Tasks

Hee Hwang and Sudarshan Raghavan

May 12, 2021

1 Baseline

ACL: Citation Intent Classification Hyper: HyperPartisan News Detection RCT: Randomized Controlled Trials

1.1 Baseline

Task	train	dev	test	Classes
ACL	1688	114	139	6
Hyper	516	64	65	2
RCT-sample	500	30212	30135	5
RCT-200k	180040	30212	30135	5

2 Tables & Plots

2.1 Augmentation by Distance

2.1.1 Size Table

Max Distance	ACL	Hyper	RCT_{sample}
Baseline	1688 (100%)	516 (100%)	500(100%)
24	1746 (103%)	551 (106%)	686(137%)
26	1815 (107%)	567 (109%)	831(166%)
28	1981 (117%)	606 (117%)	1065(213%)
30	2253 (133%)	656 (127%)	1484(296%)
32	2842 (168%)	742 (143%)	2105(421%)
34	3848 (227%)	911 (176%)	2952(590%)
36	5819 (344%)	1127 (218%)	4196(839%)

2.1.2 Size Plot

2.1.3 F1 Table

Max Distance	ACL	Hyper	RCT_{sample}
Baseline	62.70	90.24	73.60
24	$65.77(\pm\ 7.40)$	$92.68(\pm\ 3.29)$	$69.33(\pm 0.73)$
26	$66.79(\pm\ 3.07)$	$90.63(\pm 5.92)$	$67.31(\pm\ 1.96)$
28	$63.93(\pm\ 3.67)$	$92.66(\pm 4.39)$	$63.91(\pm\ 1.25)$
30	$62.57(\pm\ 2.70)$	$89.60(\pm\ 5.04)$	$60.43(\pm 0.64)$
32	$64.83(\pm\ 5.28)$	$90.15(\pm\ 5.22)$	$57.23(\pm\ 1.27)$
34	$57.06(\pm\ 3.05)$	$88.36(\pm\ 3.26)$	$54.36(\pm\ 1.31)$
36	$56.20(\pm 4.21)$	$89.49(\pm\ 2.40)$	$52.76(\pm\ 0.85)$

2.1.4 F1 Plot

Augmentation by Maximum Distance

2.2 Augmentation by Fixed Size

2.2.1 F1 Table

Aug Data	ACL	Hyper	RCT_{sample}
Baseline	62.70	90.24	73.60
1	$65.28(\pm\ 5.05)$	$89.12(\pm\ 7.31)$	$71.65(\pm 1.97)$
2	$64.71(\pm\ 3.61)$	$90.74(\pm\ 3.94)$	$71.20(\pm 0.99)$
3	$66.73(\pm\ 3.72)$	$90.94(\pm\ 4.54)$	$72.04(\pm 0.20)$
4	$65.26(\pm\ 3.20)$	$92.64(\pm 4.59)$	$72.27(\pm\ 1.31)$
5	$65.80(\pm\ 3.10)$	$93.28(\pm\ 2.62)$	$71.68(\pm 0.71)$
6	$65.39(\pm 4.23)$	$89.11(\pm\ 5.22)$	$71.96(\pm 0.87)$
7	$63.25(\pm\ 2.51)$	$89.90(\pm 4.97)$	$71.78(\pm 1.07)$
8	$65.81(\pm\ 2.13)$	$87.84(\pm 6.20)$	$71.75(\pm 0.66)$
9	$66.85(\pm\ 6.14)$	$91.23(\pm\ 2.50)$	$71.77(\pm 0.97)$
10	$62.68(\pm\ 3.29)$	$91.54(\pm 4.01)$	$71.32(\pm 0.54)$

2.2.2 F1 Plot

Augmentation by Size (Non-cumulative)

3 Baseline models:

• An off-the-shelf RoBERTa model that has been finetuned to perform classification for each of the downstream tasks

4 Augmentation Model

5 Algorithm

- 1. Extract failed test examples from the baseline model
- 2. Retrieve passages/sentences from Common Crawl
- 3. Apply augmentation strategy (i)-(iii)
- 4. Augment all the labelled CC data to the training data
- 5. Retrain RoBERTa on the augmented training set

6 Augmentation Strategies

- Strategy (i)
 Use baseline model (Teacher) to perform unsupervised labelling on retrieved CC data
- Strategy (ii)
 Using a task specific binary classifier, filter out retrieved CC data that is "out-domain"
 Use baseline model (Teacher) to perform unsupervised labelling on the filtered "in-domain" CC data
- Strategy (iii)
 Using a task specific binary classifier, filter out retrieved CC data that is "out-domain"
 Use ground truth labels of failed test examples and assign labels to the filtered "in-domain" CC data