11 Спряжений простір

Ввести топологію в лінійному просторі можна не лише за допомогою норми.

§11.1 Лінійні топологічні простори і неперевність функціоналів

Означення 11.1. Упорядкована четвірка $(L,+,\cdot,\tau)$ називається лінійним топологічним простором, якщо

- 1. $(L, +, \cdot)$ дійсний лінійний простір;
- 2. (L, τ) топологічний простір;
- 3. операція додавання і множення на числа в L є неперервними, тобто
 - а) якщо $z_0 = x_0 + y_0$, то для кожного околу U точки z_0 можна указати такі околи V і W точок x_0 і y_0 відповідно, що $\forall x \in V$, $\forall y \in W$: $x + y \in U$;
 - б) якщо $\alpha_0 x_0 = y_0$, то для кожного околу U точки y_0 існує окіл V точки x_0 і таке число $\varepsilon > 0$, що $\forall \alpha \in \mathbb{R} : |\alpha \alpha_0| < \varepsilon, \forall x \in V : \alpha x \in U$.

Приклад 11.1

Всі нормовані простори є лінійними топологічними просторами.

Зауваження 11.1 — Оскільки будь-який окіл будь-якої точки x в лінійному топологічному просторі можна отримати зсувом околу нуля U шляхом операції U+x, топологія в лінійному топологічному просторі повністю визначається локальною базою нуля.

Спочатку доведемо деякі допоміжні факти щодо лінійних функціоналів, заданих на лінійному топологічному просторі L.

Означення 11.2. Функціонал, визначений на лінійному топологічному просторі L, називається **неперервним**, якщо для будь-якого $x_0 \in L$ і будь-якого $\varepsilon > 0$ існує такий окіл U елемента x_0 , що

$$\forall x \in U : |f(x) - f(x_0)| < \varepsilon.$$

Лема 11.1

Якщо лінійний функціонал f є неперервним в якійсь одній точці x_0 лінійного топологічного простору L, то він є неперервним на усьому просторі L.

Доведення. Дійсно, нехай y — довільна точка простору L і $\varepsilon > 0$. Необхідно знайти такий окіл V точки y, щоб

$$\forall z \in V : |f(z) - f(y)| < \varepsilon.$$

Виберемо окіл U точки x_0 так, щоб

$$\forall x \in U : |f(x) - f(x_0)| < \varepsilon.$$

Побудуємо окіл точки y шляхом зсуву околу U на елемент $y-x_0$:

$$V = U + (y - x_0) = \{z \in L : z = u + y - x_0, u \in U\}.$$

Із того, що $z \in V$, випливає, що $z - y + x_0 \in U$, отже,

$$|f(z) - f(y)| = |f(z - y)| = |f(z - y + x_0 - x_0)| = |f(z - y + x_0) - f(x_0)| < \varepsilon.$$

Що і треба було довести.

Наслідок 11.1

Для того щоб перевірити неперервність лінійного функціонала в просторі, достатньо перевірити його неперервність в одній точці, наприклад, в точці 0.

Зауваження 11.2 — У скінчено-вимірному лінійному топологічному просторі будь-який лінійний функціонал є неперервним.

Теорема 11.1

Для того щоб лінійний функціонал f був неперервним на лінійному топологічному просторі L, необхідно і достатньо, щоб існував такий окіл нуля в L, на якому значення функціонала f є обмеженими в сукупності.

Доведення. Необхідність. З того що функціонал f є неперервним в точці 0, випливає що

$$\forall \varepsilon > 0 : \exists U(0) : \forall x \in U(0) : |f(x)| < \varepsilon.$$

Отже, його значення ϵ обмеженими в сукупності на U(0).

Достатність. Нехай U(0) — такий окіл нуля, що

$$\forall U(0) : |f(x)| < C.$$

Крім того, нехай $\varepsilon > 0$. Тоді в околі нуля

$$\frac{\varepsilon}{C}U(0) = \{x \in L : x = \frac{\varepsilon}{C}y, y \in U(0)\}.$$

виконується нерівність $|f(x)| < \varepsilon$.

Це означає, що функціонал f є неперервним в околі нуля, а значить в усьому просторі L.

Нехай E — нормований простір. Нагадаємо, що спряженим простором E^{\star} називається сукупність усіх лінійних неперервних функціоналів, заданих на просторі E із нормою

$$||f|| = \sup_{x \neq \vec{0}} \frac{|f(x)|}{||x||} = \sup_{||x|| \le 1} |f(x)|.$$

Теорема 11.2

Для того щоб лінійний функціонал f був неперервним на нормованому просторі E, необхідно і достатнью, щоб значення функціонала f були обмеженими в сукупності на одиничній кулі.

Доведення. Необхідність. Нормований простір E є лінійним топологічним простором. За теоремою 11.1 будь-яке значення неперервного лінійного функціонала f в деякому околі нуля є обмеженими в сукупності.

$$\forall C > 0 : \exists U(0) : \forall x \in U(0) : |f(x)| < C.$$

В нормованому просторі будь-який окіл нуля містить кулю.

$$\exists S(0,r) \subset U(0).$$

Отже, значення функціонала f є обмеженими в сукупності в деякій кулі. Оскільки f — лінійний функціонал, це еквівалентно тому, що значення функціонала f є обмеженими в сукупності в одиничній кулі, оскільки

$$\forall x \in S(0,r) : |f(x)| < C \implies \forall y = \frac{1}{r}x \in S(0,1) : |f(y)| < \frac{C}{r}.$$

Достатність. Оскільки значення функціонала f є обмеженими в сукупності в одиничній кулі, а одинична куля є околом точки 0, то за теоремою 11.1 він є неперервним в точці 0. Отже, лінійний функціонал f є неперервним в нормованому просторі E.

§11.2 Топологія у спряженому просторі і його повнота

На спряженому просторі можна ввести різні топології. Найважливішими з них є сильна і слабка топології.

Означення 11.3. Сильною топологією в просторі E^* називається топологія, визначена нормою в просторі E^* , тобто локальною базою нуля

$$\{f \in E^{\star} : ||f|| < \varepsilon\}.$$

де функціонали f задовольняють умову

$$|f(x)| < \varepsilon, \quad \forall x \in E : ||x|| \le 1.$$

а ε — довільне додатне число.

Теорема 11.3

Спряжений простір E^{\star} є повним.

Доведення. Нехай $\{f_n\}_{n=1}^{\infty}$ — фундаментальна послідовність лінійних неперервних функціоналів, тобто

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon.$$

Отже,

$$\forall x \in E : |f_n(x) - f_m(x)| \le ||f_n - f_m|| \cdot ||x|| < \varepsilon ||x||. \tag{11.1}$$

Покладемо $\forall x \in E$:

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Покажемо, що f — лінійний неперервний функціонал.

$$f(\alpha x + \beta y) = \lim_{n \to \infty} f_n(\alpha x + \beta y) = \lim_{n \to \infty} (\alpha f_n(x) + \beta f_n(y)) = \alpha f(x) + \beta f(y).$$

Крім того, з нерівності (11.1) випливає, що

$$\forall x \in E: \lim_{m \to \infty} |f_n(x) - f_m(x)| = |f(x) - f(n)| < \varepsilon ||x||.$$

Це означає, що функціонал $f-f_n$ є обмеженим. Оскільки він є лінійним і обмеженим, значить він є неперервним. Таким чином, функціонал $f=f_n+(f-f_n)$ також є неперервним. Крім того, $||f-f_n|| \le \varepsilon$, $\forall n \ge N$, тобто $f_n \to f$ при $n \to \infty$ за нормою простору E^* .

Зауваження 11.3 — Зверніть увагу на те, що простір E^* повний незалежно від того, чи є повним простір E.

Приклад 11.2

 $c_0^{\star} = \ell_1$.

Приклад 11.3

 $\ell_1^{\star} = m$.

Приклад 11.4

$$\ell_p^{\star} = \ell_q$$
, де $\frac{1}{p} + \frac{1}{q} = 1$, $p, q > 1$.

§11.3 Другий спряжений простір і природне відображення

Означення 11.4. Другим спряженим простором $E^{\star\star}$ називається сукупність усіх лінійних неперервних функціоналів, заданих на просторі E^{\star} .

Лема 11.2

Будь-який елемент $x_0 \in E$ визначає певний лінійний неперервний функціонал, заданий на E^{\star} .

Доведення. Введемо відображення

$$\pi: E \to E^{\star\star}$$

поклавши

$$\varphi_{x_0}(f) = f(x_0), \tag{11.2}$$

де x_0 — фіксований елемент із E, а f — довільний лінійний неперервний функціонал із E^\star . Оскільки рівність (11.2) ставить у відповідність кожному функціоналу f із E^\star дійсне число $\varphi_{x_0}(f)$, вона визначає функціонал на просторі E^\star .

Покажемо, що φ_{x_0} — лінійний неперервний функціонал, тобто він належить $E^{\star\star}$. Дійсно, функціонал φ_{x_0} є лінійним, оскільки

$$\varphi_{x_0}(\alpha f_1 + \beta f_2) = \alpha f_1(x_0) + \beta f_2(x_0) = \alpha \varphi_{x_0}(f_1) + \beta \varphi_{x_0}(f_2).$$

Крім того, нехай $\varepsilon > 0$ і A — обмежена множина в E, що містить x_0 . Розглянемо в E^\star окіл нуля $U(\varepsilon,A)$:

$$U(\varepsilon, A) = \{ f \in E^*, x_0 \in A : |f(x_0)| \le \varepsilon \}.$$

тобто

$$U(\varepsilon, A) = \{ f \in E^*, x_0 \in A : |\varphi_{x_0}(f)| \le \varepsilon \}.$$

З цього випливає, що функціонал φ_{x_0} є неперервним в точці 0, а значить і на всьому просторі E^* .

Означення 11.5. Відображення $\pi: E \to E^{**}$, побудоване в лемі 11.2, називається природнім відображенням простору E в другий спряжений простір E^{**} .

§11.4 Рефлексивні простори

Означення 11.6. Якщо природне відображення $\pi: E \to E^{\star\star}$ є бієкцією і $p(E) = E^{\star\star}$, то простір E називається **напіврефлексивним**.

Означення 11.7. Якщо простір E є напіврефлексивним і відображення $\pi: E \to E^{\star\star}$ є неперервним, то простір E називається **рефлексивним**.

Зауваження 11.4 — Якщо E — рефлексивний простір, то природне відображення $\pi: E \to E^{\star\star}$ є ізоморфізмом.

Теорема 11.4

Якщо E — нормований простір, то природне відображення $\pi: E \to E^{\star\star}$ є ізометрією.

Доведення. Нехай $x \in E$. Покажемо, що

$$||x||_E = ||\pi(x)||_{E^{\star\star}}.$$

Нехай f — довільний ненульовий елемент простору E^{\star} . Тоді

$$|f(x)| \le ||f|| \cdot ||x|| \implies ||x|| \ge \frac{|f(x)|}{||f||}.$$

Оскільки ліва частина нерівності не залежить від f, маємо

$$||x|| \ge \sup_{f \in E^*, f \ne 0} \frac{|f(x)|}{||f||} = ||\pi(x)||_{E^{**}}.$$

З іншого боку, внаслідок теореми Хана—Банаха, якщо x — ненульовий елемент в нормованому просторі E, то існує такий неперервний лінійний функціонал f, визначений на E, що

$$||f|| = 1, \quad f(x) = ||x||$$

(визначаємо функціонал на одновимірному підпросторі формулою $f(\alpha x) = \alpha ||x||$, а потім продовжуємо без збільшення норми на весь простір). Отже, для кожного $x \in E$ знайдеться такий ненульовий лінійний функціонал f, що

$$|f(x)| = ||f|| \cdot ||x||$$

тому

$$\|\pi(x)\|_{E^{\star\star}} = \sup_{f \in E^{\star}, f \neq 0} \frac{|f(x)|}{\|f\|} \ge \|x\|.$$

Отже, $||x||_E = ||\pi(x)||_{E^{\star\star}}$.

Зауваження 11.5 — Оскільки природне відображення нормованих просторів $\pi: E \to E^{\star\star}$ є ізометричним, поняття напіврефлексивних і рефлексивних просторів для нормованих просторів є еквівалентними.

Зауваження 11.6 — Оскільки простір, спряжений до нормованого, є повним (теорема 11.3), будь-який рефлексивний нормований простір є повним.

Зауваження 11.7 — Обернене твердження є невірним.

Приклад 11.5

Простір c_0 є повним, але нерефлексивним, тому що спряженим до нього є простір ℓ_1 , а спряженим до простору ℓ_1 є простір m.

Приклад 11.6

Простір неперервних функцій C[a,b] є повним, але нерефлексивним (більше того, немає жодного нормованого простору, для якого простір C[a,b] був би спряженим).

Приклад 11.7

Приклад рефлексивного простору, що не збігається із своїм спряженим:

$$\ell_p^{\star\star} = \ell_q^{\star} = \ell_p, \quad p, q > 1, p \neq q, \frac{1}{p} + \frac{1}{q} = 1.$$

Приклад 11.8

Приклад рефлексивного простору, що збігається із своїм спряженим:

$$\ell_2^{\star\star}=\ell_2^\star=\ell_2.$$

§11.5 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 112-123).
- [2] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 175–178, 182–192).