LOGICAL OPERATIONS

Binary	levels	from voltage
0		0 0
1 -	-> 4-	5 V (say)
0 -	- 9 0-	1

V,	٧,	V _o
0 ا	0Y	QV G
00	54	4.3V LU
5v	OV	4.3V
5V [1]	[1]	[2]

· AND GATE

A	В	У
0	0	0
0	,	D
,	0	0
	1	1

equi	valent	logic	levels

٧,	٧,	٧,
OV	OV	0.71
ε ₀]	5V	0.74
5v	OV	0-7V
じ	[0] 5v	61 5Y
5v [i]	[1]	E3

E) A	-	te	Ø	ı		:				
-	Ь	d	æ	d		C	W	la	لع	8	Í
	1	U	ה	C	ند	k			U		
LT	- 3	hi	u								
LI	8	hi	u	_							

TRANSISTORS

"tonansion + ocesistance"

Inanskr of current from a low resistance region to a high resistance region

Inansfer of current from a low resistance negion to a high resistance ragion

(1) BIPOLAR JUNCTION TRANSISTOR (BJT)

- · Three terminal devices
- · Constructed by connecting two p-n junctions back to back

- · p-type/n-type sandwiched between two of its opposite types
- · Bipolan why both majority and minority earnier actively participate in its ofwration

Jerminals

Three terminals: Emitter, base, collector

EMITTER (E)

- · supplies charge carriers
- · heavily deped
- · moderate in size

BASE (B)

- · middle partion, forms two p-n junctions blu E, C
- · lightly dopud
- · smallest in width

COLLECTOR (C)

- · collects charge corriers
- · moderately defed
- widest of all regions; maximum heat dissipated

- · moderate in size
- lightly depud
- smallest in width
 controls no g charge
 corriers emitted
- widest of all regions; maximum heat assifiated here

TRANSISTOR BIASING

- · Inansiston has two p.n junctions:
 - 1 Emitter bose (EB)
 - 2 Collecton base (CB)
- · Each of these can be biased independently

Thus we have the following regims of operation:

	EB junction	CB junction	Application			
Active sugion (common)	Forward	Reverse	works as amplifies			
Saturation region	Torward	Jamard	DN-switch (digital)			
Cut-off region	Revorse	Reverse	OFF - switch (digital)			
Inverse active region (rare)	Reverse	Jarward	Attenuator			

ACTIVE REGION

- Emitter current = $I_{\epsilon} = I_{c} + I_{B}$
- · Collector current = Ic = Ic (majority) + Ic (minority)

NUMERICALS

1) In a common trace connection, IE = 1 mA, Ic = 0.95 mA. IB = ?

 $I_{\varepsilon} = I_{c} + I_{g}$ $I_{g} = I_{\varepsilon} - I_{c}$ = 1 - 0.95 $I_{g} = 0.05 \text{ mA}$

Input characteristics

