Operator Algebra Seminar Note II

Ikhan Choi

November 12, 2023

Contents

1	October 18	2
	1.1 Countably decomposable von Neumann algebras	. 2
	1.2 Semi-cyclic representations	. 3
	1.3 σ -weak lower semi-continuity	. 6
	1.4 Pointwise supremum of normal positive linear functionals	. 8
2	November 10	9
	2.1 Hilbert algebras	. 9
	2.2 Modular operator and conjugation	. 11
	2.3 Faithful normal semi-finite weights	. 12
3	December 20	17
	3.1 Tomita-Takesaki commutation theorem	. 17
4	January 17	18
5	February 9	19

Acknowledgement

This note has been written based on the first-year graduate seminar presented at the University of Tokyo in the 2023 Autumn semester. Each seminar was delivered for 105 minutes. I gratefully acknowledge advice of Prof. Yasuyuki Kawahigashi and support of my colleagues Futaba Sato, Yusuke Suzuki.

1 October 18

1.1 Countably decomposable von Neumann algebras

Definition 1.1 (Countably decomposable von Neumann algebras). Let M be a von Neumann algebra. A projection $p \in M$ is called *countably decomposable* if mutually orthogonal non-zero projections majorized by p are at most countable, and we say M is *countably decomposable* if the identity is.

Proposition 1.2. For a von Neumann algebra M, the followings are all equivalent.

- (a) M is countably decomposable.
- (b) M admits a faithful normal state.
- (c) M admits a faithful normal non-degenerate representation with a cyclic and separating vector.
- (d) The unit ball of M is metrizable in the four strong topologies.

Proof. (a) \Leftrightarrow (b) Suppose M is countably decomposable. Let $\{\xi_i\} \subset H$ be a maximal family of unit vectors such that $\overline{M'\xi_i}$ are mutually orthogonal subspaces, taken by Zorn's lemma. If we let p_i be the projection on $\overline{M'\xi_i}$, then $p_izp_i=zp_i$ for $z\in M'$ implies $p_i\in M''=M$. By the assumption, the family $\{\xi_i\}$ is countable. Define a state ω of M such that

$$\omega(x) := \sum_{i=1}^{\infty} \omega_{2^{-i}\xi_i}(x), \qquad x \in M.$$

It converges due to $\|\omega_{2^{-i}\xi_i}\| = 2^{-i+1}$. It is normal since the sequence $(2^{-i}\xi_i)$ belongs to $\ell(\mathbb{N}, H)$, and it is faithful because $\omega(x^*x) = 0$ implies $x\xi_i = 0$ for all i, which deduces that $x = \sum_i xp_i = 0$.

Conversely, if ω is a faithful normal state, then for a mutually orthogonal family of non-zero projections $\{p_i\} \subset M$, we have

$$\{p_i\} = \bigcup_{n=1}^{\infty} \{p_i : \varphi(p_i) > n^{-1}\}$$

the countable union of finite sets. Thus M is countable decomposable.

(b) \Leftrightarrow (c) Let ω be a faithful normal state of M. Consider any faithful normal nondegenerate representation in which ω is a vector state so that the corresponding vector is a separating vector. Examples include the GNS representation of ω , and the composition with the diagonal map $B(H) \to B(\ell^2(\mathbb{N}, H))$. Then, $\overline{M\Omega}$ admits a cyclic and separating vector Ω of M. The converse is immediate, i.e. the vector state ω_{Ω} is a faithful normal state of M.

(a) \iff (d) Suppose M is countably decomposable and take $\{\xi_i\}_{i=1}^\infty$ and $\{p_i\}_{i=1}^\infty$ as we did. Define

$$d(x,y) := \sum_{i=1}^{\infty} 2^{-i} \|(x-y)\xi_i\|.$$

Clearly it generates a topology coarser than strong topology. It is also finer because if a bounded net x_a in M converges to zero in the metric d so that $x\xi_i \to 0$ for all i, then $H = \bigoplus_i M'\xi_i$ implies that for every $\xi \in H$ and $\varepsilon > 0$ we have $\|\xi - \sum_{k=1}^n z_k \xi_{i_k}\| < \varepsilon$ for some $z_k \in M'$ so that

$$||x_{\alpha}\xi|| \leq ||x_{\alpha}(\xi - \sum_{k=1}^{n} z_{k}\xi_{i_{k}})|| + \sum_{k=1}^{n} ||x_{\alpha}z_{k}\xi_{i_{k}}|| < \varepsilon + \sum_{k=1}^{n} ||z_{k}|| ||x_{\alpha}\xi_{i_{k}}|| \to \varepsilon.$$

Since on the bounded part the strong and σ -strong topologies coincide, the two topologies on the unit ball are metrizable. We can do similar for the strong* and the σ -strong* topologies.

Conversely, for a mutually orthogonal family of non-zero projections $\{p_i\}_{i\in I}\subset M$, since the net of finite partial sums $p_F:=\sum_{i\in F}p_i$ is an non-decreasing net in the closed unit ball whose supremum is the identity of M, there is a convergent subsequence $p_{F_n}\uparrow 1$ by the metrizability, which implies $I=\bigcup_{n=1}^{\infty}F_n$, the countable union of finite sets.

1.2 Semi-cyclic representations

Definition 1.3 (Weights). Let M be a von Neumann algebra. A *weight* is a function $\varphi: M^+ \to [0, \infty]$ such that

$$\varphi(x+y) = \varphi(x) + \varphi(y), \qquad \varphi(\lambda x) = \lambda \varphi(x), \qquad x, y \in M^+, \ \lambda \in \mathbb{R}^{\geq 0},$$

where we use $0 \cdot \infty = 0$. A weight φ is said to be *normal* if

$$\varphi(\sup_{\alpha} x_{\alpha}) = \sup_{\alpha} \varphi(x_{\alpha})$$

for any bounded non-decreasing net (x_{α}) in M^+ .

Definition 1.4. Let φ be a weight on a von Neumann algebra M. Define a left ideal of M

$$\mathfrak{n} := \{ x \in M : \varphi(x^*x) < \infty \},$$

and a hereditary *-subalgebra of M

$$\mathfrak{m} := \mathfrak{n}^* \mathfrak{n} = \{ \sum_{i=1}^n y_i^* x_i : (x_i), (y_i) \in \mathfrak{n}^n \}.$$

Lemma 1.5. If $x, y \in M$ satisfies $y^*y \le x^*x$, then there is a unique $s \in B(H)$ such that y = sx and s = sp, where p is the range projection of x, and $s \in M$.

Proof. Suppose $\mathrm{id}_H \in M \subset B(H)$. The operator $s_0 : \overline{xH} \to \overline{yH} : x\xi \mapsto y\xi$ is well defined because

$$||y\xi||^2 = \langle y^*y\xi, \xi \rangle \le \langle x^*x\xi, \xi \rangle = ||x\xi||^2.$$

Let p be the range projection of x and let $s := s_0 p$. Then, $y\xi = sx\xi$ for all $\xi \in H$. If y = s'x and s' = s'p, then

$$x^*(s-s')^*(s-s')x = (y-y)^*(y-y) = 0$$

implies

$$0 = p(s-s')^*(s-s')p = (s-s')^*(s-s').$$

Therefore, s is unique in B(H). If $u \in M'$ is unitary, then usu^* satisfies the same property $y = usu^*x$ and $usu^* = usu^*p$, so us = su. Since the unitary span the whole C^* -algebra, we have $s \in M'' = M$. \square

Proposition 1.6. Let φ be a weight on a von Neumann algebra M.

- (a) Every element of \mathfrak{m}^+ can be written to be x^*x for some $x \in \mathfrak{n}$.
- (b) Every element of \mathfrak{m} can be written to be y^*x for some $x, y \in \mathfrak{n}$.

Proof. (a) Let $a := \sum_{i=1}^n y_i^* x_i \in \mathfrak{m}^+$ for some $x_i, y_i \in \mathfrak{n}$. The polarization writes

$$a = \frac{1}{4} \sum_{i=1}^{n} \sum_{k=0}^{3} i^{k} |x_{i} + i^{k} y_{i}|^{2}$$

and $a^* = a$ implies

$$a = \frac{1}{2} \sum_{i=1}^{n} (|x_i + y_i|^2 - |x_i - y_i|^2) \le \frac{1}{2} \sum_{i=1}^{n} |x_i + y_i|^2$$

implies

$$\varphi(a) \leq \frac{1}{2} \sum_{i=1}^{n} \varphi(|x_i + y_i|^2) < \infty.$$

Therefore, if $x := a^{\frac{1}{2}} \in \mathfrak{n}$, then $a = x^*x$.

(b) Let $a := \sum_{i=1}^{n} y_{i}^{*} x_{i} \in \mathfrak{m}$ for some $x_{i}, y_{i} \in \mathfrak{n}$. Let $x := (\sum_{i=1}^{n} x_{i}^{*} x_{i})^{\frac{1}{2}} \in \mathfrak{n}$. Since $x_{i}^{*} x_{i} \leq x^{2}$, we have $s_{i} \in M$ such that $x_{i} = s_{i} x$. If we let $y := \sum_{i=1}^{n} s_{i}^{*} y_{i} \in \mathfrak{n}$, then

$$a = \sum_{i=1}^{n} y_i^* x_i = \sum_{i=1}^{n} y_i^* s_i x = (\sum_{i=1}^{n} s_i^* y_i) x = y^* x.$$

Definition 1.7 (Semi-cyclic representations). Let φ be a weight on a von Neumann algebra. Let H be the Hilbert space defined by the separation and completion of a sesquilinear form

$$\mathfrak{n} \times \mathfrak{n} \to \mathbb{C} : (x, y) \mapsto \varphi(y^*x)$$

and let $\psi : \mathfrak{n} \to H$ be the canonical image map. The pair (π, ψ) is called the *semi-cyclic representation* associated to φ .

Proposition 1.8. Let φ be a weight on a von Neumann algebra and (π, ψ) be the associated semi-cyclic representation to φ . Consider a map

$$\Theta: \mathfrak{m} \times \pi(M)' \to \mathbb{C}: (y^*x, z) \mapsto \langle z\psi(x), \psi(y) \rangle$$

and define

$$\theta: \mathfrak{m} \to (\pi(M)')_*, \qquad \theta^*: \pi(M)' \to \mathfrak{m}^*$$

such that $\Theta(x,z) = \theta(x)(z) = \theta^*(z)(x)$ for $x \in \mathfrak{m}$ and $z \in \pi(M)'$.

- (a) Θ is a well-defined bilinear form.
- (b) θ^* is bijective onto the space of linear functionals on \mathfrak{m} whose absolute value is majorized by φ . (bounded Radon-Nikodym theorem)

Proof. (a) The linearity in the second argument is obvious. Fix $z \in \pi(M)'$. We first check the well-definedness on \mathfrak{m}^+ . Let $x^*x = y^*y \in \mathfrak{m}^+$ for $x, y \in \mathfrak{n}$. Then, there is $s \in M$ such that y = sx and s = sp, where p is the range projection of x, so

$$x^*(1-s^*s)x = x^*x - y^*y = 0$$

implies

$$0 = p(1 - s^*s)p = p - s^*s$$

and $x = px = s^*sx = s^*y$. The well-definedness follows from

$$\Theta(x^*x,z) = \langle z\psi(x), \psi(x) \rangle = \langle \pi(s)z\pi(s^*)\psi(y), \psi(y) \rangle = \langle z\psi(ss^*y), \psi(y) \rangle = \Theta(y^*y,z).$$

The homogeneity is clear, so now we prove the addivitiv. Let x^*x , $y^*y \in \mathfrak{m}^+$ for some $x, y \in \mathfrak{n}$. Let $a := (x^*x + y^*y)^{\frac{1}{2}}$ and take $s, t \in M$ such that x = sa, y = ta, s = sa, and t = ta, where p is the range projection of a. Then,

$$a(1-s^*s-t^*t)a = a^*a-x^*x-y^*y = 0$$

implies

$$p(1-s^*s-t^*t)p = p-s^*s-t^*t.$$

It follows that

$$\Theta(x^*x + y^*y, z) = \langle z\psi(a), \psi(a) \rangle = \langle z\pi(p)\psi(a), \psi(a) \rangle$$

$$= \langle z\pi(s^*s)\psi(a), \psi(a) \rangle + \langle z\pi(t^*t)\psi(a), \psi(a) \rangle$$

$$= \langle z\psi(x), \psi(x) \rangle + \langle z\psi(y), \psi(y) \rangle$$

$$= \Theta(x^*x, z) + \Theta(y^*y, z).$$

Now the $\Theta(\cdot, z)$ is linearly extendable to \mathfrak{m} .

(b) The linear map θ^* is injective since ψ has dense range. Take $z \in \pi(M)'$ and consider $\theta^*(z)$, which maps x^*x to $\langle z\psi(x), \psi(x) \rangle$ for $x \in \mathfrak{n}$. The image is majorized by φ as

$$|\langle z\psi(x), \psi(x)\rangle| \le ||z|| ||\psi(x)||^2 = ||z||\varphi(x^*x).$$

Conversely, let $l \in \mathfrak{m}^{\#}$ is a linear functional majorized by φ , i.e. there is a constant C > 0 such that

$$|l(x^*x)| \le C\varphi(x^*x), \qquad x \in \mathfrak{n}.$$

Define a sesquilinear form $\sigma : \mathfrak{n} \times \mathfrak{n} \to \mathbb{C}$ such that $\sigma(x,y) := l(y^*x)$. It is well-defined after separation of \mathfrak{n} and is bounded by the Cauhy-Schwartz inequality

$$|\sigma(x,y)|^2 = |l(y^*x)|^2 \le ||l(x^*x)|| ||l(y^*y)|| \le \varphi(x^*x)\varphi(y^*y) = ||\psi(x)||^2 ||\psi(y)||^2.$$

Therefore, σ defines a bounded linear operator $z \in \pi(M)'$ such that

$$\sigma(x, y) = \langle z\psi(x), \psi(y) \rangle$$
,

exactly meaning $\theta^*(z)(y^*x) = l(y^*x)$ for $x, y \in \mathfrak{n}$.

Note that we have a commutative diagram

$$\mathfrak{n} \stackrel{\psi}{\longrightarrow} H$$

$$\downarrow^{\omega}$$

$$B(H)_{*}$$

$$\downarrow^{\operatorname{res}}$$
 $\mathfrak{m}^{+} \stackrel{\theta}{\longrightarrow} (\pi(M)')_{*}.$

In particular, for $x \in \mathfrak{n}^+$ we have

$$\|\theta(x^2)\| = \|\omega_{\psi(x)}\| = \|\psi(x)\|^2 = \varphi(x^2).$$

Lemma 1.9. Let For $z \in \mathfrak{m}^{sa}$, we have

$$\inf\{\varphi(a): z \le a \in \mathfrak{m}^+\} \le \|\theta(z)\|.$$

In particular, for $x, y \in \mathfrak{n}^+$ and for any $\varepsilon > 0$ there is $a \in \mathfrak{m}^+$ such that $x^2 - y^2 \le a$ and

$$\varphi(a) \le \|\theta(x^2 - y^2)\| + \varepsilon = \|\omega_{\psi(x)} - \omega_{\psi(y)}\| + \varepsilon.$$

Proof. Denote by p(z) the left-hand side of the inequality. Then, we can check $p:\mathfrak{m}^{sa}\to\mathbb{R}_{\geq 0}$ is a semi-norm such that $p(z)=\varphi(z)$ for $z\geq 0$. (If we take $p(z):=\varphi(z^+)$, then it seems to be dangerous when checking the sublinearity. I could not find the counterexample.)

Fix any non-zero $z_0 \in \mathfrak{m}^{sa}$. By the Hahn-Banach extension, there is an algebraic real linear functional $l:\mathfrak{m}^{sa}\to\mathbb{R}$ such that

$$l(z_0) = p(z_0), \qquad |l(z)| \le p(z), \qquad z \in \mathfrak{m}^{sa}.$$

Extend linearly l to be $l: \mathfrak{m} \to \mathbb{C}$. Since $|l(z)| \le \varphi(z)$ for $z \in \mathfrak{m}^+$, the linear functional l is contained in the image of the closed unit ball under the injective map

$$\theta^*: \pi(M)' \to \mathfrak{m}^\#.$$

If we let $a \in (\pi(M)')_1$ be the corresponding operator such that $\theta^*(a) = l$, then we get

$$p(z_0) = l(z_0) = \theta^*(a)(z_0) = \theta(z_0)(a) \le ||\theta(z_0)||.$$

Since $z_0 \in \mathfrak{m}^{sa}$ is aribtrary, we are done.

1.3 σ -weak lower semi-continuity

Theorem 1.10. Let M be a countably decomposable von Neumann algebra. Then, normal weight on M is σ -weakly lower semi-continuous.

Proof. Let φ be a normal weight on M and let (π, ψ) be the associated semi-cyclic representation.

In the spirit of the Krein-Šmulian theorem, the σ -weak lower semi-continuity is equivalent to the σ -weak closedness of the intersection with the ball

$$\varphi^{-1}([0,1])_1 = \{ x \in M^+ : \varphi(x) \le 1, \ ||x|| \le 1 \}$$
$$= \{ x \in M^+ : ||\psi(x^{\frac{1}{2}})|| \le 1, \ ||x^{\frac{1}{2}}|| \le 1 \}.$$

Since that the σ -weak and σ -strong closedness of a convex set are equivalent and that the square root operation on M_1^+ is σ -strongly continuous, we are enough to show the set

$$(\varphi^{-1}([0,1])_1)^{\frac{1}{2}} = \{x \in M^+ : ||\psi(x)|| \le 1, ||x|| \le 1\}$$

is σ -weakly closed. This set, if we denote the graph of $\psi : \mathfrak{n} \to H$ by Γ_{ψ} , is the image of the positive part of the unit ball

$$(\Gamma_{\psi})_{1}^{+} = \{(x, \psi(x)) \in M^{+} \oplus_{\infty} H : ||\psi(x)|| \le 1, ||x|| \le 1\}$$

under the projection $M \oplus_{\infty} H \to M$. Observing $M \oplus_{\infty} H \cong (M_* \oplus_1 H)^*$, if we prove $(\Gamma_{\psi})_1^+$ is weakly* closed, then we are done by its compactness.

Consider a linear functional $l: M \oplus_{\infty} H \to \mathbb{C}$ that is continuous with respect to $(\sigma s, \|\cdot\|)$. If we define $l_1: M \to \mathbb{C}$ and $l_2: H \to \mathbb{C}$ such that $l_1(x):=l(x,0)$ and $l_2(\xi)=(0,\xi)$, then they satisfy $l(x,\xi)=l_1(x)+l_2(\xi)$, and are continuous in σ -strong and norm topologies, hence to σ -weak and weak topologies, respectively. Since a net (x_α,ξ_α) converges to (x,ξ) weakly* if and only if $x_\alpha \to x$ σ -weakly and $\xi_\alpha \to \xi$ weakly, l is weakly* continuous. Because $(\Gamma_\psi)_1^+$ is convex, we will now show that $(\Gamma_\psi)_1^+$ is closed in $(M,\sigma s)\times (H,\|\cdot\|)$.

Note that the unit ball M_1 is metrizable in σ -strong topology since M is countably decomposable. Suppose a sequence $x_n \in \mathfrak{n}_1^+$ satisfies $x_n \to x$ σ -strongly and $\psi(x_n) \to \xi$ in H. Then, it suffices to show the following two statements: $x \in \mathfrak{n}_1^+$ and $\psi(x) = \xi$. We first observe that since $\psi(x_n)$ is Cauchy, so is $\omega_{\psi(x_n)}$ in $(\pi(M)')_*$.

Consider for a while, a family of functions

$$f_a(t) := \frac{t}{1+at}, \quad t \in (-a^{-1}, \infty),$$

parametrized by a > 0. They have several properties. At first, they are operator monotone. Next, they are σ -strongly continuous on a closed subset of its domain due to the boundedness of f_a , as we can see in the proof of the Kaplansky density theorem. Finally, for each $x \in M_+$, the increasing limit $f_a(x) \uparrow x$ in norm as $a \to 0$ implies that $\sup_a f_a(x) = x$.

First we show $x \in \mathfrak{n}_1^+$. It is clear that $x \in M_1^+$, so it is enough to show $\varphi(x^2) < \infty$. By taking a subsequence, we may assume $\|\omega_{\psi(x_{n+1})} - \omega_{\psi(x_n)}\| < \frac{1}{2^n}$. In order to dominate x_n with an monotone sequence, find $a_n \in \mathfrak{m}^+$ such that

$$x_{n+1}^2 - x_n^2 \le a_n, \qquad \varphi(a_n) < \frac{1}{2^n},$$

using the previous lemma. Then, we can write

$$x_{n+1}^2 \le x_1^2 + \sum_{k=1}^n (x_{k+1}^2 - x_k^2) \le x_1 + \sum_{k=1}^n a_k.$$

Here the right-hand side is non-decreasing but not a bounded sequence so we take f_a to get the σ -strong limit

$$f_a(x^2) \le \sup_n f_a(x_1^2 + \sum_{k=1}^n a_k).$$

Then, by the normality of φ , we have

$$\varphi(f_a(x^2)) \le \sup_n \varphi(f_a(x_1^2 + \sum_{k=1}^n a_k))$$

$$\le \sup_n \varphi(x_1^2 + \sum_{k=1}^n a_k)$$

$$= \varphi(x_1^2) + \sum_{k=1}^\infty \varphi(a_k)$$

$$< \varphi(x_1^2) + 1 < \infty$$

which implies by sending $a \to 0$ that $\varphi(x^2) < \infty$, whence $x \in \mathfrak{n}$. Next we show $\psi(x) = \xi$. If we prove $\varphi((x_n - x)^2) \to 0$, then

$$\|\xi - \psi(x)\| \le \|\xi - \psi(x_n)\| + \|\psi(x_n) - \psi(x)\| = \|\xi - \psi(x_n)\| + \varphi((x_n - x)^2)^{\frac{1}{2}} \to 0$$

deduces the desired result. By taking a subsequence, since $\psi(x_n - x)$ is Cauchy, we may assume

$$\|\omega_{\psi(x_n-x)}-\omega_{\psi(x_{n+1}-x)}\|<\frac{1}{2^n}.$$

Let $b_n \in \mathfrak{m}^+$ such that

$$(x_n - x)^2 - (x_{n+1} - x)^2 \le b_n, \qquad \varphi(b_n) < \frac{1}{2^n}$$

As we did previously, we have

$$f_a((x_n - x)^2) \le f_a((x_{m+1} - x)^2) + f_a(\sum_{k=n}^m b_k) \to \sup_m f_a(\sum_{k=n}^m b_k)$$

as $m \to \infty$ and

$$\varphi(f_a((x_n-x)^2)) \le \sup_m \varphi(f_a(\sum_{k=n}^m b_k)) \le \sup_m \varphi(\sum_{k=n}^m b_k) < \frac{1}{2^{n-1}}.$$

Therefore,

$$\varphi((x_n-x)^2) \le \frac{1}{2^{n-1}} \to 0.$$

Theorem 1.11. Let M be an arbitrary von Neumann algebra. Then, a normal weight on M is σ -weakly lower semi-continuous.

Proof. Let φ be a normal weight of M. Let Σ be the set of all countably decomposable projections of M and let $M_0 := \bigcup_{p \in \Sigma} pMp$. The equivalent condition for $x \in M$ to belong to M_0 is that the left and right support projections of x are countably decomposable. Since then the left support projection p and the right support projection p of p are Murray-von Neumann equivalent so that there is a p-isomorphism between pMp and p-is p-isomorphism decomposability is equivalent for p-in p-in

We first claim that $\varphi^{-1}([0,1])_1$ is relatively σ -weakly closed in M_0 . Let $y \in \overline{\varphi^{-1}([0,1])_1}^{\sigma w} \cap M_0$ so that there is a net $y_\alpha \in \varphi^{-1}([0,1])_1$ converges σ -weakly to y, and there is $p \in \Sigma$ such that pyp = y. Note that the previous theorem states that $\varphi^{-1}([0,1]) \cap pMp$ is σ -weakly closed. Since $py_\alpha p$ is a net

in $\varphi^{-1}([0,1])_1 \cap pMp$ that also converges σ -weakly to pyp = y, we have $y \in \varphi^{-1}([0,1])$. The claim proved.

We now claim that $\varphi^{-1}([0,1])_1$ is σ -weakly closed in M. Suppose a net $x_\alpha \in \varphi^{-1}([0,1])_1$ converges to $x \in M$ σ -weakly. Clearly $x \in M_1^+$. Let $\{p_i\}_{i \in I}$ be a maximal mutually orthogonal projections in Σ , and let $p_J := \sum_{i \in J} p_i$ for finite sets $J \subset I$ so that $\sup_J p_J = 1$. It clearly follows that for each α we have

$$x_{\alpha}^{\frac{1}{2}}p_{J}x_{\alpha}^{\frac{1}{2}} \in \varphi^{-1}([0,1])_{1}.$$

Then, we can show easily with boundedness of x_{α} that

$$x^{\frac{1}{2}}p_Jx^{\frac{1}{2}} \in \overline{\varphi^{-1}([0,1])_1}^{\sigma w}.$$

Because $p_J \in M_0$ and M_0 is an ideal,

$$x^{\frac{1}{2}}p_Ix^{\frac{1}{2}} \in \overline{\varphi^{-1}([0,1])_1}^{\sigma w} \cap M_0.$$

By the above claim,

$$x^{\frac{1}{2}}p_{I}x^{\frac{1}{2}} \in \varphi^{-1}([0,1])_{1}.$$

By the normality of φ , we finally obtain

$$x \in \varphi^{-1}([0,1])_1$$
.

Therefore, $\varphi^{-1}([0,1])_1$ is σ -weakly closed.

1.4 Pointwise supremum of normal positive linear functionals

Endow a partial order on the set of all weights. Then, every set of monotonically increasing subadditive homogeneous functions $\varphi: M^+ \to [0, \infty]$ always have its supremum given by its pointwise supremum. Since if φ is the supremum of σ -weakly lower semi-continuous φ_i , then

$$\varphi^{-1}([0,1]) = \bigcap_{i} \varphi_{i}^{-1}([0,1])$$

implies the σ -weak lower semi-continuity of φ . Conversly, the following theorem holds.

Theorem 1.12. Let M be a von Neumann algebra. Then, a σ -weakly lower semi-continuous monotonically increasing additivie homogeneous function $\varphi: M^+ \to [0, \infty]$ is given by the pointwise supremum of a set of normal positive linear functionals.

Proof. Let $F := \varphi^{-1}([0,1])$. It is a hereditary closed convex subset of the real locally convex space $(M^{sa}, \sigma w)$. Denote by the superscript circle the real polar set. Since

$$F^{\circ+} = \{\omega \in M_*^+ : \omega \le \varphi\}, \qquad F^{\circ+\circ+} = \{x \in M^+ : \sup_{\omega \le \varphi, \ \omega \in M_*^+} \omega(x) \le 1\},$$

it is enough to show $F^{\circ+\circ+}=F$. The positive part of the real polar of F is generally written as

$$F^{\circ +} = F^{\circ} \cap M_{\circ}^{+} = F^{\circ} \cap (-M^{+})^{\circ} = (F \cup -M^{+})^{\circ} = (F - M^{+})^{\circ}.$$

Consider a sequence of inclusions

$$F \subset \overline{F} \subset \overline{(F-M^+)^+} \subset \overline{(F-M^+)}^+ \subset (F-M^+)^{\circ \circ +} = F^{\circ + \circ +}.$$

The first, second, and forth inclusions are in fact surjective because F is closed, hereditary, and convex. So we claim that the reverse of the third inclusion $\overline{(F-M^+)^+} \subset \overline{(F-M^+)^+}$...

2 November 10

2.1 Hilbert algebras

Let A be a *-algebra together with an inner product, and H be its closure. Then, we have a *-homomorphism $\lambda : A \to B(H)$, and a densely defined anti-linear operator $S : A \to H$. We say A is a *left Hilbert algebra* if λ is non-degenerate and S is closable...? (closable and closure notations....)

The faithfulness of λ is deduced after the density of $A^{\prime 2}$ in H:

$$0 = \langle \lambda(\xi)\eta, \zeta \rangle = \langle \xi, \zeta F \eta \rangle, \qquad \eta \zeta \in A'.$$

Definition 2.1 (Left Hilbert algebra). A *left Hilbert algebra* is a *-algebra A together with an inner product such that A^2 is dense in A and the involution is closable. Then, we can induce the following additional devices:

- (i) the left multiplication defines a non-degenerate *-homomorphism $\lambda : A \to B(H)$, where $H := \overline{A}$,
- (ii) the involution defines by its closure a closed and densely defined anti-linear operator *S* on *H*.

The *left von Neumann algebra* of a left Hilbert algebra A is defined as $\lambda(A)''$.

Definition 2.2 (Right Hilbert algebra). Let *A* be a left Hilbert algebra. For $\eta \in H$, let $\rho(\eta) : A \to H$ be a densely defined operator such that $\rho(\eta)\xi := \lambda(\xi)\eta$ for $\xi \in A$, and let *F* be the adjoint of *S*. Define

$$B' := \{ \eta \in H \mid A \to A : \xi \mapsto \lambda(\xi) \eta \text{ is bounded} \} = \{ \eta \in H \mid \rho(\eta) \text{ is bounded} \},$$

$$D' := \{ \eta \in H \mid A \to \mathbb{C} : \xi \mapsto \langle \eta, S\xi \rangle \text{ is bounded} \} = \text{dom } F,$$

$$A' := B' \cap D'.$$

Proposition 2.3. Let A be a left Hilbert algebra.

- (a) $\rho(B') \subset \lambda(A)'$.
- (b) $\rho: B' \to B(H)$ preserves multiplication.
- (c) $\rho: D' \to \{\text{closed densely defined operators}\}\$ preserves involution.
- (d) The multiplication and the involution are compatible on A'.
- (e) B' is a module over $\lambda(A)'$ and $\rho(B')$ is a left ideal of $\lambda(A)'$.
- (f) $\rho(B')^*\rho(B') \subset \rho(A')$.
- (g) A'^2 is dense in H.
- (h) $\lambda(A)'' = \rho(A')'$.

In particular, (d) means A' is a *-algebra, (b), (c) mean that $\rho: A'^{op} \to B(H)$ is a *-homomorphism, and (g) implies that $\rho: A'^{op} \to B(H)$ is non-degenerate and F is densely defined, i.e. A' is indeed a right Hilbert algebra.

Proof. (a) It follows from

$$\lambda(\xi)\rho(\eta)\xi_0 = \lambda(\xi)\lambda(\xi_0)\eta = \lambda(\xi\xi_0)\eta = \rho(\eta)\xi\xi_0 = \rho(\eta)\lambda(\xi)\xi_0, \qquad \xi_0 \in A.$$

(b) By the part (a),

$$\rho(\eta\zeta)\xi = \rho(\rho(\zeta)\eta)\xi = \lambda(\xi)\rho(\zeta)\eta = \rho(\zeta)\lambda(\xi)\eta = \rho(\zeta)\rho(\eta)\xi, \qquad \eta, \zeta \in B', \ \xi \in A.$$

(c) It follows from

$$\begin{split} \langle \rho(F\eta)\xi,\xi\rangle &= \langle \lambda(\xi)F\eta,\xi\rangle = \langle F\eta,\lambda(S\xi)\xi\rangle = \langle F\eta,(S\xi)\xi\rangle \\ &= \langle S((S\xi)\xi),\eta\rangle = \langle (S\xi)\xi,\eta\rangle = \langle \lambda(S\xi)\xi,\eta\rangle \\ &= \langle \xi,\lambda(\xi)\eta\rangle = \langle \xi,\rho(\eta)\xi\rangle = \langle \rho(\eta)^*\xi,\xi\rangle, \qquad \eta\in D',\ \xi\in A. \end{split}$$

(d) By the part (c),

$$\begin{split} \langle F(\eta\zeta), \xi \rangle &= \langle F(\rho(\zeta)\eta), \xi \rangle \rangle = \langle S\xi, \rho(\zeta)\eta \rangle = \langle \rho(F\zeta)S\xi, \eta \rangle \\ &= \langle \lambda(S\xi)F\zeta, \eta \rangle = \langle F\zeta, \lambda(\xi)\eta \rangle = \langle F\zeta, \rho(\eta)\xi \rangle \\ &= \langle \rho(F\eta)F\zeta, \xi \rangle = \langle (F\zeta)(F\eta), \xi \rangle, \qquad \eta, \zeta \in A', \ \xi \in A. \end{split}$$

(e) Note that

$$\rho(y\eta)\xi = \lambda(\xi)y\eta = y\lambda(\xi)\eta = y\rho(\eta)\xi, \qquad y \in \lambda(A)', \ \eta \in B', \ \xi \in A.$$

Hence B' is a module over $\lambda(A)'$ because

$$\|\rho(y\eta)\xi\| = \|y\rho(\eta)\xi\| \le \|y\|\|\rho(\eta)\|\|\xi\|$$

implies $y\eta \in B'$ for $y \in \lambda(A)'$ and $\eta \in B'$, and $\rho(B')$ is a left ideal of $\lambda(A)'$ because $y\rho(\eta) = \rho(y\eta) \in \rho(B')$.

(f) We first claim $\rho(B')^*B' \subset A'$. For fixed $\eta, \zeta \in B'$, we have $\rho(\zeta)^*\eta \in D'$ since

$$\begin{aligned} |\langle \rho(\zeta)^* \eta, S\xi \rangle| &= |\langle \eta, \rho(\zeta) S\xi \rangle| = |\langle \eta, \lambda(S\xi) \zeta \rangle| = |\langle \lambda(\xi) \eta, \zeta \rangle| \\ &= |\langle \rho(\eta) \xi, \zeta \rangle| = |\langle \xi, \rho(\eta)^* \zeta \rangle| \le ||\rho(\eta)^* \zeta|||\xi||, \qquad \xi \in A, \end{aligned}$$

and we have $\rho(\zeta)^*\eta \in B'$ since B' is a module over $\lambda(A)'$, hence $\rho(\zeta)^*\eta \in A'$. Now we have $\rho(B')^*\rho(B') \subset \rho(A')$ since

$$\rho(\zeta)^* \rho(\eta) \xi = \rho(\zeta)^* \lambda(\xi) \eta = \lambda(\xi) \rho(\zeta)^* \eta = \rho(\rho(\zeta)^* \eta) \xi, \qquad \xi \in A$$

(g) Since D' is dense in H, it suffices to verify $D' \subset \overline{A'^2}$. Let $\eta \in D'$. Then, by (c), $\rho(\eta)$ has a densely defined adjoint $\rho(F\eta)$, it is closable. Denoting its closure by the same notation $\rho(\eta)$, we can write down the polar decomposition $\rho(\eta) = vh = kv$. To control the unboundedness of $\rho(\eta)$, we introduce $f \in C_c((0,\infty))^+$ to cutoff $\rho(\eta)$.

First, we have $f(h)F\eta \in B'$ since

$$\|\lambda(\xi)f(h)F\eta\| = \|f(h)\lambda(\xi)F\eta\| = \|f(h)\rho(F\eta)\xi\|$$

$$= \|f(h)\rho(\eta)^*\xi\| = \|f(h)h\nu^*\xi\| \le \sup_{t>0} tf(t)\|\xi\|, \qquad \xi \in A.$$

We have $\nu f(h)F\eta \in B'$ since B' is a module over $\lambda(A)'$. Since

$$\rho(\nu f(h)F\eta) = \nu \rho(f(h)F\eta) = \nu f(h)(\nu h)^* = \nu f(h)h\nu^* = f(k)k,$$

we have $kf(k) \in \rho(B')$, and in fact we also have $f(k) \in \rho(B')$ because $\rho(B')$ is a left ideal of $\lambda(A)'$ and f(t) = g(t)(tf(t)) if we take $g \in C_c((0, \infty))$ such that $g(t) = t^{-1}$ on the support of f. Applying the above arguments for $f^{\frac{1}{4}} \in C_c((0, \infty))$, we may assume

$$f(k) = (f(k)^{\frac{1}{4}})^4 \in \rho(B)^* \rho(B) \rho(B)^* \rho(B) \subset \rho(A^2).$$

Take $\zeta_1, \zeta_2 \in A'$ such that $f(k) = \rho(\zeta_1 \zeta_2)$. For $\eta, \zeta_1 \in D'$, we have $\eta \zeta_1 \in D'$ because D' is multiplicatively closed, and $\eta \zeta_1 \in B'$ because B' is a left module of $\lambda(A)'$, so $\eta \zeta_1 \in A'$ by definition of A'. Then,

$$f(k)\eta = \rho(\zeta_1\zeta_2)\eta = (\eta\zeta_1)\zeta_2 \in A^2$$
.

If we construct a non-decreasing net $f_{\alpha} \in C_c((0, \infty))$ such that $\sup_{\alpha} f_{\alpha} = \mathbf{1}_{(0,\infty)}$, then the strong limit implies

$$\lim_{\alpha} f_{\alpha}(k)\eta = \mathbf{1}_{(0,\infty)}(k)\eta = s(k)\eta = s_r(\rho(F\eta))\eta = s_l(\rho(\eta))\eta.$$

Here we use the non-degeneracy of λ to verify η belongs to the closure of the range of $\rho(\eta)$, i.e. since $\mathrm{id}_H \in \lambda(A)''$, we have a net $\xi_\alpha \in A$ such that $\lambda(\xi_\alpha) \to \mathrm{id}_H$ strongly so that $\lambda(\xi_\alpha) \eta \to \eta$. It implies that $\eta \in \overline{\lambda(A)\eta} = \overline{\rho(\eta)A}$ and $s_l(\rho(\eta))\eta = \eta$. Therefore, $\eta = s_l(\rho(\eta))\eta \in \overline{A'^2}$.

(h) One direction is clear, i.e. $\rho(A') \subset \rho(B') \subset \lambda(A)'$ implies $\rho(A')'' \subset \lambda(A)'$. Conversely, let $y \in \lambda(A)'$. By the part (g), $\rho: A'^{\text{op}} \to B(H)$ is non-degenerate and the σ -weak closure of $\rho(A')$ contains id_H , so there is a net $\eta_\alpha \in B'$ such that $y = \lim_\alpha \rho(\eta_\alpha)^* y \rho(\eta_\alpha) \in (\rho(B')^* \rho(B'))'' \subset \rho(A')''$, so we are done.

Definition 2.4 (Full Hilbert algebra). Let A be a left Hilbert algebra. Symmetrically as above, starting from the right Hilbert algebra A', we can construct a left Hilbert algebra A''. We say A is full if A = A''.

Example 2.5 (Commutative full Hilbert algebras). If (X, μ) is a σ -finite measure space, then $L^2(X) \cap L^{\infty}(X)$ is a full Hilbert algebra. If G is a locally compact abelian group, then $A := \mathcal{F}^{-1}(L^2(\widehat{G}) \cap L^{\infty}(\widehat{G}))$ is a full Hilbert algebra, where $\mathcal{F}: L^2(G) \to L^2(\widehat{G})$ is the Fourier transform.

2.2 Modular operator and conjugation

Definition 2.6 (Modular operator and conjugation). Let A be a left Hilbert algebra. Denote the polar decomposition of S by $S = J\Delta^{\frac{1}{2}}$. The unbounded operators Δ and J are called the *modular operator* and the *modular conjugation*.

Corollary 2.7. From the polar decomposition theorem for unbounded (anti-)linear operators, we have

- (a) S is injective with $S = S^{-1}$ and $D = \text{dom } S = \text{dom } \Delta^{\frac{1}{2}}$.
- (b) *F* is injective with $F = F^{-1}$ and $D' = \text{dom } F = \text{dom } \Delta^{-\frac{1}{2}}$.
- (c) Δ is an injective positive self-adjoint operator.
- (d) *J* is a conjugation, i.e. an anti-linear isometric involution.
- (e) $S = J\Delta^{\frac{1}{2}} = \Delta^{-\frac{1}{2}}J$, $F = J\Delta^{-\frac{1}{2}} = \Delta^{\frac{1}{2}}J$, and $J\Delta J = \Delta^{-1}$.

Example 2.8 (Group von Neumann algebra). For a locally compact group G, the set $A := C_c(G)$ together with a left Haar measure on G has the following left Hilbert algebra structure

$$\langle \xi_1, \xi_2 \rangle := \int \overline{\xi_2(s)} \xi_1(s) \, ds, \qquad (\xi_1 \xi_2)(s) := \int_G \xi_1(t) \xi_2(t^{-1}s) \, dt, \qquad \xi^*(s) := \Delta(s^{-1}) \overline{\xi(s^{-1})}.$$

We have S, F, Δ , and J given by

$$S\xi(s) := \Delta(s^{-1})\overline{\xi(s^{-1})}, \qquad F\xi(s) = \overline{\xi(s^{-1})},$$

$$\Delta\xi(s) = \Delta(s)\xi(s), \qquad J\xi(s) = \Delta(s)^{-\frac{1}{2}}\overline{\xi(s^{-1})},$$

and they have the following norm formulas

$$\|S\xi\|_2 = \|\Delta^{\frac{1}{2}}\xi\|_2, \quad \|F\xi\|_2 = \|\Delta^{-\frac{1}{2}}\xi\|_2, \quad \|S\xi\|_1 = \|\xi\|_1, \quad \|F\xi\|_1 = \|\Delta^{-1}\xi\|_1.$$

The left von Neumann algebra $\lambda(A)''$ is called the *group von Neumann algebra*.

Example 2.9 (Cyclic separating vector). Let M be a von Neumann algebra on H together with a cyclic separating vector $\Omega \in H$. Then, $A := M\Omega$ has the following left Hilbert algebra structure:

$$\langle x\Omega, y\Omega \rangle$$
 is defined as it is, $(x\Omega)(y\Omega) := xy\Omega, (x\Omega)^* := x^*\Omega.$

There is no specific description of Δ and J in general, but it is known that

 $D = \{c\Omega : c \text{ closed densely defined on } H \text{ and affiliated with } M, \Omega \in \text{dom } c \cap \text{dom } c*\}.$

2.3 Faithful normal semi-finite weights

Definition 2.10. Let φ be a weight on a von Neumann algebra M. We say φ is *faithful* if $\varphi(x^*x) = 0$ implies x = 0 for $x \in \mathfrak{n}$. We say φ is *semi-finite* if \mathfrak{m} is σ -weakly dense in M. Recall that a weight φ on a von Neumann algebra M is normal if and only if it is obtained by the pointwise supremum of a set of normal positive linear functionals.

In the proofs of theorems of this section, the following diagram might be helpful:

$$\mathfrak{m} = \mathfrak{n}^* \mathfrak{n} \quad \subset \quad \mathfrak{n} \cap \mathfrak{n}^* \quad \subset \quad \mathfrak{n} \quad \subset \quad \pi(M) \quad \subset \quad B(H)$$

$$\lambda \uparrow \qquad \qquad \lambda \uparrow \downarrow \psi \qquad \qquad \qquad A \quad \subset \quad B \quad \subset \quad H.$$

Recall that for a weight φ on a von Neumann algebra M and its semi-cyclic representation (π, ψ) of M we have $\varphi(x^*x) = \|\psi(x)\|^2$ for $x \in \mathfrak{n}$.

Theorem 2.11. Let M be a von Neumann algebra. If A is a full left Hilbert algebra together with a faithful normal non-degenerate representation $\pi: M \to B(H)$ such that $\lambda(A)'' = \pi(M)$, then

$$\varphi(x^*x) := \begin{cases} \|\xi\|^2 & \text{if } \pi(x) = \lambda(\xi) \in \lambda(B), \\ \infty & \text{otherwise,} \end{cases}$$

is a faithful normal semi-finite weight on M.

Proof. We use the notation $\pi(x) = x$. We first check that the weight φ is well-defined. Let $x_1 = \lambda(\xi_1), x_2 = \lambda(\xi_2) \in \lambda(B)$ such that $x_1^*x_1 = x_2^*x_2$. Since $x_1, x_2 \in M$, we have a partial isometry $v \in M$ such that $x_2 = vx_1$ and $v^*v = s_l(x_1)$, and it is not difficult to see $\xi_2 = v\xi_1$. As we have seen in the proof of the part (g) of Proposition 2.3, we know $s_l(x)\xi_1 = \xi_1$, so

$$\|\xi_2\|^2 = \langle \xi_2, \xi_2 \rangle = \langle \nu \xi_1, \nu \xi_1 \rangle = \langle \nu^* \nu \xi_1, \xi_1 \rangle = \langle \xi_1, \xi_1 \rangle = \|\xi_1\|^2$$

which proves the well-definedness.

With this weight φ , we can see

$$\mathfrak{n} = \lambda(B), \quad \mathfrak{n} \cap \mathfrak{n}^* = \lambda(A), \quad \mathfrak{m} = \lambda(B)^* \lambda(B).$$

The first one is by definition of φ , and the third one is by definition of m. Since A is full so that $A = B \cap D$, λ is injective, $\lambda(A)^* = \lambda(A)$, and $\lambda(D)^* = \lambda(D)$, we have $\lambda(A) = \lambda(B) \cap \lambda(D) = \lambda(B)^* \cap \lambda(D)$, which implies $\lambda(A) = \lambda(B) \cap \lambda(B)^* \cap \lambda(D)$. Because $\lambda(\xi_1) = \lambda(\xi_2)^*$ implies

$$\begin{aligned} |\langle \xi_1, F(\eta \zeta) \rangle| &= |\langle \xi_1, \rho(F\eta)F\zeta \rangle| = \langle \rho(\eta)\xi_1, F\zeta \rangle| = |\langle \lambda(\xi_1)\eta, F\zeta \rangle| \\ &= |\langle \eta, \lambda(\xi_2)F\zeta \rangle| = |\langle \eta, \rho(F\zeta)\xi_2 \rangle| = |\langle \rho(\zeta)\eta, \xi_2 \rangle| \\ &= |\langle \eta\zeta, \xi_2 \rangle| \le ||\eta\zeta|| ||\xi_2||, \qquad \eta, \zeta \in A', \end{aligned}$$

we have $\xi_1 \in D$ due to the density of A'^2 in H, so $\lambda(B) \cap \lambda(B)^* \subset \lambda(D)$, hence the second equality follows. From now in the rest of proof, we will always denote $y = \rho(\eta)$ and $z = \rho(\zeta)$ for $y, z \in \mathfrak{n}'$.

The weight φ is clearly faithful, and semi-finiteness is because $x \in M$ is approximated by a net $\lambda(\xi_{\alpha})x\lambda(\xi_{\alpha}) \in \lambda(B)^*\lambda(B) = \mathfrak{m}$, where $\lambda(\xi_{\alpha}) \in \lambda(B)$ converges σ -weakly to id_H . To verify the normality of φ , we will show

$$\varphi(x^*x) = \sup_{y \in \mathfrak{n}_1'} \omega_{\eta}(x^*x), \qquad x \in \mathfrak{n},$$

where $\mathfrak{n}' := \rho(B')$.

(\geq) We may assume $x = \lambda(\xi) \in \mathfrak{n} = \lambda(B)$ so that $\varphi(x^*x) < \infty$. Since the unit ball \mathfrak{n}'_1 has a net y_α that converges to id_H strongly by the Kaplansky density theorem, we have an inequality

$$\omega_{n_{\alpha}}(x^*x) = \|x\eta_{\alpha}\|^2 = \|\lambda(\xi)\eta_{\alpha}\|^2 = \|\rho(\eta_{\alpha})\xi\|^2 = \|y_{\alpha}\xi\|^2 \le \|\xi\|^2 = \varphi(x^*x),$$

in which the equality condition is attained at its limit.

(\leq) Suppose $x \in M$ is taken such that the right-hand side $\sup_{y \in \mathfrak{n}_1'} \omega_{\eta}(x^*x)$ is finite. If we show $x \in \mathfrak{n}$, then we are done from $\varphi(x^*x) < \infty$ by the previous argument. To motivate the strategy, consider the opposite weight

$$\varphi'(y^*y) := \begin{cases} \|\eta\|^2 & \text{if } y \in \rho(B'), \\ \infty & \text{otherwise,} \end{cases}$$

and the associated linear map

$$\theta'^*: M \to \mathfrak{m}'^{\#}: x^*x \mapsto (z^*y \mapsto \langle x^*x\eta, \zeta \rangle), \quad y, z \in \mathfrak{n}',$$

where we can check $\mathfrak{m}' = \rho(B')^*\rho(B')$. The idea is to show a well-designed linear functional $l \in \mathfrak{m}'^{\#}$ such that $l = \theta'^*(x^*x)$ is contained in the image $\theta'^*(\mathfrak{m})$ using the assumption that the right-hand side is finite to verify $x \in \mathfrak{n}$.

Define a linear functional

$$l: \mathfrak{m}' \to \mathbb{C}: z^* y \mapsto \langle x^* x \eta, \zeta \rangle.$$

Then, by the assumption we have

$$||l|| = \sup_{y \in \mathfrak{n}_1'} \langle x^* x \eta, \eta \rangle = \sup_{y \in \mathfrak{n}_1'} \omega_{\eta}(x^* x) < \infty,$$

and

$$|l(y)| \le ||l||l(y^*y)^{\frac{1}{2}} = ||l|||x\eta||, \quad y \in \mathfrak{n}'$$

implies the well-definedness as well as boundedness of the linear functional $\overline{xH} \to \mathbb{C} : x\eta \mapsto l(y)$ for any $\eta \in H$, and it follows the existence of $\xi \in \overline{xH}$ such that

$$l(y) = \langle x\eta, \xi \rangle, \quad y \in \mathfrak{n}'$$

by the Riesz representation theorem on \overline{xH} . We have $\lambda(\xi)\zeta \in \overline{xH}$ and

$$\langle x\eta, x\zeta \rangle = l(z^*y) = \langle x\rho^{-1}(z^*y), \xi \rangle = \langle xz^*\eta, \xi \rangle$$
$$= \langle z^*x\eta, \xi \rangle = \langle x\eta, z\xi \rangle = \langle x\eta, \rho(\zeta)\xi \rangle = \langle x\eta, \lambda(\xi)\zeta \rangle, \qquad y, z \in \mathfrak{n}',$$

hence $x = \lambda(\xi)$. The vector ξ is left bounded by definition and $x = \lambda(\xi) \in \lambda(B) = \mathfrak{n}$.

Theorem 2.12. Let M be a von Neumann algebra. If φ is a faithful normal semi-finite weight on M and (π, ψ) is the associated semi-cyclic representation of M, then $A := \psi(\mathfrak{n} \cap \mathfrak{n}^*)$ is a full left Hilbert algebra with

$$\langle \psi(x_1), \psi(x_2) \rangle := \varphi(x_2^*x_1), \qquad \psi(x_1)\psi(x_2) := \psi(x_1x_2), \qquad \psi(x)^* := \psi(x^*),$$

such that $\lambda(A)'' = \pi(M)$.

Proof. We use the notation $\pi(x) = x$. It does not make any confusion because the semi-cyclic representation $\pi: M \to B(H)$ is always unital and is faithful due to the assumption that φ is faithful. We clearly see that A is a *-algebra and the left multiplication provides a *-homomorphism $\lambda: A \to B(H)$. By the construction of the semi-cyclic representation associated to φ , A is dense in B. We need to show the non-degeneracy of B, the closability of the involution, and the fullness of B.

(non-degeneracy) Since φ is semi-finite, there is a net x_α in $(\mathfrak{n} \cap \mathfrak{n}^*)_1$ converges strongly to the identity of M by the Kaplansky density theorem. Then, it follows that λ is non-degenerate from

$$\lambda(\psi(x_a))\psi(x) = \psi(x_a)\psi(x) = \psi(x_ax) = x_a\psi(x) \to \psi(x), \qquad x \in \mathfrak{n} \cap \mathfrak{n}^*.$$

(closability) We need to prove the domain of the adjoint

$$D' := \{ \eta \in H \mid A \to \mathbb{C} : \psi(x) \mapsto \langle \eta, \psi(x^*) \rangle \text{ is bounded} \}$$

is dense in H. Let

$$\Phi := \{ \omega \in M_*^+ : (1 + \varepsilon)\omega \le \varphi \text{ for some } \varepsilon > 0 \}.$$

Note that the normality of φ says that $\varphi(x^*x) = \sup_{\omega \in \Phi} \omega(x^*x)$ for any $x \in M$. For each $\omega \in \Phi$, by the bounded Radon-Nikodym theorem, there is $h_{\omega} \in M'^+$ such that $||h_{\omega}|| < 1$ and

$$\omega(x^*x) = \langle h_{\omega}\psi(x), \psi(x) \rangle, \qquad x \in \mathfrak{n}.$$

Also, if we take a net $x_{\alpha} \in \mathfrak{n}_1$ that converges σ -strongly to the identity of M using the strong density of \mathfrak{n} in M, the Kaplansky density, and the coincidence of strong and the σ -strong topologies on the bounded part, then we have a σ -weak limit $\lim_{\alpha,\beta} |x_{\alpha} - x_{\beta}|^2 = 0$ so that by the normality of ω we obtain

$$\lim_{\alpha,\beta} \|h_{\omega}^{\frac{1}{2}} \psi(x_{\alpha}) - h_{\omega}^{\frac{1}{2}} \psi(x_{\beta})\|^{2} = \lim_{\alpha,\beta} \omega(|x_{\alpha} - x_{\beta}|^{2}) = 0.$$

Thus, the vector $\psi_{\omega} := \lim_{\alpha} h_{\omega}^{\frac{1}{2}} \psi(x_{\alpha})$ can be defined, and in particular, we have $h_{\omega}^{\frac{1}{2}} \psi(x) = x \psi_{\omega}$ for $x \in \mathfrak{n}$ and $\omega = \omega_{\psi_{\omega}}$.

If $\eta = h_{\omega_2}^{\frac{1}{2}} y \psi_{\omega_1}$ for some $y \in M'$ and $\omega_1, \omega_2 \in \Phi$, then

$$\begin{split} |\langle \eta, \psi(x^*) \rangle| &= |\langle h_{\omega_2}^{\frac{1}{2}} y \psi_{\omega_1}, \psi(x^*) \rangle| = |\langle y \psi_{\omega_1}, h_{\omega_2}^{\frac{1}{2}} \psi(x^*) \rangle| = |\langle y \psi_{\omega_1}, x^* \psi_{\omega_2} \rangle| \\ &= |\langle y x \psi_{\omega}, \psi_{\omega_2} \rangle| = |\langle y h_{\omega_1}^{\frac{1}{2}} \psi(x), \psi_{\omega_2} \rangle| = |\langle \psi(x), h_{\omega_1}^{\frac{1}{2}} y^* \psi_{\omega_2} \rangle| \\ &\leq \|\psi(x)\| \|h_{\omega_1}^{\frac{1}{2}} y^* \psi_{\omega_2}\|, \qquad x \in \mathfrak{n} \cap \mathfrak{n}^*, \end{split}$$

which deduces that $\eta \in D'$. Therefore, it suffices to show the following space is dense in H:

$$\{h_{\omega_2}^{\frac{1}{2}} y \psi_{\omega_1} : \omega_1, \omega_2 \in \Phi, y \in M'\}.$$

Thanks to the normality of φ , we can write

$$\begin{split} \langle \psi(x), \psi(x) \rangle &= \|\psi(x)\|^2 = \varphi(x^*x) = \sup_{\omega \in \Phi} \omega(x^*x) \\ &= \sup_{\omega \in \Phi} \|x\psi_{\omega}\|^2 = \sup_{\omega \in \Phi} \|h_{\omega}^{\frac{1}{2}}\psi(x)\|^2 = \sup_{\omega \in \Phi} \langle h_{\omega}\psi(x), \psi(x) \rangle, \qquad x \in \mathfrak{n} \cap \mathfrak{n}^*. \end{split}$$

Because A in H, for any $\xi \in H$ and $\varepsilon > 0$ there is $x \in \mathfrak{n} \cap \mathfrak{n}^*$ such that $\|\xi - \psi(x)\| < \varepsilon$, so the inequality

$$\langle (1 - h_{\omega})\xi, \xi \rangle \le \varepsilon(\|\xi\| + \|\psi(x)\|) + \langle (1 - h_{\omega})\psi(x), \psi(x) \rangle$$

deduces $\inf_{\omega \in \Phi} \langle (1-h_\omega)\xi, \xi \rangle = 0$ by limiting $\varepsilon \to 0$ and taking infinimum on $\omega \in \Phi$. In other words, for each $\xi \in H$ and $\varepsilon > 0$, we can find $\omega \in \Phi$ such that $\langle (1-h_\omega)\xi, \xi \rangle < \varepsilon$. At this point, we claim the set $\{h_\omega : \omega \in \Phi\}$ is upward directed. If the claim is true, then we can construct an increasing net ω_α in Φ such that h_{ω_α} converges weakly to the identity of M, and also strongly by the nature of increasing nets. To prove the claim, take $h_1 = h_{\omega_1}$ and $h_2 = h_{\omega_2}$ with $\omega_1, \omega_2 \in \Phi$. Introduce a operator monotone function f(t) := t/(1+t) and its inverse $f^{-1}(t) = t/(1-t)$ to define

$$h_0 := f(f^{-1}(h_1) + f^{-1}(h_2)).$$

Then, we have $h_0 \ge h_1$, $h_0 \ge h_2$, and $||h_0|| < 1$. Consider a linear functional

$$\omega_0: \mathfrak{n} \to \mathbb{C}: x \mapsto \langle h_0 \psi(x), \psi(x) \rangle.$$

Write

$$\begin{split} \omega_0(x^*x) & \leq \langle f^{-1}(h_1)\psi(x), \psi(x)\rangle + \langle f^{-1}(h_2)\psi(x), \psi(x)\rangle \\ & \leq (1 - \|h_1\|)^{-1} \langle h_1\psi(x), \psi(x)\rangle + (1 - \|h_2\|)^{-1} \langle h_2\psi(x), \psi(x)\rangle \\ & = (1 - \|h_1\|)^{-1} \omega_1(x^*x) + (1 - \|h_2\|)^{-1} \omega_2(x^*x), \qquad x \in \mathfrak{n}. \end{split}$$

Then, since ω_1 and ω_2 are normal, we can define $\psi_0 := \lim_{\alpha} h_0^{\frac{1}{2}} \psi(x_{\alpha}) \in H$ for a σ -strongly convergent net $x_{\alpha} \in \mathfrak{n}_1$ to the identity of M as we have taken above, and we have the vector functional $\omega_0 = \omega_{\psi_0}$. Henceforth, ω_0 is extended to a normal positive linear functional on the whole M, and finally the norm condition $||h_0|| < 1$ tells us that $\omega_0 \in \Phi$, so the claim is true.

Now the problem is reduced to the density of $\{y\psi_{\omega}: \omega \in \Phi, \ y \in M'\}$ in H. Let $p \in B(H)$ be the projection to the closure of this space. Then, $p\psi_{\omega} = \psi_{\omega}$ for every $\omega \in \Phi$. Since the space is left invariant under the action of the self-adjoint set M', we have $p \in M$. Then,

$$\varphi(1-p) = \sup_{\omega \in \Phi} \omega(1-p) = \sup_{\omega \in \Phi} \langle (1-p)\psi_{\omega}, \psi_{\omega} \rangle = 0$$

implies p = 1, hence the density.

(fullness) We have $\lambda(\psi(x)) = x$ for $x \in \mathfrak{n} \cap \mathfrak{n}^*$ since $\psi(\mathfrak{n} \cap \mathfrak{n}^*) = A$ is dense in H and

$$x_1\psi(x_2) = \psi(x_1x_2) = \psi(x_1)\psi(x_2) = \lambda(\psi(x_1))\psi(x_2), \qquad x_1, x_2 \in \mathfrak{n} \cap \mathfrak{n}^*.$$

Also we have for $\xi = \psi(x) \in A$ that

$$\psi(\lambda(\xi)) = \psi(\lambda(\psi(\xi))) = \psi(x) = \xi.$$

For $\xi \in B$ so that $\lambda(\xi) \in M$, since

$$\varphi(\lambda(\xi)^*\lambda(\xi)) = \|\psi(\lambda(\xi))\|^2 = \|\xi\|^2 < \infty,$$

we get $\lambda(B) \subset \mathfrak{n}$. Therefore, *A* is full by

$$\lambda(A'') = \lambda(B) \cap \lambda(B)^* \subset \mathfrak{n} \cap \mathfrak{n}^* = \lambda(A).$$

Corollary 2.13. The operations giving a faithful normal semi-finite weight and a full left Hilbert algebra in the above two theorems are mutually inverses of each other.

Proposition 2.14. Every von Neumann algebra admits a faithful normal semi-finite weight.

Proof. Let M be a von Neumann algebra and let $\{\omega_i\}_{i\in I}$ be a maximal family of normal states on M with orthogonal support projections $p_i := s(\omega_i)$. Here, the support projection $s(\omega)$ of a normal state ω is the minimal projection p such that $\omega(px) = \omega(x) = \omega(xp)$ for all $x \in M$. Since every countably decomposable projection p is a support of a normal state, a faithful normal state on pMp, we have $\sum_i p_i = 1$. Define a weight φ by

$$\varphi(x) := \sum_{i} \omega_i(x).$$

It is faithful because $\varphi(x) = 0$ with $x \ge 0$ means $\omega_i(x) = 0$ and $p_i x s p_i = 0$ for all i, and it implies

$$x^{\frac{1}{2}} = x^{\frac{1}{2}} \sum_{i} p_{i} = \sum_{i} x^{\frac{1}{2}} p_{i} = 0.$$

It is normal because it is completely additive. It is semi-finite because $p_J \uparrow 1$ with $\varphi(p_J) < \infty$ as $J \to I$, where $p_J := \sum_{i \in J} p_i$ and J runs through finite subsets of I.

Example 2.15. For a locally compact abelian group G, the corresponding f.n.s. weight is a suitably normalized Haar measure on the Pontryagin dual group \widehat{G} , called the Plancherel measure, not the Haar measure on the original group G. For a locally compact non-abelian group G, there is no characterization of the corresponding f.n.s. weight as a measure because the left Hilbert algebra $(C_c(G), *)$ is not commutative.

3 December 20

3.1 Tomita-Takesaki commutation theorem

1.17, 1.18, 1.20, 1.21, 1.22

Theorem 3.1 (Tomita-Takesaki commutation theorem). Goal: $\Delta^{it}R_l(A)\Delta^{-it}=R_l(A)$ and $JR_l(A)J=R_l(A)'$. 1.19

modular automorphism groups and Tomita algebras centralizer, Connes cocyle Chapter IX: standard form, unitary implementation Chapter X: crossed product duality, W^* -dynamical system

4 January 17

abelian group

5 February 9

Type III