

Introduccion a la Programacion Practica 2

 $\begin{array}{c} {\rm Medina~Martinez~Jonathan~Jason} \\ 2023640061 \end{array}$

06 de marzo de 2023

${\rm \acute{I}ndice}$

1.	Objetivo	3
2.	Introducción	3
3.	Desarrollo	4
	3.1. Programa 1	4
	3.2. Programa 2	5
	3.3. Programa 3	
	3.4. Programa 4	7
	3.5. Programa 5	
	3.6. Programa 6	6
	3.7. Programa 7	10
4.	Conclusion	10

1. Objetivo

Practicar el uso de variables, constantes y operadores.

2. Introducción

En esta practica se realizaran diversos programas en c utilizando diversos operadores, variables y constantes.

3. Desarrollo

3.1. Programa 1

Programa que calcule el area y el perimetro de un circulo. El programa debera solicitar al usuario el valor del radio y debera mostrar el area y el perimetro calculado. Debera definir π como constante.

```
1
      * @file programa1.c
      * @author Medina Martinez Jonathan Jason (jmedinam1702@alumno.ipn.mx)
      * @brief
      * @version 0.1
      * @date 2023-03-05
      * @copyright GLP v3
10
11
     #include <stdio.h>
12
13
14
     #define PI 3.1416
15
     int main()
16
17
         float perimetro = 0, area = 0, radio = 0;
19
         printf("Introduzca el radio: ");
20
         scanf("%f", &radio);
21
         getc(stdin);
22
23
         area = PI * radio * radio;
24
25
         perimetro = 2 * PI * radio;
27
         printf("\n\nEl area del circulo es: %f\n", area);
28
         printf("El Perimetro del circulo es: %f\n", perimetro);
29
         return 0;
31
32
```

3.2. Programa 2

Programa que permita al usuario obtener la raiz enesima de un numero entero positivo mayor a 0. Para esto, debera hacerlo con logaritmos.

```
@file programa2.c
       @author Medina Martinez Jonathan Jason (jmedinam1702@alumno.ipn.mx)
       @brief
      * @version 0.1
      * @date 2023-03-05
      * @copyright GLP v3
    #include <stdio.h>
    #define e 2.71828
    int main() {
       double base = 0, exponente = 0, resultado = 0, raiz = 0;
        getc(stdin);
       printf("\nIntrodusca el exponente de la raiz (UN NUMERO ENTERO): ");
        scanf("%lf", &exponente);
        getc(stdin);
       raiz = (1/exponente) * (log(base));
resultado = round (pow(e, raiz));
        getc(stdout);
        return 0;
PS C:\Users\jason\OneDrive\Escritorio\IntroProgra\practica2\output> & .\'programa2.exe'
Introdusca la base de la raiz (UN NUMERO ENTERO): 27
Introdusca el exponente de la raiz (UN NUMERO ENTERO): 3
La raiz de base 27 exponente 3 es: 3.000
PS C:\Users\jason\OneDrive\Escritorio\IntroProgra\practica2\output> & .\'programa2.exe\
Introdusca la base de la raiz (UN NUMERO ENTERO): 3125
Introdusca el exponente de la raiz (UN NUMERO ENTERO): 5
La raiz de base 3125 exponente 5 es: 5.000
PS C:\Users\jason\OneDrive\Escritorio\IntroProgra\practica2\output> & .\'programa2.exe
Introdusca la base de la raiz (UN NUMERO ENTERO): 9
Introdusca el exponente de la raiz (UN NUMERO ENTERO): 2
La raiz de base 9 exponente 2 es: 3.000
PS C:\Users\jason\OneDrive\Escritorio\IntroProgra\practica2\output> & .\'programa2.exe
Introdusca la base de la raiz (UN NUMERO ENTERO): 16
Introdusca el exponente de la raiz (UN NUMERO ENTERO): 4
La raiz de base 16 exponente 4 es: 2.000
```

3.3. Programa 3

Programa que calcule la distancia entre dos puntos proporcionados por el usuario. Recuerde, dados los puntos A(x1, y1) y B(x2, y2), la distancia se define como

$$d(A, B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

```
#include <stdio.h>
#include <math.h>
int main()
    double x1 = 0, x2 = 0, y1 = 0, y2 = 0, suma = 0, difx = 0, dify = 0, resultado = 0;
    printf("\nIngrese la coordenada x del primer punto: ");
    scanf("%lf", &x1);
    getc(stdin);
    printf("\nIngrese la coordenada y del primer punto: ");
    scanf("%lf", &y1);
    getc(stdin);
    printf("\nIngrese la coordenada x del segundo punto: ");
    scanf("%lf", &x2);
    getc(stdin);
    printf("\nIngrese la coordenada y del segundo punto: ");
    scanf("%lf", &y2);
    getc(stdin);
    difx = x2 - x1;
    dify = y2 - y2;
    suma = (pow(difx, 2)) + (pow(dify, 2));
    resultado = pow(suma, 0.5);
    printf("\n\nLa distancia entre los puntos es: %lf\n", resultado);
    getc(stdout);
    return 0;
```

3.4. Programa 4

Programa que solicite al usuario un numero y le indique si es par o impar. Debera utilizar el operador modulo, el operador AND y el operador ternario ? :

```
11
      #include <stdio.h>
12
      int main()
          int numero = 0;
          printf("\n\nIngrese un numero: ");
          scanf("%d", &numero);
          if (numero % 2 == 0) {
              printf("\n\nComprobado con modulo: %d es un numero par\n\n", numero);
          } else {
              printf("\n\nComprobado con modulo: %d es un numero impar\n\n", numero);
          (numero % 2 == 0 && printf("Comprobado con AND: %d es un numero par\n\n", numero)) ||
          (numero % 2 != 0 && printf("Comprobado con AND: %d es un numero impar\n\n", numero));
          printf("Comprobado con el operador ternario (?:): %d es un numero %s\n\n",
          numero, (numero % 2 == 0) ? "par" : "impar");
          return 0;
PROBLEMAS 1
                      CONSOLA DE DEPURACIÓN
                                            TERMINAL
                                                      COMENTARIOS
Ingrese un numero: 5
Comprobado con modulo: 5 es un numero impar
Comprobado con AND: 5 es un numero impar
Comprobado con el operador ternario (?:): 5 es un numero impar
```

3.5. Programa 5

Programa que permita convertir de grados Centigrados a grados Fahrenheit.

```
> /** ...
 11
      #include <stdio.h>
 12
 13
      int main()
 14
 15
          double cel = 0, far = 0;
 16
 17
          printf("\n\nConvertidor de grados celcius a farenheit\n\n");
 18
          printf("Ingrese la temperatura en grados Celsius: ");
 19
           scanf("%lf", &cel);
 20
          getc(stdin);
 21
 22
          far = (cel * 9/5) + 32;
 23
 24
 25
          printf("La temperatura en grados farenheit es: %.2lf\n\n", far);
 26
          return 0;
 27
 28
PROBLEMAS
                    CONSOLA DE DEPURACIÓN
           SALIDA
                                          TERMINAL
                                                    COMENTARIOS
Convertidor de grados celcius a farenheit
Ingrese la temperatura en grados Celsius: 30
La temperatura en grados farenheit es: 86.00
```

3.6. Programa 6

Programa que permita convertir de grados Fahrenheit a grados Centigrados.

```
> /** ...
11
      #include <stdio.h>
12
13
      int main()
14
15
          double far = 0, cel = 0;
17
          printf("\n\nConvertidor de grados farenheit a celcius\n\n");
18
          printf("Ingrese la temperatura en grados farenheit: ");
19
          scanf("%lf", &far);
 20
          getc(stdin);
21
22
          cel = (far - 32) / 1.8;
23
24
          printf("La temperatura en grados celcius es: %.2lf\n\n", cel);
25
          return 0;
27
PROBLEMAS
           SALIDA
                   CONSOLA DE DEPURACIÓN
                                          TERMINAL
                                                    COMENTARIOS
Convertidor de grados farenheit a celcius
Ingrese la temperatura en grados farenheit: 30
La temperatura en grados celcius es: -1.11
```

3.7. Programa 7

Programa que permita calcular el enesimo numero de la sucesion de Fibonacci sin la necesidad de producir todos los numeros anteriores.

4. Conclusion

En esta practica realizamos distintos tipos de operaciones y funciones en c a travez de diversos operadores, constantes y variables.