Machine Learning for Petroleum Professionals: A Beginner-Friendly, No-Code Introduction

PETRO-ANALYST

Ahmed Abd Elgawad

About ME | My Portfolio

Ahmed Elsayed Abdelgawad

Reservoir engineer, Data analyst, Python developer and ML developer.

Junior Reservoir Engineer with expertise in data analysis, Python development, and machine learning, focused on digitalization and digital transformation in the petroleum industry. I have successfully integrated programming and data science skills into various projects, enhancing my proficiency in petroleum engineering. Passionate about leveraging cutting-edge technologies to optimize production and automate processes, I aim to drive efficiency and innovation within the industry.

Workshop Content

- Explain the Basics of ML (What is ML using Example)
- What is ML, DS life cycle, Supervised and Unsupervised ML
- Practice with no-code software (GUI)
- Go deep in any details, just high level knowledge (Just the basics)
- We will know explain any ML model and how it works (For you investigation)

Session Flow

Data Science Life Cycle

Just an Introduction

PETRO-ANALYST

Ahmed Abd Elgawad

What is DS

Mathematics

Computer Science

Domain Expertise

DS

A problem that you need to solve, Using the Data!

Data Collection

Collect Data from Different Sources

Data Preparation

Make data ready for analysis

Exploration and visualization

Understand patterns in the data

Experimentation and prediction

Create a model, an analysis, or an experiment

Machine Learning

Dashboards

Knowledge Repository & Shareable Analysis

Data Storytelling & communication

Share insights

Report, presentation, notebook...

→ Unstructured Data

Excel File, Tables .. — Structured / Tabular Data

Create a model, an analysis, or an experiment

Machine Learning

Dashboards

Knowledge Repository & Shareable Analysis

Data Storytelling & communication

Share insights

Report, presentation, notebook...

Create a clean, high quality dataset that yield accurate and reliable analytical results

Data Collection

Collect Data from Different Sources

Data Preparation

Make data ready for analysis

Exploration and visualization

Understand patterns in the data

Experimentation and prediction

Create a model, an analysis, or an experiment

Machine Learning

Knowledge Repository & Shareable Analysis Data Storytelling & communication

Share insights

Report, presentation, notebook...

Perform Statistical Analysis / Data Analysis , Visualizing the Data using graphs to gain insights and recognize patterns in the data.

Data Collection

Collect Data from Different Sources

Data Preparation

Make data ready for analysis

Exploration and visualization

ta ready Understand patterns alysis in the data

Experimentation and prediction

Create a model, an analysis, or an experiment

Machine Learning

--

Knowledge Repository & Shareable Analysis Data Storytelling & communication

Share insights

Report, presentation, notebook...

Collect Data from Different Sources

Data Preparation

Make data ready for analysis

Exploration and visualization

Understand patterns in the data

Experimentation and prediction

Create a model, an analysis, or an experiment

Machine Learning

Dashboards

Knowledge Repository & Shareable Analysis

Data Storytelling & communication

Share insights

Report, presentation, notebook...

Create Predictive Model (ML), Dashboarding, Statistical Model.

Data Storytelling & communication

Share insights

Report, presentation, notebook...

This step has no value without the previous steps

Data Preparation

Check for anomalies

Missing Data

Typos

What We Can do

The Reality

- **DS/ML** are just tools.
- Through tutorials / Courses you will learn the tool.
- To work on real projects and add value you must have the **Domain Expertise**.

What is ML

Just an Introduction

Ahmed Abd Elgawad

Types of ML

Supervised ML

PETRO-ANALYST

Ahmed Abd Elgawad

Supervised ML

Input

Output

Input

Output

$$\phi = rac{
ho_{ ext{matrix}} -
ho_{ ext{bulk}}}{
ho_{ ext{matrix}} -
ho_{ ext{fluid}}}$$

Input + Rule

Output

$$\phi = rac{
ho_{ ext{matrix}} -
ho_{ ext{bulk}}}{
ho_{ ext{matrix}} -
ho_{ ext{fluid}}}$$

Input + Output

Rule

Machine Learning Vs Traditional Programming

Traditional Programming

Input Rule | Program Output

Using Machine learning

Porosity Calculation (ML)

DEPTH	ILD	RHOB	GR	CNL	CALIPER	Core_Phi
8235.00	0.81	1.89	48.03	0.31	10.56	0.10
8235.50	0.80	1.87	47.33	0.35	11.01	0.10
8239.50	1.10	1.98	51.09	0.24	9.81	0.11
8240.00	1.40	2.18	52.64	0.25	9.45	0.11
8240.50	1.78	2.27	58.07	0.25	9.47	0.10
8241.00	2.27	2.28	58.19	0.21	9.52	0.10
8241.50	2.93	2.29	57.66	0.21	9.33	0.10
8242.00	2.93	2.29	58.76	0.26	9.12	0.11
8242.50	2.55	2.19	62.53	0.34	9.12	0.10
8243.00	1.81	2.07	70.68	0.42	9.91	0.10
8266.00	6.14	2.41	53.91	0.21	8.86	0.11
8266.50	4.01	2.17	54.62	0.26	8.96	0.11
8267.00	2.71	1.95	56.42	0.31	9.61	0.10
8267.50	1.39	1.90	57.75	0.30	9.79	0.10
8268.00	0.85	1.83	52.65	0.36	9.63	0.11
8268.50	0.74	1.95	46.16	0.20	9.11	0.12
8269.00	0.93	2.28	39.81	0.19	8.91	0.14

Input

+

Output

Rule

Supervised | How

DEPTH

ILD

RHOB

GR

CNL

CALIPER

Y = F(X), given x -> get Y

Core Porosity

Features

Target

Supervised | How

Model Training and Validation

PETRO-ANALYST

Ahmed Abd Elgawad

ML Workflow

What type of data?

Structured data

Unstructured data

Structured data

Feature 1	Feature 2	Feature 3	Feature 4	Target feature (Y)

Unstructured data

Audio

Text

ML Steps

Define the problem — Data collection — Data processing — Model Training

Model Training

Model Evaluation

ML Steps

Define the problem

Data collection

Data processing

Model
Training

Model
Evaluation

Define the problem

Problem type

Classification Regression other

Baseline:

Beat the baseline Successful project

ML Steps

Define the problem

Data collection

Data processing

Model
Training

Model
Evaluation

Data Collection

DEPTH	ILD	RHOB	GR	CNL	CALIPER	Core_Phi
8235.00	0.81	1.89	48.03	0.31	10.56	0.10
8235.50	0.80	1.87	47.33	0.35	11.01	0.10
8239.50	1.10	1.98	51.09	0.24	9.81	0.11
8240.00	1.40	2.18	52.64	0.25	9.45	0.11
8240.50	1.78	2.27	58.07	0.25	9.47	0.10
8241.00	2.27	2.28	58.19	0.21	9.52	0.10
8241.50	2.93	2.29	57.66	0.21	9.33	0.10
8242.00	2.93	2.29	58.76	0.26	9.12	0.11
8242.50	2.55	2.19	62.53	0.34	9.12	0.10
8243.00	1.81	2.07	70.68	0.42	9.91	0.10
8266.00	6.14	2.41	53.91	0.21	8.86	0.11
8266.50	4.01	2.17	54.62	0.26	8.96	0.11
8267.00	2.71	1.95	56.42	0.31	9.61	0.10
8267.50	1.39	1.90	57.75	0.30	9.79	0.10
8268.00	0.85	1.83	52.65	0.36	9.63	0.11
8268.50	0.74	1.95	46.16	0.20	9.11	0.12
8269.00	0.93	2.28	39.81	0.19	8.91	0.14

ML Steps

Define the problem

Data collection

Data processing

Model
Training

Model
Evaluation

Data Processing

- Dealing with:
 - Missing data
 - Irrelevant data
 - Outliers
- Feature Engineering:
 - Deleting features / columns
 - Adding new features using existing one
 - Grouping features
- Data Transformation:
 - normalizing the data
 - converting categorical data into numerical data
 - reducing the dimensionality of the data.

Data Preparation

PETRO-ANALYST About Ald Elymon

- This step involves splitting the data into training and testing datasets.
 - The training dataset is used to train the ML model
 - Testing dataset is used to evaluate the performance of the model.

ML Steps

Training

X

Core Phi 0.10 0.10 00 0.11 -__**r** 0.11 0.10 0.10 0.10 0.11

DEPTH	ILD	RHOB	GR	CNL	CALIPER
8235.00	0.81	1.89	48.03	0.31	10.56
8235.50	0.80	1.87	47.33	0.35	11.01
8239.50	1.10	1.98	51.09	0.24	9.81
8240.00	1.40	2.18	52.64	0.25	9.45
8240.50	1.78	2.27	58.07	0.25	9.47
8241.00	2.27	2.28	58.19	0.21	9.52
8241.50	2.93	2.29	57.66	0.21	9.33
8242.00	2.93	2.29	58.76	0.26	9.12

M	OC	lel	
Oı	utp	out	

Core_Phi
0.10
0.10
0.11
0.11
0.10
0.10
0.10
0.11

Actual values

Core_Phi
0.10
0.10
0.11
0.11
0.10
0.10
0.10
0.11

Model Output Actual values

$$MAE = rac{1}{n} \sum_{j=1}^n |y_j - \hat{y_j}|$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Core_Phi
0.10
0.10
0.11
0.11
0.10
0.10
0.10
0.11

Model Output Actual values

$$MAE = rac{1}{n} \sum_{j=1}^n |y_j - \hat{y_j}|$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

ML Steps

PETRO-ANALYST

Ahmed Abd Elgawad

- Only X, no Y
- Clustering
- Association
- Dimensionality reduction

- RESERVOIR SOLUTIONS
 CREATED TO OPTIMIZE
 - PETRO-ANALYST
 Almod Ald Eligened

- No Supervision , No label , No Y.
- There are different type of algorithms, they do certain tasks given the data
 - Clustering
 - Association analysis
 - Dimensionality reduction

- Only X, no Y
- Clustering
- Association
- **Dimensionality reduction**

Dimensionality Reduction | PCA

X1	X2	Х3	X4	X5	X6	X7	X8	Х9	X10

3-Dimensional Dataset

PCA1	PCA2	PCA3

Dimensionality Reduction | PCA

ML | DL | AI

Artificial Intelligence

A science devoted to making machines think and act like humans.

Machine Learning

Focuses on enabling computers to perform tasks without explicit programming.

Deep Learning

A subset of machine learning based on artificial neural networks.

Artificial Intelligence

Machine Learning

Deep Learning

When and When not to do ML

PETRO-ANALYST

Ahmed Abd Elgawad

When to do ML

When not to do ML:

 ML is not a solution for every type of problem, you don't need ML if you can determine a target value by suing simple rules, computations, or predetermined steps that can be programmed.

When to do ML:

You cannot code the rules:

Email Classification (Spam or not Spam), cannot be adequately solved using a simple (deterministic), rule-based solution that depend on too many factors.

You cannot scale:

You might be able to manually recognize a few hundred emails and decide whether they are spam or not. However, this task becomes tedious for millions of emails. ML solutions are effective at handling large-scale problems.

When To Do ML

Just say the magic words

ML

Why Python

RESERVOIR SOLUTIONS
CREATED TO OPTIMIZE

- Use your model effectively
- You can use it for automation
- You can calculate your own calculations, programs, applications.