Detecção de sentimentos usando NLP

- Hildemir Regis
- José Anderson de Souza

Objetivo

- Treinar classificador usando uma base de dados de revisões de produtos para analisar sentimento dos clientes através dos comentários.
- Apresentar os resultados em:
 - SVM + bow;
 - SVM + embeddings;
 - BERT

Análise dos Dados

Base de dados

- Encontramos uma base de produtos femininos com os dados necessários para trabalhar em cima do treinamento: comentário e nota;
- 23.486 registros;
- Fonte: https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-c lothing-reviews

Catálogo de dados

- **Unnamed:** indice;
- Clothing ID: índice do produto;
- **Age:** idade do cliente avaliador;
- **Title:** título da avaliação;
- Review Text: texto do comentário;
- Rating: nota;
- Recommended IND: índice de recomendação;
- Positive Feedback Count: contagem de feedbacks positivos;
- **Division Name:** nome da divisão;
- **Department Name:** nome do departamento;
- Class Name: nome da classe;

Pré-processamento

Remover notas e comentários nulos e vazios

```
df = df[df['Rating'].notna()]
df = df[df['Review Text'].notna()]
df = df[df['Rating'] != '']
df = df[df['Review Text'] != '']
```


Transformação das notas em classes categóricas

```
    Nota <= 2: 0 (negativa);</li>
```

- Nota = 3: 1 (neutra);
- Nota > 3: 2 (positiva)

```
def convert rating(rating):
    if 1 <= rating <= 2:
        return 0
    elif rating == 3:
        return 1
    else:
        return 2
df['Rating'] = df['Rating'].apply(convert_rating)
```


Análise descritiva e exploratória dos dados (EDA)

Métricas descritivas

	Unnamed: 0	Clothing ID	Age	Rating	Recommended IND	Positive Feedback Count
count	22641.000000	22641.000000	22641.000000	22641.000000	22641.000000	22641.000000
mean	11740.849035	919.332362	43.280376	1.665960	0.818868	2.630582
std	6781.957509	202.266874	12.326980	0.657139	0.385136	5.786164
min	0.000000	1.000000	18.000000	0.000000	0.000000	0.000000
25%	5872.000000	861.000000	34.000000	2.000000	1.000000	0.000000
50%	11733.000000	936.000000	41.000000	2.000000	1.000000	1.000000
75%	17621.000000	1078.000000	52.000000	2.000000	1.000000	3.000000
max	23485.000000	1205.000000	99.000000	2.000000	1.000000	122.000000

Distribuição das classes de produtos

Distribuição de avaliações da classe dresses

Modelagem

Modelo SVM + Bag of Words

Arquitetura:

- **Entrada:** Dados de texto;
- Processamento (vetorização BoW): Transformação do texto em matrizes numéricas para treinamento e teste (Limitação de 5000 características);
- Modelo de Classificação (SVM): SVM com kernel linear é treinado com as características extraídas:
- Saída: Modelo treinado:

Hiperparâmetros:

- max features=5000
- kernel='linear'
- probability=True

Modelo SVM + Bag of Words

```
from sklearn.feature extraction.text import CountVectorizer
from sklearn.svm import SVC
from sklearn.metrics import classification_report
# Vetorização com BoW
vectorizer = CountVectorizer(max features=5000)
X train bow = vectorizer.fit transform(X train).toarray()
X test bow = vectorizer.transform(X test).toarray()
# Treinar o SVM
svm_bow = SVC(kernel='linear', probability=True, class weight='balanced')
svm bow.fit(X train bow, y train)
# Avaliar
y pred bow = svm bow.predict(X test bow)
print("SVM + BoW")
print(classification report(y test, y pred bow))
```


Modelo SVM + Bag of Words

	precision	recall	f1-score	support
0	0.44	0.51	0.47	142
1	0.33	0.31	0.32	171
2	0.88	0.86	0.87	916
accuracy			0.74	1229
macro avg	0.55	0.56	0.55	1229
weighted avg	0.75	0.74	0.75	1229

Modelo SVM + Embeddings

Arquitetura:

- **Entrada:** Dados de texto:
- Processamento (Word2Vec): Tokenização, treinamento do Word2Vec e geração de embeddings das sentenca:
- Modelo de Classificação (SVM): SVM com kernel linear é treinado com os embeddings das sentenças como entradas.
- Saída: Modelo treinado baseado nos embeddings;

Hiperparâmetros:

- Word2Vec:
 - vector size=100;
 - window=5:
 - min count=1;
 - workers=4;
- SVM:
 - kernel='linear'
 - probability=True

Modelo SVM + Embeddings

```
[ ] import numpy as np
     import nltk
     from gensim.models import Word2Vec
     nltk.download('punkt tab')
     # Criando Embeddings com Word2Vec
     tokenized sentences = [nltk.word tokenize(sentence) for sentence in X train]
     word2vec model = Word2Vec(sentences=tokenized sentences, vector size=100, window=5, min count=1, workers=4)
     def get_sentence_embedding(sentence):
         tokens = nltk.word tokenize(sentence)
        embeddings = [word2vec model.wv[word] for word in tokens if word in word2vec model.wv]
        return np.mean(embeddings, axis=0) if embeddings else np.zeros(100)
    X train emb = np.array([get sentence embedding(sentence) for sentence in X train])
    X test emb = np.array([get sentence embedding(sentence) for sentence in X test])
     # Treinar o SVM
     svm emb = SVC(kernel='linear', probability=True, class weight='balanced')
     svm emb.fit(X train emb, y train)
     # Avaliar
     y pred emb = svm emb.predict(X test emb)
     print("SVM + Word Embeddings")
     print(classification report(y test, y pred emb))
```


Modelo SVM + Embeddings

Arquitetura:

- **Entrada:** Dados de texto;
- **Tokenização**: BERT Tokenizer (max len=128);
- Modelo de Classificação (BERT): BertForSequenceClassification é carregado com o pré-treinamento do BERT (bert-base-uncased);
- **Treinamento:** modelo é treinado utilizando o otimizador AdamW com uma taxa de aprendizado de 5e-5.
- Saída: Modelo treinado;

Hiperparâmetros:

- Tokenização:
 - max len=128:
- Modelo BERT:
 - bert-base-uncased;
 - num labels=3;
- Treinamento:
 - Número de épocas: 3;
 - batch size=16;
 - Taxa de aprendizado: 5e-5;
 - Otimizador: AdamW;


```
# Tokenizer e dataset
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
train dataset = SentimentDataset(X train, y train, tokenizer)
test dataset = SentimentDataset(X test, y test, tokenizer)
train loader = DataLoader(train dataset, batch size=16, shuffle=True)
test loader = DataLoader(test dataset, batch size=16, shuffle=False)
# Modelo
model = BertForSequenceClassification.from pretrained('bert-base-uncased', num labels=3)
optimizer = torch.optim.AdamW(model.parameters(), 1r=5e-5)
# Treinamento
model.train()
for epoch in range(3): # 3 épocas
    for batch in train loader:
        optimizer.zero grad()
        input ids, attention mask, labels = batch['input ids'], batch['attention mask'], batch['label']
        outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
        loss = outputs.loss
        loss.backward()
        optimizer.step()
```



```
# Avaliação
model.eval()
all preds = []
all labels = []
with torch.no_grad():
    for batch in test loader:
        input ids, attention mask, labels = batch['input ids'], batch['attention mask'], batch['label']
        outputs = model(input_ids, attention_mask=attention_mask)
        preds = torch.argmax(F.softmax(outputs.logits, dim=1), dim=1)
        all_preds.extend(preds.cpu().numpy())
        all_labels.extend(labels.cpu().numpy())
print("BERT")
print(classification_report(all_labels, all_preds))
```


Análises

	precision	recall	f1-score	support
0	0.44	0.51	0.47	142
1	0.33	0.31	0.32	171
2	0.88	0.86	0.87	916
accuracy			0.74	1229
macro avg	0.55	0.56	0.55	1229
weighted avg	0.75	0.74	0.75	1229

[nltk_data] SVM + Word E		nkt_tab is	already u	o-to-date!
	precision	recall	f1-score	support
	0.31	0.47	0.37	142
1	0.24	0.50	0.33	171
	0.92	0.66	0.77	916
accuracy	,		0.61	1229
macro ave	0.49	0.54	0.49	1229
weighted av	0.75	0.61	0.66	1229

	precision	recall	f1-score	support
0	0.60	0.63	0.62	142
1	0.37	0.47	0.42	171
2	0.94	0.88	0.91	916
accuracy			0.80	1229
macro avg	0.64	0.66	0.65	1229
weighted avg	0.82	0.80	0.81	1229

Balanceamento das classes

```
print("Distribuição original:")
print(df filtrado['Rating'].value counts())
df class 0 = df filtrado[df filtrado['Rating'] == 0]
df class 1 = df filtrado[df filtrado['Rating'] == 1]
df class 2 = df filtrado[df filtrado['Rating'] == 2]
mean minority size = (len(df class 0) + len(df class 1)) // 2
target size class 2 = int(mean minority size * 1.2)
df class 2 sampled = df class 2.sample(n=target size class 2, random state=42)
# Reunir todas as classes
df balanced = pd.concat([df class 0, df class 1, df class 2 sampled], axis=0)
# Verificar nova distribuição
print("\nDistribuição após ajuste:")
print(df balanced['Rating'].value counts())
```


Antes x Depois

Modelo SVM + Bag of Words (antes x depois)

	precision	recall	f1-score	support
	precision	Lecall	T1-Score	Support
9	0.44	0.51	0.47	142
1	0.33	0.31	0.32	171
2	0.88	0.86	0.87	916
accuracy			0.74	1229
macro avg	0.55	0.56	0.55	1229
weighted avg	0.75	0.74	0.75	1229

SVM + BoW				
	precision	recall	f1-score	support
0	0.57	0.50	0.53	151
1	0.45	0.50	0.47	149
2	0.73	0.74	0.74	184
accuracy			0.59	484
macro avg	0.58	0.58	0.58	484
weighted avg	0.60	0.59	0.59	484

Modelo SVM + Embeddings (antes x depois)

	Package pur		CONTRACTOR OF THE PARTY OF THE	/root/nltk_data o-to-date!
	precision	recall	f1-score	support
0	0.31	0.47	0.37	142
1	0.24	0.50	0.33	171
2	0.92	0.66	0.77	916
accuracy			0.61	1229
macro avg	0.49	0.54	0.49	1229
weighted avg	0.75	0.61	0.66	1229

SVM + Word	Embeddi	ngs			
	prec	ision	recall	f1-score	support
	0	0.60	0.04	0.07	151
	1	0.38	0.68	0.49	149
	2	0.58	0.65	0.61	184
accura	су			0.47	484
macro a	vg	0.52	0.46	0.39	484
weighted a	vg	0.52	0.47	0.41	484

precision	recall	f1-score	support
0.60	0.63	0.62	142
0.37	0.47	0.42	171
0.94	0.88	0.91	916
		0.80	1229
0.64	0.66	0.65	1229
0.82	0.80	0.81	1229
	0.60 0.37 0.94 0.64	0.60 0.63 0.37 0.47 0.94 0.88 0.64 0.66	0.60 0.63 0.62 0.37 0.47 0.42 0.94 0.88 0.91 0.64 0.66 0.65

BERT		precision	recall	f1-score	support
	0 1 2	0.72 0.52 0.91	0.52 0.75 0.79	0.61 0.62 0.85	151 149 184
accur macro weighted	avg	0.72 0.73	0.69 0.70	0.70 0.69 0.70	484 484 484

Análises

- Mesmo após o balanceamento e tentativas de separação manual não obtivemos os resultados desejados;
- Logo seguimos com outra estratégia: usar o K-means para agrupar melhor as fronteiras de decisão.

BoW + K-means + SVM

	precision	recall	f1-score	support
0	0.94	0.96	0.95	383
1 2	0.97 0.99	0.95 0.98	0.96 0.98	305 541
accuracy			0.97	1229
macro avg	0.96	0.96	0.96	1229
weighted avg	0.97	0.97	0.97	1229

Word2Vector + K-means+ SVM

	precision	recall	f1-score	support
0 1 2	0.99 0.95 0.99	0.98 1.00 0.98	0.98 0.97 0.99	603 211 415
accuracy macro avg weighted avg	0.98 0.98	0.99 0.98	0.98 0.98 0.98	1229 1229 1229

K-means + BERT

	precision	recall	f1-score	support
0 1	1.00 0.96	0.76 0.97	0.86 0.96	427 147
2	0.86	1.00	0.92	655
accuracy			0.91	1229
macro avg weighted avg	0.94 0.92	0.91 0.91	0.92 0.91	1229 1229

Conclusão

- A separação manual das classificações não foi suficiente. Com o K-means conseguimos aprender a fronteira de decisão e usamos ele como input para os modelos.
- O bert é bem mais custoso. E o outros tiveram resultados melhores com menos custo.
- Às vezes o modelo mais simples já resolve problema. Já outras vezes é preciso avaliar melhor a metodologia e combiná-la com outra pode acabar otimizando o trabalho.

Obrigado

Especialização Centro de Deep Learning Informática

