25.

(a) Solution:

Let D_{right} denote distance travelled by the car as estimated by the right sum. Then the right sum, in terms of t and v(t), can be calculated using

$$D_{\text{right}} = RIGHT(5)$$

$$= \Delta t \sum_{i=1}^{5} v(t_i)$$
(1)

From the table, it can be observed that the width of each subinterval is 0.2 h. Otherwise, here's the calculation for completeness:

$$\Delta t = \frac{b-a}{n}$$
$$= \frac{1-0}{5}$$
$$= 0.2 \,\text{h}$$

Then let's use (1) to calculate the estimated distance:

$$D_{\text{right}} = \Delta t \sum_{i=1}^{5} v(t_i)$$

$$= 0.2(30 + 30 + 70 + 90 + 90)$$

$$= 62 \text{ km}$$

(b) Solution:

Let G_{right} denote the amount of gas consumed by the car as estimated by and let g(v(t)) be the fuel gas efficiency of the car given a speed v(t).

Unit analysis: We want L from the distances (speed \times time) in part (a) and the efficiency from the table.

$$\underbrace{\frac{\cancel{\textbf{K}}}{t}} \times \underbrace{\frac{\cancel{\textbf{km}}}{\cancel{\textbf{K}}}}_{v(t)} \times \underbrace{\frac{\textbf{L}}{100\,\cancel{\textbf{km}}}}_{g(v(t))} = \frac{1}{100} \textbf{L}$$

So then the terms we're summing over are $f(t_i) = v(t_i)g(v(t_i))$, which implies that the

APSC 171 Week 6 Material - Defining and Estimating Integrals as Areas quantity that we're looking for is

$$G_{\text{right}} = RIGHT(5)$$

$$= \Delta t \sum_{i=1}^{5} f(t_i)$$

$$= \Delta t \sum_{i=1}^{5} v(t_i)g(v(t_i)). \tag{2}$$

With Δt as before, using (2) to calculate the estimated gas consumed yields

$$G_{\text{right}} = \Delta t \sum_{i=1}^{5} v(t_i) g(v(t_i))$$

$$= 0.2 \left(30 \cdot \frac{15}{100} + 30 \cdot \frac{15}{100} + 70 \cdot \frac{7}{100} + 90 \cdot \frac{8}{100} + 90 \cdot \frac{8}{100} \right)$$

$$= 5.66 \,\text{L}$$

26.

(a) Solution:

The length of each of the four subintervals is

$$\Delta x = \frac{b-a}{n}$$

$$= \frac{\frac{\pi}{2} - 0}{4}$$

$$= \frac{\pi}{8}$$

With $f(x) = \cos(x)$ and n = 4, the trapezoidal rule gives us

$$\int_0^{\frac{\pi}{2}} f(x) dx \approx TRAP(4)$$

$$= \Delta x \left(\frac{f(x_0) + f(x_4)}{2} + \sum_{i=1}^3 f(x_i) \right)$$

$$= \frac{\pi}{8} \left(\frac{\cos(0) + \cos(\frac{\pi}{2})}{2} + \cos\left(\frac{\pi}{8}\right) + \cos\left(\frac{\pi}{4}\right) + \cos\left(\frac{3\pi}{8}\right) \right)$$

$$\approx 0.987$$

(b) Solution:

Figure 1: A sketch graph of the trapezoidal rule for approximating the integral of $\cos(x)$ from 0 to $\frac{\pi}{2}$.

From Figure 1, we can deduce that the estimate from part (a) is an **underestimate** of the exact integral value.