Gittins Indices for Bayesian Optimization: Insights from Pandora's Box

Qian Xie (Cornell ORIE)

Joint work with Raul Astudillo, Peter Frazier, Ziv Scully, and Alexander Terenin

ECGI'24

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Applications:

Hyperparameter tuning
Drug discovery
Control design

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Applications:

Hyperparameter tuning
Drug discovery
Control design

Goal: optimize expensive-to-evaluate black-box function

Applications:

Hyperparameter tuning
Drug discovery
Control design

x: hyperparameter/configuration

mean: prediction

variance: confidence/uncertainty

Objective: find global optimum $x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$

Decision: evaluate a set of points

Goal: optimize expensive-toevaluate black-box function

Applications:

Hyperparameter tuning Drug discovery Control design

x: hyperparameter/configuration

Objective: find global optimum $x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$

Decision: evaluate a set of points

Goal: optimize expensive-toevaluate black-box function

An unknown random function $f: \mathcal{X} \to \mathbb{R}$ drawn from a Gaussian $_{0.0}$ process prior

Applications:

Hyperparameter tuning
Drug discovery
Control design

x: hyperparameter/configuration

Decision: adaptively evaluate a set of points

$$x_1, x_2, \dots, x_T \in \mathcal{X}$$

T: time budget

Goal: optimize expensive-toevaluate black-box function

Applications:

Hyperparameter tuning
Drug discovery
Control design

x: hyperparameter/configuration

Objective: optimize best observed value at time *T*

$$\max_{\text{policy}} \mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Decision: adaptively evaluate a set of points

$$x_1, x_2, \dots, x_T \in \mathcal{X}$$

T: time budget

⇒ Optimal policy unknown!

Continuous

Correlated

Correlated

Correlated

budget

Bayesian Optimization ⇒ Pandora's Box

[Weitzman'79]

t = 0

Objective: maximize net utility

t = 1

Objective: maximize net utility

t = 2

Objective: maximize net utility

Objective: maximize net utility

$$t = 3$$

Objective: maximize net utility

 $\max \mathbb{E}(\text{best observed value} - \text{total costs})$

$$t = 3$$

Objective: maximize net utility

$$\max_{\text{policy}} \mathbb{E}\left(\max_{t=1,2,\dots,T} f(x_t) - \sum_{t=1}^{T} c(x_t)\right)$$

Decision: adaptively evaluate a set of points

$$x_1, x_2, \dots, x_T \in \mathcal{X}$$

 \mathcal{X} : discrete

T: random stopping time

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

Greedy policy

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

Inspection rule: $\operatorname{argmax}_{x} \left(\operatorname{EI}_{f}(x; y_{\text{best}}) - c(x) \right)$

Stopping rule: $\text{EI}_f(x; y_{\text{best}}) \le c(x), \forall x \in \mathcal{X}$

expected improvement - cost

expected improvement \leq cost

y_{best}: current best observed value

$$EI_f(x; y) = \mathbb{E}[(f(x) - y)^+]$$

t = 0

 $y_{\text{best}} = 0$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$
 $EI_f(1; 0) - c(1)$
 $= 200 - 198 = 2$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01 \\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$
$$\text{EI}_f(x; 0) - c(x)$$
$$= 2 - 1 = 1$$

Inspection rule: $\operatorname{argmax}_{x} \left(\operatorname{El}_{f}(x; y_{\operatorname{best}}) - c(x) \right)$ **Stopping rule:** $\operatorname{El}_{f}(x; y_{\operatorname{best}}) \leq c(x), \forall x \in \mathcal{X}$ $\operatorname{El}_{f}(x; y) = \mathbb{E}[(f(x) - y)^{+}]$

t = 1

 $y_{\text{best}} = 200$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01 \\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$
$$\text{EI}_f(x; 200) - c(x)$$
$$= 0 - 1 = -1 < 0$$

Inspection rule: $\operatorname{argmax}_{x} \left(\operatorname{El}_{f}(x; y_{\operatorname{best}}) - c(x) \right)$ **Stopping rule:** $\operatorname{El}_{f}(x; y_{\operatorname{best}}) \leq c(x), \forall x \in \mathcal{X}$ $\operatorname{El}_{f}(x; y) = \mathbb{E}[(f(x) - y)^{+}]$

$$t = 1$$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

Inspection rule: $\operatorname{argmax}_{x} \left(\operatorname{El}_{f}(x; y_{\operatorname{best}}) - c(x) \right)$ **Stopping rule:** $\operatorname{El}_{f}(x; y_{\operatorname{best}}) \leq c(x), \forall x \in \mathcal{X}$

Expected utility: $\mathbb{E}[Greedy] = 200 - 198 = 2$

Greedy policy can fail [Singla'18]

 $t \approx 100$

 $y_{\text{best}} = 200$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01\\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$

Inspection rule: $x \in \{2, 3, ..., 1000\}$

Stopping rule: $y_{\text{best}} = 200$

Expected utility: $\mathbb{E}[Optimal] = 200 - 100 * 1 = 100$

Gittins policy

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01 \\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$

Inspection rule: argmax_x $\alpha^*(x)$ s.t. $\text{EI}_f(x; \alpha^*(x)) = c(x)$ **Stopping rule:** $\alpha^*(x) \leq y_{\text{best}}, \forall x \in \mathcal{X}$

solution to expected improvement = cost

Gittins index \leq current best

y_{best}: current best observed value

$$EI_f(x; y) = \mathbb{E}[(f(x) - y)^+]$$

$$t = 0$$

$$f(1) = 200 \text{ w. p. 1}$$

 $c(1) = 198$
 $\alpha^*(1) = 2$

Inspection rule: argmax_{$$x$$} $\alpha^*(x)$ s.t. $\text{EI}_f(x; \alpha^*(x)) = c(x)$ **Stopping rule:** $\alpha^*(x) \leq y_{\text{best}}, \forall x \in \mathcal{X}$ $\text{EI}_f(x; y) = \mathbb{E}[(f(x) - y)^+]$

t = 1 $y_{\text{best}} = 200 \text{ or } 0$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$
 $\alpha^*(1) = 2$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01 \\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$
$$\alpha^*(x) = 100$$

Inspection rule: $\alpha^*(x)$ s.t. $\text{EI}_f(x; \alpha^*(x)) = c(x)$ Stopping rule: $\alpha^*(x) \leq y_{\text{best}}, \forall x \in \mathcal{X}$ $\text{EI}_f(x; y) = \mathbb{E}[(f(x) - y)^+]$

 $t \approx 100$ $y_{\text{best}} = 200$

$$f(1) = 200 \text{ w. p. } 1$$

 $c(1) = 198$
 $\alpha^*(1) = 2$

$$f(x) = \begin{cases} 200 \text{ w. p. } 0.01 \\ 0 \text{ otherwise} \end{cases}, c(x) = 1, x \in \{2, 3, ..., 1000\}$$
$$\alpha^*(x) = 100$$

Inspection rule: $\alpha^*(x)$ s.t. $\text{EI}_f(x; \alpha^*(x)) = c(x)$ Stopping rule: $\alpha^*(x) \leq y_{\text{best}}, \forall x \in \mathcal{X}$ Expected utility: $\mathbb{E}[\text{Gittins}] = 200 - 100 * 1 = 100$

Optimal policy: Gittins index [Weitzman'79]

- How to translate?
- Is Pandora's Box Gittins index (PBGI) good?

- Develop PBGI policy for Bayesian optimization
- Is Pandora's Box Gittins index (PBGI) good?

- Develop PBGI policy for Bayesian optimization
- Show performance against baselines on synthetic & empirical experiments

How is our PBGI policy different from baselines?

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

 $\operatorname{EI}_{f|D}(x;y) = \mathbb{E}[((f|D)(x) - y)^{+}]$

D: observed data

y_{best}: current best observed value

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

 $\mathbb{E}I_{f|D}(x;y) = \mathbb{E}[((f|D)(x) - y)^+]$

D: observed data

y_{best}: current best observed value

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

 $\operatorname{EI}_{f|D}(x;y) = \mathbb{E}[((f|D)(x) - y)^{+}]$

D: observed data

y_{best}: current best observed value

Other heuristics:

simple

- Upper Confidence Bound
- Thompson Sampling (TS)
- Predictive Entropy Search

slow

- Knowledge Gradient
- Multi-step Lookahead EI

Expected improvement

$$\mathbb{E}I_{f|D}(x;y) = \mathbb{E}[((f|D)(x) - y)^+]$$

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

D: observed data

y_{best}: current best observed value

New One-step Heuristic: PBGI

Other heuristics:

- Upper Confidence Bound
- Thompson Sampling (TS)
- Knowledge Gradient
- Predictive Entropy Search
- Multi-step Lookahead EI

Pandora's box

Pandora's box Gittins index

 $\alpha^*(x)$: Gittins index function

PBGI policy: evaluate $\operatorname{argmax}_{x} \alpha^{*}(x)$

New One-step Heuristic: PBGI

Other heuristics:

- Upper Confidence Bound
- Thompson Sampling (TS)
- Knowledge Gradient
- Predictive Entropy Search
- Multi-step Lookahead EI

Pandora's box

λ: cost-per-sample (Lagrange multiplier)

Pandora's box Gittins index

$$\operatorname{EI}_{f|D}(x;y) = \mathbb{E}[((f|D)(x) - y)^{+}]$$

PBGI policy: evaluate $\operatorname{argmax}_{x} \alpha^{*}(x)$

D: observed data

 $\alpha^*(x)$: solution to $\mathrm{EI}_{f|D}(x;\alpha^*(x)) = \lambda$

- Develop PBGI policy for Bayesian optimization
- Is Pandora's Box Gittins index (PBGI) good?

- Develop PBGI policy for Bayesian optimization
- Show performance against baselines on synthetic & empirical experiments

Experiment Results: PBGI vs EI vs TS

• Propose easy-to-compute PBGI policy for Bayesian optimization

- Propose easy-to-compute PBGI policy for Bayesian optimization
- Show the effectiveness of PBGI on synthetic & empirical experiments particularly on medium-high dimensions and relatively-large domains!

- Propose easy-to-compute PBGI policy for Bayesian optimization
- Show the effectiveness of PBGI on synthetic & empirical experiments
- Extend to Bayesian optimization with heterogeneous evaluation costs

Heterogeneous-cost Experiment Results

- Show the effectiveness of PBGI on synthetic & empirical experiments
- Extend to Bayesian optimization with heterogeneous evaluation costs

- Propose easy-to-compute PBGI policy for Bayesian optimization
- Show the effectiveness of PBGI on synthetic & empirical experiments
- Extend to Bayesian optimization with heterogeneous evaluation costs
- Open door for complex BO (freeze-thaw, multi-fidelity, function network, etc.)

