Departamento de Estadística e I.O.

Métodos Cuantitativos. GADE. GADE - DERECHO. Relación de ejercicios tema 3.

16. Dado el siguiente problema y su tabla final del Simplex,

$$Max$$
 $z = x_1 + 3x_3$
 $s.a.$ $x_1 + 2x_2 + 7x_3 \le 4$
 $x_1 + 3x_2 + x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$

Realiza el análisis de sensibilidad:

			1	0	3	0	0	
		VB	x_1	x_2	x_3	s_1	s_2	x_B
	1	x_1	1	2	7	1	0	4
(О	s_2	0	1	-6	-1	1	1
		$z_j - c_j$	0	2	4	1	0	4

a) Respecto a los coeficientes de las variables no básicas.

Solución:

Las variables no básicas son x_2 y x_3 luego haremos los cambios $c_2 \longrightarrow \hat{c_2}$ y $c_3 \longrightarrow \hat{c_3}$. Veamos el recorrido de ambos parámetros calculando $z_2 - \hat{c_2}$ y $z_3 - \hat{c_3}$:

$$z_2 - \hat{c_2} = \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \hat{c_2} = 2 - \hat{c_2} \geqslant 0 \Leftrightarrow \hat{c_2} \leqslant 2$$
$$z_3 - \hat{c_3} = \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ -6 \end{pmatrix} - \hat{c_3} = 7 - \hat{c_3} \geqslant 0 \Leftrightarrow \hat{c_3} \leqslant 7$$

b) Respecto a los coeficientes de las variables básicas.

Solución:

La variable básica es x_1 . Así, $c_1 \longrightarrow \hat{c_1}$.

$$\hat{c}_1: \qquad \hat{c}_2 - c_2 = (\hat{c}_1 \quad 0) \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 0 = 2\hat{c}_1 \geqslant 0 \Leftrightarrow \hat{c}_1 \geqslant 0$$

$$\hat{c}_3 - c_3 = (\hat{c}_1 \quad 0) \cdot \begin{pmatrix} 7 \\ -6 \end{pmatrix} - 3 = 7\hat{c}_1 - 3 \geqslant 0 \Leftrightarrow \hat{c}_1 \geqslant \frac{3}{7}$$

$$\hat{c}_4 - c_4 = (\hat{c}_1 \quad 0) \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} - 0 = 7\hat{c}_1 \geqslant 0 \Leftrightarrow \hat{c}_1 \geqslant 0$$

$$\hat{c}_4 = (\hat{c}_1 \quad 0) \cdot \begin{pmatrix} 4 \\ 1 \end{pmatrix} = 4\hat{c}_1$$
Tabla óptima si $\hat{c}_1 \geqslant \frac{3}{7}$.

c) Respecto al recurso b_1 :

Solución:

Estudiamos el recorrido de $\hat{b_1}$ mediante la expresión:

$$x_B = B^{-1}\hat{b}.$$

Para hallar la matrix B^{-1} nos fijamos en las columnas asociadas a las variables básicas iniciales en la tabla óptima:

			1	0	3	0	0	
		VB	x_1	x_2	x_3	s_1	s_2	x_B
	1	x_1	1	2	7	1	0	4
(О	s_2	0	1	-6	-1	1	1
		$z_j - c_j$	0	2	4	1	0	4

$$B^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Como queremos cambiar el recurso b_1 definimos el nuevo vector b, \hat{b} :

$$\hat{b} = \begin{pmatrix} \hat{b_1} \\ 5 \end{pmatrix}$$

Veamos el recorrido:

$$\hat{x_B} = B^{-1}\hat{b} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \hat{b_1} \\ 5 \end{pmatrix} = \begin{pmatrix} \hat{b_1} \\ -\hat{b_1} + 5 \end{pmatrix} \geqslant 0 \Leftrightarrow \begin{cases} \hat{b_1} \geqslant 0 \\ \hat{b_1} \leqslant 5 \end{cases}$$

La tabla se mantiene óptima si $\hat{b_1} \in [0, 5]$. Además, el nuevo valor de la función objetivo será:

$$\hat{z} = \hat{c_B}^T \hat{x_B} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \hat{b_1} \\ -\hat{b_1} + 5 \end{pmatrix} = \hat{b_1}.$$

d) Respecto al coeficiente tecnológico a_{22} .

Solución:

Observando la tabla inicial:

		1	0	3	0	0	
	VB	x_1	x_2	x_3	s_1	s_2	x_B
0	s_1	1	2	7	1	0	4
0	s_2	1	$a_{22} = 3$	1	0	1	5
	$z_j - c_j$	-1	0	-3	0	0	0

Estudiaremos el recorrido de $\hat{a_{22}}$ para que la tabla siga siendo óptima:

$$\hat{y_k} = B^{-1}\hat{a_k}; \qquad \hat{z_k} - c_k = c_B^T \hat{y_k} - c_k$$

$$\hat{y_2} = B^{-1}\hat{a_2}, \text{ donde } \hat{a_2} = \begin{pmatrix} 2 \\ a_{22} \end{pmatrix} \text{ y } B^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

$$\hat{y_2} = B^{-1}\hat{a_2} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ a_{22} \end{pmatrix} = \begin{pmatrix} 2 \\ -2 + a_{22} \end{pmatrix},$$

$$\hat{z_2} - c_2 = c_B^T \hat{y_2} - c_2 = \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 + a_{22} \end{pmatrix} - 0 = 2 \geqslant 0$$

La tabla seguirá siendo óptima para cualquier valor de a_{22} .

e) Incorporando la nueva restricción $3x_1 + 7x_2 + x_3 \leq 14$.

Solución:

Observando la tabla final la solución óptima es $x^* = (4, 0, 0)$.

		1	0	3	0	0	
	VB	x_1	x_2	x_3	s_1	s_2	x_B
1	x_1	1	2	7	1	0	4
0	s_2	0	1	-6	-1	1	1
	$z_j - c_j$	0	2	4	1	0	4

Hay que comprobar si verifica la nueva restricción:

$$3 \cdot 4 + 7 \cdot 0 + 0 \leqslant 14$$

La solución óptima cumple la restricción por lo tanto, la solución sigue siendo óptima y la función óptima, también.

f) Incorporando la restricción $3x_1 + 7x_2 + x_3 \leq 7$.

Solución:

En este caso la solución óptima $x^* = (4,0,0)$ no verifica la restricción porque

$$3 \cdot 4 + 7 \cdot 0 + 0 \geqslant 7$$

Hay que incorporar esta nueva restricción a la tabla óptima de método simplex después de expresarla en forma estándar:

$$3x_1 + 7x_2 + x_3 + s_3 = 7$$

		1	0	3	0	0	0	
	VB	x_1	x_2	x_3	s_1	s_2	s_3	x_B
1	x_1	1	2	7	1	0	0	4
0	s_2	0	1	-6	-1	1	0	1
0	s_3	3	7	1	0	0	1	7
	$z_j - c_j$	0	2	4	1	0	0	4

Hay que transformar el elemento y_{31} en 0. Para ello hacemos la transformación

$$F_{3N} = F_3 - 3F_1$$
:

		1	0	3	0	0	0	
	VB	x_1	x_2	x_3	s_1	s_2	s_3	x_B
1	x_1	1	2	7	1	0	0	4
0	s_2	0	1	-6	-1	1	0	1
0	s_3	0	1	-20	-3	0	1	-5
	$z_j - c_j$	0	2	4	1	0	0	4

Esta tabla no es factible, tenemos que aplicar el **método simplex dual** para alcanzar de nuevo la factibilidad.

Sale de la base la variable básica s_3 y entrará en la base la variable x_3 pues

$$\max\left\{\frac{4}{-20}, \frac{1}{-3}\right\} = \frac{4}{-20}.$$

Haciendo las transformaciones

$$F_P = \frac{F_3}{-20};$$
 $F_{1N} = F_1 - 7F_P;$ $F_{2N} = F_2 + 6F_P$

la nueva tabla queda así:

		1	0	3	0	0	0	
	VB	x_1	x_2	x_3	s_1	s_2	s_3	x_B
1	x_1	1	47/20	0	-1/20	0	7/20	9/4
0	s_2	0	7/10	0	-1/10	1	-6/20	5/2
3	x_3	0	-1/20	1	3/20	0	-1/20	5/20
	$z_j - c_j$	0	11/5	0	2/5	0	1/5	3

La solución óptima única es $x_1^*=\frac{9}{4},\,x_2^*=0,\,x_3^*=\frac{5}{20}$ con $z^*=3.$

g) Incorporando la nueva variable x_4 de la siguiente forma:

$$\begin{array}{ll} Max & z=x_1+3x_3+4x_4\\ s.a. & x_1+2x_2+7x_3+x_4\leqslant 4\\ & x_1+3x_2+x_3+0'5x_4\leqslant 5\\ & x_1,x_2,x_3,x_4\geqslant 0 \end{array}$$

Solución:

El problema dual asociado a este problema primal seguirá teniendo dos variables duales (y_1, y_2) pero ahora tendrá una cuarta restricción dual:

$$y_1 + 0'5y_2 \geqslant 4$$

Observando la tabla óptima del problema primal

		1	0	3	0	0	
	VB	x_1	x_2	x_3	s_1	s_2	x_B
1	x_1	1	2	7	1	0	4
0	s_2	0	1	-6	-1	1	1
	$z_j - c_j$	0	2	4	$y_1^* = 1$	$y_2^* = 0$	4

La solución dual es $y^* = (1,0)$. Hay que comprobar si verifica la restricción dual:

$$1 + 0'5 \cdot 0 \leqslant 4$$

No la cumple. Por tanto, hay que añadir en esta tabla óptima una nueva columna para x_4 con los elementos:

$$\hat{y_4} = B^{-1}\hat{a_4}, \text{ donde } B^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \text{ y } \hat{a_2} = \begin{pmatrix} 1 \\ 0'5 \end{pmatrix}.$$

$$\hat{y_4} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0'5 \end{pmatrix} = \begin{pmatrix} 1 \\ -0'5 \end{pmatrix}$$

$$\hat{z_4} - c_4 = c_B^T \hat{y_4} - c_4 = \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -0'5 \end{pmatrix} - 4 = -3$$

Como $z_4 - c_4 < 0$ podemos mejorar la solución. Para ello, aplicamos el método simplex. Introducimos en la base la variable x_4 y sale la variable x_1 .

Hacemos las transformaciones:

		1	0	3	4	0	0	
	VB	x_1	x_2	x_3	x_4	s_1	s_2	x_B
1	x_1	1	2	7	1	1	0	4
0	s_2	0	1	-6	-1/2	-1	1	1
	$z_j - c_j$	0	2	4	-3	1	0	4

$$F_P = F_1; \quad F_{2N} = F_2 + \frac{1}{2}F_P$$

y obtenemos la tabla óptima:

		1	0	3	4	0	0	
	VB	x_1	x_2	x_3	x_4	s_1	s_2	x_B
4	x_4	1	2	7	1	1	0	4
0	s_2	1/2	2	-5/2	0	-1/2	1	3
	$z_j - c_j$	3	8	25	0	4	0	16

La solución óptima única es $x_1^*=0,$ $x_2^*=0,$ $x_3^*=0,$ $x_4=4$ con $z^*=16.$