MA372 Submission Problems

Richard Douglas

March 28, 2014

 $1. \ \ (a)$ We can model this problem as a knapsack problem

Let

- x_1 be the number of frozen pizzas purchased
- \bullet x_2 be the number of bags of popcorn purchased
- x_3 be the number of bags of chips purchased

Then W = 15 and

- $w_1 = 6$
- $w_2 = 4$
- $w_3 = 3$

- $c_1 = 12$
- $c_2 = 7$
- $c_3 = 5$

Let stage i correspond to choosing the value for x_i .

The following tables showcase the dynamic programming algorithm being carried out:

s_3	$f_3^*(s_3)$	x_3^*
0	0	0
$egin{array}{c} 0 \ 1 \ 2 \end{array}$	0	0
2	0	0
3	5	1
4	5	1
5	5	1
6	10	2
7	10	2
8	10	2
9	15	3
10	15	3
11	15	3
12	20	4
13	20	4
14	20	4
15	25	5

s_2	$x_2 = 0$	$x_2 = 1$	$x_2 = 2$	$x_2 = 3$	$f_2^*(s_2)$	x_2^*
0	0	_	_	_	0	0
1	0	_	_	_	0	0
2	0	_	_	_	0	0
3	5	_	_	_	5	0
4	5	7 + 0	_	_	7	1
5	5	7 + 0	_	_	7	1
6	10	7 + 0	_	_	10	0
7	10	7 + 5	_	_	12	1
8	10	7 + 5	14 + 0	_	14	2
9	15	7 + 5	14 + 0	_	15	0
10	15	7 + 10	14 + 0	_	17	1
11	15	7 + 10	14 + 5	_	19	2
12	20	7 + 10	14 + 5	21 + 0	21	3
13	20	7 + 15	14 + 5	21 + 0	22	1
14	20	7 + 15	14 + 10	21 + 0	24	2
15	25	7 + 15	14 + 10	21 + 5	26	3

At stage 1 the state is 15 and we have the row of values

The optimum solution is $x_1 = 2, x_2 = 0, x_3 = 1$ with optimal objective value 29. Or in terms of the problem, buy 2 frozen pizzas and 1 bag of chips to have 29 servings

(b) The purchasing of the (rather expensive) coffee changes W to 11. We need only look at the new row of values formed for stage 1.

The problem now has two optimum solutions $x_1 = 0$, $x_2 = 2$, $x_3 = 1$ and $x_1 = 1$, $x_2 = 1$, $x_3 = 0$ which give us optimal objective value 19. However, in the second case there will be \$1 leftover. Since this is a real-world problem, you may prefer the option of buying 1 frozen pizza and 1 bag of popcorn so that you have 1 extra dollar that could go towards buying coffee.

2. Let x_i be the number of commercials run in area i ($i \in \{1, 2, 3, 4\}$) and let stage i correspond to choosing the value for x_i . The state corresponds to the number of commercials that are still able to be produced.

The following tables showcase the dynamic programming algorithm being carried out:

Stage 4:

s_4	$f_4^*(s_4)$	x_4^*
0	0	0
1	3	1
2	7	2
3	12	3
4	14	4
5	16	5

Stage 3:

s_3	$x_3 = 0$	$x_3 = 1$	$x_3 = 2$	$x_3 = 3$	$x_3 = 4$	$x_3 = 5$	$f_3^*(s_3)$	x_3^*
0	0	_	_	_	_	_	0	0
1	3	5 + 0	_	_	_	_	5	1
2	7	5 + 3	9 + 0	_	_	_	9	2
3	12	5 + 7	9 + 3	11 + 0	_	_	12	0, 1, 2
4	14	5 + 12	9 + 7	11 + 3	10 + 0	_	17	1
5	16	5 + 14	9 + 12	11 + 7	10 + 3	9 + 0	21	2

Stage 2:

s_2	$x_2 = 0$	$x_2 = 1$	$x_2 = 2$	$x_2 = 3$	$x_2 = 4$	$x_2 = 5$	$f_2^*(s_2)$	x_2^*
0	0	_	_	_	_	_	0	0
1	5	6 + 0	_	_	_	_	6	1
2	9	6 + 5	8 + 0	_	_	_	11	1
3	12	6 + 9	8 + 5	10 + 0	_	_	15	1
4	17	6 + 12	8 + 9	10 + 5	11 + 0	_	18	1
5	21	6 + 17	8 + 12	10 + 9	11 + 5	12 + 0	23	1

Stage 1:

Conclusion: The optimum strategy that maximizes the number of votes is to run 0 commercials in Area 1, 1 commercial in Area 2, 1 commercial in Area 3, and 3 commercials in Area 4. This strategy is estimated to win 23 (thousand) additional votes.

3. (a) The objective function we wish to maximize with integer values is

$$z = 10x_1 - x_1^2 + 14x_2 + 5x_3$$

In modeling this problem using dynamic programming, let stage i correspond to choosing the value for x_i . From the constraint

$$4x_1 + 8x_2 + 3x_3 \le 22$$

we see that the total allowed weight is 22 and x_1 , x_2 , x_3 have weights 4, 8, 3 respectively.

The following tables showcase the dynamic programming algorithm being carried out:

s_3	$f_3^*(s_3)$	x_3^*	s_2	$x_2 = 0$	$x_2 = 1$	$x_2 = 2$	$f_2^*(s_2)$	x_2^*
0	0	0	0	0	_	_	0	0
1	0	0	1	0	_	_	0	0
2	0	0	2	0	_	_	0	0
3	5	1	3	5	_	_	5	0
4	5	1	4	5	_	_	5	0
5	5	1	5	5	_	_	5	0
6	10	2	6	10	_	_	10	0
7	10	2	7	10	_	_	10	0
8	10	2	8	10	14 + 0	_	14	1
9	15	3	9	15	14 + 0	_	15	0
10	15	3	10	15	14 + 0	_	15	0
11	15	3	11	15	14 + 5	_	19	1
12	20	4	12	20	14 + 5	_	20	0
13	20	4	13	20	14 + 5	_	20	0
14	20	4	14	20	14 + 10	_	24	1
15	25	5	15	25	14 + 10	_	25	0
16	25	5	16	25	14 + 10	28 + 0	28	2
17	25	5	17	25	14 + 15	28 + 0	29	1
18	30	6	18	30	14 + 15	28 + 0	30	0
19	30	6	19	30	14 + 15	28 + 5	33	2
20	30	6	20	30	14 + 20	28 + 5	34	1
21	35	7	21	35	14 + 20	28 + 5	35	0
22	35	7	22	35	14 + 20	28 + 10	38	2

At stage 1 the state is 22 and we have the row of values

The optimum solution is $x_1 = 2, x_2 = 1, x_3 = 2$ with optimal objective value 40.

(b) The change to the constraint merely changes the initial state to 21. The row for stage 1 becomes

The problem now has two optimum solutions $x_1 = 2, x_2 = 0, x_3 = 4$ and $x_1 = 3, x_2 = 0, x_3 = 3$ which give us optimal objective value 36.

4