Instructor: Nikhil Muralidhar

September 9, 2022

CS 556-B: Mathematical Foundations of Machine Learning Homework 1: Linear Algebra (100 points)

Note: Calculators allowed for trigonometric operations & arithmetic operations (i.e., addition, subtraction, multiplication or division of scalars). All solutions methods must be full explained.

Vectors

.

1. (5 points) Find the magnitude of the vector $\mathbf{x} = \begin{bmatrix} 2 \\ -3 \\ 2 \\ 4 \\ -4 \end{bmatrix}$

2. (5 points) Consider two vectors $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (in vector space \mathbb{R}^2), what is their span? Briefly explain your reasoning leveraging the definition of the span of a set of vectors.

Dot Product

- 3. (10 points) If two vectors **a**, **b** have magnitudes 3 and 5 respectively and the angle between them is $\frac{\pi}{2}$ radians, what is their dot product?
- 4. (10 points) Let vector $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \mathbf{v} = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$, calculate the dot product of \mathbf{u} and \mathbf{v} also calculate the angle between (i.e., not the cosine of the angle but the actual angle in radians or degrees) \mathbf{u} and \mathbf{v} .

Linear Independence

5. (15 points) Check if the vectors $\mathbf{x} = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix}$, $\mathbf{z} = \begin{bmatrix} 5 \\ 2 \\ -6 \end{bmatrix}$

are linearly independent. Note: The condition for linear independence is that given a set S of vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ and coefficients a, b, c, $a\mathbf{x} + b\mathbf{y} + c\mathbf{z} = 0$ if and only if a = b = c = 0.

6. (15 points) Given a subset of vectors $S = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}$ for $k \in \mathbb{N}$ of a vector space V, prove that S is linearly independent iff a linear combination of elements of S with non-zero coefficients does not yield $\mathbf{0}$. **Hint**: To prove iff statements, i.e., A **iff** B (A \iff B), first prove A \to B, then prove B \leftarrow A.

Matrices

7. (10 points) Demonstrate the distributive property of matrix multiplication over addition.

Given
$$A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 6 & 2 \\ 3 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & -2 \\ 4 & -1 \end{bmatrix}$, demonstrate: $A(B+C) = AB + AC$

8. (15 points) Calculate the inverse of matrix $A = \begin{bmatrix} 3 & 1 & 2 \\ -2 & -4 & 1 \\ 5 & -3 & 2 \end{bmatrix}$. Note: It is acceptable to leave the final solution with fractional entities in the matrix (i.e., no requirement to convert fractions to decimal numbers).

Change of Bases

- 9. (15 points) Consider the three columns in matrix A (problem 8) to be our new basis of interest in R^3 . If a vector $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ defined on the natural basis in R^3 (i.e., $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e_1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$), how would vector \mathbf{x} be represented in the basis defined by the matrix A in problem 8.