User-Guided Simplification

Youngihn Kho Michael Garland

University of Illinois at Urbana-Champaign

Surface Simplification

Previous simplifications

Most of previous algorithms are fully automatic

- generally work well, but
- weak at higher-level semantics
- user-guidance can improve the quality

Semi-automatic methods

- Zeta (Cignoni et al. '97)
- **Semisimp** (Li and Watson '01)
- User-Controlled Creation of Multiresolution Meshes

(Pojar and Schmalstieg '03)

User Guidance can be Useful

We propose a user-guided simplification

- directly guide simplification processes
- users freely interact at any level
- Built on top of quadric-based simplification (Garland and Heckbert '97)

Demo #1 Face model

Iterative Edge Contraction

Starting from the original model, iteratively

- rank all edges with some cost metric
- contract minimum cost edge
- remove degenerate faces
- update neighboring edges

Quadric-Error Metric

Given a plane, a quadric Q is defined as

$$Q = (\mathbf{A}, \mathbf{b}, c) = (\mathbf{n}\mathbf{n}^{\mathsf{T}}, d\mathbf{n}, d^{\mathsf{T}})$$

Squared distance of a point to the plane is

$$Q(\mathbf{v}) = \mathbf{v}^{\mathsf{T}} \mathbf{A} \mathbf{v} + \langle \mathbf{b}^{\mathsf{T}} \mathbf{v} + c$$

Sum of quadrics represents a set of planes

$$\sum_{i} (\mathbf{n}_{i}^{\mathsf{T}} \mathbf{v} + d)^{\mathsf{T}} = \sum_{i} Q_{i} (\mathbf{v}) = \prod_{i} \sum_{i} Q_{i} \mathbf{v}$$

Quadric-Error Metric

Each edge has an associated quadric

- sum of quadrics for its two vertices
- find a vertex \mathbf{v}^* minimizing $Q(\mathbf{v}^*)$

$$\nabla Q(\mathbf{v}^*) = \mathbf{v} \Rightarrow \mathbf{A}\mathbf{v}^* = -\mathbf{b}$$

After the edge contraction

the vertex \mathbf{v}^* accumulates the associated quadrics $Q_{\mathbf{v}_i} = Q_{\mathbf{v}_i} + Q_{\mathbf{v}_j}$

How to Guide Simplification: Manipulate Quadrics

In the quadric-based algorithm

- contraction order and optimal positions are crucial
- quadrics determine both

We manipulate quadrics in two main ways

- weighting quadrics
- adding constraint quadrics

Weighting Quadrics: Control Contraction Costs

We weight quadrics

Heavy weights are applied

- on feature areas
- increase contraction costs

Also changes optimal positions

a desirable property

Feature areas are painted

Constraint Quadrics: Control Optimal Positions

We can define constraint planes

- add their quadrics to appropriate vertices
- bias optimal positions
- increase contraction costs -> store separately

We Propose Three types of Constraint Quadrics

Plane Constraints

Contour Constraints

Point Constraints

Example: Contour Constraint

Example: Point Constraint

We Need: New Propagation Rules

Users want to freely interact at any level

- affect both simplification and refinement process
- vertex tree structures may be changed
- constraint quadrics and representative weights should be appropriately propagated.

Propagation: Constraint Quadrics

$$(V_i, V_j) \rightarrow V \stackrel{*}{:} Q \stackrel{*}{=} Q_i + Q_j$$

Propagation: Representative Weight

$$(V_i, V_j) \rightarrow V^*: W^* = (W_i + W_j)/2$$

Demo #2 Dragon model

Error Analysis: Relative Error Distribution

Fully automatic

User-guided

Conclusion

New interactive simplification system

- extends an existing QSlim algorithm
- allows user-guidance to improve approximations
- little user effort, still efficient

Changes vertex tree structures

can be used for further applications

Future Work

Better weights selection

- currently chosen by users
- automatic suggestion would be good

Perceptually based error metric

- low-level perception models (Reddy '97, *Luebke and Hallen '01*)
- but also high-level: eg. actual feature vs noise
- machine learning techniques?

The End

Thanks!

Contact Information

Youngihn kho

kho@uiuc.edu

Michael Garland

garland@uiuc.edu