习题讨论课1题目: 多元函数极限、连续

零、回顾

- 1. 在微积分中,极限与距离有关。在有限维线性空间中,距离通常由范数确定,范数 ||·||是一个函数,满足
 - (a) 正定: $\forall x$, $\|x\| \ge 0$; $\|x\| = 0$ 当且仅当 x = 0;
 - (b) 正齐次: $\forall \mathbf{x}$ 和 $\lambda \in \mathbb{R}$, $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$;
 - (c) 三角形不等式: $\forall x, y, \|x + y\| \le \|x\| + \|y\|$ 。

 $\|\mathbf{x} - \mathbf{y}\|$ 确定了线性空间中 \mathbf{x} 和 \mathbf{y} 之间的距离。

在(实数域或复数域上的)有限维空间中,所有范数是等价的:对任意两个范数 $\|\cdot\|,\|\cdot\|'$,总存在常数 b>a>0 使得对任意 \mathbf{x} ,

$$a\|\mathbf{x}\| \le \|\mathbf{x}\|' \le b\|\mathbf{x}\|.$$

从而,极限、连续、可微等概念与空间中范数的选择无关。在处理实际问题时,可以选用方便的范数。常用范数有:欧氏范数 $\|\mathbf{x}\| = \sqrt{\sum\limits_{k=1}^{m}|x_i|^2}$,

$$\|\mathbf{x}\|_1 = \sum\limits_{k=1}^m |x_i|$$
,以及 $\|\mathbf{x}\|_{\infty} = \max\limits_{1 \leq k \leq m} |x_i|$ 。

- 2. 点列收敛和点列极限: $\lim_{n\to+\infty} \mathbf{x}_n = \mathbf{x} \iff \lim_{n\to+\infty} \|\mathbf{x}_n \mathbf{x}\| = 0$ 。
- 3. 一些拓扑概念
 - (a) 闭集: E 中任何收敛点列的极限也在 E 中;
 - (b) 聚点:存在 $\mathbf{x}_n \in E$,满足 $\mathbf{x}_n \neq \mathbf{x}$,且 $\mathbf{x} = \lim_{n \to +\infty} \mathbf{x}_n$ 。
 - (c) 邻域: $U \to \mathbf{a}$ 的邻域 $\iff \exists \delta > 0$ 使得 $\forall \mathbf{x}, \|\mathbf{x} \mathbf{a}\| < \delta \Rightarrow \mathbf{x} \in U$ 。
 - (d) 内点: **a** 是 E 的内点 \iff E 是 **a** 的邻域。
 - (e) 开集: U 是其每个点的邻域。
 - (f) 边界点: **a** 既不是 E 的内点,也不是 $\mathbb{R}^m \setminus E$ 的内点。后面学习曲面积分时,涉及曲面的边界,与这里拓扑边界有区别。
 - (g) 连续: $f: E \to \mathbb{R}^n$ 在 a 连续, $\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0$ 使得

$$\forall \mathbf{x} \in E, \|\mathbf{x} - \mathbf{a}\| < \delta(\varepsilon) \Rightarrow \|f(\mathbf{x}) - f(\mathbf{a})\| < \varepsilon.$$

- (h) (道路) 连通: $\forall \mathbf{x}, \mathbf{y} \in E$, 存在连续映射 $f: [0,1] \to \mathbb{R}^m$ 使得 $f(t) \in E$ ($\forall 0 \le t \le 1$), $f(0) = \mathbf{x}$, $f(1) = \mathbf{y}$ 。
- 4. 一些结论:

- (a) 在 \mathbb{R}^m 中,点列收敛当且仅当每个坐标数列收敛;有界点列总有收敛子列;任何 Cauchy 点列都收敛。
- (b) 连续映射把有界闭集映为有界闭集(最大值最小值定理);连续映射 把(道路)连通集映为(道路)连通集(介值定理)。

一、多元函数极限的多种形式

- 1. $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$:
 - $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$, $\forall (x,y) : 0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta(\varepsilon)$, 都有 $|f(x,y) A| < \varepsilon$.
 - $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$, $\forall (x,y) : 0 < \max\{|x x_0|, |y y_0|\} < \delta(\varepsilon)$, 都有 $|f(x,y) A| < \varepsilon$.
 - (x_0, y_0) 的邻域与去心邻域有多种形式,根据具体情况选定
- 2. $\lim_{\substack{x \to \infty \\ y \to \infty}} f(x,y) = A$: $\forall \varepsilon > 0, \ \exists M(\varepsilon) > 0, \ \forall (x,y) : |x| > M(\varepsilon), |y| > M(\varepsilon), \$ 都有 $|f(x,y) A| < \varepsilon$.
- 3. $\lim_{\substack{x \to x_0 \\ y \to +\infty}} f(x,y) = A:$ $\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall (x,y) : 0 < |x-x_0| < \delta(\varepsilon), y > \frac{1}{\delta(\varepsilon)}, \$ 都有 $|f(x,y) A| < \varepsilon$.
- 4. $\lim_{\substack{x \to -\infty \\ y \to y_0}} f(x,y) = A$: $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$, $\forall (x,y) : x < -\frac{1}{\delta(\varepsilon)}, |y y_0| < \delta \varepsilon$, 都有 $|f(x,y) A| < \varepsilon$.

上述这些极限过程与 $(x,y) \to \infty$ 有什么不同?

例 1. 求
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \left| \frac{xy}{x^2 + y^2} \right|^{x^2}$$
.

例 2. 设
$$f(x,y) = \begin{cases} \frac{\sin xy}{x}, & x \neq 0; \\ y, & x = 0, \end{cases}$$
 求 $\lim_{(x,y)\to(0,0)} f(x,y)$ 。 讨论在其他点 (x_0,y_0) 的极限: $(x_0,y_0) \neq (0,0)$?

例 3.
$$\lim_{(x,y)\to(0,0)} xy\ln(x^2+y^2)$$

二、累次极限与重极限

例 4.
$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$

例 5.
$$f(x,y) = \begin{cases} \frac{3xy}{x^2+y^2}, & x^2+y^2 \neq 0\\ 0, & x^2+y^2 = 0 \end{cases}$$

例 6. $f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$, 证明: $\lim_{y \to 0} \lim_{x \to 0} f(x,y) = \lim_{x \to 0} \lim_{y \to 0} f(x,y) = 0$, 而 二重极限 $\lim_{\substack{x \to 0 \ y \to 0}} f(x,y)$ 不存在.

例 7.
$$\ \ \ \ \ \mathcal{D} = \{(x,y)|x+y \neq 0\}, \ \ f(x,y) = \frac{x-y}{x+y}, (x,y) \in D. \ \ \ \ \ \ \lim_{x\to 0} \lim_{y\to 0} f(x,y) = 1, \lim_{y\to 0} \lim_{x\to 0} f(x,y) = 1, \ \ \ \ \lim_{(x,y)\to(0,0) \atop (x,y)\in D} f(x,y)$$
 不存在。

一般结论:

- 1. 重极限与累次极限,它们的存在性没有必然的联系。
- 2. (1) 若重极限 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y) = A$ 且对 x_0 的一个去心邻域中极限 $\lim_{y \to y_0} f(x,y) = g(x)$ 存在,则 $\lim_{x \to x_0} g(x)$ 存在,且 $\lim_{x \to x_0} g(x) = A$ 。从而 $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y) = A$ 。
 - (2) 若重极限 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y)$ 与累次极限 $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$ 和 $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$ 均存在,则有 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y) = \lim_{x \to x_0} \lim_{y \to y_0} f(x,y) = \lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$ 。
 - (3) 若 $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$, $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$ 均存在但不等,则 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y)$ 不存在。
- 3. 函数 f(x,y) 在点 (x_0,y_0) 的某去心邻域内有定义,若
 - (a) 存在 x_0 的去心邻域 $U = \{x|0 < |x x_0| < r\}$,使得 $\forall x \in U$, $\lim_{y \to y_0} f(x,y) = g(x)$ 存在;
 - (b) $\lim_{x\to x_0} f(x,y) = h(y)$ 关于 y_0 的某个去心邻域 $\{y|0<|y-y_0|<\eta\}$ 上一致,

则极限 $\lim_{x\to x_0}g(x)$ 和 $\lim_{y\to y_0}h(y)$ 都存在,并且相等,即 $\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)=\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)$ 。

证明. 因为 $\lim_{x \to x_0} f(x, y) = h(y)$ 关于 y_0 的某个去心邻域 $\{y|0 < |y - y_0| < \eta\}$ 上一致,所以 $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$ 使得 $\forall x, x' : 0 < |x - x_0| < \delta(\varepsilon), 0 < |x' - x_0| < \delta(\varepsilon)$ 以及 $\forall y : 0 < |y - y_0| < \eta$,都有

$$|f(x,y) - h(y)| < \frac{\varepsilon}{2}, \quad |f(x',y) - h(y)| < \frac{\varepsilon}{2}.$$

从而

$$|f(x,y) - f(x',y)| \le |f(x,y) - h(y)| + |f(x',y) - h(y)| < \varepsilon.$$

令 $y \to y_0$ (此时 $\delta(\varepsilon)$ 与 y 无关保持不变),则 $|g(x) - g(x')| \le \varepsilon$ 。故由 Cauchy 准则, $\lim_{x \to x_0} g(x)$ 存在,记 $\lim_{x \to x_0} g(x) = A$ 。

让 $x' \to 0$,得到: 对任意 $0 < |x - x_0| < \delta(\varepsilon)$, $|g(x) - A| \le \varepsilon$ 。

 $\text{Fif } \lim_{y \to y_0} h(y) = A_{\circ}$

对任意 $y: 0 < |y - y_0| < \eta$ 以及任意 $x: 0 < |x - x_0| < \delta(\varepsilon)$,

$$|h(y) - A| \le |h(y) - f(x, y)| + |f(x, y) - g(x)| + |g(x) - A|$$

 $< \frac{\varepsilon}{2} + |f(x, y) - g(x)| + \varepsilon.$

固定一个 $x: 0 < |x-x_0| < \delta(\varepsilon)$,于是,存在 $0 < \delta'(x,\varepsilon) < \eta$ 使得对任意 $0 < |y-y_0| < \delta'(x,\varepsilon)$, $|f(x,y)-g(x)| < \frac{\varepsilon}{2}$ 。所以

$$|h(y) - A| < 2\varepsilon$$
.

所以
$$\lim_{y \to y_0} h(y) = A$$
。

讨论: 如何验证 " $\lim_{x\to x_0} f(x,y) = h(y)$ 关于 y_0 的某个去心邻域 $\{y|0 < |y-y_0| < \eta\}$ 上一致"呢?

我们给出以下这个容易验证的(充分)条件:存在常数 M>0 使得在 (x_0,y_0) 的一个去心邻域中,都有

$$\left| \frac{\partial f}{\partial x}(x,y) \right| < M.$$

此时

$$|f(x,y) - f(x',y)| \le M|x - x'|$$

从而 f(x,y) 当 $x \to x_0$ 时满足 Cauchy 条件, 并且对 y_0 附近的 y 一致。

- 4. 3 中条件是否蕴涵重极限 $\lim_{\substack{x \to x_0 \ y \to y_0}} f(x,y)$ 存在?
- 5. 如果 f 在 (x_0,y_0) 的一个矩形邻域内连续,则是否有 $\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)=\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)=f(x_0,y_0)$?

例 8. 求下列极限:

- 1. $\lim_{(x,y)\to(1,0)} (x+y)^{\frac{x+y+1}{x+y-1}};$
- 2. $\lim_{(x,y)\to(0,0)} (x+y) \ln(x^2+y^2);$
- 3. $\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x+y}{x^2 xy + y^2};$

4.
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} (x^2 + y^2) e^{-(x+y)};$$

5.
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}$$

例 9. 记 $D = \{(x,y)|x+y \neq 0\}$,讨论 $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^3+y^3}$, $\lim_{(x,y)\to(0,0)} \frac{x^2y^6}{x^3+y^3}$ 是否存在?

此例说明,对多元多项式,无穷小比阶不能仅看多项式的次数。

例 10. 设一元函数 f(t) 在 \mathbb{R} 上连续可微,定义 $g(x,y)=\frac{f(x)-f(y)}{x-y}$ $(x\neq y)$,求 $\lim_{(x,y)\to(t,t)}g(x,y)$ 。

问:如果 f' 不连续,结论对吗?

三、极限与连续的性质

例 11. 若 z=f(x,y) 在 \mathbb{R}^2 上连续,且 $\lim_{x^2+y^2\to+\infty}f(x,y)=+\infty$,证明函数 f 在 \mathbb{R}^2 上一定有最小值点。

例 12. $f(\mathbf{x})$ 在 \mathbb{R}^n 上连续,且

1.
$$\mathbf{x} \neq \mathbf{0}$$
 时, $f(\mathbf{x}) > 0$,

2.
$$\forall c > 0, f(c\mathbf{x}) = cf(\mathbf{x})$$

证明:存在 a > 0, b > 0 使得 $a||\mathbf{x}|| \le f(\mathbf{x}) \le b||\mathbf{x}||$ 。

例 13. 设
$$f(x,y)=egin{cases} \frac{\ln(1+xy)}{x}, & x \neq 0; \\ y, & x=0 \end{cases}$$
,讨论其在定义域中的连续性。