Corso du FISICA TEORICA AVANZATA	1
Pente. Divergence IR (anch	(QED)
fenomendagira > QCD > Definissione? quantité Missine de servals	nli
Parke Parke Perke Perulative Permioni Perke Permioni Permioni Perke Permioni Permioni Permioni	mici)
DIVERGENZE INFRAROSSE Presense di particelle a massa melle en QF	Τ
Moccoolo della quetione: CARICA => RADIAZIO ACCELERATA E.M.	иe
Hp particelle prodotte con M>0 ⇒ Emin ≥ MxC² Nomex < Exor mxC²	
Hp Mx = 0 Emin = 0 Nmex = 0	
In protice $P(N < \infty) = 0$	
Mon coste niente produre fotoni <u>SOFFICI</u>	•
He Me=0 => C -> C+8 spontomeamente	
Mon costa miente ocindersi in 2 particelle	

Ju GED me = 0

mg = 0 Jn QCD

= amount à tipico.

Concretamente, anche per un processo éji - éji p po

le corresioni virtuali O(X) romo:

-divergenti UV (K→∞)

aura: rinormalissassione

ψ₀ = √2, Ψ_R e₀ = √2e C_R

- divergents IR (K→0)

 $\sim \int \frac{d\omega}{\omega} f(P,P') \sim \ln \frac{m_e}{m_g} f(P,P')$

dipende dal processo!

meccanismo di B.N. ava: mon distinguere stati onergaticamente degeneri

 $\nabla v + \int \frac{d\nabla r}{dk} = -\infty + \infty = \text{limits}$

aire for me concelle le divergense soffici virtuali

Essensiale la studio dell' IRRAGGIAMENTO

-> compo e.m. quantivotico de corrente elettrica dessica

-> processi completomente quantistici (QED, QCD)

Troogiamente de sorgente claraica	(3
Consideriamo il compo e.m. prodotto de una corrente esterna data j'(x)	j
$\partial_{\mu} F^{\mu\nu} = j'(x) \qquad \Leftrightarrow \qquad \Box A^{\nu} - \partial^{\nu}(\partial_{\mu} A^{\mu}) = j^{\nu}$	A L E,B
In gauge di Lorente On A"=O trovamo	100
In souge di Lorente DuA"=0 trovsomo l'equovavane delle onde non omogenee DA"=j" (1)	
0 0	. 44

La rolusione generale si esprime tramite le cosiddelle FUNZIONI DI GREEN.

- The AW Joby G(x-y) $J^{M}(x)$ raddensfa (1)
- Se W(x) è solue. dell'omogenee $\square W = 0$ $\Rightarrow Q^n + A^n = A^n \text{ soddisse} (1)$

SOLUZ. GENTRALE: $A''(x) = Q''(x) + \int G(x-y) J''(y) d^3y$ (2) Le J. dG. di \square non e envire; le selle più conveniente dipende del probleme che vogliamo risohere.

A''(x) = 0 $\forall t < \overline{t}$; $j''(x) = 0 \forall t < \overline{t}$. $A''(x) \neq 0$ solo nel futuro del supporto di j''

 $\Rightarrow A^{n}(x) = \int G_{n+1}(x-y) \int_{0}^{\infty} (y) dy$ 170 Determinismo Gret andiame nello spario degli impulsi: A=0 $G(x) = \int \frac{d^4 \kappa}{(2\pi)^4} G(\kappa) e^{-i\kappa x}$ $\Box G(x) = S'(x)$ $\int \frac{d^{2}x}{(2\pi)^{4}} e^{-ixx} (2x^{2}) \widetilde{G}(x) = \int \frac{d^{3}x}{(2\pi)^{4}} e^{-ixx}$ $\Rightarrow (G(\kappa) = \frac{-1}{\kappa^2} = \frac{1}{\kappa^2 - \kappa^2}$ $-\kappa^2 \widehat{G}(\kappa) = 1$ Ci some due poli melle vorvabile 16° a ± 1121 $G_{\text{net}}(\kappa) = \frac{-1}{(\kappa^{\circ} \pm i \circ)^{2} - \kappa^{2}}$ $G_{\text{not}}(x) = \int \frac{d\kappa^{\circ}}{2\pi} \int \frac{d^{3}\vec{\kappa}}{(2\pi)^{3}} e^{-i\kappa^{\circ}t} e^{i\vec{\kappa}\cdot\vec{x}} \frac{-1}{(\kappa^{\circ}+i\sigma^{\circ}-|\vec{\kappa}|)(\kappa^{\circ}+i\sigma+|\vec{\kappa}|)}$: Wr = |K| $= \Theta(x^{\circ}) \int \frac{d^{3}\vec{k}}{(2\pi)^{3} \lambda \omega_{k}} \left(i e^{-i k \cdot x} + c.c.\right)$ =: 0(x°)) dk (ie-ikx + c.c.) mon à mecessario introdure qui d'e $G_{\text{od}}(x) = -\Theta(-x^{\circ}) \int Jk \left(i e^{-ik \cdot x} + c.c. \right)$

severe un amps libero (vedi domani)

GFI := Gret-Good

Decompositions in integral di Ferrier
$$J''(x) = \int \frac{J''(x)}{J''(x)} e^{-ik\cdot x} J''(x) \qquad ; \qquad J''(-k) = J''(k)$$

Se $J''' \in C$ conservata, $J''(x) = 0 \Rightarrow K_{\mu}J''(k) = 0$
 $A''(x) = \int G_{kk}(x-y)J(y)dy = \int \frac{J''(x)}{J''(x)} e^{-ik\cdot x} \frac{1}{(K+i0)^2 - K^2} J''(k)$

Qui integrare in K'' can il metodo dei Periodini dipande dalla struttura polere e exsistatica di $J''(k)$.

 EX Corica darnica che subrisce un surto (improvirios)

Dennita di corrente di una corica:

ferma: $J''(t,\overline{x}) = eS(\overline{x}-\overline{x}_n) (1,\overline{0})^n$
 $= e\int dt S(x-\overline{x}_n) (1,\overline{0})^n$

in generale $-z_{-0} = e\int dt S'(x-x_n(t)) \frac{dx'}{dt} (t')$
 $= e\int dt' S'(x-x_n(t)) \frac{dx'}{dt} (t')$
 $= e\int dt' S'(x-x_n(t)) (1,\overline{t}(t))^n$
 $= e\left[(1,\overline{t})''S'(\overline{x}-\overline{t},t) O(-t) + (1,\overline{t})''S'(\overline{x},\overline{t},t) O(t)\right]$
 ES : Dimoshare che $G_{k}J'' = 0$
 E
 $J''(x) = e\left\{\underbrace{P''}_{E}\int dt e^{-ix^2} e^{-ix^2} + \underbrace{P'''}_{E}\int dt e^{-ix^2} e^{-ix^2} e^{-ix^2} + \underbrace{P'''}_{E}\int dt' e^{-ix^2} e^{-ix^2} e^{-ix^2} e^{-ix^2} + \underbrace{P''''}_{E}\int dt' e^{-ix^2} e^{-$

$$A''(x) = -i\sqrt{\frac{3\kappa}{2\pi}} \int \frac{d^3\kappa}{(2\pi)^3} \frac{e^{-i\kappa^2 t + i\bar{\kappa}\cdot\bar{\kappa}}}{(\kappa^2 + io - |\bar{\kappa}|)(\kappa^2 + io + |\bar{\kappa}|)} \left[\frac{p''}{E\kappa^2 - \bar{p}\cdot\bar{\kappa} + io} - \frac{p'''}{E\kappa^2 - \bar{p}\cdot\bar{\kappa} - io} \right]$$

Compo e.m. di une carie in moto uniforme, quiindi che mond'irraggie

Implifie, re
$$\overline{V} = 0$$
 $A''(x) = +e(1,0)'' \int \frac{d^3k}{(2\pi)^3} \frac{e^{ik \cdot x}}{k^2}$

$$= \frac{e(1,0)''}{(2\pi)^3} \int \frac{k^2 dk \left[d\cos\theta_{xx}\right] d\phi}{(2\pi)^3} \frac{e^{ik \cdot x} \cos\theta_{xx}}{(2\pi)^2} = \frac{e(1,0)''}{(2\pi)^2} \int \frac{e^{ik \cdot x} - ikn}{ikn} dk$$

$$= \frac{e(1,0)^m}{2\pi^2 J^2} \int_0^\infty \frac{\sin x}{x} dx = \frac{e}{4\pi x} (1,0)^m$$
 potensiale Coulombiano elettrostatico.

[t>0] chiudo soto, 3 poli.

- · Quella a K°= Ū'.K mi dà il ptensible Gulombiens della particella essente
- · Gli altri due sons i responsabili dell'irraggiamento, avoit del campo di radiazione,

$$\mathcal{A}_{\text{Nod}}(x) = -(-i) \int \frac{d^3k}{(2\pi)^3} \left[\frac{e^{-i\omega t + i\kappa x}}{2\omega} \tilde{J}(\omega, \kappa) + \frac{e^{i\omega t + i\kappa x}}{-2\omega} \tilde{J}(-\omega, \kappa) \right]$$

Combro K→-K rel 2° termine, uso J(-w,-k)= J(w,k)

$$A_{\text{nod}}^{\text{M}}(x) = \int J_{\text{IN}} \left[e^{-ikx} i J_{\text{IN}}^{\text{M}}(x) + C.C. \right] \qquad ((k^{\circ} = \omega_{\text{IN}})$$

$$= Re \int \frac{d^{3}k}{2k} e^{-ikx} \left[\frac{iJ_{\text{IN}}^{\text{M}}(x)}{\omega_{\text{IN}}} \right] - A_{\text{IN}}^{\text{M}}(x)$$

$$= Seb \ i \ \text{madi} \ \text{on-obs} \left[(k^{\circ} = 0) \ \text{di} \ J_{\text{IN}}^{\text{M}} \text{ on-obs} inapprist} \right]$$

$$Calcolianno \ \text{on a L° emergia inapprist} :$$

$$E = \frac{1}{2} \int d^{3}x \left(E^{2} + B^{\circ} \right) \qquad ; E(x) = Re \int \frac{d^{3}k}{2k} e^{-ikx} e$$

$$\begin{aligned}
& = 4 \cdot \frac{1}{8} \int \frac{d^3k}{(2\pi)^3} & \mathcal{E}(k) \cdot \mathcal{E}(k) &= \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} & \sum_{k=1}^{2} \left| \mathcal{E}_{k}(k) \cdot \mathcal{E}(k) \right|^2 \\
&= \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} & \sum_{k=1}^{2} \left| \mathcal{E}_{k}(k) \cdot \overrightarrow{A}(k) \omega_{k} \right|^2 \\
&= \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} & \sum_{k=1}^{2} \left| \mathcal{E}_{k}(k) \cdot \overrightarrow{A}(k) \right|^2
\end{aligned}$$

Projettando sulle polorissaseroni fisiche abbramo semplificato il risultato, e la abbramo scritto l'energia in termini della \vec{J} . Ma passione fore di più: Obbramo salto le \vec{E}_{i} puramente spasioli. Se le promuoviamo a \vec{A} vettori an $\vec{E}_{i} = 0$, il prodotto scalore $\vec{E} \cdot \vec{J}$ la legramo in \vec{A} dimensioni,

il prodotto scalore \in . I la leggianne in e vole (porto $n^n = (1, \vec{0})$) on shell

 $\sum_{k=1}^{2} \in \mathcal{N}(k) \stackrel{*}{\mathcal{E}}_{\lambda}(k) = -8^{n} + \frac{k^{n}n^{\nu} + n^{\nu}k^{\nu}}{k \cdot n} - \frac{n^{2}}{(k \cdot n)^{2}} k^{n}k^{\nu}$

mon contribriscono con correnti conservate

 $E = \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} \left(- \int_{\mu} \int_{\mu}^{m} \right) = \frac{e^2}{2} \int \frac{d^3k}{(9\pi)^3} \left[\frac{2PP'}{(P\cdot K)(P\cdot K)} - \frac{m^2}{(P\cdot K)^2} \right]$

Mel SDR: E=E' $K''=\omega(1,\hat{\kappa})$, $P''=E'(1,\vec{\sigma})$, $P''=E'(1,\vec{\sigma})$

$$=\frac{e^{2}}{(2\pi)^{2}}\left\{\frac{\omega^{2}d\omega}{\omega^{2}}\times\left\{\frac{d\Omega_{K}\left[\frac{2(1-\overline{U}.\overline{U}')}{(1-\hat{k}.\overline{U})(1-\hat{k}.\overline{U}')}-\frac{M^{2}/E^{2}}{(1-\hat{k}.\overline{U}')^{2}}-\frac{M^{2}/E^{2}}{(1-\hat{k}.\overline{U})^{2}}\right\}\right\}$$

$$=: I(\overline{U},\overline{U}')$$

- done è irraggiata l'energie, cioè in quali direrioni;

- quanto energia viene irroggiato e a quali frequente

Evidentemente ci sono dei picchi per RIIT e RIIT'

Nel limite ultrarelativistico

il primo termine sopranzive, ed è divergente per $\hat{k}=\hat{U}$ e $\hat{k}=\hat{U}'$:

$$\frac{1-\overline{\upsilon}.\overline{\upsilon}'}{1-\overline{\upsilon}.\overline{\upsilon}'}\left\{\int \frac{d\cos\theta_{n\upsilon}}{1-\overline{\upsilon}\cos\theta_{n\upsilon}} + \int \frac{d\cos\theta_{n\upsilon'}}{1-\overline{\upsilon}'\cos\theta_{n\upsilon'}}\right\} \sim \ln\frac{1}{1-\upsilon'} + \ln\frac{1}{1-\upsilon'}$$

Il colco esplicato dei
$$I(\vec{\upsilon}, \vec{\upsilon}') = \frac{1}{2\beta_n} \ln \frac{1+\beta_n}{1-\beta_n} - 2 \sim 2 \ln \frac{|q^2|}{m^2}$$

$$\beta_n := \sqrt{1 - \frac{m^4}{(p, p^1)^2}} \simeq \sqrt{1 - \left(\frac{pm^2}{q^2}\right)^2} \simeq 1 - 2\left(\frac{m^2}{q^2}\right)^2 \quad \text{relative}$$

• $\int d\omega = \infty$ le div. UV è spuria (unto intentamen)

Questo colcob vole per
$$\omega = \frac{1}{4} < \frac{1}{t_{\text{interessione}}} = : \omega_{\text{MAX}}$$

$$\int_{0}^{\omega_{\text{max}}} d\omega = \omega_{\text{max}} \qquad \frac{dE}{d\omega} \rightarrow \frac{e^{2}}{(2\pi)^{2}} I(\vec{\sigma}, \vec{\sigma}') \quad (\omega < \omega_{\text{max}})$$

Se volernimo stimore il numero di fotorio dV = dW dV = dW

 $N = \int_{0}^{\omega_{max}} \frac{d\omega}{(2\pi)^2} I(\bar{v}, \bar{v}') = \infty$ divergense SOFFICE)

RIF: Itzyreson Zuber 1.3 Peskin Schröder 6.1