Topological Completeness of S4

Brad Velasquez

December 7, 2017

Completeness: The Big Picture

Completeness of a logical system Σ in a language ${\mathcal L}$ roughly says

Provable
$$\iff$$
 Valid.

Formally,

$$\Gamma \vdash_{\Sigma} \varphi \iff \Gamma \models_{\mathcal{L}} \varphi$$

for any consistent set Γ of formulas containing φ .

The Logic S4

 ${\bf S4}$ is given by the axioms For any well formed $\varphi, \psi,$ the standard axiomatization of ${\bf S4}$ is given by

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \qquad (\mathbf{K})$$

$$\Box \varphi \to \Box \Box \varphi \tag{4}$$

$$\Box \varphi \to \varphi \tag{T}$$

with rules of inference

$$\{\varphi, \varphi \to \psi\} \vdash \psi \qquad (\mathbf{MP})$$
$$\vdash \varphi \implies \vdash \Box \varphi \qquad (\mathbf{N}).$$

The Logic **S4**, cont.

Alternatively, for any φ, ψ well formed **S4** is also given by

$$\Box \top \qquad \qquad (\mathbf{N})$$

$$\Box (\varphi \wedge \psi) \leftrightarrow \Box \varphi \wedge \Box \psi \qquad (\mathbf{R})$$

$$\Box \varphi \rightarrow \Box \Box \varphi \qquad (\mathbf{4})$$

$$\Box \varphi \rightarrow \varphi \qquad (\mathbf{T})$$

with rules of inference

$$\{\varphi, \varphi \to \psi\} \vdash \psi \tag{MP}$$

$$\vdash \varphi \to \psi \implies \vdash \Box \varphi \to \Box \psi \tag{M}$$

Fact: $\mathbf{54} = \mathbf{NR4T}$.

What is Topology?

Definition (Topology)

If X is a nonempty set, then a collection $\mathcal{T}\subseteq X$ is a topology on X if

- 1. $\varnothing, X \in \mathcal{T}$;
- 2. If $\{\mathcal{O}_i\}_{i\in I}\in\mathcal{T}$, then $\bigcup_{i\in I}\mathcal{O}_i\in\mathcal{T}$;
- 3. if $\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_n \in \mathcal{T}$, then $\bigcap_{i=1}^n \mathcal{O}_n \in \mathcal{T}$.

We call the pair (X, \mathcal{T}) a topological space, $\mathcal{O} \in \mathcal{T}$ an open set, and a set $F \subseteq X$ in which $X \setminus F$ is open, is called *closed*.

For our purposes, this definition is rather difficult to work with.

Basis of a Topology

Definition (Basis of a Topology)

Let X be a nonempty set. A *basis* for a topology on X is a collection $\mathcal{B}\subseteq\mathcal{T}$ such that

- 1. For all $x \in X$, there is a $B \in \mathcal{B}$ such that $x \in B$.
- 2. If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there is a $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

If $\mathcal{B}\subseteq X$ satisfies the two items above, then the $topology\ \mathcal{T}$ is generated by \mathcal{B} by iff A $U\subseteq X$ is open in X (i.e. $U\in\mathcal{T}$), if for all $x\in U$, there is a basis element $B\in\mathcal{B}$ such that $x\in B\subseteq U$.

Example

If $X=\mathbb{R}^2$, then the set of open balls of radius r>0, $B_r(x)=\{y\in\mathbb{R}^2\mid |x-y|< r\}$ for a basis.

Interior and Closure of a set

Let X be a nonempty set, $A\subseteq X$, and let (X,\mathcal{T}) be a topological space.

Definition (Interior and Closure)

The *interior* of A is defined to be

$$A^{\circ} = \bigcup_{\substack{\mathcal{O} \subseteq A \\ \mathcal{O} \in \mathcal{T}}} \mathcal{O}.$$

$$x \in A^{\circ} \iff \exists \mathcal{O} \in \mathcal{T} \text{ s.t. } x \in \mathcal{O} \text{ and } \forall y \in \mathcal{O}, y \in A$$

The *closure* of A is defined to be

$$\overline{A} = \bigcap_{\substack{\mathcal{C} \subseteq A \\ X \setminus \overline{\mathcal{C}} \in \mathcal{T}}} \mathcal{C}.$$

$$x \in \overline{A} \iff \forall \mathcal{O} \in \mathcal{T}, x \in \mathcal{O} \implies \exists y \in \mathcal{O}, \text{ s.t. } y \in A.$$

Topological Models

Definition

If (X,\mathcal{T}) is a topological space, then $M=((X,\mathcal{T}),v)$ is a topological model, where $v:\mathcal{F}\to\mathcal{P}(X)$ is a valuation function, and \mathcal{F} is the family of propositional letters of \mathcal{L} .

From this definition, we see that $v(p) \subseteq \mathcal{P}(X)$.

Definition

A formula φ is true in a model $M=((X,\mathcal{T}),v)$ if φ is true at every $x\in X.$ Moreover, φ is is valid in (X,\mathcal{T}) if φ is true in every model based on $(X,\mathcal{T}).$

Topological Semantics

Definition

Given a model $M=((X,\mathcal{T}),v)$, a formula $\varphi\in \mathbf{WFF}$ is said to be true at a point $x\in X$ if

- $M \models p[x] \iff w \in v(p),$
- $M \models \neg \varphi[x] \iff M \not\models \varphi[x],$
- $\blacktriangleright \ M \models (\varphi \land \psi)[x] \iff M \models \varphi[x] \text{ and } M \models \psi[x],$
- $\blacktriangleright \ M \models \Box \varphi[x] \iff \exists \mathcal{O} \in \mathcal{T} \text{ s.t. } x \in \mathcal{O} \text{ and } \forall y \in \mathcal{O}, M \models \varphi[y]$
- ▶ $M \models \Diamond \varphi[x] \iff \forall \mathcal{O} \in \mathcal{T} \text{ s.t. } (x \in \mathcal{O} \implies \exists y \in \mathcal{O} \text{ s.t. } M \models \varphi[y]).$

The (Naive) Topological Connection

If $\|\varphi\|^M:=\{x\in X\mid M\models\varphi[x]\}$, then $\|\Box\varphi\|^M=(\|\varphi\|^M)^\circ$. Furthermore, for $A,B\subseteq X$, we have the correspondence

$$\Box \top \qquad \qquad \leftrightarrows \qquad \qquad X^{\circ} = X$$

$$\Box (\varphi \wedge \psi) \leftrightarrow \Box \varphi \wedge \Box \psi \qquad \qquad \leftrightarrows \qquad (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$

$$\Box \varphi \rightarrow \Box \Box \varphi \qquad \qquad \leftrightarrows \qquad \qquad A^{\circ} \subseteq (A^{\circ})^{\circ}$$

$$\Box \varphi \rightarrow \varphi \qquad \qquad \leftrightarrows \qquad \qquad A^{\circ} \subseteq A$$

$$\Box \varphi \leftrightarrow \neg \Diamond \neg \varphi \qquad \qquad \leftrightarrows \qquad \qquad A^{\circ} = X \setminus \overline{(X \setminus A)}$$

Soundness

With the semantics defined, soundness follows immediately.

Theorem (Soundness)

For any set of formulas Γ ,

$$\Gamma \vdash_{\mathbf{S4}} \varphi \implies \Gamma \models_{\mathcal{L}} \varphi$$

Proof.

It is enough to verify that the axioms of $\bf S4$ are valid, and the rules of inference, namely, $(\bf MP)$ and $(\bf N)$ preserve validity.

Maximally Consistent Sets

Definition (Consistent set)

A set Γ is *consistent* relative to **S4** iff $\Gamma \not\vdash_{S4} \bot$.

We will call such sets **\$4**-consistent.

Definition (Maximally consistent set)

A set Γ is *maximally* **S4**-consistent iff Γ is **S4**-consistent and for every φ , either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$, but not both.

Lemma (Lindenbaum's Lemma)

For an arbitrary system Σ , if Γ is Σ -consistent, then there exists a maximally consistent set Δ extending Γ .

Note: This extension is consistent by its recursive definition.

Canonical Topological Space

Definition (Canonical Topological Space)

The canonical topological space is the pair $(X^{\mathcal{L}}, \mathcal{T}^{\mathcal{L}})$, where

- ▶ $X^{\mathcal{L}}$ is the set of all maximally consistent sets, Γ_{max} ;
- $\blacktriangleright \ \mathcal{T}^{\mathcal{L}}$ is a topology generated by base sets

$$B^{\mathcal{L}} = \{ \widehat{\Box \varphi} \mid \varphi \text{ is any formula} \},$$

where

$$\widehat{\varphi} := \{ \Gamma_{\mathsf{max}} \in X^{\mathcal{L}} \mid \varphi \in \Gamma_{\mathsf{max}} \}.$$

So all base sets are of the form

$$\mathcal{O}_{\varphi} = \{ \Gamma_{\mathsf{max}} \in X^{\mathcal{L}} \mid \Box \varphi \in \Gamma_{\mathsf{max}} \}.$$

Intuition: Base sets are maximally consistent sets which contain $\Box \varphi$ for any φ . Think of \Box as the interior operator acting on subsets of a topological space.

Canonical Model and Truth Lemma

Definition (Canonical Topological Model)

The Canonical Topological Model is the triple $M^{\mathcal{L}}=((X^{\mathcal{L}},\mathcal{T}^{\mathcal{L}}),v^{\mathcal{L}}),$ where $(X^{\mathcal{L}},\mathcal{T}^{\mathcal{L}})$ is the canonical topological space, and

$$v^{\mathcal{L}}(p) = \{ \Gamma_{\mathsf{max}} \in X^{\mathcal{L}} \mid p \in \Gamma_{\mathsf{max}} \}.$$

Lemma (Truth lemma)

If $M^{\mathcal{L}}$ is a topological model, then for any modal formula φ ,

$$M^{\mathcal{L}} \models \varphi[x] \iff x \in \widehat{\varphi}.$$

Intuition: "Truth=Membership". That is to say, a formula φ is true at a maximally consistent set, only if it is a member of that set.

Completeness

Theorem (Completeness)

For any set of formulas Γ of \mathcal{L} ,

$$\Gamma \models_{\mathcal{L}} \varphi \implies \Gamma \vdash_{\mathbf{S4}} \varphi$$

Proof.

- ▶ By contraposition, suppose that $\Gamma \not\vdash_{\mathbf{S4}} \varphi$.
- ▶ Then $\Delta = \Gamma \cup \{\neg \varphi\}$ is consistent.
- ▶ By Lindenbaum's lemma, there is a maximally consistent set Γ_{max} extending Δ .
- ▶ By the Truth lemma, for some model $M^{\mathcal{L}}$,

$$M^{\mathcal{L}} \models \neg \varphi[\Gamma_{\mathsf{max}}] \iff M^{\mathcal{L}} \not\models \varphi[\Gamma_{\mathsf{max}}]$$

- Marco Aiello, Johan van Benthem, and Guram Bezhanishvili. Reasoning About Space: The Modal Way, Journal of Logic and Computation, Vol 13 No. 6.
- Marco Aiello, Ian E. Pratt-Hartmann and Johan van Benthem, editors. *Handbook of Spatial Logics*, Springer; 2007.
- Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic (Cambridge Tracts in Theoretical Computer Science #53), Cambridge University Press; 2002.
- J. C. C. McKinsey and Alfred Tarski. The Algebra of Topology. Annals of Mathematics, vol 45: pgs 141-191, 1944.
- James Munkres. Topology, second edition, Pearson; 2000.
- The Open Logic Textbook; 2017. accessed: http://openlogicproject.org/