FPGA Interconnect

Nachiket Kapre nachiket@uwaterloo.ca

Lecture Outline

- ► Wiring and Switching Costs and tradeoffs
- ▶ Putting it together sbox and cbox model

Properties of Communication in Circuits

- Wiring in circuits connect gates and registers to each other
 - Persistent connection. Even if data doesn't change.
- Locality of connectivity.
 - Do not need all-to-all connectivity.
 - Input equivalence at LUT
 - Fewer long connections, More short connections.
- Wiring area and delay dominate overall circuit behavior

Relative cost of Logic and Interconnect

- Efficient to decompose large-input functions into lots of small LUTs + wires
 - Large LUT area scales as 2_{large}^k
 - Alternative: $N \times 2_{small}^k + A_{interconnect}$
- Even with added expense of wires (A_{interconnect}), still better than 2^k_{large}
- Interconnect area for *programmable logic* has two components:
 - Wires
 - Programmable Switches

Directional Crosspoint

- ▶ A crosspoint for directional wires is one transistor + one SRAM cell
- ► Can also be visualized as a 2:1 mux driven by the two wires and controlled by the SRAM cell
- ► Hence, $A_{sw} = A_{Config} + A_{Mux}$

Limits of crossbar

- Over-provisions connectivity
- \triangleright O(N) wires in the bisection
 - N wires in horizontal and vertical cuts
 - ▶ 2D layout $O(N^2)$ wiring area
- \triangleright $O(N^2)$ switches
- ▶ What dominates? (1) wires or (2) switches
 - $ightharpoonup \lambda$ is a unit of length defined by the manufacturing technology *i.e.* 32 nm, 18 nm, 7 nm.
 - Wire pitch (spacing between wires) $\approx 10\lambda$
 - Wire area for N wires is $(N \times 10\lambda)^2 = N^2 \times 100\lambda^2$
 - ► Switch area (2:1 mux+SRAM cell) is $1000\lambda^2$
 - Switch area for N^2 switches is $N^2 \times 1000 \lambda^2$
 - ► Switch area $(N^2 \times 1000\lambda^2)$ >> Wire area $(N^2 \times 100\lambda^2)$

Interconnect of Modern FPGAs

- ► Island-style FPGAs used by Xilinx/Altera
 - Each island is a LUT cluster (from last lecture)
 - ► Also called CLB (Configurable Logic Block)
- ➤ **Switch-box** (sbox): allows horizontal and vertical traffic to turn
- ► Connection-box (cbox): allows wires to enter/exit CLB

Interconnect of Modern FPGAs

- Parameters of interest
 - W is channel width (number of wires in horizontal/vertical tracks)
 - ▶ Recall, $M = \frac{k}{2} * (N + 1)$, number of inputs to CLB
- Connectionbox parameters
 - ► *F_{cin}* is the fraction of *W* tracks connected to *M* CLB inputs
 - ► Recall, $M = \frac{k}{2} * (N + 1)$
 - F_{cout} is the fraction of W tracks connected to N LUT outputs
- Switchbox parameters
 - F_s is the number of switches connected to each wire at input of sbox

Connection-box Architecture (cbox)

- Switch Area calculation
 - Num. switches = $M*W*F_{cin} + N*W*F_{cout}$
 - ► Cbox Area = $(W*M*F_{cin}+W*N*F_{cout})*1000\lambda^2$
 - At 10%, $W * (M + N) * 100\lambda^2$

- Wiring cost is a function of W * M dictated by 10λ pitch
 - $(W*10\lambda)*((M+N)*10\lambda)$
 - $W * (M + N) * 100\lambda^2$

Switch-box Architecture (sbox)

- Switch Area
 - ▶ Switch count = $W \times F_s \times 2$
 - Switch area = $W * F_s * 2 * 1000\lambda^2 = W * 6000\lambda^2$
- Wiring cost is a function of $O(W^2)$ dictated by 10λ pitch
 - $(W*10\lambda)*(W*10\lambda)$
 - $\sim W^2 * 100\lambda^2$
- \triangleright wire dominated at W > 60

Diamond Crosspoint

- ► A diamond switchbox works for bidirectional wires
- ► Six possible links (fanout is also allowed)
- ► Need a new SRAM cell for each link
- $\blacktriangleright \text{ Hence, } A = 6 * A_{sw} = 6 * (A_{Config} + A_{Mux})$

Understanding diamond crosspoints (Xilinx XC4000s)

- Each diamond crosspoint (switch) is actually 6 transistors + 6 SRAM cells (one per wire)
- ► If we have *W* channels, we need one diamond crosspoint per wire
- Naive crossbar will have W^2 switches, but we only have W switches
- Same crosspoint can route two independent routes!

Understanding diamond crosspoints (Xilinx XC4000s)

- Each diamond crosspoint (switch) is actually 6 transistors + 6 SRAM cells (one per wire)
- ► If we have *W* channels, we need one diamond crosspoint per wire
- Naive crossbar will have W^2 switches, but we only have W switches
- Same crosspoint can route two independent routes!

Understanding diamond crosspoints (Xilinx XC4000s)

- Each diamond crosspoint (switch) is actually 6 transistors + 6 SRAM cells (one per wire)
- ► If we have *W* channels, we need one diamond crosspoint per wire
- Naive crossbar will have W^2 switches, but we only have W switches
- Same crosspoint can route two independent routes!

Putting it together (LUTs + Cluster + Global)

Relative Areas

- ► Logic Area (Assume $A_{Config} + A_{Mux} = 1000\lambda^2, A_{FF} = 0$)
 - $N*A_{kLUT} = N*(2^k*A_{Config} + 2^k*A_{Mux})$
 - $(2^k * N) * 1000 \lambda^2$
- Interconnect Area (Assume $A_{Config} + A_{Mux} = 1000\lambda^2$)
 - Intra-Cluster Area
 - Output Area = $k * N * (N k + 1) * A_{sw}$
 - Input Area = $k * N * M * A_{sw}$
 - $k^2 * N * (N k + 1 + M) * 1000 \lambda^2 \approx N^2 * \frac{k^2}{2} * 1000 \lambda^2$
 - ► Cbox Area (Assume $F_{cin} = F_{cout} = 10\%$)
 - Switch Area = $M * W * F_{cin} * A_{sw} + N * W * F_{cout} * A_{sw}$
 - Wiring Area = $(W * 10\lambda) * ((M + N) * 10\lambda)$
 - $\max(W*(M+N)*100\lambda^2, W*(M+N)*100\lambda^2) \approx W*\frac{k}{2}*N*100\lambda^2$
 - Sbox Area (Assume $F_s=3$)
 - Switch Area = $W * F_s * 2 * 1000\lambda^2$
 - $\blacktriangleright \text{ Wiring Area} = (W*10\lambda)*(W*10\lambda)$
 - ► $\max(W * 6000\lambda^2, W^2 * 100\lambda^2) \approx W * 6000\lambda^2$

Relative Areas

- ► Logic Area = $(2^k * N) * 1000 \lambda^2$
- ► Interconnect Area
 - ► Intra-Cluster Area = $N^2 * \frac{k^2}{2} * 1000 \lambda^2$

 - Sbox Area = $W * 6000\lambda^2$

Relative Areas (Assume k = 4)

- ► Logic Area = $(16 * N) * 1000 \lambda^2$
- Interconnect Area
 - Intra-Cluster Area = $8 * N^2 * 1000 \lambda^2$

 - Sbox Area = $W * 6000\lambda^2$

Relative Areas (Assume N = 8)

- ► Logic Area = $128 * 1000\lambda^2$
- ► Interconnect Area
 - Intra-Cluster Area = $512 * 1000 \lambda^2$

 - Sbox Area = $W * 6000\lambda^2$

Relative Areas (Assume W = 60)

- ► Logic Area = $128 * 1000\lambda^2$
- Interconnect Area
 - ► Intra-Cluster Area = $512 * 1000 \lambda^2$

 - ► Sbox Area = $360 * 1000 \lambda^2$

Relative Areas (Relative Ratios)

- ► Logic Area = $128 * 1000 \lambda^2 11\%$
- ► Interconnect Area
 - Intra-Cluster Area = $512 * 1000\lambda^2 46\%$
 - ► Cbox Area = $192 * 1000 \lambda^2 17\%$
 - ► Sbox Area = $360 * 1000 \lambda^2 23\%$

Class Wrapup

- ▶ Interconnect is \approx 90% of the FPGA area
- ▶ Building *models* of hardware is helpful in deriving insight on operation
- Often OK to waste some LUTs, to use wires more efficiently
- Analytical model shows that for most realistic chips, switch area dominates wiring area for reasonable values of W