Esercizi 01

Computer Design Basics

Chapter 8 - Solutions

1) Given a 4-bits barrel shifter, find the output Y for each of the following inputs applied to $(S_1, S_0, D_3, D_2, D_1, D_0)$:

(a) 110101

(b)101011

(c) 011010

(d)001101

Solution:

The bits S1 e S0 indicate the number of positions to shift. Therefore, we have:

	$\mathbf{S_1}$	S_0	Positions	$\mathbf{D}_3\mathbf{D}_2\mathbf{D}_1\mathbf{D}_0$	Y
(a)	1	1	3	0101	1010
(b)	1	0	2	1011	1110
(c)	0	1	1	1010	0101
(d)	0	0	0	1101	1101

2) Specify the 16-bits control word to be applied to the datapath to implement the following microoperations:

(a) R3 ←Data in

 $(b)R4 \leftarrow 0$

(c) R1 \leftarrow sr R4

 $(d)R3 \leftarrow R3 + 1$

(e) R2 ←sl R2

(f) R1 ← R2 ⊕ R4

 $(g)R7 \leftarrow R1 + R3$

(h)R4 \leftarrow R5 – Constant in

Solution:

The control word is composed of the following fields:

(b) Control word

By using the Table 8-5 showing the encoding of control word:

□ TABLE 8-5
Encoding of Control Word for the Datapath

DA, AA, BA		MB		FS	MD		RW		
Function	Code	Function	Code	Function	Code	Function	Code	Function	Code
R0	000	Register	0	F = A	0000	Function	0	No Write	0
R1	001	Constant	1	F = A + 1	0001	Data in	1	Write	1
R2	010			F = A + B	0010				
R3	011			F = A + B + 1	0011				
R4	100			$F = A + \overline{B}$	0100				
R5	101			$F = A + \overline{B} + 1$	0101				
<i>R</i> 6	110			F = A - 1	0110				
R7	111			F = A	0111				
				$F = A \wedge B$	1000				
				$F = A \vee B$	1001				
				$F = A \oplus B$	1010				
				$F = \overline{A}$	1011				
				F = B	1100				
				$F = \operatorname{sr} B$	1101				
				$F = \operatorname{sl} B$	1110				

The required control words are:

	<u>DA</u>	<u>AA</u>	$\underline{\mathbf{B}}\underline{\mathbf{A}}$	<u>MB</u>	<u>FS</u>	\underline{MD}	$\underline{\mathbf{RW}}$
(a) R3←Data in	011			-		1	1
(b) R4 ← 0	100	000	000	0	1010	0	1
	The reg	gisters A e B	are used, th	e XOR is ap	oplied ($\rightarrow 0$ w	ith the same	inputs)
(c) R1←sr R4	001		100	0	1101	0	1
(d) $R3 \leftarrow R3 + 1$	011	011		-	0001	0	1
(e) R2 ← s1 R2	010		010	0	1110	0	1
(f) R1 \leftarrow R2 \oplus R4	001	010	100	0	1010	0	1
(g) $R7 \leftarrow R1 + R3$	111	001	011	0	0010	0	1
(h) R4 \leftarrow R5 – Constant in	100	101		1	0101	0	1

3) Given the following 16-bits control words for the datapath, determine a) the microoperation that is executed and b) the contents of the registers for each control word. Assume that the registers contain the value of their index (e.g., the register R5 contains 05 in hexadecimal). Assume that Constant in has value has 6 and Data In has value 1B.

(a) 101 100 101 0 1000 0 1	(b)110 010 100 0 0101 0 1
(c) 101 110 000 0 1100 0 1	(d)101 000 000 0 0000 0 1
(e) 100 100 000 1 1101 0 1	(f) 011 000 000 0 0000 1 1

Solution:

Keep in mind the format of the control word and use the Table 8-5 showing the encodings

	$\overline{\mathrm{DA}}$	<u>AA</u>	$\underline{\mathbf{B}}\mathbf{A}$	<u>MB</u>	<u>FS</u>	$\overline{\mathrm{MD}}$	$\underline{\text{RW}}$	
(a)	101	100	101	0	1000	0	1	$R5 \leftarrow R4 \wedge R5$
(b)	110	010	100	0	0101	0	1	$R6 \leftarrow R2 - R4$
(c)	101	110	000	0	1100	0	1	$R5 \leftarrow R0$
(d)	101	000	000	0	0000	0	1	$R5 \leftarrow R0$
(e)	100	100	000	1	1101	0	1	R4 ←sr Constant
(f)	011	000	000	000	0000	1	1	R3 ←Data in

(a)	$R5 \leftarrow R4 \wedge R5$	AND: $R5 = 0000 \ 0100$
(b)	$R6 \leftarrow R2 - R4$	$R6 = 1111 \ 1110$
(c)	$R5 \leftarrow R0$	$R5 = 0000\ 0000$
(d)	$R5 \leftarrow R0$	$R5 = 0000\ 0000$
(e)	R4 ←sr Constant	$R4 = 0001\ 1000$
(f)	R3 ←Data in	$R3 = 0001\ 1011$

- 4) A computer has a 32-bits instruction format consisting of the following: opcode (6 bits), 2 registers addresses (5 bits per each), and one immediate operand/registers addresses (16 bits).
- a) What is the maximum number of operation possible?
- b) How many registers can be addressed?
- c) What is the maximum value of an immediate operand (unsigned) that can be provided?
- d) What is the range of an immediate operand (unsigned) that can be provided if we assume that the operands are signed 2s complement binary numbers and the 15th bit is the one associated with the sign?

Solution:

- a) opcode \rightarrow 6 bits; so the number of possible operations are \rightarrow 2⁶ = 64
- b) 1 x register \rightarrow 5 bits; number of registers \rightarrow 2⁵ = 32
- c) The range of an immediate operand [0; 2^{32} -1]. The maximum value corresponds to $65535 = (1111\ 1111\ 1111)_2 \rightarrow FFFF$
- d) from $(2^{15} 1)$ to $-2^{15} \rightarrow +32767$ a -32768
- 5) A computer has a memory unit with 32 bits instruction and a register file with 64 registers. The instruction set consists of 130 different operations. The instruction format is the following: opcode, a register file address, and the immediate operand part. Each instruction is stored in one word of memory.
- a) How many bits are necessary for the opcode part of the instruction?

- b) How many bits are left for the immediate operand?
- c) If the immediate operand is used as an unsigned address to memory, what is the maximum number of words that can be addressed in memory?
- d) What are the largest and the smallest algebraic values of signed 2s complement binary numbers that can be accommodated as an immediate operand?

Solution:

- a) 130 operations $\rightarrow \log_2 130 = 7.02 \rightarrow 8$ bits
- b) 64 registers \rightarrow bits to address registers = 6 bits; bits for immediate operands = 18 bits
- c) $2^{18} = 262144$ in the range [0; 2^{18} -1]
- d) from $(2^{17} 1)$ to $-2^{17} \rightarrow +131071$ e -131072
- 6) A single-cycle computer executes the five instructions in the following tables (a) and (b).
- a) Complete the table

Solution

Instruction Register Tranfer	DA	AA	BA	MB	FS	MD	RW	MW	PL	JB
$R[0] \leftarrow R[7] \oplus R[3]$	000	111	011	0	1010	0	1	0	0	X
$R[1] \leftarrow M[R[4]]$	001	100	XXX	X	XXXX	1	1	0	0	X
$R[2] \leftarrow R[5] + 2$	010	101	XXX	1	0010	0	1	0	0	X
$R[3] \leftarrow sl R[6]$	011	XXX	110	0	1110	0	1	0	0	X
if R[4] = 0 then PC ← PC + se AD else PC ← PC + 1	xxx	100	XXX	X	0000	X	0	0	1	0

b) Complete the table.

Instruction Register	Operation Code	DR	SA	SB or Operand
Transfer				
$R[0] \leftarrow R[7] + R[6]$	000 0010	000	111	110
$R[1] \leftarrow R[5] - 1$	000 0110	001	110	000
$R[2] \leftarrow sl R[4]$	000 1110	010	000	100
$R[3] \leftarrow \overline{R[3]}$	000 1011	011	011	000
$R[4] \leftarrow R[2] \vee R[1]$	000 1001	100	010	001

7) Simulate the following sequence of instructions, assuming that each register initially contains contents equal to its index (e.g., R1 contains 1). Report the binary value of each instruction and the content of any register changed by the instruction.

Solution

Instruction	Code	Registers/Memory changed
ADD R0, R1, R2	000 0010 000 001 010	
SUB R3, R4, R5	000 0101 011 100 101	R0 = 3
SUB R6, R7, R0	000 0101 110 111 000	R3 = -1
ADD R0, R0, R3	000 0010 000 000 011	R6 = 4
SUB R0, R0, R6	000 0101 000 000 110	R0 = 2
ST R7, R0	010 0000 000 111 000	R0 = -2
LD R7, R6	001 0000 111 110 000	M[7] = -2
ADI R0, R6, 2	100 0010 000 110 010	R7 = M[4]
ADI R3, R6, 3	100 0010 011 110 011	R0 = 6
		R3 = 7

8) How many Mbyte is possible to address with 16 bit?, 20 bit?, 24 bit?, 32 bit?, 64 bit? Solution:

Given that a 1KByte memory corresponds to $2^{10} = 1024$ bytes, we can achieve that 1Mbyte = 1Kbyte X 1Kbyte = 2^{10} X 2^{10} = 2^{20} bytes.

We can compute:

16 bit ->
$$2^{16}$$
 bytes = $2^{16}/2^{20}$ Mbyte = $1/16$ MB = 64 Kbyte
20 bit -> 2^{20} bytes = $2^{20}/2^{20}$ Mbyte = 1 Mbyte
24 bit -> 2^{24} bytes = $2^{24}/2^{20}$ Mbyte = 2^4 Mbyte = 16 Mbyte
32 bit -> 2^{32} bytes = $2^{32}/2^{20}$ Mbyte = 2^{12} Mbyte = 4096 Mbyte = 4 Gbyte
64 bit -> 2^{64} bytes = $2^{64}/2^{20}$ Mbyte = 2^{44} Mbyte = 2^{34} Gbyte = 2^{24} Tbyte