Image Processing - Lesson 6

Fourier Transform - Part II

- Discrete Fourier Transform 1D
- Discrete Fourier Transform 2D
- Fourier Properties
- Convolution Theorem
- FFT
- Examples

Discrete Fourier Transform

Move from f(x) ($x \in R$) to f(x) ($x \in Z$) by sampling at equal intervals.

$$f(x_0)$$
, $f(x_0+\Delta x)$, $f(x_0+2\Delta x)$, ..., $f(x_0+[n-1]\Delta x)$,

Given N samples at equal intervals, we redefine f as:

$$f(x) = f(x_0 + x\Delta x)$$
 $x = 0, 1, 2, ..., N-1$

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is defined as:

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{\frac{-2\mathbf{p}iux}{N}}$$
 u = 0, 1, 2, ..., N-1

Matlab: F=fft(f);

The Inverse Discrete Fourier Transform (IDFT) is defined as:

$$f(x) = \sum_{u=0}^{N-1} F(u)e^{\frac{2\mathbf{p}iux}{N}}$$
 x = 0, 1, 2, ..., N-1

Matlab: F=ifft(f);

Discrete Fourier Transform - Example

$$f(x) \qquad f(x) = f(x_0 + x\Delta x)$$

$$f(x_0 + 2\Delta x) \qquad f(x_0 + 3\Delta x)$$

$$f(x_0 + \Delta x) \qquad 3$$

$$= 1/4(f(0) + f(1) + f(2) + f(3)) = 1/4(2+3+4+4) = 3.25$$

$$F(1) = 1/4 \sum_{x=0}^{3} f(x) e^{\frac{-2\pi i x}{4}} = 1/4 \left[2e^{0} + 3e^{-i\pi/2} + 4e^{-\pi i} 4e^{-i3\pi/2} \right] = \frac{1}{4} \left[-2 + i \right]$$

$$F(2) = \frac{1}{4} \sum_{x=0}^{3} f(x) e^{\frac{-4\pi ix}{4}} = \frac{1}{4} \left[2e^{0} + 3e^{-i\pi} + 4e^{-2\pi i} 4e^{-3\pi i} \right] = \frac{-1}{4} \left[-1 - 0i \right] = \frac{-1}{4}$$

$$F(3) = \frac{1}{4} \sum_{x=0}^{3} f(x) e^{-\frac{6\pi ix}{4}} = \frac{1}{4} \left[2e^{0} + 3e^{-i3\pi/2} + 4e^{-3\pi i} 4e^{-i9\pi/2} \right] = \frac{1}{4} \left[-2 - i \right]$$

Fourier Spectrum:

$$|F(0)| = 3.25$$

$$|F(1)| = [(-1/2)^2 + (1/4)^2]^{0.5}$$

$$|F(2)| = [(-1/4)^2 + (0)^2]^{0.5}$$

$$|F(3)| = [(-1/2)^2 + (-1/4)^2]^{0.5}$$

Discrete Fourier Transform - 2D

Image
$$f(x,y)$$
 $x = 0,1,...,N-1$ $y=0,1,...,M-1$

The Discrete Fourier Transform (DFT) is defined as:

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x,y) e^{-2\mathbf{p}i(\frac{ux}{N} + \frac{vy}{M})} \quad u = 0, 1, 2, ..., N-1$$

$$v = 0, 1, 2, ..., M-1$$

Matlab: F=fft2(f);

The Inverse Discrete Fourier Transform (IDFT) is defined as:

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{M-1} F(u,v)e^{2\mathbf{p}i(\frac{ux}{N} + \frac{vy}{M})} \qquad x = 0, 1, 2, ..., N-1$$

$$y = 0, 1, 2, ..., M-1$$

Matlab: F=ifft2(f);

Fourier Transform - Image

Image using Matlab Routines

 F(u,v) is a Fourier transform of f(x,y) and it has complex entries.

$$F = fft2(f)$$
;

- In order to display the Fourier Spectrum |F(u,v)|
 - Cyclically rotate the image so that F(0,0) is in the center:

$$F = fftshift(F);$$

 Reduce dynamic range of |F(u,v)| by displaying the log:

$$D = log(1 + abs(F));$$

Example:

$$|F(u)| = 100 4 2 1 0 0 1 2 4$$

Cyclic
$$|F(u)| = 0 \ 1 \ 2 \ 4 \ 100 \ 4 \ 2 \ 1 \ 0$$

Display in Range([0..10]):

$$|F(u)|/10 = 0 0 0 0 10 0 0 0$$

$$log(1+|F(u)|) = 0 0.69 1.01 1.61 4.62 1.61 1.01 0.69 0$$

$$\log(1+|F(u)|)/0.462 = 0 1 2 4 10 4 2 1 0$$

Visualizing the Fourier Image - Example

Original

Fourier Image = |F(u,v)|

Shifted Fourier Image

Shifted Log Fourier Image = log(1+ |F(u,v)|)

Properties of The Fourier Transform

Distributive (addition)

$$\widetilde{F}$$
 [f₁(x,y) + f₂(x,y)] = \widetilde{F} [f₁(x,y)] + \widetilde{F} [f₂(x,y)]

Linearity

$$\widetilde{F}$$
 [a f(x,y)] = a \widetilde{F} [f(x,y)]

a
$$f(x,y)$$
 — a $F(u,v)$

Cyclic

$$F(u,v) = F(u+N,v) = F(u,v+N) = F(u+N,v+N)$$

$$F(x,y) = F(x+N,y+N)$$

Symmetric if f(x) is real:

$$F(u,v) = F^*(-u,-v)$$

thus:

$$|F(u,v)| = |F(-u,-v)|$$

Fourier Spectrum is symmetric

DC (Average)

$$F(0,0) = \frac{1}{N} \frac{1}{M} \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x) e^{0}$$

Distributive:

 $\widetilde{F}\{f+g\} = \widetilde{F}\{f\} + \widetilde{F}\{g\}$

Cyclic and Symmetry of the Fourier Transform - 1D Example

Image Transformations

Translation

The Fourier Spectrum remains unchanged under translation:

$$|F(u,v)| = |F(u,v)e^{-\frac{2\pi i(ux_0+vy_0)}{N}}|$$

Rotation

Rotation of
$$f(x,y)$$
 Rotation of $F(u,v)$ by θ

Scale

$$f(ax,by) - \frac{1}{|ab|}F(u/a,v/b)$$

Change of Scale- 1D:

if
$$\widetilde{F}\{f(x)\}=F(w)$$
 then $\widetilde{F}\{f(ax)\}=\frac{1}{|a|}F\left(\frac{w}{a}\right)$

Change of Scale

Example - Rotation

Fourier Transform Examples

Image Domain Frequency Domain

Separabitity

$$\begin{split} F(u,v) &= \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \ e^{-2\pi i (ux+vy)/n} \\ &= \frac{1}{N} \sum_{x=0}^{N-1} \left(\sum_{y=0}^{N-1} f(x,y) \ e^{-2\pi i vy/n} \right) \ e^{-2\pi i ux/n} \\ &= \frac{1}{N} \sum_{x=0}^{N-1} F(x,v) \ e^{-2\pi i ux/n} \end{split}$$

Thus, to perform a 2D Fourier Transform is equivalent to performing 2 1D transforms:

- Perform 1D transform on EACH column of image f(x,y).
 Obtain F(x,v).
- 2) Perform 1D transform on EACH row of F(x,v).

Higher Dimensions:

Fourier in any dimension can be performed by applying 1D transform on each dimension.

Fourier Transform Examples

Image Domain Frequency Domain

Fourier Transform Examples

Image Domain Frequency Domain

Linear Systems and Responses

	Spatial Domain	Frequency Domain
Input	f	F
Output	g	G
Impulse Response	h	
Freq. Response		Н
Relationship	g=f*h	G=FH

The Convolution Theorem

$$g = f * h$$

$$g = f h$$

implies

implies

$$G = F H$$

$$G = F * H$$

Convolution in one domain is multiplication in the other and vice versa

The Convolution Theorem

$$\widetilde{F}\{f(x) * g(x)\} = \widetilde{F}\{f(x)\}\widetilde{F}\{g(x)\}$$

and likewise

$$\widetilde{F}\{f(x)g(x)\} = \widetilde{F}\{f(x)\} * \widetilde{F}\{g(x)\}$$

$$f(x,y) * g(x,y)$$
 — $F(u,v) G(u,v)$ $F(x,y) g(x,y)$ — $F(u,v) * G(u,v)$

Convolution in one domain is multiplication in the other and vice versa

Example:

Convolution Theorem - 2D Example

Sampling the Image

Critical Sampling

- If the maximal frequency of f(x) is ω_{max} , it is clear from the above replicas that ω_{max} should be smaller that 1/2T.
- Alternatively:

$$\frac{1}{T} > 2\mathbf{w}_{\text{max}}$$

- Nyquist Theorem: If the maximal frequency of f(x) is ω_{max} the sampling rate should be larger than $2\omega_{max}$ in order to fully reconstruct f(x) from its samples.
- If the sampling rate is smaller than $2\omega_{\text{max}}$ overlapping replicas produce **aliasing**.

Optimal Interpolation

• It is possible to fully reconstruct f(x) from its samples:

Fast Fourier Transform - FFT

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{\frac{-2Pux}{N}}$$
 u = 0, 1, 2, ..., N-1

O(n²) operations

$$F(u) = \frac{1}{N} \sum_{x=0}^{N/2-1} f(2x)e^{\frac{-2\mathbf{p}iu2x}{N}} + \frac{1}{N} \sum_{x=0}^{N/2-1} f(2x+1)e^{\frac{-2\mathbf{p}iu(2x+1)}{N}}$$

$$= \frac{1}{2} \left[\frac{1}{N/2} \sum_{x=0}^{N/2-1} f(2x)e^{\frac{-2\mathbf{p}iux}{N/2}} + e^{\frac{-2\mathbf{p}iu}{N}} \frac{1}{N/2} \sum_{x=0}^{N/2-1} f(2x+1)e^{\frac{-2\mathbf{p}iux}{N/2}} \right]$$
Fourier Transform of of N/2 even points
Fourier Transform of of N/2 odd points

The Fourier transform of N inputs, can be performed as 2 Fourier Transforms of N/2 inputs each + one complex multiplication and addition for each value i.e. O(N).

Note, that only N/2 different transform values are obtained for the N/2 point transforms.

$$F_{N}(u) = \frac{1}{2} \left[\frac{1}{N/2} \sum_{x=0}^{N/2-1} f(2x) e^{\frac{-2\mathbf{p}iux}{N/2}} + e^{\frac{-2\mathbf{p}iu}{N}} \frac{1}{N/2} \sum_{x=0}^{N/2-1} f(2x+1) e^{\frac{-2\mathbf{p}iux}{N/2}} \right]$$

$$F_{N}(u) = \frac{1}{2} \left[F_{N/2}^{e}(u) + e^{\frac{-2\mathbf{p}iu}{N}} F_{N/2}^{o}(u) \right]$$

$$F_{N}(u) = \frac{1}{2} \left[F_{N/2}^{e}(u) + e^{\frac{-2\mathbf{p}iux}{N}} F_{N/2}^{o}(u) \right]$$

$$F_{N/2}(u) = \frac{-2\mathbf{p}iu}{N} e^{-2\mathbf{p}iux} e^{-2\mathbf{p}iux} e^{-2\mathbf{p}iux} e^{-2\mathbf{p}iux}$$

$$F_{N/2}(u) = \frac{-2\mathbf{p}iu}{N} e^{-2\mathbf{p}ix} e^{-2\mathbf{p}iux} e^{-2\mathbf{p}iux}$$

 $F_{N}(u) = \frac{1}{2} \left[F_{N/2}^{e}(u) + e^{\frac{-2piu}{N}} F_{N/2}^{o}(u) \right]$ For u = 0, 1, 2, ..., N/2-1

 $F_{N}(u+\frac{N}{2})=\frac{1}{2}\left|F_{N/2}^{e}(u)-e^{\frac{-2piu}{N}}F_{N/2}^{o}(u)\right|$

Thus: only one complex multiplication is needed for two terms.

Calculating $F_{N/2}^e(u)$ and $F_{N/2}^o(u)$ is done recursively by calculating $F_{N/4}^e(u)$ and $F_{N/4}^o(u)$.

FFT: O(nlog(n)) operations

FFT of NxN Image: $O(n^2log(n))$ operations

Frequency Enhancement

