ABtree: An Algorithm For Subgroup-Based Treatment Assignment

Xiaofei (Susan) Wang

Lecturer/Research Scholar Department of Statistics Yale University

September 20, 2016

ABtree

Xiaofei (Susan) Wang ABtree September 20, 2016

Existing button:

Xiaofei (Susan) Wang ABtree September 20, 2016 3 / 28

Existing button:

Other buttons to consider:

https://blog.optimizely.com/2010/11/29/how-obama-raised-60-million-by-running-a-simple-experiment/linear control of the cont

Consider two options A and B (e.g. buttons, lines of text, pictures)

Consider two options A and B (e.g. buttons, lines of text, pictures)

Q: Which option A or B, when applied universally, maximizes some desired outcome (e.g. clickthrough rate, sign-up rate, purchase amount)?

Consider two options A and B (e.g. buttons, lines of text, pictures)

Q: Which option A or B, when applied universally, maximizes some desired outcome (e.g. clickthrough rate, sign-up rate, purchase amount)?

Run an experiment.

Consider two options A and B (e.g. buttons, lines of text, pictures)

Q: Which option A or B, when applied universally, maximizes some desired outcome (e.g. clickthrough rate, sign-up rate, purchase amount)?

- Run an experiment.
- 2-sample t-test? 2-sample z-test?

1 Ignores other information that we have on individual users.

Ignores other information that we have on individual users.

VisitId	OS	Date/Time	Referrer	Checkout
340	Windows XP	9/18 5:03pm	Google	1
341	Windows 8.1	9/18 5:04pm	Google	0
342	Windows XP	9/18 5:04pm	(Direct)	0
343	OS X Yosemite	9/18 5:06pm	Google	1
344	OS X Yosemite	9/18 5:06pm	Yahoo	0
		•		

Xiaofei (Susan) Wang ABtree September 20, 2016

Ignores other information that we have on individual users.

Checkout
1
0
0
1
0

1 Ignores other information that we have on individual users.

Check	out
	1
	0
	0
	1
	0
	• • •

Misses potential subgroup effects, in which subgroups of the population benefit from one version whereas others benefit from another.

A (poor) solution: Divide up the population into different *market* segments.

A (poor) solution: Divide up the population into different *market* segments.

Windows Segment:

111111111111111111111111111111111111111		
VisitId	OS	Checkout
340	Windows XP	1
341	Windows 8.1	0
342	Windows XP	0

Mac Segment:

VisitId	OS	Checkout
343	OS X Yosemite	1
344	OS X Yosemite	0

A (poor) solution: Divide up the population into different *market* segments.

Windows Segment:

Mac Segment:

Checkout

1
0
...

Checko	ou	ıt
		1

A (poor) solution: Divide up the population into different *market* segments.

Windows Segment:

Mac Segment:

Checkout		
1		
0		
0		

Checkout

1
0

7 / 28

Better: **Automatically** detect *market segments* exhibiting differences in response to treatment.

Formal Question

- n individuals $i = 1, \ldots, n$
- k treatments
- ullet individual i with covariates X_i gets randomly assigned to treatment T_i
- observe $Y_i | T_i$ (quantitative or binary)

Goal: For i = 1, ..., n, determine τ_i corresponding to the treatment which maximizes $E(Y_i | T_i = \tau_i)$.

Relationship to Precision Medicine

Xiaofei (Susan) Wang ABtree September 20, 2016

Relationship to Precision Medicine

"For instance, the drug Gleevec (imatinib) was found to double survival rates of leukaemia patients with a chromosomal abnormality in their tumours called the Philadelphia translocation."

¹ptitanic dataset in library(rpart.plot)

Titanic dataset¹:

¹ptitanic dataset in library(rpart.plot)

Breiman et al. 1984:

- Used to model a categorical or quantitative Y using predictors X where the relationships are possibly non-linear
- Easy to interpret
- Fast computation
- Extends to random forests

Titanic dataset:

Related Work (Using Trees)

- Interaction Trees (Su et al. 2009) continuous Y
 - Maximize significance of interaction between treatment and splits.

Related Work (Using Trees)

- Interaction Trees (Su et al. 2009) continuous Y
 - Maximize significance of interaction between treatment and splits.
- Virtual Twins (Foster et al. 2011) binary Y
 - Use a random forest to estimate treatment effect Z:

$$Z = P(Y = 1 | T = 1) - P(Y = 1 | T = 0)$$

- Use CART to estimate Z for all individuals.
- Use arbitrary cutoff c such that leafs with Z > c are flagged as subgroups.

- SIDES (Lipkovich et al. 2011)
 - Multiple trees
 - Splitting criterion is a function of Z, test statistic for H_0 : treatment effect = 0 in subgroup, e.g.

$$|Z_L - Z_R|$$

- Each split results in good and bad subgroup.
- Only continue splitting **good** nodes.
- Controls for overall Type I error rate.

- SIDES (Lipkovich et al. 2011)
 - Multiple trees
 - Splitting criterion is a function of Z, test statistic for H_0 : treatment effect = 0 in subgroup, e.g.

$$|Z_L - Z_R|$$

- Each split results in good and bad subgroup.
- Only continue splitting **good** nodes.
- Controls for overall Type I error rate.
- Implemented in SIDES R package.
- Numerous tuning parameters; slow.

- QUINT (Dusseldorp & Van Mechelen 2013)
 - Splitting criterion is a weighted function of:
 - effect size
 - subgroup size
 - Requires the presence of subgroups where A beats B and subgroups where B beats A.

- QUINT (Dusseldorp & Van Mechelen 2013)
 - Splitting criterion is a weighted function of:
 - effect size
 - subgroup size
 - Requires the presence of subgroups where A beats B and subgroups where B beats A.
 - Implemented in quint R package. Buggy.

ABtree: Splitting

Tree growth procedure uses binary recursive partitioning into subgroups S_1, S_2, \ldots to **maximize**:

$$\sum_{S_i} Q(S_j) \tag{1}$$

for some measure Q.

What should we use for Q?

• Goal is profit maximization

- Goal is **profit maximization**
- Q should be a function of the expected profit derived from the i-th individual conditional on receiving treatment t

An example:

 \bar{Y}_A : 68 $(n_A : 41)$ \bar{Y}_B : 45 $(n_B : 20)$

- Total profit = 68(41) + 45(20) = 3,688.
- *A* is more profitable in this subgroup.
- Expect to gain $(68 45) \times 20 = 460$ in profit if everyone in this subgroup was assigned to A.

An example:

 $egin{array}{c} A \\ ar{Y}_A : 68 \\ (n_A : 41) \\ ar{Y}_B : 45 \\ (n_B : 20) \end{array}$

- Total profit = 68(41) + 45(20) = 3,688.
- A is more profitable in this subgroup.
 Assign treatment A.
- Expect to gain $(68 45) \times 20 = 460$ in profit if everyone in this subgroup was assigned to A.

Implied splitting criterion:

$$Q_{max}(S_j) := |S_j| \max_t \bar{y}_{j|t}$$

where S_j is the *j*-th subgroup and $\bar{y}_{j|t}$ is the average profit of individuals in this subgroup receiving treatment t.

L₂ Maximization:

• Choose splits that maximize total squared distance between best average profit $\max_t \bar{y}_{j|t}$ and average profit of other treatments $\bar{y}_{j|t}$:

$$Q_{L_2} := |S_j| \sum_{t'} (\max_t \bar{y}_{j|t} - \bar{y}_{j|t'})^2.$$

L₂ Maximization:

• Choose splits that maximize total squared distance between best average profit $\max_t \bar{y}_{j|t}$ and average profit of other treatments $\bar{y}_{j|t}$:

$$Q_{L_2} := |S_j| \sum_{t'} (\max_t \bar{y}_{j|t} - \bar{y}_{j|t'})^2.$$

This measure outperforms Q_{max} in simulation settings.

• Pick subtree that does well

- Pick subtree that does well
- ullet e.g. maximizes $\sum_{S_i} Q(S_j)$ in validation set

$$\sum_{i=2.84} Q_{L_2}(S_j) = (0.13 - 0.08)^2(23 + 15) + \dots + (0.17 - 0.03)^2(24 + 30)$$
= 2.84

$$\sum_{j} Q_{L_2}(S_j) = (0.08 - 0.05)^2 (36 + 44) + \dots + (0.17 - 0.03)^2 (24 + 30)$$
= 2.63

Since 2.84 > 2.63, we do not prune this branch!

- 1970's large-scale national and private program designed to provide work experience for n = 722 disadvantaged workers
- Treatments: A (control) and B (receiving benefits to improve employability)
- Sample sizes: $n_A = 425$ and $n_B = 297$
- Y (binary): whether individual earnings increased after the completion of experiment

Covariates X:

Name	Description	Туре
age educ	age (yrs) education (yrs)	quantitative quantitative
race marr	(black, hispanic, white) married flag	categorical categorical
nodegr	no degree flag	categorical
log.income75 u75	log income in 1975 unemployment flag in 1975	quantitative categorical

Assessment:

```
training set
  n = 500
 (grow tree)
validation set
  n = 150
(prune tree)
  test set
   n = 72
(assessment)
```

Assessment:

training set
$$n = 500$$
 (grow tree)

validation set n = 150 (prune tree)

test set n = 72 (assessment)

2 groups in test set:

- received recommended treatment (match)
- did not receive recommended treatment (no match)

Assessment:

training set
$$n = 500$$
(grow tree)

validation set
 $n = 150$
(prune tree)

test set
 $n = 72$
(assessment)

2 groups in test set:

- received recommended treatment (match)
- did not receive recommended treatment (no match)

	match	no match
y = 1	d	е
y = 0	f	g

Assessment:

training set
$$n = 500$$
 (grow tree)

 $n=150 \ ext{(prune tree)}$

test set
$$n = 72$$
 (assessment)

2 groups in test set:

- received recommended treatment (match)
- did not receive recommended treatment (no match)

	match	no match
y=1	d	е
y = 0	f	g

Tree works well if:

$$\frac{d}{d+f} > \frac{e}{e+g}$$

	match	no match
y=1	28	21
y = 0	10	13
%success	73.7%	61.8%

• ABtree supports analysis on 2 or more treatments.

- ABtree supports analysis on 2 or more treatments.
- ullet The response Y can be binary or quantitative.

- ABtree supports analysis on 2 or more treatments.
- ullet The response Y can be binary or quantitative.
- A/B testing uses large sample sizes (in contrast to clinical trials).

- ABtree supports analysis on 2 or more treatments.
- The response Y can be binary or quantitative.
- A/B testing uses large sample sizes (in contrast to clinical trials).
- As with most tree-based algorithms, splits obtained are sensitive to the underlying data.

- ABtree supports analysis on 2 or more treatments.
- The response Y can be binary or quantitative.
- A/B testing uses large sample sizes (in contrast to clinical trials).
- As with most tree-based algorithms, splits obtained are sensitive to the underlying data.
- If only interested *treatment assignment* (rather than a sequence of assignment rules, we can use **random forests** to improve accuracy.

- ABtree supports analysis on 2 or more treatments.
- The response Y can be binary or quantitative.
- A/B testing uses large sample sizes (in contrast to clinical trials).
- As with most tree-based algorithms, splits obtained are sensitive to the underlying data.
- If only interested *treatment assignment* (rather than a sequence of assignment rules, we can use **random forests** to improve accuracy.

- ABtree supports analysis on 2 or more treatments.
- The response Y can be binary or quantitative.
- A/B testing uses large sample sizes (in contrast to clinical trials).
- As with most tree-based algorithms, splits obtained are sensitive to the underlying data.
- If only interested *treatment assignment* (rather than a sequence of assignment rules, we can use **random forests** to improve accuracy.

Thank You!

References

- Su, Xiaogang, et al. "Subgroup analysis via recursive partitioning." Journal of Machine Learning Research 10. Feb
 (2009): 141-158.
- Breiman, Leo, et al. Classification and regression trees. CRC press, 1984.
- LaLonde, R.J. 1986. "Evaluating the econometric evaulations of training programs with experimental data." American Economic Review, Vol.76, No.4, pp. 604-620.
- Lipkovich, Ilya, et al. "Subgroup identification based on differential effect searcha recursive partitioning method for
 establishing response to treatment in patient subpopulations." Statistics in medicine 30.21 (2011): 2601-2621.
- Foster, Jared C., Jeremy MG Taylor, and Stephen J. Ruberg. "Subgroup identification from randomized clinical trial data." Statistics in medicine 30.24 (2011): 2867-2880.
- Dusseldorp, Elise, and Iven Van Mechelen. "Qualitative interaction trees: a tool to identify qualitative treatment-subgroup interactions." Statistics in medicine 33.2 (2014): 219-237.