Topología, curso 2019-20

Ноја 1

1. Estudia si (\mathbb{R}, d) es un espacio métrico, donde $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ está definida como

$$d(x,y) = \begin{cases} 0 & \text{si } x = y \\ |x| + |y| & \text{si } x \neq y \end{cases}$$

Dibuja la bola B(x,r) cuando i) x=0 y r=1/2; ii) x=1/2 y r=1.

- 2. Decide razonadamente si
- i) $d(x,y) = \left| \frac{1}{x} \frac{1}{y} \right|$ define una distancia en $\mathbb{R} \setminus \{0\}$;
- ii) $d(x,y) = |x^2 y^2|$ define una distancia en \mathbb{R} .
- **3.** Dado un conjunto no vacío, sea \mathcal{F} la colección de todos sus subconjuntos finitos. Para $A \in \mathcal{F}$, sea |A| el número de elementos de A.
- i) Comprueba que $d(A, B) = |A\Delta B| = |(A \setminus B) \cup (B \setminus A)|$ define una distancia en \mathcal{F} .
- ii) Sea \mathcal{F} , concretamente, la colección de todos los subconjuntos finitos de \mathbb{N} . Para la distancia descrita en el apartado anterior y el punto $A = \{1, 2\}$ en el espacio \mathcal{F} , describe la esfera $S(A, 1) = \{B \in \mathcal{F} : d(A, B) = 1\}$.
- 4. Comprueba que los siguientes espacios de sucesiones con las distancias asociadas son espacios métricos:
- i) \mathbb{R}^{ω} es el espacio de sucesiones de números reales $x=(x_n)$, y $d:\mathbb{R}^{\omega}\times\mathbb{R}^{\omega}\to\mathbb{R}$ la distancia

$$d(x,y) = \sum_{n} \frac{|x_n - y_n|}{2^n (1 + |x_n - y_n|)} \qquad x \in \mathbb{R}^{\omega}, \quad y \in \mathbb{R}^{\omega}$$

- ¿Cuál es la distancia entre las sucesiones $x = \{x_n\} = \{(1 2^{-n})^{-1}\}$ e $y = \{y_n\} = \{1\}$?
- ii) ℓ_{∞} es el espacio de todas las sucesiones acotadas de números reales, y $d:\ell_{\infty}\times\ell_{\infty}\to\mathbb{R}$ la función

$$d(x,y) = \sup\{|x_n - y_n|, n \in \mathbb{N}\}\$$

iii) ℓ_2 es el espacio de todas las sucesiones $x=(x_n)$ de $\mathbb R$ tales que $\sum_n x_n^2 < \infty;$ y $d:\ell_2 \times \ell_2 \to \mathbb R$ la función

$$d(x,y) = \left(\sum_{n} |x_n - y_n|^2\right)^{1/2}$$

Indicación: Si $x=(x_n)\in \ell_2$, $y=(y_n)\in \ell_2$, entonces $\sum |x_ny_n|$ converge y, además, $(\sum |x_ny_n|)^2\leq (\sum x_n^2)(\sum y_n^2)$.

5. Sea \mathbb{R}^{ω} el conjunto de todas las sucesiones de números reales. Demuestra que

$$d(\{x_n\}, \{y_n\}) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{|x_n - y_n|}{1 + |x_n - y_n|} \right)$$

define una distancia en \mathbb{R}^{ω} .

6. Demuestra la desigualdad triangular inversa: en un espacio métrico (X, d),

$$\forall x, y, z \in X, \quad |d(x, y) - d(y, z)| \le d(x, z).$$

- 7. Demuestra que si d es una distancia entonces $d'(x,y) = \min(d(x,y),1)$ también lo es.
- **8.** Sea (X,d) un espacio métrico. Dados $x,y \in X$ definimos

$$d^{1}(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

Demuestra que d^1 es una distancia en X.

9. Sean (X_1, d_1) y (X_2, d_2) espacios métricos. Dados $x = (x_1, x_2)$ e $y = (y_1, y_2)$, demuestra que las siguientes expresiones d(x, y) definen distancias en $X_1 \times X_2$:

1

- i) $d(x,y) = \max\{d_1(x_1,y_1), d_2(x_2,y_2)\}$
- ii) $d(x,y) = d_1(x_1,y_1) + d_2(x_2,y_2)$
- iii) $d(x,y) = \sqrt{d_1(x_1,y_1)^2 + d_2(x_2,y_2)^2}$

- **10.** Sea $\{d_n, n = 0, 1, ...\}$ una sucesión de distancias, todas ellas en el mismo conjunto X, para las que se sabe que $d_n(x,y) \le 1$ para todo n y para todos $x,y \in X$. Demuestra que $d = \sum_{n=0}^{\infty} \frac{d_n}{2^n}$ es una distancia en X.
- **11.** Sea C[a, b] el conjunto de todas las funciones continuas en el intervalo cerrado [a, b] con valores reales. Dadas $f, g \in C[a, b]$ definimos

$$d(f,g) = \int_{a}^{b} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx$$

Demuestra que d es una distancia en C[a, b].

- **12.** Si en un espacio métrico (X,d) se cumple que $x_n \to x$, $y_n \to y$ cuando $n \to \infty$, demuestra que entonces $d(x_n,y_n) \to d(x,y)$.
- 13. Sea (X, d) es un espacio métrico. Para cualesquiera x, y, x' e y' elementos de X, prueba que

$$|d(x,y) - d(x',y')| \le d(x,x') + d(y,y').$$

Deduce de ello que $\lim_{n\to\infty} d(x_n,y_n) = d(x,y)$ cuando $\lim_{n\to\infty} d(x_n,x) = 0 = \lim_{n\to\infty} d(y_n,y)$.

- 14. Demuestra que en el espacio métrico \mathbb{R} con la distancia usual, si $x_n \to x$ e $y_n \to y$ entonces
- i) $x_n + y_n \to x + y$
- ii) $x_n y_n \to x y$
- iii) $x_n y_n \to xy$
- iv) Si $y_n \neq 0$ para $n = 0, 1, \dots$ e $y \neq 0$, entonces $\frac{x_n}{y_n} \to \frac{x}{y}$
- **15.** Sea $\{x_i\}$ una sucesión de elementos distintos de un espacio métrico (X, d), y supongamos que $\lim_{i \to \infty} x_i = x$. Sea f una aplicación inyectiva del conjunto $\{x_i\}$ en si mismo. Demuestra que $\lim_{i \to \infty} f(x_i) = x$.
- 16. Demuestra que en un espacio métrico el complemento de un punto es un conjunto abierto. Deduce que todo conjunto de un espacio métrico es una intersección de conjuntos abiertos.
- 17. Sea (X,d) un espacio métrico. Demuestra que si $x,y\in X$ son dos puntos distintos, entonces existen dos conjuntos abiertos disjuntos U,V tales que $x\in U$ e $y\in V$.
- **18.** Sea (X, d) un espacio métrico, $x \in X$ y r < s dos números positivos. Demuestra que el conjunto $\{y \in X : r < d(x, y) < s\}$ es un conjunto abierto.
- 19. Sea (X, d) un espacio métrico. Un punto $x \in X$ se dice *aislado* si el conjunto $\{x\}$ es abierto. Demuestra que los siguientes enunciados son equivalentes:
- i) x no es un punto aislado
- ii) Todo abierto U que contiene a x contiene infinitos puntos de X.
- **20.** Sea (X,d) un espacio métrico. Si A es un subconjunto de X se define la *clausura* de A, denotada \overline{A} , como el conjunto de los puntos de X que son límite de sucesiones de puntos de A, esto es

$$\overline{A} = \{x \in X : \exists \{x_n\} \subset A \text{ con } \lim_{n \to \infty} x_n = x\}.$$

Demuestra que $X \setminus \overline{A}$ es un conjunto abierto.

- **21.** Sean $X \in Y$ dos espacios métricos y $f, g: X \to Y$ dos funciones continuas.
- i) Demuestra que $\{x \in X : f(x) = g(x)\}$ es un subconjunto cerrado de X.
- ii) Si, además, $A \subset X$ y f(x) = g(x) para todo $x \in A$, demuestra que, de hecho, f(x) = g(x) para todo $x \in \overline{A}$. (Se recomienda hacerlo de dos maneras distintas: directamente por sucesiones y deduciéndolo del apartado anterior.)
- **22.** Sea (X, d) un espacio métrico infinito. Demuestra que X contiene un conjunto abierto U tal que U y $X \setminus U$ son conjuntos infinitos.
- **23.** Sea (X, d) un espacio métrico. Si $A \subset X$, se define su diámetro como

$$diam(A) = \sup\{d(x, y) : x \in A, y \in A\}.$$

Demuestra que $diam(A) = diam(\overline{A})$.

24. Sean A y B dos subconjuntos de un espacio métrico (X, d). Definimos la distancia entre A y B como

$$d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}.$$

- Observa que si A y B tienen algún punto en común entonces d(A,B)=0, pero que el recíproco no es cierto. Demuestra que $d(\{x\},B)=0$ si y sólo si $x\in \overline{B}$.
- **25.** Sea x_0 un determinado punto en el espacio métrico (X,d). Demuestra que la función $f:X\to\mathbb{R}$ dada por $f(x)=d(x,x_0)$ es continua. Análogamente, demuestra que si A es un determinado subconjunto no vacío de X entonces la función $g:X\to\mathbb{R}$ dada por $g(x)=d(\{x\},A)$ es continua.
- **26.** Un subconjunto A de un espacio métrico X se dice que es denso si todo abierto de X interseca a A.
- i) Demuestra que \mathbb{Q} es denso en \mathbb{R} con la distancia usual.
- ii) Demuestra que si f y g son dos funciones continuas de X en \mathbb{R} y son tales que f(x) = g(x) para todos los puntos x de un cierto subconjunto denso de X, entonces $f \equiv g$.
- **27.** Demuestra que $d(x,y) = \min(|x-y|, 1-|x-y|)$ define una distancia en [0,1). ¿Cuáles son las funciones $f:[0,1)\to\mathbb{R}$ continuas en este espacio?
- 28. Demuestra que las operaciones algebraicas de suma, resta y multiplicación son funciones continuas si utilizamos las distancias usuales de \mathbb{R}^2 y \mathbb{R} .
- **29.** Demuestra que en un espacio métrico (X, d) todo punto es aislado si y sólo si toda función de X en un espacio métrico arbitrario es continua.