ASSIGNMENT 12

1

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ 2024 JANUARY 30, SHIFT 2

1)	If $F(s) =$	$\tan^{-1}(s$	(s) + k is	the	Laplace	transform	of	some	function	f(t)	t), t	\geq	0,
	then k is:												

c) 0

d) $\frac{\pi}{2}$

•	•	2	
2) Suppose $y_p(x) = x \cos(2x)$ the constant α equals:	e) is a particular solution	of $y'' + \alpha y = -4 \operatorname{si}$	$\ln{(2x)}$. Then

- b) -2c) 2 a) -4d) 4
- 3) Let $S = [(0,1,1), (1,0,1), (-1,2,1)] \subseteq \mathbb{R}^3$. Suppose \mathbb{R}^3 is endowed with the standard inner product $\langle \cdot, \cdot \rangle$. Define $M = [x \in \mathbb{R}^3 : \langle x, y \rangle = 0$ for all $y \in S$]. Then the dimension of M equals:
 - a) 0 b) 1 c) 2 d) 3
- 4) Let X be an uncountable set and let $\mathscr{T} = [U \subseteq X : U = \emptyset \text{ or } U^c \text{ is finite}]$. Then the topological space (X, \mathcal{T}) :
 - a) is separable

a) $-\pi$

- b) is Hausdorff
- c) has a countable basis
- d) has a countable basis at each point

b) $-\frac{\pi}{2}$

- 5) Suppose (X, \mathcal{T}) is a topological space. Let $[S_n]_{n\geq 1}$ be a sequence of subsets of X. Then:
 - a) $(S_1 \cup S_2)^c = S_1^c \cup S_2^c$
 - b) $(\bigcup_n S_n)^c = \bigcup_n S_n^c$ c) $\bigcup_n S_n = \bigcup_n \overline{S_n}$ d) $\overline{S_1 \cup S_2} = \overline{S_1 \cup S_2}$
- 6) Suppose (X, d) is a metric space. Consider the metric ρ on X defined by:

$$\rho(x,y) = \min \left[\frac{1}{2}, d(x,y)\right], \quad x, y \in X.$$

Suppose \mathcal{T}_1 and \mathcal{T}_2 are topologies on X defined by d and ρ , respectively. Then:

- a) \mathcal{T}_1 is a proper subset of \mathcal{T}_2
- b) \mathcal{T}_2 is a proper subset of \mathcal{T}_1
- c) Neither $\mathscr{T}_1 \subseteq \mathscr{T}_2$ nor $\mathscr{T}_2 \subseteq \mathscr{T}_1$
- d) $\mathscr{T}_1 = \mathscr{T}_2$

7) A basis of $V = [(x, y, z, w) \in \mathbb{R}^4 : x + y - z = 0, y + z + w = 0, 2x + y - 3z - w = 0]$ is:

a) b)
$$[(1,-1,0,1)]$$
 d) $[(1,1,-1,0),(0,1;1,[(1,0;1,-13],1)]$ $[(1,-1,0,1),(1,0,1,-1)]$

8) Consider \mathbb{R}^3 with the standard inner product. Let

$$S = [(1, 1, 1), (2, -1, 2), (1, -2, 1)].$$

For a subset W of \mathbb{R}^3 , let L(W) denote the linear span of W in \mathbb{R}^3 . Then an orthonormal set T with L(S) = L(T) is

- a) $\left[\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{6}}(1,-2,1)\right]$ b) $\left[(1,0,0), (0,1,0), (0,0,1)\right]$
- c) $\left| \frac{1}{\sqrt{3}} (1,1,1), \frac{1}{\sqrt{2}} (1,-1,0) \right|$
- d) $\left[\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(0,1,-1)\right]$
- 9) Let A be a 3×3 matrix. Suppose that the eigenvalues of A are -1, 0, 1 with respective eigenvectors $(1, -1, 0)^T$, $(1, 1, -2)^T$, and $(1, 1, 1)^T$. Then 6A equals:
 - a) $\begin{bmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ c) $\begin{bmatrix} -2 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$
- 10) A matrix is called row stochastic if the sum of each of its row entries is 1. Suppose P is a row stochastic matrix of size 4×4 . Then for any $\mathbf{x} \in \mathbb{R}^4$ and for any $n \ge 0$,

$$\mathbf{1}^T P^n \mathbf{x} =$$

- a) 1
- b) 0
- c) $\mathbf{1}^T \mathbf{x}$
- d) x
- 11) Consider the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Let $B = A^n$ for $n \ge 1$. Then B equals:
 - a) $2^{n-1}A$
 - b) *nA*
 - c) $2^{n-2}A$
 - d) A^2
- 12) Let

$$u(x,y) = f(xe^x) + g(y^2\cos(y)),$$

where f and g are infinitely differentiable functions. Then the partial differential equation of minimum order satisfied by u is

- a) $u_{xx} + xu_{xy} = u_x$
- b) $u_{yy} + xu_{xx} = xu_x$
- c) $u_{yy} xu_{xy} = u_x$
- $d) \ u_{yy} xu_{xx} = xu_x$
- 13) Let C be the boundary of the triangle formed by the points (1,0,0), (0,1,0), (0,0,1). Then the value of the line integral

$$\int_C -2y \, dx + \left(3x - 4y^2\right) \, dy + \left(z^2 + 3y\right) \, dz$$

is

- a) 0
- b) 1
- c) 2
- d) 4
- 14) Let X be a complete metric space and let $E \subseteq X$. Consider the following statements:
 - a) E is compact,
 - b) E is closed and bounded,
 - c) E is closed and totally bounded,
 - d) Every sequence in E has a subsequence converging in E.

Which one of the above statements does NOT imply all the other statements?

a) S_1

- b) S_2
- c) S_3
- d) S_4

15) Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \sin\left(nx\right).$$

Then the series

- a) converges uniformly on \mathbb{R}
- b) converges pointwise but NOT uniformly on $\mathbb R$
- c) converges in L^1 norm to an integrable function on $[0,2\pi]$ but does NOT converge uniformly on $\mathbb R$
- d) does NOT converge pointwise
- 16) Let f(z) be an analytic function. Then the value of

$$\int_0^{2\pi} f\left(e^{it}\right) \cos\left(t\right) dt$$

equals

- a) 0
- b) $2\pi f(0)$
- c) $2\pi f'(0)$
- d) $\pi f'(0)$

17) Let G_1 and G_2 be the images of the disc $[z \in \mathbb{C} : |z+1| < 1]$ under the transformations

$$w = \frac{(1-i)z + 2}{(1+i)z + 2}$$

and

$$w = \frac{(1+i)z + 2}{(1-i)z + 2}$$

respectively. Then

- a) $G_1 = [w \in \mathbb{C} : \operatorname{Im}(w) < 0]$ and $G_2 = [w \in \mathbb{C} : \operatorname{Im}(w) > 0]$
- b) $G_1 = [w \in \mathbb{C} : \text{Im}(w) > 0]$ and $G_2 = [w \in \mathbb{C} : \text{Im}(w) < 0]$
- c) $G_1 = [w \in \mathbb{C} : |w| > 2]$ and $G_2 = [w \in \mathbb{C} : |w| < 2]$
- d) $G_1 = [w \in \mathbb{C} : |w| < 2]$ and $G_2 = [w \in \mathbb{C} : |w| > 2]$