

FIGURE 1

FIGURE 2

FIGURE 3

The first term does from the course term of the first series of the course of the cour

TWO-CYCLE DECISION MATRIX

		Previous cycle						Current cycle					
DEAL CURRENT State		d1 ⊕d2	d2 ⊕d3	d3 ⊕d4	d4 ⊕d5	d5 ⊕d6	d6 ⊕d1	d1 ⊕d2	d2 ⊕d3	d3 ⊕d4	d4 ⊕d5	d5 ⊕d6	d6 ⊕d1
	S4	s4	s 5	s5	s5/3	s3	s3	s4					
	S5	•	s 5	s6	s6	s6/4	s 4	s4	s5				
	S6			s6	s1	. s1	s1/5	s5	s5	s6			
	S1				s1	s2	s2	s2/6	s6	s6	. s1		
	S2					s2	s3	s3	s3/1	s1	s1	s2	
ID	S3						s3	s4	s4	s4/2	s2	s2	s 3

FIGURE 5

JINGLE-CYCLE DECISION MATRIX

					1//		
	CURRENT CYCLE						
STATE		d1 ⊕d2	d2 ⊕d3	d3 ⊕d4	d4 ⊕d5	d5 ⊕d6	d6 ⊕d1
CURRENT S	S4	s4	s 5	s5	s3	s3	s3
	S5	s4	s 5	s6	s6	s4	s4
	S6	s5	s5	s6	s1	s1	s5
i I	S1	s6	s6	s6	s1	s2	s2
IDEAL	S2	s3	s1	s1	s1	s2	s3
17	S3	s4	s4	s2	s2	s2	s3

FIGURE 4

Edge Detection	Next state Selected
No edge detected.	No state change. N'ext state = Previous State
Only one edge dectected.	Next State is determined by this edge.
Multiple edges detected and they all generate the same next state.	The next state is the state generated by the edges.
Multiple edges detected and the next-states generated are different.	No state change:

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

Sampling each data unit of a serial data stream multiple times and at different locations in the data unit. Detecting edge transitions between adjacent data samples. Selecting a data sample to represent a data unit based on edge transition information of two data units/cycles.

FIGURE 12