Organizacja i architektura komputerów ¹ Wykład 5

Piotr Patronik

9 kwietnia 2015

¹(Prawie) dokładna kopia slajdów dr hab inż. J. Biernata

Dodawanie i odejmowanie (1)

$$x_{i} \pm y_{i} \pm c_{i} = \pm 2c_{i+1} + s_{i}$$
 kod naturalny NB $X = \sum_{i=0}^{m-1} x_{i} 2^{i}, \ Y = \sum_{i=0}^{m-1} y_{i} 2^{i} \Rightarrow S = \sum_{i=0}^{m-1} s_{i} 2^{i} \pm c_{m} 2^{m}$ kod uzupełnieniowy U2 $X = -x_{m-1} 2^{m-1} + \sum_{i=0}^{m-2} x_{i} 2^{i} \ Y = -y_{m-1} 2^{m-1} + \sum_{i=0}^{m-2} y_{i} 2^{i}$ \Downarrow $S = -s_{m-1} 2^{m-1} + \sum_{i=0}^{m-2} s_{i} 2^{i} \mp (c_{m} - c_{m-1}) 2^{m}$ odejmowanie – dodanie uzupełnienia / dopełnienia z korekcją $X - Y = X + (-Y) = X + Y + 1$

Zmiana znaku liczby w kodzie U2

$$\begin{array}{l} -X = 0 - X = -1 + 1 - X \\ \downarrow \\ -X = (-1 - X) + 1 = \left[-2^{m-1} + (2^{m-2} + \ldots + 2^1 + 2^0) - X \right] + 1 \\ \downarrow \\ -X = \left[\left(-2^{m-1} + \sum_{i=0}^{m-2} 2^i \right) - \left(-x_{m-1} 2^{m-1} + \sum_{i=0}^{m-2} x_i 2^i \right) \right] + 1 \\ \downarrow \\ -X = \left[-(1 - x_{m-1}) 2^{m-1} + \sum_{i=0}^{m-2} (1 - x_i) 2^i \right] + 1 = \bar{X} + 1 \\ \text{algorytmy mnemotechniczne:} \end{array}$$

- zaneguj wszystkie bity oryginału i do uzyskanego kodu dodaj pozycyjnie "1"
- zaneguj wszystkie bity oryginału, oprócz prawostronnego ciągu zer i poprzedzającej go "1" (propagacja dodanej "1" kończy się na pozycji najniższej "1" oryginału)

Dodawanie i odejmowanie liczb naturalnych jako rozszerzeń U2

```
|\{x_{m-1},\ldots,x_1,x_0\}_{NB}|=|\{0,x_{m-1},\ldots,x_1,x_0\}_{U_2}|
(s_m = c_m), ponadto w dodawaniu (c_{m+1} = 0), w odejmowaniu
(c_{m+1}=c_m)
S = -(0 \pm 0)2^m + \sum_{i=0}^{m-1} (x_i \pm y_i) 2^i = \sum_{i=0}^{m-1} s_i 2^i \pm c_m 2^m
Odeimowanie liczb naturalnych przez dodanie uzupełnienia
-|\{x_{m-1},\ldots,x_1,x_0\}_{NR}|=
|\{1,(1-x_{m-1}),\ldots,(1-x_1),(1-x_0)\}|_{12}|+1
x_i + (1 - y_i) + c_i = 2c_{i+1} + s_i
S = -(0+1)2^m + \sum_{i=0}^{m-1} (x_i + (1-y_i)) 2^i + 1 =
\sum_{i=0}^{m-1} s_i 2^i - (1-c_m)2^m
```

Uniwersalny sumator kaskadowy (RCA)

odejmowanie – dodanie uzupełnienia

w systemie naturalnym – rozszerzenie wirtualne

wniosek: można skonstruować sumator uniwersalny

D=0 – dodawanie, D=1 – odejmowanie wskaźnik poprawności (sygnalizacja przekroczenia zakresu):

- ▶ C dla kodu naturalnego
- V dla kodu uzupełnieniowego

Rozszerzenie zakresu dodawania/odejmowania

powiązanie kolejnych pozycji – bit przeniesienia

Szybkość dodawania

- czas dodawania zależy od szybkości propagacji przeniesień rozwiązania
 - szybki układ wytwarzania przeniesień CLA, PPA
 - tworzenie alternatywnych sum dla grup bitów COSA, CSLA

Propagacja i generowanie przeniesień – intuicje (1)

 $c_{out} = 1$ jeśli

- $lacktriangleright c_{\it in}=1$ jest przesyłane przez blok AB do wyjścia $c_{\it out}$
- wewnątrz bloku AB jest tworzone $c_{out} = 1$, zaś c_{in} jest dowolne

 $c_{out} = 1$ jeśli

- $ightharpoonup c_{in}=1$ jest przesyłane przez blok B do c_m i przez blok A do c_{out}
- wewnątrz bloku A jest wytwarzane $c_{out} = 1$, zaś c_m jest dowolne,
- wewnątrz bloku B jest wytwarzane $c_m = 1$, następnie przez blok A jest przekazywane do c_{out}

Propagacja i generowanie przeniesień – intuicje (2)

$$c_{out} = G_A + P_A G_B + P_B P_A c_{in/B} = G_{BA} + P_{BA} c_{in/B}$$

$$c_{out} = G_{BA} + P_{BA} G_{DC} + P_{BA} P_{DC} c_{in/D} = G_{DCBA} + P_{DCBA} c_{in/D}$$

Funkcje wytwarzania przeniesień i sum

Dla bloku sumatora pomiędzy pozycjami i oraz k ($k \le s \le i$): $c_{k+1} = G_{i,k} + P_{i,k}c_i$ przy tym $G_{i,k} = G_{s+1,k} + P_{s+1,k} G_{i,s}$ $P_{i,k} = P_{i,s} P_{s+1,k}$ Ale $G_{k,k} = g_k = x_k y_k$ i $P_{k,k} = p_k = x_k + y_k$ lub $P_{k,k} = h_k = x_k \oplus y_k$, wiec $G_{i,k} = g_k + p_k g_{k-1} + \ldots + \prod_{i=j+1}^k p_i g_i, P_{i,k} = \prod_{i=1}^k p_i$ Jeśli $c_0 = 0$, to wartość sumy s_i zależy tylko od funkcji $G_{0,i-1}$ oraz h; $s_i = h_i \oplus c_i = h_i \oplus G_0$

- lacktriangle schemat wyznaczania funkcji $G_{0,i}$ i $P_{0,i}$ można optymalizować
- wszystkie funkcje G_{0,i} i P_{0,i} można obliczyć w czasie O([log₂ n])

Sumatory prefiksowe (PPA)

sumator prefiksowy – parallel prefix adder, PPA $s_i = h_i \oplus G_{0,j-1}$

Blok GP – wytwarzanie wartości przeniesień $c_i = \mathcal{G}_{0,i-1}$

Szybkie dodawanie wieloargumentowe

```
przemienność dodawania
w systemie pozycyjnym mamy
przyśpieszenie dodawania
równoległe działania na poszczególnych pozycjach:
zamiana k argumentów o tej samej wadze (na danej pozycji)
na m argumentów o różnych wagach (zapis pozycyjny)
\beta^{i}\left(x_{i}^{(1)}+x_{i}^{(2)}+\ldots+x_{i}^{(k)}\right)=
\beta^{i} (u_{i}^{(0)} + u_{i}^{(1)}\beta^{1} + \ldots + u_{i}^{(m-1)}\beta^{m-1})
m = \left| \log_{\beta} \left[ k(\beta - 1) + 1 \right] \right|
```

Sumator CSA

System dwójkowy: na jednym poziomie $k=3,\ m=2$ Na I poziomach redukcja k_I argum

Na / poziomach redukcja k_l argumentów: $2(\sqrt{2})^l \leqslant k_l \leqslant 2\left(\frac{3}{2}\right)^l$

Mnożenie

S/P – rejestr sumy częściowej i iloczynu górnego, X/P – rejestr mnożnika i iloczynu dolnego, C – przeniesienie, A – rejestr mnożnej, ShR – przesunięcie o jedną pozycję w prawo

Szybkie mnożenie – idea

Matryca mnożąca – liniowa struktura drzewa CSA

Mnożenie w dwójkowym systemie uzupełnieniowym

- uwzględnianie rozszerzeń dodatkowe bity
- zamiana na argumenty dodatnie i korekcja iloczynu

$$X_{U2}A_{U2} = \sum_{i=0}^{k-2} x_i 2^i A_{U2} + x_{k-1} (-A_{U2}) 2^{k-1}$$

$$x_i A_{U2} = -x_i a_{m-1} 2^{m-1} + \sum_{i=0}^{m-2} x_i a_i 2^i =$$

$$= -2^{m-1} + (1 - x_i a_{m-1}) 2^{m-1} + \sum_{i=0}^{m-2} (x_i a_i) 2^i = -2^{m-1} + A x_{NB}^{(i)}$$

Stąd wynika, że $X_{\text{II2}} = \sum_{i=0}^{k-1} 2^i A_{\text{MR}}^{(i)} + 2^{m-1} - 2^{k+m-1}$

Szybkie mnożenie w kodzie uzupełnieniowym

Dzielenie

Wykres dzielenia: $r_{i+1} = \beta r_i - q_{m-i}D$, $0 \le r_{i+1} < D$ (podstawa $\beta = 4$)

Dzielenie w systemie dwójkowym – kolejne bity ilorazu: 10010

Dzielenie nieodtwarzające

- skalowanie: $|2^{-m}X| < |D| \to$ normalizacja ilorazu $(|D/2| < |2^{-m}X| < |D|)$
- znormalizowanym ilorazem jest $0+\mathtt{f}(0,\mathtt{f}_{\mathtt{U2}})$ lub $-1+\mathtt{f}(1,\mathtt{f}_{\mathtt{U2}})$

$$\begin{array}{l} XD < 0 \rightarrow r_0 = 2^{-m}X + D, \ q_0 = 1; \\ XD > 0 \rightarrow r_0 = 2^{-m}X - D, \ q_0 = 0 \\ q_{-i} = \left\{ \begin{array}{l} 0, \ \text{gdy} \ r_i \cdot D < 0 \\ 1, \ \text{gdy} \ r_i \cdot D \geqslant 0 \end{array} \right., \ r_{i+1} = 2r_i + (1 - 2q_{-i})D \end{array}$$

Dzielenie nieodtwarzające

► X/R – rejestr reszt, Q – rejestr ilorazu, D – rejestr dzielnika

Dzielenie nieodtwarzające w matrycy

- ▶ odejmowanie/dodawanie z propagacją przeniesień skrośnych
- czas dzielenia w matrycy zawierającej n wierszy jest rzędu n²

Działania zmiennoprzecinkowe

Formaty zmiennoprzecinkowe IEEE 754/854

Parametr	Symbol	SINGLE	EXT-SNGL	DOUBLE	EXT-DBL
Rozmiar formatu	n	32	≥43	64	≥79
Rozmiar znacznika*	m	23 (+1)	≥32	52 (+1)	≥64
Rozmiar wykładnika	e	8	≥11	11	≥1 5
Obciążenie wykładnika	N	1 27	≥1 023	1023	≥16383
Zakres wykładnika	E	[-126,+127]	[-(N-1), + M]	[-1022,+1023]	[-(N-1), +N]
Dokładność *	ulp	$2^{-23} \oplus 10^{-7}$	2^{-m+1}	$2^{-52} \oplus 10^{-15}$	2^{-m+1}
Zakres formatu	RNG	$\cong 2^{128}$	≥ 2 ¹⁰²⁴	$\cong 2^{1024}$	$\geq 2^{16384}$
		$\cong 3.8 \cdot 10^{38}$		$\cong 9 \cdot 10^{307}$	

Problemy

- niedokładność
- zaokrąglanie i normalizacja
- ▶ nadmiar lub niedomiar ⇒ obsługa (skalowanie wyniku)
- nie-liczby

Wyrównanie argumentów zmiennoprzecinkowych

- ▶ Dodawanie i odejmowanie $F_1 \pm F_2 = M_1 \beta^{E_1} \pm M_2 \beta^{E_2} = \beta^{E_1} (M_1 \pm M_2 \beta^{E_2 E_1}) (E_1 > E_2)$
- zwykle konieczne wyrównanie denormalizacja argumentu

Sumator zmiennoprzecinkowy

Moduł wykładnika: SIGN – generator znaku wyniku, MPX – multiplekser wyboru wykładnika wyniku, SUB – układ odejmujący wykładniki, ALIGN – sterowanie denormalizacją znaczników. Moduł znacznika: ADD/SUB - sumator znaczników, ShR – układ przesunięcia w prawo, LZE – koder wiodących zer, ShR/ShL – układ postnormalizacji, ROUND – układ zaokrąglania.

Zmiennoprzecinkowy układ mnożąco-dzielący

Mnożenie i dzielenie (# – mnożenie lub dzielenie)

Mnożenie zmiennoprzecinkowe (---) i obliczanie odwrotności dzielnika (---) (2–D – uzupełnianie przybliżenia, MULT – matryca mnożąca, NORM – przesuwnik, ADD – sumator, ROUND – układ zaokrągleń, m_1 , m_2 – bity części całkowitej iloczynu)