## Lecture Notes for **Machine Learning in Python**



Professor Eric Larson

Neural Network Optimization and Activation

## Class Logistics and Agenda

- Logistics
  - grading update
  - flipped model next time!
- Agenda:
  - More optimization techniques and programming examples
    - Momentum
    - Initialization
    - More activations: Tanh, ReLU, SiLU
    - Adaptive learning: AdaGrad, AdaM, etc.

## Class Overview, by topic



## **Demo**

08a. Practical\_NeuralNetsWithBias.ipynb

Quick Review: Momentum Cooling





# **Objective Function**

## Changing the Objective Function



#### • Self Test:

**True or False**: If we change the cost function,  $J(\mathbf{W})$ , we only need to update the final layer sensitivity calculation,  $\mathbf{V}^{(2)}$ , of the back propagation steps. The remainder of the algorithm is unchanged.

- A. True
- B. False

Mean squared error:



Mean squared error:



Our old friend, Binary Cross entropy

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \quad \text{speeds up}$$
initial training





Neural Networks and Deep Learning, Michael Nielson, 2015

Epoch

Negative of MLE: Binary Cross entropy

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \quad \text{speeds up}$$
initial training



Neural Networks and Deep Learning, Michael Nielson, 2015

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \quad \text{likely to speed up initial training}$$

$$\left[\frac{\partial J(\mathbf{W})}{\partial \mathbf{z}^{(L)}}\right]^{(i)} = -\frac{\partial}{\partial \mathbf{z}^{(L)}} \left[ \mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)}) \right] \text{ only } \mathbf{a} \text{ has dependence on } \mathbf{z}$$

$$= -\left[\mathbf{y}^{(i)} \frac{\partial}{\partial \mathbf{z}^{(L)}} \left(\ln([\mathbf{a}^{(L+1)}]^{(i)})\right) + (1 - \mathbf{y}^{(i)}) \frac{\partial}{\partial \mathbf{z}^{(L)}} \left(\ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right)\right]$$

$$= -\left[\mathbf{y}^{(i)} \frac{1}{[\mathbf{a}^{(L+1)}]^{(i)}} \left(\frac{\partial}{\partial \mathbf{z}^{(L)}} [\mathbf{a}^{(L+1)}]^{(i)}\right) + \frac{(1-\mathbf{y}^{(i)})}{1-[\mathbf{a}^{(L+1)}]^{(i)}} \left(-\frac{\partial}{\partial \mathbf{z}^{(L)}} [\mathbf{a}^{(L+1)}]^{(i)}\right)\right]$$

$$= -\left[\mathbf{y}^{(i)} \frac{1}{[\mathbf{a}^{(L+1)}]^{(i)}} \left( [\mathbf{a}^{(L+1)}]^{(i)} (1 - [\mathbf{a}^{(L+1)}]^{(i)}) \right) - \frac{(1 - \mathbf{y}^{(i)})}{1 - [\mathbf{a}^{(L+1)}]^{(i)}} \left( [\mathbf{a}^{(L+1)}]^{(i)} (1 - [\mathbf{a}^{(L+1)}]^{(i)}) \right) \right]$$

$$= -\left[\mathbf{y}^{(i)}\left(1 - \left[\mathbf{a}^{(L+1)}\right]^{(i)}\right) - (1 - \mathbf{y}^{(i)})\left(\left[\mathbf{a}^{(L+1)}\right]^{(i)}\right)\right]$$

$$= -\left[\mathbf{y}^{(i)} - \mathbf{y}^{(i)}[\mathbf{a}^{(L+1)}]^{(i)} - [\mathbf{a}^{(L+1)}]^{(i)} + [\mathbf{a}^{(L+1)}]^{(i)}\mathbf{y}^{(i)})\right] = [\mathbf{a}^{(L+1)}]^{(i)} - \mathbf{y}^{(i)}$$

$$V^{(2)} = -2(Y - A^{(3)}) \odot A^{(3)} \odot (1 - A^{(3)})$$
 old update

Back to our old friend: Cross entropy

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \quad \text{likely to speed up initial training}$$

$$\left[\frac{\partial J(\mathbf{W})}{\partial \mathbf{z}^{(L)}}\right]^{(i)} = [\mathbf{a}^{(L+1)}]^{(i)} - \mathbf{y}^{(i)}$$

$$\left[\frac{\partial J(\mathbf{W})}{\partial \mathbf{z}^{(2)}}\right]^{(i)} = [\mathbf{a}^{(3)}]^{(i)} - \mathbf{y}^{(i)}$$
two layer network
$$\mathbf{V}^{(2)} = \mathbf{A}^{(3)} - \mathbf{Y}$$
new update

# vectorized backpropagation
V2 = (A3-Y\_enc) # <- this is only line t
V1 = A2\*(1-A2)\*(W2.T @ V2)</pre>

bp-5

$$V^{(2)} = -2(Y - A^{(3)}) \odot A^{(3)} \odot (1 - A^{(3)})$$
 old update

# Practical Initialization of Architectures

## SQL programmers be like



### **Formative Self Test**

- for adding Gaussian random variables, variances add together  $\mathbf{a}^{(L+1)} = \varphi(\mathbf{W}^{(L)}\mathbf{a}^{(L)}) \text{ assume each element of } \mathbf{a}^{(L)} \text{ is Gaussian}$
- If you initialized the weights, **W**, with too large variance, you would expect the output of the neuron,  $\mathbf{a}^{(L+1)}$ , to be:
  - A. saturated to "1"
  - B. saturated to "0"
  - C. could either be saturated to "0" or "1"
  - D. would not be saturated



## **Formative Self Test**

- What is the derivative of a saturated sigmoid neuron?
  - A. zero
  - B. one
  - C.  $a \times (1 a)$
  - D. it depends



Weight initialization: try not to saturate your neurons right away!

$$\mathbf{z}^{(L)} = \mathbf{W}^{(L)} \mathbf{a}^{(L)} \qquad z_i^{(L)} = \sum_j^{n^{(L)}} w_{ij} a_j^{(L)}$$
 each row is summed before sigmoid

 $\mathbf{a}^{(L+1)} = \mathbf{\Phi}(\mathbf{z}^{(L)})$ 



- $\bullet$  want each  $-\epsilon < z_i^{(L)} < \epsilon$  for no saturation, where  $\epsilon \approx 4$
- want  $\mathrm{Std}[z_i^{(L)}] \approx 4$  which means  $\mathrm{Std}[a_i^{(L+1)}] \approx 1$ 
  - because  $\sigma(z_i^{(L)}) = a_i^{(L+1)}$  , so it will be well distributed from [0,1]
- since  $z_i^{(L)}=\sum w_{ij}a_j^{(L)}$ , we should squash initial weight magnitudes,  $w_{ij}$ , such that  ${\rm Std}[z_i^{(L)}]\approx 4$
- draw each  $w_{ij}\sim \mathcal{N}(0,\alpha)$  from a Gaussian with zero mean and specific standard deviation need to solve for a good  $\alpha$

**Goal**: Std[ $z_i^{(L)}$ ]  $\approx 4$  in order to achieve Std[ $a_i^{(L+1)}$ ] = 1

Variance of each layer 
$$Var[z_i^{(L)}] = E\left[(z_i^{(L)} - E[z_i^{(L)}])^2\right] = E[(z_i^{(L)})^2] - E[z_i^{(L)}]^2$$

try not to saturate 
$$z_i^{(L)} = \sum_{j}^{n^{(L)}} w_{ij} a_j^{(L)}$$

try not to saturate  $z_i^{(L)} = \sum_{i=1}^{n^{(L)}} w_{ij} a_j^{(L)}$  break down feed forward by multiply in  $i^{th}$  row

$$\text{Var}[z_i^{(L)}] = \sum_{j}^{n^{(L)}} \underbrace{E[w_{ij}]^2 \text{Var}[a_j^{(L)}] + \text{Var}[w_{ij}] E[a_j^{(E)}]^2}_{\text{O, if uncorrelated}} + \text{Var}[w_{ij}] \text{Var}[a_j^{(L)}] = \sum_{j}^{n^{(L)}} \text{Var}[w_{ij}] \text{Var}[a_j^{(L)}]$$

$$\operatorname{Var}[z_i^{(L)}] = n^{(L)} \operatorname{Var}[w_{ij}] \operatorname{Var}[a_j^{(L)}] = n^{(L)} \operatorname{Var}[w_{ij}]$$

$$Std[z_i^{(L)}] = \sqrt{n^{(L)}} \cdot Std[w_{ij}]$$

$$\begin{aligned} &\operatorname{Std}[z_i^{(L)}] = 4 = \sqrt{n^{(L)}} \cdot \operatorname{Std}[w_{ij}] \\ &\operatorname{Std}[w_{ij}] = 4 \cdot \sqrt{\frac{1}{n^{(L)}}} \end{aligned}$$

$$w_{ij}^{(L)} \sim \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{1}{n^{(L)}}}\right)$$
 forward from sigmoid

Understanding the difficulty of training deep feedforward neural networks

## **Glorot Weight Initialization**

$$\operatorname{Std}[z_i^{(L)}] = 4 = \sqrt{n^{(L)}} \cdot \operatorname{Std}[w_{ij}]$$

$$w_{ij}^{(L)} \sim \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{1}{n^{(L)}}}\right)$$
 forward from sigmoid

$$\mathbf{v}^{(L)} = \mathbf{a}^{(L)} (1 - \mathbf{a}^{(L)}) \mathbf{W}^{(L)} \cdot \mathbf{v}^{(L+1)}$$

want to keep variance of v stable magnitude → stable gradient

Similar calculation for back prop.

$$\text{Var}[v_i^{(L)}] = n^{(L+1)} \text{Var}[w_{ij}] \text{Var}[v_j^{(L+1)} \cdot a_j^{(L)} (1 - a_j^{(L)})]$$

$$Std[v_i^{(L)}] = \sqrt{n^{(L+1)}} \cdot Std[w_{ij}] \cdot 0.25 \quad \text{want = 1}$$

$$w_{ij}^{(L)} \sim \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{1}{n^{(L+1)}}}\right)$$
 backward from sensitivity



$$w_{ij}^{(L)} \sim \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}\right)$$
 compromise

$$w_{ij}^{(L)} \sim U \left[ \pm 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}} \right]$$
 if drawn from uniform dist.

## Glorot Weight Initialization

#### Understanding the difficulty of training deep feedforward neural networks

#### Xavier Glorot Yoshua Bengio DIRO, Université de Montréal, Montréal, Québec, Canada



Starting gradient histograms per layer standard initialization

Figure 7: Back-propagated gradients normalized histograms with hyperbolic tangent activation, with standard (top) vs normalized (bottom) initialization. Top: 0-peak decreases for higher layers.

## Demo

08a. Practical\_NeuralNetsWithBias.ipynb

Momentum

Cooling

Cross Entropy

Smarter Weight Initialization



## **Beyond Sigmoid: Other Activations**





## New Activation: Hyperbolic Tangent

Basically a sigmoid from -1 to 1



## **New Activation: ReLU**

A new nonlinearity: rectified linear units



it has the advantage of **large gradients** and **extremely simple** derivative

$$\frac{\partial}{\partial z}\phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$$

## **Other Activation Functions**

- Sigmoid Weighted Linear Unit
   SiLU (also called Swish)
- Mixing of sigmoid,  $\sigma$ , and ReLU

$$\phi(z) = \sigma(z) \cdot z$$



Figure 1: The Swish activation function.

$$\frac{\partial \phi(z)}{\partial z} = \frac{\partial}{\partial z} \sigma(z) \cdot z$$

$$= z \cdot \left[ \frac{\partial}{\partial z} \sigma(z) \right] + \sigma(z) \cdot \left[ \frac{\partial}{\partial z} z \right]$$

$$= z \cdot \sigma(z)(1 - \sigma(z)) + \sigma(z)$$

$$= z \cdot \sigma(z) + \sigma(z) \cdot (1 - z \cdot \sigma(z))$$

$$= \phi(z) + \sigma(z) \cdot (1 - \phi(z))$$

Elfwing, Stefan, Eiji Uchibe, and Kenji Doya. "Sigmoid-weighted linear units for neural network function approximation in reinforcement learning." Neural Networks (2018).

Ramachandran P, Zoph B, Le QV. Swish: a Self-Gated Activation Function. arXiv preprint arXiv:1710.05941. 2017 Oct 16

### Glorot and He Initialization

We have solved this assuming the activation output is in the range -4 to 4 (for a sigmoid) and assuming that we use Gaussian for sampling.

This range is different depending on the activation and assuming Gaussian or Uniform sampling.

|              | Uniform                                                           | Gaussian                                                          |
|--------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| Tanh         | $w_{ij}^{(L)} \sim \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$          | $w_{ij}^{(L)} \sim \sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$          |
| Sigmoid      | $w_{ij}^{(L)} \sim 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$         | $w_{ij}^{(L)} \sim 4\sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$         |
| ReLU<br>SiLU | $w_{ij}^{(L)} \sim \sqrt{2} \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$ | $w_{ij}^{(L)} \sim \sqrt{2} \sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$ |

Summarized by Glorot and He

## **Activations Summary**

|                       | Definition                                                                      | Derivative                                                                             | <b>Weight Init</b><br>(Uniform Bounds)                                |
|-----------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Sigmoid               | $\phi(z) = \frac{1}{1 + e^{-z}}$                                                | $\nabla \phi(z) = a(1 - a)$                                                            | $w_{ij}^{(L)} \sim \pm 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$         |
| Hyperbolic<br>Tangent | $\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$                                   | $\nabla \phi(z) = \frac{4}{(e^z + e^{-z})^2}$                                          | $w_{ij}^{(L)} \sim \pm \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$          |
| ReLU                  | $\phi(z) = \begin{cases} z, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$ | $\nabla \phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$ | $w_{ij}^{(L)} \sim \pm \sqrt{2} \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$ |
| SiLU                  | $\phi(z) = \frac{z}{1 + e^{-z}}$                                                | $\nabla \phi(z) = \phi(z) + \sigma(z) \cdot (1 - \phi(z))$                             |                                                                       |



## **More Adaptive Optimization**

Going beyond changing the learning rate

## Be adaptive based on Gradient Magnitude?

- Decelerate down regions that are steep
- Accelerate on plateaus



http://www.technologyuk.net/mathematics/differential-calculus/higher-derivatives.shtml 72

**steepness** (accumulate inverse magnitudes)

## Be adaptive based on Gradient Magnitude?

Inverse magnitude of gradient in multiple directions?

$$\mathbf{W}_{k+1} \leftarrow \mathbf{W}_k + \eta \frac{1}{\sqrt{\mathbf{G}_k + \epsilon}} \odot \nabla J(\mathbf{W}_k) \qquad \mathbf{G}_k = \nabla J(\mathbf{W}_k) \odot \nabla J(\mathbf{W}_k)$$
 same size as  $\mathbf{W}$  new matrix for normalizing 
$$\mathbf{G} = \operatorname{gradW1} * \operatorname{gradW1}$$



Now we just need to add momentum to  $\mathbf{G}_k^{(l)}$ 

Note: G exists for every layer, but we will abuse layer notation

## Common Adaptive Strategies $W_{k+1} = W_k - \eta \cdot \rho_k$

Adjust each element of gradient by the steepness

AdaM

**G** updates with decaying momentum of J and  $J^2$ 

NAdaM

same as Adam, but with nesterov's acceleration

None of these are "one-size-fits-all" because the space of neural network optimization varies by problem, AdaM is popular but not a panacea

## **Adaptive Momentum**

All operations are element wise:

$$\beta_1 = 0.9, \, \beta_2 = 0.999, \, \eta = 0.001, \, \epsilon = 10^{-8}$$

$$k = 0, \mathbf{M}_0 = \mathbf{0}, \mathbf{V}_0 = \mathbf{0}$$

Published as a conference paper at ICLR 2015

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

For each epoch:

Diederik P. Kingma\* University of Amsterdam, OpenAI

Jimmy Lei Ba" University of Toronto

$$\begin{array}{c|c} & \text{update iteration} & k \leftarrow k+1 \\ & \text{get gradient} & \nabla J(\mathbf{W}_k) \end{array} \quad \text{for large } k, \ \hat{\mathbf{M}} \approx \mathbf{M}, \ \hat{\mathbf{V}} \approx \mathbf{V} \\ & \text{accumulated gradient} & \mathbf{M}_k \leftarrow \beta_1 \cdot \mathbf{M}_{k-1} + (1-\beta_1) \cdot \nabla J(\mathbf{W}_k) \\ & \text{accumulated squared gradient} & \mathbf{V}_k \leftarrow \beta_2 \cdot \mathbf{V}_{k-1} + (1-\beta_2) \cdot \nabla J(\mathbf{W}_k) \odot \nabla J(\mathbf{W}_k) \\ \end{array}$$

boost moments magnitudes (notice k in exponent)

$$\hat{\mathbf{M}}_k \leftarrow \frac{\mathbf{M}_k}{(1 - [\beta_1]^k)} \qquad \hat{\mathbf{V}}_k \leftarrow \frac{\mathbf{V}_k}{(1 - [\beta_2]^k)}$$

$$\hat{\mathbf{V}}_k \leftarrow \frac{\mathbf{V}_k}{(1 - [\beta_2]^k)}$$

update gradient, normalized by second moment similar to AdaDelta

$$\mathbf{W}_k \leftarrow \mathbf{W}_{k-1} - \eta \cdot \frac{\hat{\mathbf{M}}_k}{\sqrt{\hat{\mathbf{V}}_k + \epsilon}}$$

gradient with momentum

squared magnitude normalizer

## Visualization of Optimization

https://ruder.io/optimizing-gradient-descent/

### Takeaways:

- 1. **SGD** slows tremendously on plateau
- Momentum and Nesterov drastically overshoot
- 3. Adaptive strategies are similar

SGD

Momentum

--- NAG

Adagrad

Adadelta

— Rmsprop

## Demo

08a. Practical\_NeuralNetsWithBias.ipynb

**Momentum** 

Cooling

Cross Entropy

**Smarter Weight Initialization** 

**ReLU Nonlinearities** 

Adaptive training with AdaGrad

