Documentation for Room Transformation Studio

Helga-Ingrid Hochbauer

January 14, 2025

Contents

1	Introduction	2
2	Features	2
3	Background on Stable Diffusion Model	2
	3.1 Core Principles	2
	3.2 Model Training	
	3.3 Applications in Room Transformation Studio	
4	Gradio Interface	2
	4.1 Features of the Gradio Interface	3
	4.2 Code Example	
	4.3 Advantages of Using Gradio	
5	Prompt Generation	3
	5.1 Prompt Building Logic	3
	5.2 Dynamic Color Interpretation	
	5.3 Code Snippet	
	5.4 Enhanced Prompt Context	
6	Conclusion	4

1 Introduction

Room Transformation Studio is an innovative application designed to assist users in redesigning and reimagining their living spaces using AI-powered tools. This documentation provides a comprehensive overview of the application, its functionality, and implementation.

2 Features

- AI-powered room transformation using the Stable Diffusion model.
- Interactive style quiz to determine user preferences.
- Customizable design elements such as colors, furniture, and wood finishes.
- User-friendly interface built with Gradio.

3 Background on Stable Diffusion Model

The Stable Diffusion model is a state-of-the-art machine learning framework designed for generating high-quality images from textual descriptions. Developed using latent diffusion techniques, it operates by encoding text inputs into a latent space and then decoding this space into visually coherent images. Below are some key features and functionalities of the model:

3.1 Core Principles

- Latent Diffusion Process: The model iteratively refines a noisy latent space representation to produce clear and detailed images.
- **Text-to-Image Synthesis:** Through natural language processing, it interprets descriptive prompts and translates them into corresponding visuals.
- Scalability: It supports diverse applications, from artistic renderings to photorealistic outputs.

3.2 Model Training

The Stable Diffusion model is trained on vast datasets that encompass a wide range of images and associated captions. This training allows the model to generalize and generate outputs across various domains and styles.

3.3 Applications in Room Transformation Studio

- Custom Designs: Generates room designs tailored to user inputs.
- Style Matching: Maintains consistency with specified aesthetics and preferences.
- Interactive Adaptability: Responds dynamically to changes in user-defined parameters such as color schemes and furniture choices.

4 Gradio Interface

The Gradio interface is a key component of the Room Transformation Studio, providing an intuitive and user-friendly platform for interaction. Gradio simplifies the process of engaging with AI models by offering a web-based interface that requires no technical expertise.

4.1 Features of the Gradio Interface

- Interactive Input Fields: Users can easily specify room details, aesthetic preferences, and design elements through text boxes, dropdown menus, and sliders.
- Real-time Image Generation: The interface displays generated room designs in real-time, allowing users to iteratively refine their inputs.
- Seamless Integration: Gradio connects directly with the Stable Diffusion model, ensuring smooth and efficient image processing.

4.2 Code Example

Below is an example snippet illustrating how the Gradio interface is implemented:

Listing 1: Gradio Interface Implementation

```
import gradio as gr

def generate_room(room_type, style, color):
    prompt = build_prompt(room_type, [], style, color, None)
    image = stable_diffusion_model.generate_image(prompt)
    return image

iface = gr.Interface(
    fn=generate_room,
    inputs=[
        gr.inputs.Textbox(label="Room_Type"),
        gr.inputs.Textbox(label="Style"),
        gr.inputs.ColorPicker(label="Color")
],
    outputs="image",
    title="Room_Transformation_Studio"
)

iface.launch()
```

4.3 Advantages of Using Gradio

- Easy to set up and deploy.
- Requires minimal coding for customization.
- Facilitates rapid prototyping and testing of AI models.

5 Prompt Generation

The prompt generation feature is a critical component of the Room Transformation Studio. It ensures that user inputs are effectively translated into coherent prompts for the Stable Diffusion model. Here is a detailed breakdown of the process:

5.1 Prompt Building Logic

The application employs a dynamic prompt-building logic that integrates various user inputs, such as room type, design elements, and aesthetic preferences. The resulting prompt is both descriptive and specific, enabling accurate image generation. Below is a detailed explanation of the logic:

- Room Type: Specifies the type of room to be transformed (e.g., Bedroom, Kitchen).
- Change Options: Highlights elements the user wishes to modify (e.g., Colors, Furniture).
- **Aesthetic:** Defines the design style (e.g., Modern, Classic).
- Color and Wood Details: Incorporates color preferences and wood finish types for a personalized touch.

5.2 Dynamic Color Interpretation

To enhance the prompt's realism, the application includes a color interpretation feature. Users can select a color using a color picker, and the system analyzes the RGB values to determine a descriptive name (e.g., "dark", "light", "red"). This ensures the generated image accurately reflects the chosen color scheme.

5.3 Code Snippet

Key functionality for the prompt generation logic is illustrated in this example:

Listing 2: Prompt Generation Function

```
def build_prompt(room_type, change_options, aesthetic, color, wood_type):
     base_prompt = f"A_{\sqcup}beautifully_designed_\{room_type}\"
     changes = f''_{\perp} with \{', ', ', join(change_options)\}'' if change_options else ""
     style = f''_{\square}in_{\square}\{aesthetic\}_{\square}style'' if aesthetic else ""
     if color and color.startswith('#'):
          r, g, b = tuple(int(color.lstrip('\#')[i:i+2], 16) for i in (0, 2, 4))
          color_name = get_color_name(r, g, b)
          color_scheme = f"_featuring_{color_name}_tones"
     else:
          color_scheme = ""
     wood\_detail = f" uith \{wood\_type\} uwood finishes" if wood\_type else ""
     final_prompt = (f"{base_prompt}{changes}{style}{color_scheme}{wood_detail}.
         → "
                        "Keep_{\sqcup}the_{\sqcup}windows_{\sqcup}where_{\sqcup}they_{\sqcup}are._{\sqcup}Apply_{\sqcup}the_{\sqcup}color_{\sqcup}scheme_{\sqcup}to_{\sqcup}
                             \hookrightarrow furniture, \sqcup walls, \sqcup and \sqcup decor \sqcup elements.")
     return final_prompt
```

5.4 Enhanced Prompt Context

Future iterations aim to include additional contextual details, such as lighting conditions, seasonal variations, and user lifestyle preferences, for an even more tailored output.

6 Conclusion

The prompt generation module is a cornerstone of the Room Transformation Studio, ensuring accurate and personalized transformations. By continuously refining this feature, the application can provide users with exceptional design suggestions that align with their vision.