Tareas de segundo parcial-Topología

Alumnos:

Arturo Rodriguez Contreras - 2132880

Jonathan Raymundo Torres Cardenas - 1949731

Praxedis Jimenes Ruvalcaba

Erick Román Montemayor Treviño - 1957959

Alexis Noe Mora Leyva

Everardo Flores Rivera - 2127301

24 de mayo de 2025

- 1 Sea $f, g: X \to Y$ funciones continuas g: Y bajo la top. del orden. Sea $g: X \to Y$ funciones continuas g: Y bajo la top. del orden. Sea $g: X \to Y$ funciones continua $g: X \to Y$ fun
- **2** Sea $f: X \leftarrow Y$ una función abierta. Si $S \subset Y$ y C cerrado en X tal que $f^{-1}(S) \subset C$, entonces existe K cerrado en Y tal que $S \subset K$ y $f^{-1}(K) \subset C$
- 3 Caso 1 y Caso 2 de ejemplo clase del 12/03/23
- 4 Ver que $h^{-1} = g$ es continua en [a,b]
- 5 Demostrar que la relación entre esp. top. $X \sim Y$ es de equivalencia
- **6** Demostrar que si $f(\overline{A}) = \overline{f(A)}$ para cada $A \subset X$ entonces f es un homeomorfismo
- 7 Demostrar que $X \times Y \approx Y \times X$, extenderlo a caso finito utilizando cualquier permutación.

- 8 Demostrar que $\tau = \{\prod_{\alpha \in J} U_\alpha : U_\alpha \in \tau_\alpha\}$ es una topologia para el producto y se le conoce como la topolofia por cajas
- 9 Verificar que si $A_{\alpha} \subset X_{\alpha}$, entonces $\prod_{\alpha \in J} int(A_{\alpha}) = int(\prod_{\alpha \in J} A_{\alpha})$ en la topologia por cajas. El resultado es en general falso. Tomemos \mathbb{R}^{ω} , $A_n = (-1/n, 1/n)$. Es facil ver que $\prod int(A_n) - \prod A_n$, pero si $U = \prod_{i=1}^m U_{n_i} \times \prod_{n \neq n_i} \mathbb{R} \subset \prod A_n$, entonces $x_{n_i} \in U_{n_i} \cap A_{n_i}$ y $x_n = 1$ si $n \neq n_i$, cumple que $(x_n) \in U$, pero $(x_n) \notin \prod A_n$.
- 10 Verificar si las β -esima proyecciones son abiertas y/o cerradas en ambas topologias Sea $U = \prod_{\alpha \in J} U_{\alpha}$ y note que $\pi_{\beta}(U) = U_{\beta}$, por lo que si U es abierto en la top. por cajas o producto, en ambos casos $\pi_{\beta}(U)$ es abierto en X_{β} . Ademas, de la igualdad $\overline{U} = \prod_{\alpha \in J} \overline{U_{\alpha}}$, que se cumple en ambas topologias, se sigue que $\pi_{\beta}(U) = \overline{U_{\beta}}$ es cerrado, es decir, π_{β} es un mapeo abierto y cerrado.
- 11 Sea $f: X \to Y$ con la topologiamétrica en $X \times Y$. Demostrar que f es continua en X si y solo si $\forall \epsilon > 0 \ \exists \delta > 0 : f(B_{d_x}(x,\delta)) \subset B_{d_y}(f(x),\epsilon) \forall x \in X$
- 12 Demostrar que la métrica uniforme ρ es métrica.

Por definición, $\rho((x_n), (y_n)) = \sup \{\overline{d}(x_n, y_n)\}$, donde $\overline{d}(x, y) \leq 1$ para cada $x, y \in \mathbb{R}$, por lo que ρ está bien definida. Es claro que $\rho((x_n), (x_n)) = 0$, además, $(x_n) \neq (y_n)$ implica que existe un natural m con $\rho((x_n), (y_n)) >= \overline{d}(x_m, y_m) > 0$. Por tanto, $\rho((x_n), (y_n)) = 0$, si y sólo si $(x_n) = (y_n)$. La simetria se hereda de la metrica acotada, $\rho((x_n), (y_n)) = \sup \{\overline{d}(x_n, y_n)\} = \sup \{\overline{d}(y_n, x_n)\} = \rho((y_n), (x_n))$. Finalmente, veamos la desigualdad triangular.

$$\rho((x_n), (y_n)) \le \sup \{\overline{d}(x_n, z_n) + \overline{d}(z_n, y_n)\}$$

$$\le \sup \{\overline{d}(x_n, z_n)\} + \sup \{\overline{d}(z_n, y_n)\}$$

$$= \rho((x_n), (z_n)) + \rho((z_n), (y_n)).$$

- **13** Sea $A = \{(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\omega} : \exists N \in \mathbb{N} : x_n = 0; n \geq N \}$ Hallar \overline{A} en top. uniforme
- 14 Sea A del ejercicio anterior, hallar \overline{A} en top. cajas
- **15** Demostrar que $f^{-1}(Fr_Y(B)) \subset Fr_X(f^{-1}(B))$

16 Sea $h: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ definida por: $h((x_n)_{n \in \mathbb{N}}) = (a_n x_n + b_n)_{n \in \mathbb{N}}$. Ver si h es homeomorfismo en \mathbb{R}^{ω} bajo top. cajas

Si $a_m = 0$ para algun $m \in \mathbb{N}$, dado (x_n) , definimos (y_n) por $y_n = x_n$ si $n \neq m$, $y_m = x_m + 1$. Es claro que $(x_n) \neq (y_n)$, pero $h((x_n)) = h((y_n))$, por lo que h no es biyectiva y por tanto, no puede ser homeomorfismo. Supongamos entonces que $a_n \neq 0$ para cada $n \in \mathbb{N}$. Observe que $h^{-1}((x_n)) = (\frac{x_n - b_n}{a_n})$ es la función inversa de h. Tanto h como h^{-1} son de la forma $f((x_n)) = (c_n x_n + d_n)$, por lo que basta probar que esta función es continua en la topología por cajas. Sea $p_n((x_n)) = c_n x + d_n$, es facil ver que es continua para cada $n \in \mathbb{N}$, y sea $U = \prod_{i=1}^m U_{n_i} \times \prod_{n \neq n_i} \mathbb{R}$ un abierto en \mathbb{R}^ω , $f^{-1}(U) = \bigcap_{i=1}^m p_{n_i}^{-1}(U_{n_i})$ es una intersección finita de abiertos, por lo que es abierta y f es continua. Por tanto, h es un homeomorfismo.