随机过程笔记

Stochastic Process

Second Edition

前言

随机过程是统计学专业的一门重要必修课. 在概率论对随机变量的研究的基础上,随机过程考虑一组随机变量 (通常是随时间变化的),由此进入了更加复杂的随机世界. 随机过程也有非常广泛的应用,从物理学到金融学,许多现象都可以用随机过程描述. 整理本份笔记,是因为笔者对概率论与随机过程较感兴趣,或许未来会把概率论与随机过程当作自己的方向 (当然也有很大的概率会被打脸).

本门课程所用的教材是何书元老师的随机过程 (见 [1]), 这是一本比较经典的教材, 内容非常丰富. 所需要的先修课程是数学分析和初等概率论 (建议的参考书是 [2] 与 [3]). 比较遗憾的是, 本课程只有 3 学分、48 学时, 在八周的课上, 仅学习了该书的一部分内容, 让人觉得意犹未尽. 除了教材上的内容以外, 本门课程的老师也补充了不少知识点, 讲解的顺序也更加合理. 本份笔记正是按照老师所讲的内容整理而成.

当然,由于时间仓促,以及笔者是随机过程的初学者,水平有限,在本份笔记中可能存在不少错误.如读者发现错误,可直接向笔者指出;如果有任何建议或想法,也欢迎来交流.笔者的联系方式(QQ)是 198368289.

最后, 感谢程晓青老师在八周内对本门课程认真的授课和答疑; 也感谢笔者概率论课程的两位老师, 分别是段启宏老师和朱学虎老师, 他们的建议对笔者也有巨大的帮助; 除此之外, 还应该感谢信计 91 的张博闻同学对排版的帮助, 统计 91 的符露露同学、应数 91 的李惊晨同学提供的笔记和建议, 以及, 感谢包容笔记的错误与不足的各位读者.

董晟渤 2021年11月 于西安交通大学

目录

1	随机	.过桯入	ĬJ	1
	1.1	随机过	过程的定义	1
	1.2	随机过	过程的概率特性	2
		1.2.1	分布函数	2
		1.2.2	独立性	3
		1.2.3	数字特征	4
	1.3	课后ス]题	5
2	Pois	son 过程	로 로	7
	2.1	计数过	过程与 Poisson 过程	7
		2.1.1	计数过程	7
		2.1.2	Poisson 过程的定义	7
		2.1.3	Poisson 过程的应用	10
	2.2	Poisson	n 呼叫流	11
		2.2.1	等待时间间隔与到达时刻的分布	11
		2.2.2	到达时刻的联合分布	12
		2.2.3	到达时刻的条件分布	14
		2.2.4	到达时刻与均匀分布的联系	15
		2.2.5	简单呼叫流	15
	2.3	年龄与	5剩余寿命	17
	2.4	Poisson	n 过程的汇合、分流与复合	18
		2.4.1	Poisson 过程的汇合	19
		2.4.2	Poisson 过程的分流	20
		2.4.3	Poisson 过程的复合	22
	2.5	课后ス]题	24
3	Brov	vn 运动		25
	3.1	自由扩	`散与 Brown 运动	25
		3.1.1	自由扩散	25
		3.1.2	Brown 运动的定义	26
	3.2	Brown	运动的性质	27
		3 2 1	Brown 运动与随机游走的联系	27

		3.2.2 Brown 运动	与 Gauss 过程的!	联系	 	28
	3.3	首中时、最大值与	Arcsin 律		 	30
		3.3.1 首中时及其	分布		 	30
		3.3.2 最大值及其	分布		 	31
		3.3.3 Arcsin 律 .			 	32
	3.4	Brown 桥与经验过	程		 	34
		3.4.1 Brown 桥 .			 	34
		3.4.2 经验过程.			 	36
	3.5	Brown 运动的变式			 	37
	3.6	课后习题			 	38
4	离散	时间 Markov 链				39
	4.1	Markov 链与 Marko	ov 性		 	39
		4.1.1 Markov 链自	为定义		 	39
		4.1.2 Markov 链自	勺性质		 	39
		4.1.3 Markov 链自	的例子		 	41
	4.2	Markov 链的多步转	移		 	42
		4.2.1 Kolmogorov	y-Chapman 方程		 	42
		4.2.2 初始分布与	X_n 的分布		 	43
	4.3	状态的分类与命名			 	45
		4.3.1 状态的连通	性		 	46
		4.3.2 常返与非常	返状态		 	48
		4.3.3 周期和遍历	状态		 	54
		4.3.4 状态的等价			 	56
	4.4	Markov 链的不变分	布		 	58
	4.5	Markov 链的平稳可	「逆分布		 	60
		4.5.1 平稳性			 	60
		4.5.2 平稳可逆性			 	62
		4.5.3 平稳可逆分	布的计算		 	63
	4.6	离散分支过程			 	67
	4.7	课后习题			 	69
5	连续	时间 Markov 链				71
	5.1	Markov 链与 Poisso	on 过程		 	71
		5.1.1 Markov 链自	为定义		 	71
		5.1.2 Poisson 过剩	是是连续时间 Mar	rkov 緈		72

5.2	Markov 链的转移概率矩阵
	5.2.1 规则 Markov 链与保守 Markov 链
	5.2.2 Kolmogorov 方程
5.3	Markov 链的结构
5.4	生灭过程
	5.4.1 指数分布的性质
	5.4.2 线性生灭过程
	5.4.3 线性纯生过程
	5.4.4 一般生灭过程
5.5	课后习题

第1章 随机过程入门

1.1 随机过程的定义

随机过程是依赖于参数的一组随机变量的全体, 在各个领域都有广泛的应用. 一般情况下, "参数"指的是时间. 在这里用 *t* 表示时间. 定义1.1说明了什么是随机过程.

定义 1.1 (随机过程)

设 $(\Omega, \mathscr{F}, \mathbb{P})$ 为概率空间, 参数 $T \subset (-\infty, +\infty)$, 若对任意的 $t \in T$, $X(\omega, t)$ 是一随机变量. 则称

$${X(\omega, t), t \in T}$$

为 $(\Omega, \mathcal{F}, \mathbb{P})$ 上的一个随机过程.

需要注意, 随机过程是定义在相同的概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$ 上的. 为了方便, 以下说明清楚随机过程的定义中涉及到的概念.

- (1) T 称为参数集或指标集. 例如可以取 $T = \{0, 1, 2, \dots\}, T = \{0, \pm 1, \pm 2, \dots\}$ 或 T = [a, b]. 若 T 是可列集,则称该随机过程为随机序列.
- (2) 需要区分随机过程和随机变量: $X:\Omega\to\mathbb{R}$ 是随机变量, 通常记作 $X(\omega)$, 而 $X:\Omega\times T\to\mathbb{R}$ 是随机过程, 通常记作 $X(\omega,t)$;
- (3) 固定 $t \in T$, 则 $X(\omega, t)$ 是随机变量, 称为在时刻 t 的状态. $X(\omega, t) = x$ 表示在时刻 t 的状态为 x. $X(\omega, t)$ 的所有取值的全体称为状态空间.
- (4) 固定 $\omega \in \Omega$, 则 $X(\omega, t) = g(t)$ 称为样本函数, 也称为该随机过程的一次实现或一个轨道.
- (5) 随机过程是有限维随机变量的推广,可以记作

$$X(\omega,t)$$
, $\{X(t)\}$, $X(t)$, \emptyset $\{X(t),t\in T\}$.

以下考虑一些具体的随机过程的例子,来帮助理解随机过程的概念.

例 1.1 抛硬币 考虑抛硬币的过程, $\Omega = \{H, T\}$. 定义

$$X(\omega, t) = \begin{cases} \cos \pi t, & \omega = H, \\ 2t, & \omega = T, \end{cases} \quad t \in (0, +\infty),$$

设 $\mathbb{P}(H) = \mathbb{P}(T) = \frac{1}{2}$, 则 $\{X(\omega, t)\}$ 的样本函数为

$$\begin{cases} X(H,t) = \cos \pi t, \\ X(T,t) = 2t, \end{cases}$$

状态空间为 [-1,+∞).

例 1.2 设 N(t) 表示某服务站在 [0,t] 内到达的顾客数. 则样本函数为单调不减的右连续阶梯函数.

后面将利用某种特殊的分布,给出例1.2的具体刻画.

1.2 随机过程的概率特性

1.2.1 分布函数

接下来,为了更深入地研究随机过程,我们需要回答的两个问题是:

- (1) 既然随机过程是一组随机变量,那么随机过程是否像随机变量一样,用分布去刻画?
- (2) 以及,在上面的基础上,随机过程是否可以用有限维的分布刻画? 在回答第一个问题的时候,我们引入分布函数簇的概念.而第二个问题,则涉及到 Kolmogorov 存在性定理 ¹. 首先给出随机过程的分布函数的定义.

定义 1.2 (分布函数)

设 $\{X(t)\}$ 为随机过程, 对任意的正整数 n, 及对任意的 $t_1, t_2, \dots, t_n \in T$, 称

$$F_X(x_1, x_2, \dots, x_n; t_1, t_2, \dots, t_n) = \mathbb{P}(X(t_1) \le x_1, X(t_2) \le x_2, \dots, X(t_n) \le x_n),$$

为 $\{X(t)\}$ 的n 维分布函数. 当 n 与 t_1, t_2, \cdots, t_n 改变时, 上面的函数构成分布函数 簇.

特别地, 当 n=1 时, 随机过程 $\{X(t)\}$ 的一维分布函数为

$$F_X(x,t) = \mathbb{P}(X(t) \le x),$$

这就是随机变量 X(t) 的分布函数. 一维分布函数是较容易求出的, 例1.3是一个较为复杂的求一维分布函数的例子.

例 1.3 设 $X(t) = te^{Y}$, 其中 t > 0, $Y \sim \text{Exp}(\lambda)$, 求 $\{X(t)\}$ 的一维分布函数.

解答 当 x > t 时, 有

$$\mathbb{P}(X(t) \le x) = \mathbb{P}\left(Y \le \ln \frac{x}{t}\right) = 1 - \exp\left(-\lambda \ln \frac{x}{t}\right) = 1 - \left(\frac{t}{x}\right)^{\lambda}.$$

1对任何一列概率空间 $\{(X_k, \mathscr{F}_k, \mathbb{P}_k), k = 1, 2, \cdots\}$,在 $\left(\prod_{k=1}^{\infty} X_k, \prod_{k=1}^{\infty} \mathscr{F}_k\right)$ 上有唯一的概率测度 \mathbb{P} ,使得对每个 $n = 1, 2, \cdots$ 和每一组 $A_1 \in \mathscr{F}_1, A_2 \in \mathscr{F}_2, \cdots, A_n \in \mathscr{F}_n$,有 $\mathbb{P}\left\{\pi^{-1}\left(\prod_{k=1}^n A_k\right)\right\} = \prod_{k=1}^n \mathbb{P}_k(A_k)$. 这超出了课程的范围. 关于该定理的介绍和证明,详见 [3].

因此 $\{X(t)\}$ 的一维分布函数

$$F_X(x,t) = \begin{cases} 1 - \left(\frac{t}{x}\right)^{\lambda}, & x > t, \\ 0, & x \le t. \end{cases}$$

1.2.2 独立性

概率论中,有一个独有且重要的概念叫做独立性.我们知道,若两个随机变量独立,则它们的联合分布函数可以写成各自的分布函数的乘积.在这样的想法之下,给出随机过程的独立性的定义.

定义 1.3 (独立性)

设 $\{X(t)\}$, $\{Y(t)\}$ 是随机过程, 若对任意的正整数 m,n, 及对任意的 t_1,\cdots,t_n , $t_1',\cdots,t_m'\in T$, 都有

 $F_{t_1,\dots,t_n,t_1',\dots,t_m'}(x_1,\dots,x_n,y_1,\dots,y_m) = F_{t_1,\dots,t_n}(x_1,\dots,x_n) \cdot F_{t_1',\dots,t_m'}(y_1,\dots,y_m),$ 则称 $\{X(t)\}$ 和 $\{Y(t)\}$ 独立.

另外,对于某个随机过程,考虑增量的独立性,则有定义1.4.

定义 1.4 (独立增量过程)

设 $\{X(t)\}$ 是随机过程, 若对任意有限个 $t_1 < t_2 < \cdots < t_n$,

$$X(t_2) - X(t_1), \quad X(t_3) - X(t_2), \quad \cdots, \quad X(t_n) - X(t_{n-1})$$

是相互独立的,则称 $\{X(t)\}$ 为独立增量过程.

除了独立以外, 概率论中"同分布"的特性也非常重要.

定义 1.5 (平稳增量过程)

设 $\{X(t)\}$ 是随机过程, 若对任意的 s>0, $t_2>t_1>0$, $X(t_2)-X(t_1)$ 与 $X(t_2+s)-X(t_1+s)$ 同分布, 则称 $\{X(t)\}$ 为平稳增量过程.

以下是独立增量的过程的一个例子.

例 1.4 独立增量过程 设 $\{X(n), n=0,1,\cdots\}$ 相互独立, 令 $S(i)=\sum_{n=0}^{l}X(n)$, 则 $\{S(i), i=0,1,\cdots\}$ 为独立增量过程.

证明 对任意的正整数 $0 \le n_0 < n_1 < \cdots < n_m$,都有

$$S(n_1) - S(n_0) = X(n_0 + 1) + \cdots + X(n_1),$$

$$S(n_2) - S(n_1) = X(n_1 + 1) + \cdots + X(n_2),$$

. . .

$$S(n_m) - S(n_{m-1}) = X(n_{m-1} + 1) + \cdots + X(n_m),$$

其中右边每一项都是相互独立的.

1.2.3 数字特征

在概率论中, 我们研究了某个随机变量的数字特征, 包括期望、方差等等. 对于随机过程, 如果取定 $t \in T$, 则 X(t) 也是一个随机变量. 在此基础上, 我们也可以定义随机过程的数字特征.

(1) 对于随机过程 $\{X(t)\}$, 定义均值函数

$$m(t) = \mathbb{E}X(t);$$

(2) 对于随机过程 $\{X(t)\}$, 定义方差函数

$$D(t) = \mathbb{E}(X(t) - m(t))^{2};$$

同时定义标准差函数

$$\sigma(t) = \sqrt{D(t)};$$

(3) 对于随机过程 $\{X(t)\}$, 定义自协方差

$$C(t_1, t_2) = \text{Cov}(X(t_1), X(t_2)) = \mathbb{E}(X(t_1) - m(t_1))(X(t_2) - m(t_2));$$

(4) 对于随机过程 $\{X(t)\}\$ 与 $\{Y(t)\}\$, 定义互协方差

$$C_{X,Y}(t_1,t_2) = \text{Cov}(X(t_1),Y(t_2)) = \mathbb{E}(X(t_1) - m_X(t_1))(Y(t_2) - m_Y(t_2)).$$

在此基础上, 若对任意的 $t_1, t_2 \in T$, 都有

$$C_{X,Y}(t_1,t_2)=0,$$

则称 $\{X(t)\}$ 与 $\{Y(t)\}$ 互不相关;

(5) 对于随机过程 $\{X(t)\}$, 定义自相关函数

$$R(t_1, t_2) = \mathbb{E}X(t_1)X(t_2).$$

在此基础上, 容易推导出

$$C(t_1, t_2) = R(t_1, t_2) - m(t_1)m(t_2).$$

(6) 对于随机过程 $\{X(t)\}$ 与 $\{Y(t)\}$, 定义互相关函数

$$R_{X,Y}(t_1,t_2) = \mathbb{E}X(t_1)Y(t_2).$$

在此基础上, 容易推导出

$$C_{X,Y}(t_1, t_2) = R_{X,Y}(t_1, t_2) - m_X(t_1)m_Y(t_2).$$

例1.5是一个计算随机过程的数字特征的例子.

例 1.5 设 $\{X(t), t \in T\}$ 是独立增量过程, X(0) = 0, $m(t) = \mathbb{E}X(t)$, D(t) = VarX(t).

- (1) 求 $\{X(t)\}$ 的自协方差函数 $C(t_1, t_2)$;
- (2) 求 $\{X(t)\}$ 的自相关函数 $R(t_1, t_2)$.

解答 若 $0 < t_1 < t_2$, 根据定义得

$$X(t_1) - X(0) = X(t_1), \quad X(t_2) - X(t_1)$$

相互独立,从而它们不相关,计算得

$$0 = Cov(X(t_1), X(t_2) - X(t_1))$$

$$= Cov(X(t_1), X(t_2)) - VarX(t_1)$$

$$= C(t_1, t_2) - D(t_1),$$

从而 $C(t_1, t_2) = D(t_1)$; 同理当 $0 < t_2 < t_1$ 时有 $C(t_1, t_2) = D(t_2)$, 因此

$$C(t_1, t_2) = D(\min\{t_1, t_2\}).$$

根据自协方差函数与自相关函数之间的关系, 计算得

$$R(t_1, t_2) = C(t_1, t_2) + m(t_1)m(t_2) = D(\min\{t_1, t_2\}) + m(t_1)m(t_2).$$

本例中的随机过程较为特殊,满足 X(0) = 0,这导致了它的自协方差 $C(t_1, t_2) = D(\min\{t_1, t_2\})$. 若设 s < t,则 C(s, t) = D(s). 在后面将会发现,有许多的随机过程都具有 X(0) = 0 的性质,从而例1.5的结论十分有用.

1.3 课后习题

本节的习题主要为概率论的复习.

问题 **1.1** 若 X_1, X_2, \dots, X_n 相互独立, $X_i \sim \mathcal{P}(\lambda_i)$, 则

- (1) $\mathbb{E}X_i = \lambda_i$, $Var X_i = \lambda_i$;
- (2) $X_1 + X_2 + \cdots + X_n \sim \mathcal{P}(\lambda_1 + \lambda_2 + \cdots + \lambda_n)$.

问题 1.2 当 P(A) > 0 时, 推导乘法公式

$$\mathbb{P}(B_1B_2\cdots B_n|A) = \mathbb{P}(B_1|A)\mathbb{P}(B_2|B_1A)\cdots\mathbb{P}(B_n|B_1B_2\cdots B_{n-1}A).$$

问题 1.3 设 X_1, X_2, \cdots 是来自总体 X 的随机变量, $\mu = \mathbb{E}X$, $\sigma^2 = \text{Var}X < \infty$. 对于和总体 X 独立的取非负整数值的随机变量 N, 当 $\sigma_N^2 = \text{Var}N < \infty$ 时, 计算

$$\mathbb{E}(X_1 + X_2 + \cdots + X_N), \quad \text{Var}(X_1 + X_2 + \cdots + X_N).$$

问题 1.4 设 X 是非负随机变量, X_1, X_2, \cdots, X_n 是来自总体 X 的样本, $k \leq n$.

- (1) 计算 $\mathbb{E}(X_1 + X_2 + \cdots + X_k | X_1 + X_2 + \cdots + X_n = t)$;
- (2) 如果 U 在 [0,t] 上均匀分布, 且与 X_1, X_2 独立, 计算

$$\mathbb{P}(U < X_1 | X_1 + X_2 = t).$$

第2章 Poisson 过程

2.1 计数过程与 Poisson 过程

2.1.1 计数过程

在生活中,"计数"无处不在. 随着时间的推移,"计数"的过程将成为随机过程. 定义2.1给出了该随机过程的定义.

定义 2.1 (计数过程)

设 $t \ge 0$, N(t) 表示 [0,t] 内某类事件发生的个数, 则随机过程 $\{N(t)\}$ 称为计数过程.

在定义2.1的基础上, 容易看出计数过程有如下的性质.

- (1) 对任意的 $t \ge 0$, N(t) 的取值为非负整数;
- (2) 对任意的 $t > s \ge 0$, $N(t) \ge N(s)$;
- (3) 对任意的 $t > s \ge 0$, N(t) N(s) 表示时间段 (s,t] 内发生的事件数;
- (4) $\{N(t)\}$ 的轨迹是单调不减的右连续阶梯函数.

或许读者会发现, 在上一节例1.2中所定义的随机过程 $\{N(t)\}$ 就是一个计数过程. 以下为了方便, 对 $t,s \ge 0$, 记 N(s,s+t) = N(s+t) - N(s).

2.1.2 Poisson 过程的定义

在概率论中, 我们接触到了 Poisson 分布. 我们用 $\mathcal{P}(\lambda)$ 表示强度为 λ 的 Poisson 过程, 设随机变量 $X \in \mathcal{P}(\lambda)$, 则它的取值只可能为非负整数, 且

$$\mathbb{P}(X=k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}, \quad k = 0, 1, \cdots.$$

在此基础上, 定义2.2给出了 Poisson 过程的定义. 后面我们将会发现, Poisson 过程是最简单的也是应用极多的一个计数过程.

定义 2.2 (Poisson 过程)

设计数过程 $\{N(t)\}$ 满足:

- (1) N(0) = 0;
- (2) {N(t)} 是独立增量过程;
- (3) 对任意的 $t, s \ge 0, N(s, s+t] \sim \mathcal{P}(\lambda t)$, 也即

$$\mathbb{P}(N(s, s+t] = k) = \frac{(\lambda t)^k}{k!} \cdot e^{-\lambda t},$$

则称 $\{N(t)\}$ 为强度为 λ 的 Poisson 过程.

结合 Poisson 分布的性质, 我们可以看出 Poisson 过程具有以下的性质.

- (1) Poisson 过程是平稳增量过程:
- (2) Poisson 过程的均值函数 $m(t) = \mathbb{E}N(t) = \lambda t$, 并且

$$\lambda = \frac{\mathbb{E}N(t)}{t},$$

从而参数 λ 表示单位时间 t 内事件发生个数的平均值, 从而称为强度, 这是 Poisson 过程的一个很重要的特性;

- (3) Poisson 过程的方差函数 $D(t) = \text{Var}N(t) = \lambda t$;
- (4) 根据例1.5所得结论计算得, Poisson 过程的自协方差函数

$$C(s,t) = D(\min\{t,s\}) = \lambda \min\{t,s\};$$

自相关函数

$$R(s,t) = C(s,t) + m(s)m(t) = \lambda \min\{t,s\} - \lambda^2 ts.$$

以上的定义2.2可以认为是"宏观"的定义. 它对计数过程 $\{N(t)\}$ 的要求是, 在一个"宏观"的区间 (s,s+t] 上, 事件发生的过程服从 Poisson 分布 $\mathcal{P}(\lambda t)$. 以下给出的定义2.3, 是对 Poisson 过程的另外一个角度的刻画.

定义 2.3 (Poisson 过程)

设计数过程 $\{N(t)\}$ 满足:

- (1) N(0) = 0;
- (2) $\{N(t)\}$ 是独立增量过程, 并且有平稳增量性;
- (3) 对任意的 t ≥ 0 及对充分小的 Δt , 有

$$\begin{cases} \mathbb{P}(N(t, t + \Delta t] = 1) = \lambda \cdot \Delta t + o(\Delta t), \\ \mathbb{P}(N(t, t + \Delta t] \ge 2) = o(\Delta t), \end{cases}$$

则称为 $\{N(t)\}$ 强度为 λ 的 Poisson 过程.

定义2.3可以认为是"微观"的定义. 第一式对计数过程 $\{N(t)\}$ 的要求是, 在极短的时间 Δt 内, 恰有一次事件发生的概率和 $\lambda \cdot \Delta t$ 是同阶无穷小. 事件在 $(t,t+\Delta t]$ 时间段内发生的概率与 Δt 成正比, 这与我们对参数 λ 的理解是一致的. 而第二式说明了同一时刻内不会发生两个或两个以上的事件.

接下来还需要验证,上面两个定义是等价的,从而不会导致矛盾.

定理 2.1

定义2.2和定义2.3是等价的.

 \sim

证明 定义 $2.2 \Longrightarrow$ 定义2.3. 首先计算得

$$\mathbb{P}(N(t, t + \Delta t] = 1) = \lambda \cdot \Delta t e^{-\lambda \cdot \Delta t} = \lambda \cdot \Delta t + o(\Delta t);$$

同理有

$$\mathbb{P}(N(t, t + \Delta t) \ge 2) = 1 - \mathbb{P}(N(t, t + \Delta t) = 0) - \mathbb{P}(N(t, t + \Delta t) = 1)$$
$$= 1 - (1 - \lambda \cdot \Delta t + o(\Delta t)) - (\lambda \cdot \Delta t + o(\Delta t))$$
$$= o(\Delta t).$$

定义2.3 \Longrightarrow 定义2.2. ¹ 在 [0, t] 插入分点 $0 = x_0 < x_1 < \cdots < x_n = t$, 其中 $x_i = \frac{it}{n}$, 并对 $1 \le i \le n$, 记 $Y_i = N(x_{i-1}, x_i]$, 则 Y_1, Y_2, \cdots, Y_n 相互独立, 且

$$\begin{cases} \mathbb{P}(Y_i = 0) = 1 - \lambda \cdot \frac{t}{n} + o\left(\frac{t}{n}\right), \\ \mathbb{P}(Y_i = 1) = \lambda \cdot \frac{t}{n} + o\left(\frac{t}{n}\right), \\ \mathbb{P}(Y_i \ge 2) = o\left(\frac{t}{n}\right). \end{cases}$$

对任意的正整数 k, 记事件

$$A_n = \left(\sum_{i=1}^n Y_i = k, \, \sharp \, \vdash k \, \uparrow \, Y_i = 1, \, \sharp \, \sharp \, h \, 0\right),$$

$$B_n = \left(\sum_{i=1}^n Y_i = k, \, \sharp \, \vdash r \, f \, \epsilon \, Y_i \geq 2\right).$$

对于事件 A_n , 有

$$\mathbb{P}(A_n) = \binom{n}{k} \cdot \mathbb{P}^k (Y_i = 1) \cdot \mathbb{P}^{n-k} (Y_i = 0),$$

在上式中令 $n \to \infty$, 依 Poisson 定理² 知 $\lim_{n \to \infty} \mathbb{P}(A_n) = \frac{(\lambda t)^k}{k!} \cdot e^{-\lambda t}$; 对于事件 B_n , 有

$$\mathbb{P}(B_n) \leq \mathbb{P}\left\{\bigcup_{i=1}^n (Y_i \geq 2)\right\} \leq \sum_{i=1}^n \mathbb{P}(Y_i \geq 2) = n \cdot o\left(\frac{t}{n}\right),$$

在上式中令 $n \to \infty$, 得 $\lim_{n \to \infty} \mathbb{P}(B_n) = 0$; 最后, 对任意的 n, 都有

$$\mathbb{P}(N(t) = k) = \mathbb{P}(A_n \cup B_n) = \mathbb{P}(A_n) + \mathbb{P}(B_n),$$

在上式中令 $n \to \infty$,则

$$\mathbb{P}(N(t) = k) = \frac{(\lambda t)^k}{k!} \cdot e^{-\lambda t},$$

再根据 $\{N(t)\}$ 是平稳增量过程知,对任意的 $t,s\geq 0$,都有 $N(s,s+t]\sim \mathcal{P}(\lambda t)$.

¹M. Ross 的书 [4] 采用微分方程的方法来推导.

 $^{^2}$ 设 $\lim_{n\to\infty} np_n = \lambda$, 则 $\lim_{n\to\infty} \binom{n}{k} p_n^k (1-p_n)^{n-k} = \frac{\lambda^k \cdot \mathrm{e}^{-\lambda}}{k!}$, 该定理可以说明, 满足一定条件的二项分布的极限是 Poisson 分布. 详见 [2].

2.1.3 Poisson 过程的应用

Poisson 过程在实际生活中具有广泛的应用,以下是几个例子.

例 2.1 上海证券交易所开盘后, 股票买卖的依次成交构成一个 Poisson 过程. 如果每 10 分钟平均有 12 万次买卖成交, 计算该 Poisson 过程的强度 λ 和 1 秒内成交 100 次的概率.

解答 用 $\{N(t)\}$ 表示所述的 Poisson 过程, 10 分钟内的平均成交次数是

$$\mathbb{E}N(t, t + 10] = 10\lambda = 120000,$$

于是 $\lambda = 12000$ 次/分钟. 用 $\{N_1(t)\}$ 表示以秒为单位的 Poisson 过程时, 强度是 $\lambda_1 = \frac{\lambda}{60} = 200$. 于是 1 秒内成交 100 次的概率是

$$\mathbb{P}(N_1(1) = 100) = \frac{\lambda_1^{100}}{100!} \cdot e^{-\lambda_1} = \frac{200^{100}}{100!} \cdot e^{-200} \approx 1.88 \times 10^{-15}.$$

例 2.2 设车辆通过的数量是一个 Poisson 过程, 且在一分钟内有 $\mathbb{P}(N(1) = 0) = 0.2$.

- (1) 求 $\mathbb{P}(N(2) > 1)$;
- (2) 求 $\mathbb{E}N(5)$;
- (3) 求 VarN(5);
- (4) 求 $\mathbb{P}(N(5) \ge 1)$.

解答 首先由 $\mathbb{P}(N(1)=0)=e^{-\lambda}=0.2$, 解得 $\lambda=\ln 5$. 对于 (1), 计算得

$$\mathbb{P}(N(2) > 1) = 1 - \mathbb{P}(N(2) = 0) - \mathbb{P}(N(2) = 1)$$
$$= 1 - e^{-2\lambda} - 2\lambda \cdot e^{-2\lambda}$$
$$= \frac{24 - 2\ln 5}{25};$$

对于 (2) 和 (3), 容易得到 $\mathbb{E}N(5) = \text{Var}N(5) = 5\lambda = 5 \ln 5$; 对于 (4), 计算得

$$\mathbb{P}(N(5) \ge 1) = 1 - \mathbb{P}(N(5) = 0) = 1 - e^{-5\lambda} = \frac{3124}{3125}.$$

接下来的例子,可以说明 Poisson 过程与二项分布之间的关系.

- 例 2.3 设某商场中, 男顾客平均每分钟有 1 人, 而女顾客平均每分钟有 2 人.
 - (1) 到达商场的总顾客人数服从什么分布?
 - (2) 已知 *t* 时刻商场中已有 50 人, 试求出商场中已有 30 个女性顾客的概率是多少? 平均有多少个女性顾客?

解答 (1) 设男顾客为强度为 λ_1 的 Poisson 过程 $\{N_1(t)\}$, 女顾客为强度为 λ_2 的 Poisson 过程 $\{N_2(t)\}$, 并且 $\mathbb{E}N_1(1) = \lambda_1 = 1$, $\mathbb{E}N_2(1) = \lambda_2 = 2$. 记 $N(t) = N_1(t) + N_2(t)$, 根据 Poisson 分布对参数 λ 的再生性知, $\{N(t)\}$ 为强度为 $\lambda = \lambda_1 + \lambda_2 = 3$ 的 Poisson 过程.

10

(2) 计算得

$$\mathbb{P}(N_2(t) = 30 | N(t) = 50) = \frac{\mathbb{P}(N_1(t) = 20, N_2(t) = 30)}{\mathbb{P}(N(t) = 50)}$$

$$= \frac{\mathbb{P}(N_1(t) = 20)\mathbb{P}(N_2(t) = 30)}{\mathbb{P}(N(t) = 50)}$$

$$= \frac{t^{20}(2t)^{30}}{(3t)^{50}} \cdot \frac{50!}{20! \cdot 30!} \cdot e^{-(1+2-3)t}$$

$$= \binom{50}{20} \left(\frac{2}{3}\right)^{30} \left(\frac{1}{3}\right)^{20}$$

$$\approx 0.0705.$$

在上面的基础上, 记 $n=50, p=\frac{2}{3}$, 容易验证 $N_2(t)\sim \mathcal{B}(n,p)$. 因此 $\mathbb{E}N_2(t)=np=\frac{100}{3}\approx 33.33.$

2.2 Poisson 呼叫流

在本节中,我们研究的对象是 Poisson 过程中事件所发生的时刻,

定义 2.4 (呼叫时刻与呼叫流)

设 $\{N(t)\}$ 为强度为 λ 的 Poisson 过程, S_n 表示第 n 个事件发生的时刻, S_n 称作第 n 个呼叫时刻或到达时刻, $\{S_n\}$ 称为 $\{N(t)\}$ 的呼叫流.

为了研究 Poisson 呼叫流, 我们自然想要研究其分布. 为此需要解决两个问题:

- (1) 首先, 随机变量 S_n 的分布是什么, 是否可以求出来?
- (2) 其次, 是否可以求出 (S_1, S_2, \dots, S_n) 的联合分布?

2.2.1 等待时间间隔与到达时刻的分布

记等待时间间隔 $X_n = S_n - S_{n-1}$, 则 $S_n = X_1 + X_2 + \cdots + X_n = \sum_{n=1}^{\infty} X_n$. 我们首先尝试求出 $\{X_n\}$ 的分布.

定理 2.2

Poisson 过程 $\{N(t)\}$ 的等待时间间隔 X_1, X_2, \cdots 是来自指数总体 $\operatorname{Exp}(\lambda)$ 的随机变量.

证明 首先, 事件 $(X_1 > t)$ 的含义是 [0,t] 内无事件发生. 根据

$$\mathbb{P}(X_1 > t) = \mathbb{P}(N(t) = 0) = e^{-\lambda t},$$

得到 $X_1 \sim \text{Exp}(\lambda)$. 接下来, 根据 Poisson 过程的独立增量性, 有

$$\mathbb{P}(X_2 > t | X_1 = s) = \mathbb{P}(N(s, s + t) = 0 | X_1 = s) = \mathbb{P}(N(s, s + t) = 0) = e^{-\lambda t},$$

从而 $X_2 \sim \text{Exp}(\lambda)$. 以此类推, 即可证明该定理.

接下来, 我们再来尝试求出第 n 个呼叫时 $S_n = X_1 + X_2 + \cdots + X_n$ 所服从的分布. 一方面, 我们可以根据 $\{X_n\}$ 独立同分布, 且来自总体 $\operatorname{Exp}(\lambda)$, 直接得到 S_n 的分布是 $\Gamma(n,\lambda)$; 另外一方面, 我们也可以从 $\{N(t)\}$ 出发来得到 $\{S_n\}$ 的分布. 为此, 我们通过如下的方式来建立 $\{S_n\}$ 与 $\{N(t)\}$ 的联系:

- $\{N(t) \ge n\} \iff \{S_n \le t\};$
- $\{N(t) = n\} \iff \{S_n \le t < S_{n+1}\}.$

上面两条是容易理解的. 如果 $N(t) \ge n$, 则第 n 个事件在 t 时刻前发生, 从而 $S_n \le t$; 而如果 N(t) = n, 则在 [0,t] 内恰有 n 个事件发生, 而第 n+1 次发生位于 (t,∞) 内, 从而 $S_n \le t < S_{n+1}$.

定理 2.3

设 S_n 是 Poisson 过程的第 n 个到达时刻, 则 $S_n \sim \Gamma(n, \lambda)$.

 \Diamond

证明 设 $F_n(t)$ 是 S_n 的分布函数. 根据 $\{S_n\}$ 与 $\{N(t)\}$ 之间的联系, 有

$$F_n(t) = \mathbb{P}(S_n \le t) = \mathbb{P}(N(t) \ge n) = 1 - \sum_{k=0}^{n-1} \mathbb{P}(N(t) = k) = 1 - \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} e^{-\lambda t}.$$

考虑 S_n 的概率密度函数

$$g_n(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_n(t)$$

$$= \lambda \mathrm{e}^{-\lambda t} - \sum_{k=1}^{n-1} \frac{\lambda}{(k-1)!} (\lambda t)^{k-1} \mathrm{e}^{-\lambda t} + \sum_{k=1}^{n-1} \frac{\lambda}{k!} (\lambda t)^k \mathrm{e}^{-\lambda t}$$

$$= \lambda \mathrm{e}^{-\lambda t} - \lambda \mathrm{e}^{-\lambda t} + \frac{\lambda^n}{(n-1)!} t^{n-1} \mathrm{e}^{-\lambda t}$$

$$= \frac{\lambda^n}{(n-1)!} t^{n-1} \mathrm{e}^{-\lambda t},$$

以上的概率密度函数正是 $\Gamma(n,\lambda)$ 的概率密度函数, 因此 $S_n \sim \Gamma(n,\lambda)$.

2.2.2 到达时刻的联合分布

在求出了 S_n 的分布之后, 我们更进一步, 希望求出 $S = (S_1, S_2, \dots, S_n)$ 的分布, 也即到达时刻的联合分布. 为此, 需要先介绍引理2.1.

引理 2.1

设 $F(x_1, x_2, \dots, x_n)$ 是 $X = (X_1, X_2, \dots, X_n)$ 的联合分布函数,令

$$G_k(x_1, x_2, \dots, x_n) = \mathbb{P}(X_1 > x_1, X_2 \le x_2, \dots, X_{2k-1} > x_{2k-1}, X_j \le x_j, 2k \le j \le n),$$

则在 G_k 存在n阶连续混合偏导的区域内,F存在n阶连续混合偏导数,且

$$\frac{\partial^n F(x_1, x_2, \cdots, x_n)}{\partial x_n \cdots \partial x_1} = (-1)^k \frac{\partial^n G(x_1, \cdots, x_n)}{\partial x_n \cdots \partial x_1}.$$

我们不加证明地直接使用引理2.1. 为了方便理解, 考虑一个特殊的例子: 当 n=2 时, 令

$$G(x, y) = \mathbb{P}(X > x, y \le y)$$
$$= P(Y \le y) - \mathbb{P}(X \le x, Y \le y),$$

则在G存在连续混合偏导的区域内,有

$$\frac{\partial^2 G(x,y)}{\partial y \partial x} = -\frac{\partial^2 F(x,y)}{\partial y \partial x}.$$

借助引理2.1, 我们来求 $S = (S_1, S_2, \dots, S_n)$ 的分布.

定理 2.4

设 S_n 是 Poisson 过程的第 n 个到达时刻, 则 $S = (S_1, S_2, \dots, S_n)$ 的概率密度函数

$$g(s_1, \dots, s_n) = \lambda^n e^{-\lambda s_n}, \quad 0 < s_1 < \dots < s_n.$$

证明 首先, 设 n = 2k - 1, 并令 $s = (s_1, s_2, \dots, s_n)$, 其中 $0 < s_1 < \dots < s_n$. 记事件

$$A_i = (N(s_{i-1}, s_i) = 0), \quad B_i = (N(s_{i-1}, s_i) = 2),$$

则当 $i \neq j$ 时, A_i 与 A_j , A_i 与 B_j , B_i 与 B_j 均独立, 且

$$\mathbb{P}(A_i) = e^{-\lambda(s_i - s_{i-1})}, \quad \mathbb{P}(B_i) = \frac{\lambda^2(s_i - s_{i-1})^2}{2} e^{-\lambda(s_i - s_{i-1})},$$

从而

$$G_{k}(s_{1}, s_{2}, \dots, s_{n}) = \mathbb{P}(S_{1} > s_{1}, S_{2} \leq s_{2}, \dots, S_{n} > s_{n})$$

$$= \mathbb{P}(A_{1}B_{2}A_{3}B_{4} \dots A_{n})$$

$$= \mathbb{P}(A_{1})\mathbb{P}(B_{2})\mathbb{P}(A_{3})\mathbb{P}(B_{4}) \dots \mathbb{P}(A_{n})$$

$$= \frac{\lambda^{2(k-1)}e^{-\lambda s_{n}}}{2^{k-1}} \cdot (s_{2} - s_{1})^{2}(s_{4} - s_{3})^{2} \dots (s_{2k-2} - s_{2k-3})^{2},$$

对其求混合偏导得

$$\frac{\partial^n G_k(s_1,\cdots,s_n)}{\partial s_n\cdots\partial s_1}=\frac{\lambda^{2(k-1)}}{2^{k-1}}\cdot (-2)^{k-1}\cdot (-1)\cdot \mathrm{e}^{-\lambda s_n}\cdot \lambda.$$

根据引理2.1. 得到S 的概率密度函数

$$g(s_1, \dots, s_n) = (-1)^k \cdot \frac{\partial^n G_k(s_1, \dots, s_n)}{\partial s_n \dots \partial s_1} = \lambda^n e^{-\lambda s_n}.$$

接下来,设n=2k,同样可以得到,对 $0 < s_1 < \cdots < s_n$,有 $g(s_1, \cdots, s_n) = \lambda^n e^{-\lambda s_n}$.

2.2.3 到达时刻的条件分布

在上面的基础上, 我们来求出给定 N(t) 时 S_n 的分布. 例如, 若给定 N(t) = 1, 考虑 S_1 的分布, 设 $S \leq t$, 则有

$$\mathbb{P}(S_1 \le s | N(t) = 1) = \frac{\mathbb{P}(S_1 \le s, N(t) = 1)}{\mathbb{P}(N(t) = 1)}$$

$$= \frac{\mathbb{P}(N(s) = 1, N(s, t] = 0)}{\mathbb{P}(N(t) = 1)}$$

$$= \frac{\lambda s \cdot e^{-\lambda s} \cdot e^{-\lambda(t-s)}}{\lambda t \cdot e^{-\lambda t}}$$

$$= \frac{s}{t}.$$

接下来, 进一步求出给定 N(t) = n 时, $S = (S_1, \dots, S_n)$ 的联合分布. 为此, 我们需要用到 求概率密度的"微元法": 对于一维的情况, 有

$$f(y) = \lim_{h \to 0} \frac{\mathbb{P}(y < Y \leq y + h)}{h} \implies \mathbb{P}(y < Y \leq y + h) = f(y)h + o(h);$$

而对于n维情形,则有

$$f(y_1, \dots, y_n) = \lim_{h_1, \dots, h_n \to 0} \frac{\mathbb{P}(y_1 < Y_1 \le y_1 + h_1, \dots, y_n < Y_n \le y_n + h_n)}{h_1 \cdots h_n},$$

或者写成

 $\mathbb{P}(y_1 < Y_1 \le y_1 + h_1, \dots, y_n < Y_n \le y_n + h_n) = f(y_1, \dots, y_n)h_1 \dots h_n + o(h_1 \dots h_n).$ 最后一个式子便是我们接下来要用的结论.

定理 2.5

设 S_n 是 Poisson 过程的第n 个到达时刻,则在条件 N(t) = n 下, $S = (S_1, S_2, \dots, S_n)$ 的联合密度

$$h(s_1, s_2, \dots, s_n) = \frac{n!}{t^n}, \quad 0 < s_1 < \dots < s_n < t.$$

证明 首先考虑条件概率

$$\mathbb{P}(s_{i} < S_{i} \leq s_{i} + h_{i}, 1 \leq i \leq n | N(t) = n)$$

$$= \frac{\mathbb{P}(N(s_{i}, s_{i} + h_{i}] = 1, 1 \leq i \leq n, \mathbb{E} \times [0, t] \, \text{内别处无事件发生})}{\mathbb{P}(N(t) = n)}$$

$$= \frac{1}{\frac{(\lambda t)^{n}}{n!} \cdot e^{-\lambda t}} \cdot \prod_{i=1}^{n} \lambda h_{i} \cdot e^{-\lambda h_{i}} \cdot \exp\left\{-\lambda \left(t - \sum_{i=1}^{n} h_{i}\right)\right\}$$

$$= \frac{n!}{t^{n}} \cdot h_{1} \cdots h_{n},$$

因此概率密度函数

$$h(s_1, s_2, \cdots, s_n) = \frac{n!}{t^n}.$$

2.2.4 到达时刻与均匀分布的联系

在上面的结果的基础上,设 $U \sim \mathcal{U}[0,t], U_1, U_2, \cdots, U_n$ 是来自总体 U 的随机变量,考虑排序后的随机向量 $(U_{(1)}, U_{(2)}, \cdots, U_{(n)})$,通过计算得到其概率密度函数也为 $\frac{n!}{t^n}$. 因此 $(U_{(1)}, U_{(2)}, \cdots, U_{(n)})$ 与 $(S_1, S_2, \cdots, S_n)|N(t) = n$ 同分布. 进一步,可以得到如下的重要结论.

定理 2.6

设 $U \sim \mathcal{U}[0,t], U_1, U_2, \cdots, U_n$ 是来自总体 U 的随机变量, h(s) 是实函数, 则

(1)
$$\sum_{i=1}^{n} S_i | N(t) = n \, \text{for} \, \sum_{i=1}^{n} U_i \, \, \text{deg} \, \hat{\sigma};$$

(2)
$$\sum_{i=1}^{n} h(S_i)|N(t) = n \approx \sum_{i=1}^{n} h(U_i) | \exists \beta ;$$

(3) 当
$$\mathbb{E}h(U)$$
 存在时, $\mathbb{E}\left(\sum_{i=1}^{n}h(S_{i})\middle|N(t)=n\right)=n\mathbb{E}h(U)$.

证明 因为 $(U_{(1)}, U_{(2)}, \cdots, U_{(n)})$ 与 $(S_1, S_2, \cdots, S_n)|N(t) = n$ 同分布, 所以

$$\sum_{i=1}^{n} S_{i}|N(t) = n \quad = \sum_{i=1}^{n} U_{i} = \sum_{i=1}^{n} U_{(i)}$$

同分布,同理可以得到

$$\sum_{i=1}^{n} h(S_i)|N(t) = n \quad = \sum_{i=1}^{n} h(U_i) = \sum_{i=1}^{n} h(U_{(i)})$$

同分布,再利用同分布的随机变量具有相同的数学期望,即可得到

$$\mathbb{E}\left(\sum_{i=1}^n h(S_i)\middle|N(t)=n\right)=n\mathbb{E}h(U).$$

2.2.5 简单呼叫流

根据上一小节中的结论,设 $\{N(t)\}$ 为 Poisson 过程, $\{X_n\}$ 为其等待时间间隔,则 $X_i \sim \operatorname{Exp}(\lambda)$,并且到达时刻 $S_n = X_1 + X_2 + \cdots + X_n \sim \Gamma(n,\lambda)$. 另外,如果从指数分布出发,可以给出以下的定义.

定义 2.5 (简单呼叫流)

设随机变量 $Y_i \sim \text{Exp}(\lambda)$, 则称

$$\xi_n = Y_1 + Y_2 + \dots + Y_n, \quad n = 1, 2, \dots$$

是简单呼叫流或 Poisson 流.

Poisson 过程本质上是一个计数过程. 通过到达时刻, 我们将 Poisson 过程和一个随机序列联系在了一起. 反过来, 定义2.5所给出的随机序列也可以和一个计数过程 (记作 $\{M(t)\}$) 联系在一起. 我们自然会好奇, 这个计数过程 $\{M(t)\}$ 是否就是 Poisson 过程.

注意到 M(t) = m 等价于 [0,t] 内恰好有 m 次呼叫, 因此

$$M(t) = \sum_{i=1}^{\infty} I[\xi_j \le t], \quad t \ge 0,$$

其中 I[x] 是示性函数. 接下来验证, $\{M(t)\}$ 就是一个参数为 λ 的 Poisson 过程. 此时 Poisson 过程 $\{N(t)\}$ 也可以写成

$$N(t) = \sum_{i=1}^{\infty} I[S_i \le t], \quad t \ge 0.$$

对任意的正整数 n, 以及对任意的 $0 < t_1 < t_2 < \cdots < t_n$, 都有

$$(N(t_1), N(t_2), \cdots, N(t_n))$$
 π $(M(t_1), M(t_2), \cdots, M(t_n))$

同分布, 因此 M(t) 是 Poisson 过程.

在本节中,研究等待时间也是有意义的. 见下例.

例 2.4 等待时间的期望 设火车站顾客的数量为 λ 的 Poisson 过程 $\{N(t)\}$, 火车 t 时刻离开车站, 求 $\{0,t\}$ 内到达车站的顾客等待时间总和的期望.

解答设 S_i 为第i个顾客的到达时间,则 $t-S_i$ 为等待时间,等待时间的总和

$$T = \sum_{i=1}^{N(t)} (t - S_i),$$

计算得在 N(t) = n 时的条件期望

$$\mathbb{E}(T|N(t)=n) = \mathbb{E}\left(\sum_{i=1}^{n} (t-S_i) \middle| N(t)=n\right)$$

再设 $U_i \sim \mathcal{U}[0,t]$, 根据定理2.6得

$$\mathbb{E}\left(\sum_{i=1}^{n}(t-S_i)\middle|N(t)=n\right)=E\left(\sum_{i=1}^{n}(t-U_i)\right)=\sum_{i=1}^{n}\mathbb{E}U_i=\frac{1}{2}nt.$$

因此

$$\mathbb{E}T = \mathbb{E}\left(\mathbb{E}(T|N(t)=n)\right) = \frac{1}{2}t \cdot \mathbb{E}N(t) = \frac{1}{2}\lambda t^2.$$

例 2.5 汽车按照强度为 λ 的 Poisson 流通过广场, 第 i 辆汽车通过时造成的空气污染为 D_i . D_i 随着时间的推移而减弱, 经过时间 s 污染减弱为 D_i e^{-as}, 其中正常数 a 是扩散常

数. 假设 D_1, D_2, \cdots 是来自总体 D 的随机变量, 且与 Poisson 流独立. 计算 [0, t] 内通过的汽车在 t 时造成的平均污染.

解答 用 $\{N(t)\}$ 表示所述的 Poisson 过程, 用 S_i 表示第 i 辆汽车的通过时间. [0,t] 内通过了 N(t) 辆汽车, 造成 t 时的污染是

$$D(t) = \sum_{i=1}^{N(t)} D_i e^{-a(t-S_i)}.$$

注意 D_i 和N(t), S_i 独立,从而

$$\mathbb{E}(D(t)|N(t) = n) = \sum_{i=1}^{n} \mathbb{E}\left(D_{i}e^{-a(t-S_{i})}\middle|N(t) = n\right)$$

$$= \sum_{i=1}^{n} \mathbb{E}D_{i}e^{-at} \cdot \mathbb{E}\left(e^{aS_{i}}\middle|N(t) = n\right)$$

$$= \mathbb{E}De^{-at} \cdot \mathbb{E}\left(\sum_{i=1}^{n} e^{aS_{n}}\middle|N(t) = n\right),$$

再利用定理2.6得

$$\mathbb{E}\left(\mathrm{e}^{aS_i}\big|N(t)=n\right)=\mathbb{E}\sum_{i=1}^n\mathrm{e}^{aU_i}=\frac{n}{at}\left(\mathrm{e}^{at}-1\right),\,$$

其中 $U \sim \mathcal{U}[0,t]$, 因此

$$\mathbb{E}(D(t)|N(t)=n)=n\cdot\frac{\mathbb{E}D}{at}\cdot\left(1-\mathrm{e}^{-at}\right)=N(t)\cdot\frac{\mathbb{E}D}{at}\cdot\left(1-\mathrm{e}^{-at}\right),$$
 从而 $\mathbb{E}D(t)=\mathbb{E}\mathbb{E}(D(t|N(t)))=\frac{\lambda\mathbb{E}D}{a}\cdot\left(1-\mathrm{e}^{-at}\right).$

2.3 年龄与剩余寿命

定义 2.6 (年龄与剩余寿命)

设 $\{N(t)\}$ 是 Poisson 过程, $\{S_n\}$ 是等待时刻, 称

$$A(t) = t - S_{N(t)}, \quad R(t) = S_{N(t)+1} - t$$

分别为年龄和剩余寿命.

年龄和剩余寿命具有如下的性质.

(1) 剩余寿命的分布: $R(t) \sim \text{Exp}(\lambda)$;

(2) 年龄的分布:
$$\mathbb{P}(A(t) \le u) = \begin{cases} 1 - e^{-\lambda u}, & u \in [0, t), \\ 1, & u \ge t; \end{cases}$$

(3) A(t) 和 R(t) 独立.

我们来验证上面的性质. 首先, 计算得

$$\mathbb{P}(R(t) > u) = \mathbb{P}(S_{N(t)+1} > u + t) = \mathbb{P}(N(t, u + t] = 0) = e^{-\lambda u},$$

因此 $R(t) \sim \text{Exp}(\lambda)$; 其次, 设 $u \in [0, t)$, 则

$$\mathbb{P}(A(t) > u) = \mathbb{P}(S_{N(t)} < t - u) = \mathbb{P}(N[t - u, t] = 0) = \mathbb{P}(N(t - u, t] = 0) = e^{-\lambda u},$$

但是当 $u \ge t$ 时,一定有 $A(t) \le t \le u$,因此

$$\mathbb{P}(A(t) \le u) = \begin{cases} 1 - \mathrm{e}^{-\lambda u}, & u \in [0, t), \\ 1, & u \ge t; \end{cases}$$

最后,注意到对任意的 u,v,N[t-u,t] 与 N(t,t+v] 都独立,因此 A(t) 与 R(t) 也独立.

在上面研究了 A(t) 和 R(t) 的分布. 在此基础上, 我们可以研究 $S_{N(t)}$ 和 $S_{N(t)+1}$ 的分布. 首先, 根据 A(t) 的分布得

$$\mathbb{P}(S_{N(t)} \le s) = \mathbb{P}(t - A(t) \le s) = \mathbb{P}(A(t) \ge t - s) = \begin{cases} e^{-\lambda(t - s)}, & 0 \le s \le t, \\ 1, & s > t; \end{cases}$$

接下来, 根据 R(t) 的分布得

$$\mathbb{P}(S_{N(t)+1} \leq s) = \mathbb{P}(R(t) + t \leq s) = \mathbb{P}(R(t) \leq s - t) = \begin{cases} 1 - \mathrm{e}^{-\lambda(s - t)}, & s > t, \\ 0, & s \leq t. \end{cases}$$

接下来, 记 X(t) = A(t) + R(t), 我们来尝试求出 X(t) 和 A(t) 的期望. 首先对 X(t) 的期望进行估计, 有

$$\mathbb{E}X(t) = \mathbb{E}A(t) + \mathbb{E}R(t) = \mathbb{E}A(t) + \frac{1}{\lambda} > \frac{1}{\lambda},$$

可以认为t时服役的部件平均使用寿命比同型号部件的平均使用寿命大;接下来,考虑A(t)期望,计算得

$$\mathbb{E}A(t) = \int_0^\infty u d\mathbb{P}(A(t) \le u) = \int_0^t \lambda u e^{-\lambda u} du + t e^{-\lambda t},$$

因此 $\lim_{t\to\infty} \mathbb{E} A(t) = \frac{1}{\lambda}$, 结合上式便有 $\lim_{t\to\infty} \mathbb{E} X(t) = \frac{2}{\lambda}$.

2.4 Poisson 过程的汇合、分流与复合

本节中, 我们研究以下几个问题:

- (1) 两个 Poisson 过程的和是否还是 Poisson 过程?
- (2) 某个 Poisson 过程是否可以按照某种方式, 拆分为两个或者多个 Poisson 过程?
- (3) 以及, Poisson 过程是否可以按照某种方式复合?

这些问题的研究也具有非常重要的现实意义.

2.4.1 Poisson 过程的汇合

首先考虑两个 Poisson 过程的相加.

定理 2.7

设 $\{N_1(t)\},\{N_2(t)\}$ 是相互独立的, 强度分别为 λ_1 和 λ_2 的 Poisson 过程, 则

$$N(t) = N_1(t) + N_2(t), \quad t \ge 0$$

是强度为 $\lambda_1 + \lambda_2$ 的 Poisson 过程.

证明 (1) 首先证明 N(0) = 0. 这是因为 $N(0) = N_1(0) + N_2(0) = 0$.

(2) 其次证明 $\{N(t)\}$ 是独立增量过程与平稳增量过程. 对于独立增量性, 对任意的 n, 以及对任意的 $0 < t_1 < t_2 < \cdots < t_n$, 根据 $\{N_1(t)\}$ 和 $\{N_2(t)\}$ 的独立增量性, 知

$$N_1(t_1, t_2], N_1(t_2, t_3], \cdots, N_1(t_{n-1}, t_n]$$

和

$$N_2(t_1,t_2], N_2(t_2,t_3], \cdots, N_2(t_{n-1},t_n]$$

是相互独立的,又 $N(t) = N_1(t) + N_2(t)$,因此

$$N(t_1, t_2], N(t_2, t_3], \cdots, N(t_{n-1}, t_n]$$

也是相互独立的; 对于平稳增量性, 根据 $\{N_1(t)\}$ 和 $\{N_2(t)\}$ 的平稳增量性, 对任意的 $s>0,t_2>t_1>0$, $N_1(t_1,t_2]$ 与 $N_1(t_1+s,t_2+s]$ 同分布, $N_2(t_1,t_2]$ 与 $N_2(t_1+s,t_2+s]$ 同分布, $N_2(t_1,t_2)$ 与 $N_2(t_1+s,t_2+s)$ 同分布, $N_2(t_1+s,t_2+s)$ 同分布.

(3) 最后记 $\lambda = \lambda_1 + \lambda_2$, 我们证明

$$\begin{cases} \mathbb{P}(N(t, t + \Delta t] = 0) = 1 - \lambda \cdot \Delta t + o(\Delta t), \\ \mathbb{P}(N(t, t + \Delta t] = 1) = \lambda \cdot \Delta t + o(\Delta t), \\ \mathbb{P}(N(t, t + \Delta t] \ge 2) = o(\Delta t). \end{cases}$$

先计算得

$$\mathbb{P}(N(t, t + \Delta t) = 0) = \mathbb{P}(N(t + \Delta t) - N(t) = 0)$$

$$= \mathbb{P}(N_1(t + \Delta t) - N_1(t) + N_2(t + \Delta t) - N_2(t) = 0)$$

$$= \mathbb{P}(N_1(t + \Delta t) - N_1(t) = 0, N_2(t + \Delta t) - N_2(t) = 0)$$

$$= (1 - \lambda_1 \cdot \Delta t + o(\Delta t))(1 - \lambda_2 \cdot \Delta t + o(\Delta t))$$

$$= 1 - (\lambda_1 + \lambda_2) \cdot \Delta t + o(\Delta t);$$

用同样的方法,可以计算得到

$$\mathbb{P}(N(t, t + \Delta t) = 1) = \mathbb{P}(N_1(t + \Delta t) - N_1(t) = 1, N_2(t + \Delta t) - N_2(t) = 0)$$

$$+ \mathbb{P}(N_1(t + \Delta t) - N_1(t) = 0, N_2(t + \Delta t) - N_2(t) = 1)$$

$$= \lambda_1 \cdot \Delta t (1 - \lambda_2 \cdot \Delta t + o(\Delta t)) + \lambda_2 \cdot \Delta t (1 - \lambda_1 \cdot \Delta t + o(\Delta t))$$

$$= (\lambda_1 + \lambda_2) \Delta t + o(\Delta t);$$

最后, 注意到 $\mathbb{P}(N(t,t+\Delta t]=0)+\mathbb{P}(N(t,t+\Delta t]=1)+\mathbb{P}(N(t,t+\Delta t)\geq 2)=1$, 根据上面的结果即可得到

$$\mathbb{P}(N(t, t + \Delta t] \ge 2) = o(\Delta t).$$

根据定理2.7, 容易推得以下结论, 这也可以称为 Poisson 过程的可加性.

定理 2.8

设 $\{N_i(t), i=1,2,\cdots,m\}$ 是相互独立的, 强度分别为 λ_i 是 Poisson 过程, 则

$$N(t) = N_1(t) + N_2(t) + \cdots + N_m(t)$$

是强度为 $\lambda_1 + \lambda_2 + \cdots + \lambda_m$ 的 Poisson 过程.

在这里, 或许读者会思考, 若 $\lambda_1 > \lambda_2$, { $N_1(t)$ } 和 { $N_2(t)$ } 分别为强度为 λ_1 和 λ_2 的 Poisson 过程, 那么 $N_1(t) - N_2(t)$ 是否是 Poisson 过程? 答案是否定的. 这是因为, 有可能 $N_2(t) > N_1(t)$, 从而 $N_1(t) - N_2(t) < 0$. 这便说明了, $N_1(t) - N_2(t)$ 甚至不是一个计数过程.

2.4.2 Poisson 过程的分流

接下来,考虑将一个 Poisson 过程分流为两个不同的计数过程. 在这里的要求是,"分流"的过程与 Poisson 过程本身是独立的. 为此,引入一个与该过程相独立的服从两点分布的随机变量来刻画"分流"的过程.

定理 2.9

设 $\{N(t)\}$ 是强度为 λ 的 Poisson 过程, 随机变量 $\{Y_i\}$ 独立同分布, 与 $\{N(t)\}$ 独立, 且服从参数为 p 的两点分布, 也即

$$\mathbb{P}(Y_i = 1) = p$$
, $\mathbb{P}(Y_i = 0) = 1 - p$, $i = 1, 2, \dots$,

定义

$$N_1(t) = \sum_{i=1}^{N(t)} Y_i, \quad N_2(t) = \sum_{i=1}^{N(t)} (1 - Y_i),$$

则 $N(t) = N_1(t) + N_2(t)$, 且 $\{N_1(t)\}$ 和 $\{N_2(t)\}$ 分别为强度为 $\lambda_1 = p\lambda$ 和 $\lambda_2 = (1-p)\lambda$ 的 Poisson 过程.

定理2.9的证明较为复杂, 在此不再叙述. 另外, 以下的定理给出了 Poisson 定理的可分解性, 相当于是定理2.9的推广.

定理 2.10

设 $\{N(t)\}$ 为强度为 λ 的 Poisson 过程, 每次发生的事件有 p_i 的概率被分入 A_i 中, 其中 $1 \le i \le n$,且该过程与发生的时间独立. 设 $N_i(t)$ 表示 [0,t] 内 A_i 中事件的个数, 则 $\{N_i(t)\}$ 是强度为 $\lambda_i = p_i \lambda$ 的 Poisson 过程. 当 $p_1 + p_2 + \cdots + p_n = 1$ 时, 这 n 个 Poisson 过程独立.

对于 Poisson 过程的汇合与分流,有如下的实际的例子.

例 2.6 汽车按 Poisson 流驶向立体交叉桥 *A*. 经过调查知道, 由东面每分钟平均驶入 6 辆汽车, 由南面每分钟平均驶入 6.5 辆汽车, 由西面每分钟平均驶入 9 辆汽车, 由北面每分钟平均驶入 8.5 辆汽车. 在桥 *A* 上, 每辆车向左或向右转向行驶的概率是 0.3, 直行的概率是 0.35, 调头行驶的概率是 0.05. 计算各个方向上, 离开立交桥的汽车流的车流强度.

解答 对于该过程,作出如下的分流表,

方向	向东分流	向南分流	向西分流	向北分流
东面驶入 $\lambda_1 = 6.0$	0.05	0.30	0.35	0.30
南面驶入 $\lambda_2 = 6.5$	0.30	0.05	0.30	0.30
西面驶入 $\lambda_3 = 9.0$	0.35	0.30	0.05	0.30
北面驶入 $\lambda_4 = 8.5$	0.30	0.35	0.30	0.05
驶出强度	$\lambda'_1 = 7.95$	$\lambda_2' = 7.80$	$\lambda_3' = 7.05$	$\lambda_4' = 7.20$

例 2.7 从 t = 0 开始, 客户按强度为 λ 的 Poisson 流点击一个网站. 每个客户点击后的浏览时间是相互独立的, 有共同的分布函数 G(t). 用 $N_1(t)$ 表示 t 时已经离线的客户数, 用 $N_2(t)$ 表示 t 时在线的客户数, 则 $N_1(t)$, $N_2(t)$ 是两个相互独立的 Poisson 随机变量, 分别有数学期望

$$\mathbb{E}N_1(t) = \lambda \int_0^t G(s) ds, \quad \mathbb{E}N_2(t) = \lambda \int_0^t \overline{G}(s) ds,$$

其中 $\overline{G}(s) = 1 - G(s)$.

证明 对于一个客户来讲,用 S 表示他进入网站的时间,用事件 A 表示他 t 时已经离线,用 Y 表示他的在线时间.对于 $S \le t$,有

$$\mathbb{P}(A|S=s) = \mathbb{P}(Y \le t-s) = G(t-s).$$

记 $\mathbb{P}_{t}(\cdot) = \mathbb{P}(\cdot|S \leq t)$, 则 $\mathbb{P}_{t}(\cdot)$ 是概率. 当 $S \leq t$ 时, S 在 [0,t] 内均匀分布, 从而

$$\mathbb{P}_{t}(A) = \mathbb{P}(A|S \le t)$$

$$= \int_{0}^{t} \mathbb{P}_{t}(A|S = s) d\mathbb{P}_{t}(S \le s)$$

$$= \int_{0}^{t} \mathbb{P}(A|S \le t, S = s) d\mathbb{P}(S \le s|S \le t)$$

$$= \frac{1}{t} \cdot \int_{0}^{t} \mathbb{P}(A|S = s) ds$$

$$= \frac{1}{t} \cdot \int_{0}^{t} G(t - s) ds$$

$$= \frac{1}{t} \cdot \int_{0}^{t} G(s) ds,$$

记 $p = \frac{1}{t} \cdot \int_0^t G(s) ds$, $q = 1 - p = \frac{1}{t} \cdot \int_0^t \overline{G}(s) ds$, 则每个在 [0,t] 内进入网站的人在 t 时刻离线的概率为 p, 在线的概率为 q, 与其他客户的行为独立. 用 $\{N(t)\}$ 表示强度为 λ 的 Poisson 过程, 利用二项分布得到

$$\mathbb{P}(N_1(t) = k, N_2(t) = j | N(t) = k + j) = \binom{k+j}{k} p^k q^j,$$

于是

$$\mathbb{P}(N_1(t) = k, N_2(t) = j) = \mathbb{P}(N(t) = k + j)\mathbb{P}(N_1(t) = k, N_2(t) = j | N(t) = k + j)$$

$$= \frac{(\lambda t)^{k+j}}{(k+j)!} \cdot e^{-\lambda t} \cdot {k+j \choose k} p^k q^j$$

$$= \frac{(\lambda t p)^k}{k!} \cdot e^{-\lambda t p} \cdot \frac{(\lambda t q)^k}{k!} \cdot e^{-\lambda t q},$$

在上式中分别对 i 和 k 求和, 可得 $N_1(t)$ 和 $N_2(t)$ 的分布

$$N_1(t) \sim \mathcal{P}(\lambda t p), \quad N_2(t) \sim \mathcal{P}(\lambda t q),$$

从而 $\mathbb{E}N_1(t) = \lambda t p$, $\mathbb{E}N_2(t) = \lambda t q$.

2.4.3 Poisson 过程的复合

最后, 我们对 Poisson 过程的复合感兴趣.

定义 2.7 (复合 Poisson 过程)

设 $\{N(t)\}$ 是强度为 λ 的 Poisson 过程, $\{Z_i\}$ 相互独立, 且 $\{Z_i\}$ 和 $\{N(t)\}$ 相互独立, 称

$$M(t) = \sum_{i=1}^{N(t)} Z_i$$

为复合 Poisson 过程.

在此, 求出 M(t) 的期望和方差.

定理 2.11

设 $\{N(t)\}$ 是强度为 λ 的 Poisson 过程, $\{Z_i\}$ 是独立同分布的随机变量序列, 且 $\mathbb{E}Z_i = \mu$, $\mathrm{Var}Z_i = \sigma^2 < \infty$, 定义复合 Poisson 过程

$$M(t) = \sum_{i=1}^{N(t)} Z_i,$$

则 $\mathbb{E}M(t) = \mu \lambda t$, $Var M(t) = \lambda t (\sigma^2 + \mu^2)$.

证明 首先, 计算得

$$\mathbb{E}(M(t)|N(t)=n)=\mathbb{E}\left(\sum_{i=1}^n Z_i\right)=n\mu=\mu\cdot N(t),$$

因此 M(t) 的期望

$$\mathbb{E}M(t) = \mathbb{E}(\mathbb{E}(M(t)|N(t) = n)) = \mu \mathbb{E}N(t) = \mu \lambda t;$$

接下来,计算得

$$\mathbb{E}(M^2(t)|N(t) = n) = \mathbb{E}\left(\sum_{i=1}^n Z_i\right)^2$$

$$= \sum_{i=1}^n \mathbb{E}Z_i^2 + \sum_{i \neq j} \mathbb{E}Z_i Z_j$$

$$= \sum_{i=1}^n (\sigma^2 + \mu^2) + \sum_{i \neq j} \mu^2$$

$$= n^2 \mu^2 + n\sigma^2$$

$$= \mu^2 \cdot N^2(t) + \sigma^2 \cdot N(t),$$

因此 M(t) 的二阶矩

$$\mathbb{E}M^{2}(t) = \mathbb{E}(\mathbb{E}(M^{2}(t)|N(t) = n)) = \mu^{2} \cdot (\lambda^{2}t^{2} + \lambda t) + \sigma^{2} \cdot \lambda t,$$

最后计算得到

$$Var M(t) = \mathbb{E}M^2(t) - (\mathbb{E}M(t))^2 = \lambda t(\mu^2 + \sigma^2).$$

例 2.8 在上海证券交易所, 宝钢股份的交易流是强度为 λ (笔/分钟) 的 Poisson 流. 设第 j 笔交易量是 Z_j 手, 如果 $\{Z_j\}$ 是来自总体 Z 的随机变量, $\mu=\mathbb{E}Z$, $\sigma^2=$ VarZ, 计算宝钢股份一小时内的交易量的数学期望和标准差.

解答 用 $\{N(t)\}$ 表示强度为 λ 的 Poisson 过程, 则 60 分钟内的交易量

$$M(60) = \sum_{j=1}^{N(60)} Z_j.$$

根据定理2.11, 计算得一小时内的平均交易量 $\mathbb{E}M(60) = 60\lambda\mu$, 标准差 $\sqrt{\text{Var}M(60)} = \sqrt{60\lambda(\mu^2 + \sigma^2)}$.

2.5 课后习题

问题 2.1 设某商场中, 男顾客平均每分钟有 1 人, 而女顾客平均每分钟有 2 人.

- (1) 到达商场的总顾客人数服从什么分布?
- (2) 已知 *t* 时刻商场中已有 50 人, 试求出商场中已有 30 个女性顾客的概率是多少? 平均有多少个女性顾客?

问题 2.2 设 $\{N(t)\}$ 是强度为 λ 的 Poisson 过程, $0 \le s < t$, 验证在条件 N(t) = n 下, N(s) 服从二项分布 $\mathcal{B}\left(n,\frac{s}{t}\right)$.

问题 2.3 对于 Poisson 过程 $\{N(t)\}$, 计算 $\mathbb{E}[N(t)N(t+s)]$ 和 $\mathbb{E}[N(t+s)|N(t)]$.

问题 2.4 对于强度为 λ 的 Poisson 过程, 用 N(t-) 表示区间 [0,t) 内发生的事件数, 则

- (1) N(t) N(t-) = 0, a.s.;
- (2) N[s,t] = N(t) N(s-) 是闭区间 [s,t] 内发生的事件数;
- (3) N[s,t] = N(s,t], a.s..

问题 2.5 对于 n = 2k, 验证

$$\mathbb{P}(S_1 > s_1, S_2 \le s_2, \dots, S_{n-1} > s_{n-1}, S_n \le s_n)$$

$$= \lambda^{n-2} \frac{(s_2 - s_1)^2 (s_4 - s_3)^2 \cdots (s_{n-2} - s_{n-3})^2}{2^{k-1}} e^{-\lambda s_n} \cdot \sum_{j=2}^{\infty} \frac{\lambda^j (s_n - s_{n-1})^j}{j!}.$$

问题 **2.6** 求 $S_{N(t)}$ 和 $S_{N(t)+1}$ 的分布函数.

问题 2.7 若 $\lambda_1 > \lambda_2$, $\{N_1(t)\}$ 和 $\{N_2(t)\}$ 分别为强度为 λ_1 和 λ_2 的 Poisson 过程, 那么 $N(t) = N_1(t) - N_2(t)$ 是否是 Poisson 过程?

问题 **2.8** 设 $\{N(t)\}$ 是强度为 λ 的 Poisson 过程, T 是和该 Poisson 过程独立的随机变量. 当 T 服从参数为 β 的指数分布时,

- (1) 求 N(T) 的概率分布;
- (2) 计算 EN(T).

问题 2.9 在有很多鱼的湖中钓鱼时, 渔夫平均每小时钓到两条鱼. 如果渔夫每天的钓鱼时间 T 在 3 至 8 小时内均匀分布, 他平均每天钓多少条鱼? 方差是多少?

第3章 Brown 运动

3.1 自由扩散与 Brown 运动

3.1.1 自由扩散

设某个质点从初始时刻开始,从坐标原点出发做自由扩散运动.

图 3.1: 利用 MATLAB 模拟自由扩散运动

建立直角坐标系,设t时刻质点的位置为(X(t),Y(t)),考虑横坐标的位移X(t),容易理解X(t)具有以下的性质.

- (1) 初始时刻位移为 0, 也即 X(0) = 0;
- (2) 独立增量性, 也即在互不相交的时间段 $(t_{i-1}, t_i], i = 1, 2, \dots, n$, 质点的位移

$$X(t_i) - X(t_{i-1}), \quad i = 1, 2, \dots, n$$

是相互独立的;

- (3) 空间对称性, 也即 $\mathbb{E}X(t) = 0$;
- (4) 平稳增量性, 也即对任意的长度相等的时间段 (s,t] 和 (s+h,t+h], 质点的位移

$$X(t) - X(s)$$
, $X(t+h) - X(s+h)$

有相同的分布;

(5) 有限性, 也即 [0,t] 内位移的方差 $\sigma^2(t) = \text{Var}X(t)$ 是 t 的连续函数.

将该运动与 Poisson 过程进行对比, 可以发现, Poisson 过程在时间上连续, 但是在空间上离散; 而该运动在时间上和在空间上都是连续的.

我们已经知道 $\mathbb{E}X(t) = 0$. 另外, 我们来尝试推导方差 VarX(t) 的表达式. 计算得

$$VarX(t+s) = Var[X(t+s) - X(t) + X(t)]$$

$$= Var[X(t+s) - X(t)] + VarX(t)$$

$$= VarX(s) + VarX(t),$$

上面的结果说明了 Var X(t) 作为 t 的函数满足 Cauchy 方程¹, 因此 $\sigma^2(t) = Var X(t) = Dt$. 在这里, D 被称为扩散常数.

然而, 计算得到期望和方差, 还不足以刻画出分布. 为此, 我们再进一步考虑求出自由扩散运动的分布函数. 在 [0,t] 插入分点 $0=t_0 < t_1 < \cdots < t_n = t$, 其中 $t_i = \frac{it}{n}$, 并记 $Y_i = X(t_i) - X(t_{i-1})$, 则 $\{Y_i\}$ 独立同分布, 且有

$$X(t) = \sum_{i=1}^{n} Y_i.$$

进而计算出 $\mathbb{E}Y_i = 0$, $\operatorname{Var}Y_i = \frac{Dt}{n}$. 考虑其特征函数

$$\phi_{Y_i}(u) = \mathbb{E}e^{iuZ_i} = 1 - \frac{Dt}{2n} \cdot u^2 + o\left(\frac{u^2}{2n}\right),$$

因此

$$\phi_{X(t)}(u) = \prod_{i=1}^{n} \phi_{Y_i}(u) = \left(1 - \frac{Dt}{2n} \cdot u^2 + o\left(\frac{u^2}{2n}\right)\right)^n,$$

令 $n \to \infty$ 得 $\phi_{X(t)}(u) \to \exp\left\{-\frac{Dtu^2}{2}\right\}$, 而右边正是 $\mathcal{N}(0,Dt)$ 的特征函数, 因此 $X(t) \sim \mathcal{N}(0,Dt)$.

3.1.2 Brown 运动的定义

在上面的讨论的基础上, 我们给出 Brown 运动的定义.

定义 3.1 (Brown 运动)

若随机过程 $\{X(t), t \geq 0\}$ 满足条件

- (1) $\mathbb{P}(\omega:t\to X_{\omega}(t)$ 连续) = 1, 也即轨迹连续的概率为 1, 且 X(0)=0;
- (2) $\{X(t)\}$ 是独立增量过程;
- (3) 对任意的 $t > s \ge 0$, $X(t) X(s) \sim \mathcal{N}(0, D(t s))$,

则称其为 Brown 运动. 特别地, 当 D=1 时, 称 $\{X(t)\}$ 为标准 Brown 运动.

定义3.1描述了直线上的 Brown 运动. 将其推广, 可以得到平面上的 Brown 运动.

¹形如 f(x+y) = f(x) + f(y) 的函数方程称为 Cauchy 方程, 可以说它的解形如 f(x) = ax, 其中 a 为常数.

定义 3.2 (二维 Brown 运动)

若随机过程 { $\boldsymbol{B}(t) = (X(t), Y(t)), t \ge 0$ } 满足条件

- (1) 轨迹连续的概率为 1;
- (2) 具有独立增量性与平稳增量性;
- (3) 对任意的 t > 0, X(t) 和 Y(t) 相互独立, 且 X(t), $Y(t) \sim N(0, \sigma^2 t)$, 则称其为二维 *Brown* 运动.

3.2 Brown 运动的性质

3.2.1 Brown 运动与随机游走的联系

在这里指出, Brown 运动可以作为随机游走的极限. 对于质点随机游走的情形, 设其向左走和向右走的概率都为 $\frac{1}{2}$, 再设质点的步长为 Δx , 每次走动的时间间隔为 Δt . 记

$$X_i = \begin{cases} 1, & \text{质点向右走,} \\ 0, & \text{质点向左走.} \end{cases}$$

则 $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = \frac{1}{2}, \mathbb{E}X_i = 0, \text{Var}X_i = 1, 且.$

$$X(t) = \Delta x \cdot \sum_{i=1}^{\left[\frac{t}{\Delta t}\right]} X_i,$$

首先计算 X(t) 的期望与方差. 计算得

$$\mathbb{E}X(t) = \Delta x \cdot \left[\frac{t}{\Delta t}\right] \cdot \mathbb{E}X_i = 0,$$

$$\operatorname{Var}X(t) = (\Delta x)^2 \cdot \left[\frac{t}{\Delta t}\right] \cdot \operatorname{Var}X_i = (\Delta x)^2 \cdot \left[\frac{t}{\Delta t}\right].$$

在这里, 令 $\Delta x = \sqrt{D \cdot \Delta t}$, 则 Var X(t) = Dt. 接下来研究 X(t) 的分布, 依据 Levy 中心极限 定理², 有

$$\frac{X(t)}{\sqrt{Dt}} = \frac{\sum_{i=1}^{\left[\frac{t}{\Delta t}\right]} X_i - 0}{\sqrt{\left[\frac{t}{\Delta t}\right]}} \xrightarrow{d} \mathcal{N}(0, 1),$$

因此 $X(t) \stackrel{d}{\to} N(0, Dt)$, 此即说明 Brown 运动可以作为随机游走的极限.

 $^{^2}$ 这是概率论中的重要定理. 设随机变量序列 $\{X,X_n,n=1,2,\cdots\}$ 独立同分布, $\mathbb{E}X=a,0<\mathrm{Var}X=\sigma^2<\infty,$ 记 $S_n=\sum_{k=1}^n X_k,$ 则 $\frac{S_n-na}{\sqrt{n}\sigma}\overset{d}{\longrightarrow}\mathcal{N}(0,1).$ 详见 [2].

3.2.2 Brown 运动与 Gauss 过程的联系

首先,根据例 1.5 可得

$$Cov(B(s), B(t)) = D \min\{s, t\}, \quad \mathbb{E}(B(s)B(t)) = D \min\{s, t\}.$$

通常设 $0 \le s \le t$, 则上式即为 Ds. 同时, 在 Brown 运动的定义中, 我们会发现其与正态分布密切相关. 在这里, 我们给出 Gauss 过程的定义, 然后研究 Brown 运动与 Gauss 运动的关系.

定义 3.3 (Gauss 过程)

如果对任意的 $n \ge 1$, 以及对任意的 t_1, t_2, \dots, t_n ,

$$(X(t_1),X(t_2),\cdots,X(t_n))$$

服从n维正态分布,则称随机过程 $\{X(t)\}$ 为Gauss过程.

我们通过定理3.1来说明 Gauss 过程与 Brown 运动之间的联系. 该定理也给出了判断某种运动是 Brown 运动的方式.

定理 3.1

若 Gauss 过程 $\{X(t), t \geq 0\}$ 的轨迹在 $[0, \infty)$ 中连续的概率为 1, 且 X(0) = 0, 则 $\{X(t)\}$ 是标准 Brown 运动当且仅当

$$\mathbb{E}X(t) = 0$$
, $\mathbb{E}X(t)X(s) = s$, $0 \le s \le t$.

证明 一方面, 设 $\{X(t)\}$ 是标准 Brown 运动, 则 $X(t) \sim \mathcal{N}(0,t)$, 设 $t \geq s \geq 0$, 则 $\mathbb{E}X(t) = 0$,

$$\mathbb{E}X(t)X(s) = \mathbb{E}(X(t) - X(s) + X(s))X(s) = \mathbb{E}X^{2}(s) = s.$$

另外一方面,设 $\{X(t)\}$ 是满足条件的 Gauss 过程,首先根据条件,它的轨迹连续的概率为 1;接下来,设 $0=t_0 < t_1 < \cdots < t_n$,要验证 $\{X(t)\}$ 是独立增量过程,只需证明 $X(t_i) - X(t_{i-1})$ 与 $X(t_i) - X(t_{i-1})$ 独立. 考虑到 $\{X(t)\}$ 是 Gauss 过程,设 i < j,则

$$Cov(X(t_i) - X(t_{i-1}), X(t_j) - X(t_{j-1}))$$

$$= \mathbb{E}(X(t_i) - X(t_{i-1}))(X(t_j) - X(t_{j-1}))$$

$$= \mathbb{E}X(t_i)X(t_j) - \mathbb{E}X(t_i)X(t_{j-1}) - \mathbb{E}X(t_{i-1})X(t_j) + \mathbb{E}X(t_{i-1})X(t_{j-1})$$

$$= 0.$$

因此 $X(t_i) - X(t_{i-1})$ 与 $X(t_j) - X(t_{j-1})$ 独立; 最后, 设 $t > s \ge 0$, 则 $\mathbb{E}(X(t) - X(s)) = 0,$ $\operatorname{Var}(X(t) - X(s))^2 = \mathbb{E}X^2(t) + \mathbb{E}X^2(s) - 2\mathbb{E}X(t)X(s) = t - s.$

因此 $\{X(t)\}$ 是标准 Brown 运动.

利用该定理,可以判断某种运动是否是 Brown 运动. 以下是几个例子.

例 3.1 设 B(t) 是标准 Brown 运动, a 是正常数, 则以下的随机过程都是标准 Brown 运动:

- (1) $W(t) = -B(t), t \ge 0$;
- (2) $W(t) = B(t+a) B(a), t \ge 0;$
- (3) $W(t) = B(at)/\sqrt{a}, t \ge 0;$
- (4) W(0) = 0, W(t) = tB(1/t), t > 0;
- (5) 对于正数 T, W(t) = B(T t) B(T) 是时间段 [0, T] 内的 Brown 运动.

证明 (1) 首先 W(t) 是 Gauss 过程, 且

$$\mathbb{E}W(t) = -\mathbb{E}B(t) = 0;$$

再设 $t \ge s \ge 0$, 则

$$\mathbb{E}W(t)W(s) = \mathbb{E}B(t)B(s) = s.$$

因此 W(t) 是标准 Brown 运动.

(2) 首先 W(t) 是 Gauss 过程, 且

$$\mathbb{E}W(t) = \mathbb{E}B(t+a) - \mathbb{E}B(a) = 0;$$

再设 $t \ge s \ge 0$, 则

$$\mathbb{E}W(t)W(s) = \mathbb{E}(B(t+a) - B(a))(B(s+a) - B(a))$$

$$= \mathbb{E}B(t+a)B(s+a) - \mathbb{E}B(a)B(s+a) - \mathbb{E}B(a)B(t+a) + \mathbb{E}B^{2}(a)$$

$$= s + a - a - a + a$$

$$= s.$$

因此 W(t) 是标准 Brown 运动.

(3) 首先 W(t) 是 Gauss 过程, 且

$$\mathbb{E}W(t) = \mathbb{E}\frac{B(at)}{\sqrt{a}} = 0;$$

再设 $t \ge s \ge 0$, 则

$$\mathbb{E}W(t)W(s) = \frac{1}{a}\mathbb{E}B(at)B(st) = \frac{as}{a} = s.$$

因此 W(t) 是标准 Brown 运动.

(4) 首先 W(t) 是 Gauss 过程, 且

$$\mathbb{E}W(t) = \mathbb{E}tB\left(\frac{1}{t}\right) = 0;$$

再设 $t \ge s \ge 0$, 则

$$\mathbb{E}W(t)W(s) = ts\mathbb{E}B\left(\frac{1}{t}\right)B\left(\frac{1}{s}\right) = \frac{ts}{t} = s.$$

因此 W(t) 是标准 Brown 运动.

(5) 首先 W(t) 是 Gauss 过程, 且

$$\mathbb{E}W(t) = \mathbb{E}B(T-t) - B(T) = 0;$$

再设 $t \ge s \ge 0$, 则

$$\mathbb{E}W(t)W(s) = \mathbb{E}(B(T-t) - B(T))(B(T-s) - B(T))$$

$$= \mathbb{E}B(T-t)B(T-s) - \mathbb{E}B(T)B(T-s) - \mathbb{E}B(T)B(T-t) + \mathbb{E}B^{2}(T)$$

$$= T - t - (T-s) - (T-t) + T$$

$$= s.$$

因此 W(t) 是 [0,T] 上的标准 Brown 运动.

例 3.2 设 W(t) 和 B(t) 是独立的标准 Brown 运动.

- (1) 若 X(t) = aB(t) + bW(t) 是标准 Brown 运动, 求 a, b 所满足的条件?
- (2) 若 Y(t) = B(2t) B(t), 其是否是标准 Brown 运动?

解答 (1) 计算得 $\mathbb{E}X(t) = a\mathbb{E}B(t) + b\mathbb{E}W(t) = 0$, 再设 $t \geq s \geq 0$, 则

$$\mathbb{E}X(t)X(s) = \mathbb{E}(aB(t) + bW(t))(aB(s) + bW(s))$$

$$= a^2\mathbb{E}B(t)B(s) + ab(\mathbb{E}B(t)W(s) + \mathbb{E}B(s)W(t)) + b^2\mathbb{E}W(t)W(s)$$

$$= (a^2 + b^2)s.$$

因此 $a^2 + b^2 = 1$;

(2) 计算得
$$\mathbb{E}Y(t) = \mathbb{E}B(2t) - \mathbb{E}B(t) = 0$$
, 再设 $t \ge s \ge 0$, 则
$$\mathbb{E}Y(t)Y(s) = \mathbb{E}(B(2t) - B(t))(B(2s) - B(s))$$

$$= \mathbb{E}B(2t)B(2s) - \mathbb{E}B(t)B(2s) - \mathbb{E}B(2t)B(s) + \mathbb{E}B(t)B(s)$$

$$= \begin{cases} 2s - t - s + s = 2s - t, & t \le 2s, \\ 2s - 2s - s + s = 0, & t > 2s. \end{cases}$$

因此 Y(t) = B(2t) - B(t) 不是标准 Brown 运动.

3.3 首中时、最大值与 Arcsin 律

以下设 $\{B(t), t \geq 0\}$ 是标准 Brown 运动. 对于标准 Brown 运动而言, D = 1, 这使得问题的研究更加容易. 而标准 Brown 运动的性质也容易推广到一般的 Brown 运动上.

3.3.1 首中时及其分布

考虑标准 Brown 运动首次到达 a 的时刻.

定义 3.4 (首中时)

对于常数 a, 称

$$T_a = \inf\{t : t \ge 0, B(t) = a\},\$$

为 a 的首中时.

首先设a > 0,注意到

$$\begin{cases} \mathbb{P}(B(t) \ge a | T_a > t) = 0, \\ \mathbb{P}(B(t) \ge a | T_a \le t) = \mathbb{P}(B(t) < a | T_a \le t) = \frac{1}{2}, \end{cases}$$

利用 $(T_a \le t)$ 与 $(T_a > t)$ 进行分类, 得

$$\mathbb{P}(B(t) \ge a) = \mathbb{P}(B(t) \ge a | T_a \le t) \mathbb{P}(T_a \le t)$$
$$+ \mathbb{P}(B(t) \ge a | T_a > t) \mathbb{P}(T_a > t)$$
$$= \frac{1}{2} \mathbb{P}(T_a \le t),$$

由此得到 $\mathbb{P}(T_a \leq t) = 2\mathbb{P}(B(t) \geq a)$,又 $B(t) \sim \mathcal{N}(0,t)$,设 $\Phi(t)$ 为标准正态分布 $\mathcal{N}(0,1)$ 的分布函数,则

$$\mathbb{P}(T_a \le t) = 2\left[1 - \Phi\left(\frac{a}{\sqrt{t}}\right)\right], \quad a > 0.$$

又当 a < 0 时,情况是完全类似的,据此可以得到

$$\mathbb{P}(T_a \le t) = 2\left[1 - \Phi\left(\frac{|a|}{\sqrt{t}}\right)\right].$$

定理 3.2

对于标准布朗运动 $\{B(t)\}$ 和 $a \neq 0$.

- (1) 质点最终到达 a 的概率为 1:
- (2) 质点到达 a 的平均时间为 ∞.

证明 对于给定的 a, 质点最终到达 a 的概率

$$p = \lim_{t \to \infty} \mathbb{P}(T_a \le t) = \lim_{t \to \infty} 2\left[1 - \Phi\left(\frac{|a|}{\sqrt{t}}\right)\right] = 1.$$

再考虑到达 a 所需的平均时间

$$\mathbb{E}T_a = \int_0^\infty t d\mathbb{P}(T_a \le t) = \int_0^\infty \frac{|a|}{\sqrt{2\pi t}} e^{-\frac{a^2}{2t}} dt = \infty.$$

3.3.2 最大值及其分布

再考虑标准 Brown 运动在一定时间内能到达的最远距离.

定义 3.5 (最大值)

称

$$M_t = \sup_{0 \le s \le t} B(s)$$

为 $\{B(t)\}$ 在 [0,t] 上的最大值.

根据 $\{M_t \geq a\} \iff \{T_a \leq t\}$, 得

$$\mathbb{P}(M_t \le a) = 1 - \mathbb{P}(M_t \ge a) = 1 - \mathbb{P}(T_a \le t) = 1 - 2\left[1 - \Phi\left(\frac{|a|}{\sqrt{t}}\right)\right] = 2\Phi\left(\frac{|a|}{\sqrt{t}}\right) - 1.$$
此即为最大值的分布.

根据对称性, 我们知道 $\mathbb{E}M_t = 0$, 这是没有意义的. 接下来, 我们考虑计算当 $a \geq 0$ 时 M_t 的"单边期望". 计算得

$$\mathbb{E}M_t^+ = \int_0^\infty a d\mathbb{P}(M_t \le a) = \int_0^\infty \frac{2a}{\sqrt{2\pi t}} e^{-\frac{a^2}{2t}} da = \sqrt{\frac{2t}{\pi}}.$$

3.3.3 Arcsin 律

记 N(a, a+b] 表示质点在 (a, a+b] 内访问 0 的次数,接下来考虑其分布. 根据平稳增量性,计算得

$$\mathbb{P}(N(a, a+b] \ge 1) = \int_{-\infty}^{\infty} \mathbb{P}(N(a, a+b] \ge 1 | B(a) = x) d\Phi(x)$$

$$= \int_{-\infty}^{\infty} \mathbb{P}(N[0, b] \ge 1 | B(0) = x) d\Phi(x)$$

$$= \int_{-\infty}^{\infty} \mathbb{P}(T_{-x} \le b) d\Phi(x)$$

$$= \int_{-\infty}^{\infty} \mathbb{P}(T_x \le b) d\Phi(x),$$

再根据 $\mathbb{P}(T_a \leq t) = 2\left[1 - \Phi\left(\frac{|a|}{\sqrt{t}}\right)\right]$, 3代入计算得

$$\mathbb{P}(N(a, a+b] \ge 1) = 2 \int_{-\infty}^{\infty} \left[1 - \Phi\left(\frac{|x|}{\sqrt{b}}\right) \right] d\Phi(x)$$

$$= 4 \int_{0}^{\infty} \left[1 - \Phi\left(\frac{x}{\sqrt{b}}\right) \right] d\Phi(x)$$

$$= 4 \int_{0}^{\infty} \int_{\frac{x}{\sqrt{b}}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{v^{2}}{2}} dv \frac{1}{\sqrt{2\pi a}} e^{-\frac{x^{2}}{2a}} dx.$$

³上课讲的过程相当于重新推导了该公式,在这里为了简化,直接应用该公式.

令
$$y = \frac{x}{\sqrt{b}}$$
, 则 $dy = \frac{1}{\sqrt{b}}dx$, 代入得

$$\mathbb{P}(N(a, a+b] \ge 1) = \frac{2}{\pi} \sqrt{\frac{b}{a}} \int_0^\infty \int_y^\infty e^{-\frac{av^2 + by^2}{2a}} dv dy,$$

在此考虑三角代换,令

$$\begin{cases} v = r \sin \theta, \\ y = \sqrt{\frac{a}{b}} r \cos \theta, \end{cases} \qquad \boxed{\mathbb{M}} \quad \mathrm{d}v \mathrm{d}y = \begin{vmatrix} \sin \theta & r \cos \theta \\ \sqrt{\frac{a}{b}} \cos \theta & -\sqrt{\frac{a}{b}} r \sin \theta \end{vmatrix} \mathrm{d}r \mathrm{d}\theta = \sqrt{\frac{a}{b}} r \mathrm{d}r \mathrm{d}\theta,$$

且根据 $v \ge y \ge 0$ 得 $r \ge 0$, 以及 $\arcsin \sqrt{\frac{a}{a+b}} \le \theta \le \frac{\pi}{2}$, 因此

$$\mathbb{P}(N(a, a+b] \ge 1) = \frac{2}{\pi} \int_{\arcsin\sqrt{\frac{a}{a+b}}}^{\frac{\pi}{2}} d\theta \int_{0}^{\infty} re^{-\frac{r^{2}}{2}} dr$$
$$= \frac{2}{\pi} \left(\frac{\pi}{2} - \arcsin\sqrt{\frac{a}{a+b}} \right)$$
$$= 1 - \frac{2}{\pi} \arcsin\sqrt{\frac{a}{a+b}}.$$

在上面的计算过程的基础上, 设 $t > 0, x \in (0,1)$, 则有

$$\mathbb{P}(N(tx,t] = 0) = 1 - \mathbb{P}(N(tx,t] \ge 1)$$
$$= 1 - \left(1 - \frac{2}{\pi}\arcsin\sqrt{x}\right)$$
$$= \frac{2}{\pi}\arcsin\sqrt{x},$$

这便是所谓的 Arcsin 律.

对本节中所得的 Brown 运动的性质做一个总结, 即可得到以下定理.

定理 3.3

设 $\{B(t), t \geq 0\}$ 为标准 Brown 运动, 对于常数 a, 设 T_a 为 a 的首中时, M_t 为质点在 [0,t] 内到达的最大值, N(a,b] 为质点在 (a,b] 内访问 0 的次数.

$$(1) \ \mathbb{P}(T_a \le t) = \mathbb{P}(T_{|a|} \le t) = 2\mathbb{P}(B(t) \ge |a|) = 2\mathbb{P}\left(\frac{B(t)}{\sqrt{t}} \ge \frac{|a|}{\sqrt{t}}\right) = 2\left[1 - \Phi\left(\frac{|a|}{\sqrt{t}}\right)\right];$$

- (2) 对 $a \ge 0$, 有 $\mathbb{P}(M_t \ge a) = \mathbb{P}(T_a \le t)$;
- (3) 对 $a \neq 0$, 有 $\mathbb{E}T_a = \infty$;

(4) 对
$$b > a > 0$$
, 有 $\mathbb{P}(N(a, b) = 0) = \frac{2}{\pi} \arcsin \sqrt{\frac{a}{b}}$.

Ç

3.4 Brown 桥与经验过程

3.4.1 Brown 桥

首先在标准 Brown 运动的基础上,给出 Brown 桥的定义.

定义 3.6 (Brown 桥)

设 $\{B(t), 0 \le t \le 1\}$ 为标准 Brown 运动, 称

$$X(t) = B(t) - tB(1), \quad 0 \le t \le 1$$

为 Brown 桥.

根据定义,容易得到如下的性质.

- (1) X(0) = B(0) = 0, X(1) = B(1) B(1) = 0, 因此可以称之为"桥";
- (2) X(t) = B(t) tB(1) 是 Gauss 过程;
- (3) $\mathbb{E}X(t) = \mathbb{E}(B(t) tB(1)) = 0;$
- (4) 对 $0 \le s < t \le 1$, 有

$$\mathbb{E}X(t)X(s) = \mathbb{E}(B(t) - tB(1))(B(s) - sB(1))$$

$$= \mathbb{E}B(t)B(s) - t\mathbb{E}B(1)B(s) - s\mathbb{E}B(t)B(1) + st\mathbb{E}B^{2}(1)$$

$$= s - st - st + st$$

$$= s(1 - t),$$

因此 Brown 桥不是标准 Brown 运动.

另外,从 Gauss 过程出发, Brown 桥还有如下的定义.

定义 3.7 (Brown 桥)

设 $\{X(t), 0 \le t \le 1\}$ 是均值为 0 的 Gauss 过程, 且

$$Cov(X(t), X(s)) = s(1 - t), \quad 0 \le s \le t \le 1,$$

则称 $\{X(t), 0 \le t \le 1\}$ 为 Brown 桥.

根据该定义,可以计算得到 $\mathbb{E}X(0) = \text{Var}X(0) = 0$,并且考虑到 Gauss 分布可以由均值和方差唯一决定,因此 X(0) = 0;同理,根据 $\mathbb{E}X(1) = \text{Var}X(1) = 0$,也可以得到 X(1) = 0.最后,从条件随机过程出发,还可以得到 Brown 桥的第三个定义.

定义 3.8 (Brown 桥)

设 $\{B(t), 0 \le t \le 1\}$ 为标准 Brown 运动, 称

$${X(t), 0 \le t \le 1} = {B(t), 0 \le t \le 1 | B(1) = 0}$$

为 Brown 桥.

在这个定义下, 对 $0 \le s \le t \le 1$, 尝试求出 B(s) 在 B(t) = B 的条件下的分布, 记所需求的分布的概率密度为 $f_{s|t}(x|B)$, 则有

$$f_{s|t}(x|B) = \frac{f_s(x)f_{t-s}(B-x)}{f_t(B)} = \frac{1}{\sqrt{2\pi \cdot \frac{s(t-s)}{t}}} \exp\left\{-\frac{(tx-Bs)^2}{2ts(t-s)}\right\},\,$$

因此 $B(s)|B(t) = B \sim \mathcal{N}\left(\frac{Bs}{t}, \frac{s(t-s)}{t}\right)$, 其中

$$\mathbb{E}(B(s)|B(t)=B) = \frac{Bs}{t}, \quad \text{Var}(B(s)|B(t)=B) = \frac{s(t-s)}{t}.$$

取 t = 1, B = 0 得 $X(t) \sim \mathcal{N}(0, s(1 - s))$, 从而 $\{X(t)\}$ 为 Gauss 过程, 且

$$\mathbb{E}X(s) = 0$$
, $\operatorname{Var}X(s) = s(1-s)$.

另外, 对 $0 \le s \le t \le 1$, 考虑在 B(t) = x 的条件下进行计算, 得到

$$\begin{split} \mathbb{E}X(t)X(s) &= \mathbb{E}(B(t)B(s)|B(1) = 0) \\ &= \mathbb{E}\left[\mathbb{E}(B(t)B(s)|B(1) = 0, B(t))\right] \\ &= \int_0^1 \mathbb{E}(B(t)B(s)|B(1) = 0, B(t) = x) dF_{B(1)=0}(x), \end{split}$$

其中计算得

$$\mathbb{E}(B(t)B(s)|B(1) = 0, B(t) = x) = x \cdot \mathbb{E}(B(s)|B(1) = 0, B(t) = x).$$

记 B(s)|B(1) = 0, B(t) = x 的概率密度函数为 $f_{s|1,t}(y|0,x)^4$, 则

$$f_{s|1,t}(y|0,x) = \frac{f_s(y)f_{t-s}(x-y)f_{1-t}(0-x)}{f_t(x)f_{1-t}(0-x)}$$
$$= \frac{f_s(y)f_{t-s}(x-y)}{f_t(x)}$$
$$= f_{s|t}(y|x),$$

这个式子右端即为 B(s)|B(t)=x 的概率密度函数, 因此 B(s)|B(1)=0, B(t)=x 与 B(s)|B(t)=x 这两个随机变量同分布, 返回计算得到

$$\mathbb{E}(B(t)B(s)|B(1) = 0, B(t) = x) = x \cdot \mathbb{E}(B(s)|B(t) = x)$$

$$= x \cdot \frac{sx}{t}$$

$$= \frac{s}{t} \cdot x^{2}.$$

⁴核心的思想仍然是"求分布".

将上面的计算结果代入原式中得到

$$\mathbb{E}X(t)X(s) = \frac{s}{t} \int_0^1 x^2 dF_{B(1)=0}(x)$$

$$= \frac{s}{t} \cdot \mathbb{E}(B^2(t)|B(1) = 0)$$

$$= \frac{s}{t} \cdot \text{Var}X(t)$$

$$= \frac{s}{t} \cdot t(1-t) = s(1-t).$$

以上的结果,说明了定义3.8和定义3.7是等价的.

3.4.2 经验过程

定义 3.9 (经验过程)

设 $U \sim \mathcal{U}[0,1], F(t) = \mathbb{P}(U \leq t) = t, U_1, \cdots, U_n$ 是来自 U 的随机变量, 称

$$D_n(t) = \sqrt{n} \cdot \left(\frac{1}{n} \sum_{i=1}^n I[U_i \le t] - F(t)\right), \quad t \in [0, 1]$$

是经验过程.

接下来, 我们来探究经验过程与 Brown 桥 $\{X(t), 0 \le t \le 1\}$ 之间的关系.

(1) $\mathbb{E}D_n(t) = \mathbb{E}X(t) = 0$. 计算得

$$\mathbb{E}D_n(t) = \sqrt{n} \cdot \mathbb{E}\left(\frac{1}{n} \sum_{j=1}^n I[U_j \le t] - F(t)\right)$$
$$= \sqrt{n}\left(\frac{1}{n} \cdot t - t\right)$$
$$= 0:$$

(2) 对 $0 \le s \le t \le 1$, $\mathbb{E}D_n(s)D_n(t) = \mathbb{E}X(s)X(t) = s(1-t)$. 计算得

$$\mathbb{E}D_{n}(s)D_{n}(t) = n \cdot \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} I[U_{i} \leq s] - F(s)\right) \left(\frac{1}{n} \sum_{j=1}^{n} I[U_{j} \leq t] - F(t)\right)$$

$$= n \cdot \frac{1}{n^{2}} \cdot \mathbb{E}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} I[U_{i} \leq s] \cdot I[U_{j} \leq t]\right) - n \cdot \frac{s}{n} \cdot \mathbb{E}\left(\sum_{i=1}^{n} I[U_{i} \leq t]\right)$$

$$- n \cdot \frac{t}{n} \cdot \mathbb{E}\left(\sum_{i=1}^{n} I[U_{i} \leq s]\right) + n \cdot \mathbb{E}F(s)F(t)$$

$$= s + (n-1)st - nst - nst + nst$$

$$= s(1-t);$$

(3) 考虑随机变量 $I[U_j \leq t]$, 则 $\mathbb{E} I[U_j \leq t] = t$, $\mathrm{Var} I[U_j \leq t] = t - t^2$, 依据 Levy 中心极

限定理得

$$\frac{\sum_{j=1}^{n} I[U_j \le t] - nt}{\sqrt{n \cdot t(1-t)}} \xrightarrow{d} \mathcal{N}(0,1),$$

因此

$$D_n(t) = \sqrt{n} \cdot \left(\frac{1}{n} \sum_{j=1}^n I[U_j \le t] - F(t) \right) \xrightarrow{d} \mathcal{N}(0, t(1-t)).$$

从而 $D_n(t)$ 渐进正态过程.

根据以上三点可以得到以下结论,也被称为不变原理或泛函中心极限定理.

- (1) $\{D_n(t), 0 \le t \le 1\}$ 与 $\{X(t), 0 \le t \le 1\}$ 具有相同的期望与方差;
- (2) $\{D_n(t), 0 \le t \le 1\}$ 依分布收敛到 $\{X(t), 0 \le t \le 1\}$.

3.5 Brown 运动的变式

设 $\{X(t), t \ge 0\}$ 是标准 Brown 运动, 以下是几个 Brown 运动的变式.

- (1) 原点反射的 Brown 运动: $Z(t) = |X(t)|, t \ge 0$;
- (2) 几何 Brown 运动: $Y(t) = e^{X(t)}, t \ge 0$;
- (3) O-V 过程: $V(t) = e^{-t}X(e^{2t})$.

此时 $X(t) \sim N(0,t)$, 概率密度函数 $p_X(t) = \frac{1}{\sqrt{2\pi t}} \cdot \mathrm{e}^{-\frac{x^2}{2\tau}}$. 以下尝试求出这几个运动的期望与方差.

(1) 对于 $Z(t) = |X(t)|, t \ge 0$, 计算得期望

$$\mathbb{E}Z(t) = \int_{-\infty}^{\infty} \frac{|x|}{\sqrt{2\pi t}} \cdot e^{-\frac{x^2}{2t}} dx = 2 \int_{0}^{\infty} \frac{x}{\sqrt{2\pi t}} \cdot e^{-\frac{x^2}{2t}} dx = \sqrt{\frac{2t}{\pi}};$$

又注意到 $\mathbb{E}Z^2(T) = \mathbb{E}|X(t)|^2 = \mathbb{E}X^2(t) = \text{Var}X(t) = t$, 因此方差

$$Var Z(t) = \mathbb{E} Z^2(t) - (\mathbb{E} Z(t))^2 = \left(1 - \frac{2}{\pi}\right) \cdot t.$$

(2) 对于 $Y(t) = e^{X(t)}, t \ge 0$, 计算得期望

$$\mathbb{E}Y(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} \cdot e^{x - \frac{x^2}{2t}} dx = e^{\frac{t}{2}};$$

又计算得

$$\mathbb{E}Y^{2}(t) = \mathbb{E}e^{2X(t)} = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} \cdot e^{2x - \frac{x^{2}}{2t}} dx = e^{2t},$$

因此方差

$$VarY(t) = \mathbb{E}Y^{2}(t) - (\mathbb{E}Y(t))^{2} = e^{2t} - e^{t} = e^{t}(e^{t} - 1).$$

(3) 对于 $V(t) = e^{-t}X(e^{2t})$, 其中 $X(e^{2t}) \sim \mathcal{N}(0, e^{2t})$, 计算得期望

$$\mathbb{E}V(t) = e^{-t}\mathbb{E}X(e^{2t}) = 0;$$

方差

$$VarV(t) = e^{-2t}VarX(e^{2t}) = e^{-2t} \cdot e^{2t} = 1.$$

3.6 课后习题

问题 3.1 设 B(t) 是标准 Brown 运动, a 是正常数,则以下的随机过程都是标准 Brown 运动:

- (1) $W(T) = -B(t), t \ge 0;$
- (2) $W(T) = B(t+a) B(a), t \ge 0$;
- (3) $W(T) = B(at)/\sqrt{a}, t \ge 0;$
- (4) W(0) = 0, W(T) = tB(1/t), t > 0;
- (5) 对于正数 T, W(t) = B(T t) B(T) 是时间段 [0, T] 内的 Brown 运动.

问题 3.2 设 W(t) 和 B(t) 是独立的标准 Brown 运动.

- (1) 若 X(t) = aB(t) + bW(t) 是标准 Brown 运动, 求 a, b 所满足的条件?
- (2) 若 Y(t) = B(2t) B(t), 其是否是标准 Brown 运动?

问题 3.3 用 (X(t),Y(t)) 表示二维标准 Brown 运动, 证明对任何常数 θ ,

$$W(t) = X(t)\cos\theta + Y(t)\sin\theta, \quad t \ge 0$$

是标准 Brown 运动.

问题 3.4 对于 Brown 桥 X(t), $0 \le t \le 1$, 验证

$$W(t) = (t+1)X\left(\frac{t}{1+t}\right), \quad t \ge 0$$

是标准 Brown 运动.

问题 3.5 设 $\{X(t)\}$ 是标准 Brown 运动, 求下列几个随机过程的期望与方差.

- (1) $Z(t) = |X(t)|, t \ge 0$;
- (2) $Y(t) = e^{X(t)}, t \ge 0;$
- (3) $V(t) = e^{-t}X(e^{2t})$.

第4章 离散时间 Markov 链

在本节中, Markov 链指的是离散时间 Markov 链.

4.1 Markov 链与 Markov 性

4.1.1 Markov 链的定义

Markov 过程是最重要的随机过程, 而 Markov 链是 Markov 过程的特例.

定义 4.1 (Markov 链)

设状态空间 $I = \{1, 2, \dots\}$, 随机变量序列 $\{X_n\}$ 在 I 中取值, 若对任意的正整数 n, 及对 I 中任意的 $i, j, i_0, i_1, \dots, i_{n-1}$, 都有

$$\mathbb{P}(X_{n+1} = j | X_n = i, X_{n-1} = i_{i-1}, \dots, X_0 = i_0)$$

$$= \mathbb{P}(X_{n+1} = j | X_n = i)$$

$$= \mathbb{P}(X_1 = j | X_0 = i),$$

则称 $\{X_n\}$ 为时齐的 Markov 链, 简称为 Markov 链. 称

$$p_{ij} = \mathbb{P}(X_1 = j | X_0 = i), \quad i, j \in I$$

为 $\{X_n\}$ 从第 i 个状态到第 j 个状态的转移概率, 并称矩阵 $P = (p_{ij})_{i,j \in I}$ 为 $\{X_n\}$ 的一步转移矩阵, 简称为转移矩阵.

根据 Markov 链的定义, 在已知现在的情况下, 将来和过去无关. 这一点将在下一小节中详细说明.

4.1.2 Markov 链的性质

以下是 Markov 链和转移矩阵的基本性质.

(1) 转移概率 $0 \le p_{ij} \le 1$, 且

$$\sum_{j \in I} p_{ij} = \sum_{j \in I} \mathbb{P}(X_1 = j | X_0 = i) = \mathbb{P}\left(\bigcup_{j \in I} (X_1 = j) \middle| X_0 = i\right) = 1,$$

也即转移矩阵 P 的行和为 1, 这样的矩阵也被称为随机矩阵;

(2) 已知现在 $B = (X_n = i)$ 的情况下, 将来 $A = (X_{n+1} = j)$ 和过去 $C = (X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$ 独立, 这一性质也被称为 *Markov* 性. 这个性质的验证需要用到以下定理.

定理 4.1

对于事件 A, B, C, 当 $\mathbb{P}(AB) > 0$ 时, 有

$$\mathbb{P}(C|BA) = \mathbb{P}(C|B) \iff \mathbb{P}(AC|B) = \mathbb{P}(A|B) \cdot \mathbb{P}(C|B).$$

证明 定义 $\mathbb{P}_B(\cdot) = \mathbb{P}(\cdot|B)$, 则

$$\mathbb{P}(C|AB) = \mathbb{P}(C|B) \iff \mathbb{P}_B(C|A) = \mathbb{P}_B(C)$$

$$\iff \frac{\mathbb{P}_B(AC)}{\mathbb{P}_B(A)} = \mathbb{P}_B(C)$$

$$\iff \mathbb{P}_B(AC) = \mathbb{P}_B(A)\mathbb{P}_B(C)$$

$$\iff \mathbb{P}(AC|B) = \mathbb{P}(A|B) \cdot \mathbb{P}(C|B).$$

下面的定理将 Markov 链的 Markov 性进行了扩充.

定理 4.2

设 I 是状态空间, $A, A_i \subset I, j = 0, 1, 2, \cdots$.

- (1) 已知 $X_n = i$ 的情况下, 将来 $(X_m : m \ge n+1)$ 与过去 $(X_i : j \le n-1)$ 独立;
- (2) $\mathbb{P}(X_{n+k} = j | X_n = i) = \mathbb{P}(X_k = j, X_0 = i);$
- (3) $\mathbb{P}(X_{n+k} = j | X_n = i, X_{n-1} \in A_{n-1}, \dots, X_0 \in A_0) = \mathbb{P}(X_k = j | X_0 = i);$
- (4) $\mathbb{P}(X_{n+k} \in A | X_n = i, X_{n-1} \in A_{n-1}, \dots, X_0 \in A_0) = \mathbb{P}(X_k \in A | X_0 = i);$

证明 (1) 与 (2) 的证明较麻烦, 在此不作要求. 在已知 (1) 与 (2) 的情况下, 以下证明 (3) 和 (4).

(3) 根据 (1) 知,
$$(X_{n+k} = j)$$
 与 $(X_{n-1} = i_{n-1}), \dots, (X_0 = i_0)$ 独立, 因此
$$\mathbb{P}(X_{n+k} = j | X_n = i, X_{n-1} \in A_{n-1}, \dots, X_0 \in A_0)$$

$$= \sum_{i_0 \in A_0} \dots \sum_{i_{n-1} \in A_{n-1}} \mathbb{P}(X_{n+k} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$$

$$= \sum_{i_0 \in A_0} \dots \sum_{i_{n-1} \in A_{n-1}} \mathbb{P}(X_{n+k} = j | X_n = i)$$

$$= \mathbb{P}(X_{n+k} = j | X_n = i)$$

$$= \mathbb{P}(X_k = j | X_0 = i).$$

(4) 根据(3) 知

$$\mathbb{P}(X_{n+k} \in A | X_n = i, X_{n-1} \in A_{n-1}, \dots, X_0 \in A_0) \\
= \sum_{j \in A} \mathbb{P}(X_{n+k} = j | X_n = i, X_{n-1} \in A_{n-1}, \dots, X_0 \in A_0) \\
= \sum_{j \in A} \mathbb{P}(X_k = j | X_0 = i) \\
= \mathbb{P}(X_k \in A | X_0 = i).$$

4.1.3 Markov 链的例子

我们接下来通过几个例子来理解 Markov 过程.

例 **4.1** 简单随机游走 假设质点向右走的概率为 p, 向左走的概率为 q, 其中 p+q=1, 则 转移概率

$$p_{ij} = \begin{cases} p, & j = i+1, \\ q, & j = i-1, \\ 0, & \sharp \ell \ell, \end{cases}$$

此时转移矩阵 P 是一个无限维的矩阵.

例 **4.2** 两端有吸收壁的随机游走 在例4.1的基础上, 假设质点在 0 处不能向左走, n 处不能向右走, 则 $I = \{0, 1, \dots, n\}$, 转移概率

$$p_{ij} = \begin{cases} p, & j = i+1, i = \{1, 2, \cdots, n-1\}, \\ q, & j = i-1, i = \{1, 2, \cdots, n-1\}, \\ 1, & j = i \in \{0, n\}, \\ 0, & \not\equiv \&. \end{cases}$$

从而转移矩阵

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ q & 0 & p & \cdots & 0 \\ 0 & q & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}_{(n+1)\times(n+1)}.$$

例 4.3 两端有反射壁的随机游走 在例4.1的基础上, 假设质点在 0 处一定会向右走, n 处一定会向左走, 则 $I = \{0, 1, \dots, n\}$, 转移概率

$$p_{ij} = \begin{cases} p, & j = i+1, i = \{1, 2, \cdots, n-1\}, \\ q, & j = i-1, i = \{1, 2, \cdots, n-1\}, \\ 1, & (i, j) \in \{(0, 1), (n, n-1)\}, \\ 0, & \not\equiv \&. \end{cases}$$

从而转移矩阵

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ q & 0 & p & \cdots & 0 \\ 0 & q & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}_{(n+1)\times(n+1)}.$$

4.2 Markov 链的多步转移

4.2.1 Kolmogorov-Chapman 方程

对于 Markov 链 $\{X_n\}$, 可以定义

$$\begin{split} p_{ij}^{(0)} &= \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j; \end{cases} \\ p_{ij}^{(k)} &= \mathbb{P}(X_{n+k} = j | X_n = i) = \mathbb{P}(X_k = j | X_0 = i), \end{split}$$

并且称 $p_{ij}^{(k)}$ 为 $\{X_n\}$ 的k 步转移概率. 称矩阵 $\mathbf{P}^{(k)} = (p_{ij}^{(k)})$ 为 $\{X_n\}$ 的k 步转移矩阵. 以下的方程给出了 k 步转移矩阵的计算方法.

定理 4.3 (Kolmogorov-Chapman 方程)

对任何 $m, n \ge 0$, 有

$$\begin{cases} p_{ij}^{(n+m)} = \sum_{k \in I} p_{ik}^{(n)} p_{kj}^{(m)}, \\ \boldsymbol{P}^{(n+m)} = \boldsymbol{P}^{n+m}. \end{cases}$$

证明 定义 $\mathbb{P}_{X_0}(\cdot) = \mathbb{P}(\cdot|X_0 = i)$, 依据全概率公式得

$$\begin{aligned} p_{ij}^{(n+m)} &= \mathbb{P}_{X_0}(X_{n+m} = j) \\ &= \sum_{k \in I} \mathbb{P}_{X_0}(X_{n+m} = j | X_n = k) P_{X_0}(X_n = k) \\ &= \sum_{k \in I} \mathbb{P}(X_{n+m} = j | X_n = k, X_0 = i) P(X_n = k | X_0 = i) \\ &= \sum_{k \in I} \mathbb{P}(X_{n+m} = j | X_n = k) P(X_n = k | X_0 = i) \\ &= \sum_{k \in I} p_{ik}^{(n)} p_{kj}^{(m)}. \end{aligned}$$

在上式的基础上, 考虑矩阵 $P^{(n+m)}$, $P^{(n)}$ 和 $P^{(m)}$, 根据元素之间的关系得

$$\mathbf{P}^{(n+m)} = \mathbf{P}^{(n)} \mathbf{P}^{(m)}$$

取 m=1, 迭代后即可得到 $P^{(n+m)}=P^{n+m}$.

定理4.3告诉我们, k 步转移等价于 k 次一步转移. 下面的定理是定理4.3的推论.

定理 4.4

对于正整数 $n, m, k, n_1, n_2, \cdots, n_k$ 和状态 i, j, l, 总有

- $(1) \ p_{ij}^{(n+m)} \ge p_{il}^{(n)} p_{lj}^{(m)};$ $(2) \ p_{ii}^{(n+k+m)} \ge p_{ij}^{(n)} p_{jl}^{(k)} p_{li}^{(m)};$ $(3) \ p_{ii}^{(n_1+n_2+\cdots+n_k)} \ge p_{ii}^{(n_1)} p_{ii}^{(n_2)} \cdots p_{ii}^{(n_k)};$ $(4) \ p_{ii}^{(nk)} \ge (p_{ii}^{(n)})^k.$

证明 (1) 根据 Kolmogorov-Chapman 方程得

$$p_{ij}^{(n+m)} = \sum_{k \in I} p_{ik}^{(n)} p_{kj}^{(m)} \ge p_{il}^{(n)} p_{lj}^{(m)}.$$

(2) 根据(1)得

$$p_{ii}^{(n+k+m)} \ge p_{ij}^{(n)} p_{ji}^{(k+m)} \ge p_{ij}^{(n)} p_{jl}^{(k)} p_{li}^{(m)}.$$

(3) 根据(1) 得

$$p_{ii}^{(n_1+n_2+\cdots+n_k)} \ge p_{ii}^{(n_1)} \cdot p_{ii}^{(n_2+\cdots+n_k)} \ge \cdots \ge p_{ii}^{(n_1)} p_{ii}^{(n_2)} \cdots p_{ii}^{(n_k)}.$$

(4) \pm (3) \pm (9) \pm (1) \pm (1) \pm (2) \pm (3) \pm (3) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (9) \pm (9) \pm (9) \pm (1) \pm (2) \pm (2) \pm (3) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (8) \pm (9) \pm (9) \pm (1) \pm (1)

4.2.2 初始分布与 X_n 的分布

设状态空间 $I = \{1, 2, \dots\}$, 记初始状态

$$\boldsymbol{\pi}^{(0)} = [\pi_1^{(0)}, \pi_2^{(0)}, \cdots], \quad \sharp \, \psi \quad \pi_i^{(0)} = \mathbb{P}(X_0 = i),$$

并记n步转移之后的状态

$$\pi^{(n)} = [\pi_1^{(n)}, \pi_2^{(n)}, \cdots], \quad \sharp \mapsto \quad \pi_i^{(n)} = \mathbb{P}(X_n = i).$$

接下来, 我们希望得到 $\pi^{(0)}$, P 和 $\pi^{(n)}$ 之间的关系.

设 Markov 链 $\{X_n\}$ 的初始分布为 $\pi^{(0)}$, 概率转移矩阵为 $P = (p_{ii})_{i,i \in I}$.

(1) 对任意的 $n_0 < n_1 < \cdots < n_m$, 有

$$\mathbb{P}(X_{n_0}=i_0,X_{n_1}=i_1,\cdots,X_{n_m}=i_m)=\pi_{i_0}^{(n_0)}p_{i_0i_1}^{(n_1-n_0)}\cdots p_{i_{m-1}i_m}^{(n_m-n_{m-1})};$$

(2) 对任意的 $n \ge 1$ 及 $0 \le k \le n$, 有

$$\pi_{j}^{(n)} = \sum_{i \in I} \pi_{i}^{(0)} p_{ij}^{(n)}, \quad \mathring{\mathcal{A}} \quad \pi^{(n)} = \pi^{(k)} P^{n-k}.$$

证明 (1) 记事件 $A_k = (X_{n_k} = i_k)$, 依据概率的乘法公式得

$$\mathbb{P}(A_0 A_1 \cdots A_m) = \mathbb{P}(A_m | A_{m-1} \cdots A_0) \mathbb{P}(A_{m-1} | A_{m-2} \cdots A_0) \cdots \mathbb{P}(A_1 | A_0) \mathbb{P}(A_0)
= \mathbb{P}(A_m | A_{m-1}) \mathbb{P}(A_{m-1} | A_{m-2}) \cdots \mathbb{P}(A_1 | A_0) \mathbb{P}(A_0)
= \pi_{i_0}^{(n_0)} p_{i_0 i_1}^{(n_1 - n_0)} \cdots p_{i_{m-1} i_m}^{(n_m - n_{m-1})},
\not \perp + \mathbb{P}(A_0) = \pi_{i_0}^{n_0}, \mathbb{P}(A_k | A_{k-1}) = p_{i_{k-1} i_k}^{(n_k - n_{k-1})}.$$

(2) 依据全概率公式得

$$\pi_{j}^{(n)} = \mathbb{P}(X_{n} = j)$$

$$= \sum_{i \in I} \mathbb{P}(X_{n} = j | X_{0} = i) \mathbb{P}(X_{0} = i)$$

$$= \sum_{i \in I} \pi_{i}^{(0)} p_{ij}^{(n)}.$$

将其推广即可得到 $\pi^{(n)} = \pi^{(k)} P^{n-k}$

例 4.4 $\{X_n, n \in \mathbb{N}\}$ 是 Markov 链, 状态空间 $I = \{a, b, c\}$, 状态转移矩阵

$$\mathbf{P} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{2}{3} & 0 & \frac{1}{3} \\ \frac{3}{5} & \frac{2}{5} & 0 \end{bmatrix}.$$

- (1) †‡ $\mathbb{P}(X_1 = b, X_2 = c, X_3 = a, X_4 = c, X_5 = a, X_6 = c, X_7 = b | X_0 = c);$
- (2) 计算 $\mathbb{P}(X_{n+2} = c | X_n = b)$.

解答 (1) 记事件
$$A = (X_1 = b, X_2 = c, X_3 = a, X_4 = c, X_5 = a, X_6 = c, X_7 = b)$$
,计算得
$$\mathbb{P}(A|X_0 = c) = \frac{\mathbb{P}(A, X_0 = c)}{\mathbb{P}(X_0 = c)}$$
$$= \frac{\mathbb{P}(X_0 = c)}{\mathbb{P}(X_0 = c)} \cdot \frac{2}{5} \cdot \frac{1}{3} \cdot \frac{3}{5} \cdot \frac{1}{4} \cdot \frac{3}{5} \cdot \frac{1}{4} \cdot \frac{2}{5}$$
$$= \frac{3}{2500}.$$

(2) 计算得

$$\mathbb{P}(X_{n+2} = c | X_n = b) = \frac{\mathbb{P}(X_{n+2} = c, X_n = b)}{\mathbb{P}(X_n = b)}$$

$$= \frac{\mathbb{P}(X_n = b) \cdot p_{bc}^{(2)}}{\mathbb{P}(X_n = b)}$$

$$= \frac{1}{4} \cdot \frac{2}{3} + \frac{1}{3} \cdot 0 + 0 \cdot \frac{1}{3}$$

$$= \frac{1}{6}.$$

或直接应用全概率公式得

$$\mathbb{P}(X_{n+2} = c | X_n = b) = \sum_{i \in \{a,b,c\}} \mathbb{P}(X_{n+2} = c, X_{n+1} = i | X_n = b)$$
$$= \frac{1}{4} \cdot \frac{2}{3} + \frac{1}{3} \cdot 0 + 0 \cdot \frac{1}{3}$$
$$= \frac{1}{6}.$$

例 **4.5** 设甲胜的概率为 p, 负的概率为 q, 平的概率为 r, p+q+r=1. 胜得 +1 分, 负得 -1 分, 平得 0 分. 设 X_n 为第 n 局时甲的分数.

- (1) 求状态空间及转移矩阵 P;
- (2) 在甲得1分的情况下,不超过两局可以结束比赛的概率.

解答(1)根据题意得 I = {-2,-1,0,1,2}, 且

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ q & r & p & 0 & 0 \\ 0 & q & r & p & 0 \\ 0 & 0 & q & r & p \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

(2) 在甲得 1 分的情况下, 不超过两局可以结束比赛的情况只可能是甲得 2 分. 因此只需计算 $\mathbb{P}(X_2=2|X_0=1)$. 计算得

$$\mathbb{P}(X_2 = 2 | X_0 = 1) = 0 \cdot 0 + 0 \cdot 0 + q \cdot 0 + r \cdot p + p \cdot 1 = p(1+r).$$

4.3 状态的分类与命名

在这一节中我们希望研究当 $n \to \infty$ 时的 X_n 的分布. 在此之前, 需要对状态空间进行分类, 方便研究问题.

4.3.1 状态的连通性

定义 4.2 (状态的连通性)

设I是 $\{X_n\}$ 的状态空间.

- (1) 如果 $p_{ii} = 1$, 则称 i 为吸引状态;
- (2) 如果存在 $n \ge 1$, 使得 $p_{ij}^{(n)} > 0$, 则称i 通 j 或i 可达 j, 记作 $i \to j$;
- (3) 如果 $i \rightarrow j$, $j \rightarrow i$, 则称 $i \rightarrow j$ 互通, 记作 $i \leftrightarrow j$.

例如, 对于随机游走 (例4.1), 对任意的 i, j, 都有 $i \leftrightarrow j$; 而对于有吸收壁的随机游走 (例4.2), 0 和 n 为吸引状态, 对于 $i, j \in \{1, 2, \cdots, n-1\}$, 都有 $i \leftrightarrow j$. 同时, $i \to 0, n$.

定义 4.3 (首达时与首达概率)

对任意的 $i, j \in I$, 称

$$T_{ij} = \min\{n : X_0 = i, X_n = j, n \ge 1\}$$

为从状态i出发首次到达状态j的转移步数或时间,简称为首达时,

$$f_{ij}^{(n)} = \mathbb{P}(T_{ij} = n | X_0 = i)$$

为质点从状态i出发经过n步首次到达j的概率,简称为首达概率.特别地, $f_{ii}^{(n)}$ 为从状态i出发经过n步首次回到状态i的概率.

对于首达概率, 当 n=1 时, 有

$$f_{ii}^{(1)} = \mathbb{P}(T_{ij} = 1 | X_0 = i) = \mathbb{P}(X_1 = j | X_0 = i) = p_{ij}.$$

定义 4.4 (迟早到达的概率)

对任意的 $i, j \in I$, 称

$$f_{ij}^* = \sum_{n=1}^{\infty} f_{ij}^{(n)} = \sum_{n=1}^{\infty} \mathbb{P}(T_{ij} = n | X_0 = i)$$

为质点从状态 i 出发, 迟早会到达状态 i 的概率.

以上定义的几个概率具有如下的性质.

定理 4.6

设 $f_{ij}^{(n)}$ 为质点从状态 i 出发经过 n 步首次到达 j 的概率, f_{ij}^* 为质点从状态 i 出发, 迟早会到达状态 j 的概率.

- (1) 对任意的 $i, j \in I, n \ge 1, 0 \le f_{ij}^{(n)} \le f_{ij}^* \le 1;$
- (2) 对任意的 $i, j \in I, n \ge 1, p_{ij}^{(n)} = \sum_{l=1}^{n} f_{ij}^{(l)} p_{jj}^{(n-l)};$

- (3) 对任意的 $i, j \in I, f_{ij}^* > 0 \iff i \rightarrow j;$
- (4) 对任意的 $i, j \in I$, $f_{ij}^* > 0$, $f_{ji}^* > 0 \iff i \leftrightarrow j$.

证明 (1) 显然 $0 \le f_{ij}^{(n)} \le f_{ij}^*$, 再计算得

$$f_{ij}^* = \sum_{n=1}^{\infty} f_{ij}^{(n)}$$

$$= \sum_{n=1}^{\infty} \mathbb{P}(T_{ij} = n | X_n = i)$$

$$= \mathbb{P}\left(\bigcup_{n=1}^{\infty} (T_{ij} = n) | X_n = i\right)$$

$$\leq 1,$$

从而 $0 \le f_{ij}^{(n)} \le f_{ij}^* \le 1$.

(2) 由全概率公式得

$$\begin{split} p_{ij}^{(n)} &= \mathbb{P}(X_n = j | X_0 = i) \\ &= \sum_{l=1}^{\infty} \mathbb{P}(X_n = j | X_0 = i, T_{ij} = l) \mathbb{P}(T_{ij} = l | X_0 = i) \\ &= \sum_{l=1}^{\infty} \mathbb{P}(X_n = j | X_0 = i, X_l = j, X_k \neq j, 1 \leq k \leq l-1) f_{ij}^{(l)} \\ &= \sum_{l=1}^{n} \mathbb{P}(X_n = j | X_l = j) f_{ij}^{(l)} + 0 \\ &= \sum_{l=1}^{n} f_{ij}^{(l)} p_{jj}^{(n-l)}, \end{split}$$

其中当 $i \leq n$ 时, 由 Markov 性知

$$\mathbb{P}(X_n = j | X_0 = i, X_l = j, X_k \neq j, 1 \le k \le l - 1) = \mathbb{P}(X_n = j | X_l = j),$$

而当i > n时,有

$$\mathbb{P}(X_n = j | X_0 = i, T_{ij} = l) = 0.$$

从而
$$p_{ij}^{(n)} = \sum_{l=1}^{n} f_{ij}^{(l)} p_{jj}^{(n-l)}$$
.

(3) 一方面,设 $f_{ij}^* > 0$,则存在 n_0 ,使得 $f_{ij}^{(n_0)} > 0$,计算得

$$p_{ij}^{(n_0)} = \sum_{l=1}^{n_0} f_{ij}^{(l)} p_{jj}^{(n_0-l)} \ge f_{ij}^{(n_0)} p_{jj}^{(n_0-n_0)} = f_{ij}^{(n_0)} > 0,$$

从而 $i \rightarrow j$. 另外一方面,设 $i \rightarrow j$,则存在 n,使得 $p_{ij}^{(n)} > 0$. 取

$$n_0 = \min\{n : p_{ij}^{(n_0)} > 0\},\$$

计算得

$$f_{ij}^{(n_0)} = \mathbb{P}(T_{ij} = n_0 | X_0 = i) = \mathbb{P}(X_{n_0} = j, X_k \neq j, 1 \leq k \leq n_0 - 1 | X_0 = i) > 0,$$

因此 $f_{ij}^* \ge f_{ij}^{(n_0)} > 0$.

(4) 由(3)即可得到该结论.

4.3.2 常返与非常返状态

定义 4.5 (常返与非常返)

设 $i \in I$, 若 $f_{ii}^* = 1$, 称状态 i 常返; 若 $f_{ii}^* < 1$, 称状态 i 非常返, 此时也称 i 为滑过态、瞬时态或暂态.

记

$$u_{ij} = \mathbb{E}(T_{ij}|X_0 = i) = \sum_{n=1}^{\infty} n \cdot f_{ij}^{(n)},$$

其表示质点自 i 出发,首次达到 j 的平均转移步数. 再记 $u_i = u_{ii}$,其称为平均回转时间. 特别地,对于非常返状态 j,有 $u_i = \infty$.

定义 4.6 (正常返与零常返)

对于常返状态 $i \in I$, 若 $u_i < \infty$, 称状态 i 为正常返; 若 $u_i = \infty$, 称状态 i 为零常返.

接下来,给出判断状态的方法.

定理 4.7

设 1 是状态空间.

(1)
$$i \in I, i$$
 是常返的 $\iff \sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty;$

(2)
$$i \in I, i$$
 是非常返的 $\iff \sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 - f_{ii}^*} < \infty;$

(3)
$$j \in I$$
, j 是非常返的,则对任意的 $i \in I$, $\sum_{n=1}^{\infty} p_{ij}^{(n)} < \infty$, 同时 $\lim_{n \to \infty} p_{ij}^{(n)} = 0$;

- (4) $i \in I$, i 是常返的, $i \to j$, 则 $i \leftrightarrow j$, 且 j 是常返的; i 是零常返的或是正常返的, $i \leftrightarrow j$, 则 i 是零常返的或是正常返的;
- (5) $i \in I, i$ 是零常返的 $\iff \lim_{n \to \infty} p_{ii}^{(n)} = 0;$
- (6) $j \in I$, j 是零常返的, 则对任意的 $i \in I$, $\lim_{n \to \infty} p_{ij}^{(n)} = 0$.

C

根据该定理,得到的判断法则如下.

状态
$$i \begin{cases}$$
常返
$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty, \begin{cases}$$
 零常返
$$\lim_{n \to \infty} p_{ii}^{(n)} = 0, \\$$
 正常返
$$\lim_{n \to \infty} p_{ii}^{(n)} \neq 0, \end{cases}$$
 非常返
$$\sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty.$$

证明 (1) 根据
$$p_{ij}^{(n)} = \sum_{l=1}^{n} f_{ij}^{(l)} p_{jj}^{(n-l)}$$
, 设 $0 < \rho < 1$, 计算得

$$\begin{split} \sum_{n=0}^{\infty} p_{ij}^{(n)} \rho^n &= p_{ij}^{(0)} + \sum_{n=1}^{\infty} \sum_{l=1}^{n} f_{ij}^{(l)} \rho^l p_{jj}^{(n-l)} \rho^{(n-l)} \\ &= \delta_{ij} + \sum_{l=1}^{\infty} f_{ij}^{(l)} \rho^l \sum_{n=l}^{\infty} p_{jj}^{(n-l)} \rho^{(n-l)} \\ &= \delta_{ij} + \sum_{l=1}^{\infty} f_{ij}^{(l)} \rho^l \cdot \sum_{n=0}^{\infty} p_{jj}^{(n)} \rho^{(n)}. \end{split}$$

在此,记

$$\begin{cases} F_{ij}(\rho) = \sum_{l=1}^{\infty} f_{ij}^{(l)} \rho^l, \\ G_{ij}(\rho) = \sum_{n=0}^{\infty} p_{ij}^{(n)} \rho^n, \end{cases}$$

则上式等价于

$$G_{ij}(\rho) = \delta_{ij} + F_{ij}(\rho)G_{jj}(\rho).$$

令 i = j, 则 $G_{ii}(\rho) = 1 + F_{ii}(\rho)G_{ii}(\rho)$, 解得

$$G_{ii}(\rho) = \frac{1}{1 - F_{ii}(\rho)},$$

再令
$$\rho \to 1$$
, 则 $F_{ii}(\rho) \to \sum_{l=1}^{\infty} f_{ii}^{(n)} = f_{ii}^*, G_{ii}(\rho) \to \sum_{n=0}^{\infty} p_{ii}^{(n)}$, 因此

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 - f_{ii}^*}.$$

从而,
$$i$$
 是常返的 \iff $f_{ii}^* = 1$ \iff $\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$.

(2) 根据以上结论,
$$i$$
 是非常返的 \iff $f_i i^* < 1$ \iff $\sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 - f_{ii}^*} < \infty$.

(3) 设 j 是非常返的, 根据以上结论得

$$G_{ij}(\rho) = \delta_{ij} + F_{ij}(\rho)G_{jj}(\rho).$$

设
$$i \neq j$$
, 令 $\rho \to 1$, 则 $F_{ij}(\rho) \to \sum_{l=1}^{\infty} f_{ij}^{(n)} = f_{ij}^*, G_{ij}(\rho) = \sum_{n=0}^{\infty} p_{ij}^{(n)},$ 因此
$$\sum_{n=0}^{\infty} p_{ij}^{(n)} = f_{ij}^* \cdot \sum_{n=0}^{\infty} p_{jj}^{(n)} < \infty.$$

再根据以上级数收敛得 $\lim_{n\to\infty} p_{ij}^{(n)} = 0$.

(4) 设 i 是常返的, $i \to j$, 则存在 n, 使得 $p_{ij}^{(n)} > 0$. 再设 $j \to i$, 则存在 m, 使得 $p_{ii}^{(m)} > 0$. 根据定理4.4得

$$p_{jj}^{(m+k+n)} \geq p_{ji}^{(m)} p_{ii}^{(k)} p_{ij}^{(n)},$$

因此

$$\sum_{k=0}^{\infty} p_{jj}^{(m+k+n)} \ge p_{ij}^{(m)} p_{ij}^{(n)} \cdot \sum_{k=0}^{\infty} p_{ii}^{(k)} = \infty,$$

此即说明 j 是常返的. 关于零常返和正常返的部分, 见 (5).

(5) i 是零常返的 $\iff \lim_{n\to\infty} p_{ii}^{(n)} = 0$, 证明见 [5]. 接下来, 设 i 是零常返的, $i\to j$, 则存在 n, 使得 $p_{ij}^{(n)} > 0$. 再设 $j\to i$, 则存在 m, 使得 $p_{ij}^{(m)} > 0$. 类似 (4), 有

$$0 = \lim_{k \to \infty} p_{ii}^{(n+k+m)} \ge \lim_{k \to \infty} p_{ij}^{(n)} p_{jj}^{(k)} p_{ji}^{(m)} = p_{ij}^{(n)} p_{ji}^{(m)} \cdot \lim_{k \to \infty} p_{jj}^{(k)},$$

因此 $\lim_{k\to\infty} p_{jj}^{(k)} = 0$, 此即说明 j 是零常返的.

(6) 设 j 是零常返的, 则 $\lim_{k\to\infty} p_{jj}^{(k)} = 0$. 从而

$$\begin{split} p_{ij}^{(n)} &= \sum_{l=1}^{n} f_{ij}^{l} p_{jj}^{(n-l)} \\ &= \sum_{l=1}^{m} f_{ij}^{l} p_{jj}^{(n-l)} + \sum_{l=m+1}^{n} f_{ij}^{l} p_{jj}^{(n-l)}. \end{split}$$

首先考虑前一项, 令 $n\to\infty$, 则 $\sum_{l=1}^m f_{ij}^l p_{jj}^{(n-l)}\to 0$, 从而对任意的 $\varepsilon>0$, 存在 N>0, 使得对任意的 n>N, 都有

$$\sum_{l=1}^{m} f_{ij}^{l} p_{jj}^{(n-l)} < \frac{\varepsilon}{2}.$$

再考虑后一项, 有 $\sum_{l=m+1}^{n} f_{ij}^{l} p_{jj}^{(n-l)} < \sum_{l=m+1}^{\infty} f_{ij}^{(l)}$. 根据 $f_{ij}^{*} = \sum_{n=1}^{\infty} f_{ij}^{(n)} \leq 1$, 知对上述 $\varepsilon > 0$, 存 在 M > 0. 使得对任意的 m > M. 都有

$$\sum_{l=m+1}^{n} f_{ij}^{l} p_{jj}^{(n-l)} < \sum_{l=m+1}^{\infty} f_{ij}^{(l)} < \frac{\varepsilon}{2}.$$

取 n > N, m > M, 则有

$$p_{ij}^{(n)} = \sum_{l=1}^{m} f_{ij}^{l} p_{jj}^{(n-l)} + \sum_{l=m+1}^{n} f_{ij}^{l} p_{jj}^{(n-l)} < \varepsilon,$$

此即说明 $\lim_{n\to\infty} p_{ij}^{(n)} = 0$.

例 4.6 简单随机游走 考虑简单随机游走, 质点向左走的概率为 q, 向右走的概率为 p, 状态空间 $I = \{0, \pm 1, \pm 2, \cdots\}$, 则对 $i, j \in I, i < j$, 根据概率论中的结论, 有

$$p_{ij}^{(n)} = \mathbb{P}(X_n = j | X_0 = i) = \begin{cases} \binom{n}{\frac{n-j+i}{n}} p^{\frac{n+j-i}{2}} q^{\frac{n-j+i}{n}}, & 2 \mid (n+j-i), \\ 0, & 2 \nmid (n+j-i). \end{cases}$$

当 $2 \mid (n+j-i), i=j$ 时, 若记 n=2k, 则

$$p_{ii}^{(2k)} = \binom{2k}{k} p^k q^k.$$

考虑级数

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \sum_{k=0}^{\infty} p_{ii}^{(2k)} = \sum_{k=0}^{\infty} \frac{(2k)!}{k! \cdot k!} \cdot p^k q^k,$$

又当 $k \to \infty$ 时, 根据 Stirling 公式¹有

$$\frac{(2k)!}{k! \cdot k!} \cdot p^k q^k \sim \frac{(4pq)^k}{\sqrt{\pi k}}.$$

(1) 当
$$p = q = \frac{1}{2}$$
 时,有

$$\sum_{k=0}^{\infty} p_{ii}^{(2k)} = \sum_{k=0}^{\infty} \frac{1}{\sqrt{\pi k}} = \infty,$$
$$\lim_{k \to \infty} p_{ii}^{(2k)} = \lim_{k \to \infty} \frac{1}{\sqrt{\pi k}} = 0,$$

此时该过程是零常返的;

(2)
$$\stackrel{\text{def}}{=} p \neq q$$
 $\stackrel{\text{def}}{=} p$, $\stackrel{\text{def}}{=} q$ $\stackrel{\text{def}}{=}$

此时该过程是非常返的.

例 4.7 平面随机游走 考虑平面随机游走, 质点往上下左右走的概率均为 $\frac{1}{4}$. 设一共走了

 $[\]frac{1}{1}$ 当 $n \to \infty$ 时, 阶乘 n! 有渐进公式 $n! \sim \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$.

2n 步, 其中 k 步向上, k 步向下, n-k 步向左, n-k 步向右, 则有

$$p_{ii}^{(2n)} = \sum_{k=0}^{n} \binom{2n}{k} \binom{2n-k}{k} \binom{n-k}{2n-2k} \cdot \left(\frac{1}{4}\right)^{2n}$$

$$= \sum_{k=0}^{n} \frac{(2n)!}{(k!)^{2}((n-k)!)^{2}} \cdot \left(\frac{1}{4}\right)^{2n}$$

$$= \sum_{k=0}^{n} \frac{2n!}{n! \cdot n!} \cdot \left(\frac{n!}{k! \cdot (n-k)!}\right)^{2} \cdot \left(\frac{1}{4}\right)^{2n}$$

$$= \binom{2n}{n} \cdot \left(\frac{1}{4}\right)^{2n} \cdot \sum_{k=0}^{n} \binom{k}{n}^{2},$$

其中

$$\sum_{k=0}^{n} \binom{k}{n}^2 = \sum_{k=0}^{n} \binom{k}{n} \binom{n-k}{n} = \binom{n}{2n},$$

因此

$$p_{ii}^{(2n)} = \binom{2n}{n}^2 \cdot \left(\frac{1}{4}\right)^{2n},$$

又当 $n \to \infty$ 时, 根据 Stirling 公式有

$$p_{ii}^{(2n)} \sim \frac{1}{\pi n},$$

因此 $\sum_{n=0}^{\infty} p_{ii}^{(2n)} = \infty$, 且 $\lim_{n \to \infty} p_{ii}^{(2n)} = 0$, 这说明了该过程是零常返的.

例 4.8 转移矩阵为上三角矩阵 设 $I = \{1, 2, 3\}$, 转移矩阵

$$\mathbf{P} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{3}{4} & \frac{1}{4} \\ 0 & 0 & 1 \end{bmatrix}$$

- (1) 求 T₁₃ 的分布;
- (2) $\vec{x} f_{ii}^*, i = 1, 2, 3.$

解答 (1) 设事件
$$A_0 = (X_0 = 1), A_m = (X_m \neq 3), 1 \leq m \leq n - 1, A_n = (X_n = 3), 则$$

$$\mathbb{P}(T_{13} = n) = \mathbb{P}(X_n = 3, X_m \neq 3, 1 \leq m \leq n - 1 | X_0 = 1)$$

$$= \mathbb{P}(A_1 A_2 \cdots A_n | A_0)$$

$$= \mathbb{P}(A_1 | A_0) \mathbb{P}(A_2 | A_1) \cdots \mathbb{P}(A_n | A_{n-1}),$$

其中

$$\mathbb{P}(A_1|A_0) = \mathbb{P}(X_1 \neq 3|X_0 = 1) = p_{11} + p_{12} = \frac{3}{4},$$

对 $2 \le m \le n-1$, 考虑计算 $\mathbb{P}(A_m|A_{m-1})$. 此时 X_{m-1} 的状态未定, 从而

$$\mathbb{P}(A_m|A_{m-1}) = \frac{\mathbb{P}(X_{m-1} \in \{1,2\}, X_m \in \{1,2\})}{\mathbb{P}(X_{m-1} \in \{1,2\})} \\
= \frac{(p_{11} + p_{12}) \cdot \mathbb{P}(X_{m-1} = 1) + (p_{21} + p_{22}) \cdot \mathbb{P}(X_{m-1} = 2)}{\mathbb{P}(X_{m-1} = 1) + \mathbb{P}(X_{m-1} = 2)} \\
= \frac{3}{4},$$

同样地,有

$$\mathbb{P}(A_n|A_{n-1}) = \frac{\mathbb{P}(X_n = 3, X_{n-1} \in \{1, 2\})}{\mathbb{P}(X_{n-1} \in \{1, 2\})}$$

$$= \frac{p_{13} \cdot \mathbb{P}(X_{n-1} = 1) + p_{23} \cdot \mathbb{P}(X_{n-2} = 3)}{\mathbb{P}(X_{n-1} = 1) + \mathbb{P}(X_{n-1} = 2)}$$

$$= \frac{1}{4},$$

因此

$$\mathbb{P}(T_{13}=n)=\frac{3}{4}\cdot\left(\frac{3}{4}\right)^{n-2}\cdot\frac{1}{4}=\frac{3^{n-1}}{4^n}.$$

(2) 计算得

$$\begin{cases} f_{11}^* = f_{11}^{(1)} = \frac{1}{2}, \\ f_{22}^* = f_{22}^{(1)} = \frac{3}{4}, \\ f_{33}^* = f_{33}^{(1)} = 1. \end{cases}$$

另外, 也可以通过公式

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 - f_{ii}^*}$$

来计算 f_{11}^* , 只需要计算出 P^n 即可.

例 4.9 设 *I* = {1,2,3,4}, 转移矩阵

$$\mathbf{P} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{bmatrix},$$

对每个状态进行分类.

解答 画出图像2后逐点分析即可.

²特别感谢张博闻同学绘制的图像!

该状态正常返:

(2)
$$f_{22}^{(1)} = 0$$
, $f_{22}^{(2)} = \frac{1}{2}$, $f_{22}^{(k)} = \left(\frac{1}{2}\right)^{k-1}$, $k \ge 3$, $k = 3$

- 该状态正常返; (3) $f_{33}^{(1)}=\frac{2}{3}, f_{33}^{(k)}=0, k\geq 2$, 因此 $f_{33}^*=\frac{2}{3}<1$, 该状态非常返;
- (4) $f_{44}^{(k)} = 0, k \ge 1$, 因此 $f_{44}^* = 0$, 该状态非常返.

4.3.3 周期和遍历状态

定义 4.7 (周期)

设 $i \in I$, 按如下方式定义 $\{X_n\}$ 的周期.

- (1) 若 $\sum_{i=0}^{\infty} p_{ii}^{(n)} = 0$, 则质点自 i 出发不会回到 i, 记此时周期为 ∞ ;
- (2) 若存在正整数 d, 原点自 i 出发, 只能在 d 的整数倍回到 i, 也即 $p_{ii}^{(n)} > 0 \Longrightarrow$ n = kd, 且 d 是满足此性质的最大整数, 记此时周期为 d;
- (3) 若 d = 1, 则称 i 为非周期的.

例如,对于简单随机游走,每一个状态的周期 d=2.以下是一个非周期的例子,可以 帮助理解以上定义.

例 4.10 设质点向左走和向右走的概率都是 $\frac{1}{3}$, 向下走两步再向左走的概率是 $\frac{1}{3}$.

$$\frac{1}{3}$$
 $\frac{1}{3}$

则 $p_{ii}^{(2)} > \frac{1}{3} \cdot \frac{1}{3} > 0$, 又 $p_{ii}^{(3)} > \frac{1}{3} \cdot \frac{1}{3} > 0$, 根据 (2,3) = 1 知 d = 1, 从而每一个状态

注意到 (k, k+1) = 1, 若 $p_{ii}^{(k)} > 0$, $p_{ii}^{(k+1)} > 0$, 则由定义4.7知 i 是非周期的. 定理4.8是周期的基本性质. 在这里, 本定理的证明不做要求.

定理 4.8 (周期的性质)

设状态 i 的周期 $d_i < \infty$.

- (1) d_i 是数集 $B_i = \{n | p_{ii}^{(n)} > 0, n \ge 1\}$ 的最大公约数;
- (2) 若 $i \leftrightarrow j$, 则 $d_i = d_i$; ^a
- (3) 存在正整数 N_i , 对任意的 $n \ge N_i$, 都有 $p_{ii}^{(nd_i)} > 0$.

a注意到若 i, j 互通,则 i 和 j 的状态 (常返、零常返与正常返) 也是相同的.

定义 4.8 (遍历状态)

若 i 为正常返和非周期的,则称 i 是遍历状态,

此时, 非周期意味着存在正整数 N_i , 对任意的 $n > N_i$, 都有 $p_{ii}^{(n)} > 0$. 另外, 遍历状态也可以通过互通来传递. 在此, 我们可以对状态空间进行分类.

定理 4.9

设常返状态i有周期 d_i ,平均回转时间

$$\mu_i = \mathbb{E}(T_i|X_0=i),$$

$$\mathbb{M}\lim_{n\to\infty}p_{ii}^{(nd_i)}=\frac{d_i}{\mu_i}.$$

定理 4.10 (周期分解定理)

设 $\{X_n\}$ 是一个周期为 d 的不可约 Markov 链, 状态空间 $I = \bigcup_{r=1}^d B_r$, 其中 $B_i \cap B_j =$

 $\emptyset(1 \le i, j \le d, i \ne j)$, 且 $\sum_{j \in B_{r+1}} p_{ij} = 1$, 其中 $i \in B_r$ (约定 $B_{d+1} = B_1$). 将周期为 d 的

不可约 Markov 链基于 B_1, B_2, \cdots, B_d 重排后, 转移矩阵

$$\mathbf{P} = \begin{bmatrix} 0 & \mathbf{P}^{(1)} & 0 & \cdots & 0 \\ 0 & 0 & \mathbf{P}^{(2)} & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{P}^{(d)} & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

例 4.11 考虑简单随机游走, 设 $I = B_1 \cup B_2$, 其中 B_1 为奇数点, B_2 为偶数点, 则对 $i \in B_1$,

有 $\sum_{j \in B_2} p_{ij} = 1$; 且对 $i \in B_2$, 有 $\sum_{j \in B_1} p_{ij} = 1$. 将转移矩阵进行重排, 可得

$$\boldsymbol{P} = \begin{bmatrix} 0 & \boldsymbol{P}^{(1)} \\ \boldsymbol{P}^{(2)} & 0 \end{bmatrix}.$$

例 4.12 设 *I* = {0, 1, 2, 3}, 转移矩阵

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \end{bmatrix}, \quad \text{Min} \quad \mathbf{P}^2 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix},$$

记
$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
,则 $P = \begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$, $P^2 = \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$,计算得

$$\mathbf{P}^{(2k)} = (\mathbf{P}^2)^k = \begin{bmatrix} \mathbf{A}^k & 0 \\ 0 & \mathbf{A}^k \end{bmatrix},$$

以及

$$\boldsymbol{P}^{(2k+1)} = (\boldsymbol{P}^2)^k \boldsymbol{P} = \begin{bmatrix} \boldsymbol{A}^k & 0 \\ 0 & \boldsymbol{A}^k \end{bmatrix} \begin{bmatrix} 0 & \boldsymbol{A} \\ \boldsymbol{A} & 0 \end{bmatrix} = \begin{bmatrix} 0 & \boldsymbol{A}^{k+1} \\ \boldsymbol{A}^{k+1} & 0 \end{bmatrix},$$

因此 $p_{ii}^{(2k)} > 0$, $p_{ii}^{(2k+1)} = 0$, 此即说明 d = 2.

4.3.4 状态的等价

定义 4.9 (等价)

设 I 是 Markov 链 $\{X_n\}$ 的状态空间, 称集合

$$C = \{j | j \leftrightarrow i, j \in I\}$$

为一个等价类. 若 I 是一个等价类, 则称 Markov 链 $\{X_n\}$ 或状态空间 I 不可约. 设 $B \subset I$. 若质点不能从 B 中状态到达 $\overline{B} = I - B$ 中的状态, 则称 B 为闭集.

- (1) 结合定理4.7, 可以得到如下的等价类:
 - (a). 设 $i \in C$, i 正常返, 则对任意的 $j \in C$, j 正常返. 此时C 为正常返等价类;
 - (b). 设 $i \in C$, i 正常返, 则对任意的 $j \in C$, j 零常返. 此时C 为零常返等价类;
 - (c). 设 $i \in C$, i 正常返, 则对任意的 $j \in C$, j 非常返. 此时 C 为非常返等价类;
- (2) 设 B 是闭集,则对任意的 $i \in B$, $\sum_{l=0}^{\infty} p_{ik} = 1$;
- (3) 考虑简单随机游走, 此时状态空间 $I = \{0, \pm 1, \pm 2, \cdots\}$, 则对任意的 $i, j \in I, i \leftrightarrow j$. 由例4.6知, 若 $p = q = \frac{1}{2}$, 则 I 为常返等价类; 若 $p \neq q$, 则 I 为非常返等价类;

(4) 考虑两端有吸收壁的随机游走, 此时状态空间 $I = \{0, 1, 2, \dots, n\}$, 则 $\{0\}$ 和 $\{n\}$ 是常返等价类, $\{1, 2, \dots, n-1\}$ 是非常返等价类.

定理 4.11

设 I 是状态空间, C 为一个等价类.

- (1) 不同的等价类互不相交;
- (2) C 中的状态有相同的类型, 或都是正常返的, 或都是零常返的, 或都是非常返的, 且 C 中所有状态的周期相同:
- (3) 常返等价类是闭集, 也即质点不能走出常返等价类;
- (4) 零常返等价类中有无穷多个状态;
- (5) 非零常返等价类如果是闭集,则有无穷多个状态.

证明 (1) 假设 C_1 , C_2 是等价类, 且 $C_1 \cap C_2 \neq \emptyset$, 则存在 $i \in C_1 \cap C_2$. 对任意的 $j \in C_1$, 有 $i \leftrightarrow j$; 且对任意的 $k \in C_2$, 有 $i \leftrightarrow k$, 从而 $j \leftrightarrow k$, 此即说明 $C_1 = C_2$.

- (2) 这可以由定理4.7与定理4.8得到.
- (3) 设 C 是常返等价类, $i \in B$. 若存在 $j \in I B$, 使得 $i \to j$, 则由 i 是常返的知 $i \leftrightarrow j$, 从而 $j \in B$, 矛盾.
 - (4) 设 B 是零常返等价类,则 B 是闭集,从而对 $i \in B$,有

$$\sum_{k \in R} p_{ik} = 1 \implies \sum_{k \in R} p_{ik}^{(n)} = 1,$$

且根据 i 是零常返的, 知 $\lim_{n\to\infty} p_{ik}^{(n)}=0$. 若 $|B|<\infty$, 则

$$\lim_{n\to\infty}\sum_{k\in B}p_{ik}^{(n)}=\sum_{k\in B}\lim_{n\to\infty}p_{ik}^{(n)}=0\neq 1,$$

矛盾, 因此 $|B| = \infty$. 类似地, 可以证明 (5).

另外, 假设状态空间 I 有限, 所得到的 Markov 链 $\{X_n\}$ 称为有限 Markov 链. 根据定理4.11得到, 其具有以下的性质.

定理 4.12

设 / 是有限的状态空间.

- (1) 非常返等价类不可能为闭集;
- (2) 没有零常返状态;
- (3) 必有正常返状态:
- (4) 设 [不可约. 则 [中的状态是正常返状态:
- (5) 设 / 不可约, 且非周期, 则 / 中的状态是遍历状态;

(6) 状态空间

$$I = T \cup C_1 \cup \cdots \cup C_k = T \cup \bigcup_{j=1}^m C_j,$$

其中T为非常返等价类, C_i 为常返等价类. 另外,可以将转移矩阵写成分块矩阵

$$\mathbf{P} = \begin{bmatrix} \mathbf{P}_1 & 0 & \cdots & 0 & 0 \\ 0 & \mathbf{P}_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \mathbf{P}_m & 0 \\ \mathbf{R}_1 & \mathbf{R}_2 & \cdots & \mathbf{R}_m & \mathbf{Q}_T \end{bmatrix},$$

则

$$\boldsymbol{P}^{(n)} = \begin{bmatrix} \boldsymbol{P}_{1}^{n} & 0 & \cdots & 0 & 0 \\ 0 & \boldsymbol{P}_{2}^{n} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{P}_{m}^{n} & 0 \\ \boldsymbol{R}_{1}^{(n)} & \boldsymbol{R}_{2}^{(n)} & \cdots & \boldsymbol{R}_{m}^{(n)} & \boldsymbol{Q}_{T}^{(n)} \end{bmatrix}.$$

其中
$$Q_T^{(n)} = Q_T^n$$
.

~

4.4 Markov 链的不变分布

首先,设 $\{X_n\}$ 是 Markov 链,转移矩阵为 P, $I = \{1,2,\cdots\}$,记初始分布 $\pi = [\pi_1, \pi_2, \cdots]$,并设 n 步转移后的分布 $\pi^{(n)} = [\pi_1^{(n)}, \pi_2^{(n)}, \cdots]$.若 $\pi^{(1)} = \pi$,则可以推出 $\pi^{(n)} = \pi$: 当 n = 1 时, $\pi^{(1)} = \pi$;假设 $\pi^{(n-1)} = \pi$,则

$$\pi^{(n)} = \pi P^{(n)} = \pi^{(n-k)} P^{(k)} = \pi^{(n-1)} P = \pi P = \pi^{(1)} = \pi,$$

因此根据数学归纳法知上面的命题成立. 在此基础上, 给出不变分布的定义.

定义 4.10 (不变分布)

若 $\pi = [\pi_1, \pi_2, \cdots]$ 满足

$$\sum_{i\in I} \pi_i = 1, \quad \boldsymbol{\pi} = \boldsymbol{\pi}\boldsymbol{P},$$

则称 π 为 Markov 链 $\{X_n\}$ 的不变分布.

定理 4.13

设 C^+ 为 Markov 链 $\{X_n\}$ 的所有正常返状态, $i \in C^+$.

(1) 若 C+ 是遍历等价类,则

$$\pi_j = \lim_{n \to \infty} p_{ij}^{(n)} = \frac{1}{\mu_i}, \quad j \in I$$

是唯一的不变分布:

(2) 若 C^+ 是周期为 d 的等价类,则

$$\pi_{j} = \frac{1}{d} \lim_{n \to \infty} p_{jj}^{(nd)} = \lim_{n \to \infty} \frac{1}{d} \sum_{s=1}^{d} p_{ij}^{(nd+s)} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} p_{ij}^{(k)} = \frac{1}{\mu_{j}}, \quad j \in I$$

是唯一的不变分布;

- (3) $\{X_n\}$ 有唯一不变分布的充要条件是 C^+ 是等价类;
- (4) $\{X_n\}$ 有不变分布的充要条件是 C^+ 非空;
- (5) 状态有限的 Markov 链必有不变分布.

例 4.13 设 $I = \{1, 2\}$, 转移矩阵

$$\boldsymbol{P} = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{5}{8} & \frac{3}{8} \end{bmatrix},$$

- (1) 求不变分布 π:
- (2) 计算 μ_1, μ_2 .

解答 (1) 根据 $1 \leftrightarrow 2$, 以及 I 有限, 知存在唯一不变分布. 由

$$[\pi_1, \pi_2]$$
 $\begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{5}{8} & \frac{3}{8} \end{bmatrix} = [\pi_1, \pi_2]$

解得 $\pi_1 = \frac{5}{7}, \pi_2 = \frac{2}{7}$. 从而不变分布 $\pi = \begin{bmatrix} \frac{5}{7}, \frac{2}{7} \end{bmatrix}$.

(2) 在上面的基础上, 得到

$$\lim_{n \to \infty} \mathbf{P}^{(n)} = \begin{bmatrix} \pi_1 & \pi_2 \\ \pi_1 & \pi_2 \end{bmatrix} = \begin{bmatrix} \frac{5}{7} & \frac{2}{7} \\ \frac{5}{7} & \frac{2}{7} \end{bmatrix}.$$

从而
$$\mu_1 = \frac{1}{\pi_1} = \frac{7}{5}, \mu_2 = \frac{1}{\pi_2} = \frac{7}{2}.$$

例 4.14Ehrenfest 模型 容器内有 2a 个例子,一张薄膜将该容器分为对称的 A, B 两部分. 将粒子穿过薄膜时占用的时间忽略不计. 用 X_0 表示初始时 A 中的粒子数, X_n 表示有 n 个粒子穿过薄膜后 A 中的粒子数. 当所有的粒子以相同的规律独立行动时, $\{X_n\}$ 是

Markov 链, 有状态空间 $I = \{0, 1, 2, \dots, 2a\}$, 设 Markov 链 $\{X_n\}$ 有转移概率

$$p_{ij} = \begin{cases} \frac{2a-i}{2a}, & 0 \le i \le 2a-1, j = i+1, \\ \frac{i}{2a}, & 1 \le i \le 2a, j = i-1, \\ 0, & \text{其他情况,} \end{cases}$$

计算该 Markov 链的不变分布.

解答 从问题的背景知这是一个正常返 Markov 链, 周期等于 2, 不变分布唯一存在. 补充 定义 $\pi_{-1} = \pi_{2a+1} = 0$, 可将方程组 $\pi = \pi P$ 写成

$$\pi_i = \pi_{i-1} p_{i-1,i} + \pi_{i+1} p_{i+1,i}, \quad 0 \le i \le 2a.$$

于是有

$$\pi_{i+1} = \frac{\pi_i - \pi_{i-1} p_{i-1,i}}{p_{i+1,i}}.$$

经过计算可依次得到

$$\pi_{1} = \frac{\pi_{0}}{p_{10}} = 2a\pi_{0} = {2a \choose 1}\pi_{0},$$

$$\pi_{2} = \frac{\pi_{1} - \pi_{0}p_{01}}{p_{21}} = (\pi_{1} - \pi_{0})\frac{2a}{2} = {2a \choose 2}\pi_{0},$$

$$\cdots,$$

$$\pi_{2a} = {2a \choose 2a}\pi_{0}.$$

利用
$$\pi_0 + \pi_1 + \dots + \pi_{2a} = 2^{2a}\pi_0 = 1$$
 得到 $\pi_0 = 2^{-2a}$. 最后得到不变分布
$$\pi_i = \binom{2a}{i} \left(\frac{1}{2}\right)^i \left(\frac{1}{2}\right)^{2a-i}, \quad 0 \le i \le 2a,$$

也即二项分布 $\mathcal{B}\left(2a,\frac{1}{2}\right)$.

4.5 Markov 链的平稳可逆分布

4.5.1 平稳性

设 π 是 { X_n } 的不变分布,将其作为初始分布,则

$$\mathbb{P}(X_n = i) = \mathbb{P}(X_0 = i),$$

从而随机向量 $\boldsymbol{\xi}_n = (X_n, X_{1+n}, \dots, X_{m+n})$ 与 $\boldsymbol{\xi}_0 = (X_0, X_1, \dots, X_n)$ 同分布. 若记 $A_k = (X_{k+n} = i_k), B_k = (X_k = i_k),$ 则可以计算得

$$\mathbb{P}(A_0 A_1 \cdots A_m) = \mathbb{P}(X_n = i_0) \mathbb{P}(A_1 | A_0) \cdots \mathbb{P}(A_m | A_{m-1})$$

$$= \mathbb{P}(X_0 = i_0) p_{i_0, i_1} \cdots p_{i_{m-1}, i_m}$$

$$= \mathbb{P}(B_0 B_1 \cdots B_m),$$

这便说明了这一点.

定义 4.11 (平稳序列)

设 $\{X_n\}$ 是随机序列. 如果对任意的 $m, n \geq 1$, 随机向量

$$\xi_n = (X_n, X_{1+n}, \dots, X_{m+n})$$
 for $\xi_0 = (X_0, X_1, \dots, X_n)$

同分布, 则称 $\{X_n\}$ 为严平稳序列, 简称为平稳序列. 如果 Markov 链 $\{X_n\}$ 是平稳序列, 则称 $\{X_n\}$ 处于平稳状态.

若 $\{X_n\}$ 是平稳序列,则 (X_0, X_1) 与 (X_n, X_{n+1}) 同分布,从而

$$\mathbb{P}(X_0 = i, X_1 = j) = \mathbb{P}(X_0 = i)p_{ij} = \mathbb{P}(X_n = i, X_{n+1} = j) = \mathbb{P}(X_n = i)p_{ij},$$

此即说明 $\mathbb{P}(X_0 = i) = \mathbb{P}(X_n = i)$, 从而对任意的 n, X_0 和 X_n 同分布. 特别地, 对于 $n = 1, X_0$ 和 X_1 同分布.

定理 4.14

设 $\{X_n\}$ 是遍历 Markov 链, 初始分布为平稳不变分布 π , $\{Y_n\}$ 的转移概率和 $\{X_n\}$ 相同.

- (1) $\lim_{n\to\infty} \mathbb{P}(Y_n=i_0,Y_{1+n}=i_1,\cdots,Y_{m+n}=i_m) = \mathbb{P}(X_0=i_0,X_1=i,\cdots,X_m=i_m);$
- $n\to\infty$ (2) 对于充分大的 n, $(Y_n,Y_{1+n},\cdots,Y_{m+n})$ 和 $(X_n,X_{1+n},\cdots,X_{m+n})$ 同分布.

证明 (1) 由 $\{X_n\}$ 是遍历 Markov 链知其周期为 1, 且每个状态都是正常返的. 计算得

$$\begin{split} &\lim_{n \to \infty} \mathbb{P}(Y_n = i_0, Y_{1+n} = i_1, \cdots, Y_{m+n} = i_m) \\ &= \lim_{n \to \infty} \sum_{i \in I} \mathbb{P}(Y_0 = i, Y_n = i_0, Y_{1+n} = i_1, \cdots, Y_{m+n} = i_m) \\ &= \lim_{n \to \infty} \sum_{i \in I} \mathbb{P}(Y_0 = i) p_{ii_0}^{(n)} p_{i_0 i_1} \cdots p_{i_{m-1} i_m} \\ &= \sum_{i \in I} \mathbb{P}(Y_0 = i) \cdot \lim_{n \to \infty} p_{ii_0}^{(n)} \cdot p_{i_0 i_1} \cdots p_{i_{m-1} i_m} \\ &= \pi_{i_0} \cdot p_{i_0 i_1} \cdots p_{i_{m-1} i_m} \\ &= \mathbb{P}(X_0 = i_0, X_1 = i, \cdots, X_m = i_m), \end{split}$$

其中 $\lim_{n\to\infty} p_{ii_0}^{(n)} = \pi_{i_0}$.

(2) 根据 (1) 得, 对于充分大的 n, $(Y_n, Y_{1+n}, \dots, Y_{m+n})$ 和 (X_0, X_1, \dots, X_m) 同分布. 又

根据 $\{X_n\}$ 的平稳性知 (X_0, X_1, \dots, X_m) 和 $(X_n, X_{1+n}, \dots, X_{m+n})$ 同分布, 因此对于充分大的 $n, (Y_n, Y_{1+n}, \dots, Y_{m+n})$ 和 $(X_n, X_{1+n}, \dots, X_{m+n})$ 同分布.

4.5.2 平稳可逆性

设 π 是 $\{X_n\}$ 的不变分布,则

$$\mathbb{P}(X_{n-1} = j | X_n = i, X_{n+1} = i_1, \dots, X_{n+m} = i_m) = \mathbb{P}(X_{n-1} = j | X_n = i)
= \frac{\mathbb{P}(X_{n-1} = j, X_n = i)}{\mathbb{P}(X_n = i)}
= \frac{\mathbb{P}(X_{n-1} = j)\mathbb{P}(X_n = i | X_{n-1} = j)}{\mathbb{P}(X_n = i)}
= \frac{\pi_j p_{ji}}{\pi_i},$$

右边是一个和m与n无关的常数.

定义 4.12 (平稳可逆性)

设 $\{X_n\}$ 是 Markov 链, 转移矩阵 $P = (p_{ij})_{i,j \in I}$.

(1) 如果有不全为 0 的非负序列 $\eta = {\eta_i}$, 使得

$$\eta_i p_{ij} = \eta_j p_{ji}, \quad \forall i, j \in I,$$

则称 $\{X_n\}$ 是对称 Markov 链, η 为 $\{X_n\}$ 的对称化序列. 特别地, 若概率分布 π 满足

$$\pi_i p_{ij} = \pi_j p_{ji}, \quad \forall i, j \in I,$$

称其为 $\{X_n\}$ 的可逆分布或平稳可逆分布;

(2) 若 $\{Y_n\}$ 是平稳序列, 且对任意的 $n > m \ge 0$,

$$(Y_m, Y_{m+1}, \cdots, Y_n)$$
 $\not = (Y_n, Y_{n-1}, \cdots, Y_m)$

同分布,则称 {Yn} 是时间可逆的平稳序列或平稳可逆序列.

(3) 若 $\{X_n\}$ 是平稳可逆序列, 则称 $\{X_n\}$ 为可逆 Markov 链.

对于可逆 Markov 链和平稳可逆分布, 有如下的性质.

(1) 若 $\{X_n\}$ 是可逆 Markov 链, 设其转移概率为 p_{ij} , "倒向"的转移概率为 p_{ij}^* , 则

$$\mathbb{P}(X_n = i, X_{n+1} = j) = \mathbb{P}(X_n = i)p_{ij} = \mathbb{P}(X_{n+1} = i, X_n = j) = \mathbb{P}(X_{n+1} = i)p_{ij}^*,$$

又根据平稳性得 $\mathbb{P}(X_n = i) = \mathbb{P}(X_{n+1} = i)$, 从而 $p_{ij} = p_{ij}^*$;

(2) 若 η 是对称化序列, 且 $\sum_{i \in I} \eta_i < \infty$, 令

$$\pi_j = \frac{\eta_j}{\sum_{i \in I} \eta_i},$$

则 π 为平稳可逆分布:

(3) 若 $\{X_n\}$ 是可逆 Markov 链, 则其初始分布 π 为平稳可逆分布, 这是因为 (X_0, X_1) 与 (X_1, X_0) 同分布, 从而

$$\mathbb{P}(X_0 = i, X_1 = j) = \pi_i p_{ij} = \mathbb{P}(X_0 = j, X_1 = i) = \pi_j p_{ji}, \quad \forall i, j \in I.$$

定理 4.15

设 $\{X_n\}$ 是 Markov 链, 转移矩阵 $P = (p_{ij})_{i,j \in I}, \pi$ 为平稳可逆分布.

- (1) π 是 $\{X_n\}$ 是平稳不变分布;
- (2) $\{X_n\}$ 的初始分布为 π 时, $\{X_n\}$ 为可逆 Markov 链.

证明 (1) 此时 $\pi_i p_{ij} = \pi_j p_{ji}$, 因此

$$\sum_{i\in I} \pi_i p_{ij} = \sum_{i\in I} \pi_j p_{ji} = \pi_j \cdot \sum_{i\in I} p_{ji} = \pi_j,$$

上式说明了 $\pi = \pi P$.

(2) 设m < n,则

$$\mathbb{P}(X_{m} = i_{m}, X_{m+1} = i_{m+1}, \cdots, X_{n} = i_{n})
= \pi_{i_{m}} p_{i_{m}i_{m+1}} \cdots p_{i_{n-1}i_{n}}
= \pi_{i_{m+1}} p_{i_{m+1}i_{m}} \cdots p_{i_{n-1}i_{n}}
= \cdots
= \pi_{i_{n}} p_{i_{n}i_{m-1}} \cdots p_{i_{m+1}i_{m}}
= \mathbb{P}(X_{n} = i_{m}, X_{n-1} = i_{m+1}, \cdots, X_{m} = i_{n}),$$

此即说明 $\{X_n\}$ 为可逆 Markov 链.

4.5.3 平稳可逆分布的计算

定理 4.16

设互通 Markov 链 $\{X_n\}$ 以平稳不变分布 π 为初始分布.

(1) $\{X_n\}$ 可逆 \iff 对任意的 $i, i_1, \dots, i_k \in I$, 有

$$p_{ii_1}p_{i_1i_2}\cdots p_{i_ki}=p_{ii_k}p_{i_ki_{k-1}}\cdots p_{i_1i},$$

称该条件为 Kolmogorov 条件;

(2) 若 $\{X_n\}$ 是平稳可逆序列,对于选定的i及从i到j的通路

$$i \rightarrow i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_k \rightarrow j$$
,

定义

$$\eta_i = 1, \quad \eta_j = \frac{p_{ii_1} p_{i_1 i_2} \cdots p_{i_k j}}{p_{ji_k} p_{i_k i_{k-1}} \cdots p_{i_1 i}}, \quad j \neq i,$$

63

则 $\{\eta_i\}$ 是 $\{X_n\}$ 的对称化序列.

证明 (1) 若 $\{X_n\}$ 可逆,则对任意的 $i,j \in I, \pi_i p_{ii} = \pi_i p_{ij}$,从而

$$\pi_i p_{ii_1} p_{i_1 i_2} \cdots p_{i_k i} = p_{i_1 i} \pi_{i_1} p_{i_1 i_2} \cdots p_{i_k i}$$

$$= \cdots$$

$$=p_{ii_k}p_{i_ki_{k-1}}\cdots p_{i_1i}\pi_i,$$

从而 $\{X_n\}$ 满足 Kolmogorov 条件; 若 $\{X_n\}$ 满足 Kolmogorov 条件, 则

$$\mathbb{P}(X_0 = i, X_1 = i_1, \dots, X_k = i_k, X_{k+1} = i)$$

$$= \pi_i p_{ii_1} p_{i_1 i_2} \dots p_{i_k i}$$

$$= \mathbb{P}(X_0 = i, X_1 = i_k, \dots, X_k = i_1, X_{k+1} = i)$$

$$= p_{ii_k} p_{i_k i_{k-1}} \dots p_{i_1 i_k}$$

在上式中对 $i_1, i_2, \cdots, i_{k-1}$ 求和得

$$\mathbb{P}(X_0 = i, X_k = i_k, X_{k+1} = i) = \mathbb{P}(X_{k+1} = i, X_1 = i_k, X_0 = i),$$

$$\pi_i p_{ij}^{(k)} p_{ji} = \pi_i p_{ij} p_{ji}^{(k)} \implies \frac{1}{n} \sum_{k=1}^n p_{ij}^{(k)} \cdot p_{ji} = \frac{1}{n} \sum_{k=1}^n p_{ji}^{(k)} \cdot p_{ij},$$

在上式中令 $n \to \infty$,可得

$$\pi_i p_{ii} = \pi_i p_{ii}, \quad \forall i, j \in I,$$

从而 $\{X_n\}$ 可逆.

(2) 首先根据 Kolmogorov 条件知 $\{\eta_j\}$ 的选取与路径无关. 另外, 考虑 i 到 j 的通路 和 i 到 l 的通路

$$\begin{cases} i \to i_1 \to i_2 \to \cdots \to i_k \to j, \\ i \to j_1 \to j_2 \to \cdots \to j_s \to l, \end{cases}$$

同样根据 Kolmogorov 条件, 计算得

$$\begin{split} \eta_{j} p_{jl} &= \frac{p_{ii_{1}} p_{i_{1}i_{2}} \cdots p_{i_{k}j} p_{jl}}{p_{ji_{k}} p_{i_{k}i_{k-1}} \cdots p_{i_{1}i}} \\ &= \frac{p_{ij_{1}} p_{j_{1}j_{2}} \cdots p_{j_{s}l} p_{lj}}{p_{lj_{s}} p_{j_{s}j_{s-1}} \cdots p_{j_{1}i}} \\ &= \eta_{l} p_{lj}, \end{split}$$

C

从而 $\{\eta_i\}$ 是 $\{X_n\}$ 的对称化序列.

根据定理4.16的证明过程,可以得到如下定理.

定理 4.17

互通 Markov 链 $\{X_n\}$ 存在对称化序列的充要条件是其满足 Kolmogorov 条件. 同时,由定理4.16(2) 所定义的序列 $\{\eta_i\}$ 是 $\{X_n\}$ 的对称化序列.

证明 一方面, 由定理4.16知, 若 $\{X_n\}$ 满足 Kolmogorov 条件, 则由定理4.16(2) 所定义的序列 $\{\eta_i\}$ 是 $\{X_n\}$ 的对称化序列.

另外一方面, 若存在对称化序列 $\{\eta_j\}$, 则

$$\eta_i p_{ii_1} p_{i_1 i_2} \cdots p_{i_k i} = p_{i_1 i} \eta_{i_1} p_{i_1 i_2} \cdots p_{i_k i}$$

$$= \cdots$$

$$= p_{i_1 i_1} p_{i_2 i_1} \cdots p_{i i_k} \eta_i,$$

从而 $\{X_n\}$ 满足 Kolmogorov 条件.

综合本节中的定理, 对于互通的 Markov 链 $\{X_n\}$, 给出如下计算可逆分布的步骤.

- (1) 检验 Kolmogorov 条件;
- (2) 若 Kolmogorov 条件成立,则根据定理4.16(2) 计算对称化序列 $\{\eta_i\}$;
- (3) 若 $\sum_{j\in I} \eta_i < \infty$, 令

$$\pi_i = \frac{\eta_i}{\sum_{j \in I} \eta_j},$$

由此得到可逆分布 π .

定理 4.18

对于互通的 Markov 链 $\{X_n\}$, 若 Kolmogorov 条件成立, 且 $\sum_{j\in I} \eta_i < \infty$, 则 $\{X_n\}$ 正常 返.

证明 只需证明若 $\sum_{j\in I} \eta_i = \infty$, 则 $\{X_n\}$ 非正常返. 假设当 $\sum_{j\in I} \eta_i = \infty$ 时, $\{X_n\}$ 正常返,则 $\{X_n\}$ 存在不变分布 $\{\pi_i\}$,又根据 Kolmogorov 条件成立,知 $\{\pi_i\}$ 是可逆分布,从而

$$\pi_i p_{ij} = \pi_j p_{ji}, \quad \forall i, j \in I.$$

考虑通路 $i \rightarrow i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_k \rightarrow j$, 利用定理4.16(2) 中所构造的 $\{\eta_j\}$, 则有

$$\pi_i p_{ii_1} p_{i_1 i_2} \cdots p_{i_k j} = \pi_j p_{i_1 i_1} p_{i_2 i_1} \cdots p_{j i_k} \implies \pi_i \eta_j = \pi_j,$$

在上式左右端对 i 求和得

$$\infty = \pi_i \sum_{j \in I} \eta_j = \sum_{i \in I} \pi_j = 1,$$

这便推出了矛盾.

例 4.15 在例4.3的基础上, 考虑两端为反射壁的简单随机游走, 证明其是可逆 Markov 链, 并计算对称化序列和平稳可逆分布.

解答 首先计算 $\{\eta_i\}$. 考虑从 0 出发, 令

$$\eta_0 = 1, \quad \eta_1 = \frac{p_{01}}{p_{10}} = \frac{1}{q}, \quad \eta_2 = \frac{p_{01}p_{12}}{p_{10}p_{21}} = \frac{p}{q^2}, \quad \cdots, \\
\eta_k = \frac{p^{k-1}}{q^k}, \quad \cdots, \quad \eta_n = \frac{p^{n-1}}{q^{n-1}}.$$

接下来, 验证 $\eta_i p_{ij} = \eta_j p_{ji}$. 计算得

$$\eta_0 p_{01} = 1 = \frac{1}{q} \cdot q = \eta_1 p_{10},
\eta_i p_{i,i+1} = \frac{p^{i-1}}{q^i} p = \frac{p^i}{q^{i+1}} q = \eta_{i+1} p_{i+1,i}, \quad 1 \le i \le n-1,
\eta_n p_{n,n-1} = \frac{p^{n-2}}{q^{n-1}} p = \frac{p^{n-1}}{q^{n-1}} = \eta_n p_{n,n-1},$$

从而 $\{\eta_i\}$ 是对称化序列, 另外 $\sum_{j=0}^n \eta_j < \infty$, 因此令

$$\pi_i = \frac{\eta_i}{\sum_{j=0}^n \eta_j},$$

由此得到可逆分布 π.

例 4.16 质点在 $I = \{0, 1, \dots\}$ 中作随机游动, 有转移概率

$$p_{ij} = \begin{cases} p_i, & j = i+1, i \ge 0, \\ 1 - p_i, & j = i-1, i \ge 1, \end{cases}$$

其中 $p_{01} = p_0 = 1$, 当 i > 1 时, $p_i \in (0, 1)$.

- (1) 证明转移概率 $\{p_{ii}\}$ 存在对称化序列 η ;
- (2) 求转移概率 $\{p_{ii}\}$ 有平稳可逆分布的充分必要条件;
- (3) 给出 $\{p_{ii}\}$ 有平稳不变分布的充分必要条件.

解答 (1) 质点每次只能向左或右走一步,设 $q_i = 1 - p_i$,引入

$$\eta_0 = 1, \quad \eta_i = \frac{p_{01}p_{12}\cdots p_{i-1,i}}{p_{10}p_{21}\cdots p_{i,i-1}} = \frac{p_0p_1\cdots p_{i-1}}{q_1q_2\cdots q_i}, \quad i \ge 1.$$

以下验证 $\{\eta_i\}$ 是对称化序列. 首先

$$\eta_0 p_{01} = 1 = \frac{p_0}{q_1} q_1 = \eta_1 p_{10},$$

而对于一般情形,

$$\eta_i p_{i,i+1} = \frac{p_0 p_1 \cdots p_{i-1}}{q_1 q_2 \cdots q_i} p_i = \frac{p_0 p_1 \cdots p_i}{q_1 q_2 \cdots q_{i+1}} q_{i+1} = \eta_{i+1} q_{i+1}, \quad i \ge 1.$$

(2) 如果
$$\sum_{i=0}^{\infty} \eta_i < \infty$$
, 则该过程存在平稳可逆分布

$$\pi_i = \frac{\eta_i}{\sum_{i=0}^{\infty} \eta_i}, \quad i = 0, 1, \cdots.$$

否则该过程不是正常返的, 平稳可逆分布也不存在. 因此该过程有平稳可逆分布的充要条件是 $\sum_{i=0}^{\infty}\eta_{i}<\infty$.

(3) 由 (2) 知该过程正常返的充要条件是 $\sum_{i=0}^{\infty}\eta_i<\infty$, 因此该过程有平稳不变分布的充要条件是 $\sum_{i=0}^{\infty}\eta_i<\infty$.

4.6 离散分支过程

设每一代的粒子都独立进行分裂,产生后代,并用 $\{X_n\}$ 表示第 n 代生物的总数,则称随机序列 $\{X_n\}$ 是离散时间分支过程,也被称为 Galton-Watson 分支过程.

设第 0 代仅有一个粒子, $\xi_{n,k}$ 表示第 n 代的第 k 个个体分裂成的后代数, 其是来自总体 ϵ 的随机变量, 则

$$X_1 = \eta_{01}, \quad X_n = \sum_{k=1}^{X_{n-1}} \xi_{n-1,k}.$$

由上面定义的随机序列 $\{X_n\}$ 是 Markov 链.

接下来, 设 $\mu = \mathbb{E}\xi$, 尝试计算 $\{X_n\}$ 的期望. 计算得

$$\mathbb{E}X_n = \mathbb{E}\left(\mathbb{E}\left(\sum_{k=1}^{X_{n-1}} \xi_{n-1,k} \middle| X_{n-1}\right)\right) = \mu \mathbb{E}X_{n-1},$$

且 $\mathbb{E}X_0 = 1$, 由此递推得到 $\mathbb{E}X_n = \mu^n$.

再设 $\sigma^2 = \text{Var}\xi$, 首先设 $X_{n-1} = l$, 计算得

$$\mathbb{E}(X_n^2|X_{n-1}=l) = \mathbb{E}\left(\sum_{k=1}^l \xi_{n-1,k}\right)^2 = l \cdot \mathbb{E}\xi^2 + (l^2 - l) \cdot (\mathbb{E}\xi)^2 = l \cdot \sigma^2 + l^2\mu^2,$$

从而 $\mathbb{E}(X_n^2|X_{n-1}) = \sigma^2 \cdot X_{n-1} + \mu^2 \cdot X_{n-1}^2$, 进而

$$\mathbb{E}X_n^2 = \mathbb{E}(\mathbb{E}(X_n^2|X_{n-1})) = \sigma^2 \cdot \mathbb{E}X_{n-1} + \mu^2 \cdot \mathbb{E}X_{n-1}^2,$$

根据 $\operatorname{Var} X_n = \mathbb{E} X_n^2 - (\mathbb{E} X_n)^2 = \mathbb{E} X_n^2 - \mu^{2n}$ 得

$$\operatorname{Var} X_n = \sigma^2 \mu^{n-1} + \mu^2 \cdot \mathbb{E} X_{n-1}^2 - \mu^{2n} = \sigma^2 \mu^{n-1} + \mu^2 \cdot \operatorname{Var} X_{n-1},$$

并且 $Var X_0 = 0$, 根据上式递推得

$$\operatorname{Var} X_n = \begin{cases} \sigma^2 \mu^{n-1} \cdot \frac{\mu^n - 1}{\mu - 1}, & \mu \neq 1, \\ n\sigma^2, & \mu = 1. \end{cases}$$

设 T_0 为首达 0 的时刻,接下来对 $\mathbb{P}(T_0 < \infty)$ 感兴趣,也即灭绝概率.此时

$$\mathbb{P}(T_0 < \infty | X_0 = i) = (\mathbb{P}(T_0 < \infty | X_0 = 1))^i$$

从而我们只需要计算在 $X_0 = 1$ 的条件下, $T_0 < \infty$ 的概率. 计算得

$$\rho = \mathbb{P}(T_0 < \infty, X_0 = 1)
= \sum_{i=0}^{\infty} \mathbb{P}(T_0 < \infty, X_1 = i | X_0 = 1)
= \sum_{i=0}^{\infty} \mathbb{P}(T_0 < \infty | X_1 = i, X_0 = 1) \mathbb{P}(X_1 = i | X_0 = 1)
= \sum_{i=0}^{\infty} \mathbb{P}(T_0 < \infty | X_1 = i) \mathbb{P}(X_1 = i | X_0 = 1)
= \sum_{i=0}^{\infty} \rho^i p_i,$$

其中 $p_i = \mathbb{P}(X_1 = i | X_0 = 1)$, 上式为关于 ρ 的方程, 且 $\rho = 1$ 是一个平凡解. 记

$$f(\rho) = \sum_{i=0}^{\infty} p_i \rho^i, \quad 0 \le \rho \le 1,$$

则

$$f'(\rho) = \sum_{i=1}^{\infty} i p_i \rho^{i-1}, \quad f''(\rho) = \sum_{i=2}^{\infty} i(i-1) p_i \rho^{i-2} > 0,$$

从而 f 是严格凸函数, 又 $f'(1) = \sum_{i=1}^{\infty} i p_i = \mu$, 以下画图进行讨论.

- (1) 若 $\mu = f'(1) \le 1$, 则 $\rho = 1$ 为 $f(\rho) = \rho$ 的唯一解;
- (2) 若 $\mu = f'(1) > 1$, 则 $f(\rho) = \rho$ 在 (0,1) 内还有一解 ρ_0 .

对上面的过程进行整理,即可得到以下定理.

定理 4.19

对于一个简单分支过程,设开始有 i 个粒子, 一个粒子的裂变分布为

$$\mathbb{P}(\xi = k) = p_k, \quad k = 0, 1, 2, \dots$$

令 $\mu = \mathbb{E}\xi$, 则灭绝概率 $\rho_{i,0} = \rho^i$, 其中

$$\rho = \rho_{1,0} = \begin{cases} 1, & \mu \le 1, \\ \rho_0, & \mu > 1, \end{cases}$$

其中 ρ_0 为方程 $\rho = \sum_{k=0}^{\infty} p_k \rho^k$ 在 (0,1) 内的唯一交点.

4.7 课后习题

问题 4.1 设 I 是状态空间, $A, A_j \subset I, j = 0, 1, 2, \cdots$, 用 (1) 和 (2) 推导 (3) 和 (4).

- (1) 已知 $X_n = i$ 的情况下, 将来 $(X_m : m \ge n + 1)$ 与过去 $(X_j : j \le n 1)$ 独立;
- (2) $\mathbb{P}(X_{n+k} = j | X_n = i) = \mathbb{P}(X_k = j, X_0 = i);$
- (3) $\mathbb{P}(X_{n+k}=j|X_n=i,X_{n-1}\in A_{n-1},\cdots,X_0\in A_0)=\mathbb{P}(X_k=j|X_0=i);$
- (4) $\mathbb{P}(X_{n+k} \in A | X_n = i, X_{n-1} \in A_{n-1}, \dots, X_0 \in A_0) = \mathbb{P}(X_k \in A | X_0 = i);$

问题 **4.2** 对 $n \ge 0, k \ge 1, \xi_{n,k}$ 是取非负整数值的独立同分布随机变量. X_0 是取正整数值的随机变量,与 $\{\xi_{n,k}\}$ 独立,定义

$$X_{n+1} = \sum_{k=1}^{X_n} \xi_{n,k}, \quad n \ge 0,$$

证明 $\{X_n\}$ 是 Markov 链, 并且当 $X_0 = 1$ 时, 计算 $\mathbb{E}X_n$.

问题 4.3 对于固定的 j, 证明 $M(n) = \max\{p_{ij}^{(n)} | i \in I\}$ 关于 n 单调不增.

问题 4.4 设 I = {1,2,3}, 转移矩阵

$$\mathbf{P} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4}\\ 0 & \frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

对每个状态进行分类.

问题 4.5 探讨 Markov 链 $\{X_n\}$ 的转移矩阵 P 各行向量相同的充分必要条件.

问题 **4.6** 一只蜘蛛在座钟的 12 个数字上做随机游动,每次以概率 p 顺时针走一步,以概率 q 逆时针走一步,用 X_n 表示 n 时蜘蛛的位置.

- (1) 说明 $\{X_n\}$ 是 Markov 链, 写出转移矩阵, 计算平稳不变分布;
- (2) 给出 $\{X_n\}$ 存在可逆分布的条件, 求可逆分布.

问题 **4.7** 对于分支过程计算群体灭绝概率 ρ_0 , 其中 $p_0 = 0.2$, $p_1 = 0.3$, $p_2 = 0.5$.

问题 **4.8** 设 $\xi \sim \mathcal{B}(2,p)$. 分支过程中每个粒子分裂成的后代数是来自总体 ξ 的随机变量, 当 $X_0 = 1$ 时, 计算

- (1) 群体灭绝的概率;
- (2) 群体恰在第2代灭绝的概率;
- (3) 如果 $X_0 \sim P(\mu), p > 0.5$, 计算群体最终灭绝的概率.

第5章 连续时间 Markov 链

在本节中, Markov 链指的是连续时间 Markov 链,

5.1 Markov 链与 Poisson 过程

5.1.1 Markov 链的定义

上一节中所讨论的是离散时间 Markov 链, 在这里给出连续时间 Markov 链的定义.

定义 5.1 (连续时间 Markov 链)

设 I 是状态空间, $\{X(t), t \geq 0\}$ 是以 I 为状态空间的一个随机过程, 对任意的正整数 $n, t_0 < t_1 < \cdots < t_{n+1}$ 以及状态 $i, j, i_{n-1}, \cdots, i_0 \in I$, 有

$$\mathbb{P}(X(t_{n+1})=j|X(t_n)=i,X(t_{n-1})=i_{n-1},\cdots,X(t_0)=t_0)=\mathbb{P}(X(t_{n+1})=j|X(t_n)=i),$$

则称 $\{X(t)\}$ 是连续时间离散状态的 Markov 链, 简称连续时间 Markov 链.

上述定义和离散时间 Markov 链是类似的. 若 $\{X(t)\}$ 还具有时齐性. 也即

$$\mathbb{P}(X(t+s) = j | X(s) = i) = \mathbb{P}(X(t) = j | X(0) = i),$$

则可记上述概率为 $p_{ij}(t)$, 其中 t 表示间隔时间. 以下我们讨论的 Markov 链都是时齐的. 另外, Markov 性还可以用

$$\mathbb{P}(X(t_{n+1}) = j | X(t_n) = i, X(t') = i', t' \in [0, t_n)) = \mathbb{P}(X(t_{n+1}) = j | X(t_n) = i)$$

来刻画.

对于 $\{X(t)\}$ 和 $p_{ii}(t)$, 有如下的性质.

(1)
$$0 \le p_{ij}(t) \le 1, \forall i, j \in I, t \ge 0, \mathbb{H} \sum_{i \in I} p_{ij}(t) = 1, t \ge 0;$$

- (2) 己知 $\{X(t) = i\}$ 的条件下, $\{X(u), 0 \le u < t\}$ 与 $\{X(v), v > t\}$ 独立;
- (3) Kolmogorov-Chapman 方程, 也即

$$p_{ij}(t+s) = \sum_{k \in I} p_{ik}(t) p_{kj}(s), \quad t, s \ge 0.$$

为了方便, 记转移概率矩阵 $P(t) = (p_{ij}(t))_{i,j \in I}$, 则 P(t+s) = P(t)P(s);

(4) 考虑 $\{X(t)\}$ 的有限维分布, 在给定 $X(0) = i_0$ 的条件下,

$$\mathbb{P}(X(t_1) = i_1, X(t_2) = i_2, \cdots, X(t_n) = i_n | X(0) = i_0)$$

$$= p_{i_0 i_1}(t_1) p_{i_1 i_2}(t_2 - t_1) \cdots p_{i_{n-1}, i_n}(t_n - t_{n-1}),$$

从而 $\{X(t)\}$ 的有限维分布

$$\mathbb{P}(X(t_1) = i_1, X(t_2) = i_2, \cdots, X(t_n) = i_n)$$

$$= \sum_{k \in I} \mathbb{P}(X(0) = k) p_{i_0 i_1}(t_1) p_{i_1 i_2}(t_2 - t_1) \cdots p_{i_{n-1}, i_n}(t_n - t_{n-1}).$$

特别地, 当 $t_{i+1} - t_i = a$ 时, 有

$$\mathbb{P}(X(a) = i, X(2a) = i, \dots, X(na) = i | X(0) = i) = [p_{ii}(a)]^n;$$

(5) 考虑 X(t) 的分布, 设 X(0) 的分布与 X(t) 的分布

$$\pi(0) = (\mathbb{P}(X(0) = i))_{i \in I}, \quad \pi(t) = (\mathbb{P}(X(t) = i))_{i \in I},$$

转移概率矩阵为 P(t), 则 X(t) 的分布 $\pi(t) = \pi(0)P(t)$, 此即说明 X(t) 的分布由 X(0) 的分布和 P(t) 唯一决定:

(6) 对于 P(t) 中的元素, 有

$$p_{ij}(t+s) \ge p_{ik}(t)p_{kj}(s),$$

特别地当 i = j = k 时, 有 $p_{jj}(t+s) \ge p_{jj}(t)p_{jj}(s)$, 并且 $p_{j}j(t) \ge p_{jj}^n\left(\frac{t}{n}\right)$.

5.1.2 Poisson 过程是连续时间 Markov 链

设 $\{N(t)\}$ 是强度为 λ 的 Poisson 过程, 则对 $s,t \geq 0$, 有 $\mathbb{P}(N(s,s+t]=k)=\frac{(\lambda t)^k}{k!}\cdot e^{-\lambda}$. 为了验证 Markov 性与时齐性, 计算得

$$\mathbb{P}(N(t_{n+1}) = j | N(t_n) = i, N(t_{n-1}) = i_{n-1}, \dots, N(t_0) = i_0)
= \mathbb{P}(N(t_{n-1}, t_n] = j - i | N(t_n) = i, N(t_{n-1}) = i_{n-1}, \dots, N(t_0) = i_0)
= \mathbb{P}(N(t_{n-1}, t_n] = j - i)
= \frac{\lambda(t_{n+1} - t_n)^{j-i}}{(j-i)!} \cdot e^{-\lambda(t_{n+1} - t_n)}
= \mathbb{P}(N(t_{n+1}) = j | N(t_n) = i),$$

从而 Poisson 过程是连续时间 Markov 链. 以下, Poisson 过程也用 $\{X(t), t \geq 0\}$ 表示. 对于 Poisson 过程 $\{X(t)\}$, 其具有以下特殊的性质.

- (1) 初始分布 $\mathbb{P}(X(0) = 0) = 1$, $\mathbb{P}(X(0) = i) = 0 (i \neq 0)$;
- (2) 概率转移矩阵中的元素

$$p_{ij}(t) = \mathbb{P}(X(t+s) - X(s) = j - i) = \begin{cases} \frac{(\lambda t)^{j-i}}{(j-i)!} \cdot e^{-\lambda t}, & j \ge i, \\ 0, & i < j, \end{cases}$$
 $t \ge 0.$

特别地,

$$p_{ij}(0) = \mathbb{P}(X(0) = j | X(0) = i) = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

接下来, 我们尝试求出 $p_{ij}(t)$ 在 0 处的导数. 若 j < i, 则 $p_{ij}(t) = 0$, 从而 $p'_{ij}(0) = 0$; 若 j = i, 则 $p_{ij}(0) = 1$, 从而

$$p'_{ij}(0) = \lim_{t \to 0^+} \frac{e^{-\lambda t} - 1}{t} = -\lambda;$$

若 j > i, 则

$$p'_{ij}(0) = \lim_{t \to 0^+} \frac{\frac{(\lambda t)^{j-i}}{(j-i)!} \cdot e^{-\lambda t}}{t} = \begin{cases} \lambda, & j = i+1, \\ 0, & j > i+1. \end{cases}$$

记 $q_{ij}=p'_{ij}(0), \boldsymbol{Q}=(q_{ij})_{i,j\in I},$ 则

$$\boldsymbol{Q} = -\lambda \begin{bmatrix} 1 & -1 & 0 & \cdots \\ 0 & 1 & -1 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \implies \boldsymbol{Q}^{k} = (-\lambda)^{k} \begin{bmatrix} k & -k & \frac{k(k-1)}{2} & \cdots \\ 0 & k & -k & \cdots \\ 0 & 0 & k & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix},$$

其中 $\mathbf{Q}^k = (q_{ij}^{(k)})_{i,j \in I}$, 且 $q_{ij}^{(k)} = (-\lambda)^k (-1)^{j-i} \binom{k}{j-i}$, 为了方便, 定义当 j-i < 0 或 j-i > k 时, $\binom{k}{j-i} = 0$.

 $q_{ij}^{(k)}$ 的表达式可以用数学归纳法证明. 假设 $q_{ii}^{(k)}$ 由上式给出,则

$$q_{ij}^{(k+1)} = (-\lambda)^k \left[0, 0, \cdots, \binom{k}{0}, -\binom{k}{1}, \binom{k}{2}, \cdots \right] \begin{bmatrix} 0 \\ 0 \\ \vdots \\ -1 \\ 1 \\ 0 \\ \vdots \end{bmatrix}.$$

若 i > j, 则 $q_{ij}^{(k+1)} = 0$; 若 $i \leq j$, 则

$$\begin{split} q_{ij}^{(k+1)} &= (-\lambda)^k (-1) \cdot \binom{k}{j-1-i} (-1)^{j-1-i} + (-\lambda)^k \binom{k}{j-i} (-1)^{j-i} \\ &= (-\lambda)^k (-1)^{j-1} \binom{k+1}{j-i}. \end{split}$$

综合以上过程即可说明 $q_{ij}^{(k)}=(-\lambda)^k(-1)^{j-i}\binom{k}{j-i}, k\geq 1$. 以下, 为了进一步建立 ${\pmb P}$ 与 ${\pmb Q}$

的关系,考虑级数

$$\begin{split} \sum_{k=0}^{\infty} q_{ij}^{(k)} \cdot \frac{t^k}{k!} &= \sum_{k=j-1}^{\infty} \binom{k}{j-i} (-1)^{j-1} \cdot \frac{(-\lambda t)^k}{k!} \\ &= \frac{(\lambda t)^{j-i}}{(j-i)!} \cdot \sum_{k=j-i}^{\infty} \frac{1}{(k-(j-i))!} \cdot (-\lambda t)^{k-(j-i)} \\ &= \frac{(\lambda t)^{j-i}}{(j-i)!} \cdot e^{-\lambda t} \\ &= p_{ij}(t), \end{split}$$

右边正是我们的转移概率,将上式写成矩阵形式得

$$\boldsymbol{P}(t) = \sum_{k=0}^{\infty} \boldsymbol{Q}^k \cdot \frac{t^k}{k!} = e^{\boldsymbol{Q}t}.$$

上面的矩阵 Q 被称为转移概率矩阵, 这将在下一节中介绍.

5.2 Markov 链的转移概率矩阵

5.2.1 规则 Markov 链与保守 Markov 链

定义 5.2 (规则 Markov 链)

在概率 1 的意义下, 若 Markov 链 $\{X(t)\}$ 在任何有限时间内只能转移有限次, 则称其为规则 Markov 链.

可以看出, 规则 Markov 链的轨迹是右连续的阶梯函数. 以下我们讨论的 Markov 链都是规则 Markov 链.

定理 5.1

设 I 是状态空间, $\{X_n\}$ 是 Markov 链.

- (1) $p_{ij}(t)$ 在 t = 0 处连续, 也即 $\lim_{t \to 0^+} p_{ij}(t) = p_{ij}(0) = \delta_{ij}$;
- (2) $p_{ij}(t)$ 在 $[0,+\infty)$ 上一致连续, 且

$$\sum_{i \in I} |p_{ij}(t+h) - p_{ij}(t)| \le 2(1 - p_{ii}(h));$$

- (3) 对于 $t \ge 0$, $p_{ii}(t) > 0$;
- (4) $p_{ii}(t)$ 在 t = 0 处有右导数, 也即

$$\lim_{t \to 0^+} \frac{p_{ij}(t) - p_{ij}(0)}{t} = q_{ij};$$

(5) 对于
$$i \in I$$
, $\sum_{j\neq i} q_{ij} \leq |q_{ii}|$.

 \Diamond

定理 5.2

设 I 是状态空间, $\{X_n\}$ 是 Markov 链, 定义 $q_i = -q_{ii}$.

(1) 若
$$q_i = 0$$
, 则对所有的 $t \ge 0$, $p_{ii} = 1$;
(2) $q_i = \sup_{t>0} \frac{1 - p_{ii}(t)}{t}$.

在以上的结果的基础上, 称 $Q = (q_{ij})_{i,j \in I}$ 为转移速率矩阵或强度矩阵. 考虑到 Q 其 实是 P(t) 在 0 处的导数, 因此 Q 可以称为无穷小矩阵. 在 Q 的定义下, 给出保守 Markov 链的定义.

定义 5.3 (保守 Markov 链)

如果 Markov 链 $\{X(t)\}$ 的转移速率矩阵满足

$$\sum_{j\neq i} q_{ij} = |q_{ii}| < \infty, \quad \forall i \in I,$$

则称其为保守 Markov 链.

可以说, 至今在实际应用中见到的 Markov 链都是保守的. 事实上, 根据 $q_{ii} = p'_{ii}(0) \le$ 0 得

$$\sum_{j\neq i}q_{ij}=|q_{ii}|\iff \sum_{j\in I}q_{ij}=0.$$

对于有限状态 Markov 链, 若 $|q_{ii}| < \infty$, 则其一定是保守的, 这是因为

$$\sum_{i \in I} q_{ij} = \sum_{i \in I} \lim_{h \to 0^+} \frac{p_{ij}(h) - p_{ij}(0)}{h} = \lim_{h \to 0^+} \sum_{i \in I} \frac{p_{ij}(h) - p_{ij}(0)}{h} = 0.$$

例 5.1 设 X(t) = 1 表示 t 时刻占用, X(t) = 0 表示 t 时刻未占用, 转移矩阵

$$\mathbf{P}(t) = \begin{bmatrix} \frac{1 + 7e^{-8t}}{8} & \frac{7 - 7e^{-8t}}{8} \\ \frac{1 - e^{-8t}}{8} & \frac{7 + e^{-8t}}{8} \end{bmatrix}$$

且初始分布 $\mathbb{P}(X(0) = 0) = 0.1, \mathbb{P}(X(0) = 1) = 0.9.$ 求:

- (1) P(0);
- (2) $\mathbb{P}(X(0.2) = 0)$, $\mathbb{P}(X(0.2) = 0|X(0) = 0)$, $\mathbb{P}(X(0.1) = 0, X(0.6) = 1, X(1.1) = 0)$, $\mathbb{P}(X(0.1) = 0, X(0.6) = 1, X(1.1) = 0 | X(0) = 0);$
- (3) *t* 时刻的一维分布;
- (4) 转移速率矩阵 Q 是否保守?

解答 (1) 代入 t=0 得

$$\boldsymbol{P}(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \boldsymbol{I}.$$

(2) 先设 X(0) = 0, 则

$$\mathbb{P}(X(0.2) = 0 | X(0) = 0) = p_{00}(0.2) = \frac{1 + 7e^{-1.6}}{8} \approx 0.3017,$$

同理可以求出

$$\mathbb{P}(X(0.2) = 0 | X(0) = 1) = p_{10}(0.2) = \frac{1 - e^{-1.6}}{8} \approx 0.0998,$$

从而根据全概率公式得

$$\mathbb{P}(X(0.2) = 0) = \sum_{k \in \{0,1\}} \mathbb{P}(X(0.2) = 0 | X(0) = k) \mathbb{P}(X(0) = k)$$
$$= \frac{5 - e^{-1.6}}{40}$$
$$\approx 0.1200.$$

另外, 先设 X(0) = 0, 则

$$\mathbb{P}(X(0.1) = 0, X(0.6) = 1, X(1.1) = 0 | X(0) = 0)$$

$$= p_{00}(0.1)p_{01}(0.6 - 0.1)p_{10}(1.1 - 0.6)$$

$$= \frac{1 + 7e^{-0.8}}{8} \cdot \frac{7 - 7e^{-4}}{8} \cdot \frac{1 - e^{-4}}{8}$$

$$\approx 0.0546,$$

同理可以求出

$$\mathbb{P}(X(0.1) = 0, X(0.6) = 1, X(1.1) = 0 | X(0) = 1)$$

$$= p_{10}(0.1)p_{01}(0.6 - 0.1)p_{10}(1.1 - 0.6)$$

$$= \frac{1 - e^{-0.8}}{8} \cdot \frac{7 - 7e^{-4}}{8} \cdot \frac{1 - e^{-4}}{8}$$

$$\approx 0.0073.$$

从而根据全概率公式得

$$\mathbb{P}(X(0.2) = 0) = \sum_{k \in \{0,1\}} \mathbb{P}(X(0.1) = 0, X(0.6) = 1, X(1.1) = 0 | X(0) = k) \mathbb{P}(X(0) = k)$$

$$\approx 0.0120.$$

(3) 计算得

$$\begin{split} \mathbb{P}(X(t) = 0) &= \sum_{k \in \{0,1\}} \mathbb{P}(X(t) = 0 | X(0) = k) \mathbb{P}(X(0) = k) \\ &= 0.1 p_{00}(t) + 0.9 p_{10}(t) \\ &= \frac{5 - e^{-8t}}{40}, \end{split}$$

同理

$$\mathbb{P}(X(t) = 1) = 0.1p_{01}(t) + 0.9p_{11}(t) = \frac{35 + 2e^{-8t}}{40},$$

因此
$$X(t)$$
 的分布为 $\left(\frac{5-e^{-8t}}{40}, \frac{35+2e^{-8t}}{40}\right)$.

(4) 此时

$$\mathbf{Q} = \mathbf{P}'(0) = \begin{bmatrix} -7 & 7 \\ 1 & -1 \end{bmatrix},$$

注意到 Q 的行和都是 0, 因此 $\{X(t)\}$ 是保守 Markov 链.

5.2.2 Kolmogorov 方程

接下来, 我们尝试探索 P(t) 与 Q 之间的关系. 在上一节中, 对于 Poisson 过程, 我们发现 $P(t) = \exp(Qt)$. 对于一般的 Markov 链, 该性质是否仍然成立呢? 定理5.3建立了 P(t) 与 Q 之间的关系.

定理 5.3 (Kolmogorov 方程)

设 $\{X(t)\}$ 是 Markov 链, P(t) 是其转移矩阵, Q 是其转移速率矩阵, 则有

(1) Kolmogorov 向前方程:

$$\begin{cases} p'_{ij}(t) = \sum_{k \in I} q_{ik} p_{kj}(t), \\ \mathbf{P'}(t) = \mathbf{P}(t)\mathbf{Q}; \end{cases}$$

(2) Kolmogorov 向后方程:

$$\begin{cases} p'_{ij}(t) = \sum_{k \in I} p_{kj}(t)q_{ik}, \\ P'(t) = QP(t). \end{cases}$$

证明 根据 Kolmogorov-Chapman 方程, 我们知道

$$p_{ij}(t+s) = \sum_{k \in I} p_{ik}(t) p_{kj}(s) = p_{ij}(t) p_{jj}(s) + \sum_{k \neq j} p_{ik}(t) p_{kj}(s).$$

对于上式中的 $p_{ii}(s)$, 当 $s \to 0$ 时, 有

$$p_{jj}(s) = p_{jj}(0) + p'_{jj}(0) \cdot s + o(s) = 1 + q_{jj}(0) \cdot s + o(s);$$

而当 $k \neq j$ 时, 当 $s \rightarrow 0$ 时, 有

$$p_{kj}(s) = p_{kj}(0) + p'_{kj}(0) \cdot s + o(s) = q_{kj} \cdot s + o(s).$$

综合以上结果,代入 Kolmogorov-Chapman 方程得

$$p_{ij}(t+s) = p_{ij}(t) + \sum_{k \in I} p_{ik}(t)q_{kj} \cdot s + o(s),$$

对上式整理得

$$\frac{p_{ij}(t+s) - p_{ij}(t)}{s} = \sum_{k \in I} p_{ik}(t)q_{kj} + \frac{o(s)}{s}$$
$$p'_{ij}(t) = \lim_{s \to 0} \frac{p_{ij}(t+s) - p_{ij}(t)}{s} = \sum_{k \in I} p_{ik}(t)q_{kj},$$

将上式改写为矩阵形式得 P'(t) = P(t)Q, 此即 Kolmogorov 向前方程; 另外, 还可以证明

$$p'_{ij}(t) = \sum_{k \in I} q_{ik} p_{kj}(t),$$

将上式改写为矩阵形式得 P'(t) = QP(t), 此即 Kolmogorov 向后方程.

另外,对于分布而言,还可以得到如下的方程.

定理 5.4 (Fokker-Plank 方程)

设 $\{X(t)\}$ 的初始分布为 $\pi(0)$, t 时刻的分布为 $\pi(t)$, 则 $\pi'(t) = \pi(t)Q$.

证明 根据 $\pi(t) = \pi(0)P(t)$, 结合定理5.3得

$$\pi'(t) = \pi(0)P'(t) = \pi(0)QP(t) = \pi(0)P(t)Q = \pi(t)Q,$$

从而 $\pi'(t) = \pi(t)Q$.

对于 Poisson 过程而言, 我们知道 P(t) 和 Q 可以通过指数函数联系在一起. 然而, 一般的 Markov 过程并不能得到这样的关系. 如果我们限制 Markov 链是有限状态的 Markov 链的话, 应用定理5.3, 可以得到如下结果.

定理 5.5

有限状态 Markov 链 $\{X(t)\}$ 的转移概率矩阵 P(t) 由转移速率矩阵 Q 唯一决定, 且

$$P(t) = \exp(\mathbf{Q}t) = \sum_{k=0}^{\infty} \frac{(t\mathbf{Q})^k}{k!}.$$

以下是一个有限状态 Markov 链的例子.

例 5.2 设 $\{X(t), t \geq 0\}$ 是 Markov 链, 状态空间 $I = \{1, 2, \dots, m\}$, 且

$$q_{ij} = \begin{cases} -(m-1), & i = j, \\ 1, & i \neq j. \end{cases}$$

求 $p_{ij}(t)$.

解答 根据 Kolmogorov 方程得

$$\begin{split} p'_{ij}(t) &= \sum_{k \in I} p_{ik}(t) q_{kj} \\ &= \sum_{k \neq j} p_{ik}(t) - (m-1) p_{ij}(t) \\ &= 1 - p_{ij}(t) - (m-1) p_{ij}(t) \\ &= 1 - m p_{ij}(t), \end{split}$$

解微分方程 $p'_{ij}(t) = 1 - mp_{ij}(t)$ 得

$$p_{ij}(t) = \begin{cases} \frac{1 + (m-1)e^{-mt}}{m}, & i = j, \\ \frac{1 - e^{-mt}}{m}, & i \neq j. \end{cases}$$

另外,也可以尝试根据定理5.5求解.

5.3 Markov 链的结构

在连续时间 Markov 链的转移矩阵 P(t) 中, 有

$$p_{ij}(t) = \mathbb{P}(X(s+t) = j|X(s) = i) = \mathbb{P}(X(t) = j|X(0) = i).$$

类比离散时间 Markov 链, 我们在此研究连续时间 Markov 链的结构.

定理 5.6

设 $\{X(t)\}$ 是 Markov 链, $q_i = |q_{ii}|, t, h > 0$.

- (1) $\mathbb{P}(X(t+h) = j|X(u) = i, u \in [0, t]) = p_{ij}(h);$
- (2) $\mathbb{P}(X(u) = i, u \in [0, t] | X(0) = i) = e^{-q_i t}$.

证明 (1) 根据 Markov 链的定义得

$$\mathbb{P}(X(t+h) = j | X(u) = i, u \in [0,t]) = \mathbb{P}(X(t+h) = j | X(t) = i) = p_{ij}(h).$$

(2) 若 $q_i = 0$, 则以上概率为 1; 若 $q_i > 0$, 考虑将区间 [0,t] 离散化. 令

$$\begin{cases} B_n = \left\{ \frac{jt}{2^n}, 1 \le j \le 2^n \right\}, \\ A_n = (X(u) = i, u \in B_n), \end{cases}$$

则 $\{B_n\}$ 单调递增, $\{A_n\}$ 单调递减, $\{B_n\}$ 在 [0,t] 上稠密. 且 X(t) 的轨迹是右连续的阶梯函数, 从而

$$\bigcap_{n=1}^{\infty} A_n = (X(u) = i, u \in [0, t]),$$

因此

$$\mathbb{P}(X(u) = i, u \in [0, t] | X(0) = i) = \mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n \middle| X(0) = i\right)$$
$$= \lim_{n \to \infty} \mathbb{P}(A_n | X(0) = i)$$
$$= \lim_{n \to \infty} \left(p_{ii} \left(\frac{t}{2^n}\right)\right)^{2^n},$$

其中 $p_{ii}\left(\frac{t}{2^n}\right) = 1 - q_i \cdot \frac{t}{2^n} + o\left(\frac{t}{2^n}\right)$, 因此 $\mathbb{P}(X(u) = i, u \in [0, t] | X(0) = i) = e^{-q_i t}$.

设 $\{X(t)\}$ 是 Markov 链, $q_i = |q_{ii}|$, τ 表示质点在状态 i 的停留时间.

- (1) $\mathbb{P}(\tau > t | X(0) = i) = e^{-q_i t};$ (2) $\mathbb{E}(\tau | X(0) = i) = \frac{1}{q_i};$
- (3) $\mbox{$\stackrel{\cdot}{\exists}$ $j \neq i$ t, $\mathbb{P}(X(\tau) = j, \tau \leq t | X(0) = i)$ = $\frac{q_{ij}}{q_i}(1 e^{-q_i t})$;}$ (4) $\mbox{$\stackrel{\cdot}{\exists}$ $j \neq i$ t, $\mathbb{P}(X(\tau) = j | X(0) = i)$ = $\frac{q_{ij}}{q_i}$;}$
- (5) 在 X(0) = i 的条件下, τ 和 $X(\tau)$ 独立;
- (6) 当所有的 q_i < ∞ 时, {X(t)} 是保守的.

证明 (1) 计算得

$$\mathbb{P}(\tau > t | X(0) = i) = \mathbb{P}(X(u) = i, u \in [0, t] | X(0) = i) = e^{-q_i t}$$

(2) 对(1) 中的结果取期望得

$$\mathbb{E}(\tau|X(0)=i) = \int_0^\infty \mathbb{P}(\tau > t|X(0)=i) dt = \frac{1}{q_i}.$$

(3) 为了计算出 $\mathbb{P}(X(\tau) = j, \tau \le t | X(0) = i)$, 首先考虑 $\mathbb{P}(X(\tau) = j, \tau = s | X(0) = i)$, 其 表示在 [0,s) 上都停留在 i 状态, 但是在 s 之后转移到了 i 状态. 采取类似之前的方法对 [0,s) 进行划分,令

$$\begin{cases} B_n = \left\{ \frac{j}{2^n}, 1 \le j \le 2^n - 1 \right\}, \\ A_n = (X(u) = i, u \in B_n), \end{cases}$$

则 $\{B_n\}$ 单调递增, $\{A_n\}$ 单调递减, $\{B_n\}$ 在 [0,s) 上稠密, 并且

$$\bigcap_{n=1}^{\infty} A_n = (X(u) = i, u \in [0, s)).$$

因此

$$\mathbb{P}(X(\tau) = j, \tau = s | X(0) = i) = \mathbb{P}(X(t) = i, t \in [0, s), X(s) = j | X(0) = i)$$

$$= \mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n, X(s) = j \middle| X(0) = i\right)$$

$$= \mathbb{P}\left(X(s) = j \middle| \bigcap_{n=1}^{\infty} A_n, X(0) = i\right) \cdot \mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n \middle| X(0) = i\right)$$

$$= \lim_{n \to \infty} \mathbb{P}\left(X(s) = j \middle| X\left(\frac{2^n - 1}{2^n} \cdot s\right) = i\right) \cdot \mathbb{P}(A_n | X(0) = i)$$

$$= q_{ij} \cdot e^{-q_i s} \cdot ds,$$

其中

$$\mathbb{P}\left(X(s) = j \middle| X\left(\frac{2^n - 1}{2^n}\right)\right) = p_{ij}\left(\frac{s}{2^n}\right)$$
$$= p_{ij}(0) + p'_{ij}(0) \cdot \frac{s}{2^n} + o\left(\frac{s}{2^n}\right)$$
$$= q_{ij} \cdot ds,$$

最后得到

$$\mathbb{P}(X(\tau) = j, \tau \le t | X(0) = i) = \int_0^t q_{ij} e^{-q_i s} ds = \frac{q_{ij}}{q_i} (1 - e^{-q_i t}).$$

$$\mathbb{P}(X(\tau) = j | X(0) = i) = \frac{q_{ij}}{q_i}.$$

(5) 根据

$$\mathbb{P}(X(\tau) = j, \tau \le t | X(0) = i) = \frac{q_{ij}}{q_i} \cdot \left(1 - e^{-q_i t}\right)$$
$$= \mathbb{P}(X(\tau) = j | X(0) = i) \cdot \mathbb{P}(\tau \le t | X(0) = i),$$

因此 $X(\tau)$ 与 τ 独立.

(6) 根据 $q_i < \infty$, 有

$$\sum_{j\neq i} \frac{q_{ij}}{q_i} = 1 \implies \sum_{j\neq i} q_{ij} = q_i = |q_{ii}|,$$

因此 $\{X(t)\}$ 是保守的.

考虑从初始状态开始的停留时间 τ .

- $\tau_0 = 0$, 对应的状态为 $X(\tau_0)$;
- $\tau_1 = \inf \{ X(t) \neq X(\tau_0), \tau_1 \geq \tau_0 \}$ 表示首次从状态 $X(\tau_0)$ 转出的时间, 对应的状态为 $X(\tau_1)$;
- $\tau_2 = \inf \{ X(t) \neq X(\tau_1), \tau_2 \geq \tau_1 \}$ 表示首次从状态 $X(\tau_1)$ 转出的时间, 对应的状态为 $X(\tau_2)$;
- · · · .

对于上面所定义的 $\tau_0, \tau_1, \tau_2, \cdots$, 令

$$X_n = X(\tau_n),$$

则 $\{X_n\}$ 是离散时间 Markov 链. 考虑 $\{X_n\}$ 的转移矩阵 $K = (k_{ij})_{i,j \in I}$, 则有

$$k_{ij} = \begin{cases} \frac{q_{ij}}{q_i}, & q_i \neq 0, j \neq i, \\ 0, & q_i \neq 0, j = i, \\ \delta_{ij}, & q_i = 0. \end{cases}$$

现在在上面的基础上,对 Markov 链的结构作如下的整理.

- (1) $X_n = X(\tau_n)$ 是以 $K = (k_{ij})_{i,j \in I}$ 为转移矩阵的离散 Markov 链, 称为 $\{X(t), t \geq 0\}$ 的 嵌入链或跳跃链;
- (2) 沿着嵌入链轨迹 $i_0 \rightarrow i_1 \rightarrow i_2 \rightarrow \cdots$, 并设在每个状态的停留时间为 T_0, T_1, \cdots , 则 T_1, T_2, \cdots 相互独立, 且 $T_i \sim \text{Exp}(q_i)$.

为了加深对 Markov 链的结构的理解, 在此考虑一个特殊的 Markov 链的结构, 也即 Poisson 过程.

例 5.3 对于 Poisson 过程 {N(t)} 而言:

$$\mathbf{Q} = (-\lambda) \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \implies \mathbf{K} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix},$$

另外, 根据之前的结论知, Poisson 过程的等待时间间隔 $X_n = S_n - S_{n-1} \sim \operatorname{Exp}(\lambda)$. 从另外一个角度来看, 根据 Poisson 过程是一个计数过程, 可以得到矩阵 K 的形式如上式所示, 再借助 Q 和 K 的关系也可以求出 Q.

例 5.4 设 Markov 链 $\{X(t)\}$ 有转移概率矩阵

$$\mathbf{P}(t) = \frac{1}{5} \begin{bmatrix} 2 + 3e^{-3t} & 1 - e^{-3t} & 2 - 2e^{-3t} \\ 2 - 2e^{-3t} & 1 + 4e^{-3t} & 2 - 2e^{-3t} \\ 2 - 2e^{-3t} & 1 - e^{-3t} & 2 + 3e^{-3t} \end{bmatrix}.$$

- (1) 计算转移速率矩阵 0:
- (2) 计算质点在各状态的平均停留时间;
- (3) 计算嵌入链的一步转移概率矩阵.

解答(1)计算得

$$Q = P'(0) = \frac{1}{5} \begin{bmatrix} -9 & 3 & 6 \\ 6 & -12 & 6 \\ 6 & 3 & -9 \end{bmatrix} = \frac{3}{5} \begin{bmatrix} -3 & 1 & 2 \\ 2 & -4 & 2 \\ 2 & 1 & -3 \end{bmatrix}.$$

(2) 根据
$$\mathbb{E}(\tau|X(0)=i) = \frac{1}{q_i} = \frac{1}{|q_{ii}|}$$
, 得知平均停留时间分别为 $\frac{5}{9}$, $\frac{5}{12}$, $\frac{5}{9}$.

(3) 此时
$$q_i \neq 0$$
, 当 $i \neq j$ 时, $k_{ij} = \frac{q_{ij}}{q_i}$, 而当 $i = j$ 时, $k_{ij} = 0$, 据此写出

$$\mathbf{K} = (k_{ij})_{i,j \in I} = \begin{bmatrix} 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{3} & 0 \end{bmatrix}.$$

5.4 生灭过程

5.4.1 指数分布的性质

在此首先复习指数分布的性质, 设 $Exp(\lambda)$ 是参数为 λ 的指数分布, $t \ge 0$.

首先, 若t 时刻存活的细胞在 (t, t+h] 分裂的概率为 $\lambda h + o(h)$, 则细胞寿命 $T \sim \operatorname{Exp}(\lambda)$. 条件也即

$$\mathbb{P}(t < T \le t + h|T > t) = \lambda h + o(h),$$

因此

$$\mathbb{P}(t < T \le t + h|T > t) = \frac{\mathbb{P}(t < T \le t + h, T > t)}{\mathbb{P}(T > t)}$$
$$= \frac{\mathbb{P}(T > t) - \mathbb{P}(T > t + h)}{\mathbb{P}(T > t)}$$
$$= \lambda h + o(h),$$

令 $\overline{F}(t) = \mathbb{P}(T > t)$, 对上式整理得

$$\frac{\overline{F}(t+h) - \overline{F}(t)}{h} = -\lambda \overline{F}(t) + \frac{o(h)}{h} \implies \overline{F}'(t) = -\lambda \overline{F}(t),$$

又 $\overline{F}(0) = 1$, 解此微分方程得 $\overline{F}(t) = e^{-\lambda t}$, 从而 $T \sim \operatorname{Exp}(\lambda)$.

接下来, 若 t 时刻有 m 个细胞, 对于第 i 个细胞, 其在 (t,t+h] 分裂的概率为 $\lambda_i h + o(h)$, 则从 t 时刻开始, 等待第一次分裂的时间 $T \sim \operatorname{Exp}(\lambda_1 + \lambda_2 + \cdots + \lambda_m)$. 为了验证这一点, 设 T_i 是第 i 个细胞的分裂, 则 T > t \iff $T_i > t$ 对任意的 i 成立, 从而

$$\mathbb{P}(T > t) = \prod_{i=1}^{n} \mathbb{P}(T_i > t) = e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_m)t},$$

从而 $T \sim \text{Exp}(\lambda_1 + \lambda_2 + \cdots + \lambda_m)$.

5.4.2 线性生灭过程

定义 5.4 (线性生灭过程)

设一个t时存活的生物个体在(t,t+h)内的分裂情况与其在t时的年龄无关,并且

- (1) 在 (t, t + h] 内死亡的概率为 $\mu h + o(h)$;
- (2) 在 (t, t+h) 内不死亡也不分裂的概率是 $1 (\lambda + \mu)h + o(h)$;
- (3) 在 (t, t+h] 内分裂一次成为两个个体的概率为 $\lambda h + o(h)$.

用 X(t) 表示 t 时刻生物的总数,则称 $\{X(t)\}$ 为线性生灭过程,并称 μ 和 λ 为生物个体的死亡强度和出生强度.

另外, 考虑个体在 (t, t + h) 内分裂为超过两个个体的概率

$$1 - (\mu h + o(h)) - (1 - (\lambda + \mu)h + o(h)) - (\lambda h + o(h)) = o(h),$$

从而分裂为超过两个个体的概率趋于 0. 接下来探究线性生灭过程 $\{X(t)\}$ 的性质.

- (1) 首先, 根据指数分布的无记忆性, 以及单个个体分裂和死亡的过程与年龄无关, 得知 $\{X(t)\}$ 是 Markov 链.
- (2) 接下来, 考虑该 Markov 链的转移矩阵 P(h) 的元素 $p_{ij}(h)$. 先设 i = 0, 则 $p_{00}(h) = 1$, $p_{0i} = 0$, $j \neq 0$; 再设 $i \neq 0$, 则

$$p_{ii}(h) = (1 - (\lambda + \mu)h + o(h))^{i} + o(h)$$

= 1 - i(\lambda + \mu)h + o(h);

最后设 $i, j \neq 0$, 若 $|j - i| \geq 2$, 则 $p_{ij}(h) = o(h)$, 只需计算 $p_{i,i-1}(h)$ 和 $p_{i,i+1}(h)$, 根据 题目的条件, 容易得到

$$p_{i,i-1}(h) = i(\mu h + o(h))(1 - (\lambda + \mu)h + o(h))^{i-1}$$

= $i\mu h + o(h)$,

同理 $p_{i,i+1}(h) = i\lambda h + o(h)$.

(3) 在 P(h) 的基础上, 考虑转移速率矩阵 Q, 则

$$q_{ij} = \begin{cases} i\mu, & j = i - 1, i \neq 0, \\ -i(\lambda + \mu), & j = i, i \neq 0, \\ i\lambda, & j = i + 1, i \neq 0, \\ 0, & \text{其他情况.} \end{cases}$$

容易验证 Q 的行和为 0, 从而 $\{X(t)\}$ 是保守的.

(4) 在 \boldsymbol{Q} 的基础上, 记 $p = \frac{\lambda}{\lambda + \mu}$, $q = 1 - p = \frac{\mu}{\lambda + \mu}$, 可以得到嵌入链 $\{X_n\}$ 的转移矩阵

$$\mathbf{K} = \begin{bmatrix} 1 & 0 & 0 & \cdots \\ q & 0 & p & \cdots \\ 0 & q & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix},$$

这说明了嵌入链 $\{X_n\}$ 是以 0 为吸收壁的随机游走, 并且我们知道这样的 Markov 链的常返等价类是 $\{0\}$, 非常返等价类是 $\{1,2,\cdots\}$, 从而个体的数量应该会趋于无穷大.

(5) 根据上一节的结论, 我们知道每一个个体的寿命服从 $Exp(\lambda + \mu)$. 设 $\{X_n\}$ 在 i 状态 停留的时间为 T_i , 并记 τ_i 为第 j 个个体的剩余寿命, 则

$$T_i = \min\{\tau_1, \tau_2, \cdots, \tau_i\} \sim \operatorname{Exp}(i(\lambda + \mu)),$$

在此基础上, 还可以得到平均停留时间 $\mathbb{E}T_i = \frac{1}{i(\lambda + \mu)}$.

(6) 考虑 $\{X_n\}$ 的一个轨迹 $j_0 \to j_1 \to j_2 \to \cdots$,根据随机游走的性质得 $j_i \leq j_0 + i$,故

$$\sum_{i=0}^{\infty} \mathbb{E} T_{j_i} = \sum_{i=0}^{\infty} \frac{1}{j_i(\lambda + \mu)} \ge \frac{1}{\lambda + \mu} \cdot \sum_{i=0}^{\infty} \frac{1}{j_0 + i} = \infty,$$

根据指数分布的性质¹ 知 $\mathbb{P}\left(\sum_{i=0}^{\infty}T_{j_i}=\infty\right)$ \iff $\sum_{i=0}^{\infty}\mathbb{E}T_{j_i}=\infty$, 从而嵌入链 $\{X_n\}$ 是规则的.

5.4.3 线性纯生过程

线性纯生过程是线性生灭过程的特例, 此时 $\mu = 0$. 该过程也被叫做 Yule 过程. 在上一节的基础上, 我们得到转移速率矩阵和嵌入链的转移矩阵分别为

$$Q = \begin{bmatrix} 0 & 0 & 0 & \cdots \\ 0 & -\lambda & \lambda & \cdots \\ 0 & 0 & -2\lambda & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \quad K = \begin{bmatrix} 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

沿用上一节中的记号, 此时 T_i 为已知有 i 个生物时, 等待下一次分裂的时间. 记 $S_0 = 0$, S_k 为等待第 k 次分裂的时间, 则

$$S_k = T_1 + T_2 + \cdots + T_k.$$

并且在这里指出,等待第 k 次分裂的时候,共有 k 个个体,也即 $X_n = k$.

¹这是[1]第21页例8.1的内容.

定理 5.8

对于等待时间 S_k , 有

$$\mathbb{P}(S_k \le t | X(0) = 1) = \left(1 - e^{-\lambda t}\right)^k, \quad k \ge 1.$$

证明 记 $\mathbb{P}_1(\cdot) = \mathbb{P}(\cdot|X(0)=1)$, 以下使用数学归纳法完成证明.

当
$$k=1$$
 时, $\mathbb{P}_1(S_1 \leq t) = \mathbb{P}_1(T_1 \leq t) = 1 - \mathrm{e}^{-\lambda t}$.假设 $\mathbb{P}(S_{k-1} \leq t) = \left(1 - \mathrm{e}^{-\lambda t}\right)^{k-1}$,

并且注意到 $S_k = S_{k-1} + T_k$, 其中 S_{k-1} 与 T_k 独立, 且 $T_k \sim \operatorname{Exp}(k\lambda)$, 因此

$$\begin{split} \mathbb{P}_{1}(S_{k} \leq t) &= \mathbb{P}_{1}(S_{k-1} + T_{k} \leq t) \\ &= \int_{0}^{\infty} \mathbb{P}_{1}(S_{k-1} + T_{k} \leq t | T_{k} = s) d\mathbb{P}_{1}(T_{k} \leq s) \\ &= \int_{0}^{\infty} \mathbb{P}_{1}(S_{k-1} \leq t - s) d\mathbb{P}_{1}(T_{k} \leq s) \\ &= \int_{0}^{\infty} \left(1 - e^{-\lambda(t-s)}\right)^{k-1} k \lambda e^{-k\lambda s} ds \\ &= \int_{0}^{\infty} \sum_{l=0}^{k-1} \binom{k-1}{l} (-1)^{l} e^{-\lambda l(t-s)} k \lambda e^{-k\lambda s} ds \\ &= \sum_{l=0}^{k-1} \int_{0}^{\infty} \binom{k-1}{l} (-1)^{l} e^{-\lambda l(t-s)} k \lambda e^{-k\lambda s} ds \\ &= \left(1 - e^{-\lambda t}\right)^{k}, \end{split}$$

结合上式,根据数学归纳法知命题成立.

在命题5.8的基础上, 在 X(0) = 1 的条件下, 考虑转移矩阵 P(t), 则有

$$\begin{aligned} p_{1j}(t) &= \mathbb{P}(X(t) = j | X(0) = 1) \\ &= \mathbb{P}(S_{j-1} < t \le S_j | X(0) = 1) \\ &= \left(1 - e^{-\lambda}\right)^{k-1} - \left(1 - e^{-\lambda}\right)^k \\ &= \left(1 - e^{-\lambda}\right)^{k-1} \cdot e^{-\lambda t}, \end{aligned}$$

若记 $p = e^{-\lambda t}$, q = 1 - p, 则 $p_{1j}(t) \sim \mathcal{G}(p)$. 以下考虑 X(0) = i 的情况, 对于 $1 \le i \le k$, 设 $Y_k(t)$ 为第 k 个个体 t 时刻的后代数, 则 $Y_k(t) \sim \mathcal{G}(e^{-\lambda t})$, 此时 t 时刻生物的总数

$$X(t) = \sum_{k=1}^{i} Y_k(t)$$

则根据几何分布与 Pascal 分布的关系得

$$p_{ij}(t) = \mathbb{P}(X(t) = j | X(0) = i) = \binom{j-1}{i-1} (1 - e^{-\lambda t})^{j-i} (e^{-\lambda t})^{i}.$$

5.4.4 一般生灭过程

以下考虑一般的生灭过程. 设 $\{\lambda_i, i \geq 0\}$ 和 $\{\mu_i, i \geq 0\}$ 是非负数列, $\lambda_i + \mu_i > 0$, $\{X(t)\}$ 是 Markov 链. 且有转移速率矩阵

$$\mathbf{Q} = \begin{bmatrix} -\lambda_0 & \lambda_0 & 0 & 0 & \cdots \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 & \cdots \\ 0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & \cdots \\ 0 & 0 & \mu_3 & -(\lambda_3 + \mu_3) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

设 $\{X_n\}$ 是 $\{X(t)\}$ 的嵌入链, 则其转移矩阵

$$\mathbf{K} = \begin{bmatrix} q_0 & p_0 & 0 & 0 & \cdots \\ q_1 & 0 & p_1 & 0 & \cdots \\ 0 & q_2 & 0 & p_2 & \cdots \\ 0 & 0 & q_3 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix},$$

其中 $p_0 = 1 - q_0$, 且对于 **K** 的第一行, 有

$$q_0 = \begin{cases} 1, & \lambda_0 = 0, \\ 0, & \lambda_0 > 0; \end{cases}$$

而对于第 i 行, $i \ge 1$, 有 $p_i = \frac{\lambda_i}{\lambda_i + \mu_i}$, $q_i = \frac{\mu_i}{\lambda_i + \mu_i}$.

作为生灭过程的例子,我们考虑现实生活中排队的情形,此时包含了三个因素:

- (1) 输入过程;
- (2) 服务时间;
- (3) 服务窗口的个数.

通常用"输入分布/服务时间/窗口个数"来表示一个排队系统.

例 5.5 设某排队系统的顾客按强度为 λ 的 Poisson 流到达, 每个顾客的服务时间服从参数 为 β 的指数分布, 共有 m 个服务的窗口. X(t) 表示 t 时刻系统中的顾客数 (正在服务和排队中的顾客数), 求 {X(t)} 的转移速率矩阵 Q.

解答 首先考虑进的过程. 设 $\{N(t)\}$ 是强度为 λ 的 Poisson 过程, 则

$$\begin{cases} \mathbb{P}(N(t,t+h]=0) = 1 - \lambda h + o(h), \\ \mathbb{P}(N(t,t+h]=1) = \lambda h + o(h), \\ \mathbb{P}(N(t,t+h]\geq 2) = o(h); \end{cases}$$

其次考虑出的过程. 设 $T \sim \text{Exp}(\beta)$,则

$$\begin{cases} \mathbb{P}(T \le h) = 1 - e^{-\beta h} = \beta h + o(h), \\ \mathbb{P}(T > h) = 1 - \beta h + o(h). \end{cases}$$

设在 (t, t+h] 内, 人数从 i 变化到 j, 令 $l = \min\{m, i\}$. 此时进与出超过两个人的概率都为 o(h), 从而只需考虑每次进和出不超过一个人. 计算得

$$p_{ii}(h) = \mathbb{P}(\text{\# 1 in 1}) + \mathbb{P}(\text{\# 0 in 0}) + o(h)$$

$$= (\lambda h + o(h)) \binom{l}{1} (\beta h + o(h)) (1 - \beta h + o(h))^{l-1}$$

$$+ (1 - \lambda h + o(h)) (1 - \beta h + o(h))^{l} + o(h)$$

$$= 1 - (\lambda + l\beta)h + o(h),$$

从而 $q_{ii}=-(\lambda+l\beta)$, 同样地, 还可以得到 $q_{i,i+1}=\lambda$, $q_{i,i-1}=l\beta$. 而对于其他情况, 有 $q_{ij}=0$. 从而

$$\mathbf{Q} = \begin{bmatrix} -l\beta & l\beta & 0 & 0 & \cdots \\ \lambda & -(\lambda + l\beta) & l\beta & 0 & \cdots \\ 0 & \lambda & -(\lambda + l\beta) & l\beta & \cdots \\ 0 & 0 & \lambda & -(\lambda + l\beta) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

在这个基础上,还可以求出嵌入链的转移矩阵 K.

5.5 课后习题

问题 **5.1** 一个 t 时刻存活的生物在 (t, t + h] 内寿终的概率是 $\lambda h + o(h)$, 计算这个生物寿命的生存函数.

问题 5.2t 时刻有 m 个生物独立存活,每个生物在长为 h 的时间内寿终的概率是 $\lambda h + o(h)$. 从 t 时刻开始,用 T_m 表示最早寿终的生物的寿终时间,求 T_m 的分布.

参考文献

- [1] 何书元. 随机过程 [M]. 北京: 北京大学出版社,2008.
- [2] 何书元. 概率论 [M]. 北京: 北京大学出版社,2015.
- [3] 程士宏. 测度论与概率论基础 [M]. 北京: 北京大学出版社,2004.
- [4] Sheldon M. Ross. Stochastic Processes. Wiley,1995.
- [5] 王梓坤. 随机过程论 [M]. 北京: 科学出版社,1965.