CSC 591, Homework 3

Fatema Olia - 200253671 folia@ncsu.edu November 19, 2018

1.

1. This MAC is not secure. We can show an adversary A_{forge} that wins the MAC game as follows:

Adversary A_{forge} :

- 1. Training Phase:
 - query with message $m_1 = m_a \, | \, | \, m_b$ and obtain $t_1 = F_k(0 \, | \, | \, m_a) \, | \, | \, F_k(1 \, | \, | \, m_b)$
 - query with message $m_2 = m_b \, | \, | \, m_c$ and obtain $t_2 = F_k(0 \, | \, | \, m_b) \, | \, | \, F_k(1 \, | \, | \, m_c)$
- 2. Challenge Phase:
 - parse t_1 as $t_{1L} \, | \, | \, t_{1R}$ and t_2 as $t_{2L} \, | \, | \, t_{2R}$
 - query with message $m^* = m_b \, | \, | \, m_b$ and $t^* = t_{2L} \, | \, | \, t_{1R}$

Analysis:

In the challenge phase the adversary A_{forge} submits $m^* = m_b \mid \mid m_b$ and $t^* = t_{2L} \mid \mid t_{1R}$. Since $t_{2L} = F_k(0 \mid \mid m_b)$ and $t_{1R} = F_K(1 \mid \mid m_b)$, $\therefore t^* = F_k(0 \mid \mid m_b) \mid \mid F_k(1 \mid \mid m_b)$ Thus, the MAC verifies and $Pr[A_{forge}wins] = 1$.

2. This MAC is not secure. We can show an adversary A_{forge} that wins the MAC game as follows:

Adversary A_{forge} :

- 1. Challenge Phase:
 - choose message m^*
 - choose $r = \langle 1 \rangle | | m^*$
 - set $t^* = 0^n$
 - output m^* and (r, t^*)

Analysis:

In the challenge phase the adversary A_{forge} chooses $r = \langle 1 \rangle | | m^*$. (Since $\langle 1 \rangle$ is n/2-bit and m^* is n/2-bit then the value chosen is from $\{0,1\}^n$)

Then the adversary sets $t^* = 0^n$, this is because for m^* we have

$$t^* = F_k(r) \oplus F_k(\langle 1 \rangle \, | \, | \, m^*)$$

$$\therefore t^* = F_k(\langle 1 \rangle \, | \, | \, m^*) \oplus F_k(\langle 1 \rangle \, | \, | \, m^*)$$

Thus, the MAC verifies and $Pr[A_{forge}wins] = 1$.

2.

3. This construction is not collision resistant. We can show a hash function h_s for which there exists a collision.

Consider a collision resistant hash function h'_s . We can show the construction of h_s as follows:

$$h_s(x) = \begin{cases} 1 & \text{if } x = 2 \mid \mid x_1 \\ 1 \mid \mid h_s'(x) & \text{otherwise} \end{cases}$$

Where x_1 is a fixed value.

Since h'_s is a collision resistant hash function and only $x=2\mid\mid x_1$ maps to 1^n then even h_s is collision resistant. Thus it can be used for this modification of the Merkle-Damgard transform. The adversary A_{coll} can defeat the function as follows:

Adversary A_{coll} :

- Output the two values as $m_1 = x_1 \,|\, |x_2$ and $m_2 = x_2$

Analysis:

- Hash of $m_1 = h_s(h_s(2 | |x_1) | |x_2) = h_s(1 | |x_2)$
- Hash of $m_2 = h_s(1 \mid\mid x_2)$

Thus, there is a collision for m_1 and m_2 . $\therefore Pr[A_{coll} \text{ finds collision}] = 1$

4. If h_s is a collision resistant hash function then this modified Merkle-Damgard construction is also collision resistant.

Proof:

Assumption:

1. Towards a contradiction, assume \exists a PPT adversary A_{coll} that can find a collision in the modified Merkle-Damgard construction such that:

$$Pr[A_{coll} \text{ finds collision}] = p(n) \text{ which is non-negligible.}$$

2. There is a PPT adversary A_h that finds a collision in function h_s with negligible probability

Reduction:

Consider the modified Merkle-Damgard construction as H_s .

The adversary A_h runs adversary A_{coll} to find a collision in h_s as follows:

- A_{coll} outputs two messages (m,m') where $m \neq m'$
- Using B=l(m) and $B'=l(m'),\,A_h$ checks:

if $B \neq B'$:

 A_h outputs $(z_b | |B, z_b'| |B')$

if B = B':

Let $I_i = z_i \mid \mid m_i$ denoted the *i*th input to h_s . Similarly $I_i' = z_i' \mid \mid m_i'$. Let N be the largest index for which $I_N \neq I_N'$.

 A_h outputs (I_N, I'_N)

Analysis:

Case $B \neq B'$:

This means that if $H_s(m) = H_s(m')$ then the last step of the construction collided, i.e. $h_s(z_b \mid \mid B) = h_s(z_b' \mid \mid B')$. Since $B \neq B'$ then the inputs to h_s are different and thus if A_h outputs $(z_b \mid \mid B, z_b' \mid \mid B')$ then $Pr[A_h$ finds collision] = $Pr[A_{coll}$ finds collision]

Case B = B':

Since B = B' but $m \neq m'$ there is an i where $m_i \neq m'_i$. Thus, N exists. By maximality of N we have $I_{N+1} = I'_{N+1}$ and $z_N = z'_N$. This means (I_N, I'_N) are in collision in h_s . Thus, $Pr[A_h \text{ finds collision}] = Pr[A_{coll} \text{ finds collision}]$

Since $Pr[A_{coll} \text{ finds collision}] = p(n)$, thus $Pr[A_h \text{ finds collision}] = p(n)$. But we know that h_s is collision resistant. Thus p(n) has to be negligible. Thus our original assumption was wrong and the modified Merkle-Damgard construction is collision resistant.

3.

5. The scheme is not a one-time-secure signature scheme. An adversary A_{forge} can win the digital signature game as follows:

Adversary A_{forge} :

- 1. Training Phase:
 - query the oracle with $m_1 = i$ (where 1 < i < n) and receive $\sigma_1 = f^{(n-i)}(x)$
- 2. Challenge Phase:
 - choose $m^* = i 1$ and $\sigma^* = f^{(1)}(\sigma_1)$

Analysis:

We know the value of the public key is $y = f^{(n)}(x)$.

According to the digital signature scheme, the values (m^*, σ^*) sent in the challenge phase can be verified as follows:

$$f^{(m^*)}(\sigma^*) = f^{(i-1)}(f^{(1)}(\sigma_1))$$

$$= f^{(i)}(f^{(n-i)}(x))$$

$$= f^{(n)}(x)$$

$$= y$$

Thus, $Pr[A_{forge} \text{ wins digital signature game}] = 1$

6. If f is a one way permutation then no PPT adversary given a signature on i can output a forgery on any message j > i, except with negligible probability.

Proof:

Assumption:

- 1. Towards a contradiction, assume \exists a PPT adversary A_{forge} that outputs a forgery for j > i with the following probability:
 - $Pr[A_{forge} \text{ wins digital signature game}] = p(n) \text{ which is non-negligible.}$
- 2. There is a PPT adversary A_{owf} that reverses one way function f with negligible probability.

Reduction:

The adversary A_{owf} has access to an oracle that gives public key $y = f^{(n)}(x)$ and the signature. A_{owf} runs A_{forge} to try and break f as follows:

- A_{forge} queries with $i \in \{1...n\}$. A_{owf} accepts i and forwards it to the oracle which returns the digital signature $\sigma_i = f^{(n-i)}(x)$ where x is chosen by the oracle.

- A_{owf} returns σ_i to A_{forge}
- A_{forge} challenges with a pair (m^*, σ^*) where $m^* = i + c$ and $\sigma^* = f^{(n-i-c)}(x)$ and $0 < c \le n-i$.
- A_{owf} verifies the signature. If verified, A_{owf} can run the function f for input σ^* for c-1 iterations.

$$f^{(c-1)}(\sigma^*) = f^{(n-i-c-c+1)}(x)$$

$$\therefore f^{(c-1)}(\sigma^*) = f^{(n-i+1)}(x)$$

Thus A_{owf} has inverted the function on the left hand side. Similarly A_{owf} can find the inverse of all values between i-c and i.

Analysis:

Since A_{owf} can use the output of A_{forge} to reverse the one way function:

$$Pr[A_{owf}\, {\rm reverses}\, f\,] = Pr[A_{forge} {\rm wins}\,\, {\rm digital}\,\, {\rm signature}\,\, {\rm game}] = p(n)$$

However, since f is a one way function. $Pr[A_{owf} \text{ reverses } f] = negl(n)$. Thus our original assumption was incorrect.

Thus $Pr[A_{forge}$ wins digital signature game] = negl(n).