Correzione del compito di Algebra Lineare ed elementi di Geometria del 21 Marzo 2007

T1) Si diano le definizioni di rango e di inversa destra e sinistra di una matrice. Si enunci e si dimostri una condizione necessaria e sufficiente affinché una matrice \mathbf{A} di forma $m \times n$ abbia inversa sinistra.

T2) Si diano le definizioni di autovalore e autovettore per una matrice e si giustifichi il fatto che gli autovalori sono le radici del polinomio caratteristico.

Si dimostri che, se λ_1 , λ_2 , λ_3 sono autovalori distinti di una matrice **A** con autovettori rispettivamente \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , allora l'insieme $\{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$ è linearmente indipendente.

E1) Sia $\alpha \in \mathbb{C}$ e si consideri la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} i & 0 & -2i & i \\ \alpha & \alpha & -1 & 0 \\ 2 & -1 & -5 & 2 \\ 0 & -\alpha & -1 & 0 \end{bmatrix}.$$

Se ne calcoli una decomposizione LU e, per i valori di α per i quali non è possibile, una decomposizione P^TLU . Si calcolino anche basi dello spazio delle colonne e dello spazio nullo di \mathbf{A}_{α} , per ogni $\alpha \in \mathbf{C}$.

Interpretando la matrice come matrice completa di un sistema lineare, per quali valori di α esso ha soluzione?

Sol.

Sia $\alpha \neq 0, 1$, allora

 $\mathbf{A}_{\alpha} = \mathbf{L}_{\alpha} \; \mathbf{U}_{\alpha}$

in cui

 $\mathbf{L}_{\alpha} = \begin{bmatrix} i & 0 & 0 & 0 \\ \alpha & \alpha & 0 & 0 \\ 2 & -1 & \frac{\alpha - 1}{\alpha} & 0 \\ 0 & -\alpha & -2 + 2\alpha & \alpha \end{bmatrix}$

e

$$\mathbf{U}_{\alpha} = \begin{bmatrix} 1 & 0 & -2 & 1\\ 0 & 1 & \frac{2\alpha - 1}{\alpha} & -1\\ 0 & 0 & 1 & \frac{\alpha}{1 - \alpha}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Se $\alpha=0$ scambiamo la seconda con la terza riga e poi procediamo con la riduzione LU, da cui ${\bf A}_0=P^T{\bf L}_0~{\bf U}_0$ in cui

$$\mathbf{L}_0 = \begin{bmatrix} i & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

 \mathbf{e}

$$\mathbf{U}_0 = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Se $\alpha=1$ non occorre effettuare scambi di righe: $\mathbf{A}_1=\mathbf{L}_1$ \mathbf{U}_1 in cui

$$\mathbf{L}_1 = \begin{bmatrix} i & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix}$$

$$\mathbf{U}_1 = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Se $\alpha \neq 0,1$ allora la matrice \mathbf{A}_{α} ha rango 4, quindi lo spazio nullo di \mathbf{A}_{α} è costituito dal solo vettore nullo e una base per lo spazio delle colonne è data dalle quattro colonne di \mathbf{A}_{α} .

Se $\alpha = 0$, allora

$$Col(\mathbf{A}_0) = <(i \quad 0 \quad 2 \quad 0)^t, (0 \quad 0 \quad -1 \quad 0)^t, (-2i \quad -1 \quad -5 \quad -1)^t >$$

$$N(\mathbf{A}_0) = <(-1 \quad 0 \quad 0 \quad 1)^t >$$

Se $\alpha = 1$ allora

$$Col(\mathbf{A}_1) = <(i \quad 0 \quad 2 \quad 0)^t, (0 \quad 0 \quad -1 \quad 0)^t, (i \quad 0 \quad 2 \quad 0)^t >$$

$$N(\mathbf{A}_{-1}) = <(2 \quad -1 \quad 1 \quad 0)^t >$$

Se interpretiamo la matrice \mathbf{A}_{α} come matrice completa di un sistema lineare, questo ammette soluzione solamente per $\alpha = 0, 1$, cioè quando la colonna dei termini noti non è dominante.

E2) Sia $f: \mathbb{C}^4 \to \mathbb{C}^4$ una trasformazione lineare e si supponga che la matrice associata a f rispetto alla base ordinata $\mathcal{B} = \{\mathbf{e}_4; \mathbf{e}_3; \mathbf{e}_1 + \mathbf{e}_2; \mathbf{e}_1 + \mathbf{e}_3\}$ su dominio e codominio (\mathbf{e}_i sono i vettori della base canonica di \mathbb{C}^4) sia

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- (a) Si determini la matrice ${\bf B}$ associata a f rispetto alle basi canoniche.
- (b) Si calcoli la dimensione dell'immagine di f.
- (c) Si dica se la matrice **B** è diagonalizzabile.

Sol.

Scriviamo le due matrici del cambiamento di base

$$\mathcal{M}_{\mathcal{E}\leftarrow\mathcal{B}} = \begin{bmatrix} 0 & 0 & 1 & 1\\ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad \mathcal{M}_{\mathcal{E}\leftarrow\mathcal{B}}^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1\\ -1 & 1 & 1 & 0\\ 0 & 1 & 0 & 0\\ 1 & -1 & 0 & 0 \end{bmatrix}$$

Quindi la matrice associata a f rispetto alle basi caniche sul dominio e codominio è

$$B_{\mathcal{E}\leftarrow\mathcal{E}} = \mathcal{M}_{\mathcal{E}\leftarrow\mathcal{B}} A_{\mathcal{B}\leftarrow\mathcal{B}} \mathcal{M}_{\mathcal{E}\leftarrow\mathcal{B}}^{-1} = \begin{bmatrix} 3 & -2 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

La dimensione dell'immagine di f è data dal rango della matrice $B_{\mathcal{E}\leftarrow\mathcal{E}}$ che è 2.

La matrice $B_{\mathcal{E} \leftarrow \mathcal{E}}$ non è diagnalizzazbile poichè l'autovalore 1 ha molteplicità geometrica e algebrica diverse.

Osserviamo che anche la matrice $A_{\mathcal{B}\leftarrow\mathcal{B}}$ non è diagonalizzabile, essendo simile alla matrice $B_{\mathcal{E}\leftarrow\mathcal{E}}$.

E3) Verificare che per nessun valore del parametro $\beta \in \mathbb{C}$ la matrice

$$\mathbf{B}_{\beta} = \begin{bmatrix} 0 & \beta & 0 & 0 \\ \beta & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

è diagonalizzabile. Esiste una base di \mathbb{C}^4 formata da autovettori di \mathbb{B}_{β} , per qualche valore di β ?

Per $\beta = 1$, si trovi un insieme ortogonale $\{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$ di autovettori di \mathbf{B}_1 e lo si completi a una base ortogonale di \mathbf{C}^4 .

Sol.

Il polinomio caratteristico di \mathbf{B}_{β} è

$$P_{\beta}(\lambda) = (\lambda - \beta)(\lambda + \beta)(\lambda - 1)^{2}$$

- SIa $\beta \neq 1, -1$ e mostriamo che \mathbf{B}_{β} non è diagonalizzabile, mostrando che la molteplicità algebrica dell'autovalore $\lambda = 1$ è diversa dalla molteplicità geometrica. $m_a(1) = 2$, mentre $m_g(1) = 4 \dim [N(\mathbf{B}_{\beta} Id_{4\times 4})] = 1$. Di conseguenza non esiste una base di \mathbf{C}^4 formata da autovettori di \mathbf{B}_{β} .
- Se $\beta = 1$, la matrice \mathbf{B}_1 non è comunque diagonalizzabile, infatti, l'autovalore 1 ha molteplicità algebrica 3 e geometrica 2.
- Analogamente, se $\beta = -1$, la matrice \mathbf{B}_1 non è comunque diagonalizzabile, infatti, l'autovalore 1 ha molteplicità algebrica 3 e geometrica 2.

Poniamo ora $\beta = 1$, ottenendo la matrice

$$\mathbf{B}_{\beta} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Gli autovettori sono $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{(-1 \ 1 \ 0 \ 0)^t, (1 \ 1 \ 0 \ 0)^t (0 \ 0 \ -1 \ 1)^t\}$. Un vettore ortogonale a $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbf{v}_4 = (0 \ 0 \ 1 \ 1)^t$, quindi $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ è una base ortogonale di \mathbf{C}^4 .

E4) Si consideri la conica di equazione $13x^2 - 10xy + 13y^2 - 36x + 6\alpha y - 36 = 0$. Si calcoli per quali valori di α essa è degenere e si trovino le rette in cui si spezza.

Posto $\alpha=6$, si determini la natura della conica e se ne calcolino gli eventuali assi, centro, vertici e asintoti.

Sol.

La matrice $\mathbf D$ della conica è

$$\mathbf{D}_{\alpha} = \begin{bmatrix} 13 & -5 & -18 \\ -5 & 13 & 3\alpha \\ -18 & 3\alpha & -36 \end{bmatrix}$$

Il determinante di $\mathbf{D} - \alpha$ è $-117\alpha^2 + 540\alpha - 9396$, che è sempre diverso da zero (il discriminante è negativo), quindi la conica non si spezza in due rette (reali), per alcun valore di α .

Poniamo ora $\alpha = 6$, ottenendo

$$\mathbf{D}_{\alpha} = \begin{bmatrix} 13 & -5 & -18 \\ -5 & 13 & 18 \\ -18 & 18 & -36 \end{bmatrix}$$

La matrice \mathbf{D}_{33} è

$$\mathbf{D}_{\alpha} = \begin{bmatrix} 13 & -5 \\ -5 & 13 \end{bmatrix}$$

ed ha determinante diverso da zero, quindi la conica è a centro, inoltre è positivo e quindi la conica è un'ellisse. Il centro è dato dalla (unica) soluzione del sistema

$$\begin{bmatrix} 13 & -5 \\ -5 & 13 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 18 \\ -18 \end{bmatrix}$$

Il centro, quindi, ha coordinate (1, -1). Gli assi hanno equazioni paramentriche

$$a_1 = \left\{ \begin{array}{l} x = -t + 1 \\ y = t - 1 \end{array} \right.$$

$$a_1 = \begin{cases} x = t+1 \\ y = t-1 \end{cases}$$

il vertice è dato dall'intersezione dei due assi.