

厦门大学《线性代数 I》课程期中试卷

试卷类型: A 考试日期 2016.11.12

得 分	
评阅人	

一(10分). 假设矩阵 A 和矩阵 B 可交换,其中 $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$,

求所有满足交换条件的矩阵 B.

得 分	
ेच्य हेल 🚶	
评阅人	

为 A_{ij} , 计算 $A_{11}+A_{12}+A_{13}+A_{14}$.

得分		1	2	3	0	
		2	2	1	0	<u> </u>
评阅人	三(10分). 己知 $A=$	3	4	3	0	,
		0	0	0	8	

得 分	四(10 分)当参数 a,b 满足什么条件时,方程组 $\begin{cases} x_1+x_2+x_3+x_4=-1, \\ 4x_1+3x_2+5x_3-x_4=-1, \end{cases}$ 死解.
评阅人	$\begin{cases} 4x_1 + 3x_2 + 5x_3 - x_4 = -1, \text{ Then } \\ ax_1 + x_2 + 3x_3 + bx_4 = 3 \end{cases}$

得分			2a	1					
J4 Y1			a^2	2a	1				
阅卷人	王(10 公)	设 存列式		a^2	2 <i>a</i>	1			 注明 D = (n+1) a ⁿ
	Щ(10));)	设行列式 $D_n =$			0	0	0		\int ,证明 $D_n = (n+1)a^n$.
						a^2	2a	1	

得 分	
评阅人	

 $(10 \, \text{分})$. 已知 A 和 B 均为三阶矩阵,将 A 的第三行的-2 倍加至第 2 行得到矩阵 A_1 ,将 B 中第 2 列加至第 1 列得到矩阵 B_1 ,又知 $A_1B_1 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}, 求 AB.$

得分	
评阅人	

		λ	1	1		$\lceil a \rceil$	
七(15分).	设 A =	0	$\lambda - 1$	0	$\beta =$	1	$\left \begin{array}{c} \\ ,$ 已知线性方程组 $Ax = oldsymbol{eta} \end{array} \right $
		1	1	$\lambda_{_}$		_1_	

有无穷多解. (1) 求 λ , a 的值; (2) 求线性方程组 $Ax = \beta$ 通解.

得 分	
评阅人	

八(15 分). 已知 A, B 为三阶矩阵,且满足 $2A^{-1}B = B - 4E$, 其中 E 是 3 阶单位矩阵. (1) 证明矩阵 *A*-2*E* 可逆;

(2) 若
$$B = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, 求矩阵 A .

得 分	
评阅人	

九 (10 分) (1) 设 $A = \left[a_{ij}\right]_{3\times 3}$ 是 3 阶非零矩阵,若 $a_{ij} + A_{ij} = 0, i, j = 1, 2, 3$,求 |A| .

(2) 设A为 $m \times n$ 矩阵,证明R(A) = 1的充分必要条件是存在非零 m 维

列向量 α 和非零的 n 维列向量 β , 使得 $A = \alpha \beta^T$.