$) holds. Then *B holds.	160 161
A1 Def.A holds for $(x, y, F1)$.	162
A2 $F1[space(x)] = F2[space(x)].$	163
B Def.A holds for $(x, y, F2)$.	164
	165
Proof.	166
• Assume it is false.	167
• There exists $\exists (x, y, F1, F2)$ such that it is a minimum counterexample by $\#down(x)$.	168 169

• Let us follow *Def.A for $(x, y, F1)$.	170
• Assume *0 holds.	171
• Hence $space(x) = \emptyset$ then $\land x = y$.	172
• Then *0 holds for $(x, y, F2)$.	173
• The last assumption is false.	174
• Assume *1 holds.	175
• Hence (x, y) are points $_{then} \land (x, y) \in F1$.	176
• Then *1 holds for $(x, y, F2)$.	177
• The last assumption is false.	178
• Then (*2 $_{then} \wedge$ *3) holds.	179
• Hence *2 holds for $(x, y, F2)$.	180
• Hence *3 fails for $(x, y, F2)$.	181
• Hence there exists $\exists (m1, m2) \in f$ such that	182
• *Def.A holds for $(m1, m2, F1)$ $_{then} \land$ *Def.A holds for $(m1, m2, F2)$.	183
• Hence $(m1, m2, F1, F2)$ is a counterexample smaller than $(x, y, F1, F2)$.	184
• The first assumption is false.	185
	186
Proposition 4 (Empty space). Take $\forall (x, y, F)$ such that *A1. Then $x = y$.	187
A1 *Def.A holds for (x, y, F) _{then} \wedge $space(x) = \emptyset$.	188
· · · · · · · · · · · · · · · · · · ·	189
Proof.	190
• Assume it is false.	191
• There exists $\exists (x,y,F)$ such that (x,y,F) is a minimum counterexample by $\#down(x)$.	192 193
• Let us follow *Def.A for (x, y, F) .	194

• At *0, it fails because $x \neq y$.	195
• At *1, it fails because $space(x) = \emptyset$.	196
• Hence (*2 $_{then} \wedge$ *3) holds.	197
• Consider f of *3 together with that $x \neq y$.	198
• Hence there exists $\exists (m1, m2) \in f$ such that $m1 \neq m2$ $_{then} \land *Def. A$ holds for $(m1, m2, F)$.	199 200
• Additionally $space(m1) \subset space(x) = \emptyset$.	201
• Moreover $\#down(m1) < \#down(x)$.	202
\bullet Hence $(m1,m2,F)$ is a counterexample smaller than a minimum counterexample.	203 204
• The assumption is false.	205
	206
Proposition 5 (Members' isomorphisms as consequent). Take $\forall (x, y, F)$ such that (*A1 $_{then} \land$ *A2). Then (*B1 $_{then} \land$ *B2) holds.	207 208
A1 *Def.A holds for (x, y, F) in place of $(x1, x2, F)$.	209
A2 F is an injection.	210
B1 Take $\forall m1 :\in \geq 0$ x . Then there exists $\exists m2 :\in \geq 0$ y such that *Def.A holds for $(m1, m2, F)$ in place of $(x1, x2, F)$.	211 212
B2 Take $\forall m2 :\in \geq 0$ y. Then there exists $\exists m1 :\in \geq 0$ x such that *Def.A holds for $(m1, m2, F)$ in place of $(x1, x2, F)$.	213 214
Proof of *B1.	215
• Assume it is false.	216
• Then there exists $\exists (x, y, F, m1)$ such that $(x, y, F, m1)$ is a minimum counterexample by $\#down(m1, x)$.	217 218
• It is trivial that $(x \neq m1)$.	219
• Consider the proposition titled as "Depth of deep member".	220
• There exists $\exists x1$ such that $(m1 \in x1 \mid_{then} \land x1 \text{ in place of } m1 \text{ is not a counterexample}).$	221 222

• Hence *B1 should hold for $x1$ in place of $m1$.	223
• Hence there exists $2:\in^{\geq 0}y$ such that *Def.A holds for $(x1,y2,F)$.	224
• Let us follow *Def.A for $(x1, y2, F)$.	225
• Assume *0 holds.	226
• Then $space(x1) = \emptyset$ $then \land x1 = y2$.	227
• Hence $space(m1) = \varnothing$ $_{then} \land \ m1 = m1$ $_{then} \land \ m1 \in ^{\geq 0} y$.	228
• Hence *B1 holds for $m1$ in place of $m1$.	229
• Hence $(x, y, F, m1)$ is not a counterexample.	230
• Hence the last assumption is false.	231
• Assume *1 holds.	232
• Hence $(x1 \text{ is a point})$ $_{then} \land (m1 \in x1).$	233
• Hence the last assumption is false.	234
• Hence (*2 $_{then} \wedge$ *3) must hold.	235
• Hence, (*4 $_{then} \wedge$ *5 $_{then} \wedge$ *6) holds.	236
• Hence *B1 holds for $m1$ in place of $m1$.	237
• Hence $m1$ is not a counterexample.	238
• The first assumption is false.	239
	240
Proof of *B2.	241
• Assume it is false.	242
• Then there exists $\exists (x, y, F, m2)$ such that $(x, y, F, m2)$ is a minimum counterexample by $\#down(m2, y)$.	- 243 244
• It is trivial that $(y \neq m2)$.	245
• There exists $\exists y2$ such that $(m2 \in y2 \mid_{then} \land y2 \text{ in place of } m2 \text{ is not a counterexample}).$	246 247
• Hence *B2 should hold for $y2$ in place of $m2$.	248

• Hence there exists $1 :\in \geq 0$ x such that *Def.A holds for (x_1, y_2, F) . • Let us follow *Def.A for (x1, y2, F). 250 • Assume *0 holds. • Then $space(x1) = \emptyset$ _{then} $\land x1 = y2$. • Hence $space(m2) = \varnothing$ $_{then} \land \ m2 = m2$ $_{then} \land \ m2 \in {}^{\geq 0} x$. 253 • Hence *B2 holds for m2 in place of m2. 254 • Hence (x, y, F, m2) is not a counterexample. 255 • Hence the last assumption is false. 256 • Assume *1 holds. • Hence (y2 is a point) $_{then} \land (m2 \in y2).$ 258 • Hence the last assumption is false. 259 • Hence (*2 $_{then} \wedge$ *3) must hold. • Hence, (*4 $_{then} \wedge$ *5 $_{then} \wedge$ *6) holds. 261 • Hence *B2 holds for m2 in place of m2. • Hence m2 is not a counterexample. • The first assumption is false. **265 Proposition 6** (Surjectivity). Take $\forall (x, y, F)$ such that *A1. Then F[space(x)] 266 is a surjection from *to space(x) * space(y). **A1** *Def.A holds for (x, y, F) by $(*2_{then} \wedge *3)$. 268 **269** Proof. **270** • Assume it is false. 271 • There exists $\exists (x, y, F)$ such that (x, y, F) is a counterexample. 272 • (there exists $\exists p_x :\in space(x)$ such that $p_x \notin domain(F)$) 273 $_{else} \lor$ 274 (there exists $\exists p_y :\in space(y)$ such that $p_y \not\in image(F)$). 275

• Though this logical disjunction contradicts to the proposition titled as "MemBers' isomorphisms as consequent" as follows.	276277
• A contradiction for p_x :	27 8
• There exists $y2 :\in \geq 0$ y such that *Def.A holds for $(p_x, y2, F)$.	279
• Let us follow *Def.A for $(p_x, y2, F)$. Then (*0 $_{else} \lor$ (*2 $_{then} \land$ *3)) fails.	280
• Hence *1 holds. Hence $(p_x, y2) \in F$). Hence $p_x \in domain(F)$. A contradiction.	281 282
• A contradiction for p_y :	283
• There exists $x1 :\in \ge 0$ x such that *Def.A holds for $(x1, p_y, F)$.	2 84
• Let us follow *Def.A for $(x1, p_y, F)$. Then $(*0_{else} \lor (*2_{then} \land *3))$ fails.	285
• Hence *1 holds. Hence $(x1, p_x) \in F$). Hence $p_y \in image(F)$. A contradiction.	286 287
• Finally, the assumption is false.	288
	289
	290 291 292
A1 Def.A holds for (x, y, F) .	293
A2 Def.A holds for (y, x, F^{-1}) .	294
	295
Proof.	296
• Assume it is false.	297
• There exists $\exists (x,y,F)$ such that it is a minimum counterexample by $\#down(x)$.	298 299
• Let us follow *Def.A for (x, y, F) in terms of *A1.	300
• Assume *0 holds for (x, y, F) in terms of *A1.	301
• Hence $space(x) = \emptyset$ then $\land x = y$.	302

• Hence $space(y) = \emptyset$ $_{then} \land y = x$.	303
• Hence *0 holds for (x, y, F) in terms of *A2.	304
• Hence the last assumption is false.	305
• Assume *1 holds for (x, y, F) in terms of *A1.	306
• Hence (x, y) are points $_{then} \land (x, y) \in F$.	307
• Hence (y, x) are points $_{then} \land (y, x) \in F^{-1}$.	308
• Hence *1 holds for (x, y, F) in terms of *A2.	309
• Hence the last assumption is false.	310
• Hence (*2 $_{then} \wedge$ *3) must hold for (x, y, F) in terms of *A1.	311
• Consider the proposition titled as "Surjectivity".	312
• Then $F[space(x))$ is a bijection from*to $space(x) * space(y)$.	313
• Hence $F^{-1}[space(y))$ is a bijection from *to space(y)*space(x).	314
• Hence *2 holds for (x, y, F) in terms of *A3.	315
• Hence *3 must fail for (x, y, F) in terms of *A3.	316
• At same time, *3 hold for (x, y, F) in terms of *A1.	317
• Hence there exists $\exists (m1, m2) \in f$ such that (318
• *Def.A holds for $(m1, m2, F)$ then \land	319
• *Def.A does not hold for $(m2, m1, F^{-1})$.	320
•).	321
• Hence $(m1, m2, F)$ is a counterexample.	322
• Moreover $\#down(m1) < \#down(x)$.	323
• It contradicts to the title of (x, y, F) as a minimum counterexample.	324
• Hence the first assumption is false.	325
	□ 326
Proposition 8 (Reflexive property). Take $\forall (x, F)$ such that *A holds.	Γhen 327

*B holds.

A F is the identity function on $space(x)$.	329	
B Def.A holds for (x, x, F) .	330	
· ·	331	
Proof.		
	332	
• Assume it is false.	333	
• There exists $\exists (x,F)$ such that it is a minimum counterexample by $\#down(x)$ 34		
• Let us follow *Def.A for (x, x, F) . At *0, assume $space(x) = \emptyset$. Then *0 holds. The last assumption is false. At *1,assume (x, x) are points. Then *1 holds. The last assumption is false. It is trivial that *2 holds. Let $f1$ be the identity function on x . Then *3 must fail for $f1$ in place of f . Though *4 holds. Hence (*5 $_{then} \land$ *6) must fail. Hence there exists $\exists (m1, m1) :\in f1$ such that *Def.A fails for $(m1, m1, F)$. Meanwhile *Def.A holds for $(m1, m1, F[space(m1)])$ because otherwise $(m1, F[space(m1)])$ would be a counterexample smaller than a minimum counterexample, (x, F) . Though consider the proposition titled as "Restriction". Then *Def.A holds for $(m1, m1, F)$. The first assumption is false.	348	
	354	
Proposition 9 (Transitive property). Take $\forall (B1,B2)$ such that $(B1,B2)$ are binary relations. Then let $B2 \circ B1$ denote $\{(b1,b3) \mid \exists b2 \text{ such that } (b1,b2) \in B1 \atop then \land \ (b1,b2) \in B1 \ \}$. Take $\forall (x,y,z,F1,F2)$ such that (*A1 $_{then} \land \ ^*A2)$ holds. Then *B holds.		
A1 Def.A holds for $(x, y, F1)$.	359	
A2 Def.A holds for $(y, z, F2)$.	360	
B Def.A holds for $(x, z, F2 \circ F1)$.	361	

■:	362
Proof.	363
• Assume it is false.	364
• There exists $\exists (x, y, z, F1, F2)$ such that it is a minimum counterexample by $\#down(x)$.	365 366
Assume *0 holds for $(x, y, F1)$. Hence $space(x) = \emptyset$ $then \land x = y$. Consider the proposition titled as "Empty space". Hence $x = y = z$.	367 368 369 370 371
The last assumption is false for $(x, y, F1)$. Assume *0 holds for $(y, z, F2)$.	372373374375
Hence $x = y = z$. Hence *0 holds for $(x, z, F2 \circ F1)$.	376377378379
Hence (x, y) are points $_{then} \land (x, y) \in F1$). Hence *1 also hold for $(y, z, F2)$ because otherwise *G.A cannot hold for	380 381 382 383
Hence (x, z) are points $_{then} \land (x, z) \in F2 \circ F1$. Hence *1 holds for $(x, z, F2 \circ F1)$. The last assumption is false $(x, y, F1)$.	384 385 386
Hence (y, z) are points $_{then} \land (y, z) \in F2$). Hence *1 also hold for $(x, y, F1)$ because otherwise *G.A cannot hold for	387 388 389 390
Hence (x, z) are points $_{then} \land (x, z) \in F2 \circ F1$. Hence *1 holds for $(x, z, F2 \circ F1)$. The last assumption is false for $(y, z, F2)$.	391 392 393
Consider the proposition titled as "Surjectivity". Then $F1[space(x)]$ is a bijection from*to $space(x) * space(y)$.	394395396397

```
Hence (F2 \circ F1)[space(x)] is a bijection from*to space(x) * space(z).
                                                                                       398
      Hence *2 holds for (x, z, F2 \circ F1).
      Hence *3 fails for (x, z, F2 \circ F1).
      There exists (f1, f2) such that (
      3 holds for (x, y, F1, f1) in place of (x, y, F, f) then
      3 holds for (y, z, F2, f2) in place of (x, y, F, f)
      ).
      Then *3 fails for (x, z, F2 \circ F1, f2 \circ f1) in place of (x, y, F, f).
                                                                                       405
      There exists \exists (m1, m2, m3) \in f2 \circ f1 such that (
      the antecedent of this proposition accepts (m1, m2, m3, F1, F2) as (x, y, z, F40, F2)
                                                                                       408
       _{then} \wedge
      (m1, m2, m3, F1, F2) is a counterexample
      ).
                                                                                       410
      Though (m1, m2, m3, F1, F2) is smaller than a minimum counterexample. 411
      The first assumption is false.
                                                                                    413
Proposition 10 (Members' isomorphisms as antecedent). Take \forall (x, y, F, f) 414
such that (*A1 _{then} \wedge *A2 _{then} \wedge *A3). Then *B holds.
A1 F is an injection.
                                                                                       416
A2 f is a bijection from*to x*y _{then} \land f \neq \varnothing.
                                                                                       417
A3 Take \forall (m1, m2) :\in f. Then *Def.A holds for (m1, m2, F).
                                                                                       418
B *Def.A holds for (x, y, F) in place of (x, y, F).
                                                                                    419
Proof.
   • Assume B fails.
   • Hence there exists \exists (x, y, F) such that *Def.A fails for (x, y, F).
   • Let us follow *Def.A for (x, y, F).
   • (*0 fails _{then} \wedge *1 fails _{then} \wedge (*2 fails _{else} \vee *3 fails) ).
   • Assume *2 fails.
   • Hence F[space(x)] is not an injection from to space(x) * space(y).
   • Consider the proposition titled as "MemBers' isomorphisms as conse- 427
      quent".
                                                                                       428
```

• Then $(space(x) = \emptyset = space(y))$ $_{else} \lor (space(x) \neq \emptyset \neq space(y)).$ • Meanwhile F is an injection by *A1. • Hence $(space(x) \neq \emptyset \neq space(y))$ because otherwise *2 holds. 431 • Hence there exists $\exists (p_x, p_y) :\in space(x) * space(y)$ such that $p_x \not\in domain(F) \ _{else} \lor \ p_y \not\in image(F).$ • Consider *A2,*A3 and the proposition titled as "Members' isomorphisms 434 as the consequent". • There exists $\exists y2 \in \geq 0$ y such that *Def.A holds for $(p_x, y2, F)$. • There exists $\exists x 1 \in \geq 0$ x such that *Def.A holds for $(x1, p_u, F)$. 437 • Meanwhile, for each of the 2 lines just above, (*Def.A holds only at *1) because (each of (p_x, p_y) is a point). 440 • Hence $p_x \in domain(F)$ then $\land p_y \in image(F)$. 441 • Hence the last assumption is false. 442 • Hence *3 must fail. • Hence *3 fails for f in place of f. 444 • Though by (*A2 $_{then} \wedge$ *A3), (*4 $_{then} \wedge$ *5 $_{then} \wedge$ *6) holds. • Hence the first assumption is false. 446 447 **Proposition 11** (Topological space). Take $\forall ((X1,T1),(X2,T2))$ such that *A 448 holds. Then *B1 \Rightarrow *B2. **A** Take $i \in \{1, 2\}$. Then (X_i, T_i) is a topological space. **B1** ((X1,T1),(X2,T2)) are homeomorphic. **B2** There exists $\exists F$ such that ((X1,T1),(X2,T2)) are isomorphic by F. 452

453

```
Proof.
                                                                                     454
First of all, let me define how to express a pair as a set.
Take \forall (p1, p2). Then (p1, p2) = \{PAIR, p1, \{p1, p2\}\}.
In the expression, "PAIR" is a constant keyword.
                                                                                     457
By the way, *B1 implies *C.
                                                                                     458
C There exists \exists (G, g) such that (*C1 _{then} \land *C2 _{then} \land *C3 _{then} \land *C4).
C1 G is a bijection from X1 to X2.
C2 G is a homeormorphism for *B1.
                                                                                     463
C3 g is a bijection from T1 to T2.
C4 Take forall(t1, t2) := g. Then (G takes t1 to t2).
Consider the previous proposition titled as Members' isomorphisms as antecedent 467
and refer it as *P.
P accepts arguments as follows.
                                                                                     470
D1 *P accepts (X1, X2, G, G) in place of (x, y, F, f).
D2 Take \forall (t1, t2) :\in g. Then *P accepts (t1, t2, G, G) in place of (x, y, F, f).
                                                                                     472
D3 *P accepts (T1, T2, G, g) in place of (x, y, F, f).
                                                                                     473
D4 *P accepts (
                                                                                     474
      \{X1, T1\},\
                                                                                     475
      {X2, T2},
                                                                                     476
      G,
      \{(X1, X2), (T1, T2)\}
                                                                                     478
      ) in place of (x, y, F, f).
                                                                                     479
D5 *P accepts (
      \{PAIR, X1, \{X1, T1\}\},\
                                                                                     481
      \{PAIR, X2, \{X2, T2\}\},\
      G,
      \{(PAIR, PAIR), (X1, X2), (\{X1, T1\}, \{X2, T2\})\}
                                                                                     484
     ) in place of (x, y, F, f).
                                                                                     485
```

	486
Hence *P implies (*E1 $_{then} \wedge$ *E2 $_{then} \wedge$ *E3 $_{then} \wedge$ *E4 $_{then} \wedge$ *E5). Finally, *E5 implies this proposition.	487 488
	489
E1 $(X1, X2)$ are isomorphic by G .	490
E2 Take $\forall (t1, t2) :\in g$. Then $(t1, t2)$ are isomorphic by G .	491
E3 $(T1,T2)$ are isomorphic by G .	492
E4 $\{X1, T1\}, \{X2, T2\}$) are isomorphic by G .	493
E5 $(\{PAIR, X1, \{X1, T1\}\}, \{PAIR, X2, \{X2, T2\}\})$ are isomorphic by G .	494
	495
	496

9	Appendix	497
9.1	Paradox of the set of all sets	498
For e	article somehow leads to paradoxes which resemble to "the set of all sets". example, the usage of the constant keyword PAIR. Though I expect it does	500
	natter for almost all of readers. Because it is not specific to this article but entire mathematics and logic.	501 502
\mathbf{Re}	ferences	503