Data exploration and enrichment for supervised classification

Elementos de Inteligência Artificial e Ciência de Dados

Beatriz Pereira, 202304769 Carolina Leite, 202307856 Inês Santos, 202305589

Especificação do trabalho a realizar

Formulação do problema

A análise exploratória de dados e a aplicação de modelos de aprendizagem supervisionados desempenham um papel crucial na ciência de dados, permitindo a extração de insights valiosos.

Objetivo

Desenvolver um pipeline capaz de determinar a capacidade de sobrevivência dos doentes 1 ano após o diagnóstico ("vive" ou "morre").

DataSet

Base de dados com um total de 165 inputs, constituída por 50 colunas com diferentes parâmetros a serem estudados, e 165 pacientes, classificados conforme o género.

Etapas

Análise de dados, préprocessamento de dados, análise exploratória, classificação, comparação e análise de resultados.

Descrição das ferramentas e dos algoritmos a utilizar no trabalho

PYTHON

Linguagem de programação amplamente utilizada na ciência de dados devido à sua fácil utilização e à grande quantidade de bibliotecas especializadas.

BIBLIOTECAS PYTHON

PANDAS Utilizada para manipulação e análise de dados de forma eficiente.

NUMPY Utilizada para programação numérica sobre arrays.

SCIKIT-LEARN Fornece implementações eficientes de algoritmos de aprendizagem supervisionados e não supervisionados.

MATPLOTLIB E SEABORN Utilizada para visualização de dados.

JUPYTER NOTEBOOK

Ambiente de desenvolvimento interativo para criar e apresentar projetos de ciência de dados

ALGORITMOS

KNN (K-Nearest Neighbors) Classifica novos dados com base na proximidade com os dados já rotulados

DECISION TREE Modelo de decisão hierárquico, semelhante a uma árvore

Classificação

DEFINIR O TARGET

target_c = df_filled['Class']

DIVISÃO

Preparação para treinar os modelos

DECISION TREE

1.00

CONFIGURAÇÃO

Todas as variáveis, incluindo 'Class'

IMPORTÂNCIA DAS VARIÁVEIS

'Class' com importância de 1.0

KNN

0.56

Classificação

Testes realizados

- Utilizamos todos os dados disponíveis com exceção das 6 variáveis menos correlacionadas: AFP, ALT, HIV, Hemochro, Spleno, Obesity, Class.
 Houve uma alteração muito significativa nos resultados.
- Removemos outras 6 variáveis menos correlacionadas: Alcohol, HBsAg, Packs_year, NASH, AHT, HBcAb.
 A alteração neste teste já foi menor, não apresentou resultados muito diferentes.
- Removemos outras 6 variáveis menos correlacionadas: Nodules, Endemic, HBeAg, Diabetes, Major_Dim, Grams_day.

 Não houve alteração dos dados de um modo relevante.

- Removemos outras 6 variáveis menos correlacionadas: TP, Hallmark, Varices, MCV, Cirrhosis, Gender Verificou-se uma diferença significativa nos resultados.
- Removemos outras 6 variáveis menos correlacionadas: Smoking, PHT, Sat, Leucocytes, CRI, Creatinine.
 - Os resultados obtidos foram semelhantes.

Comparação de resultados

DECISION TREE

O teste que apresentou melhores resultados foi o 2. Após isso, foi realizado um 'Parameter Tuning' onde foi possível alcançar um accuracy de 1.0.

K-NN

O teste que apresentou melhores resultados foi o 5. Após isso, foi realizado um 'Parameter Tuning' onde foi possível alcançar um accuracy de 0.72.

Elementos extras

Para melhorar ainda mais o nosso trabalho, decidimos explorar um pouco mais outras funcionalidades e métodos para analisar os nossos dados. Para isso, utilizamos um método de aprendizagem não supervisionada (*clustering*) e o SMOTE (para atenuar certos desequilíbrios que pudesse existir no nosso target). Além disso, implementámos uma aplicação de previsão.

Conclusão

- Na análise de dados, concluímos que afinal nem todos os dados fornecidos são estritamente necessários para a realização do trabalho e que existiam valores com entradas nulas.
- Na classificação, realizamos 6 testes, onde tentamos responder a diversas perguntas, como a importância dos dados e o impacto desses dados nos resultados. Tendo sido feito o cross-validation para todos os testes exceto o primeiro, de modo a tornar o parameter tuning mais fácil de calcular. Neste foi apenas escolhido o teste com maior precisão para cada caso.
- Ao comparar os testes constatamos que estes não apresentam uma discrepância de valores, sendo todos muito próximos. De um modo geral concluímos que neste caso o melhor método foi o KNN, já que atingiu valores mais elevados.

Link para o GitHub

Para consultar o trabalho: https://github.com/caroleite05/HCC

Pesquisa bibliográfica

https://github.com/Dr-Salcedo/hepatocellular_carcinoma_one_year_survival

