Data Structures

Graphs

Graphs

What is a graph?

- Graphs represent the relationships among data items
- A graph G consists of
 - a set V of nodes (vertices)
 - a set E of edges: each edge connects two nodes
- Each node represents an item
- Each edge represents the relationship between two items

node

Examples of graphs

Molecular Structure

Computer Network

Other examples: electrical and communication networks, airline routes, flow chart, graphs for planning projects

Formal Definition of graph

- The set of nodes is denoted as V
- For any nodes u and v, if u and v are connected by an edge, such edge is denoted as (u, v)

- The set of edges is denoted as E
- A graph G is defined as a pair (V, E)

Adjacent

 Two nodes u and v are said to be adjacent if (u, v) ∈ E

Path and simple path

- A path from v₁ to v_k is a sequence of nodes v₁, v₂, ..., v_k that are connected by edges (v₁, v₂), (v₂, v₃), ..., (v_{k-1}, v_k)
- A path is called a simple path if every node appears at most once.

V₂, V₃, V₄, V₂, V₁ is a path
V₂, V₃, V₄, V₅ is a path, also it is a simple path

Cycle and simple cycle

- A cycle is a path that begins and ends at the same node
- A simple cycle is a cycle if every node appears at most once, except for the first and the last nodes

- v₂, v₃, v₄, v₅, v₃, v₂ is a cycle
 - v₂, v₃, v₄, v₂ is a cycle, it is also a simple cycle

Connected graph

 A graph G is connected if there exists path between every pair of distinct nodes; otherwise, it is disconnected

This is a connected graph because there exists path between every pair of nodes

Example of disconnected graph

This is a disconnected graph because there does not exist path between some pair of nodes, says, v_1 and v_7

Connected component

 If a graph is disconnect, it can be partitioned into a number of graphs such that each of them is connected. Each such graph is called a connected component.

Complete graph

 A graph is complete if each pair of distinct nodes has an edge

with 4 nodes

Subgraph

 A subgraph of a graph G =(V, E) is a graph H = (U, F) such that U ⊆ V and F ⊆ E.

Weighted graph

 If each edge in G is assigned a weight, it is called a weighted graph

Directed graph (digraph)

- All previous graphs are undirected graph
- If each edge in E has a direction, it is called a directed edge
- A directed graph is a graph where every edges is a directed edge

More on directed graph

- If (x, y) is a directed edge, we say
 - y is adjacent to x
 - y is successor of x
 - x is predecessor of y
- In a directed graph, directed path, directed cycle can be defined similarly

Multigraph

- A graph cannot have duplicate edges.
- Multigraph allows multiple edges and self edge (or loop).

Property of graph

- A undirected graph that is connected and has no cycle is a tree.
- A tree with n nodes have exactly n-1 edges.
- A connected undirected graph with n nodes must have at least n-1 edges.

Implementing Graph

- Adjacency matrix
 - Represent a graph using a two-dimensional array
- Adjacency list
 - Represent a graph using n linked lists where n is the number of vertices

Adjacency matrix for directed graph

1 2 3 4 5

 V_1 V_2 V_3 V_4 V_5

0	1	0	0	0
0	0	0	1	0
0	1	0	1	0
0	0	0	0	0
0	0	1	1	0

Adjacency matrix for weighted undirected graph

 $\begin{aligned} \text{Matrix[i][j]} &= w(v_i, \ v_j) & \text{if } (v_i, \ v_j) \in E \text{ or } (v_j, \ v_i) \in E \\ & \text{otherwise} \end{aligned}$

		V_1	V_2	V_3	V_4	V ₅
1	V_1	8	5	8		8
2	V_2	5	8	2	4	8
3	V_3	8	2	8	3	7
4	V_4	8	4	3	8	8
5	V_5	8	8	7	8	8

Adjacency list for directed graph

Adjacency list for weighted undirected graph

Pros and Cons

- Adjacency matrix
 - Allows us to determine whether there is an edge from node i to node j in O(1) time
- Adjacency list
 - Allows us to find all nodes adjacent to a given node j efficiently
 - If the graph is sparse, adjacency list requires less space

Graph Traversal Algorithm

- To traverse a tree, we use tree traversal algorithms like pre-order, in-order, and postorder to visit all the nodes in a tree
- Similarly, graph traversal algorithm tries to visit all the nodes it can reach.
- If a graph is disconnected, a graph traversal that begins at a node v will visit only a subset of nodes, that is, the connected component containing v.

Two basic traversal algorithms

- Two basic graph traversal algorithms:
 - Depth-first-search (DFS)
 - After visit node v, DFS strategy proceeds along a path from v as deeply into the graph as possible before backing up
 - Breadth-first-search (BFS)
 - After visit node v, BFS strategy visits every node adjacent to v before visiting any other nodes

Depth-first search (DFS)

- DFS strategy looks similar to pre-order. From a given node v, it first visits itself. Then, recursively visit its unvisited neighbours one by one.
- DFS can be defined recursively as follows.

Algorithm dfs(v)

```
print v; // you can do other things!
mark v as visited;
for (each unvisited node u adjacent to v)
    dfs(u);
```

DFS example

Start from v₃

DFS algorithm

Algorithm dfs(v) s.createStack(); s.push(v); mark v as visited; while (!s.isEmpty()) { let x be the node on the top of the stack s; if (no unvisited nodes are adjacent to x) s.pop(); // blacktrack else { select an unvisited node u adjacent to x; s.push(u); mark u as visited;

Non-recursive DFS example

	visit	stack
\rightarrow	V_3	V_3
\rightarrow	V_2	V ₃ , V ₂
\rightarrow	V ₁	V ₃ , V ₂ , V ₁
\rightarrow	backtrack	V ₃ , V ₂
\rightarrow	V ₄	V ₃ , V ₂ , V ₄
\rightarrow	V_5	V ₃ , V ₂ , V ₄ , V ₅
\rightarrow	backtrack	V ₃ , V ₂ , V ₄
\rightarrow	backtrack	V ₃ , V ₂
\rightarrow	backtrack	V ₃
\rightarrow	backtrack	empty

2020/4/8

30

Task: Conduct a depth-first search of the graph starting with node D

The order nodes are visited:

D

V<u>isited A</u>rray

Visit D

The order nodes are visited:

D

V<u>isited A</u>rray

Consider nodes adjacent to D, decide to visit C

The order nodes are visited:

D, C

Visited Array

Visit C

The order nodes are visited:

D, C

V<u>isited A</u>rray

No nodes
adjacent to C;
cannot
continue →
backtrack, i.e.,
pop stack and
restore
previous state

The order nodes are visited:

D, C

V<u>isited A</u>rray

Back to D – C has been visited, decide to visit E next

The order nodes are visited:

D, C, E

V<u>isited A</u>rray

Back to D – C has been visited, decide to visit E next

The order nodes are visited:

D, C, E

V<u>isited A</u>rray

Only G is adjacent to E

The order nodes are visited:

D, C, E, G

V<u>isited A</u>rray

Visit G

The order nodes are visited:

D, C, E, G

Nodes D and H are adjacent to

G. D has already been visited. Decide to visit H.

The order nodes are visited:

D, C, E, G, H

Visited Array

	A
	В
√	С
√	D
√	Е
	F
√	G
√	Н

Visit H

The order nodes are visited:

D, C, E, G, H

V<u>isited A</u>rray

A	
В	
С	\checkmark
D	\checkmark
Е	√
F	
G	√
Н	$\sqrt{}$

H G E D

Nodes A and B are adjacent to F. Decide to visit A next.

The order nodes are visited:

D, C, E, G, H, A

V<u>isited A</u>rray

A	√
В	
С	√
D	√
Е	√
F	
G	√
Н	√

A H G E D

Visit A

The order nodes are visited:

D, C, E, G, H, A

V<u>isited A</u>rray

A	\checkmark
В	
C	√
D	√
Е	\checkmark
F	
G	√
Н	$\sqrt{}$

Only Node B is adjacent to A. Decide to visit B next.

The order nodes are visited:

D, C, E, G, H, A, B

Visited Array

√	A
√	В
√	С
√	D
\	Е
	F
√	G
√	Н

B
A
H
G
D

Visit B

The order nodes are visited:

D, C, E, G, H, A, B

V<u>isited A</u>rray

A		
C √ D √ E √ F G √	A	√
D √ E √ F G √	В	\checkmark
E	C	\checkmark
F G ✓	D	\checkmark
G √	Е	\checkmark
	F	
H √	G	√
	Н	√

A H G E

No unvisited nodes adjacent to

B. Backtrack(pop the stack).

The order nodes are visited:

D, C, E, G, H, A, B

V<u>isited A</u>rray

	
A	√
В	√
C	√
D	√
Е	√
F	
G	√
Н	√

H G E D

No unvisited nodes adjacent to

A. Backtrack (pop the stack).

The order nodes are visited:

D, C, E, G, H, A, B

Visited Array

A	√
В	√
С	√
D	√
Е	\checkmark
F	
G	√
Н	$\sqrt{}$

No unvisited nodes adjacent to H. Backtrack (pop the stack).

The order nodes are visited:

D, C, E, G, H, A, B

V<u>isited A</u>rray

No unvisited nodes adjacent to G.

Backtrack (pop the stack).

The order nodes are visited:

D, C, E, G, H, A, B

V<u>isited A</u>rray

No unvisited nodes adjacent to E. Backtrack (pop the stack).

The order nodes are visited:

D, C, E, G, H, A, B

V<u>isited A</u>rray

F is unvisited and is adjacent to D. Decide to visit F next.

D

The order nodes are visited: D, C, E, G, H, A, B, F

V<u>isited A</u>rray

٠.		<u> </u>	
	A	\checkmark	
	В	√	
	С	√	
	D	√	
	Е	√	
	F	√	
	G	√	
	Н		

Visit F

The order nodes are visited:

D, C, E, G, H, A, B, F

V<u>isited A</u>rray

No unvisited nodes adjacent to F. Backtrack.

The order nodes are visited: D, C, E, G, H, A, B, F Visited Array

No unvisited nodes adjacent to D. Backtrack.

The order nodes are visited: D, C, E, G, H, A, B, F Visited Array

Stack is empty. Depth-first traversal is done.

DFS

56

Breadth-first search (BFS)

- BFS strategy looks similar to level-order. From a given node v, it first visits itself. Then, it visits every node adjacent to v before visiting any other nodes.
 - 1. Visit v
 - 2. Visit all v's neigbours
 - 3. Visit all v's neighbours' neighbours
 - **—** ...
- Similar to level-order, BFS is based on a queue.

Algorithm for BFS

```
Algorithm bfs(v)
q.createQueue();
q.enqueue(v);
mark v as visited;
while(!q.isEmpty()) {
  w = q.dequeue();
  for (each unvisited node u adjacent to w) {
      q.enqueue(u);
      mark u as visited;
```


1 3

1 3 6

1 3 6 7

1 3 6 7 10

1 3 6 7 10 9

1 3 6 7 10 9 12

BFS

THANKS