Lecture #3 Exercises

Distributed Lab

August 1, 2024

Exercise 1. Oleksandr decided to build \mathbb{F}_{49} as $\mathbb{F}_7[i]/(i^2+1)$. Compute (3+i)(4+i). As a result, you would get a+bi. Write down a+b as an answer.

Exercise 2. Suppose we build an extension $\mathbb{F}_{p^3} := \mathbb{F}_p[v]/(v^3+1)$. For which of the following values p such construction would not be valid? (you can assume that listed numbers are primes)

- a) 8431.
- b) 9173.
- c) 9419.
- d) 6947.

Exercise 3. This question demonstrates the concept of so-called *tower of extensions*. Suppose we want to build an extension field \mathbb{F}_{p^4} . Of course, we can find some irreducible polynomial $\mu(X)$ of degree 4 over \mathbb{F}_p and build $\mathbb{F}_p[w]/(\mu(X))$. However, we can also build it as $\mathbb{F}_{p^2}[u]/(\nu(u))$ where $\nu(u)$ is an irreducible polynomial of degree 2 over \mathbb{F}_{p^2} .

Exercise 3. Suppose that elliptic curve is defined as E/\mathbb{F}_7 : $y^2 = x^3 + b$. Suppose (2, 3) lies on the curve. What is the value of b?

Exercise 4. Consider an elliptic curve E over \mathbb{F}_{167^2} . Denote by r the order of the group of points on E (that is, r = |E|). Which of the following **can** be the value of r?

- a) $167^2 5$
- b) $167^2 1000$
- c) $167^2 + 5 \cdot 167$
- d) 170^2
- e) 160^2

Exercise 5. Suppose that for some elliptic curve E the order is |E| = qr where both q and r are prime numbers. Among listed, what is the most optimal complexity of algorithm to solve the discrete logarithm problem on E?

- a) O(qr)
- b) $O(\sqrt{qr})$

Distributed Lab ZKDL Camp

- c) $O(\sqrt{\max\{q,r\}})$
- d) $O(\sqrt{\min\{q,r\}})$
- e) $O(\max\{q, r\})$

Exercise 6. Sum of which of the following pairs of points on the elliptic curve E/\mathbb{F}_{11} is equal to the point at infinity \mathcal{O} ?

a)