# COM 205 - Digital Logic Design COMBINATIONAL LOGIC - I

Assist. Prof. Özge ÖZTİMUR KARADAĞ ALKÜ

#### Circuits in Digital Systems

#### • Two kinds:

- Combinational: Outputs are determined from only the present combination of inputs. Its operations can be specified by a set of Boolean functions.
- Sequential: In addition to the logic gates, employ storage elements. Outputs are a function of the inputs and the state of the storage elements. State of the storage elements is a function of previous inputs.

#### **Combinational Circuits**

- Consists of:
  - Input variables
  - Logic gates
  - Output variables
  - Block diagram of combinational circuit:



#### Combinational Circuit



- For n input variables there are 2<sup>n</sup> possible input combinations.
- For each possible input combination, there is one possible output value.
- A combinational circuit can be specified with a truth table that lists the output values for each combination of input variables.
- A combinational circuit also can be described by m **Boolean functions**, one for each output variable. Each output function is expressed in terms of the n input variables.

#### Combinational Ciruits

Two tasks:

- Analysis: a logic circuit is given, and corresponding Boole functions, truth table or explanation of the circuit in words is expected.
- **Design:** function is expressed in words and corresponding Boole function or logic circuit is expected.

## Analysis Procedure

To obtain a **truth table** directly from the logic diagram:

- 1. Determine the number of input variables in the circuit. For n inputs, form the 2<sup>n</sup> possible input combinations and list the binary numbers from 0 to 2<sup>n</sup>-1 in a table.
- 2. Label the outputs of selected gates with arbitrary tables.
- 3. Obtain the truth table for the outputs of those gates which are a function of the input variables only.
- 4. Proceed to obtain the truth table for the outputs of those gates which are a function of previously defined values until the columns for all outputs are determined.

## Analysis Procedure

- The **truth table** of a combinational circuit consists of columns for input and output variables. Columns for input variables represent 2<sup>n</sup> binary combinations for n variables.
- Binary values for output variables are determined by examining the problem definition. For each valid input combination the output variables can be either 0 or 1. For some problems there might be undefined input combinations which are referred as don't care conditions.
- Boolean function obtained from the truth table is simplified (algebraic operations, Karnaugh map) among various simplified expression, one is selected depending on the problem definition:
  - Ex:
    - minimum number of gates
    - Min. Number of gate input
    - Min. Latency of the signal through the circuit
    - Number of min. Mid-connections.

## Analysis Procedure

- To obtain the output Boolean Function:
  - 1. Label all gate outputs that are a function of input variables with arbitrary symbols-but with meaningful names. Determine the Boolean functions for each gate output.
  - 2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.
  - 3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
  - 4. By repeated substitution of previously defined functions. obtain the output Boolean functions in term s of input variables

• Given the circuit below:



Obtain the output Boolean functions.

Inputs: A, B, C

Outputs: F<sub>1</sub>, F<sub>2</sub>

 $F_2 = AB + AC + BC$ 

 $T_1 = (A+B+C)$ 

 $T_2 = ABC$ 

$$T_3 = F_2'T_1$$

$$F_1 = T_2 + T_3$$

$$F_1 = ABC + F_2'T_1$$
  
=  $ABC + (AB + AC + BC)'(A + B + C)$   
=  $ABC + (A' + B')(A' + C')(B' + C')(A + B + C)$   
=  $ABC + (A' + A'C' + A'B' + B'C')(B' + C')(A + B + C)$ 

• Given the circuit below:



Obtain the output Boolean functions.

Inputs: A,B,C

Outputs: F<sub>1</sub>, F<sub>2</sub>

 $F_2 = AB + AC + BC$ 

$$T_1 = A + B + C$$

$$T_2 = ABC$$

$$T_3 = F_2'T_1$$

$$F_1 = T_3 + T_2$$

F1 = T3 + T2 = 
$$F_2'T_1$$
 + ABC  
=(AB+AC+BC)'(A+B+C)+ ABC  
=(A'+B')(A'+C')(B'+C')(A+B+C)+ABC  
=A'BC'+A'B'C+AB'C'+ABC

• Given the circuit below:



Obtain the truth table

| Α | В | С | $\mid$ T <sub>1</sub> | $T_2$ | $F_2$ | T <sub>3</sub> | $F_1$ |
|---|---|---|-----------------------|-------|-------|----------------|-------|
| 0 | 0 | 0 | 0                     | 0     | 0     | 0              | 0     |
| 0 | 0 | 1 | 1                     | 0     | 0     | 1              | 1     |
| 0 | 1 | 0 | 1                     | 0     | 0     | 1              | 1     |
| 0 | 1 | 1 | 1                     | 0     | 1     | 0              | 0     |
| 1 | 0 | 0 | 1                     | 0     | 0     | 1              | 1     |
| 1 | 0 | 1 | 1                     | 0     | 1     | 0              | 0     |
| 1 | 1 | 0 | 1                     | 0     | 1     | 0              | 0     |
| 1 | 1 | 1 | 1                     | 1     | 1     | 0              | 1     |

• Given the circuit below:



#### Obtain the truth table

| 1  | В | C | F <sub>2</sub> | F'2 | <i>T</i> <sub>1</sub> | T <sub>2</sub> | <i>T</i> <sub>3</sub> | F1 |
|----|---|---|----------------|-----|-----------------------|----------------|-----------------------|----|
| )  | 0 | 0 | 0              | 1   | 0                     | 0              | 0                     | 0  |
| )  | 0 | 1 | 0              | 1   | 1                     | 0              | 1                     | 1  |
| )  | 1 | 0 | 0              | 1   | 1                     | 0              | 1                     | 1  |
| )  | 1 | 1 | 1              | 0   | 1                     | 0              | 0                     | 0  |
| i. | 0 | 0 | 0              | 1   | 1                     | 0              | 1                     | 1  |
|    | 0 | 1 | 1              | 0   | 1                     | 0              | 0                     | 0  |
| Ĺ  | 1 | 0 | 1              | 0   | 1                     | 0              | 0                     | 0  |
| L  | 1 | 1 | 1              | 0   | 1                     | 1              | 0                     | 1  |

#### Design Procedure

- Given the specifications of the design objective, which defines the problem in words:
  - 1. Number of input and output variables are determined.
  - 2. Alpabetical symbols are assigned to input and output variables.
  - 3. Truth table is constructed to show the relation btw. input output
  - 4. For each output variable a simplified Boolean function is obtained.
  - 5. Logic circuit is drawn.

• Design a a circuit that will convert Binary Coded Decimal (BCD) to Excess-3 code for decimal digits:

| Truth | table? |
|-------|--------|
|-------|--------|

| Inputs (BCI | D representa | ation) |   | Outputs (E | xcess-3 repi | resentation) |   |
|-------------|--------------|--------|---|------------|--------------|--------------|---|
| А           | В            | С      | D | W          | х            | У            | Z |
| 0           | 0            | 0      | 0 | 0          | 0            | 1            | 1 |
| 0           | 0            | 0      | 1 | 0          | 1            | 0            | 0 |
| 0           | 0            | 1      | 0 | 0          | 1            | 0            | 1 |
| 0           | 0            | 1      | 1 | 0          | 1            | 1            | 0 |
| 0           | 1            | 0      | 0 | 0          | 1            | 1            | 1 |
| 0           | 1            | 0      | 1 | 1          | 0            | 0            | 0 |
| 0           | 1            | 1      | 0 | 1          | 0            | 0            | 1 |
| 0           | 1            | 1      | 1 | 1          | 0            | 1            | 0 |
| 1           | 0            | 0      | 0 | 1          | 0            | 1            | 1 |
| 1           | 0            | 0      | 1 | 1          | 1            | 0            | 0 |

• Design a circuit that will convert Binary Coded Decimal to Excess-3

code for decimal digits:

• Truth table?

|   | Inpu | t BCD |   | Output Excess-3 Coo |   |   |   |  |
|---|------|-------|---|---------------------|---|---|---|--|
| A | В    | c     | D | w                   | x | у | z |  |
| 0 | 0    | 0     | 0 | 0                   | 0 | 1 | 1 |  |
| 0 | 0    | 0     | 1 | 0                   | 1 | 0 | 0 |  |
| 0 | 0    | 1     | 0 | 0                   | 1 | 0 | 1 |  |
| 0 | 0    | 1     | 1 | 0                   | 1 | 1 | 0 |  |
| 0 | 1    | 0     | 0 | 0                   | 1 | 1 | 1 |  |
| 0 | 1    | 0     | 1 | 1                   | 0 | 0 | 0 |  |
| 0 | 1    | 1     | 0 | 1                   | 0 | 0 | 1 |  |
| 0 | 1    | 1     | 1 | 1                   | 0 | 1 | 0 |  |
| 1 | 0    | 0     | 0 | 1                   | 0 | 1 | 1 |  |
| 1 | 0    | 0     | 1 | 1                   | 1 | 0 | 0 |  |

K-Maps for outputs?

|    | 00   | 01     | 11 | 10 |
|----|------|--------|----|----|
| 00 | 0    | 0      | 0  | 0  |
| 01 | 0    | 1      | 1  | 1  |
| 11 | X    | X      | X  | Х  |
| 10 | 1    | 1      | Х  | Х  |
| ,  | w= A | + BC + | BD | ·  |

|    | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 | 1  | 0  | 1  | 0  |
| 01 | 1  | 0  | 1  | 0  |
| 11 | X  | X  | X  | X  |
| 10 | 1  | 0  | Х  | X  |

y = CD + C'D'

|    | 00     | 01      | 11      | 10 |
|----|--------|---------|---------|----|
| 00 | 0      | 1       | 1       | 1  |
| 01 | 1      | 0       | 0       | 0  |
| 11 | X      | Х       | Х       | Х  |
| 10 | 0      | 1       | Х       | Х  |
| ,  | x= BC' | D' + B' | C + B'D |    |

|    | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 | 1  | 0  | 0  | 1  |
| 01 | 1  | 0  | 0  | 1  |
| 11 | X  | X  | X  | Х  |
| 10 | 1  | 0  | Х  | Х  |

z= D'

Design a a circuit that will convert Binary Coded Decimal to Excess-3

code for decimal digits:

• Truth table?

|   | Inpu | t BCD |   | Output Excess-3 Cod |   |   |   |  |
|---|------|-------|---|---------------------|---|---|---|--|
| A | В    | c     | D | w                   | x | у | z |  |
| 0 | 0    | 0     | 0 | 0                   | 0 | 1 | 1 |  |
| 0 | 0    | 0     | 1 | 0                   | 1 | 0 | 0 |  |
| 0 | 0    | 1     | 0 | 0                   | 1 | 0 | 1 |  |
| 0 | 0    | 1     | 1 | 0                   | 1 | 1 | 0 |  |
| 0 | 1    | 0     | 0 | 0                   | 1 | 1 | 1 |  |
| 0 | 1    | 0     | 1 | 1                   | 0 | 0 | 0 |  |
| 0 | 1    | 1     | 0 | 1                   | 0 | 0 | 1 |  |
| 0 | 1    | 1     | 1 | 1                   | 0 | 1 | 0 |  |
| 1 | 0    | 0     | 0 | 1                   | 0 | 1 | 1 |  |
| 1 | 0    | 0     | 1 | 1                   | 1 | 0 | 0 |  |



Obtain the logic circuit using the Boole functions:

```
z = D'

y = CD + C'D' = CD + (C + D)'

x = B'C + B'D + BC'D' = B'(C + D) + BC'D'

= B'(C + D) + B(C + D)'

w = A + BC + BD = A + B(C + D)
```

