# DEVELOPMENT OF PARTIALLY STABILIZED ZIRCONIA FOR MAKING CERAMIC BUSHINGS

A Thesis Submitted
in Partial Fulfilment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

By
NARAYAN CHANDRA BISWAS

to the

INTER DISCIPLINARY PROGRAMME IN MATERIALS SCIENCE
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
JULY, 1980

63034

11 AUG 1980

1 DPM 8- 1880-M-BIS- DEV

#### DEDICATED

TO THE DIVINE SOUL OF MY DEAREST FATHER WHO WAS THE SOURCE OF ALL INSPIRATIONS TO ME.

I PAY TRIBUTES TO MY

DECEASED MOTHER

### CERTIFICATE

This is to certify that this work on "Development of Partially stabilized Zirconia for making ceramic bushings" by Narayan Chandra Biswas has been carried out under my supervision and that this has not been submitted elsewhere for a degree.

O Chalhauly (D. Chakravorty)

Professor

Interdisciplinary Programme of Materials Science

Indian Institute of Technology, Kanpur.

#### ACKNOWLEDGEMENTS

It is a great pleasure to expres my deep and profound sense of gratitude to Dr. D. Chakravarty for his excellent guidence, illuminating suggestions & constant encouragement throughout the course of this work. I enjoyed working with him as freedom of work was available.

I gratefully thank Dr. P.C. Kapoor, Dr. G.S. Murthy, EDr. A.K. Biswas for their generous permission in allowing me to use their instruments.

I sincerely acknowledge the help rendered by Mr. B. Sharma, Mr. R.K. Prasad, Mr. Malaviya, Mr. J.B. Mukherjee, Mr. Jain, Mr. Pandey (X-ray Lab), Mr. Rahaman in different phases of my work.

I am highly indebted to my friends Messrs A. Sen, G.C. Das, Devendra Kumar, P.K. Das, P. Sarkar, N.K. Ghosh, S. Bhattacharya, D. Kanzilal, Someswar Dutta, Kingshuk Banerjee, Madhukar, N. Dasgupta, S. Chatterjee, Samiran Chattopadhay who have inspired and assisted me throughout the whole journey in various ways.

I am highly thankful to Mr. Ranjit Biswas, Mr. N.L. Mitra, Mr. D. Mukherjee, & Dr. B.N. Samaddar whose financial assistance was the only resort for my admission to IIT, Kanpur.

I am extremely indebted to my mother who departed from us during the Ist semester of my M.Tech, sisters & my brother who patiently beared with the trouble of my absence with understanding and great perseverance when I had to keep myself away from them.

July, 1980

Narayan Chandra Biswas

## CONTENTS

|                 |                             | Page |
|-----------------|-----------------------------|------|
| LIST OF TABLES  |                             | v    |
| LIST OF FIGURES |                             | vi   |
| SYNOPSIS        |                             | viii |
| CHAPTER ONE :   | INTRODUCTION                | 1    |
| CHAPTER TWO :   | OBJECTIVES OF INVESTIGATION | 10   |
| CHAPTER THREE:  | EXPERIMENTAL PROCEDURE      | 12   |
| CHAPTER FOUR :  | RESULTS AND DISCUSSIONS     | 31   |
| CHAPTER FIVE :  | CONCLUSIONS                 | 80   |
| REFERENCES :    |                             | 82   |

## LIST OF TABLES

|          |                                                                                          | Page No.       |
|----------|------------------------------------------------------------------------------------------|----------------|
| 3.1      | Batch compositions                                                                       | 13             |
| 3.2      | Grinding hours                                                                           | 15             |
| 3.3      | Water of Granulation                                                                     | 18             |
| 3.4      | Parameters used in X-ray diffractometer                                                  | 19             |
| 4.1      | Particle size analysis of the ground batches                                             | 32             |
| 4.2      | True density, bulk density, apparent, closed and true porosities of the sintered samples | 33             |
| 4.3      | Apparent porosity, True porosity and bulk density of the sintered crucibles              | , 34           |
| 4.4(a-i) | . X-ray diffraction datas of sintered specimens                                          | 40-51          |
| 4.5(a-i) | <ul> <li>X-ray diffraction datas of spalled<br/>samples</li> </ul>                       | 52-63          |
| 4.6      | Vickers hardness numbers                                                                 | 65-67          |
| 4.7      | Fracture toughness                                                                       | 69 <b>-7</b> 0 |
| 4.8      | Fracture toughness of different materials                                                | 72             |
| 4.9      | Modulus of rupture                                                                       | <b>7</b> 3     |
| 4.10     | Thermal shock resistance                                                                 | 75             |

#### LIST OF FIGURES

- 1.1 Thermal Expansion of Zirconia modifications.
- 1.2 Phase diagrams.
  - 1.2.a. CaO-ZrO2 phase diagram.
  - 1.2.b. MgO-ZrO2 phase diagram.
  - 1.2.c. Y203-ZrO2 phase diagram.
  - 1.2.d. TiO2 ZrO2 phase diagram.
  - 1.2.e.  $CaO-TiO_2-ZrO_2$  phase diagram.
- 3.1 Design of the mould assembly used for pressing.
- 3.2 Design d the bearing edges for modulus of rupture.
- 3.3 Design of the furnace.
- 3.4 Design of the moulds used for slip casting.
- 4.1 Particle size distribution of the batches C7, C10, C13.
- 4.2. Particle size distribution of the batches C7T5, C8T7 and T7
- 4.3. Particle size distribution of the batches C15 and Stab Z.
- 4.4. True density vs. composition of sintered bars.
- 4.5. True porosity vs. composition of sintered bars.
- 4.6. True density of crucibles
- 4.7 True porosity of crucibles.
- 4.8 (i)-(iii) X-ray diffraction curves of as-sintered specimens.

- 4.9. (i)-(ix ) Optical micrographs of the zirconia batches at 200% and 400% magnification.
- 4.10 Vickers hardness as a function of composition.
- 4.11. (i)-(ix) Optical micrographs of identations.
- 4.12. Modulus of rupture vs. composition.
- 4.13. Thermal shock resistance as a function of composition.
- 4.14. Photographs of the crucibles after corrosion resistance test.

## SYNOPSIS

The present investigation involved the study of titan addition on Calcia-Zirconia systems in respect to mechanical, thermal and corrosion characteristics. The optimum compositic in respect to bushing material for glass fiber drawing has been searched for. Compositions like 7% (mole) CaO-ZrO<sub>2</sub>, 10% CaO-ZrO<sub>2</sub>, 13% CaO-ZrO<sub>2</sub>, 15% CaO-ZrO<sub>2</sub>, 8% MgO-ZrO<sub>2</sub>, 7% CaO-5% TiO<sub>2</sub>-ZrO<sub>2</sub>, 8% CaO-7% TiO<sub>2</sub>-ZrO<sub>2</sub>, 7% TiO<sub>2</sub>-ZrO<sub>2</sub> have been tried using final sintering temperature of 1950°C. Modulus of Rupture, toughness and hardness tests have been done for mechanical characterization.

Vickers hardness value of CaO-ZrO  $_2$  and CaO-TiO  $_2$  compositions are comparable. 15% CaO-ZrO  $_2$  composition has the highest VPH number.

Spalling characteristics is better for CaO-TiO $_2$ -ZrO batches. The composition 7% CaO-5% TiO $_2$ -ZrO $_2$  is best from the spalling resistance point of view.

Corrosion test has been done on sintered crucibles in contact with E glass for 13 hours at 1400°C. Corrosion resistance is satisfactory for titania—added compositions.

#### CHAPTER-I

#### INTRODUCTION

Zirconia is a focus of considerable current interest as an outstanding high temperature oxide outweighing the conventional refractories, as a solid electrolyte, and is a unique field of research in consideration to its stabilization, defect crystallography, toughening and strengthening & electrical transport properties etc.

(1,2). Very high corrosion resistance to metals, slags and glasses it is used in such applications where temperature and corrosion are very high. Such applications include high temperature extrusion dies, continuous steel pouring nozzles(3), high temperature furnace lining upto 2400°C, lining of furnaces for metting Al, Cr, Co, Au, Ir, Ni, Pd, Pt, Rh metals(4) thermal barrier coatings in air craft and missile components (5), solid electrolyte in fuel cells and steel melts (6), abrasives for melting applications. Glass fibres an usually drawn through bushings made of platinum-rhodium. The high cost of platinum and rhodium makes such process capital-intensive. Recently, ceramic bushings made of alumina as well as stabilised zirconia have been used for making glass fibres (7).

Al203 is a cheaper material, but does not withstand the corrosive effect of E-glass. Zirconia seems to be a solution to this problem. But zirconia has three polymerphs (2). The stable room temperature form is monoclinic. On heating to about 1100°C it transforms to a tetragonal structure which on further heating above 2300°C transforms to a fluorite type cubic structure. Following the works of Murray, Alison, Wolten, Baily and Patil; Bansal and Heuer (8) have conclusively proved that the monoclinic-tetragonal transformation has all the characteristics of martensitic transformations, i.e. it is of an athermal type, apparently diffusionless & involves a large hysteresis (fig. 1.1) (9). The transformation (forward) on cooling occurs over a much lower temperature range (950-850°C) than the reverse transformation (1100-1190°C) on heating. monoclinic-tetragonal phase transition renders the material useless as a high temperature structural material, as it is associated with a large volume change (about 9% volume increase on cooling) which cause cracking and subsequent failure of fabricated products. The transformation interval is displaced in the direction of the lower temperature (10) by addition of metallic oxides with a heterapolar bond energy. phase changes may be suppressed by stabilization of the high temperature cubic fluorite form (fig. 1.1) by alloying with



FIG.1-1 THERMAL EXPANSION OF ZIRCONIA MODIFICATIONS (9)

oxides such as those of Mg, Ca, or yttrium. The cubic zirconia solid solution (cubic SS) is infact metastable in all the three systems; alloys of cubic  $2rO_2$  with MgO, CaO or  $Y_2O_3$ . The cubic SS tend to decompose by eutectoid decomposition as predicted from phase equilibria considerations, (fig. 2b). In addition, to the tendency to destabilize, fully stabilized  $2rO_2$  ceramics have poor thermal shock resistance, because of a combination of low thermal conductivity and high thermal expansion.

It is generally accepted, however, that the most useful mechanical properties are obtained by partial stabilization (11-16) so that a two or three phase microstructure results. These materials are referred to as partially stabilized zirconia (psz). Compositions lying within the cubic field at the firing temperatures and producing monophase microstructure are "fully stabilized" (15).

In recent years, it has been shown that useful mechanical properties of psz, i.e., good fracture toughness and thermal shock resistance can be attributed to a fine dispersion of monoclinic precipitates in the cubic grains (14-15, 17-20). These coherent precipitates are thought to impede crack propagation due to the resulting compressive stresses present in the matrix caused by martensitic

transformation in the particles. The strengthening observed in psz results from crack branching caused by interaction between the stress field of the propagatig crack and residual stress fields around the coherent particles.

If the precipitate size be larger than 2-6 micron, then extensive microcracking takes place due to volume changes on cooling. Because of their large numbers, these cracks propagate only quasistatically and the body maintains a larger portions of its strength after continuous thermal cycling, thus resulting in high thermal shock resistance.

More recently the existence of tetragonal zirconia in sintered bodies with high strength and fracture toughness have been reported (11-13, 16, 21-24). The stabilizing oxides were yttria (11, 25-26), Calcia (16) and Magnesia (21-24).

The reasons of high fracture toughness due to the presence of intragranular tetragonal  ${\rm ZrO}_2$  precipitates are the following :

- 1) Initiation of crack is difficult since work has to be done first to cause the phase transformation and then to initiate the crack,
- 2) The same argument would be true during the

propagation of a crack. As transformation occurs the sudden shape change of the precipitate absorbs strain energy from the crack tip region and a zone of compressive stress is created near the crack tip through which the crack must propagate. Thus, a greater applied stress is necessary for crack growth to continue.

Garvie etal obtained a Ca-psz by a rapid cooling and subsequent ageing treatment. Tetragonal domains which increased in size with time of ageing, were retained at room temperature. The maximum strengthening occured when the tetragonal domains were of a size where they were critically metastable (about 0.1 micron in Ca-psz), i.e. where at room temperature they reverted to a monoclinic form upon the application of mechanical stress.

Similarly, Porter and Heuer have developed 8.1 mole % Mg-psz of optimum mechanical properties, containing homogeneous precipitation of intragranular precipitates. He resorted to special heat treatments of solution annealing of commercial Mg-psz at 1850°C in the cubic SS phase field for 4 hr to dissolve the monoclinic phase present in the as-received material, quenching to less than 1000°C in less than 2 minutes and subsequently ageing between 1400°C and 1500°C, and finally cooling room temperature.

The best materials were those in which the precipitation reaction was nearly two third complete and the precipitates have not lost coherency (size 0.2 mincron in Mg-psz).

 $Y_2O_3$  psz can be obtained routinely at relatively low temperature (less than 1500°C) (11, 26) and the content of tetragonal phase in the polycrystalline  $ZrO_2$  ranged from 98 to 10% Ypsz has the best properties among all the pszs (2, 11, 27), but  $Y_2O_3$  is a very costly rare earth material.

Hannink (2) has claimed to have produced Capsz, Mgpsz, Ypsz by sintering the 9.98 mole % MgO-ZrO2,8.4 mole % CaO ZrO2 and 9.74 mole % Y2O3 ZrO2 followed by solution treatment in the fluorite phase field at 1800°C, cooling to 1300°C, then quenching to 500°C. After natural cooling from 500°C he aged the samples in air. Ageing temperatures were 1400°C for Mgpsz, and 1300°C for Capsz and Ypsz.

Ageing for a long time (over ageing) causes the tetragonal particles to grow beyond critical size (0.1 micron for Capsz, 0.2 micron for Mgpsz and 0.3 micron for Ypsz depending on the composition). These particles lose coherency with the matrix and transform readily to monoclinic symmetry when cooled.

ZrO2-TiO2 system has been investigated by several

workers in early 50's but was not thoroughly studied afterwards. The phase diagram by Duwez, Brown and Odell (9) (fig. 2d) shows that the addition of TiO<sub>2</sub> to ZrO<sub>2</sub> causes a rapid decrease of both liquidus and solidus curves, from 2715 to 1820°C, the latter is the incongruent melting temperature of ZrTiO<sub>4</sub>.

The addition of TiO<sub>2</sub> also lowers the transformation temperature of zirconia from 1000°C to approximately 350°C. However, stabilization, i.e. formation of cubic phase does not take place.

Voromin (28) has shown that addition of 1%  $\text{TiO}_2$ , to stabilized zirconia increases the compressive strength from 1050  $\text{Kg/cm}^2$  to 1450  $\text{Kg/cm}^2$ . Further increase to 2% decreases the strength to 500  $\text{Kg/cm}^2$ . Further addition of  $\text{TiO}_2$  increases the compressive strength and at 5% the strength is about as original.

By going to explore the feasibility of making inexpensive electrolytes using the tape process, Radford & Bartton (1976)(6) has added 5 mole %  $TiO_2$  to commercially stabilized zirconia (5 wt % Ca sz & 12 wt %  $Y_2O_3$  sz) so that the tape along with the electrode material, platinum could be sintered to impervious, high density (93%) electrolyte by sintering at 1500°C.

Coughanaur (29) has observed the existence of a single phase solid solution in the  $\rm ZrO_2$  rich corner of the  $\rm CaO\text{-}TiO_2\text{-}ZrO_2$  phase diagram (fig. 2.e).

The ionic radii of  $Ca^{2+}$ ,  $Mg^{2+}$ ,  $Y^{3+}$ ,  $Ti^{4+}$  and  $Zr^{4+}$  are shown below (30).

| Species               | Ca <sup>+2</sup> | Mg <sup>+2</sup> | y <sup>+3</sup> | zr <sup>+4</sup> | Fe <sup>+3</sup> | $\mathtt{Ti}^{+4}$ |
|-----------------------|------------------|------------------|-----------------|------------------|------------------|--------------------|
| Atomic number         | 20               | 12               | 39              | 40               | 26               | 70                 |
| Atomic radii          | 1,969            | 1.594            | 1.79            | 1.58             | 1.241            | 1.458              |
| Ionic radii (30)      | 1.06             | 0.78             | 1.06            | 0.87             | 0.67             | 0.64               |
| Crystal structure     | FCC              | Hex              |                 | Нср              | Bcc              | Hcp                |
| Ionic radii, (Pauling | )0.99            | 0.65             | 0.93            | 0.80             |                  | 0.68               |

The average ionic radius of  $Ca^{2+}$  &  $Ti^{4+}$  is 0.85 aungstrom, close to that of  $Zr^{4+}$ . So it is likely to form a solid solution of Ca0- $Ti0_2$ - $Zr0_2$ .

It seems probable that compositions containing smaller percentages of CaO than is required to fully stabilize the  ${\rm ZrO}_2$  and some amount of  ${\rm TiO}_2$  would produce a psz which can retain tetragonal precipitates due to lower tetragonal monoclinic inversion temperature and would have a high fracture toughness, strength and thermal shock resistance.

With the problem of low thermal shock resistance of the glass fiber drawing bushings in view and the above

intension the present study was aimed at improving these thermal and mechanical properties without resorting to any quenching operation.

#### CHAPTER-II

#### OBJECTIVES OF INVESTIGATION

- (1) To develop partially stabilized zirconia (psz) of high strength, corrosion resistance and thermal shock (spalling) resistance by addition of (CaO+TiO2).
- (2) To find optimum composition for CaO.psz.
- (3) To study whether TiO2 stabilizes ZrO2 or not.
- (4) To study the stabilization & properties of stabilised zirconia from indigenous monoclinic ZrO2.
- (5) X-ray diffraction studies on the stabilized & partially stabilized zirconia to identify the different phases present (estimate their percentages).
- (6) Comparison of thermal shock resistance of the stabz & pszs.
- (7) To study the corrosion by E-glass on the stabz, pszs  $\epsilon$ : Al<sub>2</sub>O<sub>3</sub>.
- (8) Measurement of modulus of rupture in bending for the psz and stab Z's.
- (9) Measurement of hardness and stress intensity factor of the pszs and stabzs.

- (10) Determination of apparent porosity, true porosity and bulk density of slip cast crucibles and pressed samples. Determination of true density, true porosity and closed porosity of pressed samples.
  - (11) Optical microscope studies on stabz and pszs samples after thermal shock resistance test.
  - (12) X-ray diffraction studies to estimate the changes in phase composition during thermal shock resistance test.

#### CHAPTER-III

### EXPERIMENTAL PROCEDURE

## 3.1 Raw Materials

Monoclinic Zirconia from Indian Rare Earths Ltd., and CaCO3, TiO2, MgO of Laboratory reagent grade were used. For comparison, imported commercial stabilized zirconia, ZircoaB, manufactured by Corhart Refractories Co., U.S.A. was also used to make crucibles and plates.

## 3.2 Sample preparation

## 3.2.1 Weighing & Mixing:

Monoclinic zirconia was weighed on a pan balance. CaCO<sub>3</sub>, TiO<sub>2</sub>& MgO were weighed in a chemical balance. The different batches with different additives were dry-mixed in a ball mill for 2 hrs. for each batch. The compositions are shown in table 3.1.

# 3.2.2 Precalcination:

The batches were mixed with water and some irregular shapes were made by hand. The batches were precalcined at 1200-1300°C in order to

- a) remove CO2 from the batches carrying CaCO3,
- b) reduce size, c) facilitate handling.

TABLE 3.1

BATCH COMPOSITIONS

|                                    |                  | eliteration betrack in the second |                  |             |
|------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------|------------------|-------------|
| Batch                              | zro <sub>2</sub> | Cao ·                                                                                                          | TiO <sub>2</sub> | Mg0         |
|                                    | mole %           | mole %                                                                                                         | mole %           | mole %      |
|                                    |                  |                                                                                                                |                  |             |
| C7                                 | 93               | 7                                                                                                              | AL A             | es-         |
| C10                                | 90               | 10                                                                                                             | فيتا             | <b>4</b> 00 |
| C13                                | 87               | 13                                                                                                             | eta.             | ui.3        |
| C15                                | 85               | 15                                                                                                             | cus              | 45.3        |
| C7T5                               | 88               | 7                                                                                                              | 5                | c.s         |
| C8T7                               | 87               | 8                                                                                                              | 7                | c.as        |
| т7                                 | 93               | 1.25e                                                                                                          | 7                | 40.00       |
| Stab Z<br>(Commercial<br>Zircoa B) | Unknown          | race                                                                                                           | ms .             | e.s         |
| M8                                 | 92               | 60H                                                                                                            | ANCO             | 8           |

#### 3.2.3 Calcination

The batches were calcined in a zirconia lined furnace (fig. 3.3) by Indane-Oxygen gas firing. The temperature was raised to 1850°C in 5-6 hrs, & then the temperature was maintained for 4 hrs. The M8 batch was calcined at 1350°C in a globar furnace.

## 3.2.4 Crushing

primary crushing of calcined lumps were done in the jaw crusher, and then secondary crushing was done in the roll crusher. The particles were reduced to a maximum size of 2 mm. The iron rust particles which came in during crushing were sorted out by were right.

## 3.2.5 Grinding

Grinding was done in a high alumina porcelain lined ball mill with alumina balls using water as the liquid. Some batches were ground in a agate centrifugal ball mill (Pulverizetle, Fritsch, Germany, Type 05.102) also, The grinding that has been done for different batches is shown in Table 3.2.

The C7T5 and C8T7 batches were ground for a longer time since these developed pour casting properties i.e., quick settling property after 82 hrs of grinding.

TABLE 3.2
GRINDING HOURS

| Batch      |                         | Hours of grinding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |  |  |
|------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
|            | in Alumina<br>ball mill | Agote Centrifugal ball mill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chart<br>speed |  |  |
| C10        | 90                      | engelingengen havet general production of the control of the contr | 422            |  |  |
| C13        | 82                      | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |
| C7         | 37                      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5              |  |  |
| C15        | estate                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6              |  |  |
| C71'5      | 106                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |  |  |
| C8T7       | 106                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |
| <b>T</b> 7 | 18                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |
| M8         | 20                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |
|            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |

The batch T7 was weak and crumbly, so a shorter period of grinding was given to the batch. The M8 batch was calcined at 1350°C and so it was ground for a short time.

## 3.2.6 Sieving and Magnetic Separation

The slip produced on grinding were passed through a 325 mesh ASTM sieve. Some of the batches were dried and granulated. Then magnetic separation was tried for in a of magnetic separator but the efficiency/separation was poor.

Finally magnetic separation was done by keeping two Alimco bar magnets in the slip kept in a plastic bucket and stirring the slip by a 3 blade stirrer. The magnetic particles adhering to the edges and corners of the magnets were wiped out from time to time at 10-15 minutes interval by cotton. This process was continued till insiginficantly small amount of magnetic particles got adhered to the magnet over a long time interval.

## 3.2.7 Preparation of Plaster of Paris Moulds

A wooden model was cleaned and brushed with soap solution. Then it was oiled with coconut oil by a brush. The model was enclosed in a thick sheet of paper folded into a cyclindrical form and was bound with threads. The plaster of paris slip was poured on to the model and it was allowed to set for 30 minutes after which the mould was released from the model. Several moulds (fig. 3.4) were made in this way.

## 3.2.8 Slip Casting

Slip casting was done for all the batches. The C8T7 batch settled very quickly and a small amount of  $\mathrm{Na_2^{CO}_3}$  ( ~ 0.1%) was added before slip casting whereby the casting properties improved. The T7 batch also settled very quickly

but casting was done without any addition.

## 3.2.9 Pressing

Pressing was done in a hydraulic press with a pressure of  $14.2 \, \text{KN/cm}^2$  (20610 psi).

The powder was mixed throughly with 2% PVA solution in a quantity to have proper pressing characteristics, i.e., easy mould release, proper compaction, avoidance of extra water release during pressing and avoiding crumbliness of the pressed sample. The moist powder was put in the high chromium high carbon alloy steel mould (fig. 3.1) \_ having an inner dimension of 5 cm x 1 cm x 1 cm. It was levelled by the punch. Then the mould with the punch was kept on the platform of the hydraulic press. Pressure was applied at a slow rate (in ~ 2 minutes). After attainment of the maximum load, 2 minutes were allowed before the release of the pressure in order to homogenize the pressure distribution. The sample was released in a hydraulic hand press.

The percentage of water added was determined on the dry basis and are shown in the table.3.3 below.

Table 3.3 Water of Granulation for Pressing

| Batch        | Water % on dry basis | Batch Water % | onedry basis |
|--------------|----------------------|---------------|--------------|
| C7T <b>5</b> | 9-11                 | Clo Clo       | 4.3-4.5      |
| C7           | 6.4-7                | т7            | 6.7-7.3      |
| C10          | 4.9-5                | M8            | 3.2-4        |



FIG. 3.2 FRONT VIEW AND SIDE VIEW OF THE BEARING EDGES FOR MODULUS OF RUPTURE TEST



FIG. 3.1 DESIGN OF THE MOULD ASSEMBLY USED FOR PRESSING.

FIG.33 PLASTER OF PARIS MOLDS USED FOR SLIP CASTING



FIG. 3.4 ZIRCONIA LINED FURNACE

## 3.2.10 Drying

The slip cast crucible were air dried and the pressed samples were dried in an oven at 180°C.

## 3.2.11 Presintering and finishing

The crucibles were presintered at 800°C in an annealing furnace for 5 hrs. The rims were polished by rubbing on a plain paper.

## 3.2.12 Sintering

The test bars and crucibles were set in the zirconia limed furnace (fig. 3.3). Indane-oxygen gas firing was used. Temperature was raised to 1950°C in 14 hours and soaking of 1 hr was given at that temperature. The temperature was reduced to 1350°C in 12 hrs and then the gas firing was shut off, and the furnace allowed to cool by itself.

## 3.3 X-ray Diffraction Studies

Solid bars of the sintered samples and samples after thermal shock resistance test were mounted on the X-ray diffractometer. The operational variables are listed in table 3.4. The angles at which well defined peaks appeared were noted down and the corresponding 'd' values were calculated from the Bragg equation,

$$n_{\lambda} = 2d \sin \theta$$
 ...... (3.1)

## TABLE 3.4

## PARAMETERS USED IN X-RAY DIFFRACTOMETER

Radiation used :  $CuK_{j} \approx ... ( = 1.5405 \text{ Å})$ 

Filter : Ni

Voltage rating : 35 KV

Current : 12 mA

Intensity range : 1000 counts per second

Time constant : 2 seconds

Beam slit : 3°

Detector slit : 0.2°

Scan speed : 2° per minute

Chart Speed : 2° per minute

Speed controlling disc : C

where n = an integer, taken as 1. = wave length of X-ray radiation,  $\Theta = Bragg$  angle, d = inter planar spacing.

The d'values & the relative intensities from peak heights were compored with the standard powder diffraction file (PDF) in order to identify the crystalline phases. the integrated area of the 100I peaks of different phases were determined by trapezium method by using the following equation (3.2).

Area, A = h. 
$$\frac{f_1}{2} + f_2 + f_3 + f_4 + \dots + \frac{f_{n+1}}{2} \dots (3.2)$$

where h = length of one division

n = number of divisions

and  $f_1$ ,  $f_2$ ,  $f_3$  .....,  $f_{n+1}$  are the respective functions at the divisions, 0, 1, 2, ..... n.

The phase analysis was done according to the modified formula in polymorphsmethod developed by Carvie & Nicholson Volume fraction of monoclinic phase,

$$V_{m} = \frac{1.603 \left[I(11\overline{1})m\right]}{1.603 \left[I(11\overline{1})m + I(111)c\right]} \dots (3.3)$$

where I  $(11\overline{1})_{m}$  = integrated intensity of the  $(11\overline{1})_{m}$  monoclinic reflection.

 $I(111)_{\rm C}=$  integrated intensity of the (111) cubic reflection and it is assumed that

$$V_{m} + V_{C} = 1 \qquad \qquad \dots (3.4)$$

 $V_{C}$  = Volume fraction of cubic phase

 $V_{m}$  = Volume fraction of monoclinic phase.

### 3.4 Thermal Shock Resistance (Spalling resistance) Test

A globar furnace with thick Sigr rods as heating elements and high duty fireclay lining was used for the test. The furnace can regain the temperature drop during removal of the samples in about 10 minutes. The rectangular bar test pieces were kept in a refractory support and placed inside the furnace. The furnace was heated at a uniform rate so that 1300°C was attained in 4 hrs. The temperature was maintained for 30 minutes and then the support containing the samples was removed from the furnace with large tongs. The samples were placed on a brick in a position free from draughts. After they had been cooled for 10 minutes they were examined and then replaced into the furnace for a further period of 10 minutes. Then the cycle was repeated. The test was concluded when the specimens could be pulled apart by light tongs. One highduty insulation brick support could be used for two cycles.

## 3.5 Corrosion Resistance Test

The E glass marbles were melted in a sillimanite crucible and quenched into water to get small particles of

the glass. The crucibles were filled with the E glass and put on the grooves made by drilling in a highduty insulation brick support. The support with the crucibles was kept in the globar furnace and heated to 1400°C in 8 hrs. The temperature was maintained for 13 hrs. Then the furnace was cooled down to room temperature. The bottoms of the crucibles were cut into two vertical cross sections by diamond tipped wheel. The two sections were broken apart by a small hammer. Photographs of the cross sections of the crucibles were taken and corrosion of the crucibles were studied.

# 3.6 Determination of apparent porosity, apparent (bulk) density, true porosity & true density. (32)

# 3.6.1 Apparent porosity & bulk density.

The test specimens were dried at 110°C and weighed (") after cooling to room temperature in a desiccator. The test specimens were placed in distilled water and boiled for about 2 hrs. then these were allowed to cool to room temperature, while still immersed in water. The test specimen was weighed while suspended in water ( $W_2$ ). Immediately after obtaining the suspended mass, the test specimen was removed from water, blotted lighly with a wet tissue paper and weighed in air ( $W_1$ ).

Then apparent porosity & apparent density were calculated from the following formulae :

Apparent (bulk) density, 
$$D_A = \frac{W}{W_1 - W_2}$$
 ....(3.5)

Apparent porosity, 
$$P_A = \frac{W_1 - W}{W_1 - W_2} \times 100$$
 ....(3.6)

# 3.6.2 True Specific gravity, true density and porosity

# 3.6.2.1 Sample Preparation

Samples weighing about 20 gms were ground in an to such a fineness that they would pass through 149-micron IS-Sieve. The sample was dried at 105 to 110°C.

3.6.2.2 The pronometer was washed, dried and weighed (P). About 4 to 6 gms of sample was placed in the dry pronometer and weight of pronometer, stopper plus sample (W) was taken.

The precommeter was filled to one-half of its capacity with distilled water which had been boiled to remove dissolved air and cooled. The pycnometer was kept on a hot plate to boil the water for 10 to 15 minutes. Then the pycnometer was kept in a distilled water bath in a glass petri-dish to cool the pycnometer to room temperature. The pychometer was filled with water, the stopper was inserted and the excess water was wiped off from the stopper. The

pycnometer was throughly dried with a tissue paper. Then pychometer & the contents were weighed (W2). The sample was thrown away, the pycnometer was washed and filled with water, and it was weighed after drying the outside with tissue paper.

The specific gravity, true density and true porosity were calculated from the following formulae:

Specific gravity, 
$$S = \frac{W - P}{(W-P) - (W_2 - W_1)}$$
 ....(3.7)

where

W = mass in gm of the stoppered pycnometer and sample.

P = mass in gm of the stoppered pychometer

 $W_2$ = mass in gm of the stoppered pychometer, sample and water.

 $W_1$  = mass in gm. of the stoppered pycnometer filled with water.

True density = Sp. gr.  $x (d_w - d_a)$ 

where  $d_{\rm W}$  = density of water at the temperature at which the test was carried out, and

d<sub>a</sub> = density of air at the temperature at which the
 test was made.

True porosity, 
$$P_{T} = 1 \cdot \frac{Apparent density, D_{A}}{True density, D_{T}} \dots (3.8)$$

True porrosity, percent = 
$$(1 - \frac{D_A}{D_T}) \times 100$$
 ....(3.3)(32)  
Closed porosity  $P_C$  (percent) =  $P_T$  (%) -  $P_A$ (%) ....(3.10)

## 3.7 Microstructural Studies by Optical Microscopy

## 3.7.1 Sample Preparation

The samples were joined together into two batches by quick fix in order to polish a few samples together. These were polished with Sic Powders of mesh sizes 220, 400, 600 and 800 successively. After this optical polishing was done on a polishing wheel with diamond paste. Little amount of liquid paraffin was added to the diamond paste and also added again for 2-3 times during polishing. Final polishing was done with 0.3 micron and 0.05 micron Al<sub>2</sub>0<sub>3</sub> powders successively to remove the pits in the sample produced during polishing by diamond paste.

## 3.7.2 Microstructure

Photographs were taken with the microscope focussed at a magnification of 200X and 400X for sintered samples and 400X for the spalled samples. Camera magnification was 1/3rd the microscope magnification. An exposure time of 3 seconds was given in each case. The photographs after enlargement during printing were studied for different phases, grain structure and changes on spalling (thermal shock).

## 3.8 Particle size analysis of the ground batches

Different solvents were tried to disperse the particles and a mixture of Ethyl alcohol, methyl alcohol and acetone was found to be the best. The mixed solvent was taken in an agate mortar in small amount. A pinch of the powder was added to it. It was mixed with the liquid by whirling the paste. Then the mortar with the contents was placed in the water bath of an ultrasonic cleaner and the bath was vibrated with ultrasonic waves for ten minutes. Immediately after this one or two drops of suspension were dropped on a cleaned glass slide with the help of a dropper and allowed to spread and dry in air.

The slide was kept in a petri dish. The photograph of the particles were taken with 400 X magnification in the microscope, combined with the 3 times reduction by the camera. Printing of the photographs was done with an enlargement of 3.5. Each photograph of different batches was divided into several areas and the size of the particles of each area was read by a scale. The number of particles in different size ranges were obtained and particle size distribution was thereby found out.

#### 3.9 Modulus of rupture

The sintered bars were ground with 220 mesh SiC powder to give proper rectangular shape and an approximate dimension of  $4-4.5 \times .9 \times .7 \text{ cm}$ . The samples were polished with SiC powders of mesh sizes 400, 600 and 800 successively.

The samples were tested in the Instron machine with the bearing Edges for modulus of rupture test, shown in figure (3.2).

The load cell used had a range of 0-200 Kgs with a least count of 2 Kg. The cross head speed used was 0.2 mm/ min. Chart speeds of 0 cm, 2-0 cm, 5 cm per minute were used.

The Instron was first calibrated to read 200 Kg in the full span of the chart.

The sample was mounted on the bearing edges of the Modulus of rupture test jig (fig. 3.2) kept on the platform of the Instron under the cross head.

The load was applied by downward movement of the cross head. The maximum atbreaking load after which the specimen failed suddenly was obtained from the chart.

From the breaking load, the modulus of rupture was calculated from the following formula :-

Modulus of Rupture, in 
$$Kgf/cm^2 = \frac{3W1}{2bd^2}$$
 ....(3.11)

where, h = load in Kgf at which the specimen failed,

l = distance in cm between the centre lines of the lower bearing edges,

b = width of the specimen in cm, and

d = depth of specimen in cm.

#### 3.10. Vickers Hardness and Fracture toughness

The hardness was measured by indenting polished samples using a square base diamond pyramid as indentator (33) in the vickers pyramid herdness testing machine (Vickers Instruments Ltd., England, model No. 255038).

Boctuse of the shape of the indenter this is frequently called the diamond pyramid hardness test. The diamond pyramid hardness (DPH) or Vickers hardness number (VHN or DPH) is defined as the load divided by the surface area of the incentation.

$$IPPH = \frac{2P \sin(9/2)}{T_c^2} = \frac{1.854 P}{L^2}$$
 ....(3.12)

where P = applied load, Kg.

L = average length of the diagonals, mm.

 $\Theta$  = angle between opposite faces of diamond = 136°.

The fracture toughness was determined by a technique developed by Evans & Charles (34) using the dimensional analysis of indentation crack length (c) and impression

radius (a).

Fracture toughness, k is obtained from the following formula :-

$$k_c \phi/H \sqrt{a} = 0.15 k (\frac{c}{a})^{-3/2}$$
 ...(3.13)

where k = fracture toughness

 $\phi$  = the constraint factor ( $\sim$ 3)

H = hardness

a = impression radius

c = crack length

k = a correction factor

The function  $\frac{k_c}{H\sqrt{a}}\left[\frac{H}{E}\right]^{0.4}$  when plotted with  $\frac{c}{a}$ , produces a unique curve which fits for all the polycrystalline materials. The straightline curve for single crystals fall close to those of polycrystals.

The samples which were used for studying the microstructure were taken. Opposite surface to the polished one was ground in 220 mesh SiC powder to make the two surfaces parallel. In the vickers hardness testing machine loads of 2.5 kg and 5 kg and were used for the test. For each load several indentations were made. In each case the diagonal of the indentation, the average crack length of the cracks produced by indentation were measured by ocular reading, one coular reading corresponds to

0.001 mm. .

Hardness corresponding to each reading was read off the vickers chart. Hardness values in  ${\rm Nm}^{-2}$  unit was also calculated from equation (3.9) for use in determining  ${\rm k}_{\rm C}$  .

Using the measured impression radius, cracklength and hardness, the fracture toughness was determined from the calibration curve (34, 13).

Photographs of some of the indentations were taken.

#### CHAPTER-IV

#### RESULTS AND DISCUSSION

### 4.0 Particle Size analysis

The results of the particle size analysis of the ground  $ZrO_2$  powder before shaping are shown in table 4.1. The particle size distributions are shown in the figures 4.1, 4.2, and 4.3.

All the batches have highest distribution density at less than or equal to 0.214 micron size. The maximum particle size observed is 3.65 micron. So the powders are very fine. This is because of the fact that the batches have been ground for a very long time in order to develop good casting properties.

## 4.1 Densities and porosities

The bulk density, true density, apparent porosity, true porosity and closed porosity values of the different batches are recorded in table 4.2, and 4.3. The variation of true density and true porosity values as a function of composition are shown in figures 4.4 and 4.5 respectively for sintered bars made by pressing and figures 4.6, 4.7 for crucibles made by casting. The bulk density is much less than the true density and most of the porosity is due to

TABLE 4.1

PARTICLE SIZE ANALYSIS OF THE GROUND BATCHES

| Size range,<br>micron                                                                   | No.  | of F       | articlo | s fal | ling i<br>atches | n the  | size | range              | ny ""oo, ay "inny, sy ngo/page/add |
|-----------------------------------------------------------------------------------------|------|------------|---------|-------|------------------|--------|------|--------------------|------------------------------------|
| THE THE PROPERTY AND ADDRESS ONLY ONLY OF Y ARREST OF THE PROPERTY AND ADDRESS ADDRESS. | С7   | <u>C10</u> | C13     | C15   | C7T5             | C8T7   | т7   | Stabz              | M8                                 |
| < 0.214                                                                                 | 35   | 30         | 56      | 19    | 43               | 32     | 73   | 63                 | 126                                |
| 0.214- 0.429                                                                            | 21   | 20         | 16      | 23    | 25               | 27     | 28   | 57                 | 96                                 |
| 0.429- 0.643                                                                            | 15   | 7          | 4       | 16    | 17               | 13     | 17   | 29                 | 53                                 |
| 0.643- 0.857                                                                            | 4    | 4          | 2       | 3     | 16               | 3      | 27   | 11                 | 15                                 |
| 0.857- 1.072                                                                            | 4    | 1.         | 3       | 4     | 3                | 4      | 26   | 7                  | 9                                  |
| 1.072- 1.286                                                                            | 1    | 1          | 3       | 2     | 1                | 4      | 20   | 9                  | 7                                  |
| 1.286- 1.499                                                                            | 3    | 2          | 9       | ••    | 3                | 2      | 11   | 6                  | 4                                  |
| 1.499 1.714                                                                             | 5    | 5          | 7       | 1     | 1                | 4      | 18   | 5                  | 3                                  |
| 1.714- 1.929                                                                            | 1    | 1          | 5       | 2     | 1                | ••     | 11   | 4                  | 1                                  |
| 1.929~ 2.143                                                                            | 5    | 4          | 4       | 6     | 2                | 2      | 19   | 11                 | 2                                  |
| 2.143- 2.357                                                                            | 3    | 4          | 1       | 5     | 2                | 6 23   |      | 5                  | فنندة                              |
| 2.357- 2.571                                                                            | 8    | 6          | 2       | 9     | 1                | 1      | 11   | 5                  | سا                                 |
| 2.571- 2.786                                                                            | 3    | 3          | 2       | 1     | 47               | 1      | e.,  | 3                  |                                    |
| 2.786- 2.999                                                                            | 1    | -          | 3       | 1     | <b>c</b> 3       | 1      | 7    | 1                  | 1                                  |
| 2.999- 3.214                                                                            | 2    | 2          | 2       | 2     | د.،              | emper  | 1    | Kuid               | نته                                |
| 3.214- 3.429                                                                            | KC.) | <b>e</b> a | 4       | دسة   | g.,              | Com. J | سه   |                    | د،                                 |
| <u>- 4.286</u>                                                                          | ده،  | ••         | د،      | 1     | 6.3              | 1      | 6.3  | C <sub>1-m</sub> 1 | ()                                 |





FIG 4.2 PARTICLE SIZE DISTRIBUTION OF GROUND ZIRCONIA BATCHES.



FIG. 4:3 PARTICLE SIZE DISTRIBUTION OF GROUND ZIRCONIA BATCHES.

TABLE 4.2

TRUE DENSITY, BULK DENSITY, APPARENT, CLOSED AND

TRUE POROSITIES OF THE SINTERED SAMPLES

| Sintered<br>bars | True<br>density<br>D <sub>T</sub> .<br>gms/cc | Bulk<br>density<br>D <sub>B'</sub> ,<br>gms/cc | Apparent porosity  PA  % | Closed<br>porosity<br><sup>P</sup> C<br>% | True<br>porosity<br><sup>P</sup> T<br>% |
|------------------|-----------------------------------------------|------------------------------------------------|--------------------------|-------------------------------------------|-----------------------------------------|
| C7               | 5.364                                         | 4.794                                          | 1.076                    | 9.554                                     | 10.63                                   |
| C10              | 5.373                                         | 5.083                                          | 1.910                    | 3.429                                     | 5.399                                   |
| C13              | 5.404.                                        | 5.133                                          | 1.620                    | 3.404                                     | 5.006                                   |
| C15              | 5.572                                         | 5.300                                          | 0.000 -                  | 4.115                                     | 4.115                                   |
| C7T5             | 5.475                                         | 4.730                                          | 1.457                    | 12.153                                    | 13.610                                  |
| C8T7             | 5.541                                         | 4.82 <b>2</b>                                  | 1.603                    | 11.377                                    | 12.980                                  |
| Т7               | 5.486                                         | 4.733                                          | 1.020                    | 12.703                                    | 13.723                                  |
| <b>M</b> 8       | 5.246                                         | 4.320                                          | 3.730                    | 13.921                                    | 17.651                                  |

TABLE 4.3

APPARENT DENSITY, BULK DENSITY, APPARENT CLOSED

AND TRUE POROSITIES OF THE CRUCIBLES

| Crucibles | Bulk<br>density<br><sup>D</sup> B<br>gms/cc | Apparent<br>porosity<br><sup>P</sup> A<br>% | True<br>porosity<br><sup>P</sup> T<br>% | Closed<br>porosity<br><sup>P</sup> C<br>% |
|-----------|---------------------------------------------|---------------------------------------------|-----------------------------------------|-------------------------------------------|
| C7        | 4.914                                       | 6.946                                       | 8,380                                   | 1.434                                     |
| C10       | 5.038                                       | 1.665                                       | 6,237                                   | 4.572                                     |
| C13       | 5.153                                       | 1.715                                       | 4.631                                   | 2.916                                     |
| C15       | 5.370                                       | 0.000                                       | 3.625                                   | 3.625                                     |
| C7T5      | 4.882                                       | 2.785                                       | 10.830                                  | 8.045                                     |
| C8T7      | 5.101                                       | 2.126                                       | 7.930                                   | 5.810                                     |
| т7        | 4.998                                       | 3.354                                       | 8.892                                   | 5.538                                     |
| M8        | 4.642                                       | 7,300                                       | 11.514                                  | 7.300                                     |
| Stab z    | 5.062                                       | 2.926                                       | 8.562                                   | 5.636                                     |



FIG. 4.4 TRUE DENSITY VS. COMPOSITION



FIG. 4-5 TRUE POROSITY VS. COMPOSITION



FIG 46 TRUE DENSITY VS. COMPOSITION FOR CRUCIBLES.



FIG. 47 TRUE POROSITY VS. COMPOSITION FOR CRUCIBLES.

closed pores as true porosity is much greater than apparent porosity.

The true porosity ranged between 4.1 for C15 to 13.7 for C7. The M8 batch has a very high porosity 17.65 since it was calcined at 1350°C and on sintering, the samples swelled to some extent.

The porosity figures of CaO-TiO<sub>2</sub>-ZrO<sub>2</sub> and TiO<sub>2</sub>-ZrO<sub>2</sub> batches are much higher than the CaO-ZrO<sub>2</sub> compositions. The reason is as follows. Titanium has 4+ valency. So when it will replace Zr<sup>4+</sup>, no vacancy will be created as opposed to Ca<sup>2+</sup>. In the latter case vacancies are formed to maintain charge balance. So in case of Ti<sup>4+</sup> substitution diffusion will be lower than that in the case of Ca<sup>2+</sup> substitution due to lower number of vacancies in CaO-TiO<sub>2</sub>-ZrO<sub>2</sub> composition.

Density increased with increasing amount of CaO as more and more liquid phase sintering occured and also at the same time number of vacancies is increased.

Porosity of the crucibles is higher than porosity of the sintered bars because the crucibles were made by slip casting whereby the green density was less than that in the case of pressed bars.

## 4.2 X-ray Diffraction Studies

The measured d'values, respective intensities of the

different lines, integrated intensity and phases present in the sintered samples are shown in tables 4.4a to 4.4i. The X-ray data of the batches after thermal cycling (spalled) are recorded in the tables 4.5a-4.5i. The X-ray diffraction curves of sintered and spalled specimens are shown in figure 4.4(i)-(iii) and 4.5 (i)-(iii) respectively.

By comparing the measured d'spacings and  ${\rm I/I}_{\rm O}$  values of our samples with those of ASTM standard we have come to the following conclusion.

The C15 batch contained 95.73% cubic phase and the rest as monoclinic phase, that is the stabilization in this composition was almost complete. In case of C13 batch the cubic phase was only 30.73% indicating the importance of the CaO amount for stabilization. The C10 composition did not get stabilized to the cubic phase. It contained 15.5% tetragonal and 84.5% monoclinic phases respectively.

The C7 composition had only a small amount of tetragonal phase (3.06%) and monoclinic (96.94%) was the major phase.

Lower amount of CaO resulted in higher amount of monoclinic form. T7 composition had produced a monoclinic solid solution as indicated by slight change in'd' values for all (hkl) planes. This agrees with the phase diagram, figure, 2.d.

C7T5 batch also formed a single phase monoclinic solid

solution which agrees with the phase diagram, figure 2e.

C8T7 composition had developed a small amount of tetragonal phase (5.8%). The M8 batch was also fully monoclinic.

On repeated thermal cycling more and more phase had become ill defined and showed broad K-ray peak and some of them formed humps instead of well defined peaks. This means that the 'd' spacing has been changed, crystallinity has got reduced and micro cracks have been produced throughout the matrix. The C7T5 composition retained some tetragonal phase. It seems that this composition has a low temperature monoclinic-tetragonal phase boundary. The investigation of the phase diagram is necessary in this system to clarify this point.

The composition C7, C10, C13, C15 and Stab Z had also retained tetragonal phase. But retention of tetragonal phase was highest in the two compositions-C7 and C7T5.

On thermal cycling the diffracted intensity from some of the hkl planes increased and the intensity of some of the planes decreased.

of

The decrease of amount/cubic phase and formation of monoclinic phase is possibly because of the following reason.

At the furnace temperature of thermal shock test the .
C15 and Stab Z samples got heat treated in the (cubic+monoclinic)

TABLE 4.1
ASTM X-RAY DATA FOR CUBIC, TETRAGONAL AND MONOCLINIC ZIRCONIA

| Cubic, a | o = 5.03         | Tetragon | al, a <sub>o</sub> = 5.07, |
|----------|------------------|----------|----------------------------|
|          |                  |          | c <sub>o</sub> = 5.16      |
| d Å      | I/I <sub>o</sub> | d A      | I/I <sub>o</sub>           |
| 2.96     | 100              | 2.93     | 100                        |
| 2.56     | 24               | 2.52     | 4 O                        |
| 1.81     | 80               | 1.81     | 60                         |
| 1.54     | 60               | 1.79     | 100                        |
| 1.48     | 10               | 1.55     | 50                         |
| 1.28     | 12               | 1.53     | 100                        |
| 1.17     | 20               | 1.47     | 60                         |
| 1.04     | 16               | 1.29     | 40                         |
| 0.98     | 14               | 1.27     | 60                         |
| 0.90     | 5                | 1.17     | 40                         |
| 0.86     | 8                | 1.13     | 40                         |
| 0.85     | 5                | 1.10     | 60                         |
| 0.81     | 4                | 1.05     | 40                         |
|          |                  | 1.04     | 70                         |
|          |                  | 0.99     | 40                         |
|          |                  | 0.98     | 70                         |

#### Monoclinic

|                  |                  | Monoclinic |                  |                  |
|------------------|------------------|------------|------------------|------------------|
| a <sub>o</sub> = | 5.1477,          |            | b <sub>o</sub> = | 5.2030,          |
| c <sub>o</sub> = | 5.3156           |            |                  | 99°23 <b>°</b>   |
| d A              | I/I <sub>o</sub> |            | å b              | I/I <sub>o</sub> |
| 5.036            | 6                |            | 1.656            | 14               |
| 3.690            | 18               |            | 1.640            | 8                |
| 3,630            | 14               |            | 1.608            | 8                |
| 3.157            | 100              |            | 1.591            | 4].              |
| 2.834            | 65               |            | 1.581            | <u>4</u> 1       |
| 2.617            | 20               |            | 1.541            | 10               |
| 2.598            | 12               |            | 1.508            | 6                |
| 2.538            | 14               |            | 1.495            | 10               |
| 2.488            | 4                |            | 1.176            | 6                |
| 2.328            | 6                |            | 1.447            | <u> </u>         |
| 2.285            | 2                |            | 1.420            | 6                |
| 2.252            | 4                |            | 1.358            | 2                |
| 2.213            | 14               |            | 1.348            | 2                |
| 2.182            | 6                |            | 1.321            | 6                |
| 2.015            | 8                |            | 1.309            | 2                |
| 1.989            | 8                |            | 1,298            | 2                |
| 1.845            | 18               |            | 1.269            | 2                |
| 1.818            | 12               |            | 1.261            | 2                |
| 1.801            | 12               |            |                  |                  |
| 1.780            | . 6              |            |                  |                  |
| 1.691            | 14               |            |                  |                  |

TABLE 4.4

X-RAY DIFFRACTION DATAS OF SINTERED SAMPLES

c = cubic, m = monoclinic, t = tetragonal.

Table 4.4a. -- Composition C15

| ٠,         |        |                     | Ć.                      |         |                 |
|------------|--------|---------------------|-------------------------|---------|-----------------|
| 20 degrees | d A    | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks | % phases        |
| 27.2       | 3.2756 | 6.0                 | \$500 April             | ಛಾದು    | ಘಟ              |
| 28.2       | 3.1617 | 2.25                | 4.40                    | m       | 4.271           |
| 30.26      | 2.9511 | 100                 | 158.085                 | С       | 95 <b>.7</b> 29 |
| 35.08      | 2.5558 | 15.02               | est) day                | С       | ezzina 4 kulti  |
| 50.33      | 1.810  | 39.04               | Militin harry           | С       | SIGN Court      |
| 59.90      | 1.5428 | 18.92               | ecto e tre              | С       | 455.6 Lui?      |
| 62.72      | 1.4801 | 5.105               | EZA C >                 | С       | day tun         |

Table 4.4.b. -- Composition C13

| 20 degrees | d Å    | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks | % phases         |
|------------|--------|---------------------|-------------------------|---------|------------------|
| 24.2       | 3.6746 | 14.35               | tas r u                 | m       | ಬೌ೭೩             |
| 24.55      | 3.6230 | 14.57               | شه الحا                 | m       | 620 C. ++        |
| 28.34      | 3.1464 | 100.00              | 135.98                  | m       | 69.27            |
| 30.24      | 2.9530 | 60.87               | 96.7                    | C       | 30.73            |
| 31.58      | 2.8307 | 80.44               | #. <b></b> €7           | m       | <u>ಬ್ಯಾಕ್</u> ಟ್ |
| 34.40      | 2.6048 | 32.61               | 622# C - 1              | m       | دسته فيزو        |
| 35.40      | 2,5334 | 30.44               | نسبة وتتنه              | m,C     | CJ FFD           |
| 38,63      | 2.3287 | 7.17                | ديون                    | m,      | ACCESS C SE      |
| 40.88      | 2.2055 | 21.74               | طيع قده                 | m       | esses etc.a      |
| 45.02      | 2.0119 | 11.96               | athe time               | m       | engs ac          |
| 45.62      | 1.9868 | 13.48               | etter 46%               | m       | هناه ودنه        |
| 49.52      | 1.8391 | 33.70               | eile c)                 | m       | دے وی            |
| 50.30      | 1.8124 | 65.22               | and the                 | m       | r.,, 4726        |
| 54.16      | 1.6921 | 18.26               | em t*                   | m       | هيئة هذه         |
| 55.57      | 1.6521 | 23.91               | టాల కాని                | m       | क्ष्मा व्यक्त    |
| 60.00      | 1.5405 | 38.48               | esté Alla               | m,c     | لدنك وووي        |
| 62.93      | 1.4757 | 24.57               | अञ्चल स्थ्य             | m,c     | ಜ್ಞನಕ ನಮಿತ       |
| 64.30      | 1.4475 | J <b>8.</b> 26      | ब्रह्म सम्ब             | m       | enge fi -d       |
| 65.80      | 1.4180 | 21.09               | <b>1070</b> 43-0        | m       | هنده فيت         |
| 69.10      | 1.3582 | 4.78                | دي وي                   | m       | ساجه             |
| 71.10      | 1.3248 | 13.91               | gazin 477-a             | m,      | egg-tub.         |

Table 4.4.c.-Composition C10

|            | *************************************** |        | Control of the Contro |         |          |
|------------|-----------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
| 20 degrees | d A                                     | I      | Integrated<br>Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks | % Phases |
| 24.32      | 3.6567                                  | 14.82  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 24.74      | 3.5960                                  | 9.56   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 25.63      | 3.4727                                  | 3.46   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 28.43      | 3.1367                                  | 100.00 | 145.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m       | 84.51    |
| 30.41      | 2,9368                                  | 20.43  | 42.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t       | 15.49    |
| 31.68      | 2.8220                                  | 58.80  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 34.33      | 2.6099                                  | 30.15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 35.49      | 2.5272                                  | 14.33  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t,m     |          |
| 36.10      | 2.4859                                  | 6.92   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 38.86      | 2.3154                                  | 8.24   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 41.08      | 2.1953                                  | 21.90  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 45.12      | 2.0051                                  | 11.50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 45.68      | 1.9843                                  | 14.33  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m       |          |
| 49.48      | 1.8405                                  | 36.57  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 50.42      | 1.8084                                  | 37.89  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t,m     |          |
| 50.83      | 1.7945                                  | 39.04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t,m     |          |
| 54.28      | 1.6885                                  | 18.95  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 55.61      | 1.6512                                  | 44.95  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 57.41      | 1.6037                                  | 11.04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 58.32      | 1.5808                                  | 11.86  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 60.12      | 1.5378                                  | 28.34  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m,t     |          |
|            |                                         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contd   |          |

Contd....C10

| 20 degrees | d A    | I<br>I <sub>O</sub> | Integrated<br>Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks | % Phases |
|------------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
| 62.14      | 1.4925 | 20.59               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 62.86      | 1.4772 | 16.31               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 64.60      | 1.4414 | 7.91                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 65.78      | 1,4184 | 15.32               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 71.40      | 1.3200 | 14.50               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
| 75.40      | 1.2596 | 9.89                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |          |
|            |        |                     | and the second s |         |          |

Table 4.4.d. -- Composition C7

| 20 degrees      | d Å     | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks | % phases      |
|-----------------|---------|---------------------|-------------------------|---------|---------------|
| 24.27           | 3.6641  | 13.31               | ea ( a                  | m       | الدينة الدينة |
| 24.68           | 3.6042  | 8.40                | فين دعة                 | m       | فيتة فبدنا    |
| 25,60           | 3.4767  | 9.10                | SEER CA                 | m       | حب ب          |
| 28.40           | 3.1399  | 100.00              | 177.52                  | m       | 96.936        |
| 30 <b>~5</b> 0  | 2-9283  | 5.41                | 8.995                   | t       | 3.064         |
| 31:63           | 2.8263  | 52.80               | COLOR Sand              | m       | الداويي       |
| 3 <b>4 :</b> 29 | 2.6126  | 29.40               | ರಬ್ ೮೨                  | m       | ديه ويم       |
| 35.56           | 2.5214  | 10.36               | CLUB ET 1               | t       | طئ تسا        |
| 36.00           | 2.4926  | 7.28                | الان المساع             | m       | هت دنا        |
| 38.86           | 2.3154  | 6.30                | خنجه يجري               | m       | ھے سے         |
| 40.98           | 2.2004  | 21.00               | هيئة جنية               | m       | end find      |
| 45.02           | 2.0119  | 9.38                | etal tak                | m       | هد شه هدينگ   |
| 45.73           | 1.9823  | 12.05               | g5ta∮ G3                | m       | فسنا وتبنو    |
| 49.54           | 1 .8382 | 35.01               | Aug 6 3                 | m       | فبية فنية     |
| 50.42           | 1.8084  | 30.80               | Ga LA                   | t       | cu F I        |
| <b>50.7</b> 5   | 1.7974  | 32.20               | فينا وي                 | t       | ور ا ما       |
| 54.10           | 1.6937  | 21.00               | ఇద్ది కొచ               | m       | en en         |
| 55.63           | 1.6507  | 47.48               | دي دي                   | m       | درع وي        |
| <b>57</b> ,39   | 1.6043  | 11.20               | en: ಕಸ್                 | m       | جيت جي        |
| 58,46           | 1.5770  | 13.30               | Gat King                | m       | حه هه         |
| 60.23           | 1.5352  | 25.21               | N.S.C.J                 | t       | لبسا هنگا     |
| 61.63           | 1.5037  | 14.28               | r 3 c. 1                | m       | هيئة هناة     |
|                 |         |                     |                         | Contd   | C7            |

Contd....C7

| 20 degrees | đ Å    | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks | % phases    |
|------------|--------|---------------------|-------------------------|---------|-------------|
| 62.23      | 1.4906 | 20.73               | en en                   | m       | ب اھي       |
| 63,02      | 1.4738 | 13.59               | cara                    | m       | د عن النام  |
| 64.57      | 1.4420 | 7.98                | e=3 (_ a                | m       | Saudi (*256 |
| 65.80      | 1.4180 | 13.87               | مسة فلنشة               | m       | فرسا فسنا   |
| 69.37      | 1.3536 | 3,92                | دعدع                    | m       | பும         |
| 71.37      | 1.3205 | 16.81               | C2 800                  | m       | టు ట        |

| Table 4.4.e Composition Stab z |                |        |                         |         |                |  |  |
|--------------------------------|----------------|--------|-------------------------|---------|----------------|--|--|
| 20 degrees                     | d A            | I      | Integrated<br>Intensity | Remarks | % phases       |  |  |
| 27.42                          | 3 <b>.2499</b> | 3,98   | ديدع                    | m       | بالمستثنة      |  |  |
| 28.30                          | 3.1508         | 2.16   | 3.5                     | m       | 3,036          |  |  |
| 30.26                          | 2.9530         | 100.00 | 179.2                   | С       | 96.964         |  |  |
| 35.11                          | 2.5560         | 14.10  | tat a                   | С       | 4C3m % J       |  |  |
| 45.43                          | 1.9947         | 1.99   | جين الإنها              | m       | धन धन          |  |  |
| 50.22                          | 1.8151         | 43.12  | ಟ್ಟುಪತಾ                 | m, c    | Elité dimé     |  |  |
| 59.73                          | 1.5468         | 5.64   | ಚಿತ್ರ ಅನಿ               | С       | Mario Cari     |  |  |
| 60.22                          | 1.5355         | 18.24  | هي دنه                  | С       | نسا فيه        |  |  |
| 62.30                          | 1.4782         | 4.98   | <b>a.</b> w             | С       | طبقة متنبط     |  |  |
| <b>74.5</b> 3                  | 1.2721         | 2.98   | a3 c. 3                 | m,c     | <b>ಸಂಘ</b> €ಎಲ |  |  |

Table 4.4.f. -- Composition C7T5

| 20 degrees | d A    | I      | Integrated<br>Intensity | Remarks | % phases          |
|------------|--------|--------|-------------------------|---------|-------------------|
| 24.05      | 3.6971 | 15.77  | ಣಲ                      | m       | <b>ب</b> الج      |
| 24.47      | 3.6314 | 10.51  | دسه                     | m       | EAZZ L. ~J        |
| 25.29      | 3.5168 | 5.12   | stops 45, 34            | m       | <b></b>           |
| 28.28      | 3.1529 | 100.00 | cot.                    | m       | డా ఓ              |
| 31.48      | 2.8394 | 56.74  | ೯೨ ಬ                    | m       | €±ो क्षेत्रक      |
| 34.12      | 2.6251 | 35.04  | <b>ಬ</b> ು              | m       | <del>డ</del> ు డు |
| 35,30      | 2.5400 | 10.78  | acts C in               | m       | <b>L3</b> CD      |
| 35.83      | 2.5040 | 7.41   | කා යා                   | m       | కిషు కమ           |
| 38.60      | 2.3300 | 8.63   | gt.a4a                  | m       | <b>C</b>          |
| 40.79      | 2.2154 | 18.46  | د که لاسته              | m       | డు బు             |
| 44.76      | 2.0274 | 11.59  | era ea                  | m       | فشبه فيقه         |
| 45.48      | 1.9926 | 15.50  | cas tau                 | m       | ్రాజ జని          |
| 49.26      | 1.8489 | 36.52  | ema e.us                | m       | gaza cua          |
| 50.23      | 1.8148 | 32.75  | बर्ट्स १९७३             | m       | وشه ليساء         |
| 50.57      | 1.8034 | 36.12  | భాని రమ                 | m       | فنبكه إداءي       |
| 51.20      | 1.7827 | 12.40  | ection dated            | m       | Lu 573            |
| 54.02      | 1.6960 | 15.23  | فيوني                   | m       | atus étus         |
| 55.41      | 1.6567 | 36.79  | فست ويتد                | m       | EEE3 Y3           |
| 57.24      | 1.6081 | 11.05  | فيت جينه                | m       | erms divis        |
| 58.18      | 1.5843 | 15.23  | <u>ట</u> ు మా           | m       | జు డు             |
|            |        |        |                         | _       |                   |

Contd....

Contd....

| Cont | :d. |  | .C | 7T. | 5 |
|------|-----|--|----|-----|---|
|------|-----|--|----|-----|---|

| 20 degrees                                         | d Å                                            | I<br>I <sub>O</sub>                               | Integrated<br>Intensity             | Remarks          | % phases          |
|----------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------|------------------|-------------------|
| 59.79                                              | 1.5454                                         | 29.65                                             | City F.J.                           | m                | and the           |
| 61.35                                              | 1.5098                                         | 14.83                                             | App sa                              | m                | eny t             |
| 61.93                                              | 1.4970                                         | 20.22                                             | الله دين<br>الله دين                | m                | هت سن             |
| 62.80                                              | 1.4784                                         | 11.73                                             | ANG LOS                             | m                | రావు ఇచ్చా        |
| 64.13                                              | 1.4509                                         | 5.39                                              | ECCO C 1                            | rn               | دے جب             |
| 65.63                                              | 1.4213                                         | 15.23                                             | dama da, j                          | m                | هنه هن            |
| 69.00                                              | 1.3 <b>59</b> 9                                | 3.77                                              | em rey                              | m                | ettes e-ta        |
| 71.18                                              | 1.3235                                         | 13.75                                             | ESp C.3                             | m                | <b>-</b>          |
|                                                    | Table 4.4                                      | .a Com                                            | position C8T7                       |                  |                   |
| 20 degrees                                         | å Å                                            | I<br>I <sub>O</sub>                               | Integrated<br>Intensity             | Remarks          | % phases          |
| 20 degrees<br>24.04                                | ٥                                              |                                                   | Integrated                          | Remarks<br>m     | % phases          |
|                                                    | d Å                                            | I<br>I <sub>O</sub>                               | Integrated<br>Intensity             |                  |                   |
| 24.04                                              | d Å                                            | <u>I</u> I <sub>0</sub>                           | Integrated<br>Intensity             | m                | ea. ett           |
| 24.04<br>24.63                                     | 3.6986<br>3.6115                               | 18.08<br>13.56                                    | Integrated<br>Intensity             | m<br>m           | <b>62</b> C3      |
| 24.04<br>24.63<br>25.44                            | d Å  3.6986  3.6115  3.4982                    | 18.08<br>13.56<br>5.79                            | Integrated Intensity                | m<br>m<br>m      | 6.3 63<br>63 6. J |
| 24.04<br>24.63<br>25.44<br>28.20                   | 3.6986<br>3.6115<br>3.4982<br>3.1617           | 18.08<br>13.56<br>5.79<br>100.00                  | Integrated Intensity                | m<br>m<br>m      | 94.215            |
| 24.04<br>24.63<br>25.44<br>28.20<br>30.60          | 3.6986<br>3.6115<br>3.4982<br>3.1617<br>2.9190 | 18.08<br>13.56<br>5.79<br>100.00<br>4.20          | Integrated Intensity  150.875 5.790 | m<br>m<br>m<br>n | 94.215            |
| 24.04<br>24.63<br>25.44<br>28.20<br>30.60<br>31.48 | d Å  3.6986 3.6115 3.4982 3.1617 2.9190 2.8398 | 18.08<br>13.56<br>5.79<br>100.00<br>4.20<br>78.48 | Integrated Intensity  150.875 5.790 | m<br>m<br>m<br>t | 94.215            |

| ContdC8T7 | C | on | t | d. |  |  |  | C | 3T | 7 |
|-----------|---|----|---|----|--|--|--|---|----|---|
|-----------|---|----|---|----|--|--|--|---|----|---|

| 20 degrees | d Å    | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks | % phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|--------|---------------------|-------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40.77      | 2.2112 | 24.77               | in S.7                  | m       | ಥಮ್ಯ ಆ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 41.39      | 2.1796 | 14.47               | وتري لاسما              | m       | giato 1 − 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 44.78      | 2.0222 | 12.66               | 6L3 ← 1                 | m       | فقه در ر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 45.55      | 1.9897 | _48:08              | డిపు కనిర               | m       | యైప్రత్ సులు కి                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49.30      | 1.8468 | 40.33               | Suit Calif              | m       | ಮೂ ೬ ೨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 50.32      | 1.8117 | 48.82               | ers two                 | ın      | ب ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 50.50      | 1.8057 | 47.92               | هيئه شسة                | t       | GEOR ETUB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 54.05      | 1.6951 | 23.51               | sum Sind                | m       | دسکا جیے                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 55.47      | 1.6575 | 37.98               | Cod side                | m       | State Sund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 55.94      | 1.6423 | 25.32               | هندة فيست               | m       | وتسط شنب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 57.22      | 1.6060 | 13.56               | متعمره                  | m       | حب حب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58.13      | 1.5855 | 16.28               |                         | m       | GEES Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 59.93      | 1.5421 | 34.72               | CL-3 C-3 <sup>28</sup>  | m       | ت شه مينتو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 61.35      | 1.5098 | 15.19               | فستونب                  | m       | ear a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 61.93      | 1.4970 | ,<br>16.28          | aca 4517                | m       | وتستا وتستا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 62,90      | 1.4763 | 20.43               | <b>COSTS</b> Actual     | m,t     | East in i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 64.34      | 1.4467 | 7.41                | হাতা বস্তাহ             | m       | ھدے جب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 65.68      | 1.4204 | 19.89               | ಪ್ರಭಾಷ್-ಶಿ              | m       | -u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 69.12      | 1.3578 | 6.69                | هنت والله               | m       | Secret and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21.21      | 1.3230 | 15.37               | ब्द्रांत व्याप          | m       | هسته د سنا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 72.38      | 1.3045 | 6.87                | భ్యుక్తు1               | m       | ed to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 75.25      | 1.2617 | 12.66               | وعوث                    | m       | هينه طينه                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| , 5 , 20   |        |                     |                         |         | and the state of t |

Table 4.4.h. -- Composition T7

| 20 degrees | d Å    | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks | % phases     |
|------------|--------|---------------------|-------------------------|---------|--------------|
| 24.27      | 3.6641 | 12.41               | ھينہ جينہ               | m       | ا، تا ويون   |
| 24.53      | 3.6113 | 10.86               | 600 620                 | m       | خبع حمد      |
| 25.48      | 3.4928 | 3.62                | em en                   | m       | دے دے        |
| 28.30      | 3.1508 | 100.00              | 136.200                 | m       | 99.479       |
| 30.54      | 2.9283 | 0.90                | 1.143                   | m       | 0.521        |
| 31.60      | 2.8289 | 56.55               | esc.                    | m       | e21.2        |
| 34.22      | 2.6166 | 22.40               | 6233 Cm-1               | m       | دع تت        |
| 34.43      | 2,6098 | 24.48               | هدا دها                 | m       | دستا وليه    |
| 35.45      | 2.5300 | 18.10               | 80e C-3                 | m       | ست دے        |
| 38.74      | 2.3224 | 9.48                | <b>a</b> .              | m       | ديء دي       |
| 40.95      | 2.2071 | 18.97               | 6279 67                 | m       | ت ت          |
| 41.60      | 2.1691 | 11.55               |                         | m       | ھے سے        |
| 44.95      | 2.0148 | 9.83                | دسه بست                 | m       | #12# Em3     |
| 45.91      | 1.9955 | 12.41               | CC3 C~4                 | m       | دة في تنا    |
| 49.43      | 1.8422 | 13.69               | డా కు                   | m       | 2343         |
| 50.12      | 1.8185 | 36.38               | ويه وري                 | m       | دسه جت       |
| 50.63      | 1.8013 | 38.45               | aus cas                 | m       | السنة السنة  |
| 51.40      | 1.7762 | 15.17               | දක්ව රැ.ක               | m       | e2 e.,       |
| 54.13      | 1.6929 | 15.52               | nai da                  | m       | والتنا خبيشة |
| 55.54      | 1.6532 | 26.38               | esse ( »)               | m       | ACCES MICES  |

Contd....T7

Contd...T7

| 20 degrees | d A    | I     | Integrated<br>Intensity | Remarks | % phases                                          |
|------------|--------|-------|-------------------------|---------|---------------------------------------------------|
| 56.07      | 1.6388 | 20.00 |                         | m       | arypeaneetheree, a. angus an east an eagain peane |
| 57.34      | 1.6055 | 14.66 | حسنا فيسا               | m       | دعه ضما                                           |
| 58.38      | 1.5794 | 15.86 | <b>్</b> చు రము         | m       | در با در د                                        |
| 60.18      | 1.5364 | 32.76 | Città Millio            | m       | ೯.೨ ೯.೨                                           |
| 61.41      | 1.5085 | 10.86 | هناه دسا                | m       | t 24 Km3                                          |
| 61.90      | 1.4977 | 15,00 | ್ಷರಾ L ಬರಿ              | m       | Allo Cali                                         |
| 62.98      | 1.4746 | 14.14 | wa L s                  | ù       | ബം പാ                                             |
| 64.38      | 1.4459 | 6.55  | ella Craf               | m       | شنة شنة                                           |
| 65.79      | 1.4182 | 18.45 | دغات                    | m       | देशसा                                             |
| 69.18      | 1.3568 | 4.83  | فند ) شبية              | m       | sups Cata                                         |
| 71.20      | 1.3232 | 12.24 | E.s (13)                | m       | 649 C23                                           |
| 72.85      | 1.2972 | 5.17  | فية بينة                | m       | نية جي                                            |
| 75.51      | 1.2580 | 12.24 | elj cm                  | m       | المنع تست                                         |

| Table 4 .4.i Composition M8 |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                      |  |  |
|-----------------------------|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|--|--|
| 20 degrees                  | d A    | <u> </u>      | Integrated<br>Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks   | % phases             |  |  |
| 24.05                       | 3.6574 | 17.17         | tion (LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m         | وين في               |  |  |
| 28.20                       | 3.1617 | 100.00        | gua (L.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m         | <u>ಕ್ಷ</u> ವ್ಯಕ್ತಿ ೨ |  |  |
| 31.30                       | 2.8553 | 51.50         | شة الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m         | دعد                  |  |  |
| 33.99                       | 2.6353 | 22.22         | <b>63</b> 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m         | en constant          |  |  |
| 35.15                       | 2.5509 | 21.06         | දෙය උයස                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m         | <u>ರೂ</u> ಬ <i>ಳ</i> |  |  |
| 38.57                       | 2.3312 | 8.33          | cus sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m         | स्ट्रेड व्यव         |  |  |
| 40.78                       | 2.2107 | 2.50          | ಜನ ೮%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m         | هيته چين             |  |  |
| 44.82                       | 2.0204 | 15.15         | ES CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m         | سريه جريب            |  |  |
| 45.33                       | 1.9988 | 18.20         | دے ھنا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m         | <b></b>              |  |  |
| 49.11                       | 1.8537 | 47.98         | خثت حسن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m         | డవి అని              |  |  |
| 50.21                       | 1.8155 | 67.42         | <b>€</b> 3 ←3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m         | هيئة شيه             |  |  |
| 53.93                       | 1,6985 | 17.70         | గా కాబ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m         | وجه هنگ              |  |  |
| 54.33                       | 1.6871 | 47.22         | కునా చహ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m         | وسوب                 |  |  |
| 57.10                       | 1.6117 | 11.87         | 6.00 G-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m         | ey co                |  |  |
| 58.00                       | 1.5888 | 15.90         | දේශ දෙන                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m         | قسا للبية            |  |  |
| 59.92                       | 1.5424 | 37.52         | L.a a.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m         | 3د⊅ طنب)             |  |  |
| 61.34                       | 1.5100 | 18.94         | ate to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m         | ന്ന പേ               |  |  |
| 61.80                       | 1.4999 | 23.20         | دے ویئ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m         | هيه هيه              |  |  |
| 62.60                       | 1.4827 | 18.94         | ಚಿತ್ರ ಕುಡಿ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m         | ،<br>تف ميغ          |  |  |
| 64.03                       | 1.4529 | <b>3</b> 9.60 | టులు                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m         | డవా డు               |  |  |
| 65.50                       | 1.3880 | 20.67         | డు డా                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m         | لسبة هيكا            |  |  |
| 69.01                       | 1.3597 | 8.33          | אניט עינא                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m         | <b>කු </b>           |  |  |
| 71.10                       | 1.3248 | 17.68         | CENTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THR<br>AR | <b>*</b>             |  |  |
|                             | •      |               | The State of the S | A 6303    |                      |  |  |

Table 4.5.b. - Composition C13 Spalled

| 20 degrees | d Å            | I<br>I <sub>O</sub> | Integrated<br>Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks | % phases                                             |
|------------|----------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------|
| 24.4       | 3.6949         | 21.67               | and the second s | M       | ayatti kagaman ang ang ang ang ang ang ang ang ang a |
| 28.45      | 3.1345         | 100.00              | 65 <b>.</b> 0 <b>5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m       | 87.483                                               |
| 30.42      | <b>2.935</b> 8 | 16.67               | 14.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c,t     | 12.517                                               |
| 31.70      | 2.8202         | 100.00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                      |
| 34.40      | 2.6048         | 32.92               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m,t     |                                                      |
| 35.43      | 2.5313         | 22,92               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С       |                                                      |
| 41.07      | 2.1958         | 22.50               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c,t     |                                                      |
| 45.03      | 2.0115         | 20.83               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                      |
| 48.56      | 1.8732         | 42.92               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                      |
| 50.40      | 1.8090         | 62.50               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c,m,t   |                                                      |
| 53.19      | 1.7205         | 28.33               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t       |                                                      |
| 55.60      | 1.6515         | 37.92               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                      |
| 57.53      | 1.6006         | 28.33               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                      |
| 58,30      | 1.5813         | 18.57               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t,m     |                                                      |
| 60.14      | 1.5373         | 41.67               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c,t,m   |                                                      |
| 62.68      | 1.4810         | 31.20               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t,m     |                                                      |
| 65.90      | 1.4161         | 29.17               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                      |
| 71.52      | 1.3181         | 16.25               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t,m     | 1                                                    |

Table 4.5.c - Composition C10 Spalled

| 20 degrees | d A     | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks | % Phascs |
|------------|---------|---------------------|-------------------------|---------|----------|
| 24.22      | 3.6716  | 16.80               |                         | m       |          |
| 25.60      | 3.4767  | 4.56                |                         | m       |          |
| 26.60      | 3.3982  | 1.82                |                         | m       |          |
| 28.38      | 3.1421  | 100.00              | 108.575                 | m       | 76.64    |
| 30.33      | 2.9402  | 22.00               | 53.050                  | t       | 23.36    |
| 31.57      | 2.8315  | 93.41               |                         | m       |          |
| 34.27      | 2.6137  | 41.82               |                         | m       |          |
| 35.39      | 2.5,341 | 25.23               |                         | m       |          |
| 38.72      | 2.3235  | 6.82                |                         | m       |          |
| 41.10      | 2.1943  | 19.32               |                         | m       |          |
| 41.38      | 2.1801  | 17.95               |                         | m       |          |
| 44.92      | 2.0162  | 17.95               |                         | m       |          |
| 45.50      | 1.9918  | 17.27               |                         | m       |          |
| 49.60      | 1.8364  | 42.05               |                         | m,t     |          |
| 50.32      | 1.8118  | 55.00               |                         | mt,     |          |
| 54.20      | 1.6909  | 29.55               |                         | m       |          |
| 55.60      | 1.6515  | 42.95               |                         | m       | ,        |
| 57.25      | 1.6078  | 16.60               |                         | m       |          |
| 58.48      | 1.5767  | 15.45               |                         | m       |          |
| 60.13      | 1.5371  | 32.05               |                         | m       |          |

Contd....C10 spalled

| ContdC1 | O Spalled |
|---------|-----------|
|---------|-----------|

| 20 degrees                                                                             | d A                                                                                                            | I<br>I <sub>O</sub> | Integrated<br>Intensity                                                                      | Remarks | % Phases                                                               |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------|
| 61.40                                                                                  | 1.5087                                                                                                         | 22.73               |                                                                                              | m       | navagysta di Palanca aganara. Luvas 3 della, albatta sur reficienza di |
| 61.88                                                                                  | 1.4982                                                                                                         | 25.00               |                                                                                              | m,t     |                                                                        |
| 62.78                                                                                  | 1.4809                                                                                                         | 29.55               |                                                                                              | m,t     |                                                                        |
| 64.34                                                                                  | 1.4467                                                                                                         | 1.36                |                                                                                              | m       | •                                                                      |
| 65,65                                                                                  | 1.4210                                                                                                         | 22.50               |                                                                                              | m       |                                                                        |
| 68.87                                                                                  | 1.3621                                                                                                         | 7.50                |                                                                                              | m,t     |                                                                        |
| 71.20                                                                                  | 1.3232                                                                                                         | 16.14               |                                                                                              | m       |                                                                        |
| 75.08                                                                                  | 1.2641                                                                                                         | 10.90               |                                                                                              | m,t     |                                                                        |
| entitionalistis militario apikrijatūvi atemis a santas salti, bienatis salgar yauno ya | n filosom má Provincia desta comicio su comi |                     | rikizanish yaqayan minganiya i suniyaan kashaga arman u kirilin isti alikin qarmi eldasa ani |         |                                                                        |

| Table 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on C7 S | palled |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |
|         | THE RESERVE AND PARTY ASSESSMENT |         |        |

| 20 degrees | d Å    | I<br>Io | Integrated<br>Intensity | Remarks | % Phases |
|------------|--------|---------|-------------------------|---------|----------|
| 24.23      | 3.6741 | 12.22   |                         | m       |          |
| 25.45      | 3.4969 | 4.42    |                         | m       |          |
| 28.35      | 3.1354 | 100.00  | 194.03                  | m       | 91.741   |
| 30.37      | 2.9406 | 8.84    | 28.00                   | t       | 8.259    |
| 31.60      | 2.8289 | 84.83   |                         | m       |          |
| 34.32      | 2.6107 | 20.18   |                         | m,t     |          |
| 35.40      | 2.5334 | 9.28    |                         | m       |          |
| 38.73      | 2.3230 | 3.53    |                         | m       |          |
| 40.92      | 2.2040 | 10.31   |                         | m       |          |
| 44.98      | 2.0136 | 8.25    |                         | m       |          |

Contd...C 7 spalled

| Contd. | C7 | Spalled |
|--------|----|---------|
|        |    | しいひょよどし |

| 20 degrees | d A    | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks | % Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|--------|---------------------|-------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45.40      | 1.9959 | 7.36                |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49.42      | 1.8426 | 18.70               |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50.30      | 1.8124 | 23.86               |                         | m,t     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50.87      | 1.7934 | 22.09               |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51.29      | 1.7797 | 8.84                |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 52.20      | 1.7508 | 2,65                |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 54.14      | 1.6926 | 10.01               |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55.55      | 1.6526 | 14.58               |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57.26      | 1.6075 | 7.07                |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58.39      | 1.5791 | 7.36                |                         | m,t     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60.12      | 1.5379 | 14.43               |                         | m,t     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 61.46      | 1.5074 | 6.19                |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 62.07      | 1.4940 | 6.33                |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 62.94      | 1.4755 | 8.98                |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 64.50      | 1.4434 | 3.53                |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65.83      | 1.4369 | 9.28                |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 71.40      | 1.3200 | 4.70                |                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 76.23      | 1.2479 | 3.40                |                         | M       | ACCIONATE DESCRIPTION AND ACCIONATE AND ACCIONATE AND ACCIONATE AC |

Table 4.5.e. - Composition Stab Z Spalled

| 20 degrees     | d A    | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks | % Phases                                                 |
|----------------|--------|---------------------|-------------------------|---------|----------------------------------------------------------|
| 24.17          | 3.6791 | 4.44                |                         | m       |                                                          |
| 28.31          | 3.1497 | 67.80               | 135.85                  | m       |                                                          |
| 30.23          | 3.9544 | 79.84               | 165.17                  | c,t     |                                                          |
| 31.50          | 2.8376 | 28.40               |                         | m       |                                                          |
| 3 <b>3.</b> 26 | 2.6914 | 5.24                |                         | m       |                                                          |
| 34.20          | 2.6175 | 29.10               |                         | m       |                                                          |
| 35.22          | 2.5464 | 26.98               |                         | m,c     |                                                          |
| 36.86          | 2.4383 | 2.86                |                         | m       |                                                          |
| 38.82          | 2.3177 | 2.86                |                         | m       |                                                          |
| 40.83          | 2.2082 | 9.52                |                         | m       |                                                          |
| 45.57          | 1.9889 | 12.60               |                         | m       |                                                          |
| 49.32          | 1.8461 | 22.20               |                         | . m     |                                                          |
| 50.60          | 1.8024 | 100.00              |                         | t,c     |                                                          |
| 53.96          | 1.6987 | 7.30                |                         | m       |                                                          |
| 55.57          | 1.6524 | 18.40               |                         | m       |                                                          |
| 60.19          | 1.5362 | 61.90               |                         | t,c     |                                                          |
| 63.00          | 1.4742 | 17.46               | e.                      | m,c,t   |                                                          |
| 71.35          | 1.3208 | 6.98                | ,•                      | m       |                                                          |
| 74.47          | 1.2730 | 6.35                |                         | m,t,c   | naringgellegendagen op gegen in er state die bestellegel |

|            | Table  | 4.5.f C             | omposition C7T          | 5 Spalled |          |
|------------|--------|---------------------|-------------------------|-----------|----------|
| 20 degrees | d Å    | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks   | % Phases |
| 24.34      | 3.6527 | 17.68               |                         | m         |          |
| 28.40      | 3.1399 | 100.00              | 88.93                   | m         | 80.779   |
| 30.40      | 2.9377 | 24.39               | 33,92                   | t         | 19.221   |
| 30.95      | 2.8869 | 14.33               |                         | m         |          |
| 31.62      | 2.8272 | 87.20               |                         | m         |          |
| 34.37      | 2.6070 | 47.56               |                         | t,m       |          |
| 35.46      | 2.5293 | 24.39               |                         | t,m       |          |
| 38.80      | 2.3189 | 6.71                |                         | m         |          |
| 41.00      | 2.1994 | 22.87               |                         | m         |          |
| 41.36      | 2.1811 | 22.87               |                         | m         |          |
| 45.20      | 2.0043 | 21.65               |                         | m         |          |
|            |        |                     |                         |           |          |

45.62

49.50

50.34

50.63

54.28

55.63

57.27

58.46

60.15

61.18

1.9465

1.8398

1.8110

1.8014

1.6885

1.6507

1.6073

1.5772

1.5371

1.5137

12.20

45.73

58.23

58.84

30.49

50.61

10.37

11.28

36.59

18.90

m

m

m

t,m

m,t

m,t

m

m

m

m,t

Contd....

Contd.....C7T5 Spalled

| 20 degrees | d A    | I<br>I <sub>O</sub> | Integrated<br>Intensity             | Remarks    | % Phases                                  |
|------------|--------|---------------------|-------------------------------------|------------|-------------------------------------------|
| 62.07      | 1.4940 | 21.95               |                                     | m          |                                           |
| 63.03      | 1.4736 | 18.90               |                                     | m          |                                           |
| 64.53      | 1.4428 | 6.71                |                                     | ih         |                                           |
| 65.87      | 1.4361 | 21.65               |                                     | m          |                                           |
| 71.34      | 1.3194 | 19.82               |                                     | m          |                                           |
|            |        | 4.5.g               | Composition C8                      | T7 Spalled | ay ang mang mang mang mang mang mang mang |
| 20 degrees | d A    | I<br>I <sub>O</sub> | Integrated<br><sup>I</sup> ntensity | Remarks    | % Phases                                  |
| 24.49      | 3.6317 | 18.67               |                                     | m          |                                           |
| 25.83      | 3.4463 | 5.90                |                                     | m          |                                           |
| 28.62      | 3.1163 | 95.82               | 121.10                              | m          | 98.97                                     |
| 30.55      | 2.9237 | 3.50                | 2.06                                | t          | 1.03                                      |
| 31.81      | 2.8107 | 100.00              |                                     | m          |                                           |
| 34.45      | 2.6011 | 39.31               |                                     | m          |                                           |
| 36.62      | 2.4518 | 16.71               |                                     | m          |                                           |
| 39.02      | 2.3063 | 7.37                |                                     | m          |                                           |
| 41.18      | 2.1902 | 25.31               |                                     | m          |                                           |
| 45.12      | 2.0119 | 16.22               |                                     | m          |                                           |
| 45.81      | 1.9791 | 22.10               |                                     | m          |                                           |
| 46.27      | 1.9604 | 4.18                |                                     | m          |                                           |

Contd.....

Contd....C8T7 Spalled

| 20 degrees | d A    | I<br>I <sub>O</sub> | Integrated<br>Intensity                                 | Remarks | % Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|--------|---------------------|---------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 49.67      | 1.8340 | 55.04               | haritan priitiin kan kan kan kan kan kan kan kan kan ka | m       | AND THE STATE OF T |
| 50,52      | 1.8051 | 56.51               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 54.34      | 1.6868 | 33.91               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55.76      | 1.6472 | 41.77               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57.53      | 1.6006 | 20.39               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58.40      | 1.5789 | 17.69               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60.27      | 1.5343 | 28.99               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 61.73      | 1.5014 | 16.95               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 62.15      | 1.4923 | 19.66               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 63.03      | 1.4736 | 26.54               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 64.55      | 1.4424 | 11.79               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 66.11      | 1.4121 | 29.48               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 71.60      | 1.3167 | 19.90               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 72.53      | 1.3022 | 12.53               |                                                         | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |        |                     |                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 4.5h-- Composition T7 Spalled

| grees         | d A    | I<br>I <sub>0</sub> | Integrated<br>Intensity | Remarks | % Phases |
|---------------|--------|---------------------|-------------------------|---------|----------|
| , 24          | 3,6686 | 11.67               |                         | m       |          |
| ,58           | 3.6186 | 12.92               |                         | m       |          |
| ,43           | 3.1367 | 66.67               |                         | m       |          |
| .60           | 2.8289 | 100.00              |                         | m       |          |
| . 28          | 2.6130 | 18.54               |                         | m       |          |
| <b>.</b> 57   | 2.5217 | 27.50               |                         | m       |          |
| <b>.</b> 82   | 2.3177 | 7.50                |                         | m       |          |
| .21           | 2.1938 | 18.75               |                         | m       |          |
| •98           | 2.0136 | 15.83               |                         | m       |          |
| .78           | 1.9103 | 12.71               |                         | nı      |          |
| • 50          | 1.8393 | 29.17               |                         | m       |          |
| .51           | 1.8054 | 47.08               |                         | m       |          |
| .32           | 1.7788 | 45.00               |                         | m       |          |
| .73           | 1.6480 | 33.33               |                         | m       | `.       |
| •23           | 1.6083 | 18.33               |                         | m       |          |
| .12           | 1.5377 | 21.04               |                         | m       |          |
| • 59          | 1.5045 | 16.04               |                         | m       |          |
| .12           | 1.4930 | 11.25               |                         | m       |          |
| .11           | 1.4719 | 33.33               |                         | m       |          |
| · <b>.</b> 99 | 1.4145 | 24,38               |                         | m       |          |

Contd....T7

| Contd. T7 Sp | alled  |                     |                         |         |                                                |
|--------------|--------|---------------------|-------------------------|---------|------------------------------------------------|
| 20 degrees   | d À    | I<br>I <sub>O</sub> | Integrated<br>Intensity | Remarks | % Phascs                                       |
| 69.39        | 1.3532 | 4.38                |                         | m       |                                                |
| 71.48        | 1.3187 | 7.71                |                         | m       |                                                |
| 72.79        | 1.2982 | 6.25                |                         | m       |                                                |
| 73.60        | 1.2859 | 3.13                |                         | m       |                                                |
|              | Table  | 4.5.i-Conp          | oositions M8 S          | palled  | NET WITH THE THE THE THE THE THE THE THE THE T |
| 20 degrees   | d Å    | I                   | Integrated<br>Intensity | Remarks | % Phases                                       |
| 24.13        | 3.6851 | 14.34               |                         | m       |                                                |
| 24.51        | 3.6288 | 13.44               |                         | m       |                                                |
| 25.55        | 3.4834 | 4.12                |                         | m       |                                                |
| 28.27        | 3.1541 | 100.00              |                         | m       |                                                |
| 31.55        | 2.8333 | 79.75               |                         | m       |                                                |
| 32.34        | 2.7658 | 28.32               | ,                       | m       |                                                |
| 35.44        | 2.5306 | 19.71               |                         | m       |                                                |
| 36.87        | 2.4357 | 6.81                |                         | m       |                                                |
| 38.69        | 2.3253 | 5.38                |                         | m       |                                                |
| 40.85        | 2.2071 | 19.71               |                         | m       |                                                |
| 44.98        | 2.0136 | 12.00               |                         | m       |                                                |
| 45.62        | 1.9868 | 10.75               |                         | m       |                                                |
| 49.40        | 1.8433 | 23.30               |                         | m       |                                                |
| 50.40        | 1.8124 | 32.26               |                         | m       |                                                |

Contd...M8

td... M8 Spalled

| degrees | d A    | I<br>I <sub>O</sub> | Integrated<br>Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks | % Phases                                                                                                        |
|---------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|
| •09     | 1.7235 | 15.77               | A CONTRACTOR OF THE STATE OF TH | m       | andight and an all and an act of the control of the |
| .48     | 1.6549 | 24.37               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                                                                                 |
| .33     | 1.6057 | 8.24                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                                                                                 |
| .28     | 1.5818 | 7.17                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                                                                                 |
| .30     | 1.5336 | 16.70               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                                                                                 |
| •97     | 1.4748 | 16.13               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                                                                                 |
| .80     | 1.4180 | 15.23               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m       |                                                                                                                 |
|         |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                 |

phase field. So some amount of tetragonal form was produced which during cooling got transformed to the monoclinic polymorph.

# 4.3 Microstructure by optical microscopy

Grain size, grain size distribution, porosity, etc. for sintered specimens have been studied by optical microscopy, figures 4.9(i)-4.9(ii)The average grain size for the batches C7, C10, C13, C15 & Stab Z are 14.3, 7.2 , 10, 13.9 , 18.6 microns respectively. It has been found that except for the batch C7, the grain sizes of the other calcia-zirconia batches have increased with increasing CaO content. This can be explained by the increased diffusion rate due to larger number of vacancies for higher CaO-containing batches. Though the grain size of the C7 batch is high, yet there are enough intergranular and intragranular pores to make the density low. With the addition of TiO, to CaO-ZrO, grain size has decreased as C7T5 batch has an average grain size of 11.4 micron and tor C8T7 batch the grain size is 4.3. micron. The reason lies in the lower diffusion rate due to lower vacancy concentration.

## 4.4 Vickers Hardness

Vickers hardness numbers (VHN) are shown in table 4.6 and fig. 4.10. It has been found that for CaO-ZrO2 systems



The same



917, 000 (ii) St-63



Secretary CM



7 1/3 (1.7.6) 21 P



April 19 miles Co



Rig. 48 (1) M8



Action of the Mills





4, 3,CM

TABLE 4.6

VICKERS HARDNESS & INDENTATION CRACK LENGTHS

| Compositon | Load in<br>Kg | Length of diagonal x 10 mm | Crack length x 10 <sup>-3</sup> mm | VHN  |
|------------|---------------|----------------------------|------------------------------------|------|
| 1          | 2             | 3                          | 4                                  | 5    |
| Stab Z     | 2.5           | 63                         | 94                                 | 1168 |
|            | 2.5           | 56                         | 71                                 | 1478 |
|            | 2.5           | 55                         | 63                                 | 1533 |
|            | 5.0           | 82                         | 95                                 | 1379 |
|            | 5.0           | 86                         | 54                                 | 1253 |
| C10        | 2.5           | 90                         | No crack                           | 572  |
|            | 2.5           | 69                         | ti                                 | 974  |
|            | 2.5           | 83                         | п                                  | 673  |
|            | 2.5           | 91                         | tt                                 | 560  |
|            | 5.0           | 126                        | 25                                 | 584  |
| C13        | 2:5           | 75                         | No crack                           | 824  |
|            | 2.5           | 85                         | tt                                 | 641  |
|            | 2.5           | 73                         | ti .                               | 871  |
|            | 2.5           | 70                         | tt                                 | 946  |
|            | 2.5           | 70                         | u                                  | 946  |
|            | 5.0           | 123                        | 18                                 | 613  |

Contd...

Contd...4.6

| 1    | 2   | 3          | 4                   | 5            |
|------|-----|------------|---------------------|--------------|
| C15  | 2.5 | 75         | 86                  | 824          |
|      | 2.5 | 75         | 93                  | 824          |
|      | 2.5 | <b>7</b> 9 | 147                 | 743          |
|      | 2.5 | 69         | 167                 | 976          |
|      | 5.0 | 129        | 55                  | 558          |
|      | 5.0 | 133        | <b>7</b> 9          | 613          |
| C7T5 | 2.5 | 86         | No crack            | 626          |
|      | 2.5 | 88         | tī                  | 598          |
|      | 2.5 | 82         | ti                  | 689          |
|      | 2.5 | 88         | 13, Very thin crack | 598          |
|      | 5.0 | 125        | No crack            | 595          |
| C8T7 | 2.5 | 81         | No crack            | 706          |
|      | 2.5 | 86         | и                   | 6 <b>2</b> 6 |
|      | 2.5 | 82         | и                   | 689          |
|      | 2.5 | 85         | 11                  | 641          |
|      | 2.5 | 82         | н                   | 689          |
|      | 5.0 | 126        | 16                  | 593          |
|      | 5.0 | 114        | 14                  | 713          |

Contd. 4.6

. W. W.

Contd... 4.6

| 1  | 2   | 3          | 4        | 5           |
|----|-----|------------|----------|-------------|
| C7 | 2.5 | 87         | No crack | 612         |
|    | 2.5 | 91         | 13       | 560         |
|    | 2.5 | <b>7</b> 3 | 18       | 870         |
|    | 2.5 | 90         | 23       | 572         |
|    | 5.0 | 145        | No crack | 441         |
| т7 | 2.5 | 100        | 18       | 463         |
|    | 2.5 | 93         | 12       | 536         |
|    | 2.5 | 92         | 13       | 54 <b>7</b> |
|    | 2.5 | 93         | 15       | 536         |
|    | 5.0 | 140        | 83       | 473         |
|    | 5.0 | 288        | 30       | 112         |
|    | 5.0 | 181        | 13       | 283         |
|    |     |            |          |             |



FIG 410 VICKERS HARDNESS NO VS. COMPOSITION



FIG.4-12 MODULAS OF RUPTURE VS. COMPOSITION.

VIIN has increased with increase of CaO content which is natural as the higher CaO containing batches are of higher density. For the CaO-TiO<sub>2</sub>-ZrO<sub>2</sub> batches the trend is similar i.e., with increase of density the VHN has increased.

#### 4.5 Fracture toughness

The fracture toughness values of different batches as determined by indentation technique are shown in table 4.7. The values were obtained by first estimating the quantity

$$\frac{\Phi}{H\sqrt{a}} \left[ \frac{H}{\Phi E} \right]^{0.4}$$

by using Young's modulus  $E \approx 155.7$  GN/m<sup>2</sup> for C7, C10, C8T7, C7T5 and T7, 80 GN/m<sup>2</sup> for C13 and 67.53 GN/m<sup>2</sup> for C15 and Stab Z (35). The constraint factor was taken as 3 (34). Hardness, H was obtained from equation 3.12 (33) using the experimental values of impression radius a. The dimensionless parameter  $K_{C} = \frac{H}{DE} = \frac{0.4}{W}$  was obtained from the calibration curve (13, 34) by using the experimentally obtained values of  $\frac{C}{a}$ . The ratio of the two quantities yielded the magnitude of  $k_{C}$ . All the experimentally obtained and calculated parameters are shown in table 4.7.

The C15 composition has the lowest fracture toughness, Stab Z has similar value. The fracture toughness values of C7, C10, C13 are much higher than those of C15 and Stab Z



AND THE STATE OF T

nest and and













to an interest to the second



(16. 4.11. (Vini) CETT 2007 SKg baal

TABLE 4.7
FRACTURE TOUGHNESS

| Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Impression radius a x 10 <sup>-6</sup> m           | Average<br>crack<br>length<br>C x 10 <sup>-6</sup>                                                    | C<br>a<br>dimen-<br>sion-<br>mless | GNm                | E -2                     | φ( <u>H</u> ) <sup>0.4</sup> <sup>C',E</sup> 1 <sub>m</sub> 3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kc(H) OE<br>H a<br>dime-<br>nsion<br>less | •4 KC 3/2                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                  | 3                                                                                                     | 4                                  | 5                  | 6                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                         | 9                            |
| Stab Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86                                                 | 54.5                                                                                                  | 0.6337                             | 14.484             | 67.53                    | 9.7666x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>-3</sup> 0.0540                      | 5.527                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56                                                 | 71.0                                                                                                  | 1.267                              |                    |                          | 9.6349x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3 <sub>0.0452</sub>                      | 4.691                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55                                                 | 63.0                                                                                                  | 1.146                              |                    |                          | 9.7220x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>-3</sup> 0.0471                      | 4.840                        |
| essential des la company de la | ىلىك ھىلى ھىلىكىكىكىكىكىكىكىكىكىكىكىكىكىكىكىكىكىكى | و المراجع و | ೨ (ಒ೨ ೮ ೨ ರಮ ೬೨ (೩.೨ ६             | ھے دے جسا تھا دے د | د، هم هم <b>د</b> ب هم د | د ۱۱ د استواد ا استواد استواد المستواد المستود المستواد المستود الم | دے بنے جن جن جن جن ہے۔                    | ا ب ا البيا تساء البيا البيا |
| C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                                                 | 93.0                                                                                                  | 1.240                              |                    |                          | 1.163x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>2</sup> 0.0455                       | 3.912                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75                                                 | 86.0                                                                                                  | 1.147                              | 8.295              | 67.53                    | 1.1630x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>-2</sup> 0.0471                      | . 4.045                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>7</b> 9                                         | 147.0                                                                                                 | 1.861                              |                    |                          | 1.1333x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>-2</sup> 0.0371                      | 3.269                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128                                                | 78.0                                                                                                  | 0.609                              |                    |                          | 8.9033x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>-3</sup> 0.05 <b>5</b> 3             | 6.205                        |
| C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 123                                                | 18.0                                                                                                  | 0.1463                             | 8.075              | 180.00                   | 6.6087x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3 <sub>0.0590</sub>                      | 0 8.626                      |
| C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 126                                                | 25.0                                                                                                  | 0.1984                             | 6.142              | 155.7                    | 6.529x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 0.0593                                  | 3 7.691                      |
| C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91                                                 | 13.0                                                                                                  | 0.143                              | s)                 |                          | 9.840x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145                                                | 5.0                                                                                                   | 0.007                              | 5.367              | 155.7                    | 7.80x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0607                                    | 8.076                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90                                                 | 23.0                                                                                                  | 0.256                              |                    |                          | 9.87x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.063                                     | 5.997                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                       |                                    |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                              |

Contd....

| 1                                                          | 2          | 3                     | 4     | 5                                  | 6                                          | 7                                                  | 8                                      | 9              |
|------------------------------------------------------------|------------|-----------------------|-------|------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------|----------------|
| C8T7                                                       | 126<br>114 | 16<br>14              | 0.127 | 6 <b>.</b> 755                     | 155 7                                      | 7.2677×10 <sup>-3</sup>                            |                                        | 8.290<br>7.893 |
| C7T5                                                       | 86         | ے جے دی ہے دی تھا جسا | 0.023 | 6.142                              | 155 7                                      | 9.3137x10 <sup>-3</sup>                            |                                        | 6.678<br>6.521 |
| T7                                                         | 82<br>     | 1<br>                 | 0.012 | 후 때 때 취 나 나 자                      | دين جي | 9.538x10 <sup>-3</sup> 8.0186x10 <sup>-3</sup>     | و جا نيته شيه و ج                      | 7.172          |
| • /                                                        | 181<br>93  | 13<br>12              |       | 5.252                              |                                            | 7.0522x10 <sup>-3</sup><br>9.8380x10 <sup>-3</sup> |                                        | 8.749<br>6.119 |
|                                                            | 100<br>92  | 18<br>13              | 0.18  | 3                                  |                                            | 9.488x10 <sup>-3</sup><br>9.892x10 <sup>-3</sup>   |                                        | 6.303<br>6.040 |
| Logic (T.J.) Gook ( a sur a count of to to to the sound of |            | 1 4 0                 |       | <sub>ත</sub> හෝ හෝ දැදු සැංචක සේ ප | 집 대상 대권 최고 대한 학교 대기 최고                     | 4.7678x10                                          | °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° | 7.949          |
| МЗ                                                         | 383<br>218 | 110<br>146            | 0.287 | 7 5.4                              |                                            | 6.3196x10                                          | 3 0.0468                               | 7.406          |
|                                                            | 209        | 149                   | 0.713 |                                    |                                            | 6.4543x10                                          | <sup>3</sup> 0.0458                    | 7.096          |

as shown in the table.

With addition of TiO<sub>2</sub>, in all the cases, the fracture toughness values have increased. T7 has the highest fracture toughness. C7T5 and C8T7 are also good in respect of fracture toughness.

In C7, C10, and C13 batches the major phase is monoclinic and the rest is tetragonal for C7, C10 and cubic for C13. But C15 and Stab Z are nearly single phase cubic zirconia. It isawell known fact that the fracture toughness value of cubic  $ZrO_2$  is low which explains the lower fracture toughness of C15 and Stab Z batches.

#### form

C7T5, T7 and M8 batches/fully monoclinic solid solutions on sintering. C8T7 in addition to being a monoclinic SS, contains a small amount of tetrogonal  $\rm ZrO_2$ .

The tougher materials at the same time are of low hardness value. This can be explained from the equation number 3.10. Lower hardness means higher indentation impression radius (a) and consequently higher  $K_{\rm C}$  or in other words higher toughness.

The low fracture toughness value in C15 and Stab Z is evident from the figure (4.11a-i) showing the indentations surrounded by many big cracks even with 2.5 Kg load. Indentation in T7 developed small cracks with 2.5 kg load. Rest of the

batches did not show any crack at 2.5 kg load. The later batches excepting C7 however developed small cracks at 5 kg load.

Finally, it will be worthwhile to mention here that our fracture toughness values are comparable or even better than the values obtained by other workers. This has been shown in table numbers (4.7 & 4.8).

TABLE 4.8

FRACTURE TOUGHNESS VALUES OF DIFFERENT MATERIALS

| Composition                    | K <sub>C</sub> MN m <sup>-3/2</sup> | Reference                   |
|--------------------------------|-------------------------------------|-----------------------------|
| Mgpsz                          | 2~6                                 | Porter and Hener<br>(12-22) |
| Y203psz                        | 69                                  | Gupta, Lange etal (13)      |
| BC                             | 6                                   | Evans & Charles (32)        |
| Saphire                        | 2.1                                 | 11 11                       |
| Spinel                         | 1.31                                | ti ti                       |
| Si <sub>3</sub> N <sub>4</sub> | 4.9                                 | u u                         |
| SiC                            | 4 .                                 | 11 11                       |

Table 4.9 Modulus of rupture

| Thickness<br>of the<br>sample<br>d,mm | Width of the sample b,mm                 | Load,<br>Kg                                                              | MOR 2<br>Kg/cm.,                      | MOR,<br>x10 <sup>3</sup> psi                                                                                                                                                                      |
|---------------------------------------|------------------------------------------|--------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.2                                   | 5,62                                     | 30                                                                       | 608.13                                | 8.65                                                                                                                                                                                              |
| 7.9                                   | 5.46                                     | 42.9                                                                     | 956.33                                | 13.6                                                                                                                                                                                              |
|                                       |                                          |                                                                          | 843.27                                | 11.99                                                                                                                                                                                             |
|                                       |                                          |                                                                          | 847.65                                | 12.10                                                                                                                                                                                             |
| 7.92                                  | 5.60                                     | 31.3                                                                     | 661.60                                | 9.41                                                                                                                                                                                              |
| 8.54                                  | 6.60                                     | 45.50                                                                    | 642.13                                | 9.13                                                                                                                                                                                              |
|                                       |                                          |                                                                          | 473.30                                | 6.73                                                                                                                                                                                              |
| 8.95                                  | 6.00                                     | 12.60                                                                    | 400.24                                | 5.69                                                                                                                                                                                              |
|                                       |                                          |                                                                          | 356.92                                | 5.07                                                                                                                                                                                              |
| 9.83                                  | 5.98                                     | 31.7                                                                     | 173.44                                | 6.73                                                                                                                                                                                              |
|                                       |                                          |                                                                          | 736.06                                | 10.47                                                                                                                                                                                             |
|                                       | of the sample d,mm  8.2  7.9  7.92  8.54 | of the sample sample d,mm b,mm  8.2 5.62  7.9 5.46  7.92 5.60  8.54 6.60 | of the sample sample d,mm b,mm    8.2 | of the sample sample b,mm  8.2 5.62 30 608.13  7.9 5.46 42.9 956.33  843.27  847.65  7.92 5.60 31.3 661.60  8.54 6.60 45.50 642.13  473.30  8.95 6.00 12.60 400.24  356.92  9.83 5.98 31.7 473.44 |

### 4.6 Modulus of Rupture (MOR)

MOR values are recorded in table 4.9 and the variation of MOR with composition is shown in the figure 4.12. It is evident from the table that with addition of TiO<sub>2</sub> the MOR value has increased. As for example, the MOR value of C7 batch is nearly 375.Kg/cm<sup>2</sup> and for C7T5, it is 608 Kg/cm<sup>2</sup>. One of the possible reasons is the higher density of the TiO<sub>2</sub> added batches. The other reason may be in higher toughness value in TiO<sub>2</sub> containing batches.

#### 4.7 Thermal Shock Resistance

Thermal shock resistance is measured by the number of thermal cycles excluding the last cycle, the last cycle being defined by the chipping, or crumbling of the samples, or pulling apart by tongs. Figure 4.13 shows the number of cycles before failure as a function of composition. This figure gives an obvious trend of decreasing spalling resistance from C7T5 to C15 in the following order C7T5 M8 C7 C8T7 C10 T7 Stab Z C13 C15.

The Cl3, Cl5 and Stab Z batches contain higher percentage of cubic phase and have much lesser thermal shock resistance than the others. The C7T5 batch has the highest thermal shock resistance.

TABLE 4.10
THERMAL SHOCK RESISTANCE

|       |                                 |                   | •                               |
|-------|---------------------------------|-------------------|---------------------------------|
| Batch | No. of Cycles<br>before failure | Batch             | No. of Cycles<br>before failure |
| C7    | 16                              | C7T5              | 23                              |
| C7    | 11                              | C7T5              | 15                              |
| C10   | 12                              | C8T7              | 14                              |
| C10   | 8                               | C8T7              | 9                               |
| C13   | 4                               | M8                | 18                              |
| C13   | 5                               | M8                | 14                              |
| C15   | 5                               | M8                | 14                              |
| C15   | 5                               | т7                | 12                              |
| C15   | 8                               | т7                | 8                               |
| C15   | 3                               | т7                | 8                               |
| C15   | 1                               | Stab z<br>bushing | 10                              |
| C15   | 2                               | Stab z            | 11                              |
| C15   | 3                               | bushing           | 11                              |
|       |                                 | Stab z<br>bushing | 8                               |

C7T5 > M8 > C7 > C8T7 > C10 > T7 > Stab z > C13 > C15



THERMAL SHOCK RESISTANCE VS. COMPOSITION

Thermal shock resistance (spalling resistance) is a property which is dependent on many factors namely thermal conductivity, thermal expansion coefficient, temperature gradient, grain size, grain size distribution, pore size, pore size distribution, presence of glassy phase, type of phase of  $\text{ZrO}_2$ , etc. So more detailed work is required to find out the possible reasons of the above trend in thermal shock resistance.

#### 4.8 <u>Corrosion resistance</u>

The corrosion resistance of the zirconia crucibles in contact with E glass has been found to be good. The crucibles containing the E glass in the corrosion resistance test did not get affected, except only a little thinning at the airglass-2rO<sub>2</sub> interface for some batches. TiO<sub>2</sub> containing batches also showed similar corrosion resistance properties. The interface corrosion is the least in C7 crucibles. Next is M8 crucible. But corrosion in the bulk is not observable in any of the batches. In contrast, the Al<sub>2</sub>O<sub>3</sub> crucible has got heavily corroded; Corrosion at the air-glass Al<sub>2</sub>O<sub>3</sub> interface is more pronounced than in the interior. In case of Al<sub>2</sub>O<sub>3</sub>, a layer of intermediate compositions between Al<sub>2</sub>O<sub>3</sub> and glass has formed by dissolution of Al<sub>2</sub>O<sub>3</sub> which rendered it visible. The photographs of the crucibles after corrosion resistance test are shown in fig. 4.14.

# 4.9 Discussions on experimental procedure

## 4.9.1 Grinding

Crinding was done in alumina lined ball mill and agate ball mill. In order to avoid extraneous contamination from the jar and balls; grinding could be done in steel jars using steel balls; and then the incoming iron has to be removed by magnetic separation. Longer grinding of C8T7 and C7T5 batches did not produce remarkable effect on the particle size distribution as compared to CaO-ZrO<sub>2</sub> batches because of the fact that these two batches got calcined to a greater strength than the others. So, in general, C8T7, C7T5 batches seem to need longer grinding.

## 4.9.2 Pressing

A moderately high pressure was used. Very high pressure causes steep pressure gradient contours.

## 4.9.3 Sintering

We used 1 hour soaking period at 1950°C, but longer period can be used for higher sintered density. More work is required to optimise the soaking period & temperature.

The zirconia batches should be tried for further heat treatments of solution annealing at 1800-1900°C for dissolving the monoclinic phase, quenching to 1000°C followed by ageing

etween 1250 to 1350°C and finally slow cooling. This may

## 4.9.4 X-ray diffraction study

It was done with as sintered bars, It was not ground to powder as grinding and mechanical stresses trigger tetragonal monoclinic phase transformation and leads to wrong idea about the tetragonal phase (22, 24) by X-ray diffraction.

#### 4.9.5 Thermal shock resistance

According to ISI Specification (36), the temperature used for thermal cycling to measure the thermal shock resistance for SiO<sub>2</sub> bricks is 450°C, and that for fire brick, siliceous and basic bricks, is 1000°C. Since ZrO<sub>2</sub> has much higher melting temperature (2690°C), so we have used 1300°C for thermal cycling.

## 4.9.6 Corrosion resistance.

More work is required to establish the corrosion resistance of our samples. We have studied the corrosion resistance of our samples in contact with E glass (which is more corrosive than A, C, S and HS glasses). But corrosive effects of other glasses and slags are to be tested. At the same time, long duration corrosion resistance tests are also necessary to characterize these materials properly.

# 4.9.7 Mechanical Properties

Though we have measured MOR, VHN and Kc, but young's modulus in tension should also be measured for better characterization of our materials:

#### CHAPTER 5

#### CONCLUSION

- 1. The average particle size of the powder (~'0.2 micron) which we used for final sintering is optimum size, because higher particle size means settling of the slip used for slip casting and less densification and finer particles will give rise to drying cracks after casting.
- 2. With addition of  $\text{TiO}_2$  in  $\text{CaO-ZrO}_2$  systems, the bulk density has decreased at the cost of improvement of other properties.
- 3. In all the  ${\rm TiO}_2$  containing batches, the major phase is monoclinic, no cubic phase  $({\rm ZrO}_2)$  is formed. In C8T7, small amount of tetragonal phase is formed, whereas cubic phase is present in C13 and C15 batches, but no tetragonal phase has been found.
- 4. Grain size can be controlled to some extent by adding TiO2. Finest grain size has been obtained in CST7 composition.
- 5. With addition of CaO, the hardness (VHN) has increased in all the cases, the same is true for TiO<sub>2</sub> addition but the imcrease in hardness is not so appreciable.
- 6. For the same amount of CaO, MOR values have been increased on addition of  ${\rm TiO}_2$ . Maximum MOR has been obtained for C8T7 composition.

#### RE FERE NCES

- Special Ceramics, 1960.
- 2. R.H.J. Hannink, Growth morphology of the tetragonal phase in psz. J. Maths. Sc. 13 (1978) 2487-2496.
- M.L. Mishra, Refractories, 1975.
- 4. A.V. Seybolt and Burke, Procedures in Experimental Metallurgy.
- 5. S.P. Reddy S. G. Mandal, Some aspects of production and uses of zirconia and its indegeneous raw material resources. Trans. Ind. Cer. Soc. V35 (5) 1976 P35 N.
- 6. K.C. Redford & R.J. Bratton. Zirconia electrolyte cell, J. Matls. Sc. 14 (1979) 59-65.
- 7. D. Chakravorty et.al. Unpublished results.
- 8. G.V. Bansal and A.H. Heuer, On a martensitic phase transformation in zirconia 1. Metallographic evidence.

  Acta Metallurgica 20 (1972) 1281-1289.
- 9. E. Ryskhewitch, Oxide Ceramics, 1960, Academic Press.
- 10. Salmang-Ceramics-Physical & Chemical fundamentals.
  1961, Butter Worths.
- 11. T.K. Gupta, J.H. Bechtold, et.al. Stabilization of tetragonal phase in polycrystalline ZrO<sub>2</sub>. J. Matls. Sc. 12 (1977) 2421-2426.
- 12. D.L. Porter & A.H. Heuer, Mechanism of toughening in psz, J. Amer. Cer. Soc. V60, N3-4, 1977, 183.
- 13. T.K. Gupta, F.F. Large, J.H. Bechtold, Effect of stress induced phase transformation on the properties of polycrystalline Zro<sub>2</sub> containing metastable tetragonal phase. J. Matls. Sc. 13 (1978) 1464-1470.

- 14. G.K. Bansal, A.H. Heuer, Precipitation in partially stubilized zirconia. J. Amer. Cer. Soc. 58 (5-6) 235 -238 (1975).
- 15. R.C. Garvie & P.S. Nicholson, Structure and Thermomechanical properties of psz in the CaO-ZrO<sub>2</sub> system. ibid, V55, N3 (1972), 152.
- 16. R.C. Garvie, R.H. Haunink & R.T. Praseo, ceramic steel?
  Nature 258 (1975) 703.
- 17. Mils Claussen, Comments on precipitation in psz. J. Amer. Cer. Soc. V.59, 3-4 (1976) 179.
- 18. D.L. Porter, G.K. Bansal & A.H. Heuer, ibid V59,
   N. 3-4, (1976) 179-182.
- 19. D.L. Porter, A.H. Heuer, Reply to discussion in psz. ibid., V60, N 5-6, (1977) 280-281.
- 20. Roy, W. Rice. Further discussion on precipitation in psz. ibid V60, N 5-6 (1977) 280-281.
- 21. Nils Claussen, Stress induced transformation of tetragonal ZrO<sub>2</sub> particles in ceramic materials. ibid, V61, N 1-2, 85-88 (1978).
- 22. D.L. Porter and A.H. Heuer. Microstructural development in MgO psz. ibid V62, N 5-6, (1979) 298-305.
- 23. A.H. Heuer. Application of TEM to Engineering particle in ceramics. ibid. V62, N 5-6 (1979) 226-235.
- 24. T.K. Gupta, Strengthening by surface damage in Metastable Tetragonal zirconia. ibid, V63, N 1-2 (1980 117.
- 25. F.F. Lauge, Technical Report No. 2, Stress Induced

  Martensitic Reaction: I Theory of metastable phase
  retention and contribution to fracture toughness. July 1978.

- 26. F.F. Lange, T.R. No. 3. Stress Induced Martensitic Reaction: II Experiments in the ZrO2-Y2O3 system., July 1978.
- 27. Paul H. Rieth, J.S. Reed & A.W. Nauman. Fabrication and flexural strength of ultrafine grained Y2O3-stabilized ZrO2. Amer. Cer. S. Bulletin. V55, N8, 717 (1976).
- 28. A.M. Alper, High temperature oxides. 1971.
- 29. Levin, Phase diagrams for ceramists.
- 30. Van Vlack, Materials Science for Engineers, 1971, Addison Wiley.
- 31. ISI Specification, 1528 parts VIII and IX.
- 32. Grimshow. The Chemistry and Physics of clays and allied ceramic materials, 1971, Earnest Benn Ltd.,
- 33. Dieter, G.E., Mechanical Metallurgy, MC Grawhill, 1961.
- 34. Evans, A.G. and Charles, E.A. Fracture toughness determination by indentation, J. Amer. Cer. Soc., 59 (1976) 371.
- 35. Engineering Properties of Ceramic materials. Amer. Cer. Soc. 1966.
- 36. ISI Specification: IS 1528, Part III.