Lepidomeda aliciae dataset

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 4.4.4(git:v4-series-26-ge85c6ff) [June-1-2019]

Compiled for a SYMMETRIC multiprocessors (Grandcentral)

Program started at Fri May 21 23:22:56 2021

Program finished at Sat May 22 04:33:20 2021 [Runtime:0000:05:10:24]

Options

Inheritance scalers in use for Thetas:

0.25 0.25 1.00

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3220206820

Start parameters:

Theta values were generated RANDOM start value from the prior

M values were generated RANDOM start value from the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

d = row population split off column population, D = split and then migration

Population 1 2 1 Great_Salt_Lake * * 2 Sevier_Desert D *

Order of parameters:

1	Θ_1	<displayed></displayed>
2	Θ_2	<displayed></displayed>
3	$M_{2\rightarrow 1}$	<displayed></displayed>
4	$M_{1->2}^{2}$	<displayed></displayed>

						I	_epidomeda a	liciae dataset 2
	5 Δ	1->2		<displa< td=""><td>yed></td><td></td><td></td><td></td></displa<>	yed>			
		_		Paula	1			
	6 σ	1->2		<displa< td=""><td>yed></td><td></td><td></td><td></td></displa<>	yed>			
	Mutation rate amon	g loci:				Mutati	on rate is con	stant for all loci
	Analysis strategy:						-	esian inference
-Population size estimation:							•	tial Distribution
	-Geneflow estimation			.	151.41	0	•	tial Distribution
	-Divergence time e	estimation:		No	rmal Distrib	oution Shortd	cut (mean and	standard dev.)
	Proposal distribution	ns for paramet	er					
	Parameter	paramo		oosal				
	Theta	N	netropolis sam					
	М		∕letropolis sam					
	Divergence		∕letropolis sam					
	Divergence Spread	N	/letropolis sam	pling				
	Genealogy	N	Metropolis-Has	tings				
	Prior distribution for	parameter						
	Parameter	Prior	Minimum	MeantMa	aximum	Delta	Bins U	JpdateFreq
	1 Theta	** Uniform	0.000000	0.050	0.100	0.010	1500	0.08333
	2 Theta	** Uniform	0.000000	0.050	0.100	0.010	1500	0.08333
	3 M	** Uniform	0.000000	500.0	1000.	100.0	1500	0.08333
	4 M	** Uniform	0.000000	500.0	1000.	100.0	1500	0.08333
	5 Splittime mean	** Uniform	0.000000	0.250	0.500	0.050	1500	0.08333
	6 Splittime std	** Uniform	0.000000	0.250	0.500	0.050	1500	0.08333
	[* * means priors we	ere set globally	']					
	Markov chain settin	as:						Long chain
	Number of chains	9-1						1
	Recorded steps [al						10000
	Increment (record	-	bl .					1000
	Number of concu		· -					2
	Visited (sampled)	,	. ,					20000000
	Number of discar	•						1000
	Multiple Markov cha							
	Static heating sch	neme						temperatures
					1000	00.000		1.50 1.00
							Swappii	ng interval is 1
	i .							

Print options:

Data file:	infile
Haplotyping is turned on:	NO
Output file:	outfile
Log file:	logfile
Posterior distribution raw histogram file:	bayesfile
Raw data from the MCMC run:	bayesallfile.gz
Print data:	No
Print genealogies [only some for some data type]:	None
· ····· governog.co [c···) como como como governo.	

Data summary

Data file: Datatype Number	e:					infile Haplotype data 3
Mutation	model:					
Locus S	ublocus	Mutationn	nodel M	Mutationmodel	parameters	
1	1	Felsenste	in 84 [Bf:0	0.25 0.29 0.17	0.30, t/t ratio=2.000]	
2	1	Felsenste	in 84 [Bf:0	0.31 0.15 0.19	0.35, t/t ratio=2.000]	
3	1	Felsenste			0.31, t/t ratio=2.000]	
Sites per Locus 1 2	r locus	Sites 1109 849				
3		448				
		n and probabi Region type		e Probability	Patch size	
1	1	1	1.000	1.000	1.000	
2	1	1	1.000	1.000	1.000	
3	1	1	1.000	1.000	1.000	

	•	•	11000	1.000	1.000		
2	1	1	1.000	1.000	1.000		
3	1	1	1.000	1.000	1.000		
Popu	lation				Locus	Gene co	opies
						data	(missing)
1 Gre	at_Salt_La	ke			1	10	
					2	4	
					3	4	
2 Sev	vier_Desert				1	13	
					2	11	
					3	11	
Total	of all popul	ations			1	23	(0)
					2	15	(0)
					3	15	(0)

Bayesian Analysis: Posterior distribution table

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	090 0.00096 377 0.00548 000 166.621 333 528.982 350 0.24686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3770.00548000166.621333528.9823500.24686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000 166.621 333 528.982 350 0.24686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	528.982 350 0.24686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350 0.24686
1 D _{1->2} 0.00900 0.01867 0.02050 0.02067 0.02533 0.243 1 S _{1->2} 0.33233 0.33700 0.33783 0.33833 0.33933 0.257	
1 S _{1->2} 0.33233 0.33700 0.33783 0.33833 0.33933 0.25 ²	117 0.25073
2 Θ_1 0.00007 0.00027 0.00050 0.00080 0.00193 0.000	
▲	0.00090
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01403
2 M _{2->1} 0.000 0.000 27.000 106.667 450.000 169.6	236.085
2 M _{1->2} 492.667 949.333 961.000 964.000 999.333 772.3	333 719.735
2 D _{1->2} 0.29033 0.29100 0.29183 0.29200 0.29500 0.250	0.24887
2 S _{1->2} 0.09167 0.09167 0.09383 0.09400 0.10000 0.250	0.25012
3 Θ_1 0.04433 0.05320 0.05737 0.06033 0.06907 0.053	323 0.04361
Θ_{2} 0.00220 0.00600 0.00777 0.00827 0.01653 0.008	337 0.00941
3 M _{2->1} 570.000 928.000 930.333 999.333 999.333 702.3	333 635.766
3 M _{1->2} 0.000 0.000 35.000 84.000 315.333 151.0	260.444
3 D _{1->2} 0.13867 0.13933 0.13983 0.14000 0.14300 0.254	483 0.25292
3 S _{1->2} 0.12700 0.13300 0.13350 0.13433 0.13867 0.248	350 0.24813
All Θ ₁ 0.00000 0.00100 0.00163 0.00220 0.00287 0.002	163 0.00170
All Θ_2 0.00107 0.00260 0.00363 0.00500 0.01000 0.004	437 0.00493
All M _{2->1} 4.000 4.000 24.333 58.000 58.000 68.3	333 94.157
All M _{1->2} 0.000 0.000 61.000 120.667 191.333 215.0	000 226.941
All D _{1->2} 0.00700 0.01167 0.02283 0.05000 0.06133 0.12	150 0.12173
All S _{1->2} 0.00000 0.00000 0.00017 0.02567 0.08100 0.120	0.12095

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Lepidomeda aliciae dataset 7

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[In(Prob(D | thisModel) - In(Prob(D | otherModel) or as LBF = 2 (In(Prob(D | thisModel) - In(Prob(D | otherModel)) shows the support for thisModel]

Locus	Raw thermodynamic score(1a)	Bezier approximation score(1b)	Harmonic mean(2)
1	-1819.02	-1730.71	-1725.80
2	-1265.38	-1215.83	-1215.03
3	-683.03	-658.68	-657.46
All	-3777.37	-3615.16	-3608.22

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains [Scaling factor = -9.937915]

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio	
Θ_1	2876272/4996555	0.57565	
Θ_2	2925800/5002008	0.58493	
$M_{2\rightarrow 1}$	2746919/5001445	0.54923	
$M_{1\rightarrow 2}$	2785092/4999464	0.55708	
Δ $1\rightarrow 2$	4937925/5000746	0.98744	
$\sigma_{1\rightarrow 2}$	4947323/5000960	0.98927	
Genealogies	8265207/29998822	0.27552	

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.50836	23526.74
Θ_2	0.51178	23223.91
M^{2}	0.25989	36204.27
$M_{1\rightarrow 2}$	0.41935	25602.62
Δ $\frac{1}{1->2}$	0.00301	59639.67
$\sigma_{1\rightarrow 2}$	0.00020	59975.29
Genealogies	0.00020	59975.29

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

Param 4 (Locus 2): Upper prior boundary seems too low! Param 3 (Locus 3): Upper prior boundary seems too low!