

A Federated Learning Framework for Healthcare IoT devices

Binhang Yuan, Song Ge, and Wenhui Xing

[Motivation]

- The Internet of Things (IoT) revolution has shown potential to give rise to many medical applications.
- IoT has become one of the most important data source for many medical applications.
- IoT supports systems capable of continuously clinical-level monitoring of subjects' conditions and acquiring a variety of bio-signals.
- However, data owners are increasingly privacy sensitive.

[Challenges]

- Traditionally, data collected by IoT devices are uploaded to a data center and further leveraged to train machine learning models.
- This violates privacy requirement regarding individually identifiable health information.
- Federated learning attempts to resolve this data dilemma.
- However, vanilla federated learning is not sufficient to meet the requirement of healthcare IoT devices with:
 - Limited energy storage;
 - Low computational capacity;
 - Restricted network bandwidth.

[Decomposed Federated Learning]

• Multiple Layer Neural Network: A deep neural network is designed to approximate a target function $\mathbf{y} = f^*(\mathbf{x})$, which maps an input feature \mathbf{x} to output prediction \mathbf{y} . Formally, the function f^* is composed by a chain of N different functions as:

$$f^*(\mathbf{x}) = f^N\left(f^{N-1}\dots\left(f^2\left(f^1\left(\mathbf{x}\right)\right)\right)\right).$$

• Vanilla Federated Learning: A classic federated learning systems includes M data owners who need to train models $\{f_1, f_2, \ldots, f_M\}$ on their datasets $\{D_1, D_2, \ldots, D_M\}$, the aim is to minimize f(x) w.r.t., parameter w:

$$\min_{x} f(w) = \sum_{j=1}^{M} f_j \left(x \mid D_j \right).$$

• **Decompose the Neural Network:** the approximated function f^* is decomposed so that each IoT device (indexed by j) will include a local version of the first shallow component

$$\mathbf{a}^1 = f_j^1(\mathbf{x})$$
, while the rest part $\mathbf{y} = f^N\left(\dots\left(f^2\left(\mathbf{a}^1\right)\right)\right)$ is

allocated on the centralized server:

$$\min_{w} f(x) = \sum_{j=1}^{M} f^{N} \left(\dots \left(f^{2} \left(w^{2,\dots,N} \mid f_{j}^{1} \left(w_{j}^{1} \mid D_{j} \right) \right) \right) \right)$$

• Sparsify Activations and Gradients: To further reduce the network traffic, we extend the idea of sparsification of gradients. we sparsify \mathbf{a}^1 , $d\mathbf{a}^1$ by only communicating the top K ($\leq 10\%$) elements at each iteration.

[Preliminary Evaluation]

- Benchmark problem:
 ResNet34[1] for PhysioNet 2017.
- Convergence of ResNet in PhysioNet 2017:

Network traffic comparison for each iteration:

	FedAvg [2]	SplitNN [3]	Proposed
16 Device	1.36GB	32MB	3.2MB
32 Device	2.72GB	64MB	6.4MB
64 Device	5.45GB	128MB	12.8MB

[References]

- 1. Bourn, C., Turakhia, M. P., and Ng, A. Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature medicine, 25(1):65, 2019.
- 2. Konecny, J., McMahan, H. B., Ramage, D., and Richtarik, P.Federated optimization: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.
- 3. Vepakomma, P., Gupta, O., Swedish, T., and Raskar, R. Split learning for health: Distributed deep learning without sharing raw patient data. arXiv preprintarXiv:1812.00564, 2018.