Lecture 3

Residual Analysis + Generalized Linear Models

Colin Rundel 1/23/2018

Residual Analysis

Atmospheric CO₂ (ppm) from Mauna Loa

Where to start?

Well, it looks like stuff is going up on average \dots

Where to start?

Well, it looks like stuff is going up on average ...

and then?

Well there is some periodicity lets add the month \dots

and then?

Well there is some periodicity lets add the month ...

and then and then?

There is still some long term trend in the data, maybe a fancy polynomial can help \dots

and then and then?

There is still some long term trend in the data, maybe a fancy polynomial can help ... $\ell_m(y \sim poly(y_{acr}, 5) - poly(y_{acr$

Putting it all together ...

```
l final = lm(co2~date + month + polv(date.5), data=co2 df)
summarv(l final)
##
## Call:
## lm(formula = co2 ~ date + month + poly(date, 5), data = co2 df)
## Residuals:
##
       Min
                 1Q Median
                                          Max
                                   30
  -0.72022 -0.19169 -0.00638 0.17565 1.06026
##
## Coefficients: (1 not defined because of singularities)
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 -2.587e+03 1.460e+01 -177.174 < 2e-16 ***
## date
                 1.479e+00 7.334e-03 201.649 < 2e-16 ***
## monthAug
                 -4.155e+00 1.346e-01 -30.880 < 2e-16 ***
## monthDec
                 -3.566e+00 1.350e-01 -26.404 < 2e-16 ***
## monthFeb
                 -2.022e+00 1.345e-01 -15.041 < 2e-16 ***
## monthJan
                 -2.729e+00 1.345e-01 -20.286 < 2e-16 ***
## monthJul
                 -2.018e+00 1.345e-01 -15.003 < 2e-16 ***
## monthJun
                 -3.136e-01 1.345e-01 -2.332 0.021117 *
                 -1.233e+00 1.344e-01 -9.175 5.54e-16 ***
## monthMar
## monthMay
                4.881e-01 1.344e-01 3.631 0.000396 ***
               -4.799e+00 1.349e-01 -35.577 < 2e-16 ***
## monthNov
## monthOct
                 -6.102e+00 1.348e-01 -45.282 < 2e-16 ***
## monthSep
                 -6.036e+00
                            1.346e-01 -44.832
                                               < 2e-16 ***
## polv(date, 5)1
                         NA
                                   NA
                                            NA
                                                     NA
## poly(date, 5)2 -1.920e+00 3.427e-01 -5.602 1.09e-07 ***
## polv(date, 5)3 3.920e+00
                            3.451e-01
                                       11.358 < 2e-16 ***
## polv(date, 5)4 8.946e-01
                            3.428e-01
                                       2.609 0.010062 *
## poly(date, 5)5 -4.340e+00 3.462e-01 -12.535 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3427 on 139 degrees of freedom
## Multiple R-squared: 0.997, Adjusted R-squared: 0.9966
## F-statistic: 2872 on 16 and 139 DF. p-value: < 2.2e-16
```

Final fit + Residualss

Generalized Linear Models

Background

A generalized linear model has three key components:

- 1. a probability distribution (from the exponential family) that describes your response variable
- 2. a linear predictor $\eta = \mathbf{X}oldsymbol{eta}$,
- 3. and a link function g such that $g(E(\mathbf{Y}|\mathbf{X})) = \eta$.

Poisson Regression

This is a special case of a generalized linear model for count data where we assume the outcome variable follows a poisson distribution (mean = variance).

$$Y_{i} \sim \operatorname{Poisson}(\lambda_{i})$$

$$\log E(Y_{i}|\mathbf{X}_{i\cdot}) = \log \lambda_{i} = \mathbf{X}_{i\cdot}\boldsymbol{\beta}$$

$$\lambda = e^{\mathbf{X}_{i\cdot}\boldsymbol{\beta}}$$

$$E(Y_{i\cdot}) = \lambda_{i\cdot}$$

$$V_{e,\cdot} (Y_{i\cdot}) = \lambda_{i\cdot}$$

11

Example - AIDS in Belgium

These data represent the total number of new AIDS cases reported in Belgium during the early stages of the epidemic.

Frequentist glm fit

```
g = glm(cases~year, data=aids, family=poisson)
pred = data_frame(year=seq(1981,1993,by=0.1)) %>%
    mutate(cases = predict(g, newdata=., type = "response"))
```


Residuals?

The naive approach is to use standard residuals,

$$r_i = Y_i - E(Y_i|X) = \underbrace{Y_i - \hat{\lambda}_i}$$

The naive approach is to use standard residuals,

$$r_i = Y_i - E(Y_i|X) = Y_i - \hat{\lambda}_i$$

```
aids = aids %>%
  mutate(pred = predict(g, newdata=., type = "response")) %>%
  mutate(standard = cases - pred)
```

ggplot(aids, aes(x=year, y=standard)) +
 geom_point() + geom_segment(aes(xend=year, yend=0))

Accounting for variability

Pearson residuals:

$$r_i = \frac{Y_i - E(Y_i|X)}{\sqrt{Var(Y_i|X)}} = \frac{Y_i - \hat{\lambda}_i}{\sqrt{\hat{\lambda}_i}}$$

Accounting for variability

Pearson residuals:

$$r_i = \frac{Y_i - E(Y_i|X)}{\sqrt{Var(Y_i|X)}} = \frac{Y_i - \hat{\lambda}_i}{\sqrt{\hat{\lambda}_i}}$$

```
aids = aids %>%
  mutate(pearson = (cases - pred)/sqrt(pred))

ggplot(aids, aes(x=year, y=pearson)) +
  geom_point() + geom_segment(aes(xend=year, yend=0))
```


Deviance

Deviance is a way of measuring the difference between your glm's fit and the fit of a perfect model (where $E(\hat{Y}_i|X)=Y_i$).

It is defined as twice the log of the ratio between the likelihood of a perfect model and the likelihood of the given model,

$$\begin{split} D &= 2\log(\mathcal{L}(\theta_{best}|Y)\big/\mathcal{L}(\hat{\theta}|Y)\big) \\ &= 2\big(l(\theta_{best}|Y) - l(\hat{\theta}|Y)\big) \\ &= 2\left(\frac{2}{i_{st}}\,\ell\left(\theta_{best}|Y\right) - \frac{1}{i_{st}}\,\ell\left(\hat{\theta}|Y\right)\right) \\ &= 2\left(\frac{2}{i_{st}}\,\ell\left(\theta_{best}|Y\right) - \frac{1}{i_{st}}\,\ell\left(\hat{\theta}|Y\right)\right) \\ &= 2\left(\frac{2}{i_{st}}\,\ell\left(\theta_{best}|Y\right) - \frac{1}{i_{st}}\,\ell\left(\hat{\theta}|Y\right)\right) \end{split}$$

Derivation - Normal

Derivation - Poisson

$$\mathcal{L} = Y_{i} \mid_{\omega_{S}} \lambda - \lambda - \mid_{c_{S}} Y_{i}!$$

$$\mathcal{L} \left(\mathcal{O}_{b \rightarrow S} \mid_{V_{i}} \mid_{V_{i}} \right) - \mathcal{L} \left(\widehat{\mathcal{O}} \mid_{Y_{i}} \right)$$

$$\mathcal{L} \left(\mathcal{O}_{b \rightarrow S} \mid_{V_{i}} \mid_{V_{i}} \right) - \mathcal{L} \left(\widehat{\mathcal{O}} \mid_{Y_{i}} \right)$$

$$= \left(Y_{i} \mid_{\mathcal{O}_{S}} Y_{i} - Y_{i} - \mid_{\mathcal{O}_{S}} Y_{i}! \right)$$

$$- \left(Y_{i} \mid_{\mathcal{O}_{S}} \lambda - \lambda - \mid_{c_{S}} Y_{i}! \right)$$

$$0 = 2 \frac{2}{3} \left(\frac{y_i}{3} - (y_i - \hat{\lambda}) \right)$$

$$0 = 2 \frac{2}{3} \left(\frac{y_i}{3} - (y_i - \hat{\lambda}) \right)$$

$$0 = 2 \frac{2}{3} \left(\frac{y_i}{3} - (y_i - \hat{\lambda}) \right)$$

$$0 = 2 \frac{5}{3} (y; 10) \frac{1}{3} - (y; 2)$$

$$= \frac{2}{3} d; 2 = 0$$

$$= \frac{5}{3} d; 3 = 0$$

$$= \frac{5}{3} d; 4 = 0$$

$$= \frac{5}{3$$

```
summary(g)
##
## Call:
## glm(formula = cases ~ year, family = poisson, data = aids)
##
## Deviance Residuals:
##
      Min 1Q Median
                                3Q
                                       Max
## -4.6784 -1.5013 -0.2636 2.1760 2.7306
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.971e+02 1.546e+01 -25.68 <2e-16 ***
## vear
          2.021e-01 7.771e-03 26.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 872.206 on 12 degrees of freedom
##
## Residual deviance: 80.686 on 11 degrees of freedom
## AIC: 166.37
##
## Number of Fisher Scoring iterations: 4
```

Deviance residuals

We can therefore think of deviance as $D=\sum_{i=1}^n d_i^2$ where d_i is a generalized residual. So in the Poisson case we can define,

$$d_i = \mathrm{sign}(y_i - \lambda_i) \sqrt{2(y_i \log(y_i/\hat{\lambda}_i) - (y_i - \hat{\lambda}_i))}$$

Deviance residuals

We can therefore think of deviance as $D=\sum_{i=1}^n d_i^2$ where d_i is a generalized residual. So in the Poisson case we can define,

$$d_i = \mathrm{sign}(y_i - \lambda_i) \sqrt{2(y_i \log(y_i/\hat{\lambda}_i) - (y_i - \hat{\lambda}_i))}$$

```
dev_resid = function(obs,pred)
  sign(obs-pred) * sqrt(2*(obs*log(obs/pred)-(obs-pred)))
aids = aids %>%
  mutate(deviance = dev_resid(cases, pred))
ggplot(aids, aes(x=year, y=deviance)) +
  geom_point() + geom_segment(aes(xend=year, yend=0))
```


Comparing Residuals

Updating the model

Quadratic fit

```
g2 = glm(cases~year^2), data=aids, family=poisson)
pred2 = data_frame(year=seq(1981,1993,by=0.1)) %>%
mutate(cases = predict(g2, newdata=., type = "response"))
```


Quadratic fit - residuals

Bayesian Model

```
poisson_model =
"model{
                                  Poisson
 # Likelihood
 for (i in 1:length(Y)) {
   Y[i] ~ dpois(lambda[i]) 4
    log(lambda[i]) <- beta[1] + beta[2]*X[i]</pre>
    # In-sample prediction
    Y_hat[i] ~ dpois(lambda[i])
 # Prior for heta
  for(j in 1:2){
    beta[j] \sim dnorm(0,1/100)
}"
```

```
n_burn=1000; n_iter=5000

m = rjags::jags.model(
  textConnection(poisson_model), quiet = TRUE,
  data = list(Y=aids$cases, X=aids$year)
)

update(m, n.iter=1000, progress.bar="none")

samp = rjags::coda.samples(
  m, variable.names=c("beta","lambda","Y_hat","Y","X"),
  n.iter=5000, progress.bar="none"
)
```

Model Fit?

```
tidybayes::spread_samples(samp, Y_hat[i], X[i],Y[i]) %>%
ungroup() %>%
ggplot(aes(x=X,y=Y)) +
   tidybayes::stat_lineribbon(aes(y=Y_hat), alpha=0.5) +
   geom_point()
```


MCMC Diagnostics

```
tidybayes::gather_samples(samp, beta[i]) %>%
  mutate(param = paste0(term,"[",i,"]")) %>%
  ggplot(aes(x=.iteration, y=estimate)) +
   geom_line() +
  facet_wrap(~param, ncol=1, scale="free_y")
```


Now what?

Maybe more iterations will fix everything \dots

Now what?

Maybe more iterations will fix everything ...

What went wrong?

What went wrong?

```
summary(g)
##
## Call:
## glm(formula = cases ~ year, family = poisson, data = aids)
##
## Deviance Residuals:
##
      Min 10 Median 30 Max
## -4.6784 -1.5013 -0.2636 2.1760
                                    2.7306
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.971e+02 1.546e+01 -25.68 <2e-16 ***
## year 2.021e-01 7.771e-03 26.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
##
      Null deviance: 872.206 on 12 degrees of freedom
## Residual deviance: 80.686 on 11 degrees of freedom
## AIC: 166.37
##
## Number of Fisher Scoring iterations: 4
```

A simple fix

```
summary(glm(cases~I(year-1981), data=aids, family=poisson))
##
## Call:
## glm(formula = cases ~ I(year - 1981), family = poisson, data = aids)
##
## Deviance Residuals:
      Min 1Q Median 3Q
##
                                        Max
## -4.6784 -1.5013 -0.2636 2.1760
                                     2.7306
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.342711 0.070920 47.13 <2e-16 ***
## I(year - 1981) 0.202121 0.007771 26.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
##
      Null deviance: 872.206 on 12 degrees of freedom
## Residual deviance: 80.686 on 11 degrees of freedom
## AIC: 166.37
##
## Number of Fisher Scoring iterations: 4
```

Revising the jags model

```
poisson_model2 =
"model{
 # Likelihood
 for (i in 1:length(Y)) {
   Y[i] ~ dpois(lambda[i])
    log(lambda[i]) <- beta[1] + beta[2]*(X[i] - 1981)
   Y_hat[i] ~ dpois(lambda[i])
 # Prior for beta
 for (j in 1:2) {
    beta[j] \sim dnorm(0,1/100)
}"
```

MCMC Diagnostics

```
tidybayes::gather_samples(samp2, beta[i]) %>%
  mutate(param = paste0(term,"[",i,"]")) %>%
  ggplot(aes(x=.iteration, y=estimate)) +
   geom_line() +
  facet_wrap(~param, ncol=1, scale="free_y")
```


Model Fit

```
tidybayes::spread_samples(samp2, Y_hat[i], lambda[i], X[i], Y[i]) %>%
  ungroup() %>%
  tidyr::gather(param, value, Y_hat, lambda) %>%
  ggplot(aes(x=X,y=Y)) +
  tidybayes::stat_lineribbon(aes(y=value), alpha=0.5) +
  geom_point() +
  facet_wrap(~param)
```


Residual Plots

Quadratic Fit

MCMC Diagnostics

```
tidybayes::gather_samples(samp3, beta[i]) %>%
  mutate(param = paste0(term,"[",i,"]")) %>%
  ggplot(aes(x=.iteration, y=estimate)) +
   geom_line() +
  facet_wrap(~param, ncol=1, scale="free_y")
```


Residual Plots

