Algebra: Chapter 0 Exercises Chapter 2, Section 1

David Melendez

May 21, 2017

Problem 2.2. If $d \leq n$, then S_n contains elements of order d.

Proposition. Let c_d , called a d-cycle in S_n , be defined as follows:

$$c_d(m) = \begin{cases} d & m = 1\\ d - 1 & 1 < m \le d\\ m & m > d \end{cases}$$

For example, if we're working in S_6 , then $c_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 2 & 3 & 5 & 6 \end{pmatrix}$. Then $|c_d| = d$ for $1 \le d \le n$.

Proof. Note that if 0 < k < d, then $c_d^k(d) = d - k \ge 1$ (c_d^k never "reaches" the point at which it cycles from 1 to d since k < d), so $|c_d| \ge d$. Then, we have, for $m \le d$,

$$c_d^d(m) = (c_d^m \cdot c_d^{d-m})(m)$$
$$= c_d^{d-m}(d)$$
$$= d - (d-m)$$
$$= m$$

Clearly $c_d^d(m) = m$ if m > d, so c_d^d is the identity, as desired.

Problem 2.5. Describe generators and relations for all dihedral groups D_{2n} .

Solution. We will define the dihedral group D_{2n} as follows:

$$D_{2n} = \langle x, y \mid x^2 = y^n = (xy)^2 = e \rangle$$

Proposition. With this definition of D_{2n} , every combination $x^{i_1}y^{i_2}x^{i_4}y^{i_5}\cdots$ equals x^iy^j for some $0 \le i \le 1, 0 \le j < n$.

Proof. We will use induction on m, the number of elements we're composing.

The cases for $0 \le m \le 2$ are obvious.

Suppose this reduction holds for m. Then, if m is odd, we have

$$(x^{k_1}y^{k_2}\cdots x^{k_m})y^{k_{m+1}} = x^iy^jy^{k_{m+1}}$$

= $x^iy^{j+k_{m+1}}$

The case where m is even is more interesting. First, we will establish the following based off of the third relation:

$$(xy)^{2} = e \implies xyxy = e$$

$$\implies x(yxy) = e$$

$$\implies x^{-1} = yxy$$

$$\implies yx = x^{-1}y^{-1}$$

$$= xy^{n-1}$$

Now, suppose m is even. We then have, with $\leq i \leq 1, \ 0 \leq j < n,$ and $0 \leq k \leq 1$:

$$(x^{k_1}y^{k_2}\cdots x^{k_{m-1}}y^{k_m})x^{k_{m+1}}=x^iy^jx^k$$

Since every other case is trivial, we will assume $0 \neq j \neq n$ and k = 1. Additionally, we will assume wlog that j < n. Then, we have

$$x^{i}y^{j}x^{k} = x^{i}y^{j}x$$

$$= x^{i}y^{j-1}(yx)$$

$$= x^{i}y^{j-1}xy^{n-1}$$

$$= x^{i}y^{j-2}xy^{2n-2}$$

$$= x^{i}y^{j-2}xy^{n-2}$$

$$= x^{i}y^{j-3}xy^{n-3}$$

$$= \cdots$$

$$= x^{i}y^{0}xy^{n-j}$$

$$= x^{i+1}y^{n-j}$$

as desired.

Problem 2.10. Prove that $\mathbb{Z}/n\mathbb{Z}$ consists of precisely n elements.

Proposition. $\mathbb{Z}/n\mathbb{Z}$ consists exactly of the elements $S = \{[0]_n, [1]_n, \dots [n-1]_n\}.$

Proof. First, suppose $[a]_n, [b]_n \in S$ and (without loss of generality) a < b. Then, since b-a < n, we have $n \nmid b-a$, and so $[a]_n$ and $[b]_n$ (and hence all elements of S) are distinct. Now, suppose $c \geq n$. Then we have, for some positive integers $q \geq 1$ and $0 \leq r < n$, c = qn + r. Hence c - r = qn, so $c \equiv r \mod n$. In other words, $[c]_n = [r]_n$ with r < n, completing the proof that $\mathbb{Z}/n\mathbb{Z} = S$.

Problem 2.11. The square of every odd integer is congruent to 1 modulo 8.

Solution. Let $n \ge 0$ be an integer. We will prove that $(2n+1)^2 \equiv 1 \mod 8$. Note that $4x \equiv 0 \mod 8$ if x is even, and that

$$(2n+1)^2 = 4n^2 + 4n + 1$$
$$= 4n(n+1) + 1$$

If n = 2m + 1 is odd, then we have

$$n(n+1) = (2m+1)(2m+2)$$

= $2(2m+1)(m+1)$
 $\equiv 0 \mod 2$

Similarly, if n = 2m is even, then we have

$$n(n+1) = 2m(2m+1)$$

$$\equiv 0 \mod 2$$

Thus n(n+1) is even, giving us $4n(n+1) \equiv 0 \mod 8$, and hence

$$(2n+1)^2 = 4n(n+1) + 1$$
$$\equiv 1 \mod 8$$

Problem 2.12. There are no nonzero integers a, b, c such that $a^2 + b^2 = 3c^2$.

Solution. I'll write this one down later. Essentially, you work in $\mathbb{Z}/4\mathbb{Z}$ (as given in the text as a hint) split the problem into cases, and deduce an even-odd contradiction between $a^2 + b^2$ and $3c^2$.

Problem 2.13. There exist integers a and b such that

$$am + bn = 1$$

iff gcd(m, n) = 1.

Solution. First suppose gcd(m, n) = 1. By Corollary 2.5, we know that $[m]_n$ generates $\mathbb{Z}/n\mathbb{Z}$, and hence

$$am \equiv 1 \mod n$$

for some integer a. It then follows that

$$am = bn + 1$$

for some integer b, and so

$$am - bn = 1$$

as desired.

For the proof in the other direction, suppose there exist integers a and b such that

$$am + bn = 1$$

Then we have

$$am = 1 - bn$$

. Suppose, for the sake of contradiction, that gcd(m, n) = d > 1. We then have

$$\frac{am}{d} = \frac{1}{d} - \frac{bn}{d}$$
$$\frac{am}{d} + \frac{bn}{d} = \frac{1}{d}$$

The LHS is an integer since d|m and d|m, but the (nonzero) RHS is not since d > 1. Absurd!

Problem 2.14. Show that multiplication on $\mathbb{Z}/n\mathbb{Z}$ is a well-defined operation.

Solution. First, we shall prove a useful intuition regarding modulus.

Proposition. If $a \equiv b \mod n$, then there exist integers $k_1, k_2 \geq 0$ and r with $0 \leq r < n$ such that

$$a = k_1 n + r$$
$$b = k_2 n + r$$

Proof. Recall that $\mathbb{Z}/n\mathbb{Z}$ consists entirely of the equivalence classes of the numbers in the set of nonnegative integers up to but not including n. Thus, if $a \equiv b \mod n$, there exists an r with $0 \leq r < n$ such that

$$n|a-r$$

$$n|b-r$$

Hence, we have, for some nonnegative integers k_1, k_2 :

$$k_1 n = a - r$$
$$k_2 n = b - r$$

Therefore

$$a = k_1 n + r$$
$$b = k_2 n + r$$

as desired.

With this, we can show that multiplication on $\mathbb{Z}/n\mathbb{Z}$ is well-defined.

Proposition. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then $ab \equiv a'b' \mod n$.

Proof. Suppose $a \equiv a' \mod n$ and $b \equiv b' \mod n$. Then, by the lemma above, we have:

$$a = k_1 n + r$$

$$a' = k_2 n + r$$

$$b = \ell_1 n + s$$

$$b' = \ell_2 n + s$$

Next, consider the product *ab*:

$$ab = (k_1n + r)(\ell_1n + s)$$

$$= k_1\ell_1n^2 + k_1sn + \ell_1rn + rs$$

$$= (k_1\ell_1n + k_1s + \ell_1r)n + rs$$

$$\equiv rs \mod n$$

Similarly, for a'b',

$$a'b' = (k_2n + r)(\ell_2n + s)$$

$$= k_2\ell_2n^2 + k_2sn + \ell_2rn + rs$$

$$= (k_2\ell_2n + k_2s + \ell_2r)n + rs$$

$$\equiv rs \mod n$$

Hence $ab \equiv a'b' \mod n$ by transitivity.