Ejercicios de Derivadas (Parte I) Cálculo I (IME002)

Profesores: Mauricio Carrillo, Alex Sepúlveda.

- 1. Considere la función $f(x) = x \sin x$.
 - a) Aplicando la definición de derivada determine f'(x).
 - b) Aplicando las reglas de derivabilidad corrobore el resultado anterior.
 - c) Calcule $f^{(n)}(x)$ para todo $n \in \mathbb{N}$.
- 2. Encuentre las ecuaciones de la recta tangente y recta normal a la curva dada por $f(x) = x^3 + 2x 1$ en x = 1.
- 3. La posición de una particula está descrita por la ecuación $x(t) = 5 4t + 2t^2$ [m] ¿Si en t = 0 inicia su movimiento cuánto tiempo transcurre hasta que la particula se detiene, qué distancia ha recorrido? ¿Cuál es la aceleración a los 10 segundos?.
- 4. Encuentre los valores de las constantes a y b para que la recta tangente a la curva dada por $f(x) = x^2 + ax + b$ en (2,4) sea y = 2x.
- 5. Aplicando las reglas de derivabilidad calcule f'(x).

a)
$$f(x) = \sqrt[5]{\frac{(3x-1)^4}{(3x+1)^3(1-2x)^2}}$$
.

b)
$$f(x) = 3^{2x+1} + \log_2(x^2 + \sin x)$$
.

c)
$$f(x) = (1 + e^x)^{x^2 + \ln x}$$

d)
$$f(x) = (x^3 + 2x + 1)^{50} (x^2 - 3)^{23} (2 - 5x^7)^{54}$$

e)
$$f(x) = \frac{\ln(\tan^6 x^3)}{\cos^3 x^4} + \arctan(1 + e^x) - x^3 \cdot 3^x$$
.

$$f) \ f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}} + e^{\pi}.$$

$$g) \ f(x) = \frac{1}{\sqrt{1+x^2}(x+\sqrt{1+x^2})}.$$

h)
$$f(x) = \left(\frac{x}{\sqrt{4-x^2}}\right)^{x \ln x} + (x + \arctan x)^{\tan x^2}$$
.

- 6. Sea f una función que satisface f(x+y) = f(x) + f(y), f(x) = 1 + xg(x) y $\lim_{x\to 0} g(x) = 1$. Demuestre que f'(x) = f(x).
- 7. Determine los valores de las constantes a, b, c, d para la primera derivada de $f(x) = (ax + b)\sin x + (cx + d)\cos x$ sea $f'(x) = x\cos x$.
- 8. Considere la función $f(x) = \frac{1}{2n^2} \left(\frac{x}{x^2 + n^2} + \frac{1}{n} \arctan \left(\frac{x}{n} \right) \right)$, determine el valor de la constante n para que f'(0) = 81.
- 9. Determine f'(x) para la función

$$f(x) = \begin{cases} \frac{2x+3}{3x-5} & \text{si } x \le 2, \\ x^2 - 2x + 7 & \text{si } x > 2, \end{cases}$$

- 10. En los siguientes casos calcule $\frac{dy}{dx}$.
 - a) $y^3 + x^2y = x + 4$.
 - b) $5y \cos xy = xy$.
 - c) $e^{xy} + 5x^2y 10xy^3 + \ln xy = 0$.
 - $d) x \sin y^2 + y \sin x^2 = xy \sin xy.$
- 11. Determine $\frac{d^2y}{dx^2}$ si
 - a) $x(t) = te^t e y(t) = te^{-t}$.
 - b) $x(t) = \arctan t e y(t) = \ln(1 + t^2)$.
 - c) $x(t) = t \sin t e y(t) = \frac{1}{t \sin t}$.
- 12. Verifique que la función $y = x^n [c_1 \cos(\ln x) + c_2 \sin(\ln x)]$, donde c_1 y c_2 son constantes arbitrarias y n es contante, satisface la ecuación $x^2y'' + (1-2n)xy' + (1+n^2)y = 0$.
- 13. Si f es tres veces diferenciable y $f'(x) \neq 0$, la Derivada de Schwartz de f en x se define como

$$\mathcal{D}f\left(x\right) = \frac{f'''\left(x\right)}{f'\left(x\right)} - \frac{3}{2} \left(\frac{f''\left(x\right)}{f'\left(x\right)}\right)^{2}.$$

- a) Demuestre que $\mathcal{D}(f \circ g) = [\mathcal{D}f \circ g](g')^2 + \mathcal{D}g$.
- b) Demuestre que si $f(x) = \frac{ax+b}{cx+d}$, con $ad bc \neq 0$, entonces $\mathcal{D}f = 0$. En consecuencia, $\mathcal{D}(f \circ g) = \mathcal{D}g$.