

Design and Analysis of Algorithms Algorithm Analysis

Si Wu

School of CSE, SCUT cswusi@scut.edu.cn

TA: 1684350406@qq.com

- Polynomial Running time
- Asymptotic Growth
- O-notation
- Ω -notation
- Θ-notation

Brute force. For many nontrivial problems, there is a natural brute-force search algorithm that checks every possible solution.

• Typically takes 2^n time or worse for inputs of

size n.

Unacceptable in practice.

Polynomial Running time

Desirable Scaling Property. When the input size doubles, the algorithm should slow down by at most some constant factor *C*.

An algorithm is poly-time if the above scaling property holds.

There exist constants c > 0 and d > 0 such that, for every input of size n, the running time of the algorithm is bounded above by cn^d primitive computational steps.

Polynomial Running time

We say that an algorithm is **efficient** if it has a polynomial running time.

It really works in practice

- In practice, the poly-time algorithms that people develop have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions. Some poly-time algorithms do have high constants and/or exponents are useless in practice.

Which would you prefer $20n^{120}$ vs. $n^{1+0.02lgn}$?

Linear Running Time

Merge. Combine two sorted lists A and B into sorted whole.


```
\label{eq:continuous_problem} \begin{split} i &= 1, \ j = 1 \\ \text{while (both lists are nonempty) } \{ \\ &\quad \text{if } (a_i \leq b_j) \text{ append } a_i \text{ to output list and increment i} \\ &\quad \text{else} \qquad \text{append } b_j \text{ to output list and increment j} \\ \} \\ &\quad \text{append remainder of nonempty list to output list} \end{split}
```

Merging two lists, each of length n, takes O(n) time. After each compare, the length of output list increases by 1.

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Types of Analyses

- Worst case. Running time guarantee for any input of size n.
- Probabilistic. Expected running time of a randomized algorithm.
- Average-case. Expected running time for a random input of size n.

Worst-Case Analysis

Worst case. Running time guarantee for any input of size n.

- Generally captures efficiency in practice.
- But hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice because the worst-case instances seem to be rare.

In the insertion-sort example, we discussed that when analyzing algorithms we are

- interested in worst-case running time as function of input size n.
- not interested in exact constants in bound.
- not interested in lower order terms.

Asymptotic Growth

We want to express rate of growth of standard functions:

- -the leading term with respect to n.
- -ignoring constants in front of it

Ex.
$$k_1n + k_2 \sim n$$

 $k_2n\log n \sim n\log n$
 $k_1n^2 + k_2n + k_3 \sim n^2$

We also want to formalize e.g. that a *nlogn* algorithm is better than a n^2 algorithm.

O-notation

 $O(g(n)) = \{f(n): \text{ There exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$

- --O(.) is used to asymptotically upper bound a function.
- --O(.) is used to bound worst-case running time.

Ex.
$$f(n) = 32n^2 + 17n + 1$$

- f(n) is $O(n^2)$
- f(n) is also $O(n^3)$
- f(n) is neither O(n) nor O(nlgn)

Typical usage. Insertion-Sort makes $O(n^2)$ compares to sort n elements.

Notational abuses

O(q(n)) is a set of functions, but computer scientists often write f(n) = O(g(n)) instead of $f(n) \in O(g(n))$

Ex. Consider $f(n) = 5n^3$ and $g(n) = 3n^2$

- We have $f(n) = O(n^3) = g(n)$. Thus, f(n) = g(n).

Non-negative functions. When using big O notation, we assume that the functions involved are non-negative.

O-notation

Ex.

- $1/3n^2 3n \in O(n^2)$ Because $1/3n^2 - 3n \le cn^2$ if $c \ge 1/3-3/n$ which holds for c = 1/3 and n > 1.
- $k_1 n^2 + k_2 n + k_3 \in O(n^2)$ Because $k_1 n^2 + k_2 n + k_3 \le (k_1 + |k_2| + |k_3|) n^2$ and for $c > k_1 + |k_2| + |k_3|$ and $n \ge 1$, $k_1 n^2 + k_2 n + k_3 \le c n^2$.
- $k_1 n^2 + k_2 n + k_3 \in O(n^3)$ As $k_1 n^2 + k_2 n + k_3 \le (k_1 + |k_2| + |k_3|) n^3$ (upper bound).

Note:

When we say "the running time is $O(n^2)$ " we mean that the worst-case running time is $O(n^2)$ – the best case might be better.

Use of O-notation often makes it much easier to analyze algorithms; we can easily prove the insertion-sort time bound $O(n^2)$.

Ω-notation

 $\Omega(g(n)) = \{f(n): \text{ There exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$

• We use Ω -notation to give a lower bound on a function.

Ex.
$$f(n) = 32n^2 + 17n + 1$$

- f(n) is both $\Omega(n^2)$ and $\Omega(n)$
- f(n) is neither $\Omega(n^3)$ nor $\Omega(n^3lgn)$

Typical usage. Any compare-based sorting algorithm requires $\Omega(nlgn)$ compares in the worst case.

Ω-notation

Ex.

- $1/3n^2 3n \in \Omega(n^2)$ Because $1/3n^2 - 3n \ge cn^2$ if $c \le 1/3 - 3/n$ which holds for c = 1/6 and n > 18.
- $k_1n^2+k_2n+k_3 \in \Omega(n^2)$
- $k_1n^2+k_2n+k_3\in\Omega(n)$

Note:

When we say "the running time is $\Omega(n^2)$ " we mean that the best-case running time is $\Omega(n^2)$ — the worst case might be worse.

Insertion-Sort:

- Best case: $\Omega(n)$ when the input array is already sorted.
- Worst case: $O(n^2)$ when the input array is reverse sorted.

Θ-notation

 $\Theta(g(n)) = \{f(n): \text{ There exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

- We use Θ -notation to give a tight bound on a function.
- $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Ex.
$$f(n) = 32n^2 + 17n + 1$$

- f(n) is $\Theta(n^2)$
- f(n) is neither $\Theta(n)$ nor $\Theta(n^3)$

Typical usage. Merge-Sort makes $\Theta(nlgn)$ compares to sort n elements.

Θ-notation

Ex.

- $k_1n^2+k_2n+k_3 \in \Theta(n^2)$
- $6nlogn + \sqrt{n}log^2n = \Theta(nlogn)$

We need to find c_1 , c_2 , $n_0 > 0$ such that $c_1 n \log n \le 6 n \log n$

- $+\sqrt{n}\log^2 n \le c_2 n \log n \text{ for } n \ge n_0.$
- > $c_1 n log n \le 6 n log n + \sqrt{n} log^2 n \rightarrow c_1 \le 6 + log n / \sqrt{n}$, which is true if we choose $c_1 = 6$ and $n_0 = 1$.
- > $6nlogn + \sqrt{n}log^2n \le c_2nlogn \rightarrow 6 + logn/\sqrt{n} \le c_2$, which is true if we choose $c_2 = 7$ and $n_0 = 2$. This is because $logn \le \sqrt{n}$ if $n \ge 2$. So $c_1 = 6$, $c_2 = 7$ and $n_0 = 2$ works.

Useful Facts

• If $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c>0$, then f(n) is $\Theta(g(n))$.

By definition of the limit, there exists n_0 such that for all $n \geq n_0$

$$\frac{1}{2}c \leq \frac{f(n)}{g(n)} \leq 2c$$

Thus, $f(n) \le 2cg(n)$ for all $n \ge n_0$, which implies f(n) is O(g(n)).

Similarly, $f(n) \ge \frac{1}{2} cg(n)$ for all $n \ge n_0$, which implies f(n) is $\Omega(g(n))$.

• If $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$, then f(n) is O(g(n)) but not $\Theta(g(n))$.