Lab 2 DC Motor

Real System Step Response

The following Figure 1-1 shows the step repsonse of the DC Motor with position closed-loop feedback collected during lab.

Figure 1-1 Step Response of DC Motor with Position Closed-Loop Feedback

The gain is 19.22 Volts.

```
Tau_Location = 0.63*19.22
```

 $Tau_Location = 12.1086$

The location of the time constant, Tau, sits at 63% of the gain. This is at 12.1086 Volts. By observation, the time response sits at about 0.5 seconds into the step response curve.

Simulink Models

Open Loop Step Responses

```
sim_OL = sim('Ex2Week1Simupdate.slx');
```

The constant, Km,lin, was determined for the linear model by making an estimate of the "average" slope of the wm vs VA data collected during lab. The linear model uses Km,lin as the motor constant.

```
plot(sim_OL.tout,sim_OL.Linear)
title("Linear Model")
ylabel("Speed [RPM]")
xlabel("time [seconds]")
grid on
```


The constant Km for the nonlinear model was determined by finding the slope of the wm vs VA data outside of the deadband area.

```
% Km=0.194
plot(sim_OL.tout,sim_OL.nonlinear)
title("Non-Linear Model")
ylabel("Speed [RPM]")
xlabel("time [seconds]")
grid on
```


Closed Loop Step Responses

The previous open loop simulink model was modified to represent a closed loop model. This was done by adding an output potentiometer in a feedback path that connected the output position theta to the correct input of the op-amp summing amplifier.

```
figure()
plot(sim_OL.tout,sim_OL.linfeedback)
hold on
plot(sim_OL.tout,sim_OL.nonlinfeedback,"r--")
title("Linear vs. Non-Linear Position Feedback Control")
ylabel("Position [revolutions]")
xlabel("time [seconds]")
legend("Linear Model", "Non-Linear Model")
grid on
hold off
```


Parameter		Value	units	Parameter	-	Value	units	
Knob gain	Kknob	0.0514	Y <u>DI+</u> deg	linear motor	Km, lin	194	RPM Vo1+	
step input res	Rs	J- 30E3	Ohms	non linear motor gain	Km	224.1	RPM VOIT	
Feedbach Res	RB	5E3	chms	Deadban Volt	NDB	± 1.8	V01+	
OP_AMP res	RF	10 E3	Ohms	Time const.	Tm	0.5	Seconds	
power amp gail	KS	-5.2555	V0)+s	Pulley gear ratio	Kpalley	9	no units	
				Position sensor gain	Kpot	1.438	Volt rev	