Letter Islands

You are given string \boldsymbol{s} and number \boldsymbol{k} .

Consider a substring p of string s. For each position of string s mark it if there is an occurrence of the substring that covers the position. More formally, position i will be marked if there exists such index j that: $j \le i \le j + |p| - 1$ and $s_j s_{j+1} \dots s_{j+|p|-1} = p$. We will tell p produce p islands if all the marked positions form p groups of contiguous positions.

For example, if we have a string ababaewabaq the substring aba marks the positions 1, 2, 3, 4, 5, 8, 9, 10; that is XXXXXewXXXq (X denotes marked position). We can see 2 groups of contiguous positions, that is 2 islands. Finally, substring aba produces 2 islands in the string ababaewabaq.

Calculate and print the number of different substrings of string s that produce exactly k islands.

Input Format

The first line contains string s ($1 \le |s| \le 10^5$). The string consists of lowercase letters only. The second line contains an integer k ($1 \le k \le |s|$).

Output Format

Output a single integer $\overline{}$ the answer to the problem.

Sample Input

abaab 2

Sample Output

3

Explanation

All the suitable substrings are: a, ab, b.