0.1 Limites no infinito e limites infinitos

Definição 1. Seja uma função $f: I \to \mathbb{R}$, onde I é um intervalo infinito. Dizemos que f(x) tem limite L quando x tende para $+\infty$, se dado $\epsilon > 0$ existir um k tal que

$$x > k \Rightarrow |f(x) - L| < \epsilon.$$

$$\lim_{x \to +\infty} f(x) = L.$$

Definição 2. Seja uma função $f: I \to \mathbb{R}$, onde I é um intervalo infinito. Dizemos que f(x) tem limite L quando x tende para $-\infty$, se dado $\epsilon > 0$ existir um k tal que

$$x < k \Rightarrow |f(x) - L| < \epsilon.$$

$$\lim_{x \to -\infty} f(x) = L.$$

Definição 3. Sobre as duas definições anteriores, chamamos a reta y = L de **assíntota horizontal** da função f(x).

Definição 4. Sejam I um intervalo aberto, $a \in I$ e $f: I - \{a\} \to \mathbb{R}$.

1. Dizemos que o limite da função $f \notin +\infty$ quando x tende para a, se dado M > 0 existir $\delta > 0$ tal que $0 < |x - a| < \delta \Rightarrow f(x) > M$.

$$\lim_{x \to a} f(x) = +\infty.$$

2. Dizemos que o limite da função $f \in +\infty$ quando x tende para a pela direita, se dado M > 0 existir $\delta > 0$ tal que $a < x < a + \delta \Rightarrow f(x) > M$.

$$\lim_{x \to a^+} f(x) = +\infty.$$

3. Dizemos que o limite da função f é $+\infty$ quando x tende para a pela esquerda, se dado M>0 existir $\delta>0$ tal que $a-\delta < x < a \Rightarrow f(x)>M$.

$$\lim_{x \to a^{-}} f(x) = +\infty.$$

Definição 5. Sejam I um intervalo aberto, $a \in I$ e $f: I - \{a\} \to \mathbb{R}$.

1. Dizemos que f(x) tem limite $-\infty$ quando x tende para a, se dado M>0 existir $\delta>0$ tal que $0<|x-a|<\delta\Rightarrow f(x)<-M$.

$$\lim_{x \to a} f(x) = -\infty.$$

2. Dizemos que f(x) tem limite $-\infty$ quando x tende para a pela direita, se dado M > 0 existir $\delta > 0$ tal que $a < x < a + \delta \Rightarrow f(x) < -M$.

$$\lim_{x \to a^+} f(x) = -\infty.$$

3. Dizemos que f(x) tem limite $-\infty$ quando x tende para a pela esquerda, se dado M > 0 existir $\delta > 0$ tal que $a - \delta < x < a \Rightarrow f(x) < -M$.

$$\lim_{x \to a^{-}} f(x) = -\infty.$$

Definição 6. A reta x = a é chamada de **assíntota vertical** da curva y = f(x) se pelo menos umas das seguintes condições estiver satisfeita:

1.
$$\lim_{x\to a} f(x) = +\infty;$$

4.
$$\lim_{x \to a^{-}} f(x) = -\infty;$$

2.
$$\lim_{x\to a} f(x) = -\infty$$
;

5.
$$\lim_{x\to a^+} f(x) = +\infty;$$

3.
$$\lim_{x \to a^{-}} f(x) = +\infty;$$

6.
$$\lim_{x \to a^+} f(x) = -\infty$$
.

Definição 7. Seja uma função $f: I \to \mathbb{R}$, onde I é um intervalo infinito.

1. Se dado M>0, existir k tal que $x>k\Rightarrow f(x)>M$, dizemos que o limite da função f tende à mais infinito, quando x tende à mais infinito.

$$\lim_{x \to +\infty} f(x) = +\infty.$$

2. Se dado M > 0, existir k tal que $x > k \Rightarrow f(x) < -M$, dizemos que o limite da função f tende à menos infinito, quando x tende para mais infinito.

$$\lim_{x \to +\infty} f(x) = -\infty.$$

Definição 8. Seja uma função $f: I \to \mathbb{R}$, onde I é um intervalo infinito.

1. Se dado M > 0 existir k tal que $x < k \Rightarrow f(x) > M$, dizemos que o limite da função f tende à mais infinito quando x tende para menos infinito.

$$\lim_{x \to -\infty} f(x) = +\infty.$$

2. Se dado M > 0, existir k tal que $x < k \Rightarrow f(x) < -M$, dizemos que o limite da função f tende à menos infinito quando x tende para menos infinito.

$$\lim_{x \to -\infty} f(x) = -\infty.$$

Sempre que dissermos que uma função tem limite $+\infty$ ou $-\infty$, temos um caso onde o limite não existe. Podemos ainda escrever,

$$\lim_{x \to a} f(x) = \infty,$$

para indicar que

$$\lim_{x \to a} |f(x)| = +\infty.$$

Teorema 1. Se $n \in \mathbb{N}$ e $c \in \mathbb{R}^*$, então

- 1. $\lim_{x\to+\infty}\frac{c}{r^n}=0,$
- 2. $\lim_{x\to-\infty}\frac{c}{r^n}=0$.

Teorema 2. Para todo $n \in \mathbb{N}$ temos:

- 1. $\lim_{x\to 0^+} \frac{1}{x^n} = +\infty;$
- 2. $\lim_{x\to 0^-} \frac{1}{x^n} = \begin{cases} +\infty, & n \text{ par} \\ -\infty, & n \text{ impar} \end{cases}$

Proposição 1. Se $f(x) \leq g(x)$ para todo x próximo de a mas $x \neq a$ e

$$\lim_{x \to a} f(x) = +\infty \Rightarrow \lim_{x \to a} g(x) = +\infty.$$

Proposição 2. Se $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to a} g(x) = L$, então

$$\lim_{x \to a} [f(x) + g(x)] = +\infty.$$

Com o mesmo raciocínio é fácil provar, se o $\lim_{x\to a} f(x) = -\infty$ e $\lim_{x\to a} g(x) = L$, então

$$\lim_{x \to a} [f(x) + g(x)] = -\infty.$$

Proposição 3. Se $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to a} g(x) = L$, então

$$\lim_{x \to a} f(x) \cdot g(x) = \begin{cases} +\infty, & se \quad L > 0 \\ -\infty, & se \quad L < 0 \end{cases}$$

Se L=0, temos a indeterminação $\infty \cdot 0$.

Proposição 4. Se $\lim_{x\to a} f(x) = -\infty$ e $\lim_{x\to a} g(x) = L$, então

$$\lim_{x \to a} f(x) \cdot g(x) = \left\{ \begin{array}{ll} -\infty, & se & L > 0 \\ +\infty, & se & L < 0 \end{array} \right.$$

Se L=0, temos a indeterminação $\infty \cdot 0$

Proposição 5. Se f(x) > 0 para x próximo de a e $\lim_{x\to a} f(x) = 0$, então

$$\lim_{x \to a} \frac{1}{f(x)} = +\infty.$$

Proposição 6. Se f(x) < 0, para x próximo de a e $\lim_{x\to a} f(x) = 0$, então

$$\lim_{x \to a} \frac{1}{f(x)} = -\infty.$$

Teorema 3. 1. Se g(x) > 0 para x próximo de a, $\lim_{x\to a} g(x) = 0$ e $\lim_{x\to a} f(x) = L$, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \begin{cases} +\infty, & se \quad L > 0\\ -\infty, & se \quad L < 0 \end{cases}$$

2. Se, $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = \pm \infty$, então $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$.