Rattrapage du contrôle Continu - Analyse 2 - Durée 1 h 30mn-

Les livres et documents sont interdits, ainsi que les calculatrices et les téléphones portables.

Chacune de vos réponses doit être justifiée et argumentée.

Exercice 1 (11 Pts) (Les parties I) et II) sont indépendantes.)

/) On définit la fonction $g: \mathbb{R} \to \mathbb{R}$, $x \to g(x) = \sqrt{arctg(1-x^2)}$

1) Déterminer le domaine de définition de la fonction g. (2 pts)

2) La fonction g est-elle paire, impaire ? (1 pt)

3) La fonction g est-elle continue sur son domaine de définition ? (2 pts)

4) Déterminer le domaine de dérivation de g et calculer la fonction g' (1 pt + 2 pts)

(II) On definit la fonction $f: \mathbb{R} \to \mathbb{R}$, $x \to f(x) = 0$ si $x \le 0$

$$x^3 \sin \frac{1}{x} \qquad \qquad \text{si } x > 0$$

La fonction f est-elle de classe C^1 sur \mathbb{R} ? (3 pts)

Exercice 2 (5Pts)

On définit la fonction $\varphi: \mathbb{R} \to \mathbb{R}$, $x \to \varphi(x) = \frac{3-x^2}{2}$ si $x \in [0,1]$ $\frac{1}{2}$ si $x \in [1,2]$

- 1) Montrer que la fonction φ vérifie les hypothèses du théorème des accroissements finis sur [0,2]. (3 pts)
- 2) Trouver les valeurs de c dans la formule du théorème des accroissements finis sur [0,2]. (2 pts)

Exercice 3 (2Pts)

Soit ψ une application de $]0, +\infty[$ dans \mathbb{R} .

On suppose que ψ est dérivable sur $]0,+\infty[$ et que $\lim_{x\to+\infty}\psi(x)=0.$

Montrer que si pour tout x > 0, $\psi'(x) \le 0$, alors pour tout x > 0, $\psi(x) \ge 0$.

NB : <u>1 point</u> est attribué à une copie bien présentée.