Comparación de Modelos: Costo-Beneficio

Matriz de Confusión

		Datos reales		
		True default status		
		No	Yes	Total
Predicciones del Modelo	No	9,644	252	9,896
	Yes	23	81	104
	Total	9,667	333	10,000

Valor Esperado

$$\mathsf{E}(f) = \sum_i p(x_i) \cdot f(x_i)$$

Si una decisión pudiera presentar t situaciones o salidas diferentes, con un resultado (positivo o negativo) asociado y una probabilidad asociado a cada uno de ellas, el valor esperado de esa decisión sería :

Valor esperado =
$$p(s_1) v(s_1) + p(s_2)v(s_2) + ... + p(s_t)v(s_t)$$

Veamos un ejemplo: Realizaremos una campaña de marketing en base a un dataset con información de nuestros clientes y campañas previas. El beneficio que obtendremos si un cliente responde es de \mathbf{v}_{R} = \$99 pues compra el producto que le enviamos en la promoción. El costo si no responde a la campaña es 1, o sea \mathbf{v}_{NR} = -\$1

Matriz de confusión

Matriz de Beneficio

	p	n
Υ	56	7
N	5	42

Expected profit = $p(\mathbf{Y}, \mathbf{p}) \cdot b(\mathbf{Y}, \mathbf{p}) + p(\mathbf{N}, \mathbf{p}) \cdot b(\mathbf{N}, \mathbf{p}) + p(\mathbf{N}, \mathbf{p}) \cdot b(\mathbf{N}, \mathbf{n}) + p(\mathbf{Y}, \mathbf{n}) \cdot b(\mathbf{Y}, \mathbf{n})$ (1)

Por teoría de la probabilidad sabemos que: $p(x, y) = p(y) \cdot p(x \mid y)$

Por lo que podemos expresar a $p(\mathbf{Y}, \mathbf{p})$ como $p(\mathbf{Y}, \mathbf{p}) = p(\mathbf{Y} \mid \mathbf{p}) \cdot p(\mathbf{p})$ Quedándonos el beneficio esperado:

Expected profit =
$$p(\mathbf{Y} \mid \mathbf{p}) \cdot p(\mathbf{p}) \cdot b(\mathbf{Y}, \mathbf{p}) + p(\mathbf{N} \mid \mathbf{p}) \cdot p(\mathbf{p}) \cdot b(\mathbf{N}, \mathbf{p}) + p(\mathbf{N} \mid \mathbf{n}) \cdot p(\mathbf{n}) \cdot b(\mathbf{N}, \mathbf{n}) + p(\mathbf{Y} \mid \mathbf{n}) \cdot p(\mathbf{n}) \cdot b(\mathbf{Y}, \mathbf{n})$$

Expected profit =
$$p(\mathbf{p}) \cdot [p(\mathbf{Y} \mid \mathbf{p}) \cdot b(\mathbf{Y}, \mathbf{p}) + p(\mathbf{N} \mid \mathbf{p}) \cdot c(\mathbf{N}, \mathbf{p})] + p(\mathbf{n}) \cdot [p(\mathbf{N} \mid \mathbf{n}) \cdot b(\mathbf{N}, \mathbf{n}) + p(\mathbf{Y} \mid \mathbf{n}) \cdot c(\mathbf{Y}, \mathbf{n})]$$
 (2)

Matriz de confusión

	p	n
γ	56	7
N	5	42

$$T = 110$$

$$P = 61$$
 $N = 49$

$$p(\mathbf{p}) = 0.55$$
 $p(\mathbf{n}) = 0.45$

$$tp \ rate = 56/61 = 0.92 \quad fp \ rate = 7/49 = 0.14$$

$$fn \ rate = 5/61 = 0.08$$
 $tn \ rate = 42/49 = 0.86$

Matriz de Costo/Beneficio

Predicted Y
$$\begin{pmatrix} \mathbf{p} & \mathbf{n} \\ \mathbf{p} & \mathbf{n} \\ \mathbf{N} & 0 \end{pmatrix}$$

Reemplazando estos valores en (2), obtenemos:

expected profit =
$$p(\mathbf{p}) \cdot [p(\mathbf{Y} \mid \mathbf{p}) \cdot b(\mathbf{Y}, \mathbf{p}) + p(\mathbf{N} \mid \mathbf{p}) \cdot c(\mathbf{N}, \mathbf{p})] + p(\mathbf{n}) \cdot [p(\mathbf{N} \mid \mathbf{n}) \cdot b(\mathbf{N}, \mathbf{n}) + p(\mathbf{Y} \mid \mathbf{p}) \cdot c(\mathbf{Y}, \mathbf{n})]$$

= $0.55 \cdot [0.92 \cdot b(\mathbf{Y}, \mathbf{p}) + 0.08 \cdot b(\mathbf{N}, \mathbf{p})] + 0.45 \cdot [0.86 \cdot b(\mathbf{N}, \mathbf{n}) + 0.14 \cdot p(\mathbf{Y}, \mathbf{n})]$
= $0.55 \cdot [0.92 \cdot 99 + 0.08 \cdot 0] + 0.45 \cdot [0.86 \cdot 0 + 0.14 \cdot -1]$
= $50.1 - 0.063$
 $\approx 50.04

