Определение предела дает функцию $N(\varepsilon)$, хорошо приспособленную для изучения неравенства $\rho(x_n,a)<\varepsilon$ для $n\in(N;+\infty)$. Кроме того, для последовательности $r_n=\rho(x_n,a)$ $|r_n|<\varepsilon$.

Теорема 1. О единственности предела. (X,ρ) — метрическое пр-во, $a,b\in X,$ (x_n) — послед. в X, $x_n\xrightarrow[n\to+\infty]{}a,$ $x_n\xrightarrow[n\to+\infty]{}b,$ тогда a=b

Доказательство.

Докажем от противного — пусть
$$a \neq b$$
. Возьмем $0 < \varepsilon < \frac{1}{2} \rho(a,b)$

$$\exists N(\varepsilon) \ \forall n > N(\varepsilon) \ \rho(x_n, a) < \varepsilon$$

$$\exists K(\varepsilon) \ \forall n > K(\varepsilon) \ \rho(x_n, b) < \varepsilon$$

При $n > \max(N(\varepsilon), K(\varepsilon))$ $\rho(a,b) \le \rho(a,x_n) + \rho(b,x_n) < 2\varepsilon < \rho(a,b)$ — противоречие

Определение. $A \subset X$ — ограничено, если $\exists x_0 \in X \ \exists R > 0 \ A \subset B(x_0, R)$

Пусть $b \in X$. $A - \text{orp.} \Leftrightarrow \exists r > 0 \ A \subset B(b, r)$

$$A \subset B(x_0, R) \Rightarrow A \subset B(b, \rho(x_0, b) \pm R)$$

Теорема 2. Если (x, ρ) — метрическое пр-во, (x_n) — послед. в X, x_n сходится, **тогда** x_n - ограничен.

Доказательство.

Пусть
$$a=\lim_{n\to +\infty}x_n$$

$$\forall U(a) \ \exists N \ \forall n>N \ x_n\in U(a)$$

$$U(a)=B(a,\varepsilon)$$
 $r:=max(\varepsilon,\rho(x_1,a),\rho(x_2,a)\dots\rho(x_N,a))+1$ тогда $\forall n\in \mathbb{N} \ x_n\in B(a,r)$

Порядковые свойства предела

Теорема 3. О предельном переходе в неравенствах для \mathbb{R} . Если $(x_n), (y_n)$ — вещественные последовательности $x_n \to a, y_n \to b, \forall n \ x_n \le y_n,$ тогда $a \le b$.

Доказательство.

Докажем от противного. Пусть
$$a>b, 0<\varepsilon<\frac{a-b}{2}.$$

$$\exists N(\varepsilon) \ \forall n > N \ a - \varepsilon < x_n < a + \varepsilon$$

$$\exists K(\varepsilon) \ \forall n > K \ b - \varepsilon < y_n < b + \varepsilon$$

При $n > \max(N, K)$ $y_n < b + \varepsilon < a - \varepsilon < x_n$ — противоречие

Примечание. Если вместо " $\forall n \ x_n \leq y_n$ " потребовать: " $\exists M \ \forall n > M \ x_n \leq y_n$ то утв. по-прежнему верно

Примечание. $x_n = -\frac{1}{n} \ y_n = \frac{1}{n}$. тогда $x_n \to 0, y_n \to 0$. $x_n < y_n$, но пределы совпадают. То есть даже если $x_n < y_n$ строго, $a \le b$ — нестрого.

Следствие 1. (x_n) — вещественная последовательность, $a,b\in\mathbb{R}$

- 1. $\forall n \ x_n \leq a \Rightarrow \lim x_n \leq a$
- 2. $\forall n \ x_n \geq b \Rightarrow \lim x_n \geq b$
- 3. $\forall n \ x_n \in [a, b] \Rightarrow \lim x_n \in [a, b]$

Теорема 4. О двух городовых (о сжатой последовательности). Если $(x_n), (y_n), (z_n)$ - вещ. посл., $\forall n \ x_n \leq y_n \leq z_n, \lim x_n = \lim z_n = a,$ тогда $\exists \lim y_n = a$

Доказательство.

$$\forall \varepsilon>0 \ \exists N \ \forall n>N \ a-\varepsilon < x_n < a+\varepsilon$$

$$\forall \varepsilon>0 \ \exists K \ \forall n>K \ a-\varepsilon < z_n < a+\varepsilon$$

$$\forall \varepsilon>0 \ \exists N_0=max(N,K) \ \forall n>N_0 \ a-\varepsilon < x_n \leq y_n \leq z_n < a+\varepsilon$$
 По определению $\lim y_n=a$

Следствие 2. $(y_n), (z_n) \ \forall n \ |y_n| \le z_n, \ \exists \lim z_n = 0, \ \text{тогда} \ y_n \to 0.$ Доказательство тривиально, т.к. y_n ограничено z_n и $-z_n$.

Определение. (x_n) — вещ. посл. называется бесконечно малой, если $x_n \to 0$

Теорема 5. Если $(x_n), (y_n)$ — вещ. посл., x_n — беск.мал., y_n — огр., **тогда** x_ny_n — беск.мал.

Доказательство.

$$\exists R \ \forall n \ |y_n| < R$$
, т.к. y_n — огр. $|x_ny_n| \le R|x_n|, R|x_n| \to 0 \Rightarrow y_n \to 0$

П

Нормированные пространства

Определение. Если K — поле ($K = \mathbb{R}$ или \mathbb{C}), X — множество, то X называется линейным пространством над полем K (и тогда K называется полем скаляр), если определены следующие две операции:

- 1. $+: X \times X \to X$ сложение векторов
- 2. $\cdot: K \times X \to X$ умножение векторов на скаляры

Для этих операций выполняются соответствующие аксиомы (здесь $A,B,C\in X;a,b\in\mathbb{R}$ или \mathbb{C}):

Аксиомы сложения векторов

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$\exists 0 \in X : A + 0 = a$$

Аксиомы умножения векторов на скаляры

1.
$$(A+B) \cdot a = A \cdot a + B \cdot a$$

2.
$$A \cdot (a+b) = A \cdot a + A \cdot b$$

3.
$$(ab) \cdot A = a(b \cdot A)$$

4.
$$\exists 1 \in X : 1 \cdot a = a$$

Ещё есть аксиома $\exists -A \in X : A + (-A) = 0$, но у нас её не было.

Определение. Норма - отображение $X \to \mathbb{R}, x \mapsto ||x||$, если X - линейное пространство (над \mathbb{R} или \mathbb{C}) и выполняется следующее:

3

1.
$$\forall x \ ||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$$

2.
$$\forall x \in X \ \forall \lambda \in \mathbb{R}(\mathbb{C}) \ ||\lambda x|| = |\lambda| \cdot ||x||$$

3. Неравенство треугольника:
$$\forall x,y \in X \;\; ||x+y|| \leq ||x|| + ||y||$$

Определение. Полунорма - норма без свойства $||x||=0 \Leftrightarrow x=0$

Определение. Нормированное пространство — $(X, ||\cdot||)$, где |||| - норма

Лемма 1. О свойстве полунормы.

1.
$$p(\sum_{finite} \lambda_k x_k) \leq \sum_{k} \lambda_k p(x_k)$$

2.
$$p(0) = 0$$
 - $\textit{mym} \ 0 \in X$

3.
$$p(-x) = p(x)$$

4.
$$|p(x) - p(y)| \le p(x - y)$$

Доказательство.

1.
$$p(\lambda_1 x_1 + \lambda_2 x_2 + ...) \le p(\lambda_1 x_1) + p(\lambda_2 x_2 + ...)$$

- 2. тривиально
- 3. тривиально

4.
$$-p(x-y) \le p(x) - p(y) \le p(x-y)$$

 $p(x) = p(y + (x-y)) \le p(y) + p(x-y)$

Примеры норм:

1.
$$X = \mathbb{R}^m \ ||x|| = \sqrt{\sum_{i=1}^{m} x_i^2}$$

$$X = \mathbb{C}^m \ ||x|| = \sqrt{\sum_{i=1}^{m} |x_i|^2}$$

2.
$$(\mathbb{R}^m, ||\cdot||_{\infty})$$
 $||x||_{\infty} = max(|x_1|, |x_2|, ..., |x_m|)$

3.
$$(\mathbb{R}^m, ||\cdot||_1) ||x||_1 = \sum_{i=1}^m |x_i|$$

(a)
$$p(x) = |x_1|$$
 — полунорма, но не норма

Примечание. Если $(X,||\cdot||)$ — норм. пр-во, тогда $\rho(x,y):=||x-y||$ — метрика, порожденная нормой. Не все метрики порождены нормами, например $\rho=\frac{|x-y|}{1+|x-y|}$.

Арифметические свойства предела

Теорема 6. Об арифметических свойствах предела в нормированном пространстве.

Если $(X,||\cdot||)$ — норм. пр-во, $(x_n),(y_n)$ — посл. в X,λ_n — посл. скаляров, и $x_n\to x_0,y_n\to y_0,\lambda_n\to \lambda_0$, тогда:

1.
$$x_n \pm y_n \to x_0 \pm y_0$$

2.
$$\lambda_n x_n \to \lambda_0 x_0$$

3.
$$||x_n|| \to ||x_0||$$

Доказательство. 1. $\forall \varepsilon \ \exists N_1 \ \forall n > N_1 \ ||x_n - x_0|| < \varepsilon$

$$\forall \varepsilon \ \exists N_2 \ \forall n > N_2 \ ||y_n - y_0|| < \varepsilon$$

$$N := \max(N_1, N_2)$$

$$\forall \varepsilon \ \forall n > N \ ||(x_n + y_n) - (x_0 + y_0)|| \le ||x_n - x_0|| + ||y_n - y_0|| \le 2\varepsilon$$

2.
$$||\lambda_n x_n - \lambda_0 x_0|| = ||\lambda_n x_n - \lambda_0 x_0 + \lambda_0 x_n - \lambda_0 x_n|| = ||(\lambda_n - \lambda_0) x_n + (x_n - x_0) \lambda_0|| \le ||(\lambda_n - \lambda_0) x_n|| + ||(x_n - x_0) \lambda_0|| = ||x_n|||\lambda_n - \lambda_0| + ||x_n - x_0|||\lambda_0|$$
 $||\lambda_n - \lambda_0|| + ||x_n - x_0|| -$ бесконечно малые, $||x_n||$ и $||\lambda_n|| -$ ограниченные $\Rightarrow ||x_n|| ||\lambda_n - \lambda_0|| + ||x_n - x_0|| ||\lambda_0|| -$ бесконечно малая

3. Докажем, что $|||x_n|| - ||x_0||| \le ||x_n - x_0||$.

$$||x_n|| = ||x_0 + (x_n - x_0)|| \le ||x_0|| + ||x_n - x_0|| \Rightarrow ||x_n|| - ||x_0|| \le ||x_n - x_0||$$

Аналогично $||x_0|| - ||x_n|| \le ||x_n - x_0||$.

Тогда $|||x_n|| - ||x_0||| \le ||x_n - x_0||$

Теорема 7. Об арифметических свойствах пределов в \mathbb{R} .

Для $(x_n), (y_n)$ — вещ.посл., $\forall n \ y_n \neq 0, y_0 \neq 0$:

$$4. \ \frac{x_n}{y_n} \to \frac{x_0}{y_0}$$

Доказательство взято из воздуха.

Доказательство. Докажем, что $\frac{1}{y_n} o \frac{1}{y_0}$, если $\forall n \ y_n \neq 0, y_0 \neq 0.$

$$\left| \frac{1}{y_n} - \frac{1}{y_0} \right| = \left| \frac{y_0 - y_n}{y_n y_0} \right|$$

В числителе бесконечно малая последовательность, в знаменателе ограниченная \Rightarrow дробь — бесконечно малая последовательность.