Matlab Exercise I: Simulating Brownian Motion

Ruben Biesheuvel & Mars Geuze

February 12, 2015

1

$$\beta_1 = -\frac{2m + \gamma \Delta t}{m + \gamma \Delta t} \tag{1}$$

$$\beta_2 = \frac{m}{m + \gamma \Delta t} \tag{2}$$

$$\beta_2 = \frac{m}{m + \gamma \Delta t}$$

$$\beta_3 = \frac{\sqrt{sk_B T \gamma}}{\sqrt{\Delta t} (m + \gamma \Delta t)}$$
(2)

2

3

Table 1: $h = 10^3$

Parameter \setminus L	30	300	3000
$\hat{\kappa}$	8.3	8.4	8.1
$\hat{\sigma}$	1.8×10^{-9}	8.1×10^{-9}	2.4×10^{-8}

Table 2: $h = 10^4$

Parameter \setminus L	30	300	3000
$\hat{\kappa}$	3.8×10^{1}	4.2×10^{1}	4.3×10^{1}
$\hat{\sigma}$	2.1×10^{-9}	6.7×10^{-9}	2.1×10^{-8}

Table 3: $h = 10^5$

Parameter \setminus L	30	300	3000
$\hat{\kappa}$	1.6×10^{2}	1.5×10^{2}	1.8×10^{2}
$\hat{\sigma}$	2.0×10^{-9}	6.8×10^{-9}	2.1×10^{-8}