

Evaluation of Active Learning Strategies for Transformer Architecture based Language Models

Ada Güney Arslan

Introduction

Problem Definition and Solution Proposal

Problem

Can active learning improve the performance of hidden transformer blocks?

Solution

- Usage of deep pre-trained transformer architecture based models
- Usage of pool based uncertainty sampling for active learning
- Performance evaluation and results

Foundations

Transformers

Details on Transformers

Proposes transformers instead of recurrence and convolutions

Attention Mechanism

- Most important part
- Bypasses sequential processing, enables parallelization
- Longer sequences

BERT Model

Details on BERT model

 Stands for Bidirectional Encoder Representations from Transformers

Pre-Training

- Cloze task
- Next sentence prediction

Active Learning

What is it?

- Iterative and supervised
- Query an information source
- Label new data points

What should we pay attention to?

- Class Imbalances
- Binomial and Multinomial data
- Costliness of data-labeling

Figure:

https://deepai.org/machine-learning-glossary-and-terms/active-learning, 2022

Active Learning

Logistic regression

- Binomial and multinomial cases
- Probabilistic

Least confidence

Batch of least confident samples

$$\phi^{LC}(x) = 1 - P(y^*|x;\theta)$$

Formula: Least Confidence [Culotta and McCallum, 2005]

Implementations

Experiment Setup

Setup

- Pre-processing via BERT-BASE
- Pool based uncertainty sampling
- Sharing a metric as visualization

Pre-processing

Data as an Input for BERT

- Exploration, Cleaning, Tokenization, Padding
- Attention mask and padded as an input

Pre-processing

Extraction of Classification Tokens

- Slice the CLS tokens
- Save tensors as a matrix of features
- Features and pre-existing labes for active learning

Active Learning

Active Learning Loop

- Logit model trianed with labeled data
- Unlabeled data predicted
- Labeled with a strategy

Evaluation

Addition vs Concatenation

Motivation

- Combining different vectors and achieving better performance
- Decision: addition

Comparison Metrics

- Length change
- Query time influence
- Informativeness

Results IMDB

Data-set

- Polar movie reviews
- Labels; negative or positive (balanced)

1	2	3	4	5	6	7	8	9	10	11	12	7.10	9.12
73.6	77.6	80.3	80.2	80.8	81.1	80.3	79.5	79.5	78.0	78.8	80.7	77.8	78.1

Results SST

Dresden Database Systems Group

Data-set

- Fine grained sentiment phrases
- Labels; negative or positive (balanced)

1	2	3	4	5	6	7	8	9	10	11	12	7.10	9.12
71.8	73.7	74.3	75.5	76.2	78.2	77.2	79.0	81.2	82.5	83.0	83.6	79.0	80.9

Results AG's News

Dresden Database Systems Group

Data-set

- 4 largest news categories
- Labels;
 World, Sport, Business, Science/Tech (balanced)

1	2	3	4	5	6	7	8	9	10	11	12	7.10	9.12
81.3	83.0	84.3	85.4	85.6	85.4	85.3	84.9	85.2	84.5	84.3	85.4	84.2	84.0

Results CoLa

Data-set

- Sentences from linguistic publications
- Labels; correct or not (imbalanced)

1	2	3	4	5	6	7	8	9	10	11	12	7.10	9.12
70.5	70.3	68.8	68.7	68.7	69.4	70.5	71.7	74.0	74.7	73.6	75.7	72.2	72.2

Dresden Database

Conclusion

Conclusion

Preceding Work

- Focused on output layer
- Increased classification performance

Our work

- Active learning increased performance for all layers and combinations
- Low amount of labeled data
- Class imbalances
- Multinomial and binomial data
- Addition and concatenation
- Time constraints

Thanks! Questions?

