QIC 891 Topics in Quantum Safe Cryptography

Module 1: Post-Quantum Cryptography

Summary of Post-quantum Public-key Encryption Schemes

Lecturer: Fang Song May 17, 2016

Approach	Security	Instantiation			
		Lattice	Code	MQ	
"Text-book" RSA.	one-way?	• [GGH97]	McEliece [McE78],	[MI88, Pat96]	
w. trapdoor func-		• NTRU [HPS98]?	Niederre-		
tions		· Wino [iii 556]:	iter [Nie86]		
Constructions in random-oracle model (RO)					
[BR93] hybrid	IND-CPA in RO	applicable			
[BR93] with CCA	IND-CCA in RO	applicable			
Symmetric Enc					
OAEP [BR94]	≥ IND-CPA in RO	applicable? can we get IND-CCA?			
OAEP+ [Sho01]	IND-CCA in RO	applicable?			
Other transfor-	IND-CCA in RO	KEM [Pei14]	[KI01]	applicable?	
mations [Poi00,					
FO99, OP01]					
Direct constructions in plain model					
Ex. leftover hash	IND-CPA	[Reg09, GPV08]	[Ale03, NIKM08]	?	
lemma [HILL99]					
"lossy" trapdoor	IND-CCA	[PW11, Pei09,	[DDMQN12]	?	
functions & cor-		MP12]			
related products					

References

[Ale03]	Michael Alekhnovich. More on average case vs approximation complexity. In Foundations of Com-
	puter Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages 298–307. IEEE, 2003.

- [BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In *Proceedings of the 1st ACM conference on Computer and communications security*, pages 62–73. ACM, 1993.
- [BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In *Advances in Cryptology—EUROCRYPT*'94, pages 92–111. Springer, 1994.
- [DDMQN12] Nico Döttling, Rafael Dowsley, Jörn Müller-Quade, and Anderson CA Nascimento. A cca2 secure variant of the McEliece cryptosystem. *Information Theory, IEEE Transactions on*, 58(10):6672–6680, 2012. Preliminary version in CT-RSA 2009.
- [FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In *Advances in Cryptology CRYPTO* '99, pages 537–554, 1999. Full version in Journal of cryptology 2013.
- [GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction problems. In *Advances in Cryptology—CRYPTO'97*, pages 112–131. Springer, 1997.

- [GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In *Proceedings of the fortieth annual ACM symposium on Theory of computing*, pages 197–206. ACM, 2008.
- [HILL99] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudorandom generator from any one-way function. *SIAM Journal on Computing*, 28(4):1364–1396, 1999.
- [HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public key cryptosystem. In *Algorithmic number theory*, pages 267–288. Springer, 1998.
- [KI01] Kazukuni Kobara and Hideki Imai. Semantically secure McEliece public-key cryptosystems-conversions for mceliece pkc. In *Public Key Cryptography*, pages 19–35. Springer, 2001.
- [McE78] RJ McEliece. A public-key cryptosystem based on algebraic coding theory. *The Deep Space Network Progress Report*, 42(44):114–116, 1978.
- [MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In *Advances in Cryptology—EUROCRYPT'88*, pages 419–453. Springer, 1988.
- [MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In *Advances in Cryptology–EUROCRYPT 2012*, pages 700–718. Springer, 2012.
- [Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. *Problems of Control and Information Theory*, 15:19–34, 1986. Problemy Upravlenija i Teorii Informacii 15, 159–166.
- [NIKM08] Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov. Semantic security for the mceliece cryptosystem without random oracles. *Designs, Codes and Cryptography*, 49(1-3):289–305, 2008.
- [OP01] Tatsuaki Okamoto and David Pointcheval. REACT: Rapid enhanced-security asymmetric cryptosystem transform. In *Topics in Cryptology—CT-RSA 2001*, pages 159–174. Springer, 2001.
- [Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (ip): Two new families of asymmetric algorithms. In *Advances in Cryptology—EUROCRYPT'96*, pages 33–48. Springer, 1996.
- [Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In *Proceedings of the forty-first annual ACM symposium on Theory of computing*, pages 333–342. ACM, 2009.
- [Pei14] Chris Peikert. Lattice cryptography for the internet. In *Post-Quantum Cryptography*, pages 197–219. Springer, 2014.
- [Poi00] David Pointcheval. Chosen-ciphertext security for any one-way cryptosystem. In *Public Key Cryptography*, pages 129–146. Springer, 2000.
- [PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. *SIAM Journal on Computing*, 40(6):1803–1844, 2011. Preliminary version in STOC 2008.
- [Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. *Journal of the ACM (JACM)*, 56(6):34, 2009.
- [Sho01] Victor Shoup. Oaep reconsidered. In *Advances in Cryptology—CRYPTO 2001*, pages 239–259. Springer, 2001.