

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Automatic Differentiation

COMP4901Y

Binhang Yuan

Numerical Differentiation

- Numerical differentiation is the finite difference approximation of derivatives using values of the original function evaluated at some sample points.
- It is based on the limit definition of a derivative of function $f \colon \mathbb{R}^n \to \mathbb{R}$:

$$\frac{\partial f}{\partial x_i} = \lim_{\epsilon \to 0} \frac{f(\mathbf{x} + \epsilon \mathbf{e}_i) - f(\mathbf{x})}{\epsilon} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h}$$

• e_i is the i-th unit vector, h > 0 is a small step size.

Pros and Cons

- Advantage:
 - Easy to implement.
- <u>Disadvantage</u>:
 - Perform O(n) evaluatoins of f for a gradient in n dimensions.
 - Requires careful consideration in selecting the step size h.

Choose Step Size h

• Truncation Error:

- The error of approximation that one gets from *h* not actually being zero.
- Proportional to a power of h.

• Rounding Error:

- The inaccuracy that is inflicted by the limited precision of computations.
- Inversely proportional to a power of *h*.

Symbolic Differentiation

• Derivative of sum or difference: u = f(x), v = g(x):

$$\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$$

• Product Rule: u = f(x), v = g(x):

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

• Chain Rule: y = f(u), u = g(x):

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Main Idea

- Symbolic differentiation is the automatic manipulation of expressions for obtaining derivative expressions carried out by applying derivative computation rules.
- When formulae are represented as data structures, symbolically differentiating an expression tree is a perfectly mechanistic process.

• This is realized in modern computer algebra systems such as Mathematica.

Problem

- Symbolic derivatives do not lend themselves to efficient runtime calculation of derivative values, as they can get exponentially larger than the expression whose derivative they represent.
- Expression swell: careless symbolic differentiation can easily produce exponentially large symbolic expressions that take correspondingly long to evaluate.

Iterations of the logistic map $l_{n+1} = 4l_n(1 - l_n)$, $l_1 = x$ and the corresponding derivatives of l_n with respect to x, illustrating expression swell.

\overline{n}	l_n	$rac{d}{dx}l_n$	$\frac{d}{dx}l_n$ (Simplified form)
1	x	1	1
2	4x(1-x)	4(1-x)-4x	4-8x
3	$16x(1-x)(1-2x)^2$	$16(1-x)(1-2x)^2 - 16x(1-2x)^2 - 64x(1-x)(1-2x)$	$16(1 - 10x + 24x^2 - 16x^3)$
4	$64x(1-x)(1-2x)^2 (1-8x+8x^2)^2$	$128x(1-x)(-8+16x)(1-2x)^{2}(1-8x+8x^{2})+64(1-x)(1-2x)^{2}(1-8x+8x^{2})^{2}-64x(1-2x)^{2}(1-8x+8x^{2})^{2}-256x(1-x)(1-2x)(1-8x+8x^{2})^{2}$	$64(1 - 42x + 504x^2 - 2640x^3 + 7040x^4 - 9984x^5 + 7168x^6 - 2048x^7)$

Automatic Differentiation

Main Idea

- An automatic differentiation (AD) system will convert the program into a sequence of elementary operations with specified routines for computing derivatives:
 - Apply symbolic differentiation at the elementary operation level;
 - Keep intermediate numerical results;
 - Combining the derivatives of the constituent operations through the chain rule gives the derivative of the overall composition.

• The <u>Jacobian matrix</u> of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is defined by a $m \times n$ matrix noded by **J** where $J_{ij} = \frac{\partial y_i}{\partial x_j}$, or explicitly:

$$\mathbf{J} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

Notations

- A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is constucted using intermidate variable v_i such that:
 - Variable $v_{j-n} = x_j$, j = 1, ..., n are the input variables;
 - Variable v_i , i = 1, ..., l are the intermidate variables;
 - Variable $y_{m-k} = v_{l-k}$, k = 1, ..., m are the output variables;

Example: $f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x)$

• For computing the derivative of f with respect to x_1 , we start by associating with each intermediate variable v_i a derivative (tangent):

$$\dot{v}_i = \frac{\partial v_i}{\partial x_1}$$

- Apply the chain rule to each elementary operation in the forward primal trace;
- Generate the corresponding tangent (derivative) trace;
- Evaluating the primals v_i in lockstep with their corresponding tangents \dot{v}_i gives us the required derivative in the final variable $\dot{v}_5 = \frac{\partial y_1}{\partial x_1}$.

Forward Mode AD:

$$f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x)$$

 $\sin(v_0)$

Forward Primal Tra	ace
--------------------	-----

$v_{-1} = x_1$	= 2
$v_0 = x_2$	= 5
$v_1 = \ln(x_2)$	= ln(5) = 0.693
$v_2 = v_{-1} \times v_0$	$=2\times5=10$
$v_3 = \sin v_0$	$= \sin 5 = 0.959$
$v_4 = v_1 + v_2$	= 0.693 + 10
$v_5 = v_4 - v_3$	= 10.693 + 0.959
$y_1 = v_5$	= 11.652

Forward Tangent (Derivative) Trace

$\dot{v}_{-1} = \dot{x}_1$	= 1
$\dot{v}_0 = \dot{x}_2$	= 0
$\dot{v}_1 = \dot{v}_{-1}/v_{-1}$	= 1/2
\dot{v}_2	$= 1 \times 5 + 0 \times 2$
$= \dot{v}_{-1} \times v_0 + \dot{v}_0 \times v_{-1}$	
$\dot{v}_3 = \dot{v}_0 \times \cos v_0$	$= 1 \times \cos 5$
$\dot{v}_4 = \dot{v}_1 + \dot{v}_2$	= 0.5 + 5
$\dot{v}_5 = \dot{v}_4 - \dot{v}_3$	= 5.5 - 0
$\dot{y}_1 = \dot{v}_5$	= 5.5

Forward Mode AD

- Compute the Jacobian of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ with n independent/input variable x_i and m dependent/output variable y_i :
 - Each forward pass of AD is initialized by setting only one of the input variable x_i and setting the rest to 0 (i.e., $\dot{x} = e_i$, where e_i is the i-th unit vector).
 - One exeucution of forward mode AD computes: $\dot{y}_j = \frac{\partial y_j}{\partial x_i}|_{x=a}$, $j=1,\ldots,m$
 - Give us one columne of the Jacobian matrix at point a (the full jacobian can be computed by n evaluations):

$$J_f = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix} |_{x=a}$$

Reverse Mode AD

- Reverse mode AD propagates derivatives backward from a given output.
- We start by complementing each intermediate variable v_i with an adjoint (cotangent) representing the sensitivity of a considered output y_i with respect to changes in v_i :

$$\bar{v}_i = \frac{\partial y_j}{\partial v_i}$$

- In the first phase, the original function code is run forward, populating intermediate variables v_i and recording the dependencies in the computational graph.
- In the second phase, derivatives are calculated by propagating adjoints \bar{v}_i in reverse, from the outputs to the inputs.

Reverse Mode AD:

 $\sin(v_0)$

$$f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x)$$

Forward Primal Trace				
$v_{-1} = x_1$	= 2			
$v_0 = x_2$	= 5			
$v_1 = \ln(x_2)$	= ln(5) = 0.693			
$v_2 = v_{-1} \times v_0$	$=2\times5=10$			
$v_3 = \sin v_0$	$= \sin 5 = 0.959$			
$v_4 = v_1 + v_2$	= 0.693 + 10			
$v_5 = v_4 - v_3$	= 10.693 + 0.959			
$y_1 = v_5$	= 11.652			

Reverse Adjoint (Derivative) Trace					
$\overline{x}_1 = \overline{v}_{-1}$	= 5.5				
$\overline{x}_2 = \overline{v}_0$		= 1.716			
$\overline{v}_{-1} = \overline{v}_{-1} + \overline{v}_1 \frac{\partial v_1}{\partial v_{-1}}$	$= \overline{v}_{-1} + \overline{v}_1/v_{-1}$	= 5.5			
$\overline{v}_0 = \overline{v}_0 + \overline{v}_2 \frac{\partial v_2}{\partial v_{-1}}$	$= \overline{v}_0 + \overline{v}_2 \times v_{-1}$	= 1.716			
$\overline{v}_{-1} = \overline{v}_2 \frac{\partial v_2}{\partial v_{-1}}$	$= \overline{v}_2 \times v_0$	= 5			
$\overline{v}_0 = \overline{v}_3 \frac{\partial v_3}{\partial v_0}$	$=\overline{v}_3 \times \cos v_0$	=-0.284			
$\overline{v}_2 = \overline{v}_4 \frac{\partial v_4}{\partial v_2}$	$=\overline{v}_4 \times 1$	= 1			
$\overline{v}_1 = \overline{v}_4 \; \frac{\partial v_4}{\partial v_1}$	$= \overline{v}_4 \times 1$	= 1			
$\overline{v}_3 = \overline{v}_5 \frac{\partial v_5}{\partial v_3}$	$=\overline{v}_{5}\times(-1)$	= -1			
$\overline{v}_4 = \overline{v}_5 \frac{\partial v_5}{\partial v_4}$	$=\overline{v}_5 \times 1$	= 1			
$\overline{v}_5 = \overline{y}_1$		= 1			

Reverse Mode AD

- Compute the Jacobian of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ with n independent/input variable x_i and m dependent/output variable y_i .
- An important advantage of the reverse mode is that it is significantly less costly to evaluate (in terms of operation count) than the forward mode for functions with a large number of inputs.
- In the extreme case of $f: \mathbb{R}^n \to \mathbb{R}$ only one application of the reverse mode is sufficient to compute the full gradient.
- Because machine learning practice principally involves the gradient of a scalar-valued objective with respect to a large number of parameters, this establishes the reverse mode as the main technique in ML systems.

References

Journal of Machine Learning Research 18 (2018) 1-43

Submitted 8/17: Published 4/18

Automatic Differentiation in Machine Learning: a Survey

Atılım Güneş Baydin

GUNES@ROBOTS.OX.AC.UK

Department of Engineering Science University of Oxford Oxford OX1 3PJ, United Kingdom

Barak A. Pearlmutter

BARAK@PEARLMUTTER.NET

Department of Computer Science National University of Ireland Maynooth Maynooth, Co. Kildare, Ireland

Alexey Andreyevich Radul

AXCH@MIT.EDU

Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Cambridge, MA 02139, United States

Jeffrey Mark Siskind

QOBI@PURDUE.EDU

School of Electrical and Computer Engineering Purdue University

 $West\ Lafayette,\ IN\ 47907,\ United\ States$

• <u>Automatic differentiation in machine learning: a survey (https://arxiv.org/abs/1502.05767)</u>