

On α^+ -Stable König-Egervary Graphs

Vadim E. Levit and Eugen Mandrescu

Department of Computer Science
 Holon Academic Institute of Technology
 52 Golomb Str., P.O. Box 305
 Holon 58102, ISRAEL
 {levity, eugen_m}@barley.cteh.ac.il

Abstract

The stability number of a graph G , denoted by $\alpha(G)$, is the cardinality of a stable set of maximum size in G . If its stability number remains the same upon the addition of any edge, then G is called α^+ -stable. G is a König-Egervary graph if its order equals $\alpha(G) + \mu(G)$, where $\mu(G)$ is the cardinality of a maximum matching in G . In this paper we characterize α^+ -stable König-Egervary graphs, generalizing some previously known results on bipartite graphs and trees. Namely, we prove that a König-Egervary graph $G = (V, E)$ is α^+ -stable if and only if either $|\cap\{V - S : S \in \Omega(G)\}| = 0$, or $|\cap\{V - S : S \in \Omega(G)\}| = 1$, and G has a perfect matching (where $\Omega(G)$ denotes the family of all maximum stable sets of G). Using this characterization we obtain several new findings on general König-Egervary graphs, for example, the equality $|\cap\{S : S \in \Omega(G)\}| = |\cap\{V - S : S \in \Omega(G)\}|$ is a necessary and sufficient condition for a König-Egervary graph G to have a perfect matching.

1 Introduction

Throughout this paper $G = (V, E)$ is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V = V(G)$ and edge set $E = E(G)$. If $X \subset V$, then $G[X]$ is the subgraph of G spanned by X . By $G - W$ we mean the subgraph $G[V - W]$, if $W \subset V(G)$. By $G - F$ we denote the partial subgraph of G obtained by deleting the edges of F , for $F \subset E(G)$, and we use $G - e$, if $W = \{e\}$. If $A, B \subset V$ and $A \cap B = \emptyset$, then (A, B) stands for the set $\{e = ab : a \in A, b \in B, e \in E\}$.

A *stable set* in G is a set $A \subseteq V$ of pairwise non-adjacent vertices. A stable set of maximum size will be referred as to a *maximum stable set* of G and its cardinality $\alpha(G)$ is the *stability number* of G . Let $\Omega(G)$ stand for the set $\{S : S \text{ is a maximum stable set of } G\}$.

A matching (i.e., a set of non-incident edges of G) of maximum cardinality $\mu(G)$ is a *maximum matching*, and a *perfect matching* is one covering all the vertices of G . If $|V(G)| - 2|M| = 1$, then M is called *near-perfect*, [22]. By C_n, K_n, P_n we denote

the chordless cycle on $n \geq 4$ vertices, the complete graph on $n \geq 1$ vertices, and respectively the chordless path on $n \geq 3$ vertices.

It is known that $\lfloor n/2 \rfloor + 1 \leq \alpha(G) + \mu(G) \leq n$ holds for any graph G with n vertices. Any complete graph K_n represents the lower bound in this inequality, while the upper bound is achieved, according to a well-known result of Koenig, [15], and Egervary, [7], by any bipartite graph. It is easy to see that there are also non-bipartite graphs having the same property, for instance, the graphs in Figure 1.

Figure 1: König-Egervary non-bipartite graphs.

If $\alpha(G) + \mu(G) = |V(G)|$, then G is called a *König-Egervary graph*. We attribute this definition to Deming [5], and Sterboul [26], but it is also possible to say that Klee [14] defined this notion implicitly before them. These graphs were studied by Korach [16], Lovasz [21], Lovasz and Plummer [22], Bourjolly and Pulleyblank [3], Pulleyblank [25], and generalized by Bourjolly, Hammer and Simeone [2], Paschos and Demange [24]. Since G is a König-Egervary graph if and only if all its connected components are König-Egervary graphs, throughout this paper we shall consider only connected König-Egervary graphs.

A graph G is α^+ -stable if $\alpha(G+e) = \alpha(G)$ holds for any edge $e \in E(\overline{G})$, where \overline{G} is the complement of G , [11]. We shall use the following characterization that Haynes et al. give for the α^+ -stable graphs.

Theorem 1.1 [13] *A graph G is α^+ -stable if and only if $|\cap\{S : S \in \Omega(G)\}| \leq 1$.*

Theorem 1.1 motivates us to define graph G as α_0^+ -stable if $|\cap\{S : S \in \Omega(G)\}| = 0$, and α_1^+ -stable if $|\cap\{S : S \in \Omega(G)\}| = 1$, [20]. Based on Theorem 1.1, Gunther et al., [11], give a description of α^+ -stable trees, which we generalized to bipartite graphs in [18]. The structure of α^+ -stable bipartite graphs is emphasized in [19].

In this paper we present several properties of König-Egervary graphs, which we use further to give necessary and sufficient conditions for König-Egervary graphs to be α^+ -stable. We also characterize König-Egervary graphs having perfect matchings. Similar problems related to adding or deleting edges or vertices in connection with various graph parameters are treated in [1], [4], [8], [9], [23], [27].

2 König-Egervary Graphs

Using the definition of König-Egervary graphs we get:

Lemma 2.1 (i) *If G is a König-Egervary graph, then $\alpha(G) \geq |V(G)|/2 \geq \mu(G)$.*
(ii) *A König-Egervary graph G has a perfect matching if and only if $\alpha(G) = \mu(G)$.*
(iii) *If G admits a perfect matching, then $\alpha(G) = \mu(G)$ if and only if G is a König-Egervary graph.*

For $G_i, i = 1, 2$, let $G = G_1 * G_2$ be the graph with $V(G) = V(G_1) \cup V(G_2)$, and $E(G) = E(G_1) \cup E(G_2) \cup \{xy : \text{for some } x \in V(G_1) \text{ and } y \in V(G_2)\}$. Clearly, if H_1, H_2 are subgraphs of a graph G such that $V(G) = V(H_1) \cup V(H_2)$ and $V(H_1) \cap V(H_2) = \emptyset$, then $G = H_1 * H_2$, i.e., any graph of order at least two admits such decompositions. However, some particular cases are of special interest. For instance, if: $E(H_i) = \emptyset, i = 1, 2$, then $G = H_1 * H_2$ is bipartite; $E(H_1) = \emptyset$ and H_2 is complete, then $G = H_1 * H_2$ is a *split graph* [10].

The following proposition shows that the König-Egervary graphs are, in this sense, between these two "extreme" situations. The equivalence of the first and the third parts of this result was proposed by Klee without proof (see [14]).

Proposition 2.2 *If G is connected, then the following statements are equivalent:*

- (i) G is a König-Egervary graph;
- (ii) $G = H_1 * H_2$, where $V(H_1) = S \in \Omega(G)$ and $|V(H_1)| \geq \mu(G) = |V(H_2)|$;
- (iii) $G = H_1 * H_2$, where $V(H_1) = S$ is a stable set in G , $|S| \geq |V(H_2)|$, and $(S, V(H_2))$ contains a matching M with $|M| = |V(H_2)|$.

Proof. (i) \Rightarrow (ii) Let $S \in \Omega(G)$, $H_1 = G[S]$ and $H_2 = G[V - S]$. Then we have $G = H_1 * H_2$, $\alpha(G) + \mu(G) = |V(G)| = \alpha(G) + |V(H_2)|$, and therefore $\mu(G) = |V(H_2)|$. In addition, Lemma 2.1 ensures that $|V(H_1)| \geq \mu(G)$.

(ii) \Rightarrow (iii) It is clear if we take the same H_1 and H_2 as in (ii).

(iii) \Rightarrow (i) First, we claim that $|M| = \mu(G)$. To see this, let assume W be an arbitrary matching in G containing some edge of H . Since S is stable, we infer that $|W| < |V(H_2)| = |M|$. Therefore, M must be a maximum matching in G . Hence we have: $\alpha(G) + \mu(G) \leq |V(G)| = |S| + |V(H)| = |S| + |M| = |S| + \mu(G)$, and because S is stable, we obtain that $|S| = \alpha(G)$ and $\alpha(G) + \mu(G) = |V(G)|$, i.e., G is a König-Egervary graph. ■

In the sequel, we shall often represent a König-Egervary graph G as $G = S * H$, where $S \in \Omega(G)$, $H = G[V - S]$, and $|V(H)| = \mu(G)$.

Lemma 2.3 *Any maximum matching of a König-Egervary graph $G = (V, E)$ is contained in each $(S, V - S)$, where $S \in \Omega(G)$, and, hence,*

$$\cup\{M : M \text{ is a maximum matching in } G\} \subseteq \cap\{(S, V - S) : S \in \Omega(G)\}.$$

Proof. Let $S \in \Omega(G)$ and $G = S * H$. Suppose, on the contrary, that there is a maximum matching M of G and an edge $e = xy \in M \cap E(H)$. Since S is stable, we infer that $\mu(G) < |V(H)|$, a contradiction. Therefore, M must be contained in $(S, V - S)$. ■

Let M be a maximum matching of a graph G . To adopt Edmonds's terminology, [6], we recall the following terms for G relative to M . The edges in M are *heavy*, while those not in M are *light*. An *alternating path* from a vertex x to a vertex y is a x, y -path whose edges are alternating light and heavy. A vertex x is *exposed* relative to M if x is not the endpoint of a heavy edge. An odd cycle C with $V(C) = \{x_0, x_1, \dots, x_{2k}\}$ and $E(C) = \{x_i x_{i+1} : 0 \leq i \leq 2k - 1\} \cup \{x_{2k}, x_0\}$, such that $x_1 x_2, x_3 x_4, \dots, x_{2k-1} x_{2k} \in M$ is a *blossom relative to M* . The vertex x_0 is the *base* of the blossom. The *stem* is

an even length alternating path joining the base of a blossom and an exposed vertex for M . The base is the only common vertex to the blossom and the stem. A *flower* is a blossom and its stem. A *posy* or a *blossom pair* (cf. [5]) consists of two (not necessarily disjoint) blossoms joined by an odd length alternating path whose first and last edges belong to M . The endpoints of the path are exactly the bases of the two blossoms. The following result of Sterboul, [26], characterizes König-Egervary graphs in terms of forbidden configurations.

Theorem 2.4 *For a graph G , the following properties are equivalent:*

- (i) *G is a König-Egervary graph;*
- (ii) *there exist no flower and no posy relative to some maximum matching M ;*
- (iii) *there exist no flower and no posy relative to any maximum matching M .*

If a König-Egervary graph G is blossom-free relative to a maximum matching M , then G is not necessarily blossom-free with respect to any of its maximum matchings. For instance, the graph G in Figure 2 contains a unique C_5 , which is a blossom relative to the maximum matching $M_1 = \{d, e, g\}$, and is not a blossom relative to $M_2 = \{a, c, g\}$.

Figure 2: Graph G is not blossom-free.

Lemma 2.5 *If M is a maximum matching and S is a stable set of a König-Egervary graph G , then $S \in \Omega(G)$ if and only if S contains all exposed vertices relative to M and one endpoint of each edge in M .*

Proof. According to Proposition 2.2, $G = S * H$, where $S \in \Omega(G)$ and $H = G[V - S]$ has $\mu(G) = |V(H)|$. By Lemma 2.3, $M \subset (S, V - S)$, and therefore the assertion on S is true.

Conversely, since S is stable and $|S| = |M| + |V(G)| - 2|M| = |V(G)| - |M| = |V(G)| - \mu(G)$, we get that $S \in \Omega(G)$. ■

Theorem 2.6 *Let G be a König-Egervary graph of order at least 2. Then G satisfies $|\cap\{V - S : S \in \Omega(G)\}| = 0$ if and only if it has a perfect matching and is blossom-free.*

Proof. Suppose that G has no perfect matching. Let $S \in \Omega(G)$, $G = S * H$, and M be a maximum matching in G . Lemma 2.1 implies that $\alpha(G) > \mu(G)$, and hence, G has at least one exposed vertex v with respect to M . Then $v \in S$, and any $w \in N(v)$ is not contained in S . Since the choice of S is arbitrary, we conclude that $w \in V - S$, for any $S \in \Omega(G)$. Hence, $|\cap\{V - S : S \in \Omega(G)\}| > 0$, in contradiction with the premises on G . Thus, G must have a perfect matching. To prove that G is blossom-free, it is sufficient to show that if G is a König-Egervary graph, then $\{x : x \text{ is a base of a}$

blossom in $G\}$ $\subseteq \cap\{V - S : S \in \Omega(G)\}$, i.e., for any $S \in \Omega(G)$, no base of a blossom in G belongs to S . Let C be a blossom in G , with $V(C) = \{x_0, x_1, \dots, x_{2k}\}$, relative to a perfect matching M , and x_0 be its base. Then $x_1x_2, x_3x_4, \dots, x_{2k-1}x_{2k} \in M$, and according to Lemma 2.5, S contains one of the vertices x_1 or x_{2k} . If $x_1, x_{2k} \notin S$, then necessarily $x_2, x_{2k-1} \in S$ and this is not possible, since the node distance on C between x_2 and x_{2k-1} is an even number. Hence, $x_0 \notin S$.

Conversely, Let M be a perfect matching of $G = S * H$, and $b \in V(H)$, where $S \in \Omega(G)$, $H = G[V - S]$, and $|V(H)| = \mu(G)$. We emphasize a maximum stable set of G that contains b . Let denote:

$$\begin{aligned} A_1 &= N(b) \cap S, B_1 = \{b : ab \in M, a \in A_1\}, \\ A_2 &= N(B_1) \cap S - A_1, B_2 = \{b : ab \in M, a \in A_2\}, \\ A_3 &= N(B_2) \cap S - A_1 \cup A_2, B_3 = \{b : ab \in M, a \in A_3\}, \dots, \\ A_p &= N(B_{p-1}) \cap S - A_1 \cup \dots \cup A_{p-1}, B_p = \{b : ab \in M, a \in A_p\}, \end{aligned}$$

and $b \in B = B_1 \cup \dots \cup B_p$, $A = A_1 \cup \dots \cup A_p$ be such that $(B, S - A) = \emptyset$. Any edge joining two vertices in B would close a blossom with respect to M , which contradicts the fact that G is blossom free. Therefore, B is stable. The set $B \cup (S - A)$ is also stable, because $(B, S - A) = \emptyset$. Moreover, $|B| = |A|$ implies that $B \cup (S - A)$ is a maximum stable set of G .

Thus, every $b \in V(H) = V - S$ belongs to a maximum stable set. Since S is also a maximum stable set, we conclude that any vertex of G belongs to some maximum stable set of G . Clearly, this is equivalent to $|\cap\{V - S : S \in \Omega(G)\}| = 0$. ■

It is worth observing that having a perfect matching is not sufficient for achieving $|\cap\{V - S : S \in \Omega(G)\}| = 0$. For instance, $K_4 - e$ is a König-Egervary graph with perfect matchings, but $|\cap\{V - S : S \in \Omega(G)\}| = 2$. Being blossom free is also not enough for $|\cap\{V - S : S \in \Omega(G)\}| = 0$. For instance, trees without a perfect matching are examples of blossom free graphs such that $|\cap\{V - S : S \in \Omega(G)\}| \neq 0$.

3 α^+ -Stable König-Egervary Graphs

Lemma 3.1 *Any α^+ -stable König-Egervary graph has a near-perfect matching or a perfect matching.*

Proof. Suppose that graph G has neither a near-perfect matching nor a perfect matching. Let M be a maximum matching of G . Since $|V(G)| - 2|M| \geq 2$, there exist two unmatched vertices of G , say x, y . Hence, $e = xy \in E(\overline{G})$, because otherwise $M \cup \{e\}$ is a matching larger than a maximum matching of G . We claim that x, y are contained in all maximum stable sets of G . To see this, let $S \in \Omega(G)$ and $H = G[V - S]$. Then $G = S * H$, where $\mu(G) = |V(H)| = |M|$. By Lemma 2.3, we have that $M \subseteq (S, V - S)$. Hence, $x, y \in S$, because these vertices are unmatched and non-adjacent. Since S was an arbitrary maximum stable set of G , we infer that $x, y \in \cap\{S : S \in \Omega(G)\}$. By Theorem 1.1, it contradicts the fact that G is α^+ -stable. Consequently, G must have a near-perfect matching or a perfect matching. ■

Theorem 3.2 A König-Egervary graph G is α^+ -stable if and only if it has a perfect matching and $|\cap\{V - S : S \in \Omega(G)\}| \leq 1$.

Proof. Let G be α^+ -stable, and $S \in \Omega(G)$. Suppose, on the contrary, that G has no perfect matching, i.e., by Lemma 2.1, $\alpha(G) > \mu(G)$. Lemma 3.1 implies that G has a near-perfect matching M , which is contained, according to Lemma 2.3, in $(S, V - S)$. Hence, we get that $\alpha(G) = |S| = \mu(G) + 1 = |V - S| + 1 = |M| + 1$, and there are $x, y \in S$ and $z \in V - S$ such that $xz \in E(G) - M$ and $yz \in M$. We claim that x, y belong also to any other maximum stable set W of G , since otherwise if:

- (a) $z \in W$, then $x, y \notin W$, and hence $|W| < \alpha(G)$, a contradiction;
- (b) only $x \in W$ or only $y \in W$, then $z \notin W$, and again the contradiction $|W| < \alpha(G)$, because all vertices of $S - \{x, y\}$ are respectively matched, by $M - \{yz\}$, with vertices in $V - S - \{z\}$.

Thus, we get that $x, y \in \cap\{S : S \in \Omega(G)\}$, and according to Theorem 1.1, this contradicts the fact that G is α^+ -stable. Therefore, G has a perfect matching, say M . Then, for any edge $e = xy \in M$, we have that $x \in \cap\{S : S \in \Omega(G)\}$ if and only if $y \in \cap\{V - S : S \in \Omega(G)\}$. Consequently, we obtain that $|\cap\{S : S \in \Omega(G)\}| = |\cap\{V - S : S \in \Omega(G)\}|$, and Theorem 1.1 implies $|\cap\{V - S : S \in \Omega(G)\}| \leq 1$.

Conversely, suppose G has a perfect matching and $|\cap\{V - S : S \in \Omega(G)\}| \leq 1$. As we saw in the previous paragraph, the existence of a perfect matching in G results in $|\cap\{S : S \in \Omega(G)\}| = |\cap\{V - S : S \in \Omega(G)\}|$. Since $|\cap\{V - S : S \in \Omega(G)\}| \leq 1$, Theorem 1.1 ensures that G is α^+ -stable. ■

It is worth mentioning that there are König-Egervary graphs with perfect matchings, which are not α^+ -stable; e.g., the graph $K_4 - e$. However, for bipartite graphs, this condition is also sufficient (see Corollary 4.1).

Propositions 3.3 and 3.4 show that any α^+ -stable König-Egervary graph G with $|\cap\{V - S : S \in \Omega(G)\}| = 1$ may be decomposed into two α^+ -stable König-Egervary graphs G_1, G_2 with $|\cap\{V - S : S \in \Omega(G_1)\}| = 0$, and $|\cap\{V - S : S \in \Omega(G_2)\}| = 0$.

Proposition 3.3 If G is a König-Egervary graph with $|\cap\{V - S : S \in \Omega(G)\}| = 1$ and $\alpha(G) = \mu(G)$, then there exists $xy \in E(G)$, such that $H = G - \{x, y\}$ is a König-Egervary graph with $|\cap\{V - S : S \in \Omega(H)\}| = 0$ and $\alpha(H) = \mu(H)$.

Proof. Let M be a perfect matching of G , which exists by Lemma 2.1. Let also $x \in \cap\{V - S : S \in \Omega(G)\}$ and $y \in V(G)$ be such that $e = xy \in M$. Hence, it follows that $y \in \cap\{S : S \in \Omega(G)\}$, and therefore, $H = G - \{x, y\}$ is a König-Egervary graph with $\alpha(H) = \mu(H)$ and $|\cap\{V - S : S \in \Omega(H)\}| = 0$. ■

Proposition 3.4 If G is a König-Egervary graph with $|\cap\{V - S : S \in \Omega(G)\}| = 0$ and $K_2 = \{\{x, y\}, \{xy\}\}$, then every graph $F = G + K_2$ having:

$$V(F) = V(G) \cup \{x, y\}, E(F) \supseteq E(G) \cup \{xy\} \text{ and } \{(y, S) \neq \emptyset, \text{ for all } S \in \Omega(G)\},$$

is a König-Egervary graph with a perfect matching, and $|\cap\{V - S : S \in \Omega(F)\}| = 1$.

Proof. By Theorem 2.6, we obtain that G admits perfect matchings. Since $(y, S) \neq \emptyset$ for any $S \in \Omega(G)$, we get $\Omega(F) = \{S \cup \{x\} : S \in \Omega(G)\}$. $M \cup \{xy\}$ is a perfect matching in F , for any perfect matching M of G . Consequently, F has a perfect matching and $\cap \{V - S : S \in \Omega(F)\} = \{y\}$. According to Proposition 2.2, F is also a König-Egervary graph. ■

The next theorem presents a more specific characterization of α^+ -stable König-Egervary graphs.

Theorem 3.5 *If G is a König-Egervary graph of order at least 2, then the following statements are equivalent:*

- (i) G is α^+ -stable;
- (ii) either $|\cap \{V - S : S \in \Omega(G)\}| = 0$, or $|\cap \{V - S : S \in \Omega(G)\}| = 1$, and G has a perfect matching;
- (iii) G has a perfect matching, and either there exists $xy \in E(G)$, such that $H = G - \{x, y\}$ is blossom-free and has a perfect matching, or G is blossom-free.

Proof. (iii) If $|\cap \{V - S : S \in \Omega(G)\}| = 0$, then G has a perfect matching and it is blossom-free, by Theorem 2.6. If $|\cap \{V - S : S \in \Omega(G)\}| = 1$ and G has a perfect matching, then Proposition 3.3 and Lemma 2.1, imply that there exists $xy \in E(G)$, such that $H = G - \{x, y\}$ is blossom-free and has a perfect matching.

(iii) \Rightarrow (i) If G has a perfect matching and is blossom-free, then according to Theorem 2.6, we get $|\cap \{V - S : S \in \Omega(G)\}| = 0$, and further, Theorem 3.2 ensures that G is α^+ -stable. If G has a perfect matching, and there exist $xy \in E(G)$, such that $H = G - \{x, y\}$ is blossom-free and has a perfect matching, then G is α^+ -stable, according to Proposition 3.4. ■

The graph $K_4 - e$ shows that it is not enough to have a perfect matching in order to ensure that a König-Egervary graph is α^+ -stable.

Notice also that P_3 is a König-Egervary graph, $|\cap \{V - S : S \in \Omega(P_3)\}| = 1$, but P_3 is not α^+ -stable.

Figure 3: G is not-blossom-free, $H = G - \{v_2, v_3\}$ is blossom-free, and $\alpha(H) \neq \mu(H)$.

Observe that the graph G , in Figure 3, has blossoms with respect to the perfect matching $M = \{a, b, c, d\}$, and only for $x \in \{v_2, v_6\}$ and $y \in \{v_3, v_7\}$, the corresponding subgraph $H = G - \{x, y\}$ is connected and blossom-free, but $\alpha(H) \neq \mu(H)$. In addition, G is a König-Egervary non- α^+ -stable graph, since $\alpha(G + v_1v_5) = 3 < \alpha(G)$.

4 Applications of α^+ -stable König-Egervary Graphs

Combining Theorems 3.5, 1.1 and Lemma 2.1, we obtain:

Corollary 4.1 [18] *If G is a bipartite graph, then the following assertions are equivalent:*

- (i) G is α^+ -stable;
- (ii) G possesses a perfect matching;
- (iii) G has two maximum stable sets that partition its vertex set;
- (iv) $|\cap\{S : S \in \Omega(G)\}| = 0$.

In other words, the bipartite graphs can be only α_0^+ -stable. Nevertheless, there exist non-bipartite König-Egervary α_0^+ -stable graphs (e.g., G_2 in Figure 4), and also non-bipartite König-Egervary α_1^+ -stable graphs (e.g., G_1 in Figure 4).

Figure 4: α^+ -stable non-bipartite König-Egervary graphs.

Proposition 4.2 *Let G be an α^+ -stable bipartite graph. If graph $H = G \bullet K_p$ has $V(H) = V(G) \cup V(K_p)$ and $E(H) = E(G) \cup E(K_p) \cup W$, where:*

- (i) $W = \{xa, xb\}$, with ab in a perfect matching of G , for $p \leq 2$ and $x \in V(K_p)$;
or
- (ii) $W = \{xy\}$, for some $x \in V(K_p)$ and $y \in V(G)$, for $p \geq 3$,
then H is α^+ -stable.

Proof. (i) If $p = 1$, we claim that $\alpha(H) = \alpha(G)$. Otherwise, there is a stable set S in H with $|S| = \alpha(H) > \alpha(G)$, and consequently $S - \{x\}$ is a maximum stable set in G that contains neither a , nor b , a contradiction, since G is α^+ -stable. Hence, we have $\Omega(H) = \Omega(G)$ and clearly, $\cap\{S : S \in \Omega(H)\} = \emptyset$. If $p = 2$, then $|\cap\{S : S \in \Omega(H)\}| = |\{y\}| = 1$, because G is α^+ -stable and any maximum stable set of H is of the form $S \cup \{y\}$, where $S \in \Omega(G)$ and $y \in V(K_2) - \{x\}$. Therefore, by Theorem 1.1, H is α^+ -stable.

(ii) In this case, $\cap\{S : S \in \Omega(H)\} = \emptyset$, because G is α^+ -stable and any maximum stable set of H is of the form $S \cup \{z\}$, where $S \in \Omega(G)$ and $z \in V(K_p) - \{x\}$. According to Theorem 1.1, H is α^+ -stable. ■

The graph $G = K_1 \bullet K_p$, for $p \geq 4$, $K_1 = (\{x\}, \emptyset)$, $V(G) = \{x\} \cup V(K_p)$ and $E(G) = \{xy\} \cup E(K_p)$, where $y \in V(K_p)$, is α^+ -stable, non-König-Egervary graph, and $|\cap\{S : S \in \Omega(G)\}| = |\{x\}| = 1$. Taking also into account Proposition 4.2, we obtain the following:

Corollary 4.3 For every natural number $n \geq 5$ there exist α^+ -stable non-König-Egervary graphs G_1, G_2 of order n such that

$$|\cap\{S : S \in \Omega(G_1)\}| = 0 \text{ and } |\cap\{S : S \in \Omega(G_2)\}| = 1.$$

Proposition 4.4 If G is a König-Egervary graph of order $n \geq 2$, and $\alpha(G) > n/2$, then $|\cap\{S : S \in \Omega(G)\}| \geq 2$.

Proof. If $\alpha(G) > n/2$, then G has no perfect matching, and by Theorem 3.2, G is not α^+ -stable. Consequently, Theorem 1.1 implies that $|\cap\{S : S \in \Omega(G)\}| \geq 2$. ■

For general case, it has been proven that:

Proposition 4.5 [12] If G is a graph with $\alpha(G) > |V(G)|/2$, then

$$|\cap\{S : S \in \Omega(G)\}| \geq 1.$$

For example, in a bipartite graph $G = (A, B, E)$ such that $|A| \neq |B|$, there exists at least one vertex belonging to all maximum stable sets of G , i.e.,

$$|\cap\{S : S \in \Omega(G)\}| \geq 1.$$

Since any bipartite graph is König-Egervary, Proposition 4.4 yields the following result, which has been already done independently in [19], as a strengthening of Proposition 4.5 in the case of bipartite graphs.

Corollary 4.6 If $G = (A, B, E)$ is bipartite and $|A| \neq |B|$, then

$$|\cap\{S : S \in \Omega(G)\}| \geq 2.$$

A *pendant edge* is an edge incident with a *pendant vertex* (i.e., a vertex of degree one). A vertex v is α -*critical* in G if $\alpha(G - v) < \alpha(G)$.

Theorem 4.7 For a graph G of order at least two, the following are equivalent:

- (i) G has a perfect matching M consisting of its pendant edges;
- (ii) G has exactly $\alpha(G)$ pendant vertices and none of them is α -critical;
- (iii) G is a König-Egervary α^+ -stable graph with exactly $\alpha(G)$ pendant vertices.

Proof. (i) \Rightarrow (ii) It is clear that $S = \{x : x \text{ is a pendant vertex in } G\}$ is stable in G . If $\alpha(G) > |S| = |V(G)|/2$, then any maximum stable set W of G must contain some pair of vertices, matched by M , a contradiction, since W is stable. Hence, $|S| = \alpha(G)$ holds. In addition, if $x \in S$ and y is its single neighbor in G , then $S \cup \{y\} - \{x\}$ is a maximum stable set in $G - \{x\}$, i.e., x is not α -critical in G .

(ii) \Rightarrow (iii) Now, clearly $S = \{x : x \text{ is a pendant vertex in } G\} \in \Omega(G)$ and let denote $M = \{xy : x \in S \text{ and } y \in N(x)\}$. By Proposition 2.2, $G = S * H$ and if some $z \in V(H)$ is not matched by M , then $S \cup \{z\}$ is a stable set larger than S , a contradiction. Hence, we get that $|M| = \mu(G) = |V(H)|$, i.e., G is a König-Egervary graph. According to Theorem 3.5, G is also α^+ -stable, because is blossom-free with respect to M and another perfect matching does not exist.

(iii) \Rightarrow (i) According to Theorem 3.5, G has a perfect matching M , and since $\{x : x \text{ is a pendant vertex in } G\} \in \Omega(G)$, M consists of all the pendant edges of G . ■

Lemma 4.8 *If G is a König-Egervary graph, then*

$$N(\cap\{S : S \in \Omega(G)\}) = \cap\{V - S : S \in \Omega(G)\}.$$

Proof. Let denote $A = \cap\{S : S \in \Omega(G)\}$ and $B = \cap\{V - S : S \in \Omega(G)\}$. If $v \in N(A)$, then clearly $v \notin S$, for any $S \in \Omega(G)$, i.e., $N(A) \subseteq B$. Let M be a maximum matching of G and $x \in B$. According to Lemma 2.3, $M \subset (S, V(G) - S)$ holds for any $S \in \Omega(G)$, and by Proposition 2.2, we have also $|M| = |V(G) - S|$. Since $x \in B$, it follows that there is $xy \in M$, and hence, Lemma 2.5 implies that $y \in S$, for any $S \in \Omega(G)$, i.e., $y \in A$. Consequently, we get that $x \in N(A)$, and because x was an arbitrary vertex of B , it results $B \subseteq N(A)$, and this completes the proof. ■

Lemma 4.8 is not true for general graphs; e.g., the graph in Figure 5.

Figure 5: $N(\cap\{S : S \in \Omega(G)\}) = \{a\} \neq \{a, b\} = \cap\{V - S : S \in \Omega(G)\}$, and G is a non-König-Egervary graph without perfect matchings.

Lemma 4.9 *If G is a König-Egervary graph and M is a maximum matching, then M matches $N(\cap\{S : S \in \Omega(G)\})$ into $\cap\{S : S \in \Omega(G)\}$.*

Proof. In accordance with Proposition 2.2, G can be written as $G = S * H$, where $S \in \Omega(G)$, $H = (V(H), E(H)) = G[V - S]$, and $|V(H)| = \mu(G)$. By Lemma 2.3, $M \subset (S, V(G) - S) = (S, V(H))$, and, clearly, $N(\cap\{S : S \in \Omega(G)\}) \subset V(G) - S$. Hence, any $x \in N(\cap\{S : S \in \Omega(G)\})$ is matched with some $y \in S$. Moreover, according to Lemma 2.5, if x belongs to no maximum stable set of G , then $y \in \cap\{S : S \in \Omega(G)\}$. Therefore, M matches $N(\cap\{S : S \in \Omega(G)\})$ into $\cap\{S : S \in \Omega(G)\}$. ■

Theorem 4.10 *If G is a König-Egervary graph, then G has a perfect matching if and only if $|\cap\{S : S \in \Omega(G)\}| = |\cap\{V - S : S \in \Omega(G)\}|$.*

Proof. Let M be a perfect matching of G . Then, for any edge $e = xy \in M$, we have that $x \in \cap\{S : S \in \Omega(G)\}$ if and only if $y \in \cap\{V - S : S \in \Omega(G)\}$. Consequently, we get that $|\cap\{S : S \in \Omega(G)\}| = |\cap\{V - S : S \in \Omega(G)\}|$.

Conversely, assume that $|\cap\{S : S \in \Omega(G)\}| = |\cap\{V - S : S \in \Omega(G)\}|$. Let $A = \cap\{S : S \in \Omega(G)\}$, $B = \cap\{V - S : S \in \Omega(G)\}$, and $G_0 = G - N[A]$. By Proposition 2.2, $G = S * H$, where $H = (V(H), E(H)) = G[V - S]$ has $|V(H)| = \mu(G)$, and $S \in \Omega(G)$. If M is a maximum matching, then by Lemma 4.9, M matches $N(A)$ into A . Hence, $|A| \geq |N(A)|$. Since, by Lemma 4.8, $N(A) = B$, we get that $|A| \geq |N(A)| = |B|$, and consequently $|A| = |N(A)|$. Therefore the restriction M_1 of M on $G[A \cup N(A)]$ is a perfect matching.

For a König-Egervary graph G , $\alpha(G_0) = \alpha(G) - |A|$, $\mu(G_0) = \mu(G) - |N(A)|$. In our case, when $|A| = |N(A)|$, it means that G_0 is a König-Egervary graph, as well.

Moreover, $|\cap\{S : S \in \Omega(G_0)\}| = 0$, and consequently according to Theorem 1.1 G_0 is an α^+ -stable graph. By Theorem 3.2, G_0 has a perfect matching, say M_0 , which together with M_1 builds a perfect matching of G . ■

It is interesting to mention that there exist non-König-Egervary graphs enjoying the equality $|\cap\{S : S \in \Omega(G)\}| = |\cap\{V - S : S \in \Omega(G)\}|$ without perfect matchings (e.g., the graph in Figure 5).

Combining Theorem 4.10 and Corollary 4.1 we obtain:

Corollary 4.11 *If G is bipartite, then $|\cap\{S : S \in \Omega(G)\}| = |\cap\{V - S : S \in \Omega(G)\}|$ if and only if $|\cap\{S : S \in \Omega(G)\}| = |\cap\{V - S : S \in \Omega(G)\}| = 0$.*

5 Conclusions and future work

In this paper we return the attention of the reader to the notion of a König-Egervary graph. We state several properties of König-Egervary graphs, showing that these graphs give a fruitful developing of the bipartite graphs theory. Our main findings refer to the α^+ -stability of König-Egervary graphs. These results generalize some previously known statements for trees and bipartite graphs. In addition, we characterize those König-Egervary graphs for which "to be blossom-free relative to some perfect matching" is equivalent to "to be blossom-free relative to any perfect matching". This condition is similar both in form and spirit to Sterboul's characterization of König-Egervary graphs. An obvious question arises: which König-Egervary graphs are α^- -stable (i.e., have stability number insensitive to deletion of any edge)? It would be also interesting to describe the König-Egervary graphs that are both α^- -stable and α^+ -stable.

References

- [1] S. Ao, E. J. Cockayne, G. MacGillivray and C. M. Mynhardt, *Domination critical graphs with higher independent domination numbers*, Journal of Graph Theory **22** (1996) 9-14.
- [2] J. - M. Bourjolly, P. L. Hammer and B. Simeone, *Node weighted graphs having König-Egervary property*, Mathematical Programming Study **22** (1984) 44-63.
- [3] J. M. Bourjolly and W. R. Pulleyblank, König-Egervary graphs, *2-bicritical graphs and fractional matchings*, Discrete Applied Mathematics **24** (1989) 63-82.
- [4] R. C. Brigham, P. Z. Chinn and R. D. Dutton, *Vertex domination-critical graphs*, Networks **18** (1988) 173-179.
- [5] R. W. Deming, *Independence numbers of graphs - an extension of the König-Egervary theorem*, Discrete Mathematics **27** (1979) 23-33.

- [6] J. Edmonds, *Paths, trees and flowers*, Canadian Journal of Mathematics **17** (1965) 449-467.
- [7] E. Egervary, *On combinatorial properties of matrices*, Matematikai Lapok **38** (1931) 16-28.
- [8] O. Favaron, *A note on the irredundance number after vertex deletion*, Discrete Mathematics **121** (1993) 51-54.
- [9] O. Favaron, F. Tian and L. Zhang, *Independence and hamiltonicity in 3-domination-critical graphs*, Journal of Graph Theory **25** (1997) 173-184.
- [10] S. Foldes and P. L. Hammer, *Split Graphs*, in: Proceedings of 8th Southeastern Conference on Combinatorics, Graph Theory and Computing (eds. F. Hoffman et al.), Louisiana State University, Baton Rouge, Louisiana, (1977) 311-315.
- [11] G. Gunther, B. Hartnell, and D. F. Rall, *Graphs whose vertex independence number is unaffected by single edge addition or deletion*, Discrete Applied Mathematics **46** (1993) 167-172.
- [12] P. L. Hammer, P. Hansen and B. Simeone, *Vertices belonging to all or to no maximum stable sets of a graph*, SIAM Journal of Algebraic Discrete Methods **3** (1982) 511-522.
- [13] T. W. Haynes, L. M. Lawson, R. C. Brigham and R. D. Dutton, *Changing and unchanging of the graphical invariants: minimum and maximum degree, maximum clique size, node independence number and edge independence number*, Congressus Numerantium **72** (1990) 239-252.
- [14] V. Klee, *Private communication included in [17]*, 191-191, (1976).
- [15] D. Koenig, *Graphen und Matrizen*, Matematikai Lapok **38** (1931) 116-119.
- [16] E. Korach, *On dual integrality, min – max equalities and algorithms in combinatorial programming*, University of Waterloo, Department of Combinatorics and Optimization, Ph.D. Thesis, 1982.
- [17] E. L. Lawler, *Combinatorial Optimization: Networks and Matroids*, Holt, Renhart and Winston, New York (1976).
- [18] V. E. Levit and E. Mandrescu, *On α -stable graphs*, Congressus Numerantium **124** (1997) 33-46.
- [19] V. E. Levit and E. Mandrescu, *The structure of α -stable graphs*, The Third Krakow Conference On Graph Theory, Krakow University, Kazimierz Dolny, Poland (1997), math.CO/9911227 (1999)
- [20] V. E. Levit and E. Mandrescu, *Well-covered and König-Egervary graphs*, Congressus Numerantium **130** (1998) 209-218.

- [21] L. Lovasz, *Ear decomposition of matching covered graphs*, Combinatorica **3** (1983) 105-117.
- [22] L. Lovasz and M. D. Plummer, *Matching theory*, Annals of Discrete Mathematics **29**, North-Holland, Amsterdam (1986).
- [23] S. Monsen, *The effects of vertex deletion and edge deletion on clique partition number*, Ars Combinatoria **42** (1996) 89-96.
- [24] V. T. Paschos and M. Demange, *A generalization of König-Egervary graphs and heuristics for the maximum independent set problem with improved approximation ratios*, European Journal of Operational Research **97** (1997) 580-592.
- [25] W. R. Pulleyblank, *Matchings and Extensions*, in: Handbook of Combinatorics, Volume 1 (eds. R. L. Graham, M. Grotschel and L. Lovasz), MIT Press and North-Holland, Amsterdam (1995), 179-232.
- [26] F. Sterboul, *A characterization of the graphs in which the transversal number equals the matching number*, Journal of Combinatorial Theory Series B **27** (1979) 228-229.
- [27] D. P. Sumner and P. Blitch, *Domination critical graphs*, Journal of Combinatorial Theory Series B **34** (1983) 65-76.