# Model Free Reinforcement Learning ε-Greedy Exploration Q-Learning Function Approximation



# Model Free Reinforcement Learning



### Model Free Reinforcement Learning

- No model
- Learn value function (and/or policy) from experience
- Common Model Free RL
  - Monte-Carlo (MC) Reinforcement Learning
  - Temporal Difference (TD) Reinforcement Learning
  - $TD(\lambda)$



### Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is model-free:
  - no knowledge of MDP transitions / rewards
- MC learns from complete episodes:
  - no bootstrapping
- MC uses the simplest possible idea:
  - value = mean return
- Caveat: can only apply MC to episodic MDPs
  - All episodes must terminate





## Monte-Carlo Policy Evaluation

• Goal: learn  $v_{\pi}$  from episodes of experience under policy  $\pi$  $S_1, A_1, R_2, ..., S_T \sim \pi$ 

• Recall that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

• Recall that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return



## Monte-Carlo Policy Evaluation (cont.)

- To evaluate  $v_{\pi}(s)$  at state s
  - Increment counter  $N(s) \leftarrow N(s) + 1$
  - Increment total return  $S(s) \leftarrow S(s) + G_t$
  - Value is estimated by mean return  $V(s) \leftarrow S(s)/N(s)$
- By law of large numbers,  $V(s) \rightarrow v_{\pi}(s)$  as  $N(s) \rightarrow \infty$





# First Visit vs. Every Visit

- To evaluate  $v_{\pi}(s)$  at state s
  - Increment counter  $N(s) \leftarrow N(s) + 1$
  - Increment total return  $S(s) \leftarrow S(s) + G_t$
  - Value is estimated by mean return  $V(s) \leftarrow S(s)/N(s)$
- By law of large numbers,  $V(s) \rightarrow v_{\pi}(s)$  as  $N(s) \rightarrow \infty$
- What if the same state *s* is visited in an episode?
  - Do the above for every visit or first visit?
    - ▶ What happen for the case in the figure?
    - ▶ Both converge quadratically, so this issue is ignored in this course.





### Incremental Mean

The mean  $\mu_1, \mu_2,...$  of a sequence  $x_1, x_2,...$  can be computed incrementally,

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left( x_k + \sum_{j=1}^k x_j \right)$$

$$= \frac{1}{k} \left( x_k + (k-1) \mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left( x_k - \mu_{k-1} \right)$$



### Incremental Monte-Carlo Updates

- Update V(s) incrementally after episode  $S_1, A_1, R_2, ..., S_T$
- For each state  $S_t$  with return  $G_t$

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} \left( G_t - V(S_t) \right)$$

• In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$



### Temporal-Difference Learning

- TD methods learn directly from episodes of experience
- TD is model-free:
  - no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes,
  - by bootstrapping
- TD updates a guess towards a guess





### MC vs. TD

- Goal: learn  $v_{\pi}$  online from experience under policy  $\pi$
- Incremental every-visit Monte-Carlo
  - Update value  $V(S_t)$  toward actual return  $G_t$  $V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$
- Simplest temporal-difference learning algorithm: TD(0)
  - Update value  $V(S_t)$  toward estimated return  $R_{t+1} + \gamma V(S_{t+1})$  $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$
  - $R_{t+1} + \gamma V(S_{t+1})$  is called the TD target
  - $-\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$  is called the TD error



### TD vs. MC (I)

- TD can learn before knowing the final outcome
  - TD can learn online after every step
  - MC must wait until end of episode before return is known
- TD can learn without the final outcome
  - TD can learn from incomplete sequences
  - MC can only learn from complete sequences
  - TD works in continuing (non-terminating) environments
  - MC only works for episodic (terminating) environments



### Bias/Variance Trade-Off

- TD target  $R_{t+1} + \gamma V(S_{t+1})$  is biased estimate of  $v_{\pi}(S_t)$ 
  - Return  $G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$  is unbiased estimate of  $v_{\pi}(S_t)$
  - True TD target  $R_{t+1} + \gamma v_{\pi}(S_{t+1})$  is unbiased estimate of  $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
  - Return depends on many random actions, transitions, rewards
  - TD target depends on only one random action, transition, reward



### MC vs. TD (II)

- MC has high variance, zero bias
  - Good convergence properties (even with function approximation)
  - Not very sensitive to initial value
  - Very simple to understand and use
- TD has low variance, some bias
  - Usually more efficient than MC
  - TD(0) converges to  $v_{\pi}(s)$  (but not always with function approximation)
  - More sensitive to initial value



### Batch MC and TD

- MC and TD converge:  $V(s) \rightarrow v_{\pi}(s)$  as experience  $\rightarrow \infty$
- But what about batch solution for finite experience?

$$s_1^1, a_1^1, r_2^1, ..., s_{T_1}^1$$
  
 $\vdots$   
 $s_1^k, a_1^k, r_2^k, ..., s_{T_k}^k$ 

- e.g. Repeatedly sample episode  $k \in [1, K]$
- Apply MC or TD(0) to episode k

### AB Example

Two states A, B; no discounting; 8 episodes of experience

A, 0, B, 0

B, 1

B, 1

B, 1

B, 1

B, 1

B, 1

B, 0

What is V(A), V(B)?



Both MC and TD will obtain different values!!



### Certainty Equivalence

- MC converges to solution with minimum mean-squared error
  - Best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (G_t^k - V(s_t^k))^2$$

- In the AB example, V(A) = 0, V(B) = 0.75
- TD(0) converges to solution of max likelihood Markov model
  - Solution to the MDP  $<\mathcal{S}$ ,  $\mathcal{A}$ ,  $\hat{\mathcal{P}}$ ,  $\hat{\mathcal{R}}$ ,  $\gamma>$  that best fits the data

$$\hat{P}_{S}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} 1(s_{t}^{k}, a_{t}^{k}, s_{t+1}^{k} = s, a, s')$$

$$\hat{\mathcal{R}}_{S}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} 1(s_{t}^{k}, a_{t}^{k} = s, a) r_{t}^{k}$$

- In the AB example, V(A) = 0.75, V(B) = 0.75



### MC vs. TD (III)

- TD exploits Markov property
  - Usually more efficient in Markov environments
    - ▶ So, TD works well for MDP problems like 2048.
- MC does not exploit Markov property
  - Usually more effective in non-Markov environments
    - ▶ MC works fine for non-MDP too.



### Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$





## Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left( R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$





## Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$$





# Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
  - MC does not bootstrap
  - DP bootstraps
  - TD bootstraps
- Sampling: update samples an expectation
  - MC samples
  - DP does not sample
  - TD samples



### Unified View of Reinforcement Learning



## General TD Learning

- Review TD
  - Update value  $V(S_t)$  toward estimated return  $R_{t+1} + \gamma V(S_{t+1})$  $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$
  - $-R_{t+1} + \gamma V(S_{t+1})$  is called the TD target
  - For MC learning, the TD target is replaced by  $G_t$  $V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$
- Question: a more general TD target?
- Investigate TD in a more general manner.
- A typical one:  $TD(\lambda)$



### *n*-Step Prediction

• Let TD target look *n* steps into the future





### *n*-Step Return

• Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

• Consider the following *n*-step returns for  $n = 1,2, \infty$ 

$$\begin{array}{ll} \mathbf{n} = 1 & G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1}) \\ \mathbf{n} = 2 & G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2}) \\ \vdots & \vdots & \vdots \\ \mathbf{n} = \infty & G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T, \text{ if ends at } T. \end{array}$$

• *n*-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left( G_t^{(n)} - V(S_t) \right)$$



# Example of Averaging n-Step Returns

- We can average n-step returns over different n
- Example:
  - average the 2-step and 4-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$$

- Combines information from two different time-steps
- Next:
  - combine information from all time-steps?





### λ-return

- $\lambda$ -return  $G_t^{\lambda}$ :
  - combines all *n*-step returns  $G_t^{(n)}$
- Using weight  $(1 \lambda) \lambda^{n-1}$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

$$G_t^{\lambda} = (1 - \lambda) \sum_{\substack{n=1 \ T-t-1}} \lambda^{n-1} G_t^{(n)} + (1 - \lambda)$$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-t-1} G_t$$

Forward-view  $TD(\lambda)$ 

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right)$$





# TD(λ) Weighting Function

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$





### $TD(\lambda)$ and TD(0)

- When  $\lambda = 0$ , only current state is updated  $V(s) \leftarrow V(s) + \alpha \delta_t$ 
  - This is exactly equivalent to TD(0) update



### $TD(\lambda)$ and MC

• When  $\lambda = 0$ , only current state is updated,  $\rightarrow$  TD(0)=TD

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-t-1} G_t = G_t^{(1)}$$

- This is exactly equivalent to TD target.
- When  $\lambda = 1$ , TD(1) = MC

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-t-1} G_t = G_t$$

This is exactly equivalent to MC target.



### Forward-view $TD(\lambda)$

- Update value function towards the  $\lambda$ -return
- Forward-view looks into the future to compute  $G_t^{\lambda}$
- Like MC, can only be computed from complete episodes





### Backward View $TD(\lambda)$

- Forward view provides theory
- Backward view provides mechanism
  - Update online, every step, from incomplete sequences

### Notes:

- You may ignore it now.
- Consider backward (eligible traces) only when you try to implement it.



### Eligibility Traces



- Credit assignment problem: did bell or light cause shock?
- Frequency heuristic: assign credit to most frequent states
- Recency heuristic: assign credit to most recent states
- Eligibility traces combine both heuristics

$$E_0(s) = 0$$
  
 $E_t(s) = \gamma \lambda E_{t-1}(s) + 1(S_t = s)$ 



accumulating eligibility trace

times of visits to a state



### Backward View $TD(\lambda)$

- Keep an eligibility trace for every state s
- Update value V(s) for every state s
- In proportion to TD-error  $\delta_t$  and eligibility trace  $E_t(s)$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$





### Eligibility Trace

- Explain more in policy-based reinforcement learning for GAE (Generalized Advantage Estimator).
  - (See Page 37, "Advantages and  $TD(\lambda)$ " in the chapter of policybased RL.)



## $\varepsilon$ -Greedy Exploration



## Example of Greedy Action Selection

- There are two doors in front of you, Always apply the greedy action selection:
  - You open the left door and get reward 0V(left) = 0
  - You open the right door and get reward +1 V(right) = +1
  - You open the right door and get reward +3 V(right) = +2
  - You open the right door and get reward +2 V(right) = +2
  - :
- Are you sure you've chosen the best door?



## ε-Greedy Exploration

•  $\varepsilon$ -greedy policy:

$$\pi(a|s) = \begin{cases} \varepsilon/m + 1 - \varepsilon & \text{if } a^* = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q(s, a) \\ \varepsilon/m & \text{otherwise} \end{cases}$$

- Exploration
  - If you always try the best, you don't explore a real better one.
  - With probability  $\varepsilon$  choose an action at random
    - ▶ Simplest idea for ensuring continual exploration
  - All m actions are tried with non-zero probability
- Exploitation
  - If you always choose at random, you don't exploit the best
  - With probability  $1 \varepsilon$  choose the greedy action



## ε-Greedy Policy Improvement

(for reference only; can be skipped)

- Theorem
  - For any policy  $\pi$ , the  $\varepsilon$ -greedy policy  $\pi'$  with respect to  $q_{\pi}$  is an improvement,  $v_{\pi'}(s) \ge v_{\pi}(s)$
- Proof:

$$v_{\pi'}(s) = q_{\pi}(s, \pi'(s)) \quad \text{(follow new policy } \pi' \text{ using old } q_{\pi}.)$$

$$= \sum_{a \in \mathcal{A}} \pi'(a|s) \, q_{\pi}(s, a)$$

$$= \frac{\varepsilon}{m} \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \varepsilon) \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

$$\geq \frac{\varepsilon}{m} \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \varepsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \frac{\varepsilon}{m}}{1 - \varepsilon} q_{\pi}(s, a) \text{ (Lemma)}$$

$$= \frac{\varepsilon}{m} \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + \sum_{a \in \mathcal{A}} (\pi(a|s) - \frac{\varepsilon}{m}) \, q_{\pi}(s, a)$$

$$= \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s, a) = v_{\pi}(s)$$

• Therefore from policy improvement theorem,  $v_{\pi'}(s) \ge v_{\pi}(s)$ 



#### A Lemma in the Previous Proof

(for reference only; can be skipped)

(the sum is a weighted average with nonnegative weights summing to 1, and as such it must be less than or equal to the largest number averaged)

• Lemma: For the previous proof, assume  $\pi(a|s) - \frac{\varepsilon}{m} \ge 0$ .

$$\max_{a \in A} q_{\pi}(s, a) \ge \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \frac{\varepsilon}{m}}{1 - \varepsilon} q_{\pi}(s, a)$$

• Proof: Assume all weights  $w_a \ge 0$ , and  $\sum_{a \in \mathcal{A}} w_a = 1$ .

Then, 
$$\max_{a \in A} q_{\pi}(s, a) \ge \sum_{a \in \mathcal{A}} w_a q_{\pi}(s, a)$$

Since weights  $\frac{\pi(a|s) - \frac{\varepsilon}{m}}{1 - \varepsilon} \ge 0$  and their summation = 1,

we have 
$$\max_{a \in A} q_{\pi}(s, a) \ge \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \frac{\varepsilon}{m}}{1 - \varepsilon} q_{\pi}(s, a)$$



## Key Idea

- Key idea:
  - $-\pi(a|s) \frac{\varepsilon}{m}$  is non-negative, as long as  $\varepsilon$  is monotonically decreasing.
- Example:

Assume  $\varepsilon = 0.4$  and m=4 (4 actions,  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$ ).

- $-\pi(a_1|s) = 0.4$ , and  $q_{\pi}(a_1|s) = 20$
- $-\pi(a_2|s) = 0.3$ , and  $q_{\pi}(a_2|s) = 30$  (max in the new policy  $\pi'$ )
- $-\pi(a_3|s) = 0.2$ , and  $q_{\pi}(a_3|s) = 15$
- $-\pi(a_4|s) = 0.1$ , and  $q_{\pi}(a_4|s) = 15$
- Works when  $\varepsilon$  remains the same or drops to a smaller number, say 0.3.



## Q-Learning



## Updating Action-Value Functions with Sarsa

$$Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma Q(S',A') - Q(S,A))$$

Notice: Interesting naming





## Sarsa Algorithm for On-Policy Control

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

- Sarsa converges to the optimal action-value function
- *n*-step Sarsa like *n*-step return
- Sarsa( $\lambda$ ) like TD( $\lambda$ )



## Off-Policy Learning

• Evaluate current policy  $\pi(a|s)$  to compute  $V_{\pi}(s)$  or  $q_{\pi}(s,a)$ , while following an old policy  $\mu(a|s)$   $\{S_1,A_1,R_2,...,S_T\} \sim \mu$ 

- Why is this important?
  - Learn from observing humans or other agents
  - Re-use experience generated from old policies  $\pi_1, \pi_2, ..., \pi_{t-1}$
  - Learn about optimal policy while following exploratory policy
  - Learn about multiple policies while following one policy



Current Policy  $\pi$ 



## Importance Sampling

Estimate the expectation of a different distribution

$$\mathbb{E}_{X \sim P}[f(X)]$$

$$= \sum P(X)f(X)$$

$$= \sum Q(X) \frac{P(X)}{Q(X)} f(X)$$

$$= \mathbb{E}_{X \sim Q} \left[ \frac{P(X)}{Q(X)} f(X) \right]$$



## Importance Sampling for Off-Policy Monte-Carlo

- Use returns generated from  $\mu$  to evaluate  $\pi$
- Weight return  $G_t$  according to similarity between policies
- Multiply importance sampling corrections along whole episode

$$G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)\pi(A_{t+1}|S_{t+1})}{\mu(A_t|S_t)\mu(A_{t+1}|S_{t+1})} \dots \frac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

Update value towards corrected return

$$V(S_t) \leftarrow V(S_t) + \alpha \left( G_t^{\pi/\mu} - V(S_t) \right)$$

- Cannot use if  $\mu$  is zero when  $\pi$  is non-zero
- Importance sampling can dramatically increase variance





## Importance Sampling for Off-Policy TD

- Use TD targets generated from  $\mu$  to evaluate  $\pi$
- Weight TD target  $R + \gamma V(S')$  by importance sampling
- Only need a single importance sampling correction

$$V(S_t) \leftarrow V(S_t) +$$

$$\alpha \left( \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} (R_{t+1} + \gamma V(S_{t+1})) - V(S_t) \right)$$

- Much lower variance than Monte-Carlo importance sampling (since just one step)
- Policies only need to be similar over a single step



Current Policy  $\pi$ 



## Q-Learning

- We now consider off-policy learning of action-values Q(s,a)
- No importance sampling is required
- Next action is chosen using the old policy  $A_{t+1} \sim \mu(\cdot | S_{t+1})$
- But we consider alternative successor action  $A' \sim \pi(\cdot | S_{t+1})$
- And update  $Q(S_t, A_t)$  towards value of alternative action  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A') Q(S_t, A_t))$



## Off-Policy Control with Q-Learning

- We now allow both old and current policies to improve
- The current policy  $\pi$  is greedy w.r.t. Q(s, a)

$$\pi(S_{t+1}) = \underset{a'}{\operatorname{argmax}} \ Q(S_{t+1}, a')$$

- The old policy  $\mu$  is e.g.  $\epsilon$ -greedy w.r.t. Q(s, a)
- The Q-learning target then simplifies:

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

$$= R_{t+1} + \gamma Q\left(S_{t+1}, \underset{a'}{\operatorname{argmax}} Q(S_{t+1}, a')\right)$$

$$= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$$



## Q-Learning Control Algorithm



• 
$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A)\right)$$

- Theorem
  - Q-learning control converges to the optimal action-value function,  $Q(s,a) \rightarrow q_*(s,a)$



# Q-Learning Algorithm for Off-Policy Control

Initialize  $Q(s, a), \forall s \in S, a \in A(s)$ , arbitrarily, and  $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g.,  $\varepsilon$ -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[ R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

 $S \leftarrow S';$ 

until S is terminal



## **Function Approximation**



## Large-Scale Reinforcement Learning

- Reinforcement learning can be used to solve large problems,
   e.g.
  - Backgammon: 10<sup>20</sup> states
  - Computer Go: 10<sup>170</sup> states
  - Helicopter: continuous state space
- How can we scale up the model-free methods for prediction and control from the last two lectures?



## Value Function Approximation

- So far we have represented value function by a lookup table
  - Every state s has an entry V(s)
  - Or every state-action pair s; a has an entry Q(s, a)
- Problem with large MDPs:
  - There are too many states and/or actions to store in memory
  - It is too slow to learn the value of each state individually
- Solution for large MDPs:
  - Estimate value function with function approximation

$$\hat{v}(s, w) \approx v_{\pi}(s)$$

or 
$$\hat{q}(s, a, w) \approx q_{\pi}(s, a)$$

- Generalize from seen states to unseen states
- Update parameter w using MC or TD learning



## Types of Value Function Approximation





#### Which Function Approximator?

- There are many function approximators, e.g.
  - Linear combinations of features
  - Neural network
  - Decision tree
  - Nearest neighbour
  - Fourier / wavelet bases
  - **–** ...
- Better to consider differentiable function approximators (in red above)
- Furthermore, we require a training method that is suitable for non-stationary, non-iid data



#### **Gradient Descent**

- Let J(w) be a differentiable function of parameter vector w
- Define the gradient of J(w) to be

$$\nabla_{w} J(w) = \begin{pmatrix} \frac{\partial J(w)}{\partial w_{1}} \\ \vdots \\ \frac{\partial J(w)}{\partial w_{n}} \end{pmatrix}$$



• Adjust w in direction of -ve gradient

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\!\! w} J(w)$$

- where  $\alpha$  is a step-size parameter





# Value Function Approx. By Stochastic Gradient Descent

- Goal: find parameter vector w
  - minimizing mean-squared error between approximate value function  $\hat{v}(s, w)$  and true value function  $v_{\pi}(s)$

$$J(w) = \mathbb{E}_{\pi}[(v_{\pi}(S) - \hat{v}(S, w))^{2}]$$

Gradient descent finds a local minimum

$$\Delta w = -\frac{1}{2} \alpha \nabla_{w} J(w)$$

$$= \alpha \mathbb{E}_{\pi} [(v_{\pi}(S) - \hat{v}(S, w)) \nabla_{w} \hat{v}(S, w)]$$

• Stochastic gradient descent samples the gradient

$$\Delta \mathbf{w} = \alpha (v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})$$

Expected update is equal to full gradient update



## Linear Value Function Approximation

Represent value function by a linear combination of features

$$\hat{v}(S, w) = x(S)^T w = \sum_{j=1}^n x_j(S) w_j$$

Objective function is quadratic in parameters w

$$J(w) = \mathbb{E}_{\pi}[(v_{\pi}(S) - x(S)^{T}w)^{2}]$$

- Stochastic gradient descent converges on global optimum
- Update rule is particularly simple

$$\nabla_{w} \hat{v}(S, w) = x(S)$$

$$\Delta w = \alpha (v_{\pi}(S) - \hat{v}(S, w)) x(S)$$

• Update = step-size  $\times$  prediction error  $\times$  feature value



## Incremental Prediction Algorithms

- Have assumed true value function  $v_{\pi}(s)$  given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a target for  $v_{\pi}(s)$ 
  - For MC, the target is the return  $G_t$

$$\Delta \mathbf{w} = \alpha \left( \mathbf{G}_t - \hat{\mathbf{v}}(S_t, \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t \mathbf{w})$$

- For TD(0), the target is the TD target  $R_{t+1} + \gamma \hat{v}(S_{t+1}, w)$  $\Delta w = \alpha (R_{t+1} + \gamma \hat{v}(S_{t+1}, w) - \hat{v}(S_t, w)) \nabla_w \hat{v}(S_t w)$
- For TD( $\lambda$ ), the target is the  $\lambda$ -return  $G_t^{\lambda}$

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t \mathbf{w})$$



## Control with Value Function Approximation



- Policy evaluation
  - Approximate policy evaluation,  $\hat{q}(\cdot, \cdot, w) \approx q_{\pi}$
- Policy improvement
  - $\varepsilon$ -greedy policy improvement



## Action-Value Function Approximation

Approximate the action-value function

$$\hat{q}(S, A, w) \approx q_{\pi}(S, A)$$

• Minimize mean-squared error between approximate action-value function  $\hat{q}(S, A, w)$  and true action-value function  $q_{\pi}(S, A)$ 

$$J(w) = \mathbb{E}_{\pi}[(q_{\pi}(S, A) - \hat{q}(S, A, w))^{2}]$$

• Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{w}J(w) = (q_{\pi}(S,A) - \hat{q}(S,A,w))\nabla_{w}\hat{q}(S,A,w)$$
$$\Delta w = \alpha(q_{\pi}(S,A) - \hat{q}(S,A,w))\nabla_{w}\hat{q}(S,A,w)$$



## Incremental Control Algorithms

- Like prediction, we must substitute a target for  $q_{\pi}(S,A)$ 
  - For MC, the target is the return  $G_t$

$$\Delta \mathbf{w} = \alpha \left( \mathbf{G}_t + \hat{q}(S_t, A_t, \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

- For TD(0), the target is the TD target  $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$ 

$$\Delta \mathbf{w} = \alpha \left( R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w}) \right)$$

$$\nabla_{w} \hat{q}(S_t, A_t, w)$$

– For forward-view TD( $\lambda$ ), target is the action-value  $\lambda$ -return

$$\Delta w = \alpha \left( q_t^{\lambda} - \hat{q}(S_t, A_t, w) \right) \nabla_w \hat{q}(S_t, A_t, w)$$

- For backward-view  $TD(\lambda)$ , equivalent update is

$$\delta_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, w) - \hat{q}(S_t, A_t, w)$$

$$E_t = \gamma \lambda E_{t-1} + \nabla_w \hat{q}(S_t, A_t, w)$$

$$\Delta w = \alpha \delta_t E_t$$



## Batch Reinforcement Learning

- Gradient descent is simple and appealing
- But it is not sample efficient
- Batch methods seek to find the best fitting value function
- Given the agent's experience ("training data")



## Least Squares Prediction

- Given value function approximation  $\hat{v}(s, w) \approx v_{\pi}(s)$
- And experience D consisting of  $\langle$ state, value $\rangle$  pairs

$$D = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, \dots, \langle s_T, v_T^{\pi} \rangle\}$$

- Which parameters w give the best fitting value fn  $\hat{v}(s, w)$ ?
- Least squares algorithms find parameter vector w minimizing sum-squared error between  $\hat{v}(s_t, w)$  and target values  $v_t^{\pi}$ ,

$$LS(w) = \sum_{t=1}^{T} (v_t^{\pi} - \hat{v}(s_t, w))^2$$
$$= \mathbb{E}_D[(v^{\pi} - \hat{v}(s, w))^2]$$



# Stochastic Gradient Descent with Experience Replay

• Given experience consisting of (state, value) pairs

$$D = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, \dots \langle s_T, v_T^{\pi} \rangle\}$$

- Repeat:
  - Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim D$$

Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha(\mathbf{v}^{\pi} - \hat{\mathbf{v}}(s, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(s, \mathbf{w})$$

Converges to least squares solution

$$w^{\pi} = \underset{w}{\operatorname{argmin}} LS(w)$$

- Similar for action value function  $q^{\pi}$ 

