

Applied Machine Learning

Random Forests

Kevyn Collins-Thompson

Associate Professor of Information & Computer Science University of Michigan

Random Forests

- An ensemble of trees, not just one tree.
- Widely used, very good results on many problems.
- sklearn.ensemble module:
 - Classification: RandomForestClassifier
 - Regression: RandomForestRegressor
- One decision tree → Prone to overfitting.
- Many decision trees → More stable, better generalization
- Ensemble of trees should be diverse: introduce random variation into tree-building.

Random Forest Process

Random Forest Process: Bootstrap Samples

Bootstrap sample 1

Bootstrap sample 2

Bootstrap sample 3

1 1	
fruit_label	fruit_name
1	Apple
2	Mandarin
	• • •
3	Orange
4	Lemon

fruit_label	fruit_name
1	Apple
2	Mandarin
3	Orange
4	Lemon

fruit_label	fruit_name
1	Apple
2	Mandarin
3	Orange
4	Lemon

Random Forest Process

Random Forest max_features Parameter

- Learning is quite sensitive to max_features.
- Setting max_features = 1 leads to forests with diverse, more complex trees.
- Setting max_features = <close to number of features> will lead to similar forests with simpler trees.

Prediction Using Random Forests

1. Make a prediction for every tree in the forest.

2. Combine individual predictions

- Regression: mean of individual tree predictions.
- Classification:
 - Each tree gives probability for each class.
 - Probabilities averaged across trees.
 - Predict the class with highest probability.

Random Forest: Fruit Dataset

Random Forest: Pros and Cons

Pros:

- Widely used, excellent prediction performance on many problems.
- Doesn't require careful normalization of features or extensive parameter tuning.
- Like decision trees, handles a mixture of feature types.
- Easily parallelized across multiple CPUs.

Cons:

- The resulting models are often difficult for humans to interpret.
- Like decision trees, random forests may not be a good choice for very highdimensional tasks (e.g. text classifiers) compared to fast, accurate linear models.

Random Forests: RandomForestClassifier Key Parameters

- n_estimators: number of trees to use in ensemble (default: 10).
 - Should be larger for larger datasets to reduce overfitting (but uses more computation).
- max features: has a strong effect on performance. Influences the diversity of trees in the forest.
 - Default works well in practice, but adjusting may lead to some further gains.
- max depth: controls the depth of each tree (default: None. Splits until leaves are pure).
- n_jobs: How many cores to use in parallel during training.
- Choose a fixed setting for the random_state parameter if you need reproducible results.