

Container Transportation Company

Challenge

- Top Management has challenged regional manager Mr. Thomas to optimize profit and revenues.
 - Find optimal containers of type 20T and 40T to maximize revenue
 - Explore dynamic pricing to enhance revenue
- Concepts and Methods
 - Linear Programming
 - Excel Solver
 - Dynamic Pricing
 - Revenue Management

Decision Variables

- Let X_{ij} be the number of containers of type i be loaded at port j
- Where i is (20T type, 40T type) and
- Where j is (Japan, China, Hong Kong, Indonesia, India, Korea, Malaysia, Singapore, Taiwan, Thailand)

Objective Function

- $Max \ z = \sum_{i \in (20T, 40T)} \sum_{j \in (J, C, HK, IDR, IND, K, M, S, TW, TH)} (p_{ij} * X_{ij})$
- Price per container of each type at each port is multiplied by number of 20T containers and 40T containers respectively.
- $\bullet \ p_{40Tj} = 2 * p_{20Tj}$

Constraints

- Demand Constraint: Sum of TEU of each container types should not exceed demand at each port.
- Volume Constraint: Sum of the volume of each container type loaded on vessel should not exceed vessel volume capacity (2000 TEU)
- Weight Constraint: Sum of the weight of each container type loaded on vessel should not exceed vessel weight capacity (24000 tons)
- Ratio Constraint: Ratio N(40T)/N(20T) should be between 1.2 and 2
- During high season 95% loading and during low season 90% loading is to be used for volume and weight both
- Standard Non-negativity Constraints.

Formulation Template (High Demand)

Port	\$/TEU	HSD	20%	40% 2	OT Wt	40T Wt		Container Ratio	20T X	40T Y	LHS D	RHS	LHS V	VT
Japan	940	320	0.3	0.7	20	24		96 >=	96.0	112.0	320 <=	320	4608	
China	878	68	0.4	0.6	18	23		27 >=	27.2	20.4	68 <=	68	959	
Hong Kong	766	737	0.42	0.58	19	22		310 >=	309.5	213.7	737 <=	737	10583	
Indonesia	840	68	0.4	0.6	21	25		27 >=	27.2	15.2	57.633 <=	68	952	
India	790	340	0.4	0.6	22	22		136 >=	99.1	120.4	340 <=	340	4830	
Korea	710	35	0.46	0.54	21	25		16 >=	0.0	0.0	0 <=	35	0	
Malaysia	643	138	0.54	0.46	20	22		75 >=	0.0	0.0	0 <=	138	0	
Singapore	649	43	0.39	0.61	19	25		17 >=	16.8	0.0	16.77 <=	43	319	
Taiwan	702	41	0.41	0.59	19	19		17 >=	16.8	12.1	41 <=	41	549	
Thailand	663	9	0.2	8.0	23	26		2 >=	0.0	0.0	0 <=	9	0	
											1580.4 <=	1900	22800 <	= 22800
Max Z =	1281723								592.65	493.876	0 >=	0		
											-395.101 <=	0		
		Object	tive Fu	nction										
		Decisi	on var	iables										
		Demand Constraint Weight Constraint Volume Constraint												
		Conta	iner Ra	atio cons	straint									
		1.2 Ra	atio low	ver limit										
		2.0 Ra	itio Up	per limit	:									

Formulation Template (Low Demand)

Port	\$/TEU	HSD	20%	40% 20	0T Wt	40T Wt	Conta	ainer Ratio		20T X	40T Y	LHS	D	RHS	LHS	WT	
Japan	940	286	0.3	0.7	20	24		86 >=		85.8	100.1	286	<=	286	411	8	
China	878	61	0.4	0.6	18	23		24 >=		24.4	18.3	61	<=	61	86	0	
Hong Kong	766	660	0.42	0.58	19	22	2	277 >=		277.2	191.4	660	<=	660	947	8	
Indonesia	840	61	0.4	0.6	21	25		24 >=		24.4	18.3	61	<=	61	97	0	
India	790	304	0.4	0.6	22	22	1	22 >=		43.3	130.3	304	<=	304	382	1	
Korea	710	31	0.46	0.54	21	25		14 >=		14.3	0.0	14.26	<=	31	29	9	
Malaysia	643	123	0.54	0.46	20	22		66 >=		63.8	0.0	63.8335	<=	123	127	7	
Singapore	649	38	0.39	0.61	19	25		15 >=		14.8	0.0	14.82	<=	38	28	2	
Taiwan	702	37	0.41	0.59	19	19		15 >=		15.2	10.9	37	<=	37	496		
Thailand	663	8	0.2	8.0	23	26		2 >=		0.0	0.0	0	0 <= 8		0		
												1501.91	<=	1800	2160	0 <=	21600
Max Z =	1206120									563.22	469.348	0	>=	0			
												-375.478	<=	0			
		Objec	tive Fu	nction													
		Decis	on var	iables													
		Demand Constraint															
		Weigh	Weight Constraint														
		Volume Constraint															
		Container Ratio constraint															
		1.2 Ratio lower limit															
		2.0 Ratio Upper limit															

Solve using Solver

- Microsoft Excel can solve this linear program using Solver package which is available in the Excel Add-ons
- The snapshot of potential solution is shown.
- You can schedule a call for constraint formulation if you face difficulty

Revenue Management

- Currently, Price and Demand is given as constants
- Now we will introduce the price volume flexibility in formulation.
- Step 1:
 - Estimate Demand curve.
 - Slope = 0.05 * Demand / -0.03 * Price (for High Demand Season)
 - Slope = 0.10 * Demand / -0.05 * Price (for Low Demand Season)
 - Intercept = Demand Slope * Price
 - Get the equation in y = m*x + c format
 - i.e. Demand = Slope * Price + Intercept

Revenue Management

• Step 2:

- Estimate demand curve for each port.
- i.e. 10 for high season and 10 for low season

• Step 3:

- Assume that demand curve is linear at the point it is currently estimated.
- Using the estimated slope make the demand a function of price.
- Now price can be introduced as new variable.

• Step 4:

• Run the solver program again including new constraint

New Optimum (High Demand)

Port	\$/TEU	HSD	20%	40%	20T Wt	40T Wt	20	40	LHS	D	RHS	LHS	WT	Container Ratio	Slope	Intercept
Japan	1059.9	320	0.3	0.7	20	24	75.6	88.2	251.951	<=	252	3628		75.6	-0.57	853.3
China	1013.0	68	0.4	0.6	18	23	23.4	17.6	58.5724	<=	58.6	826		23.4	-0.13	189.3
Hong Kong	980.3	737	0.42	0.58	19	22	282.4	195.0	672.455	<=	672	9656		282.4	-1.60	2244.4
Indonesia	1038.1	68	0.4	0.6	21	25	21.9	16.4	54.7691	<=	54.8	871		21.9	-0.13	194.8
India	1012.9	340	0.4	0.6	22	22	68.6	109.5	287.701	<=	288	3920		115.1	-0.72	1014.3
Korea	996.0	35	0.46	0.54	21	25	14.0	8.2	30.3961	<=	30.4	499		14.0	-0.08	112.2
Malaysia	947.1	138	0.54	0.46	20	22	73.2	31.2	135.477	<=	135	2149		73.2	-0.36	474.2
Singapore	965.6	43	0.39	0.61	19	25	15.7	12.3	40.1764	<=	40.2	604		15.7	-0.11	146.8
Taiwan	943.9	41	0.41	0.59	19	19	16.7	12.0	40.6241	<=	40.6	544		16.7	-0.10	132.5
Thailand	1014.7	9	0.2	8.0	23	26	0.8	3.2	7.31046	<=	7.31	103		1.5	-0.02	30.3
							592.29	493.573	1579.43	<=	1900	22800	<=	22800		
	1576966.14								2E-07	<=	0				0	

New Optimum (Low Demand)

Port	\$/TEU	HSD	20%	40%	20T Wt	40T Wt	20	40	LHS	D	RHS		LHS	WT		Slope	Intercept
Japan	1082.8	286	0.3	0.7	20	24	71.7	83.6	238.955	<=	239	0	3441		72	-0.57	853.3
China	1033.2	61	0.4	0.6	18	23	22.4	16.8	55.9646	<=	56	0	789		22	-0.13	189.3
Hong Kong	1001.1	660	0.42	0.58	19	22	268.4	185.3	639.068	<=	639	0	9177		268	-1.60	2244.4
Indonesia	1062.3	61	0.4	0.6	21	25	20.6	15.4	51.4976	<=	51.5	0	819		21	-0.13	194.8
India	1035.7	304	0.4	0.6	22	22	64.5	103.5	271.388	<=	271	0	3694		109	-0.72	1014.3
Korea	1020.2	31	0.46	0.54	21	25	13.1	7.7	28.4077	<=	28.4	0	466		13	-0.08	112.2
Malaysia	968.0	123	0.54	0.46	20	22	69.1	29.4	127.97	<=	128	0	2030		69	-0.36	474.2
Singapore	987.0	38	0.39	0.61	19	25	14.7	11.5	37.813	<=	37.8	0	569		15	-0.11	146.8
Taiwan	962.9	37	0.41	0.59	19	19	15.9	11.4	38.7724	<=	38.8	0	519		16	-0.10	132.5
Thailand	1040.2	8	0.2	0.8	23	26	8.0	2.9	6.73341	<=	6.73	0	96		1	-0.02	30.3
							561.21	467.678	1496.57	<=	1800	303	21600	<=	21600		
	1526619.08								4.5E-07	<=	0	0				0	

Points to Note

- Observe how the demand is met completely now after RM.
- Study the Sensitivity and Limit Reports to understand the outcome
- Important concepts to understand here.
 - Shadow Price / Dual / Lagrangian Multiplier.
 - Writing constraints in excel for solver.