Probability

Jonathan Gai

January 21, 2022

Contents

1 Formal Setup 1.1 Examples of Probability Spaces	1 2	
Lecture 1: Probability Space		20 Jan. 11:00
Example. If we have a die with outcomes $1, 2, \ldots, 6$.		
1. $\mathbb{P}(2) = \frac{1}{6}$		
2. $\mathbb{P}(\text{multiple of } 3) = \frac{2}{6} = \frac{1}{3}$		
3. $\mathbb{P}(\text{pair or a multiple of 3}) = \frac{4}{6} = \frac{2}{3}$		
1 Formal Setup		

ormai Setup

We try to define a probability space rigorously in this section.

Definition 1.1 (Probability Space). We have the following,

- 1. Sample space Ω , a set of outcomes.
- 2. \mathcal{F} , a collection of subsets of Ω (called events).
- 3. \mathcal{F} is a σ -algebra if
 - (a) $\mathbf{F1}$: $\Omega \in \mathcal{F}$
 - (b) **F2**: if $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$
 - (c) **F3**: For all countable collections $\{A_n\}$ in \mathcal{F} , $\cup_n A_n \in \mathcal{F}$.

Given σ -algebra \mathcal{F} on Ω , function $\mathbb{P}: \mathcal{F} \to [0,1]$ is a probability measure if

- 1. **P1**: The probability function is nonnegative.
- 2. **P2**: $\mathbb{P}(\Omega) = 1$
- 3. **P3**: For all countable collection $\{A_n\}$ of disjoint events in \mathcal{F} , we have $\mathbb{P}(\cup_n A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n).$

Then $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.

Problem. Why $\mathbb{P}: \mathcal{F} \to [0,1]$, not $\mathbb{P}: \Omega \to [0,1]$?

Remark. When Ω is finite or countable,

- 1. In general: $\mathcal{F} = P(\Omega)$.
- 2. $\mathbb{P}(2)$ is shorthand for $\mathbb{P}(\{2\})$.
- 3. \mathbb{P} is determined by $\mathbb{P}(\{w\}), \forall w \in \Omega$.

Remark. When Ω is uncountable, a probability space behaves differently, as shown in the following example.

Example. If $\Omega = [0, 1]$, and we want to choose a real number, all equally likely.

If $\mathbb{P}\{0\} = \alpha > 0$, then $\mathbb{P}(\{0, 1, \frac{1}{2}, \dots, \frac{1}{n}\} = n\alpha)$. This cannot happen if n large, because we would have $\mathbb{P} > 1$. So $\mathbb{P}(\{0\}) = 0$ or undefined.

Property. From the axioms, we want to prove the following properties of a probability space.

1. $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$.

Proof.
$$A, A^c$$
 disjoint. $A \cup A^c = \Omega$. So $\mathbb{P}(A) + \mathbb{P}(A^c) = \mathbb{P}(\Omega) = 1$

- $2. \ \mathbb{P}(\varnothing) = 0$
- 3. If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 4. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

1.1 Examples of Probability Spaces

Example. Here we list some concrete examples of probability spaces.

1. Ω finite, $\Omega = \{w_1, \dots, w_n\}$, $\mathcal{F} = \text{all subsets under uniform choice.}$

$$\mathbb{P}: \mathcal{F} \to [0,1], \mathbb{P}(A) = \frac{|A|}{|\Omega|}.$$
 In particular: $\mathbb{P}(\{w\}) = \frac{1}{|\Omega|} \forall w \in \Omega.$

2. If we are choosing without replacement n indistinguishable marbles that are labelled $\{1, \ldots, n\}$. Pick $k \leq n$ marbles uniformly at random.

Here we have
$$\Omega = \{A \subseteq \{1, \dots, n\}, |A| = k, |\Omega| = \binom{n}{k}$$
.

3. If we have a well-shuffled deck of cards, and we uniformly chose permutation of 52 cards.

$$\Omega = \{\text{all permutations of 52 cards}\}. |\Omega| = 52!.$$

Then we have

$$\mathbb{P}(\text{first three cards have the same suit}) = \frac{52 \cdot 12 \cdot 11 \cdot 49!}{52!} = \frac{22}{425}$$