

Programación Declarativa

Ingeniería Informática Cuarto curso. Primer cuatrimestre

Escuela Politécnica Superior de Córdoba Universidad de Córdoba

Curso académico: 2017 - 2018

Práctica número 1.- Introducción al lenguaje Scheme

- Observaciones:
 - Sólo se han de presentar los ejercicios marcados con un asterisco (*), que deberán estar contenidos en un mismo fichero.
 - o Comentario de cabecera de las funciones:
 - Nombre de la función
 - Objetivo
 - Descripción de la solución (salvo que se deduzca de forma inmediata)
 - Significado de los parámetros de entrada.
 - Significado del resultado que devuelve.
 - Funciones auxiliares a las que llama.
- 1. Constantes y literales: teclea las siguiente constantes y literales (creados con la forma especial quote o con la comilla simple) y comprueba el resultado devuelto por el intérprete de Scheme:

; Los comentarios comienzan con el símbolo de "punto y coma"

```
#t
                      ;; constante lógica de verdadero
3
                      ;; número entero
                      ;; número real
20.5
"ejemplo de cadena" ;; se utilizan comillas dobles para delimitar las cadenas
                      ;; no debes olvidar las comillas de cierre
"dato
'dato
                      ;; se utiliza la comilla simple para crear un literal
                      ;; también se puede utilizar quote para crear un literal
(quote dato)
                      ;; la variable dato no es un literal
dato
                       ;; y producirá un error porque posee no todavía un valor
'#t
                      ;; las constantes lógicas también son literales
(quote #t)
                      ;; los números también son literales
(quote 3)
20.5
(quote 20.5)
(quote "ejemplo de cadena")
                                  ;; una cadena también es un literal
                 ;; expresión aritmética con notación prefija
(+23)
                 ;; la expresión aritmética se convierte en un literal y "no" se evalúa
 (+23)
```

```
(quote (+ 2 3)) ;; la expresión aritmética se convierte en un literal y "no" se evalúa '(a b c) ;; lista de literales (quote '(a b c)) ;; otra forma de crear una lista de literales '(Ana Luis Juan) ;; lista de literales (quote (Ana Luis Juan)) ;; otra forma de crear una lista de literale
```

2. Teclea las siguientes expresiones aritméticas y comprueba los resultados.

; **Siempre** se debe **separar** el operador de los argumentos (+ 2 3)

;; Si no se separa el operador del argumento, se producirá un **error** (+2 3)

(+ 0.1)	(+ 0.001)	(+ 0.00000001)	(+ 3)
(+ 3 <i>4</i>)	(+ 3 4 5)	(+ 3 4.)	(+ 3 4.0)
(+)			
(- 2)	(- 10 2)	(- 10 3 1)	(- 10 3. 1)
(* 2)	(* 2 3 4)	(* 2.0 3 4)	(*)
(/ 5)	(/ 5.)	(/ 102)	(/ 8 3)
(/ 8. 3)	(/ 8 3.0)	_	

```
;; Aproximación racional al número \pi (/ 355 113)
```

;; Aproximación al número
$$\pi$$
 con seis decimales exactos. (/ 355.0 113)

;; Se divide el primer argumento por el producto de los demás
$$(/60\ 3\ 5\ 4)$$

3. Escribe las siguientes expresiones aritméticas con notación prefija:

a.
$$2*3+4$$

b. $-2*3+4*(5-2)$
c. $\frac{(5+2)(5-2)}{5*4-3*6+1}$

4. Utiliza la forma especial **define** para declarar las siguientes variables y asignarles los valores que se indican:

Variable	Valor		
iva	18		
mayor-edad	18		
meses	12		
Х	2.5		
у	-12.3		
Z	$2 x + y^3$		
partido1	36.5		
partido2	30.75		
blanco	2.55		
nulo	0.34		
;; comprueba si el intérprete admite variables acentuadas			
abstención	100 - partido1 - partido2 - blanco - nulo		
celsius	19.5		
fahrenheit	32.0 + (9.0/5.0) celsius		

5. ¿Qué ocurre si se aplica **set!** sobre una variable no definida previamente? Por ejemplo:

(**set**! votantes 23732)

6. Define las siguientes variables y escribe en *Scheme* las expresiones asociadas a las **funciones matemáticas predefinidas** que se indican:

Variable	Valor	
a	1	
b	2	
С	-3	
pi	(acos -1.0)	

Función	Significado	Ejemplo	Scheme
(abs x)	Valor absoluto de x	abs (a² - b²)	
(sqrt x)	Raíz cuadrada de x	$\sqrt{b^2-4ac}$	
(square x)	Cuadrado de x	(3a-2b+c) ²	No existe
(exp x)	Exponencial de x	$oldsymbol{e}^{2a}$	
(log x)	Logaritmo neperiano de x	log(e ^a)	
(expt x y)	Potencia: x ^y	(2a-b) ^c	
(sin x)	Seno de x	sin(2 pi)	
(cos x)	Coseno de x	cos(pi/2)	
(tan x)	Tangente de x	tan(2 pi)	
(asin x)	Arco seno de x	asin(- 0.5)	
(acos x)	Arco coseno de x	acos(0.5)	
(atan x)	Arco tangente de x	atan(1.0)	
(atan x y)	Arco tangente de x/y	atan(a/b)	
(max x ₁ x ₂)	Máximo de x ₁ x ₂	max(a,b,c)	
(min x ₁ x ₂)	Mínimo de x ₁ x ₂	min(2a,3b,4c)	
(gcd x ₁ x ₂)	Máximo común divisor	gcd(12,15,-18)	

Función	Significado	Ejemplo	Scheme
(lcm x ₁ x ₂)	Mínimo común múltiplo	lcm(12,15,-18)	
(floor x)	Mayor entero no más grande que x	floor(-2.7)	
		floor(7.5)	
(ceiling x)	Menor entero no más pequeño que x	ceiling(-2.7)	
		ceiling(7.5)	
	Entero más próximo a x cuyo valor		
(truncate x)	absoluto no es más grande que el valor	truncate(-2.7)	
	absoluto de x		
		truncate(7.5)	
	Entero más próximo a x; redondeando a		
(round x)	un número par si x está justo entre dos enteros.	round(-2.5)	
		Round(7.5)	
(modulo x y)	Resto de la división entera	modulo (12, 5)	
	(Signo del divisor)	1110dato (12, 3)	
		modulo(12, -5)	
		modulo(-12, 5)	
(quotient x y)	Cociente de la división entera	quotient(12,5)	
(remainder x y)	Resto de la división entera	remainder(12, 5)	
	(Signo del dividendo)	remumaer (12, 3)	
		remainder(12,-5)	
		remainder(-12,5)	

- 7. (*) Área de figuras planas
 - a. Función que calcule el área de un rombo
 - b. Función que calcule el área de un trapecio
 - Observación:
 - o Comprueba si el intérprete distingue entre mayúsculas y minúsculas.
- 8. (*) Codifica las siguientes funciones de conversión entre escalas de temperatura:
 - a. Función que convierta los grados Celsius en grados Fahrenheit.
 - Ejemplos: $0^{\circ}C \rightarrow 32^{\circ}F$, $100^{\circ}C \rightarrow 212^{\circ}F$
 - b. Función que convierta los grados Fahrenheit en grados Celsius.
- 9. (*) Cuerpos geométricos.
 - a. Dado el radio de una esfera, codifica las funciones que permitan calcular
 - 1) El volumen de la esfera
 - 2) La superficie de la esfera
 - b. Dado el lado de la base de una pirámide cuadrangular de **Johnson**, codifica las funciones que permitan calcular:
 - 1) La altura de la pirámide.
 - 2) El volumen de la pirámide.
 - 3) El área total de la pirámide.
- 10. (*) Codifica las siguientes funciones sobre distancias en el plano euclidiano:
 - a. Distancia euclidiana o distancia L_2 entre dos puntos $P_1 = (x_1, y_1)$ y $P_2 = (x_2, y_2)$.

distancia_euclídea(
$$P_1$$
, P_2)= $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

b. Distancia de Manhattan, distancia de la ciudad de los bloques o distancia L_1 entre dos puntos $P_1 = (x_1, y_1)$ y $P_2 = (x_2, y_2)$.

distancia_Manhattan(P_1 , P_2)= $|x_2-x_1|+|y_2-y_1|$

c. Distancia de ajedrez, distancia de Chebyshev o distancia L_{∞} entre dos puntos $P_1 = (x_1, y_1)$ y $P_2 = (x_2, y_2)$.

$$distancia_ajedrez(P_1, P_2)=max(|x_2-x_1|, |y_2-y_1|)$$

- 11. (*) Áreas de figuras geométricas definidas por sus vértices.
 - a. Función denominada área-rombo
 - Los argumentos de la función serán las coordenadas de los vértices del rombo.
 - Se debe utilizar como función auxiliar la función *distancia-euclidiana* definida en el ejercicio 10.a
 - Utiliza los comentarios para indicar en qué **orden** se han de introducir las coordenadas de los puntos.
 - b. Función denominada área-triángulo
 - Ha de calcular el área de un triángulo utilizando la fórmula de Herón.
 - La función ha de recibir como argumentos a las coordenadas de los vértices de un triángulo.
 - Se debe utilizar como función auxiliar la función *distancia-euclidiana* definida en el ejercicio 10.a
- 12. (*) Codifica las siguientes funciones:
 - a. Función denominada distancia-punto-recta
 - Ha de calcular la distancia de un punto $P = (x_0, y_0)$ a una recta r = a x + b y + c = 0 mediante la siguiente fórmula

$$d(P,r) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

- b. Función denominada distancia-punto-recta-2
 - Ha de calcular la distancia de un punto $P = (x_0, y_0)$ a la recta que pasa por otros dos puntos $P_1 = (x_1, y_1)$ y $P_2 = (x_2, y_2)$.
 - Sugerencia:
 - \circ En primer lugar, determina la recta $r \equiv a \times b + b \vee c = 0$ que pasa por $P_1 \vee P_2$
 - o A continuación, utiliza la función del apartado "a".
- 13. (*) Utiliza la forma especial *let* para codificar
 - a. la función área-trapecio-let que permita calcular el área de un trapecio.
 - La función recibirá como argumentos las coordenadas de los vértices del trapecio.
 - Se han de utilizar funciones auxiliares que permitan calcular
 - o la distancia euclidiana entre dos puntos (ejercicio 10.a)
 - o y la distancia de un punto a una recta definida por dos puntos (ejercicio 12.b)
 - o el área del trapecio conocidas las bases y la altura (ejercicio 7.b).
 - Utiliza los comentarios para indicar en qué "orden relativo" se han de introducir las coordenadas de los puntos del trapecio.
 - b. La función **área-cuadrilátero-let** que permita calcular el área de un cuadrilátero **convexo** mediante triangularización.
 - La función recibirá como argumentos las coordenadas de los vértices del cuadrilátero.
 - Se han de utilizar las funciones auxiliares que permitan calcular
 - o la distancia euclidiana entre dos puntos (ejercicio 10.a)
 - o la fórmula de Herón para calcular el área del triángulo (ejercicio 11.b)