# Тренировочная работа №5 по ФИЗИКЕ 11 класс

6 мая 2019 года Вариант ФИ10501

| Выполнена: ФИО | класс |  |
|----------------|-------|--|
|                |       |  |

#### Инструкция по выполнению работы

На выполнение работы по физике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 32 задания.

В заданиях 1–4, 8–10, 14, 15, 20, 25–27 ответом является целое число или конечная десятичная дробь. Число запишите в поле ответа в тексте работы.

Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр. Ответ запишите в поле ответа в тексте работы.

Ответом к заданию 13 является слово. Ответ запишите в поле ответа в тексте работы.

Ответом к заданиям 19 и 22 являются два числа. Ответ запишите в поле ответа в тексте работы.

Ответ к заданиям 28–32 включает в себя подробное описание всего хода выполнения задания. На чистом листе бумаги укажите номер задания и запишите его полное решение.

При вычислениях разрешается использовать непрограммируемый калькулятор.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

# Десятичные приставки

| Наимено-<br>вание | Обозначение | Множитель       | Наимено-<br>вание | Обозначение | Множитель        |
|-------------------|-------------|-----------------|-------------------|-------------|------------------|
| гига              | Γ           | 10 <sup>9</sup> | санти             | c           | $10^{-2}$        |
| мега              | M           | $10^{6}$        | МИЛЛИ             | M           | $10^{-3}$        |
| кило              | К           | $10^{3}$        | микро             | MK          | $10^{-6}$        |
| гекто             | Γ           | $10^{2}$        | нано              | Н           | 10 <sup>-9</sup> |
| деци              | Д           | $10^{-1}$       | пико              | П           | $10^{-12}$       |

## Константы

| число $\pi$                                                | $\pi = 3.14$                                                                      |
|------------------------------------------------------------|-----------------------------------------------------------------------------------|
| ускорение свободного падения на Земле                      | $g = 10 \text{ m/c}^2$                                                            |
| гравитационная постоянная                                  | $G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{м}^2 / \text{кг}^2$                 |
| универсальная газовая постоянная                           | R = 8,31 Дж/(моль·К)                                                              |
| постоянная Больцмана                                       | $k = 1,38 \cdot 10^{-23}$ Дж/К                                                    |
| постоянная Авогадро                                        | $N_{ m A} = 6 \cdot 10^{23} \  m моль^{-1}$                                       |
| скорость света в вакууме                                   | $c = 3 \cdot 10^8 \text{ m/c}$                                                    |
| коэффициент пропорциональности в законе Кулона             | $k = \frac{1}{4\rho e_0} = 9 \cdot 10^9 \text{ H} \cdot \text{м}^2/\text{K}\pi^2$ |
| модуль заряда электрона (элементарный электрический заряд) | $e = 1,6 \cdot 10^{-19}  \mathrm{K}$ л                                            |
| постоянная Планка                                          | $h = 6.6 \cdot 10^{-34}  \text{Дж} \cdot \text{c}$                                |

#### Соотношения между различными единицами

| температура                          | $0 \text{ K} = -273 ^{\circ}\text{C}$               |
|--------------------------------------|-----------------------------------------------------|
| атомная единица массы                | 1 а. е. м. = $1,66 \cdot 10^{-27}$ кг               |
| 1 атомная единица массы эквивалентна | 931,5 МэВ                                           |
| 1 электронвольт                      | $1 	ext{ } 	ext{9B} = 1,6 \cdot 10^{-19} 	ext{ Дж}$ |
| 1 астрономическая единица            | 1 a.e. $\approx 150\ 000\ 000\ км$                  |
| 1 световой год                       | $1$ св. год $\approx 9,46 \cdot 10^{15}$ м          |
| 1 парсек                             | 1 пк ≈ 3,26 св. года                                |

#### Масса частиц

| электрона | $9,1 \cdot 10^{-31} \mathrm{kr} \approx 5,5 \cdot 10^{-4} \mathrm{a.\ e.\ m.}$ |
|-----------|--------------------------------------------------------------------------------|
| протона   | $1,673 \cdot 10^{-27} \text{ кг} \approx 1,007 \text{ a. e. м.}$               |
| нейтрона  | $1,675 \cdot 10^{-27} \text{ кг} \approx 1,008 \text{ a. e. м.}$               |

## Астрономические величины

| средний радиус Земли           | $R_{\oplus}=6370$ км                     |
|--------------------------------|------------------------------------------|
| радиус Солнца                  | $R_{\odot} = 6.96 \cdot 10^8 \mathrm{m}$ |
| температура поверхности Солнца | T = 6000  K                              |

#### Плотность

| воды              | $1000 \text{ кг/м}^3$ | подсолнечного масла | 900 кг/м <sup>3</sup>    |
|-------------------|-----------------------|---------------------|--------------------------|
| древесины (сосны) | 400 кг/м <sup>3</sup> | алюминия            | 2700 кг/м <sup>3</sup>   |
| керосина          | 800 кг/м <sup>3</sup> | железа              | 7800 кг/м <sup>3</sup>   |
|                   |                       | ртути               | 13 600 кг/м <sup>3</sup> |

# Удельная теплоёмкость

| воды   | 4,2 · 10 <sup>3</sup> Дж/(кг·К) | алюминия | 900 Дж/(кг·К) |
|--------|---------------------------------|----------|---------------|
| льда   | $2,1\cdot 10^3$ Дж/(кг·К)       | меди     | 380 Дж/(кг·К) |
| железа | 460 Дж/(кг·К)                   | чугуна   | 500 Дж/(кг·К) |
| свинца | 130 Дж/(кг·К)                   |          |               |

## Удельная теплота

| парообразования воды | 2,3 · 10 <sup>6</sup> Дж/кг |
|----------------------|-----------------------------|
| плавления свинца     | 2,5 · 10 <sup>4</sup> Дж/кг |
| плавления льда       | 3,3 · 10 <sup>5</sup> Дж/кг |

# Нормальные условия

давление: 10<sup>5</sup> Па, температура: 0 °C

## Молярная масса

| азота    | $28 \cdot 10^{-3}$ кг/моль         | гелия            | $4 \cdot 10^{-3}$ кг/моль          |
|----------|------------------------------------|------------------|------------------------------------|
| аргона   | $40 \cdot 10^{-3}$ кг/моль         | кислорода        | $32 \cdot 10^{-3}$ кг/моль         |
| водорода | $2 \cdot 10^{-3}$ кг/моль          | лития            | $6 \cdot 10^{-3}$ кг/моль          |
| воздуха  | $29 \cdot 10^{-3}  \text{кг/моль}$ | неона            | $20 \cdot 10^{-3}  \text{кг/моль}$ |
| воды     | $18 \cdot 10^{-3}  \text{кг/моль}$ | углекислого газа | $44 \cdot 10^{-3}  \text{кг/моль}$ |

#### Часть 1

Ответами к заданиям 1–24 являются слово, цифра, число или последовательность цифр. Запишите ответ в поле ответа в тексте работы. Единицы измерения физических величин писать не нужно.

| 1 |                                                                                                                                                                                                           | ерно вращается с частотой 600 оборотов я точек, находящихся на расстоянии 3 см го числа.    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|   | Ответ:                                                                                                                                                                                                    | $M/c^2$ .                                                                                   |
| 2 | По шероховатой наклонной плоскости действием горизонтально направ равномерно движется брусок масс Определите отношение модуля силь нормальной реакции плоскости. Отв долей.                               | еленной силы $F = 2 \text{ H}$ гой $50 \text{ г.}$ (см. рисунок).<br>и трения к модулю силы |
|   | Ответ:                                                                                                                                                                                                    |                                                                                             |
| 3 |                                                                                                                                                                                                           | соко летящего самолёта, летит вниз о 60 м/с. Чему равен модуль мощности, отивления воздуха? |
|   | Ответ:                                                                                                                                                                                                    | Вт.                                                                                         |
| 4 | В U-образную трубку налита вода до ур $h = 10$ см. В правое колено трубки до керосин. Высота уровня жидкости в пр колене составляет $H = 13$ см. На величину $Dh$ поднялся уровень в левом колене трубки? | олили                                                                                       |
|   | 0,555                                                                                                                                                                                                     | 215                                                                                         |

Точечное тело массой 1,5 кг движется вдоль оси OX. В таблице представлена зависимость проекции  $V_x$  скорости тела на эту ось от времени t.

| <i>t</i> , c | 3 | 4 | 5 | 6  | 7  |
|--------------|---|---|---|----|----|
| $V_x$ , M/c  | 2 | 4 | 6 | 10 | 11 |

Из приведённого ниже списка выберите два верных утверждения на основании анализа представленной таблицы.

- 1) В интервале от 3 с до 7 с тело движется равноускоренно.
- 2) В интервале от 3 с до 5 с проекция среднего ускорения тела на ось OX равна 2 м/с².
- 3) В интервале от 3 с до 5 с тело движется равноускоренно.
- 4) В момент времени 6 с модуль импульса тела равен 15 кгжи/с.
- 5) В момент времени 3,5 с модуль импульса тела был равен 4,5 кгжи/с.

| Ответ: |  |  |
|--------|--|--|
|--------|--|--|

**6** Маленький шарик массой *m*, надетый на горизонтальную гладкую спицу между двух пружин жёсткостью *k* (см. рисунок 1), совершает гармонические колебания с амплитудой *A*. Концы пружин прикреплены к вертикальным стенкам.



Определите, как изменятся максимальная потенциальная энергия системы и частота колебаний шарика, если систему заменить на другую, изображённую на рисунке 2, при неизменной амплитуде колебаний (в обоих случаях шарик не ударяется о стенки).

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится;
- 2) уменьшится;
- 3) не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

| Максимальная потенциальная энергия системы | Частота колебаний шарика |
|--------------------------------------------|--------------------------|
|                                            |                          |

7 Искусственный спутник массой *т* движется вокруг Земли по круговой орбите радиусом *R*. Масса Земли равна *M*. Установите соответствие между физическими величинами и формулами, которые их выражают.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

#### ФИЗИЧЕСКАЯ ВЕЛИЧИНА

- А) модуль силы притяжения спутника к Земле
- Б) модуль импульса спутника

ФОРМУЛА

- 1)  $\sqrt{\frac{GM}{R}}$
- $\frac{GmM}{R}$
- 3)  $m\sqrt{\frac{GM}{R}}$
- 4)  $\frac{GmM}{R^2}$

Ответ:

8

В сосуде объёмом V находится идеальный газ при температуре T и давлении  $p_0$ . времени t=0газ равномерно и очень медленно вытекать из сосуда. При ЭТОМ температура поддерживается постоянной. График зависимости давления этого газа (в долях  $p/p_0$  от начального давления) от времени tизображён на рисунке. Определите, за какое время давление газа в сосуде станет в 4 раза меньше первоначального.



Ответ: час.

9 Идеальный газ участвует в циклическом процессе 1® 2® 3® 1. На участке 1® 2 давление газа изохорно возрастает. В процессе 2® 3 объём газа всё время возрастает, при этом газ совершает работу 25 Дж. В процессе 3® 1 объём газа всё время уменьшается, при этом над газом совершается работа 13 Дж. Чему равна полная работа, совершаемая газом за весь цикл?

Ответ: \_\_\_\_\_Дж.

10 В калориметре находится 100 г льда при температуре –9 °С. Какую массу воды при температуре 80 °С необходимо долить в калориметр, чтобы 25 % льда растаяло? Потерями теплоты можно пренебречь. Ответ выразите в граммах и округлите до целого числа.

| _      |     |
|--------|-----|
| Ответ: | r   |
| OIDCI. | 1 . |

На рисунке представлен график зависимости температуры t порции воды от времени t при её остывании в некотором эксперименте. Масса этой порции воды равна 200 г, удельная теплоёмкость водяного пара 2000 Дж/(кг $\times$ C).



Выберите два верных утверждения на основании анализа представленного графика.

- 1) Водяной пар от начала эксперимента до начала конденсации отдал количество теплоты 30 кДж.
- 2) Вода в жидком состоянии до конца эксперимента отдала количество теплоты 40 кДж.
- 3) К моменту окончания эксперимента вся вода замерзла.
- 4) Конденсация водяного пара происходила в течение 10 минут.
- 5) Конденсация водяного пара происходила в течение 5 минут.

Два теплоизолированных стеклянных сосуда одинаковых объёмов соединены короткой трубкой с закрытым краном. В одном сосуде находится два моля гелия при температуре *T*, в другом – три моля аргона при температуре *2T*. Кран открывают. Определите, как изменятся суммарная внутренняя энергия газов и внутренняя энергия гелия в результате достижения системой состояния термодинамического равновесия.

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится;
- 2) уменьшится;
- 3) не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

| Суммарная внутренняя энергия газов | Внутренняя энергия гелия |
|------------------------------------|--------------------------|
|                                    |                          |

13 Положительный электрический заряд равномерно распределён по половине дуги окружности.



Определите, как направлен относительно рисунка (вправо, влево, вверх, вниз,  $\kappa$  наблюдателю, от наблюдателя) вектор напряжённости электрического поля в точке O, являющейся центром указанной окружности. Ответ запишите словом (словами).

На рисунке изображена схема электрической цепи, состоящей из источника постоянного напряжения с ЭДС 4В и внутренним сопротивлением 2 Ом, идеального амперметра, одинаковых резисторов с сопротивлением 2 Ом каждый, соединительных проводов и ключа К. В некоторый момент времени ключ переводят из положения 1 в положение 2. Определите отношение показаний амперметра в первом и во втором случае.



| Ответ: |  |  |  |  |
|--------|--|--|--|--|
|        |  |  |  |  |

| 15 | Магнитный    | поток,    | прониз | вывающі | ий катуш | ку инд | уктивностью | 2 мГн,  |
|----|--------------|-----------|--------|---------|----------|--------|-------------|---------|
|    | уменьшился   | от 3 м    | Вб до  | 1 мВб.  | Найдите  | модуль | изменения   | энергии |
|    | магнитного п | юля, запа | сенной | в катуш | ке.      |        |             |         |

| Ответ: | мДж  |
|--------|------|
| Olbel. | 1/1/ |

На главной оптической оси тонкой собирающей линзы с фокусным расстоянием F = 20 см расположен тонкий светящийся стержень ABC длиной 20 см. Точка C расположена ближе всего к линзе и находится на расстоянии 1,5F от линзы. Точка B - середина стержня.

Из приведённого ниже списка выберите два правильных утверждения.

- 1) Длина светящегося стержня составляет 0,75 от длины его изображения.
- 2) Оптическая сила линзы равна 0,05 дптр.
- 3) Если повернуть стержень вокруг точки B на 90 градусов, расположив его параллельно линзе, то размер изображения уменьшится.
- 4) Если сместить стержень вдоль главной оптической оси дальше от линзы на расстояние, равное четверти фокусного, то размер изображения возрастёт.
- 5) Если закрыть среднюю часть линзы непрозрачным материалом, то изображение предмета пропадёт.

| Ответ: |  |  |
|--------|--|--|
|--------|--|--|

Свет падает сверху под некоторым углом на горизонтальную поверхность стекла. При этом часть света отражается, а часть преломляется. На стекло сверху наливают слой воды. Свет продолжает падать под тем же углом уже на воду. Как в результате наливания воды изменятся угол отражения света от стекла и угол преломления света на границе стекла?

Для каждой физической величины определите соответствующий характер изменения:

- 1) увеличилась;
- 2) уменьшилась;
- 3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

| Угол отражения света от стекла | Угол преломления света на границе стекла |
|--------------------------------|------------------------------------------|
|                                |                                          |

**18** 

Электрическая цепь состоит из источника постоянного напряжения с ЭДС E, двух ключей, двух незаряженных конденсаторов одинаковой электроёмкостью  $C_1 = C_2 = C$  и резистора сопротивлением R. Ключ  $K_1$  замыкают, ключ  $K_2$  при этом остаётся разомкнутым. Через достаточно продолжительное время после этого ключ  $K_2$  также замыкают.



Установите соответствие между физическими величинами и выражающими их формулами. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

#### ФИЗИЧЕСКАЯ ВЕЛИЧИНА

- ФОРМУЛА
- А) заряд конденсатора  $C_1$  непосредственно перед замыканием ключа  $K_2$
- $\frac{CE}{2}$
- Б) напряжение на конденсаторе  $C_2$  через большое время после замыкания ключа  $K_2$
- 2) E
- 3)  $\frac{E}{2}$
- 4) *CE*

Ответ:

| Б |
|---|
|   |
|   |

Молекула тяжёлой воды состоит из двух атомов дейтерия <sup>2</sup><sub>1</sub>D и одного атома кислорода с атомным номером 8. Атомная масса этой молекулы равна 22. Сколько нейтронов содержится в ядре изотопа кислорода и каково общее число протонов в ядрах всех атомов, составляющих эту молекулу?

| Число нейтронов в ядре изотопа | Общее число протонов в ядрах  |
|--------------------------------|-------------------------------|
| кислорода                      | атомов, составляющих молекулу |
|                                |                               |

| 20 | Через 5 суток наблюдения количество <u>нераспавшихся</u> ядер некоторого |
|----|--------------------------------------------------------------------------|
|    | радиоактивного изотопа оказалось в 3 раза меньше количества распавшихся  |
|    | ядер. Определите период полураспада этого изотопа.                       |

| Ответ: | час |
|--------|-----|
|        |     |

**21** Установите соответствие между наименованием ядерной реакции и уравнением, которое может служить примером такой ядерной реакции.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

НАИМЕНОВАНИЕ ЯДЕРНОЙ РЕАКЦИИ

- УРАВНЕНИЕ, СЛУЖАЩЕЕ ПРИМЕРОМ ЯДЕРНОЙ РЕАКЦИИ
- А) вынужденное деление атомного ядра
- Б) альфа-распад

- 1)  ${}_{1}^{3}$ H $\otimes {}_{2}^{3}$ He +  ${}_{-1}^{0}$ e +  $\tilde{\mathsf{n}}_{e}$
- 2)  ${}_{4}^{8}\text{Be} + {}_{2}^{4}\text{He} \otimes {}_{6}^{12}\text{C}$
- 3)  ${}_{0}^{1}n + {}_{92}^{235}U \otimes {}_{36}^{92}Kr + {}_{56}^{141}Ba + 3{}_{0}^{1}n$
- 4)  ${}^{238}_{92}$  U®  ${}^{234}_{90}$ Th +  ${}^{4}_{2}$ He

Ответ:

22 Определите модуль силы Архимеда, действующей на тело, погруженное в жидкость, учитывая, что погрешность измерений равна цене деления шкалы динамометра.



Otbet: ( \_\_\_\_\_  $\pm$  \_\_\_\_ ) H.

Ответ:

Школьник решил проверить утверждение о том, что период малых свободных колебаний математического маятника при прочих равных условиях не зависит от массы груза, из которого изготовлен маятник. В качестве грузов маятников школьник может применять шарики одинакового радиуса, сделанные из разных материалов. Какие две установки следует использовать для проверки этого утверждения?



24 Рассмотрите таблицу, содержащую сведения о ярких звёздах.

| Звезда     | Видимая<br>звездная<br>величина | Спектральный класс | Радиус,<br>(в радиусах<br>Солнца) | Масса,<br>(в массах<br>Солнца) |
|------------|---------------------------------|--------------------|-----------------------------------|--------------------------------|
| Антарес    | 0,9                             | M                  | 400                               | 12                             |
| Поллукс    | 1,1                             | K                  | 8                                 | 1,7                            |
| Фомальгаут | 1,2                             | A                  | 1,8                               | 1,9                            |
| Мимоза     | 1,3                             | В                  | 8                                 | 14                             |
| Денеб      | 1,3                             | A                  | 210                               | 21                             |
| Адара      | 1,5                             | В                  | 14                                | 10                             |

Выберите два утверждения, которые соответствуют характеристикам звёзд.

- 1) Антарес самая холодная звезда в этом списке.
- 2) Средняя плотность Поллукса больше, чем у Мимозы.
- 3) Фомальгаут имеет красный цвет.
- 4) Денеб самая удалённая от нас звезда в этом списке.
- 5) Адара самая яркая звезда на нашем небе в этом списке.

| Ответ: |  |  |
|--------|--|--|
|--------|--|--|

Ответ: \_\_\_\_

#### Часть 2

Ответом к заданиям 25–27 является число. Запишите это число в поле ответа в тексте работы. Единицы измерения физических величин писать не нужно.

Маленькому телу, покоящемуся у основания шероховатой наклонной плоскости, сообщают начальную скорость  $V=4\,\mathrm{m/c}$ , направленную вверх вдоль наклонной плоскости. Длина наклонной плоскости  $L=50\,\mathrm{cm}$ , угол при её основании  $\mathbf{a}=60^\circ$ , коэффициент трения тела о плоскость  $\mathbf{m}=0,19$ , сопротивление воздуха пренебрежимо мало. На какую максимальную высоту поднимется тело относительно точки A наклонной плоскости? Ответ выразите в см и округлите до целого числа.



| 26 | В сосуде находится смесь воздуха с насыщенным водяным паром. Если при неизменной температуре увеличить объём этого сосуда в $k$ раз, |
|----|--------------------------------------------------------------------------------------------------------------------------------------|
|    | то влажность воздуха в сосуде уменьшится на 38 %. Определите величину $k$ .                                                          |
|    | Ответ округлите до десятых долей.                                                                                                    |
|    |                                                                                                                                      |

27 К источнику постоянного напряжения с внутренним сопротивлением 2 Ом подсоединены параллельно два одинаковых резистора с сопротивлением 6 Ом каждый. Один из резисторов отсоединяют. Найдите, как относится КПД источника после отсоединения резистора к КПД, который был у источника до отсоединения резистора.

Для записи ответов на задания 28–32 используйте чистый лист. Запишите сначала номер задания (28, 29 и т. д.), а затем – решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

Дифракционная решётка с периодом *d* освещена нормально падающим параллельным пучком монохроматического света с длиной волны λ. После решётки свет фокусируется на экране, находящемся в фокальной плоскости линзы с фокусным расстоянием *F*. В результате на экране наблюдается дифракционная картина в виде маленьких светлых пятен, расположенных вдоль линии, перпендикулярной штрихам решетки. Затем к этой решётке прикладывают вторую такую же, у которой штрихи расположены перпендикулярно штрихам первой решетки. Объясните, руководствуясь известными физическими законами и закономерностями, какой вид будет иметь дифракционная картина на экране при малых углах отклонения света от оптической оси системы, и чему будет равен период этой картины.

Полное правильное решение каждой из задач 29–32 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

Механическая система, изображённая на рисунке, находится в состоянии равновесия. Трения нет, нить невесома и соединяет через неподвижный блок два тела, массы которых одинаковы. Первое тело находится на наклонной плоскости с углом наклона к горизонту  $\phi = 30^{\circ}$ , а второе погружено на 2/3 своего объёма в жидкость, налитую в неподвижный сосуд. Найдите отношение плотностей жидкости и второго тела  $\rho/\rho_{\rm T}$ .



В очень лёгкий калориметр, содержащий  $m_{\rm B} = 500 \, {\rm г}$  воды при температуре  $t_1 = 20 \, {\rm °C}$ , опустили железный шарик массой  $m_{\rm ж} = 200 \, {\rm г}$ , разогретый до температуры  $t_2 = 1400 \, {\rm °C}$ . Чему будет равна температура воды, оставшейся в калориметре после завершения всех процессов теплообмена между частями этой системы? Считайте, что 10% массы паров воды, образующихся в процессе её кипения, сразу покидают калориметр без теплообмена с его содержимым, а остальные конденсируются в воде, окружающей шарик.

В колебательном контуре, состоящем из двух катушек, двух конденсаторов, ключа и источника переменного напряжения, соединённых как показано на схеме, ёмкости конденсаторов равны  $C_1 = 5 \text{ мк}\Phi$  и  $C_2 = 20 \text{ мк}\Phi$ , индуктивности катушек  $L_1 = 5 \text{ м}\Gamma$ н, и  $L_2 = 4 \text{ м}\Gamma$ н. Сопротивление цепи пренебрежимо мало. Во сколько раз изменится резонансная частота этого контура после замыкания ключа K?



На рисунке изображена оптическая схема системы, в которой малый предмет находится на расстоянии f = 40 см на главной оптической оси тонкой собирающей линзы с фокусным расстоянием F = 20 см. За линзой на расстоянии F от неё расположено плоское зеркало,



наклоненное под углом  $\phi = 45^{\circ}$  к главной оптической оси. Чему равно расстояние l между предметом и его действительным изображением в этой оптической системе?

# Тренировочная работа №5 по ФИЗИКЕ 11 класс

6 мая 2019 года Вариант ФИ10502

| Выполнена: ФИО | класс |  |
|----------------|-------|--|
|                |       |  |

#### Инструкция по выполнению работы

На выполнение работы по физике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 32 задания.

В заданиях 1–4, 8–10, 14, 15, 20, 25–27 ответом является целое число или конечная десятичная дробь. Число запишите в поле ответа в тексте работы.

Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр. Ответ запишите в поле ответа в тексте работы.

Ответом к заданию 13 является слово. Ответ запишите в поле ответа в тексте работы.

Ответом к заданиям 19 и 22 являются два числа. Ответ запишите в поле ответа в тексте работы.

Ответ к заданиям 28–32 включает в себя подробное описание всего хода выполнения задания. На чистом листе бумаги укажите номер задания и запишите его полное решение.

При вычислениях разрешается использовать непрограммируемый калькулятор.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

# Десятичные приставки

| Наимено-<br>вание | Обозначение | Множитель       | Наимено-<br>вание | Обозначение | Множитель        |
|-------------------|-------------|-----------------|-------------------|-------------|------------------|
| гига              | Γ           | 10 <sup>9</sup> | санти             | С           | $10^{-2}$        |
| мега              | M           | $10^{6}$        | МИЛЛИ             | M           | $10^{-3}$        |
| кило              | К           | $10^{3}$        | микро             | MK          | $10^{-6}$        |
| гекто             | Γ           | $10^{2}$        | нано              | Н           | 10 <sup>-9</sup> |
| деци              | Д           | $10^{-1}$       | пико              | П           | $10^{-12}$       |

## Константы

| число $\pi$                                                | $\pi = 3.14$                                                                      |
|------------------------------------------------------------|-----------------------------------------------------------------------------------|
| ускорение свободного падения на Земле                      | $g = 10 \text{ m/c}^2$                                                            |
| гравитационная постоянная                                  | $G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{м}^2 / \text{кг}^2$                 |
| универсальная газовая постоянная                           | R = 8,31 Дж/(моль·К)                                                              |
| постоянная Больцмана                                       | $k = 1,38 \cdot 10^{-23}$ Дж/К                                                    |
| постоянная Авогадро                                        | $N_{ m A} = 6 \cdot 10^{23} \  m моль^{-1}$                                       |
| скорость света в вакууме                                   | $c = 3 \cdot 10^8 \text{ m/c}$                                                    |
| коэффициент пропорциональности в законе Кулона             | $k = \frac{1}{4\rho e_0} = 9 \cdot 10^9 \text{ H} \cdot \text{м}^2/\text{K}\pi^2$ |
| модуль заряда электрона (элементарный электрический заряд) | $e = 1,6 \cdot 10^{-19}  \mathrm{K}$ л                                            |
| постоянная Планка                                          | $h = 6.6 \cdot 10^{-34}  \text{Дж} \cdot \text{c}$                                |

#### Соотношения между различными единицами

| температура                          | $0 \text{ K} = -273 ^{\circ}\text{C}$               |
|--------------------------------------|-----------------------------------------------------|
| атомная единица массы                | 1 а. е. м. = $1,66 \cdot 10^{-27}$ кг               |
| 1 атомная единица массы эквивалентна | 931,5 МэВ                                           |
| 1 электронвольт                      | $1 	ext{ } 	ext{9B} = 1,6 \cdot 10^{-19} 	ext{ Дж}$ |
| 1 астрономическая единица            | 1 a.e. $\approx 150\ 000\ 000\ км$                  |
| 1 световой год                       | $1$ св. год $\approx 9,46 \cdot 10^{15}$ м          |
| 1 парсек                             | 1 пк ≈ 3,26 св. года                                |

#### Масса частиц

| электрона | $9,1 \cdot 10^{-31} \mathrm{kr} \approx 5,5 \cdot 10^{-4} \mathrm{a.\ e.\ m.}$ |
|-----------|--------------------------------------------------------------------------------|
| протона   | $1,673 \cdot 10^{-27} \text{ кг} \approx 1,007 \text{ a. e. м.}$               |
| нейтрона  | $1,675 \cdot 10^{-27} \text{ кг} \approx 1,008 \text{ a. e. м.}$               |

## Астрономические величины

| средний радиус Земли           | $R_{\oplus} = 6370 \; { m KM}$           |
|--------------------------------|------------------------------------------|
| радиус Солнца                  | $R_{\odot} = 6.96 \cdot 10^8 \mathrm{m}$ |
| температура поверхности Солнца | T = 6000  K                              |

#### Плотность

| воды              | $1000 \text{ кг/м}^3$ | подсолнечного масла | 900 кг/м <sup>3</sup>    |
|-------------------|-----------------------|---------------------|--------------------------|
| древесины (сосны) | 400 кг/м <sup>3</sup> | алюминия            | 2700 кг/м <sup>3</sup>   |
| керосина          | 800 кг/м <sup>3</sup> | железа              | 7800 кг/м <sup>3</sup>   |
|                   |                       | ртути               | 13 600 кг/м <sup>3</sup> |

# Удельная теплоёмкость

| воды   | 4,2 · 10 <sup>3</sup> Дж/(кг·К) | алюминия | 900 Дж/(кг·К) |
|--------|---------------------------------|----------|---------------|
| льда   | $2,1\cdot 10^3$ Дж/(кг·К)       | меди     | 380 Дж/(кг·К) |
| железа | 460 Дж/(кг·K)                   | чугуна   | 500 Дж/(кг·К) |
| свинца | 130 Дж/(кг∙К)                   |          |               |

# Удельная теплота

| парообразования воды | 2,3 · 10 <sup>6</sup> Дж/кг |
|----------------------|-----------------------------|
| плавления свинца     | 2,5 · 10 <sup>4</sup> Дж/кг |
| плавления льда       | 3,3 · 10 <sup>5</sup> Дж/кг |

# Нормальные условия

давление: 10<sup>5</sup> Па, температура: 0 °C

## Молярная масса

| азота    | $28 \cdot 10^{-3}$ кг/моль         | гелия            | $4 \cdot 10^{-3}$ кг/моль          |
|----------|------------------------------------|------------------|------------------------------------|
| аргона   | $40 \cdot 10^{-3}$ кг/моль         | кислорода        | $32 \cdot 10^{-3}$ кг/моль         |
| водорода | $2 \cdot 10^{-3}$ кг/моль          | лития            | $6 \cdot 10^{-3}$ кг/моль          |
| воздуха  | $29 \cdot 10^{-3}  \text{кг/моль}$ | неона            | $20 \cdot 10^{-3}  \text{кг/моль}$ |
| воды     | $18 \cdot 10^{-3}  \text{кг/моль}$ | углекислого газа | $44 \cdot 10^{-3}  \text{кг/моль}$ |

#### Часть 1

Ответами к заданиям 1–24 являются слово, цифра, число или последовательность цифр. Запишите ответ в поле ответа в тексте работы. Единицы измерения физических величин писать не нужно.

| 1 | Установленная на станке фреза ра 300 оборотов в минуту. Модуль ускоро 49,3 м/с <sup>2</sup> . На каком расстоянии от оси округлите до целого числа.                                                                                                               | ения некоторой точки фрезы равен                  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|   | Ответ: см                                                                                                                                                                                                                                                         | 1.                                                |
| 2 | По шероховатой наклонной плоскости с действием горизонтально направлет равномерно движется брусок массой Определите отношение модуля силы т тяжести. Ответ округлите до десятых дол                                                                               | F = 2  H 50 г. (см. рисунок). рения к модулю силы |
|   | Ответ:                                                                                                                                                                                                                                                            |                                                   |
| 3 | Тело массой 0,7 кг, упавшее с высов в воздухе с установившейся скоросты мощности, которую развивает при этом с                                                                                                                                                    | о 3 км/мин. Чему равен модуль                     |
|   | Ответ: В                                                                                                                                                                                                                                                          | Γ.                                                |
| 4 | В U-образную трубку налита вода д уровня $h = 5$ см. В правое колено трубк долили керосин. При этом высота уровн воды в левом колене трубки увеличилас на величину $Dh = 2$ см. Определит высоту уровня свободной поверхност жидкости $H$ в правом колене трубки. | и<br>я<br>ь<br>е                                  |
|   | Ответ: см                                                                                                                                                                                                                                                         | 1.                                                |

Точечное тело массой 2 кг движется вдоль оси OX. В таблице представлена зависимость проекции  $V_x$  скорости тела на эту ось от времени t.

| t, c        | 5  | 6  | 7         | 8   | 9   |
|-------------|----|----|-----------|-----|-----|
| $V_x$ , M/c | -3 | -5 | <b>-7</b> | -11 | -12 |

Из приведённого ниже списка выберите два верных утверждения на основании анализа представленной таблицы.

- 1) В интервале от 5 с до 9 с тело движется равнозамедленно.
- 2) В интервале от 5 с до 7 с проекция среднего ускорения тела на ось OX равна -2 м/с<sup>2</sup>.
- 3) В интервале от 5 с до 7 с тело движется равноускоренно.
- 4) В момент времени 6 с кинетическая энергия тела равна 25 Дж.
- 5) В момент времени 5,5 с модуль импульса тела был равен 8 кгжи/с.

|        | _ | 1 |
|--------|---|---|
| Ответ: |   |   |

Маленький шарик массой m, надетый на горизонтальную гладкую спицу между двух пружин жёсткостью k (см. рисунок 1), совершает гармонические колебания с амплитудой A. Концы пружин прикреплены к вертикальным стенкам.



Определите, как изменятся период колебаний шарика и максимальная кинетическая энергия шарика, если систему заменить на другую, изображённую на рисунке 2, при неизменной амплитуде колебаний.

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится;
- 2) уменьшится;
- 3) не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

| Период колебаний шарика | Максимальная кинетическая энергия |
|-------------------------|-----------------------------------|
|                         | шарика                            |
|                         |                                   |

7 Искусственный спутник массой *т* движется вокруг Земли по круговой орбите радиусом *R*. Масса Земли равна *M*. Установите соответствие между физическими величинами и формулами, которые их выражают.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

#### ФИЗИЧЕСКАЯ ВЕЛИЧИНА

- А) модуль скорости спутника
- Б) кинетическая энергия спутника

ФОРМУЛА



- $\frac{2) \quad GmM}{2R}$
- 3)  $m\sqrt{\frac{GM}{R}}$
- 4)  $\frac{GmM}{R}$

|        | A | Б |
|--------|---|---|
| Ответ: |   |   |
|        |   |   |

8

В сосуде объёмом V находится идеальный газ при температуре T и давлении  $p_0$ . В момент времени t = 0 газ начинает равномерно и очень медленно вытекать из сосуда. При ЭТОМ температура поддерживается постоянной. График зависимости давления этого газа (в долях  $p/p_0$  от начального давления) от времени tизображён на рисунке. Определите, через какое время давление газа в сосуде станет 0.80 L в 5 раз меньше первоначального.



| Ответ:      | час |
|-------------|-----|
| O I D C I . | 100 |

9 Идеальный газ участвует в циклическом процессе 1® 2® 3® 1. На участке 1® 2 давление газа изохорно уменьшается. В процессе 2® 3 объём газа всё время уменьшается, при этом над газом совершается работа 11 Дж. В процессе 3® 1 объём газа всё время увеличивается, при этом газ совершает работу 25 Дж. Чему равна полная работа, совершаемая газом за весь цикл?

| Ответ: | <br>Дж. |
|--------|---------|
|        |         |

В калориметре находится 100 г льда при температуре –10 °С. Какую массу воды при температуре 32 °С необходимо долить в калориметр, чтобы 75% льда растаяло? Потерями теплоты можно пренебречь. Ответ выразите в граммах и округлите до целого числа.

| _      |     |
|--------|-----|
| Ответ: | r   |
| OIDCI. | 1 . |

На рисунке представлен график зависимости температуры t порции воды от времени t при её остывании в некотором эксперименте. Масса этой порции воды равна  $200 \, \text{г}$ , удельная теплоёмкость водяного пара  $2000 \, \text{Дж/(кг%C)}$ .



Выберите два верных утверждения на основании анализа представленного графика.

- 1) При конденсации водяной пар отдал количество теплоты 2000 Дж.
- 2) Вода находилась в жидком состоянии в течение 5 минут.
- 3) Вода находилась полностью в газообразном состоянии в течение 15 минут.
- 4) Вода в жидком состоянии до конца эксперимента отдала количество теплоты 84 кДж.
- 5) К моменту окончания эксперимента вся вода замерзла.

| Ответ: |  |  |
|--------|--|--|
|--------|--|--|

Два теплоизолированных стеклянных сосуда одинаковых объёмов соединены короткой трубкой с закрытым краном. В одном сосуде находится два моля гелия при температуре *T*, в другом – три моля аргона при температуре *2T*. Кран открывают. Определите, как изменятся внутренняя энергия аргона и суммарная внутренняя энергия газов в результате достижения системой состояния термодинамического равновесия.

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится;
- 2) уменьшится;
- 3) не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

| Суммарная внутренняя энергия |
|------------------------------|
| газов                        |
|                              |
|                              |

**13** Отрицательный электрический заряд равномерно распределён по половине дуги окружности.



Определите, как направлен относительно рисунка (вправо, влево, вверх, вниз,  $\kappa$  наблюдателю, от наблюдателя) вектор напряжённости электрического поля в точке O, являющейся центром указанной окружности. Ответ запишите словом (словами).

На рисунке изображена схема электрической цепи, состоящей из двух источников постоянного напряжения с ЭДС  $E_1 = 4$  В и внутренним сопротивлением  $r_1 = 2$  Ом и с ЭДС  $E_2 = 2$  В и внутренним сопротивлением  $r_2 = 4,5$  Ом, идеального амперметра, одинаковых резисторов с сопротивлением 2 Ом каждый, соединительных проводов и ключа К. В некоторый момент времени ключ переводят из положения 1 в положение 2. Определите отношение показаний амперметра в первом и во втором случае.



| 15 | Магнитный                   | поток,   | пронизывающий     | катушку    | индуктивностью    | 3 мГн,  |
|----|-----------------------------|----------|-------------------|------------|-------------------|---------|
|    | увеличился о                | от 2 мВб | до 4 мВб. На скол | лько измен | илась энергия маг | нитного |
|    | поля, запасенная в катушке? |          |                   |            |                   |         |

| Ответ: | мДж |
|--------|-----|
| OIDCI. | МДЛ |

16 На главной оптической оси тонкой собирающей линзы с фокусным расстоянием F = 20 см расположен тонкий светящийся стержень ABC длиной 20 см. Точка C расположена ближе всего к линзе и находится на расстоянии 1,5F от линзы. Точка B - середина стержня.

Из приведённого ниже списка выберите два правильных утверждения.

- 1) Длина изображения светящегося стержня составляет 0,75 от длины самого стержня.
- 2) Оптическая сила линзы равна 5 дптр.
- 3) Если повернуть стержень вокруг точки *В* на 90 градусов, расположив его параллельно линзе, то размер изображения стержня возрастёт.
- 4) Если сместить стержень вдоль главной оптической оси, дальше от линзы на расстояние, равное четверти фокусного, то размер изображения уменьшится.
- 5) Если переместить стержень вверх, параллельно главной оптической оси, на расстояние 6 см, то изображение стержня пропадёт.

| Ответ: |  |
|--------|--|
|        |  |

На горизонтальную поверхность стекла налит слой воды. Свет падает сверху под некоторым углом на воду. При этом часть света отражается, а часть преломляется. Вода высыхает, и свет продолжает падать под тем же углом уже на стекло. Как в результате высыхания воды изменятся угол отражения

света от стекла и угол преломления света на границе стекла?

Для каждой физической величины определите соответствующий характер изменения:

- 1) увеличилась;
- 2) уменьшилась;
- 3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

| Угол преломления света на границе |
|-----------------------------------|
| стекла                            |
|                                   |
|                                   |

Электрическая цепь состоит из источника постоянного напряжения с ЭДС E, двух ключей, двух незаряженных конденсаторов одинаковой электроёмкостью  $C_1 = C_2 = C$  и резистора сопротивлением R. Ключ  $K_1$  замыкают, ключ  $K_2$  при этом остаётся разомкнутым. Через достаточно продолжительное время после этого ключ  $K_2$  также замыкают.



Установите соответствие между физическими величинами и выражающими их формулами. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

#### ФИЗИЧЕСКАЯ ВЕЛИЧИНА

ФОРМУЛА

- А) заряд конденсатора  $C_2$  через большое время после замыкания ключа  $\mathrm{K}_2$
- 1)  $\frac{CE}{2}$
- Б) напряжение на конденсаторе  $C_1$  непосредственно перед замыканием ключа  $K_2$
- 2) *E*
- $\frac{E}{2}$
- 4) *CE*

Ответ:

**18** 

Молекула тяжёлой воды состоит из двух атомов дейтерия <sup>2</sup><sub>1</sub>D и одного атома кислорода с атомным номером 8. Атомная масса этой молекулы равна 21. Сколько нейтронов содержится в ядре изотопа кислорода и каково общее число протонов в ядрах всех атомов, составляющих эту молекулу?

| Число нейтронов в ядре изотопа | Общее число протонов в ядрах  |
|--------------------------------|-------------------------------|
| кислорода                      | атомов, составляющих молекулу |
|                                |                               |

| 20 | Через 6 суток наблюдения количество нераспавшихся ядер некоторого      |
|----|------------------------------------------------------------------------|
|    | радиоактивного изотопа оказалось в 7 раз меньше количества распавшихся |
|    | ядер. Определить период полураспада этого изотопа.                     |

| _      |      |
|--------|------|
| Ответ: | час  |
| OIBCI. | -1aC |

**21** Установите соответствие между наименованием ядерной реакции и уравнением, которое может служить примером такой ядерной реакции.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

# НАИМЕНОВАНИЕ ЯДЕРНОЙ РЕАКЦИИ

- А) реакция ядерного синтеза
- Б) электронный бета-распад

# УРАВНЕНИЕ, СЛУЖАЩЕЕ ПРИМЕРОМ ЯДЕРНОЙ РЕАКЦИИ

- 1)  ${}_{1}^{3}$ H $\otimes {}_{2}^{3}$ He +  ${}_{-1}^{0}$ e +  $\tilde{\mathsf{n}}_{e}$
- 2)  ${}_{4}^{8}\text{Be} + {}_{2}^{4}\text{He} \otimes {}_{6}^{12}\text{C}$
- 3)  ${}^{236}_{92}$  U $\otimes$   ${}^{92}_{36}$  Kr+ ${}^{141}_{56}$ Ba+3 ${}^{1}_{0}$ n
- 4)  ${}^{238}_{92}$  U®  ${}^{234}_{90}$ Th +  ${}^{4}_{2}$ He

|        | A | Б |
|--------|---|---|
| Ответ: |   |   |

22 Определите модуль силы Архимеда, действующей на тело, погруженное в жидкость, учитывая, что погрешность измерений равна цене деления шкалы динамометра.



Otbet: ( \_\_\_\_\_  $\pm$  \_\_\_\_ ) H.

Школьник решил проверить утверждение о том, что период малых свободных колебаний математического маятника при прочих равных условиях не зависит от массы груза, из которого изготовлен маятник. В качестве грузов маятников школьник может применять шарики одинакового радиуса, сделанные из разных материалов. Какие две установки следует использовать для проверки этого утверждения?



24 Рассмотрите таблицу, содержащую сведения о ярких звёздах.

| Звезда     | Видимая<br>звездная<br>величина | Спектральный класс | Радиус,<br>(в радиусах<br>Солнца) | Расстояние,<br>парсек |
|------------|---------------------------------|--------------------|-----------------------------------|-----------------------|
| Антарес    | 0,9                             | M                  | 400                               | 190                   |
| Поллукс    | 1,1                             | K                  | 8                                 | 10                    |
| Фомальгаут | 1,2                             | A                  | 1,8                               | 7,7                   |
| Мимоза     | 1,3                             | В                  | 8                                 | 86                    |
| Денеб      | 1,3                             | A                  | 210                               | 505                   |
| Адара      | 1,5                             | В                  | 14                                | 131                   |

Выберите два утверждения, которые соответствуют характеристикам звёзд.

- 1) Антарес относится к красным карликам.
- 2) У Фомальгаута самая высокая светимость среди этого списка звёзд.
- 3) Объём Мимозы в 512 раз больше объёма Солнца.
- 4) Параллакс Денеба минимальный среди звёзд этого списка.
- 5) От Адары приходит в 4 раза меньше света, чем от Поллукса.

| Ответ: |  |  |
|--------|--|--|
|--------|--|--|

#### Часть 2

Ответом к заданиям 25–27 является число. Запишите это число в поле ответа в тексте работы. Единицы измерения физических величин писать не нужно.

Маленькому телу, покоящемуся у основания шероховатой наклонной плоскости, сообщают начальную скорость V = 6 м/с, направленную вверх вдоль наклонной плоскости. Высота наклонной плоскости H = 80 см, угол при её основании  $a = 45^{\circ}$ , коэффициент трения тела о плоскость m = 1/2, сопротивление воздуха пренебрежимо мало. На какую максимальную высоту поднимется тело относительно точки A наклонной плоскости? Ответ выразите в см и округлите до целого числа.



| 26 | В сосуде находится смесь воздуха с насыщенным водяным паром. Если               |
|----|---------------------------------------------------------------------------------|
|    | при неизменной температуре увеличить объём этого сосуда в $k$ раз,              |
|    | то влажность воздуха в сосуде уменьшится на $68 \%$ . Определите величину $k$ . |
|    | Ответ округлите до десятых долей.                                               |
|    |                                                                                 |

К источнику постоянного напряжения с внутренним сопротивлением 2 Ом подсоединен резистор с сопротивлением 6 Ом. Параллельно резистору подсоединили второй такой же. Найдите, как относится КПД источника после подсоединения второго резистора к КПД, который был у источника до подсоединения второго резистора.

Ответ: .

Для записи ответов на задания 28–32 используйте чистый лист. Запишите сначала номер задания (28, 29 и т. д.), а затем – решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

Дифракционная решётка с периодом d освещена нормально падающим параллельным пучком монохроматического света с длиной волны  $\lambda$ . После решётки свет фокусируется на экране, находящемся в фокальной плоскости линзы с фокусным расстоянием F. В результате на экране наблюдается дифракционная картина в виде маленьких светлых пятен, расположенных вдоль линии, перпендикулярной штрихам решетки (ось x). Затем к этой решётке прикладывают вторую с периодом d/2, у которой штрихи расположены перпендикулярно штрихам первой решетки. Объясните, руководствуясь известными физическими законами и закономерностями, какой вид будет иметь дифракционная картина на экране при малых углах отклонения света от оптической оси системы, и чему будут равны периоды этой картины вдоль оси x и перпендикулярной к ней оси y.

Полное правильное решение каждой из задач 29–32 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

Механическая система, изображённая на рисунке, находится в состоянии равновесия. Трения нет, нить невесома и соединяет через неподвижный блок два тела, массы которых одинаковы. Первое тело находится на наклонной плоскости с углом наклона к горизонту  $\phi = 45^{\circ}$ , а второе погружено на 3/4 своего объёма в жидкость, налитую в неподвижный сосуд. Найдите отношение плотностей жидкости и второго тела  $\rho/\rho_{\rm T}$ .



- В очень лёгкий калориметр, содержащий  $m_{\rm B} = 600~{\rm F}$  воды при температуре  $t_1 = 20~{\rm C}$ , опустили железный шарик массой  $m_{\rm ж} = 200~{\rm F}$ , разогретый до температуры  $t_2 = 1300~{\rm C}$ . Чему будет равна температура воды, оставшейся в калориметре после завершения всех процессов теплообмена между частями этой системы? Считайте, что 10% массы паров воды, образующихся в процессе её кипения, сразу покидают калориметр без теплообмена с его содержимым, а остальные конденсируются в воде, окружающей шарик.
- В колебательном контуре, состоящем из двух катушек, двух конденсаторов, ключа и источника переменного напряжения, соединённых как показано на схеме, ёмкости конденсаторов равны  $C_1 = 4$  мкФ и  $C_2 = 6$  мкФ, индуктивности катушек  $L_1 = 9$  мГн и  $L_2 = 6$  мГн. Сопротивление цепи пренебрежимо мало. Во сколько раз изменится резонансная частота этого контура после замыкания ключа К?



На рисунке изображена оптическая схема системы, в которой малый предмет находится на расстоянии f = 20 см на оптической оси тонкой собирающей линзы с фокусным расстоянием F = 10 см. За линзой на расстоянии F от неё



расположено плоское зеркало, наклоненное под углом  $\phi = 45^{\circ}$  к главной оптической оси. Чему равно расстояние l между предметом и его действительным изображением в этой оптической системе?