MA3227 Numerical Analysis II

Lab 1

Algebraic and exponential scaling

For each of the following functions f(n), determine whether f(n) scales algebraically or exponentially in the limit $n \to \infty$ by plotting f(n) on appropriate axes. If f(n) scales algebraically, then also determine the order of scaling by comparing f(x) against n^p .

- 1. Fibonacci sequence: $f(n) = \begin{cases} 1 & \text{if } n = 1 \text{ or } n = 2, \\ f(n-1) + f(n-2) & \text{otherwise.} \end{cases}$
- 2. Triangular loop: $f(n) = \sum_{i=1}^{n} \sum_{j=1}^{i} 1$.
- 3. Geometric series: $f(n) = \sum_{k=1}^{n} 2^{k}$.
- 4. Recursive: $f(n) = \begin{cases} 1 & \text{if } n = 1, \\ 2f(\frac{n}{2}) + 1 & \text{otherwise.} \end{cases}$

Assume that $n = 2^k$ is a power of 2.

Other types of scaling (advanced)

Figure out a way to demonstrate the scaling of the following functions in the limit $n \to \infty$.

1. $f(n) = \begin{cases} 1 & \text{if } n = 1, \\ f(\frac{n}{2}) + 1 & \text{otherwise.} \end{cases}$ Hint: f(n) scales logarithmically.

Assume that $n = 2^k$ is a power of 2.

2. $f(n) = \exp(\sqrt{n})$ Hint: f(n) scales super-algebraically but sub-exponentially.

1