Ch. E exercise T10. A is idempotent if $A^2 = A$. Show that the only possible eigenvalues of an idempotent matrix are $\lambda = 0$ and $\lambda = 1$. Then give an example of a matrix that is idempotent and has both these two values as eigenvalues.

Response:

$$A\vec{v} = A^2\vec{v}$$
$$\lambda \vec{v} = A\lambda \vec{v}$$
$$= \lambda A\vec{v}$$
$$= \lambda^2 \vec{v}$$
$$\lambda = \lambda^2$$
$$\lambda = 1 \text{ or } \lambda = 0$$

Consider a 2×2 matrix as a geometric transformation. Then to say that A is idempotent, or that $A = A^2$, is to say that performing the transformation twice is equivalent to performing it once. One example of such a transformation is an orthogonal projection onto $\operatorname{sp}(\vec{w})$. This matrix has the form

$$P = \frac{1}{w_1^2 + w_2^2} \begin{pmatrix} w_1^2 & w_1 w_2 \\ w_1 w_2 & w_2^2 \end{pmatrix}.$$

So the idempotent matrix for orthogonal projection onto $\operatorname{sp}\begin{pmatrix} 3 \\ 5 \end{pmatrix}$ is $A = \frac{1}{34}\begin{pmatrix} 9 & 15 \\ 15 & 25 \end{pmatrix}$.

Any scalar multiple of $\binom{3}{5}$, such as $\binom{6}{10}$, is an eigenvector for A with $\lambda = 1$. And any vector perpendicular to $\binom{3}{5}$, such as $\binom{-10}{6}$ is an eigenvector for A with $\lambda = 0$.