Санкт-Петербургский Политехнический университет Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

ЛАБОРАТОРНАЯ РАБОТА №3

на тему
"Метод конечных объёмов для уравнений эллиптического типа"
по дисциплине
"Конечно-разностные и сеточные методы"

Выполнил студент гр. 3630102/60101 Лансков.Н.В.

 ${
m Cahkt-} \Pi$ етербург 2020

Содержание

10	Приложения	12
9	Выводы	12
8	Результаты 8.1 Метод Якоби 8.2 Метод Зейделя 8.3 Метод SOR 8.4 Сравнение методов	8 8 8 9 11
7	Метод SOR	8
6	Метод Зейделя	7
5	Метод Якоби	7
4	Метод конечных объёмов	4
3	Постановка задачи	4
2	Список таблиц	3
1	Список иллюстраций	2

1 Список иллюстраций

1	Илюстрация рассматриваемого конечного объёма	5	
2	Зависимость спектрального радиуса от числа итераций	8	
3	Зависимость спектрального радиуса от числа итераций	9	
4	Зависимость числа итераций $n(\varepsilon)$ от параметра релаксации ω		
5	Зависимость числа итераций $n(\varepsilon)$ от параметра релаксации ω (приближе-		
	ние)	10	
6	Сравнение зависимостей $ z^k $ от числа итераций	11	

2	Список	таблиц
_		

3 Постановка задачи

Будем решать задачу:

$$\begin{cases}
-\frac{\partial}{\partial x} \left(a(x,y) \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left(b(x,y) \frac{\partial u}{\partial y} \right) + q(x,y) u = f(x,y) \\
0 < \alpha < a, b < \beta; 0 < q_m < q; \\
u|_{\partial\Omega} = g(x,y)
\end{cases}$$

$$(x,y) \in [3,3.4] \times [1,1.4] = \Omega$$

В данной лабораторной исследуется задача со следующими параметрами:

$$\begin{cases} a(x,y) = x + y \\ b(x,y) = 1 + xy \\ q(x,y) = x^4 \\ g(x,y) = \cos(2x) \cdot e^{-3y} \\ f(x,y) = 3x\cos(2x)e^{-3y} + 4x\sin(2x)e^{-3y} - 9\cos(2x)e^{-3y}(xy+1) + x^4\cos(2x)e^{-2y} + 4\cos(2x)e^{-3y}(x^2+y^2) \\ \alpha = 3 \\ \beta = 5 \\ q_m = 80 \end{cases}$$

4 Метод конечных объёмов

Рассмотрим процесс нахождения коэффициентов по методу конечных объёмов.

Разобъём нашу область на конечные объёмы (с центрами во внутренних в узлах сетки). Тогда для каждой внутреней точки рассматриваем конечный объём Ω_{ij} . Далее приведём вычисления в общем виде для такого конечного объёма.

Рис. 1: Илюстрация рассматриваемого конечного объёма

Проинтегрируем уравнение 1 по конечному объёму и домножим на -1:

$$\int_{\Omega_{ij}} \left[\frac{\partial}{\partial x} \left(a \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(b \frac{\partial u}{\partial y} \right) \right] d\Omega - \int_{\Omega_{ij}} q u d\Omega = \int_{\Omega_{ij}} f d\Omega$$
 (1)

Подробнее рассмотрим первое слагаемое из левой части. Под интегралом стоит дивергенция, применяем формулу Остроградского-Гаусса и получаем следующее выражение: $\oint\limits_{\gamma_{ii}} \left[a \frac{\partial u}{\partial x} cos(n,x) + b \frac{\partial u}{\partial y} cos(n,y) \right] d\gamma.$ Выполняем замену переменных:

$$\left[\omega^x = a\frac{\partial u}{\partial x}; \omega^y = b\frac{\partial u}{\partial y}\right] \tag{2}$$

и приближённо вычисляем интегралы по границе (отдельно для каждого из двух слагаемых под интегралом). Заметим, что, с учётом граничных нормалей, в первом интеграле останется только два слагаемых (по левой и правой границам конечного объёма $\Omega_{i,j}$), как, впрочем, и во втором (но уже по верхней и нижней границам). Таким образом, приходим к следующей формуле.

$$\oint_{\gamma_{ij}} \left[a \frac{\partial u}{\partial x} cos(n,x) + b \frac{\partial u}{\partial y} cos(n,y) \right] d\gamma = \left(w_{i+0.5,j}^x - w_{i-0.5,j}^x \right) h_y + \left(w_{i,j+0.5}^y - w_{i,j-0.5}^y \right) h_x \tag{3}$$

Где, в частности, $w^x_{i+0.5,j}$ - значение w^x в средней точке соответсвующего участка границы

С учётом замены (2), легко видеть, что выполнены следующие равенства:

$$\int_{\Omega'_{ij}} \frac{\omega^x}{a} d\Omega = \int_{\Omega'_{ij}} \frac{\partial u}{\partial x} d\Omega \tag{4}$$

$$\int_{\Omega''_{ij}} \frac{\omega^y}{b} d\Omega = \int_{\Omega''_{ij}} \frac{\partial u}{\partial y} d\Omega \tag{5}$$

В формулах (4), (5) - Ω'_{ij} и Ω''_{ij} это конечные объёмы, сдвинутые на половину шага в направлении оси Ох и Оу соответственно. Также, эти конечные объёмы изображениы на рисунке (4). Рассмотрим подробнее (4). Применяя к правой части теорему О-Г., а левую часть преобразовав определённым образом, получаем уже конечно-разностное выражение.

$$(4) \iff \omega_{i+0.5,j}^x \cdot \int_{\Omega_{ij}'} \frac{d\Omega}{a} = (v_{i+1,j} - v_{ij})h_y$$

Отсюда легко можно найти выражение для $\omega_{i+0.5,j}^x$, посчитав численно интеграл. Точно также рассматриваем (5). Обозначив

$$p_{i+0.5,j} = \frac{h_x h_y}{\int\limits_{\Omega'_{ij}} \frac{d\Omega}{a}}; \quad q_{i,j+0.5} = \frac{h_x h_y}{\int\limits_{\Omega''_{ij}} \frac{d\Omega}{b}};$$

получаем уравнение (для $p_{i-0.5,j}$ и $q_{i,j-0.5}$ выражения аналогичны, изменятся только конечные объёмы, т.е. будут "сдвиги"в другом направлении):

$$\frac{1}{h_x^2} (p_{i+0.5,j}(v_{i+1,j} - v_{i,j}) - p_{ij}(v_{i,j} - v_{i-1,j})) + \frac{1}{h_y^2} (q_{i,j+0.5}(v_{i,j+1} - v_{i,j}) - q_{ij}(v_{i,j} - v_{i,j-1})) + \frac{1}{h_x h_y} v_{ij} = \frac{g_{ij}}{h_x h_y}$$
(6)

Сгруппировав слагаемые при соответствующих узновых точках, получим:

$$-\left(\frac{p_{i-0.5,j}v_{i-1,j} + p_{i+0.5,j}v_{i+1,j}}{h_x^2} + \frac{q_{i,j+0.5}v_{i,j+1} + q_{i,j-0.5}v_{i,j-1}}{h_y^2}\right) + \left(\frac{p_{i+0.5,j} + p_{i-0.5,j}}{h_x^2} + \frac{q_{i,j+0.5} + q_{i,j-0.5}}{h_y^2} + \frac{\rho_{ij}}{h_x h_y}\right)v_{ij} = \frac{g_{ij}}{h_x h_y}$$

$$(7)$$

Все вышеперечисленные выражения я привёл в общем виде для упрощения воспри-

ятия. Теперь рассмотрим, чему равны коэффициенты в контексте конкретной задачи.

$$\begin{cases} p_{i+0.5,j} = \int\limits_{\Omega'_{ij}} \frac{d\Omega}{x+y} & p_{i-0.5,j} = \int\limits_{\Omega'_{i-1,j}} \frac{d\Omega}{x+y} \\ q_{i,j+0.5} = \int\limits_{\Omega''_{ij}} \frac{d\Omega}{1+xy} & q_{i,j-0.5} = \int\limits_{\Omega''_{i,j-1}} \frac{d\Omega}{1+xy} \\ \rho_{ij} = \int\limits_{\Omega_{ij}} x^4 d\Omega \\ g_{ij} = \int\limits_{\Omega_{ij}} f d\Omega \end{cases}$$
(8)

Замечание о численном вычислении интегралов. Я вычисляю интегралы по следующей формуле (Формула Гаусса для двумерного случая):

$$\int_{[x_0;x_1]\times[y_0;y_1]} \phi(x,y)d\Omega = \frac{(x_1-x_0)(y_1-y_0)}{4} \sum_{i=1}^4 \phi\left(x_0 + \frac{(\xi_i+1)(x_1-x_0)}{2}, y_0 + \frac{(\eta_i+1)(y_1-y_0)}{2}\right)$$
(9)

Где ξ_i и η_i представляют все пары вида $\left(\frac{\pm 1}{\sqrt{3}}; \frac{\pm 1}{\sqrt{3}}\right)$

Тут используется отображение иходного прямоугольника на базисный. Для этого используются следующие формулы:

$$\begin{cases} \xi(x,y) = 2\frac{x - x_0}{x_1 - x_0} - 1\\ \eta(x,y) = 2\frac{y - y_0}{y_1 - y_0} - 1 \end{cases}$$
(10)

Подробнее про то, как получить эту формулу можно посмотреть, например, тут : https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D1%83%D1%80%D0%BD%D1%8B%D1%85_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB

5 Метод Якоби

Будем применять итерационную процедуру метода Якоби в следующем виде:

$$v_{i,j}^{k+1} = \frac{1}{A_{i,j}} \cdot (G_{i,j} - D_{i,j}v_{i-1,j}^k - C_{i,j}v_{i,j-1}^k - E_{i,j}v_{i,j+1}^k - B_{i,j}v_{i+1,j}^k)$$
(11)

6 Метод Зейделя

Будем применять итерационную процедуру метода Зейделя в следующем виде:

$$v_{i,j}^{k+1} = \frac{1}{A_{i,j}} \cdot (G_{i,j} - D_{i,j} v_{i-1,j}^{k+1} - C_{i,j} v_{i,j-1}^{k+1} - E_{i,j} v_{i,j+1}^{k} - B_{i,j} v_{i+1,j}^{k})$$
(12)

Заметим, что соответствующие значения v при коэффициентах C и D на момент расчёта $v_{i,j}$ уже известны.

7 Метод SOR

Будем применять итерационную процедуру метода SOR в следующем виде:

$$v_{SOR}^{k+1} = v_{SOR}^k + \omega (v_Z^{k+1} - v_{SOR}^k)$$
(13)

Где v_Z - вычисляется по методу Зейделя

8 Результаты

8.1 Метод Якоби

Для достижения точности ε = 10^{-3} возьмём чило разбиений равным N = 100 и ε_{iter} = $\frac{10^{-4}\pi^2}{2N^2}$.

Рис. 2: Зависимость спектрального радиуса от числа итераций

При этом $\rho_J = \lim_{k \to \inf} \frac{\|v^{k+1} - v^k\|}{\|v^k - v^{k-1}\|} = 0.99945 \approx 0.99950$, что согласуется с теоретическим значением.

Метод Зейделя 8.2

Для достижения точности ε = 10^{-3} возьмём чило разбиений равным N = 100 и ε_{iter} = $\frac{10^{-4}\pi^2}{N^2}$.

Рис. 3: Зависимость спектрального радиуса от числа итераций

При этом $\rho_Z = \lim_{k \to \inf} \frac{||v^{k+1} - v^k||}{||v^k - v^{k-1}||} = 0.99855 \approx 0.9990 = \rho_J^2$, что согласуется с теоретическим значением.

Метод SOR 8.3

Для достижения точности ε = 10^{-3} возьмём чило разбиений равным N = 100 и ε_{iter} = $\frac{10^{-7}\pi}{N}.$

Рис. 4: Зависимость числа итераций $n(\varepsilon)$ от параметра релаксации ω

Рис. 5: Зависимость числа итераций $n(\varepsilon)$ от параметра релаксации ω (приближение)

По графику видно, что оптимальным параметром релаксации будет ω = 1.73. Однако, из теории следует, что оптимальный параметр должен равняться: $\omega_{opt} = \frac{2}{1+\sqrt{1-\rho_Z}} \approx 10$

1.9387. Я пытался добиться большей точности от графического метода нахождения ω_{opt} изменяя N и ε_{iter} , но мои попытки не принесли результатов, так как схема начинала терять устойчивость. Я думаю, что всё дело в выбранной мной конкретной задаче, и можно было бы теоретически подобрать исходную задачу точнее, чтобы получить лучший результат. Я же буду далее использовать полученное мною значение ω_{opt} = 1.73.

8.4 Сравнение методов

Таблица 1: Сравнение методов

Метод	ρ	$arepsilon_{iter}$	$n(\varepsilon)$
Jacobi	0.99945	4.934802e-08	17712
Zeidel	0.99855	9.869604e-08	8858
SOR	0.9744	1.121997e-08	445

Рис. 6: Сравнение зависимостей $\|z^k\|$ от числа итераций

9 Выводы

В результате работы были рассмотрены 3 итерационных метода (Якоби, Зейделя, SOR) решения СЛАУ, построенной по МКО. Я получил полное соответствие практичеких и теоретических оценок скоростей сходимости методов, спектральных радиусов и соотношения числа итераций, за исключением ω_{opt} . Как уже выше упоминалось, я считаю что это связано с конкретной задачей.

10 Приложения

Исходные файлы лабораторной работы можно найти тут: https://github.com/LanskovNV/numerical/tree/master/net_methods/lab_3