4. Probability and Bayes

4.1 Probability

Uncertainty: not secure about the outcomes

Omega sample space (set of possibilities)

omega in Omega sample point

Probability space: Function P : Omega → R such that:

- 0≤P(omega) ≤ 1
- Sum P(omega) = 1

Event: any subset of Omega

Probability of an event A is a function assigning A to [0,1]

$$P(A) = Sum P(omega)$$

A **random variable** (outcome of a random phenomenon) is a function from the sample space to some range $X : Omega \rightarrow R$ or B etc.

P induces a **probability distribution** for a random variable X:

$$P(X = xi) = Sum P(w)$$

A **proposition** is the event (subset of) where an assignment to a random variable holds.

event a = A = true = { omega in Omega such that A(omega) = true}

4.2 Syntax and Semantics

Prior or unconditional probabilities \rightarrow normal probability (P(odd = true) = 0.5) without knowing anything

A **probability distribution** is a function assigning a probability value to all possible assignments of a random variable. (for Real is continuous)

```
e.g.: P(Weather) = < 0.72, 0.1, 0.08, 0.1 >
```

Joint probability distribution for a set of random variables gives the probability of every atomic joint event on those random variables.

Joint probability distribution of the random variables *Weather* and *Cavity*: $P(Weather, Cavity) = a 4 \times 2$ matrix of values:

Weather =sunnyraincloudysnowCavity = true
$$0.144$$
 0.02 0.016 0.02 Cavity = false 0.576 0.08 0.064 0.08

Conditional/Posterior Probability: I know the outcome of a random variable, how does this affect probability of other random variables?

$$P(a|b) = P(a^b)/P(b)$$
 if $P(b) \neq 0$

Product rule

$$P(a^b) = P(a|b)P(b) = P(b|a)P(a)$$

Total probabilities

$$P(a) = P(a|b)P(b) + P(a|\neg b)P(\neg b)$$

In general,

$$P(X) = Sum P(X|Y = yi)P(Y = yi)$$

Chain rule

$$P(X1,X2) = P(X1)P(X2|X1)$$

 $P(X1,...,Xn) = Prod. P(Xi|X1,...,Xi-1)$

4.3 Inference by enumeration

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$

e.g.: P(¬cavity|toothache) = P(¬cavity ^ toothache)/P(toothache)

4.4 Independence

A and B are independent iff

$$P(A|B) = P(A) \text{ or } P(B|A) = P(B) \text{ or } P(A, B) = P(A)P(B)$$

P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity) P(Weather)

- P(Toothache, Cavity, Catch) has 23 1 = 7 independent entries
- If I have a cavity, the probability that the probe catches in it does not depend on whether I have a toothache:
 - (1) P(catch|toothache, cavity) = P(catch|cavity)
- The same independence holds if I haven't got a cavity:
 - (2) P(catch|toothache,¬cavity) = P(catch|¬cavity)
- Catch is conditionally independent of Toothache given Cavity:
 P(Catch|Toothache, Cavity) = P(Catch|Cavity)
- Equivalent statements:

P(Toothache|Catch, Cavity) = P(Toothache|Cavity)

P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

General formulation:

X conditionally independent from Y given Z iff:

• P(X|Y, Z) = P(X|Z)

$$P(X, Y | Z) = P(X|Y, Z)P(Y | Z) = P(X|Z)P(Y | Z)$$

In general,

$$P(Y1, ..., Yn|Z) = P(Y1|Y2, ..., Yn, Z)P(Y2|Y3..., Yn, Z) \cdot \cdot \cdot P(Yn|Z)$$

Yi conditionally independent from Yj given Z

$$P(Y1, ..., Yn|Z) = P(Y1|Z)P(Y2|Z) \cdot \cdot \cdot P(Yn|Z)$$

Chain rule + Conditional independence

P(Toothache, Catch, Cavity) = P(Toothache Catch, Cavity)P(Catch, Cavity)

- = P(Toothache Catch, Cavity)P(Catch Cavity)P(Cavity)
- = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity) = 2 + 2 + 1 = 5 independent numbers (instead of 2^3 1)

4.5 Bayes' Rule

Product rule: $P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$

 \Rightarrow Bayes' rule P(a|b) =P(b|a)P(a)/P(b)

Or P(Y | X) = P(X|Y)P(Y)/P(X) = alfa*P(X|Y)P(Y)

P(Cause|Effect) = P(Effect|Cause)P(Cause) / P(Effect)

With conditional independence...

General/chained situation

Yi, ... Yn conditionally independent each other given Z

$$P(Z|Y1, ..., Yn) = P(Y1|Z) \cdot \cdot \cdot P(Yn|Z) P(Z)$$

P(Cause|Effect1, . . . , Effectn) = alfa* P(Cause) PROD P(Effecti | Cause)

4.5.1 Bayesian networks

- a directed, acyclic graph (link "directly influences")
- a conditional distribution for each node given its parents: P(Xi | Parents(Xi))

In the simplest case, conditional distribution represented as a **conditional probability table (CPT)** giving the distribution over Xi for each combination of parent values.

All joint probabilities computed with the chain rule:

$$P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i|\text{Parents}(X_i))$$

