

클라우드 컴퓨팅과 AI서비스 (8주차)

융합학과 권오영 oykwon@koreatech.ac.kr

학습내용

- ❖ 기계학습
- ❖ 구글티쳐블머신
- ❖ scikit learn (sklearn) 기계학습패키지
 - MNIST 실습

기계학습

The Anatomy of Machine Learning

Computer Science

Classical Programming vs ML

Classical Programming vs ML

기계학습 분류

Supervised

Semisupervised

Unsupervised

Classification

Support vector machines
Decision trees
Random forests
Neural networks
k-nearest neighbor

Regression

Linear Generalized linear Gaussian process Optimization and control

Linear control Genetic algorithms

Deep model predictive control

Estimation of distribution algorithms

Evolutionary

strategies

Reinforcement learning

Q-learning Markov decision processes

Deep reinforcement learning Generative models

Generative adversarial networks Clustering

k-means
Spectral
clustering

Dimensionality reduction

POD/PCA
Autoencoder
Self-organizing
maps
Diffusion maps

기계학습방법

- 게임 → 환경(environment)
- ∘ 게이머 → 에이전트(agent)
- 게임화면 → 상태(state)
- 게이머의 조작 ➡ 행동(action)
- o 상과 벌 → 보상(reward)
- 게이머의 판단력 → 정책(policy)

[출처] https://opentutorials.org/course/4548/28949

Types of machine learning

- Supervised(or predictive) learning
 - learn a mapping from inputs x to outputs y
 - ullet training set (input-output pairs) $oldsymbol{\mathcal{D}} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
- Unsupervised(or descriptive) learning
 - lacktriangle only given inputs, $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N$
 - goal : find "interesting patterns" in the data.
- Reinforcement learning
 - reward or punishment signals.

지도학습

- ❖ 결과(레이블(lable))와 입력을 같이 주어서 학습하고, 주어진 입력을 분류(classification) 하거나 예측하는 회귀(regression)가 있음
- ❖ 전통적인 기계학습 알고리즘
 - 선형 회귀: Linear Regression
 - 로지스틱 회귀: Logistic Regression
 - K-최근접 이웃: K-Nearest Neighbors
 - 결정 트리: Decision Tree
 - 랜덤 포레스트: Random Forest
 - 서포트 벡터 머신: Support Vector Machine

선형회귀

- ❖ 가장 기본적인 알고리즘
- ❖ 데이터들과 오차가 가장 적은 회귀선 생성

$$y = a_1 x + a_0$$

주어진 x, y 값을 이용해서 a₀, a₁ 를 구함

$$S(a_0, a_1) = \sum_{i=0}^{n} [y_i - f(x_i)]^2 = \sum_{i=0}^{n} (y_i - a_0 - a_1 x_i)^2$$

$$\frac{\partial S}{\partial a_0} = \sum_{i=0}^n -2(y_i - a_0 - a_1 x_i) = 2 \left[a_0(n+1) + a_1 \sum_{i=0}^n x_i - \sum_{i=0}^n y_i \right] = 0$$

$$\frac{a_0(n+1)}{n+1} + a_1 \frac{\sum_{i=0}^n x_i}{n+1} - \frac{\sum_{i=0}^n y_i}{n+1} = 0$$

$$a_0 = \bar{y} - a_1 \bar{x}$$

선형회귀

$$\frac{\partial S}{\partial a_1} = \sum_{i=0}^n -2(y_i - a_0 - a_1 x_i) x_i = 2 \left[a_0 \sum_{i=0}^n x_i + a_1 \sum_{i=0}^n x_i^2 - \sum_{i=0}^n x_i y_i \right] = 0$$

$$a_0 \sum_{i=0}^n x_i + a_1 \sum_{i=0}^n x_i^2 - \sum_{i=0}^n x_i y_i = 0$$

$$(\bar{y} - a_1 \bar{x}) \sum_{i=0}^n x_i + a_1 \sum_{i=0}^n x_i^2 - \sum_{i=0}^n x_i y_i = 0$$

$$\sum_{i=0}^n y_i \bar{x} - a_1 \sum_{i=0}^n x_i \bar{x} + a_1 \sum_{i=0}^n x_i^2 - \sum_{i=0}^n x_i y_i = 0$$

$$a_1 \sum_{i=0}^n x_i (x_i - \bar{x}) = \sum_{i=0}^n y_i (x_i - \bar{x})$$

$$a_1 = \frac{\sum_{i=0}^n y_i (x_i - \bar{x})}{\sum_{i=0}^n x_i (x_i - \bar{x})}$$

다중선형회귀
$$y=eta_0+eta_1x_1+eta_2x_2+\ldots+eta_px_p+arepsilon$$

로지스틱 회귀

❖ 출력결과를 0과 1사이로 변환

$$y = \frac{1}{1 + e^{-x}}$$

❖ 이항분류

$$P(Y=1|X=\overrightarrow{x})=rac{1}{1+e^{-\overrightarrow{eta}^T\overrightarrow{x}}}$$

❖ 다항분류

$$P(Y=k|X=\overrightarrow{x}) = rac{e^{\overrightarrow{eta}_k^T\overrightarrow{x}}}{1+\sum_{i=1}^{K-1}e^{\overrightarrow{eta}_i^T\overrightarrow{x}}} \quad (k=0,1,\ldots,K-1)$$
 $P(Y=k|X=\overrightarrow{x}) = rac{1}{1+\sum_{i=1}^{K-1}e^{\overrightarrow{eta}_i^T\overrightarrow{x}}}$

K-Nearest Neighbore

- ❖ 새로운 데이터를 입력 받았을 때 어디에 속하는지 결정하는 알고리즘
- ❖ ?는 어디에 가까운가? (k 반경에 있는 데이터들의 거리 제곱근의합)

결정 트리(Decision Tree)

- ❖ 운동경기가 진행여부 판단
 - 비가오지만 바람이 불지 않으면 경기가 열림
 - 맑은날이지만 습도가 높으면 경기가 열리지 않음

❖ 랜덤 포레스트는 결정트리들의 모임

SVM

❖ n 차원을 n-1 차원으로 나눌 수 있다.

❖ 저차원에서 선형분리가 안되는 것은 고차원을 확장해서 선형분리를 수행하고 저차원 으로 환원

구글 티쳐블머신

Teachable Machine

- ❖ 코딩없이 응용제작 (https://teachablemachine.withgoogle.com/)
- ❖ Teachable Machine을 이용한 인공지능 서비스 만들기 예제? (https://www.youtube.com/watch?v=UPgxnGC8oBU)
 - ✓ 2초 딜레이후에 6초간 동작인식시키고
 - ✓ 훈련을 시킨후에 (시간이 걸림 중간에 말을 하던지 생략)
 - ✓ Export 해서 다른 프로그램에 사용
 - ✓ 쉽게 만들 수 있음 2~3분 정도
- ❖ Youtube The coding train
 https://www.youtube.com/user/shiffman
 에서 teachable machine 을 검색
- ❖ 이미지, 소리, 포즈 인식

Teachable machine 서비스 제작

- ❖ 각자 아이디어를 내어서 서비스 만들어 보기
- ❖ 예시) 마스크 착용 여부 판단

SCIKIT-LEARN

Scikit-learn (sklearn) 소개

- ❖ 기계학습 라이브러리
 - classification, regression, clustering, 차원축소 등 지원
- ❖ Numpy, Scipy, Matplotlib 를 활용하여 구성
- ❖ 설치 pip install –U scikit-learn
- ❖ 데이터 모델링에 중점을 두고 라이브러리 구성
- Supervised Learning Algorithms
 - Linear Regression, Support Vector Machine(SVM), Decision Tree 등
- Unsupervised Learning Algorithms
 - clustering, factor analysis, PCA(Principal Component Analysis)

Modelling

- ❖ 데이터 준비 (데이터 전처리)
- ❖ 데이터 로딩
- ❖ 데이터 분할 (train, test; train, test, validation)
- ❖ 모델 선정 및 학습 (estimator)
- ❖ 활용 (예측에 사용)

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Steps in using Estimator API

- ❖ estimator: 데이터로부터 학습하는 객체
- Step 1: Choose a class of model
 - It can be done by importing the appropriate Estimator class from Scikit-learn.
- **❖** Step 2: Choose model hyperparameters
 - It can be done by instantiating the class with desired values.
- **❖** Step 3: Arranging the data
 - to arrange the data into features matrix (X) and target vector(y).
- Step 4: Model Fitting
 - to fit the model to your data. (calling **fit()** method)
- Step 5: Applying the model
 - apply it to new data.
 - for supervised learning, use predict() method
 - for unsupervised learning, use predict() or transform()

Supervised Learning Example

❖ simple linear regression


```
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
rng = np.random.RandomState(35)
x = 10*rnq.rand(40)
y = 2*x-1+rng.randn(40)
plt.scatter(x,y)
plt.show()
from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)
X = x[:, np.newaxis]
print(model.fit(X, y))
print(model.coef_)
print(model.intercept_)
xfit = np.linspace(-1, 11)
Xfit = xfit[:, np.newaxis]
yfit = model.predict(Xfit)
plt.scatter(x, y)
plt.plot(xfit, yfit)
plt.show()
```


Unsupervised Learning Example

❖ 차원축소 방법


```
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
iris = sns.load_dataset('iris')
X_iris = iris.drop('species', axis = 1)
print(X_iris.shape)
y_iris = iris['species']
print(y_iris.shape)
from sklearn.decomposition import PCA
model = PCA(n_components=2)
print(model.fit(X_iris))
X_2D = model.transform(X_iris)
iris['PCA1'] = X_2D[:, 0]
iris['PCA2'] = X_2D[:, 1]
sns.Implot("PCA1", "PCA2", hue='species', data=iris, fit_reg=False)
plt.show()
```


모델링과정

Modelling

Dataset Loading

- Features: 입력 데이터
 - ✓ Feature matrix: It is the collection of features, in case there are more than one.
 - ✓ Feature Names: It is the list of all the names of the features.
- Response: 출력
 - ✓ Response Vector: It is used to represent response column. (We have just one response column.)
 - ✓ Target Names: It represent the possible values taken by a response vector

```
from sklearn.datasets import load_iris
                                                                         [[5.1 3.5 1.4 0.2]
iris = load_iris()
                                                                         [4.9 3. 1.4 0.2]
X = iris.data
                                                                         [4.7 3.2 1.3 0.2]
y = iris.target
                                                                         [4.6 3.1 1.5 0.2]
                                                                         [5. 3.6 1.4 0.2]
feature_names = iris.feature_names
                                                                         [5.4 3.9 1.7 0.4]
target_names = iris.target_names
                                                                         [4.6 3.4 1.4 0.3]
print("Feature names:", feature_names)
                                                                         [5. 3.4 1.5 0.2]
print("Target names:", target_names)
                                                                         [4.4 2.9 1.4 0.2]
                                                                         [4.9 3.1 1.5 0.1]]
print("\hstring nFirst 10 rows of X:\hstring n", X[:10])
   Feature names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
   Target names: ['setosa' 'versicolor' 'virginica']
```


Modelling

- ❖ 데이터 셋의 분할
 - training set (70%): testing set (30%)
 - 150 * 0.7 = 105

Modeling

Train the model

■ scikit-learn에서 제공하는 ML 알고리즘을 활용하여 학습 (예. KNN: K nearest neighbors)

```
Accuracy: 0.9833333333333333
from sklearn.datasets import load_iris
                                                           Predictions: ['versicolor', 'virginica']
iris = load iris()
X = iris.data
                                                           정확도 = (올바르게 예측한 샘플수)/(전체 샘플수)
y = iris.target
                                                                   = (TP+TN)/(TP+TN+FP+FN)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1)
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
classifier_knn = KNeighborsClassifier(n_neighbors=3)
classifier_knn.fit(X_train, y_train)
y_pred = classifier_knn.predict(X_test)
# Finding accuracy by comparing actual response values(y_test)with predicted response value(y_pred)
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
# Providing sample data and the model will make prediction out of that data
sample = [[5, 5, 3, 2], [2, 4, 3, 5]]
preds = classifier_knn.predict(sample)
pred_species = [iris.target_names[p] for p in preds]
print("Predictions:", pred_species)
```

Modelling (모델저장)

- Model Persistence
 - 학습된 모델의 보관
- ❖ 모델 dump

```
from sklearn.externals import joblib
joblib.dump(classifier_knn, 'iris_classifier_knn.joblib')
```

❖ 저장된 모델의 load

```
joblib.load('iris_classifier_knn.joblib')
```


- ❖ 입력데이터의 전처리
 - 획득한 raw data를 학습(인공지능모델)에 활용할 수 있도록 데이터 가공이 필요
- ❖ 이진화(Binarisation)
 - 0.5 기준으로 이진화

import numpy as np from sklearn import preprocessing

 Binarized data:

[[1. 0. 1.] [0. 1. 1.] [0. 0. 1.] [1. 1. 0.]]

data_binarized = preprocessing.Binarizer(threshold=0.5).transform(input_data) print("\text{\text{W}}n\text{Binarized data:\text{\text{\text{W}}n"}, data_binarized)

Mean removal import numpy as np from sklearn import preprocessing input_data = np.array([[2.1, -1.9, 5.5], [-1.5, 2.4, 3.5][0.5, -7.9, 5.6].[5.9, 2.3, -5.8]#displaying the mean and the standard deviation of the input data print("Mean =", input_data.mean(axis=0)) # 세로축 print("Stddeviation = ", input_data.std(axis=0)) #Removing the mean and the standard deviation of the input data data_scaled = preprocessing.scale(input_data) print(data scaled) print("Mean_removed =", data_scaled.mean(axis=0)) print("Stddeviation_removed =", data_scaled.std(axis=0))

```
Mean = [ 1.75   -1.275   2.2 ]
Stddeviation = [2.71431391   4.20022321   4.69414529]
[[ 0.12894603   -0.14880162   0.70300338]
   [-1.19735598   0.8749535   0.27694073]
   [-0.46052153   -1.57729713   0.72430651]
   [ 1.52893149   0.85114524   -1.70425062]]
Mean_removed = [1.11022302e-16   0.00000000e+00   0.00000000e+00]
Stddeviation_removed = [1. 1. 1.]
```


❖ Scaling (0 ~ 1 사이 값으로 정리)

```
Min max scaled data:
```


❖ Normalizaiton (정규화)

 L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p\right)^2}$$

data_normalized_I1 = preprocessing.normalize(input_data, norm='I1')
print("₩nL1 normalized data:₩n", data_normalized_I1) # 가로축을 기준으로 값을 정렬
data_normalized_I2 = preprocessing.normalize(input_data, norm='I2')
print("₩nL1 normalized data:₩n", data_normalized_I2) # 예) I1 = 2.1/(2.1+1.9+5.5)
I2 = 2.1/sqrt(2.1*2.1 + 1.9*1.9 + 5.5*5.5)

```
L1 normalized data:
[[ 0.22105263 -0.2 0.57894737]
[-0.2027027 0.32432432 0.47297297]
[ 0.03571429 -0.56428571 0.4 ]
[ 0.42142857 0.16428571 -0.41428571]]
```

L2 normalized data:
[[0.33946114 -0.30713151 0.88906489]
[-0.33325106 0.53320169 0.7775858]
[0.05156558 -0.81473612 0.57753446]
[0.68706914 0.26784051 -0.6754239]]

MNIST (숫자인식)

❖ The MNIST dataset is a well-known dataset consisting of 28x28 grayscale images.
For each image, we know the corresponding digits (from 0 to 9).

It is available here: http://yann.lecun.com/exdb/mnist/index.html

```
import mnist
                 # need to install
import matplotlib.pyplot as plt
# Load dataset
train_images = mnist.train_images()
train labels = mnist.train labels()
test images = mnist.test images()
test labels = mnist.test labels()
print(train_images.shape)
print(test_images.shape)
# Pick the fifth image from the dataset (it's a 9)
image, label = train images[4], train labels[4]
print(label)
plt.imshow(image)
plt.show()
```


❖ KNN

```
import mnist
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score
# Load dataset
train images = mnist.train images()
train labels = mnist.train labels()
test_images = mnist.test_images()
test labels = mnist.test labels()
# preprocessing
train images = train images.reshape(-1, 28*28)
test_images = test_images.reshape(-1, 28*28)
clf = KNeighborsClassifier()
#clf.fit(train images, train labels)
clf.fit(train images[:10000], train labels[:10000])
# Test on the next 100 images:
test x = test images[:100]
expected = test labels[:100].tolist()
print("Compute predictions")
predicted = clf.predict(test x)
print("Accuracy: ", accuracy_score(expected, predicted))
```

Random Forest

```
import mnist
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score
# Load dataset
train images = mnist.train images()
train labels = mnist.train labels()
test images = mnist.test images()
test labels = mnist.test labels()
# preprocessing
train images = train_images.reshape(-1, 28*28)
test images = test images.reshape(-1, 28*28)
clf = RandomForestClassifier(n estimators=100)
clf.fit(train images[:10000], train labels[:10000])
# Test on the next 1000 images:
test x = train images[10000:11000]
expected = train_labels[10000:11000].tolist()
print("Compute predictions")
predicted = clf.predict(test x)
print("Accuracy: ", accuracy_score(expected, predicted))
```



```
import mnist
Linear
                       from sklearn.svm import LinearSVC
                       from sklearn.metrics import accuracy score
   Support
                       # Load dataset
   Vector
                       train_images = mnist.train_images()
                       train_labels = mnist.train_labels()
   Classification
                       test images = mnist.test images()
                       test labels = mnist.test labels()
                       # preprocessing
                       train images = train images.reshape(-1, 28*28)
                       test images = test images.reshape(-1, 28*28)
                       clf = LinearSVC()
                       clf.fit(train images[:10000], train labels[:10000])
                       # Test on the next 1000 images:
                       test x = train images[10000:11000]
                       expected = train_labels[10000:11000].tolist()
                       print("Compute predictions")
                       predicted = clf.predict(test x)
                       print("Accuracy: ", accuracy_score(expected, predicted))
```


베이즈정리

베이즈정리

- ❖ 확률을 지식 또는 믿음의 정도를 나타내는 양이라는 관점에서 접근
- ❖ 주어진 데이터를 바탕으로 확률을 변경할 수 있다.
- $oldsymbol{+}$ 베이즈 정리 $P(A|B) = rac{P(B|A)P(A)}{P(B)}$
 - P(A) 사전확률(prior)로써 사건 B가 발생하기 전에 사건 A의 확률
 - P(A|B) 사후확률(posterior): 사건 B가 발생하여 갱신된 사건 A의 확률
 - P(B|A) 가능도(likelihood; 우도), 사건 A가 발생한 경우 사건 B의 확률
 - P(B) 증거(evidence)

$$oldsymbol{\bullet}$$
 확장 $P(A_1|B) = rac{P(B|A_1)P(A_1)}{P(B)}$ $= rac{P(B|A_1)P(A_1)}{\sum_i P(A_i,B)}$ $A_i \cap A_j = \emptyset$ $= rac{P(B|A_1)P(A_1)}{\sum_i P(B|A_i)P(A_i)}$ $A_1 \cup A_2 \cup \cdots = \Omega$

베이즈 정리

- ❖ 검사 시약 문제: 특정 질병을 검사하는 시약으로 특정 질병에 걸리 환자를 대상으로 시약 검사를 하면 99%의 확률로 양성반응을 보인다.
- ❖ 양성반응을 보였지만 실제 병에 걸렸을 확률은?
 - 병에 걸리는 경우 : 사건 D
 - ullet 양성 반응을 보이는 경우 : 사건 S
 - ullet 병에 걸린 사람이 양성 반응을 보이는 경우 : 조건부 사건 S|D
 - ullet 양성 반응을 보이는 사람이 병에 걸려 있을 경우 : 조건부 사건 D|S
 - 문제
 - P(S|D) = 0.99가 주어졌을 때, P(D|S)를 구하라.

$$P(D|S) = rac{P(S|D)P(D)}{P(S)}$$

베이즈정리

- ❖ 베이즈 정리를 이용하려면 추가 정보가 필요하다.
 - 특정질병은 희귀병으로 전체인구의 0.2%가만 걸렸다. P(D) = 0.002
 - 시약검사를 했을때 잘못된 양성반응이 나오는 확률이 5%이다. P(S|(1-D)) = 0.05

$$P(D|S) = \frac{P(S|D)P(D)}{P(S)}$$

$$= \frac{P(S|D)P(D)}{P(S,D) + P(S,D^C)}$$

$$= \frac{P(S|D)P(D)}{P(S|D)P(D)}$$

$$= \frac{P(S|D)P(D)}{P(S|D)P(D)}$$

$$= \frac{P(S|D)P(D)}{P(S|D)P(D) + P(S|D^C)(1 - P(D))}$$

$$= \frac{0.99 \cdot 0.002}{0.99 \cdot 0.002 + 0.05 \cdot (1 - 0.002)}$$

$$= 0.038$$

베이즈정리확장

$$P(A|B,C) = rac{P(B|A,C)P(A|C)}{P(B|C)}$$

$$P(A|B,C,D) = \frac{P(D|A,B,C)P(A|B,C)}{P(D|B,C)}$$

$$P(A,B|C,D) = rac{P(D|A,B,C)P(A,B|C)}{P(D|C)}$$

베이즈분류모형

- � 주어진 데이터를 가지고 가능도를 추정 $P(x \mid y = k) = P(x_1, \ldots, x_D \mid y = k)$
 - 입력데이터의 차원이 높아지면 가능도 추정이 어려워짐
- ❖ 모든 차원의 개별 독립변수가 서로 조건부 독립이라면 (navie assumption)

$$P(x_1,\ldots,x_D\mid y=k)=\prod_{d=1}^D P(x_d\mid y=k)$$

$$egin{aligned} P(y=k\mid x) &= rac{P(x_1,\ldots,x_D\mid y=k)P(y=k)}{P(x)} \ &= rac{\left(\prod_{d=1}^D P(x_d\mid y=k)
ight)P(y=k)}{P(x)} \end{aligned}$$

lacktriangle가능도를 정규분포로 가정 $P(x_d \mid y=k) = rac{1}{\sqrt{2\pi\sigma_{d,k}^2}} \exp\left(-rac{(x_d-\mu_{d,k})^2}{2\sigma_{d,k}^2}
ight)$

나이브베이즈 모형

❖ 정규분포 나이브베이즈 모형

■ 주어진 데이터가 정규분포라고 생각하고, 데이터에 기반한 평균, 분산을 추정

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
iris = load_iris()
X1 = iris.data
y1 = iris.target
```

from sklearn.naive_bayes import GaussianNB model1 = GaussianNB().fit(X1, y1) print(model1.class_prior_) print(model1.theta_) print(model1.sigma_) y1_pred = model1.predict(X1)

from sklearn.metrics import confusion_matrix print(confusion_matrix(y1, y1_pred)) from sklearn.metrics import classification_report print(classification_report(y1, y1_pred))

학습정리

- ❖ 기계학습
- ❖ 구글티쳐블머신
 - no coding
- scikit learn (sklearn)
 - 기계학습패키지
 - MNIST 활용

