••• معماری کامپیوتر (۱۱۰–۱۱–۱۱۱) بلسهی دوم

دانشگاه شهید بهشتی دانشکدهی مهندسی برق و کامپیوتر زمستان ه۱۳۹۰ اعمد معمودی ازناوه

- فهرست مطالب

- اجزای داخلی پردازنده
 - تجرید
 - کارایی

-کارایی اجرای برنامه

- الگوريتي
- تعداد دستورالعملها و تعداد عملیات ٥/١
 - زبان برنامهنویسی، کامپایلر و معماری
 - تعداد دستورالعمل زبان ماشین به ازای دستورالعملهای زبان سطع بالا
 - پردازنده و مافظه
 - سرعت اجرای هر دستور چِقدر است؟
 - الرعت انجام عملیات 0/ا

-برنامه

- برنامههای کاربردی
- به زبانهای سطح بالا نوشته میشوند.
 - برنامههای سیستمی
 - *كامياي*لر
 - سيستمعامل –
 - مدیریت مافظه و ذغیرهسازی
 - اشتراک منابع
 - مديريت ورودي و خروجي

سختافزار

پردازنده، مافظه و ورودی-خروجی

- سطوح زبانهای برنامهنویسی

High-level language program (in C)

```
swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}
```

Compiler

Assembly language program (for MIPS)

```
swap:

muli $2, $5,4

add $2, $4,$2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

ir $31
```


Binary machine language program (for MIPS)

- زبانهای سطع بالا
- سطمی از تجرید که به
 زبان طبیعی نزدیک تر است
- کارایی و قابلیت ممل
 برنامه را افزایش میدهد.
 - زبان اسمبلی
 - نمادهایی که جایگزین
 زبان ماشین میشوند.
 - زبان ماشین •
 - دنبالهای از صفر و یک

instruction

-بخشهای یک کامپیوتر

- گذشته از نوع معماری، هر کامپوتر دارای پنج بخش پایه است:
 - ورودی
 - خروجی
 - مافظه

مسیر گذار داده (datapath)

کنترل

اجزای کامپیوتر

البزاى دافلي پردازنده

- بخش محاسباتی
 - واحد کنترل
- مافظه یِنهانی (cache memory)

Abstraction

- «تجرید» به برخورد با سیستههای پیچیده کمک ميكند.
 - جزییات لایه های یایین را از دیده ها ینهان می کند.
 - رابط انتزاعی *میان* سخت افزار و نره افزار

Instruction Set Architecture (ISA)

• ISA همراه با رابط سیستهعامل

Application binary interface (ABI)

(ISA) یا صمان واسط بین مفت افزار و نرم افزار مطم پایین است. چنین واسط مجردی است کم این امکان را فراهم آورده تا پیاده مازی حای متعدد با قیمت و كرآيي متفاوت ازيك منت افزار فاص وجود داخته باخدو همه آنها بتوانند نره افزار واحدي را احراكنير.

عافظم ح فرار

فنيرهسازي داده

Volatile main memory

• مافظهی اصلی

_ در صورت قطع منبع تغذیہ، مافظہ یاک میشود.

(main memory

(primary memory

Non-volatile secondary memory

- دیسکهای مغناطیسی

سیدی و دیویدی –

flash memory -

روند به کارگیری فناوری

DRAM capacity

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2005	Ultra large scale IC	6,200,000,000

-- کارایی اجرا

-کارایی سیستم در برابر کارایی پردازنده

• زمان پاسخ:

- بازهی زمانی که برای تکمیل یک کار صرف میشود،
 شامل پردازش، عملیات ۰/۱ و ...
 - بیانگر کارایی سیستم *میبا*شد.

wall clock time, response time, elapsed time

• زمان اجرای cpu:

- ز*ما*نی که صرف پردازش میشود. ز*مان سای*ر ف*عالیتها* در نظر گرفته نمیشود.
 - شامل user cpu time و system cpu time

