Cracking the Code Word

USING GENETIC ALGORITHMS FOR CRYPTANALYSIS

BY AMANDA RAMPERSAD

Why?

- Most ciphers fall into two categories substitution ciphers and transposition ciphers
- In either case, finding the encryption keyword or permutation by using brute force involves high computational complexity
- Search space may be finite, but its sheer size is cumbersome to deal with
- While a random search may not be efficient, a random search with *direction* could prove to be effective and efficient

GA Design Details

Representation

- Chromosome is a string of variable length
- Genes are letters of the English alphabet
- Class containing the chromosome and its fitness will represent individuals of the population

```
Class Individual {
    String chromosome;
    double fitness;
}
```

GA Design Details (continued)

Fitness

$$C_{k} = \alpha \cdot \sum_{i \in A} \left| K_{(i)}^{u} - D_{(i)}^{u} \right| + \beta \cdot \sum_{i,j \in A} \left| K_{(i,j)}^{b} - D_{(i,j)}^{b} \right|$$

$$+ \gamma \cdot \sum_{i,j,k \in A} \left| K_{(i,j,k)}^{t} - D_{(i,j,k)}^{t} \right|$$

- A = alphabet, K = known language statistics, D = decrypted message statistics
- u, b, t = unigram, bigram, trigram statistics
- Alpha, beta, gamma = weights of each n-gram

GA Design Details (continued)

Selection

- Create mating pool consisting of top 5 keywords from each length
- After performing crossover and mutation on each member of the mating pool, select the top members such that old population is fully replaces

Crossover

Basic single point crossover that produces two children

Mutation

 Mutate single randomly chosen gene (letter) of the given chromosome (string)

Experiment Details

Testing

- o Will run several test cases on both existing GA and my GA
- o Both use Vigenere cipher, so data will be comparable

Test data

- Existing texts, i.e. Gettysburg Address, excerpts from well known texts
 - ▼ Allows for reasonable n-gram frequencies

Goals

- Compare fixed key length search to variable key length search
- See how close to finding keyword I can get in a reasonable amount of time

Visualization

- Sample population sorted by fitness
- The smaller the fitness value, the better in this particular experiment because of the use of relative error

```
mysdrnlsgtrt 1.127279397177584
tzcrjdpbeqzs 1.125879180427208
sewpacovremq 1.1137206161071167
ymsfvwjihuai 1.1036950975959354
uaxnbrdxhiyd 1.0969832546350786
cvjwroizyabs 1.0826205107617726
rvfdjeahykny 1.0802376272825795
agyiyflaodjm 1.0497092136389594
oyuijvkbqrwr 1.0308012936268396
ljuwavrygzos 0.9891851140270124
```