Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) $(M\Gamma T Y \text{ им. H.Э. Баумана})$

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»
НАПРАВЛЕНІ	ИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»

ОТЧЕТ ПО ЛАБОРАТОРНЫМ РАБОТАМ №14-15

Дисциплина:	Функциона	альное и логическое программ	ирование
Студент	ИУ7-66Б		Т. А. Казаева
	Группа	Подпись, дата	И. О. Фамилия
Преподаватель			Н. Б. Толпинская
		Подпись, дата	И. О. Фамилия

Лабораторная работа 14

Создать базу знаний: «Предки», позволяющую определить:

- 1 по имени субъекта определить всех его бабушек (предки 2-го колена),
- 2 по имени субъекта определить всех его дедушек (предки 2-го колена),
- 3 по имени субъекта определить всех его бабушек и дедушек (предки 2-го колена),
- 4 по имени субъекта определить его бабушку по материнской линии (предки 2-го колена),
- 5 по имени субъекта определить его бабушку и дедушку по материнской линии (предки 2-го колена).

```
domains
    name, gender = symbol.
    person = person(name, gender).
  predicates
    IsParent (person, person).
    IsGrandparent (person, gender, person).
    IsGrandparent (person (GName, GGender), Line, person (CName, CGender)):-
      IsParent (person (GName, GGender), person (PName, Line)), IsParent (person (
         PName, _), person(CName, CGender)).
11
    IsParent(person("Olga", "Woman"), person("Tatiana", "Woman")).
    IsParent(person("Alexey", "Man"), person("Tatiana", "Woman")).
13
    IsParent(person("Valentina", "Woman"), person("Alexey", "Man")).
14
    IsParent(person("Uriy", "Man"), person("Alexey", "Man")).
    IsParent(person("Natalia", "Woman"), person("Olga", "Woman")).
16
    IsParent(person("Igor", "Man"), person("Olga", "Woman")).
17
18
    IsGrandparent (person (Name, "Woman"), _, person ("Tatiana", "Woman")). % 1
19
    IsGrandparent (person (Name, "Man"), _, person ("Tatiana", "Woman")). % 2
20
    IsGrandparent (person (Name, _), _, person ("Tatiana", "Woman")). % 3
21
    IsGrandparent (person (Name, "Woman"), "Woman", person ("Tatiana", "Woman")). % 4
22
    IsGrandparent (person (Name, _), "Woman", person ("Tatiana", "Woman")). % 5
```

# mara	Лермы		Конкретизированные	Лапънейшие пействия
	IsGrandparent(pers IsGrandparent(pers	pesocheberrbi IsParent(person(PName,), person("Tatiana "Woman")) IsParent(person(Name, "Woman"), person(PName,))	GName = Name GGender = "Woman" CName = "Tatiana" CGender = "Woman"	Прямой ход, попьтка унификации IsParent(person(PName, _), person("Tatriana "Woman"))
7	Запуск алгоритма унификации для IsParent(person(PName,), person("Tatiana "Woman")) IsGrandparent(person(GName, GGender), Line, person(CName, CGender)) Унификация неуспешна.	IsParent(person(PName,), person("Tatiana "Woman")) IsParent(person(Name, "Woman"), person(PName,))	GName = Name $GGender = "Woman"$ $CName = "Tatiana"$ $CGender = "Woman"$	Прямой ход, переход к следующему предложению
ಣ	Запуск алгоритма унификации дия IsParent(person(PName,), person("Tatiana "Woman")) IsParent(person("Olga "Woman"), person("Tatiana "Woman")). Унификация успешна.	IsParent(person(Name, "Woman"), person("Olga_))	GName = Name $GGender = "Woman"$ $CName = "Tatiana"$ $CGender = "Woman"$ $PName = "Olga"$	Прямой хол, попытка унификации is Parent (person("Name, "Woman"), person("Olga_))
4	Запуск алгоритма унификации для IsParent(person(Name, "Woman"), person("Olga_)) IsGrandparent(person(GName, GGender), Line, person(CName, CGender)).	IsParent(person(Name, "Woman"), person("Olga_))	GName = Name GGender = "Woman" CName = "Tatiana" CGender = "Woman" PName = "Olga"	Прямой ход, переход к следующему предложению
6	Запуск алторитма унификации для IsParent(person(Name, "Woman"), person("Olga_)) и IsParent(person("Natalia "Woman"), person("Olga "Woman")). Унификация успешна.		GName = "Natalia" GGender = "Woman" CName = "Tatiana" CGender = "Woman" PName = "Olga"	Получен результат (Gname = "Natalia"). Откат, откат к следующему предложению относительно 3 - БЗ кончилась
10	Запуск алгоритма унификации для IsParent(person(PName,), person("Tatiana "Woman")) и IsParent(person("Alexey "Man"), person("Tatiana "Woman")). Унификация успепна.	isParent(human(Nname, "Woman"), human("Alexey_))	GName = Name $GGender = "Woman"$ $CName = "Tatiana"$ $CGender = "Woman"$ $PName = "Alexey"$	Прямой хол, попьттка унификации is Parent (person(Name, "Woman"), person("Alexey _))
11	Запуск алгоритма унификации для isParent(human(Name, "Woman"),human("Alexey_)) и IsGrandparent(person(GName, GGender), Line, person(CName, CGender)).	isParent(human(Nname, "Woman"), human("Alexey_))	GName = Name GGender = "Woman" CName = "Tatiana" CGender = "Woman" PName = "Alexey"	Прямой ход, переход к следующему предложению
12	Запуск алгоритма унификации для isParent(human("Moman"),human("Alexey_)). и IsParent(person("Yalentina "Woman"), person("Alexey" Man")). Унификация успешна.	-	GName = "Valentina" GGender = "Woman" CName = "Tatiana" CGender = "Woman" PName = "Alexey"	Получен результат (Gname = "Valentina"). Откат.
15	Запуск алгоритма унификации для isParent(human(Name, "Woman"),human("Alexey_)). и IsParent(person("Uriy "Man"), person("Alexey "Man")). Унификация неуспешна.	IsParent(person(PName,), person("Tatiana "Woman")) IsParent(person(Name, "Woman"), person(PName,))	GName = "Valentina" GGender = "Woman" CName = "Tatiana" CGender = "Woman"	Прямой ход, переход к следующему предложению
17	Запуск алгоритма унификации для isParent(human(Name, "Woman"),human("Alexey_)). и IsParent(person("Igor "Man"), person("Olga "Woman")). Унификация неуспепина.	IsGrandparent(person(Name, "Woman"),, person("Tatiana "Woman")).	Пусто	Откат, следующее предложение относительно 1
18	Запуск алгоритма унификации для IsGrandparent(person(Name, "Woman"),, person("Tatiana "Woman")). и IsParent(person("Olga "Woman"), person("Tatiana "Woman")). Унификация неуспешна	IsGrandparent(person(Name, "Woman"), _, person("Tatiana "Woman")).	Пусто	Прямой ход, переход к следующему предложению

Лабораторная работа 15

В одной программе написать правила, позволяющие найти:

- 1. Максимум из двух чисел:
 - а) без использования отсечения,
 - б) с использованием отсечения.
- 2. Максимум из трех чисел:
 - а) без использования отсечения,
 - б) с использованием отсечения.

Для одного из вариантов вопроса и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы.

```
domains
     num = integer.
  predicates
     Max2(num, num, num).
     Max3(num, num, num, num).
     Max2Cut(num, num, num).
     Max3Cut(num, num, num, num, num).
10 clauses
     \operatorname{Max2}(\operatorname{Num1}, \operatorname{Num2}, \operatorname{Num1}) :- \operatorname{Num1} >= \operatorname{Num2}.
11
     Max2(Num1, Num2, Num2) :- Num2 >= Num1.
12
13
     Max3(Num1, Num2, Num3, Num1) :- Num1 >= Num2, Num1 >= Num3.
     Max3(Num1, Num2, Num3, Num2) :- Num2 >= Num1, Num2 >= Num3.
15
     Max3(Num1, Num2, Num3, Num3) :- Num3 >= Num1, Num3 >= Num2.
16
     \label{eq:max2Cut} \operatorname{Max2Cut}\left(\operatorname{Num1},\ \operatorname{Num2},\ \operatorname{Num1}\right) \ :- \ \operatorname{Num1} \ >= \ \operatorname{Num2}, \ \ ! \ .
18
     Max2Cut(, Num2, Num2).
19
20
     Max3Cut(Num1, Num2, Num3, Num1) := Num1 >= Num2, Num1 >= Num3, !.
21
     Max3Cut( , Num2, Num3, Num2) :- Num2 >= Num3, !.
22
     Max3Cut( , , Num3, Num3).
23
24
25 goal
     Max2Cut(1, 2, Max).
```

# шага	а	Состояние	Конкретизированные	Дальнейшие действия
\vdash	Запуск алгоритма унификации для Мах3(3, 1, 2, Max) и Мах2(Num1, Num2, Num1). Унификация неуспешна.	Max3(3, 1, 2, Max)	Пусто	Прямой ход, переход к следующему предложению
		:		
က	Запуск алгоритма унификации для max3(3, 1, 2, Max) и max3(Num1, Num2, Num3, Num1). Унификация успешна.	3>=2 $3>=1$		Прямой ход, решение цели резольвенты $3>=2$
4	3>=2 Верно.	3 >= 1	Num1 = 3 $ Num2 = 1 $ $ Num3 = 2 $ $ Max = Num1$	Прямой ход, решение цели резольвенты $3>=1$
ಗು	3>=1 Верно.	Пусто	$egin{aligned} \operatorname{Num1} &= 3 \\ \operatorname{Num2} &= 1 \\ \operatorname{Num3} &= 2 \\ \operatorname{Max} &= 3 \end{aligned}$	Переменная Мах реконкретизирована. Откат, переход к следующему относительно шага 3 предложению.
9	Запуск алгоритма унификации для Мах3(3, 1, 2, Max) и Мах3(Num1, Num2, Num3, Num2). Унификация успешна	1>=2 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1	Num1 = 3 $Num2 = 1$ $Num3 = 2$ $Max = Num2$	Прямой ход, решение цели резольвенты $1>=2$
2	1>=2 Неверно.	Max3(3, 1, 2, Max)	Пусто	Откат, переход к следующему предложению относительно шага 6.
∞	Запуск алгоритма унификации для Мах3(3, 1, 2, Max) и Мах3(Num1, Num2, Num3, Num3). Унификация успешна	$2>=1 \ 2>=3$	$egin{aligned} \operatorname{Num1} &= 3 \\ \operatorname{Num2} &= 1 \\ \operatorname{Num3} &= 2 \\ \operatorname{Max} &= \operatorname{Num3} \end{aligned}$	Прямой ход, решение цели резольвенты $2>=1$
6	2>=1 Верно.	2>=3	$egin{aligned} \operatorname{Num1} &= 3 \\ \operatorname{Num2} &= 1 \\ \operatorname{Num3} &= 2 \\ \operatorname{Max} &= \operatorname{Num3} \end{aligned}$	Прямой ход, решение цели резольвенты $2>=3$
10	2>=3 Неверно.	Max3(3, 1, 2, Max)	Пусто	Откат, переход к следующему предложению относительно шага 8.
11	Запуск алгоритма унификации для Мах3(3, 1, 2, Max) и Мах3Сut(Num1, Num2, Num3, Num1). Унификация неуспешна	Max3(3, 1, 2, Max)	Пусто	Прямой ход, переход к следующему предложению.
		:		
13	Запуск алгоритма унификации для махэ(э, 1, 2, мах) и МахЗСut(_, _, Num3, Num3). Унификация неуспешна	Max3(3, 1, 2, Max)	Пусто	Завершение работы, вывод результата на экран.

# шага	# шага Термы	Состояние резольвенты	Конкретизированные переменные	Дальнейшие действия
1	Запуск алгоритма унификации для max3Cut(3, 1, 2, QMax) и max2(Num1, Num2, Num1). Унификация неуспешна.	Max3Cut(3, 1, 2, QMax) Пусто	Пусто	Прямой ход, переход к следующему предложению.
:				
	Запуск алгоритма унификации для	$3 \sim -3$	Num1 = 3	
-	$_{\rm o} { m Max3Cut}(3,1,2,{ m QMax})$ $_{ m II}$	2 / / 2	$\mathrm{Num}2=1$	Прямой ход, решение цели из
0	Max3Cut(Num1, Num2, Num3, Num1).	2 >= 1	Num3 = 2	резольвенты $3 >= 2$
	Унификация успешна.		$\mathrm{QMax} = \mathrm{Num1}$	
			Num1 = 3	
	9 × 9 D	3>=1	$\mathrm{Num}2=1$	Прямой ход, решение цели из
	9 > = 2 Depho.		Num3 = 2	резольвенты $3 >= 1$
			$\mathrm{QMax} = \mathrm{Num1}$	
			Num1 = 3	Davoniranomina May ononomon
-			Num2 = 1	геконкретизация мах, оператор
) T	10 3> = 1 Bepho.	LIYCTO	Num3 = 2	отсечения, откат к пункту s, завершение раооты, поскольку
			QMax = 3	метка на последнем предложении во