ON MORITA EQUIVALENCE OF GROUP ACTIONS ON LOCALLY C^* -ALGEBRAS

MARIA JOITA

ABSTRACT. In this paper, we prove that two continuous inverse limit actions α and β of a locally compact group G on the locally C^* -algebras A and B are strongly Morita equivalent if and only if there is a locally C^* -algebra C such that A and B appear as two complementary full corners of C and there is a continuous action γ of G on C which leaves A and B invariant such that $\gamma|_A = \alpha$ and $\gamma|_B = \beta$. This generalizes a result of Combes, $Proc.\ London\ Math.\ Soc.\ 49(1984),\ 289-306.$

1. Introduction

Locally C^* -algebras are generalizations of C^* -algebras. Instead of being by a single C^* -norm, the topology on a locally C^* -algebra is defined by a directed family of C^* -seminorms. Such many concepts as group action on a C^* -algebra, crossed product of a C^* -algebra by a group action, Hilbert C^* -module, adjointable module morphism, group action on a Hilbert C^* -module can be defined in a natural way in the context of locally C^* -algebras. The proofs are not always straightforward.

Phillips [11] introduced the notion of action (inverse limit action) of a locally compact group G on a metrizable locally C^* -algebra A and defined the crossed product of A by a continuous inverse limit action of G on A. In [6], we proved a version of the Takai duality theorem for crossed products of locally C^* -algebras by continuous inverse limit actions. The concept of strong Morita equivalence for locally C^* -algebras was introduced in [4]. In [7], we introduce the notion of strong Morita equivalence on the set of group actions on locally C^* -algebras and prove that it is an equivalence relation. Also, we prove that the crossed products of locally C^* -algebras associated with two strongly Morita equivalent continuous inverse limit actions are strongly Morita equivalent.

MSC 2000: 46L08, 46L05, 46L55

Keywords: locally C^* -algebra, Hilbert module over locally C^* -algebra, group action, inverse limit group action

This research was partially supported by grant CEEX-code PR-D11-PT00-48/2005 and partially by CNCSIS grant A1065 /2006 from the Romanian Ministry of Education and Research.

This paper is organizes as follows. In Section 2 we recall some facts about Hilbert modules over locally C^* -algebras and (continuous inverse limit) actions of a locally compact group G on a Hilbert module E over a locally C^* -algebra A. In Section 3 we prove that any (continuous inverse limit) action of G on a full Hilbert A-module E induces a (continuous inverse limit) action of G on the linking algebra $\mathcal{L}(E)$ of E, Proposition 3.1. Also we prove that two continuous inverse limit actions α and β of a locally compact group G on the locally C^* -algebras A and B are strongly Morita equivalent if and only if there is a locally C^* -algebra C such that A and B appear as two complementary full corners of C and there is a continuous inverse limit action γ of G on C which leaves A and B invariant such that $\gamma|_A = \alpha$ and $\gamma|_B = \beta$, Theorem 3.5. This generalizes a result of Combes [2] and is a version of Theorem 3.3 in [4] for group actions on locally C^* -algebras.

2. Preliminaries

A locally C^* -algebra is a complete Hausdorff complex topological *-algebra A whose topology is determined by its continuous C^* -seminorms in the sense that a net $\{a_i\}_{i\in I}$ converges to 0 in A if and only if the net $\{p(a_i)\}_i$ converges to 0 for all continuous C^* -seminorm p on A. The term of "locally C^* -algebra" is due to Inoue [3].

The set S(A) of all continuous C^* -seminorms on A is directed with the order $p \geq q$ if $p(a) \geq q(a)$ for all $a \in A$. For each $p \in S(A)$, $\ker p = \{a \in A; p(a) = 0\}$ is a two-sided *-ideal of A and the quotient algebra $A/\ker p$, denoted by A_p , is a C^* -algebra in the C^* -norm induced by p. The canonical map from A to A_p is denoted by π_p . For $p, q \in S(A)$ with $p \geq q$ there is a canonical surjective morphism of C^* -algebras $\pi_{pq}: A_p \to A_q$ such that $\pi_{pq}(\pi_p(a)) = \pi_q(a)$ for all $a \in A$. Then $\{A_p; \pi_{pq}\}_{p,q \in S(A), p \geq q}$ is an inverse system of C^* -algebras and moreover, the locally C^* -algebras A and A im A are isomorphic.

An approximate unit for A is an increasing net of positive elements $\{e_i\}_{i\in I}$ in A such that $p(e_i) \leq 1$ for all $p \in S(A)$ and for all $i \in I$, and $p(ae_i - a) + p(e_i a - a) \to 0$ for all $p \in S(A)$ and for all $a \in A$. Any locally C^* -algebra has an approximate unit.

A morphism of locally C^* -algebras is a continuous morphism of *-algebras. Two locally C^* -algebras A and B are isomorphic if there is a bijective map $\Phi:A\to B$ such that Φ and Φ^{-1} are morphisms of locally C^* -algebras.

Hilbert modules over locally C^* -algebras are generalizations of Hilbert C^* -modules by allowing the inner-product to take values in a locally C^* -algebra rather than in a C^* -algebra.

Definition 2.1. A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle \cdot, \cdot \rangle : E \times E \to A$ which is $\mathbb C$ -and A-linear in its second variable and satisfies the following relations:

- (1) $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$;
- (2) $\langle \xi, \xi \rangle \geq 0$ for every $\xi \in E$;
- (3) $\langle \xi, \xi \rangle \geq 0$ for every $\xi \in E$; $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$.

We say that E is a Hilbert A-module if E is complete with respect to the topology determined by the family of seminorms $\{\overline{p}_E\}_{p\in S(A)}$ where $\overline{p}_E(\xi) = \sqrt{p(\langle \xi, \xi \rangle)}, \xi \in E$.

Any locally C^* -algebra A is a Hilbert A -module in a natural way.

A Hilbert A -module E is full if the linear space $\langle E,E\rangle$ generated by $\{\langle \xi,\eta\rangle\,,\,\,\xi,\eta\in E\}$ is dense in A

Let E be a Hilbert A-module. For $p \in S(A)$, $\ker \overline{p}_E = \{\xi \in E; \overline{p}_E(\xi) = 0\}$ is a closed submodule of E and $E_p = E/\ker \overline{p}_E$ is a Hilbert A_p -module with $(\xi + \ker \overline{p}_E)\pi_p(a) = \xi a + \ker \overline{p}_E$ and $(\xi + \ker \overline{p}_E, \eta + \ker \overline{p}_E) = \pi_p(\langle \xi, \eta \rangle)$. The canonical map from E onto E_p is denoted by σ_p . For $p, q \in S(A)$, $p \geq q$ there is a canonical morphism of vector spaces σ_{pq} from E_p onto E_q such that $\sigma_{pq}(\sigma_p(\xi)) = \sigma_q(\xi)$, $\xi \in E$. Then $\{E_p; A_p; \sigma_{pq}, \pi_{pq}\}_{p,q \in S(A), p \geq q}$ is an inverse system of Hilbert C^* -modules in the following sense: $\sigma_{pq}(\xi_p a_p) = \sigma_{pq}(\xi_p)\pi_{pq}(a_p), \xi_p \in E_p, a_p \in A_p; \langle \sigma_{pq}(\xi_p), \sigma_{pq}(\eta_p) \rangle = \pi_{pq}(\langle \xi_p, \eta_p \rangle), \xi_p, \eta_p \in E_p; \sigma_{pp}(\xi_p) = \xi_p, \xi_p \in E_p$ and $\sigma_{qr} \circ \sigma_{pq} = \sigma_{pr}$ if $p \geq q \geq r$, and $\lim_{p \in S(A)} E_p$ is a Hilbert A-module which can be identified with E.

The set L(E) of all adjointable A-module morphisms from E into E is a locally C^* -algebra with topology defined by the family of seminorms $\{\widetilde{p}_{L(E)}\}_{p\in S(A)}$, where $\widetilde{p}_{L(E)}(T) = \|(\pi_p)_*(T)\|_{L(E_p,)}$, $T \in L(E)$ and $(\pi_p)_*(T)(\xi + \ker \overline{p}_E) = T(\xi) + \ker \overline{p}_F$, $\xi \in E$. Moreover, $\{L(E_p); (\pi_{pq})_*\}_{p,q\in S(A),p\geq q}$, where $(\pi_{pq})_*: L(E_p) \to L(E_q)$ is a morphism of C^* -algebras defined by $(\pi_{pq})_*(T_p)(\sigma_q(\xi)) = \sigma_{pq}(T_p(\sigma_p(\xi)))$, is an inverse system of C^* -algebras, and $\lim_{t \to \infty} L(E_p)$ can be identified with L(E).

For $\xi, \eta \in E$ we consider the rank one homomorphism $\theta_{\eta,\xi}$ from E into E defined by $\theta_{\eta,\xi}(\zeta) = \eta \langle \xi, \zeta \rangle$. Clearly, $\theta_{\eta,\xi} \in L(E)$ and $\theta_{\eta,\xi}^* = \theta_{\xi,\eta}$. The linear subspace of L(E) spanned by $\{\theta_{\eta,\xi}; \xi, \eta \in E\}$, denoted by $\Theta(E)$, is a two sided *-ideal of L(E). The closure of $\Theta(E)$ in L(E) is denoted by K(E).

Let E be a full Hilbert A -module. Here we recall some facts about the linking algebra of E from [5]

The direct sum $A \oplus E$ of the Hilbert A-modules A and E is a full Hilbert A-module with the action of A on $A \oplus E$ defined by

$$(A \oplus E, A) \ni (a \oplus \xi, b) \mapsto (a \oplus \xi) b = ab \oplus \xi b \in A \oplus E$$

and the inner product defined by

$$(A \oplus E, A \oplus E) \ni (a \oplus \xi, b \oplus \eta) \mapsto \langle a \oplus \xi, b \oplus \eta \rangle = a^*b + \langle \xi, \eta \rangle \in A.$$

Moreover, for each $p \in S(A)$, the Hilbert A_p -modules $(A \oplus E)_p$ and $A_p \oplus E_p$ can be identified [8]. Then the locally C^* -algebras $L(A \oplus E)$ and $\lim_{\substack{\longleftarrow \\ p \in S(A)}} L(A_p \oplus E_p)$ can be identified [10].

Let $a \in A$, $\xi \in E$, $\eta \in E$ and $T \in K(E)$. The map $L_{a,\xi,\eta,T}: A \oplus E \to A \oplus E$ defined by

$$L_{a,\xi,\eta,T}(b\oplus\zeta)=(ab+\langle\xi,\zeta\rangle)\oplus(\eta b+T(\zeta))$$

is an element in $L(A \oplus E)$. The locally C^* - subalgebra of $L(A \oplus E)$ generated by

$$\{L_{a,\xi,\eta,T}; a \in A, \xi \in E, \eta \in E, T \in K(E)\}\$$

is denoted by $\mathcal{L}(E)$ and it is called the linking algebra of E.

By Lemma III 3.2 in [9], we have

$$\mathcal{L}(E) = \lim_{\substack{\leftarrow \ p \in S(A)}} \overline{(\pi_p)_* (\mathcal{L}(E))},$$

where $\overline{(\pi_p)_*(\mathcal{L}(E))}$ means the closure of the vector space $(\pi_p)_*(\mathcal{L}(E))$ in $L(A_p \oplus E_p)$. Let $p \in S(A)$. From

$$(\pi_p)_* (L_{a,\xi,\eta,T}) = L_{\pi_p(a),\sigma_p(\xi),\sigma_p(\eta),(\pi_p)_*(T)}$$

for all $a, b \in A$, for all $\xi, \eta, \zeta \in E$, and taking into account that $\mathcal{L}(E_p)$, the linking algebra of E_p , is generated by

$$\{L_{\pi_n(a),\sigma_n(\xi),\sigma_n(n),(\pi_n)_*(T)}; a \in A, \xi \in E, \eta \in E, T \in K(E)\}$$

since $\pi_p(A) = A_p$, $\sigma_p(E) = E_p$, and $\overline{(\pi_p)_*(K(E))} = K(E_p)$, we conclude that

$$\mathcal{L}(E) = \lim_{\stackrel{\leftarrow}{p \in S(A)}} \mathcal{L}(E_p).$$

Moreover, since $\mathcal{L}(E_p) = K(A_p \oplus E_p)$ [12] and the locally C^* -algebras $K(A \oplus E)$ and $\lim_{\substack{p \in S(A) \\ K(A \oplus E)}} K(A_p \oplus E_p)$ can be identified, the linking algebra of E coincides with $K(A \oplus E)$.

Here we recall some facts about actions of a locally compact group G on Hilbert modules from [7].

Let A and B be two locally C^* -algebras, let E be a Hilbert A-module and let F be a Hilbert B-module.

Definition 2.2. A morphism of Hilbert modules from E to F is a map $u: E \to F$ with the property that there is a morphism of locally C^* -algebras $\alpha: A \to B$ such that

$$\langle u(\xi), u(\eta) \rangle = \alpha(\langle \xi, \eta \rangle)$$

for all $\xi, \eta \in E$. An isomorphism of Hilbert modules is a bijective map $u : E \to F$ such that u and u^{-1} are morphisms of Hilbert modules.

If $u: E \to F$ is a morphism of Hilbert modules and $\alpha: A \to B$ is a morphism of locally C^* -algebras such that $\langle u(\xi), u(\eta) \rangle = \alpha(\langle \xi, \eta \rangle)$, then u is a continuous linear map and $u(\xi a) = u(\xi) \alpha(a)$ for all $a \in A$ and for all $\xi \in E$. Moreover, if u is an isomorphism of Hilbert modules and the Hilbert modules E and E are full, then E is an isomorphism of locally E-algebras.

For a Hilbert A-module E,

$$\operatorname{Aut}(E) = \{u : E \to E; u \text{ is an isomorphism of Hilbert modules } \}$$

is a group.

Definition 2.3. Let G be a locally compact group. An action of G on E is a morphism of groups $g \mapsto u_g$ from G to Aut(E).

The action $g \mapsto u_g$ of G on E is continuous if the map $G \times E \ni (g, \xi) \mapsto u_g(\xi) \in E$ is jointly continuous.

An action $g \mapsto u_g$ of G on E is an inverse limit action if we can write E as an inverse limit of Hilbert C^* -modules $\lim_{\stackrel{\leftarrow}{\lambda} \in \Lambda} E_{\lambda}$ in such a way that for each $g \in G$, $u_g = \lim_{\stackrel{\leftarrow}{\leftarrow} \Omega} u_g^{\lambda}$, where $g \mapsto u_g^{\lambda}$ is an action of G on E_{λ} , $\lambda \in \Lambda$.

If $g \mapsto u_g$ is an inverse limit action of G on E, then $E = \lim_{\stackrel{\leftarrow}{\lambda \in \Lambda}} E_{\lambda}$ and $u_g = \lim_{\stackrel{\leftarrow}{\lambda \in \Lambda}} u_g^{\lambda}$ for each $g \in G$, where $g \mapsto u_g^{\lambda}$ is an action of G on E_{λ} , $\lambda \in \Lambda$. Let $\lambda \in \Lambda$. Since $g \mapsto u_g^{\lambda}$ is an action of G on E_{λ} ,

$$\left\| u_g^{\lambda} \left(\sigma_{\lambda}(\xi) \right) \right\|_{E_{\lambda}} = \left\| \sigma_{\lambda}(\xi) \right\|_{E_{\lambda}}$$

for each $\xi \in E$, and for all $g \in G$ [1, 2]. This implies that

$$\overline{p}_{\lambda}(u_g(\xi)) = \overline{p}_{\lambda}(\xi)$$

for all $g \in G$ and for all $\xi \in E$.

Let $S(G, A) = \{ p \in S(A); \overline{p}_E(u_g(\xi)) = \overline{p}_E(\xi) \text{ for all } g \in \}$. From these facts, we conclude that $g \mapsto u_g$ is an inverse limit action of G on E, if S(G, A) is a cofinal

subset of S(A). Therefore, if $g \mapsto u_g$ is an inverse limit action of G on E, we can suppose that $u_g = \lim_{p \in S(A)} u_g^p$. Moreover, the inverse limit action $g \mapsto u_g$ of G on E is continuous if and only if the nations $g \mapsto u_g^p$ of G on E in G S(A) are all

E is continuous if and only if the actions $g \mapsto u_g^p$ of G on E_p , $p \in S(A)$ are all continuous.

Definition 2.4. ([11]) An action of G on A is a morphism α from G to Aut(A), the set of all isomorphisms of locally C^* -algebras from A to A. The action α is continuous if the function $(g, a) \mapsto \alpha_g(a)$ from $G \times A$ to A is jointly continuous.

A continuous action α of G on A is an inverse limit action if we can write A as inverse limit $\lim_{\delta \in \Delta} A_{\delta}$ of C^* -algebras in such a way that there are actions α^{δ} of G on

 A_{δ} such that $\alpha_g = \lim_{\substack{\delta \in \Delta \\ \delta \in \Delta}} \alpha_g^{\delta}$ for all g in G.

Proposition 2.5. ([7]) Let G be a locally compact group and let E be a full Hilbert A -module. Then any action $g \mapsto u_g$ of G on E induces an action $g \mapsto \alpha_g^u$ of G on A such that

$$\alpha_q^u\left(\langle \xi, \eta \rangle\right) = \langle u_g\left(\xi\right), u_g\left(\eta\right) \rangle$$

for all $g \in G$ and for all $\xi, \eta \in E$ and an action $g \mapsto \beta_g^u$ of G on K(E) such that

$$\beta_g^u\left(\theta_{\xi,\eta}\right) = \theta_{u_g(\xi),u_g(\eta)}$$

for all $g \in G$ and for all $\xi, \eta \in E$. Moreover, if $g \mapsto u_g$ is a continuous inverse limit action of G on E, then the actions of G on A respectively K(E) induced by u are continuous inverse limit actions.

3. ACTION ON THE LINKING LOCALLY C^* -ALGEBRA OF A HILBERT MODULE

Proposition 3.1. Let G be a locally compact group, let E be a full Hilbert Amodule. Any action $g \mapsto u_g$ of G on E induces an action $g \mapsto \gamma_g^u$ of G on the
linking algebra $\mathcal{L}(E)$ of E such that

$$\gamma_g^u\left(L_{a,\xi,\eta,T}\right) = L_{\alpha_g^u(a),u_g(\xi),u_g(\eta),\beta_g^u(T)}$$

for all $a \in A$, $\xi, \eta \in E$ and $T \in K(E)$. Moreover, if $g \mapsto u_g$ is a continuous inverse limit action, then $g \mapsto \gamma_g^u$ is a continuous inverse limit action.

Proof. Let $g \in G$. The map $w_q^u : A \oplus E \to A \oplus E$ defined by

$$w_g^u(a \oplus \xi) = \alpha_g^u(a) \oplus u_g(\xi)$$

is a morphism of Hilbert modules, since

$$\langle w_g^u (a \oplus \xi), w_g^u (b \oplus \eta) \rangle = \langle \alpha_g^u (a), \alpha_g^u (b) \rangle + \langle u_g (\xi), u_g (\eta) \rangle$$
$$= \alpha_g^u (\langle a \oplus \xi, b \oplus \eta \rangle)$$

for all $a,b \in A$ and for all $\xi, \eta \in E$, and α_g^u is an isomorphism of locally C^* -algebras. Moreover, since w_g^u is invertible and $\left(w_g^u\right)^{-1} = w_{g^{-1}}^u$, w_g^u is an isomorphism of Hilbert modules. It is not difficult to check that $g \mapsto w_g^u$ is an action of G on $A \oplus E$.

Let γ^u be the action of G on $K(A \oplus E)$ induced by w^u . Then

$$\gamma_g^u(\theta_{a\oplus\xi,b\oplus\eta}) = \theta_{w_g^u(a\oplus\xi),w_g^u(b\oplus\eta)} = \theta_{\alpha_g^u(a)\oplus u_g(\xi),\alpha_g^u(b)\oplus u_g(\eta)}$$

for all $a, b \in A$, for all $\xi, \eta \in E$, and for all $g \in G$.

Let $g \in G$, $a \in A$, $\xi, \eta \in E$ and $T \in K(E)$. We will show that

$$\gamma_q^u\left(L_{a,\xi,\eta,T}\right) = L_{\alpha_q^u(a),u_q(\xi),u_q(\eta),\beta_q^u(T)}.$$

For this, let $\{e_i\}_i$ be an approximate unit for A. From

$$\widetilde{p}_{L(A \oplus E)}(L_{a,0,0,0} - \theta_{a \oplus 0,e_i \oplus 0}) \le p(a - ae_i)$$

$$\widetilde{p}_{L(A \oplus E)} \left(L_{0,\xi,0,0} - \theta_{e_i \oplus 0,0 \oplus \xi} \right) \leq \overline{p}_E \left(\xi - \xi e_i \right)$$

and

$$\widetilde{p}_{L(A \oplus E)} \left(L_{0,0,\eta,0} - \theta_{0 \oplus \eta,e_i \oplus 0} \right) \leq \overline{p}_E \left(\eta - \eta e_i \right)$$

for all $p \in S(A)$ and for all $i \in I$, and taking into account that γ_g^u , α_g^u and u_g are continuous, $ae_i \to a$, $\xi e_i \to \xi$ and $\eta e_i \to \eta$, we conclude that

$$\gamma_g^u\left(L_{a,\xi,\eta,0}\right) = L_{\alpha_g^u(a),u_g(\xi),u_g(\eta),0}.$$

If $T \in K(E)$, then there is a net $\{\sum_{k \in I_j} \theta_{\xi_k, \eta_k}\}_j$ in $\Theta(E)$ which converges to T. From

$$\widetilde{p}_{L(A \oplus E)}(L_{0,0,0,T} - \sum_{k \in I_j} \theta_{0 \oplus \xi_k,0 \oplus \eta_k}) \leq \widetilde{p}_{L(E)}(T - \sum_{k \in I_j} \theta_{\xi_k,\eta_k})$$

for all $p \in S(A)$, and taking into account that γ_g^u and β_g^u are continuous and

$$\sum_{k \in I_i} \gamma_g^u \left(\theta_{0 \oplus \xi_k, 0 \oplus \eta_k} \right) = \sum_{k \in I_i} \theta_{0 \oplus u_g(\xi_k), 0 \oplus u_g(\eta_k)} = 0 \oplus \beta_g^u \left(\sum_{k \in I_i} \theta_{\xi_j, \eta_j} \right)$$

we deduce that

$$\gamma_g^u(L_{0,0,0,T}) = L_{0,0,0,\beta_g^u(T)}.$$

Thus we have

$$\begin{split} \gamma_g^u \left(L_{a,\xi,\eta,T} \right) & = & \gamma_g^u \left(L_{a,\xi,\eta,0} \right) + \gamma_g^u \left(L_{0,0,0,T} \right) \\ & = & L_{\alpha_g^u(a),u_g(\xi),u_g(\eta),0} + L_{0,0,0,\beta_g^u(T)} \\ & = & L_{\alpha_g^u(a),u_g(\xi),u_g(\eta),\beta_g^u(T)}. \end{split}$$

If u is a continuous inverse limit action, then we can suppose that $u_g = \lim_{\substack{p \leftarrow S(A) \\ p \in S(A)}} u_g^p$, where $g \mapsto u_g^p$ is a continuous action of G on E_p for each $p \in S(A)$. Let $p \in S(A)$

and let $g \mapsto w_g^{u^p}$ be the action of G on $A_p \oplus E_p$ induced by u^p . It is not difficult to check that $\left(w_g^{u^p}\right)_p$ is an inverse system of isomorphisms of Hilbert C^* -modules and $g \mapsto \lim_{\stackrel{\longleftarrow}{\leftarrow}} w_g^{u^p}$ is a continuous inverse limit action of G on $A \oplus E$. Moreover, $w_g^u = \lim_{\stackrel{\longleftarrow}{\leftarrow}} w_g^{u^p}$ for each $g \in G$. By Proposition 2.5, the action γ^u of G on $K(A \oplus E)$ induced by w^u is a continuous inverse limit action, and moreover, $\gamma_g^u = \lim_{\stackrel{\longleftarrow}{\leftarrow}} \gamma_g^{u^p}$ for each $g \in G$, where γ^{u^p} is the action of G of $\mathcal{L}(E_p)$ induced by u^p .

Remark 3.2. Let G be a locally compact group, let E be a full Hilbert A-module, and let $g \mapsto u_g$ be an action of G on E.

(1) Since the map $a \mapsto L_{a,0,0,0}$ from A to $\mathcal{L}(E)$ identifies A with a locally C^* -subalgebra of $\mathcal{L}(E)$ and

$$\gamma_g^u(L_{a,0,0,0}) = L_{\alpha_g^u(a),0,0,0}$$

for all $a \in A$ and for all $g \in G$, the restriction of γ^u to A can be identified with the action of G on A induced by u.

(2) Since the map $T \mapsto L_{0,0,0,T}$ from K(E) to $\mathcal{L}(E)$ identifies K(E) with a locally C^* -subalgebra of $\mathcal{L}(E)$ and

$$\gamma_g^u(L_{0,0,0,T}) = L_{0,0,0,\beta_g^u(T)}$$

for all $T \in K(E)$ and for all $g \in G$, the restriction of γ^u to K(E) can be identified with the action of G on K(E) induced by u.

Definition 3.3. ([7]) Let G be a locally compact group and let $g \mapsto \alpha_g$ and $g \mapsto \beta_g$ be two continuous inverse limit actions of G on two locally C^* -algebras A and B. We say that the actions α and β are conjugate if there is a an isomorphism of locally C^* -algebras $\varphi: A \to B$ such that $\alpha_g = \varphi^{-1} \circ \beta_g \circ \varphi$ for each $g \in G$.

Definition 3.4. ([7]) Let G be a locally compact group and let $g \mapsto \alpha_g$ and $g \mapsto \beta_g$ be two continuous inverse limit actions of G on two locally C^* -algebras A and B. We say that α and β are strongly Morita equivalent if there is a full Hilbert module E over A, and there is a continuous inverse limit action $g \mapsto u_g$ of G on E such that the actions of G on A respectively K(E) induced by u are conjugate with α respectively β .

Recall that two locally C^* -algebras A and B are two complementary corners in a given locally C^* -algebra C, if there is two projections e and f in the multiplier algebra M(C) of C such that:

(1)
$$A = eCe$$
 and $B = fCf$;

- (2) $e + f = 1_{M(C)}$;
- (3) the locally C^* -subalgebras CeC and CfC of C are dense in C.

The following theorem is a version of Theorem 2.9 [5].

Theorem 3.5. Let G be a locally compact group and let $g \mapsto \alpha_g$ and $g \mapsto \beta_g$ be two continuous inverse limit actions of G on two locally C^* -algebras A and B. Then the actions α and β are strongly Morita equivalent if and only if there is a locally C^* -algebra G such that G and G appear as two complementary full corners in G and there is a continuous inverse limit action $G \mapsto \gamma_g \cap G$ on G such that G and G are invariant to G and the actions $G \mapsto \gamma_g \cap G$ and $G \mapsto \gamma_g \cap G$ on G are respectively G can be identified with G respectively G.

Proof. First we suppose that α and β are strongly Morita equivalent. Let (E,u) be the pair consisting of a full Hilbert A-module and a continuous inverse limit action of G on E which implements a strong Morita equivalence between α and β . Let $C = \mathcal{L}(E)$ and let γ^u be the action of G on C induced by u. Then A and B are isomorphic with two complementary full corners in C (Theorem 2.9 in [5]) and $g \mapsto \gamma_g^u$ is a continuous inverse limit action of G on C such that identifying A and B with corners in C, $\gamma^u|_A = \alpha$ and $\gamma^u|_B = \beta$ (Remark 3.2).

Conversely, we suppose that there is a locally C^* -algebra C such that A and B appear as two complementary full corners in C and there is a continuous inverse limit action $g \mapsto \gamma_g$ of G on C such that A and B are invariant to γ and the actions $g \mapsto \gamma_g|_A$ and $g \mapsto \gamma_g|_B$ of G on A respectively B can be identified with α respectively β . By Proposition 2.8 in [5], the locally C^* -algebras A and C are strongly Morita equivalent. Moreover, if e is a full projection in M(C), the multiplier algebra of C, such that A = eCe, then the Hilbert A-module Ce implements a strong Morita equivalence between A and C. Let $g \in G$. For each $c \in C$, $\gamma_g(ce) \in Ce$, since $\gamma_g(ce)e = \gamma_g(ce)$. Thus we can consider the linear map $u_g : Ce \to Ce$ defined by $u_g(ce) = \gamma_g(ce)$. Since

$$\begin{split} \langle u_g(ce), u_g(de) \rangle &= \langle \gamma_g(ce), \gamma_g(de) \rangle = \gamma_g \left(ec^*de \right) \\ &= \alpha_g \left(ec^*de \right) = \alpha_g \left(\langle ce, de \rangle \right) \end{split}$$

for all $c, d \in C$ and since u_g is invertible and $(u_g)^{-1} = u_{g^{-1}}, u_g \in Aut(Ce)$. It is not difficult to check that $g \mapsto u_g$ is an action of G on Ce. Moreover, since γ is a continuous inverse limit action, u is a continuous inverse limit action.

Since

$$\langle u_a(ce), u_a(de) \rangle = \alpha_a (\langle ce, de \rangle)$$

for all $g \in G$ and for all $c, d \in C$, $\alpha^u = \alpha$. From

$$\beta_g^u(\theta_{ce,d^*e}) = \theta_{u_g(ce),u_g(d^*e)} = \theta_{\gamma_g(ce),\gamma_g(d^*e)}$$

for all $g \in G$ and for all $c, d \in C$, and taking into account that CeC is dense in C and an element ced in C can be identified with the element θ_{ce,d^*e} in K(Ce), we deduce that the actions β^u and γ are conjugate. Thus we proved that the actions α and γ are strongly Morita equivalent. In the same way we show that the actions β and γ are equivalent, and since the strong Morita equivalence is an equivalence relation [7], the actions α and β are strongly Morita equivalent.

Using Lemma 5.2 in [11] and Theorem 3.5 we obtain the following corollary.

Corollary 3.6. Let G be a compact group and let $g \mapsto \alpha_g$ and $g \mapsto \beta_g$ be two continuous actions of G on two locally C^* -algebras A and B. Then the actions α and β are strongly Morita equivalent if and only if there is a locally C^* -algebra C such that A and B appear as two complementary full corners in C and there is a continuous inverse limit action $g \mapsto \gamma_g$ of G on C such that A and B are invariant to γ and the actions $g \mapsto \gamma_g|_A$ and $g \mapsto \gamma_g|_B$ of G on A respectively B can be identified with α respectively β .

References

- [1] Bakic, D. and Guljas, B., On a class of module maps of Hilbert C*-modules, Math. Commun. 7 (2002), no. 2, 177–192.
- [2] Combes, F., Crossed products and Morita equivalence, Proc. London Math. Soc. 49(1984),289-306
- [3] Inoue, A., Inverse limit of C* -algebras, Mem. Faculty Sci. Kyushu Univ. Ser. A, 25(1971), 197-235.
- [4] Joita, M., Morita equivalence for locally C^* -algebras, Bull. London Math. Soc. **36**(2004), 802-810.
- [5] Joita, M., On the linking algebra of a Hilbert module and strong Morita equivalence of locally C*-algebras, Surveys in Mathematics and its Applications, 1(2006), 23–32 (Proceedings of Operator Models and Applications-OMA2006, ISBN 973-7637-63-1, 978-973-7637-63-5).
- [6] Joita, M., Crossed products of locally C*-algebras, Rocky Mountain J. Math. (to appear), math.OA/0512128.
- Joiţa, M., Crossed products of locally C*-algebras and Morita equivalence, The International Congress of Mathematicians (ICM 2006), Spanish , Madrid, 22 August 2006-30 August 2006, arXiv:0705.3810v1.
- [8] Joiţa, M., Hilbert modules over locally C* -algebras, University of Bucharest Press, (2006), 150 pg. ISBN 973737128-3.
- [9] Mallios, A., Topological algebras: Selected Topics, North Holland, Amsterdam, 1986.
- [10] Phillips, N.C., Inverse limits of C^* -algebras, J. Operator Theory, 19 (1988), 159-195

- [11] Phillips, N.C., Representable K-theory for σ -C*-algebras, K-Theory, 3 (1989), 5, 441–478.
- [12] Raeburn, I. and Williams, P.D., Morita equivalence and continuous-trace C^* -algebras, Mathematical Surveys and Monographs, 60. American Mathematical Society, Providence, RI, 1998. xiv+327 pp. ISBN: 0-8218-0860-5.

Department of Mathematics, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta nr. 4-12, Bucharest, Romania mjoita@fmi.unibuc.ro