$f(x) \in \mathbb{R}[x] \ s.t. \ \forall x \in \mathbb{R}, \ f(x) \in \mathbb{Q} \Leftrightarrow x \in \mathbb{Q}$

を全て決定せよ.

Proof. f(x)=c(c は定数) という関数は条件を満たさないので以後 f(x) は定数でないとする. f(x) を n 次多項式とする. このとき, $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots a_0$ とおける. ここで $\alpha_1,\alpha_2,\cdots,\alpha_{n+1}$ を n+1 個の異なる有理数とすると, 条件より $f(\alpha_1),f(\alpha_2),\cdots,f(\alpha_{n+1})$ は全て有理数となる. $1\leq i\leq n+1$ について $\beta_i=f(\alpha_i)$ とすると,

$$\begin{cases} a_n \alpha_1^n + a_{n-1} \alpha_1^{n-1} + \dots + a_1 \alpha_1 + a_0 = \beta_1 \\ a_n \alpha_2^n + a_{n-1} \alpha_2^{n-1} + \dots + a_1 \alpha_2 + a_0 = \beta_2 \\ \vdots \\ a_n \alpha_{n+1}^n + a_{n-1} \alpha_{n+1}^{n-1} + \dots + a_1 \alpha_{n+1} + a_0 = \beta_{n+1} \end{cases}$$

一般にx 座標が異なるn+1 点を通るn 次関数は存在しかつ一意に定まるので、これをn+1 個の変数 $a_0,\cdots a_n$ のn+1 元 1 次連立方程式とみたとき解は存在し、それらは有理数 α_i^d 、 β_j ($1 \le i,j \le n+1,0 \le d \le n$) の有理式で表されるから、有理数が四則演算で閉じていることを考えれば、解は有理数である。よって $a_i \in \mathbb{Q}(0 \le i \le n)$ よりf(x) は有理数係数多項式である.f(x) は0 という関数ではないので、適当に整数M を用意しg(x) = Mf(x) とすればg(x) を最高次係数が正である整数係数多項式とすることができ、このとき任意の $x \in \mathbb{R}$ に対しf(x) とg(x) が有理数であることは同値なので、この問題は次の問題を考えればよい:

最高次係数が正である整数係数多項式 g(x) であって, 任意の実数 x に対し, x が有理数であることと g(x) が有理数であることは同値であるような g(x) を全て求めよ.

ここで次の補題を示す.

補題 1. 任意の整数係数多項式 h(x) について,h(x) = 0 の有理数解は

$$\frac{(h(x))$$
 の定数項の約数) $\frac{(h(x))$ の最高次係数の約数)

の形で表される.(約数は負も含む.)

証明 1. h(x) を n 次多項式とし, $h(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots a_1 x + a_0$ と表す.h(x) = 0 が有理数解をもつときそれを $\frac{p}{a}$ ($\gcd(p,q) = 1$) と表すと,

$$a_n \left(\frac{p}{q}\right)^n + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + \dots + a_1 \left(\frac{p}{q}\right) + a_0 = 0$$

$$\Leftrightarrow a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} = -a_0 q^n$$

左辺は全ての項がpの倍数なので左辺はpの倍数であり a_0q^n もpの倍数である.pとqは互いに素なので a_0 はpの倍数であり,pは a_0 の約数である.また

$$-a_n p^n = a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} + a_0 q^n$$

から同様にすれば q は a_n の約数であり、補題は示された.

この補題から次の系を得る.

系 1. 任意の整数係数多項式 h(x) について,h(x)=0 の有理数解は, $k\in\mathbb{Z}$ を用いて

 $\frac{k}{(h(x) \,$ の最高次係数)

の形で表される.

g(x) が 1 次の整数係数多項式とすると, $g(x)=ax+b(a,b\in\mathbb{Z},a>0)$ と表せる. このときこれは条件を満たすので以降 g(x) は 2 次以上のときを考える. g(x) の次数を n,i 次係数を a_i とする. 二項定理より $g(x+\frac{1}{a_n})$ の n 次の係数は $a_n,n-1$ 次の係数は $a_n\binom{n}{1}\frac{1}{a_n}+a_{n-1}=n+a_{n-1}$ である.g(x) の n 次の係数は $a_n,n-1$ 次の係数は a_{n-1} より, $g(x+\frac{1}{a_n})-g(x)$ の n 次の係数は n である.

よって n,n-1>0 より, $\lim_{x\to\infty}\left(g(x+\frac{1}{a_n})-g(x)\right)\to\infty$ となるから, 十分大きい実数 m をとれば, $x\geq m$ である任意の実数 x に対し $g(x+\frac{1}{a_n})-g(x)>1$ とすることができる.m より大きな整数 t_1 をとる.g(x) は整数係数多項式より $g(t_1)$ は整数であるからこれを L とおくと, $g(t_1+\frac{1}{a_n})-g(t_1)>1$ より $g(t_1+\frac{1}{a_n})>L+1$ より $g(t_1)<L+1<g(t_1+\frac{1}{a_n})$ であり, $a_n>0$ より $t_1+\frac{1}{a_n}>t_1$ なので,g(x) の連続性から, 中間値の定理よりある $t_2\in(t_1,t_1+\frac{1}{a_n})$ が存在し $g(t_2)=L+1$ となる. $t_1< t_2< t_1+\frac{1}{a_n}$ より $t_2-t_1<\frac{1}{a_n}$ である. ここで $g(t_1)=L,g(t_2)=L+1$ より $g(t_1),g(t_2)\in\mathbb{Q}$ であり, $t_1,t_2\in\mathbb{R}$ より条件から t_1,t_2 は有理数であり, さらに t_1,t_2 はそれぞれ整数係数方程式 g(x)-L=0,g(x)-L-1=0 の有理数解である. よって補題 1 より $m,l\in\mathbb{Z}$ を用いて $t_1=\frac{m}{a_n},t_2=\frac{l}{a_n}$ と表され, $t_2>t_1$ と t_1 と t_1 と t_2 を用いて t_2 を表され, t_3 のから t_3 のから t_3 に t_3 を見かる. よって t_3 のから t_4 に t_4 を表され, t_5 を得かる t_5 に t_6 ので, t_6 に t_7 に t_7 ののう項式のとき条件を満たす多項式は 存在しない.

以上より, $f(x)=\frac{1}{M}g(x)$ であることを考えれば求める f(x) は $f(x)=ax+b(a,b\in\mathbb{Q})$ (ただし $a\neq 0$).