

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING) AND COMPUTER SCIENCE AND ENGINEERING (CYBER SECURITY)

CIP67/CYP67: MINI PROJECT TERM: March - June 2025

PROJECT SYNOPSIS Privacy-First P2P File Sharing Network

PROJECT TEAM MEMBERS

Sl. No	USN	Name
1	1MS22CI063	Shobhit Srivastava
2	1MS22CY006	Anant Sharma
3	1MS22CY010	Aryaman Prakash
4	1MS22CY069	Suryansh Prajapati

Privacy-First P2P File Sharing Network

M.S. RAMAIAH INSTITUTE OF TECHNOLOGY

(Autonomous Institute, Affiliated to VTU)

Project Stream: Networking and Data Privacy

Problem Statement: Traditional P2P file-sharing systems are vulnerable to surveillance, censorship, and advanced attacks. This project aims to build a privacy-first, decentralized file-sharing network that resists such threats.

Novelty: The project integrates secure protocols, metadata obfuscation, and decentralized architecture into a unified system — featuring chunk-level encryption to ensure even partial data remains unintelligible without full reconstruction.

Objective:

- 1. Set up a basic P2P network with Distributed Hash Table (DHT) for decentralized peer discovery.
- 2. Implement secure file transfer with chunk-level data encryption to prevent unauthorized access to partial files.
- 3. Introduce metadata obfuscation and basic traffic masking to conceal file details and improve privacy.

Scope of the Project:

- Societal Impact: Promotes private, secure, and censorship-resistant file sharing.
- Sustainability: Decentralized content sharing reduces reliance on centralized servers.
- Market Analysis: Rising demand for privacy-first, secure file-sharing platforms.
- **Future Scope:** Quantum safe encryption for future protection.

What contribution would the project make to society?

Empowers users with a secure, resilient, and privacy-driven file-sharing network that safeguards against surveillance and emerging threats.

Hardware & Software to be used:

- **Hardware:** Standard computing devices with multi-core processors and network adapters.
- **Software:** Python/C++ for development, liboqs for advanced encryption, Kademlia DHT library, Wireshark for traffic analysis.

References:

Encrypted P2P Network Research

• GNUnet: https://en.wikipedia.org/wiki/GNUnet

• IPFS (InterPlanetary File System):

 $\underline{https://en.wikipedia.org/wiki/InterPlanetary_File_System}$

- Freenet: https://www.whonix.org/wiki/Freenet
- I2P (Invisible Internet Project): https://geti2p.net/en/
- NAT Traversal Techniques:

https://www.ijcaonline.org/archives/volume176/number8/chowdhury-2020

Privacy-Preserving Peer Discovery:
 https://opendl.ifip-tc6.org/db/conf/networking/networking2021

• Distributed Hash Tables & Routing: https://florian.adamsky.it/

Secure Torrenting and P2P File-Sharing Research

- Tribler: https://en.wikipedia.org/wiki/Tribler
- libtorrent (Rasterbar): https://en.wikipedia.org/wiki/Libtorrent
- BitTorrent Protocol Encryption (MSE/PE): https://en.wikipedia.org/wiki/BitTorrent protocol encryption
- DHT Security and Measurements: https://arxiv.org/abs/2401.12345
- Protocol Encryption & Obfuscation:
 https://en.wikipedia.org/wiki/BitTorrent_protocol_encryption

Quantum-Resistant Encryption Research (Future prospects)

• Open Quantum Safe (OQS): https://openguantumsafe.org/

• PQClean: https://github.com/PQClean/PQClean

• Rosenpass: https://rosenpass.eu/

- Post-Quantum Cryptography Overview: https://arxiv.org/abs/2301.00001
- NIST PQC Standards (2022): https://en.wikipedia.org/wiki/Post-quantum_cryptography#NIST_PQC_project
- Lattice-Based and Hash-Based Innovations: https://eprint.iacr.org/2019/489

Guide Comments:

Signature of the Guide with date: