Common distributions in Julia, Python and R

 $Please\ report\ errors\ on\ \underline{https://github.com/sylvaticus/commonDistributionsInJuliaPythonR}$

Loading packages

• Julia: using Distributions

• Python: from scipy import stats

• R: library(extraDistr)

Discrete distributions

• Discrete Uniform : Complete ignorance

• Bernoulli : Single binary trial

• Binomial : Number of successes in independent binary trials

• Categorical : Individual categorical trial

• Multinomial: Number of successes of the various categories in independent multinomial trials

• Geometric: Number of independent binary trials until (and including) the first success (discrete time to first success)

• Hypergeometric: Number of successes sampling without replacement from a bin with given initial number of items representing successes

• Multivariate hypergeometric: Number of elements sampled in the various categories from a bin without replacement

• Poisson: Number of independent arrivals in a given period given their average rate per unit time

• Pascal: Number of independent binary trials until (and including) the n-th success (discrete time to n-th success).

Name	Parameters	Support	PMF	Expectations	Variance	CDF
D. Unif	$a,b \in Z$ with $b \ge a$	$x \in \{a, a+1, \dots, b\}$	$\frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a)(b-a+2)}{12}$	$\frac{x-a+1}{b-a+1}$
Bern	p ∈ [0,1]	$x \in \{0,1\}$	$p^x(1-p)^{1-x}$	p	p(1-p)	$\sum_{i=0}^{x} p^{i} (1-p)^{1-i}$
Bin	p ∈ [0,1], n in N+	$x \in \{0,\dots,n\}$	$\tbinom{n}{x}p^x(1-p)^{1-x}$	np	np(1-p)	$\sum_{i=0}^x inom{n}{i} p^i (1-p)^{1-i}$
Cat	p_1, p_2, \dots, p_K with $p_k \in [0, 1]$ and $\sum_{k=1}^K p_k = 1$	$x \in \{1,2,,K\}$	$\prod_{k=1}^K p_k^{1(k=x)}$			
Multin	n, p_1, p_2, \dots, p_K with $p_k \in [0, 1],$ $\sum_{k=1}^K p_k = 1$ and $n \in N^+$	$x\in \mathbb{N}_0^K$	$inom{n}{x_1,x_2,,x_K}\prod_{k=1}^K p_k^{x_K}$			
Geom	p ∈ [0,1]	x ∈ N ⁺	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$1-(1-p)^x$
Hyperg	$n_s, n_f, n \in \mathbb{N}_0$	$x\in\mathbb{N}_0$ with $x\leq n_s$	$\frac{\binom{n_s}{x}\binom{n_f}{n-x}}{\binom{(n_s+n_f)}{n}}$	$nrac{n_s}{n_s+n_f}$	$nrac{n_s}{n_s+n_f}rac{n_f}{n_s+n_f}rac{n_s+n_f+n}{n_s+n_f+1}$	
Multiv hyperg	$n_1, n_2, \dots, n_K, \ n$ with $n \in \mathbb{N}_+, n_i \in \mathbb{N}_0$	$x \in \mathbb{N}_0^K$ with $x_i \leq n_i \ orall i, \ \sum_{i=1}^K x_i = n$	$\frac{\prod_{i=1}^{K} \binom{n_i}{x_i}}{\binom{\sum_{i=1}^{K} n_i}{n}}$	$nrac{n_i}{\sum_{i=1}^K n_i}$	$n^{\sum_{j=1}^{K} n_j - n}_{\sum_{j=1}^{K} n_j - 1} rac{n_i}{\sum_{j=1}^{K} n_j} \Biggl(1 - rac{n_i}{\sum_{j=1}^{K} n_j} \Biggr)$	
Pois	λ in R+	x ∈ N ₀	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	
Pasc	n ∈ N+, p in [0,1]	x in N⁺	$inom{x-1}{n-1}p^n(1-p)^{x-n}$	$\frac{n}{p}$	$\frac{n(1\!-\!p)}{p^2}$	

Distribution	Julia	Python (stats.[distributionName])	R
Discrete uniform	DiscreteUniform(lRange,uRange)	randint(lRange,uRange)	dunif(lRange,uRange)
Bernoulli	Bernoulli(p)	bernoulli(p)	bern(p)
Binomial	Binomial(n,p)	binom(n,p)	binom(n,p)
Categorical	Categorical(ps)	Not Av.	cat(ps)
Multinomial	Multinomial(n, ps)	multinomial(n, ps)	mnom(n,ps)
Geometric	Geometric(p)	geom(p)	geom(p)
Hypergeometric	<pre>Hypergeometric(nS, nF, nTrials)</pre>	hypergeom(nS+nF,nS,nTrials)	hyper(nS, nF, nTrias)
Mv hypergeometric	Not Av.	<pre>multivariate_hypergeom(initialNByCat,nTrials)</pre>	<pre>mvhyper(initialNByCat,nTrials)</pre>
Poisson	Poisson(rate)	poisson(rate)	pois(rate)
Negative Binomial	NegativeBinomial(nSucc,p)	nbinom(nSucc,p)	nbinom(nSucc,p)

Continuous distributions

- Uniform complete ignorance, pick at random, all equally likely outcomes
- **Exponential** waiting time to first event whose rate is $\boldsymbol{\lambda}$ (continuous time to first success)
- Normal The asymptotic distribution of a sample means
- Erlang Time of the n-th arrival
- Cauchy The ratio of two independent zero-means normal r.v.
- Chi-squared The sum of the squared of iid standard normal r.v.
- T distribution The distribution of a sample means
- ullet F distribution : The ratio of the ratio of two indep X^2 r.v. with their relative parameter
- Beta distribution The Beta distribution
- Gamma distribution Generalisation of the exponential, Erlang and chi-square distributions

Name	Parameters	Support	PMF	Expectations	Variance	CDF
Unif	a,b ∈ R with b ≧ a	x \in [a,b]	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{x-a}{b-a}$
Expo	λ ∈ R⁺	x ∈ R+	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$1 - e^{-\lambda x}$
Normal	$\mu \in R, \sigma^2 \in R^+$	x∈R	$rac{1}{\sigma\sqrt{2\pi}}e^{rac{-(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	
Erlang	$n \in N^+, \lambda \in R^+$	$x \in R_0$	$rac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!}$	$\frac{n}{\lambda}$	$\frac{n}{\lambda^2}$	
Cauchy	$x_0 \in R \text{ (location)}, \gamma \in R^* \text{ (scale)}$	$rac{1}{\pi\gamma(1+(rac{x-x_0}{\gamma})^2)}$				
Chi-sq	d ∈ N*	x ∈ R⁺	$rac{1}{2rac{d}{2}\Gamma(rac{d}{2})}x^{rac{d}{2})^{-1}e^{-rac{x}{2}}$	d	2d	
т	v ∈ R⁺	x ∈ R	$rac{\Gamma(rac{ u+1}{2})}{\sqrt{ u\pi}\Gamma(rac{ u}{2})}\Big(1+rac{x^2}{ u}\Big)^{-rac{ u+1}{2}}$			
F	$d_1 \in N^* d_2 \in N^*$	x ∈ R+	$\frac{\sqrt{\frac{(d_1x)^d 1d_2^{d_2}}{(d_1x+d_2)^d 1+d_2}}}{x\mathbf{B}\left(\frac{d_1}{2},\frac{d_2}{2}\right)}$	$rac{d_2}{d_2-2}$ for $d_2>2$	$rac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)}$ for $d_2>4$	
Beta	$\alpha, \beta \in R^+$	x ∈ [1,0]	$rac{1}{B(lpha,eta)}x^{lpha-1}(1-x)^{eta-1}$	$\frac{\alpha}{\alpha+eta}$	$rac{lphaeta}{\left(lpha+eta ight)^2\left(lpha+eta+1 ight)}$	
Gamma	$\alpha \in R^*$ (shape), $\beta \in R^*$ (rate)	x ∈ R+	$rac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	

Beta function : $B(\alpha,\beta)=rac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}=rac{\alpha+\beta}{\alpha\beta}$ Gamma function: $\Gamma(x)=(x-1)!\ \forall x\in N$

Distribution	Julia	Python (stats.[distributionName])	R
Uniform	Uniform(lRange,uRange)	uniform(lRange,uRange)	unif(lRange,uRange)
Exponential	Exponential(rate)	expon(rate)	exp(rate)
Normal	Normal(μ,sqrt(σsq))	norm(μ,math.sqrt(σsq))	norm(μ,sqrt(σsq))
Erlang	Erlang(n,rate)	erlang(n,rate)	Use gamma
Cauchy	Cauchy(μ, σ)	cauchy(μ, σ)	cauchy(μ,σ)
Chisq	Chisq(df)	chi2(df)	chisq(df)
T Dist	TDist(df)	t(df)	t(df)
F Dist	FDist(df1, df2)	f(df1, df2)	f(df1,df2)
Beta Dist	Beta(shapeα,shapeβ)	beta(shapeα,shapeβ)	beta(shapeα,shapeβ)
Gamma Dist	Gamma(shapeα,1/rateβ)	gamma(shapeα,1/rateβ)	gamma(shapeα,1/rateβ)

Note: The Negative Binomial returns the number of failures before n successes instead of the total trials to n successes as the Pascal distribution

Usage

$$y = CDF(x)$$
, i.e. $y \in [0,1]$

	Julia	Python	R
Mean	mean(d)	d.mean()	
Variance	var(d)	d.var()	
Median	median(d)	d.median()	
Sample	rand(d)	d.rvs()	$\label{eq:reconstructionName} r[\mbox{distributionParameters}) \;, e.g. \\ runif(1,10,20)$
Quantiles $(F^{-1}(y))$	quantile(d,y)	d.ppf(y)	$\label{eq:qenergy} $$q[distributionName](y,\ distributionParameters)$, e.g. $$$qunif(0.2,10,20)$$

	Julia	Python	R
PDF/PMF	pdf(d,x)	<pre>d.pmf(x) for discrete r.v. and d.pdf(x) for continuous ones</pre>	$\label{eq:definition} $$ d[distributionName](x, distributionParameters) , e.g. $$ dunif(15,10,20)$$
CDF	cdf(d,x)	d.cdf(x)	$\label{eq:problem} \begin{split} &p[\mbox{distributionParameters}) \;, e.g. \\ &punif(15,10,20) \end{split}$