

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

## **FCC LTE REPORT**

#### **FCC Certification**

**Applicant Name:** 

Franklin Technology Inc.

Date of Issue:

November 26, 2015

Location:

HCT CO., LTD.,

906(Gasan-Dong, JEI Platz), 186, Gasan digital 1-ro,

Geumcheon-gu, Seoul, Korea(08502)

74, Seoicheon-ro 578beon-gil, Majang-myeon,

Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-R-1511-F025

HCT FRN: 0005866421

MODEL:

Address:

**XHG-R850** 

APPLICANT:

Franklin Technology Inc.

FCC Model(s):

R850

**EUT Type:** 

LTE Mobile Router

FCC Classification:

PCS Licensed Transmitter (PCB)

FCC Rule Part(s):

§90.691, §2

| Mada               | Т. Г.                 | Factorian              |            | E                 | RP               |
|--------------------|-----------------------|------------------------|------------|-------------------|------------------|
| Mode<br>(MHz)      | Tx Frequency<br>(MHz) | Emission<br>Designator | Modulation | Max. Power<br>(W) | Max. Power (dBm) |
| LTE D100 (4.4)     | 0447 0000             | 1M09G7D                | QPSK       | 0.120             | 20.79            |
| LTE - Band26 (1.4) | 814.7 – 823.3         | 1M08W7D                | 16QAM      | 0.099             | 19.94            |
| LTE D100 (0)       | 045.5 000.5           | 2M69G7D                | QPSK       | 0.123             | 20.90            |
| LTE - Band26 (3)   | 815.5 – 822.5         | 2M68W7D                | 16QAM      | 0.104             | 20.18            |
| LTE D100 (F)       | 040.5 004.5           | 4M47G7D                | QPSK       | 0.146             | 21.64            |
| LTE - Band26 (5)   | 816.5 – 821.5         | 4M48W7D                | 16QAM      | 0.128             | 21.09            |
| LTE D 100 (40)     | 040.0                 | 8M97G7D                | QPSK       | 0.130             | 21.14            |
| LTE - Band26 (10)  | 819.0                 | 8M94W7D                | 16QAM      | 0.110             | 20.42            |

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Ki Hyun Kim

Test engineer of RF Team

: Sang Jun Lee

Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.



# **Report Revision**

| TEST REPORT NO. | DATE              | DESCRIPTION             |
|-----------------|-------------------|-------------------------|
| HCT-R-1511-F025 | November 26, 2015 | - First Approval Report |
|                 |                   |                         |
|                 |                   |                         |
|                 |                   |                         |



# **Table of Contents**

| 1. GENERAL INFORMATION                                     | 4  |
|------------------------------------------------------------|----|
| 2. INTRODUCTION                                            | 5  |
| 2.1. EUT DESCRIPTION                                       | 5  |
| 2.2. MEASURING INSTRUMENT CALIBRATION                      | 5  |
| 2.3. TEST FACILITY                                         | 5  |
| 3. DESCRIPTION OF TESTS                                    | 6  |
| 3.1 ERP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS     | 6  |
| 3.2 OCCUPIED BANDWIDTH                                     | 7  |
| 3.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL    |    |
| 3.4 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE | 9  |
| 4. LIST OF TEST EQUIPMENT                                  | 10 |
| 5. SUMMARY OF TEST RESULTS                                 | 11 |
| 6. SAMPLE CALCULATION                                      | 12 |
| 7. TEST DATA                                               | 13 |
| 7.1 EFFECTIVE RADIATED POWER (Band 26)                     | 13 |
| 7.2 RADIATED SPURIOUS EMISSIONS                            |    |
| 7.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 26 LTE)    | 15 |
| 7.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 26 LTE)      |    |
| 7.2.3 RADIATED SPURIOUS EMISSIONS (3 MHZ Band 26 LTE)      |    |
| 7.3 OCCUPIED BANDWIDTH                                     |    |
| 7.4 CONDUCTED SPURIOUS EMISSIONS                           | 20 |
| 7.4.1 BAND EDGE                                            |    |
| 7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE | 21 |
| 8. TEST PLOTS                                              | 22 |



## MEASUREMENT REPORT

## 1. GENERAL INFORMATION

Applicant Name: Franklin Technology Inc.

Address: 906(Gasan-Dong, JEI Platz), 186, Gasan digital 1-ro, Geumcheon-gu, Seoul, Korea(08502)

FCC ID: XHG-R850

Application Type: Certification

FCC Classification: PCS Licensed Transmitter (PCB)

FCC Rule Part(s): §90.691, §2

**EUT Type:** LTE Mobile Router

FCC Model(s): R850

**Tx Frequency:** 814.7 MHz – 823.3 MHz (LTE – Band 26 (1.4 MHz))

815.5 MHz – 822.5 MHz (LTE – Band 26 (3 MHz)) 816.5 MHz – 821.5 MHz (LTE – Band 26 (5 MHz))

819.0 MHz (LTE - Band 26 (10 MHz))

**Max. RF Output Power:** Band 26 (1.4 MHz): 0.120 W (QPSK) (20.79 dBm)

0.099 W (16-QAM) (19.94 dBm)

Band 26 (3 MHz): 0.123 W (QPSK) (20.90 dBm)

0.104 W (16-QAM) (20.18 dBm)

Band 26 (5 MHz): 0.146 W (QPSK) (21.64 dBm)

0.128 W (16-QAM) (21.09 dBm)

Band 26 (10 MHz): 0.130 W (QPSK) (21.14 dBm)

0.110 W (16-QAM) (20.42 dBm)

Emission Designator(s): Band 26 (1.4 MHz): 1M09G7D (QPSK) / 1M08W7D (16-QAM)

Band 26 (3 MHz): 2M69G7D (QPSK) / 2M68W7D (16-QAM)

Band 26 (5 MHz): 4M47G7D (QPSK) / 4M48W7D (16-QAM)

Band 26 (10 MHz): 8M97G7D (QPSK) / 8M94W7D (16-QAM)

**Date(s) of Tests:** October 20, 2015 ~ November 25, 2015

Antenna Specification Manufacturer: Hutec

Antenna type: Internal Antenna Peak Gain: Band 26 : 0.88 dBi

F-TP22-03 (Rev.00) FCC ID: XHG-R850

4 / 40

HCT CO.,LTD.



## 2. INTRODUCTION

#### 2.1. EUT DESCRIPTION

The Franklin Technology Inc. R850 LTE Mobile Router consists of LTE 26.

#### 2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

#### 2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, **Seoicheon-ro 578beon-gil**, **Majang-myeon**, **Icheon-si**, **Gyeonggi-do**, **17383**, **Rep. of KOREA**.



## 3. DESCRIPTION OF TESTS

#### 3.1 ERP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS

Note: ERP(Effective Radiated Power)

**Test Procedure** 

Radiated emission measurements are performed in the Fully-anechoic chamber. The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-D-2010 Clause 2.2.17. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission. The level and position of the maximized emission is recorded with the spectrum analyzer using a RMS detector.

A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$ 

Where:  $P_d$  is the dipole equivalent power and  $P_g$  is the generator output power into the substitution antenna.

Radiated spurious emissions

1. Frequency Range: 30 MHz ~ 10th Harmonics of highest channel fundamental frequency.



#### 3.2 OCCUPIED BANDWIDTH.

#### Test set-up



(Configuration of conducted Emission measurement)

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

#### **Test Procedure**

OBW is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 4.2.

The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels(low, middle and high operational range.)

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.



3.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

**Test Procedure** 

Spurious and harmonic emissions at antenna terminal is tested in accordance with KDB971168 D01 Power

Meas License Digital Systems v02r02, October 17, 2014, Section 6.0.

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means

of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the

equipment up to a frequency including its 10<sup>th</sup> harmonic.

Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to

spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the

power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log<sub>10</sub>(f/6.1)

decibels or 50 + 10 Log<sub>10</sub>(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the

frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than

12.5 kHz.

For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any

emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log<sub>10</sub>(P) decibels or

80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the

outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

**NOTES:** The analyzer plot offsets were determined by below conditions.

• For LTE Band 26, total offset 26.3 dBm = 20 dBm attenuator + 6 dBm Divider + 0.3 dBm RF cables.



#### 3.4 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

## Test Set-up



Normal Operating Voltage

#### **Test Procedure**

Frequency stability is tested in accordance with ANSI/TIA-603-D-2010 section 2.2.2

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from 30 °C to + 50 °C using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from the end point to 100 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification — the frequency stability of the transmitter shall be maintained within  $\pm$  0.000 25 %( $\pm$  2.5 ppm) of the center frequency.

#### **Time Period and Procedure:**

The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

- 1. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 2. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

NOTE: The EUT is tested down to the battery endpoint.



## **4. LIST OF TEST EQUIPMENT**

| Manufacture     | Model/ Equipment                            | Serial<br>Number       | Calibration<br>Interval | Calibration<br>Due |
|-----------------|---------------------------------------------|------------------------|-------------------------|--------------------|
| Agilent         | N1921A/ Power Sensor                        | MY45241059             | Annual                  | 07/09/2016         |
| Agilent         | N1911A/ Power Meter                         | MY45100523             | Annual                  | 07/09/2016         |
| CERNEX          | CBLU1183540B-01/POWER AMP                   | 25540                  | Annual                  | 05/21/2016         |
| Wainwright      | WHKX 10-900-1000-15000-40SS/H.P.F           | 5                      | Annual                  | 08/11/2016         |
| Wainwright      | WHKX10-2700-3000-18000-40SS/H.P.F           | 3                      | Annual                  | 08/05/2016         |
| Hewlett Packard | 11667B / Power Splitter                     | 10545                  | Annual                  | 02/16/2016         |
| Hewlett Packard | 11667B / Power Splitter                     | 11275                  | Annual                  | 04/29/2016         |
| ITECH           | IT6720/ Power Supply                        | 0100215626700119       | Annual                  | 11/02/2016         |
| Schwarzbeck     | UHAP/ Dipole Antenna                        | 557                    | Biennial                | 03/23/2017         |
| Schwarzbeck     | UHAP/ Dipole Antenna                        | 558                    | Biennial                | 03/23/2017         |
| EXP             | EX-TH400/ Chamber                           | None                   | Annual                  | 05/29/2016         |
| Schwarzbeck     | BBHA 9120D/ Horn Antenna                    | 9210D-1298             | Biennial                | 10/16/2016         |
| Schwarzbeck     | BBHA 9120D/ Horn Antenna                    | 9210D-1299             | Biennial                | 10/16/2016         |
| Schwarzbeck     | BBHA 9170/ Horn Antenna(15~40GHz)           | BBHA9170342            | Biennial                | 04/30/2017         |
| Schwarzbeck     | BBHA 9170/ Horn Antenna(15~35GHz)           | BBHA9170124            | Biennial                | 04/30/2017         |
| Agilent         | N9020A/Signal Analyzer                      | MY51110063             | Annual                  | 04/29/2016         |
| Hewlett Packard | 8493C/ATTENUATOR                            | 17280                  | Annual                  | 06/29/2016         |
| REOHDE&SCHWARZ  | FSV40-N/Signal Analyzer                     | 101068-SZ              | Annual                  | 09/23/2016         |
| REOHDE&SCHWARZ  | FSV40/Spectrum Analyzer                     | 1307.9002K40-100931-NK | Annual                  | 06/04/2016         |
| Agilent         | 8960 (E5515C)/ Base Station                 | MY48360800             | Annual                  | 10/30/2016         |
| Anritsu Corp.   | MT8820C/Wideband Radio Communication Tester | 6200863156             | Annual                  | 03/24/2016         |



## **5. SUMMARY OF TEST RESULTS**

| FCC Part<br>Section(s) | Test Description                                                    | Test Limit                                                                                                         | Test<br>Condition | Test Result |
|------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 2.1049                 | Occupied Bandwidth                                                  | N/A                                                                                                                |                   | PASS        |
| 2.1051, 90.691         | Band Edge / Spurious and Harmonic<br>Emissions at Antenna Terminal. | < 50 + 10log <sub>10</sub> (P[Watts]) at Band Edge and for all out-of-band emissions within 37.5 kHz of Block Edge | CONDUCTED         | PASS        |
| 2.1046                 | *Conducted Output Power                                             | N/A                                                                                                                |                   | PASS        |
| 2.1055, 90.213         | Frequency stability / variation of ambient temperature              | < 2.5 ppm                                                                                                          |                   | PASS        |
| 90.635                 | Effective Radiated Power                                            | < 100 Watts                                                                                                        |                   | PASS        |
| 2.1053, 90.691         | Undesirable Emissions                                               | < 43 + 10log <sub>10</sub> (P[Watts]) for all out-of band emissions                                                | RADIATED          | PASS        |

<sup>\*</sup>See SAR Report



## 6. SAMPLE CALCULATION

## A. ERP Sample Calculation

| Mode       | Ch./ Freq. |            | Measured   | Substitude | Ant. Gain | C.L  | Pol. | EF    | RP    |
|------------|------------|------------|------------|------------|-----------|------|------|-------|-------|
| Mode       | channel    | Freq.(MHz) | Level(dBm) | LEVEL(dBm) | (dBd)     | G.L  | POI. | w     | dBm   |
| LTE Band26 | 26697      | 814.7      | -33.04     | 28.94      | -10.56    | 0.89 | V    | 0.056 | 17.49 |

#### ERP = Substitude LEVEL (dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a wooden tripod is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated and the antenna height is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power (ERP).

## **B. Emission Designator**

#### **QPSK Modulation**

5MHz Bandwidth 10MHz Bandwidth

Emission Designator = 4M48G7D Emission Designator = 8M95G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

LTE BW = 8.95 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand D = Data transmission; telemetry; telecommand

#### **16QAM Modulation**

5MHz Bandwidth 10MHz Bandwidth

Emission Designator = 4M48W7D Emission Designator = 8M95W7D

LTE BW = 4.48 MHz LTE BW = 8.95 MHz

W = main carrier modulated in a combination of two W = main carrier modulated in a combination of two

or more of the following modes; or more of the following modes;

amplitude, angle, pulse amplitude, angle, pulse

7 = Quantized/Digital Info 7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev.00) FCC ID: XHG-R850 **HCT CO.,LTD.** 



## 7. TEST DATA

## 7.1 EFFECTIVE RADIATED POWER (Band 26)

| Freq  | Bandwidth        | Modulation | Measured    | Substitude  | Ant.      | C.L  | Pol | ERP   |       |
|-------|------------------|------------|-------------|-------------|-----------|------|-----|-------|-------|
| (MHz) |                  |            | Level (dBm) | Level (dBm) | Gain(dBd) |      |     | W     | dBm   |
| 044.7 | _                | QPSK       | -29.99      | 31.91       | -10.25    | 0.87 | ٧   | 0.120 | 20.79 |
| 814.7 | 4 4 1 1 1 -      | 16-QAM     | -30.84      | 31.06       | -10.25    | 0.87 | V   | 0.099 | 19.94 |
| 000.0 | 1.4 MHz<br>823.3 | QPSK       | -31.45      | 30.22       | -10.23    | 0.88 | V   | 0.081 | 19.11 |
| 823.3 |                  | 16-QAM     | -32.18      | 29.49       | -10.23    | 0.88 | V   | 0.069 | 18.38 |

#### Effective Radiated Power Data (1.4 MHz Band 26 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

| Freq  | Bandwidth | Modulation | Measured Modulation |             | Ant.      | C.L  | Pol | ERP   |       |
|-------|-----------|------------|---------------------|-------------|-----------|------|-----|-------|-------|
| (MHz) |           |            | Level (dBm)         | Level (dBm) | Gain(dBd) |      |     | W     | dBm   |
| 045.5 |           | QPSK       | -29.80              | 32.02       | -10.25    | 0.87 | ٧   | 0.123 | 20.90 |
| 815.5 | 0.841.1-  | 16-QAM     | -30.52              | 31.30       | -10.25    | 0.87 | V   | 0.104 | 20.18 |
| 000.5 | 3 MHz     | QPSK       | -29.96              | 31.75       | -10.23    | 0.88 | V   | 0.116 | 20.64 |
| 822.5 |           | 16-QAM     | -30.66              | 31.05       | -10.23    | 0.88 | V   | 0.099 | 19.94 |

#### Effective Radiated Power Data (3 MHz Band 26 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case



| Freq  | Bandwidth                                     | Modulation | Measured    | Substitude  | Ant.      | )    | Pol | ER    | ₹P    |
|-------|-----------------------------------------------|------------|-------------|-------------|-----------|------|-----|-------|-------|
| (MHz) |                                               |            | Level (dBm) | Level (dBm) | Gain(dBd) |      |     | W     | dBm   |
| 946 F | 816.5<br>———————————————————————————————————— | QPSK       | -29.78      | 32.01       | -10.24    | 0.87 | V   | 0.123 | 20.90 |
| 010.5 |                                               | 16-QAM     | -30.66      | 31.13       | -10.24    | 0.87 | V   | 0.100 | 20.02 |
| 004 E |                                               | QPSK       | -29.03      | 32.75       | -10.23    | 0.88 | V   | 0.146 | 21.64 |
| 821.5 |                                               | 16-QAM     | -29.58      | 32.20       | -10.23    | 0.88 | V   | 0.128 | 21.09 |

#### Effective Radiated Power Data (5 MHz Band 26 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

| Freq  | Bandwidth | Modulation | Measured    | Substitude  |           |      | Pol | EF    | RP    |
|-------|-----------|------------|-------------|-------------|-----------|------|-----|-------|-------|
| (MHz) |           |            | Level (dBm) | Level (dBm) | Gain(dBd) |      |     | W     | dBm   |
| 940.0 | 10 MHz    | QPSK       | -29.55      | 32.25       | -10.24    | 0.87 | V   | 0.130 | 21.14 |
| 819.0 | 10 MHz    | 16-QAM     | -30.27      | 31.53       | -10.24    | 0.87 | V   | 0.110 | 20.42 |

#### Effective Radiated Power Data (10 MHz Band 26 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

#### NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For LTE signals, RBW = 1-5% of the OBW, not to exceed 1MHz, VBW  $\geq$  3 x RBW, Detector = RMS. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is y plane in LTE mode. Also worst case of detecting Antenna is vertical polarization in LTE mode.



#### 7.2 RADIATED SPURIOUS EMISSIONS

#### 7.2.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 26 LTE)

■ OPERATING FREQUENTY: 814.70 MHz

■ MEASURED OUTPUT POWER: 20.79 dBm = 0.120 W

■ MODULATION SIGNAL: <u>1.4 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 33.79 dBc

| Ch               | Freq (MHz) | Measured<br>Level (dBm) | Ant. Gain<br>(dBd) | Substitude<br>Level (dBm) | C.L  | Pol | ERP<br>(dBm) | dBc   |
|------------------|------------|-------------------------|--------------------|---------------------------|------|-----|--------------|-------|
|                  | 1,629.40   | -44.35                  | 9.09               | -56.67                    | 1.38 | ٧   | -48.96       | 69.75 |
| 26697<br>(814.7) | 2,444.10   | -47.11                  | 10.89              | -55.79                    | 1.69 | V   | -46.59       | 67.38 |
| (014.7)          | 3,258.80   | -53.81                  | 11.85              | -60.78                    | 1.91 | Н   | -50.84       | 71.63 |
|                  | 1,646.60   | -39.89                  | 9.15               | -52.26                    | 1.38 | V   | -44.49       | 65.28 |
| 26783<br>(823.3) | 2,469.90   | -46.68                  | 10.92              | -55.42                    | 1.69 | Н   | -46.19       | 66.98 |
| (023.3)          | 3,293.20   | -51.63                  | 11.93              | -58.87                    | 1.99 | V   | -48.93       | 69.72 |

- 2. We are performed all frequency to 10<sup>th</sup> harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.



#### 7.2.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 26 LTE)

■ OPERATING FREQUENTY: 815.50 MHz

■ MEASURED OUTPUT POWER: 20.90 dBm = 0.123 W

■ MODULATION SIGNAL: <u>3 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 33.90 dBc

| Ch               | Freq (MHz) | Measured<br>Level (dBm) | Ant. Gain<br>(dBd) | Substitude<br>Level (dBm) | C.L  | Pol | ERP<br>(dBm) | dBc   |
|------------------|------------|-------------------------|--------------------|---------------------------|------|-----|--------------|-------|
|                  | 1,631.00   | -45.23                  | 9.09               | -57.59                    | 1.38 | ٧   | -49.88       | 70.78 |
| 26705<br>(815.5) | 2,446.50   | -45.91                  | 10.90              | -54.69                    | 1.68 | V   | -45.47       | 66.37 |
| (010.0)          | 3,262.00   | -53.61                  | 11.86              | -60.56                    | 1.92 | Н   | -50.62       | 71.52 |
|                  | 1,645.00   | -40.51                  | 9.14               | -52.93                    | 1.39 | V   | -45.18       | 66.08 |
| 26775<br>(822.5) | 2,467.50   | -48.59                  | 10.92              | -57.32                    | 1.69 | V   | -48.09       | 68.99 |
| (022.0)          | 3,290.00   | -49.88                  | 11.92              | -57.12                    | 1.99 | Н   | -47.19       | 68.09 |

- 2. We are performed all frequency to 10<sup>th</sup> harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.



#### 7.2.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 26 LTE)

■ OPERATING FREQUENTY: 821.50 MHz

■ MEASURED OUTPUT POWER: 21.64 dBm = 0.146 W

■ MODULATION SIGNAL: <u>5 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 34.64 dBc

| Ch               | Freq (MHz) | Measured<br>Level (dBm) | Ant. Gain<br>(dBd) | Substitude<br>Level (dBm) | C.L  | Pol | ERP<br>(dBm) | dBc   |
|------------------|------------|-------------------------|--------------------|---------------------------|------|-----|--------------|-------|
|                  | 1,633.00   | -44.76                  | 9.10               | -57.18                    | 1.38 | Н   | -49.46       | 71.10 |
| 26715<br>(816.5) | 2,449.50   | -46.13                  | 10.90              | -55.01                    | 1.68 | V   | -45.79       | 67.43 |
|                  | 3,266.00   | -54.28                  | 11.87              | -61.24                    | 1.93 | V   | -51.30       | 72.94 |
| 26765<br>(821.5) | 1,643.00   | -41.88                  | 9.13               | -54.38                    | 1.39 | V   | -46.64       | 68.28 |
|                  | 2,464.50   | -47.59                  | 10.91              | -56.29                    | 1.69 | Н   | -47.07       | 68.71 |
|                  | 3,286.00   | -52.68                  | 11.91              | -59.90                    | 1.96 | Н   | -49.95       | 71.59 |

- 2. We are performed all frequency to 10<sup>th</sup> harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.



#### 7.2.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 26 LTE)

■ OPERATING FREQUENTY: 819.00 MHz

■ MEASURED OUTPUT POWER: 21.14 dBm = 0.130 W

■ MODULATION SIGNAL: <u>10 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 34.14 dBc

| Ch               | Freq (MHz) | Measured<br>Level (dBm) | Ant. Gain<br>(dBd) | Substitude<br>Level (dBm) | C.L  | Pol | ERP<br>(dBm) | dBc   |
|------------------|------------|-------------------------|--------------------|---------------------------|------|-----|--------------|-------|
| 26740<br>(819.0) | 1,638.00   | -44.47                  | 9.11               | -57.03                    | 1.39 | Н   | -49.31       | 70.45 |
|                  | 2,457.00   | -47.75                  | 10.91              | -56.50                    | 1.69 | Н   | -47.28       | 68.42 |
|                  | 3,276.00   | -54.05                  | 11.89              | -61.17                    | 1.92 | Н   | -51.20       | 72.34 |

- 2. We are performed all frequency to 10<sup>th</sup> harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.



### 7.3 OCCUPIED BANDWIDTH

| Band         | Band<br>Width | Frequency<br>(MHz) | Modulation | Resource<br>Block Size | Resource<br>Block<br>Offset | Data ( MHz ) |
|--------------|---------------|--------------------|------------|------------------------|-----------------------------|--------------|
|              |               | 814.7              | QPSK       |                        | 0                           | 1.0838       |
|              | 4 4 14 1-     |                    | 16-QAM     |                        |                             | 1.0829       |
|              | 1.4 MHz       | 823.3              | QPSK       | 6                      |                             | 1.0870       |
|              |               |                    | 16-QAM     |                        |                             | 1.0839       |
|              | 3 MHz         | 815.5              | QPSK       |                        |                             | 2.6843       |
|              |               |                    | 16-QAM     | 15                     |                             | 2.6784       |
| <b>5</b> 100 |               | 822.5              | QPSK       |                        |                             | 2.6851       |
| Band 26      |               |                    | 16-QAM     |                        |                             | 2.6842       |
|              | 5 MHz         | 816.5              | QPSK       |                        |                             | 4.4709       |
|              |               |                    | 16-QAM     | 25                     |                             | 4.4752       |
|              |               | 821.5              | QPSK       |                        |                             | 4.4745       |
|              |               |                    | 16-QAM     |                        |                             | 4.4805       |
|              | 40.841.1      | 819.0              | QPSK       | 50                     |                             | 8.9654       |
|              | 10 MHz        |                    | 16-QAM     | 50                     |                             | 8.9448       |

<sup>-</sup> Plots of the EUT's Occupied Bandwidth are shown Page 23 ~ 29.



### 7.4 CONDUCTED SPURIOUS EMISSIONS

| Band    | Band<br>Width<br>(MHz) | Frequency<br>(MHz) | Modulation | Resource<br>Block Size | Resource<br>Block<br>Offset | Frequency of Maximum Harmonic (GHz) | Maximum Data<br>[dBm] |
|---------|------------------------|--------------------|------------|------------------------|-----------------------------|-------------------------------------|-----------------------|
|         | 1.4                    | 814.7              |            | 1                      | 0                           | 9.368000                            | -32.462               |
|         |                        | 823.3              |            |                        |                             | 2.695908                            | -31.791               |
|         | 3                      | 815.5              |            |                        |                             | 7.240000                            | -32.235               |
| Band 26 |                        | 822.5              | QPSK       |                        |                             | 3.144699                            | -31.589               |
|         | 5                      | 816.5              |            |                        |                             | 3.168058                            | -32.187               |
|         |                        | 821.5              |            |                        |                             | 10.000000                           | -32.120               |
|         | 10                     | 819.0              |            |                        |                             | 2.702369                            | -31.779               |

<sup>-</sup> Plots of the EUT's Conducted Spurious Emissions are shown Page 33  $\sim$  40.

#### **7.4.1 BAND EDGE**

- Plots of the EUT's Band Edge are shown Page 30  $\sim$  33.



# 7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 7.8.1 FREQUENCY STABILITY (3 MHz Band 26 LTE)

■ OPERATING FREQUENCY: 815,500,000 Hz

■ CHANNEL: <u>23705(3 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

■ DEVIATION LIMIT: <u>± 0.000 25 % or 2.5 ppm</u>

| Voltage        | Power | Temp.    | Frequency   | Frequency  | Deviation  |        |  |
|----------------|-------|----------|-------------|------------|------------|--------|--|
| (%)            | (VDC) | (°C)     | (Hz)        | Error (Hz) | (%)        | ppm    |  |
| 100%           |       | +20(Ref) | 815 499 994 | 0.0        | 0.000 000  | 0.000  |  |
| 100%           |       | -30      | 815 499 986 | -8.4       | -0.000 001 | -0.010 |  |
| 100%           |       | -20      | 815 499 983 | -11.3      | -0.000 001 | -0.014 |  |
| 100%           |       | -10      | 815 499 988 | -6.3       | -0.000 001 | -0.008 |  |
| 100%           | 4.00  | 0        | 815 499 982 | -12.8      | -0.000 002 | -0.016 |  |
| 100%           |       | +10      | 815 499 984 | -10.3      | -0.000 001 | -0.013 |  |
| 100%           |       | +30      | 815 499 986 | -8.1       | -0.000 001 | -0.010 |  |
| 100%           |       | +40      | 815 499 987 | -7.3       | -0.000 001 | -0.009 |  |
| 100%           | ]     | +50      | 815 500 002 | 7.9        | 0.000 001  | 0.010  |  |
| Batt. Endpoint | 3.75  | +20      | 815 499 978 | -16.4      | -0.000 002 | -0.020 |  |





## **8. TEST PLOTS**



BAND 26. Occupied Bandwidth Plot (1.4M BW Ch.26697 QPSK RB 6\_0)



BAND 26. Occupied Bandwidth Plot (1.4M BW Ch.26697 16QAM RB 6\_0)





BAND 26. Occupied Bandwidth Plot (1.4M BW Ch.26783 QPSK RB 6\_0)



BAND 26. Occupied Bandwidth Plot (1.4M BW Ch.26783 16QAM RB 6\_0)





BAND 26. Occupied Bandwidth Plot (3M BW Ch.26705 QPSK RB 15\_0)



BAND 26. Occupied Bandwidth Plot (3M BW Ch.26705 16QAM RB 15\_0)





BAND 26. Occupied Bandwidth Plot (3M BW Ch.26775 QPSK RB 15\_0)



BAND 26. Occupied Bandwidth Plot (3M BW Ch.26775 16QAM RB 15\_0)





BAND 26. Occupied Bandwidth Plot (5M BW Ch.26715 QPSK RB 25\_0)



BAND 26. Occupied Bandwidth Plot (5M BW Ch.26715 16QAM RB 25\_0)





BAND 26. Occupied Bandwidth Plot (5M BW Ch.26765 QPSK RB 25\_0)



BAND 26. Occupied Bandwidth Plot (5M BW Ch.26756 16QAM RB 25\_0)





BAND 26. Occupied Bandwidth Plot (10M BW Ch.26740 QPSK RB 50\_0)



BAND 26. Occupied Bandwidth Plot (10M BW Ch.26740 16QAM RB 50\_0)









#### BAND 26. High Channel Edge Plot (1.4M BW Ch.26783 QPSK\_RB6\_Offset 0) -2







BAND 26. High Channel Edge Plot (3M BW Ch. 26775 QPSK\_RB15\_Offset 0) -2





#### BAND 26. Low Channel Edge Plot (5M BW Ch.26715 QPSK\_RB1\_Offset 0) -1



#### BAND 26. High Channel Edge Plot (5M BW Ch. 26765 QPSK\_RB25\_Offset 0) -2





BAND 26. Low Channel Edge Plot (10M BW Ch.26740 QPSK\_RB1\_Offset 0) -1



BAND 26. Conducted Spurious\_1 (26697 ch\_1.4MHz\_QPSK\_RB 1\_0)





BAND 26. Conducted Spurious\_2 (26697 ch\_1.4MHz\_QPSK\_RB 1\_0)



BAND 26. Conducted Spurious\_1 (26783 ch\_1.4MHz\_QPSK\_RB 1\_0)





BAND 26. Conducted Spurious\_2 (26783 ch\_1.4MHz\_QPSK\_RB 1\_0)



BAND 26. Conducted Spurious\_1 (26705 ch\_3MHz\_QPSK\_RB 1\_0)





BAND 26. Conducted Spurious\_2 (26705 ch\_3MHz\_QPSK\_RB 1\_0)



BAND 26. Conducted Spurious\_1 (26775 ch\_3MHz\_QPSK\_RB 1\_0)





BAND 26. Conducted Spurious\_2 (26775 ch\_3MHz\_QPSK\_RB 1\_0)



BAND 26. Conducted Spurious 1 (26715 ch 5MHz QPSK RB 1 0)





BAND 26. Conducted Spurious\_2 (26715 ch\_5MHz\_QPSK\_RB 1\_0)



BAND 26. Conducted Spurious\_1 (26765 ch\_5MHz\_QPSK\_RB 1\_0)





BAND 26. Conducted Spurious\_2 (26765 ch\_5MHz\_QPSK\_RB 1\_0)



BAND 26. Conducted Spurious\_1 (26740 ch\_10MHz\_QPSK\_RB 1\_0)





### BAND 26. Conducted Spurious\_2 (26740 ch\_10MHz\_QPSK\_RB 1\_0)

