

Probability and Statistics Course Descriptions Aim of the course Basic Definitions

Lecture 1. Class 1.

Time: 8:30- 10:30 Department: BIT

Descriptive and Inferential Statistics

Statistics can be Divided into two basic types:

- Descriptive Statistics:
- Inferential Statistics:

Methods that making decisions or predictions about a population based on sampled data.

How is that?

By Probability

Why Learn Probability?

- Nothing in life is certain. In everything we do, we measure the chances of successful outcomes, from business to medicine to the weather
- A probability provides a quantitative description of the chances or likelihoods associated with various outcomes
- It provides a bridge between descriptive and inferential statistics

Probabilistic vs Statistical Reasoning

If I live in California

- Suppose I know exactly the proportions of car makes in California. Then I can find the probability that the first car I see in the street is a Ford. This is probabilistic reasoning as I know the population and predict the sample
- Now suppose that I do not know the proportions of car makes in California, but would like to estimate them. I observe a random sample of cars in the street and then I have an estimate of the proportions of the population. This is statistical reasoning

Basic Concepts

- An experiment is the process by which an observation (or measurement) is obtained.
- An event is an outcome of an experiment, usually denoted by a capital letter.

Experiments and Events

- Experiment: Record an age
 - A: person is 30 years old
 - B: person is older than 65
- Experiment: Toss a die
 - A: observe an odd number
 - B: observe a number greater than 2

Basic Concepts

• Two events are mutually exclusive (احدهما الاخر) if, when one event occurs, the other cannot, and vice versa.

Basic Concepts

 An event that cannot be decomposed is called a simple event.

(الحدث الذي لا يمكن أن يتحلل يسمى حدث بسيط)

- Denoted by E with a subscript.
- Each simple event will be assigned a probability, measuring "how often" it occurs.
- The set of all simple events of an experiment is called the **sample space**, **S**.

• The die toss:

• Simple events: Sample space:

$$S = \{E_1, E_2, E_3, E_4, E_5, E_6\}$$

Basic Concepts

An event is a collection of one or more simple events.

•The die toss:

A: an odd number

-B: a number > 2

$$A = \{E_1, E_3, E_5\}$$

$$B = \{E_3, E_4, E_5, E_6\}$$

The Probability of an Event

- The probability of an event A measures "how often" A will occur. We write P(A).
- Suppose that an experiment is performed n times. The relative frequency for an event A is

Number of times A occurs
$$= \frac{f}{n}$$

If we let n get infinitely large,

$$P(A) = \lim_{n \to \infty} \frac{f}{n}$$

The Probability of an Event

- P(A) must be between 0 and 1.
 - If event A can never occur, P(A) = 0. If event A always occurs when the experiment is performed,
 P(A) =1.
- The sum of the probabilities for all simple events in S equals 1.

The probability of an event A is found by adding the probabilities of all the simple events contained in A.

Finding Probabilities

- Probabilities can be found using
 - Estimates from empirical studies تقديرات من الدراسات)
 - Common sense estimates based on equally likely events. (تقديرات الحس السليم على أساس الأحداث المحتملة على قدم المساواة)

Examples:

-Toss a fair coin.

$$P(Head) = 1/2$$

 Suppose that 10% of the Iraqi population has red hair. Then for a person selected at random,

P(Red hair) = .10

Using Simple Events

- The probability of an event A is equal to the sum of the probabilities of the simple events contained in A
- If the simple events in an experiment are equally likely, you can calculate

$$P(A) = \frac{n_A}{N} = \frac{\text{number of simple events in A}}{\text{total number of simple events}}$$

Toss a fair coin twice. What is the probability of observing at least one head?

A bowl contains three M&Ms[®], one red, one blue and one green. A child selects two M&Ms (sequentially) at random. What is the probability that at least one is red?

The sample space of throwing a pair of dice is

Event	Simple events	Probability
Dice add to 3	(1,2),(2,1)	2/36
Dice add to 6	(1,5),(2,4),(3,3),	5/36
	(4,2),(5,1)	
Red die show 1	(1,1),(1,2),(1,3),	6/36
	(1,4),(1,5),(1,6)	
Green die show 1	(1,1),(2,1),(3,1),	6/36
	(4,1),(5,1),(6,1)	

Counting Rules

- Sample space of throwing 3 dice has 216 entries, sample space of throwing 4 dice has 1296 entries, ...
- At some point, we have to stop listing and start thinking ...
- We need some counting rules

The mn Rule

- If an experiment is performed in two stages, with m ways to accomplish the first stage and n ways to accomplish the second stage, then there are mn ways to accomplish the experiment.
- This rule is easily extended to k stages, with the number of ways equal to

$$n_1 n_2 n_3 \dots n_k$$

Example: Toss two coins. The total number of

simple events is:

$$2 \times 2 = 4$$

Example: Toss three coins. The total number of

simple events is:

$$2 \times 2 \times 2 = 8$$

Example: Toss two dice. The total number of

simple events is:

$$6 \times 6 = 36$$

Example: Toss three dice. The total number of simple

events is:

$$6 \times 6 \times 6 = 216$$

THANK YOU