Departamento de Informática - UFES 5º Exercício Computacional - 19/2 Problemas de Valor no Contorno - 1D Método das Diferenças Finitas

Introdução

Este exercício visa observar o comportamento do método das diferenças finitas para resolver problemas unidimensionais de valor no contorno considerando condições de contorno de valor prescrito (Condição de Dirichlet), fluxo prescrito (Condição de Neumann) e do tipo mista (Condição de Robin). Considere o problema de valor no contorno (PVC) unidimensional definido por:

Dadas as funções p(x), q(x) e r(x) contínuas em (a,b), encontrar u(x) tal que

$$\frac{d^2u}{dx^2} + p(x)\frac{du}{dx} + q(x)u = r(x) \qquad a < x < b$$

com condições de contorno do tipo:

$$u(a) = u_a \quad ou \quad \frac{du(a)}{dx} = \sigma_a \quad ou \quad \alpha_a \frac{du(a)}{dx} + \beta_a u(a) = \gamma_a$$
$$u(b) = u_b \quad ou \quad \frac{du(b)}{dx} = \sigma_b \quad ou \quad \alpha_b \frac{du(b)}{dx} + \beta_b u(b) = \gamma_b$$

onde u_a , u_b , σ_a , σ_b , α_a , β_a , α_b , β_b , γ_a e γ_b são constantes conhecidas do problema.

Considere as funções auxiliares:

- pvc.m:
 - $[x, u] = pvc(a, b, n, tipo_a, u_a, \sigma_a, \alpha_a, \beta_a, \gamma_a, tipo_b, u_b, \sigma_b, \alpha_b, \beta_b, \gamma_b),$ sendo:
 - -n número de incógnitas;
 - $-tipo_a$ tipo de condição de contorno em x=a (1: valor prescrito, 2: derivada prescrita, 3: condição mista)
 - $-tipo_b$ tipo de condição de contorno em x=b (1: valor prescrito, 2: derivada prescrita, 3: condição mista)
- funcoes.m:

$$[p,q,r] = funcoes(a,b,n)$$

definições das funções $p(x)$, $q(x)$ e $r(x)$

Aplicações

Conservação de Calor em uma haste longa e fina

(A) A conservação de calor em uma haste longa e fina (conforme a Fig. (1)), considerando que a haste não esteja isolada e que o sistema esteja em estado estacionário, pode ser modelada pelo PVC:

$$\frac{d^2T}{dx^2} + K(T_a - T) = 0 \text{ em } (0, L)$$

$$T(0) = T_1$$

$$T(L) = T_2$$

Figura 1: Geometria da haste longa e fina

onde K representa o coeficiente de transferência de calor que paramatriza as taxas de dissipação de calor para o ar (m^{-2}) e T_a é a temperatura do ar em torno da haste (^0C) . Considerando $T(0) = 40^0C$, $T(10) = 200^0C$, $K = 0.01 \, m^{-2}$ e $T_a = 20 \, ^0C$, obtenha a distribuição da temperatura no interior do intervalo (0, 10), considerando n = 10, 50, 100. Plote os gráfico da solução aproximada para um n e faça uma descrição do fenômeno físico descrito pelo gráfico.

(B) Considere que em x = L o fluxo de calor seja nulo, ou seja, $\frac{du}{dx} = 0$. Resolva o problema com esta nova condição de contorno e as demais condições descritas no item (A), considerando n = 10, 50, 100. Plote os gráfico da solução aproximada para um n e faça uma descrição do fenômeno físico descrito pelo gráfico.

Resfriador unidimensional

Considere o problema de resfriar uma massa aquecida como mostra a Fig. (2). Exemplos podem incluir o resfriamento de chips de computadores ou amplificadores elétricos. O modelo matemático que descreve a transferência de calor na direção unidimensional x é dado pela Equação de transferência de calor abaixo. Detalhes sobre a definição do modelo matemático pode ser encontrado em (1), disponível na página do curso.

Figura 2: Geometria do Resfriador

$$-\frac{d}{dx}\left(K\frac{du(x)}{dx}\right) + Cu(x) = f(x) \quad 0 < x < L$$

 $^{^{1}}$ R. E. White, Computational Modeling with Methods and Analysis, Department of Mathematics, North Carolina State University, 2003

com condições de contorno do tipo:

$$u(0) = u_0$$

$$c_{ref}u(L) + K \frac{du(L)}{dx} = c_{ref}u_{ref}$$

onde K é a condutividade térmica, u_{ref} é uma temperatura de referência, u_0 é a temperatura inicial da massa e c_{ref} é a abilidade da superfície do resfriador de transmitir calor na região. A constante C e o termo fonte f são funções da geometria do resfriador dados por:

$$C \equiv \left(\frac{2W + 2T}{TW}\right) c_{ref}$$
 e $f \equiv C u_{ref}$

onde a temperatura inicial da massa $u_0 = 160$, a temperatura de referência $u_{ref} = 70$, K = 0.001, T = 0.1, W = 10 e L = 1. Podemos considerar diferentes possibilidades para o coeficiente c_{ref} , por exemplo, $c_{ref} = 0.0001$, $c_{ref} = 0.001$, $c_{ref} = 0.01$, $c_{ref} = 0.1$.

Considerando n = 10, n = 50 e n = 100 encontre a solução aproximada para os diferentes coeficientes c_{ref} , plote gráfico da solução aproximada para um dos n e discuta o fenômeno físico encontrado

Relatório

Escreva um relatório com suas conclusões sobre os objetivos listados acima. Entregar os fontes .m e uma cópia em pdf via email (nome do arquivo AN192-EXE5-<nome>) (luciac@inf.ufes.br)até 05/11/2019. O título do email deve ser AN192-EXE5-<nome>.