§ 2 大数定律

2.1 贝努利(Bernoulli)大数定律

在 n次独立重复试验中,设事件 A在每次试验中发生的概率为 P. 当 A在第k次试验发生时令 $X_k=1$; 当A在第k次试验不发生时令 $X_k=0$. 于是

$$S_n = X_1 + \cdots + X_n$$

是n次试验中事件A发生的总次数,而

$$\mu_n = S_n / n$$

就是A发生的频率. 按照概率的统计定义, 把事件A的概率定义当n无限增大时频率 μ_n 的稳定值, 在下面可以看到, 这一稳定值恰好就是P. 由于 μ_n 是随机变量, 我们不能在通常的数列的极限的意义下定义 μ_n 极限. 下面将证明频率 μ_n "依概率收敛"于P.

为了考察频率 μ_n 与概率P相差有多大,对任意固定的 $\varepsilon > 0$,估计 μ_n 偏离P 不小于 ε 的 概率 $P(|\mu_n - p| \ge \varepsilon)$. 由于 S_n 服从二项分布 B(n,p),故 $ES_n = np$, $DS_n = npq$.

$$P(|\mu_n - p| \ge \varepsilon) = P(|S_n - np| \ge n\varepsilon)$$

$$= \sum_{k:|k-np|\geq n\varepsilon} P(S_n = k) \leq \frac{1}{n^2 \varepsilon^2} \sum_{k:|k-np|\geq n\varepsilon} (k-np)^2 P(S_n = k)$$

$$\leq \frac{1}{n^2 \varepsilon^2} \sum_{0 \leq k \leq n} (k - ES_n)^2 P(S_n = k) = \frac{DS_n}{n^2 \varepsilon^2} = \frac{npq}{n^2 \varepsilon^2} = \frac{pq}{n\varepsilon^2}.$$

于是推出

$$\lim_{n\to\infty} P(|S_n/n-p| \geq \varepsilon) = 0$$

即 S_n/n 依概率收敛于P (定义见后). 上式称为贝努利(Bernoulli)大数定律, 它阐述了频率的极限与概率关系, 也阐明了概率的统计定义的数学意义.

上小节中,证明了不等式 $P(|\mu_n - p| \ge \varepsilon) \le \frac{pq}{n\varepsilon^2}$,它是下面切比 雪夫不等式的一个特例.

定理 2.1 (切比雪夫不等式)

- 1) 设X为非负随机变量,且期望存在.则对任意的 $\varepsilon > 0$ 都有 $P(X \ge \varepsilon) \le EX/\varepsilon$
- 2) 设X 为随机变量,期望与方差都存在.则对任意的 $\varepsilon > 0$ 都有

$$P(|X - EX| \ge \varepsilon) \le DX / \varepsilon^2$$

证 我们仅对连续性的情况证明切比雪夫不等式,离散型的情况是类似的.

1) 由X的非负性,设当x < 0时, x的密度函数p(x) = 0.

$$P(X \ge \varepsilon) = \int_{\varepsilon}^{+\infty} p(x) dx \le \frac{1}{\varepsilon} \int_{\varepsilon}^{+\infty} x p(x) dx \le \frac{1}{\varepsilon} \int_{-\infty}^{+\infty} x f(x) dx = \frac{EX}{\varepsilon}$$

2)用非负随机变量 $Y = (X - EX)^2$ 代替 1)中的X便得. 定理 2.2 (贝努利大数定律) 设 μ_n 为 n 重贝努利试验中事件 A 发生的次数,p 为每次试验中 A 出现的概率,则对任意的 $\varepsilon > 0$ 有

$$\lim_{n\to+\infty} P\{|\frac{\mu_n}{n}-p|<\varepsilon\}=1$$

证明 因为 $\mu_n \sim b(n,p)$,且的数学期望和方差 $E(\frac{\mu_n}{n}) = p, Var(\frac{\mu_n}{n}) = \frac{p(1-p)}{n}$

所以由切比雪夫不等式得

$$1 \ge P\{|\frac{\mu_n}{n} - p| < \varepsilon\} \ge 1 - \frac{Var(\frac{\mu_n}{n})}{\varepsilon^2} = 1 - \frac{p(1-p)}{n\varepsilon^2}$$

当 $n \to +\infty$ 时,上式右端趋于1,因此

$$\lim_{n\to+\infty} P\{|\frac{\mu_n}{n}-p|<\varepsilon\}=1$$

结论得证。

贝努利大数定律说明: 随着 n 的增大,事件 A 发生的频率 $\frac{\mu_n}{n}$ 与 其频率 p 的偏差 $|\frac{\mu_n}{n} - p|$ 大于预先给定的精度 ε 的可能性愈来愈小,小 到可以忽略不计。这就是频率稳定与概率的含义,或者说频率依概率 收敛与概率。

譬如,拋一枚硬币出现正面的概率 p=0.5。若把这枚硬币连抛 10 次,则因为 n 较小,发生大偏差的可能性有时会大一些,有时会 小一些。若把这枚硬币连抛 n 次,当 n 很大时,由切比雪夫不等式知:正面出现的频率与 0.5 的偏差大于预先给定的精度 ε (若取精度 $\varepsilon=0.01$)的可能性

$$P\{|\frac{\mu_n}{n} - 0.5| > 0.01\} \le \frac{0.5 \times 0.5}{n0.01^2} = \frac{10^4}{4n}$$

当 $n=10^5$ 时,大偏差发生的可能性小于 1/40=2.5%。当 $n=10^6$ 时,大偏差发生的可能性小于 1/400=0.25%。

例 2.1 (用蒙特卡洛方法计算定积分(随机投点法)) 设 $0 \le f(x) \le 1$, 求 f(x)在区间[0,1]上的积分值:

$$J = \int_0^1 f(x) dx$$

设(X,Y)服从正方形{ $0 \le x \le 1, 0 \le y \le 1$ }上的均匀分布,则可知 X 服从[0,1]上的均匀分布,Y 也服从[0,1]上的均匀分布,且 X 与 Y 独立。又记事件 $A = \{Y \le f(x)\}$

则
$$A$$
 的概率为 $p = P(Y \le f(X)) = \int \int_{0}^{f(x)} dy dx = \int_{0}^{f(x)} f(x) dx = J$

即定积分的值 J 就是事件 A 的概率 p。由贝努利大数定律,我们可以用重复试验中 A 出现的频率作为 p 的估计值。这种求定积分的方法也称为随机投点法,即将(X,Y)看成是向正方形 $\{0 \le x \le 1, 0 \le y \le 1\}$ 内的随机投点,用随机点落在区域 $\{y \le f(x)\}$ 中的频率作为定积分的近似值。

下面用蒙特卡洛方法,来得到 A 出现的频率:

- (1) 先用计算机产生(0,1)上的均匀分布的 2n 个随机数; $x_i, y_i, i=1,2,...,n$. 这里 n 可以很大,譬如 $n=10^4$,甚至 $n=10^5$ 。
- (2)对 n 对数据 (x_i,y_i) , i=1,2,...,n.记录满足如下不等式 $y_i \leq f(x_i)$ 的次数,这就是事件 A 发生的频数 μ_n 。由此可得事件 A 发生的频率 $\frac{\mu_n}{n}$,

则
$$J \approx \frac{\mu_n}{n}$$

2.2 常用的几个大数定律

一、大数定律的一般形式

定义 2.1 设有一随机变量序列 {X_n},假如它具有

$$\lim_{n\to+\infty} P\{|\frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)| < \varepsilon\} = 1, \forall \varepsilon > 0$$

形式的性质,则称该随机变量序列 $\{X_n\}$ 服从大数定律。

二、切比雪夫大数定律

定理 2.3 (切比雪夫大数定律)设 $\{X_n\}$ 为一列两两不相关的随机变量序列,若每个 X_i 的方差存在,且有共同的上界,即 $Var(X_i) \le c, i = 1, 2, \cdots$,则 $\{X_n\}$ 服从大数定律,即对任意的 $\varepsilon > 0$,定义 2.1 中的式子都成立。证明 因为 $\{X_n\}$ 两两不相关,故

$$Var(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n^{2}}\sum_{i=1}^{n}Var(X_{i}) \leq \frac{c}{n},$$

再由切比雪夫不等式得到:对任意的 $\varepsilon > 0$,有

$$\lim_{n \to +\infty} P\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \frac{1}{n}\sum_{i=1}^{n}E(X_{i})\right| < \varepsilon\} \ge 1 - \frac{Var(\frac{1}{n}\sum_{i=1}^{n}X_{i})}{\varepsilon^{2}} \ge 1 - \frac{c}{n\varepsilon^{2}}$$

于是当 $n \to +\infty$ 时,有

$$\lim_{n \to +\infty} P\{ | \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} E(X_i) | < \varepsilon \} = 1$$

注意,切比雪夫大数定律只要求 $\{X_n\}$ 互不相关,并不要求它们是同分布的。假如 $\{X_n\}$ 是独立同分布的随机变量序列,且方差有限,则 $\{X_n\}$ 必定服从大数定律。

例 2.2 设 $\{X_n\}$ 是相互独立同分布的随机变量序列, $E(X_n^4) < +\infty$, 若令 $E(X_n) = \mu, Var(X_n) = \sigma^2$, 考察 $Y_n = (X_n - \mu)^2, n = 1, 2, \cdots$ 则随机变量序列 $\{Y_n\}$ 服从大数定律,即对任意的 $\varepsilon > 0$,有

$$\lim_{n \to +\infty} P\{ \left| \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 - \sigma^2 \right| \ge \varepsilon \} = 0$$

证明 显然 $\{Y_n\}$ 是独立同分布随机变量序列,其方差

$$Var(Y_n) = Var(X_n - \mu)^2 = E(X_n - \mu)^4 - \sigma^4$$

由于 $E(X_n^4)$ 存在,故 $E(X_n^2)$ 也存在,从而 $E(X_n - \mu)^4$ 也存在。由切比雪夫大数定律知 $\lim_{n \to +\infty} P\{|\frac{1}{n}\sum_{i=1}^n Y_i - \frac{1}{n}\sum_{i=1}^n E(Y_i)| \geq \varepsilon\} = 0$

其中
$$\frac{1}{n}\sum_{i=1}^{n}Y_{i}=\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2},-\frac{1}{n}\sum_{i=1}^{n}E(Y_{i})=\sigma^{2}$$
,故 $\{Y_{n}\}$ 服从大数定律。

三、马尔可夫大数定律

对随机变量序列 $\{X_n\}$,若 $\frac{1}{n^2}Var(\sum_{i=1}^n X_i) \xrightarrow{n\to\infty} 0$,成立,则 $\{X_n\}$ 服从大数定律,即对任意的 $\varepsilon > 0$,都成立。

例 2.3 设 $\{X_n\}$ 为一同分布、方差存在的随机变量序列,且 X_n 仅与 X_{n-1} 和 X_{n+1} 相关,而与其他 X_i 不相关,试问该随机变量序列 $\{X_n\}$ 是否服从大数定律?

 \mathbf{K} $\{X_n\}$ 为相依随机变量序列,考虑其马尔可夫条件

$$\frac{1}{n^2} Var(\sum_{i=1}^n X_i) = \frac{1}{n^2} \left[\sum_{i=1}^n Var(X_i) + 2 \sum_{i=1}^{n-1} Cov(X_i, X_{i+1}) \right]$$

记 $Var(X_n) = \sigma^2$,则 $|Cov(X_i, X_j)| \le \sigma^2$ 于是有

$$\frac{1}{n^2} Var(\sum_{i=1}^n X_i) \le \frac{1}{n^2} [n\sigma^2 + 2(n-1)\sigma^2] \to 0, (n \to +\infty)$$

即马尔可夫条件成立,故{Xn}服从大数定律。

四、辛钦大数定律

定理 2.4 (辛钦大数定律) 设 $\{X_n\}$ 为一独立同分布的随机变量序列,若 X_i 的数学期望存在,则服从大数定律,即

$$\lim_{n \to +\infty} P\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} E(X_i) \right| < \varepsilon \} = 1, \forall \varepsilon > 0$$

成立。

辛钦大数定律提供了求随机变量数学期望 E(X)的近似值的方法,设想对随机变量 X 独立重复的观察 n 次,第 k 次观察值为 X_k ,则 $X_1,X_2,...,X_n$ 应该是相互独立的,且它们的分布应该与 X 的分布相同。所以,在 E(X)存在的条件下,按照辛钦大数定律,当 n 足够大时,可以把平均观察值 $\frac{1}{n}\sum_{i=1}^{n}X_i$ 作为 E(X)的近似值。

例 2.4 (用蒙特卡洛方法计算定积分(平均值法)) 为计算定积分

$$J = \int_0^1 f(x) dx$$

设随机变量 X 服从(0,1)上的均匀分布,则 Y=f(X)的数学期望为

$$E(f(X)) = \int_{0}^{1} f(x) dx = J$$

所以估计 J 的值就是估计 f(X) 的数学期望的值。由辛钦大数定律,可以用 f(X) 的观察值的平均去估计 f(X) 的数学期望的值。具体做法如下: 先用计算机产生 n 个(0,1)上的均匀分布的随机数: x_i , i=1,2,...,n.然后对每个 x_i 计算 $f(x_i)$,最后得 J 的估计值为

$$J \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)_{\circ}$$