MATH 327 HW 1

Jingyi Cui

1738833

1 Sheet 1

- 1. Let A and Λ be two sets. Using Λ as an indexing set, for each $\lambda \in \Lambda$ let E_{λ} be as subset of A. Let $E \subset A$ also. Show that:
 - (i) $E \cap \left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right) = \bigcup_{\lambda \in \Lambda} (E \cap E_{\lambda})$ Let $x \in E \cap \left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right)$. Then $x \in E$ and $x \in \bigcup_{\lambda \in \Lambda} E_{\lambda}$. Thus, $x \in E_{\lambda}$, for some $\lambda \in \Lambda$. Thus, $x \in (E \cap E_{\lambda})$ for some $\lambda \in \Lambda$ and $x \in \bigcup_{\lambda \in \Lambda} (E \cap E_{\lambda})$. Thus, $E \cap \left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right) = \bigcup_{\lambda \in \Lambda} (E \cap E_{\lambda})$.
 - (iii) $\left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right)^{c} = \bigcap_{\lambda \in \Lambda} E_{\lambda}^{c}$ Let $x \in \left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right)^{c}$, so $x \notin \bigcup_{\lambda \in \Lambda} E_{\lambda}$. Thus for each $\lambda \in \Lambda$, $x \notin E_{\lambda}$. Thus, for each $\lambda \in \Lambda$, $x \in E_{\lambda}^{c}$. Thus, $x \in \bigcap_{\lambda \in \Lambda} E_{\lambda}^{c}$ and $\left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right)^{c} = \bigcap_{\lambda \in \Lambda} E_{\lambda}^{c}$.
- 3. Let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Prove that if f and g are injective then so is $g \circ f$. Assume $a, a' \in A$, $c \in C$ and $b, b' \in B$. If f is injective, then if f(a) = f(a') = b, so a = a'. If g is injective, then if g(b) = g(b') = c, so b = b'. Then since f(a) = f(a') = b and g(b) = c, $g(f(a)) = g(f(a')) = g \circ f(a) = g \circ f(a') = c$. Since a = a', $g \circ f$ is injective.
 - (b) Suppose $g \circ f$ is injective. Does it follow that f is injective? Let $x, y \in A$ such that f(x) = f(y). Since $g \circ f$ is injective, then if g(f(x)) = g(f(y)) and $(g \circ f)(x) = (g \circ f)(y)$, then x = y. Thus, f is injective.
 - (c) Suppose $g \circ f$ is injective. Does it follow that g is injective? g is not necessarily injective. The counterexample map could be $f: \mathbb{N} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{N}$ given by f(n) = 2n and g(m) = |m|. Then since $n \in \mathbb{N}$, $g \circ f(n) = |2n| = 2n$. This map is injective, but g is not injective since g(-1) = 1 = g(1).
- 4. Let $f: A \to B$ and $g: B \to C$ be functions.

- (a) Prove that if f and g are surjective then so is $g \circ f$. Let $c \in C$. Since g is surjective, there exists $b \in B$ such that g(b) = c. Since f is surjective, there exists $a \in A$ such that f(a) = b. Then $g \circ f(a) = g(f(a)) = g(b) = c$. Thus for every $c \in C$, there exists $a \in A$ such that $(g \circ f)(a) = c$ and $g \circ f$ is surjective.
- (b) Suppose $g \circ f$ is surjective. Does it follow that f is surjective? f is not necessarily surjective. The counterexample map could be $f: \mathbb{N} \to \mathbb{N}$ given that f(x) = 2x and $g: \mathbb{N} \to \{0\}$ given that g(y) = 0. $g \circ f$ is surjective, but f is not surjective since there is no number in \mathbb{N} can be mapped to g(x) = g(x).
- (c) Suppose $g \circ f$ is surjective. Does it follow that g is surjective? Let $c \in C$. Since $g \circ f$ is surjective, there exists $a \in A$ such that $(g \circ f)(a) = g(f(a)) = c$. Assume f(a) = b and $b \in B$. Then g(b) = c. Thus g is surjective.
- 5. Let $f: A \to B$. Recall that, for a set $F \subset B$, the set $f^{-1}(F) \subset A$ is defined by $f^{-1}(F) = \{a \in A: f(a) \in F\}$ and called the inverse image of F.
 - (i) Let $F \subset B$. Show that $f^{-1}(F^c) = f^{-1}(F)^c$. $f^{-1}(F^c) = \{x \in A | f(x) \in F^c\} = \{x \in A | f(x) \in B \setminus F\}$ $f^{-1}(F)^c = A \setminus \{x \in A | f(x) \in F\} = \{x \in A | f(x) \in B \setminus F\}$
 - (ii) Let Λ be a set, and for each $\lambda \in \Lambda$ let F_{λ} be a subset of B. Check that

$$f^{-1}\left(\bigcup_{\lambda \in \Lambda} F_{\lambda}\right) = \bigcup_{\lambda \in \Lambda} f^{-1}(F_{\lambda}) \text{ and}$$
$$f^{-1}\left(\bigcap_{\lambda \in \Lambda} F_{\lambda}\right) = \bigcap_{\lambda \in \Lambda} f^{-1}(F_{\lambda}).$$

a. Let $x \in f^{-1}\left(\bigcup_{\lambda \in \Lambda} F_{\lambda}\right)$ so there exist a $y \in \bigcup_{\lambda \in \Lambda} F_{\lambda}$ such that f(x) = y. Thus,

 $x \in f^{-1}F_{\lambda} \text{ and } y \in F_{\lambda} \text{ for some } \lambda. \text{ So } x \in \bigcup_{\lambda \in \Lambda} f^{-1}F_{\lambda} \text{ and } f^{-1}\Big(\bigcup_{\lambda \in \Lambda} F_{\lambda}\Big) \subset \bigcup_{\lambda \in \Lambda} f^{-1}F_{\lambda}.$

Similarly, let $x \in \bigcup_{\lambda \in \Lambda} f^{-1}(F_{\lambda})$ and $x \in f^{-1}(F_{\lambda})$ for some λ . So $f(x) \in F_{\lambda}$ and

$$f(x) \in \bigcup_{\lambda \in \Lambda} (F_{\lambda})$$
. Thus, $x \in f^{-1}(\bigcup_{\lambda \in \Lambda} F_{\lambda})$ and $\bigcup_{\lambda \in \Lambda} f^{-1}(F_{\lambda}) \subset f^{-1}(\bigcup_{\lambda \in \Lambda} F_{\lambda})$. Thus, $f^{-1}(\bigcup_{\lambda \in \Lambda} F_{\lambda}) = \bigcup_{\lambda \in \Lambda} f^{-1}(F_{\lambda})$.

b. Let $x \in f^{-1}\left(\bigcap_{\lambda \in \Lambda} F_{\lambda}\right)$ so there exists a $y \in \bigcap_{\lambda \in \Lambda} F_{\lambda}$ such that f(x) = y. Thus,

$$x \in f^{-1}F_{\lambda}$$
 and $y \in F_{\lambda}$ for every $\lambda \in \Lambda$. So $x \in \bigcap_{\lambda \in \Lambda} f^{-1}(F_{\lambda})$ and $f^{-1}\Big(\bigcap_{\lambda \in \Lambda} F_{\lambda}\Big) \subset \bigcap_{\lambda \in \Lambda} f^{-1}(F_{\lambda})$

$$\bigcap_{\lambda \in \Lambda} f^{-1}(F_{\lambda}).$$
 Similarly, let $x \in \bigcap_{\lambda \in \Lambda} f^{-1}(F_{\lambda})$ and $x \in f^{-1}F_{\lambda}$ for every $\lambda \in \Lambda$. Thus $f(x) \in F_{\lambda}$ and

$$f(x) \in \bigcap_{\lambda \in \Lambda} F_{\lambda}$$
. Thus, $x \in f^{-1} \bigcap_{\lambda \in \Lambda} (F_{\lambda})$. So, $\bigcap_{\lambda \in \Lambda} f^{-1}(F_{\lambda}) \subset f^{-1} \bigcap_{\lambda \in \Lambda} (F_{\lambda})$.

Thus,
$$f^{-1}\Big(\bigcap_{\lambda\in\Lambda}F_\lambda\Big)=\bigcap_{\lambda\in\Lambda}f^{-1}(F_\lambda).$$

- 6. Let $f:A\to B$. Recall that, for a set $E\subset A$, the set $f(E)\subset B$ is defined by $f(E)=\{f(a):$ $a \in E$ and called the image of E.
 - (i) Let $E \subset A$. Check that $E \subset f^{-1}(f(E))$. Give an example to show that this inclusion may be strict. What happens when f is injective? Let $a \in E$ and then by definition, $f(a) \in f(A)$ $a \in f^{-1}(f(E))$. Thus, $E \subset f^{-1}(f(E))$. The example could be $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$; specifically, f(1) = f(-1) = 1and $-1 \neq 1$, so $\{1, -1\} \subset f^{-1}(f(\{1\}))$. Thus, $f^{-1}(f(\{1\})) \not\subset \{1\}$ and $E \subset f^{-1}(f(E))$. Assume f is injective and let $x \in f^{-1}(f(E))$. Thus, by definition, $f(x) \in f(E)$. Thus, there exists a $y \in E$ such that f(x) = f(y). Since f is injective, x = y. Thus, E = f(y) $f^{-1}(f(E)).$
 - (ii) Let Λ be a set, and for each $\lambda \in \Lambda$ let E_{λ} be a subset of A. Check that

$$f\left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right) = \bigcup_{\lambda \in \Lambda} f(E_{\lambda}) \text{ and}$$
$$f\left(\bigcap_{\lambda \in \Lambda} E_{\lambda}\right) \subset \bigcap_{\lambda \in \Lambda} f(E_{\lambda})$$

Give an example in which the last inclusion is proper. What happens when f is injective?

a. Let $y \in f\left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right)$ so there exists $x \in \bigcup_{\lambda \in \Lambda} E_{\lambda}$ such that f(x) = y. Thus, $y \in f(E_{\lambda})$ and $x \in E_{\lambda}$ for some $\lambda \in \Lambda$. Thus, $y \in \bigcup_{\lambda \in \Lambda} f(E_{\lambda})$ and $f(\bigcup_{\lambda \in \Lambda} E_{\lambda}) \subset \bigcup_{\lambda \in \Lambda} f(E_{\lambda})$.

Similarly, let $y \in \bigcup f(E_{\lambda})$ and so $y \in f(E_{\lambda})$ for some $\lambda \in \Lambda$. Thus, there exists $x \in E_{\lambda}$

and then $x \in \bigcup_{\lambda \in \Lambda} E_{\lambda}$. Thus, $y = f(x) \in \bigcup_{\lambda \in \Lambda} f(E_{\lambda})$ and $\bigcup_{\lambda \in \Lambda} f(E_{\lambda}) \subset f(\bigcup_{\lambda \in \Lambda} E_{\lambda})$.

Thus, $f\left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right) = \bigcup_{\lambda \in \Lambda} f(E_{\lambda})$. b. Let $y \in f\left(\bigcap_{\lambda \in \Lambda} E_{\lambda}\right)$ so there exists a $x \in \bigcap_{\lambda \in \Lambda} E_{\lambda}$ such that f(x) = y. Thus $y \in f(E_{\lambda})$

and $x \in E_{\lambda}$ for every λ . Thus, $y \in \bigcap_{\lambda \in \Lambda} f(E_{\lambda})$ and $f(\bigcap_{\lambda \in \Lambda} E_{\lambda}) \subset \bigcap_{\lambda \in \Lambda} f(E_{\lambda})$. The example could be $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. If f is injective, $f(\bigcap_{\lambda \in \Lambda} E_{\lambda}) = \bigcap_{\lambda \in \Lambda} f(E_{\lambda})$.

$\mathbf{2}$ Sheet 2

- 1. Let F be an ordered field, and let x and y be positive elements of F.
 - (a) Use induction to prove that if x < y then $x^n < y^n$ for all $n \in \mathbb{N}$. Base case: n = 1. So $x^1 = x$ and $y^1 = y$ and since x < y, $x^n < y^n$.

Assume true for k>1, i.e. $x^k < y^k$. We want to show that $x^{k+1} < y^{k+1}$. Since $x \in \mathbb{N}$, $x \times x^k < x \times y^k$ and $x^{k+1} < xy^k$. Since x < y and $y^k \in \mathbb{N}$, $x \times y^k < y \times y^k = y^{k+1}$. Then, since $x^{k+1} < xy^k$ and $xy^k < y^{k+1}$, $x^{k+1} < y^{k+1}$. Thus, if x < y then $x^n < y^n$ for all $x \in \mathbb{N}$.

(b) Deduce that if $x^n < y^n$ for some $n \in \mathbb{N}$ then x < y. Using contrapositive: Assume $x \geq y$. Based on (a), if x > y, we know $x^n > y^n$. If $x = y, n \in \mathbb{N}$, $x^n = y^n$. Thus, $x^n \geq y^n$. Thus, if $x^n < y^n$ for some $n \in \mathbb{N}$, then x < y.