

KARATINA UNIVERSITY

UNIVERSITY EXAMINATIONS

2023/2024 ACADEMIC YEAR

THIRD YEAR SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF:

BED (E100, E101) BSC (P106

COURSE CODE: MAT 313

COURSE TITLE: ABSTRACT ALGEBRA/GROUP

THEORY

DATE: 19th JULY, 2024 TIME: 3.00 PM - 5.00 PM

SECTION A

Answer all questions from this section

QUESTION ONE (30 marks)

(a) Find the cyclic subgroup of the quarternion group generated by j. [2 marks]

(b) Determine if the permutation (123)(45678) is even or odd. [2 marks]

(c) Let S be a non-empty set and \star be an operation on the set S. State two conditions that \star should satisfy to be a binary operation on the set S. [2 marks]

(d) Determine whether subtraction is a binary operation on \mathbb{Z}^+ . [2 marks]

(e) Find the gcd of 168 and 198 by the Euclidean Algorithm. [3 marks]

(f) Let $S = \{f_1, f_2, f_3, f_4\}$ where $f_i : \mathbb{R}^* \to \mathbb{R}^*$ defined by $f_1(x) = x$, $f_2(x) = \frac{1}{x}$, $f_3(x) = -x$, $f_4(x) = -\frac{1}{x}$. Let \circ denote composition of mappings.

i) Construct the Cayley table for S under \circ . [2 marks]

ii) Is ∘ a commutative operation? Explain. [2 marks]

(g) Find the order of (123)(45) in S_5 . [2 marks]

(h) Let G be S_3 and $H = \{1, (1, 2)\}.$

Determine whether H is a normal subgroup of G? [2 marks]

(i) Let S be the set $S = \{(a, b) : a, b \in \mathbb{R}\}.$

Define \star on S by $(a,b) \star (c,d) = (ac,ad+b)$, for all $a,b,c,d \in \mathbb{R}$.

Determine whether \star is a commutative operation. [2 marks]

(j) i) Define the center of a group . [2 marks]

ii) Hence find the center of the quarternion group. [1 mark]

(k) Define an Homomorphism. [2 marks]

MAT 313 Page 2 of 4

- (1) Let F be the additive group of all functions mapping \mathbb{R} into \mathbb{R} , let \mathbb{R} be the additive group of real numbers, and let c be any real number. Let $\emptyset_c : F \to \mathbb{R}$ be defined by $\emptyset_c(f) = f(c)$ for $f \in F$.
 - i) Find $\emptyset_3(2x^3 2x^2 + 1)$ [1 mark]
 - ii) Show that \emptyset_c is a homomorphism . [2 marks]
 - iii) What is the name of this homomorphism? [1 mark]

SECTION B

Answer any Two questions from this section

QUESTION TWO (20 marks)

- (a) Define \star on \mathbb{R} by $a \star b = 2a + 2b + ab + 2$.

 Determine the identity element for \star .

 [4 marks]
- (b) Find the gcd of 1547 and 3059 and hence express the gcd in the form 1547m+3059n = gcd. [8 marks]
- (c) Proof all the group axioms for the Abelian group $(\mathbb{Z}, +)$. [8 marks]

QUESTION THREE (20 marks)

- (a) Find the order of the factor group $(\mathbb{Z}_{12} \times \mathbb{Z}_{18})/((4,3))$. [3 marks]
- (b) Let $G = \mathbb{R}^2$ (operation vector addition), let $H = \mathbb{R}$ (operation addition) and define $\psi : \mathbb{R}^2 \to \mathbb{R}$ by $\psi(x, y) = x$. Thus ψ is projection onto the x-axis.
 - i) Show that ψ is a homomorphism [3 marks]
 - ii) Find ker ψ [2 marks]
- (c) Let $\delta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{bmatrix}$ and $\tau = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{bmatrix}$.
 - (i) Express δ and τ in disjoint cycle form. [2 marks]

MAT 313 Page 3 of 4

(ii) Find $\delta \tau$.	[2 marks]
(iii) Find δ^2 .	[2 marks]
(iv) Find $\delta^2 \tau$.	[2 marks]
(v) Find δ^{11} .	[2 marks]
(vi) Find τ^{-1} .	[2 marks]

QUESTION FOUR (20 marks)

- (i) List and describe all the subgroups of $\langle \mathbb{Z}_{30}, + \rangle$. [13 marks]
- (ii) Consider the various symmetry transformations of a rectangle that form the symmetry group of a rectangle.
 - i) With the help of a diagram, compute and list all the elements in the symmetry group of a rectangle
 [4 marks]
 - ii) Construct the Cayley table for the symmetry group. [3 marks]

QUESTION FIVE (20 marks)

- (a) Let G be a group. Show that the left cancellation laws hold, i.e. $a \star b = a \star c$ implies b = c for all $a, b, c \in G$ [4 marks]
- (b) The ring $R = \{0, 2, 4, 6, 8\}$ under addition and multiplication modulo 10 has a unity. Find it. [4 marks]
- (c) Define \star on \mathbb{Z} by $a \star b = a + b ab$. \star is a binary operation on \mathbb{Z} with identity element 0. If $a \in \mathbb{Z}$, what is the inverse of a? [4 marks]
- (d) The collection of all the even permutations in S_n is a subgroup called the alternating group denoted by A_n of order $\frac{n!}{2}$. List the elements of A_3 [4 marks]
- (e) List the elements of $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Hence show that $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ has seven subgroups of order 2. [4 marks]

MAT 313 Page 4 of 4