Nizovi

Neka je (X, d) metrički prostor.

Definicija. Funkcija $a: \mathbb{N} \to X$, $a(n) = a_n$ zove se *niz* u prostoru X i označava se sa $\{a_n\}_{n\in\mathbb{N}}$.

Element $a_n \in X$ zove se *član niza*.

Niz $\{a_n\}_{n\in\mathbb{N}}$ u prostoru $X\subseteq\mathbb{R}$, u kome je definisana metrika $d(x,y)=|x-y|\ (x,y\in\mathbb{R})$ zove se realni niz.

U daljem izlaganju govoriće se o realnim nizovima.

Definicija. Niz $\{a_n\}_{n\in\mathbb{N}}$ je konvergentan ako postoji tačka $a\in X$ takva da

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) |a_n - a| < \varepsilon.$$

Tačka a je granična vrednost ili granica niza $\{a_n\}_{n\in\mathbb{N}}$, što se označava sa

$$\lim_{n \to \infty} a_n = a \quad \text{ili} \quad a_n \to a \quad (n \to \infty).$$

Ako niz nije konvergentan, on je divergentan.

Definicija. Niz $\{a_n\}_{n\in\mathbb{N}}$ teži ka $+\infty$, tj. $\lim_{n\to\infty}a_n=+\infty$, ako

$$(\forall A > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) \ a_n > A.$$

Niz $\{a_n\}_{n\in\mathbb{N}}$ teži ka $-\infty$, tj. $\lim_{n\to\infty} a_n = -\infty$, ako

$$(\forall A > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) \ a_n < -A.$$

Ako je $\lim_{n\to\infty} a_n = +\infty$ ili $\lim_{n\to\infty} a_n = -\infty$, niz je određeno divergentan.

Definicija. Niz $\{a_n\}_{n\in\mathbb{N}}$ je ograničen ako postoje tačka $a\in\mathbb{R}$ i M>0 tako da je $|a_n-a|< M$ za svako $n\in\mathbb{N}$.

Definicija. Niz $\{a_n\}_{n\in\mathbb{N}}$ je:

nerastući ako je $a_{n+1} \leq a_n$ za svako $n \in \mathbb{N}$; neopadajući ako je $a_{n+1} \geq a_n$ za svako $n \in \mathbb{N}$; opadajući ako je $a_{n+1} < a_n$ za svako $n \in \mathbb{N}$; rastući ako je $a_{n+1} > a_n$ za svako $n \in \mathbb{N}$.

Ako niz ima neku od navedenih osobina, on je monoton.

Teorema 1. Ako je niz $\{a_n\}_{n\in\mathbb{N}}$ konvergentan, on je ograničen.

Teorema 2. Ako su nizovi $\{a_n\}_{n\in\mathbb{N}}$ i $\{b_n\}_{n\in\mathbb{N}}$ konvergentni i $\alpha\in\mathbb{R}$ proizvoljna konstanta, tada su konvergentni i nizovi $\{\alpha a_n\}_{n\in\mathbb{N}}$, $\{a_n+b_n\}_{n\in\mathbb{N}}$ i $\{a_nb_n\}_{n\in\mathbb{N}}$ i pri tome je

$$\lim_{n \to \infty} \alpha a_n = \alpha \lim_{n \to \infty} a_n ,$$

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n ,$$

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n .$$

Ako je još i $b_n \neq 0$ za svako $n \in \mathbb{N}$ i $\lim_{n \to \infty} b_n \neq 0$, tada je i niz $\{a_n/b_n\}_{n \in \mathbb{N}}$ konvergentan i važi

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$$

Teorema 3. Ako su nizovi $\{a_n\}_{n\in\mathbb{N}}$ i $\{b_n\}_{n\in\mathbb{N}}$ konvergentni sa istom granicom a i ako je $a_n\leq c_n\leq b_n$ za svako $n\in\mathbb{N}$, tada je i niz $\{c_n\}_{n\in\mathbb{N}}$ konvergentan i važi

$$\lim_{n\to\infty}c_n=a.$$

Teorema 4. (Štolcova teorema) Neka su dati nizovi $\{a_n\}_{n\in\mathbb{N}}$ i $\{b_n\}_{n\in\mathbb{N}}$ takvi da je $\{b_n\}_{n\in\mathbb{N}}$ rastući i $\lim_{n\to\infty}b_n=+\infty$. Ako postoji

$$\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\,,$$

tada postoji i

$$\lim_{n\to\infty}\frac{a_n}{b_n}$$

i važi

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}.$$

Teorema 5. Ako je niz $\{a_n\}_{n\in\mathbb{N}}$ monoton i ograničen, on je konvergentan.

Definicija. Ako je $\{n_k\}_{k\in\mathbb{N}}$ strogo rastući niz prirodnih brojeva, tada je $\{a_{n_k}\}_{k\in\mathbb{N}}$ delimični niz ili podniz niza $\{a_n\}_{n\in\mathbb{N}}$.

Definicija. Ako je podniz $\{a_{n_k}\}_{k\in\mathbb{N}}$ niza $\{a_n\}_{n\in\mathbb{N}}$ konvergentan i $\lim_{k\to\infty}a_{n_k}=\alpha$, tada je α delimična granica ili tačka nagomilavanja niza $\{a_n\}_{n\in\mathbb{N}}$.

Definicija. Ako postoji, najmanja delimična granica a_* niza $\{a_n\}_{n\in\mathbb{N}}$ zove se donja granica ili limes inferior niza $\{a_n\}_{n\in\mathbb{N}}$ i označava se sa

$$a_* = \liminf_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n$$
.

Ako postoji, najveća delimična granica a^* niza $\{a_n\}_{n\in\mathbb{N}}$ zove se gornja granica ili limes superior niza $\{a_n\}_{n\in\mathbb{N}}$ i označava se sa

$$a^* = \limsup_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n$$
.

Teorema 6. Niz $\{a_n\}_{n\in\mathbb{N}}$ konvergira ka a i ako i samo ako je

$$\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = a.$$

Definicija. Niz $\{a_n\}_{n\in\mathbb{N}}$ je *Košijev* ako važi

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall m, n \ge n_0) |a_m - a_n| < \varepsilon$$

ili,

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)(\forall p \in \mathbb{N}) |a_{n+p} - a_n| < \varepsilon.$$

Teorema 7. U skupu \mathbb{R} niz $\{a_n\}_{n\in\mathbb{N}}$ je konvergentan ako i samo ako je Košijev.

Granične vrednosti nekih nizova:

$$\lim_{n \to \infty} \frac{1}{n^a} = \begin{cases} 0, & a > 0, \\ 1, & a = 0, \\ +\infty, & a < 0; \end{cases}$$

$$\lim_{n \to \infty} a^n = \begin{cases} +\infty, & a > 1, \\ 1, & a = 1, \\ 0, & -1 < a < 1, \\ \text{ne postoji}, & a \le -1; \end{cases}$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1 \quad (a > 0);$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1;$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e.$$

Zadaci

1. Koristeći definiciju granične vrednosti niza dokazati

$$\lim_{n \to \infty} \frac{n}{n+1} = 1.$$

Koliko se članova niza $\{n/(n+1)\}_{n\in\mathbb{N}}$ nalazi van intervala $(1-10^{-4},1+10^{-4})?$

Rešenje: Pokažimo da važi sledeće tvrđenje:

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) \mid \frac{n}{n+1} - 1 \mid < \varepsilon.$$

Neka je $\varepsilon > 0$ proizvoljno. Uočimo da je

$$\left| \frac{n}{n+1} - 1 \right| = \left| \frac{n - (n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1}$$

i da je nejednakost $\frac{1}{n+1} < \varepsilon$ zadovoljena kada je $n+1 > \frac{1}{\varepsilon}$, tj. $n > \frac{1}{\varepsilon} - 1$. Ako označimo $n_0 = \left[\frac{1}{\varepsilon} - 1\right] + 1$, tada je $\left| \frac{n}{n+1} - 1 \right| < \varepsilon$ za svako $n \ge n_0$. Prema tome, zaista je

$$\lim_{n\to\infty} \frac{n}{n+1} = 1.$$

Neka je $\varepsilon=10^{-4}.$ Tada za svako $n\geq 10000$ važi

$$\left| \frac{n}{n+1} - 1 \right| < \varepsilon,$$

tj.

$$1 - \varepsilon < \frac{n}{n+1} < 1 + \varepsilon.$$

Niz $\{a_n\}_{n\in\mathbb{N}}$ je rastući, jer je

$$a_{n+1} - a_n = \frac{n+1}{n+2} - \frac{n}{n+1} = \frac{1}{(n+1)(n+2)} > 0, \quad n \in \mathbb{N}$$

pa važi

$$a_1 < a_2 < \dots < a_{9999} < a_{10000} < \dots < a_n < \dots < 1$$
.

Kako je

$$a_{9999} = \frac{9999}{10000} = 1 - 10^{-4} \notin (1 - 10^{-4}, 1 + 10^{-4}) \quad i \quad a_{10000} \in (1 - 10^{-4}, 1 + 10^{-4}),$$

van tog intervala nalazi se prvih 9999 članova niza.

2. Odrediti granične vrednosti:

a)
$$\lim_{n\to\infty} \sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right);$$
 b) $\lim_{n\to\infty} \frac{\sqrt{n}}{\sqrt{n+1} - \sqrt{n}}.$

Rešenje:

a)
$$\lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right) = \lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$
$$= \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n} \left(\sqrt{1 + \frac{1}{n}} + 1 \right)} = \frac{1}{2}.$$

b)
$$\lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1} - \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1} - \sqrt{n}} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$
$$= \lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+1} + \sqrt{n} \right) = +\infty.$$

3. Odrediti granične vrednosti:

a)
$$\lim_{n \to \infty} \frac{(\sqrt{n^2 + n} + n)^2}{\sqrt[3]{n^6 + 1}};$$
 b) $\lim_{n \to \infty} \frac{(\sqrt{n^2 + n} - n)^2}{\sqrt[3]{n^6 + 1}}.$

Rešenje:

a)
$$\lim_{n \to \infty} \frac{\left(\sqrt{n^2 + n} + n\right)^2}{\sqrt[3]{n^6 + 1}} = \lim_{n \to \infty} \frac{\left(\sqrt{n^2 \left(1 + \frac{1}{n}\right)} + n\right)^2}{\sqrt[3]{n^6 \left(1 + \frac{1}{n^6}\right)}}$$

$$= \lim_{n \to \infty} \frac{n^2 \left(\sqrt{1 + \frac{1}{n}} + 1\right)^2}{n^2 \sqrt[3]{1 + \frac{1}{n^6}}} = \lim_{n \to \infty} \frac{\left(\sqrt{1 + \frac{1}{n}} + 1\right)^2}{\sqrt[3]{1 + \frac{1}{n^6}}} = 8.$$

b)
$$\lim_{n \to \infty} \frac{\left(\sqrt{n^2 + n} - n\right)^2}{\sqrt[3]{n^6 + 1}} = \lim_{n \to \infty} \frac{\left(\sqrt{n^2 + n} - n\right)^2}{\sqrt[3]{n^6 + 1}} \frac{\left(\sqrt{n^2 + n} + n\right)^2}{\left(\sqrt{n^2 + n} + n\right)^2}$$

$$= \lim_{n \to \infty} \frac{\left(n^2 + n - n^2\right)^2}{\left(\sqrt{n^2 + n} + n\right)^2 \sqrt[3]{n^6 + 1}} = \lim_{n \to \infty} \frac{n^2}{n^4 \left(\sqrt{1 + \frac{1}{n}} + 1\right)^2 \sqrt[3]{1 + \frac{1}{n^6}}}$$

$$= \lim_{n \to \infty} \frac{1}{n^2 \left(\sqrt{1 + \frac{1}{n}} + 1\right)^2 \sqrt[3]{1 + \frac{1}{n^6}}} = 0.$$

4. Odrediti graničnu vrednost

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}}{1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}}.$$

Rešenje: Za izračunavanje zbira prvih m članova geometrijskog niza $\{aq^k\}_{k\in\mathbb{N}_0} = \{a, aq, aq^2, \ldots\}$ koristi se formula

$$S_m = a + aq + aq^2 + \dots + aq^{m-1} = a \frac{1 - q^m}{1 - q}.$$

Prema tome, važi

$$1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n}} = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right),$$

$$1 + \frac{1}{3} + \frac{1}{3^{2}} + \dots + \frac{1}{3^{n}} = \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}} = \frac{3}{2}\left(1 - \left(\frac{1}{3}\right)^{n+1}\right).$$

Kako je $\lim_{n\to\infty}q^n=0$ za |q|<1,granična vrednost je jednaka

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}}{1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}} = \lim_{n \to \infty} \frac{2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right)}{\frac{3}{2}\left(1 - \left(\frac{1}{3}\right)^{n+1}\right)} = \frac{4}{3}.$$

5. Ako je |a| < 1, naći graničnu vrednost

$$\lim_{n \to \infty} \frac{1 + a + a^2 + \dots + a^n}{1 + \frac{1}{4} + \frac{1}{16} + \dots + \frac{1}{4^n}}.$$

Rezultat:

$$\lim_{n \to \infty} \frac{1 + a + a^2 + \dots + a^n}{1 + \frac{1}{4} + \frac{1}{16} + \dots + \frac{1}{4^n}} = \lim_{n \to \infty} \frac{\frac{1 - a^{n+1}}{1 - a}}{\frac{1 - 1/4^{n+1}}{3/4}} = \frac{3}{4(1 - a)}.$$

6. Odrediti granične vrednosti nizova:

a)
$$\lim_{n \to \infty} \left(\frac{n^2 - 2n + 1}{n^2 - 4n + 2} \right)^n$$
; b) $\lim_{n \to \infty} \left(\frac{2n^3 + 8}{2n^3 + 1} \right)^{n^3 - 3}$.

Rešenje: Koristimo poznatu graničnu vrednost

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e.$$

a)
$$\lim_{n \to \infty} \left(\frac{n^2 - 2n + 1}{n^2 - 4n + 2} \right)^n = \lim_{n \to \infty} \left(1 + \frac{2n - 1}{n^2 - 4n + 2} \right)^n$$

$$= \lim_{n \to \infty} \left(1 + \frac{2n - 1}{n^2 - 4n + 2} \right)^{\frac{n^2 - 4n + 2}{2n - 1}} \frac{\frac{2n - 1}{n^2 - 4n + 2}}{n^2 - 4n + 2}^n$$

$$= \lim_{n \to \infty} \left(\left(1 + \frac{2n - 1}{n^2 - 4n + 2} \right)^{\frac{n^2 - 4n + 2}{2n - 1}} \right)^{\frac{2n^2 - n}{n^2 - 4n + 2}}$$

$$= \lim_{n \to \infty} \left(\left(1 + \frac{2n - 1}{n^2 - 4n + 2} \right)^{\frac{n^2 - 4n + 2}{2n - 1}} \right)^{\frac{2 - 1/n}{1 - 4/n + 2/n^2}} = e^2.$$

$$\mathbf{b)} \quad \lim_{n \to \infty} \left(\frac{2n^3 + 8}{2n^3 + 1} \right)^{n^3 - 3} = \lim_{n \to \infty} \left(1 + \frac{7}{2n^3 + 1} \right)^{n^3 - 3}$$

$$= \lim_{n \to \infty} \left(1 + \frac{7}{2n^3 + 1} \right)^{\frac{2n^3 + 1}{7}} \frac{7}{2n^3 + 1} (n^3 - 3)$$

$$= \lim_{n \to \infty} \left(\left(1 + \frac{7}{2n^3 + 1} \right)^{\frac{2n^3 + 1}{7}} \right)^{\frac{7(n^3 - 3)}{2n^3 + 1}}$$

$$= \lim_{n \to \infty} \left(\left(1 + \frac{7}{2n^3 + 1} \right)^{\frac{2n^3 + 1}{7}} \right)^{\frac{7(1 - 3/n^3)}{2 + 1/n^3}} = e^{7/2} = e^3 \sqrt{e}.$$

7. Izračunati:

a)
$$\lim_{n \to \infty} \left(\frac{2}{n^2} (1 + 2 + \dots + n) \right)^{n/20};$$
 b) $\lim_{n \to \infty} \left(\frac{3}{n^3} (1^2 + 2^2 + \dots + n^2) \right)^{20n}.$

Rešenje: Poznate su formule za izračunavanje zbira prvih n prirodnih brojeva

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

i zbira kvadrata prvih n prirodnih brojeva

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

a)
$$\lim_{n \to \infty} \left(\frac{2}{n^2} (1 + 2 + \dots + n) \right)^{n/20} = \lim_{n \to \infty} \left(\frac{2}{n^2} \frac{n(n+1)}{2} \right)^{n/20}$$
$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n/20} = \lim_{n \to \infty} \left(\left(1 + \frac{1}{n} \right)^n \right)^{1/20} = e^{1/20}.$$

b)
$$\lim_{n \to \infty} \left(\frac{3}{n^3} (1^2 + 2^2 + \dots + n^2) \right)^{20n} = \lim_{n \to \infty} \left(\frac{3}{n^3} \frac{n(n+1)(2n+1)}{6} \right)^{20n}$$
$$= \lim_{n \to \infty} \left(1 + \frac{3n+1}{2n^2} \right)^{20n} = \lim_{n \to \infty} \left(\left(1 + \frac{3n+1}{2n^2} \right)^{\frac{2n^2}{3n+1}} \right)^{\frac{20n(3n+1)}{2n^2}} = e^{30}.$$

8. Odrediti graničnu vrednost niza

$$a_n = \frac{1+3+\dots+2n-1}{n+1} - \frac{2n+1}{2}$$
.

Rešenje: Kako je

$$a_n = \frac{1+3+\dots+2n-1}{n+1} - \frac{2n+1}{2}$$

$$= \frac{(1+2+3+\dots+2n) - (2+4+\dots+2n)}{n+1} - \frac{2n+1}{2}$$

$$= \frac{1}{n+1} \left((1+2+3+\dots+2n) - 2(1+2+\dots+n) \right) - \frac{2n+1}{2}$$

$$= \frac{1}{n+1} \left(\frac{2n(2n+1)}{2} - 2\frac{n(n+1)}{2} \right) - \frac{2n+1}{2} = -\frac{3n+1}{2n+2},$$

to je

$$\lim_{n \to \infty} a_n = -\lim_{n \to \infty} \frac{3n+1}{2n+2} = -\frac{3}{2}.$$

9. Odrediti sledeće granične vrednosti:

a)
$$\lim_{n\to\infty} \left(\sqrt[3]{n+1} - \sqrt[3]{n}\right)$$
; b) $\lim_{n\to+\infty} \left(\sqrt[3]{n+1} - \sqrt[3]{n}\right) \sin e^n$.

Rešenje: a) Pogodnom transformacijom opšteg člana $a_n = \sqrt[3]{n+1} - \sqrt[3]{n}$ niza $\{a_n\}_{n\in\mathbb{N}}$ dobija se

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sqrt[3]{n+1} - \sqrt[3]{n} \right)$$

$$= \lim_{n \to \infty} \left(\sqrt[3]{n+1} - \sqrt[3]{n} \right) \frac{\sqrt[3]{(n+1)^2} + \sqrt[3]{n(n+1)} + \sqrt[3]{n^2}}{\sqrt[3]{(n+1)^2} + \sqrt[3]{n(n+1)} + \sqrt[3]{n^2}}$$

$$= \lim_{n \to \infty} \frac{n+1-n}{\sqrt[3]{(n+1)^2} + \sqrt[3]{n(n+1)} + \sqrt[3]{n^2}}$$

$$= \lim_{n \to \infty} \frac{1}{n^{2/3} \left(\sqrt[3]{\left(1 + \frac{1}{n}\right)^2} + \sqrt[3]{1 + \frac{1}{n}} + 1 \right)} = 0.$$

b) Svaki član niza $\{b_n\}_{n\in\mathbb{N}}$ može da se predstavi kao

$$b_n = a_n \sin e^n$$
, $a_n = \sqrt[3]{n+1} - \sqrt[3]{n}$.

Granična vrednost niza $\{a_n\}_{n\in\mathbb{N}}$ određena je delu zadatka pod **a**). Kako je

$$-1 \le \sin x \le 1$$
, $\forall x \in \mathbb{R}$,

za sve članove niza $\{b_n\}_{n\in\mathbb{N}}$ važi

$$-a_n < b_n < a_n$$

pa se primenom Teoreme 3 dobija

$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n = 0.$$

10. Ako za članove niza $\{x_n\}_{n\in\mathbb{N}}$ važi

$$0 < x_n < \frac{\sqrt{n} + \sqrt[3]{n}}{\sqrt{n^2 + 1}}, \qquad n \in \mathbb{N},$$

dokazati da je $\lim_{n\to\infty} x_n = 0.$

Rešenje: Označimo $y_n = \frac{\sqrt{n} + \sqrt[3]{n}}{\sqrt{n^2 + 1}}, n \in \mathbb{N}$. Tada je

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{\sqrt{n} + \sqrt[3]{n}}{\sqrt{n^2 + 1}} = \lim_{n \to \infty} \frac{\sqrt{n} \left(1 + \frac{1}{\sqrt[6]{n}} \right)}{n \sqrt{1 + \frac{1}{n^2}}} = \lim_{n \to \infty} \frac{1 + \frac{1}{\sqrt[6]{n}}}{\sqrt{n} \sqrt{1 + \frac{1}{n^2}}} = 0.$$

Kako je $0 < x_n < y_n, \, \forall n \in \mathbb{N}, \, \mathrm{i} \, \lim_{n \to \infty} y_n = 0, \, \mathrm{prema}$ Teoremi 3 važi

$$\lim_{n\to\infty} x_n = 0.$$

11. Neka za članove niza $\{a_n\}_{n\in\mathbb{N}}$ važi

$$0 \le a_n \le \frac{2^n + 1}{3^n} \,, \qquad n \in \mathbb{N} \,.$$

Odrediti $\lim_{n\to\infty} a_n$.

Rešenje: Kako je

$$\lim_{n\to\infty}\frac{2^n+1}{3^n}=\lim_{n\to\infty}\left(\left(\frac{2}{3}\right)^n+\left(\frac{1}{3}\right)^n\right)=0\,,$$

primenom Teoreme 3 dobija se $\lim_{n\to\infty} a_n = 0.$

12. Za $a \in \mathbb{R} \setminus \{-1\}$ odrediti graničnu vrednost

$$\lim_{n\to\infty}\frac{a^n}{1+a^n}\,.$$

Rešenje: Za a = 1 je očigledno

$$\lim_{n \to \infty} \frac{a^n}{1 + a^n} = \frac{1}{2} \,.$$

Ako je -1 < a < 1,tada je $\lim_{n \to \infty} a^n = 0,$ pa je

$$\lim_{n \to \infty} \frac{a^n}{1 + a^n} = 0.$$

Ako je |a|>1,tada važi $\lim_{n\to\infty}a^{-n}=0$ i

$$\lim_{n \to \infty} \frac{a^n}{1 + a^n} = \lim_{n \to \infty} \frac{1}{a^{-n} + 1} = 1.$$

13. U zavisnosti od realnog parametra $a \ge 0$ odrediti graničnu vrednost niza

$$\lim_{n \to \infty} \frac{a^n + a^{n+1}}{2^n + 2^{n+1}} \,.$$

Rešenje:

$$\lim_{n \to \infty} \frac{a^n + a^{n+1}}{2^n + 2^{n+1}} = \lim_{n \to \infty} \frac{a^n (1+a)}{3 \cdot 2^n} = \frac{1+a}{3} \lim_{n \to \infty} \left(\frac{a}{2}\right)^n$$

$$= \begin{cases} +\infty, & a > 2, \\ 1, & a = 2, \\ 0, & 0 \le a < 2. \end{cases}$$

14. U zavisnosti od realnog parametra a naći graničnu vrednost

$$\lim_{n\to\infty}\frac{2a^{n+1}+3\cdot 5^n}{2a^n+5^{n+1}}\,.$$

Rešenje: Transformacijom izraza $x_n = \frac{2a^{n+1} + 3 \cdot 5^n}{2a^n + 5^{n+1}}$ dobija se

$$x_n = \frac{5^n \left(2a \left(\frac{a}{5}\right)^n + 3\right)}{5^n \left(2 \left(\frac{a}{5}\right)^n + 5\right)} = \frac{2a \left(\frac{a}{5}\right)^n + 3}{2 \left(\frac{a}{5}\right)^n + 5} = \frac{2a + 3 \left(\frac{a}{5}\right)^{-n}}{2 + 5 \left(\frac{a}{5}\right)^{-n}}.$$

Ako je |a| < 5, tada je $\lim_{n \to \infty} \left(\frac{a}{5}\right)^n = 0$, pa je $\lim_{n \to \infty} x_n = \frac{3}{5}$.

Ako je
$$|a| > 5$$
, tada je $\lim_{n \to \infty} \left(\frac{a}{5}\right)^{-n} = \lim_{n \to \infty} \left(\frac{5}{a}\right)^n = 0$, pa je $\lim_{n \to \infty} x_n = a$.

Za a=5 važi $\lim_{n\to\infty}x_n=\frac{13}{7}$, a za a=-5 granična vrednost $\lim_{n\to\infty}x_n$ ne postoji.

15. U zavisnosti od realnog parametra a odrediti

$$\lim_{n\to\infty}\frac{2^n+a^n}{2^{n+1}-5a^n}\,.$$

Rezultat:

$$\lim_{n \to \infty} \frac{2^n + a^n}{2^{n+1} - 5a^n} = \begin{cases} -1/5, & |a| > 2, \\ -2/3, & a = 2, \\ 1/2, & -2 < a < 2, \\ \text{ne postoji}, & a = -2. \end{cases}$$

16. Odrediti graničnu vrednost

$$\lim_{n \to \infty} \frac{\sqrt{\frac{1}{2}} + \sqrt{\frac{3}{5}} + \sqrt{\frac{5}{10}} + \dots + \sqrt{\frac{2n-1}{n^2+1}}}{\sqrt{n}}.$$

Rešenje: Označimo

$$a_n = \sqrt{\frac{1}{2}} + \sqrt{\frac{3}{5}} + \sqrt{\frac{5}{10}} + \dots + \sqrt{\frac{2n-1}{n^2+1}}, \qquad b_n = \sqrt{n}.$$

Kako je $\sqrt{n+1}>\sqrt{n},\,\forall n\in\mathbb{N},\,$ niz $\{b_n\}_{n\in\mathbb{N}}$ je monotono rastući. Kako je još i $\lim_{n\to\infty}b_n=+\infty,$ zadovoljeni su uslovi Štolcove teoreme, pa važi

$$\lim_{n \to \infty} \frac{\sqrt{\frac{1}{2}} + \sqrt{\frac{3}{5}} + \sqrt{\frac{5}{10}} + \dots + \sqrt{\frac{2n-1}{n^2+1}}}{\sqrt{n}} = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$$

$$= \lim_{n \to \infty} \frac{\sqrt{\frac{2n+1}{(n+1)^2+1}}}{\sqrt{n+1} - \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{\frac{2n+1}{n^2+2n+2}}}{\sqrt{n+1} - \sqrt{n}} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$

$$= \lim_{n \to \infty} \left(\sqrt{n+1} + \sqrt{n}\right) \sqrt{\frac{2n+1}{n^2+2n+2}}$$

$$= \lim_{n \to \infty} \sqrt{n} \left(\sqrt{1+\frac{1}{n}} + 1\right) \sqrt{\frac{2+\frac{1}{n}}{n\left(1+\frac{2}{n}+\frac{2}{n^2}\right)}}$$

$$= \lim_{n \to \infty} \left(\sqrt{1+\frac{1}{n}} + 1\right) \sqrt{\frac{2+\frac{1}{n}}{1+\frac{2}{n}+\frac{2}{n^2}}} = 2\sqrt{2}.$$

17. Odrediti graničnu vrednost

$$\lim_{n \to \infty} \frac{1 \cdot 1! + 3 \cdot 2! + \dots + (2n-1)n!}{(n+1)!}.$$

Rešenje: Ako je

$$a_n = 1 \cdot 1! + 3 \cdot 2! + \dots + (2n-1)n!, \quad b_n = (n+1)!,$$

tada je $\{b_n\}_{n\in\mathbb{N}}$ rastući niz jer za svako $n\in\mathbb{N}$

$$\frac{b_{n+1}}{b_n} = \frac{(n+2)!}{(n+1)!} = n+2 > 1,$$

tj. $b_{n+1}>b_n$, i važi $\lim_{n\to\infty}b_n=+\infty$. Primenom Štolcove teoreme dobija se

$$\lim_{n \to \infty} \frac{1 \cdot 1! + 3 \cdot 2! + \dots + (2n-1)n!}{(n+1)!} = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$$

$$= \lim_{n \to \infty} \frac{(2n+1)(n+1)!}{(n+2)! - (n+1)!} = \lim_{n \to \infty} \frac{(2n+1)(n+1)!}{(n+1)!(n+2-1)} = \lim_{n \to \infty} \frac{2n+1}{n+1} = 2.$$

18. Naći

$$\lim_{n \to \infty} \frac{1 + (1+2) + (1+2+3) + \dots + (1+2+3+\dots + n)}{n^3}.$$

Rešenje: Označimo

$$a_n = 1 + (1+2) + (1+2+3) + \dots + (1+2+3+\dots+n), \quad b_n = n^3.$$

Očigledno je da je $\{b_n\}_{n\in\mathbb{N}}$ rastući niz i $\lim_{n\to\infty}b_n=+\infty$, pa se može primeniti Štolcova teorema. Kako je

$$a_n = 1 + (1+2) + (1+2+3) + \dots + (1+2+3+\dots+n)$$
$$= 1 + \frac{2 \cdot 3}{2} + \frac{3 \cdot 4}{2} + \dots + \frac{n(n+1)}{2} = \sum_{k=1}^{n} \frac{k(k+1)}{2}$$

i

$$a_{n+1} = \sum_{k=1}^{n+1} \frac{k(k+1)}{2} \,,$$

to je

$$a_{n+1} - a_n = \sum_{k=1}^{n+1} \frac{k(k+1)}{2} - \sum_{k=1}^{n} \frac{k(k+1)}{2} = \frac{1}{2}(n+1)(n+2).$$

Zato je

$$\lim_{n \to \infty} \frac{1 + (1+2) + (1+2+3) + \dots + (1+2+3+\dots + n)}{n^3}$$

$$= \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{(n+1)(n+2)}{(n+1)^3 - n^3} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 + 3n + 2}{3n^2 + 3n + 1} = \frac{1}{6}.$$

19. Naći graničnu vrednost niza

$$\lim_{n\to\infty}\frac{1\cdot 2+2\cdot 3+\cdots+n(n+1)}{n^3}$$

Rešenje: I način: Primenom Štolcove teoreme dobija se

$$\lim_{n \to \infty} \frac{1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1)}{n^3} = \lim_{n \to \infty} \frac{(n+1)(n+2)}{(n+1)^3 - n^3} = \frac{1}{3}.$$

 $\underline{\text{II način}}$: Pogodnom transformacijom izraza i primenom poznatih formula za zbir prvih n prirodnih brojeva i zbir kvadrata prvih n prirodnih brojeva nalazi se tražena granična vrednost:

$$\lim_{n \to \infty} \frac{1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1)}{n^3} = \lim_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^n k(k+1)$$

$$= \lim_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^n (k^2 + k) = \lim_{n \to \infty} \frac{1}{n^3} \left(\sum_{k=1}^n k^2 + \sum_{k=1}^n k \right)$$

$$= \lim_{n \to \infty} \frac{1}{n^3} \left(\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right) = \frac{1}{3}.$$

20. Naći

$$L = \lim_{n \to \infty} \frac{1^3 + 3^3 + \dots + (2n+1)^3}{n^4}.$$

Rezultat: L=2.

21. Odrediti graničnu vrednost

$$L = \lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{(n+1)^4 - n^4}.$$

Rezultat: $L = \frac{1}{12}$.

22. Odrediti graničnu vrednost

$$L = \lim_{n \to \infty} \frac{1^6 + 2^6 + \dots + n^6}{n^7 + n^6}.$$

Rezultat: $L = \frac{1}{7}$.

23. Naći

$$L = \lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n\sqrt{n+1}}.$$

Rezultat: $L = \frac{2}{3}$.

24. Pokazati da je niz

$$a_1 = \sqrt{6}$$
, $a_{n+1} = \sqrt{6+a_n}$, $n \in \mathbb{N}$,

monoton i ograničen, a zatim naći $\lim_{n\to\infty} a_n$.

Rešenje: Za dokaz monotonosti i ograničenosti niza $\{a_n\}_{n\in\mathbb{N}}$ koristimo princip matematičke indukcije.

Dokažimo da je niz monotono rastući, tj. da je $a_{n+1} > a_n$ sa svako $n \in \mathbb{N}$. Kako je

$$a_2 = \sqrt{6 + \sqrt{6}} > \sqrt{6} = a_1,$$

tvrđenje važi za n = 1. Pretpostavimo da tvrđenje važi za neki prirodan broj k, tj. da je $a_{k+1} > a_k$, i dokažimo da važi i za k+1:

$$\begin{aligned} a_{k+1} > a_k & \Rightarrow & 6 + a_{k+1} > 6 + a_k \\ & \Rightarrow & \sqrt{6 + a_{k+1}} > \sqrt{6 + a_k} \\ & \Rightarrow & a_{k+2} > a_{k+1} \,. \end{aligned}$$

Dokažimo da za sve članove niza važi $a_n < 3$. Tvrđenje je tačno za n = 1, jer je $a_1 = \sqrt{6} < 3$. Pretpostavimo da tvrđenje važi za neki prirodan broj k, tj. da je $a_k < 3$, i dokažimo da važi i za k+1:

$$a_k < 3$$
 \Rightarrow $6 + a_k < 9$
 \Rightarrow $\sqrt{6 + a_k} < \sqrt{9}$
 \Rightarrow $a_{k+1} < 3$.

Prema tome, niz je ograničen odozgo sa 3, a zbog monotonosti ograničen je odozdo sa $a_1 = \sqrt{6}$.

Prema Teoremi 5 niz $\{a_n\}_{n\in\mathbb{N}}$ je konvergentan. Njegovu graničnu vrednost $\lim_{n\to\infty} a_n = a$ određujemo iz rekurentne relacije na sledeći način:

$$a_{n+1} = \sqrt{6 + a_n}$$
,
 $a_{n+1}^2 = 6 + a_n$,
 $\lim_{n \to \infty} a_{n+1}^2 = \lim_{n \to \infty} (6 + a_n)$,
 $a^2 = 6 + a$.

Dobijena kvadratna jednačina je zadovoljena za a=-2 ili a=3. Kako su svi članovi niza pozitivni, dobijamo

$$\lim_{n\to\infty}a_n=3.$$

25. Dokazati da je niz $\{x_n\}_{n\in\mathbb{N}}$ definisan sa

$$x_1 = \frac{1}{2}$$
, $x_{n+1} = x_n^2$, $n = 1, 2, \dots$

monoton i ograničen, a zatim naći $\lim_{n\to\infty} x_n$.

Rešenje: Dokažimo najpre da za sve članove niza važi $0 < x_n < 1$. Očigledno, tvrđenje važi za n = 1. Ako tvrđenje važi za neki prirodan broj k, tj. ispunjeno je $0 < x_k < 1$, tada je ispunjeno i $0 < x_k^2 = x_{k+1} < 1$, tj. tvrđenje važi i za k+1. Prema tome, niz je ograničen.

Dokažimo da je niz opadajući. Kako je

$$x_{n+1} - x_n = x_n^2 - x_n = x_n(x_n - 1) < 0, \quad n \in \mathbb{N},$$

to je za svako $n \in \mathbb{N}$ ispunjeno $x_{n+1} < x_n$.

Monoton i ograničen niz $\{x_n\}_{n\in\mathbb{N}}$ je prema Teoremi 5 konvergentan, a graničnu vrednost

$$\lim_{n \to \infty} x_n = x$$

nalazimo iz rekurentne relacije:

$$x_{n+1} = x_n^2 \quad \Rightarrow \quad \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n^2 \quad \Rightarrow \quad x = x^2 \quad \Rightarrow \quad x = 0 \ \lor \ x = 1 \ .$$

Niz je opadajući, pa je njegova granična vrednost

$$\lim_{n\to\infty}x_n=0.$$

26. Dokazati da je niz $\{x_n\}_{n\in\mathbb{N}}$ definisan sa

$$x_{n+1} = x_n^2 - 2x_n + 2$$
, $n \in \mathbb{N}_0$, $x_0 \in (1, 2)$,

konvergentan i odrediti $\lim_{n\to\infty} x_n$.

Rešenje: Predstavimo rekurentnu relaciju u obliku

$$x_{n+1} = x_n^2 - 2x_n + 2 = (x_n - 1)^2 + 1$$
.

Dokažimo najpre da za sve članove niza važi $1 < x_n < 2$. Neka je tvrđenje tačno za neko $k \in \mathbb{N}$. Tada važi

$$1 < x_k < 2$$
 \Rightarrow $0 < x_k - 1 < 1$
 \Rightarrow $0 < (x_k - 1)^2 < 1$
 \Rightarrow $1 < (x_k - 1)^2 + 1 < 2$
 \Rightarrow $1 < x_{k+1} < 2$.

Kako još tvrđenje važi za n=1, važi za svako $n\in\mathbb{N}$.

Dokažimo da je niz monoton. Kako je zbog ograničenosti niza za svako $n \in \mathbb{N}$ ispunjeno

$$x_{n+1} - x_n = x_n^2 - 2x_n + 2 - x_n = x_n^2 - 3x_n + 2 = (x_n - 1)(x_n - 2) < 0$$

važi $x_{n+1} < x_n$, što znači da je opadajući.

Kao monoton i ograničen niz, $\{x_n\}_{n\in\mathbb{N}}$ je konvergentan. Njegovu graničnu vrednost x određujemo iz rekurentne relacije:

$$x_{n+1} = x_n^2 - 2x_n + 2,$$

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (x_n^2 - 2x_n + 2),$$

$$x = x^2 - 2x + 2,$$

$$x^2 - 3x + 2 = 0.$$

Zbog toga što je niz opadajući, granična vrednost je jednaka manjem od dva rešenja dobijene jednačine, tj.

$$\lim_{n\to\infty}x_n=1.$$

27. Ispitati konvergenciju niza $\{a_n\}_{n\in\mathbb{N}_0}$ za čije članove važi:

$$a_0 = -1$$
, $a_1 = 3$, $a_n = \frac{7a_{n-1} - 2a_{n-2}}{3}$, $n = 2, 3, \dots$

Rešenje: Opšti član niza $\{a_n\}_{n\in\mathbb{N}_0}$ je rešenje homogene linearne diferencne jednačine drugog reda sa konstantnim koeficijentima

$$3a_n - 7a_{n-1} + 2a_{n-2} = 0.$$

Njena karakteristična jednačina je

$$3\lambda^2 - 7\lambda + 2 = 0,$$

čija su rešenja $\lambda_1=1/3$ i $\lambda_2=2.$ Zato je

$$a_n = \frac{K_1}{3^n} + K_2 \, 2^n \,,$$

gde su K_1 i K_2 konstante koje se određuju iz početnih uslova

$$a_0 = K_1 + K_2 = -1$$
, $a_1 = \frac{K_1}{3} + 2K_2 = 3$.

Rešavanjem sistema jednačina dobija se $K_1 = -3, K_2 = 2,$ tj.

$$a_n = 2^{n+1} - \frac{1}{3^{n-1}} \, .$$

Prema tome, važi

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \left(2^{n+1} - \frac{1}{3^{n-1}} \right) = +\infty,$$

što znači da je niz $\{a_n\}_{n\in\mathbb{N}_0}$ određeno divergentan.

28. Dati su nizovi $\{a_n\}_{n\in\mathbb{N}}$ i $\{b_n\}_{n\in\mathbb{N}}$. Odrediti $\lim_{n\to\infty}\frac{a_n}{b_n}$ ako je

$$a_{n+1} = 3a_n + b_n$$
, $b_{n+1} = 5a_n - b_n$, $a_1 = 6$, $b_1 = -6$.

Rešenje: Kombinovanjem zadatih rekurentnih veza između članova nizova $\{a_n\}_{n\in\mathbb{N}}$ i $\{b_n\}_{n\in\mathbb{N}}$ dobija se

$$a_{n+2} = 3a_{n+1} + b_{n+1} = 3a_{n+1} + 5a_n - b_n$$

= $3a_{n+1} + 5a_n - a_{n+1} + 3a_n = 2a_{n+1} + 8a_n$,

što znači da opšti član niza $\{a_n\}_{n\in\mathbb{N}}$ zadovoljava diferenc
nu jednačinu

$$a_{n+2} - 2a_{n+1} - 8a_n = 0.$$

Rešenja karakteristične jednačine

$$\lambda^2 - 2\lambda - 8 = 0$$

su $\lambda_1 = -2$ i $\lambda_2 = 4$, pa je

$$a_n = K_1(-2)^n + K_24^n$$
.

Konstante K_1 i K_2 se određuju iz početnih uslova

$$-2K_1 + 4K_2 = a_1 = 6$$
, $4K_1 + 16K_2 = a_2 = 3a_1 + b_1 = 12$.

Rešavanjem dobijenog sistema jednačina dobija se $K_1=-1,\,K_2=1,\,{\rm tj}.$

$$a_n = 4^n - (-2)^n$$
,
 $b_n = a_{n+1} - 3a_n = 4^{n+1} - (-2)^{n+1} - 3 \cdot 4^n + 3(-2)^n = 4^n + 5(-2)^n$.

Prema tome, tražena granična vrednost je

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{4^n - (-2)^n}{4^n + 5(-2)^n} = \lim_{n \to \infty} \frac{1 - \left(-\frac{1}{2}\right)^n}{1 + 5\left(-\frac{1}{2}\right)^n} = 1.$$

29. Odrediti sve delimične granice i ispitati konvergenciju niza $\{a_n\}_{n\in\mathbb{N}}$ zadatog sa

$$a_n = \frac{n(1 - (-1)^n)}{n+1}, \quad n \in \mathbb{N}.$$

Rešenje: Posmatrajmo podnizove $\{a_{2k}\}_{k\in\mathbb{N}}$ i $\{a_{2k-1}\}_{k\in\mathbb{N}}$ niza $\{a_n\}_{n\in\mathbb{N}}$. Kako je

$$a_{2k} = \frac{2k(1 - (-1)^{2k})}{2k + 1} = 0, \qquad k \in \mathbb{N},$$

jedna delimična granica niza $\{a_n\}_{n\in\mathbb{N}}$ je

$$\lim_{n\to\infty}a_{2k}=0.$$

Članovi drugog podniza su

$$a_{2k-1} = \frac{(2k-1)(1-(-1)^{2k-1})}{2k} = \frac{2(2k-1)}{2k}, \quad k \in \mathbb{N},$$

pa je druga delimična granica

$$\lim_{k \to \infty} a_{2k-1} = \lim_{k \to \infty} \frac{2(2k-1)}{2k} = 2.$$

Kako niz ima dve različite delimične granice, on je divergentan.

30. Ispitati konvergenciju sledećih nizova i, ako postoje, odrediti njihove granične vrednosti:

a)
$$a_n = n - (-1)^n$$
; b) $b_n = \frac{1}{n - (-1)^n}$; c) $c_n = n(1 - (-1)^n)$.

Rešenje: a) Reprezentativni podnizovi niza $\{a_n\}_{n\in\mathbb{N}}$ su $\{a_{2k}\}_{k\in\mathbb{N}}$ i $\{a_{2k-1}\}_{k\in\mathbb{N}}$, čiji su članovi

$$a_{2k} = 2k - (-1)^{2k} = 2k - 1$$
, $a_{2k-1} = 2k - 1 - (-1)^{2k-1} = 2k - 1 + 1 = 2k$.

Kako je

$$\lim_{k \to \infty} a_{2k} = \lim_{k \to \infty} a_{2k-1} = +\infty,$$

to je

$$\lim_{n\to\infty} a_n = +\infty \,,$$

- tj. niz je određeno divergentan.
- **b)** Za podnizove $\{b_{2k}\}_{k\in\mathbb{N}}$ i $\{b_{2k-1}\}_{k\in\mathbb{N}}$ niza $\{b_n\}_{n\in\mathbb{N}}$ važi

$$b_{2k} = \frac{1}{2k - (-1)^{2k}} = \frac{1}{2k - 1}, \qquad \lim_{k \to \infty} b_{2k} = 0,$$

$$b_{2k-1} = \frac{1}{2k - 1 - (-1)^{2k-1}} = \frac{1}{2k}, \qquad \lim_{k \to \infty} b_{2k-1} = 0,$$

pa je niz konvergentan i

$$\lim_{n\to\infty}b_n=0.$$

c) Kako je

$$c_{2k} = 2k(1 - (-1)^{2k}) = 0$$
, $\lim_{k \to \infty} c_{2k} = 0$,
 $c_{2k-1} = (2k-1)(1 - (-1)^{2k-1}) = 2(2k-1)$, $\lim_{k \to \infty} c_{2k-1} = +\infty$,

ne postoji $\lim_{n\to\infty} b_n$, tj. niz je divergentan.

31. Odrediti $\limsup_{n\to\infty}a_n$ i $\liminf_{n\to\infty}a_n$ niza $\{a_n\}_{n\in\mathbb{N}}$ ako je

$$a_n = (-1)^n + \sin\frac{n\pi}{2}.$$

Rešenje: Posmatrajmo podnizove $\{a_{2k}\}_{k\in\mathbb{N}}$ i $\{a_{2k-1}\}_{k\in\mathbb{N}}$ niza $\{a_n\}_{n\in\mathbb{N}}$. Kako je

$$a_{2k} = (-1)^{2k} + \sin\frac{2k\pi}{2} = 1,$$

jedna delimična granica niza $\{a_n\}_{n\in\mathbb{N}}$ je

$$\lim_{k \to \infty} a_{2k} = 1.$$

Članovi drugog podniza su

$$a_{2k-1} = (-1)^{2k-1} + \sin\frac{(2k-1)\pi}{2} = -1 - \cos k\pi = -1 + (-1)^{k+1}.$$

Zato podniz $\{a_{2k-1}\}_{k\in\mathbb{N}}$ ima svoja dva reprezentativna podniza koji se dobijaju za k=2l i k=2l-1, a koji su ujedno i podnizovi niza $\{a_n\}_{n\in\mathbb{N}}$. Tako je

$$a_{2(2l)-1}=a_{4l-1}=-1+(-1)^{2l+1}=-2\,,\quad a_{2(2l-1)-1}=a_{4l-3}=-1+(-1)^{2l}=0\,,$$
 i

$$\lim_{l \to \infty} a_{4l-1} = -2$$
, $\lim_{l \to \infty} a_{4l-3} = 0$.

Dakle, delimične granice niza $\{a_n\}_{n\in\mathbb{N}}$ su $-2,\,0$ i 1, pa je

$$\liminf_{n \to \infty} a_n = -2, \qquad \limsup_{n \to \infty} a_n = 1,$$

a niz je divergentan.

32. Ispitati da li postoji

$$\lim_{n\to\infty} n\sin\frac{n\pi}{2} .$$

Rešenje: Označimo $a_n = n \sin \frac{n\pi}{2}$. Kako je

$$a_{2k} = 2k\sin\frac{2k\pi}{2} = 2k\sin k\pi = 0,$$

i

$$a_{2k-1} = (2k-1)\sin\frac{(2k-1)\pi}{2} = -(2k-1)\cos k\pi = (2k-1)(-1)^{k+1}$$
$$= \begin{cases} -(4l-1), & k=2l, \\ 4l-3, & k=2l-1, \end{cases}$$

niz $\{a_n\}_{n\in\mathbb{N}}$ ima različite delimične granice:

$$\lim_{k \to \infty} a_{2k} = 0, \qquad \lim_{l \to \infty} a_{4l-1} = -\infty, \qquad \lim_{l \to \infty} a_{4l-3} = +\infty,$$

što znači da $\lim_{n\to\infty} n\sin\frac{n\pi}{2}$ ne postoji.

33. Odrediti sve tačke nagomilavanja niza

$$a_n = 1 + \sin \frac{n\pi}{6}$$
, $n \in \mathbb{N}$.

Da li je niz konvergentan?

Rešenje: Koristeći jednakosti

$$\sin\frac{(6k+j)\pi}{6} = \sin\left(k\pi + \frac{j\pi}{6}\right) = \sin k\pi \cos\frac{j\pi}{6} + \cos k\pi \sin\frac{j\pi}{6} = (-1)^k \sin\frac{j\pi}{6}$$
za $j = 0, 1, 2, 3, 4, 5$ dobijamo

$$a_n = 1 + \sin \frac{n\pi}{6} = \begin{cases} 1, & n = 6k, \\ 1 + (-1)^k \frac{1}{2}, & n = 6k + 1 \lor n = 6k + 5, \\ 1 + (-1)^k \frac{\sqrt{3}}{2}, & n = 6k + 2 \lor n = 6k + 4, \\ 1 + (-1)^k, & n = 6k + 3. \end{cases}$$

Prema tome, delimične granice niza su:

$$0, \quad 1 - \frac{\sqrt{3}}{2}, \quad \frac{1}{2}, \quad 1, \quad \frac{3}{2}, \quad 1 + \frac{\sqrt{3}}{2}, \quad 2,$$

pa niz nije konvergentan.

34. Naći sve delimične granice niza

$$a_n = (-1)^n + \sin\frac{n\pi}{3}$$
, $n \in \mathbb{N}_0$.

Rešenje: Kako je

$$\sin\frac{(3k+j)\pi}{3} = (-1)^k \sin\frac{j\pi}{3},$$

za članove niza važi

$$a_n = (-1)^n + \sin \frac{n\pi}{3} = \begin{cases} (-1)^{3k}, & n = 3k, \\ (-1)^{3k+1} + (-1)^k \frac{\sqrt{3}}{2}, & n = 3k \pm 1, \end{cases}$$

$$= \begin{cases} (-1)^k, & n = 3k, \\ (-1)^k \left(\frac{\sqrt{3}}{2} - 1\right), & n = 3k \pm 1. \end{cases}$$

Delimične granice niza su:

$$-1$$
, $1 - \frac{\sqrt{3}}{2}$, $\frac{\sqrt{3}}{2} - 1$, 1 .

35. Odrediti $\liminf_{n\to\infty} a_n$, $\limsup_{n\to\infty} a_n$, $\inf_{n\in\mathbb{N}} a_n$ i $\sup_{n\in\mathbb{N}} a_n$ ako je niz $\{a_n\}_{n\in\mathbb{N}}$ definisan sa

$$a_n = n^{(-1)^n} + 2\cos(n+1)\pi, \quad n \in \mathbb{N}.$$

Rešenje: Kako je

$$a_n = \begin{cases} (2k)^{(-1)^{2k}} + 2\cos(2k+1)\pi, & n = 2k, \\ (2k-1)^{(-1)^{2k-1}} + 2\cos 2k\pi, & n = 2k-1, \end{cases}$$
$$= \begin{cases} 2k-2, & n = 2k, \\ \frac{1}{2k-1} + 2, & n = 2k-1, \end{cases}$$

niz $\{a_n\}_{n\in\mathbb{N}}$ ima dve delimične granice:

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} (2k - 2) = +\infty \,, \quad \lim_{k \to \infty} a_{k-1} = \lim_{k \to \infty} \frac{1}{2k - 1} + 2 = 2 \,.$$

Zato je

$$\liminf_{n \to \infty} a_n = 2, \qquad \limsup_{n \to \infty} a_n = +\infty.$$

Skup vrednosti niza $\{a_n\}_{n\in\mathbb{N}}$ je

$$D = \left\{3, 0, \frac{7}{3}, 2, \frac{11}{5}, 4, \frac{15}{7}, 6, \frac{19}{9}, 8, \dots\right\},\,$$

pa je

$$\inf_{n\in\mathbb{N}} a_n = \inf D = 0, \qquad \sup_{n\in\mathbb{N}} a_n = \sup D = +\infty.$$

36. Neka su nizovi $\{a_n\}_{n\in\mathbb{N}},\,\{b_n\}_{n\in\mathbb{N}}$ i $\{c_n\}_{n\in\mathbb{N}}$ definisani sa

$$a_n = \frac{2^n + (-2)^n}{2^n}, \quad b_n = \frac{2^n + (-2)^n}{3^n}, \quad c_n = \frac{2^n + 2^{-n}}{3^n}, \quad n \in \mathbb{N}.$$

Dokazati da je $\{a_n\}_{n\in\mathbb{N}}$ divergentan, a $\{b_n\}_{n\in\mathbb{N}}$ i $\{c_n\}_{n\in\mathbb{N}}$ su konvergentni nizovi.

Rešenje: Članove nizova $\{a_n\}_{n\in\mathbb{N}},\ \{b_n\}_{n\in\mathbb{N}}$ i $\{c_n\}_{n\in\mathbb{N}}$ predstavimo u obliku

$$a_n = 1 + (-1)^n$$
, $b_n = \left(\frac{2}{3}\right)^n (1 + (-1)^n)$, $c_n = \left(\frac{2}{3}\right)^n + \frac{1}{6^n}$.

Niz $\{a_n\}_{n\in\mathbb{N}}$ ima dve različite delimične granice

$$\lim_{k \to \infty} a_{2k} = 2, \qquad \lim_{k \to \infty} a_{2k-1} = 0,$$

pa je divergentan.

Reprezentativni podnizovi $\{b_{2k}\}_{k\in\mathbb{N}}$ i $\{b_{2k-1}\}_{k\in\mathbb{N}}$ niza $\{b_n\}_{n\in\mathbb{N}}$ konvergiraju istoj graničnoj vrednosti:

$$\lim_{k \to \infty} b_{2k} = \lim_{k \to \infty} \left(\frac{2}{3}\right)^{2k} \cdot 2 = 0,$$
$$\lim_{k \to \infty} b_{2k-1} = \lim_{k \to \infty} \left(\frac{2}{3}\right)^{2k-1} \cdot 0 = 0,$$

pa je on konvergentan i važi $\lim_{n\to\infty} b_n = 0$.

Za niz $\{c_n\}_{n\in\mathbb{N}}$ važi

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \left(\left(\frac{2}{3} \right)^n + \frac{1}{6^n} \right) = 0,$$

što znači da je konvergentan.

37. Dat je niz $\{a_n\}_{n\in\mathbb{N}}$ gde je

$$a_n = \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}} + \left(\frac{n+1}{n-1}\right)^n + \alpha \sin \frac{n\pi}{2}.$$

Odrediti α iz uslova da niz $\{a_n\}_{n\in\mathbb{N}}$ konvergira, a zatim naći $\lim_{n\to\infty} a_n$.

Rešenje: Ako označimo

$$b_n = \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}}, \quad c_n = \left(\frac{n+1}{n-1}\right)^n, \quad d_n = \sin\frac{n\pi}{2},$$

tada je

$$a_n = b_n + c_n + \alpha d_n .$$

Kako je

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}} = \lim_{n \to \infty} \frac{1 + \left(-\frac{2}{3}\right)^n}{3\left(1 + \left(-\frac{2}{3}\right)^{n+1}\right)} = \frac{1}{3}$$

i

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \left(\frac{n+1}{n-1} \right)^n = \lim_{n \to \infty} \left(1 + \frac{2}{n-1} \right)^n$$

$$= \lim_{n \to \infty} \left(\left(1 + \frac{2}{n-1} \right)^{\frac{n-1}{2}} \right)^{\frac{2n}{n-1}} = e^2,$$

nizovi $\{b_n\}_{n\in\mathbb{N}}$ i $\{c_n\}_{n\in\mathbb{N}}$ su konvergentni. Niz $\{d_n\}_{n\in\mathbb{N}}$ je divergentan, jer ima tri različite delimične granice (videti zadatak 31). Prema tome, niz $\{a_n\}_{n\in\mathbb{N}}$ je konvergentan za $\alpha=0$ i važi

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n + \lim_{n \to \infty} c_n = \frac{1}{3} + e^2.$$

38. Odrediti vrednost konstante $A \in \mathbb{R}$ tako da niz $\{x_n\}_{n \in \mathbb{N}}$

$$x_n = \frac{5^n}{2^{n-1} - 5^{n+1}} + A \frac{1 - (-1)^n}{2}, \quad n \in \mathbb{N},$$

bude konvergentan i naći $\lim_{n\to\infty} x_n$.

Rezultat: A = 0, $\lim_{n \to \infty} x_n = -1/5$.

39. Za nizove $\{a_n\}_{n\in\mathbb{N}}$ i $\{b_n\}_{n\in\mathbb{N}}$ gde su

$$a_n = \frac{1}{\sqrt{n+1}}$$
, $b_n = \sqrt{n} + (-1)^n$

ispitati monotonost, ograničenost i konvergenciju.

Rešenje: Niz $\{a_n\}_{n\in\mathbb{N}}$ je opadajući, jer za svako $n\in\mathbb{N}$ važi

$$a_{n+1} - a_n = \frac{1}{\sqrt{n+1}+1} - \frac{1}{\sqrt{n+1}} = \frac{\sqrt{n} - \sqrt{n+1}}{(\sqrt{n+1}+1)(\sqrt{n}+1)} < 0.$$

On je i ograničen, jer je

$$0 < a_n < 1$$
, $n \in \mathbb{N}$.

Prema Teoremi 5, niz $\{a_n\}_{n\in\mathbb{N}}$ je konvergentan i važi

$$\lim_{n\to\infty}a_n=0.$$

Niz $\{b_n\}_{n\in\mathbb{N}}$ nije monoton, jer, na primer,

$$b_2 - b_1 = \sqrt{2} + 1 > 0$$
 $b_3 - b_2 = \sqrt{3} - \sqrt{2} - 2 < 0$.

Niz nije ni ograničen, jer za svako M>0 postoji član $b_{n_0},\,n_0=\left[(M+1)^2\right]+1$ takav da je $b_{n_0}>M$. Ipak, za njegova dva reprezentativna podniza važi

$$\lim_{k \to \infty} b_{2k} = \lim_{k \to \infty} b_{2k-1} = +\infty \,,$$

pa niz $\{b_n\}_{n\in\mathbb{N}}$ divergira ka $+\infty$.

40. Ispitati monotonost, ograničenost i konvergenciju sledećih nizova:

$$a_n = n + (-1)^n$$
, $b_n = \frac{2^n}{3^{n+1}}$, $c_n = \frac{(-1)^n}{n}$.

Rešenje: Niz $\{a_n\}_{n\in\mathbb{N}}$ nije monoton, jer, na primer, $a_{10} > a_9$ i $a_9 < a_8$. Nije ni ograničen, jer za svako M > 0 postoji a_{n_0} , $n_0 = [M+1]+1$, takav da je $a_{n_0} > M$. On je određeno divergentan i $\lim_{n\to\infty} a_n = +\infty$.

Niz $\{b_n\}_{n\in\mathbb{N}}$ je opadajući, jer

$$\frac{b_{n+1}}{b_n} = \frac{2}{3} < 1, \qquad n \in \mathbb{N}.$$

Ograničen je, jer važi

$$0 < b_n < 1$$
, $n \in \mathbb{N}$.

Prema tome, niz je konvergentan i važi $\lim_{n\to\infty} b_n = 0$.

Niz $\{c_n\}_{n\in\mathbb{N}}$ nije monoton, jer za svako $k\in\mathbb{N}$ važi

$$c_{2k+1} - c_{2k} = -\frac{1}{2k+1} - \frac{1}{2k} < 0, \qquad c_{2k} - c_{2k-1} = \frac{1}{2k} + \frac{1}{2k-1} > 0.$$

Niz je ograničen, jer je $|c_n| \le 1$, za svako $n \in \mathbb{N}$. On je i konvergentan i važi $\lim_{n \to \infty} c_n = 0$.

41. Za nizove $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ i $\{c_n\}_{n\in\mathbb{N}}$, gde su

$$a_n = \sqrt{n}$$
, $b_n = \frac{(-1)^n}{\sqrt{n}}$, $c_n = \frac{1}{\sqrt{n}}$,

ispitati monotonost, ograničenost i konvergenciju.

Rezultat: Niz $\{a_n\}_{n\in\mathbb{N}}$ je rastući, neograničen, divergentan i $\lim_{n\to\infty}a_n=+\infty$. Niz $\{b_n\}_{n\in\mathbb{N}}$ nije monoton, ograničen je, konvergentan i $\lim_{n\to\infty}b_n=0$. Niz $\{c_n\}_{n\in\mathbb{N}}$ je opadajući, ograničen, konvergentan i $\lim_{n\to\infty}c_n=0$.

42. Ispitati monotonost, ograničenost i konvergenciju niza $\{a_n\}_{n\in\mathbb{N}}$, čiji je opšti član:

a)
$$a_n = \frac{n}{n+1};$$
 b) $a_n = \sin \frac{n\pi}{2}.$

Rezultat: a) Niz je rastući, ograničen, konvergentan i $\lim_{n\to\infty} a_n = 1$.

- b) Niz nije monoton, ograničen je i divergentan.
- **43.** Dokazati da je niz $\{x_n\}_{n\in\mathbb{N}}$, gde je

$$x_n = \sum_{k=1}^n \frac{\cos k!}{k(k+1)} \qquad (n \in \mathbb{N})$$

konvergentan.

Rešenje: Dokažimo da je niz Košijev, tj. da važi

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)(\forall p \in \mathbb{N}) |x_{n+p} - x_n| < \varepsilon.$$

Neka je $\varepsilon > 0$ proizvoljno. Tada je

$$|x_{n+p} - x_n| = \left| \sum_{k=1}^{n+p} \frac{\cos k!}{k(k+1)} - \sum_{k=1}^{n} \frac{\cos k!}{k(k+1)} \right| = \left| \sum_{k=n+1}^{n+p} \frac{\cos k!}{k(k+1)} \right|$$

$$\leq \sum_{k=n+1}^{n+p} \frac{|\cos k!|}{k(k+1)} \leq \sum_{k=n+1}^{n+p} \frac{1}{k(k+1)}$$

$$= \sum_{k=n+1}^{n+p} \frac{1+k-k}{k(k+1)} = \sum_{k=n+1}^{n+p} \left(\frac{1}{k} - \frac{1}{k+1} \right)$$

$$= \frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+2} - \frac{1}{n+3} + \dots + \frac{1}{n+p} - \frac{1}{n+p+1}$$

$$= \frac{1}{n+1} - \frac{1}{n+p+1} < \frac{1}{n+1}, \quad \forall p \in \mathbb{N}.$$

Nejednakost $\ \frac{1}{n+1}<\varepsilon\$ je zadovoljena ako je $\ n>\frac{1}{\varepsilon}-1\,.$ Ako označimo

$$n_0 = \left[\frac{1}{\varepsilon} - 1\right] + 1,$$

tada je $|x_{n+p} - x_n| < \varepsilon$, za svako $n \ge n_0$ i svako $p \in \mathbb{N}$. Prema tome, niz je Košijev, a prema Teoremi 7 i konvergentan.

44. Dokazati da je niz $\{a_n\}_{n\in\mathbb{N}}$, gde je

$$a_n = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} \qquad (n \in \mathbb{N})$$

divergentan i $\lim_{n\to\infty} a_n = +\infty$.

Rešenje: Dokažimo da niz nije Košijev, tj.

$$(\exists \varepsilon > 0)(\forall n \in \mathbb{N})(\exists m \in \mathbb{N}) |a_m - a_n| \ge \varepsilon.$$

Neka je m = 2n. Tada je

$$|a_m - a_n| = |a_{2n} - a_n| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
$$> \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2}.$$

Prema tome, ako je $\varepsilon < 1/2$, tada za svako $n \in \mathbb{N}$ postoji $m \in \mathbb{N}$, m = 2n, tako da je $|a_m - a_n| \ge \varepsilon$. Kako niz nije Košijev, prema Teoremi 7 nije konvergentan.

Niz je rastući, jer je

$$a_{n+1} - a_n = \frac{1}{n+1} > 0, \quad \forall n \in \mathbb{N}.$$

On ne može da bude ograničen, jer bi prema Teoremi 5 bio konvergentan. Dakle, za svako $M\in\mathbb{R}$ postoji $n_0\in\mathbb{N}$ tako da je $a_{n_0}>M$. Tada za svako $n\geq n_0$ važi $a_n\geq a_{n_0}>M$, što znači da je

$$\lim_{n\to\infty}a_n=+\infty.$$