XII.6.a.: Pour la réaction suivante, indiquez le déplacement de l'équilibre avec les changements donnés:

$$2 C(s) + 3H_2(g) \Leftrightarrow C_2H_6(g) + E$$
a. b.

1. Taugmente vers les réactifs les produits

2. H₂ est ajouté (CO₂ pour b) vers les produits

3. p diminue vers les réactifs les produits

4. C est ajouté pas de changement vers les produits

5. C_2H_6 est enlevé (CO pour b) vers les produits

XII.6. b.: Répétez les opérations 1-5 pour la réaction suivante:

$$C(s) + CO_2(g) \Leftrightarrow 2 CO(g)$$

 $\Delta_f H^{\circ}/kJ$: $-393,51$ $-110,52$

Exercice: XII.7.: Pour la formation de PCl₅:

À 200° C, un mélange de $PCl_3(g)$ (pression partielle: $PPCl_3 = 0.83$ atm), de $Cl_2(g)$ ($PCl_2 = 1.3$ atm) et de $PCl_5(g)$ ($PPCl_5 = 5.81$ atm) se trouve à l'équilibre. À la suite de l'injection d'un surplus de $PCl_5(g)$ dans ce mélange, la pression

A la suite de l'injection d'un surplus de $PCl_5(g)$ dans ce mélange, la pression total grimpe jusqu'à 9,17 atm.

Quelles sont les pressions partielles finales lorsque l'équilibre sera rétabli?

Marche à suivre:

- établir la réaction chimique équilibrée; $PCl_3(g) + Cl_2(g) \Leftrightarrow PCl_5(g)$
- établir l'expresion de la constante d'équilibre exprimée en pressions partielles et calculer la constante K_p ;

$$K_{\rm p} = \frac{P_{\rm PCl_5}}{P_{\rm PCl_3}P_{\rm Cl_2}} = \frac{5,81 \text{atm}}{(0,83 \text{atm})(1,3 \text{atm})} = 5,38 \text{atm}^{-1}$$

- calculer la nouvelle pression totale immédiatement après l'ajout de PCl_5 (avant qu'un nouveau équilibre soit rétabli);

$$P_{\text{totale}} = P_{\text{PCl}_3} + P_{\text{Cl}_2} + P_{\text{PCl}_5}$$
 9,17 atm = 0,83 atm + 1,3 atm + P_{Cl_5}
 $P_{\text{PCl}_5} = 7,04$ atm

- utiliser le principe de Le Chatelier pour déterminer le sens du changement de la réaction;

La position de l'équilibre se déplace de la droite vers la gauche car la concentration augmentée du PCl₅ doit augmenter la concentration des réactifs.

- preparer un tableau pour les pressions partielles (en analogie avec des concentrations) et calculer x avec la formule quadratique;

	PCl ₃	Cl ₂	PCl ₅
P après 1. équilibre	0,83 atm	1,3 atm	7,04 atm
changement	(0,83 + x) atm	(1,3 + x)atm	(7,04 – x)atm

$$K_{p} = \frac{P_{PCl_{5}}}{P_{PCl_{3}}P_{Cl_{2}}} = \frac{(7,04-x)}{(0,83+x)(1,3+x)} = \frac{7,04-x}{1,079+2,13x+x^{2}} = 5,38atm^{-1}$$

$$5,38x^2 + 12,46x - 1,22 = 0$$

Les deux racines de cette équation sont: $x_1 = 0,094$ atm et $x_2 = -2,41$ atm

$$P_{\text{PCl}_5} = 7,04 - 0,094 = 6,96 \text{ atm}$$

$$P_{\text{PCl}_3} = 0.83 + 0.094 = 0.92 \text{ atm}$$

$$P_{\text{Cl}_2} = 1.3 + 0.094 = \underline{1.4 \text{ atm}}$$

Vérifier *K*!